Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

Мегафакультет компьютерных технологий и управления Факультет программной инженерии и компьютерной техники

Лабораторная работа №3 по основам профессиональной деятельности

Вариант: 14211

Группа: Р3114

Студент: Лагус

Максим Сергеевич

Преподаватель: Перминов Илья Валентинович

г. Санкт-Петербург

Февраль, 2021

Задание:

Лабораторная работа №3

По выданному преподавателем варианту восстановить текст заданного варианта программы, определить предназначение и составить описание программы, определить область представления и область допустимых значений исходных данных и результата, выполнить трассировку программы.

Ход работы, содержание отчета и контрольные вопросы описаны в методических указаниях

BBEQUITE HOMEP BAPMANTA [14211]

28D: 02CD | 2CB: CEFB
28E: 0200 | 2CC: 0100
28F: 6000 | 2CD: F100
2CC: EFFD | 2D0: F800
2CC: AFFG | 2D0: AFFG

Выполнение работы:

Расшифровка текста исходной программы

Адрес	Код	Мнемоника	Комментарии
2BD	02CD	ARRAY_START	Адрес первого элемента
2BE	0200	ITERATOR	Переменная, которая указывает на следующий элемент массива
2BF	E000	N	Количество элементов в массиве (Задаётся в результате 2C4)
2C0	E000	R	Результат
2C1	0200	CLA	Старт программы, очистить содержимое аккумулятора, поместив в него ноль
2C2	EEFD	ST IP-3	Прямая относительная команда Очищаем ячейку IP-3=2C0 (R)
2C3	AF04	LD #04	Прямая загрузка Загружаем в АС число 4
2C4	EEFA	ST IP-6	Прямая относительная команда Сохранение АС (0004) -> IP-6=2BF (N)
2C5	4EF7	ADD IP-9	Прямая относительная команда Добавить к АС число из IP-9=2BD (ARRAY_START)

2C6	EEF7	ST IP-9	Прямая относительная команда Сохраняем АС в ячейку IP-9=2BE (ITERATOR)
2C7	ABF6	LD -(IP-A) (Начало цикла)	Косвенная автодекрементная (предекремент) Загружаем в АС следующий элемент массива
2C8	F201	BMI 01	Если элемент отрицательный, пропускаем следующую операцию
2C9	6AF6	SUB (IP-A)+	Косвенная автоинкрементная (постинкремент) Инкрементируем R
2CA	82BF	LOOP 2BF	Прямая абсолютная Цикл по числу элементов массива (По переменной N)
2CB	CEFB	JUMP IP-5	Прямая относительная команда Переход к ячейке IP-5=2C7 (Повторение цикла обработки)
2CC	0100	HLT	Останов
2CD	F100	X1	Элемент массива
2CE	1200	X2	Элемент массива
2CF	F100	X3	Элемент массива
2D0	F800	X4	Элемент массива

Описание программы

1) Расположение программы в памяти

Вспомогательные переменные дял команды расположены в ячейках 2BD - 2C0

Сама программа расположена в ячейках 2С1 - 2СС

Обрабатываемый массив расположен в ячейках 2CD - 2D0

2) Назначение программы

Программа итерируется по массиву и считает количество положительных элементов в этом массиве

3) Область представления

ARRAY_START — адрес первого элемента массива, 11-разрядное беззнаковое число

ITERATOR — адрес следующего числа массива , 11-разрядное беззнаковое число

N — количество чисел в массиве, 8-разрядное, знаковое число

R — результат работы программы, 7-разрядное беззнаковое число

 X_i — элементы массива, 16-разрядные знаковые числа

4) Область допустимых значений

Так как мы устанавливаем N командой AF**, то N \in [-128; 127];

Однако, так как N используется как переменная для итерации в LOOP, имеет смысл установить $N \in [1; 127];$

R может быть увеличено на +1 или оставленно без изменений на каждой итерации цикла обработки, причём изначально R установленно в ноль. Значит, учитывая ограничения на N, R \in [0; 127];

На элементы массива X_i не накладывается никаких дополнительных ограничений, так как они не учавствуют не в каких арифметических операциях, и, как следствие, не могут вызвать переполнения.

$$X_i \in [-2^{15}; 2^{15} - 1];$$

Рассмотрим два варианта расположения массива:

■До программы:

$$16 + N \le ARRAY_START \le 2BD_{16} - 1$$

$$16 + 128 \le ARRAY_START \le 2BD_{16} - 1$$

Следовательно, ARRAY START $\in [144_{10}; 700_{10}];$

■После программы:

 $2CC_{16} + N \le ARRAY_START \le 2^{11} - 1$

Следовательно, ARRAY_START \in [732₁₀; 4095₁₀];