Centro	SAMT – Sezione Informatica	Dagina 1 di 29
Тге у а п-о	Progetto 2	Pagina 1 di 28

Professionale Trevano

SAMT – Sezione Informatica

Pagina 2 di 28

1	Introdu	zione	3
1.	1 Inf	ormazioni sul progetto	3
1.	2 Ab	estract	3
1.	3 Sc	opo	3
1.	4 An	nalisi del dominio	3
1.	5 An	alisi e specifica dei requisiti	4
1.	6 Pia	anificazione	7
	1.6.1	Analisi	8
	1.6.2	Progettazione	9
	1.6.3	Implementazione	10
	1.6.4	Testing	10
	1.6.5	Consegna	11
1.	.7 An	alisi dei mezzi	12
	1.7.1	Software	12
	1.7.2	Hardware	13
2	Progett	tazione	14
2.	.1 De	esign dell'architettura del sistema	14
2.	2 De	esign procedurale	16
3		nentazione	18
3.		uttonLib	18
	3.1.1	Costruttore	18
	3.1.2	getState	18
3.		dLib	18
	3.2.1	Costruttore	18
	3.2.2	on	18
	3.2.3	off	19
	3.2.4	toggle	19
	3.2.5	setState	19
	3.2.6	setAnalogState	19
	3.2.7	getState	19
	3.2.8	getAnalogState	20
3.		otocellLib	20
	3.3.1	Costruttore	20
	3.3.2	getLux	20
4	Test		21
4.		otocollo di test	21
_ 4.		sultati test	26
5	Consur		27
6	Conclu		27
6.		iluppi futuri	27
_ 6.		onsiderazioni personali	27
7 _	Bibliogi		27
7.		ografia	27
8	Allegati		28

Progetto 2

Pagina 3 di 28

1 Introduzione

1.1 Informazioni sul progetto

Autore: Matan Davidi e Filippo Finke Scuola: Arti e Mestieri Trevano

Classe: I3AA

Anno scolastico: 2018/19 Sezione: Informatica Materia: Modulo 306

Docenti responsabili: Adriano Barchi, Luca Muggiasca, Francesco Mussi, Elisa Nannini, Massimo Sartori

Data di inizio: 14.11.2018 Data di consegna: 08.02.2018

1.2 Abstract

How many times has a programmer decided to learn a new language only to be discouraged for whatever reason at the beginning of the road? How many people may actually be interested in learning to program but are afraid because it looks too complicated?

This document contains the technical documentation of a user-friendly library for new programmers to help them get comfortable with programming in Arduino, a programming language based on C++, at their own pace. Please note that this document contains the initial analysis of the project and of the current situation, the hardware and software that were used to implement it, the design of the library and associated circuits, an explanation of the code contained in the library and of the realization of the associated electronic circuits and the test cases that were run to ensure the correct functioning of the library.

1.3 Scopo

Creare una libreria di codice utilizzabile tramite un modello base di Digispark Development Board (vedi sitografia) per avvicinare nuovi utenti, per esempio studenti delle scuole medie senza previe conoscenze di programmazione, al mondo dell'informatica e dell'elettronica.

1.4 Analisi del dominio

Adesso come adesso, prima della realizzazione del nostro progetto, la programmazione in Arduino implica come prerequisiti delle conoscenze base di programmazione in linguaggi C-like e di montaggio di circuiti elettronici. Questo rischia di allontanare i nuovi utenti a questo mondo che combina programmazione con utilità pratica. La nostra libreria è progettata per aiutare le persone che si interfacciano agli Arduino oppure alla programmazione per la prima volta senza dover scrivere troppo codice, in modo da potersi concentrare sulla comprensione di quello che si scrive.

Idealmente, questa libreria è stata pensata per essere utilizzata da studenti delle scuole medie, che non posseggono alcuna conoscenza né di programmazione né di elettronica, che vengono a fare una giornata informativa alla Scuola Arti e Mestieri di Trevano in modo che possano portare a casa un lavoro in cui sia il montaggio del circuito elettronico sia la programmazione della logica di funzionamento siano state fatte da loro.

Professions le

SAMT – Sezione Informatica

Progetto 2

Pagina 4 di 28

1.5 Analisi e specifica dei requisiti

ID: REQ-001		
Nome	Libreria Arduino	
Priorità	1	
Versione	1.0	
Note		
	Sotto-requisiti	
001	Bisogna realizzare una libreria compatibile con il	
	linguaggio Arduino	
002	La libreria deve essere realizzata in linguaggio C++	

ID: REQ-002		
Nome	LedLib	
Priorità	1	
Versione	1.0	
Note		
	Sotto-requisiti	
001	È necessario implementare una libreria per controllare lo stato di un LED	
002	La libreria deve implementare un metodo che ottiene lo stato del LED associato	
003	La libreria deve implementare un metodo che ottiene lo stato analogico del LED associato	
004	La libreria deve implementare un metodo che imposta lo stato del LED associato a un valore definito	
005	La libreria deve implementare un metodo che imposta lo stato del LED associato a ALTO	
006	La libreria deve implementare un metodo che imposta lo stato del LED associato a BASSO	
007	La libreria deve implementare un metodo che inverte lo stato del LED associato	
008	La libreria deve implementare un metodo che imposta lo stato del LED associato a un valore analogico definito	

