Министерство образования Республики Беларусь Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Факультет инфокоммуникаций

Кафедра инфокоммуникационных технологий

Дисциплина: Электроакустика и звуковое вещание

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА к курсовому проекту на тему

ПРОЕКТИРОВАНИЕ БОЛЬШОЙ МУЗЫКАЛЬНОЙ СТУДИИ СО ЗРИТЕЛЯМИ

БГУИР КП 1-45 01 01-04 014 ПЗ

Студент: гр. 962991 Суворов И. С.

Руководитель: Хоминич А.Л.

СОДЕРЖАНИЕ

СОДЕРЖАНИЕ 4 ВВЕДЕНИЕ 5 1 Характеристика студии звукового вещания 6 1.1 Исходные данные: 6 1.2 Анализ требований: 6 2 Выбор и обоснование параметров студии 7 2.1 Выбор оптимальных геометрических размеров студии 7 2.2 Выбор оптимального времени реверберации 8 3 Расчет акустического оформления студии 9 4 Разработка структурной схемы электрического тракта 11 5 Мероприятия по охране труда 12 3аключение 13
1 Характеристика студии звукового вещания. 6 1.1 Исходные данные: 6 1.2 Анализ требований: 6 2 Выбор и обоснование параметров студии. 7 2.1 Выбор оптимальных геометрических размеров студии 7 2.2 Выбор оптимального времени реверберации 8 3 Расчет акустического оформления студии. 9 4 Разработка структурной схемы электрического тракта. 11 5 Мероприятия по охране труда. 12
1.2 Анализ требований: 6 2 Выбор и обоснование параметров студии. 7 2.1 Выбор оптимальных геометрических размеров студии 7 2.2 Выбор оптимального времени реверберации. 8 3 Расчет акустического оформления студии. 9 4 Разработка структурной схемы электрического тракта. 11 5 Мероприятия по охране труда. 12
2 Выбор и обоснование параметров студии. 7 2.1 Выбор оптимальных геометрических размеров студии 7 2.2 Выбор оптимального времени реверберации. 8 3 Расчет акустического оформления студии. 9 4 Разработка структурной схемы электрического тракта. 11 5 Мероприятия по охране труда. 12
2.1 Выбор оптимальных геометрических размеров студии 7 2.2 Выбор оптимального времени реверберации 8 3 Расчет акустического оформления студии 9 4 Разработка структурной схемы электрического тракта 11 5 Мероприятия по охране труда 12
2.2 Выбор оптимального времени реверберации. 8 3 Расчет акустического оформления студии. 9 4 Разработка структурной схемы электрического тракта. 11 5 Мероприятия по охране труда. 12
3 Расчет акустического оформления студии
4 Разработка структурной схемы электрического тракта. 11 5 Мероприятия по охране труда. 12
5 Мероприятия по охране труда
Заключение
Список использованных источников
Приложение А. План АСБ
Приложение Б. Эскиз развертки студии с указанием звукопоглощающих
материалов
Приложение В. Структурная схема звукового тракта

ВВЕДЕНИЕ

В деле записи звука важным является не только оборудование, но и помещение, в котором происходит запись. К настоящему времени найдены оптимальные способы избавится от шумов, искажений и нелинейности характеристик помещений, в которых происходит запись.

Одним из основных этапов проектирования является подбор размеров помещения, материалов для звукопоглощения и изменения параметров реверберации комнаты.

После выбора звукопоглощающих материалов приступают к непосредственным расчетам. Суть их сводится к тому, чтобы путем варьирования площадей, занимаемых выбранными материалами подобрать такой общий фонд звукопоглощения студии, при котором в ней будет обеспечен оптимум реверберации.

Таким образом, целью данного курсового проекта является проектирование дикторской студии с качественными акустическими показателями посредством выбора требуемых звукопоглощающих материалов и обеспечения заданного времени реверберации.

1 ХАРАКТЕРИСТИКА СТУДИИ ЗВУКОВОГО ВЕЩАНИЯ.

1.1 Исходные данные:

Согласно заданному варианту №14, в курсовом проекте рассчитываются параметры большой музыкальной студии со зрителями;

- Объём: 22000м³;
- Количество исполнителей: 250;
- Количество зрителей: 500;

1.2 Анализ требований:

Для заданной большой студии необходимо рассчитать её объём с учетом требований для различных оркестров. Наиболее требовательным к пространству для исполнителей является духовой оркестр.

