Preuves en calcul propositionnel

On part:

- d'un ensemble # de formules (parfois appelé théorie τ)
- d'une formule φ

On veut déterminer si ϕ est une conséquence logique de l'ensemble de formules \mathcal{H} , noté

$$\# \vDash \varphi$$

En calcul propositionnel

Deux approches sont possibles pour établir si une formule φ est une conséquence de ${\mathcal H}$:

Table de vérité : si # contient (par exemple) 3 formules, h1,h2 et h3, on fait la table de vérité de : (h1 ∧ h2 ∧ h3) ⇒ φ qui doit contenir VRAI (ou 1) à toutes ses cases de la dernière colonne pour que # ⊨ φ (on regarde donc tous les cas possibles)

possible en calcul propositionnel mais pas en calcul des prédicats

2. Preuve syntaxique : un algorithme qui va permettre de décider si $\mathcal{H} \models \varphi$

Preuves syntaxiques

Il existe plusieurs méthodes de preuves syntaxiques :

- Calcul des séquents
- Systèmes de réfutation
- La méthode de preuve par résolution de Robinson est une méthode par réfutation qui est fortement utilisée en informatique, en particulier à la base de prolog

Méthode par réfutation ?

Analogue à une preuve par l'absurde

Pour montrer $\mathcal{H} \models \varphi$, il suffit de montrer que : (h1 \land h2 \land ... \land hn) $\Longrightarrow \varphi$ Où h1, h2, ..., hn sont les n formules de \mathcal{H}

On fait une preuve par l'absurde, en supposant que l'on a : (h1 \wedge h2 \wedge ... \wedge hn) $\wedge \neg \varphi$

Et on en déduit quelque chose de faux, du type p $\land \neg p$ où p est une proposition.

Rappels de terminologie :

Un littéral est une proposition ou la négation d'une proposition :

Exemple: P

Autre exemple : ¬P

Une clause est une disjonction de littéraux :

Exemple : Q V¬R

Remarque: dans une clause C, il n'y a pas à la fois le littéral P et le

littéral ¬P (sinon C est la clause VRAI)

Exemple : Q V¬R V¬Q n'est pas une clause

- La clause vide est équivalente à la constante FAUX (car FAUX est l'élément neutre pour V)

- Toute formule peut s'écrire sous Forme Normale Conjonctive (= une conjonction de clauses)

Exemple : $(\neg P \lor Q) \land (\neg Q \lor R) \land P \land \neg R$

Remarque: si parmi les clauses d'une FNC, il y a la clause VRAI, on ne l'écrit pas (car VRAI est l'élément neutre pour ∧, de même que l'on n'écrit pas c1 + 0 + c2, on écrit seulement c1 + c2)

Mettre # ⊨ φ en FNC c'est mettre :
 (h1 ∧ h2 ∧ ... ∧ hn) ∧ ¬φ en FNC

La méthode de résolution utilise une unique règle de réécriture dite règle de résolution :

si F_1 V P et F_2 V¬P sont deux clauses (P est une proposition), alors F_1 V F_2 est une conséquence logique de ces deux clauses.

Règle de résolution : des 2 clauses $F_1 \lor P$ et $F_2 \lor \neg P$, on déduit la clause $F_1 \lor F_2$

Remarque : cette règle généralise la déduction usuelle :

de P et P \Rightarrow F₂ on déduit F₂

En effet : $P \Rightarrow F_2$ est égal à $F_2 \lor \neg P$ et P est égal à Faux $\lor P$

Remarque: cette *déduction usuelle* est la seule règle de résolution qui donne une clause de taille strictement inférieure à la taille de la plus grande des 2 clauses dont elle est issue ($F_2 \lor \neg P$ a un terme de plus que F_2)

Remarque : un cas particulier de cette *déduction usuelle* est que l'on peut déduire la clause vide (FAUX donc) de P et ¬P

Condition d'application de la règle de résolution

On peut appliquer la règle de résolution à deux clauses C_1 et C_2 si et seulement si il existe une proposition P qui apparaît sous forme positive dans une des deux clauses et sous forme négative dans l'autre clause.

