

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
31 October 2002 (31.10.2002)

PCT

(10) International Publication Number
WO 02/086085 A2

(51) International Patent Classification²: C12N

(21) International Application Number: PCT/US02/12801

(22) International Filing Date: 24 April 2002 (24.04.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/285,683 24 April 2001 (24.04.2001) US

(71) Applicants (for all designated States except US): BAYER CORPORATION [US/US]; 100 Bayer Road, Pittsburgh, PA 15205 (US). MORPHOSYS AG [DE/DE]; Lena-Christ-Str. 48, 82152 Martinsried/Munchen (DE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): PAN, Clark [US/US]; 22362 Princeton Place, Castro Valley, CA 94552 (US). KNORR, Andreas, M. [DE/DE]; Trillser Graben 10, 40699 Erkrath (DE). SCHAUER, Michael [DE/DE];

Falkenberg 28, 42113 Wuppertal (DE). HIRTH-DIETRICH, Claudia [DE/DE]; Stockmannsmühle 127, 42115 Wuppertal (DE). KRAFT, Sabine [DE/DE]; Planegger Strasse 11 A, 82152 Planegg (DE). KREBS, Barbara [DE/DE]; Auf Dem Kamm 13, 51427 Bergisch Gladbach (DE).

(74) Agent: HEMMENDINGER, Lisa, M.; Banner & Witcoff, Ltd., 11th floor, 1001 G Street, N.W., Washington, DC 20001-4597 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,

[Continued on next page]

(54) Title: HUMAN TIMP-1 ANTIBODIES

Morphometry

WO 02/086085 A2

(57) Abstract: Human antibodies that bind to TIMP-1 can be used as reagents to diagnose and treat disorders in which TIMP-1 is elevated, such as liver fibrosis, alcoholic liver disease, cardiac fibrosis, acute coronary syndrome, lupus nephritis, glomerulosclerotic renal disease, benign prostate hypertrophy, colon cancer, lung cancer, and idiopathic pulmonary fibrosis.

REST AVAILABLE COPY

GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Published:

- *without international search report and to be republished upon receipt of that report*

HUMAN TIMP-1 ANTIBODIES

[01] This application claims priority to and incorporates by reference co-pending provisional application Serial No. 60/285,683 filed April 24, 2001.

FIELD OF THE INVENTION

[02] The invention relates to TIMP-1-binding human antibodies.

BACKGROUND OF THE INVENTION

[03] Tissue inhibitors of metalloproteases (TIMPs) inhibit metalloproteases, a family of endopeptidase hydrolases. Metalloproteases are secreted by connective tissue and hematopoietic cells, use Zn^{2+} or Ca^{2+} for catalysis, and may be inactivated by metal chelators as well as TIMP molecules. Matrix metalloproteases (MMPs) participate in a variety of biologically important processes, including the degradation of many structural components of tissues, particularly the extracellular matrix (ECM).

[04] Degradation of extracellular matrix tissue is desirable in processes where destruction of existing tissues is necessary, *e.g.*, in embryo implantation (Reponen *et al.*, *Dev. Dyn.* 202, 388-96, 1995), embryogenesis, and tissue remodeling. Imbalance between synthesis and degradation of matrix proteins, however, can result in diseases such as liver fibrosis (Iredale *et al.*, *Hepatology* 24, 176-84, 1996). This imbalance can occur, for example, if levels of TIMPs are increased. Disorders in which TIMP-1 levels of increased include, for example, liver fibrosis, alcoholic liver disease, cardiac fibrosis, acute coronary syndrome, lupus nephritis, glomerulosclerotic renal disease, idiopathic pulmonary fibrosis, benign prostate hypertrophy, lung cancer, and colon cancer. *See, e.g.*, Inokubo

et al., *Am. Heart J.* 141, 211-17, 2001; Ylisirnio *et al.*, *Anticancer Res.* 20, 1311-16, 2000; Holten-Andersen *et al.*, *Clin. Cancer Res.* 6, 4292-99, 2000; Holten-Andersen *et al.*, *Br. J. Cancer* 80, 495-503, 1999; Peterson *et al.*, *Cardiovascular Res.* 46, 307-15, 2000; Arthur *et al.*, *Alcoholism: Clinical and Experimental Res.* 23, 840-43, 1999; Iredale *et al.*, *Hepatol.* 24, 176-84, 1996.

[06] There is a need in the art for reagents and methods of inhibiting TIMP-1 activity, which can be used to provide therapeutic effects.

BRIEF SUMMARY OF THE INVENTION

[07] It is an object of the present invention to provide reagents and methods of inhibiting TIMP-1 activity. This and other objects of the invention are provided by one or more of the embodiments described below.

[08] One embodiment of the invention is a purified preparation of a human antibody, wherein the antibody binds to a tissue inhibitor of metalloprotease-1 (TIMP-1) and neutralizes a matrix metalloprotease (MMP)-inhibiting activity of the TIMP-1.

[09] Another embodiment of the invention is a purified preparation of a first human antibody which comprises a VHCDR3 region comprising an amino acid sequence selected from the group consisting of SEQ ID NOS:1-43 and 360.

[10] Still another embodiment of the invention is a purified preparation of a first human antibody which comprises a VLCDR3 region comprising an amino acid sequence selected from the group consisting of SEQ ID NOS:44-86 and 365-379.

[11] Yet another embodiment of the invention is a purified preparation of a first human antibody which has TIMP-1 binding and MMP-inhibiting activity characteristics of a second human antibody. The second antibody comprises a VHCDR3 and VLCDR3 amino acid sequence pair selected from the group consisting of SEQ ID NOS:1 and 44, SEQ ID NOS:2 and 45, SEQ ID NO:3 and 46, SEQ ID NOS:4 and 47, SEQ ID NOS:5

and 48, SEQ ID NOS:6 and 49, SEQ ID NOS:7 and 50, SEQ ID NOS:3 and 44, SEQ ID NOS:3 and 45, SEQ ID NOS:3 and 47, SEQ ID NOS:3 and 48, SEQ ID NOS:3 and 49, SEQ ID NOS:3 and 50, SEQ ID NOS:7 and 44, SEQ ID NOS:7 and 45, SEQ ID NOS:7 and 47, SEQ ID NOS:7 and 48, SEQ ID NOS:8 and 51, SEQ ID NOS:9 and 52, SEQ ID NOS:10 and 53, SEQ ID NOS:11 and 54, SEQ ID NOS:12 and 55, SEQ ID NOS:13 and 56, SEQ ID NOS:14 and 57, SEQ ID NOS:15 and 58, SEQ ID NOS:16 and 59, SEQ ID NOS:17 and 60, SEQ ID NOS:18 and 61, SEQ ID NOS:19 and 62, SEQ ID NOS:20 and 63, SEQ ID NOS:21 and 64, SEQ ID NOS:22 and 65, SEQ ID NOS:23 and 66, SEQ ID NOS:24 and 67, SEQ ID NOS:25 and 68, SEQ ID NOS:26 and 69, SEQ ID NOS:27 and 70, SEQ ID NOS:28 and 71, SEQ ID NOS:29 and 72, SEQ ID NOS:30 and 73, SEQ ID NOS:31 and 74, SEQ ID NOS:32 and 75, SEQ ID NOS:33 and 76, SEQ ID NOS:34 and 77, SEQ ID NOS:35 and 78, SEQ ID NOS:36 and 79, SEQ ID NOS:37 and 80, SEQ ID NOS:38 and 81, SEQ ID NOS:39 and 82, SEQ ID NOS:40 and 83, SEQ ID NOS:41 and 84, SEQ ID NOS:42 and 85, SEQ ID NOS:43 and 86, SEQ ID NOS:3 and 48, SEQ ID NOS:360 and 48, SEQ ID NOS:3 and 365, SEQ ID NOS:16 and 59, SEQ ID NOS:18 and 61, SEQ ID NOS:34 and 77, SEQ ID NOS:34 and 379, SEQ ID NOS:18 and 376, SEQ ID NOS:18 and 377, and SEQ ID NOS:18 and 378.

[12] Even another embodiment of the invention is a purified preparation of a human antibody comprising a VHCDR3 and VLCDR3 amino acid sequence pair selected from the group consisting of SEQ ID NOS:1 and 44, SEQ ID NOS:2 and 45, SEQ ID NOS:3 and 46, SEQ ID NOS:4 and 47, SEQ ID NOS:5 and 48, SEQ ID NOS:6 and 49, SEQ ID NOS:7 and 50, SEQ ID NOS:3 and 44, SEQ ID NOS:3 and 45, SEQ ID NOS:3 and 47, SEQ ID NOS:3 and 48, SEQ ID NOS:3 and 49, SEQ ID NOS:3 and 50, SEQ ID NOS:7 and 44, SEQ ID NOS:7 and 45, SEQ ID NOS:7 and 47, SEQ ID NOS:7 and 48, SEQ ID NOS:8 and 51, SEQ ID NOS:9 and 52, SEQ ID NOS:10 and 53, SEQ ID NOS:11 and 54, SEQ ID NOS:12 and 55, SEQ ID NOS:13 and 56, SEQ ID NOS:14 and 57, SEQ ID NOS:15 and 58, SEQ ID NOS:16 and 59, SEQ ID NOS:17 and 60, SEQ ID NOS:18 and 61, SEQ ID NOS:19 and 62, SEQ ID NOS:20 and 63, SEQ ID NOS:21 and 64, SEQ ID NOS:22 and 65, SEQ ID NOS:23 and 66, SEQ ID NOS:24 and 67, SEQ ID NOS:25 and 68, SEQ

ID NOS:26 and 69, SEQ ID NOS: 27 and 70, SEQ ID NOS:28 and 71, SEQ ID NOS:29 and 72, SEQ ID NOS:30 and 73, SEQ ID NOS:31 and 74, SEQ ID NOS:32 and 75, SEQ ID NOS:33 and 76, SEQ ID NOS:34 and 77, SEQ ID NOS:35 and 78, SEQ ID NOS:36 and 79, SEQ ID NOS:37 and 80, SEQ ID NOS:38 and 81, SEQ ID NOS:39 and 82, SEQ ID NOS:40 and 83, SEQ ID NOS:41 and 84, SEQ ID NOS:42 and 85, SEQ ID NOS:43 and 86, SEQ ID NOS:3 and 48, SEQ ID NOS:360 and 48, SEQ ID NOS:3 and 365, SEQ ID NOS:16 and 59, SEQ ID NOS:18 and 61, SEQ ID NOS:34 and 77, SEQ ID NOS:34 and 379, SEQ ID NOS:18 and 376, SEQ ID NOS:18 and 377, and SEQ ID NOS:18 and 378.

[13] A further embodiment of the invention is a purified preparation of a human antibody which comprises a heavy chain and a light chain amino acid pair selected from the group consisting of SEQ ID NOS:140 and 97, SEQ ID NOS:141 and 98, SEQ ID NOS:142 and 99, SEQ ID NOS:143 and 100, SEQ ID NOS:144 and 101, SEQ ID NOS:145 and 102, SEQ ID NOS:146 and 103, SEQ ID NOS:142 and 97, SEQ ID NOS:142 and 98, SEQ ID NOS:142 and 100, SEQ ID NOS:142 and 101, SEQ ID NOS:142 and 102, SEQ ID NOS:142 and 103, SEQ ID NOS:146 and 97, SEQ ID NOS:146 and 98, SEQ ID NOS:146 and 100, SEQ ID NOS:146 and 101, SEQ ID NOS:148 and 104, SEQ ID NOS:148 and 105, SEQ ID NOS:149 and 106, SEQ ID NOS:150 and 107, SEQ ID NOS:151 and 108, SEQ ID NOS:152 and 109, SEQ ID NOS:153 and 110, SEQ ID NOS:154 and 111, SEQ ID NOS:155 and 112, SEQ ID NOS:156 and 113, SEQ ID NOS:157 and 114, SEQ ID NOS:158 and 115, SEQ ID NOS:159 and 116, SEQ ID NOS:160 and 117, SEQ ID NOS:161 and 118, SEQ ID NOS:162 and 119, SEQ ID NOS:163 and 120, SEQ ID NOS:164 and 121, SEQ ID NOS:165 and 122, SEQ ID NOS:166 and 123, SEQ ID NOS:167 and 124, SEQ ID NOS:168 and 125, SEQ ID NOS:169 and 126, SEQ ID NOS:170 and 127, SEQ ID NOS:171 and 128, SEQ ID NOS:172 and 129, SEQ ID NOS:173 and 130, SEQ ID NOS:174 and 131, SEQ ID NOS:175 and 132, SEQ ID NOS:176 and 133, SEQ ID NOS:177 and 134, SEQ ID NOS:178 and 135, SEQ ID NOS:179 and 136, SEQ ID NOS:180 and 137, SEQ ID NOS:181 and 138, and SEQ ID NOS:182 and 139.

- [14] Another embodiment of the invention is a pharmaceutical composition comprising a human antibody and a pharmaceutically acceptable carrier. The human antibody (1) binds to a TIMP-1 and (2) neutralizes an MMP-inhibiting activity of the TIMP-1.
- [15] Yet another embodiment of the invention is a purified polynucleotide which encodes a human antibody comprising a VHCDR3 region which comprises an amino acid sequence selected from the group consisting of SEQ ID NOS:1-43 and 360. The human antibody (1) binds to a TIMP-1 and (2) neutralizes an MMP-inhibiting activity of the TIMP-1.
- [16] Even another embodiment of the invention is a purified polynucleotide which encodes a human antibody comprising a VLCDR3 region which comprises an amino acid sequence selected from the group consisting of SEQ ID NOS:44-86 and 365-379. The human antibody (1) binds to a TIMP-1 and (2) neutralizes an MMP-inhibiting activity of the TIMP-1.
- [17] Still another embodiment of the invention is an expression vector comprising a polynucleotide which encodes a human antibody comprising a VHCDR3 region which comprises an amino acid sequence selected from the group consisting of SEQ ID NOS:1-43 and 360. The human antibody (1) binds to a TIMP-1 and (2) neutralizes an MMP-inhibiting activity of the TIMP-1.
- [18] A further embodiment of the invention is an expression vector comprising a polynucleotide which encodes a human antibody comprising a VHCDR3 region which comprises an amino acid sequence selected from the group consisting of SEQ ID NOS:1-43 and 360. The human antibody (1) binds to a TIMP-1 and (2) neutralizes an MMP-inhibiting activity of the TIMP-1. The VHCDR3 region is encoded by a nucleotide sequence selected from the group consisting of SEQ ID NOS:227-269.
- [19] Another embodiment of the invention is an expression vector comprising a polynucleotide which encodes a human antibody comprising a VLCDR3 region which comprises an amino acid sequence selected from the group consisting of SEQ ID

NOS:44-86 and 365-379. The human antibody (1) binds to a TIMP-1 and (2) neutralizes an MMP-inhibiting activity of the TIMP-1.

- [20] Yet another embodiment of the invention is an expression vector comprising a polynucleotide which encodes a human antibody comprising a VLCDR3 region which comprises an amino acid sequence selected from the group consisting of SEQ ID NOS:44-86 and 365-379. The human antibody (1) binds to a TIMP-1 and (2) neutralizes an MMP-inhibiting activity of the TIMP-1. The VLCDR3 region is encoded by a nucleotide sequence selected from the group consisting of SEQ ID NOS:184-226.
- [21] Still another embodiment of the invention is an expression vector comprising a polynucleotide which encodes a human antibody comprising a VHCDR3 region which comprises an amino acid sequence selected from the group consisting of SEQ ID NOS:1-43 and 360. The human antibody (1) binds to a TIMP-1 and (2) neutralizes an MMP-inhibiting activity of the TIMP-1. The human antibody comprises a heavy chain having an amino acid sequence selected from the group consisting of SEQ ID NOS:140-182.
- [22] Even another embodiment of the invention is an expression vector comprising a polynucleotide which encodes a human antibody comprising a VHCDR3 region which comprises an amino acid sequence selected from the group consisting of SEQ ID NOS:1-43 and 360. The human antibody (1) binds to a TIMP-1 and (2) neutralizes an MMP-inhibiting activity of the TIMP-1. The human antibody comprises a heavy chain having an amino acid sequence selected from the group consisting of SEQ ID NOS:140-182. The heavy chain is encoded by a nucleotide sequence selected from the group consisting of SEQ ID NOS:269-311.
- [23] A further embodiment of the invention is an expression vector comprising a polynucleotide which encodes a human antibody comprising a VLCDR3 region which comprises an amino acid sequence selected from the group consisting of SEQ ID NOS:44-86 and 365-379. The human antibody (1) binds to a TIMP-1 and (2) neutralizes an MMP-inhibiting activity of the TIMP-1. The human antibody comprises a light chain

having an amino acid sequence selected from the group consisting of SEQ ID NOS:97-139.

- [24] Another embodiment of the invention is an expression vector comprising a polynucleotide which encodes a human antibody comprising a VLCDR3 region which comprises an amino acid sequence selected from the group consisting of SEQ ID NOS:44-86 and 365-379. The human antibody (1) binds to a TIMP-1 and (2) neutralizes an MMP-inhibiting activity of the TIMP-1. The human antibody comprises a light chain having an amino acid sequence selected from the group consisting of SEQ ID NOS:97-139. The light chain is encoded by a nucleotide sequence selected from the group consisting of SEQ ID NOS:312-354.
- [25] Yet another embodiment of the invention is a host cell comprising an expression vector. The expression vector comprises a polynucleotide which encodes a human antibody comprising a VHCDR3 region which comprises an amino acid sequence selected from the group consisting of SEQ ID NOS:1-43 and 360, wherein the human antibody (1) binds to a TIMP-1 and (2) neutralizes an MMP-inhibiting activity of the TIMP-1.
- [26] Yet another embodiment of the invention is a host cell comprising an expression vector. The expression vector comprises a polynucleotide which encodes a human antibody comprising a VHCDR3 region which comprises an amino acid sequence selected from the group consisting of SEQ ID NOS:1-43 and 360, wherein the human antibody (1) binds to a TIMP-1 and (2) neutralizes an MMP-inhibiting activity of the TIMP-1. The VHCDR3 region is encoded by a nucleotide sequence selected from the group consisting of SEQ ID NOS:227-269.
- [27] Still another embodiment of the invention is a host cell comprising an expression vector. The expression vector comprises a polynucleotide which encodes a human antibody comprising a VLCDR3 region which comprises an amino acid sequence selected from the group consisting of SEQ ID NOS:44-86 and 365-379. The human antibody (1) binds to a TIMP-1 and (2) neutralizes an MMP-inhibiting activity of the TIMP-1.

- [28] A further embodiment of the invention is a host cell comprising an expression vector. The expression vector comprises a polynucleotide which encodes a human antibody comprising a VLCDR3 region which comprises an amino acid sequence selected from the group consisting of SEQ ID NOS:44-86 and 365-379. The human antibody (1) binds to a TIMP-1 and (2) neutralizes an MMP-inhibiting activity of the TIMP-1. The VLCDR3 region is encoded by a nucleotide sequence selected from the group consisting of SEQ ID NOS:184-226.
- [29] Another embodiment of the invention is a host cell comprising an expression vector. The expression vector comprises a polynucleotide which encodes a human antibody comprising a VHCDR3 region which comprises an amino acid sequence selected from the group consisting of SEQ ID NOS:1-43 and 360, wherein the human antibody (1) binds to a TIMP-1 and (2) neutralizes an MMP-inhibiting activity of the TIMP-1. The human antibody comprises a heavy chain having an amino acid sequence selected from the group consisting of SEQ ID NOS:140-182.
- [30] Still another embodiment of the invention is a host cell comprising an expression vector. The expression vector comprises a polynucleotide which encodes a human antibody comprising a VHCDR3 region which comprises an amino acid sequence selected from the group consisting of SEQ ID NOS:1-43 and 360, wherein the human antibody (1) binds to a TIMP-1 and (2) neutralizes an MMP-inhibiting activity of the TIMP-1. The human antibody comprises a heavy chain having an amino acid sequence selected from the group consisting of SEQ ID NOS:140-182. The heavy chain is encoded by a nucleotide sequence selected from the group consisting of SEQ ID NOS:269-311.
- [31] Yet another embodiment of the invention is a host cell comprising an expression vector. The expression vector comprises a polynucleotide which encodes a human antibody comprising a VLCDR3 region which comprises an amino acid sequence selected from the group consisting of SEQ ID NOS:44-86 and 365-379. The human antibody (1) binds to a TIMP-1 and (2) neutralizes an MMP-inhibiting activity of the TIMP-1. The human

antibody comprises a light chain having an amino acid sequence selected from the group consisting of SEQ ID NOS:97-139.

- [32] Even another embodiment of the invention is a host cell comprising an expression vector. The expression vector comprises a polynucleotide which encodes a human antibody comprising a VLCDR3 region which comprises an amino acid sequence selected from the group consisting of SEQ ID NOS:44-86 and 365-379. The human antibody (1) binds to a TIMP-1 and (2) neutralizes an MMP-inhibiting activity of the TIMP-1. The human antibody comprises a light chain having an amino acid sequence selected from the group consisting of SEQ ID NOS:97-139. The light chain is encoded by a nucleotide sequence selected from the group consisting of SEQ ID NOS:312-354.
- [33] A further embodiment of the invention is a method of making a human antibody. The host cell of claim 43 is cultured under conditions whereby the antibody is expressed. The human antibody is purified from the host cell culture.
- [34] Another embodiment of the invention is a method of decreasing an MMP-inhibiting activity of a TIMP-1. The TIMP-1 is contacted with a human antibody that binds to the TIMP-1. The MMP-inhibiting activity of the TIMP-1 is decreased relative to MMP-inhibiting activity of the TIMP-1 in the absence of the antibody.
- [35] Still another embodiment of the invention is a method of ameliorating symptoms of a disorder in which TIMP-1 is elevated. An effective amount of a human antibody which neutralizes an MMP-inhibiting activity of the TIMP-1 is administered to a patient having the disorder. Symptoms of the disorder are thereby ameliorated.
- [36] A further embodiment of the invention is a method of detecting a TIMP-1 in a test preparation. The test preparation is contacted with a human antibody that specifically binds to the TIMP-1. The test preparation is assayed for the presence of an antibody-TIMP-1 complex.

- [37] Even another embodiment of the invention is a method to aid in diagnosing a disorder in which a TIMP-1 level is elevated. A sample from a patient suspected of having the disorder is contacted with a human antibody that binds to TIMP-1. The sample is assayed for the presence of an antibody-TIMP-1 complex. Detection of an amount of the complex which is greater than an amount of the complex in a normal sample identifies the patient as likely to have the disorder.
- [38] The invention thus provides human antibodies which bind to TIMP-1 and neutralize MMP-inhibiting activity of TIMP-1. These antibodies can be used, *inter alia*, in diagnostic and therapeutic methods.

BRIEF DESCRIPTION OF THE FIGURES

- [39] FIG. 1. Protein sequences encoded by the HuCAL® V_H and V_L Fab master genes. Seven V_H and V_L sequences are aligned, and the approximate location of restriction endonuclease sites introduced into the corresponding DNA sequences are indicated. The numbering is according to VBASE except for the gap in Vl position 9. In VBASE the gap is set at position 10. See also Chothia *et al.* (1992) *J. Mol. Biol.* 227, 776-798, Tomlinson *et al.* (1995) *EMBO J.* 14, 4628-4638 and Williams *et al.* (1996) *J. Mol. Biol.* 264, 220-232).
- [40] FIG. 2. Nucleotide sequences of the HuCAL® V_H and V_L Fab master genes.
- [41] FIG. 3. Fab display vector pMORPH® 18 Fab 1.
- [42] FIG. 4. Vector map of pMORPH® x9Fab1_FS.
- [43] FIG. 5. Sequence comparison between human and rat TIMP-1. Sequence regions in bold were used for peptide synthesis. Residues that make stronger direct contacts with MMP-3 are italicized, and residues that make weaker direct contacts with MMP-3 are underlined (Gomis-Ruth *et al.*, 1997).

[44] FIG. 6. Activity of MS-BW-3 in human TIMP-1/ MMP-1 assay. Antibody Fab fragments were diluted in triplicate to the indicated concentrations in assay buffer containing 0.05% BSA. After addition of TIMP (final conc. 1.2 nM), MMP (final conc. 1.2 nM), and peptide substrate (final conc. 50 μ M) and incubation for 1-3 h at 37°C fluorescence at Ex320 nm/Em 430 nm was measured. IC₅₀ was calculated as outlined in material and methods section, using 100% MMP-1 activity (in absence of TIMP-1) and 27% MMP-1 activity (in absence of antibody) as reference values.

[45] FIG. 7. Activity of MS-BW-44 in human TIMP-1/ MMP-1 assay. Antibody Fab fragments were diluted in triplicate to the indicated concentrations in assay buffer containing 0.05% BSA. After addition of TIMP (final conc. 1.2 nM), MMP (final conc. 1.2 nM), and peptide substrate (final conc. 50 μ M) and incubation for 1-3 h at 37°C fluorescence at Ex320 nm/Em 430 nm was measured. IC₅₀ was calculated as outlined in material and methods section, using 100% MMP-1 activity (in absence of TIMP-1) and 25% MMP-1 activity (in absence of antibody) as reference values.

[46] FIG. 8. Activity of MS-BW-44, -44-2, 44-6 in human TIMP-1/ MMP-1 assay. Fab antibody fragments were diluted in triplicate to the indicated concentrations in assay buffer containing 0.05% BSA. After addition of TIMP (final conc. 0.4 nM), MMP (final conc. 0.4 nM) and peptide substrate (final conc. 50 μ M) and incubation for 7 h at 37°C fluorescence at Ex320 nm/Em 430 nm was measured. IC₅₀ was calculated as outlined in material and methods section, using 100% MMP-1 activity (in absence of TIMP-1) and 55% MMP-1 activity (in absence of antibody) as reference values.

[47] FIG. 9. Activity of MS-BW-44, -44-2-4, 44-6-1 in human TIMP-1/ MMP-1 assay. Antibody Fab fragments were diluted in triplicate to the indicated concentrations in assay buffer containing 0.05% BSA. After addition of TIMP (final conc. 0.4 nM), MMP (final conc. 0.4 nM), and peptide substrate (final conc. 50 μ M) and incubation for 7 h at 37°C fluorescence at Ex320 nm/Em 430 nm was measured. IC₅₀ was calculated as outlined in

material and methods section, using 100% MMP-1 activity (in absence of TIMP-1) and 50% MMP-1 activity (in absence of antibody) as reference values.

[48] FIG. 10. Binding of Fab fragments to human TIMP-1, -2, -3 and -4. TIMP-1, -2, -3, -4 proteins were immobilized on an ELISA plate, and binding of purified Fab fragments was measured by incubation with alkaline phosphatase conjugated anti-Fab antibody (Dianova) followed by development with Attophos substrate (Roche) and measurement at Ex405nm/Em535 nm.

[49] FIG. 11. Activity of MS-BW-14, -17, -54 in rat TIMP-1/MMP-13 assay. Antibody Fab fragments were diluted in triplicate to the indicated concentrations in assay buffer containing 0.05% BSA. After addition of TIMP (final conc. 1.2 nM), MMP (final conc. 1.2 nM), and peptide substrate (to final conc. 50 μ M) and incubation for 1-3 h at 37°C fluorescence at Ex320 nm/Em 430 nm was measured. IC₅₀ was calculated as outlined in material and methods section, using 100% MMP-13 (in absence of TIMP-1) activity and 20% MMP-13 activity (in absence of antibody) as reference values.

[50] FIG. 12. Activity of MS-BW-14 Fab and IgG₁ and MS-BW-3 IgG₁ in rat TIMP-1/ MMP-13 assay. Antibodies were diluted in triplicate to the indicated concentrations in assay buffer containing 0.05% BSA. After addition of TIMP (final conc. 1.2 nM), MMP (final conc. 1.2 nM) and peptide substrate (to final conc. 50 μ M) and incubation for 1-3 h at 37°C, fluorescence at Ex320 nm/Em 430 nm was measured. IC₅₀ was calculated as outlined in material and methods section, using 100% MMP-13 activity (in absence of TIMP-1) and 30% MMP-13 activity (in absence of antibody) as reference values.

[51] FIG. 13. Activity of MS-BW-17-1 Fab and IgG₁ in rat TIMP-1/ MMP-13 assay. Fab antibody fragments were diluted in triplicate to the indicated concentrations in assay buffer containing 0.05% BSA. After addition of TIMP (final conc. 1.2 nM), MMP (final conc. 1.2 nM) and peptide substrate (to final conc. 50 μ M) and incubation for 1-3 h at 37°C fluorescence at Ex320 nm/Em 430 nm was measured. IC₅₀ was calculated as

outlined in material and methods section, using 100% MMP-13 activity (in absence of TIMP-1) and 15% MMP-13 activity (in absence of antibody) as reference values.

[52] FIG. 14. Effect of the inhibitory effect of MS-BW-17-1 TIMP-1 antibody on bleomycin-induced lung fibrotic collagen.

[53] FIG. 15. Effect of anti-TIMP-1 antibody on fibrotic collagen as stained by Sirius Red in carbon tetrachloride-induced rat liver fibrosis model. Sirius Red-stained area as percent of total field in carbon tetrachloride-treated rats treated with PBS, control antibody, and MS-BW-14 anti-TIMP-1 antibody.

DETAILED DESCRIPTION OF THE INVENTION

[54] The invention provides human antibodies that bind to TIMP-1. These antibodies are useful for a variety of therapeutic and diagnostic purposes.

Characteristics of Human TIMP-1 Antibodies

[55] “Antibody” as used herein includes intact immunoglobulin molecules (e.g., IgG₁, IgG_{2a}, IgG_{2b}, IgG₃, IgM, IgD, IgE, IgA), as well as fragments thereof, such as Fab, F(ab')₂, scFv, and Fv, which are capable of specific binding to an epitope of a human and/or rat TIMP-1 protein. Antibodies that specifically bind to TIMP-1 provide a detection signal at least 5-, 10-, or 20-fold higher than a detection signal provided with other proteins when used in an immunochemical assay. Preferably, antibodies that specifically bind to human and/or rat TIMP-1 do not detect other proteins in immunochemical assays and can immunoprecipitate the TIMP-1 from solution.

[56] The K_d of human antibody binding to TIMP-1 can be assayed using any method known in the art, including technologies such as real-time Bimolecular Interaction Analysis (BIA) (Sjolander & Urbaniczky, *Anal. Chem.* 63, 2338-45, 1991, and Szabo *et al.*, *Curr. Opin. Struct. Biol.* 5, 699-705, 1995). BIA is a technology for studying biospecific interactions in real time, without labeling any of the interactants (e.g., BIACoreTM).

Changes in the optical phenomenon surface plasmon resonance (SPR) can be used as an indication of real-time reactions between biological molecules.

- [57] In a BIAcoreTM assay, some human antibodies of the invention specifically bind to human TIMP-1 with a K_d of about 0.1 nM to about 10 μ M, about 2 nM to about 1 μ M, about 2 nM to about 200 nM, about 2 nM to about 150 nM, about 50 nM to about 100 nM, about 0.2 nM to about 13 nM, about 0.2 nM to about 0.5 nM, about 2 nM to about 13 nM, and about 0.5 nM to about 2 nM. More preferred human antibodies specifically bind to human TIMP-1 with a K_d selected from the group consisting of about 0.2 nM, about 0.3 nM, about 0.5 M, about 0.6 nM, about 2 nM, about 7 nM, about 10 nM, about 11 nM, and about 13 nM.
- [58] Other human antibodies of the invention specifically bind to rat TIMP-1 with a K_d of about 0.1 nM to about 10 μ M, about 2 nM to about 1 μ M, about 2 nM to about 200 nM, about 2 nM to about 150 nM, about 50 nM to about 100 nM, about 1.3 nM to about 13 nM, about 1.8 nM to about 10 nM, about 2 nM to about 9 nM, about 1.3 nM to about 9 nM, and about 2 nM to about 10 nM. Preferred K_d s range from about 0.8 nM, about 1 nM, about 1.3 nM, about 1.9 nM, about 2 nM, about 3 nM, about 9 nM, about 10 nM, about 13 nM, about 14 nM, and about 15 nM.
- [59] Preferably, antibodies of the invention neutralize an MMP-inhibiting activity of the TIMP-1. The MMP can be, for example, MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-10, MMP-11, MMP-12, MMP-13, MMP-19, MMP-20 or MMP-23.
- [60] IC₅₀ for neutralizing MMP-inhibiting activity of TIMP-1 can be measured by any means known in the art. Preferably, IC₅₀ is determined using the high throughput fluorogenic assay described in Bickett *et al.*, *Anal. Biochem.* 212, 58-64, 1993. In a typical fluorogenic assay, the IC₅₀ of a human antibody for neutralizing human TIMP-1 MMP-inhibiting activity ranges from about .1 nM to about 200 nM, about 1 nM to about 100 nM, about 2 nM to about 50 nM, about 5 nM to about 25 nM, about 10 nM to about 15 nM, about 0.2 nM to about 11 nM, about 0.2 nM to about 4 nM, and about 4 nM to about

11 nM. The IC_{50} for neutralizing human TIMP-1 MMP-inhibiting activity of some human antibodies is about 0.2 nM, about 0.3 nM, about 0.4 nM, about 4 nM, about 7 nM, about 9 nM, and about 11 nM.

- [61] A typical IC_{50} for neutralizing rat TIMP-1 MMP-inhibiting activity ranges from about .1 nM to about 300 nM, about 1 nM to about 100 nM, about 2 nM to about 50 nM, about 5 nM to about 25 nM, about 10 nM to about 15 nM, about 1.1 nM to about 14 nM, about 1.6 nM to about 11 nM, about 3 nM to about 7 nM, about 1.1 nM to about 7 nM, about 1.1 nM to about 11 nM, about 3 nM to about 11 nM, and about 3 nM to about 14 nM. The IC_{50} for neutralizing rat TIMP-1 MMP-inhibiting activity of some human antibodies is about 1.1 nM, about 1.6 nM, about 3 nM, about 7 nM, about 11 nM, about 14 nM, about 19 nM, about 20 nM, about 30 nM, and about 100 nM.
- [62] Preferred human antibodies of the invention are those for which the K_d for binding to TIMP-1 and the IC_{50} for neutralizing the MMP-inhibiting activity of the TIMP-1 are approximately equal.
- [63] A number of human antibodies having the TIMP-1 binding and MMP-inhibiting activity neutralizing characteristics described above have been identified by screening the MorphoSys HuCAL[®] Fab 1 library. The CDR cassettes assembled for the HuCAL[®] library were designed to achieve a length distribution ranging from 5 to 28 amino acid residues, covering the stretch from position 95 to 102. Knappik *et al.*, *J. Mol. Biol.* 296, 57-86, 2000. Some clones, however, had shorter VHCDR3 regions. In fact, it is a striking feature of anti-human TIMP-1 human antibodies identified from this library that they all exhibit the combination VH3I2 and a relatively short VHCDR3 region, typically four amino acids.
- [64] In some embodiments of the invention, the VHCDR3 region of a human antibody has an amino acid sequence shown in SEQ ID NOS:1-43. In other embodiments of the invention, the VLCDR3 region of a human antibody has an amino acid sequence shown in SEQ ID NOS:44-86. See Tables 2, 3, and 7. Human antibodies which have TIMP-1

binding and MMP-inhibiting activity neutralizing characteristics of antibodies such as those described above and in Tables 2, 3, and 7 also are human antibodies of the invention.

Obtaining human antibodies

[65] Human antibodies with the TIMP-1 binding and MMP-activity neutralizing characteristics described above can be identified from the MorphoSys HuCAL® library as follows. Human or rat TIMP-1, for example, is coated on a microtiter plate and incubated with the MorphoSys HuCAL® Fab phage library (see Example 1, below). Those phage-linked Fabs not binding to TIMP-1 can be washed away from the plate, leaving only phage which tightly bind to TIMP-1. The bound phage can be eluted, for example, by a change in pH or by elution with *E. coli* and amplified by infection of *E. coli* hosts. This panning process can be repeated once or twice to enrich for a population of antibodies that tightly bind to TIMP-1. The Fabs from the enriched pool are then expressed, purified, and screened in an ELISA assay. The identified hits are then screened in the enzymatic assay described in Bickett *et al.*, 1993, and Bodden *et al.*, 1994. Those Fabs that lead to the degradation of the peptide are likely the ones which bind to TIMP-1, thereby blocking its interaction to MMP-1.

[66] The initial panning of the HuCAL® Fab 1 library also can be performed with TIMP-1 as the antigen in round one, followed in round 2 by TIMP-1 peptides fused to carrier proteins, such as BSA or transferrin, and in round 3 by TIMP-1 again. Human TIMP-1 peptides which can be used for panning include human TIMP-1 residues 2-12 (TCVPPHPQTAF, SEQ ID NO:87; CTSVPPHPQTAF, SEQ ID NO:88; STCVPPHPQTAF, SEQ ID NO:89; STSVPPHPQTAFC, SEQ ID NO:90), 28-36 (CEVNQTTLYQ, SEQ ID NO:91), 64-75 (PAMESVCGYFHR, SEQ ID NO:92), 64-79 (PAMESVCGYFHRSHNR, SEQ ID NO:93; CPAMESVSGYFHRSHNR, SEQ ID NO:94; PAMESVSGYFHRSHNRC, SEQ ID NO:95), and 145-157 (CLWTDQLLQGSE, SEQ ID NO:96). These peptide sequences are selected from

regions of human TIMP-1 that are predicted to interact with MMPs. See Gomis-Ruth *et al.*, *Nature* 389, 77-81, 1997. Directing Fabs toward the MMP-interacting region of human TIMP-1 in round 2 should increase the chance of identifying Fabs that can block the ability of human TIMP-1 to inhibit human MMP-1 activity.

- [67] Another method that can be used to improve the likelihood of isolating neutralizing Fabs is the panning on human TIMP-1 and eluting the binding Fabs with human MMP-1. This strategy should yield higher affinity antibodies than would otherwise be obtained.
- [68] Details of the screening process are described in the specific examples, below. Other selection methods for highly active specific antibodies or antibody fragments can be envisioned by those skilled in the art and used to identify human TIMP-1 antibodies.
- [69] Human antibodies with the characteristics described above also can be purified from any cell that expresses the antibodies, including host cells that have been transfected with antibody-encoding expression constructs. The host cells are cultured under conditions whereby the human antibodies are expressed. A purified human antibody is separated from other compounds that normally associate with the antibody in the cell, such as certain proteins, carbohydrates, or lipids, using methods well known in the art. Such methods include, but are not limited to, size exclusion chromatography, ammonium sulfate fractionation, ion exchange chromatography, affinity chromatography, and preparative gel electrophoresis. A preparation of purified human antibodies is at least 80% pure; preferably, the preparations are 90%, 95%, or 99% pure. Purity of the preparations can be assessed by any means known in the art, such as SDS-polyacrylamide gel electrophoresis. A preparation of purified human antibodies of the invention can contain more than one type of human antibody with the TIMP-1 binding and neutralizing characteristics described above.
- [70] Alternatively, human antibodies can be produced using chemical methods to synthesize its amino acid sequence, such as by direct peptide synthesis using solid-phase techniques (Merrifield, *J. Am. Chem. Soc.* 85, 2149-54, 1963; Roberge *et al.*, *Science* 269, 202-04,

1995). Protein synthesis can be performed using manual techniques or by automation. Automated synthesis can be achieved, for example, using Applied Biosystems 431A Peptide Synthesizer (Perkin Elmer). Optionally, fragments of human antibodies can be separately synthesized and combined using chemical methods to produce a full-length molecule.

- [71] The newly synthesized molecules can be substantially purified by preparative high performance liquid chromatography (e.g., Creighton, PROTEINS: STRUCTURES AND MOLECULAR PRINCIPLES, WH Freeman and Co., New York, N.Y., 1983). The composition of a synthetic polypeptide can be confirmed by amino acid analysis or sequencing (e.g., using Edman degradation).

Assessment of therapeutic utility of human antibodies

- [72] To assess the ability of a particular antibody to be therapeutically useful to treat, liver fibrosis, for example, the antibody can be tested *in vivo* in a rat liver fibrosis model. Thus, preferred human antibodies of the invention are able to block both human and rat TIMP-1 activity. If desired, human Fab TIMP-1 antibodies can be converted into full immunoglobulins, for example IgG₁ antibodies, before therapeutic assessment. This conversion is described in Example 5, below.
- [73] To identify antibodies that cross-react with human and rat TIMP-1, an ELISA can be carried out using rat TIMP-1. Functional cross-reactivity can be confirmed in an enzymatic assay, as described in Bickett *et al.*, *Anal. Biochem.* 212, 58-64, 1993. The assay uses human or rat TIMP-1, human MMP-1 or rat MMP-13 (the rat counterpart of human MMP-1), and a synthetic fluorogenic peptide substrate. Enzyme activity of uncomplexed MMP-1 (or MMP-13) is assessed by observing an increase in a fluorescence signal.
- [74] Antibodies that block human and/or rat TIMP-1 activity can be screened in an ELISA assay that detects the decrease of TIMP-1/MMP-1 complex formation in cultures of

HepG2 cells. Antibodies that meet this criteria can then be tested in a rat liver fibrosis model to assess therapeutic efficacy and correlate this efficacy with the ability of the antibodies to block TIMP-1 inhibition of MMP-1 *in vitro*.

[75] Antibodies that demonstrate therapeutic efficacy in the rat liver fibrosis model can then be tested for binding to and blockade of TIMP-2, -3, and -4 in an *in vitro* enzymatic assay. Blocking the minimum number of TIMPs necessary for efficacy in liver fibrosis or other TIMP-associated pathology is preferable to minimize potential side effects.

Polynucleotides encoding human TIMP-1 antibodies

[76] The invention also provides polynucleotides encoding human TIMP-1 antibodies. These polynucleotides can be used, for example, to produce quantities of the antibodies for therapeutic or diagnostic use.

[77] Polynucleotides that can be used to encode the VHCDR3 regions shown in SEQ ID NOS:1-43 are shown in SEQ ID NOS:226-268, respectively. Polynucleotides that can be used to encode the VLCDR3 region shown in SEQ ID NOS:44-86 are shown in SEQ ID NOS:183-225, respectively. Polynucleotides that encode heavy chains (SEQ ID NOS:140-182) and light chains (SEQ ID NOS:97-139) of human antibodies of the invention that have been isolated from the MorphoSys HuCAL® library are shown in SEQ ID NOS:269-311 and SEQ ID NOS:312-354, respectively.

[78] Polynucleotides of the invention present in a host cell can be isolated free of other cellular components such as membrane components, proteins, and lipids. Polynucleotides can be made by a cell and isolated using standard nucleic acid purification techniques, or synthesized using an amplification technique, such as the polymerase chain reaction (PCR), or by using an automatic synthesizer. Methods for isolating polynucleotides are routine and are known in the art. Any such technique for obtaining a polynucleotide can be used to obtain isolated polynucleotides encoding antibodies of the invention. For example, restriction enzymes and probes can be used to

isolate polynucleotides which encode the antibodies. Isolated polynucleotides are in preparations that are free or at least 70, 80, or 90% free of other molecules.

- [79] Human antibody-encoding DNA molecules of the invention can be made with standard molecular biology techniques, using mRNA as a template. Thereafter, DNA molecules can be replicated using molecular biology techniques known in the art and disclosed in manuals such as Sambrook *et al.* (1989). An amplification technique, such as PCR, can be used to obtain additional copies of the polynucleotides.
- [80] Alternatively, synthetic chemistry techniques can be used to synthesize polynucleotides encoding antibodies of the invention. The degeneracy of the genetic code allows alternate nucleotide sequences to be synthesized that will encode an antibody having, for example, one of the VHCDR3, VLCDR3, light chain, or heavy chain amino acid sequences shown in SEQ ID NOS:1-43, 44-86, 97-139, or 140-182, respectively.

Expression of polynucleotides

- [81] To express a polynucleotide encoding a human antibody of the invention, the polynucleotide can be inserted into an expression vector that contains the necessary elements for the transcription and translation of the inserted coding sequence. Methods that are well known to those skilled in the art can be used to construct expression vectors containing sequences encoding human antibodies and appropriate transcriptional and translational control elements. These methods include *in vitro* recombinant DNA techniques, synthetic techniques, and *in vivo* genetic recombination. Such techniques are described, for example, in Sambrook *et al.* (1989) and in Ausubel *et al.*, CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, New York, N.Y., 1995. See also Examples 1-3, below.
- [82] A variety of expression vector/host systems can be utilized to contain and express sequences encoding a human antibody of the invention. These include, but are not limited to, microorganisms, such as bacteria transformed with recombinant

bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors, insect cell systems infected with virus expression vectors (e.g., baculovirus), plant cell systems transformed with virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids), or animal cell systems.

[83] The control elements or regulatory sequences are those non-translated regions of the vector -- enhancers, promoters, 5' and 3' untranslated regions -- which interact with host cellular proteins to carry out transcription and translation. Such elements can vary in their strength and specificity. Depending on the vector system and host utilized, any number of suitable transcription and translation elements, including constitutive and inducible promoters, can be used. For example, when cloning in bacterial systems, inducible promoters such as the hybrid lacZ promoter of the BLUESCRIPT phagemid (Stratagene, LaJolla, Calif.) or pSPORT1 plasmid (Life Technologies) and the like can be used. The baculovirus polyhedrin promoter can be used in insect cells. Promoters or enhancers derived from the genomes of plant cells (e.g., heat shock, RUBISCO, and storage protein genes) or from plant viruses (e.g., viral promoters or leader sequences) can be cloned into the vector. In mammalian cell systems, promoters from mammalian genes or from mammalian viruses are preferable. If it is necessary to generate a cell line that contains multiple copies of a nucleotide sequence encoding a human antibody, vectors based on SV40 or EBV can be used with an appropriate selectable marker.

[84] Large scale production of human TIMP-1 antibodies can be carried out using methods such as those described in Wurm *et al.*, *Ann. N.Y. Acad. Sci.* 782, 70-78, 1996, and Kim *et al.*, *Biotechnol. Bioengineer.* 58, 73-84, 1998.

Pharmaceutical compositions

[85] Any of the human TIMP-1 antibodies described above can be provided in a pharmaceutical composition comprising a pharmaceutically acceptable carrier. The pharmaceutically acceptable carrier preferably is non-pyrogenic. The compositions can

be administered alone or in combination with at least one other agent, such as stabilizing compound, which can be administered in any sterile, biocompatible pharmaceutical carrier, including, but not limited to, saline, buffered saline, dextrose, and water. A variety of aqueous carriers may be employed, *e.g.*, 0.4% saline, 0.3% glycine, and the like. These solutions are sterile and generally free of particulate matter. These solutions may be sterilized by conventional, well known sterilization techniques (*e.g.*, filtration). The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, etc. The concentration of the antibody of the invention in such pharmaceutical formulation can vary widely, *i.e.*, from less than about 0.5%, usually at or at least about 1% to as much as 15 or 20% by weight and will be selected primarily based on fluid volumes, viscosities, etc., according to the particular mode of administration selected. See U.S. Patent 5,851,525. If desired, more than one type of human antibody, for example with different K_d for TIMP-1 binding or with different IC_{50} s for MMP-inhibiting activity neutralization, can be included in a pharmaceutical composition.

- [86] The compositions can be administered to a patient alone, or in combination with other agents, drugs or hormones. In addition to the active ingredients, these pharmaceutical compositions can contain suitable pharmaceutically-acceptable carriers comprising excipients and auxiliaries that facilitate processing of the active compounds into preparations which can be used pharmaceutically. Pharmaceutical compositions of the invention can be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, parenteral, topical, sublingual, or rectal means.
- [87] After pharmaceutical compositions have been prepared, they can be placed in an appropriate container and labeled for treatment of an indicated condition. Such labeling would include amount, frequency, and method of administration.

Methods of decreasing MMP-inhibiting activity of human TIMP-1

- [88] The invention provides methods of decreasing an MMP-inhibiting activity of human or rat TIMP-1. Such methods can be used therapeutically, as described below, or in a research setting. Thus, the methods can be carried out in a cell-free system, in a cell culture system, or *in vivo*. *In vivo* methods of decreasing MMP-inhibiting activity of human or rat TIMP-1 are described below.
- [89] Human TIMP-1 is contacted with a human antibody that binds to the human TIMP-1, thereby decreasing the MMP-inhibiting activity of the human TIMP-1 relative to human TIMP-1 activity in the absence of the antibody. The antibody can be added directly to the cell-free system, cell culture system, or to an animal subject or patient, or can be provided by means of an expression vector encoding the antibody.

