RICERCA OPERATIVA prova scritta del 5 febbraio 2008

GRUPPO B FOGLIO 1

1. Siano A_2 , A_5 , A_9 gli insiemi dei multipli rispettivamente di 2, 5 e 9 che risultano \leq 500, e $U = A_2 \cup A_5 \cup A_9$. Sia inoltre

$$\mathfrak{J} = \{Y \subseteq U: |Y \cap A_2| \le 1, |Y \cap A_5| \le 1, |Y \cap A_9| \le 1 \text{ e } \forall y \in Y, y \in A_i \Rightarrow y \notin A_i, \text{ con } i, j \in \{2, 5, 9\} \text{ e } i \ne j\}$$

la famiglia di tutti i sottoinsiemi Y di U che contengono al più un multiplo di 2, al più un multiplo di 5 e al più un multiplo di 9, con in più la condizione che ogni elemento appartiene esclusivamente a un insieme tra A_2 , A_5 , A_9 . Dire se la coppia (U, \Im) :

- [A] non gode della proprietà di scambio
- [B] gode della proprietà di scambio ma non è subclusiva
- [C] è un matroide
- 2. Il vettore (1/2, 1/3, 2) è combinazione
 - [A] conica
 - [B] convessa
 - [C] affine

dei vettori (1/2, 1/2, 1), (0, 1/6, 1) e (-1, -1/3, 0).

3. Data la coppia di problemi di programmazione lineare (primale/duale):

P) min
$$\mathbf{cx}$$
 D) max \mathbf{yb}
$$\mathbf{Ax} = \mathbf{b} \qquad \qquad \mathbf{y} \in S \subseteq \mathbb{R}^m$$
 $\mathbf{x} \in \mathbb{R}^n$

dove \mathbf{A} è una matrice con m righe ed n colonne, scrivere in forma compatta il sistema di disequazioni che definisce il poliedro S. Dire quale delle seguenti affermazioni è vera:

- [A] $\mathbf{c}\mathbf{x} > \mathbf{v}\mathbf{b}$ per ogni coppia di soluzioni ammissibili $\mathbf{x} \in \mathbf{v}$; $S = {\mathbf{v} \in \mathbb{R}^m : \mathbf{v}\mathbf{A} = \mathbf{c}}$
- [B] $\mathbf{c}\mathbf{x} \leq \mathbf{y}\mathbf{b}$ per ogni coppia di soluzioni ammissibili \mathbf{x} e \mathbf{y}
- [C] $\mathbf{c}\mathbf{x} < \mathbf{y}\mathbf{b}$ per qualche coppia di soluzioni ammissibili \mathbf{x} e \mathbf{y}
- **4**. Applicando il metodo di Fourier-Motzkin, risolvere il seguente problema di Programmazione Lineare, esibendo il valore della soluzione ottima (e delle variabili) qualora esista, ovvero classificando il problema come inammissibile o illimitato.

$$\max x_1 + 2x_2 + x_3$$

$$x_1 + x_3 \ge 1$$

$$x_1 + 2x_2 \le 1$$

$$x_1 + x_2 + 3x_3 \le 2$$

$$x_i \ge 0, i = 1, 2, 3$$

z	x_1	x_2	x_3	<u><</u>	Z	x_1	x_2	x_3	<u><</u>		\boldsymbol{z}	x_1	x_2	x_3	<	\boldsymbol{z}	x_1	x_2	x_3	<
1	-1	-2	-1	0	3	-2	-5	0	2		3	0	-1	0	4	15	0	0	0	21
0	-1	0	-1	-1	0	-2	1	0	-1		0	0	5	0	1	15	0	0	0	31
0	1	2	0	1	0	1	2	0	1		0	0	2	0	1	0	0	0	0	1
0	1	1	3	2	0	1	1	0	2		3	0	-3	0	6	6	0	0	0	9
0	-1	0	0	0	0	-1	0	0	0		0	0	3	0	3	6	0	0	0	13
0	0	-1	0	0	0	0	-1	0	0		0	0	1	0	2	0	0	0	0	1
0	0	0	-1	0						-	0	0	-1	0	0	9	0	0	0	15
																3	0	0	0	9
																0	0	0	0	3
																3	0	0	0	6
																3	0	0	0	12
																0	0	0	0	2

Il valore massimo di z è 7/5. Le variabili assumono i seguenti valori: $x_1 = 3/5$, $x_2 = 1/5$ e $x_3 = 2/5$.

