Managerial Incentives, Financial Innovation, and Risk-Management Policies*

Son Ku Kim[†] Seung Joo Lee[‡] Sheridan Titman[§]

August 14, 2024

Abstract

This paper studies the risk choices of a firm run by an effort and risk-averse manager. By eliminating zero NPV risk, the use of derivatives can improve the ability of firms to efficiently induce from their managers. Because the manager may have incentives to speculate rather than hedge, in some settings the optimal contract restricts the use of derivatives. The benefit of restricting hedging choices depends on the risk aversion of the manager and the level of uncertainty about the firm's risk exposure.

Keywords: Agency, Risk-Management, Hedging

^{*}This paper is developed from our earlier version, "Managerial Incentives and Risk Management Policy" by Kim and Titman (1999). We appreciate Stephen Buser, Kent Daniel, Sudipto Dasgupta, Peter DeMarzo, Scott Gibson, Mark Grinblatt, and Bill Wilhelm for their helpful commemnts on the earlier version. For our new draft, we are grateful to Aydogan Alti, Andres Almazan, Gregory Besharov, Michael Devereux, Nicolae Gârleanu, Thomas Hellmann, Shachar Kariv, Thomas Noe, Chris Shannon, Joel Shapiro, Kathy Yuan, and seminar participants at Berkeley and Oxford for helpful discussions.

[†]Seoul National University (sonkukim@snu.ac.kr)

[‡]Saïd Business School, Oxford University (seung.lee@sbs.ox.ac.uk)

[§]McCombs School of Business, University of Texas at Austin (titman@mail.utexas.edu)

1 Introduction

Corporations spend substantial resources assessing and managing their exposures to various sources of risk. In a setting with complete information and frictionless markets, the Modigliani and Miller theorem holds, and these expenditures do not create value. However, the finance literature identifies a number of market imperfections that provide a rationale for the risk management activities.¹ In particular, the literature focuses on the role of financial constraints and implicitly assumes that the risk management choices are made by value-maximizing rather than self-interested executives.² In contrast, the focus of this paper is on managerial incentive issues, and in particular, risk management choices that are made by self-interested executives.

Our model examines a firm owned by risk neutral shareholders (i.e., the principal) and managed by a manager (i.e., the agent) who is both risk and effort averse. While the manager observes the firm's inherent (i.e., initial) risk exposure, the shareholders only observes the distribution from which the firm's initial exposure is drawn. We assume that this exposure cannot be credibly disclosed to the principal. Indeed, we initially assume that there is no communication between the principal and the agent.³

The shareholders in our model offer a compensation contract that may or may not allow the manager to take positions in the derivatives market. The contract is designed to motivate the manager to expend effort, and if it allows the manager to take derivatives positions, it is designed to induce the manager to hedge rather than speculate. The contract can be contingent on the firm's observed profits (net of the profits or losses from the derivatives transactions), and the realization of the hedgeable risk, both of which are observable. For example, if we view this contracting problem from the perspective of an oil company whose

¹For previous works, see Smith and Stulz (1985), Campbell and Kracaw (1990), and DeMarzo and Duffie (1991, 1995), Froot et al. (1993), Geczy et al. (1997), Leland (1998) among others.

²For the role of financial (e.g., collateral) constraints in risk management activities, see e.g., Rampini and Viswanathan (2010, 2013), Rampini et al. (2014). Since both financing and risk management need collaterals, more financially constrained firms engage in less risk management, and sometimes do not hedge at all. Our framework, in contrast, abstracts from external financing constraints and focus on managerial incentive issues, noting that risk management policies of a firm are chosen by self-interested managers, not the shareholders.

³In Appendix B, we consider a setting in which there is contractible communication between the principal and the agent, i.e., the contract can include the risk exposure disclosed by the agent, as well as the profits and the realization of the hedgeable source of uncertainty. As we show, the problem with full hedging and no communication turns out to be similar to a problem with communication but without hedging. Specifically, in some cases, the optimal allocations achieved in our setting in Section 3, with hedging and no communication, is identical to those achieved in a mechanism design setting where the optimal contract induces the agent to truthfully reveal the firm's initial risk exposure.

profits are determined by the efforts of its CEO, oil prices, hedging and investment choices, and random noise, the CEO's pay may be a function of the profits generated by the firm, and the price of oil.

The use of derivatives in this paper can potentially create value through two channels. The first channel, which is our focus, is that hedging can potentially eliminate the firm's unknown initial exposure to hedgeable risks. By doing so, hedging increases the correlation between reported earnings and managerial effort, which allows the compensation contract to more efficiently induce managerial effort. Following the existing literature, e.g., Smith and Stulz (1985), we also allow for a second channel that arises when negative cash flows are amplified by feedback effects, like bankruptcy costs. As we show, even if this feedback effect is small, allowing for this second channel eliminates an equilibrium indeterminacy in the model.

Despite these two benefits of hedging, shareholders will not always allow managers to take derivative positions. The concern is that the manager, when given the opportunity to trade derivatives, will speculate rather than hedge. Given this possibility, shareholders need to offer a compensation contract that incentivizes the manager to hedge, which is costly. If the cost of inducing the manager to take derivative positions that hedge rather than speculate is higher than the efficiency gains from hedging, derivative transactions will not be allowed.

While asymmetric information about firm's risk exposure is a key feature of our model, as we show, this asymmetry does not always create costs. The cost arising from the asymmetry depends on the curvature of the agent's indirect utility function, which is a composite of the optimal compensation contract under the counterfactual symmetric information case, i.e., when initial risk exposure is also observed by shareholders, and the agent's utility function. When this composite function is concave in output, the agent has an incentive to fully hedge. When this is the case, the inability to communicate the firm's risk exposure results in no efficiency loss. Indeed, the agent's compensation contract and the efficiency of the agency relationship is identical with and without costless communication.

The agent's indirect utility function under symmetric information, however, is not necessarily concave. For example, with power utility, the agent becomes more risk tolerant as income increases, and this implies that the slope of the optimal contract becomes steeper at higher output levels.⁴ This convex contract, combined with the agent's utility, results

⁴Hirshleifer and Suh (1992) characterize some special cases of the agent's utility and the output distribution function that lead to the agent's indirect utility function being convex.

in a convex indirect utility function if the agent's utility function is not too concave, i.e., the agent's risk aversion is not too high. When this is the case, the optimal contract under symmetric information is no longer optimal when the risk exposure of the firm cannot be credibly communicated. This is because the agent offered such a contract will take derivative positions that speculate rather than hedge.

If the manager in the above situation is allowed to take derivative positions, the optimal contract with incomplete information differs from the benchmark symmetric information case because the agent needs to be incentivized to hedge rather than to speculate. As we show, this can be done by making the contract contingent on the realization of hedgeable risks as well as on the hedged profits. The optimal contract in this case penalizes the agent when both profits and hedgeable risk have extreme realizations. More specifically, to induce hedging, the principal penalizes the agent for any realized covariance (both positive and negative) between profits and hedgeable risks. Such a contract can induce the manager to hedge rather than speculate, even if the indirect utility function under the symmetric information is convex in hedged profits. However, it is not costless to alter the contract in this way, and in some situations the firm is better off not allowing the manager to take derivative positions. This depends on the level of uncertainty about the firm's initial risk exposure from the perspective of shareholders, the level of the firm's initial exposure to hedgeable risks, and the magnitude of the feedback effect that can amplify negative outcomes.

While there is the large existing literature that study agency relationships and risk management, we contribute by combining insights from different strands of the literature. Intuitively, hedging creates value in the settings we examine because it allows contracts to be designed that are contingent on a measure of output that is more highly correlated with the agent's effort. In this sense, our analysis is closely related to the seminal Holmström (1979) paper, which shows that the optimal contract is a function of various state variables that can provide information about the agent's effort. Our contribution is that we extend the analysis to the case where the exposure of profits to these state variables is unknown to the principal. Specifically, we consider a setting with asymmetric information about an element of risk that can be affected by the agent's choices (i.e., derivative choices).

It should also be noted that others have examined the optimal contract between a risk neutral principal and a risk averse agent that makes both risk and effort choices, e.g., Hirshleifer and Suh (1992), Sung (1995), Palomino and Prat (2003), DeMarzo et al. (2011), Barron et al. (2020).⁵ The main difference between our paper and these previous papers is

⁵Hébert (2018) assumes that the agent picks his effort and risk-shifting activities by choosing the dis-

that we explicitly consider derivative contracts that can be distinguished from real investments considered in earlier work in two important ways. The first is that the outcome of these contracts are observable, and are not affected by the agent's effort. The outcomes are thus contractible, and can be included in the optimal contract. The second is that exposure to this element of risk is a zero net present value bet, which means that to the extent possible, the agent's exposure to this element of risk should be minimized.

In summary, our model builds on the prior literature that highlights the importance of including state variables as well as output in optimal compensation contracts. However, we are the first to provide a solution to this problem when, in addition to effort, the agent takes a hidden action that influences the relation between the state variable, i.e., hedgeable risk, and the output.⁶

In the risk management literature, our paper is most closely related to papers by De-Marzo and Duffie (1991, 1995), who also point out that with hedging, the firm profits may provide more precise information about managerial inputs. In DeMarzo and Duffie (1991, 1995), hedging allows the owners of the firm to more precisely learn about managerial ability, which increases the value of the option to either continuing or abandoning firm projects. In contrast, in our model the owners are learning about effort, and with hedging, the contract more efficiently elicits better effort. It should also be noted, however, that DeMarzo and Duffie (1991, 1995) ignore the incentive issues with the hedging choice, which is the focus of this paper.

While we believe that we are the first to model the derivative choices of self-interested managers under moral hazard, the idea that these choices may not be made in the interests of shareholders is not new. For example, in Tufano (1996) study of the gold mining industry, he found that managerial incentives were the most important determinant of corporate derivatives choices. Policymakers are also aware of potential incentive problems. For example, during the global financial crisis, Ben Bernanke stated that "compensation practices at some banking organizations have led to misaligned incentives and excessive risk-taking,

tribution of state in a non-parametric way. Under special cost functions (e.g., Kullback-Leibler divergence), debt becomes optimal.

⁶Replacing the agent's original incentive compatibility constraint with its first-order condition, which is called the first-order approach, has been typically adopted in the agency literature. Deriving optimal contracts in our environment turns out to be tricky, as we cannot use the so-called first-order approach, and we make a novel methodological contribution to the literature by deriving optimal contracts based on a methodology that circumvents the first-order approach. For the first-order approach in agency models, see Grossman and Hart (1983), Rogerson (1985), Jewitt (1988), Sinclair-Desgagné (1994), Conlon (2009), Jung and Kim (2015), Jung et al. (2024) among others.

contributing to bank losses and financial instability.". While poorly written incentive contracts are clearly inconsistent with our model, it is possible that contract changes that should have been introduced along with the introduction and growth of derivative contracts were in fact slow to be enacted.

The paper is organized as follows: In Section 2, we present the basic model without a derivative market. In Section 3, we formulate our model with a derivative market. Concluding remarks are provided in Section 5, and the proofs of the Lemmas and Propositions are all given in the Appendix A. We consider cases where the free communication between the principal and the agent is possible, and discuss the optimal truth-telling mechanism in Appendix B. Finally, Appendix C considers a variant of the model with discretionary real investment choices.

2 The Basic Model

We consider a two-person single-period agency model in which a risk-averse agent works for a risk-neutral principal. The principal can be thought of as the firm's shareholders, and the agent can be thought of as the firm's top manager or CEO. Alternatively, we can think of the principal as the CEO and the agent as the head of the firm's one division. Hereafter, we use the terms 'agent' and 'manager' interchangeably.

After his wage contract, which is denoted by $w(\cdot)$, is finalized, the agent chooses two actions, $a_1 \in [0,\infty)$ and $a_d \in (-\infty,+\infty)$. The first action, a_1 , is a productive effort which increases expected output in a way that a high effort generates an output level that first-order stochastically dominates the output level generated by a low effort. The agent's second action, a_d , is his derivative choice. We can think of a_d as the number of forward contracts each of which has zero upfront cost and pays η at the end of the period, where η can, for example, be the difference between the price of oil and its risk neutral expectation.

After the agent chooses a_1 and a_d , the firm's output, x, is realized and publicly observable without cost. Thus, output x can be used in the manager's wage contract. The output is determined not only by the agent's choice of (a_1, a_d) but also by the state of nature, (η, θ) . For simplicity, we assume that the output function exhibits the following additively separable form:

$$x = \phi(a_1) + \sigma\theta + (R - a_d)\eta. \tag{1}$$

⁷Fed press release (2009): https://www.federalreserve.gov/newsevents/pressreleases/bcreg20091022a.htm

The first term, $\phi(a_1)$, is the firm's expected output, which is affected by a_1 but not by a_d . The firm's risk consists of two components, η and θ , where $\eta \sim N(0,1)$ represents one unit of the firm's hedgeable risks. Also, $\theta \sim N(0,1)$ represents one unit of the firm's non-hedgeable risks, where σ denotes the amount of non-hedgeable risks. We assume that η and θ are uncorrelated. As denoted by (1), the firm's total amount of non-hedgeable risk is fixed at σ . However, the firm's hedgeable risks are determined by market variables such as commodity prices, interest rates, and exchange rates, which become publicly observable after the agent chooses both a_1 and a_d . Accordingly, η can also be used in the manager's wage contract if necessary. In (1), R is a random variable with h(R) for its density function, denoting the firm's initial exposure to the hedgeable risks (e.g., the amount of oil underground for a drilling company). The manager can observe the true value of R after the contract is signed but before he chooses a_1 and a_d , whereas, the principal knows only its distribution. We assume that the manager's effort a_1 does not affect the firm's initial exposure to the hedgeable risks, R. However, the firm's final exposure to the hedgeable risks is determined by the manager's transaction a_d in the derivative market. The manager hedges, i.e., reduces the hedgeable risk, as long as $|R - a_d| < |R|$ and minimizes such risk by setting $a_d = R$. On the other hand, the manager speculates in the derivative market if $|R - a_d| > |R|$, and $a_d = 0$ implies that the manager does not trade derivatives. Finally, we assume that the manager's only risk exposure comes from the compensation contract, i.e., he cannot hedge or speculate on his own separate account.

In addition, we make the following assumptions:

Assumption 1. The agent's preferences on wealth and productive effort are additively separable:

$$U(w, a_1, a_d) = u(w) - v(a_1), \quad u' > 0, u'' < 0, \quad v' > 0, v'' > 0,$$

where v is the agent's disutility of exerting a productive effort.

Assumption 1 implies that the agent is risk-averse and effort-averse, and his derivatives choices have no direct effect on the agent's utility.⁹

Assumption 2.
$$\frac{\partial \phi}{\partial a_1}(a_1) \equiv \phi_1(a_1) > 0, \ \frac{\partial^2 \phi}{\partial a_1^2}(a_1) \equiv \phi_{11}(a_1) < 0.$$

⁸In fact, if the relevant derivative market observable is denoted as p, then $\eta = \frac{p-\overline{p}}{\sigma_p^2}$ where \overline{p} is the expected value of p and σ_p^2 is its variance.

⁹For the derivative choice a_d , we assume that a direct hedging cost (e.g., option premium) is negligible compared with the nominal amount of the firm's cash flows. Therefore, we assume away costs for derivative choice a_d .

Assumption 2 indicates that the effort a_1 affects the expected output with the usual property of decreasing marginal productivity.

Assumption 3. The principal suffers a cost (or damage), D, when the firm is financially distressed. For analytical simplicity, we assume that the firm is financially distressed if output x is smaller than the critical level, x_b , and the firm's cost of financial stress, D, is fixed. Therefore, the principal's payoff (or utility) is $x - w(\cdot)$ if $x > x_b$ and $x - w(\cdot) - D$ if $x \le x_b$.

Assumption 3 captures negative feedback effects that arise when firms report very low earnings. These effects include difficulties in in attracting high quality employees strategic partners, and so on. We introduce Assumption 3 in part to be consistent with the existing literature, and also, because it allows us to rule out less intuitive equilibria.¹⁰

2.1 The Benchmark Case

In this subsection, we consider the benchmark case in which the firm's initial exposure to the hedgeable risks, R, is known to the principal as well as the agent and there is no derivative market, i.e., $a_d = 0.11$ Since R and η are commonly known to the principal and the agent, following the 'informativeness principle' of Holmström (1979), the optimal contract should be designed based on $y \equiv x - R\eta = \phi(a_1) + \sigma\theta$.

The optimal wage contract w(y), in this case, is found by solving for the contract that maximizes the combined utilities of the principal and the agent subject to the restriction that the agent's effort a_1 is chosen to maximize the agent's utility given the contract. Thus, the optimization is given by

$$\max_{a_1, w(\cdot)} SW \equiv \phi(a_1) - \int w(y) f(y|a_1) dy + \lambda \left(\int u(w(y)) f(y|a_1) dy - v(a_1) \right) \\
- Pr[x \le x_b|a_1, a_d = 0] D \\
\text{s.t.} \quad (i) \ a_1 \in \underset{a_1'}{\operatorname{arg max}} \int u(w(y)) f(y|a_1') dy - v(a_1'), \ \forall a_1', \\
(ii) \ w(y) \ge k, \ \forall y,$$
(2)

 $^{^{10}}$ As long as D is a decreasing function of x, our main results in this paper will not change qualitatively because the firm's expected cost of financial stress, $Pr[x \le x_b | a_1, a_d] \cdot D$, is a decreasing function of x.

¹¹Assuming that there is no derivative market is equivalent to assuming that the agent is prohibited from trading in the derivatives market. Thus, the introduction of a derivative market later can also be understood as allowing the agent to trade in that market.

where $f(y|a_1)$ denotes a probability density function of $y \sim N\left(\phi(a_1), \sigma^2\right)$ given the agent's effort a_1 , and λ is a welfare weight placed on the agent's utility in the joint benefits, whereas the last term in the joint benefits , $Pr[x \leq x_b|a_1, a_d = 0]D$, denotes the firm's expected cost of financial stress. Note that, since there is no derivative market, the probability of getting into financial distress depends only on a_1 and decreases as a_1 increases due to the first-order stochastic dominance relation of x with respect to a_1 . As shown, the joint benefits are maximized subject to the agent's incentive compatibility constraint, which specifies that the agent chooses the effort that maximizes his utility, and the limited liability constraint, which specifies that the agent should receive at least k, the subsistence level of utility. 12,13

Based on the first-order approach, instead of the optimization in (2), we solve the following alternative:¹⁴

$$\max_{a_1, w(\cdot) \ge k} SW \equiv \phi(a_1) - \int w(y) f(y|a_1) dy + \lambda \left(\int u(w(y)) f(y|a_1) dy - v(a_1) \right) \\
- Pr[x \le x_b | a_1, a_d = 0] D \tag{3}$$
s.t. (i)
$$\int u(w(y)) f_1(y|a_1) dy - v'(a_1) = 0,$$

where we replace the agent's incentive compatibility constraint with its first-order condition and $f_1(y|a_1) \equiv \frac{\partial f(y|a_1')}{\partial a_1'}|_{a_1'=a_1}$.

To find the optimal solution $(a_1^*, w^*(y|a_1^*))$ for the optimization in (3), we first derive an optimal contract for inducing an arbitrarily given action a_1 . Let $w^*(y|a_1)$ be the contract that optimally motivates the agent to choose a particular level of a_1 . Then, by solving the Euler equation of the above program in (3) after fixing a_1 , we derive that $w^*(y|a_1)$ must

 $^{^{12}}$ The optimization in (2) yields a mathematically equivalent solution to the case where a principal maximizes her utility subject to an optimizing agent receiving his reservation utility level: see e.g., Holmström (1979). Our purpose here is to analyze the overall efficiency implication of financial market innovations and thus we choose to fix λ , which is usually an endogenous Lagrange multiplier in the literature.

¹³The limited liability constraint, i.e., $w(y) \ge k$, is introduced to guarantee the existence of the optimal solution for w(y). This condition is needed because we assume that the signal y is normally distributed. For details about this 'unpleasantness', see Mirrlees (1974) and Jewitt et al. (2008).

