(11) Publication number:

09-092692

(43) Date of publication of application: 04.04.1997

(51)Int.CI.

H01L 21/60

G01N 21/89

(21)Application number: 08-203084

(71)Applicant: TORAY IND INC

(22)Date of filing:

12.07.1996

(72)Inventor: NAKAI YASUHIRO

TAKEDA SHUZO

NAGAYAMA TAKASHI

(30)Priority

Priority number: 07201704

Priority date: 13.07.1995

Priority country: JP

(54) APPARATUS AND METHOD FOR INSPECTING TAB TAPE, METHOD AND APPARATUS FOR MANUFACTURING MOUNTING TAP TAPE

(57)Abstract:

PROBLEM TO BE SOLVED: To make it possible to accurately inspect both sides of a TAB tape for defects with one inspection stage and perform stable identifying operation with accuracy by using color high comprising blue color images and/or green color images as processing images.

SOLUTION: A first image capture means 101 and a second image capture means 102 use blue and blue images, blue and green images and green and blue images. When a first color image and a second color image are in blue and blue, the illumination light from a second illuminating means 202 is not detected by the first image capture means 101 because the tape base material is opaque to blue light. Therefore, the images of the front and back of a tape are not influenced by the illumination

on the opposite side, which allows defects in resin areas and copper pattern area and defects due to sticking foreign matters to be detected. It is also possible to detect defects in resin areas and sticking resin on the back of the tape.

(12)公開特許公報 (A)

(19)日本国特許庁 (JP)

(11)特許出願公開番号

特開平9-92692

(43)公開日 平成9年(1997)4月4日

(51) Int. Cl. 6	識別記号	庁内整理番号	FI			技術表示箇所
HOIL 21/60	311		H01L 21/60	311	W	
GO1N 21/89			GOIN 21/89		A	

審査請求 未請求 請求項の数15 FD (全10)百

-		一	:請求 請求項の数15 FD (全10頁)
(21)出願番号	特願平8-203084	(71)出願人	0 0 0 0 0 3 1 5 9
			東レ株式会社
(22)出願日	平成8年(1996)7月12日		東京都中央区日本橋室町2丁目2番1号
	•	(72)発明者	中井 康博
(31)優先権主張番号	特願平7-201704		滋賀県大津市園山1丁目1番1号 東レ株
(32)優先日	平7 (1995) 7月13日		式会社滋賀事業場内
(33)優先権主張国	日本(JP)	(72)発明者	武田 修三
	•		滋賀県大津市園山1丁目1番1号 東レ株
			式会社滋賀事業場内
•	•	(72)発明者	長山 孝
	·		滋賀県大津市園山1丁目1番1号 東レ株
			式会社滋賀事業場内
		(74)代理人	弁理士 伴 俊光
		I	

(54) 【発明の名称】TABテープの検査装置および検査方法ならびに実装TABテープの製造方法および製造装置

(57)【要約】

【課題】 TABテープの欠点を、1検査ステージで精度よく行うことができ、表裏両面について検査でき、しかも安定した高精度の判別処理が可能な、TABテープの検査装置、方法、さらには実装TABテープの製造方法および製造装置を提供する。

【解決手段】 TABテープを搬送する手段と、装置の基準位置とTABテープ回路パターン相互の位置決め手段と、TABテープの表側に配置した照明手段と、該照明手段により照明される面と同じテープ面の画像を採取する画像採取手段と、該画像を処理して欠点の有無を判別する判別処理手段を有するTABテープ検査装置であって、処理画像が背色画像、緑色画像、両者よりなる色画像であることを特徴とする、TABテープの検査装置。

40

【特許請求の範囲】

【請求項1】 TABテープを搬送する手段と、装置の基準位置とTABテープ回路パターン相互の位置決め手段と、TABテープの表側に配置した照明手段と、該照明手段により照明される面と同じテープ面の画像を採取する画像採取手段と、該画像を処理して欠点の有無を判別する判別処理手段を有するTABテープ検査装置であって、処理画像が背色画像、緑色画像、両者よりなる色画像であることを特徴とする、TABテープの検査装置。

【請求項2】 TABテープを搬送する手段と、装置の基準位置とTABテープ回路パターン相互の位置決め手段と、TABテープの回路パターン加工面側に配置した第1の照明手段と、該照明手段により照明される面と同じパターン面側から画像を採取する第1の画像採取再段と、前記パターン面と反対面側に配置した第2の画像採取手段と、該反対面から画像を採取する第2の画像採取手段と、第1の画像採取手段による画像と第2の画像採取手段による画像を処理する判別処理手段とを備えたことを特徴とする、TABテープの検査装置。

【請求項3】 前記第1の画像採取手段により採取される画像が背色画像であり、第2の画像採取手段により採取される画像が緑色画像である、請求項2のTABテープの検査装置。

【請求項4】 前記第1の画像採取手段により採取される画像が緑色画像であり、第2の画像採取手段により採取される画像が背色画像である、請求項2のTABテープの検査装置。

