Multicore: Why is it happening now?

eller Hur Mår Moore's Lag?

Erik Hagersten
Uppsala Universitet

Darling, I shrunk the computer

Mainframes

Super Minis:

Microprocessor:

Multicore: Many CPUs on a chip!

Multi-core CPUs:

- Ageia PhysX, a multi-core physics processing unit.
- Ambric Am2045, a 336-core Massively Parallel Processor Array (MPPA)
- AMD
 - Athlon 64, Athlon 64 FX and Athlon 64 X2 family, dual-core desktop processors.
 - Opteron, dual- and quad-core server/workstation processors.
 - Phenom, triple- and quad-core desktop processors.
 - Sempron X2, dual-core entry level processors.
 - Turion 64 X2, dual-core laptop processors.
 - Radeon and FireStream multi-core GPU/GPGPU (10 cores, 16 5-issue wide superscalar stream processors per core)
- **ARM** MPCore is a fully synthesizable multicore container for ARM9 and ARM11 processor cores, intended for high-performance embedded and entertainment **applications**.
- Azul Systems Vega 2, a 48-core processor.
- Broadcom SiByte SB1250, SB1255 and SB1455.
- Cradle Technologies CT3400 and CT3600, both multi-core DSPs.
- Cavium Networks Octeon, a 16-core MIPS MPU.
- HP PA-8800 and PA-8900, dual core PA-RISC processors.
- IBM
 - POWER4, the world's first dual-core processor, released in 2001.
 - POWER5, a dual-core processor, released in 2004.
 - POWER6, a dual-core processor, released in 2007.
 - PowerPC 970MP, a dual-core processor, used in the Apple Power Mac G5.
 - Xenon, a triple-core, SMT-capable, PowerPC microprocessor used in the Microsoft Xbox 360 game console.
- **IBM**, Sony, and Toshiba Cell processor, a nine-core processor with one general purpose PowerPC core and eight specialized SPUs (Synergystic Processing Unit) **optimized** for vector operations used in the Sony PlayStation 3.
- Infineon Danube, a dual-core, MIPS-based, home gateway processor.
- Intel
- Celeron Dual Core, the first dual-core processor for the budget/entry-level market.
- Core Duo, a dual-core processor.
- Core 2 Duo, a dual-core processor.
- Core 2 Quad, a quad-core processor.
- Core i7, a quad-core processor, the successor of the Core 2 Duo and the Core 2 Quad.
- Itanium 2, a dual-core processor.
- Pentium D, a dual-core processor.
- Teraflops Research Chip (Polaris), an 3.16 GHz, 80-core processor prototype, which the company says will be released within the next five years[6].
- Xeon dual-, quad- and hexa-core processors.
- IntellaSys seaForth24, a 24-core processor.
- Nvidia
 - GeForce 9 multi-core GPU (8 cores, 16 scalar stream processors per core)
 - GeForce 200 multi-core GPU (10 cores, 24 scalar stream processors per core)
 - Tesla multi-core GPGPU (8 cores, 16 scalar stream processors per core)
- Parallax Propeller P8X32, an eight-core microcontroller.
- picoChip PC200 series 200-300 cores per device for DSP & wireless
- Rapport Kilocore KC256, a 257-core microcontroller with a PowerPC core and 256 8-bit "processing elements".
- Raza Microelectronics XLR, an eight-core MIPS MPU
- Sun Microsystems
 - UltraSPARC IV and UltraSPARC IV+, dual-core processors.
 - UltraSPARC T1, an eight-core, 32-thread processor.
 - UltraSPARC T2, an eight-core, 64-concurrent-thread processor.
- Texas Instruments TMS320C80 MVP, a five-core multimedia video processor.
- Tilera TILE64, a 64-core processor
- XMOS Software Defined Silicon quad-core XS1-G4
 Institutionen f\u00f6r informationsteknologi | www.it.uu.se

MC 3

[source: Wikipedia]

Outline

- Why multicore now?
- Performance bottlenecks in MCs
- Commercial offerings
- Reflection for the future

Everybody is doing is! But, why now?

- Not enough ILP to get payoff from using more transistors
- 2. Signal propagation delay » transistor delay
- 3. Power consumption $P_{dyn} \sim C \cdot f \cdot V^2$

Example: Freq. Scaling

 $P_{dyn} = C * f * V^2 \approx area * freq * voltage^2$

20% higher freq.

20% lower freq.

20% lower freq. Two cores

Darling, I shrunk the computer

Mainframes

Super Minis:

Microprocessor:

Paradigm Shift

Chip Multiprocessor (CMP): A multiprocessor on a chip!

Parallel Apps (TLP)

Shared Bottlenecks

(the MCs on these slides are generalized)

Resources

Parallel Comp 2012

MC 8

Tiling (aka Blocking)

Fusion...

Example: Poor Throughput Scaling!

Example: 470.LBM

"Lattice Boltzmann Method" to simulate incompressible fluids in 3D

Throughput (as defined by SPEC):

Amount of work performed per time unit when <u>several instances</u> of the application is executed simultaneously.

