

(11) EP 0 737 009 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 05.01,2000 Bulletin 2000/01

(51) Int CI.7: H04N 5/92, H04N 9/82

(21) Application number: 96105576.1

(22) Date of filing: 09.04.1996

(54) A recording medium on which attribute information on the playback data is recorded together with the playback data and a system for appropriately reproducing the playback data using the attribute information

Aufnahmemedium mit gleichzeitiger Aufnahme von Zusatzinformationen über den Abspieldaten und System zu dessen Wiedergabe

Un moyen d'enregistrement ou des informations d'attribut concernant les données de lecture sont enregistrées ensemble avec les données de lecture, et un système pour reproduire, de façon appropriée, les données de lecture, en utilisant des informations d'attribut

- (84) Designated Contracting States:

 AT BE CH DE ES FR GB IT LI LU NL SE
- (30) Priority: 06.04.1995 JP 8129895
- (43) Date of publication of application: 09.10.1996 Bulletin 1996/41
- (73) Proprietor: KABUSHIKI KAISHA TOSHIBA Kawasaki-shi, Kanagawa-ken 210-8572 (JP)
- (72) Inventors:
 - Taira, Kazuhiko, c/o K.K. Toshiba Minato-ku, Tokyo 105 (JP)
 - Mimura, Hideki, c/o K.K. Toshiba Minato-ku, Tokyo 105 (JP)

- Kikuchi, Shinichi, c/o K.K. Toshiba Minato-ku, Tokyo 105 (JP)
- Kurano, Tomoaki, c/o K.K. Toshiba Minato-ku, Tokyo 105 (JP)
- Hagio, Takeshi, c/o K.K. Toshiba Minato-ku, Tokyo 105 (JP)
- (74) Representative: Henkel, Feiler, Hänzel Möhlstrasse 37 81675 München (DE)
- (56) References cited:

EP-A- 0 498 617 WO-A-92/05658

EP-A- 0 664 646 US-A- 5 400 077

P 0 737 009 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

[0001] This invention relates to a recording medium on which attribute information on the playback data is recorded together with the playback data, to a method and an apparatus for recording such data, a method and an apparatus for appropriately reproducing the playback data using the attribute information, and more particularly to a recording medium on which besides the playback data with specific attributes, even playback data with various attributes can be recorded and further from which appropriate reproduction can be performed according to the attribute data, and a playback system for such a recording medium.

[0002] Compact disks (CDs) have been already developed and are now one of the best-known applications of optical disks. Because of the limits of their storage capacity, it is considered difficult to record and reproduce the movie data for a long time. To overcome this shortcoming, an optical disk capable of recording even movie data at high density is being investigated and developed.

[0003] Some of such high-density recording optical disks are available. With such optical disks, it is possible to record a plurality of selectable video data items or audio data items on the disk. Furthermore, it is possible to allocate different sounds to a single video by recording a plurality of audio streams on the disk, and moreover, it is possible, for example, to select and display subtitles with different languages by recording a plurality of sub-picture streams on the disk.

[0004] As the number of playback data items to be selected increases, the playback form is diversified. This necessitates setting information on the individual playback data items, data correlation information indicating the correlation between selectable data items to be reproduced in the same time period, or data content information providing the user with information for selection.
[0005] In the prior art, however, because the volume of data stored on the disk is small, the setting information, correlation information, and content information are sometimes fixed. Another problem is that although these pieces of information are stored in a particular area on the entire disk, the number of choices is so small that part of the information is practically absent.

[0006] The document WO-A-92 05658 relates to an improvement of the known CD-I-format and teaches a data structure and a reproduction method for "scanned pictures", i.e. still pictures or coded pixels stored on a disk medium. According to this known structure the data of the scanned pictures is stored on the medium in individual picture files which respectively have different subfiles storing the same picture in different resolutions. In front of the picture files a plurality of control files are recorded which contain information for controlling the reproduction of the pictures and for performing optional picture processing operations. This information may comprise parameters or attributes for a reproduction

setting like a rotation code or a magnification code or brightness information. In a preferred embodiment a plurality of sets of reproduction settings are provided to be selected by different users to have the same pictures presented in different modes.

[0007] The document EP-A-0 498 617 relates to a method and format of recording video and audio signals together with auxiliary data like information on the type of broadcasting system of the recorded video signal, on/ off of encryption, copy inhibition, sampling frequency on a magnetic tape of a video tape recorder. The auxiliary data is arranged and transmitted interspersed between the audio and video data and thus together therewith.

[0008] The document EP-A-0 664 646 relates to a digital video and audio signal recording and/or reproducing device comprising: a recording format having a first recording area for recording a coded video signal, a second recording area for recording a coded audio signal, and a third recording area for recording an audio associated data constructed in pack form, means for coding the video signal and recording it in the first recording area, means for coding the audio signal and recording it in the second recording area, means for forming in pack the audio-associated information inserted in a vertical blanking period of the video signal and recording it in the third recording area, means for reproducing the coded video signal from the first recording area and decoding the video signal, means for reproducing the coded audio signal from the second recording area and decoding the audio signal, and means for reproducing the audio-associated information formed in pack from the third recording area and reading out the associated information.

[0009] The document US-A-5 400 077 describes a system for reproducing data from a motion picture disk which includes in a lead-in portion of the disk track information stored in individual fields which controls subsequent processing of the data read from the disk. This information comprises inter alia a code indicative of the recorded aspect ratio. Prior to the processing of this information on power up the reproducing apparatus is set according to default settings which can be changed by the user. Upon reproducing the disk the player automatically generates the appropriate video signal in accordance with both its default setting and the disk code.

[0010] It is an object of the present invention to provide a recording disk medium, a recording method and apparatus, a reproducing method and apparatus and a communication system by which it is possible to record or reproduce reproducible video, audio, and sub-picture data arranged in one or more title sets with the optimum playback settings for the respective title set and with short waiting times.

[0011] According to the present invention there is provided a recording disk medium as defined in claim 1, a recording method as defined in claim 27, a recording apparatus as defined in claim 53, a reproducing method as defined in claim 79 and a reproducing apparatus as

40

15

25

defined in claim 80.

[0012] Preferred embodiments of the invention are defined in the sub-claims.

[0013] This invention can be more fully understood from the following detailed description when taken in conjunction with the accompanying drawings, in which:

FIG. 1 is a schematic block diagram of an optical disk apparatus according to an embodiment of the present invention;

FIG. 2 is a detailed block diagram of the mechanism section of the disk drive unit of FIG. 1;

FIG. 3 is a schematic perspective view of the structure of an optical disk loaded in the disk drive unit of FIG. 1;

FIG. 4 shows the structure of a logic format of the optical disk of FIG. 3;

FIG. 5 shows the structure of the video manager of FIG. 4;

FIG. 6 shows an example of the structure of the video object set (VOBS) of FIG. 5;

FIG. 7 shows the parameters in the volume manager information management table (VMGI_MAT) in the video manger (VMGI) of FIG. 5 and the description thereof;

FIG. 8 is a bit table describing the video attributes of VMGM of FIG. 7;

FIG. 9 is an explanatory diagram of the relationship between the display aspect ratio related to the description of the video attributes and the display mode;

FIGS. 10A and 10B are plan views to help explain that the representation of the letter box of FIG. 9 changes with the frame rate;

FIG. 11 is a bit table describing the audio stream attributes of VMGM of FIG. 7;

FIG. 12 is a bit table describing the sub-picture stream attributes of VMGM of FIG. 7;

FIG. 13 shows the structure of the title search pointer table (TT_SRPT) in the video manger (VMGI) of FIG. 5;

FIG. 14 shows the parameters for title search pointer table information (TSPTI) in the title search pointer table (TT_SRPT) of FIG. 13 and the description thereof:

FIG. 15 shows the parameters for the title search pointers (TT_SRP) corresponding to the entry numbers of the title search pointer table (TT_SRPT) of FIG. 13 and the description thereof;

FIG. 16 is an explanatory diagram to help explain the structure of a program chain stored in a file;

FIG. 17 shows the structure of the video title set attribute table (VTS_ATRT) in the video manager (VMGI) of FIG. 5;

FIG. 18 shows the parameters for video title set attribute table information (VTS_ATRTI) in the video title set attribute table (VTS_ATRT) of FIG. 17 and the description thereof;

FIG. 19 shows the parameters for video title set attribute search pointers (VTS_ATR_SRP) in the video title set attribute table (VTS_ATRT) of FIG. 17 and the description thereof;

FIG. 20 shows the parameters for video title set attributes (VTS_ATR) in the video title set attribute table (VTS_ATRT) of FIG. 17 and the description thereof;

FIG. 21 shows the structure of the video title set of FIG. 4;

FIG. 22 shows the parameters in the video title set information management table (VTSI_MAT) for the video title set information (VTSI) of FIG. 21 and the description thereof;

FIG. 23 is a bit map table of the audio stream attributes (VTS_AST_ATR) described in the table (VTSI MAT) of FIG. 21:

FIG. 24 shows the structure of the video title set program chain information table (VTS_PGCIT) of FIG. 21;

FIG. 25 shows the parameters for pieces of information (VTS_PGCIT_I) in the video title set program chain information table (VTS_PGCIT) of FIG. 21 and the description thereof;

FIG. 26 shows the parameters for search pointers (VTS_PGCIT_SRP) of the video title set program chain information table (VTS_PGCIT) of FIG. 24 and the description thereof;

FIG. 27 shows the structure of the program chain information (VTS_PGCI) for the video title set corresponding to a program chain in the video title set program chain information table (VTS_PGCIT) of FIG. 24;

FIG. 28 shows the parameters for pieces of general information (PGC_GI) on a program chain in the program chain information (VTS_PGCI) of FIG. 27; FIG. 29 shows the structure of a program chain map (PGC_PGMAP) in the program chain information (VTS_PGCI) of FIG. 27;

FIG. 30 shows the parameters for the entry cell numbers (ECELLN) of the programs written in the program chain map (PGC_PGMAP) of FIG. 19 and the description thereof:

FIG. 31 shows the structure of a cell playback information table (C_PBIT) in the program chain information (VTS_PGCI) of FIG. 27;

FIG. 32 shows the parameters in the cell playback information (C_PBI) of FIG. 31 and the description thereof;

FIG. 33 shows the structure of cell position information (C_POSI) in the program chain information (VTS_PGCI) of FIG. 27;

FIG. 34 shows the parameters for the cell position information (C_POSI) of FIG. 33 and the description thereof:

FIG. 35 shows the structure of the navigation pack of FIG. 6;

FIG. 36 shows the structure of the video, audio, or

3

15

20

sub-picture pack of FIG. 6;

FIG. 37 shows the parameters for presentation control information (PCI) in the navigation pack of FIG. 35 and the description thereof;

FIG. 38 shows the parameters for general information (PCI_GI) in the presentation control information (PCI) of FIG. 37 and the description thereof;

FIG. 39 shows the parameters for disk search information (DSI) in the navigation pack of FIG. 35 and the description thereof;

FIG. 40 shows the parameters for DSI general information (DSI_GI) in the disk search information (DSI) of FIG. 39 and the description thereof;

FIG. 41 shows the parameters for synchronous playback information (SYNCI) on the video object (VOB) OF FIG. 37 and the description thereof;

FIG. 42 is a block diagram of the video decoder section of FIG. 1;

FIG. 43 is a block diagram of the audio decoder section of FIG. 1;

FIG. 44 is a block diagram of the sub-picture decoder section of FIG. 1;

FIG. 45 is a block diagram of the video playback processing section of FIG. 1;

FIG. 46 is a block diagram of the audio playback processing section of FIG. 1;

FIG. 47 is a block diagram of the audio mixing section of FIG. 1;

FIG. 48 is a flowchart to help explain the acquisition of video data attributes and the process of setting the reproducing system;

FIG. 49 is a flowchart to help explain the acquisition of audio data attributes and the process of setting the reproducing system;

FIG. 50 is a flowchart to help explain the acquisition of sub-picture data attributes and the process of setting the reproducing system;

FIG. 51 is a block diagram of an encoder system that creates video files by encoding the video data; FIG. 52 is a flowchart for the encoding process of FIG. 51;

FIG. 53 is a flowchart for combining the main video data, audio data, and sub-picture data that have been encoded in the flow of FIG. 52 and creating a video data file;

FIG. 54 is a block diagram of a disk formatter system used to record a formatted video file on an optical disk;

FIG. 55 is a flowchart for creating logic data to be recorded on the disk in the disk formatter of FIG. 54; FIG. 56 is a flowchart for creating from logic data physical data to be recorded on the disk; and

FIG. 57 is a schematic diagram of a system that transfers the video title set of FIG. 4 via a communication system.

[0014] Hereinafter, referring to the accompanying drawings, an optical disk and an optical disk reproducing

apparatus according to an embodiment of the present invention will be explained.

[0015] FIG. 1 is a block diagram of an optical disk reproducing apparatus that reproduces the data from an optical disk associated with an embodiment of the present invention. FIG. 2 is a block diagram of the disk drive section that drives the optical disk shown in FIG. 1. FIGS. 3 and 4 show the structure of the optical disk shown in FIGS. 1 and 2.

[0016] As shown in FIG. 1, the optical disk reproducing apparatus comprises a key/display section 4, a monitor section 6, and a speaker section 8. When the user operates the key/display section 4, this causes the recorded data to be reproduced from an optical disk 10. The recorded data contains video data, sub-picture data, and audio data, which are converted into video signals and audio signals. The monitor section 6 displays images according to the audio signals and the speaker section 8 generates sound according to the audio signals.

[0017] The optical disk 10 has been available with various structures. For instance, one type of the optical disk 10 is a read-only disk on which data is recorded at a high density as shown in FIG. 3. The optical disk 10, as shown in FIG. 3, is made up of a pair of composite layers 18 and an adhesive layer 20 sandwiched between the composite disk layers 18. Each of the composite disk layers 18 is composed of a transparent substrate 14 and a recording layer or a light-reflecting layer 16. The disk layer 18 is arranged so that the light-reflecting layer 16 may be in contact with the surface of the adhesive layer 20. A center hole 22 is made in the optical disk 10. On the periphery of the center hole 22 on both sides, clamping areas 24 are provided which are used to clamp the optical disk 10 during its rotation. When the disk 10 is loaded in the optical disk apparatus, the spindle of a spindle motor 12 shown in FIG. 2 is inserted into the center hole 22. As long as the disk is being rotated, it continues clamped to the clamping areas 24.

40 [0018] As shown in FIG. 3, the optical disk 10 has an information area 25 around the clamping area 24 on each side, on which areas the information can be recorded. In each information area 25, its outer circumference area is determined to be a lead-out area 26 in which no information is normally recorded, its inner circumference area adjoining the clamping area 24 is determined to be a lead-in area 27 in which no information is normally recorded, and the area between the lead-out area 26 and the lead-in area 27 is determined to be a data recording area 28.

[0019] At the recording layer 16 in the information area 25, a continuous spiral track is normally formed as an area in which data is to be recorded. The continuous track is divided into a plurality of physical sectors, which are assigned serial numbers. On the basis of the sectors, data is recorded. The data recording area 28 in the information recording area 25 is an actual data recording area, in which playback data, video data, sub-picture

data, and audio data are recorded in the form of pits (that is, in the form of changes in the physical state) as explained later. With the read-only optical disk 10, a train of pits is previously formed on the transparent substrate 14 by a stamper, a reflecting layer is formed by evaporation on the surface of the transparent substrate 14 on which the pit train has been formed, and the reflecting layer serves as the recording layer 16. On the read-only optical disk 10, no groove is normally provided as a track and the pit train on the surface of the transparent substrate 14 serves as a track.

[0020] The optical disk apparatus 12, as shown in FIG. 1, further comprises a disk drive section 30, a system CPU section 50, a system ROM/RAM section 52, a system processor section 54, a data RAM section 56, a video decoder 58, an audio decoder section 60, a subpicture decoder section 62, and a D/A and data reproducing section 64.

[0021] As shown in FIG. 2, the disk drive section 30 contains a motor driving circuit 11, a spindle motor 12, an optical head 32 (i.e., an optical pickup), a feed motor 33, a focus circuit 36, a feed motor driving circuit 37, a tracking circuit 38, a head amplifier 40, and a servo processing circuit 44. The optical disk 10 is placed on the spindle motor 12 driven by the motor driving circuit 11 and is rotated by the spindle motor 12. The optical head 32 that projects a laser beam on the optical disk 10 is located under the optical disk 10. The optical head 32 is placed on a guide mechanism (not shown). The feed motor driving circuit 37 is provided to supply a driving signal to the feed motor 33. The motor 33 is driven by the driving signal and moves in and out the optical head 32 radially over the optical disk 10. The optical head 32 is provided with an object lens 34 positioned so as to face the optical disk 10. The object lens 34 is moved according to the driving signal supplied from the focus circuit 36 so as to move along its optical axis.

[0022] To reproduce the data from the aforementioned optical disk, the optical head 32 projects a laser beam on the optical disk 10 via the object lens 34. The object lens 34 is traversed minutely over the optical disk 10 according to the driving signal supplied from the tracking circuit 38. Furthermore, the object lens 34 is moved minutely along its optical axis according to the driving signal supplied from the focusing circuit 36 so that its focal point may be positioned on the recording layer 16 of the optical disk 10. This causes the laser beam to form the smallest beam spot on the spiral track (i.e., the pit train), enabling the beam spot to trace the track. The laser beam is reflected from the recording layer 16 and returned to the optical head 32. The optical head 32 converts the beam reflected from the optical disk 10 into an electric signal, which is supplied from the optical head 32 to the servo processing circuit 44 via the head amplifier 40. From the electric signal, the servo processing circuit 44 produces a focus signal, a tracking signal, and a motor control signal and supplies these signals to the focus circuit 36, tracking circuit 38, and

motor driving circuit 11, respectively.

[0023] Therefore, the object lens 34 is moved along its optical axis and across the radius of the optical disk 10, its focal point is positioned on the recording layer 16 of the optical disk 10, and the laser beam forms the smallest beam spot on the spiral track. Furthermore, the spindle motor 12 is rotated by the motor driving circuit 11 at a specific rotating speed. This allows the beam to trace the pit train at a constant linear speed.

[0024] The system CPU section 50 of FIG. 1 supplies to the servo processing circuit 44 a control signal serving as an access signal. In response to the control signal, the servo processing circuit 44 supplies a head-moving signal to the feed motor driving circuit 37, which supplies a driving signal to the feed motor 33. Then, the feed motor 33 is driven, causing the optical head 32 to traverse over the optical disk 10. Then, the optical head 32 accesses a specific sector formed at the recording layer 16 of the optical disk 10. The playback data is reproduced from the specific sector by the optical head 32, which then supplies it to the head amplifier 40. The head amplifier 40 amplifies the reproduced data, which is outputted at the disk drive section 30.

[0025] The reproduced data is stored in the data RAM section 56 by the system processor section 54 under the supervision of the system CPU section 50 controlled by the programs stored in the system ROM/RAM section 52. The stored reproduced data is processed at the system processor section 54, which sorts the data into video data, audio data, and sub-picture data, which are supplied to the video decoder section 58, audio decoder section 60, and sub-picture decoder section 62, respectively, and are decoded at the respective decoders. The D/A and data-reproducing section 64 converts the decoded video data, audio data, and sub-picture data into an analog video signal, an analog audio signal, and an analog sub-picture signal and supplies the resulting video signal to the monitor 6 and the resulting audio signal to the speaker 8. Then, on the basis of the video signal and sub-picture signal, images are displayed on the monitor section 6 and according to the audio signal. sound is simultaneously reproduced at the speaker section 8.

[0026] The detailed operation of the optical disk apparatus of FIG. 1 will be described later with reference to the logic format of the optical disk explained below.

[0027] The data recording area 28 between the leadin area 27 and the lead-out area 26 on the optical disk of FIG. 1 has a volume and file structure as shown in FIG. 4. The structure has been determined in conformity to specific logic format standards, such as micro UDF or ISO 9660. The data recording area 28 is physically divided into a plurality of sectors as described earlier. These physical sectors are assigned serial numbers. In the following explanation, a logical address means a logical sector number (LSN) as determined in micro UDF or ISO 9660. Like a physical sector, a logical sector contains 2048 bytes. The numbers (LSN) of logical sec-

tors are assigned consecutively in ascending order as the physical sector number increments.

[0028] As shown in FIG. 4, the volume and file structure is a hierarchic structure and contains a volume and file structure area 70, a video manager (VMG) 71, at least one video title set (VTS) 72, and other recorded areas 73. These areas are partitioned at the boundaries between logical sectors. As with a conventional CD, a logical sector is defined as a set of 2048 bytes. Similarly, a logical block is defined as a set of 2048 bytes. Therefore, a single logical sector is defined as a single logical block.

[0029] The file structure area 70 corresponds to a management area determined in micro UDF or ISO 9660. According to the description in the management area, the video manager 71 is stored in the system ROM/RAM section 52. As explained with reference to FIG. 5, the information used to manage video title sets is written in the video manager, which is composed of a plurality of files 74, starting with file #0. In each video title set (VTS) 72, compressed video data, compressed audio data, compressed sub-picture data, and the playback information about these data items are stored as explained later. Each video title set is composed of a plurality of files 74. The number of video title sets is limited to 99 maximum. Furthermore, the number of files 74 (from File #j to File #j+9) constituting each video title set is determined to be 10 maximum. These files are also partitioned at the boundaries between logical sectors.

[0030] In the other recorded areas, the information capable of using the aforementioned video title sets 72 is recorded. The other recorded areas are not necessarily provided.

[0031] As shown in FIG. 5, the video manager 71 contains at least three items each corresponding to individual files 74. Specifically, the video manager 71 is made up of video manager information (VMGI) 75, a video object set (VMGM_VOBS) 76 for video manager menu, and backup (VMGI_BUP) 77 of video manager information. Here, the volume manager information (VMGI) 75 and the backup (VMGI_BUP) 77 of video manager information are determined to be indispensable items, and the video object set (VMGM_VOBS) 76 for video manager menu is determined to be an optional item. In the video object set (VMGM-VOBS) 76 for VMGM, the video data, audio data, and sub-picture data for a menu of the volumes of the optical disk managed by the video manager 71 are stored.

[0032] According to the video object set (VMGM_VOBS) for VMGM, the volume name of the optical disk, the sound accompanying the volume name representation, and the description of the sub-picture are displayed and at the same time, selectable items are provided in the form of sub-pictures as in video reproduction explained later. For example, the video object set (VMGM_VOBS) 76 for VMGM indicates that the optical disk contains the video data representing the

matches a boxer played until he won a world championship. Specifically, a fighting pose of boxer X, together with a volume name, such as the glorious history of boxer X, is reproduced in the form of video data and at the same time, his theme song is reproduced in sound, and his chronological table is provided in a sub-picture. Furthermore, the user is asked which language choice to select, English or Japanese, for the narration of the matches. At the same time, the user is asked whether subtitles in another language should be provided in a sub-picture or which language choice should be selected for the subtitles. Thus, for example, the VMGM video object set (VMGM_VOBS) 76 makes preparations for the user to watch a video of a match of boxer X in English narration with a sub-picture using Japanese subtitles. [0033] Here, the structure of a video object set (VOBS) 82 will be described with reference to FIG. 6. FIG. 6 shows an example of a video object set (VOBS) 82. The video object set (VOBS) 82 comes in three types 76, 95, 96 for two menus and a title. Specifically, in the video object set (VOBS) 82, a video title set (VTS) 72 contains a video object set (VTSM_VOBS) 95 for a menu of video title sets and a video object set (VTSTT_VOBS) for the titles of at least one video title set as explained later. Each video object 82 set has the same structure except that their uses differ.

[0034] As shown in FIG. 6, a video object set (VOBS) 82 is defined as a set of one or more video objects (VOB). The video objects 83 in a video object set (VOBS) 82 are used for the same application. A video object set (VOBS) 82 for menus is usually made up of a single video object (VOB) 83 and stores the data used to display a plurality of menu screens. In contrast, a video object set (VTSTT_VOBS) 82 for title sets is usually composed of a plurality of video objects (VOB) 83.

[0035] When the aforesaid video of a boxing match is taken as example, a video object (VOB) 83 corresponds to the video data of each match played by boxer X. Specifying a particular video object (VOB) enables, for example, boxer X's eleventh match for a world championship to be reproduced on a video. The video object set (VTSM_VOBS) 95 for a menu of the video title sets 72 contains the menu data for the matches played by boxer X. According to the presentation of the menu, a particular match, for example, boxer X's eleventh match for a world championship, can be specified. In the case of a usual single story movie, one video object 83 (VOB) corresponds to one video object set (VOBS) 82. One video stream is completed with one video object set (VOBS) 82. In the case of a collection of animated cartoons or an omnibus movie, a plurality of video streams each corresponding to individual stories are provided in a single video object set (VOBS) 82. Each video stream is stored in the corresponding video object. Accordingly, the audio stream and sub-picture stream related to the video stream are also completed with each video object (VOB) 83.

[0036] An identification number (IDN#j) is assigned to

a video object (VOB) 83. By the identification number, the video object (VOB) 83 can be identified. A single video object (VOB) 83 is made up of one or more cells 84. Although a usual video stream is made up of a plurality of cells, a menu video stream, or a video object (VOB) 83 may be composed of one cell. A cell is likewise assigned an identification number (C_IDN#j). By the identification number (C_IDN#j), the cell 84 is identified.

[0037] As shown in FIG. 6, each cell 84 is composed of one or more video object units (VOBU) 85, normally a plurality of video object units (VOBU) 85. Here, a video object unit (VOBU) 85 is defined as a pack train having a single navigation pack (NAV pack) 86 at its head. Specifically, a video object unit (VOBU) 85 is defined as a set of all the packs recorded, starting at a navigation pack (NAV pack) to immediately in front of the next navigation pack. The playback time of the video object unit (VOBU) corresponds to the playback time of the video data made up of one or more GOPs (Group of Pictures) contained in the video object (VOBU). The maximum playback time is determined to be 0.4 or more second and less than one second. In the MPEG standard, a single GOP is determined to be normally 0.5 second long and be compressed screen data for reproducing about 15 screens during that duration.

[0038] When a video object unit includes video data as shown in FIG. 6, more than one GOP composed of video packs (V packs) 88, a sup-picture pack (SP pack) 90, and an audio pack (A pack) 91 all determined in the MPEG standard, are arranged to produce a video data stream. Regardless of the number of GOPs, a video object unit (VOBU) 85 is determined on the basis of the playback time of a GOP. The video object always has a navigation pack (NV pack) 86 at its head. Even when the playback data consists only of audio and/or sub-picture data, it will be constructed using the video object unit as a unit. Specifically, even if a video object unit is constructed only of audio packs, the audio packs to be reproduced within the playback time of the video object unit to which the audio data belongs will be stored in the video object unit, as with the video object of video data. [0039] The video manager 71 will be explained with reference to FIG. 5. The video management information 75 placed at the head of the video manager 71 contains information on the video manager itself, the information used to search for titles, the information used to reproduce the video manager menu, and the information used to manage the video title sets (VTS) 72 such as the attribute information on video titles. The volume management information contains at least three tables 78, 79, 80 in the order shown in FIG. 5. Each of these tables 78, 79, 80 is aligned with the boundaries between logical sectors. A first table, a video manger information. management table (VMGI_MAT) 78, is a mandatory table, in which the size of the video manager 71, the start address of each piece of the information in the video manager 71, and the start address of and the attribute information about the video object set (VMGM_VOBS)

76 for a video manager menu are written. As explained later, the attribute information includes the video attribute information, the audio attribute information, and the sub-picture attribute information. According to these pieces of attribute information, the modes of the decoders 58, 60, 62 are changed, thereby enabling the video object set (VMGM_VOBS) 76 to be reproduced in a suitable mode.

[0040] Written in a second table of the video manager 71, a title search pointer table (TT_SRPT) 79, are the start addresses of the video titles stored on the optical disk that are selectable according to a title number entered from the key/display section 4 on the apparatus.

