

인공지능과 수학적 배경

Linear Regression Multiple variables

◆ Data may have K even M features/attributes (curse of dimensionality).

d=5 variables				
	Size	#Rooms	Age	Price
	x ₍₁₎	x ₍₂₎	x ₍₃₎	y
n data	31	2	6	124
	54	3	12	156

d=3 variables

Prediction function:

$$f_w(x) = w_0 + w_1 x$$

Prediction function:

$$f_w(x_{(1)}, x_{(2)}, x_{(3)}) = w_0(0) + w_0(1) + w_0($$

Notation: $x_{(j)} = j^{th}$ variable of x data

Linear Regression Data matrix X

- Notation:
 - n =number of training data
 - d = number of variables/features, dim(x)
 - $x_i = i^{th}$ training data, size $(x_i) = d \times 1$
 - $x_{(j)} = j^{th}$ feature of training data x, scalar
 - $X = data matrix, size(X) = n \times d$
 - $X_{ij} = x_{i(j)} = j^{th}$ variable of i^{th} training data
- **Example:**

$$x_1 = \begin{bmatrix} 2 \\ 1 \\ 7 \end{bmatrix} \oint_{\mathbf{d}} \mathbf{d} \text{ variables} \qquad X = \begin{bmatrix} -x_1^T - \\ \vdots \\ -x_n^T - \end{bmatrix} \oint_{\mathbf{n} \text{ data}} \mathbf{n} \mathbf{d}$$
 $x_1^T = \begin{bmatrix} 2 & 1 & 7 \end{bmatrix}$
 $n \text{ data}$

 $1 \times d$

All training data in a single matrix (very efficient for linear algebra computations)

Prediction function with dvariables

♦
$$d=1$$
 variable: $f_w(x) = w_0 + w_1 x$

• d variables:
$$f_w(x_{(1)},...,x_{(d)}) = w_{(0)} + w_1x_{(1)} + ... + w_dx_{(d)}$$

Example:
$$d=2$$
 $f_w(x_{(1)},x_{(2)})=w_{(0)}+w_1x_{(1)}+w_dx_{(2)}$

$$f_w(x_{(1)}, x_{(2)}) = -0.3 + 1.2x_{(1)} + 9.3x_{(2)}$$

Linear Regression Vector representation

◆ Define the vectors:

$$x = \begin{bmatrix} 1 \\ x_{(1)} \\ x_{(2)} \\ \vdots \\ x_{(d)} \end{bmatrix}$$
 $w = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ \vdots \\ w_d \end{bmatrix}$ $(d+1) \times 1$ $(d+1) \times 1$

◆ Re-write the prediction function (as vector-vector multiplication):

$$f_w(x) = w_0.1 + w_1 x_{(1)} + ... + w_d x_{(d)}$$

$$= w^T x \quad \text{One line of code}$$

$$1 \times (d+1) \quad (d+1) \times 1$$

f is called multivariate linear regression function.

Gradient descent with d=1 variable

• **Prediction function:**
$$f_w(x) = w_0 + w_1 x$$

• Parameters:
$$w_0, w_1$$

• Loss function:
$$L(w_0, w_1) = \frac{1}{n} \sum_{i=1}^n \left(w_0 + w_1 x_i - y_i \right)^2$$

• Optimization:
$$\min_{w=(w_0,w_1)} L(w_0,w_1)$$

• Gradient descent:
$$w_j \leftarrow w_j - \tau \frac{\partial}{\partial w_j} L(w)$$

Gradient descent with d variables

• Prediction function:
$$f_w(x) = w^T x = w_0 + w_1 x_{(1)} + ... + w_d x_{(d)}$$

• Parameters:
$$w = [w_0, w_1, ..., w_d]$$

• Loss function:
$$L(w) = \frac{1}{n} \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2}$$

• Optimization:
$$\min_{w} L(w)$$

• Gradient descent:
$$w_j \leftarrow w_j - \tau \frac{\partial}{\partial w_j} L(w)$$

Linear Regression Gradient descent equations

• d=1 (one variable):

$$\frac{\partial}{\partial w_j} L(w_0, w_1) = \frac{\partial}{\partial w_j} \left[\frac{1}{n} \sum_{i=1}^n \left(w_0.1 + w_1 x_i - y_i \right)^2 \right]$$

$$w_0 \leftarrow w_0 - \tau \frac{2}{n} \sum_{i=1}^n \left(w_0 + w_1 x_i - y_i \right).1$$

$$w_1 \leftarrow w_1 - \tau \frac{2}{n} \sum_{i=1}^n \left(w_0 + w_1 x_i - y_i \right).x_i$$

♦ *d* variable

$$\frac{\partial}{\partial w_j} L(w) = \frac{\partial}{\partial w_j} \left[\frac{1}{n} \sum_{i=1}^n \left(w_0 + w_1 x_{i(1)} + \dots + w_d x_{i(d)} - y_i \right)^2 \right]$$

