Propositional Logic Rough Notes

Exam Technique

- Answers to parts of a question often draw on earlier results.
- It is necessary to argue that counterexamples succeed.
- In general, a useful tactic for proving a conditional is to prove that the negation of the consequent implies the negation of the antecedent. For example, prove $\models_{SV} \phi \Rightarrow \models_{PL} \phi$ by proving $\not\models_{PL} \phi \Rightarrow \not\models_{SV} \phi$.
- When given some abbreviation, it is sometimes expedient to construct truth tables or write a derived rule which is then applied or referred to in semantic arguments, rather than disabbreviating within semantic arguments.
 - For example, it is expedient to construct the truth tables for $\Delta \phi = \neg(\phi \to \neg \phi)$ and $\nabla \phi = \neg \Delta \neg \phi$ and refer to those in a semantic argument.

Bivalent Propositional Logic

Syntax

- Definition (PL-wff)
 - Each sentence letter $\alpha \in \{P,Q,R,P_1,Q_1,R_1,P_2,\ldots\}$ is a PL-wff.
 - If each of ϕ and ψ is a PL-wff, then each of $\neg \phi$ and $(\phi \rightarrow \psi)$ is a PL-wff.
 - Only strings that can be shown to be PL-wffs by the above rules are PL-wffs.
- Abbreviations
 - " $\phi \wedge \psi$ " abbreviates " $\neg (\phi \rightarrow \neg \psi)$ ".
 - " $\phi \lor \psi$ " abbreviates " $(\neg \phi \to \psi)$ ".
 - " $\phi \leftrightarrow \psi$ " abbreviates " $((\phi \rightarrow \psi) \land (\psi \rightarrow \psi))$ ".
 - · The familiar bracketing conventions apply.

Semantics

- Definition (PL-Interpretation)
 - A PL-interpretation (bivalent interpretation) \mathcal{I} is a function from the set of sentence letters $\{P,Q,R,P_1,Q_1,R_1,P_2,\ldots\}$ to the set of truth values $\{0,1\}$.
- Definition (PL-Valuation)
 - The PL-valuation $V_{\mathcal{I}}$ for a given PL-interpretation \mathcal{I} is the unique function from the set of PL-wffs to the set of truth values $\{0,1\}$ such that:
 - for all sentence letters α , $V_{\mathcal{I}}(\alpha) = \mathcal{I}(\alpha)$,
 - $V_{\mathcal{I}}(\neg \phi) = 1 \text{ iff } V_{\mathcal{I}}(\phi) = 0$,
 - and $V_{\mathcal{I}}(\phi \to \psi) = 0$ iff $V_{\mathcal{I}}(\phi) = 1$ and $V_{\mathcal{I}}(\psi) = 0$.
- Definition (PL-Validity)
 - PL-wff ϕ is PL-valid iff for all PL-interpretations \mathcal{I} , $V_{\mathcal{I}}(\phi) = 1$.
 - " $\models_{PL} \phi$ " is equivalent to " ϕ is PL-valid".
- Definition (PL-Semantic Consequence)
 - PL-wff ϕ is a PL-semantic consequence of set of PL-wffs $\Gamma = \{\gamma_1, \gamma_2, \ldots\}$ iff for all PL-interpretations \mathcal{I} , if for all $\gamma_i \in \Gamma$, $V_{\mathcal{I}}(\gamma_i) = 1$, then $V_{\mathcal{I}}(\phi) = 1$.
 - " $\Gamma \vDash_{PL} \phi$ " is equivalent to " ϕ is a PL-semantic consequence of Γ ".

Trivalent Propositional Logic

- Motivation (Bivalence Failure)
 - Presupposition failure, vagueness, and indeterminacy yield prima facie bivalence failure in natural language. [See Studd, 2020, Notes on Propositional Logic, p. 4 for examples.]

Syntax

Definition (Trivalent wff)

- Each sentence letter $\alpha \in \{P,Q,R,P_1,Q_1,R_1,P_2,\ldots\}$ is a trivalent wff.
- If each of ϕ and ψ is a trivalent wff, then each of $\neg \phi$, $(\phi \rightarrow \psi)$, $(\phi \land \psi)$, and $(\phi \lor \psi)$ is a trivalent wff.
- Only strings that can be shown to be trivalent wffs by the above rules are trivalent wffs.

