Reinforcement Learning for Business, Economics, and Social Sciences

Unit 1-1: Multi-Armed Bandits

Davud Rostam-Afschar (Uni Mannheim)

How to assign treatments adaptively?

- Randomized controlled trials gold standard of causal inference
- ► Adaptive experiments allow "earning while learning"
- ▶ Push to replace non-adaptive randomized trials with bandits

- Randomized controlled trials gold standard of causal inference
- Adaptive experiments allow "earning while learning"
- Push to replace non-adaptive randomized trials with bandits
 - ► In medicine, economics, political science, survey methods research, education, psychology, ...
 - Practitioners use bandit algorithms

- Randomized controlled trials gold standard of causal inference
- Adaptive experiments allow "earning while learning"
- Push to replace non-adaptive randomized trials with bandits
 - ► In medicine, economics, political science, survey methods research, education, psychology, ...
 - Practitioners use bandit algorithms
 - Can improve outcomes for participants (optimize regret)
 - Can improve policies learned at the end of trial (best-arm identification)

- Randomized controlled trials gold standard of causal inference
- Adaptive experiments allow "earning while learning"
- Push to replace non-adaptive randomized trials with bandits
 - ► In medicine, economics, political science, survey methods research, education, psychology, ...
 - Practitioners use bandit algorithms
 - ► Can improve outcomes for participants (optimize regret)
 - Can improve policies learned at the end of trial (best-arm identification)
- Some popular algorithms

- Randomized controlled trials gold standard of causal inference
- Adaptive experiments allow "earning while learning"
- Push to replace non-adaptive randomized trials with bandits
 - ► In medicine, economics, political science, survey methods research, education, psychology, ...
 - Practitioners use bandit algorithms
 - ► Can improve outcomes for participants (optimize regret)
 - Can improve policies learned at the end of trial (best-arm identification)
- Some popular algorithms
 - \triangleright ε -first

- Randomized controlled trials gold standard of causal inference
- Adaptive experiments allow "earning while learning"
- Push to replace non-adaptive randomized trials with bandits
 - ► In medicine, economics, political science, survey methods research, education, psychology, ...
 - Practitioners use bandit algorithms
 - ► Can improve outcomes for participants (optimize regret)
 - Can improve policies learned at the end of trial (best-arm identification)
- Some popular algorithms
 - \triangleright ε -first
 - ightharpoonup ε -greedy

- Randomized controlled trials gold standard of causal inference
- Adaptive experiments allow "earning while learning"
- Push to replace non-adaptive randomized trials with bandits
 - ► In medicine, economics, political science, survey methods research, education, psychology, ...
 - Practitioners use bandit algorithms
 - ► Can improve outcomes for participants (optimize regret)
 - Can improve policies learned at the end of trial (best-arm identification)
- Some popular algorithms
 - \triangleright ε -first
 - \triangleright ε -greedy
 - Upper Confidence Bound

- Randomized controlled trials gold standard of causal inference
- Adaptive experiments allow "earning while learning"
- Push to replace non-adaptive randomized trials with bandits
 - ► In medicine, economics, political science, survey methods research, education, psychology, ...
 - Practitioners use bandit algorithms
 - ► Can improve outcomes for participants (optimize regret)
 - Can improve policies learned at the end of trial (best-arm identification)
- Some popular algorithms
 - \triangleright ε -first
 - \triangleright ε -greedy
 - Upper Confidence Bound
 - Thompson sampling

Obs	Selected Arm	Reward
1	А	0
2	В	0
3	Α	1
4	В	0
5	Α	0
6	В	1
7	Α	1
8	В	0
9	Α	0
10	Α	1
11	Α	1
12	В	0
13	Α	1
14	Α	0
15	Α	1
16	В	0

- Does arm A or arm B perform better?
- ▶ Which arm to play in next trial (round 17)?

Multi-Armed Bandits as a Reinforcement Learning Problem

Goal: Learn to choose actions that maximize rewards

What Are Multi-Armed Bandits?

