

## SGLang x Wave

**The Wave Team** 



#### **Overview**

- Brief Introduction to Wave DSL
- Comparison to other DSLs
- Wave kernels in SGLang
- Vanilla Attention Example
- Performance Results
- Coming Soon to SGLang

#### **Brief Introduction to Wave DSL**

- Experimental DSL for high performance machine learning (less than a year old)
- Key project goals are to enable:
  - Easy implementation of new algorithms
    - a) Python-based DSL
  - b) Leverages MLIR & LLVM for code generation so that don't need new hand-written implementations for different operators
    - c) Has print support (breakpoint support and visualization planned in future releases)
    - d) Has support for distributed kernels (single-node)
  - Quick turnaround on performance optimizations
  - a) Exposes shared memory, MMA variants, auto-tuning knobs
  - b) Compiler supports range of optimizations
  - c) Lower-level user control can also be exposed
  - Initial focus on GEMM, Attention & Convolutions
  - Currently supports CDNA GPUs (MI25x, MI30x, MI35x)



## Comparison to other DSLs

|                           | Wave DSL                                          | CuTe DSL           |
|---------------------------|---------------------------------------------------|--------------------|
| DSL Language              | Python                                            | Python             |
| Layout Control            | Symbolic Expressions                              | Layout Algebra     |
| GPU Partitioning Strategy | Explicit through symbolic variables & constraints | Implicit in Kernel |
| Performance Optimizations | Compiler optimizations & User-<br>specified       | User-specified     |
| Debugging Support         | Print supported                                   | Print supported    |
| Distributed Kernels       | Support for single-node                           | None               |

## **Wave Kernels in SGLang**

- Thank you to Sglang team & Hai for your continued support!
- Recently merged (<a href="https://github.com/sgl-project/sglang/pull/8660">https://github.com/sgl-project/sglang/pull/8660</a>)
- Enable by using –attention-backend=wave
- Currently supporting following attention types:
  - Prefill Attention
  - Decode Attention
  - Extend Attention

```
@wave(constraints)
def attention(
   query: Memory[B, M, H, K1, GLOBAL_ADDRESS_SPACE, f16],
   key: Memory[B, K2, H, K1, SHARED_ADDRESS_SPACE, f16],
   value: Memory[B, K2, H, N, SHARED_ADDRESS_SPACE, f16],
   output: Memory[B, M, H, N, GLOBAL_ADDRESS_SPACE, f32],
):
```

Distribution strategy specified by constraints on symbolic dimensions

Inputs are specified in terms of symbols and wave decorator

```
c_{reg} = Register[B, N, M, f32](0.0)
init_sum = Register[B, M, f32](0.0)
init_max = Register[B, M, f32](-1e6)
qk_scaling = Register[B, M, K2, f32](scale)
@iterate(K2, init_args=[init_max, init_sum, c_reg])
def loop(partial_max: Register[B, M, f32], partial_sum: Register[B, M, f32], acc: Register[B, N, M, f32],):
    imm_reg = Register[B, K2, M, f32](0.0)
    q_reg = read(q)
    k reg = read(k)
    inner_acc = mma(k_reg, q_reg, imm_reg, mfma_variant[0])
    x_j = permute(inner_acc, target_shape=[B, M, K2])
    x_j *= qk_scaling
    m_j = max(x_j, partial_max, dim=K2)
    e_delta_max = exp2(partial_max - m_j)
    e_{delta} = exp2(x_j - m_j)
    e_init = partial_sum * e_delta_max
    d_j = sum(e_delta, e_init, dim=K2)
    imm_f16 = cast(e_delta, f16)
                                                           Computation graph expressed without explicit indexing
    v_reg = read(v, mapping=v_mapping)
   new_acc = acc * e_delta_max
    acc = mma(v_reg, imm_f16, new_acc)
    return m_j, d_j, acc
res_max, res_sum, res_mm = repeat
reciprocal_sum = reciprocal(res_sum)
res = res_mm * reciprocal_sum
write(res, c, mapping=mapping)
```

## Flash Attention Example

- Adding new variants
  - Insert into computation graph while maintaining the same distribution strategy
- Performance Tuning
  - Tile sizes are exposed in constraints and can be modified
  - Compiler provides several additional flags for performance such as multi-buffering, scheduling, coalescing loads, swizzling for bank conflicts & more (these can be specified in the WaveCompileOptions before invoking wave\_compile. Examples: waves\_per\_eu which is an LLVM optimization hint, use\_fast\_math, etc.)
  - If even more control is required, can export MLIR Vector Dialect IR that can be hand-modified and fed back into the compiler for a closed-loop with the profiling tools



## Performance Results – GEMM (TFLOP/s)

- Hardware:
  - AMD Instinct MI300X (gfx942)
- Software:
  - wave-lang v1.0.2
  - torch v2.7.1
  - ROCm user-space version 6.4.2-120
  - ROCk driver version 6.8.0-65-generic



#### **Performance Results - Attention**

#### Vanilla Attention

- Hardware:
  - AMD Instinct MI300X (gfx942)
- Software:
  - wave-lang v1.0.2
  - torch v2.7.1
  - ROCm user-space version 6.4.2-120
  - ROCk driver version 6.8.0-65-generic



## **Coming Soon to SGLang**

- Speculative Decoding Kernels
- Mixture of Experts Kernels
- MI35x Performance Optimizations

#### **More Information on Wave DSL**

- Github repo: <a href="https://github.com/iree-org/wave">https://github.com/iree-org/wave</a>
- Documentation: <a href="https://wave-lang.readthedocs.io/en/latest/wave/wave.html">https://wave-lang.readthedocs.io/en/latest/wave/wave.html</a>
- Discord: <a href="https://discord.gg/VnhYNhujjV">https://discord.gg/VnhYNhujjV</a>

#