Conjugate functions

Ковалев Алексей

1. f(x) = |2x|.

$$f^*(y) = \sup_{x \in \mathbb{R}} (\langle x, y \rangle - f(x)) = \sup_{x \in \mathbb{R}} (xy - 2|x|)$$

При y>2 имеем $\sup_{x\in\mathbb{R}}\left(xy-2|x|\right)=\sup_{x\in\mathbb{R}_+}x(y-2)=+\infty.$ При y<2 имеем $\sup_{x\in R}\left(xy-2|x|\right)=\sup_{x\in\mathbb{R}_-}x(y+2))=+\infty.$

Пусть при $|y| \le 2$ выполняется xy - 2|x| > 0. Тогда xy > 2|x|, то есть $y \operatorname{sign} x > 2$, что противоречит условию $|y|\leqslant 2$. Значит при $|y|\leqslant 2$ имеем $\sup_{x\in\mathbb{R}}\left(xy-2|x|\right)\leqslant 0$, причем 0 достигается при любом y на x=0. Значит

 $f^*(y) = 0$, dom $f^* = [-2; 2]$. Otbet: $f^*(y) = 0$, dom $f^* = [-2; 2]$.

2. $f(x) = \inf_{u \perp v = x} (g(u) + h(v)).$

$$-\inf_{u+v=x} (g(u) + h(v)) = \sup_{u+v=x} (-g(u) - h(v))$$

$$f^{*}(y) = \sup_{x \in \text{dom } f} \left(\langle x, y \rangle - f(x) \right) = \sup_{x \in \text{dom } f} \left(\langle x, y \rangle - \inf_{u+v=x} \left(g(u) + h(v) \right) \right)$$

$$= \sup_{x \in \text{dom } f} \left(\langle x, y \rangle + \sup_{u+v=x} \left(-g(u) - h(v) \right) \right) = \sup_{x \in \text{dom } f} \sup_{u+v=x} \left(\langle x, y \rangle - g(u) - h(v) \right)$$

$$\stackrel{(0)}{=} \sup_{\substack{u \in \text{dom } g \\ v \in \text{dom } h}} \left(\langle u, y \rangle - g(u) + \langle v, y \rangle - h(v) \right) \stackrel{(1)}{=} \sup_{u \in \text{dom } g} \left(\langle u, y \rangle - g(u) \right) + \sup_{v \in \text{dom } h} \left(\langle v, y \rangle - h(v) \right)$$

$$= g^{*}(y) + h^{*}(y)$$

Переход (0) объясняется тем, что в левой части равенства супремум берется по всем $x \in \text{dom } f$, а в правой части – по всем $(u,v) \in \operatorname{dom} g \times \operatorname{dom} h$, причем при всех таких (u,v) определены g(u), h(v), а значит и f(u+v)=f(x), и наоборот, если определена f(x), то найдется некоторая $(u,v)\in \mathrm{dom}\, g imes \mathrm{dom}\, h$. Переход (1) объясняется тем, что $\sup_{a \in A, b \in B} (\varphi(a) + \psi(b)) = \sup_{a \in A} \varphi(a) + \sup_{b \in B} \psi(b)$, так как φ не зависит от b, ψ не

зависит от a.

3.

$$f(x) = \log \sum_{k=1}^{n} e^{x_k}$$
$$f^*(y) = \sup_{x \in \mathbb{R}^n} (\langle x, y \rangle - f(x)) = \sup_{x \in \mathbb{R}^n} g(x, y)$$

Покажем, что если $\langle \mathbf{1}, y \rangle \neq 1$, то функция g(x,y) неограниченна как функция x. Пусть $x_1 = x_2 = \ldots = x_n = a$.

$$g(x,y) = \sum_{k=1}^{n} x_k y_k - \log \sum_{k=1}^{n} e^{x_k} = a \sum_{k=1}^{n} y_k - \log(ne^a) = a \left(\sum_{k=1}^{n} y_k - 1\right) - \log n = a(\langle \mathbf{1}, y \rangle - 1) - \log n$$

