الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2010

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

الله: 03 ساعات ونصف

اختبار في مادة: العلوم الفيزيائية

على المترشح أن يختار أحد الموضوعين التاليين الموضيوع الأول

التمرين الأول: (04 نقاط)

لمتابعة النطور الزمني للتحول الكيميائي الحاصل بين محلول حمض كلور الهيدروجين ومعدن الزنك، الذي يُنَمُذَجُ بتفاعل كيميائي ذي المعادلة: $Zn(s) + 2H^+(aq) = Zn^{2+}(aq) + H_2(g)$

ندخل في اللحظة V=40~mL من معدن الزنك في دورق به V=40~mL من محلول حمض كلور المجدر وجين تركيزه المولى $C=5.0 \times 10^{-1}~mol.L^{-1}$

نعتبر حجم الوسط التفاعلي ثابتا خلال مدة التحول وأن الحجم المولى للغاز في شروط التجربة:

 $V_M = 25L.mol^{-1}$

نقيس حجم غاز ثنائي الهيدروجين V_{H_2} المنطلق في نفس الشرطين من الضغط ودرجة الحرارة، ندون النتائج في

الجدول التالي:

t(s)	0	50	100	200		300	400	500	750
$V_{H_1}(mL)$	0	36	1	 1	,	}	[· · · · · · · · · · · · · · · · · · ·	200
x(mol)									

 $V_{H_{\star}}$ أنجز جنولا لتقدم التفاعل واستنتج العلاقة بين التقدم x وحجم غاز ثنائي الهيدروجين المنطلق $^{-1}$

2- أكمل الجدول أعلاه.

د- مثل البيان x = f(t) باعتماد سلم الرسم التالي:

 $1cm \rightarrow 100s$

 $1cm \rightarrow 1, 0 \times 10^{-3} mol$

 $t_2 = 400s$; $t_i = 100s$: الحسب قيمة السرعة الحجمية للتفاعل في اللحظتين -4

كيف تتطور هذه السرعة مع الزمن؟ علل.

5- إن التحول الكيميائي السابق تحول تام:

أ/ احسب التقدم الأعظمي x_{max} واستنتج المتفاعل المحد.

ب/ عرّف زمن نصف التفاعل $t_{1/2}$ وأوجد قيمته.

 $M_{(Zn)} = 65 \text{ g.mol}^{-1}$ يُعطى:

التمرين الثاني: (04) نقاط)

يوجد عنصر الكربون في دورته الطبيعية على شكل نظيرين مستقرين هما الكربون 12 والكربون 13 ونظير مشع (غير مستقر) هو الكربون 14 ، والذي يبلغ زمن نصف عمره 5570 ans . $t_{1/2} = 5570$

 $^{14}_{7}N$: الكربون 12: $^{13}_{6}C$ ، الكربون 13: $^{13}_{6}C$ ، الأزوت 14: $^{14}_{7}N$

1- أعط تركيب نواة الكربون 14.

2- أ/ إن قذف نواة الآزوت بنيترون هو تحول نووي يعبر عنه بالمعادلة التالية:

$${}^{14}_{7}N + {}^{1}_{0}n \rightarrow {}^{A}_{Z}Y_{1} + {}^{1}_{1}H$$

 $\cdot \stackrel{A}{2} Y_1$ بتطبيق قانوني الانحفاظ حدد النواة

ب/ إن تفكك نواة الكربون 14 يعطي نواة إبن $\frac{d}{d}Y_2$ وجسيم $\frac{d}{d}$. اكتب معادلة التفاعل النووي الموافق وانكر اسم العنصر $\frac{d}{d}Y_2$.

 $N\left(t
ight)=N_{0}\;e^{-\lambda\;t}$: يُعطى قانون التناقص الإشعاعي بالعلاقة-3

 $^{\uparrow}$ ماذا تمثل المقادير التالية: $^{\uparrow}$ $^{\uparrow}$ $^{\uparrow}$

$$\lambda = \frac{\ln 2}{t_{1/2}}$$
: برا بین آن

ج/ أوجد وحدة λ باستعمال التحليل البعدي.

د/ احسب القيمة العددية للمقدار ثرالمميز للكربون 14.

-4- سمح تأريخ قطعة من الخشب القديم كتلتها m(g) اكتشفت عام 2000، بمعرفة النشاط A لهذه العينة والذي قدر بسـ 11,3 تفككاً في الدقيقة، في حين قدر النشاط A_0 لعينة حية مماثلة بـ A_0 تفككا في الدقيقة. اكتب عبارة A(t) يدلالة A_0 و A_0 و A_0 ثم احسب عمر قطعة الخشب القديم ، وما هي سنة قطع الشجرة التي انحدرت منها؟

التمرين الثالث: (04) نقاط)

نريد تعيين (L,r) مميزتي وشيعة، نربطها في دارة

كهربائية على التسلسل مع:

مولد کهربائی ذي توتر کهربائی ثابت $E=6\ V$.

