

Singapore HDB Resale Price Prediction

FCSA TEAM 2

Flow

What we'll be discussing in this video

- 1 Introduction
- 2 Problem Statement
- 3 Dataset
- Data Cleaning & Preprocessing
- 5 Exploratory Data Analysis
- 6 Machine Learning
- 7 Conclusion

The Resale HDB Market

The HDB market plays a crucial role in Singapore's affordable housing vision, but home affordability remains a challenge despite government efforts, with a significant increase in resale prices.

Factors Influencing HDB Resale Prices

Limited Supply vs High Demand

Population Growth

Goverment Policies

Renovation & Upgrading

Problem Statement

How can we predict HDB flat resale prices in Singapore to empower both buyers and sellers and enhance the transparency and efficiency of the public housing marketplace?

ABOUT OUR DATASET

Singapore Public Housing Dataset from Kaggle

	A B	С	D	E		F	G	Н	1	J	K	L	М	N	0	P		Q R	S	Ţ	U
	Tranc_Year	M town	flat_type	block		street_name	storey_range	floor_area_so	flat_model	lease_comm 1	Franc_Year	Tranc_Mont	h mid_storey	lower	upper	mid	full_f	lat_type address	floor_area_se	price_per_sq hdb	_age
	114982 2012-11	YISHUN	4 ROOM		173	YISHUN AVE	07 TO 09	84	Simplified	1987	2012	11	8	3	7	9	8 4 RO	OM Sim _I 173, YISHU	N 904.176	399.258551	3
	95653 2019-08	JURONG WES	5 ROOM	986C		JURONG WE	04 TO 06	112	Premium Apa	2008	2019	8	8	5	4	6	5 5 RO	OM Prer 986C, JUR	DN 1205.568	398.152572	1
	40303 2013-10	ANG MO KIO	3 ROOM		534	ANG MO KIO	07 TO 09	68	New General	1980	2013	10		3	7	9	8 3 RO	OM New 534, ANG N	1C 731.952	479.386626	4
1	109506 2017-10	WOODLAND	4 ROOM		29	MARSILING	01 TO 03	97	New General	1979	2017	10	2	2	1	3	2 4 RO	OM New 29, MARSII	JN 1044.108	306.481705	4
•	100149 2016-08	BUKIT BATOK	4 ROOM		170	BT BATOK W	E 16 TO 18	103	Model A	1985	2016		17	7	16	18	17 4 RO	OM Mod 170, BT BA	TO 1108.692	360.7846	3
	7610 2016-10	BEDOK	3 ROOM		27	NEW UPP CH	10 TO 12	65	Improved	1982	2016	10	11		10	12	11 3 RO	OM Impi 27, NEW U	PP 699.66	407.340708	3
	61101 2013-06	YISHUN	3 ROOM		840	YISHUN ST 8	101 TO 03	73	Model A	1988	2013		5 2	2	1	3	2 3 RO	OM Mod 840, YISHU	N 785.772	454.330264	3
	68167 2020-12	BEDOK	3 ROOM	808A		CHAI CHEE	13 TO 15	68	Model A	2016	2020	12	14	1	13	15	14 3 RO	OM Mod 808A, CHA	IC 731.952	614.794413	- 3
	65701 2020-01	YISHUN	3 ROOM	334A	,	YISHUN ST 3	13 TO 15	67	Model A	2015	2020		14	1	13	15	14 3 RO	OM Mod 334A, YISH	Uf 721.188	450.645324	
	56039 2013-11	BUKIT BATOK	3 ROOM		271	BT BATOK EA	04 TO 06	64	Simplified	1986	2013	11		5	4	6	5 3 RO	OM Sim ₁ 271, BT BA	TO 688.896	481.930509	3
	81919 2012-04	PUNGGOL	4 ROOM		116	EDGEFIELD	11 TO 15	94	Premium Apa	2003	2012	12	13	3	11	15	13 4 RO	OM Prer 116, EDGE	FII 1011.816	451.663148	1
	99768 2016-12	BEDOK	4 ROOM		43	CHAI CHEE	10 TO 12	93	New General	1980	2016	12	11		10	12	11 4 RO	OM New 43, CHAI C	HI 1001.052	429.548115	4
