Service Manua

Colour Television TX-28LK1C TX-25LK1C TX-28SK1C

Z8 Chassis

SPECIFICATIONS

(Information in brackets () refers to model TX-25LK1C) (Information in brackets [] refers to model TX-28SK1C)

Power Source:

220-240V a.c., 50Hz

Power Consumption:

{72W} [76W]

Aerial Impedance

 75Ω unbalanced, Coaxial Type

Standby Power

0.9W

Receiving System:

PAL-B/G, PAL-60 M.NTSC (AV) NTSC (AV only)

Receiving Channels: VHF E2-E12 VHF A-H (ITALY) CATV (S01-S05) CATV S11-S20 (U1-U10)

VHF H1-H2 (ITALY) UHF E21-E69 CATV S1-S10 (M1-M10) CATV S21-S41 (HYPERBAND)

Intermediate Frequency:

Audio Colour 38,9MHz 33,4MHz, 33,16MHz (A2) 34,47MHz

Video/Audio Terminals:

AV1 IN

AV1 OUT

Video (21 pin) 1V p-p 75Ω Audio (21 pin) 500mV rms 10kΩ RGB (21 pin) 0,7V p-p 75Ω Video (21 pin) 1V p-p 75Ω Audio (21 pin) 500mV rms $1k\Omega$ Video 1V p-p 75Ω Audio 500mV rms $10k\Omega$

RCA IN RCA IN

High Voltage: 28kV ± 1kV

Picture Tube:

A66ECF50X04 66cm (A59EEQ15X97) [A66ECF50X04]

Audio Output:

2 x 10W (Music Power), 2 x 5W R.M.S. 8Ω Impedance 8Ω Impedance

Headphones

Accessories supplied:

Remote Control 2 x R6 (UM3) Batteries

Dimensions:

[571mm] [778mm] [478mm] Height: Width: 778mm {718mm {464mm 478mm {26,75kg} 31,5kg Net Weight:

Specifications are subject to change without notice. Weights and dimensions shown are approximate.

NOTE: This Service Manual should be used in conjunction with the Z8 technical

TECHNISCHE DATEN

(Die Auskunft in den Klammern () bezeicht sich auf das folgende Modell TX-25LK1C) (Die Auskunft in den Klammern [] bezeicht sich auf das folgende Modell TX-28SK1C)

Netzpannung:

220-240V a.c., 50Hz

Leistungsaufnahme:

{72W}

Antennenimpedanz:

Empfangssystem:

75Ω asymmetrisch, Koaxial-Typ

Standby Leistungsaufnahme:

0.9W

PAL-B/G, PAL-60 M.NTSC (AV) NTSC (nur AV Eingang)

Empfangsbereiche: VHF E2-E12 VHF A-H (ITALY) CATV (S01-S05) CATV \$11-S20 (U1-U10)

VHF H1-H2 (ITALY) UHF E21-E69 CATV S1-S10 (M1-M10) CATV S21-S41 (HYPERBAND)

Zwischenfrequenz:

Audio Colour 38,9MHz 33,4MHz, 33,16MHz (A2)

Video/Audio Anschlüsse:

AV1 FINGANG

AV1 AUSGANG

RCA FINGANG

Video (21 pin) 1V p-p 75Ω Audio (21 pin) 500mV rms $10k\Omega$ RGB (21 pin) 0,7V p-p 75ΩVideo (21 pin) 1V p-p 75ΩAudio (21 pin) 500mV rms 1kΩVideo 1V p-p 75Ω Audio 500mV rms 10kΩ

RCA EINGANG Hochspannung:

28kV ± 1kV

Bildrohre:

A66ECF50X04 66cm {A59EEQ15X97} [A66ECF50X04]

Ton Ausgangsleistung:

Lautsprecher Kopfhörer: 8Ω Impedanz

Mitgel. Zubehör:

Abmessungen: Höhe: Breite: Tiefe'

2 x 10W (Musikleistung), 2 x 5W R.M.S. 8Ω Impedanz

Fernbedienung 2 x R6 (UM3) Batterier

{522mm} [571mm] [778mm] [478mm] 571mm {718mm} {464mm} 778mm 478mm

Änderungen der Technisichen Daten vorbehalten. Gewichte und Abmessungen sind Näherungsangaben.

Hinweis: Bitte verwenden Sie das Service Manual zusammen mit dem Z8 Technical

Panasonic

CONTENTS

SAFETY PRECAUTIONS	2
SERVICE HINTS	4
SELF CHECK	5
ADJUSTMENT PROCEDURE	6
WAVEFORM PATTERN TABLE	7
ALIGNMENT SETTINGS	
BLOCK DIAGRAMS	10
PARTS LOCATION	13
REPLACEMENT PARTS LIST	14
SCHEMATIC DIAGRAMS	21
CONDUCTOR VIEWS	24

SAFETY PRECAUTIONS GENERAL GUIDE LINES

- It is advisable to insert an isolation transformer in the a.c. supply before servicing a hot chassis.
- When servicing, observe the original lead dress in the high voltage circuits. If a short circuit is found, replace all parts which have been overheated or damaged by the short circuit.
- After servicing, see that all the protective devices such as insulation barriers, insulation papers, shields and isolation R-C combinations are correctly installed.
- When the receiver is not being used for a long period of time, unplug the power cord from the a.c. outlet.
- 5. Potentials as high as 29 kV are present when this receiver is in operation. Operation of the receiver without the rear cover involves the danger of a shock hazard from the receiver power supply. Servicing should not be attempted by anyone who is not familiar with the precautions necessary when working on high voltage equipment. Always discharge the anode of the tube.
- After servicing make the following leakage current checks to prevent the customer from being exposed to shock hazard.

LEAKAGE CURRENT COLD CHECK

- Unplug the a.c. cord and connect a jumper between the two prongs of the plug.
- 2. Turn on the receiver's power switch.
- 3. Measure the resistance value with an ohmmeter, between the jumpered a.c. plug and each exposed metallic cabinet part on the receiver, such as screw heads, aerials, connectors, control shafts etc. When the exposed metallic part has a return path to the chassis the reading should be between 4M ohm and 20M ohm. When the exposed metal does not have a return path to the chassis the reading must be infinite.

