



# **COMP815** Nature Inspired Computing

GA for Other Types of Optimization Problems

A butter production company wants to optimize the use of the machineries in its daily production of butter. Two types of butter are made — sweet and raw. One kilogram of sweet butter gives the company a profit of \$10 and one of raw a profit of \$15. Two machines are used in the production: a pasteurization machine and a whipping machine. The daily use time of the pasteurization machine is 3.5 hours and 6 hours for the whipping machine. The processing times (in minutes) for 1kg of butter are given below:

| Machine        | Sweet butter | Raw butter |
|----------------|--------------|------------|
| Pasteurization | 3            | 3          |
| Whipping       | 3            | 6          |

Let's first refer to the General Problem Format!

### Mathematical Description



**Parameters** 

$$\mathbf{x} = [x_1, x_2, ..., x_N]$$

Subject to 
$$x \in M$$

Feasible Set

One kilogram of sweet butter gives the company a profit of \$10 and one of raw a profit of \$15.

The daily use time of the pasteurization machine is 3.5 hours (210 min) and 6 hours (480 min) for the whipping machine.

The processing times (in minutes) for 1kg of butter are given below:

| Machine        | Sweet butter | Raw butter |
|----------------|--------------|------------|
| Pasteurization | 3            | 3          |
| Whipping       | 3            | 6          |

| Objective function | maximum the profit from two butters | \$10*sweet(kgs) + \$15*raw(kgs) |
|--------------------|-------------------------------------|---------------------------------|
| Parameters         |                                     |                                 |
|                    |                                     |                                 |
| Feasible set       |                                     |                                 |
|                    |                                     |                                 |

One kilogram of sweet butter gives the company a profit of \$10 and one of raw a profit of \$15.

The daily use time of the pasteurization machine is 3.5 hours (210 min) and 6 hours (480 min) for the whipping machine.

The processing times (in minutes) for 1kg of butter are given below:

| Machine        | Sweet butter | Raw butter |
|----------------|--------------|------------|
| Pasteurization | 3            | 3          |
| Whipping       | 3            | 6          |

| Objective function | maximum the profit from two butters                         | $f(x) = 10 * x_1 + 15 * x_2$                                     |
|--------------------|-------------------------------------------------------------|------------------------------------------------------------------|
| Parameters         | Sweet(kgs), raw(kgs)                                        | $x_1, x_2$                                                       |
|                    | Obviously                                                   | $x_1 \ge 0, x_2 \ge 0$                                           |
| Feasible set       | daily use time of two machines: pasteurization and whipping | P: $3 * x_1 + 3 * x_2 \le 210$<br>W: $3 * x_1 + 6 * x_2 \le 480$ |

One kilogram of sweet butter gives the company a profit of \$10 and one of raw a profit of \$15.

The daily use time of the pasteurization machine is 3.5 hours (210 min) and 6 hours (480 min) for the whipping machine.

The processing times (in minutes) for 1kg of butter are given below:

| Machine        | Sweet butter | Raw butter |
|----------------|--------------|------------|
| Pasteurization | 3            | 3          |
| Whipping       | 3            | 6          |

| Objective function | maximum the profit from two butters                         | $f(x) = 10 * x_1 + 15 * x_2$                                     |
|--------------------|-------------------------------------------------------------|------------------------------------------------------------------|
| Parameters         | Sweet(kgs), raw(kgs)                                        | $x_1, x_2$                                                       |
|                    | Obviously                                                   | $x_1 \ge 0, x_2 \ge 0$                                           |
| Feasible set       | daily use time of two machines: pasteurization and whipping | P: $3 * x_1 + 3 * x_2 \le 210$<br>W: $3 * x_1 + 6 * x_2 \le 480$ |

Maximize 
$$f(x) = 10 * x_1 + 15 * x_2$$
  
Subject to  $x_1 \ge 0$ ,  $x_2 \ge 0$ ,  $3 * x_1 + 3 * x_2 \le 210$ ,  $3 * x_1 + 6 * x_2 \le 480$ 

### Last Lecturer Review



### Last Lecturer Review

$$\min \ f(x) = x^4 - 2x^3 - 3x^2 + 2x + 1$$

for  $-3 \le x \le 4$ 



# **Chromosome Encoding**

Each candidate solution encodes a value of  $-3 \le x \le 4$ 

Each candidate solution is represented by a chromosome

*n* binary digits:  $\{0,1\}^n$ 

Let 
$$n = 10$$

| X  | chromosome   |
|----|--------------|
| -3 | 00 0000 0000 |
| 0  | 01 1011 0110 |
| 4  | 11 1111 1111 |



| n=10 $a = -3$ | D | = | 4 |
|---------------|---|---|---|
|---------------|---|---|---|

| chromosome   | x      |
|--------------|--------|
| 00 0000 0000 | -3     |
| 01 1011 0110 | -0.003 |
| 11 1111 1111 | 4      |

