细胞中的代谢

笔记源文件: <u>Markdown</u>, <u>长</u>图, <u>PDF</u>, <u>HTML</u>

0. 代谢总论

11代谢的定义: 生物体内发生的所有生化反应

2 代谢特征:条件温和,高度调控,不可逆,限速,高度保守,高度分化

3 生物系统: 开放系统

⑤ 高能物质: 反应时某个化学键变化释放能量> ATP合成能量的分子

5 高能化学键:-O-P-, -N-P-, -S-C-

1. 维生素与辅酶

1.1. 维生素简介

1 定义:维持生命活动必不可少的一类小分子有机化物

2 特点: 需求量小,人体不能合成,不构成细胞,但参与代谢

3分类脂溶性(A, D, E, K), 水溶性 $(B_2, B_1, PP, B_6, B_{12}, 泛酸, 生物素, 叶酸)$

1.2. 辅酶

1 定义: 与酶共同催化or调控生化反应的有机非蛋白

2 辅酶和维生素:维生素是辅酶的前体

3种类:辅酶A、辅酶B、NADH、FAD、NADPH

2. 糖类代谢

氧化供能,提供反应原料,作为结构物质

2.1. 糖酵解(EMP)

2.1.1. 概述: 葡萄糖 ^{细胞质} 丙酮酸+2ATP

2.1.2. 反应历程(中间物+能量计算)

2 以下过程产生2丙酮酸+2NADH+4ATP (磷酸甘油醛 $\stackrel{\text{可逆转换}}{\longleftrightarrow}$ 磷酸二羟丙酮) $\stackrel{2\text{NAD}^+ \to 2\text{NADH} + 2\text{H}^+}{\longrightarrow}$ 2二磷酸甘油酸 $\stackrel{2\text{ADP} \to \text{ATP}}{\longrightarrow}$ 2磷酸甘油酸 $\stackrel{2\text{ADP} \to \text{ATP}}{\longrightarrow}$ 2丙酮酸

<mark>2.1.3. 丙酮酸的去路</mark>

被还原为乳酸、脱羧变成乙醇+二氧化碳、氧化脱羧变为乙酰CoA+二氧化碳

2.2.TCA(三羧酸)循环

(理解概念+了解过程+熟悉中间产物)

2.2.1.TCA表达式

 $\mathrm{CH_{3}OC-SCoA} + 2\mathrm{H}_{2}\mathrm{O} + 3\mathrm{NAD}^{+} + \mathrm{ADP} + \mathrm{Pi} \rightarrow 2\mathrm{CO}_{2} + 3\left(\mathrm{NADH} + \mathrm{H}^{+}\right) + \mathrm{FADH}_{2} + \mathrm{ATP} + \mathrm{CoASH}$

2.2.2.TCA详细过程(三羧酸循环)

1 准备阶段:丙酮酸^{氧化脱羧}乙酰CoA<mark>(第二阶段)</mark>

②进入循环: 柠檬酸生成 → 柠檬酸异构为异柠檬酸 → 脱羚氧化(异柠檬酸 $\stackrel{-ij}{\longrightarrow}$ 草酰乙酸)

2.2.3.TCA小结

- 乙酰基彻底氧化:每循环一次消耗一个乙酰CoA,脱四次每次一个H,两次脱羧,一次底物磷酸化
- 2 循环不可逆,因为酶不可逆,最重要的酶是异柠檬酸脱芴酶

2.4. 生物氧化: 有机物 $\xrightarrow{\P(H)}$ $CO_2 + H_2O$

2.4.0. 氧化&底物水平磷酸化

■氧化:线粒体中,底物脱氢
→传给氧
→ADP转化ATP:

②底物水平磷酸化:磷酸基团转给ADP →合成ATP

2.4.1. 脱氢&电子传递链(呼吸链)

1 脱氢:通过分子失去氢原子,进行能量释放和氧化

2 电子传递链:代谢物脱下的氢系 $\xrightarrow{\mathrm{Ne}$ 子传递体 $\mathrm{2}$ 全给 $\mathrm{2}$

2.4.2. 一对电子传递所能产生的ATP数目

2.5. 小结: 有氧ATP统计

第一阶段5/7个 + 第二阶段5个 + 第三阶段20个 \rightarrow 净生成32(或30)ATP

反应阶段	反应方程式	辅酶	ATP
1	葡萄糖 → 6-磷酸葡萄糖	NAD^+	-1
1	6-磷酸葡萄糖 → 1,6-二磷酸葡萄糖	NAD^+	-1
1	2 imes 3-磷酸甘油醛 $ ightarrow 2 imes 1,3$ -二磷酸甘油醛	NAD^+	2 imes 1.5或者 $2 imes 2.5$
1	2 imes1,3-二磷酸甘油醛 $ ightarrow2 imes3$ -磷酸甘油	NAD^+	2×1
1	2 imes 磷酸烯醇式丙酮酸 $ ightarrow 2 imes$ 丙酮酸	NAD^+	2×1
2	2 imes 丙酮酸 $ ightarrow 2 imes$ 乙酰CoA	NAD^+	2 imes 2.5
3	2 imes 异柠檬酸 $ ightarrow 2 imes lpha$ 酮戊二酸	NAD^+	2 imes 2.5
3	$2 imeslpha$ 酮戊二酸 $ ightarrow 2 imes$ 琥珀酸 CoA	NAD^+	2×2.5
3	$2 imes$ 琥珀酸 $\mathrm{CoA} ightarrow 2 imes$ 琥珀酸	NAD^+	2×1
3	2 imes 琥珀酸 $ ightarrow 2 imes$ 延胡索酸	FAD	2×1.5
3	2 imes 苹果酸 $ ightarrow 2 imes$ 草酰乙酸	NAD^+	2×2.5

