Day 2: On Weights and Clusters

Peter Hull

Design-Based Regression Inference Spring 2024

Outline

- 1. Heterogeneous Treatment Effects
- 2. Clustered Standard Errors

- On Monday we contrasted design vs. outcome-model strategies in a constant-effect world (i.e. with a causal model of $y_i = \beta x_i + \varepsilon_i$)
 - Of course the real world is messier: more realistic is $y_i = \beta_i x_i + \varepsilon_i$ (or more complicated forms of effect heterogeneity)

- On Monday we contrasted design vs. outcome-model strategies in a constant-effect world (i.e. with a causal model of $y_i = \beta x_i + \varepsilon_i$)
 - Of course the real world is messier: more realistic is $y_i = \beta_i x_i + \varepsilon_i$ (or more complicated forms of effect heterogeneity)
 - Can think about what the regression/IV estimand equals in such models

- On Monday we contrasted design vs. outcome-model strategies in a constant-effect world (i.e. with a causal model of $y_i = \beta x_i + \varepsilon_i$)
 - Of course the real world is messier: more realistic is $y_i = \beta_i x_i + \varepsilon_i$ (or more complicated forms of effect heterogeneity)
 - \bullet Can think about what the regression/IV estimand equals in such models
- Today we'll see another difference: how design-based vs. model-based regression/IV weigh together heterogeneous effects
 - Bottom line: design avoids recent concerns over "negative weights"...

- On Monday we contrasted design vs. outcome-model strategies in a constant-effect world (i.e. with a causal model of $y_i = \beta x_i + \varepsilon_i$)
 - Of course the real world is messier: more realistic is $y_i = \beta_i x_i + \varepsilon_i$ (or more complicated forms of effect heterogeneity)
 - \bullet Can think about what the regression/IV estimand equals in such models
- Today we'll see another difference: how design-based vs. model-based regression/IV weigh together heterogeneous effects
 - Bottom line: design avoids recent concerns over "negative weights"...
 - ... at least as long as you don't have multiple treatments!

• A recent TWFE literature (e.g. de Chaisemartin and D'Haultfoeuille '20; Goodman-Bacon '21; Borusyak et al. '23) shows that some regressions identify $\beta = E[\psi_i \beta_i]/E[\psi_i]$ for possibly negative ψ_i

- A recent TWFE literature (e.g. de Chaisemartin and D'Haultfoeuille '20; Goodman-Bacon '21; Borusyak et al. '23) shows that some regressions identify $\beta = E[\psi_i \beta_i]/E[\psi_i]$ for possibly negative ψ_i
 - ullet We'll term these ψ_i "ex-post" weights, for reasons you'll see shortly

- A recent TWFE literature (e.g. de Chaisemartin and D'Haultfoeuille '20; Goodman-Bacon '21; Borusyak et al. '23) shows that some regressions identify $\beta = E[\psi_i \beta_i]/E[\psi_i]$ for possibly negative ψ_i
 - ullet We'll term these ψ_i "ex-post" weights, for reasons you'll see shortly
- Why is this a concern? The possibility of sign reversals:
 - Even if all β_i are positive, β could wind up negative (or vice versa) if ψ_i and β_i are correlated
 - The literature proposes alternative specifications/procedures that avoid negative weighting or allow for custom-built weights

- A recent TWFE literature (e.g. de Chaisemartin and D'Haultfoeuille '20; Goodman-Bacon '21; Borusyak et al. '23) shows that some regressions identify $\beta = E[\psi_i \beta_i]/E[\psi_i]$ for possibly negative ψ_i
 - ullet We'll term these ψ_i "ex-post" weights, for reasons you'll see shortly
- Why is this a concern? The possibility of sign reversals:
 - Even if all β_i are positive, β could wind up negative (or vice versa) if ψ_i and β_i are correlated
 - The literature proposes alternative specifications/procedures that avoid negative weighting or allow for custom-built weights
- ullet It turns out that such ψ_i also arise in design-based specifications, and they can also be negative
 - But sign reversals are impossible in design-based specs: then we also have $\beta = E[\phi_i \beta_i]/E[\phi_i]$ for "ex-ante" ϕ_i which are always non-negative

Simple Setup

• Suppose a researcher estimates by OLS:

$$y_i = \beta x_i + w_i' \gamma + e_i$$

for some outcome y_i , treatment x_i , and vector of controls w_i

Simple Setup

• Suppose a researcher estimates by OLS:

$$y_i = \beta x_i + w_i' \gamma + e_i$$

for some outcome y_i , treatment x_i , and vector of controls w_i

ullet To interpret eta, we consider a linear-effect causal model:

$$y_i = \beta_i x_i + \varepsilon_i$$

with heterogeneous effects eta_i and untreated potential outcomes eta_i

• Note: for binary x_i this is the more familiar $y_i = (y_i(1) - y_i(0))x_i + y_i(0)$

Simple Setup

• Suppose a researcher estimates by OLS:

$$y_i = \beta x_i + w_i' \gamma + e_i$$

for some outcome y_i , treatment x_i , and vector of controls w_i

• To interpret β , we consider a linear-effect causal model:

$$y_i = \beta_i x_i + \varepsilon_i$$

with heterogeneous effects eta_i and untreated potential outcomes eta_i

- Note: for binary x_i this is the more familiar $y_i = (y_i(1) y_i(0))x_i + y_i(0)$
- Assume appropriate asymptotics for OLS to consistently estimate:

$$\beta = \frac{E[\tilde{x}_i y_i]}{E[\tilde{x}_i^2]} = \frac{E[\tilde{x}_i x_i \beta] + E[\tilde{x}_i \varepsilon_i]}{E[\tilde{x}_i^2]}$$

where \tilde{x}_i are residuals from the population regression of x_i on w_i

• $E[\tilde{x}_i \varepsilon_i] = 0$ under either one of two assumptions:

• $E[\tilde{x}_i \varepsilon_i] = 0$ under either one of two assumptions:

ASSUMPTION 1: $E[\varepsilon_i \mid x_i, w_i] = w_i' \gamma$

- Untreated potential outcomes are linear in controls, given treatment
- E.g. parallel trends, where i indexes unit-period pairs in a panel and w_i includes unit and time dummies

• $E[\tilde{x}_i \varepsilon_i] = 0$ under either one of two assumptions:

ASSUMPTION 1:
$$E[\varepsilon_i \mid x_i, w_i] = w_i' \gamma$$

- Untreated potential outcomes are linear in controls, given treatment
- E.g. parallel trends, where i indexes unit-period pairs in a panel and w_i includes unit and time dummies

ASSUMPTION 2: $E[x_i \mid \varepsilon_i, \beta_i, w_i] = w_i' \lambda$

- Treatment is conditionally mean-independent of potential outcomes, with a linear expected treatment $E[x_i \mid w_i]$ (e.g. the propensity score)
- E.g. a stratified experiment, where x_i is randomly assigned within strata dummied out in w_i
- Note we're conditioning on both ε_i and β_i , ruling out "selection on gains" (will relax with IV version soon)

• $E[\tilde{x}_i \varepsilon_i] = 0$ under either one of two assumptions:

ASSUMPTION 1: $E[\varepsilon_i \mid x_i, w_i] = w_i' \gamma$

- Untreated potential outcomes are linear in controls, given treatment
- E.g. parallel trends, where i indexes unit-period pairs in a panel and w_i includes unit and time dummies

ASSUMPTION 2: $E[x_i | \varepsilon_i, \beta_i, w_i] = w_i' \lambda$

- Treatment is conditionally mean-independent of potential outcomes, with a linear expected treatment $E[x_i \mid w_i]$ (e.g. the propensity score)
- E.g. a stratified experiment, where x_i is randomly assigned within strata dummied out in w_i
- Note we're conditioning on both ε_i and β_i , ruling out "selection on gains" (will relax with IV version soon)
- The second assumption yields a design-based OLS specification
 - Stronger (sufficient) condition: $x_i \mid (\varepsilon_i, \beta_i, w_i) \stackrel{iid}{\sim} G(w_i)$

• Since $E[\tilde{x}_i \varepsilon_i] = 0$, the OLS estimand has an average-effect representation under either assumption:

$$\beta = \frac{E[\psi_i \beta_i]}{E[\psi_i]}, \qquad \psi_i = \tilde{\mathsf{x}}_i \mathsf{x}_i$$

• Since $E[\tilde{x}_i \varepsilon_i] = 0$, the OLS estimand has an average-effect representation under either assumption:

$$\beta = \frac{E[\psi_i \beta_i]}{E[\psi_i]}, \qquad \psi_i = \tilde{x}_i x_i$$

• But the ex-post weights ψ_i are generally non-convex: $E[\tilde{x}_i] = 0$, so \tilde{x}_i must take on both positive and negative values

• Since $E[\tilde{x}_i \varepsilon_i] = 0$, the OLS estimand has an average-effect representation under either assumption:

$$\beta = \frac{E[\psi_i \beta_i]}{E[\psi_i]}, \qquad \psi_i = \tilde{x}_i x_i$$

- But the ex-post weights ψ_i are generally non-convex: $E[\tilde{x}_i] = 0$, so \tilde{x}_i must take on both positive and negative values
 - E.g. if $x_i > 0$ then i with low values of x_i (the effective control group) will always receive negative ex-post weight

• Since $E[\tilde{x}_i \varepsilon_i] = 0$, the OLS estimand has an average-effect representation under either assumption:

$$\beta = \frac{E[\psi_i \beta_i]}{E[\psi_i]}, \qquad \psi_i = \tilde{x}_i x_i$$

- But the ex-post weights ψ_i are generally non-convex: $E[\tilde{x}_i] = 0$, so \tilde{x}_i must take on both positive and negative values
 - E.g. if $x_i > 0$ then i with low values of x_i (the effective control group) will always receive negative ex-post weight
 - This can lead to sign reversals: e.g. $\beta < 0$, despite $\beta_i > 0$

• Since $E[\tilde{x}_i \varepsilon_i] = 0$, the OLS estimand has an average-effect representation under either assumption:

$$\beta = \frac{E[\psi_i \beta_i]}{E[\psi_i]}, \qquad \psi_i = \tilde{\mathsf{x}}_i \mathsf{x}_i$$

- But the ex-post weights ψ_i are generally non-convex: $E[\tilde{x}_i] = 0$, so \tilde{x}_i must take on both positive and negative values
 - E.g. if $x_i > 0$ then i with low values of x_i (the effective control group) will always receive negative ex-post weight
 - This can lead to sign reversals: e.g. $\beta < 0$, despite $\beta_i > 0$
- ullet The ex-post weights are the end of the story for eta under Assumption
 - 1. But in design-based specifications we can take one more step
 - In experiments, who is in the effective control group is *random*. Before treatment is drawn, everyone expects the same weight!

• Using the law of iterated expectations, we can also write:

$$\beta = \frac{E[E[\psi_i \mid w_i, \beta_i]\beta_i]}{E[E[\psi_i \mid w_i, \beta_i]]} \equiv \frac{E[\phi_i \beta_i]}{E[\phi_i]}$$

for ex-ante weights $\phi_i = E[\tilde{x}_i x_i \mid w_i, \beta_i]$

• Using the law of iterated expectations, we can also write:

$$\beta = \frac{E[E[\psi_i \mid w_i, \beta_i]\beta_i]}{E[E[\psi_i \mid w_i, \beta_i]]} \equiv \frac{E[\phi_i \beta_i]}{E[\phi_i]}$$

for ex-ante weights $\phi_i = E[\tilde{x}_i x_i \mid w_i, \beta_i]$

• Under Assumption 1, this need not help: i.e. if treatment is deterministic in the unit/time FE in w_i , then $\phi_i=\psi_i$

• Using the law of iterated expectations, we can also write:

$$\beta = \frac{E[E[\psi_i \mid w_i, \beta_i]\beta_i]}{E[E[\psi_i \mid w_i, \beta_i]]} \equiv \frac{E[\phi_i \beta_i]}{E[\phi_i]}$$

for ex-ante weights $\phi_i = E[\tilde{x}_i x_i \mid w_i, \beta_i]$

- Under Assumption 1, this need not help: i.e. if treatment is deterministic in the unit/time FE in w_i , then $\phi_i = \psi_i$
- But under Assumption 2, $\phi_i = Var(x_i \mid w_i, \beta_i)$ which is non-negative!

