Minería de Datos IIC2433

Clasificación automática y evaluación de clasificadores Vicente Domínguez

Basado en diapositivas del prof. Denis Parra

¿Qué veremos esta clase?

- Clasificación
- Evaluación de clasificadores

Aprendizaje de máquina

(Machine Learning)

Darle a los computadores la habilidad de realizar una actividad, sin programarlos explícitamente.

*La **minería de datos** y el **aprendizaje de máquina** se traslapan y no tienen límites claros

Aprendizaje de máquina

Tipos de tareas

- Aprendizaje supervisado
 - Clasificación
 - Regresión
- Aprendizaje no supervisado
 - Clustering
 - Aprendizaje por refuerzo
 - o etc

Aprendizaje supervisado

Clasificación

Tarea para el computador:

Decir si en una foto hay un perro o un gato

Aprendizaje supervisado

Clasificación

Conjunto de entrenamiento etiquedo

Aprendizaje supervisado

Clasificación

¿Qué es eso?

Aprendizaje **no supervisado**Clustering

Tarea para el computador:

Identificar grupos de elementos similares

Aprendizaje no supervisado

Clustering

Conjunto de datos **no etiquetados**

Aprendizaje de máquina

Tipos de tareas

- Aprendizaje supervisado (necesita etiquetas)
 - Clasificación
 - Regresión
- Aprendizaje no supervisado (no necesita etiquetas)
 - Clustering
 - Aprendizaje por refuerzo
 - o etc

1. Etapa de entrenamiento

Conjunto de entrenamiento

Algoritmo de clasificación

Clasificador entrenado

Dato	Etiqueta
	Gato
	Perro
	Perro

Gato

Gato

Perro

- Árboles de decisión
- Naïve Bayes
- KNN
- SVM
- etc...

2. Etapa de clasificación

Datos no etiquetados

Clasificador entrenado

Clases (Etiquetas)

Dato	Etiqueta
	?
	?
	?
	?
راک	?
	?

que obtuvimos en la etapa 1

Dato	Etiqueta
*	Perro
	Gato
	Perro
	Gato
777	Gato
	Perro

Evaluación

Consideremos este resultado de clasificación:

Evaluación

Consideremos este resultado de clasificación:

Lamentablemente, los clasificadores a veces se equivocan... por esto debemos evaluar su desempeño

Evaluación: Hold out

1. Dividimos el conjunto etiquetado en dos:

Datos etiquetados			
Dato	Etiqueta		
	Gato		
	Perro		
	Perro		
	Gato		
	Gato		
	Perro		

Set de entrenamiento		
Dato	Etiqueta	
	Gato	
	Perro	
	Perro	

Set de test			
Dato	Etiqueta		
	Gato		
	Gato		
	Perro		

Evaluación: Hold out

2. Entrenamos un clasificador usando el set de entrenamiento

Evaluación: Hold out

3. Usamos el clasificador entrenado para clasificar los datos del set de test

Evaluación: Hold out

4. Comparamos las etiquetas reales con las etiquetas predichas por el clasificador. A partir de esto calculamos **métricas**.

Dato	Etiqueta real	Etiqueta predicha	
	Gato	Gato	
	Gato	Perro	
	Perro	Perro	

Dato Etiqueta real		Etiqueta predicha		
	Gato	Gato		
	Gato	Perro		
	Perro	Perro		

		Predicho	
		Perro	Gato
<u>a</u>	Perro		
Real	Gato		

Dato	Etiqueta real	Etiqueta predicha		
	Gato	Gato		
	Gato	Perro		
	Perro	Perro		

		Predicho		
		Perro	Gato	
Real	Perro	1	0	
	Gato	1	1	

		Predicho				
		Perro	Gato	Mono	Tortuga	Elefante
	Perro	31	5	0	0	0
	Gato	2	42	0	1	0
Real	Mono	0	0	45	0	0
	Tortuga	0	0	1	23	0
	Elefante	0	0	0	0	15

Evaluación: Matriz de confusión

En algunos casos tenemos una clase que llamamos **positiva** y otra **negativa**

Dato	Etiqueta real	Etiqueta predicha
Examen 1	+	+
Examen 2	+	+
Examen 3	-	+
Examen 4	_	-
Examen 5	-	+

		Predicho		
		Positivo	Negativo	
<u>a</u>	Positivo	2	0	
Real	Negativo	2	1	

		Predicho		
		Positivo	Negativo	
_e	Positivo	Verdadero positivo	Falso negativo	
Real	Negativo	Falsos positivos	Verdadero negativo	

Evaluación: Accuracy (Exactitud)

Porcentaje de elementos datos correctamente clasificados

$$accuracy = n^{\circ} datos bien clasificados$$

 $n^{\circ} datos total$

		Predicho				
		Perro	Gato	Mono	Tortu ga	Elefan te
	Perro	31	5	0	0	0
	Gato	2	42	0	1	0
Real	Mono	0	0	45	0	0
X	Tortu ga	0	0	1	23	0
	Elefan te	0	0	0	0	15

Evaluación: Accuracy (Exactitud)

Porcentaje de elementos datos correctamente clasificados

$$accuracy = n^{\circ} datos bien clasificados$$

 $n^{\circ} datos total$

		Predicho		
		Positivo	Negativo	
sal	Positivo	Verdadero positivo	Falso negativo	
Real	Negativo	Falsos positivos	Verdadero negativo	

$$accuracy = \frac{VP + VN}{total}$$

Evaluación: Accuracy (Exactitud)

¿Qué ocurre con clases no balanceadas?