Diagnostic methods

- [90] The invention also provides diagnostic methods, with which human or rat TIMP-1 can be detected in a test preparation, including without limitation a sample of serum, lung, liver, heart, kidney, colon, a cell culture system, or a cell-free system (e.g., a tissue homogenate). Such diagnostic methods can be used, for example, to diagnose disorders in which TIMP-1 is elevated. Such disorders include, but are not limited to, liver fibrosis, alcoholic liver disease, cardiac fibrosis, acute cardiac syndrome, lupus nephritis, glomerulosclerotic renal disease, benign prostate hypertrophy, lung cancer, colon cancer, and idiopathic pulmonary fibrosis. When used for diagnosis, detection of an amount of the antibody-TIMP-1 complex in a test sample from a patient which is greater than an amount of the complex in a normal sample identifies the patient as likely to have the disorder.
- [91] The test preparation is contacted with a human antibody of the invention, and the test preparation is then assayed for the presence of an antibody-TIMP-1 complex. If desired, the human antibody can comprise a detectable label, such as a fluorescent, radioisotopic,

chemiluminescent, or enzymatic label, such as horseradish peroxidase, alkaline phosphatase, or luciferase.

[92] Optionally, the antibody can be bound to a solid support, which can accommodate automation of the assay. Suitable solid supports include, but are not limited to, glass or plastic slides, tissue culture plates, microtiter wells, tubes, silicon chips, or particles such as beads (including, but not limited to, latex, polystyrene, or glass beads). Any method known in the art can be used to attach the antibody to the solid support, including use of covalent and non-covalent linkages, passive absorption, or pairs of binding moieties attached to the antibody and the solid support. Binding of TIMP-1 and the antibody can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtiter plates, test tubes, and microcentrifuge tubes.

Therapeutic methods

[93] The invention also provides methods of ameliorating symptoms of a disorder in which TIMP-1 is elevated. These disorders include, without limitation, liver fibrosis alcoholic liver disease, cardiac fibrosis, acute coronary syndrome, lupus nephritis, glomerulosclerotic renal disease, idiopathic pulmonary fibrosis, benign prostate hypertrophy, lung cancer, colon cancer, and scarring. *See, e.g., Inokubo et al., Am. Heart J. 141, 211-17, 2001; Ylisirnio et al., Anticancer Res. 20, 1311-16, 2000; Holten-Andersen et al., Clin. Cancer Res. 6, 4292-99, 2000; Holten-Andersen et al., Br. J. Cancer 80, 495-503, 1999; Peterson et al., Cardiovascular Res. 46, 307-15, 2000; Arthur et al., Alcoholism: Clinical and Experimental Res. 23, 840-43, 1999; Iredale et al., Hepatol. 24, 176-84, 1996.*

[94] Human antibodies of the invention are particularly useful for treating liver fibrosis. All chronic liver diseases cause the development of fibrosis in the liver. Fibrosis is a programmed uniform wound healing response. Toxic damage or injury caused by foreign proteins cause the deposition of extracellular matrix such as collagen, fibronectin, and laminin. Liver fibrosis and cirrhosis can be caused by chronic degenerative diseases

of the liver such as viral hepatitis, alcohol hepatitis, autoimmune hepatitis, primary biliary cirrhosis, cystic fibrosis, hemochromatosis, Wilson's disease, and non-alcoholic steato-hepatitis, as well as chemical damage.

[95] Altered degradation and synthesis of extracellular matrix (particularly collagens) play central roles in pathogenesis of liver fibrosis. In the early phases, hepatic stellate cells (HSC) are initially activated and release matrix metalloproteases with the ability to degrade the normal liver matrix. When HSC are fully activated, there is a net down-regulation of matrix degradation mediated by increased synthesis and extracellular release of tissue inhibitors of metalloprotease (TIMP)-1 and -2. The dynamic regulation of activity of metalloproteases during liver fibrosis makes them and their inhibitors targets for therapeutic intervention.

[96] Human antibodies of the invention are also particularly useful for treating lung fibrosis. Lung airway fibrosis is a hallmark of airway remodeling in patients with chronic asthma, so human antibodies of the invention are also particularly useful for chronic asthma. Airway remodeling is a well-recognized feature in patients with chronic asthma. TIMP-1 but not TIMP-2 levels were significantly higher in untreated asthmatic subjects than in glucocorticoid-treated subjects or controls ($p < 0.0001$), and were far greater than those of MMP-1, MMP-2, MMP-3, and MMP-9 combined (Mautino *et al.*, Am J Respir Crit Care Med 1999 160:324-330). TIMP-1 mRNA and protein expression are selectively and markedly increased in a murine model of bleomycin-induced pulmonary fibrosis (Am. J. Respir. Cell Mol. Biol. 24:599-607, 2001). This specific elevation of TIMP-1 without increase in MMPs in asthma patients suggests that inhibition of TIMP-1 by an antibody can restore normal collagen degradation in the lung.

[97] Human antibodies of the invention are also particularly useful for treating cancer. TIMP-1 protein has been found to be elevated in plasma of colon (Holten-Andersen *et al.*, Br J Cancer 1999, 80:495-503) and prostate (Jung *et al.*, Int J Cancer, 1997, 74:220-223) cancer patients, and high TIMP-1 plasma level correlates with poor clinical outcome of

colon cancer (Holten-Andersen et al., Clin Cancer Res 2000 6:4292-4299). TIMP-1 induces dose-dependent proliferation of breast tumorigenic clonal cell line and tyrosine phosphorylation (Luparello et al, Breast Cancer Res Treat, 1999, 54:235-244). Therefore, the use of antibody against TIMP-1 may block its ability to induce cancer.

- [98] Human TIMP-1 antibodies can be used to prevent or diminish scar formation, such as scar formation after surgery (particularly ophthalmic surgery) or injury (such as a burn, scrape, crush, cut or tear injury).
- [99] In one embodiment of the invention, a therapeutically effective dose of a human antibody of the invention is administered to a patient having a disorder in which TIMP-1 is elevated, such as those disorders described above. Symptoms of the disorder, including deposition of extracellular matrix, as well as loss of tissue or organ function, are thereby ameliorated.

Determination of a Therapeutically Effective Dose

- [100] The determination of a therapeutically effective dose is well within the capability of those skilled in the art. A therapeutically effective dose refers to that amount of human antibody that reduces MMP-inhibiting activity of the TIMP-1 relative to the activity which occurs in the absence of the therapeutically effective dose.
- [101] The therapeutically effective dose can be estimated initially either in cell culture assays or in animal models, usually rats, mice, rabbits, dogs, or pigs. The animal model also can be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans. A rat liver fibrosis model is described in Example 6.
- [102] Therapeutic efficacy and toxicity, e.g., ED₅₀ (the dose therapeutically effective in 50% of the population) and LD₅₀ (the dose lethal to 50% of the population) of a human antibody, can be determined by standard pharmaceutical procedures in cell cultures or experimental

animals. The dose ratio of toxic to therapeutic effects is the therapeutic index, and it can be expressed as the ratio, LD₅₀/ED₅₀.

- [103] Pharmaceutical compositions that exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies is used in formulating a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that include the ED₅₀ with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, sensitivity of the patient, and the route of administration.
- [104] The exact dosage will be determined by the practitioner, in light of factors related to the patient who requires treatment. Dosage and administration are adjusted to provide sufficient levels of the human antibody or to maintain the desired effect. Factors that can be taken into account include the severity of the disease state, general health of the subject, age, weight, and gender of the subject, diet, time and frequency of administration, drug combination(s), reaction sensitivities, and tolerance/response to therapy. Long-acting pharmaceutical compositions can be administered every 3 to 4 days, every week, or once every two weeks depending on the half-life and clearance rate of the particular formulation.
- [105] Polynucleotides encoding human antibodies of the invention can be constructed and introduced into a cell either *ex vivo* or *in vivo* using well-established techniques including, but not limited to, transferrin-polycation-mediated DNA transfer, transfection with naked or encapsulated nucleic acids, liposome-mediated cellular fusion, intracellular transportation of DNA-coated latex beads, protoplast fusion, viral infection, electroporation, "gene gun," and DEAE- or calcium phosphate-mediated transfection.
- [106] Effective *in vivo* dosages of an antibody are in the range of about 5 mg to about 50 mg/kg, about 50 mg to about 5 mg/kg, about 100 mg to about 500 mg/kg of patient body weight, and about 200 to about 250 mg/kg of patient body weight. For administration of polynucleotides encoding the antibodies, effective *in vivo* dosages are in the range of

about 100 ng to about 200 ng, 500 ng to about 50 mg, about 1 mg to about 2 mg, about 5 mg to about 500 mg, and about 20 mg to about 100 mg of DNA.

[107] The mode of administration of human antibody-containing pharmaceutical compositions of the invention can be any suitable route which delivers the antibody to the host. Pharmaceutical compositions of the invention are particularly useful for parenteral administration, *i.e.*, subcutaneous, intramuscular, intravenous, or intranasal administration.

[108] All patents, patent applications, and references cited in this disclosure are expressly incorporated herein by reference. The above disclosure generally describes the present invention. A more complete understanding can be obtained by reference to the following specific examples, which are provided for purposes of illustration only and are not intended to limit the scope of the invention.

EXAMPLE 1

Construction of a Human Combinatorial Antibody Library (HuCAL® Fab 1)

[109] *Cloning of HuCAL® Fab 1.* HuCAL® Fab 1 is a fully synthetic, modular human antibody library in the Fab antibody fragment format. HuCAL® Fab 1 was assembled starting from an antibody library in the single-chain format (HuCAL® -scFv; Knappik *et al.*, *J. Mol. Biol.* 296, 55, 2000). HuCAL® Fab 1 was cloned into a phagemid expression vector pMORPH® 18 Fab1 (FIG. 3). This vector comprises the Fd fragment with a phoA signal sequence fused at the C-terminus to a truncated gene III protein of filamentous phage, and further comprises the light chain VL-CL with an ompA signal sequence. Both chains are under the control of the lac operon. The constant domains C?, C?, and CH are synthetic genes fully compatible with the modular system of HuCAL® (Knappik *et al.*, 2000).

[110] First, the V? and V? libraries were isolated from HuCAL®-scFv. V?1 fragments were amplified by 15 PCR cycles (Pwo polymerase) with primers 5'-

GTGGTGGTCCGATATC-3' (SEQ ID NO:380) and 5'- AGCGTCACA-CTCGGTGCGGCTTCGGCTGGCCAAGAACGGTTA-3' (SEQ ID NO:381). PCR-products were digested with EcoRV / *Dra*III and gel-purified. VL?-chains were obtained by restriction digest with EcoRV / *Bsi*WI and gel-purified. These V? and V? libraries were cloned into pMORPH® 18 Fab1 cut with *Eco*RV / *Dra*III and *Eco*RV / *Bsi*WI, respectively. After ligation and transformation in *E. coli* TG-1, library sizes of 4.14×10^8 and 1.6×10^8 , respectively, were obtained, in both cases exceeding the V? diversity of HuCAL®-scFv.

- [111] Similarly, the VH library was isolated from HuCAL®-scFv by restriction digest using *Sty*I / *Mun*I. This VH library was cloned into the pMORPH® 18-V? and V? libraries cut with *Sty*I / *Mun*I. After ligation and transformation in *E. coli* TG-1, a total library size of 2.09×10^{10} was obtained, with 67% correct clones (as identified by sequencing of 207 clones).
- [112] *Phagemid rescue, phage amplification and purification.* HuCAL® Fab was amplified in 2 x TY medium containing 34 µg/ml chloramphenicol and 1 % glucose (2 x TY-CG). After helper phage infection (VCSM13) at 37°C at an OD₆₀₀ of about 0.5, centrifugation and resuspension in 2 x TY / 34 µg/ml chloramphenicol/ 50 µg/ml kanamycin, cells were grown overnight at 30°C. Phage were PEG-precipitated from the supernatant (Ausubel *et al.*, 1998), resuspended in PBS/20% glycerol, and stored at -80°C. Phage amplification between two panning rounds was conducted as follows: mid-log phase TG1-cells were infected with eluted phage and plated onto LB-agar supplemented with 1% of glucose and 34 µg/ml of chloramphenicol. After overnight incubation at 30°C, colonies were scraped off and adjusted to an OD₆₀₀ of 0.5. Helper phage were added as described above.

EXAMPLE 2

Solid phase panning

[113] Wells of MaxiSorp™ microtiter plates (Nunc) were coated with rat- or human TIMP protein diluted to 50 µg/ml dissolved in PBS (2 µg/well). After blocking with 5% non-fat dried milk in PBS, 1–5 x 10¹² HuCAL® Fab phage purified as above were added for 1h at 20°C. After several washing steps, bound phage were eluted by pH-elution with 100 mM triethylamine and subsequent neutralization with 1M TRIS-Cl pH 7.0. See Krebs *et al.*, *J. Immunol. Meth.* 254, 67, 2001. Two to three rounds of panning were performed with phage amplification conducted between each round as described above.

EXAMPLE 3

Solution panning

[114] Biotinylated antigen was diluted to 40 nM in PBS, 1013 HuCAL®-Fab 1 phage were added and incubated for 1 h at 20°C. Phage-antigen complexes were captured on Neutravidin plates (Pierce). After several washing steps, bound phages were eluted by different methods (Krebs *et al.*, 2001). Two rounds of panning were routinely performed.

EXAMPLE 4

Subcloning of selected Fab fragments for expression

[115] The Fab-encoding inserts of the selected HuCAL® Fab 1 fragments were subcloned into the expression vector pMORPH® x7_FS (Knappik *et al.*, *J. Mol. Biol.* 296, 55, 2000) to facilitate rapid expression of soluble Fab. The DNA preparation of the selected HuCAL® Fab 1 clones was digested with *Xba*I / *Eco*RI, thus cutting out the Fab encoding insert (ompA-VL and phoA-Fd). Subcloning of the purified inserts into the *Xba*I / *Eco*RI cut vector pMORPH® x7, previously carrying a scFv insert, produces a Fab expression vector designated pMORPH® x9_Fab1_FS (FIG. 4). Fabs expressed in this vector carry two C-terminal tags (FLAG™ and Strep-tagII) for detection and purification.

EXAMPLE 5

Identification of TIMP-binding Fab fragments by ELISA

[116] The wells of 384-well Maxisorp ELISA plates were coated with 20 μ l/well solutions of rat TIMP or human TIMP at a concentration of 5 μ g/ml diluted in coating buffer. Expression of individual Fab in *E. coli* TG-1 from expression vector pMORPH® x9_FS was induced with 0.5 mM IPTG for 12 h at 30°C. Soluble Fab was extracted from the periplasm by osmotic shock (Ausubel *et al.*, 1998) and used in an ELISA. The Fab fragment was detected after incubation with alkaline phosphatase-conjugated anti-Fab antibody (Dianova), followed by development with Attophos substrate (Roche) and measurement at Ex450 nm / Em535 nm. Values at 370 nm were read out after addition of horseradish peroxidase-conjugated anti-mouse IgG antibody and POD soluble substrate (Roche Diagnostics).

EXAMPLE 6

Expression and purification of HuCAL®-Fab 1 antibodies in E. coli

[117] Expression of Fab fragments encoded by pMORPH® x9_FS in TG-1 cells was carried out in shaker flask cultures with 1 liter of 2xTY medium supplemented with 34 μ g/ml chloramphenicol. After induction with 0.5 mM IPTG, cells were grown at 22°C for 16 h. Periplasmic extracts of cell pellets were prepared, and Fab fragments were isolated by Strep-tactin® chromatography (IBA, Goettingen, Germany). The apparent molecular weights were determined by size exclusion chromatography (SEC) with calibration standards. Concentrations were determined by UV-spectrophotometry.

EXAMPLE 7

Construction of HuCAL® immunoglobulin expression vectors

[118] *Heavy chain cloning.* The multiple cloning site of pcDNA3.1+ (Invitrogen) was removed (*NheI / ApaI*), and a stuffer compatible with the restriction sites used for HuCAL® design

was inserted for the ligation of the leader sequences (*NheI / EcoRI*), VH-domains (*EcoRI / BpI*), and the immunoglobulin constant regions (*BpI / ApaI*). The leader sequence (EMBL M83133) was equipped with a Kozak sequence (Kozak, 1987). The constant regions of human IgG₁ (PIR J00228), IgG₄ (EMBL K01316), and serum IgA₁ (EMBL J00220) were dissected into overlapping oligonucleotides with lengths of about 70 bases. Silent mutations were introduced to remove restriction sites non-compatible with the HuCAL[®] design. The oligonucleotides were spliced by overlap extension-PCR.

[119] *Light chain cloning.* The multiple cloning site of pcDNA3.1/Zeo+ (Invitrogen) was replaced by two different stuffers. The ?-stuffer provided restriction sites for insertion of a ?-leader (*NheI / EcoRV*), HuCAL[®]-scFv V?-domains (*EcoRV / BsiWI*) and the ?-chain constant region (*BsiWI / ApaI*). The corresponding restriction sites in the ?-stuffer were *NheI / EcoRV* (?-leader), *EcoRV / HpaI* (V?- domains), and *HpaI / ApaI* (?-chain constant region). The ?-leader (EMBL Z00022) as well as the ?-leader (EMBL L27692) were both equipped with Kozak sequences. The constant regions of the human ?- (EMBL J00241) and ?-chain (EMBL M18645) were assembled by overlap extension-PCR as described above.

[120] *Generation of IgG-expressing CHO-cells.* CHO-K1 cells were co-transfected with an equimolar mixture of IgG heavy and light chain expression vectors. Double-resistant transfectants were selected with 600 µg/ml G418 and 300 µg/ml Zeocin (Invitrogen) followed by limiting dilution. The supernatant of single clones was assessed for IgG expression by capture-ELISA (see below). Positive clones were expanded in RPMI-1640 medium supplemented with 10% ultra-low IgG-FCS (Life Technologies). After adjusting the pH of the supernatant to 8.0 and sterile filtration, the solution was subjected to standard protein A column chromatography (Poros 20 A, PE Biosystems).

EXAMPLE 8

Design of the CDR3 libraries

[121] *V? positions 1 and 2.* The original HuCAL® master genes were constructed with their authentic N-termini: V?I1: QS (CAGAGC), V?I2: QS (CAGAGC), and V?I3: SY (AGCTAT). Sequences containing these amino acids are shown in WO 97/08320. During HuCAL® library construction, the first two amino acids were changed to DI to facilitate library cloning (*Eco*RI site). All HuCAL® libraries contain V?I genes with the *Eco*RV site GATATC (DI) at the 5'-end. All HuCAL® kappa genes (master genes and all genes in the library) contain DI at the 5'-end.

[122] *VH position 1.* The original HuCAL® master genes were constructed with their authentic N-termini: VH1A, VH1B, VH2, VH4, and VH6 with Q (=CAG) as the first amino acid and VH3 and VH5 with E (=GAA) as the first amino acid. Sequences containing these amino acids are shown in WO 97/08320. In the HuCAL® Fab 1 library, all VH chains contain Q (=CAG) at the first position.

[123] *V?I/V?3 position 85.* Because of the cassette mutagenesis procedure used to introduce the CDR3 library (Knappik *et al.*, *J. Mol. Biol.* 296, 57-86, 2000), position 85 of V?I and V?3 can be either T or V. Thus, during HuCAL® scFv 1 library construction, position 85 of V?I and V?3 was varied as follows: V?I original, 85T (codon ACC); V?I library, 85T or 85V (TRIM codons ACT or GTT); V?3 original, 85V (codon GTG); V?3 library, 85T or 85V (TRIM codons ACT or GTT); the same applies to HuCAL® Fab1.

[124] *CDR3 design.* All CDR3 residues which were kept constant are indicated in FIG. 1.

[125] *CDR3 length.* The designed CDR3 length distribution is as follows. Residues which were varied are shown in brackets (x) in FIG. 1. V kappa CDR3, 8 amino acid residues (position 89 to 96) (occasionally 7 residues), with Q90 fixed; V lambda CDR3, 8 to 10 amino acid residues (position 89 to 96) (occasionally 7-10 residues), with Q89, S90, and

D92 fixed; and VH CDR3, 5 to 28 amino acid residues (position 95 to 102) (occasionally 4-28), with D101 fixed.

EXAMPLE 9

Chronic carbon tetrachloride-induced liver fibrosis

[126] Sprague Dawley rats (200-220 g) are used in an *in vivo* model of liver fibrosis. To maximally induce microsomal metabolism of carbon tetrachloride metabolism, animals receive 1 g/l isoniazid with their drinking water starting one week before the administration of carbon tetrachloride. Carbon tetrachloride (1:1 in mineral oil) is administered orally every fifth day at a dose of 0.2 ml/100 g body weight. A human TIMP-1 antibody is administered intravenously, either once or repeatedly, during the period of carbon tetrachloride treatment. Necropsy is performed after 5-7 weeks of treatment. McLean *et al.*, *Br. J. Exp. Pathol.* 50, 502-06, 1969.

[127] Transverse cylinders of liver tissue are cut from the right liver lobe, fixed in formaldehyde, and embedded in paraffin. The amount of fibrosis in the liver is indicated by the picrosirius red-stained fibrotic areas. Picrosirius-positive areas are determined in several centrilobular fields in each section. Parameters of color detection are standardized and kept constant throughout the experiment. The field are selected using a standardized grid which covers an area of 31 mm². A Leica Quantimed 500 MC system is used for morphometry.

EXAMPLE 10

Hydroxyproline determination

[128] The method of Prockop & Udenfried, *Anal. Biochem.* 1, 228-39, 1960, can be used to determine hydroxyproline in liver tissues, with the following modifications. Liver specimens of 60-90 mg wet weight are dried and hydrolyzed in 6 N HCl at 100 °C for 17 h. The hydrolyzed material is dried and reconstituted in 5 ml of deionized water. Two

hundred microliters of this hydrolysate are mixed with 200 ml of ethanol and 200 ml chloramin T solution (0.7 % in citrate buffer [5.7 g sodium acetate, 3.75 g trisodium citrate, 0.55 g citric acid, 38.5 ml ethanol, made up to 100 ml with water]) and allowed to oxidize for 20 min at room temperature. Four hundred microliters of Ehrlich's reagent (12 g p-dimethylaminobenzaldehyde in 40 ml ethanol and 2.7 ml H₂SO₄) are added. After incubation for 3 h at 35 °C, absorbance at 573 nm is measured.

EXAMPLE 11

Affinity determination by surface plasmon resonance measurements (BIAcore™)

[129] For affinity determination, monomeric fractions of affinity and SEC purified Fab fragments or purified IgG1 molecules were used. All experiments were conducted in HBS buffer at a flow rate of 20 µl/min at 25°C on a BIAcore™ instrument. Antigens in 100 mM sodium acetate pH 5.0 were coupled to a CM 5 sensor chip using standard EDC-NHS coupling chemistry. Applying 3-4 µl of 5 µg/ml TIMP-1 typically resulted in 500 resonance units for kinetic measurements. All sensograms were fitted globally using BIA evaluation software. For monovalent Fab fragments a monovalent fit (Langmuir binding) and for IgGs a bivalent fit was applied.

EXAMPLE 12

IC₅₀ determination in human TIMP-1/human MMP-1 and rat TIMP-1/rat MMP-13 assay

[130] Purified Fab fragments or IgGs were used for IC₅₀ determination. Antibodies were diluted in triplicate to the indicated concentrations in assay buffer containing 0.05% BSA. After addition of TIMP (final conc. 1.2 nM or 0.4 nM for modified in human TIMP-1/human MMP-1 assay), MMP (final conc. 1.2 nM or 0.4 nM for modified in human TIMP-1/human MMP-1 assay), and peptide substrate (final conc. 50 µM) and incubation for 1-3 h at 37°C, fluorescence at Ex320 nm/Em430 nm was measured.

[131] The following controls were included in the assay and used as reference values for IC₅₀ determination:

A: MMP + substrate: this value was defined as 100% MMP activity in absence of antibody and TIMP.

B: MMP + TIMP + substrate: this value was defined as maximum inhibition achieved in the assay and calculated as a % of total MMP activity.

[132] To define the concentration of antibody that resulted in 50% reversal of inhibition (IC₅₀), the following procedure was used:

- The value for 50% reversal of inhibition (expressed as % activity MMP) was calculated as: $Y = [(A - B)/2] + B$.
- MMP activity was plotted against concentration of antibody in the assay.
- The concentration of antibody that results in 50% reversal of inhibition (Y) was read on the x-axis and defined as IC₅₀.
- Error bars in the graphs were derived from triplicate wells in one assay.
- Standard deviations for IC₅₀ values were calculated from 3 independent assays.

EXAMPLE 13

Affinity maturation of selected Fab by stepwise exchange of CDR cassettes

[133] To increase affinity and biological activity of selected antibody fragments, CDR regions were optimized by cassette mutagenesis using trinucleotide directed mutagenesis (Virnekäs *et al.*, 1994). Fab fragments in expression vector pMORPH® x9 were cloned into phagemid vector pMORPH® _18 using EcoRI / XbaI restriction sites. CDR cassettes containing several diversified positions were synthesized and cloned into Fab fragments in pMORPH® _18 using unique restriction sites (Knappik *et al.*, 2000). Affinity

maturation libraries were generated by transformation into *E. coli* TOP10F, and phage were prepared as described above. Phage displaying Fab fragments with improved affinity were selected by 2-3 rounds solution panning using stringent washing conditions (e.g., competition with 1 μ M non-biotinylated antigen or washing for up to 48 h with frequent buffer exchange) and limited amounts of antigen (0.04 – 4 nM). Seventeen human TIMP-1 antibodies were tested for affinity to human TIMP-1 (with some tested for affinity to rat TIMP-1) using a BIACoreTM assay. The K_d of these antibodies for human TIMP-1 and rat TIMP-1 are shown in Table 1.

Table 1. Overview of species cross-reactive Fab

Fab	Monovalent K _D human TIMP-1	Monovalent K _D rat TIMP-1	IC ₅₀ in human protease assay	IC ₅₀ in rat protease assay
MS-BW-25	25+/- 16 nM*	4517 +/- 2400 nM	115 +/- 15 nM	> 300 nM
MS-BW-27	~74 nM	~3200 nM		Non blocking
MS-BW-21	520+/- 20 nM	36 +/- 2 nM	> 300 nM	67 +/- 5 nM
MS-BW-38	~3 nM	~353 nM	~11 nM	> 300 nM
MS-BW-39	~7500 nM	~108 nM	> 100 nM	> 100 nM

* In cases were standard deviations are given, three independent measurements were done with Fab from three different protein expressions/purifications.

~ Indicates preliminary data, in cases where measurement was done only once.

EXAMPLE 14

Screening for Fab with improved off-rates by koff ranking using surface plasmon resonance

- [134] Phage eluted after solution panning were used to infect *E. coli* TG-1 and plated on agar plates containing 34 μ g/ml chloramphenicol. Clones were picked into 96 well plates and used to produce Fab fragments. On the same plate, parental clones were inoculated as controls. Soluble Fab was extracted from the periplasm by osmotic shock (Ausubel *et al.*, 1998) and used for koff ranking in BIACoreTM.
- [135] All measurements were conducted in HBS buffer at a flow rate of 20 μ l/min at 25°C on a BIACoreTM instrument. Antigens in 100 mM sodium acetate pH 4.5 were coupled to a CM 5 sensor chip using standard EDC-NHS coupling chemistry. Applying 10 μ l of 25 μ g/ml TIMP-1 typically resulted in 5000 resonance units for koff ranking. All sensograms were fitted using BIA evaluation software. Clones with improved off rate were selected by comparison to parental clones.

EXAMPLE 15

Generation of species cross-reactive antibodies

- [136] To maximize the likelihood of obtaining blocking antibodies that are cross-reactive between human and rat TIMP-1, alternating pannings were carried out on rat and human protein. Additionally, all antibodies selected by pannings on solely the human or rat TIMP-1 protein were analyzed for cross-reactivity in order to check for cross-reactive antibodies that might be selected by chance. Antibodies selected from these pannings were analyzed for cross-reactivity in ELISA using crude *E. coli* extracts. Cross-reactive antibodies in this assay were subjected to expression in 1-liter scale followed by purification. Purified antibodies were tested for cross-reactivity in BIACoreTM and protease assays (Table 1).

[137] As shown in Table 1, a total of five different Fab cross-reactive with human and rat TIMP-1 were generated. BIACore™ measurements revealed that although these antibodies clearly bind to human and rat TIMP-1, affinities for both species differ by at least a factor of 50. An antibody used for human therapy or in an animal model should have an affinity to the target protein in the low nanomolar, preferably in the sub-nanomolar range. As none of the above-described antibodies had affinities in this range for both species, these antibodies were not considered useful for further experiments or development.

EXAMPLE 16

Generation of blocking antibodies against human TIMP-1

[138] To generate blocking antibodies against human TIMP-1, the HuCAL®-Fab 1 library was used for antibody selection (AutoPan®) on purified TIMP-1 protein followed by subcloning and expression of the selected Fab fragments in *E. coli*. Crude antibody-containing *E. coli* extracts were used for primary antibody characterization in ELISA (AutoScreen®). Purified Fab proteins were subjected to further characterization in ELISA, TIMP-1/MMP-1 assay and BIACore™. A total of 6100 clones were analyzed in AutoScreen®, 670 of them showed binding to human TIMP-1. Sequence analysis revealed that in total seven unique antibody clones had been selected (Table 2). For these seven Fab clones, the affinities measured in BIACore™ were in the range of 10 – 180 nM (Table 4). When tested in the human protease assay, five of them were able to block the interaction between human TIMP-1 and MMP-1. The concentration of monovalent Fab needed to reverse the inhibitory effect of human TIMP-1 on human MMP-1 activity by 50% (IC₅₀) was in the range of 11 - 100 nM (Table 2). The most active Fab clones are MS-BW-3 (K_d 13 nM; IC₅₀ 11 nM) and MS-BW-28 (K_d 10 nM; IC₅₀ 22 nM).

[139] A striking feature of antibodies selected against human TIMP-1 is that they all exhibit the combination VH312 and a relatively short VH-CDR3 region, predominantly four amino acids (see Table 2). The HCDR3 cassettes assembled for the HuCAL®-Fab 1 library

were designed to achieve a length distribution ranging from 5 to 28 amino acid residues. A four amino acid HCDR3 can occur in the library due to TRIM deletion, but is considered a very rare event. Another remarkable feature was the high degree of sequence homology among the selected LCDR3 sequences.

Table 2. Overview of anti-human TIMP-1 Fab

Fab	Framework + CDR 3 sequence				Monovalent K_D to human TIMP-1	IC_{50} in human protease assay
	VH	HCDR3	VL	LCDR3		
MS-BW-1	H3	FMDI, SEQ ID NO:1	?2	QSYDYQQFT, SEQ ID NO:44	65+/-13 nM*	>100 nM
MS-BW-2	H3	GFDY, SEQ ID NO:2	?2	QSYDFKTYL, SEQ ID NO:45	180+/-28 nM	>100 nM
MS-BW-3	H3	FLDI, SEQ ID NO:3	?2	QSYDFLRFs, SEQ ID NO:46	13+/-2 nM	11+/-2 nM
MS-BW-25	H3	TFPIDADS, SEQ ID NO:4	?2	QSYDFINVI, SEQ ID NO:47	25+/-16 nM	115+/-15 nM
MS-BW-26	H3	GHVDY, SEQ ID NO:5	?2	QSYDFVRFM, SEQ ID NO:48	~100 nM	non blocking
MS-BW-27	H3	YWRGLSFDI, SEQ ID NO:6	?2	QSYDFYKFN, SEQ ID NO:49	~74	non blocking
MS-BW-28	H3	FFDY, SEQ ID NO:7	?2	QSYDFRRFS, SEQ ID NO:50	10+/-1 nM	22+/-2 nM

* In cases were standard deviations are given, three independent measurements were done with Fab from three different protein expressions/purifications.
~ Indicates preliminary data, in cases where measurement was done only once.

EXAMPLE 17

Increasing the affinity of selected anti-human TIMP-1 antibodies

[140] In order to increase the affinity of monovalent anti-human TIMP-1 Fab fragments to the sub-nanomolar range, a step-wise affinity maturation approach was applied, by optimizing CDR sequences and keeping framework regions constant.

Affinity maturation by light chain cloning

[141] The CDR3 sequences of the two antibody fragments with highest affinity (MS-BW-3 and MS-BW-28) had the remarkable feature of an unusually short four amino acid HCDR3 sequence. Furthermore, each Fab had a very similar LCDR3 sequence. This indicates that MS-BW-3 and MS-BW-28 bind to the same epitope and that this epitope might tolerate only a very small subset of CDR3 sequences. As a four amino acid HCDR3 is a very rare event in the library, it can be anticipated that in the initial library not all possible combinations of the short HCDR3 and the preferred LCDR3 are present. Therefore, it was considered that another combination of the selected HCDR3 and LCDR3 sequences might increase the affinity. For this approach, the heavy chain of MS-BW-3 and MS-BW-28 were paired with the light chains of MS-BW-1, -2, -3, -25, -26, -27, and -28 by cloning.

[142] The resulting constructs were transformed into *E. coli* and expressions/purifications in 1-liter scale were performed. Of the 12 new constructs, 10 resulted in functional Fab molecules. These were analyzed in BIACore™ and human protease assay as summarized in Table 3. The best antibody named MS-BW-44 had a monovalent affinity of 2 nM and an IC₅₀ of 4 nM (FIG. 7) and was thus improved by a factor of 6.5 (K_d) or 2.75 (IC₅₀).

Table 3. Overview of Fab derived from light chain cloning

Fab	Framework + CDR 3 sequence				Monovalent K_D to human TIMP-1	IC_{50}^* in human protease assay
	VH	HCDR3	VL	LCDR3		
MS-BW-40	H3	FLDI, SEQ ID NO:3	?2	QSYDYQQFT, SEQ ID NO:44	~49 nM	> 100 nM
MS-BW-41	H3	FLDI, SEQ ID NO:3	?2	QSYDFKTYL, SEQ ID NO:45	~6 nM	29+-6nM
MS-BW-43	H3	FLDI, SEQ ID NO:3	?2	QSYDFINVI, SEQ ID NO:47	~65 nM	> 100 nM
MS-BW-44	H3	FLDI, SEQ ID NO:3	?2	QSYDFVRFM, SEQ ID NO:48	2 +/- 0.4 nM*	4 +/- 1 nM
MS-BW-45	H3	FLDI, SEQ ID NO:3	?2	QSYDFYKFN, SEQ ID NO:49	8 +/- 5 nM	9 +/- 3 nM
MS-BW-46	H3	FLDI, SEQ ID NO:3	?2	QSYDFRRFS, SEQ ID NO:50	6 +/- 3 nM	4 +/- 0.5 nM
MS-BW-47	H3	FFDY, SEQ ID NO:7	?2	QSYDYQQFT, SEQ ID NO:44	~152 nM	> 100 nM
MS-BW-49	H3	FFDY, SEQ ID NO:7	?2	QSYDFKTYL, SEQ ID NO:45	~21 nM	> 100 nM
MS-BW-51	H3	FFDY, SEQ ID NO:7	?2	QSYDFINVI, SEQ ID NO:47	~7 nM	7 +/- 1 nM
MS-BW-52	H3	FFDY, SEQ ID NO:7	?2	QSYDFVRFM, SEQ ID NO:48	~11 nM	9 +/- 1 nM

* In cases where standard deviations are given, three independent measurements were done with Fab from three different protein expressions/purifications.

~ Indicates preliminary data, in cases where measurement was done only once.

Affinity maturation by optimizing HCDR1 and HCDR2

[143] In the HuCAL®-Fab 1 library, only the CDRs HCDR3 and LCDR3 are diversified to a high extent. Although it is known from crystallographic studies that amino acids from these two CDRs make most of the antibody antigen contacts, the residual four CDRs are also important for antigen binding. However, their contribution to the binding energy can vary from antibody to antibody. In the HuCAL®-Fab 1 library those CDRs exhibit only a limited variability due to the presence of the different master frameworks (Knappik *et al.*, 2000). In order to improve the affinity of the selected antibodies, an affinity maturation approach by randomizing HCDR1 and HCDR2 was applied. For this approach two affinity maturation libraries based on MS-BW-44 cloned into phage display vector pMORPH® 18 were created. In library 1, only HCDR2 of MS-BW-44 was diversified using "TRIM technology" as described in Virnekäs *et al.*, *Nucl. Acids. Res.* 22, 5600-07, 1994; Knappik *et al.*, *J. Mol. Biol.* 296, 57-86, 2000. In library 2, both HCDR1 and HCDR2 were diversified using the TRIM technology. In both cases, phage antibody libraries comprising 1×10^8 different clones were obtained. Both libraries were mixed and used as input for a modified AutoPan® procedure. In order to select antibodies having an increased affinity to human TIMP-1, solution panning using limiting amounts of biotinylated antigen and stringent washing conditions were applied. Antibody off rates were ranked by BIAcore™ using crude *E. coli* extracts of selected antibodies. Clones with slower off rate than parental clone MS-BW-44 were subjected to 1-liter scale expression and purification. Purified Fab were analyzed in BIAcore™ and human protease assay (Table 4).

Table 4. Comparison of Fab derived from HCDR1 and HCDR2 optimization with parental clone MS-BW-44

Fab	Monovalent K_D to human TIMP-1	IC_{50} in human protease assay*
MS-BW-44	2 +/- 0.4 nM	2 +/- 0.5 nM
MS-BW-44-2	0.5 +/- 0.2 nM	0.4 +/- 0.3 nM
MS-BW-44-6	0.6 +/- 0.2 nM	0.2 +/- 0.1 nM

* IC_{50} values derived from modified protease assay using decreased amounts of TIMP-1 and MMP-1 (0.4 nM each).

[144] Clone MS-BW-44-2 was derived from library 1 thus having a modified HCDR2 cassette. Its affinity measured by BIAcore™ was 0.5 nM. Clone MS-BW-44-6 was derived from library 2 having a modified HCDR 1 and HCDR 2 cassette and the affinity measured by BIAcore™ was 0.6 nM. A sequence comparison between the affinity matured antibodies and their parental clones is shown in Table 8.

Table 8: Overview and sequence comparison of affinity matured Fab fragments against human TIMP-1. Sequence changes compared to parental Fab fragments (**bold**) are italicized

Clone	VH		VL		Monov. K_D to human TIMP-1 (nM)	IC_{50} In human protease assay (nM)	
	Frame- work	HCDR1 sequence (SEQ ID NO:)	HCDR2 sequence (SEQ ID NO:)	Framework	HCDR3 sequence (SEQ ID NO:)		
3	VH3 (355)	AISGGGGSTYYADSVRG (357)	ELDI (3)	VL2	TGTSSDVGGINYVS (363)	QSYDFLRF3 (47)	13 +/- 2
44	VH3 (355)	AISGGGGSTYYADSVRG (357)	ELDI (3)	VL2	TGTSSDVGGINYVS (363)	QSYDFLRF3 (47)	13 +/- 2
44-6	VH3 (356)	GTGESSYAMS (358)	ELDI (3)	VL2	TGTSSDVGGINYVS (363)	QSYDFVRFM (48)	2 +/- 0.4
44-2	VH3 (355)	GTGESSYAMS (356)	ELDI (3)	VL2	TGTSSDVGGINYVS (363)	QSYDFVRFM (48)	4 +/- 1
44-2-4	VH3 (355)	GTGESSYAMS (359)	GIAGDY (360)	VL2	TGTSSDVGGINYVS (363)	QSYDFVRFM (48)	0.6 +/- 0.2
44-2-15	VH3 (355)	GTGESSYAMS (359)	WFDH (361)	VL2	TGTSSDVGGINYVS (363)	QSYDFVRFM (48)	0.6 +/- 0.1
44-2-16	VH3 (355)	GTGESSYAMS (359)	WFDV (362)	VL2	TGTSSDVGGINYVS (363)	QSYDFVRFM (48)	0.3 +/- 0.1
44-6-1	VH3 (356)	GTGESSYAMS (358)	ELDI (3)	VL2	TGTSSDVGGINYVS (363)	QSYDFVRFM (365)	0.2 +/- 0.04

* IC_{50} values derived from modified protease assay using decreased amounts of TIMP-1 and MMP-1; IC_{50} of MS-BW-44 is 2 nM under these conditions

[145] When initially analyzed in the human TIMP-1/MMP-1 assay, it was not possible to distinguish a Fab with a sub-nanomolar affinity from a Fab with 1 nM affinity, most likely because the concentration of Fab required to reverse the inhibitory effect of human TIMP-1 on human MMP-1 activity by 50% was below the concentration of total TIMP-1 in the assay. When a modified assay was used with concentrations of TIMP-1 and MMP-1 decreased from 1.2 nM to 0.4 nM, it was possible to distinguish a 2 nM Fab from a sub-nanomolar Fab (Table 4, FIG. 8). Using this modified protease assay, MS-BW-44-2 and MS-BW-44-6 had IC₅₀ values of 0.4 nM and 0.2 nM respectively. Parental clone MS-BW-44 had an IC₅₀ of 2 nM under these conditions. Thus, by this affinity maturation approach, an affinity gain of a factor of 5 (K_d) or 5-10 (IC₅₀) was achieved.

Affinity maturation by optimizing HCDR3

[146] As mentioned above, amino acid residues in HCDR3 and LCDR3 are considered the most important for antigen binding. Taking into account that a four amino acid HCDR3 was not planned in the design of HuCAL®-Fab 1 and thus only occurs as a rare case due to a TRIM deletion, probably not all possible combinations of the four amino acids in HCDR3 were represented in the original HuCAL®-Fab 1 library. Therefore, an affinity maturation library was constructed with four and five amino acid HCDR3 maturation cassettes inserted into Fab derived from the previous maturation cycle (among them MS-BW-44-2 and MS-BW-44-6). The obtained affinity maturation library had a diversity of 1 x 10⁸ clones, therefore theoretically covering all possible four and five amino acid HCDR3 variations. Applying very stringent panning conditions, the best antibody identified, MS-BW-44-2-4, had an affinity measured by BIACore™ of 0.2 nM and an IC₅₀ in human TIMP-1/MMP-1 assay of 0.2 nM. A sequence comparison between the affinity matured antibodies and their parental clones is shown in Table 8. The improvement factor gained by this affinity maturation approach is 2.5 with respect to the affinity and 2 with respect to the IC₅₀.

Affinity maturation by optimizing LCDR3

[147] As an alternative approach, a maturation strategy was used to further optimize the light chain CDR3 sequence. This was due to the fact that in the first maturation cycle where light chain exchange cloning between selected antibodies was applied, only a very limited subset of sequence variation had been exploited. Therefore, a maturation library was constructed in which, using TRIM technology, a diversified LCDR3 cassette was inserted into Fab derived from HCDR1 and HCDR2 optimization (among them MS-BW-44-2 and MS-BW-44-6). The best Fab identified with this maturation strategy was MS-BW-44-6-1 with an affinity measured by BIACore™ of 0.15 nM and an IC₅₀ in a human TIMP-1/MMP-1 assay of 0.2 nM. A sequence comparison between the affinity matured antibody and its parental clones is shown in Table 8. The improvement factor gained by this maturation approach is 4 with respect to affinity. A further improvement of the IC₅₀ in the protease assay could not be measured due to limitations in the assay.

[148] As a result of a step-wise affinity maturation approach using four different maturation strategies, the monovalent affinity of an anti-human TIMP-1 specific Fab fragment was improved by a factor of 87 and its activity in human TIMP-1/MMP-1 assay by a factor of 55. The decision for defining the best Fab fragment has been made on the basis of K_d measurements using BIACore™, as this method proved to be reliable for ranking antibodies with sub-nanomolar affinities, whereas the sensitivity of the human TIMP-1/MMP-1 assay was considered not suitable to rank activity of the best Fabs in the sub-nanomolar range with respect to each other.

[149] The best Fab MS-BW-44-6-1 has an affinity measured by BIACore™ of 0.15 nM and an IC₅₀ in human TIMP-1/MMP-1 assay of 0.2 nM. Compared to its parental clone, MS-BW-3, it has optimized LCDR3, HC DR1 and HC DR2 sequences.

EXAMPLE 18

Cross reactivity of selected anti-human TIMP-1 Fab with TIMP-2, TIMP-3, and TIMP-4

[150] TIMP-1 belongs to a family of closely related protease inhibitors all binding to various members of the MMP family of proteases. To date there are four human TIMP proteins described. To investigate potential cross-reactivity of antibody fragments selected against human TIMP-1 with other members of the human TIMP family, an ELISA was performed in which binding of antibody fragments to immobilized purified human TIMP-1, -2, -3 or -4 was analyzed (FIG. 10). Antibody fragments binding to immobilized human TIMP-1 showed no binding to human TIMP-2, -3, -4 above background level when compared to unrelated control protein BSA.

EXAMPLE 19

Generation of blocking antibodies against rat TIMP-1

[151] To generate blocking antibodies against rat TIMP-1, the HuCAL®-Fab 1 library was used for antibody selection (AutoPan®) on immobilized rat TIMP-1 followed by subcloning and expression of the selected Fab fragments in *E. coli*. Crude antibody-containing *E. coli* extracts were used for primary antibody characterization in ELISA (AutoScreen®). Purified Fab proteins were subjected to further characterization in ELISA, protease assays, and BIAcore™. Of the 8,450 selected clones were analyzed in AutoScreen®, 750 of them showed binding to rat TIMP-1. Sequence analysis revealed that in total 36 unique Fab clones specific for rat TIMP-1 were enriched during selection (Table 7). Their affinities were measured by BIAcore™ and were found to be in the range of 9 - 1000 nM (Table 7). When tested in the rat protease assay, all but one of them were able to block the interaction between rat TIMP-1 and rat MMP-13 (Table 7). The concentration of monovalent Fab needed to reverse the inhibitory effect of rat TIMP-1 on rat MMP-13 activity by 50% (IC₅₀) was in the range of 7 - 300 nM. The most active Fab

clones are MS-BW-14 (K_d 10 nM; IC_{50} 14 nM), MS-BW-17 (K_d 13 nM; IC_{50} 11 nM), and MS-BW-54 (K_d 9 nM; IC_{50} 7 nM).

