

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 – Prima prova intermedia 19 aprile 2010

Esercizio 1

Al ristorante Socari due primi, due secondi, tre dolci e quattro coperti costano non meno di quattro cene complete (primo, secondo, dolce e coperto) alla trattoria Mabbuffo. Tre primi, tre secondi, due dolci e tre coperti del Socari costano non più di sei primi, cinque secondi, un dolce e cinque coperti del Mabbuffo. Sapendo che un primo al Socari costa 20 euro, si vuole determinare il minimo costo di una cena completa al Mabbuffo.

- 1. Formulare il problema di PL motivando le proprie scelte
- 2. Impostare il problema duale
- 3. Risolvere il duale con il metodo grafico. Se ha più di 2 variabili proiettare quelle in eccesso con il metodo di Fourier Motzkin.
- 4. Trovare la soluzione ottima del primale con le condizioni di ortogonalità.

Soluzione

Per formulare questo problema scegliamo come variabili i prezzi di ogni portata per ciascun ristorante:

```
ss = costo del secondo al Socari
ds = costo del dolce al Socari
cs = costo del coperto al Socari
pm = costo del primo al Mabuffo
sm = costo del secondo al Mabuffo
dm = costo del dolce al Mabuffo
cm = costo del coperto al Mabuffo
```

I vincoli da considerare sono: 40+2ss+3ds+4cs >= 4(pm+sm+dm+cm) 60+3ss+2ds+3cs <= 6pm+5sm+dm+5cm Ss,ds,cs,pm,sm,dm,cm >= 0

```
Il modello è pertanto:

min pm + sm + dm + cm

\begin{cases} 4pm + 4sm + 4dm + 4cm - 2ss - 3ds - 4cs \le 40 \\ 6pm + 5sm + dm + 5cm - 3ss - 2ds - 3cs \ge 60 \\ pm, sm, dm, cm, ss, ds, cs \ge 0 \end{cases}
```

$$\begin{array}{lll} \max & 40u_1 + 60u_2 \\ pm : \left\{ 4u_1 + 6u_2 \leq 1 \\ sm : & 4u_1 + 5u_2 \leq 1 \\ dm : & 4u_1 + u_2 \leq 1 \\ cm : & 4u_1 + 5u_2 \leq 1 \\ ss : & -2u_1 - 3u_2 \leq 0 \\ ds : & -3u_1 - 2u_2 \leq 0 \\ cs : & -4u_1 - 3u_2 \leq 0 \\ u_1 \leq 0 & u_2 \geq 0 \end{array} \right.$$

che soddisfa con la disuguaglianza stretta il secondo, terzo, quarto, quinto e settimo vincolo duale. Dalle condizioni di ortogonalità segue che all'ottimo il primale deve avere:

$$sm^*, dm^*, cm^*, ss^*, cs^* = 0$$
 e i due vincoli primali soddisfatti all'uguale:
$$\begin{cases} 4pm - 3ds = 40 \\ 6pm - 2ds = 60 \\ pm, ds \ge 0 \end{cases}$$

Ne segue la soluzione primale $\binom{pm^*}{ds^*} = \binom{10}{0}$ che è ammissibile e soddisfa le condizioni di ortogonalità (ed è quindi ottima).

Esercizio 2

È dato il problema di PL in figura.

- 1. Portare il problema in forma standard.
- 2. Utilizzando l'algoritmo del simplesso rivisto (fase 1 e fase 2) trovare una soluzione ottima del problema o dimostrare che il problema è impossibile o illimitato inferiormente. Applicare la regola di Bland.

$$\max \quad 3x_1 + 2x_2 - x_3$$

$$\begin{cases} 2x_1 + 3x_2 - x_3 + x_4 = 5\\ x_1 + 2x_2 + x_4 = 4\\ x_1 - 2x_3 - x_4 = -2\\ x_1 \quad libera\\ x_2, x_3, x_4 \ge 0 \end{cases}$$

