Databázové systémy a metody zpracování dat

4.přednáška

Dimenzionální modelování

- Dimenzionální modelování je rozdílné od klasického ERD datového modelování
- ERD
 - Normalizace
 - Odstranění redundance
 - Málo srozumitelné člověku
 - Optimalizován na vkládání dat a update
- Dimenzionální modelování
 - Důraz na srozumitelnost pro uživatele
 - Dosaženo standardní strukturou fakta a dimenze
 - Základní přístup denormalizace, redundance
 - Optimalizován na vyhledávání dat a složité analýzy
 - Základy položeny v 60. tých letech (General Mills and Dartmount University, Nielson Marketing Research)

Dimenzionální modelování

- Výhody dimenzionálního modelu
 - Standardní navazují na to OLAP aplikace, tvůrci reportingových aplikací, ...
 - Dobře rozšiřitelný (bez dopadu na aplikace)
 - Přidání nových fakt se stejnou granualitou
 - Přidání dimenze
 - Přidání atributu dimenze
 - Standardní způsoby modelování reálných problémů
 - SCI
 - Sledování událostí (Factless fact table)
 - · Heterogenní produkty
 - ...

Dimenzionální modelování

- Základní přístup k modelování dat v datovém skladě
- Oproti klasickému relačnímu modelu dochází k denormalizaci
- Proč dimenzionální modelování:
 - Přehledné, uživatelsky pochopitelné
 - Důraz na obchodní logiku
 - Denormalizace
 - Menší počet tabulek, spojení
 - Rychlejší odezva
 - Většina údajů v jedné tabulce
 - Indexy

Dimenzionální modelování • Základní myšlenka multidimenzionálního modelování Region Prodej Rategorie produktu Typ produktu Produktu A dimenze

Základní typy tabulek

- V datovém skladě se vyskytují dva hlavní typy tabulek:
 - Faktové tabulky
 - Dimenzionální tabulky

Dimenzionální modelování

- Nejužitečnější fakta jsou často numerická a aditivní
- Dimenze tvoří vstupní bod do DW
 - Omezení v dotazech
 - Hlavičky řádků v reportech

Dimenzionální tabulky

- Dimenizonální tabulky zachycují úhel pohledu na sledované ukazatele
- Představují vlastně "číselníky"
- Typické dimenze jsou:
 - Čas
 - Zákazník
 - Produkt
 - Prodejna
 - Smlouva

Dimenzionální tabulky

- Každá dimenzionální tabulka obsahuje jeden jednoznačný identifikátor a popisné atributy
- Dimenzionální tabulka je denormalizovaná

D_CAS

ID_Cas (*)

Datum

Rok

Kvartal

Mesic

Den

Vikend

...

D_Produkt
ID_Produkt (*)
Nazev
Kategorie
Subkategorie
...

D_Zakazník
ID_Zakazník (*)
Jmeno
Pohlavi
Rok narození
Země
Kraj
Okres
Obec
...

Dimensionální tabulky

- Atributy v dimenzi:
 - Hierarchické (kategorie subkategorie – produkt)
 - Nehierarchické (barva_produktu)
- Výstupy většinou kombinují oba typy atributů
- Muže existovat i více hierarchií

Hierarchie v dimenzi

- Dimenzionální tabulka v sobě nese různé hierarchie vztahy 1:M mezi atributy dimenze
- Hierarchie mají vždy stromovou strukturu
- Příklady hierarchie:
 - Rok -> Kvartál -> Měsíc -> Den
 - Rok -> Týden -> Den
 - Země -> Kraj -> Okres -> Obec
 - Kategorie produktu -> Sub kategorie -> Produkt

Hierarchie – zápis

• Způsob zápisu hierarchie v dimenzi:

Dimensionální modelování

- Dimensionální atributy jsou důležité (vstupní brána do DW)
- Mají být
 - Popisné
 - Nepoužívat kódy
 - Bez chybějících (null) hodnot nahradit např. Neuvedeno
 - Zajištění kvality (bez překlepů, nemožných hodnot, zastaralé, sirotci...)
 - Standardizace (např. standardní zápis adresy)

