MA-412

Complex Analysis

Om Swostik

https://github.com/swostikom20/

Spring Semester 2022-2023

§1. Preliminaries

Region: An open, connected subset of $\mathbb C$ is called domain or region.

$$D(a,r) = \{z \in \mathbb{C} | |z-a| < r\}$$

$$\{z \in \mathbb{C} | r < |z-a| < R\} \to \text{annulus}$$

Exponential function: $exp(z): \mathbb{C} \to \mathbb{C}$

$$e^{z} = e^{x}(\cos(y) + i\sin(y))$$

 $e^{z_{1}+z_{2}} = e^{z_{1}} \cdot e^{z_{2}}, 0 \notin Rng(\exp(z))$
 $|e^{ix}| = 1 \ (\forall x \in \mathbb{R})$
 $e^{z} = 1 \ \text{iff} \ z = 2n\pi i, \ n \in \mathbb{Z}$
 $e^{z_{1}} = e^{z_{2}} \ \text{iff} \ z_{1} = z_{2} + 2n\pi i$

 $\textbf{Argument} \colon arg(z) : \mathbb{C} \setminus \{0\} \to \mathbb{C}$

$$arg(z)=\theta$$
 (Angle made wrt positive real axis)
$$arg(z) \text{ for } z\in\mathbb{C}\setminus\{0\} \text{ is multivalued function}$$

$$arg(z):\mathbb{C}\setminus\{0\}\to(\alpha,\alpha+2\pi] \text{ or } [\alpha,\alpha+2\pi) \text{ is well-defined } (\forall \alpha\in\mathbb{R})$$

Principal value: $Arg(z) = \theta \ (-\pi < \theta \le \pi)$

$$arg(z) = \{Arg(z) + 2n\pi : n \in \mathbb{Z}\}$$

Complex Log: For $z \in \mathbb{C} \setminus \{0\}$, define:

$$log(z) = log(|z|) + iarg(z)$$

Notice that log is multivalued

Whenever arg(z) is well-defined (i.e $Rng(arg(z)) = [\alpha, \alpha + 2\pi)$ or $(\alpha, \alpha + 2\pi]$) $\Rightarrow log(z)$ is well defined

$$Log(z) = log(|z|) + i Arg(z)$$
 (principal log)

$$log(z) = Log(z) + 2n\pi i$$

Lemma 1.1: For $z \in \mathbb{C} \setminus \{0\}$, the values of log(z) are the complex numbers ω such that $e^{\omega} = z$ **Proof**: Do it on your own!

 $\mathbf{Limit}\colon f:E\subseteq\mathbb{C}\to\mathbb{C}$

$$\lim_{z\to z_0} f(z) = l$$

$$\forall \epsilon > 0, \exists \delta > 0 \text{ such that } 0 < |z-z_0| < \delta \Rightarrow |f(z)-l| < \epsilon$$

$$z \in (B(z,z_0) \setminus \{0\}) \cap E \Rightarrow f(z) \in B(l,\epsilon)$$

Proposition 1.1 (Sequential criteria for limit):

A function $f: E \subseteq \mathbb{C} \to \mathbb{C}$ has a limit point l as $z \to z_0$ iff $f(z_n) \to l$ for every sequence $\{z_n\} \subset E \setminus \{z_0\}$ with $z_n \to z_0$ as $n \to \infty$

Theorem 1.1: If $f:E\subset\mathbb{C}\to\mathbb{C}$ has a limit at z_0 , then f is bounded near z_0

Continuity: $f: E \subseteq \mathbb{C} \to \mathbb{C}$

f is continuous at $z_0 \in E$ if for every basic neighbourhood V of $f(z_0)$, there is a basic neighbourhood U of z_0 such that $f(U) \subset V$. Let $V = B(f(z_0), \epsilon)$ & $U = B(z_0, \delta)$,

$$z \in B(z_0, \delta) \Rightarrow f(z) \in B(f(z_0), \epsilon)$$
$$|z - z_0| < \delta \Rightarrow |f(z) - f(z_0)| < \epsilon$$
Then, $z \in B(z_0, \delta) \setminus \{z_0\} \Rightarrow f(z) \in B(f(z_0), \epsilon)$
$$\lim_{z \to z_0} f(z) = f(z_0)$$

Prove: Let $f: G \to \mathbb{C}$ such that f = u + iv (where $u, v: G \to \mathbb{R}$)

f is continuous at a point z_0 iff u, v are continuous at z_0

§2. Branch of Log and Power function

$$Arg: \mathbb{C} \setminus \{0\} \to (-\pi, \pi]$$

$$Log(z) = log(|z|) + i Arg(z)$$
 (defined on $\mathbb{C} \setminus \{0\}$)

