

Editors:

Roger Fraser, Frank Leahy, Philip Collier

DynaNet User's Guide

Dynamic Network Adjustment Software July 2017

© Commonwealth of Australia (Geoscience Australia) 2017.

With the exception of the Commonwealth Coat of Arms and where otherwise noted, this product is provided under a Creative Commons Attribution 4.0 International Licence. (http://creativecommons.org/licenses/by/4.0/legalcode)

For all technical and software related matters, please contact:

Dr. Roger Fraser
Manager, Geodetic Survey
Office of Surveyor-General Victoria
Department of Environment, Land, Water and Planning
Level 17/570 Bourke St, Melbourne, Victoria, 3000
roger.fraser@delwp.vic.gov.au

DynaNet User's Guide Version 3.3

Dr. Roger Fraser

Manager, Geodetic Survey Office of Surveyor–General Victoria Melbourne

Dr. Frank Leahy

Associate Professor University of Melbourne Melbourne

Dr. Phil Collier

Research Director Cooperative Research Centre for Spatial Information Melbourne

Acknowledgements

The development of this software and user guide has benefited from the assistance provided by several individuals and organisations. In particular, the authors gratefully acknowledge the following people for their advice, support, feedback, supply of sample data files and contribution at various levels: Gary Johnston, John Dawson, Nick Brown, Craig Harrison and Ted Zhou from Geoscience Australia (Commonwealth); Ben Menadue and Dale Roberts from the National Computational Infrastructure (Commonwealth); John Tulloch (retired), David Boyle, Alex Woods, Dave Collett, Bob Ross (retired) and Peter Growse (retired) from the Department of Environment, Land, Water and Planning (Victoria); Matt Higgins, Steve Tarbit, Mike Cowie, Darren Burns and Peter Todd (retired) from the Department of Natural Resources and Mines (Queensland); Simon McElroy, Joel Haasdyk and Nic Gowans from the Department of Finance, Services and Innovation (New South Wales); Linda Morgan (retired), Irek Baran and Kent Wheeler from Landgate (Western Australia); Graeme Blick, Nic Donnelly and Chris Crook from Land Information New Zealand (New Zealand); Scott Strong from the Department of Primary Industries, Parks, Water and Environment (Tasmania); Stephen Latham and Peter Stolz from the Department of Planning, Transport and Infrastructure (South Australia); Gavin Evans from the Department of Environment and Sustainable Development (ACT); Rob Sarib and Amy Peterson from the Department of Lands and Planning (Northern Territory); Simon Fuller of ThinkSpatial (Victoria); Peter Teunissen of Curtin University; Chris Rizos of the University of New South Wales; and Rod Deakin (retired) and Don Grant of Royal Melbourne Institute of Technology.

Freely ye have received, freely give (Matthew 10:8)

Remember the words of the Lord Jesus, how He said, "It is more blessed to give than to receive" (Acts 20:35)

Contents

		_	ements				
		_	es				xiii
			S				
			eviations				xix
	LIST	or Symbo	ols	•	•	•	XX
1	Intro	duction	1				1
	1.1	Brief hi	istory of phased adjustment and DynaNet				1
		1.1.1	Preamble to Version 3.3				3
	1.2	Conven	ntions used in this document				3
	1.3		m overview				4
		1.3.1	Software architecture and information flow				4
		1.3.2	Program execution and command line options				6
		1.3.3	Program execution sequence				7
	1.4		ninute quick start tutorial				9
	1.7	TWO III	initite quick start tutorial	•	•	•	3
2	Crea	ting, ed	diting and processing projects				13
	2.1	Introdu	uction				13
	2.2	Conven	ntions used in DynaNet				13
		2.2.1	File naming				13
		2.2.2	File types				14
		2.2.3	Directories				15
	2.3	Project	t setup and processing				15
		2.3.1	Prepare station and measurement files				15
		2.3.2	Create DynaNet project file				15
		2.3.3	Automated project processing				15
3	Impo	ort and	export of geodetic network information				17
	3.1		uction				17
	3.2	Importi	ing station and measurement information				17
		3.2.1	Station coordinate information				18
		3.2.2	Supported measurement types				19
		3.2.3	Network constraints				19
		3.2.4	Geoid information				21
		3.2.5	File name argument conventions				21
		3.2.6	Progress reporting and import log				21
		3.2.7	Verification and error checking				23
	3.3		uring import options				24
		3.3.1	Reference frame				24
		3.3.2	Data screening				25
		3.3.3	GNSS variance matrix scaling				31

	3.4	Network measurement simulation
	3.5	Data export
		3.5.1 Station and measurement files
		3.5.2 Association lists and station map
4	Tran	sformation of coordinates and measurements 3
	4.1	Introduction
	4.2	Reference frame fundamentals
	1.2	4.2.1 Cartesian reference frame
		4.2.2 Geographic reference frame
		4.2.3 Local reference frame
		4.2.4 Polar reference frame
	4.2	
	4.3	Transformation between cartesian reference frames
	4.4	Propagation of variances between reference frames
		4.4.1 Local reference frame
		4.4.2 Polar reference frame
		4.4.3 Geographic reference frame
	4.5	Conversion of projection coordinates
	4.6	Transformation of coordinates and measurements
		4.6.1 Supported reference frames and geodetic datums
		4.6.2 Relationship between ITRF, IGS and WGS84 reference frames
		4.6.3 Transforming station coordinates and measurements
	4.7	Data export
5	lmne	ort and export of geoid information 53
J	5.1	Introduction
	5.2	Fundamental concepts
	5.2	5.2.1 Geoid models
		5.2.2 Conventions used in DynaNet
	5.3	Grid file interpolation
	5.5	·
		,
	г 1	5.3.2 Bicubic interpolation
	5.4	Import of geoid information
	5.5	Arbitrary interpolation and height transformation
		5.5.1 Interactive mode
		5.5.2 Text file mode
	5.6	Exporting interpolated information
	5.7	Working with NTv2 geoid grid files
		5.7.1 Reporting NTv2 geoid grid file metadata
		5.7.2 Importing WINTER DAT geoid grid files 69
		5.7.3 Grid file interpolation errors
6	Netv	vork segmentation 6
•	6.1	Introduction
	6.2	The concept of network segmentation
	6.3	
	6.4	Accommodating variations in network design, size, user preferences and computer
		performance
		6.4.1 Optimum block size and maximum adjustment efficiency
		6.4.2 Inevitable influences on the generated block sizes
		6.4.3 Factors influencing the segmentation rate

		6.4.4	Generating coordinate estimates and full variance matrix for a user-defined	
			set of stations	77
		6.4.5	Datum deficient blocks	77
		6.4.6	Non–contiguous networks	78
	6.5	_	nting a network	78
		6.5.1	Configuring segmentation behaviour	79
			6.5.1.1 Specifying stations to appear in the first block	79
			6.5.1.2 Achieving optimum block sizes	80
			6.5.1.3 Isolated networks	81
7	Matl	hematic	cal models for dynamic network adjustment	83
	7.1		iction	83
	7.2		ation equations	83
		7.2.1	Slope distances (S)	84
		7.2.2	Ellipsoid arc (E) and ellipsoid chord (C) distances	84
		7.2.3	Mean sea level (MSL) arc distances (M)	85
		7.2.4	Ellipsoid heights (R) and height differences	86
		7.2.5	Orthometric heights (H) and height differences (L)	87
		7.2.6	Cartesian coordinates and GNSS point clusters (Y)	88
		7.2.7	GNSS baselines (G) and GNSS baseline clusters (X)	88
		7.2.8	2D position via geodetic latitude (P) and longitude (Q)	89
		7.2.9	Geodetic azimuths and horizontal bearings (B)	90
		7.2.10	Horizontal angles (A)	91
		7.2.11	Horizontal direction sets (D)	91
		7.2.12	Zenith distances (V)	92
			Vertical angles (Z)	93
			Astronomic latitude (I) and longitude (J)	94
			Astronomic (or Laplace) azimuth (K)	95
	7.3		stic modelling and reporting	95
	1.5	7.3.1	Probability distributions used in DynaNetfor testing	95
		7.5.1	7.3.1.1 Normal distribution	95
			7.3.1.2 Chi–square distribution	96
			7.3.1.3 Student's t distribution	98
		7.3.2	Preparation of measurement precisions and variance matrices	99
		1.0.2		100
		7.3.3		101
		1.0.0		101
			7.3.3.2 Positional uncertainty	
			•	103
_				
8	Est in 8.1		•	105 105
	8.2			105
	8.3		·	103
	0.3	8.3.1	9	
		8.3.2		108
		0.3.2	3	111
			8	113
				114
			y	115
				115
		0.2.2	8.3.2.5 Report results mode	
		8.3.3	Adjustment configuration options	110

		8.3.4 Output configuration options	
		because the contract of the co	
9			125
	9.1	Introduction	
	9.2	Algorithms for estimating uncertainty	
		9.2.1 Precision of the estimated parameters	
		9.2.2 Precision of the adjusted measurements	
	9.3	Testing least squares adjustments	
		9.3.1 Testing the least squares adjustment as a whole	
		9.3.1.1 Rectifying over–optimistic variance matrices of the same type 1	129
		9.3.2 Testing for the presence of outliers	
		9.3.2.1 Testing measurements with reliable estimates of precision	131
		9.3.2.2 Testing measurements with doubtful estimates of precision 1	135
		9.3.3 Hints on addressing measurement failures	141
Bi	bliogr	aphy 1	L43
Ind	dex of	f subjects 1	L47
Α	Com A.1	Imand line reference 1 dynanet	1 51
	A.2	import	
	A.3	reftran	
	A.4	geoid	
	A.4 A.5	segment	
	A.6	adjust	
	A.7	plot	
_			
В		•	171
	B.1	Dynamic Network Adjustment (DNA) format	
		B.1.1 Changes from Version 1 to Version 3	
		B.1.2 Header line	
		B.1.3 Station information	
		B.1.4 Measurement information	
		B.1.5 Geoid information	
	B.2	Comma Separated Values (CSV) format	
	B.3	Dynamic Network Adjustment Project (DNAPROJ) format	
	B.4	DynaNet Markup Language (DynaML) format	
		B.4.1 Station information	
			190
	B.5	GeodesyML format	
	B.6	SINEX format	
	B.7	Geoid input text file format	193
C	Outp	out file format specification 1	195
	C.1		195
	C.2	Import log file (IMP)	
	C.3	Measurement to station output file (M2S)	
	C.4	Segmentation output file (SEG)	198
	C.5	Coordinate output file (XYZ)	200
	C.6	Adjustment output file (ADJ)	203
		C.6.1 Adjustment statistics	203

	C.6.2	Measurement to station connections	203
	C.6.3	Adjusted measurements	203
	C.6.4	Estimated station coordinates	206
	C.6.5	Output of results on each iteration	206
C.7	Station	coordinate corrections file (COR)	207
C.8	Adjuste	ed positional uncertainty file (APU)	209
C.9	SINEX	output warning file (SNX.ERR)	212

List of Figures

1.1 1.2 1.3 1.4	Flow of information between various DynaNet programs and input and output files . DynaNet program execution sequence	6 8 9
3.1 3.2 3.3 3.4 3.5	import progress reporting of data import, conversion and processing	22 26 28 33 34
4.1 4.2 4.3 4.4	The ellipsoid–centred cartesian reference frame	38 40 41 51
5.1	The relationships between the natural terrain, ellipsoid, geoid, mean sea level, and	
5.2	sea surface	54
	and normal orthometric height (H^{NO})	55
5.3	Bilinear interpolation concept	57
5.4	geoid progress reporting of geoid grid file interpolation	61 62
5.5 5.6	Interactive geoid grid file interpolation	63
5.7	Example NTv2 grid file summary	64
5.8	Progress of NTv2 grid file creation	66
6.1	Network segmentation concept	70
6.2	A trivial GNSS network segmented into two blocks	70
6.3	Network segmentation concept involving four blocks	72
6.4	Segmentation of a geodetic network having stations with large numbers of measurements.	74
6.5	GNSS, direction set and distance measurements in the Victorian geodetic network associated with MORANG PM 48	75
6.6	Segmentation of a spirit levelling network having stations with a low measurement	15
0.0	count.	76
6.7	segment progress reporting	79
6.8 6.9	Segmentation summary for uni_sqr with a block threshold of 45 Segmentation summary for uni_sqr with a block threshold of 45 and minimum inner	80
	station count of 35	81
7.1 7.2	Slope, ellipsoid arc and ellipsoid chord distances	84 85

7.3	Relationships between slope distance, MSL arc distance, ellipsoid arc distance and	
	ellipsoid chord distance measurements	86
7.4	Heights and height differences	87
7.5	Bearings and horizontal angles	90
7.6	Cluster of horizontal directions	92
7.7	Zenith distances	93
7.8	Vertical angles	
7.9	The Normal distribution	96
7.10	Chi–square (χ^2) distributions for 4, 6, 10 and 20 degrees of freedom	97
7.11	Student's t distributions for 2, 5, 10 and 50 degrees of freedom	98
7.12	The error ellipse and its dependence on coverage factor k	102
8.1	adjust progress reporting	
8.2	Single—thread mode	
8.3	Multi-thread mode on four cores	
8.4	Thread switching on a single core	
8.5	Block–1 only mode	
8.6	Progress reporting using single—thread adjustment mode	
8.7	Progress reporting using multi-thread adjustment mode	
8.8	Progress reporting using Block–1 only adjustment mode	115
9.1	Adjustment summary from a sample GNSS network	136
9.2	Adjusted measurements table from a sample GNSS network — without a–priori variance matrix scaling	137
9.3	Adjusted measurements table from a sample GNSS network — with a-priori variance	131
3.5	matrix scaling	138
9.4	(a) Level run adjustment with all original measurements, and (b) Repeat level run	100
J	adjustment with the suspect measurement removed	140
B.1	Example header lines	172
B.2	Example station file with coordinates in UTM, LLH and XYZ formats	
B.3	Example angle measurements	
B.4	Example geodetic azimuths, astronomic azimuths, zenith distances and vertical angles	
B.5	Example direction sets	
	Example ellipsoid chords, ellipsoid arcs, Mean Sea Level arcs, slope distances and	
	height differences	177
B.7	Example GNSS baseline measurement	179
B.8	Example GNSS baseline clusters	180
B.9	Example GNSS point clusters.	
B.10	Example orthometric height and ellipsoid height measurements	181
B.11	Example geodetic latitude and longitude, and astronomic latitude and longitude	
	measurements	
B.12	Example geoid information records	182
B.13	Example general options.	184
	Example import options	
	Example reftran options	
	Example geoid options	
	Example segment options	
	Example adjust options.	
	Example output options.	
	DnaXMLFormat schema definition	
B 21	DnaStation schema definition	189

B.22 Sample station file encoded in DynaML format	180
B.23 DnaMeasurement schema definition	 190
B.24 Clusterpoint and GPSBaseline schema definition	 191
B.25 Directions and GPSCovariance schema definition	 191
B.26 Sample measurements encoded in DynaML format	 192
B.27 Example formatted text file	 194
B.28 Example comma separated values file	 194

List of Tables

3.1	Supported measurement types and measurement codes	
3.3	GNSS variance matrix scaling options	
3.4	Station Map fields	6
3.5	Associated Stations List fields	6
3.6	Associated Measurements List fields	6
4.1	EPSG codes and reference frames	8
4.2	Supported transformation parameters	8
4.3	Alignment of IGS precise orbit product reference frames with ITRF updates over time	
	(source: http://acc.igs.org/igs-frames.html)	g
4.4	Alignment of WGS84 realisations with ITRF updates over time (source: https:	
	//confluence.qps.nl/pages/viewpage.action?pageId=29855173) 5	C
5.1	NTv2 grid file overview fields	
5.2	NTv2 grid file sub grid fields	
5.3	Grid file interpolation error codes and descriptions	7
6.1	Distribution of parameters and measurements of a network segmented into two blocks 7	'1
7.1	Confidence intervals for $\pm 1\sigma$ to $\pm 4\sigma$	16
9.1	Student's t confidence intervals for $\alpha=95\%$, $r=2\dots 1000$	35
A.1	dynanet standard options	1
A.2	dynanet generic options	2
A.3	import standard options	
A.4	import reference frame options	3
A.5	import data screening options	
A.6	import GNSS variance matrix scaling options	
A.7	import network simulation options	
A.8	import export options	
A.9	reftran standard options	
	reftran transformation options	
	reftran export options	
	geoid standard options	
	geoid interpolation options	
	geoid NTv2 creation options	
	geoid interactive interpolation options	
	geoid file interpolation options	
	geoid export options	
	segment standard options	
A.19	segment configuration options	ι1

A.20	adjust standard options	62
A.21	adjust adjustment mode options	63
A.22	adjust phased adjustment options	63
A.23	adjust adjustment configuration options	63
A.24	adjust staged adjustment options	64
A.25	adjust adjustment output options	64
A.26	adjust export options	66
A.27	plot standard options	67
A.28	plot data configuration options	67
A.29	plot mapping options	68
A.30	plot PDF viewer options	69
B.1	Header line column locations and field widths $\dots \dots \dots$	
B.2	Station information column locations and field widths	
B.3	General measurement information column locations and field widths $\dots \dots \dots$	
B.4	Column locations and field widths for horizontal angles	74
B.5	Column locations and field widths for geodetic azimuths, astronomic azimuths, zenith	
	distances and vertical angles	
B.6	Column locations and field widths for direction sets	76
B.7	Column locations and field widths for ellipsoid chords, ellipsoid arcs, Mean Sea Level	
	, ,	76
B.8	Column locations and field widths for a GNSS baseline (single or cluster) header record.1	
B.9	Column locations and field widths for a GNSS point cluster header record	
	Column locations and field widths for GNSS baseline and point measurements 1	
	Column locations and field widths for a GNSS cluster covariance block	
	Column locations and field widths for orthometric and ellipsoid height measurements. 1	81
B.13	Column locations and field widths for geodetic latitudes and longitudes, and astronomic	~ -
D 4 4	e e e e e e e e e e e e e e e e e e e	81
	Geoid information column locations and field widths	
	DynaNet program options formatting	
	Formatted text file fields	
B.17	Comma separated values file fields	94
	Measurement to station connections table $\dots \dots \dots$	
	Segmentation summary table	
C.3	Individual block data table	
C.4	Adjusted station coordinates	01
C.5	, ,	03
C.6	Adjusted measurements and associated statistics table	
C.7	1 / /	06
C.8		07
C.9	Adjusted positional uncertainty table	
C.10	Positional uncertainty covariance block	10

List of Abbreviations

AGD66 Australian Geodetic Datum 1966 AGD84 Australian Geodetic Datum 1984

AHD Australian Height Datum. Commonly used in reference to Australian Height Datum 1971 (AHD71) and Australian Height Datum (Tasmania) 1983 (AHD-TAS83).

AHD-TAS83 The Australian Height Datum (Tasmania) 1983 is the normal-orthometric height

datum for mainland Tasmania.

AHD71 The Australian Height Datum 1971 is the normal-orthometric height datum for

mainland Australia.

CSV Comma Separated Values

DNA Dynamic Network Adjustment

DynaML DynaNet Markup Language. XML format defined according to the DynaNet 2.0 XML

schema.

EPSG European Petroleum Survey Group

GDA2020 Geocentric Datum of Australia 2020. Realised by continuous analysis of over 400

Asia Pacific Reference Frame sites, referenced to the GRS80 ellipsoid and determined

with respect to ITRF2014 at epoch 2020.0.

GDA94 Geocentric Datum of Australia 1994. Realised by the derived coordinates of the

Australian Fiducial Network (AFN) geodetic stations, referenced to the GRS80 ellipsoid

and determined with respect to ITRF92 at epoch 1994.0.

GLONASS GLObal NAvigation Satellite System

GMA Geodetic Model of Australia. Implemented via the adjustments termed GMA73,

GMA80, GMA82 and GMA84.

GNSS Global Navigation Satellite System

GPS Global Positioning System

GRS80 Geodetic Reference System 1980 reference ellipsoid, where $a=6378137.0 \, \text{m}, \, f=$

1/298.257222101

ICSM Intergovernmental Committee on Surveying and Mapping

IGS International GNSS Service

ITRF International Terrestrial Reference Frame — a realisation of the International Terrestrial

Reference System (ITRS) produced by the International Earth Rotation and Reference

Systems Service (IERS).

MGA94 Map Grid of Australia 1994. Universal Transverse Mercator projection of the Geocentric

Datum of Australia 1994.

MSL Mean sea level

PDF Probability Density Function

RHEL RedHat Enterprise Linux

SINEX Solution INdependent EXchange format.

TM Transverse Mercator

UTM Universal Transverse Mercator
WGS84 World Geodetic System of 1994
XML eXtensible Markup Language

List of Symbols

ϕ	Geodetic latitude.
λ	Geodetic longitude.
Φ	Astronomic latitude.
Λ	Astronomic longitude.
A	Astronomic azimuth.
θ_{12}	Geodetic azimuth between points 1 and 2 .
α_{123}	Horizontal angle at point 1 , between points 2 and 3 .
s_{12}	Slope or direct distance between points 1 and 2 .
c_{12}	Ellipsoid chord distance between points 1 and 2 .
e_{12}	Ellipsoid arc distance between points 1 and 2 .
m_{12}	Mean sea level arc distance between points 1 and 2 .
ζ_{12}	Zenith distance from point 1 to 2.
ϑ_{12}	Vertical angle from point 1 to 2.
ν	Radius of curvature in the prime vertical.
ho	Radius of curvature in the prime meridian.
a	Semi-major axis of the reference ellipsoid.
b	Semi-minor axis of the reference ellipsoid.
e^2	First eccentricity of the reference ellipsoid.
x, y, z	X, Y and Z coordinates in the cartesian reference frame.
ϕ, λ, h	Geodetic latitude, geodetic longitude and ellipsoid height in the geographic reference frame.
e,n,up	East, north and up coordinates in the local reference frame.
θ,ϑ,s	Geodetic azimuth, vertical angle and direct distance in the polar reference frame.
E,N,Zo	Easting, Northing and zone of a Universal Transverse Mercator (UTM) projection.
k_0	UTM central scale factor.
λ_0	Longitude of the central meridian of a UTM zone.
z_w	UTM zone width.
ξ	Deflection of the vertical in the prime meridian (north–south component).
η	Deflection of the vertical in the prime vertical (east–west component).
ϵ	Combined deflection of the vertical calculated from north–south and east–west components.
N or ζ	Geoid–ellipsoid separation or height anomaly.
H	Height of point p above an orthometric height surface.

hHeight of point p above the ellipsoid. The mean. μ Standard deviation of an estimated quantity. σ σ^2 Variance or precision of an estimated quantity. σ_0^2 Variance factor or sigma zero. α Probability or significance level, expressed as a percentage or value from 0 to 1.0. Coverage factor corresponding to the level of significance. k χ_r^2 Chi-square statistic with r degrees of freedom. Sum of the squares of the weighted corrections minimised in the solution of the least wsquares normal equations. Pelzer's measurement reliability criterion. auTPelzer's global network reliability criterion.

Chapter 1

Introduction

DynaNet is a rigorous, high performance least squares adjustment application. It has been designed to estimate 3D station coordinates and uncertainties for both small and extremely large geodetic networks, and can be used for the adjustment of a large array of Global Navigation Satellite System (GNSS) and conventional terrestrial survey measurement types. On account of the phased adjustment approach used by DynaNet, the maximum network size which can be adjusted is effectively unlimited, other than by the limitations imposed by a computer's processor, physical memory and operating system memory model. Example projects where DynaNet can and has been used include the adjustment of small survey control networks, engineering surveys, deformation monitoring surveys, national and state geodetic networks and digital cadastral database upgrade initiatives.

DynaNet provides the following capabilities:

- Import of data in geographic, cartesian and/or projection (UTM) coordinates contained in DNA, CSV, DynaML and SINEX data formats;
- Input of a diverse range of measurement types;
- Transformation of station coordinates and measurements between several static and dynamic reference frames;
- Rigorous application of geoid-ellipsoid separations and deflections of the vertical;
- Simultaneous (traditional) and phased adjustment modes;
- Automatic segmentation and adjustment of extremely large networks in an efficient manner;
- Rigorous estimation of positional uncertainty for all points in a network;
- Detailed statistical analysis of adjusted measurements and station corrections;
- Production of high quality network plots;
- Automated processing and analysis with minimal user interaction.

1.1 Brief history of phased adjustment and DynaNet

Since Gauss published his treatment of the method of least squares in 1809, Tienstra [1956] was the first to develop the concept and principles of phased adjustment. In his work, Tienstra defines the principle property of phased adjustment as — "Least squares problems may be divided into an arbitrary number of phases, provided that in each following phase(s), cofactors resulting from preceding phases are used." Using the method of condition equations and Ricci calculus, Tienstra demonstrated that rigorous parameter estimates for all stations could be derived in a step—wise fashion by treating the parameters estimated in one phase as quasi-measurements in the next phase.

Since the time of his publication, Tienstra's concept of phased adjustment has been studied by several authors, and has been extended and implemented in various forms. Initially, Professor Dr. Ir. Willem Baarda of the Computing Centre of the Delft Technological University (where Tienstra was Professor until his death in 1951) led the implementation of Tienstra's phased adjustment algorithm for the 1959 adjustment of the United European levelling network [Alberda, 1963]. A few years later, Lambeck [1963] studied phased adjustment and demonstrated that Krüger's [1905] method of stacking normal equations was mathematically equivalent to Tienstra's phased adjustment technique. Schmid and Schmid [1965], in their discussion of the *generalised approach* to least squares, include an algorithm which solves least squares problems "sequentially" in steps. Their algorithm is essentially the same as Tienstra's phased adjustment algorithm, although it is designed to provide for the addition and removal of measurements after all parameters in the network have been estimated, rather than to provide a mechanism for handling the adjustment of a large network in stages.

Kouba [1970, 1972] studied the phased adjustment method and demonstrated that the sequential least squares technique developed by Schmid and Schmid [1965] was mathematically equivalent to that of Tienstra's. In his work, Kouba made an important contribution to the study of phased adjustment by demonstrating that all junction parameter estimates and variances must be carried between phases if rigorous results are to be achieved. Ying Chung–Chi [1970] summarised Tienstra's work using matrix algebra and extended the concept to adjustment by observation equations. Ying Chung–Chi also demonstrated mathematical equivalence between Tienstra's method and Krüger's method. Although Ying Chung–Chi [1970] does not formally prove that Tienstra's phased adjustment method will give the same estimates as a simultaneous adjustment, he demonstrates that it does so numerically for a simple level network.

The next major application of Tienstra's concept of phased adjustment was the Canadian Section Method, developed by Pinch and Peterson [1974]. In this development, Pinch and Peterson formally prove that where two sections of a network are adjusted independently in a first stage adjustment, and the estimates of the parameters common to the two sections (with their variance matrices) are integrated in a second stage adjustment, the second stage estimates will be identical to those produced from a simultaneous adjustment. Whilst their method produces rigorous estimates for the junction station parameters and variance matrices, Gagnon [1976] notes that in the final phase of the process, rigorous variance matrix estimates are not produced for the inner¹ stations of each block.

The Canadian Section Method has been used widely in Australia for adjustments of the national network subsequent to the Australian Geodetic Datum 1966² (AGD66). These are referred to as various versions of the Geodetic Model of Australia (GMA) and include the adjustments termed GMA73, GMA80, GMA82 and GMA84, the latter of which led to the development of the Australian Geodetic Datum 1984 (AGD84) [Allman, 1983, Allman and Steed, 1984]. The establishment of the North American Datum 1983 (NAD83) and the European Datum of 1987 (ED87) also made use of the Canadian Section Method, although they varied from Tienstra's approach in that they employed Helmert Blocking for the solution of the normal equations.

Around the time of the development of the early GMA adjustments, Leahy [1983] revisited the application of Tienstra's phased adjustment method to the adjustment of large geodetic networks. This led to further research [Leahy et al., 1986] and the development of VicNet — a two-dimensional

^{1.} Repeated mention of inner and junction stations will be made throughout this user guide. By way of preliminary definition, inner stations are the stations which are connected only by measurements in a single section, whereas junction stations are those which are connected by measurements from two or more sections. See §6.2 for more information.

^{2.} Whilst the establishment of AGD66 was conducted in phases using the process of segmenting the network into smaller sections, the approach undertaken for the adjustment and integration of the respective sections didn't employ Tienstra's rigorous phased adjustment technique. This was largely driven by the challenges and complexities associated with undertaking a large scale adjustment on 1960's computational infrastructure.

package designed to undertake phased adjustments of geodetic networks comprised of conventional terrestrial measurements. This software package was refined by Collier [1991] to accommodate three–dimensional adjustments and the integration of GPS baseline measurements. With these enhancements and other new capabilities and bug fixes, the software became known as MetNet and was used extensively for the adjustment of the Melbourne survey control network. Further research by Leahy [1999] led to the development of a fully automated network segmentation procedure which can handle networks of any size and configuration, and a rigorous approach for the extension and integration of networks.

Continued research on the automatic segmentation and phased adjustment of large geodetic networks gave rise to further refinements in the algorithm and the development of a new 32-bit Windows package (developed in Visual Basic 6) known as *Dynamic Network Adjustment (DNA)*. The initial development of DNA was undertaken by Leahy and Collier [1998] at the University of Melbourne and was made possible through funding provided by the Australian Research Council (ARC) and industry support from the Office of Surveyor–General Victoria, AUSLIG Geodesy and WBCM Surveys Pty Ltd. Following numerous enhancements and refinements in subsequent years, DNA was repackaged and released as DynaNet version 1.0. In turn, version 2.0 was developed to cater for new measurement types, and to provide several user enhancements.

1.1.1 Preamble to Version 3.3

DynaNet Version 3.0 is a completely revised version developed by the authors of this user guide. It has been re—written in C++ to provide cross—platform support (e.g. Windows, Linux, Mac OS X), and to take advantage of multi—core processors so as to achieve optimum adjustment performance. The main specifications of DynaNet and the environments in which it has been compiled and tested include:

- Developed using C++11 and the C++ Standard Library, Boost [Schäling, 2014], CodeSynthesis XSD [Kolpackov, 2017] and Apache's Xerces C++ XML parser [Apache, 2017];
- The modular architecture design and comprehensive API allows for implementation via custom software development;
- Developed for Windows, Linux and Mac OS X platforms, and runs on 32-bit and 64-bit operating systems;
- Compiled using Microsoft C++ 2010 and 2017, Intel C++ 2014 and 2017, and gcc 4.8.2;
- Tested on Windows XP, Windows 7, Windows 2003 Server. RedHat Enterprise Linux (RHEL) 7, Fedora 23 and OpenSUSE 10.

DynaNet Version 3.3 contains new features and user options, numerous code enhancements, and various bug fixes.

1.2 Conventions used in this document

The following typographical and mathematical conventions have been adopted throughout this document:

- DynaNet program names are indicated by bold sans serif font. For example, the program **import** is the main program for importing data into DynaNet.
- Program execution on the command line usage is denoted by fixed-width typewriter font.
 Examples of program execution at the command prompt are encapsulated by a grey box. If different syntax is required for Windows and UNIX/Linux platforms, syntax for both environments

will be provided. Program options may be either inline with the text or placed within a grey box. For example, basic command line usage of **import** is given by:

```
> import -n network_name network.stn network.msr
```

and the program option for specifying the input directory is --input-folder.

• File names and file contents are denoted by fixed—width typewriter font. File contents are encapsulated by a grey box with column positions shown in a separate box:

• Math symbols are given in serif font. Variables are denoted by upper or lower case letters in italics, as in b or a. Matrices are denoted by upper case letters in bold font, as in a, and vectors are denoted by lower case letters in bold font, as in a. The identity matrix is denoted by a, and the context in which it is used determines its dimensions. The term a variance a matrix is used to refer to the covariance matrix or variance—covariance matrix and is denoted by a. Indexing of matrix and vector elements is denoted by a superscripts a and a denote the transpose and inverse respectively. For a random variable a, the notation a is a and variance a.

1.3 Program overview

This section provides an overview of the DynaNet software architecture and a summary of the various DynaNet programs. The general philosophy of program execution and configuration via program options and arguments is also explained.

1.3.1 Software architecture and information flow

DynaNet consists of several programs, the functionality of which is distributed across a number of executables and Dynamic Link Libraries (DLL) using a modular, service—oriented architecture. The modular architecture of DynaNet affords several advantages, such as:

- Individual programs can be executed to perform a specific function relating to the processing and adjustment of geodetic networks;
- One or more programs can be chained together in a customised sequence to satisfy a specific user requirement;
- A sequence of program calls can be invoked via scripts at will, at scheduled times or as part of a larger automated datum maintenance environment;
- Routine and conventional processing of geodetic control surveys can be handled in a single step.

To assist with conventional end-to-end processing, the main program **dynanet** serves as a wrapper application which can be used to coordinate the execution of one or more DynaNet programs in a single step. The coordination of the various programs is illustrated in Figure 1.1.

Figure 1.1: Coordination of DynaNet program execution

A brief description of the various DynaNet programs is given below:

import

To create and process projects in DynaNet, this program must be run first to define the network name, and to convert geodetic station coordinates and measurements from external file formats into the required binary and text file formats (see §2.2.2). Note that **import** only needs to be run once in order to import geodetic station coordinates and measurements into DynaNet. Accordingly, **import** does not need to be run for repeated calls to other programs unless there is a change to the stations or measurements, or if some form of manipulation to the import process is required. Chapter 3 provides detailed information on how to use and configure **import**.

reftran

This program performs reference frame transformations to align all imported stations and measurements to a common reference frame and epoch. See Chapter 4 for more information on using **reftran**.

geoid

This program introduces geoid–ellipsoid separations and deflections of the vertical into a project from either an NTv2 formatted geoid model or ASCII text file. This program can optionally export interpolated geoid information to a DNA geoid text file. **geoid** also provides a capability to generate NTv2 formatted files from the legacy AUSGeoid DAT file format. See Chapter 5 for more information on using **geoid**.

segment

This program segments a network into a series of inter–connected blocks for use by **adjust** in phased adjustment mode. See Chapter 6 for more information on using **segment**.

adjust

This is the main parameter estimation program in DynaNet. **adjust** can be executed in simultaneous or phased adjustment mode. When attempting to adjust large networks using phased adjustment, **adjust** may be executed in single—thread or multi—thread mode. For the former, users may opt to use staged mode if physical memory limits prevent normal program execution. A reverse, Block—1 only adjustment may also be undertaken if the desired outcome is a full variance matrix for a specific cluster of stations. See Chapter 8 for more information on using **adjust**.

plot

This program generates PDF images of a network from the imported information and graphs relating to network segmentation and adjustment statistics. More information on **plot** and its use will be given in a subsequent version of this guide.

As is hinted by Figure 1.1, the coordination of DynaNet programs is handled via a .dnaproj (DynaNet project) file. The use of the project file will be discussed in more detail in Chapter 2.

The programs **import**, **reftran**, **geoid**, **segment**, **adjust** and **plot** read and write a range of formatted files in a way which permits the structured flow of information. Figure 1.2 illustrates the flow of information amongst the various programs and files.

Figure 1.2: Flow of information between various DynaNet programs and input and output files

As shown in Figure 1.2, information exported from one program often serves as input to other programs. This concept affords the user an ability to examine the output from one program before executing another program, and to re—run certain programs with different user options and to examine the variation in results. A brief description of the various file types is discussed in Chapter 2.

1.3.2 Program execution and command line options

DynaNet programs can only be executed from the system command prompt (or *shell* or *terminal emulator*), via Windows batch files (.bat and .cmd) and UNIX/Linux shell scripts (.sh), or from system calls made within custom—developed programs. Hence, DynaNet Version 3.3 does not provide a windows—based graphical user interface (GUI).

The convention for executing DynaNet programs is to enter a program name, followed by one or more *options* that modify its behaviour and, if required, an *argument* upon which the program will act. The convention is as follows:

> program --option argument

The complete command line reference for all DynaNet programs is provided in Chapter A. To display the command line reference for a DynaNet program, type in the program name at the command prompt, followed by --help and press Enter:

```
> dynanet --help
```

Alternatively, if no program options are provided upon program execution, the program's version information and command line reference will be displayed on the screen.

There are over 140 program options which can be used to configure the way in which DynaNet programs process geodetic network information. Each DynaNet program will require certain options specific to its operation and depending on which option has been provided, additional arguments may be required. Several options, such as --quiet, --version and --help are common to all programs. If an option requires an argument, the command line reference will use the term arg.

All options are case—sensitive and must be preceded by two hyphens. Spaces must not be entered between the hyphen and the option text, however spaces are required between options. Options can be provided in any order whatsoever. Some options may be specified using an abbreviated form. For example, to display the version of a DynaNet program, the abbreviated form –v may be used. In addition, all DynaNet programs permit the use of partial option text, provided that the partial option text contains a sufficient number of characters to uniquely distinguish the required option from all other options. For example, the program **import** will export newly imported stations and measurements in DNA format if the option –-export-dna-files is provided. This function can also be executed by providing –-export-d. However, **import** will return an error if just –-export is provided since there are five export options that commence with the text export.

When a program option requires an argument, input may require alpha–numeric entry and/or the selection of a multiple–choice option. If an argument must include spaces, such as a station name, enclose the argument with double quotes, such as:

```
> program --option "arguments with spaces"
```

For multiple choice options, DynaNet will adopt the default value (denoted in the command line reference) unless the user overrides it by supplying an alternative argument value. For example, **import** provides an ability to specify the default reference frame for all stations and measurements contained in the user—supplied input files via the option —reference—frame (or -r in brief). As this option provides a multiple choice, only predefined reference frames are allowed. If this option is not provided, **import** will adopt the Geocentric Datum of Australia 1994 (GDA94) as the default value. Several options adopt this convention.

Following chapters will explain in detail the function of each program and how to configure program behaviour using the program options.

1.3.3 Program execution sequence

Figure 1.3 shows the program execution sequence employed by **dynanet** when performing end—to—end processing. For the most part, this sequence will be adequate for conventional geodetic network processing and adjustment.

Figure 1.3: DynaNet program execution sequence

There are two circumstances, however, where this sequence may not be appropriate or will need to be varied. Firstly, depending on the desired outcome, only some stages will be necessary. For this purpose, **dynanet** provides the user with an ability to choose which DynaNet programs to execute. The following examples explain some basic scenarios in which the user will require the execution of only a subset of the DynaNet programs:

Ellipsoid—only adjustment To estimate coordinates on the ellipsoid from a small geodetic control survey of GNSS measurements which are aligned to a common reference frame, only **import** and **adjust** are required.

Multiple reference frames If the GNSS measurements in this survey are aligned to different reference frames, then the sequence **import**, **reftran** and **adjust** will be required.

Terrestrial measurements If terrestrial measurements (e.g. angles, distances and orthometric height differences) form part of this survey, then the sequence will change to **import**, **reftran**, **geoid** and **adjust**. Here, **geoid** is added to the sequence to obtain geoid–ellipsoid separations and deflections of the vertical which are used by DynaNet to cater for the influence of gravity on the terrestrial measurements.

Generate basic network plot If only a plot of all stations and measurements in a network is required, then only **import** and **plot** are required.

Generate plot of error ellipses, uncertainties and corrections If the network plot should also include estimated error ellipses, circular confidence regions and *a-priori* station corrections derived from a least squares adjustment, then the sequence will be **import**, **adjust** and **plot**.

Secondly, network processing and adjustment may require data concatenation, screening (or filtering), scaling and multiple transformations between different reference frames before the network is suitable for processing by **adjust**. For these tasks, it is recommended that a script file be used to string together the needed program calls to achieve the required program execution sequence.

In either case, knowing which programs to execute will require a knowledge of the data and an elementary knowledge of geodetic measurement, reference frames and adjustment theory.

1.4 Two-minute quick start tutorial

This section provides a quick start tutorial to processing geodetic network information in DynaNet. The example used in this tutorial is a network comprised of six stations and nine GNSS baseline measurements. The the project is named <code>skye</code>, and the stations and measurements are contained in 2009-10-20-skye.stn and 2009-10-20-skye.msr respectively. Figure 1.4 shows the stations and measurements in the <code>skye</code> network. The station file contains a mixture of ellipsoid heights and orthometric heights on the Australian Height Datum (AHD). The GNSS baseline measurements and variance matrices have been derived from conventional GNSS processing software and have been estimated according to the Geocentric Datum of Australia 1994 (GDA94). No scaling has been applied to the variance matrices.

Figure 1.4: Stations and measurements in the skye network

Step 1 — Prepare the script

For this and many other examples provided in this user guide, it is assumed that users will want to make use of a script file to string together several DynaNet program calls. Apart from some basic differences, calls to DynaNet programs will be identical for both Windows and UNIX/Linux platforms and can therefore be copied directly to a Windows batch file or a UNIX/Linux shell script respectively.

For Windows platforms, prepare a file called run_skye.bat as follows:

```
echo off
rem Script to automate processing of skye geodetic network
```

For UNIX/Linux platforms, prepare a file called run_skye.sh as follows:

```
#!/bin/bash
# Script to automate processing of skye geodetic network
```

To execute this script using the UNIX/Linux shell, the execute permission for run_skye.sh will need to be granted to the current user (or group or all users). The file execute permission can be set by:

```
$ chmod +x ./run_skye.sh
```

Alternatively, this script can be executed from the command line using bash:

```
$ bash ./run_skye.sh
```

Step 2 — Import the data

The next step to be undertaken is to create a project named skye. In this step, a call to **import** is required to name the project and to introduce the station and measurement files. Setting the network name and importing files into DynaNet is achieved by:

```
import -n skye 2009-10-20-skye.stn 2009-10-20-skye.msr
```

Upon running this command, the project skye is created and several files will be written to disk: skye.bst, skye.bms, skye.map, skye.asl, skye.aml and skye.imp. See Chapter 2 for an explanation of these file types.

Step 3 — Introduce geoid-ellipsoid separations

Since DynaNet requires all station heights to be reduced to the ellipsoid prior to adjustment, the next step is to convert the orthometric station heights to ellipsoid heights. For this purpose, interpolation of geoid–ellipsoid separations from a geoid model is needed. To this end, the script would be expanded as follows:

```
import -n skye 2009-10-20-skye.stn 2009-10-20-skye.msr
geoid skye -g ./ausgeoid09.gsb --convert-stn-hts
```

Here, geoid—ellipsoid separations will be interpolated from ausgeoid09.gsb, which is a geoid grid file structured according to the National Transformation version 2.0 (NTv2) format. The option —convert—stn—hts informs **geoid** that all orthometric station heights should be converted to ellipsoid heights. After this command is executed, all stations in the binary station file skye.bst will contain geoid—ellipsoid separations and deflections of the vertical, and any orthometric heights will be reduced to ellipsoid heights.

Step 4 — Adjust the network

DynaNet offers the flexibility to undertake constrained and minimally constrained (or *free*) least squares adjustments in a number of ways. Adjustments may also be performed in a single pass via simultaneous mode or sequentially in phases using phased adjustment mode. For this tutorial, the skye network will be adjusted using no constraints and, given the relatively small size of this control survey, via simultaneous mode. Assuming that station constraints have not been introduced into either station or measurement files, the script would be expanded as follows:

```
import -n 2009-10-20-skye.stn 2009-10-20-skye.msr
geoid skye -g ./ausgeoid09.gsb --convert-stn-hts
adjust skye --output-adj-msr
```

From this call to **adjust**, the resulting adjustment output file will be called <code>skye.simult.adj</code>. The option <code>--output-adj-msr</code> was added so as to print a table of adjusted measurements and statistics to the <code>.adj</code> file.

If it is decided that a station should be constrained, users can choose one of three options to apply station constraints — (1) set the station constraint flag within the station file, (2) add a station position measurement to the measurement file, including the measurement precision by which to constrain the station, or (3) specify the station and how it is to be constrained via the call to **adjust**. The third option, which in effect replicates the first option, can be achieved by the following change to the call to **adjust** (using station 302513640 as an example):

```
adjust skye --output-adj-msr --constraints 302513640,CCC
```

This section has provided a simple tutorial on using DynaNet to perform a straightforward network adjustment of GNSS observations. Detailed help on program usage for numerous other processing tasks will be provided throughout the remainder of this user guide.

Chapter 2

Creating, editing and processing projects

2.1 Introduction

DynaNet uses the concept of a *project* to manage the input, processing and output of geodetic network information. For each project, DynaNet uses a project file to store default and user specified options. The user options contained in a project file configure the way in which the respective DynaNet programs handle the geodetic network information relating to a project. At execution time, each program can be configured by providing a project file path as a program argument, or by specifying the respective options as program arguments. Since DynaNet Version 3.3 can be executed from the system command prompt or from custom—developed programs, project files can be used to completely automate the processing of geodetic networks, and to capture the options used during program operation.

This chapter explains the various conventions used by DynaNet for managing projects, how to prepare input files, and provides an overview of the basic program operation. More information about the various options for each program will be explained in subsequent chapters.

2.2 Conventions used in DynaNet

2.2.1 File naming

Central to the management of projects is the *network name*. DynaNet uses the network name to form the file names for all generated output files, and to determine which file to open when information generated from one program must be read as input by another program. The basic file naming convention is represented by network_name.ext where network_name is the user—supplied network name and ext is the file extension. In some cases, DynaNet generates files in the form of network_name.mode.ext where mode represents either a mode in which a program has been executed or a user—specified program option.

To permit the input of files with a different file name to that which is expected from the default naming convention, the file name for certain input files may be overridden by providing the relevant command line argument. This feature will be covered in more detail in subsequent chapters describing the input and output options of the various programs.

The network name is a mandatory argument required by all DynaNet programs except **import**. If a network name is not specified when running **import**, DynaNet adopts the name 'network#' where '#' represents the next available integer that yields a unique (or unused) file name in the folder of

program execution.

The primary exceptions to the file naming convention are station and measurement files (e.g. *.snx, *.stn, *.msr, *.xml) provided as input to **import**, and the raw data files and formatted grid files (e.g. *.dat, *.csv, *.gsb) provided as input to **geoid**. No restrictions are imposed upon the naming of these files other than that the file extension corresponds with the file format. The file extension restriction is imposed only for certain file types which prevent DynaNet from automatically interpreting file content.

2.2.2 File types

As shown in Figure 1.2 on page 6, DynaNet creates and/or updates a number of binary and text files, which are treated as either output and/or input files. The following is a list of file types created by DynaNet in accordance with the file naming convention (assuming the network name is network name):

Binary formatted file types

- network_name.aml Associated Measurements List. This file contains a list of measurements that a station appears in.
 - .asl Associated Stations List. This file contains a count of the measurements connected to a station and the index of this station in the AML file.
 - .bms Binary Measurements file. This file contains information about the measurements in a network. The BMS file is a binary formatted file created using an efficient file structure to provide maximum efficiency for retrieving measurement information.
 - .bst Binary Stations file. This file contains information about the stations in a network. The BST file is a binary formatted file created using an efficient file structure to provide maximum efficiency for retrieving station information.
 - .map Station Map. This file maintains the relationship between the supplied alphanumeric name and a unique (numerical) station identifier.
 - .mtx Matrix file. This file stores matrices in a structured file format designed for efficient data storage.
 - .dbid Database ID list. This file contains the user–supplied database IDs for measurements contained in DNA formatted measurement files.

ASCII text file types

- network_name.imp import log. This file is a log of the station and measurement import process.
 - .seg **segment** output. This file contains the station and measurement indices for the respective blocks created from network segmentation.
 - .adj adjust output. This file contains the adjusted station coordinates and measurements and associated statistics.
 - .xyz Adjusted Station Coordinates produced by **adjust**.
 - .cor Station Coordinate Corrections produced by **adjust**. This file contains the corrections to the initial station coordinates.
 - .apu Adjusted Positional Uncertainty produced by **adjust**. This file contains the positional uncertainties of the adjusted station coordinates.

- .dbg Debug output. This file contains detailed program output information to help assist with isolating network adjustment problems.
- .dst Duplicate Stations list. This file contains a list of stations that were identified as duplicates by **import**.
- .dms Duplicate Measurements list. This file contains a list of measurements that were identified as duplicates by **import**.
- .log **dynanet** log. This file provides a time–stamped record of the progress of the individual programs that have been coordinated by **dynanet**.

2.2.3 Directories

By default, all DynaNet programs expect input files to exist in the directory in which the programs are run. DynaNet will also generate output files in this directory. Optionally, an input folder and an output may be specified to inform the DynaNet programs where to find input files and where to store output files. This feature will be covered in more detail in subsequent chapters.

2.3 Project setup and processing

2.3.1 Prepare station and measurement files

The first step in creating a project is to prepare the station and measurement files. DynaNet supports a small range of file types. Appendix B provides a list of supported file types and the format specification for selected file types. Stations and measurements may be provided in one or more files, each of which may be encoded in any one of the supported file formats. DynaNet does not impose any restrictions on how this information should be structured and so the user is left to decide which file type is chosen and how station and measurement information will be stored.

2.3.2 Create DynaNet project file

In order to process projects in a single step using the main program **dynanet**, a project file must be created. Note that a project file does not need to be created if the various DynaNet programs will be executed manually, or executed via Windows batch files or UNIX/Linux shell scripts. In these cases however, a project file will be created and updated automatically as each program is executed.

There are two options for creating a DynaNet project file — users may create this file manually or use **import** to create this file automatically. The file format for the project file is described in §B.3. Each time **import** is executed, a new project file will be created using the network name and the default or user—specified output folder path. If this file exists, it will be re—created using the options and arguments supplied. Options which have not been provided will assume default values. All other options and arguments supplied to **import**, such as network name and station and measurement files, will be printed to project file. Users not familiar with the project file format are encouraged to use **import** to create the project file, and to use a text editor to modify the project file with the desired options and arguments.

2.3.3 Automated project processing

Upon creating a project file, projects can be processed in a single step using the main program **dynanet**. Using the project file shown in §B.3 for the skye project (see §1.4), the following command illustrates how end–to–end processing can be performed in a single step using **dynanet**.

```
dynanet -p skye.dnaproj --import --geoid --adjust
```

The first option (-p) and argument (skye.dnaproj) inform **dynanet** where to find the project file. Since the folder path was not provided on the command line, DynaNet will assume the project file is located in the folder from which **dynanet** is executed. As shown by the general section in Figure B.13, §B.3, this folder is C:\Data\proj.

The second, third and fourth options tell **dynanet** to execute **import**, **geoid** and **adjust** respectively using the options specified in the project file. The order of these options is not important since **dynanet** will adopt the program execution sequence shown in Figure 1.3. With respect to **import**, the mandatory network name and input files are entered into the project file using --network-name (under #general) and --stn-msr-input-file (under #import) respectively. All other options use default arguments. For **geoid**, the NTv2 geoid grid file path and conversion of orthometric heights to ellipsoid heights are handled by --ntv2-filepath and --convert-stn-hts (under #geoid). Finally, configuring **adjust** to perform a simultaneous adjustment, holding station 302513640 fixed, and to produce a table of adjusted measurements and statistics in the adjustment output (.adj) file is managed by --adjustment-mode and --constraints (under #adjust), and --output-adj-msr (under #output). Note that the options and arguments under #reftran and #segment are ignored since the **dynanet** argument to execute **reftran** (-reftran) was not provided, and **adjust** was configured to run a simultaneous adjustment.

As **dynanet** runs, it will load the options contained in the project file and pass them to the respective programs. Upon execution, a log file named dynanet.log will be created and will contain a time–stamped record of the progress of the individual programs that have been executed. A sample of the log file is shown below.

```
+ Title:
           dynanet
+ Description: Geodetic network adjustment software
+ Version:
             3.2.6, Release (64-bit)
+ Build:
             Sep 22 2016, 16:23:21 (MSVC++ 10.0)
+ Copyright:
             (C) 2016 F.J.Leahy, P.A.Collier, R.W.Fraser.
             This software is released under a restricted license.
+ Contact:
             dynanet.mail@gmail.com
             +61 407 062 507
+ Executable Start date and time
                                                     Exit status
                                End date and time
          11-04-2014 6:04:06 PM 11-04-2014 6:04:07 PM Ended successfully.
+ import
            11-04-2014 6:04:07 PM
                                 11-04-2014 6:04:08 PM
                                                       Ended successfully.
+ geoid
            11-04-2014 6:04:08 PM
                                11-04-2014 6:04:09 PM
+ adjust
                                                       Ended successfully.
+ DynaNet finished successfully.
```

Chapter 3

Import and export of geodetic network information

3.1 Introduction

DynaNet supports a number of file formats for the exchange of geodetic network information. The primary file formats supported by DynaNet, Version 3.3 for the import and export of stations, measurements and adjustment solutions include:

CSV (Comma/Character Separated Values format) for the exchange of stations, measurements and geoid information without concern for aligning data in specific positions

DNA (Dynamic Network Adjustment format) for the exchange of stations, measurements and geoid information in a simple, human–readable format. Versions 1 and 3 are supported.

DynaML (DynaNet Markup Language format) for the exchange of stations and measurements in XML format defined according to the DynaNet 2.0 XML schema

GeodesyML (Geodesy Markup Language format) for the exchange of station, measurement, solution and covariance information in XML format defined according to ICSM's eGeodesy GML application schema

SINEX (Solution-INdependent EXchange format) for the exchange of solutions and covariance information

Appendix B provides the file format specification for the CSV, DNA and DynaML file types. The specification for GeodesyML can be found at http://geodesyml.org. The specification for the SINEX file format can be found at

http://www.iers.org/IERS/EN/Organization/AnalysisCoordinator/SinexFormat/sinex.html

DynaNet also reads and writes a number of binary and ASCII file formats for the exchange of geodetic network adjustment information. These will be described throughout this section as the need arises.

3.2 Importing station and measurement information

The primary program for importing and converting geodetic network stations and measurements into the format required by DynaNet is **import**. To import station and measurement information into DynaNet, type import at the command prompt, followed by one or more options and arguments. The

complete command line reference for **import** is given in §A.2. If no program options are provided upon program execution, the command line reference for **import** will be displayed.

If a DynaNet Project File (c.f. Chapter 2) is to be used, provide --project-file (or its shortcut -p) followed by the full path for the project file:

```
import -p uni_sqr.dnaproj
```

No other options are required, as **import** will be invoked using the options and arguments contained in the project file uni_sqr.dnaproj.

Alternatively, if all options and arguments are to be entered via the command line, type import, then -network-name (or its shortcut -n) followed by the network name and the names of the files that contain the station and measurement information:

```
import -n uni_sqr uni_sqrstn.xml uni_sqrmsr.xml
```

If the --network-name option and argument are omitted, **import** will use the default "network1" name. If there is evidence in the current directory that "network1" has already been created, then "network2" will be used. The integer appended to "network" increases until the first available network name is found.

Whether using a project file or not, additional options and arguments can be supplied to configure the way in which this information is imported. When using a project file, any additional options and arguments provided on the command line will overwrite the values contained in the project file.

3.2.1 Station coordinate information

import accepts station coordinate information in three commonly accepted coordinate systems, namely, Geographic coordinates, Universal Transverse Mercator (UTM) projection coordinates, and Earth–centred cartesian coordinates. Geographic coordinates are expressed as *latitude*, *longitude* and *height*, where height may be *ellipsoidal* height or *orthometric* height. UTM projection coordinates are expressed as *Easting*, *Northing*, *zone* and *height*. Earth–centred cartesian coordinates are expressed as *X*, *Y* and *Z*. These coordinate systems and the methods by which DynaNet handles transformations between them are explained in Chapter 4. With reference to the supported file formats described in the introduction, Table 3.1 lists the coordinate types handled by the respective file formats.

Table 3.1: Station coordinate types handled by the supported file formats

Format	CSV	DNA	DynaML	GeodesyML	SINEX
Geographic (d.mmss)	•	•	•	•	•
Geographic (d.dddd)				•	
UTM Projection	•	•	•	•	
Cartesian	•	•	•	•	•

Appendix B explains the formatting of station coordinate information for each of the supported file

formats. §3.2.3 explains the concept of station constraints and how they are interpreted by DynaNet. Configuring the default reference frame for stations is described in §3.3.1.

3.2.2 Supported measurement types

DynaNet supports a wide range of GNSS and terrestrial measurement types. To facilitate the efficient management of these types, DynaNet uses the concept of a measurement code. The measurement types and corresponding codes supported by DynaNet are listed in Table 3.2.

Table 3.2: Supported measurement types and measurement codes

Code	Measurement type
Α	Horizontal angles (uncorrelated)
В	Geodetic azimuth (or bearing)
C	Ellipsoid chord distance
D	Direction set
Е	Ellipsoid arc distance
G	Single GNSS baseline $(\Delta x \Delta y \Delta z)$
Н	Orthometric height
1	Astronomic latitude
J	Astronomic longitude
K	Astronomic (Laplace) azimuth
L	Orthometric height difference
M	Mean sea level (MSL) arc distance
Р	Geodetic latitude
Q	Geodetic longitude
R	Ellipsoid height
S	Slope (direct) distance
V	Zenith distance
Χ	GNSS baseline cluster (full correlations)
Υ	GNSS point cluster (full correlations)
Z	Vertical angle

A brief description of these measurement types, including the observation equations implemented within DynaNet for relating them to the unknown parameters are described in §7.2. Appendix B explains the formatting of measurement information for each of the supported file formats.

3.2.3 Network constraints

DynaNet permits networks to be constrained using two different forms — via station constraints and position measurement constraints. Multiple constraints of both forms may be applied to a network.

Station constraints

Station constraints can be imposed on a network as either *free* ('F') or *constrained* ('C'), and either constraint may be applied to one, two or three station cardinals (hereafter referred to as parameters). Station constraints may be provided in CSV, DNA, DynaML and GeodesyML formats (see Appendix B for help on formatting for the respective file formats).

Station parameters which the user considers fixed can be *constrained*, so that they will not be subject to variation by least squares adjustment. Station parameters held *free* are those in which the user expects variation according to network geometry, measurements and their uncertainties, and other station parameter constraints. Stations held constrained in three dimensions define the datum (position, rotation and scale) for other stations held free in the network. Care should be exercised when applying multiple station constraints, as constraining multiple stations with poor coordinate estimates can lead to network distortions and/or cause several measurements to fail (c.f. §9.3.2). By default, free stations are assigned an uncertainty of 10.0 m, and constrained an uncertainty of 0.001 mm. To alter these values, refer to the paragraph on default constraint values in § 8.3.3 on page 117.

When all unknown parameters in a network are held free, the solution of the parameters is undertaken as a *free network adjustment*. Accordingly, the estimation of parameters derives solely from the measurements. When the minimum number of parameters required to estimate all dimensions of the network are constrained, the solution is undertaken as a *minimally constrained adjustment*. In this case, poor coordinate estimates for the fixed station will not distort the network nor cause measurement failures. The exception to this of course is if position measurements are supplied for the constrained station and there is a significant difference between the constrained station coordinates and the position measurements. In the absence of these inconsistencies, both free network adjustments and minimally constrained adjustments may be used to test the least squares adjustment and the reliability of the measurements and their uncertainties (see §9.3).

DynaNet supports the application of any combination of free and constrained parameter constraints to any number of stations in a network. The advantage of combining Free and Constrained parameter constraints is illustrated as follows. At times, there may be a single parameter (e.g. a station height) which cannot be estimated from the available measurements. At other times, a particular plane or axis may contain no measurements and as such, a one–dimensional or two–dimensional adjustment is necessary. In either case, station constraints may be applied to fix parameters for which estimation is not required without compromising the least squares adjustment.

Position measurement constraints

Like constrained stations, position measurement constraints provide a means for defining the geodetic datum for all stations in a network. However, position measurement constraints are somewhat different in that they permit the least squares adjustment to vary the parameter estimates in accordance with network geometry, measurements and their uncertainties, and any other station parameters held constrained. Providing a position measurement with an extremely small value of uncertainty is identical to holding a station constrained (or fixed), whereas providing a position measurement with an extremely large value of uncertainty is identical holding a station free.

The measurement types which act as positional constraints include GNSS point cluster (Y), geodetic latitude (P), geodetic longitude (Q), astronomic latitude (I) astronomic longitude (J), orthometric height (H) and ellipsoid height (R). Hence, to constrain a network horizontally, provide P and Q measurements for the station to be constrained together with appropriate standard deviations to reflect the amount by which the station should be constrained. Similarly, H or R measurements with appropriate standard deviations may be supplied to constrain a network in the vertical direction.

A GNSS point cluster with full variance matrix (e.g. obtained from a GNSS Continuously Operating Reference Station (CORS) network, made available via a SINEX file) is the most rigorous approach for constraining a network in three dimensions, and for defining a datum for the stations of a network. As with station constraints, care should be exercised when supplying position measurements as poor measurement estimates or over–optimistic values of uncertainty can lead to network distortions and/or cause several measurements to fail.