¹⁴We assume that the first-order approach is valid. Grossman and Hart (1983) and Rogerson (1985) show that MLRP and CDFC are sufficient for the validity of the first-order approach when the signal space is of one dimension. Jewitt (1988) finds less restrictive conditions for the validity of the first-order approach, based on the agent's risk preferences as well as the distribution function of the signal. Sinclair-Desgagné (1994) shows that more general versions of MLRP and CDFC in a multi-dimensional space are sufficient for the validity of the first-order approach when the signal space is of multiple dimensions. For more recent treatments along this line, see Conlon (2009) and Jung and Kim (2015) among others. Recently, Jung et al. (2024) justifies the use of the first-order approach when the technology follows normal distributions, which corresponds to our problem in (2).

satisfy

$$\frac{1}{u'(w^*(y|a_1))} = \lambda + \mu_1^*(a_1) \frac{f_1}{f}(y|a_1), \tag{4}$$

for almost every y for which the solution in (4) satisfies $w^*(y|a_1) \geq k$, and otherwise $w^*(y|a_1) = k$. In (4), $\mu_1^*(a_1)$ denotes the optimized Lagrange multiplier for the agent's incentive compatibility constraint associated with a_1 . Since $y \sim N(\phi(a_1), \sigma^2)$, (4) reduces to:

$$\frac{1}{u'(w^*(y|a_1))} = \lambda + \mu_1^*(a_1) \frac{y - \phi(a_1)}{\sigma^2} \phi_1(a_1).$$
 (5)

Then, the optimized joint benefits associated with a_1 in this case is given by

$$SW^*(a_1) = \phi(a_1) - C^*(a_1) - \lambda v(a_1) - Pr[x \le x_b | a_1, a_d = 0]D, \tag{6}$$

where

$$C^*(a_1) \equiv \int (w^*(y|a_1) - \lambda u(w^*(y|a_1))) f(y|a_1) dy$$
 (7)

represents the efficiency loss in this case compared with the full information case as shown in Kim (1995). In other words, $C^*(a_1)$ measures the agency cost arising from motivating the agent to take a particular action a_1 .

The optimized joint benefits for inducing a_1 in (6) can also be regrouped into two parts such as

$$SW^*(a_1) = EAR^*(a_1) - Pr[x \le x_b | a_1, a_d = 0]D, \tag{8}$$

where

$$EAR^*(a_1) \equiv \int (x - w^*(y|a_1))f(y|a_1)dy + \lambda \left[\int u(w^*(y|a_1))f(y|a_1)dy - v(a_1) \right],$$
 (9)

represents the firm's efficiency which purely comes from the agency relation, in which the agent is to be induced to take a_1 under $w^*(y|a_1)$, whereas, as explained earlier, $Pr[x \le x_b|a_1, a_d = 0]D$ is the firm's expected cost of financial stress given $(a_1, a_d = 0)$.

Finally, the optimal action a_1^* can be found by solving

$$a_1^* \in \underset{a_1}{\arg\max} SW^*(a_1).$$
 (10)

To simplify notation, we use $w^*(y) \equiv w^*(y|a_1^*)$ and $SW^* \equiv SW^*(a_1^*)$.

2.2 When the Principal Does Not Know the Firm's Risk Exposure

In this subsection, we consider the case in which the firm's initial exposure to hedgeable risks, R, is observed by the agent but not by the principal. As in Section 2.1, we also assume that there is no derivative market (i.e., $a_d = 0$), and rule out communication between the principal and the agent, i.e., the agent cannot communicate observed R to the principal. Thus, the compensation contract must be based on (x, η) , i.e., $w = w(x, \eta)$, and the principal's optimization is:

$$\max_{a_1(\cdot),w(\cdot)\geq k} SW^N \equiv \int_R \left[\int_{x,\eta} \left(x - w(x,\eta) \right) g(x,\eta|a_1(R),R) dx d\eta \right] h(R) dR$$

$$+ \lambda \int_R \left(\int_{x,\eta} u(w(x,\eta)) g(x,\eta|a_1(R),R) dx d\eta - v(a_1(R)) \right) h(R) dR$$

$$- \int_R Pr[x \leq x_b|a_1(R),a_d=0] D \cdot h(R) dR$$

$$\text{s.t. } (i) \ a_1(R) \in \arg\max_{a_1} \int_{x,\eta} u(w(x,\eta)) g(x,\eta|a_1,R) dx d\eta - v(a_1), \forall R,$$

$$(11)$$

where

$$g(x, \eta | a_1, R) = \frac{1}{2\pi\sigma} \exp\left(-\frac{1}{2} \left(\frac{(x - \phi(a_1) - R\eta)^2}{\sigma^2} + \eta^2\right)\right)$$
(12)

denotes the probability density function of (x, η) given (a_1, R) when $a_d = 0$.

Let $(a_1^N(R), w^N(x, \eta))$ be the solution for the optimization program in (11). Then, the optimal contract, $w^N(x, \eta)$, can be written as:

$$\frac{1}{u'(w^N(x,\eta))} = \lambda + \int_R \mu_1(R) \left[\frac{g_1(x,\eta|a_1^N(R),R)}{\int_{R'} g(x,\eta|a_1^N(R'),R')h(R')dR'} \right] h(R)dR,$$
 (13)

when $w^N(x,\eta) \ge k$ in (13) and $w^N(x,\eta) = k$ otherwise. In the above equation, $\mu_1(R)$ is the optimized Lagrange multiplier attached to the incentive constraint for a_1 given R.

¹⁵In general, communication between principals and agents are likely to be very costly, especially when the principal is actually composed of multiple shareholders. For a more detailed discussion about communication costs, see Laffont and Martimort (1997). In Appendix B, we study the optimal truth-telling mechanism when communication between the principal and the agent is possible.

We define SW^N as the optimized joint benefits in this case. Thus,

$$SW^{N} \equiv \int_{R} \left[\phi(a_{1}^{N}(R)) - C^{N}(a_{1}^{N}(R)) - \lambda v(a_{1}^{N}(R)) - Pr[x \le x_{b}|a_{1}^{N}(R), a_{d} = 0]D \right] h(R)dR,$$
(14)

where

$$C^{N}(a_{1}^{N}(R)) \equiv \int_{x,\eta} [w^{N}(x,\eta) - \lambda u(w^{N}(x,\eta))] g(x,\eta|a_{1}^{N}(R),R) dx d\eta$$
 (15)

denotes the agency cost arising from inducing $a_1^N(R)$ given a realized value of R.

 SW^N in this case is lower than SW^* of Section 2.1, since R, which is an informative signal about the agent's effort, can no longer be used in the compensation contract. This is summarized in the following Proposition 1.

Proposition 1. When there is no derivative market (i.e., $a_d = 0$) and any communication between the principal and the agent is not possible, the principal's inability to observe the firm's exposure to hedgeable risks, R, lowers welfare, i.e.,

$$SW^N < SW^*$$
.

Intuitively, when the principal observes the firm's initial risk exposure, R, this information can be used for designing a compensation contract which eliminates the influence of the hedgeable risks, i.e., $w = w^*(y \equiv x - R\eta)$. However, if R is not observable and cannot be communicated, this is impossible.

3 When Managers Can Trade Derivatives

We now turn to our original model specification, where the firm's initial exposure to hedgeable risks, R, is not known and cannot be communicated to the principal. However, there is a derivative market and the agent can choose any level of a_d (i.e., a_d is not fixed at 0).

Since the firm's initial exposure to hedgeable risks, R, is assumed to be known only to the agent before he takes (a_1, a_d) , the agent's choice of a_d can be thought of as his hidden

¹⁶As we explained in Section 2.1, this is related to the 'informativeness principle' in Holmström (1979), which shows a signal has a positive value (i.e., should be used in contracts) if it affects the local likelihood ratio.

choice of $b \equiv R - a_d$. Then, the pricipal's optimization program in this case reduces to

$$\max_{a_1,b,w(\cdot)\geq k} SW^o \equiv \int_{x,\eta} (x - w(x,\eta)) g(x,\eta|a_1,b) dx d\eta + \lambda \left[\int_{x,\eta} u(w(x,\eta)) g(x,\eta|a_1,b) dx d\eta - v(a_1) \right]
- Pr[x \leq x_b|a_1,b \equiv R - a_d] D$$
s.t. (i) $a_1 \in \arg\max_{a_1'} \int_{x,\eta} u(w(x,\eta)) g(x,\eta|a_1',b) dx d\eta - v(a_1'), \forall a_1',$
(ii) $b \in \arg\max_{b'} \int_{x,\eta} u(w(x,\eta)) g(x,\eta|a_1,b') dx d\eta, \forall b',$
(16)

where

$$g(x, \eta | a_1, b) = \frac{1}{2\pi\sigma} \exp\left(-\frac{1}{2} \left(\frac{(x - \phi(a_1) - b\eta)^2}{\sigma^2} + \eta^2\right)\right).$$
 (17)

Let $(a_1^o, b^o, w^o(x, \eta))$ be the optimal solution for the above program in (16). To derive the optimal solution, especially the optimal contract, $w^o(x, \eta)$, we take the following steps.

Since the principal can rationally anticipate the agent's choice of $b \equiv R - a_d$ given a wage contract, for analytical simplicity, we start by considering a wage contract based on $z(\hat{b})$ only, i.e., $w(x,\eta) = w(z(\hat{b}))$, where $z(\hat{b}) \equiv x - \hat{b}\eta$ and \hat{b} is the principal's beliefs of the agent's choice of $b \equiv R - a_d$ given the contract. Then, in order for the principal's beliefs to be consistent, it must be that the agent actually chooses a_d satisfying $b \equiv R - a_d = \hat{b}$ given the contract, $w(z(\hat{b}))$.

Note that, since

$$z(\hat{b}) \equiv x - \hat{b}\eta = \phi(a_1) + \left(b - \hat{b}\right)\eta + \sigma\theta,\tag{18}$$

if the agent actually chooses a_d satisfying $b \equiv R - a_d = \hat{b}$ when $w(z(\hat{b}))$ is designed, we have

$$z(\hat{b}) = \phi(a_1) + \sigma\theta = y. \tag{19}$$

This indicates two things. First, as long as it is guaranteed that the agent will actually chooses $b = \hat{b}$ when $w(z(\hat{b}))$ is designed, $w^*(z(\hat{b})|a_1)$, the optimal contract for inducing a certain a_1 based on $z(\hat{b})$, should have a similar form as the contract in (5) of Section 2.1. That is, $w^*(z(\hat{b})|a_1)$ satisfies

$$\frac{1}{u'(w^*(z(\hat{b})|a_1))} = \lambda + \mu_1 \left(a_1 | \hat{b} \right) \frac{z(\hat{b}) - \phi(a_1)}{\sigma^2} \phi_1(a_1), \tag{20}$$

if $w^*(z(\hat{b})|a_1) \geq k$ in (20), and $w^*(z(\hat{b})|a_1) = k$ otherwise. In (20), $\mu_1\left(a_1|\hat{b}\right)$ is the optimized Lagrange multiplier for the incentive constraint for inducing a certain a_1 given \hat{b} .

Second, since $z(\hat{b})$ is independent of \hat{b} if the agent actually chooses $b=\hat{b}$ under $w(z(\hat{b}))$, which \hat{b} to be induced is a matter of indifference as far as maximizing the firm's efficiency from the agency relation is concerned. To see this more precisely, we decompose the joint benefits (i.e., SW^o) into two parts as shown in equations (8) and (9) such as

$$SW^{o}(a_{1}, \hat{b}) = EAR^{o}(a_{1}, \hat{b}) - Pr[x \le x_{b}|a_{1}, \hat{b}]D, \tag{21}$$

where

$$EAR^{o}(a_{1}, \hat{b}) \equiv \int_{x,\eta} (x - w^{*}(z(\hat{b})|a_{1}))g(x, \eta|a_{1}, \hat{b})dxd\eta + \lambda \left[\int_{x,\eta} u(w^{*}(z(\hat{b})|a_{1}))g(x, \eta|a_{1}, \hat{b})dxd\eta - v(a_{1}) \right],$$
(22)

represents the firm's efficiency which purely comes from the agency relation, in which the agent is induced to take a_1 given $b=\hat{b}$ under $w^*(z(\hat{b})|a_1)$. As shown in (19), since $z(\hat{b})$ is independent of \hat{b} , and, as can be seen from (17), since $g(x,\eta|a_1,\hat{b})$ is also independent of \hat{b} , as long as the agent actually takes $b=\hat{b}$ under $w^*(z(\hat{b})|a_1)$ in (20), which \hat{b} to be induced is a matter of indifference in maximizing $EAR^o(a_1,\hat{b})$ for any given a_1 .¹⁷

However, the firm's expected cost of financial stress, $Pr[x \leq x_b | a_1, \hat{b}]D$, will be minimized when $\hat{b}=0$ (i.e., $a_d=R$, corresponding to complete hedging) for any given a_1 . Thus, we obtain that the solution, $(a_1^o, b^o, w^o(x, \eta))$, for the optimization program in (16) should satisfy $b^o=0$ (i.e., $a_d=R$) and $w^o(x,\eta)=w^*(z(0)|a_1^o)$ in (20), where a_1^o satisfies

$$a_1^o \in \arg\max_{a_1} SW^o(a_1, \hat{b} = 0),$$

as long as the agent actually takes b=0 when $w^*(z(0)|a_1^o)$ is designed.

Note that, since $z(0) = x = \phi(a_1) + \sigma\theta = y$ after the agent completely hedges in the derivative market (i.e., $b = b^o = 0$), the optimal contract in this case, $w^*(z(0)|a_1^o)$, reduces to $w^*(x|a_1^o)$ which has the same contractual form as the one in (5) but depends on x instead

¹⁷This issue of the matter of indifference associated with which \hat{b} to be induced will be proven in a more general setting later in Lemma 1.

of $y \equiv x - R\eta$. That is, the optimal contract in this case, $w^*(x|a_1^o)$, satisfies

$$\frac{1}{u'(w^*(x|a_1^o))} = \lambda + \mu_1^*(a_1^o) \frac{x - \phi(a_1^o)}{\sigma^2} \phi_1(a_1^o), \tag{23}$$

if $w^*(x|a_1^o) \ge k$ in (23), and $w^*(x|a_1^o) = k$ otherwise. In (23), $\mu_1^*(a_1^o)$ is the optimized Lagrange multiplier of the incentive constraint for inducing a_1^o .¹⁸

The above discussion about the solution for the above program in (16), i.e., $(a_1^o, b^o = 0, w^o(x, \eta) = w^*(x|a_1^o))$, however, is valid only when the agent *voluntarily* takes b = 0 (i.e., $a_d = R$) when $w^*(x|a_1^o)$ in (23) is designed. Thus, an important question of whether the agent will actually choose b = 0 when $w^*(x|a_1^o)$ in (23) is offered still remains.

Given the optimal contract, $w^*(x|a_1^o)$, the agent's risk behaviors depend on the curvature of his indirect utility $V(\cdot)$ such as

$$V(x) \equiv u(w^*(x|a_1^o)). \tag{24}$$

If V(x) is convex (concave) in x, then the agent wants to raise (reduce) the level of risk embedded in x if possible. In general, the curvature of the agent's indirect utility function V(x) depends on the distribution of random state variables (θ, η) as well as the utility function $u(\cdot)$ itself. In this model, however, since all the state variables are assumed to be normal, the agent's utility function, $u(\cdot)$, mainly determines his risk behaviors. To see how different utility functions affect this curvature differently, we consider the case where the agent has constant relative risk aversion with degree 1-t, where t<1 (i.e., $u(w)=\frac{1}{t}w^t, t<1$). Then, we obtain from (23) that

$$w^*(x|a_1^o) = \left(\lambda + \mu_1^*(a_1^o) \left(\frac{x - \phi(a_1^o)}{\sigma^2}\right) \phi_1(a_1^o)\right)^{\frac{1}{1-t}},\tag{25}$$

and the agent's indirect utility under this wage contract is

$$V(x) \equiv u(w^*(x|a_1^o)) = \frac{1}{t} \left(\lambda + \mu_1^*(a_1^o) \left(\frac{x - \phi(a_1^o)}{\sigma^2} \right) \phi_1(a_1^o) \right)^{\frac{t}{1-t}}.$$
 (26)

The above equation shows that the agent's indirect utility V(x) becomes strictly *convex*

¹⁸Note that a_1^o here can be different from a_1^* defined in optimization (10), since the probability $Pr[x \le x_d|a_1,b]$ is affected by a change from b=R in Section 2.1 to b=0 here.

in x^{19} if $t > \frac{1}{2}$, linear if $t = \frac{1}{2}$, and concave if $t < \frac{1}{2}$ for x satisfying $w^*(x) \ge k$. If we assume $w^*(x) = k$ only for sufficiently low x, as far as the agent's induced risk preferences are concerned, the agent acts as if he is risk-loving if $t > \frac{1}{2}$ (i.e., the agent's relative risk aversion is lower than $\frac{1}{2}$), as if he is risk-neutral if $t = \frac{1}{2}$, and as if he is risk averse if $t < \frac{1}{2}$.

Voluntary hedging case With a concave indirect utility function V(x), the agent has an incentive to minimize the risk of output x. Thus, his optimal strategy is to eliminate the firm's risk exposure, R, by choosing $a_d = R$.²⁰ As a result, $w^*(x|a_1^o)$ in (23) works well as the optimal contract in this case.

In this case, the introduction of a derivative market unambiguously increases social welfare (i.e., $SW^N < SW^o$) via two channels. To see these two channels more precisely, we decompose the changes in welfare by the introduction of a derivative market as follows.

$$SW^{o} - SW^{N} = (SW^{o} - SW^{*}) + (SW^{*} - SW^{N}).$$
(27)

The first term on the right-hand side of equation (27), which represents the welfare change from the benchmark case, is always positive in this case (i.e., $SW^o > SW^*$). The introduction of a derivative market improves on the firm's efficiency by reducing the firm's chance of getting into the financially stressful situation compared with the benchmark case of Section 2.1 (i.e., $Pr[x \le x_b|a_1, R - a_d = 0] < Pr[x \le x_b|a_1, R]$, $\forall a_1$) because it gives the agent the opportunity to hedge completely (i.e., $a_d = R$). Furthermore, the second term on the right-hand side of equation (27), which represents the welfare change to the benchmark case, is also positive in this case (i.e., $SW^* > SW^N$). The agent's voluntary hedging in the derivative market improves on the firm's efficiency from the agency relation by effectively eliminating the principal's informational disadvantage about the firm's risk exposure, R. Actually, the agent's hedging in the derivative market provides the principal with better (i.e., more precise) information about the agent's hidden choice of a_1 compared with when there is no derivative market. It becomes thereby easier for the principal to control the agent's hidden action a_1 .²¹

In sum, the introduction of a derivative market provides hedging opportunities for firms, and thus improves social welfare by reducing their expected cost of financial stress (i.e.,

 $^{^{19}}$ It is widely known in the literature that $\mu_1^*(a_1^o) > 0$. For the proof, see Holmström (1979), Jewitt (1988), Jung and Kim (2015), Jung et al. (2024) among others.

²⁰Since $x = \phi(a_1) + \sigma\theta + (R - a_d)\eta$, the agent can minimize the risk of x by choosing $a_d = R$.

²¹For detailed discussion on the value of information in the agency setting, see Kim (1995).

 $SW^o > SW^*$), which is rather well recognized in the literature as the main benefit of having a hedging opportunity. However, as is explicitly shown in this paper, there is another benefit of hedging in the derivative market, that is, improving on the firm's efficiency from the agency relation by providing the principal with better information about the agent's hidden effort choice a_1 .

This result is summarized in the following Proposition 2.

Proposition 2. When the agent's indirect utility defined as $V(x) = u(w^*(x|a_1^o))$ in (24) is concave in output x, the agent will voluntarily choose $a_d = R$ (i.e., b = 0, complete hedging) in the derivative market given $w^*(x|a_1^o)$, which eliminates the welfare loss that would arise from the principal's informational disadvantage about the firm's risk-exposure R. Thus, we have that the solution for the optimization program in (16), $(a_1^o, b^o, w^o(x, \eta))$, becomes $(a_1^o, 0, w^*(x|a_1^o))$ and

$$SW^N < SW^* < SW^o$$
.

As we discussed above, for the agent with constant relative risk aversion with degree 1-t (i.e., $u(w)=\frac{1}{t}w^t$, t<1), for example, if the agent's preferences show a higher risk aversion than $t=\frac{1}{2}$ (i.e., $t<\frac{1}{2}$), the agent will have a concave indirect utility, V(x), and thereby the above Proposition 2 holds.

Speculation case On the other hand, if the agent's indirect utility $V(x) = u(w^*(x|a_1^o))$ in (24) becomes convex in output x, the agent will chooses $|a_d| = \infty$ (i.e., infinite speculation), given $w^*(x|a_1^o)$. Thus, $w^*(x|a_1^o)$ in (23) can be no longer optimal, and the principal should revise $w^*(x|a_1^o)$ to another contract to restrict the agent's such unlimited speculation. To derive the new optimal contract, $w^o(x,\eta)$, which is different from $w^*(x|a_1^o)$ in this case, we start with the following lemma.

