

Empirical Methods in Natural Language Processing

Philipp Koehn and Annette Leonhard

29 January 2007

based on the 2006 slides by Sebastian Riedel

Outline

- 1. Introduction
 - Information Extraction
 - Named Entity Recognition
 - CoNLL Shared Task
- 2. Choices
- 3. Assessment

Information Extraction

- Extract information salient to the needs of the users
 - Information about house prices from real estate magazines
 - Character relations from novels
 - Location of terrorist attacks from newspapers
- Extract structured data from unstructured or semi structured natural language data, e.g. from newspapers
- Task involving Natural Language Understanding and Information Retrieval

Information Extraction Tasks

- Named Entity Recognition
 - □ Which phrases refer to what kind of entities
- Coreference Resolution
 - □ Which phrases refer to the same entity
- Relation Extraction
 - □ Which entities are related in what kind of relationships
- Event Extraction
 - □ Which events are mentioned with which attributes

Named Entity Recognition

- Named entity is an object of interest such as a person, organization, or location
- Identifying word sequences
- Labelling those sequences

Example:

Meg Whitman, CEO of eBay, said in New York...

- Label Meg Whitman as PERSON
- Label eBay as ORGANISATION
- Label New York as LOCATION

CoNLL Shared Task 2003

- Brings together researchers in Computational Natural Language Learning
- Aims at evaluating different Machine Learning approaches
- Gives training, development and test sets for NER in German and English
- Identify entities and classify as PERSON, LOCATION,
 ORGANISATION and MISC

IOB Scheme in CoNLL

- Inside, Outside, Begin
- For each type of entity there is an I-XXX and a B-XXX tag
- Non-entities are tagged O
- B-XXX only used if two entities of same type next to each other
- Assumes that named entities are non-recursive and don't overlap

Example: Meg Whitman CEO of eBay I-PER B-PER O O I-ORG

Philipp Koehn and Annette Leonhard

EMNLP Assignment 2007

A Graphical Model for NER

- ■The NER framework covers
 - Features
 - Local classifiers
 - Sequential constraints

Features

- Features are the most important aspect of almost every Machine Learning system
 - □ Is the word capitalised?
 - Is the word at the start of a sentence?
 - □ What is the POS tag?
 - □ Info from gazetteers
- The more useful features you incorporate, the more powerful your learner gets

Local Classifier

Find p(taglfeatures)

- Maximum Entropy Classifier (Berger et al. 1996)
- Large Margin approach such as support vector machines (SVMs) (Vapnik 1995)
- Naive Bayes (strong independence assumption)
- Whatever you like

Ensemble Methods

- Take a set of diverse classifiers
- Let them vote on the tag of a single token (or average their probabilistic output)
- Diversity through different feature sets, different learners, different training data (Dietterich 2000)

Sequential Modelling

Tags interdepend

$$p(t_1, t_2, t_3 \ldots | f_1, f_2, f_3 \ldots) \neq \prod_{i}^{n} p(t_i | f_i)$$

Could use a model such as:

$$p(t_1, t_2, t_3 \dots | f_1, f_2, f_3 \dots) = p(t_1 | f_1) \prod_{i=2}^{n} p(t_i | f_i) p(t_i | t_{i-1})$$

Software

- Use any programming language you want
- Try to find good toolkits
 - Maxent Toolkit of Zhang Lee (very good and fast training)
 - □ CRF++ framework (supports sequential modelling)
 - □ Weka (easy to use but memory intensive and slow)
 - SVM light, LibSVM (long training time, usually good performance)

Timetable

20 & 21/02 Presentation of the results for your baseline system

16/03 Hand in your paper and code!

Assessment Criteria

- Quality of paper
 - □ Structure
 - □ Use of literature
 - □ Error Analysis
- Performance of your system
- Creativity