Если $\langle \mathbf{1}, y \rangle - 1 > 0$, то можно взять a > 0 сколь угодно большим и получить g(x, y) сколь угодно большим. Если $\langle \mathbf{1}, y \rangle - 1 < 0$, то можно брать a < 0 сколь угодно маленьким и также получить g(x,y) сколь угодно большим. Значит g(x,y) неограниченна как функция x и f^* не определена при $\langle \mathbf{1}, y \rangle \neq 1$. Пусть теперь $\langle \mathbf{1}, y \rangle = 1$. Покажем, что f(x) – выпуклая функция.

$$\nabla f_i(x) = \frac{e^{x_i}}{\sum_{k=1}^n e^{x_k}}$$

При $i \neq j$ имеем

$$\nabla^2 f_{ij}(x) = -\frac{e^{x_i + x_j}}{\left(\sum_{k=1}^n e^{x_k}\right)^2}$$

При i = j имеем

$$\nabla^2 f_{ij}(x) = \nabla^2 f_{ii}(x) = \frac{\sum_{k=1}^n e^{x_i + x_k} - e^{2x_i}}{\left(\sum_{k=1}^n e^{x_k}\right)^2}$$

Тогда для любого $0 \neq z \in \mathbb{R}^n$ получаем

$$z^{\top} \nabla^2 f(x) z = \sum_{i \neq j} (z_i^2 + z_j^2 - 2z_i z_j) e^{x_i + x_j} = \sum_{i \neq j} (z_i - z_j)^2 e^{x_i + x_j} \geqslant 0$$

Значит f(x) действительно является выпуклой. Тогда $\nabla_x g(x,y) = y - \nabla f(x) = 0$, то есть $y_i \sum_{k=1}^n e^{x_k} = e^{x_i}$ или же $\log y_i + \log \sum_{k=1}^n e^{x_k} = x_i$. Получаем

$$f^*(y) = \langle x, y \rangle - \sum_{k=1}^n e^{x_k} = \sum_{k=1}^n y_k \left(\log y_k + \log \sum_{k=1}^n e^{x_k} \right) - \log \sum_{k=1}^n e^{x_k} = \sum_{k=1}^n y_k \log y_k$$

Ответ: $f^*(y) = \sum_{k=1}^n y_k \log y_k$, dom $f^* = \{y : y \in \mathbb{R}^n, \langle \mathbf{1}, y \rangle = 1\}$.

4. f(x) = g(Ax). Пусть t = Ax. Тогда

$$f^*(y) = \sup_{x \in \text{dom } f} \left(\langle x, y \rangle - g(Ax) \right) = \sup_{t \in \text{dom } g} \left(\langle A^{-1}t, y \rangle - g(t) \right) = \sup_{t \in \text{dom } g} \left(\langle t, A^{-\top}y \rangle - g(t) \right) = g^* \left(A^{-\top}y \right)$$

5. $f(X) = -\ln \det X, X \in \mathbb{S}^n_{++}$. f(X) – выпуклая функция (конспект к занятию 4), причем $\nabla f(X) = -X^{-\top}$ (задание 1, Automatic differentiation).

$$f^*(Y) = \sup_{X \in \mathbb{S}^n_{++}} \left(\langle X, Y \rangle - f(X) \right) = \sup_{X \in \mathbb{S}^n_{++}} g(X, Y)$$

$$\nabla_X g(X, Y) = \nabla \langle X, Y \rangle - \nabla f(X) = Y + X^{-\top} = 0$$
$$X = -Y^{-\top}$$

Отсюда получаем dom $f^* = \{Y: \ -Y^{-\top} \in \mathbb{S}^n_{++}\} = \mathbb{S}^n_{--}.$

$$f^*(Y) = \langle X, Y \rangle - f(X) = \langle -Y^{-\top}, Y \rangle - f(-Y^{-\top}) = -\langle I, I \rangle + \ln \frac{(-1)^n}{\det Y} = -n + \ln \frac{(-1)^n}{\det Y}$$

Ответ: $f^*(Y) = -n + \ln \frac{(-1)^n}{\det Y}$, dom $f^* = \mathbb{S}^n_-$.

