Kategorisieren der Marsoberfläche durch Unsupervised Learning by Backpropagation

Merlin Scholz merlin.scholz@tu-dortmund.de

20. November 2019

TU Dortmund

Motivation

Verwandte Arbeiten

Vorgehensweise

Referenzen

Motivation: Neuronale Netze zur Bildsegmentierung

- Neuronale Netzwerke werden oft zur Bildsegmentierung genutzt
- Voraussetzung: Manuell erstellte Ground Truth um das Netzwerk zu trainieren

Abbildung 1: Beispiel: CityScapes Dataset[1]

Motivation: (Fehlende) Ground Truths

Ground Truth nicht immer vorhanden: Beispiel Marsoberfläche

- Zu großer Datensatz
- Notwendigkeit von Experten
- \Rightarrow Manuelle Erstellung nicht kostengünstig oder zeiteffizient möglich

Lösungsansatz:

Anfangs zufällige Klassifizierung durch Segmentierungsalgorithmus weiter optimieren

Verwandte Arbeiten: Segmentierung nach Kanezaki[2]

Asako Kanezaki; Unsupervised Image Segmentation by Backpropagation[2]:

- Unüberwachtes Lernen der Segmentierung
- Anfangs zufällige Ergebnisse werden mit Clusteringalgorithmus vereint
- Zielfunktion: Softmax-Loss zwischen Ergebnis des NN und des optimierten Ergebnisses
- NN wird auf diese Zielfunktion hin optimiert (Backpropagation)

Abbildung 2: Vorgehensweise nach Kanezaki[2]

Referenzen

[1] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele. **The cityscapes dataset for semantic urban scene understanding.**

In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.

[2] A. Kanezaki.

Unsupervised image segmentation by backpropagation.

In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2018.