# **PROJEKT 2**

# **UKŁADY RÓWNAŃ LINIOWYCH**

## 1. WSTĘP:

Celem projektu jest implementacja i analiza dwóch metod iteracyjnych oraz jednej metody bezpośredniej, służących do rozwiązywania układów równań liniowych. Wspomniane metody to kolejno metoda Jacobiego, Gaussa-Seidla oraz faktoryzacji LU.

#### 2. IMPLEMENTACJA:

Zadanie zostało wykonane z wykorzystaniem C++ oraz Matlab'a. Wszelkie obliczenia oraz metody rozwiązywania układów równań zostały napisane w jeżyku C++. Matlab został wykorzystany do stworzenia wykresów, na podstawie zebranych danych.

### 3. ZADANIA:

## A. OPIS RÓWNANIA MACIERZOWEGO:

W projekcie rozwiązywane będzie równanie macierzowe o postaci:

$$Ax = b$$
,

gdzie:

- **A** macierz systemowa, a w tym przypadku również macierz pasmowa o rozmiarze 995x995. Macierz ta zawiera pięć diagonali:
  - o główna z elementami o wartości 6
  - o cztery sąsiednie z elementami o wartości -1,

$$\mathbf{A} = \begin{bmatrix} \mathbf{6} & -\mathbf{1} & -\mathbf{1} & 0 & 0 & 0 & 0 & \dots & 0 \\ -\mathbf{1} & \mathbf{6} & -\mathbf{1} & -\mathbf{1} & 0 & 0 & 0 & \dots & 0 \\ -\mathbf{1} & -\mathbf{1} & \mathbf{6} & -\mathbf{1} & -\mathbf{1} & 0 & 0 & \dots & 0 \\ 0 & -\mathbf{1} & -\mathbf{1} & \mathbf{6} & -\mathbf{1} & -\mathbf{1} & 0 & \dots & 0 \\ \vdots & \vdots \\ 0 & 0 & \dots & 0 & 0 & 0 & -\mathbf{1} & -\mathbf{1} & \mathbf{6} \end{bmatrix}$$

- **b** wektor pobudzenia o długości 995, którego n–ty element ma wartość sin(4\*n),
  - Pierwsze 10 wartości wektora b:

```
%%% Wektor b %%%
0
-0.756802
0.989358
-0.536573
-0.287903
0.912945
-0.905578
0.270906
0.551427
-0.991779
```

• x - wektor przechowujący rozwiązanie układu równań o długości 995.

## B. METODA JACOBI'EGO ORAZ GAUSS-SEIDL'A:

Powyższe metody zostały wykorzystane do rozwiązania układu równań o podanych w zadaniu A parametrach macierzy A oraz wektora b, gdzie norma residuum ma być mniejsza od  $10^{-9}$ . Liczba iteracji, norma residuum oraz czas mają wartości:

%%%%%%%%% ZAD B %%%%%%%%%%

~~ JACOBI ~~
Iterations: 62
Residual norm: 7.52504e-10
Time: 0.182s

~~ GAUSS-SEIDEL ~~
Iterations: 36
Residual norm: 9.0225e-10
Time: 0.125s



# C. WYKORZYSTANIE METOD ITERACYJNYCH DLA INNEGO UKŁADU RÓWNAŃ:

Równanie macierzowe ma postać:

Ax = b

gdzie:

$$\mathbf{A} = \begin{bmatrix} \mathbf{3} & -\mathbf{1} & -\mathbf{1} & 0 & 0 & 0 & 0 & \dots & 0 \\ -\mathbf{1} & \mathbf{3} & -\mathbf{1} & -\mathbf{1} & 0 & 0 & 0 & \dots & 0 \\ -\mathbf{1} & -\mathbf{1} & \mathbf{3} & -\mathbf{1} & -\mathbf{1} & 0 & 0 & \dots & 0 \\ 0 & -\mathbf{1} & -\mathbf{1} & \mathbf{3} & -\mathbf{1} & -\mathbf{1} & 0 & \dots & 0 \\ \vdots & \vdots \\ 0 & 0 & \dots & 0 & 0 & 0 & -\mathbf{1} & -\mathbf{1} & \mathbf{3} \end{bmatrix}$$

o rozmiarze 995x995,

- **b** wektor pobudzenia o długości 995, którego n–ty element ma wartość sin(4\*n),
- x wektor przechowujący rozwiązanie układu równań o długości 995.

Liczba iteracji, norma residuum oraz czas mają wartości:

%%%%%%%%%% ZAD C %%%%%%%%%%

~~ JACOBI ~~
Iterations: 1000
Residual norm: 2.58126e+126
Time: 2.859s

~~ GAUSS-SEIDEL ~~
Iterations: 1000
Residual norm: inf
Time: 2.261s



## D. WYKORZYSTANIE METODY FAKTORYZACJI LU DLA UKŁADU RÓWNAŃ:

Wykorzystana została metoda bezpośrednia faktoryzacji LU do rozwiązania układu równań o parametrach podanych w zadaniu C. Norma residuum oraz czas mają wartości:

