

Corso di Automazione industriale

Lezione 11

Macchine utensili e controllo numerico – Programmazione CNC

Introduzione

Come si programma una macchina CNC

Come già anticipato, il cuore della CNC è il part program.

Questo codice (che può essere generato automaticamente) descrive tutte le movimentazioni e le lavorazioni che la macchina deve effettuare durante il funzionamento.

È, come per quanto riguarda il codice PLC, normato (in questo caso con una norma ISO.

G - Code

Il G-Code è il linguaggio di programmazione utilizzato per comandare le macchine a controllo numerico (spesso chiamato semplicemente linguaggio di programmazione G, oppure RS-274).

La norma di riferimento è la ISO 6983.

I file creati hanno estensione .gcode e sono dei semplici file testuali contenenti le istruzioni da inviare alla macchina utensile.

G - Code

Il g-code è, semplicemente, un insieme di istruzioni geometriche messe in sequenza una dopo l'altra.

Queste <u>istruzioni definiscono i movimenti</u> che la macchina deve eseguire per realizzare una lavorazione meccanica.

Prima di addentrarci nei dettagli è importante chiarire alcuni aspetti geometrici che sono essenziali per la programmazione.

N.B.: L'ordine delle diverse istruzioni è importante!!

Geometria Riferimenti di traslazione

Geometria Riferimenti di rotazione

Geometria Punti di origine

zero macchina
 M

• zero di riferimento R

• zero pezzo W

• zero utensile E

zero innestoN

Geometria Punti di origine

Il controllo numerico è dotato di un proprio sistema di riferimento ed origine assoluta : **ZERO MACCHINA M**

Geometria Punti di origine

Il programmatore in base alla quotatura del disegno stabilisce uno **ZERO PEZZO W** rispetto al quale programma gli spostamenti.

Geometria Conclusioni

Il programmatore fornisce la distanza relativa tra i due zeri. La programmazione avviene riferita allo zero pezzo W.

TORNITURA

FRESATURA

Grammatica ISO

La programmazione EIA/ISO è una programmazione ad indirizzo con formato alfanumerico ed il programma di lavorazione di un pezzo è l'insieme di più operazioni sequenziali, dove ciascuna operazione è composta da più blocchi, a loro volta costituiti da insiemi di parole.

Un blocco definisce in modo completo un comando che la macchina utensile deve eseguire prima di passare al blocco successivo.

Grammatica ISO

Grammatica ISO

Ciascuna parola di un blocco è formata da un carattere alfabetico detto indirizzo e da un numero che indica un valore o un codice di funzione.

N3 G2 X±4.3 Z±4.3 I±4.3 K±4.3 F4.1 S4 T222 M2

Grammatica ISO Indirizzi

Indirizzi di movimento: A, B, C, U, V, W, X, Y, Z

Funzioni macchina (sempre indirizzi): F, G, M, N, S, T

l.					Ind	irizzi					
Α	В	С	D	E	F	G	н	Ī	L	М	N
0	Р	Q	R	s	Т	U	٧	w	X	Υ	z

Gli indirizzi possono essere di due tipi:

- Modali: rimangono attivi finché non vengono sostituiti da un altro indirizzo corrispondente
- Non modali: rimangono attivi nel blocco

Grammatica ISO Indirizzi di movimento

INDIRIZZI

- A coordinate angolare attorno all'asse X
- B coordinata angolare attorno all'asse Y
- C coordinata angolare attorno all'asse Z
- U movimento secondario parallelo all'asse X
- V movimento secondario parallelo all'asse Y
- W movimento secondario parallelo all'asse Z
- X movimento principale asse X
- Y movimento principale asse Y
- Z movimento principale asse Z

Grammatica ISO Funzione N

La funzione N:

- Identifica un blocco
- È in ordine crescente
- È in ordine non progressivo (si possono lasciare dei «buchi» tra i blocchi)

Grammatica ISO Funzione G

La funzione G è una funzione preparatoria perché predispone il modo di esecuzione delle istruzioni successive.

