

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C07K 14/00

A2

(11) International Publication Number: WO 99/28342

(43) International Publication Date: 10 June 1999 (10.06.99)

(21) International Application Number: PCT/US98/25671

(22) International Filing Date: 3 December 1998 (03.12.98)

(30) Priority Data:
08/984,709
09/188,932
3 December 1997 (03.12.97)
10 November 1998 (10.11.98)
US

(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Applications

US 08/984,709 (CON)
Filed on 3 December 1997 (03.12.97)
US 09/188,932 (CON)
Filed on 10 November 1998 (10.11.98)

(71) Applicant (for all designated States except US): SIBIA NEU-ROSCIENCES, INC. [US/US]; Suite 300, 505 Coast Boule-vard South, La Jolla, CA 92037-4641 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): WILLIAMS, Mark [US/US]; 946 Jasmine Court, Carlsbad, CA 92009 (US). STAUDERMAN, Kenneth [US/US]; 3615 Lotus Drive, San Diego, CA 92106 (US). HARPOLD, Michael [US/US]; 1462 Encina Road, Santa Fe, NM 87505-4726 (US).

HANS, Michael [DE/US]; 2635 San Clemente Terrace, San Diego, CA 92122 (US). URRUTIA, Arturo [US/US]; 778 Beech Avenue, Chula Vista, CA 91910 (US). WASHBURN, Mark, S. [US/US]; 1535 Kings Cross Drive, Cardiff, CA 92007 (US).

(74) Agent: SEIDMAN, Stephanie, L.; Heller Ehrman White & McAuliffe, Suite 700, 4250 Executive Square, La Jolla, CA 92037 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: LOW-VOLTAGE ACTIVATED CALCIUM CHANNEL COMPOSITIONS AND METHODS

Steady-state activation and inactivation

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

LOW-VOLTAGE ACTIVATED CALCIUM CHANNEL COMPOSITIONS AND METHODS

RELATED APPLICATIONS

Benefit of priority to U.S. application Serial No. 08/984,709, to Williams *et al.*, entitled, "CALCIUM CHANNEL COMPOSITIONS AND METHODS" filed December 3, 1997, and to U.S. application Serial No. 09/188,932, to Williams *et al.*, entitled, "CALCIUM CHANNEL COMPOSITIONS AND METHODS" filed November 10, 1998 is claimed herein.

10 This application is related to U.S. application Serial No. 08/450,272, filed May 25, 1995, U.S. application Serial No. 08/450,273, filed May 25, 1995, U.S. application Serial No. 08/450,562, filed May 25, 1995. Each of these applications is a continuation-in-part of U.S. application Serial No. 08/290,012. This application is also related to International PCT application No. 15 PCT/US94/09230, filed August 11, 1994, which claims priority to U.S. application Serial Nos. 08/105,536 and 08/149,097. This application is also related to U.S. application Serial No. 08/404,354, filed February 15, 1995, now U.S. Patent No. 5,618,720, which is a 20 continuation of U.S. application Serial No. 07/914,231, filed July 13, 1992, now U.S. Patent No. 5,407,820, and also U.S. application Serial No. 08/314,083, filed September 28, 1994, now U.S. Patent No. 5,686,241, U.S. application Serial No. 08/435,675, filed May 5, 1995, now U.S. Patent No. 5,710,250, each of which is a divisional of U.S. 25 application Serial No. 07/914,231. U.S. application Serial No. 07/914,231 is a continuation of U.S. application Serial No. 07/603,751, filed November 8, 1990, now abandoned, which is the national stage of International PCT Application PCT/US89/01408, filed April 4, 1989,

20

25

which is a continuation-in-part of U.S. application Serial No. 07/176,899, filed April 4, 1988, now abandoned.

This application is also related to U.S. application Serial No. 08/884,599, filed June 27, 1997, which is a continuation of U.S. application Serial No. 08/314,083.

This application is also related to U.S. application Serial No. 08/290,012, filed August 11, 1994, now abandoned, which corresponds to published International PCT application No. WO95/04822, which is a continuation-in-part of allowed U.S. application Serial No. 08/149,097, filed November 5, 1993, and a continuation-in-part of United States Application Serial No. 08/105,536, filed August 11, 1993. United States Application Serial No. 08/149,097 is a continuation-in-part of United States Application Serial No. 08/105,536, which is a continuation-in-part of the above-mentioned United States Application Serial No. 07/603,751, filed November 8, 1990.

This application is also a related to allowed U.S. application Serial No. 08/223,305, filed April 4, 1994, now U.S. Patent No. 5,851,824, which is a continuation of U.S. application Serial No. 07/868,354, now abandoned, which is a continuation-in-part of U.S. application Serial No. 07/745,206, filed August 15, 1991, now U.S. Patent No. 5,429,921, which is a continuation-in-part of the above-mentioned United States Application Serial No. 07/603,751, filed November 8, 1990, and a continuation-in-part of U.S. application Serial No. 07/620,250, filed November 30, 1990, now abandoned. This application is also related to allowed application U.S. application Serial No. 08/455,543, filed May 31, 1995, now U.S. Patent No. 5,792,846, which is a continuation of U.S. application Serial No. 07/868,354, filed April 10, 1992.

This application is also a related to U.S. application Serial No. 08/311,363, filed September 23, 1994, which is a continuation of allowed U.S. application Serial No. 07/745,206, filed August 15, 1991.

This application is also related to allowed U.S. application Serial No. 08/193,078, now U.S. Patent No. 5,846,756, filed February 7, 1994, which is the National Stage of International PCT Application No. PCT/US92/06903, published as International PCT application No. WO93/04083, filed August 14, 1992 and which is a continuation-in-part of U.S. application Serial Nos. 07/868,354, 07/745,206, 07/603,751, 07/176,899, 07/620,250, filed November 30, 1990, now abandoned, and 07/482,384, now U.S. Patent No. 5,386,025, filed February 2, 1990.

This application is also related to allowed U.S. application Serial No. 08/336,257, now U.S. Patent No. 5,726,035, filed November 7, 1994, which is a continuation of 07/482,384, now U.S. Patent No. 5,386,025, filed February 2, 1990.

Where permitted, the subject matter of each of the above-noted U.S. applications, patents and International PCT applications is incorporated herein in its entirety.

20 TECHNICAL FIELD

The present invention relates to molecular biology and pharmacology. More particularly, the invention relates to calcium channel compositions and methods of making and using the same.

BACKGROUND OF THE INVENTION

Calcium channels are membrane-spanning, multi-subunit proteins that allow controlled entry of Ca²⁺ ions into cells from the extracellular fluid. Cells throughout the animal kingdom, and at least some bacterial, fungal and plant cells, possess one or more types of calcium channel.

15

20

25

The most common type of calcium channel is voltage dependent. All "excitable" cells in animals, such as neurons of the central nervous system (CNS), peripheral nerve cells and muscle cells, including those of skeletal muscles, cardiac muscles, and venous and arterial smooth muscles, have voltage-dependent calcium channels (VGCCs). "Opening" of a voltage-dependent channel to allow an influx of Ca²⁺ ions into the cells requires a depolarization to a certain level of the potential difference between the inside of the cell bearing the channel and the extracellular environment bathing the cell. The rate of influx of Ca²⁺ into the cell depends on this potential difference.

Calcium channels are multisubunit proteins that contain two large subunits, designated a_1 and a_2 , which have molecular weights between about 130 and about 200 kilodaltons ("kD"), and one to three different smaller subunits of less than about 60 kD in molecular weight. At least one of the larger subunits and possibly some of the smaller subunits are glycosylated. Some of the subunits are capable of being phosphorylated. The α_1 subunit has a molecular weight of about 150 to about 170 kD when analyzed by sodium dodecylsulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) after isolation from mammalian muscle tissue and has specific binding sites for various 1,4-dihydropyridines (DHPs) and phenylalkylamines. Under non-reducing conditions (in the presence of N-ethylmaleimide), the a_2 subunit migrates in SDS-PAGE as a band corresponding to a molecular weight of about 160-190 kD. Upon reduction, a large fragment and smaller fragments are released. The β subunit of the rabbit skeletal muscle calcium channel is a phosphorylated protein that has a molecular weight of 52-65 kD as determined by SDS-PAGE analysis. This subunit is insensitive to reducing conditions. The y subunit of the calcium channel appears to be a glycoprotein with an

15

20

25

apparent molecular weight of 30-33 kD, as determined by SDS-PAGE analysis.

In order to study calcium channel structure and function, large amounts of pure channel protein are needed. Because of the complex nature of these multisubunit proteins, the varying concentrations of calcium channels in tissue sources of the protein, the presence of mixed populations of calcium channels in tissues, difficulties in obtaining tissues of interest, and the modifications of the native protein that can occur during the isolation procedure, it is extremely difficult to obtain large amounts of highly purified, completely intact calcium channel protein.

Because calcium channels are present in various tissues and have a central role in regulating intracellular calcium ion concentrations, they are implicated in a number of vital processes in animals, including neurotransmitter release, muscle contraction, pacemaker activity, and secretion of hormones and other substances. These processes appear to be involved in numerous human disorders, such as central nervous system disorders and cardiovascular diseases. Calcium channels, thus, are also implicated in numerous disorders. A number of compounds useful for treating various cardiovascular diseases in animals, including humans, are thought to exert their beneficial effects by modulating functions of voltage-dependent calcium channels present in cardiac and/or vascular smooth muscle. Many of these compounds bind to calcium channels and block, or reduce the rate of, influx of Ca²⁺ into the cells in response to depolarization of the cell membrane.

The results of studies of recombinant expression of rabbit calcium channel α_1 subunit-encoding cDNA clones and transcripts of the cDNA clones indicate that the α_1 subunit forms the pore through which calcium enters cells. The relevance of the barium currents generated in these recombinant cells to the actual current generated by calcium channels

10

15

20

25

containing as one component the respective a_1 subunits *in vivo* is unclear. In order to completely and accurately characterize and evaluate different calcium channel types, however, it is essential to examine the functional properties of recombinant channels containing all of the subunits as found *in vivo*.

In order to conduct this examination and to fully understand calcium channel structure and function, it is critical to identify and characterize as many calcium channel subunits as possible. Also in order to prepare recombinant cells for use in identifying compounds that interact with calcium channels, it is necessary to be able to produce cells that express uniform populations of calcium channels containing defined subunits.

An understanding of the pharmacology of compounds that interact with calcium channels in other organ systems, such as the CNS, may aid in the rational design of compounds that specifically interact with subtypes of human calcium channels to have desired therapeutic effects, such as in the treatment of neurodegenerative and cardiovascular disorders. Such understanding and the ability to rationally design therapeutically effective compounds, however, have been hampered by an inability to independently determine the types of human calcium channels and the molecular nature of individual subtypes, particularly in the CNS, and by the unavailability of pure preparations of specific channel subtypes to use for evaluation of the specificity of calcium channel-effecting compounds. Thus, identification of DNA encoding human calcium channel subunits and the use of such DNA for expression of calcium channel subunits and functional calcium channels would aid in screening and designing therapeutically effective compounds.

Multiple types of calcium channels have been identified in mammalian cells from various tissues, including skeletal muscle, cardiac

muscle, lung, smooth muscle and brain, (see, e.g., Bean, B.P.(1989) Ann. Rev. Physiol. 51:367-384 and Hess, P. (1990) Ann. Rev. Neurosci. 56:337). The different types of calcium channels have been broadly categorized into four classes, L-, T-, N-, P-, Q and R-type, distinguished by current kinetics, holding potential sensitivity and sensitivity to calcium channel agonists and antagonists. The primary determinant of diversity among calcium channels is the nature of the pore-forming a_1 subunit. Nucleic acid encoding numerous a_1 subunits has been cloned and the encoded subunits expressed. Correlations between a_1 subunits and the operationally defined Ca^{2+} currents have been established. Six gene products $a_{1A}-a_{1.E}$ and a_{1S} participate in the formation of high-voltage activated channels, which include the L, N, P, Q and R-type channels.

DNA encoding human α_1 -subunits, including α_{1A} -, α_{1B} -, α_{1C} -, α_{1D} - and α_{1E} subunits and splice variants thereof has been described (see, e.g., U.S. Patent No. 5,429,921, U.S. Patent No. 5,846,756, U.S. Patent No. 5,851,824, published International PCT application No. PCT/US92/06903, and published International PCT application No. PCT/US94/09230). These subunits appear to participate in formation of high voltage calcium (HVA) channels, which in addition to one of these 20 α_1 -subunits, includes a β subunit and an α_2 -subunit, including δ , which is linked to a_2 by a disulfide bridge and arises from the same precursor. The distinct biophysical and pharmacological properties of each channel derive primarily form the a_1 -subunit, but are modulated by the ancillary subunits, principally the β subunits associated with the channel. β -subunits have 25 been shown to increase the peak current amplitude, to shift activation/inactivation curves toward more hyperpolarized potentials and to alter kinetics of activation and inactivation (see, e.g., Lambert et al. (1997) J. Neurosci. 17:6621-6625). The $\alpha_2\delta$ subunit, which is tissue-

specific, increases the current generated by any α_1 subunit and potentiates the stimulatory response of β subunits.

T-type or LVA channels

Little is known about the channels that have been designated T-channels or LVA (low voltage activated) channels. Low-voltage activated (LVA), i.e., T-type, calcium channels are reportedly found in a variety of cell types. Low-voltage activated (LVA) or T-type calcium channels are also widely distributed in the central and peripheral nervous system and apparently involved in an extensive array of different neuronal processes.

In general it is believed that T-type currents do not differ 10 fundamentally from other Ca2+ currents. Like HVA channels, T-type channels are selectively permeable to divalent cations, as long as a minimal concentration of divalent cations is present in the external medium. For LVA (or T-type) currents, this minimal Ca2+ concentration is about 25 μ m, and for HVA currents it is about 1 μ M. T-type current is 15 reported to saturate with a K_d of about 10 mM Ca²⁺, which is similar to that reported for HVA currents. The channels, however, appear to exhibit certain differences. They differ in their relative permeability to divalent cations. In general, HVA channels are more permeable to Ba2+ than to Ca²⁺; T-type are equally or slightly less permeable to Ba²⁺ than to Ca²⁺. 20 T-type channels also are believed to exhibit slower activation/inactivation and deactivation kinetics and have been reported to exhibit relatively higher sensitivity to Ni2+. This type of channel is activated near the resting potential of the membrane, and is believed to be responsible for the generation of repetitive firing activity or intrinsic neuronal oscillations 25 and for Ca2+ entry accompanying the spike activity (see, e.g., Huguenard (1996) Annual Rev. Physiol. 58:329-348). Recent data suggests that β subunits identified to date may not be a constitutive T-type channel subunit (see, Lambert et al. (1997) J. Neurosci. 17:6621-6625). The

structure of calcium channels that generate the various LVA currents is unknown. None of the a_1 subunits previously cloned appear to have all properties that have been ascribed to the low voltage-activated T-type (or LVA) channels.

Therefore, it is an object herein, to provide nucleic acid encoding specific calcium channel subunits that have structural and functional properties that differ from the HVA type channels. It is also an object herein to provide nucleic acid encoding channels that have activities that have been ascribed to T-type channels and to provide eukaryotic cells bearing recombinant tissue-specific or subtype-specific calcium channels. It is also an object to provide assays for identification of potentially therapeutic compounds that act as modulators of calcium channel activity, particularly those specific for channels that exhibit properties of human T-type channels and other types of channels.

15 SUMMARY OF THE INVENTION

Isolated and purified nucleic acid fragments that encode calcium channel subunits are provided. The subunits form low-voltage activated (LVA) channels, particularly channels that have properties associated with T-type channels. The subunits and results provided herein, provide a family of α_1 subunits corresponding to LVA, or T-type, channels. Channels that contain these subunits have ability to open at low potential difference, but stay open for only moderate time periods. These channels are located in critical physiologic locations, including neurons in the thalamus, hypothalamus, and brain stem, and consequently may be involved in autonomic nervous functions, perhaps involved in regulation of cardiovascular activities such as heart rate, arterial and venous smooth muscle innervation and tone, pulmonary rate and other critical physiologic activities.

15

20

DNA encoding these a_1 subunits of a animal channels, and RNA, encoding such subunits, made upon transcription of such DNA are provided. In particular, nucleic acid that encodes T-type calcium channels, designated a_{1H} -subunits (designated a_{1F} in the priority document U.S. application Serial No. 08/984,709) of a calcium channel, particularly an animal calcium channel and more particularly a mammalian calcium channel is provided.

Of particular interest herein is the nucleic acid that encodes the a_{1H} subunits of calcium channels, particularly mammalian calcium channels. Nucleic acid encoding exemplary a_{1H} subunits are provided. Nucleic acid encoding two splice variants, designated a_{1H-1} and a_{1H-2} , from human calcium channels is provided. The nucleic acid sequences and encoded amino acids of the exemplified subunits are set forth in SEQ ID Nos. 12 (a_{1H-1}) , 15 (a_{1H-1}) and 16 (a_{1H-2}) . SEQ ID NOs. 12 and 15 differ only in that in amino acid 2230 (bases 6983-6985) is Asp (GAC) in the SEQ ID No. 15 and Glu (GAA) in SEQ ID No. 12.

This nucleic acid can be used to isolate variants, including additional splice variants of the nucleic acid encoding α_{1H} subunits, allelic variants and α_{1H} subunits from other animals, particularly mammals. Such nucleic acid includes DNA encoding an α_{1H-1} subunit that has substantially the same sequence of amino acids as encoded by the DNA set forth in SEQ ID Nos. 12 and 15. This nucleic acid can also be used to isolate DNA encoding α_{1H} subunits from other species, particularly other mammals.

Also provided is nucleic acid that encodes a second splice variant, designated a_{1H-2} , is provided. The nucleic acid sequence of this variant, differs from a_{1H-1} in having a 957 nucleotide deletion, resulting in loss of 319 amino acids (corresponding to amino acids 470-788 of a_{1H-1}).

15

Also included are any subunits that are encoded by nucleic acid containing nucleotides nt 1506 to nt 2627 of SEQ ID No. 12 or 15 or subunits that are encoded by nucleic acid that hybridizes, preferably under conditions of high stringency, to a probe derived from this region and that encodes a T-channel, which can be identified using methods herein.

The a_{1H} subunit differs from the a_{1A} - a_{1E} calcium channel subunits in a number of aspects. First, the intracellular loop positioned between transmembrane Domains I and II is considerably longer than HVA calcium channels. For instance, as exemplified in SEQ ID Nos. 12 and 15 and described below, the intracellular loop between Domains I and II is greater than 1,100 nt (1122 nt), whereas the corresponding region in HVA calcium channels ranges from 351 to 381 nt in length. Thus, the intracellular loop of a_{1H} contains approximately 370 additional amino acid residues (aa 420 to aa 794 of SEQ ID No. 12) not found in HVA calcium channel a_1 subunits. In addition, the encoded amino acid sequence of this loop region is highly proline rich and contains a poly-HIS region of 9 consecutive histidine residues.

Other distinguishing features of the α_{1H} subunit, include the
absence of amino acid residues in the intracellular loop between
transmembrane Domains I and II that are known to be critical (e.g., see
De Waard et al. (1996) FEBS Letters 380:272-276; Pragnell et al. (1994)
Nature 368:67-70) for the interaction between an α₁ subunit and a β
subunit. The α_{1H} subunit also contains a notably large extracellular loop in
Domain I between IS5 and IS6. The HVA α₁ calcium channel subunits
provided herein contain 249-270 nucleotide residues in this loop. In
contrast, the human α_{1H} subunit contains 426 nucleotide residues in this
loop. The intracellular loop between transmembrane Domains III and IV is

10

15

20

25

also slightly larger than the HVA a_1 subunits (186 nt compared to 159-165 nt).

Nucleic acid probes, which can be labeled for detection, containing at least about 14, preferably 16, or, if desired, 20 or 30 or more, contiguous nucleotides of α_{1H} -encoding nucleic acid are provided. Methods using the probes for the isolation and cloning of calcium channel subunit-encoding DNA, including splice variants within tissues and intertissue variants are also provided. Particularly preferred regions from which to construct probes for the isolation of DNA encoding a human α_{1H} subunit include the nucleic acid sequence encoding the notably long intracellular loop located between transmembrane Domains I and II (e.g., nt 1506 to nt 2627 of SEQ ID Nos. 12 and 15). Probes for isolating DNA encoding a human α_{1H} subunit are preferably 14 or 16 contiguous nucleotides in length. In some instances, probes of 30 or 50 nucleotides are used and in other instances probes between 50 to 100 nucleotides are used.

Eukaryotic cells containing heterologous DNA encoding one or more calcium channel subunits, particularly human calcium channel subunits, or containing RNA transcripts of DNA clones encoding one or more of the subunits are provided. A single a_{1H} subunit can form a channel. The requisite combination of subunits for formation of active channels in selected cells, however, can be determined empirically using the methods herein. For example, if a selected a_1 subtype or variant does not form an active channel in a selected cell line, an additional subunit or subunits can be added until an active channel is formed. Other subunits can be added to assess the effects of such addition.

In preferred embodiments, the cells contain DNA or RNA encoding an a_1 subunit, preferably an a_{1H} subunit of an animal, preferably of a mammalian calcium channel. Embodiments in which the cells contain

nucleic acid encoding an a_{1H} are of particular interest herein. In other embodiments, the cells contain DNA or RNA encoding additional heterologous subunits, including an $a_2\delta$. The cells may also include nucleic acid encoding a β subunit and/or a γ subunit. In such embodiments, eukaryotic cells stably or transiently transfected with any combination of one, two, three or four of the subunit-encoding DNA clones, such as DNA encoding any of a_1 , $a_1 + \beta$, $a_1 + \beta + a_2$, are provided. The eukaryotic cells provided herein contain heterologous nucleic acid that encodes an a_1 subunit and optionally a heterologous a_2 -subunit and/or a β subunit and/or γ subunit.

In preferred embodiments, the cells express such heterologous calcium channel subunits and include one or more of the subunits in membrane-spanning heterologous calcium channels. In more preferred embodiments, the eukaryotic cells express functional, heterologous 15 · calcium channels that are capable of gating the passage of calcium channel-selective ions and/or binding compounds that, at physiological concentrations, modulate the activity of the heterologous calcium channel. In certain embodiments, the heterologous calcium channels include at least one heterologous calcium channel subunit. In most 20 preferred embodiments, the calcium channels that are expressed on the surface of the eukaryotic cells are composed substantially or entirely of subunits encoded by the heterologous DNA or RNA. In preferred embodiments, the heterologous calcium channels of such cells are distinguishable from any endogenous calcium channels of the host cell. 25 Such cells provide a means to obtain homogeneous populations of calcium channels. Typically, the cells contain the selected calcium channel as the only heterologous ion channel expressed by the cell.

In certain embodiments the recombinant eukaryotic cells that contain the heterologous DNA encoding the calcium channel subunits are

10

15

20

25

produced by transfection with DNA encoding one or more of the subunits or are injected with RNA transcripts of DNA encoding one or more of the calcium channel subunits. The DNA may be introduced as a linear DNA fragment or may be included in an expression vector for stable or transient expression of the subunit-encoding DNA. Vectors containing DNA encoding human calcium channel subunits are also provided.

The eukaryotic cells that express heterologous calcium channels may be used in assays for calcium channel function or, in the case of cells transformed with fewer subunit-encoding nucleic acids than necessary to constitute a functional recombinant human calcium channel, such cells may be used to assess the effects of additional subunits on calcium channel activity. The additional subunits can be provided by subsequently transfecting such a cell with one or more DNA clones or RNA transcripts encoding human calcium channel subunits.

The recombinant eukaryotic cells that express membrane spanning heterologous calcium channels may be used in methods for identifying compounds that modulate calcium channel activity. In particular, the cells are used in assays that identify agonists and antagonists of calcium channel activity in humans and/or assessing the contribution of the various calcium channel subunits to the transport and regulation of transport of calcium ions. Because the cells constitute homogeneous populations of calcium channels, they provide a means to identify agonists or antagonists of calcium channel activity that are specific for each such population.

The cells provided herein may be used to assess T-type channel function and tissue distribution and to identify compounds that modulate the activity of T-type channels. Because T-type channels are operative in neurons in the thalamus, hypothalamus, and brain stem, and may be involved in autonomic nervous functions, in regulation of cardiovascular

15

20

25

activities such as heart rate, arterial and venous smooth muscle innervation and tone, pulmonary rate and other fundamental processes, assays designed to assess such activities and assays the identify modulators of these activities provide a means to understand fundamental physiological processes and also a means to identify new drug candidates for an array of disorders.

Assays that use the eukaryotic cells for identifying compounds that modulate calcium channel activity are also provided. In practicing these assays the eukaryotic cell that expresses a heterologous calcium channel, containing at least one subunit encoded by the DNA provided herein, is in a solution containing a test compound and a calcium channel selective ion, the cell membrane is depolarized, and current flowing into the cell is detected. If the test compound is one that modulates calcium channel activity, the current that is detected is different from that produced by depolarizing the same or a substantially identical cell in the presence of the same calcium channel-selective ion but in the absence of the compound. In preferred embodiments, prior to the depolarization step, the cell is maintained at a holding potential which substantially inactivates calcium channels which are endogenous to the cell. Also in preferred embodiments, the cells are mammalian cells, most preferably HEK cells, or amphibian oöcytes.

Cells that express T-channels or LVA channels may be used in assays that screen for compounds that have activity as modulators, particularly antagonists, of the activity of these channels.

Transcription based assays for identifying compounds that modulate the activity of calcium channels (see, U.S. Patent Nos. 5,436,128 and 5,401,629), particularly calcium channels that contain an a_{1H} subunit are provided. These assays use cells that express calcium channels, particularly calcium channels containing an a_{1H} -subunit, and

15

25

more preferably an a_{1H} -subunit encoded by heterologous DNA, and also contain nucleic acid encoding a reporter gene construct containing a reporter gene in operative linkage with one or more transcriptional control elements that is regulated by a calcium channel. The assays are effected by comparing the difference in the amount of transcription of a the reporter gene in the cells provided herein in the presence of the compound with the amount of transcription in the absence of the compound, or with the amount of transcription in the absence of the heterologous calcium channel, whereby compounds that modulate the activity of the heterologous calcium channel in the cell are identified. The reporter gene is any such gene known to those of skill in the art, including, but not limited to the gene encoding bacterial chloramphenicol acetyltransferase, the gene encoding firefly luciferase, the gene encoding bacterial luciferase, the gene encoding β -galactosidase or the gene encoding alkaline phosphatase, and the transcriptional control element is any such element known to those of skill in the art, including, but not limited to serum responsive elements, cyclic adenosine monophosphate responsive elements, the c-fos gene promoter, the vasoactive intestinal peptide gene promoter, the somatostatin gene promoter, the proenkephalin promoter, the phosphoenolpyruvate carboxykinase gene 20 promoter or the nerve growth factor-1 A gene promoter and elements responsive to intracellular calcium ion levels.

Other assays in which receptor activity in response to test compounds is measured may also be practiced with the cells provided herein (see, e.g., U.S. Patent No. 5,670,113).

Because T-type channels appear to be associated with a variety of key functions, cells that express T-channels and assays using such cells will be useful for identification of compounds for treatment of a variety of

disorders, disease and conditions. Identified compounds will be candidates for use in the treatment of disorders and conditions associated with T-channel activity. Such activities include, but are not limited to, those involving role in muscle excitability, secretion and pacemaker activity, Ca2+ dependent burst firing, neuronal oscillations, and 5 potentiation of synaptic signals, for improving arterial compliance in systolic hypertension, or improving vascular tone, such as by decreasing vascular welling, in peripheral circulatory disease, and others. Other disorders include, but are not limited to hypertension, cardiovascular disorders, including but not limited to: myocardial infarct, cardiac arrhythmia, heart failure and angina pectoris; neurological disorders, such as schizophrenia, epilepsy and depression, peripheral muscle disorders, respiratory disorders and endocrine disorders.

In particular, cells that express LVA channels, such as the a_{1H} subunits, are useful for identifying compounds that are candidates for 15 treatment of disorders associated with conduction tissues, such as atrial pacemaker cells, Purkinje fibers, and also coronary smooth muscles. Such disorders include, but are not limited to, compounds useful for treatment of cardiovascular, such as angina, vascular, such as hypertension, and urologic, hepatic, reproductive, adjunctive therapies for 20 reestablishing normal heart rate and cardiac output following traumatic injury, heart attack and other cardiac injuries; treatments of myocardial infarct (MI), post-MI and in an acute setting. Other compounds that interact with LVA, particularly T-type, calcium channels, may be effective for increasing cardiac contractile force, such as measured by left 25 ventricular end diastolic pressure, and without changing blood pressure or heart rate. In an acute other compounds may be effective to decrease formation of scar tissue, such as that measured by collagen deposition or septal thickness, and without cardiodepressant effects. The assays may

10

15

identify compounds useful in regulating vascular smooth muscle tone, either vasodilating or vasoconstricting in: (a) treatments for reestablishing blood pressure control, e.g., following traumatic injury, surgery or cardiopulmonary bypass, and in prophylactic treatments designed to minimize cardiovascular effects of anaesthetic drugs; (b) treatments for improving vascular reflexes and blood pressure control by the autonomic nervous system; for identifying compounds useful in treating urological disorders: (a) treating and restoring renal function following surgery, traumatic injury, uremia and adverse drug reactions; (b) treating bladder dysfunctions; and (c) uremic neuronal toxicity and hypotension in patients on hemodialysis; reproductive disorders, for identifying compounds useful in treating: (a) disorders of sexual function including impotence; (b) alcoholic impotence (under autonomic control that may be subject to Tchannel controls); hepatic disorders for identifying compounds useful in treating and reducing neuronal toxicity and autonomic nervous system damage resulting from acute over-consumption of alcohol; neurologic disorders for identifying compounds useful in treating: (a) epilepsy and diencephalic epilepsy; (b) Parkinson's disease; (c) aberrant temperature control, such as, abnormalities of shivering and sweat gland secretion and peripheral vascular blood supply; (d) aberrant pituitary and hypothalamic 20 functions including abnormal secretion of noradrenaline, dopamine and other hormones; for respiratory such as in treating abnormal respiration, e.g., post-surgical complications of anesthetics; and endocrine disorders, for identifying compounds useful in treating aberrant secretion of hormones including e.g., possible treatments for overproduction of 25 insulin, thyroxin, adrenalin, and other hormonal imbalances.

Purified human a_{1H} calcium channel subunits and purified human calcium channels containing such subunits are provided. The subunits

15

20

and channels can be isolated from a eukaryotic cell transfected with nucleic acid that encodes the subunit.

In another embodiment, immunoglobulins or antibodies obtained from the serum of an animal immunized with a substantially pure preparation of a human calcium channel, human calcium channel subunit or epitope-containing fragment of a human calcium subunit are provided. Monoclonal antibodies produced using a human calcium channel, human calcium channel subunit or epitope-containing fragment thereof as an immunogen are also provided. E. coli fusion proteins including a fragment of a human calcium channel subunit may also be used as immunogen. Such fusion proteins may contain a bacterial protein or portion thereof, such as the E. coli TrpE protein, fused to a calcium channel subunit peptide. The immunoglobulins that are produced using the calcium channel subunits or purified calcium channels as immunogens have, among other properties, the ability to specifically and preferentially bind to and/or cause the immunoprecipitation of a human calcium channel or a subunit thereof which may be present in a biological sample or a solution derived from such a biological sample. Such antibodies may also be used to selectively isolate cells that express calcium channels that contain the subunit for which the antibodies are specific.

Methods for modulating the activity of ion channels by contacting the calcium channels with an effective amount of the above-described antibodies are also provided.

Thus, assays for identifying compounds that modulate the activity of LVA calcium channels, particularly T-type channels are provided as well as compounds identified by the methods.

Also provided are methods for diagnosing LVA calcium channel-mediated, particularly T-type channel-mediated, disorders. Methods of diagnosis will involve detection of aberrant channel expression or

10

20

25

function, such altered amino acid sequences, altered pharmacological profiles and altered electrophysiological profiles compared to normal or wild-type channels. Such methods typically can employ antibodies specific for the altered channel or nucleic acid probes to detect altered genes or transcripts.

DESCRIPTION OF THE FIGURES

FIGURE 1 shows the voltage-dependence of activation (m∞) and steady-state inactivation (h) of human a_{1H} calcium channels expressed transiently in HEK cells. Voltage-dependence of activation (m∞) was determined from tail current analysis. Tail currents were normalized with respect to the maximum peak tail current obtained at +60 mV and were plotted (open symbols, mean \pm SEM; n = 11) vs. test potential. Data were fitted by the sum of two Boltzman function $m\infty = FA*[1 + exp ((Vtest-V1/2,A)/KA)]1 + F_B*[1 + exp(-(V_{test}-V_{1/2,B})/k_B)]^{-1}, F_A = 0.67, V_{1/2,A} = -1.00$ 21.5 mV, $k_A = 7.5$, $F_B = 0.33$, $V_{1/2,B} = 25.5 \text{ mV}$, $k_B = 14.7$. Steady-state inactivation (h∞) was determined from a holding potential of -100 mV by a test pulse to -20 mV (p1), followed by a 20 second prepulse from -100 mV to -10 mV in 5 mV decrements (pHold) preceding a second test pulse to -20 mV (p2). Normalized current amplitudes were plotted (closed symbols, mean \pm SEM; n=9) vs. holding potential. Data were fitted by a Boltzman function $h\infty = [1 + \exp((V_{hold} - V_{1/2})/k)]^{-1}, V_{1/2} = -63.9 \text{ mV}, k = 3.$ 9mV.

FIGURE 2 shows the kinetics of activation (FIGURE 2A) and inactivation (FIGURE 2B) of human a_{1H} (a_{1H-1}) calcium channels; kinetics of activation and inactivation were determined from current traces by fitting an exponential function to rising (FIG. 2A) or declining (FIG. 2B) phase of the current (the voltage-dependence for activation and inactivation follows approximately an exponential function).

FIGURE 3 schematically depicts features of the a_{1H-1} subunit and shows amino acid sequence alignment of human a_{1H} with a_{1D} and a_{1E} in each of the four pore regions; *indicates residues involved in ion selectivity in each of the four pore regions; the unusually large loop in the LVA-associated a_{1H} subunits between transmembrane domains I and II.

FIGURE 4A shows the tail currents elicited by repolarization to -90 mV following 10 ms step depolarizations between -80 and -10 mV. For tail current measurements the digitization/filter rates were 50/16 kHz. Tail current decay was fitted to a bi-exponential function of the form $I = A_o + A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2)$. The bi-exponential decay profile of the tail current was observed in every cell examined (n = 12). FIGURES 4B and 4C show the voltage-dependence of the time constants τ_1 and τ_2 for current deactivation (FIGURE 4B) and the current fractions A_1 and A_2 (FIGURE 4C).

15 DETAILED DESCRIPTION OF THE INVENTION

Definitions:

20

25

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of skill in the art to which this invention belongs. All patents and publications referred to herein are incorporated by reference herein.

Reference to each of the calcium channel subunits includes the subunits that are specifically disclosed herein and human calcium channel subunits encoded by nucleic acid that can be isolated by using the nucleic acid disclosed as probes and screening an appropriate human cDNA or genomic library under at least low stringency, preferably high stringency. Such DNA also includes DNA that encodes proteins that have about 40% homology, typically at least about 90% sequence identity taking into account gaps) to any of the subunits proteins described herein or DNA or RNA that hybridizes under conditions of at least low stringency to the

15

20

DNA provided herein and the protein encoded by such DNA exhibits additional identifying characteristics, such as function or molecular weight. In particular, reference to an α_{1H} subunit refers to subunits that can be isolated from nucleic acid libraries from any desired source using the nucleic acid disclosed herein as a probe. The encoded subunit is characterized by the presence of the notably long intracellular loop between transmembrane domains I and II, and/or properties ascribed to T-type or LVA type channels.

It is understood that subunits that are encoded by transcripts that represent splice variants of the disclosed subunits or other such subunits may exhibit less than 40% overall homology to any single subunit, but will include regions of such homology to one or more such subunits. It is also understood that 40% homology refers to proteins that share approximately 40% of their amino acids in common or that share somewhat less, but include conservative amino acid substitutions, whereby the activity of the protein is not substantially altered.

The subunits and DNA fragments encoding such subunits are provided herein or known to those of skill in the art (see, published International PCT application Nos. WO89/09834, WO93/04083, WO95/04822, U.S. Patent Nos. 5,792,846, 5,726,035, 5,407,820, 5,686,241, 5,618,720, 5,710,250, 5,429,921, 5,429,921 and 5,386,025) include any a_1 , a_2 , β or γ subunits of a human calcium channel.

Nucleic acid encoding LVA subunits, particularly a_{1H} subunits of human and other animal calcium channels, are provided herein. In particular, such DNA fragments include any isolated DNA fragment that (encodes a subunit of a human calcium channel, that (1) contains a sequence of nucleotides that encodes the subunit, and (2) is selected from among:

10

15

- (a) a sequence of nucleotides that encodes a human calcium a_{1H} channel subunit and includes a sequence of nucleotides set forth in any of the SEQ ID's herein (i.e., SEQ ID Nos. 12, 15 and 16) that encodes such subunit;
- (b) a sequence of nucleotides that encodes the subunit and hybridizes under conditions of high stringency to DNA that is complementary to an mRNA transcript present in a human cell that encodes a LVA subunit, particularly an a_{1H} -subunit;
 - (c) a sequence of nucleotides that encodes the subunit that includes a sequence of amino acids encoded by any of SEQ ID Nos. 12-16; and
 - (d) a sequence of nucleotides that encodes a subunit that includes a sequence of amino acids encoded by a sequence of nucleotides that encodes such subunit and hybridizes under conditions of high stringency to DNA that is complementary to an mRNA transcript present in a human cell that encodes the subunit that includes a sequence of nucleotides set forth in any of SEQ ID Nos. 12-16.

As used herein, the a_1 subunit types, encoded by different genes, are designated as type a_{1A} , a_{1B} , a_{1C} , a_{1D} , a_{1E} and a_{1H} . These types have also been referred to as VDCC IV for a_{1B} , VDCC II for a_{1C} and VDCC III for a_{1D} . Subunit subtypes, which are splice variants, are referred to, for example as a_{1H-1} , a_{1H-2} , a_{1B-1} , a_{1B-2} , a_{1C-1} etc.

Thus, as used herein, nucleic acid (DNA or RNA) encoding the α_1 subunit refers to nucleic acid that hybridizes to the DNA provided herein under conditions of at least low stringency, typically high stringency, or encodes a subunit that has at least about 40% homology to protein encoded by DNA disclosed herein that encodes the specified α_1 subunit of a human calcium channel. In the case of LVA channels, nucleic acid that

10

15

20

25

encodes a subunit that hybridizes under at least low stringency, preferably high stringency, to nucleic acid that encodes an a_{1H} subunit, and that encodes a subunit having the requisite LVA properties in assays for such activity, as those described herein. Splice variants will have varying percentages of overall homology (or identity), but will be derived from the same gene and will include regions of 100% identity.

In particular, a splice variant of any of the α_1 subunits (or any of the subunits particularly disclosed herein) will contain regions (at least one exon) of divergence and one or more regions (at least one exon, typically more than about 16 nucleotides, and generally substantially more) that have 100% homology with one or more of the α_1 subunit subtypes provided herein, and will also contain a region that has substantially less homology, since it is derived from a different exon. It is well within the skill of those in this art to identify exons and splice variants. Thus, for example, an α_{1H} subunit will be readily identifiable, because it will share at least about 40% protein homology with one of the α_{1H} subunits disclosed herein, and will include at least one region (one exon) that is 100% homologous. It will also have activity, as discussed below, that indicates that it is an LVA α_1 subunit.

It is noted herein, that identity and homology refer to the percentage of amino acids when proteins are compared or nucleotides when nucleic acids are compared that are shared. Numerous computer programs for determining identity are available. In all instances, intended gap penalties and other parameters are the defaults set by the manufacturer. Although not really needed when there is a high (90% or greater) degree of identity between sequences such programs include, but are not limited to commercially available sequence alignment programs, such as the DNAStar "MegAlign" program (Madison, WI) and the University of Wisconsin Genetics Computer Group (UWG) "Gap" program

(Madison WI), to determine a percentage of sequence identity (see, also, von Heijne, entitled "Sequence Analysis in Molecular Biology: Treasure Trove of Trivial Pursuit" Academic Press (1987) Appendix 2 (citing to UWG and DNAStar among seven commercially available software programs)).

An α_1 subunit may be identified by its ability to form a calcium channel. Typically, α_1 subunits have molecular masses greater than at least about 120 kD. Also, hydropathy plots of deduced α_1 subunit amino acid sequences indicate that the α_1 subunits contain four internal repeats, each containing six transmembrane domains. An α_{1H} -subunit is identified by its pore-forming ability and also the low-voltage activation of the resulting channel.