ID: REQ-003		
Nome	ButtonLib	
Priorità	1	
Versione	1.0	
Note		
	Sotto-requisiti	
001	È necessario implementare una libreria per controllare lo stato di un bottone	
002	La libreria deve implementare un metodo che ottiene lo stato del bottone associato	

Progetto 2

Pagina 5 di 28

ID: REQ-004		
Nome	PhotocellLib	
Priorità	1	
Versione	1.0	
Note		
	Sotto-requisiti	
001	È necessario implementare una libreria per	
	controllare lo stato di una fotocellula	
002	La libreria deve implementare un metodo che	
	ottiene lo stato della fotocellula associata	

ID: REQ-005		
Nome	LED – Bottone	
Priorità	2	
Versione	1.0	
Note		
	Sotto-requisiti	
001	È necessario realizzare tre circuiti di esempio che contengano una combinazione del LED e del bottone	
002	Uno dei circuiti da realizzare deve accendere il LED quando viene premuto il bottone	
003	Uno dei circuiti da realizzare deve invertire lo stato del LED quando viene premuto il bottone	
004	Uno dei circuiti da realizzare deve invertire continuamente lo stato del LED velocemente da quando viene premuto il bottone fino a quando non viene rilasciato	

ID: REQ-006		
Nome	LED – Fotocellula	
Priorità	2	
Versione	1.0	
Note		
	Sotto-requisiti	
001	È necessario realizzare tre circuiti di esempio che contengano una combinazione della fotocellula e del LED	
002	Uno dei circuiti deve accendere o spegnere il LED in base al valore rilevato dalla fotocellula: se il valore è al di sopra di una soglia il LED viene acceso; se il valore è al di sotto di una soglia il LED viene spento	
003	Uno dei circuiti deve regolare l'intensità del LED in base al valore rilevato dalla fotocellula: più è alta la luminosità rilevata, maggiore è l'intensità del LED.	
004	Uno dei circuiti deve regolare la frequenza di lampeggiamento del LED in modo inversamente proporzionale al valore rilevato dalla fotocellula: più è alta la luminosità rilevata, minore è la frequenza di lampeggiamento del LED.	

Progetto 2

Pagina 6 di 28

	ID: REQ-007
Nome	LCD – Display a segmenti liquidi
Priorità	2
Versione	1.0
Note	
	Sotto-requisiti
001	È necessario realizzare tre circuiti di esempio che contengano il display LCD
002	Uno dei circuiti deve stampare sullo schermo LCD la scritta "Hello World".
003	Uno dei circuiti deve stampare del testo all'interno del display LCD e mostrare il lampeggiamento del cursore, attivandolo e disattivandolo ad intervalli regolari.
004	Uno dei circuiti da realizzare deve stampare del testo sullo schermo LCD e dargli un effetto di scorrimento attraverso il display a segmenti liquidi.

1.6 Pianificazione

Figura 1: Diagramma di Gantt utilizzato per la pianificazione.

La pianificazione si divide in 5 fasi distinte: Analisi, Progettazione, Implementazione, Testing e Consegna; ognuna delle quali si suddivide nuovamente in attività.

1.6.1 Analisi

■ • Analisi	14/11/18	21/11/18	
 Analisi del dominio 	14/11/18	16/11/18	
Intervista cliente	16/11/18	16/11/18	
 Risoluzione dubbi 	21/11/18	21/11/18	
Analisi requisiti	21/11/18	21/11/18	
 Analisi costi e benefici 	21/11/18	21/11/18	

Figura 2: Ingrandimento della pianificazione della fase di analisi

In questa fase ricadono tutte le attività preliminari che servono per capire la situazione attuale e i requisiti del cliente sotto ogni aspetto. Dopodiché vengono stilati i requisiti e viene effettuata l'analisi di costi e benefici per definire se vale la pena lavorare al progetto. In questo progetto sono state svolte 5 attività:

- L'analisi del dominio, dove è stata analizzata la situazione corrente prima della realizzazione del progetto
- L'intervista con il cliente, grazie alla quale è stato possibile capire i requisiti da seguire meticolosamente durante la realizzazione del progetto

Versione: 08.02.2019

- La risoluzione dei dubbi, in cui abbiamo potuto smussare tutti gli angoli dei requisiti grazie alle domande poste al cliente in modo da implementare il progetto esattamente come vuole
- L'analisi dei requisiti, che porta a stilare i requisiti che è possibile vedere nel capitolo Analisi e specifica dei requisiti
- L'analisi dei costi e dei benefici, che permette di valutare qualora valga la pena o meno svolgere il progetto

1.6.2 Progettazione

Figura 3: Ingrandimento della pianificazione della fase di progettazione

All'interno di questa fase si trovano le attività che definiscono ogni aspetto del progetto prima dell'implementazione:

- La realizzazione del diagramma di Gantt, che permette una suddivisione visiva chiara del tempo e dei costi per ogni aspetto del progetto
- La progettazione delle tre librerie per gli attuatori definiti nei requisiti: ButtonLib, LedLib e PhotocellLib, con funzionalità e metodi specifici, e dei tre circuiti di esempio per ognuna e realizzazione dei diagrammi UML per le classi da implementare. Non viene contata la libreria per il display LCD perché una libreria uguale esiste già.