Log(z) is continuous on $\mathbb{C}\setminus(-\infty,0]$ as Arg(z) is continuous on $\mathbb{C}\setminus(-\infty,0]$

§§2.1. Branch of Log

Let $G \subset \mathbb{C}$ be a region. A continuous function $f: G \to \mathbb{C}$ is called a branch of logarithm in G if:

$$e^{f(z)} = z \ (\forall z \in G) (\Rightarrow 0 \notin G)$$

$$e^{Log(z)} = z \ (\forall z \in \mathbb{C} \setminus \{0\})$$

But Log(z) isn't continuous on $\mathbb{C} \setminus \{0\}$

Therefore, Log(z) is a branch of log in $\mathbb{C} \setminus (-\infty, 0]$

$$f_k = Log(z) + 2k\pi i, \ k \in \mathbb{Z}$$

 $e^{f_k(z)} = z$ (Each f_k is a branch of log in G)

Theorem 2.1: Let $f: G \to \mathbb{C}$ be a branch of log. Then $g: G \to \mathbb{C}$ is a branch of log iff

$$g(z) = f(z) + 2k\pi i$$
 (for some $k \in \mathbb{Z}$)

Proof: (\Rightarrow) if f is a branch of log, then so is g

 (\Leftarrow) Let $g: G \to \mathbb{C}$ be a branch of log.

Then, (i) g is continuous

(ii)
$$e^{g(z)} = z, \forall z \in G$$

Since $f: G \to \mathbb{C}$ is a branch of log, we have,

(i) f is continuous

$$(ii)e^{f(z)} = z, \forall z \in G$$

$$e^{g(z)} = z = e^{f(z)} \ (\forall z \in G)$$

$$\Rightarrow g(z) = f(z) + 2k(z)\pi i \ (k \text{ depends on } z)$$

$$k:G\subset\mathbb{C}\to\mathbb{Z}$$

$$k(z) = \frac{1}{2\pi i} (g(z) - f(z))$$
 (k is continuous)

Since G is connected, Img(k) is connected (subset of \mathbb{Z})

 $\Rightarrow k(z)$ is constant

Hence, the claim follows.

Unit disk in $\mathbb{C} \colon D = \{z \in \mathbb{C} : |z| < 1\}$

 $0 \in D$, hence D cannot be a branch of log.

 $D\setminus\{0\}$ isn't a branch of log. (Why?)

$$Log(z):\mathbb{C}\setminus(-\infty,0]\to\mathbb{C}$$

The half-line is called a branch-cut for any member of $\{Log(z) + 2k\pi i : k \in \mathbb{Z}\}$

Question: How do you make a branch-cut to define a branch of Log(z+i-1)?

§§2.2. Power functions

Let $\alpha \in \mathbb{C}$. We define z^{α} to be the multi-valued function:

$$\begin{split} z^{\alpha} &= e^{\alpha log(z)} = e^{\alpha (log(|z|) + iarg(z))} \\ &= e^{\alpha (Log(z) + 2k\pi i)} \\ &= e^{\alpha Log(z)}.e^{2\pi ik\alpha} \ (z \neq 0, k \in \mathbb{Z}) \end{split}$$

Let $\alpha = n \in \mathbb{N}$. Then $z^{\alpha} = e^{nLog(z)}$ which is single-valued.

§3. Differentiability and Power series

§§3.1. Differentiability

Let $\Omega \subseteq \mathbb{C}$ and $f: \Omega \to \mathbb{C}$. Then f is said to be differentiable at $z_0 \in \Omega$ if,

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

exists

Example: $f(z) = \bar{z}$ isn't differentiable at any point in \mathbb{C} .

Cauchy-Riemann equations: Let $f: \Omega \to C$ be differentiable at $z_0 = x_0 + iy_0$. Then,

$$\frac{\partial u}{\partial x}(x_0, y_0) = \frac{\partial v}{\partial y}(x_0, y_0)$$

$$\frac{\partial u}{\partial y}(x_0, y_0) = -\frac{\partial v}{\partial x}(x_0, y_0)$$

Further,

$$f'(z_0) = \frac{\partial u}{\partial x}(x_0, y_0) + i \frac{\partial v}{\partial x}(x_0, y_0)$$

Note that the last equation only has partial derivatives wrt x.

Proof (Sketch): In the differential, approach the origin once through the real axis and and then the imaginary axis to get some equations

Holomorphic/Analytic: A function is said to be **holomorphic** or **analytic** at z_0 if it is differentiable in a neighbourhood of z_0 .

If a function is analytic at a point, it is called a regular point for the function

Entire functions: If a function f is analytic at every point in $\mathbb{C} \Rightarrow f$ is entire.