 $R=10~\Omega$ ناقل أومي مقاومته - ناقل

- قاطعة k (الشكل-1).

ا- نغلق القاطعة k ، اكتب عبارة كل من: -1

 u_R : التوتر الكهربائي بين طرفي الناقل الأومي u_R

u : التوثر الكهربائي بين طرفي الوشيعة.

$$i(t) = \frac{E}{R+r}(1-e^{-\frac{(R+r)}{L}t})$$
: نان المعادلة التفاضلية السابقة تقبل حلاً من الشكل: -3

4- مكنت الدراسة التجريبية بمتابعة تطور شدة التيار الكهربائي المار في الدارة ورسم البيان الممثل له في (الشكل-2) .

بالاستعانة بالبيان احسب:

أ- المقاومة م للوشيعة.

 μ قيمة τ ثابت الزمن، ثم استنتج قيمة L ذاتية

الوشيعة.

5- احسب قيمة الطاقة الكهربائية
 المخزنة في الوشيعة في

حالة النظام الدائم.

الشكل-2

التمرين الرابع: (04 نقاط)

المحاليل المائية مأخوذة في الدرجة 25°C.

لأجل تعيين قيمة التركيز المولي لمحلول مائي (S_0) لحمض الميثانويك HCOOH(aq) نحقق التجربتين التاليتين: التجربة الأولى: نأخذ حجما $V_0 = 20m$ من المحلول (S_0) ، ونمدده 10 مرات (أي إضافة $V_0 = 20m$ من الماء المقطر) لنحصل على محلول (S_0) .

التجربة الثانية: نأخذ حجما $V_i=20mL$ من المحلول الممدد S_i) ونعايره بمحلول مائي لهيدروكسيد $V_i=20mL$ الصوديوم $Na^+(aq)+HO^-(aq)$ تركيزه المولي $Na^+(aq)+HO^-(aq)$

أعطت نتائج المعايرة البيان (الشكل-3).

1- اشرح باختصار كيفية

تمديد المحلول (S_0) وما هي الزجاجيات الضرورية لذلك؟

2- اكتب معادلة النفاعل المنمذج المتحول الكيميائي الحادث أثناء المعايرة.

S-3 عين بياني المستنتج التركين التكافؤ، واستنتج التركين المولى المحلول الممدد (S_1) .

-4 اوجد بالاعتماد على البيان القيمة التقريبية لثابت الحموضة K_A للثنائية K_A المتنتج قيمة التركيز المولى للمحلول الأصلي S_0 .

التمرين التجريبي: (04 نقاط)

قام فوج من التلاميذ في حصة للأعمال المخبرية بدراسة السقوط الشاقولي لجسم صلب (S) في الهواء، وذلك باستعمال كاميرا رقمية (Webcam)، عولج شريط

الفيديو ببرمجية "Avistep" بجهاز الإعلام الآلي فتحصلوا على البيان v = f(t) الذي يمثل تغيرات سرعة مركسز عطالة (S)بدلالة الزمن (الشكل-4).

1 -- حدد طبيعة حركة مركز عطالة الجسم (S)

في النظامين الانتقالي والدائم. علل.

بالاعتماد على البيان عين: -2 السرعة الحدية ν_{lim} .

t=0 بب/ تسارع الحركة في اللحظة

3- كيف يكون الجسم الصلب (S) متميزا وهذا للحصول على حركة مستقيمة شاقولية انسحابية في نظامين انتقالي ودائم؟
 4- باعتبار دافعة أرخميدس مهملة، مثل القوى المؤثرة على الجسم (S) أثناء السقوط، واستنتج عندئذ المعادلسة التفاضلية للحركة بدلالة السرعة v في حالة السرعات الصغيرة.

5- توقع شكل مخطط المسرعة عند إهمال دافعة أرخميدس و مقاومة الهواء. علل.

الموضوع الثاني

التمرين الأول: (04 نقاط)

عثر العمال أثناء الحفريات الجارية في بناء مجمعات سكنية على جمجمتين بشريتين إحداهما (a) سليمة والثانية (b)مهشمة جزئياً. اقترح العمال فرضيتان:

- يَرَى الفريق الأول أن الجمجمتين لشخصين عاشا في نفس الحقبة الزمنية.
- يَرَى الفريق الثاني أن العوامل الطبيعية كانجراف النربة والانكسارات الصخرية جمعت الجمجمتين، رغم
 أنهما الشخصين عاشا في حقبتين مختلفتين (تقدر الحقبة بـ 70سنة).