Versione: 08.02.2019

1.6.3 Implementazione

- •	Implementazione	28/11/18	28/12/18
Ε	Primo circuito	28/11/18	30/11/18
	 Creazione librerie 	28/11/18	30/11/18
Ξ	 Secondo circuito 	12/12/18	14/12/18
	 Creazione librerie 	12/12/18	14/12/18
Ξ	 Terzo circuito 	26/12/18	28/12/18
	 Crezione librerie 	26/12/18	28/12/18

Figura 4: Ingrandimento della pianificazione della fase di implementazione

Dentro questa fase vi sono tutte le attività relative all'implementazione del progetto esattamente come descritto nella progettazione:

- La creazione delle tre librerie per gli attuatori: LED, Interruttore e Fotocellula. Non viene contata la libreria per il display LCD perché una libreria uguale esiste già.

1.6.4 Testing

Figura 5: Ingrandimento della pianificazione della fase di testing

Nella fase di testing ricadono tutte le verifiche di funzionamento effettuate come descritto nel capitolo 4, Test:

- I test per ogni circuito realizzato: il primo per la coppia di attuatori LED – Bottone, il secondo per la coppia LED – Fotocellula e il terzo per il display a cristalli liquidi (LCD)

Versione: 08.02.2019

1.6.5 Consegna

■ * Consegna	14/11/18	08/02/19	
 Guide circuiti 	04/01/19	06/02/19	
 Documentazione libre 	rie 04/01/19	06/02/19	
 Documentazione 	14/11/18	08/02/19	
 Preparazione presenta 	az 14/11/18	08/02/19	

Versione: 08.02.2019

Figura 6: Ingrandimento della pianificazione della fase di consegna

All'interno dell'ultima fase, quella di consegna, si trovano le attività di preparazione per la consegna del progetto implementato al cliente:

- La realizzazione di una guida di utilizzo per ogni circuito realizzato in modo che ne sia spiegato il funzionamento
- La documentazione delle singole librerie per far capire cosa fa ogni membro di ogni classe
- La documentazione del progetto nel suo intero per sapere come è stato realizzato e cosa contiene
- La realizzazione della presentazione del progetto

SAMT – Sezione Informatica Progetto 2 Pagina 12 di 28

1.7 Analisi dei mezzi

1.7.1 Software

Il progetto è stato sviluppato su un sistema operativo Windows 10 Home a 64 bit versione 10.0.17134 build 17134 e macOS Mojave 10.14.1 utilizzando il seguente software:

- Arduino 1.8.7
- Atom 1.32.2
- Fritzing 0.9.3
- GanttProject 2.8.9
- GitHub Desktop 1.5.0
- Google Chrome 70.0.3538.110
- Microsoft Visio 2010 14.0.4756.1000
- Microsoft Visual Studio Code 1.29.1
- Microsoft Word 16.0.10730.20102
- Mozilla Firefox 63.0.3
- SourceTree 3.0.8
- draw.io

Le librerie utilizzate comprendono:

- Arduino (Arduino.h), versione incorporata nell'IDE Arduino 1.8.5, per il linguaggio C++, che permette di scrivere codice in C++ utilizzando i metodi e le funzioni di Arduino
- LiquidCrystal_I2C (LiquidCrystal_I2C.h) 1.5.8A utilizzata per la gestione del display LCD.
- TinyWireM (TinyWireM.h) 1.0.1 utilizzata per interfacciarsi con il bus I2C.

Pagina 13 di 28

1.7.2 **Hardware**

- Digispark USB Development Board (specifiche)
 - Alimentazione tramite USB o fonte esterna 5v o 7-35v (12v o meno consigliato, selezione automatica)
 - Regolatore da 500mA e 5V incorporato
 - USB incorporato
 - 6 Pin I/O (2 vengono utilizzati per USB solo se il programma comunica attivamente tramite USB, altrimenti è possibile utilizzare tutti e 6 anche se si sta programmando via USB)
 - Memoria Flash da 8k (circa 6k dopo il bootloader)
 - Pin di I2C e SPI
 - PWM su 3 pin (altri possibili con il software PWM)
 - ADC su 4 pin
 - LED di alimentazione e LED di stato/test

Figura 7: schema elettrico del Digispark USB Development Board

2 Progettazione

2.1 Design dell'architettura del sistema

Figura 8: Bottone - LED, schema di circuito

All'interno del circuito sono presenti quattro componenti: 1 bottone, 1 LED e 2 resistenze. Il bottone è collegato in pull-down tramite una resistenza da $10k\Omega$, il suo stato viene letto attraverso il pin "P0" del micro controllore. Il LED è attaccato al pin "P1" del Digispark attraverso una resistenza da 330Ω .

