Linear Regression

Fitting a line to data

Darren Reger Lecture for Galvanize DSI

Relationship Between X & Y

- Linear relationships
 - Exact vs. Inexact
- Why inexact?

Line Placement

- Why linear regression?
- Where to place the line?
- Why OLS?

Simple Linear Regression

$$Y=eta_0+eta_1X+\epsilon$$

- The Model, what you're presuming the world looks like
- β₀ and β₁ are unknown constants that represent the intercept and slope.
- ε is the error term. ε~i.i.d. N(0, σ^2)

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

- β₀-hat and β₁-hat are model coefficient estimates for world presumed
- y-hat indicates the prediction of Y based on X=x

Multiple Linear Regression

Model in Matrix Form

$$\mathbf{Y}_{n\times 1} = \mathbf{X}_{n\times p}\beta_{p\times 1} + \epsilon_{n\times 1}$$

$$\epsilon \sim N(\mathbf{0}, \sigma^2 \mathbf{I}_{n\times n})$$

$$\mathbf{Y} \sim N(\mathbf{X}\beta, \sigma^2 \mathbf{I})$$

Design Matrix X:

$$\mathbf{X} = \begin{bmatrix} 1 & X_{1,1} & X_{1,2} & \cdots & X_{1,p-1} \\ 1 & X_{2,1} & X_{2,2} & \cdots & X_{2,p-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & X_{n,1} & X_{n,2} & \cdots & X_{n,p-1} \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

Target:

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

Coefficient matrix β :

$$\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{p-1} \end{bmatrix}$$

$$\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{p-1} \end{bmatrix} \qquad \hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Assessing Accuracy

Residual Sum of Squares

This is also what we use to estimate $\sigma = \sqrt{Var(\epsilon)}$

Residual Standard Error

$$RSE = \sqrt{\frac{1}{n-p-1}}RSS = \sqrt{\frac{(y_i - \hat{y}_i)^2}{n-p-1}} \longleftarrow \text{Better...can roughly think of as average amount that response will deviate from regression line.}$$

Better...can roughly think of as will deviate from regression line

Sample 1 (tight fit)

Sample 2 (loose fit)

R-squared

Comparing Models

(1) Set up comparison

m_reduced:
$$Y = \beta_0 + \beta_{weight} + \beta_{modelyear} + \beta_{cartype}$$

m_full: $Y = \beta_0 + \beta_{weight} + \beta_{height} + \beta_{color} + \beta_{modelyear} + \beta_{cartype}$

(2) Compute F-statistic

$$F = \frac{(RSS_{reduced} - RSS_{full})/(p_{full} - p_{reduced})}{RSS_{full}/(n - p_{full} - 1)}$$

where F has degrees of freedom (p_full - p_reduced), (n - p_full - 1)

Notice that if *height* and *color* really don't matter much... (RSS_reduced - RSS_full) will be small → F-statistic will be small

(3) Compute p-value

Assuming α =0.05,

- if p < 0.05 reject null (that height and color don't matter)
- If p >= 0.05, fail to reject null (that height and color don't matter)

Comparing Models

- F-test can be used super generally
- Two special use cases
 - 1 Is my model useful at all? i.e. Is at least one of my predictors X_1, X_2, ... X_p useful in predicting the response?

$$\begin{array}{l} H_0: \beta_1 = \beta_2 = \ldots = \beta_p = 0 \\ H_A: at \ least \ one \ \beta_j \ is \ non - zero \end{array} \longrightarrow F = \frac{(\text{TSS} - \text{RSS})/p}{\text{RSS}/(n-p-1)} \sim F_{p,n-p-1} \end{array}$$

1 Equivalence to t-test in the Regression Output!

m_reduced:
$$Y = \beta_0 + \beta_{weight} + \beta_{height} + \beta_{color} + \beta_{cartype}$$

m_full: $Y = \beta_0 + \beta_{weight} + \beta_{height} + \beta_{color} + \beta_{modelyear} + \beta_{cartype}$

Interpreting Coefficients

	Recall	Here	
Setup Hypothesis	H_0 : $\mu = 100$	$H_0: \beta_1 = 0$	
Sample Statistic	\bar{x}	\hat{eta}_1	
Test Statistic	$t = \frac{\overline{x} - \mu_0}{s/\sqrt{n}}$	$t = \frac{\hat{\beta}_1 - 0}{\text{SE}(\hat{\beta}_1)}$	
Confidence Interval	$(\overline{X}-t_{\alpha/2}\frac{S}{\sqrt{n}},\overline{X}+t_{\alpha/2}\frac{S}{\sqrt{n}})$	$\left[\hat{eta}_1 - 2 \cdot \operatorname{SE}(\hat{eta}_1), \ \hat{eta}_1 + 2 \cdot \operatorname{SE}(\hat{eta}_1)\right]$	

Test if X has effect on Y

Assumptions

- Linearity
- Constant variance (homoscedasticity)
- Independence of errors
- Normality of errors
- Lack of multicollinearity

