Álgebra

Universidad Internacional de Valencia

Máster Universitario en Inteligencia Artificial

02MIAR | Matemáticas:

Matemáticas para la Inteligencia Artificial

Profesor:

Amílcar J. Pérez A.

De

Definición

Un vector real v de dimensión n es una lista ordenada de n números reales:

$$v = (v_1, v_2, \ldots, v_n), \quad v_i \in \mathbb{R}.$$

Se denota por \mathbb{R}^n el conjunto formado por todos los vectores de dimensión n. Por tanto, podemos escribir $v \in \mathbb{R}^n$.

Ejemplos

- 1. $v = (1, -\frac{2}{3}) \in \mathbb{R}^2$.
- 2. $w = (\sqrt{2}, -1.2, \pi) \in \mathbb{R}^3$.

Los vectores en \mathbb{R}^n se pueden representar gráficamente mediante un sistema de coordenadas n dimensional en caso de que $n \leq 3$.

Definición

Dados dos vectores $v, w \in \mathbb{R}^n$, $v = (v_1, v_2, \dots, v_n)$, $w = (w_1, w_2, \dots, w_n)$, definimos su suma componente a componente:

$$v + w = (v_1 + w_1, v_2 + w_2, \dots, v_n + w_n).$$

Definición

Dado un número real λ (un escalar) y un vector $v \in \mathbb{R}^n$, $v = (v_1, v_2, \dots, v_n)$, definimos el producto de un escalar por un vector así:

$$\lambda \cdot \mathbf{v} = \lambda \mathbf{v} = (\lambda \mathbf{v}_1, \lambda \mathbf{v}_2, \dots, \lambda \mathbf{v}_n).$$

Además de la longitud euclídea (noción usual longitud) es posible dar otras definiciones de la **norma** de un vector. Algunas normas importantes son:

► Norma euclídea (o norma 2):

$$||v|| = ||v||_2 = \sqrt{\sum_{i=1}^n v_i^2} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}.$$

Norma 1:

$$||v||_1 = \sum_{i=1}^n |v_i| = |v_1| + |v_2| + \cdots + |v_n|.$$

Norma del máximo:

$$||v||_{\infty} = \max_{1 \le i \le n} |v_i|.$$

Ejemplo

Construimos un modelo computacional para predecir las temperaturas a partir de algunas variables de entrada (input). Supongamos que obtenemos un conjunto de n predicciones con el modelo considerado, almacenadas en un vector:

$$\hat{\mathbf{v}} = (\hat{\mathbf{v}}_1, \hat{\mathbf{v}}_2, \dots, \hat{\mathbf{v}}_n) \in \mathbb{R}^n.$$

Comparamos ahora el vector de predicciones, $\hat{\mathbf{v}}$, con el vector de respuestas reales (observaciones), $\mathbf{v} = (v_1, \dots, v_n)$. Una forma de hacerlo es utilizar alguna norma $\|\cdot\|_*$ sobre la diferencia de los dos vectores:

$$E = \frac{1}{n} \|\hat{\mathbf{v}} - \mathbf{v}\|_*$$

Objetivo: encontrar un algoritmo que minimice E.

El producto escalar entre dos vectores $v, w \in \mathbb{R}^n$ se define como:

$$v\cdot w=\sum_{i=1}^n v_iw_i.$$

Ejemplo

Sean $v, w \in \mathbb{R}^3$, con v = (2, -1, 0) y w = (-3, -2, 1). Entonces

$$v \cdot w = (2, -1, 0) \cdot (-3, -2, 1)$$

= $2 \cdot (-3) + (-1) \cdot (-2) + 0 \cdot 1 = -6 + 2 + 0 = -4$.

Definición

Sean $u, v \in \mathbb{R}^n$. Definimos la **proyección** de u sobre v como

$$\operatorname{Proj}_{v}(u) = \frac{u \cdot v}{v \cdot v} v = \frac{u \cdot v}{\|v\|^{2}} v$$

Definición

Sean $u, v \in \mathbb{R}^n$. Definimos la **ortogonal** de u sobre v como

$$\operatorname{Ort}_{v}(u) = u - \operatorname{Proj}_{v}(u)$$

Definición

Diremos que dos vectores $u, v \in \mathbb{R}^n$ son **ortogonales** si $u \cdot v = 0$.

La definición de ortogonalidad entre dos vectores se corresponde con la noción geométrica de perpendicularidad.

Más concretamente,

$$u \cdot v = ||u|| ||v|| \cos(\widehat{uv}),$$

donde \widehat{uv} es el ángulo que forman los vectores u y v.

De esta expresión se sigue que, siendo $\hat{v} = v/||v||$ el vector unitario en la dirección de v:

$$\mathsf{Proj}_{\mathsf{v}}\left(u\right) = \|u\| \cos(\widehat{uv})\hat{v}$$

Propiedades

Para $u, v, w \in \mathbb{R}^n$ $v \lambda \in \mathbb{R}$:

- $\triangleright u + v = v + u$.
 - \triangleright $\mu \cdot \nu = \nu \cdot \mu$
 - $\triangleright u \cdot (v + w) = u \cdot v + u \cdot w.$
 - $(\lambda u) \cdot v = \lambda (u \cdot v).$
 - $(\lambda u) \cdot v = \lambda (u \cdot v)$

 - $ightharpoonup u \cdot v = 0$ si y sólo si u y v son ortogonales.
 - $\mathbf{v} \cdot \mathbf{u} = \mathbf{v} \cdot \mathsf{Proj}_{\mathbf{v}}(\mathbf{u}).$

Definición

Dados $v_1, v_2, \dots, v_k \in V$, una **combinación lineal** de los k vectores anteriores es cualquier expresión de la forma

$$\lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \ldots + \lambda_k \mathbf{v}_k,$$

 $con \lambda_i \in \mathbb{R}$ para $j = 1, 2, \dots, k$

Definición

Diremos que $v_1, v_2, \dots, v_k \in V$ son linealmente independientes si se cumple que la ecuación

$$\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_k v_k = 0$$

tiene como única solución $\lambda_1 = \lambda_2 = \cdots = \lambda_k = 0$. En caso contrario, se dice que éstos vectores son linealmente dependientes.

Definición

Una **matriz** de tamaño $m \times n$ sobre \mathbb{R} es un conjunto formado por $m \cdot n$ números reales, a_{ij} , $1 \le i \le m$, $1 \le j \le n$, distribuidos en m filas y n columnas de la siguiente forma:

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}.$$

Denotamos por $\mathbb{R}^{m \times n}$ el conjunto de todas las matrices $m \times n$ sobre \mathbb{R} . Una matriz $A \in \mathbb{R}^{m \times n}$ es **cuadrada** si m = n, i.e., si tiene el mismo número de filas que de columnas. $I_n = (\delta_{ij})$ es la matriz identidad $n \times n$.

¡Muchas gracias!

Contacto:

amilcar.perez@professor.universidadviu.com