Math 31AH: Fall 2021 Midterm Wednesday, 10/27/2021

Instructions: This is a 50 minute closed notes, closed books exam. Consultation with other humans is prohibited, including humans acting via websites such as Chegg. You need to clearly prove your claims; unsupported claims will get little credit. Please upload your exam to Gradescope after you are finished. You will have 10 additional minutes to upload your solutions to Gradescope.

Problem 1: [20] Let \mathbb{F} be a field. Endow \mathbb{F}^2 with binary operations

$$(a,b) + (a',b') := (a+a',b+b')$$
 $(a,b) \cdot (a',b') := (a \cdot a',b \cdot b')$

Prove that these operations do **not** turn \mathbb{F}^2 into a field.

Problem 2: [10+10] Consider the two bases of \mathbb{R}^2 given by $\mathcal{B} = \{\mathbf{e}_1, \mathbf{e}_2\}, \mathcal{C} = \{\mathbf{v}_1, \mathbf{v}_2\}$ where

$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \quad \mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad \mathbf{v}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be reflection across the line y = x and let $A, B \in \operatorname{Mat}_{2 \times 2}(\mathbb{R})$ be the matrices

$$A := [T]_{\mathcal{B}}^{\mathcal{B}} \qquad B := [T]_{\mathcal{C}}^{\mathcal{C}}$$

- (1) Calculate A.
- (2) Find an invertible matrix P such that $B = PAP^{-1}$.

Problem 3: [15] For a positive integer n, let V_n be the \mathbb{R} -vector space of polynomials f(t) of degree $\leq n$ in the variable t with real coefficients. What is the dimension of the \mathbb{R} -vector space $\text{Hom}(V_5, V_3) = \{T : V_5 \to V_3 : T \text{ is a linear transformation}\}$?

Problem 4: [25] If $T:V\to V$ is a linear transformation, a subspace $W\subseteq V$ is T-invariant if $T(\mathbf{w})\in W$ for all $\mathbf{w}\in W$. If $T:\mathbb{R}^3\to\mathbb{R}^3$ is given by

$$T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+y+z \\ 2x+2y+2z \\ -x-y-z \end{pmatrix}$$

find all T-invariant subspaces $W \subseteq \mathbb{R}^3$.

Problem 5: [20] Give an example of a vector space V and a linear map $T:V\to V$ which is injective but not surjective.