Las consecuencias del riesgo de longevidad sobre la performace de los mercados financieros

José Valencia Universitat de Barcelona

21 de Junio de 2022

Agenda

- Antecedentes y Motivación
- Hipótesis del ciclo vital
- Experiencia española
- Escenarios de Longevidad
- Conclusiones

Antecedentes

ANTECEDENTES

Antecedentes

- Convergencia hasta los 80s
- \bullet Estancamiento/Desaceleración desde el período Reaganomics
- Divergencia actual

Figure: Esperanza de vida US vs FR vs IT. Fuente: Elaboración propia.

Antecedentes

• Divergencia frente a otros países

Figure: Esperanza de vida US vs UK vs DE. Fuente: Elaboración propia.

Motivación

MOTIVACIÓN

Motivación

- Escasa literatura científica tematica: Capital Markets-Demographic Structure.
- Adultos mayores: principales partícipes en los mercados Sheshinski and Tanzi (1989).
- Boomers: activos poseídos a la jubilación.
- Escenarios de longevidad: Comparativa PERM/F 2020 vs modelos Lee-Carter y Renshaw-Haberman.

La Cuestión

¿Cómo afecta la longevidad la performance de los mercados financieros?

La Cuestión

TAXONOMÍA DE GENERACIONES

NOMBRE DE LA GENERACIÓN	MARCO TEMPORAL EN ESPAÑA	POBLACIÓN DE LAS GENERACIONES * CIRCUNSTANCIA HISTÓRICA		RASGO CARACTERÍSTICO	
Generación Z	1994 - 2010	7.800.000	Expansión masiva de internet	Irreverencia	
Generación Y millennials	1981 - 1993	7.200.000	Inicio de la digilitación	Frustración	
Generación X	1969 - 1980	9.300.000	Crisis del 73 y transición española	Obsesión por el éxito	
Baby Boom	1949 - 1968	12.200.000	Paz y explosión demográfica	Ambición	
Silent Generation Los niños de la posguerra	1930 - 1948	6.300.000	Conflictos bélicos	Austeridad	

LAVANGUARDIA

^{*} Datos correspondientes a la población residente en España. Fuente: INE, 2015.

Hipótesis

HIPOTESIS

Hipótesis del ciclo vital

Hipótesis en el ciclo vital de las inversiones Bakshi y Chen 1994

Example

La hipótesis del ciclo vital de las inversiones afirma que en una etapa de vida temprana un inversionista asigna más recursos financieros a la vivienda y luego cambia a otros activos financieros en una etapa sucesiva de su vida. En consecuencia, el mercado de valores debería subir a un cierto punto por el *efecto boomer* (aumenta el interés por activos financieros) al mismo tiempo que el mercado inmobiliario debería bajar con el aumentar de edad promedia del agente boomer (disminuye el interés de activos reales conforme el agente envejece).

Hipótesis del ciclo vital: S&P 500

Correlación positiva entre S&P 500 y edad promedia.

Figure: Índice S&P 500 real y edad promedia. Fuente: Shiller (1989) and Barsky and DeLong (1990)

Hipótesis del ciclo vital: Precio de la vivienda USA

Correlación negativa entre el precio de la vivienda y edad.

Figure: Precio de la vivienda y edad promedia. Fuente: CITIBASE (1992)

Cuestiones 2

Ahora que las cohortes del baby boom están accediendo a la jubilación, debemos debatir que sucederá en los mercados. Pues, éstos aun retirados del mercado laboral potencialmente pueden protagonizar un rol activo en los mercados si sus decisiones de inversión toman un rumbo concreto en los próximos años.

Por ende, nos ponemos algunas preguntas como:

- ¿Es el caso de esperarse mercados bajistas, suponiendo una inminente venta masiva de los activos financieros poseídos por los boomers?
- ¿A caso la teoría del ciclo vital tuvo similares consecuencias en España como las hubo en EE.UU?
- ¿Una vez accedida a la jubilación, cuántos años esperan vivir los boomers españoles?

Caso español

CASO ESPAÑOL

Caso Español: IBEX 35

- Inicio serie: 1987.
- NO tendencia y varianza "constante".
- Primer repunte del 1997. Edad de los boomers > 40.
- Segundo repunte: víspera de la *crisis de los mutuos* subprime.