The activity of a calcium channel may be assessed in vitro by methods known to those of skill in the art, including the 15 electrophysiological and other methods described herein. Typically, a_1 subunits include regions with which one or more modulators of calcium channel activity, such as a 1,4-DHP or ω -CgTx, interact directly or indirectly. Types of a_1 subunits may be distinguished by any method known to those of skill in the art, including on the basis of binding 20 specificity. For example, it has been found herein that a_{1B} subunits participate in the formation of channels that have previously been referred to as N-type channels, a_{1D} subunits participate in the formation of channels that had previously been referred to as L-type channels, a_{1A} subunits appear to participate in the formation of channels that exhibit characteristics typical of channels that had previously been designated P-25 type channels, and a_{1H} subunits appear to participate in channels that exhibit activities associated with T-type channels. Thus, for example, the activity of channels that contain the a_{1B} subunit are insensitive to 1,4-DHPs; whereas the activity of channels that contain the a_{1D} subunit are

15

20

25

modulated or altered by a 1,4-DHP. It is presently preferable to refer to calcium channels based on pharmacological characteristics and current kinetics and to avoid historical designations. Types and subtypes of α_1 subunits may be characterized on the basis of the effects of such modulators on the subunit or a channel containing the subunit as well as differences in currents and current kinetics produced by calcium channels containing the subunit. The α_{1H} subunits may be further identified by the presence the notably long intracellular loop regions, such as between transmembrane domains I and II (e.g., nt 1506 to nt 2627 of SEQ ID No. 12), and also the loop in domain I.

In particular, nucleic acid that encodes an α_{1H} subunit as used herein, will hybridize under conditions of high stringency to the nucleic acid disclosed herein as SEQ ID Nos. 12, 15 and 16, and will form a channel in a mammalian cell, such as an HEK cell, that exhibits electrophysiological and/or pharmacological properties of a LVA or T-channel. The electrophysiological properties include one or more of the following electrophysiological properties a relative conductance of Ba² + of about 5 pS (picoseconds) to about 9 pS, an activation time of about 2 to about 8 milliseconds, a kinetics of activation $V_{1/2}$ value of about -60 millivolts to about 26 millivolts, an inactivation time of about 10 to about 30 milliseconds, a kinetics of inactivation $V_{1/2}$ value of about -100 millivolts to about -500 millivolts, and a tail deactivation time of about 2 to about 12 milliseconds.

In addition, the resulting channel may have pharmacological properties, such as a relatively high degree of sensitivity to mibefradil, (IS,2S)-2-[2-[[3-(1H-benzimidazol-2-yl)propyl]methyl-amino]ethyl]-6-fluoro-1-isopropyl-1,2,3,4-tetrahydronaphthalen-2-yl methoxyacetate (Hoffman-LaRoche, Inc.) and/or a relatively high degree of resistance to the Conus

snail toxins GVIA and MVIIC as well as the arachnid toxins AgaIIIA and AgaIVA compared to HVA calcium channels.

As used herein, an a_2 subunit is encoded by nucleic acid (DNA or RNA) disclosed, for example, in U.S. Patent No. 5,407,820, U.S. Patent No. 5,792,846 and International PCT application No. WO95/04822 that 5 encodes an a_2 subunit of a mammalian calcium channel or that hybridizes to DNA under conditions of low stringency, preferably high stringency, or encodes a protein that has at least about 40% homology, typically at least about 90% identity, taking into account gaps, with that disclosed 10 therein. Such DNA encodes a protein that typically has a molecular mass greater than about 120 kD, but does not form a calcium channel in the absence of an a_1 subunit, and may alter the activity of a calcium channel that contains an a_1 subunit. Subtypes of the a_2 subunit that arise as splice variants are designated by lower case letter, such as a_{2a} , . . . a_{2e} . 15 In addition, the a_2 subunit and the large fragment produced when the protein is subjected to reducing conditions appear to be glycosylated with at least N-linked sugars and do not specifically bind to the 1,4-DHPs and phenylalkylamines that specifically bind to the a_1 subunit. The smaller fragment, the C-terminal fragment, is referred to as the δ subunit and 20 · includes amino acids from about 946 (as numbered in International PCT application No. WO95/04822, e.g., SEQ ID No. 11 therein) through about the C-terminus. This fragment may dissociate from the remaining portion of a_2 when the a_2 subunit is exposed to reducing conditions. For purposes herein a_2 is also referred to as $a_2\delta$. Thus, reference to $a_2\delta$ **25** means the a_2 subunit, including the C-terminal δ portion.

As used herein, a β subunit is encoded by DNA disclosed, for example, in U.S. Patent No. 5,407,820, U.S. Patent No. 5,792,846 and International PCT application No. WO95/04822 or that hybridizes to the DNA provided therein under conditions of low stringency, preferably high

15

25

stringency, or encodes a protein that has at least about 40% homology, typically about at least about 90% homology) with that disclosed therein and is a protein that typically has a molecular mass lower than the a subunits and on the order of about 50-80 kD, does not form a detectable calcium channel in the absence of an a_1 subunit, but may alter the activity of a calcium channel that contains an a_1 subunit or that contains an a_1 and a_2 subunit.

Types of the β subunit that are encoded by different genes are designated with subscripts, such as β_1 , β_2 , β_3 and β_4 . Subtypes of β subunits that arise as splice variants of a particular type are designated with a numerical subscript referring to the type and to the variant. Such subtypes include, but are not limited to the eta_1 splice variants, including $oldsymbol{eta}_1$ $_{1}$ - β_{1-5} and β_{2} variants, including β_{2C} - β_{2E} .

As used herein, a y subunit is a subunit of calcium channel encoded by DNA disclosed for example in U.S. Patent Nos. 5,726,035 and 5,386,025; see, also Jay et al. (1990) Science 248:490-492 and Lett et al. (*1998) Nature Genetics 19:340-347) and may be isolated and identified using the nucleic disclosed therein as a probe by hybridization or other such method known to those of skill in the art, whereby fulllength clones encoding a y subunit may be isolated or constructed. A y 20 subunit will be encoded by nucleic acid that hybridizes to the DNA provided therein under conditions of low stringency, preferably high stringency, exhibits sufficient sequence homology to encode a protein that has at least about 40% homology with the y subunit described herein.

15

20

25

Thus, one of skill in the art, in light of the disclosure herein, can identify DNA encoding α_1 , α_2 , β , δ and γ calcium channel subunits, including types encoded by different genes and subtypes that represent splice variants. For example, DNA or RNA probes based on the DNA disclosed herein may be used to screen an appropriate library, including a genomic or cDNA library, for hybridization to the probe and obtain DNA in one or more clones that includes an open reading fragment that encodes an entire protein. Subsequent to screening an appropriate library with the DNA disclosed herein, the isolated DNA can be examined for the presence of an open reading frame from which the sequence of the encoded protein may be deduced. Determination of the molecular weight and comparison with the sequences herein should reveal the identity of the subunit as an α_1 , α_2 etc. subunit. Functional assays may, if necessary, be used to determine whether the subunit is an α_1 , α_2 subunit or β subunit.

For example, DNA encoding an a_{1A} subunit may be isolated by screening an appropriate library with DNA, encoding all or a portion of the human a_{1A} subunit. Such DNA includes the DNA in the phage deposited under ATCC Accession No. 75293 that encodes a portion of an a_1 subunit. DNA encoding an a_{1A} subunit may be obtained from an appropriate library by screening with an oligonucleotide having all or a portion of the sequence of an a_{1A} subunit (see, e.g., published International PCT application No. WO95/04822, particularly SEQ ID Nos. 21, 22 and/or 23 or with the DNA in the deposited phage therein). Alternatively, such DNA may have the coding sequence that encodes an a_{1A} subunit. Any method known to those of skill in the art for isolation and identification of DNA and preparation of full-length genomic or cDNA clones, including methods exemplified herein, may be used.

DNA encoding a_{1H} can be isolated by screening a human medullary thyroid carcinoma cell line (TT cells) or other suitable library human cDNA

10

15

20

25

library with DNA probes prepared from nucleic acid provided herein. Full-length clones are constructed and expressed as described and exemplified herein and the resulting channels tested to verify that the encoding nucleic acid encodes a LVA channel.

The subunit encoded by isolated DNA may be identified by comparison with the DNA and amino acid sequences of the subunits provided herein. Splice variants share extensive regions of homology, but include non-homologous regions, subunits encoded by different genes share a uniform distribution of non-homologous sequences.

As used herein, a splice variant refers to a variant produced by differential processing of a primary transcript of genomic DNA that results in more than one type of mRNA. Splice variants may occur within a single tissue type or among tissues (tissue-specific variants). Thus, cDNA clones that encode calcium channel subunit subtypes that have regions of identical amino acids and regions of different amino acid sequences are referred to herein as "splice variants".

As used herein, a "calcium channel-selective ion" is an ion that is capable of flowing through, or being blocked from flowing through, a calcium channel which spans a cellular membrane under conditions which would substantially similarly permit or block the flow of Ca²⁺. Ba²⁺ is an example of an ion which is a calcium channel-selective ion.

As used herein, a compound that modulates calcium channel activity is one that affects the ability of the calcium channel to pass calcium channel-selective ions or affects other detectable calcium channel features, such as current kinetics. Such compounds include calcium channel antagonists and agonists and compounds that exert their effect on the activity of the calcium channel directly or indirectly.

As used herein, a "substantially pure" subunit or protein is a subunit or protein that is sufficiently free of other polypeptide

10

15

25

contaminants to appear homogeneous by SDS-PAGE or to be unambiguously sequenced.

As used herein, selectively hybridize means that a DNA fragment hybridizes to a second fragment with sufficient specificity to permit the second fragment to be identified or isolated from among a plurality of fragments. In general, selective hybridization occurs at conditions of high stringency.

As used herein, heterologous or foreign DNA and RNA are used interchangeably and refer to DNA or RNA that does not occur naturally as part of the genome in which it is present or which is found in a location or locations in the genome that differ from that in which it occurs in nature. It is DNA or RNA that is not endogenous to the cell and has been artificially introduced into the cell. Examples of heterologous DNA include, but are not limited to, DNA that encodes a calcium channel subunit and DNA that encodes RNA or proteins that mediate or alter expression of endogenous DNA by affecting transcription, translation, or other regulatable biochemical processes. The cell that expresses the heterologous DNA, such as DNA encoding a calcium channel subunit, may contain DNA encoding the same or different calcium channel 20 subunits. The heterologous DNA need not be expressed and may be introduced in a manner such that it is integrated into the host cell genome or is maintained episomally.

As used herein, operative linkage of heterologous DNA to regulatory and effector sequences of nucleotides, such as promoters, enhancers, transcriptional and translational stop sites, and other signal sequences, refers to the functional relationship between such DNA and such sequences of nucleotides. For example, operative linkage of heterologous DNA to a promoter refers to the physical and functional relationship between the DNA and the promoter such that the

10

15

transcription of such DNA is initiated from the promoter by an RNA polymerase that specifically recognizes, binds to and transcribes the DNA in reading frame.

As used herein, isolated, substantially pure DNA refers to DNA fragments purified according to standard techniques employed by those skilled in the art (see, e.g., Maniatis et al. (1982) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY).

As used herein, expression refers to the process by which nucleic acid is transcribed into mRNA and translated into peptides, polypeptides, or proteins. If the nucleic acid is derived from genomic DNA, expression may, if an appropriate eukaryotic host cell or organism is selected, include splicing of the mRNA.

As used herein, vector or plasmid refers to discrete elements that are used to introduce heterologous DNA into cells for either expression of the heterologous DNA or for replication of the cloned heterologous DNA. Selection and use of such vectors and plasmids are well within the level of skill of the art.

As used herein, expression vector includes vectors capable of
expressing DNA fragments that are in operative linkage with regulatory
sequences, such as promoter regions, that are capable of effecting
expression of such DNA fragments. Thus, an expression vector refers to
a recombinant DNA or RNA construct, such as a plasmid, a phage,
recombinant virus or other vector that, upon introduction into an
appropriate host cell, results in expression of the cloned DNA.
Appropriate expression vectors are well known to those of skill in the art
and include those that are replicable in eukaryotic cells and/or prokaryotic
cells and those that remain episomal or may integrate into the host cell
genome.

15

20

25

As used herein, a promoter region refers to the portion of DNA of a gene that controls transcription of the DNA to which it is operatively linked. The promoter region includes specific sequences of DNA that are sufficient for RNA polymerase recognition, binding and transcription initiation. This portion of the promoter region is referred to as the promoter. In addition, the promoter region includes sequences that modulate this recognition, binding and transcription initiation activity of the RNA polymerase. These sequences may be *cis* acting or may be responsive to *trans* acting factors. Promoters, depending upon the nature of the regulation, may be constitutive or regulated.

As used herein, a recombinant eukaryotic cell is a eukaryotic cell that contains heterologous DNA or RNA.

As used herein, a recombinant or heterologous calcium channel refers to a calcium channel that contains one or more subunits that are encoded by heterologous DNA that has been introduced into and expressed in a eukaryotic cell that expresses the recombinant calcium channel. A recombinant calcium channel may also include subunits that are produced by DNA endogenous to the cell. In certain embodiments, the recombinant or heterologous calcium channel may contain only subunits that are encoded by heterologous DNA.

As used herein, "functional" with respect to a recombinant or heterologous calcium channel means that the channel is able to provide for and regulate entry of calcium channel-selective ions, including, but not limited to, Ca²⁺ or Ba²⁺, in response to a stimulus and/or bind ligands with affinity for the channel. Preferably such calcium channel activity is distinguishable, such as by electrophysiological, pharmacological and other means known to those of skill in the art, from any endogenous calcium channel activity that is in the host cell.

15

20

25

As used herein, a T-type channel or LVA type channel typically refers to a calcium channel that exhibits a low-threshold calcium current that is activated and inactivated at low voltages compared to calcium channels (such as those that include an a_{1D} subunit) referred to as high voltage activated (HVA) channels. In addition or alternatively, a T-type channel may be characterized by distinct biophysical features, such as slow deactivation rates, very low conductances (5-9 pS) and voltagedependent inactivation. T channels may exhibit a relatively high degree of sensitivity to mibefradil (Hoffman-LaRoche, Inc.) and/or a relatively high degree of resistance to the Conus snail toxins GVIA and MVIIC as well as the arachnid toxins AgaIIIA and AgaIVA compared to HVA calcium channels. These channels also typically exhibit reduced affinity for cadmium. T-type channels or LVA type channels may also be characterized at the nucleic acid level by the presence of one or more extended intracellular loops (see, e.g., SEQ ID NO. 12, 15 and 16) between transmembrane domains, such as between transmembrane domains I and II.

As used herein, a polypeptide having an amino acid sequence substantially as set forth in a particular SEQ ID No. includes protein that may have the same function but may include minor variations in sequence, such as conservative amino acid changes or minor deletions or insertions that do not alter the activity of the protein. The activity of a calcium channel receptor subunit protein, particularly a LVA or T-type channel, refers to its ability to form a functional calcium channel alone or with other subunits. A T-type channel will have the distinguishing properties defined herein.

As used herein, a physiological concentration of a compound is that which is necessary and sufficient for a biological process to occur. For example, a physiological concentration of a calcium channel-selective

20

ion is a concentration of the calcium channel-selective ion necessary and sufficient to provide an inward current when the channels open.

As used herein, activity of a calcium channel refers to the movement of a calcium channel-selective ion through a calcium channel. Such activity may be measured by any method known to those of skill in the art, including, but not limited to, measurement of the amount of current which flows through the recombinant channel in response to a stimulus.

As used herein, a "functional assay" refers to an assay that identifies functional calcium channels. A functional assay, thus, is an 10 assay to assess function.

As understood by those skilled in the art, assay methods for identifying compounds, such as antagonists and agonists, that modulate calcium channel activity, generally require comparison to a control. One type of a "control" cell or "control" culture is a cell or culture that is treated substantially the same as the cell or culture exposed to the test compound except that the control culture is not exposed to the test compound. Another type of a "control" cell or "control" culture may be a cell or a culture of cells which are identical to the transfected cells except the cells employed for the control culture do not express functional calcium channels. In this situation, the response of test cell to the test compound is compared to the response (or lack of response) of the calcium channel-negative cell to the test compound, when cells or cultures of each type of cell are exposed to substantially the same 25 reaction conditions in the presence of the compound being assayed. For example, in methods that use patch clamp electrophysiological procedures, the same cell can be tested in the presence and absence of the test compound, by changing the external solution bathing the cell as known in the art.

It is also understood that each of the subunits disclosed herein may be modified by making conservative amino acid substitutions and the resulting modified subunits are contemplated herein. Suitable conservative substitutions of amino acids are known to those of skill in this art and may be made generally without altering the biological activity of the resulting molecule. Those of skill in this art recognize that, in general, single amino acid substitutions in non-essential regions of a polypeptide do not substantially alter biological activity (see, e.g., Watson et al. *Molecular Biology of the Gene*, 4th Edition, 1987, The Benjamin/Cummings Pub. Co., p.224). Such substitutions are preferably, although not exclusively, made in accordance with those set forth in TABLE 1 as follows:

TABLE 1 15 Conservative substitution Original residue Ala (A) Gly; Ser Arg (R) Lys Asn (N) Gln; His Ser Cys (C) 20 Gln (Q) Asn Glu (E) Asp Ala; Pro Gly (G) His (H) Asn; Gln Leu; Val lle (I) 25 lie: Val Leu (L) Arg; Gln; Glu Lys (K) Leu; Tyr; lle Met (M) Met; Leu; Tyr Phe (F) Ser (S) Thr 30 Thr (T) Ser Tyr Trp (W) Trp: Phe Tyr (Y)

Val (V)

Other substitutions are also permissible and may be determined

such modification of the polypeptide may be effected by any means known to those of skill in this art. Mutation may be effected by any method known to those of skill in the art, including site-specific or site-

lle; Leu

15

20

25

directed mutagenesis of DNA encoding the protein and the use of DNA amplification methods using primers to introduce and amplify alterations in the DNA template.

As used herein, treatment means any manner in which the symptoms of a conditions, disorder or disease are ameliorated or otherwise beneficially altered. Treatment also encompasses any pharmaceutical use of the compositions herein, such as use as contraceptive agents.

As used herein, a LVA-activated calcium channel-mediated disorder refers to disorders that are associated with LVA channel activities. A T-type calcium channel-mediated disorders LVA-activated channel-mediated disorders that are associated with T-type channels. Such disorders include, but are not limited to: cardiovascular, hepatic, endocrine, urologic, reproductive, muscular, neurological and other disorders in which LVA channels, particular T-type channels, play a role either in mediating the disorder in some manner contributing to it.

As used herein, amelioration of the symptoms of a particular disorder by administration of a particular pharmaceutical composition refers to any lessening, whether permanent or temporary, lasting or transient that can be attributed to or associated with administration of the composition.

As used herein, substantially pure means sufficiently homogeneous to appear free of readily detectable impurities as determined by standard methods of analysis, such as thin layer chromatography (TLC), gel electrophoresis and high performance liquid chromatography (HPLC), used by those of skill in the art to assess such purity, or sufficiently pure such that further purification would not detectably alter the physical and chemical properties, such as enzymatic and biological activities, of the substance. Methods for purification of the compounds to produce

15

20

25

substantially chemically pure compounds are known to those of skill in the art. A substantially chemically pure compound may, however, be a mixture of stereoisomers. In such instances, further purification might increase the specific activity of the compound.

As used herein, biological activity refers to the in vivo activities of a compound or physiological responses that result upon in vivo administration of a compound, composition or other mixture. Biological activity, thus, encompasses therapeutic effects and pharmaceutical activity of such compounds, compositions and mixtures.

10 Identification and isolation of DNA encoding human calcium channel subunits

Methods for identifying and isolating nucleic acid (DNA and RNA) encoding a_1 , a_2 , β and γ , particularly nucleic acid encoding LVA a_1 subunits of human calcium channels are provided.

Identification and isolation of such nucleic acid may be accomplished by hybridizing, under appropriate conditions, at least low stringency, preferably high stringency, to restriction enzyme-digested human DNA with a labeled probe having at least 14, preferably 16 or more nucleotides (25, 30 or longer) and derived from any contiguous portion of DNA having a sequence of nucleotides set forth herein by sequence identification number. Once a hybridizing fragment is identified in the hybridization reaction, it can be cloned employing standard cloning techniques known to those of skill in the art. Full-length clones may be identified by the presence of a complete open reading frame and the identity of the encoded protein verified by sequence comparison with the subunits provided herein and by functional assays to assess calcium channel- forming ability or other function. This method can be used to identify genomic DNA encoding the subunits generated by alternative

WO 99/28342 PCT/US98/25671

splicing of the primary transcript of genomic subunit DNA. For instance, DNA, cDNA or genomic DNA, encoding a calcium channel subunit may be identified by hybridization to a DNA probe and characterized by methods known to those of skill in the art, such as restriction mapping and DNA sequencing, and compared to the DNA provided herein in order to identify heterogeneity or divergence in the sequences of the DNA. Such sequence differences may indicate that the transcripts from which the cDNA was produced result from alternative splicing of a primary transcript, if the non-homologous and homologous regions are clustered, or from a different gene if the non-homologous regions are distributed throughout the cloned DNA. Splice variants share regions of 100% homology. As noted herein, the resulting nucleic acid may be expressed in cells and the resulting cells tested to verify or ascertain that expressed calcium channels exhibit pharmacological and/or electrophysiological properties of LVA or T-channels.

10

15

20

25

Any suitable method for isolating genes using the DNA provided herein may be used. For example, oligonucleotides corresponding to regions of sequence differences have been used to isolate, by hybridization, DNA encoding the full-length splice variant and can be used to isolate genomic clones. A probe, based on a nucleotide sequence disclosed herein, which encodes at least a portion of a subunit of a human calcium channel, such as a tissue-specific exon, may be used as a probe to clone related DNA, to clone a full-length cDNA clone or genomic clone encoding the human calcium channel subunit.

Labeled, including, but not limited to, radioactively or enzymatically labeled, RNA or single-stranded DNA of at least 14 substantially contiguous bases, preferably 16 or more, generally at least 30 contiguous bases of a nucleic acid which encodes at least a portion of a human calcium channel subunit, the sequence of which nucleic acid corresponds

10

15

20

25

to a segment of a nucleic acid sequence disclosed herein by reference to a SEQ ID No. are provided. Such nucleic acid segments may be used as probes in the methods provided herein for cloning DNA encoding calcium channel subunits. See, generally, Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory Press.

In addition, nucleic acid amplification techniques, which are well known in the art, can be used to locate splice variants of calcium channel subunits by employing oligonucleotides based on DNA sequences surrounding the divergent sequence primers for amplifying human RNA or genomic DNA. Size and sequence determinations of the amplification products can reveal splice variants. Furthermore, isolation of human genomic DNA sequences by hybridization can yield DNA containing multiple exons, separated by introns, that correspond to different splice variants of transcripts encoding human calcium channel subunits.

DNA encoding types and subtypes of each of the α_1 , α_2 , β and γ subunits of voltage-dependent human calcium channels has been cloned by nucleic acid amplification of cDNA from selected tissues or by screening human cDNA libraries prepared from isolated poly A + mRNA from cell lines or tissue of human origin having such calcium channels. Among the sources of such cells or tissue for obtaining mRNA are human brain tissue or a human cell line of neural origin, such as a neuroblastoma cell line, human skeletal muscle or smooth muscle cells, and the like. Methods of preparing cDNA libraries are well known in the art (see generally Ausubel *et al.* (1987) *Current Protocols in Molecular Biology*, Wiley-Interscience, New York; and Davis *et al.* (1986) *Basic Methods in Molecular Biology*, Elsevier Science Publishing Co., New York).

Preferred regions from which to construct probes include 5' and/or 3' coding sequences, sequences predicted to encode transmembrane

domains, sequences predicted to encode cytoplasmic loops, signal sequences, ligand-binding sites, and other functionally significant sequences (see Table, below). Either the full-length subunit-encoding DNA or fragments thereof can be used as probes, preferably labeled with suitable label means for ready detection. When fragments are used as probes, preferably the DNA sequences will be typically from the carboxylend-encoding portion of the DNA, and most preferably will include predicted transmembrane domain-encoding portions based on hydropathy analysis of the deduced amino acid sequence (see, e.g., Kyte and Doolittle ((1982) *J. Mol. Biol.* 167:105).

Riboprobes that are specific for human calcium channel subunit types or subtypes have been prepared. These probes are useful for identifying expression of particular subunits in selected tissues and cells. The regions from which the probes were prepared were identified by comparing the DNA and amino acid sequences of all known α or β subunit subtypes. Regions of least homology, preferably human-derived sequences, and generally about 250 to about 600 nucleotides were selected. Numerous riboprobes for α and β subunits have been prepared (see, e.g., Table 2 in International PCT application No. WO95/04822), which is repeated in part in the following Table.

TABLE 2
SUMMARY OF RNA PROBES

SUBUNIT SPECIFICITY	NUCLEOTIDE POSITION	PROBE NAME	PROBE TYPE	ORIENTA- TION
αlA generic	3357-3840	pGEM7Zα1A	riboprobe	n/a
	761-790	SE700	oligo	antisense
	3440-3464	SE718	oligo	antisense
	3542-3565	SE724	oligo	sense
α1B generic	3091-3463	pGEM7Zα1B _{cyt}	riboprobe	n/a
	6635-6858	pGEM7Zα1B _{cooh}	riboprobe	n/a

25

20

10

15

30

10

15

20

25

30

αlB-1 specific	6490-6676	pCRII α1B-1/187	riboprobe	n/a
αlE generic	3114-3462	pGEM7Zα1E	riboprobe	n/a

* The pGEM series are available from Promega, Madison WI; see also, U.S. Patent No. 4,766,072.

For the α_{1H} -specific probes (and also antibodies), regions unique to the α_{1H} subunits, such as the extended intracellular loops present in these channels may be used. For α_{1H-1} specific antibodies the region present in α_{1H-1} and absent from α_{1H-2} may be useful for preparation of subunit-specific probes. purpose.

The DNA clones and fragments thereof provided herein thus can be used to isolate genomic clones encoding each subunit and to isolate any splice variants by hybridization screening of libraries prepared from different human tissues. Nucleic acid amplification techniques, which are well known in the art, can also be used to locate DNA encoding splice variants of human calcium channel subunits. This is accomplished by employing oligonucleotides based on DNA sequences surrounding divergent sequence(s) as primers for amplifying human RNA or genomic DNA. Size and sequence determinations of the amplification products can reveal the existence of splice variants. Furthermore, isolation of human genomic DNA sequences by hybridization can yield DNA containing multiple exons, separated by introns, that correspond to different splice variants of transcripts encoding human calcium channel subunits.

Once DNA encoding a calcium channel subunit is isolated, ribonuclease (RNase) protection assays can be employed to determine which tissues express mRNA encoding a particular calcium channel subunit or variant. These assays provide a sensitive means for detecting and quantitating an RNA species in a complex mixture of total cellular RNA. The subunit DNA is labeled and hybridized with cellular RNA. If complementary mRNA is present in the cellular RNA, a DNA-RNA hybrid results. The RNA sample is then treated with RNase, which degrades

15

20

25

single-stranded RNA. Any RNA-DNA hybrids are protected from RNase degradation and can be visualized by gel electrophoresis and autoradiography. *In situ* hybridization techniques can also be used to determine which tissues express mRNA encoding a particular calcium channel subunit. The labeled subunit-encoding DNA clones are hybridized to different tissue slices to visualize subunit mRNA expression.

With respect to each of the respective subunits $(a_1, a_2, \beta \text{ or } \gamma)$ of human calcium channels, once the DNA encoding the channel subunit was identified by a nucleic acid screening method, the isolated clone was used for further screening to identify overlapping clones. Some of the cloned DNA fragments can and have been subcloned into an appropriate vector such as pIBI24/25 (IBI, New Haven, CT), M13mp18/19, pGEM4, pGEM3, pGEM7Z, pSP72 and other such vectors known to those of skill in this art, and characterized by DNA sequencing and restriction enzyme mapping. A sequential series of overlapping clones may thus be generated for each of the subunits until a full-length clone can be prepared by methods, known to those of skill in the art, that include identification of translation initiation (start) and translation termination (stop) codons. For expression of the cloned DNA, the 5' noncoding region and other transcriptional and translational control regions of such a clone may be replaced with an efficient ribosome binding site and other regulatory regions as known in the art. Other modifications of the 5' end, known to those of skill in the art, that may be required to optimize translation and/or transcription efficiency may also be effected, if deemed necessary.

Examples 1-3 below, describe in detail the cloning DNA encoding a_{1H} splice variants and electrophylological and pharmacological properties thereof. Except where noted, the methods of expression and other data is described with reference to the a_{1H-1} encoding nucleic acid. It is

understood that the exemplified methods may be used to isolate additional splice variants and related subunits from humans and other mammals and animals and may also be used to express such nucleic acid to produce cells for use in screening assays to identify compounds that modulate the activity of LVA activated channels, particularly T-type channels. The nucleic acid may also be used in diagnostic assays to identify mutations and to produce proteins and then antibodies for use as reagents in diagnostic assays for disorders associated with T-type calcium channel activities.

10 a_1 subunits of LVA channels

Nucleic acid encoding a_1 subunits that form LVA channels is provided herein. The nucleic acid provided herein may also be used to isolate related channels from other tissues, and other mammals and animals.

Identification and isolation of DNA encoding the α_{1H} human calcium channel subunits

Calcium channels that contain a_{1H} should exhibit properties that differ from known HVA channels, formed from the a_{1A} - a_{1E} calcium channel subunits. Such differences may include low voltage activation, voltage-dependent inactivation, relatively high sensitivity to mibefradil and relatively high resistance to snail and arachnid toxins that inhibit most HVA channels (e.g., spider venom toxins ω -AgallIA and ω -AgalVA and the Conus snail toxin GVIA). In addition a_{1H} -subunits may be identified by homology with other a_1 -subunits and additionally by presence of an extended intracellular loop in the encoded subunit (see, e.g., SEQ No. 49, nucleotides 1506-2627) located between transmembrane domains I and II. This region in a_{1H} is extended compared to other calcium channel a_1 subunits, such as a_{1A} - a_{1E} .

15

20

25

DNA encoding an α_{1H} -subunit may be isolated using the DNA provided herein. In particular, probes of at least about 16 nucleotides or 30 nucleotides or other suitable length, such 14, 30, 100 etc. bases, may be used to screen selected libraries, including mammalian DNA libraries. The selected libraries are preferably prepared from mammalian tissue or

The selected libraries are preferably prepared from mammalian tissue or cell sources known to express T-type channels. The sequence of the probe is preferably based on the sequence of the intracellular loop located between transmembrane domains I and II (see, <u>e.g.</u>, SEQ ID Nos. 12 and 15).

DNA encoding the α_{1H} subunit was isolated by amplifying a region of genes encoding an α₁ subunit expressed in a human thyroid carcinoma cell line (TT cells) using degenerate oligonucleotide primers.

The TT cell line is derived from a human medullary thyroid carcinoma and has been used to study calcitonin secretion and gene expression

(deBustros et al. (1986) J. Biol. Chem. 261:8036-8041; deBustros et al. 1990 Mol. Cell. Biol. 10:1773-1778). Whole-cell recordings from these cells reveal that the only voltage gated calcium channels expressed by these cells are low-voltage activated, rapidly inactivating and slowly deactivating, which are biophysical properties consistent with a T-type channel.

A portion of one of the positive clones was used to further screen a human thyroid carcinoma cDNA library to identify overlapping clones that span the entire length of the nucleotide sequence encoding the human a_{1H} subunit. A full-length a_{1H} DNA clone can be constructed by ligating portions of the partial cDNA clones as described in Example 1. SEQ ID No. 15 sets forth the nucleotide sequence of a clone encoding an a_{1H-1} subunit as well as the deduced amino acid sequence.

Two splice variants, a_{1H-1} and a_{1H-2} , were detected by RT-PCR (reverse transcriptase-amplification) using RNA from multiple tissues. The

25

15

20

25

 a_{1H-2} isoform (SEQ ID No. 16) contains a 957 nucleotide deletion, relative to a_{1H-1} (SEQ ID Nos. 12 and 15) in the I-II intracellular loop, i.e,. (<u>e.g.</u>, nt 1506 to nt 2627 of SEQ ID No. 12).

The α_{1H-1} subunit exhibits marked sequence differences, as well as certain structural similarities to previously cloned α_1 subunits. Notably, the deduced amino acid sequence of α_{1H-1} shares less than 30% overall sequence identity with human α_{1A} - α_{1E} -encoding nucleic acids, which encode high-voltage activated calcium channels. Northern blot analysis indicates that mRNA transcripts for α_{1H} are expressed in the brain, primarily in the amygdala, caudate nucleus and putamen, and in peripheral tissues, primarily in the liver, kidney and heart.

Specifically, a comparison of the nucleic acid and deduced amino acid sequences of this a_{1H} calcium channel subunit with other human a_1 subunits reveals several distinct features. There are notable differences between a_{1H} and the HVA a_1 sequences. First, the intracellular loop between transmembrane Domains I and II is notably long. As exemplified in SEQ ID No. 49, the intracellular loop of human a_{1H} subunit is 1,122 nt in length whereas the corresponding intracellular loops in the other human α_1 subunits described herein range from 351 to 381 nt in length. Thus, the intracellular loop of human a_{1H} is nearly 250 amino acids longer than human a_1 subunits found in HVA calcium channels. The deduced amino acid sequence of this region (aa 420 to aa 794 of SEQ ID No. 12) contains a large number of proline residues and includes a poly-HIS region of 9 contiguous histidine residues (aa 52 to aa 528 of SEQ ID No. 12) and a region where 8 of 10 residues are alanine. The large intracellular loop located between transmembrane Domains I and II resembles the large intracellular loops found in a corresponding location in sodium channel lpha subunits some of which may function as homomers. It has been proposed that T-type channels have an activity that is a hybrid

between HVA calcium channels and sodium channel. The a_{1H} subunits provided herein may also function as sodium channels.

Second, the isolated human a_{1H} subunit lacks amino acid residues that are generally known to be critical (e.g., see De Waard et al. (1996) FEBS Letters 380:272-276; Pragnell et al. (1994) Nature 368:67-70) for 5 the interaction between a_1 subunits and the β subunits. There are at least thirteen residues located in this intracellular loop between transmembrane Domains I and II that form a motif that is highly conserved among a_1 subunits, such as a_{1A} - a_{1E} described herein (see, also Pragnell et al. (1994) Nature 368:67-70). In particular, this loop lacks the α_1 interaction domain 10 (AID) involved in binding the β subunit. Also absent from this region is the $G\beta y$ binding motif, GlnXXGluArg, originally identified in adenylyl cyclase 2 and found in the non-L-type, HVA a_1 subunits. An identical sequence occurs, however, within the II-III intracellular loop of the a_{1H} sequence, suggesting a possible interaction of G $eta\gamma$ in this region. The $a_{ exttt{1H}}$ 15 subunit also contains differences in the determinants of ion selectivity found in the S5-S6 linkers of HVA channels. In the S5-S6 pore loops of domain III and IV, the glutamate residues that play a critical role in Ca2+ selectivity and ion permeation are replaced by aspartate residues.

Third, the human a_{1H} subunit has another notably long extracellular loop in Domain I located between IS5 and IS6. This extracellular loop ranges from 249 to 270 nucleotide residues in other human a_1 subunits whereas the human a_{1H} subunit has 426 nucleotide residues. Other distinguishing features may be ascertained and have been ascertained by expressing the subunit in cells as described herein.

10

15

20

25

The nucleic acid encoding an a_{1H} subunit can be used to screen appropriate libraries, particularly mammalian libraries, and more particularly mammalian libraries from tissues or cells that exhibit T-type channel activity. The encoded subunit can be identified by the abovenoted distinguishing properties. Nucleic acid probes from the a_{1H-1} -encoding clone was used to identify and isolate clones encoding a second variant, designated a_{1H-2} , which has a 957 bp deletion relative to a_{1H-1} .

The a_{1H} subunit forms a functional channel in two different expression systems without the addition of exogenous $a_2\delta$ and β subunits. The absence of a β subunit interaction site within the I-II loop of the a_{1H} sequence is consistent with the report that β subunit depletion with antisense oligonucleotides in nodosus ganglia has no effect on T-type currents in that region. In addition, none of the known β subunits in HEK293 cells were detected by western analysis using β subunit-specific antisera, indicating that the previously cloned β subunits may not play a role in the formation of LVA Ca²⁺channels containing a_1H . Oöcytes and HEK293 cells express an endogenous $a_2\delta$ subunit and that TT cells, the source of the a_{1H} subunits described here, express relatively high amounts of $a_2\delta$ protein. Consequently, it is possible that a_{1H} -containing channels expressed, contain $a_2\delta$ subunit, and that the $a_2\delta$ subunit is a component of native a_{1H} -containing channels.

Distribution of a_{1H} transcripts

Northern blots containing human mRNA from several neuronal and nonneuronal tissues were probed with labeled fragments generated from the full-length a_{1H} cDNA. A single transcript of ~ 8.5 kb is present in all tissues examined, which included heart, brain, placenta, lung, liver, skeletal muscle, kidney, pancreas. Neuronal tissues included, cerebellum, cerebral cortex, medulla, spinal cord, occipital lope, frontal lobe, temporal lobe, putamen, amygdala, caudate nucleus, corpus callosum,

10

15

25

hippocampus, substantia nigra, subthalamic nucleus and thalamus. In nonneuronal tissues, the highest expression levels are found in the kidney, liver, and heart. In the brain, the α_{1H} transcript is most abundant in the amygdala, caudate nucleus, and putamen.

Identification and isolation of DNA encoding other a_1 human calcium channel subunit types and subtypes

DNA encoding additional α_1 subunits can be isolated and identified using the DNA provided herein as described for the α_{1A} , α_{1B} , α_{1C} , α_{1D} , α_{1E} and α_{1H} subunits or using other methods known to those of skill in the art. In particular, the DNA provided herein may be used to screen appropriate libraries to isolate related DNA. Full-length clones can be constructed using methods, such as those described herein, and the resulting subunits characterized by comparison of their sequences and electrophysiological and pharmacological properties with the subunits exemplified herein.

A number of voltage-dependent calcium channel α_1 subunit genes, which are expressed in the human CNS and in other tissues, have been identified and have been designated as α_{1A} , α_{1B} (or VDCC IV), α_{1C} (or VDCC III), α_{1D} (or VDCC III), α_{1E} and α_{1H} . DNA, isolated from a human DNA libraries that encodes each of the subunit types has been isolated.

20 DNA encoding subtypes of each of the types, which arise as splice variants are also provided. Subtypes are herein designated, for example, as α_{1B-1} , α_{1B-2} . The α_{1H} subunit is of particular interest herein

The α_1 subunit types A, B, C, D, E and F of voltage-dependent calcium channels, and subtypes thereof, differ with respect to sensitivity to known classes of calcium channel agonists and antagonists, such as DHPs, phenylalkylamines, omega conotoxins (ω -CgTx), the funnel web spider toxin ω -Aga-IV, pyrazonoylguanidines and or in other physical and structural properties. These subunit types also appear to differ in the holding potential and in the kinetics of currents produced upon

depolarization of cell membranes containing calcium channels that include different types of a_1 subunits.

DNA that encodes an a_1 subunit that binds to at least one compound selected from among dihydropyridines, phenylalkylamines, ω -CgTx, components of funnel web spider toxin, and pyrazonoylguanidines is provided. For example, the a_{1B} subunit provided herein appears to specifically interact with ω -CgTx in N-type channels, and the a_{1D} subunit provided herein specifically interacts with DHPs in L-type channels.

Antibodies

10 Antibodies, monoclonal or polyclonal, specific for calcium channel subunit subtypes or for calcium channel types can be prepared employing standard techniques, known to those of skill in the art, using the subunit proteins or portions thereof as antigens. Anti-peptide and anti-fusion protein antibodies can be used (see, for example, Bahouth et al. (1991) Trends Pharmacol. Sci. 12:338-343; Current Protocols in Molecular 15 Biology (Ausubel et al., eds.) John Wiley and Sons, New York (1984)) Factors to consider in selecting portions of the calcium channel subunits for use as immunogens (as either a synthetic peptide or a recombinantly produced bacterial fusion protein) include antigenicity accessibility (i.e., extracellular and cytoplasmic domains), uniqueness to the particular 20 subunit, and other factors known to those of skill in this art. Antibodies have therapeutic uses and also use in diagnostic assays.

The availability of subunit-specific antibodies makes possible the application of the technique of immunohistochemistry to monitor the distribution and expression density of various subunits (e.g., in normal vs diseased brain tissue). Such antibodies could also be employed in diagnostic, such as LES diagnosis, and therapeutic applications, such as using antibodies that modulate activities of calcium channels.