Evaluación: Precision (Precisión)

Porcentaje de elementos clasificados como una clase que realmente corresponden a la clase

Precision (clase X) = n° datos **bien** clasificados de la clase X n° total datos clasificados en la clase X

			Predicho			
		Perro	Gato	Mono	Tortu ga	Elefan te
	Perro	31	5	0	0	0
	Gato	2	42	0	1	0
Real	Mono	0	0	45	0	0
X	Tortu ga	0	0	1	23	0
	Elefan te	0	0	0	0	15

Evaluación: Precision (Precisión)

Porcentaje de elementos clasificados como una clase que realmente corresponden a la clase

Precision (clase positiva) = n° datos bien clasificados como positivos n° total datos clasificados como positivos

		Predicho		
		Positivo	Negativo	
sal	Positivo	Verdadero positivo	Falso negativo	
Real	Negativo	Falsos positivos	Verdadero negativo	

$$precision (clase pos) = \frac{VP}{VP + FP}$$

Evaluación: Recall (Exhaustividad)

Porcentaje de elementos de una clase (real) que fueron bien clasificados

Recall (clase X) = n° datos **bien** clasificados de la clase X n° total datos que pertenecen a la clase X

		Predicho				
		Perro	Gato	Mono	Tortu ga	Elefan te
	Perro	31	5	0	0	0
	Gato	2	42	0	1	0
Real	Mono	0	0	45	0	0
X	Tortu ga	0	0	1	23	0
	Elefan te	0	0	0	0	15

Evaluación: Recall (Exhaustividad)

Porcentaje de elementos de una clase (real) que fueron bien clasificados

Recall (clase pos) = n° datos **bien** clasificados como positivos n° datos realmente positivos

		Predicho		
		Positivo	Negativo	
al	Positivo	Verdadero positivo	Falso negativo	
Real	Negativo	Falsos positivos	Verdadero negativo	

recall (clase pos) =

Otras métricas

• F1-score
$$2 \cdot \frac{precision \cdot recall}{precision + recall}$$

• True positive rate
$$\frac{\nabla p}{\nabla p + fn}$$

• True negative rate
$$\frac{vn}{fp + vn}$$

• False positive rate
$$\frac{fp}{fp + vn}$$

• False negative rate
$$\frac{fn}{vp+fn}$$

Recordemos evaluación "Hold out"

1. Dividimos el conjunto etiquetado en dos:

Datos etiquetados			
Dato	Etiqueta		
	Gato		
	Perro		
	Perro		
	Gato		
	Gato		
	Perro		

Set de entrenamiento			
Dato	Etiqueta		
	Gato		
	Perro		
	Perro		

Set de test			
Dato	Etiqueta		
	Gato		
	Gato		
	Perro		

(K-fold Cross Validation)

Dividimos el conjunto en **K** conjuntos de igual tamaño

1. Supongamos **K** = 3

Datos etiquetados	
Dato	Etiqueta
	Gato
	Perro
	Perro
	Gato
	Gato
	Perro

Set 1	
Dato	Etiqueta
	Gato
	Perro

Set 2	
Dato	Etiqueta
	Perro
	Gato

Set 3	
Dato	Etiqueta
	Gato
	Perro

(K-fold Cross Validation)

2. Entrenamos con **set 2** y **set 3**, testeamos con **set 1**

Set 1 (test)		
Dato	Etiqueta	
	Gato	
	Perro	

Set 2 (entrenamiento)	
Dato Etiqueta	
	Perro
	Gato

Set 3 (entrenamiento)	
Dato	Etiqueta
	Gato
	Perro

Dataset		
Dato	Real	Predicha
	Gato	Gato
	Perro	Perro
	Perro	
	Gato	
	Gato	
	Perro	

(K-fold Cross Validation)

2. Entrenamos con **set 2** y **set 3**, testeamos con **set 1**

Set 1 (entrenamiento)		
Dato	Etiqueta	
	Gato	
	Perro	

Set 2 (test)	
Dato	Etiqueta
	Perro
To Be	Gato

Set 3 (entrenamiento)	
Dato	Etiqueta
	Gato
	Perro

Dataset		
Dato	Real	Predicha
	Gato	Gato
	Perro	Perro
	Perro	Perro
	Gato	Gato
	Gato	
	Perro	

(K-fold Cross Validation)

2. Entrenamos con **set 2** y **set 3**, testeamos con **set 1**

Set 1 (entrenamiento)		
Dato	Etiqueta	
	Gato	
	Perro	

Set 2 (entrenamiento)		
Dato	Etiqueta	
	Perro	
To the second	Gato	

Set 3 (test)		
Dato	Etiqueta	
	Gato	
	Perro	

Dataset				
Dato	Real	Predicha		
	Gato	Gato		
	Perro	Perro		
	Perro	Perro		
	Gato	Gato		
	Gato	Gato		
(A)	Perro	Perro		