[0041] In a third table of the video manager 71, a video title set attribution table (VTS_ATRT) 80, the attribute information determined in the video title set (VTS) 72 in the volumes of the optical disk is written. Specifically, in this table, the following items are written as attribute information: the number of video title sets (VTS) 72, video title set (VTS) 72 numbers, video attributes, such as a video data compression scheme, audio stream attributes, such as an audio coding mode, and sub-picture attributes, such as the type of sup-picture display.

[0042] The details of the contents of the volume management information management table (VMGI_MAT) 78, title search pointer table (TT_SRPT) 78, and video title set attribute table (VTS_ATRT) 80 will be described with reference to FIGS. 7 to 20.

[0043] As shown in FIG. 7, written in the volume management information management table (VMGI_MAT) 78 are an identifier (VMG_ID) for the video manager 71, the size of video management information in the number of logical blocks (a single logical block contains 2048 bytes, as explained earlier), the version number (VERN) related to the standard for the optical disk, commonly known as a digital versatile disk (digital multipurpose disk, hereinafter, referred to as a DVD), and the category (VMG_CAT) of the video manger 71.

[0044] In the category (VMG_CAT) of the video manager 71, a flag indicating whether or not the DVD video directory inhibits copying is written. Further written in the table (VMGI_MAT) 78 are a volume set identifier (VLMS_ID), the number of video title sets (VTS_Ns), the identifier for a provider supplying the data to be recorded on the disk (PVR ID), the start address (VMGM_VOBS_SA) of the video object set (VMGM_VOBS) 76 for a video manager menu, the end address (VMGI_MAT_EA) of a volume manager information management table (VMGI_MAT) 78, and the start address (TT_SRPT_SA) of a title search pointer (TT_SRPT). If the video object set (VMGM_VOBS) 95 for the VMG menu is absent, "00000000h" will be written in its start address (VMGM_VOBS_SA). The (VMGI_MAT_EA) of VMG_MAT 78 is represented by the relative bite number from the first logical block of VMGI_MAT 78 and the start address (TT_SRPT_SA) of TT_SRPT 79 are represented by the relative number of

logical blocks from the first logical block of VMGI 75. [0045] Furthermore, in the table 78, the start address (VTS_ATRT_SA) of the attribute table (VTS_ATRT) of video title sets 72 (VTS) is represented by the number of bytes, relative to the first byte in the VMGI manager table (VMGI_MAT) 71, and the video attribute (VMGM_V_AST) of the video manager menu (VMGM) video object set 76 is written as well. Further written in the table 78 are the number (VMGM_AST_Ns) of audio streams in the video manager menu (VMGM), the attributes (VMGM_AST_ATR) of audio streams in the video manager menu (VMGM), the number (VMGM_SPST_Ns) of sub-picture streams in the video manager menu (VMGM), and the attributes (VMGM_SPST_ATR) of sub-picture streams in the video manager menu (VMGM).

[0046] In the video attribute (VMGM_V_ATR), as shown in FIG. 8, bit number b8 to bit number b15 are allocated to the compression mode, frame rate, display aspect ratio, and display mode, which are the video attribute of the video object set 76 for the video manager menu (VMGM) and bit number b0 to bit number b7 are left empty for reservation for later use. When "00" is written in bit numbers b15, b14, this means the menu video data has been compressed in the video compression mode on the basis of the MPEG-1 standard; and when "01" is written in bit numbers b15, b14, this means the menu video data has been compressed in the video compression mode on the basis of the MPEG-2 standard. The other numbers are for reservation for later use. When "00" is written in bit numbers b13, b12, this means that the menu video data has a frame rate of 29.27/S at which 29.27 frames are reproduced every second. Specifically, when "00" is written in bit numbers b13, b12. this means that the menu video data is TV-system video data according to the NTSC scheme and has a frame rate at which a single frame is drawn at a horizontal frequency of 60 Hz using 525 scanning lines. When "01" is written in bit numbers b13, b12, this means that the menu video data has a frame rate of 25/S at which 25 frames are reproduced every second. Specifically, this means that the menu video data is TV-system video data according to the PAL scheme and has a frame rate at which a single frame is drawn at a frequency of 50 Hz using 625 scanning lines. The other numerals in bit numbers b13, b12 are for reservation for later use.

[0047] Furthermore, when "00" is written in bit numbers b11, b10, this means that the menu video data has a display aspect ratio (ratio of height to width) of 3/4; and when "11" is written in bit numbers b11, b10, this means that the menu video data has a display aspect ratio (ratio of height to width) of 9/16. The other numbers are for reservation for later use.

[0048] Furthermore, when the display aspect ratio is 3/4, that is, when "00" is written in bit numbers b11, b10, "11" is written in bit numbers b9, b8. When the display aspect ratio is 9/16, that is, when "11" is written in bit numbers b11, b10, whether the displaying of the menu

video data in pan scan and/or letter box is permitted is written. Specifically, when "00" is written in bit numbers b9, b8, this means that the displaying in either of pan scan and letter box is permitted; when "01" is written in bit numbers b9, b8, this means that the displaying in pan scan is permitted, but the displaying in letter box is inhibited; and when "10" is written in bit numbers b9, b8, this means that the displaying in pan scan is inhibited, but the displaying in letter box is permitted. When "11" is written in bit numbers b9, b8, this means that the displaying is not particularly specified.

[0049] FIG. 9 shows the relationship between the video data recorded on the optical disk and the reproduced screen images on the TV monitor. As for the video data. because the display aspect ratio is written in bit numbers b11, b10 and the display mode is written in bit numbers b9, b8 as the aforementioned attribute information, this gives the displays as shown in FIG. 9. The video data whose original display aspect ratio ("00" in bit numbers bll, b10) is 3/4 is compressed as it is and recorded. Specifically, as shown in FIG. 9, in the case of the image data with a circle drawn in the center around which four small circles are placed, even if the display mode is any of normal ("00" in bit numbers b9, b8), pan scan ("01" in bit numbers b9, b8), and letter box ("10" in bit numbers b9, b8), it will be displayed on a TV monitor 6 having a TV aspect ratio of 3/4 without changing the display mode as an image with a circle drawn in the center around which four small circles are placed. Even with a TV monitor 6 having a TV aspect ratio of 9/16, the image data will be displayed without changing the display mode as an image with a circle drawn in the center around which four small circles are placed, just leaving the areas on both sides of the screen of the TV monitor where no image is displayed.

[0050] In contrast, the image data whose aspect ratio ("11" in bit numbers bll, b10) is 9/16 is compressed and recorded in a representation with more height than width transformed so that it may have an aspect ratio of 3/4. Specifically, the image having a display aspect ratio of 9/16 with a circle drawn in the center around which four small circles are placed, outside which another four small circles are placed-- one large circle and eight small circles -- is compressed and recorded as the data transformed into a representation where all circles have more height than width. Accordingly, when the display mode is normal ("00" in bit numbers b9, b8), the original image will be displayed without changing the display mode on a TV monitor 6 having a TV aspect ration of 3/4 as an image having an oval with more height than width drawn in the center around which four small ovals with more height than width are placed, outside which another four small ovals with more height than width are placed-- one large ovals and eight small ovals. In contrast, when the display mode is pan scan ("01" in bit numbers b9, b8), the original image will be displayed on the TV monitor 6 having a TV aspect ration of 3/4 as an image with a circle, not an oval, drawn in the center around which four

small circles are placed, and the edge of the screen being so trimmed that the four outermost small circles are cut away. Furthermore, when the display mode is letter box ("10" in bit numbers b9, b8), because the aspect ratio remains unchanged, the original image will be displayed on the TV monitor 6 having a TV aspect ratio of 3/4 as an image of full screen, that is, a single large circle, not an oval, and eight small circles except that no images appear at the top and bottom of the screen. Naturally, because a TV monitor 6 having a TV aspect ratio of 9/16 agrees with the display aspect ratio ("11" in bit numbers b11, b10) of the image data, the image data is displayed as an image with a complete circle drawn in the center around which four small complete circles are placed, outside which another four small complete circles are placed-- one large circle and eight small circles. [0051] As described above, when the image data whose display aspect ratio ("11" in bit numbers b11, b10) is displayed on the TV monitor 6 having a TV aspect ratio of 3/4, no image appears on the top and bottom of the screen. At a frame rate ("01" in bit numbers b13, b12) at which a single frame is drawn at a horizontal frequency of 60 Hz using 525 scanning lines, 72 horizontal scanning lines, the top and bottom ones put together, draw in black (Y = 16, U = V = 128) as shown in FIG. 10A and therefore the top and bottom portions appear black. At a frame rate ("00" in bit numbers b13, b12) at which a single frame is drawn at a horizontal frequency of 50 Hz using 625 scanning lines, 60 horizontal scanning lines, the top and bottom ones put together, draw in black (Y = 16, U = V = 128) as shown in FIG. 10A and therefore the top and bottom portions appear black.

[0052] Explanation of the contents of the table shown in FIG. 7 will be resumed. In the audio stream attribute (VMGM_AST_ATR) of the video manager menu (VM-GM), bit number b63 to bit number b48 are allocated to the audio coding mode, audio type, audio application type, quantization, sampling frequency, and the number of audio channels and bit number b47 to bit number b0 are left empty for reservation for later use as shown in FIG. 11. If the VMCG video object set 76 is absent, or if an audio stream is absent in the video object set, "0" will be written in each bit, starting at bit number b63 down to bit number b0. The audio coding mode is written in bit number b63 to bit number b61. When "000" is written for the audio coding mode, this means that the audio data has been coded according to Dolby AC-3 (a trademark of Dolby Laboratories Licensing Corporation). When "010" is written for the audio coding mode, this means that the audio data is compressed without any expanded bit stream under MPEG-1 or MPEG-2. When "011" is written for the audio coding mode, this means that the audio data is compressed with an expanded bit stream under MPEG-2. When "100" is written for the audio coding mode, this means that the audio data is coded by linear PCM. For the audio data, the other numbers are for reservation for later use. At a frame rate ("00" is written in bit numbers b13, b12 in VMGM_V_ATR) at

which a single frame is drawn at a horizontal frequency of 60 Hz using 525 scanning lines, in the video data attribute, Dolby AC-3 ("000" in bit numbers b63, b62, b61) or linear PCM ("100" in bit numbers b63, b62, b61) is to be set. At a frame rate ("01" is written in bit numbers b13, b12 in VMGM_V_ATR) at which a single frame is drawn at a horizontal frequency of 50 Hz using 625 scanning lines, in the video data attribute, MPEG-1 or MPEG-2 ("010" or "011" in bit numbers b63, b62, b61) or linear PCM ("100" in bit numbers b63, b62, b61) is to be set.

[0053] The audio type is written in bit numbers b59 and b58. When the audio type is not specified, "00" will be written in these bit numbers. The other numbers are for reservation. The ID of an audio application field is written in bit numbers b57 and b56. When the ID is not specified, "00" will be written in these bit numbers. The other numbers are for reservation. The quantization of audio data is written in bit numbers b55 and b54. When bit numbers b55, b54 contain "00", this means the audio data quantized in 16 bits; when bit numbers b55, b54 contain "01", this means the audio data quantized in 20 bits; when bit numbers b55, b54 contain "10", this means the audio data quantized in 24 bits; and when bit numbers b55, b54 contain "11", this means that the quantization is not specified. Here, when the audio coding mode is set to linear PCM ("100" in bit numbers b63, b62, b61), no specification of quantization ("11" in bit numbers b55, b54) is written. The audio data sampling frequency Fs is written in bit numbers b53 and b52. When the sampling frequency Fs is 48 kHz, "00" is written in these bit numbers; when the sampling frequency Fs is 96 kHz, "01" is written in these bit numbers; and the other numbers are for reservation.

[0054] The number of audio channels is written in bit numbers b50 to b48. When bit numbers b50 to b48 contain "000", this means a single channel (monaural); when bit numbers b50 to b48 contain "001", this means two channels -(stereo); when bit numbers b50 to b48 contain "010", this means three channels; when bit numbers b50 to b48 contain "011", this means four channels; when bit numbers b50 to b48 contain "100", this means five channels; when bit numbers b50 to b48 contain "101", this means six channels; when bit numbers b50 to b48 contain "110", this means seven channels; and when bit numbers b50 to b48 contain "111", this means eight channels.

[0055] In the sub-picture stream attribute (VMGM_SPST_ATR) of the video manager menu (VMGM) in the table of FIG. 7, bit number b47 to bit number b40 are allocated to the sub-picture coding mode, sub-picture display type, and sub-picture type as shown in FIG. 12. When "000" is written in bit numbers b47, b46, b45 as the description of sub-picture coding mode, this means that the sub-picture data has been run-length compressed according to the 2 bits/pixel type standard; when "001" is written in bit numbers b47, b46, b45 as the description of sub-picture coding mode, this means

that the sup-picture data has been run-length compressed according to other standards; and the other numbers are for reservation.

[0056] The sub-picture display type (VMGM_SPST_ATR) is written in bit numbers b44, b43, b42. If the aspect ratio is 3/4 ("00" in bit numbers bll and b10) which is described in the VMGM V ATR and "000" is written in bit numbers b44, b43, b42 which is described in VMGM_SPST_ATR, this means that this attrition information (VMGM_SPST_ATR) is not utilized. If the aspect ration is 9/16 ("11" in bit numbers b11 and b10) which is described in the VMGM_V_ATR and "001" is written in bit numbers b44, b43, b42 which is described in VMGM_SPST_ATR, this means that this subpicture stream is permitted to be displayed at only a wide type representation. If the aspect ratio is 9/16 ("11" in bit numbers b11 and b10) which is described in the VMGM_V_ATR and "010" is written in bit numbers b44, b43, b42 which is described in VMGM_SPST_ATR, this means that this sub-picture stream is permitted to be displayed properly at only a letter box type representation. If the aspect ratio is 9/16 ("11" in bit numbers b11 and b10) which is described in the VMGM_V_ATR and "011" is written in bit numbers b44, b43, b42 which is described in VMGM_SPST_ATR, this means that this sub-picture stream in permitted to be displayed properly at both of the wide type and letter box type representations. If the aspect ratio is 9/16 ("11" in bit numbers b11 and b10) which is described in the VMGM_V_ATR and "100" is written in bit numbers b44, b43, b42 which is described in VMGM_SPST_ATR, this means that this sub-picture stream is permitted to be displayed properly at only a pan scan type representations. If the aspect ratio is 9/16 ("11" in bit numbers b11 and b10) which is described in the VMGM_V_ATR and "110" is written in bit numbers b44, b43, b42 which is described in VMGM_SPST_ATR, this means that this sub-picture stream is permitted to be displayed properly at both of the pan scan type and letter box type representations. If the aspect ratio is 9/16 ("11" in bit numbers b11 and b10) which is described in the VMGM_V_ATR and "111" is written in bit numbers b44, b43, b42 which is described in VMGM_SPST_ATR, this means that this subpicture stream is permitted to be displayed properly at one of the pan scan type, wide type and letter box type representations. Furthermore, the sub-picture type is written in bit numbers b41, b40. When bit numbers b41, b40 contains "00", this means that the display type is not specified. The other numbers are for reservation. [0057] Explanation of the structure shown in FIG. 5 will be resumed. In the title search pointer table (TT_SRPT) 79 of FIG. 5, as shown in FIG. 13, the title search pointer table information (TSPTI) is first written and then as many title search pointers (TT SRP) for input numbers 1 to n (n \leq 99) as are needed are written consecutively. When only the playback data for a single title, for example, only the video data for a single title, is

stored in a volume of the optical disk, only a single title

search pointer (TT_SRP) 93 is written in the table (TT_SRPT) 79.

[0058] The title search pointer table information (TSP-TI) 92 contains the number of entry program chains (EN_PGC_Ns) and the end address (TT_SRPT_EA) of the title search pointer (TT-SRP) 93 as shown in FIG. 14. The address (TT_SRPT_EA) is represented by the number of bytes, relative to the first byte in the title search pointer table (TT_SRPT) 79. Furthermore, as shown in FIG. 15, each title search pointer (TT_SRP) contains the video title set number (VTSN), the program chain number (PGCN), and the start address (VTS_SA) of the video title set 72.

[0059] The contents of the title search pointer (TT_SRP) 93 specifies a video title set to be reproduced and a program chain (PGC) as well as a location in which the video title set 72 is to be stored. The start address (VTS_SA) of the video title set 72 is represented by the number of logical blocks in connection with the title set specified by the video title set number (VTSN). [0060] Here, a program chain 87 is defined as a set of programs 89 that reproduce the story of a title. In the case of a program chain for a menu, still picture programs or moving picture programs are reproduced one after another to complete a menu for a single title, in the case of a program chain for a title set, a program chain corresponds to a chapter in a story consisting of programs and the movie of a single title is completed by reproducing program chains consecutively. As shown in FIG. 16, each program 89 is defined as a set of aforementioned cells 84 arranged in the order in which they are to be reproduced.

[0061] As shown in FIG. 5, the video title set attribute table (VTS_ATRT) 80 describing the attribute information on the video title set (VTS) 72 contains video title set attribute table information (VTS_ATRTI) 66, n video title set attribute search pointers (VTS_ATR_SRP) 67, and n video title set attributes (VTS_ATR) 68, which are arranged in that order. The video title set attribute table information (VTS_ATRTI) 66 contains information on the table 80. In the video title set attribute search pointers (VTS_ATR_SRP) 67, description is made in the order corresponding to the title sets #1 to #n and similarly description is made of the pointers for searching for the video title set attributes (VTS_ATR) 68 written in the order corresponding to the title sets #1 to #n. In each of the video title set attributes (VTS_ATR) 68, the attribute of the corresponding title set (VTS) is written.

[0062] More specifically, the video title set attribute information (VTS_ATRTI) 66 contains a parameter (VTS_Ns) for the number of video titles and a parameter (VTS_ATRT_EA) for the end address of the video title set attribute table (VTS_ART) 80 as shown in FIG. 18. As shown in FIG. 19, in each video title set attribute search pointer (VTS_ATR_SRP) 67, a parameter (VTS_ATR_SA) for the start address of the corresponding video title set attribute (VTS_ATR) 68 is written. As shown in FIG. 20, the video title set attribute (VTS_ATR)

68 contains a parameter (VTS_ATR_EA) for the end address of the video title set attribute (VTS_ATR) 68, a parameter (VTS_CAT) for the category of the corresponding video title set, and a parameter (VTS_ATRI) for attribute information on the corresponding video title set. Because the attribute information on the video title set contains the same contents of the attribute information on the video title set written in the video title set information management table (VTS_MAT), which will be explained later with reference to FIGS. 21 and 22, explanation of it will be omitted.

[0063] Now, the structure of the logic format of the video title set (VTS) 72 shown in FIG. 4 will be explained with reference to FIG. 21. In each video title set (VTS) 72, four items 94, 95, 96, 97 are written in the order shown in FIG. 21. Each video title set (VTS) 72 is made up of one or more video titles having common attributes. The video title set information (VTSI) contains the management information on the video titles 72, including information on playback of the video object set 96, information on playback of the title set menu (VTSM), and attribute information on the video title sets 72.

[0064] Each video title set (VTS) 72 includes the backup 97 of the video title set information (VTSI) 94. Between the video title set information (VTSI) 94 and the backup (VTSI_BUP) of the information, a video object set (VTSM_VOBS) 95 for video title set menus and a video object set (VTSTT_VOBS) 96 for video title set titles are arranged. Both of the video object sets (VTSM_VOBS and VTSTT_VOBS) have the structure shown in FIG. 6, as explained earlier.

[0065] The video title set information (VTSI) 94, the backup (VTSI_BUP) 97 of the information, and the video object set (VTSTT_VOBS) 96 for video title set titles are items indispensable to the video title sets 72. The video object set (VTSM_VOBS) 95 for video title set menus is an option provided as the need arises.

[0066] The video title set information (VTSI) 94 consists of seven tables 98, 99, 100, 101, 111, 112, 113 as shown in FIG. 21. These seven tables 98, 99, 100, 101, 111, 112, 113 are forced to align with the boundaries between logical sectors. The video title set information management table (VTSI_MAT) 98, a first table, is a mandatory table, in which the size of the video title set (VTS) 72, the start address of each piece of information in the video title set (VTS) 72, and the attributes of the video object sets (VOBS) 82 in the video title set (VTS) 72 are written.

[0067] The video title set part-of-title search pointer table (VTS_PTT_srpt), a second table, is mandatory table, in which part of the selectable video titles, that is, program chain (PGC) or programs (PG) contained in the selectable video title set 72, are written according to the number that the user has entered from the key/display section 4. Entering the desired one of the entry numbers listed in the pamphlet coming with the optical disk 10 from the key/display section 4, the user can watch the video, starting with the section in the story correspond-

ing to the entered number.

[0068] The video title set program chain information table (VTS_PGCIT) 100, a third table, is a mandatory table, in which the VTS program chain information (VTS_PGCI), or information on VTS program chains, is written.

[0069] The video title set menu PGCI unit table (VTSM_PGCI_UT) 111, a fourth table, is a mandatory item, when the video object set (VTSM_VOBS) 95 for video title set menus is provided. In the table, information on program chains for reproducing the video title set menu (VTSM) provided for each language is written. By referring to the video title set menu PGCI unit table (VTSM_PGCI_UT) 111, a program chain for the specified language in the video object set (VTSM_VOBS) 95 can be acquired and reproduced as a menu.

[0070] The video title set time search map table (VTS_MAPT) 101, a fifth table, is an optional table provided as the need arises, in which information on the recording location of the video data in each program chain (PGC) in the title set 72 to which the map table (VTS_MAPT) belongs is written for a specific period of time of display.

[0071] The video title set cell address table (VTS_C_ADT) 112, a sixth table, is a mandatory item, in which the address of each cell 84 constituting all the video objects 83 or the address of each cell piece constituting cells are written in the order in which the identification numbers of the video objects are arranged. Here, a cell piece is a piece constituting a cell. Cells undergo an interleaving process in cell pieces and are arranged in a video object 83.

[0072] The video object title set video object unit address map (VTS_VOBU_ADMAP) 113, a seventh table, is a mandatory item, in which the start addresses of all the video object units 85 in the video title set are written in the order of arrangement.

[0073] Next, the video title information manager table (VTSI_MAT) 98 and video title set program chain information table (VTS_PGCIT) 100 shown in FIG. 21 will be described with reference to FIGS. 22 to 34.

[0074] FIG. 22 shows the contents of the video title information manager table (VTSI_MAT) 98, in which the video title set identifier (VTS_ID), the size (VTS_SZ) of the video title set 72, the version number (VERN) of the DVD video specification, the category (VTS CAT) of the video title set 72, and the end address (VTSI_MAT_EA) of the video title information manager table (VTSI_MAT) 98 are written in that order. Furthermore, in the table (VTSI_MAT) 98, the start address (VTSM_VOBS_SA) of the video object set (VTSM_VOBS) 95 for the VTS menu (VTSM) and the start address (VTSTT_VOB_SA) of the video object for the title in the video title set (VTS) are written. If the video object set (VTSM_BOBS) 95 for the VTS menu (VTSM) is absent, "00000000h" will be written in the start address (VTSM_VOBS_SA). The end address (VTSI_MAT_EA) of VTSI_MAT is expressed by the number of logical bytes, relative to the first byte in the video title set information management table (VTSI_MAT) 94. The start address (VTSTM_VOB_SA) of VTSM_VOBS and the start address (VTSTT_VOB_SA) of VTSTT_VOB are expressed by the number of logical blocks (RLBN) relative to the first logical block in the video title set (VTS) 72.

[0075] Furthermore, in the table (VTSI_MAT) 98, the start address (VTS_PTT_SRPT_SA) of the video title set information part-of-title search pointer table (VTS_PTT_SRPT) 99 is represented by the number of blocks, relative to the first logical blocks in the video title set information (VTSI) 94. Furthermore, in the table (VTSI_MAT) 98, the start address (VTS_PGCIT_SA) of the video title set program chain information table (VTS_PGCIT) 100 and the start address (VTS_PGCI_UT_SA) of the PGCI unit (VTS_PGCI_UT) 111 of video title set menus represented by the number of blocks, relative to the first logical blocks in the video title set information (VTSI) 94, and the start address (VTS_MAPT_SA) of the time search map table (VTS_MAPT) 101 in the video title set (VTS) is represented by sectors, relative to the first logical sector in the video title set (VTS) 72. Similarly, the VTS address table (VTS_C_ADT) 112 and the address map (VTS_VOBU_ADMAP) 113 for VTS_VOBU are written in logical sectors, relative to the first logical sector in the video title set (VTS) 72.

[0076] Written in the table (VTSI_MAT) 98 are the video attribute (VTSM_V_ATR) of the video object set (VTSM_VOBS) 95 for the video title set menu (VTSM) in the video title set (VTS) 72, the number of audio streams (VTSM_AST_Ns), the attributes (VTSM_AST_ATR) of the audio streams, the number of sub-picture streams (VTSM_SPST_Ns), and the attributes (VTSM_SPST_ATR) of the sub-picture streams. Similarly, further written in the table (VTSI_MAT) 98 are the video attribute (VTS_V_ATR) of the video object set (VTSTT_VOBS) 96 for the video title set (VTSTT) for the video title set (VTS) in the video title set (VTS) 72, the number of audio streams (VTS_AST_Ns), the attributes (VTS_AST_ATR) of the audio streams, the number of sub-picture streams (VTS_SPST_Ns), and the attributes (VTS_SPST_ATR) of the sub-picture streams. Additionally, the attribute (VTS_MU_AST_ATR) of the multi-channel audio stream in the video title set (VTS) is written in the table (VTSI MAT) 98.

[0077] The video attribute, audio stream attribute, and sub-picture stream attribute written in FIG. 22 will be described in detail. In the video attribute (VTSM_V_ATR) of the video object set (VTSM_VOBS) 95 for VTSM and the video attribute (VTS_V_ATR) of the video object set (VTST_VOBS) 96 for the video title set title (VTSTT), the same attribute information as the video attribute (VMGM_V_ATR) of the video object (VMGN_VOBS) for the video manager menu already explained with reference to FIGS. 8, 9, 10A, and 10B is written. Specifically, in each of the video attributes (VTSM_V_ATR) and

(VTS_V_ATR), as shown in FIG. 8, bit number b8 to bit number b15 are allocated to the compression mode, frame rate, display aspect ratio, and display mode, which are the video attributes of the video object set 76 for the video manager menu (VMGM), and bit number b0 to bit number b7 are left empty for reservation for later use. When "00" is written in bit numbers b15, b14, this means the menu video data has been compressed in the video compression mode on the basis of the MPEG-1 standard; and when "01" is written in bit numbers b15, b14, this means the menu video data has been compressed in the video compression mode on the basis of the MPEG-2 standard. The other numbers are for reservation for later use. When "00" is written in bit numbers b13, b12, this means that the menu video data has a frame rate of 29.27/S at which 29.27 frames are reproduced every second. Specifically, when "00" is written in bit numbers b13, b12, this means that the menu video data is TV-system video data according to the NT-SC scheme and has a frame rate at which a single frame is drawn at a horizontal frequency of 60 Hz using 525 scanning lines. When "01" is written in bit numbers b13, b12, this means that the menu video data has a frame rate of 25/S at which 25 frames are reproduced every second. Specifically, this means that the menu video data is TV-system video data according to the PAL scheme and has a frame rate at which a single frame is drawn at a frequency of 50 Hz using 625 scanning lines. The other numerals in bit numbers b13, b15 are for reservation for later use.

[0078] Furthermore, when "00" is written in bit numbers b11, b10, this means that the menu video data has a display aspect ratio (ratio of height to width) of 3/4; and when "11" is written in bit numbers b11, b10, this means that the menu video data has a display aspect ratio (ratio of height to width) of 9/16. The other numbers are for reservation for later use.

