Методы машинного обучения. Байесовская теория классификации

Bopoнцов Константин Вячеславович www.MachineLearning.ru/wiki?title=User:Vokov вопросы к лектору: voron@forecsys.ru

материалы курса: github.com/MSU-ML-COURSE/ML-COURSE-23-24 орг.вопросы по курсу: ml.cmc@mail.ru

ВМК МГУ • 7 ноября 2023

Содержание

- 1 Байесовская теория классификации
 - Задача минимизации вероятности ошибки
 - Оптимальный байесовский классификатор
 - Задачи эмпирического оценивания
- Наивный байесовский классификатор
 - Гипотеза о независимости признаков
 - Линейный наивный байесовский классификатор
 - Задачи классификации текстов
- Обзор байесовских классификаторов
 - Метод парзеновского окна
 - Нормальный дискриминантный анализ
 - Сеть радиальных базисных функций

Вероятностная постановка задачи классификации

$$X$$
 — объекты, Y — классы, $X \times Y$ — в.п. с плотностью $p(x,y)$

Дано:
$$X^{\ell} = (x_i, y_i)_{i=1}^{\ell} \sim p(x, y)$$
 — простая выборка (i.i.d.)

Найти: $a: X \to Y$ с минимальной вероятностью ошибки

Пусть известна совместная плотность

$$p(x,y) = p(x) P(y|x) = P(y)p(x|y)$$

$$P(y)$$
 — априорная вероятность класса y

$$p(x|y)$$
 — функция правдоподобия класса у

$$\mathsf{P}(y|x)$$
 — апостериорная вероятность класса y

По формуле Байеса:
$$P(y|x) = \frac{P(y)p(x|y)}{p(x)}$$

Байесовский классификатор:

$$a(x) = \arg\max_{y \in Y} P(y|x) = \arg\max_{y \in Y} P(y)p(x|y)$$

Классификация по максимуму функции правдоподобия

Частный случай: $a(x) = \arg\max_{y \in Y} p(x|y)$ при равных P(y)

Два подхода к обучению классификации

- Дискриминативный (discriminative): x неслучайные векторы P(y|x,w) модель классификации Примеры: LR, GLM, SVM, RBF
- **Генеративный** (generative): $x \sim p(x|y)$ случайные векторы $p(x|y,\theta)$ модель генерации данных **Примеры:** NB, PW, FLD, RBF

Байесовские модели классификации — генеративные:

- моделируют форму классов не только вдоль границы, но и на всём пространстве, что избыточно для классификации
- требуют больше данных для обучения
- более устойчивы к шумовым выбросам

Оптимальный байесовский классификатор

Теорема

Пусть P(y) и p(x|y) известны, $\lambda_y \geqslant 0$ — потеря от ошибки на объекте класса $y \in Y$. Тогда минимум среднего риска

$$R(a) = \sum_{y \in Y} \lambda_y \int [a(x) \neq y] p(x, y) dx$$

достигается оптимальным байесовским классификатором

$$a(x) = \arg\max_{y \in Y} \lambda_y P(y) p(x|y)$$

Замечание 1: после подстановки эмпирических оценок $\hat{P}(y)$ и $\hat{p}(x|y)$ байесовский классификатор уже не оптимален

Замечание 2: задача оценивания плотности распределения — более сложная, чем задача классификации

Оптимальный байесовский классификатор (обобщение)

Теорема

Пусть $\mathsf{P}(y)$ и p(x|y) известны, $\lambda_{ys}\geqslant 0$ — потеря от ошибки на объекте класса $y\in Y$, когда a(x)=s.