### Crossover



# Single-bit Mutation



### More Problems

• N-Queen, 8-Queen

• Travelling Salesman Problem



- Chromosome
- Crossover
- Mutation





### N-queens Problem

- A constraint satisfaction problem
- Place N queens on an N×N chessboard so that no two of them can check each other

Design a GA for the 8-queens problem



A solution of the 8-queens problem

# Chromosome Representation

Could use a matrix (2D) of binary genes

Since we know that no two queens could be in the same row and the same column, we can use a permutation representation

### Example:



A permutation of integers 1 to 8



### **Mutation Operator**

Need to remain a permutation after mutation

### Swap mutation:

- 1. Randomly select two genes
- 2. Swap their positions



### **Crossover Operator**

#### **Cut-and-Crossfill**

- Select a random crossover point
- Cut the parents into two segments at this position
- Copy the first segment of parent 1 into child 1 and the first segment of parent 2 into child 2
- Scan parent 2 from left to right and fill the second segment of child 1
  with values from parent 2, skipping those that the first segment already
  contains
- Do the same for parent 1 and child 2





### Parent Selection

Let there be n individuals in the first generation

- In each cycle, select 2 parents to produce 2 children
  - Randomly select 5 individuals
  - Choose the best 2 as parents

# Replacement Strategy

- Combine the population and the two offsprings
  - Total n + 2 individuals

Rank their fitness

Remove the worst two

### **Fitness**

q(x) = the number of queen pair violations by x

$$fitness = \frac{1}{q(x)}$$
Can be zero

$$fitness = \frac{1}{q(x) + \epsilon}$$
A small value

# Travelling Salesman Problem

- Given N cities and the distances between each pair of them, find the shortest path that goes through each city once and returns to the starting city
- The number of possible paths that goes through all the cities is

$$\frac{(N-1)!}{2}$$
 Why?



### Travelling Salesman Problem

- Given N cities and the distances between each pair of them, find the shortest path that goes through each city once and returns to the starting city
- The number of possible paths that goes through all the cities is

Four cities: A B C D

1. All Permutations: N!

2. <u>Circular</u>

 $A-B-C-D-A \rightarrow B-C-D-A-B$ 

Fix any starting: (N-1)!

3. Reversal

 $A-B-C-D-A \rightarrow A-D-C-B-A$ 

(N-1)!/2



# Chromosome Design

Cities can be numbered 1, 2, ..., N

### Important Criteria for Design:

- A valid tour must consist of all cities
- Each city should only appear once, except the starting city

Permutation representation could be used

### Mutation

#### Swap mutation could be used

### Other possible mutation operations:

#### Insertion



#### Inversion



### Crossover

### Partially Mapped Crossover (PMX)



### Crossover

### Partially Mapped Crossover (PMX)



### Fitness of TSP

Measure if a path is good or not

Total distance:  $\sum d_{ij}$ 



# Parameter Tuning

- Difficulties:
  - Parameters interact:
    - Population Size, #Generations, Crossover Rate, Mutation rate, etc.
  - Trying different combinations is time consuming
- Good tuning algorithms proposed around 2005:
  - SPO
  - F-race
  - REVAC
  - Meta-GA

Still not widely adopted

### Approach

- Treat the design of an EA as a search problem
- The tuning method is a search algorithm (the set of parameters is the vector of values to be searched)

- Tuning algorithms can provide information about an EA:
  - Robustness
  - Distribution of solution quality
  - Sensitivity

# Algorithm Quality

- Standard performance metrics
  - Mean best fitness (MBF)
  - Average number of evaluations to a solution (AES)
  - Success rate (SR)

Generate-and-Test

#### Robustness

- Of a set of EA parameters to variations of problem instances
- Of solution quality to variations of parameters for a particular problem instance

# Dealing with Constrained Optimization

Make use of the encoding method, e.g. N-queens problem

- Apply GA as normal and assign zero fitness to any individual that violates the constraints
  - Inefficient search for smaller problems
  - With highly constrained problems:
    - Can produce many illegal individuals, wasting effort
    - Cause over-rapid convergence too few legal individuals generated

### Dealing with Constrained Optimization

- Three approaches
  - Use of penalty functions
  - Use of repair operators
  - Creation of tailored diversity generation operations

# **Penalty Functions**



### Works for relatively few constraints

### Repair Operators

Repair infeasible solutions by moving them back into the feasible region

Tricky to design

# Tailored Diversity-Generation Operators

Crossover and mutation operators are agnostic to the problem domain

Crossover of two legal parents may produce an illegal child

Mutation of a legal individual may result in an illegal one

Design problem-specific crossover and mutation operators

Yanbin Liu

### Summary

N-Queen 8-Queen Problem

Travelling Salesman Problem

Parameter Tuning for Genetic Algorithm