EE6367: Topics in Data Storage and Communications

2023

Lecture 7: 20 September 2023

Instructor: Shashank Vatedka Scribe: Gautam Singh

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

7.1 Quantization of Vectors

In this situation, we must quantize high-dimensional vectors $\mathbf{x} \in \mathbb{R}^d$ using k bits, and recover a lossy version $\hat{\mathbf{X}}$. Further, we assume that $\|\mathbf{x}\|$ is upper bounded.

We use the algorithms for quantization of real numbers as follows. Define

$$x_{\min} \triangleq \min_{1 \le i \le d} \mathbf{x}^{\top} \mathbf{e_i} \tag{7.1}$$

$$x_{\max} \triangleq \max_{1 \leqslant i \leqslant d} \mathbf{x}^{\top} \mathbf{e_i}. \tag{7.2}$$

Now, since each coordinate lies between x_{\min} and x_{\max} , we can apply the previous algorithms. For example, using deterministic rounding,

$$Cost = \max_{\|\mathbf{x}\| \le r} \mathbb{E}\left[\left\|\hat{\mathbf{X}} - \mathbf{x}\right\|^2\right]$$
 (7.3)

$$= \max_{\|\mathbf{x}\| \leqslant r} \sum_{i=1}^{d} \mathbb{E}\left[\left(\hat{X}_i - x_i \right)^2 \right]$$
 (7.4)

$$= \frac{d(x_{\text{max}} - x_{\text{min}})^2}{2^{2k+2}} \leqslant \frac{d(2r^2)}{2^{2k+2}}$$
(7.5)

In general, for any scalar quantizer with MSE m, the cost is

$$Cost = 2r^2 dm (7.6)$$

The time complexity of applying such algorithms is $\mathcal{O}(dT)$, where T is the time complexity for applying the scalar version of the algorithm, usually a constant-time algorithm. Thus, the time complexity usually grows linearly with d.

7.2 Lower Bound on Cost for Deterministic Algorithms

Assume in this situation that $k = \Theta(d) = d\alpha$. Since the algorithm is deterministic, each k-bit sequence represents one point in space. Denote the **codebook** of the chosen point vectors and their corresponding k-bit

sequence as \mathbb{C} . Clearly, given \mathbb{C} , the optimal encoding rule corresponds to searching for nearest neighbours,

$$\operatorname{Enc}\left(\mathbf{x}\right) = \underset{\mathbf{y} \in \mathbb{C}}{\operatorname{arg\,min}} \left\|\mathbf{x} - \mathbf{y}\right\|. \tag{7.7}$$

Denote the cost of a codebook $\mathbb C$ as

$$\beta^{2} \triangleq \text{Cost} = \max_{\mathbf{x} \in \mathcal{B}(r)} \min_{\mathbf{y} \in \mathbb{C}} \|\mathbf{x} - \mathbf{y}\|^{2}.$$
 (7.8)

For every $\mathbf{x} \in \mathcal{B}(r)$, it follows that there exists at least one codeword at distance at most β . Hence, the union of the small balls of radius β covers the larger ball of radius r. Thus,

$$\bigcup_{\mathbf{y} \in \mathbb{C}} \mathcal{B}(\mathbf{y}, \beta) \supset \mathcal{B}(\mathbf{0}, r)$$
(7.9)

$$|\mathbb{C}| \geqslant \frac{\frac{\pi^{\frac{d}{2}}r^{d}}{\Gamma(\frac{d}{2}+1)}}{\frac{\pi^{\frac{d}{2}}\beta^{d}}{\Gamma(\frac{d}{2}+1)}} = \left(\frac{r}{\beta}\right)^{d}$$

$$2^{d\alpha} \geqslant \left(\frac{r}{\beta}\right)^{d}$$

$$\beta^{2} \geqslant \frac{r^{2}}{2^{2\alpha}}$$

$$(7.11)$$

$$2^{d\alpha} \geqslant \left(\frac{r}{\beta}\right)^d \tag{7.11}$$

$$\beta^2 \geqslant \frac{r^2}{2^{2\alpha}} \tag{7.12}$$

Comparing with (7.5), we see that (7.12) is better by a factor of d.