# Lecture notes: Observability of linear systems

#### Jie Fu

Department of Electrical and Computer Engineering Robotics Engineering Program Worcester Polytechnic Institute

**RBE502** 

#### **Outline**

#### This lecture note is based on

 Karl Johan Aström Richard M. Murray, Feedback Systems, An introduction to Scientists and Engineers. Chapter 6-7.

```
http://www.cds.caltech.edu/~murray/amwiki/index.
php/Second_Edition
```

#### A brief review

so far, we learned state feedback control for linear system.

- Determine if the system is reachable by the rank condition.
- controller is a feedback law using the state of the system and a reference input.
- Pole placement design for achieving stability.

in some cases, we do not directly measure the state of the system — observability and output feedback.

## Observability: Basic definitions

consider a LTI system:

$$\dot{x} = Ax + Bu, \quad y = Cx + Du.$$

for time t, state vector x, output y.

**Observability**: A linear system is **observable** if for any T > 0 it is possible to determine the state of the system x(T) through measurements of y(t) and u(t) on the interval [0, T]. (same definition for nonlinear system.)



**Figure 7.1:** Block diagram for an observer. The observer uses the process measurement y (possibly corrupted by noise n) and the input u to estimate the current state of the process, denoted  $\hat{x}$ .

# Testing for observability

Under which condition we can determine the state estimates from the output y?

$$\dot{X} = AX$$

$$\dot{Y} = CX$$

# Observability of LTI systems

Theorem 7.1 (Observability rank condition). A linear system is observable if and only if the observability matrix

$$W_O = [O_i^2] CA_i^2 CA_j^2 \dots; CA^{n-1}] \text{ is full rank.}$$

To prove the necessary condition, we briefly review Carley-Hamilton theorem.

#### Cayley-Hamilton theorem:

Recall the characteristic polynomial of a square matrix A is

$$p(\lambda) = \det \left[ A \times A \cdot A \right]$$

The Cayley-Hamilton theorem states:  $P(A) = \mathbf{0}$  where  $\mathbf{0}$  is the zero matrix <sup>1</sup>

# Observability of LTI systems

$$\dot{X} = AX$$

$$\dot{Y}(t) = e^{At}X_{0}$$

$$\dot{Y}(t) = ce^{At}X_{0}$$

$$= C \frac{\partial C}{\partial x} \frac{(At)^{k}}{k!} X_{0}$$

$$= \frac{n!}{k!} \frac{d_{k}(t)}{d_{k}(t)} C A^{k}X_{0}.$$

$$= \frac{n!}{k!} \frac{d_{k}(t)}{d_{k}(t)} C A^{k}X_$$

### Observer design

Consider a simple system

$$\dot{x} = Ax + Bu, \quad y = Cx$$

**insight**: If we know the input, then we can determine the state by simulate the dynamics:

- the estimated state is  $\hat{x}$ :  $\hat{x} = A\hat{x} + Bu$ .
- the estimated output should be  $C\hat{x}$ .

what if y does not equal  $C\hat{x}$  — there is estimation error  $x - \hat{x}$ .

$$\tilde{x} = x - \hat{x}$$

$$\frac{d\tilde{x}}{dt} = \dot{x} - \dot{\hat{x}} = Ax + BU - A\hat{x} - BU$$

$$= A(x - \hat{x}) = A\tilde{x}$$
if A is stable then  $\tilde{x}_{t} = 0$  as  $t \to \infty$ 

## Observer design

Consider a simple system

$$\dot{x} = Ax + Bu, \quad y = Cx$$

**insight**: If we know the input, then we can determine the state by simulate the dynamics:

- the estimated state is  $\hat{x}$ :  $\hat{x} = A\hat{x} + Bu$ .
- the estimated output should be  $C\hat{x}$ .

what if v does not equal  $\hat{Cx}$  — there is estimation error  $\hat{x} - \hat{x}$ . **qoal**:

Design the observer such that the **estimation error goes to zero**.

