Übungsblatt 1

Aufgabe 1.1

a)

$$B \vee W$$
mit $B := \text{Bier und } W := \text{Wein}$

b)

$$B \oplus W$$

Aussage: "entweder oder", statt "oder"

c)

$$\bigvee_{i=1}^{n} \left(A_i \wedge \bigwedge_{j=1, j \neq i}^{n} \overline{A_j} \right)$$

$$= (A_1 \wedge \overline{A_2} \wedge \dots \wedge \overline{A_n}) \vee (\overline{A_1} \wedge A_2 \wedge \dots \wedge \overline{A_n}) \vee \vdots$$

$$\vdots$$

$$(\overline{A_1} \wedge \overline{A_2} \wedge \dots \wedge A_n)$$

Aufgabe 1.2

a)

1.
$$\mathcal{A}(A_1) = \mathcal{A}(A_2) = \cdots = \mathcal{A}(A_n) = 1$$

2.
$$\mathcal{A}(A_1) = \mathcal{A}(A_2) = \cdots = \mathcal{A}(A_n) = 0$$

b)

$$\mathcal{A}(A_1) = 1, \mathcal{A}(A_2) = \cdots = \mathcal{A}(A_n) = 0$$

Aufgabe 1.3

a)

$$F_1 = \underbrace{((A \to B) \land (B \to A))}_{:=X} \lor C$$

C	A	B	$(A \rightarrow B)$	$(B \to A)$	X	F
0	0	0	1	1	1	1
0	0	1	1	0	0	0
0	1	0	0	1	0	0
0	1	1	1	1	1	1
1	0	0	1	1	1	1
1	0	1	1	0	0	1
1	1	0	0	1	0	1
1	1	1	1	1	1	1

 $\Rightarrow F_1$ ist erfüllbar, weil mindestens eine 1 in der F-Spalte steht, aber keine Tautologie (also nicht gültig), weil es auch Belegungen für F gibt, die kein Modell sind.

$$F_2 = (B \to A) \leftrightarrow \underbrace{(A \to (A \land B)) \land (A \oplus B)}_{:=Y}$$

A	$\mid B \mid$	$(B \to A)$	$(A \wedge B)$	$(A \to (A \land B))$	$A \oplus B$	$\mid Y \mid$	F
0	0	1	0	1	0	0	0
0	1	0	0	1	1	1	0
1	0	1	0	0	1	0	0
1	1	1	1	1	0	0	0

 \Rightarrow F_2 ist nicht erfüllbar, da in der F-Spalte nur 0en stehen und damit keine Tautologie, also nicht gültig.

Aufgabe 1.4

Jedes Element i ist in mindestens einem Kasten j:

$$F = \bigwedge_{i=1}^{2n+1} \bigvee_{j=1}^n A_{i,j}$$

In jedem Kasten j befinden sich mindestens 2 Dinge i und i': $G = \bigwedge_{j=1}^n \bigvee_{i=1}^{2n} \bigvee_{i'=i+1}^{2n+1} \left(A_{i,j} \wedge A_{i',j}\right)$

$$G = \bigwedge_{j=1}^{n} \bigvee_{i=1}^{2n} \bigvee_{i'=i+1}^{2n+1} (A_{i,j} \wedge A_{i',j})$$

In jedem Kasten
$$j$$
 befinden sich höchstens 3 Dinge i, i' und i'' :
$$H = \bigwedge_{j=1}^{n} \bigwedge_{i=1}^{2n-2} \bigwedge_{i'=i+1}^{2n-1} \bigwedge_{i''=i''+1}^{2n} (A_{i,j} \wedge A_{i',j} \wedge A_{i'',j} \wedge A_{i''',j})$$

Jedes Element i ist in höchstens einem Fach j oder j':

$$I = \bigwedge_{i=1}^{2n+1} \bigwedge_{j=1}^{n-1} \bigwedge_{j'=j+1}^{n} \neg (A_{i,j} \land A_{i,j'})$$

 \Rightarrow Also ist die zu suchende Formel $A = (F \land G \land H \land I)$

Aufgabe 1.5

$$F = A \wedge B \wedge (\overline{G} \vee D) \wedge \overline{C} \wedge (\overline{A} \vee \overline{B} \vee \overline{D} \vee E) \wedge G \wedge (\overline{E} \vee C)$$

Diese Formel wird nun so umgewandelt, dass sie nur aus Implikationen besteht:

$$F' = (1 \to A) \land (1 \to B) \land (G \to D) \land (C \to 0) \land ((A \land B \land D) \to E) \land (1 \to G) \land (E \to C)$$

Auf diese Formel F' wird nun der Markierungsalgorithmus angewandt: