Introduzione alla teoria degli anelli

§1.1 Definizione e prime proprietà

Definizione 1.1.1. Si definisce **anello**^a una struttura algebrica costruita su un insieme A e due operazioni binarie + e \cdot ^b avente le seguenti proprietà:

- (A, +) è un gruppo abeliano, alla cui identità, detta identità additiva, ci si riferisce con il simbolo 0,
- $\forall a, b, c \in A, (ab)c = a(bc),$
- $\forall a, b, c \in A, (a+b)c = ac + bc,$
- $\forall a, b, c \in A, a(b+c) = ab + ac,$
- $\exists 1 \in A \mid \forall a \in A, 1a = a = a1$, e tale 1 viene detto identità moltiplicativa.

Come accade per i gruppi, gli anelli soddisfano alcune proprietà algebriche particolari, tra le quali si citano le più importanti:

Proposizione 1.1.2

 $\forall a \in A, 0a = 0 = a0.$

Dimostrazione.
$$0a = (0+0)a = 0a + 0a \implies 0a = 0$$
. Analogamente $a0 = a(0+0) = a0 + a0 \implies a0 = 0$.

Proposizione 1.1.3

$$\forall a \in A, -(-a) = a.$$

Dimostrazione. $-(-a) - a = 0 \land a - a = 0 \implies -(-a) = a$, per la proprietà di unicità dell'inverso in un gruppo¹.

 ^aIn realtà, si parla in questo caso di anello con unità, in cui vale l'assioma di esistenza di un'identità moltiplicativa. In queste dispense si identificherà con "anello" solamente un anello con unità.
^bD'ora in avanti il punto verrà omesso.

¹In questo caso, il gruppo additivo dell'anello.

Proposizione 1.1.4

$$a(-b) = (-a)b = -(ab).$$

Dimostrazione. $a(-b) + ab = a(b-b) = a0 = 0 \implies a(-b) = -(ab)$, per la proprietà di unicità dell'inverso in un gruppo. Analogamente $(-a)b + ab = (a-a)b = 0b = 0 \implies (-a)b = -(ab)$.

Corollario 1.1.5

$$(-1)a = a(-1) = -a.$$

Proposizione 1.1.6

$$(-a)(-b) = ab.$$

Dimostrazione. (-a)(-b) = -(a(-b)) = -(-(ab)) = ab, per la Proposizione 1.1.4.

Si enuncia invece adesso la nozione di **sottoanello**, in tutto e per tutto analoga a quella di *sottogruppo*.

Definizione 1.1.7. Si definisce sottoanello rispetto all'anello A un anello B avente le seguenti proprietà:

- $B \subseteq A$,
- $0, 1 \in B$,
- $\forall a, b \in B, a + b \in B \land ab \in B$.

Definizione 1.1.8. Un sottoanello B rispetto ad A si dice **proprio** se $B \neq A$.

Definizione 1.1.9. Un anello si dice **commutativo** se $\forall a, b \in A, ab = ba$.

Esempio 1.1.10

Un facile esempio di anello commutativo è $\mathbb{Z}/n\mathbb{Z}$.

Definizione 1.1.11. Un elemento a di un anello A si dice **invertibile** se $\exists b \in A \mid ab = ba = 1$.

Definizione 1.1.12. Dato un anello A, si definisce A^* come l'insieme degli elementi invertibili di A, che a sua volta forma un gruppo moltiplicativo.

Definizione 1.1.13. Un anello A si dice **corpo** se $\forall a \neq 0 \in A$, $\exists b \in A \mid ab = ba = 1$, ossia se $A \setminus \{0\} = A^*$.

Esempio 1.1.14

L'esempio più rilevante di corpo è quello dei $quaternioni \mathbb{H}$, definiti nel seguente modo:

$$\mathbb{H} = \{ a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k} \mid a, b, c, d \in \mathbb{R} \},\$$

dove:

$$\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = -1$$
, $\mathbf{i}\mathbf{j} = \mathbf{k}$, $\mathbf{j}\mathbf{k} = \mathbf{i}$, $\mathbf{k}\mathbf{i} = \mathbf{j}$.

Infatti ogni elemento non nullo di H possiede un inverso moltiplicativo:

$$(a+b\mathbf{i}+c\mathbf{j}+d\mathbf{k})^{-1} = \frac{a-b\mathbf{i}-c\mathbf{j}-d\mathbf{k}}{a^2+b^2+c^2+d^2},$$

mentre la moltiplicazione non è commutativa.

Definizione 1.1.15. Un anello commutativo che è anche un corpo si dice campo.

Esempio 1.1.16

Alcuni campi, tra i più importanti, sono \mathbb{Q} , \mathbb{R} , \mathbb{C} e $\mathbb{Z}/p\mathbb{Z}$ con p primo.