	124053 2019-06	KALLANG/WH	5 ROOM		109	MCNAIR RD	13 TO 15	130	Improved	1987	2019		14	ı	13	15	14 5 RO	OM Impi 109, MCN/	NF 1399.32	493.096647	3
	3942 2018-06	PUNGGOL	3 ROOM	622B	1	PUNGGOLC	13 TO 15	69	Model A	2014	2018	•	14	ı	13	15	14 3 RO	OM Mod 622B, PUN	G(742.716	451.047237	
	118904 2016-01	YISHUN	5 ROOM		330	YISHUN RIN	01 TO 03	133	Model A	1995	2016		1	2	1	3	2 5 RO	OM Mod 330, YISHL	N 1431.612	303.853279	2
	30060 2015-08	YISHUN	4 ROOM		736	YISHUN ST 7	04 TO 06	93	New General	1984	2015	8		5	4	6	5 4 RO	OM New 736, YISHU	N 1001.052	377.602762	3
1	185729 2018-07	CHOACHUK	EXECUTIVE		274	CHOACHU	07 TO 09	148	Apartment	1993	2018	7	' 8	3	7	9	8 EXEC	CUTIVE A 274, CHO	C 1593.072	291.888879	2
	46357 2021-03	QUEENSTOW	4 ROOM	62B		STRATHMOR	22 TO 24	93	Model A	2011	2021		23	3	22	24	23 4 RO	OM Mod 62B, STRAT	H 1001.052	782.17715	1
	20662 2018-01	JURONG WES	4 ROOM		474 .	JURONG WE	10 TO 12	103	Model A	1984	2018	()	11		10	12	11 4 RO	OM Mod 474, JURO	NG 1108.692	347.256046	3
	102274 2016-04	KALLANG/WH	4 ROOM		101 .	JLN RAJAH	07 TO 09	94	New General	1980	2016	4	1 8	3	7	9	8 4 RO	OM New 101, JLN RA	W/ 1011.816	505.032536	4
	53369 2016-02	WOODLAND	3 ROOM		212	MARSILING	07 TO 09	74	Model A	1983	2016	- 2	2 8	3	7	9	8 3 RO	OM Mod 212, MARS	ILI 796.536	338.96773	3
	9719 2017-06	BUKIT MERAH	3 ROOM		77	TELOK BLAN	01 TO 03	67	New General	1978	2017		3	2	1	3	2 3 RO	OM New 77, TELOK	3L 721.188	464.511334	4
	20145 2013-03	JURONG EAS	3 ROOM		252 .	JURONG EAS	01 TO 03	67	New General	1985	2013		3 2	2	1	3	2 3 RO	OM New 252, JURO	NG 721.188	475.604142	3
	159051 2021-02	PUNGGOL	5 ROOM	264A		PUNGGOLW	/ 16 TO 18	112	Improved	2015	2021	2	17	7	16	18	17 5 RO	OM Impi 264A, PUN	GC 1205.568	518.427828	
	31481 2012-11	BUKIT BATOK	3 ROOM		341	BT BATOK ST	01 TO 03	73	Model A	1986	2012	11	2	2	1	3	2 3 RO	OM Mod 341, BT BA	TO 785.772	419.969151	3
	142247 2019-01	CHOACHUK	4ROOM		708	CHOACHUI	07 TO 09	114	Model A	1995	2019		8	3	7	9	8 4 RO	OM Mod 708, CHO	C 1227.096	273.002275	2
	29119 2016-12	TAMPINES	3 ROOM		808	TAMPINES A	04 TO 06	73	Model A	1984	2016	12	2 5	5	4	6	5 3 RO	OM Mod 808, TAMP	NI 785.772	407.242813	3
1	151448 2017-07	TAMPINES	4 ROOM		162	SIMEI RD	04 TO 06	104	Model A	1989	2017			5	4	6	5 4 RO	OM Mod 162, SIMEI	RI 1119.456	426.546465	3
	60594 2018-07	YISHUN	3 ROOM		615	YISHUN RIN	01 TO 03	73	Model A	1988	2018			2	1	3	2 3 RO	OM Mod 615, YISHU	N 785.772	369.0638	3
	83400 2013-11	SENGKANG	4 ROOM	275C		COMPASSVA	07 TO 09	90	Premium Apa	2009	2013	11	8	3	7	9	8 4 RO	OM Prer 275C, CON	1P 968.76	634.832157	1
	40168 2020-06	YISHUN	3 ROOM		621	YISHUN RIN	07 TO 09	73	Model A	1988	2020		8	3	7	9	8 3 RO	OM Mod 621, YISHU	N 785.772	356.337462	3
	52407 2016-08	YISHUN	4 ROOM		201	YISHUN ST 2	10 TO 12	93	New General	1985	2016		11		10	12	11 4 RO	OM New 201, YISHU	N 1001.052	412.565981	3
	127232 2014-11	PUNGGOL	5 ROOM	175A		PUNGGOLF	10 TO 12	110	Improved	2003	2014	11	11		10	12		OM Impi 175A, PUN		411.209081	1