Figure: Serie hístorica del IBEX. Fuente: Stooq.com

Caso Español: Vivienda

- Inicio serie: 1985.
- Mercado de la vivienda ya alcista en el 1985.
- 1985: Boomers empezaban a cumplir 40.
- Serie inicialmente alcista se estabiliza a partir de los 90.

Figure: Índice de Precios de Vivienda Nueva en España. Fuente: Sociedad de Tasación.

Escenarios

ESCENARIOS DE LONGEVIDAD

Escenarios de longevidad

- Tasas de mortalidad a la baja en general.
- Evidente mejora en las edades más jóvenes (0-30).
- Relativa mejora en las edades de 80-100.
- Grande varianza en las edades más longevas.

Figure: Mejora tasas de mortalidad en log: España. (1908-2020):

Fuente: Elaboración propia.

Escenarios de longevidad: Modelos Lee-Carter y Renshaw-Haberman

Modelo de Lee-Carter 1992

$$log_{(m_x)} = \alpha_x + \beta_x^{(1)} \cdot \kappa_t + \epsilon_{x,t} \tag{1}$$

Modelo de Renshaw-Haberman 2006

$$log_{(m_x)} = \alpha_x + \beta_x^{(1)} \cdot \kappa_t + \beta_x^{(0)} \cdot \gamma_{t-x}$$
 (2)

En RH Model los autores proponen una extensión del modelo LC que incluya el efecto de la **cohorte**. Esta es la función del parámetro $\beta_x^{(0)} \cdot \gamma_{t-x}$.

Escenarios de longevidad: PERM 2020 vs LC - RH

- A izquierda: función cohorte l_x que representa el ciclo vital de un colectivo.
- A derecha: las tasas de fallecimiento en logaritmo $\log(q_x)$
- Cuanto más alta la linea \rightarrow mayor mortalidad

Figure: $Log(q_x)$ de PERF2020 vs LC y RH. Cohorte 1961. Fuente: Elaboración propia

Escenarios de longevidad: PERM 2020 vs LC - RH

Figure: $\text{Log}(q_x)$ de PERM2020 vs LC y RH. Cohorte 1975. Fuente: Elaboración propia

- Similares conclusiones: PERM 2020 escenario entremedio.
- $Bifurcaci\'on \rightarrow a los 40 a\~nos.$

CONCLUSIONES

Conclusiones: Comparativas cohorte 1961

- Vida residual a la edad 60 es 30 LC, 34 según PERF 2020 y RH.
- Diferencia en esperanza de vida menor para PERF 2020 y RH.

	60	65	70	75	80	85
Lee-Carter	30.0	25.0	21.0	17.0	12.0	8.0
PERF 2020	34.0	30.0	25.0	21.0	16.0	12.0
Renshaw-Haberman	34.0	30.0	25.0	21.0	17.0	14.0

Figure: Esperanza de vida mujeres PERF 2020 v
s LC - RH. Fuente: Elaboración propia

Conclusiones: Comparativas cohorte 1975

 Modelos poco fiables conforme aumenta t sujeto a predicción.

	60	65	70	75	80	85
Lee-Carter	28.0	23.0	19.0	15.0	11.0	8.0
PERM 2020	32.0	28.0	23.0	19.0	15.0	11.0
Renshaw-Haberman	38.0	34.0	30.0	25.0	21.0	17.0

Figure: Esperanza de vida hombres PERM 2020 v
s LC - RH. Fuente: Elaboración propia

Diferencia más evidente sobre todo en las edades más longevas.

Conclusiones: Limitaciones y futuras lineas de investigación

- Limitación de la DATA.
- Marco de bajos tipos de interés (Junio 2022).
- Rechazo a la hipótesis del ciclo vital.
- Activo refugio a bajos tipos: Inversión de los jubilados en vivienda → aumento de la demanda de vivienda y los precios de la misma.
- Incertidumbre esperanza de vida de los boomers.
- Uso de indicadores como *Google trends* para entender la dirección de los mercados.

Preguntas por la comisión.

Gracias por la atención.