16.4 习题

张志聪

2025年4月30日

16.4.1

反证法,假设 f 不是恒等于零的。

f 是紧支撑的,不妨设其支撑在区间 [a,b] 上,于是,对所有的 $x \in [a,b]$ 都有 $f(x) \neq 0$ 。

因为 f 不是恒等于零的,所以存在 $x_0 \in [a,b]$,使得 $f(x_0) \neq 0$ 。又存在整数 N,使得 $N+x_0 > b$,因为 $x_0+N \notin [a,b]$,所以 $f(x_0+N)=0$ 。又因为 f 是 $\mathbb Z$ 周期函数,所以 $f(x_0+N)=f(x_0) \neq 0$ 。

16.4.2

先证明 f 是一致连续的,因为 f 在 \mathbb{R} 上是连续的,所以 f 在 ([0,1],d) 这个紧致度量空间上是连续的,于是由定理 13.3.5 可知,f 是一致连续的。这可以周期性地推广到整个 \mathbb{R} 上。(这里无法直接使用定理 9.9.16,因为这里的值域是复数)。

同理可得, g,h 是一致连续的。

• (a) 封闭性

- (1) 连续性

因为 f 是有界的,所以存在一个 M>0,使得对于所有的 $x\in\mathbb{R}$ 都有 $|f(x)|\leq M$ 。

设 $\epsilon>0$ 是任意的,因为 g 是一致连续的,所以存在一个 $\delta>0$,使得只要 $|x-y|\leq \delta$,就有 $|g(x)-g(y)|\leq \epsilon$ 。

对任意 $x_0 \in \mathbb{R}, |x - x_0| < \delta$,

$$\begin{aligned} &|f * g(x) - f * g(x_0)| \\ &= \left| \int_{[0,1]} f(y)g(x - y) dy - \int_{[0,1]} f(y)g(x_0 - y) dy \right| \\ &= \left| \int_{[0,1]} f(y)(g(x - y) - g(x_0 - y)) dy \right| \\ &\leq \int_{[0,1]} |f(y)(g(x - y) - g(x_0 - y))| dy \\ &\leq \int_{[0,1]} M|(g(x - y) - g(x_0 - y))| dy \\ &\leq M \int_{[0,1]} \epsilon dy \\ &= M \epsilon \end{aligned}$$

于是有 $|f*g(x) - f*g(x_0)| \le M\epsilon$ 。由于 M 是定制并且 ϵ 是任意的,因此我我们可以得出 f*g 在 x_0 处连续的。

由 x_0 的任意性, f*g 连续。

- (2) 周期

设 k 是整数, 因为 $f,g \in C(\mathbb{R}/\mathbb{Z};\mathbb{C})$, 我们有

$$f * g(x+k) = \int_{[0,1]} f(y)g(x+k-y)dy$$
$$= \int_{[0,1]} f(y)g(x-y)dy$$
$$= f * g(x)$$

所以 f * g 是 \mathbb{Z} 周期的。

• (b) 交换性

$$f * g(x) = \int_{[0,1]} f(y)g(x-y)dy$$

令 u=x-y,则 y=x-u。当 y 从 $0\to 1$ 时,u 从 $x\to x-1$ 。但由于 f,g 都是周期为 1 的函数,积分可以调整到任意长度为 1 的区间,

因此我们将积分限改为 $0 \rightarrow 1$:

$$g * f(x) = \int_{[0,1]} g(y)f(x-y)dy$$

$$= \int_{[x,x-1]} g(x-u)f(u)(-du)$$

$$= \int_{[x-1,x]} g(x-u)f(u)du$$

$$= \int_{[0,1]} f(u)g(x-u)du$$

$$= \int_{[0,1]} f(y)g(x-y)dy$$

所以, f*g=g*f。

• (c) 双线性性质