Inverse Trigonometric Functions

Question1

Considering only the principal values of inverse trigonometric functions, the number of positive real values of x satisfying

$$\tan^{-1}(x) + \tan^{-1}(2x) = \frac{\pi}{4}$$
 is :

[27-Jan-2024 Shift 2]

Options:

A.

More than 2

В.

1

C.

2 D.

0

Answer: B

Solution:

$$\tan^{-1}x + \tan^{-1}2x = \frac{\pi}{4}; x > 0$$

$$\Rightarrow \tan^{-1}2x = \frac{\pi}{4} - \tan^{-1}x$$

Taking tan both sides

$$\Rightarrow 2x = \frac{1-x}{1+x}$$

$$\Rightarrow 2x^2 + 3x - 1 = 0$$

$$x = \frac{-3 \pm \sqrt{9+8}}{8} = \frac{-3 \pm \sqrt{17}}{8}$$

Only possible
$$x = \frac{-3 + \sqrt{17}}{8}$$

Let x = m/n(m, n are co-prime natural numbers) be a solution of the equation $\cos(2\sin^{-1}x) = 1/9$ and let α , $\beta(\alpha > \beta)$ be the roots of the equation $mx^2 - nx - m + n = 0$. Then the point (α, β) lies on the line

[29-Jan-2024 Shift 2]

Options:

A.

$$3x + 2y = 2$$

В.

$$5x - 8y = -9$$

C.

$$3x - 2y = -2$$

D.

$$5x + 8y = 9$$

Answer: D

Solution:

Assume $\sin^{-1} x = \theta$

$$\cos(2\theta) = \frac{1}{9}$$

$$\sin \theta = \pm \frac{2}{3}$$

as $\mathbf m$ and $\mathbf n$ are co-prime natural numbers,

$$x = \frac{2}{3}$$

i.e.
$$m = 2$$
, $n = 3$

So, the quadratic equation becomes $2x^2 - 3x + 1 = 0$ whose roots are $\alpha = 1$, $\beta = \frac{1}{2}$

$$\left(1, \frac{1}{2}\right)$$
 lies on $5x + 8y = 9$

Question3

For α , β , $\gamma \neq 0$. If $\sin^{-1}\alpha + \sin^{-1}\beta + \sin^{-1}\gamma = \pi$ and $(\alpha + \beta + \gamma)(\alpha - \gamma + \beta) = 3\alpha\beta$, then γ equal to

[31-Jan-2024 Shift 1]

Options:

A.

√3/2

В.

1√2

C.

$$\frac{\sqrt{3}-1}{2\sqrt{2}}$$

D.

√3

Answer: A

Solution:

Let
$$\sin^{-1}\alpha = A$$
, $\sin^{-1}\beta = B$, $\sin^{-1}\gamma = C$

$$A+B+C=\pi$$

$$(\alpha + \beta)^2 - \gamma^2 = 3\alpha\beta$$

$$\alpha^2 + \beta^2 - \gamma^2 = \alpha \beta$$

$$\frac{\alpha^2 + \beta^2 - \gamma^2}{2\alpha\beta} = \frac{1}{2}$$

$$\Rightarrow \cos C = \frac{1}{2}$$

$$sinC = \gamma$$

$$\cos C = \sqrt{1 - \gamma^2} = \frac{1}{2}$$

$$\gamma = \frac{\sqrt{3}}{2}$$

Question4

If $a = \sin^{-1}(\sin(5))$ and $b = \cos^{-1}(\cos(5))$, then $a^2 + b^2$ is equal to

[31-Jan-2024 Shift 2]

Options:

$$4\pi^2 + 25$$

$$8\pi^2 - 40\pi + 50$$

$$4\pi^2 - 20\pi + 50$$

D.

Answer: B

Solution:

$$a = \sin^{-1}(\sin 5) = 5 - 2\pi$$

and
$$b = \cos^{-1}(\cos 5) = 2\pi - 5$$

$$\therefore a^2 + b^2 = (5 - 2\pi)^2 + (2\pi - 5)^2$$

$$=8\pi^2-40\pi+50$$

.....

Question5

$$\tan^{-1}\left(\frac{1+\sqrt{3}}{3+\sqrt{3}}\right) + \sec^{-1}\left(\sqrt{\frac{8+4\sqrt{3}}{6+3\sqrt{3}}}\right)$$
 is equal to

[24-Jan-2023 Shift 1]

Options:

A.
$$\frac{\Pi}{4}$$

B.
$$\frac{\pi}{2}$$

C.
$$\frac{\pi}{3}$$

D.
$$\frac{\pi}{6}$$

Answer: C

Solution:

$$\tan^{-1}\left(\frac{1+\sqrt{3}}{3+\sqrt{3}}\right) + \sec^{-1}\left(\sqrt{\frac{8+4\sqrt{3}}{6+3\sqrt{3}}}\right)$$
$$= \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) + \sec^{-1}\left(\frac{2}{\sqrt{3}}\right) = \frac{\pi}{3}$$

Question6

If the sum of all the solutions of

$$\tan^{-1}\left(\frac{2x}{1-x^2}\right) + \cot^{-1}\left(\frac{1-x^2}{2x}\right) = \frac{\pi}{3}$$
 $-1 < x < 1, x \neq 0$, is $\alpha - \frac{4}{\sqrt{3}}$, then α is equal to _____.

[25-Jan-2023 Shift 1]

Answer: 2

Solution:

Solution:

Case I:
$$x > 0$$

 $\tan^{-1} \frac{2x}{1 - x^2} + \tan^{-1} \frac{2x}{1 - x^2} = \frac{\pi}{3}$
 $x = 2 - \sqrt{3}$
Case II: $x < 0$
 $\tan^{-1} \frac{2x}{1 - x^2} + \tan^{-1} \frac{2x}{1 - x^2} + \pi = \frac{\pi}{3}$
 $x = \frac{-1}{\sqrt{3}} \Rightarrow \alpha = 2$

Question7

Let $a_1 = 1$, a_2 , a_3 , a_4 , be consecutive natural numbers. Then

$$\tan^{-1}\left(\frac{1}{1+a_1a_2}\right) + \tan^{-1}\left(\frac{1}{1+a_2a_3}\right) + \dots + \tan^{-1}\left(\frac{1}{1+a_{2021}a_{2022}}\right)$$
 is equal to [30-Jan-2023 Shift 2]

Options:

A.
$$\frac{\pi}{4} - \cot^{-1}(2022)$$

B.
$$\cot^{-1}(2022) - \frac{\pi}{4}$$

C.
$$\tan^{-1}(2022) - \frac{\pi}{4}$$

D.
$$\frac{\pi}{4} - \tan^{-1}(2022)$$

Answer: 0

Sol.
$$a_2 - a_1 = a_3 - a_2 = \dots = a_{2022} - a_{2021} = 1$$
.

$$\therefore \tan^{-1} \left(\frac{a_2 - a_1}{1 + a_1 a_2} \right) + \tan^{-1} \left(\frac{a_3 - a_2}{1 + a_2 a_3} \right) + \dots + \tan^{-1} \left(\frac{a_{2022} - a_{2021}}{1 + a_{2021} a_{2022}} \right)$$

$$= [(\tan^{-1} a_2) - \tan^{-1} a_1] + [\tan^{-1} a_3 - \tan^{-1} a_2] + \dots + [\tan^{-1} a_{2022} - \tan^{-1} a_{2021}]$$

$$= \tan^{-1} a_{2022} - \tan^{-1} a_1$$

$$= \tan^{-1} (2022) - \tan^{-1} 1 = \tan^{-1} 2022 - \frac{\pi}{4} \text{ (option 3)}$$

$$= \left(\frac{\pi}{2} - \cot^{-1} (2022) \right) - \frac{\pi}{4}$$

$$= \frac{\pi}{4} - \cot^{-1} (2022) \text{ (option 1)}$$

Question8

If $\sin^{-1}\frac{\alpha}{17} + \cos^{-1}\frac{4}{5} - \tan^{-1}\frac{77}{36} = 0$, $0 < \alpha < 13$, then $\sin^{-1}(\sin\alpha) + \cos^{-1}(\cos\alpha)$ is equal to [31-Jan-2023 Shift 1]

Options:

А. п

B. 16

C. 0

D. $16 - 5\pi$

Answer: A

Solution:

Solution:

$$\begin{aligned} \cos^{-1}\frac{4}{5} &= \tan^{-1}\frac{3}{4} \\ &\therefore \sin^{-1}\frac{\alpha}{17} = \tan^{-1}\frac{77}{36} - \tan^{-1}\frac{3}{4} = \tan^{-1}\left(\begin{array}{c} \frac{77}{36} - \frac{3}{4} \\ 1 + \frac{77}{36} \cdot \frac{3}{4} \end{array}\right) \\ &\sin -1\frac{\alpha}{17} = \tan^{-1}\frac{8}{15} = \sin^{-1}\frac{8}{17} \\ &\Rightarrow \frac{\alpha}{17} = \frac{8}{17} \Rightarrow \alpha = 8 \\ &\therefore \sin^{-1}(\sin 8) + \cos^{-1}(\cos 8) \\ &= 3\pi - 8 + 8 - 2\pi \\ &= \pi \end{aligned}$$

Question9

If the sum and product of four positive consecutive terms of a G.P., are 126 and 1296, respectively, then the sum of common ratios of all such GPs is

[31-Jan-2023 Shift 1]

Options:

A. 7

B. $\frac{9}{2}$

C. 3

D. 14

Answer: A

Solution:

a, ar, ar², ar³(a, r > 0)
$$a^{4}r^{6} = 1296$$

$$a^{2}r^{3} = 36$$

$$a = \frac{6}{r^{3/2}}$$

$$a + ar + ar^{2} + ar^{3} = 126$$

$$\frac{1}{r^{3/2}} + \frac{r}{r^{3/2}} + \frac{r^{2}}{r^{3/2}} + \frac{r^{3}}{r^{3/2}} = \frac{126}{6} = 21$$

$$(r^{-3/2} + r^{3/2}) + (r^{1/2} + r^{-1/2}) = 21$$

$$r^{1/2} + r^{-1/2} = A$$

$$r^{-3/2} + r^{3/2} + 3A = A^{3}$$

$$A^{3} - 3A + A = 21$$

$$A^{3} - 2A = 21$$

$$A = 3$$

$$\sqrt{r} + \frac{1}{\sqrt{r}} = 3$$

$$r_{r} + 1 = 3\sqrt{r}$$

$$r^{2} + 2r + 1 = 9r$$

$$r^{2} - 7r + 1 = 0$$

Question10

Let $(a, b) \subset (0, 2\pi)$ be the largest interval for which $\sin^{-1}(\sin\theta) - \cos^{-1}(\sin\theta) > 0$, $\theta \in (0, 2\pi)$ holds. If $\alpha x^2 + \beta x + \sin^{-1}(x^2 - 6x + 10) + \cos^{-1}(x^2 - 6x + 10) = 0$ and $\alpha - \beta = b - a$, then α is equal to : [31-Jan-2023 Shift 2]

Options:

A.
$$\frac{\pi}{48}$$

B.
$$\frac{\pi}{16}$$

C.
$$\frac{\pi}{8}$$

D.
$$\frac{\pi}{12}$$

Answer: D

Solution:

Solution:

$$\sin^{-1}\sin\theta - \left(\frac{\pi}{2} - \sin^{-1}\sin\theta\right) > 0$$

$$\Rightarrow \sin^{-1}\sin\theta > \frac{\pi}{4}$$

$$\Rightarrow \sin\theta > \frac{1}{\sqrt{2}}$$
So, $\theta \in \left(\frac{\pi}{4}, \frac{3\pi}{4}\right)$

$$\theta \in \left(\frac{\pi}{4}, \frac{3\pi}{4}\right) = (a, b)$$

$$\Rightarrow \alpha - a = \frac{\pi}{2} = \alpha - \beta$$

$$\Rightarrow \beta = \alpha - \frac{\pi}{2}$$

$$x + \beta x + \sin^{2}[(x - 3)^{2} + 1] + \cos^{-1}[(x - 3)^{2} + 1] = 0$$

$$x = 3, 9\alpha + 3\beta + \frac{\pi}{2} + 0 = 0$$

$$\Rightarrow 9\alpha + 3\left(\alpha - \frac{\pi}{2}\right) + \frac{\pi}{2} = 0$$

$$\Rightarrow 12\alpha - \pi = 0$$

$$\alpha = \frac{\pi}{12}$$

Question11

Let S be the set of all solutions of the equation

$$\cos^{-1}(2x) - 2\cos^{-1}(\sqrt{1-x^2}) = \pi, \quad x \in \left[-\frac{1}{2}, \frac{1}{2}\right].$$
Then $-2\sin^{-1}(x^2-1)$ is equal to

