Alzheimer's Predictions

Alzheimer's is still uncureable and many people suffer because of its effects on themselves and their loved ones. In this analysis I will be utilizing a data set from <u>Kaggle</u> in order to predict Alzheimer's based on a multitude of factors. Predicting Alzheimer's allows people to prepare themselves for the worst case scenario through screening and such for early detection.

✓ Imports

₹

```
import tensorflow as tf
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from sklearn.compose import make_column_transformer
from sklearn.preprocessing import MinMaxScaler, OneHotEncoder
from sklearn.model_selection import train_test_split
```

Reading in our dataset

Note: Since the dataset provided did not include a GitHub, I downloaded the .csv file and will use the following code to upload the file by selecting it from my local machine.

	Country	Age	Gender	Education Level	ВМІ	Physical Activity Level	Smoking Status	Alcohol Consumption	Diabetes	Hypertension	 Dietary Habits	Air Pollution Exposure	Employment Status	
0	Spain	90	Male	1	33.0	Medium	Never	Occasionally	No	No	 Healthy	High	Retired	
1	Argentina	72	Male	7	29.9	Medium	Former	Never	No	No	 Healthy	Medium	Unemployed	١
2	South Africa	86	Female	19	22.9	High	Current	Occasionally	No	Yes	 Average	Medium	Employed	
3	China	53	Male	17	31.2	Low	Never	Regularly	Yes	No	 Healthy	Medium	Retired	
4 6														\blacktriangleright

Creating the training and test data

```
alzheimers_data_encoded = pd.get_dummies(alzheimers_data, dtype = int) # Because our data has many qualitative variables, they need to be on # Since we only need either "Alzheimer's Diagnosis_No" or "Alzheimer's Diagnosis_Yes"... I will be dropping "Alzheimer's Diagnosis_No" from alzheimers_data_encoded = alzheimers_data_encoded.drop("Alzheimer's Diagnosis_No", axis = 1)

# Now I will separate the explanatory variables with what we actually want to predict i.e. the alzheimer's diagnosis
alzheimer_expvar = alzheimers_data_encoded.drop("Alzheimer's Diagnosis_Yes", axis = 1)
diagnosis = alzheimers_data_encoded['Alzheimer's Diagnosis_Yes']
```

alzheimer_train_expvar, alzheimer_test_expvar, diagnosis_train, diagnosis_test = train_test_split(alzheimer_expvar, diagnosis, test_size=.2, alzheimer_train_expvar

-		-
-	→	7
	_	_

•	Age	Education Level	BMI	Cognitive Test Score	Country_Argentina	Country_Australia	Country_Brazil	Country_Canada	Country_China	Country_Fran
296	8 50	4	19.6	87	0	0	0	0	0	
7062	23 64	19	27.1	41	0	0	0	1	0	
3734	40 84	1	25.7	33	0	0	0	0	0	
5513	30 87	16	20.3	52	0	0	0	0	0	
173	58 77	16	33.0	91	0	0	0	0	0	
1790	04 64	6	30.8	41	0	0	0	0	0	
3759	97 76	6	27.7	51	0	0	0	0	0	
1020	01 82	0	25.6	72	0	0	0	0	0	
937	2 69	12	27.4	76	0	1	0	0	0	
5049	96 70	14	33.0	36	0	1	0	0	0	

59426 rows × 74 columns

Making the Neural Network

To start, I will create a basic neural network that has one layer with one hidden unit. Then I will be slowly improving the model by:

- 1. Adding hidden layers
- 2. Varying the number of hidden units
- 3. Changing the optimizer
- 4. Changing the learning rate
- 5. Changing the number of epochs

```
# Set seed for reproducibility
tf.random.set_seed(10)
# 1. Creating the model
alzheimer_model = tf.keras.Sequential([
    {\sf tf.keras.layers.Dense(1)}
])
# 2. Compiling the model
alzheimer_model.compile(loss = tf.keras.losses.mae,
                        optimizer = tf.keras.optimizers.SGD(),
                        metrics = ["mae"])
# 3. Fit the model
history = alzheimer_model.fit(alzheimer_train_expvar, diagnosis_train, epochs=10, verbose=0) # each step takes a while to run so only 10 epo
# Evaluating with test data
alzheimer_model.evaluate(alzheimer_test_expvar, diagnosis_test)
                                - 1s 2ms/step - loss: 54.1333 - mae: 54.1333
     [54.397281646728516, 54.397281646728516]
# Plotting the loss
pd.DataFrame(history.history).plot()
plt.ylabel("loss")
plt.xlabel("epochs")
```


