Fast Path-Based Timing Analysis for CPPR (special session paper)

<u>Tsung-Wei Huang</u>, Pei-Ci Wu, and Martin D. F. Wong Department of Electrical and Computer Engineering (ECE) University of Illinois at Urbana-Champaign (UIUC), IL, USA

2014 IEEE/ACM International Conference on Computer-Aided Design

Outline

Recap

- Static timing analysis (STA) and common pessimism removal
- Importance of clock network pessimism removal
- 2014 TAU timing analysis contest

Algorithm

- Lookup table for pessimism retrieval
- Path ranking algorithm

Experimental result

- Comparison with top-ranked timers
- Conclusion

Static Timing Analysis (STA)

- Static Timing analysis
 - Verify the expected timing characteristics of integrated circuits
 - Keep track of path slacks and identify the critical path with negative slack
- Increasing significance of variance
 - On-chip variation such as temperature change and voltage drop
 - Perform dual-mode (min-max) conservative or pessimistic analysis
 - Degrades the quality of signoff timing report

Timing Test and Verification of Setup/Hold Check

- Sequential timing test
 - Setup time check

- $rat_{t}^{early} = at_{o}^{late} + T_{hold}, \ rat_{t}^{late} = at_{o}^{early} + T_{clk} T_{setup}$ (1)
- $slack_{worst}^{hold} = at_d^{early} rat_t^{early}, \ slack_{worst}^{setup} = rat_t^{late} at_d^{late} \eqno(2)$
- "Latest" arrival time (at) v.s. "Earliest" required arrival time (rat)
- Hold time check
 - "Earliest" arrival time (at) v.s. "Latest" required arrival time (rat)

Clock Network (Common Path) Pessimism

- Common path pessimism (CPP)
 - Simultaneous min-max variation along the common clock paths
 - Impossible in reality
 - Unnecessary pessimism is included into the path slack
 - Test marking failing might be passing in actuality

Example – Data Path Slack with CPPR Off

- Pre common-path-pessimism-removal (CPPR) slack
 - Data path 1: ((120+(20+10+10))-30) (25+30+40+50) = -15 (critical)
 - Data path 2: ((120+(20+10+10))-30)-(25+45+40+50) = -30 (critical)

Example – Data Path Slack with CPPR On

- Post common-path-pessimism-removal (CPPR) slack
 - Data path 1: ((120+(20+10+10))-30) (25+30+40+50)+5 = -10 (critical)
 - Data path 2: ((120+(20+10+10))-30)-(25+45+40+50)+40=10

Impact of Clock Network Pessimism – (I)

Importance of Clock Network Pessimism Removal

- Over-pessimistic timing report
 - Report failure paths but in actuality passing
 - Mislead designer into an inaccurate timing result
 - Decrease the productivity and legality of turnaround
 - Most critical pre-CPPR path(s) could be positive post-CPPR path(s)
 - Mislead CAD tools and result in wastage of optimization efforts
 - Leaving performance on Table
- Increasing significance in deep sub-micro era
 - Industry people seek novel ideas for CPPR algorithm
 - 2014 TAU CAD Contest on CPPR
 - Worldwide teams participated in the contest
 - 1st place winner UI-Timer

Problem Formulation

- Input file
 - Delay file for circuit topology and tests
 - Timing file for assertion and clock properties
- Goal
 - Identify the top k critical paths with CPPR (i.e., post-CPPR critical paths)

CLOCK

Algorithm - Overview

- Step 1: look-up-table preprocessing
 - Tabulate the common path for quick pessimism lookup
- Step 2: pessimism-free graph formulation
 - Facilitate the search on true post-CPPR slack
- Step 3: path extraction
 - Search the top k critical paths in the pessimism-free graph

Algorithm – Step 1: Lookup Table Preprocessing

- Pessimism incurs on a clock re-convergence node
 - Equivalently finding the lowest common ancestor (LCA) in the clock tree
 - Range minimum query with dynamic programming
 - O(nlogn) preprocessing and O(1) per query

Algorithm – Step 2: Pessimism-Free Graph Formulation

- Pessimism-free graph formulation
 - Isolate the constant part of numerical slack value
 - Offset weight for required arrival time and common-path pessimism
 - Facilitate the search

