Supplementary Material for: Soundscape Perception Indices (SPI)

Andrew Mitchell^{a,*}, Francesco Aletta^a

^a University College London, Institute for Environmental Design and Engineering, Central House, 14 Upper Woburn Place, London, WC1H 0NN

Table of contents

1	Sup	pplementary Material	1
	1.1	Multi-objective Optimization to Derive an SPI target	1
	1.2	Calculate ISOPleasant and ISOEventful coordinates	
	1.3	pymoo Multi-objective Optimization	4
		1.3.1 Problem Definition	E
		1.3.2 Park Quality optimization	7

1. Supplementary Material

1.1. Multi-objective Optimization to Derive an SPI target

To set up the optimisation task, we first need to express the parameter space and any constraints. Since our goal is to identify an optimised soundscape target distribution, the parameters we will search over are:

•
$$\xi = (\xi_x, \xi_y), -1 \le \xi \le 1$$

$$\bullet \ \Omega = \begin{pmatrix} var(x) & cov(x,y) \\ cov(y,x) & var(y) \end{pmatrix}$$

- $-0 \le var() \le 1$
- $-1 \le cov() \le 1$
- Ω must be symmetric and positive definite
- $\alpha = (\alpha_x, \alpha_y), -5 \le \alpha \le 5$
- $-1 \le x, y \le 1$ In pymoo, each objective function is supposed to be minimized. Therefore, we need to convert both SPI and r() to minimize problems.
- $\min -r(ranks_{quality}, ranks_{target})$

Email addresses: andrew.mitchell.18@ucl.ac.uk (Andrew Mitchell), f.aletta@ucl.ac.uk (Francesco Aletta)

^{*}Corresponding author

```
• \min -mean(SPI_{target}(X_i))
```

The final objective function is:

```
 \begin{aligned} \bullet & f_1 = -r(ranks_{quality}, ranks_{target}) \\ \bullet & f_2 = -mean(SPI_{target}(X_i)) \end{aligned}
```

So our variables to optimize are:

```
 \begin{array}{ll} \bullet & -1 \leq \xi_x \leq 1 \\ \bullet & -1 \leq \xi_y \leq 1 \\ \bullet & 0 \leq var(x) \leq 1 \\ \bullet & 0 \leq var(y) \leq 1 \\ \bullet & -1 \leq cov(x,y) \leq 1 \\ \bullet & -5 \leq \alpha_x \leq 5 \\ \bullet & -5 \leq \alpha_y \leq 5 \\ \end{array}
```

Constraint: - Ω must be symmetric and positive definite - np.linalg.eigvals(omega) > 0

We then define the objective functions based on the two goals given above. For each step in the algorithm with a given trial set of parameters, a target distribution will be produced, the SPI for each test location assessed according to the protocol described in Section~??, and the resulting set of SPI scores and ranking will be scored using the objective functions. Goal (1) is assessed by calculating the Spearman rank correlation between the *a priori* ranking and the SPI ranking:

```
import warnings
from pathlib import Path

import numpy as np
import pandas as pd
import soundscapy as sspy
from soundscapy.surveys.survey_utils import LANGUAGE_ANGLES, PAQ_IDS

import optimize_target as ot
from MultiSkewNorm import MultiSkewNorm

warnings.filterwarnings("ignore")
```

