PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-345086

(43) Date of publication of application: 14.12.2001

(51)Int.CI.

H01M 2/20

HO1M 2/12

H01M 2/30

(21)Application number: 2000-163522

(71)Applicant : SANYO ELECTRIC CO LTD

(22)Date of filing:

31.05.2000

(72)Inventor: OKAJIMA HIDEKI

TOYA SHOICHI ODA TAKASHI

(54) BATTERY PACK

(57)Abstract:

PROBLEM TO BE SOLVED: To simply and easily connect batteries with a small number of parts, and in the state of low resistance, and surely connect batteries while reducing a manufacturing cost.

SOLUTION: A battery pack is obtained by linearly coupling plural batteries 2 via connection fittings 1. The connection fittings 1 is a cap 9 which presses an elastic body 11 of a safety valve 10 that is installed at a sealing 18 plate 5 of the battery 2, and a welding part 1B which is welded to the battery 2 is installed at this cap 9. The welding part 1B of the connection fittings 1 is welded to the battery 2, and neighboring batteries 2 are linearly connected.

1D · 同定部

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's

decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開2001-345086

(P2001-345086A)

(43)公開日 平成13年12月14日(2001.12.14)

(51) Int.Cl.7		識別記号	F I	·. •	7	~7.]~ *(参考)
H01M	2/20		H 0 1 M	2/20	Α	5H012
	2/12	101		2/12	101	5H022
•	2/30	•		2/30	. C	

審査請求 未請求 請求項の数7 OL (全 7 頁)

(21)出願番号	特願2000-163522(P2000-163522)	(71)出願人	000001889
:			三洋電機株式会社
(22)出廣日	平成12年5月31日(2000.5.31)	-	大阪府守口市京阪本通2丁目5番5号
4		(72)発明者	岡島 英樹
			大阪府守口市京阪本通2丁目5番5号 三
			洋電機株式会社内
		(72)発明者	遠矢 正一
-	•	, ,	大阪府守口市京阪本通2丁目5番5号 三
· ·			洋電機株式会社内
		(74)代理人	100074354
			弁理士 豊栖 康弘

最終頁に続く

(54)【発明の名称】 組電池

(57)【要約】

【課題】 少ない部品点数で、簡単かつ容易に、しかも 低抵抗な状態で電池を接続する。製造コストを低減して 電池を確実に接続する。

【解決手段】 組電池は、複数の電池2を接続金具1を介して直線状に連結している。接続金具1は、電池2の封口板5に設けている安全弁10の弾性体11を押圧しているキャップ9で、このキャップ9に電池2に溶着する溶着部1Bを設けている。接続金具1の溶着部1Bを電池2に溶着して、隣接する電池2を直線状に接続している。

1 a • • 押圧部 1 b • • 固定部

【特許請求の範囲】

【請求項1】 複数の電池(2)を接続金具(1)を介して直線状に連結している組電池において、

接続金具(1)が、電池(2)の封口板(5)に設けてなる安全 弁(10)の弾性体(11)を押圧しているキャップ(9)で、こ のキャップ(9)に電池(2)に溶着する溶着部(1B)を設けて おり、溶着部(1B)を電池(2)に溶着して、隣接する電池 (2)を直線状に接続してなることを特徴とする組電池。

【請求項2】 接続金具(1)が、安全弁(10)の弾性体(11)を押圧する押圧部(1a)と、この押圧部(1a)の外側にある固定部(1b)と、さらに固定部(1b)の外側にある溶着部(1B)とを備え、固定部(1b)を電池(2)の封口板(5)に固定している請求項1に記載される組電池。

【請求項3】 溶着部(1B)が、溶着される電池(2)の底面に向かって突出しているフランジ状で、このフランジ状の溶着部(1B)を電池(2)の底面に溶着している請求項2に記載される組電池。

【請求項4】 フランジ状の溶着部(1B)が押圧部(1a)よりも突出しており、溶着部(1B)が押圧部(1a)から突出する高さが、5 mm以下である請求項3 に記載される組電池。

【請求項5】 フランジ状の溶着部(1B)と押圧部(1a)を同一平面に位置させてなる請求項3に記載される組電池。

【請求項6】 溶着部(1B)が、溶着される電池(2)の端部を挿入できる筒状で、溶着部(1B)を外装缶(4)の側面に溶着している請求項2に記載される組電池。

【請求項7】 溶着部(1B)にプロジェクション(13)を設けており、このプロジェクション(13)を電池(2)に溶着している請求項1に記載される組電池。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、複数の電池を直線 状に接続している組電池に関する。とくに、本発明は、 主として自動車を走行させるモーター用の電源として利 用されるのに最適な組電池に関する。

