(5) Int Cl.6:

- (9) BUNDESREPUBLIK **DEUTSCHLAND**
- **® Offenlegungsschrift**
- ® DE 196 06 394 A 1

PATENTAMT

Aktenzeichen: Anmeldetag:

Offenlegungstag:

- 186 06 394.9 21. 2.98
- 28. 8.97

C 08 K 3/32 C08 K 5/17 E 04 D 5/08 E 04 B 1/74 E04 F 15/16 D 04 H 1/64 // C08F 22/02,22/08

(7) Anmelder:

BASF AG, 67063 Ludwigshafen, DE

② Erfinder:

Hummerich, Rainer, Dr., 87551 Worms, DE; Kistenmacher, Axel, Dr., 67081 Ludwigshafen, DE; Denzinger, Walter, 57346 Speyer, DE; Schornick, Gunnar, Dr., 67271 Neuleiningen, DE; Reck, Bernd, Dr., 67269 Grünstadt, DE; Weber, Manfred, 68199 Mannheim, DE

- (5) Formaldahydfreie, wäßrige Bindemittel
- Formaldehydfreie, wäßrige Bindemittel, enthaltend A) ein Polymerisat, welches zu 5 bis 100 Gew.-% aus einem ethylenisch ungesättigten Säureanhydrid oder einer ethylenisch ungesättigten Dicarbonsäure, deren Carbonsäuregruppen eine Anhydridgruppe bilden können, besteht und B) ein Alkanolemin mit mindestens zwei Hydroxylgruppen.

Beschreibung

Die Erfindung betrifft formakiehydireie, wäßrige Rindemittel, enthaltend

A) ein durch radikalische Polymerisation erhaltenes Polymerisat, welches zu 5 his 100 Gew.-% aus einem ethylenisch ungesättigten Säureanhydrid oder einer ethylenisch ungesättigten Dicarbonsäure, deren Carbonsäuregruppen eine Ahhydridgruppe bilden können, besteht und

B) ein Alkanolamin mit mindestens zwei Hydroxylgruppen, wobei das wäßrige Bindemittel weniger als 1,5

Gew-%, bezogen auf die Summe von A) + B), eines Phosphor enthaltenden Reaktionsbeschleunigers

to enthält

Desweiteren betrifft die Erfindung die Verwendung der Bindemittel als Beschichtungsmittel, Imprägnierungsmittel und Bindemittel für Faservliese.

Die Verfestigung von flächenförmigen Fasergebilden, sog. Faservliesen, erfolgt zum Beispiel rein mechanisch durch Vernadelung oder Wasserstrahlverfestigung eines naß- oder luftgelegten Vlieses oder durch chemische Verfestigung der Vliese mit einem polymeren Rindemittel. Die Bindemittelapplikation erfolgt in der Regel durch Imprägnieren, Sprühen oder Beschichten. Zur Erhöhung der Naß- und Wärmestandfestigkeit der Vliese werden vielfach Bindemittel, welche Formaldehyd abspaltende Vernetzer enthalten, eingesetzt. Zur Vermeidung von Formaldehydemissionen ist der Fachmann bestrebt, Alternativen zu den bisher bekannten Bindemitteln zur Verfügung zu stellen.

Aus der US 4 076 917 sind Bindemittel bekannt, welche carbonsäure- oder anhydridhaltige Polymerisate und β-Hydroxyalkylamide als Vernetzer enthalten. Das molare Verhältnis von Carboxylgruppen zu Hydroxylgruppen beträgt bevorzugt 1:1. Nachteilig ist die relativ aufwendige Herstellung der β-Hydroxyalkylamide. Ein

entsprechendes Bindemittel ist aus US-A 5 340 868 bekannt.

Aus der HP 446 578 sind Platten aus feinteiligen Materialien, wie z. B. Glasfasern bekannt, in denen Mischungen aus hochmolekularen Polycarbonsäuren und mehrwertigen Alkoholen, Alkanolaminen oder mehrwertigen Aminen als Bindemittel fungieren. Als hochmolekulare Polycarbonsäuren werden Polyacrylsäure, Copolymere aus Methylmethacrylat/n-Butylacrylat/Methacrylsäure und aus Methylmethacrylat/Methacrylsäure beschrieben. Als mehrwertige Alkohole bzw. Alkanolamine werden 2-Hydroxymethylbutandiol-1,4-, Trimethylolpropan, Glycerin, Poly(methylmethacrylat-co-Hydroxypropylacrylat), Diethanolamin und Triethanolamin eingesetzt. Maleinsäure wird als ein mögliches Comonomer zur Herstellung der hochmolekularen Polycarbonsäuren genannt.

Aus HP 583 086 sind formaldehydfreie, wäßrige Bindemittel zur Herstellung von Faservliesen, insbesondere Glasfaservliesen, bekannt. Diese Bindemittel benötigen einen Phosphor enthaltenden Reaktionsbeschleuniger, um ausreichende Festigkeiten der Glasfaservliese zu erreichen. Die Bindemittel enthalten eine Polycarbonsäure mit mindestens zwei Carbonsäuregruppen und gegebenenfalls auch Anhydridgruppen. Verwendung findet insbesondere Polyacryisäure, auch Copolymere von Acrylsäure mit Maleinsäureanhydrid werden genannt. Das Bindemittel enthält weiterhin ein Polyol, z. B. Glycerin, Bin-[N,N-di(β-hydroxyethyl)adipamid, Pentaerythrit, Diethylenglykol, Ethylenglykol, Glukonsäure, β-D-Lactose, Sucrose, Polyvinylalkohol, Diisopropanolamin, 2-(2-Aminoethylamino)ethanol, Triethanolamin, Tris(hydroxymethylamino)methan und Diethanolamin. Es wird darauf hingewiesen, daß auf die Anwesenheit eines phosphorhaltigen Reaktionsbeschleunigers nur verzichtet werden kann, wenn ein hochreaktives Polyol eingesetzt wird. Als hochreaktive Polyole werden die β-Hydroxyalkylamide genannt.

In der EP-A 651 088 werden eutsprechende Bindemittel für Substrate aus Cellulosefasern beschrieben. Diese

Bindemittel enthalten zwingend einen Phosphor enthaltenden Reaktionsbeschleuniger.

Ans der DE 44 08 688 sind formaldehydfreie Bindemittel für faserförmige Flächengebilde bekannt. Als Bindemittel wird eine Mischung aus einer Polycarbonsäure und aromatischen oder cycloaliphatischen Polyclen eingesetzt. Trotz einer sehr hohen Trocknungstemperatur (230°C) werden mit diesem Bindemittel auf Glasfaservliesen nur geringe Naßreißfestigkeiten erzielt.

Neben bereits bekannten formaldehydfreien Bindemitteln besteht der Wunsch nach weiteren formaldehydfreien Bindemitteln. Aus wirtschaftlichen Gründen ist man bestrebt, die Verfestigung von flächenförmigen Fasergebilden bei möglichst niedrigen Temperaturen in einer möglichst kurzen Zeit durchzuführen und gleichzeitig gute mechanische Eigenschaften zu erhalten. Geeignete Bindemittel sollen weder an sich toxisch bedenklich sein, noch bei ihrer Verwendung toxische oder umweltschädliche Reaktionsprodukte ergeben.

Weiterhin sollen geeignete Bindemittel möglichst aus leicht zugünglichen und preiswerten Komponenten

bestehen.

50

Aufgabe der vorliegenden Erfindung war daher, solche Bindemittel zur Verfügung zu stellen.

Demgemäß wurden die oben beschriebenen Bindemittel sowie ihre Verwendung als oder in Beschichtungsmitteln, Imprägnierungsmitteln sowie als Bindemittel für Paservliese, insbesondere Glasfaservliese, gefunden.

Das erfindungsgemäße wäßrige Bindemittel enthält ein Polymerisat A), welches zu 5 bis 100 Gew.-%, bevorzugt 5 his 50 Gew.-%, besonders bevorzugt 10 bis 40 Gew.-% aus einem ethylenisch ungesättigten Säureanhydrid oder einer ethylenisch ungesättigten Dicarbonsäure, deren Carbonsäuregruppen eine Anhydridgruppe bilden können, aufgebaut ist (im folgenden Monomere a) genannt).

Als Säureanhydride sind Dicarbonsäureanhydride bevorzugt. Geeignete ethylenisch ungesättigte Dicarbon-

säuren sind im allgemeinen solche mit Carbonsäuregruppen an benachbarten Kohlenstoffatomen.

Die Carbonsauregruppen können auch in Form ihrer Salze vorliegen.

Als Monomere a) werden bevorzugt Maleinsäure, Maleinsäureanhydrid, Itaconsäure, 1,2,36-Tetrahydrophthalsäureanhydrid, deren Alkali- und Ammoniumsabze oder Mischungen dar-

196 06 394 DE A1

aus. Besonders bevorzugt sind Maleinsäure und Maleinsäureanhydrid.

Neben Monomeren a) kann das Polymerisat noch Monomere b) enthalten.

