### PROBLEMA DO CAIXEIRO



Dada uma coleção de cidades e a distância entre cada uma delas, o caixeiro viajante quer visitar todas as cidade e voltar ao ponto de partida. Ele deve fazer isso de modo a percorrer a menor distância possível e não passar por uma mesma cidade mais de uma vez.

Esse é um problema de otimização NP-Completo, ou seja, não pode ser resolvido de forma determinística em tempo polinomial.

| 01 | LOGÍSTICA E TRANSPORTE       |
|----|------------------------------|
| 02 | MANUFATURA E PRODUÇÃO        |
| 03 | DESIGN E OTIMIZAÇÃO DE REDES |
| 04 | SEQUENCIAMENTO DE DNA        |
| 05 | ROBÓTICA E AUTOMAÇÃO         |

# ALGUMAS Reduçã A PLAÇÃ ÇÕES aumento de eficiência



### O PRIMEIRO PASSO É CRIAR UM GRAFO

Ponto A: Parque Municipal Germano Augusto Sampaio, Pintolândia

Ponto B: Bosque dos Papagaios, Caçari



#### Gerado com OpenStreatMap



### O SEGUNDO PASSO É PROCURAR PARADAS DE ÔNIBUS

Qual a melhor forma de modelar uma rota de ônibus senão utilizar as rotas já existentes?



☐ 211 Centro - São Bento

Paraviana - Bairro dos Estados - Pintolândi

Sílvio Botelho - Bacabeir

☐ 501 Paraviana - Cidadã

☐ 502 Cidadão - Paraviana











### O TERCEIRO PASSO É CRIAR OS

Grafo de Boa Vista com Pesos das Paradas



Definimos como parâmetro de quantidade de pessoas o número de vezes que um ônibus passa por uma parada (no caso, o vértice atribuído a essa parada)

#### CALCULAMOS A DISTÂNCIA ENTRE AS PARADAS

Criamos um grafo completo onde os vértices são todas as paradas, com peso da quantidade de pessoas, e as arestas são as menores distâncias de um ponto a outro.



### DEFINIÇÃO DA HEURÍSTICA





#### COLÔNIA DE FORMIGAS

### QUAIS ALGORITMOS PODEMOS USAR?

Formigas artificiais depositam feromônios ao percorrerem caminhos, e a probabilidade de escolher uma rota aumenta com a concentração de feromônios.



#### ALGORITMO GENÉTICO

Baseado nos princípios da seleção natural e evolução biológica. As soluções são representadas como "indivíduos" ou "cromossomos", e novas soluções são geradas através de operações como cruzamento e mutação.

#### **BUSCA TABU**



Algoritmo de busca local que explora as soluções vizinhas da atual, mas evita revisitar soluções recentemente exploradas (essas soluções são marcadas em uma lista "tabu").

## Têmpera (recozimento) Simulada (Simulated Annealing)

- Inicia uma solução aleatória usando uma variável que representa a temperatura (começa alta e diminui)
- A cada repetição, um dos números é mudado em certa direção
  - [1, 3, 4, 0] [2, 3, 4, 0]
- Os custos são comparados e se o novo for melhor, a solução é selecionada (similar à subida da encosta)
- Se a solução for pior, ela pode ser selecionada conforme alguma probabilidade
- Mover para uma solução pior para a melhor ser selecionada
- Conforme o processo continua, o algoritmo se torna menos propenso a aceitar uma solução pior (definido por uma probabilidade)
- No fim aceitará somente soluções melhores



### FUNÇÃO DE CUSTO

alpha \* distanciaTotal - (1 - alpha) \* pesoTotal

 $O(I_{\max} imes n imes (m+v))$ 

 $0(2000 \times 14 \times (1892+63))$ 

2000 interações 14 nós 1892 arestas 63 nós Temperatura\_inicial = 1000 resfriamento = 0.980 iterações = 2000 Alpha = 0.4



### RESULTADOS FALHOS





#### RESULTADOS

Rota que pega o maior número de pessoas

Custo total: 12976.756

Distância total: 32,495 Km

Peso total: 36.0





#### RESULTADOS

Rota mais curta

Custo total: 11529.8336

Distância total: 28,848 Km

Peso total: 16.0



#### RESULTADOS

Rota mais equilibrada

Custo total: 13244.3020

Distância total: 33,142 Km

Peso total: 21.0





