Harmonic Syntax, proposal

Furkan Atmaca

IGRA

March 2024

Outline

Introduction

Background

Features and Operations

Example derivation

Outcomes for movement

Conclusion

Furkan IGRA March 2024 2 / 43

Introduction

Furkan IGRA March 2024 3 / 43

Motivations

- ► Handle movement with markedness.
- ▶ Build structure ground up.

Furkan IGRA March 2024 4 / 43

- ▶ Derivations proceed in serial harmonic grammar (McCarthy, 2000, 2010, 2016).
- ► The input is non-structured (Heck et al., 2002, pp.354-359)
- ► Inclusiveness and extension conditions (Chomsky, 2000, p.113; Chomsky, 2014, p.175) are followed by GEN.
- ► Constraints can be tied to the operations by GEN (McCarthy, Kimper, & Mullin, 2012, p.174).
- ▶ Operations by GEN and evaluations for CON follow A-over-A (Chomsky, 1964, pp.930-931; Ross, 1967, pp.12-36).

Furkan IGRA March 2024 5 / 43

- ▶ Derivations proceed in serial harmonic grammar (McCarthy, 2000, 2010, 2016).
- ▶ The input is non-structured (Heck et al., 2002, pp.354-359)
- Inclusiveness and extension conditions (Chomsky, 2000, p.113; Chomsky, 2014, p.175) are followed by GEN.
- ► Constraints can be tied to the operations by GEN (McCarthy et al., 2012, p.174).
- ▶ Operations by GEN and evaluations for CON follow A-over-A (Chomsky, 1964, pp.930-931; Ross, 1967, pp.12-36).

- Derivations proceed in serial harmonic grammar (McCarthy, 2000, 2010, 2016).
- ▶ The input is non-structured (Heck et al., 2002, pp.354-359)
- Inclusiveness and extension conditions (Chomsky, 2000, p.113; Chomsky, 2014, p.175) are followed by GEN.
- ► Constraints can be tied to the operations by GEN (McCarthy
- ▶ Operations by GEN and evaluations for CON follow A-over-A

- ▶ Derivations proceed in serial harmonic grammar (McCarthy, 2000, 2010, 2016).
- ▶ The input is non-structured (Heck et al., 2002, pp.354-359)
- ► Inclusiveness and extension conditions (Chomsky, 2000, p.113; Chomsky, 2014, p.175) are followed by GEN.
- ► Constraints can be tied to the operations by GEN (McCarthy et al., 2012, p.174).
- ▶ Operations by GEN and evaluations for CON follow A-over-A (Chomsky, 1964, pp.930-931; Ross, 1967, pp.12-36).

- ▶ Derivations proceed in serial harmonic grammar (McCarthy, 2000, 2010, 2016).
- ▶ The input is non-structured (Heck et al., 2002, pp.354-359)
- ► Inclusiveness and extension conditions (Chomsky, 2000, p.113; Chomsky, 2014, p.175) are followed by GEN.
- ► Constraints can be tied to the operations by GEN (McCarthy et al., 2012, p.174).
- ▶ Operations by GEN and evaluations for CON follow A-over-A (Chomsky, 1964, pp.930-931; Ross, 1967, pp.12-36).

Build structure

(1) Features are not operators. What happens to merge features? -CON checks them.

GEN: Merge

Put two syntactic items together.

CON: MC, merge constraint

Check merge features against the label. Incur a violation if there is a mismatch.

Items: DP_f , $V_{[\bullet DP \bullet]}$, $v_{[\bullet V \bullet]}$, $T_{[\bullet v \bullet]}$...

Derivation: Merge feature [•V•] on v does not have a match.

	Input: DP_f	МС
Merge	$[V_{[\bullet DP \bullet]} DP_f]$	-
Merge	$[v_{[\bulletV\bullet]}\ DP_f]$	*
	$[T_{[\bullet \lor \bullet]} DP_f]$	*

Name the structure

(2) If Merge is not driven by features, how is the label decided? -GEN assigns the label

GEN: Label

Label a structure with one of its daughters if it is lacking a label.

CON: LB_x, generalized label constraint Incur a violation for Label of GEN using X as a label.

Derivation: LB_x are only violated for the outputs of Label operation.

	Input: $[V_{[\bullet DP \bullet]} DP_f]$	LB _{DP}	$^{\mathrm{LB}_{V}}$
Label	$V[V_{[\bullet DP \bullet]} DP_f]$	-	*
Label	$DP[V_{[\bulletDP\bullet]}\;DP_f]$	*	-

Fundamental mechanics of markedness

(3) Features are subject to markedness constraints.

CON: X*

Incur a violation for X times the distinct dominators of it.

Derivation 1: DP_f is only dominated by V

Opr.	Input: $V[V_{[\bullet DP \bullet]} DP_f]$	F*
	$V[V_{[\bullet DP \bullet]} DP_f]$	*

Derivation 2: DP_f is dominated by V and v

Opr.	Input: $v[v_{[\bullet V \bullet]} \ V[V_{[\bullet DP \bullet]} \ DP_f]]$	F*
	$V[V_{[\bullet V \bullet]} \ V[V_{[\bullet DP \bullet]} \ DP_f]]$	**
	• • •	

Moving is getting rid of markedness

(4) Merging an item anew alleviates markedness constraint violations.

