SWARM INTELLIGENCE METHODS FOR STATISTICAL REGRESSION

Lecture 2

Soumya D. Mohanty

University of Texas Rio Grande Valley

MOTIVATION

For large and complex data sets in the big data era, we need more flexible models

Flexibility may require models to be

- High-dimensional and/or
- Non-linear

MOTIVATION

Global optimization of highdimensional, non-linear statistical models is a challenging task

MOTIVATION

Success in breaking through the optimization barrier allows better modeling of data

Swarm intelligence (SI) methods can prove effective for optimization in statistical analysis

LECTURE 2 OUTLINE

Stochastic optimization

- Fundamental results
 - Convergence
 - No free lunch
 - Exploration and exploitation
- Benchmarking and tuning
- Best-of-M-runs strategy for performance improvement

EC and SI methods

- Review
 - (EC) Evolutionary computation
 - (SI) Swarm intelligence

Particle Swarm Optimization

- Basic (gbest) PSO
- Kinematics
- Dynamics

BASIC OPTIMIZATION THEORY

Common terminology

Search Spaces

BigDat 2019, Cambridge, UK

OPTIMIZATION: OBJECTIVE

- Continuous optimization problem: Find the minimum value of a function $f(\bar{x})$ in a specified domain $\bar{x} \in \mathbb{D} \subseteq \mathbb{R}^D$
- Minimizer: The location, \bar{x}^* , of the minimum

$$f(\bar{x}^*) \leq f(\bar{x}), \bar{x}^* \in \mathbb{D}, \bar{x} \in \mathbb{D}$$

Alternatively

$$f(\bar{x}^*) = \min_{\bar{x} \in \mathbb{D}} f(\bar{x})$$
$$\bar{x}^* = \operatorname{argmin}_{\bar{x} \in \mathbb{D}} f(\bar{x})$$

- $f(\bar{x})$ is called the fitness function (also objective function)
- D is called the search space (or constraint set)
- *Maximization of $f(\bar{x})$ is equivalent to minimization of $-f(\bar{x})$

GLOBAL AND LOCAL MINIMIZER

Global minimizer:

$$f(\bar{x}^*) \leq f(\bar{x}), \bar{x}^* \in \mathbb{D}, \bar{x} \in \mathbb{D}$$

 Local minimizer: For differentiable functions, the gradient vanishes

$$\left. \frac{\partial f}{\partial x_i} \right|_{\bar{x}^*} = 0, \forall i$$

Regression requires global minimizer of cost function

CONVEX SET AND FUNCTION

CONVEX SET

(Volume in \mathbb{R}^D) All the points along a straight line joining any two points in the set also belong to the set

CONVEX FUNCTION

(Volume in \mathbb{R}^{D+1}) The "volume" bounded by the function is a convex set

CONVEX OPTIMIZATION

- Convex search space and convex fitness ⇒ Global optimization is "easy"
 - Unique global minimum
 - If local minimum exists, it is the global minimum

CONVEX OPTIMIZATION

- Convex search space and convex fitness ⇒ Global optimization is "easy"
- Local optimizations methods serve as global optimization methods

LOCAL OPTIMIZATION METHODS

- Greedy method: Always seek a lower fitness value
- Example: Method of steepest descent
 - Follow the direction of the negative gradient at each point

LOCAL OPTIMIZATION METHODS

- Greedy method: Always seek a lower fitness value
- Guaranteed to converge to a local minimum
 - Deterministic: Same initial point leads to same final point
 - *Caution: oversimplification of convergence analysis

NON-CONVEX **OPTIMIZATION**

- Non-convex fitness and/or non-convex search space
 - Example: Multiple local minima in the search space (Multi-modal fitness function)
- Local optimization methods are not guaranteed to find the global minimum

OPTIMIZATION IN STATISTICAL REGRESSION

LEAST SQUARES: LINEAR MODEL

• Example: f(X) belongs to the family of straight lines

$$f(X) = aX + b$$

Least-squares fit

$$\min_{a,b} \sum_{i=0}^{N-1} (y_i - ax_i - b)^2$$

Straight line fit: Sum of squared residuals

LEAST SQUARES: LINEAR MODEL

- Unconstrained search: Convex optimization problem
- Local minimum = global minimum ⇒ easy
 (in principle) optimization problem

LEAST SQUARES: NON-LINEAR MODEL

Example: Quadratic chirp

$$f(x; \bar{\theta}) = A \sin(2\pi\Phi(x))$$

Instantaneous phase:

$$\Phi(x) = a_1 x + a_2 x^2 + a_3 x^3$$

Instantaneous frequency:

$$f(x) = \frac{d\Phi}{dx} = a_1 + 2a_2x + 3a_3x^2$$

(We can think of x as time t)