NHALT

SICHERHEITSVORKEHRUNGEN	2
SERVICE HINWEISE	4
SELBSTDIAGNOSE	5
ABGLEICH	6
SIGNAL TABELLE	7
ABGLEICHTABELLE	9
SCHALTBILD BLOCK	
EXPLOSIONSZEICHNUNG	13
ERSATZTEILLISTE	14
SCHALTBILD SCHEMA	21
ANSICHT DER LEITERBAHNEN	24

SICHERHEITSVORKEHRUNGEN ALLGEMEINE RICHTLINIEN

- Es ist empfehlenswert einen Trenntransformator in die Stromversorgung zu schalten, bevor Reparaturen an einem Gerät vorgenommen werden, dessen Chassis unter Spannung steht.
- Bei der Durchführung von Servicearbeiten dürfen die ursprünglichen Kabelanschlüsse nicht vertauscht werden. Dies gilt insbesondere für die Anschlüsse im Hochspannungsteil. Hat sich ein Kurzschluß ereignet, dann sind alle Teile, an denen Spuren von Überhitzung sichtbar sind, auszuwechseln.
- Nach Beenden der Servicearbeiten ist sicherzustellen, daß alle Sicherheitsvorrichtungen, wie Isolationsstege, Isolationspapiere, Abschirmungen und Isolations -R-C- Glieder wieder richtig eingesetzt sind.
- Wenn der Fernseher w\u00e4hrend l\u00e4ngerer Zeit nicht in Betrieb gesetzt wird, sollte der Netzstecker aus der Netzsteckdose gezogen werden.
- 5. Im Betrieb sind Spannungen bis zu 29 kV in diesem Gerät vorhanden. Die Inbetriebnahme des Fernsehers ohne aufgesetzte Rückwand bringt die Gefahr eines elektrischen Schlages von der Fernseher Stromversorgung mit sich. Servicearbeiten solten daher auch nie durch Personen versucht werden, die nicht in vollem. Umfang mit den Sicherheitsvorkehrungen beim Umgang mit Hochspannungsgeräten vertraut sind. Vor der Handhabung mit der Bildröhre ist die Anode der Bildrohre immer an dem Empfängerchassis zu entladen.
- Nach Beenden der Servicearbeiten sind die folgenden Kriechstrom-Prüfungen durchzuführen, um den Kunden vor der Gefahr eines elektrischen Schlages zu schützen.

MESSUNG DES ISOLATIONSWIDERSTANDES IM ABGESCHALTETEN ZUSTAND

- Den Netsztecker aus der Netzsteckdose ziehen und die beiden Steckerstifte kurzschließen.
- 2. Den Geräteschalter des Fernsehgerätes einschalten.
- Mit einem Ohmmeter den Widerstandswert zwischen dem überbrückten Netzkabelsteckerund jendem zugänglichen Metallteil am Gehäuse des Fernsehgerätes, wie Schraubenköpfe, Antennen, Achsen der Regler, Griffassungen usw.messen. Wenn ein zugängliches Metallteil keine Rückleitung zum Chassis hat, Muß die Anzeige unendlich betrgen.

LEAKAGE CURRENT HOT CHECK

- Plug the a.c. cord directly into the a.c. outlet. Do not use an isolation transformer for this check.
- Connect a 2kΩ 10W resistor in series with an exposed metallic part on the receiver and an earth, such as a water pipe.
- Use an a.c. voltmeter with high impedance to measure the potential across the resistor.
- Check each exposed metallic part and check the voltage at each point.
- Reverse the a.c. plug at the outlet and repeat each of the above measurements.
- The potential at any point should not exceed 1,4 V
 rms. In case a measurement is outside the limits
 specified, there is a possibility of a shock hazard, and
 the receiver should be repaired and rechecked before
 it is returned to the customer.

Fig.1. Abb.1.

X-RADIATION WARNING

- The potential sources of X-Radiation in TV sets are the high voltage section and the picture tube.
- When using a picture tube test jig for service, ensure that the jig is capable of handling 29 kV without causing X-Radiation.

NOTE: It is important to use an accurate periodically calibrated high voltage meter.

- 1. Set the brightness to minimum.
- Measure the high voltage. The meter should indicate 28kV ± 1kV.

If the meter indication is out of tolerance, immediate service and correction is required to prevent the possibility of premature component failure.

To prevent any X-Radiation possibility, it is essential to use the specified tube.

MESSUNG DES KRIECHSTROMS IM EINGESCHALTETEN ZUSTAND

- Den Netzstecker direkt in eine Netsteckdose stecken. Für diese Messung keinen Trenntransformator verwenden.
- Einen 2kΩ / 10W-Widerstand in Serie mit einem von außen zugänglichen Metallteil am Fernsehgerät und einer guten, Erdung z.B Wasserleitung, anschließen.
- Ein Wechselstrom-Voltmeter mit einem Meßbereich von 1000 Ohm.Volt oder größer verwenden, um die Spannung über den Widerstand zu messen.
- 4. Jedes zugängliche Metallteil prüfen, und an jedem Punkt dies Spannung messen.
- 5. Den Netztecker umgekehrt in die Steckdose stecken und jede der obigen Messungen wiederholen.
- Die Spannung darf an keinem der Punkte 1,4V eff. überschreiten. Wird dieser Wert nicht eingehalten, besteht die Gefar eines elektrischen Schlages, und das Fernsehgerät sollte daher repariert und

nachgeprüft werden, bevor es an den Kunden zurückgegeben wird.

RÖNTGENSTRAHLUNG ACHTUNG:

- Potentielle Quellen von Röntgenstrahlung in Fernsehgeräten sind das Hochspannungsteil und die Bildröhre.
- Bei Verwendung eines Bildröhren-Prüfgerätes für den Service ist sicherzustellen, daß es für die Belastung von 29 kV geeignet ist, ohne daß eine Röntgenstrahlung verursacht wird.

ANMERKUNG: Es ist wichtig, daß ein präzises, regelmäßig geprüftes Voltmeter verwendet wird.

- Helligkeit auf Minimum stellen.
- Die Hochspannung messen. Die Anzeige des Instrumentes sollte 28kV ± 1kV.

Falls die Anziege diese Toleranzgrenzen überschreitet, ist die sofortige Behebung nötig, um die Möglichkeit vorzeitigen Komponentenausfalls zu verhüten.

 Um die Möglichkeit von Röntgenstrahlung zu begrenzen, ist es wichtig, daß nur die vorgeschriebene Bildröhre verwendet wird.

