Matrix Algebra

2.1

- If A is an $m \times n$ matrix—that is, a matrix with m rows and n columns—then the scalar entry in the ith row and jth column of A is denoted by a_{ij} and is called the (i, j)-entry of A. See the figure below.
- Each column of *A* is a list of *m* real numbers, which identifies a vector in \square^m .

Matrix notation.

• The columns are denoted by $\mathbf{a}_1, \dots, \mathbf{a}_n$, and the matrix A is written as

 $A = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}.$

- The number a_{ij} is the *i*th entry (from the top) of the *j*th column vector \mathbf{a}_i .
- The **diagonal entries** in an $m \times n$ matrix $A = \lfloor a_{ij} \rfloor$ are $a_{11}, a_{22}, a_{33}, \ldots$, and they form the **main diagonal** of A.
- A diagonal matrix is a sequence $n \times m$ matrix whose nondiagonal entries are zero.
- An example is the $n \times n$ identity matrix, I_n .

- An $m \times n$ matrix whose entries are all zero is a **zero** matrix and is written as 0.
- The two matrices are **equal** if they have the same size (*i.e.*, the same number of rows and the same number of columns) and if their corresponding columns are equal, which amounts to saying that their corresponding entries are equal.
- If A and B are $m \times n$ matrices, then the sum A + B is the $m \times n$ matrix whose columns are the sums of the corresponding columns in A and B.

- Since vector addition of the columns is done entrywise, each entry in A + B is the sum of the corresponding entries in A and B.
- The sum A + B is defined only when A and B are the same size.

• Example 1: Let
$$A = \begin{bmatrix} 4 & 0 & 5 \\ -1 & 3 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 5 & 7 \end{bmatrix},$$

and
$$C = \begin{bmatrix} 2 & -3 \\ 0 & 1 \end{bmatrix}$$
. Find $A + B$ and $A + C$.

• **Solution:**
$$A + B = \begin{bmatrix} 5 & 1 & 6 \\ 2 & 8 & 9 \end{bmatrix}$$
 but $A + C$ is not

defined because A and C have different sizes.

- If r is a scalar and A is a matrix, then the scalar multiple rA is the matrix whose columns are r times the corresponding columns in A.
- **Theorem 1:** Let A, B, and C be matrices of the same size, and let r and s be scalars.

a.
$$A + B = B + A$$

b.
$$(A+B)+C = A+(B+C)$$

c. $A+0=A$
d. $r(A+B) = rA + rB$
e. $(r+s)A = rA + sA$
f. $r(sA) = (rs)A$

Each quantity in Theorem 1 is verified by showing that the matrix on the left side has the same size as the matrix on the right and that corresponding columns are equal.

- When a matrix B multiplies a vector \mathbf{x} , it transforms \mathbf{x} into the vector $B\mathbf{x}$.
- If this vector is then multiplied in turn by a matrix A, the resulting vector is A ($B\mathbf{x}$). See the Fig. below.

Multiplication by B and then A.

 Thus A (Bx) is produced from x by a composition of mappings—the linear transformations. • Our goal is to represent this composite mapping as multiplication by a single matrix, denoted by AB, so that A(Bx)=(AB)x. See the figure below.

Multiplication by *AB*.

• If A is $m \times n$, B is $n \times p$, and \mathbf{x} is in \square^p , denote the columns of B by $\mathbf{b}_1, \ldots, \mathbf{b}_p$ and the entries in \mathbf{x} by $\mathbf{x}_1, \ldots, \mathbf{x}_p$.

Then

$$B\mathbf{x} = x_1 \mathbf{b}_1 + \dots + x_p \mathbf{b}_p$$

• By the linearity of multiplication by A,

$$A(Bx) = A(x_1b_1) + ... + A(x_pb_p)$$
$$= x_1Ab_1 + ... + x_pAb_p$$

- The vector $A(B\mathbf{x})$ is a linear combination of the vectors $A\mathbf{b}_1, \ldots, A\mathbf{b}_p$, using the entries in \mathbf{x} as weights.
- In matrix notation, this linear combination is written as

$$A(B\mathbf{x}) = \begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 & \cdots & A\mathbf{b}_p \end{bmatrix} \mathbf{x}.$$

- Thus multiplication by $Ab_1 Ab_2 \cdots Ab_p$ transforms **x** into $A(B\mathbf{x})$.
- **Definition:** If A is an $m \times n$ matrix, and if B is an $n \times p$ matrix with columns $\mathbf{b}_1, ..., \mathbf{b}_p$, then the product AB is the $m \times p$ matrix whose columns are $A\mathbf{b}_1, ..., A\mathbf{b}_p$.
- That is,

$$AB = A[b_1 \quad b_2 \quad \cdots \quad b_p] = [Ab_1 \quad Ab_2 \quad \cdots \quad Ab_p]$$

• Multiplication of matrices corresponds to composition of linear transformations.