25

The antibodies can be administered to a subject employing standard methods, such as, for example, by intraperitoneal, intramuscular, intravenous, or subcutaneous injection, implant or transdermal modes of administration. One of skill in the art can empirically determine dosage forms, treatment regiments, and other parameters, depending on the mode of administration employed.

Subunit-specific monoclonal antibodies and polyclonal antisera have been prepared. The regions from which the antigens were derived were identified by comparing the DNA and amino acid sequences of all known α or β subunit subtypes. Regions of least homology, preferably human-derived sequences were selected. The selected regions or fusion proteins containing the selected regions are used as immunogens. Hydrophobicity analyses of residues in selected protein regions and fusion proteins are also performed; regions of high hydrophobicity are avoided. Also, and more importantly, when preparing fusion proteins in bacterial

Also, and more importantly, when preparing fusion proteins in bacterial hosts, rare codons are avoided. In particular, inclusion of 3 or more successive rare codons in a selected host is avoided. Numerous antibodies, polyclonal and monoclonal, specific for a or β subunit types or subtypes have been prepared; some of these are listed in the following Table. Exemplary antibodies and peptide antigens that have been used to

Table. Exemplary antibodies and peptide antigens that have been used to prepare the antibodies are set forth Table 3:

TABLE 3

ANTIGEN NAME ANTIBODY TYPE SPECIFICITY AMINO ACID NUMBER polyclonal 112-140 peptide 1A#1 al generic αl generic 1420-1447 peptide 1A#2 polyclonal α1A generic 1048-1208 α1A#2(b)GST fusion* polyclonal monoclonal 983-1106 α 1B#2(b) GST fusion polyclonal αlB generic monoclonal

25

10

15

10

15

20

25

30

α1B-1	2164-2339	α1B-1#3 GST fusion	polyclonal
α1B-2	2164-2237	α1B-2#4 GST fusion	polyclonal
αlE generic	985-1004 (α1E-3)	α1E#2(a) GST fusion	polyclonal

* GST gene fusion system is available from Pharmacia; see also, Smith et al. (1988) Gene 67:31. The system provides pGEX plasmids that are designed for inducible, high-level expression of genes or gene fragments as fusions with Schistosoma japonicum GST. Upon expression in a bacterial host, the resulting fusion proteins are purified from bacterial lysates by affinity chromatography.

The GST fusion proteins are each specific for the cytoplasmic loop region IIS6-IIS1, which is a region of low subtype homology for all subtypes, including a_{1C} and a_{1D} , for which similar fusions and antisera can be prepared.

Using similar methods, antibodies specific for LVA subunits, particularly the a_{1H} subunits provided herein, using, for example, the extended intracellular loops, can be prepared. Such antibodies will have use in diagnostic assays for disorders in which LVA calcium channels are implicated.

Preparation of recombinant eukaryotic cells containing DNA encoding heterologous calcium channel subunits

DNA encoding one or more of the calcium channel subunits or a portion of a calcium channel subunit may be introduced into a host cell for expression or replication of the DNA. Such DNA may be introduced using methods described in the following examples or using other procedures well known to those skilled in the art. Incorporation of cloned DNA into a suitable expression vector, transfection of eukaryotic cells with a plasmid vector or a combination of plasmid vectors, each encoding one or more distinct genes or with linear DNA, and selection of transfected cells are also well known in the art (see, e.g., Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press).

Cloned full-length nucleic acid encoding any of the subunits of a calcium channel may be introduced into a plasmid vector for expression in a eukaryotic cell. Such nucleic acid may be genomic DNA or cDNA or RNA. Presently preferred cells are those containing heterologous DNA encoding an a_{1H} subunit. Host cells may be transfected with one or a combination of the plasmids, each of which encodes at least one calcium channel subunit. Alternatively, host cells may be transfected with linear DNA using methods well known to those of skill in the art.

While the DNA provided herein may be expressed in any eukaryotic cell, including yeast cells such as *P. pastoris* (see, *e.g.*, Cregg *et al.* (1987) *Bio/Technology 5*:479), mammalian expression systems for expression of the DNA encoding the human calcium channel subunits provided herein are preferred.

The heterologous DNA may be introduced by any method known to those of skill in the art, such as transfection with a vector encoding the 15 heterologous DNA. Particularly preferred vectors for transfection of mammalian cells are the pSV2dhfr expression vectors, which contain the SV40 early promoter, mouse dhfr gene, SV40 polyadenylation and splice sites and sequences necessary for maintaining the vector in bacteria, 20 cytomegalovirus (CMV) promoter-based vectors such as pCDNA1, or pcDNA-amp and MMTV promoter-based vectors. The vector pcDNA1 is a eukaryotic expression vector containing a cytomegalovirus (CMV) promoter which is a constitutive promoter recognized by mammalian host cell RNA polymerase II.DNA encoding the human calcium channel subunits has been inserted in the vector pCDNA1 at a position 25 immediately following the CMV promoter. The vector pCDNA1 is presently preferred and has been used to express the α_{1H} subunits in mammalian cells.

10

15

20

25

Stably or transiently transfected mammalian cells may be prepared by methods known in the art by transfecting cells with an expression vector having a selectable marker gene such as the gene for thymidine kinase, dihydrofolate reductase, neomycin resistance or the like, and, for transient transfection, growing the transfected cells under conditions selective for cells expressing the marker gene. Functional voltage-dependent calcium channels have been produced in HEK 293 cells transfected with a derivative of the vector pCDNA1 that contains DNA encoding a human calcium channel subunit.

The heterologous DNA may be maintained in the cell as an episomal element or may be integrated into chromosomal DNA of the cell. The resulting recombinant cells may then be cultured or subcultured (or passaged, in the case of mammalian cells) from such a culture or a subculture thereof. Methods for transfection, injection and culturing recombinant cells are known to the skilled artisan. Eukaryotic cells in which DNA or RNA may be introduced, include any cells that are transfectable by such DNA or RNA or into which such DNA may be injected. Virtually any eukaryotic cell can serve as a vehicle for heterologous DNA. Preferred cells are those that can also express the DNA and RNA and most preferred cells are those that can form recombinant or heterologous calcium channels that include one or more subunits encoded by the heterologous DNA. Such cells may be identified empirically or selected from among those known to be readily transfected or injected. Preferred cells for introducing DNA include those that can be transiently or stably transfected and include, but are not limited to, cells of mammalian origin, such as COS cells, mouse L cells, CHO cells, human embryonic kidney cells, African green monkey cells and other such cells known to those of skill in the art, amphibian cells, such as Xenopus laevis oöcytes, or those of yeast such as Saccharomyces cerevisiae or

15

20

25

containing the subunits.

Pichia pastoris. Preferred cells for expressing injected RNA transcripts or cDNA include Xenopus laevis oöcytes. Cells that are preferred for transfection of DNA are those that can be readily and efficiently transfected. Such cells are known to those of skill in the art or may be empirically identified. Preferred cells include DG44 cells and HEK 293 cells, particularly HEK 293 cells that can be frozen in liquid nitrogen and then thawed and regrown. Such HEK 293 cells are described, for example in U.S. Patent No. 5,024,939 to Gorman (see, also Stillman et al. (1985) Mol. Cell. Biol. 5:2051-2060).

The cells may be used as vehicles for replicating heterologous DNA introduced therein or for expressing the heterologous DNA introduced therein. In certain embodiments, the cells are used as vehicles for expressing the heterologous DNA as a means to produce substantially pure human calcium channel subunits or heterologous calcium channels. Host cells containing the heterologous DNA may be cultured under conditions whereby the calcium channels are expressed. The calcium channel subunits may be purified using protein purification methods known to those of skill in the art. For example, antibodies, such as those provided herein, that specifically bind to one or more of the subunits may be used for affinity purification of the subunit or calcium channels

Substantially pure subunits of a human calcium channel α_1 subunits of a human calcium channel, α_2 subunits of a human calcium channel and γ subunits of a human calcium channel and γ subunits of a human calcium channel are provided. Substantially pure isolated calcium channels that contain at least one of the human calcium channel subunits are also provided. Substantially pure calcium channels that contain a mixture of one or more subunits encoded by the host cell and one or more subunits encoded by heterologous DNA or RNA that has been introduced into the

20

25

cell are also provided. Substantially pure subtype- or tissue-type specific calcium channels are also provided.

In one embodiment, eukaryotic cells that contain heterologous DNA encoding at least one of α_1 subunit of a calcium channel, preferably an α_{1H} subunit, that express the α_{1H} subunit and form functional homomeric human α_{1H} -containing calcium channels are provided. These cells may be used to screen for compounds that modulate the activity of T-type channels and LVA type calcium channels.

In other embodiments, eukaryotic cells that contain heterologous DNA encoding at least one of an α_1 subunit of a human calcium channel, an α_2 subunit of a human calcium channel, a β subunit of a human calcium channel and a γ subunit of a human calcium channel are provided. In accordance with one preferred embodiment, the heterologous DNA is expressed in the eukaryotic cell and preferably encodes a human calcium channel α_1 subunit.

Expression of heterologous calcium channels: electrophysiology and pharmacology

The α_{1H-1} subunit-encoding DNA was transiently expressed in HEK203 cells and associated with expression of an α_{1H-1} protein of approximately 260kDa α_{1H-1} , as identified by SDS-PAGE/Western blot analysis.

 ${\rm Ba^{2+}}$ or ${\rm Ca^{2+}}$ currents recorded from HEK293 cells transiently expressing $a_{\rm 1H-1}$ channels, and found to exhibit biophysical and pharmacological properties characteristic of low-voltage activated, i.e., T-type, calcium channel currents. Similar results were obtained in *Xenopus* oocytes expressing $a_{\rm 1H-1}$.

Electrophysiological methods for measuring calcium channel activity are known to those of skill in the art and are exemplified herein. Any such methods may be used in order to detect the formation of

15

20

25

functional calcium channels and to characterize the kinetics and other characteristics of the resulting currents. Pharmacological studies may be combined with the electrophysiological measurements in order to further characterize the calcium channels.

With respect to measurement of the activity of functional heterologous calcium channels, preferably, endogenous ion channel activity and, if desired, heterologous channel activity of channels that do not contain the desired subunits, of a host cell can be inhibited to a significant extent by chemical, pharmacological and electrophysiological means, including 10 the use of differential holding potential, to increase the S/N ratio of the measured heterologous calcium channel activity.

Thus, various combinations of subunits encoded by the DNA provided herein are introduced into eukaryotic cells. The resulting cells can be examined to ascertain whether functional channels are expressed and to determine the properties of the channels. In particularly preferred aspects, the eukaryotic cell which contains the heterologous DNA expresses it and forms a recombinant functional calcium channel activity. In more preferred aspects, the recombinant calcium channel activity is readily detectable because it is a type that is absent from the untransfected host cell or is of a magnitude and/or pharmacological properties or exhibits biophysical properties not exhibited in the untransfected cell.

The eukaryotic cells can be transfected with various combinations of the subunit subtypes provided herein. The resulting cells will provide a uniform population of calcium channels for study of calcium channel activity and for use in the drug screening assays provided herein. Experiments that have been performed have demonstrated the inadequacy of prior classification schemes.

Preferred among transfected cells is a recombinant eukaryotic cell with a functional heterologous calcium channel. The recombinant cell can be produced by introduction of and expression of heterologous DNA or RNA transcripts encoding an a_1 subunit of a human calcium channel as a homomer, more preferably also expressing, a heterologous DNA encoding a β subunit of a human calcium channel and/or heterologous DNA encoding an a_2 subunit of a human calcium channel. Especially preferred is the expression in such a recombinant cell of each of the α_1 ; β and α_2 subunits encoded by such heterologous DNA or RNA transcripts, and optionally expression of heterologous DNA or an RNA transcript encoding The functional calcium a y subunit of a human calcium channel. channels may preferably include at least an a_1 subunit and a β subunit of a human calcium channel. Eukaryotic cells expressing these two subunits and also cells expressing additional subunits, have been prepared by transfection of DNA and by injection of RNA transcripts. Such cells have exhibited voltage-dependent calcium channel activity attributable to calcium channels that contain one or more of the heterologous human calcium channel subunits. For example, eukaryotic cells expressing heterologous calcium channels containing an a_2 subunit in addition to the a_1 subunit and a β subunit have been shown to exhibit increased calcium 20 selective ion flow across the cellular membrane in response todepolarization, indicating that the a_2 subunit may potentiate calcium channel function. Cells that have been co-transfected with increasing ratios of a_2 to a_1 and the activity of the resulting calcium channels has been measured. The results indicate that increasing the amount of a_2 -25 encoding DNA relative to the other transfected subunits increases calcium channel activity.

Eukaryotic cells that express heterologous calcium channels containing a human a_1 subunit as a homomer, particularly the a_{1H} subunit,

or at least a human α_1 subunit and optionally an $\alpha_2\delta$ subunit and/or a human β subunit are preferred. Eukaryotic cells transformed with a composition containing DNA or an RNA transcript that encodes an α_1 subunit alone or in combination with a β and/or an α_2 subunit may be used to produce cells that express functional calcium channels. Since recombinant cells expressing human calcium channels containing all of the human subunits encoded by the heterologous DNA or RNA are especially preferred, it is desirable to inject or transfect such host cells with a sufficient concentration of the subunit-encoding nucleic acids to form calcium channels that contain the human subunits encoded by heterologous DNA or RNA. The precise amounts and ratios of DNA or RNA encoding the subunits may be empirically determined and optimized for a particular combination of subunits, cells and assay conditions.

In particular, mammalian cells have been transiently and stably tranfected with DNA encoding one or more human calcium channel 15 subunits. Such cells express heterologous calcium channels that exhibit pharmacological and electrophysiological properties that can be ascribed to human calcium channels. Such cells, however, represent homogeneous populations and the pharmacological and electrophysiological data provides insights into human calcium channel 20 activity heretofore unattainable. For example, HEK cells that have been transiently transfected with DNA encoding the a_{1E-1} , a_{2b} , and β_{1-3} subunits. The resulting cells transiently express these subunits, which form calcium channels that have properties that appear to be a pharmacologically distinct class of voltage-activated calcium channels distinct from those of 25 L-, N-, T- and P-type channels. The observed a_{1E} currents were insensitive to drugs and toxins previously used to define other classes of voltage-activated calcium channels.

ູ 5

10

15

20

25

HEK cells that have been transiently transfected with DNA encoding a_{1B-1} , a_{2b} , and β_{1-2} express heterologous calcium channels that exhibit sensitivity to ω -conotoxin and currents typical of N-type channels. It has been found that alteration of the molar ratios of a_{1B-1} , a_{2b} and β_{1-2} introduced into the cells to achieve equivalent mRNA levels significantly increased the number of receptors per cell, the current density, and affected the K_d for ω -conotoxin.

The electrophysiological properties of these channels produced from $\alpha_{1B\cdot 1}$, α_{2b} , and $\beta_{1\cdot 2}$ was compared with those of channels produced by transferting HEK cells with DNA encoding $\alpha_{1B\cdot 1}$, α_{2b} and $\beta_{1\cdot 3}$. The channels exhibited similar voltage dependence of activation, substantially identical voltage dependence, similar kinetics of activation and tail currents that could be fit by a single exponential. The voltage dependence of the kinetics of inactivation was significantly different at all voltages examined.

In certain embodiments, the eukaryotic cell with a heterologous calcium channel is produced by introducing into the cell a first composition, which contains at least one RNA transcript that is translated in the cell into a subunit of a human calcium channel. In preferred embodiments, the subunits that are translated include an α_1 subunit of a human calcium channel. More preferably, the composition that is introduced contains an RNA transcript which encodes an α_1 subunit of a human calcium channel and also contains (1) an RNA transcript which encodes a β subunit of a human calcium channel and/or (2) an RNA transcript which encodes an α_2 subunit of a human calcium channel. Especially preferred is the introduction of RNA encoding an α_1 , a β and an α_2 human calcium channel subunit, and, optionally, a γ subunit of a human calcium channel. Methods for *in vitro* transcription of a cloned DNA and injection of the resulting RNA into eukaryotic cells are

well known in the art. Transcripts of any of the full-length DNA encoding any of the subunits of a human calcium channel may be injected alone or in combination with other transcripts into eukaryotic cells for expression in the cells. Amphibian occytes are particularly preferred for expression of *in vitro* transcripts of the human calcium channel subunit cDNA clones provided herein. Amphibian occytes that express functional heterologous calcium channels have been produced by this method.

Pharmacological and electrophysiological properties

As described in the examples, nucleic acid encoding α_{1H-1} and nucleic acid encoding α_{1H-2} has been expressed in mammalian cells and in amphibian oöcytes. Electrophyisological and pharmacological properties have been studied.

The biophysical properties of recombinant human a_{1H}^{-2+} channels expressed in HEK293 cells and *Xenopus* oocytes are in good agreement, indicating that the biophysical properties of recombinant human a_{1H} channels are independent of the expression system. Several biophysical characteristics support the conclusion that the human a_{1H} subunit is the pore-forming a_1 subunit of a T-type channel. The rates of activation, inactivation, and deactivation and the single-channel conductance of a_{1H} -containing channels are within the ranges described for T-type channels. The conductance value of 9 pS measured in this study is near the value determined for rat a_{1G} -containing channels and is significantly lower than those determined for recombinant HVA channels. In addition, a_{1H} -containing channels conduct Ba2+ and Ca²⁺ equally well, consistent with the finding that the conductance of T-type channels for Ba2+ and Ca²⁺ is nearly equivalent in most cell types.

 a_{1H} -containing Ca²⁺ channels display a pharmacological profile differing from those of HVA channels. a_{1H} -mediated currents are inhibited by Ni²⁺, amiloride, and mibefradil (Ro 40-5967), agents shown to reduce

15

20°

25

LVA currents in a number of cell types. In contrast, ethosuximide, an antiepileptic agent that inhibits LVA currents in some cell types, had no effect on α_{1H} -mediated currents. Although the L-type Ca²⁺-channel modulators nimodipine and (-)-Bay K 8644 had little effect at a concentration of $1\mu M$ on a_{1H} -containing channels, both compounds 5 produced a marked inhibition at a concentration of 10 μM , consistent with their effects on T-type channels in rat hypothalamic neurons (Akaike et al., 1989). In summary, the pharmacological properties of a_{1H} -containing channels described here have many similarities to native T-type channels studied in a variety of cell types. The pharmacological profiles of T-type 10 channels vary considerably between cell types, and no hallmark pharmacological feature of T-type channels has been identified. These results are consistent with the finding herein that multiple a_1 subunits are responsible for the pharmacological profiles of a family of LVA, or T-type, channels. 15

Assays and Clinical uses of the cells and calcium channels
Assays

Assays for identifying compounds that modulate calcium channel activity

Among the uses for eukaryotic cells which recombinantly express one or more subunits are assays for determining whether a test compound has calcium channel agonist or antagonist activity. These eukaryotic cells may also be used to select from among known calcium channel agonists and antagonists those exhibiting a particular calcium channel subtype specificity and to thereby select compounds that have potential as disease- or tissue-specific therapeutic agents.

In vitro methods for identifying compounds, such as calcium channel agonist and antagonists, that modulate the activity of calcium

20

25

15

20

25

channels using eukaryotic cells that express heterologous human calcium channels are provided.

In particular, the assays use eukaryotic cells that express homomeric or heteromeric human calcium channel subunits encoded by heterologous DNA provided herein, for screening potential calcium channel agonists and antagonists which are specific for human calcium channels and particularly for screening for compounds that are specific for particular human calcium channel subtypes. Such assays may be used in conjunction with methods of rational drug design to select among agonists and antagonists, which differ slightly in structure, those particularly useful for modulating the activity of human calcium channels. and to design or select compounds that exhibit subtype- or tissuespecific calcium channel antagonist and agonist activities. These assays should accurately predict the relative therapeutic efficacy of a compound for the treatment of certain disorders in humans. In addition, since subtype-and tissue-specific calcium channel subunits are provided, cells with tissue- specific or subtype-specific recombinant calcium channels may be prepared and used in assays for identification of human calcium channel tissue- or subtype-specific drugs.

Desirably, the host cell for the expression of calcium channel subunits does not produce endogenous calcium channel subunits of the type or in an amount that substantially interferes with the detection of heterologous calcium channel subunits in ligand binding assays or detection of heterologous calcium channel function, such as generation of calcium current, in functional assays. Also, the host cells preferably should not produce endogenous calcium channels which detectably interact with compounds having, at physiological concentrations (generally nanomolar or picomolar concentrations), affinity for calcium

15

20

25

channels that contain one or all of the human calcium channel subunits provided herein.

With respect to ligand binding assays for identifying a compound which has affinity for calcium channels, cells are employed which express, preferably, at least a heterologous α_1 subunit. Transfected eukaryotic cells which express at least an α_1 subunit may be used to determine the ability of a test compound to specifically bind to heterologous calcium channels by, for example, evaluating the ability of the test compound to inhibit the interaction of a labeled compound known to specifically interact with calcium channels. Such ligand binding assays may be performed on intact transfected cells or membranes prepared therefrom.

The capacity of a test compound to bind to or otherwise interact with membranes that contain heterologous calcium channels or subunits thereof, preferably a_{1H} subunit-containing calcium channels, may be determined by using any appropriate method, such as competitive binding analysis, such as Scatchard plots, in which the binding capacity of such membranes is determined in the presence and absence of one or more concentrations of a compound having known affinity for the calcium channel. Where necessary, the results may be compared to a control experiment designed in accordance with methods known to those of skill in the art. For example, as a negative control, the results may be compared to those of assays of an identically treated membrane preparation from host cells which have not been transfected with one or more subunit-encoding nucleic acids.

The assays involve contacting the cell membrane of a recombinant eukaryotic cell which expresses at least one subunit of a human calcium channel, preferably at least an a_1 subunit of a human calcium channel, with a test compound and measuring the ability of the test compound to

15

20

25

specifically bind to the membrane or alter or modulate the activity of a heterologous calcium channel on the membrane.

In preferred embodiments, the assay uses a recombinant cell that has a calcium channel containing an α_1 subunit of a human calcium channel. In other preferred embodiments, the assay uses a recombinant cell that has a calcium channel containing an α_1 subunit of a human calcium channel in combination with a β subunit of a human calcium channel and/or an α_2 subunit of a human calcium channel. Recombinant cells expressing heterologous calcium channels containing each of the α_1 and optionally a β and/or α_2 human subunits, and, optionally, a γ subunit of a human calcium channel are especially preferred for use in such assays.

In certain embodiments, the assays for identifying compounds that modulate calcium channel activity are practiced by measuring the calcium channel activity of a eukaryotic cell having a heterologous, functional calcium channel when such cell is exposed to a solution containing the test compound and a calcium channel-selective ion and comparing the measured calcium channel activity to the calcium channel activity of the same cell or a substantially identical control cell in a solution not containing the test compound. The cell is maintained in a solution having a concentration of calcium channel-selective ions sufficient to provide an inward current when the channels open. Recombinant cells expressing calcium channels that include each of the a_1 , β and a_2 human subunits, and, optionally, a y subunit of a human calcium channel, are especially preferred for use in such assays. Methods for practicing such assays are known to those of skill in the art. For example, for similar methods applied with Xenopus laevis oöcytes and acetylcholine receptors, see, Mishina et al. ((1985) Nature 313:364) and, with such oöcytes and sodium channels (see, Noda et al. (1986) Nature 322:826-828). For

similar studies which have been carried out with the acetylcholine receptor, see, e.g., Claudio et al. ((1987) Science 238:1688-1694). Transcription based assays are also contemplated herein.

Functional recombinant or heterologous calcium channels may be identified by any method known to those of skill in the art. For example, electrophysiological procedures for measuring the current across an ionselective membrane of a cell, which are well known, may be used. The amount and duration of the flow of calcium-selective ions through heterologous calcium channels of a recombinant cell containing DNA encoding one or more of the subunits provided herein has been measured 10 using electrophysiological recordings using a two electrode and the whole-cell patch clamp techniques. In order to improve the sensitivity of the assays, known methods can be used to eliminate or reduce noncalcium currents and calcium currents resulting from endogenous calcium channels, when measuring calcium currents through recombinant 15 channels. For example, the DHP Bay K 8644 specifically enhances L-type calcium channel function by increasing the duration of the open state of the channels (see, e.g., Hess, J.B., et al. (1984) Nature 311:538-544). Prolonged opening of the channels results in calcium currents of increased magnitude and duration. Tail currents can be observed upon 20 repolarization of the cell membrane after activation of ion channels by a depolarizing voltage command. The opened channels require a finite time to close or "deactivate" upon repolarization, and the current that flows through the channels during this period is referred to as a tail current. Because Bay K 8644 prolongs opening events in calcium channels, it 25 tends to prolong these tail currents and make them more pronounced.

In practicing these assays, stably or transiently transfected cells or injected cells that express voltage-dependent human calcium channels containing one or more of the subunits of a human calcium channel

10

15

20

25

desirably may be used in assays to identify agents, such as calcium channel agonists and antagonists, that modulate calcium channel activity. Functionally testing the activity of test compounds, including compounds having unknown activity, for calcium channel agonist or antagonist activity to determine if the test compound potentiates, inhibits or otherwise alters the flow of calcium ions or other ions through a human calcium channel can be accomplished by (a) maintaining a eukaryotic cell which is transfected or injected to express a heterologous functional calcium channel capable of regulating the flow of calcium channelselective ions into the cell in a medium containing calcium channelselective ions (i) in the presence of and (ii) in the absence of a test compound; (b) maintaining the cell under conditions such that the heterologous calcium channels are substantially closed and endogenous calcium channels of the cell are substantially inhibited (c) depolarizing the membrane of the cell maintained in step (b) to an extent and for an amount of time sufficient to cause (preferably, substantially only) the heterologous calcium channels to become permeable to the calcium channel-selective ions; and (d) comparing the amount and duration of current flow into the cell in the presence of the test compound to that of the current flow into the cell, or a substantially similar cell, in the absence of the test compound.

The assays thus use cells, provided herein, that express heterologous functional calcium channels and measure functionally, such as electrophysiologically, the ability of a test compound to potentiate, antagonize or otherwise modulate the magnitude and duration of the flow of calcium channel-selective ions, such as Ca²⁺ or Ba²⁺, through the heterologous functional channel. The amount of current which flows through the recombinant calcium channels of a cell may be determined directly, such as electrophysiologically, or by monitoring an independent

10

15

20

25

reaction which occurs intracellularly and which is directly influenced in a calcium (or other) ion dependent manner. Any method for assessing the activity of a calcium channel may be used in conjunction with the cells and assays provided herein. For example, in one embodiment of the method for testing a compound for its ability to modulate calcium channel activity, the amount of current is measured by its modulation of a reaction which is sensitive to calcium channel-selective ions and uses a eukaryotic cell which expresses a heterologous calcium channel and also contains a transcriptional control element operatively linked for expression to a structural gene that encodes an indicator protein. The transcriptional control element used for transcription of the indicator gene is responsive in the cell to a calcium channel-selective ion, such as Ca2+ and Ba2+. The details of such transcriptional based assays are described in commonly owned PCT International Patent Application No. PCT/US91/5625, filed August 7, 1991, which claims priority to copending commonly owned allowed U.S. Application Serial No. 07/563,751, filed August 7, 1990; see also, commonly owned published PCT International Patent Application PCT US92/11090, which corresponds to co-pending U.S. Applications Serial Nos. 08/229,150 and 08/244,985. The contents of these applications are herein incorporated by reference thereto.

Biophysical and pharmacological properties of a_{1H} subunits

HEK cells were transfected with DNA and oöcytes injected wiht nucleic acid provided herein. The cell expressed calcium channels, which were then characterized electrophysiologically and pharmacologically. These results are described in the examples. Both splice variants formed

These results are described in the examples. Both splice variants formed calcium channels that exhibit properties associated with T-type channels. Variant-specific properties were observed.

These observed differences in the amino acid sequences of $a_{\rm 1H-1}$ and $a_{\rm 1H-2}$ will result in marked differences in susceptibility of these

15

20

25

receptors to cellular regulation, particularly since the observed region of sequence divergence resides in the cytosolic linker region between domains I and II and the analogous sequence region in high-voltage activated calcium channels has been implicated in binding of cytosolic regulatory proteins. Observed differences in biophysical properties of α_{1H} . α_{1H-2} are also likely indicative of differences in the sensitivity of these two different channel subunits to pharmaceutical compounds. Thus, it seems likely that low-voltage activated calcium channels containing either the α_{1H-1} or the α_{1H-2} subunit will be subject to different regulatory controls, and different profiles of susceptibility to pharmaceutical compounds. For example, amiloride blocks the T-type current in neuroblastoma cells with an IC₅₀ of \sim 50 μ M, whereas in hippocampal neurons 300 μ M amiloride reduces the T-type current by only 40%.

In this respect, each a different a_{1H} channel is a separate screening target for development of pharmaceutical drug compounds. Differential effects of drugs on different neural cells and in different neural tissues can be understood based on different patterns of expression of a_{1H-1} and/or a_{1H-2} in vivo and will provide a means to identify drugs specific for each subtype and associated disorders or conditions. The observed sequence variation in a_{1H} subunits explains observed pharmacological variability of T-type calcium channels in different native tissues, providing a useful tool to identify where the respective a_{1H-1} and a_{1H-2} subunit is expressed to use screening assays to identify targeted therapeutic drug candidates.

Differences in a_{1H-1} and a_{1H-2} functionality and expression in different tissues provides basis for using recombinant cells expressing calcium channels having either the a_{1H-1} or a_{1H-2} subunit. Agonists and antagonists capable of differentially affecting calcium channels containing

15

20

25

these two different subunits should be useful for targeting therapeutic intervention into selected neural locations, e.g., to cardiovascular neurons an cardiac pacemaker neurons expressing α_{1H-2} . Calcium channels formed from α_{1H} subunits open at small changes in membrane potential, but only allow moderate Ca^{2+} influx before closing. By allowing moderate influx of divalent ions the α_{1H} containing channels are likely to:

- (i) participate in pathways triggering changes in gene expression in response to subtle change sin membrane potential difference, i.e., in neuronal and non-neuronal cell types (e.g., in activation of immune cells such as T-cells, in activation of kidney and liver cells in response to metabolic changes;
- (ii) exert subtle controls over the overall excitability or accessibility of neurons to synaptic transmission, such as in determining which neurons will respond to stimulae, and to what extent, such as in peripheral neurons and ganglia;
- (iii) determine the extent of neural responses to stimulae such as chronic pain;
- (iv) regulate the sensitivity of neurons in critical neural centers so that neuronal cells in these centers are protected from the adverse effects associated with excessive bursts of firing (e.g., in the cardiac pacemaker);
- (v) act to set the steady state pattern of inactivation of neurons in different regions of the brain, (e.g., in response to sleep, sex, emotion, depression, fatigue and the other stimulae or conditions).

Electrophysiology of cells that express channels containing the a_{1H-1} subunit

Expression of recombinant a_{1H-1} channels

Following transient transfection of HEK293 cells with a DNA encoding the a_{1H} subunit, Ba²⁺ currents that were rapidly activating and inactivating were observed. Ba²⁺ currents (15 mM) elicited by step

5.

10

15

25

depolarizations to various test potentials from a holding potential of -90mV were measured. Currents were activated at a test potential of -50 mV, peaked between -20 and -10 mV, and reversed at a membrane potential more positive that +60 mV. Similar results were obtained with Ca^{2+} (15 mM) as the charge carrier.

One hallmark of LVA channels is their slow rate of deactivation, which is reflected in a show decay of tail currents. The time constant of this decay is ~10-fold slower for LVA channels (2-12 ms) than for HVA channels $< 300 \,\mu s$. A slow decay of a_{1H-1} mediated tail currents over a period of ~15 ms was observed. In contrast to the monoexponential decay of the tail currents reported for many native T-type Ca2+ channels, tail currents from a_{1H-1} channels showed a biexponential decay. At a test potential of -20 mV, the decay rate of the slow component, comprising 88.1 \pm 33.8% of the total current, was 2.1 \pm 1.06 ms (n = 6), which is similar to those observed in native T-type Ca2+ channels. The decay rate of the faster component was 0.64 ± 0.21 ms (n = 6).

Whole-cell patch clamp recordings were performed on HEK293 cells transiently expressing the human a_{1H-1} subunit. Step-depolarizations elicited inward Ba2+ currents that activate slowly and inactivate rapidly 20. (2.8 \pm 0.6 and 16.9 \pm 5.3 ms, at -20 mV). The activation curve of α_{1H-1} is shifted to the left (V1/2:-29.5 mV) compared to HVA ca2+ channels. The tails currents of a_{1H-1} -containing channels decay slowly (τ 1, τ 2 ± 1.0, 0.6, \pm 0.2 ms). The permeability for Ba²⁺ and Ca²⁺ was virtually identical. The single channel conductance, determined with 110 mM ba2+ as charge carrier, is 9pS.

The voltage dependence of activation of a_{1H-1} containing Ca^{2+} channels was determined from tail-current analysis. Normalized tailcurrent amplitudes were plotted as a function of test potential and revealed a biphasic activation curve that was well fitted by the sum of

15

20

25

two Boltzmann functions (Figure 1). The potentials for half-maximal activation of the individual Boltzmann terms were as follows: $V_{_{N,A}}$: -25.1 ± 3 3.0 mV; and $V_{_{N,B}}$: +25.5 ± 3 9.9 mV (n = 11). A value similar to $V_{_{N,A}}$ has been reported previously for voltage dependence of activation of T-type CA²+ channels in the human TT cell line (-27 mV). The value of the second Boltzmann term $V_{_{N,B}}$ is somewhat similar to that reported for HVA Ca²+ channels. Using a similar protocol, tail currents of HVA Ca²+ channels decay with time constants of <300 μ s, whereas with α_{1H} the most prominent at test potentials close to $V_{_{N,B}}$. The availability of α_{1H} containing Ca²+ channels for opening was dependent on the membrane for potential as shown in Fig. 1. The potential for half-maximal steady-state inactivation ($V_{_{N}}$) was - 63.2 \pm 2.0 mV (n = 9).

The rapid inactivation of a_{1H} Ca²⁺ channels was strongly voltagedependent. The current decay was best described with an exponential function with time constants ranging from 42.2 \pm 7.8 to 8.8 \pm 3.8 ms at membrane potentials between -50 and +30 mV (n = 6; data not show). Activation kinetics of a_{1H} Ca²⁺ channels were also voltagedependent with time constants ranging from 9.9 \pm 4.7 to 0.9 \pm 0.3 ms for membrane potentials between -50 and +30 mV (n = 8; data not shown). α_{1H} Ca²⁺ channels inactivated completely during the 150-ms depolarization. Recovery from inactivation occurred within a period of \sim 3 s with a fast component (τ = 37 ± 9 ms; 16.5 ± 4.6% of all channels) and a slow component ($r = 37 \pm 61 \text{ ms}$; 78 ± 8.5% of all channels; n = 3; data not shown). To confirm the biophysical properties of recombinant a_{1H} channels observed in whole-cell recordings from HEK293 cells, the functional expression of a_{1H} in Xenopus occytes was tested. Substantial currents (<1 μ A) after injection of a_{1H} transcripts alone was observed. The activation and inactivation kinetics, as well as

the steady-state inactivation properties, were similar to those obtained in HEK293 cells (see EXAMPLES).

Single-channel properties of $a_{1H}Ca^{2+}$ channels in HEK293 cells were determined in cell-attached recordings with 110 mM Ba $^{2+}$ as the charge carrier. Single-channel recordings at a test potential of -30 mV from a patch that contains at least three a_{1H} showed that channel openings occurred in bursts and were clustered mainly in the first third of the 100ms depolarizing pulse, especially with stronger depolarizations. Occasionally, channel activity was spread throughout the entire sweep. The time course of the ensemble-averaged current recorded at -30mV in 10 110 mM Ba $^{2+}$ was similar to the a_{1H} whole-cell Ba $^{2+}$ current recorded at -40 mV in 15 mM Ba²⁺. The currents were compared at different potentials to compensate for the shift in the activation curve to more positive potentials due to the increase in divalent concentration. The unitary current-voltage relationship yielded a unitary slope conductance of 15 $9.06 \pm 0.22 \, pS \, (n=4).$

Summary of Electrophysiologic Characteristics

The biophysical properties of calcium channels containing the human a_{1H} subunit were evaluated. Whole cell recordings from transiently transfected HEK293 cells indicate that the current-voltage relationship, permeability to Ca^{2+} and Ba^{2+} , kinetics of activation, and single channel conductance of calcium channels containing a_{1H} subunits were similar to those of native T-type calcium channels in tissues. Tail currents from A_{1H} channels showed a bi-exponential decay, exhibiting a fast and a slower component. At very negative membrane potentials (-150 to -100 mV) the fast component (τ : 200-450 μ s) dominated the inactivation process, while at depolarizing potentials >-50 mV the slower component (2-3 ms) dominated. At the resting membrane potential, i.e., \leq -80 mV, both components contribute equally.

20

25

15

20

25

Pharmacological properties

The pharmacological properties of a_{1H} -containing calcium channels were also consistent with those observed for native T-type calcium channels. Interestingly, the sensitivity of a_{1H-1} -containing calcium channels to Cd^{2+} or Amiloride was about 10-fold lower when expressed in HEK293 cells than when expressed in *Xenopus* oöcytes.

The data indicate that human a_{1H} calcium channel subunits have properties consistent with that of native T-type calcium channels and, as such, a_{1H} represent a member in the rapidly growing family of low-voltage activated calcium channels.

Assays for diagnosis of LVA-calcium channel mediated disorders and clinical applications

Clinical applications

In relation to therapeutic treatment of various disease states, the availability of DNA encoding human calcium channel subunits permits identification of any alterations in such genes (e.g., mutations) which may correlate with the occurrence of certain disease states. In addition, the creation of animal models of such disease states becomes possible, by specifically introducing such mutations into synthetic DNA fragments that can then be introduced into laboratory animals or *in vitro* assay systems to determine the effects thereof.

Also, genetic screening can be carried out using the nucleotide sequences as probes. Thus, nucleic acid samples from subjects having pathological conditions suspected of involving alteration/modification of any one or more of the calcium channel subunits can be screened with appropriate probes to determine if any abnormalities exist with respect to any of the endogenous calcium channels. Similarly, subjects having a family history of disease states related to calcium channel dysfunction

can be screened to determine if they are also predisposed to such disease states.

Disorders and for which screening assays can be developed and also for which candidate compounds for treatment of the disorders include, but are not limited to: cardiac treatments, such as myocardial 5 infarct, cardiac arrhythmia, heart failure, and angina pectoris. Identified compounds will be useful in: (a) adjunctive therapies for reestablishing normal heart rate and cardiac output following traumatic injury, heart attack and other heart injuries; (b) treatments of myocardial infarct (MI), post-MI and in an acute setting. The compounds may be effective to 10 increase cardiac contractile force, such as that measured by left ventricular enddiastolic pressure, and without changing blood pressure or heart rate. In an acute setting the compounds may be effective to decrease formation of scar tissue, such as that measured by collagen deposition or septal thickness, and without cardiodepressant effects. 15 The identified compounds will be useful for and assays for diagnosis and compound screening will be useful in connection with vascular treatments and hypertension, for identifying compounds useful in regulating vascular smooth muscle tone, including vasodilating or vasoconstricting. Such compounds can be used in (a) treatments for 20 reestablishing blood pressure control, e.g., following traumatic injury, surgery or cardiopulmonary bypass, and in prophylactic treatments designed to minimizing cardiovascular effects of anaesthetic drugs; (b) treatments for improving vascular reflexes and blood pressure control by the autonomic nervous system. Other conditions include urologic, for 25 identifying compounds useful in: (a) treating and restoring renal function following surgery, traumatic injury, uremia and adverse drug reactions; (b) treating bladder dysfunctions; and (c) uremic neuronal toxicity and hypotension in patients on hemodialysis; reproductive conditions, for

10

15

25

identifying compounds useful in treating: (a) disorders of sexual function including impotence; and (b) alcoholic impotence (under autonomic control that may be subject to T-channel controls); hepatic, for identifying compounds useful in treating and reducing neuronal toxicity and autonomic nervous system damage resulting from acute over-consumption of alcohol; neurological conditions for identifying compounds useful in treating: (a) epilepsy and diencephalic epilepsy; (b) Parkinson disease; (c) aberrant temperature control, such as abnormalities of shivering and sweat gland secretion and peripheral vascular blood supply;

(d) aberrant pituitary and hypothalamic functions including abnormal secretion of noradrenaline, dopamine and other hormones; respiratory conditions, for identifying compounds useful in treating abnormal respiration, such as, post-surgical complications of anesthetics; endocrine disorders for identifying compounds useful in treating aberrant secretion of hormones such as treatments for overproduction of hormones including insulin, thyroxin, and adrenalin.

EXAMPLES

The following examples are included for illustrative purposes only and are not intended to limit the scope of the invention.