[0002]

【従来の技術】複数の電池を直線状に接続している組電池は、二次電池の間に接続金具を挟む状態で配設し、接続金具を介して二次電池の正極と負極とにスポット溶接して、二次電池を直線状に、直列に連結している。この構造の電源モジュールは、特開平10-106533号公報に記載される。この構造のモジュール電池は、とくに、自動車用などの大電流を必要とする用途に適している。

【0003】従来のモジュール電池は、図1と図2に示す形状の皿状の接続金具21を使用して、図3の断面図で示すように、円筒型電池22を直列に接続する。接続金具21は、プレート部21Aを円筒型電池22の端面に位置する正極に溶接し、側壁部21Bを円筒型電池2

2の外装缶24の側面に位置する負極に溶接して連結する。

【0004】接続金具21のプレート部21Aは、円筒型電池22の正極に溶接するプロジェクション23を設けている。プロジェクション23の上面を溶接用電極棒で押圧して、プロジェクション23を正極に溶接する。

【0005】さらに、接続金具21は、側壁部21Bの内側に円筒型電池22を挿入して、側壁部21Bを円筒型電池22の負極である外装缶24にスポット溶接する。側壁部21Bも、プレート部21Aと同じように、プロジェクション23の外側を溶接用電極棒で押圧して、内面に設けたプロジェクション23を外装缶24に溶接する。

【0006】図4は、接続金具21で複数の円筒型電池22を連結したモジュール電池を示す。モジュール電池は、この図に示すように、複数の円筒型電池22を直線状に直列に連結している。

[0007]

【発明が解決しようとする課題】この構造の組電池は、 ふたつの電池を、接続金具を介して接続するので、皿状 の接続金具を、封口板と外装缶の両方に溶着する必要が ある。このため、接続金具の溶着に手間がかかる欠点が ある。さらに、電池の接続用として、専用に設計された 接続金具を使用するので、部品コストが高くなる欠点も ある。また、接続金具を介して電池を接続するので、接 続金具によって接続部分の抵抗が大きくなる欠点もあ る。

【0008】接続金具を介して電池を直線状に接続している組電池は、自動車の走行用電源のように、極めて大きな出力が要求される用途に多く使用される。この用途の組電池は、たとえば、100個以上と相当に多くの電池を直列に接続するので、電池を接続するのを簡単にし、さらに、接続するための部品点数を少なくし、さらに、接続部分の抵抗をいかに小さくできるかが極めて大切である。

【0009】本発明は、このことを実現することを目的に開発されたもので、本発明の重要な目的は、少ない部品点数で、簡単かつ容易に、しかも低抵抗な状態で電池を接続できる組電池を提供することにある。また、本発明の他の大切な目的は、製造コストを低減して電池を確実に接続できる組電池を提供することにある。

[0010]

【課題を解決するための手段】本発明の組電池は、複数の電池2を接続金具1を介して直線状に連結している。接続金具1は、電池2の封口板5に設けている安全弁10の弾性体11を押圧しているキャップ9で、このキャップ9に電池2に溶着する溶着部1Bを設けている。接続金具1の溶着部1Bを電池2に溶着して、隣接する電池2を直線状に接続している。

【0011】接続金具1は、好ましくは、安全弁10の

弾性体11を押圧する押圧部1aと、この押圧部1aの外側にある固定部1bと、さらに固定部1bの外側にある溶着部1Bとを備え、固定部1bを電池2の封口板5に固定している。この構造の接続金具1は、さらに好ましくは、溶着部1Bを、溶着される電池2の底面に向かって突出するフランジ状とし、フランジ状の溶着部1Bを電池2の底面に溶着している。さらにまた、この接続金具1は、フランジ状の溶着部1Bを押圧部1aよりも突出させると共に、溶着部1Bの押圧部1aからの突出高さを5mm以下とする。ただし、接続金具1は、フランジ状の溶着部1Bと押圧部1aを同一平面に位置させることもできる。

【0012】接続金具1の溶着部1Bは、溶着される電池2の端部を挿入できる筒状として、筒状の溶着部1Bを外装缶4の側面に溶着することもできる。

【0013】さらに、接続金具1は、溶着部1Bにプロジェクション13を設けて、プロジェクション13を電池2に溶着して、より確実に電池2に溶着できる。

[0014]

【発明の実施の形態】以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための組電池を例示するものであって、本発明は組電池を以下のものに特定しない。

【0015】さらに、この明細書は、特許請求の範囲を理解しやすいように、実施例に示される部材に対応する番号を、「特許請求の範囲の欄」、および「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。