Gradient descent equations

• Gradient:

$$\begin{split} \frac{\partial}{\partial w_j} L(w) &= \frac{\partial}{\partial w_j} \left[\begin{array}{l} \frac{1}{n} \sum_{i=1}^n \left(w_0 + w_1 x_{i(1)} + \ldots + w_d x_{i(d)} - y_i \right)^2 \end{array} \right] \\ &= \frac{1}{n} \sum_{i=1}^n \frac{\partial}{\partial w_j} \left[\left(w_0 + w_1 x_{i(1)} + \ldots + w_d x_{i(d)} - y_i \right)^2 \right] \\ &= \frac{2}{n} \sum_{i=1}^n \left(w_0 + w_1 x_{i(1)} + \ldots + w_d x_{i(d)} - y_i \right). \\ &\qquad \qquad \frac{\partial}{\partial w_j} \left(w_0 + w_1 x_{i(1)} + \ldots + w_d x_{i(d)} - y_i \right) \\ &= \frac{2}{n} \sum_{i=1}^n \left(w_0 + w_1 x_{i(1)} + \ldots + w_d x_{i(d)} - y_i \right) x_{i(j)} \end{split}$$

Gradient descent:

$$w_j \leftarrow w_j - \tau \frac{2}{n} \sum_{i=1}^n (w_0 + w_1 x_{i(1)} + \dots + w_d x_{i(d)} - y_i) x_{i(j)}$$

Matrix-vector representation

Vectorize gradient descent scheme:

$$w_{j} \leftarrow w_{j} - \tau \frac{2}{n} \sum_{i=1}^{n} (w_{0} + w_{1}x_{i(1)} + \dots + w_{d}x_{i(d)} - y_{i}) \cdot x_{i(j)}$$

$$w_{j} \leftarrow w_{j} - \tau \frac{2}{n} \sum_{i=1}^{n} X_{ij} \cdot (x_{i}^{T}w - y_{i})$$

$$x_{i} = \begin{bmatrix} 1 \\ x_{i(1)} \\ \vdots \\ x_{i(d)} \end{bmatrix} \quad w = \begin{bmatrix} w_{0} \\ w_{1} \\ w_{2} \\ \vdots \\ w_{d} \end{bmatrix}$$

$$(d+1) \times 1 \begin{bmatrix} x_{i} \\ w_{1} \\ w_{2} \\ \vdots \\ w_{d} \end{bmatrix}$$

$$x_{j} = \begin{bmatrix} x_{1(j)} \\ \vdots \\ x_{n(j)} \end{bmatrix}$$

$$x_{j} = \begin{bmatrix} x_{1(j)} \\ \vdots \\ x_{n(j)} \end{bmatrix}$$

$$x_{j} = \begin{bmatrix} x_{1(j)} \\ \vdots \\ x_{n(j)} \end{bmatrix}$$

$$x_{j} = \begin{bmatrix} x_{1(j)} \\ \vdots \\ x_{n(j)} \end{bmatrix}$$

$$x_{j} = \begin{bmatrix} x_{1(j)} \\ \vdots \\ x_{n(j)} \end{bmatrix}$$

$$x_{j} = \begin{bmatrix} y_{1} \\ \vdots \\ y_{n} \end{bmatrix}$$

$$x_{j} = \begin{bmatrix} y_{1} \\ \vdots \\ y_{n} \end{bmatrix}$$

$$x_{j} = \begin{bmatrix} y_{1} \\ \vdots \\ y_{n} \end{bmatrix}$$

$$x_{j} = \begin{bmatrix} y_{1} \\ \vdots \\ y_{n} \end{bmatrix}$$

Linear Regression Beyond linear regression

Example: Housing prices prediction function

◆ Handcrafted prediction function: Domain expertise allows to define better families of predictive regression functions. Example:

$$f_w(x) = w_0 + w_1 \sqrt{x} + w_2 e^{-x}$$

◆ Best non-linear regression technique: Neural networks.

Linear Regression Beyond gradient descent

• Gradient descent is the most generic optimization technique.

$$\min_{w} L(w)$$

$$w_j \leftarrow w_j - \tau \frac{\partial}{\partial w_j} L(w)$$

- **•** But it has limitations:
 - **•** Choice of learning rate τ
 - Convergence speed (even with optimal τ)

Linear Regression Beyond gradient descent

- **◆** We can leverage some mathematical properties to speed up the optimization.
 - Prediction function is linear:

$$f_w(x) = w^T x = w_0 + w_1 x_{(1)} + \dots + w_d x_{(d)}$$

Loss function is convex (quadratic):

$$L(w) = \frac{1}{n} \sum_{i=1}^{n} \left(f_w(x_i) - y_i \right)^2$$

Linear Regression Normal equation for *d*=1 and *n*=1

◆ Normal equation: Solution of mean square error loss

$$\min_{w} \left\{ L(w) = (wx - y)^2 \right\}$$

◆ The minimum is obtained when the gradient/slope is zero:

$$\frac{\partial}{\partial w}L(w) = 0$$

$$\frac{\partial}{\partial w}(wx-y)^2=2x(wx-y)=0$$
 \Rightarrow $w=x^{-1}y$ One line of code Solution