Figura 9: Fotocellula - LED, schema di circuito

All'interno del circuito sono presenti quattro componenti: 1 fotocellula, 1 LED e 2 resistenze. La fotocellula è collegata in pull-down attraverso una resistenza da $10k\Omega$ al pin "P3". Il LED è attaccato al pin "P1" del Digispark attraverso una resistenza da 330Ω .

Figura 10: Bottone - LED, schema elettrico
Schema elettrico del circuito "Bottone – LED".

Figura 11: Fotocellula - LED, schema elettrico Schema elettrico del circuito "Fotocellula – LED".

Figura 12: LCD, schema di circuito

All'interno del circuito sono presenti due componenti: 1 display a cristalli liquidi (LCD) e 1 shift register. Lo shift register viene alimentato dal digispark ed è collegato ai relativi pin SCL("P2") e SDA("P0"). Mentre il display LCD è collegato interamente allo shift register.

Figura 13: LCD, schema elettrico

Schema elettrico del circuito "LCD".

2.2 Design procedurale

Classe Button (ButtonLib):

- button.cpp
- button.h
- keywords.txt

Campi:

o int _pin, che contiene il numero del pin al quale è collegato il LED

Metodi:

- Button(int pin), che istanzia nuovi oggetti di tipo Button, accettando come parametro il numero del pin da cui leggere lo stato del bottone
- o bool getState(), che ottiene lo stato del bottone: 1 se premuto, 0 se non premuto.

Figura 14: Schema UML della classe Button

Classe Led (LedLib):

- led.cpp
- led.h
- keywords.txt

Campi:

o int _pin, che contiene il numero del pin al quale è collegato il LED

Metodi:

- Led(int pin), che istanzia nuovi oggetti di tipo Led, accettando come parametro il numero del pin al quale è collegato il LED
- o void on(), che imposta lo stato del LED a 1: acceso
- o void off(), che imposta lo stato del LED a 0: spento
- o void toggle(), che inverte lo stato del LED: da acceso a spento e da spento ad acceso
- void setState(bool state), che imposta lo stato del LED al valore passato come parametro, 'true' lo accende e 'false' lo spegne
- o void setAnalogState(int value), che imposta lo stato del LED con un valore analogico, da 0 a 255
- o bool getState(), che restituisce lo stato del LED, 'true' è acceso e 'false' è spento

Figura 15: Schema UML della classe Led

Professional Progetto 2 SAMT – Sezione Informatica Progetto 2 Pagina 17 di 28

Classe Photocell (PhotocellLib):

- photocell.cpp
- photocell.h
- keywords.txt

Campi:

- int _pin, che contiene il numero del pin al quale è collegato il LED Metodi:
 - Photocell(int pin), che istanzia nuovi oggetti di tipo Photocell, accettando come parametro il numero del pin da cui leggere il valore restituito dalla fotocellula
 - o int getLux(), che restituisce il valore della luminosità rilevato dalla fotocellula, da 0 a 255

Figura 16: schema UML della classe Photocell

Professionia

SAMT - Sezione Informatica

Progetto 2

Pagina 18 di 28

3 Implementazione

Tutte le librerie descritte in seguito importano la libreria di Arduino, i cui metodi sono dichiarati nel file header 'Arduino,h'.

3.1 ButtonLib

Questa libreria viene usata per controllare lo stato di un bottone attraverso i metodi presenti nella classe Button, quindi ogni bottone presente all'interno di un circuito dovrà corrispondere ad un'istanza di questa classe. Questa classe è composta dal file 'button.cpp', 'button.h' e 'keywords.txt'. La libreria è composta dai seguenti metodi:

3.1.1 Costruttore

Button::Button(int pin)

Il metodo costruttore Button istanzia un nuovo oggetto di tipo Button, permettendo di specificare il pin al quale è attaccato il filo che permette di leggere lo stato del bottone.

3.1.2 getState

bool Button::getState()

Il metodo getState permette di ottenere lo stato del bottone. Esso ritorna, infatti, un valore booleano che può assumere il valore true quando il bottone è premuto, oppure false quando il bottone non è premuto. Il valore viene ricavato attraverso un metodo della libreria Arduino utilizzando il seguente pezzo di codice: return digitalRead(pin);

3.2 LedLib

Questa libreria viene usata per controllare lo stato di un LED attraverso i metodi presenti nella classe Led, quindi ogni LED presente all'interno di un circuito dovrà corrispondere ad un'istanza di questa classe. Questa classe è composta dal file 'led.cpp', 'led.h' e 'keywords.txt'. La libreria è composta dai seguenti metodi:

3.2.1 Costruttore

Led::Led(int pin)

Il metodo costruttore Led istanzia un nuovo oggetto di tipo Led, permettendo di specificare il pin al quale è attaccato il filo che permette di leggere e/o scrivere lo stato del LED.