- ► A sequential decision-making problem
- ▶ Agent chooses among K options ("arms") repeatedly
- ► Each arm gives an unknown reward
- Objective: Maximize total reward (or minimize regret)
- Core tradeoff: Learning vs. Earning

Microsoft Research

What Are Multi-Armed Bandits?

- ► A sequential decision-making problem
- ▶ Agent chooses among K options ("arms") repeatedly
- ► Each arm gives an unknown reward
- Objective: Maximize total reward (or minimize regret)
- Core tradeoff: Learning vs. Earning

Microsoft Research

But how to balance exploration and exploitation?

Bandit Algorithms

The Exploration/Exploitation Dilemma

▶ The action-value is the true but unknown mean reward for action a:

$$q(a) = \mathbb{E}[R_t \mid A_t = a], \quad \forall a \in \{1, \dots, k\}$$

Estimate expected return:

$$Q_t(a) pprox q(a), \quad orall a$$
 (action-value estimates)

▶ Define the greedy action at time *t* as:

$$A_t^* = \arg\max_a Q_t(a)$$

- ▶ If $A_t = A_t^*$ then you are **exploiting**
- ▶ If $A_t \neq A_t^*$ then you are **exploring**

Regret

► The optimal value is:

$$r^* = q(a^*) = \max_{a \in \mathcal{A}} q(a)$$

The regret is the opportunity loss for one step:

$$\mathsf{loss}_t = \mathbb{E}[r^* - q(a_t)]$$

▶ The total regret is the total opportunity loss:

$$\mathsf{Loss}_{\mathcal{T}} = \sum_{t=1}^{T} \mathsf{loss}_{t} = \mathbb{E}\left[\sum_{t=1}^{T} r^{*} - q(a_{t})\right]$$

9

Obs t	Selected Arm a _t	Reward r_t
1	А	0
	В	0
2 3 4 5	Α	1
4	В	0
5	Α	0
6	В	1
7	Α	1
8	В	0
9	Α	0
10	Α	1
11	Α	1
12	В	0
13	Α	1
14	Α	0
15	Α	1
16	В	0

Obs t	Selected Arm a_t	Reward r_t
1	А	0
2	В	0
3	Α	1
4 5	В	0
5	Α	0
6	В	1
7	Α	1
8	В	0
9	Α	0
10	A	1
11	A	1
12	В	0
13	A	1
14	Α	0
15	Α	1
16	В	0

1. Compute counts & empirical means

▶ Total pulls: T = 16

• Arm A:
$$N_{16}(A) = 10$$
, $\sum_{t:a_t=A} r_t = 6$

$$\implies q(A) = 6/10 = 0.6$$

Obs t	Selected Arm a_t	Reward r_t
1	А	0
2	В	0
3	Α	1
4 5	В	0
	Α	0
6	В	1
7	Α	1
8	В	0
9	Α	0
10	Α	1
11	Α	1
12	В	0
13	Α	1
14	Α	0
15	Α	1
16	В	0

1. Compute counts & empirical means

▶ Total pulls: T = 16

• Arm A:
$$N_{16}(A) = 10$$
, $\sum_{t:a_t=A} r_t = 6$

$$\implies q(A) = 6/10 = 0.6$$

• Arm B:
$$N_{16}(B) = 6$$
, $\sum_{t:a_t=B} r_t = 1$

$$\implies g(B) = 1/6 \approx 0.1667$$

Obs t	Selected Arm a_t	Reward r_t
1	А	0
2	В	0
1 2 3 4 5	Α	1
4	В	0
	Α	0
6	В	1
7 8	Α	1
	В	0
9	Α	0
10	Α	1
11	Α	1
12	В	0
13	Α	1
14	Α	0
15	Α	1
16	В	0

1. Compute counts & empirical means

▶ Total pulls: T = 16

• Arm A:
$$N_{16}(A) = 10$$
, $\sum_{t:a_t=A} r_t = 6$

$$\implies q(A) = 6/10 = 0.6$$

• Arm B:
$$N_{16}(B) = 6$$
, $\sum_{t:a_t=B} r_t = 1$

$$\implies q(B) = 1/6 \approx 0.1667$$

2. Identify the optimal arm and its mean

$$r^* = \max\{q(A), q(B)\} = 0.6$$

Obs t	Selected Arm a_t	Reward r_t
1	А	0
2	В	0
3	Α	1
4	В	0
5	Α	0
6	В	1
7	Α	1
8	В	0
9	Α	0
10	Α	1
11	Α	1
12	В	0
13	Α	1
14	Α	0
15	Α	1
16	В	0

3. Sum of per-round regrets

$$\mathsf{Loss}_{16} = \sum_{t=1}^{16} (r^* - q(a_t))$$

Obs t	Selected Arm a_t	Reward r_t
1	А	0
2	В	0
3	Α	1
4	В	0
5	Α	0
6	В	1
7	Α	1
8	В	0
9	Α	0
10	Α	1
11	Α	1
12	В	0
13	Α	1
14	Α	0
15	Α	1
16	В	0

3. Sum of per-round regrets

$$\mathsf{Loss}_{16} = \sum_{t=1}^{16} (r^* - q(a_t))$$

For
$$a_t = A$$
: $r^* - q(A) = 0.6 - 0.6 = 0$

Obs t	Selected Arm a_t	Reward r_t
1	Α	0
2	В	0
3	Α	1
4	В	0
5	Α	0
6	В	1
7	Α	1
8	В	0
9	Α	0
10	Α	1
11	Α	1
12	В	0
13	Α	1
14	Α	0
15	Α	1
16	В	0

3. Sum of per-round regrets

$$\mathsf{Loss}_{16} = \sum_{t=1}^{16} (r^* - q(a_t))$$

- For $a_t = A$: $r^* q(A) = 0.6 0.6 = 0$
- For $a_t = B$: $r^* - q(B) = 0.6 - 0.1667 \approx 0.4333$

Obs t	Selected Arm a_t	Reward r_t
1	Α	0
2	В	0
3	Α	1
4	В	0
5	Α	0
6	В	1
7	Α	1
8	В	0
9	Α	0
10	Α	1
11	Α	1
12	В	0
13	Α	1
14	Α	0
15	Α	1
16	В	0

3. Sum of per-round regrets

$$\mathsf{Loss}_{16} = \sum_{t=1}^{16} (r^* - q(a_t))$$

- For $a_t = A$: $r^* q(A) = 0.6 0.6 = 0$
- For $a_t = B$: $r^* - q(B) = 0.6 - 0.1667 \approx 0.4333$

Played 6 times:

$$\mathsf{Loss}_{16} = 6 \times 0.4333 \approx 2.6$$

Obs t	Selected Arm a_t	Reward r_t
1	А	0
2	В	0
3	Α	1
4	В	0
5	Α	0
6	В	1
7	Α	1
8	В	0
9	Α	0
10	Α	1
11	Α	1
12	В	0
13	Α	1
14	Α	0
15	Α	1
16	В	0

4. Sum of per-arm regrets

$$\sum_{a \in \{A,B\}} N_{16}(a)(r^* - q(a))$$

$$=10\times0+6\times0.4333\approx2.6$$

Regret Decomposition Lemma

- Number of times action a has been selected prior to time t $N_t(a) = \sum_{i=1}^{t-1} \mathbb{1}\{A_i = a\}$
- ► Total regret can be rewritten as:

$$\mathsf{Loss}_t = \mathbb{E}\left[\sum_{t=1}^T r^* - q(a_t)\right]$$
$$= \sum_{a \in \mathcal{A}} \mathbb{E}[N_t(a)](r^* - q(a))$$

- Regret comes from pulling suboptimal arms
- ▶ Each arm a contributes $(r^* q(a))$ for every time $N_t(a)$ it's chosen

t	Arm	Reward
1	Α	0
2	В	0
3	Α	1
4	В	0
5	Α	0
6	В	1
7	Α	1
8	В	0
9	Α	0
10	Α	1
11	Α	1
12	В	0
13	Α	1
14	Α	0
15	Α	1
16	В	0

t	Arm	Reward
1	А	0
2	В	0
3	Α	1
4	В	0
5	Α	0
6	В	1
7	Α	1
8	В	0
9	Α	0
10	Α	1
11	Α	1
12	В	0
13	Α	1
14	Α	0
15	Α	1
16	В	0

