# Mem-Rec: Memory Efficient Recommendation System

~2100x Compression & ~3x acceleration

Gopi Krishna Jha, Sameh Gobriel and Nilesh Jain

Intel Labs – Emerging Systems Labs



# Recommendation Systems are the Cash Cow for many of our Platform Customers





23.7% BestBuy's Growth



75% Netflix's Video consumption



60% YouTube's views

... comes from their recommendation system

# Production Scale DLRM are Extremely Large

- Latest FB papers are citing DLRM2022 at ~12
   Trillion\* Parameter model
- 99.9% of the parameters are coming from the Embedding tables



<sup>\*</sup>https://arxiv.org/pdf/2104.05158v1.pdf

## The Bottleneck: Embedding for Categorical Inputs

User Dense Features: Age, time of day, number of posts, ..etc.

**User Categorical Features** User Liked: F2, F345, F4095 User Member: G13, G45, G191 Feed Groups User bought: M123, M5 Marketplace

Categorical (AKA Sparse) Features to alphabet tonal Liked IDs: GroupIDs: **VideoIDs** Watched: [...] **...**. Embedding Table Lookup: ID to Dense Vector 0.00 Pool Pool Pool Aggregation (e.g. mean, ...) **Dense Vector** [0.121, 0.750, 0.579, ...] Feed into Neural O(TB's) Net

# Distributed Training of DLRM at FB

 Due to sheer size embedding tables are split across a cluster of specialized nodes\*

| Total compute                   | 1+ PF/s   |
|---------------------------------|-----------|
| Total memory capacity           | 1+ TB     |
| Total memory BW                 | 100+ TB/s |
| Network injection BW per worker | 100+ GB/s |
| Network bisection BW            | 1+ TB/s   |



Figure 2: Disaggregated parameter-server based system

<sup>\*</sup>https://arxiv.org/pdf/2104.05158v1.pdf

## State of the Art Compression

- 1. Low-rank approximation
- 2. Weight Sharing
- 3. Hashing Trick
- 4. LSH-Based Compression
- 5. Double Hashing Trick
- Lower Precision

. . . .

### No Scheme Provided

- 1. High compression Ratio (1000's X)
- 2. with Same AUC as full Model

Mem-Rec: Memory Efficient Recommendation System

## Mem-Rec Architecture

### Original DLRM Architecture





O(100'sX) Smaller

## Mem-Rec Sparse Feature Encoding



## Mem-Rec Compression Results

| Parameters   Model Size<br>(Millions)   (MB) |         | ΔAUC<br>vs DLRM | Compression |  |  |
|----------------------------------------------|---------|-----------------|-------------|--|--|
| Criteo-TB                                    |         |                 |             |  |  |
| 5                                            | 20      | -0.005          | 4734x       |  |  |
| 8                                            | 33      | -0.002          | 2904x       |  |  |
| 11                                           | 46      | 0.000           | 2094x       |  |  |
| 15                                           | 59      | 0.001           | 1638x       |  |  |
| 21                                           | 84      | 0.000           | 1140x       |  |  |
|                                              | Criteo- | Kaggle          |             |  |  |
| 2                                            | 9       | -0.002          | 251x        |  |  |
| 4                                            | 15      | 0.000           | 144x        |  |  |
| 5                                            | 21      | 0.001           | 101x        |  |  |
| 7                                            | 28      | 0.001           | 78x         |  |  |
| 10                                           | 41      | 0.001           | 53x         |  |  |
| Avazu                                        |         |                 |             |  |  |
| 0.8                                          | 3       | 0.000           | 188x        |  |  |
| 1.2                                          | 5       | 0.001           | 126x        |  |  |
| 1.6                                          | 6       | 0.002           | 95x         |  |  |
| 2.0                                          | 8       | 0.002           | 76x         |  |  |
| 2.4                                          | 10      | 0.002           | 63x         |  |  |

# 2094X Compression for Criteo TB Data with 0% loss in AUC compared to full uncompressed model

| Technique | Compression<br>(iso-quality) | Can fit in a<br>48MB L3 Cache |  |  |  |
|-----------|------------------------------|-------------------------------|--|--|--|
| Criteo-TB |                              |                               |  |  |  |
| ROBE      | 1000x                        | X                             |  |  |  |
| TT-REC    | 112x                         | X                             |  |  |  |
| MEM-REC   | 2094x                        | ✓                             |  |  |  |

## Mem-Rec Hardware Bottleneck Analysis

| LLC Size (MB)          | 14   | 28   | 56   |
|------------------------|------|------|------|
| num cycles             | 2.6x | 3.2x | 3.4x |
| num cache misses (LLC) | 2.3x | 6.3x | 341x |
| average dram bandwidth | 1.1x | 2.2x | 98x  |

#### **DLRM vs MEM-REC**

(MEM-REC parameters d&d' =75000, k = 1, k' = 4, l = 128)

As LLC size grows → Mem-Rec LLC misses & DRAM BW shrink →

**3.4X** better embedding time

## We can fit DLRM w/TB Dataset on Client Devices



- 1. Low inference latency
- 2. Privacy→ users' sensitive data need not be sent to the cloud
- 3. Reduces cost of hosting cloud-based recommender systems.
- 4. Fine-tuning or even training from scratch to best fit specific user preferences.