Als Monomere b) können beispielsweise eingesetzt werden:

Monoethylenisch ungesättigte C3- bis C10-Monocarbonsäuren, (Monomere b1), wie z. B. Acrylsäure, Methacrylsäure, Ethylacrylsäure, Allylessigsäure, Crotonsäure, Vinylessigsäure, Maleinsäurehalbester wie Maleinsäuremonomethylester, deren Mischungen bzw. deren Alkali- und Ammoniumsalze.

Lineare 1-Olefine, verzweigtkettige 1-Olefine oder cyclische Olefine (Monomere b2), wie z. B. Ethen, Propen, Buten, Isobuten, Penten, Cyclopenten, Hexen, Cyclohexen, Octen, 2A,4-Trimethyl-1-penten gegebenenfalls in Mischung mit 2,4,4-Trimethyl-2-penten, Ce—C10-Ölefin, 1-Dodecen, C12—C14-Ölefin, Octadecen, 1-Eicosen (C20), C20-C24-Olefin; metallocenkatalytisch hergestellte Oligoolefine mit endständiger Doppelbindung, wie z. B. Oligopropen, Oligohexen und Oligooctadecen; durch kationische Polymerisation hergestellte Olefine mit hohem

α-Olefin-Anteil, wie z. B. Polyisobuten.

Vinyl- und Allylalkylether mit 1 bis 40 Kohlenstoffatomen im Alkylrest, wobei der Alkylrest noch weitere Substituenten wie eine Hydroxylgruppe, eine Amino- oder Dialkylaminogruppe oder eine bzw. mehrere Alkoxylatgruppen tragen kann (Monomere ba), wie z. B. Methylvinylether, Ethylvinylether, Propylvinylether, Isobutylvinylether, 2-Ethylhexylvinylether, Vinylcyclohexylether, Vinyl-4-hydroxybutylether, Decylvinylether, Dodecylvinylether, Octadecylvinylether, 2-(Diethylamino)ethylvinylether, 2-(Di-n-butyl-amino)ethylvinylether, Methyldiglykolvinylether sowie die entsprechenden Allylether bzw. deren Mischungen.

Acrylamide und alkylsubstituierte Acrylamide (Monomere b.), wie z.B. Acrylamid, Methacrylamid,

N-tert-Butylacrylamid, N-Methyl(meth)acrylamid.

Sulfogruppenhaltige Monomere (Monomere b₅), wie z. B. Allylsulfonsäure, Methallylsulfonsäure, Styrolsulfonat, Vinylsulfonsäure, Allyloxybenzolsulfonsäure, 2-Acrylamido-2-methylpropansulfonsäure, deren entspre-

chende Alkali- oder Ammoniumsalze bzw. deren Mischungen.

C1- bis C8-Alkylester oder C1- bis C4-Hydroxyalkylester der Acrylsäure, Methacrylsäure oder Maleinsäure oder Ester von mit 2 bis 50 Mol Ethylenoxid, Propylenoxid, Butylenoxid oder Mischungen davon alkoxylierten C1- bis C18-Alkoholen mit Acrylsäure, Methacrylsäure oder Maleinsäure (Monomere be), wie z.B. Methyi(meth)acrylat, Ethyi(meth)acrylat, Propyi(meth)acrylat, Isopropyi(meth)acrylat, Butyi(meth)acrylat, Hexyl(meth)acrylat, 2-Ethylhexyl-(meth)acrylat, Hydroxyethyl(meth)acrylat, Hydroxypropyl(meth)acrylat, Butan-diol-1,4-monoacrylat, Maleinsäuredibutylester, Ethyldigiykolacrylat, Methylpolyglykolacrylat (11 EO), (Meth)acrylsäureester von mit 3,5,7,10 oder 30 Mol Ethylenoxid umgesetztem C₁₂/C₁₅-Oxoalkohol bzw. deren 30 Mischungen.

Alkylaminoalkyl(meth)acrylate oder Alkylaminoalkyl(meth)acrylamide oder deren Quaternisierungsprodukte (Monomere by), wie z. B. 2-(N,N-Dimethylamino)ethyl(meth)acrylat, 3-(N,N-Dimethylamino)propyl(meth)acrylat, 2-(N,N,N-Trimethylammonium)ethyl-(meth)acrylat-chlorid, 2-Dimethylaminoethyl(meth)acrylamid, 3-Dime-

thylaminopropyl(meth)acrylamid, 3-Trimethylammoniumpropyl(meth)acrylamid-chlorid.

Vinyl- und Allylester von C₁- bis C₃₀-Monocarbonsäuren (Monomere ba), wie z. B. Vinylformiat, Vinylacetat, Vinylpropionat, Vinylbutyrat, Vinylvalerat, Vinyl-2-ethylhexanoat, Vinylponoat, Vinyldecanoat, Vinylpivalat, Vinyipalmitat, Vinyistearat, Vinyilaurat.

Als weitere Monomere by seien noch genannt:

N-Vinylformamid, N-Vinyl-N-methylformamid, Styrol, a-Methylstyrol, 3-Methylstyrol, Butadien, N-Vinylpyrrolidon, N-Vinylimidazol, 1-Vinyl-2-methylimidazol, 1-Vinyl-2-methyl-imidazolin, N-Vinylcaprolactam, Actylnitril, Methacrylnitril, Allylalkohol, 2-Vinylpyridin, 4-Vinylpyridin, Diallyldimethylammoniumchlorid, Vinylidenchlorid, Vinylchlorid, Acrolein, Methacrolein und Vinylcarbazol bzw. Mischungen davon.

Das Polymerisat kann neben Monomeren a) noch 0 bis 95 Gew.-% Monomere b enthalten. Bevorzugt enthält das Polymerisat neben Monomeren a) noch Monomere b in Mengen von 50 bis 95, besonders bevorzugt von 60

Bevorzugte Monomere sind Acrylsäure, Methacrylsäure, Ethen, Propen, Buten, Isobuten, Cyclopenten, Methylvinylether, Ethylvinylether, Acrylamid, 2-Acrylamido-2-methylpropansulfonsäure, Vinylacetat, Styrol, Butadien, Acrylnitril bzw. Mischungen davon.

Besonders bevorzugt sind Acrylsäure, Methacrylsäure, Ethen, Acrylamid, Styrol und Acrylaitril bzw. Mischun- 50

gen davon.

Ganz besonders bevorzugt sind Acrylsäure, Methacrylsäure und Acrylamid bzw. Mischungen davon.

Die Polymerisate können nach fiblichen Polymerisationsverfahren hergestellt werden, z. B. durch Substanz-, Emulsions-, Suspensions-, Dispersions-, Fällungs- und Lösungspolymerisation. Bei den genannten Polymerisationsverfahren wird bevorzugt unter Ausschluß von Sauerstoff geerbeitet, vorzugsweise in einem Stickstoffstrom. Für alle Polymerisationsmethoden werden die üblichen Apparaturen verwendet, z. B. Rührkessel, Rührkesselkeskaden, Autoklaven, Rohrreaktoren und Kneter. Bevorzugt wird nach der Methode der Lösungs-, Emulsions-, Fallungs- oder Suspensionspolymerisation gearbeitet. Besonders bevorzugt sind die Methoden der Lösungs- und Emulsionspolymerisation. Die Polymerisation kann in Lösungs- oder Verdünnungsmitteln, wie z. B. Toluol, o-Xylol, p-Xylol, Cumol, Chlorbenzol, Ethylbenzol, technischen Mischungen von Alkylaromaten, Cyclohexan, technischen Äliphatenmischungen, Aceton, Cyclohexanon, Tetrahydrofuran, Dioxan, Glykolen und Glykolderivaten, Polyalkylenglykolen und deren Derivate, Diethylether, tert-Butylmethylether, Essigsäuremethylester, Isopropanol, Ethanol, Wasser oder Mischungen wie z. B. Isopropanol/Wasser-Mischungen ausgeführt werden. Vorzugsweise wird als Lösungs- oder Verdünnungsmittel Wasser gegebenenfalls mit Anteilen bis zu 60 Gew.-% an Alkoholen oder Glykolen verwendet. Besonders bevorzugt wird Wasser eingesetzt.

Die Polymerisation kann bei Temperaturen von 20 bis 300, vorzugsweise von 60 bis 200°C durchgeführt werden. Je nach Wahl der Polymerisationshedingungen lassen sich gewichtsmittlere Molekulargewichte z.B. von 800 bis 5 000 000, insbesondere von 1 000 bis 1 000 000 einstellen. Bevorzugt liegen die gewichtsmittleren

196 06 394 A1 DE

bis 600 000. Mw wird bestimmt durch Gelpermentionschromatographie (ausführliche Beschreibung in Beispie-

Die Polymerisation wird vorzugsweise in Gegenwart von Radikale bildenden Verbindungen durchgeführt. Man benötigt von diesen Verbindungen his zu 30, vorzugsweise 0,05 bis 15, besonders bevorzugt 0,2 bis 8 Gew.- 46, bezogen auf die bei der Polymerisation eingesetzten Monomeren. Bei mehrkomponentigen Initiatorsystemen (z. B. Redox-Initiatorsystemen) beziehen sich die vorstehenden Gewichtsangaben auf die Summe der

Komponenten.

