Univariate Linear Regression by Gradient Descent

Importing the libraries

```
In [1]: #libraries
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import math
   import seaborn as sns
```

Importing the Dataset

```
In [2]: dataset=pd.read_csv("Life Expectancy Data.csv")
In [3]: dataset.head()
```

Out[3]:

	Country	Year	Status	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatit
0	Afghanistan	2015	Developing	65.0	263.0	62	0.01	71.279624	65
1	Afghanistan	2014	Developing	59.9	271.0	64	0.01	73.523582	62
2	Afghanistan	2013	Developing	59.9	268.0	66	0.01	73.219243	64
3	Afghanistan	2012	Developing	59.5	272.0	69	0.01	78.184215	67
4	Afghanistan	2011	Developing	59.2	275.0	71	0.01	7.097109	68

5 rows × 22 columns

In [4]: #displaying the dataset
dataset

Out[4]:

	Country	Year	Status	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Нер
0	Afghanistan	2015	Developing	65.0	263.0	62	0.01	71.279624	
1	Afghanistan	2014	Developing	59.9	271.0	64	0.01	73.523582	
2	Afghanistan	2013	Developing	59.9	268.0	66	0.01	73.219243	
3	Afghanistan	2012	Developing	59.5	272.0	69	0.01	78.184215	
4	Afghanistan	2011	Developing	59.2	275.0	71	0.01	7.097109	
2933	Zimbabwe	2004	Developing	44.3	723.0	27	4.36	0.000000	
2934	Zimbabwe	2003	Developing	44.5	715.0	26	4.06	0.000000	
2935	Zimbabwe	2002	Developing	44.8	73.0	25	4.43	0.000000	
2936	Zimbabwe	2001	Developing	45.3	686.0	25	1.72	0.000000	
2937	Zimbabwe	2000	Developing	46.0	665.0	24	1.68	0.000000	

2938 rows × 22 columns

Checking for the Null Values

In [5]:	pd.isna(dataset).any()	
Out[5]:	Country	False
	Year	False
	Status	False
	Life expectancy	True
	Adult Mortality	True
	infant deaths	False
	Alcohol	True
	percentage expenditure	False
	Hepatitis B	True
	Measles	False
	BMI	True
	under-five deaths	False
	Polio	True
	Total expenditure	True
	Diphtheria	True
	HIV/AIDS	False
	GDP	True
	Population	True
	thinness 1-19 years	True
	thinness 5-9 years	True
	Income composition of resources	True
	Schooling dtype: bool	True

In [6]: # checking details of the dataset
dataset.describe()

Out[6]:

	Year	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Нер
count	2938.000000	2928.000000	2928.000000	2938.000000	2744.000000	2938.000000	2385
mean	2007.518720	69.224932	164.796448	30.303948	4.602861	738.251295	80
std	4.613841	9.523867	124.292079	117.926501	4.052413	1987.914858	25
min	2000.000000	36.300000	1.000000	0.000000	0.010000	0.000000	1.
25%	2004.000000	63.100000	74.000000	0.000000	0.877500	4.685343	77
50%	2008.000000	72.100000	144.000000	3.000000	3.755000	64.912906	92
75%	2012.000000	75.700000	228.000000	22.000000	7.702500	441.534144	97
max	2015.000000	89.000000	723.000000	1800.000000	17.870000	19479.911610	99

Seeing the correlation matrix to select the feature

In [7]: dataset.corr()

Out[7]:

	Year	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatitis B	
Year	1.000000	0.170033	-0.079052	-0.037415	-0.052990	0.031400	0.104333	_
Life expectancy	0.170033	1.000000	-0.696359	-0.196557	0.404877	0.381864	0.256762	
Adult Mortality	-0.079052	-0.696359	1.000000	0.078756	-0.195848	-0.242860	-0.162476	
infant deaths	-0.037415	-0.196557	0.078756	1.000000	-0.115638	-0.085612	-0.223566	
Alcohol	-0.052990	0.404877	-0.195848	-0.115638	1.000000	0.341285	0.087549	
percentage expenditure	0.031400	0.381864	-0.242860	-0.085612	0.341285	1.000000	0.016274	
Hepatitis B	0.104333	0.256762	-0.162476	-0.223566	0.087549	0.016274	1.000000	
Measles	-0.082493	-0.157586	0.031176	0.501128	-0.051827	-0.056596	-0.120529	
ВМІ	0.108974	0.567694	-0.387017	-0.227279	0.330408	0.228700	0.150380	
under-five deaths	-0.042937	-0.222529	0.094146	0.996629	-0.112370	-0.087852	-0.233126	
Polio	0.094158	0.465556	-0.274823	-0.170689	0.221734	0.147259	0.486171	
Total expenditure	0.090740	0.218086	-0.115281	-0.128616	0.296942	0.174420	0.058280	
Diphtheria	0.134337	0.479495	-0.275131	-0.175171	0.222020	0.143624	0.611495	
HIV/AIDS	-0.139741	-0.556556	0.523821	0.025231	-0.048845	-0.097857	-0.112675	
GDP	0.101620	0.461455	-0.296049	-0.108427	0.354712	0.899373	0.083903	
Population	0.016969	-0.021538	-0.013647	0.556801	-0.035252	-0.025662	-0.123321	
thinness 1-19 years	-0.047876	-0.477183	0.302904	0.465711	-0.428795	-0.251369	-0.120429	
thinness 5-9 years	-0.050929	-0.471584	0.308457	0.471350	-0.417414	-0.252905	-0.124960	
Income composition of resources	0.243468	0.724776	-0.457626	-0.145139	0.450040	0.381952	0.199549	
Schooling	0.209400	0.751975	-0.454612	-0.193720	0.547378	0.389687	0.231117	

Out[8]: <AxesSubplot:>

Note: After analyzing the coorelation matrix, I am considering "Income composition of resources" as my feature

Defining feature and target variable

Taking care of missing values

Using SimpleImputer Class of sklearn.impute library to fill the missing values

```
In [13]: # Using mean strategy to impute missing values
    from sklearn.impute import SimpleImputer
    imputer=SimpleImputer(missing_values=np.nan,strategy='mean')
    imputer.fit(y[:,:])
    y[:,:]=imputer.transform(y[:,:])

In [14]: # reshaping the feature into 2-D so that it can be passed in the fit
    x=np.reshape(x,(len(x),1))

In [15]: from sklearn.impute import SimpleImputer
    imputer=SimpleImputer(missing_values=np.nan,strategy='mean')
    imputer.fit(x[:,:])
    x[:,:]=imputer.transform(x[:,:])
```

```
In [16]: x
Out[16]: array([[0.479],
                 [0.476],
                 [0.47],
                 . . . ,
                 [0.427],
                 [0.427],
                 [0.434]]
In [17]: y
Out[17]: array([[65. ],
                 [59.9],
                 [59.9],
                 [44.8],
                 [45.3],
                 [46.]])
In [18]: len(x)
Out[18]: 2938
In [19]: len(y)
Out[19]: 2938
In [20]: #adding extra column(of value 1) in the feature for the symmetry. Do.
         #the matrix multiplication between our transpose of parameter vector
         x = x[:,0:len(x)]
         ones = np.ones([x.shape[0],1])
         x = np.concatenate((ones,x),axis=1)
         theta = np.zeros([1,2])
In [21]: x.shape,theta.shape,y.shape
Out[21]: ((2938, 2), (1, 2), (2938, 1))
```

