### COMP3271 Computer Graphics

# 2D Fractal Rendering

# Objectives

Understand the framebuffer and the viewport space

Create a CG generated image by turning abstract formulas into visualization.

### Framebuffer

A framebuffer is some physical memory (RAM) used to store the entire image to be displayed on a screen.

Each element in a framebuffer is called a **pixel** (picture element).

The screen size (or window size) determines the resolution of the framebuffer.



## Drawing on a canvas

Consider drawing a unit circle with center located at the origin in a canvas of 800x600 pixels.





The region for drawing the image is called the viewport in OpenGL

## Drawing on a canvas

### Which part of the world will be drawn?

By defining a screen space in the viewport



Mapping from world coordinates to screen coordinates



How to maintain the aspect ratio of the circle?

To decide the color of each pixel, you need a correspondence of the world coordinates and the screen coordinates of the pixels

# Graphics from Formulas

$$z = y^{2} - x^{2} \qquad z = \sin(\frac{x}{y}) \qquad z = \sin(\sqrt{x^{2} + y^{2}})$$

# Fractal Rendering











### Fractal

Fractal is a set of points that has irregular shapes or boundaries of fractional dimensions.

• For example, the Mandelbrot fractal is a fractal defined in the complex plane:



### Fractal

Self-similarity is a characteristic property of fractals.

Fractals may be exactly the same at every scale, or nearly the same at different scales.



# Fractal – More Examples





Sierpinski triangl $\oint d = \log_2 3 \approx 1.58496$ )



Koch snowflake  $(d = \ln 4/\ln 3 \approx 1.26186)$ 



Hilbert curve (d = 2)



Romanesco broccoli (d = ~2.7)

## Review: Complex number



Operations:

" + ": 
$$(a+bi) + (c+di) = (a+c) + (b+d)i$$
" - ":  $(a+bi) - (c+di) = (a-c) + (b-d)i$ 
" × ":  $(a+bi)(c+di) = ac + bci + adi + bdi^2 = (ac - bd) + (bc + ad)i$ 

• Magnitude:

$$|z| = \sqrt{a^2 + b^2}$$



### What is Mandelbrot Set?

Mandelbrot Set — the set of all complex numbers c such that  $z_n$  is finite as n goes to infinity.

$$M = \{c|z_n \not\to \infty, z_n = z_{n-1}^2 + c, z_0 = 0\}$$

$$c \Longrightarrow \{z_0, z_1, z_2, z_3 \cdots\}$$

#### Example.1

For c = 1+0\*i, the sequence is  $\{0, 1, 2, 5, 26,...\}$ 

#### Example.2

For c = -1+0\*i, the sequence is  $\{0, -1, 0, -1, 0, ...\}$ 

#### Exercise:

$$c = -1 + i$$
 {0, -1+i, -1-i, -1+3\*i, -9-5\*i, 55+91i...}  
 $c = 1 - i$  {0, 1-i, 1-3\*i, 7-7\*i, 1+97\*i, -9407+193\*i...}



boundary of M (d = 2)

### What is Julia Set?

Associate with each (complex) parameter value c, there is a Julia set  $J_c$  which is defined as the boundary of the set:

$$A_c = \{z | z_n \not\to \infty, z_n = z_{n-1}^2 + c, z_0 = z\}$$

$$c, z \Longrightarrow \{z_0, z_1, z_2, z_3 \cdots\}$$





For c = 1+0\*i, z = 1+0\*i the sequence is  $\{1, 2, 5, 26, 677...\}$ 



The Julia set for some fixed c

### Mandelbrot Set and Julia Set

Both sets use the same rule for generating a sequence:

$$z_n = z_{n-1}^2 + c$$

#### Differed by:

|       | Mandelbrot        | Julia    |
|-------|-------------------|----------|
| С     | variable          | fixed    |
| $z_0$ | fixed ( $z_0$ =0) | variable |

#### Properties:

- The boundary of *M* is self-similar
- $J_c$  is connected iff  $c \in M$



### What do these fractals look like?







How is the rendering or visualization done?

 Use color coding to display the dynamic behavior of the iteration used to generate the fractal

# Complex Number Representation

### Represent a complex number using x, y coordinates

$$z_n = z_{n-1}^2 + c$$
  $n = 1,2,3...$ 

$$z_{n-1} = x_{n-1} + iy_{n-1}$$
$$z_n = x_n + iy_n$$
$$c = a + ib$$

$$x_{n} = x_{n-1}^{2} - y_{n-1}^{2} + a$$

$$y_{n} = 2x_{n-1}y_{n-1} + b$$

### Computational Issues

As the definitions of the Mandelbrot set and Julia sets involve  $\infty$ , computationally it is impractical to apply these definitions directly.

• In other words, we cannot iterate the function infinite times to see if a point  $(x_n, y_n)$  goes to  $\infty$ 

### Determining Divergence

### Escape Time:

**Definition 1**: Given R > 0, the escape time of a point z with respect to  $J_c$  is the smallest positive integer k such that  $|z_k| > R$ , where  $z_n = z_{n-1}^2 + c$ ,  $z_0 = z$ .



Intuitively, the escape time is the number of iterations for an initial point z to get out of a pre-specified range.