Geeignete Polymerisationsinitiatoren sind beispielsweise Peroxide, Hydroperoxide, Peroxidisulfate, Percarbonate, Peroxiester, Wasserstoffperoxid und Azoverbindungen. Beispiele für Initiatoren, die wasserlöslich oder auch wasserunlöslich sein können, sind Wasserstoffperoxid, Dibenzoylperoxid, Dicyclohexylperoxidicarbonat, Dilauroylperoxid, Methylethylketonperoxid, Di-tert-Butylperoxid, Acetylacetonperoxid, tert-Butylhydroperoxid, Cumolhydroperoxid, tert-Butylperneodecanoat, tert-Amylperpivalat, tert-Butylperpivalat, tert-Butylperneohexanoat, tert.-Butylper-2-ethylhexanoat, tert.-Butyl-perbenzoat, Lithium-, Natrium-, Kalium- und Ammoniumperoxidisulfat, Azodiisobutyronitril, 2,2'-Azobis(2-amidinopropan)dihydrochlorid, 2-(Carbamoylazo)isobuty-

romitril und 4.4-Azobis(4-cyanovaleriansäure). Die Initiatoren können allein oder in Mischung untereinander angewendet werden, z. B. Mischungen aus Wasserstoffperoxid und Natriumperoxidisulfat. Für die Polymerisation in währigem Medium werden bevorzugt

wasserlösliche Initiatoren eingesetzt.

Auch die bekannten Redox-Initiatorsysteme können als Polymerisationsinitiatoren verwendet werden. Solche Redox-Initiatorsysteme enthalten mindestens eine peroxidhaltige Verbindung in Kombination mit einem Redox-Coinitiator z. B. reduzierend wirkenden Schwefelverbindungen, beispielsweise Bisulfite, Sulfite, Thiosulfate, Dithionite und Tetrathionate von Alkalimetallen und Ammoniumverbindungen. So kann man Kombinationen von Peroxodisulfaten mit Alkalimetall- oder Ammoniumhydrogensulfiten einsetzen, z. B. Ammoniumperoxidisulfat und Ammoniumdisulfit. Die Menge der peroxidhaltigen Verbindung zum Redox-Coinitiator beträgt 30:1

In Kombination mit den Initiatoren bzw. den Redoxinitiatorsystemen können zusätzlich Übergangsmetailkatalysatoren eingesetzt werden, z. B. Salze von Eisen, Kobalt, Nickel, Kupfer, Vanadium und Mangan. Geeignste Salz sind z. B. Eisen-II-sulfat, Kobalt-II-chlorid, Nickel-II-sulfat, Kupfer-I-chlorid. Bezogen auf Monomeren wird das reduzierend wirkende Übergangsmetallsalz in einer Konzentration von 0,1 ppm bis 1 000 ppm eingesetzt. So kann man Kombinationen von Wasserstoffperoxid mit Risen-II-Salzen einsetzen, wie beispielsweise 0,5 bis 30%

Wasserstoffperoxid und 0,1 bis 500 ppm Mohrsches Salz.

Auch bei der Polymerisation in organischen Lösungsmitteln können in Kombination mit den obengenannten Initiatoren Redox-Coinitiatoren und/oder Übergangsmetallkatalysatoren mitverwendet werden, z. B. Benzoin, Dimethylanilin, Ascorbinsäure sowie organisch lösliche Komplexe von Schwermetallen, wie Kunfer, Cobalt, Eisen, Mangan, Nickel und Chrom. Die üblicherweise verwendeten Mengen an Redox-Coinitiatoren bzw. Übergangsmetalikatalysatoren betragen hier üblicherweise etwa 0,1 bis 1 000 ppm, bezogen auf die eingesetzten Mengen an Monomeren.

Falls die Reaktionsmischung an der unteren Grenze des für die Polymerisation in Betracht kommenden Temperaturbereiches anpolymerisiert und anschließend bei einer höheren Temperatur auspolymerisiert wird, ist es zweckmäßig, mindestens zwei verschiedene Initiatoren zu verwenden, die bei unterschiedlichen Temperaturen zerfallen, so daß in jedem Temperaturintervall eine ausreichende Konzentration an Radikalen zur Verfü-

Um Polymerisate mit niedrigem mittleren Molekulargewicht her zustallen, ist es oft zweckmäßig, die Copolymerisation in Gegenwart von Regiern durchzuführen. Hierfür können übliche Regier verwendet werden, wie beispielsweise organische SH-Gruppen enthaltende Verbindungen, wie 2-Mercaptoethanol, 2-Mercaptopropanol, Mercaptoessigsäure, tert.-Butylmercaptan, n-Octylmercaptan, n-Dodecylmercaptan und tert.-Dodecylmercaptan, Ci- bis Ci-Aldehyde, wie Formaldehyd, Acetaldehyd, Propionaldehyd, Hydroxylammoniumsalze wie Hydroxylammoniumsulfat, Ameisensäure, Natriumbisulfit oder Isopropanol. Die Polymerisationsregier werden im allgemeinen in Mengen von 0,1 bis 10 Gew.-%, bezogen auf die Monomeren eingesetzt. Auch durch die Wahl des geeigneten Lösungsmittels kann auf das mittlere Molekulargewicht Einfluß genommen werden. So führt die Polymerisation in Gegenwart von Verdümungsmitteln mit benzylischen H-Atomen zu einer Verringerung des mittleren Molekulargewichtes durch Kettenübertragung.

Um höhermolekulare Copolymerisate herzustellen, ist es oft zweckmäßig, bei der Polymerisation in Gegenwart von Vernetzern zu arbeiten. Solche Vernetzer sind Verbindungen mit zwei oder mehreren ethylenisch ungesättigten Gruppen, wie beispielsweise Diacrylate oder Dimethacrylate von mindestens zweiwertigen gesättigten Alkoholen, wie z.B. Ethylenglykoldiacrylat, Ethylenglykoldimethacrylat, 1,2-Propylenglykoldiacrylat, 1,2-Propylenglykoldimethacrylat, Butandiol-1,4-discrylat, Butandiol-1,4-dimethacrylat, Hexandioldiacrylat, Hexandioldimethacrylat, Neopentylglykoldiacrylat, Neopentylglykoldimethacrylat, 3-Methylpentandioldiacrylat und 3-Methylpentandioldimethacrylat. Auch die Acrylsture- und Methacrylsäureester von Alkoholen mit mehr als 2 OH-Gruppen können als Vernetzer eingesetzt werden, z. B. Trimethylolpropantriacrylat oder Trimethylolpropantrimethacrylat. Eine weitere Klasse von Vernetzern sind Diacrylate oder Dimethacrylate von Polyethylenglykolen oder Polypropylenglykolen mit Molekulargewichten von jeweils 200 bis 9 000. Polyethylenglykole bzw. Polypropylenglykole, die für die Herstellung der Diacrylate oder Dimethacrylate verwendet werden, haben vorzugsweise ein Molekulargewicht von jeweils 400 bis 2 000. Außer den Homopolymerisaten des Ethylenoxids bzw. Propylenoxids können auch Blockcopolymerisate aus Ethylenoxid und Propylenoxid oder Copolymerisate aus Ethylenoxid und Propylenoxid eingesetzt werden, die die Ethylenoxid- und Propylenoxid-Einheiten statistisch verteilt enthalten. Auch die Oligomeren des Ethylenoxids bzw. Propylenoxids sind für die Herstellung der

196 06 394 DE A1

Vernetzer geeignet, z.B. Diethylenglykoldiacrylat, Diethylenglykoldimethacrylat, Triethylenglykoldiacrylat, Triethylenglykoldimethacrylat, Tetraethylenglykoldiacrylat und/oder Tetraethylenglykoldimethacrylat.

Als Vernetzer eignen sich weiterhin Vinylacrylat, Vinylmethacrylat, Vinylitaconat, Adipinsauredivinylester, Butandioldivinylether, Trimethylolpropantrivinylether, Allylacrylat, Allylmethacrylat, Pentaerithrittriallylether, Trially/saccharose, Pentually/saccharose, Pentually/sucrose, Methylenbis(meth)acrylamid, Divinylethylenharnstoff, Divinylpropylenbarnstoff, Divinylbenzol, Divinyldioxan, Triallylcyanurat, Tetraallylsilan, Tetravinylsilan und Bis- oder Polyacryisiloxane (z. B. Tegomere® der Th. Goldschmidt AG). Die Vernetzer werden vorzugsweise in Mengen von 10 ppm bis 5 Gew.-%, bezogen auf die zu polymerisierenden Monomere, eingesetzt.