Improving the Model

- Model 1 will have 2 additional hidden layers with 50 nodes each
- Model 2 will be the same as Model 1 but run 50 epochs
- Model 3 will run 50 epochs with no additional layers
- · Model 4 will have 2 additional hidden layers with 100 nodes each, run for 100 epochs, and use the Adam optimizer
- Model 5 will have 5 additional hidden layers with 50 nodes each, run for 100 epochs, and use the Adam optimizer

```
# Model 1
# Set random seed
tf.random.set_seed(10)
# 1. Creating the model
model_1 = tf.keras.Sequential([
    tf.keras.layers.Dense(50),
    tf.keras.layers.Dense(50),
    tf.keras.layers.Dense(1)
])
# 2. Compiling the model
model_1.compile(loss = tf.keras.losses.mae,
                optimizer = tf.keras.optimizers.SGD(),
               metrics = ["mae"])
# 3. Fitting the model
model_1_history = model_1.fit(alzheimer_train_expvar, diagnosis_train, epochs = 10, verbose = 0)
# Evaluating with test data
model_1.evaluate(alzheimer_test_expvar, diagnosis_test)
→ 465/465
                                - 1s 2ms/step - loss: nan - mae: nan
     [nan, nan]
# Plotting the loss
pd.DataFrame(model_1_history.history).plot()
plt.ylabel("loss")
plt.xlabel("epochs")
```

```
→ Text(0.5, 0, 'epochs')
                                                                            loss
                                                                           mae
          0.04
          0.02
          0.00
         -0.02
         -0.04
                      -0.04
                                  -0.02
                                               0.00
                                                          0.02
                                                                      0.04
                                             epochs
# Model 2
# Set random seed
tf.random.set_seed(10)
# 1. Creating the model
model_2 = tf.keras.Sequential([
    tf.keras.layers.Dense(50),
    tf.keras.layers.Dense(50),
    tf.keras.layers.Dense(50),
    tf.keras.layers.Dense(1)
])
# 2. Compiling the model
model_2.compile(loss = tf.keras.losses.mae,
                optimizer = tf.keras.optimizers.SGD(),
                metrics = ["mae"])
# 3. Fitting the model
model_2_history = model_2.fit(alzheimer_train_expvar, diagnosis_train, epochs = 50, verbose = 0)
     465/465 -
                                 - 1s 2ms/step - loss: 14.8008 - mae: 14.8008
     Text(0.5, 0, 'epochs')
                                                                            loss
                                                                           mae
          0.04
          0.02
          0.00
         -0.02
         -0.04
                      -0.04
                                  -0.02
                                              0.00
                                                          0.02
                                                                      0.04
                                             epochs
# Evaluating with test data
model_2.evaluate(alzheimer_test_expvar, diagnosis_test)
```

https://colab.research.google.com/github/austinkirwin/public-projects/blob/main/Python_projects/Alzheimers_project/Alzheimers_predictive_Model.ipyn...

- **1s** 2ms/step - loss: 14.8008 - mae: 14.8008

```
[14.833300590515137,\ 14.8333300590515137]
```

```
# Plotting the loss
pd.DataFrame(model_2_history.history).plot()
plt.ylabel("loss")
plt.xlabel("epochs")
```

```
→ Text(0.5, 0, 'epochs')
```

```
# Model 3
# Set random seed
tf.random.set_seed(10)
# 1. Creating the model
model_3 = tf.keras.Sequential([
    tf.keras.layers.Dense(1)
])
# 2. Compiling the model
model_3.compile(loss = tf.keras.losses.mae,
                optimizer = tf.keras.optimizers.SGD(),
                metrics = ["mae"])
# 3. Fitting the model
\verb|model_3_history = \verb|model_3.fit(alzheimer_train_expvar, diagnosis_train, epochs = 50, verbose = 0)|
# Evaluating with test data
model_3.evaluate(alzheimer_test_expvar, diagnosis_test)
# Plotting the loss
pd.DataFrame(model_3_history.history).plot()
plt.ylabel("loss")
plt.xlabel("epochs")
```

plt.xlabel("epochs")

```
→ 465/465
                                 - 1s 2ms/step - loss: 57.9513 - mae: 57.9513
    Text(0.5, 0, 'epochs')
                                                                            loss
                                                                            mae
        50.65
        50.60
        50.55
      oss
        50.50
        50.45
        50.40
                             10
                 ò
                                          20
                                                       30
                                                                   40
                                                                                50
                                             epochs
```

```
# Model 4
# Set random seed
tf.random.set_seed(10)
# 1. Creating the model
model_4 = tf.keras.Sequential([
    tf.keras.layers.Dense(50),
    tf.keras.layers.Dense(50),
    tf.keras.layers.Dense(50),
    tf.keras.layers.Dense(50),
    tf.keras.layers.Dense(50),
    {\tt tf.keras.layers.Dense(1)}
])
# 2. Compiling the model
model_4.compile(loss = tf.keras.losses.mae,
                optimizer = tf.keras.optimizers.Adam(learning_rate=.1), # Starting with a learning rate of .1, might be changed later if thi
                metrics = ["mae"])
# 3. Fitting the model
model_4.history = model_4.fit(alzheimer_train_expvar, diagnosis_train, epochs = 100, verbose = 0)
# Evaluating with test data
model_4.evaluate(alzheimer_test_expvar, diagnosis_test)
# Plotting the loss
pd.DataFrame(model_4_history.history).plot()
plt.ylabel("loss")
```

200

```
→ 465/465
                                  - 1s 2ms/step - loss: 1363.9346 - mae: 1363.9346
     Text(0.5, 0, 'epochs')
             1e7
                                                                          loss
                                                                          mae
# Model 5
# Set random seed
tf.random.set_seed(10)
# 1. Creating the model
model_5 = tf.keras.Sequential([
    tf.keras.layers.Dense(100),
    tf.keras.layers.Dense(100),
    tf.keras.layers.Dense(1)
])
# 2. Compiling the model
model_5.compile(loss = tf.keras.losses.mae,
                optimizer = tf.keras.optimizers.Adam(learning_rate=.1), # Starting with a learning rate of .1, might be changed later if thi
# 3. Fitting the model
\verb|model_5_history| = \verb|model_5.fit(alzheimer_train_expvar, diagnosis_train, epochs = 100, verbose = 0)|
# Evaluating with test data
model_5.evaluate(alzheimer_test_expvar, diagnosis_test)
# Plotting the loss
pd.DataFrame(model_5_history.history).plot()
plt.ylabel("loss")
plt.xlabel("epochs")
     465/465 -
                                 - 1s 2ms/step - loss: 0.7750 - mae: 0.7750
     Text(0.5, 0, 'epochs')
         1400
                                                                            loss
                                                                           mae
         1200
         1000
          800
       loss
          600
          400
```