8 кл.(алгебра)

Тема уроку:Тотожність $\sqrt{\boldsymbol{a}^2} = |\boldsymbol{a}|$. Рівняння $x^2 = a$

Мета уроку: сформувати в учнів знання про тотожність $\sqrt{a^2} = |a|$ та $\sqrt{a^{2n}} = |a^n|$, вміння застосовувати вивчену властивість для обчислення

значень числових виразів, що містять арифметичний квадратний корінь з числа, а також перетворення буквених виразів; розвивати увагу, логічне мислення, пам'ять; виховувати акуратність, працелюбність, дисциплінованість.

V. Засвоєння нових знань

План викладання нового матеріалу

- 1. Тотожність $\sqrt{a^2} = |a|$.
- 2. Pibhshhh $x^2 = a$

Тотожність
$$\sqrt{a^2} = |a|$$
 та $\sqrt{a^{2n}} = |a^n|$

Доведемо, що за будь-якого значення a виконується рівність $\sqrt{a^2} = |a|$. Доведення

1. $\sqrt{a^2} = |a|$ при будь-якому дійсному числу а має зміст :

$$\sqrt{a^2} = a$$
, якщо $a \ge 0$; $\sqrt{a^2} = -a$, якщо $a < 0$.

2)
$$|a|^2 = a^2$$
, якщо $a \ge 0$, то $|a| = a$

 $|\dot{a}|^2 = a^2$, якщо a < 0, то |a| = -a $|\dot{a}|^2 = (-a)^2 = a^2$. Отже, рівність $\sqrt{a^2} = |a|$ є правильною.

<u>Наприклад</u>, $\sqrt{6^2} = |6| = 6$; $\sqrt{(-6)^2} = |-6| = 6$.

$$\sqrt{7^4} = \sqrt{(7^2)^2} = |7^2| = 7^2 = 49;$$

 $\sqrt{(-7)^4} = \sqrt{(-7^2)^2} = |(-7^2)| = (-7)^2 = 49$ (за властивістю степеня з парним показником)

<u>Приклад</u>. Спростіть вираз $\sqrt{a^2b^2}$, якщо $a \ge 0$, $b \ge 0$.

Розв'язання

$$\sqrt{a^2b^2} = \sqrt{a^2} \cdot \sqrt{b^2} = |a| \cdot |b| = -a \cdot b = -ab$$
.

Дослідження кількості коренів рівняння графічним способом.

Розгляньмо рисунок, на якому зображено параболу $y=x^2$ і пряму y=a.

Розглянемо випадки, якщо a>0; a=0; a<0.

Якщо a>0, то пряма y=a перетинає параболу у двох точках з абсцисами \sqrt{a} і $-\sqrt{a}$. Отже, в цьому випадку рівняння має два корені.

Якщо a=0, то маємо пряму y=0. З параболою в неї одна спільна точка O(0;0). Отже, в цьому випадку рівняння має один корінь.

Якщо a < 0, то пряма y = a не перетинає параболу. Отже, в цьому випадку рівняння коренів не має.

<u>Наприклад</u>, рівняння x^2 = 9 має два корені: 3 і −3, а рівняння x^2 = −25 коренів не має.

2. Розв'язання рівняння $x^2 = a$.

Ми вже побачили, розв'язуючи графічно рівняння $x^2 = a$, що якщо $a \mid 0$, то рівняння має корені, а якщо a > 0, то коренями рівняння $x^2 = a$ є числа \sqrt{a} і $-\sqrt{a}$.

- 3. Висновок про існування арифметичного квадратного кореня з невід'ємного числа. Зауважимо, що до поняття квадратного кореня ми дійшли, розв'язуючи рівняння $x^2 = a$, де $a \mid 0$. Корені цього рівняння числа, кожне з яких є квадратним коренем з числа a. Графічно ми переконалися, що коли відоме a ($a \mid 0$), то ми завжди знайдемо відповідне значення x.
 - 4. Приклади розв'язування вправ.