Step 1: DP_f is dominated by V and v.

Opr.	Input: $[V_{[\bullet V \bullet]} \ V[V_{[\bullet DP \bullet]} \ DP_f]]$	F*
Label	$V[V_{[\bullet V \bullet]} V[V_{[\bullet DP \bullet]} DP_f]]$	**

Step 2: DP_f is not dominated. Embedded DP_f is no longer subject to CON, A-over-A (Chomsky, 1964, pp.930-931; Ross, 1967, pp.12-36).

Opr.	Input: $[V_{[\bullet V \bullet]} \ V[V_{[\bullet DP \bullet]} \ DP_f]]$	F*
Merge	$[DP_f \ v[v_{[\bulletV\bullet]} \ V[V_{[\bulletDP\bullet]} \ DP_f]]]$	-

When to get rid of markedness?

- (5) If merging an item anew, moving, gets rid of markedness, it might indefinitely be merged again, which leads to a loop.
 - Motivate merge over move.

CON: ExNum, ExWs, Exhaust numeration, Exhaust workspace Incur a violation if no new item is used in merge.

Derivation: Merging $T_{[\bullet v \bullet]}$ does not violate ExWs , since it is not in the input, so it is new.

Opr.	Input: $v[v_{[\bullet V \bullet]} \ V[V_{[\bullet DP \bullet]} \ DP_f]]$	ExWs	F*
Merge	$[DP_f \ v[v_{[\bulletV\bullet]} \ V[V_{[\bulletDP\bullet]} \ DP_f]]]$	*	-
Merge	$[T_{[\bullet \lor \bullet]} \ v[v_{[\bullet \lor \bullet]} \ V[V_{[\bullet DP \bullet]} \ DP_f]]]]$	-	**

Discouraging Merge

(6) When all the new items to merge are exhausted, the derivation can still end up in a loop since all Merge outputs will violate ExWs .

CON: LAB, labelless structure Incur a violation when the output does not have a label.

Derivation: LAB discourages merging items, new or old. Merge becomes costly when all the new items are used up.

Opr.	Input: $v[v_{[\bullet V \bullet]} \ V[V_{[\bullet DP \bullet]} \ DP_f]]$	ExWs	LAB	F*
Merge	$[DP_f \ v[v_{[\bulletV\bullet]} \ V[V_{[\bulletDP\bullet]} \ DP_f]]]$	*	*	-
Merge	$[T_{[\bullet \lor \bullet]} \ v[v_{[\bullet \lor \bullet]} \ V[V_{[\bullet DP \bullet]} \ DP_f]]]]$	-	*	**

Interim Conclusion

- Features do not drive the derivation.
- Merging an item anew, moving, gets rid of markedness violations for it, only the highest syntactic element of the same kind is relevant for GEN or CON.
- Moving an item is only optimal when the problem of staying outweighs the problem of merging an existing item.

Furkan IGRA March 2024 12 / 43

Interim Conclusion

- Features do not drive the derivation.
- Merging an item anew, moving, gets rid of markedness violations for it, only the highest syntactic element of the same kind is relevant for GEN or CON.
- Moving an item is only optimal when the problem of staying outweighs the problem of merging an existing item.

Interim Conclusion

- Features do not drive the derivation.
- Merging an item anew, moving, gets rid of markedness violations for it, only the highest syntactic element of the same kind is relevant for GEN or CON.
- Moving an item is only optimal when the problem of staying outweighs the problem of merging an existing item.

How items stop being a problem, permanently

(7) Is it possible for an item to stop being a problem?
-Yes, agreement features and Agree by GEN

GEN: Agree

Match the agreement features to the neutral features, remove the agreement feature when there is a match.

-Strict cycle interpretation of GEN requires the matches to be made between sisters.

Derivation: The agreement feature $f:\square$ on DP is removed by Agree of GEN.

Opr.	Input: $[DP_{f:\Box} v_f[v_{[\bullet V \bullet],f} V[V_{[\bullet DP \bullet]} DP_{f:\Box}]]]$	F:□*
Agree	$[DP\ v_f[v_{[\bulletV\bullet],f}\ V[V_{[\bulletDP\bullet]}\ DP_{f:\square}]]]$	-
Label	$v_f[DP_{f:\square}\;v_f[v_{[\bulletV\bullet],f}\;V[V_{[\bulletDP\bullet]}\;DP_{f:\square}]]]$	*

How does the derivation converge?

(8) If the fully faithful candidate is a result of mapping the input to the output directly, the derivation immediately converges, since anything besides markedness constraints are tied to the operations by GEN.

Derivation: No constraint is violated if no operation is carried out at the first step.

