```
In [55]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

In [56]: df=pd.read_csv("C:\\Users\\farhi\\OneDrive\\Desktop\\Titanic Dataset.csv")

In [57]: df.head()

Out[57]:		pclass	survived	name	sex	age	sibsp	parch	ticket	fare	cabin	emba
	0	1	1	Allen, Miss. Elisabeth Walton	female	29.00	0	0	24160	211.3375	B5	
	1	1	1	Allison, Master. Hudson Trevor	male	0.92	1	2	113781	151.5500	C22 C26	
	2	1	0	Allison, Miss. Helen Loraine	female	2.00	1	2	113781	151.5500	C22 C26	
	3	1	0	Allison, Mr. Hudson Joshua Creighton	male	30.00	1	2	113781	151.5500	C22 C26	
	4	1	0	Allison, Mrs. Hudson J C (Bessie Waldo Daniels)	female	25.00	1	2	113781	151.5500	C22 C26	

In [58]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1309 entries, 0 to 1308
Data columns (total 14 columns):

Data	COTAIIII (CC	Jear 14 Corumnis	<i>)</i> •			
#	Column	Non-Null Count	Dtype			
0	pclass	1309 non-null	int64			
1	survived	1309 non-null	int64			
2	name	1309 non-null	object			
3	sex	1309 non-null	object			
4	age	1046 non-null	float64			
5	sibsp	1309 non-null	int64			
6	parch	1309 non-null	int64			
7	ticket	1309 non-null	object			
8	fare	1308 non-null	float64			
9	cabin	295 non-null	object			
10	embarked	1307 non-null	object			
11	boat	486 non-null	object			
12	body	121 non-null	float64			
13	home.dest	745 non-null	object			
<pre>dtypes: float64(3), int64(4), object(7)</pre>						
momony usago: 1/2 2 LVP						

memory usage: 143.3+ KB

In [59]: df.describe()

Out[59]:		pclass	survived	age	sibsp	parch	fare	
	count	1309.000000	1309.000000	1046.000000	1309.000000	1309.000000	1308.000000	121.0
	mean	2.294882	0.381971	29.881138	0.498854	0.385027	33.295479	160.8
	std	0.837836	0.486055	14.413493	1.041658	0.865560	51.758668	97.6
	min	1.000000	0.000000	0.170000	0.000000	0.000000	0.000000	1.0
	25%	2.000000	0.000000	21.000000	0.000000	0.000000	7.895800	72.0
	50%	3.000000	0.000000	28.000000	0.000000	0.000000	14.454200	155.0
	75%	3.000000	1.000000	39.000000	1.000000	0.000000	31.275000	256.0
	max	3.000000	1.000000	80.000000	8.000000	9.000000	512.329200	328.0

In [60]: df.isnull().sum()

```
Out[60]: pclass
          survived
                          0
          name
          sex
                          0
                        263
          age
                          0
          sibsp
          parch
          ticket
                          0
          fare
                          1
          cabin
                       1014
          embarked
                          2
          boat
                        823
                       1188
          body
          home.dest
                        564
          dtype: int64
In [61]: "#first force 'age' column to numeric ignore the weird non-numeric junk
         df['age']=pd.to_numeric(df['age'], errors='coerce')
         #filling missing age with median
         df['age']=df["age"].fillna(df["age"].median())
In [62]: #fill missing fare with median
         df['fare']=df['fare'].fillna(df['fare'].median())
In [63]: #fill missing embarked with mode
         df['embarked']=df['embarked'].fillna(df['embarked'].mode()[0])
In [64]: #drop usless columns
         df.drop(columns=['cabin','boat','body',"home.dest"], inplace=True)
In [65]: print(df.isnull().sum())
        pclass
        survived
                    0
        name
                    0
        sex
                    0
        age
                    0
        sibsp
        parch
        ticket
        fare
                    0
        embarked
        dtype: int64
In [67]: |#correlation heatmat(find feature relationship)
         plt.figure(figsize=(12,8))
         plt.figure(figsize=(12,8))
         sns.heatmap(df.select_dtypes(include=['number']).corr(), annot=True, cmap='coolwarm
         plt.title('Correlation Heatmap (Numeric Columns Only)')
         plt.show()
         # Observations:
         # - Positive correlation between 'sibsp' and 'parch' (family size related).
```