Table 7. Overview of anti-rat TIMP-1 Fab

Fab	Framework + CDR 3 sequence				Monovalent K_D to rat TIMP-1	IC_{50}^* in rat protease assay
	VH	HCDR3	VL	LCDR3		
MS-BW-5	H1A	GLYWAAYPPFDF, SEQ ID NO:8	?1	QSRDFFNRGP, SEQ ID NO:51	~210 nM	non blocking
MS-BW-6	H3	LDTYYPDLFDY, SEQ ID NO:9	?1	QSYDQRKWK, SEQ ID NO:52	~68 nM	~100 nM
MS-BW-7	H1A	TYYYFDS, SEQ ID NO:10	?3	QQLYGTVS, SEQ ID NO:53	~168 nM	> 300 nM
MS-BW-9	H3	YMAAYMAEAIDV, SEQ ID NO:11	?1	QSYDGFKTH, SEQ ID NO:54	~256 nM	> 300 nM
MS-BW-10	H1B	LVGIVGYKPDELLYFDV, SEQ ID NO:12	?3	QSYDYSLL, SEQ ID NO:55	~200 nM	~30 nM
MS-BW-11	H3	YGAYFGLDY, SEQ ID NO:13	?3	QSYDFNFH, SEQ ID NO:56	~200 nM	>300 nM
MS-BW-12	H6	GYADISFDY, SEQ ID NO:14	?2	QSYDMIARYP, SEQ ID NO:57	~419 nM	>300 nM
MS-BW-13	H3	YYLLLDY, SEQ ID NO:15	?3	QSWDHFDFY, SEQ ID NO:58	~939 nM	not tested
MS-BW-14	H1A	WSDQSYHYYWHPYFDV, SEQ ID NO:16	?1	QSWDLEPY, SEQ ID NO:59	10 +/- 5 nM	14 +/- 3 nM
MS-BW-15	H3	LIGYFDL, SEQ ID NO:17	?2	QSYDVLDSE, SEQ ID NO:60	~80 nM	~200 nM
MS-BW-17	H5	LTNYFDSSYYDH, SEQ ID NO:18	?2	QSYDPSPHSK, SEQ ID NO:61	13 +/- 3 nM	11 +/- 3 nM
MS-BW-18	H5	LVGGYDLMFDS, SEQ ID NO:19	?2	QSYDDMQF, SEQ ID NO:62	~153 nM	> 300 nM
MS-BW-19	H5	YVTYGYDDYHF DY, SEQ ID NO:20	?2	QSWDINHAI, SEQ ID NO:63	~187 nM	> 300 nM
MS-BW-20	H1A	SGYLDY, SEQ ID NO:21	?2	QSYDYYDYG, SEQ ID NO:64	~70 nM	> 300 nM

MS-BW-21	H1A	YIGYTNVMDIRPGYFLDY, SEQ ID NO:22	?3	QQANDFPI, SEQ ID NO:65	36 +/- 2 nM	67 +/- 5 nM
MS-BW-22	H5	FRAYGDDFYFDV, SEQ ID NO:23	?2	QSWDNLKMPV, SEQ ID NO:66	35 nM	65 +/- 11 nM
MS-BW-23	H1B	JMWSDYQQLVKGGDI, SEQ ID NO:24	?2	QSYDVFPINR, SEQ ID NO:67	~207 nM	> 300 nM
MS-BW-24	H5	YYVTDYAYFDY, SEQ ID NO:25	?2	QSDLYFP, SEQ ID NO:68	23 nM	20 +/- 1 nM
MS-BW-29	H5	HDFDGSIFMDF, SEQ ID NO:26	?2	QSYDVTPIR, SEQ ID NO:69	~214 nM	>100 nM
MS-BW-30	H5	YAGHQYEFFFDF, SEQ ID NO:27	?3	QSRDPVGFP, SEQ ID NO:70	~36 nM	>100 nM
MS-BW-31	H5	LYADADYFDY, SEQ ID NO:28	?2	QSYDLSPR, SEQ ID NO:71	~13 +/- 9 nM	>100 nM
MS-BW-32	H1A	TKYVGSEDV, SEQ ID NO:29	?2	QSYDFSHYFF, SEQ ID NO:72	~92 nM	>100 nM
MS-BW-36	H5	YRYPHMFDF, SEQ ID NO:30	?3	QSYDLRYSH, SEQ ID NO:73	~42 nM	~75 nM
MS-BW-37	H5	LFAGLELYFDY, SEQ ID NO:31	?2	QSYDLRNR, SEQ ID NO:74	10 +/- 9 nM	>100 nM
MS-BW-38	H3	GGFFNMDY, SEQ ID NO:32	?2	QSYDFTYGS, SEQ ID NO:75	~353 nM	>300 nM
MS-BW-39	H1A	GYIPYHLDY, SEQ ID NO:33	?3	QQFNDSPY, SEQ ID NO:76	~108 nM	>100 nM
MS-BW-54	H5	YYGFEYDLDNFN, SEQ ID NO:34	?2	QSYDISGYP, SEQ ID NO:77	9 +/- 1 nM	7 nM
MS-BW-55	H1B	ITYIGYDF, SEQ ID NO:35	?2	QSRDLYYYYY, SEQ ID NO:78	~23 nM	~100 nM
MS-BW-56	H1A	QEWWYMDY, SEQ ID NO:36	?3	QSYDRSMW, SEQ ID NO:79	~170 nM	> 100 nM
MS-BW-57	H5	LYPEDLIYFDY, SEQ ID NO:37	?2	QSWDQTDK, SEQ ID NO:80	~39 nM	~60 nM
MS-BW-58	H6	WMTPPGHYYGYTFDV, SEQ ID NO:38	?3	QSWDPSHYY, SEQ ID NO:81	~138 nM	not tested
MS-BW-59	H5	LRVHDYAMYFDL, SEQ ID NO:39	?2	QSYDIMPER, SEQ ID NO:82	~15 nM	30 +/- 5 nM

MS-BW-60	H5	FVSYNGSVPYFDY, SEQ ID NO:40	? 2	QSMDFRLMH, SEQ ID NO:83	~30 nM	> 100 nM
MS-BW-61	H5	IIGDYVIFFDV, SEQ ID NO:41	? 2	QSFDMIHPY, SEQ ID NO:84	~51 nM	> 100 nM
MS-BW-62	H5	LFTYPFLYFDV, SEQ ID NO:42	? 2	QSDFPVM, SEQ ID NO:85	~36 nM	19 +/- 2
MS-BW-63	H5	ILTGHVLIFDY, SEQ ID NO:43	? 2	QSDNPYL, SEQ ID NO:86	~14 nM	20 +/- 1 nM

* In cases where standard deviations are given, three independent measurements were done with Fab from three different protein expressions/purifications.
~ Indicates preliminary data, in cases where measurement was done only once.

EXAMPLE 20

Increasing the affinity of selected anti-rat TIMP-1 antibodies

[152] Affinity maturation was applied to increase the affinity of monovalent anti-rat TIMP-1 Fab fragments to the sub-nanomolar range. No clear sequence homology could be identified among the light chain CDR3 sequences of the selected antibody fragments, indicating that an optimal light chain CDR3 sequence was probably not present or had not been selected from the original HuCAL®-Fab 1 library. We therefore started with modification of LCDR3 to increase the affinity of Fabs.

[153] Two affinity maturation libraries based on MS-BW-14, -17, and -54 cloned into phage display vector pMORPH® 18 were created. In library 1, only LCDR3 was diversified using TRIM technology, as described in Virnekäs *et al.*, *Nucl. Acids. Res.* 22, 5600-07, 1994; Knappik *et al.*, *J. Mol. Biol.* 296, 57-86, 2000. In library 2, LCDR1, LCDR2, and LCDR3 were diversified simultaneously using the TRIM technology, while the connecting framework regions were kept constant. In both cases, phage antibody libraries comprising 3×10^8 different clones were obtained. Both libraries were mixed and used as input for a modified AutoPan® procedure. To select antibodies having an increased affinity to rat TIMP-1, solution panning using limiting amounts of biotinylated antigen and stringent washing conditions were applied.

[154] Antibody-off-rates were ranked by BIACore™ using crude *E. coli* extracts. Clones with slower off rate than parental clones MS-BW-14, -17, or -54 were subjected to expression and purification in 1-liter scale. Purified Fab were analyzed in BIACore™ and rat protease assays (Table 6). MS-BW-17-1 (K_d 0.8 nM, IC_{50} 1.6 nM), MS-BW-17-2 (K_d 1.3 nM, IC_{50} 1.1 nM), and MS-BW-17-3 (K_d 1.9 nM, IC_{50} 3 nM) were derived from affinity maturation library 1 having an optimized LCDR3 sequence, whereas MS-BW-

54-1 (K_d 2 nM, IC_{50} 3 nM) was derived from affinity maturation library 2 having an optimized LCDR1, -2, and -3 sequence (Table 9).

Table 9. Overview and sequence comparison of affinity matured Fab fragments against rat TIMP-1. Sequence changes compared to parental Fab fragments (**bold**) are italicized.

Clone (MS- BW-)	VH			VL			Monov. K _D	IC ₅₀ in rat protease assay (nM)
	Frame- work	HCDR1 sequence (SEQ ID NO:)	HCDR2 sequence (SEQ ID NO:)	Frame- work	LCDR1 sequence (SEQ ID NO:)	LCDR2 sequence (SEQ ID NO:)		
14	VH1A GCTFSSTAIS (366)	GLIPIFETANTAZQRFQG (368)	WSDQSYHXYWHP^YFDV (370)	V1L1 SGSSSNIGSNIVS (371)	LMIYDNQNRDS (373)	QSDNDLEPX (59)	10 +/- 5	14 +/- 3
17	VH5 GYSFTSYWIG (367)	IIYPGDSDTRYSPSFGQ (369)	LTNYFDIYDHD (18)	VL2 TGTSSSDVGGYNYVS (363)	LMIYDVSNRPS (374)	QSDTDVSNRPS (61)	13 +/- 3	11 +/- 3
54	VH5 GYSFTSYWIG (367)	IIYPGDSDTRYSPSFGQ (369)	YXGFEXDILFEDN (34)	VL2 TGTSSDVGGYNYVS (363)	LMIYDVSNRPS (374)	QSDTDVSNRPS (77)	9 +/- 1	7
17-1	VH5 GYSFTSYWIG (367)	IIYPGDSDTRYSPSFGQ (369)	LTNYFDIYDHD (18)	VL2 TGTSSDVGGYNYVS (363)	LMIYDVSNRPS (374)	QAFDVAPNG (376)	0.8	1.6
17-2	VH5 GYSFTSYWIG (367)	IIYPGDSDTRYSPSFGQ (369)	LTNYFDIYDHD (18)	VL2 TGTSSDVGGYNYVS (363)	LMIYDVSNRPS (374)	QAFAVMPNV (377)	1.3	1.1
17-3	VH5 GYSFTSYWIG (367)	IIYPGDSDTRYSPSFGQ (369)	LTNYFDIYDHD (18)	VL2 TGTSSDVGGYNYVS (363)	LMIYDVSNRPS (374)	QSFTVSPGA (378)	1.9	3
54-1	VH5 GYSFTSYWIG (367)	IIYPGDSDTRYSPSFGQ (369)	YXGFEXDILFEDN (34)	VL2 TGTSSDVGGYNYVS (372)	LMIYAGNNRPS (375)	QAYDSSGGP (379)	2	3

[155] The improvement gained by these different one-step maturation strategies was up to a factor of 16.3 with regard to affinity and 10 with regard to functional activity in the protease assay.

EXAMPLE 21

Conversion of anti-TIMP-1 Fab fragments into human IgG₁ molecules for use in the rat model of chronic carbon tetrachloride-induced liver fibrosis

[156] Anti-TIMP-1 Fab fragments were converted into human IgG₁ molecules to create antibody molecules with prolonged *in vivo* half-lives for the use in the rat model of chronic carbon tetrachloride-induced liver fibrosis. This was done by cloning the heavy and light chain variable regions of the Fab into two separate vectors for mammalian IgG₁ expression (Krebs *et al.*, 2001)

[157] Anti-rat TIMP-1 clone MS-BW-14 was chosen for the first *in vivo* study, and IgG₁ protein was produced by transient expression. Anti-human TIMP-1 clone MS-BW-3 was selected as a negative control IgG₁ and was also produced by transient expression. Purified IgG₁ proteins MS-BW-14 and MS-BW-3 were subjected to quality control in BIAcore™ and rat TIMP-1/rat MMP-13 assays. Bivalent affinity for rat TIMP-1 measured in BIAcore™ (chip density 500 RU, fitting model for bivalent analyte) is 0.2 nM for MS-BW-14, compared to 13 nM for the corresponding monovalent Fab fragment. This increase in affinity for the IgG₁ is due to the avidity effects caused by binding of bivalent IgG₁ to immobilized rat TIMP-1 protein on the BIAcore™ chip. As expected, the negative control IgG₁ MS-BW-3 showed no binding to rat TIMP-1 but bound to human TIMP-1 with a bivalent affinity of approximately 0.4 nM.

[158] FIG. 12 shows the activity of MS-BW-14 Fab and IgG₁ and MS-BW-3 IgG₁ in a rat TIMP-1/rat MMP-13 assay. The IC₅₀ of MS-BW-14 Fab and IgG₁ are nearly identical. The avidity effect seen in BIAcore™ does not occur in this assay because, in contrast to

the BIAcore™ experiment, this assay is based on a monovalent interaction in solution between TIMP-1 and the IgG₁. As expected, MS-BW-3 has no effect on rat TIMP-1 binding to rat MMP-13 and thus is a suitable negative control for a rat *in vivo* study.

[159] Affinity matured clone MS-BW-17-1 was then converted from a monovalent Fab fragment to a bivalent IgG₁. Protein was produced by stable transfection. Purified protein was subjected to quality control in BIAcore™ and rat TIMP-1/rat MMP-13 assays (FIG. 13). In BIAcore™ an increased bivalent affinity (avidity) of 0.04 nM for IgG₁ compared to 0.8 nM for monovalent Fab fragment was seen, whereas the activity in the rat TIMP-1/rat MMP-13 assay was comparable for IgG₁ and Fab as expected.

EXAMPLE 22

Cross-reactivity of anti-rat TIMP-1 IgG₁ MS-BW-17-1 with mouse TIMP-1

[160] Species cross-reactivity of MS-BW-17-1 IgG₁ and Fab with mouse TIMP-1 was determined by BIAcore™ to investigate the feasibility of alternative *in vivo* models that use mice instead of rats. Although MS-BW-17-1 clearly bound to mouse TIMP-1 immobilized to the chip surface, the affinity of both Fab (180 nM) and IgG₁ (9 nM) was 225-fold weaker than the affinity to rat TIMP-1. As the interaction between mouse TIMP-1 and BW-17-1 IgG₁ in serum is most likely monovalent, the affinity of BW-17-1 Fab probably reflects the “real” affinity of this interaction. Therefore, the Fab affinity value should be considered when calculating the feasibility of using BW-17-1 IgG₁ in a mouse *in vivo* study.

EXAMPLE 23

Effect of Timp-1 antibody on the development of bleomycin-induced pulmonary fibrosis

- [161] The following example demonstrates the ability of a human anti-rat Timp-1 antibody (BW17.1) to prevent fibrotic collagen deposition in a bleomycin-induced rat lung fibrosis model.
- [162] Male Lewis rats (6 weeks of age) received a single intratracheal challenge with bleomycin (0.3 mg/rat, in saline) or vehicle (saline) on day 0. Fourteen days later, animals were euthanized, the lung excised, fixed, and processed for evaluation of lung fibrosis. Lung tissue sections were cut, and quantitative assessment by image analysis of lung collagen in lung tissue sections stained with Mason Trichrome stain performed.
- [163] Antibody administration: A 20 mg/kg dose of human ant-rat TIMP-1 antibody or control human antibody (IgG) was administered subcutaneously on day -1. Subsequently, a 10mg/kg dose of human ant-rat TIMP-1 antibody or control human antibody (IgG) was administered s.c. on days 2, 5, 8, and 11. The following five groups of animals were studied: Saline i.t. challenge + antibody vehicle (PBS); Saline i.t. challenge + TIMP-1 antibody; Bleomycin i.t. challenge + TIMP-1 antibody; Bleomycin i.t. challenge + antibody vehicle (PBS); Bleomycin i.t. challenge + control antibody.
- [164] FIG. 14 shows the effect of the inhibitory effect of TIMP-1 antibody on bleomycin-induced lung fibrotic collagen.

EXAMPLE 24

Effect of BW-14 anti-TIMP-1 antibody in a rat model with CCl₄-induced liver fibrosis

- [165] Carbon tetrachloride (CCl₄) was used to induce liver fibrosis as described in Example 9. A single intravenous dose of 3 mg/kg BW-14 or control antibody BW-3, respectively,

was administered on day 19. At this time, total liver collagen (hydroxyproline determined according to Prockop and Udenfried) is already significantly increased by CCl_4 , and fibrotic collagen rapidly accumulates during the following weeks. The rats were sacrificed on day 28. The treatment groups were: no CCl_4 + control antibody BW 3 (n=10 rats), CCl_4 + control antibody BW 3 (n=20 rats), and CCl_4 + BW 14 (n=20 rats).

[166] The effect of control vs. TIMP-1 antibody as reflected in morphometric measurements of fibrous collagen (Sirius Red stained area as percentage of the total field) is shown in FIG. 15. Comparison of both control antibody treated groups shows that CCl_4 caused an approximately three-fold increase in collagen area. BW-14 antibody treatment reduced the pathological collagen increment by 26%. The lower fibrous collagen value of the CCl_4 + BW-14 group compared to the CCl_4 + BW-3 group was statistically significant ($p < 0.05$, Kolmogorow-Smirnow test).

REFERENCES

[167] Ausubel *et al.* (1998) Current Protocols in Molecular Biology. Wiley, New York, USA.

[168] Better *et al.*, (1988) Escherichia coli secretion of an active chimeric antibody fragment. Science 240, 1041.

[169] Bruggeman *et al.*, (1996) Phage antibodies against an unstable hapten: oxygen sensitive reduced flavin. FEBS Lett. 388, 242.

[170] Butler *et al.*, (1999) Human tissue inhibitor of metalloproteinases 3 interacts with both the N- and C-terminal domains of gelatinases A and B. Regulation by polyanions. J Biol Chem. 274, 10846.

[171] Gomis-Ruth *et al.*, (1996). Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1. Nature. 389, 77.

- [172] Griffiths, A.D. and Duncan, A.R. (1998) Strategies for selection of antibodies by phage display. *Curr. Opin. Biotechnol.* 9, 102.
- [173] Hoogenboom, H.R. and Winter, G. (1992). By-passing immunisation. Human antibodies from synthetic repertoires of germline VH gene segments rearranged *in vitro*. *J. Mol. Biol.* 227, 381.
- [174] Iredale *et al.*, (1996) Tissue inhibitor of metalloproteinase-1 messenger RNA expression is enhanced relative to interstitial collagenase messenger RNA in experimental liver injury and fibrosis. *Hepatology*. 24, 176.
- [175] Knappik *et al.*, (2000) Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs diversified with trinucleotides. *J. Mol. Biol.* 296, 55.
- [176] Krebs *et al.*, (2001) High-throughput generation and engineering of recombinant human antibodies. *J Immunol Methods*. 254, 67.
- [177] Lowman, H.B. (1997) Bacteriophage display and discovery of peptide leads for drug development. *Annu. Rev. Biophys. Biomol. Struct.* 26, 401.
- [178] McCafferty *et al.*, (1990) Phage antibodies: filamentous phage displaying antibody variable domains. *Nature* 348, 552.
- [179] Meng *et al.*, (1999) Residue 2 of TIMP-1 is a major determinant of affinity and specificity for matrix metalloproteinases but effects of substitutions do not correlate with those of the corresponding P1' residue of substrate. *J Biol Chem.* 274, 10184.
- [180] Meulemans *et al.*, (1994) Selection of phage-displayed antibodies specific for a cytoskeletal antigen by competitive elution with a monoclonal antibody. *J. Mol. Biol.* 244, 353.

- [181] Miyazaki *et al.*, (1999) Changes in the specificity of antibodies by site-specific mutagenesis followed by random mutagenesis. *Protein Eng.* 12, 407.
- [182] Sheets *et al.*, (1998) Efficient construction of a large nonimmune phage antibody library: The production of high-affinity human single-chain antibodies to protein antigens. *Proc. Natl. Acad. Sci. U.S.A.* 95, 6157.
- [183] Skerra, A. and Plückthun, A. (1988) Assembly of a functional immunoglobulin Fv fragment in *Escherichia coli*. *Science* 240, 1038.
- [184] Smith, G.P. (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. *Science* 228, 1315.
- [185] Smith, G.P. and Petrenko, V.A. (1997) Phage display. *Chem. Rev.* 97, 391.
- [186] Stausbøl-Grøn *et al.* (1996) A model phage display subtraction method with potential for analysis of differential gene expression. *FEBS Lett.* 391, 71.
- [187] Virnekäs *et al.* (1994) Trinucleotide phosphoramidites: ideal reagents for the synthesis of mixed oligonucleotides for random mutagenesis. *Nucl. Acids Res.* 22, 5600.

CLAIMS

1. A purified preparation of a human antibody, wherein the antibody:
binds to a tissue inhibitor of metalloprotease-1 (TIMP-1); and
neutralizes a matrix metalloprotease (MMP)-inhibiting activity of the TIMP-1.
2. The preparation of claim 1 wherein the MMP is human MMP-1.
3. The preparation of claim 2 wherein the MMP is rat MMP-13.
4. The preparation of claim 1 wherein the TIMP-1 is a human TIMP-1.
5. The preparation of claim 4 wherein the antibody binds to the human TIMP-1 with
a K_d selected from the group consisting of about 0.1 nM to about 10 μ M, about 2 nM to
about 1 μ M, about 2 nM to about 200 nM, about 2 nM to about 150 nM, about 50 nM to
about 100 nM, about 0.2 nM to about 13 nM, about 0.2 nM to about 0.5 nM, about 2 nM to
about 13 nM, and about 0.5 nM to about 2 nM.
6. The preparation of claim 4 wherein the antibody binds to the human TIMP-1 with
a K_d selected from the group consisting of about 0.2 nM, about 0.3 nM, about 0.5 M, about
0.6 nM, about 2 nM, about 7 nM, about 10 nM, about 11 nM, and about 13 nM.
7. The preparation of claim 4 wherein the antibody neutralizes the MMP-inhibiting
activity of the human TIMP-1 with an IC_{50} selected from the group consisting of about .1 nM
to about 200 nM, about 1 nM to about 100 nM, about 2 nM to about 50 nM, about 5 nM to
about 25 nM, about 10 nM to about 15 nM, about 0.2 nM to about 11 nM, about 0.2 nM to
about 4 nM, and about 4 nM to about 11 nM.

8. The preparation of claim 4 wherein the antibody neutralizes the MMP-inhibiting activity of the human TIMP-1 with an IC_{50} selected from the group consisting of about 0.2 nM, about 0.3 nM, about 0.4 nM, about 4 nM, about 7 nM, about 9 nM, and about 11 nM.

9. The preparation of claim 4 wherein the K_d for binding to human TIMP-1 and the IC_{50} for neutralizing the MMP-inhibiting activity of the human TIMP-1 are approximately equal.

10. The preparation of claim 1 wherein the TIMP-1 is a rat TIMP-1.

11. The preparation of claim 10 wherein the antibody binds to the rat TIMP-1 with a K_d selected from the group consisting of about 0.1 nM to about 10 μ M, about 2 nM to about 1 μ M, about 2 nM to about 200 nM, about 2 nM to about 150 nM, about 50 nM to about 100 nM, about 1.3 nM to about 13 nM, about 1.8 nM to about 10 nM, about 2 nM to about 9 nM, about 1.3 nM to about 9 nM, and about 2 nM to about 10 nM.

12. The preparation of claim 10 wherein the antibody binds to the rat TIMP-1 with a K_d selected from the group consisting of about 0.8 nM, about 1 nM, about 1.3 nM, about 1.9 nM, about 2 nM, about 3 nM, about 9 nM, about 10 nM, about 13 nM, about 14 nM, and about 15 nM.

13. The preparation of claim 10 wherein the antibody neutralizes the rat TIMP-1 activity with an IC_{50} selected from the group consisting of about 1 nM to about 300 nM, about 1 nM to about 100 nM, about 2 nM to about 50 nM, about 5 nM to about 25 nM, about 10 nM to about 15 nM, about 1.1 nM to about 14 nM, about 1.6 nM to about 11 nM, about 3

nM to about 7 nM, about 1.1 nM to about 7 nM, about 1.1 nM to about 11 nM, about 3 nM to about 11 nM, and about 3 nM to about 14 nM.

14. The preparation of claim 10 wherein the antibody neutralizes the rat TIMP-1 activity with an IC₅₀ selected from the group consisting of about 1.1 nM, about 1.6 nM, about 3 nM, about 7 nM, about 11 nM, about 14 nM, about 19 nM, about 20 nM, about 30 nM, and about 100 nM.

15. The preparation of claim 10 wherein the K_d for binding to rat TIMP-1 and the IC₅₀ for neutralizing the MMP-inhibiting activity of the rat TIMP-1 are approximately equal.

16. A purified preparation of a human antibody which comprises a VHCDR3 region comprising an amino acid sequence selected from the group consisting of SEQ ID NOS:1-43 and 360.

17. A purified preparation of a human antibody which comprises a VLCDR3 region comprising an amino acid sequence selected from the group consisting of SEQ ID NOS:44-86 and 365-379.

18. A purified preparation of a human antibody which comprises a VHCDR3 and VLCDR3 amino acid sequence pair selected from the group consisting of SEQ ID NOS:1 and 44, SEQ ID NOS:2 and 45, SEQ ID NO:3 and 46, SEQ ID NOS:4 and 47, SEQ ID NOS:5 and 48, SEQ ID NOS:6 and 49, SEQ ID NOS:7 and 50, SEQ ID NOS:3 and 44, SEQ ID NOS:3 and 45, SEQ ID NOS:3 and 47, SEQ ID NOS:3 and 48, SEQ ID NOS:3 and 49, SEQ ID NOS:3 and 50, SEQ ID NOS:7 and 44, SEQ ID NOS:7 and 45, SEQ ID NOS:7 and 47, SEQ ID NOS:7 and 48, SEQ ID NOS:8 and 51, SEQ ID NOS:9 and 52, SEQ ID NOS:10

and 53, SEQ ID NOS:11 and 54, SEQ ID NOS:12 and 55, SEQ ID NOS:13 and 56, SEQ ID NOS:14 and 57, SEQ ID NOS:15 and 58, SEQ ID NOS:16 and 59, SEQ ID NOS:17 and 60, SEQ ID NOS:18 and 61, SEQ ID NOS:19 and 62, SEQ ID NOS:20 and 63, SEQ ID NOS:21 and 64, SEQ ID NOS:22 and 65, SEQ ID NOS:23 and 66, SEQ ID NOS:24 and 67, SEQ ID NOS:25 and 68, SEQ ID NOS:26 and 69, SEQ ID NOS:27 and 70, SEQ ID NOS:28 and 71, SEQ ID NOS:29 and 72, SEQ ID NOS:30 and 73, SEQ ID NOS:31 and 74, SEQ ID NOS:32 and 75, SEQ ID NOS:33 and 76, SEQ ID NOS:34 and 77, SEQ ID NOS:35 and 78, SEQ ID NOS:36 and 79, SEQ ID NOS:37 and 80, SEQ ID NOS:38 and 81, SEQ ID NOS:39 and 82, SEQ ID NOS:40 and 83, SEQ ID NOS:41 and 84, SEQ ID NOS:42 and 85, SEQ ID NOS:43 and 86, SEQ ID NOS:3 and 48, SEQ ID NOS:360 and 48, SEQ ID NOS:3 and 365, SEQ ID NOS:16 and 59, SEQ ID NOS:18 and 61, SEQ ID NOS:34 and 77, SEQ ID NOS:34 and 379, SEQ ID NOS:18 and 376, SEQ ID NOS:18 and 377, and SEQ ID NOS:18 and 378.

19. A purified preparation of a human antibody comprising a VHCDR3 and VLCDR3 amino acid sequence pair selected from the group consisting of SEQ ID NOS:1 and 44, SEQ ID NOS:2 and 45, SEQ ID NO:3 and 46, SEQ ID NOS:4 and 47, SEQ ID NOS:5 and 48, SEQ ID NOS:6 and 49, SEQ ID NOS:7 and 50, SEQ ID NOS:3 and 44, SEQ ID NOS:3 and 45, SEQ ID NOS:3 and 47, SEQ ID NOS:3 and 48, SEQ ID NOS:3 and 49, SEQ ID NOS:3 and 50, SEQ ID NOS:7 and 44, SEQ ID NOS:7 and 45, SEQ ID NOS:7 and 47, SEQ ID NOS:7 and 48, SEQ ID NOS:8 and 51, SEQ ID NOS:9 and 52, SEQ ID NOS:10 and 53, SEQ ID NOS:11 and 54, SEQ ID NOS:12 and 55, SEQ ID NOS:13 and 56, SEQ ID NOS:14 and 57, SEQ ID NOS:15 and 58, SEQ ID NOS:16 and 59, SEQ ID NOS:17 and 60, SEQ ID

NOS:18 and 61, SEQ ID NOS:19 and 62, SEQ ID NOS:20 and 63, SEQ ID NOS:21 and 64, SEQ ID NOS:22 and 65, SEQ ID NOS:23 and 66, SEQ ID NOS:24 and 67, SEQ ID NOS:25 and 68, SEQ ID NOS:26 and 69, SEQ ID NOS: 27 and 70, SEQ ID NOS:28 and 71, SEQ ID NOS:29 and 72, SEQ ID NOS:30 and 73, SEQ ID NOS:31 and 74, SEQ ID NOS:32 and 75, SEQ ID NOS:33 and 76, SEQ ID NOS:34 and 77, SEQ ID NOS:35 and 78, SEQ ID NOS:36 and 79, SEQ ID NOS:37 and 80, SEQ ID NOS:38 and 81, SEQ ID NOS:39 and 82, SEQ ID NOS:40 and 83, SEQ ID NOS:41 and 84, SEQ ID NOS:42 and 85, SEQ ID NOS:43 and 86, SEQ ID NOS:3 and 48, SEQ ID NOS:360 and 48, SEQ ID NOS:3 and 365, SEQ ID NOS:16 and 59, SEQ ID NOS:18 and 61, SEQ ID NOS:34 and 77, SEQ ID NOS:34 and 379, SEQ ID NOS:18 and 376, SEQ ID NOS:18 and 377, and SEQ ID NOS:18 and 378.

20. The purified preparation of claim 19 wherein the human antibody comprises a heavy chain having an amino acid sequence selected from the group consisting of SEQ ID NOS:140-182.

21. The purified preparation of claim 19 wherein the human antibody comprises a light chain having an amino acid sequence selected from the group consisting of SEQ ID NOS:97-139.

22. A purified preparation of a human antibody which comprises a heavy chain and a light chain amino acid pair selected from the group consisting of SEQ ID NOS:140 and 97, SEQ ID NOS:141 and 98, SEQ ID NOS:142 and 99, SEQ ID NOS:143 and 100, SEQ ID NOS:144 and 101, SEQ ID NOS:145 and 102, SEQ ID NOS:146 and 103, SEQ ID NOS:142 and 97, SEQ ID NOS:142 and 98, SEQ ID NOS:142 and 100, SEQ ID NOS:142 and 101,

SEQ ID NOS:142 and 102, SEQ ID NOS:142 and 103, SEQ ID NOS:146 and 97, SEQ ID NOS:146 and 98, SEQ ID NO:146 and 100, SEQ ID NOS:146 and 101, SEQ ID NOS:148 and 104, SEQ ID NOS:148 and 105, SEQ ID NOS:149 and 106, SEQ ID NOS:150 and 107, SEQ ID NOS:151 and 108, SEQ ID NOS:152 and 109, SEQ ID NOS:153 and 110, SEQ ID NOS:154 and 111, SEQ ID NOS:155 and 112, SEQ ID NOS:156 and 113, SEQ ID NOS:157 and 114, SEQ ID NOS:158 and 115, SEQ ID NOS:159 and 116, SEQ ID NOS:160 and 117, SEQ ID NOS:161 and 118, SEQ ID NOS:162 and 119, SEQ ID NOS:163 and 120, SEQ ID NOS:164 and 121, SEQ ID NOS:165 and 122, SEQ ID NOS:166 and 123, SEQ ID NOS:167 and 124, SEQ ID NOS:168 and 125, SEQ ID NOS:169 and 126, SEQ ID NOS:170 and 127, SEQ ID NOS:171 and 128, SEQ ID NOS:172 and 129, SEQ ID NOS:173 and 130, SEQ ID NOS:174 and 131, SEQ ID NOS:175 and 132, SEQ ID NOS:176 and 133, SEQ ID NOS:177 and 134, SEQ ID NOS:178 and 135, SEQ ID NOS:179 and 136, SEQ ID NOS:180 and 137, SEQ ID NOS:181 and 138, and SEQ ID NOS:182 and 139.

23. A pharmaceutical composition comprising:

a human antibody which (1) binds to a TIMP-1 and (2) neutralizes an MMP-inhibiting activity of the TIMP-1; and
a pharmaceutically acceptable carrier.

24. The pharmaceutical composition of claim 23 wherein the MMP is human MMP-1.
25. The pharmaceutical composition of claim 23 wherein the MMP is rat MMP-13.
26. The pharmaceutical composition of claim 23 wherein the TIMP-1 is a human TIMP-1.

27. The pharmaceutical composition of claim 23 wherein the TIMP-1 is a rat TIMP-1.
28. The pharmaceutical composition of claim 23 wherein a K_d for binding to the TIMP-1 and an IC_{50} for neutralizing the MMP-1-inhibiting activity of the TIMP-1 are approximately equal.
29. A purified polynucleotide which encodes a human antibody comprising a VHCDR3 region which comprises an amino acid sequence selected from the group consisting of SEQ ID NOS:1-43 and 360, wherein the human antibody (1) binds to a TIMP-1 and (2) neutralizes an MMP-inhibiting activity of the TIMP-1.
30. The purified polynucleotide of claim 31 wherein the VHCDR3 region is encoded by a nucleotide sequence selected from the group consisting of SEQ ID NOS:227-269.
31. A purified polynucleotide which encodes a human antibody comprising a VLCDR3 region which comprises an amino acid sequence selected from the group consisting of SEQ ID NOS:44-86 and 365-379, wherein the human antibody (1) binds to a TIMP-1 and (2) neutralizes an MMP-inhibiting activity of the TIMP-1.
32. The purified polynucleotide of claim 31 wherein the VLCDR3 region is encoded by a nucleotide sequence selected from the group consisting of SEQ ID NOS:184-226.
33. The purified polynucleotide of claim 31 wherein the human antibody comprises a heavy chain having an amino acid sequence selected from the group consisting of SEQ ID NOS:140-182.
34. The purified polynucleotide of claim 33 wherein the heavy chain is encoded by a nucleotide sequence selected from the group consisting of SEQ ID NOS:269-311.

35. The purified polynucleotide of claim 33 wherein the human antibody comprises a light chain having an amino acid sequence selected from the group consisting of SEQ ID NOS:97-139.

36. The purified polynucleotide of claim 35 wherein the light chain is encoded by a nucleotide sequence selected from the group consisting of SEQ ID NOS:312-354.

37. An expression vector comprising the polynucleotide of claim 29.

38. An expression vector comprising the polynucleotide of claim 30.

39. An expression vector comprising the polynucleotide of claim 31.

40. An expression vector comprising the polynucleotide of claim 32.

41. An expression vector comprising the polynucleotide of claim 33.

42. An expression vector comprising the polynucleotide of claim 34.

43. An expression vector comprising the polynucleotide of claim 35.

44. An expression vector comprising the polynucleotide of claim 36.

45. A host cell comprising the expression vector of claim 37.

46. A host cell comprising the expression vector of claim 38.

47. A host cell comprising the expression vector of claim 39.

48. A host cell comprising the expression vector of claim 40.

49. A host cell comprising the expression vector of claim 41.

50. A host cell comprising the expression vector of claim 42.

51. A host cell comprising the expression vector of claim 43.

52. A host cell comprising the expression vector of claim 44.

53. A method of making a human antibody, comprising the steps of:
 - culturing the host cell of claim 45 under conditions whereby the antibody is expressed; and
 - purifying the human antibody from the host cell culture.
54. The method of claim 55 wherein the expression vector comprises a polynucleotide sequence selected from the group consisting of SEQ ID NOS:183-357.
55. A method of decreasing an MMP-inhibiting activity of a TIMP-1, comprising the step of:
 - contacting the TIMP-1 with a human antibody that binds to the TIMP-1, whereby the MMP-inhibiting activity of the TIMP-1 is decreased relative to MMP-inhibiting activity of the TIMP-1 in the absence of the antibody.
56. The method of claim 55 wherein the MMP is human MMP-1.
57. The method of claim 55 wherein the MMP is rat MMP-13.
58. The method of claim 55 wherein the TIMP-1 is a human TIMP-1.
59. The method of claim 55 wherein the TIMP-1 is a rat TIMP-1.
60. The method of claim 55 wherein the step of contacting is carried out in a cell-free system.
61. The method of claim 55 wherein the step of contacting is carried out in a cell culture system.
62. The method of claim 55 wherein the step of contacting is carried out *in vivo*.

63. The method of claim 55 wherein the antibody comprises a VHCDR3 and a VLCDR3 amino acid sequence pair selected from the group consisting of SEQ ID NOS:1 and 44, SEQ ID NOS:2 and 45, SEQ ID NO:3 and 46, SEQ ID NOS:4 and 47, SEQ ID NOS:5 and 48, SEQ ID NOS:6 and 49, SEQ ID NOS:7 and 50, SEQ ID NOS:3 and 44, SEQ ID NOS:3 and 45, SEQ ID NOS:3 and 47, SEQ ID NOS:3 and 48, SEQ ID NOS:3 and 49, SEQ ID NOS:3 and 50, SEQ ID NOS:7 and 44, SEQ ID NOS:7 and 45, SEQ ID NOS:7 and 47, SEQ ID NOS:7 and 48, SEQ ID NOS:8 and 51, SEQ ID NOS:9 and 52, SEQ ID NOS:10 and 53, SEQ ID NOS:11 and 54, SEQ ID NOS:12 and 55, SEQ ID NOS:13 and 56, SEQ ID NOS:14 and 57, SEQ ID NOS:15 and 58, SEQ ID NOS:16 and 59, SEQ ID NOS:17 and 60, SEQ ID NOS:18 and 61, SEQ ID NOS:19 and 62, SEQ ID NOS:20 and 63, SEQ ID NOS:21 and 64, SEQ ID NOS:22 and 65, SEQ ID NOS:23 and 66, SEQ ID NOS:24 and 67, SEQ ID NOS:25 and 68, SEQ ID NOS:26 and 69, SEQ ID NOS:27 and 70, SEQ ID NOS:28 and 71, SEQ ID NOS:29 and 72, SEQ ID NOS:30 and 73, SEQ ID NOS:31 and 74, SEQ ID NOS:32 and 75, SEQ ID NOS:33 and 76, SEQ ID NOS:34 and 77, SEQ ID NOS:35 and 78, SEQ ID NOS:36 and 79, SEQ ID NOS:37 and 80, SEQ ID NOS:38 and 81, SEQ ID NOS:39 and 82, SEQ ID NOS:40 and 83, SEQ ID NOS:41 and 84, SEQ ID NOS:42 and 85, SEQ ID NOS:43 and 86, SEQ ID NOS:3 and 48, SEQ ID NOS:360 and 48, SEQ ID NOS:3 and 365, SEQ ID NOS:16 and 59, SEQ ID NOS:18 and 61, SEQ ID NOS:34 and 77, SEQ ID NOS:34 and 379, SEQ ID NOS:18 and 376, SEQ ID NOS:18 and 377, and SEQ ID NOS:18 and 378.

64. A method of ameliorating symptoms of a disorder in which TIMP-1 is elevated, comprising the step of:

administering to a patient having the disorder an effective amount of a human antibody which neutralizes an MMP-inhibiting activity of the TIMP-1, whereby symptoms of the disorder are ameliorated.

65. The method of claim 64 wherein the MMP is human MMP-1.
66. The method of claim 64 wherein the MMP is rat MMP-13.
67. The method of claim 64 wherein the disorder is selected from the group consisting of liver fibrosis, alcoholic liver disease, cardiac fibrosis, acute coronary syndrome, lupus nephritis, glomerulosclerotic renal disease, idiopathic pulmonary fibrosis, benign prostate hypertrophy, lung cancer, and colon cancer.
68. The method of claim 64 wherein the antibody comprises a VHCDR3 and a VLCDR3 amino acid sequence pair selected from the group consisting of SEQ ID NOS:1 and 44, SEQ ID NOS:2 and 45, SEQ ID NO:3 and 46, SEQ ID NOS:4 and 47, SEQ ID NOS:5 and 48, SEQ ID NOS:6 and 49, SEQ ID NOS:7 and 50, SEQ ID NOS:3 and 44, SEQ ID NOS:3 and 45, SEQ ID NOS:3 and 47, SEQ ID NOS:3 and 48, SEQ ID NOS:3 and 49, SEQ ID NOS:3 and 50, SEQ ID NOS:7 and 44, SEQ ID NOS:7 and 45, SEQ ID NOS:7 and 47, SEQ ID NOS:7 and 48, SEQ ID NOS:8 and 51, SEQ ID NOS:9 and 52, SEQ ID NOS:10 and 53, SEQ ID NOS:11 and 54, SEQ ID NOS:12 and 55, SEQ ID NOS:13 and 56, SEQ ID NOS:14 and 57, SEQ ID NOS:15 and 58, SEQ ID NOS:16 and 59, SEQ ID NOS:17 and 60, SEQ ID NOS:18 and 61, SEQ ID NOS:19 and 62, SEQ ID NOS:20 and 63, SEQ ID NOS:21 and 64, SEQ ID NOS:22 and 65, SEQ ID NOS:23 and 66, SEQ ID NOS:24 and 67, SEQ ID NOS:25 and 68, SEQ ID NOS:26 and 69, SEQ ID NOS:27 and 70, SEQ ID NOS:28 and 71,

SEQ ID NOS:29 and 72, SEQ ID NOS:30 and 73, SEQ ID NOS:31 and 74, SEQ ID NOS:32 and 75, SEQ ID NOS:33 and 76, SEQ ID NOS:34 and 77, SEQ ID NOS:35 and 78, SEQ ID NOS:36 and 79, SEQ ID NOS:37 and 80, SEQ ID NOS:38 and 81, SEQ ID NOS:39 and 82, SEQ ID NOS:40 and 83, SEQ ID NOS:41 and 84, SEQ ID NOS:42 and 85, SEQ ID NOS:43 and 86, SEQ ID NOS:3 and 48, SEQ ID NOS:360 and 48, SEQ ID NOS:3 and 365, SEQ ID NOS:16 and 59, SEQ ID NOS:18 and 61, SEQ ID NOS:34 and 77, SEQ ID NOS:34 and 379, SEQ ID NOS:18 and 376, SEQ ID NOS:18 and 377, and SEQ ID NOS:18 and 378.

69. A method of detecting a TIMP-1 in a test preparation, comprising the steps of:
 - contacting the test preparation with a human antibody that specifically binds to the TIMP-1; and
 - assaying the test preparation for the presence of an antibody-TIMP-1 complex.
70. The method of claim 69 wherein the antibody comprises a detectable label.
71. The method of claim 69 wherein the antibody is bound to a solid support.
72. The method of claim 69 wherein the antibody comprises a VHCDR3 and a VLCDR3 amino acid sequence pair selected from the group consisting of SEQ ID NOS:1 and 44, SEQ ID NOS:2 and 45, SEQ ID NO:3 and 46, SEQ ID NOS:4 and 47, SEQ ID NOS:5 and 48, SEQ ID NOS:6 and 49, SEQ ID NOS:7 and 50, SEQ ID NOS:3 and 44, SEQ ID NOS:3 and 45, SEQ ID NOS:3 and 47, SEQ ID NOS:3 and 48, SEQ ID NOS:3 and 49, SEQ ID NOS:3 and 50, SEQ ID NOS:7 and 44, SEQ ID NOS:7 and 45, SEQ ID NOS:7 and 47, SEQ ID NOS:7 and 48, SEQ ID NOS:8 and 51, SEQ ID NOS:9 and 52, SEQ ID NOS:10 and 53, SEQ ID NOS:11 and 54, SEQ ID NOS:12 and 55, SEQ ID NOS:13 and 56, SEQ ID

NOS:14 and 57, SEQ ID NOS:15 and 58, SEQ ID NOS:16 and 59, SEQ ID NOS:17 and 60, SEQ ID NOS:18 and 61, SEQ ID NOS:19 and 62, SEQ ID NOS:20 and 63, SEQ ID NOS:21 and 64, SEQ ID NOS:22 and 65, SEQ ID NOS:23 and 66, SEQ ID NOS:24 and 67, SEQ ID NOS:25 and 68, SEQ ID NOS:26 and 69, SEQ ID NOS:27 and 70, SEQ ID NOS:28 and 71, SEQ ID NOS:29 and 72, SEQ ID NOS:30 and 73, SEQ ID NOS:31 and 74, SEQ ID NOS:32 and 75, SEQ ID NOS:33 and 76, SEQ ID NOS:34 and 77, SEQ ID NOS:35 and 78, SEQ ID NOS:36 and 79, SEQ ID NOS:37 and 80, SEQ ID NOS:38 and 81, SEQ ID NOS:39 and 82, SEQ ID NOS:40 and 83, SEQ ID NOS:41 and 84, SEQ ID NOS:42 and 85, and SEQ ID NOS:43 and 86.

73. A method to aid in diagnosing a disorder in which a TIMP-1 level is elevated, comprising the steps of:

contacting a sample from a patient suspected of having the disorder with a human antibody that binds to TIMP-1; and

assaying for the presence of an antibody-TIMP-1 complex, whereby detection of an amount of the complex which is greater than an amount of the complex in a normal sample identifies the patient as likely to have the disorder.

74. The method of claim 73 wherein the antibody comprises a detectable label.
75. The method of claim 73 wherein the antibody is bound to a solid support.
76. The method of claim 73 wherein the antibody comprises a VHCDR3 and a VLCDR3 amino acid sequence pair selected from the group consisting of SEQ ID NOS:1 and 44, SEQ ID NOS:2 and 45, SEQ ID NO:3 and 46, SEQ ID NOS:4 and 47, SEQ ID

NOS:5 and 48, SEQ ID NOS:6 and 49, SEQ ID NOS:7 and 50, SEQ ID NOS:3 and 44, SEQ ID NOS:3 and 45, SEQ ID NOS:3 and 47, SEQ ID NOS:3 and 48, SEQ ID NOS:3 and 49, SEQ ID NOS:3 and 50, SEQ ID NOS:7 and 44, SEQ ID NOS:7 and 45, SEQ ID NOS:7 and 47, SEQ ID NOS:7 and 48, SEQ ID NOS:8 and 51, SEQ ID NOS:9 and 52, SEQ ID NOS:10 and 53, SEQ ID NOS:11 and 54, SEQ ID NOS:12 and 55, SEQ ID NOS:13 and 56, SEQ ID NOS:14 and 57, SEQ ID NOS:15 and 58, SEQ ID NOS:16 and 59, SEQ ID NOS:17 and 60, SEQ ID NOS:18 and 61, SEQ ID NOS:19 and 62, SEQ ID NOS:20 and 63, SEQ ID NOS:21 and 64, SEQ ID NOS:22 and 65, SEQ ID NOS:23 and 66, SEQ ID NOS:24 and 67, SEQ ID NOS:25 and 68, SEQ ID NOS:26 and 69, SEQ ID NOS:27 and 70, SEQ ID NOS:28 and 71, SEQ ID NOS:29 and 72, SEQ ID NOS:30 and 73, SEQ ID NOS:31 and 74, SEQ ID NOS:32 and 75, SEQ ID NOS:33 and 76, SEQ ID NOS:34 and 77, SEQ ID NOS:35 and 78, SEQ ID NOS:36 and 79, SEQ ID NOS:37 and 80, SEQ ID NOS:38 and 81, SEQ ID NOS:39 and 82, SEQ ID NOS:40 and 83, SEQ ID NOS:41 and 84, SEQ ID NOS:42 and 85, SEQ ID NOS:43 and 86, SEQ ID NOS:3 and 48, SEQ ID NOS:360 and 48, SEQ ID NOS:3 and 365, SEQ ID NOS:16 and 59, SEQ ID NOS:18 and 61, SEQ ID NOS:34 and 77, SEQ ID NOS:34 and 379, SEQ ID NOS:18 and 376, SEQ ID NOS:18 and 377, and SEQ ID NOS:18 and 378.

77. The method of claim 73 wherein the sample is obtained from a tissue selected from the group consisting of colon, liver, heart, kidney, prostate, serum, and lung.

78. The method of claim 73 wherein the disorder is selected from the group consisting of liver fibrosis, alcoholic liver disease, cardiac fibrosis, acute cardiac syndrome,

lupus nephritis, glomerulosclerotic renal disease, benign prostate hypertrophy, lung cancer, colon cancer, and idiopathic pulmonary fibrosis.

Sequence Summary HuCAL Libraries scFv1, scFv2, scFv3 and Fab1

VI

161

三

Position	Framework 1										Framework 2										Framework 3											
	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	a	b	2	3	4	5	6	7	8		
Mef	WIR1A	Q	V	Q	L	V	Q	S	G	A	E	V	K	P	G	S	S	V	K	V	S	C	K	A	S	G	G	A	V	W	V	R
VH1B	Q	V	Q	L	V	Q	S	G	A	E	V	K	P	G	S	S	V	K	V	S	C	K	A	S	G	G	A	V	W	V	R	
VH2	Q	V	Q	L	K	E	S	G	P	A	L	V	K	P	T	Q	T	T	L	T	T	C	F	S	G	G	A	V	W	V	R	
VH3	Q	V	Q	L	V	E	S	G	G	G	L	V	Q	P	G	G	S	L	R	L	S	C	A	A	S	G	G	A	V	W	V	R
VH4	Q	V	Q	L	V	E	S	G	P	G	L	V	K	P	S	E	T	L	S	L	T	C	T	V	S	G	G	A	V	W	V	R
VH5	Q	V	Q	L	V	E	S	G	P	G	L	V	K	P	S	E	T	L	S	L	T	C	T	V	S	G	G	A	V	W	V	R
VH6	Q	V	Q	L	V	E	S	G	P	G	L	V	K	P	S	Q	T	L	S	L	T	C	A	I	S	G	G	A	V	W	V	R

Framework 2										Framework 3									
CDR 2					CDR 3					CDR 2					CDR 3				
5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4
W	Y	Q	K	P	K	A	P	K	L	L	I	A	S	S	G	S	G	T	S
W	Y	L	Q	K	P	G	Q	S	P	Q	L	I	D	S	R	F	T	L	T
W	Y	Q	K	P	G	Q	A	P	R	L	L	I	A	S	G	S	G	D	F
W	Y	Q	K	P	G	Q	P	P	K	L	I	I	S	T	R	S	G	F	T
W	Y	Q	K	P	G	Q	A	P	R	L	I	I	S	T	R	S	G	D	F
W	Y	Q	K	P	G	Q	H	P	K	A	P	K	L	M	I	S	G	S	G
W	Y	Q	K	P	G	Q	K	A	P	K	L	M	I	Y	S	N	R	F	S
W	Y	Q	K	P	G	Q	K	A	P	V	L	V	I	D	S	D	T	L	T
KpnI	XbaI	XbaI	XbaI	XbaI	XbaI	XbaI	XbaI	XbaI	XbaI	XbaI	XbaI	XbaI	XbaI	XbaI	XbaI	XbaI	XbaI	XbaI	XbaI
KpnI										KpnI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									
XbaI										XbaI									

Fig. 1, cont.

