Phys514 Fall 2013: Homework 2 Solution

TA: David Chen*

1 Foot 6.2 (25 pts)

The textbook says that the energy levels correspond to 2S–2P transitions. Therefore, starting from the bottom, the fine levels have L = 0, 1, 1 and J = 1/2, 1/2, 3/2

The hyperfine splitting in $\overline{2P_{3/2}}$ satisfies $\Delta E_{hg} < \Delta E_{fe}$, which means that F decreases from e to h ($A_{2P_{3/2}}$ is negative). We can calculate the largest F using the interval rule: $F = \frac{\Delta E_{fe}/\Delta E_{gf}}{\Delta E_{fe}/\Delta E_{gf}-1} = \frac{3/2}{3/2-1} = 3$. Therefore, I = 3/2. The following table summarizes the quantum numbers for 7Li

Label	L	J	\mathbf{F}
a	0	1/2	1
b	0	1/2	2
$^{\mathrm{c}}$	1	1/2	1
d	1	1/2	2
e	1	3/2	3
\mathbf{f}	1	3/2	2
g	1	3/2	1
h	1	3/2	0

The ratio $A_{2S_{1/2}}/A_{2P_{1/2}}$ is the same in both isotopes because both share the same fine structure. We can calculate X using the h.f.s. of 6Li as a reference. For 7Li , $\Delta E_{dc}=2A_{2S_{1/2}}$ and $\Delta E_{ba}=2A_{2S_{1/2}}$. For 6Li , $\Delta E_{dc}=\frac{3}{2}A_{2S_{1/2}}$ and $\Delta E_{ba}=\frac{3}{2}A_{2S_{1/2}}$. Therefore, $X=\left(\frac{803.5\text{MHz}}{228.2\text{MHz}}\right)\cdot 26.1\text{MHz}=\boxed{91.9\text{MHz}}$

2 Hydrogen-Deuterium 1S-2S isotope shift (25 pts)

Mass shift. The *n*-th energy level has a mass shift of $\Delta E_n \equiv E_n - E_n^\infty = -\frac{hcR_\infty}{n^2} \left(\frac{m_N}{m_e + m_N} - 1\right) \approx \frac{hcR_\infty}{n^2} \frac{m_e}{m_N}$. The mass shift for the 1S–2S transition is given by $\Delta E_{21} \equiv \Delta E_2 - \Delta E_1 = -\frac{3}{4}hcR_\infty \frac{m_e}{m_N}$. Using $m_N = m_p$ for Hydrogen and $m_N = 2m_p$ for Deuterium, we find $\Delta E_{21}^H = -1343.3 \text{ GHz} \cdot h$ and $\Delta E_{21}^D = -671.7 \text{ GHz} \cdot h$. The isotope shift is $\Delta E_{21}^D - \Delta E_{21}^H = \boxed{671.7 \text{ GHz} \cdot h}$

Volume shift. The *n*-th energy level has a volume shift of $\Delta E_n = hcR_\infty \frac{4Z^4R^2}{5n^3a_0^2}$. The shift associated with the 1S–2S transition is $\Delta E_{21} \equiv \Delta E_2 - \Delta E_1 = -hcR_\infty \frac{7Z^4R^2}{10a_0^2}$. Using that R=0.8 fm for Hydrogen and R=2 fm for Deuterium, we find $\Delta E_{21}^H = -526$ kHz · h and $\Delta E_{21}^D = -3290$ kHz · h. The isotope shift is $\Delta E_{21}^H - \Delta E_{21}^H = \boxed{-2764}$ kHz · h

The mass shift is in excellent agreement with the value measured, 671 GHz. The volume shift is off by a factor of two from 5234 kHz.

^{*}dchen30@illinois.edu

¹This is equivalent to the formula seen in class: $\Delta E_n = \frac{e^2}{4\pi\varepsilon_0} \frac{2Z^4R^2}{5n^3a_{ij}^3}$, where $a_\mu = a_0\left(1 + \frac{m_e}{m_N}\right) \approx a_0$ and $\frac{e^2}{4\pi\varepsilon_0} = 2a_0hcR_\infty$

3 Zeeman effect in an alkali atom (50 pts)

Part a

The hamiltonian of the hyperfine structure is given by

$$H = A\mathbf{I} \cdot \mathbf{J} - \boldsymbol{\mu}_{\mathsf{T}} \mathbf{B} - \boldsymbol{\mu}_{\mathsf{T}} \mathbf{B} \tag{1}$$

where $\mu_J = -g_J \frac{\mu_0}{\hbar} \boldsymbol{J}$, $\mu_I = g_I \frac{\mu}{\hbar} \boldsymbol{I}$ and $\Delta E_{hfs} = \hbar^2 A (I+1/2)$. As usual, we consider $\boldsymbol{B} = B\hat{z}$. Since we will work in the representation $|m_I, m_J\rangle \equiv |I, m_I\rangle |J, m_J\rangle$, it is convenient to express the hamiltonian in terms of ladder operators² I_{\pm} and J_{\pm} .