Then $\sum_{x \in S} 2\sin^{-1}(x^2 - 1)$ is equal to [1-Feb-2023 Shift 1]

Options:

A. 0

B.
$$\frac{-2\pi}{3}$$

C.
$$\pi - \sin^{-1}\left(\frac{\sqrt{3}}{4}\right)$$

D.
$$\pi - 2\sin^{-1}\left(\frac{\sqrt{3}}{4}\right)$$

Answer: B

Solution:

$$\cos^{-1}(2x) = \pi + 2\cos^{-1}\left(\sqrt{1-x^2}\right)$$

LHS = $[0, \pi]$

For equation to be meaningful $\cos^{-1}2x = \pi$ and $\cos^{-1}(\sqrt{1-x^2}) = 0$ $x = \frac{-1}{2}$ and x = 0

which is not possible

∴x ∈ φ

Now $\Sigma(x) = 0$

∴ Sum over empty set is always 0

Question12

Let S = { $x \in R : 0 < x < 1$. and $2\tan^{-1}\left(\frac{1-x}{1+x}\right) = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$ }. If n(S)

denotes the number of elements in S then: [1-Feb-2023 Shift 2]

Options:

A. n(S) = 2 and only one element in S is less then $\frac{1}{2}$.

B. n(S) = 1 and the element in S is more than $\frac{1}{2}$.

C. n(S) = 1 and the element in S is less than $\frac{1}{2}$.

D. n(S) = 0

Answer: C

Solution:

Solution:

$$2\tan^{-1}\left(\frac{1-x}{1+x}\right) = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$$

$$\tan^{-1} x = \theta \in \left(0, \frac{\pi}{4}\right) : x = \tan \theta$$

$$2\tan^{-1}\left(\tan\left(\frac{\pi}{4}-\theta\right)\right) = \cos^{-1}(\cos 2\theta)$$

$$2\left(\frac{\pi}{4} - \theta\right) = 2\theta : 4\theta = \frac{\pi}{2} : \theta = \frac{\pi}{8}$$

$$x = \tan \frac{\pi}{8} : x = \sqrt{2} - 1 \approx 0.414$$

Question13

If
$$S = \left\{ x \in \mathbb{R} : \sin^{-1} \left(\frac{x+1}{\sqrt{x^2+2x+2}} \right) - \sin^{-1} \left(\frac{x}{\sqrt{x^2+1}} \right) = \frac{\pi}{4} \right\}$$
, then is equal

to ____. [13-Apr-2023 shift 1] **Answer: 4**

Solution:

$$\sin^{-1}\left(\frac{(x+1)}{\sqrt{(x+1)^2+1}}\right) - \sin^{-1}\left(\frac{x}{\sqrt{x^2+1}}\right) = \frac{\pi}{4}$$

$$\because \frac{t}{\sqrt{t^2+1}} \in (-1,1)$$

$$\sin^{-1}\left(\frac{(x+1)}{\sqrt{(x+1)^2+1}}\right) = \sin^{-1}\left(\frac{x}{\sqrt{x^2+1}}\right) + \frac{\pi}{4}$$

$$\frac{(x+1)}{\sqrt{(x+1)^2+1}} = \left(\frac{1}{\sqrt{2}}\right)\cos\left(\sin^{-1}\left(\frac{x}{\sqrt{x^2+1}}\right)\right) + \frac{1}{\sqrt{2}}\left(\frac{x}{\sqrt{x^2+1}}\right)$$

$$= \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{x^2+1}} + \frac{x}{\sqrt{x^2+1}}\right)$$

$$\frac{(x+1)}{\sqrt{(x+1)^2+1}} = \frac{1}{\sqrt{2}}\left(\frac{1+x}{\sqrt{x^2+1}}\right)$$
After solving this equation, we get $x = -1$ or $x = 0$ $S = \{-1, 0\}$

$$\sum_{x \in \mathbb{R}}\left(\sin\left((x^2+x+5)\frac{\pi}{2}\right) - \cos((x^2+x+5)\pi)\right)$$

$$= \left[\sin\left(\frac{5\pi}{2}\right) - \cos(5\pi)\right] + \left[\sin\left(\frac{5\pi}{2}\right) - \cos(5\pi)\right] = 4$$

Question14

For $x \in (-1, 1]$, the number of solutions of the equation $\sin^{-1}x = 2\tan^{-1}x$ is equal to _____.

[13-Apr-2023 shift 2]

Answer: 2

Solution:

$$\sin^{-1}x = 2\tan^{-1}x$$

$$\sin^{-1}x = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$$

$$\Rightarrow x = \frac{2x}{1+x^2}$$

$$\Rightarrow x\left(\frac{2}{1+x^2}-1\right) = 0$$

$$\Rightarrow x = 0, 1, -1 \text{ but } -1 \text{ is not included.}$$
Answer 2 solutions

Question15

Let $x * y = x^2 + y^3$ and (x * 1) * 1 = x * (1 * 1). Then a value of

$2\sin^{-1}\left(\frac{x^4 + x^2 - 2}{x^4 + x^2 + 2}\right) \text{ is}$

[24-Jun-2022-Shift-2]

Options:

A.
$$\frac{\pi}{4}$$

B.
$$\frac{\pi}{3}$$

C.
$$\frac{\pi}{2}$$

D.
$$\frac{\pi}{6}$$

Answer: B

Solution:

Given,

$$x * v = x^2 + v^3$$

$$\therefore x * 1 = x^2 + 1^3 = x^2 + 1$$

Now,
$$(x * 1) * 1 = (x^2 + 1) * 1$$

$$\Rightarrow (x * 1) * 1 = (x^2 + 1)^2 + 1^3$$

$$\Rightarrow$$
(x * 1) * 1 = x^4 + 1 + 2 x^2 + 1

Also,
$$x * (1 * 1)$$

$$=x*(1^2+1^3)$$

$$=x*2$$

$$= x^2 + 2^3$$

$$=x+2$$

$$=x^2 + 8$$

Given that,

$$(x * 1) * 1 = x * (1 * 1)$$

$$x^4 + 1 + 2x^2 + 1 = x^2 + 8$$

$$\Rightarrow x^4 + x^2 - 6 = 0$$

$$\Rightarrow x^4 + 3x^2 - 2x^2 - 6 = 0$$

$$\Rightarrow x^2(x^2+3) - 2(x^3+3) = 0$$

$$\Rightarrow (x^2 + 3)(x^2 - 2) = 0$$

$$\Rightarrow x^2 = 2, -3$$

 $[x^2 = -3]$ not possible as square of anything should be always possible]

$$\therefore x^2 = 2$$

$$2\sin^{-1}\left(\frac{x^4 + x^2 - 2}{x^4 + x^2 + 2}\right)$$

$$= 2\sin^{-1}\left(\frac{2^2 + 2 - 2}{2^2 + 2 + 2}\right)$$

$$= 2\sin^{-1}\left(\frac{4}{8}\right)$$

$$= 2\sin^{-1}\left(\frac{1}{2}\right)$$

$$= 2 \times \frac{\pi}{6}$$

$$= \frac{\pi}{3}$$

Question16

The value of $\tan^{-1}\left(\begin{array}{c} \frac{\cos\left(\frac{15\pi}{4}\right)-1}{\sin\left(\frac{\pi}{4}\right)} \end{array}\right)$ is equal to :

[25-Jun-2022-Shift-2]

Options:

A.
$$-\frac{\pi}{4}$$

B.
$$-\frac{\pi}{8}$$

C.
$$-\frac{5\pi}{12}$$

D.
$$-\frac{4\pi}{9}$$

Answer: B

Solution:

Solution:

$$\tan^{-1}\left(\frac{\cos\left(\frac{15\pi}{4}\right) - 1}{\sin\frac{\pi}{4}}\right)$$

$$= \tan^{-1}\left(\frac{\frac{1}{\sqrt{2}} - 1}{\frac{1}{\sqrt{2}}}\right)$$

$$= \tan^{-1}(1 - \sqrt{2}) = -\tan^{-1}(\sqrt{2} - 1)$$

$$= -\frac{\pi}{8}$$

.....

Question17

If the inverse trigonometric functions take principal values then $\cos^{-1}\left(\frac{3}{10}\cos\left(\tan^{-1}\left(\frac{4}{3}\right)\right) + \frac{2}{5}\sin\left(\tan^{-1}\left(\frac{4}{3}\right)\right)\right)$ is equal to: [26-Jun-2022-Shift-2]

Options:

A. 0

B. $\frac{\pi}{4}$

C. $\frac{\pi}{3}$

D. $\frac{\pi}{6}$

Answer: C

Solution:

Solution:

$$\begin{split} &\cos^{-1}\left(\frac{3}{10}\cos\left(\tan^{-1}\left(\frac{4}{3}\right)\right) + \frac{2}{5}\sin\left(\tan^{-1}\left(\frac{4}{3}\right)\right)\right) \\ &= \cos^{-1}\left(\frac{3}{10} \cdot \frac{3}{5} + \frac{2}{5} \cdot \frac{4}{5}\right) \\ &= \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3} \end{split}$$

Question18

 $\sin^{-1}\left(\sin\frac{2\pi}{3}\right) + \cos^{-1}\left(\cos\frac{7\pi}{6}\right) + \tan^{-1}\left(\tan\frac{3\pi}{4}\right)$ is equal to: [27-Jun-2022-Shift-1]

Options:

A. $\frac{11\pi}{12}$

B. $\frac{17\pi}{12}$

C. $\frac{31\pi}{12}$

D. $-\frac{3\pi}{4}$

Answer: A

Solution:

$$\sin^{-1}\left(\sin\frac{2\pi}{3}\right) + \cos^{-1}\left(\cos\frac{7\pi}{6}\right) + \tan^{-1}\tan\left(\frac{3\pi}{4}\right)$$

$$\begin{split} \sin^{-1}\sin\left(\frac{2\pi}{3}\right) &= \pi - \frac{2\pi}{3} = \frac{\pi}{3} \\ \cos^{-1}\left(\cos\frac{2\pi}{6}\right) &= 2\pi - \frac{7\pi}{6} = \frac{5\pi}{6} \\ \tan^{-1}\tan\left(\frac{3\pi}{4}\right) &= \frac{3\pi}{4} - \pi = \frac{-\pi}{4} \\ \sin^{-1}\left(\sin\frac{2\pi}{3}\right) &+ \cos^{-1}\cos\frac{7\pi}{6} + \tan^{-1}\tan\frac{3\pi}{4} \\ &= \frac{11\pi}{12} \end{split}$$

.....