3.2.4 Geoid information

In order to rigorously combine measurements subject to the influence of the anomalous gravity field with GNSS measurements within a single adjustment, geoid–ellipsoid separations and deflections of the vertical are required. For this purpose, **geoid** facilitates the interpolation of the required geoid information from a structured geoid grid file (see Chapter 5).

import also provides a capability for importing geoid information into DynaNet for two primary purposes. Firstly, there may be instances where more accurate and higher resolution geoid information has been observed over an area but is not yet available within a geoid grid file. In this case, all information about a geodetic network can be imported in a single step. Secondly, **import** offers an option to simulate measurements observed in the local reference frame which contain realistic measures of geoid—ellipsoid separations and deflections of the vertical (see §3.4).

To introduce geoid information into DynaNet, add --geo-file to the list of options for import, followed by the geoid file name:

```
import -n uni_sqr uni_sqrstn.xml uni_sqrmsr.xml --geo-file uni_sqr.geo
```

See §B.1.5 for help on formatting geoid information using the DNA geoid file format.

3.2.5 File name argument conventions

When supplying **import** with options and arguments relating to input station and measurement files, DynaNet offers a few conventions to simplify the process of entering file names. Firstly, supplying a file name does not require the --stn-msr-input-file option (or its shortcut -f). Secondly, any number of station and measurement files may be supplied, whether of the same or different file formats. Thirdly, input files can be supplied in any order. The following hypothetical example shows how a number of files and file formats may be used:

```
import -n my_net constraints.snx gps_bsl.xml level.msr level.stn
```

This example creates a new network called "my_net", which is comprised of station constraints in constraints.snx, GNSS baselines and associated stations in gps_bsl.xml, and spirit levelling measurements in level.msr and stations in level.stn.

3.2.6 Progress reporting and import log

Once **import** has been executed with the relevant options and arguments, **import** will report to the screen a number of items relevant to the project (e.g. name, location of input and output files); the progress of file reading; summary of loaded station and measurement information; progress

of various processing tasks; and final exit status (i.e. success or failure). Figure 3.1 shows the information reported to the screen upon program execution.

```
+ Options:
 Network name:
                                   uni_sqr
  Input folder:
 Output folder:
 Associated station file: ./uni_sqr.asl
Associated measurement file: ./uni_sqr.aml
Binary station output file: ./uni_sqr.bst
 Binary measurement output file: ./uni_sqr.bms
 Default reference frame
                                   GDA94
+ Parsing:
 uni_sqrstn.xml... Done. Loaded 149 stations in 0.035s
  uni_sqrmsr.xml... Done. Loaded 1199 measurements in 0.04s
+ Reducing stations... Done.
+ File parsing summary:
 Read 149 stations:
  (CCC) 3D constrained:
  (FFF) 3D free:
                                        145
 (CCF) 2D constrained, 1D free:
(FFC) 2D free, 1D constrained:
(CFF) custom 2D constraints:
                                       1
                                          1
  -----
 Read 1199 measurements:
  (A) Horizontal angle: 251
(B) Geodetic azimuth: 1
(C) Chord dist: 0
  (C) Chord dist:
  (D) Directions:
                                          0
  (E) Ellipsoid arc:
                                       114
  (G) GPS baseline:
  (H) Orthometric height:
  (I) Astronomic latitude:
                                         0
1
  (J) Astronomic longitude:
  (K) Astronomic azimuth:
  (L) Level difference:
                                        89
                                        1
  (M) Mean sea level arc:
  (P) Geodetic latitude:
  (Q) Geodetic longitude:
                                          0
  (R) Ellipsoidal height:
  (S) Slope distance:
                                         428
  (V) Zenith angle:
                                        300
  (X) GPS baseline cluster:
                                         0
  (Y) GPS point cluster:
                                         12
  (Z) Vertical angle:
                                          1
                                        1199*
 Total
  * Includes 17 ignored measurements
+ Testing for duplicate stations... Done.
+ Sorting stations... Done.
+ Serialising station map... Done.
+ Mapping measurements to stations... Done.
+ Creating association lists... Done.
+ Serialising association lists... Done.
+ Serialising binary station file uni_sqr.bst... Done.
+ Serialising binary measurement file uni_sqr.bms... Done.
+ Total file handling process took 0.697s.
+ Binary station and measurement files are now ready for processing.
```

Figure 3.1: import progress reporting of data import, conversion and processing

The amount of information will vary depending on the options and arguments supplied to **import**, such as folder locations, input files, file contents, reference frame, data screening, GNSS measurement scaling and export. This information is also logged to a file named uni_sqr.imp. Any errors encountered during the various tasks will result in premature program termination and a description of the error.

3.2.7 Verification and error checking

When **import** is executed, a number of verification and error checking tasks are undertaken upon loading the information into DynaNet. These tasks are briefly summarised below.

Empty strings

As data is loaded from the input files, **import** will verify that non–empty strings exist for mandatory fields and elements. The fields and elements which are mandatory will depend upon which station coordinate type and measurement is being supplied. For instance, zone is not required when supplying station coordinates in geographic format. Instrument and target heights are only required for slope distances, vertical angles and zenith angles. Refer to the file format specification in Appendix B for a list of mandatory fields and elements for the respective station coordinate types and measurement types.

Testing for duplicate stations and measurements

When supplying **import** with station and measurement information either in one file or in a number of files, **import** will identify and remove *duplicate* station information. Although input file arguments may be supplied in any order, **import** processes input files sequentially in the order they have been entered on the command line. If a station contained in an earlier input file is found in a subsequent file, the latter station will be regarded as a duplicate station and thereby ignored. All duplicate stations are printed to a file with a .dst extension. If it is essential that duplicate station information be maintained across multiple files, then the user must ensure that the file which contains the *desired* station information (e.g. station name, coordinates and constraints) is loaded first.

When concatenating networks contained in different files, the same station can sometimes appear in the station and measurement files twice with different station names. To assist users with the detection of two differently named stations which are intended to represent the same station, **import** provides the --search-nearby-stn option. See §3.3.2 for more information on using this option.

As for measurements, it is quite normal for several repeated measurements to be observed over the same set of stations. Sometimes, measurement files can contain two independent measurements with equal values. For this reason, **import** does not attempt to remove measurements which appear to be identical and so the responsibility for checking for duplicate measurements falls to the user. **import** affords the ability to test for duplicates via the --search-similar-msr option. See §3.3.2 for more information on using this option to search for duplicate measurements.

Station and measurement connectivity

Two tests are performed to ensure that the supplied station and measurement information is valid in the context of network connectivity. Firstly, a test is performed to verify that the station file(s) contain information about all stations connected to the measurements. For this test to pass, the station names referenced in each measurement must exist in the station file exactly as they appear

in the measurements. This test is case sensitive and includes whitespace. Any stations which are not found in the station file will cause **import** to terminate prematurely with an error message. Secondly, any stations which are not connected to any measurements will be noted as unused and marked for exclusion from segmentation and adjustment processes. See the section on Flagging unused stations on page 31 for configuring the way in which unused stations are handled.

3.3 Configuring import options

3.3.1 Reference frame

DynaNet provides a capability to transform station coordinates and GNSS measurements between several static and dynamic reference frames via **reftran** (see Chapter 4). The purpose of this functionality is to align stations and GNSS measurements on multiple reference frames to a common reference frame prior to least squares adjustment. To this end, **reftran** expects all stations and measurements to be tagged with a recognised reference frame abbreviation. The reference frames and abbreviations supported by DynaNet are listed in Table 4.1 of Chapter 4. If the reference frame is dynamic, **reftran** will also require an epoch.

Since reference frame information is not always present in CSV, DNA, DynaML, GeodesyML and SINEX input files¹, **import** provides two options to efficiently associate a reference frame to stations and measurements upon loading the input files.

Default Reference frame

Before any input files are loaded, **import** by default assumes that the reference frame for all incoming stations and measurements is GDA94. If an input file does not contain reference frame information, this default reference frame option will be adopted. However, if an input file contains reference frame information, this information will be retained. To specify a different default reference frame to be used for all stations and GNSS measurements contained in the input files, add the option --reference-frame (or its shortcut -r) followed by the reference frame abbreviation to the list of **import** options. For example, to assign the International Terrestrial Reference Frame 2008, run the following command:

import -n igs_net constraints.snx gps_bsl.xml level.stn level.msr -r ITRF2008

In this example, <code>import</code> will set <code>ITRF2008</code> as the default reference frame for the GNSS Point cluster measurement loaded from <code>constraints.snx</code>, all GNSS baseline measurements loaded from <code>gps_bsl.xml</code>, and for all stations from <code>gps_bsl.xml</code> and <code>level.stn</code>. This is effected by setting the default reference frame abbreviation in the binary station (<code>.bst</code>) and binary measurement (<code>.bms</code>) files. Any GNSS measurement which does not have a reference frame abbreviation assigned to it will adopt this default abbreviation. The default epoch assigned to the GNSS baselines in <code>gps_bsl.xml</code> will be the reference epoch of the user—supplied frame. The reference epoch contained in the SINEX file <code>constraints.snx</code> is not altered by this option. Similarly, any GNSS measurements loaded from a measurement file that have already been assigned a reference frame will not be altered.

^{1.} According to the SINEX 2.02 specification, a SINEX file must contain a reference epoch for the solution, however there is no provision for storing the reference frame. Both DynaML and GeodesyML contain elements for managing reference frame and epoch, although this information is not mandatory. CSV and DNA Version 3 provides the ability for reference frame and epoch to be stored, but again this information is optional. See Appendix B for more information.

Override input reference frame name

The option --reference-frame sets the default reference frame and thereby only comes into effect if a GNSS measurement has not already been assigned a reference frame (see, for example, Table B.8 in Appendix B). To override the assigned measurement reference frame with the default reference frame, provide the option --override-input-ref-frame.

Handling multiple different reference frames

Note that option --reference-frame will set the default reference frame for all input files in a single step. If a project is based upon multiple input files aligned to different reference frames, a blanket application of a single reference frame to all stations and measurements may lead to non-rigorous results. To ensure the correct reference frame is associated with the imported stations and measurements, a number of processing steps may be required. For instance, some or all of the following may be required:

- Where file format specification allows (e.g. CSV, DNA and DynaML formats. See B.1), set the default and measurement–specific reference frame of the stations and measurements within in the input file;
- Where file formats do not make provision for setting the default reference frame, use a two–step approach:
 - 1. Group files together which are aligned to a common reference frame. Set the default reference frame upon loading the input files with **import**.
 - 2. Execute **reftran** with the desired reference frame and export to the desired file format (see Chapter 4).
 - 3. Repeat steps 1. and 2. until the appropriate reference frame and epoch have been assigned to all stations and measurements.

Further details on performing reference frame transformations will be provided in Chapter 4.

3.3.2 Data screening

When undertaking network maintenance tasks, it is often necessary to screen or filter input data using some specialised criteria to produce a thinned or optimal subset of the network. At other times, it may be necessary to search input data for inconsistent, incorrect or duplicate information. The data screening helps provided by **import** include extracting stations and measurements based on geographical region, network connectivity, network segmentation, and measurement type. Helps for searching for inconsistent, incorrect or duplicate information include station nearness, measurement similarity and flagging and ignoring station and measurement information.

Geographical region

To import stations and measurements within a rectangular geographical region, pass the option --bounding-box to **import** followed by a comma delimited string in the form of latitude and longitude pairs defining the upper left and lower right corners of the bounding box. For example, considering the skye network shown in Figure 1.4 on page 9, the command:

import -n skye skye.stn skye.msr --bounding-box -38.0630,145.1130,-38.07,145.12

will import stations 302513640, 302513650, 302509800 and 302502400, and all connected GNSS baselines wholly within the bounding box. The stations and measurements that are imported using this command are shown in Figure 3.2.

Figure 3.2: Stations and measurements in the skye network filtered by the --bounding-box option.

Note that only the stations and measurements which lie wholly within the limits of the bounding box will be imported. To include measurements which transcend the bounding box, add the option --get-msrs-transcending-box. By default, GNSS baseline clusters and GNSS point clusters which transcend a bounding box will not be split and as a consequence, will be ignored from the import process. If option --bounding-box is intended to be used to obtain a subset of a GNSS baseline or point cluster, add the option --split-gnss-cluster-msrs.

Including or excluding stations and measurements

To import only a set of specific stations and associated measurements, pass to **import** the option <code>--include-stns-assoc-msrs</code> followed by a comma delimited string defining the stations to be imported. This option will also import any stations connected to the associated measurements. For example, the command:

```
import -n skye skye.stn skye.msr --include-stns-assoc-msrs 302502400
```

will import station 302502400, all measurements associated with 302502400, and stations 302513650 and 302509800 which happen to be connected to the associated measurements. Any measurements between stations 302513650 and 302509800 will not be imported. For these measurements to be included, add 302513650 or 302509800 to the argument string. As with the bounding box function, if --include-stns-assoc-msrs is intended to be used to obtain a subset of a GNSS point or baseline

cluster, add the option --split-gnss-cluster-msrs.

Conversely, to import all stations except a set of specific stations, pass to **import** the option <code>--exclude-stns-assoc-msrs</code> followed by a comma delimited string defining the stations to be excluded from the import process. This option will also exclude all measurements associated with that station, but not other stations. For example, the command:

```
import -n skye skye.stn skye.msr --exclude-stns-assoc-msrs 302513650
```

will import all stations except station 302513650 and all measurements associated with it. If the intention is to exclude one or more stations from a GNSS point or baseline cluster, add the option --split-gnss-cluster-msrs.

Segmented network block

DynaNet provides a capability to segment a network into a series of connected blocks via **segment** (see Chapter 6). The purpose of this functionality is support phased adjustment. Once a network has been segmented, stations and measurements within a segmented block can be imported using the option <code>--import-block-stn-msr</code> and the desired block number as an argument:

```
import -n uni_sqr uni_sqrstn.xml uni_sqrmsr.xml --import-block-stn-msr 3
```

Using this command sequence, only the stations and measurements in block 3 will be imported. For this command sequence to work as intended, a segmentation file named uni_sqr.seg must exist in the folder from which **import** was executed, and this file must contain at least three blocks (see Chapter 6 for more information on the creation of segmentation files). To use an alternative segmentation file, pass to **import** the option --seg-file followed by the name of the segmentation file. If the segmentation file is located in another directory, the file name must include the full folder path.

Measurement type

For networks of mixed measurement types, options <code>--import-msr-types</code> and <code>--exclude-msr-types</code> can be used to include or exclude certain measurements from the import process. Both options take for their argument a non-delimited string defining the measurement types to be included or excluded. For example, the following command will only import GNSS measurements:

```
import -n uni_sqr uni_sqrstn.xml uni_sqrmsr.xml --import-msr GXY
```

Conversely, the following command will import all measurements except astronomic latitude and longitude:

```
import -n uni_sqr uni_sqrstn.xml uni_sqrmsr.xml --exclude-msr IJ
```

An additional option under the category of measurement type is --prefer-single-x-as-g. This option will convert all GNSS baseline cluster (X) measurements containing a single baseline into GNSS baseline (G) measurements.

Station renaming

At times it will be necessary to rename multiple stations throughout a network, such as to correct stations which have been wrongly named in the field or during data processing, or to change from a well-known alias to another preferred name (or alias). To rename one or more stations upon importing stations and measurements, pass the option --stn-renaming-file to **import** followed by the name of the station renaming file:

```
import -n skye skye.stn skye.msr --stn-renaming-file skye.renaming
```

The structure and format of the station renaming file is shown in Figure 3.3. The first column is the preferred name to which all occurrences of the names listed in columns 1, 2, ..., n will be changed. The number of characters reserved for each station name field will be defined according to the DNA STN file format version. For DNA version 3.0 onward, this width is 20. Rows beginning with an asterisk are treated as comments and are ignored.

```
12345678901234567890123456789012345678901234567890123456789012345678901234567890
!#=DNA 3.01 REN
* Station renaming file
* List the preferred name first, and then all other aliases a mark may have
* NEWNAME (20 chrs) ALIAS (20 chars)
                                                                                 ALIAS (20 chars)
                                      ALIAS (20 chars)
                                                          ALIAS (20 chars)
302513640
                    1364
302509800
                    980
302508300
                    830
261907650
                    765
```

Figure 3.3: Station renaming file

Station nearness

When concatenating networks contained in different files, the same physical station can sometimes appear in the station and measurement files with different station names. To assist with identifying stations with different names, pass the option <code>--search-nearby-stn</code> to <code>import</code> and, if required, pass the option <code>--nearby-stn-buffer</code> followed by a distance in metres by which to search for nearby stations. For example, to search for stations in <code>uni_sqrstn.xml</code> within 1.5 metres of each other, run the following command:

```
import -n uni_sqr uni_sqrstn.xml --search-nearby-stn --nearby-stn-buffer 1.5
```

This command will produce the following output:

```
+ Testing for duplicate and nearby stations... Done.

- Error: 1 station was found to be separated by less than 1.5m.

See ./unisqr.dst for details.

If the names in each pair refer to the same station, then update the station and measurement files with the correct station name and re-run import.

Alternatively, if the names in each pair are unique, either call import without the --search-nearby-stn option, or decrease the radial search distance using --nearby-stn-buffer.
```

Having identified one or more nearby stations, **import** will create a file called uni_sqr.dst in which will be printed a list of stations that are separated by less than 1.5 metres. The contents of this file

are as follows:

```
DUPLICATE STATION FILE
                                  May 26 2014, 22:27:14 (MSVC++ 10.0)
Build
File created
                                  Monday, 26 May 2014, 10:30:35 PM
File name
                                  C:\Data\unisqr.dst
Command line arguments
                                  import -n unisqr uni_sqrstn.xml --search-nearby-stn --nearby-stn-buf 1.5
Network name
                                  unisar
                                  C:\Data\unisqr.bst
Stations file
Measurements file
                                  C:\Data\unisgr.bms
Associated station file
                                 C:\Data\unisqr.asl
Associated measurement file
                                  C:\Data\unisqr.aml
Duplicate stations output file
                                 C:\Data\unisqr.dst
Similar measurement output file C:\Data\unisqr.dms
Input files
                                  uni_sqrstn.xml
                                  GDA94
Default reference frame
Search for nearby stations
                                 tolerance = 1.5m
Nearby station search results:
1 station was found to be separated by less than 1.5m:
  First station
                     Nearby station
                                         Separation (m)
                     NEWP
                                         0.531
  2120
```

Once **import** has identified the stations that satisfy the search criteria, it is up to the user to verify if the stations listed in the .dst file are the same physical station or not. If a single station has been inadvertently given different names in the station and measurement files, redundant station information can be harmonised by:

- 1. Amalgamate the station information record(s) to form a single station with the preferred station name, coordinates and constraints.
- 2. Search and replace in the measurement file all instances of the redundant station name with the preferred station name

It is anticipated that a future version of DynaNet will provide an automated approach for harmonising redundant station information.

Measurement similarity

As in the case for stations, concatenating networks contained in different files can easily result in duplicate measurements in the measurement files. Duplicate measurements can be difficult to detect as it is normal and legitimate for redundant measurements to exist. To assist with identifying duplicate measurements, pass the option <code>--search-similar-msr</code> to <code>import</code>:

```
import -n uni_sqr uni_sqrmsr.xml --search-similar-msr
```

This sequence of commands will produce the following output:

```
+ Searching for similar measurements...

- Error: 3 measurements were found to be very similar (if not identical)
to other measurements. See ./uni_sqr.dms for details.

If the listed measurements are true duplicates, either remove each duplicate
from the measurement file and re-run import, or re-run import with the
--ignore-similar-msr option. Alternatively, if each measurement
is unique, then call import without the --search-similar-msr option.
```

As shown in the above output, **import** will create a file called unisqr.dms in which will be printed a list of measurements that appear to be similar or identical to other measurements. The format of the similar measurements is DynaML as follows:

```
3 measurements were found to be very similar (if not identical)
to other measurements.
<!--Type L Level difference-->
<DnaMeasurement>
  <Type>L</Type>
  <Ignore/>
  <First>2214</First>
  <Second>2213</Second>
  <Value>0.0010</Value>
  <StdDev>0.0020</StdDev>
</DnaMeasurement>
<!--Type S Slope distance-->
<DnaMeasurement>
  <Type>S</Type>
  <Ignore/>
  <First>2205</First>
  <Second>2213</Second>
  <Value>13.3010</Value>
  <StdDev>0.0050</StdDev>
  <InstHeight>0.000</InstHeight>
  <TargHeight>0.000</TargHeight>
</DnaMeasurement>
<!--Type S Slope distance-->
<DnaMeasurement>
  <Type>S</Type>
  <Ignore/>
  <First>6002</First>
  <Second>1049</Second>
  <Value>136.4290</Value>
  <StdDev>0.0100</StdDev>
  <InstHeight>1.601</InstHeight>
  <TargHeight>1.337</TargHeight>
</DnaMeasurement>
```

As with stations, the second and subsequent appearances of a measurement with similar attributes will be regarded as a duplicate. Once **import** has identified the measurements that satisfy the test for similarity, it is up to the user to verify if the measurements listed in the .dms file are the same measurement or different measurements. Measurements which are duplicates can either be removed from the measurement file, or set as an ignored measurement. For example, measurements can be ignored in DNA files by providing an asterisk (*) for the ignore flag (see Table B.3, §B.1.4).

For very large networks which have been derived from hundreds of GNSS survey projects, it is possible for a single GNSS data set to be inadvertently processed twice, resulting in unique but *similar* GNSS baselines and GNSS baseline clusters. At times, these similar measurements can be difficult to detect due to slight variations in the generated GNSS vector and variance matrix components. To search for single GNSS baselines which may be similar to a GNSS baseline cluster, pass the option ——search—similar—gnss—msr to **import**. This option will cause **import** to identify every single GNSS baseline where both terminal stations are contained within a GNSS baseline cluster and where both

measurements the same reference frame and epoch.

Ignoring similar measurements

Upon verifying whether the measurements listed in the .dms file are duplicate measurements, the user may opt to remove the duplicate measurements or flag them as ignored for further verification. To automatically ignore all measurements identified as similar. add --ignore-similar-msr to the list of options for import:

```
import -n uni_sqr uni_sqrstn.xml uni_sqrmsr.xml --ignore-similar-msr
```

Executing this command will automatically flag any measurements deemed to be similar as other measurements in the network as ignored and thereby exclude them from all subsequent processing.

Removing ignored measurements

Measurements which are flagged as ignored, whether in the measurement file or by supplying the --ignore-similar-msr option, can be automatically removed from all subsequent processing as follows:

```
import -n uni_sqr uni_sqrstn.xml uni_sqrmsr.xml --remove-ignored-msr
```

This option can be combined with option --ignore-similar-msr in a single command:

```
import -n uni_sqr uni_sqrstn.xml uni_sqrmsr.xml --ignore-similst-msr --remove-ignored-msr
```

Executing this command will automatically flag similar measurements and, together with any other measurements already marked as ignored, will not be written to the binary measurement file.

Flagging unused stations

Upon loading the station and measurement information from the input files, any stations not connected to any measurements will be noted as unused and thereby marked for exclusion from segmentation and adjustment processes. However, **import** will retain these stations within the binary station file. Accordingly, functions such as data export (see §3.5) will include these stations.

To prevent unused stations from being used in any further processing, pass to **import** the option --flag-unused-stations:

```
import -n uni_sqr uni_sqrstn.xml uni_sqrmsr.xml --flag-unused-stations
```

3.3.3 GNSS variance matrix scaling

For the most part, GNSS measurement and variance matrix information will be sourced from files generated by a GNSS processing package. Depending on the processing strategy, it is possible that the variance matrices accompanying the GNSS measurements will need some form of scaling such that a more realistic estimate of the GNSS measurement precision is incorporated within an

adjustment. GNSS measurement variance matrices may be scaled using the appropriate scalar fields within the input files (e.g. Table B.8 on page 177 for DNA file format, or Figure B.23 on page 190 for DynaML file format). In addition, **import** provides a capacity to scale GNSS variance matrices via five different scaling options. Table 3.3 lists the lists the various GNSS variance matrix scaling options (c.f. Table A.6 on page 155 in the Command line reference).

Table 3.3: GNSS variance matrix scaling options

Option	All msrs	Clusters	Matrix	North-south	East-west	Up
v-scale	•	•	•			
p-scale	•	•		•		
l-scale	•	•			•	
h-scale	•	•				•
baseline-scalar-file			•	•	•	•

As shown in Table 3.3, GNSS variance matrix scaling can be applied to all GNSS measurements contained in all measurement files passed to **import**, or to individual GNSS baselines. Individual baseline scaling is based upon the contents of a baseline scalar file and does not apply to GNSS point or baseline clusters. Whether scaling all or individual GNSS variance matrices, scaling can be applied in two different ways — via a single matrix multiplier (or variance factor) or via individual scalars corresponding to the three dimensions of the local reference frame. One or more scaling options in any combination can be passed to **import**.

To scale all GNSS variance matrices by a single multiplier, pass to **import** the option --v-scale followed by a scalar value. For example, to scale all variance matrices in the skye project by a factor of 10.0, run the following command:

```
import -n skye skye.stn skye.msr --v-scale 10
```

To scale all GNSS variance matrices by partial scalars in the north–south, east–west or vertical directions, pass to **import** the options --p-scale, --l-scale or --h-scale respectively, followed by the relevant scalar value. For example, to scale all variance matrices in the skye project by a factor of 2.0 in the horizontal direction and 5.0 in the vertical direction, run the following command:

```
import -n skye skye.stn skye.msr --p-scale 2 --1-scale 2 --h-scale 5
```

To scale specific GNSS baseline variance matrices, pass to **import** the option --v-scale followed by the name of the baseline scalar file:

```
import -n skye skye.stn skye.msr --baseline-scalar-file skye.scalars
```

The structure and format of the baseline scalar file is shown in Figure 3.4. 20 characters are reserved for the two station names, and 10 characters are reserved for v-scale, p-scale, l-scale and h-scale.

123456789012345	6789012345678901234567	789012345678901	23456789012	2345678901:	234567890
GNSS BASELINE V	/ARIANCE MATRIX SCALAR	FILE			
SCALARS					
Station 1	Station 2	v-scale	p-scale	l-scale	h-scale
409601230	409601240	100.0	1	1	1
409601230	409601250	10	2	2	5
409601230	409601260	1	3	3	10

Figure 3.4: Baseline scalar file

For all scaling options, §7.3.2.1 describes the procedure implemented by DynaNet for scaling GNSS variance matrices.

3.4 Network measurement simulation

import provides a capability to simulate a network of GNSS and terrestrial measurements through the <code>--simulate-msr-file</code> option. In order to simulate measurements, two files are required — a station file and a measurement simulation control file. Upon execution, measurements are simulated for all measurement types and station names listed in the measurement simulation control file. Measurement values are calculated using the coordinates provided in the station file. The following command demonstrates the use of **import** to simulate measurements:

```
import -n simnet simnet.stn simnet-list.msr --simulate
```

Running this command will create a DNA measurements file named simnet.simulated.msr which will contain measurements generated from the station coordinates in simnet.stn and the types and station names in simnet-list.msr. The input station file simnet.stn must conform to the DNA station file format (c.f. §B.1.3). The input measurement simulation control file simnet-list.msr must conform to the DNA measurement file format (c.f. §B.1.4) in principle, the exceptions being that only measurement types, station names and cluster counts need to be present. Figure 3.5 shows a sample simulation control file.

The measurement values in the simulated measurements file are calculated exactly from the station coordinates. All other information is generated as follows:

• Standard deviations for measurement types C, E, L, M and S will be calculated from

$$3.0 \times \sqrt{(L/1000.0)}/100.0$$

where L is the calculated distance in metres;

- Standard deviations for measurement types H and R will be set to 0.024 metres.
- Variance matrices for G, X and Y measurement types will be set to:

$$\left[\begin{array}{cccc} 4.022000 \text{E-}05 & -1.369000 \text{E-}05 & 3.975000 \text{E-}05 \\ -1.369000 \text{E-}05 & 1.487000 \text{E-}05 & -2.035000 \text{E-}05 \\ 3.975000 \text{E-}05 & -2.035000 \text{E-}05 & 6.803000 \text{E-}05 \end{array} \right]$$

- Station and target heights for measurements which require these heights (e.g. S, V, Z) will be set to 1.650 and 1.651 metres respectively.
- Standard deviations for measurement types A, B, D, K, V and Z will be set to 0.01 seconds.
- Standard deviations for measurement types I, J, P and Q will be set to 0.021 seconds.

		~~·			
!#=DNA 3.00 MSR	16.06.2014	GDA94	01.01.1994	20	
* Measurement sim					
A 503	304	307			
В 909	1010				
C 501	309				
D 602	302	2			
		501			
		503			
E 503	307				
G 604	606				
Н 105					
I 106					
J 106					
K 101	202				
L 910	1010				
M 604	706				
P 105					
Q 105					
R 106					
S 602	302				
V 109	207				
X 406	501	2			
109	501				
Y 406	XYZ	3			
203					
509					
Z 503	307				

Figure 3.5: Example simulation measurements list

If orthometric heights are supplied in the station file, or if simulated terrestrial measurements are intended to contain a realistic measure of the influence of the gravity field, geoid–ellipsoid separations and deflections of the vertical can be added to the measurements through the use of a DNA geoid file. To this end, add the --geo-file option (c.f. §3.2.4), followed by the geoid file name:

```
import -n simnet simnet.stn simnet-list.msr --simulate --geo-file simnet.geo
```

If a DNA geoid file has not been created, **geoid** may be called to interpolate and export the geoid–ellipsoid separations and deflections of the vertical to a DNA geoid file. For this purpose, a binary station file for simnet is required. The steps are as follows:

- 1. Import the simulation station file to create the binary station file simnet.bst.
- 2. Interpolate the geoid information (from simnet.bst) and export to a DNA geoid file.
- 3. Simulate using the station file, simulation control file and the newly created geoid file.

The command line sequence for these steps is as follows:

```
import -n simnet simnet.stn
geoid simnet --ntv2-file ausgeoid09.gsb --export-dna-geo
import -n simnet simnet.stn simnet-list.msr --simulate --geo-file simnet.geo
```

See Chapter 5 for more help on interpolating geoid information from a geoid grid file.

3.5 Data export

In addition to translating the external file formats into the binary formats required by DynaNet, **import** provides a capacity to export geodetic network information into a number of different file formats. The options for exporting information include:

- Export of station and measurement information to CSV, DNA, DynaML, GeodesyML and SINEX file formats
- Export of geodetic network binary files (MAP, AML, ASL) to equivalent plain text variants

Export options can be passed to **import** together with any other option. Hence, the residual station and measurement information generated through the various configuration options can be stored for subsequent import, filtering and processing.

3.5.1 Station and measurement files

To export station and measurement information into CSV or DNA format, pass to **import** the option <code>--export-dna-files</code> or <code>--export-csv-files</code> respectively. Similarly, to export station and measurement information into DynaML format, pass the option <code>--export-xml-files</code>. For example, the following command will export DNA station and measurement files comprised of only GNSS measurements found within the <code>uni_sqr</code> project, with the default reference frame set to <code>ITRF2005</code> and all GNSS variance matrices scaled by <code>100.0</code>:

```
import -n us_bsl uni_sqrstn.xml uni_sqrmsr.xml --v-sc 100 --ref itrf2005 --import-m GXY --export-dna --flag
```

Running this command will produce two files named us_bsl.stn and us_bsl.msr corresponding to the station and measurement files respectively. Since --flag-unused-stations was passed to **import**, stations which become disconnected from removed measurements (as a result of importing only GNSS measurements) will not be written to the station file.

The option --export-xml-files will produce two XML files named <network_name>stn.xml and <network_name>msr.xml corresponding to the station and measurement files respectively. To produce a single DynaML file, pass to **import** the option --single-xml-file with --export-xml-files.

Note that if the network name supplied in the above command matched the name of the input files according to the file naming convention described in §2.2.1 (i.e. uni_sqr), and data is exported to the same file format as the input files, then the original input files will be overwritten.

3.5.2 Association lists and station map

As discussed in §2.2.2, DynaNet reads and writes a number of binary files. The Station Map (MAP), Associated Stations List (ASL) and Associated Measurements List (AML) may be exported to plain text to assist with detailed analysis of the network's geometry, measurement connectivity and measurement frequency. To export the ASL, AML and MAP to their plain text counterparts, run the following command:

```
import -n us_bsl us_bsl.stn us_bsl.msr --export-map --export-asl --export-aml
```

This command will produce three files named us_bsl.map.txt, us_bsl.asl.txt and us_bsl.aml.txt. The fields contained in the exported files are described in Tables 3.4, 3.5 and 3.6.

Table 3.4: Station Map fields

Field	Description
Station name	The station name as given in the input station and measurement files. The column header contains the number of stations detected in the input files.
Station index	The (zero-based) index of the station name in an alpha-numeric sorted list of all station names. DynaNet uses this index when referring to stations during all internal processing.

Table 3.5: Associated Stations List fields

Field	Description
Station name	The station name as given in the input station and measurement files. The column header contains the number of stations detected in the input files.
No. connected msrs	The number of measurements connected to this station.
AML index	The (zero-based) index of the first record of this station's appearance in the Associated Measurements List.
Unused?	If an asterisk is present, this station is not connected to any measurements.

Table 3.6: Associated Measurements List fields

Field	Description
Station name	The station name as given in the input station and measurement files. The column header contains the number of records in the file.
Msr index	The (zero-based) index of this measurement in the binary measurements file.
Msr type	The type of measurement (c.f. Table 3.2) and which measurement station this station refers to (first, second or third)
Cluster	If this measurement is part of a cluster, this number represents the index of the cluster in a list of all detected clusters.
Ignored msr?	If an asterisk is present, this measurement has been marked as ignored.

Chapter 4

Transformation of coordinates and measurements

4.1 Introduction

Recognising that GNSS surveying is the most highly utilised measurement technique for geodetic network establishment and maintenance, DynaNet has been designed around the use of pre–processed GNSS measurements for the estimation of network station parameters. DynaNet has also been designed to integrate measurements taken in the local reference frame with GNSS measurements in an earth–centred, cartesian reference frame.

But since the reference frame of GNSS measurements is directly related to the reference frame of the satellite orbit information used during GNSS processing, it is inevitable that GNSS measurements taken over several successive years will be based upon different reference frames and epochs. This is primarily due to the fact that since the launch of the first GNSS satellites, several reference frames (and versions) have been adopted for broadcast and precise ephemeris. The reference frames that may be relevant in this context can include:

- The PZ-90 coordinate system. Used for the Russian GLObal NAvigation Satellite System (GLONASS).
- The International Terrestrial Reference Frame (ITRF). Adopted by the International GNSS Service (IGS) for their precise orbit products.
- The World Geodetic System of 1994 (WGS84). Used for the Global Positioning System (GPS). Since its establishment, WGS84 has been aligned (and re-aligned) to several versions of ITRF.

In all cases, these frames can undergo several iterations (or revisions), such as ITRF1988, ITRF1992, ITRF2008, etc. WGS84 is regularly updated and aligned to ITRF. It follows that each frame realisation will have a different reference epoch. Accordingly, there is a fundamental need to handle transformations of GNSS measurements between these reference frames if the combination and adjustment of multiple GNSS measurements in a single solution is to be free from *reference frame bias*. To this end, **reftran** has been developed to transform stations and GNSS measurements between a selection of commonly used reference frames.

The first part of this chapter ($\S4.2 - \S4.5$) presents the theory of reference frames and coordinate systems, conversions between coordinate systems, transformation of coordinates and measurements between static and dynamic reference frames, and propagation of variances. The remainder of the chapter describes the use of **reftran** and its options.

4.2 Reference frame fundamentals

4.2.1 Cartesian reference frame

The cartesian reference frame is a three–dimensional system, the origin o of which is coincident with the centre of the reference ellipsoid. The referencing of point p is by means of orthogonal displacements parallel to the x, y and z axes. Figure 4.1 illustrates point p in relation to the axes of the cartesian reference frame, and the relationship between cartesian coordinates and geodetic latitude ϕ , geodetic longitude λ and ellipsoid height h.

Figure 4.1: The ellipsoid-centred cartesian reference frame

A vector \mathbf{x}_c between two points in the cartesian reference frame will have the elements:

$$\mathbf{x}_c = \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix} \tag{4.1}$$

As shown by Figure 4.1, geodetic latitude is the angle between the equatorial (x-y) plane and the normal to the ellipsoid through p, and geodetic longitude is the angle between the zero meridian and the meridian through p. Ellipsoid height is the distance of p above p', which is a point projected onto the reference ellipsoid along the ellipsoid normal. As Figure 4.1 indicates, the coordinates defining the location of p are dependent upon the size, shape and location of the reference ellipsoid.

4.2.2 Geographic reference frame

With respect to Figure 4.1, geographic reference frame (or geodetic) coordinates ϕ , λ and h are related to the corresponding cartesian coordinates by the following expressions:

$$x = (\nu + h)\cos\phi\cos\lambda$$

$$y = (\nu + h)\cos\phi\sin\lambda$$

$$z = \left[\nu(1 - e^2) + h\right]\sin\phi$$
(4.2)

where ν is the radius of curvature in the prime vertical, given by:

$$\nu = \frac{a}{\sqrt{\left(1 - e^2 \sin^2 \phi\right)}} \tag{4.3}$$

a is the quantity representing the semi-major axis of the reference ellipsoid and e^2 is the first eccentricity obtained from:

$$e^2 = \frac{(a^2 - b^2)}{a^2} \tag{4.4}$$

and b is the semi-minor axis of the ellipsoid (coincident with the z axis).

As will be required for later developments, the radius of curvature in the prime meridian ρ at ϕ is given by:

$$\rho = \frac{a(1-e^2)}{(1-e^2\sin^2\phi)^{\frac{3}{2}}} \tag{4.5}$$

and the distance oq which provides for the z coordinate of the point q — being at the intersection of the normal at p with the polar axis of the ellipsoid — is given by:

$$oq = e^2 \nu \sin \phi \tag{4.6}$$

4.2.3 Local reference frame

The local reference frame is a three–dimensional orthogonal system that has its origin on or above any point on the ellipsoid, and is oriented with respect to the local geodetic meridian. Figure 4.2 illustrates the axes of the local reference frame in relation to the cartesian reference frame. The vector displacement up is coincident with the ellipsoid normal. The orientation of the local reference frame varies with respect to latitude ϕ and longitude λ .

Vectors in the cartesian reference frame can be represented in the local reference frame as \mathbf{x}_l :

$$\mathbf{x}_{l} = \begin{bmatrix} \Delta e \\ \Delta n \\ \Delta up \end{bmatrix} \tag{4.7}$$

A vector \mathbf{x}_l in the local reference frame is related to the cartesian reference frame by:

$$\mathbf{x}_c = \mathbf{R}_l \mathbf{x}_l \tag{4.8}$$

where \mathbf{R}_l is the rotation matrix with origin at latitude ϕ and longitude λ :

$$\mathbf{R}_{l} = \begin{bmatrix} -\sin\lambda & -\sin\phi\cos\lambda & \cos\phi\cos\lambda \\ \cos\lambda & -\sin\phi\sin\lambda & \cos\phi\sin\lambda \\ 0 & \cos\phi & \sin\phi \end{bmatrix}$$
(4.9)

Figure 4.2: The local reference frame

Equation 4.8 can be written in expanded form as:

$$\begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix} = \begin{bmatrix} -\sin \lambda(\Delta e) - \sin \phi \cos \lambda(\Delta n) + \cos \phi \cos \lambda(\Delta up) \\ \cos \lambda(\Delta e) - \sin \phi \sin \lambda(\Delta n) + \cos \phi \sin \lambda(\Delta up) \\ \cos \phi(\Delta n) + \sin \phi(\Delta up) \end{bmatrix}$$
(4.10)

Since \mathbf{R}_l is orthogonal¹, a vector \mathbf{x}_c in the cartesian reference frame is related to the local reference frame by:

$$\mathbf{x}_l = \mathbf{R}_l^T \mathbf{x}_c \tag{4.11}$$

which can be written in expanded form as:

$$\begin{bmatrix} \Delta e \\ \Delta n \\ \Delta up \end{bmatrix} = \begin{bmatrix} -\sin\lambda(\Delta x) + \cos\lambda(\Delta y) \\ -\sin\phi\cos\lambda(\Delta x) - \sin\phi\sin\lambda(\Delta y) + \cos\phi(\Delta z) \\ \cos\phi\cos\lambda(\Delta x) + \cos\phi\sin\lambda(\Delta y) + \sin\phi(\Delta z) \end{bmatrix}$$
(4.12)

4.2.4 Polar reference frame

At times it is necessary to transform vectors in a local reference frame into a displaced orthogonal polar reference frame. Figure 4.3 illustrates the displacement of a local reference frame at point p_2 in relation to the polar frame at point p_1 by geodetic azimuth (θ) , vertical angle (θ) and direct distance (s).

^{1.} A matrix is orthogonal if the inverse of that matrix is equal to its transpose, i.e. $\mathbf{R}^T = \mathbf{R}^{-1}$.

Figure 4.3: Orthogonal reference frames displaced by geodetic azimuth, vertical angle and distance

With respect to Figure 4.3, a, v and s are unit vectors defining the displaced polar reference frame. Vectors v and s are in the vertical plane, whereas a is in the horizontal plane. A vector \mathbf{x}_p in the polar reference frame has the elements:

$$\mathbf{x}_{p} = \begin{bmatrix} \mathbf{a} \\ \mathbf{v} \\ \mathbf{s} \end{bmatrix} \tag{4.13}$$

A vector in the local reference frame is transformed to the displaced polar reference frame by:

$$\mathbf{x}_p = \mathbf{R}_p \mathbf{x}_l \tag{4.14}$$

where \mathbf{R}_p is an orthogonal rotation matrix at origin p_2 :

$$\mathbf{R}_{p} = \begin{bmatrix} -\cos\theta & -\sin\theta\sin\theta & \cos\theta\sin\theta \\ -\sin\theta & -\sin\theta\cos\theta & \cos\theta\cos\theta \\ 0 & \cos\theta & \sin\theta \end{bmatrix}$$
(4.15)

Polar coordinates of θ , ϑ and s are related to vectors in the local reference frame by:

$$\theta = \arctan\left(\frac{\Delta e}{\Delta n}\right)$$

$$\theta = \arctan\left(\frac{\Delta up}{\sqrt{\Delta e^2 + \Delta n^2}}\right)$$

$$s = \sqrt{\Delta e^2 + \Delta n^2 + \Delta up^2}$$
(4.16)

Equation 4.14 can be written in expanded form as:

$$\begin{bmatrix} \mathbf{a} \\ \mathbf{v} \\ \mathbf{s} \end{bmatrix} = \begin{bmatrix} -\cos\theta(\Delta e) - \sin\vartheta\sin\theta(\Delta n) + \cos\vartheta\sin\theta(\Delta up) \\ -\sin\theta(\Delta e) - \sin\vartheta\cos\theta(\Delta n) + \cos\vartheta\cos\theta(\Delta up) \\ \cos\vartheta(\Delta n) + \sin\vartheta(\Delta up) \end{bmatrix}$$
(4.17)

Since \mathbf{R}_p is orthogonal, a vector \mathbf{x}_p in the displaced polar reference frame can be rotated into the local reference frame by:

$$\mathbf{x}_l = \mathbf{R}_p^T \mathbf{x}_p \tag{4.18}$$

which can be written in expanded form as:

$$\begin{bmatrix} \Delta e \\ \Delta n \\ \Delta up \end{bmatrix} = \begin{bmatrix} -\cos\theta(\mathbf{a}) - \sin\theta(\mathbf{v}) \\ -\sin\theta\sin\theta(\mathbf{a}) - \sin\theta\cos\theta(\mathbf{v}) + \cos\theta(\mathbf{s}) \\ \cos\theta\sin\theta(\mathbf{a}) + \cos\theta\cos\theta(\mathbf{v}) + \sin\theta(\mathbf{s}) \end{bmatrix}$$
(4.19)

4.3 Transformation between cartesian reference frames

Several methods are available for transforming coordinates and vectors from one cartesian reference frame to another. DynaNet supports (conformal 3D) 7–parameter and 14–parameter similarity transformations using the Bursa–Wolf model.

Conformal transformations between two cartesian reference frames on the same epoch are managed by a 7-parameter similarity relationship. The relationship involves a three-dimensional shift, rotation and scale of the cartesian coordinate axes and is given by:

$$\begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} = \begin{bmatrix} \Delta x_{12} \\ \Delta y_{12} \\ \Delta z_{12} \end{bmatrix} + (1+\delta) \begin{bmatrix} 1 & r_z & -r_y \\ -r_z & 1 & r_x \\ r_y & -r_x & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}$$
(4.20)

where Δx_{12} , Δy_{12} and Δz_{12} are the origin shifts, r_x , r_y and r_z are the coordinate axis rotations (in radians) and δ is the scale factor between the two systems. Where rotation of axes exceeds 10" of arc, the rotation matrix in equation 4.20 is replaced with the following:

$$\mathbf{R} = \begin{bmatrix} \cos r_z & \sin r_z & 0 \\ -\sin r_z & \cos r_z & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos r_y & 0 & -\sin r_y \\ 0 & 1 & 0 \\ \sin r_y & 0 & \cos r_y \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos r_x & \sin r_x \\ 0 & -\sin r_x & \cos r_x \end{bmatrix}$$

Conformal transformations between two cartesian reference frames on different epochs are managed by a 14–parameter similarity relationship. The relationship is identical to that given in equation 4.20, with the exception of introducing terms for the first order derivatives of origin shift, rotation and scale as follows:

$$\begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} = \begin{bmatrix} \Delta x_{12} + \dot{x} (t_2 - t_1) \\ \Delta y_{12} + \dot{y} (t_2 - t_1) \\ \Delta z_{12} + \dot{z} (t_2 - t_1) \end{bmatrix} + \left(1 + \delta + \dot{\delta} (t_2 - t_1)\right) \times$$

$$\begin{bmatrix} 1 & r_z + \dot{r_z} (t_2 - t_1) & -r_y - \dot{r_y} (t_2 - t_1) \\ -r_z - \dot{r_z} (t_2 - t_1) & 1 & r_x + \dot{r_x} (t_2 - t_1) \\ r_y + \dot{r_y} (t_2 - t_1) & -r_x - \dot{r_x} (t_2 - t_1) & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}$$

$$(4.21)$$

Here, $[\dot{x}\ \dot{y}\ \dot{z}]$, $[\dot{r_x}\ \dot{r_y}\ \dot{r_z}]$ and $\dot{\delta}$ are the rates of change in origin shift, axis rotation and scale respectively, t_1 is the reference epoch of the reference frame for x_1 , y_1 and z_1 , and t_2 is the epoch of the reference frame for x_2 , y_2 and z_2 .

4.4 Propagation of variances between reference frames

4.4.1 Local reference frame

Variances in the local reference frame can be expressed in the cartesian reference frame by the law of propagation of variances:

$$\mathbf{V}_{\mathbf{x}_c} = \mathbf{R}_l \mathbf{V}_{\mathbf{x}_l} \mathbf{R}_l^T \tag{4.22}$$

where $V_{\mathbf{x}_l}$ is a variance matrix in the local reference frame, $V_{\mathbf{x}_c}$ is a variance matrix in the cartesian reference frame, and \mathbf{R}_l is the rotation matrix given in equation 4.9. Conversely, propagation of variances from the cartesian system into the local reference frame is obtained by:

$$\mathbf{V}_{\mathbf{x}_l} = \mathbf{R}_l^{-1} \mathbf{V}_{\mathbf{x}_c} \left[\mathbf{R}_l^{-1} \right]^T \tag{4.23}$$

Since \mathbf{R}_l is orthogonal, $\mathbf{V}_{\mathbf{x}_l}$ may be expressed as:

$$\mathbf{V}_{\mathbf{x}_l} = \mathbf{R}_l^T \mathbf{V}_{\mathbf{x}_c} \mathbf{R}_l \tag{4.24}$$

4.4.2 Polar reference frame

The precision of polar coordinates can be derived from precisions in either cartesian reference frame or the local reference frame. For precisions in the cartesian system, propagation of variances is evaluated by a two step process, by (1) propagation into the local system as described above, and then (2) propagation into the polar form.

To transform a variance matrix V_{x_l} in the local reference frame into the polar form V_{x_p} , propagation of variances is evaluated as:

$$\mathbf{V}_{\mathbf{x}_p} = \mathbf{P} \mathbf{V}_{\mathbf{x}_l} \mathbf{P}^T \tag{4.25}$$

where ${f P}$ is the Jacobian transformation matrix formed by linearising equations 4.16:

$$\mathbf{P} = \begin{bmatrix} \frac{\partial \theta}{\partial e} & \frac{\partial \theta}{\partial n} & \frac{\partial \theta}{\partial up} \\ \frac{\partial \theta}{\partial e} & \frac{\partial \theta}{\partial n} & \frac{\partial \theta}{\partial up} \\ \frac{\partial s}{\partial e} & \frac{\partial s}{\partial n} & \frac{\partial s}{\partial up} \end{bmatrix}$$
(4.26)

To transform a variance matrix directly from the cartesian system to the polar reference frame, propagation is computed by combining equations 4.24 and 4.25:

$$\mathbf{V}_{\mathbf{x}_p} = \mathbf{P} \mathbf{R}_l^T \mathbf{V}_{\mathbf{x}_c} \mathbf{R}_l \mathbf{P}^T \tag{4.27}$$

4.4.3 Geographic reference frame

To transform a variance matrix V_{x_g} for geographic coordinates into the cartesian system, propagation of variances takes the familiar form:

$$\mathbf{V}_{\mathbf{x}_c} = \mathbf{T} \mathbf{V}_{\mathbf{x}_g} \mathbf{T}^T \tag{4.28}$$

T is the Jacobian transformation matrix formed by linearising equations 4.2:

$$\mathbf{T} = \begin{bmatrix} \frac{\partial x}{\partial \phi} & \frac{\partial x}{\partial \lambda} & \frac{\partial x}{\partial h} \\ \frac{\partial y}{\partial \phi} & \frac{\partial y}{\partial \lambda} & \frac{\partial y}{\partial h} \\ \frac{\partial z}{\partial \phi} & \frac{\partial z}{\partial \lambda} & \frac{\partial z}{\partial h} \end{bmatrix}$$
(4.29)

For the reverse solution, propagation of variances into the geographic coordinate system is via:

$$\mathbf{V}_{\mathbf{x}_{q}} = \mathbf{T}^{-1}\mathbf{V}_{\mathbf{x}_{c}} \left[\mathbf{T}^{-1}\right]^{T} \tag{4.30}$$

4.5 Conversion of projection coordinates

It is often necessary to work with geographic information defined in terms of projection coordinates. DynaNet supports Universal Transverse Mercator (UTM) and Transverse Mercator (TM) projections . UTM and TM projection coordinates are expressed in terms of Easting E, Northing N and Zone Zo. For UTM projections, the earth is divided into 60 zones. Each zone is 6° wide in longitude, extends from -80° latitude to $+80^{\circ}$ latitude, and is numbered consecutively beginning from zone 1 at -180° to -174° longitude and extending eastwards to zone 60 ($+174^{\circ}$ to $+180^{\circ}$ longitude). The origin of each zone is the point of intersection between the equator and the meridian central to the zone, and the central scale factor of the projected zones is 0.9996. To alleviate negative coordinate values in the southern hemisphere, the origin is assigned a false Northing of 10,000,000m and a false Easting of 500,000m. Since two points located in different zones can have equal values for Easting and Northing, projection coordinates are unique only when accompanied by the zone number.

^{2.} As the reference ellipsoid is by nature a three–dimensional curved surface, projecting figures on the ellipsoid onto a flat, two–dimensional surface requires distortion in some form or another. Accordingly, different map projections have been designed to preserve one or more of the following geometric properties: shape (conformal), direction (azimuthal), distance (gnomic) and area (equal area). To this end, several map projections are available — Transverse Mercator (conformal), Lambert Conic (conformal), Polar Stereographic (azimuthal, conformal) and Albers Conic (equal area) [Snyder, 1997].

^{3.} A UTM projection is a TM projection with standardised values for zone width, origin, scale factor and false Easting and Northings.

The relationship between UTM and TM projection coordinates E, N and Zo and geographic coordinates ϕ , λ and h is given by [Redfearn, 1948]:

$$E = 500,000 + k_0 \left\{ \nu \omega \cos \phi + \nu \frac{\omega^3}{6} \cos^3 \phi \left(\psi - t^2 \right) + \nu \frac{\omega^5}{120} \cos^5 \phi \left[4\psi^3 \left(1 - 6t^2 \right) + \psi^2 \left(1 + 8t^2 \right) - \psi \left(2t^2 \right) + t^4 \right] + \nu \frac{\omega^7}{5040} \cos^7 \phi \left(61 - 479t^2 + 179t^4 - t^6 \right) \right\}$$

$$N = 10,000,000 + k_0 \left\{ m + \nu \sin \phi \frac{\omega^2}{2} \cos \phi + \nu \sin \phi \frac{\omega^4}{24} \cos^3 \phi \left(4\psi^3 + \psi - t^2 \right) + \nu \sin \phi \frac{\omega^6}{720} \cos^5 \phi \left[8\psi^4 \left(11 - 24t^2 \right) + 28\psi^3 \left(1 - 6t^2 \right) + \psi^2 \left(1 - 32t^2 \right) - \psi \left(2t^2 \right) + t^4 \right] + \nu \sin \phi \frac{\omega^8}{40320} \cos^7 \phi \left(1385 - 3111t^2 + 543t^4 - t^6 \right) \right\}$$

$$(4.32)$$

$$Zo = \frac{\omega}{z_w} \tag{4.33}$$

where:

$$\omega = \lambda - \lambda_0 \tag{4.34}$$

$$z_w = \text{zone width (in units of } \lambda)$$
 (4.35)

$$\psi = \frac{\nu}{a} \tag{4.36}$$

$$t = \tan \phi \tag{4.37}$$

$$m = a (A_0 \phi - A_2 \sin 2\phi + A_4 \sin 4\phi - A_6 \sin 6\phi)$$
 (4.38)

$$A_0 = 1 - \left(\frac{e^2}{4}\right) - \left(\frac{3e^4}{64}\right) - \left(\frac{5e^2}{256}\right) \tag{4.39}$$

$$A_2 = \frac{3}{8} \left[e^2 + \left(\frac{e^4}{4} \right) - \left(\frac{15e^6}{128} \right) \right] \tag{4.40}$$

$$A_4 = \frac{15}{256} \left(e^4 + \frac{3e^6}{4} \right) \tag{4.41}$$

$$A_6 = \frac{35e^6}{3072} \tag{4.42}$$

 k_0 is the central scale factor, λ_0 is the longitude of the central meridian, z_w is the projection zone width, and ρ is the radii of curvature in the meridian at ϕ .

Conversely, the relationship between geographic coordinates and UTM and TM projection coordinates is given by [Redfearn, 1948]:

$$\phi = \phi' - \left(\frac{t'}{k_0 \rho'}\right) \left(\frac{xE'}{2}\right) + \left(\frac{t'}{k_0 \rho'}\right) \left(\frac{x^3 E'}{24}\right) \left[-4\psi'^2 + 9\psi' \left(1 - t'^2\right) + 12t'^2\right]$$

$$- \left(\frac{t'}{k_0 \rho'}\right) \left(\frac{x^5 E'}{720}\right) \left[8\psi'^4 \left(11 - 24t'^2\right) - 12\psi'^3 \left(21 - 71t'^2\right) \right]$$

$$+ 15\psi'^2 \left(15 - 98t'^2 + 15t'^4\right) + 180\psi' \left(5t'^2 - 3t'^4\right) + 360t'^4$$

$$+ \left(\frac{t'}{k_0 \rho'}\right) \left(\frac{x^7 E'}{40320}\right) \left(1385 + 3633t'^2 + 4095t'^4 + 1575t'^6\right)$$

$$(4.43)$$

$$\lambda = \lambda_0 + \sec \phi' x - \left(\frac{x^3}{6}\right) \sec \phi' \left(\psi' + 2t'^2\right)$$

$$+ \left(\frac{x^5}{120}\right) \sec \phi' \left[-4\psi'^3 \left(1 - 6t'^2\right) + \psi'^2 \left(9 - 68t'^2\right) + 72\psi't'^2 + 24t'^4\right]$$

$$- \left(\frac{x^7}{5040}\right) \sec \phi' \left(61 + 662t'^2 + 1320t'^4 + 720t'^6\right)$$
(4.44)

where:

$$E' = E - E_f (4.45)$$

$$N' = N - N_f$$
 (southern hemisphere only) (4.46)

$$x = \frac{E'}{k_0 \nu'} \tag{4.47}$$

$$\psi' = \frac{\nu'}{\rho'} \tag{4.48}$$

$$\lambda_0 = z_0 z_w + \lambda_1 - z_w \tag{4.49}$$

$$\phi' = \sigma + \left(\frac{3\eta}{2} - \frac{27\eta^3}{32}\right)\sin 2\sigma + \left(\frac{21\eta^2}{16} - \frac{55\eta^3}{32}\right)\sin 4\sigma$$

$$+\left(\frac{151\eta^3}{96}\right)\sin 6\sigma + \left(\frac{1097\eta^4}{512}\right)\sin 8\sigma \tag{4.50}$$

$$\eta = \frac{f}{2-f} \tag{4.51}$$

$$G = a(1-\eta)\left(1-\eta^2\right)\left(1+\frac{9}{4}\eta+\frac{225}{64}\eta\right)\frac{\pi}{180}$$
 (4.52)

$$\sigma = \frac{\pi m}{180G} \tag{4.53}$$

$$m = \frac{N'}{k_0} \tag{4.54}$$

 E_f and N_f are the false Easting and Northing values, λ_1 is the longitude of the central meridian of zone 1. ν' and ρ' are the radii of curvature evaluated at the foot–point latitude ϕ' (via equations 4.3 and 4.5), which is the latitude for which the meridian distance m equals N'/k_0 .

4.6 Transformation of coordinates and measurements

The least squares adjustment model implemented within DynaNet is based upon the cartesian reference frame. After loading station information from the input files, **import** converts all station coordinates in geographic and projection systems to their cartesian counterparts. Upon preparing for least squares adjustment, **adjust** forms observation equations in terms of the cartesian reference frame using the principles outlined in §4.2 and if required, performs propagation of variances of *a-priori* GNSS measurement variance matrices (c.f. §4.4). When reporting the adjustment results, **adjust** converts the estimated station coordinates to the user–specified coordinate systems (e.g. geographic and/or projection). If required, **adjust** undertakes propagation of variances of estimated station and GNSS measurement variance matrices to the user–specified system (e.g. cartesian, geographic, local or polar).

The primary purpose of **reftran** is to align all station coordinates and GNSS measurements to a common reference frame and epoch prior to least squares adjustment. **reftran** performs this task using the reference frame information supplied to **import** (either in the input files or via the --reference-frame option. c.f. §3.3.1), and the reference frame passed to **reftran**.

4.6.1 Supported reference frames and geodetic datums

DynaNet supports several commonly used reference frames. To simplify the process of uniquely identifying each frame, DynaNet adopts the naming convention, abbreviations and system of codes defined in the EPSG Geodetic Parameter Dataset⁴ (version 7.9.0). Table 4.1 lists the EPSG codes and reference frames supported by DynaNet.

Table 4.2 shows the various reference frame transformation combinations supported by DynaNet and the respective references from which the transformation parameters have been sourced.

In addition to supporting transformations between a variety of reference frames, DynaNet also supports the projection of coordinates between epochs on a single frame using a plate motion model. In Version 3.3.0, only the Australian plate motion model is supported. Hence, DynaNet cannot be used to project coordinates between epochs on a frame if the coordinates lie outside the Australian tectonic plate.

