НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ім. Ігоря СІКОРСЬКОГО» ФІЗИКО-ТЕХНІЧНИЙ ІНСТИТУТ

Протокол до комп'ютерного практикуму №1

РОЗВ'ЯЗАННЯ НЕЛІНІЙНИХ РІВНЯНЬ

Виконав студент групи ФІ-81

Шкаліков О.В.

Перевірила: Стьопочкіна І.В.

Теоретичні відомості

Основна задача даного лабораторного практикуму полягає у тому, щоб дослідити методи розв'язання нелінійних рівнянь:

$$f(x) = 0$$

, де f(x) - неперервна, та для деяких методів дифференційовна функція. Розв'язання даної задачі вимагає виконання 2 етапів:

- 1. Відокремлення коренів визначення проміжків $[a_i, b_i]$, у яких знаходиться лише 1 корінь.
- 2. Уточнення кореня у кожному з проміжків, знайденних на попередному етапі.

Для поліномів, тобто функції вигляду:

$$f(x) = \sum_{i=0}^{n} a_n x^n = a_0 + a_1 x + \dots + a_n x^n$$
 (1)

задача значно спрощується, бо мають місце теореми, які дозволяють оцінити значення коренів рівняння та відділити їх. Розглянемо деякі з них.

Теорема 1 (про границі усіх коренів рівняння) $Hexaŭ A = \max |a_i|, i = \overline{0, n-1} \ ma$ $A = \max |a_i|, i = \overline{1, n}$. Тоді всі корені рівняння 1 лежать у кільці:

$$\frac{|a_0|}{B + |a_0|} \le |x| \le \frac{|a_n| + A}{|a_n|}$$

Теорема 2 (Гюа) Якщо $\exists k \in \overline{1, n-1} : a_k^2 < a_{k-1}a_{k+1}$, то рівняння 1 має хоча б одну пару комплексноспряжених коренів.

Теорема 3 (про верхню межу додатніх коренів) $Hexa\ddot{u} B = \max |a_i|, a_i < 0 \ ma \ m = \max i, a_i < 0.$ Тоді верхня межа додатніх коренів рівняння 1:

$$R = 1 + \sqrt[n-m]{\frac{B}{a_n}}$$

Наслідок 1 Очевидно що, якщо обрахувати значення R_1 , R_2 , R_3 та R_4 , вважаючи за аргумент вирази x, $\frac{1}{y}$, $-\frac{1}{y}$, -y, то будуть мати місце наступні оцінки:

$$\frac{1}{R_2} \le x^+ \le R_1 \qquad -R_4 \le x^- \le -\frac{1}{R_3}$$

Наслідок 2 (Спосіб Лагранжа) $Hexaŭ\ f(x) = F(x) + H(x)$, причому F(x) містить усі поспіль старші члени f з $a_i > 0$, а також усі члени, для яких $a_i < 0$, а H(x) усі інші члени. Тоді, якщо існує таке $\alpha > 0$, що $F(\alpha) > 0$, то для коренів x_r рівняння f виконується: $x_r < \alpha$.

Теорема 4 (Штурма) Нехай $f(x) = P_n(x)$ поліном без кратних коренів. Утворимо послідовність многочленів:

$$p_0(x) = f(x)$$
 $p_1(x) = f'(x)$ $p_{i+1} = -(p_{i-1} \mod p_i)$

Тоді кількість дійсних коренів полінома f(x) на довільному відрізку [a,b] дорівнює різниці між кількістю змін знаку у цій послідовності при x=a та x=b.

Для того, щоб приблизно обчислити значення кореня у визначеному проміжку будемо використовувати наступні методи.

Algorithm 1: Метод бісекцій

```
Input: f, a, b, \varepsilon
while \varepsilon < |b-a| do
\begin{vmatrix} c = \frac{a+b}{2}; \\ \text{if } f(c)f(a) > \theta \text{ then} \\ | a \leftarrow c; \\ \text{else} \\ | b \leftarrow c; \\ \text{end} \end{vmatrix}
```

Algorithm 2: Метод Ньютона

```
Input: f, x_0, \varepsilon
x_k \leftarrow x_0;
while \varepsilon < f(x_k) do
x_{k+1} = x_k - \frac{f'(x_k)}{f(x_k)};
end
```

Output: x_k

Algorithm 3: Метод хорд

```
Input: f, a, b, \varepsilon
while \varepsilon < f(c) do
c = \frac{af(b) - bf(a)}{f(b) - f(a)};
if f(c)f(a) > \theta then
a \leftarrow c;
else
b \leftarrow c;
end
end
Output: c
```

Практична частина

Розглянемо приклад використання описаних вище методів для розв'зання задачі знаходження дійсних коренів рівняння ($16 \mod 10 = 6$) варіанту:

$$P(x) = 2x^3 - 4x^2 - x + 2 = 0$$

$$a_3 = 2, \ a_2 = -4, \ a_1 = -1, \ a_0 = 2$$

Відділення коренів

Перед усім помітимо, що за наслідками з основної теореми алгебри та теореми Безу рівняння має 3 комплексні корені, причому, якщо число з ненульовою уявною частиною є коренем, то спряжене до нього також є коренем. Далі застосуємо теореми, наведені у теоретичній частині для визначення границь та проміжків у яких ми будемо шукати корені.