Sequence Summary HuCAL Libraries scFv1, scFv2, scFv3 and Fab1

VI

٢٦٦

FIG. 2, cont.

Fig. 2, cont.

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 7

FIG. 8

FIG. 9

FIG. 10

FIG. 11

FIG. 12

FIG. 13

FIG. 14

FIG. 15

SEQUENCE LISTING

<110> Bayer Corporation
MorphoSys AG

<120> Human TIMP-1 Antibodies

<130> 02973.00074

<150> US 60/285,683
<151> 2001-04-24

<160> 381

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 4
<212> PRT
<213> Homo sapiens

<400> 1
Phe Met Asp Ile
1

<210> 2
<211> 4
<212> PRT
<213> Homo sapiens

<400> 2
Gly Phe Asp Tyr
1

<210> 3
<211> 4
<212> PRT
<213> Homo sapiens

<400> 3
Phe Leu Asp Ile
1

<210> 4
<211> 8
<212> PRT
<213> Homo sapiens

<400> 4
Thr Phe Pro Ile Asp Ala Asp Ser
1 5

<210> 5
<211> 5
<212> PRT
<213> Homo sapiens

<400> 5
Gly His Val Asp Tyr
1 5

<210> 6
<211> 9
<212> PRT
<213> Homo sapiens

<400> 6
Tyr Trp Arg Gly Leu Ser Phe Asp Ile
1 5

<210> 7
<211> 4
<212> PRT
<213> Homo sapiens

<400> 7
Phe Phe Asp Tyr
1

<210> 8
<211> 12
<212> PRT
<213> Homo sapiens

<400> 8
Gly Leu Tyr Trp Ala Val Tyr Pro Tyr Phe Asp Phe
1 5 10

<210> 9
<211> 11
<212> PRT
<213> Homo sapiens

<400> 9
Leu Asp Thr Tyr Tyr Pro Asp Leu Phe Asp Tyr
1 5 10

<210> 10

<211> 7
<212> PRT
<213> Homo sapiens

<400> 10
Thr Tyr Tyr Tyr Phe Asp Ser
1 5

<210> 11
<211> 11
<212> PRT
<213> Homo sapiens

<400> 11
Tyr Met Ala Tyr Met Ala Glu Ala Ile Asp Val
1 5 10

<210> 12
<211> 17
<212> PRT
<213> Homo sapiens

<400> 12
Leu Val Gly Ile Val Gly Tyr Lys Pro Asp Glu Leu Leu Tyr Phe Asp
1 5 10 15
Val

<210> 13
<211> 9
<212> PRT
<213> Homo sapiens

<400> 13
Tyr Gly Ala Tyr Phe Gly Leu Asp Tyr
1 5

<210> 14
<211> 9
<212> PRT
<213> Homo sapiens

<400> 14
Gly Tyr Ala Asp Ile Ser Phe Asp Tyr
1 5

<210> 15
<211> 7
<212> PRT
<213> Homo sapiens

<400> 15
Tyr Tyr Leu Leu Leu Asp Tyr
1 5

<210> 16
<211> 16
<212> PRT
<213> Homo sapiens

<400> 16
Trp Ser Asp Gln Ser Tyr His Tyr Tyr Trp His Pro Tyr Phe Asp Val
1 . 5 10 15

<210> 17
<211> 7
<212> PRT
<213> Homo sapiens

<400> 17
Leu Ile Gly Tyr Phe Asp Leu
1 5

<210> 18
<211> 12
<212> PRT
<213> Homo sapiens

<400> 18.
Leu Thr Asn Tyr Phe Asp Ser Ile Tyr Tyr Asp His
1 5 10

<210> 19
<211> 12
<212> PRT
<213> Homo sapiens

<400> 19
Leu Val Gly Gly Gly Tyr Asp Leu Met Phe Asp Ser
1 5 10

<210> 20
<211> 13
<212> PRT
<213> Homo sapiens

<400> 20
Tyr Val Thr Tyr Gly Tyr Asp Asp Tyr His Phe Asp Tyr
1 5 10

<210> 21
<211> 6
<212> PRT
<213> Homo sapiens'

<400> 21
Ser Gly Tyr Leu Asp Tyr
1 5

<210> 22
<211> 18
<212> PRT
<213> Homo sapiens

<400> 22
Tyr Ile Gly Tyr Thr Asn Val Met Asp Ile Arg Pro Gly Tyr Phe Leu
1 5 10 15
Asp Tyr

<210> 23
<211> 12
<212> PRT
<213> Homo sapiens

<400> 23
Phe Arg Ala Tyr Gly Asp Asp Phe Tyr Phe Asp Val
1 5 10

<210> 24
<211> 15
<212> PRT
<213> Homo sapiens

<220>
<221> VARIANT
<222> (1)...(15)
<223> Xaa = Any Amino Acid

<400> 24
Xaa Met Trp Ser Asp Tyr Gly Gln Leu Val Lys Gly Gly Asp Ile
1 5 10 15

<210> 25
<211> 11
<212> PRT
<213> Homo sapiens

<400> 25
Tyr Tyr Val Thr Asp Thr Ala Tyr Phe Asp Tyr

1 5 10

<210> 26
<211> 11
<212> PRT
<213> Homo sapiens

<400> 26
His Asp Phe Asp Gly Ser Ile Phe Met Asp Phe
1 5 10

<210> 27
<211> 12
<212> PRT
<213> Homo sapiens

<400> 27
Tyr Ala Gly His Gln Tyr Glu Phe Phe Phe Asp Phe
1 5 10

<210> 28
<211> 11
<212> PRT
<213> Homo sapiens

<400> 28
Leu Tyr Ala Asp Ala Asp Ile Tyr Phe Asp Tyr
1 5 10

<210> 29
<211> 9
<212> PRT
<213> Homo sapiens

<400> 29
Thr Lys Tyr Val Gly Ser Glu Asp Val
1 5

<210> 30
<211> 9
<212> PRT
<213> Homo sapiens

<400> 30
Tyr Arg Tyr Pro His Met Phe Asp Phe
1 5

<210> 31
<211> 11
<212> PRT

<213> Homo sapiens

<400> 31
Leu Phe Ala Gly Leu Glu Leu Tyr Phe Asp Tyr
1 5 10

<210> 32
<211> 8
<212> PRT
<213> Homo sapiens

<400> 32
Gly Gly Phe Phe Asn Met Asp Tyr
1 5

<210> 33
<211> 10
<212> PRT
<213> Homo sapiens

<400> 33
Gly Tyr Ile Pro Tyr His Leu Phe Asp Tyr
1 5 10

<210> 34
<211> 12
<212> PRT
<213> Homo sapiens

<400> 34
Tyr Tyr Gly Phe Glu Tyr Asp Leu Leu Phe Asp Asn
1 5 10

<210> 35
<211> 8
<212> PRT
<213> Homo sapiens

<400> 35
Ile Thr Tyr Ile Gly Tyr Asp Phe
1 5

<210> 36
<211> 7
<212> PRT
<213> Homo sapiens

<400> 36
Gln Glu Trp Tyr Met Asp Tyr
1 5

<210> 37
<211> 11
<212> PRT
<213> Homo sapiens

<400> 37
Leu Tyr Pro Glu Asp Leu Ile Tyr Phe Asp Tyr
1 5 10

<210> 38
<211> 15
<212> PRT
<213> Homo sapiens

<400> 38
Trp Met Thr Pro Pro Gly His Tyr Tyr Gly Tyr Thr Phe Asp Val
1 5 10 15

<210> 39
<211> 12
<212> PRT
<213> Homo sapiens

<400> 39
Leu Arg Val His Asp Tyr Ala Met Tyr Phe Asp Leu
1 5 10

<210> 40
<211> 13
<212> PRT
<213> Homo sapiens

<400> 40
Phe Val Ser Tyr Asn Gly Ser Val Pro Tyr Phe Asp Tyr
1 5 10

<210> 41
<211> 11
<212> PRT
<213> Homo sapiens

<400> 41
Ile Ile Gly Asp Tyr Val Ile Phe Phe Asp Val
1 5 10

<210> 42
<211> 11
<212> PRT
<213> Homo sapiens

<400> 42
Leu Phe Thr Tyr Pro Phe Leu Tyr Phe Asp Val
1 5 10

<210> 43
<211> 11
<212> PRT
<213> Homo sapiens

<400> 43
Ile Leu Thr Gly His Val Leu Leu Phe Asp Tyr
1 5 10

<210> 44
<211> 9
<212> PRT
<213> Homo sapiens

<400> 44
Gln Ser Tyr Asp Tyr Gln Gln Phe Thr
1 5

<210> 45
<211> 9
<212> PRT
<213> Homo sapiens

<400> 45
Gln Ser Tyr Asp Phe Lys Thr Tyr Leu
1 5

<210> 46
<211> 9
<212> PRT
<213> Homo sapiens

<400> 46
Gln Ser Tyr Asp Phe Leu Arg Phe Ser
1 5

<210> 47
<211> 9
<212> PRT
<213> Homo sapiens

<400> 47
Gln Ser Tyr Asp Phe Ile Asn Val Ile
1 5

<210> 48

<211> 9

<212> PRT

<213> Homo sapiens

<400> 48

Gln Ser Tyr Asp Phe Val Arg Phe Met

1

5

<210> 49

<211> 9

<212> PRT

<213> Homo sapiens

<400> 49

Gln Ser Tyr Asp Phe Tyr Lys Phe Asn

1

5

<210> 50

<211> 9

<212> PRT

<213> Homo sapiens

<400> 50

Gln Ser Tyr Asp Phe Arg Arg Phe Ser

1

5

<210> 51

<211> 9

<212> PRT

<213> Homo sapiens

<400> 51

Gln Ser Arg Asp Phe Asn Arg Gly Pro

1

5

<210> 52

<211> 8

<212> PRT

<213> Homo sapiens

<400> 52

Gln Ser Tyr Asp Gln Arg Lys Trp

1

5

<210> 53

<211> 8

<212> PRT

<213> Homo sapiens

<400> 53
Gln Gln Leu Tyr Gly Thr Val Ser
1 5

<210> 54
<211> 9
<212> PRT
<213> Homo sapiens

<400> 54
Gln Ser Tyr Asp Gly Phe Lys Thr His
1 5

<210> 55
<211> 8
<212> PRT
<213> Homo sapiens

<400> 55
Gln Ser Tyr Asp Tyr Ser Leu Leu
1 5

<210> 56
<211> 8
<212> PRT
<213> Homo sapiens

<400> 56
Gln Ser Tyr Asp Phe Asn Phe His
1 5

<210> 57
<211> 10
<212> PRT
<213> Homo sapiens

<400> 57
Gln Ser Tyr Asp Met Ile Ala Arg Tyr Pro
1 5 10

<210> 58
<211> 10
<212> PRT
<213> Homo sapiens

<400> 58
Gln Ser Trp Asp Ile His Pro Phe Asp Val
1 5 10

<210> 59

<211> 8
<212> PRT
<213> Homo sapiens

<400> 59
Gln Ser Trp Asp Leu Glu Pro Tyr
1 5

<210> 60
<211> 9
<212> PRT
<213> Homo sapiens

<400> 60
Gln Ser Tyr Asp Val Leu Asp Ser Glu
1 5

<210> 61
<211> 10
<212> PRT
<213> Homo sapiens

<400> 61
Gln Ser Tyr Asp Pro Ser His Pro Ser Lys
1 5 . 10

<210> 62
<211> 8
<212> PRT
<213> Homo sapiens

<400> 62
Gln Ser Tyr Asp Asp Met Gln Phe
1 5

<210> 63
<211> 9
<212> PRT
<213> Homo sapiens

<400> 63
Gln Ser Trp Asp Ile Asn His Ala Ile
1 5

<210> 64
<211> 9
<212> PRT
<213> Homo sapiens

<400> 64

Gln Ser Tyr Asp Tyr Tyr Asp Tyr Gly
1 5

<210> 65
<211> 8
<212> PRT
<213> Homo sapiens

<400> 65
Gln Gln Ala Asn Asp Phe Pro Ile
1 5

<210> 66
<211> 10
<212> PRT
<213> Homo sapiens

<400> 66
Gln Ser Trp Asp Asn Leu Lys Met Pro Val
1 5 10

<210> 67
<211> 10
<212> PRT
<213> Homo sapiens

<400> 67
Gln Ser Tyr Asp Val Phe Pro Ile Asn Arg
1 5 10

<210> 68
<211> 7
<212> PRT
<213> Homo sapiens

<400> 68
Gln Ser Asp Leu Tyr Phe Pro
1 5

<210> 69
<211> 8
<212> PRT
<213> Homo sapiens

<400> 69
Gln Ser Tyr Asp Val Thr Pro Arg
1 5

<210> 70
<211> 9

<212> PRT
<213> Homo sapiens

<400> 70
Gln Ser Tyr Asp Pro Val Gly Phe Pro
1 5

<210> 71
<211> 8
<212> PRT
<213> Homo sapiens

<400> 71
Gln Ser Tyr Asp Leu Ser Pro Arg
1 5

<210> 72
<211> 10
<212> PRT
<213> Homo sapiens

<400> 72
Gln Ser Tyr Asp Phe Ser His Tyr Phe Phe
1 5 10

<210> 73
<211> 9
<212> PRT
<213> Homo sapiens

<400> 73
Gln Ser Tyr Asp Leu Arg Tyr Ser His
1 5

<210> 74
<211> 8
<212> PRT
<213> Homo sapiens

<400> 74
Gln Ser Tyr Asp Leu Arg Asn Arg
1 5

<210> 75
<211> 9
<212> PRT
<213> Homo sapiens

<400> 75
Gln Ser Tyr Asp Phe Thr Tyr Gly Ser

1 5

<210> 76
<211> 8
<212> PRT
<213> Homo sapiens

<400> 76
Gln Gln Phe Asn Asp Ser Pro Tyr
1 5

<210> 77
<211> 9
<212> PRT
<213> Homo sapiens

<400> 77
Gln Ser Tyr Asp Ile Ser Gly Tyr Pro
1 5

<210> 78
<211> 10
<212> PRT
<213> Homo sapiens

<400> 78
Gln Ser Arg Asp Leu Tyr Tyr Val Tyr Tyr
1 5 10

<210> 79
<211> 8
<212> PRT
<213> Homo sapiens

<400> 79
Gln Ser Tyr Asp Arg Ser Met Trp
1 5

<210> 80
<211> 9
<212> PRT
<213> Homo sapiens

<400> 80
Gln Ser Trp Asp Val Gln Thr Asp Lys
1 5

<210> 81
<211> 9
<212> PRT

<213> Homo sapiens

<400> 81
Gln Ser Trp Asp Pro Ser His Tyr Tyr
1 5

<210> 82
<211> 9
<212> PRT
<213> Homo sapiens

<400> 82
Gln Ser Tyr Asp Ile Met Pro Glu Arg
1 5

<210> 83
<211> 9
<212> PRT
<213> Homo sapiens

<400> 83
Gln Ser Met Asp Phe Arg Leu Met His
1 5

<210> 84
<211> 9
<212> PRT
<213> Homo sapiens

<400> 84
Gln Ser Phe Asp Met Ile His Pro Tyr
1 5

<210> 85
<211> 7
<212> PRT
<213> Homo sapiens

<400> 85
Gln Ser Asp Phe Pro Val Met
1 5

<210> 86
<211> 7
<212> PRT
<213> Homo sapiens

<400> 86
Gln Ser Asp Asn Pro Tyr Leu
1 5

<210> 87
<211> 11
<212> PRT
<213> Homo sapiens

<400> 87
Thr Cys Val Pro Pro His Pro Gln Thr Ala Phe
1 5 10

<210> 88
<211> 12
<212> PRT
<213> Homo sapiens

<400> 88
Cys Thr Ser Val Pro Pro His Pro Gln Thr Ala Phe
1 5 10

<210> 89
<211> 12
<212> PRT
<213> Homo sapiens

<400> 89
Ser Thr Cys Val Pro Pro His Pro Gln Thr Ala Phe
1 5 10

<210> 90
<211> 13
<212> PRT
<213> Homo sapiens

<400> 90
Ser Thr Ser Val Pro Pro His Pro Gln Thr Ala Phe Cys
1 5 10

<210> 91
<211> 10
<212> PRT
<213> Homo sapiens

<400> 91
Cys Glu Val Asn Gln Thr Thr Leu Tyr Gln
1 5 10

<210> 92
<211> 12
<212> PRT
<213> Homo sapiens

<400> 92
Pro Ala Met Glu Ser Val Cys Gly Tyr Phe His Arg
1 5 10

<210> 93
<211> 16
<212> PRT
<213> Homo sapiens

<400> 93
Pro Ala Met Glu Ser Val Cys Gly Tyr Phe His Arg Ser His Asn Arg
1 5 10 15

<210> 94
<211> 17
<212> PRT
<213> Homo sapiens

<400> 94
Cys Pro Ala Met Glu Ser Val Ser Gly Tyr Phe His Arg Ser His Asn
1 5 10 15
Arg

<210> 95
<211> 17
<212> PRT
<213> Homo sapiens

<400> 95
Pro Ala Met Glu Ser Val Ser Gly Tyr Phe His Arg Ser His Asn Arg
1 5 10 15
Cys

<210> 96
<211> 12
<212> PRT
<213> Homo sapiens

<400> 96
Cys Leu Trp Thr Asp Gln Leu Leu Gln Gly Ser Glu
1 5 10

<210> 97
<211> 215
<212> PRT
<213> Homo sapiens

<400> 97

Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln
 1 5 10 15
 Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr
 20 25 30
 Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu
 35 40 45
 Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe
 50 55 60
 Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu
 65 70 75 80
 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Tyr Gln
 85 90 95
 Gln Phe Thr Val Phe Gly Gly Thr Lys Leu Thr Val Leu Gly Gln
 100 105 110
 Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu
 115 120 125
 Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr
 130 135 140
 Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys
 145 150 155 160
 Ala Gly Val Glu Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr
 165 170 175
 Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His
 180 185 190
 Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys
 195 200 205
 Thr Val Ala Pro Thr Glu Ala
 210 215

<210> 98

<211> 215

<212> PRT

<213> Homo sapiens

<400> 98

Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln
 1 5 10 15
 Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr
 20 25 30
 Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu
 35 40 45
 Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe
 50 55 60
 Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu
 65 70 75 80
 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Phe Lys
 85 90 95
 Thr Tyr Leu Val Phe Gly Gly Thr Lys Leu Thr Val Leu Gly Gln
 100 105 110

Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu
 115 120 125
 Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr
 130 135 140
 Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys
 145 150 155 160
 Ala Gly Val Glu Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr
 165 170 175
 Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His
 180 185 190
 Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys
 195 200 205
 Thr Val Ala Pro Thr Glu Ala
 210 215

<210> 99

<211> 211

<212> PRT

<213> Homo sapiens

<400> 99

Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln
 1 5 10 15
 Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr
 20 25 30
 Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu
 35 40 45
 Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe
 50 55 60
 Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu
 65 70 75 80
 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Phe Leu
 85 90 95
 Arg Phe Ser Val Phe Gly Gly Thr Lys Leu Thr Val Leu Gly Gln
 100 105 110
 Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu
 115 120 125
 Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr
 130 135 140
 Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys
 145 150 155 160
 Ala Gly Val Glu Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr
 165 170 175
 Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His
 180 185 190
 Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys
 195 200 205
 Thr Val Ala
 210

<210> 100
 <211> 215
 <212> PRT
 <213> Homo sapiens

<400> 100
 Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln
 1 5 10 15
 Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr
 20 25 30
 Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu
 35 40 45
 Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe
 50 55 60
 Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu
 65 70 75 80
 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Phe Ile
 85 90 95
 Asn Val Ile Val Phe Gly Gly Thr Lys Leu Thr Val Leu Gly Gln
 100 105 110
 Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu
 115 120 125
 Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr
 130 135 140
 Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys
 145 150 155 160
 Ala Gly Val Glu Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr
 165 170 175
 Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His
 180 185 190
 Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys
 195 200 205
 Thr Val Ala Pro Thr Glu Ala
 210 215

<210> 101
 <211> 215
 <212> PRT
 <213> Homo sapiens

<400> 101
 Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln
 1 5 10 15
 Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr
 20 25 30
 Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu
 35 40 45
 Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe
 50 55 60
 Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu

65	70	75	80
Gln Ala Glu Asp Glu Ala Asp Tyr Tyr	Cys Gln Ser Tyr Asp Phe Val		
85	90	95	
Arg Phe Met Val Phe Gly Gly Gly	Thr Lys Leu Thr Val Leu Gly Gln		
100	105	110	
Pro Lys Ala Ala Pro Ser Val Thr	Leu Phe Pro Pro Ser Ser Glu Glu		
115	120	125	
Leu Gln Ala Asn Lys Ala Thr	Leu Val Cys Leu Ile Ser Asp Phe Tyr		
130	135	140	
Pro Gly Ala Val Thr Val Ala Trp	Lys Ala Asp Ser Ser Pro Val Lys		
145	150	155	160
Ala Gly Val Glu Thr Thr Pro Ser	Lys Gln Ser Asn Asn Lys Tyr		
165	170	175	
Ala Ala Ser Ser Tyr Leu Ser	Leu Thr Pro Glu Gln Trp Lys Ser His		
180	185	190	
Arg Ser Tyr Ser Cys Gln Val Thr	His Glu Gly Ser Thr Val Glu Lys		
195	200	205	
Thr Val Ala Pro Thr Glu Ala			
210	215		

<210> 102

<211> 215

<212> PRT

<213> Homo sapiens

<400> 102

Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln			
1	5	10	15
Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr			
20	25	30	
Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu			
35	40	45	
Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe			
50	55	60	
Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu			
65	70	75	80
Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Phe Tyr			
85	90	95	
Lys Phe Asn Val Phe Gly Gly Thr Lys Leu Thr Val Leu Gly Gln			
100	105	110	
Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu			
115	120	125	
Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr			
130	135	140	
Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys			
145	150	155	160
Ala Gly Val Glu Thr Thr Pro Ser	Lys Gln Ser Asn Asn Lys Tyr		
165	170	175	
Ala Ala Ser Ser Tyr Leu Ser	Leu Thr Pro Glu Gln Trp Lys Ser His		
180	185	190	

Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys
 195 200 205
 Thr Val Ala Pro Thr Glu Ala
 210 215

<210> 103

<211> 215

<212> PRT

<213> Homo sapiens

<400> 103

Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln
 1 5 10 15
 Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr
 20 25 30
 Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu
 35 40 45
 Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe
 50 55 60
 Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu
 65 70 75 80
 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Phe Arg
 85 90 95
 Arg Phe Ser Val Phe Gly Gly Thr Lys Leu Thr Val Leu Gly Gln
 100 105 110
 Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu
 115 120 125
 Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr
 130 135 140
 Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys
 145 150 155 160
 Ala Gly Val Glu Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr
 165 170 175
 Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His
 180 185 190
 Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys
 195 200 205
 Thr Val Ala Pro Thr Glu Ala
 210 215

<210> 104

<211> 214

<212> PRT

<213> Homo sapiens

<400> 104

Asp Ile Val Leu Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly Gln
 1 5 10 15
 Arg Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Ser Asn
 20 25 30

Tyr Val Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu
 35 40 45
 Ile Tyr Asp Asn Asn Gln Arg Pro Ser Gly Val Pro Asp Arg Phe Ser
 50 55 60
 Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu Gln
 65 70 75 80
 Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Arg Asp Phe Asn Arg
 85 90 95
 Gly Pro Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro
 100 105 110
 Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu
 115 120 125
 Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Pro
 130 135 140
 Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys Ala
 145 150 155 160
 Gly Val Glu Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala
 165 170 175
 Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His Arg
 180 185 190
 Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr
 195 200 205
 Val Ala Pro Thr Glu Ala
 210

<210> 105

<211> 213

<212> PRT

<213> Homo sapiens

<400> 105
 Asp Ile Val Leu Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly Gln
 1 5 10 15
 Arg Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Ser Asn
 20 25 30
 Tyr Val Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu
 35 40 45
 Ile Tyr Asp Asn Asn Gln Arg Pro Ser Gly Val Pro Asp Arg Phe Ser
 50 55 60
 Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu Gln
 65 70 75 80
 Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Gln Arg Lys
 85 90 95
 Trp Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro Lys
 100 105 110
 Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu Gln
 115 120 125
 Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Pro Gly
 130 135 140
 Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys Ala Gly

145	150	155	160
Val Glu Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala Ala			
165	170	175	
Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His Arg Ser			
180	185	190	
Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr Val			
195	200	205	
Ala Pro Thr Glu Ala			
210			

<210> 106

<211> 215

<212> PRT

<213> Homo sapiens

<400> 106

Asp Ile Val Leu Thr Gln Ser Pro Ala Thr Leu Ser Leu Ser Pro Gly			
1	5	10	15
Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Ser			
20	25	30	
Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu			
35	40	45	
Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Val Pro Ala Arg Phe Ser			
50	55	60	
Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Glu			
65	70	75	80
Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Leu Tyr Gly Thr Ser			
85	90	95	
Val Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala			
100	105	110	
Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser			
115	120	125	
Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu			
130	135	140	
Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser			
145	150	155	160
Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu			
165	170	175	
Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val			
180	185	190	
Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys			
195	200	205	
Ser Phe Asn Arg Gly Glu Ala			
210	215		

<210> 107

<211> 214

<212> PRT

<213> Homo sapiens

<400> 107

Asp Ile Val Leu Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly Gln
 1 5 10 15
 Arg Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Ser Asn
 20 25 30
 Tyr Val Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu
 35 40 45
 Ile Tyr Asp Asn Asn Gln Arg Pro Ser Gly Val Pro Asp Arg Phe Ser
 50 55 60
 Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu Gln
 65 70 75 80
 Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Gly Phe Lys
 85 90 95
 Thr His Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro
 100 105 110
 Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu
 115 120 125
 Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Pro
 130 135 140
 Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys Ala
 145 150 155 160
 Gly Val Glu Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala
 165 170 175
 Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His Arg
 180 185 190
 Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr
 195 200 205
 Val Ala Pro Thr Glu Ala
 210

<210> 108

<211> 211
 <212> PRT
 <213> Homo sapiens

<400> 108

Asp Ile Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln
 1 5 10 15
 Thr Ala Arg Ile Ser Cys Ser Gly Asp Ala Leu Gly Asp Lys Tyr Ala
 20 25 30
 Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Ile Tyr
 35 40 45
 Asp Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser
 50 55 60
 Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Thr Gln Ala Glu
 65 70 75 80
 Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Tyr Ser Leu Leu Val
 85 90 95
 Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro Lys Ala Ala
 100 105 110

Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu Gln Ala Asn
 115 120 125
 Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Pro Gly Ala Val
 130 135 140
 Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys Ala Gly Val Glu
 145 150 155 160
 Thr Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala Ala Ser Ser
 165 170 175
 Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His Arg Ser Tyr Ser
 180 185 190
 Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr Val Ala Pro
 195 200 205
 Thr Glu Ala
 210

<210> 109

<211> 211

<212> PRT

<213> Homo sapiens

<400> 109
 Asp Ile Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln
 1 5 10 15
 Thr Ala Arg Ile Ser Cys Ser Gly Asp Ala Leu Gly Asp Lys Tyr Ala
 20 25 30
 Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Ile Tyr
 35 40 45
 Asp Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser
 50 55 60
 Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Thr Gln Ala Glu
 65 70 75 80
 Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Phe Asn Phe His Val
 85 90 95
 Phe Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro Lys Ala Ala
 100 105 110
 Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu Gln Ala Asn
 115 120 125
 Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Pro Gly Ala Val
 130 135 140
 Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys Ala Gly Val Glu
 145 150 155 160
 Thr Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala Ala Ser Ser
 165 170 175
 Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His Arg Ser Tyr Ser
 180 185 190
 Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr Val Ala Pro
 195 200 205
 Thr Glu Ala
 210

<210> 110
 <211> 216
 <212> PRT
 <213> Homo sapiens

<400> 110
 Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln
 1 5 10 15
 Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr
 20 25 30
 Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu
 35 40 45
 Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe
 50 55 60
 Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu
 65 70 75 80
 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Met Ile
 85 90 95
 Ala Arg Tyr Pro Val Phe Gly Gly Thr Lys Leu Thr Val Leu Gly
 100 105 110
 Gln Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu
 115 120 125
 Glu Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe
 130 135 140
 Tyr Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val
 145 150 155 160
 Lys Ala Gly Val Glu Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys
 165 170 175
 Tyr Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser
 180 185 190
 His Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu
 195 200 205
 Lys Thr Val Ala Pro Thr Glu Ala
 210 215

<210> 111
 <211> 213
 <212> PRT
 <213> Homo sapiens

<400> 111
 Asp Ile Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln
 1 5 10 15
 Thr Ala Arg Ile Ser Cys Ser Gly Asp Ala Leu Gly Asp Lys Tyr Ala
 20 25 30
 Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Ile Tyr
 35 40 45
 Asp Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser
 50 55 60
 Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Thr Gln Ala Glu

65	70	75	80
Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Trp Asp Ile His Pro Phe Asp			
85	90	95	
Val Val Phe Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro Lys			
100	105	110	
Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu Gln			
115	120	125	
Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Pro Gly			
130	135	140	
Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys Ala Gly			
145	150	155	160
Val Glu Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala Ala			
165	170	175	
Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His Arg Ser			
180	185	190	
Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr Val			
195	200	205	
Ala Pro Thr Glu Ala			
210			

<210> 112

<211> 213

<212> PRT

<213> Homo sapiens

<400> 112

Asp Ile Val Leu Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly Gln			
1	5	10	15
Arg Val Thr Ile Ser Cys Ser Gly Ser Ser Asn Ile Gly Ser Asn			
20	25	30	
Tyr Val Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu			
35	40	45	
Ile Tyr Asp Asn Asn Gln Arg Pro Ser Gly Val Pro Asp Arg Phe Ser			
50	55	60	
Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu Gln			
65	70	75	80
Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Trp Asp Leu Glu Pro			
85	90	95	
Tyr Val Phe Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro Lys			
100	105	110	
Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu Gln			
115	120	125	
Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Pro Gly			
130	135	140	
Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys Ala Gly			
145	150	155	160
Val Glu Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala Ala			
165	170	175	
Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His Arg Ser			
180	185	190	

Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr Val
 195 200 205
 Ala Pro Thr Glu Ala
 210

<210> 113

<211> 215

<212> PRT

<213> Homo sapiens

<400> 113

Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln
 1 5 10 15
 Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr
 20 25 30
 Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu
 35 40 45
 Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe
 50 55 60
 Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu
 65 70 75 80
 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Val Leu
 85 90 95
 Asp Ser Glu Val Phe Gly Gly Thr Lys Leu Thr Val Leu Gly Gln
 100 105 110
 Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu
 115 120 125
 Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr
 130 135 140
 Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys
 145 150 155 160
 Ala Gly Val Glu Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr
 165 170 175
 Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His
 180 185 190
 Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys
 195 200 205
 Thr Val Ala Pro Thr Glu Ala
 210 215

<210> 114

<211> 216

<212> PRT

<213> Homo sapiens

<400> 114

Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln
 1 5 10 15
 Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr
 20 25 30

Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu
 35 40 45
 Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe
 50 55 60
 Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu
 65 70 75 80
 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Pro Ser
 85 90 95
 His Pro Ser Lys Val Phe Gly Gly Thr Lys Leu Thr Val Leu Gly
 100 105 110
 Gln Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu
 115 120 125
 Glu Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe
 130 135 140
 Tyr Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val
 145 150 155 160
 Lys Ala Gly Val Glu Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys
 165 170 175
 Tyr Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser
 180 185 190
 His Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu
 195 200 205
 Lys Thr Val Ala Pro Thr Glu Ala
 210 215

<210> 115

<211> 214

<212> PRT

<213> Homo sapiens

<400> 115
 Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln
 1 5 10 15
 Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr
 20 25 30
 Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu
 35 40 45
 Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe
 50 55 60
 Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu
 65 70 75 80
 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Asp Met
 85 90 95
 Gln Phe Val Phe Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro
 100 105 110
 Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu
 115 120 125
 Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Pro
 130 135 140
 Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys Ala

145	150	155	160
Gly Val Glu Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala			
165	170	175	
Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His Arg			
180	185	190	
Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr			
195	200	205	
Val Ala Pro Thr Glu Ala			
210			

<210> 116

<211> 215

<212> PRT

<213> Homo sapiens

<400> 116

Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln			
1	5	10	15
Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr			
20	25	30	
Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu			
35	40	45	
Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe			
50	55	60	
Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu			
65	70	75	80
Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Trp Asp Ile Asn			
85	90	95	
His Ala Ile Val Phe Gly Gly Thr Lys Leu Thr Val Leu Gly Gln			
100	105	110	
Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu			
115	120	125	
Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr			
130	135	140	
Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys			
145	150	155	160
Ala Gly Val Glu Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr			
165	170	175	
Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His			
180	185	190	
Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys			
195	200	205	
Thr Val Ala Pro Thr Glu Ala			
210	215		

<210> 117

<211> 215

<212> PRT

<213> Homo sapiens

<400> 117

Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln
 1 5 10 15
 Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr
 20 25 30
 Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu
 35 40 45
 Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe
 50 55 60
 Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu
 65 70 75 80
 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Tyr Tyr
 85 90 95
 Asp Tyr Gly Val Phe Gly Gly Thr Lys Leu Thr Val Leu Gly Gln
 100 105 110
 Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu
 115 120 125
 Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr
 130 135 140
 Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys
 145 150 155 160
 Ala Gly Val Glu Thr Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr
 165 170 175
 Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His
 180 185 190
 Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys
 195 200 205
 Thr Val Ala Pro Thr Glu Ala
 210 215

<210> 118

<211> 215

<212> PRT

<213> Homo sapiens

<400> 118

Asp Ile Val Leu Thr Gln Ser Pro Ala Thr Leu Ser Leu Ser Pro Gly
 1 5 10 15
 Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Ser
 20 25 30
 Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu
 35 40 45
 Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Val Pro Ala Arg Phe Ser
 50 55 60
 Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Glu
 65 70 75 80
 Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Ala Asn Asp Phe Pro
 85 90 95
 Ile Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala
 100 105 110

Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser
 115 120 125
 Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu
 130 135 140
 Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser
 145 150 155 160
 Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu
 165 170 175
 Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val
 180 185 190
 Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys
 195 200 205
 Ser Phe Asn Arg Gly Glu Ala
 210 215

<210> 119

<211> 216

<212> PRT

<213> Homo sapiens

<400> 119

Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln
 1 5 10 15
 Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr
 20 25 30
 Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu
 35 40 45
 Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe
 50 55 60
 Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu
 65 70 75 80
 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Trp Asp Asn Leu
 85 90 95
 Lys Met Pro Val Val Phe Gly Gly Thr Lys Leu Thr Val Leu Gly
 100 105 110
 Gln Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu
 115 120 125
 Glu Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe
 130 135 140
 Tyr Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val
 145 150 155 160
 Lys Ala Gly Val Glu Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys
 165 170 175
 Tyr Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser
 180 185 190
 His Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu
 195 200 205
 Lys Thr Val Ala Pro Thr Glu Ala
 210 215

<210> 120
 <211> 216
 <212> PRT
 <213> Homo sapiens

<400> 120
 Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln
 1 5 10 15
 Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr
 20 25 30
 Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu
 35 40 45
 Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe
 50 55 60
 Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu
 65 70 75 80
 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Val Phe
 85 90 95
 Pro Ile Asn Arg Val Phe Gly Gly Thr Lys Leu Thr Val Leu Gly
 100 105 110
 Gln Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu
 115 120 125
 Glu Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe
 130 135 140
 Tyr Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val
 145 150 155 160
 Lys Ala Gly Val Glu Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys
 165 170 175
 Tyr Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser
 180 185 190
 His Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu
 195 200 205
 Lys Thr Val Ala Pro Thr Glu Ala
 210 215

<210> 121
 <211> 213
 <212> PRT
 <213> Homo sapiens

<400> 121
 Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln
 1 5 10 15
 Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr
 20 25 30
 Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu
 35 40 45
 Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe
 50 55 60
 Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu

65	70	75	80
Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Asp Leu Tyr Phe			
85	90	95	
Pro Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro Lys			
100	105	110	
Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu Gln			
115	120	125	
Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Pro Gly			
130	135	140	
Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys Ala Gly			
145	150	155	160
Val Glu Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala Ala			
165	170	175	
Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His Arg Ser			
180	185	190	
Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr Val			
195	200	205	
Ala Pro Thr Glu Ala			
210			

<210> 122

<211> 214

<212> PRT

<213> Homo sapiens

<400> 122

Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln			
1	5	10	15
Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr			
20	25	30	
Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu			
35	40	45	
Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe			
50	55	60	
Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu			
65	70	75	80
Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Val Thr			
85	90	95	
Pro Arg Val Phe Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro			
100	105	110	
Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu			
115	120	125	
Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Pro			
130	135	140	
Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys Ala			
145	150	155	160
Gly Val Glu Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala			
165	170	175	
Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His Arg			
180	185	190	

Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr
 195 200 205
 Val Ala Pro Thr Glu Ala
 210

<210> 123

<211> 212

<212> PRT

<213> Homo sapiens

<400> 123

Asp Ile Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln
 1 5 10 15
 Thr Ala Arg Ile Ser Cys Ser Gly Asp Ala Leu Gly Asp Lys Tyr Ala
 20 25 30
 Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Ile Tyr
 35 40 45
 Asp Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser
 50 55 60
 Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Thr Gln Ala Glu
 65 70 75 80
 Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Arg Asp Pro Val Gly Phe Pro
 85 90 95
 Val Phe Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro Lys Ala
 100 105 110
 Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu Gln Ala
 115 120 125
 Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Pro Gly Ala
 130 135 140
 Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys Ala Gly Val
 145 150 155 160
 Glu Thr Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala Ala Ser
 165 170 175
 Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His Arg Ser Tyr
 180 185 190
 Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr Val Ala
 195 200 205
 Pro Thr Glu Ala
 210

<210> 124

<211> 214

<212> PRT

<213> Homo sapiens

<400> 124

Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln
 1 5 10 15
 Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr
 20 25 30

Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu
 35 40 45
 Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe
 50 55 60
 Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu
 65 70 75 80
 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Leu Ser
 85 90 95
 Pro Arg Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro
 100 105 110
 Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu
 115 120 125
 Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Pro
 130 135 140
 Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys Ala
 145 150 155 160
 Gly Val Glu Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala
 165 170 175
 Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His Arg
 180 185 190
 Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr
 195 200 205
 Val Ala Pro Thr Glu Ala
 210

<210> 125

<211> 216

<212> PRT

<213> Homo sapiens

<400> 125
 Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln
 1 5 10 15
 Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr
 20 25 30
 Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu
 35 40 45
 Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe
 50 55 60
 Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu
 65 70 75 80
 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Phe Ser
 85 90 95
 His Tyr Phe Val Phe Gly Gly Thr Lys Leu Thr Val Leu Gly
 100 105 110
 Gln Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu
 115 120 125
 Glu Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe
 130 135 140
 Tyr Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val

145	150	155	160
Lys Ala Gly Val Glu	Thr Thr Thr Pro Ser	Lys Gln Ser Asn Asn Lys	
165	170	175	
Tyr Ala Ala Ser Ser Tyr	Leu Ser Leu Thr Pro Glu	Gln Trp Lys Ser	
180	185	190	
His Arg Ser Tyr Ser Cys	Gln Val Thr His Glu Gly	Ser Thr Val Glu	
195	200	205	
Lys Thr Val Ala Pro Thr	Glu Ala		
210	215		

<210> 126

<211> 212

<212> PRT

<213> Homo sapiens

<400> 126

Asp Ile Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln			
1	5	10	15
Thr Ala Arg Ile Ser Cys Ser Gly Asp Ala Leu Gly Asp Lys Tyr Ala			
20	25	30	
Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Ile Tyr			
35	40	45	
Asp Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser			
50	55	60	
Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Thr Gln Ala Glu			
65	70	75	80
Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Leu Arg Tyr Ser His			
85	90	95	
Val Phe Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro Lys Ala			
100	105	110	
Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu Gln Ala			
115	120	125	
Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Pro Gly Ala			
130	135	140	
Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys Ala Gly Val			
145	150	155	160
Glu Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala Ala Ser			
165	170	175	
Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His Arg Ser Tyr			
180	185	190	
Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr Val Ala			
195	200	205	
Pro Thr Glu Ala			
210			

<210> 127

<211> 214

<212> PRT

<213> Homo sapiens

<400> 127

Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln
 1 5 10 15
 Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr
 20 25 30
 Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu
 35 40 45
 Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe
 50 55 60
 Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu
 65 70 75 80
 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Leu Arg
 85 90 95
 Asn Arg Val Phe Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro
 100 105 110
 Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu
 115 120 125
 Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Pro
 130 135 140
 Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys Ala
 145 150 155 160
 Gly Val Glu Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala
 165 170 175
 Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His Arg
 180 185 190
 Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr
 195 200 205
 Val Ala Pro Thr Glu Ala
 210

<210> 128

<211> 215

<212> PRT

<213> Homo sapiens

<400> 128

Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln
 1 5 10 15
 Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr
 20 25 30
 Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu
 35 40 45
 Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe
 50 55 60
 Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu
 65 70 75 80
 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Phe Thr
 85 90 95
 Tyr Gly Ser Val Phe Gly Gly Thr Lys Leu Thr Val Leu Gly Gln
 100 105 110

Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu
 115 120 125
 Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr
 130 135 140
 Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys
 145 150 155 160
 Ala Gly Val Glu Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr
 165 170 175
 Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His
 180 185 190
 Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys
 195 200 205
 Thr Val Ala Pro Thr Glu Ala
 210 215

<210> 129

<211> 215

<212> PRT

<213> Homo sapiens

<400> 129

Asp Ile Val Leu Thr Gln Ser Pro Ala Thr Leu Ser Leu Ser Pro Gly
 1 5 10 15
 Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Ser
 20 25 30
 Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu
 35 40 45
 Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Val Pro Ala Arg Phe Ser
 50 55 60
 Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Glu
 65 70 75 80
 Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Phe Asn Asp Ser Pro
 85 90 95
 Tyr Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala
 100 105 110
 Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser
 115 120 125
 Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu
 130 135 140
 Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser
 145 150 155 160
 Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu
 165 170 175
 Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val
 180 185 190
 Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys
 195 200 205
 Ser Phe Asn Arg Gly Glu Ala
 210 215

<210> 130
 <211> 215
 <212> PRT
 <213> Homo sapiens

<400> 130
 Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln
 1 5 10 15
 Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr
 20 25 30
 Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu
 35 40 45
 Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe
 50 55 60
 Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu
 65 70 75 80
 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Ile Ser
 85 90 95
 Gly Tyr Pro Val Phe Gly Gly Thr Lys Leu Thr Val Leu Gly Gln
 100 105 110
 Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu
 115 120 125
 Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr
 130 135 140
 Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys
 145 150 155 160
 Ala Gly Val Glu Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr
 165 170 175
 Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His
 180 185 190
 Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys
 195 200 205
 Thr Val Ala Pro Thr Glu Ala
 210 215

<210> 131
 <211> 216
 <212> PRT
 <213> Homo sapiens

<400> 131
 Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln
 1 5 10 15
 Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr
 20 25 30
 Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu
 35 40 45
 Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe
 50 55 60
 Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu

65	70	75	80
Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys	Gln Ser Arg Asp Leu Tyr		
85	90	95	
Tyr Val Tyr Tyr Val Phe Gly Gly	Gly Thr Lys Leu Thr Val Leu Gly		
100	105	110	
Gln Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro	Pro Ser Ser Glu		
115	120	125	
Glu Leu Gln Ala Asn Lys Ala Thr Leu Val Cys	Leu Ile Ser Asp Phe		
130	135	140	
Tyr Pro Gly Ala Val Thr Val Ala Trp Lys	Ala Asp Ser Ser Pro Val		
145	150	155	160
Lys Ala Gly Val Glu Thr Thr Pro Ser Lys	Gln Ser Asn Asn Lys		
165	170	175	
Tyr Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro	Glu Gln Trp Lys Ser		
180	185	190	
His Arg Ser Tyr Ser Cys Gln Val Thr His	Glu Gly Ser Thr Val Glu		
195	200	205	
Lys Thr Val Ala Pro Thr Glu Ala			
210	215		

<210> 132

<211> 211

<212> PRT

<213> Homo sapiens

<400> 132

Asp Ile Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln			
1	5	10	15
Thr Ala Arg Ile Ser Cys Ser Gly Asp Ala Leu Gly Asp	Lys Tyr Ala		
20	25	30	
Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val	Leu Val Ile Tyr		
35	40	45	
Asp Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser			
50	55	60	
Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Thr Gln Ala Glu			
65	70	75	80
Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Arg Ser Met Trp Val			
85	90	95	
Phe Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro	Lys Ala Ala		
100	105	110	
Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu Gln Ala Asn			
115	120	125	
Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Pro	Gly Ala Val		
130	135	140	
Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val	Lys Ala Gly Val Glu		
145	150	155	160
Thr Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala Ala Ser Ser			
165	170	175	
Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His Arg Ser Tyr Ser			
180	185	190	

Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr Val Ala Pro
 195 200 205
 Thr Glu Ala
 210

<210> 133

<211> 215

<212> PRT

<213> Homo sapiens

<400> 133

Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln
 1 5 10 15
 Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr
 20 25 30
 Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu
 35 40 45
 Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe
 50 55 60
 Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu
 65 70 75 80
 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Trp Asp Val Gln
 85 90 95
 Thr Asp Lys Val Phe Gly Gly Thr Lys Leu Thr Val Leu Gly Gln
 100 105 110
 Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu
 115 120 125
 Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr
 130 135 140
 Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys
 145 150 155 160
 Ala Gly Val Glu Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr
 165 170 175
 Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His
 180 185 190
 Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys
 195 200 205
 Thr Val Ala Pro Thr Glu Ala
 210 215

<210> 134

<211> 212

<212> PRT

<213> Homo sapiens

<400> 134

Asp Ile Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln
 1 5 10 15
 Thr Ala Arg Ile Ser Cys Ser Gly Asp Ala Leu Gly Asp Lys Tyr Ala
 20 25 30

Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Ile Tyr
 35 40 45
 Asp Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser
 50 55 60
 Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Thr Gln Ala Glu
 65 70 75 80
 Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Trp Asp Pro Ser His Tyr Tyr
 85 90 95
 Val Phe Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro Lys Ala
 100 105 110
 Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu Gln Ala
 115 120 125
 Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Pro Gly Ala
 130 135 140
 Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys Ala Gly Val
 145 150 155 160
 Glu Thr Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala Ala Ser
 165 170 175
 Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His Arg Ser Tyr
 180 185 190
 Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr Val Ala
 195 200 205
 Pro Thr Glu Ala
 210

<210> 135

<211> 215

<212> PRT

<213> Homo sapiens

<400> 135
 Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln
 1 5 10 15
 Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr
 20 25 30
 Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu
 35 40 45
 Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe
 50 55 60
 Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu
 65 70 75 80
 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Ile Met
 85 90 95
 Pro Glu Arg Val Phe Gly Gly Thr Lys Leu Thr Val Leu Gly Gln
 100 105 110
 Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu
 115 120 125
 Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr
 130 135 140
 Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys

145	150	155	160												
Ala	Gly	Val	Glu	Thr	Thr	Pro	Ser	Lys	Gln	Ser	Asn	Asn	Lys	Tyr	
				165		170							175		
Ala	Ala	Ser	Ser	Tyr	Leu	Ser	Leu	Thr	Pro	Glu	Gln	Trp	Lys	Ser	His
				180		185							190		
Arg	Ser	Tyr	Ser	Cys	Gln	Val	Thr	His	Glu	Gly	Ser	Thr	Val	Glu	Lys
				195		200							205		
Thr	Val	Ala	Pro	Thr	Glu	Ala									
		210			215										