- Compiled HDB
 Resale data from
 2012 to 2021
- Information collected on the details of each unit and its sale.
- Describing a total of 78 features of every single unit

DATA PREPARATION & PREPROCESSING


```
In [216]: # removing columns which are irrelevant
          irrelevant_cols = ['id', 'block', 'street_name', 'address', 'postal', 'bus_stop_name', 'mrt_latitude', 'mrt_longitud
                             'bus_stop_latitude', 'bus_stop_longitude', 'pri_sch_latitude', 'pri_sch_longitude', 'sec_sch_lati
                             'floor_area_sqft', 'lease_commence_date', 'tranc_yearmonth', 'mid_storey', 'full_flat_type', 'blo
          # Filter out columns that do not exist in the DataFrame
          cols_to_drop = [col for col in irrelevant_cols if col in data.columns]
          # Drop these columns from the DataFrame
          data.drop(columns=cols to drop, axis=1, inplace=True)
          # Print the remaining columns to verify
          print("Remaining columns after dropping:", data.columns)
          Remaining columns after dropping: Index(['town', 'flat_type', 'storey_range', 'floor_area_sqm', 'flat_model',
                 'resale_price', 'tranc_year', 'tranc_month', 'lower', 'upper', 'mid',
                 'price_per_sqft', 'hdb_age', 'max_floor_lvl', 'year_completed',
                 'residential', 'commercial', 'market_hawker', 'multistorey_carpark',
                 'precinct_pavilion', 'total_dwelling_units', '1room_sold', '2room_sold',
                 '3room_sold', '4room_sold', '5room_sold', 'exec_sold', 'multigen_sold',
                 'studio_apartment_sold', '1room_rental', '2room_rental', '3room_rental',
                 'other_room_rental', 'latitude', 'longitude', 'planning_area',
                 'mall_nearest_distance', 'mall_within_500m', 'mall_within_1km',
                 'mall_within_2km', 'hawker_nearest_distance', 'hawker_within_500m',
                 'hawker_within_1km', 'hawker_within_2km', 'hawker_food_stalls',
                 'hawker_market_stalls', 'mrt_nearest_distance', 'mrt_name',
                 'bus_interchange', 'mrt_interchange', 'bus_stop_nearest_distance',
                 'pri_sch_nearest_distance', 'pri_sch_name', 'vacancy',
                 'pri_sch_affiliation', 'sec_sch_nearest_dist', 'sec_sch_name',
                 'cutoff point', 'affiliation'],
                dtype='object')
```

- **Standardization**: All column names were converted to lowercase and formatted to snake case for consistency and ease of access, e.g., FloorAreaSqft to floor_area_sqm.
- Irrelevant Columns: Removed non-essential columns like IDs, address details, and coordinates that do not influence resale prices, focusing on variables directly affecting housing values.