• Example 2: Compute AB, where $A = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix}$ and $\begin{bmatrix} 4 & 3 & 0 \end{bmatrix}$

$$B = \begin{bmatrix} 4 & 3 & 9 \\ 1 & -2 & 3 \end{bmatrix}.$$

• Solution: Write $B = [b_1 \quad b_2 \quad b_3]$, and compute:

- Each column of *AB* is a linear combination of the columns of *A* using weights from the corresponding column of *B*.
- Row—column rule for computing AB
- If a product AB is defined, then the entry in row i and column j of AB is the sum of the products of corresponding entries from row i of A and column j of B.
- If $(AB)_{ij}$ denotes the (i, j)-entry in AB, and if A is an $m \times n$ matrix, then

$$(AB)_{ij} = a_{i1}b_{1j} + ... + a_{in}b_{nj}$$

- Theorem 2: Let A be an $m \times n$ matrix, and let B and C have sizes for which the indicated sums and products are defined.
 - a. A(BC) = (AB)C (associative law of multiplication)
 - b. A(B+C) = AB + AC (left distributive law)
 - c. (B+C)A = BA + CA (right distributive law)
 - d. r(AB) = (rA)B = A(rB) for any scalar r
 - e. $I_m A = A = AI_n$ (identity for matrix multiplication)

• **Proof:** Property (a) follows from the fact that matrix multiplication corresponds to composition of linear transformations (which are functions), and it is known that the composition of functions is associative.

• Let
$$C = \begin{bmatrix} c_1 & \cdots & c_p \end{bmatrix}$$

By the definition of matrix multiplication,

$$BC = \begin{bmatrix} Bc_1 & \cdots & Bc_p \end{bmatrix}$$

$$A(BC) = \begin{bmatrix} A(Bc_1) & \cdots & A(Bc_p) \end{bmatrix}$$

The definition of AB makes A(Bx) = (AB)x for all x, so

$$A(BC) = [(AB)c_1 \cdots (AB)c_p] = (AB)C$$

- The left-to-right order in products is critical because *AB* and *BA* are usually not the same.
- Because the columns of AB are linear combinations of the columns of A, whereas the columns of BA are constructed from the columns of B.
- The position of the factors in the product *AB* is emphasized by saying that *A* is *right-multiplied* by *B* or that *B* is *left-multiplied* by *A*.

If AB = BA, we say that A and B commute with one another.

Warnings:

- 1. In general, $AB \neq BA$.
- 2. The cancellation laws do *not* hold for matrix multiplication. That is, if AB = AC, then it is *not* true in general that B = C.
- 3. If a product AB is the zero matrix, you cannot conclude in general that either A = 0 or B = 0.

• If A is an $n \times n$ matrix and if k is a positive integer, then A^k denotes the product of k copies of A:

$$A^k = \underbrace{A \cdots A}_k$$

- If A is nonzero and if x is in \square^n , then A^k x is the result of left-multiplying x by A repeatedly k times.
- If k = 0, then A^0 **x** should be **x** itself.
- Thus A^0 is interpreted as the identity matrix.

• Given an $m \times n$ matrix A, the **transpose** of A is the $n \times m$ matrix, denoted by A^T , whose columns are formed from the corresponding rows of A.

Theorem 3: Let *A* and *B* denote matrices whose sizes are appropriate for the following sums and products.

a.
$$(A^{T})^{T} = A$$

b.
$$(A+B)^{T} = A^{T} + B^{T}$$

c. For any scalar
$$r, (rA)^T = rA^T$$

$$\mathbf{d}. \ (AB)^{\mathrm{T}} = B^{\mathrm{T}}A^{\mathrm{T}}$$

• The transpose of a product of matrices equals the product of their transposes in the *reverse* order.

Matrix Algebra

2.2

• An $n \times n$ matrix A is said to be invertible if there is an $n \times n$ matrix C such that

$$CA = I$$
 and $AC = I$

where $I = I_n$, the $n \times n$ identity matrix.

- In this case, C is an inverse of A.
- In fact, C is uniquely determined by A, because if B were another inverse of A, then

$$B = BI = B(AC) = (BA)C = IC = C.$$

• This unique inverse is denoted by A^{-1} , so that

$$A^{-1}A = I$$
 and $AA^{-1} = I$.

