Graph Embedding

Prof. O-Joun Lee

Dept. of Artificial Intelligence, The Catholic University of Korea ojlee@catholic.ac.kr

Contents

- Graph representation learning
- Representative models
 - ➤ Node2Vec
 - > LINE
 - > SDNE
 - Subgraph2Vec

Graph representation learning

- ➤ The objective of a graph embedding: nodes which are similar in the graph, should be mapped close in the vector space
- Schematic of graph (node) embedding

Applications of Graph Embedding

Network Compression

 A compression store networks more efficiently run graph algorithms faster

Visualization

View it from an information visualization perspective

Community Mining

Network partitioning

 (k-means on the
 embedding to cluster
 the nodes)

Link Prediction

 Predict either missing interactions or links that may appear in the future

Node Classification

 Label the full graph based only on this small initial seed set

Example: Applications of Graph Embedding

Node Classification is a machine learning task in graph-based data analysis, where the goal is to assign labels to nodes in a graph based on the properties

Example: Applications of Graph Embedding

➤ Link Prediction is a task in graph and network analysis where the goal is to predict missing or future connections between nodes in a network.

> (Supervised) Machine Learning Lifecycle: This feature, that feature. Every single time!

Goal: Efficient task-independent feature learning for machine learning in networks!

➤ A good embedding should capture the graph topology, vertex-to-vertex relationship, and other relevant information about the graph, its subgraphs, and vertices.

Input

Output

- Modern deep learning toolbox is designed for simple sequences or grids.
- CNNs for fixed-size images/grids....

> RNNs or word2vec for text/sequences...

- > But networks are far more complex
 - Complex topographical structure (i.e., no spatial locality like grids)

- No fixed node ordering or reference point (i.e., the isomorphism problem)
- Often dynamic and have multimodal features.

Typical Network Embedding Approaches

- > Random walk approaches
 - ➤ Node2Vec
- Multi-hop Similarity
 - > LINE
- Deep model (Autoencoder)
 - > SDNE
- Subgraph learning
 - ➤ Subgraph2Vec

Overview of random walk-based methods

Estimate probability of visiting node v on a random walk starting from node u using some random walk strategy R.

Optimize embeddings to encode these random walk statistics.

- > Expressivity:
 - Flexible stochastic definition of node similarity that incorporates both local and higher-order neighbourhood information.
- > Efficiency:
 - Do not need to consider all node pairs when training; only need to consider pairs that co-occur on random walks.

- > Run short random walks starting from each node on the graph using some strategy R.
- ➤ For each node u collect N(u), the multiset* of nodes visited on random walks starting from u.
- Optimize embeddings to according to:

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(P(v|\mathbf{z}_u))$$

> * N(u) can have repeat elements since nodes can be visited multiple times on random walks.

Intuition: Optimize embeddings to maximize likelihood of random walk cooccurrences.

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(P(v|\mathbf{z}_u))$$

 \triangleright Parameterize P(v | z_u) using softmax:

$$P(v|\mathbf{z}_u) = \frac{\exp(\mathbf{z}_u^{\top} \mathbf{z}_v)}{\sum_{n \in V} \exp(\mathbf{z}_u^{\top} \mathbf{z}_n)}$$

Random Walk Optimization

- > Putting things together:
- \triangleright Optimizing random walk embeddings = Finding embeddings z_u that minimize L

> But doing this naively is too expensive.

Nested sum over nodes gives O(|V|²) complexity!!

The normalization term from the softmax is the problem

Can we approximate it?

- Solution: Negative sampling
- ➤ i.e., instead of normalizing w.r.t. all nodes, just normalize against k random "negative samples"

$$\log \left(\frac{\exp(\mathbf{z}_u^\top \mathbf{z}_v)}{\sum_{n \in V} \exp(\mathbf{z}_u^\top \mathbf{z}_n)} \right)$$

$$\approx \log(\sigma(\mathbf{z}_u^\top \mathbf{z}_v)) - \sum_{i=1}^k \log(\sigma(\mathbf{z}_u^\top \mathbf{z}_{n_i})), n_i \sim P_V$$
sigmoid function
random distribution over all nodes

- > Run short random walks starting from each node on the graph using some strategy R.
- For each node u collect NR(u), the multiset of nodes visited on random walks starting from u.
- Optimize embeddings to according to:

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(P(v|\mathbf{z}_u))$$

We can efficiently approximate this using negative sampling!

- What strategies should we use to run these random walks?
 - Simplest idea: Just run fixed-length, unbiased random walks starting from each node (i.e., DeepWalk from Perozzi et al., 2013).

