Prova in Itinere di Comunicazioni Numeriche - Fila A

31 Maggio 2018

Es. 1 - Sia dato un processo stazionario W(t) bianco in banda B, cioè con densità spettrale di potenza pari a $S_W(f) = \frac{N_0}{2} \mathrm{rect}\left(\frac{f}{2B}\right)$. Il processo W(t) costituisce l'ingresso di un sistema LTI con risposta impulsiva $h(t) = \left[\delta\left(t\right) + \delta\left(t - 2T\right)\right]/2$. 1) Si calcolino: 1) modulo e fase della risposta in frequenza del sistema LTI e se ne facciano i grafici; 2) la potenza del processo W(t); 3) densità spettrale di potenza, correlazione e potenza del processo all'uscita del sistema LTI.

Es. 2 - Si consideri il sistema in Figura 1. Sia $x(t) = 3B \text{sinc}\left(\frac{3B}{2}t\right) - \frac{B}{2} \text{sinc}\left(\frac{B}{2}t\right)$, h(t) un filtro passabasso ideale di banda $B \in p(t) = 2B \text{sinc}(2Bt)$. Il campionatore campiona il segnale y(t) con passo di campionamento $T = \frac{1}{B}$. Calcolare: 1) l'espressione analitica del segnale y(t); 2) dire se la sequenza y[n] è ottenuta campionando alla frequenza di Nyquist; 3) calcolare l'epressione analitica di z(t); 4) calcolare energia e potenza di z(t).

Figura 1

Es. 3 -In un sistema di comunicazione numerico in banda passante il segnale trasmesso è $s(t) = \sum_k x [k] p(t-kT) \cos(2\pi f_0 t)$, con $f_0 \gg \frac{1}{T}$, dove i simboli x[k] sono indipendenti e appartengono all'alfabeto $A = \{-2, +2\}$ con probabilita' a priori $P(-1) = \frac{3}{4}$ e $P(3) = \frac{1}{4}$, e $p(t) = B \text{sinc} \left[2B\left(t-\frac{1}{4B}\right)\right] + B \text{sinc} \left[2B\left(t+\frac{1}{4B}\right)\right]$, con $T = \frac{1}{B}$. La risposta impulsiva del canale è $c(t) = \delta(t)$. Il canale introduce anche rumore w(t) Gaussiano additivo bianco in banda la cui densità spettrale di potenza è $S_W(f) = \frac{N_0}{2} \left[\text{rect}\left(\frac{f-f_0}{2/T}\right) + \text{rect}\left(\frac{f+f_0}{2/T}\right)\right]$. Il segnale ricevuto r(t) è in ingresso al ricevitore in Figura 1. La risposta impulsiva del filtro in ricezione è quella del filtro adattato. Il segnale in uscita al filtro in ricezione è campionato con passo di campionamento T e i campioni costituiscono l'ingresso del decisore che ha soglia di decisione pari a λ =0. Determinare: 1) L'energia media per simbolo trasmesso, 2) Verificare se è soddisfatta la condizione di Nyquist, 3) Calcolare la probabilità di errore sul bit, $P_E(b)$, 4) Determinare il valore di θ per cui si hanno le prestazioni migliori in termini di $P_E(b)$.

Figura 2

Es. 4 - Si dimostri che il sistema caratterizzato dall'equazione y(t) = |x(t) + 2| non è lineare, è tempo-invariante e gode di stabilità BIBO.

Es. 5 - Dire qual'e la condizione per l'assenza di cross-talk in una QAM e dimostrare il perche'.