SERVICE HINTS

HOW TO REMOVE THE REAR COVER

1. Remove the 6 screws as shown in Fig.2.

SERVICE HINWEISE

ENTFERNEN DER GERÄTERÜCKWAND

1. Die 6 Schrauben entfernen, siehe Abb.2.

LOCATION OF CONTROLS

LAGE DER EINSTELLREGLER

4

SELF CHECK

- Self-check is used to automatically check the bus lines and hexadecimal code of the TV set.
- To get into the Self-Check mode press the down (-/v) button on the customer controls at the front of the set, at the same time pressing the STATUS button on the remote control, and the screen will show:-

SELBSTDIAGNOSE

- Die Selbstdiagnose dient zum automatischen Prüfen der Bus-Leitungen sowie des Hexadezimalcodes des FS-Geräts. Zum Umschalten auf Selbstdiagnose zunächst die Taste "STATUS" auf der Fernbedienung und gleichzeitig die-Taste am Bedienteil des FS-Gerätes drücken (-/v), auf dem Bildschirm erscheint hierauf :-
- Nach der Selbstdiagnose wird das Gerät automatisch auf sämtliche werksseitigen Standardeinstellungen zurückgesetzt

OPTION 1

68

OPTION 2

00

Service Aids

To aid in the service of our current chassis there are a number of Service Aids which have been made available.

- LUCI interface kit (Linked Utility Computer Interface)
 Part number: TZS6EZ002
 This contains interface and cables for connecting TV service connector and a PC as well as diagnostic software.
 As new models are introduced upgrade software will become available.
- VICI (Visual Interactive Computer Information)
 These C.D.'s contain multimedia documentation providing quick access to service information.

 Part No. TZS7EZ006, TZS7EZ005, TZS8EZ001 & TZS9EZ001
 - 1. Service Manuals
 - 2. Instruction Books
 - 3. Technical Information
- TASMIN (Technically Advanced System for Multimedia Interactive Notes)

 As well as providing a first step towards more interactive.

As well as providing a first step towards more interactive training this product also achieves quick access to Technical Information.

Service-Hilfen

Zur Unterstützung der Servicearbeiten stehen weitere Hilfsmittel zur Verfügung.

- LUCI interface kit (PC-unterstützes Diagnosesystem)
 Bestell-Nr.: TZS6EZ002
 Es beinhaltet ein Interface, die Anschlusskabel zum FS-Gerät und die Diagnose-Software. Bei Einführung von neuen Modellen ist ein Update der Software jederzeit möglich.
- VICI (Interaktive CD-ROM) mit schnellem Zugiff auf Serviceinformationen.
 Bestell-Nr.: TZS7EZ006, TZS7EZ005, & TZS8EZ001 & TZS9EZ001
 - 1. Service Manuals
 - 2. Bedienungsanleitungen
 - 3. Technical Information
- TASMIN (Technisch erweitertes System für interaktive Multimedia-Hinweise und Notizen)
 Genauso wie dieses Produkt einen ersten Schritt in Richtung erweitertes interaktives Training bereitstellt, ermöglicht es einen noch schnelleren Zugang zu technischen Informationen.

ADJUSTMENT PROCEDURE

Item/Preparation	Adjustments
+B SET-UP 1. Receive a Greyscale signal.	Confirm the following voltages.
2. Set the controls:	TPE1 3,3 ± 0,3V TPE13 -13 ± 1V TPE2 195 ± 10V TPE14 27,5 ± 1,5V
Brightness Minimum	TPE3 13,5 ± 1V TPE15 28 ± 1,5V TPE4 10 ± 1V TPE16 11,5 ± 1V
Contrast Minimum Volume Minimum	TPE8 5 ± 0,3V TPE17 8 ± 1V TPE11 147 ± 10V TPE18 5 ± 0,3V
Cut-Off / Ug2 Adjustment 1. Receive a Greyscale signal. 2. Degauss the tube externally. 3. Set the TV into Service Mode 1. 4. Select Ug2 Test.	Set Contrast on maximum, set Brightness on centre, switch on AV mode. Enter Service mode. Set Sub-Brightness to 31. Select Ug2.Press "+" and adjust screen Vr till sharp vertical line is visible and LED switches off. Then reduce screen Vr till LED is just switched on (pin6 of connector E1 must be connected to GND).

Note: To set up "white balance" first set up "Cut off" register to 8. Then set up "high-light" with the help of "drive" registers. Finish setting-up of "Low-light" with the help of "Cut-off" register. Carry out setting-up of "white balance" in available TV systems (PAL, SECAM).

ABGLEICH

Vorbereitungen	Abgleich
+B – Abgleich 1. TV einschalten, pattern cross hatch.	Folgende Spannungen sind zu überprüfen.
2. Helligkeit auf Minimum Kontrast auf Minimum	TPE1 3,3 ± 0,3V TPE13 -13 ± 1V TPE2 195 ± 10V TPE14 27,5 ± 1,5V TPE3 13,5 ± 1V TPE15 28 ± 1,5V TPE4 10 ± 1V TPE16 11,5 ± 1V
Lautstärke Minimum	TPE8 5 ± 0,3V TPE17 8 ± 1V TPE11 147 ± 10V TPE18 5 ± 0,3V
Testbild empfangen. Bildröhre entmagnetisieren. Service-Mode 1 anwählen. Im Service-Mode den Abgleichpunkt Cutoff DC-Mode wählen.	Stellen Sie den Kontrast auf das Maximum und die Hellgkeit auf die Mitte ein, schalten Sie in den Mode "AV" um. Treten Sie in den Service Mode ein. Stellen Sie die Sub-Brightness auf den Wert 31 ein. Wählen Sie "Ug2" aus. Drüken Sie "+" und stellen Sie den Screen "Vr" so, dass die vertikale dünne Linie schrarf sichtbar ist und L.E.D. sich ausschaltet. Dann nehmen Sie den Screen "Vr" ab,bis sich L.E.D. anzündet (pin6 des Konektors E1 muß geerdet sein).

Hinweis: Um die "White Balance" einzustellen, stellen Sie zuerst das "Cut off" Register auf 8 ein. Dann stellen Sie mit der Hilfe von "Drive" Registern "High-Light" ein. Beenden Sie die Einstellung von "Low-Light" mit der Hilfe von dem "Cut off" Register. Führen Sie die Einstellung von "White Balance" in den zugänglichen Systemen (PAL, SECAM) durch.