t	Arm	Reward	$\sum\nolimits_{i=1}^{n}R_{i}$	
1	А	0	0	
2	В	0		
2	Α	1	1	
4 5	В	0		
	Α	0	1	
6	В	1	_	
7	Α	1	2	
8	В	0		
9	Α	0	2	
10	Α	1	3	
11	Α	1	4	
12	В	0		
13	Α	1	5	
14	Α	0	5	
15	Α	1	6	
16	В	0	_	

t	Arm	Reward	$\sum\nolimits_{i=1}^{n}R_{i}$	n	
1	Α	0	0	1	
2	В	0	_		
3	Α	1	1	2	
4	В	0			
5	Α	0	1	3	
6	В	1			
7	Α	1	2	4	
8	В	0			
9	Α	0	2	5	
10	Α	1	3	6	
11	Α	1	4	7	
12	В	0			
13	Α	1	5	8	
14	Α	0	5	9	
15	Α	1	6	10	
16	В	0			

t	Arm	Reward	$\sum\nolimits_{i=1}^{n}R_{i}$	n	Q_n
1	А	0	0	1	0.00
2	В	0			
2	Α	1	1	2	0.50
4	В	0			
5	Α	0	1	3	0.33
6	В	1			
7	Α	1	2	4	0.50
8	В	0			
9	Α	0	2	5	0.40
10	Α	1	3	6	0.50
11	Α	1	4	7	0.57
12	В	0			
13	Α	1	5	8	0.63
14	Α	0	5	9	0.56
15	Α	1	6	10	0.60
16	В	0	_		

_						
t	Arm	Reward	$\sum\nolimits_{i=1}^{n}R_{i}$	n	Q_n	Q_{n-1}
1	А	0	0	1	0.00	0.00
2	В	0				
3	Α	1	1	2	0.50	0.00
4	В	0	_			
5	Α	0	1	3	0.33	0.50
6	В	1				
7	Α	1	2	4	0.50	0.33
8	В	0				
9	Α	0	2	5	0.40	0.50
10	Α	1	3	6	0.50	0.40
11	Α	1	4	7	0.57	0.50
12	В	0				
13	Α	1	5	8	0.63	0.57
14	Α	0	5	9	0.56	0.63
15	Α	1	6	10	0.60	0.56
16	В	0				

Incremental Update

- ▶ Let $R_1, ..., R_n$ be rewards received after selecting an action n times.
- ▶ Define Q_n as the estimate after n-1 rewards:

$$Q_n = \frac{1}{n-1} \sum_{i=1}^{n-1} R_i$$

Now, after receiving the n-th reward R_n , we update:

$$Q_{n+1} = \frac{1}{n} \sum_{i=1}^{n} R_i = \frac{1}{n} \left(R_n + \sum_{i=1}^{n-1} R_i \right)$$
$$= \frac{1}{n} (R_n + (n-1)Q_n) = Q_n + \frac{1}{n} (R_n - Q_n)$$

Incremental Update

- ▶ Let $R_1, ..., R_n$ be rewards received after selecting an action n times.
- ▶ Define Q_n as the estimate after n-1 rewards:

$$Q_n = \frac{1}{n-1} \sum_{i=1}^{n-1} R_i$$

Now, after receiving the n-th reward R_n , we update:

$$Q_{n+1} = \frac{1}{n} \sum_{i=1}^{n} R_i = \frac{1}{n} \left(R_n + \sum_{i=1}^{n-1} R_i \right)$$
$$= \frac{1}{n} (R_n + (n-1)Q_n) = Q_n + \frac{1}{n} (R_n - Q_n)$$

This is the incremental update rule:

$$\underbrace{Q_{n+1}}_{\mathsf{New}} = \underbrace{Q_n}_{\mathsf{Old}} + \underbrace{\frac{1}{n}}_{\mathsf{Step size}} \underbrace{\left(R_n - Q_n\right)}_{\mathsf{Error}}$$