• Using the law of iterated expectations, we can also write:

$$\beta = \frac{E[E[\psi_i \mid w_i, \beta_i]\beta_i]}{E[E[\psi_i \mid w_i, \beta_i]]} \equiv \frac{E[\phi_i \beta_i]}{E[\phi_i]}$$

for ex-ante weights $\phi_i = E[\tilde{x}_i x_i \mid w_i, \beta_i]$

- Under Assumption 1, this need not help: i.e. if treatment is deterministic in the unit/time FE in w_i , then $\phi_i=\psi_i$
- But under Assumption 2, $\phi_i = Var(x_i \mid w_i, \beta_i)$ which is non-negative!
 - $E[\tilde{x}_i x_i \mid w_i, \beta_i] = E[\tilde{x}_i^2 \mid w_i, \beta_i] + E[\tilde{x}_i \mid w_i, \beta_i] w_i' \lambda = Var(x_i \mid w_i, \beta_i) + 0$

• Using the law of iterated expectations, we can also write:

$$\beta = \frac{E[E[\psi_i \mid w_i, \beta_i]\beta_i]}{E[E[\psi_i \mid w_i, \beta_i]]} \equiv \frac{E[\phi_i \beta_i]}{E[\phi_i]}$$

for ex-ante weights $\phi_i = E[\tilde{x}_i x_i \mid w_i, \beta_i]$

- Under Assumption 1, this need not help: i.e. if treatment is deterministic in the unit/time FE in w_i , then $\phi_i=\psi_i$
- But under Assumption 2, $\phi_i = Var(x_i \mid w_i, \beta_i)$ which is non-negative!
 - $E[\tilde{x}_i x_i \mid w_i, \beta_i] = E[\tilde{x}_i^2 \mid w_i, \beta_i] + E[\tilde{x}_i \mid w_i, \beta_i] w_i' \lambda = Var(x_i \mid w_i, \beta_i) + 0$
- Hence: sign reversals cannot occur in design-based OLS specifications

- Even if we formulate a design-based regression in terms of constant effects, the estimand is still reasonable under heterogeneous effects
 - Not necessarily true for outcome models (makes sense: we were just modeling ε_i ! But additional models on β_i need not help)

- Even if we formulate a design-based regression in terms of constant effects, the estimand is still reasonable under heterogeneous effects
 - Not necessarily true for outcome models (makes sense: we were just modeling ε_i ! But additional models on β_i need not help)
- With the stronger design assumption of $x_i \mid (\varepsilon_i, \beta_i, w_i) \stackrel{iid}{\sim} G(w_i)$, the ex ante weights become identified: $\phi_i = Var(x_i \mid w_i, \beta_i) = Var(x_i \mid w_i)$
 - C.f. earlier results in Angrist (1998), Angrist and Krueger (1999), etc

- Even if we formulate a design-based regression in terms of constant effects, the estimand is still reasonable under heterogeneous effects
 - Not necessarily true for outcome models (makes sense: we were just modeling ε_i ! But additional models on β_i need not help)
- With the stronger design assumption of $x_i \mid (\varepsilon_i, \beta_i, w_i) \stackrel{iid}{\sim} G(w_i)$, the ex ante weights become identified: $\phi_i = Var(x_i \mid w_i, \beta_i) = Var(x_i \mid w_i)$
 - C.f. earlier results in Angrist (1998), Angrist and Krueger (1999), etc
 - Could inverse-weight by $\widehat{Var}(x_i \mid w_i)$ to estimate unweighted $E[\beta_i]$

- Even if we formulate a design-based regression in terms of constant effects, the estimand is still reasonable under heterogeneous effects
 - Not necessarily true for outcome models (makes sense: we were just modeling ε_i ! But additional models on β_i need not help)
- With the stronger design assumption of $x_i \mid (\varepsilon_i, \beta_i, w_i) \stackrel{iid}{\sim} G(w_i)$, the ex ante weights become identified: $\phi_i = Var(x_i \mid w_i, \beta_i) = Var(x_i \mid w_i)$
 - C.f. earlier results in Angrist (1998), Angrist and Krueger (1999), etc
 - Could inverse-weight by $\widehat{Var}(x_i \mid w_i)$ to estimate unweighted $E[\beta_i]$
- Of course, the ϕ_i -weighted estimand may not be most of interest!
 - If $Cov(\phi_i,\beta_i) \approx 0$, we'll still get something close to $E[\beta_i]$
 - Otherwise, ϕ_i -weighting has desirable efficiency properties (Goldsmith-Pinkham et al. 2024)
 - Large class of alternative propensity-score-based estimators for other estimands under the stronger design assumption

- Borusyak and Hull (2024) extend ex ante / ex post weights to:
 - **1** A more general causal model: potential outcomes $y_i(x)$ and $y_i = y_i(x_i)$
 - ② IV: design-based assumption is then $E[z_i \mid y_i(\cdot), w_i] = w_i'\lambda$

- Borusyak and Hull (2024) extend ex ante / ex post weights to:
 - **1** A more general causal model: potential outcomes $y_i(x)$ and $y_i = y_i(x_i)$
 - ② IV: design-based assumption is then $E[z_i \mid y_i(\cdot), w_i] = w_i'\lambda$
- For convex ex-ante weights in IV we require first-stage monotonicity: that x_i is non-decreasing in z_i for all units regardless of $y_i(\cdot)$
 - C.f. earlier results in Imbens and Angrist ('94, '95), Angrist et al. ('00)