За теоремою про границі комплексних коренів (1) маємо:

$$A = 4, B = 4, a_0 = 2, a_3 = 2$$

$$\frac{2}{2+4} = \frac{1}{3} \le |x| \le 3 = \frac{2+4}{2}$$

Помітимо, що задане рівняння не вдовольняє умові теореми Гюа(2), тому ми не можемо стверджувати, що рівняння має пару комплексноспряжених коренів. Проте, за властивостями імплікації (логічного наслідку) ми ще не можемо стверджувати і обернене твердження, що комплексноспряжених коренів немає.

За допомогою теореми про верхню межу додатніх коренів(3) оцінимо проміжки у яких можуть знаходитись від'ємні та додатні корені рівняння.

	x	$\frac{1}{y}$	-y	$-\frac{1}{y}$
m	2	2	1	1
B	4	4	2	4
a_0	2	2	2	2
R	3	3	2	2.4

Таким чином маємо наступні оцінки:

$$-2 \le x^- \le -\frac{1}{2.4} < -0.4$$
 $0.3 < \frac{1}{3} \le x^+ \le 3$

Застосуємо спосіб Лагранжа для уточнення верхньої межі додатніх коренів. Помітимо, що:

$$f(x) = F(x) + H(x)$$
$$F(x) = 2x^3 - 4x^2 - x$$
$$H(x) = 2$$

Розглянемо точку 2.5. Значення функції F у цій точці дорівнює: F(2.5) = 3.75. А отже, за наслідком 2 маємо, що значення 2.5 можна обрати за верхню межу додатніх коренів.

За теоремою Штурма(4) обрахуємо кількість додатніх та від'ємних коренів(N-кількість змін знаків). Для даного рівняння маємо наступну послідовність Штурма:

$$p_0 = 2x^3 - 4x^2 - x + 2$$

$$p_1 = 6x^2 - 8x - 1$$

$$p_2 = \frac{22}{9}x - \frac{16}{9}$$

$$p_3 = \frac{142884}{39204}$$

p	-2	-0.4	0.3	2.5
p_0	-	+	+	+
p_1	+	+	ı	+
p_2	-	-	-	+
p_3	+	+	+	+
N	3	2	2	0

Бачимо, що саме на проміжку [0.3, 2.5] наявні 2 корені, тому оберемо деяку точку у цьому проміжку(наприклад 1.5) та проведемо обрахунки знову. Таким чином, отримаємо 3 проміжки: [-2, -0.4], [0.3, 1.5], [1.5, 2.5], у кожному з яких є тільки один корінь вихідного рівняння.

p	-2	-0.4	0.3	1.5	2.5
P	-2	-0.4	0.5	1.0	2.0
p_0	-	+	+	•	+
p_1	+	+	-	+	+
p_2	-	-	-	+	+
p_3	+	+	+	+	+
N	3	2	2	1	0

Уточнення коренів

Для кожного з отриманих проміжків запустимо аглоритми, описані у теоретичній частині для уточнення коренів. Для кожної ітерації наведемо значення, що використовує критерій зупинки та специфічні для кожного методу величини (поточна область пошуку або поточна точка, тощо). Результати округлені до 6 знаку після коми.

Метод бісекцій

Для методу бісекцій(1) визначимо параметр критерія зупинки ε рівним 10^{-5} . Результати запусків наведені у таблицях нижче.

Номер ітерації	a	b	c	b-a
0	-2.0	-0.4	-1.2	1.6
1	-1.2	-0.4	-0.8	0.8
2	-0.8	-0.4	-0.6	0.4
3	-0.8	-0.6	-0.7	0.2
4	-0.8	-0.7	-0.75	0.1
5	-0.75	-0.7	-0.725	0.05
6	-0.725	-0.7	-0.7125	0.025
7	-0.7125	-0.7	-0.70625	0.0125
8	-0.7125	-0.70625	-0.709375	0.00625
9	-0.709375	-0.70625	-0.707813	0.003125
10	-0.707813	-0.70625	-0.707031	0.001563
11	-0.707813	-0.707031	-0.707422	0.000781
12	-0.707422	-0.707031	-0.707227	0.000391
13	-0.707227	-0.707031	-0.707129	0.000195
14	-0.707129	-0.707031	-0.70708	0.000098
15	-0.707129	-0.70708	-0.707104	0.000049
16	-0.707129	-0.707104	-0.707117	0.000024
17	-0.707117	-0.707104	-0.707111	0.000012
18	-0.707111	-0.707104	-0.707108	0.000006

