Non-Adaptive Universal One-Way Hash Functions from Arbitrary One-Way Functions

Xinyu Mao* Noam Mazor** Jiapeng Zhang*

April 26, 2023

* University of Southern California

** Tel-Aviv University

One-Way Functions

- ► A function $f: \{0, 1\}^n \to \{0, 1\}^n$ is **one-way function** if:
 - \blacktriangleright Easy to compute: f is computable in poly(n) time.
 - \blacktriangleright Hard to invert: \forall PPT A

$$\Pr_{x \leftarrow \{0,1\}^n} [A(f(x)) \in f^{-1}(f(x))] = \text{negl}(n).$$

► OWF exists: "minimal assumption for cryptography"

- ► A keyed hash family C_z : $\{0,1\}^m \to \{0,1\}^\ell$, $z \in \{0,1\}^k$
- ▶ Shrinking: $\ell < m$.
- ► Target collision resistance: \forall PPT $A = (A_1, A_2)$

$$\Pr_{\substack{(x,st) \leftarrow A_1, z \leftarrow \{0,1\}^k}} [A_2(x,z,st) = x' \text{ s. t. } C_z(x) = C_z(x')] \text{ is negligible.}$$

- ► A keyed hash family C_z : $\{0,1\}^m \to \{0,1\}^\ell$, $z \in \{0,1\}^k$
- ▶ Shrinking: $\ell < m$.
- ► Target collision resistance: \forall PPT $A = (A_1, A_2)$ Pr $[A_2(x, z, st) = x' \text{ s. t. } C_z(x) = C_z(x')]$ is negligible.
- ► One-way function + UOWHF → digital signature [Naor-Yung' 89]

- ► A keyed hash family C_z : $\{0,1\}^m \to \{0,1\}^\ell$, $z \in \{0,1\}^k$
- ▶ Shrinking: $\ell < m$.
- ► Target collision resistance: \forall PPT $A = (A_1, A_2)$ $\Pr_{\substack{(x,st) \leftarrow A_1, z \leftarrow \{0,1\}^k}} [A_2(x,z,st) = x' \text{ s. t. } C_z(x) = C_z(x')] \text{ is negligible.}$
- ▶ One-way function + UOWHF → digital signature [Naor-Yung' 89]
- ▶ One-way function → UOWHF [Rompel' 90]

- ► A keyed hash family C_z : $\{0,1\}^m \to \{0,1\}^\ell$, $z \in \{0,1\}^k$
- ▶ Shrinking: $\ell < m$.
- ► Target collision resistance: \forall PPT $A = (A_1, A_2)$ Pr $[A_2(x, z, st) = x' \text{ s. t. } C_z(x) = C_z(x')]$ is negligible.
- ▶ One-way function + UOWHF → digital signature [Naor-Yung' 89]
- ▶ One-way function → UOWHF [Rompel' 90]
- ▶ UOWHF can be easily constructed from a unkeyed function *F* that is shrinking and collision-resistant on random inputs.

UOWHF (also known as target collision-resistant hash function)

- ► A keyed hash family C_z : $\{0,1\}^m \to \{0,1\}^\ell$, $z \in \{0,1\}^k$
- ▶ Shrinking: $\ell < m$.
- Target collision resistance: \forall PPT $A = (A_1, A_2)$ Pr $[A_2(x, z, st) = x' \text{ s. t. } C_z(x) = C_z(x')]$ is negligible. $(x,st) \leftarrow A_1, z \leftarrow \{0,1\}^k$
- ► One-way function + UOWHF → digital signature [Naor-Yung' 89]
- ▶ One-way function → UOWHF [Rompel' 90]
- ▶ UOWHF can be easily constructed from a unkeyed function *F* that is shrinking and collision-resistant on random inputs.

Given random $x \leftarrow \{0, 1\}^m$, it is hard to find x' such that F(x) = F(x').

