Théorie de la décision

Fiche 1

Exercice 1 Propriétés

Soit $X = \{a, b, c, d\}$ et une relation R définie sur X par

$$R = \{(a, a), (b, b), (c, c), (d, d), (a, b), (a, c), (a, d), (b, a), (b, c), (b, d), (c, a), (c, b), (c, d), (d, a), (d, b), (d, c)\}$$

La relation R est-elle Reflexive? Symétrique? Antisymétrique? Transitive? Quel type de relation binaire est-ce?

Exercice 2 Assertions

Montrez les assertions suivantes.

Si une relation binaire R sur un ensemble X est transitive et complète, alors elle est négativement transitive. Si une relation binaire R sur un ensemble X est asymétrique, alors elle est antisymétrique.

Exercice 3 Relation d'équivalence sur \mathbb{R}

Montrez que la relation binaire R sur \mathbb{R} définie par

$$xRy$$
 si $xe^y = ye^x$

est une relation d'équivalence.

Exercice 4 Relation

Soit $X=\{(x_1,x_2)\in\mathbb{N}\times\mathbb{N}\mid x_1+x_2\neq 0\}$. On définit les relations R^1,R^2,R^3 sur X de la manière suivante :

- $(x_1,x_2)R^1(y_1,y_2)$ lorsque $x_1+x_2=y_1+y_2$ $(x_1,x_2)R^2(y_1,y_2)$ lorsque x_1+x_2 divise y_1+y_2 , ce que l'on note $x_1+x_2\mid y_1+y_2$
- $(x_1, x_2)R^3(y_1, y_2)$ lorsque $x_1 + x_2 \mid y_1 + y_2$ et $x_2 \leq y_2$.
- 1. Montrez que R^1 est une relation d'équivalence sur X:
- 2. Parmi les propriétés suivantes, quelles sont celles vérifiées par R^2 : complète, réflexive, symétrique, antisymétrique, transitive?
- 3. Montrez que \mathbb{R}^3 est une relation d'ordre. Est-elle complète?
- 4. Représentez dans le plan cartésien les classes d'équivalence de \mathbb{R}^1 pour les éléments de l'ensemble $Y \subset X$ défini par $Y = \{(x_1, x_2) \in X \mid x_1 \in \{0, 1, 2\} \text{ et } x_2 \in \{0, 1, 2, 3\}\};$
- 5. Représentez le diagramme de Hasse de la relation R^3 sur Y (celui-ci ne se fait pas dans le plan cartésien).

Exercice 5 Opérations sur les relations

Soient deux relations binaires R_1 et R_2 sur un ensemble X. Montrez que la relation $(R_1 \cup R_2)^{-1}$ est égale à la relation $R_1^{-1} \cup R_2^{-1}$. On peut montrer aussi que $(R_1 \cap R_2)^{-1} = R_1^{-1} \cap R_2^{-1}$.

Exercice 6 Composition de relations

Soient deux relations binaires R_1,R_2 et R_3 sur un ensemble X. Montrez que

- 1. $(R_1 \circ R_2)^{-1} = R_2^{-1} \circ R_1^{-1}$
- 2. $(R_1 \cup R_2) \circ R_3 = (R_1 \circ R_3) \cup (R_2 \circ R_3)$
- 3. $R_3 \circ (R_1 \cup R_2) = (R_3 \circ R_1) \cup (R_3 \circ R_2)$

Exercice 7 Elément maximal

Montrez qu'un ensemble fini X partiellement ordonné par une relation binaire R admet au moins un élément maximal (minimal).

Exercice 8 Propriétés

Soit un sous-ensemble des entiers $X = \{1, 2, 4, 6, 3, 5, 8, 9, 10\}$. Après avoir rappeler sa définition, montrez que la relation de divisibilité | constitue un ordre partiel sur X. Dessinez le diagramme de Hasse correspondant. Quelle est la largeur de ce diagramme de Hasse? Partitionnez X en un nombre minimal de chaînes.