Incremental Update

- ▶ Let $R_1, ..., R_n$ be rewards received after selecting an action n times.
- ▶ Define Q_n as the estimate after n-1 rewards:

$$Q_n = \frac{1}{n-1} \sum_{i=1}^{n-1} R_i$$

Now, after receiving the n-th reward R_n , we update:

$$egin{aligned} Q_{n+1} &= rac{1}{n} \sum_{i=1}^n R_i = rac{1}{n} \left(R_n + \sum_{i=1}^{n-1} R_i
ight) \ &= rac{1}{n} \left(R_n + (n-1) Q_n
ight) = Q_n + rac{1}{n} \left(R_n - Q_n
ight) \end{aligned}$$

▶ This is the incremental update rule:

$$\underbrace{Q_{n+1}}_{\text{New}} = \underbrace{Q_n}_{\text{Old}} + \underbrace{\frac{1}{n}}_{\text{Step size}} \underbrace{\left(R_n - Q_n\right)}_{\text{Error}}$$

We can get a new estimate without storing all the rewards.

t	Arm	Reward
1	Α	0
2	В	0
3	Α	1
4	В	0
5	Α	0
6	В	1
7	Α	1
8	В	0
9	Α	0
10	Α	1
11	Α	1
12	В	0
13	Α	1
14	Α	0
15	Α	1
16	В	0

t	Arm	Reward
1	А	0
2	В	0
3	Α	1
4	В	0
5	Α	0
6	В	1
7	Α	1
8	В	0
9	Α	0
10	Α	1
11	Α	1
12	В	0
13	Α	1
14	Α	0
15	Α	1
16	В	0

t	Arm	Reward	Q_{n-1}
1	А	0	0.00
2	В	0	
3	Α	1	0.00
4	В	0	
5	Α	0	0.50
6	В	1	
7	Α	1	0.33
8	В	0	
9	Α	0	0.50
10	Α	1	0.40
11	Α	1	0.50
12	В	0	
13	Α	1	0.57
14	Α	0	0.63
15	Α	1	0.56
16	В	0	

t	Arm	Reward	Q_{n-1}	Update
1	А	0	0.00	$0.00 + \frac{1}{1}(0 - 0.00)$
2	В	0		1
3	Α	1	0.00	$0.00 + \frac{1}{2}(1 - 0.00)$
4	В	0		-
5	Α	0	0.50	$0.50 + \frac{1}{3}(0 - 0.50)$
6	В	1		y .
7	Α	1	0.33	$0.33 + \frac{1}{4}(1 - 0.33)$
8	В	0		-
9	Α	0	0.50	$0.50 + \frac{1}{5}(0 - 0.50)$
10	Α	1	0.40	$0.40 + \frac{1}{6}(1 - 0.40)$
11	Α	1	0.50	$0.40 + \frac{1}{6}(1 - 0.40) \\ 0.50 + \frac{1}{7}(1 - 0.50)$
12	В	0		•
13	Α	1	0.57	$0.57 + \frac{1}{8}(1 - 0.57)$
14	Α	0	0.63	$0.57 + \frac{1}{8}(1 - 0.57)$ $0.63 + \frac{1}{9}(0 - 0.63)$ $0.56 + \frac{1}{10}(1 - 0.56)$
15	Α	1	0.56	$0.56 + \frac{1}{10}(1 - 0.56)$
16	В	0		10 . ,

t	Arm	Reward	Q_{n-1}	Update	Q_n
1	А	0	0.00	$0.00 + \frac{1}{1}(0 - 0.00)$	0.00
2	В	0		•	
3	Α	1	0.00	$0.00 + \frac{1}{2}(1 - 0.00)$	0.50
4	В	0		-	
5	Α	0	0.50	$0.50 + \frac{1}{3}(0 - 0.50)$	0.33
6	В	1		· ·	
7	Α	1	0.33	$0.33 + \frac{1}{4}(1 - 0.33)$	0.50
8	В	0		•	
9	Α	0	0.50	$0.50 + \frac{1}{5}(0 - 0.50)$	0.40
10	Α	1	0.40	$0.40 + \frac{1}{6}(1 - 0.40)$	0.50
11	Α	1	0.50	$0.50 + \frac{1}{7}(1 - 0.50)$	0.57
12	В	0		•	
13	Α	1	0.57	$0.57 + \frac{1}{8}(1 - 0.57)$	0.63
14	Α	0	0.63	$0.63 + \frac{1}{9}(0 - 0.63)$	0.56
15	Α	1	0.56	$0.56 + \frac{1}{10}(1 - 0.56)$	0.60
16	В	0			