UOWHF (also known as target collision-resistant hash function)

- ▶ A keyed hash family C_z : $\{0,1\}^m \to \{0,1\}^\ell, z \in \{0,1\}^k$
- ▶ Shrinking: $\ell < m$.
- ► Target collision resistance: \forall PPT $A = (A_1, A_2)$ Pr $[A_2(x, z, st) = x' \text{ s. t. } C_z(x) = C_z(x')]$ is negligible.
- ▶ One-way function + UOWHF → digital signature [Naor-Yung' 89]
- ▶ One-way function → UOWHF [Rompel' 90]
- ► UOWHF can be easily constructed from a unkeyed function F that is shrinking and collision-resistant on random inputs.

 Construction:

Given random $x \leftarrow \{0, 1\}^m$, it is hard to find x' such that F(x) = F(x').

$$C_z(x) \coloneqq F(z \oplus x)$$

OWF $f: \{0, 1\}^n \to \{0, 1\}^n$ UOWHF $C_z: \{0, 1\}^{m(n)} \to \{0, 1\}^{\ell(n)}, z \in \{0, 1\}^{k(n)}$

Efficiency Measures

- ightharpoonup Seed length: k(n)
- ► Number of calls to the underlying OWF
- ► Adaptivity: whether the invocations of the OWF are dependent of the output of previous calls

OWF $f: \{0, 1\}^n \to \{0, 1\}^n$ UOWHF $C_z: \{0, 1\}^{m(n)} \to \{0, 1\}^{\ell(n)}, z \in \{0, 1\}^{k(n)}$

Efficiency Measures

- ightharpoonup Seed length: k(n)
- ► Number of calls to the underlying OWF
- ► Adaptivity: whether the invocations of the OWF are dependent of the output of previous calls

	Seed length	Number of calls	Non-adaptive?
[HHRVW' 10]	$\tilde{O}(n^5 \log n)$	$\tilde{O}(n^{13})$	×
Our Construction I	$\tilde{O}(n^9 \log n)$	$\tilde{O}(n^{10})$	

OWF $f: \{0, 1\}^n \to \{0, 1\}^n$ UOWHF $C_z: \{0, 1\}^{m(n)} \to \{0, 1\}^{\ell(n)}, z \in \{0, 1\}^{k(n)}$

Efficiency Measures

- ightharpoonup Seed length: k(n)
- ► Number of calls to the underlying OWF
- ► Adaptivity: whether the invocations of the OWF are dependent of the output of previous calls

	Seed length	Number of calls	Non-adaptive?
[HHRVW' 10]	$\tilde{O}(n^5 \log n)$	$\tilde{O}(n^{13})$	×
Our Construction I	$\tilde{O}(n^9 \log n)$	$\tilde{O}(n^{10})$	

- ► The first non-adaptive construction
- ightharpoonup It can be implemented in NC_1 with f-oracle gates
- \blacktriangleright Combined with [AIK' 06] \rightarrow Assuming that OWFs exist in NC₁, there exists a UOWHF in NC₀.

OWF $f: \{0, 1\}^n \to \{0, 1\}^n$ UOWHF $C_z: \{0, 1\}^{m(n)} \to \{0, 1\}^{\ell(n)}, z \in \{0, 1\}^{k(n)}$

Efficiency Measures

- ightharpoonup Seed length: k(n)
- ► Number of calls to the underlying OWF
- ► Adaptivity: whether the invocations of the OWF are dependent of the output of previous calls

	Seed length	Number of calls	Non-adaptive?
[HHRVW' 10]	$\tilde{O}(n^5 \log n)$	$\tilde{O}(n^{13})$	×
Our Construction I	$\tilde{O}(n^9 \log n)$	$\tilde{O}(n^{10})$	

- ► The first non-adaptive construction
- ightharpoonup It can be implemented in NC_1 with f-oracle gates

What does the 'right' construction look like?

 \blacktriangleright Combined with [AIK' 06] \rightarrow Assuming that OWFs exist in NC₁, there exists a UOWHF in NC₀.