Definizione 1.1.17. Un elemento $a \neq 0$ appartenente a un anello A si dice **divisore di zero** se $\exists b \neq 0 \in A \mid ab = 0$ o ba = 0.

Esempio 1.1.18

2 è un divisore di zero in $\mathbb{Z}/6\mathbb{Z}$, infatti $2 \cdot 3 \equiv 0 \pmod{6}$.

Definizione 1.1.19. Un anello commutativo in cui non sono presenti divisori di zero si dice **dominio d'integrità**, o più semplicemente *dominio*.

Proposizione 1.1.20 (Legge di annullamento del prodotto)

Sia D un dominio. Allora $ab = 0 \implies a = 0 \lor b = 0$.

Dimostrazione. Siano $a, b \in D \mid ab = 0$. Se a = 0, la condizione è soddisfatta. Se invece $a \neq 0$, b deve essere per forza nullo, altrimenti si sarebbe trovato un divisore di 0, e D non sarebbe un dominio, f.

Esempio 1.1.21

L'anello dei polinomi su un campo, $\mathbb{K}[x]$, è un dominio.

§1.2 Omomorfismi di anelli e ideali

Definizione 1.2.1. Un **omomorfismo di anelli**^a è una mappa $\phi:A\to B$ – con A e B anelli – soddisfacente alcune particolari proprietà:

- ϕ è un omomorfismo di gruppi rispetto all'addizione di A e di B, ossia $\forall a,b \in A, \phi(a+b) = \phi(a) + \phi(b),$
- $\phi(ab) = \phi(a)\phi(b)$,
- $\phi(1_A) = 1_B$.

Definizione 1.2.2. Se $\phi:A\to B$ è un omomorfismo iniettivo, si dice che ϕ è un monomorfismo.

Definizione 1.2.3. Se $\phi:A\to B$ è un omomorfismo suriettivo, si dice che ϕ è un **epimorfismo**.

Definizione 1.2.4. Se $\phi:A\to B$ è un omomorfismo bigettivo^a, si dice che ϕ è un isomorfismo.

Prima di enunciare l'analogo del *Primo teorema d'isomorfismo* dei gruppi in relazione agli anelli, si rifletta su un esempio di omomorfismo:

^aLa specificazione "di anelli" è d'ora in avanti omessa.

 $[^]a\mathrm{Ovvero}$ se è sia un monomorfismo che un epimorfismo.

Esempio 1.2.5

Sia $\phi: \mathbb{Z} \to \mathbb{Z}, k \mapsto 2k$ un omomorfismo. Esso è un monomorfismo, infatti $\phi(x) = \phi(y) \implies 2x = 2y \implies x = y$. Pertanto Ker $\phi = \{0\}$. Sebbene Ker $\phi < \mathbb{Z}$, esso non è un sottoanello^a.

^aInfatti 1 \notin Ker ϕ .

Dunque, con lo scopo di definire meglio le proprietà di un *kernel*, così come si introdotto il concetto di *sottogruppo normale* per i gruppi, si introduce ora il concetto di **ideale**.

Definizione 1.2.6. Si definisce ideale rispetto all'anello A un insieme I avente le seguenti proprietà:

- $I \leq A$,
- $\forall a \in A, \forall b \in I, ab \in I \in ba \in I$.

Esempio 1.2.7

Sia I l'insieme dei polinomi di $\mathbb{R}[x]$ tali che 2 ne sia radice. Esso altro non è che un ideale, infatti $0 \in I \land \forall f(x), g(x) \in I, (f+g)(2) = 0$ (i.e. $I < \mathbb{R}[x]$) e $\forall f(x) \in A, g(x) \in I, (fg)(2) = 0$.

Proposizione 1.2.8

Sia I un ideale di A. $1 \in I \implies I = A$.

Dimostrazione. Per le proprietà dell'ideale $I, \forall a \in A, a1 = a \in I \implies A \subseteq I$. Dal momento che anche $I \subseteq A$, si deduce che I = A.

Proposizione 1.2.9

Sia $\phi: A \to B$ un omomorfismo. Ker ϕ è allora un ideale di A.

Dimostrazione. Poiché ϕ è anche un omomorfismo tra gruppi, si deduce che Ker $\phi \leq A$. Inoltre $\forall a \in A, \forall b \in \operatorname{Ker} \phi, \phi(ab) = \phi(a)\phi(b) = \phi(a)0 = 0 \implies ab \in I$.

Proposizione 1.2.10

Sia $\phi: A \to B$ un omomorfismo. Im ϕ è allora un sottoanello di B.

Dimostrazione. Chiaramente $0, 1 \in \text{Im } \phi$, dal momento che $\phi(0) = 0, \phi(1) = 1$. Inoltre, dalla teoria dei gruppi, si ricorda anche che $\text{Im } \phi \leq B$. Infine, $\forall \phi(a), \phi(b) \in \text{Im } \phi, \phi(a)\phi(b) = \phi(ab) \in \text{Im } \phi$.