Question19

The value of $\cot \left(\sum_{n=1}^{50} \tan^{-1} \left(\frac{1}{1+n+n^2} \right) \right)$ is [27-Jun-2022-Shift-2]

Options:

- A. $\frac{26}{25}$
- B. $\frac{25}{26}$
- C. $\frac{50}{51}$
- D. $\frac{52}{51}$

Answer: A

Solution:

Solution:

$$\cot\left(\sum_{n=1}^{50} \tan^{-1}\left(\frac{1}{1+n+n^2}\right)\right)$$

$$= \cot\left(\sum_{n=1}^{50} \tan^{-1}\left(\frac{(n+1)-n}{1+(n+1)n}\right)\right)$$

$$= \cot\left(\sum_{n=1}^{50} (\tan^{-1}(n+1)-\tan^{-1}n)\right)$$

$$= \cot(\tan^{-1}51-\tan^{-1}1)$$

$$= \cot\left(\tan^{-1}\left(\frac{51-1}{1+51}\right)\right)$$

$$= \cot\left(\cot^{-1}\left(\frac{52}{50}\right)\right)$$

$$= \frac{26}{25}$$

Question20

 $50 \tan \left(3 \tan^{-1} \left(\frac{1}{2}\right) + 2 \cos^{-1} \left(\frac{1}{\sqrt{5}}\right)\right) + 4\sqrt{2} \tan \left(\frac{1}{2} \tan^{-1} (2\sqrt{2})\right)$ is equal to [29-Jun-2022-Shift-1]

Answer: 29

Solution:

$$50 \tan \left(3 \tan^{-1} \frac{1}{2} + 2 \cos^{-1} \frac{1}{\sqrt{5}}\right)$$

$$+4\sqrt{2} \tan \left(\frac{1}{2} \tan^{-1} 2\sqrt{2}\right)$$

$$= 50 \tan \left(\tan^{-1} \frac{1}{2} + 2 \left(\tan^{-1} \frac{1}{2} + \tan^{-1} 2\right)\right)$$

$$+4\sqrt{2} \tan \left(\frac{1}{2} \tan^{-1} 2\sqrt{2}\right)$$

$$= 50 \tan \left(\tan^{-1} \frac{1}{2} + 2 \cdot \frac{\pi}{2}\right) + 4\sqrt{2} \times \frac{1}{\sqrt{2}}$$

$$= 50 \left(\tan \tan^{-1} \frac{1}{2}\right) + 4$$

$$= 25 + 4 = 29$$

Question21

The set of all values of k for which $(\tan^{-1}x)^3 + (\cot^{-1}x)^3 - k\pi^3$, $x \in R_u$ is the interval : [24-Jun-2022-Shift-1]

Options:

A.
$$\left[\frac{1}{32}, \frac{7}{8} \right]$$

B.
$$\left(\frac{1}{24}, \frac{13}{16}\right)$$

C.
$$\left[\frac{1}{48}, \frac{13}{16} \right]$$

D.
$$\left[\frac{1}{32}, \frac{9}{8} \right)$$

Answer: A

Solution:

$$(\tan^{-1}x)^3 + (\cot^{-1}x)^3 = k\pi^3$$

Let
$$f(t) = t^3 + \left(\frac{\pi}{2} - t\right)^3$$

Where
$$t = \tan^{-1} x$$
; $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

$$= t^3 + \left(\frac{\pi}{2}\right)^3 - \frac{3\pi^2 t}{4} + \frac{3\pi}{2}t^2 - t^3$$

$$f(t) = \frac{3\pi}{2}t^2 - \frac{3\pi^2}{4} \cdot t + \frac{\pi^3}{8}$$

This is a quadratic equation of t.

Here, coefficient of t^2 term is $\frac{3\pi}{2}$ which is >0.

: It is a upward parabola.

Now,
$$f'(t) = 3\pi t - \frac{3\pi^2}{4}$$

$$f^{''}(t) = 3\pi > 0$$

$$\therefore 3\pi t - \frac{3\pi^2}{4} = 0$$

$$\Rightarrow t = \frac{\pi}{4}$$
 (minima)

 \therefore vertex of graph at $\frac{\pi}{4}$

.. Minimum value at $\frac{\pi}{4}$ and maximum value at $-\frac{\pi}{2}$.

:
$$f\left(\frac{\pi}{4}\right) = \frac{\pi^3}{64} + \left(\frac{\pi}{2} - \frac{\pi}{4}\right)^3 = \frac{\pi^3}{32}$$

$$f\left(-\frac{\pi}{2}\right) = -\frac{\pi^3}{8} + \pi^3$$

$$=\frac{7\pi^3}{8}$$

$$\therefore k\pi^3 \in \left[\begin{array}{c} \frac{\pi^3}{32}, & \frac{7\pi^3}{8} \end{array} \right)$$

$$\Rightarrow k \in \left[\frac{1}{32}, \frac{7}{8} \right)$$

Question22

Let $x = \sin(2\tan^{-1}\alpha)$ and $y = \sin\left(\frac{1}{2}\tan^{-1}\frac{4}{3}\right)$. If $S = \{a \in R : y^2 = 1 - x\}$, then $\sum_{\alpha \in S} 16\alpha^3$ is equal to [25-Jul-2022-Shift-2]

Answer: 130

Solution:

Solution:

Question23

 $\tan \left(2\tan^{-1}\frac{1}{5} + \sec^{-1}\frac{\sqrt{5}}{2} + 2\tan^{-1}\frac{1}{8}\right)$ is equal to : [26-Jul-2022-Shift-1]

Options:

A. 1

B. 2

C. $\frac{1}{4}$

D. $\frac{5}{4}$

Answer: B

Solution:

$$\tan\left(2\tan^{-1}\frac{1}{5} + \sec^{-1}\frac{\sqrt{5}}{2} + 2\tan^{-1}\frac{1}{8}\right)$$

$$= \tan\left(2\tan^{-1}\left(\frac{\frac{1}{5} + \frac{1}{8}}{1 - \frac{1}{5} \cdot \frac{1}{8}}\right) + \sec^{-1}\frac{\sqrt{5}}{2}\right)$$

$$= \tan\left[2\tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{2}\right]$$

$$= \tan\left[\tan^{-1}\frac{\frac{2}{3}}{1 - \frac{1}{9}} + \tan^{-1}\frac{1}{2}\right]$$

$$= \tan\left[\tan^{-1}\frac{3}{4} + \tan^{-1}\frac{1}{2}\right]$$

$$= \tan\left[\tan^{-1}\frac{\frac{3}{4} + \frac{1}{2}}{1 - \frac{3}{8}}\right] = \tan\left[\tan^{-1}\frac{\frac{5}{4}}{\frac{5}{8}}\right]$$

$$= \tan[\tan^{-1}2] = 2$$

Question24

If $0 < x < \frac{1}{\sqrt{2}}$ and $\frac{\sin^{-1}x}{\alpha} = \frac{\cos^{-1}x}{\beta}$, then the value of $\sin\left(\frac{2\pi\alpha}{\alpha+\beta}\right)$ is [26-Jul-2022-Shift-2]

Options:

A.
$$4\sqrt{(1-x^2)}(1-2x^2)$$

B.
$$4x\sqrt{(1-x^2)}(1-2x^2)$$

C.
$$2x\sqrt{(1-x^2)}(1-4x^2)$$

D.
$$4\sqrt{(1-x^2)}(1-4x^2)$$

Answer: B

Solution:

Solution:

Let
$$\frac{\sin^{-1}x}{\alpha} = \frac{\cos^{-1}x}{\beta} = k \Rightarrow \sin^{-1}x + \cos^{-1}x = k(\alpha + \beta) \Rightarrow \alpha + \beta = \frac{\pi}{2k}$$

Now, $\frac{2\pi\alpha}{\alpha + \beta} = \frac{2\pi\alpha}{\frac{\pi}{2k}} = 4k\alpha = 4\sin^{-1}x$
Here $\sin\left(\frac{2\pi\alpha}{\alpha + \beta}\right) = \sin(4\sin^{-1}x)$
Let $\sin^{-1}x = \theta$
 $\because x \in \left(0, \frac{1}{\sqrt{2}}\right) \Rightarrow \theta \in \left(0, \frac{\pi}{4}\right)$
 $\Rightarrow x = \sin\theta$
 $\Rightarrow \cos\theta = \sqrt{1 - x^2}$
 $\Rightarrow \sin 2\theta = 2x \cdot \sqrt{1 - x^2}$
 $\Rightarrow \cos 2\theta = \sqrt{1 - 4x^2(1 - x^2)} = \sqrt{(2x^2 - 1)^2} = 1 - 2x^2$
 $\because (\cos 2\theta > 0. \text{ as } .2\theta \in \left(0, \frac{\pi}{2}\right)$

Question25

 $=4x\sqrt{1-x^2}(1-2x^2)$

 $\Rightarrow \sin 4\theta = 2 \cdot 2x\sqrt{1 - x^2}(1 - 2x^2)$

For $k \in \mathbb{R}$, let the solutions of the equation

 $\cos(\sin^{-1}(x\cot(\tan^{-1}(\cos(\sin^{-1}x))))) = k$, $0 < \left| x \right| < \frac{1}{\sqrt{2}}$ be α and β , where

the inverse trigonometric functions take only principal values. If the solutions of the equation $x^2 - bx - 5 = 0$ are $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$ and $\frac{\alpha}{\beta}$, then $\frac{b}{k^2}$ is

egual to [27-Jul-2022-Shift-1]

Answer: 12

Solution:

Solution:

$\cos(\sin^{-1}(x\cot(\tan^{-1}(\cos(\sin^{-1})))) = k.$ \Rightarrow cos(sin⁻¹(xcot(tan⁻¹ $\sqrt{1-x^2}))) = k$ $\Rightarrow \cos\left(\sin^{-1}\left(\frac{x}{\sqrt{1-x^2}}\right)\right) = k$

$$\Rightarrow \frac{\sqrt{1 - 2x^2}}{\sqrt{1 - x^2}} = k$$

$$⇒ \frac{1 - 2x^2}{1 - x^2} = k^2$$

$$⇒ 1 - 2x^2 = k^2 - k^2x^2$$

$$\Rightarrow 1 - 2x^2 = k^2 - k^2 x^2$$

$$\therefore x^2 - \left(\frac{k^2 - 1}{k^2 - 2}\right) = 0 \Big|_{\beta}$$

$$\frac{1}{\alpha^2} + \frac{1}{\beta^2} = 2\left(\frac{k^2 - 2}{k^2 - 1}\right) \dots (1)$$

and
$$\frac{\alpha}{\beta} = -1.....(2)$$

$$\therefore 2\left(\frac{k^2-2}{k^2-1}\right)(-1) = -5$$

$$\Rightarrow k^2 = \frac{1}{3}$$

and
$$b=S\cdot R=2\left(\begin{array}{c} \frac{k^2-2}{k^2-1} \end{array}\right)$$
 $-1=4$

$$\therefore \frac{\mathbf{b}}{\mathbf{k}^2} = \frac{4}{\frac{1}{3}} = 12$$

Question26

Considering the principal values of the inverse trigonometric functions, the sum of all the solutions of the equation $\cos^{-1}(x) - 2\sin^{-1}(x) - \cos^{-1}(2x)$ is equal to : [28-Jul-2022-Shift-1]

Options:

- A. 0
- B. 1
- C. $\frac{1}{2}$

D.
$$-\frac{1}{2}$$

Answer: A

Solution:

Solution:

$$\cos^{-1}x - 2 \sin^{-1}x = \cos^{-1}2x$$

For Domain : $x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$
 $\cos^{-1}x - 2\left(\frac{\pi}{2} - \cos^{-1}x\right) = \cos^{-1}(2x)$
 $\Rightarrow \cos^{-1}x + 2\cos^{-1}x = \pi + \cos^{-1}2x$
 $\Rightarrow \cos(3\cos^{-1}x) = -\cos(\cos^{-1}2x)$
 $\Rightarrow 4x^3 = x$
 $\Rightarrow x = 3, \pm \frac{1}{2}$

Question27

f $\frac{\sin^{-1}(x)}{a} = \frac{\cos^{-1}x}{b} = \frac{\tan^{-1}y}{c}$ 0 < x < 1, then the value of $\cos\left(\frac{\pi c}{a+b}\right)$ is [2021, 26 Feb. Shift-1]

Options:

A.
$$\frac{1-y^2}{y\sqrt{y}}$$

B.
$$1 - y^2$$

C.
$$\frac{1-y^2}{1+y^2}$$

D.
$$\frac{1 - y^2}{2y}$$

Answer: C

Solution:

$$\frac{\sin^{-1}x}{a} = \frac{\cos^{-1}x}{b} = \frac{\tan^{-1}y}{c}...(i)$$
Take first two terms of Eq. (i)
$$\frac{\sin^{-1}x}{a} = \frac{\cos^{-1}x}{b}$$

$$\Rightarrow \frac{\sin^{-1}x}{a} = \frac{\cos^{-1}x}{b} = \frac{\sin^{-1}x + \cos^{-1}x}{a+b}$$

$$\Rightarrow \frac{\sin^{-1}x}{a} = \frac{\cos^{-1}x}{b} = \frac{\pi/2}{a+b}$$

$$\left[\because \sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}\right]$$

$$\Rightarrow \frac{\sin^{-x}x}{a} = \frac{\cos^{-1}x}{b} = \frac{\pi/2}{a+b} = \frac{\tan^{-1}y}{c}$$
Using last two terms,
$$\tan^{-1}y = \pi/2$$

$$\Rightarrow \tan^{-1}y = \frac{\pi c}{2(a+b)}$$

$$\Rightarrow 2\tan^{-1}y = \frac{\pi c}{(a+b)}$$

$$\Rightarrow \cos^{-1}\left(\frac{1-y^2}{1+y^2}\right) = \frac{\pi c}{a+b}$$

$$\left[\because 2\tan^{-1}y = \cos^{-1}\left(\frac{1-y^2}{1+y^2}\right)\right]$$

$$\Rightarrow \frac{1-y^2}{1+y^2} = \cos\left(\frac{\pi c}{a+b}\right)$$

$$\therefore \cos\left(\frac{\pi c}{a+b}\right) = \frac{1-y^2}{1+y^2}$$

Question28

 $\operatorname{cosec}\left[2\operatorname{cot}^{-1}(5) + \operatorname{cos}^{-1}\left(\frac{4}{5}\right)\right]$ is equal to [2021, 25 Feb. Shift-II]