^{4.} The EPSG Geodetic Parameter Dataset, or EPSG dataset, is maintained by the Geodesy Subcommittee of the Surveying and Positioning Committee of the International Association of Oil and Gas Producers (OGP). See http://www.epsg.org

Table 4.1: EPSG codes and reference frames

Code	Reference frame name	Abbreviated name
4939	Geocentric Datum of Australia 1994 (geographic)	GDA94
4347	Geocentric Datum of Australia 1994 (cartesian)	GDA94
7843	Geocentric Datum of Australia 2020 (geographic)	GDA2020
7842	Geocentric Datum of Australia 2020 (cartesian)	GDA2020
7789	International Terrestrial Reference Frame, 2014	ITRF2014
5332	International Terrestrial Reference Frame, 2008	ITRF2008
4896	International Terrestrial Reference Frame, 2005	ITRF2005
4919	International Terrestrial Reference Frame, 2000	ITRF2000
4918	International Terrestrial Reference Frame, 1997	ITRF1997
4917	International Terrestrial Reference Frame, 1996	ITRF1996
4916	International Terrestrial Reference Frame, 1994	ITRF1994
4915	International Terrestrial Reference Frame, 1993	ITRF1993
4914	International Terrestrial Reference Frame, 1992	ITRF1992
4913	International Terrestrial Reference Frame, 1991	ITRF1991
4912	International Terrestrial Reference Frame, 1990	ITRF1990
4911	International Terrestrial Reference Frame, 1989	ITRF1989
4910	International Terrestrial Reference Frame, 1988	ITRF1988
4978	World Geodetic System, 1984	WGS84

Table 4.2: Supported transformation parameters

From reference frame	To reference frame	Transformation Parameters
GDA2020	ITRF2014, GDA94	ICSM [2017]
GDA94	ITRF1996, ITRF1997, ITRF2000, ITRF2005, ITRF2008	Dawson and Woods [2010]
ITRF1988, ITRF1989, ITRF1990, ITRF1991, ITRF1992, ITRF1993, ITRF1994	ITRF2000, ITRF2008	ITRF [2000], ITRF [2008]
ITRF1996, ITRF1997	ITRF2000, ITRF2008, GDA94	ITRF [2000], ITRF [2008], Dawson and Woods [2010]
ITRF2000	ITRF1988, ITRF1989, ITRF1990, ITRF1991, ITRF1992, ITRF1993, ITRF1994, ITRF1996, ITRF1997, ITRF2005, ITRF2008, GDA94	ITRF [2000], ITRF [2005], ITRF [2008], Dawson and Woods [2010]
ITRF2005	ITRF2000, GDA94	ITRF [2005], Dawson and Woods [2010]
ITRF2008	ITRF1988, ITRF1989, ITRF1990, ITRF1991, ITRF1992, ITRF1993, ITRF1994, ITRF1996, ITRF1997, ITRF2000, ITRF2005, GDA94	ITRF [2008], Dawson and Woods [2010]

4.6.2 Relationship between ITRF, IGS and WGS84 reference frames

When post–processing GNSS data to produce high–precision GNSS baselines or point clusters, a common prerequisite is the availability of precise GNSS satellite orbit information. IGS and its participating analysis centres (see http://www.igs.org/) are amongst the most reliable and well respected producers of precise GNSS orbits. Over the course of its history, IGS has aligned the reference frame for its satellite orbit products to a variety of ITRF reference frames. Table 4.3 lists the respective ITRF frames to which the orbit products are aligned and the periods in which those frames apply.

Table 4.3: Alignment of IGS precise orbit product reference frames with ITRF updates over time (source: http://acc.igs.org/igs-frames.html)

ITRF versions	IGS frame	Start date	End date	GPS weeks
ITRF 1992	ITRF92	02.01.1994	31.12.1994	0730 - 0781
ITRF 1993	ITRF93	01.01.1995	29.06.1996	0782 – 0859
ITRF 1994	ITRF94	30.06.1996	28.02.1998	0860 - 0946
ITRF 1994 retained	ITRF96	01.03.1998	31.07.1999	0947 - 1020
ITRF 1994 retained	ITRF97	01.08.1999	03.06.2000	1021 - 1064
ITRF 1997	IGS97	04.06.2000	01.12.2001	1065 – 1142
ITRF 2000	IGS00	02.12.2001	10.01.2004	1143 – 1252
ITRF 2000 retained	IGb00	11.01.2004	04.11.2006	1253 – 1399
ITRF 2005	IGS05	05.11.2006	16.04.2011	1400 – 1631
ITRF 2008	IGS08	17.04.2011	06.10.2012	1632 – 1708
ITRF 2008 retained	IGb08	07.10.2012	28.01.2017	1709 – 1933
ITRF 2014	IGS14	29.01.2017		1934 –

Upon processing GNSS data, the reference frame in which the baselines or points will be produced will be the reference frame of the satellite orbit coordinates used in the GNSS processing. This is of course the case if the processed GNSS baselines or points have not been transformed to a user–specified frame by the GNSS processing package. If the GNSS processing software is able to transform the GNSS data to the desired reference frame of the adjustment, no further steps are required. However, to ensure the correct reference frame is selected upon importing GNSS measurements into DynaNet, Table 4.3 should be used to identify the ITRF frame corresponding to the frame of the orbit products.

For example, if a GNSS campaign was undertaken on 5 May 2005 and precise satellite orbits from IGS were used to produce a set of GNSS baselines and station coordinate estimates, the corresponding IGS frame of those satellite orbits would be IGb00. As the IGb00 frame was aligned to ITRF 2000, the reference frame and epoch of the GNSS baseline measurements should be set to ITRF 2000 and 05.05.2005 within the measurement input file. The following sample shows a GNSS baseline encoded in DNA format (c.f. Table B.8 in Appendix B.1.4 for DNA measurement files).

11675.0160 1.3617930e-04 -20144.2370 5.0458000e-09 7.1068070e-05 -26611.5240 8.5190970e-05-2.7839720e-05 7.6459650e-05	G N-2234 N-	6200 1.00	1.00	1.00	1.00	ITRF2005	05.05.2005	
		1167	5.0160 1	.361793	0e-04			
-26611 5240 8 5190970e-05-2 7839720e-05 7 6459650e-05		-2014	4.2370 5	.045800	0e-09 7.1	L068070e-05		
2001110210 0101000100 00 2110001200 00 1101000000 00		-2661	1.5240 8	.519097	0e-05-2.7	7839720e-05 7	.6459650e-05	

Of course, the user is free to select an alternative frame to which the input data should be transformed prior to adjustment.

In cases where broadcast ephemeris has been adopted (rather than precise satellite orbits), the processed data will be in the frame of the GNSS constellation transmitting the broadcast signals. In the case of GPS, the reference frame of the broadcast ephemerides is WGS84. Despite its name, WGS84 is a dynamic frame which is continuously realised from routine analysis of the control centre stations over time. In order to maintain compatibility with international reference frames, WGS84 has been aligned to various versions of ITRF throughout its 30+ year history. Table 4.4 tabulates the different versions of WGS84, the ITRF version and epoch to which each WGS84 version has been aligned, and the date at which the alignment was adopted.

Table 4.4: Alignment of WGS84 realisations with ITRF updates over time (source: https://confluence.gps.nl/pages/viewpage.action?pageId=29855173)

WGS84 version	Epoch	ITRF version and epoch	Offset (m)	Adopted	GPS weeks
WGS84	1984.0	First realisation (DOPPLER)		1987	0001 - 0729
WGS84 (G730)	1994.0	ITRF 1991	0.7	29.06.1994	0730 - 0872
WGS84 (G873)	1997.0	ITRF 1994	0.2	29.01.1997	0873 - 1149
WGS84 (G1150)	2001.0	ITRF 2000	0.06	20.01.2002	1150 – 1673
WGS84 (G1674)	2005.0	ITRF 2008	0.01	08.02.2012	1164 - 1761
WGS84 (G1762)	2005.0	ITRF 2008 retained	0.01	16.10.2013	1762 –

To avoid misrepresentation of the appropriate frame to which stations and measurements are aligned, DynaNet prevents the user from using WGS84. Hence, where WGS84 coordinates and/or GPS baselines are to be introduced into an adjustment, the user should substitute the corresponding ITRF version from Table 4.4 for the input GNSS measurements based on the date of that data. Although not provided here, the same will need to be applied for the other GNSS constellations (e.g. Beidou, Galileo, GLONASS, etc.).

4.6.3 Transforming station coordinates and measurements

To transform station coordinates and measurements, type reftran on the command line followed by the network name, and then --reference-frame (or its shortcut -r) followed by the desired reference frame to which all imported stations and GNSS measurements should be aligned:

```
reftran skye -r GDA94
```

If a DynaNet Project File (c.f. Chapter 2) is to be used, type dynanet on the command line, then --project-file (or its shortcut -p) followed by the full path for the project file, and then the option to invoke **reftran**:

```
dynanet -p skye.dnaproj --reftran
```

No other options are required, as **reftran** will be invoked using the options and arguments contained in the project file uni_sqr.dnaproj.

Upon executing **reftran**, the binary station and measurement files skye.bst and skye.bms will be loaded into memory. For each station and GNSS measurement found in the binary files, **reftran** will verify whether the associated reference frame abbreviation is one of the supported reference

frames (c.f. Table 4.1). If the user—specified reference frame is not supported, **reftran** will terminate prematurely with an error message. If the frame is in the list of supported frames, the appropriate reference frame parameters will be selected. As it is possible for the input stations and measurements to be aligned to multiple reference frames, **reftran** performs this test for every station and measurement. Then, depending on whether one or more dynamic frames are involved, either equation 4.20 or 4.21 will be applied. Once all stations and measurements have been transformed, the binary station and measurement files are updated.

At this point it should be noted that in order to achieve a rigorous transformation between reference frames, the correct reference frame of the input stations and measurements must be set within the input files or via the call to **import** (c.f. §3.3.1). Mis–identification of the input reference frame will lead to incorrect results.

Using the command above, **reftran** will undertake a transformation using the default reference frame epoch. To transform station coordinates and measurements to a different epoch, add --epoch (or its shortcut -e) followed by the desired epoch in the form of dd.mm.yyyy:

```
reftran skye -r itrf2005 -e 05.05.2005
```

If a transformation using an epoch corresponding with today's date is required, simply type today:

```
reftran skye -r itrf2005 -e today
```

When complete, **reftran** will report the number of stations and measurements transformed or, in the case of failure, an error message corresponding to the type of failure. Using the skye project, Figure 4.4 shows the information reported to the screen upon normal program execution.

```
+ Options:
Network name: skye
Input folder: .
Output folder: .
Binary station file: ./skye.bst
Binary measurement file: ./skye.bms
Target reference frame: ITRF2005

+ Transforming stations and measurements... done.
+ Transformed 6 stations.
+ Transformed 27 measurements...
```

Figure 4.4: reftran progress reporting of station and measurement transformations

4.7 Data export

Upon transforming stations and measurements to an alternative reference frame, **reftran** provides a capacity to export the transformed data into a number of different file formats, including CSV, DNA, DynaML and GeodesyML file formats.

To export transformed station and measurement information into CSV or DNA format, pass to **reftran** the option --export-dna-files or --export-csv-files respectively. Similarly, to export station and measurement information into DynaML format, pass the option --export-xml-files. For example, the following command will export the stations and measurements in the skye project to DNA format in GDA94:

reftran skye -r GDA94 --export-dna

Running this command will produce two files named skye.GDA94.stn and skye.GDA94.msr, which correspond to the station and measurement files respectively.

Similarly, the option --export-xml-files will produce two XML files named skyestn.GDA94.xml and skyemsr.GDA94.xml corresponding to the station and measurement files respectively. To produce a single DynaML file, pass to **reftran** the option --single-xml-file with --export-xml-files.

Chapter 5

Import and export of geoid information

5.1 Introduction

In recognition of the inescapable influence of the anomalous gravity field upon terrestrial geodetic measurements, and the difference that exists between ellipsoidal and gravity—based height systems, DynaNet provides an efficient means for incorporating geoid information within an adjustment project. Introducing this information into a project permits the rigorous combination of GNSS measurements and terrestrial measurements within a single adjustment, the efficient transformation of heights from one height system to another, and the rigorous estimation of parameters in cartesian, geodetic and local reference frames.

The task of introducing geoid information into a DynaNet project can be performed using a geoid file as described in §3.2.4, or via automatic interpolation from a geoid model using **geoid**. The purpose of this chapter is to explain the latter. This chapter also explains how to interpolate geoid information in interactive and text file modes, how to transform between ellipsoid heights and orthometric heights, how to convert geoid models in the legacy WINTER file format to binary grid files in National Transformation version 2.0 (NTv2) grid file format [Junkins and Farley, 1995], and how to display the metadata contained in an existing NTv2 binary grid file. The application of geoid information to the observation equations for terrestrial geodetic measurements is dealt with in Chapter 7.

5.2 Fundamental concepts

Height determination demands a reasonable level of care due to the number of systems to which a height can be related. To minimise the error that may be introduced into an adjustment through incorrectly defined station heights and/or height measurements, users should be aware of the intrinsic differences between these systems. This section provides a basic overview of height systems and geoid models, and will define the terms used throughout this document. For further information of height systems and geoid modelling, the reader is encouraged to refer to Heiskanen and Moritz [1993], Hofmann–Wellenhof and Moritz [2006], Vaniček and Krakiwsky [1986], Bomford [1980], Rapp [1961] and Featherstone and Kuhn [2006].

Consider the surfaces labelled natural terrain, ellipsoid, geoid, mean sea level and sea surface shown in Figure 5.1. The terrain is the well understood ground surface upon which features of interest and survey control marks are located. The ellipsoid is the mathematical surface chosen to best represent the geometric size and shape of the Earth — either as a whole, or in a particular region. It serves as the fundamental basis upon which positioning and navigation, map projections and geodetic calculations can be based. It is also the surface to which GNSS measurements on the terrain are related (c.f. Figure 4.1). As shown in Figure 5.1, ellipsoid height h represents the height of point p above the ellipsoid, measured along the normal to the ellipsoid at point p'.

Figure 5.1: The relationships between the natural terrain, ellipsoid, geoid, mean sea level, and sea surface.

Mean sea level (MSL) is an observed tidal datum and is used as the conventional reference surface to which heights on the terrain (e.g. contours, heights of mountains, flood plains, etc.) and other tidal datums are related. The geoid is the surface of constant gravity potential (or equipotential) chosen to best approximate MSL. It is often shown in the literature as W_0 in order to distinguish it as the reference equipotential surface to which other gravity potentials (such as the potential W_p at point p) are related. Being a gravity potential surface (as opposed to a geometrical surface like the ellipsoid), the geoid is consistently perpendicular to the direction of gravity (i.e. the plumb–line). In this sense, it represents the "spirit–level" surface at which fluids stabilise.

As suggested by the curved plumb—line, the direction of gravity varies along the path of the plumb—line on account of variations in land (or subsurface) mass—density and other gravity anomalies. The deflection of the vertical ϵ is the angle between the direction of the plumb—line and the normal to the ellipsoid and is generally expressed in two dimensions, as a north—south component (deflection in the prime meridian, ξ) and an east—west component (deflection in the prime vertical, η). The sea surface varies from the geoid due to the dynamic topography of the ocean caused by variations in temperature, regional currents, gravitational effects, and salinity, for example. For similar reasons, MSL also varies from the geoid.

As shown in Figure 5.1, true orthometric height H^O is the length of the curved plumb-line between point p and the geoid. The geoid-ellipsoid separation N^O is the length of the normal to the ellipsoid, from p'' to the geoid. In practice, it is not a simple matter to compute the true orthometric height since the integral mean of gravity between p and the geoid is a rather complex and practically challenging phenomenon to quantify. For this reason, several approximations of H^O have been proposed, such as Helmert orthometric (H^H) , normal (H^N) and normal orthometric (H^{NO}) . It is not necessary to explain all approximations for H^O , although brief comments will be made on the normal orthometric height system due to its frequent use in establishing national vertical datums.

Consider Figure 5.2. Normal orthometric height H^{NO} is the length of the curved normal gravity plumb-line between point p and the quasigeoid. It is based on a theoretical (ellipsoidal) normal gravity field and can be readily computed without knowing the nature of the subsurface mass-density or

needing to take gravity observations. As a result of approximating the Earth's gravity field with a normal gravity field, propagation of normal orthometric heights through spirit levelling requires a relatively simple correction (known as the normal orthometric correction) to account for the change in gravity according to the change in latitude along the levelling run.

Figure 5.2: The relationship between the geoid and quasigeoid, and between ellipsoid height (h) and normal orthometric height (H^{NO})

The height of the quasigeoid above the ellipsoid is labelled N^{NO} and is often cited in the literature as the height anomaly ζ . The quasigeoid is given its name since it is not an equipotential surface and thereby does not properly describe the flow of fluids. The geoid and quasigeoid are coincident at MSL, but diverge, more or less, over land with respect to elevation. According to Featherstone and Kuhn [2006], this divergence may reach up to 3.4 metres in the Himalayas and 0.15 metres in Australia. The point to note is that the quasigeoid, being an approximation, does not represent true gravity and hence, does not provide for estimating true orthometric heights and height differences.

5.2.1 Geoid models

There are numerous geoid and quasigeoid models (so called) in use throughout the world. A comprehensive review of all such models is beyond the scope of this document. However, it is worthwhile noting the subtle differences that may be found between such models.

Firstly, reflecting on the concepts discussed in the previous section, a gravimetric geoid model provides N^O values, whereas a gravimetric quasigeoid model generally provides approximations of it, such as N^{NO} or N^H . Secondly, the adopted reference ellipsoid for each model is not unique. Although international practice shows a global trend towards the use of the Geodetic Reference System 1980 (GRS80), some older models may be based upon the World Geodetic System 1984 (WGS84). Thirdly, a geoid or quasigeoid model can be derived from a global equipotential model alone, such as EGM96 or EGM2008, or a combination of gravimetric data sourced from a global model, regional gravity observations and other gravity modelling.

Another point to note is that there are models which also include a geometric component to account for known distortions in a particular vertical datum. In the Australian context, AHD was established using a normal–orthometric height system. Due to various reasons, AHD contains numerous distortions of various magnitudes and does not coincide uniformly with the quasigeoid. Of the four national geoid models published since 1990 for use over the Australian continent¹, only AUSGeoid09 includes a geometric component that models the difference between the gravimetric quasigeoid and the zero surface of the AHD [Featherstone et al., 2011]. Hence, AUSGeoid09 provides for converting between the GRS80 ellipsoid heights and AHD heights, not heights relative to the gravimetric quasigeoid.

Therefore, when selecting a geoid model from which to interpolate geoid/quasigeoid—ellipsoid values and deflections of the vertical, it is imperative that the model supplied to **geoid** is compatible with the adjustment project reference frame (and ellipsoid), and the supplied station heights and height measurements.

5.2.2 Conventions used in DynaNet

Although there is a tangible difference between the geoid and the quasigeoid (and other approximations of the geoid), the term geoid will be used throughout this document to refer to gravimetric geoid and quasigeoid models generally. Similarly, the term geoid-ellipsoid separation (N) will be used to refer to both the separation between the geoid and the ellipsoid (N^O) and the separation between the quasigeoid (and other geoid approximations) and the ellipsoid (N^N,ζ) . Likewise, $orthometric\ height\ (H)$ will be used to refer to true orthometric (H^O) , Helmert (H^H) , normal (H^N) and normal orthometric (H^{NO}) height. The practical implication is that whenever these terms are cited, the user is responsible for interpreting them according to the context of the adjustment project.

5.3 Grid file interpolation

By far, the most simple, convenient, efficient and repeatable means for retrieving geoid information from a geoid model is to use interpolation from a structured grid file defined by regularly–spaced grid nodes. Using a regular grid file, geoid information can be interpolated at will for arbitrarily located points via one of several interpolation methods. The information that can be incorporated within a DynaNet adjustment includes values for geoid–ellipsoid separation N, the north–south and east–west deflections of the vertical ξ and η , and the respective uncertainties σ_N , σ_ξ and σ_η . When attempting to interpolate this information from a gridded geoid model, **geoid** provides an ability to derive the unknown parameter values using bilinear interpolation and bicubic interpolation. These methods are briefly described in the following sections.

5.3.1 Bilinear interpolation

The method of bilinear interpolation uses a quadratic form to calculate the desired parameter values for an arbitrary point from a two–dimensional array of grid nodes. Bilinear interpolation is well suited to the task of interpolating from grids having a relatively high resolution with respect to variability in the grid node parameter values, or where higher order curve (or polynomial) fitting offers minimal improvement in accuracy. In this method, only the four surrounding grid nodes are required. Figure 5.3 illustrates the concept of interpolating an unknown geoid–ellipsoid separation N at point p from the surrounding grid nodes using bilinear interpolation. The same concept applies to interpolating ξ and η .

^{1.} AUSGeoid90, AUSGeoid93, AUSGeoid98 and AUSGeoid09

Figure 5.3: Bilinear interpolation concept

The formula to compute N at point p using bilinear interpolation is given by [Press et al., 2002]:

$$N_p = \alpha_{00} + \alpha_{10}t + \alpha_{01}u + \alpha_{11}tu \tag{5.1}$$

$$= \sum_{i=0}^{1} \sum_{j=0}^{1} \alpha_{ij} t^{i} u^{j} \tag{5.2}$$

where:

$$a_{00} = N_1 ag{5.3}$$

$$a_{10} = N_2 - N_1 (5.4)$$

$$a_{01} = N_4 - N_1 (5.5)$$

$$a_{11} = N_1 + N_3 - N_2 - N_4 (5.6)$$

$$t = \frac{\Delta \lambda_p}{\Delta \lambda_{int}} \tag{5.7}$$

$$t = \frac{\Delta \lambda_p}{\Delta \lambda_{int}}$$

$$u = \frac{\Delta \phi_p}{\Delta \phi_{int}}$$

$$\Delta \lambda_p = \lambda_p - \lambda_1$$

$$\Delta \phi_p = \phi_p - \phi_1$$

$$(5.8)$$

$$(5.8)$$

$$\Delta \lambda_p = \lambda_p - \lambda_1 \tag{5.9}$$

$$\Delta \phi_p = \phi_p - \phi_1 \tag{5.10}$$

Here, N_1 , N_2 , N_3 and N_4 are retrieved from the grid file. $\Delta \lambda_{int}$ and $\Delta \phi_{int}$ are the grid node intervals in the east-west and north-south directions respectively. Since the majority of grid files are orthogonal with regularly spaced grid nodes, $\Delta\lambda_{int}$ and $\Delta\phi_{int}$ will be constant for throughout each grid. The exception to this convention is when a geoid grid file contains one or more sub-grids which have a higher resolution than the parent grid. However, in these instances, the values for $\Delta\lambda_{int}$ and $\Delta\phi_{int}$ will most likely be constant for each sub–grid. To interpolate ξ_p and η_p , the N terms in

equations 5.3, 5.4, 5.5 and 5.6 are replaced with the corresponding ξ and η values for grid nodes 1 to 4.

5.3.2 Bicubic interpolation

Bicubic interpolation uses a third degree polynomial, in two dimensions, to approximate a continuous (or smooth) surface from which to calculate the unknown quantities. For this purpose, bicubic interpolation requires the parameter values at sixteen grid nodes surrounding the arbitrary point. It is computationally less efficient, but may be necessary where the grid node spacing is large or there is high variability in the grid node parameter values.

Conceptually, the method of bicubic interpolation involves two steps. Firstly, a two–dimensional polynomial is fitted to the sixteen grid node parameter values and, secondly, the value at the arbitrary point is evaluated. To fit the third order polynomial to the surrounding parameter values, sixteen values must be evaluated for the four grid nodes — four parameter values, four east—west gradients, four north—south gradients, and four cross—product gradients. All gradients (i.e. partial derivatives) are computed using numerical differentiation from the sixteen parameter values $N_{1\dots 16}$.

The formula to compute N at point p using bicubic interpolation is given by [Press et al., 2002]:

$$N_p = \sum_{i=0}^{3} \sum_{j=0}^{3} \alpha_{ij} t^i u^j$$
 (5.11)

Evaluating α involves a linear transformation of a vector x representing the four parameter values and twelve derivatives using a coefficient matrix \mathbf{C} and is given by:

$$\alpha = \mathbf{C}^{-1}x$$

where \mathbf{C}^{-1} is the inverse of the coefficient matrix:

The elements of x are calculated as follows:

$$x_{1} = N_{1} \quad x_{5} = \frac{\partial N_{1}}{\partial x} \Delta \lambda_{int} \quad x_{9} = \frac{\partial N_{1}}{\partial y} \Delta \phi_{int} \quad x_{13} = \frac{\partial^{2} N_{1}}{\partial x \partial y} \Delta \lambda_{int} \Delta \phi_{int}$$

$$x_{2} = N_{2} \quad x_{6} = \frac{\partial N_{2}}{\partial x} \Delta \lambda_{int} \quad x_{10} = \frac{\partial N_{2}}{\partial y} \Delta \phi_{int} \quad x_{14} = \frac{\partial^{2} N_{2}}{\partial x \partial y} \Delta \lambda_{int} \Delta \phi_{int}$$

$$x_{3} = N_{3} \quad x_{7} = \frac{\partial N_{3}}{\partial x} \Delta \lambda_{int} \quad x_{11} = \frac{\partial N_{3}}{\partial y} \Delta \phi_{int} \quad x_{15} = \frac{\partial^{2} N_{3}}{\partial x \partial y} \Delta \lambda_{int} \Delta \phi_{int}$$

$$x_{4} = N_{4} \quad x_{8} = \frac{\partial N_{4}}{\partial x} \Delta \lambda_{int} \quad x_{12} = \frac{\partial N_{4}}{\partial y} \Delta \phi_{int} \quad x_{16} = \frac{\partial^{2} N_{4}}{\partial x \partial y} \Delta \lambda_{int} \Delta \phi_{int}$$

The twelve gradient values $\partial N_i/\partial x$, $\partial N_i/\partial y$ and $\partial^2 N_i/\partial x \partial y$ ($i=1,\ldots,4$) are evaluated as follows:

$$\frac{\partial N_1}{\partial x} = \frac{N_2 - N_{16}}{2\Delta\lambda_{int}} \qquad \frac{\partial N_1}{\partial y} = \frac{N_4 - N_6}{2\Delta\phi_{int}} \qquad \frac{\partial^2 N_1}{\partial x\partial y} = \frac{N_3 - N_7 - N_{15} + N_5}{4\Delta\lambda_{int}\Delta\phi_{int}}$$

$$\frac{\partial N_2}{\partial x} = \frac{N_9 - N_1}{2\Delta\lambda_{int}} \qquad \frac{\partial N_2}{\partial y} = \frac{N_3 - N_7}{2\Delta\phi_{int}} \qquad \frac{\partial^2 N_2}{\partial x\partial y} = \frac{N_{10} - N_8 - N_4 + N_6}{4\Delta\lambda_{int}\Delta\phi_{int}}$$

$$\frac{\partial N_3}{\partial x} = \frac{N_{10} - N_4}{2\Delta\lambda_{int}} \qquad \frac{\partial N_3}{\partial y} = \frac{N_{12} - N_2}{2\Delta\phi_{int}} \qquad \frac{\partial^2 N_3}{\partial x\partial y} = \frac{N_{11} - N_9 - N_{13} + N_1}{4\Delta\lambda_{int}\Delta\phi_{int}}$$

$$\frac{\partial N_4}{\partial x} = \frac{N_3 - N_{15}}{2\Delta\lambda_{int}} \qquad \frac{\partial N_4}{\partial y} = \frac{N_{13} - N_1}{2\Delta\phi_{int}} \qquad \frac{\partial^2 N_4}{\partial x\partial y} = \frac{N_{12} - N_2 - N_{14} + N_{16}}{4\Delta\lambda_{int}\Delta\phi_{int}}$$

Values for t, u, $\Delta\lambda_p$ and $\Delta\phi_p$ are evaluated from equations 5.7, 5.8, 5.9 and 5.10, and $\Delta\lambda_{int}$ and $\Delta\phi_{int}$ are the grid node intervals. Finally, N is evaluated at point p from equation 5.11 using the following pseudocode:

$$N_p=0$$
 for $i=0$ to 4 do
$$N_p=N_p*t+a_{i,4}*u+a_{i,3}*u+a_{i,2}*u+a_{i,1}$$
 \rhd equation 5.11 end for

5.4 Import of geoid information

To introduce geoid information into a project, type <code>geoid</code> at the command prompt, followed by one or more options and arguments. The complete command line reference for **geoid** is given in §A.4. If no program options are provided upon program execution, the command line reference for **geoid** will be displayed.

If a DynaNet Project File (c.f. Chapter 2) is to be used, provide --project-file (or its shortcut -p) followed by the full path for the project file:

```
geoid -p skye.dnaproj
```

No other options are required, as **geoid** will be invoked using the options and arguments contained in the project file skye.dnaproj.

To import geoid information using command line options and arguments, type geoid followed by the network name², and then --ntv2-file (or its shortcut -g) followed by the full path for the NTv2 binary geoid file:

geoid skye -g ausgeoid09.gsb

Upon executing **geoid**, the binary station file skye.bst and the header records from the NTv2 geoid grid file ausgeoid09.gsb will be loaded into memory. For each station found in the binary station file, **geoid** will attempt to interpolate the geoid–ellipsoid separations and the north–south and east–west deflections of the vertical from the surrounding grid nodes. If the station lies outside the limits of the geoid grid file, no information will be retrieved for that station. Once the information for all stations has been interpolated, the binary station file and corresponding DynaNet project file will be updated.

By default, bicubic interpolation (c.f. $\S 5.3.2$) is used to interpolate values from the surrounding grid nodes. To interpolate geoid information using bilinear interpolation (c.f. $\S 5.3.1$), add to the geoid command the option --interpolation-method (or its shortcut -m) followed by a zero (0):

geoid skye -g ausgeoid09.gsb -m 0

Since the least squares adjustment model implemented within **DynaNet** is based upon the cartesian reference frame, all orthometric heights contained in the station file must be transformed to ellipsoid heights. This can be achieved by adding the option --convert-stn-hts:

geoid skye -g ausgeoid09.gsb --convert-stn-hts

When the option --convert-stn-heights is provided, **geoid** will determine whether or not to transform a station's height by examining the coordinate type (c.f. §B.1.3, §B.4.1). If the coordinate type is LLH or UTM, **geoid** will treat the supplied height as an orthometric height and transform it to an ellipsoidal height using the interpolated N value. If the coordinate type is LLh, **geoid** will treat the station height as ellipsoidal, leaving it as—is. The application of interpolated geoid information to terrestrial geodetic measurements prior to running an adjustment will be explained in Chapter 7.

When complete, **geoid** will report the number of stations for which geoid information was interpolated or, in the case of failure, an error message corresponding to the type of failure. Using the geoid project, Figure 5.4 shows the information reported to the screen upon normal program execution.

^{2.} Note that the option --network-name is the default option to **geoid** and as such, the network name may be passed to **geoid** without the option text.

```
+ Options:
 Network name:
                                   skye
 Input folder:
 Output folder:
 Binary station file:
                                   ./skye.bst
 Convert orthometric heights:
                                   Yes
                                   ausgeoid09.gsb
 Geoid grid file:
 Interpolation method:
 Input coordinate format:
                                   Degrees minutes seconds
+ Binary station file interpolation mode.
+ Opening grid file... done.
+ Interpolating geoid components and reducing
 heights to the ellipsoid... done.
+ Interpolated data for 6 points.
+ Geoid file interpolation took 0.007s
```

Figure 5.4: geoid progress reporting of geoid grid file interpolation

5.5 Arbitrary interpolation and height transformation

In addition to introducing geoid information into an adjustment project, **geoid** offers two modes for interpolating geoid information from a geoid grid file — interactive mode and text file mode. With the latter, it is also possible to transform a file of heights from one height system (or vertical datum) to another.

5.5.1 Interactive mode

Interpolating geoid information in interactive mode involves using the command line to specify arbitrary interpolation points one at a time. For instance, to retrieve information for an arbitrary location of -33° 24′ 36″ latitude and 149° 39′ 06″ longitude (provided in degrees, minutes and seconds), type geoid, the NTv2 grid file option and file path, then --interactive (or its shortcut -e) to indicate that coordinates will be entered via the command line, followed by options and arguments for latitude and longitude:

```
geoid -g ausgeoid09.gsb -e --latitude -33.2436 --longitude 149.3906
```

When complete, **geoid** will report the N value and the north–south and east–west deflections of the vertical ξ and η interpolated for the supplied coordinates. In the case of failure, an error message corresponding to the type of failure will be displayed. Figure 5.5 shows the information reported to the screen upon normal program execution.

```
+ Options:
Geoid grid file:
Interpolation method:
Input coordinate format:
Degrees minutes seconds

+ Opening grid file... done.
+ Interpolation results for -33.2436, 149.3906 (ddd.mmssss):

N value = 25.4 metres
Deflections:
- Prime meridian = -4.41 seconds
- Prime vertical = -6.48 seconds
```

Figure 5.5: Interactive geoid grid file interpolation

By default, interactive input requires coordinates to be supplied in degrees, minutes and seconds format. To interpolate geoid information using decimal degrees, simply add the --decimal-degrees option:

```
geoid -g ausgeoid09.gsb -e --latitude -33.4100 --longitude 149.6517 --decimal-degrees
```

Note that latitudes and longitudes, whether in decimal degrees or degrees, minutes and seconds, must be supplied in HP notation (i.e. dd.dddddddd or dd.mmssssss). Spaces between degrees, minutes and seconds will cause **geoid** to treat values following the spaces as independent option arguments. Since **geoid** does not check or correct latitude values for sign, positive and negative latitude values will be treated as being in the northern and southern hemispheres respectively. Similarly, positive and negative longitude values will be treated as being east or west of the zero meridian (i.e. Greenwich meridian) respectively.

To interpolate geoid information using bilinear interpolation (c.f. §5.3.1), add --interpolation-method (or its shortcut -m) followed by a zero (0).

5.5.2 Text file mode

Text file mode has been designed to provide an efficient means for (1) interpolating geoid information for a list of coordinates and (2) transforming heights from one system to another using simple ASCII text file formats. For these purposes, **geoid** supports Formatted Text files (e.g. *.dat, *.prn, *.txt) and Comma Separated Values files (*.csv). Appendix B.7 provides the file format specification for these file types.

To interpolate geoid information and transform a file of heights, type geoid on the command line, followed by the NTv2 grid file option and file path, then --text-file (or its shortcut -t) with the input text file path and, if required, options and arguments for interpolation method, coordinate format and conversion direction. For example, to transform a file of heights in a file named pipeline.txt from orthometric to ellipsoidal, where the desired interpolation method is bilinear and the input coordinates are in decimal degrees, type:

```
geoid -g ausgeoid09.gsb -t pipeline.txt -m 0 --decimal -r 0
```

Upon transforming a text file of heights, **geoid** will report to the screen the items relevant to the text file transformation, the progress of interpolation and transformation of heights, and any errors or warnings related to the file transformation. Figure 5.6 shows the information reported to the screen upon normal program execution.

```
+ Options:
  Input folder:
  Output folder:
  ASCII file:
                                   pipeline.txt
  Output file:
                                   pipeline_out.txt
  Geoid grid file:
                                   ausgeoid09.gsb
  Interpolation method:
                                   Bi-linear
  Input coordinate format:
                                   Decimal degrees
+ ASCII file interpolation mode.
+ Opening grid file... done.
+ Interpolating geoid components... done.
+ Interpolated data for 17 points.
+ Warning: data for 1 point could not be interpolated.
 See pipeline_out.txt for more information.
+ Geoid file interpolation took 0.012s
```

Figure 5.6: geoid progress reporting of geoid interpolation and text file transformation

During this process, **geoid** will attempt to determine the file type from the file extension and contents of the input file. Any problems encountered with opening the input file will be reported to the screen. The name of the output file will be the same as the input file name, but with a "_out" inserted between the file name and the file extension. During the transformation process, geoid information will be interpolated using the default or user—specified interpolation method, and the height supplied on each line will be transformed according to the transformation direction. The original height, transformed height, interpolated N value and deflections of the vertical ξ and η for each point in the file will be appended to the original record from the input file, which is in turn printed to the output file. Since **geoid** is only concerned with heights, the input latitude and longitude are written directly to the output file without any alteration.

In the case of an error, the input record prefixed by the string 'ERROR (#)', where '#' is a number indicating the type of error, will be printed to the output file. Typical examples of error include instances when the coordinates cannot be read from the input file (possibly due to an incorrect coordinate type or file record format), or if the coordinates lie outside the extents of the geoid grid file. Table 5.3 in §5.7.3 lists the possible range of error codes and their meanings.

5.6 Exporting interpolated information

During the process of interpolating geoid information from a geoid grid file, **geoid** can export this information to a DNA geoid file. Generating a DNA geoid file is only necessary when it is desirable to introduce geoid information into a DynaNet project via **import** (c.f. §3.2.4). To export interpolated geoid information to a DNA geoid file, simply add the --export-dna-geo-file option when executing **geoid**. The following examples show how to export geoid information during the process of (1) introducing geoid information into a project (c.f. §5.4) and (2) interpolating in text file mode (c.f. §5.5.2):

```
geoid skye -g ausgeoid09.gsb --export-dna-geo-file

geoid -g ausgeoid09.gsb -t pipeline.txt --export-dna-geo-file
```

5.7 Working with NTv2 geoid grid files

5.7.1 Reporting NTv2 geoid grid file metadata

At times, it may be necessary to view a summary of the metadata contained within an NTv2 geoid grid file. NTv2 grid file metadata is contained within an array of block header records, and provides specific information relating to, for example, geoid grid file version, geoid and ellipsoid parameters, grid file extents and grid node interval. To display the header information for a grid file, type geoid on the command line, followed by the NTv2 grid file option and file path, then --summary (or its shortcut -u):

```
geoid -g ausgeoid09.gsb -u
```

Running this command will produce a summary similar to that which is shown in Figure 5.7.

```
+ Options:
  Geoid grid file:
                                   ausgeoid09.gsb
  Input coordinate format:
                                  Degrees minutes seconds
Grid properties for "ausgeoid09.gsb":
+ GS_TYPE = SECONDS
+ VERSION = 1.0.0.0
+ SYSTEM_F = GDA94
+ SYSTEM_T = AHD_1971
+ MAJOR_F = 6378137.000
+ MAJOR_T = 6378137.000
+ MINOR_F = 6356752.314
+ MINOR T = 6356752.314
+ NUM_OREC = 11
+ NUM_SREC = 11
+ NUM_FILE = 1
 + SUBGRID 0:
   SUB_NAME = AUSGEOID
   PARENT = NONE
    CREATED = 01012010
    UPDATED = 01012010
            = -165540.000
   S_LAT
   N_LAT
            = -28800.000
   E_LONG
            = -575940.000
    W_LONG = -388800.000
   LAT_INC = 60.000
   LONG_INC = 60.000
    GS_COUNT = 7113600
```

Figure 5.7: Example NTv2 grid file summary

In relation to Figure 5.7, Tables 5.1 and 5.2 describe the NTv2 grid file header fields and the individual sub grid header fields.

Table 5.1: NTv2 grid file overview fields

Field	Description
NUM_OREC	Number of header records in the overview block.
NUM_SREC	Number of header records in each sub grid block.
NUM_FILE	Number of sub grids contained in the geoid grid file. A grid file may contain several sub grids of different densities. The limits of these sub grids will all be contained within the parent grid. If there is only one sub grid, then it is the parent grid.
GS_TYPE	The units of the grid nodes.
VERSION	The geoid grid file version.
SYSTEM_F	The "from" reference ellipsoid (or geodetic datum with well known ellipsoid)
SYSTEM_T	The "to" height system or vertical datum.
MAJOR_F	The ellipsoid semi-major axis of the "from" system.
MAJOR_T	The ellipsoid semi-major axis of the "to" system.
MINOR_F	The ellipsoid semi-minor axis of the "from" system.
MINOR_T	The ellipsoid semi-minor axis of the "to" system.

Table 5.2: NTv2 grid file sub grid fields

Field	Description
SUB_NAME	The name of this particular sub grid.
PARENT	The parent sub grid name. 'NONE' if this is the parent grid.
CREATED	Grid file creation date
UPDATED	Grid file modification date
S_LAT	Lower latitude extent
N_LAT	Upper latitude extent
E_LONG	Lower longitude extent
W_LONG	Upper longitude extent
LAT_INC	Latitude interval
LONG_INC	Longitude interval
GS_COUNT	Grid node count

5.7.2 Importing WINTER DAT geoid grid files

AUSGeoid09 has been publicly released in the form of ASCII text files using the legacy WINTER DAT file format. Whilst serving as a simple, human–readable format, the WINTER DAT file format is not designed to provide an efficient means for instantaneous interpolation. Accordingly, DynaNet requires the geoid information contained in these files to be converted into a structured binary format. DynaNet uses the NTv2 format for structuring, storing and interpolating geoid model information.

To convert geoid information in the WINTER DAT file format to the NTv2 binary format, type geoid at the command prompt, then --create-ntv2 (or its shortcut -c), followed by the options and arguments relating to the input and output files and the geoid model parameters. For example,

to create a new NTv2 binary grid file named geoid_model.gsb from geoid information stored in a WINTER DAT file named geoid_model.dat using the default options, run the following command:

```
geoid -c -g ./geoid_model.gsb -d geoid_model.dat
```

When converting geoid files to the NTv2 binary format, **geoid** will determine from the raw data the upper and lower grid extents and the north–south and east–west grid node intervals. Checks are also performed to ensure the data contains a sufficient number of nodes to construct an orthogonal grid file. The parameters derived from the raw data will be written to the grid file header records (c.f. Tables 5.1 and 5.2). Since the WINTER DAT file format contains data for a single grid, the resultant NTv2 grid file will contain a single sub–grid which will be the parent grid.

To facilitate the capture of other metadata relating to the geoid grid file, **geoid** provides options to specify the units for the deflections of the vertical (in radians or seconds), the grid file version, the name of the ellipsoid system, the name of the height system or vertical datum, the semi-major and semi-minor ellipsoid parameters of the two systems, the name of the sub-grid, and the dates of creation and update. For example, to specify a version of 2.5.0.0, the name MYGEOID, ellipsoid and height system names GDA94 and AHD71, a creation date of 18 March 2015 and an update date of 5 May 2015, run the following command:

```
geoid -c -g ./geoid_model.gsb -d geoid_model.dat --VERSION 2.5.0.0 --SUB_NAME MYGEOID --SYSTEM_F GDA94 --SYSTEM_T AHD71 --CREATED 18032015 --UPDATED 05052015
```

The option --grid-shift-type followed by either seconds or radians can be used to specify the units in which the grid extents and the deflections of the vertical will be stored. The options --semi-major-from, --semi-major-to, --semi-minor-from and --semi-minor-to are not used during grid file interpolation and can be provided for metadata purposes only.

Figure 5.8 shows the information reported to the screen upon normal program execution. Once the NTv2 binary grid file has been created, a summary of the grid file parameters (c.f. Figure 5.7) will be displayed.

```
+ Options:
 Input folder:
  Output folder:
 Geoid grid file:
                                   geoid_model.gsb
 WINTER DAT file:
                                   geoid model.dat
+ Creating NTv2 file from WINTER DAT file format:
+ Reading contents of WINTER DAT file... done.
+ WINTER DAT file structure appears OK.
+ Creating NTv2 gsb file... done.
+ Grid properties for geoid_model.gsb:
 - GS_TYPE = SECONDS
  - VERSION = 2.5.0.0
 - SYSTEM_F = GDA94
 - SYSTEM_T = AHD71
 - ...
```

Figure 5.8: Progress of NTv2 grid file creation

5.7.3 Grid file interpolation errors

If an error occurs at any time during the geoid interpolation process, a non-zero value is printed to the output file to indicate the type of error. Table 5.3 lists the errors that may be encountered upon geoid grid file interpolation.

Table 5.3: Grid file interpolation error codes and descriptions

Code	Description
-6	The NTv2 version of the specified grid file is not supported.
-5	The parameters for the specified grid file do not match the number of records.
-4	Could not allocate the required memory.
-3	A grid file has not been opened.
-2	Cannot locate the required sub grid.
1	The specified grid file could not be opened.
2	Cannot read this type of grid file.
3 or 14	Found an unrecoverable error in the specified grid file: <grid-file-name> It is likely that this file was downloaded or produced incorrectly.</grid-file-name>
4	Could not read from the specified input file.
5	Could not write to the specified output file.
6	Cannot read this type of input file.
7	Cannot produce this type of output file.
8	No data was contained within the last input record.
9	The record <data-record> is too short to contain valid data.</data-record>
10	The record <data-record> does not contain valid numeric input.</data-record>
11	The required data could not be extracted from the record <data-record>.</data-record>
12	The specified zone is invalid.
13 or -1	The point <data-record> lies outside the extents of the specified grid file.</data-record>
15	The interpolation shifts could not be retrieved from the ASCII grid file.
16	The interpolation shifts could not be retrieved from the Binary grid file.
17	The csv record <data-record> does not contain sufficient records.</data-record>

Chapter 6

Network segmentation

6.1 Introduction

For relatively small survey control networks, the task of estimating unknown station coordinates and their uncertainties can be readily achieved in a matter of seconds using a modern computer. In these circumstances, network segmentation can be omitted, and least squares adjustments can be undertaken in a conventional, simultaneous fashion. When dealing with extremely large networks however, network adjustment becomes computationally intensive and time consuming, taking up to several hours, if not days to complete. This is primarily due to the number of floating point operations that must be undertaken when computing the inverse of the least squares normal equation matrix — an essential step for the full analysis of the precision of the estimated parameters. Invariably, the sheer size of state, national and continental scale geodetic networks (i.e. those which have tens of thousands of stations and hundreds of thousands of measurements) presents a substantial obstacle to performing regular re—adjustment as demanded by datum maintenance. In such circumstances, it becomes more efficient to segment and adjust the network using phased least squares adjustment.

DynaNet has been specifically designed to make the phased adjustment process as simple and efficient as possible. This is achieved by the use of an automated network segmentation algorithm which eliminates the need for the user to manually subdivide a network into blocks. The first part of this chapter ($\S6.2 - \S6.3$) describes the concept of network segmentation and the automated segmentation algorithm employed by DynaNet. The second part describes how to use **segment** and its options to segment networks and to constrain the way in which networks are segmented.

6.2 The concept of network segmentation

The concept of network segmentation involves partitioning a network into smaller–sized blocks. Figure 6.1 illustrates the concept of a geodetic network segmented into two blocks. In Figure 6.1, Block A is defined by the set of measurements $\mathbf{m_a}$ with variance matrix $\mathbf{V_a}$, and Block B is defined by the set of measurements $\mathbf{m_b}$ with variance matrix $\mathbf{V_b}$. The parameters to be estimated in the entire network are represented by $\mathbf{x_p}$, $\mathbf{x_q}$ and $\mathbf{x_r}$, of which $\mathbf{x_p}$ and $\mathbf{x_q}$ appear in Block A, and $\mathbf{x_q}$ and $\mathbf{x_r}$ appear in Block B. Thus, $\mathbf{x_q}$ represents the set of *junction stations* which link Blocks A and B through measurements $\mathbf{m_a}$ and $\mathbf{m_b}$, and $\mathbf{x_p}$ represents the set of *inner stations* relating to Block A. Since all stations represented by $\mathbf{x_q}$ are connected to measurements in Block B, both $\mathbf{x_q}$ and $\mathbf{x_r}$ represent the inner stations relating to Block B. $\mathbf{x_p}$, $\mathbf{x_q}$ and $\mathbf{x_r}$ each represent a cluster of stations which can be of any size. Likewise, $\mathbf{m_a}$ and $\mathbf{m_b}$ each represent clusters of measurements of any size. With this concept in mind, Figure 6.2 shows a trivial GNSS network segmented into two blocks.

Figure 6.1: Network segmentation concept

(a) First block (Block A)

(b) Second block (Block B)

Figure 6.2: A trivial GNSS network segmented into two blocks

In Figures 6.2a and 6.2b, the stations with a blue circle are inner stations. The stations with a red circle are the junction stations which link the two blocks. With reference to Figure 6.1 and the network shown in Figure 6.2, Table 6.1 summarises the distribution of the stations and measurements amongst the two blocks. An important note worth emphasising is that whilst a particular station can appear as a junction station in both Blocks A and B, each measurement in a network must only ever appear once — either in Block A or in Block B.

Table 6.1: Distribution of parameters and measurements of a network segmented into two blocks

Block	Para	ameters and stations	Measurements
А	$\mathbf{x_p}$	236300210, 309100090, 310211240, 365300060, 409600170, 409704930	m_a
	$\mathbf{x_q}$	335800500, 360100260	
В	$\mathbf{x_q}$	335800500, 360100260	m.
D	$\mathbf{x_r}$	212000820, 230900140, 269100210, 299000080, 409700110	\mathbf{m}_{b}

Although the preceding text has outlined the concept of network segmentation using two blocks, a geodetic network can be segmented into an almost unlimited number of blocks. It follows that the phased adjustment technique can be applied to geodetic networks of almost any number of stations and measurements. The primary factors which define the way in which a geodetic network is segmented are (a) the desired maximum number of stations each block should contain (i.e. the maximum block size), and (b) the level of connectivity in a network (i.e. the number of other stations each station is connected to by the set of measurements). Concerning the latter, networks with few measurements per station can be segmented in a far more flexible manner than highly connected networks, whereas networks having a high level of connectivity cannot always be segmented into the desired number of stations. In any case, to achieve a rigorous solution for the unknown parameters, the network must be correctly segmented so that:

- each block contains the total number of measurements that exist between all inner stations in that block, and
- junction station estimates and variances can be passed between successive blocks.

segment takes care of these concerns using a fully automated procedure, and offers the flexibility for users to nominate (a) the maximum number of stations each block should contain and (b) which stations should appear in the first block. Nominating the maximum block size is essential to optimising network adjustment performance according to network size and computer hardware capability. The ability to nominate which stations should appear in the first block affords the ability to derive the relative uncertainties between any two or more stations in the network. These options will be described in §6.5.1.

6.3 Segmentation algorithm

At the most fundamental level, the segmentation algorithm partitions a large network into a series of blocks with the characteristics of the two adjacent blocks as shown in Figure 6.1. To help conceptualise a network segmented into multiple blocks, Figure 6.3 illustrates the concept of a network segmented into four blocks.

Figure 6.3: Network segmentation concept involving four blocks

In summary, each block is made up of inner stations (\mathbf{x}_i) , for which all their associated measurements (\mathbf{m}_i) make up the measurement–set, and junction stations $(\mathbf{x}_{ij,\,j=i+1})$, which are connected by measurements to the inner stations but are also associated with other measurements to stations in other blocks. The segmentation algorithm moves forward (e.g. block i, block $i+1,\ldots$, block i+1

The total process of selecting stations and measurements for the series of connected blocks can be summarised as:

- 1. Select the inner stations for the first block.
- 2. Select all measurements associated with inner stations.
- 3. Select as junction stations, all stations connected by measurements to the inner stations.
- 4. The structure of the block is now complete and is made up of inner stations, junction stations and associated measurements.
- 5. Move to the next block by selecting its inner stations from the previous block's junction stations.
- 6. Repeat steps 2, 3 and 4 until all measurements have been selected for one of the blocks.

The result of this process is to segment a large network into a series of smaller blocks which can be adjusted sequentially. After each block is adjusted, the estimates of the parameters associated with the junction stations are passed as *pseudo measurements* to the next block for further processing, and the parameters associated with the inner stations drop from the procedure.

The stations selected as inner stations of the first block do not have to be in a close spatial proximity or connected by direct measurement, and may indeed be on opposite sides of a continent. In many applications of DynaNet, the selection of the inner stations of the first block is critical as it provides a mechanism for placing a particular set of stations in one block. If these are the only stations for which a rigorous estimate and the full variance matrix is required, it makes for great efficiency in adjustment as only one pass through the full series of blocks is required (see §6.4.4). The efficiency of the adjustment process is aided by having a high ratio of inner to junction stations and various strategies are available at step 5 to enhance this (see §6.4.2).

6.4 Accommodating variations in network design, size, user preferences and computer performance

In general, conventional survey control networks used for land development are those which have been developed over several decades with an almost random pattern of extension, reinforcement and re-measurement. They are not structures that are characterised by uniform network design

and homogeneous station—to—measurement ratios, such as is found in a regular lattice, a honeycomb pattern, or triangulated terrain model. Rather, survey control networks vary considerably in geometry, station count, measurement count, types of measurements, the number of measurements per station, the number of stations which are connected by a single measurement, and so on. In order to permit phased adjustment to be performed on *any* network, the automated segmentation algorithm has been designed to be extremely flexible so as to handle a virtually innumerable number of network designs and sizes whilst at the same time, permitting the user to influence the way in which a network is segmented. To achieve this flexibility, the segmentation algorithm takes several aspects into consideration, including:

- Optimum block size;
- Inevitable influences on block size;
- Factors influencing the rate of segmentation;
- Datum deficient blocks;
- Non-contiguous networks, and;
- The need for coordinate estimates and full variance matrix for a particular set of stations.

The aspects are explained in the sections that follow.

6.4.1 Optimum block size and maximum adjustment efficiency

Considering that the linear CPU time taken to adjust a network is a factor of n^3 , where n is the number of parameters to be estimated, logic would suggest that adopting smaller block sizes would lead to greater phased adjustment efficiency. However, this notion is true only to a certain degree. Experience shows that for each network and computer there is an optimum block size limit, beyond which phased adjustment efficiency decreases. Three primary influences (positive and negative) on the optimum block size are noted:

- 1. Smaller than optimum block sizes can lead to a larger number of parameters to estimate. Two things need to be noted in this context. Firstly, as smaller block sizes lead to larger numbers of blocks to adjust, the total aggregate time to perform a phased adjustment on the set of segmented blocks may be more than the time taken to adjust fewer blocks. Secondly, smaller block sizes increase the likelihood that the same station will appear as a junction station in several blocks. Inevitably, multiple occurrences of a junction station increases the number of total parameters to be estimated in a phased adjustment and thereby, increases the adjustment time. Generally speaking, networks which are partitioned using less than the optimal number of stations per block will take additional CPU time to adjust.
- 2. Adjustment times improve with higher performing processor (CPU) architectures and frequencies. Intuitively, the time taken to adjust a network varies, more or less, according to the CPU frequency of the computer on which an adjustment is run. As faster CPU frequencies lead to faster adjustment times, it follows that the optimum block size will also increase. With the widespread availability of multiple CPUs, hyper–threading and multi–core CPUs¹, adjustment times can be reduced significantly by the use of multi–threaded phased adjustments (c.f. §8.3.2.2). Accordingly, the optimum block size will be different again. In almost every case, the optimum block size varies according to computer capability.
- 3. **Measurement connectivity**. Networks having a high number of measurements per station will take more time to adjust than networks with lower ratios, particularly if larger than expected blocks are generated (c.f. §6.4.2). Accordingly, the optimum block size for the former case

^{1.} In some cases, CPUs with a large number of cores have a lower frequency per core than those with fewer cores. Hence, a quad–core CPU will not always lead to faster adjustment times than a dual–core.

may be lower than the latter case, despite the two networks having a similar number of stations and (total) measurements.

It is for these reasons that the optimum block size will vary from one project to another, and from one computer to another. To achieve the maximum phased adjustment efficiency for any one network on any given computer, the segmentation algorithm affords a capacity for users to nominate the maximum block size by which the network is segmented.

6.4.2 Inevitable influences on the generated block sizes

Despite careful efforts to determine the optimum block size for segmenting a network, there are some inevitable influences which cause the segmentation algorithm to generate blocks which exceed the user–specified block size. Two primary influences are (1) the amount of station–to–station connectivity created from the set of measurements and (2) the presence of large clusters of correlated GNSS baselines or GNSS points. Left unmanaged, these influences have the potential to create excessively large block sizes.

In the first instance, large numbers of measurements from a single station can cause the algorithm to introduce large numbers of stations into a block. In some cases, the number of stations introduced to a block may exceed the user–specified block size. An example of this scenario is shown in Figure 6.4, whereby the total block size regularly exceeds the Max station limit (650) because many of the stations in this network are connected to large numbers of measurements. Figure 6.5 shows a typical station with a high level of connectivity (MORANG PM 48, associated with over 770 GNSS baseline, distance and direction set measurements). Conversely, Figure 6.6 shows the segmentation results from a spirit levelling network. In this case, all stations in the network are connected to less than five measurements and as such, the total block size closely follows the Max station limit (385).

Figure 6.4: Segmentation of a geodetic network having stations with large numbers of measurements.

Figure 6.5: GNSS, direction set and distance measurements in the Victorian geodetic network associated with MORANG PM 48.

Secondly, owing to the fact that GNSS clusters are correlated sets of measurements with a fully populated variance matrix, each GNSS cluster is introduced to a block as a single group. Hence, GNSS clusters cannot be "split" and spread across multiple blocks without compromising the rigour of the adjustment. When the segmentation algorithm adds a large GNSS baseline or point cluster to a block (such as a national GNSS CORS network solution), it is not unusual for the aggregate number of stations introduced by the cluster to exceed the user–specified block size.

Figure 6.6: Segmentation of a spirit levelling network having stations with a low measurement count.

Although these influences are for the most part inevitable, the segmentation algorithm includes a strategy to minimise the influence of stations having excessive numbers of measurements, and those which form part of a large correlated cluster of measurements. When forming new blocks, the algorithm introduces stations in order by taking the next available station which has the least number of associated measurements. By delaying the introduction of large groups of measurements in this way, the segmentation algorithm has a greater opportunity to advance through the network at rapid rates. In addition, the segmentation algorithm examines each junction station prior to its introduction to verify whether its associated measurements will result in an excessively large block size. In this case, the algorithm advances to alternative junction stations which can maximise the rate of segmentation and thereby, minimise the resulting block size.

6.4.3 Factors influencing the segmentation rate

When the segmentation algorithm is forced to introduce a large set of measurements to a block, which in turn results in the insertion of a large number of junction stations to that block, the rate at which the segmentation advances through the network will slow down considerably if there is little flexibility in permitting measurements associated with those junction stations from being added. Whilst this is somewhat counter—intuitive to maintaining block size thresholds, failure to provide flexibility in this regard will result in the creation of an excessive number of blocks due to the way in which junction stations are carried from one block to the next.

For example, if a block is created with 400 inner stations and 200 junction stations, the segmentation algorithm will commence building the next block with 200 junction stations. That *all* junction stations are carried to the next block is an essential criteria for rigorous phased adjustment. However, if a block size limit of 200 stations has been imposed, a dead—end situation (or stalemate) immediately arises if there is no flexibility to permit the introduction of new measurements and in turn, more

stations. To circumvent the algorithm from reaching stalemate, the segmentation algorithm affords a capacity for the user to specify the minimum number of inner stations that each block must contain.

6.4.4 Generating coordinate estimates and full variance matrix for a user-defined set of stations

At different times and for various reasons, the need for the coordinates and full variance matrix for a particular set of stations in a geodetic network will arise — whether for those that surround a certain project, or those which lie within or along the extent a defined area. Whilst this may seem to be a rather trivial objective to fulfil, three obstacles to achieving this objective must be borne in mind. Firstly, it is highly unlikely that the full variance matrix for extremely large networks (i.e. state, national or continental scale networks of which a small portion survey control is needed) has been produced and archived in an easily accessible form. Secondly, some or all of the stations selected for a project may have never been directly connected by measurement. Thirdly, the only plausible way to obtain a rigorous variance matrix for the defined set of stations is to incorporate the contribution from all measurements in the network.

Recognising the reality of these issues, the segmentation algorithm has been designed to offer a capacity to meet the requirement for producing, at will, coordinate estimates and the full variance matrix for randomly selected stations. This is achieved by permitting users to nominate the stations which must appear together in a single block. Upon running a phased adjustment of the entire network with these stations all appearing in the last block to be adjusted, rigorous coordinates and the full variance matrix will be available. If the latest, most rigorous station coordinates have been used as the a–priori estimates, a single pass in Block–1 only mode (c.f. §8.3.2.3) is all that will be required to generate a rigorous variance matrix.

6.4.5 Datum deficient blocks

During segmentation, it is quite common for one or more segmented blocks to be generated without a sufficient number of measurements to connect the inner and/or junction stations to datum. In addition, it is equally common for a block to not contain a sufficient number of measurements to solve all parameter estimates. This particular case arises when the user has nominated a specific set of stations to be contained in the first block and those stations are not connected by the associated measurements. The absence of a sufficient number of measurements is a characteristic feature of many blocks generated by the segmentation algorithm. The consequential outcome of forming blocks with insufficient measurements is that the normal equation matrix will be singular and therefore, non–invertible. This is despite the fact that the coordinate estimates and uncertainties for the junction stations are carried forward from the previous block.

DynaNet accommodates for the problem of singularity during phased adjustment using the following approach. Prior to running a phased adjustment, all stations which have an insufficient number of measurements or connections to datum are identified and considered to be known with a (default) variance matrix of $10~{\rm metres}^2$. This ensures the non–singularity of the normal matrix for each block and that the solution can be taken. Thus, in the early stages of the sequence of phased adjustments, the variances of the adjusted coordinates will be of the order of $10~{\rm metres}^2$ if no connection to datum has yet been found in any of the blocks so far adjusted. Eventually however, the influence of datum will arise through the remaining measurements and the variance of the estimated coordinates will reduce to the appropriate values.