DATA IMPUTATION & ENRICHMENT

```
In [135]: #finding columns with null values
          data.isnull().sum().sort_values().tail(8)
Out[135]: 4room sold
          mall_nearest_distance
                                      829
          mall within 2km
                                     1940
          mall within 1km
                                    25426
          hawker_within_2km
                                    29202
          hawker within 1km
                                    60868
          mall within 500m
                                    92789
          hawker within 500m
                                    97390
          dtype: int64
In [136]: data['mall_nearest_distance']
Out[136]: 0
                     1094.090418
                      866.941448
                    1459.579948
                      950.175199
                      729.771895
          150629
                      585.138715
          150630
                      250.084466
          150631
                     1790.053482
          150632
                      587.244922
          150633
                      225,435937
          Name: mall_nearest_distance, Length: 150634, dtype: float64
```

- Missing Data: Identified columns with missing values through a systematic review.
- Imputation Strategy: Applied
 SimpleImputer to replace missing
 values with predetermined constants,
 ensuring no data loss and maintaining
 dataset integrity
- Added calculated fields such as mall_nearest_distance to enhance the dataset's utility for spatial analysis.

PREPARING DATA FOR ANALYSIS

- Unique Value Analysis: Removed any columns with only a single unique value, which are statistically irrelevant for modeling.
- Data Types Correction: Ensured all data types align with the requirements of the predictive models, such as converting dates and categoricals.

```
In [140]: #filling null values with 0
    col_with_null = data.columns[data.isnull().sum() != 0].to_list()
    imputer=SimpleImputer(missing_values=np.NaN, strategy='constant', fill_value=0)
    for x in col_with_null:
        data[x]=imputer.fit_transform(data[x].values.reshape(-1,1))
```


EXPLORATORY DATA ANALYSIS

TRENDS IN RESALE FLAT PRICES (2012-2021)

- The majority of resale flats fall within the SGD 200,000 to SGD 400,000 range, revealing a significant concentration of market transactions in this segment.
- The histogram exhibits a right-skewed distribution, indicative of a larger quantity of flats sold at lower to mid-range prices.
- There is a noticeable decline in counts as resale prices increase beyond SGD 400,000, suggesting a smaller market for higher-priced flats.

GEOSPATIAL HEATMAP OF RESALE PRICES

The heatmap reveals highdensity areas where resale prices are significantly higher, showcasing key residential zones.

VIOLIN PLOT OF RESALE PRICE & FLAT TYPE

- Violin plots visually compare price variability and medians for different flat types.
- Executive flats have higher median prices due to larger living spaces.
- Multi-generation flats have limited transactions and a focused price range.

PAIR PLOT OF SELECTED HOUSING FEATURES

This scatter plot matrix visualizes the relationships between five housing features: resale price, floor area (in square meters), distance to the nearest MRT station, HDB age, and storey average. Each subplot shows the distribution of a pair of features.

LINEPLOT OF MEDIAN RESALE PRICE & YEAR

- "The line chart presents a clear trajectory of median resale prices for flats from 2012 to 2021."
- "A noticeable decline is observed around 2014, followed by stabilisation until a sharp incline post-2018."
- "This pattern underscores the volatile nature of the resale market over the decade.

RESALE PRICES DISTRIBUTION BY TOWN

- This boxplot visualizes the distribution of resale flat prices across towns in Singapore.
- Notably, towns like 'Marine Parade' and 'Bukit Timah' exhibit higher median prices with wider price ranges, indicating a higher property value in these areas. Conversely, towns like 'Punggol' and 'Sembawang' show more affordable options with a tighter price distribution, suggesting a higher density of lower-priced flats.

CLUSTER ANALYSIS: RESALE PRICE DISTRIBUTION

- Cluster 0: Characterized by a narrower price range, Cluster 0 represents properties that have a high density around the lower to mid-range resale price bracket.
- Cluster 1: Exhibiting a broader distribution, Cluster 1 encompasses properties with a more varied price range, stretching towards the higher end of the market.
- Cluster 2: Cluster 2 shows properties with a mid to high price distribution, with fewer low-priced options, indicating a premium segment of the resale market.