Классификация и основные параметры студий и помещений прослушивания установлены соответствующими нормативными документами.

Ближайшими параметрами для заданной большой музыкальной студии является:

- $l \times b = 40 \times 25$ м линейные размеры студии;
- $S = 1000 \text{ м}^2$ площадь пола студии;
- -h = 14 м высота студии;
- $V = 13000 \text{ м}^3$ объём студии;
- $n_{\text{исп}} = 250$ максимальное количество исполнителей;
- $n_{\text{3ри}} = 250$ максимальное количество зрителей;
- $T_{\text{опт}} = 2.0 2.3$ с –время реверберации на частоте 1000 Гц;
- $-\Delta T = \pm 0.2 \, \mathrm{c}$ допустимое отклонение времени реверберации, от оптимального.

Так как заданные параметры большой студии значительно больше рекомендуемой студии классификатором, полученные результаты будут значительно отличаться от рекомендуемых.

2 ВЫБОР И ОБОСНОВАНИЕ ПАРАМЕТРОВ СТУДИИ.

2.1 Выбор оптимальных геометрических размеров студии

Связь между количеством исполнителей $n_{\rm исп}$ и объемом студии задается нормами проектирования или различными эмпирическими формулами.

За оркестровую единицу *G* принимают объём, необходимый при той акустической мощности, которую создаёт флейта. Остальные инструменты характеризуются числами, показывающими, скольким флейтам они эквивалентны в отношении требуемого объёма.

Число приведенных оркестровых единиц, приходящееся в среднем на одного исполнителя духового оркестра G = 5;

Таким образом минимальный объём для размещения оркестра:

$$V_{\text{оркестра}} = 10 \cdot n_{\text{исп}} \cdot G = 10 \cdot 250 \cdot 5 = 12500 \,\text{м}^3$$
 (1)

Объём на одного зрителя должен составлять не менее 10 м³

$$V_{\text{зрителя}} = 10 \cdot n_{\text{зрителей}} = 10 \cdot 500 = 5000 \,\text{m}^3$$
 (2)

$$V_{min} = V_{\text{оркестра}} + V_{\text{зрителя}} = 17500 \,\mathrm{M}^3$$
 (3)

Так как заданный объём 22000 м^3 больше минимального требуемого, увеличивать объём для комфортного размещения исполнителей и зрителей не требуется.

Определив объем студии, решают вопрос о её форме и линейных размерах.

Соотношение линейных размеров студии 1, b и h рекомендуется брать близкими к золотому сечению:

$$\frac{l}{h} = \frac{b}{h} = \sqrt{2} \tag{4}$$

Тогда линейные размеры связаны с объёмом соотношениями:

$$l = 1.6 \cdot \sqrt[3]{V} = 28 * 16 = 44.8 \text{ M}$$

 $b = \sqrt[3]{V} = 28 \text{ M}$ (5)

$$h = 0.6 \cdot \sqrt[3]{V} = 0.6 \cdot 28 = 16.8 \text{ M}$$

При проверке полученных размеров получены данные:

 $V = lbh = 48.8 \cdot 28 \cdot 16.8 = 21073 \,\mathrm{m}^3$, что отличается от исходной на - 926 $\,\mathrm{m}^3$, что значительно. Также отклонения от золотого сечения для l/b составили 13.6%, а для b/h составили 16.4%, что незначительно уходит за пределы рекомендуемых значений отклонения.

Для соответствия исходным условиям, расчет производился по следующим формулам:

$$l = \sqrt[3]{V \cdot \frac{\sqrt{2}}{4}} = 39,6268 \text{ M}$$

$$b = \frac{l}{\sqrt{2}} = 28,02 \text{ M}$$

$$h = \frac{l}{2} = 19,8 \text{ M}$$
(6)

В результате округления: l = 39,6 м, b = 28 м, h = 19,8 м.

Отклонение объёма от исходного 45,76 м 3 , отклонения от золотого сечения для 1/b и b/h составили меньше 0.01%

Собственные резонансные частоты помещения в форме прямоугольного параллелепипеда связаны с его линейными размерами l, b, h соотношением:

$$f_0 = \frac{C_0}{2} \sqrt{\left(\frac{m}{l}\right)^2 + \left(\frac{n}{b}\right)^2 + \left(\frac{p}{h}\right)^2} = 317.2 \,\Gamma \text{ц} \tag{6}$$

 C_0 – скорость звука в воздухе; m=10, n=20, p=30 – любые целые числа.