【請求項5】 画像採取する手段がカラーカメラまたは カラーラインセンサである、請求項1ないし4のいずれ かに記載のTABテープの検査装置。

【請求項6】 画像を採取する手段が光学フィルタと白 黒テレビカメラまたはラインセンサからなる、請求項1 ないし4のいずれかに記載のTABテープの検査装置。

【請求項7】 照明手段が白色光源と光学フィルタからなる、請求項1ないし4のいずれかに記載のTABテープの検査装置。

【請求項8】 判別処理手段による判別処理結果に基づき不良のある部分に目印を付ける目印手段を備えている、請求項1ないし7のいずれかに記載のTABテープの検査装置。

【請求項9】 検査対象が、ベースフィルムと、その上に加工されているパターン回路とからなる少なくとも2 層のものである、請求項1ないし8のいずれかに記載のTABテープの検査装置。

【請求項10】 前記第1、第2の照明手段が指向性のあるものであり、かつ第1の画像採取手段により採取される画像が赤色画像であり、第2の画像採取手段により採取される画像が緑または背色画像であることを特徴とする、請求項2、5ないし9のいずれかに記載のTAB 50

テープの検査装置。

【請求項11】 前記検査対象が、ベースフィルムと、パターン回路を接着するための接着剤層と、パターン回路の3層であることを特徴とする、請求項9または10に記載のTABテープの検査装置。

2

【請求項12】 請求項1ないし11のいずれかに記載のTABテープの検査装置を用いて、TABテープに半導体素子を実装加工する、実装TABテープの製造方. 法。

10 【請求項13】 請求項1ないし11のいずれかに記載のTABテープの検査装置を備えた、TABテープに半導体素子を実装加工するための実装TABテープの製造装置。

【請求項14】 装置の基準位置とTABテープ回路パターン相互間を位置決めしつつTABテープを搬送し、TABテープ表側を照明するとともに該照明面と同じテープ面の画像を採取し、該画像を育色画像、緑色画像、両者よりなる色画像として処理し、該処理画像から欠点の有無を判別することを特徴とする、TABテープの検査方法。

【請求項15】 装置の基準位置とTABテープ回路パターン相互間を位置決めしつつTABテープを搬送し、TABテープの回路パターン加工面を照明して該パターン面から画像を採取するとともに、前記パターン面と反対面を照明して該反対面からも画像を採取し、両面からの画像を判別処理することを特徴とする、TABテープの検査方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、TABテープの欠点検査を行う検査装置と検査方法、ならびにTABテープへ半導体素子を実装加工する実装TABテープの製造方法および製造装置に関する。

[0002]

【従来の技術】従来、TABテープ(IC実装前または 実装済みのもの)の欠点検査波、裸眼もしくは顕微鏡等 の光学装置を使って目視検査によっていたほか、自動検 査する方法が利用されていた。自動検査する方法を図6 を用いて説明するに、スプロケットホイール2、3を介 して搬送されるTABテープ1は、検査の第1ステージ では、拡散フィルタ254を付加した円形蛍光灯251 によってテープ表面が照明され、2次元CCDカメラ1 51で被照明面の画像を採取する。採取画像を判別装置 305で処理して封止樹脂部の欠点の有無を判定し、分 別部702で欠点部分を除去する。続く第2ステージで は、拡散フィルタ255を備えたリング照明252と、 LEDを2次元に配列した照明器253を併用してテー プ表面と裏面とを照明し、テープ表面から2次元のCC Dカメラ152でリード部の画像を採取する。採取画像 を判別処理装置306で処理してリード部の欠点の有無

3

を判別し、欠点部分は分別部702で除去する。

【0003】ところで、検査対象であるTABテープとしては、

(1) 2層(ポリイミド系ペースフィルムとパターン回路)

(2) 3層(ポリイミド系ペースフィルムと接着剤層、 パターン回路)

のものが知られている。

[0004]

【発明が解決しようとする課題】しかしながら、上記のような従来方法においては、次のような問題がある。まず、目視検査においては、テープ表裏に散在する複数種類の欠点を検査するので処理能力が不足し、TABテープ加エラインのスピードに適合しない。また、長時間にわたって検査を継続できず、検査精度が安定しない。

【0005】自動検査する場合においては、

A. 裏面に生じる欠点(裏面の樹脂付着など)の検出に 対応できず、裏面側へも照明手段と画像採取手段の取付 けが必要となる。

B. 半導体素子を表面に実装する品種があり、この品種に対しては、樹脂部欠点を検出するための円形蛍光灯と 2次元CCDカメラを、テープ裏面側にも設ける必要がある。

C. テープに実装された半導体素子を封止する工程で発生する樹脂部欠点とリード部欠点を同時に検出できない。すなわち、樹脂部欠点(樹脂発泡、樹脂不良など)の検出に適した照明強度(カメラ用レンズの絞りの開閉による調整も含む)と、リード曲り欠点の検出に適した照明強度が異なるので、画像を2回に分けて採取する、もしくは2つの検査ステージで個別の条件で画像を採用してTABテープの各欠点毎に、カメラのレンズ絞りを切り替える、もしくは照明強度を切り替えることは、切替機構の早期故障と照明不安定を招く結果になるため適さない。後者の検査ステージ追加は、前記AないしB項からも装置の大型化・高価格化につながるので好ましくない。