EXAMPLE 1: ISOLATION OF DNA ENCODING THE HUMAN CALCIUM CHANNEL α_{1H-1} SUBUNIT

Using mRNA and TT cells, a degenerate PCR approach was used to isolate nucleic acid encoding an α_1 subunit. Nucleic acid encoding an α_{1H-1} subunit and nucleic acid encoding a subunit designated as α_{1H-2} was isolated. The nucleic acid was introduced into HEK293 cells and *Xenopus* oöcytes and voltage gated calcium channels were expressed. These channels exhibit pharmacological and electrophylological properties consistent with native LVA, T-type, channels.

A. Materials and Methods

Nucleic acid amplification:

The following sense strand 20-mer PCR primer, corresponding to nucleotides 1945-1964 of DNA encoding a human a_{1E} subunit, was synthesized:

AC(A/C/G/T)GTGTT(C/T)CAGATCCTGAC (Primer-1) SEQ ID NO. 4 An antisense 22-nucleotide PCR primer, corresponding to nucleotides 3919 through 3940 of human a_{1E} , was also synthesized:

T(C/T)CCCTTGAAGAGCTG(A/C/G/T)ACCCC (Primer-2) SEQ ID NO. 1

The sense and the antisense primers were used in amplification reactions with cDNA prepared from TT cells and Pfu DNA polymerase (Stratagene Inc., San Diego, CA).

Reaction conditions: 95°C for 5 minutes followed by 5 cycles of 20 seconds each at 95°C; then 20 seconds at 42°C; 2.5 minutes at 72°C; and, 30 cycles of 20 seconds each at 95°C followed by 20 seconds at 50°C and finally 2.5 minutes at 72°C. The product of the reaction is referred to herein (below) as "the original PCR products."

A second 5' degenerate oligonucleotide primer was designed corresponding to a portion of the sequence reported for C. *elegans*, cosmid C54D2 (Genebank accession #U37548), as a portion of that sense strand sequence which aligns with a portion of the human α_{1E} subunit DNA sequence between nucleotide 3598 and 3614. This primer had the following sequence:

GA(A/G)ATGATGATGAA(A/G)GT (Primer-3) SEQ ID NO. 10

25 Primer-3 was used in a nested amplification reaction with the original PCR products and the Primer-2.

10

15

Isolation and Characterization of the clones: A recombinant cDNA library was constructed in phage vector \(\alpha \text{gt10} \) using poly(A) +-selected RNA from the TT cell line. Approximately 1.5x10⁶ were screened with the PCR fragment under high stringency (hybridization: 50% formamide, 5X SSPE, 5X Denhardts, 0.2% SDS, 200\(\mu \text{g/m} \) lherring sperm DNA for 16-18 hrs. at 42°C; wash: 6 washes of 30 minutes each in 0.1X SSPE, 0.1% SDS at 65°C).

Northern blot analysis: Multiple tissues were screened in Northern blots using $2\mu g$ of poly(A)⁺ RNA per lane (Clontech, Palo Alto, CA). Blots were probed at high stringency, as described above, with labeled fragments generated from the full-length α_{1H} cDNA, i.e., nucleotide -6 to 7390.

Western blot analysis: Cellular membranes (total) were isolated from HEK293 cells expressing different a_{1H} subunits; membrane proteins were separated by SDS-PAGE; transferred to nitrocellulose; and, blotted using a polyclonal anti- a_{1H} antisera and TBS-T buffer. Blotted proteins were visualized using the Lumiglo reagent kit (KPL, Gaithersburg, MD) according to the manufacturer's instructions.

B. RNA isolation

Accession No. CRL1803) were grown in DMEM medium supplemented with 10 % fetal calf serum at 37 °C in 5% CO₂ atmosphere and total cytoplasmic RNA was isolated from forty 10 cm plates using a "midiprep" RNA isolation kit (Qiagen) as per the manufacturer's instructions.

The protocol entails the use of the detergent NP40 which lyses the cell membrane under mild conditions such that the nuclear membrane remains intact thereby eliminating incompletely spliced RNA transcripts from the preparation.

20

25

PolyA + RNA was isolated from total cytoplasmic RNA using two passes over an oligo(dT)-cellulose column. Briefly, 2-3 mg of total cytoplasmic RNA was resuspended in NETS buffer (500 mM NaCl 10 mM EDTA, 10 mM Tris, pH 7.4, 0.2% SDS) and passed slowly over a column containing 0.5 g of oligo(dT)-cellulose (Collaborative Research) equilibrated in NETS buffer. The column was washed with 30 mls of NETS buffer and polyA + RNA was eluted using about 3 mls of ETS buffer (10 mM EDTA, 10 mM Tris, pH 7.4, 0.2% SDS). The ionic strength of the polyA + RNA-containing buffer was adjusted to 500 mM NaCl and passed over a second oligo(dT)-cellulose column essentially as described above. Following elution from the second column, the polyA + RNA was precipitated twice in ethanol and resuspended in $\rm H_2O$.

C. Library construction

Double stranded cDNA (dscDNA) was synthesized according to standard methods (see, e.g., Gubler et al. (1985) Gene 25:263-269; Lapeyre et al. (1985) Gene 37:215-220). Briefly, first strand cDNA synthesis was initiated using TT cell polyA + RNA as a template and using random primers and Moloney Murine Leukemia Virus reverse transcriptase (MMLV-RT). The second strand was synthesized using a combination of E. coli DNA polymerase, E. coli DNA ligase and RNase H.

Regions of single stranded DNA were converted to double-stranded DNA using T4 DNA polymerase generating blunt-ended double stranded fragments. <u>EcoRl restriction endonuclease site adapters:</u>

5' CGTGCACGTCACGCTAG 3' (SEQ ID NO. 2)

3' GCACGTGCAGTGCGATCTTAA 5' (SEQ ID NO. 3)
were ligated to the double-stranded cDNA using a standard protocol (see, e.g., Sambrook et al. (1989) IN: Molecular Cloning, A Laboratory Manual,
Cold Spring Harbor Laboratory Press, Chapter 8). The double-stranded
DNA with the EcoRl adapters ligated was purified away from the free or

10

15

20

25

unligated adapters by column chromatography using Sepharose CL-4B resin followed by size selection of the cDNA on a 1.2% agarose gel. After visualizing the resolved DNA using ethidium bromide, two fractions of cDNA, >3.5 kb and 1.0-3.5 kb, were isolated from the gel and inserted into the vector \(\lambda\text{gt10}\).

The ligated λ gt10 containing the cDNA insert was packaged into λ phage virions in vitro using the Gigapack III Gold packaging (Stratagene, La Jolla, CA) kit. Using this method, phage libraries of $\sim 1.5 \times 10^6$ recombinants for cDNA > 3.5 kb fraction and $\sim 10 \times 10^6$ recombinants for DNA fraction between 1.0 and 3.5 kB were obtained.

D. Isolation of DNA encoding a portion of human α_1 calcium channel subunits

DNA encoding a small region of human α_1 subunits encoded in TT cells was isolated using degenerate PCR-based amplification (<u>e.g.</u>, see Williams *et al.* (1994) <u>J. Biol. Chem. 269</u>:22347-22357). These amplified fragments were used to generate DNA probes for the isolation of DNA encoding a full-length human α_{1H} calcium channel subunit.

As noted above, two sets of degenerate oligonucleotides were synthesized based on the flanking regions of the II-III loop known to share a high degree of sequence identity amongst known human α_1 calcium channel subunits: 1) two degenerate oligonucleotides complementary to the regions of the IIS5-IIS6 loop were synthesized as 5' upstream primers (SEQ ID NOs. 4 and 5); and 2) two degenerate oligonucleotides complementary to a portion of the IIIS5 transmembrane segment were synthesized as 3' downstream primers (SEQ ID NOs. 6 and 7).

These degenerate oligonucleotides were used as primer pairs in nested PCR amplification reactions using <u>Pfu</u> DNA polymerase (Stratagene, La Jolla, CA) and reactions were performed according to the manfacturer's instructions. Samples were placed in a commercially

available thermocycler (Perkin-Elmer) and the amplification reactions were set as follows: 1 cycle, 5 min @ 95 °C; 5 cycles, 20 sec @ 95 °C/20 sec @ 42 °C/2.5 min @ 72 °C; 30 cycles, 20 sec @ 95 °C/20 sec @ 50 °C/2.5 min @ 72 °C; and 1 cycle, 7 min @ 72 °C. Amplified DNA products were subjected to electrophoresis on an agarose gel and gel purified using standard methods.

E. Amplification of DNA encoding a portion of human a_{1H} calcium channel subunit

To amplify DNA encoding a portion of the human a_{1H} calcium

10 channel subunit, three degenerate oligonucleotides (SEQ ID NOs. 8-10) that share partial complementarity to a region of Domain III were synthesized as 5' primers. This region is encompassed within all of the amplified a_1 -encoding fragments of Section C above. Two oligonucleotides based on sequences in IIIS2 (SEQ ID NOs. 8 and 10)

15 were used as 5' primers in conjunction with the 3'IIIS5 transmembrane primers used in the initial PCR reactions (SEQ ID NOs. 6 and 7 to amplify DNA encoding a portion of the human a_{1H} subunit using the amplified products as templates.

The amplified DNA products were subcloned into the pCR-Blunt vector (Invitrogen), plasmid DNA was purified from isolated transformants and the DNA sequence of each insert was determined. A 340 bp fragment (SEQ ID NO. 48; nt 4271 to 4610 of SEQ ID NO. 49) that shares approximately 55-60% sequence identity to known human α₁ calcium channel subunits was identified. This DNA fragment, designated PCR1, was used as a DNA probe to isolate DNA encoding a human α₁ calcium channels subunit.

F. Isolation and characterization of individual clones Hybridization and Washing Conditions

Hybridization of radiolabelled nucleic acids to immobilized DNA for the purpose of screening cDNA libraries, DNA Southern transfers, or northern transfers was routinely performed in standard hybridization conditions (hybridization: 50% deionized formamide, 200 μg/ml sonicated herring sperm DNA (Cat #223646, Boehringer Mannheim Biochemicals, Indianapolis, IN), 5 x SSPE, 5 x Denhardt's, 42° C.; wash: 0.2 x SSPE, 0.1% SDS, 65° C). The recipes for SSPE and Denhardt's and the preparation of deionized formamide are described, for example, in Sambrook *et al.* (1989) *Molecular Cloning, A Laboratory Manual*, Cold Spring Harbor Laboratory Press, Chapter 8). In some hybridizations, lower stringency conditions were used in that 10% deionized formamide replaced 50% deionized formamide described for the standard hybridization conditions.

The washing conditions for removing the non-specific probe from the filters was either high, medium, or low stringency as described below:

- 1) high stringency: 0.1 x SSPE, 0.1% SDS, 65°C
- 2) medium stringency: 0.2 x SSPE, 0.1% SDS, 50°C
- 3) low stringency: 1.0 x SSPE, 0.1% SDS, 50°C. It is understood that equivalent stringencies may be achieved using alternative buffers, salts and temperatures.

Approximately 1.5×10^5 recombinants of the TT cell phage library containing inserts > 3.5 kb were plated and duplicate lifts prepared from each plate. The lifts were probed with radiolabelled PCR1 using standard hybridization conditions, the filters were washed and approximately 100 positive plaques were identified. Initially, 5 positives, $\lambda 1.201-\lambda 1.205$, were selected for plaque purification and characterization.

20

25

Restriction endonuclease digestion of purified DNA isolated from $\lambda 1.201$ - $\lambda 1.205$ with EcoRI indicated that clone 1.201 contains the original insert of ~350 bp PCR1 fragment, whereas clones 1.202, 1.203, 1.204 and 1.205 contain inserts of ~1100, ~4000, ~2600 and ~2200 nt, respectively.

- F. Isolation of DNA encoding a human a_{1H} calcium channel subunit and construction of DNA encoding a full-length a_{1H} subunit
 - 1. Reference list of partial human a_{1H} clones

The full-length a_{1H} cDNA sequence is set forth in SEQ ID NO. 49. A list of partial cDNA clones used to characterize the a_{1H} sequence and the nucleotide position of each clone relative to the full-length a_{1H} cDNA sequence is shown below. The isolation and characterization of these clones are described below.

1.305 nt 1 to 3530 of SEQ ID No. 49
15 1.205 nt 2432 to 4658 of SEQ ID No. 49
1.204 nt 3154 to 5699 of SEQ ID NO. 49
PCR1 nt 4271 to 4610 of SEQ ID NO. 49
1.202 nt 4372 to 5476 of SEQ ID No. 49
1.203 nt 3891 to 7898 of SEQ ID No. 49

20 2. Characterizetion of the clones

DNA sequencing of each insert revealed that clone 1.202 contains 1,105 bp insert corresponding to nt 4372 to 5476 of SEQ ID No. 49; clone 1.203 contains 4,008 bp insert corresponding to nt 3891 to 7898 of SEQ ID No. 49; clone 1.204 contains 2,546 bp insert corresponding to nt 3154 to 5699 of SEQ ID NO. 49; and clone 1.205 contains 2,227 bp insert corresponding to nt 2432 to 4658 of SEQ ID No. 49. These four DNA clones contain overlapping sequences that encode an open reading frame of approximately 6.6 kb that encodes a majority of the α_{1H} subunit,

25

15

20

25

including the entire carboxy terminus and the in-frame translational stop codon.

DNA encoding the 5'-end of the human a_{1H} calcium channel subunit was isolated using a 548 bp EcoRI-Ncol restriction endonuclease fragment from the 5'-end of clone 1.205 (nt 2432 to nt 2979 SEQ ID No. 49) to rescreen the TT cell cDNA library under high stringency conditions. Briefly, DNA encoding the amino terminus of human a_{1H} calcium containing inserts of >3.5 kb was incubated with the purified restriction fragment and hybridized at 42 °C and washed under high stringency conditions as described above.

One recombinant, clone 1.305, was identified that contains a 3,530 nucleotide insert that shares at its 3' end approximately 1.1 kb of sequence identity with the 5'-end of clone 1.205 (\sim nt 2432 to nt 3530 SEQ ID No. 49) and also contains 2.4 kb of sequence upstream of the EcoRI site located at the 5'-end of clone 1.205 (nt 2433 to 2438 SEQ ID No. 49). This sequence encodes the ATG initiation codon (nt 249 to nt 251 SEQ ID No. 12) and 1,094 amino acids of the amino terminus of the α_{1H} subunit as well as 248 bp of 5'-untranslated sequence, including a consensus ribosome binding site (nt 244 to nt 248 of SEQ ID No. 49).

Two other recombinants were also identified (SEQ ID NOs. 13 and 14) that share approximately 1.1 kb of sequence identity with the 3'-end of clone 1.305 but differ in the length of the DNA sequence corresponding to the extended intracellular loop located between transmembrane Domains I and II.

3. Construction of a full-length a_{1H-1} -encoding DNA clone

Portions of these partial cDNA clones can be ligated to generate a full-length a_{1H} cDNA using common restriction endonuclease sites shared amongst the a_{1H} -encoding fragments. A full-length a_{1H} encoding clone was constructed by 1) combining the DNA encoding the 5'-end of a_{1H} present

in clone 1.305 with clone 1.205 using a common EcoRl site (nt 2433 to 2438 SEQ ID No. 49); and 2) the resulting clone, which encodes the amino terminus of a_{1H} was combined with the carboxyl terminal sequences of a_{1H} encoded in clone 1.203 using the common EcoRV restriction endonuclease site shared between clone 1.205 and 1.203 (nt 4517-4522 of SEQ ID NO. 12). The resulting full-length human a_{1H} calcium channel subunit is 2,353 amino acid residues in length (SEQ ID NO. 12). The expression construct was assembled in pCDNA1 (Invitrogen, San Diego, CA) and included a consensus ribosome binding site (RBS) followed by the full-length a_{1H} coding sequence (see, for a description of pcDNA1-based vectors containing the RBS, see, e.g., in International PCT application No. PCT/US94/09230, see, also allowed U.S. application Serial No. 08/149,097, U.S. Patent No. 5,851,824, and U.S. Patent No. 5,846,756). The resulting construct was designated 15 pcDNA1a_{1H}RBS.

EXAMPLE 2: Cloning of human calcium channel a_{1H-2} subunit

T-type channel currents are heterogeneous among different cell types, with varying biophysical and pharmacological profiles, and as shown in this and the following examples can result from expression of different a_1 subunit subtypes in different cells.

A. Cloning of a_{1H-2}

20

25

As described above, PCR Primers-1 and -2,chosen based on an alignment of the human a_{1A} - a_{1E} sequences in the central cytoplasmic loop II/III region and Primer-3 (GA(A/G)ATGATGATGAA(A/G)GT SEQ ID NO. 10) was chosen after considering a_1 -related C. elegans sequences in cosmid C54D2 aligned with the human a_1 -encoding nucleic acid sequences.

The α_1 -related encoding nucleic acids were amplified in two steps from TT cellular poly(A) + RNA, using Primers-1 and -2 first in a

10

15

20

degenerate amplification reaction followed by Primer-3 and Primer-2 in a nested PCR amplification. This resulted in amplification of a 340 nucleotide fragment that encodes a portion of the α_{1H} subunit. This amplification product was used as a probe to screen the library to isolate nucleic acid clones encoding a full-length α_{1H} subunit.

Using a primer base on the α_{1H-1} sequence and RT-PCR on various tissues, transcripts with an in-frame deletion relative to α_{1H-1} were identified and isolated from the TT cell library. Fragments spanning this deletion were isolated and, when lined up matched the α_{1H-1} , sequence except for a 957 base pair deletion. A full-length clone, designated α_{1H-2} (see SEQ ID NO. 16), was constructed from among these fragments, and inserted in the pcDNA1 with the RBS as for α_{1H-1} . α_{1H-2} transcripts were identified in all tissues examined.

Nucleic acid encoding a_{1H-2} results from an alternately spliced RNA and has a 957 nucleotide in-frame deletion relative to a_{1H-1} , as detected in the PCR products from numerous tissues and cells, including TT cellular cDNA,, amygdala cDNA, caudate nucleus cDNA, putamen cDNA, heart cDNA, kidney cDNA and liver cDNA. PCR primers were: (i) 5'-primer corresponding to the sense strand of a_{1H-1} at nucleotide 1373 through 1393; (ii) 3'-primer corresponding to the antisense strand of a_{1H-1} at nucleotide 2657 through 2680.

SEQ ID Nos. 12 and 15 show the nucleotide sequence of $\alpha_{\rm 1H-1}$. The coding sequence for $\alpha_{\rm 1H-1}$ begins at nucleotide 249 and ends at 7310. (SEQ ID Nos. 12 and 15 differ in minor respects,

25 <u>e.g., amino acid 2230 (bases 6983-6985)</u> is Asp (GAC) in the SEQ ID No. 15 and Glu (GAA) in SEQ ID No. 12).

15

20

SEQ ID No. 16 shows the nucleotide sequence of the a_{1H-2} splice variant. The coding sequence for a^{1H-2} begins at 249 and ends at 6353. B. Summary

Nucleic acid clones encoding full length a1H T-type channel subtype were isolated from TT cells. Although similar in overall nucleotide sequence topography to other previously cloned HVA a_1 subunits, the a_{1H} subunit contained several unusual features, including a large II-III domain loop, absence of the common a_1 interaction domain, and altered ion selectivity properties. Two isoforms of a_{1H} designated a_{1H} , and $a_{\rm 1H-2}$ were identified. The first $a_{\rm 1H-1}$ is the larger of the two, and the second $a_{\mathrm{1H-2}}$ is the smaller of the two containing a 957 nucleotide deletion in the II-III loop relative to a_{1H-1} . The nucleotide sequence of a_{1H-1} is set forth in SEQ ID No. 12 and No. 15 and that of a_{1H-2} is set forth in SEQ ID NO. 16. a_{1H-2} contains a 957 nucleotide deletion relative to a_{1H-1} which results in a loss of 319 amino acids (amino acids 470-788 of a_{1H-1}) from within the intracellular loop between domains II and III. The splice variant deletion was identified by PCR in all cells and tissues examined. These include TT-cells, amygdala, caudate nucleus, putamen, heart, kidney and liver cells. In the brain expression is primarily in the amygdala, caudate nucleus and putamen. Liver, kidney and heart have high levels. The coding sequence for a1H-1 begins at nucleotide 249 and ends at nucleotide 7310 while the coding sequence for a_{1H-2} begins at nucleotide 249 and ends at nucleotide 6353.

Polyclonal antiserum was raised to the putative II-III intracellular loop domain of the α 1H subunit. Following transient expression in HEK293 cells a protein of the appropriate size was detected by SDS-PAGE and Western blotting. Functional characterization of human α_{1H} channels is provided in EXAMPLE 3.

-88-

EXAMPLE 3: Biophysical and Pharmacological properties of channels containing a_{1H-1} and a_{1H-2} subunits

Materials and Methods Α.

Materials and methods for biophysical and pharmacology study of calcium channel subunits are described in this EXAMPLE and EXAMPLE 4 below with reference to previously cloned subunits. Such methods or other similar methods known to those of skill in the art have been used to study these properties of human a_{1H-1} subunits as described in this Example.

10 Electrophysiology: HEK293 cells were transiently transfected with 6 μ g pcDNA1 α_{1H} RBS using a standard Ca²⁺ phosphate procedure (see, e.g., EXAMPLE below, see, also Williams et al. (1992) Neuron, 8:71-84, for transfection procedure). pCMVCD4, a human CD expression plasmid, was included in the transfections as a marker to permit the identification of transfected cells. Prior to recording, cells were washed with 15 mammalian Ringer's solution, incubated for approximately 10 min in a solution containing a 1/1000 dilution of M-450 CD4 Dynabeads (Dynal Inc., Lake Success, NY) and rewashed with mammalian Ringer's solution to remove excess beads. Functional expression of a_{1H} channels in 20 transfected cells was evaluated 24-48 hours following transfection using the whole-cell patch clamp technique. All recordings were performed on single cells at room temperature (19-24°C). Whole-cell currents were recorded using an Axopatch-200A (Axon Instruments, Foster City, CA) or anEPC-9 (HEKA elektronik, Lambrecht, Germany) patch clamp amplifier, low-pass filtered at 1 kHz (-3 dB, 8-pole Bessel filter) and digitized at a

25 rate of 10 kHz, unless otherwise stated. Pipettes were manufactured

10

15

from borosilicate glass (TW150, WPI, Sarasota, FI), coated with Sylgard (Dow Corning Midland, MI), and had a resistance of 1.1-2.0 $M\Omega$ when filled with internal solution. Series resistance was 2-5 M Ω and 70-90% series resistance compensation was generally used. The pipette solution contained (in mM): 135 CsCl, 10 EGTA, 1 MgCl₂, 10 HEPES (pH 7.3, adjusted with Cs-OH). The external solution contained (in mM): 15 BaCl₂ or CaCl₂, 150 Choline C1, 1 MgCl₂, 5 TEA-OH and 10 HEPES (pH 7.3) adjusted with HC1). Single channel recordings were obtained using the cell-attached configuration of the patch-clamp technique. The pipette solution contained (in mM): 110 BaCl₂, 10 HEPES (pH 7.3, adjusted with TEA-OH). The membrane potential of individual HEK293 cells was set to zero with a solution containing (in mM): 140 K-aspartate, 5 EGTA, and 10 HEPES (pH 7.3). Membrane potentials in the single channel recordings were not corrected for liquid junction potential offset (+12 mV). Linear leak and residual capacitive currents were on-line subtracted using a P/4 protocol (whole-cell recording) or scaled single-channel sweeps with no activity (single-channel recordings).

Drugs: Mibefradil (Ro 40-5967) was a gift from F. Hoffman-LaRoche. Nimodipine and (-)BayK-8644 were obtained from Research

20 Biochemicals (Natick, MA). The peptide toxins ω-CgTx GVIA (conotoxin) and ω-CmTx MVIIC (conotoxin) were obtained from Bachem (Torrance, A). All remaining compounds were obtained from Sigma. Stock solutions were prepared in dimethl sulfoxide (amiloride, nimodipine), ethanol ((-)BayK-8644) or water (verapamil, mibefradil, ethosuximide, ω-CmTx GVIA and ω-CmTx MVIIC) and stored at 4°C. Drugs were prepared fresh on each experimental day from stock solutions and applied via peristaltic pump at a flow rate of < 0.5 ml/min. The maximal solvent concentration in the final test solution was < 0.1%. At these concentrations these solvents ha no effect on α_{1H}-mediated currents.

Xenopus oöcyte studies: Xenopus laevis frogs were purchased from Nasco (Fort Atkinson, Wisconsin). Oöcytes were incubated in Ca2+free solution containing 88 mM NaCl, 1 mM KCl, 0.82 mM MgSO₄, 2.4 mM NaHCO₃, 10 mM Hepes and 1.5 mg/ml collagenase A (Worthington, Freehold NJ; Type 4, 1.5 hr and subsequently Sigma, St. Louis, MO, Type 1A, 0.5 hr.). Following collagenase treatment, oöcytes were transferred to frog Ringer's solution that contained 88mM nACl, 1mM KCI, 0.91 mM CaCl₂, 0.82 mM MgSO₄, 0.33 mM Ca(NO₃)₂, 2.4 mM NaHCO₃ and 10 mM Hepes. Under these conditions, manual removal of the follicle cell layer was not required. Occytes were injected with 50 ng 10 (1 μ g/ml) of in vitro transcripts encoding the a_{1H} subunit and incubated for 3-5 days at 19°C prior to recording. The incubation medium was frog Ringer's solution containing penicillin/streptomycin (Sigma; 10 ml/L), gentamicin (Sigma; 1 ml/L and 5% heat-inactivated horse serum (Gibco, Gaithersburg, MD). Microelectrodes were pulled on a horizontal puller 15 (Model P80, Sutter Instruments, Novato, CA); filled with 3 M KCI; and selected for resistances in the range of 0.5-2.0 M Ω . Data were recorded using a GeneClamp 500; digitized at 1-5 KHz; and stored on magnetic disks for analysis offline using pClamp or Axograph software (Axon Instruments). Ba2+ or Ca2+ currents were recorded in a solution 20 containing 36 mM TEA-OH, 2.5 mM KOH, 75 mM mannitol, 10 mM HEPES and 15 mM Ba(OH)₂ or Ca(OH)₂, respectively at pH 7.3. Currents were leak-subtracted using the P/6 protocol. To block Ca2+-activated chloride currents, niflumic acid (300µM) was included in experiments where the relative permeability of a_{1H} channels to $\mathrm{Ba^{2+}}$ or $\mathrm{Ca^{2+}}$ was 25 measured. All values are reported as mean ± S.D. unless stated otherwise. Drugs (above) were applied via a gravity-fed perfusion system. At the concentrations used herein, solvents had no effect on a_{1H} mediated currents.

B. Electrophysiology

1. Current-Voltage Properties

The rapid inactivation of a_{1H-1} Ca²⁺ channels was strongly voltagedependent. The current decay was best described with an exponential function with time constants ranging from 42.2 \pm 7.8 to 8.8 \pm 3.8 ms at membrane potentials between -50 and +30 mV (n = 6; data not show). Activation kinetics of a_{1H-1} Ca²⁺ channels were also voltagedependent with time constants ranging from 9.9 ± 4.7 to 0.9 ± 0.3 ms for membrane potentials between -50 and +30 mV (n = 8; data not shown). a_{1H-1} Ca²⁺ channels inactivated completely during the 150-ms depolarization. Recovery from inactivation occurred within a period of \sim 3 s with a fast component (τ = 37 ± 9 ms; 16.5 ± 4.6% of all channels) and a slow component ($r = 37 \pm 61$ ms; $78 \pm 8.5\%$ of all channels; n = 3; data not shown). To confirm the biophysical properties of recombinant a_{1H} channels observed in whole-cell recordings from HEK293 cells, the functional expression of a_{1H} in Xenopus occytes was tested. Substantial currents (<1 μ A) after injection of a_{1H} transcripts alone was observed.

The current-voltage relationship for Ba²⁺ or Ca²⁺ from traces

20 determined. Following transient transfection of HEK293 cells with a DNA encoding the a_{1H-1} subunit, Ba²⁺ currents that were rapidly activating and inactivating were observed. Ba²⁺ currents (15 m/M) elicited by step depolarizations to various test potentials from a holding potential of -90-mV were measured. Currents were activated at a test potential of -50 mV, peaked between -20 and -10 mV, and reversed at a membrane potential more positive than +60 mV. Similar results were obtained with Ca²⁺ (15 m/M) as the charge carrier.

2. Voltage-Dependence of Activation and Inactivation

FIGURE 1 shows the voltage-dependence of activation (m∞) and steady-state inactivation (h) of human a_{1H} calcium channels expressed transiently in HEK cells. Voltage-dependence of activation (m∞) was determined from tail current analysis. Tail currents were normalized with 5 respect to the maximum peak tail current obtained at +60 mV and were plotted (open symbols, mean \pm SEM; n = 11) vs. test potential. Data were fitted by the sum of two Boltzman function $m\infty = FA * [1 + exp]$ $(Vtest-V1/2,A)/KA)]1 + F_B*[1 + exp(-(V_{test}-V_{1/2,B})/k_B)]^{-1}, F_A = 0.67, V_{1/2,A} = -1.00$ 21.5 mV, $k_A = 7.5$, $F_B = 0.33$, $V_{1/2,B} = 25.5$ mV, $k_B = 14.7$. Steady-state 10 inactivation (h∞) was determined from a holding potential of -100 mV by a test pulse to -20 mV (p1), followed by a 20 second prepulse from -100 mV to -10 mV in 5 mV decrements (pHold) preceding a second test pulse to -20 mV (p2). Normalized current amplitudes were plotted (closed symbols, mean \pm SEM; n=9) vs. holding potential. Data were fitted by a 15 Boltzman function $h = [1 + \exp((V_{hold} - V_{1/2})/k)]^{-1}, V_{1/2} = -63.9 \text{ mV},$ k = 3.9 mV.

3. Tail Current Deactivation

Tail current deactivation profiles for a_{1H-1} calcium channels in transiently transfected HEK cells were studied. One hallmark of LVA channels is their slow rate of deactivation, which is reflected in a show decay of tail currents. The time constant of this decay is ~10-fold slower for LVA channels (2-12 ms) than for HVA channels <300 μs. A slow decay of a_{1H-1} mediated tail currents over a period of ~15 ms was observed. In contrast to the monoexponential decay of the tail currents reported for many native T-type Ca²⁺ channels, tail currents from a_{1H-1} channels showed a biexponential decay. At a test potential of -20 mV,

10

15

20

25

the decay rate of the slow component, comprising 88.1 \pm 33.8% of the total current, was 2.1 \pm 1.06 ms (n = 6), which is similar to those observed in native T-type Ca²⁺ channels. The decay rate of the faster component was 0.64 \pm 0.21 ms (n = 6). Slow decay of α_{1H-1} -mediated tail currents were observed over a period of 15 ms.

The voltage dependence of activation of a_{1H-1} containing Ca²⁺ channels was determined from tail-current analysis. Normalized tailcurrent amplitudes were plotted as a function of test potential and revealed a biphasic activation curve that was well fitted by the sum of two Boltzmann functions (Figure 1). The potentials for half-maximal activation of the individual Boltzmann terms were as follows: V_{½,A}: -25.1 $\pm 3 \ 3.0 \ \text{mV}$; and $V_{\text{M,B}}$: $+25.5 \ \pm 3 \ 9.9 \ \text{mV}$ (n = 11). A value similar to $V_{\nu,A}$ has been reported previously for voltage dependence of activation of T-type CA²⁺ channels in the human TT cell line (-27 mV). The value of the second Boltzmann term $V_{\varkappa,B}$ is somewhat similar to that reported for HVA Ca2+ channels. Using a similar protocol, tail currents of HVA Ca2+ channels decay with time constants of <300 μs , whereas with a_{1H} the most prominent at test potentials close to $V_{14,B}$. The availability of a_{1H} containing Ca2+ channels for opening was dependent on the membrane for potential as shown in FIGURE 1. The potential for half-maximal steady-state inactivation (V_{13}) was - 63.2 ± 2.0 mV (n = 9).

4. Kinetics of Activation and Inactivation of a_{1H} Channels

FIGURE 2 shows the kinetics of activation (FIGURE 2A) and inactivation (FIGURE 2B) of human a_{1H} calcium channels. Kinetics of activation and inactivation were determined from current traces by fitting an exponential function to rising (FIGURE 2A) or declining (FIGURE 2B) phase of the current. The voltage-dependence for activation and inactivation follows approximately an exponential function.

10

15

20

25

30

5. Recovery from Inactivation

Recovery of a_{1H} channels expressed transiently in HEK293 cells from inactivation induced by using a double pulse protocol using depolarizing pulses to -20mV was evaluated. The fraction of recovered channels was plotted vs. interpulse interval and the data point were fitted by a bi-exponential function in the form $I = Ao + A1 \exp(-t/r1) + A2\exp(-t/r2)$. r1:35 ms, A1:0.165, r2:337 ms, A2:0.788.

6. Single-Channel Recording from Human a_{1H} calcium channels

Single-channel properties of $a_{1H}Ca^{2+}$ channels in HEK293 cells were determined in cell-attached recordings with 110 mM Ba $^{2+}$ as the charge carrier. Single-channel recordings at a test potential of -30 mV from a patch that contains at least three a_{1H} showed that channel openings occurred in bursts and were clustered mainly in the first third of the 100-ms depolarizing pulse, especially with stronger depolarizations.

Occasionally, channel activity was spread throughout the entire sweep. The time course of the ensemble-averaged current recorded at -30mV in 110 mM Ba²⁺ was similar to the a_{1H} whole-cell Ba²⁺ current recorded at -40 mV in 15 mM Ba²⁺. The currents were compared at different potentials to compensate for the shift in the activation curve to more positive potentials due to the increase in divalent concentration. The unitary current-voltage relationship yielded a unitary slope conductance of 9.06 \pm 0.22 pS (n = 4).

C. Biophysical Characterization of Human a_{1H} calcium channels in *Xenopus* Oöcytes

1. Overview

Cloned human a_{1H} calcium channels were characterized further by transient expression of a_{1H-1} mRNA in *Xenopus* oöcytes. Injection of a_{1H-1} mRNA alone resulted in expression of large currents, i.e., typically $> 1\mu$ A when recording in 15 mM Ba²⁺. The a_{1H} channels were activated at

approximately -50 mV with peak responses between -30 mV and -40 mV, which is consistent with low voltage activated channels. Permeability of the a_{1H} channels to Ca^{2+} was slightly greater than to Ba^{2+} . In contrast with high voltage channel, the a_{1H} channels activated slowly ($\tau = 5.7 \pm$ 1.0 ms at the peak of the I-V curve, 3.3 \pm 0.5 ms at -20mV) and inactivated rapidly ($r = 13.4 \pm 1.9$ ms at the peak of I-V curve, 12.2 \pm 1.5 ms at -20 mV). The a_{1H} channels expressed in oöcytes were sensitive to steady-state inactivation at relatively negative membrane potentials $(V1/2 = -64.5 \pm 1.0 \text{ mV})$ and recovered quickly from inactivation (τ of recovery ≈ 330 ms). These values are very similar to those obtained from 10 a_{1H} channels expressed in HEK293 cells. The Ba²⁺ currents through a_{1H} channels in oöcytes were sensitive to blocking by Ni2+ and Cd2+ with IC50 values of $6.3\mu M$ and $8.3\mu M$, respectively. Of the antagonists tested, only amiloride (IC50 \approx 16 μ M) and mibefradil (IC50 \approx 2 μ M) markedly inhibited a_{1H} -mediated $\mathrm{Ba^{2+}}$ currents through a_{1H} channels expressed in 15 oöcytes. Taken together the results indicate that a_{1H} represents a lowvoltage activated calcium channel subunit.

- 2. Activation and Inactivation Properties f a_{1H} Channel Ba²⁺ Curr nts
- Current-voltage relationships for Ba²⁺ (15 mM) currents were recorded from single oocytes injected with mRNA encoding the human α_{1H}

relatively electro-negative activation range of a_{1H} channels in comparison with the high-voltage activated $a1A-2a2b\delta\beta4a$, $a1B-1a2b\delta\beta3a$ and, $a1E-3a2b\delta\beta1b$ calcium channels.

3. Permeability, Inactivation and Biophysical Properties of Human a_{1H} Expressed in *Xenopus* oöcytes

Permeability and inactivation properties of human a_{1H} channels were investigated in oöcytes by studying Ba^{2+} and Ca^{2+} currents. The results show that Ba^{2+} currents were not significantly larger than Ca^{2+} currents in oöcytes expressing the a_{1H} subunit. Results presented in show normalized steady-state inactivation curves for a_{1H} -mediated Ba^{2+} currents, where V1/2 was calculated to be equal to a value of -64.5 \pm 1.0 mV. A double pulse protocol, i.e., with increasing time intervals between pulses, was used to examine the recovery of a_{1H} channels from inactivation. The results of relative recovery of channels plotted against the interpulse interval (ms) and demonstrated that a_{1H} channel currents recovered quickly from inactivation, with an average time constant of 330 ms (n=5).

4. Cadmium, Nickel, Amiloride and Mibefradil Antagonize human α_{1H} Channel Ba²⁺ Currents

Cd²+ was found to antagonize low-threshold human α_{1H} currents in oöcytes in a concentration dependent manner. By plotting the inhibition of Cd²+ as the percentage of the control Ba²+ current achieved at different concentration of Cd²+, an IC₅₀ of 10.3μM as calculated. Ni²+ was also found to antagonize low-threshold human α_{1H} channels in oöcyte, and also in a concentration dependent manner. The inhibition of Ba²+ currents produced by different concentrations of Ni²+ (n = 4 experiments; n_H = 0.84) was tested. The calculated IC₅₀ for Ni²+ was 6.3μM. Antagonism by Nl²+ and Ba²+ were largely reversible.

In addition, each of Amiloride and Mibefradil blocked low-threshold Ba^{2+} currents in oöcytes in a concentration-dependent manner giving a calculated IC_{50} of $161\mu M$ for Amiloride; mean of 7 experiments, $n_H=0.62$) and mean of 2.1 μM for Mibefridil; mean of 4 experiments, $n_H=0.71$).

These results demonstrate that incorporation of an α_{1H} subunit into functional calcium channels in the membranes of cells, conveys the electrophysiologic and biophysical properties of low-voltage activated, particularly T-type, calcium channels upon those channels. The α_{1H}-containing channels were activated rapidly at relatively negative membrane potentials (i.e., V_{1/2} = 64.5 mV), and were also inactivated rapidly (i.e., τ = 12.2 ms at -20mV). Peak channel open activity was observed at a membrane potential of -30mV. These channels also exhibited approximately equal permeability for Ca²⁺ and Ba²⁺.

Pharmacologic properties of a_{1H} containing channels were also consistent with those of other low-threshold calcium channels. They are blocked by Ni²⁺ (IC₅₀ = 6.3 μ M), Cd²⁺ (IC₅₀ = 10.3 μ M), Amiloride (IC₅₀ = 16.1 μ M) and Mibedfradil (IC₅₀ = 2.1 μ M).

D. Comparison of calcium channels containing human a_{1H} subunits expr ss d in HEK293 Cells with those expressed in *Xenopus*

TABLE 4
Biophysical properties of a_{1H} -containing Ca²⁺ channels

	Properties:	а _{1н} НЕК293	а _{тн} <i>Xenopus</i> Oöcytes	Native T-type ^b
5	Relative conductance conductance [pS] Activation	Ba ²⁺ ≅ Ca ²⁺ 9.06 ± 0.22	Ba ²⁺ ≅ Ca ²⁺ n.d.	Ba ²⁺ ≅ Ca ²⁺ 5-9
0	kinetics, r [ms] V _{1/2} [mV]	2.8±0.5° -25.1±3.9 25.5±9.9	3.3±0.5° n.d.	2 to 8 -60 to -45
5	Inactivation kinetics, r[ms] V _{1/2} [mV] Tail deactivation r[ms]	16.9±5.3° -63.2±2.0 0.64±0.21 2.1±1.06	23.3±1.5° -64.5±1.0 n.d.	10 to 30 -100 to -50 2 to 12

b Huguenard (1996) Annual Rev. Physiol. 58:329-348; c determined at - 20 mV test potential; n.d. not determined

20 E. Properties of calcium channels containing a_{1H-2} subunits Summary Discussion

The biophysical properties of a_{1H-2} , revealed a shift in the $V_{1/2}$ of isochronic inactivation (20 seconds) to -73 mV compared to a $V_{1/2}$ of -62.5 mV for a_{1H-1} . The $V_{1/2}$ of a_{1H-2} , thus exhibits a range closer to $V_{1/2}$ values reported for certain native T-type calcium channels (Huguenard (1996) Annual Rev. Physiol. 58:329-348). For example, under similar recording conditions the $V_{1/2}$ of isochronic inactivation for T-channels in rate dorsal horn neurons (DHN) is reported to be -82 mV, while the $V_{1/2}$ recorded in rate dorsal lateral geniculate neurons (LGN) is -64 mV. In addition, the $V_{1/2}$ of a_{1H-2} more closely approximates the V1/2 in native rat DHN compared to the value for a_{1H-1} , which, instead, comes closer to the value recorded for T-type calcium channels in LGN. Thus, the observed differences the amino acid sequence of the a_{1H-1} and a_{1H-2} subunits appears linked to differences in tissue distribution of these two different forms of the a_{1H} channel. These results also provide basis for

25

30

35

understanding the observed different broad ranges of values that have been reported for the $V_{1/2}$ inactivation of T-type calcium channels (-100 to -50 mV) in different tissues (see, e.g., Huguenard (1996) Annual Rev. Physiol. 58:329-348).

