LECTURE 11:NETWORKS WITH SIGNED EDGES

Signed Networks

- Networks with positive and negative relationships
- Our basic unit of investigation will be signed triangles
- First we talk about undirected networks then directed
- Plan for this lecture:
 - Model: Consider two soc. theories of signed nets
 - Data: Reason about them in large online networks
- Application: Predict if A and B are linked with + or -

Signed Networks

- Networks with positive and negative relationships
- Consider an <u>undirected complete graph</u>
- Label each edge as either:
 - Positive: friendship, trust, positive sentiment, ...
 - Negative: enemy, distrust, negative sentiment, ...
- Examine triples of connected nodes A, B, C

Theory of Structural Balance

- Start with the intuition [Heider '46]:
 - Friend of my friend is my friend
 - Enemy of enemy is my friend
 - Enemy of friend is my enemy
- Look at connected triples of nodes:

Consistent with "friend of a friend" or "enemy of the enemy" intuition

Inconsistent with the "friend of a friend" or "enemy of the enemy" intuition

Balanced/Unbalanced Networks

- Graph is balanced if every connected triple of nodes has:
 - All 3 edges labeled +, or
 - Exactly 1 edge labeled +

Local Balance → Global Factions

- □ Balance implies global coalitions [Cartwright-Harary]
- If all triangles are balanced, then either:
 - The network contains only positive edges, or
 - Nodes can be split into 2 sets where negative edges only point between the sets

Analysis of Balance

Example: International Relations

- International relations:
 - Positive edge: alliance
 - Negative edge: animosity
- Separation of Bangladesh from Pakistan in 1971: US

supports Pakistan. Why?

- □ USS<u>R</u> was enemy of <u>C</u>hina
- <u>C</u>hina was enemy of <u>I</u>ndia
- □ India was enemy of Pakistan
- <u>U</u>S was friendly with <u>C</u>hina
- China vetoedBangladesh from U.N.

1872-1881

1891-1894

Balance in General Networks

So far we talked about complete graphs

Balanced?

Def 1: Local view

Fill in the missing edges to achieve balance

Def 2: Global view

Divide the graph into two coalitions

The 2 definitions

are equivalent!

Is a Signed Network Balanced?

- Graph is balanced if and only if it contains no cycle with an odd number of negative edges
- □ How to compute this?
 - Find connected components on + edges
 - If we find a component of nodes on +edges that contains a -edge ⇒ Unbalanced
 - For each component create a super-node
 - Connect components A and B if there is a negative edge between the members
 - Assign super-nodes to sides using BFS

Signed Graph: Is it Balanced?

Positive Connected Components

Reduced Graph on Super-Nodes

BFS on Reduced Graph

- Using BFS assign each node a side
- Graph is unbalanced if any two
 super-nodes are assigned the same side

EXPLORING REAL DATA

Real Large Signed Networks

- \square Each link $A \rightarrow B$ is **explicitly** tagged with a sign:
 - **Epinions:** Trust/Distrust
 - Does A trust B's product reviews? (only positive links are visible)
 - Wikipedia: Support/Oppose
 - Does A support B to become Wikipedia administrator?
 - Slashdot: Friend/Foe
 - Does A like B's comments?
 - Other examples:
 - Online multiplayer games

	Epinions	Slashdot	Wikipedia	
Nodes	119,217	82,144	7,118	
Edges	841,200	549,202	103,747	
+ edges	85.0%	77.4%	78.7%	
edges	15.0%	22.6%	21.2%	

Balance in Network Data

Does structural balance hold?

 Compare frequencies of signed triads in real and "shuffled" data

	Tulord	E pinions		Wikipedia		Consistent with	
	Triad	P(T)	P _o (T)	P(T)	P _o (T)	Balance?	
ced	+ + + +	0.87	0.62	0.70	0.49	✓	
Balanced	<u>-</u>	0.07	0.05	0.21	0.10	✓	
nced	+ + +	0.05	0.32	0.08	0.49	✓	
Unbalanced	<u></u>	0.007	0.003	0.011	0.010	×	

P(T) ... fraction of a triads

 $P_0(T)$... triad fraction if the signs would be random

Shuffled data

Global Structure of Signed Nets

- Intuitive picture of social network in terms of densely linked clusters
- How does structure interact with links?
- Embeddedness of link (A,B): Number of shared neighbors

Global Factions: Embeddedness

Embeddedness of ties:

Positive ties tend to be more embedded

- Positive ties tend to be more clumped together
 - Public display of signs (votes)in Wikipedia furtherattenuates this

Global Structure of Signed Nets

	Size		Clustering		Component	
	Nodes	Edges	Real	Rnd	Real	Rnd
Epinions: —	119,090	123,602	0.012	0.022	0.308	0.334
Epinions: +	119,090	717,027	0.093	0.077	0.815	0.870
Slashdot: –	82,144	124,130	0.005	0.010	0.423	0.524
Slashdot: +	82,144	425,072	0.025	0.022	0.906	0.909
Wikipedia: –	7,115	21,984	0.028	0.031	0.583	0.612
Wikipedia: +	7,115	81,705	0.130	0.103	0.870	0.918

□ Clustering:

- +net: More clustering than baseline
- -net: Less clustering than baseline

□ Size of max. component:

 \Box +/-net: Smaller than the baseline

Directed Edges

- But, our networks can be really directed
- □ How many ∆ are now explained by balance?
- Only half (8 outof 16) explained byBalance
- Dalance
- Can we do better?
 - Yes. theory of status