【0006】ところで、前述した3層構造のTABテープにおいては、ベースフィルムとパターン回路の間に接着剤層が介在するので、従来の画像採取手段、照明手段では検査できない。

【0007】本発明の課題は、TABテープの欠点検査を、1検査ステージで精度よく行うことができ、表裏両面について検査でき、しかも安定した高精度の判別処理が可能な、TABテープの検査装置、方法、さらには実装TABテープの製造方法を提供することにある。

【0008】また、本発明の別の課題は、検査対象のTABテープが2層構造や、特に接着剤層が介在している3層以上のTABテープであっても、1検査ステージで精度良く欠点検査を行うことができ、表裏両面について検査でき、しかも安定した高精度の判別処理が可能な、

TABテープの検査装置、方法、さらには実装TABテープの製造方法および製造装置を提供することにある。 【0009】

【課題を解決するための手段】上記課題を解決するために、本発明のTABテープの検査装置は、TABテープ回路が増加してABテープ回路が多一ン相互の位置決め手段と、TABテープ回路に配置した照明手段と、該照明手段により照明される面と同じテープ面の画像を採取する画像採取手段と、該画像を処理して欠点の有無を判別する判別処理手段を有するTABテープ検査装置であって、処理画像が背色画像、緑色画像、両者よりなる色画像であることを特徴とするものからなる。

【0010】また、本発明に係るTABテープの検査装置は、TABテープを搬送する手段と、装置の基準位置とTABテープ回路パターン相互の位置決め手段と、TABテープの回路パターン加工面側に配置した第1の照明手段と、該照明手段により照明される面と同じパターン面側から画像を採取する第1の画像採取手段と、該画像を処理する判別処理手段と、前記パターン面と反対面側に配置した第2の照明手段と、該反対面から画像を採取する第2の画像採取手段とを備えたことを特徴とするものからなる。

【0011】また、本発明に係る実装TABテープの製造方法は、上記のようなTABテープの検査装置を用いて、TABテープに半導体素子を実装加工する方法からなる。また、本発明に係る実装TABテープの製造装置は、TABテープの検査装置を備えた、TABテープに半導体素子を実装加工するための装置からなる。

【0012】また、本発明に係るTABテープの検査方法は、装置の基準位置とTABテープ回路パターン相互間を位置決めしつつTABテープを搬送し、TABテープ表側を照明するとともに該照明面と同じテープ面の画像を採取し、該画像を背色画像、緑色画像、両者よりなる色画像として処理し、該処理画像から欠点の有無を判別することを特徴とする方法からなる。

【0013】さらに、本発明に係るTABテープの検査方法は、装置の基準位置とTABテープ回路パターン相互間を位置決めしつつTABテープを搬送し、TABテープの回路パターン加工面を照明して該バターン面から画像を採取するとともに、前記パターン面と反対面を照明して該反対面からも画像を採取し、両面からの画像を判別処理することを特徴とする方法からなる。

【0014】本発明において、テーブ搬送手段としては、TABテープに加工され、所定のスプロケットホイールに係合するように加工されたTABテープをスプロケットホイールに巻き掛けて搬送する等の従来技術による搬送手段を用いることができる。また、テープの位置決め手段は、スプロケットホイール位置あるいはテープ表面の回路パターンを検出して、テープに接合済みの半

50

導体素子が装置の基準位置に対して所定の位置に来るように搬送手段を制御する。

【0015】照明手段としては、ハロゲンランプ光を光ファイバーで導いて出射端を円形に配列したライトガイド、あるいは円形の平面光源に同心円の貫通穴を加工したタイプ等のものが使える。照明効果を制御するために、照明手段の前面に光拡散フィルタ、光学色フィルタを用いてもよい。画像採取手段は色特性信号を出力するテレビカメラもしくはラインセンサであるが、画像採取手段の前面に光学色フィルタを置くことによって白黒画像のタイプを使用することができる。

【0016】また、第1の画像採取手段は背色画像を採 取し、第2の画像採取手段は緑色を採取する。あるいは その逆でもよい。判別処理手段は、第1の画像採取手段 による第1の画像を画像処理し、欠点の有無を判別して 判別結果を出力すると共に、第2の画像採取手段による 第2の画像を画像処理し、欠点の有無を判別して判別結 果を出力する。判別処理手段による判別処理結果に基づ き、不良のある部分に目印を付ける目印手段を設け、判 別処理手段が欠点有りと判別したTABテープの該欠点 を含む1単位回路内に目印を付けるようにしてもよい。 【0017】また、照明手段は、テープ表裏面側に設け た円形照明であり、ハロゲン光を光ファイバで導いて出 射端を円形に配列し、さらにテープ面に対して指向性を 持たせたものである。テープ表面側の照明手段は、テー プ面に対して20~30°の角度で照射するのが望まし い。また、テープ裏面の照明手段は、テープ面に対して