Semantics

- · Definition (Trivalent Interpretation)
 - A trivalent interpretation \mathcal{I} is a function from the set of sentence letters $\{P,Q,R,P_1,Q_1,R_1,P_2,\ldots\}$ to the set of truth values $\{0,1,\#\}$.
- Definition (Weak Kleene-Valuation)
 - The weak Kleene-valuation $WV_{\mathcal{I}}$ for a given trivalent interpretation \mathcal{I} is the unique function from the set of trivalent wffs to the set of truth values $\{0, 1, \#\}$ such that:
 - for all sentence letters α , $WV_{\mathcal{I}}(\alpha) = \mathcal{I}(\alpha)$,
 - $WV_{\mathcal{I}}(\neg \phi) = \# \text{ iff } WV_{\mathcal{I}}(\phi) = \#,$
 - for all $\circ \in \{\land, \lor, \rightarrow\}$, $WV_{\mathcal{I}}(\phi \circ \psi) = \# \text{ iff } WV_{\mathcal{I}}(\phi) = \# \text{ or } WV_{\mathcal{I}}(\psi) = \#$,
 - and $WV_{\mathcal{I}}$ coincides with $V_{\mathcal{I}}$ for all other $WV_{\mathcal{I}}(\phi)$ and $WV_{\mathcal{I}}(\psi)$.
- Discussion (Weak Kleene-Valuation)
 - Weak Kleene-valuation is plausible if we take # to indicate "meaningless" and suppose that any sentence with a meaningless component is thereby also meaningless.
- Definition (Kleene-Valuation)
 - The (strong) Kleene-valuation $KV_{\mathcal{I}}$ for a given trivalent interpretation \mathcal{I} is the unique function from the set of trivalent wffs to the set of truth values $\{0,1,\#\}$ such that:
 - for all sentence letters α , $KV_{\mathcal{I}}(\alpha) = \mathcal{I}(\alpha)$,
 - and for all trivalent wffs ϕ, ψ and $\circ \in \{\land, \lor, \to\}$, $KV_{\mathcal{I}}(\phi \circ \psi) = 1$ iff (with some violence to notation) $KV_{\mathcal{I}}^*(\phi) \circ KV_{\mathcal{I}}^*(\psi) = 1$ for all $KV_{\mathcal{I}}^*$ that differ from $KV_{\mathcal{I}}$ only in assigning 0 or 1 instead of #, $KV_{\mathcal{I}}(\phi \circ \psi) = 0$ iff $KV_{\mathcal{I}}^*(\phi) \circ KV_{\mathcal{I}}^*(\psi) = 0$ for all $KV_{\mathcal{I}}^*$ that differ from $KV_{\mathcal{I}}$ only in assigning 0 or 1 instead of #, and $KV_{\mathcal{I}}(\phi \circ \psi) = \#$ otherwise.
- Definition (Lukasiewicz-Valuation)
 - The Lukasiewicz-valuation $LV_{\mathcal{I}}$ for a given trivalent interpretation \mathcal{I} is the unique function from the set of trivalent wffs to the set of truth values $\{0,1,\#\}$ that differs from $KV_{\mathcal{I}}$ only in that $LV_{\mathcal{I}}(\phi \to \psi) = 1$ if $LV_{\mathcal{I}}(\phi) = \#$ and $LV_{\mathcal{I}}(\psi) = \#$.
- Definition (Kleene-Validity)
 - Trivalent wff ϕ is Kleene-valid iff for all trivalent interpretations \mathcal{I} , $KV_{\mathcal{I}}(\phi)=1$.
 - " $\models_K \phi$ " is equivalent to " ϕ is Kleene-valid".
- Definition (Kleene-Semantic Consequence)
 - Trivalent wff ϕ is a Kleene-semantic consequence of set of trivalent wffs $\Gamma = \{\gamma_1, \gamma_2, \ldots\}$ iff for all trivalent interpretations \mathcal{I} , if for all $\gamma_i \in \Gamma$, $KV_{\mathcal{I}}(\gamma_i) = 1$, then $KV_{\mathcal{I}}(\phi) = 1$.
 - " $\Gamma \vDash_K \phi$ " is equivalent to " ϕ is a Kleene-semantic consequence of Γ ".
- Definition (Lukasiewicz-Validity)
 - Trivalent wff ϕ is Lukasiewicz-valid iff for all trivalent interpretations \mathcal{I} , $LV_{\mathcal{I}}(\phi) = 1$.
 - "⊨_L φ" is equivalent to "φ is Lukasiewicz-valid".
- Definition (Lukasiewicz-Semantic Consequence)
 - Trivalent wff ϕ is a Lukasiewicz-semantic consequence of set of trivalent wffs $\Gamma = \{\gamma_1, \gamma_2, \ldots\}$ iff for all trivalent interpretations \mathcal{I} , if for all $\gamma_i \in \Gamma$, $LV_{\mathcal{I}}(\gamma_i) = 1$, then $LV_{\mathcal{I}}(\phi) = 1$.
 - " $\Gamma dash_L \phi$ " is equivalent to " ϕ is a Lukasiewicz-semantic consequence of Γ ".
- Definition (LP-Validity)
 - Trivalent wff ϕ is LP-valid iff for all trivalent interpretations \mathcal{I} , $KV_{\mathcal{I}}(\phi) \in \{1, \#\}$.
 - " $\models_{LP} \phi$ " is equivalent to " ϕ is LP-valid".
- Definition (LP-Semantic Consequence)
 - Trivalent wff ϕ is a LP-semantic consequence of set of trivalent wffs $\Gamma = \{\gamma_1, \gamma_2, \ldots\}$ iff for all trivalent interpretations \mathcal{I} , if for all $\gamma_i \in \Gamma$, $KV_{\mathcal{I}}(\gamma_i) \in \{1, \#\}$, then $KV_{\mathcal{I}}(\phi) \in \{1, \#\}$.
 - " $\Gamma \vDash_L P\phi$ " is equivalent to " ϕ is a LP-semantic consequence of Γ ".
- The following table summarises the above definitions.

