

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
 - Data Collection
 - API
 - Web Scraping
 - o EDA
 - SQL
 - Viz
- Summary of all results

Introduction

- Project background and context
 Space travel is expensive
 Can SpaceX predict costs using likelihood of successful launches
- Problems you want to find answers
 - impact of independent variables
 - probability of success and expected value

Methodology

Executive Summary

- Data collection methodology:
 - SpaceX API & Web scraping: Wikipedia
- Perform data wrangling
 - Aggregations, probabilities, classifications and labeling
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - How to build, tune, evaluate classification models

Data Collection

- Data was collected using SpaceX API. The payload was then restructured into a Dataframe
- Data was also collected by scraping Wikipedia, this data was treated using Beautifulsoup and later restructured into a Dataframe

Data Collection – SpaceX API


```
[6]: spacex_url="https://api.spacexdata.com/v4/launches/past"
[7]: response = requests.get(spacex_url)
```


https://github.com/Thoracalis/Blah/b lob/master/jupyter-labs-spacex-data -collection-api%20(2).ipynb

Data Collection - Scraping

- Name URL
- Request URL
- Soupifyparse
- Place in DF
- Handle missing values

https://github.com/Thoracalis/Blah/b lob/master/jupyter-labs-webscrapin g.ipynb

Data Wrangling

- Aggregation
- Labeling
- Classification

https://github.com/Thoracalis/Blah/b lob/master/IBM-DS0321EN-SkillsN etwork_labs_module_1_L3_labs-ju pyter-spacex-data_wrangling_jupyt erlite.jupyterlite.ipynb

EDA with Data Visualization

Scatter: x, y relationship

Bar: group comparison

Line - with interval: trend

https://github.com/Thoracalis/Blah/b lob/master/IBM-DS0321EN-SkillsN etwork_labs_module_2_jupyter-lab s-eda-dataviz.ipynb.jupyterlite.ipynb

EDA with SQL

- Display Unique Launch Sites
- Sample size 5 where at Site %CCA
- Total Payload Carried by NASA CRS
- Avg payload carried by booster version F9 v1.1
- First successful landing on ground pad
- Boosters with successful droneship at payload between 4 K and 6 K
- Total number of Successful and Failed missions
- Boosters which have carried max Payload
- Failed Drone ship landings in year 2015
- Rank of successful landings between 2010-06-04 and 2017-03-20

Build an Interactive Map with Folium

- Added sites, distances and clusters with details
- This was done to gain spatial awareness

Build a Dashboard with Plotly Dash

- Pie charts: show launches by site(s)
- Scatter: Relationship between variables

Predictive Analysis (Classification)

Got data, normalized and transformed.

Ran through models, evals with comparison and confusion matrix

https://github.com/Thoracalis/Blah/b lob/master/SpaceX_Machine_Learn ing_Prediction_Part_5.ipynb

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

 More flights correlates with higher success

Payload vs. Launch Site

Higher payload correlates

with higher success

Success Rate vs. Orbit Type

 Geo, heo, sso and es-I1 have highest success rate

Flight Number vs. Orbit Type

 SSO is always successful, , leo seems to improve by number of flights

Payload vs. Orbit Type

 Payload does not seem to have significant impact on success

Launch Success Yearly Trend

 success rate has been constantly improving

All Launch Site Names

- CCAFS LC-40
- CCAFS SLC-40
- KSC LC 39A
- VAFB SLC 4E
- select distinct launchsite from spacextbl

Launch Site Names Begin with 'CCA'

select * from spacextbl where launchsite like 'CCA%'

	date	time	boosterversion	launchsite	payload	payloadmasskg	orbit	customer	missionoutcome	landingoutcome
0	2010-04- 06	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
1	2010-08-	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2	2012-05- 22	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
3	2012-08- 10	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
4	2013-01-	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	(ISS)	NASA (CRS)	Success	No attempt

Total Payload Mass

total 45596

select sum(payloadmasskg) as total from spacextbl where customer = 'NASA (CRS)'

Average Payload Mass by F9 v1.1

• avg: 2928,4

select avg(payloadmasskg) as avg from spacetblx where boosterversion = 'F9 v1.1'

First Successful Ground Landing Date

• 2015-12-22

select min(date) as first from spacextbl where landingoutcome = 'Success (ground pad)'

Successful Drone Ship Landing with Payload between 4000 and 6000

000

- select boosterversion from spacextbl where landingoutcome = 'Success (drone ship)' and payloadmasskg between 4000 and 6000
- F9 FT
 - o B1022
 - o B1026
 - o B1021.2
 - o B1031.2

Total Number of Successful and Failure Mission Outcom

select missionoutcome, count(missionoutcome) as cnt from spacextbl

where missionoutcome in ('Success', 'Failure')

group by missionoutcome

99 Success

1 Failure

Boosters Carried Maximum Payload

- SELECT DISTINCT Booster_Version
- FROM SPACEXTBL
- WHERE PAYLOAD_MASS__KG_ = (select max(PAYLOAD_MASS__KG_) from SPACEXTBL

```
('F9 B5 B1048.4',)
('F9 B5 B1049.4',)
('F9 B5 B1051.3',)
('F9 B5 B1056.4',)
('F9 B5 B1048.5',)
('F9 B5 B1049.5',)
('F9 B5 B1060.2',)
('F9 B5 B1058.3',)
('F9 B5 B1051.6',)
('F9 B5 B1060.3',)
('F9 B5 B1049.7',)
```

2015 Launch Records

- SELECT Date, Booster_Version, Launch_Site, substr(Date, 7, 4) as year
- FROM SPACEXTBL
- WHERE "Landing Outcome" = ('Failure (drone ship)') and substr(Date, 7, 4) = '2015' """)
- •

```
('10-01-2015', 'F9 v1.1 B1012', 'CCAFS LC-40', '2015')
('14-04-2015', 'F9 v1.1 B1015', 'CCAFS LC-40', '2015')
```

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

```
SELECT count("Landing Outcome"), "Landing Outcome", Date
      FROM SPACEXTBL
       where
      (substr(Date, 7,4) >= '2010' AND substr(Date, 4,2) >= '06' AND substr(Date, 1,2) >= 04)
      AND
      (substr(Date, 7,4) <= '2017')
      group by "Landing Outcome"
      order by count("Landing Outcome") desc
        (7, 'Success (drone ship)', '14-08-2016')
         (6, 'Success (ground pad)', '22-12-2015')
         (5, 'No attempt', '08-10-2012')
        (2, 'Uncontrolled (ocean)', '29-09-2013')
         (2, 'Failure (parachute)', '04-06-2010')
         (2, 'Controlled (ocean)', '14-07-2014')
         (1, 'Precluded (drone ship)', '28-06-2015')
```

(1, 'Failure (drone ship)', '15-06-2016')

Launch Sites

All sites are in the us and on the coast

Launch Fail / Success

Red for fail, green for success

Proximity

Launch Sites tend to be close to transport : rail

But far from people: avoiding collateral damage

Success Rate by Site

KSC LC-39A has the highest percentage of successful launches

Top Launch Site

KCS leads at 77/23 ratio success

Payload Comparison

Top: sub 8k

Bottom +8k

Higher variance of success among lighter weights

Classification Accuracy

Tree is the best model

Confusion Matrix

Show the confusion matrix of the best performing model with an explanation

Correctly predicted 12 successful landings and 2 fails

Incorrectly labeled 4 events as successful

Conclusions

Tree algorithm has best performance

KSC LC 39A is most successful

Over time success rate has improved

sites are located far from people and near transportation

Appendix