Výběr dimenzí

- Počet dimenzí by se měl pohybovat okolo 5 až 15
- Méně dimenzí něco chybí, zda nelze dodat:
 - Kauzální dimenzi (promoce, kontrakt, počasí, podmínky obchodu, ...)
 - Další časové dimenze (hlavně u faktových tabulek zachycující položky celku (např. objednávka -> objednané produkty)
 - Dimenzi ve více rolích (např. místo odkud se volalo, kam se volalo)
 - Status dimenzi označující současný status dimenze nebo snímku (např. nový zákazník)
 - Auditní dimenzi
 - Degenerovanou dimenzi
 - Junk dimenzi
- Přidání dimenzí často nezmění granualitu původní faktové tabulky
 - Lze přidat i do provozujícího datového skladu

Výběr dimenzí

- Více jak 20 až 30 dimenzí ukazuje na možnost jejich spojení
 - Nejsou nezávislé spojit do jedné
 - Obchodně patří k sobě (např. značka, kategorie, oddělení)
 - Korelace (viz –Junk dimenze)

Faktové tabulky

- Faktové tabulky slouží k uchování informací o sledovaných ukazatelích
- Mezi typické ukazatele lze zařadit:
 - Počet prodaných kusů
 - Hodnotu prodaného zboží (v Kč)
 - Počet zákazníků
 - Počet smluv
 - Výše škody
 - Délka hovoru
- Z hlediska datového se většinou jedná o číselné údaje, které lze agregovat

Faktové tabulky

- Granualita faktové tabulky: míra podrobnosti sledovaných ukazatelů, jejich přesný význam
 - Např.: počet prodaných kusů za den daného zboží v dané prodejně
- Přiřazený dimenzí:
 - Popisy, které nabývají jedné hodnoty pro jeden záznam ve faktové tabulce (s danou granualitou)
 - Při více hodnotách (M:N vztah) řešit přes pomocné tabulky

Typy ukazatelů

- Ukazatele máme tří typů:
 - Aditivní agregovatelné (sčítáním) přes všechny dimenze (např. prodej v ks)
 - Semiaditivní agregovatelné (sčítáním) jen přes některé dimenze (např. stav zásob v ks)
 - Nutné agregovat jinými agregačními funkcemi např. průměr
 - POZOR nelze vždy použít funkci AVG v SQL problém prázdných období (kdy nebyla transakce)
 - Neaditivní neagregovatelné (např. některá textová fakta počasí při nehodě)

Faktová tabulka

- Z datového hlediska:
 - Faktová tabulka obsahuje cizí klíče dimenzionálních tabulek
 - Tyto cizí klíče tvoří primární klíč faktové tabulky
 - Navíc obsahuje faktová tabulka jednotlivé ukazatele
- Kimball's law: Každý vztah M:N je faktová tabulka, z definice

Typy faktových tabulek

- Transakční
 - Zachycuje jednotlivé transakce, jednotlivé akce v daný časový okamžik
 - Zachycuje jen transakce jež se udály (jestliže zákazník nic nekoupil nebude v faktové tabulce)
 - Obvyklý fakt: Množství (v dané transakci)
 - Obvykle se po naplnění dále neprovádí update
 - Ukazuje chování, vývoj v čase
- Snímková
 - Zachycuje stav k určitému časovému okamžiku (periodicky)
 - Většinou měsíční
 - Obvykle existuje jeden záznam pro všechny kombinace významných dimenzí
 - Sledovaná fakta často složité výpočty, někdy vhodné přebírat z OLTP systémů (již ověřená čísla)
 - Umožňuje efektivně generovat výstupní reporty s často složitě vypočitatelnými ukazateli
 - Není efektivní je generovat přímo z transakcí