40~50°の角度で照射するのが望ましい。

【0018】この場合、第1の画像採取手段は赤色画像を採取し、第2の画像採取手段は緑色または青色画像を採取する。

【0019】また、検査対象であるTABテープとしては、ペースフィルムとパターン回路の間に接着剤層が介在している、少なくとも3層以上のものである。

【0020】本発明において育色画像とは、画像を構成する光の主要部の波長範囲が500nm以下の範囲に含まれるものをいう。また、緑色画像とは、画像を構成する光の主要部の波長範囲が600nm以下の範囲に含まれるものをいい、赤色画像とは、画像を構成する光の主要部の波長範囲が600nm以上の範囲に含まれるものをいう。

【0021】目印手段としては、TABテープの欠点位置へスタンピング、スプレー、印刷、ラベリング等のマーキング手段の他、欠点を含む単位回路の一部を打抜くパンチャー等が使える。判別処理手段は、採取した色画像を2値化して2値画像の特徴量(寸法、形状など)を基準値と比較して欠点の有無を判別する等の画像処理の方法を用いて欠点の有無を判別し、判別結果を出力する。

【0022】TABテープに半導体素子を実装する実装 TABテープ製造工程で発生する欠点は、表1に示すよ うに、TABテープの表裏両面に発生する。

[0023]

【表1】

欠点の名称		欠点の内容	発生する面		
L	7m-54	AMO FIE	裏に半導体素子 を実装する品種 を実装する品種		
	樹脂 発泡 樹脂 不良	封止樹脂部に気泡発生 封止樹脂量不足	おもて	うら	
	リード曲がり	リードの変形	おもて	おもて	
有個付款	(表) 銅パターン部 (表) リード部 (表) レジスト部	封止用の樹脂油の付着	おもて	おもて	
若	(要) リード部 (裏) 全 域	封止用の樹脂油の付着	うら	うら	

【0024】テープ表側に照明手段を配置して採取した色画像では、回路パターンの銅箔部(表面に金メッキ、40その他のメッキ処理をしてある)および外部回路との接続用リード部分(スリット状に加工してある)の輝度レベルを同一照明で比較すると赤、緑、青色画像の順に低下する。白黒画像においては、通常赤色画像に相当して輝度レベルは高い。TABテープに接続済みの半導体素子を封止加工する工程で発生する欠点の1つである、回路パターン上への封止樹脂が付着する欠点の輝度レベルは、上記照明手段を配置して採取した色画像では同一照明で比較すると赤、緑、青色画像の順に上昇する。白黒画像においては、通常赤色画像に相当して輝度レベルが50

低い。また通常使用するTABテープの基材であるポリ イミドフィルムは育色光を透過させず、また回路パターンの一部(通常、半導体素子を実装するインナーリード部分周辺)に加工されているソルダーレジスト部(以下、レジスト部と称する)は赤色光を通さない。これらから色画像を選択し、透過光と落射光を組合わせて利用することによって、上述した問題点を解決することができる。

【0025】本発明のTABテープを搬送する手段と、 装置の基準位置とTABテープ回路パターン相互の位置 決め手段と、TABテープ表面側に配置した照明手段 と、該照明と同じテープ面の画像を採取する画像採取手

る.

段と、該画像を処理して欠点の有無を判別する判別処理 手段を備えるTABテープの検査装置では、従来の白黒 画像によるものと比較して、半導体素子封止の樹脂部分 およびテープ表面に付着する樹脂付着欠点部分の輝度が 上昇する一方、リード部分の輝度が抑制されるので、一 回の採取画像を判別処理して樹脂部欠点、樹脂付着欠 点、リード部欠点の有無を判別でき、複数の検査ステー ジに分ける必要がない。

【0026】また、テーブ裏面側にも第2の照明手段と第2の画像採取手段を備え、TABテープの両面側に画像採取手段のある検査装置では、TABテープの表面側に半導体素子を実装する品種にも対応することができるので、半導体素子実装面を問わず、上記の如くテープ裏面に備えた第2の画像採取手段による画像を処理して、テープ裏面に発生している欠点の有無を判別することができる。第2の画像採取手段は、第1の画像採取手段と同時に画像採取できるので、テープ裏側の欠点を検出するため新たに検査ステージを設ける必要がない。

【0027】また、第1の画像採取手段による画像が背色画像であり、第2の画像採取手段による画像が緑色画像である検査装置では、上記態様の如く半導体素子をテープ表・裏面いずれに実装した品種にも適用でき、またテープ裏側の欠点を検出するために新たに検査ステージを設ける必要がなく、さらに第2の画像採取手段による透過照明と第2の照明手段による透過照明と第2の照明手段による落射照明を併用した色画像を選択することも可能であり、判別処理手段における画像処理に適した画像に調整できるので欠点の有無を判別し易い。