Opr.	Input: DP_f	ExWs	LAB	F*
Merge	$[V_{[\bullet DP \bullet]} DP_f]$	-	*	-
none	DP_f	-	_	-

Solution: GEN should carry out one of the following operations: Merge, Label, Agree. If there is a label, Label is out. If there are no agreement features Agree is out.

-Fully faithful candidate can only be achieved via Merge!

How does the derivation converge?

- (9) How can the result of an operation be fully faithful, identical, to the input?
 - -Merging an item with itself.
 - -In set theory, union of A with itself equals to A. Merging an item with itself does not change any domination relation.
 - -Since A-over-A is employed, every item is at an identical level. So, [A A] and A or $[[\dots]$ and $[\dots]$ are identical both in terms of hierarchy and elements.

Derivation: ExWs and Lab are tied to Merge of GEN. So, the fully faithful candidate can violate those. If the input has a label, Lab is not violated. However, no new item is used for Merge so ExWs is violated.

Opr.	Input: DP_f	ExWs	LAB	F*
Merge	$[V_{[\bullet DP \bullet]} DP_f]$	-	*	-
Merge	$ ([DP_f DP_f] \rightarrow DP_f) DP_f $	*	-	-

Example derivation

Furkan IGRA March 2024 16 / 43

Abbreviations

- ▶ The abbreviations are: 'f:' for regular features and 'a:' for agreement features. 'xws' is ExWs.
- To make understanding outputs easier the keys are: iMrg: internal merge/move, xMrg: external merge, rMrg: reflexive merge/ merge with self, Lbl: label, and Agr: agree.
- 'W' indicates the winning probability.
- Constraint weights are given as a superscript.
- Constraint weights are calculated by feeding the derivations to an optimizing function trying to minimize the Kullback-Leibler divergence between the winner probabilities and the probabilities resulting from the harmonic values, MaxEnt (Hayes & Wilson, 2008, p.384), with limits between 0 and 100 for constraint weights.

item	merge	agree	feature
DP	-	case:□	-
V	[●DP●]	_	-
v	[● ∨ ●]	_	-
Т	[•∨•]	-	case
C	[●⊤●]	_	-

Step 1: Input DP_{a:case}

Internal argument is merged with V.

		<u> </u>				
		output	xws ⁵⁸	lab ⁴³	mc^{61}	Н
		[V DP _{a:case}]	0	1	0	43
() ×Mrg	[v DP _{a:case}]	0	1	1	104
() ×Mrg	$[T_{f:case} \; DP_{a:case}]$	0	1	1	104
() ×Mrg	[C DP _{a:case}]	0	1	1	104
() rMrg	DP _{a:case}	1	0	0	58

Step 2: Input [V $DP_{a:case}$]

The resulting merge is labelled with V.

W opr. output	xws ⁵⁸	lab ⁴³	Ib^{100}_D	Ib_V^{50}	mc^{61}	case ³⁶	Н
1 Lbl V[V DP _{a:case}]	0	0	0	1	0	1	86
0 Lbl DP _{a:case} [V DP _{a:case}]	0	0	1	0	0	0	100
0 xMrg [v [V DP _{a:case}]]	0	1	0	0	1	0	104
$0 \times Mrg [T_{f:case} [V DP_{a:case}]]$	0	1	0	0	1	0	104
0 xMrg [C [V DP _{a:case}]]	0	1	0	0	1	0	104
0 iMrg [V [V DP _{a:case}]]	1	1	0	0	1	0	162
0 iMrg [DP _{a:case} [V DP _{a:case}]]	1	1	0	0	0	0	101
0 rMrg [V DP _{a:case}]	1	1	0	0	0	0	101

Step 3: Input V[V DP_{a:case}]

VP is merged with v.

W opr. output	xws ⁵⁸	lab ⁴³	mc ⁶¹	case ³⁶	Н
1 xMrg [v V[V DP _{a:case}]]	0	1	0	1	79
$0 \times Mrg [T_{f:case} V[V DP_{a:case}]]$	0	1	1	1	140
0 xMrg [C V[V DP _{a:case}]]	0	1	1	1	140
0 iMrg [DP _{a:case} V[V DP _{a:case}]]	1	1	0	0	101
0 rMrg V[V DP _{a:case}]	1	0	0	1	94

Step 4: Input [v $V[V DP_{a:case}]$]

The resulting phrase is labelled with v.

W opr. output	xws ⁵⁸	lab ⁴³	Ib_V^{50}	Ib^0_v	mc ⁶¹	case ³⁶	Н
1 Lbl v[v V[V DP _{a:case}]]	0	0	0	1	0	2	72
0 Lbl V[v V[V DP _{a:case}]]	0	0	1	0	0	1	86
$0 \times Mrg [T_{f:case} [v V[V DP_{a:case}]]]$	0	1	0	0	1	1	140
0 xMrg [C [v V[V DP _{a:case}]]]	0	1	0	0	1	1	140
0 iMrg [v [v V[V DP _{a:case}]]]	1	1	0	0	1	1	198
0 iMrg [V[V DP _{a:case}] [v V[V DP _{a:case}]]]	1	1	0	0	0	1	137
0 iMrg [DP _{a:case} [v V[V DP _{a:case}]]]	1	1	0	0	0	0	101
0 rMrg [v V[V DP _{a:case}]]	1	1	0	0	0	1	137

Step 5: Input v[v V[V DP_{a:case}]]

The internal argument moves, case_{agr} violation is unbearable.