WAVEFORM PATTERN TABLE

SIGNAL TABELLE

ALIGNMENT SETTINGS

To access Service Mode select program position 99 and set sharpness to minimum.

Press "MUTE" button on remote control and at the same time press the "V" button on the customer controls at the front of the TV, this will place the TV set into Service Mode.

Press \wedge / \vee buttons to step up / down through the functions.

Press +/- buttons to alter the function values.

Press "STR" button on the customer controls at the front of the TV after each adjustment has been made to store the required values.

To exit Service Mode, press the "N" button.

Alignment Function	Setting indication Note: All setting values are approximate	Settings / Special features
1. Cut off (Ug2)	LED On/Off (pin6 of connector E1 to the GND)	LED to be just On.
2. Vertical Slope	V-SLO 32	Optimum setting.
3. Vertical Shift	V-POS 43	Optimum setting.
4. Vertical Amplitude	V-AMP 60	Optimum setting.
5. Horizontal Shift	H-CTR 31	Optimum setting.
6. Horizontal parallelogram	H-PAR 034	Optimum setting.
7. Horizontal bow	H-BOW 031	Optimum setting.
8. R - Cut	R-CUT 8	Optimum setting.
9. G - Cut	G- CUT 8	Optimum setting.
10. R - Drive	R-DRV 31	Optimum setting.
11. G - Drive	G-DRV 31	Optimum setting.
12. B - Drive	B-DRV 31	Optimum setting.
13. AGC	AGC 018	Optimum setting.
14. Sub Color	S - COL 20	Optimum setting.
15. Sub Brightness	S - BRI 31	Optimum setting.
16. Horizontal Width	EW – WD 34	Optimum setting.
17. EW parabola	EW – PR 32	Optimum setting.
18. EW Upper corners	EW – UC 32	Optimum setting.
19. EW Lower corners	EW – LC 33	Optimum setting.
20. EW Trapezoid	EW – TP 36	Optimum setting.

Input remote code **"FA"** followed by key 5 (14hex), or press **"STATUS"** button on remote control (numerical keys 0-7 to change value, TV/AV button to store on remote control):

Option Byte - 1		Option Byte Table		le
Bit No.	Value	Function		:
0	0	French model	0	NO YES
1	. 0	Irish model	0 1	NO YES
2	0	NICAM enabled	0	NO YES
3	1	A2 stereo	0	NO YES
4	0	Tuner modification	0	MACO ALPS
5	1	CRT	0	21" 25",28"
6	1	Q - link enabled	0 1	NO YES
7	0	TOP TEXT	0 1	YES NO

Option Byte - 2		Option Byte Table
Bit No.	Value	Function
10	0	·
1	0	
2	0	
3	0	
4	0	·
5	0	
6	0	

ABGLEICHTABELLE

Für den Eintritt in den Service-Modus wählen Sie bitte die Programmposition 99 und stellen Sie die Schärfe auf das Minimum ein. Drücken Sie an dem Fernbediengerät die Taste "**MUTE**" und zugleich die Taste "**V**" an dem vorderen Bedienungsfeld des Fernsehgeräts; das bringt den Fernsehgerät in den Service-Modus.

Mit der Betätigung der Tasten ∧ / ∨ wählen Sie die Funktion.

Mit der Betätigung der Tasten + / - ändern Sie den Wert der ausgewählten Funktion.

Durch das Drücken der Taste "STR" an dem vorderen Bedienungsfeld des Fernsehapparats wird nach jeder Einstellung des gewünschten Wertes der jewieligen Funktion der Wert gespeichert.

Für den Austritt aus dem Service-Modus betätigen Sie bitte die Taste "N".

Abgleichfunktion	Indikation der Einstellung Notiz: Alle Einstellungswerte sind approximativ	Einstellung / Besondere Merkmale
1. Cut off	LED on/off (pin6 des Konektors E1 muß geerdet sein)	LED on
2. Vertical slope	V - SLO 32	Optimale Einstellung.
3. Vertical shift	V - POS 43	Optimale Einstellung.
4. Vertical Amplitude	V - AMP 60	Optimale Einstellung.
5. Horizontal shift	H - CTR 31	Optimale Einstellung.
6. Horizontal parallelogram	H - PAR 34	Optimale Einstellung.
7. Horizontal bow	H - BOW 31	Optimale Einstellung.
8. R - Cut	R - CUT 8	Optimale Einstellung.
9. G - Cut	G - CUT 8	Optimale Einstellung.
10. R - Drive	R - DRV 31	Optimale Einstellung.
11. G - Drive	G - DRV 31	Optimale Einstellung.
12. B - Drive	B - DRV 31	Optimale Einstellung.
13. AGC	AGC 018	Optimale Einstellung.
14. Sub Colour	S - COL 20	Optimale Einstellung.
15. Sub-Brightness	S - BRI 31	Optimale Einstellung.
16. Horizontal Width	EW – WD 34	Optimale Einstellung.
17. EW Parabola	EW – PR 32	Optimale Einstellung.
18. EW Upper corners	EW – UC 32	Optimale Einstellung.
19. EW Lower corners	EW – LC 33	Optimale Einstellung.
20. EW Trapezoid	EW-TP 36	Optimale Einstellung.

Mit dem FA-Bediengerät (Sondertaste des Bediengerätes z.B. des E4-Modells) geben Sie den Kode ein, nachfolgend drücken Sie die Taste 5(14HEX) oder für den Zutritt vom Service-Modus die Taste "**STATUS**" an dem Fernbediengerät (nummerische Tasten 0-7 ändern den Wert, die TV/AV an dem Fernbediengerät speichert).

Option	Byte - 1	Option Byte Tabelle		
Bit No.	Werte	Funktion		
0	0	Das französische Modell	0	NEIN JA
1	0	Das irische Modell	0 1	NEIN JA
2	0	NICAM zugänglich	0	NEIN JA
3	. 1	A2 stereo zugänglich	0	NEIN JA
4	0	Der Hersteller von Tuner	0	MACO ALPS
5	1	CRT	0	21" 25",28"
6	1	Q - link zugänglich	0	NEIN JA
7	0	TOP TEXT	0 1	JA NEIN

Option E	Syte - 2	Option Byte Tabelle
Bit No.	Werte	Funktion
0	0	
1	0	
2	0	
3	0	
4	0	
5	0	
6	0	

CRT ф рэsо ES Y3 +200V E-Board Para Para D552 STROMVERSORGUNGS UND ABLENKUNG BLOSKSCHEMA 22 POWER SUPPLY AND DEFLECTION BLOCK DIAGRAM 養本 蓋本 A8+ 於 D807 **基本** 84 T553 75+ 喜本 Power On/Off Control IC601 pin 1 器本 ₩(£ Å D002 Å D003 D1201

10

VIDEO & AUDIO BLOCK DIAGRAM

KONTROLL BLOCKSCHEMA

CONTROL BLOCK DIAGRAM

PARTS LOCATION

EXPLOSIONSZEICHNUNG

NOTE:

The numbers on the exploded view below refer to the exploded view section of the Replacement Parts List.