- Borusyak and Hull (2024) extend ex ante / ex post weights to:
 - **1** A more general causal model: potential outcomes $y_i(x)$ and $y_i = y_i(x_i)$
 - ② IV: design-based assumption is then $E[z_i \mid y_i(\cdot), w_i] = w_i'\lambda$
- For convex ex-ante weights in IV we require first-stage monotonicity: that x_i is non-decreasing in z_i for all units regardless of $y_i(\cdot)$
 - C.f. earlier results in Imbens and Angrist ('94, '95), Angrist et al. ('00)
 - Ex post weights are still potentially non-convex under monotonicity

- Borusyak and Hull (2024) extend ex ante / ex post weights to:
 - **4** A more general causal model: potential outcomes $y_i(x)$ and $y_i = y_i(x_i)$
 - ② IV: design-based assumption is then $E[z_i \mid y_i(\cdot), w_i] = w_i'\lambda$
- For convex ex-ante weights in IV we require first-stage monotonicity: that x_i is non-decreasing in z_i for all units regardless of $y_i(\cdot)$
 - C.f. earlier results in Imbens and Angrist ('94, '95), Angrist et al. ('00)
 - Ex post weights are still potentially non-convex under monotonicity
- Framework is general, allowing for "formula" IVs (e.g. shift-share)
 - We'll see more about this in Friday's class

Multiple Treatments: Contamination Bias

- Goldsmith-Pinkham et al. (2024) generalize things in a different direction: hetFX weighting for regressions w/multiple treatments
 - Unfortunately the picture is a bit less rosy for design here

Multiple Treatments: Contamination Bias

- Goldsmith-Pinkham et al. (2024) generalize things in a different direction: hetFX weighting for regressions w/multiple treatments
 - Unfortunately the picture is a bit less rosy for design here
- The coefficient on treatment j estimates the sum of two terms:
 - A weighted average of treatment j's effects, with convex weights in design-based specifications √

Multiple Treatments: Contamination Bias

- Goldsmith-Pinkham et al. (2024) generalize things in a different direction: hetFX weighting for regressions w/multiple treatments
 - Unfortunately the picture is a bit less rosy for design here
- The coefficient on treatment j estimates the sum of two terms:
 - A weighted average of treatment j's effects, with convex weights in design-based specifications √
 - A non-convex combination of effects from other treatments k ("contamination bias") X

Multiple Treatments: Contamination Bias

- Goldsmith-Pinkham et al. (2024) generalize things in a different direction: hetFX weighting for regressions w/multiple treatments
 - Unfortunately the picture is a bit less rosy for design here
- The coefficient on treatment j estimates the sum of two terms:
 - A weighted average of treatment j's effects, with convex weights in design-based specifications √
 - A non-convex combination of effects from other treatments k ("contamination bias") X
- They derive alternative estimators which avoid contamination bias while maintaining the nice efficiency properties of OLS weighting
 - Ultimately, becomes an empirical question of how important bias is

Example: Project STAR

- Krueger (1999) studies the STAR RCT, which randomized 12k students in 80 public elementary schools in Tennessee to one of 3 classroom types:
 - Regular-sized (20-25 students) Control
 - Small (13-17 students) Treatment 1
 - Regular-sized with a teaching aide Treatment 2

Example: Project STAR

- Krueger (1999) studies the STAR RCT, which randomized 12k students in 80 public elementary schools in Tennessee to one of 3 classroom types:
 - Regular-sized (20-25 students) Control
 - Small (13-17 students) Treatment 1
 - Regular-sized with a teaching aide Treatment 2
- Kids were randomized within schools, so the propensity of assignment to each treatment varied by school
 - Krueger thus estimates: $TestScore_i = \alpha_{school(i)} + \beta_1 D_{i1} + \beta_2 D_{i2} + \varepsilon_i$

Example: Project STAR

- Krueger (1999) studies the STAR RCT, which randomized 12k students in 80 public elementary schools in Tennessee to one of 3 classroom types:
 - Regular-sized (20-25 students) Control
 - Small (13-17 students) Treatment 1
 - Regular-sized with a teaching aide Treatment 2
- Kids were randomized within schools, so the propensity of assignment to each treatment varied by school
 - Krueger thus estimates: $TestScore_i = \alpha_{school(i)} + \beta_1 D_{i1} + \beta_2 D_{i2} + \varepsilon_i$
- We find significant potential for contamination bias: lots of treatment effect heterogeneity and variation in contamination weights
 - But actual contamination bias is minimal: $Corr(effects, weights) \approx 0$

Project STAR, Revisited

	A. Contamination Bias Estimates				
	Regression	Own	Bias	Worst-Case Bias	
	Coefficient	Effect		Negative	Positive
	(1)	(2)	(3)	(4)	(5)
Small Class Size	5.357	5.202	0.155	-1.654	1.670
	(0.778)	(0.778)	(0.160)	(0.185)	(0.187)
Teaching Aide	0.177	0.360	-0.183	-1.529	1.530
	(0.720)	(0.714)	(0.149)	(0.176)	(0.177)
	B. Treatment Effect Estimates				
		Unweighted	Efficiently-Weighted		
		(ATE)	One-at-a-time	Common	
		(1)	(2)	(3)	
Small Class Size		5.561	5.295	5.563	
		(0.763)	(0.775)	(0.764)	
		[0.744]	[0.743]	[0.742]	
Teaching Aide		0.070	0.263	-0.003	
		(0.708)	(0.715)	(0.712)	
		[0.694]	[0.691]	[0.695]	

STAR Regression Weights vs. Treatment Effects

Outline

1. Heterogeneous Treatment Effects ✓

2. Clustered Standard Errors

• Where do SEs come from? OLS $\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$ can be rewritten:

$$\sqrt{N}(\hat{\beta} - \beta) = \left(\frac{\mathbf{X}'\mathbf{X}}{N}\right)^{-1} \left(\frac{\mathbf{X}'\boldsymbol{\varepsilon}}{\sqrt{N}}\right)$$

where $\mathbf{Y} = \mathbf{X} \boldsymbol{\beta} + \boldsymbol{\varepsilon}$ stacks observations of the population regression