2.6. 糖类合成代谢(糖异生)

1 概述

- 1. **机理**: 非糖(乳酸/甘油/氨基酸) 所/肾的线粒体/胞浆 葡萄糖/糖原 → 血糖稳定
- 2. 反应式:

2丙酮酸 +4ATP +2GTP +2NADH $+2H^++4H_2O=$ 葡萄糖 +NAD $^++4$ ADP +2GDP +6Pi

2 过程: 丙酮酸→葡萄糖(大致糖酵解逆过程, 除了图中三个点都可逆)

3. 脂类代谢(脂肪的分解代谢)

3.1. 脂肪动员

3.2. 甘油代谢

甘油 → 被氧化成丙酮酸进入TCA

3.3. 脂肪酸代谢: β 氧化

3.3.1. 准备

脂肪酸活化(生成-C-S消耗两 $ATP \rightarrow 线粒体中脂酰CoA转运系统)$

3.3.2. 脂肪酸 β 氧化

氧化、水化、再氧化,硫解→生成

3.3.3. $C_{\overline{W}}$ 服 脂肪酸 β 氧化能量统计

1 重要数据统计

1. 经历
$$\mathrm{N}_{eta$$
 氧化次数 $}=rac{\mathrm{C}_{oldsymbol{ ilde{K}}oldsymbol{eta}oldsymbol{eta}}-2}{2}$

2. 生成
$$A_{Z$$
酰 $CoA}$ 数目 $=N_{eta}$ 氧化次数 $+1=rac{1}{2}C_{oldsymbol{Q}$ 原子数量

- 2 消耗生成ATP数目统计
 - 1. 活化消耗: $2ATP \xrightarrow{\pm \text{kd} \uparrow}$ 脂酰CoA
 - 2. β 氧化一共**产生**ATP: $\left(1.5\mathrm{N}_{\beta}$ 氧化次数 $\right)_{\mathrm{KF}\ \mathrm{FADH}_2} + \left(2.5\mathrm{N}_{\beta}$ 氧化次数 $\right)_{\mathrm{KF}\ \mathrm{NADH}^+} = \left(2\mathrm{C}_{\mathrm{GK}\mathrm{F}} 3\mathrm{M}_{\mathrm{F}} 4\right)$
- 3 总共ATP统计: $7C_{碳原子数量}-6$

3.4. 胴体

- **1** 含义:丙酮+乙酰乙酸+D $-\beta$ -羟丁酸
- 2 脂肪酸可运送形式,肝内产生与氧化

3.5. 脂酸合成与分解的区别

区别点	合成	分解
亚细胞部位	胞液	线精体
酰基载体	ACP	CoA
转运机制	三羧酸转运机制	肉碱载体系统
二碳片断	丙二酰CoA	乙酰CoA
还原当量	NADPH	$\mathrm{FAD}, \mathrm{NAD}^+$
HCO ₃ 和柠檬酸	需要	不需要
能量变化	耗7ATP + 14NADPH	产生106ATP

4. 蛋白质代谢

4.1. 蛋白质消化

蛋白质/多肽 $\xrightarrow{\text{小肠粘膜细胞}}$ 氨基酸

4.2. 概况

4.3. 氨基酸代谢

氨基酸 $\xrightarrow{\text{Mga}}$ 氨 + α-酮酸

4.3.1. 脱氨反应

11 转氨基作用

3 联合脱氨: 脱氨与转氨联合进行

1. 方式一: 转氨基联合氧化脱氨基作用(肝脏脾脏)

2. 方式二: 腺苷酸循环脱氨

4.3.2. 氨的排泄

2 尿素的合成(鸟苷酸循环)

- 1. 需要两分子 NH_3 (游离+源于天冬氨酸)
- 2. 耗能3ATP, 四个高能磷酸键

5. 核酸代谢

5.1. 嘌呤核苷酸的代谢

- 1 合成代谢:
 - 1. 发生于肝/小肠粘膜/胸腺→细胞质基质
 - 2. 原料为氨基酸/ CO_2 /一碳单元(如甲基)/5-磷酸核糖
- 2 分解代谢: 核酸 $\xrightarrow{\text{L**}}$ $\xrightarrow{\text{D**}}$ 尿素; 核酸 $\xrightarrow{\text{C**}}$ $\xrightarrow{\text{C**}}$ $\xrightarrow{\text{D**}}$ 氨