Lemma 1. As far as maximizing only the firm's efficiency from the agency relation is concerned, if $w^o(x,\eta)$ is the optimal contract which induces (a_1^o,b^o) , where $-\infty < b^o < +\infty$, then $w^o(t,\eta)$ inducing (a_1^o,b_1) , where $t \equiv x + (b^o - b_1)\eta$, is also the optimal contract in the sense that

$$EAR^{o}(a_1^o, b^o) = EAR^{t}(a_1^o, b_1),$$

²²As explained earlier, this will be the case, for example, when the agent with constant relative risk aversion with degree 1-t (i.e., $u(w)=\frac{1}{t}w^t, t<1$) has less risk aversion than $\frac{1}{2}$ (i.e., $t>\frac{1}{2}$).

where

$$EAR^{o}(a_{1},b) \equiv \int_{x,\eta} (x - w^{o}(x,\eta))g(x,\eta|a_{1},b)dxd\eta + \lambda \left[\int_{x,\eta} u(w^{o}(x,\eta))g(x,\eta|a_{1},b)dxd\eta - v(a_{1}) \right],$$
(28)

and

$$EAR^{t}(a_{1},b) \equiv \int_{t,\eta} (x - w^{o}(t,\eta))g(t,\eta|a_{1},b)dtd\eta + \lambda \left[\int_{t,\eta} u(w^{o}(t,\eta))g(t,\eta|a_{1},b)dtd\eta - v(a_{1}) \right].$$

$$(29)$$

It is already explained that which b to be induced for maximizing only the firm's efficiency from the agency relation (i.e., EAR) by designing $w^*(z(\hat{b})|a_1)$ in (20) is a matter of indifference. Lemma 1 proves this in a more general way. Lemma 1 actually shows that even if $V(x) \equiv u(w^*(x|a_1^o))$ in (24) is convex in x, and thereby the agent prefers speculation to hedging given $w^*(x|a_1^o)$, to which level the principal should limit the agent's risk choice by revising the contract is also a matter of indifference as far as maximizing only the firm's efficiency from the agency relation is concerned.

However, if we take the firm's concern to reduce its expected cost of financial stress into consideration, we can easily see that, as in the previous case in which $V(x) \equiv u(w^*(x|a_1^o))$ is concave in x, the principal should induce the agent to completely hedge (i.e., $b^o = 0$) even in this case. Therefore, given that $V(x) \equiv u(w^*(x|a_1^o))$ in (24) is convex in x, the optimal solution for b for the program in (16) will be 0 (i.e., $b^o = 0$), and the new optimal contract, $w^o(x,\eta)$, inducing the agent to take $(a_1^o,b=0)$ must solve the following optimization problem:

$$\max_{w(\cdot) \ge k} SW^{o} \equiv \int_{x,\eta} (x - w(x,\eta)) g(x,\eta | a_{1}^{o}, b = 0) dx d\eta + \lambda \left[\int_{x,\eta} u(w(x,\eta)) g(x,\eta | a_{1}^{o}, b = 0) dx d\eta - v(a_{1}^{o}) \right] \\
- Pr[x \le x_{b} | a_{1}^{o}, b = 0] \cdot D \\
\text{s.t. } (i) \int_{x,\eta} u(w(x,\eta)) g_{1}(x,\eta | a_{1}^{o}, b = 0) dx d\eta - v'(a_{1}^{o}) = 0, \\
(ii) b = 0 \in \arg\max_{b} \int_{x,\eta} u(w(x,\eta)) g(x,\eta | a_{1}^{o}, b) dx d\eta, \forall b. \tag{30}$$

The optimization program in (30) takes *optimal* a_1^o as given, and relies on the first-order approach for the incentive constraint associated with a_1 , as we do in the optimization

program in (3).²³ Note that, however, we do not use the same first-order approach for the incentive constraint associated with the agent's risk choice b. The following Lemma 2 demonstrates the reason why we cannot use the first-order approach for the incentive constraint associated with b.

Lemma 2. If $w^*(x|a_1^o)$ in (23) is designed, the agent will be indifferent between taking b and taking -b, $\forall b$.

Lemma 2 shows that if $w^*(x|a_1^o)$ in (23) is offered, the agent's expected utility becomes symmetric around b=0 (i.e., $a_d=R$) in the space of b (i.e., in the space of a_d). Since $\int u(w^*(x|a_1^o))g(x,\eta|a_1^o,b)dxd\eta$ is continuous and differentiable in b, Lemma 2 implies that

$$\int u(w^*(x|a_1^o))g_b(x,\eta|a_1^o,b=0)dzd\eta = 0.^{24}$$
(31)

Note that $(a_1^o, w^*(x|a_1^o))$ is the solution for the optimization program in (30), as long as the agent's taking b=0 (complete hedging) is guaranteed under $w^*(x|a_1^o)$. Also, equation (31) shows that $w^*(x|a_1^o)$ always satisfies the first-order condition of constraint (ii) at b=0 regardless of whether $w^*(x|a_1^o)$ actually guarantees the agent's taking b=0 or not. This tells that if we replace the original 'argmax' constraint (ii) in (30) with the its first-order condition, we will always end up with $w^*(x|a_1^o)$ in (23) as the optimal contract. However, since what we consider here is the case in which $V(x) \equiv u(w^*(x|a_1^o))$ is convex in x, the agent will take $b=\pm\infty$ instead of b=0 given $w^*(x|a_1^o)$. This indicates that using the first-order approach for the incentive constraint associated with b cannot be justified in this case.

Thus, by following Grossman and Hart (1983), we replace the incentive constraint for b (i.e., (ii) in (29)) with:

$$\int u(w(x,\eta)) \left(g(x,\eta|a_1^o, b = 0) - g(x,\eta|a_1^o, b) \right) dx d\eta \ge 0, \ \forall b,$$
 (32)

which indicates that the manager's indirect utility is maximized when he takes b=0 (i.e., $a_d=R$).

Since $(a_1^o, b^o, w^o(x, \eta))$ is already defined as the solution for the optimization program in (16), and since we know that the optimal level of b (i.e., b^o) should be 0 (i.e., complete

 $^{^{23}}g_1(x,\eta|a_1,b)$ is defined as a partial derivative of $g(x,\eta|a_1,b)$ with respect to a_1 .

²⁴We also define $g_b(x, \eta | a_1, b)$ as a partial derivative of $g(x, \eta | a_1, b)$ with respect to b.

hedging), the optimal contract in this case, $w^o(x, \eta)$ should solve:²⁵

$$\max_{w(\cdot) \ge k} SW^{o} \equiv \int_{x,\eta} (x - w(x,\eta)) g(x,\eta | a_{1}^{o}, b = 0) dx d\eta + \lambda \left[\int_{x,\eta} u(w(x,\eta)) g(x,\eta | a_{1}^{o}, b = 0) dx d\eta - v(a_{1}^{o}) \right]
- Pr[x \le x_{b} | a_{1}^{o}, b = 0] \cdot D$$
s.t. (i)
$$\int_{x,\eta} u(w(x,\eta)) g_{1}(x,\eta | a_{1}^{o}, b = 0) dx d\eta - v'(a_{1}^{o}) = 0,$$
(ii)
$$\int_{x,\eta} u(w(x,\eta)) (g(x,\eta | a_{1}^{o}, b = 0) - g(x,\eta | a_{1}^{o}, b)) dx d\eta \ge 0, \, \forall b.$$
(33)

The Euler equation of the above program in (33) yields the optimal contract, $w^o(x, \eta)$, that satisfies

$$\frac{1}{u'(w^o(x,\eta))} = \lambda + \mu_1^o(a_1^o) \frac{x - \phi(a_1^o)}{\sigma^2} \phi_1(a_1^o) + \underbrace{\int \mu_b^o(b) \left(1 - \frac{g(x,\eta|a_1^o,b)}{g(x,\eta|a_1^o,b=0)}\right) db}_{\text{Additional term to (23)}},$$
(34)

for (x,η) satisfying $w^o(x,\eta) \geq k$ in (34) and $w^o(x,\eta) = k$ otherwise. In (34), $\mu_1^o(a_1^o)$ and $\mu_b^o(b)$ are the optimized Lagrange multipliers associated with the first constraint (i.e., (i)) and the second constraint for a particular b (i.e., (ii)), respectively.²⁶

As we formally show in the Appendix A, from equation (34), we can derive the following properties of the optimal contract $w^o(x, \eta)$:

Proposition 3. When the agent's indirect utility $V(x) \equiv u(w^*(x|a_1^o))$ in (24) is convex in output x, the agent should be motivated to hedge completely (i.e., b=0 or $a_d=R$) by a new contract, $w^o(x,\eta)$ in (34), which (i) satisfies $w^o(x,\eta)=w^o(x,-\eta)$ for all x,η ; (ii) penalizes the agent for having a high realization of $(x-\phi(a_1^o))^2\eta^2$, and (iii) for any given output x and $(x-\phi(a_1^o))^2\eta^2$, pays more for a higher η^2 .

Proposition 3 can be understood as follows. Since the agent is induced to choose b=0 by $w^o(x,\eta)$, $x=\phi(a_1^o)+\sigma\theta$ will be generated, which is independent of η . Thus, η is now irrelevant in inducing a_1^o (as x does not depend on η under b=0). Furthermore, since η is symmetrically distributed around 0, we have $w^o(x,\eta)=w^o(x,-\eta)$ for all x to minimize the amount of risk imposed on the agent.

enberger (1969).

²⁵Note that a_1^o here may be different from a_1^o defined in (22) because $w^o(x,\eta)$ here may be different from $w^*(z(0)|a_1^o) \equiv w^*(x|a_1^o)$ included in (22). Yet, we use the same notation a_1^o to avoid notational complexity. ²⁶For general reference about the variational approach to the optimization program in (33), see e.g., Lu-

With output $x = \phi(a_1^o) + b\eta + \sigma\theta$ given a_1^o , b can be expressed as $Cov(x, \eta) \equiv \mathbb{E}((x - \phi(a_1^o))\eta)$. Thus, the agent's derivative choice a_d , or equivalently his choice of the firm's adjusted exposure to hedgeable risks $b = R - a_d$ can be best measured by the covariance between output x and derivative market observable η . If the agent fully hedges (i.e., b = 0), the covariance between output x and derivative market observable η becomes zero, whereas any other $b \neq 0$ generates non-zero covariance.

Thus, by penalizing any (positive or negative) covariance between x and η , the principal can effectively induce full hedging (i.e., b=0) from the agent. In our single period model, any positive or negative sample covariance $\widehat{Cov}=(x-\phi(a_1^o))\eta=b\eta^2+\sigma\theta\eta$, instead of the population covariance is used in a way that a higher $|\widehat{Cov}|$ pays a lower compensation in $w^o(x,\eta)$. More precisely, as shown in the proof in the Appendix A, since the optimization program in (33) is symmetric around b=0, the optimal contract $w^o(x,\eta)$ punishes positive and negative sample covariance $(x-\phi(a_1^o))\eta$ in a symmetric way, i.e., penalizes higher $((x-\phi(a_1^o)\eta)^2)$.

On the other hand, if the sample covariance $\widehat{Cov} = (x - \phi(a_1^o))\eta = b\eta^2 + \sigma\theta\eta$ is high, not because of the agent's speculation (i.e., $b \neq 0$) but from a high level of the realized market observable, $|\eta|$, the principal will take it into account and penalize less in $w^o(x,\eta)$. Actually, given the output level, x, and the sample covariance, \widehat{Cov} , $w^o(x,\eta)$ pays more for a higher $|\eta|$.

Welfare implication Unlike the previous case where $V(x) \equiv u(w^*(x|a_1^o))$ is concave in x, if $V(x) \equiv u(w^*(x|a_1^o))$ is convex in x, however, the social welfare can be lowered by the introduction of a derivative market.

To see how the introduction of the derivative market affects social welfare in this case more precisely, we consider equation (27) here again.

As in the previous case where $V(x) = u(w^*(x|a_1^o))$ is concave in x, the second term on the right-hand side of equation (27), $(SW^* - SW^N)$, is also positive in this case, indicating that there arises the same informational gain from the derivative market.

Such informational gain will be costlessly obtained in the previous case as explained in Proposition 2. However, in this case where $V(x) \equiv u(w^*(x|a_1^o))$ is convex in x, it will be obtained with an extra agency cost since the principal should revise the agent's contract from $w^*(x|a_1^o)$ to $w^o(x,\eta)$ to motivate the agent to choose $a_d=R$ (i.e., b=0). On the other hand, the introduction of a derivative market improves on social welfare by lowering the firm's chance of getting into the financially stressful situation through $a_d=R$ (i.e.,

b = 0) as in the previous case.

Thus, the first term on the right-hand side of equation (27), $(SW^o - SW^*)$, can be positive or negative in this case. Especially, if the extra agency cost for motivating the agent to hedge (i.e., $a_d = R$) by changing the optimal contract from $w^*(x|a_1^o)$ to $w^o(x,\eta)$ dominates the gain from lowering the firm's expected cost of financial stress, $(SW^o - SW^*)$ can be negative, which does not occur in the case where $V(x) \equiv u(w^*(x|a_1^o))$ is concave in x.

Note that SW^N depends on the density function of R, h(R), whereas SW^* does not. This actually indicates that the informational gain from the introduction of a derivative market, $\left(SW^*-SW^N\right)$, depends on σ_R^2 in a way that it decreases as σ_R^2 decreases. It is rather obvious that if the randomness of R (say, σ_R^2) becomes small, then the benefits from knowing R also becomes small, and thus $\left(SW^*-SW^N\right)\to 0$ as $\sigma_R^2\to 0$.

On the other hand, the gain from reducing the firm's expected cost of financial stress (i.e., the positive effect on $(SW^o - SW^*)$) due to the introduction of a derivative market depends crucially on the size of R itself rather than the randomness of R, σ_R^2 , whereas the extra agency cost (i.e., the negative effect on $(SW^o - SW^*)$) by its introduction is independent of both the size of R as well as its variability σ_R^2 . This is mainly because both $w^*(x|a_1^o)$ and $w^o(x,\eta)$ are independent of both R and h(R).²⁷ Actually, when the firm's initial exposure to hedgeable risks, R, is small, the efficiency gain from reducing the firm's expected cost of financial stress becomes small as well.

Consequently, if the firm's initial exposure to hedgeable risks, R, is small, and its randomness (i.e., σ_R^2) is small as well, then it is possible that the introduction of a derivative market lowers social welfare, i.e., $SW^o < SW^N$. In other words, sometimes, banning the agent's access to derivative markets can be welfare improving from the social welfare perspective.

This is summarized in the following proposition.

Proposition 4. When the agent's indirect utility given $w^*(x|a_1^o)$ in equation (23), V(x), is convex in output x, then social welfare can be lowered by the introduction of a derivative market, i.e., $SW^o < SW^N$. This may happen especially when the firm's initial exposure to hedgeable risks, R, is small and its randomness, σ_R^2 , is also small.

²⁷Also, note that it is assumed that there is no hedging cost.

4 Extensions

In this section we briefly discuss two ways in which the model can be extended. We first consider communication between the principal and the agent and describe conditions under which the agent truthfully reveals the firm's risk exposure to the principal. We then consider the case where the agent has discretion over the firm's risky project choice as well as the derivative choice.

Communication between the principal and the agent Appendix B considers the possibility of communication between the principal and the agent about the value of the firm's initial risk exposure, R, that is observed only by the agent. We show that under some conditions, the agent, given the compensation contract that is optimal under symmetric information, will truthfully reveal the firm's risk exposure. These conditions, which are identical to the condition under which the firm fully hedges, illustrates how hedging effectively improves the efficiency of the agency relationship through its informational provision to the principal.

Discretionary project choices Appendix C considers the case where the firm's risk and expected rate of return is endogenous. Specifically, instead of (1) where the firm's amount of non-hedgeable risks, σ , is given, we assume

$$x = \phi(a_1, a_2) + a_2\theta + (R - a_3)\eta, \tag{35}$$

where the agent chooses the amount of the firm's non-hedgeable risks, a_2 . We interpret the agent's second action a_2 as his (risky) project choice and assume that more risky projects have higher expected output, i.e., $\phi_2(a_1, a_2) > 0$. As in (1), a_1 and a_3 denote the agent's effort and derivative choices.

It is interesting to compare the results in Appendix C to the analysis in Section 3 that takes the real investment choice as given. Recall that in Section 2, we start from the benchmark case where R is observed by the principal, which reduces the problem to the canonical principal-agent model (e.g., Holmström (1979)). The agent's indirect utility function under the optimal contract $w^*(x|a_1^o)$ in this benchmark scenario becomes $V(x) \equiv u(w^*(x|a_1^o))$. As we show, (i) if V(x) is concave (convex) in x, then the agent will choose to perfectly hedge (infinitely speculate) when there is a derivatives market and (ii) V(x) is more likely to be concave (convex) when the agent's utility function exhibits higher (lower) risk-aversion.

Therefore, a "less risk-averse" manager is more likely to speculate in a derivative market given the benchmark optimal contract.

In cases with a flexible project choice a_2 , we obtain the opposite result: a "more risk averse" manager tends to speculate infinitely when derivative transaction is allowed. When the agent's risk aversion is sufficiently high, the principal will design a contract to induce the manager to choose a higher project risk level a_2 , to benefit from the positive risk-return trade-off. Such a contract will reward a higher level of risk taking, which can in turn induce the manager to speculate infinitely in the presence of a derivative market.

It can be understood as a side effect of inducing productive project risk-taking (i.e., $\phi_2(a_1,a_2)>0$) through incentive contracts. A contract that induces risk-taking in the real investment choice incentivizes the manager to speculate infinitely when derivative transaction is possible, as he effectively acts as if he is risk-loving under the contract.

5 Conclusion

The academic risk management literature is vast and growing, but to a large extent it ignores issues that are the most relevant to large public firms. In particular, a large part of the literature focuses on smaller financially constrained firms, and does not account for the fact that risk management choices tend to be made by self-interested managers rather than by value-maximizing equity holders.

An important result in the paper is that in some situations asymmetric information about the firm's risk exposure does not result in a loss in welfare. In these situations, an appropriately compensated manager chooses the same hedging choice as would be chosen if the derivative choice was directed by shareholders that are fully informed about the firm's risk exposure. When this is the case, derivative markets contribute to welfare because they effectively eliminate the effect of asymmetric information and allow for contracts that more efficiently elicit effort from the firm's manager. Derivative markets effectively allow the manager to communicate the firm's risk exposure to the shareholders at no cost.

However, this is not always the case. In some situations, the manager's compensation contract must be altered to motivate him to hedge appropriately. In these situations, derivatives markets can still contribute to welfare, but if the required alteration in the compensation contract is too costly, the introduction of a derivative market actually lowers social welfare, i.e., the firm is better off banning the use of derivatives.

While our model most closely resembles the relationship between the top executives of

a corporation and its shareholders, one can also apply the model to describe the relationship between the top executives of a firm and the individuals managing the firm's divisions. In such a setting, the division heads can be interpreted as the agent, who reports to the firm's CEO, who may not observe the risk exposure of the individual divisions. The CEO thus has an incentive to design a contract with its division heads that elicits information about the divisions' risk exposure and simultaneously induces effort.

There are three reasons why information about an exposure to hedgeable risks can be useful for the CEO. The first reason, which we emphasize in our model, is that by taking out the effect of hedgeable risk exposure, the contract can be designed to more efficiently induce effort. The second reason, which is similar to the motivation in DeMarzo and Duffie (1991, 1995), is that a better-informed CEO may be able to better allocate resources to the different divisions. The third, is that by aggregating information from the divisions, the CEO can reveal a more accurate estimate of the firm's total risk exposure to the firm's board of directors, who can use this information to better evaluate and compensate the CEO.

This description of incentives and risk choices of multi-divisional firms can potentially be applied to the financial sector, and can, perhaps, provide insights about what may have gone wrong in the financial crisis. As our model illustrates, designing optimal compensation contracts that optimally elicit both effort and hedging choices can potentially be quite complicated, and in some situations, the firm is better off banning the use of derivatives. Perhaps, it is not surprising that in the 1990s and 2000s, when the use of derivatives was somewhat novel, that individuals in this industry were inadvertently compensated in ways that induced speculation rather than hedging. If such speculation generates spillover costs, as observed in the 2008/2009 global financial crisis, then there are likely policy implications associated with these incentive contracts.²⁸

Although the model is already quite complex, there are a number of possible extensions that may be considered in future work. The first is to consider this problem in a dynamic setting. We have shown that the optimal compensation contract sometimes penalizes the agent for realizing unusually high or low output when the payoff from the derivative contract is either unusually high or low, respectively. We interpret this as penalizing covariance between hedgeable risk and output. Since our model is static, this interpretation might be

²⁸https://www.nytimes.com/2009/10/23/business/23pay.html says that "The Federal Reserve is working to ensure that compensation packages appropriately tie rewards to longer-term performance and do not create undue risk for the firm or the financial system."

a bit loose. In a dynamic model, we can consider explicitly penalizing estimates of the covariance, which can be more or less precise depending on the number of observations and the other sources of noise effecting the firm's output. We conjecture that as the estimate of the covariance becomes more precise, contracting becomes more efficient and the gains from hedging increases.