LocationID	SessionID	GroupID	RecordID	start_time	end_time	latit
CarloV	CarloV2	2CV12	1434	2019-05-16 18:46:00	2019-05-16 18:56:00	37.1
CarloV	CarloV2	2CV12	1435	2019-05-16 18:46:00	2019-05-16 18:56:00	37.1
CarloV	CarloV2	2CV13	1430	2019-05-16 19:02:00	2019-05-16 19:12:00	37.1
CarloV	CarloV2	2CV13	1431	2019-05-16 19:02:00	2019-05-16 19:12:00	37.1
CarloV	CarloV2	2CV13	1432	2019-05-16 19:02:00	2019-05-16 19:12:00	37.1
Noorderplantsoen	Noorderplantsoen1	NP161	61	2020-03-11 12:42:00	2020-03-11 12:55:00	NaN
Noorderplantsoen	Noorderplantsoen1	NP162	63	2020-03-11 12:39:00	2020-03-11 13:00:00	NaN
Noorderplantsoen	Noorderplantsoen1	NP162	62	2020-03-11 12:54:00	2020-03-11 12:58:00	NaN
Noorderplantsoen	Noorderplantsoen1	NP162	64	2020-03-11 12:56:00	2020-03-11 12:59:00	NaN
Noorderplantsoen	Noorderplantsoen1	NP163	70	2020-03-11 23:08:00	2020-03-11 23:18:00	NaN
	CarloV CarloV CarloV CarloV CarloV Noorderplantsoen Noorderplantsoen Noorderplantsoen Noorderplantsoen	CarloV CarloV2 CarloV CarloV2 CarloV CarloV2 CarloV CarloV2 CarloV CarloV2 Noorderplantsoen Noorderplantsoen1 Noorderplantsoen Noorderplantsoen1 Noorderplantsoen1 Noorderplantsoen1 Noorderplantsoen1 Noorderplantsoen1	CarloV CarloV2 2CV12 CarloV CarloV2 2CV12 CarloV CarloV2 2CV13 CarloV CarloV2 2CV13 CarloV CarloV2 2CV13 Noorderplantsoen Noorderplantsoen1 NP161 Noorderplantsoen Noorderplantsoen1 NP162 Noorderplantsoen Noorderplantsoen1 NP162	CarloV CarloV2 2CV12 1434 CarloV CarloV2 2CV12 1435 CarloV CarloV2 2CV13 1430 CarloV CarloV2 2CV13 1431 CarloV CarloV2 2CV13 1432 Noorderplantsoen Noorderplantsoen1 NP161 61 Noorderplantsoen Noorderplantsoen1 NP162 63 Noorderplantsoen Noorderplantsoen1 NP162 62 Noorderplantsoen Noorderplantsoen1 NP162 64	CarloV CarloV2 2CV12 1434 2019-05-16 18:46:00 CarloV CarloV2 2CV12 1435 2019-05-16 18:46:00 CarloV CarloV2 2CV13 1430 2019-05-16 19:02:00 CarloV CarloV2 2CV13 1431 2019-05-16 19:02:00 CarloV CarloV2 2CV13 1432 2019-05-16 19:02:00 Noorderplantsoen Noorderplantsoen1 NP161 61 2020-03-11 12:42:00 Noorderplantsoen Noorderplantsoen1 NP162 63 2020-03-11 12:39:00 Noorderplantsoen Noorderplantsoen1 NP162 62 2020-03-11 12:54:00 Noorderplantsoen Noorderplantsoen1 NP162 64 2020-03-11 12:56:00	CarloV CarloV2 2CV12 1434 2019-05-16 18:46:00 2019-05-16 18:56:00 CarloV CarloV2 2CV12 1435 2019-05-16 18:46:00 2019-05-16 18:56:00 CarloV CarloV2 2CV13 1430 2019-05-16 19:02:00 2019-05-16 19:12:00 CarloV CarloV2 2CV13 1431 2019-05-16 19:02:00 2019-05-16 19:12:00 CarloV CarloV2 2CV13 1432 2019-05-16 19:02:00 2019-05-16 19:12:00 Noorderplantsoen Noorderplantsoen1 NP161 61 2020-03-11 12:42:00 2020-03-11 12:55:00 Noorderplantsoen Noorderplantsoen1 NP162 63 2020-03-11 12:39:00 2020-03-11 12:58:00 Noorderplantsoen Noorderplantsoen1 NP162 62 2020-03-11 12:54:00 2020-03-11 12:58:00 Noorderplantsoen Noorderplantsoen1 NP162 64 2020-03-11 12:56:00 2020-03-11 12:59:00

