Un bref historique

- Un premier plan par Craig Gentry;
- FHE de secondes génération Entrée typique : polynômes de degré 1.
 - somme : la somme des polynômes
 - produit : on obtient un degré 2.
- FHE de troisième génération : BVS.

GSW, premier essai:

Clé secrète : un vecteur $sk \in \mathbb{Z}_q^N$

Clé publique : pk

Chiffrement: Encrypt(pk, μ) = $C \in \mathbb{Z}_q^{N \times N}$ telle que

$$C\vec{sk} = \vec{s}$$

Déchiffrement : Evident

Opérations homomorphes :

Pour $C_i = \mathsf{Encrypt}(\mu_i) \quad (1 \leqslant i \leqslant 2)$ et $\lambda \in \mathbb{Z}_q$

• Somme : $C_1 + C_2$

$$(C_1 + C_2) \vec{sk} = (\mu_1 + \mu_2) \vec{sk}$$

• Produit : $C_1 \times C_2$

$$(C_1 \times C_2) \ \vec{sk} = C_1 \left(\mu_2 \ \vec{sk}\right) = (\mu_1 \mu_2) \ \vec{s}$$

- NAND : $C_1 * C_2 Id$
- Produit par scalaire : λC_1

GSW, second essai :

Clé secrète : un vecteur $sk \in \mathbb{Z}_q^N$

Clé publique : pk

Chiffrement: Encrypt(μ) = $C \in \mathbb{Z}_q^{N \times N}$ telle que

$$C\vec{sk} = \vec{sk} + \vec{e}$$
 avec \vec{e} petit

Déchiffrement: on prend un i tel que \vec{sk}_i est grand

$$\mathsf{Decrypt}(\mathit{sk}, C) = \left\lfloor \frac{\left(\mathit{Csk}\right)_i}{\mathit{v}_i} \right\rfloor = \left\lfloor \frac{\left(\mu \mathit{sk}_i + \vec{e_i}\right)_i}{\mathit{v}_i} \right\rfloor$$
$$= \left\lfloor \mu + \frac{\vec{e_i}}{\mathit{v}_i} \right\rfloor$$
$$= \mu$$

3

GSW, second essai :

Retour sur les opérations homomorphes :

• Somme : $C_1 + C_2$

$$(C_1 + C_2) \vec{sk} = (\mu_1 + \mu_2) \vec{sk} + \vec{e_1} + \vec{e_2}$$

• NAND : $C_1 \times C_2 - Id$

$$(C_1 \times C_2 - \text{Id}) \, \vec{sk} = C_1 \left(\mu_2 \vec{sk} + \vec{e_2} - \vec{s} \right)$$

= $(\mu_1 \mu_2 - 1) \vec{sk} + \mu_2 \vec{e_1} + C_1 \vec{e_2}$

Problème:

Les coefficients de $C_1\vec{e_2}$ peuvent être gros

GSW, version finale:

On utilise une fonction Flatten qui a notamment les propriétés suivantes :

$$C \in \mathbb{Z}_q^{n \times n} \Rightarrow \mathsf{Flatten}(C) \in \{0,1\}^{N \times N}$$

 $\langle \mathit{Flatten}(C), \vec{\mathit{sk}} \rangle = \langle C, \vec{\mathit{sk}} \rangle$ pourunsecret $\vec{\mathit{sk}}$ bienchoisi

Clé secrète : un vecteur $s \in \mathbb{Z}_q^N$ bien choisi

Clé publique : pk

Chiffrement : Encrypt(pk, μ) = Flatten(C) $\in \mathbb{Z}_q^{N \times N}$ pour C telle que

$$C\vec{sk} = \vec{sk} + \vec{e}$$
 avec \vec{e} petit

Déchiffrement: on prend un i tel que $\vec{s_i}$ est grand et :

$$\mathsf{Decrypt}(\vec{sk},C) = \left\lfloor \frac{(C\vec{s})_i}{v_i} \right\rfloor$$

Opérations homomorphes : on applique Flatten aux précédentes

Le problème DLWE

Paramètres : $n, q \in \mathbb{N}$, une distribution χ sur \mathbb{Z}_q

Le problème DLWE (n, q, χ) consiste à distinguer deux distributions :

- La distribution qui crée uniformément $(\vec{a},b) \in \mathbb{Z}_q^{n+1}$;
- La distribution qui utilise un secret $\vec{s} \in \mathbb{Z}_q^n$ tiré uniformément, et crée des vecteurs (\vec{a}, b) où

$$b_i = \langle \vec{a}_i, \vec{s} \rangle + e_i$$

 e_i étant échantillonné par χ .

