Ministerul Educației și Cercetării al Republicii Moldova Universitatea Tehnică a Moldovei Facultatea Calculatoare, Informatică și Microelectronică Departamentul Ingineria Software și Automatică

Lucrare individuală

la disciplina "Baze de Date"

Tema: Expresii ale Algebrei Relaționale

Efectuat de: studentul/studenta gr.TI-214 Buza Cătălin

Verificat de: asist.univ. Cebotar Daria

Lucrare individuală la disciplina "Baze de Date"

Tema: Expresii ale Algebrei Relaționale

Sarcina

Fie relațiile r și s definite pe schemele respective R=ABC și S=ABC:

r	\boldsymbol{A}	В	C
	a1	<i>b3</i>	<i>c</i> 2
	<i>a</i> 2	<i>b1</i>	<i>c</i> 2
	a1	<i>b1</i>	c1
	<i>a</i> 2	<i>b</i> 2	<i>c</i> 2
	a1	<i>b</i> 2	<i>c</i> 2
	a1	<i>b</i> 2	c1
	<i>a</i> 2	<i>b1</i>	c1

S	A	B	C
	<i>a</i> 2	<i>b1</i>	<i>c3</i>
	<i>a</i> 2	<i>b</i> 2	c2
	<i>a</i> 2	<i>b1</i>	<i>c</i> 2
	<i>a</i> 2	<i>b</i> 2	<i>c1</i>
	a1	<i>b</i> 2	c1

Să se găsească relația reprezentată de expresia algebrei relaționale

3.
$$\pi_{BC}(\tilde{s} \cap r) > <\sigma_{(C=c3)} \&_{(B=b2)}(\tilde{s} \tilde{r}).$$

Rezolvare

Divizam expresia dată în părți și le rezolvăm pe fiecare aparte:

- 1. $q1 = {}^{\sim}s$
- 2. $q2=(^{\sim}s\cap r)$
- 3. $q3 = \pi_{BC}(^{\sim}s \cap r)$
- **4. q4**= ~r
- 5. $q5=^s$
- 6. $q6 = \sigma_{(C=c3)} \& (B=b2)(^s)^r$
- 7. $q7 = REZ = \pi_{BC}(^{\sim}s \cap r)$) |>< $\sigma_{(C=c3) \& (B=b2)}(^{\sim}s \cap r)$
 - 1) Operația ~s se calculează după formula :

$$^{\sim}$$
s = atup(S)\s

Pentru a calcula atup(S), identificăm domeniile active ale atributelor relației s(ABC):

$$adom(A) = \{a1, a2\}$$

 $adom(B) = \{b1, b2\}$
 $adom(C) = \{c1, c2, c3\}$

Formăm relația atup(S) din valorile domeniilor active /

$$atup(S)=adom(A) \times adom(B) \times adom(C)$$

atup(S)	\boldsymbol{A}	В	\boldsymbol{C}
	a1	<i>b1</i>	<i>c1</i>
	a1	<i>b1</i>	<i>c</i> 2
	a1	<i>b1</i>	<i>c3</i>
	a1	<i>b</i> 2	c1
	a1	<i>b</i> 2	<i>c</i> 2
	a1	<i>b</i> 2	<i>c3</i>
	<i>a</i> 2	<i>b1</i>	c1
	<i>a</i> 2	<i>b1</i>	<i>c</i> 2
	<i>a</i> 2	<i>b1</i>	<i>c3</i>
	<i>a</i> 2	<i>b</i> 2	c1
	<i>a</i> 2	<i>b</i> 2	<i>c</i> 2
	<i>a</i> 2	<i>b</i> 2	<i>c3</i>

