Table 1. Summary of hypotheses, corresponding specific predictions, and results. We count predictions as fully supported ('yes') when the response is signficant in single-variable tests (Table 4) and included in all top full models and as partially supported ('(yes)') or rejected ('(no)') when the direction of response consistently matched the prediction but the effect was not significant in all models.

		Prediction supported?			
Hypotheses & Specific Predictions	Overall	1966	1977	1999	Results
Tree size and microenvironment					
Larger, taller trees have lower Rt.					
\$Rt\$ decreases with stem diameter (\$DBH\$).	yes	yes	\-	\-	Table 4
\$Rt\$ decreases with height (\$H\$).	yes	yes	\-	(yes)	Tables 4, 5
Trees with more exposed crowns have lower Rt.					
Dominant trees have lowest \$Rt\$.	\-	yes	(yes)	\-	Tables 4, 5
Correcting for \$H\$, dominant trees have lowest \$Rt\$.	(no)	\-	\-	(no)	Tables 4, 5
Small trees (lower root volume) in drier microhabitats have lower Rt.					
There is a negative interactive effect between \$H\$ and topographic wetness index.	\-	\-	\-	\-	Table 4
Species traits					
Species' traits-particularly leaf hydraulic traits-predict Rt.					
Wood density correlates (positively or negatively) to \$Rt\$.	\-	\-	\-	\-	Table 4
Leaf mass per area correlates positively to \$Rt\$.	\-	\-	\- \-	\-	Table 4
Ring-porous species have higher \$Rt\$ than diffuse- or semi-ring- porous.	· \-	yes	(no)	yes	Tables 4, 5
Percent loss leaf area upon desiccation correlates negatively with \$Rt\$.	yes	yes	(yes)	_	Tables 4, 5
Water potential at turgor loss correlates negatively with \$Rt\$.	(yes)	\-	(yes)	(yes)	Tables 4, 5

Table 2. Summary of variables.

variable	symbol	units	description	category	n
Dependent variable					
drought resistance	Rt	-	ratio of growth during drought year to mean growth of the 5 years prior.	-	1596
Independent variables					
drought year	Y	-	year of drought	1966	478
				1977	547
				1999	571
tree size					
diameter breast height	DBH	$^{\mathrm{cm}}$	DBH in drought year	-	all
height	H	\mathbf{m}	estimated H in drought year	-	all
microhabitat					
crown position	CP	-	2018 crown position	dominant (D)	31
				co-dominant (C)	231
				intermediate (I)	224
				suppressed (S)	101
topographic wetness index	TWI	-	steady-state wetness index based on slope and upstream contributing area	-	all
species' traits					
wood density	WD	${ m g~cm^{-3}}$	dry mass of a unit volume of fresh wood	-	all
leaf mass per area	LMA	${ m kg~m^{-2}}$	ratio of leaf dry mass to fresh leaf area	-	all
xylem porosity	XP	-	vessel arrangement in xylem	ring (R)	408
				semi-ring (SR)	31
				diffuse (D)	178
turgor loss point	π_{tlp}	MPa	water potential at which leaves wilt	-	all
percent loss area	PLA_{dry}	%	percent loss of leaf area upon dessication	-	all

Table 3. Overview of analyzed species, their productivity in the plot, numbers and sizes sampled, and traits. Given are DBH mean and range of cored trees, the number of cores represented by each crown position of each species, and mean hydraulic trait measurements.

sp	percent.ANPP	n.cores	meanDBHcm.	rangeDBHcm.	X.RP.	X.PLA	X.LMAfrac.gcm.2	XpitlpMpa.	X.WDfrac.gcm.3
Liriodendron tulipifera (LITU)	47.1	98	368.54	100 - 1004	diffuse	19.56	46.92	-1.92	0.40
Quercus alba (QUAL)	10.7	61	471.51	114 - 791	ring	8.52	75.80	-2.58	0.61
Quercus rubra (QURU)	10.1	69	548.79	110.7 - 1480	ring	11.01	71.13	-2.64	0.62
Quercus velutina (QUVE)	7.8	77	541.38	160.2 - 1142	ring	13.42	48.69	-2.39	0.65
Quercus montana (QUPR)	4.8	59	422.48	105 - 872	ring	11.75	71.77	-2.36	0.61
Fraxinus americana (FRAM)	3.8	62	353.63	64 - 947.3	ring	13.06	43.28	-2.10	0.56
Carya glabra (CAGL)	3.7	31	313.89	98 - 985	ring	21.09	42.76	-2.13	0.62
Juglans nigra (JUNI)	2.1	31	481.42	242 - 870	semi-ring*	24.64	72.13	-2.76	1.09
Carya cordiformis (CACO)	2.0	13	271.87	107 - 615	ring	17.22	45.86	-2.13	0.83
Carya tomentosa (CATO)	2.0	13	209.74	121 - 322.1	ring	16.56	45.36	-2.20	0.83
Fagus grandifolia (FAGR)	1.5	80	235.11	112 - 1072	diffuse	9.45	30.68	-2.57	0.62
Carya ovalis (CAOVL)	1.1	23	352.87	149 - 660	ring	14.80	47.60	-2.48	0.96

^{*}Semi-ring porosity is intermediate between ring and diffuse. We group it with diffuse-porous species for more even division of species between categories.