5 F. Summary of Biophysical Properties of Human a_{1H} Containing calcium channels

TABLE 5 summarizes the biophysical properties of calcium channels containing the human a_{1H} subunits.

TABLE 5

10 Comparison of biophysical parameters of α_{1H} subunits transiently expressed in HEK293 cells using 15 MM Ba²⁺ as the charge carrier:

	Parameter	а _{1Н-1}	a _{1H-2}	Statistical significance
Current voltage relationship	max current at x [mV]	-10	-20	p<0.05
Isochronic inactivation (20 seconds)	V _{1/2} [mV]	-62.5	-73	p<0.05
	Slope	-3.45	-3.82	no (0.279)
Steady-state activation	V _{1/2,A} [mV] Slope _A Fraction _A V _{1/2,B} [mV] Slope _B	-23.7 8.03 0.617 23.1 10.9	-33.8 5.51 0.519 10.7 11.6	p<0.05 p<0.05 no (0.133) p<0.05 no (0.742)

20

25

15

 $a_{\rm 1H-1}$ corresponds to the wild type form of the subunit; $a_{\rm 1H-2}$ to the splice variant form;

Steady-state activation from Boltzman fit in the form: $m\infty = Fraction_a^*$

 $[1 + \exp(-(V_{test} - V_{1/2,A})/Slope_A)]^{-1} + (1-Fraction_A) * [1 + \exp(-(V_{test} - V_{1/2,A}$

 $V_{1/2,8}/Slope_8)$]⁻¹; Isochronic inactivation (or steady-state inactivation) from Boltzman fit in the form: $h\infty = [1 + exp((V_{test}-V_{1/2})/Slope)]^{-1}$

C Pharmacologic Profile of Human & calcium channels

channel antagonists amiloride (IC₅₀ = 167 μ M) and mibefradil (51.0 \pm 10.0% at 1 μ M; n = 5). In contrast, the T-type channel antagonist ethosuximide produced little inhibition of a_{1H} -mediated currents (7.2 \pm 1.8% inhibition at 300 μ M; n = 5). The calcium channel inhibitor verapamil, the L-type antagonist nimodipine, and the L-type agonist (-)-Bay K 8644 had little effect on a_{1H} channels at a concentration of 1 μ M. A higher concentration (10 μ M) of nimodipine or (-)-Bay K 8644 produced a marked inhibition (43.7 \pm 4.1%, n = 4, and 18.1 \pm 9.1%, n = 5, respectively). The peptide toxins ω -CgTx GVIA and ω -CmTx MVIIC at a concentration of 1 μ M provided little or no inhibition of a_{1H} -mediated currents.

Pharmacological studies reveal the following rank order of potency for inhibition of a_{1H-1} -containing channels: ni^{2+} (IC50: 6.6 μ M) \approx Mibefradil (51% at 1 μ M) > Cd²⁺ (IC50: 104 μ M) > Amiloride (IC50: 167 μ M) >> Ethosuximide (7% at 300 μ M). Nimodipine, Verapamil, ω -CgTx GVIA and ω -CmTx MVIIC had little effect (0-17%) at a concentration of 1 μ M. These findings demonstrate that a_{1H} -containing calcium channels have properties corresponding to native LVA, or T-type calcium channels.

Table 6 summarizes the pharmacological profile of human α_{1H} containing calcium channels expressed in HEK293 cells. With the exception of ω-CmTx MVIIC, in all cases the charge carrier was 15 mM Ba²⁺. In the case of ω-CmTx MVIIC the charge carrier for was 2 mM Ba²⁺ because w-CmTx MVIIC was a more effective inhibitor at lower divalent concentrations. Values for % block are mean ± SD(n). IC₅₀ values were calculated from sigmoidal curve fitting data (Prism, Graphpad Inc.) for data points from 3 to 6 determinations.

30

TABLE 6
Pharmacology of α_{1H} Ca²⁺ Channels Expressed in HEK293 Cells

Compound	Concentration	% Inhibition of Control Response or IC ₅₀
Cd ²⁺	range	104 <i>µ</i> M
Ni ²⁺	range	6.6 <i>µ</i> M
Amiloride	range	167 <i>μ</i> M
Mibefradil	1 μM	51.0 ± 10.0%(5)
Ethosuximide Verapamil	300 μΜ	7.2 ± 1.8%(5)
Nimodipine	1 μM	17.2 ± 1.3%(3)
	1 <i>μ</i> M	$3.4 \pm 1.1\%(4)$
(-)BayK-	10 μM	43.7 ± 4.1%(4)
8644	1 μΜ	$0.4 \pm 0.8\%(3)$
ω-CgTx	10 μM	18.1 ± 9.1%(5)
GVIA	1 μM	0%(3)
ω-CmTx MVIIC	1 μΜ	8.6 ± 11.5%(3)

20 EXAMPLE 4: RECOMBINANT EXPRESSION OF HUMAN NEURONAL CALCIUM CHANNEL SUBUNIT-ENCODING cDNA AND RNA TRANSCRIPTS IN MAMMALIAN CELLS

The methods and assays described in this example, may be employed using the nucleic encoding an a_{1H} subunit in place of the a_1 subunits exemplified below. Of particular interest are cells that express the a_{1H} subunit alone, as homomers, monomers or multimers, or in combination with selected a_2 subunits.

A. Recombinant Expression of the Human Neuronal Calcium Channel a_2 subunit cDNA in DG44 Cells

1. Stable transfection of DG44 c IIs

DG44 cells (dhfr Chinese hamster ovary cells; see, e.g., Urlaub, G. et al. (1986) Som. Cell Molec. Genet. 12:555-566) obtained from Lawrence Chasin at Columbia University were stably transfected by CaPO₄ precipitation methods (Wigler et al. (1979) Proc. Natl. Acad. Sci.

4070 4070) with a CV/2 dhift wester containing the human

expression/selection in transfected cells. Transfectants were grown on 10% DMEM medium without hypoxanthine or thymidine in order to select cells that had incorporated the expression vector. Twelve transfectant cell lines were established as indicated by their ability to survive on this medium.

2. Analysis of a_2 subunit cDNA expression in transfected DG44 cells

Total RNA was extracted according to the method of Birnboim ((1988) Nuc. Acids Res. 16:1487-1497) from four of the DG44 cell lines that had been stably transfected with pSV2dhfr containing the human 10 neuronal calcium channel a_2 subunit cDNA. RNA (~15 μ g per lane) was separated on a 1% agarose formaldehyde gel, transferred to nitrocellulose and hybridized to the random-primed human neuronal calcium channel a_2 cDNA (hybridization: 50% formamide, 5 x SSPE, 5 x Denhardt's, 42° C.; wash :0.2 x SSPE, 0.1% SDS, 65° C.). Northern blot analysis of total 15 RNA from four of the DG44 cell lines that had been stably transfected with pSV2dhfr containing the human neuronal calcium channel a_2 subunit cDNA revealed that one of the four cell lines contained hybridizing mRNA the size expected for the transcript of the a_2 subunit cDNA (5000 nt 20 based on the size of the cDNA) when grown in the presence of 10 mM sodium butyrate for two days. Butyrate nonspecifically induces transcription and is often used for inducing the SV40 early promoter (Gorman, C. and Howard, B. (1983) Nucleic Acids Res. 11:1631). This cell line, $44a_2$ -9, also produced mRNA species smaller (several species) and larger (6800 nt) than the size expected for the transcript of the a_2 25 cDNA (5000 nt) that hybridized to the a_2 cDNA-based probe. The 5000and 6800-nt transcripts produced by this transfectant should contain the entire a_2 subunit coding sequence and therefore should yield a full-length a_2 subunit protein. A weakly hybridizing 8000-nucleotide transcript was

present in untransfected and transfected DG44 cells. Apparently, DG44 cells transcribe a calcium channel a_2 subunit or similar gene at low levels. The level of expression of this endogenous a_2 subunit transcript did not appear to be affected by exposing the cells to butyrate before isolation of RNA for northern analysis.

Total protein was extracted from three of the DG44 cell lines that had been stably transfected with pSV2dhfr containing the human neuronal calcium channel a_2 subunit cDNA. Approximately 10^7 cells were sonicated in 300 μ l of a solution containing 50 mM HEPES, 1 mM EDTA, 1 mM PMSF. An equal volume of 2x loading dye (Laemmli, U.K. (1970). 10 Nature 227:680) was added to the samples and the protein was subjected to electrophoresis on an 8% polyacrylamide gel and then electrotransferred to nitrocellulose. The nitrocellulose was incubated with polyclonal guinea pig antisera (1:200 dilution) directed against the rabbit skeletal muscle calcium channel a_2 subunit (obtained from K. Campbell, University of lowa) followed by incubation with [125]-protein A. The blot was exposed to X-ray film at -70° C. Reduced samples of protein from the transfected cells as well as from untransfected DG44 cells contained immunoreactive protein of the size expected for the a_2 subunit of the human neuronal calcium channel (130-150 kDa). The level of this 20 immunoreactive protein was higher in $44a_2$ -9 cells that had been grown in the presence of 10 mM sodium butyrate than in $44\alpha_2$ -9 cells that were grown in the absence of sodium butyrate. These data correlate well with those obtained in northern analyses of total RNA from $44a_2$ -9 and untransfected DG44 cells. Cell line $44\alpha_2$ -9 also produced a 110 kD 25 immunoreactive protein that may be either a product of proteolytic degradation of the full-length a_2 subunit or a product of translation of one of the shorter (<5000 nt) mRNA produced in this cell line that hybridized to the a_2 subunit cDNA probe.

B. Expression of DNA encoding human neuronal calcium channel a_1 , a_2 and β_1 subunits in HEK cells

Human embryonic kidney cells (HEK 293 cells) were transiently and stably transfected with human neuronal DNA encoding calcium channel subunits. Individual transfectants were analyzed electrophysiologically for the presence of voltage-activated barium currents and functional recombinant voltage-dependent calcium channels were analyzed.

1. Transfection of HEK 293 cells

Separate expression vectors containing DNA encoding human neuronal calcium channel α_{1D}, α₂ and β₁ subunits, plasmids pVDCCIII(A), pHBCaCHα₂A, and pHBCaCHβ_{1a}RBS(A), respectively, were constructed as described in International PCT application No. PCT/US94/09230, see, also allowed U.S. application Serial No. 08/149,097. These three vectors were used to transiently co-transfect HEK 293 cells. For stable transfection of HEK 293 cells, vector pHBCaCHβ_{1b}RBS(A) was used in place of pHBCaCHβ_{1a}RBS(A) to introduce the DNA encoding the β₁ subunit into the cells along with pVDCCIII(A) and pHBCaCHα₂A.

a. Transient transfection

Expression vectors pVDCCIII(A), pHBCaCHa₂A and pHBCaCHβ_{1a}RBS(A) were used in two sets of transient transfections of HEK 293 cells (ATCC Accession No. CRL1573). In one transfection procedure, HEK 293 cells were transiently cotransfected with the a₁ subunit cDNA expression plasmid, the a₂ subunit cDNA expression
plasmid, the β₁ subunit cDNA expression plasmid and plasmid pCMVβgal (Clontech Laboratories, Palo Alto, CA). Plasmid pCMVβgal contains the lacZ gene (encoding E. coli β-galactosidase) fused to the cytomegalovirus (CMV) promoter and was included in this transfection as a marker gene for monitoring the efficiency of transfection. In the other transfection procedure, HEK 293 cells were transiently co-transfected with the a₁

15

20

25

subunit cDNA expression plasmid pVDCCIII(A) and pCMV β gal. In both transfections, 2-4 x 10⁶ HEK 293 cells in a 10-cm tissue culture plate were transiently co-transfected with 5 μ g of each of the plasmids included in the experiment according to standard CaPO₄ precipitation transfection procedures (Wigler *et al.* (1979) *Proc. Natl. Acad. Sci. USA* 76:1373-1376). The transfectants were analyzed for β -galactosidase expression by direct staining of the product of a reaction involving β -galactosidase and the X-gal substrate (Jones, J.R. (1986) *EMBO* 5:3133-3142) and by measurement of β -galactosidase activity (Miller, J.H. (1972) Experiments in Molecular Genetics, pp. 352-355, Cold Spring Harbor Press). To evaluate subunit cDNA expression in these transfectants, the cells were analyzed for subunit transcript production (northern analysis), subunit protein production (immunoblot analysis of cell lysates) and functional calcium channel expression (electrophysiological analysis).

b. Stable transfection

HEK 293 cells were transfected using the calcium phosphate transfection procedure (*Current Protocols in Molecular Biology*, Vol. 1, Wiley Inter-Science, Supplement 14, Unit 9.1.1-9.1.9 (1990)). Ten-cm plates, each containing one-to-two million HEK 293 cells, were transfected with 1 ml of DNA/calcium phosphate precipitate containing 5 μ g pVDCCIII(A), 5 μ g pHBCaCH α_2 A, 5 μ g pHBCaCH β_{1b} RBS(A), 5 μ g pCMVBgal and 1 μ g pSV2neo (as a selectable marker). After 10-20 days of growth in media containing 500 μ g G418, colonies had formed and were isolated using cloning cylinders.

- 2. Analysis of HEK 293 cells transi ntly transfect d with DNA nc ding human neuronal calcium channel subunits
- a. Analysis of eta-galactosidas expression Transient transfectants were assayed for eta-galactosidase

15

20

25

Experiments in Molecular Genetics, pp. 352-355, Cold Spring Harbor Press) of cell lysates (prepared as described in International PCT application No. PCT/US94/09230, see, also allowed U.S. application Serial No. 08/149,097) and staining of fixed cells (Jones, J.R. (1986) *EMBO 5*:3133-3142). The results of these assays indicated that approximately 30% of the HEK 293 cells had been transfected.

b. Northern analysis

PolyA + RNA was isolated using the Invitrogen Fast Trak Kit (InVitrogen, San Diego, CA) from HEK 293 cells transiently transfected with DNA encoding each of the a_1 , a_2 and β_1 subunits and the lacZ gene or the a_1 subunit and the lacZ gene. The RNA was subjected to electrophoresis on an agarose gel and transferred to nitrocellulose. The nitrocellulose was then hybridized with one or more of the following radiolabeled probes: the lacZ gene, human neuronal calcium channel a_{1D} subunit-encoding cDNA, human neuronal calcium channel a_2 subunitencoding cDNA or human neuronal calcium channel β_1 subunit-encoding cDNA. Two transcripts that hybridized with the a_1 subunit-encoding cDNA were detected in HEK 293 cells transfected with the DNA encoding the a_1 , a_2 , and β_1 subunits and the *lacZ* gene as well as in HEK 293 cells transfected with the a_1 subunit cDNA and the lacZ gene. One mRNA species was the size expected for the transcript of the a_1 subunit cDNA (8000 nucleotides). The second RNA species was smaller (4000 nucleotides) than the size expected for this transcript. RNA of the size expected for the transcript of the lacZ gene was detected in cells transfected with the a_1 , a_2 and β_1 subunit-encoding cDNA and the lacZgene and in cells transfected with the a_1 subunit cDNA and the lacZ gene by hybridization to the lacZ gene sequence.

RNA from cells transfected with the α_1 , α_2 and β_1 subunit-encoding cDNA and the *lacZ* gene was also hybridized with the α_2 and β_1 subunit

cDNA probes. Two mRNA species hybridized to the a_2 subunit cDNA probe. One species was the size expected for the transcript of the a_2 subunit cDNA (4000 nucleotides). The other species was larger (6000 nucleotides) than the expected size of this transcript. Multiple RNA species in the cells co-transfected with a_1 , a_2 and a_1 subunit-encoding cDNA and the a_1 gene hybridized to the a_2 subunit cDNA probe. Multiple a_2 subunit transcripts of varying sizes were produced since the a_2 subunit cDNA expression vector contains two potential poly a_2 addition sites.

c. Electrophysiological analysis

Individual transiently transfected HEK 293 cells were assayed for the presence of voltage-dependent barium currents using the whole-cell variant of the patch clamp technique (Hamill et al. (1981). Pflugers Arch. 391:85-100). HEK 293 cells transiently transfected with pCMV β gal only were assayed for barium currents as a negative control in these 15 experiments. The cells were placed in a bathing solution that contained barium ions to serve as the current carrier. Choline chloride, instead of NaCl or KCl, was used as the major salt component of the bath solution to eliminate currents through sodium and potassium channels. The bathing solution contained 1 mM MgCl₂ and was buffered at pH 7.3 with **20** . 10 mM HEPES (pH adjusted with sodium or tetraethylammonium hydroxide). Patch pipettes were filled with a solution containing 135 mM CsCl, 1 mM MgCl₂, 10 mM glucose, 10 mM EGTA, 4 mM ATP and 10 mM HEPES (pH adjusted to 7.3 with tetraethylammonium hydroxide). Cesium and tetraethylammonium ions block most types of potassium 25 channels. Pipettes were coated with Sylgard (Dow-Corning, Midland, MI)

and had resistances of 1-4 megohm. Currents were measured through a

ate as assisted with the Avenatch IC /Aven Instruments

10

15

20

25

Solutions, Solon, OH) data acquisition board in an IBM-compatible PC. PClamp (Axon Instruments) was used to generate voltage commands and acquire data. Data were analyzed with pClamp or Quattro Professional (Borland International, Scotts Valley, CA) programs.

To apply drugs, "puffer" pipettes positioned within several micrometers of the cell under study were used to apply solutions by pressure application. The drugs used for pharmacological characterization were dissolved in a solution identical to the bathing solution. Samples of a 10 mM stock solution of Bay K 8644 (RBI, Natick, MA), which was prepared in DMSO, were diluted to a final concentration of 1 μ M in 15 mM Ba²⁺-containing bath solution before they were applied.

Twenty-one negative control HEK 293 cells (transiently transfected with the lacZ gene expression vector pCMV β gal only) were analyzed by the whole-cell variant of the patch clamp method for recording currents. Only one cell displayed a discernable inward barium current; this current was not affected by the presence of 1 μ M Bay K 8644. In addition, application of Bay K 8644 to four cells that did not display Ba²⁺ currents did not result in the appearance of any currents.

Two days after transient transfection of HEK 293 cells with α_1 , α_2 and β_1 subunit-encoding cDNA and the lacZ gene, individual transfectants were assayed for voltage-dependent barium currents. The currents in nine transfectants were recorded. Because the efficiency of transfection of one cell can vary from the efficiency of transfection of another cell, the degree of expression of heterologous proteins in individual transfectants varies and some cells do not incorporate or express the foreign DNA. Inward barium currents were detected in two of these nine transfectants. In these assays, the holding potential of the membrane was -90 mV. The membrane was depolarized in a series of voltage steps to different test potentials and the current in the presence and absence of 1 μ M Bay K

15

8644 was recorded. The inward barium current was significantly enhanced in magnitude by the addition of Bay K 8644. The largest inward barium current (\sim 160 pA) was recorded when the membrane was depolarized to 0 mV in the presence of 1 μ M Bay K 8644. A comparison of the I-V curves, generated by plotting the largest current recorded after each depolarization versus the depolarization voltage, corresponding to recordings conducted in the absence and presence of Bay K 8644 illustrated the enhancement of the voltage-activated current in the presence of Bay K 8644.

Pronounced tail currents were detected in the tracings of currents generated in the presence of Bay K 8644 in HEK 293 cells transfected with α_1 , α_2 and β_1 subunit-encoding cDNA and the lacZ gene, indicating that the recombinant calcium channels responsible for the voltage-activated barium currents recorded in this transfected appear to be DHP-sensitive.

The second of the two transfected cells that displayed inward barium currents expressed a ~ 50 pA current when the membrane was depolarized from -90 mV. This current was nearly completely blocked by 200 μ M cadmium, an established calcium channel blocker.

Ten cells that were transiently transfected with the DNA encoding the α₁ subunit and the *lacZ* gene were analyzed by whole-cell patch clamp methods two days after transfection. One of these cells displayed a 30 pA inward barium current. This current amplified 2-fold in the presence of 1 μM Bay K 8644. Furthermore, small tail currents were detected in the presence of Bay K 8644. These data indicate that expression of the human neuronal calcium channel α_{1D} subunit-encoding cDNA in HEK 293 yields a functional DHP-sensitive calcium channel.

3. Analysis of HEK 293 cells stably transfected with DNA encoding human neuronal calcium channel subunits

Individual stably transfected HEK 293 cells were assayed electrophysiologically for the presence of voltage-dependent barium currents as described for electrophysiological analysis of transiently transfected HEK 293 cells (International PCT application No. PCT/US94/09230, see, also allowed U.S. application Serial No. 08/149,097). In an effort to maximize calcium channel activity via cyclic-AMP-dependent kinase-mediated phosphorylation (Pelzer, et al. (1990) Rev. Physiol. Biochem. Pharmacol. 114:107-207), cAMP (Na salt, 250 μM) was added to the pipet solution and forskolin (10 μM) was added to the bath solution in some of the recordings. Qualitatively similar results were obtained whether these compounds were present or not.

Barium currents were recorded from stably transfected cells in the absence and presence of Bay K 8644 (1 μ M). When the cell was 15 depolarized to -10 mV from a holding potential of -90 mV in the absence of Bay K 8644, a current of approximately 35pA with a rapidly deactivating tail current was recorded. During application of Bay K 8644, an identical depolarizing protocol elicited a current of approximately 75 pA, accompanied by an augmented and prolonged tail current. The peak 20 magnitude of currents recorded from this same cell as a function of a series of depolarizing voltages were assessed. The responses in the presence of Bay K 8644 not only increased, but the entire current-voltage relation shifted about -10 mV. Thus, three typical hallmarks of Bay K 8644 action, namely increased current magnitude, prolonged tail currents, 25 and negatively shifted activation voltage, were observed, clearly indicating the expression of a DHP-sensitive calcium channel in these stably transfected cells. No such effects of Bay K 8644 were observed in untransfected HEK 293 cells, either with or without cAMP or forskolin.

C. Use of pCMV-based vectors and pcDNA1-based vectors for expression of DNA encoding human neuronal calcium channel subunits

1. Preparation of constructs

- Additional expression vectors were constructed using pCMV. The full-length a_{1D} cDNA from pVDCCIII(A) (see International PCT application No. PCT/US94/09230, see, also allowed U.S. application Serial No. 08/149,097), the full-length a_2 cDNA, contained on a 3600 bp EcoRI fragment from HBCaCH a_2 (International PCT application No.
- PCT/US94/09230, see, also allowed U.S. application Serial No. 08/149,097) and a full-length β_1 subunit cDNA from pHBCaCH β_{1b} RBS(A) (see International PCT application No. PCT/US94/09230, see, also allowed U.S. application Serial No. 08/149,097) were separately subcloned into plasmid pCMV β gal. Plasmid pCMV β gal was digested with
- Not to remove the lacZ gene. The remaining vector portion of the plasmid, referred to as pCMV, was blunt-ended at the Not sites. The full-length a_2 -encoding DNA and β_1 -encoding DNA, contained on separate EcoRI fragments, were isolated, blunt-ended and separately ligated to the blunt-ended vector fragment of pCMV locating the DNA between the
- 20 CMV promoter and SV40 polyadenylation sites in pCMV. To ligate the a_{1D} -encoding cDNA with pCMV, the restriction sites in the polylinkers immediately 5' of the CMV promoter and immediately 3' of the SV40 polyadenylation site were removed from pCMV. A polylinker was added at the *Not*l site. The polylinker had the following sequence of restriction

10

15

20

25

The a_{1D} -encoding DNA, isolated as a *BamHI/XhoI* fragment from pVDCCIII(A), was then ligated to *XbaII/SaII*-digested pCMV to place it between the CMV promoter and SV40 polyadenylation site.

Plasmid pCMV contains the CMV promoter as does pcDNA1, but differs from pcDNA1 in the location of splice donor/splice acceptor sites relative to the inserted subunit-encoding DNA. After inserting the subunit-encoding DNA into pCMV, the splice donor/splice acceptor sites are located 3' of the CMV promoter and 5' of the subunit-encoding DNA start codon. After inserting the subunit-encoding DNA into pcDNA1, the splice donor/splice acceptor sites are located 3' of the subunit cDNA stop codon.

2. Transfection of HEK 293 cells

HEK 293 cells were transiently co-transfected with the α_{1D} , α_2 and β_1 subunit-encoding DNA in pCMV or with the α_{1D} , α_2 and β subunit-encoding DNA in pcDNA1 (vectors pVDCCIII(A), pHBCaCH α_2 A and pHBCaCH β_{1b} RBS(A), respectively (see, International PCT application No. PCT/US94/09230, see, also allowed U.S. application Serial No. 08/149,097). Plasmid pCMV β gal was included in each transfection as a measure of transfection efficiency. The results of β -galactosidase assays of the transfectants (International PCT application No. PCT/US94/09230, see, also allowed U.S. application Serial No. 08/149,097), indicated that HEK 293 cells were transfected equally efficiently with pCMV- and pcDNA1-based plasmids. The pcDNA1-based plasmids, however, are presently preferred for expression of calcium channel receptors.

D. Expression in Xenopus laevis oöcytes of RNA encoding human neuronal calcium channel subunits

Various combinations of the transcripts of DNA encoding the human neuronal a_{1D} , a_2 and β_1 subunits prepared *in vitro* were injected

into Xenopus laevis oöcytes. Those injected with combinations that included a_{1D} exhibited voltage-activated barium currents.

1. Preparation of transcripts

Transcripts encoding the human neuronal calcium channel a_{1D}, a_{2} 5 and β_1 subunits were synthesized according to the instructions of the mCAP mRNA CAPPING KIT (Strategene, La Jolla, CA catalog #200350). As described in International PCT application No. PCT/US94/09230, see, also allowed U.S. application Serial No. 08/149,097, plasmids pVDCC III.RBS(A), containing pcDNA1 and the a_{1D} cDNA that begins with a ribosome binding site and the eighth ATG codon of the coding sequence. 10 plasmid pHBCaCH a_1 A containing pcDNA1 and an a_2 subunit cDNA, and plasmid pHBCaCH β_{1b} RBS(A) containing pcDNA1 and the β_1 DNA lacking intron sequence and containing a ribosome binding site were linearized by restriction digestion. The a_{1D} cDNA- and a_2 subunit-encoding plasmids were digested with Xhol, and the β_1 subunit- encoding plasmid was 15 digested with EcoRV. The DNA insert was transcribed with T7 RNA polymerase.

2. Injection of oöcytes

Xenopus laevis oöcytes were isolated and defolliculated by collagenase treatment and maintained in 100 mM NaCl, 2 mM KC1, 1.8 mM CaC1₂, 1 mM MgCl₂, 5 mM HEPES, pH 7.6, 20 μg/ml ampicillin and 25 μg/ml streptomycin at 19-25°C for 2 to 5 days after injection and prior to recording. For each transcript that was injected into the oöcyte, 6 ng of the specific mRNA was injected per cell in a total volume of 50 nl.

3. Intrac Ilular voltage rec rdings

Injected oöcytes were examined for voltage-dependent barium currents using two-electrode voltage clamp methods (Dascal, N. (1987)

15

20

25

30

data acquisition interface to generate voltage commands and to acquire and analyze data. Quattro Professional was also used in this analysis. Current signals were digitized at 1-5 kHz, and filtered appropriately. The bath solution contained of the following: 40 mM BaCl₂, 36 mM tetraethylammonium chloride (TEA-Cl), 2 mM KCl, 5 mM 4-aminopyridine, 0.15 mM niflumic acid, 5 mM HEPES, pH 7.6.

a. Electrophysiological analysis of oöcytes injected with transcripts encoding the human neuronal calcium channel α_1 , α_2 and β_1 -subunits

10 Uninjected oöcytes were examined by two-electrode voltage clamp methods and a very small (25 nA) endogenous inward Ba²⁺ current was detected in only one of seven analyzed cells.

Oöcytes coinjected with a_{1D} , a_2 and β_1 subunit transcripts expressed sustained inward barium currents upon depolarization of the membrane from a holding potential of -90 mV or -50 mV (154 \pm 129 nA, n = 21). These currents typically showed little inactivation when test pulses ranging from 140 to 700 msec. were administered. Depolarization to a series of voltages revealed currents that first appeared at approximately -30 mV and peaked at approximately 0 mV.

Application of the DHP Bay K 8644 increased the magnitude of the currents, prolonged the tail currents present upon repolarization of the cell and induced a hyperpolarizing shift in current activation. Bay K 8644 was prepared fresh from a stock solution in DMSO and introduced as a 10x concentrate directly into the 60 μ l bath while the perfusion pump was turned off. The DMSO concentration of the final diluted drug solutions in contact with the cell never exceeded 0.1%. Control experiments showed that 0.1% DMSO had no effect on membrane currents.

Application of the DHP antagonist nifedipine (stock solution prepared in DMSO and applied to the cell as described for application of Bay K 8644) blocked a substantial fraction (91 \pm 6%, n=7) of the

10

15

20

25

inward barium current in oöcytes coinjected with transcripts of the a_{1D} , a_2 and β_1 subunits. A residual inactivating component of the inward barium current typically remained after nifedipine application. The inward barium current was blocked completely by 50 μ M Cd²⁺, but only approximately 15% by 100 μ M Ni²⁺.

The effect of ω -CgTX-GVIA on the inward barium currents in oöcytes co-injected with transcripts of the a_{1D} , a_{2} , and β_{1} subunits was investigated. ω -CgTX-GVIA (Bachem, Inc., Torrance CA) was prepared in the 15 mM BaCl₂ bath solution plus 0.1% cytochrome C (Sigma) to serve as a carrier protein. Control experiments showed that cytochrome C had no effect on currents. A series of voltage pulses from a -90 mV holding potential to 0 mV were recorded at 20 msec. intervals. To reduce the inhibition of ω CgTX binding by divalent cations, recordings were made in 15 mM BaCl₂, 73.5 mM tetraethylammonium chloride, and the remaining ingredients identical to the 40 mM Ba2+ recording solution. Bay K 8644 was applied to the cell prior to addition to ω CgTX in order to determine the effect of ω CgTX on the DHP-sensitive current component that was distinguished by the prolonged tail currents. The inward barium current was blocked weakly (54 \pm 29%, n = 7) and reversibly by relatively high concentrations (10-15 μ M) of ω CgTX. The test currents and the accompanying tail currents were blocked progressively within two to three minutes after application of ω CgTX, but both recovered partially as the ω CgTX was flushed from the bath.

b. Analysis of oöcyt s inject d with transcripts needing th human neuronal calcium channel a_{1D} or transcripts needing an a_{1D} and other subunits

The contribution of the a_2 and β_1 subunits to the inward barium current in occytes injected with transcripts encoding the a_{1D} , a_2 and β_1

10

15

combination with either the β_1 subunit or the α_2 subunit. In oöcytes injected with only the transcript of a α_{1D} cDNA, no Ba²⁺ currents were detected (n=3). In oöcytes injected with transcripts of α_{1D} and β_1 encoding DNA, small (108 ± 39 nA) Ba²⁺ currents were detected upon depolarization of the membrane from a holding potential of -90 mV that resembled the currents observed in cells injected with transcripts of α_{1D} , α_2 and β_1 encoding DNA, although the magnitude of the current was less. In two of the four oöcytes injected with transcripts of the α_{1D} -encoding and β_1 -encoding DNA, the Ba²⁺ currents exhibited a sensitivity to Bay K 8644 that was similar to the Bay K 8644 sensitivity of Ba²⁺ currents expressed in oöcytes injected with transcripts encoding the α_{1D} α_1 -, α_2 - and β_1 subunits.

Three of five occytes injected with transcripts encoding the a_{1D} and a_2 subunits exhibited very small Ba²⁺ currents (15-30 nA) upon depolarization of the membrane from a holding potential of -90 mV. These barium currents showed little or no response to Bay K 8644.

c. Analysis of oöcytes injected with transcripts encoding the human neuronal calcium channel a_2 and/or β_1 subunit

To evaluate the contribution of the α_{1D} α₁-subunit to the inward barium currents detected in oöcytes co-injected with transcripts encoding the α_{1D}, α₂ and β₁ subunits, oöcytes injected with transcripts encoding the human neuronal calcium channel α₂ and/or β₁ subunits were assayed for barium currents. Oöcytes injected with transcripts encoding the α₂subunit displayed no detectable inward barium currents (n = 5). Oöcytes injected with transcripts encoding a β₁ subunit displayed measurable (54 ± 23 nA, n = 5) inward barium currents upon depolarization and oöcytes injected with transcripts encoding the α₂ and β₁ subunits displayed inward barium currents that were approximately 50% larger (80 ± 61 nA,

20

25

n=18) than those detected in occytes injected with transcripts of the β_1 -encoding DNA only.

The inward barium currents in oöcytes injected with transcripts encoding the β_1 subunit or α_2 and β_1 subunits typically were first observed when the membrane was depolarized to -30 mV from a holding potential of -90 mV and peaked when the membrane was depolarized to 10 to 20 mV. Macroscopically, the currents in occytes injected with transcripts encoding the α_2 and β_1 subunits or with transcripts encoding the β_1 subunit were indistinguishable. In contrast to the currents in oöcytes coinjected with transcripts of a_{1D} , a_2 and β_1 subunit encoding DNA, these currents showed a significant inactivation during the test pulse and a strong sensitivity to the holding potential. The inward barium currents in oöcytes co-injected with transcripts encoding the a_2 and $oldsymbol{eta}_1$ subunits usually inactivated to 10-60% of the peak magnitude during a 140-msec pulse and were significantly more sensitive to holding potential than those in oöcytes co-injected with transcripts encoding the $a_{\mathrm{1D}},\,a_{\mathrm{2}}$ and β_{1} subunits. Changing the holding potential of the membranes of oöcytes co-injected with transcripts encoding the α_2 and β_1 subunits from -90 to -50 mV resulted in an approximately 81% (n = 11) reduction in the magnitude of the inward barium current of these cells. In contrast, the inward barium current measured in oöcytes co-injected with transcripts encoding the a_{1D} , a_2 and β_1 subunits were reduced approximately 24% (n = 11) when the holding potential was changed from -90 to -50 mV.

The inward barium currents detected in oöcytes injected with transcripts encoding the α_2 and β_1 subunits were pharmacologically distinct from those observed in oöcytes co-injected with transcripts encoding the α_{1D} , α_2 and β_1 subunits. Oöcytes injected with transcripts encoding the α_2 and β_1 subunits displayed inward barium currents that were insensitive to Bay K 8644 (n = 11). Nifedipine sensitivity was

10

15

difficult to measure because of the holding potential sensitivity of nifedipine and the current observed in oöcytes injected with transcripts encoding the a_2 and β_1 subunits. Nevertheless, two oöcytes that were co-injected with transcripts encoding the a_2 and β_1 subunits displayed measurable (25 to 45 nA) inward barium currents that were insensitive to nifedipine (5 to 10 μ M), when depolarized from a holding potential of -50 mV. The inward barium currents in oöcytes injected with transcripts encoding the a_2 and β_1 subunits showed the same sensitivity to heavy metals as the currents detected in oöcytes injected with transcripts encoding the a_{10} , a_2 and a_1 subunits.

The inward barium current detected in oöcytes injected with transcripts encoding the human neuronal α_2 and β_1 subunits has pharmacological and biophysical properties that resemble calcium currents in uninjected *Xenopus* oöcytes. Because the amino acids of this human neuronal calcium channel β_1 subunit lack hydrophobic segments capable of forming transmembrane domains. It is unlikely that recombinant β_1 subunits alone form an ion channel, but rather that an endogenous α_1 subunit exists in oöcytes and that the activity mediated by such an α_1 subunit is enhanced by expression of a human neuronal β_1 subunit.

20

25

While the subject matter of the invention has been described with some specificity, modifications apparent to those with ordinary skill in the art may be made without departing from the scope of the invention. Since such modifications will be apparent to those of skill in the art, it is intended that this invention be limited only by the scope of the appended claims.

15

20

WHAT IS CLAIMED IS:

- 1. An isolated nucleic acid fragment that encodes a low-voltage activated subunit of an animal calcium channel.
- 2. The nucleic acid of claim 1, wherein the subunit is an a_{1H} -5 subunit.
 - 3. The nucleic acid of claim 2, wherein the calcium channel is a mammalian calcium channel.
 - 4. The isolated nucleic acid fragment of claim 2, comprising a sequence of nucleotides that encodes the subunit, wherein the sequence of nucleotides encoding the subunit is selected from among:
 - a sequence of nucleotides that encodes a calcium channel subunit and comprises the coding portion of the sequence of nucleotides set forth in any of SEQ ID Nos. 12-16;
 - (b) a sequence of nucleotides that encodes an a_{1H} -subunit and hybridizes under conditions of high stringency to DNA that is complementary to an mRNA transcript present in a mammalian cell that encodes an a_{1H} -subunit;
 - (c) a sequence of nucleotides that encodes the subunit that comprises a sequence of amino acids encoded by any of SEQ ID Nos. 12-16; and
 - (d) a sequence of nucleotides that is degenerate with any of (a),(b) or (c).
 - 5. The molecule of claim 2, wherein the subunit is an a_{1H-1} subunit or an a_{1H-2} subunit.
- 6. A eukaryotic cell, comprising heterologous nucleic acid that encodes an a_1 -subunit, wherein the a_1 -subunit is encoded by the nucleic acid of any of claims 1-5.

- 7 The cell of claim 6, further comprising heterologous nucleic acid that encodes a $\alpha_2\delta$ -subunit of a calcium channel.
- 8. The eukaryotic cell of claim 6 or claim 7 that has a functional heterologous calcium channel that contains at least one subunit encoded by the heterologous nucleic acid.
- 9. The eukaryotic cell of any of claims 6-8 selected from the group consisting of HEK 293 cells, Chinese hamster ovary cells, African green monkey cells, and mouse L cells.
- 10. A eukaryotic cell with a functional, heterologous calcium10 channel, produced by a process comprising:

introducing into the cell heterologous nucleic acid that encodes at least one subunit of a calcium channel, wherein the subunit is encoded by the nucleic acid of any of claims 1-5.

- 11. The eukaryotic cell of claim 10 that is an amphibian oöcyte.
- 15 12. The eukaryotic cell of claim 8 or claim 10, wherein the heterologous calcium channel comprises a plurality of α_{1H} -subunits.
 - 13 The eukaryotic cell of claim 12, wherein the a_{1H} -subunits comprise a homomer.
- 14. The eukaryotic cell of any of claims 10-13, further comprising an $\alpha_2\delta$ -subunit of a calcium channel.
 - 15. The eukaryotic cell of claim 10, wherein the heterologous nucleic acid encodes a T-type calcium channel.
 - 16. The eukaryotic cell of claim 8 with a functional, heterologous calcium channel, produced by a process comprising:
- introducing into the cell RNA that encodes an α_{1H} subunit of a calcium channel and optionally introducing into the cell nucleic acid that encodes a β , $\alpha_2\delta$ and/or γ -subunit of a calcium channel, wherein:

25

the heterologous calcium channel contains at least one subunit encoded by the heterologous nucleic acid; and

the only heterologous ion channels are calcium channels.

17. The eukaryotic cell of claim 8 with a functional, heterologous5 calcium channel, produced by a process comprising:

introducing into the cell DNA that encodes an a_{1H} subunit of a calcium channel and optionally introducing into the cell nucleic acid that encodes a β , $a_2\delta$ and/or γ -subunit of a calcium channel, wherein:

the heterologous calcium channel contains at least one subunit 10 encoded by the heterologous nucleic acid.

- 18. The eukaryotic cell of claim 17 selected from the group consisting of HEK 293 cells, Chinese hamster ovary cells, African green monkey cells, mouse L cells and amphibian oöcytes.
- 19. The eukaryotic cell of claim 16 selected from the group15 consisting of amphibian occytes.
 - 20. The eukaryotic cell of any of claims 6-19, wherein the a_{1H} subunit is an a_{1H-1} subunit or an a_{1H-2} subunit.
 - 21. The eukaryotic cell of claim 20, wherein the a_{1H} subunit is a human calcium channel subunit.
 - 22. A method for identifying a compound that modulates the activity of a calcium channel that contains an a_{1H} subunit, comprising;

suspending the eukaryotic cell of any of claims 8-21 in a solution containing the compound and a calcium channel selective ion:

depolarizing the cell membrane of the cell; and detecting the current or ions flowing into the cell, wherein:

the heterologous calcium channel includes at least one calcium channel subunit encoded by DNA or RNA that is heterologous to the cell,

the current that is detected is different from that produced by depolarizing the same or a substantially identical cell in the presence of the same calcium channel selective ion but in the absence of the compound.