6.4.6 Non-contiguous networks

Experience with several large geodetic networks developed over long periods of time shows that, despite the best intentions of those who have managed them, geodetic networks are not always contiguous. That is, geodetic networks inevitably contain isolated networks comprised of stations and measurements which are not connected to other parts of the network. At times, these isolated networks are not connected to datum. DynaNet has been developed to handle multiple isolated networks in a contiguous fashion and to deal with the associated implications during segmentation and phased adjustment.

6.5 Segmenting a network

Once **import** has created the binary station (.bst) and measurement (.bms) files, and the associated station (.asl) and measurement (.aml) lists from the input station and measurement files, the network is ready for segmentation. To segment a network using all default settings, type segment on the command line followed by the network name:

segment uni_sqr

Upon running this command, a segmentation output file (uni_sqr.seg) will be created. This file contains the station and measurement indices for the respective blocks. Appendix C.4 describes the structure and format of the segmentation output file. The content of the segmentation output file is structured in a way to provide for the efficient loading of network segmentation information. In particular, adjust relies on the formatting of this file to obtain metrics relating to block count, individual block sizes, and block station and measurement counts. These values are needed for the creation and management of several lists and matrices used in the phased adjustment process. As this file is automatically generated by segment, any changes to this file will be lost if segment is executed after those changes have been made.

If a DynaNet Project File (c.f. Chapter 2) is to be used, type dynanet on the command line, then --project-file (or its shortcut -p) followed by the full path for the project file, and then the option to invoke **segment**:

```
dynanet -p uni_sqr.dnaproj --segment
```

No other options are required, as **segment** will be invoked using the options and arguments contained in the project file uni_sqr.dnaproj.

When complete, **segment** will report to the screen a number of items relevant to the project (e.g. name, location of input and output files); user–specified options; the progress of network segmentation; brief statistical summary of the formed blocks; and final exit status (i.e. success or failure). Using the uni_sqr project, Figure 6.7 shows the information reported to the screen upon program execution.

Note that each time a project has been created using **import**, **segment** must be executed before **adjust** can be called to perform phased adjustment. The importance of this program execution sequence (c.f. Figure 1.3) is illustrated as follows. Consider a situation where a network project has been created using **import**, and then **segment** has been executed to divide the network into several blocks. If at a later stage new measurements and/or stations are added to the original station and measurement files and **import** is again executed to reload the network, the BST, BMS, ASL and

AML elements and the relationships between them will be different to what was previously created. Consequently, the original segmentation file (.seg) will be deficient, failing to take into account the new measurements and/or stations. For this reason, **adjust** performs a test on the SEG file to ensure that it has been created subsequent to the creation of the BST, BMS, ASL and AML files.

```
+ Options:
 Network name:
                                   uni_sqr
 Input folder:
 Output folder:
 Associated station file:
                                  ./uni_sqr.asl
 Associated measurement file:
                                  ./uni_sqr.aml
 Binary station file:
                                   ./uni_sqr.bst
 Binary measurement file:
                                  ./uni sqr.bms
 Segmentation output file:
                                   ./uni_sqr.seg
 Minimum inner stations:
                                  65
 Block size threshold:
 No initial station specified. The first station will be used.
+ Loading binary files... done.
+ Adopting 1018 as the initial station in the first block.
+ Creating blocks... done.
+ Segmentation statistics:
 No. blocks
                    Max size Min size
                                           Average
                                                       Total size
                                            45.75
                                                       183
+ Verifying station connections... done.
+ Printing blocks to uni_sqr.seg... done.
+ Network segmentation took 0.001s
+ uni_sqr is now ready for sequential phased adjustment.
```

Figure 6.7: segment progress reporting

6.5.1 Configuring segmentation behaviour

Recognising the need to accommodate variations in network size, station—to—measurement connectivity and computer performance, and to produce coordinate estimates and their variance matrix for a particular set of stations, the following sections describe how to configure the behaviour of **segment** to achieve the optimal phased adjustment outcome.

6.5.1.1 Specifying stations to appear in the first block

To specify the stations that should be contained in the first block, provide the list of stations in a text file and/or via the command line interface. To specify the stations using a text file, add the option --net-file:

```
segment uni_sqr --net-file
```

In this case, **segment** will look for a file named uni_sqr.net. This file must be formatted as a .net file. To specify starting stations on the command line, add the option --starting-stns followed by a comma delimited string of station names. For example, to ensure stations 2202 and 2203 are contained in the first block, execute the following (remembering that station names with spaces will require double quotes, c.f. §1.3.2):

```
segment uni_sqr --starting-stns 2202,2203
```

Both --net-file and --starting-stns options can be used at the same time.

6.5.1.2 Achieving optimum block sizes

To achieve the optimum segmentation block size, add the option --max-block-stns followed by the block size threshold (i.e. the number of stations by which to limit the block sizes). For example, to specify a block size threshold of 45, execute the following:

```
segment uni_sqr --starting-stns 2202,2203 --max-block-stns 45
```

Upon running this command, seven blocks will be created. Figure 6.8 shows the segmentation summary from uni_sqr.seg.

o. blocks	produced	7			
Block	Network ID	Junction stns	Inner stns	Measurements	Total stns
1	0	14	2	90	16
2	0	17	28	187	45
3	0	23	23	152	46
4	0	27	18	120	45
5	0	25	20	119	45
6	0	8	37	183	45
7	0	0	21	243	21

Figure 6.8: Segmentation summary for uni_sqr with a block threshold of 45

As shown in Figure 6.8, each row summarises the station and measurement counts for a block. The block number is given in the first column. If the option to form separate blocks for isolated networks has been provided (c.f. $\S6.5.1.3$), the values in the Network ID column will increment. Otherwise, a 0 (zero) will be given for all blocks. Based on the above command, the first block will include stations 2202 and 2203, and all associated measurements and stations connected to those measurements. Due to the connectivity of the network, fourteen junction stations were introduced to the first block — this is an inevitable result of the connectivity of the network as was explained in $\S6.4.2$.

To increase the number of inner stations per block, add the option --min-inner-stns followed by the minimum number of inner stations to be included in each block. For example, to specify a block size threshold of 45 with a minimum inner station count of 35, execute the following:

```
segment uni_sqr --starting-stns 2202,2203 --max-block-stns 45 --min-inner-stns 35
```

Upon running this command, six blocks will be created. Figure 6.9 shows the revised segmentation summary. Note that each block (except the first) now has at least 35 inner stations. There is also a decrease in the total number of blocks, which, in turn, has resulted in a decrease in the total number of parameters to be estimated (c.f. Total stns).

Whilst increasing the minimum number of inner stations from 5 to 35 yielded negligible improvements for the uni_sqr network, increasing the minimum inner station count can offer substantial performance gains on large networks. Hence, the user should examine the output from a range of alternative block size threshold and minimum inner station values to achieve the optimum block size.

lo. blocks	produced	5			
Block	Network ID	Junction stns	Inner stns	Measurements	Total stns
1	0	14	2	90	16
2	0	19	37	248	56
3	0	30	35	249	65
4	0	17	38	179	55
5	0	0	37	328	37

Figure 6.9: Segmentation summary for uni_sqr with a block threshold of 45 and minimum inner station count of 35

To assist with this analysis, **segment** provides an option to specify the segmentation output file name, so that various segmentation options and their results can be stored in different files. By maintaining several segmentation output files, different phased adjustments can be run by providing each segmentation file to the input segmentation file option in **adjust**. To specify the output segmentation file, simply add the option --seg-file followed by the desired file name to the list of **segment** options. For example, to force the segmentation output of two different segmentation runs to uni_sqr_test1.seg and uni_sqr_test2.seg, run the following command:

```
segment uni_sqr --max-block-stns 20 --min-inner-stns 20 --seg-file uni_sqr_test1.seg segment uni_sqr --max-block-stns 80 --min-inner-stns 80 --seg-file uni_sqr_test2.seg
```

6.5.1.3 Isolated networks

As discussed in §6.4.6, DynaNet automatically caters for isolated networks and provides a capacity to estimate parameters for all stations in a network, despite the fact that the network may not be contiguous. In this context, **segment** permits the option to integrate isolated networks with other parts of the network, or to keep those isolated networks as individual blocks. The default option is the former. To form individual blocks for isolated networks, provide a 0 (zero) to the --contiguous-blocks option as follows:

```
segment uni_sqr --contiguous-blocks 0
```

If there are isolated networks, the values in the Network ID column in the SEGMENTATION SUMMARY section of the segmentation output file (e.g. Figure 6.9 — discussed in more detail in Appendix C.4) will increment.

The option to separate isolated networks is particularly useful when attempting to identify which stations and measurements are disconnected from the rest of the network. To achieve this outcome, run the following sequence of commands:

```
import -n uni_sqr uni_sqrstn.xml uni_sqrmsr.xml
segment uni_sqr --contiguous-blocks 0
import -n uni_sqr_block_# uni_sqrstn.xml uni_sqrmsr.xml --seg-file uni_sqr.seg --import-block-stn-msr #
    --export-xml-files
```

According to this sequence of commands, the first and second commands will import and segment the entire network into blocks, separating isolated networks (if any) into individual blocks. If there are any stations and measurements which are disconnected from the rest of the network, the values in the Network ID column will increment. In this circumstance, record the block number(s) for every change in the Network ID column. If the call to **segment** above causes an isolated network to be split into two or more blocks, increase the maximum block size until a unique Network ID value appears on a single row and hence, is associated with a unique number in the Block column. Using the block number of the isolated network, the second import command with the --seg-file option (using the segmentation output file generated from the previous command), and the --import-block-stn-msr option (where # equals the isolated block number) will export the isolated network to a set of DynaML files named uni_sqr_block_#stn.xml and uni_sqr_block_#msr.xml.

Chapter 7

Mathematical models for dynamic network adjustment

7.1 Introduction

The purpose of this chapter is to describe the functional models implemented within DynaNet for the formulation of the least squares normal equations. Since proper testing of measurements and estimated results is of fundamental importance to the verification of least squares adjustments, a summary of relevant probability distributions is provided. The stochastic models for scaling a-priori variance matrices and expressing quality and reliability are also described.

7.2 Observation equations

The measurement types handled by DynaNet are listed in Table 3.2 on page 19. DynaNet recognises that certain measurements may be aligned with the direction of the plumb—line rather than the ellipsoid normal, and that certain measurements may be related to the astronomic meridian rather than local meridian. In addition, measurements may be related to a different ellipsoid, reference frame and/or epoch than that chosen for the adjustment. In any case, a correction will need to be made prior to adjustment to ensure all measurements are aligned with the adopted datum. To this end, DynaNet makes the following assumptions and pre—adjustment corrections upon loading each of the supported measurement types:

- Horizontal angles (A), directions (D), astronomic latitude (I) and longitude (J), astronomic azimuths (K), zenith distances (V) and vertical angles (Z) have not been corrected for deflection of the vertical. Hence, corrections for the deflection of the vertical are applied using the east—west and north—south deflection components contained within the station file. The algorithms used to cater for the deflection of the vertical will be developed in related subsections.
- Geodetic azimuths (B) relate to the local meridian and are thereby not subject to the deflection
 of the vertical. Since all observation equations have been developed in the cartesian reference
 frame using vector geometry rather than on the surface of the ellipsoid, skew normal corrections
 are not required for azimuths.
- Ellipsoid chord (C) and arc (E) distances, MSL arc distances (M), slope distances (S), zenith distances (V) and vertical angles (Z) have already been corrected for coefficient of refraction.
- GNSS baselines (G) and baseline clusters (X), GNSS point clusters (Y), geodetic latitude (P) and longitude (Q) and ellipsoid height (R) are aligned with the adjustment ellipsoid, reference frame and epoch. If a different ellipsoid, reference frame and/or epoch has been provided with such measurements, DynaNet applies a transformation (as per §4.3) to align each measurement to the adjustment reference frame.

7.2.1 Slope distances (S)

Figure 7.1 shows a typical slope (or direct) distance measurement s_{12} in the local reference frame from p_1 to p_2 .

Figure 7.1: Slope, ellipsoid arc and ellipsoid chord distances

The slope distance measurement s_{12} is related to the coordinates of p_1 and p_2 in the cartesian reference frame by:

$$s_{12} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$
 (7.1)

Slope distances are observed either between instrument and target or directly between stations. Accordingly, the cartesian elements in 7.1 reflect the coordinates of the instrument and target or stations p_1 and p_2 . The coordinates relating to the former are derived from supplied instrument and target heights. Direct distances between stations are dealt with by supplying a zero height for the instrument and target.

Note that for all slope distances, it is assumed that first and second velocity corrections have already been applied to the observed distance.

7.2.2 Ellipsoid arc (E) and ellipsoid chord (C) distances

Figure 7.1 shows typical ellipsoid arc and ellipsoid chord distance measurements e_{12} and e_{12} from p'_1 to p'_2 . The formation of observation equations for ellipsoid arc measurements is handled by reducing each measurement to its chord counterpart first. An ellipsoid arc e_{12} is related to the corresponding chord e_{12} by:

$$c_{12} = 2r\sin\left(\frac{e_{12}}{2r}\right) \tag{7.2}$$

where r is the radius of curvature of the ellipsoid in the direction of the chord, given by:

$$r = \frac{\rho \nu}{\nu \cos^2 \theta_{12} + \rho \sin^2 \theta_{12}} \tag{7.3}$$

and θ_{12} is the bearing from p_1' to p_2' . Therefore, using equation 7.1, the ellipsoid chord distance measurement c_{12} can be related to the coordinates of p'_1 and p'_2 in the cartesian reference frame by:

$$c_{12} = \sqrt{(x_2' - x_1')^2 + (y_2' - y_1')^2 + (z_2' - z_1')^2}$$
 (7.4)

The coordinates of points p'_1 and p'_2 in the cartesian reference frame are obtained as follows:

for
$$i = 1, 2$$

 $x'_{i} = x_{i} \frac{\nu_{i}}{\nu_{i} + h_{i}}$ (7.5)
 $y'_{i} = y_{i} \frac{\nu_{i}}{\nu_{i} + h_{i}}$ (7.6)

$$y_i' = y_i \frac{\nu_i}{\nu_i + h_i} \tag{7.6}$$

$$z_{i}' = g_{i} \nu_{i} + h_{i}$$

$$z_{i}' = (z_{i} + qz_{i}) \frac{\nu_{i}}{\nu_{i} + h_{i}} - qz_{i}$$
(7.7)

where qz_i is the z coordinate element of the point q_i evaluated from equation 4.6, ν_i is the radius of curvature in the prime vertical at p_i , and x_i , y_i and z_i are the cartesian coordinates of p_i .

7.2.3 Mean sea level (MSL) arc distances (M)

Figure 7.2 shows a typical MSL arc distance measurement m_{12} and the corresponding MSL chord mc_{12} from p_1 to p_2 . As indicated by Figure 7.2, MSL arcs are assumed to be coincident with the geoid, where $N_{1,2}$ are the geoid–ellipsoid separations at $p_{1,2}$ respectively.

Figure 7.2: Mean sea level arc distances

Similar to the procedure for handling ellipsoid arcs, the task of forming observation equations for MSL arc distances is handled by firstly reducing each MSL arc m_{12} to its chord counterpart mc_{12} and secondly reducing the MSL chord to an ellipsoid chord distance $c_{12}.\,$ A MSL arc m_{12} is related to the corresponding MSL chord mc_{12} using equation 7.2, repeated here as:

$$mc_{12} = 2r\sin\left(\frac{m_{12}}{2r}\right) \tag{7.8}$$

Here, r is the radius of curvature at MSL and is approximated by:

$$r = \sqrt{\rho\nu} + \left(\frac{N_1 + N_2}{2}\right) \tag{7.9}$$

Then, the ellipsoid chord c_{12} is obtained from:

$$c_{12} = \sqrt{\frac{mc_{12}^2 - (N_2 - N_1)^2}{\left(1 + \frac{N_1}{R}\right)\left(1 + \frac{N_2}{R}\right)}}$$
(7.10)

where R is the average radius of curvature approximated from the two principle radii of curvature:

$$R \ \ \dot{=} \ \sqrt{\rho \nu} \tag{7.11}$$

As explained in §7.2.2, the ellipsoid chord distance measurement c_{12} can be related to the coordinates of p'_1 and p'_2 in the cartesian reference frame using equation 7.4.

For the sake of clarity, Figure 7.3 is provided to show the relationships between slope distance, MSL arc distance, ellipsoid arc distance and ellipsoid chord distance measurements.

Figure 7.3: Relationships between slope distance, MSL arc distance, ellipsoid arc distance and ellipsoid chord distance measurements

7.2.4 Ellipsoid heights (R) and height differences

Figure 7.4 illustrates typical height measurements h_1 and h_2 observed above the ellipsoid at p_1 and p_2 .

An ellipsoid height measurement h_1 is related to the coordinates of p_1 in the cartesian reference frame by:

$$h_1 = (q_1 p_1 - \nu_1)$$

$$= \sqrt{x_1^2 + y_1^2 + (z_1 + q_{z_1})^2} - \nu_1$$
(7.12)

Figure 7.4: Heights and height differences

where q_1 is the intersection of the normal at p_1 with the polar axis of the ellipsoid (see Figure 7.1), $_qz_1$ is the z coordinate element of the point q_1 evaluated from equation 4.6, and ν_1 is the radius of curvature in the prime vertical at p_1 . Hence, q_1p_1 is the total distance from q_1 to p_1 .

An ellipsoid height difference Δh_{12} is related to the coordinates of p_1 and p_2 in the cartesian reference frame by:

$$\Delta h_{12} = h_2 - h_1
= (q_2 p_2 - \nu_2) - (q_1 p_1 - \nu_1)
= \sqrt{x_2^2 + y_2^2 + (z_2 + q_2)^2} - \sqrt{x_1^2 + y_1^2 + (z_1 + q_2)^2} - \nu_2 + \nu_1$$
(7.13)

Here, q_2 , $_qz_2$ and ν_2 relate to p_2 as per p_1 in equation 7.12.

7.2.5 Orthometric heights (H) and height differences (L)

Figure 7.4 illustrates typical orthometric height measurements H_1 and H_2 observed above the geoid at p_1 and p_2 . The development of observation equations for orthometric height measurements is handled by reducing them to their ellipsoid counterparts first. With respect to Figure 7.4, an orthometric height measurement H_1 is related to the corresponding ellipsoid height h_1 by:

$$h_1 = H_1 \cos \epsilon_1 + N_1 \tag{7.14}$$

where ϵ_1 is the deflection in the direction of gravity from the ellipsoid normal (or deflection of the vertical) at p_1 . However, since $\cos\epsilon$ always very close to unity, the correction to h_1 is generally at the 1/100 millimetre level and can be safely ignored. Accordingly, h_1 can be derived rigorously by:

$$h_1 = H_1 + N_1 \tag{7.15}$$

Thus, h_1 can be related to the coordinates of p_1 using equation 7.12.

A height difference ΔH_{12} observed by spirit levelling can be reduced to an ellipsoidal difference by:

$$\Delta h_{12} = \Delta H_{12} + (N_2 - N_1) \tag{7.16}$$

Note that the observation equations developed in this section assume the geoid to be coincident with the orthometric height datum to which spirit levelling observations (i.e. H_1 , H_2 and ΔH_{12}) refer. In practice, however, orthometric height datums derived from spirit levelling observations are rarely coincident with the geoid, especially those developed over large regions. To cater for the separation between an established orthometric height datum and the geoid, separations N_1 and N_2 in equations 7.15 and 7.16 should incorporate both a geoid–ellipsoid separation component and a geoid–ortho separation component.

7.2.6 Cartesian coordinates and GNSS point clusters (Y)

For direct cartesian coordinate measurements, derived either by GNSS or resulting from a previously adjusted network, the relationship between the measured coordinates x_m , y_m and z_m and the coordinates x_1 , y_1 and z_1 of p_1 is:

$$x_m = x_1$$

$$y_m = y_1$$

$$z_m = z_1$$

$$(7.17)$$

If GNSS point cluster measurements are provided in terms of latitude ϕ , longitude λ and orthometric height H, the equivalent cartesian coordinates x, y and z are obtained by transformation using equation 4.2, repeated here as:

$$x = (\nu + h)\cos\phi\cos\lambda$$

$$y = (\nu + h)\cos\phi\sin\lambda$$

$$z = \left[\nu(1 - e^2) + h\right]\sin\phi$$
(7.18)

where h has been derived from H using equation 7.15. In these instances, the point cluster variance matrix $\mathbf{V}_{\mathbf{x}_g}$ (supplied in units of $radians_{\phi}^2$, $radians_{\phi}^2$ and $metres_H^2$) is propagated into the cartesian reference frame using equation 4.28.

When multiple GNSS points are processed simultaneously, correlations will exist between all the points in the cluster. Similarly, correlations will exist for coordinates resulting from network adjustment. In such cases where a fully correlated variance matrix is available, DynaNet takes these correlations into account within the a-priori variance matrix so as to rigorously propagate the quality of the measurement set into the solution.

7.2.7 GNSS baselines (G) and GNSS baseline clusters (X)

A direct cartesian vector (or GNSS baseline) measurement $[\Delta x_{12} \, \Delta y_{12} \, \Delta z_{12}]$ is related to the coordinates of p_1 and p_2 in the cartesian reference frame by:

$$\Delta x_{12} = x_2 - x_1$$

$$\Delta y_{12} = y_2 - y_1$$

$$\Delta z_{12} = z_2 - z_1$$
(7.19)

As with a cluster of simultaneously processed GNSS points, DynaNet takes into account the correlations between simultaneously processed GNSS vectors when forming the a–priori variance matrix.

^{1.} For example, the Australian Height Datum of 1971 (AHD71) and the North American Vertical Datum of 1988 (NAVD88).

7.2.8 2D position via geodetic latitude (P) and longitude (Q)

§7.2.6 provides a rigorous way for dealing with a full set of geographic coordinates (ϕ , λ and H). In practice however, it is often the case that the full set of geographical coordinates for a single point is not available. This is due primarily to the way in which the horizontal and vertical components of geodetic networks have been maintained as separate networks. On some occasions, only latitude and longitude will be available for a single station within a horizontal network. On other occasions only height will be available where the station forms part of the vertical network. For these circumstances, the observation equations for the estimates of the horizontal and vertical components are developed as follows.

If Δx , Δy and Δz represent small changes in the cartesian coordinates of a station due to small changes $\Delta \phi$, $\Delta \lambda$ and Δh in the geographical coordinates, which are represented as:

$$\mathbf{x}_{c} = \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix} \quad \mathbf{x}_{g} = \begin{bmatrix} \Delta \phi \\ \Delta \lambda \\ \Delta h \end{bmatrix}$$
 (7.20)

then:

$$\mathbf{x}_c = \mathbf{T}\mathbf{x}_g$$
 (7.21)
$$\mathbf{x}_g = \mathbf{T}^{-1}\mathbf{x}_c$$
 (7.22)

$$\mathbf{x}_q = \mathbf{T}^{-1} \mathbf{x}_c \tag{7.22}$$

where T is the Jacobian matrix given by equation 4.29. In expanded form, equation 7.22 can be written as:

$$\mathbf{x}_g = \begin{bmatrix} t_{11} & t_{12} & t_{13} \\ t_{21} & t_{22} & t_{23} \\ t_{31} & t_{32} & t_{33} \end{bmatrix} \mathbf{x}_c$$

Here, t_{ij} are the individual elements of \mathbf{T}^{-1} . In this form, observation equations can be formed for any one of $\Delta\phi$, $\Delta\lambda$ or Δh . Thus, the observation equations for measured latitude ϕ_m and longitude λ_m coordinates and can be written as:

$$\phi_m - \phi_c = t_{11} \Delta x + t_{12} \Delta y + t_{13} \Delta z \tag{7.23}$$

$$\lambda_m - \lambda_c = t_{21}\Delta x + t_{22}\Delta y + t_{23}\Delta z \tag{7.24}$$

$$h_m - h_c = t_{31} \Delta x + t_{32} \Delta y + t_{33} \Delta z \tag{7.25}$$

where ϕ_c , λ_c and h_c are the latitude, longitude and ellipsoid height coordinates computed from the most recent estimates of x, y and z, and t_{11} , t_{12} , ..., t_{33} are the differentiations corresponding to x, y and z. If ϕ_m and λ_m have been derived from a previous adjustment, then a full variance matrix for \mathbf{x}_c can be developed from the variance matrix relating to ϕ_m and λ_m .

Incidentally, observations of this kind provide a convenient, yet rigorous way to constrain a network with respect to the local reference frame in a single horizontal direction. By virtue of providing ϕ_m or λ_m as a unique measurement, a network can be horizontally constrained in the n or edimension without the up dimension being influenced by the correlations that would normally be introduced through equation 4.28. The same also applies to constraining a network in the updimension using equation 7.25, however it is computationally more efficient to do so using ellipsoid height (R) measurements (see §7.2.4). This is due to the necessity for the inversion of T before t_{31} , t_{32} and t_{33} can be obtained.

7.2.9 Geodetic azimuths and horizontal bearings (B)

Figure 7.5 shows a typical geodetic azimuth (or bearing corrected for the deflection of the vertical) measurement θ_{12} in the local reference frame from p_1 to p_2 .

Figure 7.5: Bearings and horizontal angles

The azimuth between p_1 and p_2 is represented by vector $\mathbf{p_{12}}$. The elements of $\mathbf{p_{12}}$ are related to the cartesian reference frame via equation 4.11:

$$\mathbf{p_{12}} = \begin{bmatrix} \Delta e_{12} \\ \Delta n_{12} \\ \Delta u p_{12} \end{bmatrix} = \mathbf{R}_1^T \begin{bmatrix} \Delta x_{12} \\ \Delta y_{12} \\ \Delta z_{12} \end{bmatrix}$$
(7.26)

where \mathbf{R}_1 is the rotation matrix defined by equation 4.9 evaluated at ϕ_1, λ_1 . From equation 4.12, this can be written in expanded form as:

$$\begin{bmatrix} \Delta e_{12} \\ \Delta n_{12} \\ \Delta u p_{12} \end{bmatrix} = \begin{bmatrix} -\sin \lambda (x_2 - x_1) + \cos \lambda (y_2 - y_1) \\ -\sin \phi \cos \lambda (x_2 - x_1) - \sin \phi \sin \lambda (y_2 - y_1) + \cos \phi (z_2 - z_1) \\ \cos \phi \cos \lambda (x_2 - x_1) + \cos \phi \sin \lambda (y_2 - y_1) + \sin \phi (z_2 - z_1) \end{bmatrix}$$

Hence, the azimuth θ_{12} between stations p_1 and p_2 is related to the vector elements with:

$$\theta_{12} = \arctan\left(\frac{\Delta e_{12}}{\Delta n_{12}}\right) \tag{7.27}$$

Traditionally, skew normal corrections are applied to azimuth measurements as part of the process of reducing such measurements from the terrain to the ellipsoid. The correction takes account of the fact that the normal section through the instrument station and containing the target station does

not contain the normal through the target station. In DynaNet, skew normal corrections are not required because the observation equation for an azimuth measurement (equation 7.27) is developed in the cartesian reference frame using vector geometry rather than on the surface of the ellipsoid.

7.2.10 Horizontal angles (A)

Figure 7.5 shows a typical angle measurement α at p_1 in the local reference frame between two directions (or bearings) from p_1 to p_2 and p_3 . The local vectors between p_1 and p_2 , and p_1 and p_3 are given in short as $\mathbf{p_{12}}$ and $\mathbf{p_{13}}$ respectively. As per equation 7.26, the local vector elements of $\mathbf{p_{13}}$ can be related to the cartesian reference frame via equation 4.11.

The horizontal angle α_{123} at station p_1 is related to the local vector elements with:

$$\alpha_{123} = \arctan\left(\frac{\Delta e_{13}}{\Delta n_{13}}\right) - \arctan\left(\frac{\Delta e_{12}}{\Delta n_{12}}\right)$$
 (7.28)

Prior to evaluating the design matrix elements for horizontal angles, DynaNet corrects observed angles for the deflection of the vertical. If $_m\alpha_{123}$ is an observed angle, the influence of the deflection of the vertical ϵ_1 at p_1 is corrected by:

$$\alpha_{123} = {}_{m}\alpha_{123} - \epsilon_1 \tag{7.29}$$

where ϵ_1 is the deflection of the vertical at p_1 given by [Hofmann–Wellenhof and Moritz, 2006]:

$$\epsilon_1 = (\xi_1 \sin \theta_{13} - \eta_1 \cos \theta_{13}) \cot \zeta_{13} - (\xi_1 \sin \theta_{12} - \eta_1 \cos \theta_{12}) \cot \zeta_{12}$$
 (7.30)

Here, ϕ_1 and λ_1 are the geodetic latitude and longitude at p_1 , ξ_1 is the deflection in the prime meridian and η_1 is the deflection in the prime vertical evaluated at p_1 , and ζ_{12} and ζ_{13} are the zenith angles (corrected for the deflection of the vertical) at p_1 to p_2 and p_3 respectively.

As will be gathered from equation 7.30, if the zenith angles ζ_{12} and ζ_{13} are equal, such as would be the case for angles in the horizontal plane, ϵ_1 will be negligible and can be safely ignored.

7.2.11 Horizontal direction sets (D)

Figure 7.6 shows a typical cluster of direction measurements θ_{12} , θ_{13} , θ_{14} and θ_{15} in the local reference frame from p_1 to p_2 , p_3 , p_4 and p_5 .

The estimation of parameters from direction sets is handled by reducing the respective directions to angles α_{123} , α_{134} and α_{145} . The relationship between a cluster of directions and corresponding angles can be written as:

$$\alpha = \mathbf{Ad} \tag{7.31}$$

which can be written in expanded form as:

$$\begin{bmatrix} \alpha_{123} \\ \alpha_{134} \\ \alpha_{145} \end{bmatrix} = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} \theta_{12} \\ \theta_{13} \\ \theta_{14} \\ \theta_{15} \end{bmatrix}$$
(7.32)

Figure 7.6: Cluster of horizontal directions

In this way, the observation equations which relate α_{123} , α_{134} and α_{145} to the x, y and z elements of p_1 , p_2 , p_3 , p_4 and p_5 have the same form as those developed for angles in §7.2.10.

As it is common practice to observe a cluster of directions at the same time, correlations will exist between the derived angles α_{123} , α_{134} , α_{145} . Accordingly, the a–priori variance matrix must take these correlations into account. Given standard deviations $\sigma_{\theta_{12}}$, $\sigma_{\theta_{13}}$, $\sigma_{\theta_{14}}$ and $\sigma_{\theta_{5}}$ for the cluster of directions, the full variance matrix \mathbf{V}_{α} for the derived angles is obtained by propagation of variances:

$$\mathbf{V}_{\alpha} = \mathbf{A} \mathbf{V}_{\theta} \mathbf{A}^{T} \tag{7.33}$$

where $\bf A$ is the functional model relating the derived angles to the observed directions given in equation 7.32 and ${\bf V}_{\theta}$ is the (diagonal) variance matrix of the directions, given by:

$$\mathbf{V}_{\theta} = \begin{bmatrix} \sigma_{\theta_{12}}^{2} & 0 & 0 & 0\\ 0 & \sigma_{\theta_{13}}^{2} & 0 & 0\\ 0 & 0 & \sigma_{\theta_{14}}^{2} & 0\\ 0 & 0 & 0 & \sigma_{\theta_{15}}^{2} \end{bmatrix}$$
 (7.34)

The zero terms in V_{θ} reflect the fact that the observed directions are independent measurements. Whilst the directions are uncorrelated, however, V_{α} will be a non-diagonal matrix containing non-zero off-diagonal terms which represent the correlations between adjacent angles.

7.2.12 Zenith distances (V)

Figure 7.7 shows a typical zenith distance measurement ζ_{12} from p_1 to p_2 . The vector between p_1 and p_2 is represented by $\mathbf{p_{12}}$.

The elements of p_{12} are related to the cartesian reference frame via equation 7.35:

$$\zeta_{12} = \arctan\left(\frac{\sqrt{\Delta e_{12}^2 + \Delta n_{12}^2}}{\Delta u p_{12}}\right)$$
(7.35)

Figure 7.7: Zenith distances

Since zenith distances are observed between instrument and target, the elements in 7.35 relate to the vector formed between the instrument and target. These elements are derived by incorporating instrument and target heights into the computation of Δe , Δn and Δup .

Prior to evaluating the design matrix elements for zenith distances, DynaNet corrects observed zenith distances for the deflection of the vertical. If $_{m}\zeta_{12}$ is an observed zenith distance, the influence of the deflection of the vertical is corrected by:

$$\zeta_{12} = {}_{m}\zeta_{12} - \epsilon_1 \tag{7.36}$$

where ϵ_1 is the deflection of the vertical at p_1 given by [Hofmann–Wellenhof and Moritz, 2006]:

$$\epsilon_1 = \xi_1 \cos \theta_{12} + \eta_1 \sin \theta_{12} \tag{7.37}$$

Here, ξ_1 is the deflection in the prime meridian and η_1 is the deflection in the prime vertical evaluated at p_1 , and θ_{12} is the azimuth (corrected for the deflection of the vertical) of the line from p_1 to p_2 .

7.2.13 Vertical angles (Z)

Figure 7.8 shows a typical vertical angle measurement ϑ_{12} in the local reference frame from p_1 to p_2 . The vector between p_1 and p_2 is represented by $\mathbf{p_{12}}$, the elements of which are related to the cartesian reference frame via equation 7.26.

The vertical angle θ_{12} between stations p_1 and p_2 is related to the vector elements with:

$$\vartheta_{12} = \arctan\left(\frac{\Delta u p_{12}}{\sqrt{\Delta e_{12}^2 + \Delta n_{12}^2}}\right) \tag{7.38}$$

Figure 7.8: Vertical angles

As with zenith distances, vertical angles are observed between instrument and target. Hence, the elements in 7.38 relate to the vector formed between the instrument and target. These elements are derived by incorporating instrument and target heights into the computation of Δe , Δn and Δup .

Prior to evaluating the design matrix elements for vertical angles, DynaNet corrects observed vertical angles for the deflection of the vertical using equation 7.29, which is repeated here for vertical angles as:

$$\vartheta_{12} = {}_{m}\vartheta_{12} - \epsilon_1 \tag{7.39}$$

where ϵ_1 is the deflection of the vertical at p_1 given by equation 7.37.

7.2.14 Astronomic latitude (I) and longitude (J)

The treatment of astronomic latitude Φ and longitude Λ measurements at point p is handled by reducing the values for Φ and Λ to their geodetic counterparts ϕ and λ . Astronomic latitude and longitude are related to geodetic latitude and longitude by [Hofmann–Wellenhof and Moritz, 2006]:

$$\phi = \Phi - \xi
\lambda = \Lambda - \eta \sec \phi$$
(7.40)

where ξ is the deflection in the prime meridian and η is the deflection in the prime vertical at p. As explained in §7.2.8, the reduced ϕ and λ can be related to the coordinates of p in the cartesian reference frame using equations 7.23 and 7.24 respectively.

7.2.15 Astronomic (or Laplace) azimuth (K)

The treatment of astronomic azimuth measurement A_{12} from point p_1 to p_2 is handled by reducing A_{12} to a geodetic azimuth θ_{12} prior to adjustment. Astronomic azimuths are related to geodetic azimuths via:

$$\theta_{12} = A_{12} - \Delta \alpha_1 \tag{7.41}$$

where $\Delta \alpha_1$ is the Laplace correction at p_1 given by [Hofmann–Wellenhof and Moritz, 2006]:

$$\Delta \alpha_1 = \eta \tan \phi_1 + (\xi_1 \sin \theta_{12} - \eta_1 \cos \theta_{12}) \cot \zeta_{12}$$
 (7.42)

Here, ϕ_1 and λ_1 are the geodetic latitude and longitude at p_1 , ξ_1 is the deflection in the prime meridian and η_1 is the deflection in the prime vertical evaluated at p_1 , and ζ_{12} is the zenith angle (corrected for the deflection of the vertical) at p_1 .

As explained in §7.2.9, θ_{12} can be related to the coordinates of p_1 and p_2 using equation 7.27.

7.3 Stochastic modelling and reporting

7.3.1 Probability distributions used in DynaNetfor testing

7.3.1.1 Normal distribution

Survey measurements, free of blunders and systematic error, are assumed to be random variables which are Normally distributed about a mean of μ with a variance of σ^2 . It follows that the errors resulting in random measurement variations can also be considered as random variables with a mean of zero. Likewise, estimates which are based on those measurements are assumed to possess the same random characteristics. For these reasons, DynaNet uses the Normal or Gaussian distribution as the basic model for quantifying and testing the statistical behaviour of measurements, measurement corrections and parameter estimates. The probability density function (PDF) of the Normal distribution is given by:

$$f(x) = \frac{1}{\sigma_x \sqrt{2\pi}} \exp \left[\frac{(x - \mu_x)^2}{2\sigma_x^2} \right], \quad -\infty < x < \infty$$
 (7.43)

Equation 7.43 is used to estimate the probability of a measurement correction or estimated coordinate coinciding with the mean or falling within a certain interval (e.g. $\mu_x - \sigma_x \leq \hat{x} \leq \mu_x + \sigma_x$). Figure 7.9 shows the typical bell shaped curve of the Normal PDF.

The probability that a measurement correction or estimated coordinate will fall within a certain confidence interval $\mu - \sigma$ and $\mu + \sigma$ is given by:

$$P\left[\mu - \sigma \leq \bar{x} \leq \mu + \sigma\right] \approx \int_{-\infty}^{+\infty} f(x)dx \approx \alpha \tag{7.44}$$

where α is a value ranging from 0 to 1 commonly expressed as a percentage. The statistical inference is that P is the level of uncertainty that the estimated parameter will fall within the interval $\pm \sigma$ about the mean μ . When expressing the level of probability as a specific multiple of $\pm \sigma$, k (or coverage factor) is used. For example, for k=1, $\alpha=0.683$ (or 68.3%). Common confidence intervals based upon multiples of σ and their respective probabilities are given in Table 7.1.

Figure 7.9: The Normal distribution

Table 7.1: Confidence intervals for $\pm 1\sigma$ to $\pm 4\sigma$.

k	$P\left[\mu - k\sigma \le x \le \mu + k\sigma\right]$
1.00	68.3 %
1.96	95.0 %
2.00	95.4 %
2.58	99.0 %
3.00	99.73 %
3.29	99.9 %
4.00	99.994 %

By default, DynaNet adopts the 95% confidence interval for all statistical reporting and testing. See §8.3.3 on page 116 for selecting an alternative confidence interval by which to quantify and test measurements, their assumed variances and the parameters estimated from an adjustment. The use of the Normal distribution to test the quality of supplied measurements will be discussed in §9.3.2.

7.3.1.2 Chi-square distribution

DynaNet uses the *Chi*–square (χ^2) distribution to test the reliability of a least squares adjustment. By definition, the quantity w obtained from the sum of the squares of a set of Normally distributed random variables is a χ^2 random variable and is given by:

$$w_{\chi^2} = \mathbf{v}^T \mathbf{v} = \begin{bmatrix} x_1 & x_2 & \cdots & x_u \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_u \end{bmatrix}$$
 (7.45)

A χ^2 random variable may also be obtained from the *weighted* sum of the squares:

$$w_{\chi^2} = \mathbf{v}^T \mathbf{V}^{-1} \mathbf{v} = \begin{bmatrix} x_1 & x_2 & \cdots & x_u \end{bmatrix} \begin{bmatrix} \sigma_{x_1}^2 & \sigma_{x_1 x_2} & \cdots & \sigma_{x_1 x_n} \\ \sigma_{x_2 x_1} & \sigma_{x_2}^2 & & \vdots \\ \vdots & & \ddots & \\ \sigma_{x_n x_1} & \cdots & & \sigma_{x_u}^2 \end{bmatrix}^{-1} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_u \end{bmatrix}$$
(7.46)

where ${\bf V}$ is the variance matrix which weights the respective contribution of each variable $x_1, x_2, ..., x_u$ to w_{χ^2} . The PDF of χ^2 random variables is given by:

$$f(x) = \frac{x^{\frac{r}{2} - 1} e^{-\frac{x}{2}}}{\Gamma(\frac{r}{2}) 2^{\frac{r}{2}}}$$
(7.47)

where $\Gamma\left(\frac{1}{2}r\right)$ is a gamma function and r is the degrees of freedom in the model. The χ^2 PDFs for random variables having 4, 6, 10 and 18 degrees of freedom respectively are shown in Figure 7.10.

Figure 7.10: Chi–square (χ^2) distributions for 4, 6, 10 and 20 degrees of freedom

As shown in Figure 7.10, as r increases to ∞ , the χ^2 distribution will take the form of the Normal distribution. The expected value of a χ^2 random variable w is defined by the degrees of freedom:

$$E\left[w_{\chi_r^2}\right] = r \tag{7.48}$$

and its variance is given by:

$$\sigma^2\left(w_{\chi_r^2}\right) = 2r\tag{7.49}$$

Therefore, as $r \to \infty$, $\mu = r$ and $\sigma^2 = 2r$. The probability of a χ^2 random variable being greater than a particular *critical value* c is denoted as α and is given by:

$$\alpha = P\left[w_{\chi_r^2} > c\right] = \int_c^\infty f(x)dy \tag{7.50}$$

where α is the level of significance. The use of this distribution to test the quality of a least squares adjustment will be explained in §9.3.1.

7.3.1.3 Student's t distribution

When a network contains a large set of measurements having reliable estimates of precision, the Normal distribution offers a reliable means for testing measurement quality. However, when a network is comprised of a limited number of measurements, or the assumed measurement precisions are doubtful, the level of confidence that can be gained from testing against the Normal distribution decreases. To obtain a higher level of confidence from a solution in such circumstances, DynaNet can optionally compute statistics according to the Student's t (t) distribution which provides for more stringent testing on the supplied measurements.

The PDF of the t distribution is given by:

$$f(x) = \frac{\Gamma\left(\frac{r+1}{2}\right)}{\sqrt{r\pi}\Gamma\left(\frac{r}{2}\right)} \cdot \frac{1}{\left(1 + \frac{x^2}{r}\right)^{\frac{r+1}{2}}}$$
(7.51)

where $\Gamma(...)$ is the gamma function and r is the degrees of freedom. Four t PDFs having 2, 5, 10 and 50 degrees of freedom respectively are shown in Figure 7.11.

Figure 7.11: Student's t distributions for 2, 5, 10 and 50 degrees of freedom

As indicated by Figure 7.11, as r increases, the t distribution approaches the Normal distribution. What is distinctly different however, is that for low values of r, the t distribution has the characteristic of causing variations from the mean to disperse quickly beyond the confidence intervals giving a lower tendency to mark variations as outliers.

The Expected value of a t random variable is:

$$E[w_{t_r}] = 0 (r > 1) (7.52)$$

and its variance is given by:

$$\sigma^2(w_{t_r}) = \frac{r}{r-2} \qquad (r \ge 2)$$
 (7.53)

The probability that a measurement correction will fall within a certain confidence interval $-\sigma$ and $+\sigma$ is given by:

$$\alpha = P\left[w_{t_r} > c\right] = \int_c^{\infty} f(x)dy \tag{7.54}$$

The use of this distribution to analyse small networks with measurements having doubtful precisions will be explained in §9.3.2.2.

7.3.2 Preparation of measurement precisions and variance matrices

Since a least squares adjustment of a geodetic network depends upon a reliable stochastic model, it is imperative that realistic estimates of precision are assigned to the measurements. Whilst some may argue that the use of least squares to estimate the precision of measurements is *theoretically* legitimate, the *practical* limitation of this argument is that the true statistical behaviour of a measurement and its contribution to the estimation of station coordinates will be biased.

In the absence of having a rigorous instrument calibration uncertainty², sound geodetic practice for achieving reliable measurement precisions involves estimating the standard deviation from a large sample of measurements. Traditionally, the procedure employed by many geodetic agencies was, for each instrument type, to (i) take a large sample of measurements under normal operating conditions (and over different parts of the year); (ii) estimate the standard deviation from those measurements; and (iii) scale and/or add additional terms to the estimated standard deviation to account for external influences not discernible from the sample (such as errors which have a systematic effect and need to be estimated from experience). The quantity derived from (ii) is sometimes termed *Type A* uncertainty or *internal precision*, whereas the quantity obtained during (iii) is termed *Type B* uncertainty or *external precision*. Using elementary statistical principles, the precision for a measurement at (ii) may be obtained by:

$$\sigma^2 = \frac{1}{(n-1)} \sum_{1}^{n} (m_1 - \overline{m})^2 \tag{7.55}$$

where n is the sample size, m_i relates to each measurement in the sample and \overline{m} is the theoretical mean of the sample. Following the procedure outlined above, any measurement taken from an instrument thereafter would be assigned the total (one–sigma) uncertainty estimate.

Nowadays however, this procedure is almost totally forgotten or regarded as being unimportant with the availability of high precision equipment. Instead, the practice of taking an adjustment and scaling the supplied variances by the estimated variance factor (c.f. §9.3.1.1) has become a favourable option due to the relative ease and efficiency with which it can be computed. Whilst this may be true for several modern digital surveying instruments, the same cannot be said for *all* instruments or GNSS baselines and point clusters which have been derived from GNSS analysis.

Experience shows that GNSS variance matrices derived from GNSS analysis software are almost always over optimistic, giving only an estimate of the internal precision. More often than not, the uncertainties from all collatoral measurement sources (e.g. carrier phase measurement precision;

^{2.} A rigorous uncertainty computed by instrument calibration and expanded to include uncertainties for all known collatoral measurement sources and unmodelled systematic error.

receiver clock estimates; antenna phase centre models; satellite orbit and clock estimates) and systematic models (e.g. effect of double–difference decorrelation; troposphere and ionosphere models; ocean loading models) are not taken into account. From another perspective, variance matrices derived from short occupation periods almost always fail to convey the imprecision in the resulting measurements. Failing to take the uncertainties of all of these factors results in variance matrices which are, on the whole, over–optimistic. Ultimately, this problem causes a number of down–stream difficulties when attempting to combine measurements taken over the same stations under different circumstances, different observation techniques, different equipment and over different times of the year.

DynaNet cannot generate realistic matrices, but can be used to assist with attaining more reliable estimates of measurement precision. Two such tools include GNSS variance matrix scaling (discussed in the next section) and local testing via the Student's t distribution (c.f. §7.3.1.3 and §9.3.2.2).

7.3.2.1 Scaling GNSS variance matrices

As described in §3.3.3, DynaNet offers a capacity for a–priori GNSS variance matrices to be scaled prior to adjustment. The options for scaling a variance matrix include a total variance matrix scalar and individual (or partial) variance matrix scalars. A total variance matrix scalar is in the form of a single multiplier or variance factor. Partial matrix scalars are given in terms of east—west, north—south and up scalars. Both forms of scaling are stored within the binary measurement file and applied upon executing an adjustment. Hence, the original input files are not modified.

Variance matrix scaling using a single multiplier is often carried out once the quality of the solution has been determined. Scaling a variance matrix by a single multiplier is performed automatically prior to the least squares adjustment as:

$$\mathbf{V}_{\mathbf{m}}^{scaled} = s^2 \mathbf{V}_{\mathbf{m}} \tag{7.56}$$

where $\mathbf{V_m}$ is the a-priori variance matrix and s is the variance matrix scalar.

In the case of partial matrix scaling, it may be desirable to, for example, scale a variance matrix by a greater magnitude in the vertical axis than in the horizontal plane. To effect this outcome, three operations are performed. Firstly, the a–priori variance matrix is propagated into the local reference frame from either the cartesian or geographic reference frame such that the variance matrix terms are in units of east, north and up. This is achieved by applying both equations 4.28 and 4.24 if the input variance matrix is in the geographic reference frame or equation 4.24 alone if the input variance matrix is in the cartesian reference frame.

Secondly, partial variance matrix scalars are applied via propagation of variances:

$$\mathbf{V}_{\mathbf{x}_{l}}^{scaled} = \mathbf{S}_{\mathbf{enu}} \mathbf{V}_{\mathbf{x}_{l}} \mathbf{S}_{\mathbf{enu}}^{T}$$
 (7.57)

where the functional model is expressed as:

$$\mathbf{S_{enu}} = \begin{bmatrix} \sqrt{s_{east}} & 0 & 0\\ 0 & \sqrt{s_{north}} & 0\\ 0 & 0 & \sqrt{s_{up}} \end{bmatrix}$$
(7.58)

If $V_{\mathbf{x}_l}$ is larger than a (3x3) matrix — that is, it applies to a GNSS cluster rather than a single baseline or position — the same procedure as described above is used except the $S_{\mathbf{enu}}$ matrix is

constructed so as to match the dimensions of the variance matrix that is to be scaled. The scaling matrix will be block-diagonal, with each (3x3) sub-matrix on the leading diagonal being as shown in equation 7.58 and all off-diagonal terms will be zero. If a single multiplier scalar is supplied with partial matrix scalars, the partial scalar values are multiplied by the single multiplier first prior to propagation of variances.

Thirdly, the scaled variance matrix is propagated into the cartesian reference frame using equation 4.8, such that it is in a ready state for the development of the normal equation matrix.

7.3.3 Expressing estimates of quality and reliability

As will be seen in §8.2, a by–product of least squares adjustment is an estimate of the precision of the estimated parameters and adjusted measurements. To assist with analysing the quality and reliability of a network, DynaNet performs additional computations to quantify and express the following indicators:

- Quality of a least squares adjustment
- Quality of the estimated station coordinates (in one, two or three dimensions)
- Quality of supplied and adjusted measurements
- Reliability of the supplied measurements
- Reliability of the whole network

As discussed in the previous section, DynaNet uses the Chi–square statistic to quantify the quality of the solution of a network. To express the quality of estimated station coordinates, standard deviations directly obtained from the estimated variance matrix are used by default. Optionally, station coordinate quality in the horizontal plane can be quantified in terms of the standard error ellipse and a circular 95% confidence region, known as *Positional Uncertainty*. On reporting the quality of measurements, residuals *normalised* (or *standardised*) to certain confidence intervals of the unit Normal distribution and unit Student's t distribution may be computed. Measurement reliability and network reliability are expressed using quantities based on supplied and adjusted measurement precisions. The formula used by DynaNet to compute these indicators are described in the following sections.

7.3.3.1 Error ellipses

The error ellipse of constant probability is the locus of points (x,y) described by the intersection between a horizontal plane at a height k above the xy plane and the continuous PDF surface. Figure 7.12a illustrates the error ellipse at height k. Figure 7.12b shows the relevant parameters of the error ellipse.

The size, shape and orientation (i.e. the complete spatial behaviour) of the ellipse is obtained when the exponent term in the PDF of the Normal distribution is set to a specific value k^2 :

$$(\mathbf{m} - \mu_{\mathbf{m}})^T \mathbf{V}_{\mathbf{m}}^{-1} (\mathbf{m} - \mu_{\mathbf{m}}) = k^2$$
 (7.59)

The centre of the ellipse coincides with the most probable values for x and y, being μ_x and μ_y respectively. The semi-major a and semi-minor b axes are defined by the square roots of the

relevant eigenvalues of V_m [Mikhail, 1976]:

$$a = \left[\frac{1}{2} \left(\sigma_x^2 + \sigma_y^2 + z\right)\right]^{\frac{1}{2}}$$

$$b = \left[\frac{1}{2} \left(\sigma_x^2 + \sigma_y^2 - z\right)\right]^{\frac{1}{2}}$$

$$z = \left[\left(\sigma_x^2 - \sigma_y^2\right)^2 + 4\sigma_{xy}^2\right]^{\frac{1}{2}}$$
(7.60)

Figure 7.12: The error ellipse and its dependence on coverage factor k

The estimated variances σ_x^2 and σ_y^2 are dimensioned along the x and y axes of the two-dimensional reference frame. When the estimates of x and y are uncorrelated, the axes of the ellipse will be coincident with the x and y axes. When $\rho \neq 0$, the ellipse axes are rotated relative to the x and y axes by the angle ϕ . The orientation ϕ of the error ellipse is a function of the estimated variances and covariance of x and y, and is given by:

$$\phi = \frac{1}{2} \arctan \left[\frac{2\sigma_{xy}}{\sigma_x^2 - \sigma_y^2} \right] \tag{7.62}$$

When the correlation between Normal random variables under the same probability distribution is equal to zero, the orientation ϕ is equal to zero.

At any time, users may opt to present these quantities in higher confidence intervals than the standard. For example, if users wish to express standard deviations for one dimensional components (such as height) at the 95% confidence level, the uncertainty value is computed by scaling the estimated (1 sigma) standard deviation by coverage factor k=1.960. To express the standard two–dimensional error ellipse at the 95% confidence level, the axes of the 95% error ellipse are obtained by scaling the (1 sigma) axes by coverage factor k=2.448. Similarly, the axes of the 95% three dimensional error ellipsoid are obtained by scaling the (1 sigma) axes by coverage factor k=2.796.

7.3.3.2 Positional uncertainty

According to the *Guideline for the Adjustment and Evaluation of Survey Control* [ICSM, 2014], *Positional Uncertainty* (PU) is the uncertainty of the horizontal and/or vertical coordinates of a survey control mark with respect to the defined datum and represents the combined uncertainty of the existing datum realisation and the new control survey. PU is expressed in SI units at the 95% confidence level.

For the horizontal circular confidence region, the 95% uncertainty value is calculated from the standard (1 sigma) error ellipse and is expressed as a single quantity, being the radius of the circular confidence region. The radius r of the circular confidence region is computed by:

$$r = a \times K \tag{7.63}$$

$$K = q_0 + q_1 C + q_2 C^2 + q_3 C^3 (7.64)$$

$$C = \frac{b}{a} \tag{7.65}$$

where:

a is the semi-major axis of the standard error ellipse computed from equation 7.60

 $\it b$ is the semi-minor axis of the standard error ellipse computed from equation 7.61

 $q_0 = 1.960790$

 $q_1 = 0.004071$

 $q_2 = 0.114276$

 $q_3 = 0.371625$

Values for a and b are derived from the full a-posteriori variance matrix (or precision of the estimated coordinates) obtained from least squares adjustment (discussed in §8.2 and evaluated by equation 8.16).

7.3.3.3 Measurement reliability and network reliability

Amongst the reliability factors which may be used to determine measurement reliability, a common and relatively simple indicator is Pelzer's measurement reliability criterion [Prószynski, 1994]. Pelzer's criterion is computed as:

$$\tau = \frac{\sigma_i^2}{\sigma_i^2 - \hat{\sigma}_i^2} \tag{7.66}$$

where σ_i^2 is the a-priori measurement precision and $\hat{\sigma}_i^2$ is the a-posteriori measurement precision arising from least squares adjustment. Based on this formula, τ will vary between unity and infinity. The larger the value for τ , the poorer the reliability. For instance, as measurement redundancy increases, $\hat{\sigma}_i^2$ will decrease and cause τ to tend towards unity.

Once the reliability criterion has been computed for each measurement via equation 7.66, the global (or whole) network reliability can be computed as:

$$T^2 = \sum_{n=1}^{1} (\tau^2 - 1) \tag{7.67}$$

Chapter 8

Estimation of station parameters

8.1 Introduction

DynaNet estimates unknown station parameters using the technique of least squares via the traditional observation equations method. The parameters which may be estimated include station coordinates and their uncertainties, adjusted measurements and the precision of adjusted measurements. DynaNet also computes a small range of statistics to aid in the validation of the supplied measurements and their precisions, and in the analysis and verification of the estimated parameters. The program which performs all adjustment operations is **adjust**.

The objectives of this chapter are twofold — firstly, to provide a basic overview of the least squares algorithm employed by **adjust** and secondly, to describe how **adjust** may be configured to achieve maximum computational efficiency and to produce the desired output. Chapter 9 explains how the statistics computed by **adjust** can be used to validate the precision of the measurements and the reliability of the least squares solution as a whole.

8.2 Overview of least squares estimation

According to the least squares observation equations method, the solution of unknown parameters is achieved using linearised observation equations (or measurement functions) without any need for condition or constraint equations. For each measurement, the observation equation is developed as:

$$m = f(x_1, x_2, \dots, x_u)$$
 (8.1)

where x_1, x_2, \ldots, x_u are the parameters to be estimated and f is the function that expresses the deterministic relationship between a measurement and the unknown parameters. The observation equations presented in §7.2 have been developed in the form of equation 8.1. In matrix form, a system of n linearised observation equations can be related to a set of u unknown parameters by the functional model:

$$\mathbf{m} = \mathbf{A}\mathbf{x} \tag{8.2}$$

where:

x is a vector of unknown parameters (size $u \times 1$)

 \mathbf{m} is a vector of measurements (size $n \times 1$)

A is the matrix of coefficients, or design matrix (size $n \times u$)

When the number n of functionally independent measurements exceeds the number u of unknown parameters, the redundancy r (or degrees of freedom) will be defined as:

$$r = n - u \tag{8.3}$$

If n < u, the solution is indeterminate. If n = u, there is only one possible solution for the unknown parameters. If n > u, an inconsistency in $\mathbf{m} = \mathbf{A}\mathbf{x}$ will arise. This inconsistency arises from the fact that some form of error will exist in a set of measurements which, in turn, leads to a range of possible parameter values that could satisfy the system of observation equations.

To arrive at a unique set of values for the parameters, the least squares algorithm adjusts the system of measurements \mathbf{m} by a set of estimated corrections (or residuals) $\hat{\mathbf{v}}$ such that the functional model is satisfied. In matrix form, the adjusted measurements $\hat{\mathbf{m}}$ are related to the original measurements \mathbf{m} , residuals $\hat{\mathbf{v}}$ and estimated parameters $\hat{\mathbf{x}}$ as follows:

$$\hat{\mathbf{m}} = \mathbf{m} - \hat{\mathbf{v}} \tag{8.4}$$

$$= \mathbf{A}\hat{\mathbf{x}} \tag{8.5}$$

This allows equation 8.2 to be expressed as:

$$\mathbf{m} - \hat{\mathbf{v}} = \mathbf{A}\hat{\mathbf{x}}$$
 with $E(\mathbf{m}) = \boldsymbol{\mu} = \mathbf{A}\mathbf{x}$ and $E(\hat{\mathbf{v}}) = \mathbf{0}$ (8.6)

The expectation $E(\hat{\mathbf{v}}) = 0$ is based on the hypothesis that the measurements \mathbf{m} are Normally distributed random variables with an expected mean of $\mu = \mathbf{A}\mathbf{x}$, and that \mathbf{v} represents random error in \mathbf{m} . The subject of dealing with larger than expected values for \mathbf{v} will be taken up in §9.3.2.

