"BIOMEDICAL COMPUTER VISION COURSE"

The Kidney and Kidney Tumor Segmentation Challenge

Pucci Valentina Politecnico di Milano, 06/06/2023

Sommario

- 1. Introduzione
- 2. Preprocessing
- 3. Rete Neurale
- 4. Risultati
- 5. Conclusioni

1 Introduzione

Non possedendo conoscenze di base solide sul funzionamento delle reti neurali per la segmentazione, la rete creata è un riadattamento di quella fornita a laboratorio durante la lezione 7.

2 Preprocessing

La fase di preprocessing ha come obiettivo la conversione di immagini e segmentazioni da formato nifty(3D) a numpy(2D).

II primo passo è stato ridimensionarle per renderle confrontabili tra loro, impostando una dimensione di 256x256 e 256 slices per ogni immagine 3D. Il salvataggio è stato realizzato di slice in slice identificando le 150 centrali, per evitare di avere un numero troppo grande di immagini rappresentanti zone dove non sono presenti reni, e di conseguenza segmentazioni totalmente nere. In particolare sono state scelte le slices [50,200] dopo aver verificato tramite ITK-SNAP che in media fossero quelle contenenti la maggior parte delle informazioni utili.

Il programma successivamente le suddivide in dataset di training e di validation (di dimensione rispettivamente 23500 e 7850 elementi) numerandole in ordine crescente come [numero].npy ottenendo le cartelle:

good-images/images-train/ good-segmentations/segm-train/ good-images/images-val/ good-segmentations/segm-val/

3 Rete Neurale

La rete è stata realizzata sul modulo nn di Torch.

La procedura principale dell'algoritmo chiama funzioni esterne (ma presenti all'interno dello stesso programma), che gestiscono il loading dei dati e la realizzazione del modello. Le procedure secondarie sono: "preprocessing()", che effettua caricamento, resizing e salvataggio delle immagini, e "My-Neural-Network()" che realizza il modello della rete neurale e si occupa di eseguire tutte le fasi di training e validation.

Il modello è stato realizzato sulla base della rete resnet101 di pytorch utilizzata come pre-training, riportandola poi a rete per segmentazione tramite convoluzione. In merito al calcolo iterativo della loss ho provato ad utilizzare diverse funzioni (MSE, Cross Entropy, HuberLoss) che si sono rilevate molto simili a livello di risultati portandomi a scegliere HuberLoss per il training di [figura2] con Adagrad come ottimizzatore (anche qua dopo varie sperimentazioni). Le metriche di accuratezza e precisione sono calcolate con f1score di sklearn

in modalità 'weighted'.

Per tenere traccia dei risultati di loss e score è stato realizzato il file log.csv [figura2]

4 Risultati

I dati sotto riportati mostrano un lungo training della rete, basato su 10 epoche con learning rate 0.001 e batch size 100, sia per immagini che per segmentazioni.

I valori di loss e validation sono molto bassi e hanno un andamento simile, non sembrano essere quindi presenti fenomeni di underfitting o overfitting. Il problema invece sono i valori di accuratezza, infatti rimangono piuttosto bassi e costanti lungo tutto il periodo di addestramento.

epoch	Train_loss	Val_loss	Train_f1_score	Val_f1_score
1	0.001375510822981596	0.0007675132947042584	0.6581264359010669	0.6606152512998266
2	0.0010460885241627693	0.0004966126289218664	0.6633251417342744	0.6618553920656878
3	0.000874094374012202	0.00037593269371427596	0.6634043560513676	0.6620463167718246
4	0.0007575085619464517	0.00030419111135415733	0.6634730447345702	0.6619664015581886
5	0.0006754265632480383	0.00025508669205009937	0.663547474573756	0.6645896328293738
6	0.0006119916215538979	0.0002188139478676021	0.6635798959196263	0.6644304113620713
7	0.0005536982789635658	0.0001905424433061853	0.6637105412437608	0.6634432600038505
8	0.0005000432720407844	0.0001678194385021925	0.6637650818022299	0.6647620791000104
9	0.0004622085834853351	0.0001492587907705456	0.6638572629059788	0.6649212199935898
10	0.0004292736412025988	0.0001337178109679371	0.6639465293162184	0.6639569412884863

[figura2, File log.csv]

[figura3, Grafico delle loss]

5 Conclusioni

Il mio progetto non è ottimale ma sono soddisfatta delle nuove conoscenze acquisite e continuerò a lavorarci su per realizzare l'obiettivo della challenge.