3.2.2 on

void Led::on()

Il metodo on permette di impostare lo stato del LED a 1, che significa accendere il LED fino al momento in cui non viene spento.

Questo metodo utilizza il seguente pezzo di codice per richiamare un altro metodo della classe stessa in modo da poter accendere il LED (vedi setState):

setState(HIGH);

Professionale Trevano

SAMT - Sezione Informatica

Progetto 2

Pagina 19 di 28

3.2.3 off

void Led::off()

Il metodo off permette di impostare lo stato del LED a 0, che significa spegnere il LED fino al momento in cui non viene acceso.

Questo metodo utilizza il seguente pezzo di codice per richiamare un altro metodo della classe stessa in modo da poter spegnere il LED (vedi setState):

setState(LOW);

3.2.4 toggle

void Led::toggle()

Il metodo toggle permette di impostare lo stato del LED al valore inverso rispetto a quello corrente, che significa accendere il LED se è correntemente spento, oppure spegnerlo se dovesse essere acceso. Questo stato viene mantenuto fino al prossimo cambiamento di stato provocato da una chiamata a uno dei metodi on, off o toggle.

Questo metodo fa utilizzo di due metodi della classe stessa per ricavare il valore corrente, invertirlo ed infine impostarlo. Il tutto viene effettuato utilizzando il seguente blocco di codice (vedi setState e getState): setState (!getState());

3.2.5 setState

void Led::setState(bool state)

Il metodo setState permette di impostare lo stato del LED al valore booleano passato come parametro state. I valori accettabili per il parametro state di questo metodo sono true per accendere il LED e false per spegnerlo.

Questo metodo utilizza un metodo predisposto dalla libreria di Arduino per poter impostare lo stato del LED: digitalWrite(pin, state);

3.2.6 setAnalogState

void Led::setAnalogState(int value)

Il metodo setAnalogState permette di impostare lo stato del LED al valore del numero intero passato come parametro value. Questo permette di regolare l'intensità della luce emanata dal LED con un valore da 0 a 255, dove 0 significa completamente spento e 255 significa acceso alla massima luminosità. Questo metodo utilizza un metodo predisposto dalla librearia di Arduino per poter impostare un valore analogico ad un determinato pin:

analogWrite(pin, value);

3.2.7 getState

bool Led::getState()

Il metodo getState permette di ottenere un valore che rappresenta lo stato del LED. Esso ritorna, infatti, un valore booleano che simboleggia lo stato del LED: se il valore ritornato è true il LED è acceso; se il valore ritornato è false il LED è spento.

Questo metodo utilizza un metodo predisposto dalla libreria di Arduino per poter ricavare lo stato di un determinato pin:

return digitalRead(pin);

Professionale Trevano

SAMT - Sezione Informatica

Progetto 2

Pagina 20 di 28

Versione: 08.02.2019

3.2.8 getAnalogState

int Led::getAnalogState()

Il metodo getAnalogState permette di ottenere un valore che rappresenta lo stato analogico del LED, che significa l'intensità della luce che emana. Esso ritorna, infatti, un valore compreso tra 0, che significa che il LED è completamente spento, e 255, che significa che il LED è acceso alla massima intensità. Questo metodo utilizza un metodo predisposto dalla libreria di Arduino per poter ricavare il valore analogico di un determinato pin:

return analogRead(pin);

3.3 PhotocellLib

Questa libreria viene usata per controllare lo stato di una resistenza fotovoltaica attraverso i metodi presenti nella classe Photocell, quindi ogni fotocellula presente all'interno di un circuito dovrà corrispondere ad un'istanza di questa classe. Questa classe è composta dal file 'photocell.cpp', 'photocell.h' e 'keywords.txt'. La libreria è composta dai seguenti metodi:

3.3.1 Costruttore

Photocell::Photocell(int pin)

Il metodo costruttore Photocell istanzia un nuovo oggetto di tipo Photocell, permettendo di specificare il pin al quale è attaccato il filo che permette di leggere lo stato della fotoresistenza.

3.3.2 getLux

int Photocell::getLux()

Il metodo getLux restituisce il valore misurato dalla fotoresistenza. Infatti esso ritorna un valore intero tra 0 e 255, dove 0 significa che non è stata rilevata alcuna luce e 255 significa che è stata rilevata una luminosità maggiore o uguale al valore massimo rilevabile dalla fotoresistenza.

Questo metodo utilizza un metodo predisposto dalla libreria di Arduino per poter ricavare il valore analogico di un determinato pin:

return analogRead(pin);

Centro Professagnale Trevano

SAMT – Sezione Informatica

Progetto 2

Pagina 21 di 28

4 Test

4.1 Protocollo di test

Test Case:	TC-001 Non	ne:	Digispark funziona	
Riferimento:				
Descrizione:	II Digispark USB Develo	opment Board	d utilizzato deve funzionare.	
Prerequisiti:	- Un Digispark USB			
Procedura:	Aprire l'IDE di Ardu	uino		
	2. Cliccare sull'etiche	etta "File" in a	lto a sinistra	
	3. Portare il mouse su "Examples"			
	4. Portare il puntatore su "01.Basics"			
	5. Selezionare la linguetta "Blink"			
	6. Aggiungere la segri int LED_BUILTIN	•	codice al di fuori dei metodi loop e setup:	
	7. Avviare il programi	ma		
Risultati attesi:	II LED sul Digispark si a	ccende e si s	spegne a intervalli regolari.	