■ **Theorem 4:** Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. If $ad - bc \neq 0$, then

A is invertible and

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

If ad - bc = 0, then A is not invertible.

- The quantity ad bc is called the determinant of A, and we write $\det A = ad bc$
- This theorem says that a 2×2 matrix A is invertible if and only if det $A \neq 0$.

- **Theorem 5:** If A is an invertible $n \times n$ matrix, then for each \mathbf{b} in \mathbf{b} , the equation $\mathbf{a} = \mathbf{b}$ the unique solution $\mathbf{a} = \mathbf{a}^{-1} \mathbf{b}$.
- **Proof:** Take any **b** in \square ⁿ.
- A solution exists because if $A^{-1}b$ is substituted for x, then $Ax = A(A^{-1}b) = (AA^{-1})b = Ib = b$.
- So $A^{-1}b$ is a solution.
- To prove that the solution is unique, show that if \mathbf{u} is any solution, then \mathbf{u} must be $A^{-1}\mathbf{b}$.
- If Au = b, we can multiply both sides by A^{-1} and obtain $A^{-1}Au = A^{-1}b$, $Iu = A^{-1}b$, and $u = A^{-1}b$.

Theorem 6:

a. If A is an invertible matrix, then A^{-1} is invertible and

$$(A^{-1})^{-1} = A$$

- b. If A and B are $n \times n$ invertible matrices, then so is AB, and the inverse of AB is the product of the inverses of A and B in the reverse order. That is, $(AB)^{-1} = B^{-1}A^{-1}$
- c. If A is an invertible matrix, then so is A^T , and the inverse of A^T is the transpose of A^{-1} . That is, $(A^T)^{-1} = (A^{-1})^T$

• **Proof:** To verify statement (a), find a matrix *C* such that

$$A^{-1}C = I$$
 and $CA^{-1} = I$

- These equations are satisfied with A in place of C. Hence A^{-1} is invertible, and A is its inverse.
- Next, to prove statement (b), compute:

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I$$

- A similar calculation shows that $(B^{-1}A^{-1})(AB) = I$.
- For statement (c), use Theorem 3(d), read from right to left, $(A^{-1})^T A^T = (AA^{-1})^T = I^T = I$.
- Similarly, $A^{T}(A^{-1})^{T} = I^{T} = I$.

- Hence A^T is invertible, and its inverse is $(A^{-1})T$.
- The generalization of Theorem 6(b) is as follows: The product of $n \times n$ invertible matrices is invertible, and the inverse is the product of their inverses in the reverse order.
- An invertible matrix A is row equivalent to an identity matrix, and we can find A^{-1} by watching the row reduction of A to I.
- An **elementary matrix** is one that is obtained by performing a single elementary row operation on an identity matrix.

Example 1: Let
$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$$
, $E_2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$,

$$E_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix}, A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

Compute E_1A , E_2A , and E_3A , and describe how these products can be obtained by elementary row operations on A.

Solution: Verify that
$$E_{1}A = \begin{bmatrix} a & b & c \\ d & e & f \\ g-4a & h-4b & i-4c \end{bmatrix}, E_{2}A = \begin{bmatrix} d & e & f \\ a & b & c \\ g & h & i \end{bmatrix},$$

$$E_{3}A = \begin{bmatrix} a & b & c \\ d & e & f \\ 5g & 5h & 5i \end{bmatrix}.$$

• Addition of -4 times row 1 of A to row 3 produces E_1A .

- An interchange of rows 1 and 2 of A produces E_2A , and multiplication of row 3 of A by 5 produces E_3A .
- Left-multiplication by E_1 in Example 1 has the same effect on any $3 \times n$ matrix.
- Since $E_1 \cdot I = E_1$, we see that E_1 itself is produced by this same row operation on the identity.

- Example 1 illustrates the following general fact about elementary matrices.
- If an elementary row operation is performed on an $m \times n$ matrix A, the resulting matrix can be written as EA, where the $m \times m$ matrix E is created by performing the same row operation on I_m .
- Each elementary matrix *E* is invertible. The inverse of *E* is the elementary matrix of the same type that transforms *E* back into *I*.

- **Theorem 7:** An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_n , and in this case, any sequence of elementary row operations that reduces A to I_n also transforms I_n into A^{-1} .
- **Proof:** Suppose that *A* is invertible.
- Then, since the equation Ax = b has a solution for each **b** (Theorem 5), A has a pivot position in every row.
- Because A is square, the n pivot positions must be on the diagonal, which implies that the reduced echelon form of A is I_n . That is, $A \square I_n$.

