

	Q 1		/ 41 (
a) Each graph is on array.	of 1845		
Each letter stores its adju	es inside		
9 arr entry Edges	all entry	Edges	
1 02346	0	0 2 3	
3 012456	2	(6)	
9 0135	4	/d \ 3	
6 (235	6	2	
() hort step = just rounce trem	next =	just connect thou	using list
(a) INIX MI grid (moderix)			
7 Symmetria graph			

I it is botter to go with adjacency 7 this graph is donce (1E1 done to mar 1E1) 16/= 10 M-8 - Low tout edge Sectioning operation ound 3 faster in some Cuses. 88.0= 0 = 12 | - high Maring b => 1/E1 is much besthow [4/2-14] -) this graphy is sparse 4 it is better to go with and will and force may list . It is good for when we want and algorithms - Aterating over all nodes
efficient
efficient
is simp - Addiving new edge Constant - Lad lightere node is simple Pach 'possible' edge operation

All Steps mot included tack tracking) since they are not in portat for constructing a tree