1.2. Calculate ISOPleasant and ISOEventful coordinates

Here we use the adjusted angles from Aletta et al. (2024) for each language included.

```
for i, row in data.iterrows():
    lang = row["Language"]
    angles = LANGUAGE_ANGLES[lang]
    iso_pl, iso_ev = (
        sspy.surveys.processing._adj_iso_pl(row[PAQ_IDS], angles, scale=4),
        sspy.surveys.processing._adj_iso_ev(row[PAQ_IDS], angles, scale=4),
    )
    data.loc[i, "ISOPleasant"] = iso_pl
    data.loc[i, "ISOEventful"] = iso_ev
```

```
# Separate out parks and non-parks

parks = [
    "RegentsParkFields",
    "RegentsParkJapan",
    "Noorderplantsoen",
    "StPaulsCross",
    "MiradorSanNicolas",
    "RussellSq",
    "Noorderplantsoen",
    "MonumentoGaribaldi",
    "CampoPrincipe",
]

not_parks = [
```

```
"MarchmontGarden",
    "PancrasLock",
    "TateModern",
    "PlazaBibRambla",
    "SanMarco",
    "StPaulsRow",
    "CarloV",
    "CamdenTown",
    "EustonTap",
    "TorringtonSq",
]
park_data = data.query("LocationID in @parks")
not_park_data = data.query("LocationID in @not_parks")
rank_on = "sss01"
# Creating a somewhat arbitrary ranking of parks
park_quality = pd.DataFrame(
    park_data.groupby("LocationID")[rank_on].mean().sort_values(ascending=False)
park_quality["Rank"] = range(1, len(park_quality) + 1)
park_quality
```

sss01	Rank
4.617978	1
4.467290	2
4.345455	3
4.156250	4
4.020548	5
3.964286	6
3.803030	7
2.412371	8
	4.617978 4.467290 4.345455 4.156250 4.020548 3.964286 3.803030

1.3. pymoo Multi-objective Optimization

Defining the optimization problem:

- $\begin{array}{l} \bullet \ \ \max \ r(ranks_{quality}, ranks_{target}) \\ \bullet \ \ \max \ mean(SPI_{target}(X_i)) \end{array}$
- where r is the rank correlation coefficient, $ranks_{quality}$ and $ranks_{target}$ are the ranks of the quality and target values, and $SPI_{target}(X_i)$ is the SPI for a given target on the data for the i-th location. Therefore we are trying to achieve the best correlation between the desired ranking and the ranking produced by SPI_{target} and to achieve the highest mean SPI_{target} .

 $ranks_{quality}$ is pre-defined. $ranks_{target}$ is calculated by sorting the target values and assigning ranks to them. SPI_{target} is calculated for each location and target.

```
target_success(target, pre_ranks, data)
target = MultiSkewNorm(\xi, \Omega, \alpha) parameters
```

- $\xi = (\xi_x, \xi_y), -1 \le \xi \le 1$
- $\bullet \ \ \Omega = \begin{pmatrix} var(x) & cov(x,y) \\ cov(y,x) & var(y) \end{pmatrix}$
 - $-0 \le var() \le 1$
 - $-1 \le cov() \le 1$
 - Ω must be symmetric and positive definite
- $\alpha = (\alpha_x, \alpha_y), -5 \le \alpha \le 5$
- $-1 \le x, y \le 1$ In pymoo, each objective function is supposed to be minimized. Therefore, we need to convert both SPI and r() to minimize problems.
- $\min -r(ranks_{quality}, ranks_{target})$
- $\min -mean(SPI_{target}(X_i))$

The final objective function is:

- $\begin{aligned} \bullet & f_1 = -r(ranks_{quality}, ranks_{target}) \\ \bullet & f_2 = -mean(SPI_{target}(X_i)) \end{aligned}$

So our variables to optimize are:

- $\begin{array}{ll} \bullet & -1 \leq \xi_x \leq 1 \\ \bullet & -1 \leq \xi_y \leq 1 \\ \bullet & 0 \leq var(x) \leq 1 \end{array}$
- $0 \le var(y) \le 1$
- $-1 \le cov(x,y) \le 1$
- $-5 \le \alpha_x \le 5$
- $-5 \le \alpha_u \le 5$

Constraint: - Ω must be symmetric and positive definite - np.linalg.eigvals(omega) > 0

1.3.1. Problem Definition

```
import pathos
from pymoo.core.callback import Callback
from pymoo.core.problem import ElementwiseProblem, StarmapParallelization
from pymoo.visualization.scatter import Scatter
from pyrecorder.recorder import Recorder
from pyrecorder.writers.streamer import Streamer
from pyrecorder.writers.video import Video
from pymoo.decomposition.asf import ASF
```

```
class MyProblem(ElementwiseProblem):
    def __init__(self, data, ranking, **kwargs):
        super().__init__(
            n_{var=7},
            n_{obj=2},
            n_constr=0,
            xl=np.array([-1, -1, 0, 0, -1, -50, -50]),
            xu=np.array([1, 1, 0.5, 0.5, 1, 50, 50]),
            n_eq_constr=1,
            elementwise_evaluation=True,
            **kwargs,
        )
        self.data = data
        self.ranking = ranking
    def _evaluate(self, X, out, *args, **kwargs):
        h = 1 - int(
            np.all(np.linalg.eigvals(np.array([[X[2], X[4]], [X[4], X[3]]])) > 0)
        out["H"] = h
        if h != 0:
            out["F"] = np.column_stack([0, 0])
            return
        else:
            tgt = MultiSkewNorm()
            tgt.define_dp(
                np.array([X[0], X[1]]),
                np.array([[X[2], X[4]], [X[4], X[3]]]),
                np.array([X[5], X[6]]),
            tgt.sample()
            r, wspi, spi_ranks, target = ot.target_success(tgt, self.ranking, self.data)
            f1 = -r[0]
            f2 = -wspi / 100
            out["F"] = np.column_stack([f1, f2])
class VideoCallback(Callback):
   def __init__(self) -> None:
        super().__init__()
        self.rec = Recorder(Streamer(sleep=0.1))
    def notify(self, algorithm):
        sc = Scatter(
            title="Gen %s" % algorithm.n_gen,
            labels=["spearman", "WSPI"],
        sc.add(algorithm.pop.get("F"))
```

```
sc.do()
self.rec.record()
```

```
from pymoo.algorithms.moo.nsga2 import NSGA2
from pymoo.operators.crossover.sbx import SBX
from pymoo.operators.mutation.pm import PM
from pymoo.operators.sampling.rnd import FloatRandomSampling
from pymoo.optimize import minimize
from pymoo.termination.default import DefaultMultiObjectiveTermination
algorithm = NSGA2(
   pop_size=150,
   n_offsprings=100,
    sampling=FloatRandomSampling(),
   crossover=SBX(),
   mutation=PM(),
   eliminate_duplicates=True,
    # callback=VideoCallback()
)
termination = DefaultMultiObjectiveTermination(n_max_gen=100)
```