2.2 Выбор оптимального времени реверберации

К настоящему времени установлено, что для студий и залов объёмом свыше 2000 м³ оптимальное время реверберации не зависит от объёма, однако в сильной степени зависит от стиля произведений и характера их исполнения.

Поскольку студия не предназначена для исполнения музыки какоголибо одного стиля, компромиссом является T = 1,7 с.

3 РАСЧЕТ АКУСТИЧЕСКОГО ОФОРМЛЕНИЯ СТУДИИ.

Так как студия обладает значительным размером значительно превышающим 3000 м^3 , то $T_{\text{опт}}$ принимается равным 1.7 c.

Расчёт ведётся на оптимум Бекеши Топт одинаковый для всех частот.

S - общая площадь всех внутренних ограничиваемых поверхностей студии:

$$S = 2lb + 2lh + 2bh$$

$$S = 2 \cdot 39.6 \cdot 28 + 2 \cdot 39.6 \cdot 19.8 + 2 \cdot 28 \cdot 19.8 = 4894.56 \,\mathrm{M}^2 \qquad (7)$$

Зная объём комнаты и оптимальное время реверберации находят величину $\alpha_{\rm cp}$:

$$\alpha_{\rm cp} = 1 - e^{-\frac{V}{6 \cdot T \cdot S}} = 0.35575$$
 (8)

Определим значение общего поглощения А:

$$A = \alpha_{\rm cp} \cdot Sc = 0.35575 \cdot 4894,56 = 1741,23 \tag{9}$$

Таблица 3.1 – Результаты расчета среднего и общего поглощения

F ,Гц	125	250	500	1000
T,c	1,7	1,7	1,7	1,7
a_{cp}	0.35	0.35	0.35	0.35
A	1741,23	1741,23	1741,23	1741,23

	Частота							
Материал	125 Гц	250 Гц	500 Гц	1 кГц	2 кГц	4 кГц	6 кГц	
Слушатели	0,33	0,41	0,44	0,46	0,46	0,46	0,47	
Стул мягкий	0,05	0,09	0,12	0,13	0,15	0,16	0,15	
Пол (стена) деревянная	0,15	0,11	0,10	0,07	0,06	0,07	0,06	
Стена оштука- туренная	0,04	0,05	0,06	0,08	0,04	0,06	0,06	
Мрамор, гранит	0,01	0,01	0,01	0,01	0,01	0,01	0,02	
Кирпичная кладка	0,15	0,19	0,29	0,28	0,38	0,46	0,45	
Ковер	0,08	0,24	0,57	0,69	0,71	0,73	_	
Окно	0,35	0,25	0,18	0,12	0,07	0,04	0,03	
Дверь (сосновая)	0,10	0,11	0,10	0,08	0,08	0,11	0,11	
Драпировка плотная	0,14	0,35	0,55	0,72	0,70	0,65	_	

Рисунок 3.1 – Данные звукопоглощения различных материалов

Таблица 3.2 – Таблица расчета добавочного звукопоглощения

,	Кол-во	Частоты, Гц							
Наименование материалов		125		250		500		1000	
		α(A)	A	α(A)	A	α(A)	A	α(A)	A
Слушатели	500	0,33	165	0,41	205	0,44	220	0,46	230
Стул мягкий	500	0,05	25	0,09	45	0,12	60	0,13	65
Ковер	1108,8	0,08	88,704	0,24	266,1 12	0,57	632,0 16	0,69	765,0 72
Дверь	10	0,1	1	0,11	1,1	0,1	1	0,08	0,8
Стена оштукатур- енная	2677	0,04	107,07 84	0,05	133,8 48	0,06	160,6 176	0,08	214,1 568
Деревянный потолок	1108,8	0,15	166,32	0,11	121,9 68	0,1	110,8 8	0,07	77,61 6
Итого:	4894,6		553,10 24		773,0 28		1184, 514		1352, 645
Требуемое			1741,2 3		1741, 23		1741, 23		1741, 23
Добавочное			1188,1 28		968,2 02		556,7 164		388,5 852
Щит Бекеши	1350	0,87	1174,5	0,72	972	0,4	540	0,3	405
Общее			1727,6		1745,		1724,		1757,
поглощение			024		028		5136		6448
a_{cp}		0,35 2963		0,35 6523		0,352 33271		0,359 10169	
T,c		1,61 9348		1,63 8940		1,615 93582		1,653 49431	
Разница в Т		0,08		0,06		0,084		0,046	
Процент отклонения		4,74		3,59		4,944		2,735	

Щит бекеши располагается на потолке и стенах, подбирая параметры щита можно изменять его характеристики. Схема размещения щита расположена в приложении Б.