Example:

- 1. $f(z) \to \text{polynomial in } \mathbb{C}$
- 2. $f(z) = \frac{1}{z} \to \text{not an entire function (differentiable at every point on } \mathbb{C} \setminus \{0\})$

Proposition 3.1: If f and g are differentiable at $z_0 \in \Omega \subset \mathbb{C}$, then so are:

(i)
$$f + g$$
, (ii) fg , (iii) f/g ($g(z_0) \neq 0$)

Proof: Trivial

Chain Rule: $f: \Omega \to U$, $g: U \to \mathbb{C}$ are holomorphic at z_0 and $f(z_0)$ respectively. Then $g \circ f: \Omega \to \mathbb{C}$ is holomorphic at z_0 and $(g \circ f)'(z_0) = g'(f(z_0)).f'(z_0)$

Proof: Let $h = (g \circ f)$

$$h'(z_0) = \lim_{z \to z_0} \frac{g(f(z)) - g(f(z_0))}{z - z_0}$$

$$= \lim_{z \to z_0} \frac{g(f(z)) - g(f(z_0))}{f(z) - f(z_0)} \cdot \frac{f(z) - f(z_0)}{z - z_0}$$

$$= \lim_{f(z) \to f(z_0)} \frac{g(f(z)) - g(f(z_0))}{f(z) - f(z_0)} \cdot \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = g'(f(z_0)) f'(z_0) \quad \text{(Using continuity of } f\text{)}$$

§§3.2. Power series

A series of the form $\sum_{0}^{\infty} a_n(z-z_0)^n$ $(a_n, z, z_0 \in \mathbb{C}; z_0 \text{ is center})$

Theorem 3.1(Radius of convergence): Given a power series $\sum_{n=0}^{\infty} a_n(z)^n$,

 $\exists R \in [0, \infty) \cup \{\infty\}$ such that:

- 1. the series converges absolutely $(\forall z \in B(0, R);$ the disk of convergence)
- 2. diverges $\forall z$ such that |z| > R

3.

$$R = \frac{1}{\limsup |a_n|^{\frac{1}{n}}}$$

(Convention: $\frac{1}{0} = +\infty$, $\frac{1}{\infty} = 0$)

Proof: Theorem 2.5 in Stein-Shakarchi Complex Analysis

Theorem 3.2: The power series $f(z) = \sum_{n=0}^{\infty} a_n z^n$ defines a holomorphic function (in its disk of convergence)

Derivative of f is obtained by differentiation of each term:

$$f'(z) = \sum_{n=0}^{\infty} n a_n z^{n-1}$$

f' has same disk of convergence

Proof: Theorem 2.6 in Stein-Shakarchi Complex Analysis

Remark: A power series is infinitely differentiable (analytic) in its disk of convergence

$$\Rightarrow f(z) = \sum_{k=0}^{\infty} \frac{f^k(0)}{k!} z^k$$

Proposition 3.2: Let $\Omega_1, \Omega_2 \subset \mathbb{C}$ be domains and let $f: \Omega_1 \to \mathbb{C}$, $g: \Omega_2 \to \mathbb{C}$ be continuous function such that $f(\Omega_1) \subseteq \Omega_2$ and that g(f(z)) = z ($\forall z \in \Omega_1$). If g is differentiable on Ω_2 and if $g'(w) \neq 0$ ($\forall w \in \Omega_2$), then f is differentiable and $f'(z) = \frac{1}{g'(f(z))}$ ($\forall z \in \Omega_1$)

Proof (Sketch): Use the differentiability of g and the continuity of f to get the result

Theorem 3.3: A branch of logarithm is analytic and its derivative is $\frac{1}{z}$.

Proof (Sketch): Let f be a branch of log. Define $g(z) = e^z$. Then g(f(z)) = z. $(e^{f(z)} = z)$

Lemma 3.1: Let $f: \Omega \to \mathbb{C}$. Then f is differentiable at $z_0 \in \Omega$ iff $\exists a \in \mathbb{C}$ such that $f(z_0 + h) - f(z_0) = ah + h\psi(h)$ ($\lim_{h\to 0} \psi(h) = 0$)

Proof: Use the definition of differentiability of a multivariable function

Theorem 3.4: Let $\Omega \subset \mathbb{C}$ be a domain and let f = u + iv is a function from Ω to \mathbb{C} . Then f is analytic at $z_0 \in \Omega$ iff the partial derivatives exist, are continuous and satisfy Cauchy-Riemann equations.

