Introduction to Machine Learning

Adapted from Isabelle Guyon UCB - CS189

The DREAM

The REALITY

MNIST data

Classification Problems (Homework)

Creating Feature Vector

Creating Feature Vector

Another example, extract features: x = [amount_ink, shape_elongation]

Separate "0" and "1" in 2 dimensions

Separate "0" and "1" in 2 dimensions

 $x_2 = shape_elongation$

0

 $x_1 = amount_ink$

The zeros are written with more ink and are less elongated. The ones are written with less ink and are more elongated.

Separate "0" and "1" matrix representation

	·		•
	ink	elongati	on
/ X =	-0.6058	0.6576 0.5706	y = [1 1
/	-0.7270 -0.8134 -0.4324	0.8572 0.5854 0.4003	1 1 1
0	0.4975 0.2785	-0.1419 -0.4218	-1 -1
0	0.5469 0.7575	-0.7157 -0.7922	-1 -1
O	0.8649	-0.8595]	-1]

Heat map

Learning problem

Data matrix: X

<u>N lines = patterns</u> (data points, examples): samples, patients, documents, images, ...

d columns = features:
(attributes, input variables):
genes, proteins, words, pixels,

Unsupervised learning

Is there structure in data?

Supervised learning

Predict an outcome y. 12

Colon cancer, Alon et al 1999

Conventions

Separate "0" and "1" How to build your first linear classifier?

Separate "0" and "1" How to build your first linear classifier?

Separate "0" and "1" 1) Find the class "centroids"

Separate "0" and "1" 1) Find the class "centroids"

Separate "0" and "1" 2) Subtract w^[0] from w^[1]

Separate "0" and "1" 2) Subtract w^[0] from w^[1]

Separate "0" and "1" 3) Get the separaring "hyperplane"

Separate "0" and "1"

4) ALL the "math"

Input vector
$$\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2]$$

$$x_1 = amount_ink$$

$$x_2$$
 = shape_elongation

Target value
$$y = \pm 1$$

Training examples:

$$\{ (x^1, y^1), (x^2, y^2), ..., (x^N, y^N) \}$$

Class centroids:

$$\mathbf{W}^{[0]} \sim \sum_{\{y} k_{==-1\}} \mathbf{X}^{k}$$
 (~ means "proportional", omitting to divide by class cardinality)

$$\mathbf{W}^{[1]} \sim \sum_{\{v^k==+1\}} \mathbf{X}^k$$

Weight vector:

$$\mathbf{W} = \mathbf{W}^{[1]} - \mathbf{W}^{[0]} \sim \sum_{k} y^{k} \mathbf{X}^{k}$$
 (for "balanced" classes)

Separate "0" and "1"

4) ALL the "math" (continued)

Decision function:

$$f(x) = w \cdot x$$

$$f(x) > 0$$
, decide that this is a "one"

Dot product:

$$W \cdot X = W_1 X_1 + W_2 X_2$$

This is a weighted sum.

Equivalent "centroid" method:

$$f(x) = w^{[1]} \cdot x - w^{[0]} \cdot x$$
 This is because $w = w^{[1]} \cdot w^{[0]}$.

Decide "one" if $w^{[1]} \cdot x > w^{[0]} \cdot x$ and "zero" otherwise A dot product is a similarity measure.

Equivalent "kernel" method:

This is because $\mathbf{w} = \sum_{k} y^{k} \mathbf{x}^{k}$

$$f(x) = \sum_{k} y^{k} x^{k} \cdot x = \sum_{k} \alpha^{k} k(x^{k}, x)$$

(in the case of identical

number of classes)

examples for the two

Draw the Boundaries: Centroids

Centroid methods don't always work...

Draw the Boundaries: SVM

Centroid methods don't always work... but SVM words here...

Demo of SVM

Artificial Neurons

McCulloch and Pitts, 1943

$$f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + \mathbf{b}$$

Linear decision boundary

hyperplane

Perceptron

Non-linear decision boundary

Summary

- We represent patterns as vectors x in a space of d dimensions.
- A "discriminant function" f(x) is a function such that f(x) > 0 for one class and f(x) < 0 for the other. f(x)=0 is the equation of the decision boundary.
- Given a weight vector w, f(x)=w.x is a linear discriminant function. The corresponding decision boundary w.x=0 is a hyperplane (a subspace of dimension (d-1)).