1/6 求离散型的期望 E(X) E(X) = ∑x_ip_i

已知一个工厂一周获利10万元的概率为0.2,获利5万元的概率为0.3,亏损2万元的概率为0.5,该工厂一周内利润的期望是多少?

Х	10	5	-2
P	0.2	0.3	0.5

$$E(X) = \sum x_i p_i = 10 \times 0.2 + 5 \times 0.3 + (-2) \times 0.5 = 2.5$$
 (万元)

$$2/6$$
 求连续型的期望 $E(X)$ $E(X) = \int_{-\infty}^{+\infty} xf(x) dx$

设随机变量 X 的密度函数为
$$f(x) = \begin{cases} 0, x < 0 \\ 4x^3, 0 \le x \le 1 \end{cases}$$
 ,则 $E(X) = \frac{4}{5}$ 0, $x > 1$

$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx = \int_{-\infty}^{0} x \cdot 0 dx + \int_{0}^{1} x \cdot 4x^{3} dx + \int_{1}^{+\infty} x \cdot 0 dx$$

$$= 0 + \frac{4}{5} + 0$$

$$= \frac{4}{5}$$

$$3/6$$
 已知 $Y = g(x)$,求 $E(Y)$ 离散型 $E(Y) = \sum g(x_i)p_i$ 连续型 $E(Y) = \int_{-\infty}^{+\infty} g(x) \cdot f(x) dx$

已知随机变量X的分布列为

X	0	1	2	3
P	0.1	0.2	0.3	0.4

$$\begin{split} E(Y) &= \sum g(x_i) p_i \\ &= \sum (2x_i - 1) p_i \\ &= (2 \times 0 - 1) \times 0.1 + (2 \times 1 - 1) \times 0.2 + (2 \times 2 - 1) \times 0.3 + (2 \times 3 - 1) \times 0.4 \\ &= 3 \end{split}$$

$$3/6$$
 已知 $Y = g(x)$, 求 $E(Y)$ 离散型 $E(Y) = \sum g(x_i)p_i$

连续型 $E(Y) = \int_{-\infty}^{+\infty} g(x) \cdot f(x) dx$

设随机变量 X 的密度函数为
$$f(x) = \begin{cases} 0, x < 0 \\ 4x^3, 0 \le x \le 1, Y = X^2, 求 E(Y) \\ 0, x > 1 \end{cases}$$

$$E(Y) = \int_{-\infty}^{+\infty} g(x) \cdot f(x) dx$$

$$= \int_{-\infty}^{+\infty} x^{2} \cdot f(x) dx$$

$$= \int_{-\infty}^{0} x^{2} \cdot 0 dx + \int_{0}^{1} x^{2} \cdot 4x^{3} dx + \int_{1}^{+\infty} x^{2} \cdot 0 dx$$

$$= 0 + \frac{2}{3} + 0$$

$$= \frac{2}{3}$$

 $D(X) = \sum [x_i - E(X)]^2 \cdot p_i \rightarrow$ 离散型 $D(X) = E(X^2) - E^2(X)$ \rightarrow 连续型/离散型

求 D(X)

方法一:
$$E(X) = \sum x_i p_i = 0 \times 0.1 + 1 \times 0.2 + 2 \times 0.3 + 3 \times 0.4 = 2$$

$$= (0-2)^2 \cdot 0.1 + (1-2)^2 \cdot 0.2 + (2-2)^2 \cdot 0.3 + (3-2)^2 \cdot 0.4 = 1$$
 方法二: X^2 0 1 4 9

 $D(X) = \sum [x_i - E(X)]^2 \cdot p_i$

 $D(X) = E(X^2) - E^2(X) = 5 - 2^2 = 1$

$$E(X^{2}) = 0 \times 0.1 + 1 \times 0.2 + 4 \times 0.3 + 9 \times 0.4 = 5$$

$$E(X) = \sum x_{i}p_{i} = 0 \times 0.1 + 1 \times 0.2 + 2 \times 0.3 + 3 \times 0.4 = 2$$

5/6 根据 E(X)、D(X) 的性质进行复杂运算

	E	D			
	E(C) = C	D(C)=0			
性	E(CX) = CE(X)	$D(CX) = C^2D(X)$			
	$E(X \pm Y) = E(X) \pm E(Y)$	$D(X \pm Y) = D(X) + D(Y)$			
质	$E(XY) = E(X)E(Y)(X \setminus Y$ 相互独立时)	(X、Y相互独立时)			
	$D(X) = E(X^2) - E^2(X)$				