W opr. output	xws ⁵⁸	lab ⁴³	mc ⁶¹	$case_{agr}^{36}$ H
0 xMrg [T _{f:case} v[v V[V DP _{a:case}]]]	0	1	0	2 115
0 xMrg [C v[v V[V DP _{a:case}]]]	0	1	1	2 176
0 iMrg [V[V DP _{a:case}] $v[v V[V]]$	1	1	0	1 137
DP _{a:case}]]]				
1 iMrg [DP _{a:case} v[v V[V DP _{a:case}]]]	1	1	0	0 101
0 rMrg v[v V[V DP _{a:case}]]	1	0	0	2 130

March 2024

Step 6: Input $[DP_{a:case} \ v[v \ V[V \ DP_{a:case}]]]$ The resulting phrase is labelled with v.

W opr.	output	xws ⁵⁸	lab ⁴³	Ib_D^{100}	Ib_{v}^{0}	mc ⁶¹	case ³⁶	Н
0 Lbl	$DP_{a:case}[DP_{a:case} v[v V[V]] $	0	0	1	0	0	0	100
	DP _{a:case}]]]							
1 Lbl	$v[DP_{a:case} \ v[v \ V[V \ DP_{a:case}]]]$	0	0	0	1	0	1	36
0 xMrg	$[T_{f:case} [DP_{a:case} v[v V[V$	0	1	0	0	1	0	104
	DP _{a:case}]]]]							
0 xMrg	[C [DP _{a:case} v[v V[V DP _{a:case}]]]]	0	1	0	0	1	0	104
0 iMrg	$[DP_{a:case} [DP_{a:case} v[v V[V$	1	1	0	0	0	0	101
	DP _{a:case}]]]]							
0 iMrg	[v[v V[V DP _{a:case}]] [DP _{a:case} v[v	1	1	0	0	0	2	173
	V[V DP _{a:case}]]]]							
0 iMrg	[V[V DP _{a:case}] [DP _{a:case} v[v V[V	1	1	0	0	0	1	137
	DP _{a:case}]]]]							
0 rMrg	$[DP_{a:case} v[v V[V DP_{a:case}]]]$	1	1	0	0	0	0	101

Step 7: Input $v[DP_{a:case} \ v[v \ V[V \ DP_{a:case}]]]$ T is merged with vP.

W opr. output	xws ⁵⁸	lab ⁴³	mc ⁶¹	case ³⁶ H
$1 \text{ xMrg } [T_{f:case} v[DP_{a:case} v[v V[V]]]$	0	1	0	1 79
DP _{a:case}]]]]				
0 xMrg [C v[DP _{a:case} v[v V[V DP _{a:case}]]]]	0	1	1	1 140
0 iMrg [DP _{a:case} v[DP _{a:case} v[v V[V	1	1	0	0 101
DP _{a:case}]]]]				
0 iMrg [V[V DP _{a:case}] v[DP _{a:case} v[v	1	1	0	1 137
V[V DP _{a:case}]]]]				
0 rMrg v[DP _{a:case} v[v V[V DP _{a:case}]]]	1	0	0	1 94

Step 8: Input $[T_{f:case} \ v[DP_{a:case} \ v[v \ V[V \ DP_{a:case}]]]]$ The resulting merge is labelled with T.

W	opr.	output	xws ⁵⁸	lab ⁴³	Ib^0_{v}	lb_T^{14}	mc ⁶¹	case ³⁶	case ⁷⁴	Н
	L Lbl	$T_{f:case}[T_{f:case} \ v[DP_{a:case} \ v[v \ V[V$		0	0	1	0	2	0	86
		DP _{a:case}]]]]								
() Lbl	$v[T_{f:case} v[DP_{a:case} v[v V[V$	0	0	1	0	0	1	1	110
		DP _{a:case}]]]]								
() ×Mrg	$[C]$ $[T_{f:case}]$ $v[DP_{a:case}]$ $v[v]$ $V[V]$	0	1	0	0	1	1	0	140
١.		DP _{a:case}]]]]]	_	_	_	_	_	_		
() iMrg	$[T_{f:case} \ \ V[DP_{a:case} \ \ v[v]]$	1	1	0	0	1	1	0	198
١,		V[V DP _{a:case}]]]]]			_	_	^		•	
') ilVirg	[v[DP _{a:case} v[v V[V DP _{a:case}]]]	1	1	0	0	0	1	Ü	137
		$[T_{f:case} \ v[DP_{a:case} \ v[v \ V[V]]]$								
١,		DP _{a:case}]]]]]	1	1	0	0	0	0	0	101
١,	Jilvirg	$[DP_{a:case} \ [T_{f:case} \ v[DP_{a:case} \ v[v]]]$	1	1	U	U	U	U	U	101
١,) iMra	V[V DP _{a:case}]]]]]	1	1	0	0	0	1	0	137
١,	living	$ \begin{bmatrix} V[V DP_{a:case}] [T_{f:case} v[DP_{a:case}] \\ v[v V[V DP_{a:case}]] \end{bmatrix} $	1	1	U	U	U		U	131
1) rMra	$[T_{f:case} v[DP_{a:case} v[V V[V V]]]$	1	1	0	0	0	1	0	137
'	riving	DP _{a:case}]]]]	1	_	U	U	U	1	U	131