1.3.2. Park Quality optimization

n_gen	 	n_eval		n_nds	cv_min	=== ===	cv_avg	 	eps		indicator
1	1	150	1	2	0.000000E+00		0.7599240000	1	_		_
2	1	250	1	3	0.00000E+00	-	0.4999500000		0.2727272727		ideal
3	1	350	1	3	0.00000E+00	-	0.0199980000		0.2142857143		ideal

```
450 I
 4 |
                      4 I
                           0.00000E+00 |
                                            0.00000E+00 |
                                                             0.1620792395 |
                                                                                      ideal
 5 I
          550
                      7
                           0.00000E+00
                        -1
                                            0.00000E+00
                                                             0.0558552677
                                                                                         f
 6 |
          650
                      4
                           0.00000E+00
                                            0.00000E+00
                                                             0.8461538462
                                                                                     nadir
 7 |
          750
                                            0.00000E+00
                                                             0.0222136817
                                                                                         f
                           0.00000E+00
 8
          850
                           0.00000E+00
                                            0.00000E+00
                                                             0.1101638372
                                                                                      ideal
                                            0.00000E+00
 9
          950
                      6
                                                                                         f
                           0.00000E+00
                                                             0.0657188723
10
         1050
                      5
                           0.00000E+00
                                            0.00000E+00
                                                             1.0047062320
                                                                                     nadir
11
         1150
                      6
                           0.00000E+00
                                            0.00000E+00
                                                             0.0691690492
                                                                                      ideal
12
         1250
                      8
                           0.00000E+00
                                            0.00000E+00
                                                             0.0503174951
                                                                                      ideal
         1350
                      7
                                            0.00000E+00
                                                             0.0127793462
13 I
                           0.00000E+00
                                                                                          f
14 I
         1450
                      9
                           0.00000E+00
                                            0.00000E+00
                                                             0.0424372038
                                                                                      ideal
15 I
         1550
                           0.00000E+00
                                            0.00000E+00
                                                             0.0292206309
                                                                                          f
16 I
         1650
                      9
                           0.00000E+00
                                            0.00000E+00
                                                             0.0785192627
                                                                                      ideal
17 I
         1750
                      9
                           0.00000E+00
                                            0.00000E+00
                                                             0.00000E+00
                                                                                          f
18
         1850
                      9
                        1
                           0.00000E+00
                                            0.00000E+00
                                                             0.0185516738
                                                                                          f
19
         1950
                     11
                           0.00000E+00
                                            0.00000E+00
                                                             0.0370370370
                                                                                      ideal
20
         2050
                     12
                                            0.00000E+00
                                                             0.0083471711
                                                                                          f
                           0.00000E+00
                                                                                          f
21 l
         2150
                     12
                           0.00000E+00
                                            0.00000E+00
                                                             0.0033142727
22 I
         2250
                     15
                           0.00000E+00
                                            0.00000E+00
                                                             0.0093007525
                                                                                      ideal
         2350
23 I
                           0.00000E+00
                                            0.00000E+00
                                                             0.0034666441
                                                                                          f
         2450
                                                                                          f
24 I
                     12
                           0.00000E+00
                                            0.00000E+00
                                                             0.0098196917
25
         2550
                                                                                          f
                     12
                           0.00000E+00
                                            0.00000E+00
                                                             0.00000E+00
26
         2650
                     13
                           0.00000E+00
                                            0.00000E+00
                                                             0.0034300107
                                                                                          f
27
         2750
                     14
                           0.00000E+00
                                            0.00000E+00
                                                             0.0053483509
                                                                                          f
         2850
28
                     14
                           0.00000E+00
                                            0.00000E+00
                                                             0.00000E+00
                                                                                          f
29 | 1
         2950
                                                             0.00000E+00
                                                                                          f
                     14
                           0.00000E+00
                                            0.00000E+00
30 |
         3050