Wird nach der Methode der Emulsions-, Fällungs-, Suspensions- oder Dispersionspolymerisation gearbeitet, so kann es vorteilhaft sein, die Polymertröpfchen bzw. Polymerteilchen durch grenzflächenaktive Hilfsstoffe zu stabilisieren. Typischerweise verwendet man hierzu Emulgatoren oder Schutzkolloide. Es kommen anionische, nichtionische, kationische und amphotere Emulgatoren in Betracht. Anionische Emulgatoren sind beispielsweise Alkylbenzolsulfonsäuren, sulfonierte Fettsäuren, Sulfosuccinate, Fettafkoholsulfate, Alkylphenolsulfate und Pettalkoholethersulfate. Als nichtionische Emulgatoren können beispielsweise Alkylphenolethoxylate, Primäralkoholethoxilate, Fettsäureethoxilate, Alkanolamidethoxilate, Fettaminethoxilate, EO/PO-Blockcopolymere und Alkylpolyglucoside verwendet werden. Als kationische bzw. amphotere Emulgatoren werden beispielsweise verwendet: Quaternisierte Aminalkoxylate, Alkylbetaine, Alkylamidobetaine und Sulfobetaine.

Typische Schutzkolloide sind beispielsweise Cellulosederivate, Polyethylenglykol, Polypropylenglykol, Copolymerisate aus Ethylenglykol und Propylenglykol, Polyvinylacetat, Polyvinylalkohol, Polyvinylether, Stärke und Stürkederivate, Dextran, Polyvinylpyrrolidon, Polyvinylpyridin, Polyethylenimin, Polyvinylimidazol, Polyvinylsuccinimid, Polyvinyl-2-methylsuccinimid, Polyvinyl-1,3-oxazolidon-2, Polyvinyl-2-methylimidazolin und Maleinsäure bzw. Maleinsäureanhydrid enthaltende Copolymerisate, wie sie z. B. in DE 25 01 123 beschrieben sind.

Die Emulgatoren oder Schutzkolloide werden üblicherweise in Konzentrationen von 0,05 bis 20 Gew.-%,

bezogen auf die Monomere, eingesetzt.

Wird in wäßriger Lösung oder Verdünnung polymerisiert, so können die Monomere vor oder während der 25 Polymerisation ganz oder teilweise durch Basen neutralisiert werden. Als Basen kommen beispielsweise Alkalioder Erdalkaliverbindungen wie Natriumhydroxid, Kaliumhydroxid, Calciumhydroxid, Magnesiumoxid, Natriumcarbonat; Ammoniak; primäre, sekundäre und tertiäre Amine, wie Ethylamin, Propylamin, Monoisopropylamin, Monobutylamin, Hexylamin, Ethanolamin, Dimethylamin, Diethylamin, Di-n-propylamin, Tributylamin, Triethanolamin, Dimethoxyethylamin, 2-Ethoxyethylamin, 3-Ethoxypropylamin, Dimethylethanolamin, Diisopropanolamin oder Morpholin in Frage.

Weiterhin können auch mehrbasische Amine zur Neutralisation eingesetzt werden, wie z.B. Ethylendiamin, 2-Diethylaminethylamin, 2,3-Diaminopropan, 1,2-Propylendiamin, Dimethylaminopropylamin, Neopentandi-

amin, Heramethylendiamin, 4,9-Dioxadodecan-1,12-diamin, Polyethylenimin oder Polyvinylamin.

Vorzugsweise werden zur partiellen oder vollständigen Neutralisation der ethylenische ungesättigten Car- 35 bonsäuren vor oder während der Polymerisation Ammoniak, Triethanolamin und Diethanolamin eingesetzt.

Besonders bevorzugt werden die ethylenisch ungesättigten Carbonsäuren vor und während der Polymerisation nicht neutralisiert.

Bevorzugt wird auch nach der Polymerisation kein Neutralisierungsmittel, abgesehen vom Alkanolamin B), zugesetzt. Die Durchführung der Polymerisation kann nach einer Vielzahl von Varianten kontinuierlich oder diskontinuierlich durchgeführt werden. Üblicherweise legt man einen Teil der Monomeren gegebenenfalls in einem geeigneten Verdinnungsmittel oder Lösungsmittel und gegebenenfalls in Anwesenheit eines Emulgators, eines Schutzkolloids oder weiterer Hilfsstoffe vor, inertisiert, und erhöht die Temperatur bis zum Erreichen der gewünschten Polymerisationstemperatur. Es kann allerdings auch lediglich ein geeignetes Verdünnungsmittel vorgelegt sein. Innerhalb eines definierten Zeitraumes werden der Radikalinitiator, weitere Monomere und sonstige Hilfsstoffe, wie z. B. Regler oder Vernetzer jeweils gegebenenfalls in einem Verdinnungsmittel zudosiert. Die Zulaufzeiten können unterschiedlich lang gewählt werden. Beispielsweise kann man für den Initiatorzulauf eine längere Zulaufzeit wählen als für den Monomerzulauf.

Wird das Polymerisat nach dem Verfahren einer Lösungspolymerisation in Wasser gewonnen, so ist ühlicherweise keine Abtrennung des Lösungsmittels notwendig. Besteht dennoch der Wunsch, das Polymerisat zu 50

isolieren, kann z. B. eine Spriihtrocknung durchgeführt werden.

Wird das Polymerisat nach der Methode einer Lösungs-, Fällungs- oder Suspensionspolymerisation in einem wasserdampfflüchtigen Lösungsmittel oder Lösungsmittelgemisch hergestellt, so kann das Lösungsmittel durch Einleiten von Wasserdampf abgetrennt werden, um so zu einer wäßrigen Lösung oder Dispersion zu gelangen. Das Polymerisat kann von dem organischen Verdünnungsmittel auch durch einen Trocknungsprozeß abge- 55 trennt werden.

Bevorzogt liegen die Polymerisate A) in Porm einer wäßrigen Dispersion oder Lösung mit Feststoffgehalten

von vorzugsweise 10 bis 80 Gew.-%, insbesondere 40 bis 65 Gew.-% vor.

Polymerisat A) kann auch durch Pfropfung von Maleinsäure bzw. Maleinsäureanhydrid bzw. einer Maleinsäure oder Maleinsäureanhydrid enthaltenden Monomermischung auf eine Pfropfgrundlage erhalten werden. Geeignete Pfropfgrundlagen sind beispielsweise Monosaccharide, Oligosaccharide, modifizierte Polysaccharide und Alkylpolygiykolether. Solche Pfropfpolymerisate sind beispielsweise in DE 40 03 172 und EP 116 930 beschrieben.

Als Komponente B) werden Alkanolamine mit mindestens zwei OH-Gruppen eingesetzt. Bevorzugt sind Alkanolamine der Formel

20

in der R^1 für ein H-Atom, eine C_1 — C_{10} -Alkylgruppe oder eine C_1 — C_{10} -Hydroxyalkylgruppe steht und R^2 und R^3 für eine C_1 — C_{40} -Hydroxyalkylgruppe stehen.

Besonders bevorzugt stehen R² und R³ unabhängig voneinander für eine C₂—C₅-Hydroxyalkylgruppe und R¹

für ein H-Atom, eine C1 - C5-Alkylgruppe oder eine C2 - C5-Hydroxyalkylgruppe.

Als Verbindungen der Formel I seien z. B. Diethanolamin, Triethanolamin, Diisopropanolamin, Triisopropanolamin, Methyldiethanolamin, Butyldiethanolamin und Methyldiisopropanolamin genannt. Besonders bevorzugt ist Triethanolamin.

Zur Herstellung der erfindungsgemäßen formaldebydfreien Bindemittel werden das Polymerisat A) und das Alkanolamin B) bevorzugt in einem solchen Verhältnis zueinander eingesetzt, daß das Molverhältnis von Carboxylgruppen der Komponente A) und der Hydroxylgruppen der Komponente B) 20:1 bis 1:1, bevorzugt 8:1 bis 5:1 und besonders bevorzugt 5:1 bis 1,7:1 beträgt (die Anhydridgruppen werden hierbei als 2 Carboxylgruppen berechnet).

Die Herstellung der erfindungsgemäßen formaldehydfreien, wäßrigen Bindemittel erfolgt z. B. einfach durch

Zugabe des Alkanolamins zur wäßrigen Dispersion oder Lösung der Polymerisate A).

Die erfindungsgemäßen Bindemittel enthalten vorzugsweise weniger als 1,0 Gew.-%, hesonders bevorzugt weniger als 0,5 Gew.-%, insbesondere weniger als 0,1 Gew.-%, insbesondere weniger als 0,1 Gew.-%, bezogen auf die Summe aus A) + B) eines Phosphor enthaltenden Reaktionsbeschleunigers. Phosphor enthaltende Reaktionsbeschleuniger sind in US 651 088 und US 583 086 genannt. Es handelt sich dabei insbesondere um Alkalimetallhypophoshpite, -phosphite, -polyphosphorphute, -dihydrogenphosphate, Polyphosphorsäure, Hypophosphorsäure, Phosphorsäure, Alkylphosphinsäure oder Oligomere bzw. Polymere dieser Salze und Säuren.

Säuren.

