Функциональный анализ — задачи

Рудин — Глава 11. 2. 3. Рудин — Глава 2. Полнота 1. 2. 3. 4. 5. 6. 7. 8. 9. X, Y, Z банаховы, $B \colon X \times Y \to Z$ непрерывное билинейное. Докажем: $||B(x,y)|| \le M||x||||y||.$ Во-первых, заметим, что для каждого $x \in X$ линейное отображение

y.

 $l_x: Y \to Z$, определяемое $l_x(y) = B(x,y)$, непрерывно. Действительно, оно непрерывно по совокупности переменных, значит, и по одной

Во-вторых, отображение F_B из X в банахово пространство непрерывных линейных операторов из Y в Z, заданное формулой

$$F_B(x) = l_x,$$

ограничено. Действительно, покажем, что существует M такое, что если $\|x\| \le 1$, то

$$||F_B(x)|| = ||l_x|| \le M.$$

Из непрерывности B следует, что найдутся $\delta_1, \delta_2 > 0$ такие, что $\|B(x,y)\| < 1$, как только $\|x\| < \delta_1, \|y\| < \delta_2$. Отсюда, ясно, вытекает, что $\|B(x,y)\| \le C$ при $\|x\| \le 1, \|y\| \le 1$. Рассмотрим семейство операторов l_x при всех x, таких, что $\|x\| \le 1$. Значения этих операторов в каждой точке $y \in Y$ ограничены:

$$||l_x(y)|| = ||B(x,y)|| \le C||y||.$$

А значит, по теореме Банаха-Штейнгауза нормы всех этих операторов ограничены одним числом:

$$||l_x|| \le M, ||x|| \le 1.$$

А это и означает, что оператор F_B ограничен: $\|F_B\| \leq M$. Значит, имеем

$$||l_x|| \le M||x||, ||B(x,y)|| = ||l_x(y)|| \le ||l_x|| ||y|| \le M||x|| ||y||.$$

10.

3 Халмош

1.

2. Координатное доказательство леммы Рисса. Пусть l — непрерывный линейный функционал на H, его норма k. Пусть $c_i = l(e_i)$. Тогда

$$l(a_1e_1 + \ldots + a_ne_n) = a_1c_1 + \ldots + a_nc_n.$$

Нам надо показать, что $\sum\limits_{k}|c_{k}|^{2}<\infty$. Для этого оценим

$$|c_1|^2 + \ldots + |c_n|^2$$
.

Из неравенства $\|l\| \leq K$ следует

$$|a_1c_1 + \ldots + a_nc_n| \le K\sqrt{|a_1|^2 + \ldots + |a_n|^2}.$$

Это что-то похожее на неравенство Коши-Буняковского, и левая часть максимальна при $a_i=c_i^*$. Подставляя $a_i=c_i^*$, получаем

$$\sqrt{|c_1|^2 + \ldots + |c_n|^2} \le K.$$

Вот и всё.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20. Элементарное доказательство теоремы Банаха-Штейнгауза.

Пусть есть совокупность линейных непрерывных операторов A_{α} на гильбертовом пространстве H, которая не ограничена по норме, но ограничена на каждом векторе. Построим вектор, на котором она неограничена, и тем самым получим противоречие. Построим по индукции последовательности $A_n \in \{A_{\alpha}\}, f_n \in H$ с такими свойствами:

(a)
$$||f_n|| = m_n = \frac{1}{2^n(1+\max(||A_1||,...,||A_{n-1}||))};$$

(b)
$$||A_n f_n|| \ge 2^n + ||A_n (f_1 + \ldots + f_{n-1})||$$
.

Такой A_n существует, ибо множество $\{\|A_{\alpha}(f_1+\ldots+f_{n-1})\|\}$ ограничено, и, таким образом, правая часть

$$2^{n} + ||A_{\alpha}(f_{1} + \ldots + f_{n-1})||$$

ограничена (при фиксированном n), а левая часть

$$\sup_{\|f\|=m_n} \|A_{\alpha}f\|$$

неограничена в силу неограниченности норм A_{α} .

Имеем:

(a) Ряд
$$\sum_{n} f_n$$
 сходится, ибо $||f_n|| \leq \frac{1}{2^n}$. Пусть $f = \sum_{n} f_n$.