Splitting Dataset into Training Set and Test Set

```
In [22]: #giving 20% to the test set
    x_test=x[0:587,:]

In [23]: x_train=x[587:,:]

In [24]: y_test=y[0:587,:]
    y_train=y[587:,:]

In [25]: len(x_train)+len(x_test)

Out[25]: 2938
```

```
In [26]: len(y_train)+len(y_test)
Out[26]: 2938
In [27]: print(x train)
          [[1.
                   0.658]
           [1.
                   0.659]
           [1.
                   0.656]
           [1.
                   0.427]
                   0.427]
           [1.
           [1.
                   0.434]]
In [28]: x train
Out[28]: array([[1.
                         , 0.658],
                         , 0.659],
                  [1.
                  [1.
                         , 0.656],
                  . . . ,
                  [1.
                         , 0.427],
                  [1.
                         , 0.427],
                  [1.
                         , 0.434]])
In [29]: print(x_test)
          [[1.
                   0.479]
           [1.
                   0.476]
           [1.
                   0.47 ]
                   0.675]
           [1.
           [1.
                   0.669]
           [1.
                   0.658]]
In [30]: |print(y_train)
          [[72.8]
           [72.4]
           [71.8]
           . . .
           [44.8]
           [45.3]
           [46.]]
```

```
In [31]: print(y test)
         [[65.]
          [59.9]
          [59.9]
          [59.5]
          [59.2]
          [58.8]
          [58.6]
          [58.1]
          [57.5]
          [57.3]
          [57.3]
          [57.]
          [56.7]
          [56.2]
          [55.3]
          [54.8]
          [77.8]
          [77.5]
          [77.2]
In [32]: #Plotting the scatter plot to see the trainig set
         plt.scatter(x_train[:,1:],y_train,color='blue') #plotting the actual
         plt.title('Schooling vs Life expentency(Training set)')
         plt.xlabel('Schooling')
         plt.ylabel("Life expentency")
         plt.show()
```



```
In [33]: #plotting the scatter plot to see the test set
plt.scatter(x_test[:,1:],y_test,color='green') #plotting the actual of
plt.title('Schooling vs Life expentency(test set)')
plt.xlabel('Schooling')
plt.ylabel("Life expentency")
plt.show()
```


Training our model on the training set

```
In [34]: #defining the cost function
def Cost(x,y,theta):
    summed = np.power(((x @ theta.T)-y),2)
    return np.nansum(summed)/(2 * len(x))

#defining the gradient descent
def gradientDescent(x,y,theta,iters,alpha):
    cost = np.zeros(iters)
    for i in range(iters):
        theta = theta - (alpha/len(x)) * np.nansum(x * (x @ theta.T - #print(theta)
        cost[i] = Cost(x, y, theta)

    return theta,cost
```

Cost Function Formula

$$\frac{1}{2m} \sum_{1}^{m} (h(x^{(i)}) - y^{(i)})^{2}$$

Gradient descent algorithm

Linear Regression Model

```
repeat until convergence { \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) (for j = 1 and j = 0) } J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^m \left( h_{\theta}(x^{(i)}) - y^{(i)} \right)^2
```

```
In [35]: #setting values of gradient descent parameters
alpha = 0.01
iters = 1500

In [36]: m,cost = gradientDescent(x_train,y_train,theta,iters,alpha)
print(m)

finalCost = Cost(x_train,y_train,m)
print(finalCost)

[[49.21601509 32.10382897]]
22.03915281306857
```

Predicting on the test set

```
In [37]: #predicting on the test set
         def predict(m, w, b):
             return m.dot(w.T) + b
         y pred = predict(x test, m, finalCost)
In [38]: y_pred
Out[38]: array([[ 86.63290198],
                 [ 86.53659049],
                 [ 86.34396752],
                 [ 86.11924072],
                 [ 85.83030626],
                 [ 85.63768328],
                 [ 85.18822968],
                 [ 85.15612585],
                 [ 84.57825693],
                 [ 84.25721864],
                 [ 83.96828418],
                 [ 83.48672674],
                 [83.22989611],
                 [ 82.20257358],
                 [ 82.17046975],
                 [ 82.10626209],
                 [ 95.71828558],
                 [ 95.68618175],
                 [ 95.62197409].
```

```
In [39]: #Plotting the scatter plot to analyze test target variable and predict
plt.scatter(y_pred,y_test,color='red')
plt.title('y_pred vs y_test')
plt.xlabel('y_pred')
plt.ylabel("y_test")
plt.show()
```



```
In [40]: print(np.concatenate((y_pred.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),
```