Тогда минимум среднего риска

$$R(a) = \sum_{y \in Y} \sum_{s \in Y} \lambda_{ys} \int [a(x) = s] p(x, y) dx$$

достигается оптимальным байесовским классификатором

$$a(x) = \arg\min_{s \in Y} \sum_{y \in Y} \lambda_{ys} P(y) p(x|y)$$

Предыдущая теорема — частный случай при $\lambda_{yy}=0$ и $\lambda_{ys}\equiv\lambda_y$

Задачи эмпирического оценивания

Частотная оценка априорной вероятности:

$$\hat{P}(y) = \ell_y / \ell, \quad \ell_y = |X_y|, \quad X_y = \{x_i \in X \colon y_i = y\}$$

Оценки плотности $\hat{p}(x|y)$ по i.i.d. выборкам $X_{v}, y \in Y$:

Параметрическая оценка плотности:

$$\hat{p}(x|y) = \varphi(x, \theta_y); \qquad \theta_y = \arg\max_{\theta} \sum_{x_i \in X_y} \log \varphi(x_i, \theta)$$

Непараметрическая оценка плотности:

$$\hat{p}(x|y) = \sum_{x_i \in X_V} \frac{1}{\ell V_h} K\left(\frac{\rho(x,x_i)}{h}\right)$$

Восстановление смеси распределений:

$$\hat{p}(x|y) = \sum_{j=1}^{k} w_{yj} \varphi(x_i, \theta_{yj}); \quad (w_y, \theta_y) = \arg \max_{w, \theta} \sum_{x_i \in X_y} \log \hat{p}(x|y)$$

Наивный байесовский классификатор (Naïve Bayes)

Наивное предположение:

признаки $f_j: X \to D_j$ — независимые случайные величины с плотностями распределения, $p_i(\xi|y)$, $y \in Y$, $j = 1, \ldots, n$

Тогда функции правдоподобия классов представимы в виде произведения одномерных плотностей по признакам, $x^j \equiv f_i(x)$:

$$p(x|y) = p_1(x^1|y) \cdots p_n(x^n|y), \quad x = (x^1, \dots, x^n), \quad y \in Y$$

Прологарифмировав под argmax, получим классификатор

$$a(x) = \arg\max_{y \in Y} \left(\ln \lambda_y \hat{P}(y) + \sum_{j=1}^n \ln \hat{p}_j(x^j|y) \right)$$

Восстановление n одномерных плотностей

— намного более простая задача, чем одной *п*-мерной

Признаки с плотностями экспоненциального вида

Предположение: одномерные плотности экспоненциальны:

$$p(x^{j}|y;\theta_{yj},\varphi_{yj}) = \exp\left(\frac{x^{j}\theta_{yj} - c(\theta_{yj})}{\varphi_{yj}} + h(x^{j},\varphi_{yj})\right)$$

где $heta_{yj},\; arphi_{yj}$ — параметры, $c(heta),\; h(x,arphi)$ — параметры-функции.

Задача максимизации log-правдоподобия

$$L(\theta,\varphi) = \sum_{j=1}^{n} \sum_{y \in Y} \left(\sum_{x_i \in X_y} \ln p(x_i^j | y; \theta_{yj}, \varphi_{yj}) \right) \to \max_{\theta,\varphi}$$

распадается на независимые подзадачи для каждого (y,j):

$$\sum_{\mathbf{x}:\in X_{t}} \left(\frac{\mathbf{x}^{j} \theta_{yj} - c(\theta_{yj})}{\varphi_{yj}} + h(\mathbf{x}^{j}, \varphi_{yj}) \right) \to \max_{\theta_{yj}, \varphi_{yj}}$$

По $heta_{vi}$ задача решается аналитически, по $arphi_{vi}$ — не всегда

Линейный наивный байесовский классификатор

Решение θ_{yj} — функция связи $g(\mu) = [c']^{-1}(\mu)$ от $\mu = \hat{\mathsf{E}}(x^j|y)$:

$$\frac{\partial L}{\partial \theta_{yj}} = 0 \quad \Rightarrow \quad c'(\theta_{yj}) = \sum_{\mathbf{x}: \in X_{v}} \frac{x_{i}^{j}}{|X_{y}|} \equiv \bar{x}_{yj} \quad \Rightarrow \quad \theta_{yj} = [c']^{-1}(\bar{x}_{yj})$$