Similarity between OWF → PRG and OWF → UOWHFs

Regular OWF
$$f: \{0, 1\}^n \to \{0, 1\}^n \quad \forall \ y, y' \in \text{Image}(f), |f^{-1}(y)| = |f^{-1}(y')|$$

[MZ' 22]

$$G(h, x_1, ..., x_n) := h(x_1, f(x_2)), h(x_2, f(x_3)), ..., h(x_{n-1}, f(x_n))$$

- $\blacktriangleright h: \{0, 1\}^{2n} \to \{0, 1\}^{n+\Delta}$ is a hash function from an appropriate hash family.
- ▶ Hashing out more bits: $\Delta = \log n \rightarrow G$ is PRG.
- ▶ Hashing out fewer bits: $\Delta = -\log n \rightarrow G'$ is collision-resistant on random inputs.

$$G'(h, x_1, ..., x_n) := f(x_1), G(h, x_1, ..., x_t), x_n$$

The efficiency gap between OWF → PRG and OWF → UOWHFs

OWF $f: \{0, 1\}^n \rightarrow \{0, 1\}^n$

	Assumption	Seed Length		Number of Calls		Remarks
		PRG	UOWHF	PRG	UOWHF	
[HHR' 06] [AGV'12]	Regular OWF	0(n)	O(n)	O(n)	O(n)	Adaptive
[MZ'22]	Regular OWF	$O(n^2)$	$O(n^2)$	O(n)	O(n)	Non-adaptive
[VZ'12][HRV'10][HHRVW'10]	Arbitrary OWF	$O(n^4)$	$\tilde{O}(n^7)$	$O(n^3)$	$O(n^{13})$	Efficiency gap
Our Construction I	Arbitrary OWF	-	$O(n^{10})$	-	$O(n^{9})$	Non-adaptive

The efficiency gap between OWF → PRG and OWF → UOWHFs

OWF $f: \{0, 1\}^n \to \{0, 1\}^n$

	Assumption	Seed Length		Number of Calls		Remarks
		PRG	UOWHF	PRG	UOWHF	
[HHR' 06] [AGV'12]	Regular OWF	O(n)	O(n)	O(n)	O(n)	Adaptive
[MZ'22]	Regular OWF	$O(n^2)$	$O(n^2)$	O(n)	O(n)	Non-adaptive
[VZ'12][HRV'10][HHRVW'10]	Arbitrary OWF	$O(n^4)$	$\tilde{O}(n^7)$	$O(n^3)$	$O(n^{13})$	Efficiency gap
Our Construction I	Arbitrary OWF	-	$O(n^{10})$	-	$O(n^9)$	Non-adaptive

No efficiency gap between PRG and UOWHF if OWF is regular!

The efficiency gap between OWF → PRG and OWF → UOWHFs

OWF f: $\{0,1\}^n \rightarrow \{0,1\}^n$

Lower bound: $\widetilde{\Omega}(n)$ calls [HS' 12,16]

	Assumption	Seed Length		Number of Calls		Remarks
		PRG	UOWHF	PRG	UOWHF	
[HHR' 06] [AGV'12]	Regular OWF	O(n)	O(n)	O(n)	0(n)	Adaptive
[MZ'22]	Regular OWF	$O(n^2)$	$O(n^2)$	O(n)	O(n)	Non-adaptive
[VZ'12][HRV'10][HHRVW'10]	Arbitrary OWF	$O(n^4)$	$\tilde{O}(n^7)$	$O(n^3)$	$O(n^{13})$	Efficiency gap
Our Construction I	Arbitrary OWF	-	$O(n^{10})$	-	$O(n^9)$	Non-adaptive

No efficiency gap between PRG and UOWHF if OWF is regular!