                           0.00000E+00
                                            0.00000E+00
                                                             0.00000E+00
                                                                                          f
31 |
         3150
                           0.00000E+00
                                            0.00000E+00
                                                             0.0006784315
                                                                                          f
32 I
         3250
                     12
                           0.00000E+00
                                            0.00000E+00
                                                             0.0082062343
                                                                                          f
33 |
         3350
                     12
                        1
                           0.00000E+00
                                            0.00000E+00
                                                             0.0021983597
                                                                                          f
34
         3450
                           0.00000E+00
                                            0.00000E+00
                                                             0.0154559077
                     14
                                                                                      ideal
35
         3550
                     14
                        -1
                           0.00000E+00
                                            0.00000E+00
                                                             0.0008284906
                                                                                          f
         3650
                           0.00000E+00
                                                             0.0065038186
                                                                                          f
36 I
                     13
                        - 1
                                            0.00000E+00
37 I
         3750
                     13
                           0.00000E+00
                                            0.00000E+00
                                                             0.0047267260
                                                                                          f
38 I
         3850
                                            0.00000E+00
                                                             0.00000E+00
                                                                                          f
                           0.00000E+00
39
         3950
                     13
                           0.00000E+00
                                            0.00000E+00
                                                             0.0011035360
                                                                                          f
         4050
                           0.00000E+00
                                                                                          f
40 l
                     13
                                            0.00000E+00
                                                             0.0016008743
41
         4150
                     12
                           0.00000E+00
                                            0.00000E+00
                                                             0.0167253281
                                                                                      ideal
42
         4250
                     13
                           0.00000E+00
                                            0.00000E+00
                                                             0.0052208080
                                                                                          f
43 I
         4350
                     13
                           0.00000E+00
                                            0.00000E+00
                                                             0.00000E+00
                                                                                          f
44 I
         4450
                     12 I
                           0.00000E+00
                                            0.00000E+00
                                                             0.0030262140
                                                                                          f
45 I
         4550
                           0.00000E+00
                                            0.00000E+00
                                                             0.00000E+00
                                                                                          f
46 I
         4650
                           0.00000E+00
                                            0.00000E+00
                                                             0.0029423569
                                                                                          f
47 I
         4750
                           0.00000E+00
                                                             0.0001362881
                                                                                          f
                     13
                                            0.00000E+00
48 I
         4850
                           0.00000E+00
                                            0.00000E+00
                                                             0.0168434981
                                                                                          f
                     11
49
         4950
                     12
                        1
                           0.00000E+00
                                            0.00000E+00
                                                             0.0065122582
                                                                                          f
50
         5050
                     11
                           0.00000E+00
                                            0.00000E+00
                                                             0.0044925500
                                                                                          f
                                                             0.0071445969
51 I
         5150
                           0.00000E+00
                                            0.00000E+00
                                                                                      ideal
                     11
                        - 1
52 I
         5250 I
                     12 I
                           0.00000E+00
                                            0.00000E+00
                                                             0.0074595724
                                                                                          f
53
         5350
                           0.00000E+00
                                            0.00000E+00
                                                             0.0026178835
                                                                                          f
54 I
         5450
                     12
                           0.00000E+00
                                            0.00000E+00
                                                             0.0016927330
                                                                                          f
         5550 |
                                            0.00000E+00 |
                                                                                          f
55 I
                     12 I
                           0.00000E+00
                                                             0.0016927330 l
                                         -1
```

```
0.000000E+00 |
                                            0.000000E+00 |
 56 I
          5650 I
                     12 |
                                                             0.0016927330 |