Proof(To complete): \Rightarrow If f is analytic at z_0 , then partial derivatives are continuous and satisfy the Cauchy-Riemann equations (follows from theorem 3.2)

$$\Leftarrow$$
 Let $\tilde{f}: \Omega \subseteq \mathbb{R}^2 \to \mathbb{R}^2$ be defined as $\tilde{f} = (u, v)$

 \tilde{f} is differentiable at $z_0 = (x_0, y_0)$

Definition: For domain Ω , $H(\Omega)$ is the collection of all analytic functions from $\Omega \to \mathbb{C}$ **Proposition 3.3**: Let $f: \Omega \subseteq \mathbb{C} \to \mathbb{C}$ such that $f \in H(\Omega)$. If D is a disk with center at $z_0 \in \Omega$ and if $\bar{D} \subseteq \Omega$, then f has a power series:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n \ (\forall z \in D)$$

where
$$a_n = \frac{f^{(n)}(z_0)}{n!}$$
, $(n \in \mathbb{N})$

Proof (Sketch): Differentiate the power series repeatedly (Use Theorem 3.2)

Examples:

1.
$$\sum_{n=1}^{\infty} nz^n < \infty$$
 (converges $\forall z \in B(0,1)$; doesn't converge for $|z|=1$)

2.
$$\sum_{n=1}^{\infty} \frac{z^n}{n^2} < \infty \text{ (converges } \forall z \in B(0,1); \text{ converges for } |z| = 1)$$

3.
$$\sum_{n=1}^{\infty} \frac{z^n}{n} < \infty$$
 (converges for $|z| < 1$; diverges otherwise)

4.
$$f(z) = e^z \Rightarrow f'(z) = e^z$$
 (by definition of e^z)

Consider $g(z) = \sum_{n=1}^{\infty} \frac{z^n}{n!}$
 $g(z)$ is an entire function (Why?)

Note that
$$f^{(k)}(0) = 1 \Rightarrow a_k = \frac{f^{(k)}(0)}{k!} = \frac{1}{k!} \Rightarrow f(z) = g(z)$$

§4. Complex integration

A path or a curve is a continuous function, $\gamma:[a,b]\to\mathbb{C}$ $(Rng(\gamma)\subset\mathbb{C})$

 $\gamma(a)$: initial point of path; $\gamma(b)$: endpoint of path

[a,b]: parameter interval

 γ is said to be:

- 1. closed if $\gamma(a) = \gamma(b)$
- 2. smooth or C^1 if γ is differentiable and $\gamma^{'}$ is continuous
- 3. simple if γ is one-one
- 4. simple closed if $\gamma(a) = \gamma(b)$ and γ is one-one on (a,b)
- 5. piecewise smooth if there are finitely many points $s_0, s_1 \dots s_n \in [a.b]$ with $a = s_0 < s_1 < s_2 \dots < s_n = b$ such that the restriction of γ to each (s_i, s_{i+1}) is smooth.

 $-\gamma$ or γ^{-1} is defined by $\gamma^{-1}(t) = \gamma(a+b-t)$

 $\varphi:[0,1]\to [a,b]$ defined as: $\varphi(t)=a+(b-a)t$ (one-one and differentiable)

§§4.1. Line integral

 $f:[a,b]\to\mathbb{C}$: continuous

$$f = u + iv$$
, where $u, v : [a, b] \to \mathbb{R}$

Define
$$\int_a^b f(t)dt = \int_a^b u(t)dt + i \int_a^b v(t)dt$$

Properties:

1.
$$\int_a^b c \cdot f(t) dt = c \cdot \int_a^b f(t) dt$$

2.
$$\left| \int_a^b f(t)dt \right| \leq \int_a^b |f(t)|dt$$

Length of a smooth curve: Let $\gamma:[a,b]\to\mathbb{C}$ be a smooth curve.

$$L(\gamma) = \int_a^b |\gamma'(t)| dt = \int_a^b \sqrt{\gamma_1'(t)^2 + \gamma_2'(t)^2} dt \quad (\gamma(t) = \gamma_1(t) + i.\gamma_2(t))$$

If $\gamma:[a,b]\to C$ is piecewise smooth then $L(\gamma)$ is the sum of the length of its smooth parts.

Orientation: A curve γ is *positively* oriented if traversed in anti-clockwise direction else is negatively oriented.

Examples:

- 1. $\gamma(t)=re^{it}, (t\in[0,2\pi]) (r>0$: simple, smooth curve); $L(\gamma)=\int_0^{2\pi}|ire^{it}|dt=r(2\pi)$
- 2. $\gamma(t) = e^{it}$, $(t \in [0, 4\pi])$: closed, smooth, traverses the unit circle twice in the positive direction

Integration over paths: $\gamma[a,b] \to \mathbb{C}$ is a smooth curve and $f: \gamma \to \mathbb{C}$: continuous