Residual Plots

Leverage

- Leverage point: an observation with an unusual X value
- Does not necessarily have a large effect on the regression model
- Most common measure, the hat value, $h_{ii} = (H)_{ii}$
- The ith diagonal of the hat matrix

$$H = X(X^T X)^{-1} X^T$$

Studentized Residuals

$$H = X(X^T X)^{-1} X^T.$$

The leverage h_{ii} is the ith diagonal entry in the hat matrix. The variance of the ith residual is

$$\operatorname{var}(\hat{arepsilon}_i) = \sigma^2 (1 - h_{ii}).$$

In case the design matrix X has only two columns (as in the example above), this is equal to

$$\operatorname{var}(\hat{arepsilon}_i) = \sigma^2 \left(1 - \frac{1}{n} - \frac{(x_i - \bar{x})^2}{\sum_{j=1}^n (x_j - \bar{x})^2} \right).$$

The corresponding studentized residual is then

$$t_i = rac{\hat{arepsilon}_i}{\widehat{\sigma}\sqrt{1-h_{ii}}}$$

where $\widehat{\sigma}$ is an appropriate estimate of σ (see below).

Outliers

- Y values very from from our predictions
- Reasons they occur
- OLS sensitivity

Types of Outliers

Detecting Outliers

- Residual plots can help identify outliers
 - Recall that residuals are $e_i = y_i \hat{y}_i$
 - and that ε ~i.i.d. N(0, σ^2)
 - → "Studentized" residuals: Dividing each residual by its standard error, should result in a "studentized residual" between -3 and 3.
 Studentized residuals outside this range indicate outliers.

Multicollinearity

- Perfect multicollinearity
 - Easily detectable because your model will fail to run
 - Unlikely to occur in practice, unless you goof
- Partial Multicollinearity
 - Uncertainty in the model becomes large
 - Does not affect model accuracy or bias coefficients

Multicollinearity

Correlation Matrix / Scatterplot Matrix

Downside is can only pick up pairwise effects ⊗

- Variance Inflation Factors (VIF)
 - Run ordinary least squares for each predictor as function of all the other predictors. k times for k predictors

$$X_1 = \alpha_2 X_2 + \alpha_3 X_3 + \dots + \alpha_k X_k + c_0 + e$$

$$VIF = \frac{1}{1 - R_i^2}$$

Looks at all predictors together! ©

Rule of Thumb, > 10 is problematic

QQ Plots

Normal QQ Plot

- Check out this explanation
- http://emp.byui.edu/BrownD/Stats-intro/dscrptv/ graphs/qq-plot_egs.htm

Break for Morning Sprint

- Interested in Credit Card Balances (y)
- Suspect it may be related to Gender or Ethnicity

Modeling with just Gender

$$x_i = \begin{cases} 1 & \text{if } i \text{th person is female} \\ 0 & \text{if } i \text{th person is male} \end{cases}$$

$$y_i = \beta_0 + \beta_1 \underline{x_i} + \epsilon_i = \begin{cases} \beta_0 + \beta_1 + \epsilon_i & \text{if } i \text{th person is female} \\ \beta_0 + \epsilon_i & \text{if } i \text{th person is male.} \end{cases}$$

Modeling with Ethnicity (more than 2 Levels)

$$x_{i1} = \begin{cases} 1 & \text{if } i \text{th person is } \underline{\text{Asian}} \\ 0 & \text{if } i \text{th person is not Asian} \end{cases}$$

$$x_{i2} = \begin{cases} 1 & \text{if } i \text{th person is Caucasian} \\ 0 & \text{if } i \text{th person is not Caucasian} \end{cases}$$

$$y_i = \beta_0 + \beta_1 \underline{x_{i1}} + \beta_2 \underline{x_{i2}} + \epsilon_i = \begin{cases} \beta_0 + \beta_1 + \epsilon_i & \text{if ith person is Asian} \\ \beta_0 + \beta_2 + \epsilon_i & \text{if ith person is Caucasian} \\ \beta_0 + \epsilon_i & \text{if ith person is AA.} \end{cases}$$

if ith person is AA.

Data

<u>Ones</u>	Ethnicity	
1	AA	
1	Asian	
1	Asian	
1	Caucasian	
1	AA	-
1	AA	
1	Asian	
1	Caucasian	
1	AA	

Recode Design Matrix

<u>Ones</u>	<u>Asian</u>	Caucasian		
1	0	0		
1	1	0		
1	1	0		
1	0	1		
1	0	0		
1	0	0		
1	1	0		
1	0	1		
1	0	0		

- β0 as average credit card balance for AA
- β1 as <u>difference</u> in average balance between Asian and AA
- β2 as difference in average balance between Caucasian and AA

So what if $\beta 1 = -23.1$?