[0079] Furthermore, when the display aspect ratio is 3/4, that is, when "00" is written in bit numbers b11, b10, "11" is written in bit numbers b9, b8. When the display aspect ratio is 9/16, that is, when "11" is written in bit numbers b11, b10, whether the displaying of the menu video data in pan scan and/or letter box is permitted is written. Specifically, when "00" is written in bit numbers b9, b8, this means that the displaying in either of pan scan and letter box is permitted; when "01" is written in bit numbers b9, b8, this means that the displaying in pan scan is permitted, but the displaying in letter box is inhibited; and when "10" is written in bit numbers b9, b8, this means that the displaying in pan scan is inhibited, but the displaying in letter box is permitted. When "11" is written in bit numbers b9, b8, this means that the displaying is not particularly specified. The relationship between the video data recorded on the aforesaid optical disk and the reproduced screen image on the TV monitor 6 is the same as that explained with reference to FIGS. 9, 10A, and 10B, and its explanation will be omitted.

[0080] Furthermore, in the audio stream attribute (VTSM_AST_ATR) of the video object (VTSM_VOBS) 95 for VTSM and the audio stream attribute (VTS_AST_ATR) of the video object set (VTST_VOBS) 96 for the video title set title (VTSTT), almost the same attribute information as the audio stream attribute (VMGM_AST_ATR) of the video object (VMGM_VOBS) for the video manager menu already explained with reference to FIG. 11 is written. Specifically, in the attribute (VTSM_AST_ATR) of the audio stream in the VTS menu video object set (VTSM_VOBS) 95, as shown in FIG. 23, bit number b63 to bit number b48 are allocated to the audio coding mode, audio type, audio application ID sampling frequency, and the number of audio channels and bit number b47 to bit number b0 are left empty for reservation for later use. In the attribute (VTS_AST_ATR) for the audio stream for the video title set title (VTST), as shown in FIG. 23, bit number b63 to bit number b48 are allocated to the audio coding mode, expansion of multichannel, audio type, audio application ID, quantization, sampling frequency, reservation, and the number of audio channels and bit number b47 to bit number b40; bit number b39 to bit number b32 are allocated to specific codes; bit number b31 to bit number b24 are for reservation for specific codes; bit number b23 to bit number b8 are left empty for reservation for later use; and bit number b8 to b0 are allocated to application information. Here, if the VTS menu video object set (VTSM_VOBS) 95 is absent, or if an audio stream is absent in the video object set, "0" will be written in each bit, starting at bit number b63 down to bit number b0.

[0081] In both of the attributes (VTSM_AST_ATR, VTS_AST_ATR) of the audio streams for VTSM and VTST, bit numbers b63, b62, b61 are allocated to the audio coding mode. When "000" is written for the audio coding mode, this means that the audio data has been coded according to Dolby AC-3 (a trademark of Dolby Laboratories Licensing Corporation). When "010" is written for the audio coding mode, this means that the audio data is compressed without any expanded bit stream under MPEG-1 or MPEG-2. When "011" is written for the audio coding mode, this means that the audio data is compressed with an expanded bit stream under MPEG-2. When "100" is written for the audio coding mode, this means that the audio data is coded by linear PCM. For the audio data, the other numbers are for reservation for later use. At a frame rate ("00" is written in bit numbers b13, b12 in VTSM_V_ATR and VTS_V_ATR) at which a single frame is drawn at a horizontal frequency of 60 Hz using 525 scanning lines, in the video data attribute, Dolby AC-3 ("000" in bit numbers b63, b62, b61) or linear PCM ("100" in bit numbers b63, b62, b61) is to be set. At a frame rate ("01" is written in bit numbers b13, b12 in VTSM_V_ATR and VTS_V_ATR) at which a single frame is drawn at a horizontal frequency of 50 Hz using 625 scanning lines, in the video data attribute, MPEG-1 or MPEG-2 ("010"

or"011" in bit numbers b63, b62, b61) or linear PCM ("100" in bit numbers b63, b62, b61) is to be set. In the audio coding mode of the VTST audio stream attribute (VTS_AST_ATR), expansion of multi-channel is written in bit number b60. When bit number b60 contains "0", this means that the multi-channel audio stream attribute (VTS_MU_AST_ATR) of VTS related to audio streams is invalid. When bit number b60 contains "1", this means linking to the multi-channel audio stream attribute (VTS_MU_AST_ATR) of VTS related to audio streams. [0082] The audio type is written in bit numbers b59 and b58. When the audio type is not specified, "00" will be written in these bit numbers. When a language, or speech, is specified, "01" will be written in these bit numbers. The other numbers are for reservation. The ID of an audio application field is written in bit numbers b57 and b56. When the ID is not specified, "00" will be written in these bit numbers; when karaoke is specified, "01" is written in these bit numbers; when surround is specified. "10" is written in these bit numbers; and the other numbers are for reservation. The quantization of audio data is written in bit numbers b55 and b54. When bit numbers b55, b54 contain "00", this means the audio data quantized in 16 bits; when bit numbers b55, b54 contain "01", this means the audio data quantized in 20 bits; when bit numbers b55, b54 contain "10", this means the audio data quantized in 24 bits; and when bit numbers b55, b54 contain "11", this means that the quantization is not specified. Here, when the audio coding mode is set to linear PCM ("100" in bit numbers b63, b62, b61), no specification of quantization ("11" in bit numbers b55, b54) is written. The audio data sampling frequency Fs is written in bit numbers b53 and b52. When the sampling frequency Fs is 48 kHz, "00" is written in these bit numbers; when the sampling frequency Fs is 96 kHz. "01" is written in these bit numbers; and the other numbers are for reservation.

[0083] The number of audio channels is written in bit numbers b50 to b48. When bit numbers b50 to b48 contain "000", this means a single channel (monaural); when bit numbers b50 to b48 contain "001", this means two channels (stereo); when bit numbers b50 to b48 contain "010", this means three channels; when bit numbers b50 to b48 contain "011", this means four channels; when bit numbers b50 to b48 contain "100", this means five channels; when bit numbers b50 to b48 contain "101", this means six channels; when bit numbers b50 to b48 contain "110", this means seven channels; and when bit numbers b50 to b48 contain "111", this means eight channels. Here, three or more channels are determined to be multi-channel. Specific codes are to be written in b47 to b40 and b39 to b32. When the type of audio stream is language, or speech, the code for the language determined in ISO-639 is written in these bit locations in the form of a language symbol. When the type of audio stream is not language or speech, the locations are for reservation.

[0084] The number (VTS_AST_Ns) of VTS audio

streams is set in the range of 0 to 8. Thus, eight VTS audio stream attributes (VTS_AST_ATR) are prepared in accordance with the number of streams that can be set. Specifically, areas for the VTS audio stream attributes (VTS_AST_Ns) of VTS audio stream #0 to VTS audio stream #7 are provided. When the number of VTS audio streams is less than 8 and some attributes have no corresponding audio streams, the VTS audio stream attributes (VTS_AST_Ns) corresponding to the absent audio streams shown in FIG. 22 have "0" in all bits.

[0085] Furthermore, in the sub-picture stream attribute (VTSM_SPST_ATR) of the video object set (VTSM_VOBS) 95 for VTSM and the sub-picture stream attribute (VTS_SPST_ATR) of the video object set (VTSTT_VOBS) 96 for the video title set title (VTSTT), the same attribute information as the sub-picture stream attribute (VMGM_SPST_ATR) of the video manager menu video object (VMGM_VOBS) already explained referring to FIG. 11 is written. Specifically, in the subpicture stream attribute (VTSM_SPST_ATR) of the video object set (VTSM_VOBS) 95 for VTSM, bit number b47 to bit number b40 are allocated to the sub-picture coding mode, sub-picture display type, and sub-picture type as shown in FIG. 12 and bit number b39 to bit number b0 are for reservation. In the sub-picture stream attribute (VTS_SPST_ATR) of the video object set (VTS_VOBS) 96 for VTSTT, as shown in FIG. 12, bit number b47 to bit number b40 are allocated to the subpicture sub-picture coding mode, sub-picture display type, and type; bit number b39 to bit number b32 and bit number 31 to bit number b24 are allocated to specific codes; bit number b23 to bit number b16 are for reservation for specific codes; bit number b15 to bit number b8 are allocated to expansion of specific codes; and bit number b7 to bit number b0 are for reservation.

[0086] When "000" is written in bit numbers b47, b46, b45 as the description of sub-picture coding mode, this means that the sup-picture data has been run-length compressed according to the 2 bits/pixel type standard; when "001" is written in bit numbers b47, b46, b45 as the description of sub-picture coding mode, this means that the sup-picture data has been run-length compressed according to other standards; and the other numbers are for reservation. A symbol for a Row coding scheme meaning uncompressed sub-picture data may be written for reservation.

[0087] The sub-picture display type (VTSM_SPST_ATR, VTS_SPST_ATR) is written in bit numbers b44, b43, b42. If the aspect ratio is 3/4 ("00" in bit numbers b11 and b10) which is described in the VTSM_V_ATR or VTS_V_ATR and "000" is written in bit numbers b44, b43, b42 which is described in VTSM_SPST_ATR, VTS_SPST_ATR, this means that attrition information (VTSM_SPST_ATR, VTS_SPST_ATR) is not utilized. If the aspect ratio is 9/16 ("11" in bit numbers b11 and b10) which is described in the VTSM_V_ATR or VTS_V_ATR and "001" is written in bit numbers b44, b43, b42 which is de-

scribed in VTSM_SPST_ATR, VTS_SPST_ATR, this means that this sub-picture stream is permitted to be displayed at only a wide type representation. If the aspect ratio is 9/16 ("11" in bit numbers b11 and b10) which is described in the VTSM_V_ATR or VTS_V_ATR and "010" is written in bit numbers b44, b43, b42 which is described in VTSM_SPST_ATR, VTS_SPST_ATR, this means that this sub-picture stream is permitted to be displayed properly at only a letter box type representation. If the aspect ratio is 9/16 ("11" in bit numbers b11 and b10) which is describe din the VTSM_V_ATR or VTSM_V_ATR and "011" is written in bit numbers b44, b43, b42 which is described in VTSM_SPST_ATR, VTS_SPST_ATR, this means that this sub-picture stream in permitted to be displayed properly at both of the wide type and letter box type representations. If the aspect ratio is 9/16 ("11" in bit numbers b11 and b10) which is described in the VTSM_V_ATR or VTS_V_ATR and "100" is written in bit numbers b44, b43, b42 which is described in VTSM_SPST_ATR, VTS SPST_ATR. this means that this sub-picture stream is permitted to be displayed properly at only a pan scan type representations. If the aspect ratio is 9/16 ("11" in bit numbers b11 and b10) which is described in the VTSM_V_ATR or VTS_V_ATR and "110" is written in bit numbers b44, b43, b42 which is described in VTSM_SPST_ATR, VTS_SPST_ATR, this means that this sub-picture stream is permitted to be displayed properly at both of the pan scan type and letter box type representations. If the aspect ratio is 9/16 ("11" in bit numbers b11 and b10) which is described in the VTSM_V_ATR or VTS_V_ATR and "111" is written in bit numbers b44, b43, b42 which is described in VTSM_SPST_ATR, VTS_SPST_ATR, this means that this sub-picture stream is permitted to be displayed properly at one of the pan scan type, wide type and letter box type representations. Furthermore, the sub-picture type is written in bit numbers b41, b40. When bit numbers b41, b40 contain "00", this means that the display type is not specified; when bit numbers b41, b40 contain "01", this means language, or subtitles; and the other numbers in bit numbers b41, b40 are for reservation. An example of reservation is a pattern.

[0088] Specific codes are to be written in b39 to b32 and b31 to b24. When the type of sub-picture stream is language, or subtitles, the code for the language determined in ISO-639 is written in these bit locations in the form of a language symbol. When the type of sub-picture stream is not language, the locations are for reservation. In addition, in expansion of specific codes in bit number b15 to bit number b8, the type of characters for subtitles is written. When bit number b15 to bit number b8 contain "00h", this means that the sub-picture stream has no normal characters or no normal category; when bit number b15 to bit number b8 contain "01h", this means large characters; and the other numbers are for system reservation or are determined by the video supplier.

[0089] The number (VTSM_SPST_Ns) of sub-pic-

tures for the VTS menu is basically one, but can be set in the range of 0 to 3. In this case, the attributes (VTSM_SPST_ATR) of the sub-picture for the VTS menu are written in ascending order, starting at sub-picture stream number #0 to stream number #31, each having the description as shown in FIG. 12. When the number of sub-picture streams (VTS_SPST_Ns) is less than 32 and some attributes have no corresponding audio streams, the VTS sub-picture attributes (VTS_AST_Ns) corresponding to the absent VTS sub-picture streams have "0" in all bits.

[0090] In the attribute (VTS_MU_AST_ATR) of the multi-channel audio stream of the video title set (VTS), the attributes of multi-channel audio stream #0 to multi-channel audio stream #7 are written. In each multi-channel audio stream attribute (VTS_MU_AST_ATR), the contents (e.g., karaoke or surround) of the audio channel, an audio mixing scheme, etc. are written.

[0091] The VTS program chain information table (VTS_PGCIT) 100 of FIG. 21 has a structure as shown in FIG. 24. In the information table (VTS_PGCIT) 100, information on the VTS program chains (VTS_PGC) is written, the first item of which is information (VTS_PGCIT_I) 102 on the information table (VTS_PGCIT) 100 of VTS program chains (VTS_PGC). In the information table (VTS_PGCIT) 100, the information (VTS_PGCIT_I) 102 is followed by as many VTS_PGCI search pointers (VTS_PGCIT_SRP) used to search for VTS program chains (VTS_PGC) as the number (from #1 to #n) of VTS program chains in the information table (VTS_PGCIT) 100. At the end of the table, there are provided as many pieces of information (VTS_PGCI) 104 on the respective VTS program chains (VTS_PGC) as the number (from #1 to #n) of VTS program chains (VTS_PGC).

[0092] The information (VTS_PGCIT_I) 102 in the VTS program chain information table (VTS_PGCIT), as shown in FIG. 25, contains the number (VTS_PGC_Ns) of VTS program chains (VTS_PGC) and the end address (VTS_PGCIT_EA) of the table information (VTS_PGCIT_I) expressed by the number of bytes, relative to the first byte of the information table (VTS_PGCIT) 100.

[0093] Furthermore, as shown in FIG. 26, the VTS_PGCIT search pointer (VTS_PGCIT_SRP) 103 contains the attributes (VTS_PGC_CAT) 72 of the program chains (VTS_PGC) in the video title set (VTS) and the start address (VTS_PGCI_SA) of the VTS_PGC information (VTS_PGCI) expressed by the number of bytes, relative to the first byte of the VTS_PGC information table (VTS_PGCIT) 100. Here, the VTS_PGC attribute (VTS_PGC_CAT) contains, for example, an attribute indicating whether an entry program chain (Entry PGC) is the first one to be reproduced. Usually, an entry program chain (PGC) is written before program chains (PGC) that are not entry program chains (PGC).

[0094] The PGC information (VTS_PGCI) 104 in the video title set contains four items as shown in FIG. 27.

In the PGC information (VTS_PGCI) 104, program chain general information (PGC_GI) 105, a mandatory item, is first arranged, followed by at least three items that are made mandatory only when there is an video object. Specifically, contained as the three items in the PGC information (VTS_PGCI) 104 are a program chain program map (PGC_PGMAP) 106, a cell playback information table (C_PBIT) 107, and a cell position information table (C_POSIT) 108.

[0095] As shown in FIG. 28, the program chain general information (PGC_GI) 105 contains the category (PGCI_CAT) of program chains, the contents (PGC_CNT) of program chains (PGC), and the playback time (PGC_PB_TIME) of program chains (PGC). Written in the category (PGCI_CAT) of PGC are whether the PGC can be copied or not and whether the programs in the PGC are played back continuously or at random. The contents (PGC_CNT) of PGC contain the description of the program chain structure, that is, the number of programs, the number of cells, etc. The playback time (PGC_PB_TIME) of PGC contains the total playback time of the programs in the PGC. The playback time is the time required to continuously play back the programs in the PGC, regardless of the playback procedure.

[0096] Furthermore, the program chain general information (PGC_GI) 105 contains PGC sub-picture stream control (PGC_SPST_CTL), PGC audio stream control (PGC_AST_CTL), and PGC sub-picture pallet (PGC_SP_PLT). The PGC sub-picture stream control (PGC_SPST_CTL) contains the number of sub-pictures usable in the PGC. The PGC audio stream control (PGC_AST_CTL) likewise contains the number of audio streams usable in the PGC. The PGC sub-picture pallet (PGC_SP_PLT) contains a set of a specific number of color pallets used in all of the sub-picture streams in the PGC.

[0097] Furthermore, the PGC general information (PGC_GI) contains the start address (PGC_PGMAP_SA_SA) of the PGC program map (PGC_PGMAP_SA), the start address (C_PBIT_SA) of the cell playback information table (C_PBIT) 107 and the start address (C_POSIT_SA) of the cell position information table (C_POSIT) 108. Both of the start addresses (C_PBIT_SA and C_POSIT_SA) are represented by the number of bytes, relative to the first byte in the VTS_PGC information (VTS_PGCI).

[0098] The program chain program map (PGC_PGMAP) 106 is a map showing the arrangement of the programs in the PGC of FIG. 29. In the map (PGC_PGMAP) 106, the entry cell numbers (ECELLN), the start cell numbers of the individual programs, are written in ascending order as shown in FIGS. 29 and 30. In addition, program numbers are allocated, starting at 1, in the order in which the entry cell numbers are written. Consequently, the first entry number in the map (PGC_PGMAP) 106 must be #1.

[0099] The cell playback information table (C_PBIT)

107 defines the order in which the cells in the PGC are played back. In the cell playback information table (C_PBIT) 107, pieces of the cell playback information (C_PBIT) are written consecutively as shown in FIG. 31. Basically, cells are played back in the order of cell number. The cell playback information (C_PBIT) contains a cell category (C_CAT) as playback information (P_PBI) as shown in FIG. 32. Written in the cell category (C_CAT) are a cell block mode indicating whether the cell is one in the block and if it is, whether the cell is the first one, a cell block type indicating whether the cell is not part of the block or is one in an angle block, and an STC discontinuity flag indicating whether the system time clock (STC) must be set again. Here, a cell block is defined as a set of cells with a specific angle. The change of the angle is realized by changing the cell block. Taking baseball as example, the changing from an angle block of shooting scenes from the infield to an angle block of shooting scenes from the outfield corresponds to the change of the angle.

[0100] Further written in the cell category (C_CAT) are a cell playback mode indicating whether the contents of the cell is played back continuously or made still at one video object unit (VOBU) to another in the cell, and cell navigation control indicating whether the picture is made still after the playback of the cell or indicating the rest time.

[0101] As shown in FIG. 32, the playback information (P_PBI) of the cell playback information table (C_PBIT) 107 contains the cell playback time (C_PBTM) representing the total playback time of the PGC. When the PGC has an angle cell block, the playback time of the angle cell number 1 represents the playback time of the angle block, Further written in the cell playback information table (C_PBIT) 107 are the start address (C_FVOBU_SA) of the first video object unit (VOBU) 85 in the cell expressed by the number of logical sectors. relative to the first logical sector in the video object unit (VOBU) 85 in which the cell is recorded and the start address (C_LVOBU_SA) of the end video object unit (VOBU) 85 in the cell expressed by the number of logical sectors, relative to the first logical sector in the video object unit (VOBU) in which the cell is recorded.

[0102] The cell position information table (C_POSI) 108 specifies the identification numbers (VOB_ID) of the video objects (VOB) in the cell used in the PGC and the cell identification number (C_ID). In the cell position information table (C_POSI), pieces of cell position information (C_POSI) corresponding to the cell numbers written in the cell playback information table (C_PBIT) 107 as shown in FIG. 33 are written in the same order as in the cell playback information table (C_PBIT). The cell position information (C_POSI) contains the identification numbers (C_VOB_IDN) of the video object units (VOBS) in the cell and the cell identification number (C_IDN) as shown in FIG. 34.

[0103] As explained with reference to FIG. 6, a cell 84 is a set of video object units (VOBU) 85. A video object

unit (VOBU) 85 is defined as a pack train starting with a navigation (NV) pack 86. Therefore, the start address (C_FVOBU_SA) of the first video object unit (VOBU) 85 in a cell 84 is the start address of the NV pack 86. As shown in FIG. 35, the NV pack consists of a pack header 110, a system header 111, and two packets of navigation data-- a presentation control information (PCI) packet 116 and a data search information (DSI) packet 117. As many bytes as shown in FIG. 35 are allocated to the respective sections so that one pack may contain 2048 bytes corresponding to one logical sector. The NV pack is placed immediately in front of the video pack containing the first data item in the group of pictures (GOP). Even when the object unit 85 contains no video pack. an NV pack is placed at the head of the object unit containing audio packs or/and sub-picture packs. As with an object unit containing object units, even with an object unit containing no video pack, the playback time of the object unit is determined on the basis of the unit in which video is reproduced.

[0104] Here, GOP is determined in the MPEG standard and is defined as a data train constituting a plurality of screens as explained earlier. Specifically, GOP corresponds to compressed data. Expanding the compressed data enables the reproduction of a plurality of frames of image data to reproduce moving pictures. The pack header 110 and system header 111 are defined in the MPEG 2 system layer. The pack header 110 contains a pack start code, a system clock reference (SCR), and a multiplex rate. The system header 111 contains a bit rate and a stream ID. The packet header 112, 114 of each of the PCI packet 116 and DSI packet 117 contains a packet start code, a packet length, and a stream ID as determined in the MPEG2 system layer.

[0105] As shown in FIG. 36, another video, audio, or sub-picture pack 88, 90, 91 consists of a pack header 120, packet header 121, and a packet 122 containing the corresponding data as determined in the MPEG2 system layer. Its pack length is determined to be 2048 bytes. Each of these packs is aligned with the boundaries between logical blocks.

[0106] The PCI data (PCI) 113 in the PCI packet 116 is navigation data used to make a presentation, or to change the contents of the display, in synchronization with the playback of the video data in the VOB unit (VO-BU) 85. Specifically, as shown in FIG. 37, the PCI data (PCI) 113 contains PCI general information (PCI_GI) as information on the entire PCI and angle information (NSMLS_ANGLI) as each piece of jump destination angle information in angle change. The PCI general information (PCI_GI) contains the address (NV_PCK_LBN) of the NV pack (NV_PCK) 86 in which the PCI 113 is recorded as shown in FIG. 38, the address being expressed in the number of blocks, relative to the logical sector of VOBU 85 in which the PCI 113 is recorded. The PCI general information (PCI_GI) contains the category (VOBU_CAT) of VOBU 85, the start playback time (VOBU_S_PTM) of VOBU, and the end playback time

(VOBU_EPTM) of VOBU. Here, the start PTS (VOBU_SPTS) of VOBU 85 indicates the playback start time (start presentation time) of the video data in the VOBU 85 containing the PCI 113. The playback start time is the first playback start time in the VOBU 85. Normally, the first picture corresponds to I picture (intra-picture) data in the MPEG standard. The end PTS (VOBU_EPTS) in the VOBU 85 indicates the playback end time (end presentation time) of the VOBU 85 containing the PCI 113.

[0107] DSI data (DSI) 115 in the DSI packet 117 shown in FIG. 35 is navigation data used to search for the VOB unit (VOBU) 85. The DSI data (DSI) 115 contains DSI general information (DSI_GI), seamless information (SML_PBI), angle information (SML_AGLI), address information (NV_PCK_ADI) on a navigation pack, and synchronizing playback information (SYNCI).

[0108] The DSI information (DSI_GI) contains information about the entire DSI 115. Specifically, as shown in FIG. 40, the DSI general information (DSI_GI) contains the system clock reference (NV_PCK_SCR) for the NV pack 86. The system clock reference (NV_PCK_SCR) is stored in the system time clock (STC) built in each section of FIG. 1. On the basis of the STC, video, audio, and sub-picture packs are decoded at the video, audio, and sub-picture decoders 58, 60, and 62 and the monitor 6 and the speaker 8 reproduce images and sound, respectively. The DSI general information (DSI_GI) contains the start address (NV_PCK_LBN) of the NV pack (NV_PCK) 86 containing the DSI 115 expressed by the number of logical sectors (RLSN), relative to the first logical sector in the VOB set (VOBS) 82 containing the DSI 115, and the address (VOBU_EA) of the last pack in the VOB unit (VOBU) 85 containing the DSI 115 expressed by the number of logical sectors (RLSN), relative to the first logical sector in the VOB unit (VOBU).

[0109] Furthermore, the DSI general information (DSI_GI) contains the end address (VOBU_IP_EA) of the V pack (V_PCK) 88 containing the last address of the first I picture in the VOBU expressed by the number of logical sectors (RLSN), relative to the first logical sector in the VOB unit (VOBU) containing the DSI 115, and the identification number (VOBU_IP_IDN) of the VOBU 83 containing the DSI 115 and the identification number (VOBU_C_IDN) of the cell in which the DSI 115 is recorded.

[0110] The navigation pack address information of DSI contains the addresses of a specified number of navigation packs. Video fast-forward etc. are effected, referring to the addresses. The synchronizing information (SYNCI) includes address information on the subpictures and audio data reproduced in synchronization with the playback start time of the video data in the VOB unit (VOBU) containing DSI 115. Specifically, as shown in FIG. 41, the start address (A_SYNCA) of the target audio pack (A_PCK) 91 is expressed by the number of logical sectors (RLSN), relative to the NV pack

(NV_PCK) 86 in which DSI 115 is recorded. When there are more than one audio stream (8 audio streams maximum), as many pieces of synchronizing information (SYNCI) as there are audio streams are written. Furthermore, the synchronizing information (SYNCI) includes the address (SP_SYNCA) of the NV pack (NV_PCK) 86 of the VOB unit (VOBU) 85 containing the target audio pack (SP_PCK) 91, the address being expressed by the number of logical sectors (RLSN), relative to the NV pack (NV_PCK) 86 in which DSI 115 is recorded. When there are more than one sub-picture stream (32 sub-picture streams maximum), as many pieces of synchronizing information (SYNCI) as there are sub-picture streams are written.

[0111] Explained next will be the circuit configuration that enables the video decoder section 58, audio decoder section 60, sub-picture section 62, and D/A and reproducing section 64 to be set properly according to the above-described video data attributes (VMG_V_ATR, VTSM_V_ATR, VTS_V_ATR), audio data attributes (VMGM_AST_ATR, VTSM_AST_ATR, VTS_AST_ATR), and sub-picture data attributes (VMG_SPST_ATR, VTSM_SPST_ATR, VTS_SPST_ATR).

[0112] The video decoder section 58 comprises a register 58A, a selector 58B, an MPEG1 decoder 58C, and an MPEG2 decoder 58D as shown in FIG. 42. In the circuit of FIG. 42, the control signal corresponding to the video data attributes (VMGM_V_ATR, VTSM_V_ATR, VTS_V_ATR) supplied from the system CPU section 50 via the system processor section 54 is held in the register 58A, which supplies the output to the selector 58B. According to the output from the register 58A, the selector 58B selectively outputs the video data supplied from the system processor section 54 to either the MPEG1 decoder 58C or the MPEG2 decoder 58D. When the MPEG1 decoder 58C has been selected, the video data from the selector 58B is supplied to the MPEG1 decoder 58C, and the video data is decoded by the MPEG1 coding scheme. When the MPEG2 decoder 58D has been selected, the video data from the selector 58B is supplied to the MPEG2 decoder 58D, and the video data is decoded at the MPEG2 decoder 58D by the MPEG2 coding scheme. The decoder output from either the MPEG1 decoder 58C or the MPEG2 decoder 58D is supplied to a video reproducing section 201, which will be explained later, in the D/A and reproducing section 64 as the decoder output of the video decoder section 58.

