2017-11-14

- $T: V \to W$ over F is a linear transformation. Then, $T^{-1}(0_W)$ is called the **nullspace** (kernel) of R. T(V) is called the **range** (image) of T. Dimension of $T^{-1}(0_W)$ is the **nullity**. Dimension of T(V) is the rank.
- $T: P_3(\mathbb{R}) \to P_2(\mathbb{R})$. $T(f) = \frac{d}{dt}(f)$.
 - Basis B_3 of $P_3(\mathbb{R}) = \{1, t, t^2, t^3\}$
 - Basis B_2 of $P_2(\mathbb{R}) = \{1, t, t^2\}$
 - Differentiation matrix $[T]_{B_3}^{B_2} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$
- $T: P_2(\mathbb{R}) \to P_3(\mathbb{R}). T(f) = \int_0^t (f).$
 - Basis B_2 of $P_2(\mathbb{R}) = \{1, t, t^2\}$
 - Basis B_3 of $P_3(\mathbb{R}) = \{1, t, t^2, t^3\}$
 - Integration matrix $[T]_{B_2}^{B_3} = \begin{vmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2} \end{vmatrix}$
- Note that $\left[\frac{d}{dt} \circ \int_0^t\right] = \left[\frac{d}{dt}\right]_{B_3}^{B_2} \left[\int_0^t\right]_{B_2}^{B_3} = I_3$. However, $\left[\int_0^t \circ \frac{d}{dt}\right] \neq \left[\int_0^t\right]_{B_2}^{B_3} \left[\frac{d}{dt}\right]_{B_3}^{B_2} \neq I_4$.
- **Rotation matrix** Q_{θ} through an angle θ :
 - $\circ \ Q_{\theta} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} \cdot Q_{\theta} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix} .$ $\circ \ \text{Hence}, Q_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} .$

 - Properties: $Q_{\theta}^2 = Q_{2\theta}$. $Q_{\theta}^{-1} = Q_{-\theta}$.
- **Projection matrix** P_{θ} onto the θ -line: $P_{\theta} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos^2 \theta \\ \cos \theta \sin \theta \end{bmatrix}$. $P_{\theta} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \sin \theta \cos \theta \\ \sin^2 \theta \end{bmatrix}$. Hence, $P_{\theta} = \begin{bmatrix} \cos^2 \theta & \sin \theta \cos \theta \\ \cos \theta \sin \theta & \sin^2 \theta \end{bmatrix}$.

 - Properties: $P_{\theta}^2 = P_{\theta}$. Singular. Symmetric.
 - $P_{\theta}(\alpha \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}) = \alpha \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} . P_{\theta}(\alpha \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} .$
 - Basis of $N(P_{\theta})$: $\begin{vmatrix} -\sin \theta \\ \cos \theta \end{vmatrix}$.
- - $H_{\theta}\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos 2\theta \\ \sin 2\theta \end{bmatrix}$. $H_{\theta}\begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \sin 2\theta \\ -\cos 2\theta \end{bmatrix}$. Hence, $H_{\theta} = \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{bmatrix}$.

 - Properties: $H_{\theta}^2 = I$. $H_{\theta}^{-1} = H$. $H_{\theta} = 2P_{\theta} I$.

$$\bullet \ H_{\theta}(\alpha \left[\begin{array}{c} \cos \theta \\ \sin \theta \end{array} \right]) = \alpha \left[\begin{array}{c} \cos \theta \\ \sin \theta \end{array} \right]. H_{\theta}(\alpha \left[\begin{array}{c} -\sin \theta \\ \cos \theta \end{array} \right]) = \alpha \left[\begin{array}{c} \sin \theta \\ -\cos \theta \end{array} \right].$$

• If the 1st basis is on the θ -line, and the 2nd basis is perpendicular, then

$$Q^* = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}. P^* = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}. H^* = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

- The length of a vector $x \in \mathbb{R}^n$, denoted as ||x||, is $||x|| = \sqrt{x^\top x} = \sqrt{\sum_{i=1}^n x_i^2}$.
- Given $x, y \in \mathbb{R}^n$, if $x \perp y$, then $x^\top y = y^\top x = \sum_{i=1}^n x_i y_i = 0$.
- An **inner product** on V/F is a function that assigns to every ordered pair of vectors $x, y \in V$, denoted $\langle x, y \rangle$, s.t. for any $z \in V$ and $\alpha \in F$,

 - If $x \neq 0$, then $\langle x, x \rangle > 0$.
- If $F = \mathbb{R}$, then $\langle x, y \rangle = \langle y, x \rangle$.
- Inner product is *linear* in the first component.
- Standard inner product (dot product) on \mathbb{R}^n : $\langle x, y \rangle = x^{\mathsf{T}} y = \sum_{i=1}^n x_i y_i$.
- Examples of inner products: Given $x, y \in \mathbb{C}^n/\mathbb{C}$. Define $\langle x, y \rangle = x^\top \overline{y}$.
- $x, y \in \mathbb{R}^n$ are perpendicular iff the standard inner product $\langle x, y \rangle = x^{\mathsf{T}} y = 0$.
- An **inner product space** is a real or complex vector space (a vector space over \mathbb{R} or \mathbb{C}) together w/ a specified inner product on that space.
- In an inner product space V, x is **orthogonal** to y if $\langle x, y \rangle = 0$.
- A set S of vectors is called an **orthogonal set** if all pairs of distinct vectors in S are orthogonal.
- An **orthonormal set** S is an orthogonal set and $\forall v \in S, \langle v, v \rangle = ||v||^2 = 1$.
- Proposition: An orthogonal set of nonzero vectors is linearly independent.
 - Let S be an orthogonal set of nonzero vectors $v_1, v_2, \ldots, v_n \in V$.
 - Let $c_1, c_2, \ldots, c_n \in F$, and $\sum_{i=1}^{n} c_i v_i = c$.
 - Consider any $v_j \in S$. $\langle c, v_j \rangle = \langle \sum_{i=1}^n c_i v_i, v_j \rangle = c_j \langle v_j, v_j \rangle$.
 - $\circ \ \forall j, c = 0 \text{ iff } c_j = 0.$
 - \circ Hence, S is linearly independent.