THEORETICAL PART:

Definition (Period of a function):

A function f is said to be **periodic** if there is a positive number p such that

$$f(x+p) = f(x)$$

for all x in the domain of f. The smallest such number p is called the **period** of f.

Identities (Even/Odd Identities):

$$\sin(-x) = -\sin(x), \quad \cos(-x) = \cos(x), \quad \tan(-x) = -\tan(x),$$
$$\csc(-x) = -\csc(x), \quad \sec(-x) = \sec(x), \quad \cot(-x) = -\cot(x)$$

Definition (Amplitude of Sine and Cosine curves):

Given a fixed real number a, the **amplitude** of the function $f(x) = a \sin(x)$ or the function $g(x) = a \cos(x)$ is the value |a|. As we know, the multiplication of $\sin(x)$ or $\cos(x)$ by a stretches (or compresses, if -1 < a < 1) the graph vertically by a factor of |a|, so the amplitude represents the distance between the x-axis and the maximum value of the function.

Definition (Frequency of Sine and Cosine curves):

Given a fixed real number b, the **frequency** of the function $f(x) = \sin(bx)$ or the function $g(x) = \cos(bx)$ is the number $b/2\pi$. When the independent variable represents time, measured in seconds, the measurement of frequency is stated in terms of **cycles per second**, or **hertz (Hz)**.

Definition (Period Revisited):

Given a fixed real number b, the **period** of the function $f(x) = \sin(bx)$ or the function $g(x) = \cos(bx)$ is the number $2\pi/2$. The period and frequency of a sinusoidal function are reciprocals of one another.

Definition (Amplitude, Period, and Phase Shift Combined):

Given constants a, b (such that b > 0), and c, the functions

$$f(x) = a\sin(bx - c), \quad g(x) = a\cos(bx - c)$$

have **amplitude** |a|, **period** $2\pi/2$, and a **phase shift** of c/b. The left endpoint of one cycle of either function is c/b and the right endpoint is $c/b + 2\pi/b$.

Definition (Simple Harmonic Motion):

If an object is oscillating and its displacement from some midpoint at time t can be described by either $f(t) = a \sin(bt)$ or $g(t) = a \cos(bt)$, the object is said to be in **simple harmonic motion** (**SHM**). In both cases, the maximum displacement of the object from its midpoint is the amplitude |a| and its frequency of oscillation is $b/2\pi$.

PRACTICAL PART:

1. Based on graphs of sine and cosine functions and the values of sine and cosine, construct a transformation of cosine that is equal to sine.

$$Sin(x) = cos(x - \frac{\pi}{2})$$

 $cos(\frac{\pi}{2} - \frac{\pi}{2}) = cos(0) = 1$
 $cos(-\frac{\pi}{2} - \frac{\pi}{2}) = cos(-\pi) = -1$

2. Determine the periods of the secant, cosecant, tangent, and cotangent functions.

Sec
$$(x) = \frac{1}{\cos(x)}$$

Sec $(x+2\pi) = \frac{1}{\cos(x+2\pi)} = \frac{1}{\cos(x)} = \sec(x)$
CSC $(x+2\pi) = \csc(x)$
 $\tan(x) = \frac{\sin(x)}{\cos(x)} = \tan(x+\pi) = \tan(x)$
 $\cot(x) = \cot(x) = \cot(x)$

3. Use a cofunction identity and an even/odd identity to prove the transformation statement $\cos\left(x - \frac{\pi}{2}\right) = \sin(x)$ for all x.

$$\cos\left(x - \frac{\pi}{2}\right) = \cos\left(-\left(\frac{\pi}{2} - \infty\right)\right) =$$

$$= \cos\left(\frac{\pi}{2} - x\right) = \sin\left(\infty\right) \quad \text{for all } \infty$$

9 8 7

4. Determine the amplitude and frequency of each of the following functions. Then use your results to sketch the graph of one complete cycle of each function starting at x = 0.

a.
$$f(x) = 3\sin(x/2)$$

b.
$$g(x) = -\frac{1}{2}\cos(2\pi x)$$

(b)
$$|a| = \frac{1}{2}$$

-5 -6 -7 -8

 $f(x) = 3\sin\left(\frac{x}{2}\right)$

-9

5. Sketch the graph of $f(x) = -2\cos(\pi x - \pi)$.

6. A heart rate of 1200 beats per minute (bpm) is typical for a hummingbird. What is the length of the period, in seconds, of such a heart rate?

1200 bpm = 1200.
$$\frac{1}{60} = 20$$
 bps
$$T = \frac{1}{20} = \frac{1}{20} = 0.05(s)$$

7. Sketch the graph of $f(t) = -4e^{-t}\cos(6\pi t)$.