Табл. 1: Результати роботи метода бісекцій на відрізку [-2, -0.4]

Номер ітерації	a	b	c	b-a
0	0.3	1.5	0.9	1.2
1	0.3	0.9	0.6	0.6
2	0.6	0.9	0.75	0.3
3	0.6	0.75	0.675	0.15
4	0.675	0.75	0.7125	0.075
5	0.675	0.7125	0.69375	0.0375
6	0.69375	0.7125	0.703125	0.01875
7	0.703125	0.7125	0.707812	0.009375
8	0.703125	0.707812	0.705469	0.004687
9	0.705469	0.707812	0.706641	0.002344
10	0.706641	0.707812	0.707227	0.001172
11	0.706641	0.707227	0.706934	0.000586
12	0.706934	0.707227	0.70708	0.000293
13	0.70708	0.707227	0.707153	0.000146
14	0.70708	0.707153	0.707117	0.000073
15	0.70708	0.707117	0.707098	0.000037
16	0.707098	0.707117	0.707108	0.000018
17	0.707098	0.707108	0.707103	0.000009

Табл. 2: Результати роботи метода бісекцій на відрізку [0.3, 1.5]

Номер ітерації	a	b	c	b-a
0	1.5	2.5	2.0	1.0
1	1.5	2.0	1.75	0.5
2	1.75	2.0	1.875	0.25
3	1.875	2.0	1.9375	0.125
4	1.9375	2.0	1.96875	0.0625
5	1.96875	2.0	1.984375	0.03125
6	1.984375	2.0	1.992188	0.015625
7	1.992188	2.0	1.996094	0.007812
8	1.996094	2.0	1.998047	0.003906
9	1.998047	2.0	1.999023	0.001953
10	1.999023	2.0	1.999512	0.000977
11	1.999512	2.0	1.999756	0.000488
12	1.999756	2.0	1.999878	0.000244
13	1.999878	2.0	1.999939	0.000122
14	1.999939	2.0	1.999969	0.000061
15	1.999969	2.0	1.999985	0.000031
16	1.999985	2.0	1.999992	0.000015
17	1.999992	2.0	1.999996	0.000008

Табл. 3: Результати роботи метода бісекцій на відрізку [1.5, 2.5]

Метод Ньютона

Для методу Ньютона(2) визначимо параметр критерія зупинки ε рівним 10^{-5} . За початкову точку оберемо лівий кінець визначених на попередньому кроці інтервалів. Результати запусків наведені у таблицях нижче.

Номер ітерації	x	f(x)
0	-2.0	28.0
1	-1.282051	7.507072
2	-0.889388	1.681687
3	-0.734553	0.216403
4	-0.707882	0.005943
5	-0.707107	0.000005

Табл. 4: Результати роботи метода Ньютона з початковою точкою -2

Номер ітерації	x	f(x)
0	0.3	1.394
1	0.787413	0.291066
2	0.706091	0.003716
3	0.707107	0.000001

Табл. 5: Результати роботи метода Ньютона з початковою точкою 0.3

Номер ітерації	x	f(x)
0	1.5	1.75
1	5.0	147.0
2	3.651376	42.382727
3	2.800049	11.745149
4	2.303241	2.914097
5	2.068301	0.516066
6	2.004753	0.033449
7	2.000026	0.000179
8	2.0	0

Табл. 6: fd

Табл. 7: Результати роботи метода Ньютона з початковою точкою 1.5

Метод хорд

Для методу хорд(3) визначимо параметр критерія зупинки ε рівним 10^{-5} . Результати запусків наведені у таблицях нижче.