Die erfindungsgemäßen Bindemittel enthalten vorzugsweise keine Phosphor enthaltenden Reaktionsbeschleuniger bzw. keine zur Reaktionsbeschleunigung wirksame Mengen einer Phosphor enthaltenden Verbindung. Die erfindungsgemäßen Bindemittel können einen Veresterungskatalysator enthalten, wie z. B. Schwefelsäure oder p-Toluolsulfonsäure. Die erfindungsgemäßen Bindemittel können als Imprägnierungsmittel oder

Beschichtungsmittel Verwendung finden. Die erfindungsgemäßen Bindemittel können einziger Bestandteil der Imprägnierungsmittel oder Beschichtungsmittel sein. Die Imprägnierungsmittel oder Beschichtungsmittel können jedoch auch noch weitere für die jeweilig beabsichtigte Verwendung geeignete Zusatzstoffe enthalten. In Betracht kommen z. B. Farbstoffe, Pigmente, Biozide, Plastifizierungsmittel, Verdickungsmittel, Haftverbesse-

rer, Reduktionsmittel und Umesterungskatalysatoren.

Die erfindungsgemäßen Bindemittel haben nach Trocknung (bei 50°C, Dauer (72 Stunden) zu einem Film der Dicke 0,3 bis 1 mm und anschließender 15-minütiger Härtung bei 130°C an der Luft vorzugsweise einen Gelgehalt über 50 Gew.-%, besonders bevorzugt über 60 Gew.-%, ganz besonders bevorzugt über 70 Gew.-% und insbesondere über 75 Gew.-%.

Nach Abschluß der Härtung werden die gehärteten Filme 48 Stunden in Wasser bei 23°C gelagert. Lösliche Anteile verbleiben dabei im Wasser. Der Film wird dann bei 50°C bis zur Gewichtskonstanz getrocknet und gewogen. Das Gewicht entspricht dem Gelgehalt, der Gelgehalt wird berechnet in Gew.-%, bezogen auf das Gewicht vor Abtrennen der löslichen Anteile. Gewichtskonstanz ist erreicht, wenn die Gewichtsabnahme über einen Zeitraum von 3 Stunden weniger als 0,5 insbesondere weniger als 0,1 Gew.-% beträgt.

Insbesondere eignen sich die erfindungsgemäßen Bindemittel als Bindemittel für Faservliese. Als Faservliese seien z. B. Vliese aus Cellulose, Celluloseacetat, Ester und Ether der Cellulose, Baumwolle, Hanf, tierische Fasern, wie Wolle oder Hasre und insbesondere Vliese von synthetischen oder anorganischen Fasern, z. B. Aramid-, Kohlenstoff-, Polyacrylnitril-, Polyester-, Mineral-, PVC- oder Glasfasern genannt.

Im Falle der Verwendung als Bindemittel für Faservliese können die erfindungsgemäßen Bindemittel z.B. folgende Zusatzstoffe enthalten: Silikate, Silikone, borhaltige Verbindungen, Gleitmittel, Benetzungsmittel.

Bevorzugt sind Glasfaservliese. Die ungebundenen Faservliese (Rohfaservliese), insbesondere aus Glasfasern, werden durch das erfindungsgemäße Bindemittel gebunden, d. h. verfestigt.

Dazu wird das erfindungsgemäße Bindemittel vorzugsweise im Gewichtsverhältnis Faser/Polymerisat A (fest) von 10:1 bis 1:1, besonders bevorzugt von 6:1 bis 3:1 auf das Rohfaservlies z. B. durch Beschichten,

Imprägnieren, Tränken aufgebracht.

Das erfindungsgemäße Bindemittel wird dabei vorzugsweise in Form einer verdünnten wäßrigen Zubereitung

mit 95 bis 40 Gew.-96 Wasser verwendet.

Nach dem Anfbringen des erfindungsgemäßen Bindemittels auf das Rohfaservlies erfolgt im allgemeinen eine Trocknung vorzugsweise bei 100 bis 400, insbesondere 130 bis 280°C, ganz besonders bevorzugt 130 bis 230°C über einen Zeitraum von vorzugsweise 10 Sekunden bis 10 Minuten, insbesondere von 10 Sekunden bis 3 Minuten.

Das erhaltene, gebundene Faservlies weist eine hohe Festigkeit im trockenen und nassen Zustand auf. Bine Vergilbung des gebundenen Faservlieses nach der Trocknung ist nicht bzw. kaum zu beobachten. Die erfindungsgemäßen Bindemittel erlauben insbesondere kurze Trocknungszeiten und auch niedrige Trocknungstem-

Die gebundenen Faservliese, insbesondere Glasfaservliese eignen sich zur Verwendung als bzw. in Dachbahnen, als Trägermaterialien für Tapeten oder als Inliner bzw. Trägermaterial für Fußbodenbeläge z. B. aus PVC. PVC-Fußbodenbeläge, die unter Verwendung von mit den erfindungsgemäßen Bindemitteln verfestigten Glas-

faservliesen und PVC-Plastisolen hergestellt wurden, weisen eine nur geringe Vergilbungsneigung auf.

Bei der Verwendung als Dachbahnen werden die gebundenen Faservliese im allgemeinen mit Bitumen beschichtet.

Die erfindungsgemäßen Bindemittel können auch in Abmischung mit weiteren Bindemitteln, wie z. B. formaldehyd-enthaltenden Bindemitteln wie Harnstoff-Formaldehyd-Harzen, Melamin-Formaldehyd-Harzen oder Phenol-Formaldehyd-Harzen, eingesetzt werden.

Die erfindungsgemäßen Bindemittel können weiterhin als Bindemittel für Dämmstoffe aus den oben genannten Fasern, insbesondere anorganischen Fasern wie Mineralfasern und Glasiasern verwendet werden.

Die in der Praxis bisher üblichen Bindemittel auf Basis von Phenol-Formaldehyd-Kondensationsharzen haben den Nachteil, daß sich bei der Herstellung der Dämmstoffe nicht unerhebliche Mengen Phenol, Formaldehyd sowie niedermolekulare Kondensationsprodukte davon verflüchtigen. Die Zurückhaltung dieser umweltschädlichen Stoffe ist mit großem Aufwand verbunden. Weiterhin kann es zur Freisetzung von Formaldehyd aus den fertigen Dämmstoffprodukten kommen, was insbesondere bei einer Verwendung in Wohngebäuden unerwünscht ist.

Fasern für Dämmstoffe werden technisch in großem Umfang durch Verspinnen von Schmelzen der entspre15 chenden mineralischen Robstoffe hergestellt (siehe z. B. EP 567 480).

Die wäßrige Bindemittel-Lösung wird bei der Herstellung von Dämmstoffen vorzugsweise schon auf die frisch hergestellten, noch heißen Fasern aufgesprüht. Das Wasser verdampft fiberwiegend und das Harz bleibt im wesentlichen unausgehärtet als viskoses "highsolid" Material auf den Fasern haften. Aus den Fasern werden so bindemittelhaltige Fasermatten hergestellt und diese von geeigneten Förderbändern durch einen Härtungsofen weitertransportiert. Dort härtet das Harz bei Ofentemperaturen von ca. 150 bis 350°C zu einer steifen, duroplastischen Matrix aus. Nach dem Härtungsofen werden die Dämmstoffmatten in geeigneter Weise konfektioniert, d. h. in eine für den Endanwender geeignete Form zugeschnitten.

Die Bindemittel können in der Praxis der Dämmstoffherstellung übliche Hilfs- und Zusatzstoffe enthalten. Beispiele dafür sind Hydrophobierungsmittel wie z. B. Silikonöle, Alkoxysilane wie z. B. 3-Aminopropyltriethoxysilan als Kupplungsagens, lösliche oder emulgierbare Öle als Gleitmittel und Staubbindemittel sowie Benetzungshilfsmittel.

Der überwiegende Anteil der in den Dämmstoffen verwendeten Mineral- oder Glasfasern hat einen Durchmesser zwischen 0,5 und 20 µm und eine Länge zwischen 0,5 und 10 cm.

Übliche Anwendungsformen der Dämmstoffe sind rechteckige oder dreieckige Dämmstoffplatten sowie aufgerollte Dämmstoffbahnen. Die Dicke und Dichte der Dämmstoffe kann in weiten Grenzen variiert werden, wodurch sich Produkte mit der gewünschten Isolationswirkung herstellen lassen. Übliche Dicken liegen zwischen 1 und 20 cm, übliche Dichten im Bereich zwischen 20 und 300 kg/m². Die Isolierwirkung wird die durch die thermische Leitfähigkeit Lambda (in mW/m°K) charakterisiert. Die Dämmplatten haben eine hohe Trocken-und Naßfestigkeit.

Die erfindungsgemäßen Bindemittel eignen sich auch zur Herstellung von Topfreinigern bzw. Topfkratzern auf Basis von gebundenen Paservliesen. Als Fasern kommen natürliche Fasern und synthetische Fasern, insbesondere auf Mineralfasern oder Glasfasern in Betracht. Im Falle der Topfreiniger bzw. -kratzer erfolgt die Verfestigung der Faservliese bevorzugt im Sprühverfahren.