【0016】図5ないし図8に示す組電池は、電池2を接続金具1で直線状に直列に接続する。さらに、この図の組電池は、接続金具1と電池2との間に、絶縁体3を配設している。図の組電池は、電池2を円筒型二次電池としている。

【0017】電池2は、単一型のニッケルー水素電池である。ただ、本発明の組電池は、電池2を単一型のニッケルー水素電池に特定しない。電池には、ニッケルーカドミウム電池やリチウムイオン二次電池等の電池も使用できる。また、電池のサイズも単一型には特定せず、角型等の種々の二次電池とすることができる。

【0018】接続金具1は、電池2の封口板5に溶着されるキャップ9を併用している。したがって、接続金具1は、封口板5に固定しているキャップ9を、さらに外側縁に向かって延長する形状とし、その外周部に溶着部1Bを設けている。キャップ9に併用される図6の接続金具1は、プレート部1Aと溶着部1Bからなり、プレート部1Aは、安全弁10の弾性体11を押圧する押圧部1aと、この押圧部1aの外側にある固定部1bとを有する。プレート部1Aは、外形を電池2の端面形状にほぼ等しくしている。円筒型電池を接続する図の接続金

具1は、プレート部1Aを円盤状としている。図示しないが、角型電池を接続する接続金具は、プレート部を、 角形電池端面の外形にほぼ等しい角形とする。

【0019】プレート部1Aの中央に設けている押圧部1aは、リング状をしている固定部1bの内側に設けられ、かつ、固定部1bよりも突出して、内部に弾性体11を収納している。この押圧部1aは、弾性体11を位置ずれしないように保持して収納できる。また、外側に突出しているので厚い弾性体11を収納して、安全弁10の弁体12のストロークを大きくできる。図に電池2は、弾性体11を押しバネであるコイルバネとしている。弾性体には、コイルバネに代わってゴム状弾性体も使用できる。

【0020】固定部1bは、封口板5の上面に溶着して固定される。固定部1bは、封口板5の上面に面接触する平面状で、スポット溶接して封口板5に固定される。封口板5は、押圧部1aと対向する位置に凹部5Aを設けて、凹部5Aの底に弁孔5Bを貫通して設けている。弁孔5Bは、通常の使用状態において弁体12で閉塞される。弁体12は、弾性体11で弁孔5Bの表面側に押圧されて、弁孔5Bを閉塞する。電池2の内圧が上昇して、設定圧よりも高くなるときに限って、内圧で弁体12が持ち上げられ、安全弁10が開弁して、電池2内のガス等を弁孔5Bに通過させる。弁孔5Bを通過したガス等は、押圧部1aに設けている貫通孔(図示せず)を通過して、電池2の外部に排出される。

【0021】図6の接続金具1は、固定部1bの外側に電池2の底面を保持する保持部1cを設け、保持部1cの外周に筒状の溶着部1Bを連結している。保持部1cが押圧は、押圧部1aよりも突出している。保持部1cが押圧部1aより突出する突出高さは5mmよりも低い。保持部1cがこれより高く突出すると、組電池の全長が長くなるばかりでなく、接続金具1が電池2を連結する連結部の折曲強度が低下するからである。図の接続金具1は、保持部1cを押圧部1aよりも突出させているが、保持部と押圧部とは同一平面とすることもできる。ただし、この接続金具は、押圧部の垂直壁に、ガスを外部に排出する貫通孔を開口する。

【0022】図7の接続金具1は、円筒型の電池2を連結するので、プレート部1Aを円盤状として、溶着部1Bを円筒状としている。溶着部1Bは、電池2の外周面に、スポット溶接され、あるいはレーザー溶接して溶着される。溶着部1Bは、好ましくは、プロジェクション(図示せず)を設けて、電池2の外装缶4に溶着する。さらに、図の接続金具1は、筒状に形成している溶着部1Bに切除部8を設けて、複数に分割している。この溶着部1Bは変形しやすく、外装缶4の表面に確実に接触される。図7の接続金具1は、切除部8を、90度ピッチで等間隔に設けている。さらに、図7の接続金具1は、切除部8を、溶着部1Bからプレート部1Aの周縁

まで延長して設けている。

【0023】この構造の接続金具1は、溶着部1Bとプレート部1Aの両方を変形させて溶着部1Bを弾性変形できるので、溶着部1Bをより確実に外装缶4の表面に接触できる。ただ、切除部は、かならずしもプレート部まで延長して設ける必要はなく、また、切除部のない接続金具とすることもできる。さらに、図の接続金具1は、4つの切除部8を設けているが、切除部は、3つ以下とし、あるいは、5つ以上とすることもできる。

