

SCHOOL OF MATHEMATICAL AND COMPUTER SCIENCES

Department of Computer Science

F29FA

FOUNDATIONS I

MOCK TEST — 2020/21

Duration: 0.5 Hour

ANSWER ALL QUESTIONS

FDK F29FA

1. Let $M \equiv (\lambda xyz.xz(yz))(\lambda xy.x)((\lambda z.zz)(\lambda z.zz))(\lambda x.x)x$. $K \equiv \lambda xy.x$. $S \equiv \lambda xyz.xz(yz)$. $I \equiv \lambda x.x$. $B \equiv \lambda xy.y(xxy)$. $C \equiv BB$. $\Omega \equiv (\lambda z.zz)(\lambda z.zz)$. $F \equiv \lambda x.y.zx$.

(a) Give F[y := xI] showing all the substitution steps. (2.5)

(b) Give the meaning of the following terms:

• K.

 \bullet S. (1)

- (c) Insert the full parenthesis in S(KI). Note here that you should write S, K and I in full. (1.5)
- (d) Write M using the *minimum* number of symbols you need from K, S, I, B, C, Ω and x (you may not need all these symbols and your answer should have the minimum number of symbols needed, also you cannot use anything else in M except these symbols; for example C is written using only the B symbol). (1)
- (e) Which of the terms Ω , SK and $K\Omega$ is a subterm of M. Explain why. (1.5)
- (f) Give all the subterms of SK. (1.5)
- (g) Is M strongly β -normalising? Prove your answer always underlying the redex you are working on. (1.5)
- (h) Is M β -normalising? If yes, β -reduce M until there are no β -redexes left, showing all the β -reduction steps, underlining at each stage the redex you are contracting, and always keeping the term as compact as possible. If the term is not β -normalising, give a detailed proof why it is not. (2)
- (i) Does M have a β -normal form? If yes, give the β -normal form. If not, say why not. (0.5)
- (j) Show that for any term A we have $CA \rightarrow _{\beta} A(CA)$. (1.5)