Projeto I

Gabriel Belém Barbosa RA: 234672

06 de Novembro de 2021

Conteúdo

1	Exercício 1			
	1.1	Algoritmo por partes	3	
		Resultados		
2	Exercício2			
	2.1	Preparativos	7	
		Algoritmo do método do gradiente com Armijo		
		Algoritmo do método de Newton		
		Resultados		
3	Refe	erências Bibliográficas	13	

1 Exercício 1

1.1 Algoritmo por partes

O algoritmo funciona de maneira simples. Primeiramente, uma matriz G com a descrição dada no enunciado é construída, sendo c variado para obter-se as diferentes matrizes desejadas (c=1, c=10, c=100 e c=1000 para cada item, respectivamente). Algumas outras variáveis são inicializadas, como o vetor de frações de λ , e o vetor que armazenará o número de iterações para cada proporção e o número total de iterações, que será fixado em 100 para todos os itens. Algoritmo:

```
1 c=1;
2 G=c*diag(1:10);
3 G(1,1)=1
4 iterations=zeros(5,1);
5 scale=[0.1, 0.3, 0.5, 0.75, 1];
6 num_iter=100;
```

Em seguida há um for em t que efetua as iterações para diferentes pontos iniciais. Em cada uma dessas iterações, o ponto inicial para o método, x_0 , é criado com a função rand, que retorna um vetor de dimensão 10 com valores randômicos entre 0 e 1, e então cada entrada de x_0 é multiplicada por um inteiro não nulo entre -10 e 10. Em seguida é calculado o gradiente da função em x_0 , grad_0, sendo que $\nabla f(x) = \nabla \left(\frac{1}{2}x^TGx\right) = Gx$, e também a norma do gradiente ao quadrado em x_0 , normgrad_0. Algoritmo:

Um novo for, desta vez em i, que percorre as diferentes frações de λ , é criado, o contador de iterações j é (re)definido como 0, e as variáveis xk, grad e normgrad que serão utilizadas no método são (re)definidas como as variáveis encontradas anteriormente para x_0 . Após isso há um while que institui a condição de parada (que nesse caso é a norma do gradiente ao quadrado do iterando ser menor ou igual que a precisão de máquina, já que a convergência é garantida para esse caso, como visto em aula). Dentro deste while o λ do passo exato é calculado, como descrito no método dos gradientes

$$\lambda = -\frac{\nabla f(x_k)^T d_k}{d_k^T H_f(x_k) d_k} = -\frac{\nabla f(x_k)^T (-\nabla f(x_k))}{(-\nabla f(x_k))^T G(-\nabla f(x_k))} = \frac{||\nabla f(x_k)||^2}{\nabla f(x_k)^T G \nabla f(x_k)}$$

Então x_k é atualizado, sendo x_{k+1} encontrado como x_k mais uma proporção (scale(i), que é a i-ésima entrada do vetor de frações) de λ vezes a direção de menos o vetor gradiente. O gradiente no novo iterando é calculado, assim como sua norma, o número de iterações é atualizado, e o while é finalizado. Ao fim do processo, o número de iterações obtido é somado ao total para aquela fração (iterations(i)), e o for em i e em t são finalizados.

```
for i=1:5
2 j=0;
```

```
xk = xk_00;
           grad=grad_0;
           normgrad = normgrad _0;
5
           while (normgrad>eps)
                lambda = normgrad / (transpose (grad) * G * grad);
                xk-=scale(i)*lambda*grad;
                grad=G*xk;
                normgrad = dot(grad, grad);
10
                j++;
11
12
           endwhile
           iterations(i)+=j;
13
      endfor
15 endfor
```

Algoritmo completo:

```
c = 1;
2 G=c*diag(1:10);
G(1,1)=1
4 iterations=zeros(5,1);
s scale=[0.1, 0.3, 0.5, 0.75, 1];
_{6} num_iter=100;
7 for t=1:num_iter
8
      xk_0=rand(10,1);
9
      for i = 1:10
10
11
                aux=randi([-10,10]);
12
           until aux!=0
13
           xk_0(i)*=aux;
14
      endfor
15
      grad_0=G*xk_0;
16
      normgrad_0=dot(grad_0,grad_0);
17
      for i=1:5
           j=0;
19
           xk = xk_00;
20
           grad=grad_0;
21
22
           normgrad=normgrad_0;
           while (normgrad>eps)
23
                lambda = normgrad / (transpose(grad) * G * grad);
24
                xk-=scale(i)*lambda*grad;
25
                grad=G*xk;
26
                normgrad=dot(grad,grad);
27
                j++;
28
           endwhile
29
           iterations(i)+=j;
30
      endfor
31
32 endfor
```

1.2 Resultados

Figura 1: G = diag(1, 2, ..., 10)

Figura 2: G = diag(1, 20, ..., 100)

Figura 3: G = diag(1, 200, ..., 1000)

Figura 4: G = diag(1, 2000, ..., 10000)

Como visto nas figuras acima, quanto maior o número de condição de G (10, 100, 1000 e 10000 para cada item, respectivamente), mais iterações são necessárias universalmente.