【0024】以上の構造の溶着部1Bは、スポット溶接して電池2に接続され、あるいは、レーザー溶接して電池2に接続される。スポット溶接は、溶接用電極棒を接続金具1の溶着部1Bに押圧して、溶着部1Bを電池2に溶着する。溶接用電極棒で押圧される溶着部1Bは、電池2の表面に接触され、この状態で大電流が流されて、電池2に溶着される。レーザー溶接は、押圧具で溶着部1Bを押圧して電池2に接触させる。この状態で、レーザー光線を溶着部1Bに照射し、レーザー光線で溶着部1Bを溶融して電池2に溶着する。

【0025】図9ないし図11の組電池は、異なる形状の接続金具1で電池2を接続している。この接続金具1は、溶着部1Bを、溶着される電池2の底面に向かって突出しているフランジ状とし、このフランジ状の溶着部1Bを電池2の底面に溶着している。フランジ状の溶着部1Bは、電池2の底面に面接触するように、電池底面と平行な平面状としている。さらに、フランジ状の溶着部1Bは、押圧部1aよりも突出しており、その突出高さを5mm以下としている。ただし、図示しないが、フランジ状の溶着部は、押圧部と同一平面とすることもできる。図10に示す溶着部1Bは、電池2に溶着する部分にプロジェクション13を設けている。

【0026】図10に示す接続金具1は、接続金具1の溶着部1Bを電池2の底面に押圧する状態で、接続する電池2を放電させる方向に大電流パルス通電して、溶着部1Bを外装缶4の底面に溶着する。プロジェクション13のある溶着部1Bは、この部分に集中して大電流が流れて、溶着部1Bを電池2の外装缶4の底面により確実に溶着する。この構造の組電池は、接続金具1の外形を小さくして、いいかえると、接続金具1を電流が流れる経路を短くできるので、電池2をより低抵抗な状態で接続できる。

【0027】以上の構造の接続金具1は、金属板をプレス加工して製作される。金属板は、鉄製鋼板にニッケルメッキをしたものを使用する。メッキした金属板を裁断してプレス加工し、あるいは、メッキしていない金属板を裁断してプレス加工した後メッキして製作される。接続金具1を製作する金属板は、たとえば、厚さを0.8 mmとする。ただし、この金属板は、厚さを0.2~1.2 mm、好ましくは、0.3~1 mm、さらに好ましくは、0.4~0.9 mmとすることもできる。接続

金具1の厚さは、好ましくは、封口板5よりも薄くする。接続金具1を確実に封口板5の金属板に溶着するためである。

【0028】絶縁体3は、プラスチック等の絶縁材で全体を成形している。図6と図10の絶縁体3は、電池2の端部を挿入するための筒状キャップ3Aと絶縁プレート部3Bとを、プラスチックで一体的に成形している。全体を一体的に成形している絶縁体3は、硬質または軟質のプラスチックで成形し、あるいはまたゴム状弾性体で成形する。硬質のプラスチックには、ポリエチレン樹脂、ポリプロピレン樹脂、ナイロン樹脂、塩化ビニル樹脂等が使用できる。軟質のプラスチックには、軟質塩化ビニル樹脂、EVA、ウレタン樹脂、シリコン樹脂等が使用できる。ゴム状弾性体には、天然あるいは合成ゴム等が使用できる。

【0029】絶縁体3は、全体をプラスチックやゴム状弾性体で成形することなく、一部を軟質のプラスチックやゴム状弾性体で成形して、他の部分を硬質のプラスチックで成形することもできる。この絶縁体3は、軟質のプラスチックやゴム状弾性体を、硬質プラスチックやゴム状弾性体は、たとえば、組電池を配設するホルダーケースの支持リブに当接する部分を成形する。図6と図10に示す絶縁体3は、筒状キャップ3Aを支持リブに当接させるので、この部分を軟質プラスチックやゴム状弾性体で成形し、あるいは、筒状キャップの表面に突出して設けている突出する部分を軟質プラスチックやゴム状弾性体で成形し、あるいは、筒状キャップの表面に突出して設けている突出する部分を軟質プラスチックやゴム状弾性体で成形する。

【0030】絶縁体3の筒状キャップ3Aは、内形を電池2の端部外形にほぼ等しい形状として、ここに電池2の端部を嵌入して、電池2に連結している。筒状キャップを、弾性変形できる軟質のプラスチックやゴム状弾性体で成形している絶縁体は、筒状キャップの内形を電池の外形よりも多少小さく成形する。この絶縁体は、筒状キャップに電池の端部を挿入する状態で、筒状キャップを電池の表面に弾性的に押圧する状態で連結する。このため、絶縁体を電池に抜けない状態で連結できる特長がある。

