Path Planning in 3D Maps

3D Occupancy Grid

3D regular grid

- occupancy, free space, unknown
- x,y,z ~ metric Cartesian coordinates
- simple but memory intensive (predominant for 2D, less for 3D)

octree

- recursive decomposition in 8 cells
- each occupied cell further divided

3D Occupancy Grid

3D path-planning aerial & underwater systems

- just like in 2D
- roadmaps by adjacency
- A* or Dijkstra for planning

ground system

- drives on 2D surface
- down-project 3D to 2D or 2.5D

3D Occupancy Grid & Octree

Volumetric Representations

- 3D regular grid
 - simple but memory intensive
 - predominant for 2D, less for 3D
- octree
 - recursive decomposition in 8 cells
 - each occupied cell further divided
 - compact representation
 - but not straightforward to use for path-planning
 - can use adjacency and cell centers
 - for roadmap generation and A*
 - but does not lead to shortest paths (consider a large empty volume)

3D Surface Models

- in contrast to volumetric (grid or octree)
- surface representations, e.g.,
 - generate meshes from points
 - or fit (larger) surfaces, e.g., planes into the raw data of range sensors (point cloud)

Sampling-based Path Planning

aka Randomized Graph Search

- maps can get large in 3D
 - and even already in 2D
 - especially for grids, and even quad/octrees
- plus even more so for multiple DoFs
 - robot-arms, bio-informatics, etc.
 - i.e., when planning in high-dimensional C-space
- => very large search space

also, how to handle surface representations?

Example: Bioinformatics

- motion planning with many DoF
- search whether there is a configuration of a molecule
- that "fits" to an other molecule (e.g., for drug design)

Start with empty R=(V,E)

Generate a random free location c and add to V

Choose a subset V_c of candidate neighbors around c

Try to connect c to each of selected nodes in V_c

- select only the nodes not graph-connected to c
- use maybe a local planner

Add the edge found to E

Repeat the above until satisfied

obstacles

Configurations are sampled by picking coordinates at random

Configurations are sampled by picking coordinates at random

Sampled configurations are tested for collision

The collision-free configurations are retained as milestones

Each milestone is linked by straight paths to its nearest neighbors

Remove paths with collisions

The collision-free links are retained as local paths to form the PRM

The start and goal configurations are included as milestones

The PRM is searched for a path from s to g

PRM & Gridmaps

- "in free space?" check
 - trivial: corresponding cell marked *free* or not
 - note: most non-free cells of a volume marked as unknown
- straight line collisions
 - Bresenham line algorithm
- or use of local path-plan
 - e.g., A* in bounded volume

PRM & Surface Representations

- straight line collisions
 - with surfaces (polygons or meshes) are "easy" to check
 - i.e., part of "standard"
 computational geometry
- "in free space?" check
 - slightly more tricky
 - requires in- and outside of the surfaces (via surface normal)

(but both aspects out of scope of this lecture)

Rapidly Exploring Random Tree (RRT)

basic algorithm:

- 1. start with the initial configuration as root of tree
- 2. pick a random state in the configuration space
- 3. find the closest node in the tree
- 4. extend that node toward the state if possible
- 5. goto 2

(note: many variations exist)

Rapidly Exploring Random Tree (RRT)

Obstacle Space Revisited

Obstacle-Space

path-planning so far

- mobile systems
- with simple geometries
- i.e., bounding sphere for obstacle growing
- moving in 2D or 3D

what about complex geometries, respectively complex motions?

Piano Mover's Problem

object shape matters in path-planning

simple obstacle growing will not work in this case

Configuration Space (C-Space)

[re-cap]

partitioned into

- free configurations (aka free space): robot and obstacles do not overlap
- contact configurations (aka contact space): robot and obstacles touch
- blocked configurations (aka obstacle space): robot and obstacles overlap

Obstacle Space

C-obstacles can get quite tricky

- option1: general (simple) approach
 - discretize DoF & enumerate them
 - check for collision for each configuration
- option2: Minkowski sum
 - works for rigid bodies in 2D and 3D
 - under translations

$$A \oplus B = \{a+b \mid a \in A, b \in B\}$$

A, B sets a, b vectors

$$A \oplus B = \{a+b \mid a \in A, b \in B\}$$

$$A \oplus B = \{a+b \mid a \in A, b \in B\}$$

Minkowski difference

$$A \ominus B = \{a - b \mid a \in A, b \in B\}$$
$$= A \oplus (-B)$$

$$-B = \{-b \mid b \in B\}$$

Tracing Out Collision Possibilities

Minkowski Difference

C-obstacle = obstacle minus rigid body (can be efficiently computed for polygons)

What about rotations?

- discretize rotations
- compute Minkowski diff for each angle

Generating C-Obstacle can be tough...

- methods exist including rotations and kinematic chains (multiple links & joints like robot arms)
- but computational complexity is an issue
- hence often Randomized Graph Search
 - e.g., PRM or RRT
 - with geometric collision tests of configurations in Cartesian space (e.g., via computational geometry)