                                                                                         f
 57 I
                     12 I
                                                                                         f
          5750
                            0.00000E+00
                                            0.00000E+00
                                                             0.0016927330 |
                                                                                         f
 58
          5850 |
                     12 l
                           0.00000E+00
                                            0.00000E+00
                                                             0.0016927330
 59
          5950
                            0.00000E+00
                                            0.00000E+00
                                                                                         f
                     12
                                                             0.0016927330
 60
          6050
                     12
                            0.00000E+00
                                            0.00000E+00
                                                             0.0030163061
                                                                                         f
                           0.00000E+00
          6150
                     12
                                            0.00000E+00
                                                             0.00000E+00
                                                                                         f
 61 l
          6250
                                                                                         f
 62
                     12
                           0.00000E+00
                                            0.00000E+00
                                                             0.00000E+00
 63
          6350
                     12
                            0.00000E+00
                                            0.00000E+00
                                                             0.00000E+00
                                                                                         f
 64
          6450
                     12
                           0.00000E+00
                                            0.00000E+00
                                                             0.00000E+00
                                                                                         f
          6550
                                            0.00000E+00
                                                             0.00000E+00
                                                                                         f
 65 I
                     12
                           0.00000E+00
                                                                                         f
 66 I
          6650 |
                     13 I
                           0.00000E+00
                                            0.00000E+00
                                                             0.0035306991
                                                                                         f
 67 I
          6750
                            0.00000E+00
                                            0.00000E+00
                                                             0.00000E+00
 68
          6850
                     13
                            0.00000E+00
                                            0.00000E+00
                                                             0.00000E+00
                                                                                         f
          6950
                     13
                           0.00000E+00
                                            0.00000E+00
                                                             0.0000145448
                                                                                         f
 69
 70
          7050
                     14
                           0.00000E+00
                                            0.00000E+00
                                                             0.0026667316
                                                                                         f
 71
          7150
                     14
                           0.00000E+00
                                            0.00000E+00
                                                             0.0019718538
                                                                                         f
 72
          7250
                     14
                                            0.00000E+00
                                                             0.0027648400 |
                                                                                         f
                           0.00000E+00
                                                                                         f
73 I
          7350 I
                     13
                            0.00000E+00
                                            0.00000E+00
                                                             0.0054222167
 74 I
          7450 I
                     13
                           0.00000E+00
                                            0.00000E+00
                                                             0.00000E+00
                                                                                         f
                                                                                         f
 75 I
          7550
                     12
                            0.00000E+00
                                            0.00000E+00
                                                             0.0060101024
 76 I
          7650
                                                                                         f
                     12
                            0.00000E+00
                                            0.00000E+00
                                                             0.00000E+00
 77
          7750
                     12
                                                                                         f
                            0.00000E+00
                                            0.00000E+00
                                                             0.00000E+00
 78
          7850
                     12
                            0.00000E+00
                                            0.00000E+00
                                                             0.00000E+00
                                                                                         f
 79
          7950
                     12
                            0.00000E+00
                                            0.00000E+00
                                                             0.00000E+00
                                                                                         f
          8050
                                                                                         f
 80
                     11 I
                           0.00000E+00
                                            0.00000E+00
                                                             0.0010485449
          8150 |
                                                             0.0010485449
                                                                                         f
 81 l
                     11 l
                           0.00000E+00
                                            0.00000E+00
 82 |
          8250 |
                            0.00000E+00
                                            0.00000E+00
                                                             0.0010485449
                                                                                         f
83 |
          8350
                     11 I
                            0.00000E+00
                                            0.00000E+00