ANMERKUNG:

Die Nummern auf den Teilen der Explosionszeichnung zeigen die Bezugsnummern des Artikels der Explosionszeichnung der Ersatzteilliste an.

REPLACEMENT PARTS LIST

Important Safety Notice

Components Identified by A mark have special characteristics important for safety.
When replacing any of these components, use only manufacturers specified parts.

* In case of ordering these spare parts, please always add the complete Model-Type number to

your order.

	Parts Number	Description	
COMM	ON PARTS	•	
COMMIN	ONFANIS		
EXPLO	DED VIEW		
1	EASG12D552A2	SPEAKER	
2	ENV57D37G3	TUNER	
3	EUR511310	REMOTE CONTROL	
4	TBM8E1928	PANASONIC BADGE	
5	TBX8E081	5 KEY BUTTON	
6	TBX8E082	POWER BUTTON	
7	TKK8E041	AV COVER	
. 8	TMZ8E010	CHASISS RAIL LEFT	
9	TMZ8E011	CHASISS RAIL RIGHT	
10	TSX8E0043	AC CORD	Δ
11	TXFJTF01BMTG	FOCUS LEAD ASSY	Δ
12	VP17005-32	CRT FIXING SCREW	
13	ZTFL84001A	F.B.T.	Δ
14	ZTUZAE550A	ANODE LEAD	Δ
	. *		
MISCEL	LANEOUS COMP	PONENTS	
	UM-3DJ-2P	BATTERY PACK	
POE3	TMW8E015-2	LED HOLDER	
S351	TJSC00300	CRT SOCKET	. 1
i.C.s	* *.	•	
IC251	TDA7263	AUDIO OUTPUT	
IC351	TDA6108JF	RGB OUTPUT	
IC451	LA7845N	VERTICAL OUTPUT	
IC601	TDA9364V404S	VIDEO PROCESSOR	
IC701	TEA2031A	E/W CORRECTION	
IC702	AN78L20	REGULATOR	
IC801	STRF6523LF51	POWER SUPPLY	
IC802	SE140NLF4	ERROR AMPLIFIER	
IC851	L78M05MRB	5V REGULATOR	
IC852	BA08T-M3	8V REGULATOR	
IC1102	MN13812-HTA	RESET	
IC1104	RPM-6937	L.E.D. RECEIVER	
IC1105	MN1381-R(TA)	RESET	
IC1201	BA033T	3.3V REGULATOR	
IC1202	BA05T-M1	5V REGULATOR	
IC2001	MSP3405DPOA2	AUDIO PROCESSOR	
FUSES			
F801	19181-3.15	FUSE	A
F801-1	EYF52BC	FUSE HOLDER	
F801-2	EYF52BC	FUSE HOLDER	
F851	TR5-T500	FUSE	A
F852	TR5-T1000	FUSE	A
	TR5-T500	FUSE	A
F853			

ERSATZTEILLISTE

Wichtiger Sicherhitshinweis

Teile, die mit einen Hinweis ≜ gekennzeichnet sind wichtig für die Sicherhet. Solite ein Auswechsein erfordelrich sein, sind unbdingt Originalteile einzusetzen.

Bei der Bestellung von Ersatzteilen, di mit * gekennzeichnet sind, geben Sie bitte unbedingt die vollständige Typenbezeicnung mit an.

Cct Ref	Parts Number	Description	
DIODES			
D002	MTZJT-7716A	DIODE	
D003	MTZJT-7716A	DIODE	
D260	MA29W-ATA	DIODE	
D261	MTZJT-7739C	DIODE	
D262	MTZJT-7739C	DIODE	
D350	MTZJT-777.5B	DIODE	
D351	1SR124-4AT82	DIODE	
D352	1SR124-4AT82	DIODE	
D353	1SR124-4AT82	DIODE	
D370	MA165TA5	DIODE	
D371	MA165TA5	DIODE	
D372	MA165TA5	DIODE	
D401	MA165TA5	DIODE	•
D402	ERA15-02V3	DIODE	Superior Control of the
D403	MTZJ33B	DIODE	
D501	1SR124-4AT82	DIODE	
D502	MTZJT-778.2A	DIODE	
D510	1SR124-4AT82	DIODE	
D551	MTZJT-778.2C	DIODE	
D552	EU02	DIODE	
D553	TVSRU3AMLFB4	DIODE	
D554	TVSRU3AMLFB4	DIODE	•
D555	MA165TA5	DIODE	
D556	ERD07-15L7	DIODE	
D557	RU3LFA1	DIODE	
D559	EU02	DIODE	
D601	MTZJT-775.1A	DIODE	
D603	MA165TA5	DIODE	
D606	MA165TA5	DIODE	•
D607	BZT03C240113	DIODE	
D701	SFH617A-20P6	PHOTO COUPLER	<u> </u>
D702	MA165TA5	DIODE	
D703	MA165TA5	DIODE	
D704	MTZJT-775.6C	DIODE	
D705	MA29TA5	DIODE	
D706	MA4036MTA	DIODE	
D751	MA4051	DIODE	
D752	AU02V0	DIODE	_
D753	MTZJT-7730D	DIODE	
D754	MTZJT-7727D	DIODE	
D755	MA165TA5	DIODE	
D801	232266296706	THERMISTOR	A
D802	RBV4-08	DIODE	3
D803	AU01V0	DIODE	
D804	SFH617A-20P6	PHOTO COUPLER	
D805	1SR124-4AT82	DIODE	
D806	1SR124-4AT82	DIODE	
D808	TVSRU3AMLFA5	DIODE	
D809	R2KNLFA1	DIODE	
D810	MA165TA5	DIODE	
D811	1SR124-4AT82	DIODE	