Definiton:
$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt = \int_{a}^{b} g(t)dt$$

$$(g(t) = f(\gamma(t))\gamma^{'}(t) \text{ where } g:[a,b] \to \mathbb{C})$$

Let $[a_1, b_1]$ be any closed interval. Then $\exists \phi : [a_1, b_1] \to [a, b]$ (one-one,differentiable and

$$\phi(a_1) = a; \phi(a_2) = b)$$

 $\phi[a_1, b_1] \to \mathbb{C}$: smooth

$$\int_{a_1}^{b_1} f(\gamma_1(t)) \cdot \gamma_1'(t) dt \quad (= \int_{\gamma_1} f(z) dz)$$

$$= \int_{a_1}^{b_1} f(\gamma(\varphi(t))).\varphi^{'}(t)dt = \int_{\gamma} f(\gamma(s))\gamma^{'}(s)ds = \int_{\gamma} f(z)dz \quad (\varphi(t) = s)$$

If γ is piecewise smooth, the integral can be split into the sum of its smooth components:

if
$$\gamma = \gamma_1 + \gamma_2 \cdots + \gamma_n$$
, then $\int_{\gamma} f = \int_{\gamma_1} f + \cdots + \int_{\gamma_n} f$.

Note that $\gamma_i's$ are smooth.

Proposition: If f and g are continuous on a smooth curve γ , then

1.
$$\int_{\gamma} \alpha f + \beta g = \alpha \int_{\gamma} f + \beta \int_{\gamma} g$$

2.
$$\int_{\gamma^-} f = -\int_{\gamma} f$$

3.
$$|\int_{\gamma} f(z)dz| \le ||f||_{\infty,\gamma} L(\gamma) \quad (||f||_{\infty,\gamma} = \sup_{z \in \{\gamma\}} |f(z)|)$$

$$|\int_{\gamma} f| = |\int_{a}^{b} f(\gamma(t)) \cdot \gamma^{'}(t) dt| \leq \int_{\gamma} |f(\gamma(t)) \cdot \gamma^{'}(t)| dt \leq ||f||_{\infty,\gamma} \int_{a}^{b} |\gamma^{'}(t)| dt \quad (L(\gamma) = \int_{a}^{b} |\gamma^{'}(t)| dt)$$

Examples:

(i)Let γ be the arc of a circle of radius 3 (|z|=3) from 3 to 3i.

Show that:

$$\left| \int_{\gamma} \frac{z+4}{z^3 - 1} dz \right| \le \frac{21\pi}{52}$$

(ii) $\gamma : |z| = 2$ (traverse curve in positive direction)

Prove:

$$|\int_{\gamma} \frac{e^z dz}{z^2 + 1}| \le \frac{4\pi e^2}{3}$$

Fundamental theorem of calculus:

If $f:[a,b]\to\mathbb{R}$ has a primitive F, then $\int_a^b f(x)dx=F(b)-F(a)$ $(F'(x)=f(x), \forall x\in[a,b])$ For complex case: Suppose $G\in\mathbb{C}$ be a domain. If a continuous function $f:G\to\mathbb{C}$ has a primitive F on G and if γ is a smooth curve in G with initial and terminal points ω_1 and ω_2 respectively, then:

$$\int_{\gamma} f = F(\omega_1) - F(\omega_2)$$

Proof: Let $[a,b] \in \mathbb{R}$ be a parameter interval for γ and $\gamma(a) = \omega_1$; $\gamma(b) = \omega_2$ Given $F'(z) = f(z) \ (\forall z \in G)$

$$\int_{\gamma}f=\int_{a}^{b}f(\gamma(t)).\gamma^{'}(t)dt=\int_{a}^{b}F^{'}(\gamma(t))\gamma^{'}(t)dt$$

$$= \int_{a}^{b} (F \circ \gamma)'(t)dt = F \circ \gamma(b) - F \circ \gamma(a) = F(\omega_{2}) - F(\omega_{1})$$

Corollary-1: If γ is a closed curve (smooth), then

$$\int_{\gamma} f = 0$$

Proof: Follows from FTC

Corollary-2: If $f \in H(\Omega)$ for a region $\Omega \in \mathbb{C}$ and if f' = 0 on Ω , then f is a constant function.

Proof: Fix a point $\omega_0 \in \Omega$. It suffices to show that $f(\omega) = f(\omega_0), \forall \omega \in \Omega$

§§4.2. Simple Closed Curve

Jordan-curve theorem: Every simple closed curve in \mathbb{C} divides the complex plane into two regions. One of these regions is bounded and the other is unbounded. The bounded region is called the interior of the curve.

