NAME:_____

Geometry of Manifolds Qualifying Exam Old System – Fall 2003 Auckly & Vidussi

- 1. Let $\pi: S^2 \to \mathbb{R}P^2$ be the standard covering projection. Prove that there is no map $f: \mathbb{R}P^2 \to S^2$ so that $\pi \circ f = id$.
- 2. Recall that

$$d\alpha(X_0, \dots, X_p) = \sum_{k=0}^{P} (-1)^k X_k \alpha(X_0, \dots, \widehat{X}_k, \dots X_p)$$
$$+ \sum_{i < j} (-1)^{i+j} \alpha([X_i, X_j], \dots \widehat{X}_i, \dots \widehat{X}_j \dots X_p)$$

Prove that
$$d\alpha(X_0, \dots, X_p) = \sum_{k=0}^{P} (-1)^k (\nabla_{X_k} \alpha)(X_0, \dots \widehat{X}_k, \dots X_p).$$

- **3.** (a) Give the definition of a Lie group.
 - (b) Give the definition of a Lie algebra.
 - (c) Give the definition of a representation of a Lie group, $\mu: G \to \operatorname{Aut}(V)$.
 - (d) Give the definition of a representation of a Lie algebra, $\dot{\mu}: \mathbf{g} \to \operatorname{End}(V)$.
 - (e) Define the Lie algebra of a Lie group.
 - (f) Describe how a representation of a Lie group induces a representation of the corresponding Lie algebra and prove that the induced representation is a Lie algebra representation.
- **4.** Prove that the holonomy of a simply connected Riemannian manifold is connected.

5. Let $X = \frac{\partial}{\partial x}$ and $Y = \frac{\partial}{\partial x} + (x^2 + 1)\frac{\partial}{\partial y}$ on \mathbb{R}^2 .

- (a) Compute [X, Y].
- (b) Compute the flow of X.
- (c) Compute the flow of Y.
- (d) Let $F^Z : \mathbb{R} \times M \to M$ be the flow of a vector field Z. If $F_s^Z \circ F_t^W = F_t^W \circ F_s^Z$ for all s and t, what can you say about [Z, W]? Why?
- (e) Is there a function $f_Y : \mathbb{R}^2 \to \mathbb{R}$ so that $F_t^{fX} \circ F_s^Y = F_s^Y \circ F_t^{fX}$ for all s and t? Why?
- **6.** Let $f: \mathbb{R}^3 \to \mathbb{R}: f(x, y, z) = xy z$. $\Sigma = f^{-1}(0) \land \{(x, y, z) | x^2 + y^2 \le 1\}$
 - (a) Verify that Σ is a manifold.
 - (b) Compare the orientation induced on Σ using $\nabla f/|\nabla f|$ and $dx \wedge dy \wedge dz$ with the orientation $dx \wedge dy$.
 - (c) Compute $\int_{\Sigma} \frac{|\nabla f \circ \kappa|}{|\nabla f|} dx \wedge dy$ when Σ is oriented by $dx \wedge dy$. What does this represent?
- 7. The connected sum $M_1 \# M_2$ of two oriented *n*-manifolds M_1, M_2 is defined as $(M_1 \setminus \operatorname{int} B^n) \bigcup_{S^{n-1}} (M_2 \setminus \operatorname{int} B^n)$, where B^n is a ball in $M_1(M_2)$ and S^{n-1} is its boundary.
 - (a) Show that if $n \geq 3$, then $\pi_1(M_1 \# M_2) = \pi_1(M_1) * \pi_1(M_2)$.
 - (b) Compute the fundamental group of $T^2 \# T^2$ (where T^2 is the 2-dimensional torus).

[Hint: What is $\pi_1(T^2 \setminus \text{int } D^2)$?]

- **8.** (a) Show that there exists a natural map $S^1 \times S^3 \to U(2)$ with discrete fiber by using the Lie group structure of S^1 and S^3 .
 - (b) What is the fiber?
 - (c) Using the result above, what is $\pi_1 U(2)$?