Sublinear Regret

Most multi-armed bandit (MAB) algorithms aim to achieve sublinear regret, so that the *average* regret vanishes as the number of rounds $T \to \infty$:

$$\lim_{T\to\infty}\frac{\mathsf{Loss}_T}{T}=0$$

► Loss_T: expected total expected regret after T rounds.

Algorithm	Total Regret
greedy	$\mathcal{O}(T)$

Algorithm	Total Regret
greedy	$\mathcal{O}(T)$
arepsilon-first	$\mathcal{O}(T)$

Algorithm	Total Regret
greedy	O(T)
ε-first	$\mathcal{O}(T)$
ε -greedy	$\mathcal{O}(T)$

Algorithm	Total Regret
greedy	$\mathcal{O}(T)$
ε-first	$\mathcal{O}(T)$
ε-greedy	$\mathcal{O}(T)$
ε-greedy (decaying)	$\mathcal{O}(\log T)$

Algorithm	Total Regret
greedy	$\mathcal{O}(T)$
ε-first	$\mathcal{O}(T)$
ε-greedy	$\mathcal{O}(T)$
ε-greedy (decaying)	$\mathcal{O}(\log T)$
UCB (Upper Confidence Bound)	$\mathcal{O}(\log T)$

Algorithm	Total Regret
greedy	$\mathcal{O}(T)$
ε-first	$\mathcal{O}(T)$
ε-greedy	$\mathcal{O}(T)$
ε -greedy (decaying)	$\mathcal{O}(\log T)$
UCB (Upper Confidence Bound)	$\mathcal{O}(\log T)$
Thompson Sampling	$\mathcal{O}(\log T)$

Algorithm	Total Regret
greedy	$\mathcal{O}(T)$
ε-first	$\mathcal{O}(T)$
arepsilon-greedy	$\mathcal{O}(T)$
ε-greedy (decaying)	$\mathcal{O}(\log T)$
UCB (Upper Confidence Bound)	$\mathcal{O}(\log T)$
Thompson Sampling	$\mathcal{O}(\log T)$

Overviews: Slivkins (2019), Burtini, Loeppky, and Lawrence (2015), Bubeck and Cesa-Bianchi (2012)

Bandits in Practice

Real World Bandit: Netflix Artwork

- ► For a particular movie, which image to show to users on Netflix?
- ► **Actions:** Choose one of *k* images to display
- Ground-truth mean rewards (unknown):
 True percentage of users who click on image and watch movie
- Estimated mean rewards: Average observed click-through rates for each image

Source: Netflix Tech Blog

References I

- Bubeck, S., and N. Cesa-Bianchi (2012): "Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems," *Foundations and Trends® in Machine Learning*, 5(1), 1–122.
- BURTINI, G., J. LOEPPKY, AND R. LAWRENCE (2015): "A survey of online experiment design with the stochastic multi-armed bandit," *arXiv* preprint *arXiv*:1510.00757.
- SLIVKINS, A. (2019): "Introduction to Multi-Armed Bandits," Foundations and Trends® in Machine Learning, 12(1-2), 1–286.

Takeaways

How to Balance Earning and Learning?

- Multi-Armed Bandits (MAB) model adaptive, sequential decision-making under uncertainty
- Core trade-off: Exploration vs. Exploitation
- ▶ Objective: Maximize total reward, or equivalently, minimize regret
- ► Key algorithms:
 - \triangleright ε-first, ε-greedy (fixed or decaying)
 - UCB (Upper Confidence Bound)
 - ► Thompson Sampling (Bayesian approach)

Appendix

▶ Sample mean reward $\mathbb{E}[q(a_t)]$ is true mean reward q(a) times average number of times actions a was chosen

$$\mathbb{E}[q(a_t)] = \mathbb{E}\Big[\sum_{a \in \mathcal{A}} q(a)\mathbb{1}\{A_i = a\}\Big] = \sum_{a \in \mathcal{A}} q(a)\mathbb{E}[\mathbb{1}\{A_i = a\}]$$