Typy faktových tabulek

- Akumulovaná
 - · Zachycuje stav v daný okamžik
 - Většinou obsahuje několik časových dimenzí (kdy byl záznam naposledy updatován, datum jednotlivých sledovaných fází)
 - Řada obsahuje "null" hodnoty, které jsou postupně vyplňovány
 - Potřeba umělých klíčů v časové dimenzi na hodnotu "Dosud neznámo"
 - Dochází k update v faktové tabulce při změně stavu
 - Pro sledovanou událost jeden záznam ve faktové tabulce, který je postupně updatován
 - Vhodná tam kde sledovaná událost má daný čas trvání

Typy faktových tabulek

- Vhodné začít s snímkovou nebo akumulovanou fakt tabulkou
- Postupně lze přidat i transakční
 - Pro pokročilé analýzy chování

Dimensionální modelování

- Čtyři kroky tvorby faktové tabulky
 - Výběr datového tržiště
 - Jeden datový zdroj vs. Více
 - Začít s řešením kde jeden datový zdroj
 - Určení granuality dat
 - Měla by být co nejdetailnější
 - Potřeba přesně vydefinovat, určuje co bude v fakt tabulce uloženo
 - Určení typy faktové tabulky
 - Výběr dimenzí
 - Vychází z určení granuality plus další dimenze vyhovující navržené granualitě
 - Granualita dimenze nemůže být nižší než granualita faktové tabulky
 - Určení faktů (ukazatelů)
 - Vychází z granuality a typu faktové tabulky
 - Ukazatele s rozdílnou granualitou vytvořené např. z důvodu urychlení výpočtu je třeba uložit do zvláštní faktové tabulky (např. součty pro výpočet procent z detailních ukazatelů, ...)

Různá granualita fakt

- Fakta s různou granualitou musí být uloženy v různých faktových tabulkách
- Často je potřeba alokovat fakta s vyšší granualitou na nižší pro možnost srovnaní
 - Např. alokovat náklady objednávky na jednotlivé produkty pro porovnání s výnosy
 - Viz dále Parent-child modelování

Uspořádání tabulek

- Existují dvě základní schémata uspořádání faktových a dimenzionálních tabulek:
 - Hvězda
 - Sněhová vločka

Výhody/Nevýhody uspořádání

- Hvězda
 - Preferované uspořádání
 - Přehlednější uspořádání z hlediska uživatele
 - Snadněji udržovatelé
 - Méně spojení než u vločky
- Vločka
 - · Méně přehledné
 - Náročnější na údržbu
 - Nutné pro napojitelnost dalších faktových tabulek (BUS architektura)

Dimensionální modelování

- Doporučuje se používat star schéma
 - Snowflake není tak srozumitelné uživateli
 - Na druhou stranu je někdy vhodné při napojení jiných faktových tabulek s rozdílnou granualitou
 - Použijeme-li fyzicky snowflake je vhodné odstínit uživatele pomocí views
 - Snowflake ušetří trochu místa ale většinou zanedbatelné (hlavní velikost je ve faktech)
 - Existují výjimky extra velké dimenze (např. zakaznici)

Kdy Snowflakes

- Před uživatelem je možné Snowflakes skrýt za pomoci views
 - Fyzický design řízen rychlostí, efektivností
 - Logický design řízen uživatelskou přívětivostí, jednoduchostí
- Např. dimenze zákazník
 - Klasický zákazník (20%)
 - Návštěvník www (80%)
- Společné atributy:
 - Shopper surrogate key
 - Shopper ID (fixed ID for each physical shopper)
 - Recency
 - Frequency
- Klasický zákazník
 - Five name attributes
 - 10 location attributes
 - 10 behavior attributes
 - 25 demographic attributes.

Kdy Snowflakes

- Finanční produkty
 - Mnoho produktů, některé atributy společné, jiné rozdílné
 - Jedna dimenze mnoho null hodnot v nevyplněných atributech
- Snowflake key lze nahradit umělým klíčem společným přes všechny tabulky (viz unity dimension)
- Uživatele lze odstínit pomocí views

Kdy Snowflakes

- Časová dimenze různé kalendáře v různých organizacích
- Pozor:
 - Subdimenze má větší kardinality než dimenze
 - Primární klíč subdimenze je snowflake_key a Organization
 - Potřeba specifikovat organizaci při spojení tabulek (pak 1:1)