A second potential extension has to do with uncertainty about the risk aversion of the agent. In our model, the agent's risk aversion plays an important role, because it affects the convexity of the indirect utility function. When the agent's risk aversion is unknown to the principal, it might be difficult to induce all the agents with different levels of risk aversion to take the appropriate project and hedge, and therefore optimal for the principal to restrict the use of derivatives. This extension will be relevant to the financial industry as it attracts individuals who may not be risk averse. Given this, we expect the optimal contracts will include limits on the use of derivatives.

References

- **Barron, Daniel, George Georgiadis, and Jeroen Swinkels**, "Optimal contracts with a risk-taking agent," *Theoretical Economics*, 2020, *15* (2), 715–761.
- **Campbell, Tim S. and William A. Kracaw**, "Corporate Risk Management and the Incentive Effects of Debt," *Journal of Finance*, 1990, 45 (5), 1673–1686.
- **Conlon, John R.**, "Two New Conditions Supporting the First-Order Approach to Multisignal Principal-Agent Problems," *Econometrica*, 2009, 77 (1), 249–278.
- **DeMarzo, Peter and Darrell Duffie**, "Corporate Financial Hedging with Proprietary Information," *Journal of Economic Theory*, 1991, 53, 261–286.
- _ and _ , "Corporate Incentives for Hedging and Hedge Accounting," Review of Financial Studies, 1995, 8, 743–771.
- __, **Dmitry Livdan, and Alexei Tchistyi**, "Risking other people's money : Gambling, limited liability, and optimal incentives," *Working Paper*, 2011.
- **Froot, Kenneth A., David S. Scharfstein, and Jeremy Stein**, "Risk Management: Coordinating Corporate Investment and Financing Policies," *Journal of Finance*, 1993, 48 (5), 1629–1658.
- **Geczy, Christopher, Bernadette A. Minton, and Catherine Schrand**, "Why Firms Use Currency Derivatives," *Journal of Finance*, 1997, 52 (4), 1323–1354.
- **Grossman, Sanford J. and Oliver Hart**, "An Analysis of the Principal-Agent Problem," *Econometrica*, 1983, *51*, 7–45.
- **Hirshleifer, David and Yoon Suh**, "Risk, Managerial Effort, and Project Choice," *Journal of Financial Intermediation*, 1992, 2 (3), 308–345.
- **Holmström, Bengt**, "Moral Hazard and Observability," *The Bell Journal of Economics*, 1979, *10* (1), 74–91.
- **Hébert, Benjamin**, "Moral Hazard and the optimality of debt," *Review of Economic Studies*, 2018, 85 (4), 2214–2252.

- **Jewitt, Ian**, "Justifying the First-Order Approach to Principal-Agent Problems," *Econometrica*, 1988, *56* (5), 1177–1190.
- __, **Ohad Kadan, and Jeroen M. Swinkels**, "Moral hazard with bounded payments," *Journal of Economic Theory*, 2008, *143* (1), 59–82.
- **Jung, Jin Yong and Son Ku Kim**, "Information space conditions for the first-order approach in agency problems," *Journal of Economic Theory*, 2015, *160*, 243–279.
- ____, ___, and Seung Joo Lee, "A Proxy-Contract Based Approach to the First-Order Approach in Agency Models," *Working Paper*, 2024.
- **Kim, Son Ku**, "Efficiency of an Information System in an Agency Model," *Econometrica*, 1995, 63 (1), 89–102.
- _ and Sheridan Titman, "Managerial Incentives and Risk Management Policy," Working Paper, 1999.
- **Laffont, Jean-Jacques and David Martimort**, "Collusion Under Asymmetric Information," *Econometrica*, 1997, 65 (4), 875–911.
- **Leland, Hayne E.**, "Agency Costs, Risk Management, and Capital Structure," *Journal of Finance*, 1998, *53* (4), 1213–1243.
- **Luenberger, D. G.**, Optimization by Vector Space Methods, John Wiley & Sons, Inc. 27, 28, 30, 1969.
- Mirrlees, James A., "Notes on Welfare Economics, Information, and Uncertainty," *Essays on Economic Behavior Under Uncertainty: E. Balch, D. McFadden, and H. Wu, eds., North-Holland, Amsterdam.*, 1974.
- **Palomino, Frederic. and Andrea Prat**, "Risk-taking and optimal contracts for money manegers," *RAND Journal of Economics*, 2003, *34*, 113–137.
- Rampini, Adriano A., Amir Sufi, and S. Viswanathan, "Dynamic risk management," *Journal of Financial Economics*, 2014, 111, 271–296.
- _ and S. Viswanathan, "Collateral, risk management, and the distribution of debt capacity," *Journal of Finance*, 2010, 65, 2293–2322.

- _ **and** _ , "Collateral and capital structure," *Journal of Financial Economics*, 2013, 109, 466–492.
- **Rogerson, William**, "The First Order Approach to Principal-Agent Problem," *Econometrica*, 1985, *53*, 1357–1368.
- **Rothschild, Michael and Joseph E. Stiglitz**, "Increasing Risk I: A Definition," *Journal of Economic Theory*, 1970, 2 (3), 225–243.
- **Sinclair-Desgagné, Bernanrd**, "The First-Order Approach to Multi-Signal Principal-Agent Problems," *Econometrica*, 1994, 62 (2), 459–465.
- **Smith, Clifford W. and Rene M. Stulz**, "The Determinants of Firms' Hedging Policies," *The Journal of Financial and Quantitative Analysis*, 1985, 20 (4), 391–405.
- **Sung, Jaeyoung**, "Linearity with Project Selection and Controllable Diffusion Rate in Continuous-Time Principal-Agent Problems," *The RAND Journal of Economics*, 1995, 26 (5), 720–743.
- **Tufano, Peter**, "Who Manages Risk? An Empirical Examination of Risk Management Practices in the Gold Mining Industry," *The Journal of Finance*, 1996, *51* (4), 1097–1137.

Appendix A Proofs

<u>Proof of Proposition 1</u>: Consider the principal's following *alternative* maximization program:

$$\max_{a_{1}(\cdot),w(\cdot)\geq k} \int_{R} \int_{x,\eta} (x - w(x,R,\eta)) g(x,\eta|a_{1}(R),R) h(R) dx d\eta dR
+ \lambda \int_{R} \left(\int_{x,\eta} u(w(x,R,\eta)) g(x,\eta|a_{1}(R),R) dx d\eta - v(a_{1}(R)) \right) h(R) dR
- \int_{R} Pr\left[x \leq x_{b}|a_{1}(R), a_{d} = 0 \right] D \cdot h(R) dR
\text{s.t. } (i) \int_{x,\eta} u(w(x,R,\eta)) g_{1}(x,\eta|a_{1}(R),R) dx d\eta - v'(a_{1}(R)) = 0, \forall R.$$

Note that the above optimization program is different from the original program in (11) in that the contract here can be written based on the realized value of R, implying that the principal also observes R. If we let the Lagrange multipliers to the incentive constraint be $\mu_1(R)h(R)$, we get the following optimal contractual form:

$$\frac{1}{u'(w(x,R,\eta))} = \lambda + \mu_1(R) \underbrace{\frac{x - R\eta}{\equiv y} - \phi(a_1(R))}_{\equiv y} \phi_1(a_1(R)), \tag{A2}$$

when $w(x, R, \eta) \ge k$. Equation (A2) implies that the optimal contract depends only on $y \equiv x - R\eta$, and it is obvious that the solution in (A1) is $(a_1^*, w^*(y) \equiv w^*(x - R\eta))$. By comparing (A1) with the program in (11) where the principal does not observe R, one can easily see that the set of wage contracts, $\{w(x, R, \eta)\}$, satisfying the incentive constraint for a given action $a_1(R)$ in the above program (A1) always contains the set of wage contracts, $\{w(x, \eta)\}$, satisfying the incentive constraint for the same action in (11). Therefore, we have

$$SW^N \le SW^*. \tag{A3}$$

However, one can easily see that $w^*(y) = w^*(x - R\eta)$, which is a unique solution for the above program (A1), is not in the set of $\{w(x,\eta)\}$. As a result, we finally derive

$$SW^N < SW^*. (A4)$$

Proof of Lemma 1: Since $x = \phi(a_1) + b\eta + \sigma\theta$ for any given (a_1, b) , and $t \equiv x + (b^o - b_1)\eta = \phi(a_1) + (b^o - b_1)\eta + b'\eta + \sigma\theta$ for any given (a_1, b') . We have

x given
$$(a_1, b) = t$$
 given (a_1, b') , whenever $b' = b - (b^o - b_1)$,

which implies that, if $b' = b - (b^o - b_1)$, then density function

$$g(x, \eta | a_1, b) = \frac{1}{2\pi\sigma} \exp\left(-\frac{1}{2} \left(\frac{(x - \phi(a_1) - b\eta)^2}{\sigma^2} + \eta^2\right)\right)$$

is the same as density function

$$g(t, \eta | a_1, b') = \frac{1}{2\pi\sigma} \exp\left(-\frac{1}{2} \left(\frac{(t - \phi(a_1) - (b^o - b_1 + b')\eta)^2}{\sigma^2} + \eta^2 \right) \right)$$
$$= \frac{1}{2\pi\sigma} \exp\left(-\frac{1}{2} \left(\frac{(t - \phi(a_1) - b\eta)^2}{\sigma^2} + \eta^2 \right) \right)$$

where $t = x + (b^o - b_1)\eta$.

Thus, we have

$$\int_{x,\eta} u(w^{o}(x,\eta))g(x,\eta|a_{1},b)dxd\eta = \int_{t,\eta} u(w^{o}(t,\eta))g(t,\eta|a_{1},b'=b-(b^{o}-b_{1}))dtd\eta,$$

for any given (a_1, b) , indicating that if the agent is induced to take (a_1^o, b^o) under $w^o(x, \eta)$, then he will also be induced to take (a_1^o, b_1) under $w^o(t, \eta)$ where $t = x + (b^o - b_1)\eta$.

Furthermore, since

$$\int_{x,\eta} w^{o}(x,\eta)g(x,\eta|a_{1},b)dxd\eta = \int_{t,\eta} w^{o}(t,\eta)g(t,\eta|a_{1},b'=b-(b^{o}-b_{1}))dtd\eta,$$

if $w^o(x, \eta)$ is the optimal contract which maximizes $EAR^o(a_1, b)$ in equation (28) by inducing (a_1^o, b^o) , then $w^o(t, \eta)$, where $t = x + (b^o - b_1)\eta$, equally maximizes $EAR^t(a_1, b)$ in (29) by inducing (a_1^o, b_1) , i.e.,

$$EAR^{o}(a_{1}^{o}, b^{o}) = EAR^{t}(a_{1}^{o}, b_{1}).$$

Proof of Lemma 2: Given that $w^*(x|a_1^o)$ described in (23) is designed, if the agent takes (a_1^o, b) , then his expected utility becomes:

$$\int u(w^*(x|a_1^o))g(x,\eta|a_1^o,b)dxd\eta - v(a_1^o) = \int u(w^*(x|a_1^o))q(x|a_1^o,b,\eta)l(\eta)dxd\eta - v(a_1^o),$$
(A5)

where $q(\cdot)$ denotes the conditional density function of x given (a_1^o,b,η) and $l(\cdot)$ denotes the density function of $\eta \sim N(0,1)$. Now, suppose the agent takes $(a_1^o,-b)$ under $w^*(x|a_1^o)$. Then,

$$\int u(w^*(x|a_1^o))g(x,\eta|a_1^o,-b)dzd\eta - v(a_1^o) = \int u(w^*(x|a_1^o))q(x|a_1^o,-b,\eta)l(\eta)dzd\eta - v(a_1^o).$$
(A6)

Since

$$q(x|a_1^o, b, \eta) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x - \phi(a_1^o) - b\eta)^2}{2\sigma^2}\right),\tag{A7}$$

we have

$$q(x|a_1^o, b, \eta) = q(x|a_1, -b, -\eta).$$
(A8)

Since $\eta \sim N(0,1)$ is symmetrically distributed around 0 and $l(\eta) = l(-\eta)$, $\forall \eta$, and since $w^*(x|a_1^o)$ in (23) is independent of b, we finally have

$$\int u(w^*(x|a_1^o))g(x,\eta|a_1^o,b)dxd\eta - v(a_1^o) = \int u(w^*(x|a_1^o))g(x,\eta|a_1^o,-b)dxd\eta - v(a_1^o),$$
(A9)

implying that, given $w^*(x|a_1^o)$ in (23), the agent is indifferent between taking b and taking -b, $\forall b$.

Proof of Proposition 3: To prove this proposition, we start with the following Lemma 3.

Lemma 3. If the agent's indirect utility $V(x) = u(w^*(x|a_1^o))$ in equation (24) is convex in output x, then the optimal contract $w^o(x,\eta)$ guaranteeing that the agent takes $a_1^o, a_d^o = R$ (i.e., $b^o = 0$), i.e., $w^o(x,\eta)$ in equation (34), must satisfy

Property (1) $\mu_b^o(b) \neq 0$ (> 0) for a positive Borel-measure of b.²

¹The output x is given by $x = \phi(a_1^o) + \sigma\theta + b\eta$ given a_1^o and $b = R - a_d$.

²We already know $\mu_4^o(b) \ge 0$ for every b (almost surely), since it is derived from the inequality constraint at each b.

Property (2) $w^o(x,\eta) = w^o(x,-\eta)$ for all x,η and $\mu_b^o(b) = \mu_b^o(-b)$ for all b.

Proof. Property (1): $\mu_b^o(b) \neq 0$ for a positive Borel-measure of b. Assume $\mu_b^o(b) = 0$, a.s. Then the optimal contract $w^o(x, \eta)$ in (34) can be written as

$$\frac{1}{u'(w^o(x,\eta))} = \lambda + \mu_1^o \frac{x - \phi(a_1^o)}{\sigma^2} \phi_1(a_1^o), \tag{A10}$$

for (x, η) satisfying $w^o(x, \eta) \ge k$ in (A10) and $w^o(x, \eta) = k$, otherwise.

This indicates that $(w^o(x,\eta), \mu_1^o, a_1^o)$ becomes $(w^*(x|a_1^o), \mu_1^*(a_1^o), a_1^o)$ in this case. Since $V(x) \equiv u(w^*(x|a_1^o))$ is convex in x by assumption, the agent will take $b = \pm \infty$ instead of b = 0, which contradicts with the constraint (ii) in (30).

Property (2): $w^o(x,\eta) = w^o(x,-\eta)$ for all x,η and $\mu_4^o(b) = \mu_4^o(-b)$ for all b. We first see:³

$$g(x,\eta|b) = \frac{1}{2\pi\sigma} \exp\left(-\frac{1}{2} \frac{(x - \phi(a_1^o) - b\eta)^2}{\sigma^2} - \frac{1}{2}\eta^2\right),\tag{A11}$$

where

$$\frac{g(x,\eta|b)}{g(x,\eta|b=0)} = \exp\left(\frac{b\eta(x-\phi(a_1^o))}{\sigma^2}\right) \exp\left(-\frac{b^2\eta^2}{2\sigma^2}\right). \tag{A12}$$

From equations (A11), and (A12), we observe that (i) $g(x, -\eta|b=0) = g(x, \eta|b=0)$, and (ii) $g_1(x, -\eta|b=0) = g_1(x, \eta|b=0)$. Also, from (A11), we see that

$$g(x, -\eta|b) = g(x, \eta|-b), \ \forall (x, \eta, b).$$
 (A13)

Our strategy is to prove that: (i) if $w^o(x,\eta)$ is an optimal contract, then $w^o(x,-\eta)$ satisfies all the constraints in (13); (ii) Related to (i), if $w^o(x,\eta)$ is an optimal contract, then $w^o(x,-\eta)$ also becomes an optimal contract; and (iii) $\mu_b^o(-b) = \mu_b^o(b)$ for $\forall b$ at the optimum.

$$\frac{g_1}{g}(x,\eta|a_1,b) = \frac{x - b\eta - \phi(a_1)}{\sigma^2}\phi_1(a_1), \quad \frac{g_b}{g}(x,\eta|a_1,b) = \frac{(x - b\eta - \phi(a_1))\eta}{\sigma^2}.$$

³We suppress a_1^o in $g(x, \eta | a_1^o, b)$ in (31). Note that $g(x, \eta | a_1, b)$ yields the following likelihood ratios:

Step 1. If $w^o(x, \eta)$ is an optimal contract, then $w^o(x, -\eta)$ satisfies all the constraints in (13).

Proof (1.1) As $w^o(x, \eta)$ is optimal, it satisfies constraints in (30). We start from the incentive constraint in for a_1 . Since $g_1(x, \eta|b=0) = g_1(x, -\eta|b=0)$, we have

$$\int u(w^{o}(x,-\eta))g_{1}(x,\eta|b=0)dxd\eta - v'(a_{1}^{o}) = \int u(w^{o}(x,-\eta))g_{1}(x,-\eta|b=0)dxd\eta - v'(a_{1}^{o})$$
$$= \int u(w^{o}(x,\eta))g_{1}(x,\eta|b=0)dxd\eta - v'(a_{1}^{o}) = 0,$$

where we use the change of variable (i.e., $-\eta$ to η) in the second equality.

Proof (1.2) As $w^o(x, \eta)$ is optimal,

$$\int u(w^{o}(x,\eta)) (g(x,\eta|b=0) - g(x,\eta|b)) dx d\eta \ge 0.$$
 (A14)

Thus, we obtain for any given b

$$\int u(w^{o}(x, -\eta)) (g(x, \eta|b = 0) - g(x, \eta|b)) dxd\eta$$

$$= \int u(w^{o}(x, -\eta)) (g(x, -\eta|b = 0) - g(x, -\eta| - b)) dxd\eta$$

$$= \int u(w^{o}(x, \eta)) (g(x, \eta|b = 0) - g(x, \eta| - b)) dxd\eta \ge 0,$$

where the first equality is from $g(x, \eta|b=0) = g(x, -\eta|b=0)$ and (A13) and the second equality is from the change of variable (i.e., $-\eta$ to η). Thus, we proved that if $w^o(x, \eta)$ is an optimal contract, then $w^o(x, -\eta)$ satisfies all the constraints in (30).

<u>Step 2.</u> If $w^o(x,\eta)$ is an optimal contract, then $w^o(x,-\eta)$ also becomes an optimal contract.

Proof From Step 1, $w^o(x, -\eta)$ satisfies all the constraints in (30). Thus, it is sufficient to

show that $w^o(x, -\eta)$ achieves the same efficiency as $w^o(x, \eta)$. This follows from:

$$\begin{split} &\int (x-w^o(x,-\eta))g(x,\eta|b=0)dxd\eta + \lambda \left(\int u(w^o(x,-\eta))g(x,\eta|b=0)dxd\eta - v(a_1^o)\right) \\ &= \int (x-w^o(x,-\eta))g(x,-\eta|b=0)dxd\eta + \lambda \left(\int u(w^o(x,-\eta))g(x,-\eta|b=0)dxd\eta - v(a_1^o)\right) \\ &= \int (x-w^o(x,\eta))g(x,\eta|b=0)dxd\eta + \lambda \left(\int u(w^o(x,\eta))g(x,\eta|b=0)dxd\eta - v(a_1^o)\right), \end{split}$$

where the first equality is from that $g(x,\eta|b=0)$ is symmetric in η , and the second equality is from the change of variable (i.e., $-\eta$ to η). Also, note that the firm's expected bankruptcy cost, $Pr[x \leq x_b|a_1^o, b=0] \cdot D$ does not change because both $w^o(x,\eta)$ and $w^o(x,-\eta)$ induce the agent to take the same $(a_1^o,b=0)$. Therefore, if $w^o(x,\eta)$ is an optimal contract, then $w^o(x,-\eta)$ becomes an optimal contract and we obtain $w^o(x,-\eta)=w^o(x,\eta)$.

Step 3.
$$\mu_b^o(-b) = \mu_b^o(b)$$
, $\forall b$.

Proof Note from the Lagrange duality theorem (see e.g., Luenberger (1969)) that the optimal solution $(\mu_1^o, \{\mu_b^o(b)\}, w^o(\cdot))$ is the one that solves $\min_{\mu_1, \{\mu_b(\cdot)\}} \max_{w(\cdot)} \mathcal{L}$ where \mathcal{L} is given by

$$\mathcal{L} \equiv \int (x - w(x, \eta))g(x, \eta|b = 0)dxd\eta - Pr[x \le x_b|a_1^o, b = 0] \cdot D$$

$$+ \lambda \left(\int u(w(x, \eta))g(x, \eta|b = 0)dxd\eta - v(a_1^o) \right)$$

$$+ \mu_1 \left(\int u(w(x, \eta))g_1(x, \eta|b = 0)dxd\eta - v'(a_1^o) \right)$$

$$+ \int_b \mu_b(b) \left(\int u(w(x, \eta)) \left(g(x, \eta|b = 0) - g(x, \eta|b) \right) dxd\eta \right) db,$$

while satisfying $\mu_b^o(b) \geq 0$, $\forall b$, and the following complementary slackness at the optimum:

$$\mu_b^o(b) \left(\int u(w^o(x,\eta)) \left(g(x,\eta|b=0) - g(x,\eta|b) \right) dx d\eta \right) = 0, \ \forall b.$$
 (A15)

⁴We implicitly assume that the optimal contract is unique in this environment, following the literature (e.g., Jewitt et al. (2008)).