%%%%%%%%%% ZAD D %%%%%%%%% ~~ LU ~~ Residual norm: 1.83941e-13 Time: 0.257s

# E. PORÓWNANIE CZASU ROZWIĄZANIA UKŁADÓW RÓWNAŃ W ZALEŻNOŚCI OD METODY ORAZ WIELKOŚCI MACIERZY:



| PORÓWNANIE DLA KONKRETNYCH METOD ORAZ ROZMIARÓW MACIERZY |            |                |                  |                |                     |                |
|----------------------------------------------------------|------------|----------------|------------------|----------------|---------------------|----------------|
| METODA /<br>ROZMIAR                                      | JACOBI [s] |                | GAUSS-SEIDEL [s] |                | FAKTORYZACJA LU [s] |                |
|                                                          | CZAS [s]   | NORMA RESIDUUM | CZAS [s]         | NORMA RESIDUUM | CZAS[s]             | NORMA RESIDUUM |
| 100 x 100                                                | 0.004      | 7.0451e-10     | 0.003            | 9.56963e-10    | 0.002               | 1.01016e-15    |
| 200 x 200                                                | 0.010      | 7.18253e-10    | 0.005            | 7.5204e-10     | 0.004               | 1.35555e-15    |
| 1000 x 1000                                              | 0.179      | 7.54434e-10    | 0.005            | 9.04537e-10    | 0.357               | 3.08472e-15    |
| 2000 x 2000                                              | 0.539      | 7.16007e-10    | 0.304            | 6.45105e-10    | 3.040               | 4.39602e-15    |
| 3000 x 3000                                              | 1.170      | 8.78868e-10    | 0.666            | 7.92385e-10    | 15.742              | 5.42762e-15    |
| 4000 x 4000                                              | 3.435      | 6.77286e-10    | 1.964            | 9.16334e-10    | 38.676              | 6.24615e-15    |
| 5000 x 5000                                              | 5.413      | 7.57734e-10    | 3.159            | 5.12651e-10    | 77.422              | 7.03793e-15    |
| 6000 x 6000                                              | 7.715      | 8.30424e-10    | 4.544            | 5.61912e-10    | 129.991             | 7.71474e-15    |
| 7000 x 7000                                              | 10.020     | 8.97248e-10    | 6.035            | 6.07203e-10    | 204.724             | 8.35853e-15    |
| 8000 x 8000                                              | 13.006     | 9.59425e-10    | 7.875            | 6.49327e-10    | 301.537             | 8.90899e-15    |
| 9000 x 9000                                              | 17.517     | 6.78534e-10    | 10.457           | 6.88889e-10    | 427.746             | 9.41634e-15    |
| 10000 x 10000                                            | 21.271     | 7.15345e-10    | 12.621           | 7.263e-10      | 576.748             | 9.88172e-15    |

#### F. WNIOSKI:

- a. Macierz A poza 5 diagonalami jest wypełniona zerami. Wykorzystując gotowe narzędzia do rozwiązywania układów równań, korzystniejsze byłoby zapisanie tej macierzy w formacie rzadkim, jednak z uwagi na założenia projektu, wykorzystany został format pełny.
- b. W zadaniu B lepiej sprawdziła się metoda Gaussa-Seidla. Układ równań z zadania A został rozwiązany w 36 iteracjach co jest wartością blisko dwa razy mniejszą niż dla metody Jacobiego (62 iteracje). Czas wykonywanych obliczeń metodą Gaussa-Seidla również jest szybszy o około 35%. Korzystając z tej metody potrzebowano 0.086s, zaś dla metody Jacobiego 0.134s. Jak można zauważyć na wykresie w tym konkretnym przypadku, metoda Gaussa-Seidla od samego początku osiągała mniejsze wartości normy residuum oraz szybciej zbliżała się do wartości rzędu 10<sup>-9</sup>.
- c. Jak można zauważyć na wykresie, metody iteracyjne, wykorzystane do rozwiązania układu równań z nowymi wartościami macierzy A w zadaniu C, nie zbiegają. Norma residuum obu metod bardzo szybko rośnie z każdą iteracją. Dla metody Jacobiego osiąga wartość rzędu  $2.58126 \cdot 10^{126}$ , zaś dla Gaussa-Seidla już w 509 iteracji przekracza wartość rzędu  $10^{154}$ , osiągając w ten sposób wartość INF. Metody iteracyjne,dla podanej w omawianym zadaniu macierzy A, zdecydowanie się nie sprawdziły, z uwagi na zauważalny na wykresie brak zbieżności.
- d. W przeciwieństwie do metod iteracyjnych z zadania D, metoda faktoryzacji LU bardzo dobrze poradziła sobie z rozwiązaniem układu równań z zadania C. Obliczenia zajęły 0.257s, a norma residuum osiągnęła wartość  $1.83941 \cdot 10^{-13}$ . Metoda faktoryzacji LU jest znacznie dokładniejsza.
- e. Jak widać na wykresie załączonym w zadaniu E, wzrost czasu rozwiązywania układu równań w zależności do rozmiaru dla metody Jacobiego i Gaussa-Seidla jest bardzo podobny. Metoda Jacobiego w każdym przypadku zajmuje trochę więcej czasu niż metoda Gaussa-Seidla, jednak jest to maksymalnie dwa razy większa wartość. Inaczej jest dla metody faktoryzacji LU. Na wykresie można zauważyć drastyczny i nieporównywalny wzrost czasu rozwiązywania równań. Nagły i duży wzrost rozpoczyna się przy macierzy o rozmiarze około 2000 x 2000, gdzie metoda faktoryzacji LU potrzebuje do 10 razy więcej czasu, niż metody iteracyjne. Dla macierzy o rozmiarze 10000 x 10000 czas obliczeń osiąga ponad 9.5 minuty i jest ponad 27 razy większy niż czas potrzebny dla metody Jacobiego oraz ponad 45 razy większy niż dla metody Gaussa-Seidla. Metoda faktoryzacji LU potrzebuje więcej czasu na wykonanie obliczeń, jednak jak można zauważyć w tabeli jest dokładniejsza niż metody iteracyjne dla omawianych przypadków.