 ^{-14}C تَدَخَّلَ فريق ثالث (خبراء علم الآثار) للفصل في القضية معتمداً النشاط الإشعاعي للكريون

علماً بأن المادة الحية يتجدد فيها الكربون 14 المشع لجسيمات $(^{\sigma})$ باستمرار، وبعد الوفاة تتوقف هذه العملية. أخذ الفريق الثالث عينة من كل جمجمة (العينتان متساويتان في الكتلة) وقاس نشاطهما الإشعاعي حيث كانت النتيجتين على الترتيب $A_{(a)}=5000$ و $A_{(a)}=4500$ و $A_{(a)}=5000$ مماثلة لهما هو $A_{(b)}=6000$ ونصف عمر $A_{(a)}=5570$ هو $A_{(a)}=5570$

اً اكتب معادلة تفكك الكربون $^{14}C_6$ ، وتعرف على النواة الإبن (غير المثارة) من بين الأثوية التالية: $^{16}C_6$.

. $t_{1/2}$, t , A_{0} اكتب علاقة النشاط (t) للعينة بدلالة: λ

3/ كيف حسم الغريق الثالث في القضية ؟

4/ احسب بالإلكترون فولط وبالجول طاقة ربط نواة الكربون 14 .

يعطى:

$$m_P = 1,00728u$$
 $1 MeV = 1,6 \times 10^{-13} J$ $1 u = 931,5 MeV \times C^{-2}$ $m_n = 1,00866u$ $1 eV = 1,6 \times 10^{-19} J$ $m_{\frac{14}{6}c} = 14,00324 u$

التمرين الثاني: (04 نقاط)

يتكون مشروب غازي من غاز ثنائي أكسيد الكربون CO_2 منحل في الماء والسكر وحمض البنزويك ذو الصيغة يتكون مشروب غازي من غاز ثنائي أكسيد الكربون C_0 منحل في الماء والسكر وحمض البنزويك ذو المشروب، C_6H_5COOH يريد أحد التلاميذ إجراء عملية معايرة لمعرفة التركيز المولي C_a يريد أحد التلاميذ إجراء عملية معايرة عائد يتم يعسف في بيشر ثم ولأجل ذلك يأخذ منه حجما قدره $V_a=50mL$ بعد إزالة غاز CO_2 عن طريق رجه جيدا ويضعه في بيشر ثم يعسف يأخذ منه حجما قدره هيدروك سيد السموديوم $V_a=1.0 \times 10^{-1}$ التركيب ز المسولي $C_b=1.0 \times 10^{-1}$ المسولي $C_b=1.0 \times 10^{-1}$

 $25^{\circ}C$ المحلول عند الدرجة V_b من أجل كل حجم V_b لهيدروكسيد الصوديوم المضاف يسجل التلميذ في كل مرة قيمة pH المحلول عند الدرجة pH متر فتمكن من رسم المنحنى البياني $pH=f(V_b)$ (الشكل-1).

باعتبار حمض البنزويك الحمض الوحيد في المشروب الغازي.

أ- اكتب المعادلة الكيميائية المعبرة عن التفاعل المنمذج

للتحول الكيميائي الحاصل خلال المعايرة.

 $\cdot E$ مند بيانيا إحداثيي نقطة التكافق

 C_{o} لحمض البنزويك. C_{o} لحمض البنزويك.

من أجل حجم $V_h = 10,0 \ mL$ ميدروكسيد –2 الصوديوم المضاف:

أ-- انشيئ جدولا لتقدم التفاعل.

ب- أوجد كمية مادة كل من شوارد الهيدرونيوم وجزيئات حمض البنزويك المتبقية في $(H_3O^+(aq))$

الوسط التفاعلي مستعينا بجدول التقدم.

3- ما هو الكاشف المناسب لمعرفة نقطة التكافؤ من بين الكواشف المذكورة في الجدول أدناه مع التعليل ؟

T.	Н							,					
	<u> </u>									 ,			
-	-	-			 		,,,,,,,			 ~			
-	-				 					 			
	-				 					 			
-	-				 ,,,,,,,,,,			1		 			
				نبييت	 								
			ر بعدد		 								. مدسود
2	-									 			
	_	-			 	<u></u>			-	 	.		7 .
<u></u>			L		 					 <u>.</u>	ь	m	_
0		2				1-	ىكل.	1					

pH مجال التغير اللوني	اسم الكاشف
6,2 - 4,2	أحمر الميثيل
7,6 - 6,0	أزرق البرومونتيمول
10,0 - 8,0	الفينول فتاليين

التمرين الثالث: (04 نقاط)

نحقق دارة كهربائية على التسلسل تتكون من:

- E = 5V مولد ذو نوتر کهربائی ثابت
 - $R = 100 \Omega$ ناقل أومى مقاومته
 - مكثقة سعتها .C
 - k قاطعة