Data realization

LEAST SQUARES: NON-LINEAR MODEL

 Regression with non-linear models typically leads to Multi-modal fitness functions ⇒ Non-convex optimization problems

NON-CONVEX OPTIMIZATION

- Local optimization methods are not viable for non-linear regression
- High dimensional search space ⇒ the difficulty of global optimization increases manyfold

DETERMINISTIC NON-CONVEX OPTIMIZATION

 Grid-based optimization: The only guaranteed deterministic global optimization method for non-convex fitness functions

Sample the fitness at a dense grid of locations

Interpolate

- Exponential growth in the number of grid points
 - N_G^D where N_G is the number of grid points per dimension and D is the number of dimensions

STOCHASTIC OPTIMIZATION

General formulation

STOCHASTIC OPTIMIZATION

- Escape local minimum by random moves in search space
- Avoid completely random motion by imposing some goal or guidance

BENCHMARK FITNESS FUNCTIONS

- Non-convex optimization is studied using a standard set of fitness functions that can be evaluated rapidly
- Example: Generalized Rastrigin function

$$f(\bar{x}) = \sum_{i=0}^{D-1} \left[x_i^2 - 10\cos(2\pi x_i) + 10 \right]$$

STOCHASTIC OPTIMIZATION EXAMPLE

- Solis and Wets (1981): General form of stochastic optimization methods
- "Algorithm 3":
- I. Initialization: Start from a random point in search space
- 2. Repeat ...
 - I. Randomization: Pick a new point randomly; Find the nearest local minimizer
 - 2. Position update: Move to this point if it is a better local minimum
- 3. Until termination condition is true

CONVERGENCE

- Stochastic ⇒ unpredictability
- Stochastic optimization ⇒ unpredictable terminal location
- Depends on the interaction of the random moves with the fitness values

CONVERGENCE

- Termination at exactly \bar{x}^* is not a viable criterion
- Convergence must be measured probabilistically
- \Rightarrow Measure probability of terminating in a region around \bar{x}^*

CONVERGENCE CONDITIONS

• Convergence criterion for stochastic optimization :

 $\lim_{k\to\infty} \Pr(\bar{x}[k] \in \text{Optimality region}) = 1$

- Sufficient conditions (Solis and Wets, 1981):
 - Algorithm condition (H1): The fitness values always improves as the algorithm iterations progress
 - Exploration condition (H2): There is no region of the search space that is not visited at least once

CONVERGENCE CONDITIONS

The sufficiency conditions pull a global optimization method in opposite directions

Algorithm 3 of Solis and Wets provably satisfies the convergence conditions

Asymptotic convergence does not quantify the rate of convergence

Finite number of iterations ⇒ Convergence not guaranteed

CONVERGENCE CONDITIONS

- The sufficiency conditions pull a global optimization method in opposite directions
- Finite number of iterations ⇒ Full exploration of search space not possible while trying to converge to a better values

EXPLORATION AND EXPLOITATION

- The opposite pulls of the sufficiency conditions ⇒ practical stochastic optimization methods have two phases
- Exploration: explore the search space
- Exploitation: Identify a promising region and focus on improving the fitness
- Fitness must improve in both phases

Lecture 1: From Wang, Mohanty, Physical Review D (2010)

EXPLORATION AND EXPLOITATION

EXPLORATION-EXPLOITATION TRADE-OFF

- Exploration and exploitation oppose each other:
 Judicious trade-off required
- Higher fitness function ruggedness ⇒ More iterations spent in exploration
- Expensive fitness evaluation & limited computing resources ⇒ rapid exploitation
- Trade-off also depends on the dimensionality of the search space

EXPLORATION-EXPLOITATION TRADE-OFF

- 30-dimensional generalized
 Griewank function
- Fitness value averaged over independent trials for two different stochastic optimization methods.
- PSO: gbest and lbest variants (*Lecture 3)

CURSE OF DIMENSIONALITY

- Non-intuitive behavior of optimization methods with change in dimensionality of search space
 - Example: As dimensionality grows, a larger fraction of volume occurs near the boundaries of the search space
 - ⇒ Randomization from a "uniform"
 distribution will put a higher fraction of
 points near the boundary as
 dimensionality increases
- The relative performance of methods can change with search space dimensionality