▶ Sample mean reward $\mathbb{E}[q(a_t)]$ is true mean reward q(a) times average number of times actions a was chosen

$$\mathbb{E}[q(a_t)] = \mathbb{E}\Big[\sum_{a \in \mathcal{A}} q(a)\mathbb{1}\{A_i = a\}\Big] = \sum_{a \in \mathcal{A}} q(a)\mathbb{E}[\mathbb{1}\{A_i = a\}]$$

$$\mathsf{Loss}_t = \sum_{i=1}^{t-1} \mathbb{E}[r^* - q(a_t)]$$

▶ Sample mean reward $\mathbb{E}[q(a_t)]$ is true mean reward q(a) times average number of times actions a was chosen

$$\mathbb{E}[q(a_t)] = \mathbb{E}\Big[\sum_{a \in \mathcal{A}} q(a)\mathbb{1}\{A_i = a\}\Big] = \sum_{a \in \mathcal{A}} q(a)\mathbb{E}[\mathbb{1}\{A_i = a\}]$$

$$\mathsf{Loss}_t = \sum_{i=1}^{t-1} \mathbb{E}[r^* - q(a_t)]$$

$$= \sum_{i=1}^{t-1} \left[\sum_{a \in \mathcal{A}} r^* \mathbb{E}[\mathbb{1}\{A_i = a\}] - \sum_{a \in \mathcal{A}} q(a) \mathbb{E}[\mathbb{1}\{A_i = a\}] \right]$$

▶ Sample mean reward $\mathbb{E}[q(a_t)]$ is true mean reward q(a) times average number of times actions a was chosen

$$\mathbb{E}[q(a_t)] = \mathbb{E}\Big[\sum_{a \in A} q(a)\mathbb{1}\{A_i = a\}\Big] = \sum_{a \in A} q(a)\mathbb{E}[\mathbb{1}\{A_i = a\}]$$

$$Loss_{t} = \sum_{i=1}^{t-1} \mathbb{E}[r^{*} - q(a_{t})]$$

$$= \sum_{i=1}^{t-1} \left[\sum_{a \in \mathcal{A}} r^{*} \mathbb{E}[\mathbb{1}\{A_{i} = a\}] - \sum_{a \in \mathcal{A}} q(a) \mathbb{E}[\mathbb{1}\{A_{i} = a\}] \right]$$

$$= \sum_{i=1}^{t-1} \sum_{a \in \mathcal{A}} \mathbb{E}[\mathbb{1}\{A_{i} = a\}] (r^{*} - q(a)) = \sum_{a \in \mathcal{A}} \mathbb{E}\left[\sum_{i=1}^{t-1} \mathbb{1}\{A_{i} = a\} \right] (r^{*} - q(a))$$

▶ Sample mean reward $\mathbb{E}[q(a_t)]$ is true mean reward q(a) times average number of times actions a was chosen

$$\mathbb{E}[q(a_t)] = \mathbb{E}\left[\sum_{a \in A} q(a)\mathbb{1}\{A_i = a\}\right] = \sum_{a \in A} q(a)\mathbb{E}[\mathbb{1}\{A_i = a\}]$$

$$Loss_{t} = \sum_{i=1}^{t-1} \mathbb{E}[r^{*} - q(a_{t})]$$

$$= \sum_{i=1}^{t-1} \left[\sum_{a \in \mathcal{A}} r^{*} \mathbb{E}[\mathbb{1}\{A_{i} = a\}] - \sum_{a \in \mathcal{A}} q(a) \mathbb{E}[\mathbb{1}\{A_{i} = a\}] \right]$$

$$= \sum_{i=1}^{t-1} \sum_{a \in \mathcal{A}} \mathbb{E}[\mathbb{1}\{A_{i} = a\}] (r^{*} - q(a)) = \sum_{a \in \mathcal{A}} \mathbb{E}\left[\sum_{i=1}^{t-1} \mathbb{1}\{A_{i} = a\}\right] (r^{*} - q(a))$$

$$= \sum_{i=1}^{t-1} \mathbb{E}[N_{t}(a)] (r^{*} - q(a))$$

Algorithm	Idea	Total Regret	Туре
greedy	Pick the best action in round t	$\mathcal{O}(T)$	Frequentist