Beispiele

40

50

95

60

Herstellung der wäßrigen Bindemittel

Die Polymerisatiösungen wurden gemäß Tabelle 1 in der jeweils angegebenen Menge mit der angegebenen 49 Menge Triethanolamin (TEA) gemischt. Angegeben ist auch der Feststoffgehalt des Bindemittels, der pH-Wert und die Viskosität.

Tabelle 1

B 875.0 Cop. AS/MS ² 85:15 C 882.0 Cop. AS/MS ³ 75:25 D 891.9 Cop. AS/MS ⁴ 90:10 E 894.8 Cop. AS/MS ⁵ 70:30 F 884.3 Cop. AS/MS ⁶ 60:40 E 881.5 Cop. AS/MS ⁷ 80:20 E 880.1 Cop. AS/MS ⁸ 70:30 I 886.7 Cop. AS/MS ⁹ 60:40 E 928.2 EMA ¹⁰ C 882.0 Cop. AS/MS ⁹ 60:40 I 125,0 46,8 3,2 5 400 I 18,0 49,4 2,9 3 700 I 18,1 45,1 3,3 4 900 I 18,5 2,8 2 800 I 18,5 50,8 3,0 2 400 I 19,9 50,2 2,9 900 I 19,9 50,2 2,9 900							
Real		Binde-	Polymerisat			-	
RPas Repair Rep	5	mittel	[g]	[g]			
A 882.0 Cop. AS/MS1 80:20 B 875.0 Cop. AS/MS2 85:15 C 882.0 Cop. A8/MS3 75:25 D 891.9 Cop. AS/MS4 90:10 E 894.8 Cop. AS/MS5 70:30 F 884.3 Cop. AS/MS6 60:40 E 880.0 Cop. AS/MS7 80:20 E 880.0 Cop. AS/MS8 70:30 I 880.1 Cop. AS/MS8 70:30 I 880.7 Cop. AS/MS8 70:30 I 890.2 E 890.8 E 890.8 E 900.0 E 890.8 E 900.0 E 890.8 E 900.0 E 9	_	l l				1	[mPas]
Cop. As/MS1 80:20		1			[%]	l	
Cop. As/MS1 80:20 125,0 46,8 3,2 5 400			882.0	117.2	49.4	2.9	7 100
B 875.0 Cop. As/MS ² 85:15 C 882.0 Cop. As/MS ³ 75:25 D 891.9 Cop. As/MS ⁵ 70:30 F 884.3 Cop. As/MS ⁶ 60:40 E 881.5 Cop. As/MS ⁷ 80:20 E 880.1 Cop. As/MS ⁸ 70:30 I 886.7 Cop. As/MS ⁹ 60:40 E 898.2 EMA ¹⁰ F 928.2 EMA ¹⁰ S 925.3 74,7 30,8 3,2 14 200							
Cop. AS/MS ² 85:15 C 882.0 Cop. A8/MS ³ 75:25 D 891.9 Cop. AS/MS ⁴ 90:10 E 894.8 Cop. A8/MS ⁵ 70:30 F 884.3 Cop. AS/MS ⁶ 60:40 E 881.5 Cop. AS/MS ⁷ 80:20 H 880.1 Cop. AS/MS ⁸ 70:30 I 886.7 Cop. AS/MS ⁹ 60:40 R 928.2 EMA ¹⁰ S 1, 925.3 T 4,7 30,8 3,2 14 200	10			12E 0	16.0	2 2	E 400
C 882.0		В		125,0	40,0	3,2	2 400
D							· · · · · · · · · · · · · · · · · · ·
D 891.9 Cop. AS/MS ⁴ 90:10 108,1 45,1 3,3 4 900 Cop. AS/MS ⁵ 70:30 105,2 44,0 2,8 2 800 Cop. AS/MS ⁵ 70:30 115,7 48,5 2,3 800 Cop. AS/MS ⁶ 60:40 115,7 48,5 2,3 800 Cop. AS/MS ⁷ 80:20 118,5 50,8 3,0 2 400 Cop. AS/MS ⁷ 80:20 119,9 50,2 2,9 900 Cop. AS/MS ⁸ 70:30 119,9 50,2 2,9 900 X 886.7 Cop. AS/MS ⁹ 60:40 X 928.2 71,8 29,9 3,3 10 800 EMA ¹⁰ 35 L 925.3 74,7 30,8 3,2 14 200		C		118,0	49,4	2,9	3 700
E 894.8 Cop. AS/MS ⁴ 90:10 E 894.8 Cop. AS/MS ⁵ 70:30 F 884.3 Cop. AS/MS ⁶ 60:40 E 881.5 Cop. AS/MS ⁷ 80:20 H 880.1 Cop. AS/MS ⁸ 70:30 I 886.7 Cop. AS/MS ⁹ 60:40 K 928.2 EMA ¹⁰ P 925.3 Top. AS/MS 90:10 I 105,2 44,0 2,8 2 800 I 115,7 48,5 2,3 800 I 115,7 48,5 2,3 800 I 119,9 50,2 2,9 900 I 119,9 50,2 2,9 900 I 113,3 46,4 2,5 440 I 113,3 46,4 2,5 440	15		Cop. A8/MS ³ 75:25				
E 894.8 Cop. As/MS ⁵ 70:30 F 884.3 Cop. As/MS ⁶ 60:40 E 881.5 Cop. As/MS ⁷ 80:20 E 880.1 Cop. As/MS ⁸ 70:30 I 886.7 Cop. As/MS ⁹ 60:40 E 928.2 EMA ¹⁰ F 925.3 F 894.8 F 105,2 44,0 2,8 2 800 F 105,2 44,0 2,8 2 800 F 115,7 48,5 2,3 800 F 115,7 48,5 2,3 800 F 115,7 48,5 2,3 800 F 118,5 50,8 3,0 2 400 F 119,9 50,2 2,9 900 F 119,9 50,2		В	891.9	108,1	45,1	3,3	4 900
E 894.8 Cop. AS/MS ⁵ 70:30 105,2 44,0 2,8 2 800 F 884.3 Cop. AS/MS ⁶ 60:40 115,7 48,5 2,3 800 Cop. AS/MS ⁷ 80:20 118,5 50,8 3,0 2 400 Cop. AS/MS ⁷ 80:20 119,9 50,2 2,9 900 Cop. AS/MS ⁸ 70:30 119,9 50,2 2,9 900 K 928.2 KMA ¹⁰ 71,8 29,9 3,3 10 800 KMA ¹⁰ 925.3 74,7 30,8 3,2 14 200			Cop. AS/MS4 90:10				
Top. A8/MS ⁵ 70:30 F 884.3 Cop. AS/MS ⁶ 60:40 S 6 881.5 Cop. AS/MS ⁷ 80:20 H 880.1 Cop. AS/MS ⁸ 70:30 I 886.7 Cop. AS/MS ⁹ 60:40 K 928.2 EMA ¹⁰ J 925.3 TA,7 30,8 3,2 14 200				105.2	44.0	2.8	2 800
F 884.3 Cop. AS/MS ⁶ 60:40 115,7 48,5 2,3 800 Cop. AS/MS ⁶ 60:40 118,5 50,8 3,0 2 400 E 881.5 Cop. AS/MS ⁷ 80:20 119,9 50,2 2,9 900 Cop. AS/MS ⁸ 70:30 119,9 50,2 2,9 900 E 886.7 Cop. AS/MS ⁹ 60:40 113,3 46,4 2,5 440 E MA ¹⁰ K 928.2 71,8 29,9 3,3 10 800 E MA ¹⁰ S 925.3 74,7 30,8 3,2 14 200	20	•				-, -	
Cop. AS/MS ⁶ 60:40 G 881.5 Cop. AS/MS ⁷ 80:20 H . 880.1 Cop. AS/MS ⁸ 70:30 I . 886.7 Cop. AS/MS ⁹ 60:40 K . 928.2 EMA ¹⁰ S . 925.3 T. 925.3 T. 74,7 30,8 3,2 14 200				11E 7	AO E	2 2	900
#		F	00 -00	TTOP 1	40,5	2,3	800
Cop. AS/MS ⁷ 80:20 H							
B	25	G		118,5	50,8	3,0	2 400
Cop. AS/MS ⁸ 70:30 I 886.7 Cop. AS/MS ⁹ 60:40 K 928.2 EMA ¹⁰ T 925.3 T4,7 30,8 3,2 14 200			Cop. AS/MS ⁷ 80:20				
30 I 886.7 113,3 46,4 2,5 440 Cop. AS/MS ⁹ 60:40 71,8 29,9 3,3 10 800 EMA ¹⁰ 35 L 925.3 74,7 30,8 3,2 14 200		Ħ		119,9	50,2	2,9	900
30 I 886.7 113,3 46,4 2,5 440 Cop. AS/MS ⁹ 60:40 71,8 29,9 3,3 10 800 EMA ¹⁰ 35 L 925.3 74,7 30,8 3,2 14 200		_	Cop. AS/MS ⁸ 70:30				}
Cop. AS/MS ⁹ 60:40 R 928.2 EMA ¹⁰ 71,8 29,9 3,3 10 800 74,7 30,8 3,2 14 200	30	- -		113.3	46.4	2.5	440
E 928.2 71,8 29,9 3,3 10 800 EMA ¹⁰ 74,7 30,8 3,2 14 200		_			• -		
35 L 925.3 74,7 30,8 3,2 14 200				71 0	29 9	3.3	10 800
35 L 925.3 74,7 30,8 3,2 14 200		K.		11,0	23,3	3,3	1 20 000
1 L 925.3 74,7 30,8 3,2 14 200	35				22.0	2 2	74 000
I I MSA/VI ¹¹ I I I		ь		74,7	30,8	3,2	14 200
H 924.7 75,3 43,7 3,7 2 700		M		75,3	43,7	3,7	2 700
Cop. AS/ME ¹² 70:30	40		Cop. AS/MS ¹² 70:30				
N 891.2 108,8 45,4 2,9 2 400	~	N	891.2	108,8	45,4	2,9	2 400
Cop. AS/MS13 70:30		_	Cop. AS/MS13 70:30				j
0 860.3 139,7 47,5 2,4 2 300				139-7	47.5	2.4	2 300
6 Cop. AS/MS14 70:30	•			,		_, _	
	•••			AE A	40.4	2 5	2 100
		P		33,0	20,2	3,3	2 100
Poly-AS ¹⁵							
Q 928.2 71,8 29,9 3,0 280		Q		71,8	29,9	3,0	280
Cop. MAS/AS16	50		Cop. MAS/AS16		<u> </u>	I	1

