Productivity and Efficiency Analysis

6) Multiple outputs and bad outputs

6d) Parametric distance functions

Timo Kuosmanen

Aalto University School of Business

https://people.aalto.fi/timo.kuosmanen

Output distance function $D_O(x,y)$

Source: Färe and Primont (1995)

Parametric distance functions

- It is common to parametrize the distance functions applying the usual functional forms such as Cobb-Douglas and translog
- The following discussion is based on the output distance function, but the same comments apply equally well to other distance functions as well as to the cost function

Translog cost function

the translog multiple-output cost function for K inputs and L outputs,

$$\ln C = \alpha + \sum_{k=1}^{K} \beta_k \ln w_k + \frac{1}{2} \sum_{k=1}^{K} \sum_{m=1}^{K} \gamma_{km} \ln w_k \ln w_m$$

$$+ \sum_{s=1}^{L} \delta_s \ln y_s + \frac{1}{2} \sum_{s=1}^{L} \sum_{t=1}^{L} \varphi_{st} \ln y_s \ln y_t$$

$$+ \sum_{k=1}^{K} \sum_{s=1}^{L} \theta_{ks} \ln w_k \ln y_s,$$

• Source: Greene (2008)

Translog distance function

Perelman and Santini (2009) EJOR

Translog output distance function

$$\ln D_{0i}(x,y) = \alpha_0 + \sum_{m=1}^{M} \alpha_m \ln y_{mi} + \frac{1}{2} \sum_{m=1}^{M} \sum_{n=1}^{M} \alpha_{mn} \ln y_{mi} \ln y_{ni}$$

$$+ \sum_{k=1}^{K} \beta_k \ln x_{ki} + \frac{1}{2} \sum_{k=1}^{K} \sum_{l=1}^{K} \beta_{kl} \ln x_{ki} \ln x_{li}$$

$$+ \sum_{k=1}^{K} \sum_{m=1}^{M} \delta_{km} \ln x_{ki} \ln y_{mi}, \quad i = 1, 2, \dots, N,$$

Translog distance function

Perelman and Santini (2009) EJOR

Translog output distance function

$$\begin{split} \ln D_{0i}(x,y) &= \alpha_0 + \sum_{m=1}^{M} \alpha_m \ln y_{mi} + \frac{1}{2} \sum_{m=1}^{M} \sum_{n=1}^{M} \alpha_{mn} \ln y_{mi} \ln y_{ni} \\ &+ \sum_{k=1}^{K} \beta_k \ln x_{ki} + \frac{1}{2} \sum_{k=1}^{K} \sum_{l=1}^{K} \beta_{kl} \ln x_{ki} \ln x_{li} \\ &+ \sum_{k=1}^{K} \sum_{m=1}^{M} \delta_{km} \ln x_{ki} \ln y_{mi}, \quad i = 1, 2, \dots, N, \end{split}$$

Symmetry:

$$\alpha_{mn} = \alpha_{nm}, \quad m, n = 1, 2, ..., M, \text{ and } \beta_{kl} = \beta_{lk}, \quad k, l = 1, 2, ..., K,$$

Linear homogeneity:

$$\sum_{m=1}^{M} \alpha_m = 1,$$

$$\sum_{n=1}^{M} \alpha_{mn} = 0, \quad m = 1, 2, \dots, M, \text{ and}$$

$$\sum_{n=1}^{M} \delta_{km} = 0, \quad k = 1, 2, \dots, K.$$

How output isoquants of translog technology actually look like?

Fig. 1 I. True frontiers of the output set; polynomial technologies. II. True frontiers of the output set; translog technologies

Source: Färe, Martins-Filho & Vardanyan (2010) JPA

 $\alpha_{11} = 0$

(Cobb-Douglas)

Note: homog. and symmetry imply $\alpha_{12} = 0 = \alpha_{21}$ and $\alpha_{22} = 0$.

Note: homog. and symmetry imply $\alpha_{12} = -0.1 = \alpha_{21}$ and $\alpha_{22} = 0.1$.

 y_1

 $\alpha_{11} = 1$

Cobb-Douglas output sets

- Output sets are always
 - unbounded
 - non-convex (negative returns to scope)
- Cannot handle zero outputs of specialized firms

Translog output sets

- Output sets are either
 - Unbounded and non-convex
 - Or violate free disposability
- Cannot handle zero outputs of specialized firms
- Multicollinearity

Example: Finnish electricity distribution firms

Correlation matrix

			InCustom	InEnergy	InLength	InCustom	InEne*InL	InEne*In	InLen*In	Undergro
	InEnergy	InLength	er	^2	^2	er^2	en	Cust	Cus	und
InEnergy	1									
InLength	0,76	1								
InCustomer	0,80	0,87	1							
InEnergy^2	0,99	0,77	0,80	1						
InLength^2	0,78	0,99	0,84	0,80	1					
InCustomer^2	0,87	0,88	0,98	0,88	0,87	1				
InEne*InLen	0,94	0,92	0,87	0,96	0,94	0,93	1			
InEne*InCust	0,96	0,86	0,93	0,97	0,86	0,97	0,97	1		
InLen*InCus	0,85	0,97	0,94	0,87	0,97	0,96	0,97	0,94	1	
Underground	0,33	-0,16	0,22	0,29	-0,17	0,24	0,10	0,28	0,02	1

Next lesson

6e) StoNED with multiple outputs