	FUNZIONI PREPARATORIE												
G00	G01	G02	G03	G04	G05	G06	G07	G08	G09	G10	GII	G12	G13 G16
G17	G18	G19	G20	G21	G22	G23	G24	G25 G29	G30	G31	G32	G33	G34
G35	G36 G39	G40	G41	G42	G43	G44	G45	G46	G47	G48	G49	G50	G51
G52	G53	G54	G55	G56	G57	G58	G59	G60	G61	G62	G63	G64	G ₆ 5 G67
G68	G69	G70 ÷ G79	G80	G§1 G89	G90	G91	G92	G93	G94	G95	G96	G97	G98 G99

Grammatica ISO Funzione G (90 – 91)

Esempi di utilizzo della funzione G:

- <u>G90</u> per le istruzioni successive le coordinate sono considerate assolute
- **G91** per le istruzioni successive le coordinate sono considerate incrementali

Grammatica ISO Funzione G (90 – 91)

Esempio 1

Coordinate assolute

N10	G90	
N11	X-60	Y-20
N12	X-30	Y60
N13	X30	Y70
N14	X80	Y-30

Coordinate incrementali

N10	G90	X-60	Y-20
N11	G91	X30	Y80
N12		X60	Y10
N13		X60	Y-100

Università degli Studi di Bergamo, Automazione Industriale, A.A. 2018/2019, M. Ermidoro

Grammatica ISO Funzione G (90 – 91)

Esempio 2

In tornitura:

 Le quote assolute sono diametrali

 Le quote incrementali sono radiali

Grammatica ISO Funzione G (00)

La funzione G comprende anche il posizionamento.

Il posizionamento è il movimento dell'utensile dalla posizione in cui si trova a quella che deve raggiungere per iniziare la lavorazione. Il moto avviene in velocità di rapido. Occorre indicare le coordinate del punto finale.

Grammatica ISO Funzione G (01)

La funzione G con codice 01 prevede l'interpolazione lineare tra il punto precedente e quello settato nell'istruzione.

Si indicano:

- Coordinate del punto finale
- Velocità di rotazione del mandrino S
- Velocità di avanzamento F

Z2

Z-25

Grammatica ISO Funzione G (01)

Esempio 3

- Traslazione in rapido (G00)
- Interpolazione lineare
- Coordinate assolute X, Z

S: 500, F su Z: 0.2 mm/giro, F su X: 0.1 mm/giro

Grammatica ISO Funzione G (01)

Esempio 4

- Traslazione in rapido (G00)
- Interpolazione lineare diagonale con punto finale (G01)

F: 0.1 mm/giro

Grammatica ISO Funzione G (02 – 03)

La funzione G con codici 02 e 03 consente di realizzare traiettorie con interpolazione circolare:

- G02 interpolazione circolare oraria
- G03 interpolazione circolare antioraria

Grammatica ISO Funzione G (02 – 03)

Per descrivere una circonferenza sono necessarie 3 condizioni:

$$(x - \alpha)^2 + (y - \beta)^2 = r^2$$

Ciò significa che, per ottenere una circonferenza in modo univoco ho bisogno di 3 condizioni:

- Punto finale (nella funzione sempre richiesto, assoluto)
- Coordinate del centro (oppure raggio R) X \rightarrow I, Y \rightarrow J, Z \rightarrow K

Punto finale (oppure estensione angolare)

Grammatica ISO Funzione G (02 – 03)

Esempio 5

N100 G02 X50 Z-35 I50 K-25

N150 G03 X50 Z-35 I30 K-35

Grammatica ISO Funzione G (40 – 42)

Il percorso dell'utensile viene programmato rispetto ad un punto di riferimento

TORNITURA

FRESATURA

In alcune operazioni il percorso del tool point coincide con il profilo del disegno:

- Tornitura longitudinale
- Spianatura

Grammatica ISO Funzione G (40 – 42)

In altre operazioni è necessario distinguere tra:

- Traiettoria dell'utensile
- Quota del disegno

È solitamente disponibile la <u>compensazione raggio utensile</u>, che consente di programmare direttamente utilizzando le quote del disegno.

Grammatica ISO Funzione G (40 – 42)

La <u>compensazione raggio utensile</u> è molto semplice: conoscendo il raggio R della fresa, il CN calcola la traiettoria che l'asse dovrà compiere affinché il tagliente segua il profilo:

- G40 Compensazione utensile disabilitata
- G41 Compensazione utensile sinistra
- G42 Compensazione utensile destra

a SINISTRA G41

Grammatica ISO Funzione G (94 – 97)

La funzione G comprende anche una serie di **informazioni tecnologiche** riguardo la lavorazione da effettuare.