System	Valuation	Designated Values
Kleene	Kleene	1
Lukasiewicz	Lukasiewicz	1
LP (Logic of Paradox)	Kleene	1,#

Motivation (Supervaluation)

• Penumbral (i.e. indefinite, marginal, "shadowy") connections (of sentences) yield prima facie counterexamples to Kleene-valuation. A penumbral connection is a logical connection between indefinite (neither definitely true nor definitely false) sentences. $\mathcal{I}(P) = \# \Rightarrow KV_{\mathcal{I}}(P \land \neg P) = \#, KV_{\mathcal{I}}(P \lor \neg P) = \#.$ Suppose P represents the sentence "Henry is tall" and Henry is a borderline case, so Henry is not (unqualifiedly) tall but also not (unqualifiedly) not tall, hence we construct \mathcal{I} such that $\mathcal{I}(P) \neq 0, 1$. Intuitively, we think that $P \land \neg P$ should evaluate as (simply) false, and $P \lor \neg P$ should evaluate as (simply) true.

Definition (Supervaluation)

- The supervaluation $SV_{\mathcal{I}}$ for a given trivalent interpretation \mathcal{I} is the unique function from the set of trivalent wffs to the set of truth values $\{0, 1, \#\}$ such that:
 - $SV_{\mathcal{I}}(\phi)=1$ iff for all precisifications \mathcal{I}^+ of $\mathcal{I},\,V_{\mathcal{I}^+}(\phi)=1$,
 - $SV_{\mathcal{I}}(\phi)=0$ iff for all precisifications \mathcal{I}^+ of $\mathcal{I},\,V_{\mathcal{I}^+}(\phi)=0$,
 - $SV_{\mathcal{I}}(\phi) = \#$ otherwise.

Definition (Refinement)

- A trivalent interpretation \mathcal{I}^+ is a refinement of trivalent interpretation \mathcal{I} iff for all sentence letters α , if $\mathcal{I}(\alpha) = 1$ then $\mathcal{I}^+(\alpha) = 1$, and if $\mathcal{I}(\alpha) = 0$ then $\mathcal{I}^+(\alpha) = 0$.
- Definition (Precisification)
 - A bivalent interpretation \mathcal{I}^+ is a precisification of trivalent interpretation \mathcal{I} iff for all sentence letters α , if $\mathcal{I}(\alpha)=1$ then $\mathcal{I}^+(\alpha)=1$, and if $\mathcal{I}(\alpha)=0$ then $\mathcal{I}^+(\alpha)=0$.
- Definition (SV-Validity)
 - Trivalent wff ϕ is SV-valid iff for all trivalent interpretations \mathcal{I} , $SV_{\mathcal{I}}(\phi) = 1$.
 - " $\models_{SV} \phi$ " is equivalent to " ϕ is SV-valid".
- Definition (SV-Semantic Consequence)
 - Trivalent wff ϕ is a SV-semantic consequence of set of trivalent wffs $\Gamma = \{\gamma_1, \gamma_2, \ldots\}$ iff for all trivalent interpretations \mathcal{I} , if for all $\gamma_i \in \Gamma$, $SV_{\mathcal{I}}(\gamma_i) = 1$, then $SV_{\mathcal{I}}(\phi) = 1$.
 - " $\Gamma \vDash_{SV} \phi$ " is equivalent to " ϕ is a SV-semantic consequence of Γ ".
- Relationship (SV-Semantic Consequence and PL-Semantic Consequence)
 - $\Gamma \vDash_{SV} \phi \text{ iff } \Gamma \vDash_{PL} \phi.$
- Discussion (Truth-Functionality)
 - Supervaluationist connectives are not truth-functional (whereas PL, Kleene, and Lukasiewicz connectives are) in the sense that $SV_{\mathcal{I}}(\phi \circ \psi)$ is not (simply) a function of $SV_{\mathcal{I}}(\phi)$ and $SV_{\mathcal{I}}(\psi)$ for all connectives $\circ \in \{\land, \lor, \to\}$.
- · Discussion (Non-Classical Logics)
 - In general non-classical logics "scale back classical logic's set of logical truths and logical consequences".
 Intuitionists want to reject the law of excluded middle (as a logical truth), paraconsistent logicians want to reject ex falso quodlibet (as a logical consequence). (See 210611 Philosophical Logic Paper Q1.)