<210> 136

<211> 215

<212> PRT

<213> Homo sapiens

<400> 136

Asp	Ile	Ala	Leu	Thr	Gln	Pro	Ala	Ser	Val	Ser	Gly	Ser	Pro	Gly	Gln
1						5			10				15		
Ser	Ile	Thr	Ile	Ser	Cys	Thr	Gly	Thr	Ser	Ser	Asp	Val	Gly	Gly	Tyr
						20			25				30		
Asn	Tyr	Val	Ser	Trp	Tyr	Gln	Gln	His	Pro	Gly	Lys	Ala	Pro	Lys	Leu
						35			40				45		
Met	Ile	Tyr	Asp	Val	Ser	Asn	Arg	Pro	Ser	Gly	Val	Ser	Asn	Arg	Phe
						50			55				60		
Ser	Gly	Ser	Lys	Ser	Gly	Asn	Thr	Ala	Ser	Leu	Thr	Ile	Ser	Gly	Leu
65						70				75				80	
Gln	Ala	Glu	Asp	Glu	Ala	Asp	Tyr	Tyr	Cys	Gln	Ser	Met	Asp	Phe	Arg
						85			90				95		
Leu	Met	His	Val	Phe	Gly	Gly	Gly	Thr	Lys	Leu	Thr	Val	Leu	Gly	Gln
						100			105				110		
Pro	Lys	Ala	Ala	Pro	Ser	Val	Thr	Leu	Phe	Pro	Pro	Ser	Ser	Glu	Glu
						115			120				125		
Leu	Gln	Ala	Asn	Lys	Ala	Thr	Leu	Val	Cys	Leu	Ile	Ser	Asp	Phe	Tyr
						130			135				140		
Pro	Gly	Ala	Val	Thr	Val	Ala	Trp	Lys	Ala	Asp	Ser	Ser	Pro	Val	Lys
145							150			155				160	
Ala	Gly	Val	Glu	Thr	Thr	Pro	Ser	Lys	Gln	Ser	Asn	Asn	Lys	Tyr	
						165			170				175		
Ala	Ala	Ser	Ser	Tyr	Leu	Ser	Leu	Thr	Pro	Glu	Gln	Trp	Lys	Ser	His
						180			185				190		
Arg	Ser	Tyr	Ser	Cys	Gln	Val	Thr	His	Glu	Gly	Ser	Thr	Val	Glu	Lys
						195			200				205		
Thr	Val	Ala	Pro	Thr	Glu	Ala									
		210			215										

<210> 137

<211> 215

<212> PRT

<213> Homo sapiens

<400> 137

Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln
 1 5 10 15
 Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr
 20 25 30
 Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu
 35 40 45
 Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe
 50 55 60
 Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu
 65 70 75 80
 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Phe Asp Met Ile
 85 90 95
 His Pro Tyr Val Phe Gly Gly Thr Lys Leu Thr Val Leu Gly Gln
 100 105 110
 Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu
 115 120 125
 Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr
 130 135 140
 Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys
 145 150 155 160
 Ala Gly Val Glu Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr
 165 170 175
 Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His
 180 185 190
 Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys
 195 200 205
 Thr Val Ala Pro Thr Glu Ala
 210 215

<210> 138

<211> 213
 <212> PRT
 <213> Homo sapiens

<400> 138

Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln
 1 5 10 15
 Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr
 20 25 30
 Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu
 35 40 45
 Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe
 50 55 60
 Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu
 65 70 75 80
 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Asp Phe Pro Val
 85 90 95
 Met Val Phe Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro Lys
 100 105 110

Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu Gln
 115 120 125
 Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Pro Gly
 130 135 140
 Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys Ala Gly
 145 150 155 160
 Val Glu Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala Ala
 165 170 175
 Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His Arg Ser
 180 185 190
 Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr Val
 195 200 205
 Ala Pro Thr Glu Ala
 210

<210> 139

<211> 213

<212> PRT

<213> Homo sapiens

<400> 139
 Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln
 1 5 10 15
 Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr
 20 25 30
 Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu
 35 40 45
 Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe
 50 55 60
 Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu
 65 70 75 80
 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Asp Asn Pro Tyr
 85 90 95
 Leu Val Phe Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro Lys
 100 105 110
 Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu Gln
 115 120 125
 Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Pro Gly
 130 135 140
 Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys Ala Gly
 145 150 155 160
 Val Glu Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala Ala
 165 170 175
 Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His Arg Ser
 180 185 190
 Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr Val
 195 200 205
 Ala Pro Thr Glu Ala
 210

<210> 140
 <211> 217
 <212> PRT
 <213> Homo sapiens

<400> 140
 Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
 1 5 10 15
 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
 20 25 30
 Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
 35 40 45
 Ser Ala Ile Ser Gly Ser Gly Ser Thr Tyr Tyr Ala Asp Ser Val
 50 55 60
 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
 65 70 75 80
 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95
 Ala Arg Phe Met Asp Ile Trp Gly Gln Gly Thr Leu Val Thr Val Ser
 100 105 110
 Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser
 115 120 125
 Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp
 130 135 140
 Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr
 145 150 155 160
 Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr
 165 170 175
 Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln
 180 185 190
 Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp
 195 200 205
 Lys Lys Val Glu Pro Lys Ser Glu Phe
 210 215

<210> 141
 <211> 217
 <212> PRT
 <213> Homo sapiens

<400> 141
 Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
 1 5 10 15
 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
 20 25 30
 Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
 35 40 45
 Ser Ala Ile Ser Gly Ser Gly Ser Thr Tyr Tyr Ala Asp Ser Val
 50 55 60
 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr

65	70	75	80
Leu Gln Met Asn Ser	Leu Arg Ala Glu Asp	Thr Ala Val Tyr	Tyr Cys
85	90	95	
Ala Arg Gly Phe Asp	Tyr Trp Gly Gln Gly	Thr Leu Val Thr	Val Ser
100	105	110	
Ser Ala Ser Thr Lys	Gly Pro Ser Val Phe	Pro Leu Ala Pro	Ser Ser
115	120	125	
Lys Ser Thr Ser Gly	Gly Thr Ala Ala	Leu Gly Cys	Leu Val Lys Asp
130	135	140	
Tyr Phe Pro Glu Pro	Val Thr Val Ser Trp	Asn Ser Gly	Ala Leu Thr
145	150	155	160
Ser Gly Val His Thr	Phe Pro Ala Val Leu	Gln Ser Ser Gly	Leu Tyr
165	170	175	
Ser Leu Ser Ser Val	Val Thr Val Pro	Ser Ser Ser	Leu Gly Thr Gln
180	185	190	
Thr Tyr Ile Cys Asn	Val Asn His Lys	Pro Ser Asn Thr	Lys Val Asp
195	200	205	
Lys Lys Val Glu Pro	Lys Ser Glu Phe		
210	215		

<210> 142

<211> 217

<212> PRT

<213> Homo sapiens

<400> 142

1	5	10	15
Ser Leu Arg Leu Ser	Cys Ala Ala Ser	Gly Phe Thr	Phe Ser Ser Tyr
20	25	30	
Ala Met Ser Trp Val	Arg Gln Ala Pro	Gly Lys Gly	Leu Glu Trp Val
35	40	45	
Ser Ala Ile Ser Gly	Ser Gly Gly Ser	Thr Tyr Tyr	Ala Asp Ser Val
50	55	60	
Lys Gly Arg Phe Thr	Ile Ser Arg Asp	Asn Ser Lys Asn	Thr Leu Tyr
65	70	75	80
Leu Gln Met Asn Ser	Leu Arg Ala Glu	Asp Thr Ala Val	Tyr Tyr Cys
85	90	95	
Ala Arg Phe Leu Asp	Ile Trp Gly Gln	Gly Thr Leu Val	Thr Val Ser
100	105	110	
Ser Ala Ser Thr Lys	Gly Pro Ser Val	Phe Pro Leu Ala	Pro Ser Ser
115	120	125	
Lys Ser Thr Ser Gly	Gly Thr Ala Ala	Leu Gly Cys	Leu Val Lys Asp
130	135	140	
Tyr Phe Pro Glu Pro	Val Thr Val Ser Trp	Asn Ser Gly	Ala Leu Thr
145	150	155	160
Ser Gly Val His Thr	Phe Pro Ala Val Leu	Gln Ser Ser Gly	Leu Tyr
165	170	175	
Ser Leu Ser Ser Val	Val Thr Val Pro	Ser Ser Ser	Leu Gly Thr Gln
180	185	190	

Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp
 195 200 205
 Lys Lys Val Glu Pro Lys Ser Glu Phe
 210 215

<210> 143

<211> 221

<212> PRT

<213> Homo sapiens

<400> 143

Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
 1 5 10 15
 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
 20 25 30
 Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
 35 40 45
 Ser Ala Ile Ser Gly Ser Gly Ser Thr Tyr Tyr Ala Asp Ser Val
 50 55 60
 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
 65 70 75 80
 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95
 Ala Arg Thr Phe Pro Ile Asp Ala Asp Ser Trp Gly Gln Gly Thr Leu
 100 105 110
 Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu
 115 120 125
 Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys
 130 135 140
 Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser
 145 150 155 160
 Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser
 165 170 175
 Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser
 180 185 190
 Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn
 195 200 205
 Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Glu Phe
 210 215 220

<210> 144

<211> 218

<212> PRT

<213> Homo sapiens

<400> 144

Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
 1 5 10 15
 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
 20 25 30

Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
 35 40 45
 Ser Ala Ile Ser Gly Ser Gly Ser Thr Tyr Tyr Ala Asp Ser Val
 50 55 60
 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
 65 70 75 80
 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95
 Ala Arg Gly His Val Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val
 100 105 110
 Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser
 115 120 125
 Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys
 130 135 140
 Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu
 145 150 155 160
 Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu
 165 170 175
 Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr
 180 185 190
 Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val
 195 200 205
 Asp Lys Lys Val Glu Pro Lys Ser Glu Phe
 210 215

<210> 145

<211> 222

<212> PRT

<213> Homo sapiens

<400> 145
 Gln Val Gln Leu Val Glu Ser Gly Gly Leu Val Gln Pro Gly Gly
 1 5 10 15
 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
 20 25 30
 Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
 35 40 45
 Ser Ala Ile Ser Gly Ser Gly Ser Thr Tyr Tyr Ala Asp Ser Val
 50 55 60
 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
 65 70 75 80
 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95
 Ala Arg Tyr Trp Arg Gly Leu Ser Phe Asp Ile Trp Gly Gln Gly Thr
 100 105 110
 Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro
 115 120 125
 Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly
 130 135 140
 Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn

145	150	155	160												
Ser	Gly	Ala	Leu	Thr	Ser	Gly	Val	His	Thr	Phe	Pro	Ala	Val	Leu	Gln
165					170							175			
Ser	Ser	Gly	Leu	Tyr	Ser	Leu	Ser	Ser	Val	Val	Thr	Val	Pro	Ser	Ser
180					185						190				
Ser	Leu	Gly	Thr	Gln	Thr	Tyr	Ile	Cys	Asn	Val	Asn	His	Lys	Pro	Ser
195					200						205				
Asn	Thr	Lys	Val	Asp	Lys	Lys	Val	Glu	Pro	Lys	Ser	Glu	Phe		
210					215						220				

<210> 146

<211> 217

<212> PRT

<213> Homo sapiens

<400> 146

Gln	Val	Gln	Leu	Val	Glu	Ser	Gly	Gly	Gly	Leu	Val	Gln	Pro	Gly	Gly
1					5					10			15		
Ser	Leu	Arg	Leu	Ser	Cys	Ala	Ala	Ser	Gly	Phe	Thr	Phe	Ser	Ser	Tyr
					20					25			30		
Ala	Met	Ser	Trp	Val	Arg	Gln	Ala	Pro	Gly	Lys	Gly	Leu	Glu	Trp	Val
					35					40			45		
Ser	Ala	Ile	Ser	Gly	Ser	Gly	Gly	Ser	Thr	Tyr	Tyr	Ala	Asp	Ser	Val
					50					55			60		
Lys	Gly	Arg	Phe	Thr	Ile	Ser	Arg	Asp	Asn	Ser	Lys	Asn	Thr	Leu	Tyr
					65					70			75		80
Leu	Gln	Met	Asn	Ser	Leu	Arg	Ala	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Cys
					85					90			95		
Ala	Arg	Phe	Phe	Asp	Tyr	Trp	Gly	Gln	Gly	Thr	Leu	Val	Thr	Val	Ser
					100					105			110		
Ser	Ala	Ser	Thr	Lys	Gly	Pro	Ser	Val	Phe	Pro	Leu	Ala	Pro	Ser	Ser
					115					120			125		
Lys	Ser	Thr	Ser	Gly	Gly	Thr	Ala	Ala	Leu	Gly	Cys	Leu	Val	Lys	Asp
					130					135			140		
Tyr	Phe	Pro	Glu	Pro	Val	Thr	Val	Ser	Trp	Asn	Ser	Gly	Ala	Leu	Thr
					145					150			155		160
Ser	Gly	Val	His	Thr	Phe	Pro	Ala	Val	Leu	Gln	Ser	Ser	Gly	Leu	Tyr
					165					170			175		
Ser	Leu	Ser	Ser	Val	Val	Thr	Val	Pro	Ser	Ser	Ser	Leu	Gly	Thr	Gln
					180					185			190		
Thr	Tyr	Ile	Cys	Asn	Val	Asn	His	Lys	Pro	Ser	Asn	Thr	Lys	Val	Asp
					195					200			205		
Lys	Lys	Val	Glu	Pro	Lys	Ser	Glu	Phe							
					210					215					

<210> 147

<211> 225

<212> PRT

<213> Homo sapiens

<400> 147

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
 1 5 10 15
 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ser Tyr
 20 25 30
 Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
 35 40 45
 Gly Gly Ile Ile Pro Ile Phe Gly Thr Ala Asn Tyr Ala Gln Lys Phe
 50 55 60
 Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr
 65 70 75 80
 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95
 Ala Arg Gly Leu Tyr Trp Ala Val Tyr Pro Tyr Phe Asp Phe Trp Gly
 100 105 110
 Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser
 115 120 125
 Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala
 130 135 140
 Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val
 145 150 155 160
 Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala
 165 170 175
 Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val
 180 185 190
 Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His
 195 200 205
 Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Glu
 210 215 220
 Phe
 225

<210> 148

<211> 224

<212> PRT

<213> Homo sapiens

<400> 148

Gln Val Gln Leu Val Glu Ser Gly Gly Leu Val Gln Pro Gly Gly
 1 5 10 15
 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
 20 25 30
 Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
 35 40 45
 Ser Ala Ile Ser Gly Ser Gly Ser Thr Tyr Tyr Ala Asp Ser Val
 50 55 60
 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
 65 70 75 80
 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

Ala Arg Leu Asp Thr Tyr Tyr Pro Asp Leu Phe Asp Tyr Trp Gly Gln
 100 105 110
 Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val
 115 120 125
 Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala
 130 135 140
 Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser
 145 150 155 160
 Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val
 165 170 175
 Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro
 180 185 190
 Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys
 195 200 205
 Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Glu Phe
 210 215 220

<210> 149

<211> 220

<212> PRT

<213> Homo sapiens

<400> 149

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
 1 5 10 15
 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ser Tyr
 20 25 30
 Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
 35 40 45
 Gly Gly Ile Ile Pro Ile Phe Gly Thr Ala Asn Tyr Ala Gln Lys Phe
 50 55 60
 Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr
 65 70 75 80
 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95
 Ala Arg Thr Tyr Tyr Phe Asp Ser Trp Gly Gln Gly Thr Leu Val
 100 105 110
 Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala
 115 120 125
 Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu
 130 135 140
 Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly
 145 150 155 160
 Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser
 165 170 175
 Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu
 180 185 190
 Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr
 195 200 205
 Lys Val Asp Lys Lys Val Glu Pro Lys Ser Glu Phe

210

215

220

<210> 150

<211> 224

<212> PRT

<213> Homo sapiens

<400> 150

Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
 1 5 10 15
 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
 20 25 30
 Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
 35 40 45
 Ser Ala Ile Ser Gly Ser Gly Ser Thr Tyr Tyr Ala Asp Ser Val
 50 55 60
 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
 65 70 75 80
 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95
 Ala Arg Tyr Met Ala Tyr Met Ala Glu Ala Ile Asp Val Trp Gly Gln
 100 105 110
 Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val
 115 120 125
 Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala
 130 135 140
 Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser
 145 150 155 160
 Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val
 165 170 175
 Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro
 180 185 190
 Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys
 195 200 205
 Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Glu Phe
 210 215 220

<210> 151

<211> 230

<212> PRT

<213> Homo sapiens

<400> 151

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
 1 5 10 15
 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr
 20 25 30
 Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
 35 40 45
 Gly Trp Ile Asn Pro Asn Ser Gly Gly Thr Asn Tyr Ala Gln Lys Phe

50	55	60													
Gln	Gly	Arg	Val	Thr	Met	Thr	Arg	Asp	Thr	Ser	Ile	Ser	Thr	Ala	Tyr
65					70				75					80	
Met	Glu	Leu	Ser	Ser	Leu	Arg	Ser	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Cys
														85	95
Ala	Arg	Leu	Val	Gly	Ile	Val	Gly	Tyr	Lys	Pro	Asp	Glu	Leu	Leu	Tyr
					100			105					110		
Phe	Asp	Val	Trp	Gly	Gln	Gly	Thr	Leu	Val	Thr	Val	Ser	Ser	Ala	Ser
					115			120				125			
Thr	Lys	Gly	Pro	Ser	Val	Phe	Pro	Leu	Ala	Pro	Ser	Ser	Lys	Ser	Thr
					130			135			140				
Ser	Gly	Gly	Thr	Ala	Ala	Leu	Gly	Cys	Leu	Val	Lys	Asp	Tyr	Phe	Pro
145						150				155			160		
Glu	Pro	Val	Thr	Val	Ser	Trp	Asn	Ser	Gly	Ala	Leu	Thr	Ser	Gly	Val
						165			170			175			
His	Thr	Phe	Pro	Ala	Val	Gln	Ser	Ser	Gly	Leu	Tyr	Ser	Leu	Ser	
						180			185			190			
Ser	Val	Val	Thr	Val	Pro	Ser	Ser	Ser	Leu	Gly	Thr	Gln	Thr	Tyr	Ile
						195			200			205			
Cys	Asn	Val	Asn	His	Lys	Pro	Ser	Asn	Thr	Lys	Val	Asp	Lys	Lys	Val
					210			215			220				
Glu	Pro	Lys	Ser	Glu	Phe										
					225				230						

<210> 152

<211> 222

<212> PRT

<213> Homo sapiens

<400> 152

Gln	Val	Gln	Leu	Val	Glu	Ser	Gly	Gly	Leu	Val	Gln	Pro	Gly	Gly	
1					5				10			15			
Ser	Leu	Arg	Leu	Ser	Cys	Ala	Ala	Ser	Gly	Phe	Thr	Phe	Ser	Ser	Tyr
									20			25		30	
Ala	Met	Ser	Trp	Val	Arg	Gln	Ala	Pro	Gly	Lys	Gly	Leu	Glu	Trp	Val
									35			40		45	
Ser	Ala	Ile	Ser	Gly	Ser	Gly	Ser	Thr	Tyr	Tyr	Ala	Asp	Ser	Val	
								50			55		60		
Lys	Gly	Arg	Phe	Thr	Ile	Ser	Arg	Asp	Asn	Ser	Lys	Asn	Thr	Leu	Tyr
								65			70		75		80
Leu	Gln	Met	Asn	Ser	Leu	Arg	Ala	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Cys
								85			90		95		
Ala	Arg	Tyr	Gly	Ala	Tyr	Phe	Gly	Leu	Asp	Tyr	Trp	Gly	Gln	Gly	Thr
								100			105		110		
Leu	Val	Thr	Val	Ser	Ser	Ala	Ser	Thr	Lys	Gly	Pro	Ser	Val	Phe	Pro
								115			120		125		
Leu	Ala	Pro	Ser	Ser	Lys	Ser	Thr	Ser	Gly	Gly	Thr	Ala	Ala	Leu	Gly
								130			135		140		
Cys	Leu	Val	Lys	Asp	Tyr	Phe	Pro	Glu	Pro	Val	Thr	Val	Ser	Trp	Asn
								145			150		155		160

Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln
 165 170 175
 Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser
 180 185 190
 Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser
 195 200 205
 Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Glu Phe
 210 215 220

<210> 153

<211> 225

<212> PRT

<213> Homo sapiens

<400> 153

Gln Val Gln Leu Gln Gln Ser Gly Pro Gly Leu Val Lys Pro Ser Gln
 1 5 10 15
 Thr Leu Ser Leu Thr Cys Ala Ile Ser Gly Asp Ser Val Ser Ser Asn
 20 25 30
 Ser Ala Ala Trp Asn Trp Ile Arg Gln Ser Pro Gly Arg Gly Leu Glu
 35 40 45
 Trp Leu Gly Arg Thr Tyr Tyr Arg Ser Lys Trp Tyr Asn Asp Tyr Ala
 50 55 60
 Val Ser Val Lys Ser Arg Ile Thr Ile Asn Pro Asp Thr Ser Lys Asn
 65 70 75 80
 Gln Phe Ser Leu Gln Leu Asn Ser Val Thr Pro Glu Asp Thr Ala Val
 85 90 95
 Tyr Tyr Cys Ala Arg Gly Tyr Ala Asp Ile Ser Phe Asp Tyr Trp Gly
 100 105 110
 Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser
 115 120 125
 Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala
 130 135 140
 Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val
 145 150 155 160
 Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala
 165 170 175
 Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val
 180 185 190
 Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His
 195 200 205
 Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Glu
 210 215 220

Phe

225

<210> 154

<211> 220

<212> PRT

<213> Homo sapiens

<400> 154

Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
 1 5 10 15
 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
 20 25 30
 Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
 35 40 45
 Ser Ala Ile Ser Gly Ser Gly Ser Thr Tyr Tyr Ala Asp Ser Val
 50 55 60
 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
 65 70 75 80
 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95
 Ala Arg Tyr Tyr Leu Leu Asp Tyr Trp Gly Gln Gly Thr Leu Val
 100 105 110
 Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala
 115 120 125
 Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu
 130 135 140
 Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly
 145 150 155 160
 Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser
 165 170 175
 Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu
 180 185 190
 Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr
 195 200 205
 Lys Val Asp Lys Lys Val Glu Pro Lys Ser Glu Phe
 210 215 220

<210> 155

<211> 229

<212> PRT

<213> Homo sapiens

<400> 155

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
 1 5 10 15
 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ser Tyr
 20 25 30
 Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
 35 40 45
 Gly Gly Ile Ile Pro Ile Phe Gly Thr Ala Asn Tyr Ala Gln Lys Phe
 50 55 60
 Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr
 65 70 75 80
 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95
 Ala Arg Trp Ser Asp Gln Ser Tyr His Tyr Tyr Trp His Pro Tyr Phe

100	105	110	
Asp Val Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr			
115	120	125	
Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser			
130	135	140	
Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu			
145	150	155	160
Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His			
165	170	175	
Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser			
180	185	190	
Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys			
195	200	205	
Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu			
210	215	220	
Pro Lys Ser Glu Phe			
225			

<210> 156

<211> 220

<212> PRT

<213> Homo sapiens

<400> 156

Gln Val Gln Leu Val Glu Ser Gly Gly Leu Val Gln Pro Gly Gly			
1	5	10	15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr			
20	25	30	
Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val			
35	40	45	
Ser Ala Ile Ser Gly Ser Gly Ser Thr Tyr Tyr Ala Asp Ser Val			
50	55	60	
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr			
65	70	75	80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys			
85	90	95	
Ala Arg Leu Ile Gly Tyr Phe Asp Leu Trp Gly Gln Gly Thr Leu Val			
100	105	110	
Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala			
115	120	125	
Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu			
130	135	140	
Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly			
145	150	155	160
Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser			
165	170	175	
Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu			
180	185	190	
Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr			
195	200	205	

Lys Val Asp Lys Lys Val Glu Pro Lys Ser Glu Phe
 210 215 220

<210> 157

<211> 225

<212> PRT

<213> Homo sapiens

<400> 157

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Glu
 1 5 10 15
 Ser Leu Lys Ile Ser Cys Lys Gly Ser Gly Tyr Ser Phe Thr Ser Tyr
 20 25 30
 Trp Ile Gly Trp Val Arg Gln Met Pro Gly Lys Gly Leu Glu Trp Met
 35 40 45
 Gly Ile Ile Tyr Pro Gly Asp Ser Asp Thr Arg Tyr Ser Pro Ser Phe
 50 55 60
 Gln Gly Gln Val Thr Ile Ser Ala Asp Lys Ser Ile Ser Thr Ala Tyr
 65 70 75 80
 Leu Gln Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys
 85 90 95
 Ala Arg Leu Thr Asn Tyr Phe Asp Ser Ile Tyr Tyr Asp His Trp Gly
 100 105 110
 Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser
 115 120 125
 Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala
 130 135 140
 Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val
 145 150 155 160
 Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala
 165 170 175
 Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val
 180 185 190
 Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His
 195 200 205
 Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Glu
 210 215 220
 Phe
 225

<210> 158

<211> 225

<212> PRT

<213> Homo sapiens

<400> 158

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Glu
 1 5 10 15
 Ser Leu Lys Ile Ser Cys Lys Gly Ser Gly Tyr Ser Phe Thr Ser Tyr
 20 25 30

Trp Ile Gly Trp Val Arg Gln Met Pro Gly Lys Gly Leu Glu Trp Met
 35 40 45
 Gly Ile Ile Tyr Pro Gly Asp Ser Asp Thr Arg Tyr Ser Pro Ser Phe
 50 55 60
 Gln Gly Gln Val Thr Ile Ser Ala Asp Lys Ser Ile Ser Thr Ala Tyr
 65 70 75 80
 Leu Gln Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys
 85 90 95
 Ala Arg Leu Val Gly Gly Tyr Asp Leu Met Phe Asp Ser Trp Gly
 100 105 110
 Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser
 115 120 125
 Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala
 130 135 140
 Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val
 145 150 155 160
 Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala
 165 170 175
 Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val
 180 185 190
 Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His
 195 200 205
 Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Glu
 210 215 220
 Phe
 225

<210> 159
 <211> 226
 <212> PRT
 <213> Homo sapiens

<400> 159
 Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Glu
 1 5 10 15
 Ser Leu Lys Ile Ser Cys Lys Gly Ser Gly Tyr Ser Phe Thr Ser Tyr
 20 25 30
 Trp Ile Gly Trp Val Arg Gln Met Pro Gly Lys Gly Leu Glu Trp Met
 35 40 45
 Gly Ile Ile Tyr Pro Gly Asp Ser Asp Thr Arg Tyr Ser Pro Ser Phe
 50 55 60
 Gln Gly Gln Val Thr Ile Ser Ala Asp Lys Ser Ile Ser Thr Ala Tyr
 65 70 75 80
 Leu Gln Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys
 85 90 95
 Ala Arg Tyr Val Thr Tyr Gly Tyr Asp Asp Tyr His Phe Asp Tyr Trp
 100 105 110
 Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro
 115 120 125
 Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr

130	135	140
Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr		
145	150	155
Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro		160
165	170	175
Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr		
180	185	190
Val Pro Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn		
195	200	205
His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser		
210	215	220
Glu Phe		
225		

<210> 160

<211> 219

<212> PRT

<213> Homo sapiens

<400> 160

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser		
1	5	10
Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ser Tyr		
20	25	30
Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met		
35	40	45
Gly Gly Ile Ile Pro Ile Phe Gly Thr Ala Asn Tyr Ala Gln Lys Phe		
50	55	60
Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr		
65	70	75
Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys		
85	90	95
Ala Arg Ser Gly Tyr Leu Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr		
100	105	110
Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro		
115	120	125
Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val		
130	135	140
Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala		
145	150	155
Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly		
165	170	175
Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly		
180	185	190
Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys		
195	200	205
Val Asp Lys Lys Val Glu Pro Lys Ser Glu Phe		
210	215	

<210> 161

<211> 231
 <212> PRT
 <213> Homo sapiens

<400> 161

Gln	Val	Gln	Leu	Val	Gln	Ser	Gly	Ala	Glu	Val	Lys	Lys	Pro	Gly	Ser
1					5				10				15		
Ser	Val	Lys	Val	Ser	Cys	Lys	Ala	Ser	Gly	Gly	Thr	Phe	Ser	Ser	Tyr
					20				25				30		
Ala	Ile	Ser	Trp	Val	Arg	Gln	Ala	Pro	Gly	Gln	Gly	Leu	Glu	Trp	Met
					35				40			45			
Gly	Gly	Ile	Ile	Pro	Ile	Phe	Gly	Thr	Ala	Asn	Tyr	Ala	Gln	Lys	Phe
					50				55			60			
Gln	Gly	Arg	Val	Thr	Ile	Thr	Ala	Asp	Glu	Ser	Thr	Ser	Thr	Ala	Tyr
					65				70		75		80		
Met	Glu	Leu	Ser	Ser	Leu	Arg	Ser	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Cys
					85				90			95			
Ala	Arg	Tyr	Ile	Gly	Tyr	Thr	Asn	Val	Met	Asp	Ile	Arg	Pro	Gly	Phe
					100				105			110			
Tyr	Leu	Asp	Tyr	Trp	Gly	Gln	Gly	Thr	Leu	Val	Thr	Val	Ser	Ser	Ala
					115				120			125			
Ser	Thr	Lys	Gly	Pro	Ser	Val	Phe	Pro	Leu	Ala	Pro	Ser	Ser	Lys	Ser
					130				135			140			
Thr	Ser	Gly	Gly	Thr	Ala	Ala	Leu	Gly	Cys	Leu	Val	Lys	Asp	Tyr	Phe
					145				150			155			160
Pro	Glu	Pro	Val	Thr	Val	Ser	Trp	Asn	Ser	Gly	Ala	Leu	Thr	Ser	Gly
					165				170			175			
Val	His	Thr	Phe	Pro	Ala	Val	Leu	Gln	Ser	Ser	Gly	Leu	Tyr	Ser	Leu
					180				185			190			
Ser	Ser	Val	Val	Thr	Val	Pro	Ser	Ser	Ser	Leu	Gly	Thr	Gln	Thr	Tyr
					195				200			205			
Ile	Cys	Asn	Val	Asn	His	Lys	Pro	Ser	Asn	Thr	Lys	Val	Asp	Lys	Lys
					210				215			220			
Val	Glu	Pro	Lys	Ser	Glu	Phe									
					225				230						

<210> 162
 <211> 225
 <212> PRT
 <213> Homo sapiens

<400> 162

Gln	Val	Gln	Leu	Val	Gln	Ser	Gly	Ala	Glu	Val	Lys	Lys	Pro	Gly	Glu
1					5				10				15		
Ser	Leu	Lys	Ile	Ser	Cys	Lys	Gly	Ser	Gly	Tyr	Ser	Phe	Thr	Ser	Tyr
					20				25			30			
Trp	Ile	Gly	Trp	Val	Arg	Gln	Met	Pro	Gly	Lys	Gly	Leu	Glu	Trp	Met
					35				40			45			
Gly	Ile	Ile	Tyr	Pro	Gly	Asp	Ser	Asp	Thr	Arg	Tyr	Ser	Pro	Ser	Phe
					50				55			60			

Gln Gly Gln Val Thr Ile Ser Ala Asp Lys Ser Ile Ser Thr Ala Tyr
 65 70 75 80
 Leu Gln Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys
 85 90 95
 Ala Arg Phe Arg Ala Tyr Gly Asp Asp Phe Tyr Phe Asp Val Trp Gly
 100 105 110
 Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser
 115 120 125
 Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala
 130 135 140
 Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val
 145 150 155 160
 Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala
 165 170 175
 Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val
 180 185 190
 Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His
 195 200 205
 Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Glu
 210 215 220
 Phe
 225

<210> 163

<211> 228

<212> PRT

<213> Homo sapiens

<400> 163

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
 1 5 10 15
 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr
 20 25 30
 Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
 35 40 45
 Gly Trp Ile Asn Pro Asn Ser Gly Gly Thr Asn Tyr Ala Gln Lys Phe
 50 55 60
 Gln Gly Arg Val Thr Met Thr Arg Asp Thr Ser Ile Ser Thr Ala Tyr
 65 70 75 80
 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95
 Ala Arg Ile Met Trp Ser Asp Tyr Gly Gln Leu Val Lys Gly Gly Asp
 100 105 110
 Ile Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys
 115 120 125
 Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly
 130 135 140
 Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro
 145 150 155 160
 Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr

	165	170	175
Phe Pro Ala Val Leu Gln Ser Ser Gly	Leu Tyr Ser	Leu Ser Ser Val	
180	185	190	
Val Thr Val Pro Ser Ser Ser Leu Gly	Thr Gln Thr Tyr	Ile Cys Asn	
195	200	205	
Val Asn His Lys Pro Ser Asn Thr Lys	Val Asp Lys Lys Val Glu Pro		
210	215	220	
Lys Ser Glu Phe			
225			

<210> 164

<211> 224

<212> PRT

<213> Homo sapiens

<400> 164

Gln Val Gln Leu Val Gln Ser Gly	Ala Glu Val Lys Lys Pro Gly Glu		
1	5	10	15
Ser Leu Lys Ile Ser Cys Lys Gly	Ser Gly Tyr Ser Phe Thr Ser Tyr		
20	25	30	
Trp Ile Gly Trp Val Arg Gln Met	Pro Gly Lys Gly Leu Glu Trp Met		
35	40	45	
Gly Ile Ile Tyr Pro Gly Asp Ser Asp	Thr Arg Tyr Ser Pro Ser Phe		
50	55	60	
Gln Gly Gln Val Thr Ile Ser Ala Asp	Lys Ser Ile Ser Thr Ala Tyr		
65	70	75	80
Leu Gln Trp Ser Ser Leu Lys Ala Ser	Asp Thr Ala Met Tyr Tyr Cys		
85	90	95	
Ala Arg Tyr Tyr Val Thr Asp Thr Ala	Tyr Phe Asp Tyr Trp Gly Gln		
100	105	110	
Gly Thr Leu Val Thr Val Ser Ser Ala	Ser Thr Lys Gly Pro Ser Val		
115	120	125	
Phe Pro Leu Ala Pro Ser Ser Lys Ser	Thr Ser Gly Gly Thr Ala Ala		
130	135	140	
Leu Gly Cys Leu Val Lys Asp Tyr Phe	Pro Glu Pro Val Thr Val Ser		
145	150	155	160
Trp Asn Ser Gly Ala Leu Thr Ser Gly	Val His Thr Phe Pro Ala Val		
165	170	175	
Leu Gln Ser Ser Gly Leu Tyr Ser Leu	Ser Ser Val Val Thr Val Pro		
180	185	190	
Ser Ser Ser Leu Gly Thr Gln Thr Tyr	Ile Cys Asn Val Asn His Lys		
195	200	205	
Pro Ser Asn Thr Lys Val Asp Lys Lys	Val Glu Pro Lys Ser Glu Phe		
210	215	220	

<210> 165

<211> 224

<212> PRT

<213> Homo sapiens

<400> 165

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Glu
 1 5 10 15
 Ser Leu Lys Ile Ser Cys Lys Gly Ser Gly Tyr Ser Phe Thr Ser Tyr
 20 25 30
 Trp Ile Gly Trp Val Arg Gln Met Pro Gly Lys Gly Leu Glu Trp Met
 35 40 45
 Gly Ile Ile Tyr Pro Gly Asp Ser Asp Thr Arg Tyr Ser Pro Ser Phe
 50 55 60
 Gln Gly Gln Val Thr Ile Ser Ala Asp Lys Ser Ile Ser Thr Ala Tyr
 65 70 75 80
 Leu Gln Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys
 85 90 95
 Ala Arg His Asp Phe Asp Gly Ser Ile Phe Met Asp Phe Trp Gly Gln
 100 105 110
 Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val
 115 120 125
 Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala
 130 135 140
 Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser
 145 150 155 160
 Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val
 165 170 175
 Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro
 180 185 190
 Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys
 195 200 205
 Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Glu Phe
 210 215 220

<210> 166

<211> 225

<212> PRT

<213> Homo sapiens

<400> 166

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Glu
 1 5 10 15
 Ser Leu Lys Ile Ser Cys Lys Gly Ser Gly Tyr Ser Phe Thr Ser Tyr
 20 25 30
 Trp Ile Gly Trp Val Arg Gln Met Pro Gly Lys Gly Leu Glu Trp Met
 35 40 45
 Gly Ile Ile Tyr Pro Gly Asp Ser Asp Thr Arg Tyr Ser Pro Ser Phe
 50 55 60
 Gln Gly Gln Val Thr Ile Ser Ala Asp Lys Ser Ile Ser Thr Ala Tyr
 65 70 75 80
 Leu Gln Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys
 85 90 95
 Ala Arg Tyr Ala Gly His Gln Tyr Glu Phe Phe Phe Asp Phe Trp Gly
 100 105 110

Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser
 115 120 125
 Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala
 130 135 140
 Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val
 145 150 155 160
 Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala
 165 170 175
 Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val
 180 185 190
 Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His
 195 200 205
 Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Glu
 210 215 220
 Phe
 225

<210> 167
 <211> 224
 <212> PRT
 <213> Homo sapiens

<400> 167
 Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Glu
 1 5 10 15
 Ser Leu Lys Ile Ser Cys Lys Gly Ser Gly Tyr Ser Phe Thr Ser Tyr
 20 25 30
 Trp Ile Gly Trp Val Arg Gln Met Pro Gly Lys Gly Leu Glu Trp Met
 35 40 45
 Gly Ile Ile Tyr Pro Gly Asp Ser Asp Thr Arg Tyr Ser Pro Ser Phe
 50 55 60
 Gln Gly Gln Val Thr Ile Ser Ala Asp Lys Ser Ile Ser Thr Ala Tyr
 65 70 75 80
 Leu Gln Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys
 85 90 95
 Ala Arg Leu Tyr Ala Asp Ala Asp Ile Tyr Phe Asp Tyr Trp Gly Gln
 100 105 110
 Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val
 115 120 125
 Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala
 130 135 140
 Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser
 145 150 155 160
 Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val
 165 170 175
 Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro
 180 185 190
 Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys
 195 200 205
 Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Glu Phe

210

215

220

<210> 168

<211> 222

<212> PRT

<213> Homo sapiens

<400> 168

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
 1 5 10 15
 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ser Tyr
 20 25 30
 Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
 35 40 45
 Gly Gly Ile Ile Pro Ile Phe Gly Thr Ala Asn Tyr Ala Gln Lys Phe
 50 55 60
 Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr
 65 70 75 80
 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95
 Ala Arg Thr Lys Tyr Val Gly Ser Glu Asp Val Trp Gly Gln Gly Thr
 100 105 110
 Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro
 115 120 125
 Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly
 130 135 140
 Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn
 145 150 155 160
 Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln
 165 170 175
 Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser
 180 185 190
 Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser
 195 200 205
 Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Glu Phe
 210 215 220

<210> 169

<211> 222

<212> PRT

<213> Homo sapiens

<400> 169

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Glu
 1 5 10 15
 Ser Leu Lys Ile Ser Cys Lys Gly Ser Gly Tyr Ser Phe Thr Ser Tyr
 20 25 30
 Trp Ile Gly Trp Val Arg Gln Met Pro Gly Lys Gly Leu Glu Trp Met
 35 40 45
 Gly Ile Ile Tyr Pro Gly Asp Ser Asp Thr Arg Tyr Ser Pro Ser Phe

50	55	60													
Gln	Gly	Gln	Val	Thr	Ile	Ser	Ala	Asp	Lys	Ser	Ile	Ser	Thr	Ala	Tyr
65					70				75					80	
Leu	Gln	Trp	Ser	Ser	Leu	Lys	Ala	Ser	Asp	Thr	Ala	Met	Tyr	Tyr	Cys
														95	
Ala	Arg	Tyr	Arg	Tyr	Pro	His	Met	Phe	Asp	Phe	Trp	Gly	Gln	Gly	Thr
														100	
Leu	Val	Thr	Val	Ser	Ser	Ala	Ser	Thr	Lys	Gly	Pro	Ser	Val	Phe	Pro
														110	
Leu	Ala	Pro	Ser	Ser	Lys	Ser	Thr	Ser	Gly	Gly	Thr	Ala	Ala	Leu	Gly
														115	
Cys	Leu	Val	Lys	Asp	Tyr	Phe	Pro	Glu	Pro	Val	Thr	Val	Ser	Trp	Asn
														145	
Ser	Gly	Ala	Leu	Thr	Ser	Gly	Val	His	Thr	Phe	Pro	Ala	Val	Leu	Gln
														165	
Ser	Ser	Gly	Leu	Tyr	Ser	Leu	Ser	Ser	Val	Val	Thr	Val	Pro	Ser	Ser
														180	
Ser	Leu	Gly	Thr	Gln	Thr	Tyr	Ile	Cys	Asn	Val	Asn	His	Lys	Pro	Ser
														195	
Asn	Thr	Lys	Val	Asp	Lys	Lys	Val	Glu	Pro	Lys	Ser	Glu	Phe		
														210	
														215	
														220	

<210> 170

<211> 224

<212> PRT

<213> Homo sapiens

<400> 170

Gln	Val	Gln	Leu	Val	Gln	Ser	Gly	Ala	Glu	Val	Lys	Lys	Pro	Gly	Glu
1					5				10					15	
Ser	Leu	Lys	Ile	Ser	Cys	Lys	Gly	Ser	Gly	Tyr	Ser	Phe	Thr	Ser	Tyr
														20	
Trp	Ile	Gly	Trp	Val	Arg	Gln	Met	Pro	Gly	Lys	Gly	Leu	Glu	Trp	Met
														35	
Gly	Ile	Ile	Tyr	Pro	Gly	Asp	Ser	Asp	Thr	Arg	Tyr	Ser	Pro	Ser	Phe
														50	
Gln	Gly	Gln	Val	Thr	Ile	Ser	Ala	Asp	Lys	Ser	Ile	Ser	Thr	Ala	Tyr
														65	
Leu	Gln	Trp	Ser	Ser	Leu	Lys	Ala	Ser	Asp	Thr	Ala	Met	Tyr	Tyr	Cys
														85	
Ala	Arg	Leu	Phe	Ala	Gly	Leu	Glu	Leu	Tyr	Phe	Asp	Tyr	Trp	Gly	Gln
														100	
Gly	Thr	Leu	Val	Thr	Val	Ser	Ser	Ala	Ser	Thr	Lys	Gly	Pro	Ser	Val
														115	
Phe	Pro	Leu	Ala	Pro	Ser	Ser	Lys	Ser	Thr	Ser	Gly	Gly	Thr	Ala	Ala
														130	
Leu	Gly	Cys	Leu	Val	Lys	Asp	Tyr	Phe	Pro	Glu	Pro	Val	Thr	Val	Ser
														145	
Trp	Asn	Ser	Gly	Ala	Leu	Thr	Ser	Gly	Val	His	Thr	Phe	Pro	Ala	Val
														165	
														170	
														175	

Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro
 180 185 190
 Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys
 195 200 205
 Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Glu Phe
 210 215 220

<210> 171
 <211> 221
 <212> PRT
 <213> Homo sapiens

<400> 171
 Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
 1 5 10 15
 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
 20 25 30
 Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
 35 40 45
 Ser Ala Ile Ser Gly Ser Gly Ser Thr Tyr Tyr Ala Asp Ser Val
 50 55 60
 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
 65 70 75 80
 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95
 Ala Arg Gly Gly Phe Phe Asn Met Asp Tyr Trp Gly Gln Gly Thr Leu
 100 105 110
 Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu
 115 120 125
 Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys
 130 135 140
 Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser
 145 150 155 160
 Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser
 165 170 175
 Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser
 180 185 190
 Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn
 195 200 205
 Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Glu Phe
 210 215 220

<210> 172
 <211> 223
 <212> PRT
 <213> Homo sapiens

<400> 172
 Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
 1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ser Tyr
 20 25 30
 Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
 35 40 45
 Gly Gly Ile Ile Pro Ile Phe Gly Thr Ala Asn Tyr Ala Gln Lys Phe
 50 55 60
 Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr
 65 70 75 80
 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95
 Ala Arg Gly Tyr Ile Pro Tyr His Leu Phe Asp Tyr Trp Gly Gln Gly
 100 105 110
 Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe
 115 120 125
 Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu
 130 135 140
 Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp
 145 150 155 160
 Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu
 165 170 175
 Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser
 180 185 190
 Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro
 195 200 205
 Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Glu Phe
 210 215 220

<210> 173

<211> 225

<212> PRT

<213> Homo sapiens

<400> 173

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Glu
 1 5 10 15
 Ser Leu Lys Ile Ser Cys Lys Gly Ser Gly Tyr Ser Phe Thr Ser Tyr
 20 25 30
 Trp Ile Gly Trp Val Arg Gln Met Pro Gly Lys Gly Leu Glu Trp Met
 35 40 45
 Gly Ile Ile Tyr Pro Gly Asp Ser Asp Thr Arg Tyr Ser Pro Ser Phe
 50 55 60
 Gln Gly Gln Val Thr Ile Ser Ala Asp Lys Ser Ile Ser Thr Ala Tyr
 65 70 75 80
 Leu Gln Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys
 85 90 95
 Ala Arg Tyr Tyr Gly Phe Glu Tyr Asp Leu Leu Phe Asp Asn Trp Gly
 100 105 110
 Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser
 115 120 125
 Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala

130	135	140
Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val		
145	150	155
Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala		160
165	170	175
Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val		
180	185	190
Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His		
195	200	205
Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Glu		
210	215	220

Phe
225

<210> 174

<211> 221

<212> PRT

<213> Homo sapiens

<400> 174

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser			
1	5	10	15
Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ser Tyr			
20	25	30	
Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met			
35	40	45	
Gly Trp Ile Asn Pro Asn Ser Gly Gly Thr Asn Tyr Ala Gln Lys Phe			
50	55	60	
Gln Gly Arg Val Thr Met Thr Arg Asp Thr Ser Ile Ser Thr Ala Tyr			
65	70	75	80
Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys			
85	90	95	
Ala Arg Ile Thr Tyr Ile Gly Tyr Asp Phe Trp Gly Gln Gly Thr Leu			
100	105	110	
Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu			
115	120	125	
Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys			
130	135	140	
Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser			
145	150	155	160
Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser			
165	170	175	
Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser			
180	185	190	
Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn			
195	200	205	
Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Glu Phe			
210	215	220	

<210> 175

<211> 220
 <212> PRT
 <213> Homo sapiens

<400> 175

Gln	Val	Gln	Leu	Val	Gln	Ser	Gly	Ala	Glu	Val	Lys	Lys	Pro	Gly	Ser
1					5				10				15		
Ser	Val	Lys	Val	Ser	Cys	Lys	Ala	Ser	Gly	Gly	Thr	Phe	Ser	Ser	Tyr
					20				25				30		
Ala	Ile	Ser	Trp	Val	Arg	Gln	Ala	Pro	Gly	Gln	Gly	Leu	Glu	Trp	Met
					35			40			45				
Gly	Gly	Ile	Ile	Pro	Ile	Phe	Gly	Thr	Ala	Asn	Tyr	Ala	Gln	Lys	Phe
					50			55			60				
Gln	Gly	Arg	Val	Thr	Ile	Thr	Ala	Asp	Glu	Ser	Thr	Ser	Thr	Ala	Tyr
					65			70		75			80		
Met	Glu	Leu	Ser	Ser	Leu	Arg	Ser	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Cys
					85			90			95				
Ala	Arg	Gln	Glu	Trp	Tyr	Met	Asp	Tyr	Trp	Gly	Gln	Gly	Thr	Leu	Val
					100			105			110				
Thr	Val	Ser	Ser	Ala	Ser	Thr	Lys	Gly	Pro	Ser	Val	Phe	Pro	Leu	Ala
					115			120			125				
Pro	Ser	Ser	Lys	Ser	Thr	Ser	Gly	Gly	Thr	Ala	Ala	Leu	Gly	Cys	Leu
					130			135			140				
Val	Lys	Asp	Tyr	Phe	Pro	Glu	Pro	Val	Thr	Val	Ser	Trp	Asn	Ser	Gly
					145			150			155			160	
Ala	Leu	Thr	Ser	Gly	Val	His	Thr	Phe	Pro	Ala	Val	Leu	Gln	Ser	Ser
					165			170			175				
Gly	Leu	Tyr	Ser	Leu	Ser	Ser	Val	Val	Thr	Val	Pro	Ser	Ser	Ser	Leu
					180			185			190				
Gly	Thr	Gln	Thr	Tyr	Ile	Cys	Asn	Val	Asn	His	Lys	Pro	Ser	Asn	Thr
					195			200			205				
Lys	Val	Asp	Lys	Lys	Val	Glu	Pro	Lys	Ser	Glu	Phe				
					210			215			220				