à partir d'un ensemble d'échantillons.

FHE avec bootstrapping

$$C = D + \mathsf{erreur}$$

$$\mathsf{Decrypt}(\mathsf{sk}, C) \qquad \mathsf{Encrypt}(\mathsf{sk}, \mu)$$

$$C = D + \mathsf{error} \longrightarrow \mu \longrightarrow C^\mathsf{new} = D + \mathsf{error}$$

FHE avec bootstrapping

$$C = D + \mathsf{erreur}$$

$$\mathsf{Decrypt}(\mathsf{sk}, C) \qquad \mathsf{Encrypt}(\mathsf{sk}, \mu)$$

$$C = D + \mathsf{error} \longrightarrow \mu \longrightarrow C^\mathsf{new} = D + \mathsf{error}$$

Soit Π le circuit booléen tel que

$$\Pi(\mathsf{binsk}) = \mathsf{Decrypt}(\mathsf{sk}, C)$$

FHE avec bootstrapping

$$C = D + erreur$$

$$C = D + {\sf error} \xrightarrow{\qquad \qquad} \mu \xrightarrow{\qquad \qquad} C^{\sf new} = D + {\sf error}$$

Soit Π le circuit booléen tel que

$$\Pi(\mathsf{binsk}) = \mathsf{Decrypt}\left(\mathsf{sk}, \mathit{C}\right)$$

Alors:

Encrypt (sk, Decrypt (sk,
$$C$$
)) = Encrypt (sk, Π (binsk))
= Eval (Π , Encrypt(sk, binsk))

ullet Si Π contient assez peu de NAND, on peut avoir un FHE.

Découpage de Decrypt

L'algorithme de déchiffrement est le suivant :

- 1. trouver $1 \leqslant i \leqslant I$ tel que $q/4 \leqslant 2^i < q/2$
- 2. calculer $a = C_i \cdot \vec{v}$
- 3. retourner $\left|\frac{a}{\vec{v_i}}\right|$
 - On peut ramener le calcul du produit scalaire à une somme de nombres binaire;
 - Diviser par une puissance de 2 est un shift à gauche sur l'écriture binaire;
- Calculer la valeur valeur absolue implique essentiellement de faire un complément à 2.

Voyons comment sommer deux nombres binaires.

sommer deux listes :

Somme classique entre deux nombres binaires :

- a_1 et b_1 présents dans la formule booléenne de r_s .
- profondeur de NAND en O(s)

g

a b	b_1	a ₂ b ₂	а ₃ b ₃	a ₄ b ₄
G1, P1				
G2, P2				
G4, P4				

• G pour génération

• *P* pour propagation

P pour propagation

• G pour génération
$$(G1)_i = a_i \wedge b_i \quad (P1)_i = a_i \vee b_i$$

• G pour génération

P pour propagation

$$(G1)_i = a_i \wedge b_i \quad (P1)_i = a_i \vee b_i$$

$$G2^i, P2^i \qquad \qquad \qquad 1$$

$$G2^{i+1}, P2^{i+1} \qquad \qquad \qquad 2$$

$$(G2^{i+1})_1 = (G2^i)_2 \lor ((G2^i)_1 \land (P2^i)_2)$$

 $(P2^{i+1})_1 = (G2^i)_1 \land (P2^i)_2$

Les variables de générations de blocs commençants par 0 calculent des retenues.

Les variables de générations de blocs commençants par 0 calculent des retenues.

$$c_6 = G2_3 \lor (c_4 \land P2_3) = 1 \lor (1 \land 1) = 1$$

Les variables de générations de blocs commençants par 0 calculent des retenues.

$$c_6 = G2_3 \lor (c_4 \land P2_3) = 1 \lor (1 \land 1) = 1$$

 $c_7 = G1_7 \lor (c_6 \land P1_7) = 0 \lor (1 \land 0) = 0$

Effectuer un bootstrapping

The Gate Bootstrapping API

Ce dont nous n'avons pas parlé