Prediction of US election with linear model*

Colin Sihan Yang Lexun Yu Siddharth Gowda October 21, 2024

This paper forecast the winner of the upcoming US presidential election using "poll-of-polls" by building a linear model.

1 Introduction

2 Data

2.1 Overview

2.2 Model

```
\label{eq:candidate_percentage} \begin{aligned} & = -0.218 \times transparency\_score + 0.321 \times pollscore \\ & + 0 \times sample\_size + candidate\_intercept \times candidate\_name\_vector \\ & + 51.371 \end{aligned} \tag{1}
```

From Table 2, candiate name is the biggest factor in terms of support. The name was added to the model to give a baseline not to show any correlation. After that, poll score and transparency score are the biggest factors. These scores are two baselines of how reliable and trustable the pollsters are. The sample size had a coefficient of zero, meaning it had no affect on the model's output.

The model also has a very high R² value in 0.962 Most of this can be attributed to using the canidate name (anwser) as a variable.

Table 1: Coefficents for Multilinear Regression Model

	(1)
(Intercept)	51.371
	(0.787)
$transparency_score$	-0.218
	(0.084)
pollscore	0.321
	(0.308)
$sample_size$	0.000
	(0.000)
answer Kennedy	-43.400
	(0.424)
answerStein	-47.155
	(0.306)
answerTrump	-1.900
	(0.233)
$days_taken_from_election$	-0.018
	(0.004)
Num.Obs.	1386
R2	0.962
R2 Adj.	0.962
AIC	7649.2
BIC	7696.3
Log.Lik.	-3815.596
RMSE	3.80

Table 2: Coefficients for Multilinear Regression Model

$[\mathrm{htbp}]$	
Variable	Coefficient
Intercept	51.371
Transparency Score	-0.218
Poll Score	0.321
Sample Size	0.000
Candidate Name	Varies
Days from Election	Not shown

Figure 1: Multilinear Regression Model Residuals

2.3 Residuals

Based on Figure 1, there appears to be no patterns in the residuals. This means that a linear model like this could be appropriate. However, there does seem to be a big difference in terms of residual variability based on candidate name.

^{*}Code and data are available at: https://github.com/yulexun/uselection.

3 References