[0113] The audio decoder section 60 comprises a register 60A, a selector 60B, an MPEG1 decoder 60C, an AC3 decoder 60D, and a PCM decoder 60E as shown in FIG. 43. In the circuit of FIG. 43, the control signal corresponding to the audio data attributes (VMGM_AST_ATR, VTSM_AST_ATR, VTS_AST_ATR) supplied from the system CPU section 50 via the system processor section 54 is held in the register 60A, which supplies the output to the selector 60B. According to the output from the register 68A, the selector 60B selectively outputs the audio

data supplied from the system processor section 54 to either the MPEG1 decoder 60C, the AC3 decoder 60D, or the PCM decoder 60E. When the MPEG1 decoder 60C has been selected, the audio data from the selector 60B is decoded at the MPEG1 decoder 60C by the MPEG1 coding scheme. When the AC3 decoder 60D has been selected, the audio data from the selector 60B is decoded at the AC3 decoder 60D by the AC3 coding scheme. When the PCM decoder 60E has been selected, the digital audio data from the selector 60B is decoded at the PCM decoder 60E into analog audio data. The decoder output from either the MPEG1 decoder 60C, AC3 decoder 60D or PCM decoder 60E is supplied to an audio reproducing section 202, which will be explained later, in the D/A and reproducing section 64 as the decoder output of the audio decoder section 60.

[0114] The sub-picture decoder section 62 comprises a register 62A, a selector 62B, a bit map decoder 62C, and a run-length decoder 62D as shown in FIG. 44. In the circuit of FIG. 44, the control signal corresponding to the sub-picture data attributes (VMGM_SPST_ATR, VTSM_SPST_ATR, VTS_SPST_ATR) supplied from the system CPU section 50 via the system processor section 54 is held in the register 62A, which supplies the output to the selector 62B. According to the output from the register 62A, the selector 62B selectively outputs the sub-picture data supplied from the system processor section 54 to either the bit map decoder 62C or the runlength decoder 62D. When the bit map decoder 62C has been selected, the sub-picture data from the selector 62B is decoded at the bit map decoder 62C by the bit map coding scheme. When the run-length decoder 62D has been selected, the sub-picture data from the selector 62B is decoded at the run-length decoder 62D, by by the run-length coding scheme.

[0115] The D/A and reproducing section 64 comprises a video reproducing section 201, an audio reproducing section 202, an audio mixing section 203, and a subpicture reproducing section 207 as shown in FIG. 1. The video reproducing section 201 comprises a frame rate processing section 204, an aspect processing section 205, and a pan scan processing section 206 as shown in FIG. 45.

[0116] The frame rate processing section 204 comprises a register 204A, a selector 204B, an NTSC section 204C, and a PAL section 204D. In the circuit of FIG. 45, the control signal corresponding to the video data attributes (VMGM_V_ATR, VTSM_V_ATR, VTS_V_ATR) supplied from the system CPU section 50 via the system processor section 54 is held in the register 204A, which supplies the output to the selector 204B. According to the output from the register 204A, the selector 204B selectively outputs the video data supplied from the video decoder section 58 to either the NT-SC section 204C or the PAL section 204D. When the NTSC section 204C has been selected, the video data from the selector 204B is converted by the NTSC section 204C into the NTSC format. Specifically, the video

data having a frame rate at which a single frame is drawn at a horizontal frequency of 60 Hz using 525 scanning lines is supplied from the NTSC section 204C. When the PAL section 204D has been selected, the video data from the selector 204B is converted by the PAL section 204D into the PAL format. Specifically, the video data having a frame rate at which a single frame is drawn at a horizontal frequency of 50 Hz using 625 scanning lines is supplied from the PAC section 204D. The output from either the NTSC section 204C or the PAL section 204D, or the output from the frame rate processing section 204, is supplied to the aspect processing section 205. [0117] The aspect processing section 205 comprises a register 205A, a selector 205B, a 3/4 aspect processing section 205C, and a 9/16 aspect processing section 205D. The control signal corresponding to the video daattributes (VMGM V ATR. VTSM_V_ATR, VTS_V_ATR) supplied from the system CPU section 50 via the system processor section 54 is held in the register 205A, which supplies the output to the selector 205B. According to the output from the register 204A, the selector 205B selectively outputs the video data supplied from the frame rate processing section 204 to either the 3/4 aspect processing section 205C or the 9/16 aspect processing section 205D. When the 3/4 aspect processing section 205C has been selected, the video data from the frame rate processing section 204 is converted by the 3/4 aspect processing section 205C into video data having an aspect ratio of 3/4. When the 9/16 aspect processing section 205D has been selected, the video data from the frame rate processing section 204 is converted by the 9/16 aspect processing section 205D into video data having an aspect ratio of 9/16. The output from either the 3/4 aspect processing section 205C or the 9/16 aspect processing section 205D, or the output from the aspect processing section 205, is supplied to the pan scan processing section 206. [0118] The pan scan processing section 206 comprises a register 206A, a selector 206B, a pan-scan/letterbox through section 206C, and a pan-scan/letter-box processing section 206D. The control signal corresponding to the video data attributes (VMGM_V_ATR, VTSM_V_ATR, VTS_V_ATR) supplied from the system CPU section 50 via the system processor section 54 is held in the register 206A, which supplies the output to the selector 206B. To display the video data having an aspect ratio of 9/16 on the display monitor 8 of the TV system having an aspect ratio of 3/4 according to the video data attributes (VMGM_V_ATR, VTSM_V_ATR, VTS_V_ATR), the system CPU 50 judges whether pan scan or letter box is permitted, decides the display

mode, and outputs the decision to the selector 206B.

According to the output of the register 206A, the selector

206B selectively outputs the video data supplied from

the aspect processing section 205 to either the pan-

scan/letter-box through section 206C or the pan-scan/

letter-box processing section 206D. When the pan-

scan/letter-box through section 206C has been select-

ed, the video data from the aspect processing section 205 is subjected to neither pan scan nor letter box processing and the normal video data is outputted. When the pan-scan/letter-box processing section 206D has been selected, the video data from the aspect processing section 205 undergoes either pan scan or letter box processing at the pan-scan/letter-box processing section 206D. The output from either the pan-scan/letter-box through section 206C or the panscan/letter-box processing section 206D, or the output of the pan-scan/letter-box processing section 206, is supplied to the monitor section 6 via a video signal combining circuit (not shown) that combines the sub-picture signal with the video signal. Accordingly, as explained with reference to FIG. 9, the video data whose display mode is one of normal, pan scan, and letter box is supplied from the processing section 206.

[0119] The audio reproducing section 202 comprises a register 202A, a selector 202B, a stereo output section 202C, a monaural output section 202D, and a surround output section 202E as shown in FIG. 46. In the circuit of FIG. 46, the control signal corresponding to the audio data attributes (VMGM_AST_ATR, VTSM_AST_ATR, VTS_AST_ATR) supplied from the system CPU section 50 via the system processor section 54 is held in the register 202A, which supplies the output to the selector 202B. According to the output from the register 202A, the selector 202B selectively outputs the audio data supplied from the audio decoder section 60 to either the stereo output section 202C, the monaural output section 202D, or the surround output section 202E. When the stereo output section 202C has been selected, the audio data from the selector 202B is converted into stereo data. When the monaural output section 202D has been selected, the audio data from the selector 202B is converted into monaural data. When the surround output section 202D has been selected, the audio data from the selector 202B is converted into surround data. The output from either the stereo output section 202C, the monaural output section 202D, or the surround output section 202E, or the output of the audio reproducing section 202, is directly supplied to the speaker 8. In case that the audio data is the multi-channel audio data, the output from the surround output section 202, the output is supplied to the speaker 8 through an audio mixing section 203.

[0120] The audio mixing section 203 comprises a register 203A, a register 203B, a selector 203C, a first stream processing section 203D, a second stream processing section 203E, and a mixing section 203F as shown in FIG. 47. In the circuit of FIG. 47, the control signal corresponding to the audio data attributes (VMGM_AST_ATR, VTSM_AST_ATR, VTS_AST_ATR) supplied from the system CPU section 50 via the system processor section 54 is held in the registers 202A and 203B. The output of register 103A is supplied to the selector 203C and the output of the register 203B is supplied to the mixing section 203F. According to the output from the register 203A,

the selector 203C selectively outputs the audio data supplied from the audio reproducing section 202 to either the first stream processing section 203D or the second stream processing section 203E. When the first stream processing section 203D has been selected, the audio data from the selector 203C is converted by the first stream processing section 203D into the first stream data. When the second stream processing section 203E has been selected, the audio data from the selector 203C is converted by the second stream processing section into the second stream data. The output from either the first stream processing section 203D or the second stream processing section 203E is supplied to the mixing section 203F. According to the output of the register 203A, the mixing section 203F performs mixing. The mixed data is supplied to the speaker 8 as the output of the audio mixing section 203.

[0121] Hereinafter, the operation of reproducing the movie data from the optical disk 10 with the logic format shown in FIGS. 4 to 14 will be explained with reference to FIG. 1. In FIG. 1, the solid-line arrows indicate data buses and the broken-line arrows represent control buses.

[0122] With the optical disk apparatus of FIG. 1, when the power supply is turned on and an optical disk 10 is loaded, the system CPU section 50 reads the initial operation program from the system ROM/RAM 52 and operates the disk drive section 30. Then, the disk drive section 30 starts to read the data from the lead-in area 27 and then from the volume and file structure area 70 next to the lead-in area 27 determining a volume structure and a file structure in accordance with ISO-9660. Specifically, to read the data from the volume and file structure area 70 located in a specific position on the optical disk 10 set in the disk drive section 30, the system CPU section 50 gives a read instruction to the disk drive section 30 to read the contents of the volume and file structure area 70, and stores the data temporarily in the data RAM section 56 via the system processor section 54. The system CPU section 50 extracts information about the recording position and recording size of each file and management information necessary for other managing actions via the path table and directory record stored in the data RAM section 56, and transfers and stores these pieces of information in specific locations in the system ROM/RAM section 52.

[0123] Then, the system CPU section 50 acquires a video manager 71 composed of files, starting with file number 0, with reference to the information about the recording position and recording capacity of each file in the system ROM/RAM section 52. Specifically, referring to the recording position and recording capacity of each file acquired from the system ROM/RAM section 52, the system CPU section 50 gives a read instruction to the disk drive section 30, acquires the positions and sizes of a plurality of files constituting the video manager 71 existing on the root directory, reads the video manager 71, and stores it in the data RAM section 56 via the sys-

tem processor section 54.

[0124] A video manager information management table (VMGI_MAT) 78, the first table in the video manager 71, is searched for. By the search, the start address (VMGM_VOBS_SA) of the video object (VMGM_VOBS) 76 for the video manager menu (VM-GM) is obtained and the video object (VMGM_VOBS) 76 is reproduced. Because the playback of the video object set (VMGM_VOBS) 76 for menus is the same as that of the video object set (VTSM_VOBS) for titles in the video title set (VTS), its playback procedure will be omitted. When a language is set in the video object set (VMGM_VOBS) 76, or when there is no video manager menu (VMGM), the video manager information management table (VMGI_MAT) is searched for and the start address (TT_SRPT_SA) of the title set search pointer table (TT_SRPT) 79 is retrieved. Here, in reproducing the video manager menu, the system CPU section 50 acquires the number of video streams, audio streams, and sub-picture streams for volume menus and attribute information on each of those written in the information management table (VMGI_MAT) of the video manager (VMGI) 75, and on the basis of these pieces of attribute information, sets the parameter for playback of the video manager menu in each of the video decoder section 58, audio decoder section 60, and sub-picture section 62.

[0125] By the retrieval, the title set search pointer table (TT_SRPT) 79 is transferred to a particular location in the system ROM/RAM section 52 and stored there. Next, the system CPU section 50 acquires the end address of the title search pointer table (TT_SRPT) 79 from the title search pointer table information (TSPTI) 92 and also obtains the video title set number (VTSN) corresponding to the input number, the program chain number (PGCN), and the start address (VTS_SA) of the video title set from the title search pointer (TT_SRP) 93 according to the input number from the key/display section 4. When there is only one title set, one title search pointer (TT_SRP) 93 is searched for, regardless of whether the input number has been entered from the key/display section 4, and the start address (VTS_SA) of the title set is acquired. From the start address (VTS_SA) of the title set, the system CPU section 50 acquires the target title set.

[0126] Next, from the start address (VTS_SA) of the video title set 72 of FIG. 15, the video title set information (VTSI) 94 about the title set is obtained as shown in FIG. 22. The end address (VTI_MAT_EA) of the video title set information management table (VTSI_MAT) 98 of FIG. 22 is acquired from the management table (VTSI_MAT) 98 of the video title set information (VTSI) 94. At the same time, each section of the reproducing apparatus shown in FIG. 1 is set on the basis of the number of audio streams and the number of sub-picture data streams (VTS_AST_Ns, VTS_SPST_Ns) and the video, audio, and sub-picture data attribute information (VTS_V_ATR, VTS_A_ATR, VTS_SPST_ATR). A de-

tailed explanation of the setting of each section of the reproducing apparatus according to the attribute information will be given later.

[0127] When a menu (VTSM) for a video title set (VTS) has a simple structure, the start address (VTSM_VOB_SA) of a video object set (VTSM_VOB) 95 for a video title set menu is acquired from the video title set information management table (VTSI_MAT) 98 of FIG. 23. On the basis of the video object set (VTSM_VOB) 95, the video title set menu is displayed. When an video object set (VTT_VOBS) 96 for titles (VTST) in the title set (VTS) is simply reproduced without selecting a program chain (PGC) with reference to the menu, the video object set 96 is reproduced on the basis of the start address (VTSTT_VOB_SA) shown in FIG. 23.

[0128] When a program chain (PGC) is specified from the key/display section 4, the desired program chain is searched for in the following procedure. The act of searching for a program chain is not limited to a program chain for titles in the video title set. The same procedure applies to the operation of searching for a program chain for a relatively complex menu made up of program chains. The start address of the program chain information table (VTS_PGCIT) 100 in the video title set (VTS) of FIG. 22 written in the management table (VTSI_MAT) 98 of the video title set information (VTSI) is acquired, and information (VTS_PGCIT_I) 102 in the VTS program chain information table of FIG. 24 is read. From the information (VTS_PGCIT_I) 102, the number of program chains (VTS_PGC_Ns) and the end address (VTS_PGCIT_EA) of the table 100 shown in FIG. 25 are obtained.

[0129] When the number of a program chain is specified from the key/display section 4, the category of the program chain and the start address of the VTS PGC information 104 corresponding to the search pointer (VTS_PGCIT_SRP) 103 shown in FIG. 26 are acquired from the VTS PGCIT search pointer (VTS_PGCIT_SRP) 103 corresponding to the number shown in FIG. 24. On the basis of the start address (VTS_PGCI_SA), the program chain general information (PGC_GI) of FIG. 27 is read out. According to the general information (PGC_GI), the category and playback time of the program chain (PGC_CAT, PGC_PB_TIME) are obtained and further the start addresses (C_PBIT_SA, C_POSIT_SA) of the cell playback information table (C_PBIT) and cell position information table (C_POSIT) 108 contained in the general information (PGC_GI) are acquired. From the start address (C_PBIT_SA), the video object identifier (C_VOB_IDN) and cell identification number (C_IDN) of FIG. 34 are acquired as the cell position information (C_POSI) of FIG. 33.

[0130] Furthermore, from the start address (C_POSIT_SA), the cell playback information (C_PBI) of FIG. 31 is obtained. The start address (C_FVOBU_SA) of the first VOBU 85 and the start ad-

dress (C_LVOBU_SA) of the last VOBU in the cell of FIG. 32 contained in the playback information (C_PBI) are acquired. Then, the target cell is searched for. In the playback of cells, referring to the program map of FIG. 29 in the PGC program map (PGC_PGMAP) 106 of FIG. 27, playback cells 84 are determined one after another. The data cells 84 of program chains thus determined are read one after another from the video object 144 and inputted to the data RAM section 56 via the system processor section 54. The data cells 84, on the basis of the playback time information, are supplied to the video decoder section 58, audio decoder section 60, and subpicture decoder section 62, which decode them. The decoded signals are subjected to signal conversion at the D/A and data-reproducing section 64 and an image is reproduced at the monitor section 6 and at the same time, sound is reproduced at the speaker sections 8, 9. [0131] Explained next will be the acquisition of the video data attribute information (VTS_V_ATR) and the setting of the video decoder and video reproducing section 201 according to the video data attribute information (VTS_V_ATR) in the optical disk reproducing apparatus, with reference to the flowchart shown in FIG. 48. When the setting process is started, the system CPU section 50, as shown in step 10, controls the disk drive section 30 to read the video title set information management table (VTSI_MAT) 98 from the optical disk 10 and temporarily stores it in the data RAM section 56. As shown in step S11, the system CPU section 50 acquires the video data attribute (VTS_V_ATR) recorded in the video title set information management table (VTSI_MAT) 98 stored in the data RAM section 56. The system CPU section 50, as shown in step S12, judges which of MPEG1 and MPEG2 standards the video compression mode written in the video data attribute (VTS_V_ATR) acquired at step S12 complies with and on the basis of the judgment result, supplies a control signal to the register 58A of the video decoder section 58. This causes the selector 58B to be switched according to the control signal supplied from the register 58A. When the video compression mode 131 conforms to the MPEG1 standard, the system processor section 54 supplies the video data to the MPEG1 decoder 58C via the selector 58B. When the video compression mode 131 conforms to the MPEG2 standard, the system processor section 54 supplies the video data to the MPEG2 decoder 58D via the selector 58B. The system CPU section 50, as shown in step S13, judges whether the display aspect ratio written in the acquired video data attribute 123 is 3/4 or 9/16 and on the basis of the judgment result, supplies a control signal to the register 205A in the aspect processing section 205 of the video reproducing section 201 in the D/A and reproducing section 64. This causes the selector 205B to be switched according to the control signal supplied to the register 205A. When the display aspect ratio is 3/4, the video data from the frame rate processing section 204 is supplied to the 3/4 aspect processing section 205C via the

selector 205B. When the display aspect ratio is 9/16, the video data from the frame rate processing section 204 is supplied to the 9/16 aspect processing section 205D via the selector 205B.

[0132] Furthermore, the system CPU section 50, as shown in step S14, judges whether the frame rate written in the acquired video data attribute is of the NTSC or PAL system and on the basis of the judgment result, supplies a control signal to the register 204A in the frame rate processing section 204 of the video reproducing section 201 in the D/A and reproducing section 64. This causes the selector 204B to be switched according to the control signal supplied to the register 204A. When the frame rate is of the NTSC system, the video data from the video decoder section 58 is supplied to the NT-SC section 204C via the selector 204B. When the frame rate is of the PAL system, the video data from the video decoder section 58 is supplied to the PAL section 204D via the selector 204B. In addition, the system CPU section 50, as shown in step S15, judges whether the pan scan 134 written in the acquired video data attribute 123 is present or absent and on the basis of the judgment result, supplies a control signal to the register 206A in the pan scan processing section 206 of the video reproducing section 201 in the D/A and reproducing section 64. This causes the selector 206B to be switched according to the control signal supplied to the register 206A. When the pan scan or letter box is present, the video data from the aspect processing 205 is supplied to the pan scan/letter box processing section 206D via the selector 206B. When neither pan scan nor letter box is present, the video data from the aspect processing section 205 is supplied to the pan scan through section 206C via the selector 206B.

[0133] The above series of processes has set the video decoder section 58 and video reproducing section 201 optimally for the video data in the title set to be reproduced. In the flow in FIG. 48, when the video decoder section 58 and video reproducing section 201 are set according to the video data attribute information (VMGM_V_ATR), the video management information management table (VMGI_MAT) 78 is read out instead of the video title set information management table (VTSI_MAT) 98 and the video data attribute information (VMG_V_ATR) is acquired. Additionally, in the flow of FIG. 48, when the video decoder section 58 and video reproducing section 201 are set according to the video data attribute information (VTSM_V_ATR), the video data attribute information (VTSM_V_ATR), like the video data attribute information (VTS_V_ATR), is acquired from the video title set information management table (VTSI_MAT) 98.

[0134] Explained next will be the acquisition of the audio data attribute information (VTS_AST_ATR) and the setting of the video decoder and video reproducing section 201 according to the attribute information (VTS_AST_AT) in the optical disk reproducing apparatus, with reference to the flowchart shown in FIG. 49.

When the setting process is started, the system CPU section 50, as shown in step 20, controls the disk drive section 30 to read the video title set information management table (VTSI_MAT) 98 from the optical disk 10 and temporarily stores it in the data RAM section 56. As shown in step S21, the system CPU section 50 acquires the number of audio streams recorded in the video title set information management table (VTSI_MAT) 98 stored in the data RAM section 56. As shown in step 32, when the user specifies a selectable audio stream number from the key/display section 4, the system CPU section 50, as shown in step 22, acquires the audio attribute (VTS_AST_AT) corresponding to the user-specified stream number from the audio data attribute group (VTS_AST_AT) in the video title set information management table (VTSI_MAT) 98 stored in the data RAM section 56. The system CPU section 50, as shown in step 23, judges which of MPEG1 and linear PCM standards the audio compression mode written in the acquired audio data attribute (VTS_AST_ATR) complies with and on the basis of the judgment result, supplies a control signal to the register 68A of the audio decoder section 60.

[0135] This causes the selector 60B to be switched according to the control signal supplied to the register 60A. When the audio coding mode conforms to the MPEG1 standard, the system processor section 54 supplies the audio data to the MPEG1 decoder 60C via the selector 60B. When the audio coding mode conforms to the AC3 standard, the system processor section 54 supplies the audio data to the AC3 decoder 60D via the selector 60B. When the video coding mode conforms to the digital PCM standard, the system processor section 54 supplies the audio data to the PCM decoder 60E via the selector 60B.

[0136] Furthermore, the system CPU section 50, as shown in step S24, judges whether the audio mode 152 written in the acquired audio data attribute (VTS_AST_ATR) is stereo, monaural, or surround and on the basis of the judgment result, supplies a control signal to the register 202A in the audio reproducing section 202. This causes the selector 202B to be switched according to the control signal supplied to the register 202A. When the audio mode 152 is stereo, the audio data from the audio decoder section 60 is supplied to the stereo output section 202C via the selector 202B. When the audio mode 152 is monaural, the audio data from the audio decoder section 60 is supplied to the monaural output section 202D via the selector 202B. When the audio mode 152 is surround, the audio data from the audio decoder section 60 is supplied to the surround output section 202E via the selector 202B.

[0137] Next, the system CPU section 50, as shown in step S25, judges whether the mixing mode written in the acquired audio data attribute 125 is mixing impossible, master stream enabling mixing, or slave stream enabling mixing and on the basis of the judgment result, supplies a control signal to the registers 203A and 203B

in the audio mixing section 203. This causes the selector 203C to be switched according to the control signal supplied to the register 203A. When the mixing mode is master stream enabling mixing as shown in step 25, the stream is determined to be the first stream as shown in step 26 and supplied to the first stream processing section 203D. When the mixing mode is slave stream enabling mixing as shown in step 27, the stream is determined to be the second stream as shown in step 28 and supplied to the second stream processing section 203E. When the mixing mode is independent stream disabling mixing, the stream is determined to be the first stream and supplied to the first stream processing section 203D. Additionally, the processing of the mixing processing section 203F is switched according to the control signal supplied to the register 203B. When the mixing mode is mixing possible, mixing is performed on the first stream in the first stream processing section 203D and on the second stream in the second stream processing section 203E. The resulting signal is outputted to the speaker section 8. When the mixing mode is mixing impossible, only the first stream in the first stream processing section 203D is outputted to the speaker section 8.

[0138] Furthermore, the system CPU section 50, as shown in step 30, judges whether or not the audio type 153 written in the acquired audio data attribute 125 is language. If the judgment result shows language, the CPU section will acquire a language code from language code 156, determine the name of the corresponding language from a language code table previously stored in the system ROM/RAM section 52, and indicate it on the monitor section 6 as shown in step 31.

[0139] In contrast, when the user has specified a language code, the CPU section can pinpoint the audio stream having the desired language code from the number of audio streams 124 and audio data attribute

[0140] Additionally, when during playback of data, the change of the audio stream number is commanded because of the user's event, for example, (S32), the acquisition and setting of audio data attributes are effected according to the processes in S22 to S31.

[0141] The above series of processes has set the audio decoder section 60, audio reproducing section 202, and audio mixing section 203 optimally for the video data in the title set to be reproduced. In the flow in FIG. 49, when the video decoder section 58 and video reproducing section 201 are set according to the audio data attribute (VMGM_AST_ATR), the video management information management table (VMGI_MAT) 78 is read out instead of the video title set information management table (VTSI_MAT) 98 and the audio data attribute (VMG_AST_ATR) is acquired. Additionally, in the flow of FIG. 48, when the audio decoder section 60 and audio reproducing section 202 are set according to the audio data attribute (VTSM_AST_ATR), the audio data attribute (VTSM_AST_ATR), like the audio data attribute

(VTS_AST_ATR), is acquired from the video title set information management table (VTSI_MAT) 98.

[0142] Explained next will be the acquisition of the sub-picture attribute information (VTS_SPST_ATR) and the setting of the sub-picture decoder 62 and video reproducing section 201 according to the attribute information (VTS_SPST_ATR) in the optical disk reproducing apparatus, with reference to the flowchart shown in FIG. 50. As shown in step 40, the system CPU section 50 controls the disk drive section 30 to read the video title set information management table (VTSI_MAT) 98 from the optical disk 10 and temporarily stores it in the data RAM section 56. As shown in step S41, the system CPU section 50 acquires the number of sub-picture streams (VTS_SPST_Ns) recorded in the video title set information management table (VTSI_MAT) stored in the data RAM section 56. As shown in step 46, when the user specifies a selectable audio stream number from the key/display section 4, the system CPU section 50, as shown in step 42, acquires the audio attribute (VTS_AST_ATR) corresponding to the user-specified channel number from the sub-picture data attribute (VTS_AST_ATR) recorded in the video title set information management table (VTSI_MAT) stored in the data RAM section 56. The system CPU section 50, as shown in step 43, judges whether sup-picture compression mode written in the acquired sub-picture attribute (VTS_AST_ATR) is Raw (corresponding to a bit map), run length, or others and on the basis of the judgment result, supplies a control signal to the register 62A of the sub-picture decoder section 62. This causes the selector 62B to be switched according to the control signal supplied to the register 62A. When the sub-picture compression mode corresponds to a bit map, the system processor section 54 supplies the sub-picture data to the bit map decoder 62C via the selector 62B. When the sub-picture compression mode corresponds to run length, the system processor section 54 supplies the sub-picture data to the run length decoder 62D via the selector 62B.

[0143] Furthermore, the system CPU section 50, as shown in step 44, judges whether or not sup-picture type 172 written in the acquired sub-picture attribute 127 is language. If the judgment result shows language, the CPU section, as shown in step 45, will acquire a language code from the language code, determine the name of the corresponding language from a language code table previously stored in the system ROM/RAM section 52, and indicate it on the monitor section 6.

[0144] In contrast, when the user has specified a language code, the CPU section can pinpoint the sub-picture stream having the desired language code from the number of sub-picture streams and sub-picture data attribute 127. Additionally, as shown in step 46, when during playback of data, the change of the sub-picture stream number is commanded because of the user's event, for example, the acquisition and setting of sub-picture data attributes are effected according to the

processes in S42 to S45.

[0145] The above series of processes has set the subpicture decoder section 62 and sub-picture reproducing section 207 optimally for the video data in the title set to be reproduced. In the flow in FIG. 49, when the subpicture decoder section 62 and sub-picture reproducing section 207 are set according to the sub-picture attribute (VMGM_SPST_ATR), the video management information management table (VMGI_MAT) 78 is read out instead of the video title set information management table (VTSI_MAT) 98 and the sub-picture attribute (VMG_SPST_ATR) is acquired. Additionally, in the flow of FIG. 48, when the audio decoder section 60 and audio reproducing section 202 are set according to the subpicture attribute (VTSM_SPST_ATR), the sub-picture attribute (VTSM_SPST_ATR), like the sub-picture attribute (VTS_SPST_ATR), is acquired from the video title set information management table (VTSI_MAT) 98. [0146] Referring to FIGS. 51 to 53, explained next will

be a method of recording data on the optical disk 10 on and from which the video data is recorded and reproduced in the logic formats shown in FIGS. 4 to 41 and a recording system to which the recording method is applied.