The last term in the above Lagrangian \mathcal{L} given the optimal contract $w^o(x, \eta)$ can be written as

$$\int_{b} \mu_{4}(b) \left(\int u(w^{o}(x,\eta)) \left(g(x,\eta|b=0) - g(x,\eta|b) \right) dx d\eta \right) db
= \int_{b} \mu_{4}(-b) \left(\int u(w^{o}(x,-\eta)) \left(g(x,\eta|b=0) - g(x,\eta|-b) \right) dx d\eta \right) db,$$
(A16)

where we use a change of variable (i.e., b to -b) and $w^o(x, -\eta) = w^o(x, \eta)$. Now with (A13) and that $g(x, \eta|b=0)$ is symmetric in η around $\eta=0$, we know:

$$\int u(w^{o}(x, -\eta)) (g(x, \eta|b = 0) - g(x, \eta|-b)) dx d\eta$$

$$= \int u(w^{o}(x, -\eta)) (g(x, -\eta|b = 0) - g(x, -\eta|b)) dx d\eta$$

$$= \int u(w^{o}(x, \eta)) (g(x, \eta|b = 0) - g(x, \eta|b)) dx d\eta,$$
(A17)

where we use the change of variable (i.e., $-\eta$ to η) for the second equality. With (A16) and (A17), the last term in Lagrangian \mathcal{L} can be therefore written as

$$\int_{b} \mu_{4}(b) \left(\int u(w^{o}(x,\eta)) \left(g(x,\eta|b=0) - g(x,\eta|b) \right) dx d\eta \right) db
= \int_{b} \mu_{4}(-b) \left(\int u(w^{o}(x,\eta)) \left(g(x,\eta|b=0) - g(x,\eta|b) \right) dx d\eta \right) db.$$
(A18)

Plugging in (A18) into the original Lagrangian \mathcal{L} yields $\mu_4^o(-b) = \mu_4^o(b)$, $\forall b$.

Step 4. We have:

$$\int u(w^o(x,\eta))g(x,\eta|b)dxd\eta = \int u(w^o(x,\eta))g(x,\eta|-b)dxd\eta, \tag{A19}$$

which implies that the agent's indirect utility given $w^o(x, \eta)$ is symmetric in b around b = 0.

Proof It follows from:

$$\int u(w^{o}(x,\eta))g(x,\eta|-b)dxd\eta = \int u(w^{o}(x,\eta))g(x,-\eta|b)dxd\eta$$
$$= \int u(w^{o}(x,-\eta))g(x,-\eta|b)dxd\eta$$
$$= \int u(w^{o}(x,\eta))g(x,\eta|b)dxd\eta,$$

where we use (A13) in the first equality, $w^o(x, -\eta) = w^o(x, \eta)$ in the second, and and the change of variable (i.e., $-\eta$ to η) in the third equality.

<u>Proof of Proposition 2</u>: Given the optimal action a_1^o , we define $\widehat{Cov} \equiv (x - \phi(a_1^o))\eta$. Since

$$\exp\left(\frac{b\eta(x-\phi(a_1^o))}{\sigma^2}\right) = \exp\left(\frac{b}{\sigma^2}\widehat{Cov}\right) = \sum_{k=0}^{\infty} \frac{1}{k!} \frac{b^k}{\sigma^{2k}}\widehat{Cov}^k, \tag{A20}$$

we obtain from equation (A12)

$$\frac{g(x,\eta|b)}{g(x,\eta|b=0)} = \left(\sum_{k=0}^{\infty} \frac{1}{k!} \frac{b^k}{\sigma^{2k}} \widehat{Cov}^k\right) \exp\left(-\frac{b^2 \eta^2}{2\sigma^2}\right). \tag{A21}$$

Therefore, we have

$$\int \mu_4^o(b) \left(1 - \frac{g(x, \eta|b)}{g(x, \eta|b = 0)} \right) db = \int \mu_4^o(b) db - \int \mu_4^o(b) \left(\sum_{k=0}^{\infty} \frac{1}{k!} \frac{b^k}{\sigma^{2k}} \widehat{Cov}^k \right) \exp\left(-\frac{b^2 \eta^2}{2\sigma^2} \right) db$$

$$= \int \mu_4^o(b) db - \sum_{k=0}^{\infty} \left(\frac{1}{k!} \frac{1}{\sigma^{2k}} \underbrace{\left(\int \mu_4^o(b) b^k \exp\left(-\frac{b^2 \eta^2}{2\sigma^2} \right) db \right)}_{\equiv C_k(\eta)} \right) \widehat{Cov}^k.$$
(A22)

When k is odd, the coefficient, $C_k(\eta)$, becomes 0 for $\forall \eta$, since the fact that $\mu_4^o(b) = \mu_4^o(-b)$

⁵This is a sample covariance between x and η , as our framework is a single-period setting.

for all b from Lemma 3 implies

$$C_{k:odd}(\eta) = \int \mu_4^o(b)b^k \exp\left(-\frac{b^2\eta^2}{2\sigma^2}\right)db = \int_{b\geq 0} \left(\underbrace{\mu_4^o(b) - \mu_4^o(-b)}_{=0}\right)b^k \exp\left(-\frac{b^2\eta^2}{2\sigma^2}\right)db = 0.$$
(A23)

When k is even, however, the coefficient, $C_k(\eta)$, becomes strictly positive for $\forall \eta$, since the fact that $\mu_4^o(b) \neq 0$ for the non-zero measure of b from Lemma 3 implies

$$C_{k:even}(\eta) = \int \mu_4^o(b) b^k \exp\left(-\frac{b^2 \eta^2}{2\sigma^2}\right) db$$

$$= \int_{b \ge 0} (\mu_4^o(b) + \mu_4^o(-b)) b^k \exp\left(-\frac{b^2 \eta^2}{2\sigma^2}\right) db$$

$$= 2 \int_{b > 0} \mu_4^o(b) b^k \exp\left(-\frac{b^2 \eta^2}{2\sigma^2}\right) db > 0.$$
(A24)

Therefore, (A22) can be written as

$$\int \mu_4^o(b) \left(1 - \frac{g(x, \eta|b)}{g(x, \eta|b = 0)} \right) db$$

$$= \int \mu_4^o(b) db - 2 \sum_{k:even}^{\infty} \left(\frac{1}{k!} \frac{1}{\sigma^{2k}} \left(\int_{b \ge 0} \mu_4^o(b) b^k \exp\left(-\frac{b^2 \eta^2}{2\sigma^2} \right) db \right) \right) \widehat{Cov}^k. \tag{A25}$$

Consequently, by plugging the expression (A25) into the optimal contact $w^o(x, \eta)$ in (34) when $w^o(x, \eta) \ge k$, we obtain

$$\frac{1}{u'(w^o(x,\eta))} = \lambda + \mu_1^o \frac{x - \phi(a_1^o)}{\sigma^2} \phi_1(a_1^o) + \underbrace{\int \mu_4^o(b) db}_{>0}$$

$$-2 \sum_{k:\text{even}}^{\infty} \frac{1}{k!} \frac{1}{\sigma^{2k}} \underbrace{\left(\int_{b \ge 0} \mu_4^o(b) b^k \exp\left(-\frac{b^2 \eta^2}{2\sigma^2}\right) db\right)}_{\equiv D_{k:\text{even}}(\eta) > 0} \widehat{Cov}^k. \tag{A26}$$

Since $D_{k:\text{even}}(\eta) > 0$ for all even numbers of k, given (x, η) a higher $|\widehat{Cov}|$ results in a lower compensation $w^o(x, \eta)$. Also, as $D_{k:\text{even}}(\eta) > 0$ decreases in η^2 , given (x, \widehat{Cov}) , a higher η^2 results in a higher $w^o(x, \eta)$. In sum the principal punishes a sample covariance $|\widehat{Cov}|$ but becomes lenient when a high $|\widehat{Cov}|$ comes from the high $|\eta|$ realization, not from

the agent's speculation activity ($b\neq 0$).

Appendix B The Truth-Telling Mechanism

In Sections 2, we have assumed that there is no communication between the principal and the agent about the firm's initial exposure to hedgeable risks, R, after the contract is written. We now relax this assumption and consider the case where the agent can costlessly report the firm's risk exposure R to the principal, and receive a payoff that is contingent on the communicated risk exposure as well as on the output and hedgeable risks.

As we will show below, for the case where $V(x) \equiv u(w^*(x|a_1^*))$ for $w^*(x|a_1^*)$ in (23) is concave in x, a contract that is similar to $w^*(x|a_1^*)$ can be designed to induce the agent to truthfully reveal the firm's risk initial exposure, R. Therefore, in this case, there is no loss associated with the firm's initial risk exposure being unobservable to the principal and thus the informational gain for the firm's agency relation from the introduction of a derivative market. The intuition is the same as the one for the case where the manager would voluntarily hedge under $w^*(x|a_1^*)$ when $V(x) = u(w^*(x|a_1^*))$ is concave in x. Essentially, the truth-telling contract will allow the agent to make a *side bet* with the principal. If the agent hedges with the contract $w^*(x|a_1^*)$ after the derivative market is introduced, he would truthfully reveal what he observes (i.e., true R) to minimize the additional risk associated with this side bet even without the derivative market.

However, when $V(x) = u(w^*(x|a_1^*))$ is convex in x, any contract similar to $w^*(x|a_1^*)$ does not induce truth-telling since the agent wants to add more risks, as he would do by engaging in speculation with the derivative market. Again, a new contract similar to the punishing sample covariance contract in (34) can be designed to induce him to reveal the truth.

Equivalence between derivative market games and communication games Suppose the principal does not observe the firm's initial risk exposure, R, and there is no derivative market (i.e., a_d is again fixed at 0 as in Section 2). Since the agent observes R before he chooses a_1 and the communication regarding R is freely allowed, the principal can design a truth-telling mechanism, $w(x, r, \eta)$, where r represents the value of R reported by the agent. Let $a_1^T(R)$ be the agent's optimal action after observing R and $w^T(x, r, \eta)$ be the wage contract that optimally induces $a_1^T(R)$ with the agent telling the truth. Knowing that

¹Note that, in this case, optimal a_1 is a_1^* which is defined in (10), but not a_1^o defined in (23) because still there is no derivative market.

 $r=R, \forall R$, under $w^T(x,r,\eta)$, we denote optimized joint benefits in this case as

$$SW^{T} \equiv \int \left(\phi(a_{1}^{T}(R)) - C^{T}(a_{1}^{T}(R)) - \lambda v(a_{1}^{T}(R)) - Pr[x \le x_{b}|a_{1}^{T}(R), a_{d} = 0]D \right) h(R)dR,$$
(B1)

where

$$C^{T}(a_1^T(R)) \equiv \int \left(w^T(x, R, \eta) - \lambda u(w^T(x, R, \eta)) \right) g(x, \eta | a_1^T(R), a_d = 0) dx d\eta \quad (B2)$$

denotes the agency cost arising from inducing $a_1^T(R)$ through $w^T(x,r,\eta)$ when R is realized. In the above equation, $g(x,\eta|a_1^T(R),a_d=0)$ denotes the joint density function of (x,η) given that $a_1^T(R)$ is chosen by the agent when a_d is fixed at 0.

As in Section 3 we first consider the case in which principal designs a wage contract, $w^*(y_r|a_1^*)$, that is the same as $w^*(x|a_1^*)$ in (23) except that it is based on $y_r \equiv x - r\eta$ instead of x. That is, $w^*(y_r|a_1^*)$ satisfies

$$\frac{1}{u'(w^*(y_r|a_1^*))} = \lambda + \mu_1^*(a_1^*) \frac{y_r - \phi(a_1^*)}{\sigma^2} \phi_1(a_1^*), \tag{B3}$$

for y_r such that $w^*(y_r|a_1^*) \ge k$ and $w^*(y_r|a_1^*) = k$ otherwise.

Note that since, without a derivative market,

$$x = \phi(a_1) + R\eta + \sigma\theta, \tag{B4}$$

we obtain

$$y_r \equiv x - r\eta = \phi(a_1) + (R - r)\eta + \sigma\theta. \tag{B5}$$

Thus, the principal's problem of designing a truth-telling mechanism in this case is equivalent to her problem of designing an incentive scheme based on x to induce b=0 (i.e., $a_d=R$) when derivative transactions are allowed. Therefore, the optimal truth-telling contract should be based on $y_r\equiv x-r\eta$ and have the same contractual form as $w^*(x|a_1^*)$ in (23) as long as the agent's truth-telling can be guaranteed. As a result, as is the case for $w^*(x|a_1^*)$ in Section 3, we directly obtain following results for $w^*(y_r|a_1^*)$.

Lemma 4. [Hedging and Speculation with $w^*(y_r|a_1^*)$]

(1) If $V(y_r) \equiv u(w^*(y_r|a_1^*))$ for the wage contract, $w^*(y_r|a_1^*)$, in (B3) is concave in y_r , then the manager will always report truthfully, i.e., $r = R, \forall R,$ when $w^*(y_r|a_1^*)$ is offered.

(2) If
$$V(y_r) \equiv u(w^*(y_r|a_1^*))$$
 for the wage contract, $w^*(y_r|a_1^*)$, in (B3) is convex in y_r , then

the manager will report r such that $|R-r| = \infty$ when $w^*(y_r|a_1^*)$ is offered.

From Lemma 4, we obtain the following propositions.

Proposition 5. When there is no derivative market and communication between the principal and the agent is costless, then $w^*(y_r|a_1^*)$ described in (B3) is the optimal truth-telling contract for the firm's hidden risk exposure, R, if $V(y_r) \equiv u(w^*(y_r|a_1^*))$ is concave in y_r . In this case,

- (1) the principal's inability to observe R does not reduce the firm's welfare (i.e., no adverse selection). That is, $SW^T = SW^*$,
- (2) and the introduction of a derivative market still improves welfare, since the firm can reduce its expected cost of financial stress through hedging. That is, $SW^T < SW^o$.

Proposition 5 reaffirms that one important benefit from the derivative market is actually the principal's informational gain in the agency relation, as the agent engages in complete hedging in the derivative market. If the principal and the agent cannot communicate with each other due to huge communication costs, this benefit is actually associated with saving such communication costs that would incur when principal has to design a contract that induces the agent to reveal his information about the firm's risk exposure R truthfully. In reality, the costs associated with communicating this information and updating the compensation contract based on the reavealed R may be greater than the hedging cost. As shown in (B5), in this case, allowing the manager to choose a_d in derivative transactions is observationally equivalent to allowing him to freely report the firm's realized risk exposure R. Thus, one important benefit from the derivative market in this case is obtaining the same result as the one with a truth-telling contract in a cheaper way.

On the other hand, if $V(y_r) \equiv u(w^*(y_r|a_1^*))$ is convex in y_r , the manager will not report the true R under $w^*(y_r|a_1^*)$, and shareholders have to redesign a truth-telling mechanism, $w^T(x,r,\eta)$ different from $w^*(y_r|a_1^*)$. It can be similar to (34), except that we design $w^o(y_r,\eta)$ instead of $w^o(x,\eta)$. Therefore, these two games (i.e., the game with a derivative market and the game with free communication) are of the isomorphic structure.

Proposition 6. When $V(y_r) \equiv u(w^*(y_r|a_1^*))$ is convex in y_r , for $w^*(y_r|a_1^*)$ described in (B3), the introduction of a derivative market does not improve on the firm's efficiency when communication between the principal and the agent is freely allowed, and it actually lowers the firm's efficiency if R and σ_R^2 are small enough, when the restriction on derivative transaction is not feasible.

As explained in Proposition 4, if communication between shareholders and the manager is not available and $V(y_r) \equiv u(w^*(y_r|a_1^*))$ is convex in y_r for $w^*(y_r|a_1^*)$ in (B3), the manager's opportunity to transact derivatives may or may not improve the firm's welfare compared to the case without the derivative market depending on the size of the firm's risk exposure, R, and its uncertainty measure, σ_R^2 .

If the communication becomes free between the principal and the agent however, the access to the derivative market reduces the firm's welfare when R and σ_R^2 are small enough. It is because both $w^o(x,\eta)$ in (34) and $w^N(x,\eta)$ in (13)² are actually truth-telling contracts. Thus, when there is no derivative market, the principal designs either $w^o(y_r,\eta)$ or $w^N(x,\eta)$ under the free communication depending on which of the two gives a better welfare. As shown in Proposition 4, the principal prefers designing $w^N(x,\eta)$ to $w^o(y_r,\eta)$ if σ_R^2 is very small. The optimal truth-telling mechanism $w^N(x,\eta)$, which actually does not elicit any information from the agent, thus performs weakly better than $w^o(x,\eta)$. However, after the derivative market is introduced, the principal has to shift from $w^N(x,\eta)$ to $w^o(x,\eta)$ because there now exists an incentive problem associated with a_d . With small R, this does not raise social welfare that much through the bankruptcy cost channel.

In summary, when the communication between shareholders and the manager becomes free, the manager's access to derivative market transactions does not change the firm's welfare if $V(y_r) \equiv u(w^*(y_r|a_1^*))$ is concave in y_r , and might lower it if $V(y_r) \equiv u(w^*(y_r|a_1^*))$ is convex in y_r and no restriction on the derivative trading can be imposed by the principal.

B.1 Proofs of Appendix **B**

<u>Proof of Proposition 5</u>: From Lemma 4, we see that $w^*(y_r|a_1^*)$ is a truth-telling mechanism for the initial risk exposure, R, if $V(y_r) \equiv u(w^*(y_r|a_1^*))$ is concave in y_r because the agent's truth-telling is automatically guaranteed under $w^*(y_r|a_1^*)$. Since $r = R, \forall R$, under $w^*(y_r|a_1^*)$, we have

$$y \equiv x - R\eta = \phi(a_1) + \sigma\theta = y_r, \tag{B6}$$

and the optimal truth-telling contract $w^*(y_r|a_1^*)$ in equation (B3), which has the same contractual form as $w^*(x|a_1^*)$ in (23) except that the optimal action to be chosen by the agent is a_1^* , i.e., $a_1^T(R) = a_1^*$, $\forall R$ which is defined in (10) but not a_1^o defined in (23) because still

Note that both $w^o(x, \eta)$ and $w^N(x, \eta)$ do not depend on the reported value of R, so we regard both two contracts as truth-telling mechanism.

there is no derivative market. Therefore, we derive

$$SW^T = SW^*, (B7)$$

and we also derive that SW^T is lower than the joint benefits SW^o that will be obtained under $w^*(x|a_1^o)$ when there is a derivative market.

Proof of Proposition 6: Note that both non-communication contracts $w^N(x, \eta)$ and $w^o(x, \eta)$ in (34) are truth-telling mechanisms.³ Therefore, if $V(y_r) \equiv u(w^*(y_r))$ is convex in y_r , we have

$$SW^T \ge \max\left\{SW^N, SW^o\right\}. \tag{B8}$$

Furthermore, from Proposition 4, we have $SW^N > SW^o$ when R and σ_R^2 are small enough. Thus, we obtain that $SW^T > SW^o$ when R and σ_R^2 is small enough.

The principal can design $w^N(x,\eta)$ without using reported r. Also, by designing $w^o(y_r,\eta)$ as a truth-telling mechanism, she can induce full revelation as $w^o(x,\eta)$ would induce full hedging.

Appendix C A Model with Discretionary Project Choice

This section extends the model in Section 2 to include the agent's real investment choices. Specifically, after his wage contract $w(\cdot)$ is finalized, the agent takes three kinds of actions, $a_1 \in [0,\infty)$, $a_2 \in [\underline{a}_2,\overline{a}_2]$, and $a_3 \in (-\infty,+\infty)$. The first action, a_1 is the productive effort choice, which increases expected output as before, that is, high effort generates an output level that first-order stochastically dominates the output level generated by low effort. The agent's second action a_2 is his (real) project choice. We assume there exists projects with different risks with more risky projects having higher expected output. The agent's preference is still the same as in Assumption 1. The third action a_3 is his choice in the derivatives market. Although the set of projects available to the agent is bounded, i.e., $a_2 \in [\underline{a}_2, \overline{a}_2]$, the agent can choose any position in the derivatives market, i.e., $a_3 \in (-\infty, +\infty)$ as in Section 2. In contrast to Section 2, we assume D=0 in Assumption 3 for simplicity, i.e., we ignore the negative feedback effect that amplifies negative cash flows.