5. Il proiezionista

Con opportune proiezioni ottenute applicando il metodo di Fourier-Motzkin, si determino le disequazioni che individuano l'involucro affine dell'insieme $S = \{(1, 0, 1), (2, 0, 0), (1, 3, 0)\}.$

aff(S) = {
$$\mathbf{x} \in \mathbb{R}^3$$
: $(x_1, x_2, x_3) = \lambda_1(1, 0, 1) + \lambda_2(2, 0, 0) + \lambda_3(1, 3, 0), \lambda_1 + \lambda_2 + \lambda_3 = 1$ }

Si tratta pertanto di proiettare il sistema

$$x_1 = \lambda_1 + 2\lambda_2 + \lambda_3$$

$$x_2 = 3\lambda_3$$

$$x_3 = \lambda_1$$

$$1 = \lambda_1 + \lambda_2 + \lambda_3$$

nello spazio delle variabili x_1, x_2, x_3 . Il sistema si riscrive

Applichiamo ora il metodo di Fourier-Motzkin eliminando in successione le variabili λ_1 , λ_3 , λ_2 (per motivi di spazio le tabelle non contengono le colonne nulle e le righe nulle o ridondanti):

x_1	x_2	x_3	l_1	λ_2	λ_3	<u><</u>		x_1	x_2	x_3	λ_2	13	<u><</u>	x_1	x_2	x_3	12	<u><</u>		x_1	x_2	x_3	<u><</u>
1	0		-1				Ī	-1	0	1	2	1	0	-3	1	3	6	0		-3	-1	-3	-6
0	1	0	0	0	-3	0		-1	0	0	1	0	-1	0	1	3	3	3		3	1	3	6
0	0	1	-1	0	0	0		1	0	-1	-2	-1	0	-1	0	0	1	-1	_				
-1	0	0	1	2	1	0		0	0	-1	-1	-1	-1	0	-1	-3	-3	-3					
0	-1	O	0	0	3	0		1	0	0	-1	0	1	1	0	0	-1	1					
0	0	-1	1	0	0	0		0	0	1	1	1	1	3	-1	-3	-6	0					
0	0	1	1	1	1	1		0	1	0	0	-3	0										
0	0	-1	-1	-1	-1	-1		0	-1	0	0	3	0										

Si può quindi concludere che il poliedro è individuato dall'equazione

$$3x_1 + x_2 + 3x_3 = 6$$

6. Esiste un limite?

Siano $P(\mathbf{A}, \mathbf{b})$, $P(\mathbf{C}, \mathbf{d})$ due poliedri di \mathbb{R}^n . Si formuli come programmazione lineare mista (cioè con variabili sia reali che intere) il problema di stabilire se l'intersezione Q dei due poliedri è contenuta o no in una (iper)scatola con centro nell'origine e lato 2L.

Suggerimento: si tratta di capire se Q contiene punti \mathbf{x} che hanno una componente x_k con $|x_k| > L$: per ogni componente si introducano allora una variabile binaria u_k e una reale d_k e si costruiscano due vincoli che leghino tra loro le tre variabili.

$$\begin{array}{cccc} \max & d_1 + \ldots + d_n \\ & \mathbf{A}\mathbf{x} & \leq \mathbf{b} \\ & \mathbf{C}\mathbf{x} & \leq \mathbf{d} & \text{questi vincoli richiedono } \mathbf{x} \in Q \\ & d_k \leq & x_k + 3L \, u_k \\ & d_k \leq - x_k + 3L(1 - u_k) & \\ & u_k \in \{0, 1\} & \\ \end{array} \right\} \qquad k = 1, \ldots, n$$

L è sufficientemente grande da garantire che, all'ottimo,

$$d_k = \max\{x_k, -x_k\} = |x_k|$$

Infatti se $u_k = 1$ il primo vincolo della graffa pone a d_k una limitazione superiore di $3L + x_k$, e all'ottimo, dovendo massimizzare, si sceglierà $d_k = -x_k \le 3L + x_k$; se viceversa $u_k = 0$ sarà il secondo vincolo a porre come limitazione $3L - x_k$, e in questo caso si sceglierà $d_k = x_k \le 3L - x_k$. Il primo caso converrà se $x_k \le 0$, il secondo se $x_k \ge 0$. Una volta risolto il problema si tratta di vedere se la soluzione ottima contiene o no un $d_k > L$.