### CO2015

# Exercise — BJT



- When a transistor is used as a switch, it is stable in which two distinct regions?
  - saturation and active
  - active and cutoff
  - saturation and cutoff
  - none of the above

- For a silicon transistor, when a base-emitter junction is forward-biased, it has a nominal voltage drop of
  - **0.7**
  - 0.3
  - 0.2
  - V<sub>CC</sub>

- A certain BJT has  $I_B = 167uA$ ,  $I_C = 15mA$ , the amplifier DC factor is:
  - **1**5
  - **•** 167
  - **90**
  - All are not correct

 Refer to the given figure. The most probable cause of trouble, if any, from these voltage measurements is



 Refer to the given figure. The most probable cause of trouble, if any, from these voltage measurements is



• Refer to this figure. If  $V_{CE} = 0.2 \text{ V}$ ,  $I_{C(sat)}$  is



• Refer to this figure. Determine the minimum value of  $I_B$  that will produce saturation ( $V_{CE}(sat) = 0.2V$ ).



• Refer to this figure. The value of  $V_{BC}$  is



### CO2015

# Exercise — FET



• Refer to the given figure. Calculate the value of  $V_{DS}$ 



■ 2V

• Refer to figure shown below. Determine the value of  $V_s$ .



■ 6V

• Refer to the given figure.  $I_D = 6 \text{ mA}$ . Calculate the value of  $V_{DS}$ 



- -9∨
- In general  $V_{DS} = V_{DD} (I_D * R_D)$ But in figure direction of FET transistor is out of drain so, Id becomes negative.

• Refer to the given figure.  $I_D = 6$  mA. Calculate the value of  $V_{DS}$ 



■ 6V

Refer to figure given below. Determine the value of  $V_{GS}$ 



-6∨

lacktriangle Refer to figure show below. Calculate the value of  $V_D$ 



8V

- For a JFET, the value of  $V_{DS}$  at which  $I_{D}$  becomes essentially constant is the
  - pinch-off voltage.
  - cutoff voltage.
  - breakdown voltage.
  - ohmic voltage.

#### **Answer: A**





- The value of  $V_{GS}$  that makes  $I_D$  approximately zero is the
  - Pinch-off voltage
  - Cut-off voltage
  - Breakdown voltage

B

- The \_\_\_\_\_ has a physical channel between the drain and source.
  - DFET
  - EFET
  - VFET

#### **Answer: A**





- What type(s) of gate-to-source voltage(s) can a depletion MOSFET (D-MOSFET) operate with?
  - Zero
  - Positive
  - Negative
  - All of them

- Midpoint bias for a D-MOSFET is  $I_D =$ \_\_\_\_\_, obtained by setting  $V_{GS} = 0$ 
  - $I_{DSS}/2$
  - $I_{DSS} / 3.4$
  - I<sub>DSS</sub>

Identify D-FET p channel



B

lacktriangle Determine  $V_{GS}$  and  $I_{D}$ 



- Determine the Load line
  - $I_D = 0$  $V_{GS} = -I_D R_S = (0)(470 \Omega) = 0 V$
  - $I_D = I_{DSS}$

$$V_{GS} = -I_D R_S = -(10 \text{ mA})(470 \Omega) = -4.7 \text{ V}$$



- $I_D = 5.07 \text{ mA}$
- $V_{CS} = -2.3V$





 $I_{\rm D}$  (mA)



- Determine  $V_{GS}$  and  $I_D$  for the given JFET, where
  - $I_{DSS} = 5 \text{mA} \text{ and } V_{GS(off)} = -4 V$



### CO2015

# Exercise — Op Amp



• Calculate the output gain of the circuit if R1 = 100(Ohm) and Rf = 1(KOhm)



**1** 

- Refer to the given figure. A dc input signal of -50 mV is applied. You would measure \_\_\_\_\_ from the inverting input to ground.
  - 50mV
  - 1.05V
  - -1.05∨
  - -50mV



- Calculate the input voltage if the final output is 10.08 V
  - 0.168V

