Notes on GVI in FS for Image Data

1. Gaussian Processes for Classification

Notes taken from chapter 4 from Matthews (2017).

For Gaussian process regression (GPR), a class of models is defined:

$$f \sim \mathcal{GP}(0, K(\theta))$$

where $f: X \to \mathbb{R}$, mapping to the set of real numbers \mathbb{R} and K is the covariance function $K: X \times X \to \mathbb{R}$ parameterised by θ .

For binary Gaussian process classification (GPC), a mapping is defined:

$$g: \mathbb{R} \to [0,1]$$

transforming a value on the real line to the unit interval to represent a probability. A bernoulli random variable \mathcal{B} can be defined such that:

$$f_c \sim \mathcal{B}(g(f))$$

where $f_c: X \to \{0,1\}$, the desired binary classifier.

For multiclass classification of J different classes, models are defined:

$$f^{(j)} \sim \mathcal{GP}(0, K(\theta^{(j)}))$$

where j = 1, ..., J, defining J i.i.d. Gaussian processes. Concatenating $\mathbf{f} = [f_1 \cdots f_J]^T$, the classification operation can be defined:

$$\mathbf{f}_c \sim Cat(\mathcal{S}(\mathbf{f}))$$

where $\mathbf{f}_c: X \to \{0, \dots, J\}$, the desired multiclass classifier. $\mathcal{S}: \mathbb{R}^J \to \Delta(J)$, a mapping from a J dimensional real vector to a J dimensional probability simplex. Cat is the categorical distribution (generalisation of Bernoulli distribution for Categorical Data).

There are different possible choices for S. The multiclass generalisation of the logit likelihood:

$$S_{softmax}(\mathbf{f})_i = \frac{\exp(f^{(i)})}{\sum_{j=1}^{J} \exp(f^{(j)})}$$

The robust max function:

$$S_{robust}^{(\epsilon)}(\mathbf{f})_i = \begin{cases} 1 - \epsilon, & \text{if } i = \arg\max(\mathbf{f}) \\ \epsilon, & \text{otherwise} \end{cases}$$

taking class label of the maximum value with probability of $1-\epsilon$ and probability ϵ of picking one of the other classes uniformly at random, where ϵ is chosen. This formulation provides robustness to outliers, as it only considers the ranking of the GPR models for each class.

A benefit of the robust max function is that the variational expectation is analytically tractable with respect to the normal CDF $(q(\mathbf{f}) = \mathcal{N}(\mu, C), \mathbf{f} \in \mathbb{R}^J)$ and one dimensional quadrature $(\mathcal{S}_{robust}^{(\epsilon)}(\mathbf{f})_i \in \mathbb{R})$:

$$\int_{\mathbb{R}^J} q(\mathbf{f}) \log(\mathcal{S}_{robust}^{(\epsilon)}(\mathbf{f})_y) d\mathbf{f} = \log(1 - \epsilon) S + \log\left(\frac{\epsilon}{J - 1}\right) (1 - S)$$

where S is the probability that the function value corresponding to observed class y is larger than the other function values at that point:

$$S = \mathbb{E}_{\mathbf{f}^{(y)} \sim \mathcal{N}(\mathbf{f}^{(y)}|\mu^{(y)}, C^{(y)})} \left[\prod_{i \neq y} \phi \left(\frac{\mathbf{f}^{(y)} - \mu^{(i)}}{\sqrt{C^{(i)}}} \right) \right]$$

where ϕ is the standard normal CDF. This one dimensional integral can be evaluated using Gauss-Hermite quadrature.

References

Alexander Graeme de Garis Matthews. Scalable Gaussian process inference using variational methods. PhD thesis, University of Cambridge, 2017.