### Example of the Trend



#### LEARNING COMPRESSED EMBEDDINGS FOR ON-DEVICE INFERENCE

Niketan Pansare <sup>1</sup> Jay Katukuri <sup>12\*</sup> Aditya Arora <sup>1\*</sup> Frank Cipollone <sup>1</sup> Riyaaz Shaik <sup>1</sup> Noyan Tokgozoglu <sup>1</sup> Chandru Venkataraman <sup>1</sup>

#### ABSTRACT

In deep learning, embeddings are widely used to represent categorical entities such as words, apps, and movies. An embedding layer maps each entity to a unique vector, causing the layer's memory requirement to be proportional to the number of entities. In the recommendation domain, a given category can have hundreds of thousands of entities, and its embedding layer can take gigabytes of memory. The scale of these networks makes them difficult to deploy in resource constrained environments, such as smartphones. In this paper, we propose a novel approach for reducing the size of an embedding table while still mapping each entity to its own unique embedding. Rather

\*https://proceedings.mlsys.org/paper/2022/file/812b4ba28 7f5ee0bc9d43bbf5bbe87fb-Paper.pdf

## Mem-Rec Running on Client Platforms\*

- DLRM with TB Criteo DataSet running on Alder Lake Platform
- **Unfeasible** to run full model due to large memory footprint required

### **Latency Per Item**

| Batch size | ADL-Client | TGL-Client  | ICX-Server-<br>DLRM | <ul> <li>Mem-Rec provides ~3X bette latency</li> </ul> |
|------------|------------|-------------|---------------------|--------------------------------------------------------|
| 1          | 0.135      | 0.076       | 0.327               |                                                        |
| 64         | 0.007      | 0.006       | 0.010               | <ul> <li>Mem-Rec advantage will eve</li> </ul>         |
| 128        | 0.007      | 0.005       | 0.007               | when adding communication                              |
| 256        | 0.006      | 0.004       | 0.005               | backend server makes                                   |
| 512        | 0.007      | 0.004       | 0.003               |                                                        |
| 1024       | 0.005      | 0.004       | 0.002               | *In collaboration with CCG: Vivek Kumar and Mic        |
| 16384      | 0.003      | 0.004       | 0.002               |                                                        |
|            | 16384      | 16384 0.003 | 16384 0.003 0.004   | 16384 0.003 0.004 0.002                                |

er inference

en be bigger n latency to

chael Rosenzweig

## Conclusion and Next Steps

- Mem-Rec shows compelling results for Recommendation Systems
  - 2100X Compression Ratio for Criteo TB Dataset
  - <u>3X</u> better embedding latency
  - Same AUC as uncompressed full model
- Recommendation Systems is an important workload for our customers.
- Mem-Rec running on
  - Xeon Platforms shows a potential for lower TCO deployment of recommendation systems.
  - Core platforms shows a potential for Low inference latency and offer privacy for users' sensitive data.

### Call for Action: customer collaboration to demonstrate applicationlevel benefit

# Backup

## Mem-Rec Embedding Latency

| LLC Size (MB)          | 14   | 28   | 56   |
|------------------------|------|------|------|
| num cycles             | 2.6x | 3.2x | 3.4x |
| num cache misses (LLC) | 2.3x | 6.3x | 341x |
| average dram bandwidth | 1.1x | 2.2x | 98x  |

Mem-Rec provides ~3X better embedding encoding latency when compared to uncompressed full DLRM model

## Mem-Rec On Edge Xeon Platforms

| Batch size | ADL-Client | TGL-Client | ICX-Server | ICX-Server-DLRM |
|------------|------------|------------|------------|-----------------|
| 1          | 0.135      | 0.076      | 0.186      | 0.327           |
| 64         | 0.007      | 0.006      | 0.004      | 0.010           |
| 128        | 0.007      | 0.005      | 0.004      | 0.007           |
| 256        | 0.006      | 0.004      | 0.002      | 0.005           |
| 512        | 0.007      | 0.004      | 0.002      | 0.003           |
| 1024       | 0.005      | 0.004      | 0.001      | 0.002           |
| 16384      | 0.003      | 0.004      | 0.001      | 0.002           |

- Criteo TB Dataset is not embedding heavy (pooling factor =1)
- Latest FB Papers cites a pooling factor of 100 is more realistic