Test Case:	TC-002	Nome:	Le librerie sono state importate correttamente
Riferimento:			
Descrizione:			orogetto, quindi ButtonLib, LcdLib, LedLib e PhotocellLib, ll'ambiente di sviluppo integrato (IDE) Arduino
Prerequisiti:	La libreria LoLa libreria Le	uttonLib scaricatadLib scaricatadLib scaricatadcotcellLib scaricata	
Procedura:	Seguire la guida per l'utilizzo di ogni libreria contenuta all'interno della cartella della libreria, nel file README.pdf (o, eventualmente, README.md) Aprire un circuito di esempio qualsiasi Compilarlo		
Risultati attesi:	La compilazione a	vviene senza al	cun errore o problema

Pagina 22 di 28

Versione: 08.02.2019

Test Case: Riferimento:	TC-003 REQ-005	Nome:	Uno dei circuiti deve accendere il LED quando viene premuto il bottone
Descrizione:			coppia di attuatori LED – Bottone deve permettere di dere il LED, che si deve spegnere una volta rilasciato il
Prerequisiti:	LED (vedi Fig	gura 8: Bottone e della libreria "B	nente un Digispark USB collegato ad un interruttore e un - LED, schema di circuito) suttonLib" implementata nel progetto edLib" implementata nel progetto
Procedura:	2. Tenere prem		"LedOnOff.ino" collegato al Digispark ato al Digispark
Risultati attesi:	Quando l'interrutto viene rilasciato, do	•	to, il LED si accende fino al momento in cui il pulsante non gne.

Test Case: Riferimento:	TC-004 REQ-005	Nome:	Uno dei circuiti deve invertire lo stato del LED quando viene premuto il bottone
Descrizione:		ıttore per inverti	coppia di attuatori LED – Bottone deve permettere di re lo stato LED, che si deve accendere se è spento e
Prerequisiti:	LED (vedi Fig	gura 8: Bottone e della libreria "E	nente un Digispark USB collegato ad un interruttore e un - LED, schema di circuito) ButtonLib" implementata nel progetto edLib" implementata nel progetto
Procedura:	2. Premere l'inte	erruttore collega	"LedToggle.ino" ato al Digispark uttore collegato al Digispark
Risultati attesi:			to per la prima volta, il LED si accende fino al momento in la seconda volta, dopodiché si spegne.

Pagina 23 di 28

Test Case: Riferimento:	TC-005 REQ-005	Nome:	Uno dei circuiti deve invertire lo stato del LED da quando viene premuto il bottone fino a quando non viene rilasciato
Descrizione:	premuto un interru	ıttore per comin	coppia di attuatori LED – Bottone deve permettere di tenere ciare a invertire lo stato LED velocemente fino a quando il odiché il LED assumerà l'ultimo stato in cui si trova.
Prerequisiti:	LED (vedi Fi	gura 8: Bottone e della libreria "E	nente un Digispark USB collegato ad un interruttore e un - LED, schema di circuito) ButtonLib" implementata nel progetto edLib" implementata nel progetto
Procedura:	 Avviare il codice di esempio "LedFlickering.ino" Premere l'interruttore collegato al Digispark Rilasciare l'interruttore collegato al Digispark 		
Risultati attesi:	alternando tra acc	eso e spento fir	to il LED comincia a cambiare rapidamente il proprio stato, no al momento in cui il pulsante non viene rilasciato, re che ha assunto prima che fosse rilasciato il pulsante.

Test Case:	TC-006	Nome:	Uno dei circuiti deve accendere o spegnere il LED in
Riferimento:	REQ-006		base al valore rilevato dalla fotocellula
Descrizione:	stato di un LED in	base al valore r glia il LED viene	coppia di attuatori LED – Fotocellula deve impostare lo ilevato da una fotocellula: quando il valore misurato scende spento; quando il valore misurato sale al di sopra di una
Prerequisiti:	LED (vedi Fig - Una versione	gura 9: Fotocellu e della libreria "P	nente un Digispark USB collegato ad una fotocellula e un ula - LED, schema di circuito) PhotocellLib" implementata nel progetto edLib" implementata nel progetto
Procedura:	2. Oscurare la f	otocellula posizi	"PhotocellThreshold.ino" ionandovi sopra un materiale opaco o dalla fotocellula
Risultati attesi:	Quando la fotocell opaco il LED si ac		ata il LED si spegne; quando viene rimosso il materiale ente.