Options:

- A. $\frac{56}{33}$
- B. $\frac{65}{33}$
- C. $\frac{65}{56}$
- D. $\frac{75}{56}$

Answer: C

Solution:

Solution: $\csc[2\cot^{-1}(5) + \cos^{-1}(4 / 5)]$

$$= \csc \left[2\tan^{-1} \left(\frac{1}{5} \right) + \cos^{-1} \left(\frac{4}{5} \right) \right]$$

$$= \csc \left[\tan^{-1} \left(\frac{1}{x} \right) \right]$$

$$= \csc \left[\tan^{-1} \left(\frac{2\left(\frac{1}{5}\right)}{1 - \left(\frac{1}{5}\right)^2} \right) + \cos^{-1} \left(\frac{4}{5}\right) \right]$$

$$\left[\therefore 2\tan^{-1}\theta = \tan^{-1} \left(\frac{2\theta}{1 - \theta^2} \right) \right]$$

$$= \csc \left(\tan^{-1} \left(\frac{5}{12} + \cos^{-1} \frac{4}{5} \right) \right]$$
Let $\tan^{-1} \left(\frac{5}{12} \right) = x$, then $\tan x = \frac{5}{12}$ gives $\sin x = \frac{5}{13}$, $\cos x = \frac{12}{13}$
Let $\cos^{-1} \left(\frac{4}{5} \right) = y$, then $\cos y = \frac{4}{5}$ gives, $\sin y = \frac{3}{5}$

Now, $cosec(x + y) = \frac{1}{sin(x + y)}$

$$= \frac{1}{\sin x \cos y + \cos x \sin y}$$

$$= \frac{1}{\left(\frac{5}{13}\right)\left(\frac{4}{5}\right) + \left(\frac{12}{13}\right)\left(\frac{3}{5}\right)} = \frac{65}{56}$$

Question29

A possible value of tan $\left(\frac{1}{4}\sin^{-1}\frac{\sqrt{63}}{8}\right)$ is [2021, 24 Feb. Shift-11]

Options:

A.
$$\frac{1}{\sqrt{7}}$$

B.
$$2\sqrt{2} - 1$$

C.
$$\sqrt{7} - 1$$

D.
$$\frac{1}{2\sqrt{2}}$$

Answer: A

Solution:

Given,
$$\tan\left(\frac{1}{4}\sin^{-1}\frac{\sqrt{63}}{8}\right)$$

Let $\sin^{-1}\frac{\sqrt{63}}{8}=\theta$

Also,
$$\cos \frac{\theta}{2} = \sqrt{\frac{1 + \cos \theta}{2}}$$

$$\frac{1+\frac{1}{8}}{2} = \sqrt{\frac{9}{16}} = \frac{3}{4}$$

$$\therefore \tan\left(\frac{1}{7}\sin^{-1}\frac{\sqrt{63}}{2}\right) = \tan\left(\frac{1}{3}\sin^{-1}\frac{\sqrt{63}}{2}\right)$$

$$= \sqrt{\frac{1 - \frac{3}{4}}{1 + \frac{3}{4}}} = \frac{1}{\sqrt{7}}$$

Question30

If $\cot^{-1}(\alpha) = \cot^{-1}2 + \cot^{-1}8 + \cot^{-1}18 + \cot^{-1}32 + \dots$ upto 100 terms, then α is [2021, 17 March Shift-I]

Options:

A. 1.01

B. 1.00

C. 1.02

D. 1.03

Answer: A

Solution:

```
Solution:
\cot^{-1}\alpha = \cot^{-1}2 + \cot^{-1}8 + \cot^{-1}18
+\cot^{-1}32... upto 100 terms Let T<sub>n</sub> be the nth term of \cot^{-1}\alpha.
T_n = \cot^{-1}(2n^2) = \tan^{-1}(\frac{1}{2n^2})
   = \tan^{-1} \left[ \begin{array}{c} (2n+1) - (2n-1) \\ \overline{1 + (2n+1)(2n-1)} \end{array} \right]
\because \tan^{-1} x - \tan^{-1} y = \tan^{-1} \left( \frac{x - y}{1 + xy} \right)
\therefore \tan^{-1} \left\{ \frac{(2n+1) - (2n-1)}{1 + (2n+1)(2n-1)} \right\}
   = \tan^{-1}(2n+1) - \tan^{-1}(2n-1)
T_1 = \tan^{-1} 3 - \tan^{-1} 1
T_2 = \tan^{-1} 5 - \tan^{-1} 3
T_3 = \tan^{-1}7 - \tan^{-1}5
T_{99} = \tan^{-1} 199 - \tan^{-1} 197
T_{100} = \tan^{-1}201 - \tan^{-1}199
\sum T_r = \tan^{-1} 201 - \tan^{-1} 1
   = \tan^{-1} \left( \frac{201 - 1}{1 + 201 \cdot 1} \right) = \tan^{-1} \left( \frac{200}{202} \right)
\Rightarrow \cot^{-1}(\alpha) = \tan^{-1}\left(\frac{200}{202}\right)
\Rightarrow \cot^{-1}(\alpha) = \cot^{-1}\left(\frac{202}{200}\right)
\alpha = \frac{202}{200} = \frac{101}{100} = 1.01
```

Question31

The sum of possible values of x for $\tan^{-1}(x+1) + \cot^{-1}\left(\frac{1}{x-1}\right) = \tan^{-1}\left(\frac{8}{31}\right)$ is [2021, 17 March Shift-1]

Options:

A.
$$\frac{-32}{4}$$

B.
$$-\frac{31}{4}$$

C.
$$-\frac{30}{4}$$

D.
$$-\frac{33}{4}$$

Answer: A

Solution:

Solution:

Solution:

$$\tan^{-1}(x+1) + \cot^{-1}\left(\frac{1}{x-1}\right) = \tan^{-1}\left(\frac{8}{31}\right)$$

$$\Rightarrow \tan^{-1}(x+1) + \tan^{-1}(x-1) = \tan^{-1}(8/31)$$

$$\Rightarrow \tan^{-1}\left[\frac{(x+1) + (x-1)}{1 - (x+1)(x-1)}\right] = \tan^{-1}\left(\frac{8}{31}\right)$$

$$\Rightarrow \tan^{-1}\left[\frac{2x}{1 - (x^2 - 1)}\right] = \tan^{-1}\left(\frac{8}{31}\right)$$

$$\Rightarrow \frac{2x}{2 - x^2} = \frac{8}{31}$$

$$\Rightarrow 62x = 16 - 8x^2$$

$$\Rightarrow 8x^2 + 62x - 16 = 0$$

⇒
$$2(x + 8)(4x - 1) = 0$$

⇒ $x = -8, 1 / 4$

But at
$$x = 1/4$$

H SS
$$\Rightarrow \tan^{-1}\left(1 + \frac{1}{4}\right) + \cot^{-1}\left(\frac{1}{\frac{1}{4} - 1}\right)$$

$$= \tan^{-1} \frac{5}{4} + \cot^{-1} \left(\frac{-4}{3} \right)$$

$$= \tan^{-1} \frac{5}{4} + \cot^{-1} \left(\frac{-4}{3} \right)_{>\pi/2 > \pi/2}$$

$$\therefore$$
LH S > π / 2

RH S =
$$\tan^{-1} \left(\frac{8}{31} \right)_{<\pi/2}$$

As, LH S > π / 2 and RH S < π / 2.

So, x = -8 is the only solution.

Question32

The number of solutions of the equation

 $\sin^{-1}\left[x^2 + \frac{1}{3}\right] + \cos^{-1}\left[x^2 - \frac{2}{3}\right] = x^2$, for $x \in [-1, 1]$, and [x] denotes the greatest integer less than or equal to x, is

[2021,17 March Shift-II]

Options:

A. 2

B. 0

C. 4

D. infinite

Answer: B

Solution:

Solution: Given,
$$\sin^{-1}\left[x^2 + \frac{1}{3}\right] + \cos^{-1}\left[x^2 - \frac{2}{3}\right] = x^2$$
 $\sin^{-1}\left[\left(x^2 - \frac{2}{3} + 1\right)\right] + \cos^{-1}\left[x^2 - \frac{2}{3}\right] = x^2$ $\Rightarrow \sin^{-1}\left[\left(x^2 - \frac{2}{3}\right) + 1\right] + \cos^{-1}\left[x^2 - \frac{2}{3}\right] \dots$ (i) $(\because [x + n] = [x] + n, n \in I)$ $\because \left[x^2 - \frac{2}{3}\right]$ gives always integral values. $\therefore \left[x^2 - \frac{2}{3}\right] = 0, -1$ are possible values for $x \in [-1, 1]$ $[\because -1 \le x \le 1]$ $\therefore 0 \le x^2 \le 1$ $\Rightarrow -\frac{2}{3} \le x^2 - \frac{2}{3} \le 1 - \frac{2}{3}$ $\Rightarrow -0.66 \le x^2 - \frac{2}{3} \le 0.33$ $\therefore \left[x^2 - \frac{2}{3}\right] = -1, 0$ are possibilities. $]$ Case I If $\left[x^2 - \frac{2}{3}\right] = 0$ Then, Eq. (i) becomes, $\sin^{-1}(1) + \cos^{-1}(0) = x^2$ $\Rightarrow x^2 = \pi$ $\Rightarrow x = \pm \sqrt{\pi}$

 $\therefore \mathbf{x}^2 = \mathbf{\pi}$ (Rejected also)

But at this value of x^{2} , $\left[x^{2} - \frac{2}{3}\right] \neq 0$

Case II If $\left[x^2 - \frac{2}{3}\right] = -1$

Then, Eq. (i) becomes, $\sin^{-1}(0) + \cos^{-1}(-1) = x^2$ $\Rightarrow x^2 = \pi$ $\Rightarrow x = \pm \sqrt{\pi}$

But at this value of x^2 , $\left[x^2 - \frac{2}{3}\right] \neq -1$

Hence, there is no solution for Eq. (i). \therefore Total number of solution (s) = 0

Let
$$S_k = \sum_{r=1}^k tan^{-1} \left(\frac{6^r}{2^{2r+1} + 3^{2r+1}} \right)$$
.

