מתמטיקה בדידה - תרגיל בית n – שחר פרץ

מידע כללי

ניתן בתאריך: 3.2.2024 תאריך הגשה: 12.2.2024

מאת: שחר פרץ ת.ז.: תחפשו בקומיטים הקודמים

פרויקט ~ תיקון 1

השאלה

תהי פונקציה $f:A \to B$ ויהי $f:A \to B$ ויהי $f:A \to B$, נגדיר את הצמצום של $f:A \to B$ ויהי $f:A \to B$ ויהי פונקציה $\forall x \in X$. כחלק מתרגיל בית 6, נתנו גם ההגדרות השקולות הבאות:

$$f|_X := f \cap (X \times B) = \{ \langle a, b \rangle \in f \mid a \in X \}$$

"יהיו $A,B,C
eq \emptyset$ יהיו

$$H \colon ((B \cup C) \to A) \to ((B \to A) \times (C \to A))$$
$$H = \lambda h \in (B \cup C) \to A.\langle h|_B, h|_C \rangle$$

(B o A) imes (C o A) על על H^- ש לכך של A, B, C צ.ל. תנאי הכרחי ומספיק על

הוכחה (שינויים מסומנים בצהוב)

. נוכיח שתי גרירות שקול לכך ש־H על. נוכיח שתי גרירות ($B \cap C = \emptyset \lor |A| = 1$

- נניח $(f_1,f_2)\in (B o A) imes (C o A)$ נוכיח על, כלומר, יהי (A+A) נוכיח (A+A), נוכיח קיום (A+A) נוכיח (A+A) נוכיח (A+A) נוכיח (A+A) נוכיח (A+A)
 - $:H(h)=\langle f_1,f_2
 angle$ נביח $:H(h)=\langle f_1,f_2
 angle$ נביח $:B\cap C=\emptyset$ נניח $:B\cap C=\emptyset$ נניח $:B\cap C=\emptyset$
 - פונ': נוכיח מליאות וחד ערכיות: h
- נניח . $y_1=y_2$ נוכיח . $\langle x,y_1 \rangle \in h \land \langle x,y_2 \rangle \in h$ כך ש־ y_1,y_2 ויהי . $x \in B \cup C$ נוכיח בשלילה שלא כן. נפצל למקרים:
 - $y_1=y_2$ אם f_1 'ם משום ש־ f_1 , ומשום ש־ $\langle x,y_1
 angle,\langle x,y_2
 angle
 otin f_1$ אם אם $x\in B\setminus C$ אם $x\in B\setminus C$
 - $y_1=y_2$ אם $C\setminus B$ אם איז f_2 ח"ע אז או $\langle x,y_1
 angle,\langle x,y_2
 angle
 otin (x,y_1)$ ולכן הם ב־

- . אם $x \in \mathcal{C} \cap B$ אם $x \in \mathcal{C} \cap B$ אם $x \in \mathcal{C} \cap B$
 - ב.ל.: אמקיימת $\langle f_1,f_2
 angle$ ב $H(h)=\langle f_1,f_2
 angle$ מקיימת h

$$\langle (f_1 \cup f_2)|_B, (f_1 \cup f_2)|_C \rangle = \langle f_1, f_2 \rangle$$

ובהתחשב בזה שהתחומים של f_1 ו־ f_2 הם A,B בהתאמה שהן קבוצות זרות, ובהתאם להגדרה השקולה של הצמצום המופיע לעיל, זהו פסוק אמת.

- $h=\lambda x\in B\cup C.a$ נביח $f_1\colon C o A$ נביח $f_1\colon B o A$ נכיח $A=\{a\}$ נסיק, $a\in A$ נסיק, $a\in A$ נביח $A=\{a\}$ נחיר $A=\{a\}$ נסיק, $a\in A$ נכיח $A=\{a\}$ נחיר $A=\{a\}$ ונשאר $A=\{a\}$ נוכיח $A=\{a\}$ נובאר $A=\{a\}$ נובאר
 - $\operatorname{dom}(h|_B) = (B \cup C) \cap B = B = \operatorname{dom}(f_1)$ שוויון תחום:
 - שוויון איברים: יהי $h|_B(b)=f_1(b)$, לכן ישירות $b\in B=\mathrm{dom}(f_1)$ כדרוש.

וסה"כ גם במקרה הזה H על.

 $\mathscr{Q}.\mathscr{E}.\mathscr{F}.$ לכן, H על; $B\cap C=\emptyset \lor |A|=1$ לכן,

2.€.D. ■