Soluzione

Portiamo il problema in forma standard (cambiando segno all'ultimo vincolo per evitare termini noti negativi):

$$\min \quad -3x_1^+ + 3x_1^- - 2x_2 + x_3$$

$$\begin{cases} 2x_1^+ - 2x_1^- + 3x_2 - x_3 + x_4 = 5 \\ x_1^+ - x_1^- + 2x_2 + x_4 = 4 \\ -x_1^+ + x_1^- + 2x_3 + x_4 = 2 \\ x_1^+, x_1^-, x_2, x_3, x_4 \ge 0 \end{cases}$$

Fase 1: problema artificiale:

$$\begin{aligned} & \min \quad y_1 + y_2 + y_3 \\ & \begin{cases} 2x_1^+ - 2x_1^- + 3x_2 - x_3 + x_4 + y_1 = 5 \\ x_1^+ - x_1^- + 2x_2 & + x_4 + y_2 = 4 \\ -x_1^+ + x_1^- & + 2x_3 + x_4 + y_3 = 2 \\ x_1^+, x_1^-, x_2, x_3, x_4, y_1, y_2, y_3 \ge 0 \end{aligned}$$

Fase 2: la soluzione ottima è
$$x^* = \begin{pmatrix} 4 \\ 0 \\ 3 \\ 0 \end{pmatrix}$$

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 – Prima prova intermedia 19 aprile 2010

Esercizio 1

Un grappolo d'uva ha 20 acini, due grappoli d'uva non pesano meno di 3 mele, tre grappoli d'uva non pesano più di 8 mele. Disponete di una bilancia a due piatti. Sapendo che le mele sono identiche, così come gli acini, si vuole determinare il minimo modulo della differenza tra il numero di acini d'uva che è necessario aggiungere alle 3 mele e quello da aggiungere ai 3 grappoli d'uva per avere i due piatti della bilancia in equilibrio nelle due pesate.

- 5. Formulare il problema di PL motivando le proprie scelte
- 6. Risolverlo con il metodo di Fourier Motzkin
- 7. Impostare il problema duale
- 8. Trovare la soluzione ottima del duale con le condizioni di ortogonalità.

Soluzione

Per formulare questo problema scegliamo come variabili il numero x_1 di acini da aggiungere alle 3 mele, il numero x_2 di acini da aggiungere ai 3 grappoli d'uva ed il peso x_3 di una mela espresso in acini.

I vincoli da considerare derivano dalle due pesate:

$$40 = 3m + x_1$$

$$60 + x_2 = 8m$$

$$x, m \ge 0$$

Il modello è pertanto:

min
$$|x_1 - x_2|$$

 $\begin{cases} 3m + x_1 = 40 \\ 8m - x_2 = 60 \\ x, m \ge 0 \end{cases}$ che linearizzato diventa:
$$\begin{cases} z - x_1 + x_2 \ge 0 \\ z + x_1 - x_2 \ge 0 \\ 3m + x_1 = 40 \\ 8m - x_2 = 60 \\ x, m \ge 0 \end{cases}$$

$$\begin{bmatrix} x, m \ge 0 \\ \\ m^* \\ x_1^* \\ x_2^* \end{bmatrix} = \begin{bmatrix} 0 \\ 100/11 \\ 140/11 \\ 140/11 \end{bmatrix}$$
Risolvendo con F.M. si ottiene la soluzione ottima

$$\begin{array}{l} \max \quad 40u_3 + 60u_4 \\ z \colon \left[u_1 + u_2 = 1 \\ m \colon 3u_3 + 8u_4 \leq 0 \right. \\ x_1 \colon \left[-u_1 + u_2 + u_3 \leq 0 \right. \\ x_2 \colon \left[+u_1 - u_2 - u_4 \leq 0 \right. \right] \ \, \text{le condizioni di ortogonalità impongono} \, -u_1 + u_2 + u_3 = 0 \,\, \text{per trovare} \\ u_1 \geq 0 \\ u_2 \geq 0 \\ u_3 \, libera \\ u_4 \, libera \\ \end{array}$$

una soluzione duale ammissibile utilizziamo le condizioni di ortogonalità ed il primo vincolo duale, arrivando ad un sistema 4x4.

