Prof. Dr. Ir. Dr. h. c. Joost-Pieter Katoen, Tim Quatmann

Alexander Bork, Jip Spel

Exercise Sheet 1

Hints:

- The exercise sheet can be submitted until 20.04.2022 at 16:30 online via RWTHmoodle.
- The exercise sheets have to be solved in groups of 3-4. Submissions with other group sizes might not be corrected. Use the forum in RWTHmoodle to find group-mates.
- Submissions will be graded only for the sake of giving feedback to you. The points are not a precondition for admittance to the exam.
- However, we strongly advice you to solve the exercises and submit your solutions.
- Sample solutions will be presented in the exercise class and published in RWTHmoodle.
- Questions can be asked either during the lecture or exercise class or in the general discussion board on RWTHmoodle.

Exercise 1 (Opening a Bank Account):

10 Points

Together with a friend you are asked to design a system for a bank. One of the things this system should allow, is to let people open a bank account. The minimum balance is 0 Euros, so the bank does not allow for negative balances. Furthermore, for security reasons, the bank wants accounts to hold less than 10.000 Euros. You start with the following method.

Algorithm 1 Opening a bank account

- 1: **if** deposit \geq 0 and deposit < 10.000 **then**
- 2: do something with the deposit
- 3: **else**
- 4: throw error

Your friend suggests to test this method on the following initial inputs: -1, 0, 500, 9.999, and 10.000. You have to convince him that model checking is the better thing to do. To do so, provide a scenario in which the testing is not sufficient.

Hint: It is sufficient to describe this scenario in words.

Exercise 2 (Transition Systems):

6+3+6+6+3+6=30 Points

We call a transition system $TS = (S, Act, \rightarrow, I, AP, L)$

- ullet action-deterministic if $|I| \leq 1$ and $|\operatorname{Post}(s, \alpha)| \leq 1$ for all $s \in S$ and $\alpha \in \operatorname{Act}$, and
- AP-deterministic if $|I| \leq 1$ and $|\mathsf{Post}(s) \cap \{s' \in S \mid L(s') = A\}| \leq 1$ for all $s \in S$ and $A \in 2^\mathsf{AP}$,

where $\operatorname{Post}(s,\alpha) = \{s' \in S \mid \exists (s,\alpha,s') \in \to \}$ and $\operatorname{Post}(s) = \bigcup_{\alpha \in \operatorname{Act}} \operatorname{Post}(s,\alpha)$. Let the transition system TS_1 be as follows.

- a) Give the formal definition of TS_1 .
- b) Specify a finite and an infinite execution of TS₁.
- c) Decide whether TS₁ is (i) AP-deterministic, and/or (ii) action-deterministic. Justify your answer.

Let the transition system TS_2 be as follows.

- **d)** Give the formal definition of TS_2 .
- **e)** Specify a path π of TS₂, and provide the corresponding $trace(\pi)$.
- f) Decide whether TS₂ is (i) AP-deterministic, and/or (ii) action-deterministic. Justify your answer.

Exercise 3 (Program Graphs):

8+10+7=25 Points

a) Draw the two program graphs PG_1 and PG_2 for the following programs 1 and 2 over the (shared) integer variables x and y. Use exactly two locations for PG_1 and exactly two locations for PG_2 .

1:

b) Draw the interleaving $PG_{Left} \parallel \mid PG_{right}$ for the following two program graphs.

c) Draw the reachable part of the transition system $TS(PG_{Left} ||| PG_{right})$ of the program graph from c). Assume the initial condition $b1 \wedge b2$.

Exercise 4 (Handshaking):

10+5+20=35 Points

In the lecture we have seen techniques in order to deal with interleaving. A different approach to deal with interleaving is the parallel composition of transition systems via *handshaking*. The handshaking composition of two transition systems is defined as follows:

Let $TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP_i, L_i), i = 1, 2 \text{ and } H \subseteq Act_1 \cap Act_2.$

$$TS_1 \parallel_H TS_2 := (S_1 \times S_2, \mathsf{Act}_1 \cup \mathsf{Act}_2, \rightarrow, I_1 \times I_2, \mathsf{AP}_1 \uplus \mathsf{AP}_2, L)$$

where $L(\langle s_1, s_2 \rangle) = L_1(s_1) \cup L_2(s_2)$ and with \rightarrow defined by:

We also define the handshaking operator $\| := \|_H$ for $H = Act_1 \cap Act_2$, that forces transition systems to synchronize over *all* common actions.

In all following tasks, whenever transition systems are compared via = or \neq , this means (in)equality **up to isomorphism**.

a) Show that the handshaking \parallel_H operator is not associative, i.e. that in general

$$(TS_1 \parallel_H TS_2) \parallel_{H'} TS_3 \neq TS_1 \parallel_H (TS_2 \parallel_{H'} TS_3)$$

b) Consider the following three transition systems:

Build the composition $(TS_1 \parallel TS_2) \parallel TS_3$. Show intermediate steps. You can use that the \parallel operator is associative which will be shown in exercise **c**).

c) Show that for arbitrary transition systems $TS_i = (S_i, Act_i, \rightarrow_i, S_0^i, AP_i, L_i)$ for $i \in \{1, 2, 3\}$, it is

$$\underbrace{\left(\mathsf{TS}_1 \parallel \mathsf{TS}_2\right) \parallel \mathsf{TS}_3}_{L} \ = \ \underbrace{\mathsf{TS}_1 \parallel \left(\mathsf{TS}_2 \parallel \mathsf{TS}_3\right)}_{R}.$$

To this end, show that the bijective function f_{\approx} : $((S_1 \times S_2) \times S_3) \rightarrow (S_1 \times (S_2 \times S_3))$ given by $f_{\approx}(\langle \langle s_1, s_2 \rangle, s_3 \rangle) = \langle s_1, \langle s_2, s_3 \rangle \rangle$ preserves the transition relation in the sense that for all $\alpha \in \text{Act}_1 \cup \text{Act}_2 \cup \text{Act}_3$ we have

$$\ell \xrightarrow{\alpha}_{L} \ell' \iff f_{\approx}(\ell) \xrightarrow{\alpha}_{R} f_{\approx}(\ell')$$
 (1)

where $\ell, \ell' \in S_L$, S_L is the state space of transition system L and \longrightarrow_L , \longrightarrow_R are the transition relations of L and R, respectively.

Hint: When considering an action α , you only need to distinguish the cases

- (i) $\alpha \in Act_1 \setminus (Act_2 \cup Act_3)$
- (ii) $\alpha \in (Act_1 \cap Act_2) \setminus Act_3$
- (iii) $\alpha \in \mathsf{Act}_1 \cap \mathsf{Act}_2 \cap \mathsf{Act}_3$

as all other cases are symmetric. Also, for simplicity, it suffices to show the direction " \Longrightarrow " of condition (1). However, keep in mind that L and R are not necessarily action-deterministic.