[0147] FIG. 51 shows an encoder system that creates a video file 88 of a title set 84 whose video data is encoded. In the system of FIG. 51, for example, a videotape recorder (VTR) 221, an audiotape recorder (ATR) 218, and a sub-picture source 213 are used as sources of the main video data, audio data, and sup-picture data. Under the control of a system controller (Sys con) 215, they create the main video data, audio data, and suppicture data, which are supplied to a video encoder (VENC) 219, an audio encoder (AENC) 217, and a subpicture encoder (SPENC) 208, respectively. Under the control of the system controller (Sys con) 215, these encoders 219, 217, and 208 perform A/D conversion of the main video data, audio data, and sup-picture data and encode them by the respective compression schemes. The encoded main video data, audio data, and sub-pic-

ture data (Comp Video, Comp Audio, Comp Sub-pict) are stored in memories 210, 211, and 212. The main video data, audio data, and sub-picture data (Comp Video, Comp Audio, Comp Sub-pict) are outputted to a file formatter (FFMT) 214 under the control of the system controller (Sys con) 215, which converts them so that they may have a file structure of video data for the system as explained earlier. Then, under the control of the system controller (Sys con) 215, the setting conditions for each data item and the management information including attributes are stored in a memory 216 in the form

[0148] Explained next will be a standard flow of an encoding process in the system controller (Sys con) 215 that creates a file from video data.

[0149] According to the flow of FIG. 52, the main video data and audio data are encoded and the encoded main video data and audio data (Comp Video, Comp Audio)

are supplied. Specifically, when the encoding process is started, as shown in step S70 of FIG. 52, the parameters necessary for encoding the main video data and audio data are set. Part of the set parameters are stored in the system controller (Sys con) 215 and at the same time, are used at the file formatter (FFMT) 214. As shown in step S271, the main video data is pre-encoded using the parameters and the optimum distribution of the amount of codes is calculated. Then, on the basis of the code amount distribution obtained in the pre-encoding. the main video data is encoded as shown in step S272. At the same time, the audio data is also encoded at step S272. As shown in step in S273, if necessary, the main video data is partially encoded again and the reencoded portion of the main video data is replaced with the old one. Through the series of steps, the main video data and audio data are encoded. Furthermore, as shown in steps S274 and S275, the sub-picture data is encoded and the encoded sub-picture data (Comp Sub-pict) is supplied. Namely, the parameters necessary for encoding the sub-picture data is set. As shown in step S274, part of the parameters are stored in the system controller (Sys con) 215 and used in the file formatter (FFMT) 214. On the basis of the parameters, the sub-picture data is encoded. By the process, the sup-picture data is encoded.

[0150] According to the flow of FIG. 53, the encoded main video data, audio data, and sup-picture data (Com Video, Com Audio, Comp Sub-pict) are combined and converted so as to form a video data title set structure as explained in FIGS. 4 and 21. Specifically, as shown in step S276, a cell is set as the smallest unit of the video data and cell playback information on the cell (C_PBI) is created. Then, as shown in step S277, the structure of the cells constituting a program chain and the main video, sub-picture, and audio attributes (the information obtained in encoding the respective data items are used part of these attributes) are set. Then, as shown in FIG. 21, a video title set information management table information (VTSI_MAT) including information on program chains and a video title set program chain table (VTS_PGCIT) 100 are created. At this time, as the need arises, a video title set direct access pointer table (VTS_DAPT) is also created. The encoded main video data, audio data, and sup-picture data (Com Video, Comp Audio, Comp Sub-pict) are subdivided into specific packs. An NV pack is placed at the head of each VOBU so that playback can be effected in the order of time code of each data item. With the NV packs arranged this way, each data cell is positioned so that a video object (VOB) may be composed of a plurality of cells as shown in FIG. 6. A set of such video objects is formatted into the title set structure.

[0151] In the flow of FIG. 53, the program chain information (PGI) is obtained in the process of step S277 by using the database in the system controller (Sys con) 205 or entering data again as the need arises.

[0152] FIG. 54 shows a disk formatter system that

records on an optical disk the title set formatted as described above. In the disk formatter system of FIG. 54. the memories 220, 222 in which the created title set is stored supply these file data items to a volume formatter (VFMT) 226. In the volume formatter (VFMT) 226 extracts the management information from the title sets 84, 86, produces a video manager 71, and create the logic data to be recorded on the disk 10 in the arrangement of FIG. 4. A disk formatter (DFMT) 228 adds error correction data to the logic data created at the volume formatter (VFMT) 226, thereby reconverting the logic data into physical data to be recorded on the disk. A modulator 230 converts the physical data created at the disk formatter (DFMT) 228 into the recording data to be recorded actually on the disk. Then, a recorder 232 records the modulated recording data on the disk 10. [0153] A standard flow for creating the aforementioned disk will be described with reference to FIGS. 55 and 56. FIG. 55 shows the flow of creating the logic data to be recorded on the disk 10. Specifically, as shown in step S280, parameter data items, including the number of video data files, their arrangement, and the size of each video data file, are set first. Next, as shown in step S281, a video manager 71 is created from the set parameters and the video title set information 281 in each video set 72. Thereafter, as shown in step S282, the video manager 71 and video title set 72 are arranged in that order according to the corresponding logical block number, thereby creating the logic data to be recorded on the disk 10.

[0154] Thereafter, the flow of creating the physical data to be recorded on the disk as shown in FIG. 56 is executed. Specifically, as shown in step S283, the logic data is divided into units of a specific number of bytes, thereby forming error correction data. Next, as shown in step S284, the logic data divided into units of a specific number of bytes are combined with the created error correction data to form physical sectors. Thereafter, as shown in step S285, physical data is created by combining physical sectors. In this way, the modulating process based on certain rules is performed on the physical data created in the flow of FIG. 56, thereby forming the recording data. Thereafter, the recording data is recorded on the disk 10.

[0155] The above-described data structure can be applied not only to a case where the data is recorded on recording mediums, such as optical disks, and then the disks are distributed to the users, but also to a communication system as shown in FIG. 57. Specifically, according to the procedure shown in FIGS. 51 to 54, an optical disk 10 in which a video manager 71 and video title set 72 as shown in FIG. 4 are stored may be loaded into a reproducing apparatus 300, from whose system CPU section 50 the encoded data is taken out digitally and transmitted by a modulator/transmitter 310 to the users or the cable subscribers by radio or via a cable. Furthermore, the encoding system 320 shown in FIGS. 51 and 54 may create the data encoded on the provider

15

35

side, such as a broadcasting station and the encoded data may be transmitted by the modulator/transmitter 310 to the users or the cable subscribers by radio or via a cable. In such a communication system, the information in the video manager 71 is modulated at the modulator/transmitter 310 and then supplied to or is directly supplied to the users free of charge. When a user is interested in the title, the modulator/transmitter 310 transmits the title set 72 at the user's or subscriber's request by radio or via a cable. Under the control of the video manager 71, the video title set information 94 is first transferred and then the title video object 95 in the video title set reproduced according to the title set information 94 is transferred. At this time, if necessary, the video title set menu video object 95 is also transmitted. The transferred data is received by a receiver/demodulator 400 on the user side and is processed as encoded data at the system CPU section 50 of the reproducing apparatus on the user or subscriber side of FIG. 1 in the same manner as in the above-described reproducing process, whereby the video data is reproduced.

[0156] In transferring the video title set 72, the attribute information (VMGM_V_ATR, VMGM_AST_ATR, VMGM_SPST_ATR), (VTSM_V_ATR, VTSM_AST_ATR, VTSM_SPST_ATR), and (VTS_V_ATR, VTS_AST_ATR, VTS_SPST_ATR) are transferred for each title set as management information on video data, so that the video data etc. can be reproduced under suitable playback conditions in the reproducing system on the user side or subscriber side.

[0157] While in the above explanation, the video object unit is a data train containing video data, audio data, and sub-picture data, the video object unit may be composed of audio packs only or sub-picture packs only, because the video object unit has only to contain any one of video data, audio data, and sub-picture data.

[0158] As described above, attribute information on the video data, audio data, and sub-picture data is written for each video title set. By referring to these pieces of attribute information, the data in the video title sets can be reproduced optimally. Furthermore, by preparing a plurality of title sets in which the video, audio, and sub-picture data items that differ in attribute information are stored and storing these on an optical disk, the video, audio, and sub-picture data items can be reproduced in a mode suitable for the reproducing system, even if the reproducing system is based on a different standard.

[0159] With the present invention, when there are a plurality of audio streams or sub-picture streams for the

[0159] With the present invention, when there are a plurality of audio streams or sub-picture streams for the video data, because as many attributes as there are streams or channels are recorded in the order of number, the data attribute of the audio stream or sub-picture stream corresponding to the specified number can be acquired easily and the reproducing system can be set in the best playback condition in accordance with the specified audio stream or sub-picture stream. Because information as to whether or not the change to a display mode suitable for the playback screen is permitted with respect to the original image is written as at-

tribute information, the video etc. can be reproduced with the maker's intention being always reflected in it.

Claims

1. A recording disk medium comprising:

a data recording area (28) between a lead-in area (27) and a lead-out area (26), said data recording area (28) being divided into a plurality of sectors and comprising a management area (VMG,71) and a title area containing one or more title sets (VTS#n,72), which areas are respectively aligned with the boundaries between sectors;

each title set containing one or more titles comprising reproducible video data, audio data and sub-picture data arranged in consecutive packs management control information (VTSI_MAT,98) for controlling the reproduction of the reproducible video, audio and sub-picture data, said management control information (VTSI_MAT,98) comprising video attribute information, audio attribute information and subpicture attribute information for setting parameters of video, audio and sub-picture decoding circuits in a reproduction device for the proper reproduction of the video, audio and sub-picture data contained in the respective title set(s); said management area (VMG,71) containing information for controlling the reproduction of the titles including a table (VTS_ATRT,80) with said video attribute information, audio attribute information and sub-picture attribute information of the management control information of each title set contained in the title area.

- A recording disk medium according to claim 1, wherein said video attribute information includes information on the compression mode of video data for allowing decoding of the video data by reference to the compression mode.
- 5 3. A recording disk medium according to claim 1, wherein said video attribute information includes information on the frame rate of video data for allowing conversion of the video data into a video signal for display at a specific frame rate.
 - 4. A recording disk medium according to claim 1, wherein said video attribute information includes information on the display aspect ratio of video data for allowing conversion of the video data into a video signal having the display aspect ratio.
 - A recording disk medium according to claim 1, wherein said video attribute information includes in-

15

20

30

35

formation on the display mode of video data for allowing conversion of the video data into a video signal having the display mode.

- 6. A recording disk medium according to claim 1, wherein said video attribute information includes information permitting representation in a specific display mode for allowing conversion of the video data into a video signal having the permitted display mode.
- 7. A recording disk medium according to claim 1, wherein said video attribute information includes information permitting one of representation in first and second display modes for allowing conversion of the video data into a video signal having the permitted one of the first and second display modes.
- 8. A recording disk medium according to claim 1, wherein said video attribute information includes information on one of first and second display aspect ratios of video data, for allowing conversion of the video data into a video signal having the one of the first and second display aspect ratios, and said attribute information includes information permitting representation in one or both of first and second display modes, for allowing conversion of the video data, when the display aspect ratio is the second one, into a video signal having the permitted display mode.
- 9. A recording disk medium according to claim 1, wherein said video attribute information includes information on one of 3/4 and 9/16 display aspect ratios of video data, for allowing conversion of the video data into a video signal having the one of the 3/4 and 9/16 display aspect ratios, and said attribute information includes information permitting representation in one or both of pan scan and letter box type display modes, for allowing conversion of the video data, when the display aspect ratio is 9/16, into a video signal having the permitted display mode.
- 10. A recording disk medium according to claim 1, wherein said audio attribute information includes information on the audio coding mode of audio data for allowing decoding of the audio data according to the coding mode.
- 11. A recording disk medium according to claim 10, wherein said attribute information includes conversion information on one of NTSC TV and PAL TV system conversions, for allowing selection of the audio coding mode of audio data in accordance with the conversion information.
- A recording disk medium according to claim 10, wherein said attribute information includes conver-

sion information on one of NTSC TV and PAL TV system conversions, for allowing selection of the the audio coding mode of audio data from one of Dolby AC-3 and Linear PCM audio, when said attribute information includes the conversion information on the NTSC TV system conversion, and for allowing selection of the the audio coding mode of audio data from one of MPEG-1, MPEG-2 and Linear PCM audio, when said attribute information includes the conversion information on the PAL TV system conversions.

- 13. A recording disk medium according to claim 1, wherein said audio attribute information includes information on the audio type of audio data for allowing conversion of the audio data into an audio signal suitable for the audio type.
- 14. A recording disk medium according to claim 1, wherein said audio attribute information includes information on the application type of audio data for allowing conversion of the audio data into an audio signal suitable for the application type.
- 25 15. A recording disk medium according to claim 1, wherein said audio attribute information includes information on the number of quantization bits of audio data for allowing decoding of the audio data according to the number of quantization bits.
 - 16. A recording disk medium according to claim 1, wherein said audio attribute information includes information on the sampling frequency of audio data for allowing decoding of the audio data according to the sampling frequency.
 - 17. A recording disk medium according to claim 1, wherein said audio attribute information includes information on the number of audio channels of audio data for allowing conversion of the audio data into an audio channel signal corresponding to a number selected in the range of the number of audio channels
- 18. A recording disk medium according to claim 1, wherein said sub-picture attribute information includes information on the sub-picture coding mode of sub-picture data for allowing decoding of the sub-picture data according to the sub-picture coding mode.
 - 19. A recording disk medium according to claim 1, wherein said sub-picture attribute information includes information on the sub-picture display type of sub-picture data for allowing conversion of the sub-picture data into a sub-picture signal suitable for the sub-picture display type.

30

35

- 20. A recording disk medium according to claim 1, wherein said sub-picture attribute information includes information on the sub-picture type of sub-picture data for allowing conversion of the sub-picture data into a sub-picture signal suitable for the sub-picture type.
- 21. A recording disk medium according to claim 1, wherein said audio attribute information includes information on multi-channel audio streams of audio data for allowing decoding of the audio data according to the attributes of multi-channel audio streams.
- 22. A recording disk medium according to claim 21, wherein said information on multi-channel audio streams of audio data allows said audio data to be mixed according to the attributes of multi-channel audio streams.
- 23. A recording disk medium according to claim 1, wherein said management control information includes time information prescribing the playback time of video data and synchronization information on the audio data and sub-picture data to be reproduced in synchronization with video data.
- 24. A recording disk medium according to claim 1, wherein said management area includes the number of audio streams contained in the audio data.
- 25. A recording disk medium according to claim 1, wherein said management area includes the number of sub-picture streams contained in the sub-picture data.
- 26. A recording disk medium according to one of the claims 1 to 25, wherein said data recording area (28) includes menu data for displaying a menu of the reproducible data recorded on said recording medium and said management area includes the unique attribute information necessary for converting the menu data into a menu playback signal.
- 27. A method of recording reproducible video, audio and sub-picture data on a recording disk medium, comprising the steps of:

obtaining video, audio and sub-picture data from respective sources; encoding said video, audio and sub-picture data independently from each other; combining said encoded video, audio and sub-picture data to form one or more titles forming one or more title sets, in which said encoded video, audio and sub-picture data for said title set(s) are divided into specific packs;

creating management control information

(VTSI_MAT,98) for controlling the reproduction of the reproducible video, audio and sub-picture data of the respective title set(s), said management control information comprising video attribute information, audio attribute information and sub-picture attribute information for setting parameters of video, audio and sub-picture decoding circuits in a reproduction device for the proper reproduction of the video, audio and sub-picture data contained in the respective title set(s);

creating a volume management file containing information for controlling the reproduction of the title set(s) including a table (VTS_ATRT,80) containing said video attribute information, audio attribute information and sub-picture attribute information of the management control information of each title set; and recording said packs of the title set(s) and said management control information of the respective title set(s) on a data recording area (28) of the recording disk medium and recording said volume management file on a management ar-

28. A recording method according to claim 27, wherein said video attribute information includes information on the compression mode of the video data for allowing decoding of the video data by reference to the compression mode.

ea (VMG,71) of the recording disk medium.

29. A recording method according to claim 27, wherein said video attribute information includes information on the frame rate of video data for allowing conversion of the video data into a video signal for display at a specific frame rate.

- 30. A recording method according to claim 27, wherein said video attribute information includes information on the display aspect ratio of video data for allowing conversion of the video data into a video signal having the display aspect ratio.
- 45
 45 and video attribute information includes information on the display mode of video data for allowing conversion of the video data into a video signal having the display mode.
- 32. A recording method according to claim 27, wherein said video attribute information includes information permitting representation in a specific display mode for allowing conversion of the video data into a video signal having the permitted display mode.
 - 33. A recording method according to claim 27, wherein said video attribute information includes information permitting one of representation in first and second

20

25

30

35

40

50

55

display modes for allowing conversion of the video data into a video signal having the permitted one of the first and second display modes.

- 34. A recording method according to claim 27, wherein said video attribute information includes information on one of first and second display aspect ratios of video data, for allowing conversion of the video data into a video signal having the one of the first and second display aspect ratios, and said attribute information includes information permitting representation in one or both of first and second display modes, for allowing conversion of the video data, when the display aspect ratio is the second one, into a video signal having the permitted display mode.
- 35. A recording method according to claim 27, wherein said video attribute information includes information on one of 3/4 and 9/16 display aspect ratios of video data, for allowing conversion of the video data into a video signal having the one of the 3/4 and 9/16 display aspect ratios, and said attribute information includes information permitting representation in one or both of pan scan and letter box type display modes, for allowing conversion of the video data, when the display aspect ratio is 9/16, into a video signal having the permitted display mode.
- 36. A recording method according to claim 27, wherein said audio attribute information includes information on the audio coding mode of audio data for allowing decoding of the audio data according to the coding mode.
- 37. A recording method according to claim 27, wherein said attribute information includes conversion information on one of NTSC TV and PAL TV system conversions, for allowing selection of the audio coding mode of audio data in accordance with the conversion information.
- 38. A recording method according to claim 27, wherein said attribute information includes conversion information on one of NTSC TV and PAL TV system conversions, for allowing selection of the the audio coding mode of audio data from one of Dolby AC-3 and Linear PCM audio, when said attribute information includes the conversion information on the NTSC TV system conversion, and for allowing selection of the the audio coding mode of audio data from one of MPEG-1, MPEG-2 and Linear PCM audio, when said attribute information includes the conversion information on the PAL TV system conversions.
- 39. A recording method according to claim 27, wherein said audio attribute information includes information on the audio type of audio data for allowing conversion of the audio data into an audio signal suit-

able for the audio type.

- 40. A recording method according to claim 27, wherein said audio attribute information includes information on the application type of audio data for allowing conversion of the audio data into an audio signal suitable for the application type.
- 41. A recording method according to claim 27, wherein said audio attribute information includes information on the number of quantization bits of audio data for allowing decoding of the audio data according to the number of quantization bits.
- 42. A recording method according to claim 27, wherein said audio attribute information includes information on the sampling frequency of audio data for allowing decoding of the audio data according to the sampling frequency.
- 43. A recording method according to claim 27, wherein said audio attribute information includes information on the number of audio channels of audio data for allowing conversion of the audio data into an audio channel signal corresponding to a number selected in the range of the number of audio channels.
- 44. A recording method according to claim 27, wherein said sub-picture attribute information includes information on the sub-picture coding mode of sub-picture data for allowing decoding of the sub-picture data according to the sub-picture coding mode.
- 45. A recording method according to claim 27, wherein said sub-picture attribute information includes information on the sub-picture display type of sub-picture data for allowing conversion of the sub-picture data into a sub-picture signal suitable for the subpicture display type.
- 46. A recording method according to claim 27, wherein said sub-picture attribute information includes information on the sub-picture type of sub-picture data for allowing conversion of the sub-picture data into a sub-picture signal suitable for the sub-picture type.
- 47. A recording method according to claim 27, wherein said audio attribute information includes information on multi-channel audio streams of audio data for allowing decoding of the audio data according to the attributes of multi-channel audio streams.
- 48. A recording method according to claim 47, wherein said information on multi-channel audio streams of audio data allows said audio data to be mixed according to the attributes of multi-channel audio streams.

15

20

35

40

45

- 49. A recording method according to claim 27, wherein said management control information includes time information prescribing the playback time of video data and synchronization information on the audio data and sub-picture data to be reproduced in synchronization with video data.
- 50. A recording method according to claim 27, wherein said volume file includes the number of audio streams contained in the audio data.
- 51. A recording method according to claim 27, wherein said volume file includes the number of sub-picture streams contained in the sub-picture data.
- **52.** A recording method according to one of the claims 27 to 51, further comprising the steps of:

obtaining video, audio and sub-picture data for a menu representing the content of the reproducible video, audio and sub-picture data from respective sources;

encoding said video, audio and sub-picture data for the menu independently from each other; dividing said encoded video, audio and sub-picture data of the menu into specific packs;

arranging said specific packs of the menu to form at least one title;

creating control information for controlling the reproduction of the video, audio and sub-picture data of the menu, said management control information comprising video attribute information, audio attribute information and sub-picture attribute information for setting parameters of video, audio and sub-picture decoding circuits in a reproduction device for the proper reproduction of the video, audio and sub-picture data making up the menu;

recording said packs and said management control information of the menu on a data recording area of the recording disk medium.

53. An apparatus for recording reproducible video, audio and sub-picture data on a recording disk medium, comprising:

means for obtaining video, audio and sub-picture data from respective sources;

means for encoding said video, audio and subpicture data independently from each other; means for combining said encoded video, audio and sub-picture data to form one or more titles forming one or more title sets, in which said encoded video, audio and sub-picture data for said title set(s) are divided into specific packs;

means for creating management control information for controlling the reproduction of the reproducible video, audio and sub-picture data of the respective title set(s), said management control information domprising video attribute information, audio attribute information and sub-picture attribute information for setting parameters of video, audio and sub-picture decoding circuits in a reproduction device for the proper reproduction of the video, audio and sub-picture data contained in the respective title set(s);

means for creating a volume management file containing information for controlling the reproduction of the title(s) including a table containing said video attribute information, audio attribute information and sub-picture attribute information of the management control information of each title set; and

means for recording said packs of the title(s) and said management control information of the respective title set(s) on a data recording area of the recording disk medium and recording said volume management file on a management area of the recording disk medium.

- 54. A recording apparatus according to claim 53, wherein said video attribute information includes information on the compression mode of the video data for allowing decoding of the video data by reference to the compression mode.
- 55. A recording apparatus according to claim 53, wherein said video attribute information includes information on the frame rate of video data for allowing conversion of the video data into a video signal for display at a specific frame rate.
- 56. A recording apparatus according to claim 53, wherein said video attribute information includes information on the display aspect ratio of video data for allowing conversion of the video data into a video signal having the display aspect ratio.
- 57. A recording apparatus according to claim 53, wherein said video attribute information includes information on the display mode of video data for allowing conversion of the video data into a video signal having the display mode.
- 58. A recording apparatus according to claim 53, wherein said video attribute information includes information permitting representation in a specific display mode for allowing conversion of the video data into a video signal having the permitted display mode.
 - 59. A recording apparatus according to claim 53, wherein said video attribute information includes information permitting one of representation in first

35

and second display modes for allowing conversion of the video data into a video signal having the permitted one of the first and second display modes.

- 60. A recording apparatus according to claim 53, wherein said video attribute information includes information on one of first and second display aspect ratios of video data, for allowing conversion of the video data into a video signal having the one of the first and second display aspect ratios, and said attribute information includes information permitting representation in one or both of first and second display modes, for allowing conversion of the video data, when the display aspect ratio is the second one. into a video signal having the permitted display 15 mode.
- 61. A recording apparatus according to claim 53, wherein said video attribute information includes information on one of 3/4 and 9/16 display aspect ra- 20 tios of video data, for allowing conversion of the video data into a video signal having the one of the 3/4 and 9/16 display aspect ratios, and said attribute information includes information permitting representation in one or both of pan scan and letter box type display modes, for allowing conversion of the video data, when the display aspect ratio is 9/16, into a video signal having the permitted display mode.
- 62. A recording apparatus according to claim 53, wherein said audio attribute information includes information on the audio coding mode of audio data for allowing decoding of the audio data according to the coding mode.
- 63. A recording apparatus according to claim 53, wherein said attribute information includes conversion information on one of NTSC TV and PAL TV system conversions, for allowing selection of the audio coding mode of audio data in accordance with the conversion information.
- 64. A recording apparatus according to claim 53, wherein said attribute information includes conversion information on one of NTSC TV and PAL TV system conversions, for allowing selection of the the audio coding mode of audio data from one of Dolby AC-3 and Linear PCM audio, when said attribute information includes the conversion information on the NTSC TV system conversion, and for 50 allowing selection of the the audio coding mode of audio data from one of MPEG-1, MPEG-2 and Linear PCM audio, when said attribute information includes the conversion information on the PAL TV system conversions.
- 65. A recording apparatus according to claim 53, wherein said audio attribute information includes in-

formation on the audio type of audio data for allowing conversion of the audio data into an audio signal suitable for the audio type.

- 66. A recording apparatus according to claim 53, wherein said audio attribute information includes information on the application type of audio data for allowing conversion of the audio data into an audio signal suitable for the application type.
- 67. A recording apparatus according to claim 53. wherein said audio attribute information includes information on the number of quantization bits of audio data for allowing decoding of the audio data according to the number of quantization bits.
- 68. A recording apparatus according to claim 53, wherein said audio attribute information includes information on the sampling frequency of audio data for allowing decoding of the audio data according to the sampling frequency.
- 69. A recording apparatus according to claim 53, wherein said audio attribute information includes information on the number of audio channels of audio data for allowing conversion of the audio data into an audio channel signal corresponding to a number selected in the range of the number of audio channels
- 70. A recording apparatus according to claim 53, wherein said sub-picture attribute information includes information on the sub-picture coding mode of sub-picture data for allowing decoding of the subpicture data according to the sub-picture coding mode.
- 71. A recording apparatus according to claim 53, wherein said sub-picture attribute information includes information on the sub-picture display type of sub-picture data for allowing conversion of the sub-picture data into a sub-picture signal suitable for the sub-picture display type.
- 72. A recording apparatus according to claim 53, wherein said sub-picture attribute information includes information on the sub-picture type of subpicture data for allowing conversion of the sub-picture data into a sub-picture signal suitable for the sub-picture type.
 - 73. A recording apparatus according to claim 53, wherein said audio attribute information includes information on multi-channel audio streams of audio data for allowing decoding of the audio data according to the attributes of multi-channel audio streams.
 - 74. A recording apparatus according to claim 73.

15

20

30

35

wherein said information on multi-channel audio streams of audio data allows said audio data to be mixed according to the attributes of multi-channel audio streams.

75. A recording apparatus according to claim 53, wherein said management control information includes time information prescribing the playback time of video data and synchronization information on the audio data and sub-picture data to be reproduced in synchronization with video data.

- 76. A recording apparatus according to claim 53, wherein said volume file includes the number of audio streams contained in the audio data.
- 77. A recording apparatus according to claim 53, wherein said volume file includes the number of sub-picture streams contained in the sub-picture data.
- **78.** A recording apparatus according to one of the claims 53 to 77, wherein:

said means for obtaining video, audio and subpicture data is adapted to obtain video, audio and sub-picture data for a menu representing the content of the reproducible video, audio and sub-picture data from respective sources: said means for encoding is adapted to encode said video, audio and sub-picture data for the menu independently from each other: said means for dividing is adapted to divide said encoded video, audio and sub-picture data of the menu into specific packs; said means for arranging the packs is adapted to combine said specific packs of the menu to form at least one title; said means for creating control information is adapted to create control information for controlling the reproduction of the video, audio and sub-picture data of the menu, said management control information comprising video attribute information, audio attribute information and sub-picture attribute information for setting parameters of video, audio and sub-picture decoding circuits in a reproduction device for the proper reproduction of the video, audio and sub-picture data making up the menu: said means for recording is adapted to record said packs and said management control information of the menu on a data recording area of the recording disk medium.