田
$$X$$
 0 1 2 3 R R $E(2X^2 - 5) \cdot D(\sqrt{7}X - 5)$

$$E(X) = \sum x_i p_i = 0 \times 0.1 + 1 \times 0.2 + 2 \times 0.3 + 3 \times 0.4 = 2$$

$$D(X) = (0 - 2)^2 \cdot 0.1 + (1 - 2)^2 \cdot 0.2 + (2 - 2)^2 \cdot 0.3 + (3 - 2)^2 \cdot 0.4 = 1$$

$$E(2X^2 - 5) = E(2X^2) - E(5) = 2E(X^2) - 5 = 2 \times [E^2(X) + D(X)] - 5 = 2 \times (2^2 + 1) - 5 = 5$$

$$D(\sqrt{7}X - 5) = D(\sqrt{7}X) + D(5) = 7D(X) + 0 = 7 \times 1 + 0 = 7$$

6/6 E(X)、D(X) 与各种分布的综合题

			THE RESERVE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN
X 服从的分布	E(X)	D(X)	P
二项分布 B(n,p)	np	np(1 – p)	$P(X=d)=C_n^d p^d (1-p)^{n-d}$
泊松分布 P(λ)	λ	λ	$P(X=d) = \frac{\lambda^d}{d!} e^{-\lambda}$
均匀分布 U[a, b]	a+b 2	(b-a) ²	$P(c \le X \le d) = \frac{d - c}{b - a}$
指数分布 E(λ)	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$P(c \le X \le d) = \frac{1}{e^{c\lambda}} - \frac{1}{e^{d\lambda}}$
正态分布 N(μ,σ²)	μ	σ²	$P(c \le X \le d) = \Phi\left(\frac{d-\mu}{\sigma}\right) - \Phi\left(\frac{c-\mu}{\sigma}\right)$

×.	E	D	
	E(C) = C	D(C) = 0	
Lef.	E(CX) = CE(X)	$D(CX) = C^2D(X)$	
	$E(X \pm Y) = E(X) \pm E(Y)$	D(X ± Y) = D(X) + D(Y (X、Y 相互独立时)	
	E(XY) = E(X)E(Y) (X、Y相互独立时)		
	D(X) = E(X)	$(2) - E^2(X)$	

随机变量 X 服从二项分布,且
$$E(X) = 6$$
, $D(X) = 3$,则 $P(X=1) = 3 \times 2^{-10}$

$$\begin{cases} E(X) = 6 = np \\ D(X) = 3 = np(1-p) \end{cases} \implies n = 12 \quad p = 0.5$$

$$P(X=d) = C_n^d p^d (1-p)^{n-d}$$

$$P(X=1) = C_{12}^1 (0.5)^1 (1-0.5)^{12-1} = 3 \times 2^{-10}$$

6/6 E(X)、D(X) 与各种分布的综合题

X 服从的分布	E(X)	D(X)	P
二项分布 B(n,p)	np	np(1 – p)	$P(X=d)=C_n^d p^d (1-p)^{n-d}$
泊松分布 P(λ)	λ	λ	$P(X=d) = \frac{\lambda^d}{d!} e^{-\lambda}$
均匀分布 U[a,b]	a+b 2	(b-a) ²	$P(c \le X \le d) = \frac{d - c}{b - a}$
指数分布 E(λ)	1 1	$\frac{1}{\lambda^2}$	$P(c \le X \le d) = \frac{1}{e^{c\lambda}} - \frac{1}{e^{d\lambda}}$
正态分布 N(μ,σ²)	μ	σ²	$P(c \le X \le d) = \Phi\left(\frac{d-\mu}{\sigma}\right) - \Phi\left(\frac{c-\mu}{\sigma}\right)$

2	E	D	
	E(C) = C	D(C) = 0	
Left.	E(CX) = CE(X)	$D(CX) = C^2D(X)$	
性	$E(X \pm Y) = E(X) \pm E(Y)$	$D(X \pm Y) = D(X) + D(Y)$	
质	E(XY) = E(X)E(Y) (X、Y相互独立时)	(X、Y相互独立时)	
J,	D(X) = E(X)	$(^2) - E^2(X)$	

已知 X 服从
$$\lambda=1$$
 的泊松分布,则 $P[X=E(X^2)]=\frac{1}{2e}$

$$E(X) = 1 \qquad D(X) = 1$$

$$E(X^2) = E^2(X) + D(X) = 1^2 + 1 = 2$$

$$P[X=E(X^2)]=P(X=2)=\frac{1^2}{2!}e^{-1}=\frac{1}{2e}$$

$$P(X = d) = \frac{\lambda^d}{d!} e^{-\lambda}$$