> But can we do better?

- > Idea:
 - > use flexible, biased random walks that can trade-off between local and global views of the network (Grover and Leskovec, 2016).

 \triangleright Two classic strategies to define a neighborhood N(u) of a given node u:

$$N_{BFS}(u) = \{ s_1, s_2, s_3 \}$$

Local microscopic view

$$N_{DFS}(u) = \{ s_4, s_5, s_6 \}$$

Global macroscopic view

Interpolating BFS and DFS

- \triangleright Biased random walk R that given a node u generates neighborhood N(u)
- > Two parameters:
 - Return parameter p:
 - Return back to the previous node
 - ➤ In-out parameter *q*:
 - Moving outwards (DFS) vs. inwards (BFS)

➤ Walker is at w. Where to go next?

1/p, 1/q, 1 are unnormalized probabilities

where:

p,q: model transition probabilities

p: return parameter

q: "walk away" parameter

> BFS: Micro-view of neighbourhood

> DFS: Macro-view of neighbourhood

> BFS: Micro-view of neighbourhood

> DFS: Macro-view of neighbourhood

Graph embedding:

Input Network
 Node Embeddings
 Classification
 Community Detection
 Link Prediction
 Anomaly Detection
 Sense Making
 ...

Many Possible Applications!

- > Has a clear objective function
 - > Preserve the first-order and second-order proximity between the vertices
- Very scalable
 - ➤ Effective and efficient optimization algorithm through asynchronous stochastic gradient descent
 - Only take a couple of hours to embed network with millions of nodes, billions of edges on a single machine

- > The local pairwise proximity between the vertices
 - Determined by the observed links
- > However, many links between the vertices are missing
 - Not sufficient for preserving the entire network structure

Vertex 6 and 7 have a large first-order proximity

- > The proximity between the neighbourhood structures of the vertices
- ➤ Mathematically, the second-order proximity between each pair of vertices (u,v) is determined by:

$$\hat{p}_u = (w_{u1}, w_{u2}, ..., w_{u|V|})$$

$$\hat{p}_v = (w_{v1}, w_{v2}, ..., w_{v|V|})$$

Vertex **5** and **6** have a large second-order proximity

$$\hat{p}_5 = (1,1,1,1,0,0,0,0,0,0)$$

$$\hat{p}_6 = (1,1,1,1,0,0,1,0,0,0)$$

 \succ Given an *undirected* edge (v_i, v_j) , the joint probability of v_i, v_j

$$p_1(v_i, v_j) = \frac{1}{1 + \exp(-\vec{u}_i^T \cdot \vec{u}_j)}$$
 \vec{u}_i : Embedding of vertex v_i

$$\hat{p}_1(v_i, v_j) = \frac{w_{ij}}{\sum_{(i', j')} w_{i'j'}}$$

Objective:

$$O_1 = d(\hat{p}_1(\cdot,\cdot), p_1(\cdot,\cdot))$$
 KL-divergence

$$\propto -\sum_{(i,j)\in E} w_{ij} \log p_1(v_i,v_j)$$

 \triangleright Given a directed edge (v_i, v_j) , the conditional probability of v_j given v_i is:

$$p_2(v_j|v_i) = \frac{\exp(\vec{u}_j^{\prime T} \cdot \vec{u}_i)}{\sum_{k=1}^{|V|} \exp(\vec{u}_k^{\prime T} \cdot \vec{u}_i)}$$

 \vec{u}_i : Embedding of vertex *i* when *i* is a source node; \vec{u}_i' : Embedding of vertex *i* when *i* is a target node.

$$\hat{p}_2(v_j|v_i) = \frac{w_{ij}}{\sum_{k \in V} w_{ik}}$$

Objective:

$$O_2 = \sum_{i \in V} \lambda_i d(\hat{p}_2(\cdot | v_i), p_2(\cdot | v_i))$$

$$\lambda_i: \text{ Prestige of vertex in the network } \lambda_i = \sum_j w_{ij}$$

$$\propto -\sum_{(i,j) \in E} w_{ij} \log p_2(v_j | v_i)$$

Preserve both local & global network structure

> Structural Deep Network Embedding based on Autoencoder

> The framework of the semi-supervised deep model of SDNE

 \triangleright Then given the input x_i , the hidden representations for each layer are:

$$\mathbf{y}_{i}^{(1)} = \sigma(W^{(1)}\mathbf{x}_{i} + \mathbf{b}^{(1)})$$
$$\mathbf{y}_{i}^{(k)} = \sigma(W^{(k)}\mathbf{y}_{i}^{(k-1)} + \mathbf{b}^{(k)}), k = 2, ..., K$$