After the agent chooses a_1 , a_2 , and a_3 , the firm's output, x, is realized and publicly observable without cost. Thereby, an output x can be used in the manager's wage contract that is denoted by w. The output is determined not only by the agent's choice of (a_1, a_2, a_3) but also by the state of nature, (η, θ) . For simplicity, we assume that the output function exhibits the following additively separable form:

$$x = \phi(a_1, a_2) + a_2\theta + (R - a_3)\eta.$$
 (C1)

Equation (C1) looks like equation (1), except that (i) the agent's project choice a_2 affects the expected output level $\phi(a_1,a_2)$; and (ii) the firm's level of non-hedgeable risk is not fixed a priori, but determined by the agent's project choice a_2 . Now, an expected output, $\phi(a_1,a_2)$, is a function of both a_1 and a_2 , whereas the agent's derivatives choice, a_3 , does not directly affect it. As in (1), we assume that (i) $\eta \sim N(0,1)$ and $\theta \sim N(0,1)$ are uncorrelated; and (ii) η is observable at the end of the contracting period, and thereby can be used in the manager's wage contract if necessary. As in Section 2, the manager observes R after the contract is signed but before choosing a_1, a_2 , and a_3 . Again, shareholders do not observe R, but know its distribution $R \sim N(R_m, \sigma_R^2)$. Management effort a_1 and project choice a_2 do not affect R, the firm's innate exposure to the hedgeable risks. However, the

¹We use the notation a_3 instead of a_d of Section 2.

²In general, a firm's risk exposure might depend on the real investment undertaken and if we allow the firm's risk exposure to be affected by the manager's project choice a_2 , most results in this paper do not change

firm's final risk exposure is determined by the manager's transaction a_3 in the derivative market. If $a_3=0$, the manager does not trade derivatives. He hedges, i.e., reduces risk, as long as $|R-a_3|<|R|$ and minimizes hedgeable risks by setting $a_3=R$. If $|R-a_3|>|R|$, the manager speculates in the derivative market.

In addition to assumptions in Section 2, we make the following additional assumptions:

Assumption 4.
$$\frac{\partial \phi}{\partial a_1}(a_1, a_2) \equiv \phi_1(a_1, a_2) > 0, \ \frac{\partial^2 \phi}{\partial a_1^2}(a_1, a_2) \equiv \phi_{11}(a_1, a_2) < 0.$$

Assumption 5.
$$\frac{\partial \phi}{\partial a_2}(a_1, a_2) \equiv \phi_2(a_1, a_2) > 0, \ \phi_{22}(a_1, a_2) < 0, \ \phi_2(a_1, \underline{a_2}) = \infty, \ \ and \ \phi_2(a_1, \overline{a_2}) = 0.$$

Assumption 6. $0 < \underline{a}_2 < \overline{a}_2 < \infty$.

Assumption 7.
$$\phi_{12}(a_1, a_2) \cdot a_2 < \phi_1(a_1, a_2), \ \forall (a_1, a_2).$$

Assumptions 4 and 5 specify that a_1 affects expected output with a usual property of decreasing marginal increase in output, while a higher a_2 increases expected output as well as output variability, i.e., there is a trade-off between return and risk.³. Assumption 6 states that there is neither a completely safe project nor a project with unbounded risk.

If $\phi_{12}(a_1, a_2)$ is positive and decreasing in a_2 , and $\phi_1(a_1, \underline{a}_2) \simeq 0$, \underline{a}_2 is close to 0, then Assumption 7 holds as we see in Figure C.1. As the manager raises a project risk level a_2 , an increase in effort a_1 results in a *higher* increase in expected output $\phi(a_1, a_2)$, i.e., $\phi_{12}(a_1, a_2)$ is positive.⁴ We assume this complementarity between a_1 and a_2 become weaker as the project becomes riskier, i.e., a_2 increases.

C.1 When There Is No Derivative Market

C.1.1 The Principal Knows the Firm's Exposure to the Hedgeable Risks

In this section, we consider a benchmark case where there is no derivatives market and the principal knows the firm's innate risk exposure, R. We thus specify $a_3 = 0$ so that the

qualitatively.

³As noted from equation (C1), reducing the firm's non-hedgeable risks requires the firm to sacrifice a part of an expected output. This trade-off guarantees the existence of an optimal project choice a_2 in our setting.

⁴For example, if we regard the action a_1 as managing the project on a day-to-day basis, it is natural to assume that when the manager takes additional project risk a_2 , the role of action a_1 in generating output becomes more important, i.e., $\phi_1(a_1, a_2)$ rises.

Figure C.1: Illustration of the Assumption 7

production function in equation (C1) reduces to

$$x = \phi(a_1, a_2) + R\eta + a_2\theta. \tag{C2}$$

Since there is no derivative market, the manager's incentive problem arises only in inducing (a_1, a_2) . As R and η are observable and thus contractible, $y \equiv x - R\eta$ is a sufficient statistic for (x, η) in assessing (a_1, a_2) . Therefore, the principal uses y as a contractual variable to induce (a_1, a_2) , and the above equation can be expressed as

$$y = \phi(a_1, a_2) + a_2\theta.$$
 (C3)

Benchmark: without incentive problem in a_2 In general, designing a contract to optimally induce project choice a_2 as well as effort choice a_1 is quite different than designing a contract that only induces the agent's effort choice a_1 in Section 2. To illustrate this distinction, we first consider the case in which the agent's project choice, a_2 , is observable, or equivalently, selected by the principal. The optimal compensation contract $w(\cdot)$, in this case, maximizes the combined utilities of the principal and agent subject to the restriction

that the agent's effort a_1 is chosen to maximize his utility given the contract.

$$\max_{a_1, a_2, w(\cdot)} \phi(a_1, a_2) - \int w(y) f(y|a_1, a_2) dy + \lambda \left(\int u(w(y)) f(y|a_1, a_2) dy - v(a_1) \right) \quad \text{s.t.}$$

$$(i) \ a_1 \in \underset{a_1'}{\arg \max} \int u(w(y)) f(y|a_1', a_2) dy - v(a_1'), \ \forall a_1',$$

$$(ii) \ w(y) \ge k, \ \forall y,$$
(C4)

where $f(y|a_1,a_2)$ denotes a probability density function of y given the agent's three actions, and λ denotes the weight placed on the agent's utility in the joint optimization. As shown, the combined utilities of the principal and the agent are maximized subject to the agent's incentive compatibility constraint, which specifies that the agent optimally chooses his effort, and his limited liability constraint, which specifies that the agent receives at least k, the subsistence level of utility.

Based on the first-order approach as in Section 2, the above maximization problem (C4) reduces to:

$$\max_{\substack{a_1, a_2 \\ w(\cdot) \ge k}} \phi(a_1, a_2) - \int w(y) f(y|a_1, a_2) dy + \lambda \left(\int u(w(y)) f(y|a_1, a_2) dy - v(a_1) \right) \quad \text{s.t.}$$

$$(i) \int u(w(y)) f_1(y|a_1, a_2) dy - v'(a_1) = 0,$$
(C5)

where f_1 denotes the first derivative of f taken with respect to a_1 .

To find the solution $(a_1^P, a_2^P, w^P(y|a_1^P, a_2^P))$ for the above program, we first derive an optimal contract for an arbitrarily given (a_1, a_2) . Let $w^P(y|a_1, a_2)$ be a contract which optimally motivates the agent to take a particular level of a_1 when an arbitrary level of a_2 is chosen by the principal. By solving the Euler equation of the above program after fixing (a_1, a_2) , we derive that $w^P(y|a_1, a_2)$ must satisfy

$$\frac{1}{u'(w^P(y|a_1, a_2))} = \lambda + \mu_1(a_1, a_2) \frac{f_1}{f}(y|a_1, a_2), \tag{C6}$$

for almost every y for which (C6) has a solution $w^P(y|a_1,a_2) \ge k$, and otherwise $w^P(y|a_1,a_2) = k$. In (C6), $\mu_1(a_1,a_2)$ denotes the optimized Lagrange multiplier for the agent's incentive constraint associated with effort a_1 when the project choice is pinned down at a_2 . Since $f(y|a_1,a_2)$ is a normal density function with mean $\phi(a_1,a_2)$ and variance a_2^2 , (C6) is re-

duced to:

$$\frac{1}{u'(w^P(y|a_1, a_2))} = \lambda + \mu_1(a_1, a_2) \frac{y - \phi(a_1, a_2)}{a_2^2} \phi_1(a_1, a_2).$$
 (C7)

Before analyzing the optimal contract, we first define given (a_1, a_2) :

$$SW^{P}(a_1, a_2) \equiv \phi(a_1, a_2) - C^{P}(a_1, a_2) - \lambda v(a_1), \tag{C8}$$

which denotes the joint benefits when $w^P(y|a_1,a_2)$ is designed and a_2 is instructed by the principal where

$$C^{P}(a_1, a_2) \equiv \int \left(w^{P}(y|a_1, a_2) - \lambda u(w^{P}(y|a_1, a_2)) \right) f(y|a_1, a_2) dy$$
 (C9)

represents the efficiency loss of this case compared with the full information case. In other words, $C(a_1, a_2)$ measures the agency cost arising from inducing the agent to take that particular a_1 when a_2 is chosen by the principal.

We start our analysis with the following Lemma 5, which is analogous to Kim (1995).

Lemma 5.
$$C^P(a_1, a_2^0) < C^P(a_1, a_2^1)$$
 for any given a_1 if $a_2^0 < a_2^1$.

Since the principal dictates the agent's project choice a_2 here, an agency problem arises only in inducing a_1 . Lemma 5 implies that under Assumption 7, when the project choice a_2 is selected by the principal, the agency cost associated with motivating the agent to take any given action a_1 , i.e., $C^P(a_1, a_2)$, is reduced if the principal chooses a less risky project. A lowered risk a_2 improves the efficiency of the agency relationship by providing a more precise signal y about the agent's effort, a_1 , which enables the principal to design a contract inducing a particular a_1 in a less costly way. If $\phi_{12}(a_1, a_2)$ is large enough to break Assumption 7, then lower a_2 might lower $\phi_1(a_1, a_2)$ a lot, which in turn makes harder for the principal to give the proper incentive for the action a_1 and raise the incentive cost $C^P(a_1, a_2)$. Assumption 7 guarantees that this incentive drawback is lower than the informational rent from lower a_2 , so that a lower level of a_2 reduces the agency cost $C^P(a_1, a_2)$.

Value of hedging Lemma 5 indicates that firms should take all zero net present value projects that reduce output risk, if possible. For example, when the agent can be induced to hedge in the derivative market, the principal can generically induce the agent to choose higher efforts and investments with higher expected returns, given any initial risk exposure level R.

Risk-return trade-off in project choice However, given the trade-off between return and risk, i.e., $\phi_2 > 0$, the exact level of a_2 that the principal prefers will be determined by the loss in expected return as well as the benefit from achieving a more precise signal of effort. Let a_2^P be the project that is most preferred by the principal, and a_1^P the agent's optimal effort choice for the above program when a_2^P is chosen by the principal. Then, from the above optimization we obtain that $(a_1^P, a_2^P, w^P(\cdot))$ should satisfy

$$\int (y - w^P(y) + \lambda u(w^P(y))) f_2(y|a_1^P, a_2^P) dy + \mu_1(a_1^P, a_2^P) \int u(w^P(y)) f_{12}(y|a_1^P, a_2^P) dy = 0,$$
(C10)

where $w^P(\cdot) = w^P(\cdot|a_1^P, a_2^P)$, f_2 denotes the first derivative of f with respect to a_2 and f_{12} is the second derivative with respect to a_1 and a_2 . The optimal contract $w^P(y|a_1^P, a_2^P)$ satisfies,

$$\frac{1}{u'(w^P(y|a_1^P, a_2^P))} = \lambda + \mu_1(a_1^P, a_2^P) \frac{y - \phi(a_1^P, a_2^P)}{(a_2^P)^2} \phi_1(a_1^P, a_2^P), \tag{C11}$$

for y satisfying $w^P(y|a_1^P,a_2^P) \ge k$ and $w^P(y|a_1^P,a_2^P) = k$ otherwise.

The manager's incentive to select a_2 under contract $w^P(\cdot)$ The above analysis assumes that shareholders essentially select the projects. Now, we ask whether the manager will voluntarily choose the project that would be chosen by informed shareholders, i.e., a_2^P . If the answer to this question is no, then the moral-hazard problem arises not only in motivating a_1 but also in incentivizing a_2 , which implies that the optimal wage contract must be modified from the contract, $w^P(y|a_1^P,a_2^P)$, in (C11).

To formally analyze this issue, we denote $a_2^A(a_2^P)$ as a solution to

$$a_2^A(a_2^P) \in \underset{a_2}{\operatorname{arg\,max}} \int u(w^P(y|a_1^P, a_2^P)) f(y|a_1^P, a_2) dy.$$
 (C12)

Thus, $a_2^A(a_2^P)$ represents the project choice that the agent would take under $w^P(y|a_1^P,a_2^P)$ described in (C11) when a_2 is not enforceable. Thus, our previous question, "Will the agent voluntarily choose a_2^P when $w^P(y|a_1^P,a_2^P)$ is designed?", is equivalent to the question, "Will $a_2^A(a_2^P)$ be equal to a_2^P ?"

As previously shown, the principal balances two considerations when he directs the agent to take a certain project: the informational benefits from risk reduction and the lower mean return associated with lower risk. However, the risk level chosen by the agent depends

on his indirect risk preferences induced by contract $w^P(y|a_1^P,a_2^P)$, i.e., the curvature of $u(w^P(y|a_1^P,a_2^P))$ with respect to y, and the effect that a trade-off between return and risk would have on his utility $via\ w^P(y|a_1^P,a_2^P)$.

In general, the curvature of the agent's indirect utility function depends on the distribution of the random state variable and his utility function. To see how different utility functions affect this curvature differently, we again consider the case where the agent has constant relative risk aversion with degree 1-t as we did in Section 2.1, where t<1 (i.e., $u(w)=\frac{1}{t}w^t, t<1$). We obtain from equation (C11) that

$$w^{P}(y|a_{1}^{P}, a_{2}^{P}) = \left(\lambda + \mu_{1}(a_{1}^{P}, a_{2}^{P}) \left(\frac{y - \phi(a_{1}^{P}, a_{2}^{P})}{(a_{2}^{P})^{2}}\right) \phi_{1}(a_{1}^{P}, a_{2}^{P})\right)^{\frac{1}{1-t}},$$
(C13)

and the agent's indirect utility under this wage contract is

$$u(w^{P}(y|a_{1}^{P}, a_{2}^{P})) = \frac{1}{t} \left(\lambda + \mu_{1}(a_{1}^{P}, a_{2}^{P}) \left(\frac{y - \phi(a_{1}^{P}, a_{2}^{P})}{(a_{2}^{P})^{2}} \right) \phi_{1}(a_{1}^{P}, a_{2}^{P}) \right)^{\frac{t}{1-t}}.$$
 (C14)

The above equation shows that the agent's indirect utility becomes strictly concave in y if $t < \frac{1}{2}$, linear if $t = \frac{1}{2}$, and convex if $t > \frac{1}{2}$ for y satisfying $w^P(y|a_1^P,a_2^P) \ge k$. If we assume $w^P(y|a_1^P,a_2^P) = k$ for sufficiently low y, as far as the agent's induced risk preferences are concerned, $u(w^P(y|a_1^P,a_2^P))$ makes the agent risk-loving if $t \ge \frac{1}{2}$. Furthermore, since the compensation contract $w^P(y|a_1^P,a_2^P)$ is positively related to the absolute output level, i.e., $\mu_1(a_1^P,a_2^P) > 0$, if $t \ge \frac{1}{2}$, the agent is induced to take the most risky project, i.e., $a_2^A(a_2^P) = \overline{a}_2$ when $w^P(y|a_1^P,a_2^P)$ is designed even if $\phi_2(a_1,\overline{a}_2) = 0$ by Assumption 5. However, in this case, principal prefers to have a firm's risk level a_2 lower than \overline{a}_2 . This is because, from his standpoint, the informational benefits from risk reduction are still substantial, while the costs of risk reduction are zero at \overline{a}_2 (i.e., $\phi_2(\overline{a}_2) = 0$). Thus, $a_2^P < a_2^A(a_2^P)$ in this case. In other words, the principal prefers less risk than the agent under $w^P(y|a_1^P,a_2^P)$.

On the other hand, if t is close to $-\infty$ (i.e., the agent is extremely risk-averse), the agent's indirect utility function induces him to choose a lower level of risk than what the principal prefers (i.e., $a_2^A(a_2^P) < a_2^P$) even if a lower a_2 yields on average lower output.

Incentive problems associated with project choice a_2 , in general, exist in all cases except for those where both of the following conditions are satisfied: (i) the agent's indirect

⁵For the proof of $\mu_1(a_1^P, a_2^P) > 0$, see e.g., Holmström (1979), Jewitt (1988), Jung and Kim (2015).

utility is sufficiently concave and (ii) there is no trade-off between return and risk, i.e., $\phi_2 = 0$, $\forall a_2$. Under these conditions, both the principal and the agent agree that the firm should choose the least risky project, i.e., $a_2 = \underline{a}_2$, and there is no efficiency loss due to the existence of the manager's unobservable project choice. However, when either the agent's induced risk preferences are convex, or the trade-off between return and risk exists as assumed in Assumption 5, the principal and the agent will not generally agree on the firm's optimal project choice, and the compensation contract, $w^P(y|a_1^P, a_2^P)$, described in equation (C11) will no longer be optimal.

Optimal contracts with moral hazard in a_2 In this situation, the principal must determine the optimal compensation contract by solving the following optimization problem:

$$\max_{\substack{a_1,a_2\\w(\cdot)\geq k}}\phi(a_1,a_2) - \int w(y)f(y|a_1,a_2)dy + \lambda \left(\int u(w(y))f(y|a_1,a_2)dy - v(a_1)\right) \quad \text{s.t.}$$

$$(i) \quad (a_1,a_2) \in \underset{a_1',a_2'}{\arg\max} \int u(w(y))f(y|a_1',a_2')dy - v(a_1'), \quad \forall a_1',a_2'.$$

$$(C15)$$

The optimization problem (C15) accounts for the fact that the agent selects a_2 to maximize his own expected utility. If an interior solution for (a_1, a_2) exists and the first-order approach is valid, the above maximization problem can be expressed as:

$$\max_{\substack{a_1, a_2 \\ w(\cdot) \ge k}} \phi(a_1, a_2) - \int w(y) f(y|a_1, a_2) dy + \lambda \left(\int u(w(y)) f(y|a_1, a_2) dy - v(a_1) \right) \quad \text{s.t.}$$

$$(i) \int u(w(y)) f_1(y|a_1, a_2) dy - v'(a_1) = 0,$$

$$(ii) \int u(w(y)) f_2(y|a_1, a_2) dy = 0,$$
(C16)

Let (a_1^*, a_2^*) be the optimal action combination for the above program. Then, by solving the Euler equation, we obtain that the optimal wage contract, $w^*(y)$, which satisfies,

$$\frac{1}{u'(w^*(y))} = \lambda + \mu_1^* \frac{f_1}{f}(y|a_1^*, a_2^*) + \mu_2^* \frac{f_2}{f}(y|a_1^*, a_2^*), \tag{C17}$$

for almost every y for which equation (C17) has a solution $w^*(y) \geq k$, and otherwise $w^*(y) = k$. μ_1^* and μ_2^* are the optimized Lagrange multipliers for both incentive constraints, respectively.