- 5 23. The method of claim 22, wherein prior to the depolarization step the cell is maintained at a holding potential which substantially inactivates calcium channels that are endogenous to the cell.
 - 24. The method of claim 23, wherein: the cell is an amphibian oöcyte;
- 10 the heterologous subunits are encoded by nucleic acid injected into the oöcyte; and

the heterologous subunits include an a_{1H} -subunit.

- 25. The method of claim 24, wherein the subunits encoded by the nucleic acid further comprise a $\alpha_2\delta$ -subunit.
- 15 26. The method of any of claims 22-25, wherein the cell is an HEK cell and the heterologous subunit is encoded by heterologous nucleic acid.
 - 27. The method of any of claims 22-26, wherein the a_{1H} -subunit is an a_{1H-1} -subunit or an a_{1H-2} -subunit.
- 20 28. The method of claim 22, wherein:

the heterologous calcium channel includes at least one calcium channel subunit encoded by DNA or RNA that is heterologous to the cell; at least one subunit is an α_{1H} -subunit;

the current that is detected is different from that produced by

depolarizing the same or a substantially identical cell in the presence of
the same calcium channel selective ion but in the absence of the
compound.

- 29. A substantially pure a_1 -subunit encoded by the nucleic acid molecule of any of claims 1-5.
- 30. An RNA or DNA probe of at least 16 bases in length, comprising at least 16 substantially contiguous nucleic acid bases from the sequence of nucleotides of claim 1 that encodes an α_{1H} -subunit of a calcium channel.
 - 31. The probe of claim 28 that contains at least 30 nucleic acid bases that encode the subunit of a calcium channel.
- 32. A method for identifying nucleic acids that encode a α_{1H}

 10 subunit of a calcium channel subunit, comprising hybridizing under conditions of at least low stringency a probe of claim 28 to a library of nucleic acid fragments;, and selecting hybridizing fragments.
 - 33. The method of claim 30, wherein hybridization is effected under conditions of high stringency.
- 34. A method for identifying cells or tissues that express a calcium channel subunit-encoding nucleic acid, comprising hybridizing under conditions of at least low stringency a probe of claim 30 or claim 31 with mRNA expressed in the cells or tissues or cDNA produced from the mRNA, and thereby identifying cells or tissue that express mRNA that encodes the subunit.
 - 35. The method of claim 32, wherein hybridization is effected under conditions of high stringency.
 - 36. A method for producing a subunit of a calcium channel, comprising introducing the nucleic acid molecule of any of claims 1-5 into a host cell, under conditions whereby the encoded subunit is expressed.
 - 37. The method of claim 35, wherein the cell is a eukaryotic cell.

- 38. A eukaryotic cell, comprising a heterologous calcium channel encoded by nucleic acid encoding an α -subunit of a calcium channel, wherein the heterologous calcium channel is a low voltage activated channel or a T-type channel.
- 5 39. The eukaryotic cell of any of claims 6-21 and 38, wherein the *a*-subunit comprises the sequence of amino acids set forth in any of SEQ ID Nos. 12-16.
 - 40. An isolated nucleic acid molecule, comprising the sequence of amino acids encoded by nucleotides 1506 to 2627 of SEQ ID No. 12.
- 10 41. The isolated nucleic acid molecule of claim 40, comprising the sequence of nucleotides set forth in nucleotides 1506 to 2627 of SEQ ID No. 12.
 - 42. The nucleic acid of any of claims 1-5, 40 and 41 that is RNA.
- 15 43. The nucleic acid of any of claims 1-5, 40 and 41 that is DNA.
 - 44. The cell of claim 8, further comprising nucleic acid that encodes a reporter gene construct containing a reporter gene in operative linkage with one or more transcriptional control elements that is regulated by a calcium channel.
 - 45. A method for identifying compounds that modulate the activity of a low-voltage activated calcium channel, the method comprising:
- comparing the difference in the amount of transcription of a

 the reporter gene in the cell of claim 44 in the presence of the
 compound with the amount of transcription in the absence of the
 compound, or with the amount of transcription in the absence of
 the heterologous calcium channel, whereby compounds that

20

modulate the activity of the heterologous calcium channel in the cell are identified.

- 46. The nucleic acid molecule of any of claims 1-5, 40 and 41, wherein the calcium channel is a human calcium channel.
- 5 47. A screening assay for identifying a compound that modulates the activity of a low-voltage activated (LVA) calcium channel comprising the steps of:

contacting the test compound with a cell that expresses a LVA calcium channel; and

after the addition of the test compound or in comparable cell that does not express the LVA channel; and

determining that the test compound modulates the activity of the low-voltage calcium channel if the measurement after compound addition is different from the measurement before the compound addition or if the measurement in presence of the receptor is different from the measurement in the absence of the receptor.

- 48. The method of claim 47, wherein the LVA channel is produced by introducing the a nucleic acid that encodes the LVA into the cell under conditions whereby the encoded LVA is expressed.
- 49. The method of claim 47 or claim 48, wherein the LVA is a T-type channel.
- 50. The method of any of claims 47-49, wherein the LVA comprises an a_{1H} -subunit of a calcium channel.
- 25 51. The method of any of claims 47-50, wherein the cell expresses a low-voltage calcium channel having a relative conductance of Ba² + of about 5 pS to about 9 pS, an activation time of about 2 to about

about 26 millivolts, an inactivation time of about 10 to about 30 milliseconds, a kinetics of inactivation $V_{1/2}$ value of about -100 millivolts to about- 500 millivolts, and a tail deactivation time of about 2 to about 12 milliseconds.

- 5 52. The screening method of any of claims 47-51, wherein the isolated nucleic acid molecule comprises a sequence of nucleotides encoding an α_{1H} -subunit of a calcium channel.
 - 53. A compound identified by the method of any of claims 45 and 47-52.
- 10 54. A method of identifying compounds for treatment of LVA-type calcium channel mediated disorders, comprising identifying compounds that modulate the activity of LVA-type channels in cells that express channels containing a subunit encoded by the nucleic acid of any of claims 1-5, 40 and 41.
- 15 55. Compounds identified by the method of 54.
 - 56. The method of claim 54, wherein the channels are produced by introduction of the nucleic acid of any of claims 1-5, 40 and 41 into cells under conditions whereby channels that contain the encoded subunit are expressed.
- 57. The method of claim 54 or claim 56, wherein the disorder is selected from among, neurological, endocrinological, cardiovascular, urological, hepatic, respiratory, and vascular disorders.

FIGURE 1

Steady-state activation and inactivation

FIGURE 2A

Kinetics of activation

FIGURE 2B

Kinetics of inactivation

SUBSTITUTE SHEET (RULE 26)

FIGURE 3

Features of the α_{1H} Subunit

Tail current deactivation

FIGURE 4B

FIGURE 4C

SUBSTITUTE SHEET (RULE 26)

- (E) COUNTRY: USA
- (F) POSTAL CODE (ZIP): 92007
- (ii) TITLE OF INVENTION: CALCIUM CHANNEL COMPOSITIONS AND METHODS
- (iii) NUMBER OF SEQUENCES: 16
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Heller Ehrman White & McAuliffe
 - (B) STREET: 4250 Executive Square, 7th Floor
 - (C) CITY: La Jolla
 - (D) STATE: California
 - (E) COUNTRY: US (F) ZIP: 92037

 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette
 - (B) COMPUTER: IBM Compatible (C) OPERATING SYSTEM: DOS

 - (D) SOFTWARE: FastSEQ Version 1.5 and Patentin 2.0
- (vi) CURRENT APPLICATION DATA:

 - (A) APPLICATION NUMBER:(B) FILING DATE: 03-DEC-1998
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 09/188,932
 - (B) FILING DATE: 10-NOV-1998
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 08/984,709
 - (B) FILING DATE: 03-DEC-1997
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Seidman, Stephanie L.
 - (B) REGISTRATION NUMBER: 33,779
 - (C) REFERENCE/DOCKET NUMBER: 24735-9815PC
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (619) 450-8400
 - (B) TELEFAX: (619) 450-8499
- (2) INFORMATION FOR SEQ ID NO:1:

UNIV. UICHCIBIA

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: unknown

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT:

 - (A) NAME: SIBIA Neurosciences, Inc.(B) STREET: 505 Coast Boulevard South, Suite 300
 - (C) CITY: La Jolla (D) STATE: California

 - (E) COUNTRY: US
 - (F) POSTAL CODE (ZIP): 92037-4641
- (i) INVENTOR/APPLICANT:
 - (A) NAME: Mark E. Williams
 - (B) STREET: 946 Jasmine Court

 - (C) CITY: Carlsbad
 (D) STATE: California
 - (E) COUNTRY: USA
 - (F) POSTAL CODE (ZIP): 92009
- (i) INVENTOR/APPLICANT:
 - (A) NAME: Kenneth A. Stauderman
 - (B) STREET: 3615 Lotus Dr.

 - (C) CITY: San Diego (D) STATE: California
 - (E) COUNTRY: USA
 - (F) POSTAL CODE (ZIP): 92106
- (i) INVENTOR/APPLICANT:
 - (A) NAME: Michael M. Harpold
 - (B) STREET: 1462 Encina Road
 - (C) CITY: Sante Fe
 - (D) STATE: New Mexico

 - (E) COUNTRY: USA (F) POSTAL CODE (ZIP): 87505-4726
- (i) INVENTOR/APPLICANT:
 - (A) NAME: Michael Hans
 - (B) STREET:2635 Clemente Terrace

 - (C) CITY: San Diego
 (D) STATE: California
 - (E) COUNTRY: USA
 - (F) POSTAL CODE (ZIP): 92122
- (i) INVENTOR/APPLICANT:
 - (A) NAME: Arturo Urrutia
 - (B) STREET: 778 Beech Avenue
 - (C) CITY: Chula Vista (D) STATE: California

 - (E) COUNTRY: USA
 - (F) POSTAL CODE (ZIP): 91910
- (i) INVENTOR/APPLICANT:
 - (A) NAME: Mark S. Washburn
 - (B) STREET: 1535 Kings Cross Drive

.

- (C) CITY: Cardiff
- (D) STATE: California

· · · · · · · · · · · · · · · · · · ·			
(ii) MOLECULE TYPE: (iii) HYPOTHETICAL: (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE	NO		, ere
(xi) SEQUENCE DESCRI	IPTION: SEQ ID NO:1:		
TYCCCTTGAA GAGCTGNACC CC	•	22	
		•	
(2) INFORMATION FOR	R SEQ ID NO:2:	,	
(i) SEQUENCE CHARACT (A) LENGTH: 17 bas (B) TYPE: nucleic (C) STRANDEDNESS: (D) TOPOLOGY: unki	se pairs acid single	· · · · · · · · · · · · · · · · · · ·	
(ii) MOLECULE TYPE: (iii) HYPOTHETICAL: (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURC	NO	· · · · · · · · · · · · · · · · · · ·	
(xi) SEQUENCE DESCR	IPTION: SEQ ID NO:2:		
CGTGCACGTC ACGCTAG		17	
(2) INFORMATION	FOR SEQ ID NO:3:	+	
(i) SEQUENCE CHARAC (A) LENGTH: 21 ba (B) TYPE: nucleic (C) STRANDEDNESS: (D) TOPOLOGY: unk	se pairs acid single		
<pre>(ii) MOLECULE TYPE: (iii) HYPOTHETICAL: (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURC</pre>	NO		
(xi) SEQUENCE DESCR	IPTION: SEQ ID NO:3:		
AATTCTAGCG TGACGTGCAC G			21
(2) INFORMATION	FOR SEQ ID NO:4:		
(i) SEQUENCE CHARAC (A) LENGTH: 20 ba (B) TYPE: nucleic (C) STRANDEDNESS: (D) TOPOLOGY: unk	se pairs acid single		

(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO

	(iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	*	·
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	•	
ACNGTG'	TTYC AGATCCTGAC	•	2
	(2) INFORMATION FOR SEQ ID NO:5: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown		
	(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:		
ATCCTG	ACNG GNGARGACTG GAA	•	23
	(2) INFORMATION FOR SEQ ID NO:6:		
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown 		
	(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:		
TYCCCT	IGAA GAGCTGNACN GC		22
	(2) INFORMATION FOR SEQ ID NO:7:		
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown 		
	(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:		

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:			Ι -	
TYCCCTTGA AGAGCTGNAC CCC			. *	22
(2) INFORMATION FOR SEQ ID NO:8:				
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 17 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: unknown				. •
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:				
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:				
AACTGYATYA CCCTGGC				17
(2) INFORMATION FOR SEQ ID NO:9:			. +	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: unknown				
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE; NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:				
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:				
ATYACCCTGG CNATGGAGCG	•	•		20
(2) INFORMATION FOR SEQ ID NO:10:				
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 17 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: unknown				
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:		,		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:		•		
GARATGATGA TGAARGT				17

(2) INFORMATION FOR SEQ ID NO:11: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 342 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown

- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTISENSE: NO
- (v) FRAGMENT TYPE:
- (vi) ORIGINAL SOURCE:
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

GGGAGATGAT	GGTGAAAGTG	GTGGCCCTGG	GGCTGCTGTC	CGGCGAGCAC	GCCTACCTGC	60
AGAGCAGCTG	GAACCTGCTG	GATGGGCTGC	TGGTGCTGGT	GTCCCTGGTG	GACATTGTCG	120
TGGCCATGGC	CTCGGCTGGT	GGCGCCAAGA	TCCTGGGTGT	TOTOCCCCCTC	CTGCGTCTGC	
TOCCOLLOCE	CCCCCCTCTC	ACCOCCAMON	000000000	222222222	CIGCGICIGC	180
					CTGGTGGTGG	240
AGACGCTGAT				CCTCATCTGC	TGCGCCTTCT	300
TCATCATTTT	TGGCATTTTG	GGGGTTCAGC	TCTTCAAGGG		•	340
		· ·			and the second s	

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7898 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTISENSE: NO
- (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:
- (ix) FEATURE:
 - (A) NAME/KEY: Coding Sequence (B) LOCATION: 249...7307

 - (D) OTHER INFORMATION:

(xi) SEQUENCE DESCRIPTION: SEO ID NO:12:

CGAGGCCGCC GCCGTCGCCT CCGCCGGGCG AGCCGGAGCC GGAGTCGAGC CGCGGCCGGG	60
AGCCGGGCGG GCTGGGGACG CGGGCCGGGG GCCGGGGCC	120
GGGGCGGAG GCGCTGGGGG CCGGGGCCGG GGCCGGGCGC CGAGCGGGGT CCGCGGTGAC	180
CGCGCCGCC GGGCGATGCC CGCGGGGACG CCGCCGGCCA GCAGAGCGAG GTGCTGCCGG	240
CCGCCACC ATG ACC GAG GGC GCA CGG GCC GCC GAC GAG GTC CGG GTG CCC	290
Met Thr Glu Gly Ala Arg Ala Ala Asp Glu Val Arg Val Pro	290
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1 10	
CTC CCC CCC CCC CCC CCC CCC CCC CCC CCC	
CTG GGC GCG CCC CCT GGC CCT GCG GCG TTG GTG G	338

Leu Gly Ala Pro Pro Pro Gly Pro Ala Ala Leu Val Gly Ala Ser Pro 25 30

GAG Glu	AGC Ser	CCC Pro	GGG Gly	GCG Ala 35	CCG Pro	GGA Gly	CGC Arg	GAG Glu	GCG Ala 40	GAG Glu	CGG Arg	GGG Gly	TCC Ser	GAG Glu 45	CTC Leu	38	6
GGC Gly	GTG Val	TCA Ser	CCC Pro 50	TCC Ser	GAG Glu	AGC Ser	CCG Pro	GCG Ala 55	GCC Ala	GAG Glu	CGC Arg	GGC Gly	GCG Ala 60	GAG Glu	CTG Leu	43	4
GGT Gly	GCC Ala	GAC Asp 65	GAG Glu	GAG Glu	CAG Gln	CGC Arg	GTC Val 70	CCG Pro	TAC Tyr	CCG Pro	GCC Ala	TTG Leu 75	GCG Ala	GCC Ala	ACG Thr	48	2
GTC Val	TTC Phe 80	TTC Phe	TGC Cys	CTC Leu	GGT Gly	CAG Gln 85	ACC Thr	ACG Thr	CGG Arg	CCG Pro	CGC Arg 90	AGC Ser	TGG Trp	TGC Cys	CTC Leu	53	0
								GAG Glu								57	8
								ATG Met		Arg						62	6
								ATC Ile 135						Ala		67	4
								ATG Met								72	2
								CTG Leu								77	0
GAT Asp 175	TTC Phe	TTC Phe	ATC Ile	GTC Val	GTG Val 180	GCG Ala	GGC Gly	ATG Met	ATG Met	GAG Glu 185	TAC Tyr	TCG Ser	TTG Leu	GAC Asp	GGA Gly 190	81	8
								AGG Arg								86	6
								AGC Ser 215								91	4
CTG Leu	CTG Leu	GAT Asp 225	ACG Thr	CTG Leu	CCC Pro	ATG Met	CTC Leu 230	GGG Gly	AAC Asn	GTC Val	CTT Leu	CTG Leu 235	CTG Leu	TGC Cys	TTC Phe	96	2
TTC Phe	GTC Val 240	TTC Phe	TTC Phe	ATT Ile	TTC Phe	GGC Gly 245	ATC Ile	GTT Val	GGC Gly	GTC Val	CAG Gln 250	CTC Leu	TGG Trp	GCT Ala	GGC Gly	101	0
								GAC Asp								105	8

255	260	265	5	270
AAC CTG ACC TTC C Asn Leu Thr Phe I	TG CGG CCG TAC eu Arg Pro Tyr 75	TAC CAG ACG Tyr Gln Thr 280	G GAG GAG GGC GAG Glu Glu Gly Glu 285	GAG 1106 Glu
AAC CCG TTC ATC T Asn Pro Phe Ile C 290	GC TCC TCA CGC ys Ser Ser Arg	CGA GAC AAC Arg Asp Asn 295	GGC ATG CAG AAG Gly Met Gln Lys 300	TGC 1154 Cys
TCG CAC ATC CCC C Ser His Ile Pro C 305	GC CGC CGC GAG ly Arg Arg Glu 310	Leu Arg Met	G CCC TGC ACC CTG Pro Cys Thr Leu 315	GGC 1202 Gly
TGG GAG GCC TAC A Trp Glu Ala Tyr T 320	CG CAG CCG CAG hr Gln Pro Gln 325	GCC GAG GGG Ala Glu Gly	G GTG GGC GCT GCA Val Gly Ala Ala 330	CGC 1250 Arg
AAC GCC TGC ATC A Asn Ala Cys Ile A 335	AC TGG AAC CAG sn Trp Asn Gln 340	TAC TAC AAC Tyr Tyr Asn 345	. Val Cys Arg Ser	GGT 1298 Gly 350
GAC TCC AAC CCC C Asp Ser Asn Pro H	AC AAC GGT GCC is Asn Gly Ala 55	ATC AAC TTC Ile Asn Phe 360	GAC AAC ATC GGC Asp Asn Ile Gly 365	TAC 1346 Tyr
GCC TGG ATT GCC A Ala Trp Ile Ala I 370	TC TTC CAG GTG le Phe Gln Val	ATC ACG CTG Ile Thr Leu 375	G GAA GGC TGG GTG Glu Gly Trp Val 380	GAC 1394 Asp
ATC ATG TAC TAC G	TC ATG GAC GCC al Met Asp Ala 390	CAC TCA TTC His Ser Phe	TAC AAC TTC ATC Tyr Asn Phe Ile 395	TAT 1442 Tyr
TTC ATC CTG CTC A Phe Ile Leu Leu I 400	TC ATC GTG GGC le Ile Val Gly 405	TCC TTC TTC Ser Phe Phe	ATG ATC AAC CTG Met Ile Asn Leu 410	TGC 1490 Cys
CTG GTG GTG ATT G Leu Val Val Ile A 415	CC ACG CAG TTC la Thr Gln Phe 420	TCG GAG ACG Ser Glu Thr 425	Lys Gln Arg Glu	AGT 1538 Ser 430
CAG CTG ATG CGG GG Gln Leu Met Arg G	AG CAG CGG GCA lu Gln Arg Ala 35	CGC CAC CTG Arg His Leu 440	TCC AAC GAC AGC Ser Asn Asp Ser 445	ACG 1586 Thr
CTG GCC AGC TTC T Leu Ala Ser Phe S 450				
TAC GTG GGC CAC A Tyr Val Gly His I 465	TA TTC CGC AAG le Phe Arg Lys 470	GTC AAG CGG Val Lys Arg	CGC AGC TTG CGC Arg Ser Leu Arg 475	CTC 1682 Leu
TAC GCC CGC TGG C Tyr Ala Arg Trp G 480	AG AGC CGC TGG ln Ser Arg Trp 485	CGC AAG AAG Arg Lys Lys	GTG GAC CCC AGT Val Asp Pro Ser 490	GCT 1730 Ala

	Gln										CGG Arg						1778
					His						CAT					•	1826
				Phe							AGG Arg						1874
											GGC Gly						1922
											GAG Glu 570						1970
											CAG Gln						2018
											CTC Leu						2066
											CCC Pro						2114
AGC Ser	GGC Gly	AAA Lys 625	GGC Gly	AGC Ser	ACC Thr	AGC Ser	CCC Pro 630	GGA Gly	CCC Pro	AAG Lys	GGG Gly	AAG Lys 635	TGG Trp	GCC Ala	GGT Gly		2162
GGA Gly	CCG Pro 640	CCA Pro	GGC Gly	ACC Thr	GGG Gly	GGG Gly 645	CAC His	GGC Gly	CCG Pro	TTG Leu	AGC Ser 650	TTG Leu	AAC Asn	AGC Ser	CCT Pro		2210
GAT Asp 655	CCC Pro	TAC Tyr	GAG Glu	AAG Lys	ATC Ile 660	CCG Pro	CAT	GTG Val	GTC Val	GGG Gly 665	GAG Glu	CAT His	GGA Gly	CTG Leu	GGC Gly 670		2258
Gln	Ala	Pro	Gly	His	Leu	Ser	Gly	Leu	Ser	Val	CCC Pro	Cys	Pro	CTG Leu 685	CCC Pro	,	2306
AGC Ser	CCC Pro	CCA Pro	GCG Ala 690	GGC Gly	ACA Thr	CTG Leu	ACC Thr	TGT Cys 695	GAG Glu	CTG Leu	AAG Lys	AGC Ser	TGC Cys 700	CCG Pro	TAC Tyr		2354
TGC Cys	ACC Thr	CGT Arg 705	GCC Ala	CTG Leu	GAG Glu	GAC Asp	CCG Pro 710	GAG Glu	GGT Gly	GAG Glu	CTC	AGC Ser 715	GGC Gly	TCG Ser	GAA Glu		2402
AGT Ser	GGA Gly	GAC Asp	TCA Ser	GAT Asp	GGC Gly	CGT Arg	GGC Gly	GTC Val	TAT Tyr	GAA Glu	TTC Phe	ACG Thr	CAG Gln	GAC Asp	GTC Val		2450

•		720					725					730		. •				4,9
	CGG Arg 735	CAC His	GGT Gly	GAC Asp	CGC Arg	TGG Trp 740	GAC Asp	CCC Pro	ACG	CGA Arg	CCA Pro 745	CCC Pro	CGT Arg	GCG Ala	ACG Thr	GAC Asp 750	, 44	2498
	ACA Thr	CCA Pro	GGC Gly	CCA Pro	GGC Gly 755	CCA Pro	GGC Gly	AGC Ser	CCC Pro	CAG Gln 760	CGG Arg	CGG Arg	GCA Ala	CAG Gln	CAG Gln 765	AGG Arg		2546
	GCA Ala	GCC Ala	CCG Pro	GGC Gly 770	GAG Glu	CCA Pro	GGC Gly	TGG Trp	ATG Met 775	GGC Gly	CGC Arg	CTC Leu	TGG Trp	GTT Val 780	ACC Thr	TTC Phe		2594
	AGC Ser	GGC Gly	AAG Lys 785	CTG Leu	CGC Arg	CGC Arg	ATC Ile	GTG Val 790	GAC Asp	AGC Ser	AAG Lys	TAC Tyr	TTC Phe 795	AGC Ser	CGT Arg	GGC Gly		2642
	ATC Ile	ATG Met 800	ATG Met	GCC Ala	ATC Ile	CTT Leu	GTC Val 805	AAC Asn	ACG Thr	CTG Leu	AGC Ser	ATG Met 810	GGC Gly	GTG Val	GAG Glu	TAC Tyr		2690
	CAT His 815	GAG Glu	CAG Gln	CCC Pro	GAG Glu	GAG Glu 820	CTG Leu	ACT Thr	AAT Asn	GCT Ala	CTG Leu 825	GAG Glu	ATC Ile	AGC Ser	AAC Asn	ATC Ile 830		2738
	GTG Val	TTC Phe	ACC Thr	AGC Ser	ATG Met 835	TTT Phe	GCC Ala	CTG Leu	GAG Glu	ATG Met 840	CTG Leu	CTG Leu	AAG Lys	CTG Leu	CTG Leu 845	GCC Ala		2786
	TGC Cys	GGC Gly	CCT	CTG Leu 850	GGC Gly	TAC Tyr	ATC Ile	CGG Arg	AAC Asn 855	CCG Pro	TAC Tyr	AAC Asn	ATC Ile	TTC Phe 860	GAC Asp	GGC Gly		2834
	ATC Ile	ATC Ile	GTG Val 865	GTC Val	ATC Ile	AGC Ser	GTC Val	TGG Trp 870	GAG Glu	ATC Ile	GTG Val	GGG Gly	CAG Gln 875	GCG Ala	GAC Asp	GGT Gly		2882
	GGC Gly	TTG Leu 880	TCT Ser	GTG Val	CTG Leu	CGC Arg	ACC Thr 885	TTC Phe	CGG Arg	CTG Leu	CTG Leu	CGT Arg 890	GTG Val	CTG Leu	AAG Lys	CTG Leu		2930
	GTG Val 895	CGC Arg	TTT Phe	CTG Leu	CCA Pro	GCC Ala 900	CTG Leu	CGG Arg	CGC Arg	CAG Gln	CTC Leu 905	GTG Val	GTG Val	CTG Leu	GTG Val	AAG Lys 910		2978
	ACC Thr	ATG Met	GAC Asp	AAC Asn	GTG Val 915	GCT Ala	ACC Thr	TTC Phe	TGC Cys	ACG Thr 920	CTG Leu	CTC Leu	ATG Met	CTC Leu	TTC Phe 925	ATT		3026
	TTC Phe	ATC Ile	TTC Phe	AGC Ser 930	ATC Ile	CTG Leu	GGC Gly	ATG Met	CAC His 935	CTT Leu	TTC Phe	GGC Gly	TGC Cys	AAG Lys 940	TTC Phe	AGC Ser		3074
	CTG Leu	AAG Lys	ACA Thr 945	GAC Asp	ACC Thr	GGA Gly	GAC Asp	ACC Thr 950	Val	CCT Pro	GAC Asp	AGG Arg	AAG Lys 955	AAC Asn	TTC Phe	GAC Asp		3122
															_			

TCC Ser	CTG Leu 960	CTG Leu	TGG Trp	GCC Ala	ATC Ile	GTC Val 965	ACC Thr	GTG Val	TTC Phe	CAG Gln	ATC Ile 970	CTG Leu	ACC Thr	CAG Gln	GAG Glu	3170
GAC Asp 975	TGG Trp	AAC Asn	GTG Val	GTC Val	CTG Leu 980	TAC Tyr	AAC Asn	GGC Gly	Met	GCC Ala 985	TCC Ser	ACC	TCC Ser	Ser	TGG Trp 990	3218
GCC Ala	GCC Ala	CTC Leu	TAC Tyr	TTC Phe 995	GTG Val	GCC Ala	CTC Leu	Met	ACC Thr	TTC Phe	GGC Gly	AAC Asn	Tyr	GTG Val .005	CTC Leu	3266
TTC Phe	AAC Asn	Leu	CTG Leu L010	GTG Val	GCC Ala	ATC Ile	Leu	GTG Val 1015	GAG Glu	GGC Gly	TTC Phe	Gln	GCG Ala L020	GAG Glu	GGC Gly	3314
GAT Asp	GCC Ala	AAC Asn 025	AGA Arg	TCC Ser	GAC Asp	Thr	GAC Asp L030	GAG Glu	GAC Asp	AAG Lys	Thr	TCG Ser 1035	GTC Val	CAC His	TTC Phe	3362
Glu	GAG Glu 1040	GAC Asp	TTC Phe	CAC His	Lys	CTC Leu 1045	AGA Arg	GAA Glu	CTC Leu	Gln	ACC Thr 1050	ACA Thr	GAG Glu	CTG Leu	AAG Lys	3410
ATG Met 1055	TGT Cys	TCC Ser	CTG Leu	Ala	GTG Val 1060	ACC Thr	CCC Pro	AAC Asn	Gly	CAC His 1065	CTG Leu	GAG Glu	GGA Gly	Arg	GGC Gly 1070	3458
AGC Ser	CTG Leu	TCC Ser	Pro	CCC Pro 1075	CTC Leu	ATC Ile	ATG Met	Cys	ACA Thr 1080	GCT Ala	GCC Ala	ACG Thr	Pro	ATG Met 1085	CCT Pro	3506
ACC Thr	CCC Pro	Lys	AGC Ser 1090	TCA Ser	CCA Pro	TTC Phe	Leu	GAT Asp 1095	GCA Ala	GCC Ala	CCC Pro	Ser	CTC Leu 1100	CCA Pro	GAC Asp	3554
TCT Ser	Arg	CGT Arg 1105	GGC Gly	AGC Ser	AGC Ser	Ser	TCC Ser 1110	GGG Gly	GAC Asp	CCG Pro	Pro	CTG Leu 1115	GGA Gly	GAC Asp	CAG Gln	3602
Lys	CCT Pro 1120	CCG Pro	GCC Ala	AGC Ser	Leu	CGA Arg 1125	AGT Ser	TCT Ser	CCC Pro	Cys	GCC Ala 1130	CCC Pro	TGG Trp	GGC Gly	CCC Pro	.3650
AGT Ser 1135	GGC Gly	GCC Ala	TGG	Ser	AGC Ser 1140	Arg	CGC Arg	TCC Ser	Ser	TGG Trp 1145	AGC Ser	AGC Ser	CTG Leu	Gly	CGT Arg 1150	3698
GCC Ala	CCC Pro	AGC Ser	Leu	AAG Lys 1155	Arg	CGC Arg	GGC Gly	Gln	TGT Cys 1160	GGG Gly	GAA Glu	CGT	Glu	TCC Ser 1165	CTG Leu	3746
CTG Leu	TCT Ser	Gly	GAG Glu 1170	Gly	AAG Lys	GGC Gly	Ser	ACC Thr 1175	Asp	GAC Asp	GAA Glu	Ala	GAG Glu 1180	GAC Asp	GGC Gly	3794
AGG Arg	GCC Ala	GCG Ala	CCC	GGG Gly	CCC	CGT Arg	GCC Ala	ACC Thr	CCA Pro	CTG Leu	CGG Arg	CGG Arg	GCC Ala	GAG Glu	TCC	3842

1185	1190	. 11	.95
CTG GAC CCA Leu Asp Pro 1200	CGG CCC CTG CGG CCG Arg Pro Leu Arg Pro 1205	GCC GCC CTC CCG C Ala Ala Leu Pro F 1210	CT ACC AAG TGC 3890 ro Thr Lys Cys
CGC GAT CGC Arg Asp Arg 1215	GAC GGG CAG GTG GTG Asp Gly Gln Val Val 1220	GCC CTG CCC AGC G Ala Leu Pro Ser A 1225	AC TTC TTC CTG 3938 sp Phe Phe Leu 1230
Arg Ile Asp	AGC CAC CGT GAG GAT Ser His Arg Glu Asp 1235	Ala Ala Glu Leu A 1240	sp Asp Asp Ser 1245
Glu Asp Ser		His Lys Val Leu G .255	lu Pro Tyr Lys 1260
CCC CAG TGG Pro Gln Trp 1265	TGC CGG AGC CGC GAG Cys Arg Ser Arg Glu 1270	Ala Trp Ala Leu T	AC CTC TTC TCC 4082 yr Leu Phe Ser 75
CCA CAG AAC Pro Gln Asn 1280	CGG TTC CGC GTC TCC Arg Phe Arg Val Ser 1285	TGC CAG AAG GTC A Cys Gln Lys Val I 1290	TC ACA CAC AAG 4130 le Thr His Lys
ATG TTT GAT Met Phe Asp 1295	CAC GTG GTC CTC GTC His Val Val Leu Val 1300	TTC ATC TTC CTC A Phe Ile Phe Leu A 1305	AC TGC GTC ACC 4178 sn Cys Val Thr 1310
ATC GCC CTG Ile Ala Leu	GAG AGG CCT GAC ATT Glu Arg Pro Asp Ile 1315	GAC CCC GGC AGC A Asp Pro Gly Ser T 1320	CC GAG CGG GTC 4226 hr Glu Arg Val 1325
Phe Leu Ser	GTC TCC AAT TAC ATC Val Ser Asn Tyr Ile .330	TTC ACG GCC ATC T Phe Thr Ala Ile P 335	TC GTG GCG GAG 4274 he Val Ala Glu 1340
ATG ATG GTG Met Met Val 1345	AAG GTG GTG GCC CTG Lys Val Val Ala Leu 1350	GGG CTG CTG TCC G Gly Leu Leu Ser G 13:	ly Glu His Ala
TAC CTG CAG Tyr Leu Gln 1360	AGC AGC TGG AAC CTG Ser Ser Trp Asn Leu 1365	CTG GAT GGG CTG C Leu Asp Gly Leu L 1370	TG GTG CTG GTG 4370 eu Val Leu Val
TCC CTG GTG Ser Leu Val 1375	GAC ATT GTC GTG GCC Asp Ile Val Val Ala 1380	ATG GCC TCG GCT G Met Ala Ser Ala G 1385	GT GGC GCC AAG 4418 ly Gly Ala Lys 1390
ATC CTG GGT Ile Leu Gly	GTT CTG CGC GTG CTG Val Leu Arg Val Leu 1395	CGT CTG CTG CGG AG Arg Leu Leu Arg Tl 1400	CC CTG CGG CCT 4466 or Leu Arg Pro 1405
Leu Arg Val	ATC AGC CGG GCC CCG Ile Ser Arg Ala Pro 410 1	GGC CTC AAG CTG G Gly Leu Lys Leu V 415	TG GTG GAG ACG 4514 al Val Glu Thr 1420

CTG Leu	Ile	TCG Ser 1425	TCG Ser	CTC Leu	AGG Arg	Pro	ATT Ile 1430	GGG Gly	AAC Asn	ATC Ile	GTC Val	CTC Leu L435	ATC Ile	TGC Cys	TGC Cys	4562
Ala	TTC Phe 1440	TTC Phe	ATC Ile	ATT Ile	Phe	GGC Gly 1445	ATC Ile	TTG Leu	GGT Gly	Val	CAG Gln L450	CTC Leu	TTC Phe	AAA Lys	GGG Gly	4610
				Cys					Thr		AAC Asn			Thr	_	4658
			Arg					Arg			CGA Arg		Lys			4706
		Asn					Leu				TTC Phe	Val				4754
	Asp					Ile					CTG Leu J					4802
Val					Val					Pro	TGG Trp 1530					4850
				Leu					Phe		GTG Val			Met		4898
			Val					His			CGG Arg		His			4946
		Glu					Glu				CTG Leu	Arg				4994
	Arg					Phe					GCC Ala					5042
Tyr					Ser					Ser	ATT Ile 610					5090
	Ser			Leu					Thr		ATC Ile			Val		5138
GTC Val	ATC Ile	ACC Thr	Met	TCC Ser 1635	ATG Met	GAG Glu	CAC His	Tyr	AAC Asn 640	CAA Gln	CCC Pro	AAG Lys	Ser	CTG Leu 1645	GAC Asp	5186
											ATC Ile					5234

	16	50		165	55		1660			
Glu Ala	GCA C Ala L 1665	TG AAG eu Lys	CTG GTA Leu Val	GCA TI Ala Ph 1670	TT GGG ne Gly	Phe Arg	CGG TTC Arg Phe .675	TTC A	AAG Lys	5282
GAC AGG Asp Arg 1680	TGG A	AC CAG sn Gln	CTG GAC Leu Asp 1689	Leu Al	CC ATC la Ile	GTG CTG Val Leu 1690	CTG TCA Leu Ser	CTC A	ATG Met	5330
GGC ATC Gly Ile 1695	ACG C	eu Glu	GAG ATA Glu Ile 1700	GAG AT	et Ser	GCC GCG Ala Ala 705	CTG CCC Leu Pro	Ile A	AAC Asn 710	5378
CCC ACC Pro Thr	ATC A	TC CGC le Arg 1715	ATC ATC	GCGC GT Arg Va	TG CTT al Leu 1720	CGC ATT Arg Ile	GCC CGT Ala Arg	GTG (Val I 1725	CTG Leu	5426
AAG CTG Lys Leu	CTG A Leu L	ys Met	GCT ACC Ala Thi	GGC AT Gly Me	et Arg	GCC CTG Ala Leu	CTG GAC Leu Asp 1740	ACT C	GTG Val	5474
Val Gln						Gly Leu	CTT TTC Leu Phe .755			5522
CTG TTT Leu Phe 1760	TTT A	TC TAT le Tyr	GCT GCC Ala Ala 1765	Leu G	GA GTG ly Val	GAG CTG Glu Leu 1770	TTC GGG Phe Gly	AGG (Arg I	CTG Leu	5570
GAG TGC Glu Cys 1775	AGT G Ser G	lu Asp	AAC CCC Asn Pro 1780	TGC GA Cys Gl	lu Gly	CTG AGC Leu Ser 785	AGG CAC Arg His	Ala 1	ACC Thr 790	5618
TTC AGC Phe Ser	AAC T Asn P	TC GGC he Gly 1795	ATG GCC Met Ala	TTC CT	TC ACG eu Thr 1800	CTG TTC Leu Phe	CGC GTG Arg Val	TCC A Ser 1 1805	ACG Fhr	5666
GGG GAC Gly Asp	AAC TO Asn T 18	rp Asn	GGG ATO	ATG AA Met Ly 181	ys Asp	ACG CTG Thr Leu	CGC GAG Arg Glu 1820	TGC T	rcc Ser	5714
Arg Glu						Pro Ala	CTG TCG Leu Ser .835			5762
	Val T			Val Al			CTG GTG Leu Val			5810
GTG GTG Val Val 1855	GCC G Ala V	al Leu	ATG AAG Met Lys L860	CAC CT	eu Glu	GAG AGC Glu Ser 865	AAC AAG Asn Lys	Glu A	GCA Ala 870	5858
CGG GAG Arg Glu	GAT G Asp A	CG GAG la Glu 1875	CTG GAO Leu Asp	GCC GA Ala Gl	AG ATC lu Ile 1880	GAG CTG Glu Leu	GAG ATG Glu Met	GCG (Ala (1885	CAG Gln	5906

							~~~										
		Gly					Val	GAC Asp 1895				Pro					5954
	Glu					Arg		GCC Ala			Leu						5002
Val					Met			CTG Leu		Asn							5050
				Pro				CCC Pro	His					Gln		•	5098
			Glu					GGC Gly					Ser			•	5146
		His					$\operatorname{Glu}$	TCC Ser L975				Leu					5194
CTG Leu	Ala	GTG Val 1985	TCG Ser	TCC Ser	CCA Pro	Ala	AGG Arg L990	AGC Ser	GGC Gly	GAG Glu	Pro	CTC Leu 1995	CAC His	GCC Ala	CTG Leu	. (	6242
Ser					Ala			CCC Pro		Leu						(	6290
				Val				TCC Ser	Leu					Asp			6338
			Thr					GAG Glu					Thr			(	6386
		Val					Ser	CTG Leu 2055				Pro				(	6434
CGG Arg	Pro	Ala	Ser	Val	Arq	Thr	Arg	AAG Lys	His	Thr	Phe	Gly	Gln	CAC His	TGC Cys	(	6482
Val	TCC Ser 2080	AGC Ser	CGG Arg	CCG Pro	Ala	GCC Ala 2085	CCA Pro	GGC Gly	GGA Gly	Glu	GAG Glu 2090	GCC Ala	GAG Glu	GCC Ala	TCG Ser		6530
GAC Asp 2095	CCA Pro	GCC Ala	GAC Asp	Glu	GAG Glu 2100	GTC Val	AGC Ser	CAC His	Ile	ACC Thr 2105	AGC Ser	TCC Ser	GCC Ala	Cys	CCC Pro 2110	,	6578
								GGC Gly									6626