Решение φ_{yj} не всегда выражается из уравнения $\frac{\partial L}{\partial \varphi_{yj}}=0$, но для распределений Пуассона, Бернулли, биномиального $\varphi_{yj}=1$; для гауссовского распределения (и если φ_{yj} не зависит от y):

$$\frac{\partial L}{\partial \varphi_{yj}} = 0 \quad \Rightarrow \quad \varphi_{yj} = \frac{1}{\ell} \sum_{i=1}^{\ell} (x_i^j - \bar{x}_{y_i j})^2$$

В итоге Naïve Bayes оказывается линейным классификатором:

$$a(x) = \arg\max_{y \in Y} \left(\sum_{j=1}^{n} x^{j} \frac{\frac{\theta_{yj}}{\varphi_{yj}}}{\frac{\varphi_{yj}}{w_{yj}}} + \ln(\lambda_{y} P(y)) - \sum_{j=1}^{n} \frac{c(\theta_{yj})}{\varphi_{yj}} + \underbrace{h(x^{j}, \varphi_{yj})}_{\text{He зависит}} \right)$$

Напоминание. Примеры экспоненциальных распределений

 μ — параметр матожидания, $heta=g(\mu)$ — функции связи:

$$\begin{array}{ll} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) &= \exp\left(\frac{x\mu-\frac{1}{2}\mu^2}{\sigma^2} - \frac{x^2}{2\sigma^2} - \frac{1}{2}\ln(2\pi\sigma^2)\right) \\ \mu^x(1-\mu)^{1-x} &= \exp\left(x\ln\frac{\mu}{1-\mu} + \ln(1-\mu)\right) \\ C_k^x\left(\frac{\mu}{k}\right)^x\left(1-\frac{\mu}{k}\right)^{k-x} &= \exp\left(x\ln\frac{\mu}{k-\mu} + k\ln(k-\mu) + \ln C_k^x - k\ln k\right) \\ \frac{1}{x!}e^{-\mu}\mu^x &= \exp\left(x\ln(\mu) - \mu - \ln x!\right) \end{array}$$

распределение	значения	$c(\theta)$	$c'(\theta)$	$[c']^{-1}(\mu)$	φ	$h(x,\varphi)$
нормальное	\mathbb{R}	$\frac{1}{2}\theta^2$	θ	μ	σ^2	$-\frac{x^2}{2\varphi}-\frac{\ln(2\pi\varphi)}{2}$
Бернулли	$\{0, 1\}$	$\ln(1+e^{ heta})$	$\frac{1}{1+e^{-\theta}}$	In $\frac{\mu}{1-\mu}$	1	0
биномиальное	$\{0,\ldots,k\}$	$k \ln \frac{1+e^{\theta}}{k}$	$\frac{k}{1+e^{-\theta}}$	In $\frac{\mu}{k-\mu}$	1	$\ln C_k^x - k \ln k$
Пуассона	$\{0,1,\dots\}$	e^θ	\boldsymbol{e}^{θ}	$\ln \mu$	1	− ln <i>x</i> !

Задачи классификации (категоризации) текстов

x — текстовый документ (последовательность слов) $y \in Y$ — класс (тематическая категория или рубрика) $j \in \{1, \dots, n\}$ — слова, n — число слов в словаре $f_i(x_i) = x_i^J$ — частота (число вхождений) слова j в документе x_i $p_i(x^j|y)$ — распределение Пуассона, экспоненциального вида $heta_{vi} = \ln ar{x}_{vi}$ — оценка максимума правдоподобия, $arphi_{vi} = 1$ Наивный байесовский классификатор — линейный, с весами θ_{vi} :

$$a(v) = av = max \left(\sum_{i=1}^{n} a_i v_i^i + la(v_i) P(v_i) \right) \cdot \bar{N}$$

$$a(x) = \arg\max_{y \in Y} \left(\sum_{j=1}^{n} \frac{\theta_{yj} x^{j}}{\sum_{b_{y}} \left(\sum_{b_{y}} \frac{1}{|D(\lambda_{y} P(y)) - \bar{N}_{y}|} \right)} \right),$$

$$ar{N}_y = \sum\limits_{i=1}^n c(heta_{yj}) = \sum\limits_{i=1}^n ar{x}_{yj}$$
 — средняя длина документов в классе y