Step 9: Input $T_{f:case}[T_{f:case} \ v[DP_{a:case} \ v[V \ V[V \ DP_{a:case}]]]]$ The internal argument moves again. case_{agr} violation is unbearable.

W opr.	output	xws ⁵⁸	lab ⁴³	case ³⁶	Н
0 xMrg	$[C T_{f:case}[T_{f:case} v[DP_{a:case} v[$	v 0	1	2	115
	$V[V DP_{a:case}]]]]$				
0 iMrg	$[v[DP_{a:case} \ v[v \ V[V \ DP_{a:case}]]$		1	1	137
	$T_{f:case}[T_{f:case} \ v[DP_{a:case} \ v[v \ V]]$	V			
	DP _{a:case}]]]]]				
1 iMrg	$[DP_{a:case}]$ $T_{f:case}[T_{f:case}]$	ie 1	1	0	101
	$v[DP_{a:case} \ v[v \ V[V \ DP_{a:case}]]]]]$				
0 iMrg	$[V[V DP_{a:case}] T_{f:case}[T_{f:case}]$	$_{ie}$ 1	1	1	137
	$v[DP_{a:case} \ v[v \ V[V \ DP_{a:case}]]]]]$				
0 rMrg	$T_{f:case}[T_{f:case} \ v[DP_{a:case} \ v[v \ V]]$	V 1	0	2	130
	DP _{a:case}]]]]				

 Furkan
 IGRA
 March 2024
 24 / 43

Step 10: Input $[DP_{a:case} \ T_{f:case} \ v[DP_{a:case} \ v[v \ V[V \ DP_{a:case}]]]]$ Agreement takes place between a: case of DP and f: case of T.

7 18.000	tance piace betireen a rease or Br	uu .			· ·				
W opr.			lab ⁴³	Ib^{100}_D	lb_T^{14}	mc^{61}	case ³⁶	case ⁷⁴	Н
1 Agr	[DP T[T _{f:case} $v[DP_{a:case} v[v V[V$	0	0	0	0	0	0	0	0
	DP _{a:case}]]]]]								
0 Lbl	$DP_{a:case}[DP_{a:case} T_{f:case}[T_{f:case}]$	0	0	1	0	0	0	1	174
	$v[DP_{a:case} \ v[v \ V[V \ DP_{a:case}]]]]]$								
0 Lbl	$T_{f:case}[DP_{a:case} T_{f:case}[T_{f:case}]$	0	0	0	1	0	1	0	50
	$v[DP_{a:case} \ v[v \ V[V \ DP_{a:case}]]]]]$								
0 xMrg	$[C[DP_{a:case} T_{f:case}]T_{f:case} v[DP_{a:case}]$	0	1	0	0	1	0	0	104
	v[v V[V DP _{a:case}]]]]]]								
0 iMrg	$[DP_{a:case} [DP_{a:case} T_{f:case}]T_{f:case}$	1	1	0	0	0	0	0	101
	$v[DP_{a:case} v[v V[V DP_{a:case}]]]]]]$								
0 iMrg	$[T_{f:case}[T_{f:case} \ v[DP_{a:case} \ v[v \ V[V$	1	1	0	0	0	2	0	173
	$DP_{a:case}$]]]] $[DP_{a:case} T_{f:case}[T_{f:case}]$								
	$v[DP_{a:case} v[v V[V DP_{a:case}]]]]]]$								
0 iMrg	$[v[DP_{a:case} v[v V[V DP_{a:case}]]]$	1	1	0	0	0	1	0	137
	$[DP_{a:case} \ T_{f:case}[T_{f:case} \ v[DP_{a:case}]]$								
	v[v V[V DP _{a:case}]]]]]]								
0 iMrg	$[V[V DP_{a:case}] [DP_{a:case}]$	1	1	0	0	0	1	0	137
	$T_{f:case}[T_{f:case} \ v[DP_{a:case} \ v[V \ V[V$								
	DP _{a:case}]]]]]]								
0 rMrg	$[DP_{a:case} \ T_{f:case}[T_{f:case} \ v[DP_{a:case}]]$	1	1	0	0		0	0	101
	$v[v V[V DP_{a:case}]]]]$			4 □ ▶	< ₽	▶ 4 를	< \(\bar{\pi}\) \(\bar{\pi}\)	₹ 4	200
Fui	rkan IGRA						March 202	24 25	/ 43

Step 11: Input [DP T[T_{f:case} v[DP_{a:case} v[v V[V DP_{a:case}]]]]]

The resulting phrase is labelled. The used feature does not travel up.