Abkürzungen

AS: Acrylsäure

EMA: Copolymer Ethylen/Maleinsäure

FG: Feststoffgehalt MAS: Methacrylsäure

MS: Maleinsäure

Mg: gewichtsmittleres Molekulargewicht

TEA: Triethanolamin
V1: Methylvinylether

^{1:} Copolymer Acrylsäure/Maleinsäure 80: 20 Gew.-%, M., 160 000, polymerisiert bei 110°C mit Wasserstoffperoxid als Radikalininiator, entsprechend EP 75 820. FG: 44,5%, pH: 0.8,

- 2: Herstellung analog Copolymer 1, FG: 40,5%, pH: 1,1, Mw 240 000,
- 3. Herstellung analog Copolymer 1, FG: 44,6%, pH: 0,7, Mw: 90 000,
- 4: Herstellung analog Copolymer 1, FG: 40,4%, pH: 1,1, Mw: 205 000,
- 5: Herstellung analog Copolymer 1, FG: 39,2%, pH: 27, Mw: 84 000,
- Herstellung analog Copolymer 1, Mw: FG: 43,6%, pH: 1,0, Mw: 25 000,
 polymerisiert bei 130°C mit Wasserstoffperoxid als Radikalinitiator entsprechend EP 75 820. FG: 44,8%, pH:

0.8, My: 80 000,

- 8: polymerisiert bei 130°C mit Wasserstoffperoxid als Radikalinitiator entsprechend EP 75 820. FG: 45,4%, pH: 1,4, Mw: 27 000,
- 9: polymerisiert bei 130°C mit Wasserstoffperoxid als Radikalinitiator entsprechend EP 75 820. FG: 42,6%, pH: 10 0,7, M=: 15 000,
- 10: Mw: 820.000, FG: 21,6, pH: 4,6,
- 11: Mw: 1000.000, FG: 23,5, pH: 5,1,
- 12: Herstellung analog Copolymeres 5, FG: 40,7%, pH: 2,5, Mw: 80 000,
- 19: Herstellung analog Copolymeres 5, FG: 40,7%, pH: 25, Mw: 80 000,
- 14. Herstellung analog Copolymeres 5, FG: 40,7%, pH: 25, Mw: 80 000,
- 15: Polyacrylsäure, Mw: 100.000, FG: 35,0%, pH: 1,0, zum Vergleich,
- 16: Copolymer Acrylsäure/Methacrylsäure 30:70 Gew.-%, Mw: 22.000, FG: 25,8%, pH: 1,4, zum Vergleich.

Bestimmung des mittleren Molekulargewichtes

Die Bestimmung des gewichtsmittleren Molekulargewichtes erfolgte durch Gelpermeationschromatographie (GPC) mit wäßrigen Elutionsmitteln. Die Kalibrierung erfolgte mit einer breit verteilten Na-Polyacrylat-Mischung, deren integrale Molekulargewichtsverteilungskurve durch GPC-Laserfichtstreukopphung bestimmt worden war, nach dem Kalibrierverfahren von M.J.R. Cantow et al. (J. Polym. Sci., A-1,5 (1967) 1391—1394). 25 allerdings ohne die dort vorgeschlagene Konzentrationskorrektur. Als Elutionsmittel wurde eine wäßrige Tris(hydroxymethyl)aminomethan (TRIS)-Pufferlösung (0,08 molar) eingesetzt. Die Chromatographiesäulen waren mit TSK PW-XL 3000 und TSK PW-XL 5000 (Fa. TosoHaas) als stationäre Phase beladen. Zur Detektion wurde ein Differentialrefraktometer eingesetzt.

Bestimmung des Feststoffgehaltes

In ein Alu-Schälchen werden eine definierte Menge der Probe eingewogen (Einwaage). Die Probe wird im Trockenschrank bei 50°C 72 Stunden getrocknet. Danach wird erneut die Masse der Probe bestimmt (Auswaage). Der prozentuale Feststoffgehalt FG errechnet sich wie folgt: FG — Auswaage X 100/Einwaage [%].

Bestimmung der Viskosität

Die Lösungsviskosität wurde mit einem LVF Viskosimeter der Fa. Brookfield bestimmt. Die Proben wurden zuvor auf 23°C temperiert.

Anwendungstechnische Prüfungen

Glasfaservliese

Die Bindemittellösungen A bis Q wurden mit Wasser auf einen Gesamtfeststoffenteil von 15 Gew.-% verdünnt und in eine Imprägnierwanne gefüllt. Als Rohvlies wurden mit Melaminformaldehyd-Harzen leicht vorgebundene Glasfaservliese (ca. 7% Bindemittelauftrag, Flächengewicht ca. 50 g/m²) im Format 26,5 × 32,5 cm verwendet. Nach 2 × 20 sec. Eintauchen in die Imprägnierflotte wurde der Überschaß an Bindemittel bis zum Erreichen eines Bindemittelanteiles von 20% (bezogen auf das Gesamtgewicht) abgesaugt und das imprägnierte Glasvlies in einem Mathis-Ofen eine vorgegebene Zeit (t) bei der eingestellten Temperatur (T) (s. Tabelle 2) getrocknet. Aus dem Glasfaserbogen wurden 50 mm breite Streifen abgeschnitten und in einer Zugprüfmaschine mit 50 mm/min bis zum Reißen gedehnt (Reißkraft, RK, trocken). Die Temperatur des Faservlieses ist in Tabelle 2 angegeben. Entsprechende Prüfstreifen wurden zur Messung der Naßfestigkeit vor Prüfung 15 min in Wasser bei 25 bzw. 80°C gelegt und im feuchten Zustand bei der angegebenen Temperatur gerissen (RK, naß). 55 Die Ergebnisse der Messungen (Mittelwert von 5 Prüfkörpern) sind in Newton (N) angegeben und beziehen sich auf 50 mm Prüfstreifenbreite.

Zur Ermittlung des Kochverlustes (KV) wurde die Abnahme des Vliesgewichtes nach 15 min Auskochen in destilliertem Wasser bestimmt.

Die Vergilbung wurde qualitativ beurteilt.

Die Ergebnisse sind in Tabelle 2 aufgeführt.

65

60

15

30

35

45

DE 196 06 394 A1

Vergilbung keine keine keine keine keine keine keine keine keine ketne keine keine keine keine æ Ĵв 3,8 2,3 1,4 0,3 8,0 6 '0 1,5 1,9 1,2 9,0 2,7 8 ′0 1,8 0,5 1,1 1,1 ME E RK, trocken bei 180°C [N] 1.63 RK, nas bei 80°C **[B]** RK, naß bei 25°C E RK, trocken bei 25°C nunge-dauer [sec.] Trock-S nungatemp. [°C] Trook-Binde-mittel æ æ ~ A O Ω Ħ Ø Ø × spiel Nr. Bet-2 50

Tabelle 2

ıΩ

10

15

20

35

50

							_		_	_	_
Vergilbung	Ĵв	keine	af								
KV [%]	1,3	1,3	1,4	1,5	3,6	16,0	17,0	3,8	1,5	3,0	1,3
RK, trocken bei 180°C [N]	142	152	146	141	127	158	166	162	191	156	158
RK, nab bei 80°C [N]	74	68	132	717	62	87	46	19	7.4	08	144
RK, naß bei 25°C [N]	194	187	194	747	80T	19	63	88	105	136	167
RK, trocken bei 25°C [N]	223	196	195	199	191	147	145	162	170	176	187
Trock- nungs- dauer [sec.]	120	120	120	120	120	30	30	09	06	120	120
Trock- nungstemp. [PC]	180	180	180	180	180	180	180	180	180	180	200
Binde- mittel	7	Ж	N	0	đ	ø	ŏ	ď	ď	ď	α
Bet- apiel Nr.	33	34	35	36	37	38	39	40	41	42	43

Beispiele 37 bis 43 zum Vergleich

Bestimmung des Gelgehalts

Bindemittel R:

196 06 394 DE

150 g eines Copolymerisates ans 80AS/20 MS (Copolymerisat 1) und

30 g Triethanolamin wurden zusammenzegeben.