Pagina 24 di 28

Test Case: Riferimento:	TC-007 REQ-006	Nome:	Uno dei circuiti deve regolare l'intensità del LED in base al valore rilevato dalla fotocellula.
Descrizione:		ED in base al va	coppia di attuatori LED – Fotocellula deve impostare la lore rilevato da una fotocellula: maggiore è la luminosità del LED.
Prerequisiti:	LED (vedi Fi	gura 9: Fotocellu e della libreria "P	nente un Digispark USB collegato ad una fotocellula e un ula - LED, schema di circuito) hotocellLib" implementata nel progetto edLib" implementata nel progetto
Procedura:	2. Oscurare la f	otocellula posizi	'PhotocellToLEDIntensity.ino" onandovi sopra gradualmente un materiale opaco nateriale opaco dalla fotocellula
Risultati attesi:	il materiale viene ı	imosso il LED s	completamente il sensore il LED è spento, man mano che i accende con un'intensità sempre maggiore fino a quando otocellula e il LED brilla alla luminosità massima.

Test Case: Riferimento:	TC-008 REQ-006	Nome:	Uno dei circuiti deve regolare la frequenza di lampeggiamento del LED in modo inversamente proporzionale al valore rilevato dalla fotocellula
Descrizione:	frequenza di lamp	eggiamento di u	coppia di attuatori LED – Fotocellula deve impostare la n LED in modo inversamente proporzionale al valore è la luminosità rilevata, minore è la velocità di sfarfallio del
Prerequisiti:	LED (vedi Fig	gura 9: Fotocellu e della libreria "P	nente un Digispark USB collegato ad una fotocellula e un ula - LED, schema di circuito) hotocellLib" implementata nel progetto edLib" implementata nel progetto
Procedura:	2. Oscurare la f	otocellula posizi	'PhotocellDelay.ino" onandovi sopra gradualmente un materiale opaco nateriale opaco dalla fotocellula
Risultati attesi:	che ha assunto, m con una frequenza	nan mano che il a sempre maggi	completamente il sensore il LED rimane sull'ultimo stato materiale viene rimosso il LED si comincia a lampeggiare pre fino a quando il corpo opaco non oscura più la velocità massima.

Test Case:	TC-009	Nome:	Uno dei circuiti deve stampare sullo schermo LCD la
Riferimento:	REQ-007		scritta "Hello World".
Descrizione:	Uno dei circuiti di esempio per il display a cristalli liquidi (LCD) deve stampare la scritta "Hello, World" sul display LCD.		
Prerequisiti:	 Un montaggio elettrico contenente un Digispark USB collegato ad uno Shift register e un display a cristalli liquidi (vedi Figura 12: LCD, schema di circuito) Una versione della libreria "LcdLib" implementata nel progetto 		
Procedura:	Avviare il codice di esempio "LCDHelloWorld.ino"		
Risultati attesi:	II display a cristalli	liquidi (LCD) m	ostra la scritta "Hello World".

Pagina 25 di 28

Versione: 08.02.2019

Test Case:	TC-010	Nome:	Uno dei circuiti deve stampare del testo all'interno del
Riferimento:	REQ-007		display LCD e mostrare il lampeggiamento del cursore
Descrizione:		• •	isplay a cristalli liquidi (LCD) deve mostrare una stringa di d evidenziare il lampeggiamento del cursore
Prerequisiti:	un display a	cristalli liquidi (v	nente un Digispark USB collegato ad uno Shift register e edi Figura 12: LCD, schema di circuito) iquidCrystal_I2C" implementata nel progetto
Procedura:	Avviare il codice di esempio "LCDCursorBlink.ino"		
Risultati attesi:	acceso per 5 seco	ndi, dopodiché	ostrera la scritta "Non blinka!" con un cursore che rimane mostra il testo "Blinka!" e il cursore passa da acceso a due stati del display si alternano a intervalli di 5 secondi.

Test Case: Riferimento:	TC-011 REQ-007	Nome:	Uno dei circuiti da realizzare deve stampare del testo sullo schermo LCD e dargli un effetto di scorrimento attraverso il display.
Descrizione:	Uno dei circuiti di esempio per il display a cristalli liquidi (LCD) deve stampare del testo sul display dandogli un effetto di scorrimento lungo la sua superficie da un lato verso l'altro.		
Prerequisiti:	 Un montaggio elettrico contenente un Digispark USB collegato ad uno Shift register e un display a cristalli liquidi (vedi Figura 12: LCD, schema di circuito) Una versione della libreria "LiquidCrystal_I2C" implementata nel progetto 		
Procedura:	Avviare il codice di esempio "LCDScroll.ino"		
Risultati attesi:			ostra la scritta "Hello, World" che scorre da un lato del co inziale quando esce dal LCD.