$$\begin{cases} u_1 + u_2 = 1 \\ 3u_3 + 8u_4 = 0 \\ -u_1 + u_2 + u_3 = 0 \\ +u_1 - u_2 - u_4 = 0 \end{cases}$$
 che ha soluzione
$$\begin{pmatrix} u_1^* \\ u_2^* \\ u_3^* \\ u_4^* \end{pmatrix} = \begin{pmatrix} 0,5 \\ 0,5 \\ 0 \\ 0 \end{pmatrix}$$
 ammissibile duale (e quindi ottima)

Esercizio 2

È dato il problema di PL in figura.

- 1. Portare il problema in forma standard.
- 2. Utilizzando l'algoritmo del simplesso rivisto (fase 1 e fase 2) trovare una soluzione ottima del problema o dimostrare che il problema è impossibile o illimitato inferiormente. Applicare la regola di Bland.

$$\min \quad 4x_1 + x_2 + 3x_4$$

$$\begin{cases} x_2 - x_3 + 4x_4 = 6 \\ x_1 + x_2 + 2x_4 = 2 \\ 2x_1 + x_3 - x_4 \ge -5 \\ x_1 \quad libera \\ x_2, x_3, x_4 \ge 0 \end{cases}$$

Soluzione

La soluzione ottima è
$$x^* = \begin{pmatrix} -4\\0\\6\\3 \end{pmatrix}$$

Domanda 3

Illustrare le definizioni di vertice e direzione estrema. Enunciare il teorema di Minkowski-Weyl e utilizzarlo per dimostrare che se un problema di PL in forma standard ammette soluzione ottima, allora ammette soluzione ottima su un vertice.

Università degli Studi Roma Tre Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 – Prima prova intermedia 19 aprile 2010

Esercizio 1

Un bicchiere di vino piccolo costa 3 euro, uno grande costa 5 euro. Due bottiglie di vino da 750 ml sono sufficienti a servire un primo ordine di 5 bicchieri piccoli e 3 grandi, mentre una bottiglia è insufficiente a servire un secondo ordine di 2 bicchieri piccoli e 2 grandi in quanto mancano almeno 50 ml per completare l'ordine. Sapendo che il vino avanzato dal primo ordine è sufficiente a completare la richiesta del secondo ordine e che il bicchiere grande non è più costoso del piccolo per unità di vino, si vuole sapere quanto vino può contenere al più un bicchiere piccolo.

- 1. Formulare il problema di PL motivando le proprie scelte
- 2. Risolverlo con il metodo grafico. Se ha più di 2 variabili proiettare quelle in eccesso con il metodo di Fourier Motzkin
- 3. Impostare il problema duale
- 4. Trovare la soluzione ottima del duale con le condizioni di ortogonalità.

Soluzione

Per formulare questo problema scegliamo come variabili il numero x_1 di cl contenuti in un bicchiere piccolo ed il numero x_2 di cl contenuti in un bicchiere grande.

I vincoli da considerare derivano dalle varie informazioni:

Due bottiglie di vino da 75 cl sono sufficienti a servire un primo ordine di 5 bicchieri piccoli e 3 grandi:

$$2*75 \ge 5x_1 + 3x_2$$
$$x_1, x_2 \ge 0$$

una bottiglia è insufficiente a servire un secondo ordine di 2 bicchieri piccoli e 2 grandi in quanto mancano almeno 5 cl per completare l'ordine:

$$80 \le 2x_1 + 2x_2$$

3. il vino avanzato dal primo ordine $(150-5x_1-3x_2)$ è sufficiente a completare la richiesta del secondo ordine (manca ancora $2x_1 + 2x_2 - 75$):