TOP FEATURES: CORRELATION MATRIX

Key Relationships:

- Floor Area vs. Price: We observe a strong positive correlation between 'floor_area_sqm' and 'resale_price', validating the premise that larger homes tend to have higher market values.
- Price per Square Foot: Interestingly, 'price_per_sqft' reveals how the value of space varies, providing an essential metric for property valuation.

MACHINE LEARNING

LINEAR REGRESSION: MODEL TRAINING

Model Training

- Initialization: A LinearRegression model from scikit-learn is instantiated.
- Fitting the Model: The model is trained using a dataset of 100 generated points with a random seed set for reproducibility.

```
In [186]: from sklearn.linear_model import LinearRegression
          import matplotlib.pyplot as plt
          import seaborn as sns
          import pandas as pd
          import numpy as np
          from sklearn.model_selection import train_test_split
          from sklearn.metrics import mean_squared_error, r2_score
          # Sample data generation
          np.random.seed(0)
          features = np.random.rand(100, 1)
          targets = 2 + 3 * features + np.random.normal(0, 0.1, (100, 1))
          # Convert to pandas DataFrame
          df = pd.DataFrame(data=np.hstack((features, targets)), columns=['Feature', 'Target'])
          # Splitting the data into training and testing sets
          features_train, features_test, targets_train, targets_test = train_test_split(df[['Feature']], df['Target'], test_si:
          # Linear Regression Model
          model lr = LinearRegression()
          model_lr.fit(features_train, targets_train)
Out[186]: | LinearRegression
           LinearRegression()
```

- Model initialised with scikit-learn's LinearRegression function, offering ease of use and robustness.
- Trained on a dataset comprising 100 data points, ensuring the model's capacity to predict is well-calibrated.

LINEAR REGRESSION: MODEL PREDICTIONS

Model Prediction

- · Prediction Generation: Predictions are made for both training and test datasets.
- Performance Metrics:
 - The R-squared value, indicating the proportion of variance explained by the model, is calculated for both sets.
 - The Mean Squared Error (MSE), representing the average squared difference between the predicted and actual values, is also computed.

```
In [3]: # Making predictions
        predictions_train = model_lr.predict(features_train)
        predictions_test = model_lr.predict(features_test)
        # Calculate R-squared and MSE
        r2_train = r2_score(targets_train, predictions_train)
        mse_train = mean_squared_error(targets_train, predictions_train)
        r2 test = r2 score(targets test, predictions test)
        mse test = mean squared error(targets test, predictions test)
        print(f'R2 score for training set: {r2_train}')
        print(f'MSE for training set: {mse_train}')
        print(f'R2 score for testing set: {r2_test}')
        print(f'MSE for testing set: {mse_test}')
        R2 score for training set: 0.9875738032878963
        MSE for training set: 0.010113360910427542
        R2 score for testing set: 0.9809551843591459
        MSE for testing set: 0.009177532469714303
```

Model Coefficients

. The model's intercept and coefficient for the feature are printed out, revealing the slope and the y-intercept of the fitted line.

```
In [4]: print(f'Intercept: {model_lr.intercept_}')
    print(f'Coefficient: {model_lr.coef_[0]}')

Intercept: 2.020634018871143
    Coefficient: 2.9980518202009776
```

R^2 score for training set: 0.988

MSE for training set: 0.010

R^2 score for testing set: 0.981

MSE for testing set: 0.009

LINEAR REGRESSION: ACTUAL VS. PREDICTED VALUES

DECISION TREES: MODEL TRAINING & TRAINING

Model Training and Prediction

- Model Initialization: A DecisionTreeRegressor from scikit-learn is used, configured with a maximum depth of 5 and a minimum of 10 samples per leaf.
- Model Fitting: The model is trained using the training dataset comprising features and targets derived from a synthetically generated dataset.
- Prediction Generation: After training, predictions are made on both the training and testing datasets.

```
In [187]: from sklearn.tree import DecisionTreeRegressor

# Initialize the Decision Tree Regressor
dt_regressor = DecisionTreeRegressor(max_depth=5, min_samples_leaf=10, random_state=42)|
# Fit the model to the training data
dt_regressor.fit(features_train, targets_train)

# Making predictions
predictions_train_dt = dt_regressor.predict(features_train)
predictions_test_dt = dt_regressor.predict(features_test)
```

- Configured with a depth of 5 and at least 10 samples per leaf, our model aims for a balanced approach between precision and generalizability.
- Using scikit-learn's DecisionTreeRegressor, we fit our model to a carefully crafted dataset, prepared to mimic real-world scenarios.

