

5

6

7

We claim:

1.	A method for detecting a plurality of signals comprising the steps of:
	measuring a strength of signals being transmitted on a frequency associated with
	a signal to be detected;

determining an integration time period based on the measured strength of signals; and

searching for the signal to be detected using a correlator for the determined integration time period.

- 1 2. The method of claim 1, wherein the integration time period is determined in a manner inverse to the measured strength of signals.
- 1 3. The method of claim 1, wherein the integration time period is determined using a curve.
- 1 4. The method of claim 1, wherein the integration time period is determined using a mathematical equation.
- The method of claim 1, wherein the integration time period is maximized if the measured strength of signals is below a threshold value.
- 1 6. The method of claim 5, wherein the integration time period is minimized if the measured 2 strength of signals is above or equal to a threshold value.
- The method of claim 1, wherein the frequency is an estimated frequency for the signal to be detected.
- 1 8. The method of claim 7, wherein the estimated frequency is based on a reference point within a sector in which a receiver is located.
- 1 9. The method of claim 1 comprising the additional step of:
- 2 receiving a search message indicating the frequency associated with the signal to 3 be detected.

1	10.	The method of claim 1, wherein the frequency is a frequency at which the signal to be
2		detected was transmitted.
1	11.	The method of claim 1 comprising the additional steps of:
2		measuring a strength of signals being transmitted on a frequency associated with
3		a second signal to be detected;
4		determining a second integration time period based on the measured strength of
5		signals; and
6		searching for the second signal to be detected using a correlator for the
7		determined second integration time period.
\1	12.	The method of claim 1, wherein the step of determining the integration time periods
\ <u>2</u>		include the step of:
3		determining a power spectrum density ratio.
, 1	13.	The method of claim 12, wherein a long integration time period is determined if the
2		power spectrum density ratio is small.
1	14.	The method of claim 12, wherein a short integration time period is determined if the
2		power spectrum density ratio is large.