The efficiency gap between OWF → PRG and OWF → UOWHFs

OWF $f: \{0, 1\}^n \rightarrow \{0, 1\}^n$

Lower bound: $\widetilde{\Omega}(n)$ calls [HS' 12,16]

	Assumption	Seed Length		Number of Calls		Remarks
		PRG	UOWHF	PRG	UOWHF	
[HHR' 06] [AGV'12]	Regular OWF	O(n)	O(n)	O(n)	O(n)	Adaptive
[MZ'22]	Regular OWF	$O(n^2)$	$O(n^2)$	O(n)	0(n)	Non-adaptive
[VZ'12][HRV'10][HHRVW'10]	Arbitrary OWF	$O(n^4)$	$\tilde{O}(n^7)$	$O(n^3)$	$O(n^{13})$	Efficiency gap
Our Construction I	Arbitrary OWF	-	$O(n^{10})$	-	$O(n^9)$	Non-adaptive
Our Almost-UOWHF	Arbitrary OWF	-	$\tilde{O}(n^4)$	-	$\tilde{O}(n^3)$	Non-adaptive Almost-UOWH

No efficiency gap between PRG and UOWHF if OWF is regular!

The efficiency gap between OWF → PRG and OWF → UOWHFs

OWF $f: \{0, 1\}^n \rightarrow \{0, 1\}^n$

Lower bound: $\widetilde{\Omega}(n)$ calls [HS' 12,16]

	Assumption	Seed Length		Number of Calls		Remarks
		PRG	UOWHF	PRG	UOWHF	
[HHR' 06] [AGV'12]	Regular OWF	0(n)	O(n)	O(n)	O(n)	Adaptive
[MZ'22]	Regular OWF	$O(n^2)$	$O(n^2)$	O(n)	0(n)	Non-adaptive
[VZ'12][HRV'10][HHRVW'10]	Arbitrary OWF	$O(n^4)$	$\tilde{O}(n^7)$	$O(n^3)$	$O(n^{13})$	Efficiency gap
Our Construction I	Arbitrary OWF	-	$O(n^{10})$	-	$O(n^9)$	Non-adaptive
Our Almost-UOWHF	Arbitrary OWF	-	$\tilde{O}(n^4)$	-	$\tilde{O}(n^3)$	Non-adaptive Almost-UOWHF

No efficiency gap between PRG and UOWHF if OWF is regular!

Our Almost-UOWHF construction is very similar to HRV PRG construction. 😍

Constructions

Framework: computational entropy

Arbitrary OWF $f: \{0,1\}^n \to \{0,1\}^n$ Computational entropy generator g

PRG, UOWHF, ...
Manipulating entropy and

extraction

- \blacktriangleright HRV PRG: g(X) has <u>next-bit pseudoentropy</u>
- ightharpoonup HRVVW UOWHF: g(X) has inaccessible entropy

Write $Z := g(X) \in \{0, 1\}^{\ell}$. $\exists Y = (Y_1, ..., Y_{\ell})$:

- $\forall i: Z_1, ..., Z_i \approx_c Z_i, ..., Z_{i-1}, Y_i$
- $\mathbb{E}_{I \leftarrow [\ell]}[\mathbf{H}(Y_I \mid Z_1, \dots, Z_{I-1})] \ge \frac{\mathbf{H}(Z)}{\ell} + \delta.$

 $(\mathbf{H}(\cdot): Shannon entropy)$

That is, on average,

each bit exhibit δ extra pseudoentropy.

Framework: computational entropy

Arbitrary OWF $f: \{0,1\}^n \to \{0,1\}^n$ Computational entropy generator g

PRG, UOWHF, ...

Manipulating entropy and extraction

- \blacktriangleright HRV PRG: g(X) has <u>next-bit pseudoentropy</u>
- ightharpoonup HRVVW UOWHF: g(X) has inaccessible entropy

	Write Z	= g(X)	$\in \{0,1\}^\ell$.	$\exists Y =$	$(Y_1, \dots$	$,Y_{\ell})$
--	---------	--------	----------------------	---------------	---------------	--------------

- $\forall i: Z_1, \dots, Z_i \approx_c Z_i, \dots, Z_{i-1}, Y_i$
- $\mathbb{E}_{I \leftarrow [\ell]}[\mathbf{H}(Y_I \mid Z_1, \dots, Z_{I-1})] \ge \frac{\mathbf{H}(Z)}{\ell} + \delta.$

 $(\mathbf{H}(\cdot): Shannon entropy)$

That is, on average,

each bit exhibit δ extra pseudoentropy.

q	
rows	

$g(X_{1,1})$	$g(X_{1,2})$	•••	$g(X_{1,t})$
$g(X_{2,1})$	$g(X_{2,2})$	•••	$g(X_{2,t})$
:	:	•	:
$g(X_{2,1})$	$g(X_{2,2})$		$g(X_{2,t})$

 $t \cdot \ell$ columns

Framework: computational entropy

Arbitrary OWF $f: \{0,1\}^n \to \{0,1\}^n$ Computational entropy generator g

PRG, UOWHF, ...

