

En el año 2018 una línea aérea con una flota de 50 aviones A320, tuvo en el ATA 36 los siguientes reportes de falla mostrados en la tabla siguiente:

Con los siguientes datos del año 2018 calcular y graficar La media, el UCL (2 sigma) para el 2019 con un offset de 3 meses

Con línea punteada una nueva grafica usando 3 meses de "Rolling average"

Datagrama

Este es el datagrama muestra los datos del año 2018 la cual se ha adquirido de una flota de 50 aviones A320 las cuales presentaron reportes de falla en el ATA 36 Sistema neumático.

MES	FLIGHT HOURS	NUMERO DE REPORTES	ATA
Enero	40,102	24	36
Febrero	41,818	23	36
Marzo	52,510	21	36
Abril	39,982	18	36
Mayo	36,110	18	36
Junio	33,840	22	36
Julio	41,800	23	36
Agosto	36,360	20	36
Septiembre	42,220	19	36
Octubre	38,180	21	36
Noviembre	46,660	14	36
Diciembre	33,330	20	36

Con estos datos vamos a calcular la "Statistical Reliability" o Confiabilidad Estadística, esto con base en las horas de vuelo que se han acumulado durante cada uno de los meses del año y utilizando como factor 1000 horas de vuelo, para ello utilizaremos una regla de tres:

$$a \to b$$

$$c \to x$$

$$x = \frac{b * c}{a}$$

Ahora sustituiremos el nombre de las columnas del Dataframe en la regla de tres para obtener una nueva columna que llamaremos "DATA"

$$DATA = \frac{NUMERO\ DE\ REPORTES*1000}{FLIGHT\ HOURS}$$

De este modo obtendremos el siguiente Dataframe:

MES	FLIGHT_HOURS	NUMERO_DE_REPORTES	ATA	DATA
Enero	40102	24	36	0.59847389
Febrero	41818	23	36	0.55000239
Marzo	52510	21	36	0.39992382
Abril	39982	18	36	0.45020259
Mayo	36110	18	36	0.49847688
Junio	33840	22	36	0.6501182
Julio	41800	23	36	0.55023923
Agosto	36360	20	36	0.55005501
Septiembre	42220	19	36	0.45002369
Octubre	38180	21	36	0.55002619
Noviembre	46660	14	36	0.30004286
Diciembre	33330	20	36	0.60006001

Con los datos obtenidos ahora nos es posible calcular la MEDIA, la DESVIACION ESTANDAR y el UCL:

PROM	0.51230373
STD	0.09790449
UCL	0.70811271

Ahora vamos a graficar los datos obtenidos en la columna "DATA" VS "MES" con lo cual tendremos el "Nivel de alerta"

Con esto podemos observar el nivel de alerta, pero este se encuentra disparado por lo que procedemos a aplicar un filtro Savitzky-Golay con un orden polinomial de sigma 3, con esto obtendremos el siguiente gráfico:

En donde la línea en color "Azul" es el UCL de los datos tal y como están en el Datframe, mientras que por otro lado y graficado en color "Rojo" tenemos los datos filtrados por el modelo Savitzky-Golay con sigma=2 en donde se pueden observar niveles neutralizados en donde el nivel de alerta no se ve disparado como en el color contrario.

Ahora preparamos los datos con un OFFSET de 3 meses para el 2019 indicando un "Rolling Average" dentro del mismo grafico el cual estará indicado con línea punteada en color "Blanco"

Con este grafico es posible ver el comportamiento del nivel de alerta en los trimestres del año, de igual manera el Dataframe se modifica para poder implementar dichos datos en el siguiente año y que estos no generen incongruencias dentro de nuestro modelo de confiabilidad estadistico.