[0031]

【実施例】 [実施例] 電池2に単一型のニッケルー水素電池を使用し、接続金具1には、プレート部1Aの肉厚を0.8 mm、溶着部1Bの肉厚を0.5 mmとするものを使用して、2個の電池2を直列に接続して、接続金具1の接続部分の抵抗を測定すると、0.09 mΩと極めて小さくなった。

【0032】 [比較例] 比較のために、接続金具の全体を0.5mmの肉厚とする以外、実施例と同じようにして、接続金具で2個の電池を直列に接続して、接続金具の接続部分の抵抗を測定すると、0.12mΩとなった。実施例の抵抗が0.09mΩであるから、実施例の

構造は、接続金具の接続部分の抵抗を25%も低減できた。

[0033]

【発明の効果】本発明の組電池は、少ない部品点数で、 簡単かつ容易に、しかも低抵抗な状態で電池を接続でき ると共に、製造コストを低減して電池を確実に接続でき る特長がある。それは、本発明の組電池が、複数の電池 を直線状に連結する接続金具を、電池の封口板に設けて いる安全弁の弾性体を押圧するキャップとしており、こ のキャップに設けた溶着部を電池に溶着して、隣接する 電池を直線状に接続しているからである。この構造の組 電池は、接続金具を安全弁の弾性体を押圧するキャップ に併用している。このため、連結される電池は、組み立 てた状態で端面に接続金具が固定されている。この接続 金具は、従来の皿状の接続金具のように、隣接する電池 の両方に溶着することなく、一方の電池に溶着するだけ で複数の電池を直線状に連結できる。このように、溶着 部分を少なくできる本発明の組電池は、接続部分の抵抗 をより小さくして、しかも、接続金具の溶着にかかる手 間を低減して能率よく多量生産できる。さらに、本発明 の組電池は、電池の接続用に専用に設計された接続金具 を使用しないので、部品点数を少なくして、低コストに 生産できる特長もある。

【0034】さらに、本発明の組電池は、溶着部を、溶 着される電池の底面に向かって突出するフランジ状とし て、このフランジ状の溶着部を電池の底面に溶着するこ とによって、低抵抗として、しかもスッキリとした外観 にできる特長がある。

【0035】さらに、本発明の組電池は、接続金具の溶着部を、溶着される電池の端部を挿入できる筒状として、筒状の溶着部を外装缶の側面に溶着することによって、極めて簡単に溶着部を外装缶に溶着できる特長がある。

【0036】さらに、本発明の組電池は、接続金具の溶 着部にプロジェクションを設けて、このプロジェクショ ンを電池に溶着することによって、簡単かつ確実に複数 の電池を連結できる。

【図面の簡単な説明】

【図1】従来の組電池に使用する皿状接続金具の斜視図

- 【図2】図1に示す皿状接続金具の側面図
- 【図3】図1に示す皿状接続金具を使用して円筒型電池 を連結する状態を示す断面図
- 【図4】円筒型電池を皿状接続金具で連結している従来 の組電池の側面図
- 【図5】本発明の実施例の組電池の電池と接続金具との連結状態を示す側面図
- 【図6】図5に示す組電池の電池と接続金具との連結状態を示す拡大断面図
- 【図7】図5に示す組電池の斜視図
- 【図8】本発明の実施例の組電池の斜視図
- 【図9】本発明の他の実施例の組電池の電池と接続金具 との連結状態を示す側面図
- 【図10】図9に示す組電池の電池と接続金具との連結 状態を示す拡大断面図
- 【図11】本発明の他の実施例の組電池の斜視図 【符号の説明】
- 1 …接続金具 1 A … プレート部
- B···溶着部
- 1 a …押圧部 1 b … 固定部
- 1 c …保持部
- 2…電池
- 3…絶縁体 3 A…筒状キャップ 3
- B…絶縁プレート部
- 4 …外装缶
- 5…封口板 5 A…凹部 5
- B…弁孔
- 8…切除部
- 9…キャップ
- 10…安全弁
- 11…弹性体
- 12…弁体
- 13…プロジェクション
- 21…接続金具 21A…プレート部 2
- 1 B…側壁部
- 22…円筒型電池
- 23…プロジェクション
- 2 4 … 外装缶

Link Charles

【図10】

フロントページの続き

(72)発明者 小田 貴史 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 F ターム(参考) 5H012 AA01 DD03 GG07 JJ02 5H022 AA19 BB03 CC02 CC09 CC12 CC13