WHAT IS CLAIMED IS:

1	1. A method of distributing power from an input source to a load, where the load		
2	may vary over a normal operating range, comprising:		
3	using a first regulator at a first location to convert power from the input source at a		
4	source voltage, V _{source} , and deliver a controlled DC voltage, V _f , to a factorized bus;		
5	using the factorized bus to carry power from the first regulator to a remote location		
6	separated by a distance from the first location;		
7	using a voltage transformation module ("VTM") at the remote location to convert		
8	power, via a transformer, from the factorized bus at an input voltage Vin, essentially equal to		
9	the voltage delivered to the bus, V _f , to a DC output voltage, V _{out} ; and		
10	using in the VTM an essentially constant voltage gain, $K = V_{out} / V_{in}$, at a load		
11	current;		
12	wherein the VTM has an output resistance, Rout; and		
13	wherein the load is supplied with a voltage, V_{load} , essentially equal to the output		
14	voltage of the VTM, V_{out} , which is regulated by the first regulator using the factorized bus.		
1	2. A method of distributing power from an input source to a load, where the load		
2	may vary over a normal operating range, comprising:		
3	using a first regulator at a first location to convert power from the input source at a		
4	source voltage, V_{source} , and deliver a controlled DC voltage, V_f , to a factorized bus;		
5	using the factorized bus to carry power from the first regulator to a remote location		
6	separated by a distance from the first location;		
7	using a voltage transformation module ("VTM") at the remote location to convert		
8	· · ·		
9	power from the factorized bus and deliver a load voltage, V _{load} , the VTM having an input for		
10	receiving an input voltage, V_{in} , essentially equal to the voltage delivered to the bus, V_{f} , and an output for delivering an output voltage, V_{out} , essentially equal to the load voltage, V_{load} ,		
11	and an output resistance, R_{out} ;		
12	using a transformer in the power train of the VTM;		
13	using in the VTM an essentially constant voltage gain, $K = V_{out} / V_{in}$, at a load		
14	current;		
17	Ourroin,		

16	cycle greater than 80%.	
1	3. A method of distributing power from an input source to a load, where the load	
2	may vary over a normal operating range, comprising:	
3	using a first regulator at a first location to convert power from the input source at a	
4	source voltage, V _{source} , and deliver a controlled DC voltage, V _f , to a factorized bus;	
5	using the factorized bus to carry power from the first regulator to a remote location	
6	separated by a distance from the first location;	
7	using a voltage transformation module ("VTM") at the remote location to convert	
8	power from the factorized bus and deliver a load voltage, V _{load} , the VTM having two or more	
9	primary switches connected to drive a transformer, an input for receiving an input voltage,	
10	V_{in} , essentially equal to the bus voltage, V_{f} , and an output for delivering an output voltage,	
11	V_{out} , essentially equal to the load voltage, V_{load} ; and	
12	operating the primary switches in a series of converter operating cycles, each	
13	converter operating cycle characterized by	
14	(a) two power transfer intervals of essentially equal duration, during which	
15	one or more of the primary switches are ON and power is transferred from the input	
16	to the output via the transformer, and	
17	(b) two energy-recycling intervals during which the primary switches are	
18	OFF;	
19	wherein the load voltage, V_{load} , is regulated by the first regulator using the factorized	
20	bus.	
1	4. A method of providing a power density greater than 200 Watts/cubic-inch in	
2	point-of-load converters for efficiently supplying a regulated DC voltage, V _{load} , to a load,	
3	where the load may vary over a normal operating range, from an input source, the method	
4	comprising:	
5	factorizing away from the point-of-load a power-conversion function of voltage	
6	regulation by using a first regulator to convert power from the input source to a controlled	
7	voltage, V _f , delivered to a factorized bus;	