Then, $\lim_{k \to \infty} S_k$ is equal to

[2021, 16 March Shift-1]

Options:

A.
$$\tan^{-1}\left(\frac{3}{2}\right)$$

B.
$$\frac{\pi}{2}$$

C.
$$\cot^{-1}\left(\frac{3}{2}\right)$$

D.
$$tan^{-1}(3)$$

Answer: C

Solution:

Solution:

$$\begin{split} &S_K &= \sum_{r=1}^k \tan^{-1} \left(\frac{6^r}{2^{2r+1} + 3^{2r+1}} \right) \\ &= \sum \tan^{-1} \frac{2^r 3^{r+1} - 3^r 2^{r+1}}{2^{2r+1} \left[1 + \left(\frac{3}{2} \right)^{2r+1} \right]} \\ &= \sum \tan^{-1} \frac{2^{2r+1} \left[\left(\frac{3}{2} \right)^{r+1} - \left(\frac{3}{2} \right)^r \right]}{2^{2r+1} \left[1 + \left(\frac{3}{2} \right)^{2r+1} \right]} \\ &= \sum_{r=1}^k \tan^{-1} \frac{\left(\frac{3}{2} \right)^{r+1} - \left(\frac{3}{2} \right)^r}{1 + \left(\frac{3}{2} \right)^{2r+1}} \\ &= \sum_{r=1}^k \tan^{-1} \left(\frac{3}{2} \right)^{r+1} - \tan^{-1} \left(\frac{3}{2} \right)^r \\ &= \tan^{-1} \left(\frac{3}{2} \right)^2 - \tan^{-1} \left(\frac{3}{2} \right)^r \\ &= \tan^{-1} \left(\frac{3}{2} \right)^3 - \tan^{-1} \left(\frac{3}{2} \right)^2 \\ &\vdots \\ \tan^{-1} \left(\frac{3}{2} \right)^{k+1} - \tan^{-1} \left(\frac{3}{2} \right)^k \\ S_k &= \tan^{-1} \left(\frac{3}{2} \right)^{k+1} - \tan^{-1} \left(\frac{3}{2} \right) \end{split}$$
 When $k \to \infty$, $\tan^{-1} \left(\frac{3}{2} \right)^{k+1} \to \pi/2$ $\lim_{k \to \infty} s_k = \frac{\pi}{2} - \tan^{-1} \left(\frac{3}{2} \right) = \cot^{-1} \left(\frac{3}{2} \right)$

Question34

Given that the inverse trigonometric functions take principal values only. Then, the number of real values of x which satisfy

 $\sin^{-1}\left(\frac{3x}{2}\right) + \sin^{-1}\left(\frac{4x}{5}\right) = \sin^{-1}x$ is equal to [2021, 16 March Shift-II]

Options:

A. 2

B. 1

C. 3

D. 0

Answer: C

Solution:

Solution:

Given,
$$\sin^{-1}\left(\frac{3x}{5}\right) + \sin^{-1}\left(\frac{4x}{5}\right) = \sin^{-1}x$$

$$\Rightarrow \sin^{-1}\left(\frac{3x}{5}\sqrt{1 - \frac{16x^2}{25}} + \frac{4x}{5}\sqrt{1 - \frac{9x^2}{25}}\right)$$

$$= \sin^{-1}x$$

$$\Rightarrow 3x\sqrt{25 - 16x^2} + 4x\sqrt{25 - 9x^2} = 25x$$

$$\Rightarrow \sqrt{225x^2 - 114x^4} + \sqrt{400x^2 - 144x^4}$$

$$= 25x$$

$$= 25x$$

$$= 25x \text{ (i)}$$

$$(400x^2 - 144x^4) - (225x^2 - 144x^4) = 175x^2... \text{ (ii)}$$
On dividing Eq. (ii) by Eq. (i),
$$\sqrt{400x^2 - 144x^4} - \sqrt{225x^2 - 144x^2}$$

$$= 7x... \text{ (iii)}$$
Now, adding Eqs. (i) and (iii),
$$2\sqrt{400x^2 - 144x^4} = 32x$$

$$\Rightarrow 400x^2 - 144x^4 = 32x$$

$$\Rightarrow 400x^2 - 144x^4 = 256x^2$$

$$\Rightarrow 144x^2 - 144x^4 = 0$$

$$\Rightarrow 144x^2(1 - x^2) = 0$$

$$x = 0, -1, 1$$
Hence, 3 real values for x satisfies the equation.

Question35

The number of real roots of the equation $\tan^{-1}\sqrt{x(x+1)} + \sin^{-1}\sqrt{x^2+x+1} = \frac{\pi}{4}$ is [2021, 20 July Shift-1]

Options:

A. 1

B. 4

C. 3

D. 0

Answer: D

Solution:

$$\begin{array}{l} \tan^{-1}\sqrt{x(x+1)} + \sin^{-1}\sqrt{x^2+x+1} = \frac{\pi}{4} \\ \text{Domain, } x(x+1) \geq 0 \\ 0 \leq x^2+x+1 \leq 1 \\ \text{So, only when } x^2+x=0, \text{ equation will be define(d)} \\ x=0,-1 \\ \text{At } x=0, \tan^{-1}0+\sin^{-1}1=\frac{\pi}{2} \\ x=-1, \tan^{-1}0+\sin^{-1}1=\frac{\pi}{2} \end{array}$$

∴ No solution.

Question36

The value of $\tan\left(2\tan^{-1}\left(\frac{3}{5}\right) + \sin^{-1}\left(\frac{5}{13}\right)\right)$ is equal to [2021, 20 July Shift-II]

Options:

- A. $\frac{-181}{69}$
- B. $\frac{220}{21}$
- C. $\frac{-291}{76}$
- D. $\frac{151}{63}$

Answer: B

Solution:

Solution:

l ot

$$A = \tan\left(2\tan^{-1}\left(\frac{3}{5}\right) + \sin^{-1}\left(\frac{5}{13}\right)\right) \dots (i)$$

Now, using
$$2\tan^{-1}x = \tan^{-1}\frac{2x}{1-x^2}$$

$$2\tan^{-1}\left(\frac{3}{5}\right) = \tan^{-1}\left(\frac{2\left(\frac{3}{5}\right)}{1 - \left(\frac{3}{5}\right)^2}\right)$$

$$= \tan^{-1} \left(\frac{\frac{6}{5}}{1 - \frac{9}{25}} \right)$$

$$= \tan^{-1} \left(\frac{30}{16} \right) = \tan^{-1} \left(\frac{15}{8} \right)$$

Let
$$\sin^{-1}\left(\frac{5}{13}\right) = \theta$$
, then $\sin \theta = \frac{5}{13}$

⇒
$$\theta = \tan^{-1}\left(\frac{5}{12}\right) = \sin^{-1}\left(\frac{5}{13}\right)$$
From Eq. (i),
$$A = \tan\left(\tan^{-1}\left(\frac{15}{8}\right) + \tan^{-1}\left(\frac{5}{12}\right)\right)$$

$$= \tan\left[\tan^{-1}\left(\frac{\frac{15}{8} + \frac{5}{12}}{1 - \left(\frac{15}{8}\right)\left(\frac{5}{12}\right)}\right]\right]$$

$$= \tan\left[\tan^{-1}\left(\frac{\frac{55}{24}}{\frac{21}{96}}\right)\right]$$

$$= \tan\left[\tan^{-1}\frac{55 \times 4}{21}\right]$$

$$= \tan\left(\tan^{-1}\frac{220}{21}\right) = \frac{220}{21}$$

Question37

If $(\sin^{-1}x)^2 - (\cos^{-1}x)^2 = a$, 0 < x < 1, $a \ne 0$, then the value of $2x^2 - 1$ is [2021, 27 Aug. Shift-1]

Options:

A.
$$\cos\left(\frac{4a}{\pi}\right)$$

B.
$$\sin\left(\frac{2a}{\pi}\right)$$

C.
$$\cos\left(\frac{2a}{\pi}\right)$$

D.
$$\sin\left(\frac{4a}{\pi}\right)$$

Answer: B

Solution:

Solution:

Given,
$$(\sin^{-1}x)^2 - (\cos^{-1}x)^2 = a$$

 $\Rightarrow (\sin^{-1}x + \cos^{-1}x)(\sin^{-1}x - \cos^{-1}x) = a$

$$\Rightarrow \frac{\pi}{2}(\sin^{-1}x - \cos^{-1}x) = a$$

$$\Rightarrow \frac{\pi}{2} - 2\cos^{-1}x = \frac{2a}{\pi}$$

$$\Rightarrow 2\cos^{-1}x = \frac{\pi}{2} - \frac{2a}{\pi}$$

$$\Rightarrow \cos^{-1}(2x^2 - 1) = \frac{\pi}{2} - \frac{2a}{\pi}$$

$$\Rightarrow 2x^2 - 1 = \cos\left(\frac{\pi}{2} - \frac{2a}{\pi}\right)$$

$$\Rightarrow 2x^2 - 1 = \sin\left(\frac{2a}{\pi}\right)$$

Let M and m respectively be the maximum and minimum values of the function $f(x) = \tan^{-1}(\sin x + \cos x)$ in $\left[0, \frac{\pi}{2}\right]$, then the value of $\tan(M-m)$ is [2021,27 Aug. Shift-II]

Options:

A. 2 +
$$\sqrt{3}$$

B.
$$2 - \sqrt{3}$$

C.
$$3 + 2\sqrt{2}$$

D. 3 –
$$2\sqrt{2}$$

Answer: D

Solution:

Solution:

We have, $f(x) = \tan^{-1}(\sin x + \cos x)$ $\therefore x \in \left[0, \frac{\pi}{2}\right]$ $\Rightarrow 1 \le \sin x + \cos x \le \sqrt{2}$ $\left[\because -\sqrt{A^2 + B^2} \le A \sin x + B \cos x \le \sqrt{A^2 + B^2}\right]$ $\Rightarrow \tan^{-1}(1) \le \tan^{-1}(\sin x + \cos x) \le \tan^{-1}(\sqrt{2})$ $\therefore m = \tan^{-1}(1) \text{ and } M = \tan^{-1}(\sqrt{2})$ $\therefore M - m = \tan^{-1}\sqrt{2} - \tan^{-1}(\sqrt{1})$ $= \tan^{-1}\left(\frac{\sqrt{2} - 1}{1 + \sqrt{2}}\right)$ $= \tan^{-1}(3 - 2\sqrt{2})$

Question39

Ify(x) =
$$\cot^{-1}\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right)$$

 $\cdot x \in \left(\frac{\pi}{2}, \pi\right)$, then $\frac{dy}{dx}$ at $x = \frac{5\pi}{6}$ is [2021, 27 Aug. Shift-II]

Options:

A.
$$-\frac{1}{2}$$

B.
$$-1$$

C.
$$\frac{1}{2}$$

D. 0

Answer: A

Solution:

$$y(x) = \cot^{-1}\left(\frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}\right)$$

$$x \in \left(\frac{\pi}{2}, \pi\right)$$

$$= \cot^{-1}\left|\frac{\cos \frac{x}{2} + \sin \frac{x}{2}}{\cos \frac{x}{2} + \sin \frac{x}{2}}\right| + \left|\cos \frac{x}{2} - \sin \frac{x}{2}\right|}$$

$$= \cot^{-1}\left(\frac{\cos \frac{x}{2} + \sin \frac{x}{2}}{\cos \frac{x}{2} + \sin \frac{x}{2} - \cos \frac{x}{2}}\right)$$

$$\left[\because \frac{x}{2} \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)\right]$$

$$= \cot^{-1}\left(\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}\right) = \cot^{-1}\left(\tan \frac{x}{2}\right)$$

$$= \cot^{-1}\left(\cot\left(\frac{\pi}{2} - \frac{x}{2}\right)\right)$$

$$\Rightarrow y(x) = \frac{\pi}{2} - \frac{x}{2}$$

$$\therefore y'(x) = \frac{-1}{2}$$

Question40

A 10 inches long pencil AB with mid-point C and a small eraser P are placed on the horizontal top of a table such that $PC = \sqrt{5}$ inches and $\angle PCB = \tan^{-1}(2)$. The acute angle through which the pencil must be rotated about C so that the perpendicular distance between eraser and pencil becomes exactly 1 inch is

[2021, 26 Aug. Shift-II]

Options:

A.
$$\tan^{-1}\left(\frac{3}{4}\right)$$

B.
$$tan^{-1}(1)$$

C.
$$\tan^{-1}\left(\frac{4}{3}\right)$$

D.
$$tan^{-1}\left(\frac{1}{2}\right)$$

Answer: A

Solution:

$$\theta = \angle PCB = \tan^{-1}(2)$$

Now, after rotation let angle become α .

