ARITHMETIC

Retroalimentación sesión 2

La cantidad de soles que necesitara Artthur para comprarse su celular es igual a la suma de divisores del número 980.¿Cuanto costara dicho celular?

RESOLUCIÓN

$$980 = 2^2 \times 5^1 \times 7^2 \dots D.C.$$

$$980 = 98 \times 10$$

 $2 \times 7^2 \times 2 \times 5$

$$SD_N = \left(\frac{a^{\alpha+1}-1}{a-1}\right) \left(\frac{b^{\beta+1}-1}{b-1}\right) \left(\frac{c^{\theta+1}-1}{c-1}\right)$$

$$SD_{980} = \left(\frac{2^{2+1}-1}{2-1}\right) \left(\frac{5^{1+1}-1}{5-1}\right) \left(\frac{7^{2+1}-1}{7-1}\right)$$

$$SD_{980} = 7 \times 6 \times 57 = 2394$$

2. Calcule la suma de divisores pares de 240.

RESOLUCIÓN

$$240 = 2^{4} \times 3^{1} \times 5^{1} \dots (DC)$$
$$= 2 (2^{3} \times 3^{1} \times 5^{1})$$

$$SD_{N} = \left(\frac{a^{\alpha+1}-1}{a-1}\right) \left(\frac{b^{\beta+1}-1}{b-1}\right) \left(\frac{c^{\theta+1}-1}{c-1}\right)$$

$$SD_{240} = 2 \times \left(\frac{2^4 - 1}{2 - 1}\right) \left(\frac{3^2 - 1}{3 - 1}\right) \left(\frac{5^2 - 1}{5 - 1}\right)$$

$$SD_{240} = 2 \times 15 \times 4 \times 6 = 720$$

Un cuento de hadas narra la historia de un valiente guerrero que acudió al llamado de su rey para matar al peligroso dragón que tenia cautivo a la princesa en los confines de la montaña encantada, este rey le prometió la mano de la princesa en matrimonio si lograba rescatarla o un pago de monedas de oro equivalente a la suma de todos los números que pudieran dividir de forma entera a 975 ¿Cuántas monedas de oro le prometía en pago este rey al valiente guerrero?

RESOLUCIÓN

975 =
$$3^1 \times 5^2 \times 13^1 \dots (DC)$$

Suma de divisores de 975:

$$SD = \left(\frac{3^2 - 1}{3 - 1}\right) \left(\frac{5^3 - 1}{5 - 1}\right) \left(\frac{13^2 - 1}{13 - 1}\right)$$

$$SD = 4 \times 31 \times 14$$

$$SD = 1736$$

975	3
325	5
65	5
13	13
1	

4. ¿Cuántos divisores comunes tienen los números 210 y 330?

RESOLUCIÓN

$$MCD(210; 330) = 2 \times 3 \times 5$$

$$CD_{MCD(210; 330)} = (1+1)(1+1)(1+1)$$

$$CD_{MCD(210; 330)} = (2)(2)(2) = 8$$

$$CD_{comunes de AyB} = CD_{MCD(A; B)}$$

5.

Al calcular el mayor divisor común de 5n y 7n se obtuvo 63. Calcule $\sqrt{n+1}$.

RESOLUCIÓN

$$MCD(5n; 7n) = 63$$

Apliquemos algunas PROPIEDADES

$$n \times MCD(5;7) = 63$$

$$n = 63$$

$$n+1=63+1=64$$

Si MCD(A, B) = 156 y el MCD(C, D) = 84, calcule el MCD de A, B, C y D.

RESOLUCIÓN

Apliquemos algunas PROPIEDADES

MCD(A, B, C, D) = MCD(156, 84)

MCD(A, B, C, D) = 12

меторо: descomposición simultanea

Para llenar con agua tres envases de 120, 420 y 240 litros se necesitan un balde de máxima capacidad. ¿Cuál será la capacidad del balde si en todos los casos los envases se llenaron al vaciar totalmente el último balde?

RESOLUCIÓN

baldes

: 60 litros es la máxima capacidad

8. Al calcular el mínimo común múltiplo de 136 y 85 se obtiene \overline{abc} . Calcule a+b+c.

RESOLUCIÓN

Apliquemos algunas PROPIEDADES

8 y 5 son PESI

$$MCM(136, 85) = \overline{abc}$$

$$17 \times MCM(8; 5) = \overline{abc}$$

$$\Rightarrow 17 \times 8 \times 5$$

$$680 = \overline{abc}$$

$$\therefore a + b + c = 6 + 8 + 0 = \boxed{14}$$

9. Si el MCM de N y N + 1 es 182, halle la suma de cifras de N.

RESOLUCIÓN

Apliquemos algunas PROPIEDADES

$$MCM(N; N + 1) = 182$$

$$N(N + 1) = 182$$

$$N(N + 1) = 13 \times 14$$

$$\rightarrow$$
 N = 13

El menor de los múltiplos comunes de 13;7 y 91 es \overline{mn} . Calcule m + n.

RESOLUCIÓN

$$MCM(13, 7, 91) = \overline{mn}$$

Propiedad

$$91 = \frac{3}{7}$$
 $91 = \frac{3}{13}$

$$\Box$$

$$91 = \overline{mn}$$

$$m = 9$$

$$n = 1$$

$$m+n=9+1=10$$