• The cost of path is equivalent to post-CPPR slack

Pessimism-free graph

Constant per test

Algorithm – Step 3: Extraction of Top k Critical Paths (I)

- O(N) explicit path representation
 - Path = $\langle v_1, v_2, v_3, ... v_n \rangle$ or $\langle e_1, e_2, e_3, ... e_m \rangle$
- O(1) implicit path representation
 - Path = $\langle e_i \rangle$

Referencing to the shortest path tree => edge as "Deviation"

Algorithm – Step 3: Extraction of Top *k* Critical Paths (II)

- Suffix Tree
 - Shortest path tree rooted at destination node (static)
- Prefix Tree
 - Tree order of non-suffix-tree nodes (path deviation)

Algorithm – Step 3: Extraction of Top k Critical Paths (III)

Spur procedure

- Growth of the prefix tree (neighboring expansion)
- Take a path p and generate all other paths deviated from this path p
- Mark the deviation cost

4 paths spurred Shortest path slack = -12 Post-CPPR slack = {-11, 7, -8, -4}

Spur along the shortest path

Algorithm – Step 3: Extraction of Top *k* Critical Paths (IV)

Priority search

- 1. Pick up a prefix-tree node with the minimum cost
- 2. Recover the path and mark it as the current most critical path
- 3. Perform the spur operation on this path
- 4. Repeat until the top *k* critical paths have been found

Optimality

Analogy to typical graph search

Iterative expansion from the frontier node with the least cost

Algorithm - Exemplification

Experimental Results – (I)

- Environment
 - C++ implementation
 - Ubuntu 10.4 Linux system
 - 4 Intel i7 cores and 8GB memory

Sequential circuits

(6-42 tests)

Design	Number of:								
	PIs	POs	Segments	Tests					
s27	6	1	112	6					
s344	11	11	658	30					
s349	11	11	682	30					
s386	9	7	701	12					
s400	5	6	813	42					
s510	21	7	1091	12					
s526	5	6	1097	42					
s1196	16	14	2.4K	36					
s1494	10	19	2.9K	12					

- Benchmark from TAU 2014 Contest
 - Sequential circuits
 - Open core circuits
 - Combo series

Open core

(380-50K tests)

Number of:								
PIs	POs	Segments	Tests					
132	65	13.3K	380					
217	215	17.4K	1374					
14	32	23.7K	838					
260	129	29.6K	2.5K					
115	152	45.0K	$3.7 \mathrm{K}$					
84	48	55.7K	9.3K					
128	121	66.1K	4.3K					
162	207	78.2K	16.4K					
260	129	86.7K	2.5K					
235	64	404.2K	19.7K					
89	109	525.6K	50.1K					
	132 217 14 260 115 84 128 162 260 235	PIs POs 132 65 217 215 14 32 260 129 115 152 84 48 128 121 162 207 260 129 235 64	PIs POs Segments 132 65 13.3K 217 215 17.4K 14 32 23.7K 260 129 29.6K 115 152 45.0K 84 48 55.7K 128 121 66.1K 162 207 78.2K 260 129 86.7K 235 64 404.2K					

- Baseline timers
 - LightSpeed (2nd place timer)
 - iTimerC (3rd place timer)

Combo series

(8K-110K tests)

Design	Number of:								
	PIs	POs	Segments	Tests					
Combo2	170	218	284.4K	29.5K					
Combo3	353	215	216.2K	8.2K					
Combo4	260	169	866.3 K	53.5K					
Combo5	432	164	2229.6 K	79.0 K					
Combo6	486	174	3843.9 K	128.2K					
Combo7	459	148	3012.3K	109.6K					

Experimental Results – (II)

PERFORMANCE COMPARISON BETWEEN UI-TIMER AND TOP-RANKED TIMERS LIGHTSPEED AND ITIMERC FROM TAU 2014 CAD CONTEST [1].