the VTM having two or more power switches and using a power conversion duty

15

9	the factorized bus voltage at the point-of-load, V _{in} , to an output voltage, V _{out} , essentially		
10	equal to V _{load} , with a voltage transformation module ("VTM");		
11	adapting the VTM to operate at or above 500 KHz, to convert power via a		
12	transformer, and to provide an essentially constant DC voltage gain, $K = V_{out} / V_{in}$, at a load		
13	current, and		
14	regulating the load voltage, V_{load} , by controlling the voltage of the factorized bus, V_{f} .		
1	5. A method for providing scalable electric power conversion capability in which		
2	power is converted from an input source and delivered to a load at a regulated DC output		
3	voltage, where the load may vary over a normal operating range, the method comprising:		
4	using a first regulator to convert power from the input source at a source voltage,		
5	V _{source} , to a controlled DC voltage, V _f , delivered to a factorized bus;		
6	operating two or more voltage transformation modules ("VTMs), each comprising a		
7	transformer and an output resistance Rout, in parallel to convert power, via the transformers,		
8	from an input voltage, Vin, essentially equal to the factorized bus voltage, Vf, to a DC output		
9	voltage, Vout;		
10	using an essentially constant voltage gain, K = V _{out} /V _{in} , at a load current, in each of		
11	the VTMs;		
12	wherein the power provided to the load is shared in inverse proportion to the output		
13	resistance by each of the VTMs; and		
14	the output voltage provided to the load, V_{load} , is essentially equal to the output voltage		
15	of each of the VTMs, V_{out} , and is regulated by the first regulator using the factorized bus.		
1	6. The method of claim 1 further comprising		
2	controlling the controlled bus voltage, V _f , using a feedback signal derived from the		
3	load voltage, V_{load} .		
1	7. The method of claim 1 further comprising using the VTM transformer to		
2	galvanically isolate the load from the factorized bus.		

localizing at the point-of-load a function of DC voltage transformation by converting

8

8.

the factorized bus.

1

The method of claim 1 further comprising a plurality of VTMs connected to

1	9. The method of claim 1 further comprising a plurality of VTMs connected to		
2	the factorized bus and operating in parallel to share the power delivered to the load.		
1	10. The method of claim 9 wherein the VTMs are distributed over a multiplicity		
2	of locations.		
1	11. The method of claim 1 further comprising		
2	programming the load voltage, V_{load} , to a selected value by using a feedback signal to		
3	control the factorized bus voltage, V _f .		
1	12. The method of claim 1 further comprising		
2	using an output switch in series with the output of the VTM to selectively connect the		
3	VTM to the load; and		
4	operating the output switch to protect the load from a fault within the VTM;		
5			
1	13. The method of claim 1 further comprising		
2	using an input switch in series with the input of the VTM to selectively connect the		
3	VTM to the factorized bus; and		
4	operating the input switch to protect the factorized bus from a fault within the VTM;		
5	wherein the factorized bus voltage is protected from VTM faults.		
1	14. The method of claim 1 further comprising		
2	using an input device in series with the input of the VTM to selectively connect the		
3	VTM to the factorized bus; and		
4	operating the input device to limit the voltage applied to the VTM;		
5	wherein the VTM is protected from the factorized bus voltage.		
1	15. The method of claim 1 further comprising:		
2	using a front end converter at a first location to convert power from the input source		
3	and deliver a DC voltage, V _{bus} , to a first bus;		
4	using a power regulator module ("PRM") at a second location, separated from the		
5	first location by a distance, to convert the DC voltage from the first bus and deliver the		
6	controlled DC voltage, V _f , to the factorized bus;		

7	wherein the first regulator comprises the front end converter and the PRM.	
1	16. The method of claim 15 further comprising	
2	controlling the PRM to adjust the factorized bus voltage, V _f , by using a feedback	
3	signal derived from the load voltage, V_{load} .	
1	17. The method of claim 3 wherein the VTM uses a power conversion duty cycle	
2	greater than 80 per cent over the normal operating range.	
1	18. A method of distributing electrical power in a vehicle comprising the method	
2	of claim 1 wherein:	
3	the first regulator is located near a source of power in the vehicle;	
4	the factorized bus distributes the controlled DC voltage, V _f , to a plurality of locations	
5	throughout the vehicle;	
6	a plurality of VTMs are distributed throughout the vehicle to provide power to loads	
7	distributed throughout the vehicle	
1	19. Apparatus for distributing power from an input source to a load, where the	
2	load may vary over a normal operating range, comprising:	
3	a first regulator at a first location having a first input and a first output, the first	
4	regulator having circuitry adapted to convert power from the input source at a source voltage,	
5	V _{source} , and deliver a controlled DC voltage, V_f , to the first output;	
6	v_{source} , and deriver a controlled DC voltage, v_f , to the first output, a factorized bus connected to the first output of the first regulator and extending to a	
7	remote location separated by a distance from the first location;	
8	a voltage transformation module ("VTM") at the remote location having circuitry,	
9	including a transformer, adapted to convert power from an input voltage, V _{in} , essentially	
10	equal to the voltage delivered to the bus, V_f , to a DC output voltage, V_{out} ;	
11	the VTM having an essentially constant voltage gain, $K = V_{out} / V_{in}$, at a load current	
12	and having an output resistance, R _{out} ;	
13	wherein the load is supplied with a voltage, V_{load} , essentially equal to the output	
14	voltage, V _{out} , and regulated by the first regulator using the factorized bus.	
1	20. Apparatus for distributing power from an input source to a load, where the	

