Data Visualisation Lecture 5 – Visualising Relationships

Dr. Cathy Ennis

Learning Outcomes Week 5

- Design effective Visualisations based on principles from perceptual psychology, cognitive science, graphic design and visual art
- Create and deploy successful data visualisations using leading software tools
- Demonstrate an understanding how visualisation is used in date journalism to communicate complex ideas and stories
- Demonstrate understanding how visualisation is used in story telling

Visualisation of the Week

Visualisation Discussion Of The Week

Visualisation Discussion Of The Week

(Un) Visualisation of the Week

Overview

Visualisation workflow

- Relationships
 - What relationships to look for: Correlation
 - Comparing variables: Scatter plots, Line + Column
 - Exploring more variables: Bubble plots, 3D Scatter plots
 - Exploring even more variables: Scatter plot matrix, XY Heat Maps, Parallel Coordinates

VISUALISATION WORKFLOW

Visualisation

• Ben Fry's visualisation process - Designer

Visualisation

• Ben Fry's visualisation process - Designer

Visualisation process – Viewer

Visualisation Workflow

Stage 1

Formulating your Brief

Stage 2

Working with data

Stage 3

Establishing your editorial thinking

Stage 4

 Developing your design solution

Visualisation Workflow - Editorial Thinking

- Angle of analysis
 - Relevance: audience, context, message
 - Sufficiency: number of angles

- Framing
 - Reducing clutter

- Focus
 - Reducing noise

Visualisation Workflow - Failed Visualisations

Useless solution

Obstructive solution

Not understandable

- Failed to focus on relevant content
- Not deep enough
- Complex subject oversimplified
- Not fit for setting
- Visually inaccessible
- Misjudge format
- Too many functions
- Too complex
- Complex chart type
- Absent annotations

Case Study

Income Growth, From 1917-2012

Case Study

Case Study

Angle

- Relationship between 2 measures and how it has changed over time
- Framing
 - USA
 - Time frame
- Focus
 - Colour showing two trends + annotations
 - Time slider

CORRELATION & CAUSATION

Statistics & Relationships

- Statistics is about finding relationships in data
 - What are the similarities between groups?
 - Do they behave similarly?
 - Do they have opposite behaviours?

What Relationships To Look For?

Look for relationships between different variables

- As a variable goes up, does another variable go down?
- If so, is it a correlative or causal relationship?
 - You can show correlation relatively easily, which can lead to a deeper more exploratory analysis
 - A causal relationship is usually harder to prove quantitatively (which makes it even less likely you can prove it with a graphic)

What Relationships To Look For?

- Take a step back to look at the big picture the distribution of your data
 - Is it spaced out or is it clustered in between?
 - Such comparisons can lead to stories about citizens of a country or how you compare to those around you.

- Compare multiple distributions for an wider view of your data
 - How has the makeup of a population changed over time?
 - How has it stayed the same?

Height & Weight

Correlation

• "A statistical measure (expressed as a number) that describes the size and direction of a relationship between two or more variables."

- Causation
- "Indicates that one event is the result of the occurrence of the other event; i.e. there is a causal relationship between the two events. This is also referred to as cause and effect."

Correlation: one variable tends to change a certain way as another variable changes

Dependent variable

Correlation: one variable tends to change a certain way as another variable changes

 Causation: one event is the result of the occurrence of the other event

- Smoking is correlated with alcoholism
 - Does smoking cause alcoholism?

• Smoking is related to an increased risk of developing lung cancer

 Just because two things are connected, it doesn't mean that one caused the other

• Extraneous variables are variables that may compete with the independent variable in explaining the outcome of a study

• A **confounding variable** is an extraneous variable that does indeed influence the dependent variable

Finding Correlation

• It's difficult to account for every outside, or confounding factor, which makes it difficult to prove **causation**

 You can, however, easily find and see correlation and a scatter plot is our key tool for visualising it

SCATTER PLOTS

Displays relationship between two quantitative measures for different categories

 Scatter Plots do not work well if one or both measures have limited variation in value (occlusion problems)

- Composition
 - X- independent variable
 - Y- dependent variable
 - 1:1 aspect ratio
 - No need to start at 0

Example: US Crime Rates

Example: US Crime Rates

LINE COLUMN CHARTS

Line Column Charts

 Easily illustrates the relationships between two variables with different magnitudes and scales of measurement

Note secondary axis

BUBBLE PLOTS

Bubble plots

- A bubble plot can be defined as a 3D scatterplot
 - The value of an additional variable is represented through the size of the dots.