• Where do SEs come from? OLS $\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$ can be rewritten:

$$\sqrt{N}(\hat{\beta} - \beta) = \left(\frac{\mathbf{X}'\mathbf{X}}{N}\right)^{-1} \left(\frac{\mathbf{X}'\boldsymbol{\varepsilon}}{\sqrt{N}}\right)$$

where $\mathbf{Y} = \mathbf{X} \boldsymbol{\beta} + \boldsymbol{\varepsilon}$ stacks observations of the population regression

• Under rather mild conditions (a LLN), $\frac{\mathbf{X}'\mathbf{X}}{N} \xrightarrow{p} E\left[\frac{1}{N}\sum_{i}X_{i}X_{i}'\right]$

• Where do SEs come from? OLS $\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$ can be rewritten:

$$\sqrt{N}(\hat{\beta} - \beta) = \left(\frac{\mathbf{X}'\mathbf{X}}{N}\right)^{-1} \left(\frac{\mathbf{X}'\boldsymbol{\varepsilon}}{\sqrt{N}}\right)$$

where $\mathbf{Y} = \mathbf{X} \boldsymbol{\beta} + \boldsymbol{\varepsilon}$ stacks observations of the population regression

- Under rather mild conditions (a LLN), $\frac{\mathbf{X}'\mathbf{X}}{N} \xrightarrow{P} E\left[\frac{1}{N}\sum_{i}X_{i}X_{i}'\right]$
- W/slightly stronger conditions (a CLT), $\frac{\mathbf{X}'\boldsymbol{\varepsilon}}{\sqrt{N}} \Rightarrow \mathrm{N}(0, Var(\frac{1}{\sqrt{N}}\sum_i X_i\boldsymbol{\varepsilon}_i))$

• Where do SEs come from? OLS $\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$ can be rewritten:

$$\sqrt{N}(\hat{\beta} - \beta) = \left(\frac{\mathbf{X}'\mathbf{X}}{N}\right)^{-1} \left(\frac{\mathbf{X}'\boldsymbol{\varepsilon}}{\sqrt{N}}\right)$$

where $\mathbf{Y} = \mathbf{X} \boldsymbol{\beta} + \boldsymbol{\varepsilon}$ stacks observations of the population regression

- Under rather mild conditions (a LLN), $\frac{\mathbf{X}'\mathbf{X}}{N} \stackrel{P}{\to} E\left[\frac{1}{N}\sum_i X_i X_i'\right]$
- W/slightly stronger conditions (a CLT), $\frac{\mathbf{X}'\boldsymbol{\varepsilon}}{\sqrt{N}} \Rightarrow \mathrm{N}(0, Var(\frac{1}{\sqrt{N}}\sum_i X_i\boldsymbol{\varepsilon}_i))$
- ullet This gives our general asymptotic approximation for OLS: $\hat{\beta} \approx \beta^*$ for

$$\beta^* \sim N(\beta, \frac{V}{N}), \quad V = E\left[\frac{1}{N}\sum_i X_i X_i'\right]^{-1} Var\left(\frac{1}{\sqrt{N}}\sum_i X_i \varepsilon_i\right) E\left[\frac{1}{N}\sum_i X_i X_i'\right]^{-1}$$

15

• Where do SEs come from? OLS $\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$ can be rewritten:

$$\sqrt{N}(\hat{\beta} - \beta) = \left(\frac{\mathbf{X}'\mathbf{X}}{N}\right)^{-1} \left(\frac{\mathbf{X}'\boldsymbol{\varepsilon}}{\sqrt{N}}\right)$$

where $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ stacks observations of the population regression

- Under rather mild conditions (a LLN), $\frac{\mathbf{X}'\mathbf{X}}{N} \xrightarrow{p} E\left[\frac{1}{N}\sum_{i}X_{i}X_{i}'\right]$
- W/slightly stronger conditions (a CLT), $\frac{\mathbf{X}'\mathbf{\varepsilon}}{\sqrt{N}} \Rightarrow \mathrm{N}(0, Var(\frac{1}{\sqrt{N}}\sum_i X_i \varepsilon_i))$
- ullet This gives our general asymptotic approximation for OLS: $\hat{eta}pproxeta^*$ for

$$\beta^* \sim \mathrm{N}(\beta, \frac{V}{N}), \quad V = E\left[\frac{1}{N}\sum_i X_i X_i'\right]^{-1} \mathit{Var}\left(\frac{1}{\sqrt{N}}\sum_i X_i \varepsilon_i\right) E\left[\frac{1}{N}\sum_i X_i X_i'\right]^{-1}$$

• SEs come from $\hat{V} = \left(\frac{1}{N}\sum_i X_i X_i'\right)^{-1} \widehat{Var} \left(\frac{1}{\sqrt{N}}\sum_i X_i \varepsilon_i\right) \left(\frac{1}{N}\sum_i X_i X_i'\right)^{-1}$

• Key q: how do we form the variance estimate $\widehat{Var}\left(\frac{1}{\sqrt{N}}\sum_{i}X_{i}\varepsilon_{i}\right)$?

- Key q: how do we form the variance estimate $\widehat{Var}\left(\frac{1}{\sqrt{N}}\sum_{i}X_{i}\varepsilon_{i}\right)$?
- In *iid* data, we know $Var\left(\frac{1}{\sqrt{N}}\sum_i X_i \varepsilon_i\right) =$

- Key q: how do we form the variance estimate $\widehat{Var}\left(\frac{1}{\sqrt{N}}\sum_{i}X_{i}\varepsilon_{i}\right)$?
- In iid data, we know $Var\left(\frac{1}{\sqrt{N}}\sum_i X_i \varepsilon_i\right) = \frac{1}{N}\sum_i Var(X_i \varepsilon_i) =$

- Key q: how do we form the variance estimate $\widehat{Var}\left(\frac{1}{\sqrt{N}}\sum_{i}X_{i}\varepsilon_{i}\right)$?
- In iid data, we know $Var\left(\frac{1}{\sqrt{N}}\sum_i X_i \varepsilon_i\right) = \frac{1}{N}\sum_i Var(X_i \varepsilon_i) = E[X_i X_i' \varepsilon_i^2]$