$$150 - 5x_1 - 3x_2 \ge 2x_1 + 2x_2 - 75$$

il bicchiere grande non è più costoso del piccolo per unità di vino:

$$\frac{5}{x_2} \le \frac{3}{x_1}$$
, che linearizzata diventa: $5x_1 \le 3x_2$

Il modello è pertanto:

$$\max x_{1}$$

$$\begin{cases} 5x_{1} + 3x_{2} \le 150 \\ x_{1} + x_{2} \ge 40 \\ 7x_{1} + 5x_{2} \le 225 \\ 5x_{1} - 3x_{2} \le 0 \\ x_{1}, x_{2} \ge 0 \end{cases}$$

Dal metodo grafico si ottiene $x_1^* = 12,5$ $x_2^* = 27,5$

$$\begin{aligned} & \min \quad 150u_1 + 40u_2 + 225u_3 \\ & x_1 : \begin{bmatrix} 5u_1 + u_2 + 7u_3 + 5u_4 \ge 1 \\ 3u_1 + u_2 + 5u_3 - 3u_4 \ge 0 \end{bmatrix} \\ & u_1 \ge 0 \\ & u_2 \le 0 \\ & u_3 \ge 0 \\ & u_4 \ge 0 \end{aligned} \qquad \begin{aligned} & \mathbf{150u_1} + \mathbf{10u_2} + \mathbf{10u_3} + \mathbf{10u_4} + \mathbf{10u_4} \\ & \mathbf{10u_4} + \mathbf{10u_4} + \mathbf{10u_4} \\ & \mathbf{10u_4} + \mathbf$$

Esercizio 2

È dato il problema di PL in figura.

- 3. Portare il problema in forma standard.
- 4. Utilizzando l'algoritmo del simplesso rivisto (fase 1 e fase 2) trovare una soluzione ottima del problema o dimostrare che il problema è impossibile o illimitato inferiormente. Applicare la regola di Bland.

$$\min 4x_1 - x_2 + 2x_3
\begin{cases}
x_1 + 2x_3 - x_4 = 2 \\
x_1 - x_2 + x_3 = -1 \\
-2x_1 + x_2 + x_3 \ge 5 \\
x_1 & libera \\
x_2, x_3, x_4 \ge 0
\end{cases}$$

Soluzione

Il problema è illimitato inferiormente.

Domanda 3

Illustrare le definizioni di vertice e soluzione base ammissibile. Dimostrare che una soluzione ammissibile di un problema di PL in forma standard è un vertice del poliedro delle soluzioni ammissibili se e solo se è una soluzione base ammissibile.

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 – Prima prova intermedia 19 aprile 2010

Esercizio 1

Achille impiega 5 minuti per raggiungere la tartaruga a partire da una distanza iniziale di 2 stadi. Un leone impiega un tempo almeno doppio per raggiungere Achille da una distanza iniziale di uno stadio. Tutti corrono a velocità costante lungo una retta e nello stesso verso, la velocità del leone è doppia di quella di Achille e quest'ultima è dieci volte quella della tartaruga. La tartaruga percorre non più di 80 metri prima di essere raggiunta da Achille. Si vuole sapere quanto è lungo al più il piede di Achille. Si assuma che uno stadio misuri 600 piedi di Achille.

- 5. Formulare il problema di PL motivando le proprie scelte
- 6. Risolvere il problema con il metodo di Fourier Motzkin.
- 7. Impostare il problema duale
- 8. Trovare la soluzione ottima del duale con le condizioni di ortogonalità.

Soluzione

Per formulare questo problema scegliamo come variabili la velocità x_1 di Achille (in m/s) e la lunghezza x_2 (in m) del piede di Achille. La velocità del leone è doppia di quella di Achille e quest'ultima è dieci volte quella della tartaruga. Quindi rappresenteremo la velocità del leone con $2x_1$ m/s e quella della tartaruga con $0.1x_1$ m/s.