Since $f(y|a_1^*, a_2^*)$ is a normal distribution with mean $\phi(a_1^*, a_2^*)$ and variance $(a_2^*)^2$, from (C17),

$$\frac{1}{u'(w^*(y))} = \lambda + \mu_1^* \underbrace{\frac{y - \phi(a_1^*, a_2^*)}{(a_2^*)^2} \phi_1^*}_{\equiv SS_1} + \mu_2^* \underbrace{\left[\underbrace{\frac{y - \phi(a_1^*, a_2^*)}{(a_2^*)^2} \phi_2^*}_{\equiv SS_2^1} + \underbrace{\frac{1}{a_2^*} \left(\frac{(y - \phi(a_1^*, a_2^*))^2}{(a_2^*)^2} - 1 \right)}_{\equiv SS_2^2} \right],$$
(C18)

where we define SS_1 , $SS_2 \equiv SS_2^1 + SS_2^2$ as sufficient statistics for unobservbable action a_1 and project choice a_2 , respectively. Compared with (C11), (C18) shows that when both a_1 and a_2 are not observable, the optimal wage contract is based not only on the absolute output y, but also on its (standardized) deviation from the expected level, $\frac{\left(y-\phi(a_1^*,a_2^*)\right)^2}{\left(a_2^*\right)^2}$. Since $\left(y-\phi(a_1^*,a_2^*)\right)^2$ is a sample (i.e., realized) variance of a single observation with mean zero and variance $(a_2^*)^2$, the term $\frac{\left(y-\phi(a_1^*,a_2^*)\right)^2}{\left(a_2^*\right)^2}$ in (C18) can be regarded a standardized output deviation. Note that SS_2 , the sufficient statistic for the project choice a_2 , can be now decomposed into two parts: SS_2^1 and SS_2^2 . SS_2^1 takes account of the effects that an increase in a_2 has on the mean cash flow $\phi(a_1,a_2)$, while SS_2^2 is about how an increase in a_2 affects the signal y's volatility. By including the sample variance as a contractual parameter, the principal effectively motivates the agent to take the appropriate level of a_2 , i.e., a_2^* . (C18) can be written in a simpler way as

$$\frac{1}{u'(w^*(y))} = \lambda + (\mu_1^* \phi_1^* + \mu_2^* \phi_2^*) \frac{y - \phi(a_1^*, a_2^*)}{(a_2^*)^2} + \mu_2^* \frac{1}{a_2^*} \left(\frac{(y - \phi(a_1^*, a_2^*))^2}{(a_2^*)^2} - 1 \right), \text{ (C19)}$$

for y satisfying $w^*(y) \ge k$ and $w^*(y) = k$ otherwise. Here, $\phi_i^* \equiv \phi_i(a_1^*, a_2^*), i = 1, 2$. We call $w^*(y)$ as an optimal dual-agency contract à la Hirshleifer and Suh (1992).

The optimal dual agency contract is characterized in the following propositions.

Proposition 7. $\mu_1^*\phi_1^* + \mu_2^*\phi_2^* > 0$.

Proposition 7 implies that holding the cash flow variance constant, the manager's payout increases when the firm's output increases, which implies that the manager is rewarded for a higher effort. However, this does not necessarily mean that the contracted payout is monotonically increasing in output. For example, if $\mu_2^* < 0$ in equation (C19), the agent can be paid less when the output is very high.

⁶This term is present since we assume the risk-return trade-off in a_2 , i.e., $\phi(a_1, a_2)$ is increasing in a_2 .

Thus, a more interesting question has to do with the relation between the agent's rewards and the output deviation, i.e., the sign of μ_2^* .

Proposition 8. If the principal prefers a less risky project than the agent under $w^P(y|a_1^P,a_2^P)$ in equation (C11), i.e., $a_2^P < a_2^A(a_2^P)$, then the optimal dual agency contract will <u>penalize</u> the agent if output differs substantially from the expected level, i.e., $\mu_2^* < 0$ for $w^*(y)$ in equation (C19). If the principal prefers a riskier project than the agent under $w^P(y|a_1^P,a_2^P)$, i.e., $a_2^P > a_2^A(a_2^P)$, then the optimal dual agency contract will <u>reward</u> the agent for having unusual output deviation, i.e., $\mu_2^* > 0$ for $w^*(y)$ in equation (C19).

If the principal prefers a lower level of project risk than the agent under the contract $w^P(y|a_1^P,a_2^P)$, the contract will be revised in a way that motivates the agent to reduce risk. This can be done by setting $\underline{\mu}_2^* < 0$ in equation (C19) which penalizes the agent for the unusual output deviation and effectively makes the agent act as if he is more risk-averse. On the other hand, if the principal prefers a higher risk than the agent when $w^P(y|a_1^P,a_2^P)$ is designed, the contract is revised to motivate the agent to increase risk. This can be done by setting $\underline{\mu}_2^* > 0$ in equation (C19) which rewards the agent for unusual output deviation and effectively makes the agent act as though he is less risk-averse. As discussed earlier, the later case is more likely to occur when the manager is more risk averse and when the firm's investment opportunities offer a non-trivial trade-off between return and risk.⁷

We denote the optimized joint benefits in this case as

$$SW^*(a_1^*, a_2^*) \equiv \phi(a_1^*, a_2^*) - C^*(a_1^*, a_2^*) - \lambda v(a_1^*), \tag{C20}$$

where

$$C^*(a_1^*, a_2^*) \equiv \int (w^*(y) - \lambda u(w^*(y))) f(y|a_1^*, a_2^*) dy$$
 (C21)

denotes the agency cost arising from inducing (a_1^*, a_2^*) when a_3 is fixed at 0 and R is observable.

C.1.2 The Principal Does Not Know the Firm's Risk Exposure

We now consider the case of asymmetric information, where the firm's innate exposure to hedgeable risks, R, is observed only by the agent. In this case, the wage contract cannot explicitly include $y \equiv x - R\eta$ as a contractual variable. Furthermore, we will rule out the

⁷For example, in cases of constant relative risk aversion with degree 1-t, it is more likely that $\underline{\mu_2^* > 0}$ when 1-t is higher (i.e., t is lower).

possibility of any communication between principal and the agent that allows the agent to reveal R.

If principal does not observe R, the compensation contract must be based on (x, η) , i.e., $w = w(x, \eta)$. The principal's maximization program in this case is thus:

$$\begin{split} \max_{\substack{a_1(\cdot), a_2(\cdot) \\ w(\cdot) \geq k}} \int_R \int_{x, \eta} \left(x - w(x, \eta) \right) g(x, \eta | a_1(R), a_2(R), R) h(R) dx d\eta dR \\ &+ \lambda \int_R \left(\int_{x, \eta} u(w(x, \eta)) g(x, \eta | a_1(R), a_2(R), R) dx d\eta - v(a_1(R)) \right) h(R) dR \quad \text{s.t.} \\ &(i) \ \left(a_1(R), a_2(R) \right) \in \underset{a_1, a_2}{\arg\max} \int_{x, \eta} u(w(x, \eta)) g(x, \eta | a_1, a_2, R) dx d\eta - v(a_1), \forall R, \end{split}$$

where

$$g(x,\eta|a_1,a_2,R) = \frac{1}{2\pi a_2} \exp\left(-\frac{1}{2} \left(\frac{(x-\phi(a_1,a_2)-R\eta)^2}{a_2^2} + \eta^2\right)\right)$$
(C23)

denotes a joint probability density function of (x, η) given (a_1, a_2, R) and h(R) denotes the probability density function of R.

For each R, let $(a_1^N(R), a_2^N(R), w^N(x, \eta))$ be the solution for the optimization program (C22). If we let $\mu_1(R)$, $\mu_2(R)$ be Lagrange multipliers attached to incentive constraints in $a_1(R)$ and $a_2(R)$, respectively, the optimal contract $w^N(x, \eta)$ can be written as

$$\frac{1}{u'(w^{N}(x,\eta))} = \lambda + \int_{R} \mu_{1}(R) \left[\frac{g_{1}(x,\eta|a_{1}^{N}(R),a_{2}^{N}(R),R)}{\int_{R'} g(x,\eta|a_{1}^{N}(R'),a_{2}^{N}(R'),R')h(R')dR'} \right] h(R)dR
+ \int_{R} \mu_{2}(R) \left[\frac{g_{2}(x,\eta|a_{1}^{N}(R),a_{2}^{N}(R),R)}{\int_{R'} g(x,\eta|a_{1}^{N}(R'),a_{2}^{N}(R'),R')h(R')dR'} \right] h(R)dR,$$
(C24)

when $w(x,\eta) \geq k$ and otherwise $w(x,\eta) = k$. The optimized joint benefit in this case is

⁸In general, communication between principals and agents are likely to be very costly, especially when actually the principal stands for multiple shareholders. For a more detailed discussion of communication costs, see Laffont and Martimort (1997). We study issues of potential communication in Appendix B.

⁹In this case, since the agent is the only one that observes R, his actions a_1, a_2 both depend on R, given the contract $w(x, \eta)$.

denoted as:

$$SW^{N} \equiv \int_{R} \left(\phi(a_{1}^{N}(R), a_{2}^{N}(R)) - C^{N}(a_{1}^{N}(R), a_{2}^{N}(R)) - \lambda v(a_{1}^{N}(R)) \right) h(R) dR, \quad (C25)$$

where

$$C^{N}(a_{1}^{N}(R), a_{2}^{N}(R)) \equiv \int_{x,\eta} \left(w^{N}(x,\eta) - \lambda u(w^{N}(x,\eta)) \right) g(x,\eta|a_{1}^{N}(R), a_{2}^{N}(R), R) dx d\eta$$
(C26)

denotes the agency cost arising from inducing $(a_1^N(R), a_2^N(R))$ given a realized value of R. In this case, we obtain the following comparison between two welfare measures: SW^N and $SW^*(a_1^*, a_2^*)$.

Proposition 9. When there is no derivative market and no communication is allowed between the principal and the agent, the principal's inability to observe the firm's risk exposure reduces welfare, i.e.,

$$SW^N < SW^*(a_1^*, a_2^*).$$

Intuitively, when the principal observes the firm's risk exposure, R, this information can be used to design a wage contract that eliminates the influence of hedgeable risk, i.e., $w = w^*(y \equiv x - R\eta)$. However, if R is not observable and cannot be communicated, this is impossible.

C.2 When Managers Can Trade Derivatives

In this subsection we consider how the introduction of an opportunity to trade derivatives (i.e., when a_3 is not fixed at 0) affects the optimal contract and the firm's efficiency. Continuing from Section C.1.2, we assume that a manager's project choice, a_2 , is not observable, and in addition, we assume that the derivatives choice, a_3 and the firm's risk exposure, R, cannot be observed by or communicated to the principal.

We follow closely the logic of Section 3: since the firm's exposure to hedgeable risks, R, is observed by the agent before he takes actions (a_1, a_2, a_3) , the agent's choice of a_3 can be characterized as his choice of $b \equiv R - a_3$. Then given a compensation contract, the principal can rationally anticipate the agent's choice of $b = R - a_3$. We denote the principal's anticipation of the agent's choice of $R - a_3$ by \hat{b} , and define $z(\hat{b}) \equiv x - \hat{b}\eta$ as a variable that can potentially be in the wage contract, i.e., $w(z(\hat{b}))$ is a potential contract.

If the principal's beliefs are to be consistent, 10 it must be the case that the agent chooses a_3 satisfying $b \equiv R - a_3 = \hat{b}$ given this contract.

Thus, since

$$z(\hat{b}) \equiv x - \hat{b}\eta = \phi(a_1, a_2) + (b - \hat{b})\eta + a_2\theta,$$
 (C27)

if the principal offers the contract $w(z(\hat{b}))$ and the agent chooses a_3 satisfying $b=R-a_3=\hat{b}$, then

$$z(\hat{b}) = \phi(a_1, a_2) + a_2\theta = y.$$
 (C28)

Note that the maximum level of joint benefits that can be obtained in this case is $SW(a_1^*, a_2^*, a_3 = 0)$ in equation (C20). Therefore, we first consider the case in which the principal designs the contract the same as $w^*(y)$ in the benchmark case (i.e., equation (C19)) but based on $z(\hat{b})$ instead of $y \equiv x - R\eta$, and examine whether the agent actually chooses $b \equiv R - a_3 = \hat{b}$ under $w^*(z(\hat{b}))$. If this is indeed the case, there is no welfare loss associated with R (and a_3) being unobservable when the agent is able to transact in the derivatives market.

The optimal contract in the benchmark case (i.e., (C19)) as a potential contract Suppose that the principal designs a contract $w^*(z(\hat{b}) \equiv x - \hat{b}\eta)$ satisfying

$$\frac{1}{u'(w^*(z(\hat{b})))} = \lambda + (\mu_1^* \phi_1^* + \mu_2^* \phi_2^*) \frac{z(\hat{b}) - \phi(a_1^*, a_2^*)}{(a_2^*)^2} + \mu_2^* \frac{1}{a_2^*} \left(\frac{\left(z(\hat{b}) - \phi(a_1^*, a_2^*)\right)^2}{(a_2^*)^2} - 1 \right), \tag{C29}$$

for $z(\hat{b})$ satisfying $w^*(z(\hat{b})) \geq k$ and $w^*(z(\hat{b})) = k$ otherwise. Because $w^*(z(\hat{b}))$ in (C29) is of the same functional form as $w^*(y)$ in (C19), 12 , we easily see the agent will take (a_1^*, a_2^*) under $w^*(z(\hat{b}))$ if he chooses a_3 satisfying $b \equiv R - a_3 = \hat{b}$. But, the real question is: "Will the agent always choose a_3 satisfying $b = \hat{b}$ when $w^*(z(\hat{b}))$ is designed and offered?".

The following Lemma 6 provides an answer to the above question.

Lemma 6. [Speculation and Hedging with $w^*(z(\hat{b}))$]

 $^{^{10}}$ As the principal predicts the agent with risk-exposure R to choose $\hat{b} = R - a_3$, a contract that relies on \hat{b} induces the agent to take $b = \hat{b}$.

¹¹Given the contract $w(z(\hat{b}))$, if there is no incentive problem associated with $b=R-a_3$, i.e., the agent voluntarily chooses a_3 such that $R-a_3=\hat{b}$, then we obtain the maximal joint benefit $SW(a_1^*,a_2^*,a_3=0)$. The issue is whether the agent would voluntarily choose a_3 such that $R-a_3=\hat{b}$ given $w(z(\hat{b}))$.

¹²Note that $\mu_1^*, \mu_1^*, a_1^*, a_2^*$ in (C19) and (C29) are endogenous variables characterized by solving the optimization in (C15).

(1) If $\mu_2^* < 0$ for the contract, $w^*(z(\hat{b}))$, described in equation (C29) for any given \hat{b} , ¹³ then the manager will choose a_3 such that $b = \hat{b}$ when the contract $w^*(z(\hat{b}))$ is offered.

(2) If $\mu_2^* > 0$ for $w^*(z(\hat{b}))$ in equation (C29) for any given \hat{b} , then the manager will take a_3 such that $|R - a_3| = \infty$ when $w^*(z(\hat{b}))$ is offered.

From Lemma 6, we directly obtain the following proposition:

Proposition 10. If $\mu_2^* < 0$ for $w^*(z(\hat{b}))$ in (C29) for any given \hat{b} , then the level of $b \equiv R - a_3$ induced is a matter of indifference as long as it is bounded, i.e., $|b| < \infty$. For example, If $\mu_2^* < 0$ for $w^*(z(0))$ in (C29), then the manager will choose $a_1^*, a_2^*, a_3 = R$ (i.e., b = 0) when $w^*(z(0))$ is offered. In this case, the optimized joint benefits in this case are the same as $SW^*(a_1^*, a_2^*)$ in (C20), implying that the firm's welfare with a derivative market will be the same as it is in the case where the risk exposure is observed by the principal. 14

Proposition 10 is quite intuitive. If $\underline{\mu_2^*} < 0$ for $w^*(z(\hat{b}))$ in (C29), the agent is induced to engage in full hedging to minimize the variance of $z(\hat{b})$. Intuitively, the contract $w^*(z(\hat{b}))$ with $\mu_2^* < 0$ induces the agent to sacrifice expected payoffs to lower risk. If the risk can be reduced through a channel that does not decrease the expected payoff (e.g., here a_3 does not have risk-return trade-off.), then agent will clearly do so. In addition, $\mu_1^*\phi_1^* + \mu_2^*\phi_2^* > 0$ means a higher $z(\hat{b})$ yields the higher compensation $w^*(z(\hat{b}))$ given its squared deviation from the average of $z(\hat{b})$.

In this case, the optimal contract can be designed $\underline{as\ if}\ R-a_3$ is observable to the principal, and it allows the principal and the agent to achieve the welfare $SW^*(a_1^*,a_2^*)$ that can be achieved when the risk-exposure R is observable. We will discuss more thoroughly about this *informational gain* from the manager's derivative transaction later.

However, this is not possible if $\underline{\mu_2^*} > 0$ for $w^*(z(\hat{b}))$ in (C29), since the agent speculates infinitely, i.e., choose a_3 such that $|R - a_3| = \infty$. This is because, as shown from equation (C29), the manager will be paid an infinite amount when $z(\hat{b}) = x - \hat{b}\eta$ is either positive or negative infinity if $\mu_2^* > 0$ for $w^*(z(\hat{b}))$. Given that it is impossible to design a wage contract $w^*(z(\hat{b}))$ based on the belief $\hat{b} = \infty$, the principal has to either alter the

¹³One can easily see that if $\mu_2^* < 0$ in $w^*(z(\hat{b}))$ for any given \hat{b} , then $\mu_2^* < 0$ in $w^*(z(\hat{b}))$ for all \hat{b} . This is because the principal's anticipating different \hat{b} does not change the functional form of $w^*(\cdot)$.

 $^{^{14}}$ Therefore, the introduction of derivative markets in this case improves the welfare compared with the case where the principal does not observe the firm's risk-exposure R and the communication between the principal and the agent is prohibitively costly (i.e., $SW^*(a_1^*,a_2^*)>SW^N$ in Proposition 9). In practice, with D>0 in Assumption 3, benefits a derivative market can provide to firms are multi-dimensional, e.g., firms can prevent themselves from experiencing some financial distress.

¹⁵Since the optimal contract $w^*(z(\hat{b}))$ features $\mu_2^* < 0$ when $a_2^P < a_2^A(a_2^P)$ holds.

wage contract to ensure $|R - a_3| < \infty$ or retain the optimal contract without a derivative market, $w^N(x, \eta)$ and prohibit the manager from engaging in derivative transactions.

Comparison with Section 3 It is interesting to compare the results in this section to the analysis in Section 3 that takes the real investment choice as given. Recall that in Section 2, we start from the benchmark case where R is observed by the principal, which reduces the problem to the canonical principal-agent model (e.g., Holmström (1979)). The optimal contract $w^*(x)$ in this benchmark scenario generates the agent's indirect utility function V(x). As we show, (i) if V(x) is concave (convex) in x, then the manager will choose to perfectly hedge (infinitely speculate) when there is a derivatives market and (ii) V(x) is more likely to be concave (convex) when the agent's utility function features higher (lower) risk-aversion. Therefore, a less risk-averse manager is more likely to speculate in derivative markets given the contract $w^*(\cdot)$.

In cases with a flexible project choice a_2 , we obtain the opposite result: (i) the agent with $\mu_2^*>0$ speculates infinitely when derivative markets open; (ii) under the benchmark case, i.e., neither asymmetric information nor derivative market, the principal initially offers a contract with $\mu_2^*>0$ since she prefers a higher level of project risk a_2 than the agent, implying generically that the agent's risk aversion is very high. To be specific, when the manager's risk aversion is sufficiently high, shareholders will design a contract to induce the manager to choose a higher project risk level a_2 , to benefit from the positive risk-return tradeoff. Such a contract will reward a higher level of output variance (i.e., $\mu_2^*>0$), which can in turn induce the manager to speculate infinitely, choosing $a_3=\pm\infty$ due to the additional incentive effect from $\mu_2^*>0$.

It can be understood as a side effect of inducing the project risk-taking which is productive (i.e., $\phi_2(a_1, a_2) > 0$) through incentive contracts. A contract that induces risk-taking in the real investment choice makes the manager speculate infinitely when derivative transaction is possible, as he acts as effectively risk-loving under the contract (C29) with $\mu_2^* > 0$.

Optimal contracts when $\mu_2^*>0$ When the agent takes infinite speculation in derivative markets under the contract $w^*(z(\hat{b}))$ in (C29) with $\mu_2^*>0$, our analysis becomes close to Section 3. First, the principal might design a new optimal contract, $w^o(x,\eta)$ to induce the agent's perfect hedging. This new optimal contract satisfies conditions in Proposition 3, and thus penalizes the agent for having both positive and negative realization of $(x-\phi(a_1^o,a_2^o))\eta$, which we regard as sample covariance between output and hedgeable risks. As the new

optimal contract $w^o(x, \eta)$ imposes additional risks on the agent, it incurs efficiency costs, thereby lowering the social welfare from SW^* to SW^o , i.e., $SW^o < SW^*$.

Instead, the principal might just ban the derivative trading, in which case we go back to Section C.1.2 and achieve SW^N as welfare. When the degree of asymmetric information is small enough, i.e., the principal's prior distribution h(R) on risk exposure R is tight with $\sigma_R \to 0$, then hedging benefits shrink, and therefore, the principal is better off banning the derivative trading, as summarized in Proposition 4.

C.3 Proofs of Appendix C

Proof of Lemma 5: We know from $y \sim N(\phi(a_1, a_2), a_2^2)$ that

$$\frac{y - \phi(a_1, a_2)}{a_2} \sim N(0, 1), \quad \frac{f_1}{f}(y|a_1, a_2) = \frac{y - \phi(a_1, a_2)}{a_2^2} \phi_1(a_1, a_2) \sim N\left(0, \frac{\phi_1(a_1, a_2)^2}{a_2^2}\right). \tag{C30}$$

Therefore, we observe that if $\frac{\phi_1(a_1,a_2)}{a_2}$ is decreasing in a_2 , for any pair $a_2^0 < a_2^1$, $\frac{f_1}{f}(y|a_1,a_2^0)$'s distribution is mean-preserving spread (MPS) of that of $\frac{f_1}{f}(y|a_1,a_2^1)$. Assumption 7 guarantees that this condition holds, and the following Lemma 7, a slightly changed form of Kim (1995), proves $C(a_1,a_2^0) < C(a_1,a_2^1)$ for $\forall a_1$.