- Key q: how do we form the variance estimate $\widehat{Var}\left(\frac{1}{\sqrt{N}}\sum_{i}X_{i}\varepsilon_{i}\right)$?
- In iid data, we know $Var\left(\frac{1}{\sqrt{N}}\sum_i X_i \varepsilon_i\right) = \frac{1}{N}\sum_i Var(X_i \varepsilon_i) = E[X_i X_i' \varepsilon_i^2]$
 - This suggests $\widehat{Var}\left(\frac{1}{\sqrt{N}}\sum_i X_i \mathcal{E}_i^2\right) = \frac{1}{N}\sum_i X_i X_i' \hat{\mathcal{E}}_i^2$, which leads to our usual heteroskedasticity-robust estimator

- Key q: how do we form the variance estimate $\widehat{Var}\left(\frac{1}{\sqrt{N}}\sum_{i}X_{i}\varepsilon_{i}\right)$?
- In iid data, we know $Var\left(\frac{1}{\sqrt{N}}\sum_i X_i \varepsilon_i\right) = \frac{1}{N}\sum_i Var(X_i \varepsilon_i) = E[X_i X_i' \varepsilon_i^2]$
 - This suggests $\widehat{Var}\left(\frac{1}{\sqrt{N}}\sum_i X_i \mathcal{E}_i^2\right) = \frac{1}{N}\sum_i X_i X_i' \hat{\mathcal{E}}_i^2$, which leads to our usual heteroskedasticity-robust estimator
- The motivation for alternative estimators comes from the possibility that $X_i \varepsilon_i$ and $X_j \varepsilon_j$ may be correlated for $i \neq j$
 - Generally, $Var\left(\frac{1}{\sqrt{N}}\sum_{i}X_{i}\varepsilon_{i}\right)=\frac{1}{N}\sum_{i}Var(X_{i}\varepsilon_{i})+2\sum_{i,j\neq i}Cov(X_{i}\varepsilon_{i},X_{j}\varepsilon_{j})$

- Key q: how do we form the variance estimate $\widehat{Var}\left(\frac{1}{\sqrt{N}}\sum_{i}X_{i}\varepsilon_{i}\right)$?
- In iid data, we know $Var\left(\frac{1}{\sqrt{N}}\sum_i X_i \varepsilon_i\right) = \frac{1}{N}\sum_i Var(X_i \varepsilon_i) = E[X_i X_i' \varepsilon_i^2]$
 - This suggests $\widehat{Var}\left(\frac{1}{\sqrt{N}}\sum_i X_i \mathcal{E}_i^2\right) = \frac{1}{N}\sum_i X_i X_i' \hat{\mathcal{E}}_i^2$, which leads to our usual heteroskedasticity-robust estimator
- The motivation for alternative estimators comes from the possibility that $X_i \varepsilon_i$ and $X_j \varepsilon_j$ may be correlated for $i \neq j$
 - Generally, $Var\left(\frac{1}{\sqrt{N}}\sum_{i}X_{i}\varepsilon_{i}\right)=\frac{1}{N}\sum_{i}Var(X_{i}\varepsilon_{i})+2\sum_{i,j\neq i}Cov(X_{i}\varepsilon_{i},X_{j}\varepsilon_{j})$
 - But we can't allow for arbitrary cross-sectional correlations, since then we couldn't guarantee $\frac{1}{\sqrt{N}}\sum_i X_i \varepsilon_i$ converges ...

- Key q: how do we form the variance estimate $\widehat{Var}\left(\frac{1}{\sqrt{N}}\sum_{i}X_{i}\varepsilon_{i}\right)$?
- In iid data, we know $Var\left(\frac{1}{\sqrt{N}}\sum_i X_i \varepsilon_i\right) = \frac{1}{N}\sum_i Var(X_i \varepsilon_i) = E[X_i X_i' \varepsilon_i^2]$
 - This suggests $\widehat{Var}\left(\frac{1}{\sqrt{N}}\sum_i X_i \mathcal{E}_i^2\right) = \frac{1}{N}\sum_i X_i X_i' \hat{\mathcal{E}}_i^2$, which leads to our usual heteroskedasticity-robust estimator
- The motivation for alternative estimators comes from the possibility that $X_i \varepsilon_i$ and $X_j \varepsilon_j$ may be correlated for $i \neq j$
 - Generally, $Var\left(\frac{1}{\sqrt{N}}\sum_i X_i \varepsilon_i\right) = \frac{1}{N}\sum_i Var(X_i \varepsilon_i) + 2\sum_{i,j \neq i} Cov(X_i \varepsilon_i, X_j \varepsilon_j)$
 - But we can't allow for arbitrary cross-sectional correlations, since then we couldn't guarantee $\frac{1}{\sqrt{N}}\sum_i X_i \varepsilon_i$ converges ...
 - We need to zero out some covariances to make progress

- Suppose we can partition observations into clusters, $c(i) \in 1, ..., C$
 - To ease notation, suppose equal sizes: $|i:c(i)=c|=N/C\equiv T$

- Suppose we can partition observations into clusters, $c(i) \in 1,...,C$
 - To ease notation, suppose equal sizes: $|i:c(i)=c|=N/C\equiv T$
 - With N = CT, OLS can be rewritten: $\sqrt{N}(\hat{\beta} \beta) = \left(\frac{\mathbf{X}'\mathbf{X}}{N}\right)^{-1} \cdot \left(\frac{\mathbf{X}'\boldsymbol{\varepsilon}}{\sqrt{CT}}\right)$

- Suppose we can partition observations into clusters, $c(i) \in 1, ..., C$
 - To ease notation, suppose equal sizes: $|i:c(i)=c|=N/C\equiv T$
 - With N = CT, OLS can be rewritten: $\sqrt{N}(\hat{\beta} \beta) = \left(\frac{\mathbf{X}'\mathbf{X}}{N}\right)^{-1} \cdot \left(\frac{\mathbf{X}'\boldsymbol{\varepsilon}}{\sqrt{CT}}\right)$
- Define $Q_c = \frac{1}{\sqrt{T}} \sum_{i:c(i)=c} X_i \varepsilon_i$ and note that $\frac{\mathbf{X}' \boldsymbol{\varepsilon}}{\sqrt{CT}} = \frac{1}{\sqrt{C}} \sum_c Q_c$