Normal equation for *d*=1 and *n* data

Loss L:
$$L(w) = \frac{1}{n} \sum_{i=1}^{n} (wx_i - y_i)^2$$

• Gradient of the loss L w.r.t. w:

$$\frac{\partial}{\partial w}L(w) = 0 \implies \min_{w} L(w)$$

$$\frac{\partial}{\partial w} \left[\frac{1}{n} \sum_{i=1}^{n} \left(wx_{i} - y_{i}\right)^{2}\right] = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial}{\partial w} \left[\left(wx_{i} - y_{i}\right)^{2}\right]$$

$$= \frac{2}{n} \sum_{i=1}^{n} \left(wx_{i} - y_{i}\right) \frac{\partial}{\partial w} \left(wx_{i} - y_{i}\right)$$

$$= \frac{2}{n} \sum_{i=1}^{n} \left(wx_{i} - y_{i}\right) x_{i}$$

$$= \frac{2}{n} w \sum_{i=1}^{n} x_{i}^{2} - \frac{2}{n} \sum_{i=1}^{n} y_{i} x_{i}$$

$$= 0 \Rightarrow w = \frac{\sum_{i=1}^{n} y_{i} x_{i}}{\sum_{i=1}^{n} x_{i}^{2}}$$
Solution

Linear Regression Vectorization

CAU

\bullet Loss L:

$$L(w) = \frac{1}{n} \sum_{i=1}^{n} \left(wx_i - y_i \right)^2 \qquad x = \begin{bmatrix} \vdots \\ x_n \end{bmatrix}$$

$$= \frac{1}{n} \underbrace{\left(wx - y \right)^T \left(wx - y \right)}_{\mathbf{1} \mathbf{x} \mathbf{n} \mathbf{n} \mathbf{x} \mathbf{1}} \qquad y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$

$$y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$

Linear Regression Vectorization

• Gradient of the loss L w.r.t. w:

$$\frac{\partial}{\partial w}L(w) = 0 \implies \min_{w} L(w)$$

$$\frac{\partial}{\partial w} \left[\frac{1}{n} (wx - y)^T (wx - y) \right] = \frac{1}{n} \frac{\partial}{\partial w} \left[(wx^T - y^T) (wx - y) \right]$$

$$= \frac{2}{n} x^T (wx - y)$$

$$= \frac{2}{n} (wx^T x - x^T y)$$

$$= 0 \Rightarrow w = (x^T x)^{-1} x^T y \text{ One line of code}$$

Normal equation for d features and n data

 \bullet Loss L:

$$L(w_0, ..., w_d) = \frac{1}{n} \sum_{i=1}^{n} \left(w_0 + w_1 x_{i(1)} + ... + w_d x_{i(d)} - y_i \right)^2$$

◆ Gradient of the loss *L* w.r.t. *w*:

$$\frac{\partial}{\partial w_j} L(w_0, ..., w_d) = 0 \quad \forall j$$

$$\begin{split} \frac{\partial}{\partial w_j}L(w) &= \frac{\partial}{\partial w_j} \Big[\frac{1}{n}\sum_{i=1}^n \ \Big(w_0 + w_1x_{i(1)} + \ldots + w_dx_{i(d)} - y_i\Big)^2\Big] \\ &= \frac{2}{n}\sum_{i=1}^n \ \Big(w_0 + w_1x_{i(1)} + \ldots + w_dx_{i(d)} - y_i\Big)x_{i(j)} \\ &= 0 \Rightarrow w_j = \frac{\sum_{k \neq j}\sum_i w_kx_{i(k)}x_{i(j)}}{\sum_i x_{i(j)}^2} \quad \text{with} \ \ x_{i(0)} = 1 \\ & \quad \text{Solution} \end{split}$$

Linear Regression Vectorization

CAU

\bullet Loss L:

$$L(w_0, ..., w_d) = \frac{1}{n} \sum_{i=1}^n \left(w_0 + w_1 x_{i(1)} + ... + w_d x_{i(d)} - y_i \right)^2$$

$$L(w) = \frac{1}{n} \sum_{i=1}^n \left(x_i^T w - y_i \right)^2$$

$$L(w) = \frac{1}{n} \left(Xw - y \right)^T \left(Xw - y \right)$$

with
$$x_{i(0)} = 1$$

Data matrix

Linear Regression Vectorization

Gradient of the loss L w.r.t. w:

$$\frac{\partial}{\partial w}L(w) = \frac{1}{n}\frac{\partial}{\partial w}\left[\left(Xw - y\right)^T \left(Xw - y\right)\right]$$

$$= \frac{1}{n}\frac{\partial}{\partial w}\left[\left(w^T X^T - y^T\right) \left(Xw - y\right)\right]$$

$$= \frac{2}{n}X^T \left(Xw - y\right)$$

$$= \frac{2}{n}\left(X^T Xw - X^T y\right)$$

$$= 0 \Rightarrow w = (X^T X)^{-1}X^T y$$

One line of code