▶ In our definition of efficient PAC learning, the algorithm  $\mathcal{A}$ , having no access to the target concept  $c \in \mathcal{C}$ , must work in polynomial time **independently** on c.

- ▶ In our definition of efficient PAC learning, the algorithm  $\mathcal{A}$ , having no access to the target concept  $c \in \mathcal{C}$ , must work in polynomial time **independently** on c.
  - We assume concepts in  $\mathcal{C}$  can be represented by way of binary strings, and each concept  $e \in \mathcal{C}$  requires size(e) bits. We talk of a **representation class**.

- ▶ In our definition of efficient PAC learning, the algorithm  $\mathcal{A}$ , having no access to the target concept  $c \in \mathcal{C}$ , must work in polynomial time **independently** on c.
  - We assume concepts in  $\mathcal{C}$  can be represented by way of binary strings, and each concept  $e \in \mathcal{C}$  requires size(e) bits. We talk of a **representation class**.

### Examples

- ▶  $X_n$  could be  $\{0,1\}^n$ , the set of **boolean vectors** of of (fixed!) length n, and  $C_n$  is the set of all subsets of  $\{0,1\}^n$  represented by CNFs.
- $\searrow X_n$  could rather be  $\mathbb{R}^n$ , the set of **vectors of real numbers** of length n, while  $\mathcal{C}_n$  are say, the subsets of  $\mathbb{R}^n$  represented by some form of neural network with n inputs and 1 output.

- ▶ In our definition of efficient PAC learning, the algorithm  $\mathcal{A}$ , having no access to the target concept  $c \in \mathcal{C}$ , must work in polynomial time **independently** on c.
  - We assume concepts in  $\mathcal{C}$  can be represented by way of binary strings, and each concept  $e \in \mathcal{C}$  requires size(e) bits. We talk of a **representation class**.

#### Examples

- ▶  $X_n$  could be  $\{0,1\}^n$ , the set of **boolean vectors** of of (fixed!) length n, and  $C_n$  is the set of all subsets of  $\{0,1\}^n$  represented by CNFs.
- ▶  $X_n$  could rather be  $\mathbb{R}^n$ , the set of **vectors of real numbers** of length n, while  $\mathcal{C}_n$  are say, the subsets of  $\mathbb{R}^n$  represented by some form of neural network with n inputs and 1 output.
- In many cases (e.g. SGD), one has a *single* learning algorithm that work for every value of n. In that case, we allow (in the definition of efficient PAC learning) the algorithm  $\mathcal{A}$  to take time polynomial in n, size(c),  $\frac{1}{\varepsilon}$  and  $\frac{1}{\varepsilon}$

# Boolean Functions as a Representation Class

Suppose your instance class is  $X = \bigcup_{n \in \mathbb{N}} X_n$  where  $X_n = \{0, 1\}^n$ .

# Boolean Functions as a Representation Class

- Suppose your instance class is  $X = \bigcup_{n \in \mathbb{N}} X_n$  where  $X_n = \{0, 1\}^n$ .
- ▶ One **first example** of a representation class for  $X_n$  is the class  $\mathbf{CL}_n$  of all *conjunctions of literals* on the variables  $x_1, \ldots, x_n$ .
  - ► As an example, the conjunction

$$x_1 \wedge \neg x_2 \wedge x_4,$$

- defines a subset of  $\{0,1\}^4$ .
- Not all subsets of  $\{0,1\}^n$  can be captured.

# Boolean Functions as a Representation Class

- Suppose your instance class is  $X = \bigcup_{n \in \mathbb{N}} X_n$  where  $X_n = \{0, 1\}^n$ .
- ▶ One **first example** of a representation class for  $X_n$  is the class  $\mathbf{CL}_n$  of all *conjunctions of literals* on the variables  $x_1, \ldots, x_n$ .
  - ► As an example, the conjunction

$$x_1 \wedge \neg x_2 \wedge x_4$$
,

defines a subset of  $\{0,1\}^4$ .

- Not all subsets of  $\{0,1\}^n$  can be captured.
- ▶ A **second example** of a representation class for X is a class we know, namely the class  $\mathbf{CNF}_n$  of CNFs over  $x_1, \ldots, x_n$ , which are conjunction of disjunctions of literals.
  - ► CNFs are normal forms of any boolean functions.
  - ▶ All subsets of  $\{0,1\}^*$  can be captured this way.
  - ightharpoonup We could even consider  $k\mathbf{CNF}_n$  rather than arbitrary one, but this way we would lose universality.

#### Learning Conjuctions of Literals

Suppose your target concept is a conjunction of literals c on n variables  $x_1, \ldots, x_n$ . How could a learning algorithm proceed?

# Learning Conjuctions of Literals

- Suppose your target concept is a conjunction of literals c on n variables  $x_1, \ldots, x_n$ . How could a learning algorithm proceed?
- ▶ Data are in the form (s, b) where  $s \in \{0, 1\}^n$  and  $b \in \{0, 1\}$ . The latter is a label telling us whether  $s \in c$  or  $s \notin c$ .
- ightharpoonup A learning algorithm could proceed by keeping a conjunction of literals h as its state, initially set to

$$x_1 \wedge \neg x_1 \wedge x_2 \wedge \neg x_2 \wedge \cdots \wedge x_n \wedge \neg x_n$$
.

and updating it according to positive data (while negative data are discarded).