<210> 176
 <211> 224
 <212> PRT
 <213> Homo sapiens

<400> 176

Gln	Val	Gln	Leu	Val	Gln	Ser	Gly	Ala	Glu	Val	Lys	Lys	Pro	Gly	Glu
1					5				10				15		
Ser	Leu	Lys	Ile	Ser	Cys	Lys	Gly	Ser	Gly	Tyr	Ser	Phe	Thr	Ser	Tyr
					20			25			30				
Trp	Ile	Gly	Trp	Val	Arg	Gln	Met	Pro	Gly	Lys	Gly	Leu	Glu	Trp	Met
					35			40			45				
Gly	Ile	Ile	Tyr	Pro	Gly	Asp	Ser	Asp	Thr	Arg	Tyr	Ser	Pro	Ser	Phe
					50			55			60				
Gln	Gly	Gln	Val	Thr	Ile	Ser	Ala	Asp	Lys	Ser	Ile	Ser	Thr	Ala	Tyr
					65			70			75			80	

Leu Gln Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys
 85 90 95
 Ala Arg Leu Tyr Pro Glu Asp Leu Ile Tyr Phe Asp Tyr Trp Gly Gln
 100 105 110
 Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val
 115 120 125
 Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala
 130 135 140
 Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser
 145 150 155 160
 Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val
 165 170 175
 Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro
 180 185 190
 Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys
 195 200 205
 Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Glu Phe
 210 215 220

<210> 177

<211> 231

<212> PRT

<213> Homo sapiens

<400> 177

Gln Val Gln Leu Gln Gln Ser Gly Pro Gly Leu Val Lys Pro Ser Gln
 1 5 10 15
 Thr Leu Ser Leu Thr Cys Ala Ile Ser Gly Asp Ser Val Ser Ser Asn
 20 25 30
 Ser Ala Ala Trp Asn Trp Ile Arg Gln Ser Pro Gly Arg Gly Leu Glu
 35 40 45
 Trp Leu Gly Arg Thr Tyr Tyr Arg Ser Lys Trp Tyr Asn Asp Tyr Ala
 50 55 60
 Val Ser Val Lys Ser Arg Ile Thr Ile Asn Pro Asp Thr Ser Lys Asn
 65 70 75 80
 Gln Phe Ser Leu Gln Leu Asn Ser Val Thr Pro Glu Asp Thr Ala Val
 85 90 95
 Tyr Tyr Cys Ala Arg Trp Met Thr Pro Pro Gly His Tyr Tyr Gly Tyr
 100 105 110
 Thr Phe Asp Val Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala
 115 120 125
 Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser
 130 135 140
 Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe
 145 150 155 160
 Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly
 165 170 175
 Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu
 180 185 190
 Ser Ser Val Val Thr Val Pro Ser Ser Leu Gly Thr Gln Thr Tyr

195	200	205
Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys		
210	215	220
Val Glu Pro Lys Ser Glu Phe		
225	230	

<210> 178

<211> 225

<212> PRT

<213> Homo sapiens

<400> 178

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Glu			
1	5	10	15
Ser Leu Lys Ile Ser Cys Lys Gly Ser Gly Tyr Ser Phe Thr Ser Tyr			
20	25	30	
Trp Ile Gly Trp Val Arg Gln Met Pro Gly Lys Gly Leu Glu Trp Met			
35	40	45	
Gly Ile Ile Tyr Pro Gly Asp Ser Asp Thr Arg Tyr Ser Pro Ser Phe			
50	55	60	
Gln Gly Gln Val Thr Ile Ser Ala Asp Lys Ser Ile Ser Thr Ala Tyr			
65	70	75	80
Leu Gln Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys			
85	90	95	
Ala Arg Leu Arg Val His Asp Tyr Ala Met Tyr Phe Asp Leu Trp Gly			
100	105	110	
Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser			
115	120	125	
Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala			
130	135	140	
Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val			
145	150	155	160
Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala			
165	170	175	
Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val			
180	185	190	
Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His			
195	200	205	
Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Glu			
210	215	220	

Phe

225

<210> 179

<211> 226

<212> PRT

<213> Homo sapiens

<400> 179

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Glu

1	5	10	15												
Ser	Leu	Lys	Ile	Ser	Cys	Lys	Gly	Ser	Gly	Tyr	Ser	Phe	Thr	Ser	Tyr
			20			25				30					
Trp	Ile	Gly	Trp	Val	Arg	Gln	Met	Pro	Gly	Lys	Gly	Leu	Glu	Trp	Met
			35			40				45					
Gly	Ile	Ile	Tyr	Pro	Gly	Asp	Ser	Asp	Thr	Arg	Tyr	Ser	Pro	Ser	Phe
			50			55				60					
Gln	Gly	Gln	Val	Thr	Ile	Ser	Ala	Asp	Lys	Ser	Ile	Ser	Thr	Ala	Tyr
			65			70				75					80
Leu	Gln	Trp	Ser	Ser	Leu	Lys	Ala	Ser	Asp	Thr	Ala	Met	Tyr	Tyr	Cys
			85			90				95					
Ala	Arg	Phe	Val	Ser	Tyr	Asn	Gly	Ser	Val	Pro	Tyr	Phe	Asp	Tyr	Trp
			100			105				110					
Gly	Gln	Gly	Thr	Leu	Val	Thr	Val	Ser	Ser	Ala	Ser	Thr	Lys	Gly	Pro
			115			120				125					
Ser	Val	Phe	Pro	Leu	Ala	Pro	Ser	Ser	Lys	Ser	Thr	Ser	Gly	Gly	Thr
			130			135				140					
Ala	Ala	Leu	Gly	Cys	Leu	Val	Lys	Asp	Tyr	Phe	Pro	Glu	Pro	Val	Thr
			145			150				155					160
Val	Ser	Trp	Asn	Ser	Gly	Ala	Leu	Thr	Ser	Gly	Val	His	Thr	Phe	Pro
			165			170				175					
Ala	Val	Leu	Gln	Ser	Ser	Gly	Leu	Tyr	Ser	Leu	Ser	Ser	Val	Val	Thr
			180			185				190					
Val	Pro	Ser	Ser	Leu	Gly	Thr	Gln	Thr	Tyr	Ile	Cys	Asn	Val	Asn	
			195			200				205					
His	Lys	Pro	Ser	Asn	Thr	Lys	Val	Asp	Lys	Lys	Val	Glu	Pro	Lys	Ser
			210			215				220					
Glu	Phe														
	225														

<210> 180

<211> 224

<212> PRT

<213> Homo sapiens

<400> 180

Gln	Val	Gln	Leu	Val	Gln	Ser	Gly	Ala	Glu	Val	Lys	Lys	Pro	Gly	Glu
1					5				10				15		
Ser	Leu	Lys	Ile	Ser	Cys	Lys	Gly	Ser	Gly	Tyr	Ser	Phe	Thr	Ser	Tyr
					20				25				30		
Trp	Ile	Gly	Trp	Val	Arg	Gln	Met	Pro	Gly	Lys	Gly	Leu	Glu	Trp	Met
					35				40			45			
Gly	Ile	Ile	Tyr	Pro	Gly	Asp	Ser	Asp	Thr	Arg	Tyr	Ser	Pro	Ser	Phe
					50				55			60			
Gln	Gly	Gln	Val	Thr	Ile	Ser	Ala	Asp	Lys	Ser	Ile	Ser	Thr	Ala	Tyr
					65				70			75			80
Leu	Gln	Trp	Ser	Ser	Leu	Lys	Ala	Ser	Asp	Thr	Ala	Met	Tyr	Tyr	Cys
					85				90			95			
Ala	Arg	Ile	Ile	Gly	Asp	Tyr	Val	Ile	Phe	Phe	Asp	Val	Trp	Gly	Gln
					100				105			110			

Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val
 115 120 125
 Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala
 130 135 140
 Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser
 145 150 155 160
 Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val
 165 170 175
 Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro
 180 185 190
 Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys
 195 200 205
 Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Glu Phe
 210 215 220

<210> 181

<211> 224

<212> PRT

<213> Homo sapiens

<400> 181

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Glu
 1 5 10 15
 Ser Leu Lys Ile Ser Cys Lys Gly Ser Gly Tyr Ser Phe Thr Ser Tyr
 20 25 30
 Trp Ile Gly Trp Val Arg Gln Met Pro Gly Lys Gly Leu Glu Trp Met
 35 40 45
 Gly Ile Ile Tyr Pro Gly Asp Ser Asp Thr Arg Tyr Ser Pro Ser Phe
 50 55 60
 Gln Gly Gln Val Thr Ile Ser Ala Asp Lys Ser Ile Ser Thr Ala Tyr
 65 70 75 80
 Leu Gln Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys
 85 90 95
 Ala Arg Leu Phe Thr Tyr Pro Phe Leu Tyr Phe Asp Val Trp Gly Gln
 100 105 110
 Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val
 115 120 125
 Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala
 130 135 140
 Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser
 145 150 155 160
 Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val
 165 170 175
 Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro
 180 185 190
 Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys
 195 200 205
 Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Glu Phe
 210 215 220

<210> 182
 <211> 224
 <212> PRT
 <213> Homo sapiens

<400> 182

Gln	Val	Gln	Leu	Val	Gln	Ser	Gly	Ala	Glu	Val	Lys	Lys	Pro	Gly	Glu
1					5				10				15		
Ser	Leu	Lys	Ile	Ser	Cys	Lys	Gly	Ser	Gly	Tyr	Ser	Phe	Thr	Ser	Tyr
			20					25				30			
Trp	Ile	Gly	Trp	Val	Arg	Gln	Met	Pro	Gly	Lys	Gly	Leu	Glu	Trp	Met
	35				40			45							
Gly	Ile	Ile	Tyr	Pro	Gly	Asp	Ser	Asp	Thr	Arg	Tyr	Ser	Pro	Ser	Phe
	50				55			60							
Gln	Gly	Gln	Val	Thr	Ile	Ser	Ala	Asp	Lys	Ser	Ile	Ser	Thr	Ala	Tyr
65					70				75				80		
Leu	Gln	Trp	Ser	Ser	Leu	Lys	Ala	Ser	Asp	Thr	Ala	Met	Tyr	Tyr	Cys
	85					90			95						
Ala	Arg	Ile	Leu	Thr	Gly	His	Val	Leu	Leu	Phe	Asp	Tyr	Trp	Gly	Gln
		100				105			110						
Gly	Thr	Leu	Val	Thr	Val	Ser	Ser	Ala	Ser	Thr	Lys	Gly	Pro	Ser	Val
	115				120			125							
Phe	Pro	Leu	Ala	Pro	Ser	Ser	Lys	Ser	Thr	Ser	Gly	Gly	Thr	Ala	Ala
	130				135			140							
Leu	Gly	Cys	Leu	Val	Lys	Asp	Tyr	Phe	Pro	Glu	Pro	Val	Thr	Val	Ser
145					150			155				160			
Trp	Asn	Ser	Gly	Ala	Leu	Thr	Ser	Gly	Val	His	Thr	Phe	Pro	Ala	Val
	165					170			175						
Leu	Gln	Ser	Ser	Gly	Leu	Tyr	Ser	Leu	Ser	Ser	Val	Val	Thr	Val	Pro
	180					185			190						
Ser	Ser	Ser	Leu	Gly	Thr	Gln	Thr	Tyr	Ile	Cys	Asn	Val	Asn	His	Lys
	195					200			205						
Pro	Ser	Asn	Thr	Lys	Val	Asp	Lys	Lys	Val	Glu	Pro	Lys	Ser	Glu	Phe
	210					215			220						

<210> 183
 <211> 27
 <212> DNA
 <213> Homo sapiens

<400> 183
 cagagctatg actatcagca gtttact

27

<210> 184
 <211> 26
 <212> DNA
 <213> Homo sapiens

<400> 184
 cagagctatg actttaagac ttatct

26

<210> 185
<211> 26
<212> DNA
<213> Homo sapiens

<400> 185
cagagctatg actttcttcg tttttc 26

<210> 186
<211> 27
<212> DNA
<213> Homo sapiens

<400> 186
cagagctatg acttttattaa tgttatt 27

<210> 187
<211> 27
<212> DNA
<213> Homo sapiens

<400> 187
cagagctatg actttgttcg tttttag 27

<210> 188
<211> 27
<212> DNA
<213> Homo sapiens

<400> 188
cagagctatg acttttataa gtttaat 27

<210> 189
<211> 27
<212> DNA
<213> Homo sapiens

<400> 189
cagagctatg actttcgttcg tttttct 27

<210> 190
<211> 27
<212> DNA
<213> Homo sapiens

<400> 190
cagagccgtg actttaatcg tggtcct 27

<210> 191

<211> 24
<212> DNA
<213> Homo sapiens

<400> 191 .
cagagctatg accagcgtaa gtgg 24

<210> 192
<211> 24
<212> DNA
<213> Homo sapiens

<400> 192
cagcagctt atggtaatcc tgtt 24

<210> 193
<211> 27
<212> DNA
<213> Homo sapiens

<400> 193
cagagctatg acggtttaa gactcat 27

<210> 194
<211> 24
<212> DNA
<213> Homo sapiens

<400> 194
cagagctatg actattctct tctt 24

<210> 195
<211> 24
<212> DNA
<213> Homo sapiens

<400> 195
cagagctatg actttaattt tcat 24

<210> 196
<211> 30
<212> DNA
<213> Homo sapiens

<400> 196
cagagctatg acatgattgc tcgttatcct 30

<210> 197
<211> 30
<212> DNA

<213> Homo sapiens

<400> 197
cagagctggg acattcatcc ttttgatgtt

30

<210> 198
<211> 24
<212> DNA
<213> Homo sapiens

<400> 198
cagagctggg accttgagcc ttat

24

<210> 199
<211> 27
<212> DNA
<213> Homo sapiens

<400> 199
cagagctatg acgttcttga ttctgag

27

<210> 200
<211> 30
<212> DNA
<213> Homo sapiens

<400> 200
cagagctatg accttctca tccttctaag

30

<210> 201
<211> 24
<212> DNA
<213> Homo sapiens

<400> 201
cagagctatg acgatatgca gttt

24

<210> 202
<211> 27
<212> DNA
<213> Homo sapiens

<400> 202
cagagctggg acattaatca tgctatt

27

<210> 203
<211> 27
<212> DNA
<213> Homo sapiens

<400> 203	
cagagctatg actattatga ttatgg	27
<210> 204	
<211> 24	
<212> DNA	
<213> Homo sapiens	
<400> 204	
cagcaggcta atgatTTCC tatt	24
<210> 205	
<211> 30	
<212> DNA	
<213> Homo sapiens	
<400> 205	
cagagctggg acaatcttaa gatgcctgtt	30
<210> 206	
<211> 30	
<212> DNA	
<213> Homo sapiens	
<400> 206	
cagagctatg acgttttcc tattaatcgt	30
<210> 207	
<211> 21	
<212> DNA	
<213> Homo sapiens	
<400> 207	
cagagcgatc tttatTTCC t	21
<210> 208	
<211> 24	
<212> DNA	
<213> Homo sapiens	
<400> 208	
cagagctatg acgttactcc tcgt	24
<210> 209	
<211> 27	
<212> DNA	
<213> Homo sapiens	
<400> 209	
cagagccgtg accctgttgg tttcct	27

<210> 210
<211> 24
<212> DNA
<213> Homo sapiens

<400> 210
cagagctatg acctttctcc tcgt 24

<210> 211
<211> 30
<212> DNA
<213> Homo sapiens

<400> 211
cagagctatg acttttctca ttatttttt 30

<210> 212
<211> 27
<212> DNA
<213> Homo sapiens

<400> 212
cagagctatg accttcgtta ttctcat 27

<210> 213
<211> 24
<212> DNA
<213> Homo sapiens

<400> 213
cagagctatg accttcgtaa tcgt 24

<210> 214
<211> 27
<212> DNA
<213> Homo sapiens

<400> 214
cagagctatg acttttactta tggttct 27

<210> 215
<211> 24
<212> DNA
<213> Homo sapiens

<400> 215
cagcagttta atgattctcc ttat 24

<210> 216

<211> 27
<212> DNA
<213> Homo sapiens

<400> 216
cagagctatg acatttctgg ttatcct 27

<210> 217
<211> 30
<212> DNA
<213> Homo sapiens

<400> 217
cagagccgtg accttttatta tgtttattat 30

<210> 218
<211> 24
<212> DNA
<213> Homo sapiens

<400> 218
cagagctatg accgttctat gtgg 24

<210> 219
<211> 27
<212> DNA
<213> Homo sapiens

<400> 219
cagagctggg acgttcagac tgataag 27

<210> 220
<211> 27
<212> DNA
<213> Homo sapiens

<400> 220
cagagctggg acccttctca ttattat 27

<210> 221
<211> 27
<212> DNA
<213> Homo sapiens

<400> 221
cagagctatg acattatgcc tgagcgt 27

<210> 222
<211> 27
<212> DNA

<213> Homo sapiens

<400> 222

cagagcatgg actttcgat tatgcat

27

<210> 223

<211> 27

<212> DNA

<213> Homo sapiens

<400> 223

cagagcttg acatgattca tccttat

27

<210> 224

<211> 21

<212> DNA

<213> Homo sapiens

<400> 224

cagagcgact ttcctgttat g

21

<210> 225

<211> 21

<212> DNA

<213> Homo sapiens

<400> 225

cagagcgaca atccttatct t

21

<210> 226

<211> 12

<212> DNA

<213> Homo sapiens

<400> 226

tttatggata tt

12

<210> 227

<211> 12

<212> DNA

<213> Homo sapiens

<400> 227

ggtttgatt at

12

<210> 228

<211> 12

<212> DNA

<213> Homo sapiens

<400> 228
tttcttgata tt 12

<210> 229
<211> 24
<212> DNA
<213> Homo sapiens

<400> 229
acttttccta ttgatgctga ttct 24

<210> 230
<211> 15
<212> DNA
<213> Homo sapiens

<400> 230
ggcatgttg attat 15

<210> 231
<211> 27
<212> DNA
<213> Homo sapiens

<400> 231
tattggcgta gtctttcttt tgatatt 27

<210> 232
<211> 12
<212> DNA
<213> Homo sapiens

<400> 232
ttttttgatt at 12

<210> 233
<211> 36
<212> DNA
<213> Homo sapiens

<400> 233
ggcttttatt gggctgttta tccttatttt gatttt 36

<210> 234
<211> 33
<212> DNA
<213> Homo sapiens

<400> 234
cttgatactt attatcctga tctttttgat tat 33

<210> 235
<211> 21
<212> DNA
<213> Homo sapiens

<400> 235
acttattattt attttggattc t 21

<210> 236
<211> 33
<212> DNA
<213> Homo sapiens

<400> 236
tatatggctt atatggctga ggctattgtat gtt 33

<210> 237
<211> 51
<212> DNA
<213> Homo sapiens

<400> 237
cttgggttta ttgttgggtta taaggctgtat gagcttcttt attttggatgt t 51

<210> 238
<211> 27
<212> DNA
<213> Homo sapiens

<400> 238
tatggtgctt attttgggtct tgattat 27

<210> 239
<211> 27
<212> DNA
<213> Homo sapiens

<400> 239
ggttatgtcg atatttcttt tgattat 27

<210> 240
<211> 21
<212> DNA
<213> Homo sapiens

<400> 240
tattatcttc ttcttgattat t 21

<210> 241

<211> 48
<212> DNA
<213> Homo sapiens

<400> 241
tggtctgatc agtcttatca ttattattgg catccttatt ttgatgtt 48

<210> 242
<211> 21
<212> DNA
<213> Homo sapiens

<400> 242
cttattggtt attttgatct t 21

<210> 243
<211> 36
<212> DNA
<213> Homo sapiens

<400> 243
cttactaatt attttgattc tatttattat gatcat 36

<210> 244
<211> 36
<212> DNA
<213> Homo sapiens

<400> 244
cttgggttgt gtggttatga tcttatgtt gattct 36

<210> 245
<211> 39
<212> DNA
<213> Homo sapiens

<400> 245
tatgttactt atggttatga tgattatcat tttgattat 39

<210> 246
<211> 18
<212> DNA
<213> Homo sapiens

<400> 246
tctggttatc ttgattat 18

<210> 247
<211> 54
<212> DNA

<213> Homo sapiens

<400> 247

tatattgggtt atactaatgt tatggatatt cgtcctggtt tttatcttga ttat

54

<210> 248

<211> 36

<212> DNA

<213> Homo sapiens

<400> 248

tttcgtgctt atggtgatga tttttatttt gatgtt

36

<210> 249

<211> 45

<212> DNA

<213> Homo sapiens

<400> 249

attatgttgtt ctgattatgg tcagcttggt aagggtgggt aatatt

45

<210> 250

<211> 33

<212> DNA

<213> Homo sapiens

<400> 250

tattatgtta ctgatactgc ttattttgat tat

33

<210> 251

<211> 33

<212> DNA

<213> Homo sapiens

<400> 251

catgattttg atggttctat ttttatggat ttt

33

<210> 252

<211> 36

<212> DNA

<213> Homo sapiens

<400> 252

tatgctggtc atcagtatga gttttttttt gatttt

36

<210> 253

<211> 33

<212> DNA

<213> Homo sapiens

<400> 253	
ctttatgctg atgctgatat ttattttat tat	33
<210> 254	
<211> 27	
<212> DNA	
<213> Homo sapiens	
<400> 254	
actaagtatg ttggttctga ggatgtt	27
<210> 255	
<211> 27	
<212> DNA	
<213> Homo sapiens	
<400> 255	
tatcgttatc ctcatatgtt tgatttt	27
<210> 256	
<211> 33	
<212> DNA	
<213> Homo sapiens	
<400> 256	
ctttttgctg gtcttgagct ttattttat tat	33
<210> 257	
<211> 24	
<212> DNA	
<213> Homo sapiens	
<400> 257	
ggtggttttt ttaatatgga ttat	24
<210> 258	
<211> 30	
<212> DNA	
<213> Homo sapiens	
<400> 258	
ggttatattc cttatcatct ttttgattat	30
<210> 259	
<211> 36	
<212> DNA	
<213> Homo sapiens	
<400> 259	
tattatggtt ttgagtatga tcttctttt gataat	36

<210> 260
<211> 24
<212> DNA
<213> Homo sapiens

<400> 260
attacttata ttggttatga tttt 24

<210> 261
<211> 21
<212> DNA
<213> Homo sapiens

<400> 261
caggagtggt atatggatta t 21

<210> 262
<211> 33
<212> DNA
<213> Homo sapiens

<400> 262
ctttatcctg aggatcttat ttattttgat tat 33

<210> 263
<211> 45
<212> DNA
<213> Homo sapiens

<400> 263
tggatgactc ctccctggtca ttattatggt tatacttttg atgtt 45

<210> 264
<211> 36
<212> DNA
<213> Homo sapiens

<400> 264
cttcgtgttc atgattatgc tatgtatttt gatctt 36

<210> 265
<211> 39
<212> DNA
<213> Homo sapiens

<400> 265
tttgggtttctt ataatggttc tgttccttat tttgattat 39

<210> 266

<211> 33
 <212> DNA
 <213> Homo sapiens

<400> 266
 attattggtg attatgttat ttttttgat gtt 33

<210> 267
 <211> 33
 <212> DNA
 <213> Homo sapiens

<400> 267
 cttttactt atcctttct ttatttgat gtt 33

<210> 268
 <211> 33
 <212> DNA
 <213> Homo sapiens

<400> 268
 attttactg gtacacgttct tcttttgat tat 33

<210> 269
 <211> 645
 <212> DNA
 <213> Homo sapiens

<400> 269
 caggtgaat tgggtggaaag cggcgccggc ctgggtcaac cgggcggcag cctgcgtctg 60
 agctgcgcgg cctccggatt tacctttagc agctatgcga tgagctgggt gcgccaagcc 120
 cctgggaagg gtctcgatg ggtgagcgcg attacggta gccggccggcag cacctattat 180
 gctggatagcg tggaaaggccg ttttaccatt tcacgtgata attcgaaaaa caccctgtat 240
 ctgcaatga acagcctgcg tgcggaaagat acggccgtgt attattgcgc gcgttttatg 300
 gatattttggg gccaaggcac cctgggtgacg gttagctcag cgtcgaccaa aggtccaagc 360
 gtgtttccgc tggctccgag cagcaaaagc accagcggcg gcacggctgc cctgggctgc 420
 ctggtaaag attatccc ggaaccagtc accgtgagct ggaacagcgg ggcgctgacc 480
 agcggcgtgc ataccttcc ggcgggtgctg caaagcagcg gcctgtatacg cctgagcage 540
 gttgtgaccg tgccgagcag cagcttagc actcagacct atatttgc当地 cgtgaaccat 600
 aaaccgagca acaccaaaagt ggataaaaaa gtggaaccga aaagc 645

<210> 270
 <211> 645
 <212> DNA
 <213> Homo sapiens

<400> 270
 caggtgaat tgggtggaaag cggcgccggc ctgggtcaac cgggcggcag cctgcgtctg 60
 agctgcgcgg cctccggatt tacctttagc agctatgcga tgagctgggt gcgccaagcc 120
 cctgggaagg gtctcgatg ggtgagcgcg attacggta gccggccggcag cacctattat 180

gcggatagcg tgaaaggccg ttttaccatt tcacgtata attcgaaaaa caccctgtat	240
ctgcaaatga acagcctgcg tgcggaagat acggccgtgt attattgcgc gcgtgggttt	300
gattattggg gccaaggcac cctggtgacg gttagctcag cgtcgaccaa aggtccaagc	360
gtgtttccgc tggctccgag cagcaaaagc accagcggcg gcacggctgc cctggctgc	420
ctggtaaag attatttccc ggaaccagtc accgtgagct ggaacagcgg ggcgctgacc	480
agcggctgc ataccttcc ggcggtgctg caaagcagcg gcctgtataag cctgagcage	540
gttgtgaccg tgccgagcag cagcttaggc actcagacct atatttgcaa cgtgaaccat	600
aaaccgagca acaccaaagt ggataaaaaa gtggaaaccga aaagc	645

<210> 271

<211> 645

<212> DNA

<213> Homo sapiens

<400> 271

caggtgcaat tggtgaaag cggcggcggc ctggtgcaac cgggcggcag cctgcgtctg	60
agctgcggg cctccggatt taccttagc agctatgcgta tgagctgggt ggcggcaagcc	120
cctgggaagg gtctcgagtg ggtgagcgcg attagcgta gcggcggcag cacctattat	180
gcggatagcg tgaaaggccg ttttaccatt tcacgtata attcgaaaaa caccctgtat	240
ctgcaaatga acagcctgcg tgcggaagat acggccgtgt attattgcgc gcgtttctt	300
gatatttggg gccaaggcac cctggtgacg gttagctcag cgtcgaccaa aggtccaagc	360
gtgtttccgc tggctccgag cagcaaaagc accagcggcg gcacggctgc cctggctgc	420
ctggtaaag attatttccc ggaaccagtc accgtgagct ggaacagcgg ggcgctgacc	480
agcggctgc ataccttcc ggcggtgctg caaagcagcg gcctgtataag cctgagcage	540
gttgtgaccg tgccgagcag cagcttaggc actcagacct atatttgcaa cgtgaaccat	600
aaaccgagca acaccaaagt ggataaaaaa gtggaaaccga aaagc	645

<210> 272

<211> 657

<212> DNA

<213> Homo sapiens

<400> 272

caggtgcaat tggtgaaag cggcggcggc ctggtgcaac cgggcggcag cctgcgtctg	60
agctgcggg cctccggatt taccttagc agctatgcgta tgagctgggt ggcggcaagcc	120
cctgggaagg gtctcgagtg ggtgagcgcg attagcgta gcggcggcag cacctattat	180
gcggatagcg tgaaaggccg ttttaccatt tcacgtata attcgaaaaa caccctgtat	240
ctgcaaatga acagcctgcg tgcggaagat acggccgtgt attattgcgc gcgtacttt	300
cctattgtat ctgattctt gggccaaggc accctggta cggtagctc agcgtcgacc	360
aaaggtccaa gcgtgtttcc gctggctccg agcagcaaaa gcaccagcgg cggcacggct	420
gcctggct gcctggtaa agattatttcc cggaaaccag tcaccgttag ctggAACAGC	480
ggggcgctga ccagcggcgt gcataccctt cccggcgtgc tgcaaaagcag cggcctgtat	540
agcctgagca gcgttgtgac cgtgcccagc agcagcttag gcactcagac ctatattgc	600
aacgtgaacc ataaaccgag caacaccaa gtggataaaa aagtggaaacc gaaaagc	657

<210> 273

<211> 648

<212> DNA

<213> Homo sapiens

<400> 273

caggtgcaat	tggggaaag	cgccggcggc	ctgggtcaac	cggggcggcag	cctgcgtctg	60
agctgcgcgg	cctccggatt	taccttttagc	agctatgcga	ttagctgggt	gcgc当地	120
cctggaaagg	gtctcgagt	ggtgagcgcg	attagcgta	gcggcggcag	cacctattat	180
gcggatagcg	tgaaaggccg	ttttaccatt	tcacgtgata	attcgaaaaaa	caccctgtat	240
ctgcaaata	acagcctgcg	tgccgaagat	acggccgtgt	attattgcgc	gcgtggtcat	300
gttggattatt	ggggccaagg	caccctgggt	acggtagct	cagcgtcgc	caaagggtcca	360
agcgtgtttc	cgctggctcc	gagcagcaaa	agcaccagcg	gcggcacggc	tgccctggc	420
tgccctggta	aagattattt	cccgaaacca	gtcaccgtga	gctggaaacag	cggggcgttg	480
accagcggcg	tgcatacctt	tccggcgggt	ctgcaaagca	gcggcctgt	tagcctgagc	540
agcgttgta	ccgtgcccag	cagcagctta	ggcactcaga	cctatatttg	caacgtgaac	600
cataaaccga	gcaacaccaa	agtggataaaa	aaagtggaaac	cgaaaaagc		648

<210> 274

<211> 660

<212> DNA

<213> Homo sapiens

<400> 274

caggtgcaat	tggggaaag	cgccggcggc	ctgggtcaac	cggggcggcag	cctgcgtctg	60
agctgcgcgg	cctccggatt	taccttttagc	agctatgcga	ttagctgggt	gcgc当地	120
cctggaaagg	gtctcgagt	ggtgagcgcg	attagcgta	gcggcggcag	cacctattat	180
gcggatagcg	tgaaaggccg	ttttaccatt	tcacgtgata	attcgaaaaaa	caccctgtat	240
ctgcaaata	acagcctgcg	tgccgaagat	acggccgtgt	attattgcgc	gcgttattgg	300
cggtgtttt	cttttgat	ttggggccaa	ggcaccctgg	tgacggtag	ctcagcgtcg	360
accaaagg	caagcgttt	tccgctggct	ccgagcagca	aaagcaccag	cggcggc	420
gctccctgg	gctccctgg	taaagattat	ttcccgaaac	cagtcaccgt	gagctggaa	480
agcggggcgc	tgaccagcg	cgtgcatacc	tttccggcgg	tgctgcaaag	cagcggcctg	540
tatagcctga	gcagcgtt	gaccgtccg	agcagcagct	tagcactca	gacctatatt	600
tgcaacgtga	accataaacc	gagcaacacc	aaagtggata	aaaaagtgg	accgaaaaagc	660

<210> 275

<211> 645

<212> DNA

<213> Homo sapiens

<400> 275

caggtgcaat	tggggaaag	cgccggcggc	ctgggtcaac	cggggcggcag	cctgcgtctg	60
agctgcgcgg	cctccggatt	taccttttagc	agctatgcga	ttagctgggt	gcgc当地	120
cctggaaagg	gtctcgagt	ggtgagcgcg	attagcgta	gcggcggcag	cacctattat	180
gcggatagcg	tgaaaggccg	ttttaccatt	tcacgtgata	attcgaaaaaa	caccctgtat	240
ctgcaaata	acagcctgcg	tgccgaagat	acggccgtgt	attattgcgc	gcgttattttt	300
gattattgg	gccaaggc	cctggtgac	gttagctc	cgtcgaccaa	aggc当地	360
gtgtttccgc	tggctccgag	cagcaaaagc	accagcggcg	gcacggctgc	cctgggctgc	420
ctggtaaag	attatttcc	ggaaccagtc	accgtgagct	gaaacagcgg	ggcgtgacc	480
agcggcgtgc	ataccttcc	ggcggtgct	caaagcagcg	gcctgtata	cctgagcagc	540
gttggaccc	tgccgagcag	cagcttagc	actcagac	ct atattgca	cgtgaaccat	600
aaaccgagca	acaccaa	aaagtggata	aaaaagtgg	accgaaaaagc		645

<210> 276

<211> 669
<212> DNA
<213> *Homo sapiens*

<400> 276

cagggtcaat tggttcagtc tggcgcggaa gtaaaaaaac cgggcagcag cgtaaagtgc 60
agctgcaaag cctccggagg cacttttagc agctatgcga ttagctgggt gcgccaaagcc 120
cctggggcagg gtctcgagtg gatgggcggc attattccga ttttggcac ggccaactac 180
gcgcagaagt ttcagggcccg ggtgaccatt accgcggatg aaagcaccag caccgcgtat 240
atggaaactga gcagccctgcg tagcgaagat acggccgtgt attattgcgc gcgtggcttt 300
tattgggtct tttatcctta ttttgatttt tggggccaag gcaccctgggt gacggttagc 360
tcagcgtcga ccaaagggtcc aagcgtgttt ccgcgtggctc cgagcagcaa aagcaccagc 420
ggcggcacgg ctgcctggg ctgcctgggt aaagattatt tcccgaaacc agtcaccgtg 480
agctggaaaca gcggggcgct gaccagcggc gtgcataacct ttccggcggt gctgcaaagc 540
agcggcctgt atagccctgag cagcgttgtg accgtgccga gcagcagctt aggcactctag 600
acctatattt gcaacgtgaa ccataaacccg agcaacacca aagtggataa aaaagtggaa 660
ccggaaaagc 669

<210> 277

<211> 666

<212> DNA

<213> Homo sapiens

<400> 277

cagggtcaat tgggtggaaag cggcgccggc ctggtgcaac cgggcggcag cctgcgtctg 60
agctgcgcgg cctccggatt taccttttagc agctatgcga ttagctgggt gcgccaagcc 120
cctgggaagg gtctcgagtg ggtgagcgcg attagcgta gcggcggcag cacctattat 180
gcggatagcg taaaaggccg ttttaccatt tcacgtgata attcgaaaaa caccctgtat 240
ctgcaaatga acaggctgcg tgccgaagat acggccgtgt attattgcgc gcgtcttgat 300
acttattatc ctgatcttt tgattattgg ggccaaggca ccctggtgac ggttagctca 360
gcgtcgacca aagggtccaag cgtgtttccg ctggctccga gcagcaaaaag caccagcggc 420
ggcacggctg ccctgggctg cctggtaaa gattatttcc cggAACCGT caccgtgagc 480
tggAACAGCG gggcgctgac cagcggcgtg catacccttc cggcggtgct gcaaaggcagc 540
ggcctgtata gcctgagcag ctgttgacc gtggcagca gcagcttagg cactcagacc 600
tatatttgca acgtgaacca taaaccggagc aacacccaaag tggataaaaaa agtggaaaccg 660
aaaagc 666

<210> 278

<211> 654

<212> DNA

<213> Homo sapiens

<400> 278

cagggtcaat	tggttcagtc	tggtcgccgaa	gtaaaaaaac	cgggcagcag	cgtgaaagtgc	60
agctgcaaag	cctccggagg	cacttttagc	agctatgcga	ttagctgggt	gcgc当地	120
cctgggcagg	gtctcgagtg	gatgggcggc	attattccga	tttttggcac	ggc当地actac	180
gecgagaagt	ttcagggccg	ggtaccatt	accgcggatg	aaagcaccag	caccgcgtat	240
atggaaactga	gcagcctgcf	tagcgaagat	acggccgtgt	attattgcgc	gcgtacttat	300
tattattttg	attcttgggg	ccaaggcacc	ctggtgacgg	ttagctcagc	gtcgacccaaa	360
ggtccaaagcg	tgtttcccgct	ggctccgagc	agcaaaaqca	ccagcggccgg	cacggctgccc	420

ctgggctgcc	tggtaaaga	ttatcccg	gaaccagtca	ccgtgagctg	gaacagcggg	480
gcgctgacca	gcggcgtca	tacccccc	gcggctgc	aaagcagcgg	cctgtatagc	540
ctgagcagcg	tttgaccgt	gccgagcagc	agcttaggca	ctcagaccta	tatcccaac	600
gtgaaccata	aaccgagcaa	caccaaagt	gataaaaaag	tggaaaccgaa	aagc	654

<210> 279

<211> 666

<212> DNA

<213> Homo sapiens

<400> 279

caggtcaat	tggggaaag	cggcggcggc	ctggtgcaac	cggcggcag	cctgcgtctg	60
agctgcgcgg	cctccggatt	tacctttac	agctatgcga	ttagctgggt	gcgccaagcc	120
cctgggaaagg	gtctcgagtg	ggtagcgcg	attagcggt	gcggcggcag	cacccattat	180
gcggatagcg	tggaaaggccg	ttttaccatt	tcacgtata	attcgaaaaa	caccctgtat	240
ctgcaaatga	acagcctgcg	tgccggaaat	acggccgtgt	attattgcgc	gcgttatatg	300
gcttatatgg	ctgaggctat	ttagtgggg	ggccaaaggca	ccctggtgac	ggtagctca	360
gcgtcgacca	aaggcctaag	cgtgtttccg	ctggctccg	gcagcaaaag	caccagcggc	420
ggcacggctg	ccctgggctg	cctggtaaa	gattattcc	cgaaaccagt	caccgtgagc	480
tggacacagc	gggcgctgac	cagcggcg	catacccttc	ccgcgggtgt	gcaaaaggc	540
ggcctgtata	gcctgagcag	cgttgcgacc	gtgcccggca	gcagctttagg	cactcagacc	600
tatatttgc	acgtgaacca	taaaccgagc	aacaccaaag	tggataaaaaa	agtggaaaccg	660
					aaaagc	666

<210> 280

<211> 684

<212> DNA

<213> Homo sapiens

<400> 280

caggtcaat	tggttcagag	cggcgcggaa	gtggaaaaac	cggcgcgag	cgtgaaagt	60
agctgcacaag	cctccggata	tacccccc	agctattata	tgcactgggt	cgcccaagcc	120
cctggcagg	gtctcgagtg	gatgggctgg	attaaacccg	atagcggcgg	cacgaactac	180
gcgcagaatg	tccaggccg	ggtagccatg	acccgtata	ccagcattag	caccgcgtat	240
atggaaactga	gcagcctgcg	tagcgaat	acggccgtgt	attattgcgc	gcgttctgtt	300
ggtattgtt	tttataagcc	ttagtgggt	ctttatcc	atgtttgggg	ccaaggcacc	360
ctgggtacgg	ttagctcagc	gtcgacccaa	ggtccaaagcg	tgtttccgt	ggctccgagc	420
agcaaaaacg	ccagcggcgg	cacggctg	ctggctg	tggtaaaa	ttatcccg	480
gaaccaggc	ccgtgagctg	gaacagcggg	gcgtgacca	ccggcgtgca	tacccccc	540
gcggtgctgc	aaagcagcgg	cctgtatagc	ctgagcagcg	tttgaccgt	gccgagcagc	600
agcttaggca	ctcagaccta	tatcccaac	gtgaaccata	aaccgagcaa	caccaaagt	660
					gataaaaaag	684

<210> 281

<211> 660

<212> DNA

<213> Homo sapiens

<400> 281

caggtcaat	tggggaaag	cggcggcggc	ctggtgcaac	cggcggcag	cctgcgtctg	60
-----------	-----------	------------	------------	-----------	------------	----

agctgcgcgg	cctccggatt	tacctttagc	agctatgcga	tgagctgggt	gcgccaaagcc	120
cctgggaagg	gtctcgagtg	ggtgagcgcg	attagcggt	gcggcggcag	cacctattat	180
gcggatagcg	tgaaaggccg	ttttaccatt	tcacgtgata	attcgaaaaa	caccctgtat	240
ctgcaaatga	acagcctgcg	tgccgaagat	acggccgtgt	attattgcgc	gcgttatgg	300
gcttattttg	gtcttgatta	ttggggccaa	ggcacccctgg	tgacggtag	ctcagcgtcg	360
accaaaggtc	caagcgtgtt	tccgctggct	ccgagcagca	aaagcaccag	cgccggcacg	420
gtgccttgg	gtgcctgtt	taaagattat	ttcccggaac	cagtcaccgt	gagctggaaac	480
agcggggcgc	tgaccagcgg	cgtgcatacc	tttccggcgg	tgctgaaaag	cagcggcctg	540
tatagcctga	geagcgttgt	gaccgtgccg	agcagcagct	taggcactca	gacctatatt	600
tgcaacgtga	accataaacc	gagcaacacc	aaagtggata	aaaaagtgg	accgaaaagc	660

<210> 282

<211> 669

<212> DNA

<213> Homo sapiens

<400> 282

caggtcaat	tgcaacagtc	tggtccgggc	ctggtgaaac	cgagccaaac	cctgagccctg	60
acctgtgcga	tttccggaga	tagcgtgagc	agcaacagcg	ccgcgtggaa	ctggattcgc	120
cagtctccgt	ggcggtggct	cgagtggctg	ggccgtacct	attatcgtag	caaatggtat	180
aacgattatg	cggtgagcgt	aaaaagccgg	attaccatca	acccggataac	ttcgaaaaac	240
cagtttagcc	tgcaactgaa	cagcgtgacc	ccggaagata	cgccgtgt	ttattgcgcg	300
cgtggttatg	ctgatatttc	ttttgattat	tggggccaag	gcacccctgg	gacggtagc	360
tcagcgtcga	ccaaagggtcc	aagcgtgtt	ccgctggctc	cgagcagcaa	aagcaccagc	420
ggcggcacgg	ctggccctggg	ctgcctggtt	aaagattatt	tcccggaacc	agtcaccgt	480
agctggaaaca	gccccggcgt	gaccagcggc	gtgcatacct	ttccggcgg	gctgaaaagc	540
agcggccgt	atagcctgag	cagcgttg	accgtgccg	gcagcagctt	aggcactcag	600
acctatattt	gcaacgtgaa	ccataaaccg	agcaacacca	aagtggataa	aaaagtggaa	660
	ccgaaaagc					669

<210> 283

<211> 654

<212> DNA

<213> Homo sapiens

<400> 283

caggtcaat	tggtgaaaag	cggcggcggc	ctggtgcaac	cggcggcag	cctgcgtctg	60
agctgcgcgg	cctccggatt	tacctttagc	agctatgcga	tgagctgggt	gcgccaaagcc	120
cctgggaagg	gtctcgagtg	ggtgagcgcg	attagcggt	gcggcggcag	cacctattat	180
gcggatagcg	tgaaaggccg	ttttaccatt	tcacgtgata	attcgaaaaa	caccctgtat	240
ctgcaaatga	acagcctgcg	tgccgaagat	acggccgtgt	attattgcgc	gcgttattat	300
cttcttcctt	attattgggg	ccaaggcacc	ctggtgacgg	ttagctcagc	gtcgacccaa	360
ggtccaagcg	tgtttccgt	ggctccgagc	agcaaaagca	ccagcggcgg	cacggctgccc	420
ctgggctgcc	tggtaaaga	ttatcccgg	gaaccagtca	ccgtgagct	gaacagcggg	480
gcccgtgacca	gccccgtcga	taccttccg	gccccgtc	aaagcagcgg	cctgtatagc	540
ctgagcagcg	tttgacccgt	gcccgtc	agctttagca	ctcagaccta	tatccgtac	600
gtgaaccata	aaccgagcaa	caccaaaatgt	gataaaaaag	tggaaaccgaa	aagc	654

<210> 284

<211> 681

<212> DNA

<213> Homo sapiens

<400> 284

caggtcaat	tggtcagtc	tggcgcgaa	gtaaaaaac	cgggcagca	cgtgaaagt	60
agctgcaaag	cctccggagg	cacttttagc	agctatgcga	ttagctgggt	gcccagcc	120
cctggcagg	gtctcgagt	gatggcggc	attattccga	tttttggcac	ggcgaactac	180
gcccagaat	ttcaggccg	ggtgaccatt	accgcccgtat	aaagcaccag	caccgcgtat	240
atggaaactga	gcagcctcg	tagcgaagat	acggccgtgt	attattgcgc	gcgttggct	300
gatcgtt	atcattatta	ttggcatcct	tatitgtat	tttggggcca	aggcacccctg	360
gtgacggta	gtcagcgtc	gaccaaaggt	ccaagcgtgt	ttccgctggc	tccgagcagc	420
aaaagcacca	gcccggcac	ggctgcctg	ggctgcctgg	ttaaagatta	tttcccgaa	480
ccagtccacc	tgagctggaa	cagcggggcg	ctgaccagcg	gcgtgcatac	cttccggcg	540
gtgctgaaa	gcagcggct	gtatagcctg	agcagcgttg	tgaccgtgcc	gagcagcagc	600
ttaggcactc	agacctata	ttgcaacgt	aaccataaac	cgagcaacac	caaagtggat	660
aaaaaagtgg	aaccgaaaag	c				681

<210> 285

<211> 654

<212> DNA

<213> Homo sapiens

<400> 285

caggtcaat	tggtgaaag	cggcgccggc	ctggtcaac	cggcgccag	cctgcgtctg	60
agctgcgcgg	cctccggatt	taccttttagc	agctatgcga	tgagctgggt	gcccagcc	120
cctggaaagg	gtctcgagt	ggtgagcgcg	attagcgta	gcccggcag	cacctattat	180
gcggatagcg	tgaaaggccg	tttaccatt	tcacgtata	attcgaaaaa	caccctgtat	240
ctgcaatga	acagcctcg	tgcggaaagat	acggccgtgt	attattgcgc	gcgttctatt	300
ggttattttg	atcttgggg	ccaaggcacc	ctggtacagg	ttagctcagc	gtcgaccaa	360
ggtccaagcg	tgttccgc	ggctccgagc	agcaaaaagca	ccagcggcgg	cacggctgcc	420
ctgggctgcc	tggtaaaga	ttatitcccg	gaaccagtca	ccgtgagctg	gaacagcggg	480
gcgttacca	gcccgtgc	tacctttccg	gcccgtctgc	aaagcagcgg	cctgtatagc	540
ctgagcagcg	ttgtgaccgt	gccgagcagc	agctttaggca	ctcagaccta	tatttgcac	600
gtgaaccata	aaccgagcaa	caccaaagt	gataaaaaag	tggacccgaa	aagc	654

<210> 286

<211> 669

<212> DNA

<213> Homo sapiens

<400> 286

caggtcaat	tggtcagag	cggcgcgaa	gtaaaaaac	cgggcgaaag	cctgaaaatt	60
agctgcaaag	gttccggata	ttcctttacg	agctattgga	ttggctgggt	gcccagatg	120
cctggaaagg	gtctcgagt	gatggcatt	attatccgg	gcatatgcga	tacccgttat	180
tctccgagct	ttcaggccca	ggtgaccatt	agcggccgata	aaagcattag	caccgcgtat	240
cttcaatgga	gcagcctgaa	agcgagcgt	acggccatgt	attattgcgc	gcgttctact	300
aatttatttg	attctattta	ttatgatcat	ttggggccaag	gcaccctgtt	gacggtagc	360
tcagcgtcga	ccaaagggtcc	aaggctgttt	ccgctggctc	cgagcagcaa	aagcaccagc	420
ggcggcacgg	ctggccctggg	ctgcctgggt	aaagattatt	tcccgaaacc	agtcaccgt	480
agctggaaaca	gccccggcgct	gaccagcggc	gtgcataacct	ttccggcggt	gctgcaaagc	540

agcggcctgt atagccttag cagcgttgc accgtgccga gcagcagctt aggcactcag	600
acctatattt gcaacgtgaa ccataaaccg agcaacacca aagtggataa aaaagtggaa	660
ccgaaaagc	669