نوصل طرفى المكثقة B,A إلى واجهة دخول لجهاز إعلام آلى وعولجت المعطيات ببرمجية "Microsoft Excel" $u_c = u_{AB} = f(t)$ (الشكل على المنحنى البياني: وتحصلنا على المنحنى اقترح مخططاً للدارة موضحاً اتجاه التبار ثم مثل بسهم

 u_c کلا من التوترین u_R و کلا

- C عين قيمة ثابت الزمن τ للدارة وما مدلوله الفيزيائي؟ استنتج قيمة سعة المكثفة C
 - 3/ احسب شحنة المكثفة عند بلوغ الدارة للنظام الدائم.
- C' = 2 ارسم، كيفياً، في نفس المعلم السابقة بمكثقة أخرى سعتها C' = 2، ارسم، كيفياً، في نفس المعلم السابق شكل المنحني . الذي يمكن مشاهدته على شاشة الجهاز . مع التعليل $u_c = g(t)$

صفحة 6 من 8 Lotphilosophie الجديد و الحصرى فقط على موقع الاستاذ sites.google.com/site/lotphilosophie_

التمرين الرابع: (04 نقاط)

تؤخذ $g = 10m \times s^{-2}$ ، مقاومة الهواء ودافعة أرخميدس مهملتان.

لتنفيذ مخالفة خلال مباراة في كرة القدم ، وضع اللاعب الكرة في النقطة O مكان وقوع الخطأ (نعتبر الكرة نقطية) على بعد d=25m من خط المرمى، حيث ارتفاع العارضة الأفقية d=25m.

يقذف اللاعب الكرة بسرعة ابتدائية

يصنع حاملها مع الأفق زاوية v_0° يصنع $\alpha=30^{\circ}$

الرس طبيعة حركة الكرة في $(\overbrace{ox}, \overbrace{oy})$ بأخذ مبدأ الأزمنة

y = f(x) استنج معادلة المسار (استنج معادلة المسار

2/ كم يجب أن تكون قيمة \overline{v}_0 حتى يُسَجَّلَ الهدف مماسياً للعارضة الأفقية (النقطة A) ؟ ما هـي المـدة الزمنيــة المستغرقة ؟ وما هي قيمة سرعتها عند (النقطة A)؟

 \mathfrak{r} (B عَم يجب أن تكون قيمة \overline{v}_0 حتى يُسَجَّلَ الهدف مماسياً لخط المرمى (النقطة \mathfrak{r}

التمرين التجريبي: (04 نقاط)

 C_0 نأخذ عينة من منظف طبي للجروح عبارة عن سائل يحتوي أساسا على ثنائي اليود $I_2(\alpha q)$ تركيزه المولي $I_2(\alpha q)$ نضيف إليها قطعة من الزنك Zn(s) فنلاحظ تناقص الشدة اللونية للمنظف.

1- اكتب معادلة التفاعل المنمذج للتحول الكيميائي الحادث، علما أن الشائيتين الداخلتين في التفاعل هما:

 $(Zn^{2+}(aq)/Zn(s)) \cdot (I_2(aq)/I^{-}(aq))$

 Z_{-} التجربة الأولى: عند درجة الحرارة Z_{-} نضيف إلى حجم Z_{-} من المنظف قطعة من Z_{-} ونتابع عن طريق المعايرة تغيرات Z_{-} بدلالة الزمن Z_{-} فنحصل على البيان Z_{-} (الشكل Z_{-}).

 I_2 عرف السرعة الحجمية لاختفاء و I_2 مبينا طريقة حسابها بيانيا.

 I_2 المرعة الحجمية لاختفاء I_3 مع الزمن ? فسر ذلك .

V التجرية الثانية: نأخذ نفس الحجم V من نفس العينة عند الدرجة $20^{\circ}C$ ، نضعها في حوجلة عيارية سعتها $100\,m$ ثم نكمل الحجم بواسطة

الماء المقطر إلى خط العيار ونسكب محتواها في بيشر ونضيف إلى المحلول قطعة من الزنك. توقع شكل البيان (1) للتجربة الأولى. علل. توقع شكل البيان (1) للتجربة الأولى. علل. $I_2 = g(t)$ ورسمه، كيفيا، في نفس المعلم مع البيان (1) للتجربة الأولى. علل البيان (3) $I_2 = g(t)$ من نفس العينة، تُرقع درجة الحرارة إلى $I_3 = g(t)$ ، توقع شكل البيان (3) $I_4 = I_4 = g(t)$ وارسمه، كيفيا، في نفس المعلم السابق . $I_4 = I_4 = g(t)$ ما هي العوامل الحركية التي تبرزها هذه التجارب؟ ماذا تستنتج؟