Example: $G = \mathbb{C} \setminus \{0\}$

$$f(z)=\frac{1}{z}$$
 on $G,\,\gamma:|z|=1,\,\gamma(t)=e^{it},\,(t\in[0,2\pi])$

$$\int_{\gamma}f=\int_{0}^{2\pi}f(\gamma(t)).\gamma^{'}(t)dt=\int_{0}^{2\pi}\frac{i.e^{it}}{e^{it}}dt=2\pi i\neq 0$$

Winding number or index of a closed curve: Let γ be a closed curve on $\mathbb C$ and let $\alpha \in \mathbb C \setminus \{\gamma\}$. The winding number of γ about α or the index of γ with respect to α is denoted by, $\eta(\gamma;\alpha)/Ind_{\gamma}(\alpha)$ defined by:

$$\eta(\gamma; \alpha) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - \alpha}$$

Example: $\gamma:[0,6\pi]\to\mathbb{C}$

 $\gamma(t) = a + re^{it}$

$$\eta(\gamma;\alpha) = \frac{1}{2\pi i} \int_{\gamma} \frac{\gamma'(t)}{\gamma(t) - a} = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{a + re^{it} - a} . ire^{it} dt = 3$$

Theorem 4.1: Let γ be a smooth, closed curve in \mathbb{C} . Let $\alpha \in \mathbb{C} \setminus \{\gamma\}$. Then $\eta(\gamma; \alpha) \in \mathbb{Z}$.

Proof: $\phi : [0,1] \to \mathbb{C}$

$$\Phi = \frac{\gamma'(s)}{\gamma(s) - \alpha} \text{ and } g : [0, 1] \to \mathbb{C}, g(t) = \int_0^t \Phi(s) ds$$
$$g(0) = 0 \text{ and } g(1) = \int_0^1 \Phi(s) ds = \int_0^1 \frac{\gamma'(s)}{\gamma - \alpha} ds = \int_{\gamma} \frac{dz}{z - \alpha}$$

Claim: $g'(t) = \phi(t)$

Proof: To show that $\lim_{h\to 0} \frac{g(t+h)-g(t)}{h} - \phi(t) = 0$

$$\frac{g(t+h)-g(t)}{h}-\phi(t)=\frac{1}{h}\int_{t}^{t+h}[\phi(t+h)-\phi(t)]ds \text{ (for } h>0, \text{ similar for } h<0)$$

Since ϕ is uniformly continuous on $[0,1], \forall \epsilon > 0, \exists \delta > 0$ such that

$$|s - t| < \delta \Rightarrow |\phi(s) - \phi(t)| < \epsilon$$

If
$$h < \delta$$
, then
$$|\frac{1}{h} \int_t^{t+h} [\phi(t+h) - \phi(t)] ds| \le \frac{1}{h} \int_t^{t+h} |\phi(t+h) - \phi(t)| ds < \epsilon$$

Same thing holds if h < 0

Therefore,
$$h < \delta \Rightarrow \left| \frac{g(t+h) - g(t)}{h} - \phi(t) \right| < \epsilon$$

Hence, $g' = \phi$

Set
$$h(t) = e^{-g(t)}(\gamma(t) - \alpha)$$

We have,
$$h^{'}(t) = e^{-g(t)} \gamma^{'}(t) - e^{-g(t)} (\gamma(t) - \alpha) g^{'}(t) = 0$$

Hence, h(t) is a constant function.

$$e^{-g(0)}(\gamma(0)-\alpha)=e^{-g(1)}\ (\gamma(1)-\alpha)$$

$$\Rightarrow e^{-g(0)}=e^{-g(1)}=1\ (\text{As }\gamma\text{ is a closed curve})$$

hence $g(1) = 2k\pi i$ (for $k \in \mathbb{Z}$)

Therefore,
$$\int_{\gamma} \frac{dz}{z-\alpha} = 2k\pi i \Rightarrow \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z-\alpha} = k \in \mathbb{Z}$$

Remark: The theorem is true if γ is a closed contour. (Prove it!)

(A contour is a piecewise smooth curve)

Theorem 4.2: Let γ be a closed contour and let $\alpha \in \mathbb{C} \setminus \{\gamma\}$. Then,

- (a) the function $f_{\gamma}: \mathbb{C} \setminus \{\gamma\} \to \mathbb{Z}$ is continuous. $(\alpha \to \eta(\gamma; \alpha))$
- (b) f is constant on every component of $\mathbb{C} \setminus \{\gamma\}$

Proof: (a) Let $\alpha_0 \in \mathbb{C} \setminus \{\gamma\}$. Then the function $g: t \to |\alpha_0 - \gamma(t)|$ is continuous.