79. A method of reproducing playback data from a recording disk medium as defined in any one of claims 1 to 26, comprising the steps of: searching said recording disk medium for the management area

(VMG,71) and reading said management area and storing the information for controlling the reproduction of the title set(s) in a memory:

at an initial state of reproducing playback data

from said recording disk medium acquiring said

video attribute information, audio attribute information and sub-picture attribute information from the management area (VMG,71) before the reproduction of the reproducible data, and if a title set contained in the title area is selected subsequently acquiring said video attribute information, audio attribute information and subpicture attribute information from the management control information (VTS_MAT,98) of the respective title set: setting parameters of video, audio and sub-picture decoding circuits in a reproduction device for the proper reproduction of the video, audio and sub-picture data contained in the respective title set in accordance with the acquired video attribute information, audio attribute information and sub-picture attribute information; reading the data from the title area in accordance with the information for controlling the reproduction of the title set(s) and decoding and converting the reproducible video data, audio data and sub-picture data in accordance with

80. An apparatus for reproducing playback data from a recording disk medium as defined in any one of claims 1 to 26, comprising:

means for searching said recording disk medium for the management area (VMG,71) and reading said management area and storing the information for controlling the reproduction of the title set(s) in a memory;

the parameter settings into a playback signal.

means for acquiring, at an initial state of reproducing playback data from said recording disk medium, said video attribute information, audio attribute information and sub-picture attribute information from the management area (VMG, 71) before the reproduction of the reproducible data, and

means for acquiring, if a title set contained in the title area is selected subsequently, said video attribute information, audio attribute information and sub-picture attribute information from the management control information (VTSI_MAT,98) of the respective title set;

means for setting parameters of video, audio and sub-picture decoding circuits in a reproduction device for the proper reproduction of the video, audio and sub-picture data contained in the respective title set in accordance with the acquired video attribute information, audio at-

10

25

30

35

45

tribute information and sub-picture attribute information:

means for reading the data from the title area in accordance with the information for controlling the reproduction of the title set(s); and said video, audio and sub-picture data decoding circuit means being adapted to decode and convert the reproducible video data, audio data and sub-picture data in accordance with the parameter settings into a playback signal.

Patentansprüche

1. Platten-Aufzeichnungsträger mit:

einem Datenaufzeichnungsbereich (28) zwischen einem Einlaufbereich (27) und einem Auslaufbereich (26), wobei der Datenaufzeichnungsbereich (28) in eine Mehrzahl von Sektoren unterteilt ist und einen Managementbereich (VMG,71) sowie einen einen oder mehrere Titelsätze (VTS#n,72) enthaltenden Titelbereich aufweist, wobei die Bereiche jeweils mit den Grenzen zwischen Sektoren ausgerichtet sind, wobei jeder Titelsatz einen oder mehrere Titel enthält, die in konsekutiven Packs angeordnete, reproduzierbare Videodaten, Audiodaten und Überlagerungsbilddaten sowie Management-Steuerinformation (VTSI_MAT,98) zum Steuern der Reproduktion bzw. Wiedergabe der reproduzierbaren Videodaten, Audiodaten und Überlagerungsbilddaten umfassen, und die Management-Steuerinformation (VTSI_MAT,98) Videoattributinformation, Audioattributinformation und Überlagerungsbildattributinformation zum Setzen von Parametern von Video-, Audio- und Überlagerungsbild-Decodierschaltungen in einem Reproduktions- bzw. Wiedergabegerät für die richtige Reproduktion bzw. Wiedergabe der in dem/den jeweiligen Titelsatz/ Titelsätzen enthaltenen Video-, Audio- und Überlagerungsbilddaten aufweist.

wobei der Managementbereich (VMG,71), der Information zum Steuern der Reproduktion bzw. Wiedergabe der Titel enthält, eine Tabelle (VTS_ATRT,80) mit der Videoattributinformation, der Audioattributinformation und der Überlagerungsbildattributinformation der Management-Steuerinformation jedes in dem Titelbereich enthaltenen Titelsatzes umfaßt.

 Platten-Aufzeichnungsträger gemäß Anspruch 1, wobei die Videoattributinformation Information zum Kompressionsmodus von Videodaten enthält, um 55 das Decodieren der Videodaten durch Bezugnahme auf den Kompressionsmodus zu ermöglichen.

- 3. Platten-Aufzeichnungsträger gemäß Anspruch 1, wobei die Videoattributinformation Information zu der Framerate von Videodaten enthält, um eine Umwandlung der Videodaten in ein Videosignal zum Display bzw. zur Bildschirmanzeige mit einer spezifischen Framerate zu ermöglichen.
- 4. Platten-Aufzeichnungsträger gemäß Anspruch 1, wobei die Videoattributinformation Information zum Display-Seitenverhältnis (display aspect ratio) von Videodaten enthält, um eine Umwandlung der Videodaten in ein Videosignal mit dem Display-Seitenverhältnis zu ermöglichen.
- 75 5. Platten-Aufzeichnungsträger gemäß Anspruch 1, wobei die Videoattributinformation Information zum Display-Modus von Videodaten enthält, um eine Umwandlung der Videodaten in ein Videosignal mit dem Display-Modus zu ermöglichen.
 - 6. Platten-Aufzeichnungsträger gemäß Anspruch 1, wobei die Videoattributinformation Information enthält, die eine Darstellung in einem spezifischen Display-Modus gestattet, um eine Umwandlung der Videodaten in ein Videosignal mit dem gestatteten Display-Modus zu ermöglichen.
 - 7. Platten-Aufzeichnungsträger gemäß Anspruch 1, wobei die Videoattributinformation Information enthält, die eine Darstellung in ersten oder zweiten Display-Modi gestattet, um eine Umwandlung der Videodaten in ein Videosignal mit dem gestatteten der ersten oder zweiten Display-Modi zu ermöglichen.
 - 8. Platten-Aufzeichnungsträger gemäß Anspruch 1, wobei die Videoattributinformation Information zu einem von ersten und zweiten Display-Seitenverhältnissen von Videodaten enthält, um eine Umwandlung der Videodaten in ein Videosignal mit dem einen der ersten und zweiten Display-Seitenverhältnisse zu ermöglichen, und die Attributinformation die Darstellung in einem oder in beiden der ersten und zweiten Display-Modi gestattende Information enthält, um eine Umwandlung der Videodaten, wenn das Display-Seitenverhältnis das zweite ist, in ein Videosignal mit dem gestatteten Display-Modus zu ermöglichen.
 - 9. Platten-Aufzeichnungsträger gemäß Anspruch 1, wobei die Videoattributinformation Information zu einem 3/4- oder 9/16-Display-Seitenverhältnis von Videodaten enthält, um eine Umwandlung der Videodaten in ein Videosignal mit dem 3/4- oder dem 9/16-Display-Seitenverhältnis zu ermöglichen, und die Attributinformation die Darstellung in Pan Scanund/oder Letter Box Type-Display-Modi gestattende Information enthält, um eine Umwandlung der Videodaten, wenn das Display-Seitenverhältnis

30

40

9/16 ist, in ein Videosignal mit dem gestatteten Display-Modus zu ermöglichen.

- 10. Platten-Aufzeichnungsträger gemäß Anspruch 1, wobei die Audioattributinformation Information zu dem Audiocodiermodus von Audiodaten enthält, um das Decodieren der Audiodaten gemäß dem Codiermodus zu ermöglichen.
- Platten-Aufzeichnungsträger gemäß Anspruch 10, wobei die Attributinformation Konversionsinformation zu einer NTSC-TV- oder einer PAL-TV-Systemkonversion enthält, um die Auswahl des Audiocodiermodus von Audiodaten gemäß der Konversionsinformation zu ermöglichen.
- 12. Platten-Aufzeichnungsträger gemäß Anspruch 10, wobei die Attributinformation Konversionsinformation zu einer NTSC-TV- oder einer PAL-TV-System-konversion enthält, um eine Auswahl des Audiocodiermodus von Audiodaten aus einem von Dolby AC-3 und Linear PCM Audio zu ermöglichen, wenn die Attributinformation die Konversionsinformation zu der NTSC-TV-Systemkonversion enthält, und um die Auswahl des Audiocodiermodus von Audiodaten aus einem von MPEG-1, MPEG-2 und Linear PCM Audio zu ermöglichen, wenn die Attributinformation die Konversionsinformation zu der PAL-TV-Systemkonversion enthält.
- 13. Platten-Aufzeichnungsträger gemäß Anspruch 1, wobei die Audioattributinformation Information zu dem Audiotyp von Audiodaten enthält, um eine Konversion der Audiodaten in ein für den Audiotyp geeignetes Audiosignal zu ermöglichen.
- 14. Platten-Aufzeichnungsträger gemäß Anspruch 1, wobei die Audioattributinformation Information zu dem Anwendungstyp von Audiodaten enthält, um eine Konversion der Audiodaten in ein für den Anwendungstyp geeignetes Audiosignal zu ermöglichen.
- 15. Platten-Aufzeichnungsträger gemäß Anspruch 1, wobei die Audioattributinformation Information zu der Anzahl von Quantisierungsbits von Audiodaten enthält, um ein Decodieren der Audiodaten gemäß der Anzahl von Quantisierungsbits zu ermöglichen.
- 16. Platten-Aufzeichnungsträger gemäß Anspruch 1, wobei die Audioattributinformation Information zu der Abtastfrequenz von Audiodaten enthält, um ein Decodieren der Audiodaten gemäß der Abtastfrequenz zu ermöglichen.
- Platten-Aufzeichnungsträger gemäß Anspruch 1, wobei die Audioattributinformation Information zu der Anzahl von Audiokanälen von Audiodaten ent-

hält, um eine Konversion der Audiodaten in ein Audiokanalsignal gemäß einer im Bereich der Anzahl von Audiokanälen gewählten Anzahl zu ermöglichen.

- 18. Platten-Aufzeichnungsträger gemäß Anspruch 1, wobei die Überlagerungsbildattributinformation Information zu dem Überlagerungsbildcodiermodus von Überlagerungsbilddaten enthält, um ein Decodieren der Überlagerungsbilddaten gemäß dem Überlagerungsbildcodiermodus zu ermöglichen.
- 19. Platten-Aufzeichnungsträger gemäß Anspruch 1, wobei die Überlagerungsbildattributinformation Information zu dem Überlagerungsbild-Displaytyp von Überlagerungsbilddaten enthält, um eine Konversion der Überlagerungsbilddaten gemäß dem Überlagerungsbild-Displaytyp zu ermöglichen.
- 20. Platten-Aufzeichnungsträger gemäß Anspruch 1, wobei die Überlagerungsbildattributinformation Information zu dem Überlagerungsbildtyp von Überlagerungsbilddaten enthält, um eine Konversion der Überlagerungsbilddaten in ein für den Überlagerungsbildtyp geeignetes Überlagerungsbildsignal zu ermöglichen.
 - 21. Platten-Aufzeichnungsträger gemäß Anspruch 1, wobei die Audioattributinformation Information zu den Mehrkanal-Audiostreams von Audiodaten enthält, um ein Decodieren der Audiodaten gemäß den Attributen der Mehrkanal-Audiostreams zu ermöglichen.
- 22. Platten-Aufzeichnungsträger gemäß Anspruch 21, wobei die Information zu Mehrkanal-Audiostreams von Audiodaten ein Mischen der Audiodaten gemäß den Attributen von Mehrkanal-Audiostreams ermöglicht.
 - 23. Platten-Aufzeichnungsträger gemäß Anspruch 1, wobei die Management-Steuerinformation Zeitinformation, welche die Playbackzeit von Videodaten vorschreibt, sowie Synchronisierungsinformation zu den synchron mit Videodaten zu reproduzierenden bzw. wiederzugebenden Audiodaten und Überlagerungsbilddaten enthält.
- Platten-Aufzeichnungsträger gemäß Anspruch 1,
 wobei der Managementbereich die Anzahl von in den Audiodaten enthaltenen Audiostreams enthält.
 - 25. Platten-Aufzeichnungsträger gemäß Anspruch 1, wobei der Managementbereich die Anzahl von in den Überlagerungsbilddaten enthaltenen Überlagerungsbildstreams enthält.
 - 26. Platten-Aufzeichnungsträger gemäß einem der An-

20

35

sprüche 1 bis 25, wobei der Datenaufzeichnungsbereich (28) Menüdaten zur Anzeige eines Menüs der auf dem Aufzeichnungsträger aufgezeichneten, reproduzierbaren Daten enthält, und der Managementbereich die zum Konvertieren der Menüdaten in ein Menü-Playbacksignal nötige, spezielle Attributinformation enthält

27. Verfahren zum Aufzeichnen reproduzierbarer Video-, Audio- und Überlagerungsbilddaten auf einem Platten-Aufzeichnungsträger, mit folgenden Schritten:

Erhalten von Video-, Audio- und Überlagerungsbilddaten aus jeweiligen Quellen, Codieren der Video-, Audio- und Überlagerungsbilddaten unabhängig voneinander, Kombinieren der codierten Video-, Audio- und Überlagerungsbilddaten zur Bildung eines oder mehrerer Titel, die einen oder mehrere Titelsätze bilden, in denen die codierten Video-, Audio- und Überlagerungsbilddaten für den Titelsatz bzw. die Titelsätze in spezifische Packs unterteilt sind bzw. werden, Erzeugen von Management-Steuerinformation (VTSI_MAT,98) zum Steuem der Reproduktion

Erzeugen von Management-Steuerinformation (VTSI_MAT,98) zum Steuem der Reproduktion bzw. Wiedergabe der reproduzierbaren Video-, Audio- und Überlagerungsbilddaten des/der jeweiligen Titelsatzes/Titelsätze, wobei die Management-Steuerinformation Videoattributinformation, Audioattributinformation und Überlagerungsbildattributinformation zum Setzen von Parametern von Video-, Audio- und Überlagerungsbild-Decodierschaltungen in einem Reproduktions- bzw. Wiedergabegerät für die richtige Reproduktion bzw. Wiedergabe der in dem/den jeweiligen Titelsatz/Titelsätzen enthaltenen Video-, Audio- und Überlagerungsbilddaten aufweist.

Erzeugen einer Volumen-Managementdatei, die Information zum Steuern der Reproduktion bzw. Wiedergabe des Titelsatzes/der Titelsätze einschließlich einer Tabelle (VTS_ATRT,80) mit der Videoattributinformation, Audioattributinformation und Überlagerungsbildattributinformation der Managementsteuerinformation jedes Titelsatzes aufweist, und Aufzeichnen der Packs des Titelsatzes/der Ti-

Aufzeichnen der Packs des Titelsatzes/der Titelsätze und der Management-Steuerinformation des/der jeweiligen Titelsatzes/Titelsätze in einem Datenaufzeichnungsbereich (28) des Platten-Aufzeichnungsträgers, und Aufzeichnen der Volumen-Managementdatei in einem Managementbereich (VMG,71) des Platten-Aufzeichnungsträgers.

28. Aufzeichnungsverfahren gemäß Anspruch 27, wobei die Videoattributinformation Information zum

Kompressionsmodus von Videodaten enthält, um das Decodieren der Videodaten durch Bezugnahme auf den Kompressionsmodus zu ermöglichen.

- 5 29. Aufzeichnungsverfahren gemäß Anspruch 27, wobei die Videoattributinformation Information zu der Framerate von Videodaten enthält, um eine Umwandlung der Videodaten in ein Videosignal zum Display bzw. zur Bildschirmanzeige mit einer spezifischen Framerate zu ermöglichen.
 - 30. Aufzeichnungsverfahren gemäß Anspruch 27, wobei die Videoattributinformation Information zum Display-Seitenverhältnis von Videodaten enthält, um eine Umwandlung der Videodaten in ein Videosignal mit dem Display-Seitenverhältnis zu ermöglichen.
 - 31. Aufzeichnungsverfahren gemäß Anspruch 27, wobei die Videoattributinformation Information zum Display-Modus von Videodaten enthält, um eine Umwandlung der Videodaten in ein Videosignal mit dem Display-Modus zu ermöglichen.
- 32. Aufzeichnungsverfahren gemäß Anspruch 27, wobei die Videoattributinformation Information enthält, die eine Darstellung in einem spezifischen Display-Modus gestattet, um eine Umwandlung der Videodaten in ein Videosignal mit dem gestatteten Display-Modus zu ermöglichen.
 - 33. Aufzeichnungsverfahren gemäß Anspruch 27, wobei die Videoattributinformation Information enthält, die eine Darstellung in ersten oder zweiten Display-Modi gestattet, um eine Umwandlung der Videodaten in ein Videosignal mit dem gestatteten der ersten oder zweiten Display-Modi zu ermöglichen.
- Aufzeichnungsverfahren gemäß Anspruch 27, wobei die Videoattributinformation Information zu einem von ersten und zweiten Display-Seitenverhältnissen von Videodaten enthält, um eine Umwandlung der Videodaten in ein Videosignal mit dem einen der ersten und zweiten Display-Seitenverhältnisse zu ermöglichen, und die Attributinformation die Darstellung in einem oder in beiden der ersten und zweiten Display-Modi gestattende Information enthält, um eine Umwandlung der Videodaten, wenn das Display-Seitenverhältnis das zweite ist, in ein Videosignal mit dem gestatteten Display-Modus zu ermöglichen.
 - 35. Aufzeichnungsverfahren gemäß Anspruch 27, wobei die Videoattributinformation Information zu einem 3/4- oder 9/16-Display-Seitenverhältnis von Videodaten enthält, um eine Umwandlung der Videodaten in ein Videosignal mit dem 3/4- oder dem 9/16-Display-Seitenverhältnis zu ermöglichen, und

25

40

45

die Attributinformation die Darstellung in Pan Scanund/oder Letter Box Type-Display-Modi gestattende Information enthält, um eine Umwandlung der Videodaten, wenn das Display-Seitenverhältnis 9/16 ist, in ein Videosignal mit dem gestatteten Display-Modus zu ermöglichen.

- 36. Aufzeichnungsverfahren gemäß Anspruch 27, wobei die Audioattributinformation Information zu dem Audiocodiermodus von Audiodaten enthält, um das Decodieren der Audiodaten gemäß dem Codiermodus zu ermöglichen.
- 37. Aufzeichnungsverfahren gemäß Anspruch 27, wobei die Attributinformation Konversionsinformation zu einer NTSC-TV- oder einer PAL-TV-Systemkonversion enthält, um die Auswahl des Audiocodiermodus von Audiodaten gemäß der Konversionsinformation zu ermöglichen.
- 38. Aufzeichnungsverfahren gemäß Anspruch 27, wobei die Attributinformation Konversionsinformation zu einer NTSC-TV- oder einer PAL-TV-Systemkonversion enthält, um eine Auswahl des Audiocodiermodus von Audiodaten aus einem von Dolby AC-3 und Linear PCM Audio zu ermöglichen, wenn die Attributinformation die Konversionsinformation zu der NTSC-TV-Systemkonversion enthält, und um die Auswahl des Audiocodiermodus von Audiodaten aus einem von MPEG-1, MPEG-2 und Linear PCM Audio zu ermöglichen, wenn die Attributinformation die Konversionsinformation zu der PAL-TV-Systemkonversion enthält.
- 39. Aufzeichnungsverfahren gemäß Anspruch 27, wobei die Audioattributinformation Information zu dem Audiotyp von Audiodaten enthält, um eine Konversion der Audiodaten in ein für den Audiotyp geeignetes Audiosignal zu ermöglichen.
- 40. Aufzeichnungsverfahren gemäß Anspruch 27, wobei die Audioattributinformation Information zu dem Anwendungstyp von Audiodaten enthält, um eine Konversion der Audiodaten in ein für den Anwendungstyp geeignetes Audiosignal zu ermöglichen.
- 41. Aufzeichnungsverfahren gemäß Anspruch 27, wobei die Audioattributinformation Information zu der Anzahl von Quantisierungsbits von Audiodaten enthält, um ein Decodieren der Audiodaten gemäß der Anzahl von Quantisierungsbits zu ermöglichen.
- 42. Aufzeichnungsverfahren gemäß Anspruch 27, wobei die Audioattributinformation Information zu der Abtastfrequenz von Audiodaten enthält, um ein Decodieren der Audiodaten gemäß der Abtastfrequenz zu ermöglichen.

- 43. Aufzeichnungsverfahren gemäß Anspruch 27, wobei die Audioattributinformation Information zu der Anzahl von Audiokanälen von Audiodaten enthält, um ein Konversion der Audiodaten in ein Audiokanalsignal gemäß einer im Bereich der Anzahl von Audiokanälen gewählten Anzahl zu ermöglichen.
- 44. Aufzeichnungsverfahren gemäß Anspruch 27, wobei die Überlagerungsbildattributinformation Information zu dem Überlagerungsbildcodiermodus von Überlagerungsbilddaten enthält, um ein Decodieren der Überlagerungsbilddaten gemäß dem Überlagerungsbildcodiermodus zu ermöglichen.
- 45. Aufzeichnungsverfahren gemäß Anspruch 27, wobei die Überlagerungsbildattributinformation Information zu dem Überlagerungsbild-Displaytyp von Überlagerungsbilddaten enthält, um eine Konversion der Überlagerungsbilddaten gemäß dem Überlagerungsbild-Displaytyp zu ermöglichen.
 - 46. Aufzeichnungsverfahren gemäß Anspruch 27, wobei die Überlagerungsbildattributinformation Information zu dem Überlagerungsbildtyp von Überlagerungsbilddaten enthält, um eine Konversion der Überlagerungsbilddaten in ein für den Überlagerungsbildtyp geeignetes Überlagerungsbildsignal zu ermöglichen.
- 47. Aufzeichnungsverfahren gemäß Anspruch 27, wobei die Audioattributinformation Information zu Mehrkanal-Audiostreams von Audiodaten enthält, um ein Decodieren der Audiodaten gemäß den Attributen der Mehrkanal-Audiostreams zu ermöglichen.
 - 48. Aufzeichnungsverfahren gemäß Anspruch 47, wobei die Information zu Mehrkanal-Audiostreams von Audiodaten ein Mischen der Audiodaten gemäß den Attributen von Mehrkanal-Audiostreams ermöglicht.
 - 49. Aufzeichnungsverfahren gemäß Anspruch 27, wobei die Management-Steuerinformation Zeitinformation, welche die Playbackzeit von Videodaten vorschreibt, sowie Synchronisierungsinformation zu den synchron mit Videodaten zu reproduzierenden bzw. wiederzugebenden Audiodaten und Überlagerungsbilddaten enthält.
 - Aufzeichnungsverfahren gemäß Anspruch 27, wobei die Volumendatei die Anzahl von in den Audiodaten enthaltenen Audiostreams enthält.
- 55 51. Aufzeichnungsverfahren gemäß Anspruch 27, wobei die Volumendatei die Anzahl von in den Überlagerungsbilddaten enthaltenen Überlagerungsbildstreams enthält.

52. Aufzeichnungsverfahren gemäß einem der Ansprüche 27 bis 51, ferner mit folgenden Schritten:

Erhalten von Video-, Audio- und Überlagerungsbilddaten für ein den Inhalt der reproduzierbaren Video-, Audio- und Überlagerungsbilddaten darstellendes Menü aus jeweiligen Quellen.

Codieren der Video-, Audio- und Überlagerungsbilddaten für das Menü unabhängig voneinander.

Unterteilen der codierten Video-, Audio- und Überlagerungsbilddaten des Menūs in spezifische Packs.

Anordnen der spezifischen Packs des Menüs 15 zur Bildung von mindestens einem Titel,

Erzeugen von Steuerinformation zum Steuern der Reproduktion bzw. Wiedergabe der Video-, Audio- und Überlagerungsbilddaten des Menüs, wobei die Management-Steuerinformation Videoattributinformation, Audioattributinformation und Überlagerungsbildattributinformation zum Setzen von Parametern von Video-, Audio- und Überlagerungsbild-Decodierschaltungen in einem Reproduktions- bzw. Wiedergabegerät für die richtige Reproduktion bzw. Wiedergabe der das Menü bildenden Video-, Audio- und Überlagerungsbilddaten aufweist, Aufzeichnen der Packs und der Management-Steuerinformation des Menüs in einem Datenaufzeichnungsbereich des Platten-Aufzeich-

53. Vorrichtung zum Aufzeichnen reproduzierbarer Video-, Audio- und Überlagerungsbilddaten auf einem Platten-Aufzeichnungsträger mit:

nungsträgers.

einer Einrichtung zum Erhalten von Video-, Audio- und Überlagerungsbilddaten aus jeweiligen Quellen,

einer Einrichtung zum Codieren der Video-, Audio- und Überlagerungsbilddaten unabhängig voneinander.

einer Einrichtung zum Kombinieren der codierten Video-, Audio- und Überlagerungsbilddaten zur Bildung eines oder mehrerer Titel, die einen oder mehrere Titelsätze bilden, in denen die codierten Video-, Audio- und Überlagerungsbilddaten für den Titelsatz bzw. die Titelsätze in spezifische Packs unterteilt sind,

einer Einrichtung zum Erzeugen von Management-Steuerinformation zum Steuern der Reproduktion bzw. Wiedergabe der reproduzierbaren Video-, Audio- und Überlagerungsbilddaten des/der jeweiligen Titelsatzes/Titelsätze, wobei die Management-Steuerinformation Videoattributinformation, Audioattributinformation und Überlagerungsbildattributinformation zum Setzen von Parametern von Video-, Audio- und Überlagerungsbild-Decodierschaltungen in einem Reproduktions- bzw. Wiedergabegerät für die richtige Reproduktion bzw. Wiedergabe der in dem/den jeweiligen Titelsatz/ Titelsätzen enthaltenen Video-, Audio- und Überlagerungsbilddaten aufweist,

einer Einrichtung zum Erzeugen einer Volumen-Managementdatei, die Information zum Steuern der Reproduktion bzw. Wiedergabe des Titelsatzes/der Titelsätze einschließlich einer Tabelle mit der Videoattributinformation. Audioattributinformation und Überlagerungsbildattributinformation der Managementsteuerinformation jedes Titelsatzes aufweist, und einer Einrichtung zum Aufzeichnen der Packs des Titelsatzes/der Titelsätze und der Management-Steuerinformation des/der jeweiligen Titelsatzes/Titelsätze in einem Datenaufzeichnungsbereich des Platten-Aufzeichnungsträgers, und zum Aufzeichnen der Volumen-Managementdatei in einem Managementbereich des Platten-Aufzeichnungsträgers.

- 25 54. Aufzeichnungsvorrichtung gemäß Anspruch 53, wobei die Videoattributinformation Information zum Kompressionsmodus von Videodaten enthält, um das Decodieren der Videodaten durch Bezugnahme auf den Kompressionsmodus zu ermöglichen.
 - 55. Aufzeichnungsvorrichtung gemäß Anspruch 53, wobei die Videoattributinformation Information zu der Framerate von Videodaten enthält, um eine Umwandlung der Videodaten in ein Videosignal zum Display bzw. zur Bildschirmanzeige mit einer spezifischen Framerate zu ermöglichen.
- 56. Aufzeichnungsvorrichtung gemäß Anspruch 53, wobei die Videoattributinformation Information zum Display-Seitenverhältnis von Videodaten enthält, um eine Umwandlung der Videodaten in ein Videosignal mit dem Display-Seitenverhältnis zu ermöglichen.
- 45 57. Aufzeichnungsvorrichtung gemäß Anspruch 53, wobei die Videoattributinformation Information zum Display-Modus von Videodaten enthält, um eine Umwandlung der Videodaten in ein Videosignal mit dem Display-Modus zu ermöglichen.
 - 58. Aufzeichnungsvorrichtung gemäß Anspruch 53, wobei die Videoattributinformation Information enthält, die eine Darstellung in einem spezifischen Display-Modus gestattet, um eine Umwandlung der Videodaten in ein Videosignal mit dem gestatteten Display-Modus zu ermöglichen.
 - 59. Aufzeichnungsvorrichtung gemäß Anspruch 53,

50

15

20

25

30

35

40

45

wobei die Videoattributinformation Information enthält, die eine Darstellung in ersten oder zweiten Display-Modi gestattet, um eine Umwandlung der Videodaten in ein Videosignal mit dem gestatteten der ersten oder zweiten Display-Modi zu ermöglichen.

