UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICO

SIMULACIÓN Y CONTROL

HORAS A LA SEMANA/SEMESTRE

SEMESTRE: Séptimo u octavo

CLAVE: **0724**

TEÓRICAS	PRÁCTICAS	CRÉDITOS
5/80	0	10

CARÁCTER: **OPTATIVO**. MODALIDAD: **CURSO**.

SERIACIÓN INDICATIVA ANTECEDENTE: Análisis Matemático II.

SERIACIÓN INDICATIVA SUBSECUENTE: Ninguna.

OBJETIVO(S): Al finalizar el curso el alumno comprenderá la naturaleza de la simulación. Conocerá el problema de la generación de números aleatorios y los métodos existentes para su solución. Conocerá y resolverá el problema de la generación de valores de variables aleatorias. Discutirá y aplicará los diferentes métodos Monte Carlo existentes. Conocerá y aplicará la metodología básica para la imitación de sistemas.

NUM. HORAS	UNIDADES TEMÁTICAS
5	1. Introducción y revisión de conceptos
	1.1 El proceso de simulación.
	1.2 Usos de la simulación.
10 2. Ejemplos de programas de simulación	
	2.1 El problema de colas en cajas.
	2.2 El programa de simulación .
	2.3 Uso de simulación.
	2.4 Extensión del enfoque.
10	3. Técnicas básicas del análisis
	3.1 Revisión breve de variables aleatorias y distribuciones de proba-
	bilidad.
	3.2 Muestreo, estimación e inferencia inductiva.
	3.3 Generación y prueba de números aleatorios.
	3.4 Teoría de colas.
	3.5 Análisis de series de tiempo.
	3.6 Método de regeneración de estados.

10	4. Técnicas de programación
	4.1 Rutinas generales.
	4.2 Simulación de un sistema de inventarios.
	4.3 Simulación de un sistema de computadora de tiempo compartido.
	4.4 Simulación de un sistema de elevador.
10	5. Lenguajes especiales de simulación
	5.1 Simula.
	5.2 SIMSCRIPT.
	5.3 GPSS.
	5.4 Elección de métodos de programación.
10	6. Experimentos de simulación
	6.1 Técnicas de reducción de varianza.
	6.2 Procedimientos de optimización .
	6.3 Experimentos exploratorios.
	6.4 Determinación del tamaño de la muestra y reglas de terminación.
10	7. Procedimientos de verificación y validación
	7.1 El significado de la validación de un modelo.
	7.2 Verificación de un programa.
	7.3 Comparación de los datos del modelo con los datos del sistema
	de real.
	7.4 Análisis de sensibilidad.
10	8. Subsistemas continuos en modelos de eventos discretos
	8.1 Modelo de ecuación diferencial.
	8.2 Integración numérica.
	8.3 Combinación de eventos discretos y modelos continuos.
	8.4 Ejemplo de un administrador de recursos naturales.
5	9. Una crítica al enfoque de simulación
	9.1 La computación para orientarse.
	9.2 Modelando para la simulación.
	9.3 Tendencias de la simulación.

BIBLIOGRAFÍA BÁSICA:

1. Payne, J.A., Introduction to Simulation, Programming Techniques and Methods of Analysis, New York: McGraw-Hill, 1988.

BIBLIOGRAFÍA COMPLEMENTARIA:

- 1. Binder, K., Hermann, D. W., Monte Carlo Simulation in Statistical Physics, an Introduction, 2nd edition, New York: Springer-Verlag, 1992.
- 2. Brandt, S., Dahmen, H. D., Quantum Mechanics on the Personal Computer, 2nd edition, New York: Springer-Verlag, 1992.
- 3. Cifuentes, A. O., *Using MSC/NASTRAM, Statistics and Dynamics*, New York: Springer-Verlag, 1989.
- 4. Fishman, G., Concepts and Methods in Discrete Event Digital Simulation, New York: John Wiley & Sons, 1973.
- 5. Hammersley, Hanscomb, Monte Carlo methods (s.a., s.e., s.l)
- 6. Hilliar, F., Lieberman, G., Introducción a la Investigación de Operaciones, México: McGraw-Hill, 1997.
- 7. Khosnevis, B., *Discrete Systems Simulation*, New York: McGraw-Hill Book Company, 1994.
- 8. Korshunov, Fundamentos Matemáticos de la Cibernética, Moscú: Editorial Mir. (s.a.).
- 9. Law, A. M., Kelton, D. M., Simulation Modelling and Analysis, 2nd edition, New York: McGraw-Hill Book Company.
- 10. Naylor, et. al., *Técnicas de Simulación en Computadoras*, México: Limusa-John Wiley & Sons, 1971.
- 11. Pegden, C.D., et. al., *Introduction to Simulation Using SIMAN*, New York: McGraw-Hill Book Company, 1991.
- 12. Stauenmaier, H. M., *Physics Experiments Using PCs. A Guide for Instructors and Students*, New York: Springer-Verlag, 1993.

SUGERENCIAS DIDÁCTICAS: Lograr la participación activa de los alumnos mediante exposiciones.

SUGERENCIA PARA LA EVALUACIÓN DE LA ASIGNATURA: Además de las calificaciones en exámenes y tareas se tomará en cuenta la participación del alumno.

PERFIL PROFESIOGRÁFICO: Matemático, físico, actuario o licenciado en ciencias de la computación, especialista en el área de la asignatura a juicio del comité de asignación de cursos.