Introduction to Inverse Sequences

In this seminar, we only deal with non-decreasing (but constant only finite intervals) and non-negative integer sequence a_n .

- 1. Define $a_0 = 0$ and point (n, a_n) in x-y plane.
- 2. Draw horizontal segments connecting the points $(n-1, a_n)$ and (n, a_n) for n>0.
- 3. Also, draw vertical segments connecting the points (n, a_n) and (n, a_{n+1}) for $n \ge 0$.
- 4. Flip symmetrically this drawing with respect to y=x.

Then we get another drawing and a new interesting sequence.

Definition. Let a_n be a non-decreasing and non-negative integer sequence. Then an (geometric) inverse sequence is a sequence such that defined by the step in introduced at the beginning. Let a^{-1}_n denote that the (geometric) inverse sequence of a_n .

Remark. Let a_n be a non-decreasing and non-negative integer sequence. Then an (geometric) inverse sequence uniquely exists.

Theorem 1. Let a_n be a non-decreasing and non-negative integer sequence. Then a^{-1}_k is the number of integers less than k in a_n for $\forall k \in \mathbb{N}$

Proof. Let $a_t = k_1$ and $a_{t+1} = k_2$ where $k_1 < k \le k_2$. Then

$${a^{-1}}_{k_1+1} = {a^{-1}}_{k_1+2} = \cdots {a^{-1}}_k = \cdots = {a^{-1}}_{k_2} = t$$

Since $a_t = k_1$, there are t elements less than $k_1 + 1$ in a_n , and $a_t = k_1 < k_2 = a_{t+1}$ implies there is no element such that greater than or equal to $k_1 + 1 \Leftrightarrow \text{greater than } k_1$) and less than k_2 in a_n .

 \therefore There are t element less than k in a_n . lacktriangle

Examples. (1) i_n =1, 2, 3, 4, 5, 6, 7, 8, ...

$$\Rightarrow i^{-1}_{n} = 0, 1, 2, 3, 4, 5, 6, 7, \cdots$$

(2)
$$p_n$$
=2, 3, 5, 7, 11, 13, 17, 19, ...

$$\Rightarrow p^{-1} = 0, 0, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, \cdots$$

(3)
$$f_n = 1, 1, 2, 3, 5, 8, 13, 21, 34, \cdots$$

$$\Rightarrow f^{-1}_{n} = 0, 2, 3, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 7, \cdots$$

Remark. We can guess enough about $(a^{-1})^{-1}_{n} = a_{n}$.

Examples. (1) i^{-1}_{n} =0, 1, 2, 3, 4, 5, 6, 7, ...

$$\Rightarrow (i^{-1})^{-1}_{n} = 1, 2, 3, 4, 5, 6, 7, 8, \cdots$$

$$(2)p^{-1}_{n} = 0, 0, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, \cdots$$

$$\Rightarrow (p^{-1})^{-1}{}_n = 2, \; 3, \; 5, \; 7, \; 11, \; 13, \; \cdots$$

(3)
$$f^{-1}_{n}$$
=0, 2, 3, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 7, ...

$$\Rightarrow (f^{-1})^{-1}{}_{n}=1, 1, 2, 3, 5, 8, 13, \cdots$$

Theorem 2. Let a_n be a non-decreasing and non-negative integer sequence. Then the inverse sequence of a^{-1}_n is a_n .

Proof. Let $n \in \mathbb{N}$ satisfy that $a_n < a_{n+1}$ and arrange the sequence a_n .

$$\cdots = a_{n-t} < a_{n-t+1} = \cdots = a_{n-1} = a_n < a_{n+1} = a_{n+2} \cdots = a_{n+m} < a_{n+m+1} = \cdots$$

Suppose there are t elements equal to a_n and m elements equal to a_{n+1} .

By **Theorem 1**, we can also arrange $a^{-1}{}_n$.

$$\cdots = a^{-1}{}_{a_{n-t}} < a^{-1}{}_{a_{n-t}+1} = \cdots = a^{-1}{}_{a_n} < a^{-1}{}_{a_{n+1}} = \cdots = a^{-1}{}_{a_{n+1}} < a^{-1}{}_{a_{n+1}+1} = \cdots = a^{-1}{}_{a_{n+m+1}} < \cdots$$

Note that $a^{-1}_{a_{n-t}} < n-t$,

$$a^{-1}{}_{a_{n-t}+1} = \dots = a^{-1}{}_{a_n} = n-t$$
 ,

$${a^{-1}}_{a_n+1}=\cdots={a^{-1}}_{a_{n+1}}=n\ ,$$

and
$$a^{-1}{}_{a_{n+1}+1} = \cdots = a^{-1}{}_{a_{n+m+1}} = n+m$$
 .

$$\therefore (a^{-1})^{-1}_{n-t} = a_{n-t}$$
,

$$(a^{-1})^{-1}_{n-t+1} = \dots = (a^{-1})^{-1}_{n} = a_{n}$$
,

$$(a^{-1})^{-1}_{n+1} = \dots = (a^{-1})^{-1}_{n+m} = a_{n+1}$$
,

and
$$(a^{-1})^{-1}_{n+m+1} = a_{n+m+1}$$
.

Reference.

Tanya Khovanova, How to Create a New Integer Sequence, (2007) http://www.tanyakhovanova.com/Sequences/CreatingNewSequences.html#inverse