                                                             0.0010485449
                                                                                         f
 84 I
          8450
                     11 I
                           0.00000E+00
                                            0.00000E+00
                                                             0.0010485449
                                                                                         f
85
          8550
                     11
                           0.00000E+00
                                            0.00000E+00
                                                             0.0010485449
                                                                                         f
 86
          8650
                           0.00000E+00
                                            0.00000E+00
                                                             0.0010485449
                                                                                         f
                     11
 87
          8750 I
                     11 l
                           0.00000E+00
                                            0.00000E+00
                                                             0.0010485449 |
                                                                                         f
                                                             0.0021136652 |
                                                                                         f
 88
          8850 |
                     12
                           0.00000E+00
                                            0.00000E+00
 89
          8950 |
                     12 l
                           0.00000E+00
                                            0.00000E+00
                                                             0.0021136652
                                                                                         f
          9050
                            0.00000E+00
                                            0.00000E+00
                                                             0.0021136652
                                                                                         f
 90
                     12
          9150
                     13
                            0.00000E+00
                                            0.00000E+00
                                                             0.0047031047
                                                                                         f
 91 l
                                                                                         f
 92
          9250
                     13
                           0.00000E+00
                                            0.00000E+00
                                                             0.00000E+00
 93
          9350
                     13
                           0.00000E+00
                                            0.00000E+00
                                                             0.00000E+00
                                                                                         f
 94
          9450
                     13
                            0.00000E+00
                                            0.00000E+00
                                                             0.00000E+00
                                                                                         f
 95
          9550
                     13
                           0.00000E+00
                                            0.00000E+00
                                                             0.0005236113
                                                                                         f
          9650
                           0.00000E+00
                                            0.00000E+00
                                                             0.0007334714
                                                                                         f
 96 I
                     13
 97 I
          9750
                     13
                           0.00000E+00
                                            0.00000E+00
                                                             0.0007334714
                                                                                         f
 98
          9850
                     13
                            0.00000E+00
                                            0.00000E+00
                                                             0.0007604831
                                                                                         f
99 I
          9950 I
                           0.00000E+00
                                            0.00000E+00
                                                             0.0007604831 |
                                                                                         f
                     13 I
100 I
         10050 I
                     13 |
                           0.00000E+00 |
                                            0.00000E+00 |
                                                             0.0007604831
                                                                                         f
```

```
weights = np.array([0.5, 0.5])
decomp = ASF()
with Recorder(Video("park_nsga2.mp4")) as rec:
    for entry in park_res.history:
```

```
# Get the approximated ideal and nadir points
        approx_ideal = park_res.F.min(axis=0)
        approx_nadir = park_res.F.max(axis=0)
        # Normalize the obtained front
        nF = (entry.pop.get("F") - approx_ideal) / (approx_nadir - approx_ideal)
        park_I = decomp(nF, weights).argmin()
        sc = Scatter(title="Generation: %s" % entry.n_gen)
        sc.add(entry.pop.get("F"))
        sc.add(entry.pop.get("F")[park_I], color="red", s=30)
        sc.do()
        rec.record()
with Recorder(Video("park_nsga2_sspy.mp4")) as rec:
    for entry in park_res.history:
        # Get the approximated ideal and nadir points
        approx_ideal = park_res.F.min(axis=0)
        approx_nadir = park_res.F.max(axis=0)
        # Normalize the obtained front
        nF = (entry.pop.get("F") - approx_ideal) / (approx_nadir - approx_ideal)
        park_I = decomp(nF, weights).argmin()
        park_X = entry.pop.get("X")[park_I]
        park_tgt = MultiSkewNorm()
        park_tgt.define_dp(
            np.array([park_X[0], park_X[1]]),
            np.array([[park_X[2], park_X[4]], [park_X[4], park_X[3]]]),
            np.array([park_X[5], park_X[6]]),
        park_tgt.sample()
        ss = sspy.plotting.density_plot(
            data=pd.DataFrame({
                "ISOPleasant": park_tgt.sample_data[:,0],
                "ISOEventful": park_tgt.sample_data[:,1],
            }),
            # x=park_tgt.sample_data[:,0],
            # y=park_tgt.sample_data[:,1],
            title="Generation: %s" % entry.n_gen,
        rec.record()
```

```
from pymoo.decomposition.asf import ASF

# Get the approximated ideal and nadir points
approx_ideal = park_res.F.min(axis=0)
approx_nadir = park_res.F.max(axis=0)

# Normalize the obtained front
nF = (park_res.F - approx_ideal) / (approx_nadir - approx_ideal)
weights = np.array([0.48, 0.52])
decomp = ASF()

park_I = decomp(nF, weights).argmin()
# print("Best regarding decomposition: Point %s - %s" % (park_I, park_res.F[park_I]))
```

Figure 1

```
park_tgt.sample()
# print(park_tgt.summary())

plot = Scatter()
plot.add(park_res.F, color="blue", alpha=0.2, s=10)
plot.add(park_res.F[park_I], color="red", s=30)
plot.do()
# plot.apply(lambda ax: ax.arrow(0, 0, 0.5, 0.5, color='black',
# head_width=0.01, head_length=0.01, alpha=0.4))
plot.show()

plot.show()

# park_tgt.sspy_plot()
df = pd.DataFrame(park_tgt.sample_data, columns=["ISOPleasant", "ISOEventful"])
sspy.plotting.density_plot(
    df, color='red', title=None
)
plt.show()
```

```
# print(park_tgt.summary())
```

References

Figure 2: NSGA-II optimization to learn the MSN parameters which produce the Park ranking.