g attains its infimum, say $s = \inf_{t \in [0,1]} g(t)$

If α is very close to α_0 , then $|\alpha - \gamma(t)| \geq \frac{s}{2}$. Then,

$$\begin{split} |\frac{1}{z-\alpha} - \frac{1}{z-\alpha_0}| &= \frac{|\alpha - \alpha_0|}{|z-\alpha||z-\alpha_0|} \le \frac{2}{s^2} |\alpha - \alpha_0| \ (z \in \gamma) \\ |f_{\gamma}(\alpha) - f_{\gamma}(\alpha_0)| &\le \frac{1}{2\pi i} \int_{\gamma} |\frac{1}{z-\alpha} - \frac{1}{z-\alpha_0}| dz \\ &\le \frac{2}{s^2} |\alpha - \alpha_0| \frac{1}{2\pi i} \ L(\gamma) = M(\alpha - \alpha_0) \ \text{(Lipschitz continuous)} \end{split}$$

(b) Let V be a component, then f(V) is connected in $\mathbb{Z} \Rightarrow f(V)$ is a constant $\in \mathbb{Z}$

Proposition 4.1: Let γ be a closed contour in \mathbb{C} . Then $\eta(\gamma; \alpha) = 0 \ \forall \alpha$ in the unbounded component of $\mathbb{C} \setminus \{\gamma\}$

Proof: Since γ is closed and bounded, $\{\gamma\} \subseteq \bar{B}(0;R)$ for some R > 0.

Let $\alpha \in \mathbb{C} \setminus \bar{B}(0;R)$

$$\begin{aligned} |z - \alpha| &\geq |\alpha| - |z| \geq |\alpha - R| \\ |\eta(\gamma; \alpha)| &= \frac{1}{2\pi} |\int_{\gamma} \frac{dz}{z - \alpha}| \leq \frac{1}{2\pi} \int_{\gamma} \frac{dz}{|z - \alpha|} \leq \frac{1}{2\pi} \frac{1}{|\alpha| - R} L(\gamma) \end{aligned}$$

One can find a large enough $|\alpha|$ to make $\eta(\gamma;\alpha) < 1$

Hence, $\eta(\gamma; \alpha) = 0$, when $|\alpha|$ is sufficiently large

Since, $\eta(\gamma; \alpha)$ is constant within a component, $\eta(\gamma, \beta) = 0$ ($\forall \beta$ in unbounded component)

Proposition 4.2: Let γ be a closed contour consisting of curves $\gamma_1, \ldots, \gamma_n$. Then,

$$\eta(\gamma; \alpha) = \eta(\gamma_1; \alpha) + \dots + \eta(\gamma_n; \alpha)$$
 (Prove!)

Cauchy-Goursat theorem: Let $\Omega \subseteq \mathbb{C}$ be a domain and let $f \in H(\Omega)$. Then for any closed contour γ lying in the interior of Ω ,

$$\int_{\gamma} f(z)dz = 0$$

Proof: Step-I (Goursat's theorem):

When $\gamma = T$, a triangle

Let
$$T^{(0)} = T$$

Let
$$diam(T^{(0)}) = d^{(0)}$$
 and $peri(T^{(0)}) = p^{(0)}$

$$\int_{T^{(0)}} f(z)dz = \int_{T^{(1)}} f(z)dz + \int_{T^{(2)}} f(z)dz + \int_{T^{(3)}} f(z)dz + \int_{T^{(4)}} f(z)dz$$

$$|\int_{T^{(0)}} f(z)dz| \le 4|\int_{T^{(j)}} f(z)dz|$$
 (for some $j \in \{1, 2, 3, 4\}$)

Call this $T^{(j)}$ to be $T^{(1)}$ (suppose)

$$diam(T^{(1)}) = \frac{1}{2} diam(T^{(0)})$$

$$d^{(1)} = \frac{d^{(0)}}{2}$$
 and $p^{(1)} = \frac{p^{(0)}}{2}$

Do the same process with $T^{(1)}$ to get $T^{(2)} \Rightarrow |\int_{T^{(1)}} f(z)dz| \leq 4|\int_{T^{(2)}} f(z)dz|$

Continuing,
$$\left| \int_{T^{(0)}} f(z) dz \right| \le 4^n \left| \int_{T^{(n)}} f(z) dz \right|$$

$$d^{(n)} = \frac{d^{(0)}}{2^n}$$
 and $p^{(n)} = \frac{p^{(0)}}{2^n}$

 $\triangle_n = T^{(n)} \cup Int(T^{(n)})$ (Int refers to interior of triangle)

$$\triangle_0 \supseteq \triangle_1 \supseteq \dots \triangle_n \supseteq \dots$$
 (nested compact sets)

 $d^{(n)}$ tends to 0

Therefore,
$$\exists ! z_0 \in \bigcap_{n=0}^{\infty} \triangle_n$$

f is holomorphic at z_0

$$f(z_0 + h) - f(z_0) = hf'(z_0) + h\psi(h) (\lim_{h\to 0} \psi(h) = 0)$$

So,
$$f(z) - f(z_0) = (z - z_0)f'(z_0) + (z - z_0)\psi_1(h)$$
 where $\lim_{z \to z_0} \psi_1(z) = 0$

$$\Rightarrow \int_{T} f(z)dz = \int_{T} f(z_0)dz + \int_{T} (z - z_0)f'(z_0)dz + \int_{T} (z - z_0)\psi_1(z)dz = \int_{T} (z - z_0)\psi_1(z)dz$$