W	opr.	output	xws ⁵⁸	lab ⁴³	Ib_D^{100}	Ib_{T}^{14}	mc ⁶¹	case ³⁶ _{agr}	Н
0	Lbl	$DP[DP T[T_{f:case} v[DP_{a:case} v[v]]]$	0	0	1	0	0	0	100
		V[V DP _{a:case}]]]]]							
1	Lbl	T[DP T[$T_{f:case}$ v[DP _{a:case} v[v	0	0	0	1	0	0	14
		V[V DP _{a:case}]]]]]							
0	\times Mrg	[C [DP T[$T_{f:case}$ v[DP _{a:case} v[v	0	1	0	0	1	0	104
١.		V[V DP _{a:case}]]]]]]							
0	iMrg	$[DP\ [DP\ T]T_{f:\mathit{case}}\ v[DP_{a:\mathit{case}}\ v[v$	1	1	0	0	0	0	101
١.		$V[V DP_{a:case}]]]]]$							
0	iMrg	$T[T_{f:case} \ v[DP_{a:case} \ v[v] \ V[V]]$	1	1	0	0	0	2	173
		$DP_{a:case}$]]] [DP $T[T_{f:case}$							
١.		v[DP _{a:case} v[v V[V DP _{a:case}]]]]]]	_						
0	iMrg	[v[DP _{a:case} v[v V[V DP _{a:case}]]]	1	1	0	0	0	1	137
		$[DP\ T[T_{f:case}\ v[DP_{a:case}\ v[v\ V[V]]]]]$							
		DP _{a:case}]]]]]]	_	_	_			_	
0	ıMrg	$[V[V DP_{a:case}] [DP T[T_{f:case}]]$	1	1	0	0	0	1	137
		v[DP _{a:case} v[v V[V DP _{a:case}]]]]]]	_	_	_	_			
0	rMrg	$[DP T[T_{f:case} v[DP_{a:case} v[v V[V$	1	1	0	0	0	0	101
		DP _{a:case}]]]]]							

Step 12: Input T[DP T[$T_{f:case}$ v[DP_{a:case} v[v V[V DP_{a:case}]]]]] TP is merged with C.

		igea with C.				
		output	xws ⁵⁸	lab ⁴³	case ³⁶	Н
1	xMrg	$[C T[DP T[T_{f:case} v[DP_{a:case} v[v]]]]$	0	1	0	43
		V[V DP _{a:case}]]]]]]				
0	iMrg	[DP T[DP T[$T_{f:case}$ v[DP _{a:case}	1	1	0	101
		v[v V[V DP _{a:case}]]]]]]				
0	iMrg	$[v[DP_{a:case} \ v[v \ V[V \ DP_{a:case}]]]$	1	1	1	137
		$T[DP T[T_{f:case} v[DP_{a:case} v[v]]]$				
		V[V DP _{a:case}]]]]]]				
0	iMrg	$[V[V DP_{a:case}] T[DP T[T_{f:case}]$	1	1	1	137
		$v[DP_{a:case} \ v[v \ V[V \ DP_{a:case}]]]]]]$				
0	rMrg	$T[DP T[T_{f:case} v[DP_{a:case} v[v]]]$	1	0	0	58
		V[V DP _{a:case}]]]]]				

March 2024

Step 13: Input [C T[DP T[T $_{f:case}$ v[DP $_{a:case}$ v[v V[V DP $_{a:case}$]]]]]]

The resulting merge is labelled with C

The resulting merge is labelled with C.									
W	opr.	output	xws ⁵⁸	lab ⁴³	Ib_T^{14}	Ib^0_C	mc ⁶¹	case ³⁶ _{agr}	Н
1	Lbl	C[C T[DP T[$T_{f:case}$ v[DP _{a:case}	0	0	0		0	0	0
		v[v V[V DP _{a:case}]]]]]]							
0	Lbl	$T[C T[DP T[T_{f:case} v[DP_{a:case}]]$	0	0	1	0	0	0	14
		v[v V[V DP _{a:case}]]]]]]							
0	iMrg	$[C\ [C\ T[DP\ T[T_{f:\mathit{case}}\ v[DP_{a:\mathit{case}}$	1	1	0	0	1	0	162
		v[v V[V DP _{a:case}]]]]]]]							
0	iMrg	$T[DP T]_{f:case} v[DP_{a:case}]$		1	0	0	0	0	101
		$v[v \ V[V \ DP_{a:case}]]]]$ [C T[DP							
		$T[T_{f:case} \ v[DP_{a:case} \ v[v \ V[V$							
		DP _{a:case}]]]]]]]							
0	iMrg	[DP [C T[DP T[$T_{f:case}$	1	1	0	0	0	0	101
		$v[DP_{a:case} v[v V[V DP_{a:case}]]]]]]$							
0	iMrg	$[v[DP_{a:case} \ v[v \ V[V \ DP_{a:case}]]]$		1	0	0	0	1	137
		$[C T[DP T[T_{f:case} v[DP_{a:case} v[v]]]]$							
		V[V DP _{a:case}]]]]]]]							
0	iMrg	$[V[V DP_{a:case}] [C T[DP]]$	_	1	0	0	0	1	137
		$T[T_{f:case} \ v[DP_{a:case} \ v[v \ V[V$							
		DP _{a:case}]]]]]]]							
0	rMrg	$[C T[DP T[T_{f:case} v[DP_{a:case} v[v]]]]$	1	1	0	0	0	0	101
		V[V DP _{a:case}]]]]]]							_