Замечание: если \bar{x}_{vi} не зависит от y, то слово j не влияет на a(x)

Мультиномиальный наивный байесовский классификатор

$$x=(j_1,\ldots,j_{N_x})$$
 — текстовый документ, длиной N_x слов $a(x)=\arg\max_{y\in Y}(\ln p(x|y)+\ln \lambda_y P(y))$

 $\pi_{yj} = p(j|y)$ — вероятность слова j в текстах класса y

$$\ln p(x|y) = \ln \prod_{t=1}^{N_x} p(j_t|y) = \sum_{j=1}^n \ln(\pi_{yj})^{x^j} = \sum_{j=1}^n x^j \ln \pi_{yj}$$

Частотная оценка (оценка максимума правдоподобия):

$$\pi_{yj} = \frac{\#\mathsf{count}(y,j)}{\#\mathsf{count}(y)} = \frac{\sum_{i \in X_y} x_i^J}{\sum_{j=1}^n \sum_{i \in X_y} x_i^j} = \frac{\bar{x}_{yj}}{\sum_{j=1}^n \bar{x}_{yj}} = \frac{\bar{x}_{yj}}{\bar{N}_y}$$

Тот же линейный NB, но с другой поправкой на длину текста:

$$a(x) = \arg\max_{y \in Y} \left(\sum_{i=1}^{n} x^{j} \ln \bar{x}_{yj} + \ln(\lambda_{y} P(y)) - N_{x} \ln \bar{N}_{y} \right)$$

Выводы про наивный байесовский классификатор

Достоинства:

- ullet очень быстрое обучение за $O(\ell n)$ вычисление $ar{x}_{yj}$, $arphi_{yj}$
- почти нет переобучения, даже на коротких выборках
- единообразная обработка разнотипных признаков
- хорошее начальное приближение для других методов
- оценка полезности и отбор признаков: $\max_{v} p(y|j)$
- базовый уровень качества при классификации текстов
- при классификации текстов отбор признаков по полезности удаляет стоп-слова, общую и нерелевантную лексику

Ограничения и недостатки:

- гипотеза о независимости признаков
- низкий уровень качества в большинстве приложений

Напоминание. Метод парзеновского окна (Parzen Window, PW)

Непараметрическая оценка плотности Парзена-Розенблатта с функцией расстояния $\rho(x,x')$, для каждого класса $y\in Y$:

$$\hat{p}_h(x|y) = \frac{1}{\ell_y V_h} \sum_{x_i \in X_y} K\left(\frac{\rho(x, x_i)}{h}\right),$$

Метод окна Парзена — это метрический классификатор:

$$a(x) = \arg \max_{y \in Y} \lambda_y \frac{P(y)}{\ell_y} \sum_{x_i \in X_y} K\left(\frac{\rho(x, x_i)}{h}\right).$$

Замечание 1: нормирующий множитель $V_h = \int_X K\left(\frac{\rho(x,x_i)}{h}\right) dx$ сокращается под argmax, если он не зависит от x_i и y_i .

Замечание 2 (напоминание): имеем проблемы выбора ядра K(r), ширины окна h, функции расстояния $\rho(x,x')$.

Квадратичный дискриминант (Quadratic Discriminant Analysis)

Гипотеза: каждый класс $y \in Y$ имеет n-мерную гауссовскую плотность с центром μ_{Y} и ковариационной матрицей Σ_{Y} :

$$p(x|y) = \mathcal{N}(x; \mu_y, \Sigma_y) = \frac{\exp\left(-\frac{1}{2}(x - \mu_y)^\mathsf{T} \Sigma_y^{-1}(x - \mu_y)\right)}{\sqrt{(2\pi)^n \det \Sigma_y}}$$

Теорема

- 1. Разделяющая поверхность, определяемая уравнением $\lambda_y P(y)p(x|y) = \lambda_s P(s)p(x|s)$, квадратична для всех $y,s \in Y$.
- 2. Если $\Sigma_v = \Sigma_s$, то поверхность вырождается в линейную.