Circuit	Circuit $ V $ $ E $ $ C $	C			# Tests # Paths	# Paths	LightSpeed		iTimerC		UI-Timer			
Circuit	1*1	12		1	101	ii 103t3	" Tuuis	AER	MER	CPU	AER	CPU	AER	CPU
s27	109	112	6	6	1	6	9	9.97	50.00	0.20	0	0.40	0	0.20
s344	574	658	16	11	11	30	71	0	0	0.22	0	0.53	0	0.22
s349	598	682	16	11	11	30	71	0	0	0.25	0	0.53	0	0.22
s386	570	701	7	9	7	12	27	0	0	0.20	0	0.49	0	0.20
s400	708	813	22	5	6	42	77	0	0	0.23	0	0.56	0	0.21
s510	891	1091	7	21	7	12	99	0	0	0.18	0	0.40	0	0.18
s526	933	1097	22	5	6	42	44	0	0	0.25	0	0.56	0	0.22
s1196	1928	2400	19	16	14	36	478	0	0	0.25	0	0.59	0	0.22
s1494	2334	2961	7	10	19	12	105	0	0	0.25	0	0.58	0	0.21
systemedes	10826	13327	1967	132	65	380	41436	6.79	32.89	2.27	0	3.62	0	0.14
wb dma	14647	17428	5218	217	215	1374	158	7.46	39.30	0.23	0	0.90	0	0.28
tv80	18080	23710	3608	14	32	838	19227963	8.20	43.49	32.38	0	23.13	0	0.23
systemcaes	23909	29673	6643	260	129	2500	13069928	6.53	29.92	33.23	0	22.44	0	0.62
1	l	l			1									
mem_ctrl	36493	45090	10638	115	152	3754	62938	5.41	24.73	0.65	0	3.71	0	0.83
mem_ctrl ac97_ctrl	36493 49276	45090 55712	10638 22223	115 84	152 48	3754 9370	62938 148	5.41	24.73	0.65	0 0	3.71 2.95	0 0	0.83 1.31
. – .								5.41 - 6.43	24.73 - 37.87	0.65 - 0.94		l		1 1
ac97_ctrl	49276	55712	22223	84	48	9370	148	-	-	-	0	2.95	0	1.31
ac97_ctrl usb_funct	49276 53745 70051 68327	55712 66183 78282 86758	22223 17665 33474 5289	84 128 162 260	48 121	9370 4392 16450 2528	148 129854 17296 21064	6.43	- 37.87	0.94 2.27 0.68	0	2.95 5.64 14.49 4.46	0	1.31 1.41 4.71 0.96
ac97_ctrl usb_funct pci_bridge32	49276 53745 70051	55712 66183 78282	22223 17665 33474	84 128 162	48 121 207	9370 4392 16450	148 129854 17296	6.43 5.04	37.87 25.49	0.94 2.27	0 0 0	2.95 5.64 14.49	0 0 0	1.31 1.41 4.71
ac97_ctrl usb_funct pci_bridge32 aes_core	49276 53745 70051 68327	55712 66183 78282 86758	22223 17665 33474 5289	84 128 162 260	48 121 207 129	9370 4392 16450 2528	148 129854 17296 21064	6.43 5.04 6.72	37.87 25.49 31.70	0.94 2.27 0.68	0 0 0 0	2.95 5.64 14.49 4.46	0 0 0 0	1.31 1.41 4.71 0.96
ac97_ctrl usb_funct pci_bridge32 aes_core des_perf	49276 53745 70051 68327 330538	55712 66183 78282 86758 404257	22223 17665 33474 5289 88751	84 128 162 260 235	48 121 207 129 64	9370 4392 16450 2528 19764	148 129854 17296 21064 1682	6.43 5.04 6.72 4.60	37.87 25.49 31.70 11.89	0.94 2.27 0.68 3.37	0 0 0 0	2.95 5.64 14.49 4.46 18.37	0 0 0 0	1.31 1.41 4.71 0.96 19.24
ac97_ctrl usb_funct pci_bridge32 aes_core des_perf vga_lcd	49276 53745 70051 68327 330538 449651	55712 66183 78282 86758 404257 525615	22223 17665 33474 5289 88751 172065	84 128 162 260 235 89	48 121 207 129 64 109	9370 4392 16450 2528 19764 50182	148 129854 17296 21064 1682 5281	6.43 5.04 6.72 4.60 7.94	37.87 25.49 31.70 11.89 43.21	0.94 2.27 0.68 3.37 16.78	0 0 0 0 0	2.95 5.64 14.49 4.46 18.37 119.24	0 0 0 0 0	1.31 1.41 4.71 0.96 19.24 159.15
