Uso de Kinect para el entrenamiento de actividades físicas

TFG

Víctor Tobes Pérez Raúl Fernández Pérez

caca Departamento de Ingeniería del Software e Inteligencia Artificial

> Facultad de Informática Universidad Complutense de Madrid

> > **Junio 2017**

Documento maquetado con TeXIS v.1.0+.

Este documento está preparado para ser imprimido a doble cara.

Uso de Kinect para el entrenamiento de actividades físicas

 ${\it Informe\ t\'ecnico\ del\ departamento}$ Ingeniería del Software e Inteligencia Artificial IT/2009/3

 $Versi\'{o}n$ 1.0+

cacaDepartamento de Ingeniería del Software e Inteligencia Artificial Facultad de Informática Universidad Complutense de Madrid

Junio 2017

Copyright © Víctor Tobes Pérez y Raúl Fernández Pérez ISBN 978-84-692-7109-4

Al duque de Béjar y a tí, lector carísimo

I can't go to a restaurant and order food because I keep looking at the fonts on the menu.

Donald Knuth

Agradecimientos

 $A\ todos\ los\ que\ la\ presente\ vieren\ y$ entendieren. Inicio de las Leyes Orgánicas. Juan Carlos I

Groucho Marx decía que encontraba a la televisión muy educativa porque cada vez que alguien la encendía, él se iba a otra habitación a leer un libro. Utilizando un esquema similar, nosotros queremos agradecer al Word de Microsoft el habernos forzado a utilizar LATEX. Cualquiera que haya intentado escribir un documento de más de 150 páginas con esta aplicación entenderá a qué nos referimos. Y lo decimos porque nuestra andadura con LATEX comenzó, precisamente, después de escribir un documento de algo más de 200 páginas. Una vez terminado decidimos que nunca más pasaríamos por ahí. Y entonces caímos en LATEX.

Es muy posible que hubíeramos llegado al mismo sitio de todas formas, ya que en el mundo académico a la hora de escribir artículos y contribuciones a congresos lo más extendido es LATEX. Sin embargo, también es cierto que cuando intentas escribir un documento grande en LATEX por tu cuenta y riesgo sin un enlace del tipo "Author instructions", se hace cuesta arriba, pues uno no sabe por donde empezar.

Y ahí es donde debemos agradecer tanto a Pablo Gervás como a Miguel Palomino su ayuda. El primero nos ofreció el código fuente de una programación docente que había hecho unos años atrás y que nos sirvió de inspiración (por ejemplo, el fichero guionado.tex de TEXIS tiene una estructura casi exacta a la suya e incluso puede que el nombre sea el mismo). El segundo nos dejó husmear en el código fuente de su propia tesis donde, además de otras cosas más interesantes pero menos curiosas, descubrimos que aún hay gente que escribe los acentos españoles con el \'{\illi}.

No podemos tampoco olvidar a los numerosos autores de los libros y tutoriales de LATEX que no sólo permiten descargar esos manuales sin coste adicional, sino que también dejan disponible el código fuente. Estamos pensando en Tobias Oetiker, Hubert Partl, Irene Hyna y Elisabeth Schlegl, autores del famoso "The Not So Short Introduction to LATEX 2_{ε} " y en Tomás

Bautista, autor de la traducción al español. De ellos es, entre otras muchas cosas, el entorno example utilizado en algunos momentos en este manual.

También estamos en deuda con Joaquín Ataz López, autor del libro "Creación de ficheros LATEX con GNU Emacs". Gracias a él dejamos de lado a WinEdt y a Kile, los editores que por entonces utilizábamos en entornos Windows y Linux respectivamente, y nos pasamos a emacs. El tiempo de escritura que nos ahorramos por no mover las manos del teclado para desplazar el cursor o por no tener que escribir \emph una y otra vez se lo debemos a él; nuestro ocio y vida social se lo agradecen.

Por último, gracias a toda esa gente creadora de manuales, tutoriales, documentación de paquetes o respuestas en foros que hemos utilizado y seguiremos utilizando en nuestro quehacer como usuarios de LATEX. Sabéis un montón.

Y para terminar, a Donal Knuth, Leslie Lamport y todos los que hacen y han hecho posible que hoy puedas estar leyendo estas líneas.

Resumen

...

ΧI

Índice

Αg	gradecimientos	IX
Re	esumen	XI
Ι	Conceptos básicos	1
1.	Introducción	3
	1.1. Introducción	3
	Notas bibliográficas	3
	En el próximo capítulo	3
2.	Captura de movimiento	5
	2.1. Captura de movimiento	5
	Notas bibliográficas	5
3.	Características de sensor Kinect	7
	3.1. Versiones de Kinect	7
II	Apéndices	9
Α.	Así se hizo	11
	A 1 Introducción	11

Índice de figuras

Índice de Tablas

Parte I

Conceptos básicos

Esta primera parte del manual presenta los conceptos básicos de TEXIS. Contiene un capítulo de introducción, seguido de una descripción de la estructura de TEXIS y cómo se genera el documento final, para terminar con un capítulo en el que se describe el proceso de edición sugerido y los comandos que TEXIS proporciona para facilitar dicho proceso.

En realidad la división por partes del manual no aporta demasiado al lector; se ha dividido en varias partes debido a que, en la práctica, el código de este manual sirve como ejemplo de uso de T_EX^IS .

En un contexto distinto, es posible que un manual de este tipo no habría tenido estas partes así de diferenciadas.

Capítulo 1

Introducción

•••

RESUMEN: ...

1.1. Introducción

...

Notas bibliográficas

Citamos algo para que aparezca en la bibliografía...(?)

Y también ponemos el acrónimo CVS para que no cruja.

Ten en cuenta que si no quieres acrónimos (o no quieres que te falle la compilación en "release" mientras no tengas ninguno) basta con que no definas la constante \acronimosEnRelease (en config.tex).

En el próximo capítulo...

...

Capítulo 2

Captura de movimiento

2.1. Captura de movimiento

La captura de movimiento o motion capture, MOCAP, es el proceso de grabación del movimiento de actores o animales para transferirlo al personaje digital. La tecnología de captura de movimientos surgió en biomecánica, para el estudio de la marcha humana, pero pronto su aplicación se extendió a campos tan dispares como los videojuegos o la neurociencia.

Tipos de captura de movimiento

Captura de movimientos óptica Captura de movimientos en vídeo o Markerless Captura de movimientos inercial

Capítulo 3

Características de sensor Kinect

3.1. Versiones de Kinect

Tipos de captura de movimiento

COMENTARIO: Enlaces sobre las caracteristicas de Kinect

 $https://msdn.microsoft.com/library/jj131033.aspx\\ https://msdn.microsoft.com/library/dn782025.aspx\\ https://developer.microsoft.com/es-es/windows/kinect/hardware$

Parte II Apéndices

Apéndice A

Así se hizo...

••

RESUMEN: ...

A.1. Introducción

• • •

-¿Qué te parece desto, Sancho? - Dijo Don Quijote - Bien podrán los encantadores quitarme la ventura, pero el esfuerzo y el ánimo, será imposible.

Segunda parte del Ingenioso Caballero Don Quijote de la Mancha Miguel de Cervantes

-Buena está - dijo Sancho -; fírmela vuestra merced.
-No es menester firmarla - dijo Don Quijote-,
sino solamente poner mi rúbrica.

Primera parte del Ingenioso Caballero Don Quijote de la Mancha Miguel de Cervantes