 $ln \triangle PCM$

$$PC = \sqrt{5}$$

$$PM = \sqrt{5}\sin\theta = \sqrt{5}\left(\frac{2}{\sqrt{5}}\right) = 2$$

After rotation perpendicular distance becomes $PP^{'} = 1$

- $PC \sin \alpha = 1$
- $\sqrt{5}\sin\alpha = 1$
- $\Rightarrow \sqrt{5} \sin \alpha = 1$
- $\Rightarrow \sin \alpha = \frac{1}{\sqrt{5}}$
- $\Rightarrow \tan \alpha = \frac{\sin \alpha}{\sqrt{1 \sin^2 \alpha}} = \frac{1}{2}$

∴ Rotated angle

$$=\theta-\alpha = \tan^{-1}(2)-\tan^{-1}\left(\frac{1}{2}\right)$$

$$= \tan^{-1} \left(\frac{2 - 1/2}{1 + 2 \times 1/2} \right) = \tan^{-1} \left(\frac{3}{4} \right)$$

Question41

 $\cos^{-1}(\cos(-5)) + \sin^{-1}(\sin(6)) - \tan^{-1}(\tan(12))$ is equal to (The inverse trigonometric functions take the principal values) [2021, 01 Sep. Shift-2]

Options:

- A. $3\pi 11$
- B. $4\pi 9$
- C. $4\pi 11$
- D. $3\pi + 1$

Answer: C

Solution:

Solution:

$$\cos^{-1}(\cos(-5)) + \sin^{-1}(\sin(6))$$

- $\tan^{-1}(\tan(12))$

$$= 2\pi - 5 + (-2\pi + 6) - (12 - 4\pi)$$

 $= 4\pi - 11$

 $2\pi - \left(\sin^{-1}\frac{4}{5} + \sin^{-1}\frac{5}{13} + \sin^{-1}\frac{16}{65}\right)$ is equal to: [Sep. 03, 2020 (I)]

Options:

A. $\frac{\pi}{2}$

B. $\frac{5\pi}{4}$

C. $\frac{3\pi}{2}$

D. $\frac{7\pi}{4}$

Answer: C

Solution:

Solution:

$$\begin{split} &2\pi - \left(\sin^{-1}\frac{4}{5} + \sin^{-1}\frac{5}{13} + \sin^{-1}\frac{16}{65}\right) \\ &= 2\pi - \left(\tan^{-1}\frac{4}{3} + \tan^{-1}\frac{5}{12} + \tan^{-1}\frac{16}{63}\right) \left[\because \sin^{-1}\frac{4}{5} = \tan^{-1}\frac{4}{3}\right] \\ &= 2\pi - \left\{ \tan^{-1}\left(\frac{\frac{4}{3} + \frac{5}{12}}{1 - \frac{4}{3} \cdot \frac{5}{12}}\right) + \tan^{-1}\frac{16}{63}\right\} \\ &= 2\pi - \left(\tan^{-1}\frac{63}{16} + \tan^{-1}\frac{16}{63}\right) \\ &= 2\pi - \left(\tan^{-1}\frac{63}{16} + \cot^{-1}\frac{63}{16}\right) \\ &= 2\pi - \frac{\pi}{2} = \frac{3\pi}{2}. \end{split}$$

Question43

If S is the sum of the first 10 terms of the

seriestan⁻¹ $\left(\frac{1}{3}\right)$ + tan⁻¹ $\left(\frac{1}{7}\right)$ + tan⁻¹ $\left(\frac{1}{13}\right)$ + tan⁻¹ $\left(\frac{1}{21}\right)$ +then tan(S) is equal to: [Sep. 05, 2020 (I)]

[30**p**: 03, **2**0**2**(

Options:

A. $\frac{5}{6}$

B. $\frac{5}{11}$

C. $-\frac{6}{5}$

D. $\frac{10}{11}$

Answer: A

Solution:

Solution:

$$\begin{split} &S = \tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\frac{1}{7} + \tan^{-1}\frac{1}{13} + \dots \quad \text{upto 10 terms} \\ &= \tan^{-1}(2-11+2\cdot1) + \tan^{-1}\left(\frac{3-2}{1+3\cdot2}\right) \\ &+ \tan^{-1}\left(\frac{4-3}{1+3\cdot4}\right) + \dots + \tan^{-1}\left(\frac{11-10}{1+11\cdot10}\right) = (\tan^{-1}2 - \tan^{-1}1) + (\tan^{-1}3 - \tan^{-1}2) + (\tan^{-1}4 - \tan^{-1}3) + \dots + (\tan^{-1}11 - \tan^{-1}10) \\ &= \tan^{-1}11 - \tan^{-1}1 = \tan^{-1}\left(\frac{11-1}{1+11\cdot1}\right) = \tan^{-1}\left(\frac{5}{6}\right) \\ &\therefore \tan(S) = \frac{5}{6} \end{split}$$

Question44

Considering only the principal values of inverse functions, the set

$$A = \left\{ x \ge 0 : \tan^{-1}(2x) + \tan^{-1}(3x) = \frac{\pi}{4} \right\}$$
[Jan. 12, 2019 (I)]

Options:

A. contains two elements

B. contains more than two elements

C. is a singleton

D. is an empty set

Answer: C

Solution:

Solution

Consider,
$$\tan^{-1}(2x) + \tan^{-1}(3x) = \frac{\pi}{4}$$

$$\Rightarrow \tan^{-1}\left(\frac{5x}{1-6x^2}\right) = \frac{\pi}{4}$$

$$\Rightarrow \frac{5x}{1-6x^2} = 1 \Rightarrow 5x = 1 - 6x^2$$

$$\Rightarrow 6x^2 + 5x - 1 = 0$$

$$\Rightarrow (6x - 1)(x + 1) = 0$$

$$\Rightarrow x = \frac{1}{6}(as x \ge 0)$$
Therefore, A is a singleton set.

Question 45

All x satisfying the inequality $(\cot^{-1}x)^2 - 7(\cot^{-1}x) + 10 > 0$, lie in the interval :

[Jan. 11, 2019 (II)]

Options:

A. $(-\infty, \cot 5) \cup (\cot 4, \cot 2)$

B. $(\cot 2, \infty)$

C. $(-\infty, \cot 5) \cup (\cot 2, \infty)$

D. (cot 5, cot 4)

Answer: B

Solution:

Solution:

 $(\cot^{-1}x)^2 - 7(\cot^{-1}x) + 10 > 0$ $(\cot^{-1}x - 5)(\cot^{-1} - 2) > 0$ $\cot^{-1} x \in (-\infty, 2) \cup (5, \infty) \dots (1)$

But $\cot^{-1}x$ lies in $(0, \pi)$ Now, from equation (1)

 $\cot^{-1} x \in (0, 2)$

Now, it is clear from the graph $x \in (\cot 2, \infty)$

Question46

The value of $\cot \left(\sum_{n=1}^{19} \cot^{-1} \left(1 + \sum_{p=1}^{n} 2p \right) \right)$ is: [Jan. 10, 2019 (II)]

Options:

A.
$$\frac{21}{19}$$

B.
$$\frac{19}{21}$$

C.
$$\frac{22}{23}$$

D.
$$\frac{23}{22}$$

Answer: A

Solution:

$$\cot \left(\sum_{n=1}^{19} \cot^{-1} \left(1 + \sum_{p=1}^{n} 2p \right) \right)$$

$$= \cot\left(\sum_{n=1}^{19} \cot^{-1}(1+n(n+1))\right)$$

$$= \cot\left(\sum_{n=1}^{19} \tan^{-1}\left(\frac{(n+1)-n}{1+(n+1)n}\right)\right) \left[\cot^{-1}x = \tan^{-1}\left(\frac{1}{x}\right) : \text{for } x > 0\right]$$

$$= \cot\left(\sum_{n=1}^{19} (\tan^{-1}(n+1) - \tan^{-1}n)\right)$$

$$= \cot(\tan^{-1}20 - \tan^{-1}1)$$

$$= \cot\left(\tan^{-1}\left(\frac{20-1}{1+20\times 1}\right)\right)$$

$$= \cot\left(\tan^{-1}\left(\frac{19}{21}\right)\right) = \cot\cot^{-1}\left(\frac{21}{19}\right) = \frac{21}{19}$$

Question47

If $x = \sin^{-1}(\sin 10)$ and $y = \cos^{-1}(\cos 10)$, then y - x is equal to: [Jan. 09, 2019 (II)]

Options:

A. 0

B. 10

С. 7п

D. π

Answer: D

Solution:

Solution:

$$x = \sin^{-1}(\sin 10)$$

$$\Rightarrow x = 3\pi - 10 \begin{cases} 3\pi - \frac{\pi}{2} < 10 < 3\pi + \frac{\pi}{2} \\ \Rightarrow 3\pi - x = 10 \end{cases}$$
and $y = \cos^{-1}(\cos 10) \begin{cases} 3\pi < 10 < 4\pi \\ \Rightarrow 4\pi - x = 10 \end{cases}$

$$\Rightarrow y = 4\pi - 10$$

$$\therefore y - x = (4\pi - 10) - (3\pi - 10) = \pi$$

.....

Question48

If
$$\cos^{-1}\left(\frac{2}{3x}\right) + \cos^{-1}\left(\frac{3}{4x}\right) = \frac{\pi}{2}\left(x > \frac{3}{4}\right)$$
, then x is equal to: [Jan. 09, 2019 (I)]

Options:

A.
$$\frac{\sqrt{145}}{12}$$

B.
$$\frac{\sqrt{145}}{10}$$

C.
$$\frac{\sqrt{146}}{12}$$

D.
$$\frac{\sqrt{145}}{11}$$

Answer: A

Solution:

Solution:

$$\cos^{-1}\left(\frac{2}{3x}\right) + \cos^{-1}\left(\frac{3}{4x}\right) = \frac{\pi}{2}; \left(x > \frac{3}{4}\right)$$

$$\Rightarrow \cos^{-1}\left(\frac{2}{3x}\right) = \frac{\pi}{2} - \cos^{-1}\left(\frac{3}{4x}\right)$$

$$\Rightarrow \cos^{-1}\left(\frac{2}{3x}\right) = \sin^{-1}\left(\frac{3}{4x}\right) \left[\because \sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}\right]$$

$$\sin^{-1}\left(\frac{3}{4x}\right) = \theta \Rightarrow \sin\theta = \frac{3}{4x}$$

$$\Rightarrow \cos\theta = \sqrt{1 - \sin^{2}\theta} = \sqrt{1 - \frac{9}{16x^{2}}}$$

$$\Rightarrow \theta = \cos^{-1}(\sqrt{16x^{2} - 94x})$$

$$\therefore \cos^{-1}\left(\frac{2}{3x}\right) = \cos^{-1}\left(\frac{\sqrt{16x^{2} - 9}}{4x}\right)$$

$$\Rightarrow \frac{2}{3x} = \frac{\sqrt{145}}{4x} \Rightarrow x^{2} = \frac{64 + 81}{9 \times 16} \Rightarrow x = \pm \sqrt{\frac{145}{144}}$$

$$\Rightarrow x = \frac{\sqrt{145}}{12} \left(\because x > \frac{3}{4}\right)$$

.....

Question49

If $\alpha = \cos^{-1}\left(\frac{3}{5}\right)$, $\beta = \tan^{-1}\left(\frac{1}{3}\right)$, where $0 < \alpha$, $\beta < \frac{\pi}{2}$, then $\alpha - \beta$ is equal to:

[April 8, 2019 (I)]

Options:

A.
$$\tan^{-1}\left(\frac{9}{5\sqrt{10}}\right)$$

B.
$$\cos^{-1}\left(\frac{9}{5\sqrt{10}}\right)$$

C.
$$\tan^{-1}\left(\frac{9}{14}\right)$$

D.
$$\sin^{-1}\left(\frac{9}{5\sqrt{10}}\right)$$

Answer: D

Solution:

$$\because \cos \alpha = \frac{3}{5}, \text{ then } \sin \alpha = \frac{4}{5}$$

$$\begin{aligned} &\Rightarrow \tan\alpha = \frac{4}{3} \\ &\text{and } \tan\beta = \frac{1}{3} \\ &\because \tan(\alpha - \beta) = \frac{\tan\alpha - \tan\beta}{1 + \tan\alpha \cdot \tan\beta} \\ &= \frac{\frac{4}{3} - \frac{1}{3}}{1 + \frac{4}{9}} = \frac{1}{\frac{13}{9}} = \frac{9}{13} \\ &\therefore \alpha - \beta = \tan^{-1}\left(\frac{9}{13}\right) = \sin^{-1}\left(\frac{9}{5\sqrt{10}}\right) \\ &= \cos^{-1}\left(\frac{13}{5\sqrt{10}}\right) \end{aligned}$$

Question 50

The value of $\sin^{-1}\left(\frac{12}{13}\right) - \sin^{-1}\left(\frac{3}{5}\right)$ is equal to [April 12, 2019 (I)]

Options:

A.
$$\pi - \sin^{-1}\left(\frac{63}{65}\right)$$

B.
$$\frac{\pi}{2} - \sin^{-1}\left(\frac{56}{65}\right)$$

C.
$$\frac{\pi}{2} - \cos^{-1}\left(\frac{9}{65}\right)$$

D.
$$\pi - \cos^{-1} \left(\frac{33}{65} \right)$$

Answer: B

Solution:

Solution:

$$\begin{split} -\sin^{-1}\left(\frac{3}{5}\right) + \sin^{-1}\left(\frac{12}{13}\right) &= -\sin^{-1}\left(\frac{3}{5} \times \frac{5}{13} - \frac{12}{13} \times \frac{4}{5}\right) \\ (\because xye"0 \text{ and } x^2 + y^2d "1) \\ [\because \sin^{-1}x - \sin^{-1}y &= \sin^{-1}\left\{x\sqrt{1 - y^2} - y\sqrt{1 - x^2}\right\}] \\ &= \sin^{-1}\left(\frac{-33}{65}\right) = \sin^{-1}\left(\frac{33}{65}\right) \\ &= \cos^{-1}\left(\frac{56}{65}\right) = \frac{\pi}{2} - \sin^{-1}\left(\frac{56}{65}\right) \end{split}$$

Question51

If $\cos^{-1}x-\cos^{-1}\frac{y}{2}=\alpha$, where $-1\leq x\leq 1$, $-2\leq y\leq 2$, $x\leq \frac{y}{2}$, then for all x, y, $4x^2-4xy\cos\alpha+y^2$ is equal to: [April 10, 2019 (II)]

Options:

A. $4\sin^2\alpha$

B. $2\sin^2\alpha$

 $C. 4sin^2\alpha - 2x^2y^2$

 $D. 4\cos^2\alpha + 2x^2y^2$

Answer: A

Solution:

Solution:

Given, $\cos^{-1}x - \cos^{-1}\frac{y}{2} = \alpha$ $\Rightarrow \cos^{-1}\left(\frac{xy}{2} + \sqrt{1 - x^2} \cdot \sqrt{1 - \frac{y^2}{4}}\right) = \alpha$ $\Rightarrow \frac{xy}{2} + \frac{\sqrt{1 - x^2}\sqrt{4 - y^2}}{2} = \cos\theta$ $\Rightarrow xy + \sqrt{1 - x^2}\sqrt{4 - y^2} = 2\cos\alpha$ $\Rightarrow (xy - 2\cos\alpha)^2 = (1 - x^2)(4 - y^2)$ $\Rightarrow x^2y^2 + 4\cos^2\alpha - 4xy\cos\alpha = 4 - y^2 - 4x^2 + x^2y^2$ $\Rightarrow 4x^2 - 4xy\cos\alpha + y^2 = 4\sin^2\alpha$

.....

Question52

A value of x satisfying the equation $sin[cot^{-1}(1 + x)] = cos[tan^{-1}x]$, is : [Online April 9, 2017]

Options:

A. $-\frac{1}{2}$

B. -1

C. 0

D. $\frac{1}{2}$

Answer: A

Solution:

Solution:

 $\sin[\cot^{-1}(1+x)] = \cos(\tan^{-1}x)$ 1 1 + x 1 + x 1 + x 1 + x 1 + x

Let; $\cot \lambda = 1 + x$ $\tan \beta = x$ $\Rightarrow \sin \lambda = \cos \beta$

$$\Rightarrow \frac{1}{\sqrt{x^2 + 2x + 2}} = \frac{1}{1\sqrt{1 + x^2}}$$

$$\Rightarrow x^2 + 2x + 2 = x^2 + 1$$

$$\Rightarrow x = -1/2$$

Question53

The value of $\tan^{-1} \left[\frac{\sqrt{1+x^2} + \sqrt{1-x^2}}{\sqrt{1+x^2} - \sqrt{1-x^2}} \right]$, $|x| < \frac{1}{2}$, $x \neq 0$, is equal to [Online April 8, 2017]

Options:

A.
$$\frac{\pi}{4} + \frac{1}{2}\cos^{-1}x^2$$

B.
$$\frac{\pi}{4} + \cos^{-1} x^2$$

C.
$$\frac{\pi}{4} - \frac{1}{2}\cos^{-1}x^2$$

D.
$$\frac{\pi}{4} - \cos^{-1} x^2$$

Answer: A

Solution:

Solution:

Let
$$x^2 = \cos 2\theta$$
; $\Rightarrow \theta = \frac{1}{2}\cos^{-1}x^2$

$$\Rightarrow \tan^{-1}\left[\frac{\sqrt{1+x^2}}{\sqrt{1+x^2}} - \frac{\sqrt{1-x^2}}{\sqrt{1-x^2}}\right] = \left[\frac{\sqrt{1+\cos 2\theta} + \sqrt{1-\cos 2\theta}}{\sqrt{1+\cos 2\theta} - \sqrt{1-\cos 2\theta}}\right]$$

$$\Rightarrow \tan^{-1}\left[\frac{1+\tan\theta}{1-\tan\theta}\right] = \tan^{-1}\left[\tan\left(\frac{\pi}{4} + \theta\right)\right]$$

$$= \frac{\pi}{4} + \frac{1}{2}\cos^{-1}x^2$$

Question54

Let $\tan^{-1}y = \tan^{-1}x + \tan^{-1}\left(\frac{2x}{1-x^2}\right)$, where or $|x| < \frac{1}{\sqrt{3}}$. Then a value of y is : [2015]

Options:

A.
$$\frac{3x - x^3}{1 + 3x^2}$$

B.
$$\frac{3x + x^3}{1 + 3x^2}$$

C.
$$\frac{3x - x^3}{1 - 3x^2}$$

D.
$$\frac{3x + x^3}{1 - 3x^2}$$

Answer: C

Solution:

Solution:

```
Given that, \tan^{-1}y = \tan^{-1}x + \tan^{-1}\left[\frac{2x}{1-x^2}\right]

= \tan^{-1}x + 2\tan^{-1}x = 3\tan^{-1}x
\tan^{-1}y = \tan^{-1}\left[\frac{3x-x^3}{1-3x^2}\right]
\Rightarrow y = \frac{3x-x^3}{1-3x^2}
```

Question55

If $f(x) = 2\tan^{-1}x + \sin^{-1}\left(\frac{2x}{1+x^2}\right)$, x > 1 then f(5) is equal to : [Online April 10, 2015]

Options:

A.
$$\tan^{-1} \left(\frac{65}{156} \right)$$

B. $\frac{\pi}{2}$

С. п

D. $4\tan^{-1}(5)$

Answer: C

Solution:

Solution:

$$f(x) = 2\tan^{-1}x + \sin^{-1}\left(\frac{2x}{1+x^2}\right)$$

$$\Rightarrow f(x) = 2\tan^{-1}x + \pi - 2\tan^{-1}x$$

$$\Rightarrow f(x) = \pi$$

$$\Rightarrow f(5) = \pi$$

Question 56

The principal value of $tan^{-1} \left(\cot \frac{43\pi}{4} \right)$ is: [Online April 19, 2014]

Options:

- A. $-\frac{3\pi}{4}$
- B. $\frac{3\pi}{4}$
- C. $-\frac{\pi}{4}$
- D. $\frac{\pi}{4}$

Answer: C

Solution:

Solution:

Consider

$$\tan^{-1}\left[\cot\frac{43\pi}{4}\right] = \tan^{-1}\left[\cot\left(10\pi + \frac{3\pi}{4}\right)\right]$$

$$= \tan^{-1}\left[\cot\frac{3\pi}{4}\right]\left[\because\cot(2n\pi + \theta) = \cot\theta\right]$$

$$= \tan^{-1}\left[\tan\left(\frac{\pi}{2} - \frac{3\pi}{4}\right)\right]$$

$$= \frac{\pi}{2} - \frac{3\pi}{4} = \frac{2\pi - 3\pi}{4} = \frac{-\pi}{4}$$

Question57

Statement I: The equation $(\sin^{-1}x)^3 + (\cos^{-1}x)^3 - a\pi^3 = 0$ has a solution for all $a \ge \frac{1}{32}$.

Statement II: For any $x \in R$, $\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}$ and

$$0 \le \left(\sin^{-1}x - \frac{\pi}{4}\right)^2 \le \frac{9\pi^2}{16}$$

[Online April 12, 2014]

Options:

- A. Both statements I and II are true.
- B. Both statements I and II are false.
- C. Statement I is true and statement II is false.
- D. Statement I is false and statement II is true

Answer: A

Solution:

$$\begin{split} &\sin^{-1} \mathbf{x} \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \\ \Rightarrow &-\frac{3\pi}{4} \le \left(\sin^{-1} \mathbf{x} - \frac{\pi}{4} \right) \le \frac{\pi}{4} \end{split}$$

$$0 \leq \left(\sin^{-1}x - \frac{\pi}{4}\right)^{2} \leq \frac{9}{16}\pi^{2}$$
Statement II is true
$$(\sin^{-1}x)^{3} + (\cos^{-1}x)^{3} = a\pi^{3}$$

$$\Rightarrow (\sin^{-1}x + \cos^{-1}x)[(\sin^{-1}x + \cos^{-1}x)^{2} - 3\sin^{-1}x\cos^{-1}x] = a\pi^{3}$$

$$\Rightarrow \frac{\pi^{2}}{4} - 3\sin^{-1}x\cos^{-1}x = 2a\pi^{2}$$

$$\Rightarrow \sin^{-1}x\left(\frac{\pi}{2} - \sin^{-1}x\right) = \frac{\pi^{2}}{12}(1 - 8a)$$

$$\Rightarrow \left(\sin^{-1}x - \frac{\pi}{4}\right)^{2} = \frac{\pi^{2}}{12}(8a - 1) + \frac{\pi^{2}}{16}$$

$$\Rightarrow \left(\sin^{-1}x - \frac{\pi}{4}\right)^{2} = \frac{\pi^{2}}{48}(32a - 1)$$
Putting this value in equation
$$0 \leq \frac{\pi^{2}}{48}(32a - 1) \leq \frac{9}{16}\pi^{2}$$

$$\Rightarrow 0 \leq 32a - 1 \leq 27$$

$$\frac{1}{32} \leq a \leq \frac{7}{8}$$

Question58

Statement-I is also true

The number of solutions of the equation, $\sin^{-1}x = 2\tan^{-1}x$ (in principal values) is: [Online April 22, 2013]

Options:

A. 1

B. 4

C. 2

D. 3

Answer: A

Solution:

Solution:

Given equation is $\sin^{-1}x = 2\tan^{-1}x$

Now, this equation has only one solution.

LH S =
$$\sin^{-1} 1 = \frac{\pi}{2}$$

and RHS =
$$2\tan^{-1}1 = 2 \times \frac{\pi}{4} = \frac{\pi}{2}$$

Also, x=1 gives angle value as $\frac{\pi}{4}$ and $\frac{5\pi}{4}$

 $\frac{5\pi}{4}$ is outside the principal value.

Question59

If x, y, z are in A.P. and $tan^{-1}x$, $tan^{-1}y$ and $tan^{-1}z$ are also in A.P., then

[2013]

Options:

A.
$$x = y = z$$

B.
$$2x = 3y = 6z$$

C.
$$6x = 3y = 2z$$

D.
$$6x = 4y = 3z$$

Answer: A

Solution:

Solution:

Since, x, y, z are in A.P. $\therefore 2y = x + z$

Also, we have

$$2\tan^{-1}y = \tan^{-1}x + \tan^{-1}(z)$$

$$\Rightarrow \tan^{-1}\left(\frac{2y}{1-y^2}\right) = \tan^{-1}\left(\frac{x+z}{1-xz}\right)$$

$$\Rightarrow x+z = x+z \quad (\because 2y = y+z)$$

$$\Rightarrow \frac{x+z}{1-y^2} = \frac{x+z}{1-xz} (\because 2y = x+z)$$

 \Rightarrow y² = xz or x + z = 0 \Rightarrow x = y = z = 0

Question60

Let $x \in (0, 1)$. The set of all x such that $\sin^{-1}x > \cos^{-1}x$, is the interval: [Online April 25, 2013]

Options:

A.
$$\left(\frac{1}{2}, \frac{1}{\sqrt{2}}\right)$$

B.
$$\left(\frac{1}{\sqrt{2}}, 1\right)$$

D.
$$\left(0, \frac{\sqrt{3}}{2}\right)$$

Answer: B

Solution:

Given
$$\sin^{-1} x > \cos^{-1} x$$
 where $x \in (0, 1)$

$$\Rightarrow \sin^{-1} x > \frac{\pi}{2} - \sin^{-1} x$$

$$\Rightarrow 2\sin^{-1}x > \frac{\pi}{2} \Rightarrow \sin^{-1}x > \frac{\pi}{4}$$

$$\Rightarrow x > \sin\frac{\pi}{4} \Rightarrow x > \frac{1}{\sqrt{2}}$$

So, maximum value of x is 1. So, $x \in \left(\frac{1}{\sqrt{2}}, 1\right)$.