Cct Ref	Parts Number	Description	
D812	MA165TA5	DIODE	
D813	MTZJT-7720D	DIODE	
D814	MTZJT-775.6A	DIODE	
D851	TVSRU3AMLFA5	DIODE	
D852	TVSRU3AMLFA5	DIODE	
D853	1SR124-4AT82	DIODE	
D1101	MTZJT-776.2A	DIODE	
D1104	SLR56UR3FLF	LED	
D1106	MA165TA5	DIODE	
D1107	MA165TA5	DIODE	
D1201	TVSS1WBS20	DIODE	
D1202	MA165TA5	DIODE	
D1205	MA165TA5	DIODE	
D3101	MTZJT-775.1A	DIODE	
TRANS	ISTORS		
Q253	BC857B	TRANSISTOR	1
Q255	BC847B	TRANSISTOR	·
Q351	BC857B	TRANSISTOR	
Q401	BC847B	TRANSISTOR	
Q402	BC847B	TRANSISTOR	
Q501	2SD2398-M2	TRANSISTOR	
Q551	BU4508AFRB	TRANSISTOR	
Q601	BC847B	TRANSISTOR	
Q602	BC847B	TRANSISTOR	
Q603	BC857B	TRANSISTOR	
Q606	BC847B	TRANSISTOR	
Q701	BC857B	TRANSISTOR	
Q702	BC847B	TRANSISTOR	
Q751	BC847B	TRANSISTOR	
Q752	2SK2538000LB	TRANSISTOR	
Q753	BC557B/126	TRANSISTOR	
Q851	BC557B/126	TRANSISTOR	
Q852	2SA684R	TRANSISTOR	
Q1101	2SD965-R	TRANSISTOR	
Q1102	BC847B	TRANSISTOR	
Q1103	BC847B	TRANSISTOR	
Q1104	BC847B	TRANSISTOR	
Q1105	BC847B	TRANSISTOR	
Q1106	BC847B	TRANSISTOR	
Q1107	BC847B	TRANSISTOR	ž.
Q1109	BC847B	TRANSISTOR	
Q1110	BC847B	TRANSISTOR	
Q1201	BC847B	TRANSISTOR	
Q1204	BC847B	TRANSISTOR TRANSISTOR	
Q2001 Q2002	BC857B BC857B	TRANSISTOR	
Q2002 Q2003	BC857B BC847B	TRANSISTOR	
Q2003	BC847B BC847B	TRANSISTOR	
Q3104	2SC1318-S	TRANSISTOR	
	FORMERS	THANGISTON	
		TO AN OFFICE TO	Δ.
T553	ETH19Z192AZ	TRANSFORMER	<u> </u>
T801	ETP35KAN619U	TRANSFORMER	<u>∕r</u> <u>A</u>
T802	10653050-A	TRANSFORMER	. 20
COILS			
L001	TALV35VB100K	COIL	
L502	ELC08D682E	COIL	
L601	TALV35VB100K	COIL	
L602	TALV35VB100K	COIL	
L604	EXCELDR35V	COIL	
L751	ELC18B801L	COIL	
L752	ELC10D822E	COIL	
L753	EXCELSA35T	COIL	
L802	EXCELSA35T	COIL	
L803	EXCELDR35V	COIL	
L851	EXCELSA35T	COIL	

				-
Cct Ref	Parts Number	Description		\dashv
L852	EXCELSA35T	COIL		ļ
L853	EXCELSA35T	COIL		ł
L1101	TALV35VB331K	COIL		
L2001	TALVS5VB4R7K	COIL		
L2002	TALV35VB4R7K	COIL		
L2004 L2005	EXCELSA35T TALV35VB6R8K	COIL		
L2006	TALV35VB0R8K	COIL		
L3101	TLT100K991R	COIL		
L3102	TLT100K991R	COIL		
L3103	EXCELSA35T	COIL		
L3104	EXCELSA35T	COIL		
L3105	TALV35VB100K	COIL		
L3107	EXCELDR35V	COIL		
FILTERS				
L801	ELF15N005A	LINE FILTER		
X103	K3350K	SAW FILTER		.
CRYSTA	LS			
X601	TSSA010	CRYSTAL		-
X602	EFCWS2F11T	CRYSTAL		
X2001	4730007158	CRYSTAL		
RESISTO	ORS	•		
JA41	ERJ6GEY0R00	S.M.CARB C	0.1W 5% 0Ω	
JSE26	ERJ6GEY0R00	•	0.1W 5% 0Ω	
JA1	ERJ6GEY0R00	S.M.CARB . C	0.1W 5% 0Ω	
JA2	ERJ8GEY0R00	S.M.CARB .1:	25W 5% 0Ω	
JA3	ERJ6GEY0R00	S.M.CARB 0	.1W 5% 0Ω	
JA4	ERJ6GEY0R00	S.M.CARB C	0.1W 5% 0Ω	
JA5	ERJ6GEY0R00	S.M.CARB C	0.1W 5% 0Ω	
JA6	ERJ6GEY0R00	S.M.CARB C	0.1W 5% 0Ω	
JA7	ERJ6GEY0R00		0.1W 5% 0Ω	
JA9	ERJ6GEY0R00		0.1W 5% 0Ω	
JA10	ERJ6GEY0R00		0.1W 5% 0Ω	
JA11	ERJ6GEY0R00		0.1W 5% 0Ω 0.1W 5% 0Ω	
JA12 JA15	ERJ6GEY0R00 ERJ8GEY0R00		0.1W 5% 0Ω 25W 5% 0Ω	
JA16	ERJ8GEY0R00	•	25W 5% 0 Ω	
JA18	ERJ6GEY0R00		.1W 5% 0Ω	
JA19	ERJ6GEY0R00).1W 5% 0Ω	Ì
JA20	ERJ6GEY0R00	S.M.CARB C	0.1W 5% 0Ω	
JA21	ERJ6GEY0R00	S.M.CARB C	.1W 5% 0Ω	
JA27	ERJ6GEY0R00	S.M.CARB C	0.1W 5% 0Ω	
JA28	ERJ8GEY0R00	S.M.CARB .1	25W 5% 0Ω	
JA29	ERJ8GEY0R00		25W 5% 0Ω	
JA30	ERJ6GEY0R00		0.1W 5% 0Ω	
JA31	ERJ6GEY0R00		0.1W 5% 0Ω	
JA32	ERJ6GEY0R00		0.1W 5% 0 Ω	
JA33	ERJ8GEY0R00		25W 5% 0Ω 25W 5% 0Ω	
JA34 JA36	ERJ8GEY0R00 ERJ8GEY0R00		25W 5% 0Ω 25W 5% 0Ω	
JA36 JA37	ERJ6GEY0R00		25W 5% 0Ω 0.1W 5% 0Ω	
JA38	ERJ6GEY0R00		0.1W 5% 0Ω	Ì
JA39	ERJ6GEY0R00		.1W 5% 0Ω	
JA40	ERJ8GEY0R00		25W 5% 0Ω	
JA42	ERJ8GEY0R00		25W 5% 0Ω	
JA43	ERJ6GEY0R00		.1W 5% 0Ω	
JA44	ERJ8GEY0R00	S.M.CARB .1:	25W 5% 0Ω	
JA45	ERJ6GEY0R00	S.M.CARB 0	0.1W 5% 0 Ω	į
JA46	ERJ8GEY0R00	S.M.CARB .1	25W 5% 0Ω	
JSE1	ERJ6GEY0R00		0.1W 5% 0Ω	Ì
JSE2	ERJ6GEY0R00		0.1W 5% 0Ω	
JSE11	ERJ8GEY0R00		25W 5% 0Ω	
JSE15	ERJ6GEY0R00		0.1W 5% 0Ω	
JSE18	ERJ6GEY0R00		0.1W 5% 0Ω 0.1W 5% 0Ω	
JSE29	ERJ6GEY0R00	S.M.CARB C	0.1W 5% 0Ω	
				[