Card_Balance ~ Age + Years_of_Education + Gender + Ethnicity +

- Intercept β0 loses nice interpretation
- Now what's it mean if β1 = -23.1?
- What if you wanted to compare groups to Caucasians as a baseline?

$$y_i = \beta_0 + \beta_1 \underline{x_{i1}} + \beta_2 \underline{x_{i2}} + \epsilon_i = \begin{cases} \beta_0 + \beta_1 + \epsilon_i & \text{if ith person is Asian} \\ \beta_0 + \beta_2 + \epsilon_i & \text{if ith person is Caucasian} \\ \beta_0 + \epsilon_i & \text{if ith person is AA.} \end{cases}$$

Card_Balance ~ Age + Years_of_Education + Gender + Ethnicity +

- Intercept β0 loses nice interpretation
- Now what's it mean if β1 = -23.1?
 - ✓ Still interpret as difference between Asian and AA...holding all other predictors constant. Again, beware of interpretation.
- What if you wanted to compare groups to Caucasians as a baseline?

Varying Intercepts

- 2 Formulations
 - Baseline and alternative
 - Individual fit

Education (x_4)

Interactions

Interacting **student** (qualitative) and **income** (quantitative)

No Interaction $balance_i = \beta_0 + \beta_1 * income_i + \beta_2 * student_i$

balance_i
$$\approx \beta_0 + \beta_1 \times \text{income}_i + \begin{cases} \beta_2 & \text{if } i \text{th person is a student} \\ 0 & \text{if } i \text{th person is not a student} \end{cases}$$

$$\beta_0 + \beta_2 & \text{if } i \text{th person is a student}$$

 $= \underline{\beta_1} \times \mathbf{income}_i + \begin{cases} \underline{\beta_0 + \beta_2} & \text{if } i \text{th person is a student} \\ \underline{\beta_0} & \text{if } i \text{th person is not a student.} \end{cases}$

With Interaction balance_i = $\beta_0 + \beta_1 * income_i + \beta_2 * student_i + \beta_3 * income_i * student_i$

$$\begin{array}{lll} \mathbf{balance}_i & \approx & \beta_0 + \beta_1 \times \mathbf{income}_i + \begin{cases} \beta_2 + \beta_3 \times \mathbf{income}_i & \text{if student} \\ 0 & \text{if not student} \end{cases} \\ & = & \begin{cases} \frac{(\beta_0 + \beta_2) + (\beta_1 + \beta_3) \times \mathbf{income}_i & \text{if student} \\ \beta_0 + \beta_1 \times \mathbf{income}_i & \text{if not student} \end{cases} \end{array}$$

Varying Slopes

- 2 Formulations
 - Baseline and alternative
 - Individual fit

Education (x_4)

Interactions

sales =
$$\beta_0 + \beta_1 \times TV + \beta_2 \times radio + \underline{\beta_3} \times (radio \times TV) + \epsilon$$

= $\beta_0 + (\beta_1 + \beta_3 \times radio) \times TV + \beta_2 \times radio + \epsilon$.

Results:

	Coefficient	Std. Error	t-statistic	p-value
Intercept	6.7502	0.248	27.23	< 0.0001
TV	0.0191	0.002	12.70	< 0.0001
radio	0.0289	0.009	3.24	0.0014
${\tt TV}{ imes{\tt radio}}$	0.0011	0.000	20.73	< 0.0001

The coefficient estimates in the table suggest that an increase in TV advertising of \$1,000 is associated with increased sales of

$$(\hat{\beta}_1 + \hat{\beta}_3 \times \text{radio}) \times 1000 = 19 + 1.1 \times \text{radio}$$
 units.

Non-linear Features

Non-linear Features

Y-variable Transform

Potential Transformations

Method	Transformation(s)	Regression equation	Predicted value (ŷ)
Standard linear regression	None	$y = b_0 + b_1 x$	$\hat{y} = b_0 + b_1 x$
Exponential model	Dependent variable = log(y)	$\log(y) = b_0 + b_1 x$	$\hat{y} = 10^{b_0 + b_1 x}$
Quadratic model	Dependent variable = sqrt(y)	$sqrt(y) = b_0 + b_1x$	$\hat{y} = (b_0 + b_1 x)^2$
Reciprocal model	Dependent variable = 1/y	$1/y = b_0 + b_1 x$	$\hat{y} = 1 / (b_0 + b_1 x)$
Logarithmic model	Independent variable = log(x)	$y=b_0+b_1\log(x)$	$\hat{y} = b_0 + b_1 log(x)$
Power model	Dependent variable = log(y) Independent variable = log(x)	$\log(y) = b_0 + b_1 \log(x)$	$\hat{y} = 10^{b_0 + b_1 \log(x)}$

Standard Errors

 $\widehat{\operatorname{se}}(\widehat{b}) = \sqrt{\frac{n\widehat{\sigma}^2}{n\sum x_i^2 - (\sum x_i)^2}}.$

The denominator can be written as

$$n\sum_{i}(x_i-\bar{x})^2$$

Thus,

$$\widehat{\operatorname{se}}(\widehat{b}) = \sqrt{\frac{\widehat{\sigma}^2}{\sum_i (x_i - \bar{x})^2}}$$

With

$$\hat{\sigma}^2 = \frac{1}{n-2} \sum_{i} \hat{\epsilon}_i^2$$

Why LAD gives multiple solutions

Figure A: A set of data points with reflection symmetry and multiple least absolute deviations solutions. The "solution area" is shown in green. The vertical blue lines represent the absolute errors from the pink line to each data point. The pink line is one of infinitely many solutions within the green area.