Manipulating entropy and extraction

- \blacktriangleright HRV PRG: g(X) has <u>next-bit pseudoentropy</u>
- ightharpoonup HRVVW UOWHF: g(X) has inaccessible entropy

Write $Z := g(X) \in \{0, 1\}^{\ell}$. $\exists Y = (Y_1, ..., Y_{\ell})$:

- $\forall i: Z_1, \dots, Z_i \approx_c Z_i, \dots, Z_{i-1}, Y_i$
- $\mathbb{E}_{I \leftarrow [\ell]}[\mathbf{H}(Y_I \mid Z_1, \dots, Z_{I-1})] \ge \frac{\mathbf{H}(Z)}{\ell} + \delta.$

 $(H(\cdot): Shannon entropy)$

That is, on average,

each bit exhibit δ extra pseudoentropy.

q rows $t \cdot \ell$ columns

Framework: computational entropy

rows

Arbitrary OWF $f: \{0,1\}^n \to \{0,1\}^n$ Computational entropy generator g

PRG, UOWHF, ...

Manipulating entropy and extraction

- \blacktriangleright HRV PRG: g(X) has <u>next-bit pseudoentropy</u>
- ightharpoonup HRVVW UOWHF: g(X) has inaccessible entropy

$$t \cdot \ell$$
 columns

Write $Z := g(X) \in \{0, 1\}^{\ell}$. $\exists Y = (Y_1, ..., Y_{\ell})$:

- $\forall i: Z_1, ..., Z_i \approx_c Z_i, ..., Z_{i-1}, Y_i$
- $\mathbb{E}_{I \leftarrow [\ell]}[\mathbf{H}(Y_I \mid Z_1, \dots, Z_{I-1})] \ge \frac{\mathbf{H}(Z)}{\ell} + \delta.$

 $(\mathbf{H}(\cdot): Shannon entropy)$

That is, on average,

each bit exhibit δ extra pseudoentropy.

Framework: computational entropy

rows

Arbitrary OWF $f: \{0,1\}^n \to \{0,1\}^n$ Computational entropy generator g

PRG, UOWHF, ...

Manipulating entropy and extraction

- \blacktriangleright HRV PRG: g(X) has <u>next-bit pseudoentropy</u>
- ightharpoonup HRVVW UOWHF: g(X) has inaccessible entropy

$(X_{1,1})$	Ę	$g(X_{1,2})$		•••	Į	$g(X_{1,t})$
(2,1)	g($(X_{2,2})$		•••	g($(X_{2,t})$
:		:		•.		:
$g(X_{q,1})$	L)	$g(X_{q,2})$	2)	•••		$g(X_q)$

$$t \cdot \ell$$
 columns

Write $Z := g(X) \in \{0, 1\}^{\ell}$. $\exists Y = (Y_1, ..., Y_{\ell})$:

- $\forall i: Z_1, ..., Z_i \approx_c Z_i, ..., Z_{i-1}, Y_i$
- $\mathbb{E}_{I \leftarrow [\ell]}[\mathbf{H}(Y_I \mid Z_1, ..., Z_{I-1})] \ge \frac{\mathbf{H}(Z)}{\ell} + \delta.$

 $(H(\cdot): Shannon entropy)$

That is, on average,

each bit exhibit δ extra pseudoentropy.

Framework: computational entropy

rows

Arbitrary OWF $f: \{0,1\}^n \to \{0,1\}^n$ Computational entropy generator a

PRG, UOWHF, ...