Cct Ref	Parts Number	Description			
JSE30	ERJ6GEY0R00	S.M.CARB	0.1W	5%	ο Ω
JSE33	ERJ6GEY0R00	S.M.CARB	0.1W	5%	0 Ω
JSE37	ERJ6GEY0R00	S.M.CARB	0.1W	5%	0Ω
JSE43	ERJ6GEY0R00	S.M.CARB	0.1W	5%	0 Ω
JYA	ERJ6GEY0R00	S.M.CARB	0.1W	5%	0Ω
R001	ERJ6GEYJ101	S.M.CARB	0.1W	5%	100 Ω
R002	ERJ6GEYJ101	S.M.CARB	0.1W	5%	100 Ω
R003	ERJ6GEYJ153	S.M.CARB	0.1W	5%	15K Ω
R004	ERG2SJS273	METAL	2W	5%	27KΩ Å
R005	ERJ6GEY0R00	S.M.CARB	0.1W	5%	ο Ω
R006	ERJ6GEYJ273	S.M.CARB	0.1W	5%	27K Ω 3K Ω
R007	ERJ6GEYJ302	S.M.CARB S.M.CARB	0.1W	5% 5%	680 Ω
R008 R110	ERJ6GEYJ681 ERJ6GEY0R00	S.M.CARB	0.1W 0.1W	5% 5%	000 Ω
R241	ERJ6GEYJ102	S.M.CARB	0.1W	5% 5%	1KΩ
R251	ERJ6GEYJ680	S.M.CARB	0.1W	5%	68 Ω
R252	ERJ6GEYJ821	S.M.CARB	0.1W	5%	820 Ω
R254	ERJ6GEYJ680	S.M.CARB	0.1W	5%	68 Ω
R256	ERJ6GEYJ471	S.M.CARB	0.1W	5%	470 Ω
R257	ERJ6GEYJ360	S.M.CARB	0.1W	5%	36 Ω
R258	ERJ6GEYJ821	S.M.CARB	0.1W	5%	820 Ω
R259	ERJ6GEYJ360	S.M.CARB	0.1W	5%	36 Ω
R260	ERJ6GEYJ472	S.M.CARB	0.1W	5%	4K7 Ω
R261	ERJ6GEYJ471	S.M.CARB	0.1W	5%	470 Ω
R262	ERJ6GEYJ103	S.M.CARB	0.1W	5%	10K Ω
R263	ERJ6GEYJ472	S.M.CARB	0.1W	5%	4K7 Ω
R264	ERJ6GEYJ512	S.M.CARB	0.1W	5%	5K1 Ω
R265	ERD25TJ2R2	CARBON	0.25W	5%	2R2 Ω
R266	ERD25TJ2R2	CARBON	0.25W	5%	2R2 Ω
R268	ERJ6GEYJ203	S.M.CARB	0.1W	5%	20K Ω
R280	ERJ6GEYJ204	S.M.CARB	0.1W	5%	200ΚΩ
R281	ERJ6GEYJ204	S.M.CARB	0.1W	5%	200K Ω 1K8 Ω
R351	ERDS1TJ182	CARBON CARBON	0.5W 0.5W	10% 10%	1K8 Ω
R352 R353	ERDS1TJ182 ERDS1TJ182	CARBON	0.5W	10%	1Κ8 Ω
R357	ERDS1TJ102	CARBON	0.5W	5%	1ΚΩ
R358	ERDS1TJ102	CARBON	0.5W	5%	1ΚΩ
R359	ERDS1TJ102	CARBON	0.5W	5%	1K Ω
R360	ERG2SJS470H	METAL	2W	5%	47 Ω
R370	ERJ6GEYJ103	S.M.CARB	0.1W	5%	10K Ω
R371	ERJ6GEYJ391	S.M.CARB	0.1W	5%	390 Ω
R401	ERJ6GEYJ473	S.M.CARB	0.1W	5%	47K Ω
R402	ERJ6GEYJ332	S.M.CARB	0.1W	5%	зкз Ω
R403	ERJ6ENF2701	S.M.CARB	0.1W	5%	27 Ω
R404	ERJ6ENF2701	S.M.CARB	0.1W	5%	27 Ω
R405	ERJ6ENF2701	S.M.CARB	0.1W	5%	27 Ω
R406	ERJ6GEYJ1R0	S.M.CARB	0.1W	5%	1Ω
R407	ERDS1TJ471	CARBON	0.5W	5%	470 Ω
R408	ERDS1TJ471 ERJ6GEYJ473	CARBON S.M.CARB	0.5W 0.1W	5% 5%	470 Ω 47K Ω
R409 R410	ERJ6GEYJ683	S.M.CARB	0.1W	5% 5%	68K Ω
R411	ERJ6GEYJ821	S.M.CARB	0.1W	5%	820 Ω
R415	ERJ6ENF2701	S.M.CARB	0.1W	5%	27 Ω
R501	ERJ6GEYJ391	S.M.CARB	0.1W	5%	390 Ω
R502	ERD25TJ272F	CARBON	0.25W	5%	2Κ7 Ω
R503	ERG3SJS220H	METAL	3W	5%	22 Ω
R504	ERG2ANJP471H	METAL	2W	5%	470 Ω
R507	ERJ6GEYJ122	S.M.CARB	0.1W	5%	1K2 Ω
R553	ERJ6GEYJ273	S.M.CARB	0.1W	5%	27K Ω
R556	ERG1SJ183	METAL	1W	5%	18K Ω
R557	ERDS1TJ184	CARBON	0.5W	5%	180 Ω
R558	ERD25TJ183	CARBON	0.25W	5%	18K Ω
R560	ERQ1CJP102	FUSIBLE	. 1W	5%	1KΩ Å
R561	ERQ12AJ101	FUSIBLE	0.5W	5%	100 Ω Δ
R601	ERJ6GEYJ153	S.M.CARB	0.1W	5% 5%	15K Ω 30 Ω
R602	ERJ6ENF3001	S.M.CARB	0.5W	5%	30 -4