▶ If n = 3, the current state of h is  $x_1 \wedge x_2 \wedge \neg x_2 \wedge \neg x_3$  and we receive (101, 1), the hypothesis h is updated as  $x_1 \wedge \neg x_2$ .

### Learning Conjuctions of Literals

- Suppose your target concept is a conjunction of literals c on n variables  $x_1, \ldots, x_n$ . How could a learning algorithm proceed?
- ▶ Data are in the form (s, b) where  $s \in \{0, 1\}^n$  and  $b \in \{0, 1\}$ . The latter is a label telling us whether  $s \in c$  or  $s \notin c$ .
- ▶ A learning algorithm could proceed by keeping a conjunction of literals *h* as its state, initially set to

$$x_1 \wedge \neg x_1 \wedge x_2 \wedge \neg x_2 \wedge \cdots \wedge x_n \wedge \neg x_n$$
.

and updating it according to positive data (while negative data are discarded).

▶ If n = 3, the current state of h is  $x_1 \wedge x_2 \wedge \neg x_2 \wedge \neg x_3$  and we receive (101, 1), the hypothesis h is updated as  $x_1 \wedge \neg x_2$ .

#### Theorem

The representation class of boolean conjuctions of literals is efficiently PAC-learnable.

# Intractability of Learning DNFs

▶ We know that conjunctions of literals are efficiently learnable. But they are highly incomplete as a way to represent boolean functions.

### Intractability of Learning DNFs

- ▶ We know that conjunctions of literals are efficiently learnable. But they are highly incomplete as a way to represent boolean functions.
- Let us take a look at a *slight generalization* of conjunctions of literals as a representation class.
  - ▶ A 3-term DNF formula over n bits is a propositional formula in the form  $T_1 \vee T_2 \vee T_3$ , where each  $T_i$  is a conjunction of literals over  $x_1, \ldots, x_n$ .
  - ▶ In a sense, this class is the *dual* to 3CNFs!
  - As such, it is more expressive than conjunctions of literals, but still not universal.

### Intractability of Learning DNFs

- ▶ We know that conjunctions of literals are efficiently learnable. But they are highly incomplete as a way to represent boolean functions.
- Let us take a look at a *slight generalization* of conjunctions of literals as a representation class.
  - ▶ A 3-term **DNF** formula over n bits is a propositional formula in the form  $T_1 \vee T_2 \vee T_3$ , where each  $T_i$  is a conjunction of literals over  $x_1, \ldots, x_n$ .
  - ▶ In a sense, this class is the *dual* to 3CNFs!
  - ▶ As such, it is more expressive than conjunctions of literals, but still not universal.

#### Theorem

If  $\mathbf{NP} \neq \mathbf{RP}$ , then the representation class of 3-term DNF formulas is not efficiently PAC learnable.



#### Is This the End of the Story?

▶ **Definitely No!** Actually, we have just *scratched the surface* of computational learning theory.

# Is This the End of the Story?

- ▶ **Definitely No!** Actually, we have just *scratched the surface* of computational learning theory.
- ▶ Models and results we did not have time to talk about include:
  - ► The VC Dimension.
  - ► The Fundamental Theorem of Learning.
  - ► The No-Free-Lunch Theorem.
  - Occam's Razor.
  - ▶ Positive and negative results about neural networks.
  - ▶ ..
- ▶ More information can be found in of the many excellent books on CLT, e.g.
  - Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar Foundations of Machine Learning Second Edition. The MIT Press. 2018
  - ▶ Shai Shalev-Shwartz and Shai Ben-David. *Understanding Machine Learning: from Theory to Algorithms* Cambridge University Press. 2014.
  - ▶ Michael Kearns and Umesh Vazirani. An Introduction to Computational Learning Theory The MIT Press. 1994.

Example Results about Neural Networks (from Kearns and Vazirani's Book)

**Theorem 3.7** Let G be any directed acyclic graph, and let  $C_G$  be the class of neural networks on an architecture G with indegree r and s internal nodes. Then the number of examples required to learn  $C_G$  is

$$O\left(\frac{1}{\epsilon}\log\frac{1}{\delta} + \frac{(rs+s)\log s}{\epsilon}\log\frac{1}{\epsilon}\right).$$

# Ex<mark>ampl</mark>e Results about Neural Networks (from Kearns and Vazirani's Book)

**Theorem 3.7** Let G be any directed acyclic graph, and let  $C_G$  be the class of neural networks on an architecture G with indegree r and s internal nodes. Then the number of examples required to learn  $C_G$  is

$$O\left(\frac{1}{\epsilon}\log\frac{1}{\delta} + \frac{(rs+s)\log s}{\epsilon}\log\frac{1}{\epsilon}\right).$$

Theorem 6.6 Under the Discrete Cube Root Assumption, there is fixed polynomial  $p(\cdot)$  and an infinite family of directed acyclic graphs (architectures)  $G = \{G_{n^2}\}_{n\geq 1}$  such that each  $G_{n^2}$  has  $n^2$  boolean inputs and at most p(n) nodes, the depth of  $G_{n^2}$  is a fixed constant independent of n, but the representation class  $C_G = \bigcup_{n\geq 1} C_{G_{n^2}}$  (where  $C_{G_{n^2}}$  is the class of all neural networks over  $\Re^n$  with underlying architecture  $G_{n^2}$ ) is not efficiently PAC learnable (using any polynomially evaluatable hypothesis class). This holds even if we restrict the networks in  $C_{G_{n^2}}$  to have only binary weights.

Thank You!

Questions?