DECISION TREES: EVALUATING PERFORMANCE

```
In [6]: # Evaluate the model
        r2 train dt = r2 score(targets train, predictions train dt)
        mse_train_dt = mean_squared_error(targets_train, predictions_train_dt)
        r2_test_dt = r2_score(targets_test, predictions_test_dt)
        mse test dt = mean squared error(targets test, predictions test dt)
        print("Decision Tree - Training performance:")
        print(f"R^2 score for training set: {r2_train_dt}")
        print(f"MSE for training set: {mse_train_dt}")
        print("Decision Tree - Testing performance:")
        print(f"R^2 score for testing set: {r2_test_dt}")
        print(f"MSE for testing set: {mse_test_dt}")
        Decision Tree - Training performance:
        R^2 score for training set: 0.96324763912056
        MSE for training set: 0.02991179831573179
        Decision Tree - Testing performance:
        R^2 score for testing set: 0.9026961991134502
        MSE for testing set: 0.04688986277962592
```

Our model achieves an impressive R² score, suggesting a strong fit to the data.

DECISION TREES: VISUALISATION

By comparing actual values (blue for training, green for testing) to predictions (red), we can visually assess the model's performance.

RANDOM FOREST: MODEL TRAINING & PERFOMANCE EVALUATION

Model Training and Prediction ¶

- Model Initialization: A RandomForestRegressor with 100 estimators is utilized, providing a robust approach to regression through ensemble learning.
- . Model Fitting: The model is trained using the features and target values from the training dataset.
- Prediction Generation: Predictions are made for both the training set and testing set, allowing for an evaluation of the model's performance on unseen data.

```
In [188]: from sklearn.ensemble import RandomForestRegressor

# Initialize the Random Forest Regressor

rf = RandomForestRegressor(n_estimators=100, random_state=42)

# Fit the model to the training data

rf.fit(features_train, targets_train)

# Make predictions on the training and testing sets

predictions_train_rf = rf.predict(features_train)

predictions_test_rf = rf.predict(features_test)
```

Model Performance Evaluation

- Performance Metrics:
 - R-squared (R²): This metric indicates the proportion of variance in the dependent variable that is predictable from the independent variables, with higher values representing a better fit.
 - Mean Squared Error (MSE): This measures the average of the squares of the errors, providing an insight into the average magnitude of the
 prediction errors.
 - Results:
 - The model achieves an R² score and MSE for both the training and testing sets, demonstrating its ability to not only fit the training data but also generalize to new data.

```
In [189]: # Evaluate the model's performance
    r2_train_rf = r2_score(targets_train, predictions_train_rf)
    mse_train_rf = mean_squared_error(targets_train, predictions_train_rf)
    r2_test_rf = r2_score(targets_test, predictions_test_rf)
    mse_test_rf = mean_squared_error(targets_test, predictions_test_rf)

print(f'R2 score for training set (RF): {r2_train_rf}')
    print(f'MSE for training set (RF): {mse_train_rf}')
    print(f'R2 score for testing set (RF): {r2_test_rf}')
    print(f'MSE for testing set (RF): 0.0975084799893854
    MSE for training set (RF): 0.092027783855888463
    R2 score for testing set (RF): 0.9759108334091994
    MSE for testing set (RF): 0.011608361704545985
```

- Our model is initialized with 100 decision trees, n_estimators=100, allowing it to capture a broad spectrum of data variances without overfitting, thanks to the randomness in tree construction.
- The model's hyperparameters are tuned to optimize both bias and variance. The max_depth is set to control tree growth and min_samples_leaf ensures a sufficient sample size for stability in leaf nodes.
- Features are randomly sampled for each tree's split decision, thus each tree grows differently, increasing the model's generalization capability.