# Observer design

Consider a simple system

$$\dot{x} = Ax + Bu, \quad y = Cx$$

**insight**: If we know the input, then we can determine the state by simulate the dynamics:

- the estimated state is  $\hat{x}$ :  $\hat{x} = A\hat{x} + Bu$ .
- the estimated output should be  $C\hat{x}$ .

what if v does not equal  $\hat{Cx}$  — there is estimation error  $\hat{x} - \hat{x}$ . **qoal**:

Design the observer such that the **estimation error goes to zero**.

Equivalent to: design the observer such that the system with state  $x - \hat{x}$  stabilizes to the origin.



Observer design == Stabilizing the dynamical system with  $x - \hat{x}$  as the state.  $\approx x - \hat{x}$ 

- What is the dynamics of the "new" system?
- What is the input of the "new" system?
- Is it stablizable? How to design "stabilizing control"?

$$\dot{\hat{x}} = A\hat{x} + BU$$
output  $y - c\hat{x}$ 

$$\dot{\hat{x}} = A\hat{x} + BU + L(y - c\hat{x})$$

$$\frac{d\hat{x}}{dt} = Ax + BU - A\hat{x} - BU - L(y - c\hat{x}) \qquad y = cx$$

$$= A(x - \hat{x}) - L(CX - c\hat{x}) = (A - Lc)(x - \hat{x}) = (A + Cc)\hat{x}$$

$$A - LC is a stable matrix$$

## Example: Vehicle steering

a normalized linear model for vehicle steering is

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x + \begin{bmatrix} \gamma \\ 1 \end{bmatrix} u \qquad \text{i. steering while }.$$

where  $x_1$  — the lateral path deviation,  $x_2$  — the turning rate. **goal**: determine the turning rate  $x_2$  from the measured path deviation  $x_1$ .

output: 
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} x \in X$$



observer

1) Pecide observability.

Wo = 
$$\begin{bmatrix} C \\ CA \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

2)  $\hat{x} = A\hat{x} + Bu + L(y - C\hat{x})$ 
 $\hat{x} = (A - LC)\hat{x}$  where  $\hat{x} = x - \hat{x}$ 

$$\det \left( \begin{array}{c} \lambda \overline{L} - (A - LC) \end{array} \right) = \det \left( \begin{array}{c} \lambda \\ \lambda \end{array} \right) - \left[ \begin{array}{c} \overline{-l_1} \\ -l_2 \\ 0 \end{array} \right) \right)$$

$$= \det \left( \left[ \begin{array}{c} \lambda + l_1 \\ l_2 \\ \lambda \end{array} \right) \right) = \lambda^2 + l_1 \lambda + l_2$$

$$= \lambda^2 + l_1 \lambda + l_2$$

$$= \lambda^2 + l_1 \lambda + l_2$$

$$= -l_1 + l_1 - l_2$$

$$= -l_1 + l_2 - l_2$$

$$= -l_1 + l_2$$

$$= -l_1$$

 $A-LC = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} l_1 \\ l_2 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} l_1 & 0 \\ l_2 & 0 \end{bmatrix}$ 

#### Control with the estimated state

In general, a system is

$$\dot{x} = Ax + Bu, \quad y = Cx.$$

suppose the system is both controllable and observable. **goal**: How to determine the control u as a feedback from the estimated state such that

 the controlled system stabilizes the system and tracks a reference value r(t). e.g.,  $r = 3(\sin(w_1 t) + \sin(2w_1 t))$  can be used to approximate a curved road.

**Assumption:** A controller is of the form

$$u(t) = -K\hat{x}(t) + k_r r(t)$$

where  $\hat{x}$  is the output of an observer

$$\frac{d\hat{x}}{dt} = A\hat{t} + Bu + L(y - c\hat{x})$$

# Control with the estimated state: Separation principle

The tracking error:  $\tilde{x} = x - \hat{x}$ .