Definizione 1.2.11. Si definisce con la notazione (a) l'ideale *bilatero* generato da a in A, ossia:

$$(a) = \{ba \mid b \in A\} \cup \{ab \mid b \in A\}.$$

Definizione 1.2.12. Si dice che un ideale I è *principale* o **monogenerato**, quando $\exists a \in I \mid I = (a)$.

Esempio 1.2.13

In relazione all'*Esempio 1.2.7*, l'ideale I è monogenerato^a. In particolare, I=(x-2).

§1.3 Quoziente per ideale e primo teorema d'isomorfismo

Si definisce invece adesso il concetto di **anello quoziente**, in modo completamente analogo a quello di *gruppo quoziente*:

Definizione 1.3.1. Sia A un anello e I un suo ideale, si definisce A/I l'anello ottenuto quozientando A per I. Gli elementi di tale anello sono le classi di equivalenza di \sim (i.e. gli elementi di A/\sim), dove $\forall a, b \in A, a \sim b \iff a-b \in I$. Tali classi di equivalenza vengono indicate come a+I, dove a è un rappresentante della classe. L'anello è così dotato di due operazioni:

- $\forall a, b \in A, (a+I) + (b+I) = (a+b) + I,$
- $\forall a, b \in A, (a+I)(b+I) = ab+I.$

Osservazione. L'addizione di A/I è ben definita, dal momento che $I \subseteq A$, in quanto sottogruppo di un gruppo abeliano.

Osservazione. Anche la moltiplicazione di A/I è ben definita. Siano $a \sim a', b \sim b'$ quattro elementi di A tali che $a = a' + i_1$ e $b = b' + i_2$ con $i_1, i_2 \in I$. Allora $ab = (a' + i_1)(b' + i_2) = a'b' + \underbrace{i_1b' + i_2a' + i_1i_2}_{GI} \implies ab \sim a'b'$.

^aNon è un caso: $\mathbb{R}[x]$, in quanto anello euclideo, si dimostra essere un PID (*principal ideal domain*), ossia un dominio che ammette *solo* ideali monogenerati.

Proposizione 1.3.2

 $A/\{0\} \cong A$.

Dimostrazione. Sia $\pi: A \to A/\{0\}$, $a \mapsto a+\{0\}$ l'omomorfismo di proiezione al quoziente. Innanzitutto, $a \sim a' \iff a-a'=0 \iff a=a'$, per cui π è un monomorfismo (altrimenti si troverebbero due $a, b \mid a \neq b \land a \sim b$). Infine, π è un epimorfismo, dal momento che $\forall a + \{0\} \in A/\{0\}$, $\pi(a) = a + \{0\}$. Pertanto π è un isomorfismo.

Adesso è possibile enunciare il seguente fondamentale teorema:

Teorema 1.3.3 (*Primo teorema d'isomorfismo*)

Sia $\phi: A \to B$ un omomorfismo. $A / \operatorname{Ker} \phi \cong \operatorname{Im} \phi$.

Dimostrazione. La dimostrazione procede in modo analogo a quanto visto per il teorema correlato in teoria dei gruppi.

Sia $\zeta: A/\operatorname{Ker} \phi \to \operatorname{Im} \phi$, $a+\operatorname{Ker} \phi \mapsto \phi(a)$. Si verifica che ζ è un omomorfismo: essendolo già per i gruppi, è sufficiente verificare che $\zeta((a+I)(b+I)) = \zeta(ab+I) = \phi(ab) = \phi(a)\phi(b) = \zeta(a+I)\zeta(b+I)$.

 ζ è chiaramente anche un epimorfismo, dal momento che $\forall \phi(a) \in \operatorname{Im} \phi, \ \zeta(a + \operatorname{Ker} \phi) = \phi(a)$. Inoltre, dal momento che $\zeta(a + \operatorname{Ker} \phi) = 0 \iff \phi(a) = 0 \iff a + \operatorname{Ker} \phi = \operatorname{Ker} \phi$, ossia l'identità di $A/\operatorname{Ker} \phi$, si deduce anche che ζ è un monomorfismo. Pertanto ζ è un isomorfismo.

Corollario 1.3.4

Sia $\phi: A \to B$ un monomorfismo. $A \cong \operatorname{Im} \phi$.

Dimostrazione. Poiché ϕ è un monomorfismo, Ker $\phi = \{0\}$. Allora, per il *Primo teorema di isomorfismo*, $A/\{0\} \cong \operatorname{Im} \phi$. Dalla *Proposizione 1.3.2*, si desume che $A \cong A/\{0\}$. Allora, per la proprietà transitiva degli isomorfismi, $A \cong \operatorname{Im} \phi$.