【0028】また、第1の画像採取手段による画像が緑 色画像であり、第2の画像採取手段による画像が青色画 像である検査装置では、第1の画像採取手段による緑色 画像は第2の照明手段によってテープ裏面およびテープ 表面の樹脂付着欠点部が低い輝度レベルの透過像として 画像化し、かつ、TABテープ基材(たとえばポリイミ ド) 部分と銅箔パターンのないソルダーレジスト部は透 過光によって輝度レベルが高くなる。銅箔回路パターン のある部分は、第2の照明手段だけの場合は光透過が無 く低輝度レベルの回路パターン画像として残るが、第1 の照明手段で照明すると銅箔部は強く反射して輝度が高 くなる。第1と第2の照明を併用すると、全体に高輝度 化したテープ面画像の中に表・裏面の樹脂付着欠点部と 半導体素子封止部だけが低輝度レベルの像として残る画 像を作ることができるので、該画像を2値化する等の汎 用の画像処理の方法で、テープ表裏面の樹脂付着欠点の 有無を検査できる。

【0029】また、色画像採取手段をカラーカメラまたはカラーのラインセンサとすることにより、カメラおよびラインセンサに背、緑、赤色画像用光学素子を内蔵していて色画像を選択できるので、照明手段の照明光色を色画像に適応させる必要がなく、前記の白色光源を使え 50

りょりし 両偽を採取する

【0030】画像を採取する手段が光学フィルタと白黒テレビカメラまたはラインセンサとすることにより、カラーのタイプに比べて素子数の多い機種が使えるので、対象欠点の大きさに適した寸法分解能で検査できる。

【0031】 照明手段を光学フィルタと白色光源とを組合わせたものとすることにより、白黒のテレビカメラまたはラインセンサが使えるので、対象欠点の大きさに適した画像採取手段を構成できる。

【0032】また、目印手段を備えている検査装置では、欠点のある部分に目印を付けるので、欠点部分を含む実装TABテープ製品を、良品として混入させることなく除去できる。

【0033】さらに、上記した各実施態様の検査装置を備えるTABテープの製造方法によれば、実装済みTABテープを、リール単位で別の目視検査ラインに移し、目視検査せずに、製造ラインに直結して自動検査するので、別ラインに移して検査する場合に発生しやすいリード曲がり等の欠点を新たに発生しない。またラインのスピードでテープ表・裏両面の各種欠点を自動検査し、欠点があれば1回路単位内で目印(必要があれば除去することも含む)して後工程で排除できるようになり、またラインの連続運転にも対応して長時間にわたる自動検査ができる。

【0034】また、本発明に係るTABテープの検査方法によれば、前述の如く、従来の白黒画像によるものと比較して、半導体素子封止の樹脂部分およびテープ裏面に付着する樹脂付着欠点部分の輝度が上昇する一方、リード部分の輝度が抑制されるので、一回の採取画像を判別処理して樹脂部欠点、樹脂付着欠点、リード部欠点の有無を判別でき、複数の検査ステージに分ける必要がない。

【0035】また、TABテープ両面を照明し、両面から色画像を採取して処理する方法では、半導体素子実装面を問わず、テープ両面の欠点の有無を判別でき、かつ、テープ裏面の欠点を検出するために新たに検査ステージを設ける必要がない。

[0036]

【発明の実施の形態】以下、本発明のTABテープの検査装置と検査方法ならびに実装TABテープの製造方法および製造装置の望ましい実施態様を、図面を参照しながら説明する。一実施態様の構成を図1に示す。この図1の検査装置は、搬送手段900、位置決め手段800、第1の照明手段201、第1の画像採取手段101、判別処理手段301、第2の照明手段202、第2の画像採取手段102、目印手段701を備えている。搬送手段900は、前工程で半導体案子10を実装済みのTABテープ1をスプロケットホイール2、3に巻き掛け、搬送駆動部901によって回転搬送する。位置決め手段800は、スプロケットホイール位置あるいはテ

1.0

20

30

10

ープ表面の回路パターン位置を検出部801で検出し、 位置制御部850は接合済み半導体素子と検査装置の基 準位置との相対位置が所定値に達した際に位置信号を判 別処理手段301に出力する。位置決め手段800の別 の運転モードでは、接合ずみ半導体素子と検査装置の基 準位置との距離信号を判別処理手段301に出力する。

【0037】第1の照明手段201および第2の照明手 段202は円形蛍光灯であり、図示していない高周波点 灯装置で点灯する。第1の画像採取手段101および第 2の画像採取手段102は青、緑、赤の各色画像信号を 個別に出力するタイプのテレビカメラである。判別処理 手段301は、位置制御部850からの位置信号入力と 所定の同期をとって第1の画像採取手段101または第 2の画像採取手段102の出力する画像信号を取り込 み、画像処理してテープ表面あるいは裏面の欠点の有無 を判別し、判別結果と欠点位置と欠点の種類に関するデ 一夕を目印手段701に送る。目印手段701は、欠点 の種類が半導体素子を封止する樹脂部欠点の場合には、 欠点の重大性を判断して欠点のある半導体素子部を打抜 いて除去し、テープ表面への樹脂付着欠点の如く比較的 軽度の欠点である場合には、欠点部分にマーキングを施 す。

[0038]