Manipulating entropy and extraction

- \blacktriangleright HRV PRG: g(X) has <u>next-bit pseudoentropy</u>
- ightharpoonup HRVVW UOWHF: g(X) has inaccessible entropy

Write $Z := g(X) \in \{0, 1\}^{\ell}$. $\exists Y = (Y_1, ..., Y_{\ell})$:

- $\forall i: Z_1, ..., Z_i \approx_c Z_i, ..., Z_{i-1}, Y_i$
- $\mathbb{E}_{I \leftarrow [\ell]}[\mathbf{H}(Y_I \mid Z_1, \dots, Z_{I-1})] \ge \frac{\mathbf{H}(Z)}{\ell} + \delta.$

 $(H(\cdot): Shannon entropy)$

That is, on average,

each bit exhibit δ extra pseudoentropy.

 $t \cdot \ell$ columns

hash $h: \{0, 1\}^q \to \{0, 1\}^a$

Framework: computational entropy

rows

Similar to HRV PRG

Arbitrary OWF $f: \{0,1\}^n \to \{0,1\}^n$ Computational entropy generator

PRG, UOWHF, ...

Manipulating entropy and extraction

- \blacktriangleright HRV PRG: g(X) has <u>next-bit pseudoentropy</u>
- \blacktriangleright HRVVW UOWHF: g(X) has inaccessible entropy

Next-bit version?

$(X_{1,1})$	$g(X_{1,2})$	•••	$g(X_{1,t})$
2,1)	$g(X_{2,2})$	•••	$g(X_{2,t})$
!	:	••	:
$g(X_{q,1})$	$g(X_{q,2})$		$g(X_q)$
		$a \rightarrow \{0,1\}^a$	
	$t \cdot \ell$ c	olumns	

Write $Z := g(X) \in \{0, 1\}^{\ell}$. $\exists Y = (Y_1, ..., Y_{\ell})$:

- $\forall i: Z_1, \dots, Z_i \approx_c Z_i, \dots, Z_{i-1}, Y_i$
- $\mathbb{E}_{I \leftarrow [\ell]}[\mathbf{H}(Y_I \mid Z_1, \dots, Z_{I-1})] \ge \frac{\mathbf{H}(Z)}{\ell} + \delta.$

 $(H(\cdot): Shannon entropy)$

That is, on average,

each bit exhibit δ extra pseudoentropy.

- ightharpoonup HRV PRG: g(X) has next-bit pseudoentropy
- ightharpoonup HRVVW UOWHF: g(X) has inaccessible entropy

Drop unpopulated columns, hash more bits

→ HRV PRG

Drop unpopulated columns, hash more bits

→ HRV PRG

Drop unpopulated columns,
hash more bits

Output unpopulated columns,
hash fewer bits

→ UOWHF

and show that:

almost-UOWHF

Next-bit unreachable entropy

We say $g: \{0,1\}^m \to \{0,1\}^\ell$ has next-bit unreachable entropy Δ if for every $i \in [\ell]$, there exists a set $\mathcal{U}_i \subseteq \{0,1\}^m$, such that:

- ▶ It is hard to flip the *i*-th bit **while staying inside** \mathcal{U}_i : \forall PPT A Pr[$g(X)_{\leq I} = g(X')_{\leq I} \land g(X)_I \neq g(X')_I \land X' \in \mathcal{U}_I$] = negl(n).
- ▶ \mathcal{U} is large: $\Pr[X \in \mathcal{U}_I] \ge \frac{\ell m + \Delta}{\ell}$

$$X \leftarrow \{0,1\}^m, I \leftarrow [\ell], X' \leftarrow A(X,I).$$

Hard to get inside \mathcal{U} : \forall PPT A $\Pr[g(X)_{< I} = g(X')_{< I} \land X \notin \mathcal{U}_I \land X' \in \mathcal{U}_I] = \operatorname{negl}(n).$

Next-bit unreachable entropy

We say $g: \{0,1\}^m \to \{0,1\}^\ell$ has next-bit unreachable entropy Δ if for every $i \in [\ell]$, there exists a set $\mathcal{U}_i \subseteq \{0,1\}^m$, such that:

- ▶ It is hard to flip the *i*-th bit **while staying inside** \mathcal{U}_i : \forall PPT A Pr[$g(X)_{< I} = g(X')_{< I} \land g(X)_I \neq g(X')_I \land X' \in \mathcal{U}_I$] = negl(n).
- ▶ \mathcal{U} is large: $\Pr[X \in \mathcal{U}_I] \ge \frac{\ell m + \Delta}{\ell}$

$$X \leftarrow \{0,1\}^m, I \leftarrow [\ell], X' \leftarrow A(X,I).$$

Hard to get inside \mathcal{U} : \forall PPT A $\Pr[g(X)_{< I} = g(X')_{< I} \land X \notin \mathcal{U}_I \land X' \in \mathcal{U}_I] = \operatorname{negl}(n).$

HRV next-bit pseudoentropy generator: $g(h,x)\coloneqq (f(x),h(x),h)$ Our next-bit unreachable entropy generator: $g(h_1,h_2,x)\coloneqq \big(h_1\big(f(x)\big),h_2(x),h_1,h_2\big)$

* h_1 , h_2 are from proper hash families

Almost-UOWHF: What's the point?

Almost-UOWHF:

 \exists a negligible fraction of inputs \mathcal{B} such that any adversary can find collision x' only from \mathcal{B} .

- Our construction is very similar to the HRV PRG construction.
- ► The HRV PRG construction is actually an "Almost-PRG".
- ► Fortunately, Almost-PRG = PRG.

Almost-UOWHF: What's the point?

Almost-UOWHF:

 \exists a negligible fraction of inputs \mathcal{B} such that any adversary can find collision x' only from \mathcal{B} .

Input space

$g(X_{1,1})$	$g(X_{1,2})$	•••	$g(X_{1,t})$
$g(X_{2,1})$	$g(X_{2,2})$	•••	$g(X_{2,t})$
:	:	••	:
$g(X_{q,1})$	$g(X_{q,2})$)	$g(X_{q,t})$
			$)), h_2(x), h_1,$

- ▶ Our construction is very similar to the HRV PRG construction.
- ► The HRV PRG construction is actually an "Almost-PRG".
- ► Fortunately, Almost-PRG = PRG.

Almost-PRG:

 $G(U|_{U\notin\mathcal{B}})\approx_c$ uniform random bits, where \mathcal{B} contains negligible fraction of inputs.

Non-adaptive UOWHF

Modifications towards a full-fledged UOWHF

- ightharpoonup Use large q, t
- ightharpoonup Hash a $\ell \cdot q$ block instead of hashing a single column
- → Collision-resistant on random inputs*

^{*}In order to get a simpler proof by existing techniques, we actually prove that an equivalent construction is UOWHF.

Open Questions

Open Questions

- ► Conjecture. Our Almost-UOWHF construction is a full-fledged UOWHF.
 - ▶ Do we need to modify our next-bit unreachable entropy definition?
 - ▶ Even with a more natural computational entropy generator: g(x) := (f(x), x)
 - ► This is used in [VZ'12] to construct PRG.

Open Questions

- ► Conjecture. Our Almost-UOWHF construction is a full-fledged UOWHF.
 - ▶ Do we need to modify our next-bit unreachable entropy definition?
 - ▶ Even with a more natural computational entropy generator: g(x) := (f(x), x)
 - ▶ This is used in [VZ'12] to construct PRG.
- ▶ Lower bounds on black-box constructions from OWF:
 - ▶ seed length
 - ▶ number of calls
 - ▶ Both PRG and UOWHFs

Thank you!

	Seed length	Number of calls	Non-adaptive?
[HHRVW' 10]	$\tilde{O}(n^5)$	$\tilde{O}(n^{13})$	×
Our UOWHF	$\tilde{O}(n^{10})$	$\tilde{O}(n^9)$	$\sqrt{}$
Our Almost-UOWHF	$\tilde{O}(n^4)$	$\tilde{O}(n^3)$	√