Algorithm	Idea	Total Regret	Туре
greedy	Pick the best action in round t	$\mathcal{O}(T)$	Frequentist
ε-first	Explore randomly for $\varepsilon \cdot T$ rounds, then exploit the best action	$\mathcal{O}(T)$	Frequentist

Algorithm	Idea	Total Regret	Туре
greedy	Pick the best action in round t	$\mathcal{O}(T)$	Frequentist
ε-first	Explore randomly for $\varepsilon\cdot T$ rounds, then exploit the best action	$\mathcal{O}(T)$	Frequentist
ε-greedy	Pick the best action, except with probability $\ensuremath{\varepsilon}$ choose randomly	$\mathcal{O}(T)$	Frequentist

Algorithm	Idea	Total Regret	Туре
greedy	Pick the best action in round t	$\mathcal{O}(T)$	Frequentist
ε-first	Explore randomly for $\varepsilon\cdot T$ rounds, then exploit the best action	$\mathcal{O}(T)$	Frequentist
ε-greedy	Pick the best action, except with probability $\boldsymbol{\varepsilon}$ choose randomly	$\mathcal{O}(T)$	Frequentist
ε-greedy (decaying)	Same as above, but with a decaying ε over time	$\mathcal{O}(\log T)$	Frequentist

Algorithm	Idea	Total Regret	Туре
greedy	Pick the best action in round t	$\mathcal{O}(T)$	Frequentist
ε-first	Explore randomly for $\varepsilon\cdot T$ rounds, then exploit the best action	$\mathcal{O}(T)$	Frequentist
ε-greedy	Pick the best action, except with probability $\boldsymbol{\varepsilon}$ choose randomly	$\mathcal{O}(T)$	Frequentist
ε-greedy (decaying)	Same as above, but with a decaying ε over time	$\mathcal{O}(\log T)$	Frequentist
UCB (Upper Confidence Bound)	Choose action with highest estimated mean plus uncertainty bonus	$\mathcal{O}(\log T)$	Frequentist

Algorithm	Idea	Total Regret	Туре
greedy	Pick the best action in round t	$\mathcal{O}(T)$	Frequentist
ε-first	Explore randomly for $\varepsilon\cdot \mathcal{T}$ rounds, then exploit the best action	$\mathcal{O}(T)$	Frequentist
ε-greedy	Pick the best action, except with probability $\boldsymbol{\varepsilon}$ choose randomly	$\mathcal{O}(T)$	Frequentist
ε-greedy (decaying)	Same as above, but with a decaying ε over time	$\mathcal{O}(\log T)$	Frequentist
UCB (Upper Confidence Bound)	Choose action with highest estimated mean plus uncertainty bonus	$\mathcal{O}(\log T)$	Frequentist
Thompson Sampling	Sample from posterior distribution of rewards and choose best action	$\mathcal{O}(\log T)$	Bayesian

Algorithm	Idea	Total Regret	Туре
greedy	Pick the best action in round t	$\mathcal{O}(T)$	Frequentist
ε-first	Explore randomly for $\varepsilon\cdot T$ rounds, then exploit the best action	$\mathcal{O}(T)$	Frequentist
ε -greedy	Pick the best action, except with probability ε choose randomly	$\mathcal{O}(T)$	Frequentist
ε -greedy (decaying)	Same as above, but with a decaying ε over time	$\mathcal{O}(\log T)$	Frequentist
UCB (Upper Confidence Bound)	Choose action with highest estimated mean plus uncertainty bonus	$\mathcal{O}(\log T)$	Frequentist
Thompson Sampling	Sample from posterior distribution of rewards and choose best action	$\mathcal{O}(\log T)$	Bayesian

Overviews: Slivkins (2019), Burtini, Loeppky, and Lawrence (2015), Bubeck and Cesa-Bianchi (2012)