CS727: Convex Analysis Scribe: Tien-Lung Fu

Title: hw8

0.1 Exercise 5.4.19

(a)

First, suppose that such a solution does not exist, then we have $\langle c^*, x \rangle = +\infty$, which contradicts the description of the question. Thus, there must exist a feasible solution to the system.

Secondly, if the infimum is finite and is C. We can pick a sequence $\{x_n\}_{n=1}^{\infty}$ s.t. $\{x_n\} \to x^*$ and $\langle c^*, x_n \rangle$ approach C. We know that x^* is in the feasible region since the feasible region is closed. We have $\langle c^*, x^* \rangle = C$

(b)

According to (a), we know that there exists a $x_0 \ge 0$ s.t. $Dx_0 \ge d_0$, $Fx_0 = f$, and $\langle c^*, x_0 \rangle$ approach the infimum c_0 .

According to Hoffman's theorem, there exists a constant $\gamma > 0$ and there exists a $x' \ge 0$ s.t.

 $Dx' \ge d$, Fx' = f, and $||x' - x_0|| \le \gamma ||(d - Dx_0)_+||$. (Notice that $Fx_0 - f = 0$)

Since $d - Dx_0 \le d - d_0$, we have $||x' - x_0|| \le \gamma ||(d - Dx_0)_+|| \le \gamma ||(d - d_0)_+||$

Assuming that x^* is the point that satisfies the demand d, we have:

$$< c^*, x^* > \leq < c^*, x' >$$

$$= < c^*, x_0 > + < c^*, x' - x_0 >$$

$$\leq c_0 + ||c^*|| ||x' - x_0||$$

$$\leq c_0 + \gamma ||c^*|| (d - d_0)_+ ||$$

We choose $\alpha = \gamma ||c^*||$ to complete the proof.