Calculăm

$$q1 = \tilde{s} = atup(S) \setminus s$$

$\tilde{s} = atup(S) s$	A	В	\boldsymbol{C}
	a1	<i>b1</i>	c1
	a1	<i>b1</i>	<i>c</i> 2
	a1	<i>b1</i>	<i>c3</i>
	a1	<i>b</i> 2	<i>c</i> 2
	a1	<i>b</i> 2	<i>c3</i>
	<i>a</i> 2	<i>b1</i>	c1
	$\overline{a2}$	<i>b</i> 2	<i>c3</i>

2) Calculăm

$$q2=(^{\sim}s\cap r)$$

$\tilde{s} \cap r$	A	В	C
	al	<i>b1</i>	c1
	a1	<i>b</i> 2	c2
	<i>a</i> 2	<i>b1</i>	c1

3) Calculăm

$$q3 = \pi_{BC}(\tilde{s} \cap r)$$

$\sigma \pi_{BC}(\tilde{s} \cap r)$	В	C
	<i>b1</i>	c1
	<i>b</i> 2	<i>c</i> 2

4) Calculăm

Operația ~s se calculează după formula:

$$^{\sim}r = atup(R) \backslash r$$

Pentru a calcula atup(R), identificăm domeniile active ale atributelor relației R(ABC):

$$adom(A) = \{a1, a2\}$$

 $adom(B) = \{b1, b2, b3\}$
 $adom(C) = \{c1, c2\}$

Formăm relația atup(R) din valorile domeniilor active $atup(R)=adom(A) \times adom(B) \times adom(C)$

atup(R)	\boldsymbol{A}	В	C	
	a1	<i>b1</i>	c1	

al	<i>b1</i>	<i>c</i> 2
al	<i>b</i> 2	<i>c1</i>
a1	<i>b</i> 2	<i>c</i> 2
al	<i>b3</i>	c1
al	<i>b3</i>	<i>c</i> 2
<i>a</i> 2	<i>b1</i>	<i>c1</i>
<i>a</i> 2	<i>b1</i>	<i>c</i> 2
<i>a</i> 2	<i>b</i> 2	c1
<i>a</i> 2	<i>b</i> 2	<i>c</i> 2
<i>a</i> 2	<i>b3</i>	<i>c1</i>
<i>a</i> 2	<i>b3</i>	<i>c</i> 2

Calculăm

$$q4 = r = atup(R) | r$$

$^{\sim}r = atup(R) \ r$	\boldsymbol{A}	B	\boldsymbol{C}
	a1	<i>b1</i>	<i>c</i> 2
	a1	<i>b3</i>	c1
	<i>a</i> 2	<i>b</i> 2	c1
	<i>a</i> 2	<i>b3</i>	c1
	$\overline{a2}$	<i>b</i> 3	<i>c</i> 2

5) Calculam

$q5=^s$			
~s\~r	\boldsymbol{A}	B	\boldsymbol{C}
	al	<i>b1</i>	c1
	al	<i>b1</i>	<i>c3</i>
	a1	<i>b</i> 2	<i>c</i> 2
	a1	<i>b</i> 2	<i>c3</i>
	<i>a</i> 2	<i>b1</i>	c1
	<i>a</i> 2	<i>b</i> 2	<i>c3</i>

Calculam q6 $C=c3$) & $(B=b2)(^{\circ}S^{\circ})$	$C=c3) & (B=b2) (S \ \Gamma)$	A	В	C
		al	<i>b</i> 2	<i>c3</i>
		<i>a</i> 2	<i>h</i> 2	c3

7)Calculam $REZ = \pi_{BC}(\tilde{s} \cap r)$) |>< $\sigma_{(C=c3)} \& (B=b2)(\tilde{s} \tilde{r})$ REZ =Ø

$\pi_{BC}(\tilde{s}\cap r)$	В	C
	<i>b1</i>	c1
	<i>b</i> 2	<i>c</i> 2

$\sigma_{(C=c3) \& (B=b2)}(\ s\ r)$	\boldsymbol{A}	В	\boldsymbol{C}
	a1	<i>b</i> 2	<i>c3</i>
	a2	<i>b</i> 2	<i>c3</i>