武汉大学 2021-2022 学年第一学期《线性代数 B》期中考试试卷

- 一、单项选择题(每小题 3 分, 共 15 分)
- (1) 设A, B 均为n 阶方阵, 下列命题正确的是
 - (A) $AB = O \Leftrightarrow A = O \stackrel{\text{deg}}{\otimes} B = O$
- (B) $AB \neq O \Leftrightarrow A \neq O \coprod B \neq O$
 - (C) $AB = O \Rightarrow |A| = 0$ $\overrightarrow{y}|B| = 0$ (D) $AB \neq O \Rightarrow |A| \neq 0$ $AB \neq 0$

则必有

- (A) $\boldsymbol{AP_1P_2} = \boldsymbol{B}$ (B) $\boldsymbol{AP_2P_1} = \boldsymbol{B}$ (C) $\boldsymbol{P_1P_2A} = \boldsymbol{B}$ (D) $\boldsymbol{P_2P_1A} = \boldsymbol{B}$

- (3) 设 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性无关,则_____.
 - (A) $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_4, \alpha_4 + \alpha_1$ 线性无关.
 - (B) $\alpha_1 \alpha_2, \alpha_2 \alpha_2, \alpha_3 \alpha_4, \alpha_4 \alpha_1$ 线性无关.
 - (C) $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_4, \alpha_4 \alpha_1$ 线性无关.
 - (D) $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 \alpha_4, \alpha_4 \alpha_1$ 线性无关.
- (4) $\exists A = \underline{\hspace{1cm}}$ $\forall f = (0,1,-1)^T$ $\exists f = (1,0,2)^T$ $\exists f = (0,1,-1)^T$ $\exists f = (0,1,-1)^T$
 - (A) $\begin{pmatrix} -2,1,1 \end{pmatrix}$ (B) $\begin{pmatrix} 2 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix}$ (C) $\begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \end{pmatrix}$ (D) $\begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix}$
- (5) 设 $A \in m \times n$ 矩阵, Ax = 0 是非齐次线性方程组 Ax = b 的导出组,则下列结论正确的是_
 - (A) 当 Ax = 0 仅有零解时, Ax = b 有唯一解;
 - (B) 当Ax = 0有非零解时,Ax = b有无穷多解;
 - (C) 当 Ax = b 有无穷多解时, Ax = 0 仅有零解;
 - (D) 当 Ax = b 有无穷多解时, Ax = 0 有非零解.
- 二、填空题(每小题 3 分, 共 15 分)
- (2) 若 $\begin{vmatrix} a & b & c \\ d & e & f \\ x & y & z \end{vmatrix} = 5$, $\begin{vmatrix} a & b & c \\ d & e & f \\ \alpha & \beta & \gamma \end{vmatrix} = 6$, 则 $\begin{vmatrix} 3a & 3b & 3c \\ -2d & -2e & -2f \\ 4x + \alpha & 4y + \beta & 4z + \gamma \end{vmatrix} = \underline{\qquad}$.
- (3) 设 A, B 为 n 阶矩阵,|A| = 2, |B| = -3,则 $|2A^*B^{-1}| = ____.$
- (4) 设 $\alpha_1, \alpha_2, \alpha_3$ 是 4 元非齐次线性方程组 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 的 3 个解向量,且 $\mathbf{R}(\mathbf{A}) = 3$, $\alpha_1 = (1.2.3.4)^{\mathrm{T}}$, $\boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3 = (0,1,2,3)^{\mathrm{T}}$, c 表任意常数,则线性方程组 $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}$ 的通解为 $\boldsymbol{x} = \underline{\hspace{1cm}}$

(5)
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 1 & -1 \\ 0 & 1 & a^2 - 1 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} 0 \\ 1 \\ a \end{pmatrix}$, $\mathbf{A}\mathbf{x} = \mathbf{b}$ 有无穷多解,则 $a = \underline{\qquad}$.

三、(10分) 计算行列式

$$D_n = \begin{vmatrix} 1 & 2 & 3 & \cdots & n \\ 1 & x+1 & 3 & \cdots & n \\ 1 & 2 & x+1 & \cdots & n \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & 2 & 3 & \cdots & x+1 \end{vmatrix};$$

四、(10分)解下列矩阵方程:

$$X = AX + B$$
, $\sharp + A = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 1 & 1 \\ -1 & 0 & -1 \end{pmatrix}, B = \begin{pmatrix} 1 & -1 \\ 2 & 0 \\ 5 & -3 \end{pmatrix}$.

五、(10分)设3维列向量

$$\boldsymbol{\alpha}_1 = \begin{pmatrix} \lambda+1 \\ 1 \\ 1 \end{pmatrix}, \boldsymbol{\alpha}_2 = \begin{pmatrix} 1 \\ \lambda+1 \\ 1 \end{pmatrix}, \boldsymbol{\alpha}_3 = \begin{pmatrix} 1 \\ 1 \\ \lambda+1 \end{pmatrix}, \boldsymbol{\beta} = \begin{pmatrix} 0 \\ \lambda \\ \lambda^2 \end{pmatrix},$$

问λ取何值时:

- (1) β 可由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示,且表达式唯一;
- (2) β 可由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示,但表达式不唯一;
- (3) β 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示.

六、 (10 分) 求 向 量 组 $\mathbf{a}_1 = (1,-1,1,3)^{\mathrm{T}}$, $\mathbf{a}_2 = (-1,3,5,1)^{\mathrm{T}}$, $\mathbf{a}_3 = (3,-2,-1,b)^{\mathrm{T}}$, $\mathbf{a}_4 = (-2,6,10,a)^{\mathrm{T}}$, $\mathbf{a}_5 = (4,-1,6,10)^{\mathrm{T}}$ 的秩和一个极大无关组.

七、(10分)设四元齐次线性方程组

(I)
$$\begin{cases} x_1 + x_2 = 0 \\ x_2 - x_4 = 0 \end{cases}$$
.

还知道另一齐次线性方程组(II)的通解为

$$k_{\!1}(0,1,1,0)^{\rm T}\,+k_{\!2}(-1,2,2,1)^{\rm T}$$
 .

求方程组(I)与(II)的公共解.

八、 $(10 \, f)$ 设 A, B 为 n 阶矩阵,且 A + B = AB,证明: A - E = B - E 均可逆,且 AB = BA.

九、 $(10 \, \text{分})$ 设 A 为 $n \times m$ 矩阵,B 为 $m \times n$ 矩阵,其中 n < m,若 AB = E,证明 B 的列向量线性无关.