- ➤ The goal of the autoencoder is to minimize the reconstruction error of the output and the input.
- > The loss function:

$$\mathcal{L} = \sum_{i=1}^{n} \|\hat{\mathbf{x}}_i - \mathbf{x}_i\|_2^2$$

➤ Loss function for first-order proximity:

$$\mathcal{L}_{1st} = \sum_{i,j=1}^{n} s_{i,j} \|\mathbf{y}_{i}^{(K)} - \mathbf{y}_{j}^{(K)}\|_{2}^{2}$$
$$= \sum_{i,j=1}^{n} s_{i,j} \|\mathbf{y}_{i} - \mathbf{y}_{j}\|_{2}^{2}$$

Impose more penalty to the reconstruction error of the non-zero elements than that of zero elements:

$$\mathcal{L}_{2nd} = \sum_{i=1}^{n} \|(\hat{\mathbf{x}}_i - \mathbf{x}_i) \odot \mathbf{b_i}\|_2^2$$
$$= \|(\hat{X} - X) \odot B\|_F^2$$

To preserve the first-order and secondorder proximity simultaneously, we need to minimize the joint loss:

$$\mathcal{L}_{mix} = \mathcal{L}_{2nd} + \alpha \mathcal{L}_{1st} + \nu \mathcal{L}_{reg}$$

$$= \|(\hat{X} - X) \odot B\|_F^2 + \alpha \sum_{i,j=1}^n s_{i,j} \|\mathbf{y}_i - \mathbf{y}_j\|_2^2 + \nu \mathcal{L}_{reg}$$

where Lreg is an L2-norm regularizer term to prevent overfitting, which is defined as follows:

$$\mathcal{L}_{reg} = \frac{1}{2} \sum_{k=1}^{K} (\|W^{(k)}\|_F^2 + \|\hat{W}^{(k)}\|_F^2)$$

> Popular previous works include

DeepWalk[Perozzi+, KDD2014]
Node2vec[Grover+, KDD 2016]
SDNE[Wang+, KDD 2016]
LINE[Tang+,WWW 2015]

Limited just to the node embeddings

- Learning representation of substructures
 - ➤ Extend the WL relabeling strategy to define a proper context for a given subgraph.
 - A modification to the skipgram model enabling it to capture varying length radial contexts

- > Given
 - \triangleright A set S={ $g_1, g_2, ..., g_n$ } of subgraphs
 - Typically for the same graph
 - ➤ An integer *d*
- > Learn
 - d-dimensional embedding for each subgraph
 - Such that pre-defined subgraph property is preserved

- What subgraph property to preserve?
 - Neighbourhood Property:
 - > Captures neighbourhood information within the subgraph

- \triangleright Subgraph g_1 and g_2 share neighbourhood
- \triangleright Subgraph g_3 does not

Algorithm 1: Generate rooted subgraphs

- Generate rooted subgraphs around every node in a given graph
- Considers all the rooted subgraphs (up to a certain degree) of neighbours of r as the context of target subgraphs

Algorithm 2: GetWLSubgraph (v, G, d)

```
input: v: Node which is the root of the subgraph
            G = (V, E, \lambda): Graph from which subgraph has to be
            extracted
            d: Degree of neighbours to be considered for extracting
            subgraph
  output: sq_n^{(d)}: rooted subgraph of degree d around node v
1 begin
       sg_v^{(d)} = \{\}
       if d = 0 then
         sg_v^{(d)} := \lambda(v)
       else
4
           \mathcal{N}_v := \{ v' \mid (v, v') \in E \}
          M_v^{(d)} := \{ \text{GetWLSubgraph}(v', G, d-1) \mid v' \in \mathcal{N}_v \}
         sg_v^{(d)} := sg_v^{(d)} \cup \text{GetWLSubgraph}
          (v, G, d-1) \oplus sort(M_v^{(d)})
       return sg_v^{(d)}
```


Algorithm 2: Learn embeddings of those subgraphs

The skipgram model maximizes cooccurrence probability among the subgraphs that appear within a given context window.

Algorithm 3: RadialSkipGram $(\Phi, sg_v^{(d)}, G, D)$

```
1 begin

2 | context_v^{(d)} = \{\}

3 | for v' \in \text{Neighbours}(G, v) do

4 | | for \partial \in \{d-1, d, d+1\} do

5 | | if (\partial \geq 0 \text{ and } \partial \leq D) then

6 | | | context_v^{(d)} = context_v^{(d)} \cup Gethorem Getho
```