(b) При k > 0 имеем

$$||A_n f_{n+k}|| \le ||A_n|| ||f_{n+k}|| \le \frac{1}{2^{n+k}}.$$

Здесь мы воспользовались неравенством

$$||f_{n+k}|| = m_{n+k} \le \frac{1}{2^{n+k}||A_n||},$$

случай $A_n = 0$ нужно рассмотреть отдельно, но и в нём всё получается. Отсюда, учитывая непрерывность оператора A_n ,

$$||A_n \sum_{k=n+1}^{\infty} f_k|| \le \sum_{k=n+1}^{\infty} ||A_n f_k|| \le \frac{1}{2^n}.$$

Итак,

$$||A_n(f_1 + \ldots + f_n)|| \ge 2^n, ||A_n \sum_{k=n+1}^{\infty} f_k|| \le \frac{1}{2^n}.$$

В итоге,

$$||A_n f|| \ge 2^n - \frac{1}{2^n}.$$

Итак, множество $\{A_nf\}_{n=1}^{\infty}$ неограничено.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41. Нужно элементарное доказательство теоремы Банаха об обратном операторе. $A\colon H\to K$ взаимно однозначный. Надо показать, что он ограничен снизу.

Я пробовал сначала построить последовательность векторов в H, которая по норме стремится к бесконечности, но образы которой сходятся (в K). Конечно, такую последовательность построить можно, но это ничего не даёт.

Идея нашлась, когда я стал плясать не от оператора A, а от оператора A^{-1} . Всё сразу сводится к применению теоремы Банаха-Штейнгауза. Мы выбираем ортонормированный базис e_1, e_2, \ldots в H и определяем операторы $B_n \colon K \to H$ таким образом: B_n переводит вектор $z \in K$ в проекцию вектора $A^{-1}z$ на линейную оболочку e_1, \ldots, e_n . Так мы получаем совокупность линейных операторов $\{B_n\}$, которая ограничена на каждом векторе. Значит, она и вообще ограничена:

$$||B_n z|| \le C||z|| \ \forall n \forall z \in K.$$

Тогда в силу сходимости $B_n z \to A^{-1} z, n \to \infty$ получаем

$$||A^{-1}z|| \le C||z|| \ \forall z \in K.$$

Но это рассуждение неполное. Мы не показали, что B_n являются ограниченными операторами. На самом деле, это непонятно как показывать.

4 Пирковский

- 1. Задача о функциональном исчислении.
 - 1.1. Условие $M \supset \{\lambda_1, \dots, \lambda_n\}$ необходимо для разрешимости задачи функционального исчисления с A = F(M). Допустим, $\lambda_k \notin M$. Нам нужно показать, что не существует гомоморфизма из алгебры всех функций на M в алгебру операторов, который переводит многочлены куда надо. Допустим, такой гомоморфизм γ_A существует. Имеем

$$\gamma_A(\lambda_k - t)\gamma_A\left(\frac{1}{\lambda_k - t}\right) = \gamma_A(1) = 1_E,$$

$$(\lambda_k - A)\gamma_A \left(\frac{1}{\lambda_k - t}\right) = 1_E.$$

Но оператор $\lambda_k - A$ необратим. Противоречие.

$$T = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

1) Не существует оператора S с $S^2=T$. Допустим, $S^2=T$. Тогда $\ker S$ — это не всё \mathbb{C}^2 и не 0 (в первом случае оператор S был бы нулевым, во втором невырожденным, и оба этих случая противоречат равенству $S^2=T$). Значит, $\ker S$ одномерно. Аналогично, $\operatorname{Im} S$ одномерно. Если $\ker S=\operatorname{Im} S$, то $S^2=0$, противоречие. Значит, $\ker S$ и $\operatorname{Im} S$ — это разные одномерные подпространства \mathbb{C}^2 . Пусть $v\in\operatorname{Im} S$ — ненулевой вектор. Тогда Sv — ненулевой вектор и $Sv\in\operatorname{Im} S$. Отсюда получаем

$$Sv = \alpha v, \alpha \neq 0.$$

Но тогда

$$S^4v = \alpha^4v \neq 0.$$

Однако $S^4 = T^2 = 0$. Противоречие.