【実施例】次に図面を参照しながら、実施例を示す。 実施例1

まず、図2は、上記した図1の構成における第2の照明 手段と第2の画像採取手段を設けていない、照明手段2 01は高周波点灯した円形蛍光灯である。画像採取手段 101として赤色、緑色、青色画像および白黒画像を採 取するテレビカメラを用い、表1に示した半導体素子実 装済みTABテープ表面にある欠点を検出すべく、実装 済みテープを走行させて検査した。この結果、白黒画像 および赤色画像を処理した場合には、樹脂部輝度が低く 一回の画像採取ではリード曲がりと樹脂発泡と樹脂不良 を同時に検出できず、照明条件を変えて再度の画像採取 と画像処理判別をする必要があり、またレジスト部への 付着樹脂の輝度も上がらず、樹脂付着欠点が検出できな かった。緑色画像を処理した場合には、レジスト部と樹 脂付着欠点の双方の輝度が上がり両者を分離できず、レ ジスト部の樹脂付着欠点を検出できなかった。緑色画 像、背色画像を処理した場合には、樹脂部の輝度が上が りリード部の輝度が抑制されて、リード曲がりと樹脂発 泡と樹脂不良を同時に検出できた。

【0039】次に、第2の照明手段202と第2の画像採取手段102をテープ裏面側に設けた図1の態様であって、第1の画像採取手段101と第2の画像採取手段102の色画像を育と青、背と緑、緑と背の各色画像を採取する方法により、半導体素子をテープ裏側に実装する品種とテープ表側に実装する品種の両方について、表1で示した実装TABテープに発生する欠点の検査を実 50

施した。

【0040】第1、第2の色画像が背・背色画像の場 合、第2の照明手段202の照明光は、テープ基材(ポ リイミドなど)が背色光を通さないので第1の画像採取 手段101で検知されず、したがってテープ表側・裏側 画像は反対側照明に影響することなく図2の実施例と同 じように、樹脂部欠点・銅パターン部欠点・付着異物欠 点を検出でき、テープ裏側にある樹脂部欠点とテープ裏 側樹脂付着の欠点も検出できた。リード部はスリット状 に銅箔と基材を加工してあるので、第2の照明手段20 2の光が第1の画像採取手段101にも入射するため、 照明手段201,202を、光強度を調整できる、光フ ァイバーを円形に配列してハロゲンランプ光を円形に導 くタイプに代え、カメラ(画像採取手段)の絞りと照明 光強さで第1の照明による反射光と第2の照明による透 過光のパランスを図ることにより、リード部分を輝度飽 和させずにリード曲がりを検出できた。

【0041】第1、第2の色画像が青・緑色画像の場合についても、第1の画像採取手段の青色画像は上記の場合と同様、青色光はテーブ基材を透過しないので、第2の照明手段に影響されずに樹脂部欠点、銅パターンとスリット状に穴加工されているので、上記青・青画像を利力と同様な照明強度とカメラ絞りのバランスは、明光による落射光とテープを透過した第1の照明光による落射光とテープを透過した第1の照明光による落射光とテープを透過した第2の照明光による落射光とテープを透過した第1の照明光に入射するが、半導体素子部は光を透過させないので、第2の画像採取手段によるものであり、上記樹脂付着と裏面テープ部樹脂付着欠点は、第1、第2の照明手段併用による緑色画像で容易に検出できた。

【0042】第1、第2の色画像が緑・青色画像の場合 についても、上記同様に実施して各欠点を検出できた。 本実施例で、はテープ表面、裏面への樹脂付着欠点を、 全て第1の画像採取手段101による緑色画像を処理し て欠点の有無を判別する点が、他の実施例と比較して特 徴的である。すなわち、本実施例におけるカラーカメラ 101の緑色画像は、前記のとおり第2の照明手段20 2による透過画像と第1の照明手段による落射画像が組 み合わされる結果、テープ表面の回路パターンが消失 し、テープ表裏の樹脂付着欠点と半導体素子だけの単調 な画像になるので、判別処理装置301で画像を2値化 して樹脂付着欠点を容易に検出できた。リード曲がりと 樹脂部の各欠点は他の上記実施例と同様に判別処理でき た。図1に示す実施態様の中では、第1の画像採取手段 を緑色画像、第2の画像採取手段が背色画像である態様 が、より望ましい。

【0043】図3に別の実施態様を示す。図3は、図2に示した実施態様とほとんど同じであるが、画像採取手

1.0

30

12

段101が白黒画像に対応するテレビカメラであり、その前面に光学色フィルタ115を設け、照明手段201 の前面に光学色フィルタ215を設けた点が異なる。

【0044】光学色フィルタ215は、白黒テレビカメラ101の波長特性と組み合わせて育色画像を出力できる115-1(図示略)と緑色画像を出力できる115-2(図示略)とを交換できるようにした。照明手段201は、光ファイバーを円形に配列して図示していないハロゲンランプ光を導いて照明するタイプであり、光学フィルタ115を設けない場合にもテレビカメラ101の波長特性と組み合わせて育色画像を出力できる215-1(図示略)と緑色画像を出力できる215-2(図示略)を交換できるようにした。