- Suppose we can partition observations into clusters, $c(i) \in 1, ..., C$
 - To ease notation, suppose equal sizes: $|i:c(i)=c|=N/C\equiv T$
 - With N = CT, OLS can be rewritten: $\sqrt{N}(\hat{\beta} \beta) = \left(\frac{\mathbf{X}'\mathbf{X}}{N}\right)^{-1} \cdot \left(\frac{\mathbf{X}'\boldsymbol{\varepsilon}}{\sqrt{CT}}\right)$
- Define $Q_c = \frac{1}{\sqrt{T}} \sum_{i:c(i)=c} X_i \varepsilon_i$ and note that $\frac{\mathbf{X}' \boldsymbol{\varepsilon}}{\sqrt{CT}} = \frac{1}{\sqrt{C}} \sum_c Q_c$
 - If the Q_c clusters are *iid*, a CLT applies: $\frac{1}{\sqrt{C}}\sum_c Q_c \Rightarrow \mathrm{N}(0, Var(Q_c))$
 - E.g. in a balanced panel, could have *iid* series $(X_{c1}\varepsilon_{c1}...,X_{cT}\varepsilon_{cT})$

- Suppose we can partition observations into clusters, $c(i) \in 1,...,C$
 - To ease notation, suppose equal sizes: $|i:c(i)=c|=N/C\equiv T$
 - With N = CT, OLS can be rewritten: $\sqrt{N}(\hat{\beta} \beta) = \left(\frac{\mathbf{X}'\mathbf{X}}{N}\right)^{-1} \cdot \left(\frac{\mathbf{X}'\boldsymbol{\varepsilon}}{\sqrt{CT}}\right)$
- Define $Q_c = \frac{1}{\sqrt{T}} \sum_{i:c(i)=c} X_i \varepsilon_i$ and note that $\frac{\mathbf{X}' \boldsymbol{\varepsilon}}{\sqrt{CT}} = \frac{1}{\sqrt{C}} \sum_c Q_c$
 - If the Q_c clusters are *iid*, a CLT applies: $\frac{1}{\sqrt{C}}\sum_c Q_c \Rightarrow \mathrm{N}(0, Var(Q_c))$
 - E.g. in a balanced panel, could have *iid* series $(X_{c1}\varepsilon_{c1}...,X_{cT}\varepsilon_{cT})$
- ullet This gives us a new "clustered" variance estimate to plug into \hat{V} :

$$\widehat{Var}\left(\frac{1}{\sqrt{N}}\sum_{i}X_{i}\varepsilon_{i}\right) = \frac{1}{C}\sum_{c}\widehat{Q}_{c}^{2}, \text{ for } \widehat{Q} = \frac{1}{\sqrt{T}}\sum_{i:c(i)=c}X_{i}\widehat{\varepsilon}_{i}$$

- Suppose we can partition observations into clusters, $c(i) \in 1, ..., C$
 - To ease notation, suppose equal sizes: $|i:c(i)=c|=N/C\equiv T$
 - With N = CT, OLS can be rewritten: $\sqrt{N}(\hat{\beta} \beta) = \left(\frac{\mathbf{X}'\mathbf{X}}{N}\right)^{-1} \cdot \left(\frac{\mathbf{X}'\boldsymbol{\varepsilon}}{\sqrt{CT}}\right)$
- Define $Q_c = \frac{1}{\sqrt{T}} \sum_{i:c(i)=c} X_i \varepsilon_i$ and note that $\frac{\mathbf{X}' \boldsymbol{\varepsilon}}{\sqrt{CT}} = \frac{1}{\sqrt{C}} \sum_c Q_c$
 - If the Q_c clusters are *iid*, a CLT applies: $\frac{1}{\sqrt{C}}\sum_c Q_c \Rightarrow \mathrm{N}(0, Var(Q_c))$
 - E.g. in a balanced panel, could have *iid* series $(X_{c1}\varepsilon_{c1}...,X_{cT}\varepsilon_{cT})$
- ullet This gives us a new "clustered" variance estimate to plug into \hat{V} :

$$\widehat{Var}\left(\frac{1}{\sqrt{N}}\sum_{i}X_{i}\varepsilon_{i}\right) = \frac{1}{C}\sum_{c}\widehat{Q}_{c}^{2}, \text{ for } \widehat{Q} = \frac{1}{\sqrt{T}}\sum_{i:c(i)=c}X_{i}\widehat{\varepsilon}_{i}$$

This is what's going on under the hood when you ", cluster(c)"!

Easy, Right?

Types of Headaches

Source: Khoa Vu (of course)

• At an (unhelpfully) high level, the previous results tell us when to cluster i and j together: when we think $Cov(X_i\varepsilon_i, X_i\varepsilon_i) \neq 0$

- At an (unhelpfully) high level, the previous results tell us when to cluster i and j together: when we think $Cov(X_i\varepsilon_i, X_j\varepsilon_j) \neq 0$
- With design this may not be too hard to figure out:
 - Suppose $(X_1, \ldots, X_N) \mid (\varepsilon_1, \ldots, \varepsilon_N)$ is mean-zero with $X_i \perp X_j$ whenever $c(i) \neq c(j)$ (e.g. village-level RCT with c(i) giving i's village)

- At an (unhelpfully) high level, the previous results tell us when to cluster i and j together: when we think $Cov(X_i\varepsilon_i, X_j\varepsilon_j) \neq 0$
- With design this may not be too hard to figure out:
 - Suppose $(X_1, ..., X_N) \mid (\varepsilon_1, ..., \varepsilon_N)$ is mean-zero with $X_i \perp \!\!\! \perp X_j$ whenever $c(i) \neq c(j)$ (e.g. village-level RCT with c(i) giving i's village)
 - Then whenever $c(i) \neq c(j)$:

$$Cov(X_i\varepsilon_i, X_j\varepsilon_j) = E[X_iX_j'\varepsilon_i\varepsilon_j] =$$