2

load may vary over a normal operating range, comprising:

3	a first regulator at a first location naving a first input and a first output, the first	
4	regulator having circuitry adapted to convert power from the input source at a source voltage	
5	V _{source} , and deliver a controlled DC voltage, V _f , to the first output;	
6	a factorized bus connected to the first output of the first regulator and extending to a	
7	remote location separated by a distance from the first location;	
8	a voltage transformation module ("VTM") at the remote location having circuitry,	
9	including a transformer, adapted to convert power from the factorized bus and deliver a load	
10	voltage, V_{load} , the VTM having an input for receiving an input voltage, V_{in} , essentially equal	
11	to the voltage delivered to the bus, an output for delivering an output voltage, V_{out} ,	
12	essentially equal to the load voltage, V_{load} , an essentially constant voltage gain, $K = V_{out} / V_{out}$	
13	at a load current, and an output resistance, Rout;	
14	the VTM further comprising two or more power switches and a power conversion	
15	duty cycle greater than 80% over the normal operating range.	
1	21. Apparatus for distributing power from an input source to a load, where the	
2	load may vary over a normal operating range, comprising:	
3	a first regulator at a first location having a first input and a first output, the first	
4	regulator having circuitry adapted to convert power from the input source at a source voltage	
5	V _{source} , and deliver a controlled DC voltage, V _f , to the first output;	
6	a factorized bus connected to the first output of the first regulator and extending to a	
7	remote location separated by a distance from the first location;	
8	a voltage transformation module ("VTM") at the remote location and having an input	
9	for receiving a DC input voltage, V_{in} , essentially equal to the voltage delivered to the bus, V_{fi}	
10	two or more primary switches connected to drive a transformer with power received from the	
11	input, an output for delivering a DC output voltage, V_{out} , an output resistance, R_{out} , and a	
12	switch controller adapted to operate the primary switches in a series of converter operating	
13	cycles, each converter operating cycle characterized by	
14	(a) two power transfer intervals of essentially equal duration, during which	
15	one or more of the primary switches are ON and power is transferred from the input	
16	to the output via the transformer,	
17	(b) two energy-recycling intervals during which the primary switches are	
18	OFF;	

19	wherein the load is supplied with a voltage, V _{load} , essentially equal to the output		
20	voltage, V _{out} , and regulated by the first regulator using the factorized bus.		
1	22. Apparatus for converting power at a point-of-load from a factorized bus		
2	driven by a source of controlled DC voltage, V _f , for delivering a regulated DC voltage, V _{load} ,		
3	to a load where the load may vary over a normal operating range, the apparatus comprising:		
4	a voltage transformation module ("VTM") having an enclosure for housing power		
5	conversion circuitry, an input terminal, and an output terminal;		
6	the power conversion circuitry comprising:		
7	an input connected to the input terminal and adapted to receive a DC input		
8	voltage, V _{in} , essentially equal to V _f ;		
9	an output connected to the output terminal and adapted to deliver a DC output		
10	voltage, V_{out} , essentially equal to V_{load} ;		
11	a transformer;		
12	two or more primary switches connected to drive the transformer with power		
13	received from the input; and		
14	a controller adapted to operate the primary switches in a series of converter		
15	operating cycles, each converter operating cycle characterized by		
16	(a) two power transfer intervals of essentially equal duration during		
17	which one or more of the primary switches are ON and power is transferred		
18	from the input to the output via the transformer,		
19	(b) two energy-recycling intervals during which the primary switches		
20	are OFF; and		
21	(c) a period less than 2 micro seconds;		
22	wherein the VTM has a power density greater than 250 Watts/cubic-inch, an		
23	essentially constant DC voltage gain, $K = V_{out}/V_{in}$, at a load current, and an output resistance		
24	R_{out} , and regulates the load voltage, V_{load} , as a fraction, K, of the factorized bus voltage, V_{f} .		
1	23. Apparatus for providing scalable electric power conversion capability in		
2	which power is converted from a factorized bus driven by a voltage source of controlled DC		
3	voltage, $V_{\rm f}$, and delivered to a load at a regulated DC output voltage, V_{load} , where the load		

may vary over a normal operating range, the apparatus comprising:

3	two of more voltage transformation modules (vitivis) connected in paramet, each	
6	VTM having	
7	(a) an input adapted to receive a DC input voltage, Vin, essentially equal to Vi	
8	(b) an output adapted to deliver an output voltage, Vout, essentially equal to	
9	V_{load} ;	
10	(c) a transformer;	
11	(d) two or more primary switches connected to drive the transformer with	
12	power received from the input; and	
13	(e) a controller operating the primary switches in a series of converter	
14	operating cycles;	
15	(f) an essentially constant voltage gain $K = V_{out}/V_{in}$ at a load current; and	
16	(g) an output resistance, R _{out} ;	
17	wherein the power delivered to the load is shared by each VTM in inverse proportion	
18	to the output resistance of each VTM; and	
19	the output voltage supplied to the load, V_{load} , is essentially equal to the output	
20	voltage, V_{out} , of each of the VTMs and is regulated by the factorized bus voltage V_{f} .	
1	24. The apparatus of claim 19 further comprising a feedback controller for	
2	adjusting the voltage, V _f , of the factorized bus using a feedback signal derived from the load	
3	voltage, V_{load} .	
1	25. The apparatus of claim 19 wherein the VTM further comprises galvanic	
2	isolation from the input to the output.	
1	26. The apparatus of claim 19 further comprising a plurality of VTMs connected	
2	to the factorized bus.	
1	27. The apparatus of claim 19 further comprising a plurality of VTMs connected	
2	to the factorized bus and operating in parallel to share the power delivered to the load.	
1	28. The apparatus of claim 26 wherein the VTMs are distributed over a	
2	multiplicity of locations.	

1	29.	The apparatus of claim 19 further comprising an output controller for		
2	adjusting the voltage, V_f , of the factorized bus to program the load voltage, V_{load} , to a			
3	selected value.			
	30	The annual of the 10 Coulty are annual in		
1	30.	The apparatus of claim 19 further comprising		
2		tput switch connected in series between the output of the VTM and the load; and		
3	an output switch controller adapted to detect a normal state and a fault state of the			
4	VTM and op	erate the output switch in its ON and OFF states;		
5	wherein the VTM is disconnected from the load in the event of a fault state.			
1	31.	The apparatus of claim 19 further comprising		
2	an in	put switch connected in series between the input of the VTM and the load; and		
3	an input switch controller adapted to detect a normal state and a fault state of the			
4	VTM and operate the input switch in its ON and OFF states;			
5	where	ein the VTM is disconnected from the factorized bus in the event of a fault state.		
1	32.	The apparatus of of claim 19 further comprising		
2	an in	out device connected in series between the input of the VTM and the load; and		
3	an in	put switch controller adapted to detect the factorized bus voltage and operate the		
4	input device to limit the voltage applied to the VTM;			
5	-	ein the VTM is protected from the factorized bus voltage.		
1	33.	The apparatus of claim 22 wherein the VTM operates at a greater than 90 per		
2	cent power c	onversion duty cycle over the normal operating range.		
1	34.	The apparatus of claim 19 wherein		
2	the fi	rst regulator further comprises a front end converter and a power regulator		
3	module ("PRM");			
4	the front end converter being situated at a first location and having an input connected			
5	to receive power from the input source, having an output connected to a first bus, and being			
6	adapted to convert power from the input source and deliver a DC voltage to the first bus; and			

the PRM being located at a second location and having an input connected to the first
bus, having an output connected to the factorized bus, and being adapted to convert power
from the first bus and deliver the controlled DC voltage, V _f , to the factorized bus.

- 35. The apparatus of claim 30 further comprising a feedback controller for adjusting the voltage, V_f , of the factorized bus using a feedback signal derived from the load voltage, V_{load} , and applied to the PRM.
 - 36. The apparatus of claim 19 wherein:

7 8

9

1

2

3

1

4

3

1

2

3

1

2

3

1

2

1

2

1

2

- the VTM further comprises secondary switches to rectify power from the transformer; and
 - the secondary switches are turned ON and OFF essentially at times of zero voltage.
- 1 37. The apparatus of claim 19 wherein the VTM further comprises secondary switches to rectify power from the transformer; and
 - the secondary switches are turned ON and OFF essentially at times of zero current.
 - 38. The apparatus of claim 19 further comprising a feedback controller for increasing the output resistance, R_{out} of the VTM using a feedback signal related to the output current, I_{out} of the VTM.
 - 39. The apparatus of claim 19 further comprising a feedback controller for decreasing the output resistance, R_{out} of the VTM using a feedback signal related to the output current, I_{out} of the VTM.
 - 40. The method of claim 1 or apparatus of claim 19 wherein the first regulator comprises a buck-boost switching regulator.
 - 41. The method of claim 1 or apparatus of claim 19 wherein the first regulator comprises a buck-boost ZVS regulator.
- 1 42. The method of claim 15 or apparatus of claim 34 wherein the PRM comprises 2 a buck-boost switching regulator.
 - 43. The method of claim 15 or apparatus of claim 34 wherein the PRM comprises a buck-boost ZVS regulator.