I vincoli da considerare derivano dalle varie informazioni:

1. Achille impiega 5 minuti (300s) per raggiungere la tartaruga a partire da una distanza iniziale di 2 stadi (1200 piedi). In 300 s la tartaruga percorre $30x_1$ m e Achille $300x_1$ m colmando la distanza iniziale di 1200 piedi:

$$300x_1 = 30x_1 + 1200x_2$$

2. Un leone impiega un tempo almeno doppio per raggiungere Achille da una distanza iniziale di uno stadio. Quindi dopo 600 secondi la distanza percorsa dal leone $(1200x_1)$ è minore o uguale di quella percorsa da Achille $(600x_1)$ più uno stadio:

$$1200x_1 \le 600x_1 + 600x_2$$
, che semplificato diventa: $x_1 \le x_2$.

3. la tartaruga percorre non più di 80 metri: $30x_1 \le 80$.

Il modello è pertanto:

$$\max_{x_2} x_1 - 120x_2 = 0$$

$$\begin{cases} 27x_1 - 120x_2 = 0 \\ x_1 - x_2 \le 0 \end{cases}$$
Dal metodo di F.M. si ottiene
$$\begin{cases} x_1^* = 0 \\ x_2^* = 0 \end{cases}$$

$$\begin{cases} 3x_1 \le 8 \\ x_1, x_2 \ge 0 \end{cases}$$

min $8u_3$

$$\begin{cases} 27u_1 + u_2 + 3u_3 \ge 0 \\ -120u_1 - u_2 \ge 1 \end{cases}$$
 Dalle condizioni di ortogonalità si ottiene: $u_3^* = 0$.
$$\begin{cases} u_1 & \text{libera} \\ u_2 & \text{libera} \end{cases}$$

Applicando il teorema fondamentale della PL troviamo le condizioni di esistenza di una soluzione duale che soddisfi alle condizioni di ortogonalità:

$$\begin{cases} 27u_1 + u_2 \ge 0 \\ -120u_1 - u_2 \ge 1 \text{ , proiettando } u_2 \text{ con F.M. si ha: } \begin{cases} -120u_1 - 1 \ge -27u_1 \\ -120u_1 - 1 \ge 0 \end{cases} \text{ cioè } \begin{cases} -\frac{1}{93} \ge u_1 \\ -\frac{1}{120} \ge u_1 \end{cases} \text{ che }$$

scegliendo ad esempio $u_1 = -1$ si ha: $\begin{cases} u_2 \ge 27 \\ 119 \ge u_2 \text{ che ammette ad esempio la soluzione } u_2 = 30. \\ u_2 \ge 0 \end{cases}$

Si ha che
$$\begin{pmatrix} u_1^* \\ u_2^* \\ u_3^* \end{pmatrix} = \begin{pmatrix} -1 \\ 30 \\ 0 \end{pmatrix}$$
è ammissibile duale e ottima.

Esercizio 2

È dato il problema di PL in figura.

- 3. Portare il problema in forma standard.
- 4. Utilizzando l'algoritmo del simplesso rivisto (fase 1 e fase 2) trovare una soluzione ottima del problema o dimostrare che il problema è impossibile o illimitato inferiormente. Applicare la regola di Bland.

5.

$$\max x_1 - 3x_2 - x_3 + 3x_4$$

$$\begin{cases} x_1 + x_2 + 2x_4 = 2 \\ x_1 + 2x_2 + 3x_4 \ge 1 \\ + x_2 + x_3 - 2x_4 = -4 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 - 2x_4 = -4 \\ x_2 & libera \\ x_1, x_3, x_4 \ge 0 \end{cases}$$

Soluzione

La soluzione ottima è
$$x^* = \begin{pmatrix} 0 \\ -4 \\ 6 \\ 3 \end{pmatrix}$$

Domanda 3

Illustrare le definizioni di insieme convesso, funzione convessa, problema di programmazione convessa, punto di minimo locale e di minimo globale. Dimostrare che nei problemi di Programmazione Convessa un punto di minimo locale è anche punto di minimo globale.