INF221 – Algoritmos y Complejidad

Clase #13 Recursividad

Aldo Berrios Valenzuela

Hernán Herreros Niño

Vicente Lizana Estivill

Martes 13 de septiembre de 2016

Agradecimientos

Agradezco a las personas que me mandaron sus apuntes para poder elaborar este debido a mi ausencia.

1. Recursión

Nuestra herramienta principal es *reducir* problemas a problemas más "simples". Por ejemplo: Expresión regular → programa eficiente para reconocer el problema descrito usamos:

- Expresión Regular a NFA (por ejemplo Thompson)
- NFA a DFA (algoritmo de subconjuntos)
- DFA a DFA mínimo (varias opciones)
- Interpretar el DFA y traducirlo a código.

Al resolver un problema, lo dividimos en subproblemas y combinamos resultados. Notar que al hacer esto (por ejemplo, invocar printf(3) en C) confiamos en que la solución al subproblema hace su trabajo correctamente. *Confiamos* en terceros. De la misma manera, al invocar una función que nosotros escribimos, *confiamos* en que hace su trabajo correctamente. Usar recursión es lo mismo...solo que la función se invoca a sí misma (directa o indirectamente). Recursión es inducción en programa.

1.1. Torres de Hanoi

Descripción del problema: Hay 64 placas redondas ubicadas de mayor a menor (Figura 1). Solo se puede mover una placa a la vez y nunca placa mayor sobre una placa menor.

Figura 1: Queremos mover las placas ubicadas en la plataforma A y dejarlas en la plataforma C.

1.1.1. Solución (recursiva)

Una solución (recursiva) es como se muestra en la Figura 2. Esto es solución porque traduce el problema de mover n piezas a mover n-1 recursivamente, luego mover 1 (trivial, Figura 2), luego mover n-1 recursivamente.

Figura 2: Luego de mover todos los discos entre las tres plataformas y dejarlos ordenados como se muestran en B, sólo nos queda mover el último disco (más grande) de A a C directamente.

Problema: Mover n piezas de A a C.

Base: Si n = 0, no hay que hacer nada.

Inducción: Supongamos que sabemos mover k piezas de i a j (con $i \neq j$). Para mover k+1 piezas de A a B (con C de "apoyo"):

- Movemos las *k* piezas superiores de *A* a *C*.
- Movemos la pieza inferior de *A* a *B*.
- Movemos las *k* piezas de *C* a *B*.

Pseudocódigo:

hanoi (n, src, dst, tmp):
 if n > 0:
 hanoi (n-1, src, tmp, dst)
 move src -> dst
 hanoi (n-1, tmp, dst, src)

Aún falta convencerse de que nunca movemos uno grande sobre uno menor (\rightarrow luego de hanoi (n, src, dst, tmp), tmp queda libre).

¿Cuántas movidas se requieren?. Sea T(n) el número de movidas para transferir n platos.

$$T(0) = 0$$

$$T(n+1) = 2T(n) + 1, \qquad n \ge 0$$

Sea:

$$h(z) = \sum_{n \ge 0} T(n) z^n \tag{1.1}$$

Por propiedades:

$$\frac{h\left(z\right)-T\left(0\right)}{z}=2h\left(z\right)+\frac{1}{1-z}$$

Entonces, despejando h(z) de lo anterior se obtiene:

$$h(z) = \frac{z}{(1-z)(1-2z)}$$

$$h(z) = \frac{A}{1-z} + \frac{B}{1-2z}$$

$$h(z)(1-z) = A + \frac{(1-z)B}{1-2z}$$

En seguida, aplicamos límite cuando $z \rightarrow 1$:

$$h(z)(1-z) = A + \frac{(1-z)B}{1-2z} / \lim_{z \to 1} (1)$$

$$\lim_{z \to 1} h(z)(1-z) = \lim_{z \to 1} \left(A + \frac{(1-z)B}{1-2z} \right)$$

$$\lim_{z \to 1} h(z)(1-z) = A$$
(1.3)

Luego, reemplazamos h(z) de (1.3) por lo que está en (1.2):

$$A = \lim_{z \to 1} \left(\frac{z}{(1-z)(1-2z)} (1-z) \right)$$

$$A = \lim_{z \to 1} \frac{z}{1-2z}$$

$$\therefore A = -1$$

$$(1.4)$$

Análogamente:

$$B = 1 \tag{1.5}$$

Entonces:

$$h(z) = \frac{1}{1 - 2z} - \frac{1}{1 - z} \tag{1.6}$$

Usando la fórmula de series geométricas, es sabido que:

$$\frac{1}{1-2z} = \sum_{n\geq 0} 2^n z^n \qquad \land \qquad \frac{1}{1-z} = \sum_{n\geq 0} z^n \tag{1.7}$$

Luego, si reemplazamos h(z) por (1.1) en (1.6) y las fracciones de (1.6) por las obtenidas en (1.7) se obtiene:

$$\sum_{n\geq 0} T(n) z^n = \sum_{n\geq 0} 2^n z^n - \sum_{n\geq 0} z^n$$

$$\Rightarrow T(n) = 2^n - 1$$

1.2. Mergesort

Queremos ordenar A[1,...,n]. Nuestro pseudocódigo para mergesort es:

$$\begin{split} \operatorname{mergeSort}(A[1,...,n]) : \\ & \text{if } n > 1 : \\ & \operatorname{mergeSort}\left(A\left[1,...,\left\lfloor\frac{n}{2}\right\rfloor\right]\right) \\ & \operatorname{mergeSort}\left(A\left[\left\lfloor\frac{n}{2}\right\rfloor+1,...,n\right]\right) \\ & \operatorname{merge}\left(A\left[1,...,\left\lfloor\frac{n}{2}\right\rfloor\right],A\left[\left\lfloor\frac{n}{2}\right\rfloor+1,...,n\right]\right) \end{split}$$

De la misma forma que lo hicimos con las torres de Hanoi: ¿Cuántas iteraciones se requieren?. Sea M(n) el número de iteraciones para completar el merge sort. Es claro que:

$$M(0) = M(1)$$

$$M(n) = M\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + M\left(\left\lceil \frac{n}{2} \right\rceil\right) + n \tag{1.8}$$

Supongamos $n = 2^k$. Reemplazando sobre (1.8) vamos obteniendo:

$$M(2^{k}) = M\left(\left\lfloor \frac{2^{k}}{2} \right\rfloor\right) + M\left(\left\lceil \frac{2^{k}}{2} \right\rceil\right) + 2^{k}$$
$$= M\left(\left\lfloor 2^{k-1} \right\rfloor\right) + M\left(\left\lceil 2^{k-1} \right\rceil\right) + 2^{k}$$
(1.9)

Es claro que $2^{k-1} \in \mathbb{N}$, por lo tanto:

$$M\left(\left\lfloor 2^{k-1}\right\rfloor\right) = M\left(\left\lceil 2^{k-1}\right\rceil\right) = M\left(2^{k-1}\right) \tag{1.10}$$

Luego, reemplazando (1.10) en (1.9) obtenemos:

$$M(2^{k}) = 2M(2^{k-1}) + 2^{k}$$
(1.11)

Sea $m(k) = M(2^{k-1})$ /* DUDA: en los apuntes entregados dice $m(k) = M(2^k)$...¿realmente es así? */. Entonces, reemplazando sobre (1.11) se tiene:

$$m(k+1) = 2m(k) + 2^k (1.12)$$

/* DUDA: hay cosas que no calzan en los apuntes... */