$$H = \frac{\Delta E_{hfs}}{\hbar^2 (2I+1)} (I_+ J_- + I_- J_+) + \frac{2\Delta E_{hfs}}{\hbar^2 (2I+1)} I_z J_z + \frac{\mu_0}{\hbar} g_J B J_z - \frac{\mu_N}{\hbar} g_I B I_z$$
 (2)

In the particular case of alkali atoms in the ground state, we have $m_J = m_s = \pm 1/2$. The hamiltonian in eq.(2) couples $|m_I, 1/2\rangle$ with $|m_I + 1, -1/2\rangle$. In this basis, H takes the matrix form³

$$H = \begin{pmatrix} \frac{\Delta E_{hfs}}{2I+1} m_I + \frac{\mu_0}{2} g_J B - \mu_N g_I m_I B \\ \frac{\Delta E_{hfs}}{2I+1} \sqrt{I(I+1) - m_I(m_I+1)} & -\frac{\Delta E_{hfs}}{2I+1} \sqrt{I(I+1) - m_I(m_I+1)} \\ -\frac{\Delta E_{hfs}}{2I+1} (m_I+1) - \frac{\mu_0}{2} g_J B - \mu_N g_I(m_I+1) B \end{pmatrix}$$
(3)

The manual diagonalization of H is straightforward but tedious. We can use *Mathematica* instead. The function Simplify[Eigensystem[H]] gives the eigenvalues and their respective (unnormalized) eigenvectors. The eigenvalues are

$$E_{\pm}(m_F, B) = -\frac{\Delta E_{hfs}}{2(2I+1)} - \mu_N g_I m_F B \pm \frac{\Delta E_{hfs} x'}{2}$$
(4)

where we have replaced m_I by m_F via $m_I = m_F - 1/2$. The quantities x' and x are defined as

$$x' \equiv \sqrt{1 + \frac{4m_F x}{2I + 1} + x^2}$$
 and $x \equiv \left(g_J + g_I \frac{\mu_N}{\mu_0}\right) \frac{\mu_0 B}{\Delta E_{hfs}}$ (5)

The eigenvectors associated with E_{\pm} are 4

$$\mathbf{v}_{\pm} = \begin{pmatrix} 2m_F + (2I+1)(x \mp x') \\ 2\sqrt{(I+1/2)^2 - m_F^2} \end{pmatrix}$$
 (6)

From eq.(6) we conclude that the states $|F, m_F\rangle$ are

$$|F, m_F\rangle_{\pm} = \frac{(\boldsymbol{v}_{\pm})_1}{\|\boldsymbol{v}_{\pm}\|} |m_F - 1/2, 1/2\rangle + \frac{(\boldsymbol{v}_{\pm})_2}{\|\boldsymbol{v}_{\pm}\|} |m_F + 1/2, -1/2\rangle$$
(7)

Part b

According to Daniel Steck's paper (note that he uses the opposite sign convention for g_I)

ΔE_{hfs}	6.8346826GHz
g_J	2.002331
μ_0	$9.27410^{-24}JT^{-1}$
$g_I \mu_N/\mu_0$	0.000995

 $^{{}^{2}\}boldsymbol{I}\cdot\boldsymbol{J} = I_{z}J_{z} + (I_{+}J_{-} + I_{-}J_{+})/2$

³The ladder operators I_{\pm} and J_{\pm} on the state $|m_I, m_J\rangle$ satisfy $I_{\pm} |m_I, m_J\rangle = \hbar \sqrt{I(I+1) - m_I(m_I \pm 1)} |m_I \pm 1, m_J\rangle$ and $J_{\pm} |m_I, \pm 1/2\rangle = \hbar |m_I, \pm 1/2\rangle = \hbar |m_I, \pm 1/2\rangle$

⁴The eigenvectors can take equivalent forms since they are not normalized

Part c

We need to calculate the magnetic moment $\mu=-\frac{\partial E}{\partial B}$ and set it to 0. We can use, for example, the function Derivative[] and then FindRoot[] on *Mathematica*. For $F=1, m_F=-1$ we find B=1221 Gauss. Plugging this result into eq.(7) gives

$$|F=1, m_F=-1\rangle = \frac{1}{\sqrt{2}}(|-3/2, 1/2\rangle - |-1/2, -1/2\rangle)$$
 (8)

We found that $|-3/2,1/2\rangle$ and $|-1/2,-1/2\rangle$ have equal weights. This is reasonable since they have opposite electron spins (we can ignore the nuclear magnetic moment since $\mu_N \ll \mu_0$).