Lemma 7. For given action a_1 and technology $h(\cdot|a_1)$, let the solution of the following optimization problem be $w_h(\cdot)$:

$$\max_{w(\cdot)} \int (y-w(y))h(y|a_1)dy + \lambda \left(\int u(w(y))h(y|a_1)dy - v(a_1) \right) \quad s.t.$$

$$(i) \int u(w(y))h_1(y|a_1)dy - v'(a_1) = 0,$$

$$(ii) w(y) \ge k, \forall y.$$
(C31)

For two different technologies $h=f,\ g$ such that $\frac{f_1}{f}(y|a_1)$ is a mean-preserving spread of $\frac{g_1}{g}(y|a_1)$, we have:

$$C_f(a_1) \equiv \int (w_f(y) - \lambda u(w_f(y))) f(y|a_1) dy < \int (w_g(y) - \lambda u(w_g(y))) g(y|a_1) dy \equiv C_g(a_1).$$
(C32)

Proof. We know that the solution of (C31) would be given as

$$\frac{1}{u'(w_h(y))} = \max\left\{\lambda + \mu_h \frac{h_1}{h}(y|a_1), \frac{1}{u'(k)}\right\},\tag{C33}$$

where μ_h is the Lagrange multiplier attached to the incentive constraint for the given a_1 . If we define $q_h \equiv \lambda + \mu_h \frac{h_1}{h}(y|a_1)$, we can rewrite the optimal contract $w_h(\cdot)$ as a function of q_h so that $w_h(y) = r(q_h)$ where $r(\cdot) = (\frac{1}{u'})^{-1}(\cdot)$ is increasing and does not rely on the technology h. Therefore, (C33) can be written as

$$u'(r(q_h))q_h = 1, (C34)$$

if $q_h \ge u(k)^{-1}$ and otherwise $r(q_h) = k$. Now, we obtain

$$\mathbb{E}_{h}\left(u(r(q_{h}))q_{h}\right) = \int u(r(q_{h})) \cdot q_{h} \cdot h(y|a_{1})dy = \int u(r(q_{h})) \left[\lambda + \mu_{h} \frac{h_{1}}{h}(y|a_{1})\right] h(y|a_{1})dy$$

$$= \lambda \underbrace{\int u(r(q_{h}))h(y|a_{1})dy}_{\equiv B_{h}} + \mu_{h} \underbrace{\int u(r(q_{h}))h_{1}(y|a_{1})dy}_{=v'(a_{1})} = \lambda B_{h} + \mu_{h}v'(a_{1}),$$
(C35)

where we used the fact that $r(q_h)$ satisfies the agent's incentive constraint in a_1 . Following Kim (1995), we define

$$\psi(q) \equiv r(q) - u(r(q))q, \tag{C36}$$

which is <u>concave</u> in $\forall q$, since: (i) with $q \geq u(k)^{-1}$, we obtain $\psi'(q) = r'(q) - \underline{u'(r(q))}r'(q)q - u(r(q)) = -u(r(q))$ as u'(r(q))q = 1 and $\psi''(q) = -u'(r(q))r'(q) < 0$; (ii) with $q < u(k)^{-1}$, we have r(q) = k so $\psi(q)$ becomes linear. Now we can introduce two different technologies $f(\cdot|a_1)$ and $g(\cdot|a_1)$ such that $\frac{f_1}{f}(y|a_1)$ is a mean-preserving spread of $\frac{g_1}{g}(y|a_1)$, and define

$$\bar{q} \equiv \lambda + \mu_f \frac{g_1}{g}(y|a_1),\tag{C37}$$

which is possibly different from q_g as μ_f is possibly different from μ_g . As $\psi(q)$ is globally

¹⁶We see that $\psi(q)$ is continuously differentiable at all points including $q = u(k)^{-1}$.

concave, we obtain

$$\mathbb{E}_{g}\left(\psi(\bar{q})\right) - \mathbb{E}_{g}\left(\psi(q_{g})\right) \leq \mathbb{E}_{g}\left(\psi'(q_{g})(\bar{q} - q_{g})\right) = \mathbb{E}_{g}\left(-u(r(q_{g}))(\mu_{f} - \mu_{g})\frac{g_{1}}{g}\right)$$

$$= (\mu_{g} - \mu_{f}) \int u(r(q_{g}))g_{1}(y|a_{1})dy = (\mu_{g} - \mu_{f})v'(a_{1})$$

$$= (\mathbb{E}_{g}\left(u(r(q_{g}))q_{g}\right) - \lambda B_{g}\right) - (\mathbb{E}_{f}\left(u(r(q_{f}))q_{f}\right) - \lambda B_{f}),$$
(C38)

where we used (C35). Finally, it leads to the following agency cost comparison:

$$C_{g}(a_{1}) - C_{f}(a_{1}) = \mathbb{E}_{g} (r(q_{g}) - \lambda B_{g}) - \mathbb{E}_{f} (r(q_{f}) - \lambda B_{f}) = \mathbb{E}_{g} (r(q_{g})) - \mathbb{E}_{f} (r(q_{f})) - (\lambda B_{g} - \lambda B_{f})$$

$$= \mathbb{E}_{g} (\psi(q_{g})) + \mathbb{E}_{g} (u(r(q_{g}))q_{g}) - \mathbb{E}_{f} (\psi(q_{f})) - \mathbb{E}_{f} (u(r(q_{f}))q_{f}) - (\lambda B_{g} - \lambda B_{f})$$

$$\geq \mathbb{E}_{g} (\psi(q_{g})) - \mathbb{E}_{f} (\psi(q_{f})) + \mathbb{E}_{g} (\psi(\bar{q})) - \mathbb{E}_{g} (\psi(q_{g})) = \mathbb{E}_{g} (\psi(\bar{q})) - \mathbb{E}_{f} (\psi(q_{f}))$$

$$= \int \psi \left(\lambda + \mu_{f} \frac{g_{1}}{g} (y|a_{1})\right) g(y|a_{1}) dy - \int \psi \left(\lambda + \mu_{f} \frac{f_{1}}{f} (y|a_{1})\right) f(y|a_{1}) dy$$
(C39)

where we used (C38) in the above (C39)'s inequality part. Finally, if $\frac{f_1}{f}(y|a_1)$ is a mean-preserving spread of $\frac{g_1}{g}(y|a_1)$, then (C39) with Rothschild and Stiglitz (1970) implies $C_g(a_1) \geq C_f(a_1)$, as $\mu_f > 0$ and $\psi(\cdot)$ is globally concave.

Finally, with $f(y|a_1) \equiv f(y|a_1, a_2^0)$ and $g(y|a_1) \equiv f(y|a_1, a_2^1)$ in our specification, Lemma 7 proves Lemma 5.

<u>Proof of Proposition 7</u>: Assume to the contrary that $\mu_1^*\phi_1^* + \mu_2^*\phi_2^* \le 0$. Then, pick up any two levels of y: y_1 and y_2 , such that

$$y_1 < y_2$$
, and $\frac{y_1 + y_2}{2} = \phi(a_1^*, a_2^*)$. (C40)

That is, y_1 and y_2 are located at the same distance from the mean value $\phi(a_1^*, a_2^*)$. If $\mu_1^* \phi_1^* + \mu_2^* \phi_2^* \leq 0$, we have from equation (C19) that

$$w^*(y_1) \ge w^*(y_2)$$
, and $u(w^*(y_1)) \ge u(w^*(y_2))$. (C41)

Since $f_1(y_1|a_1^*, a_2^*) = -f_1(y_2|a_1^*, a_2^*) < 0$ for any y_1 and y_2 satisfying equation (C40), we

have:

$$\int u(w^*(y))f_1(y|a_1^*,a_2^*)dy \le 0, \text{ and } \int u(w^*(y))f_1(y|a_1^*,a_2^*)dy - v'(a_1^*) < 0.$$
 (C42)

Therefore, there is a contradiction.

Proof of Proposition 8:

1. $\mu_2^* > 0$ if $a_2^A(a_2^P) < a_2^P$. Let us compare the following two optimizations:¹⁷

$$\max_{a_1, a_2, w(\cdot) \ge k} \int (y - w(y)) f(y|a_1, a_2) dy + \lambda \left(\int u(w(y)) f(y|a_1, a_2) dy - v(a_1) \right) \quad \text{s.t.}$$

$$(i) \quad \int u(w(y)) f_1(y|a_1, a_2) dy - v'(a_1) = 0,$$

$$(ii) \quad \int u(w(y)) f_2(y|a_1, a_2) dy = 0,$$
(C43)

and

$$\max_{a_1, a_2, w(\cdot) \ge k} \int (y - w(y)) f(y|a_1, a_2) dy + \lambda \left(\int u(w(y)) f(y|a_1, a_2) dy - v(a_1) \right) \quad \text{s.t.}$$

$$(i) \quad \int u(w(y)) f_1(y|a_1, a_2) dy - v'(a_1) = 0,$$

$$(ii) \quad \int u(w(y)) f_2(y|a_1, a_2) dy \ge 0,$$

$$(C44)$$

where the incentive constraint associated with the non-hedgeable risk choice a_2 takes the form of inequality in the latter program, instead of equality in the original optimization program.

We know that $(w^*(y), a_1^*, a_2^*, \mu_1^*, \mu_2^*)$ are the optimal solution for the first program. Let $(\hat{w}(y), \hat{a}_1, \hat{a}_2, \hat{\mu}_1, \hat{\mu}_2)$ be the optimal solution for the second program. We will show that the above two programs are equivalent in that two solutions align perfectly with each other when $a_2^A(a_2^P) < a_2^P$. Then, we can directly derive $\mu_2^* \geq 0$ when $a_2^A(a_2^P) < a_2^P$, since $\hat{\mu}_2 \geq 0$ by Kuhn-Tucker theorem.

Assume that the second constraint in the second program is not binding. Then, $\hat{\mu}_2 =$

¹⁷Following Rogerson (1985), we replace the incentive constraint with the corresponding inequality constraint, and exploit the fact that a multiplier to the inequality constraint must be non-negative.

0, and $\hat{w}(y)$ should satisfy:

$$\frac{1}{u'(\hat{w}(y))} = \lambda + \hat{\mu}_1 \frac{y - \phi(\hat{a}_1, \hat{a}_2)}{(\hat{a}_2)^2} \phi_1(\hat{a}_1, \hat{a}_2), \tag{C45}$$

for y satisfying $\hat{w}(y) \geq k$ and $\hat{w}(y) = k$ otherwise. As the second constraint is not binding, \hat{a}_2 becomes the best (from the principal's perspective) a_2 , i.e., $\hat{a}_2 = a_2^P$. Then we must have $\hat{a}_1 = a_1^P$ and $\hat{w}(y) = w^P(y|a_1^P, a_2^P)$. Therefore, the fact that the second constraint in the second program is not binding implies

$$\int u(w^P(y|a_1^P, a_2^P)) f_2(y|a_1^P, a_2^P, a_3 = 0) dy > 0.$$
 (C46)

However, equation (C46) implies $a_2^A(a_2^P) > a_2^P$, a contradiction.¹⁸ Thus, the second constraint in the second program must be binding, and the above two programs are equivalent so $\mu_2^* = \hat{\mu}_2 \geq 0$. And also, $\mu_2^* \neq 0$, because $\mu_2^* = 0$ implies $a_2^A(a_2^P) = a_2^P$.

2. $\mu_2^* < 0$ if $a_2^A(a_2^P) > a_2^P$. By applying the same method as in the above case, we can easily prove it. We compare following two optimizations similar to (C43) and (C44):

$$\max_{a_1, a_2, w(\cdot) \ge k} \int (y - w(y)) f(y|a_1, a_2) dy + \lambda \left(\int u(w(y)) f(y|a_1, a_2) dy - v(a_1) \right) \quad \text{s.t.}$$

$$(i) \quad \int u(w(y)) f_1(y|a_1, a_2) dy - v'(a_1) = 0,$$

$$(ii) \quad \int u(w(y)) f_2(y|a_1, a_2) dy = 0,$$

$$(C47)$$

and

$$\max_{a_1, a_2, w(\cdot) \ge k} \int (y - w(y)) f(y|a_1, a_2) dy + \lambda \left(\int u(w(y)) f(y|a_1, a_2) dy - v(a_1) \right) \quad \text{s.t.}$$

$$(i) \int u(w(y)) f_1(y|a_1, a_2) dy - v'(a_1) = 0,$$

$$(ii) \int u(w(y)) f_2(y|a_1, a_2) dy \le 0,$$
(C48)

Solutions of the above two optimization programs must be the same, and due to the property that the multiplier attached to the incentive constraint associated with a_2 in

¹⁸We assume that $\int u(w(y|a_2^P))f(y|a_1^P, a_2, a_3 = 0)dy$ is concave in a_2 , which is based on the first-order approach associated with a_2 .

the second program must be non-positive, we conclude $\mu_2^* < 0$ when $a_2^A(a_2^P) > a_2^P$.

<u>Proof of Proposition 9</u>: Now we have the project choice $a_2(R)$ that depends on the observed R by the manager. Consider the principal's following alternative maximization program:

$$\max_{a_{1}(\cdot),a_{2}(\cdot),w(\cdot)} \int_{R} \int_{x,\eta} (x - w(x,R,\eta)) g(x,\eta|a_{1}(R),a_{2}(R),R) h(R) dx d\eta dR$$

$$+ \lambda \int_{R} \left(\int_{x,\eta} u(w(x,R,\eta)) g(x,\eta|a_{1}(R),a_{2}(R),R) dx d\eta - v(a_{1}(R)) \right) h(R) dR \quad \text{s.t.}$$

$$(i) \int_{x,\eta} u(w(x,R,\eta)) g_{1}(x,\eta|a_{1}(R),a_{2}(R),R) dx d\eta - v'(a_{1}(R)) = 0, \forall R,$$

$$(ii) \int_{x,\eta} u(w(x,R,\eta)) g_{2}(x,\eta|a_{1}(R),a_{2}(R),R) dx d\eta = 0, \forall R,$$

$$(iii) \ w(x,R,\eta) \ge k, \ \forall (x,\eta).$$

$$(C49)$$

Note that the above program is different from the original program (C22) in that here contract can be written on the realized value of R. If we let the Lagrange multipliers to the constraints (i) and (ii) be $\mu_1(R)h(R)$ and $\mu_2(R)h(R)$ respectively, we get the following optimal contractual form:¹⁹

$$\begin{split} \frac{1}{u'(w(x,R,\eta))} &= \lambda + \mu_1(R) \frac{x - R\eta - \phi_R}{a_2(R)^2} \phi_{1,R} \\ &+ \mu_2(R) \left[-\frac{1}{a_2(R)} + \frac{x - R\eta - \phi_R}{a_2(R)^2} \phi_{2,R} + \frac{(x - R\eta - \phi_R)^2}{a_2(R)^3} \right] \\ &= \lambda + (\mu_1(R)\phi_{1,R} + \mu_2(R)\phi_{2,R}) \underbrace{\underbrace{x - R\eta - \phi_R}_{\equiv y} + \underbrace{\mu_2(R)}_{a_2(R)} \left[\underbrace{\underbrace{x - R\eta - \phi_R)^2}_{\equiv y} - 1 \right]}_{(C50)}, \end{split}$$

when $w(x, R, \eta) \ge k$. The above equation (C50) implies that optimal contract only depends on $y \equiv x - R\eta$ and the solution $(w(x, R, \eta), a_1(R), a_2(R))$ becomes $(a_1^*, a_2^*, w^*(y)) \equiv w^*(x - R\eta)$. By comparing the above (C49) with the program in (C22) where the principal does not know R, one can easily see that the set of wage contracts, $\{w(x, R, \eta)\}$, satisfy-

We define $\phi_R \equiv \phi(a_1(R), a_2(R)), \phi_{i,R} \equiv \phi_i(a_1(R), a_2(R))$ for $\forall i = 1, 2$, where $\{a_1(R), a_2(R)\}$ are optimal actions for each R.

ing the incentive constraints for a given action combination $(a_1(R), a_2(R))$ in the above program always contains the set of wage contracts that would be available when the principal does not know R, $\{w(x,\eta)\}$, satisfying the incentive constraints for the same action combination. Therefore, we have

$$SW^N \le SW^*(a_1^*, a_2^*).$$
 (C51)

However, one can easily see that $w^*(y) = w^*(x - R\eta)$ which is a unique solution for the wage contract of the above program is not in the set of $\{w(x,\eta)\}$. As a result, we finally derive

$$SW^N < SW^*(a_1^*, a_2^*).$$
 (C52)

Proof of Lemma 6:

(1) Suppose $\underline{\mu_2^*} < 0$ in equation (C29) for any given \hat{b} . Proposition 8 implies that if the shareholders want their manager to reduce the risk through the project choice (i.e., if $a_2^P < a_2^A(a_2^P)$), the optimal contract in equation (C19) features $\mu_2^* < 0$. Note that risk reduction through the real project choice (i.e., lowering a_2) is costly to the manager in the sense that a less risky project generates the lower expected return, and thereby reduces the agent's expected payoff (i.e., $\mu_1^*\phi_1^* + \mu_2^*\phi_2^* > 0$). Thus, the fact that even costly risk reduction is encouraged by $w^*(z(\hat{b}))$ implies that any risk reduction (i.e., reducing the variance of $z(\hat{b})$) in the absence of expected return reduction will be taken by the manager under $w^*(z(\hat{b}))$. Risk reduction through derivative transaction is costless to the agent because there is no risk-return trade-off for derivative transaction (i.e., manipulating a_3). Whenever taking further risk reduction is encouraged, therefore, the manager would like to do it through the derivative choices first.

Thus, the manager will choose a_3 so that $b \equiv R - a_3 = \hat{b}$ which minimizes the variance of $z(\hat{b})$, when $w^*(z(\hat{b}))$ with $\mu_2^* < 0$ is designed.

(2) Suppose $\underline{\mu_2^*>0}$ for $w^*(z(\hat{b}))$ in equation (C29). Given (a_1^*,a_2^*) , $z(\hat{b})=x-\hat{b}\eta=\phi(a_1^*,a_2^*)+(b-\hat{b})\eta+a_2^*\theta$ holds. Let $w(\eta,\theta,b|w^*)$ be the wage that the manager will receive under $w^*(z(\hat{b}))$ when he takes (a_1^*,a_2^*,b) and (η,θ) are realized. Then, by substituting

equation (C27) into equation (C29), we have

$$\frac{1}{u'(w(\eta,\theta,b|w^*))} = \lambda + (\mu_1^*\phi_1^* + \mu_2^*\phi_2^*) \frac{(b-\hat{b})\eta + a_2^*\theta}{(a_2^*)^2} + \mu_2^* \frac{1}{a_2^*} \left(\frac{((b-\hat{b})\eta + a_2^*\theta)^2}{(a_2^*)^2} - 1 \right), \tag{C53}$$

when $w(\eta, \theta, b|w^*) \ge k$ and otherwise $w(\eta, \theta, b|w^*) = k$. Therefore, for two different b, say b^0 and b^1 , given some realized (η, θ) , we have

$$\frac{1}{u'(w(\eta,\theta,b^{1}|w^{*}))} - \frac{1}{u'(w(\eta,\theta,b^{0}|w^{*}))} = (\mu_{1}^{*}\phi_{1}^{*} + \mu_{2}^{*}\phi_{2}^{*}) \frac{(b^{1} - b^{0})\eta}{(a_{2}^{*})^{2}} + \mu_{2}^{*}\frac{1}{a_{2}^{*}} \left(\frac{\left((b^{1} - \hat{b})^{2} - (b^{0} - \hat{b})^{2}\right)\eta^{2} + 2a_{2}^{*}(b^{1} - b^{0})\eta\theta\right]}{(a_{2}^{*})^{2}} \right).$$
(C54)

Assume that $b^1 = +\infty$ or $-\infty$, and $-\infty < b^0 < +\infty$. Since $\mu_2^* > 0$, we have

$$\frac{1}{u'(w(\eta, \theta, b^1|w^*))} - \frac{1}{u'(w(\eta, \theta, b^0|w^*))} > 0, \ \forall (\eta, \theta).$$
 (C55)

Therefore, we have

$$w(\eta, \theta, b^1 | w^*) > w(\eta, \theta, b^0 | w^*), \quad \forall (\eta, \theta). \tag{C56}$$

which implies that the agent takes a_3 satisfying $b=+\infty$ or $-\infty$ with $w^*(z(\hat{b}))$ with $\mu_2^*>0$.