RANDOM FOREST: ACTUAL VS PREDICTED

A POWERFUL GRADIENT BOOSTING FRAMEWORK

- XGBoost stands for Extreme
 Gradient Boosting, known for
 its performance and speed in
 machine learning tasks.
- XGBoost's ability to handle large datasets and its usage of advanced regularization techniques reduce overfitting, making it a leading algorithm for regression challenges.

PREPROCESSING AND DATA PREPARATION

- Prior to model training, categorical variables were encoded into numerical formats using Label Encoding, ensuring that our XGBoost model could process them effectively.
- The dataset is split into a training set (80%) and a test set (20%), a standard practice for evaluating the model's performance on unseen data."

```
In [191]: import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
import xgboost as xgb
```

- Data Preparation:
 - Encoding Categorical Variables: All categorical variables are encoded using LabelEncoder to transform them into numerical values that can be processed by the model.
 - Data Splitting: The dataset is split into training and testing sets, with 80% of the data used for training and 20% for testing to evaluate model performance.

DMATRIX, PARAMETER TUNING & MODEL TRAINING

- XGBoost utilizes a DMatrix, an optimized data structure that boosts computation speed and enhances performance.
- The model was meticulously tuned with a max_depth of 3 and min_child_weight of 10 to manage complexity and support more robust leaf decisions.
- Training involved 100 rounds of boosting, with early stopping enabled to prevent overfitting and to optimize performance.

• **DMatrix Conversion**: The feature and target sets are converted into **DMatrix**, a data structure optimized for memory efficiency and training speed in XGBoost.

```
In [193]: # Convert the dataset into an optimized data structure called Dmatrix
dtrain = xgb.DMatrix(X_train, label=y_train)
dtest = xgb.DMatrix(X_test, label=y_test)
```

- Model Parameters:
 - Configured with parameters like max_depth, min_child_weight, and learning rate (eta) to control the complexity and performance of the model.
- Model Training: The model is trained with 100 boosting rounds, allowing for iterative refinement of predictions.

```
In [200]: # Assuming data is already preprocessed and split into X_train, X_test, y_train, y_test
          dtrain = xgb.DMatrix(X_train, label=y_train)
          dtest = xgb.DMatrix(X_test, label=y_test)
              'max depth': 3, # Reduced from a higher value to limit tree complexity
              'min_child_weight': 10, # Increased from a lower value to ensure more samples per leaf
              'eta': 0.1, # Learning rate
              'subsample': 0.8, # Subsample ratio of the training instances
              'colsample bytree': 0.8, # Subsample ratio of columns when constructing each tree
              'objective': 'reg:squarederror', # Regression with squared error
              'eval_metric': 'rmse' # Root mean squared error as evaluation metric
          # Train the model
          num boost round = 100
          early_stopping_rounds = 10
          evals = [(dtrain, 'train'), (dtest, 'test')]
          model = xgb.train(params, dtrain, num_boost_round=num_boost_round,
                            early_stopping_rounds=early_stopping_rounds, evals=evals)
          # Make predictions
          predictions = model.predict(dtest)
```

VISUALIZING PREDICTION ACCURACY


```
: # Calculate metrics
mse = mean_squared_error(y_test, predictions)
r2 = r2_score(y_test, predictions)

print(f"MSE: {mse}")
print(f"R2 score: {r2}")

MSE: 19619115.783947933
R2 score: 0.999037834379737
```

The proximity of data points to the 'ideal fit' line, where actual and predicted values match, highlights the accuracy of the XGBoost model.

MODEL COMPARISION

Linear Regression

R² score: 0.988

Random Forest

R² score: 0.963

Decision Trees

R² score: 0.988

XGBOOST

best model

R² score: 0.999

BENEFITS OF OUR MODEL

Scalability & Adaptability

Increased
Accuracy and
Predictive
Power

Time & Cost Efficiency

Stay Ahead of Market Fluctuations

EFFORTLESS SOLUTIONS

Data-Driven Roadmap for Homebuyers, Sellers, and Policymakers

Pricing Strategies and Market Value Assessment

Informed Investment Decisions