- 60. Aufzeichnungsvorrichtung gemäß Anspruch 53, wobei die Videoattributinformation Information zu einem von ersten und zweiten Display-Seitenverhältnissen von Videodaten enthält, um eine Umwandlung der Videodaten in ein Videosignal mit dem einen der ersten und zweiten Display-Seitenverhältnisse zu ermöglichen, und die Attributinformation die Darstellung in einem oder in beiden der ersten und zweiten Display-Modi gestattende Information enthält, um eine Umwandlung der Videodaten, wenn das Display-Seitenverhältnis das zweite ist, in ein Videosignal mit dem gestatteten Display-Modus zu ermöglichen.
- 61. Aufzeichnungsvorrichtung gemäß Anspruch 53, wobei die Videoattributinformation Information zu einem 3/4- oder 9/16-Display-Seitenverhältnis von Videodaten enthält, um eine Umwandlung der Videodaten in ein Videosignal mit dem 3/4-oder dem 9/16-Display-Seitenverhältnis zu ermöglichen, und die Attributinformation die Darstellung in Pan Scanund/oder Letter Box Type-Display-Modi gestattende Information enthält, um eine Umwandlung der Videodaten, wenn das Display-Seitenverhältnis 9/16 ist, in ein Videosignal mit dem gestatteten Display-Modus zu ermöglichen.
- 62. Aufzeichnungsvorrichtung gemäß Anspruch 53, wobei die Audioattributinformation Information zu dem Audiocodiermodus von Audiodaten enthält, um das Decodieren der Audiodaten gemäß dem Codiermodus zu ermöglichen.
- 63. Aufzeichnungsvorrichtung gemäß Anspruch 530, wobei die Attributinformation Konversionsinformation zu einer NTSC-TV- oder einer PAL-TV-Systemkonversion enthält, um die Auswahl des Audiocodiermodus von Audiodaten gemäß der Konversionsinformation zu ermöglichen.
- 64. Aufzeichnungsvorrichtung gemäß Anspruch 530, wobei die Attributinformation Konversionsinformation zu einer NTSC-TV- oder einer PAL-TV-System-konversion enthält, um eine Auswahl des Audioco-diermodus von Audiodaten aus einem von Dolby AC-3 und Linear PCM Audio zu ermöglichen, wenn die Attributinformation die Konversionsinformation zu der NTSC-TV-Systemkonversion enthält, und um die Auswahl des Audiocodiermodus von Audiodaten aus einem von MPEG-1, MPEG-2 und Linear PCM Audio zu ermöglichen, wenn die Attributinformation die Konversionsinformation zu der PAL-

TV-Systemkonversion enthält.

- 65. Aufzeichnungsvorrichtung gemäß Anspruch 53, wobei die Audioattributinformation Information zu dem Audiotyp von Audiodaten enthält, um eine Konversion der Audiodaten in ein für den Audiotyp geeignetes Audiosignal zu ermöglichen.
- 66. Aufzeichnungsvorrichtung gemäß Anspruch 53, wobei die Audioattributinformation Information zu dem Anwendungstyp von Audiodaten enthält, um eine Konversion der Audiodaten in ein für den Anwendungstyp geeignetes Audiosignal zu ermöglichen.
- 67. Aufzeichnungsvorrichtung gemäß Anspruch 53, wobei die Audioattributinformation Information zu der Anzahl von Quantisierungsbits von Audiodaten enthält, um ein Decodieren der Audiodaten gemäß der Anzahl von Quantisierungsbits zu ermöglichen.
- 68. Aufzeichnungsvorrichtung gemäß Anspruch 53, wobei die Audioattributinformation Information zu der Abtastfrequenz von Audiodaten enthält, um ein Decodieren der Audiodaten gemäß der Abtastfrequenz zu ermöglichen.
- 69. Aufzeichnungsvorrichtung gemäß Anspruch 53, wobei die Audioattributinformation Information zu der Anzahl von Audiokanälen von Audiodaten enthält, um ein Konversion der Audiodaten in ein Audiokanalsignal gemäß einer im Bereich der Anzahl von Audiokanälen gewählten Anzahl zu ermöglichen
- 70. Aufzeichnungsvorrichtung gemäß Anspruch 53, wobei die Überlagerungsbildattributinformation Information zu dem Überlagerungsbildcodiermodus von Überlagerungsbilddaten enthält, um ein Decodieren der Überlagerungsbilddaten gemäß dem Überlagerungsbildcodiermodus zu ermöglichen.
- 71. Aufzeichnungsvorrichtung gemäß Anspruch 53, wobei die Überlagerungsbildattributinformation Information zu dem Überlagerungsbild-Displaytyp von Überlagerungsbilddaten enthält, um eine Konversion der Überlagerungsbilddaten gemäß dem Überlagerungsbild-Displaytyp zu ermöglichen.
- 72. Aufzeichnungsvorrichtung gemäß Anspruch 53, wobei die Überlagerungsbildattributinformation Information zu dem Überlagerungsbildtyp von Überlagerungsbilddaten enthält, um eine Konversion der Überlagerungsbilddaten in ein für den Überlagerungsbildtyp geeignetes Überlagerungsbildsignal zu ermöglichen.
 - 73. Aufzeichnungsvorrichtung gemäß Anspruch 53,

20

wobei die Audioattributinformation Information zu Mehrkanal-Audiostreams von Audiodaten enthält, um ein Decodieren der Audiodaten gemäß den Attributen der Mehrkanal-Audiostreams zu ermöglichen.

- 74. Aufzeichnungsvorrichtung gemäß Anspruch 73, wobei die Information zu Mehrkanal-Audiostreams von Audiodaten ein Mischen der Audiodaten gemäß den Attributen von Mehrkanal-Audiostreams ermöglicht.
- 75. Aufzeichnungsvorrichtung gemäß Anspruch 53, wobei die Management-Steuerinformation Zeitinformation, welche die Playbackzeit von Videodaten vorschreibt, sowie Synchronisierungsinformation zu den synchron mit Videodaten zu reproduzierenden bzw. wiederzugebenden Audiodaten und Überlagerungsbilddaten enthält.
- 76. Aufzeichnungsvorrichtung gemäß Anspruch 53, wobei die Volumen-Datei die Anzahl von in den Audiodaten enthaltenen Audiostreams enthält.
- 77. Aufzeichnungsvorrichtung gemäß Anspruch 53, wobei die Volumen-Datei die Anzahl von in den Überlagerungsbilddaten enthaltenen Überlagerungsbildstreams enthält.
- 78. Aufzeichnungsvorrichtung gemäß einem der Ansprüche 53 bis 77, wobei:

die Einrichtung zum Erhalten von Video-, Audio- und Überlagerungsbilddaten Video-, Audio- und Überlagerungsbilddaten für ein den Inhalt der reproduzierbaren Video-, Audio- und Überlagerungsbilddaten darstellendes Menü aus jeweiligen Quellen zu erhalten vermag, die Einrichtung zum Codieren die Video-, Audio- und Überlagerungsbilddaten für das Menü unabhängig voneinander zu codieren vermag, die Einrichtung zum Unterteilen die codierten Video-, Audio- und Überlagerungsbilddaten des Menüs in spezifische Packs zu unterteilen vermag,

die Einrichtung zum Anordnen der Packs die spezifischen Packs des Menüs zur Bildung von mindestens einem Titel zu kombinieren vermag,

die Einrichtung zum Erzeugen von Steuerinformation Steuerinformation zum Steuern der Reproduktion bzw. Wiedergabe der Video-, Audiound Überlagerungsbilddaten des Menüs zu erzeugen vermag, wobei die Management-Steuerinformation Videoattributinformation, Audioattributinformation und Überlagerungsbildattributinformation zum Setzen von Parametern von Video-, Audio- und Überlagerungsbild-

Decodierschaltungen in einem Reproduktionsbzw. Wiedergabegerät für die richtige Reproduktion bzw. Wiedergabe der das Menü bildenden Video-, Audio- und Überlagerungsbilddaten aufweist.

die Einrichtung zum Aufzeichnen die Packs und die Management-Steuerinformation des Menüs in einem Datenaufzeichnungsbereich des Platten-Aufzeichnungsträgers aufzuzeichnen vermag.

79. Verfahren zum Reproduzieren bzw. Wiedergeben von Playbackdaten von einem Platten-Aufzeichnungsträger gemäß einem der Ansprüche 1 bis 26, mit folgenden Schritten:

Absuchen des Platten-Aufzeichnungsträgers nach dem Managementbereich (VMG,71) und Auslesen des Managementbereichs sowie Speichern der Information zum Steuern der Reproduktion bzw. Wiedergabe des Titelsatzes/der Titelsätze in einem Speicher,

Erfassen der Videoattributinformation, Audioattributinformation und Überlagerungsbildattributinformation aus dem Managementbereich (VMG,71) in einem Anfangsstadium der Reproduktion bzw. Wiedergabe von Playbackdaten von dem Platten-Aufzeichnungsträger vor der Reproduktion bzw. Wiedergabe der reproduzierbaren Daten, und

Erfassen der Videoattributinformation, Audioattributinformation und Überlagerungsbildattributinformation aus der Management-Steuerinformation (VTS_MAT,98) des jeweiligen Titelsatzes, falls danach ein im Titelbereich enthaltener Titelsatz ausgewählt wird,

Setzen von Parametern von Video-, Audio- und Überlagerungsbild-Decodierschaltungen in einem Wiedergabegerät für die richtige Reproduktion bzw. Wiedergabe der in dem jeweiligen Titelsatz enthaltenen Video-, Audio- und Überlagerungsbilddaten gemäß der erfaßten Video-attributinformation, Audioattributinformation und Überlagerungsbildattributinformation,

Auslesen der Daten aus dem Titelbereich gemäß der Information zum Steuern der Reproduktion des Titelsatzes/der Titelsätze, und Decodieren und Konvertieren der reproduzierbaren Video-, Audio- und Überlagerungsbilddaten gemäß den gesetzten Parametern in ein Playbacksignal.

80. Vorrichtung zum Reproduzieren bzw. Wiedergeben von Playbackdaten von einem Platten-Aufzeichnungsträger gemäß einem der Ansprüche 1 bis 26, mit:

einer Einrichtung zum Absuchen des Platten-

55

20

30

45

50

55

Aufzeichnungsträgers nach dem Managementbereich (VMG,71) und Auslesen des Managementbereichs sowie Speichern der Information zum Steuern der Reproduktion bzw. Wiedergabe des Titelsatzes/der Titelsätze in einem Speicher,

einer Einrichtung zum Erfassen der Videoattributinformation, Audioattributinformation und Überlagerungsbildattributinformation aus dem Managementbereich (VMG,71) in einem Anfangsstadium der Reproduktion bzw. Wiedergabe von Playbackdaten von dem Platten-Aufzeichnungsträger vor der Reproduktion bzw. Wiedergabe der reproduzierbaren Daten, und einer Einrichtung zum Erfassen der Videoattributinformation, Audioattributinformation und Überlagerungsbildattributinformation aus der Management-Steuerinformation (VTS_MAT, 98) des jeweiligen Titelsatzes, falls danach ein im Titelbereich enthaltener Titelsatz ausgewählt wird,

einer Einrichtung zum Setzen von Parametem von Video-, Audio- und Überlagerungsbild-Decodierschaltungen in einem Wiedergabegerät für die richtige Reproduktion bzw. Wiedergabe der in dem jeweiligen Titelsatz enthaltenen Video-, Audio- und Überlagerungsbilddaten gemäß der erfaßten Videoattributinformation, Audioattributinformation und Überlagerungsbildattributinformation,

einer Einrichtung zum Auslesen der Daten aus dem Titelbereich gemäß der Information zum Steuern der Reproduktion des Titelsatzes/der Titelsätze,

wobei die Video-, Audio- und Überlagerungsbild-Decodierschaltungseinrichtung die reproduzierbaren Video-, Audio- und Überlagerungsbilddaten gemäß den gesetzten Parametern zu decodieren und in ein Playbacksignal zu konvertieren vermag.

Revendications

 Support pour disque d'enregistrement, comprenant :

> une aire (28) d'enregistrement de données placée entre une aire initiale (27) et une aire finale (26), ladite aire d'enregistrement de données (28) étant divisée en une pluralité de secteurs et comprenant une aire de gestion (VGM, 71) et une aire de titres contenant un ou plusieurs groupes de titres (VTS#n, 72), lesquelles aires sont respectivement alignées avec les frontières entre secteurs;

chaque groupe de titres contenant un ou plusieurs titres comprenant des données vidéo,

des données audio et des données d'images auxiliaires reproductibles disposées en ensembles consécutifs et des informations de commande de gestion (VTSI_MAT, 98) servant à commander la reproduction des données reproductibles vidéo, audio et d'images auxiliaires, lesdites informations de commande de qestion (VTSI_MAT, 98) comprenant des informations d'attributs vidéo, des informations d'attributs audio et des informations d'attributs d'images auxiliaires servant à positionner des paramètres de circuits de décodage vidéo. audio et d'images auxiliaires d'un dispositif de reproduction en vue de la reproduction correcte des données vidéo, audio et d'images auxiliaires contenues dans le ou les groupes de titres respectifs:

ladite aire de gestion (VMG, 71) contenant des informations permettant de commander la reproduction des titres comportant une table (VTS_ATRT, 80) ayant lesdites informations d'attributs vidéo, lesdites informations d'attributs audio et lesdites informations d'attributs d'images auxiliaires des informations de commande de gestion de chaque groupe de titres contenu dans l'aire de titres.

- 2. Support pour disque d'enregistrement selon la revendication 1, où lesdites informations d'attributs vidéo comportent des informations sur le mode de compression de données vidéo afin d'autoriser le décodage des données vidéo en référence avec le mode de compression.
- 35 3. Support pour disque d'enregistrement selon la revendication 1, où lesdites informations d'attributs vidéo comportent des informations sur la fréquence de trames de données vidéo afin d'autoriser la conversion des données vidéo en un signal vidéo à afficher avec une fréquence de trames spécifique.
 - 4. Support pour disque d'enregistrement selon la revendication 1, où lesdites informations d'attributs vidéo comportent des informations sur le format d'image d'affichage de données vidéo afin d'autoriser la conversion des données vidéo en un signal d'image ayant le format d'image d'affichage.
 - 5. Support pour disque d'enregistrement selon la revendication 1, où lesdites informations d'attributs vidéo comportent des informations sur le mode d'affichage de données vidéo afin d'autoriser la conversion des données vidéo en un signal vidéo ayant le mode d'affichage.
 - Support pour disque d'enregistrement selon la revendication 1, où lesdites informations d'attributs vidéo comportent des informations permettant une

représentation dans un mode d'affichage spécifique afin d'autoriser la conversion des données vidéo en un signal vidéo ayant le mode d'affichage permis.

- 7. Support pour disque d'enregistrement selon la revendication 1, où lesdites informations d'attributs vidéo comportent des informations permettant une représentation dans un premier mode d'affichage ou une représentation dans un deuxième mode d'affichage afin d'autoriser la conversion des données vidéo en un signal vidéo ayant le mode permis parmi les premier et deuxième modes d'affichage.
- 8. Support pour disque d'enregistrement selon la revendication 1, où lesdites informations d'attributs vidéo comportent des informations sur un premier ou un deuxième format d'image d'affichage de données vidéo, afin d'autoriser la conversion des données vidéo en un signal vidéo ayant ledit format parmi les premier et deuxième formats d'image d'affichage, et lesdites informations d'attributs comportent des informations permettant une représentation dans un premier ou un deuxième mode d'affichage ou dans ces deux modes, afin d'autoriser la conversion des données vidéo, lorsque le format d'image d'affichage est le deuxième, en un signal vidéo ayant le mode d'affichage permis.
- 9. Support pour disque d'enregistrement selon la revendication 1, où lesdites informations d'attributs vidéo comportent des informations sur l'un des formats d'image d'affichage 3/4 et 9/16 de données vidéo, afin d'autoriser la conversion des données vidéo en un signal vidéo ayant l'un des formats d'image d'affichage 3/4 et 9/16, et lesdites informations d'attributs comportent des informations permettant une représentation dans l'un des modes d'affichage ou les deux modes d'affichage que constituent les modes d'affichage du type balayage panoramique et boîte à lettres, afin d'autoriser la conversion des données vidéo, lorsque le format d'image d'affichage est 9/16, en un signal vidéo ayant le mode d'affichage permis.
- 10. Support pour disque d'enregistrement selon la revendication 1, où lesdites informations d'attributs audio comportent des informations sur le mode de codage audio de données audio afin d'autoriser le décodage des données audio en fonction du mode 50 de codage.
- 11. Support pour disque d'enregistrement selon la revendication 10, où lesdites informations d'attributs comportent des informations de conversion sur l'une des conversions des systèmes de télévision NTSC et PAL, afin d'autoriser la sélection du mode de codage audio de données audio en fonction des

informations de conversion.

- 12. Support pour disque d'enregistrement selon la revendication 10, où lesdites informations d'attributs comportent des informations de conversion sur l'une des conversions des systèmes de télévision NTSC et PAL, afin d'autoriser la sélection du mode de codage audio de données audio à partir de l'un des systèmes audio Dolby AC-3 et PCM Linéaire, lorsque lesdites informations d'attributs comportent des informations de conversion relatives à la conversion du système de télévision NTSC, et afin d'autoriser la sélection du mode de codage audio de données audio à partir de l'un des systèmes MPEG-1, MPEG-2 et PCM Linéaire, lorsque lesdites informations d'attributs comportent des informations de conversion sur la conversion du système de télévision PAL.
- 20 13. Support pour disque d'enregistrement selon la revendication 1, où lesdites informations d'attributs audio comportent des informations sur le type audio de données audio afin d'autoriser la conversion des données audio en un signal audio convenant pour le type audio.
 - 14. Support pour disque d'enregistrement selon la revendication 1, où lesdites informations d'attributs audio comportent des informations sur le type d'application de données audio afin d'autoriser la conversion des données audio en un signal audio convenant pour le type d'application.
 - 15. Support pour disque d'enregistrement selon la revendication 1, où lesdites informations d'attributs audio comportent des informations sur le nombre de bits de quantification de données audio afin d'autoriser le décodage des données audio en fonction du nombre de bits de quantification.
 - 16. Support pour disque d'enregistrement selon la revendication 1, où lesdites informations d'attributs audio comportent des informations sur la fréquence d'échantillonnage de données audio afin d'autoriser le décodage des données audio en fonction de la fréquence d'échantillonnage.
 - 17. Support pour disque d'enregistrement selon la revendication 1, où lesdites informations d'attributs audio comportent des informations sur le nombre de canaux audio de données audio afin d'autoriser la conversion des données audio en un signal de canal audio correspondant à un numéro sélectionné dans l'étendue des numéros de canaux audio.
 - 18. Support pour disque d'enregistrement selon la revendication 1, où lesdites informations d'attributs d'images auxiliaires comportent des informations

35

40

10

sur le mode de codage d'images auxiliaires de données d'images auxiliaires afin d'autoriser le décodage des données d'images auxiliaires en fonction du mode de codage d'images auxiliaires.

- 19. Support pour disque d'enregistrement selon la revendication 1, où lesdites informations d'attributs d'images auxiliaires comportent des informations sur le type d'affichage d'images auxiliaires de données d'images auxiliaires afin d'autoriser la conversion des données d'images auxiliaires en un signal d'images auxiliaires convenant pour le type d'affichage d'images auxiliaires.
- 20. Support pour disque d'enregistrement selon la revendication 1, où lesdites informations d'attributs d'images auxiliaires comportent des informations sur le type d'images auxiliaires de données d'images auxiliaires afin d'autoriser la conversion des données d'images auxiliaires en un signal d'images auxiliaires convenant pour le type d'images auxiliaires.
- 21. Support pour disque d'enregistrement selon la revendication 1, où lesdites informations d'attributs audio comportent des informations sur des trains audio multicanaux de données audio afin d'autoriser le décodage des données audio en fonction des attributs des trains audio multicanaux.
- 22. Support pour disque d'enregistrement selon la revendication 21, où lesdites informations relatives à des trains audio multicanaux de données audio permettent que lesdites données audio soient mélangées en fonction des attributs des trains audio multicanaux.
- 23. Support pour disque d'enregistrement selon la revendication 1, où lesdites informations de commande de gestion comportent des informations temporelles prescrivant le temps de reproduction de données audio et des informations de synchronisation relatives aux données audio et aux données d'images auxiliaires à reproduire en synchronisation avec des données vidéo.
- 24. Support pour disque d'enregistrement selon la revendication 1, où ladite aire de gestion comporte le nombre de trains audio contenus dans les données audio.
- 25. Support pour disque d'enregistrement selon la revendication 1, où ladite aire de gestion comporte le nombre de trains d'images auxiliaires contenus dans les données d'images auxiliaires.
- Support pour disque d'enregistrement selon l'une quelconque des revendications 1 à 25, où ladite aire

- (28) d'enregistrement de données comporte des données de menu permettant d'afficher un menu des données reproductibles enregistrées sur ledit support d'enregistrement et ladite aire de gestion comporte les informations d'attributs uniques nécessaires pour convertir les données de menu en un signal de reproduction de menu.
- 27. Procédé d'enregistrement de données reproductibles vidéo, audio et d'images auxiliaires sur un support pour disque d'enregistrement, comprenant les opérations suivantes :

obtenir des données vidéo, audio et d'images auxiliaires à partir de sources respectives ; coder lesdites données vidéo, audio et d'images auxiliaires indépendamment les unes des autres :

combiner lesdites données vidéo, audio et d'images auxiliaires codées afin de former un ou plusieurs titres formant un ou plusieurs groupes de titre, dans lesquels lesdites données vidéo, audio et d'images auxiliaires codées relatives audit ou auxdits groupes de titres sont divisés en ensembles spécifiques;

créer des informations de commande de gestion (VTSI_MAT, 98) servant à commander la reproduction des données reproductibles vidéo, audio et d'images auxiliaires du ou des groupes de titres respectifs, lesdites informations de commande de gestion comprenant des informations d'attributs vidéo, des informations d'attributs audio et des informations d'attributs d'images auxiliaires servant à positionner des paramètres de circuits de décodage vidéo, audio et d'images auxiliaires d'un dispositif de reproduction en vue de la reproduction correcte des données vidéo, audio et d'images auxiliaires contenues dans le ou les groupes de titres respectifs :

créer un fichier de gestion de volume contenant des informations qui permettent de commander la reproduction du ou des groupes de titres comportant une table (VTS_ATRT, 80) contenant lesdites informations d'attributs vidéo, lesdites informations d'attributs audio et lesdites informations d'attributs d'images auxiliaires des informations de commande de gestion de chaque groupe de titres ; et

enregistrer lesdits ensembles du ou des groupes de titres et lesdites informations de commande de gestion du ou des groupes de titres respectifs sur une aire (28) d'enregistrement de données du support pour disque d'enregistrement et enregistrer ledit fichier de gestion de volume sur une aire de gestion (VGM, 71) du support pour disque d'enregistrement.

45

25

30

35

- 28. Procédé d'enregistrement selon la revendication 27, où lesdites informations d'attributs vidéo comportent des informations sur le mode de compression de données vidéo afin d'autoriser le décodage des données vidéo en référence avec le mode de 5 compression.
- 29. Procédé d'enregistrement selon la revendication 27, où lesdites informations d'attributs vidéo comportent des informations sur la fréquence de trames 10 de données vidéo afin d'autoriser la conversion des données vidéo en un signal vidéo à afficher avec une fréquence de trames spécifique.
- 30. Procédé d'enregistrement selon la revendication 15 27, où lesdites informations d'attributs vidéo comportent des informations sur le format d'image d'affichage de données vidéo afin d'autoriser la conversion des données vidéo en un signal d'image ayant le format d'image d'affichage.
- 31. Procédé d'enregistrement selon la revendication 27, où lesdites informations d'attributs vidéo comportent des informations sur le mode d'affichage de données vidéo afin d'autoriser la conversion des données vidéo en un signal vidéo ayant le mode d'affichage.
- 32. Procédé d'enregistrement selon la revendication 27, où lesdites informations d'attributs vidéo comportent des informations permettant une représentation dans un mode d'affichage spécifique afin d'autoriser la conversion des données vidéo en un signal vidéo ayant le mode d'affichage permis.
- 33. Procédé d'enregistrement selon la revendication 27, où lesdites informations d'attributs vidéo comportent des informations permettant une représentation dans un premier mode d'affichage ou une représentation dans un deuxième mode d'affichage afin d'autoriser la conversion des données vidéo en un signal vidéo ayant le mode permis parmi les premier et deuxième modes d'affichage.
- 34. Procédé d'enregistrement selon la revendication 27, où lesdites informations d'attributs vidéo comportent des informations sur un premier ou un deuxième format d'image d'affichage de données vidéo, afin d'autoriser la conversion des données vidéo en un signal vidéo ayant ledit format parmi les 50 premier et deuxième formats d'image d'affichage, et lesdites informations d'attributs comportent des informations permettant une représentation dans un premier ou un deuxième mode d'affichage ou dans ces deux modes, afin d'autoriser la conversion des données vidéo, lorsque le format d'image d'affichage est le deuxième, en un signal vidéo ayant le mode d'affichage permis.

- 35. Procédé d'enregistrement selon la revendication 27, où lesdites informations d'attributs vidéo comportent des informations sur l'un des formats d'image d'affichage 3/4 et 9/16 de données vidéo, afin d'autoriser la conversion des données vidéo en un signal vidéo ayant l'un des formats d'image d'affichage 3/4 et 9/16, et lesdites informations d'attributs comportent des informations permettant une représentation dans l'un des modes d'affichage ou les deux modes d'affichage que constituent les modes d'affichage du type balayage panoramique et boîte à lettres, afin d'autoriser la conversion des données vidéo, lorsque le format d'image d'affichage est 9/16, en un signal vidéo ayant le mode d'affichage permis.
- 36. Procédé d'enregistrement selon la revendication 27, où lesdites informations d'attributs audio comportent des informations sur le mode de codage audio de données audio afin d'autoriser le décodage des données audio en fonction du mode de codage.
- 37. Procédé d'enregistrement selon la revendication 27, où lesdites informations d'attributs comportent des informations de conversion sur l'une des conversions des systèmes de télévision NTSC et PAL, afin d'autoriser la sélection du mode de codage audio de données audio en fonction des informations de conversion.
- 38. Procédé d'enregistrement selon la revendication 27, où lesdites informations d'attributs comportent des informations de conversion sur l'une des conversions des systèmes de télévision NTSC et PAL. afin d'autoriser la sélection du mode de codage audio de données audio à partir de l'un des systèmes audio Dolby AC-3 et PCM Linéaire, lorsque lesdites informations d'attributs comportent des informations de conversion relatives à la conversion du système de télévision NTSC, et afin d'autoriser la sélection du mode de codage audio de données audio à partir de l'un des systèmes MPEG-1. MPEG-2 et PCM Linéaire, lorsque lesdites informations d'attributs comportent des informations de conversion sur la conversion du système de télévision PAL.
- 39. Procédé d'enregistrement selon la revendication 27, où lesdites informations d'attributs audio comportent des informations sur le type audio de données audio afin d'autoriser la conversion des données audio en un signal audio convenant pour le type audio.
- 40. Procédé d'enregistrement selon la revendication 27, où lesdites informations d'attributs audio comportent des informations sur le type d'application de

15

données audio afin d'autoriser la conversion des données audio en un signal audio convenant pour le type d'application.

