In each of the following, write the correct answer:

1. Which of the following is not a criterion for congurence of triangles?

	(a) SAS
	(b) ASA
	(c) SSA
	(d) SSS
2.	If $AB = QR,BC = PR$ and $CA = PQ$, then
	(a) $\triangle ABC \cong \triangle PQR$
	(b) $\triangle CBA \cong \triangle PRQ$
	(c) $\triangle BAC \cong \triangle RPQ$
	(d) $\triangle PQR \cong \triangle BCA$
3.	In $\triangle ABC$, $AB = AC$ and $\angle B = 50^{\circ}$. Then $\angle C$ is equal to
	(a) 40°
	(b) 50°
	(c) 80°
	(d) 130°
4.	In $\triangle ABC$, $BC = AB$ and $\angle B = 80^{\circ}$. Then $\angle A$ is equal to
	(a) 80°
	(b) 40°
	(c) 50°
	(d) 100°
5.	In $\triangle PQR$, $\angle R = \angle P$ and $QR = 4cm$ and $PR = 5cm$. Then the length of PQ is
	(a) 4 <i>cm</i>
	(b) 5 <i>cm</i>
	(c) 2 <i>cm</i>
	(d) 2.5 <i>cm</i>
6.	D is a Point on the side BC of a $\triangle ABC$ such that AD bisects $\angle BAC$. Then
	(a) $BD = CD$
	(b) $BA > BD$

(c) BD > BA(d) CD > CA

- 7. It is given that $\triangle ABC \cong \triangle FDE$ and AB = 5cm, $\angle B=40^{\circ}$ and $\angle A=80^{\circ}$. Then which of the following is true?
 - (a) DF = 5cm, $\angle F = 60^{\circ}$
 - (b) DF = 5cm, $\angle E = 60^{\circ}$
 - (c) DE = 5cm, $\angle E = 60^{\circ}$
 - (d) DE = 5cm, $\angle D = 40^{\circ}$
- 8. Two sides of a triangle are of lengths 5cm and 1.5cm. The length of the third side of the triangle cannot be
 - (a) 3.6cm
 - (b) 4.1cm
 - (c) 3.8cm
 - (d) 3.4cm
- 9. In $\triangle PQR$, if $\angle R > \angle Q$, then
 - (a) QR > PR
 - (b) PQ > PR
 - (c) PQ < PR
 - (d) QR < PR
- 10. In triangles ABC and PQR, AB = AC, $\angle C = \angle P$ and $\angle B = \angle Q$. The two triangles are
 - (a) isosceles but not congruent
 - (b) isosceles and congruent
 - (c) congruent but not isosceles
 - (d) neither congruent nor isosceles
- 11. In triangles ABC and DEF, AB = FD and $\angle A = \angle D$. Then two triangles will be congruent by SAS axiom if
 - (a) BC = EF
 - (b) AC = DE
 - (c) AC = EF
 - (d) BC = DE