【0045】まず、光学色フィルタ215を設けず、白黒画像タイプのテレビカメラ101と光学色フィルタ115-1を組合わせ、青色画像を出力できる画像採記中色画像の場合と同じお果を得た。次に光学色フィルタにの場合と同じない。次に光学色フィルタにで変換して緑色画像を出力できる構成色画像を出力できる構成色画像を出力できる構成色画像を出力でいかり、光学色フィルタ215-1と215-2を照明の場合とででである照明・画像採取手段を構成し、不ABテープを関けてきる照明・画像採取手段を構成し、不ABテープを関けできた。

【0046】次に、画像採取手段としてラインセンサを使った実施例を述べる。実施態様は図3と同じであり、画像採取手段101として1024素子の白黒タイプラインセンサを使った。このラインセンサの出力を、図4に示すように、1次元/2次元画像変換部312に導き、1次元信号を2次元画像に変換して2次元画像出力を判別処理装置301へ入力した。光学色フィルタ215を取り外し、光学色フィルタ115-1を取り付けて背色画像を採取する手段を構成してTABテープ表面にある欠点を検査した結果、前記費色画像での検査結果どおり検出できた。

【0047】次に光学色フィルタ115-2を取付けて 緑色画像を採取する手段を構成してTABテープ表面に ある欠点を検査した結果、前記緑色画像での検査結果ど おり検出できた。

【0048】 実施例2

上記実施例1で説明したTABテープ検査装置、検査方法、製造方法は主として検査対象のTABテープがベースフィルムとパターン回路とからなる2層構造のものに効果があったが、本実施例はベースフィルムとパターン回路の間に接着剤層が介在する3層構造のTABテープについて効果があるものであり、以下にこの実施例について説明する。

【0049】図5は、主に3層構造のTABテープを検 50 ジスト部に付着した樹脂欠点を検出することができた。

査対象とする検査装置の概略構成図である。照明手段2 01 aは、ハロゲン光を光ファイバで導いて、出射端を テープ面に対して20°に指向性を持たせて、円形に配 列したライトガイド、照明手段202aは、ハロゲン光 を光ファイパで導いて、出射端をテープ面に対して45 [°] に指向性を持たせて、円形に配列したライトガイドで ある。画像採取手段101aとして赤色画像を採取する テレビカメラを、画像採取手段102aとして緑色画像 を採取するテレビカメラを用いて、表1に示した半導体 素子実装済みの3層TABテープ裏表にある欠点を検出 すべく、実装済みテープを走行させて検査した。 3層の TABテープはパターン回路面側のベースフィルムとパ ターン回路の間に接着剤が塗布してある。この接着剤層 が拡散の効果をもたらし、第1の画像採取手段における ベースフィルムの輝度が高くなった。さらに、照明手段 202aによるテープ裏面側からの透過光の効果とベー スフィルムが赤色光をよく透過することから、第1の画 像採取手段に赤色画像を用いることによりさらにベース フィルムの輝度を高くすることができた。さらに、照明 手段の光源として赤色光が強いハロゲンランプを用いる ことによりさらにベースフィルムの輝度を高くすること ができた。この結果、ベースフィルムと樹脂部との輝度 差を拡大することができ、テープ表面側のベースフィル ムに付着した樹脂欠点を検出することができた。レジス ト部には接着剤は塗布しておらず光沢面であるので、照 明手段201aによるレジスト部の反射光はほとんど画 像採取手段101aに検知されず輝度は低かった。さら に、照明手段202aによるレジスト部の透過光は、画 像採取手段101aが赤色画像であることからほとんど 検知されず輝度は低かった。この結果、レジスト部と樹 脂部の輝度差を拡大することができ、テープ表面側のレ ジスト部に付着した樹脂欠点を検出することができた。 また、この照明手段によると、テープ表面側にある樹脂 発泡や樹脂不良、リード曲がり欠点が影となって現れ、 検出することができた。

また、この照明手段によると、テープ裏面側にある樹脂発泡や樹脂不良、リード曲がり欠点が影となって現れ、検出することができた。また、画像採取手段102aに育色画像を用いた場合も、緑色画像を用いた場合と同様に、テープ裏面側に付着した樹脂欠点を検出することができ、テープ裏面側にある樹脂発泡や樹脂不良、リード曲がり欠点も検出することができた。

[0051]

【発明の効果】請求項1の本発明のTABテープの検査 装置と検査方法および実装TABテープの製造方法においては、TABテープ表側に照明手段を設け、これと同じテープ面の画像採取手段が背色画像、緑色画像および両者よりなる色画像採取手段である検査装置によると、テープ表面の色画像を利用するので半導体素子封止用の樹脂部分およびテープ表面への樹脂付着部分の輝度が上昇する一方で、リード部分の輝度が抑制され、一回の採取画像を判別処理してテープ表面各部の欠点の有無を判別できるので、1検査ステージでよく、かつ画像採取1回のワンパス検査ができる。

【0052】また、請求項2の本発明の別の好ましい態様では、テープ裏面にも第2の照明手段と第2の画像採取手段を設けるので、半導体素子の接合面が表裏いずれの面であっても検査でき、またテープ裏面に発生する欠点も検査できる。検査ステージを増やさず1ステージで検査でき、かつ検査範囲を拡大でき、かつ、検出欠点の種類を増して実装TABテープ製造過程で発生する欠点を全てカバーする検査が1回の画像採取でできる。