For the observation equations in the functional model which are non-linear with respect to the parameters, the linear form of functions f_1 , f_2 , f_3 , ..., f_n in A are approximated by the zero and first-order terms of a Taylor series expansion:

$$m_{1} - \hat{v}_{1} = f_{1}(x'_{1}, x'_{2}, \dots, x'_{u}) + \frac{\partial f_{1}}{\partial x_{1}} \Delta x_{1} + \frac{\partial f_{1}}{\partial x_{2}} \Delta x_{2} + \dots + \frac{\partial f_{1}}{\partial x_{u}} \Delta x_{u}$$

$$m_{2} - \hat{v}_{2} = f_{2}(x'_{1}, x'_{2}, \dots, x'_{u}) + \frac{\partial f_{2}}{\partial x_{1}} \Delta x_{1} + \frac{\partial f_{2}}{\partial x_{2}} \Delta x_{2} + \dots + \frac{\partial f_{2}}{\partial x_{u}} \Delta x_{u}$$

$$\vdots$$

$$m_{n} - \hat{v}_{n} = f_{n}(x'_{1}, x'_{2}, \dots, x'_{u}) + \frac{\partial f_{n}}{\partial x_{1}} \Delta x_{1} + \frac{\partial f_{n}}{\partial x_{2}} \Delta x_{2} + \dots + \frac{\partial f_{n}}{\partial x_{u}} \Delta x_{u}$$

$$(8.7)$$

where x_1', x_2', \dots, x_u' are the starting values used to compute \mathbf{m} . Hence, $x_i = x_i' + \Delta x_u$. Simplified in matrix form, equation 8.7 is written as:

$$\mathbf{m} - \hat{\mathbf{v}} = \mathbf{m}' + \mathbf{A}\hat{\mathbf{x}} \tag{8.8}$$

where \mathbf{m}' denotes the vector of measurements computed from the starting values and \mathbf{A} is the full Jacobian (or design) matrix of partial derivatives of f with respect to the parameters x_1, x_2, \ldots, x_u . Since the linearised functional model is approximated using a first order Taylor series, the solution will require iteration. In steps, the vector of reduced measurements \mathbf{m}_r is computed with an initial approximate for $\hat{\mathbf{m}}$, denoted by $\hat{\mathbf{m}}'$:

$$\mathbf{m}_r = \mathbf{m} - \hat{\mathbf{m}}' \tag{8.9}$$

and then the *most probable values* are evaluated by:

$$\hat{\mathbf{m}} = \mathbf{m}_r + \mathbf{A}\hat{\mathbf{x}} \tag{8.10}$$

The solution is iterated (i.e. $\hat{\mathbf{m}}$ is substituted for $\hat{\mathbf{m}}'$) until $\Delta x_1, \Delta x_2', \dots, \Delta x_u'$ in equation 8.7 converge to zero (i.e. when $\mathbf{m}_r = 0$). Assuming that the measurements are Normally distributed, the least squares algorithm estimates values for $\hat{v}_1, \hat{v}_2, ..., \hat{v}_n$ so that the values for $\hat{\mathbf{x}}$ will have a maximum probability under the Normal distribution. This is achieved by minimising the exponent of the normal distribution PDF (c.f. equation 7.43) for m:

$$w = (\mathbf{m} - \mathbf{A}\mathbf{x})^T V_{\mathbf{m}}^{-1} (\mathbf{m} - \mathbf{A}\mathbf{x})$$
 (8.11)

where V_m is a symmetric positive definite variance matrix (size $n \times n$) representing the stochastic behaviour of the measurements, and w is the weighted sum of the squares of the corrections. After substituting m - Ax with v (from equation 8.6), w can be rewritten in the familiar form:

$$w = \mathbf{v}^T V_{\mathbf{m}}^{-1} \mathbf{v} \tag{8.12}$$

The minimum value for w is achieved by minimising equation 8.11 as:

$$\frac{\partial w}{\partial \mathbf{x}} = 0 \tag{8.13}$$

which after expansion and differentiation of equation 8.11 leads to the least squares normal equations:

$$\left(\mathbf{A}^T \mathbf{V}_{\mathbf{m}}^{-1} \mathbf{A}\right) \mathbf{x} = \mathbf{A}^T \mathbf{V}_{\mathbf{m}}^{-1} \mathbf{m}$$
 (8.14)

Solving for x enables the least squares solution of the unknown parameters and corresponding variance matrix to be written as:

$$\hat{\mathbf{x}} = \left(\mathbf{A}^T \mathbf{V}_{\mathbf{m}}^{-1} \mathbf{A}\right)^{-1} \mathbf{A}^T \mathbf{V}_{\mathbf{m}}^{-1} \mathbf{m} \tag{8.15}$$

$$\hat{\mathbf{x}} = (\mathbf{A}^T \mathbf{V}_{\mathbf{m}}^{-1} \mathbf{A})^{-1} \mathbf{A}^T \mathbf{V}_{\mathbf{m}}^{-1} \mathbf{m}$$

$$\mathbf{V}_{\hat{\mathbf{x}}} = (\mathbf{A}^T \mathbf{V}_{\mathbf{m}}^{-1} \mathbf{A})^{-1}$$
(8.15)

Here, distinction is made between x and \hat{x} in that the latter represents the estimates of the former the most probable values according to the functional model ${\bf A}$ and stochastic model ${\bf V_m}$. Explanation of $V_{\hat{x}}$ is left until Chapter 9. If the functional model is non–linear, equation 8.15 will need to be iterated to arrive at the final coordinate and precision estimates.

8.3 Adjusting a network

Once **import** has created the binary station (.bst) and measurement (.bms) files, and the associated station (.asl) and measurement (.aml) lists from the input station and measurement files, the network is ready for adjustment. This assumes that all necessary reference frame transformations (c.f. Chapter 4) and geoid file interpolations (c.f. Chapter 5) have been undertaken. For phased adjustments, the only additional precondition apart from running **import** is that **segment** has been run to create a segmentation file (c.f. Chapter 6).

With **adjust**, users may undertake adjustments in either simultaneous mode or phased adjustment mode. By default, **adjust** will perform network adjustments in simultaneous mode. In phased adjustment mode, several options are provided so as to maximise computational efficiency based upon the computer's available processor, physical memory and hard disk resources. For both modes, several options are provided to configure the adjustment behaviour and output. If there is a requirement to re—print the results from a previous adjustment using different configuration options, **adjust** may be executed in report results mode. In this mode, no adjustment is undertaken but rather, the output files are regenerated. The complete command line reference for **adjust** is given in §A.6. If no program options are provided upon program execution, the command line reference will be displayed.

If a DynaNet Project File (c.f. Chapter 2) is to be used, type dynanet on the command line, then --project-file (or its shortcut -p) followed by the full path for the project file, and then the option to invoke adjust:

```
dynanet -p uni_sqr.dnaproj --adjust
```

No other options are required, as **adjust** will be invoked using the options and arguments contained in the project file uni_sqr.dnaproj.

8.3.1 Simultaneous mode

As described in previous sections, simultaneous adjustment mode is ideally suited to smaller–sized networks. To adjust a network in simultaneous mode using all default settings, type adjust on the command line followed by the network name:

```
adjust uni_sqr
```

Upon running this command, **adjust** will report to the screen a number of items relevant to the project (e.g. name, location of input and output files); user—specified options; the progress of network adjustment including adjustment iterations; brief statistical summary of the adjustment; and final exit status (i.e. success or failure). Using the uni_sqr project, Figure 8.1 shows the information reported to the screen upon program execution. By and large, the screen output shown in Figure 8.1 will be similar to the output for all other adjustment modes.

Upon invoking **adjust**, a variety of matrices will be formed such that the station parameter estimates (c.f. 8.15) and uncertainties (c.f. equation 8.16) can be solved. This stage of the adjustment process is reported to the screen as "+ Preparing for adjustment..." and can take anywhere from milliseconds to several minutes depending on the size of the network, the number of computations that need to be undertaken to form the normals matrix, and the amount of data that needs to be held in physical memory. If there is insufficient memory to load the network in memory, DynaNet will report an error, in which case, users may need to revert to the use of phased adjustment mode

in either single-thread mode or staged adjustment mode (c.f. §8.3.2).

```
+ Options:
  Network name:
                                      uni_sqr
  Input folder:
  Output folder:
 Output folder:
Associated station file: ./uni_sqr.asl
Associated measurement file: ./uni_sqr.aml
                                      ./uni_sqr.bst
  Binary station file:
  Binary measurement file:
                                     ./uni_sqr.bms
 Adjustment output file:
Coordinate output file:
                                      ./uni_sqr.simult.adj
                                      ./uni_sqr.simult.xyz
                                     GDA94
  Reference frame:
  Epoch:
                                     01.01.1994
  Geoid model:
                                      ./ausgeoid09.gsb
+ Simultaneous adjustment mode
+ Preparing for adjustment... done.
+ Adjusting network...
 Iteration 1, max station corr: -0.5850 e
Iteration 2, max station corr: -0.0023 e
Iteration 3, max station corr: 0.0000 n
+ Done.
+ Solution: converged after 3 iterations.
+ Network adjustment took 0.06s.
+ Generating statistics... done.
+ Adjustment results:
 Number of unknown parameters 440
1182 (72 potential outliers)
 Degrees of freedom
                                     627.01
 Chi squared
 Rigorous sigma zero
                                     0.845
 Global (Pelzer) Reliability
                                     4.008
                                               (excludes non redundant measurements)
                                    0.901 < 0.845 < 1.104 *** WARNING ***
 Chi-Square test (95.0%)
+ Serialising adjustment matrices... done.
+ Printing adjusted station coordinates... done.
+ Updating binary station and measurment files... done.
+ Open uni_sqr.simult.adj to view the adjustment details.
```

Figure 8.1: adjust progress reporting

Following the preparation of adjustment matrices, **adjust** will commence adjusting the network, iterating as many times as necessary until the iteration threshold (or convergence criteria) is met or the maximum number of iterations has been reached. If either of these conditions fail, **adjust** will report to the screen an error message describing the reason for failure.

The time each iteration will take will vary according to the network size and the computer's computational power, including its processor (type, CPU frequency and architecture), physical memory and operating system memory model (32–bit or 64–bit). For these reasons, it is not possible to provide an estimate of computation progress or time to completion. Only experience with running several network adjustments will give the user a sense for how long an adjustment iteration may take.

Upon the completion of each iteration, the largest difference between the previously estimated station coordinates and the newly estimated station coordinates (denoted as "max station corr") will be displayed. These values will be particularly helpful in understanding the agreement between the starting estimates and the measurement system, and may be used to help diagnose problematic adjustments. For instance, a well configured and appropriately weighted measurement system will result in a rapid convergence (e.g. three or less iterations), despite the quality of the initial station

coordinate estimates. However, a system with poorly configured station constraints, measurement blunders, insufficient measurements, inappropriate measurement uncertainties and/or wrongly named stations may cause unexpected convergence rates (i.e. very small or large, erratic changes to the maximum station correction values) or a failure to converge at all.

When the largest correction becomes less than the iteration threshold, **adjust** will deem the solution to have converged. Once the solution has converged, **adjust** will compute a range of values and statistics for the output files. This task may take anywhere from milliseconds to several minutes depending on the size of the network and the user–specified options for configuring the output of adjusted measurements and statistics (c.f. §8.3.4).

Provided there are no significant errors, the next block of information will be a summary of statistics. Referring to Figure 8.1, the reported statistics include:

- **Number of unknown parameters** In DynaNet, every station is treated by default as having three unknown parameters (i.e. x, y, z). Any one or more cardinals may be fixed by the use of station constraints. The number of unknown parameters therefore corresponds to the number (u) of parameters to be estimated, excluding those station coordinates which have been held fixed in the station file. See §3.2.3 for more information on the concept of station constraints and how they are interpreted by DynaNet.
- **Number of measurements** This value reports the number (n) of measurement components. All measurements except GNSS measurement types are treated as having a single measurement component. Each GNSS baseline and GNSS point is regarded as having three measurement components (i.e. x, y, z). The number of measurement components in a cluster of GNSS baselines or GNSS points will be equal to three times the number of GNSS baselines or points in the cluster. If a measurement correction exceeds the specified confidence interval and thereby fails the local test, the measurement will be flagged as a potential outlier (c.f. Figure 8.1 where 72 measurements have been flagged as potential outliers). In such cases, the adjustment output file should be inspected to identify whether the potential outlier is a genuine failure and to rectify the cause of that failure. Details on the local test are given in §9.3.2.
- **Degrees of freedom** This value (r) is calculated directly from u and n (c.f. equation 8.3), and is the parameter against which the global rigorous sigma zero value is tested. As described earlier, u excludes all fixed station coordinates.
- **Chi squared** This quantity (w) is calculated directly from the supplied measurement precisions and the measurement residuals of the least squares adjustment (c.f. equation 8.12). With a well–configured measurement system, w will approach r.
- **Rigorous sigma zero** This value $(\hat{\sigma}^2)$ is derived from w and r (c.f. equation 9.7) and is used to test the least squares solution as a whole (c.f. §9.3.1).
- **Global (Pelzer) Reliability** This quantity (T^2) is calculated using equation 7.67 according to Pelzer's measurement reliability criterion. It is intended to give an assessment of the reliability of the measurement system as a whole.
- **Chi–Square test (95.0%)** This statement reports the result of the global test of $\hat{\sigma}^2$ using the default or–user specified confidence interval (c.f. §8.3.3, page 116). This test will be explained in §9.3.1. Note that it is possible for a least squares adjustment to have passed this global test and at the same time, one of the measurements in the set to have failed the local test. For this reason, the adjustment output file should be inspected in conjunction with this statistic.

Users should become acquainted with the statistical indicators presented in this summary and how they are calculated in order to make an informed decision about the quality of the solution and any measurements flagged as outliers.

The final statements reported in the screen output include references to various binary and text files that are created or updated with the latest adjustment results. The primary output file which contains the adjustment results is the adjustment output file. This file will be named using the convention <network-name>.<adjustment-mode>.adj (e.g. uni_sqr.simult.adj). The file content, format and structure of the adjustment output file is described in Appendix C.6. Hints on interpreting the adjusted measurements and associated statistics contained in this file will be given in Chapter 9.

By default, the adjustment output file contains the global adjustment statistics (as shown in the screen output) and estimated station coordinates. Further information on configuring the information printed to this file is given in §8.3.4.

8.3.2 Phased adjustment mode

When adjusting large adjustments in phased adjustment mode, the total network adjustment task is broken up into several smaller adjustments which are undertaken in an ordered sequence. The only pre—requisite for phased adjustment mode is that the network has been segmented (c.f. Chapter 6). There are three primary ways in which phased adjustment mode can be executed — single—thread mode, multi—thread mode and Block—1 only mode. In addition, when running an adjustment in single—thread mode, staged adjustment mode may be used. Brief mention is made of these modes to help determine which mode is appropriate for the network and the computer on which it is being adjusted.

The processing of single—threaded phased adjustments is illustrated in Figure 8.2. In single—thread mode, all adjustment operations are executed in a sequential (or procedural) fashion on one thread managed by a single core. If a computer's CPU has two cores, only 50% of the computer's processing power will be utilised. Similarly, if the CPU has four cores, only 25% will be used.

Figure 8.2: Single-thread mode

Information pertaining to the entire network is managed in physical memory (RAM). If there is insufficient RAM to retain the entire network in memory, staged adjustment mode should be used. In this mode, DynaNet uses memory mapping — a technique which treats the hard disk as if it were physical memory. Due to the I/O operations that must be performed to exchange information between the hard disk and memory, this mode may take longer than single—thread mode, however it permits the adjustment of extremely large networks on computers with small amounts of RAM.

The processing of multi–threaded phased adjustments is illustrated in Figure 8.3. In this mode, the forward and reverse pass adjustments are executed on two separate threads concurrently. If a computer's CPU has at least two cores, these threads will be executed in parallel by the operating system on two cores. When a block has been adjusted by both forward and reverse adjustments, a new thread will be invoked to undertake the combination adjustment of that block. This new thread will remain active for as long as it takes to adjust that block.

If a computer has at least four cores, all concurrent threads will be executed in parallel which will achieve the fastest adjustment time. Hence, running adjustments in multi–thread mode on a quad core CPU will result in 100% utilisation of the computer's processing capability. With hyper–threading technology (now almost a standard commodity in all modern computers), extreme performance gains can be achieved in this mode.

Figure 8.3: Multi-thread mode on four cores

If the number of concurrent threads exceeds the number of cores available on a CPU, the processing of individual tasks by those threads will be *interleaved* (or time—sliced) on the available core(s) such that all tasks appear to advance in parallel. The concept of interleaving between two threads on a single core is shown in Figure 8.4.

Figure 8.4: Thread switching on a single core

When interleaving from one task to the other, the CPU must perform a *context switch*, which involves storing and recalling the state of each process. Depending on the size of the blocks, these operations can be computationally intensive. Therefore, running multi–thread adjustments on a single core CPU may take longer than the time required for a simultaneous or single—threaded phased adjustment due

to the additional time that is needed to switch from the adjustment of one block to another. Note that since the adjustment of a single block involves numerous sub—tasks, context switching can occur at any stage of the adjustment.

The concept of a Block–1 only phased adjustment is illustrated in Figure 8.5. In this case, all blocks are adjusted once in a sequential fashion on a single thread. Since rigorous coordinates are required for the first block only, forward and combination passes are not required. Therefore, only block 1 will contain rigorous coordinates as it will be the only block that will take contribution from all other blocks in the network.

Figure 8.5: Block-1 only mode

Block–1 only phased adjustment mode is by far the most efficient if only a subset of the station coordinate estimates (i.e. those which have been selected to appear in the first block) are required. However, care must be taken to ensure that the most rigorous coordinates are available for all stations in the network prior to running an adjustment. The reason for this is because only a single reverse pass is performed and no further iterations will be undertaken if the solution has not converged.

8.3.2.1 Single-thread mode

To adjust a network using phased adjustment in single—thread mode, type adjust on the command line followed by the network name, and then --phased-adjustment:

```
adjust uni_sqr --phased-adjustment
```

Figure 8.6 shows the information reported to the screen pertinent to executing an adjustment in single—thread mode (omitting information common to the output from a simultaneous adjustment). As shown in the screen output, an adjustment output file named uni_sqr.phased.adj will be created, the contents of which will be very similar to the simultaneous adjustment output.

The main difference in the behaviour of this mode over that of simultaneous mode is that the progress ("+ Adjusting network...") will indicate which block is being adjusted and thereby, provide a more realistic indicator of the rate at which the adjustment is progressing. Since each block size will vary according to the behaviour of the network segmentation, it is not possible to give an estimate of time to completion.

```
+ Options:
...

Adjustment output file: ./uni_sqr.phased.adj
Coordinate output file: ./uni_sqr.phased.xyz
...

+ Rigorous sequential phased adjustment mode

+ Preparing for a 5 block adjustment... done.
+ Adjusting network...
...

+ Done.
+ Successfully adjusted 5 blocks.
...

+ Open uni_sqr.phased.adj to view the adjustment details.
```

Figure 8.6: Progress reporting using single-thread adjustment mode

8.3.2.2 Multi-thread mode

To adjust a network using phased adjustment in multi—thread mode, type adjust on the command line followed by the network name, and then --multi-thread:

```
adjust uni_sqr --multi-thread
```

Figure 8.7 shows the information reported to the screen pertinent to executing an adjustment in multi-thread mode.

```
+ Options:
...

Adjustment output file: ./uni_sqr.phased-mt.adj
Coordinate output file: ./uni_sqr.phased-mt.xyz
...

+ Rigorous sequential phased adjustment mode
+ Optimised for concurrent processing via multi-threading.

+ The active CPU supports the execution of 8 concurrent threads.

+ Preparing for a 5 block adjustment... done.
+ Adjusting network...
...

+ Done.
+ Successfully adjusted 5 blocks.
...

+ Open uni_sqr.phased-mt.adj to view the adjustment details.
```

Figure 8.7: Progress reporting using multi-thread adjustment mode

When reporting the progress of the adjustment, information on iterations following ("+ Adjusting network...") will indicate which block is being adjusted by the combination pass, not the forward and reverse passes. Since a combination pass on a block is invoked only once both forward and reverse passes have completed their adjustments of that block, the order of blocks adjusted by the combination passes will appear to be random. The exact order is subject to the order in which

forward and reverse adjustments are completed and the way in which the operating system marshals a list of threads waiting in a queue.

8.3.2.3 Block-1 only mode

To adjust a network using phased adjustment in Block-1 only mode, type adjust on the command line followed by the network name, and then --block1-phased:

```
adjust uni_sqr --block1-phased
```

Figure 8.8 shows the information reported to the screen pertinent to executing an adjustment in Block–1 only mode. As described earlier, this mode is ideally suited to the situation where final coordinate estimates for all stations in the network have already been produced, and there is a requirement for the full variance matrix for a subset of stations in the network.

```
+ Options:
...

Adjustment output file: ./uni_sqr.phased-block1.adj
Coordinate output file: ./uni_sqr.phased-block1.xyz
...

+ Sequential phased adjustment resulting in rigorous estimates for Block 1 only

+ Preparing for a 5 block adjustment... done.
...

+ Solution: estimates solved for Block 1 only.

- Warning: Depending on the quality of the apriori station estimates, further iterations may be needed. --block1-phased mode should only be used once rigorous estimates have been produced for the entire network.
...

+ Open uni_sqr.phased-block1.adj to view the adjustment details.
```

Figure 8.8: Progress reporting using Block-1 only adjustment mode

8.3.2.4 Staged adjustment mode

In staged adjustment mode, **adjust** relies upon the hard disk, rather than RAM, to store the adjustment matrices and estimated results for the entire network. Only the block being adjusted is loaded into memory. To this end, it is necessary to inform **adjust** whether to create a set of binary matrix files or to read from existing matrix files created from a previous adjustment. To adjust a network for the first time using phased adjustment in staged mode whereby new binary matrix files must be created, type adjust on the command line followed by the network name, and then --staged-adjustment and --create-stage-files:

```
adjust uni_sqr --staged --create-stage-files
```

Upon running the command above, **adjust** will serialise all matrix and vector information required to execute an adjustment in files with a .mtx extension. All the necessary information to re—run the adjustment will be contained within the .mtx files. If a repeat adjustment is to be executed using

the information serialised from a previous staged adjustment, the option --create-stage-files is not required. For example, the following command:

```
adjust uni_sqr --staged
```

will cause **adjust** to look for and open files named uni_sqr-*.mtx. Any failure associated with opening or reading these files will cause **adjust** to terminate prematurely.

8.3.2.5 Report results mode

To simply regenerate the results of a previous adjustment, type adjust on the command line followed by the network name, and then --report-results and the mode in which the previous adjustment was run (e.g. --phased-adjustment). If the mode is not supplied, **adjust** will assume simultaneous by default:

```
adjust uni_sqr --report-results
```

During this mode, the results can be re–produced at any time and using different output options. Refer to §8.3.4 for details on configuring the output of the results of an adjustment. The critical thing to remember when running report results mode is to supply the adjustment mode in which the last adjustment was run.

8.3.3 Adjustment configuration options

adjust permits the configuration of certain parameters which effect the behaviour of an adjustment independent of the adjustment mode. These include the confidence interval for testing the global statistic and measurement corrections; the least squares convergence threshold to test whether further iterations are required; the maximum number of iterations; additional station constraints; the level of precision by which fixed and free stations are constrained; and an option to scale the normal matrix prior to computing its inverse. The full command line reference for configuring adjustment behaviour is given in Table A.23.

Confidence interval

Confidence intervals represent the range of probability within which a parameter will equal the true value (c.f. §7.3.1 and §7.3.3.1). Based upon the assumption that a set of measurements will be Normally distributed random variables, and that the corrections represent the random error in those measurements (c.f. equation 8.6), assessments of the quality of a measurement set can be undertaken using the Normal distribution. The criteria by which a measurement is regarded as having passed or failed, is whether or not the measurement correction is within a probabilistic confidence interval. Hence, it is imperative that an appropriate confidence interval be chosen if assertions are to be made about the reliability of measurements and estimated quantities. The theoretical basis and application of statistical testing of measurements is given in more detail in Chapter 9.

The default interval used by **adjust** for all testing is the 95% confidence interval. To change the confidence interval to another value, such as 68.3% (or one sigma), pass the option --conf-interval followed by the interval as a percentage:

```
adjust uni_sqr --conf-interval 68.3
```

Note that reducing the confidence interval implies a more stringent testing criteria is required. It means decreasing the probability that measurements will fall within an acceptable range of uncertainty and thereby, less probability that measurements will be deemed reliable. For example, testing the uni_sqr network with a 68.3% confidence interval leads to the identification of 220 potential outliers, whereas a 99.73% (or three sigma) identifies only 22 potential outliers. As shown from these two intervals, the number of outliers that exist in an adjustment largely depends on how stringent a probability test is imposed.

Iteration threshold and maximum number of iterations

Since the functional model adopted for the least squares solution is a linearised model (approximated using a first order Taylor series), a solution will often require iteration until the parameter estimates converge to the most probable values. Or, more accurately, until the least squares normal equations are satisfied (c.f. equation 8.14). Depending on the quality of the initial station coordinates and the quality of the measurements (both as to their accuracy and their stated precision), the solution may require several iterations before equality is reached. One way of limiting excessive or unnecessary iterations from being undertaken is to impose a threshold by which the normal equations are deemed to have been satisfied.

The default iteration threshold used by **adjust** is 0.5mm. This means that the solution will keep iterating while corrections to the station coordinates exceed this amount, and until the maximum number of iterations has been reached. To change the convergence threshold to another value, such as 1mm, pass the option --iteration-threshold followed by the value in metes:

```
adjust uni_sqr --iteration-threshold 0.001
```

Care should be exercised when increasing this amount as too large a value may mean that incorrect (or less than acceptable) estimates will be derived.

The default maximum number of iterations adjust will undertake before terminating is 10. Under normal circumstances where the measurements are of good quality and the starting coordinates are close to their most probable values, this number will be more than adequate. However, in circumstances where a system is defective and troubleshooting is required, this iteration count can be set to, for example, 1 (one) to force an early termination. To change the maximum iteration limit, pass to adjust the option --max-iterations followed by the desired value:

```
adjust uni_sqr --max-iterations 3
```

Additional station constraints and default constraint values

adjust affords a capacity to introduce station constraints to an adjustment in addition to those which were obtained from the input station file(s). If it is decided that a station constraint should be added, modified or removed, users can specify the station and how it is to be constrained via the

option --constraints. Using station 5000 as an example, the following call to **adjust** demonstrates how to constrain this station in the horizontal axis:

```
adjust uni_sqr --constraints 302513640,CCF
```

This option replicates the functionality to apply station constraints supplied in the input station file (c.f. §3.2.3) . Therefore, the order of the three characters in the user–supplied constraint string corresponds to the cardinals of the supplied station coordinate. Since station 5000 was supplied in the form of UTM coordinates, the constraints CCF correspond to Easting, Northing and height up respectively.

Whilst this method of imposing constraints is not the recommended means for constraining a network to a datum, it does provide a useful mechanism for the detection of outliers and analysis of problematic adjustments.

By default, values of 10.0 m and 0.001 mm are adopted for *free* ('F') and *constrained* ('C') station constraints respectively. To alter these values, pass the options --free-stn-sd and/or --fixed-stn-sd to **adjust**:

```
adjust uni_sqr --free-stn-sd 5.0 --fixed-stn-sd 0.003
```

Scaling the normal matrix to unity

At times, computing the inverse of the normal matrix will be problematic if there is a very large numerical difference across the normal matrix elements, or if the matrix tends towards singularity due to very small quantities. This difference can arise from large variations in measurement precisions and/or linearisations which generate very large and very small quantities. These characteristics can cause numerical instability and/or loss of precision at the time of computing the inverse of the normal matrix. A method of overcoming such problems is to scale the normal matrix to unity prior to computing the inverse. To cause the normal matrix to be scaled to unity prior to computing the inverse, pass the option <code>--scale-normals-to-unity</code> to <code>adjust</code>:

```
adjust uni_sqr --scale-normals-to-unity
```

Note that this action is only to avoid instability in inverting the various variance matrices. The effect is reversed after matrix inversion so that the computed values are as if no scaling has taken place. This option will most likely only be required for cases where there is a very large variation in the precisions supplied for the set of measurements.

8.3.4 Output configuration options

By default, the adjustment output file (*.adj) contains basic adjustment statistics and adjusted coordinates using all default settings. Optionally, users can activate and configure the output and format of results that **adjust** generates from an adjustment. The full command line reference for configuring the adjustment output is given in Table A.25.

Measurements to station summary

To output a table of measurements connected to each station, add --output-msr-to-stn to the command line arguments for **adjust**:

```
adjust uni_sqr --output-msr-to-stn
```

This command will produce a table commencing with the title block Measurements to Station that shows the frequency of each measurement type and the total number of measurements associated with each station. The table will be sorted row—wise by the station name, and column—wise by the measurement type (c.f. Table 3.2). Appendix C.6.2 mentions the output of the measurements to stations table to the adjustment output file. For details on the content, structure and format of the table, refer to Table C.1 in Appendix C.3. Generating this table can be quite useful when attempting to identify measurement conflicts, or the presence of unnecessary measurements, measurement constraints or station constraints.

Printing and configuring adjusted measurements

To output a table showing the adjusted measurements and their associated statistics, add the option —output—adj—msr to the command line arguments. The table will commence with the title block Adjusted Measurements and will contain several columns containing information derived from the adjustment. Appendix C.6.3 provides further details on the content, structure and format of the adjusted measurements table.

Upon supplying this command, several options are available for configuring the adjusted measurement table. These include changing the units (Cartesian, local, polar) in which adjusted GNSS baselines are printed (via --output-adj-gnss-units); printing the t statistic (via --output-tstat-adj-msr); printing the optional database IDs (via --output-database-ids); sorting the adjusted measurements (via --sort-adj-msr-field); printing the adjusted measurements according to the segmented blocks (via --output-msr-blocks, for phased adjustments only); changing the precision to which linear and angular measurements are printed (via --precision-msr-linear and --precision-msr-angular); and altering the type and format in which angular measurements are printed (via --angular-msr-type and --dms-msr-format).

For each of these options, the --output-adj-msr option must be provided (either before or after the additional options). The configuration options can be supplied in any order.

For example, the following records show adjusted output information for a GNSS baseline in the default cartesian reference frame (station information excluded):

1234	678901	23456789012345678901	2345678901234567	8901234567890	12345678901234	567890123456	78901234567890	0123456789	012345678901	2345678901234567
Adju	sted Me	asurements								
	С	Measured	Adjusted	Correction	Meas. SD	Adj. SD	Residual	N-stat	Pelzer Rel	Pre Adj Corr
	X Y Z	-10325.4980 39327.8660 44763.3780	-10325.5078 39327.8795 44763.3639	-0.0098 0.0135 -0.0141	0.0661 0.0487 0.0593	0.0494 0.0365 0.0447	0.0440 0.0322 0.0389	-0.22 0.42 -0.36	1.50 1.51 1.52	0.0000 0.0000 0.0000

The following records show the corresponding adjustment information in the local reference frame via the --output-adj-gnss-units option:

The following records show the output information having also passed the --precision-msr-linear option with a value of 3 to adjust:

2345	567890	12345678901234567890123	345678901234567	8901234567890	12345678901234	5678901234567	78901234567890	123456789	012345678901	234567890123456
ljus	sted M	easurements								
	С	Measured	Adjusted	Correction	Meas. SD	Adj. SD	Residual	N-stat	Pelzer Rel	Pre Adj Corr
	е	-25623.195	-25623.201	-0.005	0.011	0.008	0.007	-0.70	1.53	0.0000
	n	54776.062	54776.060	-0.002	0.013	0.010	0.008	-0.26	1.54	0.0000
	u	-303.037	-303.016	0.021	0.100	0.075	0.066	0.32	1.51	0.000

Information on interpreting the adjusted measurement statistics is provided in §9.3.2.

Configuring adjusted coordinates

By default, **adjust** prints the adjusted coordinates to the adjustment output file. The options available for configuring the coordinate output include printing the adjusted station coordinates in sections according to the segmented blocks (via --output-stn-blocks, for phased adjustments only); sorting the stations on the sort order found in the input file (via --sort-stn-order-orig); selecting which coordinate types should be printed (via --stn-coord-types); printing the optional corrections to the original station coordinates (via --stn-corrections); and changing the precision in which linear and angular station coordinate values are printed (via --precision-stn-linear and --precision-stn-angular).

The following sample records show adjusted station coordinate output information having also passed to adjust the --precision-stn-linear option with a value of 3, the --stn-coord-types option followed by ENzH, and the --stn-corrections option (omitting station names and descriptions):

2345	67890123	45678901234567	890123456789012	34567890	0123456789012	345678901234	567890123	45678901234	567890123456	78901234567	78901234567	89012345678
ljus	sted Coor	dinates										
	Const	Easting	Northing	Zone	H(Ortho)	SD(e)	SD(n)	SD(up)	Corr(e)	Corr(n)	Corr(up)	
	FFF	751542.610	6066631.957	54	88.056	2.774	2.774	2.775	-0.027	0.009	0.056	
	FFF	668103.768	6069681.066	54	56.127	2.774	2.774	2.774	-0.021	0.020	0.043	
	FFF	609169.911	6181529.819	54	62.476	2.774	2.774	2.774	-0.012	-0.004	-0.009	
	FFF	722194.458	6055677.636	54	123.898	2.774	2.774	2.774	-0.024	0.016	0.036	

Appendix C.6.4 mentions the output of the adjusted station coordinates to the adjustment output file. For details on the content, structure and format of this information, refer to Table C.4 in Appendix C.5.

Adjustment results at each iteration

Various adjustment results can be generated upon each iteration to help identify and solve adjustment failure, such as excessive measurement corrections or a failure to converge. The results that can be printed to the output file upon each iteration include the adjusted station coordinates (via --output-iter-adj-stn); the summary of adjustment statistics (via --output-iter-adj-stat); the measurements computed prior to an adjustment (via --output-iter-cmp-msr); and the adjusted measurements (via --output-iter-adj-msr). Refer to Appendix C.6.5 for further information on the behaviour of this output.

8.3.5 Export configuration options

adjust provides a capacity to export the results of an adjustment into a variety of different files and formats. These include the adjusted positional uncertainty (*.apu) file; the station corrections file (*.cor); and the DNA (*.stn and *.msr), DynaML (*.xml) and SINEX (*.snx) file formats.

Full uncertainty information

To produce a file containing the rigorous uncertainties of the estimated parameters, pass the option --output-pos-uncertainty to **adjust**:

```
adjust uni_sqr --output-pos-uncertainty
```

Running this command will produce a file named uni_sqr.simult.apu. Similar files will be produced for the various phased adjustment modes. By default, this file will contain the adjusted coordinates; horizontal PU; vertical PU; error ellipse semi-major (a), semi-minor (b) and orientation (ϕ) ; and the upper-triangular component of the (3x3) variance matrix for each station. To output the covariances for all stations, add the option --output-all-covariances:

```
adjust uni_sqr --output-pos-uncertainty --output-all-covariances
```

If the above command is executed in phased adjustment mode, the uncertainty information will be printed in sections according to the segmented blocks. By default, the variance matrix is in the cartesian reference frame. To output the covariances in the local reference frame, pass the option —output—apu—vcv—units followed by 1:

```
adjust uni_sqr --output-pos-uncertainty --output-apu-vcv-units 1
```

Appendix C.8 provides further details on the content, structure and format of this file.

At times, there may be a need for the latest station coordinate estimates and a full variance matrix for a specific subset of stations from a large geodetic network, which, owing to the size of the network, must be adjusted in phased adjustment mode. This need can be met via the Block–1 only phased adjustment mode, whereby **adjust** is supplied the uncertainty output options described above. For example, the following command:

```
adjust uni_sqr --block1-phased --output-pos-uncertainty --output-all-covariances
```

will write the latest station coordinate estimates to uni_sqr.phased-block1.adj and the full variance matrix to uni_sqr.phased-block1.apu.

Station corrections

To produce a file containing the corrections to the original station coordinates, pass the option --output-corrections-file to **adjust**:

```
adjust uni_sqr --output-corrections-file
```

Running this command will produce a file named uni_sqr.simult.cor. Similar files will be produced for the various phased adjustment modes. This file will contain the adjusted station coordinate corrections in terms of horizontal azimuth; vertical angle; slope distance; horizontal distance; and the three-dimensional shifts in the local reference frame (east, north and up). Appendix C.7 provides further details on the content, structure and format of the station coordinate corrections file.

To restrict the information printed to the corrections file to those corrections which exceed a horizontal and/or vertical threshold, pass the --hz-corr-threshold and/or --vt-corr-threshold options followed by the respective thresholds. For example, to restrict the output of corrections to those which are larger than 25 mm horizontally and 25 mm vertically, run the following command:

```
adjust uni_sqr --output-corrections-file --hz-corr 0.025 --vt-corr 0.025
```

Exporting adjusted station coordinates to DynaML, DNA and SINEX

Adjusted station coordinates can be exported to DynaNet XML (DynaML), DNA and/or SINEX formats. These export functions are invoked by **adjust** upon adding the command line options --export-xml-stn-file, --export-dna-stn-file and/or --export-sinex-stn-file respectively. All three may be passed at the same time, as:

```
adjust uni_sqr --export-xml-stn-file --export-dna-stn-file --export-sinex-stn-file
```

Appendix B provides the file format specification for the DynaML, DNA and SINEX file types.

Adjusted station coordinates exported from **adjust** can be imported in subsequent adjustments as a–priori coordinate information. Importing adjusted station coordinates into an adjustment offers the advantage of reducing the number of iterations. The reason DynaNet does not support the export of adjusted measurement information is that properly configured network adjustments should not be based upon adjusted measurements and adjusted measurement precisions, but rather, reduced (or processed) and appropriately weighted measurements.

When exporting adjustment results to SINEX format from a phased adjustment, an independent SINEX file will be created for each block using the convention <network-name>-block<n>.<frame>.snx.

Independent files are created for each block of a phased adjustment since the SINEX standard does not permit multiple blocks of data in a single file. For each file created, <n> corresponds to the block number and <frame> corresponds to the adjustment reference frame. Each file will contain the full variance matrix for the subject block. To assist with managing the information contained in separate SINEX files, brief comments are provided in the FILE/REFERENCE and FILE/COMMENT sections. The

following example shows the preliminary sections from the first of two SINEX files produced for the trivial GNSS network shown in Figure 6.2.

```
%=SNX 2.00 DNA 16:320:28126 DNA 94:001:00000 94:001:00000 P 00039 0 S
+FILE/REFERENCE
*INFO_TYPE____
DESCRIPTION
                   Network 50kex
                 Phased adjustment results. Block 1 of 2
SOFTWARE
                   dynanet, Geodetic network adjustment software
Version: 3.2.6, Release (64-bit)
Build: Nov 2 2016, 17:41:32 (MSVC++ 10.0)
                   Build:
SOFTWARE
HARDWARE
INPUT
                    50k_exgpsmsr.xml
                   50k_exgpsstn.xml
-FILE/REFERENCE
+FILE/COMMENT
This file contains the rigorous estimates for block 1 of a segmented network comprised of 2 blocks. Due to the way in which junction stations are carried through successive blocks, stations appearing in this file may also be found in other SINEX files relating to this network, such as
50kex-block1.snx, 50kex-block2.snx, etc.
-FILE/COMMENT
+SITE/ID
-SITE/ID
+SOLUTION/STATISTICS
NUMBER OF OBSERVATIONS
                                                     90
NUMBER OF UNKNOWNS
                                                     39
NUMBER OF DEGREES OF FREEDOM
                                                     51
                                               0.141551
-SOLUTION/STATISTICS
```

If the adjustment contains a station name exceeding the maximum four—character code limit imposed by the SINEX standard, a new file with the extension .snx.err will be created. This file will contain an error statement for every station exceeding four characters in length. For example, the following shows the .snx.err file corresponding to the (block 1) SINEX file shown above.

```
123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456
```

To overcome this problem, users should consider the use of a renaming file (c.f. §3.3.2, page 28) when executing **import** to properly handle station names greater than four characters.

Chapter 9

Estimating uncertainty and testing least squares adjustments

9.1 Introduction

The previous chapter summarised the least squares estimation theory implemented within **adjust** and the various modes of its execution to determine rigorous station coordinates for all stations in a network. The purpose of this chapter is to elaborate on two secondary, yet equally important functions of adjust - (1) estimating the precision of the estimated coordinates and adjusted measurements and (2) the computation of statistical indicators for the verification of least squares adjustments and adjustment results.

The first part of this chapter presents the theory for determining the precision of estimated coordinates and statistical indicators generated by **adjust**. The remainder of the chapter explains the meaning of these values, where they appear in the adjustment output file, and how they can be used to identify erroneous measurements, less—than—optimal (i.e. over— or under—optimistic) measurement precisions, invalid constraints and other inconsistencies in the measurement system.

9.2 Algorithms for estimating uncertainty

9.2.1 Precision of the estimated parameters

The precision of the estimated parameters expresses the quality (or uncertainty) of the adjusted station coordinates. For many applications, determining the uncertainty of the adjusted station coordinates is of vital importance and forms the basis for making decisions about the location of real—world objects and their movement over time. So that a high—level of confidence can be placed upon the computed values, it is imperative that the computation of the precision of the estimated parameters is completely rigorous.

The precision of the estimated parameters is directly obtainable from the least squares solution via equation 8.16, repeated here as:

$$\mathbf{V}_{\hat{\mathbf{x}}} = (\mathbf{A}^T \mathbf{V}_{\mathbf{m}}^{-1} \mathbf{A})^{-1} \tag{9.1}$$

For simultaneous adjustments, $V_{\hat{x}}$ will contain the precisions for the entire network and will be derived in a single step upon the solution of the normal equations. For phased adjustments, a separate variance matrix will be produced for the parameters in each block $(V_{\hat{x}_i}, i = 1..n)$. Owing to the way in which the phased adjustment algorithm carries the precision of the junction station estimates

through to the solution of successive blocks (in forward, reverse and combination adjustments), these variance matrices will be completely rigorous.

The variance matrix $V_{\hat{x}}$ is a square, symmetric positive definite matrix. The square dimension of $V_{\hat{x}}$ is equal to the number u of parameters being estimated. Since the system of observation equations for the linear functional model A is required to have functional independence in order to achieve non–singularity in the normal equation matrix, it follows from the evaluation of $(A^T V_m^{-1} A)^{-1}$ that the elements of $V_{\hat{x}}$ will also have functional independence. Therefore, $V_{\hat{x}}$ will be non–singular.

Note that $V_{\hat{x}}$ may appear in some texts and least squares adjustment programs as $Q_{\hat{x}}$ and termed the a-posteriori variance-covariance matrix or cofactor matrix which is multiplied by a single variance factor to obtain a more realistic variance matrix $V_{\hat{x}}$. The scaling of cofactor matrices will be explained in §9.3.1.1.

Spatial correlation between the diagonal precision elements (i.e. the respective uncertainties of the estimated parameters) is held by the off–diagonal elements. Where there is no correlation between the estimated parameters, the off–diagonal elements will be zero.

By default, $V_{\hat{x}}$ will be expressed in the cartesian reference frame. When the precision of the estimated parameters is to be expressed in another reference frame (i.e. geographic, local or polar), the law of propagation of variances is applied as described in §4.4.

9.2.2 Precision of the adjusted measurements

The precision of the adjusted measurements $V_{\hat{m}}$ is derived by applying the law of propagation of variances to the precision of estimated parameters:

$$\mathbf{V}_{\hat{\mathbf{m}}} = \mathbf{A} \mathbf{V}_{\hat{\mathbf{x}}} \mathbf{A}^T \tag{9.2}$$

 $V_{\hat{m}}$ is a square matrix, the dimensions of which are equal to the number n of measurements in the system. Where $V_{\hat{m}}$ holds values for the precision of estimated parameters of different types (e.g. angular and linear quantities), the corresponding elements will be in the respective units of measure (the square of radians or metres).

Once the precision of the adjusted measurements has been computed, the precision of the corrections to the measurements can be computed as:

$$\mathbf{V}_{\hat{\mathbf{v}}} = \mathbf{V}_{\mathbf{m}} - \mathbf{V}_{\hat{\mathbf{m}}} \tag{9.3}$$

where $V_{\mathbf{m}}$ represents the a-priori precision of the measurements.

9.3 Testing least squares adjustments

Following the tasks of estimating unknown station coordinates and their uncertainties, it is of primary importance to test the estimated results to validate the measurements, the assumed precision of those measurements, and the reliability of the network as a whole. There are three primary reasons for which testing is essential for the proper management of geodetic networks:

1. It is quite common for the a-priori precision assumed for a measurement to not be *realistic*, whether over- or under-optimistic, giving the impression that the measurements are better or worse than reality (c.f. §7.3.2). This situation frequently arises during the processing of

raw GNSS data to produce GNSS baselines and/or positions and their accompanying variance matrices. In this context, GNSS variance matrices typically represent the internal precision of the GNSS processing and fail to take into account the external influences that degrade the solution. Similarly, manufacturer-stated precisions for distance and angle measuring equipment which have been derived from laboratory-like conditions are not always representative of the performance that is achieved from equipment operating under real-world conditions.

- 2. It is possible that erroneous, sub-standard measurements (or outliers) have been introduced to the system — despite every care being undertaken during observation and measurement reduction. Examples of this are numerous, including an erroneous instrument or GNSS antenna height, an incorrectly transcribed measurement value and station mis-identification. Estimated parameters influenced by outlier measurements will not only be biased as to their physical location, but also as to their estimated quality.
- 3. When there is a shortcoming in the functional model adopted for the observation equations. A well-known example of this is movement of the station mark which occurs between successive (or repeat) observation campaigns. Movements of this nature yield in an inconsistency in the solution, the inevitable result of which will be measurement failure and error in the station coordinates if the change in the mark's physical location is not taken into account. Failing to deal with such influences in a rigorous way can lead to the false assumption that the precision of older measurements (to the marks which have moved) are no longer representative and therefore need some tweaking or scaling.

DynaNet cannot provide an automated means for fixing these issues. Rather, it has been designed to assist the user in identifying and resolving the cause of inconsistencies. The following sections outline the statistical indicators calculated by adjust to assist the user in these processes.

9.3.1 Testing the least squares adjustment as a whole

Recall from equation 8.12 that the sum of the squares of the weighted corrections that is minimised in the solution of the least squares normal equations is:

$$w = \mathbf{v}^T \mathbf{V}_{\mathbf{m}}^{-1} \mathbf{v}$$

The minimised quantity w is a Chi-square random variable with r degrees of freedom — written as χ_r^2 (c.f. §7.3.1.2). In the context of network adjustment, r is equal to the number of redundant measurements:

$$E[w] = r (9.4)$$

$$w \sim \chi_r^2 (9.5)$$

$$w \sim \chi_r^2 \tag{9.5}$$

To assist the user with validating the reliability of the least squares solution, adjust performs a test to quantify how significantly different w is to r. This test is referred to as the global test (or goodness-of-fit test), since it tests the least squares solution as a whole. The global test is undertaken immediately following the solution of the normal equations and calculation of the set of corrections ${\bf v}$. Whilst equality between w and r is the desired outcome, the estimation can be considered statistically reliable if w is within the upper and lower limits (or critical values) of the confidence interval at significance level α . The test for reliability is usually written as:

$$P\left[\chi_{1-\alpha/2,r}^2 \le \hat{\sigma}_0^2 \le \chi_{\alpha/2,r}^2\right] \approx \alpha \tag{9.6}$$

where $\hat{\sigma}_0^2$ is the *estimated* variance factor (or variance of unit weight, or sigma zero) obtained from:

$$\hat{\sigma}_0^2 = \frac{w}{r} \tag{9.7}$$

This quantity is particularly useful in estimating the precision of measurements of the same type and will be elaborated on in §9.3.2.

The outcome of the global test, together with the upper and lower limits of the confidence interval to which $\hat{\sigma}_0^2$ is compared, is reported in the last line of the statistical summary printed to the screen and the adjustment output file (*.adj) at the completion of an adjustment (c.f. §8.3.1, page 110). For example, the following shows the results of an adjustment where r is 1482, w is 823.99, $\hat{\sigma}_0^2$ is 0.556, and the lower ($\chi^2_{1-\alpha/2,\,r}$) and upper ($\chi^2_{\alpha/2,\,r}$) critical values of the 95% confidence interval are 0.929 and 1.073 respectively. A warning is issued from the global test since the estimated variance factor is less than the lower limit of the confidence interval:

There are three possible outcomes from the global test undertaken by adjust:

PASSED

In this case, the estimated value $\hat{\sigma}_0^2$ is within the lower and upper limits of the confidence interval at probability α . Whilst unity is desirable, any value within the lower and upper limits can be regarded as statistically reliable. Users should be aware that it is possible for a least squares adjustment to pass the global test despite the presence of one or more measurements which have failed the local test. For this reason, the number of measurement corrections which exceed the specified confidence interval (in the local test) will be noted in the record which provides the measurement count (e.g. (22 potential outliers)).

FAILED

This means that the calculated quantity for w is significantly greater than the expected value. That is, $\hat{\sigma}_0^2$ has exceeded the confidence interval upper limit of the probability α that w is equal to r. When this test fails, it is clear that an unacceptable number of measurement corrections have failed.

WARNING

When the estimated value $\hat{\sigma}_0^2$ is less than the lower limit, a warning is issued. In some cases, it means that the set of measurements was better than indicated by the supplied precisions. In this context, it may be implied that the global test has not failed, despite w being significantly different to r. However, a warning is issued to indicate that some of the measurements in the set and their variance matrix require attention. In particular, it indicates that the variances allocated could be too large and as a result, the estimates of the precision of the parameters would suffer.

Elaboration of all possible reasons for which w differs significantly from r will not be given here. However, as discussed earlier, three common reasons for which a failure is most likely to occur are an incorrect a-priori variance matrix V_m , outlier measurements and/or shortcomings in the functional model. Another three reasons why an adjustment might fail include inappropriate station constraints,

an incorrect choice of measurement type in the measurement file and/or failure to apply an essential reference frame transformation or geoid correction. It is the responsibility of the user to discern which of these reasons has caused a failure to occur and how to resolve it.

9.3.1.1 Rectifying over-optimistic variance matrices of the same type

As described earlier, it is quite common for a set of GNSS variance matrices to be over-optimistic, giving the false impression that the measurement set is of a higher quality than reality. In this context, it is not that there is a measurement blunder or that there is a bias unaccounted for in the processing, but that the GNSS processing has simply failed to produce a reliable estimate of the true measurement precision. Upon performing an adjustment of newly-processed GNSS baselines with over-optimistic variance matrices, under minimal constraints without any other modification, it is not uncommon for the adjustment to fail the global test.

For this reason, the a-priori measurement variance matrix is often referred to as a cofactor matrix ${f Q_m}$, implying that the $\it true$ variance matrix ${f V_m}$ is never really known. Based on the fact that ${f v}^T{f V_m^{-1}v}$ is a Chi–square random variable, the *expected* value for ${f v}^T{f Q_m^{-1}v}$ can be written as:

$$E\left[\mathbf{v}^{T}\mathbf{Q}_{\mathbf{m}}^{-1}\mathbf{v}\right] = E\left[\sigma_{0}^{2}\mathbf{v}^{T}\mathbf{V}_{\mathbf{m}}^{-1}\mathbf{v}\right]$$

$$= \sigma_{0}^{2}r$$
(9.8)

$$= \sigma_0^2 r \tag{9.9}$$

From this relationship, it can be assumed that an ${\it unbiased}$ estimate of variance matrix V_m for measurement sets of the same type can be estimated after the least squares solution by a global matrix scalar operation:

$$\mathbf{V_m} = \hat{\sigma}_0^2 \mathbf{Q_m} \tag{9.10}$$

where $\hat{\sigma}_0^2$ is the variance factor estimated from the adjustment with an a-priori variance matrix $\mathbf{Q_m}.$ From this, the unbiased variance for each measurement can be determined by:

$$\hat{\sigma}_i^2 = \hat{\sigma}_0^2 \sigma_i^2 \tag{9.11}$$

where σ_i^2 is the a-priori variance of the original measurement m_i .

To produce an unbiased variance matrix for a new set of GNSS measurements, the following sequence of steps may be applied. For this example, the skye network shown in Figure 1.4 will be used. As a general rule for all other networks to which this procedure is to be applied, all stations in the station file should be held free (no constraints). In addition, all measurements in the measurement file should be captured under similar measurement conditions and a similar observation methodology, produced from the same processing strategy, and be of the same category (i.e. baselines only, baseline clusters only, or point clusters only).

Step 1 — Import the data

Using import, create a project introducing the required station and measurement files:

import -n skye skye.stn skye.msr

Step 2 — adjust the network

Call adjust using the default settings, effecting the condition of minimum constraints:

```
adjust skye --output-adj-msr
```

Inspect the adjustment output file to ensure the measurement set is free from significant blunders. Make a note of the estimated rigorous sigma zero $\hat{\sigma}_0^2$ value reported in the adjustment statistics summary. For the skye network shown in Figure 1.4, the estimated rigorous sigma zero $(\hat{\sigma}_0^2)$ shown in the adjustment statistics summary is 2.648, as follows:

Step 3 — re-import the data and scale all measurement variance matrices

Using **import** again, create a new project (e.g. skye-scaled) introducing the original station and measurement files, with the option --v-scale (c.f. §3.3.3) followed by the rigorous sigma zero value obtained from Step 2. At this step, the variance matrix scaling can be exported to new station and measurement files (e.g. via --export-dna):

```
import -n skye-scaled skye.stn skye.msr --v-scale 2.648 --export-dna
```

At this point, the value 2.648 will be assigned to the v-scale element in the binary measurement file for every GNSS baseline in the network. Hence, the original variance matrices are retained. Then, when **adjust** is executed again using the command:

```
adjust skye-scaled --output-adj-msr
```

equation 9.10 will be applied to all variance matrices prior to adjustment. The net result from this sequence of steps is a set of a-priori measurement variance matrices which can be considered *unbiased*, and a new rigorous sigma zero closer to unity:

```
Number of unknown parameters 18
Number of measurements 27 (1 potential outlier)
Degrees of freedom 9
Chi squared 9.00
Rigorous sigma zero 1.000
Global (Pelzer) Reliability 1.204 (excludes non redundant measurements)

Chi-Square test (95.0%) 0.300 < 1.000 < 2.114 *** PASSED ***
```

This action is generally only performed once and, to maintain the highest rigour in the measurement precisions, should only be used for scaling variance matrices of measurements of the same type, measurement characteristics, category and processing strategy.

9.3.2 Testing for the presence of outliers

Following the global test, adjust also undertakes a local test on each measurement correction to help detect the presence of individual outliers. There are two general cases which provide adequate justification for testing every measurement. Firstly, if there is a blunder in the set of measurements, it is possible that the measurement correction will be so large that it will, on its own, cause the adjustment to fail the global test and several other reliable measurements to fail the local test. For this reason, all measurements which have failed the local test are denoted potential outliers. The user will need to take steps to distinguish the true outliers which require attention (e.g. removal, reprocessing, or variance matrix scaling) from the measurements (marked as potential outliers) which are indeed reliable. Secondly, it is equally possible for an outlier to exist amongst the measurements despite the solution passing the global test. In certain situations where there is a high degree of redundancy in the measurement system, the confidence interval may become so small that marginal inconsistencies between the measurement precisions and the corrections will cause a higher likelihood of local test failures. In this context, it may be entirely acceptable to ignore such failures as any modification to the measurement system to achieve a unanimous pass may have a negligible effect on the estimated parameters. In any case, it is the responsibility of the user to understand the nature of the outlier, to identify the cause of failure and thereupon, take steps to address it.

Drawing from equation 8.6, the set of measurement corrections $\hat{\mathbf{v}}$ is evaluated from the original measurements \mathbf{m} , estimated parameters $\hat{\mathbf{x}}$ and design matrix \mathbf{A} via the expression:

$$\hat{\mathbf{v}} = \mathbf{m} - \mathbf{A}\hat{\mathbf{x}} \tag{9.12}$$

Being estimated quantities, the corrections $\hat{v}_1, \hat{v}_2, \dots, \hat{v}_i$ are considered in DynaNet as Normally distributed random variables, having an *expected* value of zero:

$$E[v] = 0 (9.13)$$

$$v \sim N(0, \sigma_v) \tag{9.14}$$

adjust uses two distributions to assist with testing each correction — the Normal distribution (c.f. $\S7.3.1.1$) and the Student's t distribution (c.f. $\S7.3.1.3$). By default, adjust performs all local testing using the Normal distribution at the 95% confidence interval. Optionally, the confidence interval for all statistical testing may be changed by providing the option --conf-interval followed by the desired level of significance in the command line call to adjust. The user may also undertake local testing using the Student's t distribution upon providing the option --output-tstat-adj-msr to adjust. These distributions have been selected to help the user in addressing outliers with reliable (or well-known, trusted) and doubtful (or suspect) measurement variances respectively.

9.3.2.1 Testing measurements with reliable estimates of precision

If the a-priori variance matrix V_m is known or considered to be reliable, the magnitude of the corrections can be satisfactorily tested using the Normal distribution (c.f. §7.3.1.1). The test to verify whether a correction v_i falls within the upper and lower limits of the confidence interval at significance α can be written as:

$$P\left[-z_{(1-\alpha)/2} \times \sigma_{v_i} \le v_i \le +z_{(1-\alpha)/2} \times \sigma_{v_i}\right] \approx \alpha \tag{9.15}$$

Here, the confidence interval for each correction v_i is centred upon an expected zero mean with a standard deviation σ_{v_i} . The quantity σ_{v_i} is the standard deviation of the correction calculated from equation 9.3. The upper and lower limits are calculated from the correction standard deviation and the (Normal) z coefficient which is evaluated from the inverse of the Normal cumulative distribution function (CDF) at significance α . For example, when $\alpha=95\%$, $z_{(1-0.95)/2}=1.96$. The test is two-tailed since the corrections may be either positive or negative. Since the PDF will vary according to σ_{v_i} , the upper and lower limits must be calculated for each correction.

To reduce the time taken to perform this test for every measurement in the network, DynaNet simplifies the testing of corrections by computing a *standardised Normal statistic* (N–statistic, or normalised residual) for each correction:

$$v_i' = \frac{v_i}{\sigma_{v_i}} \tag{9.16}$$

This permits **adjust** to test all measurement corrections using the *standard* (or *unit*) Normal distribution. The test interval for v'_i is expressed as:

$$P\left[-k \le v_i' \le +k\right] \approx \alpha_k \tag{9.17}$$

The upper and lower critical values will be the coverage factor k corresponding to the level of significance (c.f. Table 7.1). For example, the critical value of the unit Normal distribution for the default 95% confidence interval is ± 1.96 :

$$P\left[-1.96 \le v_i' \le +1.96\right] \approx 0.95$$
 (9.18)

To examine the local testing undertaken by **adjust**, add the option ---output-adj-msr to the list of options on the command line:

```
adjust uni_sqr --output-adj-msr --sort-adj-msr-field 7
```

Adding this option will cause **adjust** to print to the adjustment output file a table showing the adjusted measurements (c.f. §8.3.4 on page 119) and their associated statistics. The additional option and argument --sort-adj-msr-field 7 sorts the list of adjusted measurements according to the N-statistic. Appendix C.6.3 provides further details on the content, structure and format of the adjusted measurements table.

The example on page 134 shows the adjustment statistics summary and some of the adjusted measurements arising from a simultaneous adjustment of the uni_sqr network. Note in this case, the rigorous sigma zero is less than the lower limit of the χ^2 confidence interval. At first glance, this might suggest that the solution is performing better than expected (leading to a warning). However, there are 72 measurements which have a correction that exceeds the critical value of the unit Normal distribution and therefore, are noted as potential outliers. For a concise summary of each of the columns in the Adjusted measurements table, please refer to Appendix C.6.3.

As shown by the example on page 134, measurements which have been identified as potential outliers are flagged using an asterisk in the column labelled Outlier? This occurs when the N-statistic v_i' exceeds ± 1.96 , which is the critical value for the 95% confidence interval. The N-statistic for each measurement is in the column labelled N-stat and is calculated from Correction/Residual (c.f. equation 9.16). For example, the N-statistic for the first measurement in the list — a zenith

distance (c.f. §7.2.12) — is calculated as:

$$v' = v/\sigma_v$$

7.09 = 124.1655"/17.5063"

Knowing that the critical value for the 95% confidence interval is ± 1.96 , the values in the Outlier? and N-stat columns can be quickly scanned to determine which measurements have failed the local test and how significant the failure is. At this point, the user should follow well-defined standards and practices for identifying the nature and cause of the failure using the values contained in the columns labelled Correction, Meas. SD, Adj. SD, Residual and Pelzer Rel.