الإجابة النموذجية وسلم التنقيط

امتحان شهادة البكالوريا دورة: 2010

اختبار مادة: العلوم الفيزيائية الشعب(ة): علوم تجريبية

مجموع	مجزأة	المتعار ماده: العلوم الفيزيانية الشعب(ه): علوم تجريبية ز عناصر الإجابة									
	<u> </u>				ع الأول						
			_				نقاط)	ل : (04	التمرين الأوا		
									1- جدول ا		
		2	المعانل	Zn	(s) +	· 2H * (aq)	<u> </u>	Zn ²⁺ (aq)-	+ H ₂ (g)		
	0.75	ح/ الجملة	التقدم	~		(mol)	ية المادة	کم			
		ح/ ابند	0	1,5	4×10 ⁻²	2×1	0-2	0	0		
01		ح/ إنتقا	x	1,54	$\times 10^{-2} - x$	2×10 ⁻²	-2x	x	х		
		ح/ نها	x_f	1,54×	$(10^{-2} - x_f)$	2×10 ⁻²	$-2x_f$	x_f	x_f		
								V			
	0.25					*	$n_{H_1} = x =$	$\frac{V_{H_2}}{V_M}$:3	- ألعلاق		
								~ جدول:	2- إكمال الـ		
			(s)	0	50	100	150	200			
05	0.5	$x \times 10^{-3} (ma)$		0	1,44	2,56	3,44	16,4	ļ		
			(s)	250	300	400	500	750			
		$x \times 10^{-3} (mc)$	(l)	4,80	5,28	6,16	6,80	8,00)		
0.5	0.5										
					(8/2	لر الصفحة	. = x (أنظ	f(t) :ان	3- رسم البي		
	0.25					. v :	$=\frac{1}{x}\frac{dx}{dx}$	الحجمية:	4- السرعة		
	0.25			10	~4.7~10		, ,		- في اللحظ		
01	0.25						•		- في اللحظ - في اللحظ		
	0.25	نصد ،	سسس نة	_					مي سخط يلاحظ أن قيد		
		-	* * *	- سريس					وحصر المتفا تراكيز المتفا		
	2×0.25) المحد هو	المتفاعل	ير ومنه	$_{\rm max} = 10^{-2} mc$	ل التقدم اد	: من جدو		5/ أ- المتفاء		
	-					•	يدروجين	, كلور اله	حمض		
01		(م التفاعل	فيها تقد	ية التي يبلغ	المدة الزمد	: t _{1/2} هو	التفاعل	- زمن نصف		
01	0.25					$x_{(t_{(1)})} = \frac{x_{(1)}}{x_{(1)}}$	عظمی ××	تقدمه الأ	نصف قيمة		
	0.75					2	-		من البيان:		
	0.25				11/2 ~ 2	703 🛶 x	(_{1/2}) = 3 ^	io moi	من سبيان،		
	:										

الشعب (ة): علوم تجريبية

تابع الإجابة التموذجية اختبار مادة: العلوم الفيزيائية

مجموع	مجزأة	عناصر الإجابة	المحاور
			, , , , , , , , , , , , , , , , , , ,
	:		
-		التمرين الثاني: (04 نقاط)	
0.5	0.25 0.25	تركيب نواة الكريون 14: عدد البروتونات: 5=2 عدد النيترونات: N = A - Z = 8	
01	0.25 0.25 0.25 0.25	$A = 14 \iff A + 1 = 14 + 1$ النواة بتطبيق قانوني الإنحفاظ: $A = 14 \iff A + 1 = 14 + 1$ $= -2$ $= -2 + 1$ ومنه: $A = 14 \iff A = 14 + 14 \implies A = 1$	
	0.25 0.25	N_0 المعادية. $N_0 = 2^{1/2} = 2^{1/2}$ ومنه $2^{1/2} = 2^{1/2}$ المحادثة. $N(t)$: عدد الأنوية غير المتفككة في العينة في اللحظة N_0 : عدد الانوية غير متفككة في العينة في اللحظة N_0	
1.75	0.25 0.25	λ : ثابت النفكك الاشعاعي، λ : ثابت النفكك الاشعاعي، $N(t) = N_0/2$ يكون: $N(t) = N_0/2$	
	0.25	$\lambda = \frac{\ln 2}{t_{1/2}}$: $-\ln 2 = -\lambda t_{1/2} \leftarrow 1/2 = e^{-\lambda t_{1/2}} \leftarrow N_0/2 = N_0 e^{-\lambda t_{1/2}}$	
	0.25	ج/ $[T]^{-1} = [T]^{-1}$ اي أن وحدة قياس λ هي مقلوب وحدة الزمن $[\lambda] = \frac{1}{T}$	
	0.25	$\lambda = 1,244 \times 10^{-4} ans^{-1}$: ومنه $\lambda = \frac{\ln 2}{t_{1/2}}$: λ	
	0.25	$A(t) = -\frac{dN}{dt} \Rightarrow A(t) = N_0 \lambda e^{-\lambda t} = A_0 e^{-\lambda t} = -4$	
	0.25	$rac{A}{A_0} = e^{-\lambda t} \iff \ln rac{A}{A_0} = -\lambda t$ حساب عمر العينة:	
0.75	0.23	$t = -\frac{\ln A/A_0}{\lambda} = 1489, 28ans$	
	0.25	تم قطع الشجرة التي انحدرت منها القطعة عام: 510×510,72 = 2000−1489,28 = 510,72 = 2000	