- At an (unhelpfully) high level, the previous results tell us when to cluster i and j together: when we think $Cov(X_i\varepsilon_i, X_j\varepsilon_j) \neq 0$
- With design this may not be too hard to figure out:
 - Suppose $(X_1, ..., X_N) \mid (\varepsilon_1, ..., \varepsilon_N)$ is mean-zero with $X_i \perp \!\!\! \perp X_j$ whenever $c(i) \neq c(j)$ (e.g. village-level RCT with c(i) giving i's village)
 - Then whenever $c(i) \neq c(j)$:

$$Cov(X_i\varepsilon_i, X_j\varepsilon_j) = E[X_iX_j'\varepsilon_i\varepsilon_j] = E[E[X_iX_j'\mid \varepsilon_i, \varepsilon_j]\varepsilon_i\varepsilon_j] =$$

- At an (unhelpfully) high level, the previous results tell us when to cluster i and j together: when we think $Cov(X_i\varepsilon_i, X_j\varepsilon_j) \neq 0$
- With design this may not be too hard to figure out:
 - Suppose $(X_1, ..., X_N) \mid (\varepsilon_1, ..., \varepsilon_N)$ is mean-zero with $X_i \perp \!\!\! \perp X_j$ whenever $c(i) \neq c(j)$ (e.g. village-level RCT with c(i) giving i's village)
 - Then whenever $c(i) \neq c(j)$:

$$Cov(X_i\varepsilon_i,X_j\varepsilon_j)=E[X_iX_j'\varepsilon_i\varepsilon_j]=E[E[X_iX_j'\mid\varepsilon_i,\varepsilon_j]\varepsilon_i\varepsilon_j]=0$$

- At an (unhelpfully) high level, the previous results tell us when to cluster i and j together: when we think $Cov(X_i\varepsilon_i, X_j\varepsilon_j) \neq 0$
- With design this may not be too hard to figure out:
 - Suppose $(X_1, ..., X_N) \mid (\varepsilon_1, ..., \varepsilon_N)$ is mean-zero with $X_i \perp \!\!\! \perp X_j$ whenever $c(i) \neq c(j)$ (e.g. village-level RCT with c(i) giving i's village)
 - Then whenever $c(i) \neq c(j)$:

$$Cov(X_i\varepsilon_i, X_j\varepsilon_j) = E[X_iX_j'\varepsilon_i\varepsilon_j] = E[E[X_iX_j'\mid \varepsilon_i, \varepsilon_j]\varepsilon_i\varepsilon_j] = 0$$

• So we only need to cluster by c(i): the design tells us what to do!

- At an (unhelpfully) high level, the previous results tell us when to cluster i and j together: when we think $Cov(X_i\varepsilon_i, X_j\varepsilon_j) \neq 0$
- With design this may not be too hard to figure out:
 - Suppose $(X_1, ..., X_N) \mid (\varepsilon_1, ..., \varepsilon_N)$ is mean-zero with $X_i \perp \!\!\! \perp X_j$ whenever $c(i) \neq c(j)$ (e.g. village-level RCT with c(i) giving i's village)
 - Then whenever $c(i) \neq c(j)$:

$$Cov(X_i\varepsilon_i, X_j\varepsilon_j) = E[X_iX_j'\varepsilon_i\varepsilon_j] = E[E[X_iX_j' \mid \varepsilon_i, \varepsilon_j]\varepsilon_i\varepsilon_j] = 0$$

- So we only need to cluster by c(i): the design tells us what to do!
- This leads to the popular (and sometimes misused) heuristic: cluster at the level of treatment / identifying variation
 - See Abadie et al. (2023) for a more complete version of this argument

- Suppose (as is often done) we pair individuals up by some baseline characteristics, then in each pair c we randomly treat one individual
 - Treatment is at the individual level... so should we just ", r"?

- Suppose (as is often done) we pair individuals up by some baseline characteristics, then in each pair c we randomly treat one individual
 - Treatment is at the individual level... so should we just ", r"?
- de Chaisemartin and Ramirez-Cuellar (2022) show the answer is no: non-clustered SEs will generally be downward-biased (maybe badly)
 - Under constant effects, $E[\hat{V}] = V/2$; severe over-rejection!

- Suppose (as is often done) we pair individuals up by some baseline characteristics, then in each pair c we randomly treat one individual
 - Treatment is at the individual level... so should we just ", r"?
- de Chaisemartin and Ramirez-Cuellar (2022) show the answer is no: non-clustered SEs will generally be downward-biased (maybe badly)
 - Under constant effects, $E[\hat{V}] = V/2$; severe over-rejection!
- Paired randomization makes X_i and X_j negatively correlated in pairs
 - Clustering by pair solves this; treatment assignment is iid across pairs

- Suppose (as is often done) we pair individuals up by some baseline characteristics, then in each pair c we randomly treat one individual
 - Treatment is at the individual level... so should we just ", r"?
- de Chaisemartin and Ramirez-Cuellar (2022) show the answer is no: non-clustered SEs will generally be downward-biased (maybe badly)
 - Under constant effects, $E[\hat{V}] = V/2$; severe over-rejection!
- Paired randomization makes X_i and X_i negatively correlated in pairs
 - Clustering by pair solves this; treatment assignment is iid across pairs
 - Alternatively, you could ", r" with pair fixed effects (and the standard Stata d.f. correction). Why?

- Suppose (as is often done) we pair individuals up by some baseline characteristics, then in each pair c we randomly treat one individual
 - Treatment is at the individual level... so should we just ", r"?
- de Chaisemartin and Ramirez-Cuellar (2022) show the answer is no: non-clustered SEs will generally be downward-biased (maybe badly)
 - Under constant effects, $E[\hat{V}] = V/2$; severe over-rejection!
- Paired randomization makes X_i and X_i negatively correlated in pairs
 - Clustering by pair solves this; treatment assignment is iid across pairs
 - Alternatively, you could ", r" with pair fixed effects (and the standard Stata d.f. correction). Why? Because FE = FD when T = 2