```
# - Fare and pclass are negatively correlated (higher class -> more fare).
# - Survival has weak but visible positive correlation with 'fare' (rich survived m
```

<Figure size 1200x800 with 0 Axes>

4/28/2025, 4:19 PM


```
In [69]: #relationship between variable(scatter plot age vs fare)
    plt.figure(figsize=(8,6))
    sns.scatterplot(x='age', y='fare', hue='survived', data=df)
    plt.title('Age vs Fare colored by Survival')
    plt.show()
    #-This plot shows how age and fare are related.
```

- Each point represents a person, with age on the X-axis and fare on the Y-axis. # - The color of the points shows whether the person survived or not (hue='survived


```
In [70]: #categorical analysis(countplot)
    # Survived vs Not
    sns.countplot(x='survived', data=df)
    plt.title('Survival Counts')
    plt.show()
    # - This plot shows how many people survived vs. how many didn't.
    # - The X-axis represents whether a person survived (0 = No, 1 = Yes).
    # - The Y-axis shows the count of people in each category (survived or not).
```



```
In [71]: # Survival by Gender
sns.countplot(x='sex', hue='survived', data=df)
plt.title('Survival by Sex')
plt.show()
# - This plot shows the survival counts grouped by gender.
# - The X-axis represents gender (male or female).
# - The hue (color) distinguishes whether a person survived (1) or didn't survive (
# - The Y-axis shows the count of survivors and non-survivors within each gender gr
```



```
In [72]: # Survival by Pclass
    sns.countplot(x='pclass', hue='survived', data=df)
    plt.title('Survival by Passenger Class')
    plt.show()
    # Shows how survival rates vary by passenger class (1st, 2nd, 3rd)
    # Typically, passengers in higher classes had better chances of survival

# Survival by Embarked
    sns.countplot(x='embarked', hue='survived', data=df)
    plt.title('Survival by Port of Embarkation')
    plt.show()
    # Displays survival counts for passengers from different embarkation ports (C, Q, # Can reveal whether boarding location influenced survival outcomes
```


In [73]: # Age vs Survived

```
sns.boxplot(x='survived', y='age', data=df)
plt.title('Age Distribution by Survival')
plt.show()
# Compares the age ranges of survivors and non-survivors
# Helps identify if younger or older people were more likely to survive
```



```
In [74]: # Fare vs Survived
    sns.boxplot(x='survived', y='fare', data=df)
    plt.title('Fare Distribution by Survival')
    plt.show()
    # Compares the fare amounts between survivors and non-survivors
    # Indicates whether passengers who paid higher fares were more likely to survive
```



```
In [75]: selected_cols = ['survived', 'age', 'fare', 'pclass', 'sibsp', 'parch']
    sns.pairplot(df[selected_cols], hue='survived')
    plt.suptitle('Pairplot of Key Features by Survival', y=1.02)
    plt.show()
# Shows pairwise relationships between multiple features colored by survival
# Helps identify patterns or groupings based on survival status
# Useful for spotting correlations and how features interact visually
```



```
In [76]: print(df['sex'].value_counts())
# Shows the number of male and female passengers
# Helps identify gender distribution in the dataset

print(df['embarked'].value_counts())
# Shows how many passengers boarded from each port (C = Cherbourg, Q = Queenstown,
# Useful to understand the most common embarkation points

print(df['pclass'].value_counts())
# Displays the number of passengers in each passenger class (1st, 2nd, 3rd)
# Helps identify class distribution and possible data imbalance
```

```
sex
      male 843
       female 466
       Name: count, dtype: int64
       embarked
            916
       S
       C
            270
       Q
            123
       Name: count, dtype: int64
       pclass
       3
            709
            323
       1
       2
            277
       Name: count, dtype: int64
In [ ]: # Summary
        # Most passengers were between 20-40 years old.
        # Higher **fare** was positively related to **survival**.
        # **Females** had a much higher survival rate than **males**.
        # **1st class** passengers had better survival chances.
        # Passengers who embarked from **Cherbourg (C)** had better survival odds.
```

SibSp and **Parch** are positively correlated (family size).