تابع الإجابة النموذجية اختبار مادة : العلوم الفيزيائية الشعب (ة): علوم تجريبية

مجموع	مجزاة	عناصر الإجابة	المحاور
		التمرين الثالث: (04 نقاط)	
01	2×0.5	$u_b = r.i + L\frac{di}{dt}$, $u_R = R.i - 1$	
0.5	2×0.25	u .	
		$E = (R+r)i + L\frac{di}{dt} \Leftrightarrow \frac{di}{dt} + \frac{(R+r)}{L}i = \frac{E}{L}$	
0.5	0.5	-3 باشتقاق عبارة التيار والتعويض في المعادلة التفاضلية تتحقق المساواة. E	
	2×0.25 0.5	$i_{\max} = \frac{E}{R+r} \Leftrightarrow r = 2\Omega / -4$	
1.5	0.5	t=0 باستعمال ميل المماس في اللحظة $t=0$	
	2×0.25	$i_{ m max}$ أو طريقة النسبة المئوية (63%) من I_0 أي L	
		$\tau = \frac{L}{R+r} \iff L = 1, 2 \times 10^{-1} H$	
0.5	2×0.25	5- الطاقة المخزنة في الوشيعة في حالة النظام الدائم: 	
		$E_{b} = \frac{1}{2}L.i_{\text{max}}^{2}; E_{b} = 1,5 \times 10^{-2}J$	
		التمرين الرابع: (04 نقاط)	
		1- عملية التمديد:	
	0.25	$n_1 = n_2 \qquad c_1 V_1 = c_2 V_2$	
01	0.25	$V_2 = rac{c_1 V_1}{c_2} = rac{c_1 V_1}{rac{c_1}{10}} = 10 V_1$	
	0.5	الشرح : نأخذ $20 ext{mL}$ من المحلول (S_0) ونضعها في حوجلة قياسية (عيارية) سعتها $200 ext{mL}$	
		نضيف الماء المقطر حتى الخط العياري 200mL (إضافة 180mL من الماء المقطر).	
_		2- معادلة التفاعل المنمذج:	
0.5	0.5	$OH^{-}(aq) + HCOOH(aq) = HCOO^{-}(aq) + H_2O(l)$	
	0.5	$E(20mL\;;\;8,2)$: نقطة التكافؤ من البيان -3	
1.25		تركيز الحمض الممدد:	
	0.25	$c_a V_a = c_b V_b \Rightarrow c_a = \frac{c_b V_b}{c_b}$	
	2×0.25	$c_a = \frac{0.02 \times 20}{20} = 0.02 mol/L$	
		20	
0.75	3×0.25	$pH = pK_a = 3.8$: نقطة نصف التكافؤ: $K_a = 10^{-3.8} = 1.58 \times 10^{-4}$	
0.5	0.5	(S_0) تركيز المحلول الأصلي (S_0) :	
	0.0	$c_0 = 10c_a \Rightarrow c_0 = 10 \times 0,02 = 0,2 mol/L$	

تابع الإجابة النموذجية اختبار مادة: العلوم الفيزيائية الشعب(ة): علوم تجريبية

	###	تابع الإجابه النمودجيه اختبار ماده: العلوم الفيزيانية الشعب(ه): علوم	
مجموع	مجزاة	عناصر الإجابة	المحاور
		التمرين التجريبي: (04 نفاط)	
	0.25	ا البيان $f(t)=v=v$ يعبر عن نظامين أحدهما انتقالي والآخر دائم.	
0.75	0.25	النظام الانتقالي: $t \leq 7s$ ح.م. متسارعة $0 \leq t \leq 7s$	
	0.25	v=Cte ح.م. منتظمة $t>7s$ - النظام الدائم $t>7s$	
		,	
	0.25	$v_{\mathrm{lim}} = 19.6m/s$ ألسرعة الحدية -2	
0.75	0.25	$t=0$ عند $t=0$ يتمثل في حساب ميل المماس عند $t=0$ Δv $19.6-0.6$	
	0.25	$a_0 = \frac{\Delta v}{\Delta t} = \frac{19.6 - 0.6}{2 - 0} = 9.5 \text{m.s}^{-2}$	
0.5	0.5	3- الشكل ، الحجم ، الكتلة	
	0.25	$\vec{f} + \vec{P} = m.\vec{a}$ -4	
	0.25	-f + P = m.a	
1.25	الرسم		
	0.5	$-Kv + m.g = m\frac{dv}{dt}$	
	0.25	$g = \frac{K}{m}v + \frac{dv}{dt}$	
	0.05	5- بيان السرعة بدلالة الزمن يكون خطيا.	
	0.25	ومنه $g = \frac{dv}{dt} = a$ ومنه $v = gt$ دالة خطية.	
0.75	0.25	$\sqrt{V(ms)}$	
	0.25		
		t(s)	
		!	
	ſ		
:			