Progetto 2

Pagina 26 di 28

4.2 Risultati test

Test case	Risultato
TC-001	Il LED sul Digispark si accende e si spegne a
70.000	intervalli regolari.
TC-002	La compilazione avviene senza alcun errore o problema
TC-003	Quando l'interruttore viene premuto, il LED si
	accende fino al momento in cui il pulsante non viene
	rilasciato, dopodiché si spegne.
TC-004	Quando l'interruttore viene premuto per la prima
	volta, il LED si accende fino al momento in cui il pulsante non viene premuto la seconda volta,
	dopodiché si spegne.
TC-005	Quando l'interruttore viene premuto il LED comincia
	a cambiare rapidamente il proprio stato, alternando
	tra acceso e spento fino al momento in cui il pulsante
	non viene rilasciato, dopodiché rimane sull'ultimo
	valore che ha assunto prima che fosse rilasciato il pulsante.
TC-006	Quando la fotocellula viene oscurata il LED si
10 000	spegne; quando viene rimosso il materiale opaco il
	LED si accende nuovamente.
TC-007	Quando il materiale opaco oscura completamente il
	sensore il LED è spento, man mano che il materiale
	viene rimosso il LED si accende con un'intensità sempre maggiore fino a quando il corpo opaco non
	oscurerà più la fotocellula e il LED brilla alla
	luminosità massima.
TC-008	Quando il materiale opaco oscura completamente il
	sensore il LED rimane sull'ultimo stato che ha
	assunto, man mano che il materiale viene rimosso il
	LED si comincia a lampeggiare con una frequenza sempre maggiore fino a quando il corpo opaco non
	oscurerà più la fotocellula e il LED lampeggerà alla
	velocità massima.
TC-009	Il display a cristalli liquidi (LCD) mostra la scritta
70.040	"Hello World".
TC-010	Il display a cristalli liquidi (LCD) mostrerà la scritta
	"Non blinka!" con un cursore che rimane acceso per 5 secondi, dopodiché mostrerà il testo "Blinka!" e il
	cursore passera da acceso a spento a intervalli
	regolari. Questi due stati del display si alternano a
	intervalli di 5 secondi.
TC-011	Il display a cristalli liquidi (LCD) mostrerà la scritta
	"Hello, World" che scorre da un lato del display verso
	l'altro tornando al lato inziale quando esce dal LCD.

Progetto 2

Pagina 27 di 28

5 Consuntivo

Non abbiamo riscontrato particolari problemi nella gestione del tempo, infatti durante tutto il progetto siamo stati in orario con la pianificazione e siamo riusciti a finire in tempo per la consegna senza difficoltà. Infatti il Gantt di pianificazione e quello consuntivo corrispondono.

6 Conclusioni

Essendo pensata per i programmatori alla prime armi o, addirittura, che non si sono mai affacciati al mondo della programmazione, questo progetto avrà un impatto piuttosto grande in chiunque si trovi in questa posizione e potrebbe portare loro a cominciare a programmare per passione e interessarsene sempre di più. Arduino potrebbe essere un primo passo verso linguaggi più usati, come Java o C++, da progetti semplici come Hello World a applicazioni web con integrazione a un database. Oppure l'esatto contrario: grazie a queste librerie qualcuno potrebbe capire che la programmazione non gli piace e cambiare strada. I risultati sono generali e facilmente implementabili in qualsiasi tipo di progetto Arduino che faccia utilizzo di uno o più degli attuatori descritti in queste librerie.

6.1 Sviluppi futuri

Eventuali sviluppi futuri includono l'aggiunta di nuovi circuiti di esempio per gli attuatori già presenti, come un circuito che unisca un bottone con un display a cristalli liquidi; di nuovi attuatori con conseguenti librerie e, di conseguenza, circuiti di esempio, magari il potenziometro o il sensore di ultrasuoni; e di ulteriori funzionalità per le librerie implementate, per esempio si potrebbe aggiungere un metodo alla libreria del display LCD che mostri un'animazione di scrittura "lettera per lettera" di un testo passato come parametro.

6.2 Considerazioni personali

In questo progetto abbiamo imparato a realizzare una libreria per Arduino e le basi della programmazione a oggetti in C++, che si è rivelata molto più simile a Java e C# di quanto pensassimo.

7 Bibliografia

7.1 Sitografia

- http://digistump.com/products/1
 Digispark USB Development Board Digistump 14 novembre 2018
- https://digistump.com/wiki/digispark/tutorials/basics digispark:tutorials:basics [Digistump Wiki] 14 novembre 2018
- https://www.adrirobot.it/arduino/digispark/digispark.htm
 Scheda Digispark
 16 novembre 2018
- https://digistump.com/wiki/digispark/tutorials/connecting digispark:tutorials:connecting [Digistump Wiki] 05 dicembre 2018
- https://learn.adafruit.com/photocells/arduino-code
 Arduino Code | Photocells | Adafruit Learning System 05 dicembre 2018
- https://digistump.com/wiki/digispark/tutorials/lcd digispark:tutorials:lcd [Digistump Wiki] 14 dicembre 2018
- https://www.draw.io/
 Draw.io
 1 febbraio 2019

SAMT – Sezione Informatica Profesto 2 Progetto 2 Pagina 28 di 28

8 Allegati

- Diari di lavoro
- Guide di utilizzo dei circuiti di esempio