TrenchHV[™] Power MOSFET

IXTH130N15T IXTQ130N15T

 $V_{DSS} = 150 V \\ I_{D25} = 130 A \\ R_{DS(on)} \le 12 m\Omega$

N-Channel Enhancement Mode Avalanche Rated

s		OF
<u>-</u>	G D S	(TAB)

Symbol Test Conditions Maximum Ratings $\mathbf{V}_{\mathrm{DSS}}$ $T_{1} = 25^{\circ}C \text{ to } 175^{\circ}C$ 150 $\mathbf{V}_{\underline{\mathsf{DGR}}}$ $T_{\perp} = 25^{\circ}\text{C} \text{ to } 175^{\circ}\text{C}; R_{GS} = 1 \text{ M}\Omega$ 150 V Transient ± 30 ٧ V_{GSM} $T_{c} = 25^{\circ}C$ 130 I_{D25} Lead Current Limit, RMS 75 Α LRMS $T_{\rm C} = 25$ °C, pulse width limited by $T_{\rm JM}$ 330 Α DM $T_{\rm C} = 25^{\circ}{\rm C}$ 5 Α $T_{c}^{r} = 25^{\circ}C$ 1.2 dv/dt $I_{_{\mathrm{S}}} \ \le I_{_{\mathrm{DM}}}, \ \mathrm{di/dt} \le 100 \ \mathrm{A/ms}, \ V_{_{\mathrm{DD}}} \le V_{_{\mathrm{DSS}}}$ 3 V/ns $T_{J} \le 175^{\circ}C, R_{G} = 2.5 \Omega$ $T_{\rm C} = 25^{\circ}C$ \mathbf{P}_{D} 750 Т_Ј °C -55 ... +175 °C 175 °C T_{stg} -55 ... +175 °C 1.6 mm (0.062 in.) from case for 10 s 300 T, Plastic body for 10 seconds $^{\circ}\text{C}$ 260 M Mounting torque 1.13 / 10 Nm/lb.in. Weight TO-3P 5.5 g TO-247 6

TO-3P(IXTQ)

TO-247 (IXTH)

G = Gate	D = Drain
S = Source	TAB = Drain

Features

- Unclamped Inductive Switching (UIS) rated
- Low package inductance
- easy to drive and to protect
- 175 °C Operating Temperature

Advantages

- Easy to mount
- Space savings
- High power density

Symbol (T ₁ = 25°C	Test Conditions unless otherwise specified)			aracteri Typ.	stic Va Max	
BV _{DSS}	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$		150			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 1 \text{ mA}$		2.5		4.5	V
I _{gss}	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$				± 200	nA
I _{DSS}	$V_{DS} = V_{DSS}$ $V_{GS} = 0 V$	T _J = 150°C			5 250	μA μA
R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_{D} = 0.5 I_{D25}, \text{ Not}$	tes 1, 2		10	12	$m\Omega$

Symbol	Test Conditions	Charac	cteristic	Values
$(T_J = 25^{\circ}C)$	unless otherwise specified)	Min.	Тур.	Max.
g_{fs}	$V_{DS} = 10 \text{ V}; I_{D} = 60 \text{ A}, \text{ Note 1}$	60	100	S
C _{iss}			9800	pF
C _{oss}	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$		1450	pF
C _{rss}			320	pF
t _{d(on)}	Resistive Switching Times		23	ns
t,	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \text{ V}_{DSS}, I_{D} = 0.5 \text{ I}_{D25}$		16	ns
t _{d(off)}	$R_{_G} = 2.5 \Omega \text{ (External)}$		57	ns
t _f			27	ns
Q _{g(on)}			113	nC
Q _{gs}	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 V_{DSS}, I_{D} = 0.5 I_{D25}$		32	nC
Q_{gd}			31	nC
R _{thJC}				0.20 °C/W
R _{thCS}			0.25	°C/W

Source-Drain Diode

Symbol $T_J = 25^{\circ}C$ (Test Conditions unless otherwise specified)	Ci Min.	haracte Typ.	ristic Va Max.	lues
I _s	V _{GS} = 0 V			130	Α
I _{SM}	Pulse width limited by T _{JM}			330	Α
V _{SD}	$I_F = 50 \text{ A}, V_{GS} = 0 \text{ V}, \text{ Note 1}$			1.2	V
t _{rr}	$I_F = 50 \text{ A}, -di/dt = 100 \text{ A}/\mu\text{s}$		100		ns
	$V_R = 25 \text{ V}, V_{GS} = 0 \text{ V}$				

Notes: 1. Pulse test, $t \le 300$ ms, duty cycle, $d \le 2$ %;

2. On through-hole packages, $R_{\rm DS(on)}$ Kelvin test contact location must be 5 mm or less from the package body.

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a preproduction design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

TO-247AD Outline

Terminals: 1 - Gate 2 - Drain 3 - Source Tab - Drain

Dim.	Millimeter		Inc	Inches	
	Min.	Max.	Min.	Max.	
Α	4.7	5.3	.185	.209	
A,	2.2	2.54	.087	.102	
A_2	2.2	2.6	.059	.098	
b	1.0	1.4	.040	.055	
b ₁	1.65	2.13	.065	.084	
b ₂	2.87	3.12	.113	.123	
С	.4	.8	.016	.031	
D	20.80	21.46	.819	.845	
Е	15.75	16.26	.610	.640	
е	5.20	5.72	0.205	0.225	
L	19.81	20.32	.780	.800	
L1		4.50		.177	
ÆP	3.55	3.65	.140	.144	
Q	5.89	6.40	0.232	0.252	
R	4.32	5.49	.170	.216	
S	6.15	BSC	242	BSC	

TO-3P (IXTQ) Outline

Pins: 1 - Gate 2 - Drain 3 - Source 4, TAB - Drain

SYM	INCH	ES	MILLIN	ETERS
SIM	MIN	MAX	MIN	MAX
Α	.185	.193	4.70	4.90
Α1	.051	.059	1.30	1.50
A2	.057	.065	1.45	1.65
b	.035	.045	0.90	1.15
b2	.075	.087	1.90	2.20
b4	.114	.126	2.90	3.20
С	.022	.031	0.55	0.80
D	.780	.791	19.80	20.10
D1	.665	.677	16.90	17.20
E	.610	.622	15.50	15.80
E1	.531	.539	13.50	13.70
е	.215	BSC	5.45	BSC
L	.779	.795	19.80	20.20
L1	.134	.142	3.40	3.60
ØΡ	.126	.134	3.20	3.40
øP1	.272	.280	6.90	7.10
S	.193	.201	4.90	5.10

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 1. Output Characteristics @ 25°C

Fig. 2. Extended Output Characteristics @ 25°C

Fig. 3. Output Characteristics

Fig. 4. $R_{DS(on)}$ Normalized to $I_D = 65A$ Value vs. Junction Temperature

Fig. 5. $R_{DS(on)}$ Normalized to $I_D = 65A$ Value vs. Drain Current

Fig. 6. Drain Current vs. Case Temperature

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 13. Resistive Turn-on Rise Time vs. Junction Temperature

Fig. 15. Resistive Turn-on Switching Times vs. Gate Resistance

Fig. 17. Resistive Turn-off Switching Times vs. Drain Current

Fig. 14. Resistive Turn-on Rise Time vs. Drain Current

Fig. 16. Resistive Turn-off
Switching Times vs. Junction Temperature

Fig. 18. Resistive Turn-off

