MAT232 - Lecture 5

 $[\operatorname{Lesson} \operatorname{Topic}(s)]$

AlexanderTheMango

Prepared for January 20, 2025

Definitions and Theorems

Straight from the textbook — no fluff, just what we need.

Quick recap before diving into the lecture.

self-note: honestly just screenshot from the prof's posted notes instead of using photos from the camera of the projected lecture notes, to achieve higher quality image imports xd

Review from the Previous Lecture

Remark

Recall the following from last week's lecture:

• Given $r = f(\theta)$,

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta}$$

• Circle:

$$(x-h)^2 + (y-k)^2 = r^2,$$

where r is the radius and (h, k) is the centre.

Note

Term Test 1 is on Thursday January 30th, 2025 (week 4)!!!

Parabolas:

Example

$$y = ax^2 + bx + c, \quad a \neq 0$$

... complete the square

$$y = A(x - B)^2 + C$$

$$A > 0 \implies \text{up}$$

$$A < 0 \implies \text{down}$$

Vertex: (B, c)

Illustration

illustration goes here (see photo from camera roll for january 20th)

Figure 1: Sample image illustrating the concept.

Example: Sketching the Region of a Set

Example

Sketch the region of the set defined by

$$R = \{(x, y) \mid y \geqslant x^2 + 1\}$$

Solution

Consider the graph for the function $y = x^2 = 1$:

Figure 2: Graph of $y = x^2 + 1$.

Notice that

$$y = x^{2} + 1$$

$$\implies 0 \ge (-2)^{2} + 1$$

$$\implies 0 \ge 5, \text{ which is not true.}$$

Then, notice that

$$2 \ge 0^2 + 1$$

 $\implies 2 \ge 1$, which is true!

Here is the region being considered:

<mark>Uni</mark>versity of Toronto Mississauga

January 20, 2<mark>025</mark>

Figure 3: Sample image illustrating the concept.

Ellipse

Definition

The equation of an ellipse is defined by

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1.$$

Note

Recall the equation of the circle, which is based on the equation of the ellipse when a=b=1:

Circle:
$$(x - h)^2 + (y - k)^2 = r^2$$
,

where (h, k) is the centre, a represents the x-axis radius, and b represents the y-axis radius.

Example of Skecthing an Ellipse

Example

Sketch the region of the set defined by

$$A = \{(x, y) \mid x^2 + 4y^2 > 4\}.$$

Solution

Notice that

$$x^2 + 4y^2 = 4.$$

This means the centre is at (0,0). Also,

$$\frac{x^2}{4} + \frac{y^2}{1} = 1$$

provides that the x-axis radius is a = 2 and the y-axis radius is b = 1.

Here is the corresponding illustration:

self-note: add the illustratoin from the lecture note from your camera roll

Figure 4: Illustration of ellipse.

Note

Note that dashed lines are used to denote that the edge of the ellipse is **not included** in the region A.

Check the point (0,0):

$$0^2 + 4 \cdot 0^2 > 4$$

$$\implies 0 > 4$$
,

which is not true.

University of Toronto Mississauga

January 20, 2<mark>025</mark>

Therefore, the inside of the ellipse is ${f not}$ to be shaded in.

Check the point (3,0):

$$3^2 + 4 \cdot 0^2 > 4$$

Introducing the Hyperbola

Definition

The equation of a hyperbola is defined by

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Illustration

self-note: add the image of the corresponding illustration here (see the lecture note)

Figure 5: Sample image illustrating the concept.

$$\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$$

Illustration

self-note: add the image of the corresponding illustration here (see the lecture note)

University of Toronto Mississauga
Figure 6: Sample image illustrating the concept.

January 20, 2025

6

Welcome to Linear Algebra...

well... not really!

Section 2.1/2.2: Welcome to 3D Space!

Remark

Recall that the cartesian coordinate system considers the 2-dimensional realm: a system in \mathbb{R}^2 .

Illustration

self-note: add the cartesian plane — the typical one in 2D

Figure 7: Sample image illustrating the concept.

Now, check out the cartesian coordinate system being introduced in MAT232, considering the 3-dimensional realm; \mathbb{R}^3 :

Illustration

self-note: add the illustration for the 3D cartesian plane, the z-axis in addition to the x- and y-axis.

University of Toronto Mississauga

Figure 8: Sample image illustrating the concept.

January 20, 2025

Note

<u>In 2D:</u>

Notice that $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$, where the first \mathbb{R} represents the x-values and the second \mathbb{R} represents the y-values.

Now, in 3D:

Notice that $\mathbb{R}^3 = \mathbb{R} \times \mathbb{R} \times \mathbb{R}$.

- The first \mathbb{R} represents the x-values;
- The second \mathbb{R} represents the y-values;
- The third \mathbb{R} represents the z-values.

Example of Plotting in a 3D Cartesian Plane

Example

Plot the points (-1, 2, -3) and (2, -4, 2).

Illustration

self-note: add the illustration here!!

Figure 9: Sample image illustrating the concept.

Follow the line segments denoted in **purple** for an interpretation guide of how the three components contribute to the final point destination, for (-1, 2, -3).

Follow the line segments denoted in **green** for an interpretation guide of how the three components contribute to the final point destination, for (2, -4, 2).

Interpreting Planes

Concept

Notice that in a 2D world, there is no notion of height when considering the x, y-plane. In a 3D world, z = 0.

Now, have a look at the basic planes for a 3D cartesian graph:

The xy plane:

$$x = 0 \qquad (x, y, 0)$$

Figure 10: Sample image illustrating the concept.

The yz plane:

$$x = 0 \qquad (0, y, z)$$

Figure 11: Sample image illustrating the concept.

University of Toronto Mississauga
The xz plane:

 $x = 0 \qquad (x, 0, z)$

Let's Try Going from 2D to 3D

Example

Consider the graph defined by y=2 on a 2D cartesian graph:

Figure 13: Sample image illustrating the concept.

Here's how that would look like in a 3D cartesian space:

Figure 14: Sample image illustrating the concept.

Example

Consider the graph of a circle defined by

$$x^2 + y^2 = 4.$$

Figure 15: Sample image illustrating the concept.

If this circle is brought to the 3D world, stretched along the z-axis, for any values of z, then a cylinder is created (the cirle is the cross-section shape).

Figure 16: Sample image illustrating the concept.

Next Lecture: We Discuss Vectors!

Lecture Title

Note

This template is designed for MAT232 lecture notes. Replace this content with your specific lecture details.

Key Concepts

Definition

A parametric equation is a set of equations that express the coordinates of the points of a curve as functions of a variable, called a parameter.

Examples

Example

Example 1: Consider the parametric equations:

$$x = t, \quad y = t^2, \quad t \in \mathbb{R}.$$

- At t = 0, (x, y) = (0, 0).
- At t = 1, (x, y) = (1, 1).

This describes a parabola.

Figure 17: Sample image illustrating the concept.

Theorems and Proofs

Theorem

Theorem: If x(t) and y(t) are differentiable functions, the slope of the curve is given by:

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}, \text{ provided } \frac{dx}{dt} \neq 0.$$

Figure 18: Graphical representation of the theorem.

Additional Notes

Note

Always check the domain of the parameter t when solving problems involving parametric equations.