<210> 287

<211> 669

<212> DNA

<213> Homo sapiens

<400> 287

caggtcaat tggttcagag cggcgccgaa gtgaaaaaac cgggcgaaag cctgaaaatt	60
agctgcaaag gttccggata ttcccttacg agctatttgcg ttggctgggt ggcgcagatg	120
cctgggaagg gtctcgagt gatgggcatt atttatccgg gcgatagcga taccgggttat	180
tctccgagct ttccaggcga ggtgaccatt agcgccgata aaagcattag caccggctat	240
cttcaatggc gcagcctgaa aecgagcgat acggccatgt attattgcgc gcgtctgtt	300
gggtgtgtt atgatctt ttttgcgtt tggggcaag gcaccctgtt gacggtagc	360
tcagcgtcga ccaaagggtcc aagcgtgtt ccgcggcgtc cgagcagca aagcaccagc	420
ggcgccacgg ctgcctggg ctgcctgggtt aaagattatt tcccggaacc agtcaccgtg	480
agctggaaaca gcggggcgct gaccagcggc gtgcataacct ttccggcggt gctgcaaagc	540
agcggcctgt atagccttag cagcgttgc accgtgccga gcagcagctt aggcactcag	600
acctatattt gcaacgtgaa ccataaaccg agcaacacca aagtggataa aaaagtggaa	660
ccgaaaagc	669

<210> 288

<211> 672

<212> DNA

<213> Homo sapiens

<400> 288

caggtcaat tggttcagag cggcgccgaa gtgaaaaaac cgggcgaaag cctgaaaatt	60
agctgcaaag gttccggata ttcccttacg agctatttgcg ttggctgggt ggcgcagatg	120
cctgggaagg gtctcgagt gatgggcatt atttatccgg gcgatagcga taccgggttat	180
tctccgagct ttccaggcga ggtgaccatt agcgccgata aaagcattag caccggctat	240
cttcaatggc gcagcctgaa aecgagcgat acggccatgtt attattgcgc gcgttatgtt	300
acttatgtt atgatgatta tcattttgtt tattggggcc aaggcaccc ggtgacgggtt	360
agctcagcgt cgaccaagg tccaagcgtg ttcccgctgg ctccgagcagcaaaaagcacc	420
agcggcggca cggctgcctt gggctgcctt gttaaagatt attttccggaa accagtccacc	480
gtgagcttga acagcggggc gctgacccgc ggcgtgcata cttttccggc ggtgctgcaaa	540
agcagcggcc tttatagcctt gaggcgtt gtcgtgc cggcgtgc ctttaggcact	600
cagacctata tttgcaacgtt gaaccataaaa ccggaccaaca ccaaagggttga taaaaaagtggaa	660
gaaccggaaaaa gc	672

<210> 289

<211> 651

<212> DNA

<213> Homo sapiens

<400> 289

caggtcaat tggttcagtc tggcgccgaa gtgaaaaaac cgggcagcagcag cgtgaaagtgt	60
agctgcaaag cttccggagg cactttacg agctatgcgtt tttagctgggtt ggcggcaagcc	120

cctgggcagg	gtctcgagtg	gatgggcggc	attattccga	tttttggcac	ggcgaactac	180
gcccagaagt	ttcaggcggc	ggtgaccatt	accgcggatg	aaagcaccag	caccgcgtat	240
atggaaactga	gcagcctgcg	tagcgaagat	acggccgtgt	attattgcgc	gcgttctgg	300
tatcttgatt	attggggcca	aggcacccctg	gtgacgggta	gctcagcgtc	gaccaaaggt	360
ccaagcgtgt	ttccgcgtgc	tccgagcgc	aaaagcacca	gcccggcac	ggctgcctcg	420
ggctgcctgg	ttaaagatta	tttcccgaaa	ccagtcaccc	tgagctggaa	cagcggggcg	480
ctgaccagcg	gctgcatac	cttcccgccg	gtgctgaaa	gcagcggcc	gtatagcctg	540
agcagcgttg	tgaccgtgcc	gagcagcgc	ttaggcactc	agacctataat	ttgcaacgtg	600
aaccataaac	cgagcaacac	caaagtggat	aaaaaagtgg	aaccgaaaag	c	651

<210> 290

<211> 687

<212> DNA

<213> Homo sapiens

<400> 290

caggtcaat	tggttcagtc	tggcgggaa	gtaaaaaac	cgggcagcag	cgtgaaaagt	60
agctgcaag	cctccggagg	cacttttagc	agctatgcg	ttagctgggt	gcgc当地agcc	120
cctggcagg	gtctcgagtg	gatggcggc	attattccga	tttttggcac	ggcgaactac	180
gcccagaagt	ttcaggcggc	ggtgaccatt	accgcggatg	aaagcaccag	caccgcgtat	240
atggaaactga	gcagcctgcg	tagcgaagat	acggccgtgt	attattgcgc	gcgttatatt	300
ggttatacta	atgttatgga	tattcgtcct	ggtttttatc	ttgattattg	ggcccaaggc	360
accctggta	cggtagctc	agcgtcgcacc	aaaggtccaa	gcgtgttcc	gctggctcc	420
agcagcaaaa	gcaccagcg	cgccacggct	gccctggct	gcctggtaa	agattattc	480
ccggaccac	tcaccgttag	ctggAACAGC	ggggcgctga	ccagcggcgt	gcataacctt	540
ccggcgggtc	tgcaaagcag	cggcctgtat	agcctgagca	gcgttgcac	cgtgccgagc	600
agcagcttag	gcaactcagac	ctatatttc	aacgtgaacc	ataaaccgag	caacacccaaa	660
gtggataaaa	aagtggAAC	aaaaagc				687

<210> 291

<211> 669

<212> DNA

<213> Homo sapiens

<400> 291

caggtcaat	tggttcagag	cggcgggaa	gtaaaaaac	cgggcgaaag	cctgaaaatt	60
agctgcaag	gttccggata	ttcccttacg	agctatttgg	tggctgggt	gcgc当地agat	120
cctggaaagg	gtctcgagtg	gatggcgtt	atttatccg	gcgc当地gcg	tacccgttat	180
tctccgagct	ttcaggcggc	ggtgaccatt	agcgcggata	aaagcattag	caccgcgtat	240
tttcaatgg	gcagcctgaa	agcgagcgat	acggccatgt	attattgcgc	gcgttttgc	300
gtttatgg	atgattttt	ttttgatgtt	tggggccaa	gcaccctgg	gacggtagc	360
tcagcgtcg	ccaaagggtcc	aagcgtgtt	ccgctggctc	cgagcagca	aagcaccac	420
ggccgcacgg	ctgcccctgg	ctgcccgtt	aaagattatt	tcccgaaacc	agtcaccgt	480
agctggaaaca	gcggggcgct	gaccagcg	gtgcatacc	ttccggcggt	gctgcaaagc	540
agcggccctgt	atagcctgag	cagcgttgc	accgtgccg	gcagcagctt	aggcactcag	600
acctatattt	gcaacgtgaa	ccataaaccg	agcaacacca	aagtggataa	aaaagtggaa	660
ccgaaaagc						669

<210> 292

<211> 678

<212> DNA

<213> Homo sapiens

<400> 292

caggtcaat	tggtcagag	cggcgccgaa	gtaaaaaac	cggcgccgag	cgtgaaagt	60
agctgcaaag	cctccggata	taccttacc	agctattata	tgcactgggt	ccgccaagcc	120
cctggcagg	gtctcgagt	gatgggctgg	attaaccga	atagcggcgg	cacgaactac	180
gcccagaagt	ttcaggccg	ggtgaccat	acccgtata	ccagcattag	caccgcgtat	240
atggaaactga	gcagcctgc	tagcagaat	acggccgtgt	attattgcgc	gcttattat	300
tggctgtatt	atggtcagct	tgttaagggt	ggtgatattt	ggggccaagg	caccctggtg	360
acggttagct	cacgcgtgc	caaagggtcca	agcgtgtttc	cgctggctcc	gagcagcaaa	420
agcaccacgc	gcggcacgc	tgccctgggc	tgcctggta	aaagattattt	cccggaacca	480
gtcaccgtga	gctggaacag	cggggcgctg	accagcggcg	tgcatacacct	tccggcggtg	540
ctgcaaaagca	gcggcctgta	tagcctgagc	agcgttgtga	ccgtgccgag	cagcagctta	600
ggcactcaga	cctatattt	caacgtgaac	cataaaccga	gcaacaccaa	agtggataaa	660
aaagtggAAC	cgaaaAGC					678

<210> 293

<211> 666

<212> DNA

<213> Homo sapiens

<400> 293

caggtcaat	tggtcagag	cggcgccgaa	gtaaaaaac	cggcgaaag	cctgaaaatt	60
agctgcaaag	gttccggata	ttcccttacg	agctatttga	ttggctgggt	gcgccagatg	120
cctggaaagg	gtctcgagt	gatgggcatt	atttatccgg	gcgatagcga	tacccgttat	180
tctccgagct	ttcaggccca	ggtgaccatt	agcgcggata	aaagcattag	caccgcgtat	240
cttcaatgg	gcagcctgaa	agcgagcgat	acggccatgt	attattgcgc	gcttattat	300
tttactgata	ctgttattt	tgattattgg	ggccaaggca	ccctggtgac	ggttagctca	360
gcgtcgacca	aagggtccaag	cgtgtttccg	ctggctccga	gcagcaaaag	caccagcggc	420
ggcacggctg	ccctgggctg	cctggtaaa	gattatttcc	cggaaccagt	caccgtgagc	480
tggAACAGCG	gggcgctgac	cagcggcgctg	cataccttcc	ccggcggtgt	gcaaagcagc	540
ggcctgtata	gcctgagcag	cgttgtgac	gtgccgagca	gcagctttagg	cactcagacc	600
tatatttgc	acgtgaacca	taaaccgagc	aacaccaaag	tggataaaaa	agtggaaaccg	660
aaaAGC						666

<210> 294

<211> 666

<212> DNA

<213> Homo sapiens

<400> 294

caggtcaat	tggtcagag	cggcgccgaa	gtaaaaaac	cggcgaaag	cctgaaaatt	60
agctgcaaag	gttccggata	ttcccttacg	agctatttga	ttggctgggt	gcgccagatg	120
cctggaaagg	gtctcgagt	gatgggcatt	atttatccgg	gcgatagcga	tacccgttat	180
tctccgagct	ttcaggccca	ggtgaccatt	agcgcggata	aaagcattag	caccgcgtat	240
cttcaatgg	gcagcctgaa	agcgagcgat	acggccatgt	attattgcgc	gcttattat	300
tttgcgtttt	ctatTTTAT	ggatttttgg	ggccaaggca	ccctggtgac	ggttagctca	360
gcgtcgacca	aagggtccaag	cgtgtttccg	ctggctccga	gcagcaaaag	caccagcggc	420
ggcacggctg	ccctgggctg	cctggtaaa	gattatttcc	cggaaccagt	caccgtgagc	480

tggAACAGCG	GGGCCTGAC	CAGCGCGTG	CATACTTTC	CGGCCTGCT	GCAAAGCAGC	540
GGCCTGTATA	GCCTGAGCAG	CGTTGTACC	GTGCCAGCA	GCAGCTTAGG	CACTCAGACC	600
TATATTGCA	ACGTGAACCA	TAACCCAGAC	AACACCAAAG	TGGATAAAAAA	AGTGGAAACCG	660
AAAAGC						666

<210> 295

<211> 669

<212> DNA

<213> Homo sapiens

<400> 295

CAGGTGCAAT	TGGTTCAGAG	CGGCCTGGAA	GTGAAAAAAC	CGGGCGAAAG	CCTGAAAATT	60
AGCTGCAAAAG	GTTCCTGGATA	TTCCCTTACG	AGCTATTGGA	TTGGCTGGGT	GCGCCAGATG	120
CCTGGAAAGG	GTCTCGAGTG	GATGGGCATT	ATTATCCGG	GCGATAGCGA	TACCCGTTAT	180
TCTCCGAGCT	TTCAGGGCCA	GGTGACCATT	AGCGCGGATA	AAAGCATTAG	CACCGCGTAT	240
CTTCAATGGA	GCAGCCTGAA	AGCGAGCGAT	ACGGCCATGT	ATTATTGCGC	GCGTTATGCT	300
GGTCATCACT	ATGAGTTTT	TTTTGATT	TGGGCCAAG	GCACCCCTGGT	GACGGTTAGC	360
TCAAGCGTCA	CCAAAGGTCC	AAGCGTGT	CCGCTGGCTC	CGAGCAGCAA	AAGCACCAGC	420
GGCGGCACCG	CTGCCCTGGG	CTGCCTGGTT	AAAGATTATT	TCCCGGAACC	AGTCACCGTG	480
AGCTGGAACA	GCGGGGCGCT	GACCAGCGGC	GTGCATACTT	TTCCCGCGGT	GCTGCAAAGC	540
AGCGGCCTGT	ATAGCCTGAG	CAGCGTTGTG	ACCGTGCAGA	GCAGCAGCTT	AGGCACTCAG	600
ACCTATATT	GCAACGTGAA	CCATAAACCG	AGCAACACCA	AAGTGGATAA	AAAAGTGGAA	660
CCGAAAAGC						669

<210> 296

<211> 614

<212> DNA

<213> Homo sapiens

<400> 296

TGAAAATTAG	TGCGGATATT	CCTTACGAG	CTATTGGATT	GGCTGGGTGC	60
GGCAGATGCC	TGGGAAGGGT	CTCGAGTGG	TGGGCATTAT	TTATCCGGGC	120
CCCGTTATTC	TCCGAGCTT	CAGGCCAGG	TGACCATTAG	CGCGGATAAA	180
CCCGTGTATCT	TCAATGGAGC	AGCCTGAAAG	CGAGCGATAC	GGCCATGTAT	240
GTCTTATGC	TGATGCTGAT	ATTATTITG	ATTATTGGGG	CCAAGGCACC	300
TTAGCTCAGC	GTGCGACAAA	GGTCCAAGCG	TGTTTCCGCT	GGCTCCGAGC	360
CCAGCGGCCG	CACGGCTGCC	CTGGGCTGCC	TGGTTAAAGA	TTATTCCCG	420
CCGTGAGCTG	GAACAGCGGG	CGCCTGACCA	GCAGCGTGCA	TACCTTCCG	480
AAAGCAGCGG	CCTGTATAGC	CTGAGCAGCG	TTGTGACCGT	GCAGCAGCAGC	540
CTCAGACCTA	TATTTGCAAC	GTGAACCATA	AACCGAGCAA	CACCAAAGTG	600
TGGAAACCGAA	AAGC				614

<210> 297

<211> 660

<212> DNA

<213> Homo sapiens

<400> 297

CAGGTGCAAT	TGGTTCAGTC	TGGCGCGGAA	GTGAAAAAAC	CGGGCAGCAG	CGTGAAAGTG	60
AGCTGCAAAAG	CCTCCGGAGG	CACTTTAGC	AGCTATGCGA	TTAGCTGGGT	GCGCCAAGCC	120

cctgggcagg	gtctcgagtg	gatgggcggc	attattccga	tttttggcac	ggcgaactac	180
gcccagaagt	ttcagggccg	ggtgaccatt	acccggatg	aaagcaccag	caccgcgtat	240
atggaaactga	gcagcctgcg	tagcgaagat	acggccgtgt	attattgcgc	gctactaag	300
tatgttggtt	ctgaggatgt	ttggggccaa	ggcacccctgg	tgacggtag	ctcagcgtcg	360
accaaaggtc	caagcgtgtt	tccgctggc	ccgagcagca	aaagcaccag	cgccggcacg	420
gctccctgg	gctgcctgtt	taaagattat	ttccccaac	cagtcaccgt	gagctggAAC	480
agcggggcgc	tgaccagcgg	cgtgcataacc	tttccggcgg	tgctgcaaag	cagcggcctg	540
tatagcctga	gcagcgtgtt	gaccgtgcgg	agcagcagct	taggcactca	gacctatatt	600
tgcaacgtga	accataaacc	gagcaacacc	aaagtggata	aaaaagtgg	accgaaaagc	660

<210> 298

<211> 660

<212> DNA

<213> Homo sapiens

<400> 298

caggtcaat	tggttcagag	cgccgcggaa	gtaaaaaaac	cgccgcggaaag	cctgaaaatt	60
agctgcaaag	gttccggata	ttcctttacg	agctatttga	ttggctgggt	gcccagatg	120
cctgggaagg	gtctcgagtg	gatgggcatt	atttatccgg	gctatagcga	taccgcgtat	180
tctccgagct	ttcagggcca	ggtgaccatt	agcgcggata	aaagcattag	caccgcgtat	240
cttcaatgg	gcagcctgaa	agcgagcgt	acggccatgt	attattgcgc	gctttatcgt	300
tatcctcata	tgtttgattt	ttggggccaa	ggcacccctgg	tgacggtag	ctcagcgtcg	360
accaaaggtc	caagcgtttt	tccgctggct	ccgagcagca	aaagcaccag	cgccggcacg	420
gctccctgg	gctgcctgtt	taaagattat	ttccccaac	cagtcaccgt	gagctggAAC	480
agcggggcgc	tgaccagcgg	cgtgcataacc	tttccggcgg	tgctgcaaag	cagcggcctg	540
tatagcctga	gcagcgtgtt	gaccgtgcgg	agcagcagct	taggcactca	gacctatatt	600
tgcaacgtga	accataaacc	gagcaacacc	aaagtggata	aaaaagtgg	accgaaaagc	660

<210> 299

<211> 666

<212> DNA

<213> Homo sapiens

<400> 299

caggtcaat	tggttcagag	cgccgcggaa	gtaaaaaaac	cgccgcggaaag	cctgaaaatt	60
agctgcaaag	gttccggata	ttcctttacg	agctatttga	ttggctgggt	gcccagatg	120
cctgggaagg	gtctcgagtg	gatgggcatt	atttatccgg	gctatagcga	taccgcgtat	180
tctccgagct	ttcagggcca	ggtgaccatt	agcgcggata	aaagcattag	caccgcgtat	240
cttcaatgg	gcagcctgaa	agcgagcgt	acggccatgt	attattgcgc	gctctttt	300
gctggcttg	agctttttt	tgattattgg	ggccaaaggca	ccctgggtgac	ggttagctca	360
gcgtcgacca	aagggttcaag	cgtgtttccg	ctggctccga	gcagcaaaag	caccagcggc	420
ggcacggctg	ccctgggtctg	cctggttaaa	gattattcc	cgaaaccagt	caccgtgagc	480
tggaaacagcg	gggcgctgac	cagcggcgtg	cataccttc	cgccgggtgct	gcaaagcagc	540
ggcctgtata	gcctgagcag	cgttgtgacc	gtgccgagca	gcagctttag	cactcagacc	600
tatatttgc	acgtgaacca	taaaccgagc	aacaccaaag	tggataaaaa	agtggaaaccg	660
aaaagc						666

<210> 300

<211> 657

<212> DNA

<213> Homo sapiens

<400> 300

caggtgaat	tgggtggaaag	cggcggcggc	ctgggtcaac	cgggcggcag	cctgcgtctg	60
agctgcgcgg	cctccggatt	taccttttagc	agctatgcga	ttagctgggt	gcccggcaagcc	120
cctgggaagg	gtctcgagtg	ggtgagcgcg	attagcggta	gcggcggcag	cacctattat	180
gcggatagcg	tgaaaggccg	ttttaccatt	tcacgtgata	atttcgaaaaa	caccctgtat	240
ctgcaaata	acacgcgtcg	tgcggaaagat	acggccgtgt	attattgcgc	gcgtgggtgt	300
tttttaata	tggattattt	gggccaaggc	accctggtga	cggtagctc	agcgtcgacc	360
aaagggtccaa	gcgtgtttcc	gctggctccg	agcagcaaaa	gcaccagcgg	cgccacggct	420
gcctgggct	gcctggtaa	agattatttc	ccggaaccag	tcaccgtgag	ctggaaacagc	480
ggggcgcgt	ccagcggcgt	gcatacctt	ccggcggtgc	tgcaaagcag	cggcctgtat	540
agcctgagca	gcgtgtgtac	cgtgcccggc	agcagcttag	gcactcagac	ctatattgc	600
aacgtgaacc	ataaaaccgag	caacaccaaa	gtggataaaaa	aagtggacc	gaaaagc	657

<210> 301

<211> 663

<212> DNA

<213> Homo sapiens

<400> 301

caggtgaat	tggttcagtc	tggcgcgaa	gtgaaaaaac	cgggcagcag	cgtgaaagtg	60
agctgcaag	cctccggagg	cacttttagc	agctatgcga	ttagctgggt	gcccggcaagcc	120
cctggcagg	gtctcgagtg	gatgggcggc	attattccga	tttttggcac	ggcgaactac	180
gcgcagaat	ttcagggccg	ggtgaccatt	accgcggatg	aaagcaccag	caccgcgtat	240
atggaaactga	gcagcctgcg	tagcgaagat	acggccgtgt	attattgcgc	gcgtggttat	300
attccttatac	atcttttga	ttattggggc	caaggcacc	tggtgacgg	tagctcagcg	360
tcgaccaaa	gtccaagcgt	gtttccgcgt	gctccgagca	gaaaaagcac	cagcggcggc	420
acggctgccc	tggctgcct	ggttaaagat	tatttccgg	aaccagtac	cgtgagctgg	480
aacagcgggg	cgctgaccag	cggcgtgc	acctttccgg	cggtgctgc	aagcagcggc	540
ctgtataagcc	tgagcagcgt	tgtgaccgt	ccgagcagca	gcttaggcac	tcagacctat	600
atttgcaac	tgaaccataa	accgagcaac	acccaaagtgg	ataaaaaagt	ggaaccgaaa	660
agc						663

<210> 302

<211> 669

<212> DNA

<213> Homo sapiens

<400> 302

caggtgaat	tggttcagag	cggcgcggaa	gtgaaaaaac	cgggcgaaag	cctgaaaatt	60
agctgcaag	gttccggata	ttcctttacg	agctatttgg	ttagctgggt	gcccggcagat	120
cctgggaagg	gtctcgagt	gatgggcatt	attatccgg	gcatagcga	tacccgttat	180
tctccgagct	ttcagggcc	ggtgaccatt	agcgcggata	aaagcattag	caccgcgtat	240
cttcaatgg	gcagcctgaa	agcgagcgt	acggccatgt	attattgcgc	gcgttattat	300
ggtttttagt	atgtatct	ttttgataat	tggggcaag	gcaccctgt	gacggtagc	360
tcagcgtcga	ccaaagggtcc	aagggttt	ccgctggc	cgagcagca	aagcaccagc	420
ggcggcaccgg	ctgcccctgg	ctgcccctgg	aaagattatt	tcccgaaacc	agtcaccgt	480
agctggaaaca	gcggggcgct	gaccagcggc	gtgcatacct	ttccggcggt	gctgcaaagc	540
agcggcctgt	atagcctgag	cagcgttgc	accgtgccc	gcagcajct	aggcactcag	600

acctatatattt	gcaacgtgaa	ccataaaaccg	agcaacacca	aagtggataa	aaaagtggaa	660
ccggaaaagc						669
<210>	303					
<211>	657					
<212>	DNA					
<213>	Homo sapiens					
<400>	303					
caggtgcaat	tggttcagtc	tggcgcgaa	gtaaaaaaac	cgggcagcag	cgtaaaagt	60
agctgcaaag	cctccggagg	cacttttagc	agctatgcga	ttagctgggt	gcgccaagcc	120
cctggcagg	gtctcgagt	gatgggctgg	attaacccga	atagcggcgg	cacgaactac	180
gcmcagaagt	ttcagggccg	ggtgaccatg	accctgtata	ccagcattag	caccgcgtat	240
atggaactga	gcagcctgct	tagcgaagat	acggccgtgt	attattgcgc	gcgttattact	300
tatattgggt	atgatttttg	gggccaaggc	accctggta	cggtagctc	agcgtcgacc	360
aaagggtccaa	gcgtgtttcc	gctggctccg	agcagcaaaa	gcaccagcgg	cggcacggct	420
gccctggct	gcctggtaa	agattatttc	ccggaaccag	tcaccgtgag	ctggacacagc	480
ggggcgtga	ccagcggcgt	gcataacctt	ccggcggtgc	tgcaaagcag	cggcctgtat	540
agcctgagca	gcgttgtgac	cgtgccgagc	agcagcttag	gcactcagac	ctatatttgc	600
aacgtgaacc	ataaaccgag	caacaccaaa	gtggataaaa	aagtggaaacc	gaaaagc	657
<210>	304					
<211>	654					
<212>	DNA					
<213>	Homo sapiens					
<400>	304					
caggtgcaat	tggttcagtc	tggcgcgaa	gtaaaaaaac	cgggcagcag	cgtaaaagt	60
agctgcaaag	cctccggagg	cacttttagc	agctatgcga	ttagctgggt	gcgccaagcc	120
cctggcagg	gtctcgagt	gatgggccc	attattccga	tttttggcac	ggcgaactac	180
gcmcagaagt	ttcagggccg	ggtgaccatt	accgggatg	aaagcaccag	caccgcgtat	240
atggaactga	gcagcctgct	tagcgaagat	acggccgtgt	attattgcgc	gcgtcaggag	300
tggtatatgg	attattgggg	ccaaaggcacc	ctggtgacgg	ttagctcagc	gtcgacccaa	360
ggtccaaagc	tgttccgct	ggctccgagc	agcaaaagca	ccagcggcgg	cacggctgcc	420
ctgggctgcc	tggtaaaga	ttatcccg	gaaccagtca	ccgtgagctg	gaacagcggg	480
gcgctgacca	cgggcgtca	tacccccc	ggtgctgc	aaagcagcgg	cctgtatagc	540
ctgagcagcg	ttgtgaccgt	gccgagcagc	agcttaggca	ctcagaccta	tatgtcaac	600
gtgaaccata	aaccgagcaa	caccaaaagt	gataaaaaag	tggaaaccgaa	aagc	654
<210>	305					
<211>	666					
<212>	DNA					
<213>	Homo sapiens					
<400>	305					
caggtgcaat	tggttcagag	cgccgccc	gtaaaaaaac	cgggcgaaag	cctgaaaatt	60
agctgcaaag	gttccggata	tcccttacg	agctattgg	ttggctgggt	gcgcccagatg	120
cctggcagg	gtctcgagt	gatggcatt	attatccgg	gcgatagcga	tacccgttat	180
tctccgagct	ttcagggcca	ggtgaccatt	agcgcggata	aaagcattag	caccgcgtat	240
cttcaatgg	gcagcctgaa	agcgagcgt	acggccatgt	attattgcgc	gcgtcttat	300

cctgaggatc ttatttattt tgattattgg ggccaaggca ccctggtgac ggtagctca	360
gcgtcgacca aaggccaag cgtgttccg ctggctccga gcagcaaaag caccagccgc	420
ggcacggctg ccctggctg cctggtaaa gattattcc cggAACAGT caccgtgagc	480
tggAACAGC gggcgtac cagcggctg cataccttc cggcggtgc gcaaAGCAGC	540
ggcctgtata gcctgagcag cgttgtgacc gtgcccggca gcagcttagg cactcagacc	600
tatatttgc aacgtgaacca taaaccggagc aacaccaaag tggataaaaaa agtggaaaccg	660
aaaagc	666

<210> 306

<211> 687

<212> DNA

<213> Homo sapiens

<400> 306

caggtgcaat tgcaacagtc tggccgggc ctggtgaaac cgagccaaac cctgaggctg	60
acctgtgcga tttccggaga tagcgtgagc agcaacagcg cggcgtggaa ctggattcgc	120
cagtctcctg ggcgtggctc cgagtggctg ggccgtaccc attatcgttag caaatggtat	180
aacgattatg cggtgagcgt gaaaagccgg attaccatca accccggata ttcgaaaaac	240
cagtttagcc tgcaactgaa cagcgtgacc cccggaaata cggccgtgtt ttattgcgcg	300
cgttggatga ctcctcctgg tcattattat ggttataactt ttgtatgttgg gggccaaaggc	360
accctggta cggtagctc agcgtcgacc aaaggccaa gcgtgtttcc gctggctccg	420
agcagcaaaa gcaccaggcg cggcggctg gcccggcttgc gcctggtaa agattatttc	480
ccggaaaccag tcaccgtgag ctggAACAGC gggcgtac ccagcggcgt gcataaccc	540
ccggcggtgc tgcaaaaggcag cggccgtat agcgtgagca gcgtgtgtac cgtggcggagc	600
agcagcttag gcactcagac ctatatttgc aacgtgaacc ataaaccggag caacaccaa	660
gtggataaaaaa aagtggaaacc gaaaagc	687

<210> 307

<211> 669

<212> DNA

<213> Homo sapiens

<400> 307

caggtgcaat tgggtcagag cggccggaa gtggaaaaac cggggcggaaag cctgaaaatt	60
agctgcaaaag gttccggata ttcccttacg agctattggg ttggctgggt gcccggatgt	120
cctggaaagg gtctcgagtg gatggggattt attatccgg gcgatagcga taccgggttat	180
tctccgagct ttccggccca ggtgaccatt agcgggata aaagcattag caccgggttat	240
tttcaatggg gcaaggctgaa agcggcgat acggccatgtt attatcgtgc gctgttcgt	300
tttcatgatt atgctatgtt ttttgcgtt tggggccaaag gcaccctgtt gacggtagc	360
tcagcgtcga ccaaagggtcc aagcgtgtt ccgcgtggctc cgagcggca aagcaccaggc	420
ggccggcggcgtt ctggccctggg ctgcctgggtt aaagattatt tcccgaaacc agtcaccgtg	480
agctggaaaca gcccggcgtt gaccggcgcc gtgcataacctt ttccggcggt gctgcaaaagc	540
agcggccgtt atagcgtgag cagcgtgtt accgtggccga gcagcgtt aggcactcag	600
acctatattt gcaacgtgaa ccataaaaccg agcaacacca aagtggataaa aaaagtggaa	660
ccgaaaagc	669

<210> 308

<211> 672

<212> DNA

<213> Homo sapiens

<400> 308

caggtcaat	tggttcagag	cggcgcggaa	gtaaaaaaaaac	cgggcgaaag	cctgaaaatt	60
agctgcaaag	gttccggata	ttcctttacg	agctatttgg	ttggctgggt	gcgcagatg	120
cctggaaagg	gtctcgagtg	gatgggcatt	atttatccgg	gcgatagcg	tacccgttat	180
tctccgagct	ttcaggggca	ggtgaccatt	agcgccgata	aaagcattag	caccgcgtat	240
cttcaatgg	gcagcctgaa	agcgagcgat	acggccatgt	attattgcgc	gcgtttgtt	300
tcttataatg	gttctgttcc	ttattttgc	tattttggcc	aaggcaccct	ggtgacggtt	360
agctcagcgt	cgaccagg	tccaagcg	tttccgctgg	ctccgagcag	caaaagcacc	420
agcggcggca	cggctgcct	gggctgcctg	gttaaagatt	atttccgg	accagtcacc	480
gtgagcttgg	acagcggggc	gctgaccagc	ggcgtgcata	ctttccggc	ggtgctgcaa	540
agcagcggcc	tgtatagct	gagcagcgtt	gtgaccgtgc	cgagcagcag	cttaggcact	600
cagacctata	tttgcacgt	gaaccataaa	ccgagcaaca	ccaaagtgg	taaaaaagt	660
gaaccgaaaa	gc					672

<210> 309

<211> 666

<212> DNA

<213> Homo sapiens

<400> 309

caggtcaat	tggttcagag	cggcgcggaa	gtaaaaaaaaac	cgggcgaaag	cctgaaaatt	60
agctgcaaag	gttccggata	ttcctttacg	agctatttgg	ttggctgggt	gcgcagatg	120
cctggaaagg	gtctcgagtg	gatgggcatt	atttatccgg	gcgatagcg	tacccgttat	180
tctccgagct	ttcaggggca	ggtgaccatt	agcgccgata	aaagcattag	caccgcgtat	240
cttcaatgg	gcagcctgaa	agcgagcgat	acggccatgt	attattgcgc	gcgttattt	300
ggtgattatg	ttatttttt	tgatgtttgg	ggccaaggca	ccctgggtac	ggtagctca	360
gcgtcgacca	aaggtccaag	cgtgtttccg	ctggctccga	gcagcaaaag	caccagcggc	420
ggcacggctg	ccctgggctg	cctggtaaa	gattatttcc	cggaaccagt	caccgtgac	480
tggAACAGCG	gggcgtac	cagcggcg	cataccttt	ggcggtgc	gcaaagcagc	540
ggcctgtata	gcctgagcag	cgttgtacc	gtgcccagca	gcagcttagg	cactcagacc	600
tatatttgc	acgtgaacca	taaaccgagc	aacaccaaaag	tggataaaaa	agtggAACCG	660
aaaagc						666

<210> 310

<211> 609

<212> DNA

<213> Homo sapiens

<400> 310

attagctgca	aaggttccgg	atattcctt	acgagctatt	ggattggctg	ggtgcccg	60
atgcctgg	agggtctcg	gtggatggc	attatttac	cgggcgatag	cgatacccg	120
tattctccg	gctttcagg	ccaggtgacc	attagcgcc	ataaaagcat	tagcaccgc	180
tatcttcaat	ggagcagct	gaaagcagc	gatacggcca	tgtattattt	cgcgcgtctt	240
tttacttatac	ctttcttta	ttttgtt	ttggggccaag	gcaccctgtt	gacggtagc	300
tcagcgtcg	ccaaagg	aagcgtt	ccgctggctc	cgagcagcaa	aagcaccagc	360
ggcggcacgg	ctgcctgg	ctgcctgg	aaagattt	tcccgaaacc	agtcaccgt	420
agctggaaaca	gcggggcg	gaccagcggc	gtgcatact	ttccggcggt	gctgcaaagc	480
agcggccgt	atagcgtag	cagcgtt	accgtccga	gcagcagctt	aggcactcag	540
acctatattt	gcaacgtgaa	ccataaaccg	agcaacacca	aagtggataa	aaaagtggaa	600

ccgaaaagc	609
<210> 311	
<211> 666	
<212> DNA	
<213> Homo sapiens	
<400> 311	
caggtcaat tggttcagag cggcgccgaa gtgaaaaaac cgggcgaaag cctgaaaatt	60
agctgcaaag gttccggata ttcccttacg agctatttga ttggctgggt gcgcagatg	120
cctggaaagg gtctcgagtg gatgggcatt atttatccgg gcgatagcga taccgttat	180
tctccgagct ttcaaggccaa ggtgaccatt agcgccgata aaagcattag caccgttat	240
tttcaatggaa gcagcctgaa aacgcgatg acggccatgt attattgcgc gcgtattctt	300
actggtcacg ttcttcttt tgattattgg ggccaaaggca ccctgggtgac ggtagctca	360
gcgtcgacca aagtccaaag cgtgttccg ctggctccga gcagaaaaag caccagggc	420
ggcacggctg ccctgggctg cctggtaaa gattatttcc cggaaaccagt caccgtgagc	480
tggAACAGCG gggcgctgac cagcggcggtg cataccttcc cggcggtgct gcaaagcagc	540
ggcctgtata gcctgagcag cgttgatgacc gtgcccggca gcagctttagg cactcagacc	600
tatatttgcac acgtgaaccca taaaccggac aacacccaaag tggataaaaaa agtggaaaccg	660
aaaagc	666
<210> 312	
<211> 645	
<212> DNA	
<213> Homo sapiens	
<400> 312	
gatatcgcac tgacccagcc agcttcagtg agcggtcac caggtcagag cattaccatc	60
tcgtgtacgg gtactagcag cgatgtgggc ggctataact atgtgagctg gtaccagcag	120
catccggaa aggcggccgaa actgatgatt tatgtatgtga gcaaccgtcc ctcaggcgtg	180
agcaaccgtt ttagcgatc caaaagcgcc aacaccgcga gcctgaccat tagcggcctg	240
caagcgaaag acgaagcgga ttattattgc cagagctatg actatcagca gtttactgtg	300
tttggcgccg gcacgaagtt aaccgttctt ggccagccga aagccgcacc gagtgcacg	360
ctgtttccgc cgacgacgca agaattgcag gcgaacaaag cgaccctggt gtgcctgatt	420
agcgactttt atccgggagc cgtgacagtg gcctggaaagg cagatagcag ccccgtaag	480
gcgggagtg agaccaccac accctccaaa caaagcaaca acaagtacgc ggcacggcagc	540
tatctgagcc tgacccgtga gcagtggaaag tcccacagaa gctacagctg ccaggtcagc	600
catgaggggaa gcaccgtgaa aaaaaccgtt ggcgcactg aggca	645
<210> 313	
<211> 645	
<212> DNA	
<213> Homo sapiens	
<400> 313	
gatatcgcac tgacccagcc agcttcagtg agcggtcac caggtcagag cattaccatc	60
tcgtgtacgg gtactagcag cgatgtgggc ggctataact atgtgagctg gtaccagcag	120
catccggaa aggcggccgaa actgatgatt tatgtatgtga gcaaccgtcc ctcaggcgtg	180
agcaaccgtt ttagcgatc caaaagcgcc aacaccgcga gcctgaccat tagcggcctg	240
caagcgaaag acgaagcgga ttattattgc cagagctatg actttaagac ttatcttgc	300

tttggcggcg gcacgaagtt aaccgttctt ggccagccga aagccgcacc	gagtgtgacg	360
ctgtttccgc cgagcagcga agaattgcag gcgaacaaag cgaccctgg	gtgcctgatt	420
agcacttt atccgggagc cgtgacagtgccttggagg cagatagcag	ccccgtcaag	480
gcgggagtttgg agaccaccac accctccaaa caaagcaaca acaagtacgc	ggccagcagc	540
tatctgagcc tgacgcctga gcagtggaaag tcccacagaa gctacagctg	ccaggtcacg	600
catgagggga gcaccgtgaa aaaaaccgtt gcgccactg aggcc		645

<210> 314

<211> 645

<212> DNA

<213> Homo sapiens

<400> 314

gatatcgac tgacccagcc agcttcagtg agcggctcac caggtcagag	cattaccatc	60
tcgtgtacgg gtactagcag cgatgtggc ggctataact atgtgagctg	gtaccagcag	120
catcccgaaa aggcggcga actgtatgatt tatgtatgtga	gcaaccgtcc ctcaggcgtg	180
agcaaccgtt ttagcggatc caaaagcggc aacaccgcga	gcctgaccat tagcggctg	240
caagcggaaag acgaagcggtaattatttcgcagagctatg acttttttcg	tttttctgtg	300
tttggcggcg gcacgaagtt aaccgttctt ggccagccga aagccgcacc	gagtgtgacg	360
ctgtttccgc cgagcagcga agaattgcag gcgaacaaag cgaccctgg	gtgcctgatt	420
agcacttt atccgggagc cgtgacagtgccttggagg cagatagcag	ccccgtcaag	480
gcgggagtttgg agaccaccac accctccaaa caaagcaaca acaagtacgc	ggccagcagc	540
tatctgagcc tgacgcctga gcagtggaaag tcccacagaa gctacagctg	ccaggtcacg	600
catgagggga gcaccgtgaa aaaaaccgtt gcgccactg aggcc		645

<210> 315

<211> 638

<212> DNA

<213> Homo sapiens

<400> 315

gatatcgac tgacccagcc agcttcagtg agcggctcac caggtcagag	cattaccatc	60
tcgtgtacgg gtactagcag cgatgtggc ggctataact atgtgagctg	gtaccagcag	120
catcccgaaa aggcggcga actgtatgatt tatgtatgtga	gcaaccgtcc ctcaggcgtg	180
agcaaccgtt ttagcggatc caaaagcggc aacaccgcga	gcctgaccat tagcggctg	240
caagcggaaag acgaagcggtaattatttcgcagagctatg actttttttaa	tgttattgtg	300
tttggcggcg gcacgaagtt aaccgttctt ggccagccga aagccgcacc	gagtgtgacg	360
ctgtttccgc cgagcagcga agaattgcag gcgaacaaag cgaccctgg	gtgcctgatt	420
agcacttt atccgggagc cgtgacagtgccttggagg cagatagcag	ccccgtcaag	480
gcgggagtttgg agaccaccac accctccaaa caaagcaaca acaagtacgc	ggccagcagc	540
tatctgagcc tgacgcctga gcagtggaaag tcccacagaa gctacagctg	ccaggtcacg	600
catgagggga gcaccgtgaa aaaaaccgtt gcgccac		638

<210> 316

<211> 645

<212> DNA

<213> Homo sapiens

<400> 316

gatatcgac tgacccagcc agcttcagtg agcggctcac caggtcagag	cattaccatc	60
---	------------	----

tcgtgtacgg gtactagcg cgatgtggc ggctataact atgtgagctg gtaccagcag	120
catcccggga aggcgcccga actgatgatt tatgatgtga gcaaccgtcc ctcagggctg	180
agcaaccgtt ttagcggatc caaaagcggc aacaccgcga gcctgaccat tagcggcctg	240
caagcggaaag acgaagcggta ttattattgc cagagctatg acttttgtcg ttttatggtg	300
tttggcggcg gcacgaagtt aaccgttctt ggccagccga aagccgcacc gagtgtgacg	360
ctgtttccgc cgagcagcga agaattgcag gcgaacaaag cgaccctgggt gtgcctgatt	420
agcgactttt atccgggagc cgtgacagtg gccttggaaagg cagatagcag ccccgtaag	480
gcgggagttgg agaccaccac accctccaaa caaagcaaca acaagtacgc ggcgcagc	540
tatctgagcc tgacgcctga gcagtggaaag tcccacagaa gctacagctg ccaggtcacg	600
catgagggga gcaccgtgaa aaaaaccgtt gcgccgactg aggcc	645

<210> 317

<211> 638

<212> DNA

<213> Homo sapiens

<400> 317

gatatcgac tgacccagcc agcttcagtg agcggctcac caggtcagag cattaccatc	60
tcgtgtacgg gtactagcg cgatgtggc ggctataact atgtgagctg gtaccagcag	120
catcccggga aggcgcccga actgatgatt tatgatgtga gcaaccgtcc ctcagggctg	180
agcaaccgtt ttagcggatc caaaagcggc aacaccgcga gcctgaccat tagcggcctg	240
caagcggaaag acgaagcggta ttattattgc cagagctatg acttttataa gtttaatgtg	300
tttggcggcg gcacgaagtt aaccgttctt ggccagccga aagccgcacc gagtgtgacg	360
ctgtttccgc cgagcagcga agaattgcag gcgaacaaag cgaccctgggt gtgcctgatt	420
agcgactttt atccgggagc cgtgacagtg gccttggaaagg cagatagcag ccccgtaag	480
gcgggagttgg agaccaccac accctccaaa caaagcaaca acaagtacgc ggcgcagc	540
tatctgagcc tgacgcctga gcagtggaaag tcccacagaa gctacagctg ccaggtcacg	600
catgagggga gcaccgtgaa aaaaaccgtt gcgccgac	638

<210> 318

<211> 638

<212> DNA

<213> Homo sapiens

<400> 318

gatatcgac tgacccagcc agcttcagtg agcggctcac caggtcagag cattaccatc	60
tcgtgtacgg gtactagcg cgatgtggc ggctataact atgtgagctg gtaccagcag	120
catcccggga aggcgcccga actgatgatt tatgatgtga gcaaccgtcc ctcagggctg	180
agcaaccgtt ttagcggatc caaaagcggc aacaccgcga gcctgaccat tagcggcctg	240
caagcggaaag acgaagcggta ttattattgc cagagctatg actttcgtcg tttttctgtg	300
tttggcggcg gcacgaagtt aaccgttctt ggccagccga aagccgcacc gagtgtgacg	360
ctgtttccgc cgagcagcga agaattgcag gcgaacaaag cgaccctgggt gtgcctgatt	420
agcgactttt atccgggagc cgtgacagtg gccttggaaagg cagatagcag ccccgtaag	480
gcgggagttgg agaccaccac accctccaaa caaagcaaca acaagtacgc ggcgcagc	540
tatctgagcc tgacgcctga gcagtggaaag tcccacagaa gctacagctg ccaggtcacg	600
catgagggga gcaccgtgaa aaaaaccgtt gcgccgac	638

<210> 319

<211> 642

<212> DNA

<213> Homo sapiens

<400> 319

gatatcg	tgacccagcc	gccttcagt	agtggcg	cac	cagg	tca	g	tgtgaccat	60
tcgtgt	agcg	cagc	caacat	ttggc	agcaactat	tgag	ctggta	ccagcagtt	120
ccgg	gacgg	cgccgaa	act	gctgattt	at	gataaca	acc	agcgtcc	180
gatcg	ttta	gcggat	ccaa	aagcgg	cacc	agcgc	gagcc	ttgcgatt	240
agcga	agac	aagcgg	atta	ttat	gccc	agcc	gtact	ttaat	300
ggcgg	cgca	cga	actt	ttgg	ccaa	ccg	ccg	ctgtgg	360
tttcc	ccga	gcag	cgaa	att	gcagg	aaca	aa	ccctgg	420
gactt	ttatc	cggg	gccc	tgac	gtgg	ggc	atag	ccgc	480
ggagt	ggaga	ccac	cc	ctcc	aaacaa	aca	agta	cgcgc	540
ctqag	cctg	cgc	cgt	gagc	gtgg	aaag	act	cacgt	600
gaggg	gagc	ccgt	ggaaaa	aacc	gttgc	ccg	act	gcca	642

<210> 320

<211> 639

<212> DNA

<213> Homo sapiens

<400> 320

gatatcg	tgacccagcc	gccttcagt	agtggcg	cac	cagg	tca	g	tgtgaccat	60
tcgtgt	agcg	cagc	caacat	ttggc	agcaactat	tgag	ctggta	ccagcagtt	120
ccgg	gacgg	cgccgaa	act	gctgattt	at	gataaca	acc	agcgtcc	180
gatcg	ttta	gcggat	ccaa	aagcgg	cacc	agcgc	gagcc	ttgcgatt	240
agcga	agac	aagcgg	atta	ttat	gccc	agcc	gtact	tgttgg	300
ggcgg	cgca	cgaa	actt	ttgg	ccaa	ccg	ccg	gttgg	360
ccg	ccg	actt	ttgg	ccaa	ccg	ccg	ccg	gttgg	420
ttt	atcc	ggcc	gtac	gtgg	ccct	aaag	ccgc	ccct	480
ttt	atcc	ggcc	gtac	gtgg	ccct	aaag	ccgc	ccct	540
ggg	ggcc	actt	ttat	ttat	gccc	aaacaa	aa	ccgc	600
ggg	ggcc	actt	ttat	ttat	gccc	aaacaa	aa	ccgc	639