<u>Приклад 1</u>. Розв'яжіть рівняння $3x^2 - 18 = 0$.

Розв'язання

$$3x^2 - 18 = 0$$
; $3x^2 = 18$; $x^2 = 6$; $x = \sqrt{6}$ and $x = -\sqrt{6}$.

Відповідь: -√6; √6.

598. Знайдіть значення виразу:

1)
$$(-\sqrt{7})^2$$

2)
$$\sqrt{11} \cdot \sqrt{11}$$
;

1)
$$(-\sqrt{7})^2$$
; 2) $\sqrt{11} \cdot \sqrt{11}$; 3) $(\frac{1}{3}\sqrt{3})^2$; 4) $(-2\sqrt{5})^2$;

5)
$$-5\cdot\sqrt{2}\cdot\sqrt{2}$$

6)
$$0.3 \cdot (-\sqrt{10})^2$$

7)
$$\left(\frac{1}{\sqrt{7}}\right)^2$$
;

5)
$$-5 \cdot \sqrt{2} \cdot \sqrt{2}$$
; 6) $0, 3 \cdot (-\sqrt{10})^2$; 7) $\left(\frac{1}{\sqrt{7}}\right)^2$; 8) $\left(-\frac{\sqrt{7}}{2}\right)^2$.

1)
$$(-\sqrt{7})^2 = 7$$
; 2) $\sqrt{11} \cdot \sqrt{11} = 11$; 3) $(\frac{1}{3}\sqrt{3})^2 = (\frac{1}{3})^2 \cdot (\sqrt{3})^2 = \frac{1}{9} \cdot 3 = \frac{1}{3}$

602. Розв'яжіть рівняння:

1)
$$x^2 = 25$$
;

1)
$$x^2 = 25$$
; 2) $x^2 = 0.36$; 3) $x^2 = 121$;

3)
$$x^2 = 121$$
;

1)
$$x^2=25$$

2)
$$x^2=0.36$$

3)
$$x^2 = 121$$

$$x_1=5$$
; $x_2=-5$

$$x^2=25$$
 2) $x^2=0.36$ 3) $x^2=121$ $x_1=5$; $x_2=-5$ $x_1=0.6$; $x_2=-0.6$ $x_1=11$; $x_2=-11$

$$x_1=11; x_2=-1$$

.Домашнє завдання Параграф 16 – опрацювати **№**599, 603

Підручник

599. Обчисліть:

1)
$$(-\sqrt{11})^2$$

2)
$$\sqrt{19} \cdot \sqrt{19}$$

3)
$$(2\sqrt{7})^2$$
;

4)
$$\left(-\frac{1}{4}\sqrt{8}\right)^2$$
;

5)
$$-7 \cdot \sqrt{3} \cdot \sqrt{3}$$
;

6)
$$0, 2 \cdot (-\sqrt{5})^2$$
;

$$\left(\frac{1}{\sqrt{15}}\right)^2$$
;

1)
$$(-\sqrt{11})^2$$
; 2) $\sqrt{19} \cdot \sqrt{19}$; 3) $(2\sqrt{7})^2$; 4) $\left(-\frac{1}{4}\sqrt{8}\right)^2$; 5) $-7 \cdot \sqrt{3} \cdot \sqrt{3}$; 6) $0, 2 \cdot (-\sqrt{5})^2$; 7) $\left(\frac{1}{\sqrt{15}}\right)^2$; 8) $\left(-\frac{\sqrt{10}}{3}\right)^2$.

603. Розв'яжіть рівняння:

1)
$$x^2 = 49$$
;

1)
$$x^2 = 49$$
; 2) $x^2 = 0.16$; 3) $x^2 = 169$;

3)
$$x^2 = 169$$

4)
$$x^2 = -4$$
;

5)
$$x^2 = 5$$
;

4)
$$x^2 = -4$$
; 5) $x^2 = 5$; 6) $x^2 = \frac{9}{16}$.