Table 4. Single-variable tests of hypothesized drivers of drought resistance. Models including each variable were compared to corresponding null models. dAIC is the AICc of the null model minus that of the model including the variable (thus, dAICc>2 indicates that the variable significantly improves the model

			all o	droughts		1966	1977		1999	
variable	category	null model variables	dAICc	coefficients	dAICc	coefficients	$\overline{\mathrm{dAICc}}$	coefficients	dAICc	coefficients
Tree size and micr	coenvironr	nent								
$\ln[\mathrm{DBH}]$		(year)	8.17**	-0.0385	15.32**	-0.0888	-0.87	-0.0214	-1.93	0.0057
$\ln[H]$		(year)	8.17**	-0.0600	15.32**	-0.1383	-0.87	-0.0334	-1.93	0.0089
crown position	D	(year)	-2.96	-0.0461	3.25**	-0.0509	0.66	-0.0759	0.38	-0.0103
(alone)	C		-	0.0000	-	0.0000	-	0.0000	-	0.0000
	I		-	-0.0063	-	0.0732	-	-0.0298	-	-0.0563
	S		-	0.0122	-	0.0526	-	0.0432	-	-0.0483
crown position	D	ln[H] (+year)	0.57	-0.0347	-1.84	-0.0328	-0.23	-0.0730	3.04**	-0.0024
(with height)	C		-	0.0000	-	0.0000	-	0.0000	-	0.0000
	I		-	-0.0425	-	0.0139	-	-0.0388	-	-0.0810
	S		-	-0.0582	-	-0.0662	-	0.0258	-	-0.0956
$\ln[TWI]$		ln[H] (+year)	5.34**	-0.0890	-1.96	-0.0171	5.05**	-0.1404	2.8**	-0.1033
$\ln[TWI]*\ln[H]$		ln[H] + ln[TWI] (+year)	-0.83	0.0797	-1.58	0.0927	-1.47	0.0861	-1.9	0.0414
Species traits										
wood density		ln[H] (+year)	-1.91	-0.0479	-1.24	-0.2089	-1.22	-0.1812	0.22	0.2502
leaf mass per area		ln[H] (+year)	-1.99	0.0003	-1.88	0.0012	-1.76	-0.0013	-2	0.0004
xylem porosity	R	ln[H] (+year)	-0.71	0.0660	2.305**	0.1888	1.399*	-0.1452	3.765**	0.1544
	D/SR	/	-	0.0000	-	0.0000	-	0.0000	-	0.0000
turgor loss point	•	ln[H] (+year)	1.33*	-0.1777	-1.64	-0.1078	1.26*	-0.2500	0.016	-0.1732
percent loss area		ln[H] (+year)	7.17**	-0.0140	9.18**	-0.0249	-0.05	-0.0105	-0.716	-0.0074

 $^{^*}dAICc > 1$: variable qualified for inclusion in full model

^{**}dAICc > 2: statistically signficant, variable qualified for inclusion in full model

Table 5. Summary of top full models for each drought instance. Models are ranked by AICc, and we show all models whose AICc value falls within $1.0~(\mathrm{dAICc} < 1)$ of the best model (bold).

					C	row	n positio	n		xylem	architecture		
drought	dAICc	R2	Intercept	$\ln[H]$	D	С	I	S	$\ln[\mathrm{TWI}]$	D/SR	R	PLA	TLP
all	0.000	0.12	1.077	-0.057	-	-	-	-	-0.086	_	-	-0.012	-0.113
	0.586	0.11	1.365	-0.055	-	-	-	-	-0.086	-	-	-0.013	-
	0.726	0.12	1.220	-0.089	-0.034	0	-0.037	-0.051	-0.079	-	-	-0.012	-0.101
	0.813	0.11	1.481	-0.089	-0.034	0	-0.039	-0.054	-0.079	-	-	-0.014	-
1966	0.000	0.25	1.503	-0.141	-	-	-	-	-	0	0.11	-0.021	-
1977	0.000	0.21	1.136	_					-0.145	0	-0.205	-0.015	-0.13
1911	0.040	0.21		_	_	_	_	_	-0.145 -0.145	0	-0.22	-0.013	-0.15
	0.505	0.21 0.22	4 000	_	-0.069	0	-0.025	0.043	-0.145	0	-0.22	-0.017	-0.143
	0.818	0.22	4 404	_	-0.003	0	-0.025	0.038	-0.137	0	-0.133	-0.014	-0.140
	0.010	0.22	1.401		0.01	J	0.021	0.000	0.100	Ü	0.210	0.011	
1999	0.000	0.23	0.464	_	_	_	_	_	-0.095	0	0.16	_	-0.197
	0.019	0.24	0.725	-0.068	0	0	-0.077	-0.09	-0.084	0	0.167	-	-0.183

Figure 1. Climate and species-level growth responses over our study period, highlighting the three focal drougths (a) and community-wide responses Time series plot (a) shows peak growing season (May-August) climate conditions and residual chronologies for each species. Focal droughts are indicated by dashed lines, and shading indicates the pre-drought period used in calculations of the resistance metric. Figure modified from Helcoski *et al.* (2019). Density plots (b) show the distribution of resistance values for each drought.

Figure 2. Height profiles in growing season climatic conditions, tree heights by crown position, and leaf hydraulic traits The top row shows averages (\pm SD) of daily maxima and minima of (a) wind speed, (b) relative humidity (RH), and (c) air temperature (T_{air}) averaged over each month of the peak growing season (May-August) from 2016-2018. In these plots, heights are slightly offset for visualization purposes. Also shown is (d) 2018 tree heights by canopy position (see Table 2 for codes). In all plots, the dashed horizontal line indicates the 95th percentile of tree heigts in the ForestGEO plot.