PE-3 August 2014 QE

1. Consider the single-phase full-bridge rectifier

Assume the dc current I_{dc} is constant.

- (a) Derive an expression for commutation angle γ in terms of E_p , ω_e , I_{dc} , and I_c .
- (b) Derive an expression for the average dc voltage in terms of E_p and γ .
- ${\bf 2.}\,$ Consider the four-quadrant dc motor drive system

Assume switches and diodes are ideal.

- (a) If $\omega_r = 100$ rad/s, establish average T_e .
- (b) Suppose the minimum value of steady-state $i_a(t) = 4$ A, the maximum value of steady-state $i_a(t) = 6$ A, and $T \ll \tau$. Sketch steady-state $i_{S1}(t)$, $i_{D1}(t)$, and $i_{S}(t)$ for $0 < t < 100 \ \mu s$ and approximate their average values.

PE-3 page 2 of 2

3. Consider the three-phase drive system

(a) Assume S_{2a} is closed when S_{1a} is open and vice versa. A sine-triangle modulation strategy is used wherein the modulating (triangle) frequency is much larger than fundamental frequency ω_e . The duty cycle for each phase is

$$d_a(t) = d\cos\omega_e t$$
 $d_b(t) = d\cos(\omega_e t - \frac{2\pi}{3})$ $d_c(t) = d\cos(\omega_e t + \frac{2\pi}{3}).$

Express the "fast" or "moving" averages $\hat{v}_{ag}(t)$, $\hat{v}_{bg}(t)$, and $\hat{v}_{cg}(t)$ in terms of d, V_{dc} , and ω_e . Then, derive an expression for $\hat{v}_{an}(t)$. Assume the zero-sequence component of v_{an} , v_{bn} , and v_{cn} is zero.

(b) The duty cycle for each phase is

$$d_a = d\cos\theta_e - d_3\cos3\theta_e \qquad d_b = d\cos(\theta_e - \frac{2\pi}{3}) - d_3\cos3\theta_e \qquad d_c = d\cos(\theta_e + \frac{2\pi}{3}) - d_3\cos3\theta_e.$$

Express $\hat{v}_{an}(t)$ in terms of d, d_3 , and V_{dc} . What is the rationale for including third-harmonic injection d_3 ? If $d_3 = d/6$, what is the maximum value of d for which your expression for $\hat{v}_{an}(t)$ is valid?

Write in Exam Book Only