Step 14: Input C[C T[DP T[$T_{f:case}$ v[DP $_{a:case}$ v[v V[V DP $_{a:case}$]]]]]] Reflexive merge output is the most optimal, derivation culminates.

	<u> </u>				
W opr.			lab ⁴³	case ³⁶	Н
0 iMrg	$[T[DP T[T_{f:case} v[DP_{a:case} v[v]]]]$	1	1	0 :	101
	$V[V DP_{a:case}]]]]] C[C T[DP$				
	$T[T_{f:case} \ v[DP_{a:case} \ v[v \ V[V$				
	DP _{a:case}]]]]]]]				
0 iMrg	[DP C[C T[DP T[$T_{f:case}$	1	1	0	101
	v[DP _{a:case} v[v V[V DP _{a:case}]]]]]]]				
0 iMrg	[v[DP _{a:case} v[v V[V DP _{a:case}]]]		1	1 :	137
	C[C T[DP T[$T_{f:case}$ v[DP _{a:case}				
	v[v V[V DP _{a:case}]]]]]]]				
0 iMrg	$[V[V DP_{a:case}] C[C T[DP]]$	1	1	1 :	137
	$T[T_{f:case} \ v[DP_{a:case} \ v[v \ V[V$				
	DP _{a:case}]]]]]]]				
1 rMrg	$C[C T[DP T[T_{f:case} v[DP_{a:case}]])$	1	0	0	58
	v[v V[V DP _{a:case}]]]]]]				

Outcomes for movement

 Furkan
 IGRA
 March 2024
 30 / 43

Locality

Locality is achieved when the problem of staying outweighs the problem of merging a new item or reflexive merge. So, movement is carried out as soon as it is required.

(10) Input $v[v \ V[V \ DP_{a:case}]]$ The internal argument moves case are violation is unbearable

W opr. output	xws ⁵⁸	lab ⁴³	mc ⁶¹	case ³⁶ _{agr} H
0 xMrg [T _{f:case} v[v V[V DP _{a:case}]]]	0	1	0	2 115
0 xMrg [C v[v V[V DP _{a:case}]]]	0	1	1	2 176
0 iMrg [V[V DP _{a:case}] v[v V[V	1	1	0	1 137
DP _{a:case}]]]				
1 iMrg [DP _{a:case} v[v V[V DP _{a:case}]]]	1	1	0	0 101
0 rMrg v[v V[V DP _{a:case}]]	1	0	0	2 130

31 / 43

Anti Locality

Same domain movement settings never arise. Movement is harmony improvement.

Step i: Input $V[V DP_{f:X}]$

For iMrg of $DP_{f:X}$ to be optimal, w(x*) should be at least 49.

W opr output	xws ⁵⁸	lab ⁴³	mc ⁶¹	x *	Н
$0 \times Mrg [v V[V DP_{f:X}]]$	0	1	0	1	92
$0 \times Mrg [T V[V DP_{f:X}]]$	0	1	1	1	153
$0 \times Mrg [C V[V DP_{f:X}]]$	0	1	1	1	153
\square iMrg $[DP_{f:X} V[V DP_{f:X}]]$	1	1	0	0	91
0 rMrg V[V DP $_{f:X}$]	1	0	0	1	107

Step i-1: Input [V $DP_{f:X}$]

If w(x*) is 49, then $V[V DP_{f:X}]$ was never the optimal output to begin with.

W	opr	output	xws ⁵⁸	lab ⁴³	mc ⁶¹	x*49	Ib^{100}_D	Ib_V^{50}	Н
re a	Lbl	$V[V DP_{f:X}]$	0	0	0	1	0	1	99
0		$DP_{f:X}[V\;DP_{f:X}]$	0	0	0	0	1	0	100
0	xMrg	$[v [V DP_{f:X}]]$	0	1	1	0	0	0	104
0	xMrg	$[T [V DP_{f:X}]]$	0	1	1	0	0	0	104
0	xMrg	$[C [V DP_{f:X}]]$	0	1	1	0	0	0	104
	rMrg	$[V DP_{f:X}]$	1	1	0	0	0	0	91

Phrasal movement

Phrasal movement is motivated the same way as normal movement, projecting item's feature leads to movement.