- Volume exterior to the inner hypercube $b^n a^n$
- Relative to the total volume

$$1 - \left(\frac{a}{b}\right)^n$$

DIFFERENTIAL EVOLUTION VS. PSO

BENCHMARKING

NO FREE LUNCH

- Wolpert and McReady (1997): No free lunch theorems in optimization
- No practical stochastic optimization algorithm is better than any other when performance is averaged over all fitness functions

Bratton, Kennedy, 2007 TABLE I BENCHMARK FUNCTIONS

Equation	Name	D	Feasible Bounds
$f_1 = \sum_{i=1}^{D} x_i^2$	Sphere/Parabola	30	$(-100, 100)^D$
$f_2 = \sum_{i=1}^{D} (\sum_{j=1}^{i} x_j)^2$	Schwefel 1.2	30	$(-100, 100)^D$
$f_3 = \sum_{i=1}^{D-1} \left\{ 100 \left(x_{i+1} - x_i^2 \right)^2 + (x_i - 1)^2 \right\}$	Generalized Rosenbrock	30	$(-30,30)^D$
$f_4 = -\sum_{i=1}^{D} x_i \sin\left(\sqrt{r}\right)$	Generalized Schwefel 2.6	30	$(-500, 500)^D$
$f_{5} = \sum_{i=1}^{D} \left\{ x_{i}^{2} - 10\cos(2\pi x_{i}) + 10 \right\}$	Generalized Rastrigin	30	$(-5.12, 5.12)^D$
$f_6 = -20 \exp\left\{-0.2\sqrt{\frac{1}{D}\sum_{i=1}^{D} x_i^2}\right\} - \exp\left\{\frac{1}{D}\sum_{i=1}^{D} \cos(2\pi x_i)\right\} + 20 + e$	Ackley	30	$(-32, 32)^D$
$f_7 = \frac{1}{4000} \sum_{i=1}^{D} x_i^2 - \prod_{i=1}^{D} \cos\left(\frac{x_i}{\sqrt{i}}\right) + 1$	Generalized Griewank	30	$(-600, 600)^D$
$f_8 = \frac{\pi}{D} \left\{ 10 \sin^2(\pi y_i) + \sum_{i=1}^{D-1} (y_i - 1)^2 \left\{ 1 + 10 \sin^2(\pi y_{i+1}) \right\} + (y_D - 1)^2 \right\}$	Penalized Function P8	30	$(-50, 50)^D$
$+\sum_{i=1}^{D}\mu(x_i,10,100,4)$			
$y_i = 1 + \frac{1}{4}(x_i + 1)$			
$\mu(x_i, a, k, m) = \begin{cases} k(x_i - a)^m & x_i > a \\ 0 & -a \le x_i \le a \\ k(-x_i - a)^m & x_i < -a \end{cases}$			
$\mu\left(x_{i}, a, k, m\right) = \begin{cases} 0 & -a \leq x_{i} \leq a \end{cases}$			
$k(-x_i - a)^m x_i < -a$			
$f_9 = 0.1 \left\{ \sin^2 \left(\frac{3\pi x_i}{3\pi x_i} \right) + \sum_{i=1}^{D-1} (x_i - 1)^2 \left\{ 1 + \sin^2 \left(3\pi x_{i+1} \right) \right\} + (x_D - 1)^2 \times \right\}$	Penalized Function P16	30	$(-50, 50)^D$
$\{1 + \sin^2(2\pi x_D)\}\} + \sum_{i=1}^{D} \mu(x_i, 5, 100, 4)$			
$f_{10} = 4x_1^2 - 2.1x_1^4 + \frac{1}{3}x_1^6 + x_1x_2 - 4x_2^2 + 4x_2^4$	Six-hump Camel-back	2	$(-5,5)^{D}$
$f_{11} = \left\{ 1 + (x_1 + x_2 + 1)^2 \left(19 - 14x_1 + 3x_1^2 - 14x_2 + 6x_1x_2 + 3x_2^2 \right) \right\} \times$	Goldstein-Price	2	$(-2,2)^{D}$
$\left\{30 + (2x_1 - 3x_2)^2 \left(18 - 32x_1 + 12x_1^2 + 48x_2 - 36x_1x_2 + 27x_2^2\right)\right\}$			
$f_{12} = -\sum_{i=1}^{5} \left\{ \sum_{j=1}^{4} (x_j - a_{ij})^2 + c_i \right\}^{-1}$	Shekel 5	4	$(0, 10)^D$
$f_{12} = -\nabla^7 \cdot \hat{s} \nabla^4 \cdot (x_2 - a_{22})^2 + c_2 \hat{s}^{-1}$	Shekel 7	4	(0.10) ^D