- Now suppose, conversely, that $A \square I_n$.
- Then, since each step of the row reduction of A corresponds to left-multiplication by an elementary matrix, there exist elementary matrices $E_1, ..., E_p$ such that

$$A \Box E_{1}A \Box E_{2}(E_{1}A) \Box ... \Box E_{p}(E_{p-1}...E_{1}A) = I_{n}.$$

That is,

$$E_p...E_1 A = I_n \qquad ----(1)$$

• Since the product $E_p...E_1$ of invertible matrices is invertible, (1) leads to

$$(E_p...E_1)^{-1}(E_p...E_1)A = (E_p...E_1)^{-1}I_n$$

$$A = (E_p ... E_1)^{-1}$$
.

A^{-1}

• Thus A is invertible, as it is the inverse of an invertible matrix (Theorem 6). Also,

$$A^{-1} = [(E_p...E_1)^{-1}]^{-1} = E_p...E_1.$$

- Then $A^{-1} = E_p ... E_1 \cdot I_n$, which says that A^{-1} results from applying $E_1, ..., E_p$ successively to I_n .
- This is the same sequence in (1) that reduced A to I_n .
- Row reduce the augmented matrix $\begin{bmatrix} A & I \end{bmatrix}$. If A is row equivalent to I, then $\begin{bmatrix} A & I \end{bmatrix}$ is row equivalent to $\begin{bmatrix} I & A^{-1} \end{bmatrix}$. Otherwise, A does not have an inverse.

 A^{-1}

Example 2: Find the inverse of the matrix

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{bmatrix}, \text{ if it exists.}$$

Solution:

$$\begin{bmatrix} A & I \end{bmatrix} = \begin{bmatrix} 0 & 1 & 2 & 1 & 0 & 0 \\ 1 & 0 & 3 & 0 & 1 & 0 \\ 4 & -3 & 8 & 0 & 0 & 1 \end{bmatrix} \Box \begin{bmatrix} 1 & 0 & 3 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 4 & -3 & 8 & 0 & 0 & 1 \end{bmatrix}$$

 A^{-1}

$$\begin{bmatrix}
1 & 0 & 3 & 0 & 1 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
0 & -3 & -4 & 0 & -4 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 3 & 0 & 1 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
0 & 0 & 2 & 3 & -4 & 1
\end{bmatrix}$$

© 2012 Pearson Education, Inc.

A^{-1}

• Theorem 7 shows, since $A \sqcup I$, that A is invertible, and

$$A^{-1} = \begin{bmatrix} -9/2 & 7 & -3/2 \\ -2 & 4 & -1 \\ 3/2 & -2 & 1/2 \end{bmatrix}.$$

Now, check the final answer.
$$AA^{-1} = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{bmatrix} \begin{bmatrix} -9/2 & 7 & -3/2 \\ -2 & 4 & -1 \\ 3/2 & -2 & 1/2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

It is not necessary to check that $A^{-1}A = I$ since A is invertible.

- Denote the columns of I_n by $\mathbf{e}_1, \dots, \mathbf{e}_n$.
- Then row reduction of $\begin{bmatrix} A & I \end{bmatrix}$ to $\begin{bmatrix} I & A^{-1} \end{bmatrix}$ can be viewed as the simultaneous solution of the n systems

$$Ax = e_1, Ax = e_2, ..., Ax = e_n$$
 ----(2)

where the "augmented columns" of these systems have all been placed next to *A* to form

$$\begin{bmatrix} A & \mathbf{e}_1 & \mathbf{e}_2 & \cdots & \mathbf{e}_n \end{bmatrix} = \begin{bmatrix} A & I \end{bmatrix}.$$

• The equation $AA^{-1} = I$ and the definition of matrix multiplication show that the columns of A^{-1} are precisely the solutions of the systems in (2).

Matrix Algebra

2.3

- Theorem 8: Let A be a square $n \times n$ matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true or all false.
 - a. A is an invertible matrix.
 - b. A is row equivalent to the $n \times n$ identity matrix.
 - c. A has n pivot positions.
 - d. The equation Ax = 0 has only the trivial solution.
 - e. The columns of A form a linearly independent

- f. The linear transformation $x \mapsto Ax$ is one-to-one.
- g. The equation Ax = b has at least one solution for each b in \square ".
- h. The columns of *A* span \square ".
- i. The linear transformation $x \mapsto Ax$ maps \square^n onto \square^n .
- j. There is an $n \times n$ matrix C such that CA = I.
- k. There is an $n \times n$ matrix D such that AD = I.
- 1. A^T is an invertible matrix.

- First, we need some notation.
- If the truth of statement (a) always implies that statement (j) is true, we say that (a) *implies* (j) and write (a) \Rightarrow (j).
- The proof will establish the "circle" of implications as shown in the following figure.