(11) Input T[T v[v $V_{f:foc}[V_{f:foc} DP]]]$

	[, ,1:100[,1:100 =,]]]				
W opr	output	xws ⁵⁵	lab ⁵⁰	foc ²⁹	Τ
0 ×Merge	$[C T[T v[v V_{f:foc}[V_{f:foc} DP]]]]$	0	1	2	108
0 iMerge	$[v[v \ V_{f:foc}[V_{f:foc} \ DP]] \ T[T \ v[v]]$	1	1	1	134
	$V_{f:foc}[V_{f:foc} DP]]]]$				
[□] iMerge	$\begin{bmatrix} V_{f:foc}[V_{f:foc} & DP] & T[T & v[v$	1	1	0	105
	$V_{f:foc}[V_{f:foc} DP]]]$				
0 iMerge	[DP T[T v[v $V_{f:foc}[V_{f:foc} DP]]]]$	1	1	2	163
0 rMerge	$T[T \ v[v \ V_{f:foc}[V_{f:foc} \ DP]]]$	1	0	2	113

Remnant movement

(12) Remnant movement

The item X moves first, followed by the movement of the phrase Y.

Remnant Movement, harmonic syntax I

 α^* and β^* are markedness constraints.

(13) First movement

3 violations of α^* was enough to Merge X_{α} again to get rid of markedness violations. Later merge of K and labelling increases the violation of α^* to 1, β^* violation is still 2.

Furkan IGRA

35 / 43

Remnant movement, harmonic syntax II

(14) Remnant movement

After the Merge of L and labelling, α^* violation increases to 2. However, 3 violations β^* forces remnant movement. This resets β^* violation and decreases α^* violation to 1. Later labelling increases both violations by 1.

Furkan **IGRA**

Movement Freeze

(15) Movement freeze

If the phrase Y moves first, the item X cannot move out of it.

Movement Freeze, harmonic syntax I

(16) Movement freeze

If the phrase Y moves first, it resets the markedness violations for α^* of X_{α} from 3 to 1 first, then later labelling increases it to 2. Any further Merge and Label ends up with the phrase moving first.

Furkan IGRA

Movement DeFreeze, harmonic syntax II

There is one configuration where movement freeze can be broken.

(17) Movement unfrozen

If phrasal movement is motivated by an agreement feature, that agreement feature can be satisfied after the movement. As a result, further Merge and Label can motivate moving out of a moved phrase.

Furkan IGRA

Conclusion

 Furkan
 IGRA
 March 2024
 40 / 43

- Syntax is no longer feature driven.
- Operations are carried out very locally.
- Phrasal movement, remnant movement, movement freeze are free.
- ► Technically, movement defreeze is possible.

Furkan IGRA

41 / 43

- Syntax is no longer feature driven.
- Operations are carried out very locally.
- ► Technically, movement defreeze is possible.

- Syntax is no longer feature driven.
- Operations are carried out very locally.
- Phrasal movement, remnant movement, movement freeze are free.
- ► Technically, movement defreeze is possible.

- Syntax is no longer feature driven.
- Operations are carried out very locally.
- Phrasal movement, remnant movement, movement freeze are free.
- ► Technically, movement defreeze is possible.

41 / 43

Furkan IGRA

References

- Chomsky, N. (1964). The logical basis of linguistic theory. In H. G. Lunt (Ed.), Ninth international congress of linguists (pp. 914–977). Mouton.
- Chomsky, N. (2000). Minimalist inquiries: The framework. In R. Martin,
 D. Michaels, & J. Uriagereka (Eds.), Step by step: Essays on
 minimalist syntax in honor of howard lasnik (pp. 89–155). MIT Press.
- Chomsky, N. (2014). The minimalist program: 20th anniversary edition.
- Hayes, B., & Wilson, C. (2008). A Maximum Entropy Model of Phonotactics and Phonotactic Learning. *Linguistic Inquiry*, 39(3), 379–440.
- Heck, F., Müller, G., Vogel, R., Fischer, S., Vikner, S., & Schmid, T. (2002).On the nature of the input in optimality theory. *The Linguistic Review*, 19, 345–376.
- McCarthy, J. J. (2000). Harmonic serialism and parallelism. *Proceedings of the North East Linguistic Society*, 30.
- McCarthy, J. J. (2010). An introduction to harmonic serialism. Language and Linguistics Compass, 4, 1001–1018.
- McCarthy, J. J. (2016). The theory and practice of harmonic serialism. In J. J. McCarthy & J. Pater (Eds.). Equinox.
- McCarthy, J. J., Kimper, W. A., & Mullin, K. (2012). Reduplication in Harmonic Serialism. *Morphology*, 22(2), 173–232.

References

Ross, J. R. (1967). Constraints on variables in syntax [Doctoral dissertation, Massachusetts Institute of Technology]. MIT, Cambridge, Massachusetts.

 Furkan
 IGRA
 March 2024
 43 / 43