			:	2115				:	2120				;	2125		
GGC Gly	GGC Gly	Glu	CGG Arg 2130	GAC Asp	CTG Leu	CGC Arg	Arg	CTC Leu 2135	TAC Tyr	AGC Ser	GTG Val	Asp	GCT Ala 2140	CAG Gln	GGC Gly	6674
TTC Phe	Leu	GAC Asp 2145	AAG Lys	CCG Pro	GGC Gly	Arg	GCA Ala 2150	GAC Asp	GAG Glu	CAG Gln	Trp	CGG Arg 2155	CCC Pro	TCG Ser	GCG Ala	6722
Glu	CTG Leu 2160	GGC Gly	AGC Ser	GGG Gly	Glu	CCT Pro 2165	GGG Gly	GAG Glu	GCG Ala	Lys	GCC Ala 2170	Trp	GGC Gly	CCT	GAG Glu	6770
GCC Ala 2175	GAG Glu	CCC Pro	GCT Ala	CTG Leu	GGT Gly 2180	GCG Ala	CGC Arg	AGA Arg	Lys	AAG Lys 2185	AAG Lys	ATG Met	AGC Ser	Pro	CCC Pro 2190	6818
TGC Cys	ATC Ile	TCG Ser	Val	GAA Glu 2195	CCC Pro	CCT Pro	GCG Ala	Glu	GAC Asp 2200	GAG Glu	GGC Gly	TCT Ser	Ala	CGG Arg 2205	CCC Pro	6866
TCC Ser	GCG Ala	Ala	GAG Glu 2210	GGC Gly	GGC Gly	AGC Ser	Thr	ACA Thr 2215	CTG. Leu	AGG Arg	CGC Arg	Arg	ACC Thr 2220	CCG Pro	TCC Ser	6914
TGT Cys	Glu	GCC Ala 2225	ACG Thr	CCT Pro	CAC His	Arg	GAA Glu 230	TCC Ser	CTG Leu	GAG Glu	Pro	ACA Thr 2235	GAG Glu	GGC Gly	TCA Ser	6962
Gly	GCC Ala 2240	GGG Gly	GGG Gly	GAC Asp	Pro	GCA Ala 2245	GCC Ala	AAG Lys	GGG Gly	Glu	CGC Arg 2250	TGG Trp	GGC Gly	CAG Gln	GCC Ala	7010
TCC Ser 2255	TGC Cys	CGG Arg	GCT Ala	GAG Glu	CAC His 2260	CTG Leu	ACC Thr	GTC Val	Pro	AGC Ser 2265	TTT Phe	GCC Ala	TTT Phe	Glu	CCG Pro 270	7058
CTG Leu	GAC Asp	CTC Leu	Gly	GTC Val 2275	CCC Pro	AGT Ser	GGA Gly	Asp	CCT Pro 2280	TTT Phe	TTG Leu	GAC Asp	Gly	AGC Ser 2285	CAC His	7106
AGT Ser	GTG Val	Thr	CCA Pro 2290	GAA Glu	TCC Ser	AGA Arg	Ala	TCC Ser 2295	TCT Ser	TCA Ser	GGG Gly	Ala	ATA Ile 2300	GTG Val	CCC Pro	7154
CTG Leu	Glu	CCC Pro 2305	CCA Pro	GAA Glu	TCA Ser	Glu	CCT Pro	CCC Pro	ATG Met	CCC Pro	Val	GGT Gly 2315	GAC Asp	CCC Pro	CCA Pro	7202
Glu	AAG Lys 2320	AGG Arg	CGG Arg	GGG Gly	Leu	TAC Tyr 2325	CTC Leu	ACA Thr	GTC Val	Pro	CAG Gln 2330	TGT Cys	CCT Pro	CTG Leu	GAG Glu	7250
AAA Lys 2335	CCA Pro	GGG Gly	TCC Ser	CCC Pro	TCA Ser 2340	GCC Ala	ACC Thr	CCT Pro	Ala	CCA Pro	GGG Gly	GGT Gly	GGT Gly	Ala	GAT Asp 2350	7298

GAC CCC GTG TAGCTCGGGG CTTGGTGCCG CCCACGGCTT TGGCCCTGGG GTCTGGGGGC 7357 Asp Pro Val

CCCGCTGGGG	TGGAGGCCCA	GGCAGAACCC	TGCATGGACC	CTGACTTGGG	TCCCGTCGTG	7417
AGCAGAAAGG	CCCGGGGAGG	ATGACGGCCC	AGGCCCTGGT	TCTCTGCCCA	GCGAAGCAGG	7477.
AGTAGCTGCC	GGGCCCCACG	AGCCTCCATC	CGTTCTGGTT	CGGGTTTCTC	CGAGTTTTGC	7537
TACCAGCCGA	GGCTGTGCGG	GCAACTGGGT	CAGCCTCCCG	TCAGGAGAGA	AGCCGCGTCT	7597
GTGGGACGAA	GACCGGGCAC	CCGCCAGAGA	GGGGAAGGTA	CCAGGTTGCG	TCCTTTCAGG	7657
CCCCGCGTTG	TTACAGGACA	CTCGCTGGGG	GCCCTGTGCC	CTTGCCGGCG	GCAGGTTGCA	7717
GCCACCGCGG	CCCAATGTCA	CCTTCACTCA	CAGTCTGAGT	TCTTGTCCGC	CTGTCACGCC	7777
CTCACCACCC	TCCCCTTCCA	GCCACCACCC	TTTCCGTTCC	GCTCGGGCCT	TCCCAGAAGC	7837
GTCCTGTGAC	TCTGGGAGAG	GTGACACCTC	ACTAAGGGGC	CGACCCCATG	GAGTAACGCG	7897
C						7898

#### (2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1669 base pairs

  - (B) TYPE: nucleic acid
    (C) STRANDEDNESS: double
    (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTISENSE: NO
- (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

GTGCGGCTCC	GAGCGCTGCA	ACATCCTGGA	GGCCTTTGAC	GCCTTCATTT	TCGCCTTTTT	60
TGCGGTGGAG	ATGGTCATCA	AGATGGTGGC	CTTGGGGCTG	TTCGGGCAGA	AGTGTTACCT	120
GGGTGACACG	TGGAACAGGC	TGGATTTCTT	CATCGTCGTG	GCGGGCATGA	TGGAGTACTC	180
GTTGGACGGA	CACAACGTGA	GCCTCTCGGC	TATCAGGACC	GTGCGGGTGC	TGCGGCCCCT	240
CCGCGCCATC	AACCGCGTGC	CTAGCATGCG	GATCCTGGTC	ACTCTGCTGC	TGGATACGCT	300
GCCCATGCTC	GGGAACGTCC	TTCTGCTGTG	CTTCTTCGTC	TTCTTCATTT	TCGGCATCGT	360
TGGCGTCCAG	CTCTGGGCTG	GCCTCCTGCG	GAACCGCTGC	TTCCTGGACA	GTGCCTTTGT	420
CAGGAACAAC	AACCTGACCT	TCCTGCGGCC	GTACTACCAG	ACGGAGGAGG	GCGAGGAGAA	480
CCCGTTCATC	TGCTCCTCAC	GCCGAGACAA	CGGCATGCAG	AAGTGCTCGC	ACATCCCCGG	540
CCGCCGCGAG	CTGCGCATGC	CCTGCACCCT	GGGCTGGGAG	GCCTACACGC	AGCCGCAGGC	600
CGAGGGGGTG	GGCGCTGCAC	GCAACGCCTG	CATCAACTGG	AACCAGTACT	ACAACGTGTG	660
CCGCTCGGGT	GACTCCAACC	CCCACAACGG	TGCCATCAAC	TTCGACAACA	TCGGCTACGC	720
CTGGATTGCC	ATCTTCCAGG	TGATCACGCT	GGAAGGCTGG	GTGGACATCA	TGTACTACGT	780
CATGGACGCC	CACTCATTCT	ACAACTTCAT	CTATTTCATC	CTGCTCATCA	TCGTGGGCTC	840
CTTCTTCATG	ATCAACCTGT	GCCTGGTGGT	GATTGCCACG	CAGTTCTCGG	AGACGAAGCA	900
GCGGGAGAGT	CAGCTGATGC	GGGAGCAGCG	GGCACGCCAC	CTGTCCAACG	ACAGCACGCT	960
GGCCAGCTTC	TCCGAGCCTG	GCAGCTGCTA	CGAAGAGCTG	CCCGTACTGC	ACCCGTGCCC	1020
TGGAGGACCC	GGAGGGTGAG	CTCAGCGGCT	CGGAAAGTGG	AGACTCAGAT	GGCCGTGGCG	1080
TCTATGAATT	CACGCAGGAC	GTCCGGCACG	GTGACCGCTG	GGACCCCACG	CGACCACCCC	1140
GGGCGAGCCA	GGCTGGATGG	GCCGCCTCTG	GGTTACCTTC	AGCGGCAAGC	TGCGCCGCAT	1200
CGTGGACAGC	AAGTACTTCA	GCCGTGGCAT	CATGATGGCC	ATCCTTGTCA	ACACGCTGAG	1260
CATGGGCGTG	GAGTACCATG	AGCAGCCCGA	GGAGCTGACT	AATGCTCTGG	AGATCAGCAA	1320
CATCGTGTTC	ACCAGCATGT	TTGCCCTGGA	GATGCTGCTG	AAGCTGCTGG	CCTGCGGCCC	1380
TCTGGGCTAC	ATCCGGAACC	CGTACAACAT	CTTCGACGGC	ATCATCGTGG	TCATCAGCGT	1440
CTGGGAGATC	GTGGGGCAGG	CGGACGGTGG	CTTGTCTGTG	CTGCGCACCT	TCCGGCTGCT	1500
GCGTGTGCTG	AAGCTGGTGC	GCTTTCTGCC	AGCCCTGCGG	CGCCAGCTCG	TGGTGCTGGT	1560

GAAGACCATG GACAACGTGG CTACCTTCTG CACGCTGCTC ATGCTCTTCA TTTTCATCTT 1620 CAGCATCCTG GGCATGCACC TTTTCGGCTG GCAAGTTCAG CCTGAAGAA 1669

- (2) INFORMATION FOR SEQ ID NO:14:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1413 base pairs
  - (B) TYPE: nucleic acid (C) STRANDEDNESS: double
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTISENSE: NO
- (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

ACGGGCTCGA GGCTCGCTCG CTGCCTCACC GGTCCCCGGC CCGCGCCCCG CGCCCCGCGC 60 CCCGCGCCCC GGCCTCACCC GTCCGCTCAG CGGCCTCCAC GCCGCGCCGA GGCCGCCGCC GTCGCCTCCG CCGGGCGAGC CGGAGCCGGA GTCGAGCCGC GGCCGGGAGC CGGGCGGGCT GGGGACGCGG GCCGGGGCC GAGGCGCTGG GGGCCGGGGC CGCCGAGCGG 180 240 GGTCCGCGGT GACCGCGCCG CCCGGGCGAT GCCCGCGGGG ACGCCGCGG CCAGCAGAGC GAGCCATGCT GATCCTGGTC ACTCTGCTGC TGGATACGCT GCCCATGCTC GGGAACGTCC TTCTGCTGT CTTCTTCATT TCGGCATCGT TGGCGTCCAG CTCTGGGCTG GCCTCTCGG GAACCGCTG TTCCTGGACA GTGCCTTTGT CAGGAACAAC AACCTGACCT TCCTGCGGCC GTACTACCAG ACGGAGGAG GCGAGGAGAA CCCGTTCATC TGCCCTCAC 300 360 480 540 GCCGAGACAA CGGCATGCAG AAGTGCTCGC ACATCCCCGG CCGCCGCGAG CTGCGCATGC 600 CCTGCACCCT GGGCTGGAG GCCTACACGC AGCCGCAGGC CGAGGGGGTG GGCGCTGCAC 660 GCAACGCCTG CATCAACTGG AACCAGTACT ACAACGTGTG CCGCTCGGGT GACTCCAACC CCCACAACGG TGCCATCAAC TTCGACAACA TCGGCTACGC CTGGATTGCC ATCTTCCAGG TGATCACGCT GGAAGGCTGG GTGGACATCA TGTACTACGT CATGGACGCC CACTCATTCT 720 780 840 ACAACTTCAT CTATTTCATC CTGCTCATCA TCGTGGGCTC CTTCTTCATG ATCAACCTGT 900 GCCTGGTGGT GATTGCCACG CAGTTCTCGG AGACGAAGCA GCGGGAGAGT CAGCTGATGC
GGGAGCAGCG GGCACGCCAC CTGTCCAACG ACAGCACGCT GGCCAGCTTC TCCGAGCCTG
GCAGCTGCTA CGAAGAGCTG CTGAAGACTG GGCCAGGCCC CTGGCCATCT GTCGGGCCTC
AGTGTGCCCT GCCCCCTGCC CAGCCCCCCA GCGGGCACAC TGACCTGTGA GCTGAAGAGC 960 1020 1080 1140 TGCCCGTACT GCACCCGTGC CCTGGAGGAC CCGGAGGGTG AGCTCAGCGG CTCGGAAAGT 1200 GGAGACTCAG ATGGCCGTGG CGTCTATGAA TTCACGCAGG ACGTCCGGCA CGGTGACCGC TGGGACCCCA CGCGACCACC CCGTGCGACG GACACACCAG GCCCAGGCCC AGGCAGCCCC 1260 1320 CAGCGGCGG CACAGCAGAG GGCAGCCCG GGCGAGCCAG GCTGGATGGG CCGCCTCTGG 1380 GTTACTTCAG CGGCAAGCTG CGCGCATCGT GGA 1413

- (2) INFORMATION FOR SEQ ID NO:15:
  - (i) SEOUENCE CHARACTERISTICS:
    - (A) LENGTH: 7898 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: double (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: cDNA
  - (iii) HYPOTHETICAL: NO
  - (iv) ANTISENSE: NO
  - (v) FRAGMENT TYPE:
  - (vi) ORIGINAL SOURCE:

### (ix) FEATURE:

(A) NAME/KEY: Coding Sequence (B) LOCATION: 249...7307 (D) OTHER INFORMATION:  $\alpha_{\rm lH-1}$ 

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15

cgcgcc agccgg cgaggc	gcgg (	gctgg gcgc1	gggad	gg co	9999 9999	gccg	3 33°	ggagg	gege gege	tgg	gggc	ggt (	ggccg	ggggcc ggtgac	60 120 180 240
ccgcca										o Ğli				g ccc l Pro	290
ctg gg Leu Gl 15															338
gag ag Glu Se															386
ggc gt Gly Va	=				_	_				_				_	434
ggt gc Gly Al															482
gtc tt Val Ph															530
cgg ct Arg Le															578
atg ct Met Le 110															626
gag tg Glu Cy															674
att tt Ile Ph		Phe													722
ggg ct Gly Le 16	u Phe														770

					gtg Val 180											818
cac His	aac Asn	gtg Val	agc Ser	ctc Leu 195	tcg Ser	gct Ala	atc Ile	agg Arg	acc Thr 200	gtg Val	cgg Arg	gtg Val	ctg Leu	cgg Arg 205	ccc Pro	866
ctc Leu	cgc Arg	gcc Ala 210	atc Ile	aac Asn	cgc Arg	gtg Val	cct Pro 215	agc Ser	atg Met	cgg Arg	atc Ile	ctg Leu 220	gtc Val	act Thr	ctg Leu	914
ctg Leu	ctg Leu	gat Asp 225	acg Thr	ctg Leu	ccc Pro	atg Met	ctc Leu 230	ggg Gly	aac Asn	gtc Val	ctt Leu	ctg Leu 235	ctg Leu	tgc Cys	ttc Phe	962 -
ttc Phe	gtc Val 240	ttc Phe	ttc Phe	att Ile	ttc Phe	ggc Gly 245	atc Ile	gtt Val	ggc Gly	gtc Val	cag Gln 250	ctc Leu	tgg Trp	gct Ala	ggc Gly	1010
					tgc Cys 260											1058
aac Asn	ctg Leu	acc Thr	ttc Phe	ctg Leu 275	cgg Arg	ccg Pro	tac Tyr	tac Tyr	cag Gln 280	acg Thr	gag Glu	gag Glu	ggc Gly	gag Glu 285	gag Glu	1106
aac Asn	ccg Pro	ttc Phe	atc Ile 290	tgc Cys	tcc Ser	tca Ser	cgc Arg	cga Arg 295	gac Asp	aac Asn	ggc Gly	atg Met	cag Gln 300	aag Lys	tgc Cys	1154
tcg Ser	cac His	atc Ile 309	Pro	ggc Gly	cgc Arg	cgc Arg	gag Glu 310	Leu	cgc Arg	atg Met	ccc Pro	tgc Cys 319	Thr	ctg Leu	ggc	1202
tgg Trp	gag Glu 320	gcc Ala	tac Tyr	acg Thr	cag Gln	ccg Pro 325	cag Gln	gcc Ala	gag Glu	ggg Gly	gtg Val 330	ggc Gly	gct Ala	gca Ala	cgc Arg	1250
aac Asn 335	gcc Ala	tgc Cys	atc Ile	aac Asn	tgg Trp 340	aac Asn	cag Gln	tac Tyr	tac Tyr	aac Asn 345	gtg Val	tgc Cys	cgc Arg	tcg Ser	ggt Gly 350	1298
					aac Asn											1346
gcc Ala	tgg Trp	att Ile 370	gcc Ala	atc Ile	ttc Phe	cag Gln	gtg Val 375	atc Ile	acg Thr	ctg Leu	gaa Glu	ggc Gly 380	tgg Trp	gtg Val	gac Asp	1394
atc Ile	atg Met	tac Tyr	tac Tyr	gtc Val	atg Met 385	gac Asp	gcc Ala	cac His	tca Ser	ttc Phe 390	tac Tyr	aac Asn	ttc Phe	atc Ile	tat Tyr 395	1442
ttc	atc	ctg	ctc	atc	atc	gtg	ggc	tcc	ttc	ttc	atg	atc	aac	ctg	tgc	1490

F	he	Ile	Leu	Leu	Ile 400	Ile	Val	Gly	Ser	Phe 405	Phe	Met	Ile	Asn	Leu 410	Cys	
															gag Glu		1538
															agc Ser	acg Thr	1586
															ctg Leu		1634
															cgc Arg 475		1682
															agt Ser		1730
V															agg Arg		1778
															cac His 525		1826
															ccc Pro		1874
E	ca Pro	ggc	gcc Ala 545	tgc Cys	gac Asp	acc Thr	agg Arg	ctg Leu 550	gtc Val	cga Arg	gct Ala	ggc Gly	gcg Ala 555	ccc Pro	ccc Pro	tcg Ser	1922
															cac His		1970
1															gcc Ala		2018
Ş	gtg /al	gca Ala	cat His	gcc Ala	gca Ala 595	gcc Ala	act Thr	gcc Ala	gct Ala	gcc Ala 600	agc Ser	ctc Leu	agg Arg	ctg Leu	gcc Ala 605	aca Thr	2066
Ċ	gjå iaa	ctg Leu	ggc Gly	acc Thr 610	atg Met	aac Asn	tac Tyr	ccc Pro	acg Thr 615	atc Ile	ctg Leu	ccc Pro	tca Ser	999 Gly 620	gtg Val	ggc Gly	2114
				ĞĪy					Gly					$\mathtt{Trp}$	gcc Ala		2162

gga Gly	ccg Pro 640	cca Pro	ggc Gly	acc Thr	Gly 999	999 Gly 645	cac His	ggc Gly	ccg Pro	ttg Leu	agc Ser 650	ttg Leu	aac Asn	agc Ser	cct Pro	2210
									gtc Val							2258
cag Gln	gcc Ala	cct Pro	ggc Gly	His	ctg Leu 575	tcg Ser	ggc	ctc Leu	agt Ser	gtg Val 880	ccc Pro	tgc Cys	ccc Pro	Leu	ccc Pro 85	2306
									gag Glu							2354
tgc Cys	acc Thr	cgt Arg 705	gcc Ala	ctg Leu	gag Glu	gac Asp	ccg Pro 710	gag Glu	ggt Gly	gag Glu	ctc Leu	agc Ser 715	ggc	tcg Ser	gaa Glu	2402
agt Ser	gga Gl <u>y</u> 720	gac Asp	tca Ser	gat Asp	ggc Gly	cgt Arg 725	ggc Gly	gtc Val	tat Tyr	gaa Glu	ttc Phe 730	acg. Thr	cag Gln	gac Asp	gtc Val	2450
cgg Arg 735	cac His	ggt Gly	gac Asp	cgc Arg	tgg Trp 740	gac Asp	ccc Pro	acg Thr	cga Arg	cca Pro 745	ccc Pro	cgt Arg	gcg Ala	acg Thr	gac Asp 750	2498
									cag Gln 760							2546
gca Ala	gcc Ala	ccg Pro	ggc Gly 770	gag Glu	cca Pro	ggc Gly	tgg Trp	atg Met 775	ggc Gly	cgc Arg	ctc Leu	tgg Trp	gtt Val 780	acc Thr	ttc Phe	2594
agc Ser	ggc Gly	aag Lys 785	ctg Leu	cgc Arg	cgc Arg	atc Ile	gtg Val 790	gac Asp	agc Ser	aag Lys	tac Tyr	ttc Phe 795	agc Ser	cgt Arg	ggc Gly	2642
atc Ile	atg Met 800	atg Met	gcc Ala	atc Ile	ctt Leu	gtc Val 805	aac Asn	acg Thr	ctg Leu	agc Ser	atg Met 810	ggc	gtg Val	gag Glu	tac Tyr	2690
cat His 815	gag Glu	cag Gln	ccc Pro	gag Glu	gag Glu 820	ctg Leu	act Thr	aat Asn	gct Ala	ctg Leu 825	gag Glu	atc Ile	agc Ser	aac Asn	atc Ile 830	2738
									atg Met 840							2786
tgc Cys	ggc	cct Pro	ctg Leu	ggc Gly	tac Tyr	atc Ile	cgg Arg	aac Asn	ccg Pro	tac Tyr	aac Asn	atc Ile	ttc Phe	gac	ggc	2834

850 855 860

atc Ile	atc Ile	gtg Val 865	gtc Val	atc Ile	agc Ser	gtc Val	tgg Trp 870	gag Glu	atc Ile	gtg Val	gly aaa	cag Gln 875	gcg Ala	gac Asp	ggt Gly	2882
ggc Gly	ttg Leu 880	Ser	gtg Val	ctg Leu	cgc Arg	acc Thr 885	Phe	cgg Arg	ctg Leu	ctg Leu	cgt Arg 890	Val	ctg Leu	aag Lys	ctg Leu	2930
gtg Val 895	cgc Arg	ttt Phe	ctg Leu	cca Pro	gcc Ala 900	ctg Leu	cgg Arg	cgc Arg	cag Gln	ctc Leu 905	gtg Val	gtg Val	ctg Leu	gtg Val	aag Lys 910	2978
acc Thr	atg Met	gac Asp	aac Asn	gtg Val 915	gct Ala	acc Thr	ttc Phe	tgc Cys	acg Thr 920	ctg Leu	ctc Leu	atg Met	ctc Leu	ttc Phe 925	att Ile	3026
				Ile					Leu		ggc Gly			Phe		3074
ctg Leu	aag Lys	aca Thr 945	gac Asp	acc Thr	gga Gly	gac Asp	acc Thr 950	gtg Val	cct Pro	gac Asp	agg Arg	aag Lys 955	aac Asn	ttc Phe	gac Asp	3122
											atc Ile 970					,3170
											tcc Ser					3218
gcc Ala	gcc Ala	ctc Leu	tac Tyr	ttc Phe 995	gtg Val	gcc Ala	ctc Leu	Met	acc Thr 000	ttc Phe	ggc	aac Asn	Tyr	gtg Val 1005	ctc Leu	3266
ttc Phe	aac Asn	ctg Leu	ctg Leu 101(	Val	gcc Ala	atc Ile	ctc Leu	gtg Val 1015	Glu	Gly	ttc Phe	cag Glņ	gcg Ala 1020	Glu	ggc Gly	3314
			Arg					Glu			acg Thr		Val			3362
		Asp					Arg				acc Thr 1050	Thr				3410
atg Met 1055	Cys	tcc Ser	ctg Leu	Ala	gtg Val 1060	acc Thr	ccc Pro	aac Asn	Gly	cac His L065	ctg Leu	gag Glu	gga Gly	Arg	ggc Gly L070	3458
											gcc Ala					3506

		10	75				108	)				108	5	
acc co	cc aag ro Lys 1	agc tca Ser Se: 090	cca Pro	ttc Phe	Leu	gat Asp 1095	gca Ala	gcc Ala	ccc Pro	Ser	ctc Leu 1100	cca Pro	gac Asp	3554
tct co	gg cgt rg Arg 1105	Gly Se	agc Ser	agc Ser	tcc Ser 111	Gly	gac Asp	ccg Pro	cca Pro	ctg Leu 1119	Gly	gac Asp	cag Gln	3602
Lys Pr	ct ccg ro Pro 120	gcc ago Ala Sei	ctc Leu	cga Arg 1125	Ser	tct Ser	ccc Pro	tgt Cys	gcc Ala 1130	Pro	tgg Trp	ggc Gly	ccc Pro	3650
agt gg Ser Gl	gc gcc ly Ala	tgg agd Trp Sei	agc Ser 1140	cgg Arg	cgc Arg	tcc Ser	Ser	tgg Trp L145	agc Ser	agc Ser	ctg Leu 	Ğly	cgt Arg 1150	3698
gcc co Ala Pi	cc agc ro Ser	ctc aag Leu Lys 115	: Arg	cgc Arg	ggc Gly	cag Gln	tgt Cys 1160	Gly	gaa Glu	cgt Arg	gag Glu	tcc Ser 116	Leu	3746
ctg to Leu Se	ct ggc er Gly	gag ggd Glu Gly 1170	aag Lys	ggc Gly	agc Ser	acc Thr 1179	Asp	gac Asp	gaa Glu	gct Ala	gag Glu 1180	Asp	ggc Gly	3794
agg go	cc gcg la Ala 1185	ccc ggg Pro Gly	r ccc	cgt Arg	gcc Ala 1190	Thr	cca Pro	ctg Leu	cgg Arg	cgg Arg 1199	Ala	gag Glu	tcc Ser	3842
Leu As	ac cca sp Pro 2 200	cgg ccc Arg Pro	ctg Leu	cgg Arg 1205	Pro	gcc Ala	gcc Ala	ctc Leu	ccg Pro 1210	Pro	acc Thr	aag Lys	tgc Cys	3890
cgc ga Arg As 1215	at cgc o	gac ggg Asp Gly	cag Gln 1220	gtg Val	gtg Val	gcc Ala	Leu	ccc Pro .225	agc Ser	gac Asp	ttc Phe	Phe	ctg Leu L230	3938
cgc at Arg Il	tc gac a le Asp	agc cad Ser His 123	Arg	gag Glu	gat Asp	gca Ala	gcc Ala 1240	Glu	ctt Leu	gac Asp	gac Asp	gac Asp 1245	Ser	3986
gag ga Glu As	ac agc sp Ser	tgc tgc Cys Cys 1250	ctc Leu	cgc Arg	ctg Leu	cat His 1255	Lys	gtg Val	ctg Leu	gag Glu	ccc Pro 1260	Tyr	aag Lys	4034
	ag tgg ln Trp ( 1265	Cys Arg				Ala					Leu			4082
Pro Gl	ag aac ln Asn 280	cgg tto Arg Phe	cgc Arg	gtc Val 1285	Ser	tgc Cys	cag Gln	aag Lys	gtc Val 1290	Ile	aca Thr	cac His	aag Lys	4130
atg tt Met Ph 1295	tt gat ( he Asp	cac gto His Val	gtc Val 1300	ctc Leu	gtc Val	ttc Phe	Ile	ttc Phe 305	ctc Leu	aac Asn	tgc Cys	Val	acc Thr 1310	4178

atc Ile	gcc Ala	ctg Leu	gag Glu	agg Arg 131	Pro	gac Asp	att Ile	gac Asp	Pro 132	Gly	agc Ser	acc Thr	gag Glu	cgg Arg 132	Val	4226
ttc Phe	ctc Leu	agc Ser	gtc Val 1330	Ser	aat Asn	tac Tyr	atc Ile	ttc Phe 133	Thr	gcc Ala	atc Ile	ttc Phe	gtg Val 1340	Ala	gag Glu	4274
atg Met	atg Met	gtg Val 134	Lys	gtg Val	gtg Val	gcc Ala	ctg Leu 1350	Gly	ctg Leu	ctg Leu	tcc Ser	ggc Gly 1355	Glu	cac His	gcc Ala	4322
tac Tyr	ctg Leu 1360	Gln	agc Ser	agc Ser	tgg Trp	aac Asn 1365	Leu	ctg Leu	gat Asp	Gly aaa	ctg Leu 1370	Leu	gtg Val	ctg Leu	gtg Val	4370
	Leu			Ile					Ala		gct Ala			Ala		4418
atc Ile	ctg Leu	ggt Gly	Val	ctg Leu 1395	cgc Arg	gtg Val	ctg Leu	Arg	ctg Leu 1400	ctg Leu	cgg Arg	acc Thr	Leu	cgg Arg L405	cct Pro	4466
cta Leu	agg Arg	gtc Val	atc Ile 1410	Ser	cgg Arg	gcc Ala	ccg Pro	ggc Gly 1415	Leu	aag Lys	ctg Leu	gtg Val	gtg Val 1420	Glu	acg Thr	4514
			Ser					Gly			gtc Val		Ile			4562
gcc Ala	ttc Phe 1440	Phe	atc Ile	att Ile	ttt Phe	ggc Gly 1445	Ile	ttg Leu	ggt Gly	gtg Val	cag Gln 1450	Leu	ttc Phe	aaa Lys	ggg ggg	4610
	Phe			Cys					Thr		aac Asn			Thr		4658
					Āla					Val	cga Arg				Asn	4706
				Gly					Ser		ttc Phe			Ser		4754
aag Lys	Asp	gga Gly .505	tgg Trp	gtg Val	aac Asn	Ile	atg Met .510	tac Tyr	gac Asp	Gly 999	ctg Leu 1	gat Asp 515	gcc Ala	gtg Val	ggt Gly	4802
gtc Val	gac Asp 1520	Gln	cag Gln	cct Pro	gtg Val	cag Gln 1525	Asn	cac His	aac Asn	ccc Pro	tgg Trp 1530	Met	ctg Leu	ctg Leu	tac Tyr	4850

ttc Phe 1535	Ile	tcc Ser	ttc Phe	Leu	ctc Leu 1540	atc Ile	gtc Val	agc Ser	Phe	ttc Phe L545	gtg Val	ctc Leu	aac Asn	Met	ttc Phe 1550	4898
gtg Val	ggc	gtc Val	gtg Val	gtc Val 1559	Glu	aac Asn	ttc Phe	cac His	aag Lys 1560	Cys	cgg Arg	cag Gln	cac His	cag Gln 1569	Glu	4946
gcg Ala	gag Glu	gag Glu	gcg Ala 15	Arg	cgg Arg	cga Arg	gag Glu	gag Glu 15	Lys	cgg Arg	ctg Leu	cgg Arg	cgc Arg 158	Leu	gag Glu	4994
agg Arg	agg Arg	cgc Arg 1589	Arg	agc Ser	act Thr	ttc Phe	Pro 1590	Ser	cca Pro	gag Glu	gcc Ala	cag Gln 1599	Arg	cgg Arg	ccc Pro	5042
tac Tyr	tat Tyr 1600	Ala	gac Asp	tac Tyr	tcg Ser	ccc Pro 1609	Thr	cgc Arg	cgc Arg	tcc Ser	att Ile 1610	His	tcg Ser	ctg Leu	tgc Cys	5090
acc Thr 161	Ser	cac	tat Tyr	ctc Leu	gac Asp 1620	Leu	ttc Phe	atc Ile	acc Thr	ttc Phe 1625	atc Ile	atc Ile	tgt Cys	gtc Val	aac Asn 1630	5138
gtc Val	atc Ile	acc Thr	atg Met	tcc Ser 1639	Met	gag Glu	cac His	tat Tyr	aac Asn 1640	Gln	ccc Pro	aag Lys	tcg Ser	ctg Leu 1645	Asp	5186
gag Glu	gcc Ala	ctc Leu	aag Lys 1650	Tyr	tgc Cys	aac Asn	tac Tyr	gtc Val 1655	Phe	acc Thr	atc Ile	gtg Val	ttt Phe 1660	Val	ttc Phe	5234
gag Glu	gct Ala	gca Ala 1669	Leu	aag Lys	ctg Leu	gta Val	gca Ala 1670	Phe	Gly 999	ttc Phe	cgt Arg	cgg Arg 1675	Phe	ttc Phe	aag Lys	5282
gac Asp	agg Arg 1680	Trp	aac Asn	cag Gln	ctg Leu	gac Asp 168	Leu	gcc Ala	atc Ile	gtg Val	ctg Leu 1690	Leu	tca Ser	ctc Leu	atg Met	5330
ggc Gly 1699	Ile	acg Thr	ctg Leu	Glu	gag Glu L700	ata Ile	gag Glu	atg Met	Ser	gcc Ala 1705	gcg Ala	ctg Leu	ccc Pro	Ile	aac Asn 1710	5378
ccc Pro	acc Thr	atc Ile	atc Ile	cgc Arg 1715	Ile	atg Met	cgc Arg	gtg Val	ctt Leu 1720	Arg	att Ile	gcc Ala	cgt Arg	gtg Val 1725	Leu	5426
aag Lys	ctg Leu	ctg Leu	aag Lys 1730	Met	gct Ala	acg Thr	ggc Gly	atg Met 1739	Arg	gcc Ala	ctg Leu	ctg Leu	gac Asp 1740	Thr	gtg Val	5474
gtg Val	caa Gln	gct Ala 1749	Leu	ccc Pro	cag Gln	gtg Val	999 Gly 175	Asn	ctg Leu	ggc Gly	ctt Leu	ctt Leu 1755	Phe	atg Met	ctc Leu	5522

ctg Leu	ttt Phe 1760	Phe	atc Ile	tat Tyr	gct Ala	gcg Ala 1765	Leu	gga Gly	gtg Val	gag Glu	ctg Leu 1770	Phe	Gly 999	agg Arg	ctg Leu	5570
gag Glu 1779	Cys	agt Ser	gaa Glu	Asp	aac Asn L780	ccc Pro	tgc Cys	gag Glu	Gly	ctg Leu L785	agc Ser	agg Arg	cac His	gcc Ala	acc Thr L790	5618
ttc Phe	agc Ser	aac Asn	ttc Phe	ggc Gly 1795	Met	gcc Ala	ttc Phe	ctc Leu	acg Thr 1800	Leu	ttc Phe	cgc Arg	gtg Val	tcc Ser 1805	Thr	5666
ggg Gly	gac Asp	aac Asn	tgg Trp 1810	Asn	ggg Gly	atc Ile	atg Met	aag Lys 1815	Asp	acg Thr	ctg Leu	cgc Arg	gag Glu 1820	tgc Cys )	tcc Ser	5714
cgt Arg	gag Glu	gac Asp 1825	Lys	cac t His	cys Cys	ctg a Leu	agc t Ser 1830	Tyr	tg ( Leu	ecg g Pro	gcc d Ala	Leu 1835	Ser	ecc o Pro	gtc Val	5762
tac Tyr	ttc Phe 1840	Val	acc Thr	ttc Phe	gtg Val	ctg Leu 1849	Val	gcc Ala	cag Gln	ttc Phe	gtg Val 1850	Leu	gtg Val	aac Asn	gtg Val	5810
gtg Val 185	Val	gcc Ala	gtg Val	Leu	atg Met 1860	aag Lys	cac His	ctg Leu	Glu	gag Glu 1865	agc Ser	aac Asn	aag Lys	gag Glu	gca Ala 1870	5858
cgg Arg	gag Glu	gat Asp	gcg Ala	gag Glu 187	Leu	gac Asp	gcc Ala	gag Glu	atc Ile 1880	Glu	ctg Leu	gag Glu	atg Met	gcg Ala 1889	Gln	5906
ggc Gly	ccc Pro	ggg Gly	agt Ser 1890	Ala	cgc Arg	cgg Arg	gtg Val	gac Asp 189	Ala	gac Asp	agg Arg	cct Pro	ccc Pro 1900	ttg Leu )	ccc Pro	5954
cag Gln	gag Glu	agt Ser 190	Pro	ggc Gly	gcc Ala	agg Arg	gat Asp 191	Ala	cca Pro	aac Asn	ctg Leu	gtt Val 191	Ala	cgc Arg	aag Lys	6002
gtg Val	tcc Ser 192	Val	tcc Ser	agg Arg	atg Met	ctc Leu 192	Ser	ctg Leu	ccc Pro	aac Asn	gac Asp 193	Ser	tac Tyr	atg Met	ttc Phe	6050
agg Arg 193	Pro	gtg Val	gtg Val	Pro	gcc Ala 1940	tcg Ser	gcg Ala	ccc Pro	His	ccc Pro 1945	cgc Arg	ccg Pro	ctg Leu	cag Gln	gag Glu 1950	6098
gtg Val	gag Glu	atg Met	gag Glu	acc Thr 195	Tyr	ggg Gly	gcc Ala	ggc Gly	acc Thr 196	Pro	ttg Leu	ggc Gly	tcc Ser	gtt Val 196	Ala	6146
tct Ser	gtg Val	cac His	tct Ser 197	Pro	ccc Pro	gca Ala	gag Glu	tcc Ser 197	Cys	gcc Ala	tcc Ser	ctc Leu	cag Gln 19,8	atc Ile O	cca Pro	6194
ctg	gct	gtg	tcg	tcc	cca	gcc	agg	agc	ggc	gag	ccc	ctc	cac	gcc	ctg	6242

Leu		Val 1985	Ser	Ser	Pro		Arg 1990	Ser	Gly	Glu		Leu 1995	His	Ala	Leu	
tcc Ser	cct Pro 2000	Arg	ggc Gly	aca Thr	gcc Ala	cgc Arg 2009	Ser	ccc Pro	agt Ser	ctc Leu	agc Ser 2010	Arg	ctg Leu	ctc Leu	tgc Cys	6290
aga Arg 201	Gln	gag Glu	gct Ala	gtg Val	cac His 2020	Thr	gat Asp	tcc Ser	ttg Leu	gaa Glu 2025	Gly	aag Lys	att Ile	gac Asp	agc Ser 2030	6338
cct Pro	agg Arg	gac Asp	acc Thr	ctg Leu 203	Asp	cct Pro	gca Ala	gag Glu	cct Pro 2040	Gly	gag Glu	aaa Lys	acc Thr	ccg Pro 2045	Val	6386
agg Arg	ccg Pro	gtg Val	acc Thr 2050	Gln	Gly ggg	ggc Gly	tcc Ser	ctg Leu 2059	Gln	tcc Ser	cca Pro	cca Pro	cgc Arg 2060	Ser	cca Pro	6434
cgg Arg	ccc Pro	gcc Ala 2065	Ser	gtc Val	cgc Arg	act Thr	cgt Arg 2070	aag Lys )	cat His	acc Thr	ttc Phe	gga Gly 2079	Gln	cac His	tgc Cys	6482
gtc Val	tcc Ser 2080	Ser	cgg Arg	ccg Pro	gcg Ala	gcc Ala 2089	Pro	ggc Gly	gga Gly	gag Glu	gag Glu 2090	Ala	gag Glu	gcc Ala	tcg Ser	6530
	Pro			Glu				cac His	Ile					Cys		6578
					Glu			ggc		Glu					Ala	6626
				Asp				ctc Leu 2139	Tyr					Gln		6674
			Lys					gac Asp )					Pro			6722
		Gly					Gly	gag Glu				Trp			gag Glu	6770
gcc Ala 217	Glu	ccc Pro	gct Ala	Leu	ggt Gly 2180	gcg Ala	cgc Arg	aga Arg	Lys	aag Lys 2185	Lys	atg Met	agc Ser	Pro	ccc Pro 2190	6818
tgc Cys	atc Ile	tcg Ser	gtg Val	gaa Glu 219	Pro	cct Pro	gcg Ala	gag Glu	gac Asp 2200	Glu	ggc Gly	tct Ser	gcg Ala	cgg Arg 220	Pro	6866
tcc Ser	gcg Ala	gca Ala	gag Glu 221	Gly	ggc Gly	agc Ser	acc Thr	aca Thr 221	Leu	agg Arg	cgc Arg	agg Arg	acc Thr 222	Pro	tcc Ser	6914

tgt gag gcc acg Cys Glu Ala Thr 2225	cct cac agg Pro His Arg	gac tcc ctg gag Asp Ser Leu Gli 2230	g ccc aca gag ggc tc 1 Pro Thr Glu Gly Se 2235	a 6962 r
		Ala Lys Gly Gli	g cgc tgg ggc cag gc 1 Arg Trp Gly Gln Al 2250	
tcc tgc cgg gct Ser Cys Arg Ala 2255	gag cac ctg Glu His Leu 2260	acc gtc ccc age Thr Val Pro Se 226	ttt gcc ttt gag cc r Phe Ala Phe Glu Pr 5 227	9
			c ttg gac ggt agc ca e Leu Asp Gly Ser Hi 2285	
	Glu Ser Arg		a ggg gcc ata gtg cc r Gly Ala Ile Val Pr 2300	
			gtc ggt gac ccc cc Val Gly Asp Pro Pr 2315	
gag aag agg cgg Glu Lys Arg Arg 2320	ggg ctg tac Gly Leu Tyr 232	Leu Thr Val Pro	c cag tgt cct ctg ga c Gln Cys Pro Leu Gl 2330	g 7250 ⁻ u
			a ggg ggt ggt gca ga o Gly Gly Gly Ala As o 235	p ·
gac ccc gtg tag Asp Pro Val	ctcggggctt	ggtgccgccc acgg	etttgg ceetggggte	7350
cgtcgtgagc agaa aagcaggagt agct gttttgctac cagc cgcgtctgtg ggac tttcaggccc cgcg ggttgcagcc accg tcacgccctc acca	aggece ggggaggeggeggg cecea ggagge tgtgeggagge eggge ttgtta eagga eggece aatgt	ggatg acggeecaggegage etecateegggea actgggteagacec eagagagggeeacte getgggggeecacet teacteacageaggeeagee accet teacteacage	atggacctg acttggg c cctggttct ctgcca ttctggttcgg gtttctc cctcccgtca ggagaga gaaggtacca ggttgcg ctgtgcctt gccggcg ttctgagttct tgtccgc ccgttccgct cgggcct aaggggccga ccccatg	geg 7470 ega 7530 age 7590 tee 7650 gea 7710 etg 7770 tee 7830