Question 61

$$S = \tan^{-1} \left(\frac{1}{n^2 + n + 1} \right) + \tan^{-1} \left(\frac{1}{n^2 + 3n + 3} \right) + \dots + \tan^{-1} \left(\frac{1}{1 + (n + 19)(n + 20)} \right), \text{ then}$$

tan S is equal to: [Online April 23, 2013]

Options:

A.
$$\frac{20}{401 + 20n}$$

B.
$$\frac{n}{n^2 + 20n + 1}$$

C.
$$\frac{20}{n^2 + 20n + 1}$$

D.
$$\frac{n}{401 + 20n}$$

Answer: C

Solution:

Solution:

$$\tan^{-1}\frac{1}{1+2} + \tan^{-1}\frac{1}{1+2 \times 3} + \tan^{-1}\frac{1}{1+3 \times 4} + \dots + \tan^{-1}\frac{1}{1+(n-1)n} + \tan^{-1}\frac{1}{1+n(n+1)} + \dots + \tan^{-1}\frac{1}{1+(n+1)(n+20)} = \tan^{-1}\frac{n+19}{n+21}$$

$$\Rightarrow \tan^{-1}\frac{1}{n+1} + \tan^{-1}\frac{1}{1+n(n+1)} + \tan^{-1}\frac{1}{1+(n+1)(n+2)} + \dots + \frac{1}{1+(n+19)(n+20)} = \tan^{-1}\frac{n+19}{n+21}$$

$$\Rightarrow \tan^{-1}\frac{1}{1+n(n+1)} + \tan^{-1}\frac{1}{1+(n+1)(n+2)} + \dots + \frac{1}{1+(n+19)(n+20)} = \tan^{-1}\frac{n+19}{n+21} - \tan^{-1}\frac{n-1}{n+1}$$

$$\Rightarrow \tan^{-1}\left(\frac{1}{n^2+n+1}\right) + \tan^{-1}\left(\frac{1}{n^2+3n+3}\right) + \dots + \tan^{-1}\frac{1}{1+(n+19)(n+20)}$$

$$= \tan^{-1} \left(\frac{\frac{n+19}{n+21} - \frac{n-1}{n+1}}{1 + \frac{n+19}{n+21} \times \frac{n-1}{n+1}} \right) = \tan^{-1} \frac{20}{n^2 + 20n + 1} = S$$

Question62

A value of x for which $sin(cot^{-1}(1+x)) = cos(tan^{-1}x)$, is [Online April 9, 2013]

Options:

A.
$$-\frac{1}{2}$$

B. 1

C. 0

D.
$$\frac{1}{2}$$

Answer: A

Solution:

Solution:

```
\sin(\cot^{-1}(1+x)) = \cos(\tan^{-1}x)
\Rightarrow \csc^{2}(\cot^{-1}(1+x)) = \sec^{2}(\tan^{-1}x)
\Rightarrow 1 + [\cot(\cot^{-1}(1+x))]^{2} = 1 + [\tan(\tan^{-1}x)]^{2}
\Rightarrow (1+x)^{2} = x^{2} \Rightarrow x = -\frac{1}{2}
```

Question63

A value of $tan^{-1} \left(sin \left(cos^{-1} \left(\sqrt{\frac{2}{3}} \right) \right) \right)$ is [Online May 19, 2012]

Options:

A. $\frac{\Pi}{4}$

B. $\frac{\pi}{2}$

C. $\frac{\pi}{3}$

D. $\frac{\pi}{6}$

Answer: D

Solution:

Solution:

Consider
$$\tan^{-1} \left[\sin \left(\cos^{-1} \sqrt{\frac{2}{3}} \right) \right]$$

Let $\cos^{-1} \sqrt{\frac{2}{3}} = \theta \Rightarrow \cos \theta = \sqrt{\frac{2}{3}}$
 $\Rightarrow \sin \theta = \sqrt{1 - \cos^2 \theta} = \sqrt{1 - \frac{2}{3}} = \sqrt{\frac{1}{3}}$
 $\therefore \tan^{-1} \left[\sin \left(\cos^{-1} \sqrt{\frac{2}{3}} \right) \right] = \tan^{-1} [\sin \theta]$
 $= \tan^{-1} \left[\sqrt{\frac{1}{3}} \right] = \tan^{-1} \left(\frac{1}{\sqrt{3}} \right) = \frac{\pi}{6}$

.....

Question64

The largest interval lying in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ for which the function,

 $f(x) = 4^{-x^2} + \cos^{-1}(\frac{x}{2} - 1) + \log(\cos x)$, is defined, is [2007]

Options:

- A. $\left[-\frac{\pi}{4}, \frac{\pi}{2}\right)$
- B. $\left[0, \frac{\pi}{2}\right)$
- С. [0, п]
- D. $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Answer: B

Solution:

Solution:

Given that

$$f(x) = 4^{-x^2} + \cos^{-1}(\frac{x}{2} - 1) + \log(\cos x)$$

f(x) is defined if $-1 \le \left(\frac{x}{2} - 1\right) \le 1$ and $\cos x > 0$

$$\Rightarrow 0 \le \frac{x}{2} \le 2$$
 and $-\frac{\pi}{2} < x < \frac{\pi}{2}$

$$\Rightarrow 0 \le x \le 4$$
 and $-\frac{\pi}{2} < x < \frac{\pi}{2}$

 $\therefore x \in \left[\ 0, \frac{\pi}{2} \right)$

Question65

If $\sin^{-1}\left(\frac{x}{5}\right) + \csc^{-1}\left(\frac{5}{4}\right) = \frac{\pi}{2}$, then the values of x is [2007]

Options:

- A. 4
- B. 5
- C. 1
- D. 3

Answer: D

Solution:

$$\sin^{-1}\left(\frac{x}{5}\right) + \csc^{-1}\left(\frac{5}{4}\right) = \frac{\pi}{2}$$

$$\Rightarrow \sin^{-1}\left(\frac{x}{5}\right) = \frac{\pi}{2} - \csc^{-1}\left(\frac{5}{4}\right)$$

$$\Rightarrow \sin^{-1}\left(\frac{x}{5}\right) = \frac{\pi}{2} - \sin^{-1}\left(\frac{4}{5}\right) \ [\because \sin^{-1}x + \cos^{-1}x = \pi/2]$$

$$\Rightarrow \sin^{-1}\left(\frac{x}{5}\right) = \cos^{-1}\left(\frac{4}{5}\right)$$

$$\sin^{-1}\frac{x}{5} = \sin^{-1}\sqrt{1 - \left(\frac{4}{5}\right)^2} \ [\because \cos^{-1}x = \sin^{-1}\sqrt{1 - x^2}]$$

$$\Rightarrow \sin^{-1}\frac{x}{5} = \sin^{-1}\frac{3}{5} \Rightarrow \frac{x}{5} = \frac{3}{5}$$

$$\Rightarrow x = 3$$

Question66

If $\cos^{-1}x - \cos^{-1}\frac{y}{2} = \alpha$, then $4x^2 - 4xy\cos\alpha + y^2$ is equal to [2005]

Options:

A. $2 \sin 2 \alpha$

B. 4

C. $4\sin^2\alpha$

D. $-4\sin^2\alpha$

Answer: C

Solution:

Solution:

$$\begin{split} &\cos^{-1}x-\cos^{-1}\frac{y}{2}=\alpha\\ &\Rightarrow \cos^{-1}\left(\frac{xy}{2}+\sqrt{(1-x^2)\left(1-\frac{y^2}{4}\right)}\right)=\alpha\\ &\Rightarrow \cos^{-1}\left(\frac{xy+\sqrt{4-y^2-4x^2+x^2y^2}}{2}\right)=\alpha\\ &\Rightarrow xy+\sqrt{4-y^2-4x^2+x^2y^2}=2\cos\alpha\\ &\Rightarrow \sqrt{4-y^2-4x^2+x^2y^2}=2\cos\alpha-xy\\ &\text{Squaring both sides, we get}\\ &\Rightarrow 4-y^2-4x^2+x^2y^2=4\cos^2\alpha+x^2y^2-4xy\cos\alpha\\ &\Rightarrow 4x^2+y^2-4xy\cos\alpha=4\sin^2\alpha \end{split}$$

Question67

The domain of the function $f(x) = \frac{\sin^{-1}(x-3)}{\sqrt{9-x^2}}$ [2004]

Options:

B. [2, 3)

C. [1, 2]

D. [2, 3]

Answer: B

Solution:

Solution:

$$\begin{split} f\left(x\right) &= \frac{\sin^{-1}(x-3)}{\sqrt{9-x^2}} \text{ is defined} \\ \text{When } -1 &\leq x-3 \leq 1 \Rightarrow 2 \leq x \leq 4 \text{(i)} \\ \text{and } 9-x^2 > 0 \Rightarrow -3 < x < 3 \text{(ii)} \\ \text{from (i) and (ii),} \\ \text{we get } 2 \leq x < 3 \text{... Domain } = [2,3) \end{split}$$

Question68

The trigonometric equation $\sin^{-1}x = 2\sin^{-1}a$ has a solution for [2003]

Options:

A.
$$|a| \le \frac{1}{\sqrt{2}}$$

B.
$$\frac{1}{2} < |a| < \frac{1}{\sqrt{2}}$$

C. all real values of a

D.
$$|a| < \frac{1}{2}$$

Answer: A

Solution:

Solution:

Given that
$$\sin^{-1}x = 2\sin^{-1}a$$

We know that $-\frac{\pi}{2} \le \sin^{-1}x \le \frac{\pi}{2}$
 $\Rightarrow -\frac{\pi}{2} \le 2\sin^{-1}a \le \frac{\pi}{2}$

$$\Rightarrow -\frac{\pi}{4} \leq \sin^{-1} a \leq \frac{\pi}{4} \Rightarrow \frac{-1}{\sqrt{2}} \leq a \leq \frac{1}{\sqrt{2}}$$

$$|a| \le \frac{1}{\sqrt{2}}$$

Question69

$\cot^{-1}(\sqrt{\cos\alpha}) - \tan^{-1}(\sqrt{\cos\alpha}) = x$, then $\sin x = [2002]$

Options:

A.
$$\tan^2\left(\frac{\alpha}{2}\right)$$

B.
$$\cot^2\left(\frac{\alpha}{2}\right)$$

C. $tan \alpha$

D.
$$\cot\left(\frac{\alpha}{2}\right)$$

Answer: A

Solution:

Solution:

Given that,
$$\cot^{-1}(\sqrt{\cos\alpha}) - \tan^{-1}(\sqrt{\cos\alpha}) = x$$

$$\tan^{-1}\left(\frac{1}{\sqrt{\cos\alpha}}\right) - \tan^{-1}(\sqrt{\cos\alpha}) = x$$

$$\Rightarrow \tan^{-1}\frac{\frac{1}{\sqrt{\cos\alpha}} - \sqrt{\cos\alpha}}{1 + \frac{1}{\sqrt{\cos\alpha}} \cdot \sqrt{\cos\alpha}} = x$$

$$\Rightarrow \tan^{-1}\frac{1 - \cos\alpha}{2\sqrt{\cos\alpha}} = x$$

$$\Rightarrow \tan x = \frac{1 - \cos\alpha}{2\sqrt{\cos\alpha}}$$

$$\Rightarrow \cot x = \frac{2\sqrt{\cos\alpha}}{1 - \cos\alpha} = \frac{B}{P}$$

$$P = (1 - \cos\alpha) \text{ and } B = 2\sqrt{\cos\alpha}$$

$$\Rightarrow \sin x = 1 - \cos\alpha 1 + \cos\alpha = \frac{1 - (1 - 2\sin^2\alpha/2)}{1 + 2\cos^2\alpha/2 - 1}$$
or $\sin x = \tan^2\frac{\alpha}{2}$

Question 70

The domain of $\sin^{-1}[\log_3(x/3)]$ is [2002]

Options:

Answer: A

Solution:

$$f(x) = \sin^{-1}\left(\log_3\left(\frac{x}{3}\right)\right)$$

We know that domain of $\sin^{-1}x$ is $x \in [-1, 1]$

$$\therefore -1 \leq \log_3 \left(\frac{x}{3}\right) \leq 1 \Rightarrow 3^{-1} \leq \frac{x}{3} \leq 3^1$$

$$\Rightarrow 1 \le x \le 9 \text{ or } x \in [1, 9]$$