SOLUTION Total time		Converged 00:00:00:052000											
Number of unknown parameters Number of measurements Degrees of freedom Chi squared Rigorous Sigma Zero Global (Pelzer) Reliability	urements adom Zero	440 1182 (72 potential outliers) 742 627.00 0.845 4.008 (excludes non redundant measurements)	iers) dundant mea	surements)									
Chi-Square test (95.0%)	t (95.0%)	0.901 < 0.845 < 1.104	* *	*** WARNING ***									
Adjusted Measurements	ements												
M Station 1	Station 2	Station 3	ت *	Measured	Adjusted	Correction	Meas. SD	Adj. SD	Residual	N-stat P	Pelzer Rel F	Pre Adj Corr	Outlier?
V PELH	NEWP			90 01 47.5000	90 03 51.7413	124.1655	20.0000	9.6711	17.5063	7.09	1.14	-0.0758	* 1
v 1044 S 1016	2024 1014			77	7	0.0155	0.0050	0.0041	0.0029	5.39	1.45	0.0000	* *
V 1033	1034			37	89 38 33.0618	56.9413	20.0000	16.6592	11.0666	5.15	1.81	2.8795	*
V 2029 V 2029	2028 2030			91 56 47.0000 88 28 38.5000	91 56 16.6740 88 29 12.7387	-27.3081 31.1717	20.0000	19.0357 18.7277	6.1352 7.0194	-4.45 4.44	3.26	3.0180	* *
	5			72 0010	20 070	0	0300	500	oc co	4	1 75	0	,
V 2024	2016			90 34 22.0000	90 33 43.7114	-43.7058	20.0000	16.9095	10.6804	-4.16 -4.09	1.87	-5.4173	* *
S 1002	1034			46.5210	46.5155	-0.0055	0.0050	0.0048	0.0014	-3.92	3.54	0.0000	*
V NEWP	PELH		>	90 14 44.2000	90 15 51.1019	66.9760	20.0000	9.6706	17.5065	. 3. 83.	1.14	0.0741	* +
G HOSP	2000		< ≻	-571.8662	-571.8585	0.0077	0.0051	0.0020	0.0047	1.65	1.09	0.0000	•
G HOSP	2000		Z	168.7984		-0.0154	0.0060	0.0021	0.0057	-2.73	1.07	0.0000	*
V BOWL	2106			89 39 50.8000	89 40 50.9127	53.9767	20.0000	13.7470	14.5265	3.72	1.38	-6.1361	* *
G HOSP	2215		×	-187.7390	-187.7434	-53.0660	0.0032	0.0020	0.0025	-3.65	1.29	0.0000	*
G HOSP	2215		Y	-416.2030	-416.1971	0.0059	0.0032	0.0021	0.0024	2.47	1.32	0.0000	*
G HOSP	2215		Z	-66.1290	-66.1338	-0.0048	0.0032	0.0021	0.0024	-2.00	1.32	0.0000	* 1
V 1044	2011			90 33 54.5000	34	59.5189	20.0000	11.0894	16.6441	3.58	1.20	-1.5949	÷ *
V 1002	1034			93 02 12.3000		-34.4605	20.0000	17.4263	9.8144	-3.51	2.04	3.8376	*
S 1050	1011			84.5670	84.5609	-0.0061	0.0050	0.0047	0.0017	-3.49	2.87	0.0000	*
S 1011	1012 NFUD	877		330 59 16 7000	930 58 24 6325	-0.0064	0.0050	0.0046	0.0019	13.35	1 28	0.0000	* *
V 2028	1030	0111		91 41 25.5000	8 8	-51.0524	20.0000	12.9284	15.2597	-3.35	1.31	3.0590	*
G 6004	6003		×	138.3607	138.4002	0.0395	0.0241	0.0066	0.0232	1.70	1.04	0.0000	
G 6004	6003		۷ ۲	226.0200	225.9922	-0.0278	0.0142	0.0051	0.0132	-2.10	1.07	0.0000	*
£0005	2009		4	32.1402	32.1000	0.037.0	0.0210	0.0000	0.020	1.02	# 0.1	0.000	
S 4024	4023			167.2120	167.2120	0.0000	0.0100	0.0054	0.0084	0.00	1.19	0.0000	
S 4019	1040			240.2420	240.2420	0.0000	0.0100	0.0055	0.0084	0.0	1.20	0.0000	
S 2024 A 4015	2023 4013	1019		74 15 30,0000	74 15 30,2309	0.0225	20.0000	13.9325	14.3487	8.0	1.30	-0.2083	
A 2214	2000	2239		130 53 36.0000	53	-0.0161	20.0000	13.7392	14.5339	00.00	1.38	0.0208	
V 1015	1018			89 51 16.0000	89 51 23.0383	0.0000	20.0000	20.0000	0.0044	0.00	66.666	-7.0383	
S 2007	2021	0		33.6070	33.6070	0.0000	0.0050	0.0034	0.0037	0.00	1.35	0.0000	
A 2108	2120	2102		254 51 23.0000	258 50 04.7316	-0.0031	20.0000	10.3436	17.1175	8 8	1.17	-0.3395	
V 1029	1030			91 04 55.0000	94	0.0000	20.0000	20.0000	0.0106	0.00	66.666	7.4988	
	1018	()		22.5200	22.5200	0.0000	0.0050	0.0050	0.0000	0.00	999.99	0.0000	
A 1030	1029	1010		91.29.15.0000	DC. 7C. C.								

9.3.2.2 Testing measurements with doubtful estimates of precision

When testing newly observed or processed measurements for the first time, or when the processed variance matrix V_m is in doubt or in any way suspect, the magnitude of the corrections v_1, v_2, \ldots, v_i can be reliably validated using a Student's t test. The test to verify whether a correction v_i falls within the upper and lower limits of the confidence interval at significance α can be written as:

$$P\left[-t_{(\alpha,r-1)} \times \sigma_{v_i} \le v_i \le +t_{(\alpha,r-1)} \times \sigma_{v_i}\right] \approx \alpha \tag{9.19}$$

The upper and lower limits are calculated from the correction standard deviation and the Student's t coefficient, evaluated from the inverse of the Student's t CDF at significance α and degrees of freedom r. As was introduced in §7.3.1.3, as the redundancy in a network increases, the critical values approach those of the Normal distribution. Table 9.1 lists the critical values for $r=2\dots1000$ computed at the 95% confidence interval.

r	$t_{\alpha=95\%,r}$
2	4.303
5	2.571
10	2.228
20	2.086
50	2.009
100	1.984
200	1.972
500	1.965
1000	1.962

Table 9.1: Student's t confidence intervals for $\alpha = 95\%$, $r = 2 \dots 1000$

Since the Student's t distribution approaches a Normal distribution once the r approaches 100 or so, local testing using Student's t is ideally suited to smaller sets of measurements.

As with testing corrections against the Normal distribution, DynaNet simplifies tests against the Student's t distribution by computing a standardised Student's t statistic (T–statistic):

$$v_i'' = \frac{v_i'}{\hat{\sigma}_0}$$

$$= \frac{v_i}{\hat{\sigma}_0 \sigma_{v_i}}$$
(9.20)

By definition, the quantity v_i'' is a Student's t random variable and can be tested against the standard (or unit) Student's t distribution. This quantity is similar to the N-statistic v_i' (c.f. equation 9.16), the only difference is that the quotient σ_{v_i} is scaled by the square root of the variance factor $\hat{\sigma}_0^2$ estimated from equation 9.7 — a computation undertaken to produce an *unbiased* estimate of the uncertainty (c.f. §9.3.1.1).

To illustrate how the T-statistic may assist in validating the quality of measurements and measurement precisions, consider the adjustment summary in Figure 9.1 on the following page and the adjusted measurements table in Figure 9.2 on page 137. These results have been produced from a minimally constrained simultaneous adjustment of a network of 10 stations and 19 GNSS baselines. The

a—priori variance matrix (obtained directly from the GNSS processing software) was not scaled, and the option —output—tstat—adj—msr was provided to **adjust** so that the T—statistic would be printed to the adjusted measurements table.

Figure 9.1: Adjustment summary from a sample GNSS network

From these results, the following points are noted:

- The adjustment fails the global test significantly.
- Over one half of the measurements in the set fail the local test using the Normal distribution. These measurements are marked as potential outliers since the N-statistic (column N-stat) has exceeded the critical value of the unit Normal distribution for the default 95% confidence interval, being ± 1.96 .
- Around two thirds of the GNSS baselines have corrections larger than their a-priori standard deviation. Of those baselines, many have X, Y and/or Z corrections which are significantly larger than the corresponding standard deviations.
- All measurements pass the local test using the Student's t distribution

Clearly something is amiss, but as to whether there are blunders, over—optimistic precisions, or both, remains to be answered. The T-statistic for each measurement is in the column labelled T-stat and is calculated from N-stat/ $\hat{\sigma}_0$ (c.f. equation 9.20). For example, the T-statistic for the first measurement in the list — the X component of a GNSS baseline — is calculated as:

$$v'' = v'/\hat{\sigma}_0$$

$$-0.97 = -3.69/\sqrt{14.494}$$

Here it can be seen that the Student's t distribution is more forgiving in that, whereas the N-statistic value of -3.69 exceeded the critical value of -1.96, the T-statistic value of -0.97 did not. This is the case for all measurements, which suggests that the issue is not necessarily confined to one or a small number of measurements. Rather, the results seem to indicate that there is an underlying issue affecting all measurements.

Considering the form of equation 9.20, it can be seen from the measurement statistics in Figure 9.2 that the T–statistic is equivalent to what would result for the N–statistic if the variance factor was used to scale the a–priori variance matrix prior to adjustment. That is, by scaling the a–priori variance matrix by $\hat{\sigma}_0^2=14.494$ prior to adjustment, the new a–posteriori $\hat{\sigma}_0^2$ would become 1.0 and the N–statistic would become equal to the T–statistic. By following the procedure outlined in §9.3.1.1, the adjusted measurements table in Figure 9.3 on page 138 shows the net effect of scaling the a–priori variance matrix by $\hat{\sigma}_0^2=14.494$. Since all measurements now pass the local test using the Normal distribution, it may be inferred — in this case — that the issue lay solely with the reliability of the variance matrix produced by the GNSS processing package. In particular, the variance matrix was over–optimistic.

Figure 9.2: Adjusted measurements table from a sample GNSS network — without a-priori variance matrix scaling

12345678901234567	89012345678901234567	123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789011234567890111111111111111111111111111111111111	9012345678901		2345678901234578901234567890123456789012345678901234567890123456789012345678901234567890100000000000000000000000000000000000	8901234567890	1234567890123	15678901234567	8901234567890	12345678901	1234567890	1234567890123	34567890123456	7890123456789
M Station 1	Station 2	Station 3	ت *	Measured	Adjusted	Correction	Meas. SD	Adj. SD	Residual	N-stat	T-stat	Pelzer Rel F	Pre Adj Corr	Outlier?
G 409700110	299000080		×	44663.6990	44663.6813	-0.0177	0.0235	0.0149	0.0182	-0.97	-0.97	1.29	0.000	
	299000080		X		34616.4636	0.0206	0.0181	0.0114	0.0141	1.46	1.46	1.29	0.0000	
G 409700110	299000080		N Þ	-21377.6470	-21377.6702	-0.0232	0.0210	0.0133	0.0163	-1.42	-1.42	1.29	0.0000	
	360100260		< ≻	-59911.3030	-59911.3220	0.0220	0.0284	0.0115	0.0154	-1.23	-1.23	1.25	0000	
	360100260		Z		-40068.0528	0.0212	0.0228	0.0134	0.0185	1.15	1.15	1.23	0.000	
	236300210		×		14084.5358	-0.0072	0.0125	0.0105	0.0068	-1.06	-1.06	1.85	0.0000	
	236300210		> -1		-10691.6185	0.0065	9600.0	0.0081	0.0051	1.26	1.26	1.86	0.0000	
G 310211240	236300210		Ν *	-25853.7910	-25853.7963	-0.0053	0.0112	0.0094	0.0061	-0.87	-0.87	1.84	0.0000	
G 212000820	269100210		< ≻	19348. 2880	19348 4690	0.0103	0.0237	0.0185	0.0148	-1 .70	1 0.70	1.60	0.000	
	269100210		· Z		-9559, 1364	0.0146	0.0220	0.0170	0.0140	1.05	1.05	1.57	0.0000	
	409700110		×		-10325.5079	6600.0-	0.0252	0.0189	0.0166	-0.60	-0.60	1.51	0.0000	
G 212000820	409700110		¥		39327.8792	0.0132	0.0185	0.0140	0.0122	1.09	1.09	1.52	0.0000	
	409700110		Z		44763.3636	-0.0144	0.0226	0.0171	0.0147	-0.98	-0.98	1.53	0.0000	
	299000080		×:		11643.8751	0.0091	0.0214	0.0133	0.0168	0.54	0.54	1.28	0.0000	
G 269100210	299000080		× 1	54595.8870	54595.8739	-0.0131	0.0167	0.0103	0.0132	1.00	-1.00	1.27	0.0000	
	299000080		7 >		32944.6299	0.0149	0.0190	0.0119	0.0148	1.00	T. 00	1.28 0.0	0,000	
	230900140		< ≻		47953.9509	-0.0051	0.0106	0.0092	0.0052	66.0	66.0-	2.03	0000	
	230900140		Z		10466, 4965	0.0055	0.0123	0.0107	0.0061	0.91	0.91	2.05	00000	
	360100260		ı ×		-46576.9589	-0.0199	0.0235	0.0121	0.0202	-0.99	-0.99	1.16	0.0000	
G 335800500	360100260		Y		-18603.6595	0.0115	0.0179	0.0093	0.0153	0.75	0.75	1.17	0.000	
G 335800500	360100260		Z	36786.5760	36786.5669	-0.0091	0.0209	0.0107	0.0180	-0.51	-0.51	1.16	0.000	
	299000080		×		-15046.8865	0.0055	0.0177	0.0136	0.0113	0.49	0.49	1.57	0.0000	
	299000080		٨		6641.9230	-0.0080	0.0137	0.0106	0.0088	-0.91	-0.91	1.57	0.000	
	299000080		2 :		22478.3333	0.0083	0.0157	0.0121	0.0099	0.84	0.84	1.58	0.0000	
G 335800500	236300210		× >		-21080.0586	0.0084	0.0182	0.0127	0.0130	0.64	0.64	1.40	0.0000	
G 335800500	236300210		1 6	51000 8130	51000 8234	0.0071	0.0139	0.0030	0.0039	10.0	0.0	1.40	0000.0	
	409700110		ı ×		-33019,8062	-0.0052	0.0212	0.0145	0.0155	-0.34	-0.34	1.37	0.000	
	409700110		Y		19979.4103	0.0093	0.0157	0.0109	0.0113	0.82	0.82	1.39	0.000	
	409700110		Z		54322.5000	-0.0110	0.0192	0.0131	0.0141	-0.78	-0.78	1.36	0.0000	
	360100260		×		20600.9186	-0.0014	0.0286	0.0181	0.0221	-0.07	-0.07	1.29	0.0000	
	360100260		≻ t		65606.4602	0.0112	0.0221	0.0139	0.0171	0.65	0.65	1.29	0000.0	
G 409700110	360100260		7 *	32812.8170	32812.8063	-0.0107	0.0249	0.0159	0.0192	-0.56	-0.56	1.30	0.000	
G 236300210	360100260		< >-		-49219.7034	0.0066	0.0182	0.0105	0.0149	0.44	0.44	1.22	0.000	
G 236300210	360100260		Z		-14214.2565	-0.0055	0.0215	0.0122	0.0176	-0.31	-0.31	1.22	0.000	
	360100260		×		-24062.7628	0.0072	0.0216	0.0146	0.0159	0.45	0.45	1.36	0.000	
	360100260		.		30989.9965	-0.0065	0.0167	0.0113	0.0123	-0.53	-0.53	1.36	0.000	
G 299000080	360100260		N >	54190.4720	54190.4765	0.0045	0.0189	0.0129	0.0139	0.32	0.32	1.36	0,000	
	365300060		< ≻		29789.3168	-0.0052	0.0150	0.0103	0.0109	-0.36	-0.50	38.5	0000	
	365300060		. 2		-2397.0195	0.0015	0.0171	0.0118	0.0124	0.12	0.12	1.38	0,000	
	365300060		×		11282.0424	-0.0016	0.0177	0.0125	0.0126	-0.13	-0.13	1.41	0.0000	
G 236300210	365300060		Y		40480.9353	0.0043	0.0138	0.0097	0.0098	0.44	0.44	1.41	0.0000	
	365300060		Z		23456.7768	0.0008	0.0157	0.0111	0.0111	0.07	0.07	1.41	0.0000	
G 299000080	335800500		××	22514.2000	22514.1961	-0.0039	0.0208	0.0153	0.0141	-0.27	-0.27	1.47	0.0000	
	335800500		- 1		17703 9096	6100.0-	0.0165	0.0119	0.0114	10.17	-0. I	1.45	0000.0	
	360100260		1 ×		-46576.9589	0.0030	0.0232	0.0121	0.0198	0.36	0.36	1.17	0000	
	360100260		. *		-18603.6595	-0.0025	0.0180	0.0093	0.0154	-0.16	-0.16	1.17	0.0000	
	360100260		Z		36786.5669	-0.0011	0.0202	0.0107	0.0171	-0.06	-0.06	1.18	0.0000	
	365300060		×		-9798.0162	-0.0042	0.0227	0.0148	0.0173	-0.24	-0.24	1.32	0.000	
G 335800500	365300060		≻ 1	71096.9790	71096.9792	0.0002	0.0179	0.0115	0.0137	0.02	0.05	1.31	0.0000	
anconocca a	ΛοΛΛΛοσορ		7	14457.0030	74497.0007	-0.0020	0.0201	1010.0	0.0100	07.70	07.70	1.02	0.000	

Figure 9.3: Adjusted measurements table from a sample GNSS network — with a–priori variance matrix scaling

In the context of identifying outliers, consider the adjustment summary and adjusted measurements table shown in Figure 9.4 (a) on the next page. These results are from a simultaneous adjustment of a small spirit levelling network of 5 stations and 8 orthometric height difference measurements. Two Permanent Marks with published reduced level (RL) values were held constrained ('C'). The a-priori measurement standard deviations have been evaluated by scaling the manufacturer-stated instrument precisions by a factor of $12\sqrt{k}$, where k is the distance in kilometres of each level run. The height differences were reduced from two-way levelling and as such, the measurement standard deviations are considered reliable. The geoid-ellipsoid separations were interpolated for all points using **geoid**, the effect of which on each height difference is tabulated in the column Pre Adj Corr. The option --output-tstat-adj-msr was provided to **adjust** so that the T-statistic would be printed to the adjusted measurements table.

From the results in Figure 9.4 (a), the following points are noted:

- The adjustment fails the global test significantly.
- Three of the eight measurements fail the local test using the Normal distribution. These measurements are marked as potential outliers since the N–statistic has exceeded ± 1.96 , being the critical value of the unit Normal distribution for the default 95% confidence interval. All three measurements have corrections larger than the corresponding standard deviation.
- Of the measurements which are marked as potential outliers, one measurement (2 to BM-3) has a correction which is *significantly* larger than the corresponding standard deviation. This measurement is the only measurement which fails the local test using the Student's t distribution.

From this elementary analysis, it would appear that the measurement 2 to BM-3 is suspect. To prove whether this is indeed the case, a repeat adjustment will be run with this measurement removed from the set. As a general rule, only one change to a measurement set should be undertaken at a time so as to not adversely affect other measurements which might be of reasonable quality. The results from this adjustment are shown in Figure 9.4 (b) on the following page.

From the repeat adjustment, the following points are noted:

- The global test has produced a warning, indicating that the measurement set performed better than assumed by the standard deviations.
- No measurements fail the local test using the Normal distribution or the Student's t distribution.

From this analysis, it can be safely assumed that measurement 2 to BM-3 is indeed a blunder. Whilst the estimated heights would vary marginally from scaling the a-priori standard deviations by the variance factor (c.f. $\S9.3.1.1$), doing so is recommended if (a) more reliable estimates of uncertainty are required on those heights or (b) if these levelling measurements are to be integrated with other measurement sets in a larger network adjustment.

56789013	12346678901234567	1234567890123456	578901234567890123	456789012345678	9012345678903	12345678901234	1567890123456	78901234567890	12345678901	2345678903	123456789012	34567890123456	7890123456789
Converged 00:00:00													
3 8 (3 pote 5 38.23 7.646 0.833 (e	(3 potential outliers) 23 46 33 (excludes non redundant measurements)	undant measureme	ints)										
0.166 < 7	0.166 < 7.646 < 2.567	*** FAILED ***	*** (
w	Station 3	ಲ *	Measured	Adjusted Co	Correction	Meas. SD	Adj. SD	Residual	N-stat	T-stat]	T-stat Pelzer Rel	Pre Adj Corr	Outlier?
			-5.180	-5.115	0.065	0.012	0.006	0.011	6.18	2.23	1.14	6900.0	*
			16.164	16.183	0.019	0.010	0.006	0.008	2.28	0.82	1.22	0.0074	*
			-8.119	-8.129	-0.010	0.008	0.006	0.005	-2.08	0.56	1.58	-0.0061	*
			3.024	3.015	-0.009	0.00	900.0	0.007	-1.36	-0.49	1.33	0.0130	
			5.662	5.651	-0.011	0.012	0.007	600.0	-1.11	-0.40	1.26	0.0011	
			8.046 5.410	8.053	0.007	0.012	0.006	0.010	0.69	0.25	1.15	0.0013	
234567890123	12345678901234567	1234567890123456	378901234567890123	456789012345678:	9012345678903	12345678901234	1567890123456	78901234567890	123456789013	234567890	123456789012	34567890123456	7890123456789
Converged 00:00:00	ged												
3 7 4 0.06 0.015 0.934	(excludes non redundant measurements)	undant measureme	ints)										
0.121 <	< 0.015 < 2.786	*** WARNING ***	**										
£	Station 3	ت *	Measured	Adjusted Co	Correction	Meas. SD	Adj. SD	Residual	N-stat	T-stat]	Pelzer Rel	Pre Adj Corr	Outlier?
			5.410 5.662 8.046	5.408 5.660 8.045	-0.002 -0.002	0.015 0.012 0.012	0.007	0.013	-0.18 -0.18	-1.44 -1.43 -0.97	1.15	0.0132 0.0011 0.0013	
			3.024	3.023	-0.001	0.009	0.006	0.007	-0.11	-0.92	1.36	0.0130	
			10.756	10.756	0.000	0.010	0.008	0.006	0.02	0.16	1.55	-0.0059	
			£11.0_	0.110	.,	0.000	200.0	2000	70.01	00.00		7000	

Figure 9.4: (a) Level run adjustment with all original measurements, and (b) Repeat level run adjustment with the suspect measurement removed

9.3.3 Hints on addressing measurement failures

There is no single recipe or prescription that may be applied to each adjustment to identify and address inconsistencies in the measurement system. As stated earlier, the user should follow well—defined standards and practices for identifying the nature and cause of such inconsistencies using the values contained in the columns labelled Correction, Meas. SD, Adj. SD, Residual and Pelzer Rel.

As a general guide however, the following hints may be of some practical value:

- 1. Attempt to identify measurement blunders and defective variance matrices as soon as possible after measurement processing and/or reduction.
- 2. The process of detecting outliers and manipulating measurement variance matrices should be undertaken on measurement sets of the same type, measurement characteristics, category and processing strategy.
- 3. It is easier to identify anomalies in smaller–sized measurement sets, and to rectify inconsistencies prior to aggregating different measurement sets into a larger network.
- 4. If a GNSS baseline variance matrix produced from GNSS processing software is over—optimistic, it is likely that many other variance matrices from the same campaign will also bear the same optimism. Therefore, it will be advantageous to consider the measurement set as a whole, and to verify whether the problem may be rectified by scaling the a—priori variance matrix.
- 5. Attempt to distinguish from the list of measurements which have failed the measurements which are blunders and those which may be reliable. Blunder measurements are those which are characterised by a very high N–statistic value or a very large correction, the failure of which is usually *significantly* different to the other measurements. Reliable measurements connected to a station (to which a blunder is also connected) can often appear to be a blunder. Therefore, when ignoring or deleting suspected blunders from the input measurement file, measurement removal and re–adjustment should be undertaken one measurement at a time. This procedure will minimise the effect on correlated measurements which are of satisfactory quality.
- 6. Repeat the adjustment and note the differences in the global test and local testing of each measurement.
- 7. Repeat steps 4– 6 until there are no unsatisfactory measurement failures.

Bibliography

- Alberda, J. E. (1963). Report on the Adjustment of the United European Levelling Net and Related Computations. In *Publications on Geodesy New Series*, Volume 1. Netherlands Geodetic Commission, Delft.
- Allman, J. (1983). Final Technical Report to the National mapping CounGeodetic Model of Australia 1982. University of New South Wales.
- Allman, J. and Steed, J. (1984). *Geodetic Model of Australia 1980*. Technical Report 29. Division of National Mapping, Canberra.
- Allman, J. and Veenstra, C. (1984). *Geodetic Model of Australia 1982*. Technical Report 33. Division of National Mapping, Canberra.
- Altamimi, Z., Collilieux, X., and Métivier, L. (2011). ITRF2008: an improved solution of the international terrestrial reference frame. *Journal of Geodesy 85*, 457–473.
- Altamimi, Z., Rebischung, P., Métivier, L., and Collilieux, X. (2016). ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. *J. Geophys. Res. Solid Earth* 121(8).
- Apache (2017). Apache Xerces XML parser (compiler software). Version 3.1. Available online: http://xerces.apache.org/.
- Blewitt, G. (1996). GPS Data Processing Methodology. In *GPS for Geodesy*, Kleusberg, A. and Teunissen, P. (Eds.), pp. 231–270. Springer–Verlag, Berlin.
- Bomford, A. (1967). The geodetic adjustment of Australia. Survey Review 19(144), 52-71.
- Bomford, G. (1980). Geodesy (4th ed.). Clarendon Press, London.
- Bowditch, N. (1939). The American Practical Navigator: An Epitome of Navigation Originally by Nathaniel Bowditch (1938 ed.). Pub. No. 9, [First published in 1802] United States Government Printing Office, Washington.
- Bowring, B. (1985). The accuracy of geodetic latitude and height equations. *Survey Review 28* (218), 202–206.
- Collier, P. (1991). Status Report on the Re-adjustment of the MMBW Horizontal Survey Control Network. MMBW Survey and Mapping Group Internal Report.
- Collier, P. and Leahy, F. (1992). Readjustment of Melbourne's Survey Control Network. *Australian Surveyor 37*(4), 275–288.
- Collier, P., Leahy, F., and Argeseanu, V. (1996). *Transition to the Geocentric Datum of Australia*. Consultants Report to the Office of Surveyor General, Victoria. Department of Geomatics, The University of Melbourne.

- Collier, P. A. (1988). *Integrated Geodesy Applied to Precise Engineering Surveys*. Ph. D. thesis, University of Melbourne.
- Cooper, M. (1974). Aspects of Modern Land Surveying Fundamentals of Survey Measurement and Analysis. Crosby Lockwood Staples, London.
- Cooper, M. (1987). Control Surveys in Civil Engineering. Collins Professional and Technical Books, London.
- Cooper, M. and Leahy, F. (1977). Phased adjustment of engineering control surveys. XV International Congress of Surveyors, Stockholm.
- Cross, P. A. (1990). Advanced Least Squares Applied to Position–Fixing, Working paper No. 6 (1st ed.). Polytechnic of East London, Department of Land Surveying. Reprinted with corrections.
- Dawson, J., Deo, M., Jia, M., Hu, G., and Ruddick, R. (2012). Asia Pacific Reference Frame (APREF): Densification of the ITRF in the Asia Pacific. In *EGU General Assembly Conference Abstracts*, Abbasi, A. and Giesen, N. (Eds.), Volume 14 of *EGU General Assembly Conference Abstracts*, pp. 3940.
- Dawson, J. and Woods, A. (2010). ITRF to GDA94 coordinate transformations. *Journal of Applied Geodesy 4*, 189–199.
- Featherstone, W., Kirby, J., Hirt, C., Filmer, M., Claessens, S., Brown, N., Hu, G., and Johnston, G. (2011). The AUSGeoid09 model of the Australian Height Datum. *Journal of Geodesy 85*(3), 133–150.
- Featherstone, W. and Kuhn, M. (2006). Height systems and vertical datums: a review in the Australian context. *Journal of Spatial Science* 51(1), 21–42.
- Fraser, R., Leahy, F., and Collier, P. (2016). Phased adjustment: efficient, elegant and exact. *Unpublished*, 1–16.
- Gagnon, P. (1976). Step by Step Adjustment Procedures for Large Horizontal Geodetic Networks. Technical Report No. 38. University of New Brunswick, Frederickton.
- Gauss, C. F. (1809). Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem Ambientium. [English Translation (1857) by C. H. Davis, Little, Brown & Co., Boston.], Hamburg.
- Hayes, B. (2002). Science on the farther shore. American Scientist 90(6), 499–502.
- Heiskanen, W. A. and Moritz, H. (1993). *Physical Geodesy*. W.H.Freeman an Company San Francisco, Reprint, Institute of Physical Geodesy, Technical University, Graz, Austria.
- Hofmann–Wellenhof, B., Lichtenegger, H., and Collins, J. (2001). *Global Positioning System Theory and Practice* (5th ed.). Springer–Verlag/Wien, New York.
- Hofmann–Wellenhof, B. and Moritz, H. (2006). *Physical Geodesy* (2nd ed.). Springer–Verlag/Wien, New York.
- ICSM (2002). *Geocentric Datum of Australia Technical Manual*. Intergovernmental Committee on Surveying and Mapping, Canberra, Australia. Version 2.2.
- ICSM (2014). Guideline for the Adjustment and Evaluation of Survey Control. Special Publication No. 1. Intergovernmental Committee on Surveying and Mapping (ICSM), Version 2.1.
- ICSM (2017). Geocentric Datum of Australia 2020 Interim Release Note. Intergovernmental Committee on Surveying and Mapping (ICSM), Version 1.01.

- IGS (2005). *IGS Products Website*. International GPS Service for Geodynamics. Available online: http://igscb.jpl.nasa.gov/components/prods.html.
- ISO (1995). Guide to the Expression of Uncertainty in Measurement. International Standards Organisation, Geneva, Switzerland.
- ITRF (2000). ITRF2000 transformation parameters. Available online: http://itrf.ensg.ign.
 fr/doc_ITRF/Transfo-ITRF2000_ITRFs.txt.
- ITRF (2005). ITRF2005 transformation parameters. Available online: http://itrf.ensg.ign.fr/doc_ITRF/Transfo-ITRF2005_ITRF2000.txt.
- ITRF (2008). ITRF2008 transformation parameters. Available online: http://itrf.ensg.ign.
 fr/doc_ITRF/Transfo-ITRF2008_ITRFs.txt.
- ITRF (2016). ITRF2014 transformation parameters. Available online: http://itrf.ensg.ign.fr/ITRF_solutions/2014/tp_14-08.php.
- Junkins, D. R. and Farley, S. A. (1995). NTv2 Developer's Guide. Geodetic Survey Division, Geomatics Canada.
- Kolpackov, B. (2017). Codesynthesis XSD XML data binding for C++ (compiler software). Version 4.0. Code Synthesis. Available online: http://codesynthesis.com/products/xsd/.
- Kouba, J. (1970). Generalized Sequential Least Squares Expressions and Matlan Programming. M. sc. thesis, University of New Bunswick, Fredericton.
- Kouba, J. (1972). Principle property and least squares adjustment. *The Canadian Surveyor 26*(2), 136–145.
- Krüger, L. (1905). Über die ausgleichung von bedingten beobachtungen in zwei gruppen. Potsdam.
- Lambeck, K. (1963). The Adjustment of Triangulation with Particular Reference to Subdivision into Phases. B. sc. thesis, University of New South Wales, Sydney.
- Langley, R. (1996). Propagation of the GPS Signals. In *GPS for Geodesy*, Kleusberg, A. and Teunissen, P. (Eds.). Springer–Verlag, Berlin.
- Larson, R., Hostetler, R., and Edwards, B. (1994). *Calculus with Analytic Geometry* (5th ed.). D. C. Heath & Company, Lexington, MA.
- Leahy, F. (1983). *Phased Adjustment of Large Networks*. Research Paper. Department of Surveying, University of Melbourne.
- Leahy, F. (1996). *Kalman Filtering An Introduction*. Lecture Notes. Department of Geomatics, University of Melbourne.
- Leahy, F. and Collier, P. (1998). Dynamic network adjustment and the transition to GDA94. Australian Surveyor 43(4), 261–272.
- Leahy, F., Fuansumruat, W., and Norton, T. (1986). VICNET geodetic adjustment software. *Australian Surveyor* 33(2), 86–91.
- Leahy, F. J. (1999). The Automatic Segmenting and Sequential Phased Adjustment of Large Geodetic Networks. Ph. D. thesis, University of Melbourne.
- Leick, A. (1995). GPS Satellite Surveying (2nd ed.). John Wiley & Sons, New York.

- Lin, K.-C. and Wang, J. (1995). Transformation from geocentric to geodetic coordinates using newton's iteration. *Bulletin Géodésique 69*(4), 300–303.
- Merriman, M. (1884). A Text Book on the Method of Least Squares. John Wiley & Sons, New York.
- Mikhail, E. (1976). Observations and Least Squares. IEP A Dun-Donnelley Publisher, New York.
- Mikhail, E. and Gracie, G. (1987). *Analysis and Adjustment of Survey Observations*. Van Nostrand Reinhold, New York.
- Pinch, M. and Peterson, A. (1974). Adjustment of survey networks by sections. *The Canadian Surveyor 28*(1), 3–24.
- Press, W., Teukolsky, S., Vetterling, W., and Flannery, B. (2002). *Numerical Recipes in C: The Art of Scientific Computing* (2nd ed.). Cambridge University Press, Cambridge.
- Prószynski, W. (1994). Criteria for internal reliability of linear least squares models. *Bulletin Géodésique 68*(3), 162–167.
- Rainsford, H. F. (1957). Survey Adjustment and Least Squares. Constable & Company Ltd.
- Rapp, R. H. (1961). The orthometric height. M.s. thesis, Ohio State University, Columbus, USA.
- Rebischung, P., Griffiths, J., Ray, J., Schmid, R., Collilieux, X., and Garayt, B. (2012). IGS08: the IGS realization of ITRF2008. *GPS Solutions* 16(4), 483–494.
- Redfearn, J. (1948). Transverse Mercator formulae. The Empire Survey Review 69, 218-322.
- Schäling, B. (2014). The Boost C++ libraries. XML Press. Available online: http://boost.org.
- Schmid, H. and Schmid, E. (1965). Estimation of geodetic network station coordinates via phased least squares adjustment an overview. *Canadian Surveyor* 19(1), 27–41.
- Snyder, J. (1997). Map Projections: A Working Manual. United States Government Printing.
- Strang, G. and Borre, K. (1997). *Linear Algebra, Geodesy, and GPS*. Wellesley–Cambridge Press, MA.
- Teunissen, P. J. G. (2003). Adjustment theory. VSSD.
- Teunissen, P. J. G. (2006). Testing theory (2nd ed.). VSSD.
- Tienstra, J. M. (1956). Theory of Adjustment of Normally Distributed Observations. Argus, Amsterdam.
- Vaniček, P. and Krakiwsky, K. (1986). Geodesy: The Concepts. North Holland, Amsterdam.
- Vincenty, T. (1975). Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations. *Survey Review* 12(176).
- Ying Chung-Chi (1970). On phased adjustment. Survey Review 20(156, 157), 282-288, 298-309.

Index of subjects

Α	Constraining parameters	Interpolation
adjust	Additional station constraints	Degrees of freedom 110, 127
Angles	117, 163	Degrees, minutes and seconds 62,
a-posteriori Variance matrix 103	Modifying default values118, 164	119, 165 Design matrix 105, 106, 131
a–priori	Position measurement and	Direction sets91
Coordinates 122, 207	variance20	Duplicate stations23
Variance matrices 47, 88, 92,	Station coordinates 20, 173	dynanet
100, 126, 128, 131	Contiguous (non) networks 78, 81	dynamet
Astronomic latitude94	Convergence criteria see Iteration	
Astronomic longitude94	threshold, 117	E
Azimuths	Coordinate systems	Ellipsoid arc distance84
Astronomic95	Cartesian coordinates 38	Ellipsoid chord distance84
General treatment of83	Geodetic coordinates 38	Ellipsoid height86
Geodetic 90	Local coordinates	Ellipsoid height difference86
	Polar coordinates	Ephemeris
В	Projection coordinates 44 Coordinates	Broadcast50
Bearing	Configuring output 120	Precise satellite orbits 49
Beidou	Constraining 20, 117, 118, 163,	Error ellipse
Block–1 only adjustment 113,	164, 173, 189	European Petroleum Survey
115, 121	Corrections to a-priori120,	Group (EPSG) 47
Block threshold, maximum 80	122, 207	
	Estimated 200, 206	F
	E .: 1: . 1 100	
_	Exporting adjusted122	
С	To CSV183	File format
Canadian Section Method 2	To CSV	File format ADJ
Canadian Section Method 2 Chi–square distribution 96	To CSV 183 To DNA 172 To DynaML 188	File format 203 APU 209
Canadian Section Method 2 Chi–square distribution 96 Chi–square, estimated 110, 127	To CSV 183 To DNA 172 To DynaML 188 To GeodesyML 193	File format 203 ADJ 203 APU 209 COR 207
Canadian Section Method 2 Chi–square distribution 96 Chi–square, estimated 110, 127 Cofactor matrices	To CSV 183 To DNA 172 To DynaML 188 To GeodesyML 193 To SINEX 212	File format 203 APU 209
Canadian Section Method 2 Chi–square distribution 96 Chi–square, estimated 110, 127 Cofactor matrices 126 Command line conventions 6	To CSV 183 To DNA 172 To DynaML 188 To GeodesyML 193 To SINEX 212 Uncertainty and error ellipse	File format 203 ADJ 203 APU 209 COR 207 CSV 183
Canadian Section Method 2 Chi–square distribution 96 Chi–square, estimated 110, 127 Cofactor matrices 126 Command line conventions 6 Command line options 6	To CSV 183 To DNA 172 To DynaML 188 To GeodesyML 193 To SINEX 212	File format 203 ADJ 203 APU 209 COR 207 CSV 183 DNA 171
Canadian Section Method 2 Chi–square distribution	To CSV 183 To DNA 172 To DynaML 188 To GeodesyML 193 To SINEX 212 Uncertainty and error ellipse	File format 203 ADJ 203 APU 209 COR 207 CSV 183 DNA 171 DNAPROJ 184
Canadian Section Method 2 Chi–square distribution 96 Chi–square, estimated 110, 127 Cofactor matrices	To CSV 183 To DNA 172 To DynaML 188 To GeodesyML 193 To SINEX 212 Uncertainty and error ellipse	File format 203 ADJ 203 APU 209 COR 207 CSV 183 DNA 171 DNAPROJ 184 DynaML 188 GeodesyML 193 Geoid input file 193
Canadian Section Method 2 Chi–square distribution	To CSV	File format 203 ADJ 209 COR 207 CSV 183 DNA 171 DNAPROJ 184 DynaML 188 GeodesyML 193 Geoid input file 193 IMP 195
Canadian Section Method	To CSV	File format 203 ADJ 203 APU 209 COR 207 CSV 183 DNA 171 DNAPROJ 184 DynaML 188 GeodesyML 193 Geoid input file 193 IMP 195 M2S 196
Canadian Section Method 2 Chi–square distribution	To CSV	File format 203 ADJ 203 APU 209 COR 207 CSV 183 DNA 171 DNAPROJ 184 DynaML 188 GeodesyML 193 Geoid input file 193 IMP 195 M2S 196 SEG 198
Canadian Section Method 2 Chi–square distribution	To CSV	File format ADJ 203 APU 209 COR 207 CSV 183 DNA 171 DNAPROJ 184 DynaML 188 GeodesyML 193 IMP 195 M2S 196 SEG 198 SINEX 193
Canadian Section Method	To CSV	File format ADJ 203 APU 209 COR 207 CSV 183 DNA 171 DNAPROJ 184 DynaML 188 GeodesyML 193 Geoid input file 193 IMP 195 M2S 196 SEG 198 SINEX 193 SNX.ERR 212
Canadian Section Method	To CSV	File format ADJ 203 APU 209 COR 207 CSV 183 DNA 171 DNAPROJ 184 DynaML 188 GeodesyML 193 IMP 195 M2S 196 SEG 198 SINEX 193 SNX.ERR 212 XYZ 200
Canadian Section Method 2 Chi-square distribution 96 Chi-square, estimated 110, 127 Cofactor matrices 126 Command line conventions 6 Command line options 6 adjust 162 dynanet 151 geoid 157 import 152 plot 166 reftran 156 segment 160 Confidence interval 95 Default and user defined 116 Error ellipse 101	To CSV	File format ADJ 203 APU 209 COR 207 CSV 183 DNA 171 DNAPROJ 184 DynaML 188 GeodesyML 193 Geoid input file 193 IMP 195 M2S 196 SEG 198 SINEX 193 SNX.ERR 212 XYZ 200 File naming conventions 13
Canadian Section Method 2 Chi–square distribution 96 Chi–square, estimated 110, 127 Cofactor matrices 126 Command line conventions 6 Command line options 6 adjust 162 dynanet 151 geoid 157 import 152 plot 166 reftran 156 segment 160 Confidence interval 95 Default and user defined 116 Error ellipse 101 Global test 128	To CSV	File format ADJ 203 APU 209 COR 207 CSV 183 DNA 171 DNAPROJ 184 DynaML 188 GeodesyML 193 IMP 195 M2S 196 SEG 198 SINEX 193 SNX.ERR 212 XYZ 200 File naming conventions 13 File types 14
Canadian Section Method 2 Chi–square distribution 96 Chi–square, estimated 110, 127 Cofactor matrices 126 Command line conventions 6 Command line options 6 adjust 162 dynanet 151 geoid 157 import 152 plot 166 reftran 156 segment 160 Confidence interval 95 Default and user defined 116 Error ellipse 101 Global test 128 Adjustment summary 110	To CSV	File format ADJ 203 APU 209 COR 207 CSV 183 DNA 171 DNAPROJ 184 DynaML 188 GeodesyML 193 IMP 195 M2S 196 SEG 198 SINEX 193 SNX.ERR 212 XYZ 200 File naming conventions 13 File types 14 Flags
Canadian Section Method 2 Chi-square distribution 96 Chi-square, estimated 110, 127 Cofactor matrices 126 Command line conventions 6 Command line options 6 adjust 162 dynanet 151 geoid 157 import 152 plot 166 reftran 156 segment 160 Confidence interval 95 Default and user defined 116 Error ellipse 101 Global test 128 Adjustment summary 110 Local test 131	To CSV	File format ADJ 203 APU 209 COR 207 CSV 183 DNA 171 DNAPROJ 184 DynaML 188 GeodesyML 193 IMP 195 M2S 196 SEG 198 SINEX 193 SNX.ERR 212 XYZ 200 File naming conventions 13 File types 14 Flags Similar measurements as
Canadian Section Method 2 Chi–square distribution 96 Chi–square, estimated 110, 127 Cofactor matrices 126 Command line conventions 6 Command line options 6 adjust 162 dynanet 151 geoid 157 import 152 plot 166 reftran 156 segment 160 Confidence interval 95 Default and user defined 116 Error ellipse 101 Global test 128 Adjustment summary 110	To CSV	File format ADJ 203 APU 209 COR 207 CSV 183 DNA 171 DNAPROJ 184 DynaML 188 GeodesyML 193 IMP 195 M2S 196 SEG 198 SINEX 193 SNX.ERR 212 XYZ 200 File naming conventions 13 File types 14 Flags

G	Orthometric height 87	Adjusted measurements119
Galileo 50	Orthometric height	Command line specification
Geodetic azimuth90	87	164
Geodetic datums	Normal orthometric54	Configuration options119
Geoid53	Transformation to other frames	Corrections at each iteration
geoid	38	121
Geoid-ellipsoid separation 54	Helmert Blocking	Measurements to station . 119
Geoid grid file56	Horizontal angles	Statistics 119, 121, 132
Convert WINTER to NTv2 file	Horizontal bearings90	Constraints20
format		Data export
Interpolation		From import 35
Bicubic 58	I	From adjust
Bilinear 56	Ignoring measurements 30, 174	Ignore flag 30, 174, 190
NTv2 file format 59, 61, 62, 64	import	Import screening
NTv2 metadata report 64	Inner station, minimum80	By geographical region25
WINTER file format 65	International GNSS Service49	Ignoring similar measurements
Geoid information	International Terrestrial Reference	31
Arbitrary interpolation	Frame (ITRF) 37, 48, 49	Include or exclude stations 26
Interactive mode61	Isolated networks81	Measurement similarity 29
Text file mode62	Iteration threshold 117	Measurement type27
Data Export160		Removing ignored
Data export	ı	measurements
Import	L	Renaming stations28
Using geoid	Laplace correction95	Network simulation
Using import 21 Geoid model	Least squares	Observation equations Astronomic azimuth 95
Gravimetric geoid55	Adjustment Measurement corrections .131	Astronomic latitude94
Gravimetric quasigeoid 55	Station corrections 107	Astronomic longitude 94
Gravimetric quasigeoid 93	Adjustment configuration	Cartesian coordinates 88
known vertical datum	options116	Direction sets91
distortions	Adjustment output 121	Ellipsoid arc distance84
GLONASS50	Adjusted measurements119	Ellipsoid chord distance 84
GNSS	Export station coordinates 122	Ellipsoid height86
Baseline clusters	Station corrections 122	Ellipsoid height difference . 86
Baselines	Uncertainties121	Geodetic azimuths90
Point clusters88	Expected value127	GNSS baseline clusters88
Reference frame 24	Overview105	GNSS baselines88
Reference frame transformation	Phased adjustment 111	Horizontal angles91
50	Block-1 only 113, 115, 121	Horizontal bearings 90
Variance matrix scaling 31, 155	Multi thread111, 114	Latitude89
GPS50	Single thread 111, 113	Longitude89
	Staged	Mean sea level arc distance 85
ш	Probability	Orthometric height 87
H	Report results only116	Orthometric height difference
Height	Simultaneous adjustment 108	87
Ellipsoid55	Solution	Slope distance84
Heighting systems 53	Testing Outlier detection	Vertical angles93 Zenith distances92
Instrument and target (Slope	Whole solution 127	Reference frame24
distances)	Variance factor	Default
Instrument and target (Vertical angles)93	variance factor121	Overriding25
Instrument and target (Zenith		Supported types
distances)92	M	Transforming measurements 50
Mean sea level54	Maximum block size 80	Verification23
Measurement	Maximum iterations	Station and measurement
Ellipsoid height86	Mean sea level arc distance85	connectivity23
Ellipsoid height difference . 86	Measurement information	Testing for duplicates 23
GNSS point cluster 88	Adjustment output 118	Minimal constraint20

	0	
Minimum inner station count . 80	Q Quasigeoid54, 55	Singularity, prevention during phased adjustment 77
	Gravimetic only55	Skew normal corrections 83
N	Gravimetic plus geometric 56	Slope distance
Network simulation33, 155	, , , , , , , , , , , , , , , , , , , ,	Standard deviation .99, 101, 132,
Normal distribution 95	_	135
Unit Normal distribution 132	R	Station information
Normal equations	Reference frame24, 38	Adjustment output 118
System of	Coordinate systems	Adjusted measurements119
Normal matrix scaling 118 Normalised residual	Cartesian	Configuring station format
N–statistic	Local	120 Corrections at each iteration
T–statistic	Polar40	121
	EPSG codes48	Measurements to station . 119
	In station and measurement	Baseline scalar file 32
O	input file 24, 171	Configuring segmentation 79
Observation equations 83	International GNSS Service . 49	Constraints
Optimum block size73 Orthometric height87	Project Default24	Adding to an adjustment .117
Orthometric height	Overriding default 25	Configuring default values 118
Orthonicare neight unicience . Or	Propagation of variances 43,	Input file20
	119	Coordinate systems 18
Р	Supported frames47	Data export
Pelzer global reliability . 103, 110	Transformation between frames	From import 35, 155 From reftran 51, 157
Phased adjustment	42	From adjust 121, 166
Brief history	Supported parameters48 World Geodetic System 1984	File format
Different methods of1	50	CSV
plot	reftran	DNA172
Polar coordinates 40	Reliability	DNAPROJ185
Positional uncertainty103, 121,	Measurement103	DynaML188
209	Network	GeodesyML
Positive definite variance matrix	Renaming stations	Geoid input file 193
107 Precision 99, <i>see also</i> Decimal	Nesiduais131	SINEX
places		Import log file195 Import screening
Adjusted measurements 119,	S	By geographical region25
126, 203	segment 78 , 160	Command line options 153
Estimated parameters 107, 121,	Segmentation	Flagging unused31
125, 206, 209	Handling isolated networks .81,	Identifying multiple names 28
Managing large variation in 118 Prime meridian	161 Maximum block size threshold	Include or exclude stations 26
Deflection of	80, 161	Renaming stations28
Prime vertical39	Minimum inner station count	Input file15
Deflection of54	80, 161	Measurement to station table 196
Probability	Optimum block size73	Network simulation 33, 155
Adjustment results 128	Output file	Reference frame 24
Specifying level of 116 Probability distributions 95	Performance72 Specifying stations in the first	Default
Chi–square96	block 79, 161	Overriding25, 153
Normal95	Segmented block	Transforming coordinates50
Student's t98	Import stations and	Verification
Program execution6	measurements from154	Station and measurement
Recommended sequence7	Segmented blocks	connectivity
Project Automated processing 15	Adjusted measurements 165 Rigorous estimates165	Testing for duplicates 23 Student's t distribution 98
Automated processing 15 Create a project	Sigma zero110, 128, 130, 132	Unit Student's t distribution
Project file184	Simulation	135
•	,	

I	U	variance factor31, 129
Testing	Uncertainty125	Scaling using partial scalars 32
Outlier detection 131	Universal Transverse Mercator	Simulated
Normal test 95, 131	(UTM) 44	Symmetric positive definite 126 Variance matrix transformation 43
Student's t test98, 135		Variance of unit weight128
Whole solution 127	V	Vertical angles93
Chi–square test96	Variance 95, see Precision	
Transformation	Variance factor .32, 99, 100, 126, 127	W
Coordinates and Measurements 47	Variance matrices Adjusted measurement	Weighted sum of the squares of the corrections 107, 127
Reference frames 42	corrections126	World Geodetic System 1984 . 50
Variance matrices43	Adjusted measurements 126 a-posteriori estimate 107	
Transformation parameters 48	Preparation of99	Z
Tutorial (two-minute)9	Scaling using estimated	Zenith distances 92

Appendix A

Command line reference

A.1 dynanet

Basic usage

To automate the processing of a geodetic network adjustment in a single step using a project file, type dynanet at the command prompt, followed by one or more *options* and, if required, option *arguments*:

> dynanet [options]

The options available to dynanet are described below. The term arg denotes a required argument.

Standard options

Table A.1 lists the standard options.

Table A.1: dynanet standard options

Option	Comments and Result
project-file arg	arg is the full path to the DynaNet project file. This file contains all user options for import, segment, geoid, reftran, adjust and plot.
network-name arg	arg is the network name for the DynaNet project and is used to form the name of all input and output files. If no name is provided, a default name of "network#" will be adopted, where # is incremented until the first available network is reached.
import	Causes dynanet to invoke Import – DynaNet file exchange software.
geoid	Causes dynanet to invoke geoid – geoid model interpolation software to determine geoid–ellipsoid separation and deflection values.
reftran	Causes dynanet to invoke reftran – reference frame transformation software to transform stations and measurements.
segment	Causes dynanet to invoke segment – automated segmentation software to partition a geodetic network into smaller sized blocks.
adjust	Causes dynanet to invoke adjust – geodetic network adjustment software.

Generic options

Table A.2 lists the generic options for **dynanet**. These options are common to all DynaNet programs and as such, reference will be made to this section from the command line reference for other programs.

Table A.2: dynanet generic options

Option	Comments and Result
verbose-level arg	Give detailed information about what dynanet is doing, where arg produces the following results:
	0. No information (default)
	1. Helpful information
	2. Extended information
	3. Debug level information
quiet	Suppress all explanation of what dynanet is doing unless an error occurs.
version	Display the version information for dynanet .
help	Show the dynanet command line reference.
help-module	Provide help for a specific help category.

A.2 import

Basic usage

To import station and measurement information into DynaNet using **import**, type import at the command prompt, followed by one or more *options* and, if required, option *arguments*:

```
> import [options] [files]...
```

The options available to **import** are described below. The term arg denotes a required argument.

Standard options

Table A.3 lists the standard options. At least one option is mandatory, either --project-file or --network-name.

Table A.3: **import** standard options

Option	Comments and Result
project-file arg	arg is the full path to the DynaNet project file. Using this option alone, import will configure all other options using the values contained in the DynaNet project file. If no file is specified, a new file is created using default and user–specified options.
network-name arg	arg is the network name for the DynaNet project and is used to form the name of all input and output files. If no name is provided, a default name of "network#" will be adopted, where # is incremented until the first available network is reached.
stn-msr-file arg	arg is a station or measurement file name. Any number of station and measurement files can be passed to import in any order. This is the default option to import and as such, files may be passed to import without the option textstn-msr-file.
geo-file arg	${\tt arg}$ is a geoid file formatted according to the DNA Version 1.0 file format.
input-folder arg	arg is the path containing all input files. If not specified, import assumes all input files are located in the folder from which import is executed.
output-folder arg	arg is the path for the creation of all output files. If not specified, import will create all output files in the folder from which import is executed.
binary-stn-file arg	arg is the binary station output file name. arg overrides the default file name formed from the argument tonetwork-name.
binary-msr-file arg	arg is the binary measurement output file name. arg overrides the default file name formed from the argument tonetwork-name.

Reference frame options

Table A.4 lists the reference frame options.

Table A.4: import reference frame options

Option	Comments and Result
reference-frame arg	When input files do not specify a reference frame, arg is the default reference frame to be assigned to all imported stations and measurements, and to be used for preliminary reductions on the ellipsoid. The default reference frame is GDA94.
override-input-ref-frame	Replace the reference frame specified in the input files with the reference frame specified by arg inreference-frame.

Data screening options

Table A.5 lists the data screening options.

Table A.5: **import** data screening options

Option	Comments and Result
bounding-box arg	arg is a comma delimited string in the form lat1,lon1,lat2,lon2 (i.e. latitude, longitude pairs in dd.mmss) defining the upper–left and lower–right limits of a bounding box within which to extract stations and measurements from the input files. A measurement must be wholly located within the bounding box for its successful inclusion.
get-msrs-transcending-box	Include measurements which transcend the bounding box, including the associated stations which lie outside the bounding box.
include-stns-assoc-msrs arg	arg is a comma delimited string stn1,stn2,stn3,stn4 defining the stations and all associated measurements to include from the input files. All other stations are excluded.
exclude-stns-assoc-msrs arg	arg is a comma delimited string stn1,stn2,stn3,stn4 defining the stations and all associated measurements to exclude from the input files. All other stations are included.
split-gnss-cluster-msrs	Split GNSS point and baseline cluster measurements, causing import to ignore points or baselines within the cluster which lie outside the user defined bounding box, or are not associated with the list of stations specified byinclude-stns-assoc-msrs arg.
import-block-stn-msr arg	arg is the segmented network block number from which to extract stations and all associated measurements. A corresponding .seg file must exist for this option.
seg-file arg	arg is the name of the segmentation file from which to determine the segmentation information. arg overrides default file name formed from the argument tonetwork-name.
prefer-single-x-as-g	Convert baseline cluster measurements (X) with only one baseline to a single baseline measurement (G) .
include-msr-types arg	arg is a non-delimited string (eg GXY) defining the list of measurement types to be included. All other measurement types will be excluded.
exclude-msr-types arg	arg is a non-delimited string (eg IJK) defining the list of measurement types to be excluded. All other measurement types will be included.
stn-renaming-file	arg is the name of the station renaming file containing the preferred station name and the aliases to be replaced.
search-nearby-stn	Invoke a search for nearby stations that are within a radius ofnearby-stn-buffer arg.
nearby-stn-buffer arg	arg is the radius of the circle within which to search for nearby stations. Default is 0.3m.
search-similar-msr	Invoke a search and provide warnings for similar measurements.
search-similar-gnss-msr	Invoke a search and provide warnings for GNSS baselines which appear to be similar to GNSS baseline clusters
ignore-similar-msr	Ignore similar measurements.
remove-ignored-msr	Exclude ignored measurements from the import process.

Option	Comments and Result
flag-unused-stations	Mark unused stations in binary file. Stations marked will be excluded from any further processing.
test-integrity	Test the integrity of the association lists and binary files.

GNSS variance matrix scaling options

Table A.6 lists the GNSS variance matrix scaling options.

Table A.6: import GNSS variance matrix scaling options

Option	Comments and Result
v-scale arg	arg is a global <i>variance</i> matrix scalar for all GNSS measurements. Replaces existing scalar. Default is 1.
p-scale arg	rg is a <i>latitude</i> variance matrix scalar for all GNSS measurements. Replaces existing scalar. Default is 1.
l-scale arg	arg is a <i>longitude</i> variance matrix scalar for all GNSS measurements. Replaces existing scalar. Default is 1.
h-scale arg	arg is a <i>height</i> variance matrix scalar for all GNSS measurements. Replaces existing scalar. Default is 1.
baseline-scalar-file arg	arg is a file containing global, latitude, longitude and height variance matrix scalars for GNSS baseline measurements between specific station pairs. Scalar file values do not apply to GNSS point or baseline clusters.

Network simulation options

Table A.7 lists the network simulation options.

Table A.7: import network simulation options

Option	Comments and Result
simulate-msr-file	Simulate measurements corresponding to the input measurements using the coordinates in the station file. If a geoid file was imported using <code>geo-file</code> , <code>import</code> will apply the geoid–ellipsoid separations and deflections of the vertical to the simulated measurements.

Export options

Table A.8 lists the file export options.

Table A.8: import export options

Option	Comments and Result
export-xml-files	Export stations and measurements to DynaML (DynaNet XML) format.
single-xml-file	Create a single DynaML file containing all stations and measurements.
export-dna-files	Export stations and measurements to DNA STN and MSR format.
export-asl-file	Export the ASL file as raw text.
export-aml-file	Export the AML file as raw text.
export-map-file	Export the MAP file as raw text.

Generic options

Please refer to the Generic options for **dynanet** on page 152 for a list of generic options for **import**.

A.3 reftran

Basic usage

To transform imported station coordinates and GNSS measurement into a common reference frame using **reftran**, type reftran at the command prompt, followed by one or more *options* and, if required, option *arguments*:

```
> reftran network-name [options]
```

The options available to reftran are described below. The term arg denotes a required argument.

Standard options

Table A.9 lists the standard options.

Table A.9: reftran standard options

Option	Comments and Result
project-file arg	arg is the full path to the DynaNet project file. Using this option alone, reftran will configure all other options using the values contained in the DynaNet project file. If no file is specified, a new file is created using default and user–specified options.
network-name arg	arg is the network name for the DynaNet project and is used to form the name of all input and output files. If no name is provided, a default name of "network#" will be adopted, where # is incremented until the first available network is reached.
input-folder arg	arg is the path containing all input files. If not specified, reftran assumes all input files are located in the folder from which reftran is executed.
output-folder arg	arg is the path for the creation of all output files. If not specified, reftran will create all output files in the folder from which reftran is executed.
binary-stn-file arg	arg is the binary station output file name. arg overrides the default file name formed from the argument tonetwork-name.

Option	Comments and Result
binary-msr-file arg	arg is the binary measurement output file name. arg overrides the default file name formed from the argument tonetwork-name.

Transformation options

Table A.10 lists the reference frame transformation options.

Table A.10: reftran transformation options

Option	Comments and Result
reference-frame arg	arg is the target reference frame for all stations and datum-dependent measurements.
epoch	arg is a dot delimited string in the form of dd.mm.yyyy defining the projected date for the transformed stations and measurements. If today's date is required, type today. If no date is supplied, the reference epoch of the supplied reference frame will be used.

Export options

Table A.11 lists the file export options.

Table A.11: reftran export options

Option	Comments and Result
export-xml-files	Export stations and measurements to DynaML (DynaNet XML) format.
single-xml-file	Create a single DynaML file containing all stations and measurements.
export-dna-files	Export stations and measurements to DNA STN and MSR format.

Generic options

Please refer to the Generic options for **dynanet** on page 152 for a list of generic options for **reftran**.

A.4 geoid

Basic usage

To introduce geoid–ellipsoid separations and deflections of the vertical into a project from either an NTv2 formatted geoid model or ASCII text file using **geoid**, type geoid at the command prompt, followed by one or more *options* and, if required, option *arguments*:

> geoid [options]	

The options available to **geoid** are described below. The term arg denotes a required argument.

Standard options

Table A.12 lists the standard options.

Table A.12: **geoid** standard options

Option	Comments and Result
project-file arg	arg is the full path to the DynaNet project file. Using this option alone, geoid will configure all other options using the values contained in the DynaNet project file. If no file is specified, a new file is created using default and user–specified options.
network-name arg	arg is the network name for the DynaNet project and is used to form the name of all input and output files. If no name is provided, a default name of "network#" will be adopted, where # is incremented until the first available network is reached.
input-folder arg	arg is the path containing all input files. If not specified, geoid assumes all input files are located in the folder from which geoid is executed.
output-folder arg	arg is the path for the creation of all output files. If not specified, geoid will create all output files in the folder from which geoid is executed.

Interpolation options

Table A.13 lists the geoid grid file interpolation options.