2

6.

$$f_{\text{cshub}}(x) = f_{\text{hub}}(\|x\|_2) = \begin{cases} \frac{1}{2} \|x\|_2^2 & \|x\|_2 \leqslant 1\\ \|x\|_2 - \frac{1}{2} & \|x\|_2 > 1 \end{cases}$$

$$\nabla f_{\text{cshub}}(x) = \begin{cases} x & \|x\|_2 \leqslant 1\\ \frac{x}{\|x\|_2} & \|x\|_2 > 1 \end{cases}$$

Покажем, что $f_{\mathrm{cshub}}(x)$ – выпуклая. Для этого воспользуемся дифференциальным критерием выпуклости: $\forall x, y \in \mathbb{R}^n$

$$f(x+y) \geqslant f(x) + \langle \nabla f(x), y \rangle$$

Рассмотрим 4 случая:

• Пусть $||x + y||_2 \le 1$, $||x||_2 \le 1$.

$$f_{\text{cshub}}(x+y) = \frac{1}{2}\langle x+y, \, x+y \rangle = \frac{1}{2} \|x\|_2^2 + \frac{1}{2} \|y\|_2^2 + \langle x, \, y \rangle \geqslant \frac{1}{2} \|x\|_2^2 + \langle x, \, y \rangle = f_{\text{cshub}}(x) + \langle \nabla f_{\text{cshub}}(x), \, y \rangle$$

• Пусть $||x+y||_2 \le 1$, $||x||_2 > 1$. Тогда $\langle x, y \rangle < 0$

$$\forall t \in \mathbb{R} \ \frac{1}{2}t^2 \geqslant t - \frac{1}{2}$$

$$f_{\text{cshub}}(x+y) = \frac{1}{2} \langle x+y, \, x+y \rangle = \frac{1}{2} \|x\|_2^2 + \frac{1}{2} \|y\|_2^2 + \langle x, \, y \rangle \geqslant \|x\|_2 - \frac{1}{2} + \left\langle \frac{x}{\|x\|_2}, \, y \right\rangle = f_{\text{cshub}}(x) + \left\langle \nabla f_{\text{cshub}}(x), \, y \right\rangle$$

• $||x + y||_2 > 1$, $||x||_2 \le 1$

$$f_{\rm cshub}(x+y) = ||x+y||_2 - \frac{1}{2} \ge \frac{1}{2} ||x||_2^2 + \langle x, y \rangle = f_{\rm cshub}(x) + \langle \nabla f_{\rm cshub}(x), y \rangle$$

• $||x+y||_2 > 1$, $||x||_2 > 1$

$$f_{\text{cshub}}(x+y) = ||x+y||_2 - \frac{1}{2} \geqslant ||x||_2 - \frac{1}{2} + \left\langle \frac{x}{||x||_2}, y \right\rangle = f_{\text{cshub}}(x) + \left\langle \nabla f_{\text{cshub}}(x), y \right\rangle$$

Значит $f_{
m cshub}$ – выпуклая функция.

Найдем теперь сопряженную функцию

$$f_{\text{cshub}}^*(y) = \sup_{x \in \mathbb{R}^n} \left(\langle x, y \rangle - f_{\text{cshub}}(x) \right) = \sup_{x \in \mathbb{R}^n} g(x, y)$$
$$\nabla_x g(x, y) = y - \nabla f_{\text{cshub}}(x) = 0$$
$$y = \begin{cases} x & \|x\|_2 \leqslant 1\\ \frac{x}{\|x\|_2} & \|x\|_2 > 1 \end{cases}$$

Отсюда получаем, что $\|y\|_2 \leqslant 1$ при любом x, так как $\left\|\frac{x}{\|x\|_2}\right\|_2 = 1$. Значит dom $f^*(y) = \{y: y \in \mathbb{R}^n, \|y\|_2 \leqslant 1\}$. При этом сама $f^*(y) = \max\left\{\langle y, y \rangle - \frac{1}{2}\|y\|_2^2, \langle y, y \rangle \cdot \|x\|_2 - \|x\|_2 + \frac{1}{2}\right\} = \max\left\{\frac{1}{2}\|y\|_2^2, \frac{1}{2}\right\} = \frac{1}{2}\|y\|_2^2$. Ответ: $f^*(y) = \frac{1}{2}\|y\|_2^2$, dom $f^* = \{y: y \in \mathbb{R}^n, \|y\|_2 \leqslant 1\}$.