1. 解答如下:

- a) alpah 为 0.1 时,值函数图像如下:
 - 1. 片段为0:

2. 片段为1:

3. 片段为10:

4. 片段为100:

b) TD 算法的 RMS-error 曲线

1. alpha 为 0.15:

2. alpha 为 0.1:

3. alpha 为 0.05:

c) MC 算法的 RMS-error 曲线: 1. alpha 为 0.15:

2. alpha 为 0.1:

3. alpha 为 0.05:

d) TD 算法收敛速度稍慢,但是收敛稳定。MC 收敛伴随着巨大的方差,alpha 越大结果越差。 2. TD 优化:

a) SARSA 回报值变化:

最终策略如下:

→	→	-	t	-	-	-	-	→	-	-	-
-	→	t	→	t	t	-	t	†	1	-	1
1	-	-	t	t	t	t	t	t	t	-	1
t	Cliff									final	

b) Q-learning 回报值变化:

最终策略如下

-	←	-	ţ	1	ţ	-	İ	İ	-	ţ	ı
1	→	1	-	-	-	-	-	1	1	→	1
-	-	-	-	-	-	-	-	→	-	-	1
t	cliff									final	

d) Q 学习回报值更大,并且收敛到了最优策略。因为 Q 学习的目标策略采用的是贪婪的策略函数,在训练过程中方差更小,减少了不必要的随机性,收敛性更好。