## (2) INFORMATION FOR SEQ ID NO:16:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 6941 base pairs
    (B) TYPE: nucleic acid
    (C) STRANDEDNESS: double
    (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO

- (v) FRAGMENT TYPE:
- (vi) ORIGINAL SOURCE: (ix) FEATURE:
- - (A) NAME/KEY: Coding Sequence (B) LOCATION: 249... 6353 (D) OTHER INFORMATION:  $\alpha_{\rm 1H-2}$
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16

cgaggecgec geegtegeet cegeegggeg ageeggagee ggagtegage egeggeeggg 60 ageegggegg getggggaeg egggeggggeegg ggeeggggee 120 gggggeggag gegetgggg eeggggeegg ggeegggeg egagegggt eegeggtgae 180 egeegeegee gggegatgee egegggaeg eegeggeeg gtgetgeegg 240
ccgccacc atg acc gag ggc gca cgg gcc gcc gac gag gtc cgg gtg ccc 290  Met Thr Glu Gly Ala Arg Ala Ala Asp Glu Val Arg Val Pro  1 5 10
ctg ggc gcg ccg ccc cct ggc cct gcg gcg
gag agc ccc ggg gcg ccg gga cgc gag gcg gag cgg ggg tcc gag ctc 386 Glu Ser Pro Gly Ala Pro Gly Arg Glu Ala Glu Arg Gly Ser Glu Leu 35 40 45
ggc gtg tca ccc tcc gag agc ccg gcg gcc gag cgc gcg gcg g
ggt gcc gac gag gag cag cgc gtc ccg tac ccg gcc ttg gcg gcc acg Gly Ala Asp Glu Glu Gln Arg Val Pro Tyr Pro Ala Leu Ala Ala Thr 65 70 75
gtc ttc ttc tgc ctc ggt cag acc acg cgg ccg cgc agc tgg tgc ctc 530 Val Phe Phe Cys Leu Gly Gln Thr Thr Arg Pro Arg Ser Trp Cys Leu 80 85 90
cgg ctg gtc tgc aac cca tgg ttc gag cac gtg agc atg ctg gta atc Arg Leu Val Cys Asn Pro Trp Phe Glu His Val Ser Met Leu Val Ile 95 100 105 110
atg ctc aac tgc gtg acc ctg ggc atg ttc cgg ccc tgt gag gac gtt 626 Met Leu Asn Cys Val Thr Leu Gly Met Phe Arg Pro Cys Glu Asp Val 115 120 125
gag tgc ggc tcc gag cgc tgc aac atc ctg gag gcc ttt gac gcc ttc 674 Glu Cys Gly Ser Glu Arg Cys Asn Ile Leu Glu Ala Phe Asp Ala Phe 130 135 140
att ttc gcc ttt ttt gcg gtg gag atg gtc atc aag atg gtg gcc ttg 722 Ile Phe Ala Phe Phe Ala Val Glu Met Val Ile Lys Met Val Ala Leu 145 150 155
ggg ctg ttc ggg cag aag tgt tac ctg ggt gac acg tgg aac agg ctg 770

Gly	Leu 160	Phe	Gly	Gln	Lys	Cys 165	Tyr	Leu	Gly	Asp	Thr 170	Trp	Asn	Arg	Leu	
gat Asp 175	ttc Phe	ttc Phe	atc Ile	gtc Val	gtg Val 180	gcg Ala	ggc Gly	atg Met	atg Met	gag Glu 185	tac Tyr	tcg Ser	ttg Leu	gac Asp	gga Gly 190	818
						gct Ala										866
						gtg Val										914
ctg Leu	ctg Leu	gat Asp 225	acg Thr	ctg Leu	ccc Pro	atg Met	ctc Leu 230	ggg Gly	aac Asn	gtc Val	ctt Leu	ctg Leu 235	ctg Leu	tgc Cys	ttc Phe	962
						ggc Gly 245										1010
ctc Leu 255	ctg Leu	cgg Arg	aac Asn	cgc Arg	tgc Cys 260	ttc Phe	ctg Leu	gac Asp	agt Ser	gcc Ala 265	ttt Phe	gtc Val	agg Arg	Asn	aac Asn 270	1058
aac Asn	ctg Leu	acc Thr	ttc Phe	ctg Leu 275	Arg	ccg Pro	tac Tyr	tac Tyr	cag Gln 280	acg Thr	gag Glu	gag Glu	ggc Gly	gag Glu 285	gag Glu	1106
						tca Ser										1154
						cgc Arg										1202
tgg Trp	gag Glu 320	Ala	tac Tyr	acg Thr	cag Gln	ccg Pro 325	Gln	gcc Ala	gag Glu	ggg Gly	gtg Val 330	ggc Gly	gct Ala	gca Ala	cgc Arg	1250
						aac Asn										1298
gac Asp	tcc Ser	aac Asn	ccc Pro	cac His 355	aac Asn	ggt Gly	gcc Ala	atc Ile	aac Asn 360	ttc Phe	gac Asp	aac Asn	atc Ile	ggc Gly 365	tac Tyr	1346
gcc Ala	tgg Trp	att Ile	gcc Ala 370	atc Ile	ttc Phe	cag Gln	gtg Val	atc Ile 375	acg Thr	ctg Leu	gaa Glu	ggc Gly	tgg Trp 380	gtg Val	gac Asp	1394
atc Ile	atg Met	tac Tyr 385	tac Tyr	gtc Val	atg Met	gac Asp	gcc Ala 390	cac His	tca Ser	ttc Phe	tac Tyr	aac Asn 395	ttc Phe	atc Ile	tat Tyr	1442

ttc Phe	atc Ile 400	ctg Leu	ctc Leu	atc Ile	atc Ile	gtg Val 405	ggc Gly	tcc Ser	ttc Phe	ttc Phe	atg Met 410	atc Ile	aac Asn	ctg Leu	tgc Cys	1490
ctg Leu 415	gtg Val	gtg Val	att Ile	gcc Ala	acg Thr 420	cag Gln	ttc Phe	tcg Ser	gag Glu	acg Thr 425	aag Lys	cag Gln	cgg Arg	gag Glu	agt Ser 430	1538
cag Gln	ctg Leu	atg Met	cgg Arg	gag Glu 435	cag Gln	cgg Arg	gca Ala	cgc Arg	cac His 440	ctg Leu	tcc Ser	aac Asn	gac Asp	agc Ser 445	acg Thr	1586
ctg Leu	gcc Ala	agc Ser	ttc Phe 450	tcc Ser	gag Glu	cct Pro	ggc	agc Ser 455	tgc Cys	tac Tyr	gaa Glu	gag Glu	ctg Leu 460	ctg Leu	aag Lys	1634
tac Tyr	gtg Val	ggc Gly 465	cac His	ata Ile	ttc Phe	cgc Arg	atc Ile 470	gtg Val	gac Asp	agc Ser	aag Lys	tac Tyr 4 <b>7</b> 5	ttc Phe	agc Ser	cgt Arg	1682
ggc Gly	atc Ile 480	atg Met	atg Met	gcc Ala	atc Ile	ctt Leu 485	gtc Val	aac Asn	acg Thr	ctg Leu	agc Ser 490	atg Met	ggc Gly	gtg Val	gag Glu	1730
tac Tyr 495	cat His	gag Glu	cag Gln	ccc Pro	gag Glu 500	gag Glu	ctg Leu	act Thr	aat Asn	gct Ala 505	ctg Leu	gag Glu	atc Ile	agc Ser	aac Asn 510	1778
atc Ile	gtg Val	ttc Phe	acc Thr	agc Ser 515	atg Met	ttt Phe	gcc Ala	ctg Leu	gag Glu 520	atg Met	ctg Leu	ctg Leu	aag Lys	ctg Leu 525	ctg Leu	1826
gcc Ala	tgc Cys	ggc Gly	cct Pro 530	ctg Leu	ggc Gly	tac Tyr	atc Ile	cgg Arg 535	aac Asn	ccg Pro	tac Tyr	aac Asn	atc Ile 540	ttc Phe	gac Asp	1874
ggc Gly	atc Ile	atc Ile 545	Val	gtc Val	atc Ile	agc Ser	gtc Val 550	tgg Trp	gag Glu	atc Ile	gtg Val	999 Gly 555	cag Gln	gcg Ala	gac Asp	1922
ggt Gly	ggc Gly 560	ttg Leu	tct Ser	gtg Val	ctg Leu	cgc Arg 565	acc Thr	ttc Phe	cgg Arg	ctg Leu	ctg Leu 570	cgt Arg	gtg Val	ctg Leu	aag Lys	1970
ctg Leu 575	Val	Arg	Phe	ctg Leu	Pro	Ala	Leu	Arq	cgc Arg	Gln	Leu	gtg Val	gtg Val	ctg Leu	gtg Val 590 ·	2018
aag Lys	acc Thr	atg Met	gac Asp	aac Asn 595	gtg Val	gct Ala	acc Thr	ttc Phe	tgc Cys 600	acg Thr	ctg Leu	ctc Leu	atg Met	ctc Leu 605	ttc Phe	2066
att Ile	ttc Phe	atc Ile	ttc Phe 610	agc Ser	atc Ile	ctg Leu	ggc Gly	atg Met 615	cac His	ctt Leu	ttc Phe	ggc Gly	tgc Cys 620	aag Lys	ttc Phe	2114
agc	ctg	aag	aca	gac	acc	gga	gac	acc	gtg	cct	gac	agg	aag	aac	ttc	2162

Ser	Leu ·	Lys 625	Thr	Asp	Thr	Gly	Asp 630	Thr	Val	Pro	Asp	Arg 635	Lys ·	Asn	Phe	4.°
gac Asp	tcc Ser 640	ctg Leu	ctg Leu	tgg Trp	gcc Ala	atc Ile 645	gtc Val	acc Thr	gtg Val	ttc Phe	cag Gln 650	Ile	ctg Leu	acc Thr	cag Gln	2210
gag Glu 655	gac Asp	tgg Trp	aac Asn	gtg Val	gtc Val 660	ctg Leu	tac Tyr	aac Asn	ggc Gly	atg Met 665	gcc Ala	tcc Ser	acc Thr	tcc Ser	tcc Ser 670	2258
tgg Trp	gcc Ala	gcc Ala	ctc Leu	tac Tyr 675	ttc Phe	gtg Val	gcc Ala	ctc Leu	atg Met 680	acc Thr	ttc Phe	ggc Gly	aac Asn	tat Tyr 685	gtg Val	2306
ctc Leu	ttc Phe	aac Asn	ctg Leu 690	ctg Leu	gtg Val	gcc Ala	atc Ile	ctc Leu 695	gtg Val	gag Glu	ggc	ttc Phe	cag Gln 700	gcg Ala	gag Glu	2354
ggc Gly	gat Asp	gcc Ala 705	Asn	aga Arg	tcc Ser	gac Asp	acg Thr 710	gac Asp	gag Glu	gac Asp	aag Lys	acg Thr 715	tcg Ser	gtc Val	cac His	2402
ttc Phe	gag Glu 720	gag Glu	gac Asp	ttc Phe	cac His	aag Lys 725	ctc Leu	aga Arg	gaa Glu	ctc Leu	cag Gln 730	acc Thr	aca Thr	gag Glu	ctg Leu	2450
aag Lys 735	atg Met	tgt Cys	tcc Ser	ctg Leu	gcc Ala 740	gtg Val	acc	ccc Pro	aac Asn	999 Gly 745	cac His	ctg Leu	gag Glu	gga Gly	cga Arg 750	2498
ggc Gly	agc Ser	ctg Leu	tcc Ser	cct Pro 755	ccc Pro	ctc Leu	atc Ile	atg Met	tgc Cys 760	aca Thr	gct Ala	gcc Ala	acg Thr	ccc Pro 765	atg Met	2546
cct Pro	acc Thr	ccc Pro	aag Lys 770	agc Ser	tca Ser	cca Pro	ttc Phe	ctg Leu 775	gat Asp	gca Ala	gcc Ala	ccc Pro	agc Ser 780	ctc Leu	cca Pro	2594
gac Asp	tct Ser	cgg Arg 785	Arg	ggc Gly	agc Ser	agc Ser	agc Ser 790	tcc Ser	ggg Gly	gac Asp	ccg Pro	cca Pro 795	ctg Leu	gga Gly	gac Asp	2642
cag Gln	aag Lys 800	cct Pro	ccg Pro	gcc Ala	agc Ser	ctc Leu 805	cga Arg	agt Ser	tct Ser	ccc Pro	tgt Cys 810	gcc Ala	ccc Pro	tgg Trp	ggc Gly	2690
ccc Pro 815	agt Ser	ggc	gcc Ala	tgg Trp	agc Ser 820	agc Ser	cgg Arg	cgc Arg	tcc Ser	agc Ser 825	tgg Trp	agc Ser	agc Ser	ctg Leu	ggc Gly 830	2738
cgt Arg	gcc Ala	ccc	agc Ser	ctc Leu 835	aag Lys	cgc Arg	cgc Arg	ggc Gly	cag Gln 840	tgt Cys	Gly 999	gaa Glu	cgt Arg	gag Glu 845	tcc Ser	2786
ctg Leu	ctg Leu	Ser	ggc Gly 850	gag Glu	ggc Gly	aag Lys	ggc	agc Ser 855	acc Thr	gac Asp	gac Asp	gaa Glu	gct Ala 860	gag Glu	gac Asp	2834

ggc Gly	agg Arg	gcc Ala 865	gcg Ala	ccc Pro	ggg Gly	ccc Pro	cgt Arg 870	gcc Ala	acc Thr	cca Pro	ctg Leu	cgg Arg 875	cgg Arg	gcc Ala	gag Glu	2882
tcc Ser	ctg Leu 880	gac Asp	cca Pro	cgg Arg	ccc Pro	ctg Leu 885	cgg Arg	ccg Pro	gcc Ala	gcc Ala	ctc Leu 890	ccg Pro	cct Pro	acc Thr	aag Lys	2930
tgc Cys 895	cgc Arg	gat Asp	cgc Arg	gac Asp	999 Gly 900	cag Gln	gtg Val	gtg Val	gcc Ala	ctg Leu 905	ccc Pro	agc Ser	gac Asp	ttc Phe	ttc Phe 910	2978
ctg Leu	cgc Arg	atc Ile	gac Asp	agc Ser 915	cac His	cgt Arg	gag Glu	gat Asp	gca Ala 920	gcc Ala	gag Glu	ctt Leu	gac Asp	gac Asp 925	gac Asp	3026
tcg ( Ser	gag Glu	gac Asp	agc Ser 930	tgc Cys	tgc Cys	ctc Leu	cgc Arg	ctg Leu 935	cat His	aaa Lys	gtg Val	ctg Leu	gag Glu 940	ccc Pro	tac Tyr	3074
aag Lys	ccc Pro	cag Gln 945	tgg Trp	tgc Cys	cgg Arg	agc Ser	cgc Arg 950	gag Glu	gcc Ala	tgg Trp	gcc Ala	ctc Leu 955	tac Tyr	ctc Leu	ttc Phe	3122
tcc Ser	cca Pro 960	cag Gln	aac Asn	cgg Arg	ttc Phe	cgc Arg 965	gtc Val	tcc Ser	tgc Cys	cag Gln	aag Lys 970	gtc Val	atc Ile	aca Thr	cac His	3170
aag Lys 975	atg Met	ttt Phe	gat Asp	cac His	gtg Val 980	gtc Val	ctc Leu	gtc Val	ttc Phe	atc Ile 985	ttc Phe	ctc Leu	aac Asn	tgc Cys	gtc Val 990	3218
acc . Thr	atc Ile	gcc Ala	ctg Leu	gag Glu 995	agg Arg	cct Pro	gac Asp	Ile	gac Asp 1000	ccc Pro	ggc Gly	agc Ser	Thr	gag Glu L005	cgg Arg	3266
gtc Val	ttc Phe	Leu	agc Ser 1010	gtc Val	tcc Ser	aat Asn	Tyr	atc Ile 1015	ttc [.] Phe	acg Thr	gcc Ala	Ile	ttc Phe L020	gtg Val	gcg Ala	3314
gag Glu	Met	atg Met .025	gtg Val	aag Lys	gtg Val	Val	gcc Ala 1030	ctg Leu	gjå aaa	ctg Leu	Leu	tcc Ser 1035	ggc Gly	gag Glu	cac His	3362
gcc Ala 1	tac Tyr 040	ctg Leu	cag Gln	agc Ser	Ser	tgg Trp L045	aac Asn	ctg Leu	ctg Leu	Asp	999 Gly L050	ctg Leu	ctg Leu	gtg Val	ctg Leu	3410
gtg Val 1055	Ser	ctg Leu	gtg Val	Asp	att Ile 1060	gtc Val	gtg Val	gcc Ala	Met	gcc Ala 1065	tcg Ser	gct Ala	ggt Gly	Gly	gcc Ala 1070	3458
aag Lys	atc Ile	ctg Leu	Gly	gtt Val 1075	ctg Leu	cgc Arg	gtg Val	Leu	cgt Arg .080	ctg Leu	ctg Leu	cgg Arg	Thr	ctg Leu 1085	cgg Arg	3506
cct	cta	agg	gtc	atc	agc	cgg	gcc	ccg	ggc	ctc	aag	ctg	gtg	gtg	gag	3554

Pro	Leu	Arg	Val 1090	Ile	Ser	Arg	Ala	Pro 1095	Gly	Leu	Lys		Val		Glu	
acg Thr	Leu	ata Ile 1105	tcg Ser	tcg Ser	ctc Leu	Arg	ccc Pro 1110	att Ile	Gly 999	aac Asn	Ile	gtc Val 1115	ctc Leu	atc Ile	tgc Cys	3602
Cys	gcc Ala 1120	ttc Phe	ttc Phe	atc Ile	Ile	ttt Phe 1125	Gly	atc Ile	ttg Leu	Gly	gtg Val 1130	cag Gln	ctc Leu	ttc Phe	aaa Lys	3650
999 Gly 113	Lys	ttc Phe	tac Tyr	Tyr	tgc Cys 1140	gag Glu	ggc Gly	ccc Pro	Asp	acc Thr 1145	agg Arg	aac Asn	atc Ile	Ser	acc Thr 1150	3698
aag Lys	gca Ala	cag Gln	Cys	cgg Arg 1155	gcc Ala	gcc Ala	cac His	tac Tyr	cgc Arg 1160	tgg Trp	gtg Val	cga Arg	Arg	aag Lys 1165	tac Tyr	3746
aac Asn	ttc Phe	Asp	aac Asn 1170	ctg Leu	ggc Gly	cag Gln	Ala	ctg Leu 1175	atg Met	tcg Ser	ctg Leu	Phe	gtg Val 1180	ctg Leu	tca Ser	3794
tcc Ser	Lys	gat Asp 1185	gga Gly	tgg Trp	gtg Val	Asn	atc Ile 1190	atg Met	tac Tyr	gac Asp	Gly	ctg Leu 195	gat Asp	gcc Ala	gtg Val	3842
GIY	gtc Val 1200	gac Asp	cag Gln	cag Gln	Pro	gtg Val 1205	cag Gln	aac Asn	cac His	Asn	ccc Pro 1210	tgg Trp	atg Met	ctg Leu	ctg Leu	3890
tac Tyr 1215	Phe	atc Ile	tcc Ser	Phe	ctg Leu 1220	ctc Leu	atc Ile	gtc Val	Ser	ttc Phe 1225	ttc Phe	gtg Val	ctc Leu	Asn	atg Met 1230	3938
ttc Phe	gtg Val	ggc Gly	Val	gtg Val L235	gtc Val	gag Glu	aac Asn	ttc Phe 1	cac His 240	aag Lys	tgc Cys	cgg Arg	Gln	cac His L245	cag Gln	3 <b>98</b> 6
gag Glu	gcg Ala	Glu	gag Glu 1250	gcg Ala	cgg Arg	cgg Arg	Arg	gag Glu L255	gag Glu	aag Lys	cgg Arg	Leu	cgg Arg 1260	cgc Arg	cta Leu	4034
gag Glu	Arg	agg Arg 265	cgc Arg	agg Arg	agc Ser	Thr	ttc Phe .270	ccc Pro	agc Ser	cca Pro	Glu	gcc Ala .275	cag Gln	cgc Arg	cgg Arg	4082
Pro	tac Tyr 280	Tyr	gcc Ala	gac Asp	Tyr	tcg Ser .285	ccc Pro	acg Thr	cgc Arg	Arg	tcc Ser 290	att Ile	cac His	tcg Ser	ctg Leu	4130
tgc Cys 1295	Thr	agc Ser	cac His	Tyr	Leu	gac Asp	ctc Leu	ttc Phe	Ile	acc Thr .305	ttc Phe	atc Ile	atc Ile	Cys	gtc Val 310	4178
aac Asn	gtc Val	atc Ile	Thr	atg Met .315	tcc Ser	atg Met	gag Glu	cac His 1	tat Tyr 320	aac Asn	caa Gln	ccc Pro	Lys	tcg Ser .325	ctg Leu	4226

gac gag gcc Asp Glu Ala	ctc aag tad Leu Lys Tyn 1330	tgc aac ta Cys Asn Ty 131	yr Val Phe	acc atc gtg Thr Ile Val 1340	ttt gtc 4274 Phe Val
ttc gag gct Phe Glu Ala 1345	gca ctg aag Ala Leu Lys	ctg gta go Leu Val Al 1350	ca ttt ggg la Phe Gly	ttc cgt cgg Phe Arg Arg 1355	ttc ttc 4322 Phe Phe
			eu Ala Ile	gtg ctg ctg Val Leu Leu 370	
atg ggc atc Met Gly Ile 1375	acg ctg gag Thr Leu Glu 1380	Glu Ile G	ag atg agc lu Met Ser 1385	gcc gcg ctg Ala Ala Leu	ccc atc 4418 Pro Ile 1390
aac ccc acc Asn Pro Thr	atc atc cgc Ile Ile Arc 1395	atc atg co	gc gtg ctt rg Val Leu 1400	cgc att gcc Arg Ile Ala	cgt gtg 4466 Arg Val 1405
			ly Met Arg	gcc ctg ctg Ala Leu Leu 1420	
gtg gtg caa Val Val Gln 1425	gct ctc ccc Ala Leu Pro	cag gtg gg Gln Val Gl 1430	gg aac ctg ly Asn Leu	ggc ctt ctt Gly Leu Leu 1435	ttc atg 4562 Phe Met
ctc ctg ttt Leu Leu Phe 1440	ttt atc tat Phe Ile Tyr	gct gcg ct Ala Ala Le 1445	eu Gly Val	gag ctg ttc Glu Leu Phe 450	ggg agg 4610 Gly Arg
		Asn Pro Cy		ctg agc agg Leu Ser Arg	
				ctg ttc cgc Leu Phe Arg	
Thr Gly Asp			et Lys Asp	acg ctg cgc Thr Leu Arg 1500	
				ccg gcc ctg Pro Ala Leu 1515	
gtc tac ttc Val Tyr Phe 1520	gtg acc tto Val Thr Phe	gtg ctg gt Val Leu Va 1525	al Ala Gln	ttc gtg ctg Phe Val Leu 530	gtg aac 4850 Val Asn
		Met Lys H		gag agc aac Glu Ser Asn	
gca cgg gag	gat gcg gag	ctg gac go	cc gag atc	gag ctg gag	atg gcg 4946

Ala Arg Glu Asp	Ala Glu Leu 1555	Asp Ala Glu 1560		Glu Met Ala 1565
cag ggc ccc ggg Gln Gly Pro Gly 1570	Ser Ala Arg	cgg gtg gac Arg Val Asp 1575	Ala Asp Arg	cct ccc ttg 4994 Pro Pro Leu 1580
ccc cag gag agt Pro Gln Glu Ser 1585	ccg ggc gcc Pro Gly Ala	agg gat gcc Arg Asp Ala 1590	cca aac ctg Pro Asn Leu 1595	gtt gca cgc 5042 Val Ala Arg
aag gtg tcc gtg Lys Val Ser Val 1600	tcc agg atg Ser Arg Met 1605	Leu Ser Leu	ccc aac gac Pro Asn Asp 1610	agc tac atg 5090 Ser Tyr Met
ttc agg ccc gtg Phe Arg Pro Val 1615	gtg cct gcc Val Pro Ala 1620	Ser Ala Pro	cac ccc cgc His Pro Arg 1625	ccg ctg cag 5138 Pro Leu Gln 1630
gag gtg gag atg Glu Val Glu Met	gag acc tat Glu Thr Tyr 1635	ggg gcc ggc Gly Ala Gly 1640	acc ccc ttg Thr Pro Leu	ggc tcc gtt 5186 Gly Ser Val 1645
gcc tct gtg cac Ala Ser Val His 1650	tct ccg ccc Ser Pro Pro	gca gag tcc Ala Glu Ser 1655	Cys Ala Ser	ctc cag atc 5234 Leu Gln Ile 660
cca ctg gct gtg Pro Leu Ala Val 1665	Ser Ser Pro	gcc agg agc Ala Arg Ser 1670	ggc gag ccc Gly Glu Pro 1675	ctc cac gcc 5282 Leu His Ala
ctg tcc cct cgg Leu Ser Pro Arg 1680	ggc aca gcc Gly Thr Ala 1685	cgc tcc ccc Arg Ser Pro	agt ctc agc Ser Leu Ser 1690	cgg ctg ctc 5330 Arg Leu Leu
tgc aga cag gag Cys Arg Gln Glu 1695	gct gtg cac Ala Val His 1700	Thr Asp Ser	ttg gaa ggg Leu Glu Gly 1705	aag att gac 5378 Lys Ile Asp 1710
agc cct agg gac Ser Pro Arg Asp	acc ctg gat Thr Leu Asp 1715	cct gca gag Pro Ala Glu 1720	cct ggt gag Pro Gly Glu	aaa acc ccg 5426 Lys Thr Pro 1725
gtg agg ccg gtg Val Arg Pro Val 1730	Thr Gln Gly	ggc tcc ctg Gly Ser Leu 1735	Gln Ser Pro	cca cgc tcc 5474 Pro Arg Ser 740
cca cgg ccc gcc Pro Arg Pro Ala 1745	Ser Val Arg	act cgt aag Thr Arg Lys 1750	cat acc ttc His Thr Phe 1755	gga cag cac 5522 Gly Gln His
tgc gtc tcc agc Cys Val Ser Ser 1760	cgg ccg gcg Arg Pro Ala 1765	gcc cca ggc Ala Pro Gly	gga gag gag Gly Glu Glu 1770	gcc gag gcc 5570 Ala Glu Ala
tcg gac cca gcc Ser Asp Pro Ala 1775	gac gag gag Asp Glu Glu 1780	Val Ser His	atc acc agc lle Thr Ser	tcc gcc tgc 5618 Ser Ala Cys 1790

ccc tgg cag Pro Trp Glr	ccc aca Pro Thr 1795	gcc gag Ala Glu	Pro His	ggc ccc Gly Pro 1800	gaa gcc Glu Ala	tct ccg Ser Pro 1805	gtg 5666 Val
gcc ggc ggc Ala Gly Gly	gag cgg Glu Arg 1810	gac ctg Asp Leu	cgc agg Arg Arg 1815	ctc tac Leu Tyr	Ser Val	gac gct Asp Ala 1820	cag 5714 Gln
ggc ttc ctg Gly Phe Leu 1825	Asp Lys	Pro Gly	cgg gca Arg Ala 1830	gac gag Asp Glu	cag tgg Gln Trp 1835	cgg ccc Arg Pro	tcg 5762 Ser
gcg gag ctg Ala Glu Leu 1840	ggc agc Gly Ser	ggg gag Gly Glu 1845	cct ggg Pro Gly	Glu Ala	aag gcc Lys Ala 1850	tgg ggc Trp Gly	cct 5810 Pro
gag gcc gag Glu Ala Glu 1855	Pro Ala	ctg ggt Leu Gly 1860	gcg cgc Ala Arg	aga aag Arg Lys 1865	aag aag Lys Lys	Met Ser	ccc 5858 Pro L870
ccc tgc ato Pro Cys Ile	tcg gtg Ser Val 1875	gaa ccc Glu Pro	Pro Ala	gag gac Glu Asp 1880	gag ggc Glu Gly	tct gcg Ser Ala 1885	cgg 5906 Arg
ccc tcc gcc Pro Ser Ala	gca gag Ala Glu 1890	ggc ggc	agc acc Ser Thr 1895	aca ctg Thr Leu	Arg Arg	agg acc Arg Thr 1900	ccg 5954 Pro
tcc tgt gag Ser Cys Glu 1905	Ala Thr	Pro His	agg gac Arg Asp 1910	tcc ctg Ser Leu	gag ccc Glu Pro 1915	aca gag Thr Glu	ggc 6002 Gly
tca ggc gcc Ser Gly Ala 1920	ggg ggg Gly Gly	gac cct Asp Pro 1925	gca gcc Ala Ala	Lys Gly	gag cgc Glu Arg 1930	tgg ggc Trp Gly	cag 6050 Gln
gcc tcc tgc Ala Ser Cys 1935	Arg Ala	gag cac Glu His 1940	ctg acc Leu Thr	gtc ccc Val Pro 1945	agc ttt Ser Phe	Ala Phe	gag 6098 Glu L950
ccg ctg gad Pro Leu Asp	ctc ggg Leu Gly 1955	gtc ccc Val Pro	Ser Gly	gac cct Asp Pro 1960	ttc ttg Phe Leu	gac ggt Asp Gly 1965	agc 6146 Ser
cac agt gto His Ser Val	acc cca Thr Pro 1970	Glu Ser	Arg Ala	Ser Ser	tca ggg Ser Gly	Ala Ile	gtg 6194 Val
ccc ctg gaa Pro Leu Glu 1985	Pro Pro	Glu Ser	gag cct Glu Pro 1990	ccc atg Pro Met	ccc gtc Pro Val 1995	ggt gac Gly Asp	ccc 6242 Pro
cca gag aag Pro Glu Lys 2000	agg cgg Arg Arg	ggg ctg Gly Leu 2005	tac ctc Tyr Leu	Thr Val	ccc cag Pro Gln 2010	tgt cct Cys Pro	ctg 6290 Leu
gag aaa cca	ggg tcc	ccc tca	gcc acc	cct gcc	cca ggg	ggt ggt	gca 6338

Glu Lys Pro 2015	o Gly Ser Pi 202		Thr Pro Ala 2025	Pro Gly Gly	y Gly Ala 2030	. •
gat gac cco Asp Asp Pro	gtg tag ct Val 2035	cggggctt gg	gtgeegeee ad	eggetttgg co	cctggggtc	6393
tgggggcccc	gctggggtgg	aggcccaggc	agaaccctgc	atggaccctg	acttgggtcc	6453
cgtcgtgagc	agaaaggccc	ggggaggatg	acggcccagg	ccctggttct	ctgcccagcg	6513
aagcaggagt	agctgccggg	ccccacgagc	ctccatccgt	tctggttcgg	gtttctccga	6573
gttttgctac	cagccgaggc	tgtgcgggca	actgggtcag	cctcccgtca	ggagagaagc	6633
cgcgtctgtg	ggacgaagac	cgggcacccg	ccagagaggg	gaaggtacca	ggttgcgtcc	6693
tttcaggccc	cgcgttgtta	caggacactc	gctgggggcc	ctgtgccctt	gccggcggca	6753
ggttgcagcc	accgcggccc	aatgtcacct	tcactcacag	tctgagttct	tgtccgcctg	6813
tcacgccctc	accaccctcc	ccttccagcc	accacccttt	ccgttccgct	cgggccttcc	6873
cagaagcgtc	ctgtgactct	gggagaggtg	acacctcact	aaggggccga	ccccatggag	6933
taacgcgc						6941

							٤
		•		•			-
* *			•				
			· .				-
	k		d				
			· •				
						•	:
			·	•	•		
				•			
						.,	
				9.		•	
•							
	,						1.5
	•						
·							
							•
*							
			•				
·	• .				3		
			· ·				
	•						

#### WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



# INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/12, C07K 14/705, 16/28, C12N 5/10, G01N 33/68

(11) International Publication Number:

WO 99/28342

(43) International Publication Date:

10 June 1999 (10.06.99)

(21) International Application Number:

PCT/US98/25671

**A3** 

(22) International Filing Date:

3 December 1998 (03.12.98)

(30) Priority Data:

08/984,709 09/188,932 3 December 1997 (03.12.97)

US US

10 November 1998 (10.11.98)

(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Applications

> US Filed on US

08/984,709 (CON) 3 December 1997 (03.12.97)

09/188,932 (CON)

Filed on

10 November 1998 (10.11.98)

(71) Applicant (for all designated States except US): SIBIA NEU-ROSCIENCES, INC. [US/US]; Suite 300, 505 Coast Boulevard South, La Jolla, CA 92037-4641 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): WILLIAMS, Mark [US/US]; 946 Jasmine Court, Carlsbad, CA 92009 (US). STAUDERMAN, Kenneth [US/US]; 3615 Lotus Drive, San Diego, CA 92106 (US). HARPOLD, Michael [US/US]; 1462 Encina Road, Santa Fe, NM 87505-4726 (US). HANS, Michael [DE/US]; 2635 San Clemente Terrace, San Diego, CA 92122 (US). URRUTIA, Arturo [US/US]; 778 Beech Avenue, Chuła Vista, CA 91910 (US). WASH-BURN, Mark, S. [US/US]; 1535 Kings Cross Drive, Cardiff, CA 92007 (US).

- (74) Agent: SEIDMAN, Stephanie, L.; Heller Ehrman White & McAuliffe, Suite 700, 4250 Executive Square, La Jolla, CA 92037 (US).
- (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

#### Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(88) Date of publication of the international search report:

26 August 1999 (26.08.99)

(54) Title: LOW-VOLTAGE ACTIVATED CALCIUM CHANNEL COMPOSITIONS AND METHODS

# Steady-state activation and inactivation



# FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Мопасо	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU ·	Hungary	ML	Mali	TT	-
BJ	Benin	IE	Ireland	MN	Mongolia		Trinidad and Tobago
BR	Brazil	IL	Israel	MR	Mauritania	UA _. UG	Ukraine
BY	Belarus	IS	Iceland	MW	Malawi	US	Uganda
CA	Canada	IT	Italy	MX	Mexico		United States of America
CF	Central African Republic	JP	Japan	NE	Niger	UZ	Uzbekistan
CG	Congo	KE	Kenya	ATT	Netherlands	VN	Viet Nam
CH	Switzerland	KG	Kyrgyzstan	NO NO	,	YU	Yugoslavia
CI	Côte d'Ivoire	KP	Democratic People's	NZ	Norway New Zealand	zw	Zimbabwe
CM	Cameroon	***	Republic of Korea	PL	- · · · · · · · · · · · · · · · · · · ·		
CN	China	KR	Republic of Korea	PT	Poland	•	•
CU	Cuba	KZ	Kazakstan	RO	Portugal		
CZ	Czech Republic	LC	Saint Lucia	_	Romania		
DE	Germany	LI	Liechtenstein	RU	Russian Federation		
DK	Denmark	LK	Sri Lanka	SD	Sudan		
EE	Estonia	LR		SE	Sweden		
EE	Estonia	LK	Liberia	SG	Singapore		

## INTERNATIONAL SEARCH REPORT

PCT/US 98/25671

CLASSIFICATION OF SUBJECT MATTER C 6 C12N15/12 C07K IPC 6 C07K14/705 C07K16/28 C12N5/10 G01N33/68 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 6 C07K C12N Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category ⁴ Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Χ WO 95 04144 A (NEUREX CORP) 1,6,8, 9 February 1995 10,15, 29-38,47 see abstract; claims 1-10 X NOONEY JM (REPRINT) ET AL: "Identifying 1,6 neuronal non-L Ca2+ channels - more than stamp collecting?" TRENDS IN PHARMACOLOGICAL SCIENCES, 10-1997, 18, 363-371, XP002093637 see page 369, right-hand column - page 370, right-hand column Further documents are listed in the continuation of box C. X İΧ Patent family members are listed in annex. Special categories of cited documents: T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled in the art. document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 21 June 1999 06/07/1999 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Gurdjian, D Fax: (+31-70) 340-3016

1

# INTERNATIONAL SEARCH REPORT

Inte. _tional Application No PCT/US 98/25671

C (Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	PCT/US 98/25671
Category `	Citation of document, with indication, where appropriate, of the relevant passages	
	ordinario decidineria with indication, where appropriate, or the relevant passages	Relevant to claim No.
X	ERTEL S I ET AL: "Low-voltage-activated T-type Cachannels" TRENDS IN PHARMACOLOGICAL SCIENCES, vol. 18, no. 2, February 1997, page 37-42 XP004055849 see page 39, left-hand column, paragraph 4 - page 40, middle column, paragraph 1; table 1	1,6
X	DZHURA IO ET AL: "Characterization of hypothalamic low-voltage-activated Ca channels based on their functional expression in Xenopus oocytes." NEUROSCIENCE, FEB 1996, 70 (3) P729-38, XP002093638 UNITED STATES see the whole document	1,6
A	WO 93 04083 A (SALK INST BIOTECH IND) 4 March 1993 see abstract; claims 1-39	1-16, 36-44
Ρ,Χ	CRIBBS LL ET AL: "Cloning and characterization of alphalH from human heart, a member of the T-type Ca2+ channel gene family." CIRC RES, JUL 13 1998, 83 (1) P103-9, XP002093640 UNITED STATES see the whole document	1-16, 36-44
T	WILLIAMS ME ET AL: "Structure and functional characterization of a novel human low-voltage activated calcium channel."  J NEUROCHEM, FEB 1999, 72 (2) P791-9, XP002106656 UNITED STATES see the whole document	1-16, 36-44

1

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

# INTERNATIONAL SEARCH REPORT

information on patent family members

Inte. conal Application No PCT/US 98/25671

Patent document cited in search repo	rt	Publication date		Patent family member(s)	Publication date
WO 9504144	A	09-02-1995	EP JP	0778890 A 9501051 T	18-06-1997 04-02-1997
WO 9304083	A	04-03-1993	US AU CA EP JP US US US	5429921 A 677571 B 2495792 A 2113203 A 0598840 A 6509717 T 5874236 A 5846757 A 5851824 A 5876958 A 5792846 A	04-07-1995 01-05-1997 16-03-1993 04-03-1993 01-06-1994 02-11-1994 23-02-1999 08-12-1998 22-12-1998 02-03-1999 11-08-1998

Form PCT/ISA/210 (patent family annex) (July 1992)

* *								•
	79.	•						; ;
÷				•				•
	•							
		•	9.					
			40	,	s.			
	÷							
, -5.	· <u>\$</u>					44.5		
				2				
		4						
								•
,								