Номер ітерації	a	b	c	f(c)
0	-2.0	-0.4	-0.488121	1.302471
1	-2.0	-0.488121	-0.555323	0.979285
2	-2.0	-0.555323	-0.604142	0.703182
3	-2.0	-0.604142	-0.638338	0.48822
4	-2.0	-0.638338	-0.661674	0.331046
5	-2.0	-0.661674	-0.677312	0.220868
6	-2.0	-0.677312	-0.687664	0.145768
7	-2.0	-0.687664	-0.694461	0.095514
8	-2.0	-0.694461	-0.698899	0.062291
9	-2.0	-0.698899	-0.701787	0.040498
10	-2.0	-0.701787	-0.703662	0.026277
11	-2.0	-0.703662	-0.704878	0.017027
12	-2.0	-0.704878	-0.705665	0.011024
13	-2.0	-0.705665	-0.706174	0.007134
14	-2.0	-0.706174	-0.706504	0.004615
15	-2.0	-0.706504	-0.706717	0.002984
16	-2.0	-0.706717	-0.706855	0.00193
17	-2.0	-0.706855	-0.706944	0.001248
18	-2.0	-0.706944	-0.707001	0.000807
19	-2.0	-0.707001	-0.707039	0.000522
20	-2.0	-0.707039	-0.707063	0.000337
21	-2.0	-0.707063	-0.707078	0.000218
22	-2.0	-0.707078	-0.707088	0.000141
23	-2.0	-0.707088	-0.707095	0.000091
24	-2.0	-0.707095	-0.707099	0.000059
25	-2.0	-0.707099	-0.707102	0.000038
26	-2.0	-0.707102	-0.707104	0.000025
27	-2.0	-0.707104	-0.707105	0.000016
28	-2.0	-0.707105	-0.707105	0.000013
29	-2.0	-0.707105	-0.707106	0.000007

Табл. 8: Результати роботи метода хорд на відрізку [-2,-0.4]

Номер ітерації	a	b	c	f(c)
0	0.3	1.5	0.832061	0.449249
1	0.3	0.832061	0.702384	0.017277
2	0.702384	0.832061	0.707186	0.00029
3	0.702384	0.707186	0.707107	0.000001

Табл. 9: Результати роботи метода хорд на відрізку [0.3, 1.5]

Номер ітерації	a	b	c	f(c)
0	1.5	2.5	1.733333	1.335704
1	1.733333	2.5	1.877855	0.739303
2	1.877855	2.5	1.948734	0.338106
3	1.948734	2.5	1.979349	0.141164
4	1.979349	2.5	1.991825	0.056694
5	1.991825	2.5	1.996786	0.022414
6	1.996786	2.5	1.99874	0.008806
7	1.99874	2.5	1.999507	0.003451
8	1.999507	2.5	1.999807	0.001351
9	1.999807	2.5	1.999924	0.000529
10	1.999924	2.5	1.99997	0.000207
11	1.99997	2.5	1.999988	0.000081
12	1.999988	2.5	1.999995	0.000032
13	1.999995	2.5	1.999998	0.000012
14	1.999998	2.5	1.999999	0.000005

Табл. 10: Результати роботи метода хорд на відрізку [1.5, 2.5]

Порівняння методів

Наведемо порівняльну таблицю результатів запусків досліджуваних методів для нашого рівняння.

Метод	Значення кореня	Кількість ітерацій
Бісекцій	-0.707108	18
Ньютона	-0.707107	5
Хорд	-0.707106	29
Бісекцій	0.707103	17
Ньютона	0.707107	3
Хорд	0.707107	3
Бісекцій	1.999996	17
Ньютона	2	8
Хорд	1.999999	14

Табл. 11: Порівняльна таблиця досліджуваних методів

Додатки

Далі наведено програмний код імплементованих алгоритмів. Вихідний код, який було створено для даного практикума (у тому числі L^AT_EX), у повному обсязі можна знайти за наступним посиланням:

Метод бісекцій

```
import numpy as np
def bisection (f, a, b, epsilon=10**-5):
    assert f(a)*f(b) \le 0
    assert epsilon > 0
    range_hist = [(a, b)]
    while not np.abs(b-a) \le epsilon:
        c = (a + b) / 2
        fc = f(c)
        if fc * f(a) > 0:
            a = c
        else:
            b = c
        range_hist.append((a, b))
    c = (a + b) / 2
    hist = np.asarray (range_hist)
    return c, hist
Метод Ньютона
import numpy as np
def newton(f, x0, df, epsilon=10**-5, c=1):
    assert epsilon > 0
    xk = x0
    fk = f(x0)
    x \text{ hist} = [x0]
    while not np.abs(fk) \le epsilon:
        xk = xk - c * fk / df(xk)
        fk = f(xk)
        x_hist.append(xk)
    return xk, np.asarray(x hist)
Метод хорд
import numpy as np
```

```
def \ secant(f, a, b, epsilon=10**-5):
    assert epsilon > 0
    assert f(a)*f(b) \le 0
    range\_hist = [(a, b)]
    fc = epsilon + 1 # for first check
    while not np.abs(fc) \le epsilon:
        fa = f(a)
        fb = f(b)
        c = (a*fb - b*fa) / (fb-fa)
        fc = f(c)
        if fc * fa > 0:
            a = c
        else:
            b = c
        range_hist.append((a, b))
    hist = np.asarray(range_hist[:-1])
    return c, hist
```