Our TP study: compare TP improvement when you go from 1 core to 4 cores

Throughput Scaling, More Apps

SPEC CPU 20006 FP Throughput improvements on 4 cores

Parallel Comp 2012 Intel X5365 3GHz "Core2", 1333 MHz FSB, 8MB L2. (Based on data from the SPEC web)

Nerd Curve: 470.LBM

Utilization, i.e., fraction cache data used (scale to the right)

Parallel Comp 2012

Institutionen för informationsteknologi | www.it.uu.se

MC 11

Nerd Curve (again)

— Utilization, i.e., fraction cache data used (scale to the right)

Parallel Comp 2012

MC 12

© Erik Hagersten| user.it.uu.se/~eh

Better Memory Usage!

Example: 470.LBM Modified to promote better cache utilization

Original code

BW in the Future?

#Cores ~ #Transistors

Computation vs Bandwidth

HPCWire.com this morning:

Up Against the Memory Wall

"Nevermind the cores. Just hand over the cache"

Parallel Comp 2012 **HPCWire December 07:**

More Than 16 Cores May Well Be Pointless
[by Sandia Labs]

ap for Semiconductors (ITRS)

Commercial x86 snapshot

(I may have miss-quoted some details, get architecture details from vendors)

Erik Hagersten Uppsala Universitet

Intel Core2 Quad, 2006

AMD Shanghai, 2007

DDR-2, DRAM

L3 8MB

X-bar

L2\$ 512kB L2\$ 512kB L2\$ 512kB L2\$ 512kB

D\$ I\$ 64kB

D\$ I\$ 64kB

D\$ I\$ 64kB

D\$ I\$ 64kB CPU

AMD MC System Architecture

Intel: Nehalem, Core i7 Q1 2009 (4 cores)

QuickPath Interconnect

3x DDR-3 DRAM

L3 8MB

X-bar

L2\$ 256kB L2\$ 256kB L2\$ 256kB L2\$ 256B

D\$ I\$ 64kB CPU, 2 thr

D\$ I\$ 64kB CPU, 2 thr.

D\$ I\$ 64kB CPU, 2 thr.

D\$ I\$ 64kB CPU, 2 thr.

Parallel Comp 2012

Up to 4 cores x 2 threads

Nehalem "Core i7"

Intel: "Nehalem-Ex" (i7)

How is the silicon used (i7-Ex)?

Parallel Comp 2012

Institutionen för informationsteknologi | www.it.uu.se

How is the silicon used?

Institutionen för informationsteknologi | www.it.uu.se

Parallel Comp 2012

MC 23

Source: JSSC Jan 2010, Rusu et. al

AMD Istanbul, 6 cores

AMD Magny-Cours

Some other multicores

(I may have miss-quoted some details, get architecture details from vendors)

Erik Hagersten
Uppsala Universitet

Sun Niagara, 2005!!

Parallel Comp 2012

Now: Victoria's falls: 16 core with 16 threads each

Niagara Chip

UltraSPARC-Core

Parallel Comp 2012

Sun Microsystems

TILERA Architecture

64 cores connected in a mesh Local L1 + L2 caches Shared distributed L3 cache Linux + ANSI C New Libraries New IDE Stream computing

. . .

IBM Cell Processor

IBM Cell

So-called accelerators

- Sits on the IO bus (!!)
- GP Graphics processors, aka GPGPU [e.g. NVIDIA, AMD/ATI]
- Specialized accelerators[e.g., FPGA/Mitrionics, ASIC/ClearSpeed]
- Specialized languages for the above [CUDA, Ct, Rapid Mind, Open-CL, ...]

So-called accelerators

- Sits on the IO bus (!!)
- GP Graphics processors, aka GPGPU? My view: Not very general purpose yet!
 - •Fits well for a few VERY IMPORTANT app domains!
- Spe •Limited applicability?
 - [e. Programmer productivity?
 - Application life time?
- Spensor Spe

Fermi from nVIDIA

a huge step in the right direction

David Black-Schaffer to give you the full story

Scaling the x86 Manycore computing Larrabee (now called MIC) from Intel 2012-2013??

"more than 50 cores"

Parallel Comp 2012

SIMD instructions (16-way??)

Stokpologi Lywyw it wy so MC 34

Wrapping up about multicores

Erik Hagersten Uppsala Universitet

Looks and Smells Like an SMP (aka UMA)?

Memory Interconnect L2 L2 L1 CPU CPU Multicore system Memory L2 L2 L1 CPU CPU Memory L2 L2 L1 CPU CPU CPU Memory

Well, how about:

- Cost of parallelism?
- Cache capacity per thread?
- Memory bandwidth per thread?
- Cost of thread communication? ...

What matters for multicore performance?

- Are we buying...
 - CPU frequency?
 - Number of cores?
 - MIPS and FLOPS?
 - Memory bandwidth?
 - Cache capacity?
 - Memory capacity?
 - Performance/Watt?
 - Dark Silicon is around the corner!

MC Questions for the Future

- How to get parallelism?
- How to get performance/data locality?
- How to debug?
- A case for new funky languages?
- A case for automatic parallelization?
- Are we buying:
 - compute power,
 - memory capacity, or
 - memory bandwidth?
- Will 128 cores be mainstream in 5 years?
- Will the CPU market diverge into desktop/capacity/capability/special-purpose CPUs again?
- A non-question: will it happen?