Bubble plots

- A bubble plot can be defined as a 3D scatterplot
 - The value of an additional variable is represented through the size of the dots.

Bubble plots - Composition

- Too many bubbles make the chart hard to read
- X- independent variable, Y- dependent variable
- 1:1 aspect ratio
- No need to start at 0
- Add a legend to make possible the link between the size and the value
- The area of the circles must be proportional to the value, not to the radius, to avoid exaggerate the variation in your data

Bubble Plots

Sized by Area

Sized by Radius

Bubble Plots

Sized by Area

3D SCATTER PLOTS

3D scatter Plots

3D scatter Plots

EXTRA DIMENSIONS

Exploring Even More Variables

- You can plot every possible pair with a scatter plot matrix to compare all variables
- It's usually a square grid with all variables on both the vertical and horizontal
- Each column represents a variable on the horizontal axis, and each row represents a variable on the vertical axis
- This provides all possible pairs

Scatter Plot Matrix

XYHEAT MAPS

X Y HEAT MAPS

 A heat map displays quantitative values at the intersection between two categorical dimensions

Two categorical axis with all possible values

 Each cell is colour coded to represent a quantitative value for each combination of category pairing

X Y HEAT MAPS

X Y HEAT MAPS

Not easy to identify exact quantities represented by colours

- Order of magnitude information
 - Useful for finding patterns
 - Not good at showing fine differences in amounts

- Composition:
 - Logical sorting and sub-grouping can aid readability
 - Colour scale

PARALLEL COORDINATES

Parallel Coordinates

 Display of multiple quantitative measures for different categories in a single display

 Useful for exploratory analysis of multivariate data

Parallel Coordinates

Particularly useful when interactivity is added to the chart

- Composition:
 - The ordering of the variables has an effect on the patterns
 - Neighbouring measures should have a common scale and similar meaning
 - The more variables added the more difficult it will be to decipher

No Tableau native chart

EXTENSIONS TO SCATTER PLOTS

Playing With Scatter Plots

 Scatter plots are our core tool for showing relationships or correlations

 We can augment scatter plots with other interesting things to show more information

Histogram Matrix

Conclusion

- Visualisation workflow
 - Audience, Angle, Frame, Focus
- What relationships to look for?
 - Correlation ≠ Causation

- How many variables are we exploring?
- Are we looking to identify exact values?
- Are we looking to identify general patterns?

Useful Links

• https://www.guru99.com/tableau-charts-graphs-tutorial.html#3

https://www.tutorialgateway.org/tableau/

https://www.zapbi.com/blogs/chart design data Visualisation part
1/

Assignment 1 30%

Specification

You have been hired as a visualisation designer to design an effective dashboard providing insights into a dataset. As part of the visualisation process you will first explore the data and produce a dashboard useful for exploration, then you will set your editorial thinking and produce a dashboard with at least 3 insights from the data.

Marking scheme

- Select a Dataset 2%
- Decide on an audience (user story) 3%
- Using Tableau Public, design a Dashboard that allows the exploration of the data 8%
- Using Tableau Public, design a Dashboard that shows at least three insights from the data 12%
- 5. Show evidence of previous iterations or alternatives 5%

Assignment 1 30%

Sample sources of data

- https://toolbox.google.com/datasetsearch
- https://archive.ics.uci.edu/ml/index.php
- https://data.gov.ie/
- https://public.tableau.com/en-us/s/resources
- Make Over Monday challenges

Setting up R

Rstudio

Anaconda =>

Jupyter Notebooks with R kernel

Thanks To

 Marisa Llorens-Salvador, John McAuley, Colman McMahon and Brian Mac Namee for an earlier version of these lecture notes