Contudo, o quanto cada método é afetado varia. Uma teoria para explicar tal fenômeno é que, como visto em aula, visto que o problema do método do gradiente com passo exato é, com matrizes com alto número de condição, as iterações ficarem "presas"entre duas retas com inclinação pequena entre si, ao mudar-se a proporção do passo exato, é obtido perturbação suficiente para "escapar" desse comportamento repetitivo. Contudo esse efeito de perturbação é contestado pelo tamanho do passo, ou seja, existe um balanço entre tamanho do passo e perturbação de comportamento ótimo; muita perturbação e um passo muito pequeno, como é o caso de 0.1λ, e o método não é tão rápido, assim como, no extremo oposto, perturbação nula e passo grande, como é o caso de λ , não produz bons resultados também. Como visto nos gráficos acima, o valor ótimo dentre os fornecidos é 0.8\(\lambda\), que apresenta uma perturbação considerável de comportamento em comparação ao método com passo exato, porém com passos de tamanho significativo ainda. Isso sendo dito, é óbvio que o maior agravante para casos extremos ainda é a falta de perturbação do método do gradiente com passo exato, pois, apesar de começar melhor em performance do que 0.1λ e ter performance semelhante a 0.3λ no problema com $G = diag(1, 2, ..., 10), \lambda$ logo se mostra a pior alternativa com o aumento do número de condição, chegando a ser uma ordem de magnitude mais devagar que as demais proporções para G = diag(1,2000,...,10000), se distanciando delas cada vez mais rápido.

2 Exercício2

2.1 Preparativos

O gradiente da função de Rosenbrock é dado por

$$\nabla f(x) = \begin{pmatrix} x_1 + 2x_1^3 - 2x_1x_2 - 1 \\ x_2 - x_1^2 \end{pmatrix} \tag{1}$$

Sua Hessiana por

$$H_f(x) = \begin{pmatrix} 2(x_1^2 - x_2) + 4x_1^2 + 1 & -2x_1 \\ -2x_1 & 1 \end{pmatrix}$$
 (2)

E seu Laplaciano por

$$\nabla^2 f(x) = 6x_1^2 - 2x_2 + 2 \tag{3}$$

2.2 Algoritmo do método do gradiente com Armijo

O algoritmo é muito semelhante ao do Exercício 1 (para entender a obtenção de x_0 e o que são as variáveis inicializadas no algoritmo, refira-se a Seção 1.1), fazendo-se as mudanças necessárias para a nova função e com a atualização do iterando sendo levemente diferente. Uma das mudanças é a inserção de funções para o cálculo do gradiente e da hessiana (como em (1) e (2)) e da própria f(x), que anteriormente era trivial e feito diretamente na main. Algoritmo:

```
function grad_x=gradiente(x)
grad_x=[x(1)+2*x(1)^3-2*x(1)*x(2)-1; x(2)-x(1)^2];
endfunction
function hessian_x=hessian(x)
hessian_x=[2*(x(1)^2-x(2))+4*x(1)^2+1, -2*x(1); -2*x(1), 1];
endfunction
f=@(x) ((x(1)^2-x(2))^2+(1-x(1))^2)/2;
```

A direção de descida ainda é menos o vetor gradiente, e por (1) e (2), o λ do passo exato é dado por

$$\lambda = -\frac{\nabla f(x_k)^T d_k}{d_k^T H_f(x_k) d_k} = -\frac{\nabla f(x_k)^T (-\nabla f(x_k))}{(-\nabla f(x_k))^T H_f(x_k) (-\nabla f(x_k))} = \frac{||\nabla f(x_k)||^2}{\nabla f(x_k)^T H_f(x_k) \nabla f(x_k)}$$

Algoritmo:

```
lambda=normgrad/(transpose(grad)*hessian(xk)*grad);
```

Após a obtenção desse λ , será satisfeita a condição de Armijo-Goldstein. Equanto

$$f(x_k) - f(x_k + \lambda d_k) = f(x_k) - f(x_k - \lambda \nabla f(x_k)) \ge -\lambda \alpha \nabla f(x_k)^T dk = \lambda \alpha ||\nabla f(x_k)||^2$$

A variável λ é atualizado como 0.8 vezes ela prórpria. Do enunciado, $\alpha = 0.5$. Para economizar operações, $f(x_k)$, $x_k - \lambda \nabla f(x_k)$ e $\alpha ||\nabla f(x_k)||^2$ são armazenados, pois possivelmente serão usados diversas vezes. Algoritmo:

```
f_xk=f(xk)
alpha_normgrad=0.5*normgrad;
xk1=xk-lambda*grad;
while (f_xk-f(xk1) <= alpha_normgrad*lambda)
lambda*=0.8;
xk1=xk-lambda*grad;
endwhile
xk=xk1;</pre>
```

