unions of separate intervals.

DEFINITIONS Let f be a function with domain D. Then f has an absolute maximum value on D at a point c if

$$f(x) \le f(c)$$
 for all x in D

and an absolute minimum value on D at c if

$$f(x) \ge f(c)$$
 for all x in D .

Maximum and minimum values are called extreme values of the function f. Absolute

interval. We look for these extreme values when we graph a function.

THEOREM 1—The Extreme Value Theorem If f is continuous on a closed interval [a, b], then f attains both an absolute maximum value M and an absolute minimum value m in [a, b]. That is, there are numbers x_1 and x_2 in [a, b] with $f(x_1) = m$, $f(x_2) = M$, and $m \le f(x) \le M$ for every other x in [a, b].

Local (Relative) Extreme Values

f disnaving on a Figure 4.5 shows a graph with five points where a function has extreme values on its domain [a, b]. The function's absolute minimum occurs at a even though at e the function's value is smaller than at any other point *nearby*. The curve rises to the left and falls to the right around c, making f(c) a maximum locally. The function attains its absolute maximum at d. We now define what we mean by local extrema.

DEFINITIONS A function f has a local maximum value at a point c within its domain D if $f(x) \le f(c)$ for all $x \in D$ lying in some open interval containing c.

26(-5x,C+8x)

A function f has a local minimum value at a point c within its domain D if $f(x) \ge f(c)$ for all $x \in D$ lying in some open interval containing c.

THEOREM 2—The First Derivative Theorem for Local Extreme Values If f has a local maximum or minimum value at an interior point c of its domain, and if f' is defined at c, then

$$f'(c)=0.$$

DEFINITION An interior point of the domain of a function f where f' is zero or undefined is a critical point of f.

Thus the only domain points where a function can assume extreme values are critical points and endpoints. However, be careful not to misinterpret what is being said here. A function may have a critical point at x = c without having a local extreme value there. For instance, both of the functions $y = x^3$ and $y = x^{1/3}$ have critical points at the origin, but neither function has a local extreme value at the origin. Instead, each function has a point of inflection there (see Figure 4.7). We define and explore inflection points in Section 4.4.

= 0.

Most problems that ask for extreme values call for finding the absolute extrema of a continuous function on a closed and finite interval. Theorem 1 assures us that such values exist; Theorem 2 tells us that they are taken on only at critical points and endpoints. Often we can simply list these points and calculate the corresponding function values to find what the largest and smallest values are, and where they are located. Of course, if the interval is not closed or not finite (such as a < x < b or $a < x < \infty$), we have seen that absolute extrema need not exist. If an absolute maximum or minimum value does exist, it must occur at a critical point or at an included right- or left-hand endpoint of the interval.

How to Find the Absolute Extrema of a Continuous Function f on a Finite Closed Interval

- 1. Evaluate f at all critical points and endpoints.
- 2. Take the largest and smallest of these values.