

Facultad de Cs Exactas, Ingeniería y Agrimensura Escuela de Ciencias Exactas y Naturales Departamento de Matemática

Licenciatura en Cs. de la Computación

## COMPLEMENTOS DE MATEMÁTICA I: Segundo Parcial (10/11/2021)

1. A continuación se muestra un grafo G y una tabla que representa la implementación de un algoritmo que converge a un árbol recubridor del grafo.



| V(T)              | $\mathbf{E}(\mathbf{T})$              |
|-------------------|---------------------------------------|
| d                 | -                                     |
| $_{ m d,e,f}$     | ${d,e},{d,f}$                         |
| d,e,f, b, c, g, a | ${d,e},{d,f},{e,b},{e,c},{f,g},{f,a}$ |

- a) ¿De qué algoritmo se trata?
- b) Establezca un orden  $f:V\to\{1,2,3,4,5,6,7\}$  de los vértices para que el algoritmo esté correctamente implementado.
- c) Encuentre un árbol recubridor de peso mínimo si  $p(\{a,b\}) := f(a) + f(b)$ .
- 2. Sea  $C \subseteq E$  un conjunto de aristas de un grafo conexo G = (V, E). Probar que si  $C \cap E(T) \neq \emptyset$  para todo T árbol recubridor de G, entonces C contiene un conjunto X de corte para G (i.e. G X no es conexo).
- 3. Encuentre un camino de peso mínimo de a a k en el siguiente grafo dirigido, utilizando el Algoritmo de Dijkstra.



4. a) Halle en el siguiente grafo un matching máximo M y un matching maximal M' tales que |M| - |M'| = 2.



- b) Para el matching M' anterior, ¿existe un camino M'- aumentante? En caso afirmativo, exhíbalo. En caso negativo, justifique por qué.
- c) Determine un cubrimiento (de aristas por vértices) de tamaño mínimo en el grafo.
- 5. En los arcos de la siguiente red a-z se indica la capacidad de los mismos y también, aunque de manera incompleta, los valores de un flujo factible f.



- a) Complete los valores faltantes del flujo f.
- b) Halle un flujo máximo, iterando el algoritmo de Ford-Fulkerson a partir del flujo f.
- c) Determine un corte mínimo para esta red.