Theoretically, the escape time can be any integer from 0 to  $\infty$ 

The smaller the escape time, the more rapidly the point goes to infinity.

## Rendering Procedure

- Define a 2D coordinate system in a window (viewport) so that each pixel is associated with some coordinates (x, y)
- For each complex point z = (x<sub>0</sub>, y<sub>0</sub>), determine the escape time for z which is clamped off by a fixed integer K (i.e., escape time can only be from 0 to K)
- Assign a color to the pixel corresponding to z depending on its escape time (color coding)

## Rendering Procedure

Same for rendering the Mandelbrot set.

Escape time for Mandelbrot set:

**Definition 2:** Given R > 0, the escape time of a point c with respect to the Mandelbrot fractal M is the smallest positive integer k such that  $|z_k| > R$ , where  $z_n = z_{n-1}^2 + c$ ,  $z_0 = 0$ .

# Defining the Viewport

Suppose that the display window is  $[0, p_{max}] \times [0, q_{max}]$  in pixels and let  $[x_{min}, x_{max}] \times [y_{min}, y_{max}]$  be the area to be displayed in the complex plane.



Note that there might be display distortion in the complex coordinates, since the scalings in the x- and y-dimension is not 1:1.

# Color Map

The escape time is an integer which is used as an index to a color map to retrieve a color for display.



# Color Map

The escape time is an integer which is used as an index to a color map to retrieve a color for display.



An example color map used for rendering the fractal sets.

# More Rendering Results



### A Warm-up Exercise

You are going to implement two functions to render the Mandelbrot and Julia sets.

### A template project is given to you

- Windows platform project based on based on MS Foundation Class (MFC). Need Visual Studio 2019 Community, a free IDE for Visual C++, to compile.
- Download from the course webpage.
- Double-click the file Fractals\_2019.sln to open the project.
- A sample program Fractals.exe in the folder "Fractals\_solution".
- Template includes:
  - An interface with functions like resize, zoom in/out, select c, color map import/ edit/ export and file open/save.
  - OpenGL init and projection setup.

## About the Template





**Initial View** 

Finished View

# About the Template



### Your Task

Fill in two functions Mandelbrot() and Julia() in code.cpp.

void **Mandelbrot**(double left, double right, double bottom, double top, int winwidth, int winheight, unsigned char \*map);

- > left, right, bottom and top
  - display region of the complex plane
- >winwidth, winheight
  - > dimension of the window.



### Your Task

"map" here is an array representing pixels of the fractals image, from left to right, bottom to top.

Using color index mode, with the range from 0 to 255.

Each value takes one byte and represents a pixel's color.

It is already allocated by the template.

There are winwidth \* winheight bytes in the array.



# Note! Assign color to Pixel (i, j)

Color index ranges from 0 to 255!

Suppose the escape time for the complex number presented by pixel (i, j) is n, then it should be



Procedure: Mandelbrot\_Set

#### begin

For all pixels (p,q) in the window, do

#### begin

Step (1): set

$$\Delta a = (a_{max} - a_{min})/p_{max}, \quad \Delta b = (b_{max} - b_{min})/q_{max},$$
 $a = a_{min} + p * \Delta a, \quad b = b_{min} + q * \Delta b, \quad \leftarrow C = a + bi$ 
 $x_0 = 0, \quad y_0 = 0, \quad \leftarrow z_0 = 0$ 
 $n = 1; \quad \leftarrow escape time$ 

Step (2): set 
$$x_n = x_{n-1}^2 - y_{n-1}^2 + a$$
,  $y_n = 2x_{n-1}y_{n-1} + b$ ;  
Step (3):

- (i) if n = K, color the pixel (p, q) with color 0;
- (ii) if  $x_n^2 + y_n^2 < R$  and n < K, set n = n + 1, go back to Step (2);
- (iii) if  $x_n^2 + y_n^2 \ge R$ , color the pixel (p,q) with color n;

end

end

### Complex plane

#### Window





### Your Task

void **Julia**(double left, double right, double bottom, double top, double a, double b, int winwidth, int winheight, unsigned char \*map);

- Left, right, bottom, top, winwidth, winheight, map, same as Mandelbrot Set.
- **a** , **b** -- in Julia(), define the complex number c=a+ib.

**Procedure:** Julia\_Set (with c = a + ib)

#### begin

For all pixels (p,q) in the window, do

#### begin

Step (1): set

$$\Delta x = (x_{max} - x_{min})/p_{max}, \quad \Delta y = (y_{max} - y_{min})/q_{max},$$
 $x_0 = x_{min} + p * \Delta x, \quad y_0 = y_{min} + q * \Delta y,$ 
 $n = 1;$ 

Step (2): set 
$$x_n = x_{n-1}^2 - y_{n-1}^2 + a$$
,  $y_n = 2x_{n-1}y_{n-1} + b$ ; Step (3):

- (i) if n = K, color the pixel (p, q) with color 0;
- (ii) if  $x_n^2 + y_n^2 < R$  and n < K, set n = n + 1, go back to Step (2);
- (iii) if  $x_n^2 + y_n^2 \ge R$ , color the pixel (p,q) with color n;

end

end

### Complex plane

### Window



