UNIT 3 GUIDE

Note: Video titles are clickable links.

Readings Day 14

- (1) Read in OpenStax: The subsections of Section 3.3 titled "The Product Rule", "The Quotient Rule", and "Combining Differentiation Rules"
 - (a) Theorem 3.5 The Product Rule
 - (b) Theorem 3.6 The Quotient Rule
 - (c) Read through to Checkpoint 3.20

Videos Day 14

- (1) The Product Rule
- (2) The Quotient Rule

Pre-Class Quiz 14

- (1) Which of the following expressions is the derivative of a function y = f(x) g(x)?
 - \bigcirc (a) f'(x)g'(x)
 - \bigcirc (b) f(x)g(x) + f'(x)g'(x)
 - \bigcirc (c) f'(x)g(x) + g(x)f'(x)
 - (d) None of the above
- (2) Which of the following expressions is the correct derivative of the function $y = \frac{f(x)}{g(x)}$?
 - \bigcirc (a) f'(x) / g'(x)
 - \bigcirc (b) f(x) / g'(x)
 - \bigcirc (c) f'(x)g'(x) / f(x)g(x)
 - (d) None of the above

2 UNIT 3 GUIDE

_	V-1-2 V V V-1-2
` /	false: to find the derivative of a function, we sometimes should the quotient rule and the product rule.
(a) T	rue
(b) F	alse
Readings Da	y 15
()	will be a catch-up and review day for the Unit 2 Quiz. You eview the Unit 2 - Study Guide before class on Monday.
Videos Day	15
nothing Pre-Class Qu	ıiz 15
(1) What U	nit 2 topics do you still have questions about?
(a) F	inding critical points
○ (b) H	low to verify a critical point is a local min or max
○ (c) H	ow to find points of inflection
(d) H	low to determine where function is increasing and decreasing
○ (e) H	ow to find where a function is concave up or down
○ (f) H	ow to find absolute mins and maxs
(g) I	don't have any questions right now
Readings Da	y 16
` /	OpenStax: The subsection of Section 2.4 titled "Continuity over val" from example 2.35 through Theorem 2.10
(a) Theo	orem 2.10 - Continuity of Trigonometric Functions
(2) Read in	OpenStax: Section 3.5
(a) Theo	orem 3.8 - The Derivatives of $sin(x)$ and $cos(x)$
(b) Theo	orem 3.9

- (3) Read in OpenStax: The subsection of 3.9 titled "Derivative of the Exponential Function" through Theorem 3.14. Also read Theorem 3.16, part ii, example 3.79, checkpoint 3.53
 - (a) Theorem 3.14 Derivative of the Natural Exponential Function
 - (b) Theorem 2.16 Derivatives of General Exponential Functions
- (4) Read in OpenStax: Read example 4.6 and try checkpoint 4.6

Videos Day 16

- (1) Trig Functions
- (2) Exponential Functions
- (3) All about a polynomial

Pre-Class Quiz 16

- (1) Find the derivative of $f(x) = x \sin(x)$
 - \bigcirc (a) $f'(x) = \cos(x)$
 - \bigcirc (b) $f'(x) = \cos(x) + x\sin(x)$
 - \bigcirc (c) $f'(x) = x \cos(x) + \sin(x)$
 - \bigcirc (d) $f'(x) = \cos(x) \sin(x)$
- (2) Find the derivative of $k(x) = \frac{5}{3}e^x x^{\frac{1}{5}}$
 - \bigcirc (a) $k'(x) = \frac{1}{3}e^x x^{-\frac{4}{5}}$
 - $\bigcirc \text{ (b) } k'(x) = \frac{1}{3}e^x x^{-\frac{4}{5}} \frac{5}{3}e^x x^{\frac{1}{5}}$
 - \bigcirc (c) $k'(x) = \frac{1}{3}e^x x^{-\frac{4}{5}} + \frac{5}{3}e^x x^{\frac{1}{5}}$
 - $\bigcirc \text{ (d) } k'(x) = \frac{1}{3}e^x x^{-\frac{4}{5}} \frac{5}{3}xe^{x-1}x^{\frac{1}{5}}$
- (3) What is the amplitude and period of the function $f(x) = 9\sin\left(\frac{1}{2}x\right)$

- (a) Amplitude is 9; period is 1/2○ (b) Amplitude is 1/9; period is 1/2○ (c) Amplitude is 4π ; period is 9
 (d) Amplitude is 1/9; period is 4π (e) Amplitude is 1/2; period is 9
 (f) Amplitude is 9; period is 4π
- (4) What topics do you still have questions about?
 - (a) Derivatives of Trig Functions
 - (b) Derivatives of Exponential Functions
 - (c) Using Combinations of Derivative Rules

Readings Day 17

- (1) Read in OpenStax: Section 3.6
 - (a) Rule: The Chain Rule
 - (b) Rule: Power Rule for Composition of Functions
 - (c) Theorem 3.10 Using the Chain Rule with Trigonometric Functions
 - (d) Rule: Chain Rule for a Composition of Three Functions
 - (e) Rule: Chain Rule using Leibniz's Notation
- (2) Read in OpenStax: The subsection of 3.9 titled "Derivative of the Exponential Function" through Checkpoint 3.50
- (3) Read in OpenStax: Read example 4.7 and try checkpoint 4.7
- (4) Read in OpenStax: Read example 4.12, part b
- (5) Read in OpenStax: Read examples 4.34 and 4.36 and try our checkpoints 4.33 and 4.35

Videos Day 17

(1) Chain Rule With Polynomials

(2) Chain Rule With Other Functions

Pre-Class Quiz 17

- (1) Decompose the function $y = \cos(3x)$ in the form y = f(u) and u = g(x). Select the correct functions for y = f(u) and u = g(x).
 - \bigcirc (a) $y = \cos(u)$
 - \bigcirc (b) $u = \cos(x)$)
 - \bigcirc (c) y = 3u
 - \bigcirc (d) u = 3x
- (2) Decompose the function $y = e^{\sqrt{x}}$ in the form y = f(u) and u = g(x). Select the correct functions for y = f(u) and u = g(x).
 - \bigcirc (a) $y = e^u$
 - \bigcirc (b) $u = e^x$
 - \bigcirc (c) $y = \sqrt{u}$
 - \bigcirc (d) $u = \sqrt{x}$

Readings Day 18

(1) Monday will be a continuation of Friday's material, so there is no pre-class reading for Monday.

Videos Day 18

nothing

Pre-Class Quiz 18

- (1) Let $y = \sin^7(x)$.. Which of the following is the outer function, f(x), and the inner function, g(x), so that y = f(g(x))?
 - $(a) \ f(x) = \sin(x), g(x) = x^7$
 - \bigcirc (b) $f(x) = \sin^7(x), g(x) = x$
 - \bigcirc (c) $f(x) = x^7, g(x) = sin(x)$
 - (d) None of the above

- (2) What is the derivative of $y = \sin^7(x)$?
- (3) Which of the following topics do you still have questions about in regards to the chain rule? Choose ALL that apply.
 - \bigcirc (a) How to determine f(x) and g(x)
 - \bigcirc (b) Finding the derivative of f(x) and g(x)
 - (c) Using the other derivative rules (trig, quotient, etc) inside the chain rule
 - (d) Understanding the concept of the chain rule