Table A.13: **geoid** interpolation options

Option	Comments and Result
interactive	Perform geoid interpolation from coordinates entered via the command line.
text-file arg	Perform geoid interpolation from coordinates contained in a text file. arg is the full path to the text file to be transformed.
interpolation-method arg	arg is an integer informing geoid which interpolation method to use: 0. Bi-linear 1. Bi-cubic (default)
decimal-degrees	Informs geoid that all input coordinates are in decimal degrees. Default coordinate format is degrees, minutes and seconds.
create-ntv2	Create an NTv2 binary grid file from the legacy Winter DAT file format. $\label{eq:create}$
ntv2-file arg	arg is the full path to the NTv2 grid file.
summary	Print a summary of the grid file.

NTv2 creation options

Table A.14 lists the National Transformation version 2.0 (NTv2) file creation options.

Table A.14: geoid NTv2 creation options

Option	Comments and Result
dat-file arg	arg is the full path to the WINTER DAT grid file.
grid-shift-type arg	arg is the grid shift type. Valid values include SECONDS or RADIANS.
grid-version arg	arg is the grid file version.
system-from arg	arg is the 'from' reference system (e.g. GDA94).
system-to arg	arg is the 'to' reference system (e.g. AHD_1971).
semi-major-from arg	arg is the semi major axis of the 'from' reference system.
semi-major-to arg	arg is the semi major axis of the 'to' reference system.
semi-minor-from arg	arg is the semi minor axis of the 'from' reference system.
semi-minor-to arg	arg is the semi minor axis of the 'to' reference system.
sub-grid-name arg	arg is the name of the subgrid.
creation-date arg	arg is a dot delimited string in the form of dd.mm.yyyy defining the date of file creation. Default is today's date if no value is supplied.
update-date arg	arg is a dot delimited string in the form of dd.mm.yyyy defining the date of the last file update. Default is today's date if no value is supplied.

Interactive interpolation options

Table A.15 lists the interactive interpolation options.

Table A.15: **geoid** interactive interpolation options

Option	Comments and Result
latitude arg	arg is the latitude of the interpolant. Default is degrees, minutes and seconds in the form dd.mmssss.
longitude arg	${\tt arg}$ is the longitude of the interpolant. Default is degrees, minutes and seconds in the form dd.mmssss.

File interpolation options

Table A.16 lists the file interpolation options.

Table A.16: **geoid** file interpolation options

Option	Comments and Result
direction arg	arg is an integer informing geoid which direction the conversion of user—supplied heights should be:
	 Orthometric to ellipsoid Ellipsoid to orthometric (default)
convert-station-hts	Informs geoid to convert orthometric heights in the binary station file to ellipsoidal heights.

Export options

Table A.17 lists the export options.

Table A.17: geoid export options

Option	Comments and Result
export-dna-geo-file	Creates a DynaNet version 1.0 geoid file from interpolated geoid information.

Generic options

Please refer to the Generic options for dynanet on page 152 for a list of generic options for geoid.

A.5 segment

Basic usage

To segment a network into a series of blocks for use by **adjust** in phased adjustment mode, type segment at the command prompt, followed by one or more *options* and, if required, option *arguments*:

> segment network-name [options]

The options available to **segment** are described below. The term arg denotes a required argument.

Standard options

Table A.18 lists the standard options.

Table A.18: segment standard options

Option	Comments and Result
project-file arg	arg is the full path to the DynaNet project file. Using this option alone, segment will configure all other options using the values contained in the DynaNet project file. If no file is specified, a new file is created using default and user–specified options.
network-name arg	arg is the network name for the DynaNet project and is used to form the name of all input and output files. If no name is provided, a default name of "network#" will be adopted, where # is incremented until the first available network is reached.
input-folder arg	arg is the path containing all input files. If not specified, segment assumes all input files are located in the folder from which segment is executed.
output-folder arg	arg is the path for the creation of all output files. If not specified, segment will create all output files in the folder from which segment is executed.
binary-stn-file arg	arg is the binary station output file name. arg overrides the default file name formed from the argument tonetwork-name.
binary-msr-file arg	arg is the binary measurement output file name. arg overrides the default file name formed from the argument tonetwork-name.
seg-file arg	arg is the segmentation output file name. arg overrides the default file name formed from the argument tonetwork-name.

Configuration options

Table A.19 lists the segmentation configuration options.

Table A.19: segment configuration options

Option	Comments and Result
net-file	Look for a file named network-name.net, which contains the list of stations to be incorporated within the first block.
starting-stns arg	arg is a comma delimited string in the form of " $stn1$, $stn\ 2$, $stn\ 4$ ", which defines a list of additional stations to be incorporated within the first block.
min-inner-stns arg	arg is the minimum number of inner stations that must appear within each block. Default is 5.
max-block-stns arg	arg is the threshold defining the maximum number of stations per block. Default is 65.
contiguous-blocks arg	arg is an integer which informs segment how to treat isolated networks: 0. Isolated networks as individual blocks 1. Force production of contiguous blocks (default)
search-level arg	arg is the level to which searches should be conducted to find stations with the lowest measurement count. Default is 0.
test-integrity	Test the integrity of the segmentation output file.

Generic options

Please refer to the Generic options for **dynanet** on page 152 for a list of generic options for **segment**.

A.6 adjust

Basic usage

To perform a least squares adjustment using **adjust**, type adjust at the command prompt, followed by one or more *options* and, if required, option *arguments*:

```
> adjust network-name [options]
```

The options available to adjust are described below. The term arg denotes a required argument.

Standard options

Table A.27 lists the standard options.

Table A.20: adjust standard options

Option	Comments and Result
project-file arg	arg is the full path to the DynaNet project file. Using this option alone, adjust will configure all other options using the values contained in the DynaNet project file. If no file is specified, a new file is created using default and user–specified options.
network-name arg	arg is the network name for the DynaNet project and is used to form the name of all input and output files. If no name is provided, a default name of "network#" will be adopted, where # is incremented until the first available network is reached.
input-folder arg	arg is the path containing all input files. If not specified, adjust assumes all input files are located in the folder from which adjust is executed.
output-folder arg	arg is the path for the creation of all output files. If not specified, adjust will create all output files in the folder from which adjust is executed.
binary-stn-file arg	arg is the binary station output file name. arg overrides the default file name formed from the argument tonetwork-name.
binary-msr-file arg	arg is the binary measurement output file name. arg overrides the default file name formed from the argument tonetwork-name.
seg-file arg	arg is the name of an alternative segmentation file. arg overrides the default file name formed from the argument tonetwork-name.
comments arg	arg is a string of comments to be associated with this adjustment. If arg contains whitespace, ensure that arg is enclosed with double quotes, e.g. "Constraints assumed from GNSS CORS network.".

Adjustment mode options

Table A.21 lists the adjustment mode options.

Table A.21: adjust adjustment mode options

Option	Comments and Result
simultaneous-adjustment	Adjust the network in simultaneous adjustment mode. The default mode.
phased-adjustment	Adjust the network in sequential phased adjustment mode. Refer to Phased adjustment options for additional options.
block1-phased	Adjust the network in sequential phased adjustment mode, resulting in rigorous estimates for block $\bf 1$ only.
simulation	Perform a simulation adjustment, resulting in rigorous variance matrices for station coordinates and adjusted measurements. Rigorous station coordinates are not produced.
report-results	Reproduce the adjustment output files without performing an adjustment.

Phased adjustment options

Table A.22 lists the phased adjustment mode options.

Table A.22: adjust phased adjustment options

Option	Comments and Result
staged-adjustment	Store adjustment matrices in memory mapped files instead of retaining data in memory. This option decreases efficiency but may be required if there is insufficient RAM to hold an adjustment in memory. Refer to Staged adjustment options for additional options.
multi-thread	Process forward, reverse and combination adjustments concurrently using all available CPU cores. This option yields maximum efficiency but requires a RAM footprint twice the size of a phased adjustment.

Adjustment configuration options

Table A.23 lists the adjustment configuration options.

Table A.23: adjust adjustment configuration options

Option	Comments and Result
conf-interval arg	arg is the confidence interval to be used for testing the least squares solution and measurement corrections. Default is 95.0%.
iteration-threshold arg	arg is the least squares iteration threshold. Default is $0.0005m$.
max-iterations arg	arg is the maximum number of iterations. Default is 10.
constraints arg	arg is a comma delimited string in the form of station, constraint pairs (e.g. "stn 1,CCC,stn 2,CCF") defining specific station constraints. These values override those contained in the station file.

Option	Comments and Result
free-stn-sd arg	arg is the a-priori standard deviation for free stations. Default is 10m.
fixed-stn-sd arg	${\tt arg}$ is the a–priori standard deviation for fixed stations. Default is ${\tt 0.00001m}.$
inversion-method arg	arg is an integer which informs adjust which inversion method to use for the solution of the normal equations:
	 Cholesky (default) Gaussian Sweep
scale-normals-to-unity	Scale the normal matrices to unity prior to computing the inverse to minimise loss of precision caused by tight variances placed on constraint stations.

Staged adjustment options

Table A.24 lists the staged adjustment options.

Table A.24: adjust staged adjustment options

Option	Comments and Result
create-stage-files	Recreate memory mapped files. If not specified, adjust will attempt to load all information from existing files.
purge-stage-files	Purge memory mapped files from disk upon completing the adjustment.

Output options

Table A.25 lists the adjustment output options. All output options affect the .adj file only.

Table A.25: adjust adjustment output options

Comments and Result			
Print a summary of the measurements connected to each station.			
Print the adjusted station coordinates on each iteration.			
Print a statistical summary on each iteration.			
Print the adjusted measurements on each iteration.			
Print the computed measurements on each iteration.			
Print the final adjusted measurements.			
arg is an integer defining the units for the adjusted GNSS measurements: 0. As measured (default) 1. Local [east, north, up] 2. Polar [azimuth, vert. angle, slope dist]			

Option	Comments and Result			
output-tstat-adj-msr	Print Student t statistics for adjusted measurements.			
output-database-ids	Print measurement ID and cluster ID for database mapping.			
sort-adj-msr-field arg	arg is an integer defining the sort order for the adjusted measurements:			
	 Original input file order (default) Measurement type Station 1 Station 2 Measurement value Correction Adjusted std. dev. N-statistic Suspected outlier 			
output-stn-blocks	For phased adjustments, print the adjusted coordinates according to each block.			
output-msr-blocks	For phased adjustments, print the adjusted measurements according to each block.			
sort-stn-orig-order	Print station information using the station order in the original station file. By default, stations are output in alpha–numeric order.			
stn-coord-types arg	arg is a case—sensitive string in the form of "ENzPLHhXYZ", defining the specific types and order for the output of adjusted station coordinates. Default is "PLHhXYZ".			
stn-corrections	Print the corrections (in the form of e, n, up) to the initial station coordinates with the adjusted station coordinates.			
precision-stn-linear arg	arg is an integer defining the precision for linear station coordinates. Default is 4.			
precision-stn-angular arg	arg is an integer defining the precision for angular station coordinates. For values in degrees, minutes and seconds, arg relates to seconds. For values in decimal degrees, arg relates to degrees. Default is 5.			
precision-msr-linear arg	arg is an integer defining the precision for linear measurements. Default is $4.$			
precision-msr-angular arg	arg is an integer defining the precision for angular measurements. For values in degrees, minutes and seconds, arg relates to seconds. For values in decimal degrees, arg relates to degrees. Default is 4.			
angular-msr-type arg	arg is an integer defining the output type for adjusted angular measurements: 0. Degrees, minutes and seconds (default)			
dms-msr-format arg	 Decimal degrees arg is an integer defining the output format for adjusted angular measurements in degrees, minutes and seconds: Separated fields (default) Separated fields with symbols HP notation 			

Export options

Table A.26 lists the adjustment export options.

Table A.26: adjust export options

Option	Comments and Result	
output-pos-uncertainty	Print positional uncertainty and variances of the adjusted station coordinates to the .apu file.	
output-all-covariances	Print covariances between adjusted station coordinates to the $$.apu file.	
output-apu-vcv-units arg	arg is an integer defining the variance matrix units in the .apu file: 0. Cartesian [X,Y,Z] (default) 1. Local [e,n,up]	
output-corrections-file	Print the corrections (in the form of azimuth, distance, e, n, up) to the initial station coordinates to the .cor file.	
hz-corr-threshold arg	arg is the minimum horizontal threshold by which to restrict output of station corrections to .cor file. Default is 0.0m.	
vt-corr-threshold arg	arg is the minimum vertical threshold by which to restrict output o station corrections to .cor file. Default is 0.0m.	
export-xml-stn-file	Export the estimated station coordinates to a DynaML (DynaNet XML) station file.	
export-dna-stn-file	Export the estimated station coordinates to a DNA STN file.	
export-sinex-file	Export the estimated station cooridnates and full variance matrix to a ${\sf SINEX}$ file.	

Generic options

Please refer to the Generic options for dynanet on page 152 for a list of generic options for adjust.

A.7 plot

Basic usage

To generate a PDF image of the network using **plot**, type plot at the command prompt, followed by one or more *options* and, if required, option *arguments*:

> plot network-name [options]

The options available to **plot** are described below. The term arg denotes a required argument.

Standard options

Table A.27 lists the standard options.

Table A.27: **plot** standard options

Option	Comments and Result			
project-file arg	arg is the full path to the DynaNet project file. Using this option alone, plot will configure all other options using the values contained in the DynaNet project file. If no file is specified, a new file is created using default and user–specified options.			
network-name arg	arg is the network name for the DynaNet project and is used to form the name of all input and output files. If no name is provided, a default name of "network#" will be adopted, where # is incremented until the first available network is reached.			
input-folder arg	arg is the path containing all input files. If not specified, plot assumes all input files are located in the folder from which plot is executed.			
output-folder arg	arg is the path for the creation of all output files. If not specified, plot will create all output files in the folder from which plot is executed.			
binary-stn-file arg	arg is the binary station output file name. arg overrides the default file name formed from the argument tonetwork-name.			
binary-msr-file arg	arg is the binary measurement output file name. arg overrides the default file name formed from the argument tonetwork-name.			

Data configuration options

Table A.28 lists the data configuration options.

Table A.28: **plot** data configuration options

Option	Comments and Result	
plot-msr-types arg	arg is a non-delimited string (eg "GXY") defining the specific measurement types to be printed.	
plot-ignored-msrs	Plot ignored measurements.	
phased-block-view	Plot the blocks of a segmented network in individual sheets. A corresponding .seg file must exist for this option.	
seg-file arg	arg is the name of an alternative segmentation file. arg overrides the default file name formed from the argument tonetwork-name.	
block-number arg	When plotting phased adjustments, arg is the number of the block to be printed. A value of zero (default) causes all blocks to be plotted. A corresponding .seg file must exist for this option.	
label-stations	Label each station with the station name.	
alternate-name	When station labels are required, label each station with the station description string, rather than the station name.	
label-constraints	Appends each station label with the station constraints. Applies to thelabel-stations option.	
correction-arrows	Plot arrows representing the direction and magnitude of corrections to the original station coordinates.	
label-corrections	Plot correction labels.	

Option	Comments and Result			
omit-measurements	Prevent measurements from being printed.			
compute-corrections	Compute the corrections to the original station coordinates from binary station file. Default is to use the values contained in the .cor file.			
error-ellipses	Plot error ellipses for all stations.			
positional-uncertainty	Plot positional uncertainties for all stations.			
scale-arrows arg	arg is the amount by which to scale the size of the correction arrows.			
scale-ellipse-circles arg	arg is the amount by which to scale the size of error ellipses positional uncertainty circles.			
bounding-box arg	arg is a comma delimited string in the form lat1,lon1,lat2,lon2 (i.e. latitude, longitude pairs in dd.mmss) defining the upper—left and lower—right limits of the desired plot extents.			
centre-latitude arg	arg is the latitude, in the form of $\pm dd.mmsssss$, upon which to centre the plot. The plot area is circumscribed byarea-radius.			
centre-longitude arg	arg is the longitude, in the form of $\pm {\tt ddd.mmsssss}$, upon which to centre the plot. The plot area is circumscribed byarea-radius.			
centre-station arg	arg is the station name upon which to centre the plot. The plot area is circumscribed byarea-radius.			
area-radius arg	arg is the radius (in metres) of a circular perimeter by which to limit plots that are to be centered upon a station or latitude/longitude pair. Default is $5000m$.			
graph-stn-blocks	Plot a graph of the block stations resulting from network segmentation.			
graph-msr-blocks	Plot a graph of the block measurements resulting from network segmentation.			
keep-gen-files	Keep command and data files used to generate EPS and PDF plots. Default behaviour is to delete these files once the PDF has been generated.			

Mapping options

Table A.29 lists the mapping options.

Table A.29: **plot** mapping options

Option	Comments and Result
map-projection arg	arg is an integer defining the map projection to use for the display of the network:
	0. Let plot choose best projection (default)
	1. World plot
	2. Orthographic
	3. Mercator
	4. Transverse Mercator
	5. Albers equal-area conic
	6. Lambert conformal conic
	7. General stereographic

Option	Comments and Result			
label-font-size arg	arg is an integer defining the font size for station name and constraint labels. Default is 5.			
msr-line-width arg	arg is an integer defining the measurement line width. Default is 0.15.			
omit-title-block	Prevent plot from printing a title block and measurements legend to the network map.			
pdflatex	Use PdflATEX to create the PDF (available only if a suitable TEX implementation is installed). Default pdf creation uses ps2pdf (invokes Ghostscript). PdflATEX may help resolve problems associated with creating large landscape plots.			
supress-pdf-creation	Don't create a pdf, just the command files.			

PDF viewer options

Table A.30 lists the Postscript Document Format (PDF) viewer options.

Table A.30: **plot** PDF viewer options

Option	Comments and Result			
pdf-viewer arg	arg is the application to use when displaying PDF files. Default is Adobe Acrobat.			
acrobat-ddename arg	arg is the DDE message to use when viewing PDF files with Adobe Acrobat Reader. Default is AcroViewR10			

Generic options

Please refer to the Generic options for **dynanet** on page 152 for a list of generic options for **plot**.

Appendix B

File format specification

B.1 Dynamic Network Adjustment (DNA) format

The DNA format provides information about geodetic network stations, measurements, and geoid–ellipsoid separations and deflections of the vertical. This information is contained in three separate files — the station file has a stn file extension, the measurement file has a msr extension and the geoid file has a geo extension. All three files must contain a single header line at the beginning of the file. As required, these files can contain one or more comment lines throughout the file. Comment lines must begin with an asterisk (*). Every record in the station, measurement and geoid files must contain data fields located in particular file positions (or columns).

Version 1.0 of the DNA format was originally defined for the first version of DynaNet, formerly known as DNA. The following specifications relate to version 3.01.

B.1.1 Changes from Version 1 to Version 3

DNA Version 3 introduces the following changes:

- Version control information within the header record;
- Various changes in field locations and widths to support larger station names (up to 20 characters), and extra precision for GNSS measurements;
- A new coordinate format identifier to enable ellipsoid and orthometric heights in the station file to be distinguished;
- GNSS measurement variance matrix scalars, and;
- GNSS measurement reference frame and epoch.

B.1.2 Header line

DNA Version 3 introduces formatting to the header line to distinguish which DNA version a file has been formatted in, and to provide basic metadata relevant to the file and its contents. A single header line must be present at the beginning of every station file, measurement file and geoid file. The relevant fields and corresponding file positions for the header line are shown in Table B.1.

The reference frame/geoid model and epoch/version fields are non-mandatory and are used to indicate the default parameters for the file. The epoch field relates to the reference frame, and the version field relates to the geoid model. If this information is absent, DynaNet will set the default reference frame for stations and measurements to GDA94 and the default geoid model for geoid-ellipsoid separations and deflections of the vertical to AusGeoidO9. For measurement files, the

default reference frame and epoch will be overridden by the reference frame and epoch provided for each GNSS measurement. The measurement count specified in columns 58-67 relates to the number of measurement sets. Hence, a GNSS point cluster of four points is regarded as one measurement, not four points or twelve measurement components. The same applies to GNSS baseline clusters and direction sets.

Table B.1: Header line column locations and field widths

Field	Columns	Width	Examples
File format	1 – 6	6	!#=DNA
Version	7 – 12	6	3.01
File type	13 – 15	3	STN, MSR, GEO, REN
Creation date	16 – 29	14	01.03.2013
Default reference frame or geoid model	30 – 43	14	GDA94, ITRF2005, AUSGE0ID09
Default epoch or version	44 – 57	14	01.01.2010, 1.0.0.0
Number of stations or measurements	58 – 67	10	100

Figure B.1 shows some example header lines in DNA format for a station file, a measurement file and a geoid file. Note that all values can be positioned anywhere within the respective fields without the need for right or left justification.

12345678901234567890123456789012345678901234567890123456789012345678901234567890						
!#=DNA 3.00 STN	28.08.2013	GDA94		43		
!#=DNA 3.00 MSR	28.08.2013	ITRF2005	01.01.2010	121		
!#=DNA 3.00 GEO	28.08.2013	AUSGEOIDO9	1.0.0.0	16		
!#=DNA 3.01 REN				16	·	

Figure B.1: Example header lines

B.1.3 Station information

All information for a single station is formatted on one line. DynaNet allows station coordinate information in a DNA station file to be stored in one of three different coordinate types:

LLH/LLh Geographic coordinates. Expected values are *latitude*, *longitude* and *height*. Latitude and longitude must be expressed in degrees, minutes and seconds using HP notation (e.g. dd.mmssssss). Height must be expressed in metres and can be provided as either an ellipsoidal or orthometric height. LLH is case sensitive — specify LLH for orthometric height and LLh for ellipsoidal height.

Universal Transverse Mercator coordinates. Expected values are *Easting*, *Northing*, *zone* and *height*. Easting and Northing values must be expressed in metres. Zone is an integer value. Height is assumed to be orthometric.

XYZ Earth–centred cartesian coordinates. Expected values are x, y, z. All elements must be expressed in metres.

Information in a station file can be formatted using multiple coordinate types. That is, there is no requirement for all stations in a file to be formatted according to one coordinate type. The relevant fields and corresponding file positions for station information are shown in Table B.2.

Table B.2: Station information column locations and field widths

Field	Columns	Width	Comments
Station name	1 – 20	20	Alphanumeric string. Can contain spaces.
Constraints	21 – 23	3	Constraints must be supplied according to the coordinate order, where $F=$ free and $C=$ constrained, e.g. FFC.
Blank	24	1	Ignored.
Coordinate type	25 – 27	3	LLH/LLh, UTM or XYZ.
Latitude / Easting / x	28 – 47	20	Latitude is represented as dd.mmssss. Easting and \boldsymbol{x} is in metres.
Longitude / northing / y	48 – 67	20	Longitude is represented as ddd.mmssss. Northing and y are in metres.
Height / z	68 – 87	20	Height and z are in metres.
Hemisphere and zone	88 – 90	3	Hemisphere (N or S) and zone (e.g. S55). This field is compulsory for UTM coordinates only. Hemisphere is optional (S is the default if left blank).
Blank	91	1	Ignored.
Description	92	128	Alphanumeric string. Not compulsory.

Figure B.2 shows some example stations in DNA format. Again, the values can be positioned anywhere within the respective fields without the need for right or left justification.

!#=DNA 3.01 STN	16 10 2012	GDA94	1	14		
* Created 02 Augus		GDA9-	±	14		
* Sample stations						
* Level section 10						
103-E	CCF UTM	554222.559	5760821.962	5.013	54	PTL
* Level section 74	8					
748-16	CCF UTM	635671.48	5945852.24	137.515	54	BM 16
748-15	CCF UTM	634398.61	5945979.47	136.821	54	BM 15
* Level section 10	02					
1002-7	CCF UTM	340477.173	5913039.786	166.790	55	BM 7
1002-9	CCF UTM	343140.	5914120.	151.693	55	BM 9
1002-26	CCF UTM	372772.813	5931491.145	175.668	55	BM 26
1002-28	CCF UTM	350360.	5919700.	177.278	55	BM 28
* Sample stations	in LLH					
HOSP	CCF LLH-37	.480176556914	44.5717295509	83.9000		HOSP
PELH	FFF LLH-37	.48137315581	44.5734312921	31.0810		PELH
RMH-FP	CCC LLH-37	.480199862914	44.5717239117	100.0000	55	RMH Flag Pole
ramp	FFF LLH -	37.47053445	144.57103055	41.669	55	Zoo ramp
* Sample stations	in XYZ					
Zoo3	FFF XYZ -4	131942.8194	2898817.3761	-3886309.6280		Zoo point 3
AAAAC	CCC XYZ -4	373792.5877	3074983.9818	-3466230.4471		
AAAAD	FFF XYZ -3	227491.9637	4780697.6162	-2712698.5913		

Figure B.2: Example station file with coordinates in UTM, LLH and XYZ formats

B.1.4 Measurement information

Depending on the type of measurement, information for a measurement (or cluster of measurements) can be contained on one or multiple lines. The measurement types supported by DynaNet, Version 3.3 are listed in Table 3.2, on page 19.

The required information and formatting for a measurement will vary according to the type of measurement. However, there are certain fields which are common to all measurement types. Table B.3 shows the fields and file formatting common to all measurements.

Table B.3: General measurement information column locations and field widths

Field	Columns	Width	Comments	
Measurement type	1	1	Alpha character.	
Ignore flag	2	1	If a measurement is to be ignored, supply an asterisk (*).	
First station name	3 – 22	20	Alphanumeric string. Can contain spaces. Must correspond to a station name in the Station file.	
Measurement ID	143 – 152	10	Integer. Represents a unique database identifier.	
Cluster ID	153 – 162	10	Integer. Represents a unique database identifier.	

The following sections describe the additional fields and corresponding file formatting for the various measurement types.

Horizontal angles (A)

Table B.4 shows the information and file formatting that applies to horizontal angle measurements, and Figure B.3 shows some formatted examples.

Table B.4: Column locations and field widths for horizontal angles

Field	Columns	Width	Comments
Second station name	23 – 42	20	As per first station name in Table B.3.
Third station name	43 – 62	20	As per first station name in Table B.3.
Horizontal angle:			
Degrees	77 – 80	4	Integer (0 – 359).
Minutes	81 – 82	2	Integer (0 – 59).
Seconds	83 – 90	8	Decimal (0 $< s <$ 60).
Standard deviation	91 – 99	9	Decimal value in units of seconds.

12345678901234	56789012345678901234	56789012345678901234567	89012345678901234567890123456789012	2345678901234567890123456789
A 102	103	104	47 32 31.716	0.010
A 104	102	103	8 34 49.259	0.010

Figure B.3: Example angle measurements

Geodetic (B) and astronomic (K) azimuths, zenith distances (V) and vertical angles (Z)

Table B.5 shows the information and file formatting that applies to geodetic azimuths, astronomic azimuths, zenith distances and vertical angles. Note that instrument and target heights are not required for geodetic or astronomic azimuths. Figure B.4 shows some formatted examples.

Table B.5: Column locations and field widths for geodetic azimuths, astronomic azimuths, zenith distances and vertical angles.

Field	Columns	Width	Comments
Second station name	23 – 42	20	As per first station name in Table B.3.
Azimuth / zenith dista	nce / angle:		
Degrees	77 – 80	4	Integer $(0 - 359 \text{ for azimuths}, 0 - 179 \text{ for zenith distances and } -89 - 89 \text{ for vertical angles}).$
Minutes	81 – 82	2	Integer (0 – 59).
Seconds	83 – 90	8	Decimal $(0 < s < 60)$.
Standard deviation	91 – 99	9	Decimal value in units of seconds.
Instrument height	100 - 106	7	Compulsory for zenith distances and
Target height	107 - 113	7	vertical angles only.

12345678901234	12345678901200000000000000000000000000000000000						
B 101	202	137 42 08.500	0.010				
K 301	502	17 39 24.920	0.010				
V 503	304	89 32 59.147	0.010 1.591 1.438				
Z 309	410	-0 20 10.331	0.010 1.623 1.345				
Z 503	307	1 01 47.654	0.010 1.623 1.345				

Figure B.4: Example geodetic azimuths, astronomic azimuths, zenith distances and vertical angles

Direction sets (D)

Information for direction sets is contained on at least two lines. The first record provides information relating to the reference direction and the number of directions in the set, and the remaining records provide information about each direction. Each direction must be provided in a clockwise fashion from the reference direction.

Table B.6 shows the information and file formatting that applies to direction sets, and Figure B.5 shows some formatted examples.

Table B.6: Column locations and field widths for direction sets.

Field	Columns	Width	Comments
Reference station name	23 – 42	20	As per first station name in Table B.3.
Reference direction:			
Number of directions	43 – 62	20	The number of directions that follow the reference direction.
Degrees	77 – 80	4	Integer (0 – 359).
Minutes	81 – 82	2	Integer (0 – 59).
Seconds	83 – 90	8	Decimal (0 $< s <$ 60).
Standard deviation	91 – 99	9	Decimal value in units of seconds.
Directions (one per line)	:		
Station name	43 – 62	20	As per first station name in Table B.3.
Degrees	77 – 80	4	Integer (0 – 359).
Minutes	81 – 82	2	Integer (0 – 59).
Seconds	83 – 90	8	Decimal (0 $< s <$ 60).
Standard deviation	91 – 99	9	Decimal value in units of seconds.

12345678901234567	12345678901200000000000000000000000000000000000						
D 322600020	322600010	2	0 00 00.000	1.769			
D		213000050	161 16 41.400	1.769			
D		322600030	342 09 25.400	1.769			
D 322600010	305700010	4	0 00 00.000	1.769			
D		213000040	14 09 21.100	1.769			
D		322600050	76 21 16.600	1.769			
D		409600180	152 20 05.300	1.769			
D		265600050	170 48 53.400	1.769			

Figure B.5: Example direction sets

Ellipsoid chords (C), ellipsoid arcs (E), Mean Sea Level arcs (M), slope distances (S) and height differences (L)

For ellipsoid chords, ellipsoid arcs, Mean Sea Level arcs, slope distances and height differences, the information and file formatting shown in Table B.7 applies. Note that instrument and target heights are only required for slope distances. Figure B.6 shows some formatted examples.

Table B.7: Column locations and field widths for ellipsoid chords, ellipsoid arcs, Mean Sea Level arcs, slope distances and height differences.

Field	Columns	Width	Comments
Second station name	23 – 42	20	As per first station name in Table B.3.
Distance / height difference	63 – 76	14	Decimal value in metres.
Standard deviation	91 – 99	9	Decimal value in metres.
Instrument height	100 - 106	7	Compulsory only for slope distances.
Target height	107 - 113	7	Compulsory only for slope distances.

12345678901234	12345678901200000000000000000000000000000000000					
C 501	309	5476.1616	0.031			
E 503	307	8807.1030	0.054			
M 4000	13	53.9380	0.005			
S 4000	2012	76.9140	0.005 1.6060 1.3370			
L 108	1034	-0.2220	0.010			

Figure B.6: Example ellipsoid chords, ellipsoid arcs, Mean Sea Level arcs, slope distances and height differences

Single GNSS baselines (G), GNSS baseline clusters (X) and GNSS point clusters (Y)

Information for single GNSS baselines, GNSS baseline clusters, and GNSS point clusters is contained in multiple lines. Depending on the GNSS measurement, certain fields are compulsory whilst others are ignored. The first record for GNSS measurements is a general header record containing information about stations, variance matrix scaling, reference frame and epoch. This record varies depending on whether GNSS baselines or GNSS points are supplied. Table B.8 shows the required information and file formatting for the header record of a GNSS baseline (single or cluster) measurement.

Table B.8: Column locations and field widths for a GNSS baseline (single or cluster) header record.

Field	Columns	Width	Comments
Second station name	23 – 42	20	As per first station name in Table B.3.
Cluster count	43 – 62	20	Not required for single GNSS baselines.
Variance matrix scalin	g:		
V–scale	63 – 72	10	Whole of matrix scalar.
P–scale	73 – 82	10	North-south scalar.
L–scale	83 – 92	10	East-west scalar.
H–scale	93 – 102	10	Vertical scalar.
Reference frame	103 – 122	20	Abbreviated name (c.f. Table 4.1), e.g. ITRF2008
Epoch	123 – 142	20	Date in the form 'dd.mm.yyyy', e.g. 01.03.2010

GNSS point clusters have a slightly different header record. The only differences are the omission of the second station name and the inclusion of a coordinate type, whereby GNSS point clusters may be supplied in XYZ or LLH format as described in §B.1.3. GNSS measurements in XYZ format are not supported. Table B.9 shows the different header information and file formatting for GNSS point cluster measurements.

Table B.9: Column locations and field widths for a GNSS point cluster header record.

Field	Columns	Width	Comments
Coordinate type	23 – 42	20	XYZ or LLH. UTM is not supported.
Cluster count	43 – 62	20	Integer.

. . .

Variance matrix scaling, reference frame and epoch as per Table B.8

. . .

For all GNSS measurements, the next three lines provide the three GNSS measurement components and the lower/upper-triangular elements of the accompanying variance matrix \mathbf{V}_m . For GNSS baselines, this information must be supplied in metres. For GNSS points, the coordinate format of this information must correspond to the coordinate type specified in the header record (c.f. Table B.9). Hence, the measurement and variance components can be provided in metres (corresponding to XYZ) or in latitude, longitude and height (corresponding to XYZ). Latitude and longitude values must be expressed in degrees, minutes and seconds using HP notation (e.g. dd.mmssssss), and variance components for latitude and longitude must be in radians. Table B.10 shows the required information and file formatting for the GNSS measurement and variance components. Figure B.7 shows an example GNSS baseline (G) measurement. In this example, note that the reference frame and epoch have not been provided. In this case DynaNet will adopt the reference frame and epoch supplied in the header line (c.f. Table B.1).

Table B.10: Column locations and field widths for GNSS baseline and point measurements.

Field	Columns	Width	Comments
x-component:			
Δx or x	63 – 82	20)
$\mathbf{V}_{m_{11}} \; (\sigma_x \sigma_x)$	83 - 102	20	
y-component:			For XYZ, measurement and variance in metres. For LLH, measurement in dd.mmssss and
Δy or y	63 - 82	20	variance in units of radians.
$\mathbf{V}_{m_{21}} \; (\sigma_y \sigma_x)$	83 - 102	20	
$\mathbf{V}_{m_{22}} \; (\sigma_y \sigma_y)$	103 – 122	20)
z-component:			
Δz or z	63 - 82	20	
$\mathbf{V}_{m_{31}} \; (\sigma_z \sigma_x)$	83 - 102	20	Measurement variances in metres for both
$\mathbf{V}_{m_{32}} \; (\sigma_z \sigma_y)$	103 – 122	20	XYZ and LLH.
$\mathbf{V}_{m_{33}} \; (\sigma_z \sigma_z)$	123 – 142	20	J

12345678901234567890)1234567890123	45678901234567890123456789012345	6789012345	678901234	5678901234	56789012345	6789012345678901234567	7890123456789012
G 202	304		1.000	1.000 317.2076	1.000	1.000 0220e-05		
				30.4791		3690e-05	1.4870e-05	6.8030e-05
			-500	31.4264	3.	9750e-05	-2.0350e-05	e

Figure B.7: Example GNSS baseline measurement

For GNSS baseline and point clusters, the measurement information shown in Table B.10 is repeated for the total number n of measurement vectors (m_1, m_2, \ldots, m_n) in the cluster. Immediately after each vector, the row-wise covariance blocks $(\mathbf{C}_{m_1m_2}, \mathbf{C}_{m_1m_3}, \ldots, \mathbf{C}_{m_1m_n})$ between the respective GNSS measurement variance blocks $(\mathbf{V}_{m_1}, \mathbf{V}_{m_2}, \ldots, \mathbf{V}_{m_n})$ must be provided such that a rigorous upper variance matrix $\mathbf{V}_{1\dots n}$ can be formed for the whole cluster, as per equation B.1.

$$\mathbf{V}_{1...n} = \begin{bmatrix} \sigma_{x}\sigma_{x} & \sigma_{x}\sigma_{y} & \sigma_{x}\sigma_{z} \\ \sigma_{y}\sigma_{y} & \sigma_{y}\sigma_{z} & \mathbf{C}_{m_{1}m_{2}} & \cdots & \mathbf{C}_{m_{1}m_{n}} \\ \sigma_{z}\sigma_{z} & \sigma_{x}\sigma_{x} & \sigma_{x}\sigma_{y} & \sigma_{x}\sigma_{z} \\ & & \sigma_{y}\sigma_{y} & \sigma_{y}\sigma_{z} & \cdots & \mathbf{C}_{m_{2}m_{n}} \\ & & & \sigma_{z}\sigma_{z} & \\ & & & & \ddots & \vdots \\ & & & & & \sigma_{x}\sigma_{x} & \sigma_{x}\sigma_{y} & \sigma_{x}\sigma_{z} \\ & & & & & \ddots & \vdots \\ & & & & & & \sigma_{y}\sigma_{y} & \sigma_{y}\sigma_{z} \\ & & & & & & & \sigma_{z}\sigma_{z} \end{bmatrix}$$

$$(B.1)$$

The information for a single covariance block ${\bf C}$ contains nine elements which are provided over three records. Table B.11 shows the required information and file formatting for the nine cluster covariance components.

Table B 11·	Column	locations	and field	widths for	a GNSS	cluster	covariance block.
Table D.II.	COIUIIII	locations	and neid	widths for	a UIVJJ	Clustel	covariance block.

Field	Columns	Width	Comments
\mathbf{C}_{11}	83 – 102	20)
\mathbf{C}_{12}	103 – 122	20	First record
\mathbf{C}_{13}	123 – 142	20	J
\mathbf{C}_{21}	83 – 102	20)
\mathbf{C}_{22}	103 – 122	20	Second record
\mathbf{C}_{23}	123 – 142	20	J
\mathbf{C}_{31}	83 – 102	20)
\mathbf{C}_{32}	103 – 122	20	Third record
\mathbf{C}_{33}	123 – 142	20	J

These blocks are repeated for as many covariance blocks required to complete each row of the upper–triangular matrix $V_{1...n}$. As with the variance matrix information supplied for the individual GNSS measurements, the covariance units must correspond to the coordinate type specified in the cluster header record.

As an example, Figure B.8 shows a GNSS baseline cluster comprised of three baselines. Note that there are two covariance blocks associated with the first GNSS baseline ($\mathtt{HOI}_--\mathtt{MEI}_-$). These blocks represent the row—wise covariances between the first baseline and the second and third baselines ($\mathtt{HOI}_--\mathtt{MSI}_-$ and $\mathtt{HOI}_--\mathtt{SBI}_-$) respectively. Similarly, the covariance block associated with the second GNSS baseline corresponds to the covariance between the second and third baselines. Figure B.9 shows an example of two GNSS point clusters — the first is comprised of three correlated points in XYZ format and the second has two points in LLH format.

17.09.2	itrf2005	1.000	1.000	1.000	1.000	3	MEI_	X HOI_
		34048e-06	2.034	691.6314	-125			
	1.474554e-06	68547e-07	-6.968	519.2865	-145			
1.537337e	-2.984549e-07	62077e-07	3.962	63.5870	73			
1.247021e	-2.839605e-07	71788e-07	5.87					
-1.016602e	4.298451e-07	08181e-07	-2.808					
5.222703e	-1.025933e-07	42805e-07	1.242					
1.465497e	-2.856280e-07	46870e-07	7.646					
-1.193196e	5.238148e-07	26789e-07	-2.926					
6.196860e	-1.182915e-07	50035e-07	1.550					
							MSI_	HOI_
		76158e-06	1.876	797.3963	-86			
	1.217260e-06	01331e-07	-7.30	159.1959	-87			
1.278370e	-2.596589e-07	23311e-07	3.423	306.3628	913			
1.189632e	-2.902187e-07	09494e-07	5.709					
-1.022121e	4.243482e-07	69810e-07	-2.869					
5.159684e	-1.010039e-07	39490e-07	1.239					
							SBI_	HOI_
		85609e-06	2.38	640.6285	-39			
	1.637419e-06	19224e-07	-6.219	533.0128	-13			
1.732844e	-2.878135e-07	33211e-07	4.633	721.2044	131			

Figure B.8: Example GNSS baseline clusters.

789012345678901	78901234567890123456	678901234567890123456	1234567890123456789012345	678901234567890123456789	156789012345678901234	12345678901234
01.06.201	IGb08	1.00 1.00	1.00 1.00	3	XYZ	Y YIEL
		1.288543e-05	-4247834.5782			
	1.040270e-05	-5.037133e-06	2948383.3671			
9.898976e-0	-2.406477e-06	3.642770e-06	-3721788.4927			
2.041076e-0	-3.701601e-06	1.065777e-05				
-1.254975e-0	9.246168e-06	-3.579744e-06				
8.465730e-0	-1.449455e-06	2.174192e-06				
1.558934e-0	-2.180570e-06	8.159775e-06				
-1.455025e-0	7.311562e-06	-1.892996e-06				
5.804253e-0	-4.435524e-07	1.484222e-06				
		1.269096e-05	-4172492.9321			Y YRRM
	1.027008e-05	-4.907058e-06	2743402.2911			
9.936777e-0	-2.329364e-06	3.570733e-06	-3954709.8313			
1.598938e-0	-2.118313e-06	8.167171e-06				
-1.513716e-0	7.291434e-06	-1.942259e-06				
5.780071e-0	-3.230191e-07	1.394181e-06				
		9.840133e-06	-3465321.0856			Y YSSK
	8.405404e-06	-2.482731e-06	2638269.2861			
7.531223e-0	-1.473060e-06	2.303389e-06	4644085.3490			
7.551225E-0	GDA94	1.000 1.500	10.000 1.000	2	LLH	Y 1004
	GDR34	9.402e-09	-37.480000000	2	DDII	1 1004
	9.402e-09	5.876e-10	144.573400000			
2.500e-0	5.876e-10	5.876e-10	42.195			
5.876e-1	5.876e-12	5.876e-12				
5.876e-1	5.876e-12	5.876e-12				
5.876e-1	5.876e-12	5.876e-12				
		9.402e-09	-37.474800000			Y 9004
	9.402e-09	5.876e-10	144.573600000			
2.500e-0	5.876e-10	5.876e-10 5.876e-10	44.324			

Figure B.9: Example GNSS point clusters.

Orthometric height (H) and ellipsoid height (R)

For orthometric height and ellipsoid height measurements, the information and file formatting shown in Table B.12 applies. Figure B.10 shows some formatted examples.

Table B.12: Column locations and field widths for orthometric and ellipsoid height measurements.

Field	Columns	Width	Comments
Height	63 – 76	14	Decimal value in metres.
Standard deviation	91 – 99	9	Decimal value in metres.

123456789012345678901234567890123456789012345678901	234567890123456789012345678901234567	890123456789012345678	90123456789
H 387800830	283.8600	0.090	
R 701219	130.161	0.0001	

Figure B.10: Example orthometric height and ellipsoid height measurements.

Geodetic latitudes (P), geodetic longitudes (Q), astronomic latitudes (I) and astronomic longitudes (J)

For geodetic latitudes, geodetic longitudes, astronomic latitudes and astronomic longitudes, the information and file formatting shown in Table B.13 applies. Figure B.11 shows some formatted examples.

Table B.13: Column locations and field widths for geodetic latitudes and longitudes, and astronomic latitudes and longitudes.

Field	Columns	Width	Comments
Latitude / longitude	63 – 76	14	Decimal value in ddd.mmssss.
Standard deviation	91 – 99	9	Decimal value in units of seconds.

1234567890123456789012345678901234567	89012345678901234567890123456789012345678901234	56789012345678901234567890123456789
P 105	-24.2958384014	0.0001
Q 105	136.3000088022	0.0001
I 106	-24.2957481018	0.02
J 106	137.0003182747	0.02

Figure B.11: Example geodetic latitude and longitude, and astronomic latitude and longitude measurements.

B.1.5 Geoid information

Following the single header line, all geoid information that can be introduced to an adjustment for a station is formatted on one line. The relevant fields and corresponding file positions for geoid information are shown in Table B.14.

Table B.14: Geoid information column locations and field widths

Field	Columns	Width	Comments
Station name	1 – 20	20	Alphanumeric string. Can contain spaces.
N-value	41 – 50	10	Geoid–ellipsoid separation (N). Decimal value in units of metres.
N–S deflection	60–69	10	Deflection in prime meridian (ξ) . Decimal value in units of seconds.
E–W deflection	70 – 79	10	Deflection in prime vertical (η) . Decimal value in units of seconds.

Figure B.12 shows some example geoid records in DNA format. As with station and measurement information, geoid information can be positioned anywhere within the respective fields without the need for right or left justification.

!#=DNA 3.01 GEO 16.10.2012	GDA94	12		
* Created 06 November 2016.				
Geoid information for level sec	tion 1596			
1596-3H	3.177	-9.267	-0.816	
1596-4	3.205	-9.354	-1.035	
1596-7	2.897	-8.991	-1.351	
1596-8	2.810	-8.669	-1.672	
1596-9	2.728	-8.334	-1.316	
1596-10	2.573	-8.112	-1.119	
1596-11H	2.501	-7.819	-0.767	
1596-12	2.430	-7.462	-0.606	
1596-13	2.382	-7.189	-0.423	
1596-14	2.289	-6.919	-0.269	
1596-15H	2.232	-7.035	-0.365	
1596-16H	2.184	-7.154	-0.457	

Figure B.12: Example geoid information records

Note that whilst the header record can simply be in the form of a comment, it is helpful to record metadata pertaining to the records, including the date, geodetic datum (and hence, ellipsoid) to which the geoid–ellipsoid separations relate and the number of records. Any number of comments may be dispersed throughout the file.

B.2 Comma Separated Values (CSV) format

The CSV format (still under development) provides information about geodetic network stations, measurements, and geoid–ellipsoid separations and deflections of the vertical. This information is contained in three separate files — the station file has a stn file extension, the measurement file has a msr extension and the geoid file has a geo extension. All three files must contain a single header line at the beginning of the file. As required, these files can contain one or more comment lines throughout the file. Comment lines must begin with an asterisk (*). Every record in the station, measurement and geoid files must contain data fields located in particular fields separated by commas.

B.3 Dynamic Network Adjustment Project (DNAPROJ) format

The DynaNet project file is designed to capture default and user–specified program options and arguments. The first line in the project file is reserved for comments and commences with the hash character (#). The remainder of the file consists of sections which correspond directly to the various DynaNet programs. The formatting used to capture the options for each program is given in Table B.15.

Table B.15: DynaNet program options formatting.

Field	Columns	Width	Comments
Element	1 – 35	35	Program option
Value	36 –	Unlimited	Default or user–specified value

Using this formatting, each section contains a header record commencing with a hash character, a line of dashes, then one or more options and their corresponding values. Each section is separated by a blank line. The first section is a general section and contains the list of options which are common to all programs. The following sections contain the default and user–specified options corresponding to **import**, **reftran**, **geoid**, **segment**, **adjust** and the options for the output of information. Figure B.13 shows a formatted example for the skye project (see §1.4), including the comment line and the list of general options.

12345678901234567890123456789012345678901234567890123456789012345678901234567890		
# skye project file. Creat	ed by: import, DynaNet file exchange software.	
#general (35)	VALUE	
network-name	skye	
input-folder	C:\Data\proj	
output-folder	C:\Data\proj	
verbose-level	0	
quiet	no	
project-file	<pre>C:\Data\proj\skye.dnaproj</pre>	
dynanet-log-file	C:\Data\proj\dynanet.log	

Figure B.13: Example general options.

Note that the general section commences with #general. As a project file is loaded, DynaNet will look for these section headings before attempting to load the options and values which follow. In addition to #general, the valid section headings are #import, #reftran, #geoid, #segment, #adjust, #output and #display. Using the skye project (see §1.4), Figures B.14, B.15, B.16, B.17 and B.18 list the options and example arguments for **import**, **reftran**, **geoid**, **segment** and **adjust**. B.19 lists an example of the options and arguments for the output of information from DynaNet.

#import (35)	VALUE	
stn-msr-file	skye.stn	
stn-msr-file	skye.msr	
geo-file		
bounding-box		
get-msrs-transcending-box	no	
include-stns-assoc-msrs	no	
exclude-stns-assoc-msrs	no	
split-gnss-cluster-msrs	no	
import-block-stn-msr	no	
seg-file		
prefer-single-x-as-g	no	
import-msr-types		
exclude-msr-types		
stn-renaming-file		
search-nearby-stn	no	
nearby-stn-buffer	0.3	
search-similar-msr	no	
ignore-similar-msr	no	
remove-ignored-msr	no	
flag-unused-stations	no	
test-integrity	no	
v-scale	1	
p-scale	1	
l-scale	1	
h-scale	1	
baseline-scalar-file		
export-xml-files	no	
single-xml-file	no	
export-dna-files	no	
export-asl-file	no	
export-aml-file	no	
export-map-file	no	
simulate-msr-file	no	

Figure B.14: Example **import** options.

12345678901234567890123456789012345678901234567890123456789012345678901234567890		
#reftran (35)	VALUE	
reference-frame epoch	GDA94	

Figure B.15: Example **reftran** options.

1234567890100000000000000000000000000000000000		
#geoid (35)	VALUE	
ntv2-file	C:\Data\geoid\ausgeoid09.gsb	
interpolation-method	1	
decimal-degrees	0	
direction	0	
convert-stn-hts	yes	
export-dna-geo-file	no	

Figure B.16: Example **geoid** options.

12345678901234567890123456789012345678901234567890123456789012345678901234567890		
#segment (35)	VALUE	
net-file seg-file min-inner-stns max-block-stns contiguous-blocks starting-stns	5 65 yes	

Figure B.17: Example **segment** options.

12345678901234567890123456789012345678901234567890123456789012345678901234567890		
#adjust (35)	VALUE	
seg-file		
comments		
adjustment-mode	simultaneous-adjustment	
multi-thread	no	
staged-adjustment	no	
conf-interval	95	
iteration-threshold	0.0005	
max-iterations	10	
constraints	302513640,CCC	
free-stn-sd	10.000	
fixed-stn-sd	1.0000e-06	
inversion-method	0	
scale-normals-to-unity	no	
create-stage-files	no	
purge-stage-files	no	

Figure B.18: Example **adjust** options.

#output (35)	VALUE
output-msr-to-stn	no
output-iter-adj-stn	no
output-iter-adj-stat	no
output-iter-adj-msr	no
output-iter-cmp-msr	no
output-adj-msr	yes
output-adj-gnss-units	0
output-tstat-adj-msr	no
sort-adj-msr-field	0
output-database-ids	no
output-msr-blocks	no
sort-stn-orig-order	no
stn-coord-types	PLHhXYZ
stn-corrections	no
precision-stn-linear	4
precision-stn-angular	5
precision-msr-linear	4
precision-msr-angular	4
angular-msr-type	0
dms-msr-format	0
output-pos-uncertainty	yes
output-all-covariances	no
output-apu-vcv-units	0
output-corrections-file	yes
hz-corr-threshold	0.000
vt-corr-threshold	0.000
export-xml-stn-file	no
export-dna-stn-file	no
export-sinex-file	no

Figure B.19: Example output options.

B.4 DynaNet Markup Language (DynaML) format

The DynaML format provides for the exchange of stations and measurements in eXtensible Markup Language (XML) using the DynaNet 2.0 XML (DynaML) schema. The scope of information includes the station and measurement information handled by the DNA and CSV formats (see §B.1 and §B.2). The DynaML schema definition permits this information to be stored in two files, corresponding to station and measurement files, or a single stations and measurements file. All DynaML files have an xml file extension. For convenience, DynaNet names station files as *stn.xml, and measurement files as *msr.xml. DynaML files must be encoded using well–formed XML, and conform to the XML schema definition.

As required, these files can contain one or more comment lines throughout the file. Comment lines must conform with conventional XML encoding as follows.

```
<!-- Comments can appear on one line. -->
<!-- Alternatively, comments can be
spread over many lines.
-->
```

DynaML files must contain a root element named DnaXmlFormat. The DynaML schema definition for DnaXmlFormat is given in Figure B.20.

```
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!--W3C Schema definition for DynaML -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
 <xs:element name="DnaXmlFormat">
   <xs:complexType>
     <xs:choice maxOccurs="unbounded">
       <xs:element ref="DnaStation"/>
        <xs:element ref="DnaMeasurement"/>
     </xs:choice>
     <xs:attribute name="type" use="required">
       <xs:simpleType>
         <xs:restriction base="xs:string">
            <xs:enumeration value="Measurement_File"/>
            <xs:enumeration value="Station_File"/>
           <xs:enumeration value="Combined_File"/>
          </xs:restriction>
       </xs:simpleType>
     </xs:attribute>
   </xs:complexType>
 </rs:element>
</xs:schema>
```

Figure B.20: DnaXMLFormat schema definition

As shown above, the root element can be one of three types — "Measurement File", "Station File" and "Combined File". These types inform the parser whether the elements contained in the file station information, measurement information or both. Accordingly, the root element can contain an unlimited number of DnaStation elements, DnaMeasurement elements or both.

B.4.1 Station information

All station information is recorded in the DnaStation element. This element contains a sub-element StationCoord which is a xs:complexType containing the coordinates for the station. The DynaML

schema definition is given in Figure B.21.

```
<xs:element name="DnaStation">
                                                 <xs:element name="StationCoord">
  <xs:complexType>
                                                   <xs:complexType>
    <xs:sequence>
                                                     <xs:sequence>
     <xs:element ref="Name"/>
                                                       <xs:element ref="Name" minOccurs="0"/>
      <xs:element ref="Constraints"/>
                                                       <xs:element ref="XAxis"/>
      <xs:element ref="Type"/>
                                                       <xs:element ref="YAxis"/>
      <xs:element ref="StationCoord"/>
                                                       <xs:element ref="Height"/>
      <xs:element ref="Description"</pre>
                                                       <xs:element ref="HemisphereZone"</pre>
       minOccurs="0"/>
                                                        minOccurs="0"/>
    </xs:sequence>
                                                     </xs:sequence>
  </xs:complexType>
                                                   </xs:complexType>
</xs:element>
                                                 </xs:element>
```

(a) DnaStation element

(b) StationCoord element

Figure B.21: DnaStation schema definition

With respect to DnaStation and StationCoord, elements Name, Constraints, Type, Description, XAxis, YAxis, Height and HemisphereZone are of type xs:string. All elements correspond to the station information fields shown in Table B.2.

By way of example, Figure B.22 shows a station file encoded in XML according to the DynaML schema definition. In this example, the coordinates for HOSP are provided in terms of type LLH and 1002–26 in terms of UTM.

```
<?xml version="1.0"?>
<DnaXmlFormat type="Station_File"</pre>
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="DynaML.xsd">
<!-- Station file.
<DnaStation>
    <Name>HOSP</Name>
    <Constraints>FFF</Constraints>
    <Type>LLH</Type>
    <StationCoord>
      <XAxis>-37.4801765569</XAxis>
      <YAxis>144.5717295509</YAxis>
      <Height>83.9</Height>
    </StationCoord>
    <Description>HOSP</Description>
  </DnaStation>
<DnaStation>
    <Name>1002-26</Name>
    <Constraints>CCF</Constraints>
    <Type>UTM</Type>
    <StationCoord>
      <XAxis>372772.813</XAxis>
      <YAxis>5931491.145</YAxis>
      <Height>175.668</Height>
      <HemisphereZone>S55</HemisphereZone>
    </StationCoord>
    <Description>BM 26</Description>
  </DnaStation>
</DnaXmlFormat>
```

Figure B.22: Sample station file encoded in DynaML format

In relation to the expected format of coordinates corresponding to the value in the Type element, §B.1.3 can be used as a guide. However, note that latitude and longitude values must be expressed

in degrees, minutes and seconds using HP notation (e.g. dd.mmssssss). Since there is no restriction on column formatting, values can be provided to any level of precision.

B.4.2 Measurement information

All measurement information is recorded in the DnaMeasurement element. The DynaML schema definition is given in Figure B.23.

```
<xs:element name="DnaMeasurement">
  <xs:complexType>
   <xs:choice maxOccurs="unbounded">
     <xs:element ref="Clusterpoint"/>
     <xs:element ref="Coords"/>
     <xs:element ref="Directions"/>
     <xs:element ref="First"/>
     <xs:element ref="Epoch" minOccurs="0"/>
     <xs:element ref="GPSBaseline"/>
      <xs:element ref="Hscale" minOccurs="0"/>
      <xs:element ref="Ignore" min0ccurs="0"/>
     <xs:element ref="InstHeight"/>
      <xs:element ref="Lscale" min0ccurs="0"/>
     <xs:element ref="Pscale" minOccurs="0"/>
     <xs:element ref="ReferenceFrame" minOccurs="0"/>
      <xs:element ref="Second"/>
      <xs:element ref="Source"/>
     <xs:element ref="StdDev"/>
      <xs:element ref="TargHeight"/>
     <xs:element ref="Third"/>
     <xs:element ref="Total"/>
      <xs:element ref="Type"/>
     <xs:element ref="Value"/>
     <xs:element ref="Vscale" minOccurs="0"/>
    </xs:choice>
  </xs:complexType>
</xs:element>
```

Figure B.23: DnaMeasurement schema definition

Elements Type, Ignore, First, Second, Third, Value, StdDev, InstHeight, TargHeight, Total, Vscale, Hscale, Lscale, Pscale, Coords and Source are of type xs:string. Not all elements are mandatory for each measurement. The mandatory elements and required format for the respective measurement types (c.f. Type) follow the definitions contained in the DNA format specification (see §B.1.4). To flag a measurement as ignored so that DynaNet will exclude the measurement from all processing, provide an asterisk (*) for the Ignore element's value:

```
<DnaMeasurement>
...
  <Ignore>*</Ignore>
...
  </DnaMeasurement>
```

Elements Clusterpoint and GPSBaseline are of type xs:complexType and are given in Figure B.24. Directions is also of type xs:complexType and is given in Figure B.25.

```
<xs:element name="Clusterpoint">
 <xs:complexType>
   <xs:sequence>
     <xs:element ref="X"/>
     <xs:element ref="Y"/>
     <xs:element ref="Z"/>
     <xs:element ref="SigmaXX"/>
     <xs:element ref="SigmaXY"/>
     <xs:element ref="SigmaXZ"/>
     <xs:element ref="SigmaYY"/>
     <xs:element ref="SigmaYZ"/>
     <xs:element ref="SigmaZZ"/>
     <xs:element ref="PointCovariance"</pre>
       minOccurs="0" maxOccurs="unbounded"/>
   </xs:sequence>
 </xs:complexType>
</xs:element>
```

```
<xs:element name="GPSBaseline">
 <xs:complexTvpe>
   <xs:sequence>
     <xs:element ref="X"/>
     <xs:element ref="Y"/>
     <xs:element ref="Z"/>
     <xs:element ref="SigmaXX"/>
     <xs:element ref="SigmaXY"/>
     <xs:element ref="SigmaXZ"/>
     <xs:element ref="SigmaYY"/>
     <xs:element ref="SigmaYZ"/>
     <xs:element ref="SigmaZZ"/>
     <xs:element ref="GPSCovariance"</pre>
       minOccurs="0" maxOccurs="unbounded"/>
   </xs:sequence>
 </xs:complexType>
</xs:element>
```

(a) Clusterpoint element

(b) GPSBaseline element

Figure B.24: Clusterpoint and GPSBaseline schema definition

Elements GPSCovariance (for GPSBaseline) and PointCovariance (for Clusterpoint) are of xs:complexType and relate to the covariance information between GNSS baseline and GNSS point variance matrices. The schema definition for GPSCovariance is given in Figure B.25. The element PointCovariance contains an identical set of elements to those in GPSCovariance and as such is not shown here.

(a) Directions element

(b) GPSCovariance element

Figure B.25: Directions and GPSCovariance schema definition

Elements Target, X, Y, Z, SigmaXX through to SigmaZZ and m11 through to m33 are of type xs:string.

Figure B.26 provides some sample measurements presented in $\S B.1.4$ encoded in XML according to the DynaML schema definition.

