Table 8.9. K-means clustering results for the *LA Times* document data set.

Cluster	Enter-	Financial	Foreign	Metro	National	Sports	Entropy	Purity
	tainment							
1	3	5	40	506	96	27	1.2270	0.7474
2	4	7	280	29	39	2	1.1472	0.7756
3	1	1	1	7	4	671	0.1813	0.9796
4	10	162	3	119	73	2	1.7487	0.4390
5	331	22	5	70	13	23	1.3976	0.7134
6	5	358	12	212	48	13	1.5523	0.5525
Total	354	555	341	943	273	738	1.1450	0.7203

Times. These articles come from six different classes: Entertainment, Financial, Foreign, Metro, National, and Sports. Table 8.9 shows the results of a K-means clustering to find six clusters. The first column indicates the cluster, while the next six columns together form the confusion matrix; i.e., these columns indicate how the documents of each category are distributed among the clusters. The last two columns are the entropy and purity of each cluster, respectively.

Ideally, each cluster will contain documents from only one class. In reality, each cluster contains documents from many classes. Nevertheless, many clusters contain documents primarily from just one class. In particular, cluster 3, which contains mostly documents from the Sports section, is exceptionally good, both in terms of purity and entropy. The purity and entropy of the other clusters is not as good, but can typically be greatly improved if the data is partitioned into a larger number of clusters.

Precision, recall, and the F-measure can be calculated for each cluster. To give a concrete example, we consider cluster 1 and the Metro class of Table 8.9. The precision is 506/677 = 0.75, recall is 506/943 = 0.26, and hence, the F value is 0.39. In contrast, the F value for cluster 3 and Sports is 0.94.

Similarity-Oriented Measures of Cluster Validity

The measures that we discuss in this section are all based on the premise that any two objects that are in the same cluster should be in the same class and vice versa. We can view this approach to cluster validity as involving the comparison of two matrices: (1) the **ideal cluster similarity matrix** discussed previously, which has a 1 in the ij^{th} entry if two objects, i and j, are in the same cluster and 0, otherwise, and (2) an **ideal class similarity matrix** defined with respect to class labels, which has a 1 in the ij^{th} entry if

two objects, i and j, belong to the same class, and a 0 otherwise. As before, we can take the correlation of these two matrices as the measure of cluster validity. This measure is known as the Γ statistic in clustering validation literature.

Example 8.16 (Correlation between Cluster and Class Matrices). To demonstrate this idea more concretely, we give an example involving five data points, p_1, p_2, p_3, p_4, p_5 , two clusters, $C_1 = \{p_1, p_2, p_3\}$ and $C_2 = \{p_4, p_5\}$, and two classes, $L_1 = \{p_1, p_2\}$ and $L_2 = \{p_3, p_4, p_5\}$. The ideal cluster and class similarity matrices are given in Tables 8.10 and 8.11. The correlation between the entries of these two matrices is 0.359.

Table 8.10. Ideal cluster similarity matrix.

Point	p1	p2	p3	p4	p5
p1	1	1	1	0	0
p2	1	1	1	0	0
p3	1	1	1	0	0
p4	0	0	0	1	1
p5	0	0	0	1	1

Table 8.11. Ideal class similarity matrix.

Point	p1	p2	р3	p4	p5
p1	1	1	0	0	0
p2	1	1	0	0	0
р3	0	0	1	1	1
p4	0	0	1	1	1
p5	0	0	1	1	1

More generally, we can use any of the measures for binary similarity that we saw in Section 2.4.5. (For example, we can convert these two matrices into binary vectors by appending the rows.) We repeat the definitions of the four quantities used to define those similarity measures, but modify our descriptive text to fit the current context. Specifically, we need to compute the following four quantities for all pairs of distinct objects. (There are m(m-1)/2 such pairs, if m is the number of objects.)

 f_{00} = number of pairs of objects having a different class and a different cluster f_{01} = number of pairs of objects having a different class and the same cluster f_{10} = number of pairs of objects having the same class and a different cluster f_{11} = number of pairs of objects having the same class and the same cluster

In particular, the simple matching coefficient, which is known as the Rand statistic in this context, and the Jaccard coefficient are two of the most frequently used cluster validity measures.

Rand statistic =
$$\frac{f_{00} + f_{11}}{f_{00} + f_{01} + f_{10} + f_{11}}$$
(8.18)

Jaccard coefficient =
$$\frac{f_{11}}{f_{01} + f_{10} + f_{11}}$$
 (8.19)

Example 8.17 (Rand and Jaccard Measures). Based on these formulas, we can readily compute the Rand statistic and Jaccard coefficient for the example based on Tables 8.10 and 8.11. Noting that $f_{00} = 4$, $f_{01} = 2$, $f_{10} = 2$, and $f_{11} = 2$, the Rand statistic = (2 + 4)/10 = 0.6 and the Jaccard coefficient = 2/(2+2+2) = 0.33.

We also note that the four quantities, f_{00} , f_{01} , f_{10} , and f_{11} , define a contingency table as shown in Table 8.12.

Table 8.12. Two-way contingency table for determining whether pairs of objects are in the same class and same cluster.

	Same Cluster	Different Cluster
Same Class	f_{11}	f_{10}
Different Class	f_{01}	f_{00}

Previously, in the context of association analysis—see Section 6.7.1—we presented an extensive discussion of measures of association that can be used for this type of contingency table. (Compare Table 8.12 with Table 6.7.) Those measures can also be applied to cluster validity.

Cluster Validity for Hierarchical Clusterings

So far in this section, we have discussed supervised measures of cluster validity only for partitional clusterings. Supervised evaluation of a hierarchical clustering is more difficult for a variety of reasons, including the fact that a preexisting hierarchical structure often does not exist. Here, we will give an example of an approach for evaluating a hierarchical clustering in terms of a (flat) set of class labels, which are more likely to be available than a preexisting hierarchical structure.

The key idea of this approach is to evaluate whether a hierarchical clustering contains, for each class, at least one cluster that is relatively pure and includes most of the objects of that class. To evaluate a hierarchical clustering with respect to this goal, we compute, for each class, the F-measure for each cluster in the cluster hierarchy. For each class, we take the maximum F-measure attained for any cluster. Finally, we calculate an overall F-measure for the hierarchical clustering by computing the weighted average of all per-class F-measures, where the weights are based on the class sizes. More formally,