What do you expect for direction of $\mathbf{B}(P)$? How about direction of $d\mathbf{B}(P)$ generated JUST by the segment of current $d\mathbf{l}$ in red?

A. $\mathbf{B}(P)$ in plane of page, ditto for $d\mathbf{B}(P)$, by red)

B. $\mathbf{B}(P)$ into page, $d\mathbf{B}(P)$, by red) into page

C. $\mathbf{B}(P)$ into page, $d\mathbf{B}(P)$, by red) out of page

D. $\mathbf{B}(P)$ complicated, ditto for $d\mathbf{B}(P, \text{by red})$

E. Something else!!

What is the magnitude of $\frac{d\mathbf{l} \times \hat{\mathbf{R}}}{\mathbf{R}^2}$?

A.
$$\frac{dl \sin \phi}{z^2}$$

B.
$$\frac{dl}{r^2}$$

C.
$$\frac{z^2}{dl}\sin\phi$$

D.
$$\frac{dl}{z^2 + a^2}$$

E. something else!

ANNOUNCEMENTS

- Danny out of town this Wednesday; Dennis will lecture
- Homework 9 due this Friday
- Homework 10 due Dec. 2nd (after Thanksgiving holiday)
- No help session week of Thanksgiving
- But, we will have class on Wednesday

What is $d\mathbf{B}_z$ (the contribution to the vertical component of \mathbf{B} from this $d\mathbf{l}$ segment?)

A.
$$\frac{dl}{z^2 + a^2} \frac{a}{\sqrt{z^2 + a^2}}$$

B.
$$\frac{dl}{z^2 + a^2}$$

C.
$$\frac{z^2 + a^2}{dl} \frac{z}{\sqrt{z^2 + a^2}}$$

D.
$$\frac{dl\cos\phi}{\sqrt{z^2+a^2}}$$

E. Something else!

I have two very long, parallel wires each carrying a current I_1 and I_2 , respectively. In which direction is the force on the wire with the current I_2 ?

 I_1 I_2

- A. Up
- B. Down
- C. Right
- D. Left
- E. Into or out of the page

Consider the B-field a distance z from a current sheet (flowing in the +x-direction) in the z = 0 plane. The B-field has:

A. y-component only

B. z-component only

C. y and z-components

D. x, y, and z-components

E. Other

What is $\oint \mathbf{B} \cdot d\mathbf{l}$ around this purple (dashed) Amperian loop?

A.
$$\mu_0(|I_2| + |I_1|)$$

B.
$$\mu_0(|I_2| - |I_1|)$$

c.
$$\mu_0(|I_2| + |I_1| \sin \theta)$$

$$D.\,\mu_0(|I_2|-|I_1|\sin\theta)$$

$$\mathsf{E}.\,\mu_0(|I_2|+|I_1|\cos\theta)$$

Stoke's Theorem says that for a surface S bounded by a perimeter L, any vector field \mathbf{B} obeys:

$$\int_{S} (\nabla \times \mathbf{B}) \cdot dA = \oint_{L} \mathbf{B} \cdot d\mathbf{l}$$

Does Stoke's Theorem apply for any surface S bounded by a perimeter L, even this balloon-shaped surface S?

Rank order $\int \mathbf{J} \cdot d\mathbf{A}$ (over blue surfaces) where \mathbf{J} is uniform, going left to right:

- A. iii > iv > ii > i
- B. iii > i > ii > iv
- C. i > ii > iii > iv
- D. Something else!!
- E. Not enough info given!!

Much like Gauss's Law, Ampere's Law is always true (for magnetostatics), but only useful when there's sufficient symmetry to "pull B out" of the integral.

So we need to build an argument for what ${\bf B}$ looks like and what it can depend on.

For the case of an infinitely long wire, can $\bf B$ point radially (i.e., in the \hat{s} direction)?

- A. Yes
- B. No
- C. ???

Continuing to build an argument for what **B** looks like and what it can depend on.

For the case of an infinitely long wire, can ${\bf B}$ depend on z or ϕ ?

- A. Yes
- B. No
- C. ???

Finalizing the argument for what **B** looks like and what it can depend on.

For the case of an infinitely long wire, can ${\bf B}$ have a \hat{z} component?

- A. Yes
- B. No
- C. ???

- A. Yes
- B. Only inside the wire (s < a)
- C. Only outside the wire (s > a)
- D. No

An infinite solenoid with surface current density K is oriented along the z-axis. Apply Ampere's Law to the rectangular imaginary loop in the yz plane shown. What does this tell you about B_z , the z-component of the B-field outside the solenoid?

- A. B_7 is constant outside
- B. B_z is zero outside
- $C. B_z$ is not constant outside
- D. It tells you nothing about B_z

An infinite solenoid with surface current density K is oriented along the z-axis. To use Ampere's Law, we need to argue what we think $\mathbf{B}(\mathbf{r})$ depends on and which way it points.

For this solenoid, $\mathbf{B}(\mathbf{r}) =$

- A. $B(z) \hat{z}$
- B. $B(z) \hat{\phi}$
- C. $B(s) \hat{z}$
- D. $B(s) \hat{\phi}$
- E. Something else?

An infinite solenoid with surface current density K is oriented along the z-axis. Apply Ampere's Law to the rectangular imaginary loop in the yz plane shown. We can safely assume that $B(s \to \infty) = 0$. What does this tell you about the B-field outside the solenoid?

- A. $|\mathbf{B}|$ is a small non-zero constant outside
- B. $|\mathbf{B}|$ is zero outside
- C. $|\mathbf{B}|$ is not constant outside
- D. We still don't know anything about |B|

