Klausur Mathe I

WS 12/13

Prof.Dr.Kuwert

<u>Aufgabe 1</u> (5 = 1 + 1 + 1 + 2 Punkte)

a)
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = \frac{\cos(x)}{x^2+1}$

b)
$$g:(0,\infty)\to\mathbb{R}, g(x)=x\ln(x)-x$$

c)
$$h: \mathbb{R} \to \mathbb{R}, h(x) = \exp(x^3 + 1)$$

d)
$$\varphi: (-1,1) \to \mathbb{R}, \varphi(x) = Umkehrfunktion von tanh y = \frac{\sinh y}{\cosh y}$$

Aufgabe 2 (3 Punkte)

Bestimmen Sie alle Lösungen $z \in \mathbb{C}$ der Gleichung $z^4 = -1$.

Aufgabe 3 (4 = 2 + 2 Punkte)

Skizzieren Sie folgende Funktionen mit Angabe von mindestens 3 Funktionswerten.

a)
$$f(x) = e^{-x^2/2}$$
, $(x \in \mathbb{R})$

b)
$$f(x) = \sin(3x + \frac{\pi}{2}), \quad x \in [0, \frac{4\pi}{3}]$$

Aufgabe 4 (4 = 2 + 2 Punkte)

Ist die Folge a_n beschränkt? Ist die Folge a_n konvergent? Geben Sie jeweils eine kurze Begründung an.

a)
$$a_n = \frac{n^2 + 3n - 7}{3n + 5}$$

b)
$$a_n = \sin\left(\frac{n\pi}{2}\right)$$

c)
$$a_n = \exp(n - n^2)$$

<u>Aufgabe 5</u> (3 = 1 + 1 + 1 Punkte)

Betrachten Sie für $k \in \mathbb{Z}$ die Integrale

$$a_k = \int_{-\pi}^{\pi} \cos^2(kx) dx$$
 und $b_k = \int_{-\pi}^{\pi} \sin^2(kx) dx$

- a) Betrachten Sie a_0 und b_0
- b) Zeigen Sie $a_k = b_k$ für $k \in \mathbb{Z} \setminus \{0\}$ (z.B. mit partieller Integration)

c) Berechnen Sie a_k und b_k für $k \in \mathbb{Z} \setminus \{0\}$

Aufgabe 6 (2 Punkte)

Beweisen Sie für alle $n \in \mathbb{N}$ durch vollständige Induktion: $\sum_{k=1}^n (4k-3) = 2n^2 - n$

Aufgabe 7 (2 Punkte)

Entscheiden Sie, ob die folgenden Vektoren im \mathbb{R}^3 linear unabhängig sind (mit Begründung):

$$\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$
, $\begin{pmatrix} 7 \\ 2 \\ -6 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$

Aufgabe 8 (3 Punkte)

Bestimmen Sie unter allen Rechtecken mit Flächeninhalt A = 1, das mit kleinstem Umfang.

<u>Aufgabe 9</u> (3 = 1 + 1 + 1 Punkte)

Entscheiden Sie (mit Begründung), ob die folgenden Reihen konvergieren.

- a) $\sum_{n=1}^{\infty} (\frac{3}{4} + \frac{1}{n})^n$
- b) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}}$ c) $\sum_{n=1}^{\infty} n^2 3^{-n}$

Aufgabe 10 (2 Punkte)

wurde in der Klausur gestrichen

Bestimmen Sie die Taylorreihe im Entwicklungsprunkt $x_0=0$ sowie den Konvergenzradius für die Funktion: $f(x) = \frac{x^2}{1-x^4}$

<u>Aufgabe 11</u> (4 = 2 + 2 Punkte)

Berechnen Sie die folgenden Integrale

- a) $\int_4^6 \frac{dx}{(x-1)(x-3)}$ (Hinweis: Partialbruchzerlegung)
- b) $\int_{-1}^{1} x \sqrt{x+1} \, dx$ (Hinweis: Substitution $x=t^2-1$)