Como a convergência não é garantida para esse método nesse caso, outra mudança em comparação ao Exercício 1 é que uma condição secundária de parada foi introduzida; λ ser menor que a precisão de máquina. Além disso, após o término das iterações, um if foi introduzido para averiguar o motivo do término; em caso de convergência à solução ótima (normgrad<=eps), o número de iterações é contabilizado, e caso contrário (lambda<=eps), é contabilizado na variável not_min mais um ponto inicial que não convergiu à solução ótima (informação usada na análise dos resultados, na Seção 2.4). Algoritmo:

Algoritmo completo:

```
num_iter=10000;
function grad_x=gradiente(x)
    grad_x=[x(1)+2*x(1)^3-2*x(1)*x(2)-1; x(2)-x(1)^2];
endfunction
function hessian_x=hessian(x)
hessian_x=[2*(x(1)^2-x(2))+4*x(1)^2+1, -2*x(1); -2*x(1), 1];
endfunction
f=@(x) ((x(1)^2-x(2))^2+(1-x(1))^2)/2;
iterations=0;
not_min=0;
```

```
11 for t=1:num_iter
       xk = rand(2,1);
       for i = 1:2
13
            do
14
                 aux=randi([-10,10]);
15
            until aux!=0
16
            xk(i) *= aux;
17
       endfor
18
19
       xk_0=xk;
       j = 0;
20
       do
21
            grad=gradiente(xk);
22
23
            normgrad=dot(grad,grad);
            lambda = normgrad / (transpose (grad) * hessian (xk) * grad);
24
            f_xk=f(xk);
25
            alpha_normgrad=0.5*normgrad;
26
            xk1=xk-lambda*grad;
27
            while (f_xk-f(xk1) <= alpha_normgrad*lambda)
28
                 lambda *= 0.8;
29
                 xk1 = xk - lambda * grad;
30
            endwhile
31
            xk = xk1;
32
            j++;
33
       until (normgrad <= eps || lambda <= eps)
34
35
       if (normgrad <= eps)</pre>
            iterations += j;
36
37
            not_min++;
38
       endif
39
40 endfor
```

2.3 Algoritmo do método de Newton

O algoritmo é muito semelhante ao do exercício 2 (para entender a obtenção de x_0 e o que são as variáveis inicializadas no algoritmo, refira-se a Seção 2.2, fazendo-se as mudanças necessárias para a atualização do iterando pelo método de Newton). Uma das mudanças é a inserção da função para o cálculo do Laplaciano de f(x), como visto em (3), e que será usada nesse método. Algoritmo:

```
function grad_x=gradiente(x)
grad_x=[x(1)+2*x(1)^3-2*x(1)*x(2)-1; x(2)-x(1)^2];
endfunction
flaplacian=@(x) 6*x(1)^2-2*x(2)+2;
f=@(x) ((x(1)^2-x(2))^2+(1-x(1))^2)/2;
```

A direção de descida ainda é menos o vetor gradiente, e por (1) e (3), o passo para Newton puro é dado por

$$x_{k+1} = x_k - \frac{1}{\nabla^2 f(x_k)} \nabla f(x_k)$$

Algoritmo:

```
grad=gradiente(xk);
normgrad=dot(grad,grad);
xk-=grad/laplacian(xk);
```

Outra mudança em comparação ao Exercício 1 é que, pela falta de garantia de convergência à solução ótima para o método de Newton puro nesse caso, uma condição secundária

de parada foi introduzida; o número de iterações seja igual a 10000 (número obtido experimentalmente). Algoritmo:

```
do
    .
    .
    .
    .
    until (normgrad <= eps | | j == 10000)</pre>
```

Algoritmo completo:

```
num_iter=10000;
2 function grad_x=gradiente(x)
      grad_x = [x(1)+2*x(1)^3-2*x(1)*x(2)-1; x(2)-x(1)^2];
4 endfunction
5 laplacian = 0(x) 6*x(1)^2-2*x(2)+2;
6 f = 0(x) ((x(1)^2 - x(2))^2 + (1 - x(1))^2)/2;
7 iterations=0;
8 not_min=0;
9 for t=1:num_iter
      xk = rand(2,1);
10
      for i = 1:2
11
12
           do
                aux=randi([-10,10]);
13
           until aux!=0
14
           xk(i)*=aux;
15
      endfor
16
17
      xk_0=xk;
      j=0;
18
      do
19
           grad=gradiente(xk);
20
           normgrad = dot(grad, grad);
21
           xk-=grad/laplacian(xk);
22
           j++;
23
      until (normgrad <= eps || j == 10000)
24
      if (normgrad <= eps)</pre>
25
           iterations+=j;
26
      else
27
           not_min++;
      endif
29
30 endfor
```

2.4 Resultados

Figura 5: Comportamento do método de Newton puro para 250 pontos iniciais

No gráfico acima estão dispostos em azul os pontos iniciais (x_0) que não convergiram para a solução ótima, e em vermelho os que convergiram.