Defining the RMSE

```
In [41]: def rmse(predictions, targets):
    return np.sqrt(((predictions - targets) ** 2).mean())
rmse(y_pred, y_test)
```

Out[41]: 23.961915896753368

RMSE

$$RMSE = \sqrt{\sum_{i=1}^{n} \frac{(\hat{y}_i - y_i)^2}{n}}$$

Defining the MAE

```
In [42]: def MAE(y_pred,y):
    res=np.sum(abs(y_pred-y))/len(y)
    return res
    MAE(y_pred, y_test)
Out[42]: 22.849594889689822
```

MAE

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$
test set
$$y_i - \hat{y}_i$$
predicted value actual value

Univariate Linear Regression by Closed Form

Defining feature and target variable

```
In [43]: |x1=dataset.iloc[:,-1].values
          y1=dataset.iloc[:,3:4].values
          print(x)
          print(y)
          [[1.
                  0.4791
           [1.
                  0.476]
           [1.
                  0.47 ]
           [1.
                  0.427]
                  0.4271
           [1.
           [1.
                  0.43411
          [[65.]
           [59.9]
           [59.9]
           [44.8]
           [45.3]
           [46.]]
```

Taking care of missing values

Using SimpleImputer Class of sklearn.impute library to fill the missing values

```
In [44]: # Using mean strategy to impute missing values
    from sklearn.impute import SimpleImputer
    imputer=SimpleImputer(missing_values=np.nan,strategy='mean')
    imputer.fit(y1[:,:])
    y1[:,:]=imputer.transform(y1[:,:])
```

```
In [45]: x1=np.reshape(x1,(len(x1),1))
In [46]: from sklearn.impute import SimpleImputer
    imputer=SimpleImputer(missing_values=np.nan,strategy='mean')
    imputer.fit(x1[:,:])
    x1[:,:]=imputer.transform(x1[:,:])
In [47]: x1.shape,theta.shape,y1.shape
Out[47]: ((2938, 1), (1, 2), (2938, 1))
```

Splitting dataset into training set and test set

```
In [48]: x1_test=x[0:587,:]
x1_train=x[587:,:]
y1_test=y[0:587,:]
y1_train=y[587:,:]
```

Training my model on training set

```
In [49]: def find_Theta(x, y):

    m = x.shape[0] # Number of training examples.
    # Appending a cloumn of ones in X to add the bias term.
    x = np.append(x, np.ones((m,1)), axis=1)
    # reshaping y to (m,1)
    y = y.reshape(m,1)

# The Normal Equation
    theta = np.dot(np.linalg.inv(np.dot(x.T, x)), np.dot(x.T, y))

return theta
```

$$y = \sum_{j=0}^{m} W^{T} X$$
$$W = \left(X^{T} X\right)^{-1} X^{T} y$$

```
In [50]: def predict(x,theta):
    # Appending a cloumn of ones in X to add the bias term.
    x = np.append(x, np.ones((x.shape[0],1)), axis=1)
    # preds is y_hat which is the dot product of X and theta.
    preds = np.dot(x, theta)
    return preds
```

Predicting value on test set

```
In [51]: | theta1 = find_Theta(x1_train, y1_train)
          theta1
          y1 pred = predict(x1 test,theta1)
In [52]: y1_pred
Out[52]: array([[0.],
                  [0.],
                  [0.],
                  [0.],
                  [0.],
                  [0.],
                  [0.],
                  [0.],
                  [0.],
                  [0.],
                  [0.],
                  [0.],
                  [0.],
                  [0.],
                  [0.],
                  [0.],
                  [0.],
                  [0.],
                  [0.],
```

Defining RMSE

```
In [53]: def rmse(predictions, targets):
    return np.sqrt(((predictions - targets) ** 2).mean())
rmse(y1_pred, y1_test)

Out[53]: 69.21591689502061
```

Defining MAE

```
In [54]: def MAE(y_pred,y):
    res=np.sum(abs(y_pred-y))/len(y)
    return res
    MAE(y1_pred, y1_test)
```

Out[54]: 68.43935264054514