23

صفحة 4 من 8

الجديد و الحصري فقط على موقع الأستاذ otphilosophie.

sites.google.com/site/lotphilosophie

الشعب (ة): علوم تجريبية

تابع الإجابة النموذجية اختبار مادة: العلوم الفيزيائية النموذجية اختبار مادة:

مجموع		عناصر الإجابة	المحاور
		الموضوع الثاني	
		التمرين الأول: (04 ثقاط)	
	<u> </u>	^{14}C معادلة النفكك ^{14}C :	
		${}^{14}_{6}C \rightarrow {}^{A}_{7}Y + {}^{0}_{1}e$	
	0.25 0.25	, ,	
01	0.25	$ \begin{array}{rcl} & 14 = A + 0, & A = 14 \\ & 6 = Z - 1, & Z = 7 \end{array}, {}_{Z}^{A}Y = {}_{7}^{14}N $	
	0.25	$^{14}_{6}C \rightarrow ^{14}_{7}N + ^{0}_{-1}e$	
	0.25	t_{χ},t,A_0 بدلالة $A(t)$ علقة (2)	
0.75	0.25	$A = A_0 e^{-\lambda t}$	
0.70		$A = A_0 e^{-\frac{\ln 2}{\ell_{VI}}},$	
	0.25		
		(3)	
		$ \ln \frac{A}{A_0} = -\frac{\ln 2}{t_{1/2}}t $	
		, and the second	
	0.25	$t = \frac{t_{1/2}}{\ln 2} \cdot \ln \frac{A_0}{A}$	
	2×0.25	5570 p 5000	
	2 0,22		
1.5		$t_A = 1458,57$ ans $5570 - 4500$	
	2×0.25	$t_B = \frac{5570}{0.639} \ln \frac{4500}{6000}$ الفريق الثاني:	
		$t_{_B} \simeq 2301,45 ans$	
	0.25	$ t_A - t_B = 842,88 \text{ ans}$	
		الجمجمتان لا تتتميان لنفس الحقبة الزمنية.	
	0.25	$E_{I}({}_{6}^{14}C) = \Delta mC^{2} \tag{4}$	
	0.25		
0.75	0.25	$E_1({}_{6}^{14}C) = ([6 \times 1,00728 + (14-6) \times 1,00866] - 14,00324)C^2 \times \frac{931,5}{C^2}$	
	0.25	$E_{I} = 102,2MeV = 102,2 \times 10^{6} eV$	
	0.25	$E_{I} = 102, 2MeV = 102, 2 \times 10 \text{ eV}$	
		التمرين الثاني: (04 نقاط)	
	0.5	$C_6H_5COOH(aq) + HO^-(aq) = C_6H_5COO^-(aq) + H_2O(l) / -1$	
1.5	0.5	E(10mL;8) برا نقطة التكافؤ: $E(10mL;8)$ تحدد E بيانيا باستعمال طريقة المماسات المتوازية.	
1	0.5	تحدد ي بيانيا باستعمال طريعه المماسات المنوارية.	

تابع الإجابة النموذجية اختبار مادة: العلوم الفيزيائية الشعب(ة): علوم تجريبية

٠		شعب (ه): علوم		ماده: العلوم الفيز عناصر الإجابة	J		المحاور						
مجموح	مجزاة			عدصر الإجاب			المحاور						
	0.25		$C_a = \frac{C_b N_{bE}}{V_a}$ ومنه: $C_a V_a = C_b V_{bE}$: عند التكافؤ										
	0.25		$C_a = 2,0 \times 10^{-2} mol.L^{-1}$										
			2-أ-جدول ال	İ									
:		المعانلة	$C_6H_2COOH(aq)$		$C_6H_2OOO(aq)$	$+ H_2O(l)$							
		ح/إبتد	$C_a V_o = 10^{-3} mol$	$C_b V_b = 10^{-3} mol$	0	بزيادة							
	0.5	ح/نها	$10^{-3} - x_{\bar{E}}$	$10^{-3} - x_{E}$	$x_{\scriptscriptstyle E}$	بزيادة							
			-	$_{5}COOH$ $_{2}O^{+}$	مية مادة كل مز	ب- حساب ک							
02	0.25		$(V_a + V_b) = 10^{-8}$	$\times (50+10)10^{-3}$									
02	0.25	$n_{(H_3O^*)} = 6 \times 10$											
	0.25		$^{4)} \times (50+10)10^{-3}$										
		$n_{(HO^+)} = 6 \times 10$	$0^{-8} mol \Leftrightarrow 10^{-3} - x$	$_{\rm F} = 6 \times 10^{-8} \Rightarrow x_{\rm E} =$	$10^{-3} mol$	•							
	0.25	,											
	2×0.25	$n_{(C_4H,COOH_{(aq)})}$:	$=C_d V_o - x_E = 10^{-3}$	$-x_E = 0$									
			$n_{(C_6H_2COOH)} = 0$	ل المعايرة تام وبالتال	ة عند ذكر تفاء	* تقبل الإجاب							
0.5	0.5		غيره اللوني يحوي	ل فتاليين لأن مجال ت									
					rٍ نقطة التكافق.	قيمة H _:	:						
		Γ	······································		(04 نقاط)	التمرين الثالث							
0.75	0.75		1		رة:	1 مخطط الدار	:						
		•	A PA										
	0.5	E ($u_{AB} = C$	au = 1	, من البيان ns	اً 2) ثابت الذمن							
			↑ ↑ B			•							
1.5			$u_R \mid R$	ديقه بنسبه	لازم لتشحن الم 								
	0.5		K ' \		تنتها العظمى.								
				$\tau = RC =$	$C = \frac{\tau}{R} = \frac{10^{-1}}{100}$	3 - 3 2* cr 11 3							
	0.5			$C = 10^{-5} F$		سعه المحتقة (
			$Q_{\max} = q_0$	= E C									
0.5	2×0.25		$q_0 = 5.10^{-}$	* _31.41	ثفة عند النظام	ً 3) شحن المك							
		↓ u _e (v)				4) شكل المنحا							
					<i>ح</i> ي	· · · · · · · · · · · · · · · · · · ·							
	0.5	5											
	0.5	τ'	-										
1.25				t(s)									
	0.75			τ	$t = 2\tau \Leftarrow \frac{\tau}{\tau'} =$	التعليل:'							
					₹'=	2RC							