【0053】また、請求項3の本発明の好ましい実施態様による、第1の画像採取手段が背色画像、第2の画像採取手段が緑色画像である検査装置では、青・緑の色特性、透過照明と落射照明の併用、照明強度の調整による採取画像の最適調整によって検査の精度を向上できる。

【0054】また、請求項4の本発明の更に別の好ましい実施態様による、第1の画像採取手段が緑色画像、第2の画像採取手段が背色画像である検査装置では、採取画像を最適調整できるようになったこと、樹脂付着欠点検査での透過光と落射光を併用することによって、テープ上の回路パターンが消失して付着欠点が低輝度像となる単調画像をつくれるので、検査精度が一層向上する。

【0055】また、請求項5の本発明の好ましい実施態様である、画像採取手段がカラーカメラまたはカラーラインセンサである検査装置では、照明手段として汎用の白色照明を利用でき、また市販のカメラ、センサが使えるので装置を構成しやすい。

【0056】また、請求項6の本発明の好ましい実施館様である、光学フィルタと白黒タイプのテレビカメラまたはラインセンサを使用する検査装置では、広範囲(カメラの案子数、応答スピードなど)の白黒タイプの機種から選定でき、また照明の特性、カメラの特性を考慮して個別に光学色フィルタを選択できるので、良質の色画

像採取手段を安価に構成できる。

【0057】また、請求項7の本発明の好ましい実施態様である、照明手段が白色光源と光学フィルタからなる検査装置では、照明の特性を考慮して個別に光学フィルタを選択できるので、良質の照明手段を安価に構成できる。

【0058】さらに、請求項8の本発明の好ましい実施 態様である、判別処理結果に基づいて不良のある部分に 目印すを付ける目印手段を備えている検査装置では、自 動検査できるので、検査水準が安定しかつ生産能率が向 上する。

【0059】請求項10の本発明のTABテープの検査 装置、さらにはそれを用いた検査方法および実装TAB テープの製造方法においては、TABテープの表裏両面 側に照明手段と画像採取手段を設けるので、半導体素子 の接合面が表裏いずれの場合であっても検査することが でき、また、テープ裏面に発生する欠点も検査すること ができる。検査ステージを増やさず1ステージで検査で き、かつ検査範囲を拡大でき、かつ検出欠点の種類を増 やして実装TABテープ製造過程で発生する欠点を全て カバーする検査が一回の画像採取できる。

【0060】請求項11の本発明のTABテープの検査 装置においては、検査対象であるTABテープが、ペースフィルムとパターン回路の間に接着剤層が介在する、 少なくとも3層以上のものであるものを検査することが できる。

【0061】以上の如く、本発明のTABテープの検査 装置と検査方法ならびに実装TABテープの製造方法お よび製造装置では、従来技術と比較して、

- (1)テープ表裏の欠点を検査できる。
- (2) 半導体素子の実装工程で発生するあらゆる欠点を 検査できる。
- (3) 半導体素子の実装面を問わず(表・裏面共に)検 査できる。
- (4)検査の画像採取は1回でよく、ワンパスで検査が できる。
- (5)以上が検査ステージを増やさず、1ステージで構成できる。

このため、検査装置は、小型化でき安価に製作できる。 また実装TABテープ製造ラインに組み込んで、生産能力の向上とコストダウンに寄与できる。

【0062】本発明は、半導体接合済みTABテープの検査のみでなく、半導体を接合していないTABテープの欠点検査にも使える。また、フィルムキャリアテープ・フレキシブル基板の欠点検査にも適用できる。また本発明の実施態様の1つである、テープ表面だけに照明手段と画像採取手段を有する検査装置は、汎用回路基板の欠点検査に適用できる。

【図面の簡単な説明】

40

【図1】本発明の検査装置の一実施態様の概略構成図で

14

ある.

【図2】本発明の検査装置の他の実施態様の概略構成図である。

【図3】本発明の検査装置のさらに他の実施態様の概略 構成図である。

【図4】本発明の検査装置の構成要素の接続関係を示す 説明図である。

【図 5】 本発明の検査装置のさらに他の実施態様の概略

【図 6】 従来技術による検査装置の概略構成図である。 【符号の説明】

1 TABテープ

1 a 3層TABテープ

2 スプロケットホイール

3 スプロケットホイール

10 半導体素子

101 画像採取手段

101a 画像採取手段(CCDカメラ)

102 画像採取手段

102a 画像採取手段(CCDカメラ)

115 光学色フィルタ

151 画像採取手段

152 CCDカメラ

201 照明手段

201a 照明手段(円形光ファイバライトガイド)

202 照明手段

202a 照明手段(円形光ファイバライトガイド)

2 1 5 光学色フィルタ

251 円形蛍光灯

252 リング照明

253 照明器

10 254 拡散フィルタ

255 拡散フィルタ

301 判別処理手段

305 判別処理装置

306 判別処理装置

3 1 2 1 次元/2 次元画像変換部

701 目印手段

702 分別部

800 位置決め手段

801 検出部

20 850 位置制御部

900 搬送手段

901 搬送駆動部

【図1】

[図4]