Die Mischung wird in eine Silikonform gegossen und bei 50°C im Umluftofen getrocknet. Die Dicke des entstehenden Filmes liegt zwischen 0,5 und 1 mm.

Etwa 1 g des so hergestellten Filmes werden 15 min bei 130°C gehärtet. Der gehärtete Film wird 48 h in destilliertem Wasser bei 23°C gelagert.

Aus dem Gewicht des wassergelagerten Filmes nach Rücktrocknung bis zur Gewichtskonstanz im Verhältnis

zum ursprünglichen Gewicht des Filmes wird der Gelanteil berechnet als Verhältnis.

Gelantell: 83%

Dämmstoffe.

15

35

50

55

60

65

Beispiel 44

Herstellung eines Prüfkörpers aus Basalt-Schmelzperlen mit Bindemittel R

300 g Basahmehl-Schmelzperlen werden mit 30,6 g Bindemittel R vermischt. Aus der Mischung wird ein Prüfkörper (Fischer-Riegel) mit den Abmessungen 17 × 2,3 × 2,3 cm geformt und 2 h bei 200° C ausgehärtet.

Kin so hurgestellter Fischerriegel wird im trockenen Zustand bei 23°C im Dreipunktbiegeversuch geprüft. Bei diesem Biegeversuch liegt der Prüfkörper auf 2 Punkten auf und in der Mitte wird eine Kraft ausgefüht, bis der Prüfkörper bricht (Biegefestigkeit Kraft beim Brechen, bezogen auf die Querschnittsfläche). Biegefestigkeit trocken: 740 N/mm2.

Hin welterer Fischer-Riegel wird eine Stunde in destilliertem Wasser bei 23°C gelagert. Bestimmt wird die Wasseraufnahme des Prüfkörpers und seine Biegefestigkeit im nassen Zustand bei 23°C.

Wasseraufnahme: 21,7 Gew.-%, Biegefestigkeit naß: 620 N/mm2.

Beispiel 45: (zum Vergleich)

Beispiel 44 wurde wiederholt mit der Ausnahme, daß Bindemittel R gegen ein handelsübliches Phenol-Formaldehydharz (Kauresin® 259 Leim filissig) ausgetauscht wurde

Biegefestigkeit trocken: 850 N/mm², Wasseraufnahme: 22 Gew.-%.

Biegefestigkeit naß: 690 N/mm².

Patentansprüche

1. Formaldehydfreie, wäßrige Bindemittel, enthaltend

A) ein durch radikalische Polymerisation erhaltenes Polymerisat, welches zu 5 bis 100 Gew.-% aus einem ethylenisch ungesättigten Säureanhydrid oder einer ethylenisch ungesättigten Dicarbonsäure, deren Carbonsäuregruppen eine Anhydridgruppe bilden können, besteht und

B) ein Alkanolamin mit mindestens zwei Hydroxylgruppen, wobei das wäßrige Bindemittel weniger als 1,5 Gew.-%, bezogen auf die Summe von A) + B), eines Phosphor enthaltenden Reaktionsbeschleunigers enthält.

2. Formaldehydfreie, wißrige Bindemittel gemäß Anspruch 1, wobei das Bindemittel weniger als 0,3 Gew.-% eines Phosphor enthaltenden Reaktionsbeschleunigers enthält.

3. Formaldehydfreie, wäßrige Bindemittel gemäß Anspruch 1 oder 2, wobei das Bindemittel nach 15-minüti-

ger Trockming bei 130°C einen Gelgehalt größer 50 Gew.-% hat. 4. Formaldehydfreie, wäßrige Bindemittel gemäß einem der Ansprüche 1 bis 3, wobei das Polymerisat zu 5 bis 100 Gew.-% ans Maleinsäure oder Maleinsäureanhydrid aufgebaut ist.

5. Rormaldehydfreie, wäßrige Bindemittel gemäß einem der Ansprüche 1 bis 4, wobei es sich bei dem Alkanolamin um eine Verbindung

handelt, in der R1 für ein H-Atom, eine C1-C10-Alkylgruppe oder eine C1-C10-Hydroxyalkylgruppe steht und R² und R³ für eine C₁ -- C₁₀-Hydroxyalkylgruppe stehen.

6. Formakiehydireie, wäßrige Bindemittel gemäß einem der Ansprüche 1 his 5, wobei es sich bei dem Alkanolamin um Triethanolamin handelt.

7. Pormeldehydfreie, wäßrige Bindemittel gemäß einem der Ansprüche 1 bis 6, wobei das Molverhältnis der Carboxylgruppen und Säureanhydridgruppen (1 säureanhydridgruppe berechnet als 2 Carboxylgruppen) von A) zu den Hydroxylgruppen von B) 20: 1 bis 1: 1 beträgt.

8. Verwendung der formaldehydfreien, wäßrigen Bindemittel gemäß einem der Ansprüche 1 bis 7 als Beschichtungsmittel oder Impragnierungsmittel.

9. Verwendung der formaldehydfreien, wäßrigen Bindemittel gemäß einem der Ansprüche 1 his 7 als

Bindemittel für Faservliese. 10. Verwendung der formaldehydfreien, wäßrigen Bindemittel gemäß einem der Ansprüche 1 bis 7 als	
Bindemittel für Glasfaservliese. 11. Verfahren zur Herstellung von gebundenen Faservliesen, dadurch gekennzeichnet, daß Faservliese mit einem wäßrigen Bindemittel gemäß einem der Ansprüche 1 bis 7 beschichtet oder getränkt und anschlie-	
Bend getrocknet werden. 12. Verfahren gemäß Anspruch 11 zur Herstellung von gebundenen Glasfaservliesen. 13. Beschichtete oder imprägnierte Substrate, erhältlich durch Verwendung eines formaldehydfreien, wäßri-	
gen Bindemittels gemäß einem der Ansprüche 1 bis 7. 14. Gebundene Faservliese, erhältlich durch Verwendung eines formaldehydfreien, wäßrigen Bindemittels gemäß einem der Ansprüche 1 bis 7.	10
15. Gebundene Glasfaservliese, erhältlich unter Verwendung eines formaldehydfreien, wäßrigen Bindemit- tels gemäß einem der Amprüche 1 bis 7. 16. Verwendung von gebundenen Faservliesen gemäß Anspruch 14 als oder in Dachbahnen.	
17. Dachbahnen, enthaltend gebundene Faserviiese gemäß Anspruch 14. 18. Verwendung von gebundenen Giasfaserviiesen gemäß Anspruch 15 als oder in Dachbahnen. 19. Dachbahnen, enthaltend gebundene Glasfaserviiese gemäß Anspruch 15.	15
20. Verwendung von gebundenen Faservliesen gemäß Anspruch 14 in Dämmaterialien. 21. Dämmaterialien, enthaltend gebundene Faservliese gemäß Anspruch 14. 22. Verwendung von gebundenen Głasfaservliesen gemäß Anspruch 15 in Dämmaterialien. 23. Dämmaterialien, enthaltend gebundene Glasfaservliese gemäß Anspruch 15.	20
24. Verwendung von gebundenen Faservliesen gemäß Anspruch 14 in Fußbodenbelägen. 25. Fußbodenbeläge, enthaltend gebundene Faservliese gemäß Anspruch 14. 26. Verwendung von gebundenen Glasfaservliesen gemäß Anspruch 15 in Fußbodenbelägen. 27. Fußbodenbeläge, enthaltend gebundene Glasfaservliese gemäß Anspruch 15. 28. Verwendung von gebundenen Faservliesen gemäß Anspruch 14 in PVC-Fußbodenbelägen.	25
29. PVC-Pußbodenbeläge, enthaltend gebundene Faservliese gemäß Anspruch 14. 30. Verwendung von gebundenen Glasfaservliesen gemäß Anspruch 15 in PVC-Fußbodenbelägen. 31. PVC-Fußbodenbeläge, enthaltend gebundene Glasfaservliese gemäß Anspruch 15. 32. Verwendung von gebundenen Faservliesen gemäß Anspruch 14 in oder als Topfreiniger.	30
	35
	40
	45
	50
•	
	58
	60

- Leerseite -

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: _____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.