Then,
$$\psi_1(z) = \frac{f(z) - f(z_0)}{z - z_0} - f'(z_0)$$

Let $\sup_{z \in T^{(n)}} |\psi_1(z)| = E_n \ (E_n \to 0 \text{ as} \to \infty)$

$$\left| \int_{T^{(n)}} f(z)dz \right| = \left| \int_{T^{(n)}} (z - z_0) \psi_1(z)dz \right| \le \int_{T^{(n)}} |z - z_0| |\psi_1(z)| dz$$

$$\leq d^{(n)}E_n p^{(n)} = \frac{d^{(0)}p^{(0)}}{4^n}E_n$$

$$\left| \int_{T^{(0)}} f(z)dz \right| \le 4^n \left| \int_{T^{(n)}} f(z)dz \right| \le d^{(0)}p^{(0)}E_n \ (\forall n)$$

Take limit on both sides as $n \to \infty \Rightarrow |\int_{T^{(0)}} f(z) dz| = 0$

Cauchy's Integral Formula for derivatives: Let γ be a simple closed contour and let

 $z_0 \in Int(\gamma)$. If f is holomorphic on and inside γ , then f is infinitely differentiable at any point in $Int(\gamma)$ and

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(z)}{(z - z_0)^{n+1}} dz$$

Proof: For n=0, the conclusion is true (by Cauchy's Integral formula)

Suppose it holds for k = n - 1. Then,

$$f^{(n-1)}(z_0) = \frac{(n-1)!}{2\pi i} \int_{\gamma} \frac{f(z)}{(z-z_0)^n} dz$$

$$\lim_{h \to 0} \frac{f^{n-1}(z_0+h) - f^{n-1}(z_0)}{h}$$

$$\lim_{h \to 0} \frac{(n-1)!}{2\pi i} \int_{\gamma} f(z) \cdot \frac{1}{h} \left[\frac{1}{(z-z_0-h)^n} - \frac{1}{(z-z_0^n)} \right] dz$$

$$\lim_{h \to 0} \frac{(n-1)!}{2\pi i} \int_{\gamma} \frac{f(z)}{(z-z_0-h)(z-z_0)} \left[A^{n-1} + A^{n-2}B + \dots + B^{n-1} \right] \text{ (where)}$$

Cauchy's estimate: Let f be analytic on and inside a simple circle $\gamma: |z-z_0|=r$ and let $|f(z)| \leq M \ \forall z \in \{\gamma\}$. Then,

$$|f^{(n)}(z_0)| \le \frac{n!M}{r^n}$$

Proof:

$$|f^{(n)}(z_0)| \le \frac{n!}{2\pi} \int_{\gamma} |\frac{f(z)}{(z-z_0)}| dz$$

$$\frac{n!}{2\pi} \cdot \frac{M}{r^{n+1}} 2\pi r = \frac{n!M}{r^n}$$

Liouville's theorem: A function which is entire and bounded is a constant function. Proof:

Let f be an entire function with $|f(z)| \leq M \ \forall z \in \mathbb{C}$

 $|f'(z_0)| \leq \frac{M}{R} < \epsilon$, for given $\epsilon > 0$ when R is sufficiently large.

Therefore, $f'(z_0) = 0$

Theorem: Let $\Omega \subseteq \mathbb{C}$ be a domain and let $f \in H(\Omega)$. If D is a disk centered at $z_0 \in \Omega$ such that $\bar{D} \subseteq \Omega$, then f has a power series

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n, \ \forall z \in D$$

where $a_n = \frac{f^{(n)}(z_0)}{n!}, \ \forall n = 0, 1, 2, \dots$

Proof:Fix $z \in D$

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{w - z} dw \ \gamma = \partial D$$

$$\frac{1}{w - z} = \frac{1}{(w - z_0) - (z - z_0)} = \frac{1}{w - z_0} \cdot \frac{1}{1 - \frac{z - z_0}{w - z_0}}$$

 $\exists \in (0,1)$ such that

$$\left| \frac{z - z_0}{w - z_0} \right| < r < 1$$

Prove that for every non-constant polynomial with complex coefficients has a root in C (A continuous function is bounded inside a disk)

Every monic polynomial p(z) with degree $n \ge 1$ has precisely n roots in \mathbb{C} . If the roots are $z_1, z_2 \dots z_n \in \mathbb{C}$, then $p(z) = (z - z_1) \dots (z - z_n)$.