Есть и другой, более алгебраический, способ это доказывать. У оператора S есть характеристический многочлен p второй степени:

$$p(S) = 0.$$

С другой стороны, $S^4 = T^2 = 0$. Поделив над полем $\mathbb C$ многочлен t^4 с остатком на p(t), получим два случая

- В остатке получается некоторый ненулевой многочлен степени не выше первой. Тогда S пропорционален единичному оператору. Это протииворечит равенству $S^2 = T$.
- Многочлен t^4 делится на p(t) нацело. Это может быть, только если $p(t)=t^2$. Но тогда $S^2=0$, что противоречит равенству $S^2=T$.
- 2) То же самое верно для любого $n \geq 2$: не существует S со свойством $S^n = T$. Для этого можно доказать более общее утверждение: если $S \colon \mathbb{C}^2 \to \mathbb{C}^2$ нильпотентен, $S^n = 0$, то $S^2 = 0$. Оба способа доказательства из предыдущего пункта тривиально обобщаются.
- 3) Для $A = C(\mathbb{R})$ задача построения функционального исчисления от оператора T неразрешима. Действительно, иначе имеем

$$\gamma_A(\sqrt[3]{t})^3 = \gamma_A(t) = T.$$

Это противоречит пункту 2).

1.3. 1) Для $f \in C^1(U)$ положим

$$\gamma_A(f) = f(0) + f'(0)T.$$

Имеем

$$\gamma_A(fg) = f(0)g(0) + (f(0)g'(0) + f'(0)g(0))T =$$

$$= (f(0) + f'(0)T)(g(0) + g'(0)T) = \gamma_A(f)\gamma_A(g)$$

в силу $T^2 = 0$.

2) Перейдём в базис, в котором наш оператор T представляется в жорданово форме. Тогда в этом базисе T=D+N, где D диагональный, $N^n=0$, и вдобавок D и N коммутируют. Положим для $f\in C^{n-1}(U)$

$$f(T) = f(D) + f'(D)N + \dots + \frac{f^{(n-1)}(D)}{(n-1)!}N^{n-1}.$$

Здесь $f^{(k)}(D)$ определяются как обычно для диагонального оператора. Легко проверить, что

$$(fg)(T) = f(T)g(T).$$

Вот и построили функциональное исчисление.

- 2. Спектр.
 - 2.1. У обратимого элемента есть илшь один обратный. Допустим, у элемента a два обратных, b и c. Имеем

$$ab = ba = 1$$
, $ac = ca = 1$.

Тогда

$$c = 1 \times c = (ba)c = b(ac) = b.$$

2.2. 1) a обратим слева. a_l^{-1} не обязательно единственно. Например, рассмотрим l_2 и алгебру всех ограниченных линейных операторов на нём. Пусть оператор a действует сдвигом:

$$a(x_0, x_1, x_2, \ldots) = (0, x_0, x_1, x_2, \ldots).$$

Тогда любой оператор $b_{\alpha}, \alpha \in \mathbb{C}$ вида

$$b_{\alpha}(x_0, x_1, x_2, \ldots) = (\alpha x_0 + x_1, x_2, x_3, \ldots)$$

является левым обратным для a:

$$b_{\alpha}a=1.$$

2) Если а обратим слева и справа, то он обратим.

$$a_r^{-1} = (a_l^{-1}a)a_r^{-1} = a_l^{-1}(aa_r^{-1}) = a_l^{-1}.$$

Итак, $a_r^{-1} = a_l^{-1}$, и всё ясно.

- 3) Если A конечномерна и $a \in A$ обратим слева, то он обратим. Для любого элемента $b \in A$, bA— это линейное подпространство в A. Это подпространство совпадает с A тогда и только тогда, когда его размерность равна размерности A. Наш a обратим слева. Пусть h— левый обратный для a. Если размерность aA меньше размерности A, то размерность haA тем более не выше. Но этого быть не может, так как haA = A. Значит, aA = A. Итак, в виде ax можно представить любой элемент A, поскольку aA = A. Тогда существует $y \in A$, такое, что ay = 1. Значит, у a есть и правый обратный. По предыдущему пункту, a обратим.
- 4) Для произвольной алгебры A это неверно, пример тот же, что в пункте 1). Там оператор a имеет левый обратный, но правого обратного не имеет.
- 2.3. Для произвольного нормированного пространства из биективности не следует обратимость. Возьмём в роли E подпространство l_2 , состоящее из всех финитных последовательностей

$$(x_1,\ldots,x_m,0,0,\ldots).$$

На этом пространстве оператор A, заданный равенством

$$A(x_1,\ldots,x_m,0,0,\ldots)=(x_1,x_2/2,x_3/3,\ldots,x_m/m,0,0,\ldots)$$

ограничен и биективен, но необратим. Его обратный в теоретикомножественном смысле неограничен.