LECTURE 22 - MATH 6301 Assume that (X,5, M) is a measure space and ECS. THEOREM (Riesz)
Let $f_n: E \to \mathbb{R}$ be a sequene of μ -measurable functions, finite a.e., and $f: E \to \mathbb{R}$ a measurable function such that $f_n \xrightarrow{\mathcal{H}} f$ (f_n converges in measure μ to f). Then there exists a subsequence $\{f_{n_K}, f \in \{f_n\}\}$ such that $f_{n_k}(x) \rightarrow f(x)$ a.e. PROOF: We have, by assumption, that $\forall \forall \exists \forall \text{ ndoce} E: |\beta_n(\alpha) - \beta(\alpha)| \ge e^{\frac{1}{2}} < \frac{\pi}{2}$ Therefore $n = \frac{(*)}{k_n}$ n = 1 n = 1 n = 2 and we can assume, without loss of generally, that the segmence of integers $\{x_n\}_{n=1}^{\infty}$ is strictly increasing. Then we put $\{x_n\}_{n=1}^{\infty}$ is strictly increasing. Sine $\mu \mid \alpha \in E: \mid \beta(2) \mid = \infty$] = 0 we have that $E \cdot F_m \subset \bigcup_{n=m}^{\infty} \mid \alpha: \mid \beta_{E_n}(\alpha) - \beta(\alpha) \mid \geq \frac{1}{n}$ $\mu(E \setminus F_m) \in \sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{1}{2^{m-1}}$ Then notice that find for Every m. Indeed, for every xx Fm one has for all n > m that If (2) - f(2) < n

Much implies that fx (a) -> f(a) un fruity on Fur.

INTEGRATION (LEBESGUG INTEGRAL)

Suppose $(X, 5, \mu)$ is a measure space, $E \in S$, and $f : E \rightarrow \mathbb{R}$ is a M-measuable function s.t. $f(x) \ge 0$ for all $x \in E$. Then we define the integral of f over E relative to 1 by following formula

the integral of f over E relative to M by following formula (*)(here by convention we assume inf f(x)=0) DEFINITION: A function 3: E - R is called a 6-simple of there exists disjoint sets En, n=1,2,..., such thust 1) $E = \emptyset$ E_{y} b = 1 ∞ 2) $S(x) = \sum_{n=1}^{\infty} a_n \chi_{E_{y}}(x)$. Clearly, if the sets En one n-measurable, then s is also measurable. Example: (1) Let $f: E \to [0, \infty]$ be a measurable furte a.e. function, and $E = \bigcup_{n=1}^{\infty} E_n$, $E_n \in S$, $E_n \cap E_k = \emptyset$, $\mu(E_n / > 0$. Pat $a_n := \inf_{\alpha \in \Xi_n} f(\alpha)$. Notice that 0 = an < 0. Then $S(a) = \sum_{n=1}^{\infty} a_n \chi_{E_n}(a)$ (2) If I:E - [0,0] is a measurable function, then there exists a sequence of simple measurable functions Sn: E- R, such that (i) $\forall \forall 0 \in S_n(a) \leq S_{nt}(a) \leq f(a)$ (ii) \forall lun $S_n(2) = f(2)$. Thon, since every simple function on is also 6-simple, we have thut every non-negative measurable function f: E-R is a pointure lumit of our increasing a segmene of 6-simple measurable functions 54 The wea of an integral for a smple measurable functions NOTICE: $S(\alpha) = \sum_{n=1}^{\infty} a_n \chi_{\pm n}(\alpha)$ (sdn =) an nlEn)

For a 6-sigma simple measurable function $8:E \to \mathbb{R}$, 8(a) > 0 $\forall x \in E$

we have he same Somule.

$$\int Sd\mu = \sum_{n=1}^{\infty} a_n \mu(E_n)$$

$$S(x) = \sum_{n=1}^{\infty} a_n \chi_{E_n}(x)$$

$$E_n E_n = \emptyset$$

$$= 0$$

$$= 0$$

In the case $X = \mathbb{R}^n$ and the measure M is the Lebesgue measure M instead of whiching

$$\begin{cases}
fd_{ph} = \int f(a)d_{ph}(a) & \text{we will simply with } \int f(a)dx \\
E = E$$

DIRECTLY FROM THE DEFINITION (x) we have the properties

2) For two measurable functions
$$f_{i}g: E \rightarrow [0,\infty]$$
 such $g_{i}g: E \rightarrow [0,\infty]$ such $g_{i}g: E \rightarrow$

