Unfortunately, (1.1) does not hold for positive semigroups in general. In A-IV, Example 1.2(2), we have seen that for the generator A of the (positive) translation semigroup on the Banach lattice $C_O(\mathbb{R}_+) \cap L^1(\mathbb{R}_+, e^X dx)$ the strict inequalitiy $\omega_1(A) \le \omega(A)$ is valid. For positive semigroups on certain nice Banach lattices (1.1) is true. One of these nice Banach lattices is $C_O(X)$. This will be proved in Theorem 1.4.

For compact X, (1.1) was already proved in B-II, Cor.1.14 and B-III, Thm.1.6 respectively. Actually much more is true and for positive semigroups on C(K), K compact, all stability concepts mentioned in chapter A-IV are mutually equivalent.

Theorem 1.1. Let A be the generator of a positive semigroup $(T(t))_{t\geq 0}$ on C(K) , K compact. Then

(1.2)
$$s(A) = \inf \{ \lambda \in \mathbb{R} : Af \leq \lambda f \text{ for some } 0 \leqslant f \in D(A) \}$$

Moreover, $s(A) = \omega(A) \in R\sigma(A) = P\sigma(A')$ and the following statements are mutually equivalent:

- (i) s(A) < 0,
- (ii) $(T(t))_{t\geq 0}$ is uniformly exponentially stable,
- (iii) $(T(t))_{t \ge 0}$ is weakly stable; i.e. $\langle T(t) f, \mu \rangle \to 0$ as $t \to \infty$ for every $f \in D(A)$ and every $\mu \in C(X)$.

<u>Proof.</u> (1.2) follows directly from A-III,4.4 and the results from B-II and B-III mentioned above. It remains to show the implication (iii) + (i).

If $<T(t)f,\mu>\to 0$ for every $\mu\in C(K)$ ', then, by the Uniform Boundedness Principle, $\|T(t)f\|\le M_f$ for every $f\in D(A)$. Using $s(A)\le \sup\{\omega(f):f\in D(A)\}=\omega_1(A)$ (A-IV,Thm.1.4) we obtain that $s(A)\le 0$. Suppose 0=s(A). From B-III,Thm.1.6 it follows that $s(A)\in P\sigma(A')$, hence there is $0<\mu\in C(K)$ ' such that $T(t)'\mu=\mu$ for $t\ge 0$. Since D(A) is dense, there exists $f\in D(A)$ such that $<f,\mu>\ne 0$. Then $|<T(t)f,\mu>|=|<f,\mu>|>0$ which contradicts the weak stability. Therefore s(A)<0.

For spaces $C_{_{\mbox{\scriptsize O}}}(X)$, X locally compact, the different stability concepts are no longer equivalent.