BENCHMARKING

 $NFL \Rightarrow It$ is important to test performance:

- I. On a variety of benchmark fitness functions
- 2. For high dimensional search spaces

Comparison procedures should use rigorous statistical methodology

See Bratton, Kennedy, 2007

BENCHMARKING METRICS

- Average the best fitness over multiple runs with independent initializations
- Study exploration vs exploitation behavior
- Statistical analysis: Two-sample tests of final best fitness values
 - Examples: Student's t-test,
 Kolmogorov-Smirnov test

Bratton, Kennedy, 2007

TUNING

BigDat 2019, Cambridge, UK

TUNING

- NFL ⇒ Good performance on benchmark fitness functions does not mean good performance on problem of interest
- The qualitative nature of benchmark functions maybe quite different
- Statistical regression: Noise induces many minima with comparable fitness values
- **Tuning**: Obtaining satisfactory performance on the class of problems of interest to the user

TUNING GOAL

- Stochastic optimization: No guaranteed convergence
- "Success": High probability of termination in the optimality region
- The goal of tuning is to increase the probability of success for a given class of optimization problems

TUNING AND BENCHMARKING

Benchmarking

- Requires fitness functions with low evaluation costs
- Goal: apples-to-apples comparison of optimization methods
- Benchmark functions represent different "classes" of fitness functions

Tuning

- Real world fitness evaluation: computational costs can be high
- Goal: Improving the performance of one optimization method
- Tuning should also use a variety of fitness functions but from the same class (*Lecture 3)

TUNING FOR REGRESSION PROBLEMS

- Different data realizations → different fitness functions but same "class"
- NFL ⇒ Over-tuning on one data realization ⇒ Worse performance on other realizations

Simulate data realizations based on assumed models

Cost function for each data realization as an independent fitness function

Use statistical metrics ⇒ Robustness across data realizations

"BEST OF M RUNS" STRATEGY

probability of "success" in one run:

p

Probability of failure over M runs:

$$(1-p)^M$$

• Example: If p=0.5, failure probability over M=10 runs is $\simeq 0.001$

Tuning strategy: Target a moderately high p and pick best fitness from M runs

- Moderate tuning reduces the danger of over-tuning
- Reduces the effort needed to achieve good tuning

PRALLELIZATION IN BMR STRATEGY

STOCHASTIC OPTIMIZATION METHODS

Brief overview

METAHEURISTICS

Well-established approaches in stochastic optimization literature

The boundaries of the metaheuristics are permeable

New metaheuristics arise quite often

OPTIMIZATION IN BIOLOGICAL PHENOMENA

BIOLOGY INSPIRED METHODS

Evolutionary computation (EC)

Species fitness

- Natural evolution
- Communication: Sexual reproduction
- Example: Genetic Algorithm (GA)
- Agents die and are born

Swarm intelligence (SI)

Find food/avoid predators

- Flocking
- Communication: Monitor the fitness of neighbors
- Example: Particle swarm optimization (PSO)
- Agents do not die

Find food

- Foraging
- Communication: chemical trails
- Example: Ant colony optimization (ACO)
- Agents do not die

GENETIC ALGORITHM

Initialization

- Genome: Representation of agent location
- Genome fitness: Fitness function value at agent location

Crossover & Mutation

- Mix parent genomes to produce a child genome
- Random changes in child genome

Selection:

 Genomes with better fitness have higher chances of surviving

DIFFERENTIAL EVOLUTION

Initialization

- Genome: position vector
- Genome fitness: Fitness function value at agent location

Crossover & Mutation

- Linear combination of three random genomes
- Crossover with current particle genome

Selection:

Select genomes with better fitness

ANT COLONY OPTIMIZATION

- Based on the foraging behavior of ants
- Each ant leaves a "pheromone" trail
- More pheromone attracts more ants
- Better suited to discrete optimization (like GA)
 - Shortest path problems

http://www.sciencedirect.com/science/article/pii/S0142061515005840

PARTICLE SWARM OPTIMIZATION

Kinematics and Dynamics – Basic PSO

BigDat 2019, Cambridge, UK

PARTICLE SWARM OPTIMIZATION

- A swarm intelligence method inspired by the flocking behavior of birds
 - Flocking: agents mimic the velocity of nearby agents
 - Swarming: velocity mimicry removed
- Each agent moves under random attraction towards the best food sources that it and the swarm have found

58

PARTICLE SWARM OPTIMIZATION

Initialization

- Particle: agent location
- Particle fitness: Fitness value at location
- Particle "velocity": Displacement vector to new position