Квадратичный дискриминант — подстановочный алгоритм:

$$a(x) = \arg\max_{y \in Y} \left(\ln \lambda_y P(y) - \tfrac{1}{2} (x - \hat{\mu}_y)^\mathsf{T} \hat{\Sigma}_y^{-1} (x - \hat{\mu}_y) - \tfrac{1}{2} \ln \det \hat{\Sigma}_y \right)$$

Геометрический смысл квадратичного дискриминанта

Разделяющая поверхность линейна $(\Sigma_{v}=\Sigma_{s})$ или квадратична:

Линейный дискриминант Фишера (Fisher Linear Discriminant)

Проблема: для малочисленных классов возможно $\det \hat{\Sigma}_y = 0$.

Пусть ковариационные матрицы классов равны: $\Sigma_y = \Sigma$, $y \in Y$.

Оценка максимума правдоподобия для Σ :

$$\hat{\Sigma} = \frac{1}{\ell} \sum_{i=1}^{\ell} (x_i - \hat{\mu}_{y_i}) (x_i - \hat{\mu}_{y_i})^{\mathsf{T}}, \qquad \hat{\mu}_{y} = \frac{\sum_{i} [y_i = y] x_i}{\sum_{i} [y_i = y]}$$

Линейный дискриминант — подстановочный алгоритм:

$$\begin{split} \mathbf{a}(\mathbf{x}) &= \arg\max_{\mathbf{y} \in Y} \ \lambda_{\mathbf{y}} \hat{P}(\mathbf{y}) \hat{p}(\mathbf{x}|\mathbf{y}) = \\ &= \arg\max_{\mathbf{y} \in Y} \ \underbrace{\left(\ln(\lambda_{\mathbf{y}} \hat{P}(\mathbf{y})) - \frac{1}{2} \hat{\mu}_{\mathbf{y}}^{\mathsf{T}} \hat{\Sigma}^{-1} \hat{\mu}_{\mathbf{y}} + \mathbf{x}^{\mathsf{T}} \underbrace{\hat{\Sigma}^{-1} \hat{\mu}_{\mathbf{y}}}_{\alpha_{\mathbf{y}}}\right); \\ \mathbf{a}(\mathbf{x}) &= \arg\max_{\mathbf{y} \in Y} \ \left(\mathbf{x}^{\mathsf{T}} \alpha_{\mathbf{y}} + \beta_{\mathbf{y}}\right). \end{split}$$

В случае мультиколлинеарности — обращать матрицу $\hat{\Sigma} + \tau I_n$.

Геометрическая интерпретация линейного дискриминанта

В одномерной проекции на направляющий вектор разделяющей гиперплоскости классы разделяются наилучшим образом, то есть с минимальной вероятностью ошибки:

Ось проекции перпендикулярна общей касательной эллипсоидов рассеяния

Fisher R. A. The use of multiple measurements in taxonomic problems. 1936.

Гауссовская смесь с диагональными матрицами ковариации

Гауссовская смесь GMM — Gaussian Mixture Model

Допущения:

- lacktriangledown Функции правдоподобия классов p(x|y) представимы в виде смесей k_v компонент, $y\in Y$
- **②** Компоненты $j=1,\ldots,k_y$ имеют n-мерные гауссовские плотности с некоррелированными признаками: $\mu_{yj}=(\mu_{yi1},\ldots,\mu_{yjn}), \;\; \Sigma_{yj}=\mathrm{diag}(\sigma_{vi1}^2,\ldots,\sigma_{vin}^2)$:

$$p(x|y) = \sum_{j=1}^{k_y} w_{yj} p_{yj}(x), \quad p_{yj}(x) = \mathcal{N}(x; \mu_{yj}, \Sigma_{yj})$$

$$\sum_{j=1}^{k_y} w_{yj} = 1, \quad w_{yj} \geqslant 0$$

Напоминание: ЕМ-алгоритм, оценки средних и дисперсий

Числовые признаки: $f_d \colon X \to \mathbb{R}, \ d=1,\ldots,n.$

Е-шаг: для всех $y \in Y$, $j = 1, \ldots, k_y$, $d = 1, \ldots, n$:

$$g_{yij} = \frac{w_{yj}\mathcal{N}(x_i; \mu_{yj}, \Sigma_{yj})}{p(x_i|y)} \equiv \mathsf{P}(j|x_i, y_i = y)$$