- 41. Procédé d'enregistrement selon la revendication 27, où lesdites informations d'attributs audio comportent des informations sur le nombre de bits de quantification de données audio afin d'autoriser le décodage des données audio en fonction du nombre de bits de quantification.
- 42. Procédé d'enregistrement selon la revendication 27, où lesdites informations d'attributs audio comportent des informations sur la fréquence d'échantillonnage de données audio afin d'autoriser le décodage des données audio en fonction de la fréquence d'échantillonnage.
- 43. Procédé d'enregistrement selon la revendication 27, où lesdites informations d'attributs audio comportent des informations sur le nombre de canaux audio de données audio afin d'autoriser la conversion des données audio en un signal de canal audio correspondant à un numéro sélectionné dans l'étendue des numéros de canaux audio.
- 44. Procédé d'enregistrement selon la revendication 27, où lesdites informations d'attributs d'images auxiliaires comportent des informations sur le mode de codage d'images auxiliaires de données d'images auxiliaires afin d'autoriser le décodage des données d'images auxiliaires en fonction du mode de codage d'images auxiliaires.
- 45. Procédé d'enregistrement selon la revendication 27, où lesdites informations d'attributs d'images auxiliaires comportent des informations sur le type d'affichage d'images auxiliaires de données d'images auxiliaires afin d'autoriser la conversion des données d'images auxiliaires en un signal d'images auxiliaires convenant pour le type d'affichage d'images auxiliaires.
- 46. Procédé d'enregistrement selon la revendication 27, où lesdites informations d'attributs d'images auxiliaires comportent des informations sur le type d'images auxiliaires de données d'images auxiliaires afin d'autoriser la conversion des données d'images auxiliaires en un signal d'images auxiliaires convenant pour le type d'images auxiliaires.
- 47. Procédé d'enregistrement selon la revendication 27, où lesdites informations d'attributs audio comportent des informations sur des trains audio multicanaux de données audio afin d'autoriser le décodage des données audio en fonction des attributs des trains audio multicanaux.

- 48. Procédé d'enregistrement selon la revendication 47, où lesdites informations relatives à des trains audio multicanaux de données audio permettent que lesdites données audio soient mélangées en fonction des attributs des trains audio multicanaux.
- 49. Procédé d'enregistrement selon la revendication 27, où lesdites informations de commande de gestion comportent des informations temporelles prescrivant le temps de reproduction de données audio et des informations de synchronisation relatives aux données audio et aux données d'images auxiliaires à reproduire en synchronisation avec des données vidéo.
- 50. Procédé d'enregistrement selon la revendication 27, où ladite aire de gestion comporte le nombre de trains audio contenus dans les données audio.
- 51. Procédé d'enregistrement selon la revendication 27, où ladite aire de gestion comporte le nombre de trains d'images auxiliaires contenus dans les données d'images auxiliaires.
- 25 52. Procédé d'enregistrement selon l'une quelconque des revendications 27 à 51, comprenant en outre les opérations suivantes :
 - obtenir des données vidéo, audio et d'images auxiliaires pour un menu représentant le contenu des données reproductibles vidéo, audio et d'images auxiliaires, à partir de sources respectives;
 - coder lesdites données vidéo, audio et d'images auxiliaires relatives au menu indépendamment les unes des autres ;
 - diviser lesdites données vidéo, audio et d'images auxiliaires en ensembles spécifiques; arranger lesdits ensembles spécifiques du menu afin de former au moins un titre:
 - créer des informations de commande servant à commander la reproduction des données vidéo, audio et d'images auxiliaires du menu, lesdites informations de commande de gestion comprenant des informations d'attributs vidéo, des informations d'attributs audio et des informations d'attributs d'images auxiliaires permettant de positionner des paramètres de circuits de décodage vidéo, audio et d'images auxiliaires d'un dispositif de reproduction en vue de la reproduction correcte des données vidéo, audio et d'images auxiliaires constituant le menu ; et
 - enregistrer lesdits ensembles et lesdites informations de commande de gestion du menu sur une aire d'enregistrement de données du support pour disque d'enregistrement.

30

35

40

50

53. Appareil d'enregistrement de données reproductibles vidéo, audio et d'images auxiliaires sur un support pour disque d'enregistrement, comprenant :

> un moyen servant à obtenir des données vidéo, audio et d'images auxiliaires à partir de sources respectives :

un moyen servant à coder lesdites données vidéo, audio et d'images auxiliaires indépendamment les unes des autres ;

un moyen servant à combiner lesdites données vidéo, audio et d'images auxiliaires codées afin de former un ou plusieurs titres formant un ou plusieurs groupes de titre, dans lesquels lesdites données vidéo, audio et d'images auxiliaires codées relatives audit ou auxdits groupes de titres sont divisés en ensembles spécifiques;

un moyen servant à créer des informations de commande de gestion qui servent à commander la reproduction des données reproductibles vidéo, audio et d'images auxiliaires du ou des groupes de titres respectifs, lesdites informations de commande de gestion comprenant des informations d'attributs vidéo, des informations d'attributs audio et des informations d'attributs d'images auxiliaires servant à positionner des paramètres de circuits de décodage vidéo, audio et d'images auxiliaires d'un dispositif de reproduction en vue de la reproduction correcte des données vidéo, audio et d'images auxiliaires contenues dans le ou les groupes de titres respectifs;

un moyen servant à créer un fichier de gestion de volume contenant des informations qui permettent de commander la reproduction du ou des groupes de titres comportant une table contenant lesdites informations d'attributs vidéo, lesdites informations d'attributs audio et lesdites informations d'attributs d'images auxiliaires des informations de commande de gestion de chaque groupe de titres ; et

un moyen servant à enregistrer lesdits ensembles du ou des groupes de titres et lesdites informations de commande de gestion du ou des groupes de titres respectifs sur une aire (28) d'enregistrement de données du support pour disque d'enregistrement et enregistrer ledit fichier de gestion de volume sur une aire de gestion du support pour disque d'enregistrement.

54. Appareil d'enregistrement selon la revendication 53, où lesdites informations d'attributs vidéo comportent des informations sur le mode de compression de données vidéo afin d'autoriser le décodage des données vidéo en référence avec le mode de compression.

- 55. Appareil d'enregistrement selon la revendication 53, où lesdites informations d'attributs vidéo comportent des informations sur la fréquence de trames de données vidéo afin d'autoriser la conversion des données vidéo en un signal vidéo à afficher avec une fréquence de trames spécifique.
- 56. Appareil d'enregistrement selon la revendication 53, où lesdites informations d'attributs vidéo comportent des informations sur le format d'image d'affichage de données vidéo afin d'autoriser la conversion des données vidéo en un signal d'image ayant le format d'image d'affichage.
- 15 57. Appareil d'enregistrement selon la revendication 53, où lesdites informations d'attributs vidéo comportent des informations sur le mode d'affichage de données vidéo afin d'autoriser la conversion des données vidéo en un signal vidéo ayant le mode 20 d'affichage.
 - 58. Appareil d'enregistrement selon la revendication 53, où lesdites informations d'attributs vidéo comportent des informations permettant une représentation dans un mode d'affichage spécifique afin d'autoriser la conversion des données vidéo en un signal vidéo ayant le mode d'affichage permis.
 - 59. Appareil d'enregistrement selon la revendication 53, où lesdites informations d'attributs vidéo comportent des informations permettant une représentation dans un premier mode d'affichage ou une représentation dans un deuxième mode d'affichage afin d'autoriser la conversion des données vidéo en un signal vidéo ayant le mode permis parmi les premier et deuxième modes d'affichage.
 - 60. Appareil d'enregistrement selon la revendication 53, où lesdites informations d'attributs vidéo comportent des informations sur un premier ou un deuxième format d'image d'affichage de données vidéo, afin d'autoriser la conversion des données vidéo en un signal vidéo ayant ledit format parmi les premier et deuxième formats d'image d'affichage, et lesdites informations d'attributs comportent des informations permettant une représentation dans un premier ou un deuxième mode d'affichage ou dans ces deux modes, afin d'autoriser la conversion des données vidéo, lorsque le format d'image d'affichage est le deuxième, en un signal vidéo ayant le mode d'affichage permis.
 - 61. Appareil d'enregistrement selon la revendication 53, où lesdites informations d'attributs vidéo comportent des informations sur l'un des formats d'image d'affichage 3/4 et 9/16 de données vidéo, afin d'autoriser la conversion des données vidéo en un signal vidéo ayant l'un des formats d'image d'affi-

15

20

25

chage 3/4 et 9/16, et lesdites informations d'attributs comportent des informations permettant une représentation dans l'un des modes d'affichage ou les deux modes d'affichage que constituent les modes d'affichage du type balayage panoramique et boîte à lettres, afin d'autoriser la conversion des données vidéo, lorsque le format d'image d'affichage est 9/16, en un signal vidéo ayant le mode d'affichage pennis.

- 62. Appareil d'enregistrement selon la revendication 53, où lesdites informations d'attributs audio comportent des informations sur le mode de codage audio de données audio afin d'autoriser le décodage des données audio en fonction du mode de codage.
- 63. Appareil d'enregistrement selon la revendication 53, où lesdites informations d'attributs comportent des informations de conversion sur l'une des conversions des systèmes de télévision NTSC et PAL, afin d'autoriser la sélection du mode de codage audio de données audio en fonction des informations de conversion.
- 64. Appareil d'enregistrement selon la revendication 53, où lesdites informations d'attributs comportent des informations de conversion sur l'une des conversions des systèmes de télévision NTSC et PAL. afin d'autoriser la sélection du mode de codage audio de données audio à partir de l'un des systèmes audio Dolby AC-3 et PCM Linéaire, lorsque lesdites informations d'attributs comportent des informations de conversion relatives à la conversion du système de télévision NTSC, et afin d'autoriser la sélection du mode de codage audio de données audio à partir de l'un des systèmes MPEG-1, MPEG-2 et PCM Linéaire, lorsque lesdites informations d'attributs comportent des informations de conversion sur la conversion du système de télévision PAL.
- 65. Appareil d'enregistrement selon la revendication 53, où lesdites informations d'attributs audio comportent des informations sur le type audio de données audio afin d'autoriser la conversion des données audio en un signal audio convenant pour le type audio.
- 66. Appareil d'enregistrement selon la revendication 53, où lesdites informations d'attributs audio comportent des informations sur le type d'application de données audio afin d'autoriser la conversion des données audio en un signal audio convenant pour le type d'application.
- **67.** Appareil d'enregistrement selon la revendication 53, où lesdites informations d'attributs audio com-

portent des informations sur le nombre de bits de quantification de données audio afin d'autoriser le décodage des données audio en fonction du nombre de bits de quantification.

- 68. Appareil d'enregistrement selon la revendication 53, où lesdites informations d'attributs audio comportent des informations sur la fréquence d'échantillonnage de données audio afin d'autoriser le décodage des données audio en fonction de la fréquence d'échantillonnage.
- 69. Appareil d'enregistrement selon la revendication 53, où lesdites informations d'attributs audio comportent des informations sur le nombre de canaux audio de données audio afin d'autoriser la conversion des données audio en un signal de canal audio correspondant à un numéro sélectionné dans l'étendue des numéros de canaux audio
- 70. Appareil d'enregistrement selon la revendication 53, où lesdites informations d'attributs d'images auxiliaires comportent des informations sur le mode de codage d'images auxiliaires de données d'images auxiliaires afin d'autoriser le décodage des données d'images auxiliaires en fonction du mode de codage d'images auxiliaires.
- 71. Appareil d'enregistrement selon la revendication 53, où lesdites informations d'attributs d'images auxiliaires comportent des informations sur le type d'affichage d'images auxiliaires de données d'images auxiliaires afin d'autoriser la conversion des données d'images auxiliaires en un signal d'images auxiliaires convenant pour le type d'affichage d'images auxiliaires.
- 72. Appareil d'enregistrement selon la revendication 53, où lesdites informations d'attributs d'images auxiliaires comportent des informations sur le type d'images auxiliaires de données d'images auxiliaires afin d'autoriser la conversion des données d'images auxiliaires en un signal d'images auxiliaires convenant pour le type d'images auxiliaires.
- 73. Appareil d'enregistrement selon la revendication 53, où lesdites informations d'attributs audio comportent des informations sur des trains audio multicanaux de données audio afin d'autoriser le décodage des données audio en fonction des attributs des trains audio multicanaux.
- 74. Appareil d'enregistrement selon la revendication 73, où lesdites informations relatives à des trains audio multicanaux de données audio permettent que lesdites données audio soient mélangées en fonction des attributs des trains audio multicanaux.

35

- 75. Appareil d'enregistrement selon la revendication 53, où lesdites informations de commande de gestion comportent des informations temporelles prescrivant le temps de reproduction de données audio et des informations de synchronisation relatives aux données audio et aux données d'images auxiliaires à reproduire en synchronisation avec des données vidéo.
- 76. Appareil d'enregistrement selon la revendication 10 53, où ladite aire de gestion comporte le nombre de trains audio contenus dans les données audio.
- 77. Appareil d'enregistrement selon la revendication 53, où ladite aire de gestion comporte le nombre de trains d'images auxiliaires contenus dans les données d'images auxiliaires.
- 78. Appareil d'enregistrement selon l'une quelconque des revendications 53 à 77, où :

ledit moyen servant à obtenir des données vidéo, audio et d'images auxiliaires pour un menu représentant le contenu des données reproductibles vidéo, audio et d'images auxiliaires, à partir de sources respectives :

ledit moyen servant à coder lesdites données vidéo, audio et d'images auxiliaires relatives au menu indépendamment les unes des autres ; ledit moyen servant à diviser lesdites données vidéo, audio et d'images auxiliaires en ensembles spécifiques ;

ledit moyen servant à arranger lesdits ensembles spécifiques du menu afin de former au moins un titre :

ledit moyen servant à créer des informations de commande qui servent à commander la reproduction des données vidéo, audio et d'images auxiliaires du menu, lesdites informations de commande de gestion comprenant des informations d'attributs vidéo, des informations d'attributs audio et des informations d'attributs d'images auxiliaires permettant de positionner des paramètres de circuits de décodage vidéo, audio et d'images auxiliaires d'un dispositif de reproduction en vue de la reproduction correcte des données vidéo, audio et d'images auxiliaires constituant le menu; et

ledit moyen servant à enregistrer lesdits ensembles et lesdites informations de commande 50 de gestion du menu sur une aire d'enregistrement de données du support pour disque d'enregistrement.

79. Procédé de reproduction de données de lecture à 55 partir d'un support pour disque d'enregistrement tel que défini dans l'une quelconque des revendications 1 à 26, comprenant les opérations suivantes :

rechercher dans ledit support pour disque d'enregistrement l'aire de gestion (VGM, 71), lire ladite aire de gestion et stocker les informations permettant de commander la reproduction du ou des groupes de titres dans une mémoire; acquérir, à un état initial de la reproduction des données de lecture à partir dudit support pour disque d'enregistrement, lesdites informations d'attributs vidéo, lesdites informations d'attributs audio et lesdites informations d'attributs d'images auxiliaires à partir de l'aire de gestion (VGM, 71) avant la reproduction des données reproductibles, et

acquérir, si un groupe de titres contenu dans la zone de titres est sélectionné ultérieurement. lesdites informations d'attributs vidéo, lesdites informations d'attributs audio et lesdites informations d'attributs d'images auxiliaires à partir des informations de commande de gestion (VTS_MAT, 90) du groupe de titres respectif; positionner les paramètres de circuits de décodage vidéo, audio et d'images auxiliaires d'un dispositif de reproduction en vue de la reproduction correcte des données vidéo, audio et d'images auxiliaires contenues dans le groupe de titres respectif en fonction des informations d'attributs vidéo, des informations d'attributs audio et des informations d'attributs d'images auxiliaires acquises; et

lire les données dans l'aire de titres en fonction des informations servant à commander la reproduction du ou des groupes de titres et décoder et convertir les données reproductibles vidéo, audio et d'images auxiliaires, en fonction des réglages des paramètres, en un signal de

80. Appareil permettant de reproduire des données de lecture à partir d'un support pour disque d'enregistrement tel que défini dans l'une quelconque des revendications 1 à 26, comprenant :

> un moyen servant à rechercher dans ledit support pour disque d'enregistrement l'aire de gestion (VGM, 71), lire ladite aire de gestion et stocker les informations permettant de commander la reproduction du ou des groupes de titres dans une mémoire ;

> un moyen servant à acquérir, à un état initial de la reproduction des données de lecture à partir dudit support pour disque d'enregistrement, lesdites informations d'attributs vidéo, lesdites informations d'attributs audio et lesdites informations d'attributs d'images auxiliaires à partir de l'aire de gestion (VGM, 71) avant la reproduction des données reproductibles, et un moyen servant à acquérir, si un groupe de

> titres contenu dans la zone de titres est sélec-

tionné ultérieurement, lesdites informations d'attributs vidéo, lesdites informations d'attributs audio et lesdites informations d'attributs d'images auxiliaires à partir des informations de commande de gestion (VTS_MAT, 90) du 5 groupe de titres respectif;

un moyen servant à positionner les paramètres de circuits de décodage vidéo, audio et d'images auxiliaires d'un dispositif de reproduction en vue de la reproduction correcte des données vidéo, audio et d'images auxiliaires contenues dans le groupe de titres respectif en fonction des informations d'attributs vidéo, des informations d'attributs audio et des informations d'attributs d'images auxiliaires acquises ;

un moyen servant à lire les données dans la zone de titres en fonction des informations servant à commander la reproduction du ou des groupes de titres ; et

lesdits moyens circuits de décodage de données vidéo, audio et d'images auxiliaires, étant conçus pour décoder et convertir des données reproductibles vidéo, audio et d'images auxiliaires, en fonction des réglages des paramètres en un signal de lecture.

25

30

35

40

45

50

F I G. 2

F I G. 3

F I G. 4

52

VMGI_MAT	(Description order)
	Content
VMG_ID	Video Manager Identifier
VMGI_SZ	Size of Video Manager Information
VERN	Version Number of DVD Video Specification
VMG_CAT	Video Manager Category
VLMS_ID	Volume Set Identifier
VTS_Ns	Number of Video Title Set
PVR_ID .	Provider Unique ID
VMGI_MAT_EA	End Address of VMGI_MAT
VMGM_VOBS_SA	Video Manager Menu Video Object Set Start Address
TT_SRPT_SA	Start Address of TT_SRPT
VTS_ATRT_SA	Start Address of VTS_ATRT
VMGM_V_ATR	Video Attribute of VMGM
VMGM_AST_Ns	Number of Audio Stream of VMGM
VMGM_AST_ATR	Audio Stream Attribute of VMGM
VMGM_SPST_Ns	Number of Sub-picture Stream of VMGM
VMGM_SPST_ATR	Sub-picture Stream Attribute of VMGM

F | G. 7

		_	
p 8	Mode	po	
6 9	Display Mode	b 4	
b10	Aspect	b 2	
p11	Display Ratio	b3	Reserved (0)
b 12	Rate	b4	Reser
b 13	Frame Rate	b5	
b14	Compression	99	
b15	Video C Mode	b7	

F I G. 8

55

	p62	b61	p60	p 29	p28	b57	p26
	Audio Coding	Mode	Resered	Audio Type	Type	Application	ation 1D
ı	b54	b53	b52	b51	p20	b49	b48
1	Ouantization		fs	Reserved (0)	lumber	of Audio	Audio Channels
i	b46	b45	b44	b43	b42	b41	b40
•			Reserved (0)	(0) F			
1	p38	b37	p36	b35	b34	p33	b32
l			Reserved (0)	1(0)			
l	p30	b29	b28	b27	b26	b25	b24
1			Reserved (0)	1(0)			
1	b22	b21	b20	b19	b18	b17	b16
1			Reserved(0)	(O) F			
l	b14	b13	b12	b11	b10	69	p8
	Reserved (0)	(0) p			Reserved (0)	/ed (0)	
	99	p2	b4	b3	b2	b1	p0
l	-		Reserved (0)	(O) F			
١							

F G. 1

	<i></i>									•	
p40	cture	b32		b24		b16		P8		p0	
b41	Sub-Picture Type	b33		b25		b17	apo	6q	uo	b1	ed (0)
b42	ay Type	b34	Code	b26	Code	b18	ecific C	b10	Extensi	b2	Reserved (0)
b43	ıre Displ	b35	Specific Code	b27	becific	b19	ed for Sp	b11	fic Code	b3	
b44	Sub-Picture Display Type	b36	or	b28	Reserved(0) or Specific Code	b20	or Reserved for Specific Code	b12	or Specific Code Extension	b4	
b45		b37	Reserved (0)	b29	eserve!	b21		b13	Reserved (0)	b5	(0)
p46	Sub-Picture Coding Mode	p38	<u>u</u>	p30	L .E.,	b22	Reserved (0)	b14	Reser	99	Reserved (0)
b47	Sub-Pict	p39		b31		b23		b15		b7	

F | G. 12

TT_SRPT

TT_SRPTI	(Description order)
	Content
EN_PGC_Ns	Number of Entry PGC
TT_SRPT_EA	End Address of TT_SRPT

F I G. 14

TT_SRP	(Description order)
	Content
VTSN	Video Title Set Number
PGCN	Program Chain Number
VTS_SA	Start Address of Video Title Set

F I G. 15

VTS_ATRT

| VTS_ATRT|
| Contents
| VTS_Ns | Number of VTSs |
| VTS_ATRT_EA | End Address of VTS_ATRT |

VTS_ATR_SRP

Contents

(1) VTS_ATR_SA Start Address of VTS_ATR

 VTS_ATR

 Contents

 VTS_ATR_EA
 End Address of VTS_ATR

 VTS_CAT
 Video Title Set Category

 VTS_ATRI
 Video Title Set Attribute Information

FIG. 20

	Contents	VTS Identifier	Size of the VTSI	Version Number of DVD Video Specificati	VTS Category	End Address of VTSI_MAT	Start Address of VTSM_VOBS	Start Address of VTSTT_VOB	Start Address of VTS_PTT_SRPT	Start Address of VTS_PGCIT	Start Address of VTSM_PGCI_UT	Start Address of VTS_TMAPT	Start Address of Cell Address Table	Start Address of VOBU Address Map	Video Attribute of VTSM	Number of Audio Streams of VTSM	Audio Stream Attribute of VTSM	Number of Sub-Picture Streams of VTSM	Sub-Picture Stream Attribute of VTSM	Video Attribute of VTS	Number of Audio Stream of VTS	Audio Stream Attribute of VTS	Number of Sub-Picture Streams of VTS	Sub-Picture Stream Attribute of VTS	Mil + i Abona - And a Other
VTSI_MAT		VTS_10	VTSI_SZ	VERN	VTS_CAT	VTSI_MAT_EA	VTSM_V0BS_SA	VTSTT_V0BS_SA	VTS_PTT_SRPT_SA	VTS_PGC1T_SA	VTSM_PGCI_UT_SA	VTS_TMAPT_SA	VTS_C_ADT_SA	VTS_V0BU_ADMAP_SA	VTSM_V_ATR	VTSM_AST_Ns	VTSM_AST_ATR	VTSM_SPST_Ns	VTSM_SPST_ATR	VTS_V_ATR	VTS_AST_Ns	VTS_AST_ATR	VTS_SPST_Ns	VTS_SPST_ATR	VIC MI ACT ATD

F | G. 22

				1		!		1 (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 !		1		1	
p 56	Q)	b48	S	b40		b32		b24		b16		p 8		po	
b57	Application ID	b49	Number of Audio channels	b41		b33		b25		b17		6 q		þ1	
b58	уре	p20	Numper	b42	r Bits)	b34	r Bits)	b 26	Sode	b18		Мо		b2	ion
b59	Audio Type	b51	Reserved (0)	b43	ic code (Upper	b 35	ic code (Lower	b27	for Specific (b 19	(0) p:	bi1	(0) pa	b3	ation informat
pe0	Reserved (0) or Multichannel Extension	b52	fs	b44	Reserved (0) or Specific Code (Upper Bits)	b36	Reserved (0) or Specific Code (Lower Bits)	b 28	Reserved (0) or Reserved (0) for Specific Code	b20	Reserved (0)	b12	Reserved (0)	b4	Reserved (0) or Application Information
pe4	qe	b53		b45	Reserv	b37	Reserv	b29	Reserved (0)	b21		b13		b5	Reserve
pe2	Audio Coding Mod	b54	zation	b 46		b38		b30	-	b22		b14		9q	
b63	Auc	b55	Quantization	b47		b39		b34		b23		bis		b7	
•		•		•				'-				L	J	Ĺ	

F | G 23

VTS_PGCIT

FIG. 24

VTS_PGCIT_I

	(Description order)
	Content
VTS_PGC_Ns	Number of VTS_PGCs
VTS_PGCIT_EA	End Address of VTS_PGCCIT

F I G. 25

VTS_PGCIT_SRP

	(Description order)
	Content
VTS_PGC_CAT	Video Title Set PGC category
VTS_PGCI_SA	Start Address of VTS_PGC Information

FIG. 26

VTS_PGCI

PGC _GI

	(Description order)
	Content
PGCI_CAT	PGC Category
	PGC Content
	PGC Playback Time
	PGC-Sub-picutre Stream Control
	PGC Audio Stream Control
	PGC Sub-picture Palette
PGC_PGMAP_SA	Start Address of PGC_PGMAP
C_PBIT_SA	Start Address of C_PBIT
C_POSIT_SA	Start Address of C_POSIT
PGC_CNT PGC_PB_TIME PGC_SPST_CTL PGC_AST_CTL PGC_SP_PLT PGC_PGMAP_SA C_PBIT_SA C_POSIT_SA	PGC Content PGC Playback Time PGC-Sub-picutre Stream Control PGC Audio Stream Control PGC Sub-picture Palette Start Address of PGC_PGMAP Start Address of C_PBIT

F I G. 28

PGC_PGMAP

. 60 011/1	
Entry Cell Number for Program #1	
Entry Cell Number for Program #2	
:	
:	
Entry Cell Number for Program #n	

FIG. 29

Entry cell number

array con marrison	
	Content
ECELLN	Entry Cell Number

F I G. 30

C_PBIT

Cell Playback Information #1 (C_PBI1)	
Cell Playback Information #2 (C_PBI2)	
:	
Cell Playback Information #n (C_PBIn)	

F I G. 31

C_	.Р	ВІ			
	_	-	_	_	

	Content
C_CAT	Cell Category
C_PBTM	Cell Playback Time
C_FVOBU_SA	Start Address of the First VOBU in the Cell
C_LVOBU_SA	Start Address of the Last VOBU in the Cell

F I G. 32

C_POSI

Cell Position Information #1 (C_POSIT1)
:
Cell Position Information #n (C_POSITn)

F I G. 33

C_POSI

	Content
C_VOB_IDN	VOB ID Number of Cell
C_IDN	Cell ID Number of the Cell

F I G. 34

PCL Content PCI General Information PCI_GI NSMLS_ANGL Angle Information FIG. 37 PCI GI Content NV_PCK_LBN LBN of NV Pack Category of VOBU VOBU_CAT VOBU_S_PTM VOBU_E_PTM Start PTM of VOBU End PTM of VOBU

FIG. 38

DSI	
	Content
DS1_G1	DSI General Information
SML_PBI	Seamless Playback Information
SML_AGLI	Angle Information
NV_PCK_ADI	Navigation Pack Address Information
SYNCL	Synchronus Playback Information

FIG. 39

DSI_GI Content NV_PCK_SCR SCR of NV Pack NV_PCK_LBN LBN of NV Pack VOBU_EA VOBU End Address VOBU_IP_EA First I-picture End Address VOBU_VOB_IDN VOB ID Number VOBU_C_IDN Cell ID Number

F I G. 40

SYNCI Content A_SYNCA 0 to 7 Target Audio Pack Address SP_SYNCA 0 to 31 VOBU Start Address of Target SP pack

FIG. 41

F I G. 42

FIG. 43

F I G. 44

FIG. 45

FIG. 46

FIG. 47

FIG. 48

F I G. 51

F I G. 54

FIG. 52

F I G. 53