$$\frac{dx}{dt} = Ax + BU = Ax + B(-k\hat{x} + k_r \tau_{te})$$

$$\frac{d\tilde{x}}{dt} = \frac{du}{dt} - \frac{d\hat{x}}{dt} = (A - LC)\tilde{x}$$

$$\frac{du}{dt} = Ax + B(-k(x - \tilde{x}) + k_r \tau_{te})$$

$$= (A - BK)\tilde{x} + BK_r \tau_{te})$$

$$\frac{dx}{dt} = (A - BK)\tilde{x} + BK_r \tau_{te}) - Scare feedback$$

$$\frac{dx}{dt} = (A - BK)\tilde{x} + BK_r \tau_{te}) - Scare feedback$$

$$\frac{dx}{dt} = (A - BK)\tilde{x} + BK_r \tau_{te}) - Scare feedback$$

$$\frac{dx}{dt} = (A - BK)\tilde{x} + BK_r \tau_{te}) - Scare feedback$$

$$\frac{dx}{dt} = (A - BK)\tilde{x} + BK_r \tau_{te}) - Scare feedback$$

$$\frac{dx}{dt} = (A - BK)\tilde{x} + BK_r \tau_{te}) - Scare feedback$$

$$\frac{dx}{dt} = (A - BK)\tilde{x} + BK_r \tau_{te}) - Scare feedback$$

Arymental state: 
$$\mathcal{E} = \begin{bmatrix} x \\ x \end{bmatrix}$$

$$\frac{d\mathcal{E}}{dt} = \begin{bmatrix} \frac{d\mathcal{E}}{dt} \\ \frac{d\mathcal{E}}{dt} \end{bmatrix} = \begin{bmatrix} (A - BK) & BK \\ 0 & (A + LC) \end{bmatrix} \begin{bmatrix} x \\ x \end{bmatrix} + \begin{bmatrix} BK_t \\ 0 \end{bmatrix} r_{t+1}$$

$$A' \quad is \quad stable$$

$$\det \begin{bmatrix} \lambda L - A' \end{bmatrix} = \det (\lambda L - (A - BK)) \cdot \det \begin{bmatrix} \lambda L - (A - LC) \end{bmatrix}$$

$$eig. \ value \quad f \quad A' \quad neg \quad real \quad parks.$$

$$A - BK$$

$$A - LC$$

#### Separation Principle

Theorem 7.3 (Eigenvalue assignment by output feedback). Consider the system

$$\frac{dx}{dt} = Ax + Bu, \quad y = Cx.$$

The controller described by

$$\frac{d\hat{x}}{dt} = A\hat{x} + Bu + L(y - C\hat{x}) = (A - BK - LC)\hat{x} + Ly,$$
  
$$u = -K\hat{x} + k_r r$$

gives a closed loop system with the characteristic polynomial

$$\lambda(s) = \det(sI - A + BK) \det(sI - A + LC).$$

This polynomial can be assigned arbitrary roots if the system is reachable and observable.



### The overall observation-based control system



Figure 7.7: Block diagram of an observer-based control system. The observer uses the measured output y and the input u to construct an estimate of the state. This estimate is used by a state feedback controller to generate the corrective input. The controller consists of the observer and the state feedback; the observer is identical to that in Figure 7.5.

### Vehicle steering example

Example 7.4 from Chapter 7.

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x + \begin{bmatrix} \gamma \\ 1 \end{bmatrix} u, \quad y = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

$$\frac{A - LC}{Stable}$$
Control: 
$$\begin{bmatrix} B & AB \end{bmatrix} = \begin{bmatrix} \gamma \\ 1 & 0 \end{bmatrix}$$

$$A - BK \qquad K = \begin{bmatrix} K_1 & K_2 \end{bmatrix}$$

$$\mathcal{U} = -K\hat{X} + K_1 \Upsilon \mathcal{U} \mathcal{U}$$

#### Summary

$$M(q) \stackrel{?}{q} + C(q, \stackrel{?}{q}) \stackrel{?}{q} + N(q) = \tau$$

$$\stackrel{?}{q} = \alpha = M(q)^{-1} (\tau - C(q, q)) \stackrel{?}{q} + N(q)$$

- Learned how to estimate the state using an observer.
- Closed-loop design for both controller and observer.
- The separation principal.
- For dynamic trajectory tracking, we need to include feedforward component.
- Many important topics are not covered yet: Kalman decomposition, Kalman filter (observer with noise measurement), etc. (will do if time permitted. Read Chapter 6 and 7 to learn more.)