Community School

Pressure

What's the science story?

An object immersed in a fluid experiences forces acting on its surfaces caused by the pressure of the fluid. At any given point in a fluid, pressure acts equally in all directions. Its size is equal to the force acting normal to a surface, divided by the surface area (pressure = force divided by area).

The pressure at a point in a fluid is proportional to its depth, as it is caused by the gravitational force on the fluid above that point.

The pressure of the Earth's atmosphere is called atmospheric pressure. Usually atmospheric pressure causes equal forces to act in all directions on objects, so its presence is not apparent. But if a vacuum, or partial vacuum, is created by removing air, the force due to atmospheric pressure can cause movement (e.g. liquid moving up a drinking straw) or other effects (such as rubber suckers being pressed tightly on to surfaces).

Because pressure is proportional to depth in a fluid, the force exerted by a fluid is larger on the lower surface of an immersed object than on the upper surface. This difference causes the observed upthrust. It also explains why the apparent weight of a fully or partly immersed object is less than its weight out of the fluid.

All of these ideas apply to objects immersed in a gas (such as air) though the size of the upthrust is much smaller than for a liquid.

Previous knowledge:	Next steps	ÿ
KS3 Year 7 -Particles	KS3 Forces 2 KS4 P3 Particle model	
Keywords Force Weight Pressure Newtons Exert	Pressure Density Particles Atmosphere	Atmospheric pressure Sea level Depth Gas Collapse
Working scientifically skills: WS9 Identifying variables WS14 Drawing a graph WS16 Using a given equation	Assessments: Exit tickets x 2/3 • ET Pressure	

KS3 – Year 8

Lesson No. and Title	Learning objectives	National Curriculum	Practical equipment
1. Pressure in solids	ARE – To define and calculate pressure. AGD – To explain how the pressure of objects can be different.	 pressure measured by ratio of force over area – acting normal to any surface WS9 Identifying variables WS16 Using a given equation 	PRAC: Pressure in solids Trays of sand, spreader to flatten sand, 1N weights (lots), small support blocks (lots)
2. Pressure	ARE – To describe why pressure in solids can change. AGD – To fully compare the pressures of different parts of the body.	 pressure measured by ratio of force over area – acting normal to any surface WS14 Drawing a graph WS16 Using a given equation 	PRAC: Pressure Newton scales, squared paper
3. Pressure in liquids	ARE – To describe <i>how</i> liquid pressure changes with depth. AGD – To explain <i>why</i> liquid pressure changes with depth.	 pressure in liquids, increasing with depth; WS9 Identifying variables 	PRAC: Water pressure Bottles with holes in, washing up bowls
4. Pressure in liquids	ARE – To explain the relationship between depth and pressure. AGD – To explore the adaptations of the creatures that live at different depths.	 pressure in liquids, increasing with depth; WS14 Drawing a graph 	
5. Atmospheric pressure	ARE – To define atmospheric pressure. AGD – To explain how atmospheric pressure varies with height above sea level.	atmospheric pressure, decreases with increase of height as weight of air above decreases with height WS14 Drawing a graph	

KS3 – Year 8

6. Pressure in gases	ARE – To explain gas pressure using examples. AGD – To compare the effect of gas pressure in different objects.	 atmospheric pressure, decreases with increase of height as weight of air above decreases with height 	DEMO: Balloon in the freezer Lots of balloons
7. Collapsing can	ARE – To explain gas pressure using examples. AGD – To compare the effect of gas pressure in different objects.	 pressure measured by ratio of force over area – acting normal to any surface 	DEMO: Marshmallow in a vacuum DEMO: Collapsing can Trough, large tongs, cans x 3