MP-1 TUTORIAL-3

1. Demonstrate Two Phase Simplex method in Linear Programming. Bounded variable problem.

QUESTION:

Minimum Z=x1+x2

Subject to:

2x1 + x2 >= 4

X1 + 7x2 >= 7

And x1, x2 >= 0

Converting minimization to maximization

maximize $z = -x_1 + (-x_2)$

Subject to: 2x,+ x, 24

21+72227

X1, x, 20

converting inequalities to equalities

2x1+ n2 - 11 + A1 = 4

 $x_1 + 7x_2 - s_2 + A_1 = 7$

phase - I

Maximize on, + ox, + os, + ose-A,-Az Subject to

 $2x_1 + 2x_2 - s_1 + A_1 = 4$ $2x_1 + 2x_2 - s_2 + A_2 = 7$

Initial Table

CB; Cj O O O O -1 -1

B·V
$$\chi_1$$
 χ_2 J_1 J_2 J_3 J_4 J_5 J_5 J_5 J_5 J_5 J_7 $J_$

2 Entering variable = x_ tearing variable = Az bey element = 7

Iteration-1

CBi	c.	0	0	0	0	-1	-1	
	B·V	7 (XL	1.,.	SL	A	AL	1501
-1	A	[13/7]	0	-1	1/7	1.	-1/7)	3
0	α_{ν}	1/7		0	-1/7	0	1/2	
,	Zj	-13/7	0		-1/7	-1	14	
	<i>cj-2j</i>	13/7	O	-1	1/7	0	-8/7	

Entering variable: x,

leaving variable: Ai

keyelement: 13/7

Iteration-II

CBi Cj O O O O -1 -1

B·V
$$\mathcal{H}_1$$
 \mathcal{H}_2 \mathcal{H}_2 \mathcal{H}_3 \mathcal{H}_4 \mathcal{H}_2 \mathcal{H}_3

O \mathcal{H}_1 1 O - \mathcal{H}_3 \mathcal{H}_3 \mathcal{H}_3 \mathcal{H}_3 \mathcal{H}_3 \mathcal{H}_4 $\mathcal{H$

phase-1 terminates because both the artificial variables have been removed from the basis

phase - 2:

CB	· Çj	5	-1.	0	.0	7
	BV	24	XL	St	52	50
-1.	24	1	. 0	-7/13	1/13.	21/13
-1	X	0	1	1/13	-14/91	10/13
-	Zj	- J	1	6/13	1/13	-31/13
	cj-2j	0	0	-6/13	-1/13	

$$a_{2} = 10/3$$

$$(\text{maximi})$$
 $Z = -31/13$

Since the problem is of minimization minimize $\sum_{j=1}^{n} c_j x_j = \max_{j=1}^{n} (c_j) x_j$ Hence $Z(\min_{j=1}^{n} c_j) = 31/3$ $x_1 = 21/3$ $x_2 = 10/13$