As with station information, §B.1.4 can be used as a guide for the expected format and precision of angular and linear measurement values. However, with angular measurements (such as latitude, angles, etc.), all measurement values must be expressed in degrees, minutes and seconds using HP notation (e.g. dd.mmssssss) with their precision in seconds.

```
<?xml version="1.0"?>
                                                                   <!-- Slope Distance -->
<DnaXmlFormat type="Measurement_File"</pre>
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
                                                                   <!-- Instrument and target heights -->
  xsi:noNamespaceSchemaLocation="DynaML.xsd">
                                                                   <DnaMeasurement>
  <!-- Sample measurements file -->
                                                                     <Type>S</Type>
  <!-- Type G GPS Baseline -->
                                                                     <First>1037</First>
                                                                     <Second>4006</Second>
  <DnaMeasurement>
    <Type>G</Type>
                                                                     <Value>44.06</Value>
    <ReferenceFrame>ITRF2008</ReferenceFrame>
                                                                     <StdDev>0.005</StdDev>
    <Epoch>01.01.2010</Epoch>
                                                                     <InstHeight>1.542</InstHeight>
    <Vscale>1.000</Vscale>
                                                                     <TargHeight>1.559</TargHeight>
    <Pscale>1.000</Pscale>
                                                                   </DnaMeasurement>
    <Lscale>1.000</Lscale>
                                                                   <!-- Astronomic Azimuth -->
    <hscale>1.000</hscale>
                                                                   <DnaMeasurement>
    <First>202</First>
                                                                     <Type>K</Type>
    <Second>304</Second>
                                                                     <First>1046</First>
    <GPSBaseline>
                                                                     <Second>4010</Second>
      <X>-53817.2076</X>
                                                                     <Value>91.2001</Value>
      <Y>-88430.4791</Y>
                                                                     <StdDev>20</StdDev>
      <Z>-50031.4264</Z>
                                                                   </DnaMeasurement>
                                                                   <!-- Direction set -->
      <SigmaXX>4.0220e-05</SigmaXX>
      <SigmaXY>-1.3690e-05</SigmaXY>
                                                                   <DnaMeasurement>
      <SigmaXZ>3.9750e-05</SigmaXZ>
                                                                     <Type>D</Type>
      <SigmaYY>1.4870e-05</SigmaYY>
                                                                     <First>365200180</First>
      <SigmaYZ>-2.0350e-05</SigmaYZ>
                                                                     <Second>TS5137</Second>
                                                                     <Value>52.025209</Value>
      <SigmaZZ>6.8030e-05</SigmaZZ>
    </GPSBaseline>
                                                                     <StdDev>0.707</StdDev>
  </DnaMeasurement>
                                                                     <Total>3</Total>
  <!-- Orthometric Height -->
                                                                     <Directions>
  <DnaMeasurement>
                                                                       <Target>409700260</Target>
    <Type>H</Type>
                                                                       <Value>238.545977</Value>
    <Ignore>*</Ignore>
                                                                       <StdDev>0.707</StdDev>
    <First>202</First>
                                                                     </Directions>
    <Value>43.086</Value>
                                                                     <Directions>
    <StdDev>0.065</StdDev>
                                                                       <Target>TS2761</Target>
  </DnaMeasurement>
                                                                       <Value>264.344190</Value>
  <!-- Zenith Angle -->
                                                                       <StdDev>0.707</StdDev>
  <!-- Instrument and target heights -->
                                                                     </Directions>
  <DnaMeasurement>
                                                                     <Directions>
                                                                       <Target>TS3568</Target>
    <Type>V</Type>
    <First>1013</First>
                                                                       <Value>305.285959</Value>
    <Second>1014</Second>
                                                                       <StdDev>0.707</StdDev>
    <Value>90.243</Value>
                                                                     </Directions>
    <StdDev>20</StdDev>
                                                                   </DnaMeasurement>
                                                                   <!-- Vertical Angle -->
    <InstHeight>1.545</InstHeight>
    <TargHeight>0.125</TargHeight>
                                                                   <!-- Instrument and target heights -->
  </DnaMeasurement>
                                                                   <DnaMeasurement>
  <!-- Horizontal Angle -->
                                                                     <Type>Z</Type>
  <DnaMeasurement>
                                                                     <First>4000</First>
    <Type>A</Type>
                                                                     <Second>1050</Second>
    <First>2012</First>
                                                                     <Value>0.3711</Value>
    <Second>4000</Second>
                                                                     <StdDev>20</StdDev>
                                                                     <InstHeight>1.606</InstHeight>
    <Third>2013</Third>
    <Value>266.281</Value>
                                                                     <TargHeight>1.715</TargHeight>
    <StdDev>20</StdDev>
                                                                   </DnaMeasurement>
  </DnaMeasurement>
                                                                  <!-- Level Difference -->
  <!-- Geodetic Azimuth -->
                                                                   <DnaMeasurement>
  <DnaMeasurement>
                                                                     <Type>L</Type>
    <Type>B</Type>
                                                                     <First>2217</First>
    <First>1046</First>
                                                                     <Second>2218</Second>
    <Second>4010</Second>
                                                                     <Value>0.018</Value>
    <Value>91.2031</Value>
                                                                     <StdDev>0.002</StdDev>
    <StdDev>20</StdDev>
                                                                   </DnaMeasurement>
  </DnaMeasurement>
                                                                 </DnaXmlFormat>
```

Figure B.26: Sample measurements encoded in DynaML format

B.5 GeodesyML format

GeodesyML is a comprehensive Geography Markup Language (GML) application schema defined by the Intergovernmental Committee on Surveying and Mapping (ICSM). GeodesyML provides both XML schema definition and XML format. The specification for GeodesyML can be found at http: //geodesyml.org. The version of GeodesyML supported by DynaNet is 0.1.1.

B.6 SINEX format

The Solution (software/technique) INdependent EXchange (SINEX) file format is maintained by the International Earth Rotation Service (IERS) and provides for the management of station coordinates, velocities and earth rotation parameters. The SINEX file format specification is beyond the scope of this user guide, however interested readers are referred to the following site for more information:

http://www.iers.org/IERS/EN/Organization/AnalysisCoordinator/SinexFormat/ sinex.html

The version of SINEX supported by DynaNet is 2.02.

B.7 Geoid input text file format

To provide an efficient means for converting spot heights contained in both small and extremely large files from one height system to another, geoid supports Formatted Text files (e.g. *.dat, *.prn, *.txt) and Comma Separated Values files (*.csv). geoid expects all input coordinates in both file formats to be geographic coordinates in degrees, minutes and seconds or decimal degrees. In both cases, coordinates must be in HP Notation (i.e. dd.ddddddd or dd.mmssssss). In this form, the latitude and longitude fields should each contain only one numeric value. When working with formatted text files, the maximum number of significant digits the values can have is 15 significant figures¹. For latitudes in the southern hemisphere and longitudes west of the zero meridian, the number of significant figures is further reduced by 1 to cater for the minus sign.

Formatted text files

Every line in a formatted text file must contain data fields in particular file positions (or columns). Certain fields may be omitted depending on what they are. Table B.16 lists the compulsory and non-compulsory fields in the required order. Figure B.27 shows an example formatted text file and illustrates the use of the non-compulsory fields. Column numbers shown for reference only.

Field	Columns	Width	Compulsory?
Point ID	1 – 11	11	No
Lace da	10 07	1.0	V

Table B.16: Formatted text file fields

Latitude 16 Yes Longitude 28 - 4316 Yes

9

No

44 - 52

Height

^{1.} Since the maximum field width for both latitude and longitude is 16 characters, excluding the decimal point leaves a maximum of 15 characters.

```
12345678901234567890123456789012345678901234567890
        --><-----
                                          --><--
Point (11) Latitude (16) Longitude (16) Hght (9)
             -27.498408428 153.001072611
-27.498421786 150.001124192
MT HTGH
              -29.086179181 151.966654878
              -29.073486997 151.805272886
-29.000294436 151.457723186
                                                4.23
62 / 54
              -28.636707072 151.970252700
GBM16
GBM34
              -28.619868617 151.650131492
              -28.235994419
                               151.990397797
```

Figure B.27: Example formatted text file

Comma separated values files

Every line in a CSV file must contain data fields separated by commas. Non-compulsory fields may be empty, however a sufficient number of commas must be present to delineate the presence of compulsory fields. Table B.17 lists the compulsory and non-compulsory fields in the required order.

Table B.17: Comma separated values file fields

Field	Compulsory?
Point ID	No
Latitude	Yes
Longitude	Yes
Height	No

According to Table B.17, a minimum of two commas is sufficient to delineate Point ID, Latitude and Longitude. Figure B.28 shows an example CSV file. Note that a header line is not required.

```
MT HIGH, -10.498408428,153.001072611
,-20.498421786,140.001124192
,-40.086179181,121.966654878,
1596-4
,-37.593644101, 144.204321339
1596-5
,-37.593616320, 144.204318245
62 / 54,-40.000294436,141.457723186, 4.23
GBM16,-30.636707072,151.970252700,
GBM34,-20.619868617,141.650131492
4,-20.235994419,121.99039779,36.281
```

Figure B.28: Example comma separated values file

Appendix C

Output file format specification

C.1 Header block

For each of the output files that DynaNet generates, a standard header block is printed to the file. The information printed in the header block will commence and end with a dashed line, and will contain basic to detailed information depending on the file type. As a minimum, the header block contains the file type, information about the version and build of the program that created the file, and the file's creation date and location. Following this, additional information relevant to the file type is printed. The following example shows the header block of a coordinate output file.

1234567890123456

The width of the field names in the header block will always be 35 characters wide.

C.2 Import log file (IMP)

The import log (.imp) file is generated by **import** and contains information closely matching the information printed to the screen (c.f. Figure 3.1). In addition to the program version and log file metadata printed in the header block, the import log header will contain the command line arguments supplied to **import**, the file paths to the binary and ASCII files created by **import**, the input station and measurement files, and the options that have been supplied **import**. Apart from the default reference frame, only the options which have been modified on calling **import** (c.f. §3.3) will be printed to the header. The following example shows the information printed to the import log file upon calling **import** using the default options.

Any failures in the import of stations and measurements will be reported to this file and must be rectified before proceeding to other steps in the adjustment.

```
DYNANET IMPORT LOG FILE
                                        3.2.6, Release (64-bit)
Oct 19 2016, 07:30:53 (MSVC++ 10.0)
Build:
                                        Wednesday, 19 October 2016, 7:31:30 AM
File name:
                                       c:\Data\uni_sqr.imp
Command line arguments:
                                     import -n uni_sqr uni_sqrstn.xml uni_sqrmsr.xml
Network name:
                                        uni_sqr
c:\Data\
Input folder:
Output folder:
                                        c:\Data\
Stations file:
                                        c:\Data\uni_sqr.bst
Measurements file:
                                        c:\Data\uni_sqr.bms
                                        c:\Data\uni_sqr.asl
c:\Data\uni_sqr.aml
Associated station file:
Associated measurement file:
Duplicate stations output file:
                                        c:\Data\uni_sqr.dst
Similar measurement output file: c:\Data\uni_sqr.dms
Input files:
                                        uni_sqrstn.xml
                                        uni_sqrmsr.xml
Default reference frame:
                                        GDA94
                        Done. Loaded 149 stations in 0.035s
Done. Loaded 1199 measurements in 0.04s
  uni_sqrstn.xml...
  uni_sqrmsr.xml...
+ Reducing stations... Done.
+ File parsing summary:
  Read 149 stations:
  (CCC) 3D constrained:
  (CCF) 2D constrained, 1D free:
  (FFC) 2D free, 1D constrained:
(CFF) custom 2D constraints:
  Total
                                              149
  Read 1199 measurements:
   (A) Horizontal angle:
                                              251
   (B) Geodetic azimuth:
  (C) Chord dist:
  (D) Directions:
(E) Ellipsoid arc:
  (G) GPS baseline:
(H) Orthometric height:
   (I) Astronomic latitude:
  (J) Astronomic longitude:
(K) Astronomic azimuth:
(L) Level difference:
   (M) Mean sea level arc:
   (P) Geodetic latitude:
  (Q) Geodetic longitude:(R) Ellipsoidal height:
  (S) Slope distance:
(V) Zenith angle:
                                              428
  (X) GPS baseline cluster:
  (Y) GPS point cluster:
  (Z) Vertical angle:
                                             1199*
  Total
  * Includes 17 ignored measurements
+ Testing for duplicate stations... Done.
+ Sorting stations... Done.
+ Serialising station map... Done.
+ Mapping measurements to stations... Done. Mapped 1199 measurements to 149 stations.
 Creating association lists... Done.
+ Serialising association lists... Done.

+ Serialising binary station file uni_sqr.bst... Done.
+ Serialising binary measurement file uni_sqr.bms... Done.
+ Total file handling process took 0.182s.
+ Binary station and measurement files are now ready for processing.
```

C.3 Measurement to station output file (M2S)

The measurement to station (.m2s) file is generated by **import** when the option --output-msr-to-stn has been provided. The following example shows the information printed to the measurement to station file (several records have been omitted).

123456789012345678901234567890123456789012345678901234567890123456789012345678901	8901234567890123	3456789012	34567890	012345678	9012345	67890123	345678901	.23456789	101234567	789012345	678901234	156789013	234567890	123456789	901234567	8901234E	678901234	1567890123	456789012	.2345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890	34567890	
DYNANET MEASUREMENT TO STATION OUTPUT FILE	TO STATION OU	JTPUT FILE																				
Version: Build: File created: File name:		3.2.6, Oct 19 Wednesd c:\Data	3.2.6, Release (64-) Oct 19 2016, 07:30:: Wednesday, 19 Octobe c:\Data\uni_sqr.m2s	3.2.6, Release (64-bit) Oct 19 2016, 07:30:17 (MSVC++ 10.0) Wednesday, 19 October 2016, 7:51:13 AM c:\Data\uni_sqr.m2s	MSVC++	10.0) 51:13 AM	w.															
Associated measurement file: Stations file: Measurements file:	ement file:	<pre>c:\Data\uni_sqr.aml c:\Data\uni_sqr.bst c:\Data\uni_sqr.bst</pre>	\uni_sq \uni_sq: \uni_sq:	r.aml r.bst r.bms																		
No. stations:		149																				
MEASUREMENT TO STATIONS	ATIONS																					
Station	V V	В	b I	Д	ы	U	н	н	ĵ	M	u	M	Ω,	œ	æ	w	>	X	2	Total		
0102 1002 1003 1004 1005	11 0 0 1 0 0 1 0 0 1					8					0 +					460640	446640	 	 	10 20 20 16 24 14 7		
:																				÷		
1042 1046 1046 1047 1049 1050 1051 1051 13	2 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	н					∺			Η.	0	ਜ਼				8487878914	ъъ4 го о о 4 4 го	Ħ	₩	20 17 17 17 13 13 13 13 13		
9003 9004 BARR BOWL CLUB	0 4 w w					0 4 4 m m					0 0				₩ ' ' ' '	014 4 8	F 4 4 8	Ħ		39 17 17 24 3		
HOSP NEWP PELH RMH-FP	6 3 12					r 8					4 0				ਜਜ	13 1	12 9			35 32 12		
Totals 251 1 114 1 1 Was found to have GNSS measurements and absolute terrestrial measurements:	251 251 m was found to h	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	nents and	- losde	114 te terre	1 + + + + + + + + + + + + + + + + + + +	emer in see	, u	 	68	H			428	300	 	12	 	1199		
Station	Measurement types	ypes		Count																		
1042	AHSVY			20	!																	

Table C.1 shows the formatting of measurement to station table printed to the .m2s file. The table will be sorted row—wise by the station name, and column—wise by the measurement type (c.f. §7.2). In addition to the row—wise measurement count for each station, total counts for each measurement type are provided at the bottom of the table (column—wise), with a final count at the end of the table.

Table C.1: Measurement to station connections table

Heading	Columns	Width	Comments
Station name	1–20	20	Alphanumeric string. Can contain spaces. Corresponds to the station names in the Station file.
A Z	21–180	20 × 8	20 columns (8 characters wide) with header fields representing the supported measurement types.
Total	181–191	11	Integer. Represents the total number of measurements connected to the station in this row.

If a station has been observed by GNSS, and that station is also connected by terrestrial measurements of an absolute nature (e.g. latitude, longitude and/or height), conflicts between those measurements may arise. In some scenarios, such conflicts can cause bias in the estimation of coordinates and uncertainties. To assist with identifying the stations which may be the result of such conflicts, a warning summary will be printed at the end of the file. In the example shown above, a warning is produced for station 1042 because it is connected to a height measurement ($\mathbb H$) and a GNSS point cluster ($\mathbb Y$).

C.4 Segmentation output file (SEG)

The segmentation output (.seg) file is generated by **segment** and contains block—wise information about a segmented network. Following the header block, there are two primary sections in the file. Firstly, there is a segmentation summary section, titled 'SEGMENTATION SUMMARY', and secondly, there is a section for all the individual block data, titled 'INDIVIDUAL BLOCK DATA'. The example on the facing page shows the segmentation output file for the trivial GNSS network shown in Figure 6.2.

Table C.2 shows the formatting of the segmentation summary table. In the summary table, each row summarises the station and measurement counts for a block (sequentially numbered in the Block column). If the network contains isolated networks, the values in the Network ID column will increment if the --contiguous-blocks switch has been passed to **segment**.

The INDIVIDUAL BLOCK DATA section contains sub—sections for each block, entitled 'Block #' where # is the respective block number. Following the sub—section heading is a re—iteration of the summary statistics for the subject block, including the junction station count, inner station count, measurement count and total station count. After this comes the block data. Table C.3 shows the formatting of the individual block data. Note that the data in this table is presented column—wise.

DYNANET SEGMENTATION OUTPUT FILE 3.2.1, Release (64-bit) Mar 2 2016, 10:55:54 (MSVC++ 10.0) Wednesday, 02 March 2016, 10:56:44 AM Build: File created File name c:\data\gnss_example.seg Command line arguments segment gnss_example --min 2 --max 5 --start 409704930 c:\Data\gnss_example.bst c:\Data\gnss_example.bms Stations file Measurements file 2 5 Minimum inner stations Block size threshold Starting stations 409704930 SEGMENTATION SUMMARY No. blocks produced Block Network ID Junction stns Inner stns Measurements Total stns 0 2 5 8 13 17 INDIVIDUAL BLOCK DATA Junction stns: 2 Inner stns: Measurements: 13 Total stns: Inner stns Junction stns Measurements Туре 0 0 G 1 3 4 11 6 9 12 15 18 21 24 27 30 G G G G G G 33 36 G G Block 2 Junction stns: 0 Inner stns: 8 Measurements: Total stns: 17 8 Туре Inner stns Junction stns Measurements G G 5 6 7 8 9 42 48 51 54 57 60 63 66 69 72 75 78 81 84 87 10 12

Table C.2: Segmentation summary table

Heading	Columns	Width	Comments
Block	2–14	12	Unique block number.
Network ID	14–27	14	Unique network number. By default, all non-contiguous networks will be incorporated within a single network unless thecontiguous-blocks is passed to segment with a value of 0, in which case the values in this column will increment.
Junction stns	28-43	16	The number of junction stations in the block.
Inner stns	44–59	16	The number of inner stations in the block.
Measurements	60–75	16	The number of measurements in the block.
Total stns	76–89	14	Total number of stations (i.e. inner $+$ junction).

Table C.3: Individual block data table

Heading	Columns	Width	Comments
Inner stns	1–15	16	Index of the inner station in the binary station file.
Junction stns	16-31	16	Index of the junction station in the binary station file.
Measurements	32-47	11	Index of the measurement in the binary measurement file.
Туре	48-52	5	Measurement type.

C.5 Coordinate output file (XYZ)

The coordinate output (.xyz) file is produced by **adjust** after an adjustment and contains a list of the rigorous station coordinate estimates and uncertainties. The coordinate information will commence after the section 'Adjusted Coordinates' and dashed line following it. Table C.4 describes the structure and formatting of the coordinate information printed to this file.

Since the user may select the type(s) and order of the coordinates to be printed, and whether or not station corrections in east, north and up should be printed (c.f. §8.3.4, page 120), Table C.4 lists the formatting for *all* possible data types. Hence, the columns to which each heading and value are printed may vary, however the width will remain as shown in the Table. The default precision for units in metres is 4. The default format for angular units is degrees, minutes and seconds using HP notation (e.g. dd.mmssssss) with a precision of 4 decimal places of a second.

If a phased adjustment has been undertaken and the option --output-stn-blocks has been provided to **adjust** to print station coordinates in sections according to the segmented blocks, the header field Stations printed in blocks will be set to Yes and the coordinates will be separated into sections beginning with the heading 'Block #' where # is the respective block number.

Table C.4: Adjusted station coordinates

Heading	Columns	Width	Comments
Station name	1–20	20	Alphanumeric string. Can contain spaces. Corresponds to the station names in the Station file.
Const	21–25	5	Three character string representing the station constraints loaded from the station file, including any additional constraints applied upon executing adjust .
X	26-40	15	X coordinate
Υ	41–55	15	Y coordinate
Z	56-70	15	Z coordinate
Latitude	71–84	14	Latitude
Longitude	85–99	14	Longitude
H(Ortho)	100-110	11	Orthometric height
h(Ellipse)	111–121	11	Ellipsoid height
Easting	122-135	14	UTM Easting
Northing	136-150	15	UTM Northing
Zone	151–158	8	UTM zone
SD(e)	161–170	10	Standard deviation (1 sigma, $k=0.683$) in east–west direction
SD(n)	171–180	10	Standard deviation (1 sigma, $k=0.683$) in north–south direction
SD(up)	181–190	10	Standard deviation (1 sigma, $k=0.683$) in up direction
Corr(e)	193-203	11	Correction (m) in east–west direction. Optional output.
Corr(n)	204-214	11	Correction (m) in north–south direction. Optional output.
Corr(up)	215–225	11	Correction (m) in up direction. Optional output.
Description	228–283	56	Description obtained from the input station file

The example on the next page shows a coordinate output file for a ten–station GNSS point cluster produced from the following command: $\frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) \left$

adjust auscope --stn-coord PLhHENz --stn-cor

12345678901234567890123456789012345678901234567890123456789012345678901234567890	890123456	378901234567890	123456789012345	678901234567	89012345678		34567890123456	7890123456	789012345678	9012345678	390123456789	012345678901	23456789012	123456789010789010790000000000	
DYNANET COORDINATE OUTPUT FILE	E OUTPUT	FILE				1									
Version: Build: File created: File name:		3.2.6 Oct 1 Thurs c:\Da	3.2.6, Release (64-bit) Oct 18 2016, 21:15:12 (MSVC++ 10.0) Thursday, 20 October 2016, 8:44:59 PM c:\Data\auscope.2016.281.simult.adj	oit) 2 (MSVC++ 10 2016, 8:44: .281.simult.	7.0) 59 PM adj										
Reference frame: Epoch: Geoid model: Station coordinate types: Stations printed in blocks: Station coordinate corrections:	e types: in blocks s correct	:suo	GDA94 01.01.1994 c:\Data\ausgeoid09.gsb PLHAXYZ No	qs											
Adjusted Coordinates	tes														
Station	Const	Latitude	Longitude	Longitude h(Ellipse)	H(Ortho)	Easting	Northing	Zone	SD(e)	SD(n)	SD(up)	Corr(e)	Corr(n)	Corr(up) Description	
BDLE BECC GABD MNGO MOBS MTEM NHIL STUD STUY	######################################	-37.455101249 -36.204720955 -36.015307858 -37.34052840 -37.444526709 -37.431546510 -36.182034611 -36.182034611 -38.22396555 -38.22396551 -38.22396551 -38.424419898	147.392168354 146.392785392 149.10143042 149.5427065 143.390618768 144.58312066 143.3666455 141.38451305 141.38451305 145.125052090 146.12248052	126.0462 443.0460 131.5443 24.0108 62.6922 40.6783 518.0798 139.0387 0.9651 29.8992	117.5732 431.7983 124.8616 14.2482 62.7174 35.9030 514.4954 136.8019 4.4563 25.7223 26.6257	557785 6828 469288 0989 248072 8417 7554468 8589 730344 8964 321819 5907 716222 3846 557995 7461 553608 2465 343993 3077 431141 6910	5820764.0674 5977570.0200 6008950.1585 5838104.0852 5704319.3171 58311180.0342 5831117.2130 5831147.728 583147.728 5755793.4327 5755793.4327		0.000000000000000000000000000000000000	0.0004 0.0004 0.0003 0.0005 0.0005 0.0004 0.0004 0.0004	0.0015 0.0015 0.0009 0.0009 0.0009 0.0013 0.0013		000000000000000000000000000000000000000	0.0000 Bairmsdale 0.0000 Beachworth 0.0000 Baird Rock 0.0000 Gabo Island 0.0000 Mareago 0.0000 Mt Enu 0.0000 Mt Bu 0.0000 Stony Point 0.0000 Stony Point 0.0000 Yanakie	

C.6 Adjustment output file (ADJ)

The adjustment output (.adj) file is produced by **adjust** and, depending on which options have been provided, may contain basic or detailed information relating to an adjustment. Again, depending on what options have been provided, a high amount of variability may exist in the formatting of the results.

C.6.1 Adjustment statistics

By default, **adjust** will print to the adjustment output file a summary of the adjustment statistics and a listing of the estimated station coordinates. The adjustment statistics summary commences with a dashed line, then the following information:

Table C.5: Adjustment statistics summary table

SOLUTION	Converged or Failed
Total time	The total wall time to undertake the adjustment (not including the time taken to load the input files or to print the output files).
Number of unknown parameters	This value corresponds to the number (u) of parameters to be estimated, excluding those station coordinates which have been fixed. A station is comprised of three parameters (i.e. x , y , z).
Number of measurements	This value reports the number (n) of measurement components. Note, that each GNSS baseline and GNSS point is regarded as having three measurement components (i.e. x , y , z).
Degrees of freedom	This value (r) is calculated directly from u and n (c.f. equation 8.3), excluding all fixed station coordinates, and is the parameter against which the global rigorous sigma zero value is tested.
Chi squared	This quantity (w) is calculated from the least squares adjustment using equation 8.12.
Rigorous sigma zero	This value $(\hat{\sigma}^2)$ is derived from w and r and is used to test the least squares solution as a whole (c.f. §9.3.1).
Global (Pelzer) Reliability	This quantity (T^2) estimates the global measurement reliability criterion using equation 7.67.
Chi-Square test (95.0%)	This statement reports the result of the global test of $\hat{\sigma}^2$ using the default or–user specified confidence interval (c.f. §8.3.3, page 116). Full details on this test will be explained in §9.3.1.

C.6.2 Measurement to station connections

The table of measurement to station connections commences with the section heading 'Measurements to Station' and shows the frequency of each measurement type and the total number of measurements associated with each station. This table is identical to that which is in the measurement to station .m2s file produced by **import** (c.f. §C.3). Table C.1 shows the formatting of this table.

C.6.3 Adjusted measurements

The table of adjusted measurements and their associated statistics commences with the section heading 'Adjusted Measurements' and, when the full range of options are selected, will contain the columns shown in §C.6.

Table C.6: Adjusted measurements and associated statistics table

Heading	Columns	Width	Comments
M	1–2	2	Alpha character corresponding to the measurement type.
Station 1	3 – 22	20	Alphanumeric string. Can contain spaces. Must correspond to a station name in the Station file.
Station 2	23 – 42	20	As per first station name.
Station 3	43 – 62	20	As per first station name.
*	63–65	3	This column reports whether the measurement was ignored or not.
C	66–67	2	Coordinate cardinal (e.g. e, n, u; P, L, H; X, Y, Z).
Measured	68–86	19	The original measurement obtained from the input file.
Adjusted	87–105	19	The adjusted measurement.
Correction	106–117	12	The estimated random error (or residual) v in the original measurement. Linear corrections are in metres, whereas angular corrections are in seconds.
Meas.SD	118–130	13	The standard deviation of the original measurement. Linear values are in metres, whereas angular values are in seconds.
Adj.SD	131–143	13	The standard deviation of the adjusted measurement. Linear values are in metres, whereas angular values are in seconds.
Residual	144–156	13	The standard deviation of the measurement corrections, computed as the difference between the precisions of the original and adjusted measurements. Linear / angular units apply.
N-stat	157–167	11	The standardised Normal statistic, calculated relative to the unit Normal distribution.
T-stat	168–178	11	The standardised Student's t statistic, calculated relative to the unit Student's t distribution. Optional output and is disabled by default. To enable, add theoutput-tstat-adj-msr option to the list of adjust commands.
Pelzer Rel	179–190	12	Pelzer's reliability criterion.
Pre Adj Corr	191–204	14	The total (systematic) correction applicable to this measurement applied prior to least squares adjustment, such as geoid–ellipsoid separation (N) , deflection of the vertical (c.f. equations 7.30 and 7.37) or Laplace correction (c.f. equation 7.42).
Outlier?	205–216	12	An asterisk denoting whether this measurement has failed the local test.
Msr ID	217–226	10	The original measurement id obtained from the input file. Optional output and is disabled by default. To enable, add the —-output-database-ids option to the list of adjust commands.
Cluster ID	227–236	10	Integer. Represents a unique database identifier.

The example on the facing page shows some of the adjusted measurements arising from a simultaneous adjustment of the uni_sqr network with the --output-tstat-adj-msr option set. See §8.3.4 on page 119 for a range of options for configuring the output of adjusted measurements, such as GNSS baseline units, sort order and output precision.

M Station 1 1042 1 1042 7 1042 7 1042 7 2215 7 2215														
	Station 2	Station 3	٥ *	Measured	Adjusted	Correction	Meas. SD	Adj. SD	Residual	N-stat	T-stat P	Pelzer Rel	Pre Adj Corr	Outlier?
				43.0859	43.0869	0.0010	0.0650	0.0062	0.0647	0.02	0.02	1.00	4.8659	
			д	-37 47 52.0000		-0.4755	20.0003	0.0002	20.0003	-0.02	0.01	1.00	0.0000	
1042 2215 2215			ц :	144 57 37.0000	144 57 37.2520	0.2520	20.0003	0.0002	20.0003	0.01	-0.03	1.00	0.0000	
2215			цΩ	43.1640 -37 48 01 0000	48	-4.1554	00000	0.0003	00.5000	-0. IS	0.09	1.6	4.8659	
			. ц	144 57 32.0000		3.6306	20.0003	0.0001	20.0003	0.18	-0.29	1.00	00000	
2215			н	57.0640		0.0010	0.5000	0.0015	0.5000	0.00	-0.23	1.00	4.8521	
1004			Д	-37 48 00.0000	48	-0.5702	20.0003	0.0001	20.0003	-0.03	0.02	1.00	0.0000	
1004			니	144 57 34.0000	22	0.0939	20.0003	0.0001	20.0003	0.00	-0.02	1.00	0.0000	
1004			ш	42.1950		0.0231	0.5000	0.0034	0.5000	0.05	-0.03	1.00	4.8561	
9004			Δ, μ	-37 47 48.0000	-37 47 48.6456	-0.6456	20.0003	0.0001	20.0003	-0.03	0.01	1.00	0000.0	
9004			1 12	144 57 36.0000	144 5/ 35.38/3	0.38/3	0.0003	0.0001	20.0003	0.07	 	1.6	0.0000	
	2012	1032	:	91 41 49.5000	91 41 49.5075	0.0011	20.0000	20.0000	0.0148	0.07	0.08	66.666	-0.0064	
	1039		×	-217.5180	-217.5272	-0.0092	0.0316	0.0076	0.0307	-0.30	-0.33	1.03	0.0000	
G 2206	1039		X	-166.5620	-166.5477	0.0143	0.0316	0.0077	0.0307	0.47	0.51	1.03	0.0000	
	1039		7 ;	129.7860	129.7739	-0.0121	0.0316	0.0087	0.0304	-0.40	-0.43	1.04	0.0000	
2215	BARR		< >	242.0860	242.0193	79000	0.0083	0.0025	0.0038	-1.49	-1.62	1.00 1.00	0,000	
	BARR		- 12	-192 4643	-192 4677	-0.0034	0.000	0.0019	0.0078	9.0-	-0.00	1.15	0000	
	4010		1	91 20 01.0000	N	12.7820	20.0000	10.0371	17.2990	0.74	0.80	1.16	2.9935	
	4010			91 20 31.0000		-20.2115	20.0000	10.0371	17.2990	-1.17	-1.27	1.16	0.0000	
	1014			90 24 31.0000	90 24 35.6599	-0.6425	20.0000	18.8328	6.7324	-0.10	-0.10	2.97	-5.3024	
	1017			91 47 53.0000	91 47 47.7279	-1.0274	20.0000	19.6744	3.5944	-0.29	-0.31	5.56	4.2447	
	13			53.9380		-0.0073	0.0050	0.0028	0.0041	-1.77	-1.92	1.21	0.0000	
A 4000	1050	13		171 55 24 5000	171 55 19 6089	-4.5990	20.000	15.7313	12.3502	-0.37	-0.41	1.62	-0.0628	
		1		3	3					3				
S 4000	13			53.9280	53.9311	0.0031	0.0050	0.0028	0.0041	0.76	0.82	1.21	0.0000	
4000	2012			76.9140	76.9145	0.0005	0.0050	0.0031	0.0039	0.12	0.13	1.27	0.0000	
2012	4000			76.9080	76.9088	0.0008	0.0050	0.0031	0.0039	0.20	0.22	1.27	0.0000	
2012	2014			62.9750	62.9759	0.0009	0.0050	0.0046	0.0019	0.49	0.53	2.66	00000	
2012	2013			76.4690	Z6.4901	0.0011	0.0000	0.0034	0.0037	0.30	0.33	1.3/	0.000	
z 4000	1050			0 37 11.0000	0 37 08.3998	-0.9140	20.0000	10.6038	16.9575	-0.05	-0.06	1.18	1.6862	
4000	1050			22	89 22 51.6002	-5.7135	20.0000	10.6038	16.9575	-0.34	-0.37	1.18	1.6862	
4000	13			89 51 51.0000	89 52 08.6295	9.8936	20.0000	13.3083	14.9294	99.0	0.72	1.34	-7.7359	
4000	2012			20	91 50 42.4656	-6.8202	20.0000	12.0257	15.9807	-0.43	-0.46	1.25	-2.7858	
108	1034			-0.2220	-0.2126	0.0094	0.0100	0.0073	0.0068	.38	1.50	1.47	0.0017	
108	1002			2.2700	2.2620	-0.0080	0.0100	0.0073	0.0068	-1.18	-1.28	1.47	0.0025	
L 1002	1003			0.3420	0.3417	-0.0003	0.0100	0.0044	0.0000	-0.03	-0.04	1.11	-0.0027	
РЕТН	NEWP			0.0790	0.0890	0.0100	0.0100	0.0015	0.0099	1.01	1.10	1.01	0.0000	
 G BABB	ретн		×	-74 0779	-74 0646	0.0133	0 0105	9000	0 0122	00	4	100	0000	
BARR	PELH		: >-	-107.1686	-107.1708	-0.0022	0.0076	0.0022	0.0072	-0.30	-0.33	1.05	00000	
BARR	PELH		2	-0.5302	-0.5201	0.0101	0.0079	0.0026	0.0074	1.36	1.48	1.06	0.0000	
	BOWL		×	-102.6500	-102.6460	0.0040	0.0079	0.0024	0.0075	0.53	0.57	1.05	0.0000	
	BOWL		Y	27.3013	27.2897	-0.0116	0.0072	0.0024	0.0068	-1.70	-1.85	1.06	0.000	
G BARR	BOWL		Z	121.3314	121.3360	0.0046	0.0106	0.0027	0.0102	0.45	0.49	1.03	0.0000	
	PELH		×	28.5858	28.5814	-0.0044	0.0075	0.0025	0.0070	-0.62	-0.68	1.06	0.0000	
	PELH		⊳ I	-134.4629	-134.4605	0.0024	0.0066	0.0023	0.0062	0.39	0.42	1.06	0.0000	
BOWL	PELH		Z	-121.8631	-121.8561	0.0070	0900.0	0.0021	0.0056	1.25	1.36	1.07	0000.0	

C.6.4 Estimated station coordinates

The output of the estimated station coordinates commences with the heading 'Adjusted Coordinates' and is identical to the output contained in the coordinate output .xyz file. Table C.4 shows the formatting of the coordinate listing.

The format and structure of the information in this section will vary depending on the options provided to **adjust**. For instance, by default, all estimated station coordinates will appear in a single block, sorted alphabetically, with coordinate types latitude, longitude, orthometric height, ellipsoidal height, X, Y, Z. Latitude and longitude values will be presented with a precision of 5 decimal places of a second, and values in metres will be shown to 4 decimal places. As discussed in §C.5, the order of the station coordinates can be sorted to the original order as found in the input station file using <code>--sort-stn-orig-order</code>; station coordinates produced from phased adjustment can be presented in blocks by <code>--output-stn-blocks</code>; the type of station coordinates can be altered by <code>--stn-coord-types</code>; and the precision of the coordinates can be altered by <code>--precision-stn-linear</code> and <code>--precision-stn-angular</code>.

C.6.5 Output of results on each iteration

Optionally, **adjust** is able to print upon each iteration the current station coordinate estimates, the summary of adjustment statistics, the measurements computed prior to adjustment and the adjusted measurements (c.f. §8.3.4, page 121). If any of these options are provided to **adjust**, the adjustment output file will contain section headings titled 'ITERATION #' where # refers to the subject iteration.

The output of adjustment statistics, adjusted measurements and adjusted station coordinates will follow the same format as described in §§C.6.1, C.6.3 and C.6.4 respectively. The a-priori computed measurements will be preceded with the heading 'Computed Measurements (a-priori)' and will follow a similar format and structure to the adjusted measurements section. Table C.7 shows the structure and format of the computed measurements table.

Table C.7: Computed measurements (a-priori) on each iteration

Heading	Columns	Width	Comments
М	1–2	2	Alpha character corresponding to the measurement type.
Station 1	3 – 22	20	Alphanumeric string. Can contain spaces. Corresponds to a station name in the Station file.
Station 2	23 – 42	20	As per first station name.
Station 3	43 – 62	20	As per first station name.
*	63–65	3	Indicates whether a measurement is ignored or not.
C	66–67	2	Coordinate cardinal (e.g. e, n, u; P, L, H; X, Y, Z).
Measured	68–86	19	The original measurement obtained from the input file.
Computed	87–105	19	The measurement computed from the latest station coordinate estimates.
Difference	106–117	12	The difference between the original and computed measurement. Linear corrections are in metres, whereas angular corrections are in seconds.
Meas. SD	118–130	13	The standard deviation of the original measurement. Linear values are in metres, whereas angular values are in seconds.

Heading	Columns	Width	Comments
Pre Adj Corr	131–144	14	The total (systematic) correction applicable to this measurement
			applied prior to least squares adjustment.

C.7 Station coordinate corrections file (COR)

The coordinate corrections output (.cor) file is produced by **adjust** and lists the three–dimensional shifts to the a–priori coordinates supplied in the input station file. Table C.8 shows the structure and format of the coordinate corrections table.

Table C.8: Coordinate corrections table

Heading	Columns	Width	Comments
Station	1 – 20	20	Station name (corresponding to the input station file)
Azimuth	23-41	19	Horizontal azimuth (from true north)
V. Angle	42-60	19	Vertical azimuth (from the horizontal plane)
S.Distance	61–79	19	Slope distance correction
H. Distance	80–98	19	Horizontal distance correction
east	99–109	11	East-ward correction (in the local reference frame)
north	110-120	11	North-ward correction
up	121-131	11	Up-ward correction

If either --hz-corr-threshold or --vt-corr-threshold options are supplied upon executing **adjust** (c.f. §8.3.5, page 122), the coordinate corrections will be limited to those corrections which exceed the respective horizontal and vertical thresholds.

The example on the following page shows a sample of the coordinate corrections output for the uni_sqr network.

12345678901234567890					d'n	-0.0377			5 -0.0029		-0.0070		-0.0038							-0.0002						1 0.0112							3 -0.0045	
45678901234567890					east north	0.0018 -0.0047					0.0030 -0.0045		0.0239 -0.0246					0.0150 -0.0168		0.0028 -0.0180	0.0108 -0.0171	0.0072 -0.0057			Ċ		-0.0349 -0.0010		-0.1349 -0.4730			·	0.0082 -0.0046	
678901234567890123					H. Distance	0.0051					0.0054		0.0343		0.0460			0.0225		0.0182		0.0092					0.0350 -	Ċ	•				0.0094	
567890123456789012345		. 10.0) 55:49 PM or			S. Distance	0.0380	0.0186	0.0396	0.0084	0.0078	0.0089	0.0094	0.0345	0.2203	0.0466	0.0316	0.0274	0.0238	0.0110	0.0182	0.0233	0.0092	0.0138	0.0163	0.0175	0.0161	0.0485	0.0511	0.4920	0.0560	0.0232	0.0139	0.0104	
789012345678901234		3.2.6, Release (64-bit) Oct 18 2016, 21:15:12 (MSVC++ 10.0) Thursday, 20 October 2016, 5:55:49 PM c:\Data\dist\uni_sqr.simult.cor			V. Angle	-82 20 18		22	12	41	-52 38 46	ò	-6 16 32	8 8	3 4	13	43	25	29	-0 44 58	47.	32 2	20	-37 39 23	53	13	22	32	1		23	10	-25 26 12	
8901234567890123456	TILE	3.2.6, Rele Oct 18 2016 Thursday, 2. c:\Data\dis	No		Azimuth	159.37.11	33	48	10	16	146 34 51		135 53 54	5 6	2 6	17	34	80	26	171 11 57		3 2	53	30	20	45		39	22			60	119 16 32	
12345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890	DYNAMET CORRECTIONS OUTPUT FILE	Version: Bulld: File created: File name:	Stations printed in blocks	Corrections to stations	Station	0100	1002	1003	1004	1005	1006	1007	1008	101	1011	1012	1013	1014	1015	1016	1017	1019	1022	1023	1025	1027	1029	1030	1032	1033	1034	1037	1039	:

C.8 Adjusted positional uncertainty file (APU)

The adjusted positional uncertainty output (.apu) file is produced by **adjust** and lists the rigorous positional uncertainty (horizontal and vertical), standard error ellipse elements and upper—triangular variance matrix elements for each station arising from the least squares adjustment. Table C.9 shows the structure and format of the adjusted positional uncertainty table.

Heading Columns Width Comments Station 1 - 2020 Station name (corresponding to the input station file) Latitude 23 - 3614 Estimated latitude Longitude 37-51 15 Estimated longitude Hz PosU 52-62 11 Horizontal radius (95% confidence interval) Vt PosU 63 - 7311 Vertical uncertainty (95% confidence interval) Semi-major 74-86 13 Semi-major axis of the standard error ellipse Semi-minor 87-99 13 Semi-minor axis of the standard error ellipse Orientation of the standard error ellipse Orientation 100 - 11213 $\mathbf{V}_{s_{11}}$ $(\sigma_x \sigma_x \text{ or } \sigma_e \sigma_e)$ Variance (X/e) 113-131 19 $\mathbf{V}_{s_{12}}$ $(\sigma_x \sigma_y \text{ or } \sigma_e \sigma_n)$ Variance (Y/n) 132 - 15019 $\mathbf{V}_{s_{22}}$ $(\sigma_y\sigma_y \text{ or } \sigma_n\sigma_n)$ Variance (Z/up) 151-169 19 $\mathbf{V}_{s_{13}}$ $(\sigma_x \sigma_z \text{ or } \sigma_e \sigma_{up})$ $\mathbf{V}_{s_{23}}$ $(\sigma_y \sigma_z \text{ or } \sigma_n \sigma_{up})$ $\mathbf{V}_{s_{33}}$ $(\sigma_z \sigma_z \text{ or } \sigma_{up} \sigma_{up})$

Table C.9: Adjusted positional uncertainty table

In accordance with the *Guideline for the Adjustment and Evaluation of Survey Control* [ICSM, 2014], the positional uncertainty elements are computed at 95% (c.f. §7.3.3.2) irrespective of the chosen confidence interval. The error ellipse terms and variance matrix elements are expressed as one—sigma. This enables the output variance matrix elements to be used directly as input constraints for subsequent (or subsidiary) survey control projects.

By default, all variance matrix elements are expressed in the cartesian coordinate system. If the --output-apu-vcv-units option is provided to **adjust** with an argument of 1, all variance matrix elements will be propagated to the local reference frame and expressed in terms of e, n and up. In this case, the header field Variance matrix units will be set to ENU, and the column headers for the variance matrix elements will be Variance (e), Variance (n) and Variance (up).

If a phased adjustment has been undertaken and the option --output-stn-blocks has been provided to adjust, the header field Stations printed in blocks will be set to Yes and the variances will be separated into sections beginning with the heading 'Block #' where # is the respective block number.

If the --output-all-covariances option is provided to **adjust**, covariances for the upper-triangular component of the full variance matrix will be printed in rows between the variances for the respective stations. Information for a single covariance block $\mathbf{C}_{s_is_j}$ (between stations s_i and s_j) contains nine elements positioned over three records. These blocks are repeated for as many covariance blocks required to complete each row of the upper-triangular matrix $\mathbf{V}_{s_{ij}}$. When this option is selected, the header field Full covariance matrix will be set to Yes. Table C.10 shows the structure and format of the covariance blocks.

Table C.10: Positional uncertainty covariance block

Heading	Columns	Width	Comments
Variance (X/e)	113–131	19	\mathbf{C}_{11} (first row) \mathbf{C}_{21} (second row) \mathbf{C}_{31} (third row)
Variance (Y/n)	132–150	19	\mathbf{C}_{12} (first row) \mathbf{C}_{22} (second row) \mathbf{C}_{32} (third row)
Variance(Z/up)	151–169	19	\mathbf{C}_{13} (first row) \mathbf{C}_{23} (second row) \mathbf{C}_{33} (third row)

The example on the next page shows the formatting of the positional uncertainty output for five GNSS CORS sites (MTEM, NHIL, PTLD, STNY and YANK), with variance matrix elements printed in the (default) cartesian system, and with all covariance blocks.

1 1 1 1 1 1 1 1 1 1	12345678901234678901200000000000000000000000000000000000	3456789012345678	89012345678901234	45678901234E	567890123456		90123456789012	345678901234E	23456789012345678901234567890123456789012345678901234567890	4567890	
Origination Originate Or	DYNANET POSITIONAL UNC	SRTAINTY OUTPUT	FILE								
Note	Version: Build: File created: File name:	3.50 We.	2.6, Release (64- t 21 2016, 08:21: dnesday, 02 Novem \Data\dist\2016_C	-bit) :55 (MSVC++ nber 2016, 1 ?DA2020\ausc	10.0) :23:13 PM :ope.2016.28	:1.simult.apu					
LAILING LAILING LAILING Lagrange Lailing Lai	PU confidence interval Stations printed in blo Variance matrix units Full covariance matrix		%0·								
Colored Colo	Positional uncertainty	₽ į	ation coordinates	70 1							
-37.35154392 143.26560567 0.0211 0.0616 0.0034 0.0077 179.1009 4.8466905029-04 2.1056922865-04 1.056922865-04 2.1056929286-04 2.1056929286-04 2.1056929286-04 2.1056929286-04 2.1056929286-04 2.1056929286-04 2.1056929286-04 2.1056929286-04 2.1056929286-04 2.105692928-04 2.105692928-04 2.105692928-04 2.105692928-04 2.105692928-04 2.105692928-04 2.105692928-04 2.105692928-04 2.105692928-04 2.105692928-04 2.105692928-04 2.105692928-04 2.105692928-04 2.105692928-04 2.105692928-04 2.10569289-04 2.1056928	Station	Latitude	Longitude	Hz PosU		Semi-major		Trientation	Variance(X)	Variance(Y)	Variance(Z)
-36.183021660 141.384650466 0.0119 0.0226 0.0052 0.0045 1774.1112 1.03377810-0 1.0357840-0 1.0378781-0 1.0378871-0 1.037871-0	MTEM	-37.351543592	143.265605967	0.0211	0.0616	0.0094	0.0077	179.1009	4.846809052e-04	-3.054932865e-04 2.784526132e-04	3.432502058e-04 -2.443643972e-04
7. 236680724-6 6 2.177665724-6 6 2.177665724-6 6 2.123607649724-6 6 2.136076497-6 6 2.136076497-6 6 2.136076497-6 6 2.136076497-6 6 2.136076497-6 6 2.136076497-6 6 2.136076497-6 6 2.136076497-6 6 2.136076497-6 6 2.136076497-6 6 2.136076497-6 6 2.136076497-6 6 2.136076497-6 6 2.136076497-6 6 2.136076497-6 6 2.136076497-6 6 2.136077649-6 6 2.13607789-6 6 2.136077	NHIL								1.978086552e-05 -6.417476502e-06	-6.652906981e-06 1.590022835e-05	3.7121107888-04 7.108005259e-06 -4.826451197e-06
-36.183031660 141.384663456 0.0119 0.0286 0.0052 0.0045 174.1112 1.033775116-0 2.1330768-0 6 2.1330768-0 6 2.1330768-0 6 2.1330768-0 6 2.1330768-0 6 2.1330768-0 6 2.13307768-0 6 2.1330768-0 6 2.1330768-0 6 2.1330768-0 6 2.1330768-0 6 2.133078-0 6 2.1330768-0 6 2.133078-0 6 2.133078-0 6 2.133078-0 6 2.133078-0 6 2.134078-0 6 2.13	PTLD								7.240680472e-06 1.423033977e-05	-5.175665729e-06 -2.914252624e-06	1.779002888e-05 3.310305848e-06
-36.183031660 141.384663456 0.0119 0.0286 0.0062 0.0045 174.1112 1.00677810=06 1.12816918-06 1.12816928-06 1.12816918-06 1.12816918-06 1.12816918-06 1.12816918-06 1.13816928-06 1.1381698-06 1.13									-2.828090458e-06	1.250344141e-05	-2.151283789e-06
-36.183031660 141.384563456 0.0119 0.0286 0.0052 0.0045 174.1112 1.1864027581-06 1.1245835780-05 1.12458357761116-04 1.12458357761116-04 1.12458357761116-04 1.12458357761116-04 1.12458357761116-04 1.12458357761116-04 1.12458357761116-04 1.12458357761116-04 1.12458357761116-04 1.12458357761116-04 1.12458357761116-04 1.12457761116-04 1.12457761116-04 1.12457761116-04 1.12457761116-04 1.12457761116-04 1.12457761116-04 1.12457761116-04 1.12457761116-04 1.12457761116-04 1.12457761116-04 1.1245776116-05 1.12457776116-05 1.12457761116-04 1.1245776116-05 1.124577761-05 1.12457761-05 1.124577761-05 1.124577761-05 1.124577761-05 1.124577761-05 1.124577761-05 1.124577761-05 1.124577761-05 1.124577761-05 1.124577761-05 1.124577761-05 1.12457761-05 1.12457776-05 1.12457761-05 1.12457761-05 1.12457776	STNY								3.982497312e-05	-1.809900497e-05	2.193434324e-05
-36.183031660 141.384563456 0.0119 0.0286 0.0062 0.0045 174.1112 1.033775111e-06 1.128156818-06 1.128156818-06 1.128156818-06 1.128156818-07 1.128156819-07 1.128156818-07 1.128156818-07 1.128156818-07 1.12815681-07 1.128156818-07 1.12815818									-1.85/501340e-05 2.160627581e-05	2.559121232e-05 -1.416263970e-05	-1.480062889e-05 3.331940004e-05
-36.183031660 141.384563456 0.0119 0.0286 0.0062 0.0045 174.1112 1.023775111e-04 -6.59228097e-05	YANK								1.186492250e-05	-1.294983466e-06	1.532820860e-06
-36.183031660 141.384563456 0.0119 0.0286 0.0052 0.0045 174.1112 1.0337751118-04 -6.5399280976-05 -7.237997138-05 1.03877851138-07 7.237997138-05 1.03851238-07 0.00802528-06 1.03851538-07 0.00802528-06 1.03851538-07 0.00802528-06 1.03851538-07 0.00802528-06 1.03851538-07 0.00802528-06 1.03851538-07 0.00802528-06 1.03851538-07 0.00802528-06 1.03851538-07 0.00802528-06 1.0385175468-06 1.0392971328-06 1.039297729-06 1.039297728-06 1.039297729-06 1.039297729-06 1.039297729-06 1.039297729-06 1.039297729-06 1.039297729-06 1.039297729-06 1.039297729-06 1.039297729-06 1.039297729-06 1.039297729-06 1.039297729-06 1.039297729-06 1.039297729-06 1.039297729-06 1.039297729729729729									1.455995371e-06	-7.386412641e-07	1.176504605e-05
8.477706289-06 1.1997961869-07 2.003691110-06 1.1508009729-06 1.1509972929-06 1.15099729209-06 1.1508009729-06 1.15099729209-06 1.15099729209-06 1.1508009729-06 1.15099729209-06 1.1509972972909-06 1.1509972972909-06 1.1509972972909-06 1.1509972972909-06 1.1509972972909-06 1.1509972972909-06 1.1509972972909-06 1.1509972972909-06 1.1509972972909-06 1.1509972972909-06 1.1509972972909-06 1.1509972972909-06 1.1509972972909-06 1.1509972909-09 1.1509972972909-06 1.1509972972909-06 1.1509972972909-09 1.1509972972909-09 1.1509972972909-09 1.1509972972909-09 1.150997	NHIL	-36.183031660	141.384563456	0.0119	0.0286	0.0052	0.0045	174.1112	1.033775111e-04	-6.539928097e-05 7.237999713e-05	6.836658670e-05 -5.309352587e-05
9.1997651538—07 9.2035651114—06 -1.0388119316—06 -1.0388119316—06 -1.0388119316—06 -1.0388119316—06 -1.0388119316—06 -1.0388119316—06 -1.038725699—06 -1.156999—03 -1.156999—16 -1.156999—16 -1.156999—16 -1.156999—16 -1.156999—16 -1.156999—16 -1.156999—16 -1.156999—16 -1.156999—16 -1.15697056—06 -1.156970569—06 -1.156970699—06 -1.156970569—06 -1.	PTLD								8.477705259e-06	9.252335698e-07	8.437149226e-05 -9.143204033e-07
-38.203982588 141.364850004 0.0302 0.0929 0.0136 0.0109 179.3113 1.03453689e-06 1.56092178e-06 1.56092178e-06 1.56092178e-06 1.50924726e-06 1.50926726e-06 1.509267266726e-06 1.50926726e-06 1.5092672667266-06 1.5092672667266-06 1.5092672667266-06 1.5092672667266-06 1.509267266726672667266726									9.199795153e-07 -1.035811291e-06	9.203596111e-06 1.000480253e-06	8.732055712e-07 9.300828583e-06
-4.370756299e-06 -1.186094156-06 -1.186094166-	STNY								1.595900972e-05	-3.818155445e-06	4.567432495e-06
1.158084156-06 1.10504204156-06 1.1158084156-06 1.1158084156-06 1.1158084156-06 1.1158470056-05 1.1158470056-0									-4.2020/1526e-06 4.379726299e-06	1.3547725556-U5 -2.766092178e-06	-3.301540854e-05 1.512126315e-05
-38.203982588 141.364850004 0.0302 0.0136 0.0109 179.3113 1.034536689e-03 7.00382589e-04 669582589e-04 669582589e-04 669582589e-04 669582589e-04 669582589e-04 699582589e-04 699582589e-	YANK								1.158084155e-05 -1.499979436e-06	-1.063747954e-06 1.115547005e-05	1.366753222e-06 -1.087739799e-06
-38.223064609 145.125053409 0.0136 0.0340 0.0060 0.0050 175.1517 1.189914377e-06 -1.122481907 0.0384 0.0975 0.0168 0.0145 173.2844 1.225903848e-09 7.13259628e-04 -1.4351829e-06 -1.4326928e-06 -1.4326928e-06 -1.4326928e-06 -1.4326928e-06 -1.4326928e-06 -1.4326928e-06 -1.4326928e-06 -1.4326928e-06 -1.4326928e-06 -1.433816299e-06 -1.4338889e-06 -1.4338889e-06 -1.4338889e-06 -1.4338889e-06 -1.4338889e-06 -1.4338889	4	000000	000000000000000000000000000000000000000	0	0	9	2	24	1.202427044e-06	-5.073664549e-07	1.151681076e-05
1.899834165e-05 5.54236095e-05 6.63914191e-06 1.482967563e-05 6.639141911e-06 1.256279844e-05 1.161458709e-05 1.16267208e-06 1.161458709e-05 1.16267208e-06 1.161458709e-05 1.16267208e-06 1.161458709e-05 1.16267208e-06 1.161458709e-05 1.16267208e-06 1.161458709e-05 1.16267208e-06 1.161458709e-06 1.161458709e-06 1.161468708-06 1.161468709e-06 1.1616976896-06 1.1616976896-06 1.1616976896-06 1.1616976896-06 1.1616976896-06 1.1616976-0	LIE	-30.203902000	141.304000	0.000	6760.0	0.01	6010.0	0.0110	1.0345566586-05	6.669820273e-04	-5.927929204e-04
-58.223064609 145.125053409 0.0136 0.0340 0.0060 0.0050 175.1517 1.4879288546-06 1.22509381632-06 1.00498810116-06 1.38162396-06 1.00498810116-06 1.0049810116-06 1.00498810116-06 1.00498810116-06 1.00498810116-06 1.00498810116-06 1.00498810116-06 1.00498810116-06 1.0049881018-09 1	STINY								1.899834165e-05	-5.542236095e-06	8.465184087e-04 6.558160273e-06
-38.223064609 145.125053409 0.0136 0.0340 0.0060 0.0050 175.1517 1.180914377e-05 -1.626720489e-06 -1.004998101e-06 -2.04789e-04 -1.180914377e-05 -1.004998101e-06 -1.004981907 -1.004998101e-06 -1.00498101e-06 -1.004981907 -1.004981907 -1.004981907 -1.00498101e-06 -									-5.852001001e-06 6.639141911e-06	1.482967563e-05 -4.208603650e-06	-4.445744643e-06 1.702382773e-05
-2.38.223064609 145.1250583409 0.0136 0.0340 0.0060 0.0050 175.1517 1.487928854e-04 -8.641608728e-05 -1.03499101e-06 -1.03499101e-06 -1.338168298-06 -1.338168298-06 -1.338168298-06 -1.338168298-06 -1.338168298-06 -1.338168298-06 -1.338168298-06 -1.338168298-06 -1.338168298-06 -1.338168298-06 -1.338168298-09 -1.338168298-09 -1.338168298-09 -1.338168298-09 -1.338168298-09 -1.338168288-09 -1.33816888-09 -1.33816888-09 -1.33816888-09 -1.3381688-09 -1.3381688-09 -1.3381688-09 -1.3381688-09 -1.3381688-09 -1.3381688-09 -1.33816	YANK								1.256279844e-05	-1.626720489e-06	1.861596484e-06
-38.223064609 145.125053409 0.0136 0.0340 0.0060 0.0050 175.1517 1.4879288546-04 -8.6416087288-05 8.600517676-05 1.1809143776-05 1.12381682956-06 1.12381682956-06 1.12381682956-06 1.12381682956-06 1.12381682956-06 1.12381682956-06 1.12381682956-06 1.12381682956-06 1.12381682956-06 1.12381682956-06 1.12381682956-06 1.12381682956-06 1.12381682956-06 1.12381682956-06 1.12381682956-06 1.12381682956-04 7.2132896288-04									1.999596373e-06	1.1614567096-05 -1.004998101e-06	1.218399481e-05
-38.484417008 146.122481907 0.0384 0.0975 0.0168 0.0145 173.2844 1.225903848e-03 7.138269528e-04 7.213269528e-04	STNY	-38.223064609	145.125053409	0.0136	0.0340	0.0060	0.0050	175.1517	1.487928854e-04	-8.641608728e-05	1.043654831e-04 -7 183574891e-05
1.1201437/4-05 1.538162299e-06 1.1221481907 0.0384 0.0975 0.0168 0.0145 173.2844 1.225903848e-03 7.13269528e-04 7.213269528e-04 7.213269528e-04 7.213269528e-04	22.0										1.280843718e-04
1.435418779e-06 -8.103754064e-07 -38.484417008 146.122481907 0.0384 0.0975 0.0168 0.0145 173.2844 1.225903848e-03 -7.196501509e-04 7.213269628e-04 -	I ANN								1.1609143776-05 -1.433162306e-06	1.122194317e-05	1.5230555716-05 -9.833189549e-07
7.213269628e-04	YANK	-38.484417008	146.122481907	0.0384	0.0975	0.0168	0.0145	173.2844	1.435418279e-06 1.225903848e-03	-8.103754064e-07 -7.196501509e-04	1.176084216e-05 8.562354669e-04
										7.213269628e-04	-6.006868514e-04

C.9 SINEX output warning file (SNX.ERR)

Upon running **adjust**, users may export the adjustment results to a SINEX file. Since the SINEX specification has strict formatting rules which may not accommodate the data that DynaNet supports, warnings may be produced at the time of SINEX export. One such inconsistency is the four—character station name restriction on station names enforced by the SINEX standard. In this context, each time a station is found with more than four characters, a warning file named *.snx.err will be produced. Each warning file will contain a record 'Station name ##### exceeds four characters', where '#####' refers to the station in question. If a phased adjustment has been undertaken, warning files will be produced for each block and each file will be named according to the block number.