Figura 6: Comportamento do método com Armijo para 250 pontos iniciais

O gráfico acima segue a mesma regra de coloração que o anterior, e adicionalmente em verde estão as iterações finais dos pontos que não convergiram para a solução ótima.

Além dos gráficos acima, cada método foi testado com 10000 pontos iniciais diferentes, com os resultados sendo

	Média de iterações (arredondado)	Porcentagem de soluções não mínimas
Armijo	81	11.81%
Newton	583	6.63%

Tabela 1: Resultados

Na tabela acima, o número de iterações só leva em consideração pontos iniciais que convergiram para a solução ótima. Além disso, foi constatado que os pontos que não convergiram à solução ótima no método de Newton puro foram crescendo indeterminadamente na direção do eixo vertical (terminando aproximadamente em $(-10^{-4}, 5 \cdot 10^3)^T$). É possível observar, da Figura 5, que o método de Newton não funciona para pontos iniciais próximos do eixo vertical positivo, que são levados à um máximo local. De fato, um dos problemas do método de Newton puro é a não garantia da direção escolhida ser de descida, como visto em aula. Já o método do gradiente com Armijo fica preso em uma curva, observável pelos pontos verdes da Figura 6, com os pontos que são atraídos a tal vale estando no segundo quadrante sem muita concentração em uma região específica. No geral, com escolha randômica de ponto inicial, o método de Newton apresenta menor porcentagem de soluções indesejadas, como visto na Tabela 1. O problema é que, dado um ponto escolhido à mão, um viés de seleção é muito mais provável de causar não convergência no método de Newton que no do gradiente. Para entender o comportamento de ambos os métodos, foi efetuado um plot da função objetivo usando o programa Mathematica:

Figura 7: Plot da função objetivo

Como pode ser visto nas Figuras 6 e 7, o método do gradiente fica preso no vale no segundo quadrante, enquanto o método de Newton procura o máximo local no "morro"no eixo vertical positivo. Ambos os comportamentos, portanto, parecem coincidir com e ter uma uma explicação baseada na curvatura da função.

Fazendo a análise de *flops* específicos para cada método, tem-se que o método de Newton apresenta 5 *flops* do cálculo de Laplaceano e 2 *flops* da divisão do vetor gradiente por esse Laplaceano, enquanto que o método do gradiente apresenta 8 *flops* para o

cálculo da Hessiana, 9 para efetuar $\nabla f(x_k)^T H_f(x_k) \nabla f(x_k)$, 1 para a divisão da norma do gradiente ao quadrado por esse valor, 6 para o cálculo de $f(x_k)$, 2 para a multiplicação do $\alpha \lambda ||\nabla f(x_k)||$, 2 pelo cálculo de $\lambda \nabla f(x_k)$, e mais 6 pelo cálculo de $f(x_k - \lambda \nabla f(x_k))$, isso assumindo que λ satisfaça a condição logo de início. Ou seja, comparando esses flops específicos, tem-se que o método do gradiente apresenta 27 flops a mais que o método de Newton no melhor caso possível. Os métodos apresentam 15 flops em comum (cálculo do gradiente e de sua norma, além da soma do passo à x_k) no melhor caso possível, logo o método do gradiente apresenta $\frac{42}{15}$ mais flops que seu concorrente. Contudo, cada atualização de λ após a primeira de cada iteração custa 12 flops, logo são necessárias poucas atualizações do λ para que a vantagem do método do gradiente em número de flops (Tabela 1) seja negada. Entretanto, rodando cada algoritmo com 1000 pontos iniciais e contando o tempo necessário em condições constantes de processamento da máquina, foi constatado que o método do gradiente com Armijo é significativamente mais rápido (cerca de 12.2 s) que o de Newton puro (cerca de 89.2 s), garantindo com alta margem de segurança estatística que a performance do primeiro é melhor do que a do segundo para esse caso. Mesmo com maior porcentagem de soluções indesejadas, o método do gradiente com Armijo seria recomendável para esse problema, devido a sua performance superior.

3 Referências Bibliográficas

- Arenales, M.; Armentano, V. A.; Morabito, R.; Yanasse, H. H. Pesquisa operacional. Rio de Janeiro: Campus, 2007.
- Bazaraa, M. Jarvis, J., Sherali, H. Linear Programming and Network Flows. John Wiley & Sons, 1990.