4 РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ ЭЛЕКТРИЧЕСКОГО ТРАКТА.

Микрофон – Для записи концерта, и большого количества исполнителей размещают большое количество микрофонов по периметру сцены, в некоторых случаях напротив исполнителей. Одним из рекомендуемых микрофонов является микрофон вокальный класса Hi-End для сцены и записи в студии динамический суперкардиоидный AKG D7S

Рисунок 4.1 – AKG D7S

Микшерная консоль, для коммутации большого количества микрофонов и мониторов рекомендуется использовать микшеры высокого уровня с большим количеством входов.

К выбору мониторов нужно подходить с особой ответственностью, т.к. при недостаточном качестве мониторов и недостаточно чистой частотной характеристике (АЧХ) можно неправильно услышать некоторые частоты, или не услышать их вовсе, что очень сильно отразится в негативную сторону на качестве конечного продукта.

В данной работе запись конечного материала будет производится на ПК, пост обработка также ложится на мощности ПК. Необходимо использовать высококачественную звуковую карту способную принять данные с большого количества источников.

Структурная схема звукового тракта представлена в приложении В.

5 МЕРОПРИЯТИЯ ПО ОХРАНЕ ТРУДА.

Мероприятия сводятся к созданию удобных условий труда и к защите исполнителей и персонала от поражения электрическим током, от травм, вызванных падением плохо закрепленных звукопоглощающих конструкций, частей технологического оборудования, от пожарной опасности.

Обстоятельствами, ухудшающими условия труда исполнителей и работников студийных аппаратных, являются недостаточная освещенность (общее освещение должно создавать освещенность не менее 50 люкс на горизонтальных поверхностях, однако для уверенного чтения текста необходимо обеспечить освещенность не менее 75-125 люкс, а еще лучше до 200 люкс), отклонение температуры и относительной влажности воздуха в студии от комфортных, недостаточно чистый воздух. Комфортными атмосферными условиями для исполнителей и персонала обычно считают температуру воздуха летом 22-25 градусов при относительной влажности 70-50 %. Объем воздуха в студии должен сменяться 5-7 раз за один час. Эти условия обеспечиваются действием системы кондиционирования воздуха.

Фактором, ускоряющим утомление персонала, является просматривание частей будущей программы при повышенной по сравнению с естественной интенсивностью звука. Уровень интенсивности звука достигает 100...110 дБ, что близко к болевому порогу (120 дБ над порогом слышимости). Поэтому длительность смены ограничивается обычно 6 часами, с перерывом после трех часов работы.

Заключение

В ходе данной курсовой работы рассмотрели вопросы проектирования и расчет большой студии со зрителями. Данная студия является крупной и требует значительные меры по звукоизоляции и использованию звукопоглощающих материалов. Дополнительное поглощение представлено Щитами Бекеши. Данные щиты могут быть спроектированы для разных сценариев работы, а их размещение влияет на характеристики поглощения.

Разработали структурную схему электрического тракта. Нашли частотную зависимость времени реверберации проектируемой студии. Высчитали расчеты среднего и общего поглощения. Нашли зависимость коэффициента разных видов звукопоглощения от частоты. Рассчитали требуемые значения площади звукопоглощающих материалов. По расчетам, отклонение значения времени реверберации не превышает требуемого более чем на +-5%

Список использованных источников

- 1. Муравьев В.В., Кореневский С.А., Мищенко В.Н. Устройства СВЧ-систем телекоммуникаций (усилители, смесители, генераторы). Мн.: БГУИР, 2007.-71 с.
- 2. Ирина Алдошина., Рой Приттс., Музыкальная акустика учебник для высших учебных заведений «Композитор Санкт-Петербург» 2006 720 с.
- 3. Звукопоглощающие материалы для низких частот, щиты бекеши Часть 11 [Электронный ресурс] / http://aovox.com/creativework/550