<210> 321

<211> 672

<212> DNA

<213> Homo sapiens

<400> 321

gatatcg	tgacccagag	cccg	gcacc	ctg	agg	cctgt	ctcc	gggc	acgtgcgacc	60
ctg	agc	tg	g	g	g	g	cc	cc	cc	120
ccagg	tc	cc	cc	cc	cc	cc	cc	cc	cc	180
ccagg	tc	cc	cc	cc	cc	cc	cc	cc	cc	240
cct	cc	cc	cc	cc	cc	cc	cc	cc	cc	300
cag	cc	cc	cc	cc	cc	cc	cc	cc	cc	360
ccg	cc	cc	cc	cc	cc	cc	cc	cc	cc	420
ccg	cc	cc	cc	cc	cc	cc	cc	cc	cc	480
ccg	cc	cc	cc	cc	cc	cc	cc	cc	cc	540
ccg	cc	cc	cc	cc	cc	cc	cc	cc	cc	600
ccg	cc	cc	cc	cc	cc	cc	cc	cc	cc	660

ggagaaaata aa	672
<210> 322	
<211> 642	
<212> DNA	
<213> Homo sapiens	
<400> 322	
gatatcgtc tgacccagcc gccttcagtg agtggcgac caggtcagcg tggaccatc	60
tcgtgtacgc gcagcagcag caacattggc agcaactatg tgagctggta ccagcagtt	120
cccgggacgg cgccgaaact gctgatttat gataacaacc agcgtccctc aggcgtgccg	180
gatcgttta gcggatccaa aagcggcacc agcgcgagcc ttgcgattac gggcctgcaa	240
agcgaagacg aagcggatta ttattgcoag agctatgacg gtttaagac tcatgtgttt	300
ggcggcgca cgaagttaac cgttcttggc cagccgaaag ccgcaccgag tggacgctg	360
tttccgcca gcagcgaaga attgcaggcg aacaaagcga ccctgggtgt cctgattagc	420
gacttttatac cgggagccgt gacagtggcc tggaggcag atagcagccc cgtcaaggcg	480
ggagtggaga ccaccacacc ctccaaacaa agcaacaaca agtacgcggc cagcagctat	540
ctgagcctga cgcctgagca gtggaaagtcc cacagaagct acagctgcca ggtcacgcat	600
gaggggagca ccgtggaaaa aaccgttgcg ccgactgagg cc	642
<210> 323	
<211> 633	
<212> DNA	
<213> Homo sapiens	
<400> 323	
gatatcgaaac tgacccagcc gccttcagtg agcgttgcac caggtcagac cgccgtatc	60
tcgtgtacgc gcgtatgcgt gggcgataaa tacgcgagct gttaccagca gaaaccggg	120
caggcgccag ttctgggtat ttatgtat tctgaccgtc ctcaggcat cccggAACgc	180
tttagcggat ccaacacaggcg caacaccgcg accctgacca tttagcggac tcaggcgaa	240
gacgaagcgg attattatttgc ccagagctat gactatttctc ttcttggttt tggcgccgc	300
acgaagttaa ccgttcttgg ccagccgaaa gcccaccga gtgtgacgct gttcccgccg	360
agcagcgaag aattgcaggc gaacaaagcg accctgggtt gcctgattag cgactttat	420
ccgggagccg tgacagtggc ctgaaaggca gatagcagcc ccgtcaaggc gggagttggag	480
accaccacac cctccaaaca aagcaacaac aagtacgcgg ccagcagcta tctgagcctg	540
acgcctgagc agtggaaagtcc ccacagaagc tacagctgcc aggtcacgca tgaggggagc	600
accgtggaaa aaaccgttgc gccgactgag gcc	633
<210> 324	
<211> 633	
<212> DNA	
<213> Homo sapiens	
<400> 324	
gatatcgaaac tgacccagcc gccttcagtg agcgttgcac caggtcagac cgccgtatc	60
tcgtgtacgc gcgtatgcgt gggcgataaa tacgcgagct gttaccagca gaaaccggg	120
caggcgccag ttctgggtat ttatgtat tctgaccgtc ctcaggcat cccggAACgc	180
tttagcggat ccaacacaggcg caacaccgcg accctgacca tttagcggac tcaggcgaa	240
gacgaagcgg attattatttgc ccagagctat gactttat ttcgtgttt tggcgccgc	300
acgaagttaa ccgttcttgg ccagccgaaa gcccaccga gtgtgacgct gttcccgccg	360

agcagcgaag aattgcaggc	gaacaaagcg	accctgggt	gcctgattag	cgactttat	420
ccgggagccg	tgacagtggc	ctggaaaggc	gatagcagcc	ccgtcaaggc	480
accaccacac	cctccaaaca	aagcaacaac	aagtacgcgg	ccagcagcta	540
acgcctgagc	agtggaaagtc	ccacagaagc	tacagctgcc	aggtcacgc	600
acggtggaaa	aaaccgttgc	gccgactgag	gcc		633

<210> 325

<211> 648

<212> DNA

<213> Homo sapiens

<400> 325

gatatcgac	tgacccagcc	agcttcagt	agcggctcac	caggtcagag	cattaccatc	60
tcgtgtacgg	gtactagcag	cgatgtggc	ggctataact	atgtgagct	gtaccacgc	120
catcccgaaa	aggcgccgaa	actgatgatt	tatgatgt	gcaaccgtcc	ctcaggcgt	180
agcaaccgtt	ttagcgatc	caaaagcggc	aacaccgcga	gcctgaccat	tagcggcct	240
caagcggaaag	acgaagcgga	ttattattgc	cagagctatg	acatgattgc	tcgttatct	300
gtgttggcg	gccccacgaa	gttaaccgtt	cttggccagc	cgaaagccgc	accgagtg	360
acgctgttc	cggcggcag	cgaagaattt	caggcgaaca	aagcgaccct	ggtgtgcct	420
attagcgact	tttatccggg	agccgtaca	gtggcctgga	aggcagatag	cagccccgt	480
aaggcgggag	tggagaccac	cacaccctcc	aaacaaaagca	acaacaagta	cggggccagc	540
agctatctga	gcctgacgc	tgagcagtgg	aagtcccaca	gaagctacag	ctgccaggc	600
acgcatgagg	ggagcaccgt	ggaaaaaaacc	gttgcgccc	ctgaggcc		648

<210> 326

<211> 639

<212> DNA

<213> Homo sapiens

<400> 326

gatatcgaa	tgacccagcc	gccttcagt	agcgttgcac	caggtcagac	cgcgcgtatc	60
tcgtgtacgc	gcgtatgcgt	gggcgataaa	tacgcgagct	ggttaccagca	gaaacccggg	120
caggcgccag	ttctgggtat	ttatgatgat	tctgaccgtc	cctcaggcat	cccgaaacgc	180
tttagcggt	ccaacacgccc	caacaccgcg	accctgacca	ttagcggcac	tcaggcggaa	240
gacgaagcgg	attattattt	ccagagctgg	gacatttcac	cttttgcgt	tgtgttggc	300
ggcggcacga	agttaccgt	tcttggccag	ccgaaagccg	caccgagtgt	gacgctgttt	360
ccggcggac	gccaagaattt	gcaggcgaac	aaagcgcaccc	tggtgtgcct	gattagcgcac	420
ttttatccgg	gagccgtac	agtggcctgg	aaggcagata	gcagccccgt	caaggcggga	480
gtggagacca	ccacaccctc	caaacaaaagc	aacaacaagt	acggggccag	cagctatct	540
agcctgacgc	ctgagcagt	gaagtcccac	agaagctaca	gctgccaggt	cacgcacat	600
gggagcaccc	tggaaaaaaac	cggtgcgcgc	actgaggcc			639

<210> 327

<211> 639

<212> DNA

<213> Homo sapiens

<400> 327

gatatcg	tgacccagcc	gccttcagt	agtggcgcac	caggtcagcg	tgtgaccatc	60
tcgtgtacgc	gcagcagcag	caacattggc	agcaactatg	tgagctggta	ccagcagtt	120

ccggggacgg cgccgaaact gctgatttat gataacaacc agcgtccctc	180
gatcgttta gcggatccaa aagcggcacc agcgcgagcc ttgcgattac	240
agcgaagacg aagcggatta ttattgccag agctgggacc ttgagccta	300
ggcggcacga agttaaccgt tcttggccag ccgaaagccg caccgagtgt	360
ccgcccggca gcaagaatt gcaggcgaac aaagcgaccc tggtgtgcct	420
ttttatccgg gagccgtac agtggcctgg aaggcagata gcagccccgt	480
gtggagacca ccacaccctc caaacaaaagc aacaacaagt acgcccggca	540
agcctgacgc ctgagcagtg gaagtccccac agaagctaca gctgccaggt	600
gggagcaccgg tggaaaaaaac cgttgcggcc actgaggcc	639

<210> 328

<211> 645

<212> DNA

<213> Homo sapiens

<400> 328

gatatcgac tgacccagcc agttcagtg agcggctcac caggtcagag cattaccatc	60
tcgtgtacgg gtactagcag cgatgtgggc ggctataact atgtgagctg gtaccacag	120
catcccccggaa aggcggcga actgtatgatt tatgtatgtga gcaaccgtcc ctcaggcgtg	180
agcaaccgtt ttagcggatc caaaagcggc aacaccgcga gcctgaccat tagcggcctg	240
caagcggaaag acgaagcggta ttattattgc cagagctatg acgttcttga ttctgagggtg	300
tttggcggcg gcacgaagtt aaccgttctt ggccagccga aagccgcacc gagtgtgacg	360
ctgtttccgc cgagcagcga agaattgcag gcgaacaaag cgaccctgggt gtgcctgatt	420
agcactttt atccgggagc cgtgacagtg gccttggagg cagatagcga ccccgtaag	480
gcgggagtgaggg agaccaccac accctccaaa caaagcaaca acaagtacgc ggccagcagc	540
tatctgagcc tgacgcctga gcagtggaaag tcccacagaa gctacagctg ccaggtcactg	600
catgaggggaa gcaccgtgaa aaaaaccgtt gcgcccactg aggcc	645

<210> 329

<211> 648

<212> DNA

<213> Homo sapiens

<400> 329

gatatcgac tgacccagcc agttcagtg agcggctcac caggtcagag cattaccatc	60
tcgtgtacgg gtactagcag cgatgtgggc ggctataact atgtgagctg gtaccacag	120
catcccccggaa aggcggcga actgtatgatt tatgtatgtga gcaaccgtcc ctcaggcgtg	180
agcaaccgtt ttagcggatc caaaagcggc aacaccgcga gcctgaccat tagcggcctg	240
caagcggaaag acgaagcggta ttattattgc cagagctatg acccttctca tccttctaag	300
gtgtttggcg gcggcacgaa gttaaccgtt ctggccagc cgaaagccgc accgagtg	360
acgctgttccgcg cggcggcggcga cgaagaattt caggcgaaca aagcggaccct ggtgtgcctg	420
attagcact ttatccgggg agccgtgaca gtggcctggaa aggccatag cagccccgtc	480
aaggcgggag tggagaccac cacaccctcc aaacaaagca acaacaagta cgcggccagc	540
agctatctga gcctgacgc tgagcagtgg aagtccccaca gaagctacag ctgcccagg	600
acgcatgagg ggagcaccgt ggaaaaacc gttgcggccga ctgaggcc	648

<210> 330

<211> 642

<212> DNA

<213> Homo sapiens

<400> 330

gatatcgac	tgacccagcc	agttcagtg	agcggtcac	caggtcagag	cattaccatc	60
tcgtgtacgg	gtactagcg	cgatgtggc	ggctataact	atgtgagctg	gtaccacag	120
catcccgaa	aggcgccgaa	actgtatgatt	tatgtatgtga	gcaaccgtcc	ctcaggcgtg	180
agcaaccgtt	ttagcggatc	caaaagcggc	aacaccgcga	gcctgaccat	tagcggcctg	240
caagcggaa	acgaagcggaa	ttattattgc	cagagctatg	acgatatgca	gtttgtttt	300
ggcggcggca	cgaagttaa	cgttcttggc	cagccaaag	ccgcaccgag	tgtgacgctg	360
tttcccgccg	gcagcgaaga	attgcaggcg	aacaaagcga	ccctgggtgt	cctgatttagc	420
gacttttatac	cgggagccgt	gacagtggcc	tggaaaggcag	atagcagccc	cgtcaaggcg	480
ggagtggaga	ccaccacacc	ctccaaacaa	agcaacaaca	agtacgcggc	cagcagctat	540
ctgagcctga	cgcctgagca	gttgaagtcc	cacagaagct	acagctgcca	ggtcacgcat	600
gaggggagca	ccgtggaaaa	aaccgttgcg	ccgactgagg	cc		642

<210> 331

<211> 645

<212> DNA

<213> Homo sapiens

<400> 331

gatatcgac	tgacccagcc	agttcagtg	agcggtcac	caggtcagag	cattaccatc	60
tcgtgtacgg	gtactagcg	cgatgtggc	ggctataact	atgtgagctg	gtaccacag	120
catcccgaa	aggcgccgaa	actgtatgatt	tatgtatgtga	gcaaccgtcc	ctcaggcgtg	180
agcaaccgtt	ttagcggatc	caaaagcggc	aacaccgcga	gcctgaccat	tagcggcctg	240
caagcggaa	acgaagcggaa	ttattattgc	cagagctggg	acattaatca	tgctattgtg	300
tttggcggcg	gcacgaagtt	aaccgttctt	ggccagccga	aagccgcacc	gagtgtgacg	360
ctgtttccgc	cgagcagcga	agaattgcag	gcgaacaaag	cgaccctgg	gtgcctgatt	420
agcgactttt	atccgggagc	cgtgacagtg	gccttggagg	cagatagcag	ccccgtcaag	480
gcgggagttgg	agaccaccac	accctccaaa	caaagcaaca	acaagtacgc	ggccagcagc	540
tatctgagcc	tgacgcctga	gcagtggaa	tcccacagaa	gctacagctg	ccaggtcacg	600
catgagggga	gcaccgtgga	aaaaaccgtt	gcccgcactg	aggcc		645

<210> 332

<211> 645

<212> DNA

<213> Homo sapiens

<400> 332

gatatcgac	tgacccagcc	agttcagtg	agcggtcac	caggtcagag	cattaccatc	60
tcgtgtacgg	gtactagcg	cgatgtggc	ggctataact	atgtgagctg	gtaccacag	120
catcccgaa	aggcgccgaa	actgtatgatt	tatgtatgtga	gcaaccgtcc	ctcaggcgtg	180
agcaaccgtt	ttagcggatc	caaaagcggc	aacaccgcga	gcctgaccat	tagcggcctg	240
caagcggaa	acgaagcggaa	ttattattgc	cagagctatg	actattatga	ttatgggtgt	300
tttggcggcg	gcacgaagtt	aaccgttctt	ggccagccga	aagccgcacc	gagtgtgacg	360
ctgtttccgc	cgagcagcga	agaattgcag	gcgaacaaag	cgaccctgg	gtgcctgatt	420
agcgactttt	atccgggagc	cgtgacagtg	gccttggagg	cagatagcag	ccccgtcaag	480
gcgggagttgg	agaccaccac	accctccaaa	caaagcaaca	acaagtacgc	ggccagcagc	540
tatctgagcc	tgacgcctga	gcagtggaa	tcccacagaa	gctacagctg	ccaggtcacg	600
catgagggga	gcaccgtgga	aaaaaccgtt	gcccgcactg	aggcc		645

<210> 333
 <211> 645
 <212> DNA
 <213> Homo sapiens

<400> 333

gatatcgtc	tgacccagag	cccgccgacc	ctgagcctgt	ctccggcga	acgtgcgacc	60
ctgagctgca	gagcgagcca	gagcgtgagc	agcagctatc	tggcgtggta	ccagcagaaa	120
ccaggtcaag	caccgcgtct	attaatttat	ggcgcgagca	gccgtgcaac	tggggtccc	180
gcgcgttta	gcggctctgg	atccggcacg	gattttaccc	tgaccattag	cagcctggaa	240
cctgaagact	ttgcggttta	ttattgccag	caggttaatg	attttcctat	taccttggc	300
cagggtaacg	aagttaaat	taaacgtacg	gtggctgctc	cgagcgtgtt	tattttccg	360
ccgagcgatg	aacaactgaa	aagccgcacg	gcgagcgtgg	tgtgcctgct	gaacaacttt	420
tatccgcgtg	aagcgaaagt	tcagtggaaa	gtagacaacg	cgctgcaaag	cggcaacacg	480
cagggaaacg	tgacccgaa	ggatagccaa	gatagcacct	attctctgag	cagcaccctg	540
accctgagca	aacccgattt	tgaaaaacat	aaagtgtatg	cgtgcgaagt	gaccatcaa	600
ggtctgagca	gccccgtgac	taaatctttt	aatctgtggc	aggc		645

<210> 334
 <211> 648
 <212> DNA
 <213> Homo sapiens

<400> 334

gatatcgcac	tgacccagcc	agcttcagtg	agcggctcac	caggtcagag	cattaccatc	60
tcgtgtacgg	gtactagcag	cgatgtggc	ggctataact	atgtgagctg	gtaccacgag	120
catcccggga	aggcgccgaa	actgtatgatt	tatgtatgtg	gcaaccgtcc	ctcaggcgtg	180
agcaaccgtt	ttagcggatc	caaaagcggc	aacaccgcga	gcctgaccat	tagcggcctg	240
caagcggaaag	acgaagcgga	ttattattgc	cagagctggg	acaatcttaa	gatgcctgtt	300
gtgtttggcg	gcggcacgaa	gttaaccgtt	cttggccagc	cgaaagccgc	accgagtg	360
acgctgtttc	cgccgagcag	cgaagaattt	caggcgaaca	aagcgaccct	ggtgtgcctg	420
attagcgact	tttatccggg	agccgtgaca	gtggcctgga	aggcagatag	cagccccgtc	480
aaggcgggag	tggagaccac	cacaccctcc	aaacaaaagca	acaacaagta	cgcggccagc	540
agctatctga	gcctgacgccc	tgagcagttt	aagtcccaca	gaagctacag	ctgccaggc	600
acgcatgagg	ggagcaccgt	ggaaaaaaacc	gttgcgccc	ctgaggcc		648

<210> 335
 <211> 648
 <212> DNA
 <213> Homo sapiens

<400> 335

gatatcgcac	tgacccagcc	agcttcagtg	agcggctcac	caggtcagag	cattaccatc	60
tcgtgtacgg	gtactagcag	cgatgtggc	ggctataact	atgtgagctg	gtaccacgag	120
catcccggga	aggcgccgaa	actgtatgatt	tatgtatgtg	gcaaccgtcc	ctcaggcgtg	180
agcaaccgtt	ttagcggatc	caaaagcggc	aacaccgcga	gcctgaccat	tagcggcctg	240
caagcggaaag	acgaagcgga	ttattattgc	cagagctatg	acgttttcc	tattaatctg	300
gtgtttggcg	gcggcacgaa	gttaaccgtt	cttggccagc	cgaaagccgc	accgagtg	360
acgctgtttc	cgccgagcag	cgaagaattt	caggcgaaca	aagcgaccct	ggtgtgcctg	420
attagcgact	tttatccggg	agccgtgaca	gtggcctgga	aggcagatag	cagccccgtc	480

aaggcgggag tggagaccac cacaccctcc aaacaaagca acaacaagta cgcggccagc	540
agctatctga gcctgacgcc tgagcagttt aagtcccaca gaagctacag ctgccaggc	600
acgcatgagg ggagcaccgt ggaaaaaaacc gttgcgcgca ctgaggcc	648

<210> 336
 <211> 639
 <212> DNA
 <213> Homo sapiens

<400> 336	
gatatcgac tgacccagcc agttcagtg agcggctcac caggtcagag cattaccatc	60
tcgtgtacgg gtactagcg cgatgtggc ggctataact atgtgagctg gtaccagcag	120
catcccgaaa aggcgcccga actgtatgatt tatgtatgtga gcaaccgtcc ctcaggcgtg	180
agcaaccgtt ttagcggatc caaaagcggc aacaccgcga gcctgaccat tagcggcctg	240
caagcggaaag acgaagcggta ttattattgc cagagcgtatc ttatatttcc tttgtttggc	300
ggcggcacgaa agttaaccgt tcttggccag ccgaaagccg caccgagtgt gacgctgttt	360
ccgcccggacgaa gcgaagaatt gcaggcgaac aaagcgcaccc tgggtgtgcct gattagcgcac	420
ttttatccgg gagccgtac agtggcctgg aaggcagata gcagccccgt caaggcggga	480
gtggagacca ccacaccctc caaacaaagc aacaacaagt acggggccagc cagctatctg	540
agcctgacgc ctgagcagtgtt gaagtccac agaagctaca gctgccaggt cacgcatgag	600
gggagcaccgttggaaaaac cggtgcgcgactgaggcc	639

<210> 337
 <211> 642
 <212> DNA
 <213> Homo sapiens

<400> 337	
gatatcgac tgacccagcc agttcagtg agcggctcac caggtcagag cattaccatc	60
tcgtgtacgg gtactagcg cgatgtggc ggctataact atgtgagctg gtaccagcag	120
catcccgaaa aggcgcccga actgtatgatt tatgtatgtga gcaaccgtcc ctcaggcgtg	180
agcaaccgtt ttagcggatc caaaagcggc aacaccgcga gcctgaccat tagcggcctg	240
caagcggaaag acgaagcggta ttattattgc cagagcgtatc acgttactcc tcgtgtgttt	300
ggcggcgccgca cgaagttaac cgttcttggc cagccgaaag ccgcaccgag tttgtacgctg	360
tttccgcggca gcagcgaaga attgcaggcg aacaaagcga ccctgggtgtt cctgatttagc	420
gacttttatac cgggagccgt gacagtggcc tggaaaggcag atagcagccc cgtcaaggcg	480
ggagtgggaga ccaccacacc ctccaaacaa agcaacaaca agtacgcggc cagcagctat	540
ctgagcctga cgcctgagca gtggaaaggcc cacagaagct acagctgcca ggtcacgcat	600
gaggggagca ccgtggaaaaa aaccgttgcgcgactgaggcc	642

<210> 338
 <211> 636
 <212> DNA
 <213> Homo sapiens

<400> 338	
gatatcgaaac tgacccagcc gccttcagtg agcgttgcac caggtcagac cgcgcgtatc	60
tcgtgtacgg gcgtatgcgtt gggcgataaa tacgcgcgtt ggtaccagca gaaacccggg	120
caggcgcggat ttctgggtat ttatgtatgtt tctgaccgtc cctcaggcat cccggaaacgc	180
tttagcggat ccaacacggc caacaccgcg accctgacca tttagcggcactcaggcggaa	240

gacgaaggcg	attattatttgc	ccagagccgt	gaccctgttg	gttttccctgt	gtttggcg	300
ggcacgaagt	taaccgttct	tggccagccg	aaagccgcac	cgagtgtgac	gctgttccg	360
ccgagcagcg	aagaatttgc	ggcgaacaaa	gcgaccctgg	tgtgcctgat	tagcgactt	420
tatccggag	ccgtgacagt	ggcctggaa	gcagatagca	gccccgtcaa	ggcgggagtg	480
gagaccacca	caccctccaa	acaaagcaac	aacaagtacg	cgccagcag	ctatctgagc	540
ctgacgcctg	agcaagtggaa	gtcccacaga	agctacagct	gccaggtcac	gcatgagggg	600
agcacccgtgg	aaaaaaaccgt	tgccgcact	gaggcc			636

<210> 339

<211> 642

<212> DNA

<213> Homo sapiens

<400> 339

gatatcgac	tgacccagcc	agttcagtg	agcggctcac	caggtcagag	cattaccatc	60
tcgtgtacgg	gtactagcg	cgatgtggc	ggctataact	atgtgagctg	gtaccagcag	120
catcccgaaa	aggcgccgaa	actgtatgatt	tatgtatgt	gcaaccgtcc	ctcaggcg	180
agcaaccgtt	ttagcggtac	caaaagcggc	aacaccgcga	gcctgaccat	tagcgcc	240
caagcggaa	acgaagcgg	ttattattgc	cagagctatg	acctttctcc	tcgtgtgtt	300
ggcgccggca	cgaagttaac	cgttcttggc	cagccggaa	ccgcaccggag	tgtgacgctg	360
tttccgccc	gcagcgaaga	attgcaggcg	aacaaagcga	ccctgggtgt	cctgatttagc	420
gacttttatac	cgggagccgt	gacagtggcc	tggaggcag	atagcagccc	cgtcaaggcg	480
ggagtggaga	ccaccacacc	ctccaaacaa	agcaacaaca	agtacgcggc	cagcagctat	540
ctgagcctg	cgcctgagca	gtggaaagtcc	cacagaagct	acagctgcca	ggtcacgcat	600
gaggggagca	ccgtggaaaaa	aaccgttgcg	ccgactgagg	cc		642

<210> 340

<211> 648

<212> DNA

<213> Homo sapiens

<400> 340

gatatcgac	tgacccagcc	agttcagtg	agcggctcac	caggtcagag	cattaccatc	60
tcgtgtacgg	gtactagcg	cgatgtggc	ggctataact	atgtgagctg	gtaccagcag	120
catcccgaaa	aggcgccgaa	actgtatgatt	tatgtatgt	gcaaccgtcc	ctcaggcg	180
agcaaccgtt	ttagcggtac	caaaagcggc	aacaccgcga	gcctgaccat	tagcgcc	240
caagcggaa	acgaagcgg	ttattattgc	cagagctatg	acttttctca	ttatttttt	300
gtgtttggcg	gcccacgaa	gttaaccgtt	cttggccagc	cgaaagccgc	accgagtgt	360
acgctgttcc	cgccgacgag	cgaagaatttgc	caggcgaaca	aagcgcaccct	gtgtgcctg	420
attagcgact	tttacccggg	agccgtgaca	gtggcctgga	aggcagatag	cagccccgtc	480
aaggcgggag	tggagaccac	cacaccctcc	aaacaaagca	acaacaagta	cgccggcagc	540
agctatctga	gcctgacgccc	tgagcagttgg	aagtcccaca	gaagctacag	ctgcccagg	600
acgcacatgagg	ggagcaccgt	ggaaaaaaacc	gttgcggccg	ctgaggcc		648

<210> 341

<211> 636

<212> DNA

<213> Homo sapiens

<400> 341

gatatcgAAC	tgacccAGCC	gcctcAGTg	agcggctCAC	caggtcAGAG	cgcgCGTATC	60
tcgtgtAGCG	gcgatgcGCT	gggcgataAA	tacgcgAGCT	ggtaccAGCA	gaaaccCGGG	120
caggcgCCAG	ttctggGTGAT	ttatgtatGAT	tctgaccGTC	cctcaggCAT	cccggaACGC	180
tttagcgGAT	ccaacAGCGG	caacaccGCG	accctgACCA	ttagcggCAC	tcaggCGGAA	240
gacgaAGCGG	attattattG	ccagAGCTAT	gacctcGTt	atttctcatGT	gttggCGGC	300
ggcacGAAGT	taaccgttCT	tggccAGCCG	aaagccgcAC	cgagtgtGAC	gctgttCCG	360
ccgagcAGCG	aagaattGCA	ggcgaACAAA	gcgaccCTGG	tgtgcctGAT	tagcGACTTT	420
tatccGGGAG	ccgtGACAGT	ggcctggAAAG	gcagatAGCA	gcccCGTCA	ggcgggAGTG	480
gagaccACCA	caccctCCAA	acaaAGCAAC	aacaAGTACG	cgccAGCAGC	ctatctGAGC	540
ctgacGCTG	agcagtggAA	gtcccACAGA	agctacAGCT	gccaggTCAC	gcatgaggGGG	600
agcacCGTGG	aaaaaacCGT	tgccGCGACT	gaggCC			636

<210> 342

<211> 642

<212> DNA

<213> Homo sapiens

<400> 342

gatatcgCAC	tgacccAGCC	agcttAGTg	agcggctCAC	caggtcAGAG	cattaccATC	60
tcgtgtACGG	gtactAGCAG	cgatgtGGGc	ggctataACT	atgtgAGCTG	gtaccAGCAG	120
catcccGGGA	aggcgCCGAA	actgtatGATT	tatgtatGTG	gcaaccGTCC	ctcaggCGTG	180
agcaaccGTT	ttagcgGATC	caaagCGGC	aacaccGCGA	gcctgaccAT	tagcggCCTG	240
caagcgGAAG	acgaagCGGA	ttattattGC	cagAGCTATG	accttcGTaa	tcgtgtGTTT	300
ggcggeGGCA	cgaagttAAC	cgttcttGc	cagccGAAAG	ccgcaccGAG	tgtgacGCTG	360
tttccGCGGA	gcagcGAAGA	attgcaggGC	aacaaAGCgA	ccctggTGTG	cctgattAGC	420
gacttttATC	cgggaggCCGT	gacagtggCC	tggaaggCAG	atagcAGCCC	cgtcaaggCG	480
ggagtggAGA	ccaccacACC	ctccaaACAA	agcaacaACAA	agtacGCGGC	cagcagCTAT	540
ctgacGCTG	cgcctGAGCA	gtggaAGTCC	cacagaAGCT	acagctGCCA	ggtcacGcat	600
gaggggAGCA	ccgtggAAAAA	aaccGTTGCG	ccgactGAGG	cc		642

<210> 343

<211> 645

<212> DNA

<213> Homo sapiens

<400> 343

gatatcgCAC	tgacccAGCC	agcttAGTg	agcggctCAC	caggtcAGAG	cattaccATC	60
tcgtgtACGG	gtactAGCAG	cgatgtGGGc	ggctataACT	atgtgAGCTG	gtaccAGCAG	120
catcccGGGA	aggcgCCGAA	actgtatGATT	tatgtatGTG	gcaaccGTCC	ctcaggCGTG	180
agcaaccGTT	ttagcgGATC	caaagCGGC	aacaccGCGA	gcctgaccAT	tagcggCCTG	240
caagcgGAAG	acgaagCGGA	ttattattGC	cagAGCTATG	actttactTA	tggttctGTG	300
tttggcGGCG	gcacGGAAGT	aaccGTTCTT	ggccAGCCGA	aagccGcACC	gagtgtGACG	360
ctgtttccGCG	cgagcAGCGA	agaattGCAg	gcgaacaAAAG	cgaccCTGGT	gtgcctGATT	420
agcGACTTT	atccGGGAGC	cgtGACAGT	gcctggAAAG	cagatAGCAG	ccccGTCAG	480
gcgggAGTGG	agaccACAC	accctCCAAA	caaAGCAAC	acaAGTACG	ggccAGCAGC	540
tatctGAGCC	tgacGCTG	gcagtggAAAG	tcccACAGAA	gtcACAGCTG	ccaggTCACG	600
catgaggGGA	gcaccGtGGA	aaaaaccGTT	gcGCCGACTG	aggCC		645

<210> 344

<211> 645

<212> DNA

<213> Homo sapiens

<400> 344

gatatcgac	tgacccagag	cccgccgacc	ctgaggctgt	ctccgggcga	acgtgcgacc	60
ctgagctca	gagcgagcca	gagcgtgagc	agcagctatc	ttgcgtggta	ccagcagaaa	120
ccaggtaa	caccgcgtct	attaatttat	ggcgcgagca	gccgtcaac	tgggttccc	180
gcgcgttta	gcccgtctgg	atccggcacc	gattttaccc	tgaccattag	cagcctggaa	240
cctgaagact	ttgcgttta	ttattgccag	cagtttaatg	attctcctta	taccttggc	300
cagggtacga	aagttgaaat	taaacgtacg	gtggctgctc	cgagcgtgtt	tattttccg	360
ccgagcgatg	aacaactgaa	aagcggcacc	gcgagcgtgg	tgtgcctgct	gaacaacttt	420
tatccgcgt	aagcgtaaagt	tcagtggaaa	gtagacaacg	cgctgcaaag	cggcaacacgc	480
caggaaagcg	tgaccgaaca	ggatagcaa	gatagcacct	attctctgag	cagcaccctg	540
accctgagca	aaggcgattt	tgaaaaacat	aaagtgtatg	cgtgcgaagt	gaccatcaa	600
ggtctgagca	gcccgtgac	taaatcttt	aatcgtggcg	aggcc		645

<210> 345

<211> 649

<212> DNA

<213> Homo sapiens

<400> 345

ggccgatata	gcactgaccc	agccagcttc	agtgagcggc	tcaccaggtc	agagcattac	60
catctcggt	acgggtacta	gcagcgatgt	ggcggctat	aactatgtga	gctggtagca	120
gcagcatccc	ggaaaggcgc	cgaaactgtat	gatttatgtat	gtgagcaacc	gtccctcagg	180
cgtgagcaac	cgttttagcg	gatccaaaag	cgccaacacc	gcgagcctga	ccattagcgg	240
cctgcaagcg	gaagacgaag	cggttattta	ttgcccagagc	tatgacattt	ctggttatcc	300
tgtgtttggc	ggggcacga	agtttaccgt	tcttggccag	ccgaaagccg	caccgagtgt	360
gacgctgttt	ccggcagca	gccaagaatt	gcaggcgaac	aaagcgcacc	tggtgtgcct	420
gattagcgc	ttttattccgg	gagccgtgac	agtggcctgg	aaggcagata	gcagccccgt	480
caaggcggga	gtggagacca	ccacaccctc	caaacaagc	aacaacaagt	acgcggccag	540
cagctatctg	agccgtacgc	ctgagcagt	gaagtcccac	agaagctaca	gctgccaggt	600
cacgcatgag	gggagcaccg	tggaaaaaac	cgttgcggc	actgaggcc		649

<210> 346

<211> 648

<212> DNA

<213> Homo sapiens

<400> 346

gatatcgac	tgacccagcc	agtttcaatg	agcggtcac	caggtcagag	cattaccatc	60
tcgtgtacgg	gtactagcg	cgatgtggc	ggctataact	atgtgagctg	gtaccacgag	120
catccccgg	aggcgccgaa	actgtatgtt	tatgtatgt	gcaaccgtcc	ctcaggcgt	180
agcaaccgtt	ttacggatc	caaaagcggc	aacaccgcga	gcctgaccat	tagcggcct	240
caagcggaa	acgaagcgg	ttattattgc	cagagccgt	acctttatta	tgtttattat	300
gtgtttggcg	gcccgtacgaa	gttaaccgtt	cttggccagc	cgaaagccgc	accgagtgt	360
acgcttgc	cgccgagcag	cgaaagaattt	caggcgaaca	aagcaccct	ggtgtgcct	420
attagcgact	tttatccggg	agccgtgaca	gtggcctgga	aggcagata	cagccccgt	480
aaggcgggag	tggagaccac	cacaccctc	aaacaagc	acaacaagta	cgcggccagc	540
agctatctg	gcctgacgcc	tgagcagtgg	aaagtcccaca	gaagctacag	ctgcccagg	600

acgcatgagg ggagcaccgt ggaaaaaacc gttgcgccga ctgaggcc 648

<210> 347

<211> 633

<212> DNA

<213> Homo sapiens

<400> 347

gatatcgaa	tgacccagcc	gccttcagt	agcggtgcac	caggtcagac	cgcgcgtatc	60
tcgtgtacg	gcgatgcgt	gggcgataaa	tacgcgagct	gttaccagca	gaaacccggg	120
caggcgcag	ttctgggtat	ttatgtat	tctgaccgtc	cctcaggcat	cccgaaacgc	180
tttagcggt	ccaacagcg	caacaccgcg	accctgacca	ttagcggcac	tcaggcggaa	240
gacgaagcgg	attattattg	ccagagctat	gaccgtct	tgtgggtgtt	tggcggcggc	300
acgaagtta	ccgttcttgg	ccagccgaaa	gccgcaccga	gtgtgacgct	gtttccggcg	360
agcagcgaag	aattgcaggc	gaacaaaggc	accctgggtt	gcctgattag	cgacttttat	420
ccgggagccg	tgacagtggc	ctgaaaggca	gatagcagcc	ccgtcaaggc	gggagtgagg	480
accaccacac	cctccaaaca	aagcaacaac	aagtacgcgg	ccagcagcta	tctgagcctg	540
acgcctgagc	agtggaaagtc	ccacagaagc	tacagctgcc	aggtcacgca	tgaggggagc	600
accgtggaaa	aaaccgttgc	gccgactgag	gcc			633

<210> 348

<211> 645

<212> DNA

<213> Homo sapiens

<400> 348

gatatcgac	tgacccagcc	agcttcagt	agcggtcac	caggtcagag	cattaccatc	60
tcgtgtacgg	gtactagcag	cgatgtggc	ggctataact	atgtgagct	gtaccagcag	120
catcccgaa	aggcgccgaa	actgtatgatt	tatgtatgt	gcaaccgtcc	ctcaggcgt	180
agcaaccgtt	ttagcggatc	caaagcggc	aacaccgcg	gcctgaccat	tagcggcctg	240
caagcggaa	acgaagcgg	ttattattgc	cagagctggg	acggtcagac	tgataagggt	300
tttggcggcg	gcacgaagtt	aaccgttctt	ggccagccg	aagccgcacc	gagtgtgacg	360
ctgtttccgc	cgagcagcga	agaattgcag	gcgaacaaag	cgaccctgg	gtgcctgatt	420
agcgacttt	atccgggagc	cgtgacagt	gccttggagg	cagatagcag	ccccgtcaag	480
gcgggagtg	agaccaccac	accctccaaa	caaagcaaca	acaagtacgc	ggccagcagc	540
tatctgagcc	tgacgcctga	gcagtggaa	tcccacagaa	gctacagct	ccaggtcacg	600
catgagggg	gacccgttga	aaaaaccgtt	gcccgcact	aggc		645

<210> 349

<211> 636

<212> DNA

<213> Homo sapiens

<400> 349

gatatcgaa	tgacccagcc	gccttcagt	agcggtgcac	caggtcagac	cgcgcgtatc	60
tcgtgtacg	gcgatgcgt	gggcgataaa	tacgcgagct	gttaccagca	gaaacccggg	120
caggcgcag	ttctgggtat	ttatgtat	tctgaccgtc	cctcaggcat	cccgaaacgc	180
tttagcggt	ccaacagcg	caacaccgcg	accctgacca	ttagcggcac	tcaggcggaa	240
gacgaagcgg	attattattg	ccagagctgg	gacccttctc	attattatgt	gtttggcggc	300
ggcacgaa	taaccgttct	tggccagccg	aaagccgcac	cgagtgtgac	gctgttccg	360

ccgagcagcg aagaattgca ggcgaacaaa	gcgaccctgg tttgcctgat tagcgacttt	420
tatccggag ccgtgacagt ggcttggaa	gcagatagca gccccgtcaa ggcgggagtg	480
gagaccacca caccctccaa acaaagcaac	aacaagtacg cggccagcag ctatctgagc	540
ctgacgcctg agcagtggaa	gtcccacaga agctacagct gccaggcac gcatgagggg	600
agcaccgtgg	aaaaaacgt tgcccgact gaggcc	636

<210> 350

<211> 645

<212> DNA

<213> Homo sapiens

<400> 350

gatatcgac tgacccagcc agttcagt	agcggtcac caggtcagag cattaccatc	60
tcgtgtacgg gtactagcg	cgatgtggc ggctataact atgtgagctg	120
catccggga	ggctataact atgtgagctg gtaccacag	180
aggcgccgaa	actgtatgtt tatgtatgtg	240
agcaaccgtt	gcaaccgtcc ctcaggcg	300
ttagcgatc	gcctgaccat tagcgccctg	360
caaaagcggc	aaacccgcga	420
caagcggaa	ttattattgc cagagctatg	480
acgaagcgg	acattatgcc tgagcgtgt	540
tttggcgccg	tttggcgccg	600
gcacgaagtt	gcacgaagtt aaccgtt	645
ctgtttccgc	ggccagccga aagccgcacc	
cgagcagcga	gagtggtacg	
agaattgcag	gcgaacaaag cgaccctgg	
agcgactttt	gtgcctgatt	
atccgggagc	cgatgcgtg	
cgatgcgtg	gcctggaagg	
ccaggtcactg	cagatagcag	
tatctgagcc	ccccgtcaag	
tgacgcctga	gcccagcagc	
gcagtggaa	aaaaaacgtt	
tcccacagaa	gctacagctg	
gcatgagggg	ccaggtcactg	
catgagggg	aggcc	

<210> 351

<211> 645

<212> DNA

<213> Homo sapiens

<400> 351

gatatcgac tgacccagcc agttcagt	agcggtcac caggtcagag cattaccatc	60
tcgtgtacgg gtactagcg	cgatgtggc ggctataact atgtgagctg	120
catccggga	ggctataact atgtgagctg gtaccacag	180
aggcgccgaa	actgtatgtt tatgtatgtg	240
agcaaccgtt	gcaaccgtcc ctcaggcg	300
ttagcgatc	gcctgaccat tagcgccctg	360
caaaagcggc	aaacccgcga	420
caagcggaa	ttattattgc cagagcatgg	480
acgaagcgg	actttcgctc tatgcatgt	540
tttggcgccg	tttggcgccg	600
gcacgaagtt	gcacgaagtt aaccgtt	645
ctgtttccgc	ggccagccga aagccgcacc	
cgagcagcga	gagtggtacg	
agaattgcag	gcgaacaaag cgaccctgg	
agcgactttt	gtgcctgatt	
atccgggagc	cgatgcgtg	
cgatgcgtg	gcctggaagg	
ccaggtcactg	cagatagcag	
tatctgagcc	ccccgtcaag	
tgacgcctga	gcccagcagc	
gcagtggaa	aaaaaacgtt	
tcccacagaa	gctacagctg	
gcatgagggg	ccaggtcactg	
catgagggg	aggcc	

<210> 352

<211> 645

<212> DNA

<213> Homo sapiens

<400> 352

gatatcgac tgacccagcc agttcagt	agcggtcac caggtcagag cattaccatc	60
tcgtgtacgg gtactagcg	cgatgtggc ggctataact atgtgagctg	120
cgatgtggc	gtaccacag	

catcccggaa	aggcgcggaa	actgatgatt	tatgatgtga	gcaaccgtcc	ctcaggcgtg	180
agcaaccgtt	ttagcggatc	caaaagcggc	aacaccgcga	gcctgaccat	tagcggcctg	240
caagcggaaag	acgaagcggaa	ttattattgc	cagagcttg	acatgattca	tccttatgtg	300
tttggcggcg	gcacacaaggtt	aaccgttctt	ggccagccga	aagccgcacc	gagtgtgacg	360
ctgtttccgc	cgagcagcga	agaattgcag	gccaacaagg	cgaccctgg	gtgcctgatt	420
agcactttt	atccgggagc	cgtacagt	gcctggaagg	cagatagcag	ccccgtcaag	480
gcgggagttg	agaccaccac	accctccaaa	caaagcaaca	acaagtacgc	ggccagcagc	540
tatctgagcc	tgacgcttga	gcagtggaaag	tcccacagaa	gctacagctg	ccaggtcacg	600
catgagggga	gcaccgttga	aaaaaccgtt	gcccggactg	aggcc		645

<210> 353

<211> 639

<212> DNA

<213> Homo sapiens

<400> 353

gatatcgac	tgacccagcc	agttcagt	agcggtcac	caggtcagag	cattaccatc	60
tcgtgtacgg	gtactagcag	cgatgtggc	ggctataact	atgtgagctg	gtaccacgag	120
catcccggaa	aggcgcggaa	actgatgatt	tatgatgtga	gcaaccgtcc	ctcaggcgtg	180
agcaaccgtt	ttagcggatc	caaaagcggc	aacaccgcga	gcctgaccat	tagcggcctg	240
caagcggaaag	acgaagcggaa	ttattattgc	cagagcact	ttcctgttat	ggtgttggc	300
ggccgcacga	agttaaaccgt	tcttggccag	ccgaaagccg	caccgagtgt	gacgctgttt	360
ccgcccagca	gcgaagaatt	gcaggcgaac	aaagcgaccc	tgggtgcct	gattagcgac	420
ttttatccgg	gagccgtgac	agtggcctgg	aaggcagata	gcagccccgt	caaggcggga	480
gtggagacca	ccacaccctc	caaacaaagc	aacaacaagt	acgcggccag	cagctatctg	540
agcctgacgc	ctgagcagt	gaagtcccac	agaagctaca	gctgccaggt	cacgcatgag	600
gggagcaccg	tggaaaaaac	cgttgcgcgg	actgaggcc			639

<210> 354

<211> 639

<212> DNA

<213> Homo sapiens

<400> 354

gatatcgac	tgacccagcc	agttcagt	agcggtcac	caggtcagag	cattaccatc	60
tcgtgtacgg	gtactagcag	cgatgtggc	ggctataact	atgtgagctg	gtaccacgag	120
catcccggaa	aggcgcggaa	actgatgatt	tatgatgtga	gcaaccgtcc	ctcaggcgtg	180
agcaaccgtt	ttagcggatc	caaaagcggc	aacaccgcga	gcctgaccat	tagcggcctg	240
caagcggaaag	acgaagcggaa	ttattattgc	cagagcaca	atccttatct	tgtgttggc	300
ggccgcacga	agttaaaccgt	tcttggccag	ccgaaagccg	caccgagtgt	gacgctgttt	360
ccgcccagca	gcgaagaatt	gcaggcgaac	aaagcgaccc	tgggtgcct	gattagcgac	420
ttttatccgg	gagccgtgac	agtggcctgg	aaggcagata	gcagccccgt	caaggcggga	480
gtggagacca	ccacaccctc	caaacaaagc	aacaacaagt	acgcggccag	cagctatctg	540
agcctgacgc	ctgagcagt	gaagtcccac	agaagctaca	gctgccaggt	cacgcatgag	600
gggagcaccg	tggaaaaaac	cgttgcgcgg	actgaggcc			639

<210> 355

<211> 10

<212> PRT

<213> Homo sapiens

<400> 355
Gly Phe Thr Phe Ser Ser Tyr Ala Met Ser
1 5 10

<210> 356
<211> 10
<212> PRT
<213> Homo sapiens

<400> 356
Gly Phe Thr Phe Asn Ser Tyr Ala Met Ser
1 5 10

<210> 357
<211> 17
<212> PRT
<213> Homo sapiens

<400> 357
Ala Ile Ser Gly Ser Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Val Lys
1 5 10 15
Gly

<210> 358
<211> 17
<212> PRT
<213> Homo sapiens

<400> 358
Val Ile Ser Gly Asn Gly Ser Asn Thr Tyr Tyr Ala Asp Ser Val Lys
1 5 10 15
Gly

<210> 359
<211> 17
<212> PRT
<213> Homo sapiens

<400> 359
Gly Ile Ser Gly Asn Gly Val Leu Ile Phe Tyr Ala Asp Ser Val Lys
1 5 10 15
Gly

<210> 360
<211> 5
<212> PRT

<213> Homo sapiens

<400> 360
Gly Leu Met Asp Tyr
1 5

<210> 361
<211> 4
<212> PRT
<213> Homo sapiens

<400> 361
Trp Phe Asp His
1

<210> 362
<211> 4
<212> PRT
<213> Homo sapiens

<400> 362
Trp Phe Asp Val
1

<210> 363
<211> 14
<212> PRT
<213> Homo sapiens

<400> 363
Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr Asn Tyr Val Ser
1 5 10

<210> 364
<211> 7
<212> PRT
<213> Homo sapiens

<400> 364
Asp Val Ser Asn Arg Pro Ser
1 5

<210> 365
<211> 9
<212> PRT
<213> Homo sapiens

<400> 365
Gln Ser Tyr Asp Phe Ile Arg Phe Met
1 5

<210> 366

<211> 10

<212> PRT

<213> Homo sapiens

<400> 366

Gly Gly Thr Phe Ser Ser Tyr Ala Ile Ser
1 5 10

<210> 367

<211> 10

<212> PRT

<213> Homo sapiens

<400> 367

Gly Tyr Ser Phe Thr Ser Tyr Trp Ile Gly
1 5 10

<210> 368

<211> 17

<212> PRT

<213> Homo sapiens

<400> 368

Gly Ile Ile Pro Ile Phe Gly Thr Ala Asn Tyr Ala Gln Lys Phe Gln
1 5 10 15

Gly

<210> 369

<211> 17

<212> PRT

<213> Homo sapiens

<400> 369

Ile Ile Tyr Pro Gly Asp Ser Asp Thr Arg Tyr Ser Pro Ser Phe Gln
1 5 10 15

Gly

<210> 370

<211> 16

<212> PRT

<213> Homo sapiens

<400> 370

Trp Ser Asp Gln Ser Tyr His Tyr Tyr Trp His Pro Tyr Phe Asp Val
1 5 10 15

<210> 371
<211> 13
<212> PRT
<213> Homo sapiens

<400> 371
Ser Gly Ser Ser Ser Asn Ile Gly Ser Asn Tyr Val Ser
1 5 10

<210> 372
<211> 14
<212> PRT
<213> Homo sapiens

<400> 372
Thr Gly Thr Ser Ser Asp Leu Gly Gly Tyr Asn Tyr Val Ser
1 5 10

<210> 373
<211> 11
<212> PRT
<213> Homo sapiens

<400> 373
Leu Met Ile Tyr Asp Asn Asn Gln Arg Pro Ser
1 5 10

<210> 374
<211> 11
<212> PRT
<213> Homo sapiens

<400> 374
Leu Met Ile Tyr Asp Val Ser Asn Arg Pro Ser
1 5 10

<210> 375
<211> 11
<212> PRT
<213> Homo sapiens

<400> 375
Leu Met Ile Tyr Ala Gly Asn Asn Arg Pro Ser
1 5 10

<210> 376
<211> 10
<212> PRT
<213> Homo sapiens

<400> 376
Gln Ala Phe Asp Val Ala Pro Asn Gly Lys
1 5 10

<210> 377
<211> 10
<212> PRT
<213> Homo sapiens

<400> 377
Gln Ala Phe Ala Val Met Pro Asn Val Glu
1 5 10

<210> 378
<211> 10
<212> PRT
<213> Homo sapiens

<400> 378
Gln Ser Phe Thr Val Ser Pro Gly Ala Asp
1 5 10

<210> 379
<211> 9
<212> PRT
<213> Homo sapiens

<400> 379
Gln Ala Tyr Asp Ser Ser Gly Tyr Pro
1 5

<210> 380
<211> 17
<212> DNA
<213> Homo sapiens

<400> 380
gtgggtggttc cgatatac

17

<210> 381
<211> 43
<212> DNA
<213> Homo sapiens

<400> 381
agcgtcacac tcggtgccgc tttcggctgg ccaagaacgg tta
1

43

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.