Velocity update

- New velocity: sum of old velocity + acceleration terms
- Acceleration strengths are random

Position update

Particles move to new positions

VELOCITY UPDATE

A particle explores the search space randomly but constantly feels an attractive force towards:

- I. Personal best: best location it has found so far and ...
- 2. Global best: the best location found by the swarm so far

PSO TERMINOLOGY

Term	Definition
Particles	Locations in search space
$ar{x}^{(i)}[k]$	• Position of i^{th} particle in k^{th} iteration • $\bar{x}^{(i)}[k]=(x_0^{(i)}[k],x_1^{(i)}[k],,x_D^{(i)}[k])$
$ar{v}^{(i)}[k]$	• Velocity of i^{th} particle in k^{th} iteration • $\bar{v}^{(i)}[k]=(v_0^{(i)}[k],v_1^{(i)}[k],\dots,v_D^{(i)}[k])$
$pbest \ (ar{p}^{(i)} \ [k])$	Best location found by the i^{th} particle over iterations 1 through k
gbest ($ar{g}[k]$)	Best location found by any particle over iterations 1 through \boldsymbol{k}
v_{max}	Maximum velocity $\text{``Velocity Clamping'': } v_j^{(i)}[k] \in [-v_{max}, v_{max}]$

VELOCITY UPDATE

$$v_j^{(i)}[k+1] = w \ v_j^{(i)}[k] + c_1 r_{1,j}(p_j^{(i)}[k] - x_j^{(i)}[k]) + c_2 r_{2,j}(g_j[k] - x_j^{(i)}[k])$$

 $r_{m,j}$: random variable with uniform distribution in [0,1]

 c_1, c_2 : "acceleration constants"

w: "inertia" $\rightarrow w v_j^{(i)}[k]$: "Inertia Term"

 $c_1 r_{1,j}(p_i^j[k] - x_i^j[k])$:"Cognitive term"

 $c_2 r_{2,j}(g[k] - x_i^j[k])$: "Social term"

 χ^1

INTERPRETATION

- Inertia term: promotes exploration
 - *w* < 1 to avoid "particle explosion"
 - Common choice: Linear decay of w
- Social and cognitive terms: promote exploitation
 - Randomization in these terms promotes exploration

PSO DYNAMICAL EQUATIONS

Velocity update

$$v_j^{(i)}[k+1] = w \ v_j^{(i)}[k] + c_1 r_{1,j} (p_j^{(i)}[k] - x_j^{(i)}[k]) + c_2 r_{2,j} (g_j [k] - x_j^{(i)}[k])$$

Position update

$$x_j^{(i)}[k+1] = x_j^{(i)}[k] + v_j^{(i)}[k+1]$$

INITIALIZATION AND TERMINATION

Initialization

- $x_j^{(i)}[0]$ is picked from a uniform distribution over $[a_j, b_j]$
- Search space assumed to be a hypercube

Initial velocity (variations)

- Uniform distribution with velocity clamping
- Zero initial velocities
- Boundary constrained:
 - $v_j^{(i)}[0] \sim U(a_j x_j^{(i)}[0], b_j x_j^{(i)}[0])$ & velocity clamping

Termination condition (variations)

- Number of iterations (simplest)
- Density of swarm
- ...

BOUNDARY

- "Let them fly": set fitness to +∞
 outside the boundary and continue
 to iterate the dynamical equations
 - pbest and gbest eventually pull the particle back
- "Reflecting walls": Change the sign of the velocity component perpendicular to the boundary surface
- "Absorbing Walls": zero the velocity component perpendicular to the boundary surface

 $+\bar{g}[k]$ Let them fly $rac{1}{\bar{v}^{(i)}[k]}$ $+\bar{g}[k]$ Reflecting $\uparrow \bar{p}^{(i)}[k]$ $+\bar{g}[k]$ Absorbing

SUMMARY

STOCHASTIC OPTIMIZATION

- Exploration-Exploitation trade-off is the key characteristic of practical methods
- NFL theorem: benchmarking is indispensable for characterizing performance
- Problem of interest: Tuning required
- BMR strategy recommended if parallel computing available
 - Reduces the danger of over-tuning
 - Reduces effort needed to achieve well-tuned performance

EC AND SI METHODS

- EC and SI: Biology inspired metaheuristics
- Different methods have different numbers of algorithm parameters
- Algorithm parameters influence exploration-exploitation trade-off
- Curse of high dimensionality:
 - Algorithm settings in low dimensional search space can lead to unforeseen effects in high dimensional ones
 - Exercise caution in making your own modifications: Benchmarking essential