- F: velocità di avanzamento
 - **G94** [mm/min.] (default)
 - **G95** [mm/giro]

- S: velocità di taglio
 - **G96** [m/min.]
 - **G97** [giri/min.] (default)

Grammatica ISO Funzione T

Attraverso la funzione T è possibile definire il tool da utilizzare

e le informazioni ad esso associate.

L'istruzione T contiene:

- Numero della posizione dell'utensile
- Numero di correzione Il numero di correzione fa riferimento al blocco di dati che contiene le dimensioni di set-up dell'utensile

Grammatica ISO Funzione M

La funzione M comprende comandi ausiliari al CN.

M00 stop programma

M03 rotazione oraria del mandrino

M04 rotazione antioraria del mandrino

M05 arresto mandrino

M06 cambio utensile

M08 attiva lubrorefrigerante

M09 esclude lubrorefrigerante

M72 blocca la contropunta

M10/11 blocca/sblocca il pezzo

M60 cambio barra

M30 fine del programma

• • •

	FUNZIONI AUSILIARIE									
M00	M01	M02	M03	M04	M05	M06	M07	M08	M09	M10
M11	M12	M13	M14	M15	M16	M17 M18	M19	M20 M29	M30	M31
M32 M35	M36	M37	M38	M39	M40 + M45	M46 M47	M48	M49	M50	M51
M52 M54	M55	M56	M57 M59	M60	M61	M62	M63 M67	M68	M69	M70
M71	M72	M73 #77	M78	M79	M80 #89	M90 M99				

Grammatica ISO Funzione M

Le istruzioni M possono formare un blocco a sé stante o in unione con istruzioni di tipo G e di tipo T.

Se le funzioni M vengono programmate in un blocco contenente movimenti degli assi, esse sono attive prima del movimento.

In un blocco possono essere contenute fino a tre istruzioni tipo M.

Esercizio 1

Si realizzi un software per CN che consenta di eseguire la tornitura rappresentata, con:

- Rotazione antioraria del mandrino, con lubrificante
- Velocità di taglio per utensile 1 di 100 m/min (solo lo scavo in rosso fatto con 2)
- Velocità di taglio per l'utensile 2 di 300 giri/min
- Utilizzo lubrificante

Esercizio 2

Si realizzi un software per CN che consenta di eseguire la lavorazione rappresentata, con:

- Utilizzo utensile 02 (configurazione 03) con rotazione oraria del mandrino
- Velocità di avanzamento 0.2 mm/giro
- Velocità di taglio di 1200 giri/min
- Utilizzo lubrificante

Esercizio 3

Si realizzi un software per CN che consenta di eseguire la lavorazione rappresentata, con:

- Utilizzo utensile 04 (configurazione 02) con rotazione oraria del mandrino
- Velocità di avanzamento 100 mm/min
- Velocità di taglio di 6000 giri/min
- Utilizzo lubrificante

Esercizio 4

 $C \cap \cap$

VΛ

NI1

Descrivere la forma della lavorazione effettuata con il seguente codice:

INT	GUU	XU	Y50		
N2	G01	XO	Y200		
N3	G02	X50	Y250	150	J200
N4	G01	X200	Y250		
N5	G02	X250	Y200	1200	J200
N6	G01	X250	Y50		
N7	G02	X200	YO	1200	J50
N8	G01	X50	YO		
N9	G02	XO	Y50	150	J50

VEA

Esercizio 4

Descrivere la forma della lavorazione effettuata con il seguente codice:

N1	G00	X0	Y50		
N2	G01	X0	Y200		
N3	G02	X50	Y250	150	J200
N4	G01	X200	Y250		
N5	G02	X250	Y200	1200	J200
N6	G01	X250	Y50		
N7	G02	X200	Y0	1200	J50
N8	G01	X50	Y0		
N9	G02	X0	Y50	150	J50

Esercizio 5

Ipotesi:

- Mandrino in senso orario, con lubrificante (utensile 01)
- P0= 0,-10; P1 = 0,0
- Movimento P1 P2 ecc...
- Utilizzo compensazione raggio utensile (destra, G42)
- F=300 mm/min.
- S=1000 giri/min.