• If any one of these five statements is true, then so are the others.

- Finally, the proof will link the remaining statements of the theorem to the statements in this circle.
- **Proof:** If statement (a) is true, then A^{-1} works for C in (j), so (a) \Rightarrow (j).
- Next, $(j) \Rightarrow (d)$.
- Also, $(d) \Rightarrow (c)$.
- If A is square and has n pivot positions, then the pivots must lie on the main diagonal, in which case the reduced echelon form of A is I_n .
- Thus $(c) \Rightarrow (b)$.
- Also, $(b) \Rightarrow (a)$.

- This completes the circle in the previous figure.
- Next,(a) \Rightarrow (k) because A^{-1} works for D.
- Also, $(k) \Rightarrow (g)$ and $(g) \Rightarrow (a)$.
- So (k) and (g) are linked to the circle.
- Further, (g), (h), and (i) are equivalent for any matrix.
- Thus, (h) and (i) are linked through (g) to the circle.
- Since (d) is linked to the circle, so are (e) and (f), because (d), (e), and (f) are all equivalent for *any* matrix A.
- Finally, $(a) \Rightarrow (1)$ and $(1) \Rightarrow (a)$.
- This completes the proof.

- Theorem 8 could also be written as "The equation Ax = b has a unique solution for each **b** in \square^n ."
- This statement implies (b) and hence implies that *A* is invertible.
- The following fact follows from Theorem 8. Let A and B be square matrices. If AB = I, then A and B are both invertible, with $B = A^{-1}$ and $A = B^{-1}$.
- The Invertible Matrix Theorem divides the set of all $n \times n$ matrices into two disjoint classes: the invertible (nonsingular) matrices, and the noninvertible (singular) matrices.

- Each statement in the theorem describes a property of every $n \times n$ invertible matrix.
- The *negation* of a statement in the theorem describes a property of every $n \times n$ singular matrix.
- For instance, an $n \times n$ singular matrix is *not* row equivalent to I_n , does *not* have n pivot position, and has linearly *dependent* columns.

Example 1: Use the Invertible Matrix Theorem to decide if *A* is invertible:

$$A = \begin{bmatrix} 1 & 0 & -2 \\ 3 & 1 & -2 \\ -5 & -1 & 9 \end{bmatrix}$$

Solution:

$$A \Box \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 4 \\ 0 & -1 & -1 \end{bmatrix} \Box \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 4 \\ 0 & 0 & 3 \end{bmatrix}$$

- So A has three pivot positions and hence is invertible, by the Invertible Matrix Theorem, statement (c).
- The Invertible Matrix Theorem *applies only to square matrices*.
- For example, if the columns of a 4×3 matrix are linearly independent, we cannot use the Invertible Matrix Theorem to conclude anything about the existence or nonexistence of solutions of equation of the form Ax = b.

- Matrix multiplication corresponds to composition of linear transformations.
- When a matrix A is invertible, the equation $A^{-1}Ax = x$ can be viewed as a statement about linear transformations. See the following figure.

 A^{-1} transforms $A\mathbf{x}$ back to \mathbf{x} .

• A linear transformation $T: \square^n \to \square^n$ is said to be invertible if there exists a function $S: \square^n \to \square^n$ such that

$$S(T(\mathbf{x})) = \mathbf{x}$$
 for all \mathbf{x} in \square^n ----(1)
 $T(S(\mathbf{x})) = \mathbf{x}$ for all \mathbf{x} in \square^n ----(2)

Theorem 9: Let $T: \Box^n \to \Box^n$ be a linear transformation and let A be the standard matrix for T. Then T is invertible if and only if A is an invertible matrix. In that case, the linear transformation S given by $S(\mathbf{x}) = A^{-1}\mathbf{x}$ is the unique function satisfying equation (1) and (2).

- **Proof:** Suppose that *T* is invertible.
- The (2) shows that T is onto \square^n , for if \mathbf{b} is in \square^n and $\mathbf{x} = S(\mathbf{b})$, then $T(\mathbf{x}) = T(S(\mathbf{b})) = \mathbf{b}$, so each \mathbf{b} is in the range of T.
- Thus *A* is invertible, by the Invertible Matrix Theorem, statement (i).
- Conversely, suppose that A is invertible, and let $S(\mathbf{x}) = A^{-1}\mathbf{x}$. Then, S is a linear transformation, and S satisfies (1) and (2).
- For instance, $S(T(x)) = S(Ax) = A^{-1}(Ax) = x$.
- Thus, T is invertible.