ac97_ctrl usb_funct pci_bridge32 aes_core des_perf vga_lcd	49276 53745 70051 68327 330538 449651 260636	55712 66183 78282 86758 404257 525615 284091	22223 17665 33474 5289 88751 172065	84 128 162 260 235 89	48 121 207 129 64 109	9370 4392 16450 2528 19764 50182	148 129854 17296 21064 1682 5281	- 6.43 5.04 6.72 4.60 7.94	37.87 25.49 31.70 11.89 43.21	0.94 2.27 0.68 3.37 16.78	0 0 0 0 0 0	2.95 5.64 14.49 4.46 18.37 119.24	0 0 0 0 0 0	1.31 1.41 4.71 0.96 19.24 159.15
ac97_ctrl usb_funct pci_bridge32 aes_core des_perf vga_lcd Combo2 Combo3	49276 53745 70051 68327 330538 449651 260636 181831	55712 66183 78282 86758 404257 525615 284091 284091	22223 17665 33474 5289 88751 172065 171529 73784	84 128 162 260 235 89 170 353	48 121 207 129 64 109 218 215	9370 4392 16450 2528 19764 50182 29574 8294	148 129854 17296 21064 1682 5281 62938 129854	6.43 5.04 6.72 4.60 7.94 4.70 6.71	37.87 25.49 31.70 11.89 43.21 24.07 35.14	0.94 2.27 0.68 3.37 16.78 9.19 3.39	0 0 0 0 0 0	2.95 5.64 14.49 4.46 18.37 119.24 49.00 20.30	0 0 0 0 0 0	1.31 1.41 4.71 0.96 19.24 159.15 56.12 11.35
ac97_ctrl usb_funct pci_bridge32 aes_core des_perf vga_lcd Combo2 Combo3 Combo4	49276 53745 70051 68327 330538 449651 260636 181831 778638	55712 66183 78282 86758 404257 525615 284091 284091 866099	22223 17665 33474 5289 88751 172065 171529 73784 469516	84 128 162 260 235 89 170 353 260	48 121 207 129 64 109 218 215 169	9370 4392 16450 2528 19764 50182 29574 8294 53520	148 129854 17296 21064 1682 5281 62938 129854 19227963	- 6.43 5.04 6.72 4.60 7.94 4.70 6.71 7.93	37.87 25.49 31.70 11.89 43.21 24.07 35.14	0.94 2.27 0.68 3.37 16.78 9.19 3.39	0 0 0 0 0 0 0	2.95 5.64 14.49 4.46 18.37 119.24 49.00 20.30 557.81	0 0 0 0 0 0 0	1.31 1.41 4.71 0.96 19.24 159.15 56.12 11.35 333.04

|V|: size of node set. |E|: size of edge set. |C|: size of clock tree. |I|: # of primary inputs. |O|: # of primary outputs. # Tests: # of setup tests and hold tests. # Paths: max # of data paths per test. AER/MER: avg/max error rate of mismatched paths (%). CPU: avg program runtime (seconds). -: unexpected program fault.

Experimental Results – (III)

Circuits

- tv80
- systemcaes

Runtime

- 1st: UI-Timer
- 2nd: LightSpeed
- 3rd: iTimerC

Accuracy

- 1st: UI-Timer
- 2nd: iTimerC
- 3rd: LightSpeed

Conclusion

- A fast and exact algorithm for CPPR
 - Lookup table for clock network pessimism
 - Efficient data structure for path representation
- Evaluation
 - 1st place timer in TAU 2014 CAD contest for timing analysis
 - Handled million-scale graph within 1 hr
 - Other timers either crashed or ran over 3 hrs
- Future work
 - Incremental timing and CPPR
 - Distributed computing for path-based analysis

Acknowledgment

- Binary sharing
 - Team LightSpeed
 - Team iTimerC
- Contest organizers
 - Jin Hu, IBM Corp.
 - Debjit Sinha, IBM Corp.
 - Igor Keller, Cadence