Exemples

- C1 = P V¬Q
 C2 = Q V¬R
 on obtient (par résolution)
 P V¬R
- C1 = P V¬Q
 C2 = R V S V¬P
 on obtient
 ¬Q V R V S
- C1 = P V¬Q
 C2 = S V¬R
 on ne peut pas appliquer la règle de résolution
- C1 = P V¬Q
 C2 = S V¬Q
 on ne peut pas appliquer la règle de résolution

- 1. Mettre $\mathcal{H} \models \varphi$ en FNC
- 2. On obtient un ensemble de clauses $m{C}$
- 3. Tant que l'on a pas obtenu la clause vide ou effectué toutes les résolutions possibles :
 - Trouver deux clauses C₁ et C₂ auxquelles on peut appliquer une règle de résolution, effectuer cette résolution : on obtient une clause C₃
 - Si C_3 n'est pas dans ${m C}$, ajouter C_3 à ${m C}$

Remarque1 : cet algorithme s'arrête dans tous les cas, car le nombre de clauses est fini.

En effet étant données une clause C et une proposition P : soit P figure dans C,

soit ¬ P figure dans C, soit ni l'un ni l'autre ne figure dans C,

donc si il y a n propositions, il y a 3ⁿ clauses possibles.

- 1. Mettre $\mathcal{H} \models \varphi$ en FNC
- 2. On obtient un ensemble de clauses $m{C}$
- 3. Tant que l'on a pas obtenu la clause vide ou effectué toutes les résolutions possibles :
 - Trouver deux clauses C₁ et C₂ auxquelles on peut appliquer une règle de résolution, effectuer cette résolution : on obtient une clause C₃
 - Si C_3 n'est pas dans $m{C}$, ajouter C_3 à $m{C}$

Remarque2: cet algorithme ne précise pas **comment** trouver les 2 clauses C_1 et C_2 . Il n'y a pas unicité du choix, et selon le choix fait, la résolution peut être plus ou moins longue (= peut demander plus ou moins d'itérations, donc plus ou moins de clauses ajoutées à C).

Il existe différentes stratégies de résolution, plus ou moins efficaces selon les « types » de formules manipulées.

Théorème

 $\mathcal{H} \models \varphi$ si et seulement si on sort de la boucle de l'algorithme précédent suite à l'obtention de la clause vide.

Cas particuliers

Si # est l'ensemble vide :

(h1
$$\wedge$$
 h2 \wedge ... \wedge hn) \wedge $\neg \varphi$ se réduit à $\neg \varphi$ et donc

 $\mathcal{H} \models \varphi$ si et seulement si la formule φ est vraie

2. Si la formule φ est vide :

```
(h1 \wedge h2 \wedge ... \wedge hn) \wedge \neg \varphi se réduit à(h1 \wedge h2 \wedge ... \wedge hn) et donc
```

 $\mathcal{H} \models \varphi$ si et seulement si l'ensemble \mathcal{H} de formules est inconsistant (= de cet ensemble, on peut déduire la clause vide, c'est-à-dire une proposition et son contraire)

Exemple 1

L'ensemble # de formules contient les deux formules :

$$P \Longrightarrow Q$$

$$Q \Rightarrow R$$

Et soit la formule $\varphi : P \Longrightarrow R$

Montrer par résolution que $\# \models \varphi$

Application de l'algorithme

1. Mise en FNC

$$(P \Longrightarrow Q) \land (Q \Longrightarrow R) \land \neg (P \Longrightarrow R)$$

$$(\neg PVQ) \land (\neg Q \lor R) \land \neg (\neg PVR)$$

$$(\neg PVQ) \land (\neg Q \lor R) \land P \land \neg R$$

Application de l'algorithme (suite)

2. On obtient un ensemble de clauses C

$$C = {\neg P \lor Q, \neg Q \lor R, P, \neg R}$$

Que l'on écrit :

C1: ¬P ∨ Q

 $C2: \neg Q \lor R$

C3 : P

C4 : ¬R

- 3. Tant que l'on a pas obtenu la clause vide ou effectué toutes les résolutions possibles
 - Trouver deux clauses C et C' auxquelles on peut appliquer la règle de résolution, on obtient une clause C'
 - Si C " est une nouvelle clause, Ajouter C "

Application de l'algorithme (suite)

2. Ensemble de clauses C:

C1 : ¬P ∨ Q

C2: ¬Q V R

C3: P

C4 : ¬R

3. Première itération :

C1 et C3 avec P donne la nouvelle clause

C5 : Q

Deuxième itération :

C2 et C4 avec R donne la nouvelle clause

C6: ¬Q

Troisième itération :

C5 et C6 avec Q donne la clause vide

Donc on a montré que :

$$\{P \Rightarrow Q, Q \Rightarrow R\} \models (P \Rightarrow R)$$

Exemple 2

```
La théorie \tau contient les trois formules : P V R V S R V¬S
```

 $\neg R$

Montrer par résolution que $\tau \models P$

A vous de jouer!!