М-шаг: для всех $y \in Y$, $j = 1, ..., k_y$, d = 1, ..., n

$$w_{yj} = \frac{1}{\ell_y} \sum_{i: y_i = y} g_{yij}$$

$$\hat{\mu}_{yjd} = \frac{1}{\ell_y w_{yj}} \sum_{i: y_i = y} g_{yij} f_d(x_i)$$

$$\hat{\sigma}_{yjd}^2 = \frac{1}{\ell_y w_{yj}} \sum_{i: y_i = y} g_{yij} (f_d(x_i) - \hat{\mu}_{yjd})^2$$

Замечание: компоненты «наивны», но смесь не «наивна»

Байесовский классификатор

Подставим гауссовскую смесь в байесовский классификатор:

$$a(x) = \arg \max_{y \in Y} \lambda_y P_y \sum_{j=1}^{k_y} w_{yj} \underbrace{\mathcal{N}_{yj} \exp\left(-\frac{1}{2}\rho_{yj}^2(x, \mu_{yj})\right)}_{p_{yj}(x)}$$

 $\mathcal{N}_{yj} = (2\pi)^{-\frac{n}{2}} (\sigma_{yj1} \cdots \sigma_{yjn})^{-1}$ — нормировочные множители; $\rho_{yj}(x,\mu_{yj})$ — взвешенная евклидова метрика в $X=\mathbb{R}^n$:

$$\rho_{yj}^{2}(x,\mu_{yj}) = \sum_{d=1}^{n} \frac{1}{\sigma_{vjd}^{2}} (f_{d}(x) - \mu_{yjd})^{2}.$$

Интерпретация: это метрический классификатор, в котором $p_{yj}(x)$ — близость объекта x к центру j-й компоненты класса y; $\Gamma_{y}(x)$ — близость объекта x к классу y.

...он же — сеть радиальных базисных функций (RBF)

Трёхслойная сеть RBF (Radial Basis Functions):

ЕМ-алгоритм как метод обучения радиальных сетей

Отличия генеративного RBF-EM от дискриминативного RBF-SVM:

- опорные векторы μ_{yj} это не пограничные объекты выборки, а центры локальных сгущений (эталоны) классов
- автоматически строится *структурное описание* каждого класса в виде совокупности компонент *кластеров*

Преимущества ЕМ-алгоритма:

- ЕМ-алгоритм легко сделать устойчивым к шуму
- как правило, ЕМ-алгоритм довольно быстро сходится

Недостатки ЕМ-алгоритма:

- ЕМ-алгоритм чувствителен к начальному приближению
- Определение числа компонент трудная задача (простые эвристики могут плохо работать)

Резюме по байесовской теории классификации

- ullet Основная формула: $a(x) = rg \max_{y \in Y} \lambda_y P(y) p(x|y)$
- Байесовские модели классификации генеративные:
 - моделируют форму классов на всём пространстве,
 - требуют большего объёма данных для обучения,
 - менее чувствительны к шумовым выбросам
- Наивный байесовский классификатор
 - основан на предположении о независимости признаков,
 - неплохо работает в задачах категоризации текстов

Три подхода к восстановлению плотности p(x|y) по выборке:

- Параметрический подход: ho гауссовские классы ho нормальный дискриминантный анализ
- Непараметрический подход: задана функция расстояния \Rightarrow метод парзеновского окна
- Разделение смеси распределений:
 классы описываются смесями гауссиан ⇒ сеть RBF