صفحة 6 من 8

تابع الإجابة النموذجية اختبار مادة: العلوم الفيزيائية الشعب (ة): علوم تجريبية مجزأة مجموع عناصر الإجاية المحاور التمرين الرابع (04) نقاط) $\sum \vec{F}_{ext} = m.\vec{a}$: القانون الثاني لنيونن في مرجع غالبلي -1 0.25 $\vec{P} = m\vec{a}$ 0.25 $x=v_0\coslpha.t$: على خرم منتظمة معادلتها $a_x=0$ على خرم منتظمة معادلتها 2.5 3×0.25 $y=-rac{1}{2}gt^2+v_0\sinlpha t$ على $y=-rac{1}{2}gt^2+v_0\sinlpha t$ على خرم.م. بإنتظام معادلتها $a_y=-g$ 3×0.25 معادلة المسار : $y = \frac{-g}{2v_{cos}^{2}\alpha}x^{2} + \tan \alpha.x$ وهو عبارة عن قطع مكافئ. 0.5 y=h , x=d :سجل الهدف لما -20.25 $h = \frac{-g}{2a^2 \cos^2 \alpha} d^2 + \tan \alpha . d$ 01 0.25 $v_{
m e} \simeq 18,6 ms^{-1}$ بالتعویض نجد: $x = v_0 \cos \alpha t = d$ t = 1.55s2×0.25 $v_A = \sqrt{(v_0 \cos \alpha)^2 + (-qt + v_0 \sin \alpha)^2}$ $v_4 = 17,26 m.s^{-1}$ y=0 و x=d و x=0 $0 = \frac{-g}{2v_c^2 \cos^2 \alpha} d^2 + \tan \alpha d$ 0.25 0.5 $v_0^{-1} = 17 ms^{-1}$ 0.25 التمرين التجريبي: (04 نقاط). $Zn(s) = Zn^{2+}(aa) + 2e^{-}$ 0.25 $I_2(aq) + 2e^- = 2I^-(aq)$ 0.75 0.25 $Zn(s) + I_2(aq) = Zn^{2+}(aq) + 2I^{-}(aq)$ 0.252- أ) البروتوكول التجريبي: المواد والأدوات وطريقة العمل والرسم. ب) تعريف السرعة الحجمية: هي سرعة النفاعل من أجل وحدة الحجم للوسط النفاعلى. 0.5 0.25 $v = \frac{1}{V} \frac{dx}{dx}$ $v = -\frac{d[I_2]}{dt}$ 1.75 0.25 t نحسب السرعة بيانيا بميل المماس للمنحنى في كل لحظة 0.25 ج) السرعة الحجمية تتناقص مع مرور الزمن بسبب تناقص التركيز وبالتالي 0.5 نقص الاصطدامات الفعالة .

الشعب(ة): علوم تجريبية مجزأة مجموع تابع الإجابة النموذجية اختبار مادة: العلوم الفيزيائية عناصر الإجابة المحاور 3 -3 شكل المنحنى: 20 0.5 0.5 السرعة عند t=0 أقل من السرعة في التجربة (1) عند نفس اللحظة بسبب التناقص في التركيز الابتدائي. $\Lambda[I_2]$ 20 0.5 0.5 5- العوامل الحركية هي: 0.5 0.5 - التركيز المولى للمتفاعلات. - درجة الحرارة