Cct Ref	Parts Number	Description			
R603	ERJ6GEYJ393	S.M.CARB	0.1W	5%	39K Ω
R604	ERJ6GEYJ101	S.M.CARB	0.1W	5%	100 Ω
R605	ERJ6GEYJ101	S.M.CARB	0.1W	5%	100 Ω
R606	ERJ6GEYJ101	S.M.CARB	0.1W	5%	100 Ω
R607	ERJ6GEYJ103	S.M.CARB	0.1W	5%	10K Ω
R608	ERJ6GEYJ101	S.M.CARB	0.1W	5%	100 Ω
R609	ERJ6GEYJ101	S.M.CARB	0.1W	5%	100 Ω
R610	ERJ6GEYJ101	S.M.CARB	0.1W	5%	100 Ω
R611	ERJ6GEYJ102	S.M.CARB	0.1W	5%	1K Ω
R612	ERJ6GEYJ102	S.M.CARB	0.1W	5%	1K Ω
R613	ERJ6GEYJ391	S.M.CARB	0.1W	5%	390 Ω
R614	ERJ6GEYJ101	S.M.CARB	0.1W	5%	100 Ω
R615	ERJ6GEYJ470	S.M.CARB	0.1W	5%	47 Ω
R616	ERJ6GEYJ201	S.M.CARB	0.1W	5%	200 Ω
R617	ERJ6GEYJ181	S.M.CARB	0.1W	5%	180 Ω
R618	ERJ6GEYJ470	S.M.CARB	0.1W	5%	47 Ω
R619	ERJ6GEYJ471	S.M.CARB	0.1W	5%	470 Ω
R620	ERJ6GEYJ471	S.M.CARB	0.1W	5%	470 Ω
R621	ERJ6GEYJ103	S.M.CARB	0.1W	5%	10K Ω
R622	ERJ6GEYJ103	S.M.CARB	0.1W	5%	10K Ω
R623	ERJ6GEY0R00	S.M.CARB	0.1W	5%	0 Ω
R624	ERJ6GEYJ103	S.M.CARB	0.1W	5%	10K Ω
R625	ERJ6GEYJ222	S.M.CARB	0.1W	5%	2Κ2 Ω
R626	ERJ6GEYJ474	S.M.CARB	0.1W	5%	470K Ω
R627	ERJ6GEYJ474	S.M.CARB	0.1W	5%	470K Ω
R628	ERDS1TJ684	CARBON	0.5W	5%	680K Ω
R629	ERJ6GEYJ154	S.M.CARB	0.1W	5%	150K Ω
R630	ERJ6ENF1802	S.M.CARB	0.1W	5%	1K8 Ω
R631	ERO50PKF5603	METAL	0.5W	1%	560K Ω Δ
R632	ERJ6GEYJ101	S.M.CARB	0.1W	5%	100 Ω
R633	ERJ6GEYJ101	S.M.CARB	0.1W	5%	100 Ω
R635	ERJ6GEYJ101	S.M.CARB	0.1W	5%	100 Ω 150 Ω
R638	ERJ6GEYJ151	S.M.CARB	0.1W	5%	470 Ω
R639	ERJ6GEYJ471	S.M.CARB	0.1W	5% 5%	10 Ω
R646	ERJ6GEYJ100	S.M.CARB	0.1W	5% 5%	16 Ω
R701 R702	ERJ6GEYJ102 ERJ6GEYJ103	S.M.CARB S.M.CARB	0.1W 0.1W	5%	10K Ω
R703	ERJ6GEYJ392	S.M.CARB	0.1W	5%	3K9 Ω
R704	ERJ6GEYJ562	S.M.CARB	0.1W	5%	5K6 Ω
R705	ERDS1TJ821	CARBON	0.5W	5%	820 Ω
R706	ERJ6GEYJ563	S.M.CARB	0.1W	5%	56K Ω
R707	ERJ6GEYJ104	S.M.CARB	0.1W	5%	100K Ω
R708	ERJ6GEYJ273	S.M.CARB	0.1W	5%	27ΚΩ
R709	ERJ6GEYJ393	S.M.CARB	0.1W	5%	39K Ω
R710	ERJ6GEYJ393	S.M.CARB	0.1W	5%	39K Ω
R711	ERJ6GEYJ103	S.M.CARB	0.1W	5%	10K Ω
R712	ERJ6GEYJ391	S.M.CARB	0.1W	5%	390 Ω
R713	ERG1SJ101	METAL	1W	5%	100 Ω
R715	ERJ6GEYJ101	S.M.CARB	0.1W	5%	100 Ω
R716	ERJ6GEYJ432	S.M.CARB	0.1W		4K3 Ω
R717	ERJ6GEYJ392	S.M.CARB	0.1W	5%	3K9 Ω
R751	ERJ6GEYJ152	S.M.CARB	0.1W	5%	1K5 Ω
R752	ERJ6GEYJ222	S.M.CARB	0.1W	5%	2Κ2 Ω
R753	ERJ6GEYJ152	S.M.CARB	0.1W		1K5 Ω
R754	ERJ6GEYJ103	S.M.CARB	0.1W	5%	10K Ω
R756	ERDS1TJ472	CARBON	0.5W	5%	4K7 Ω
R757	ERJ6GEYJ680	S.M.CARB	0.1W	5%	68 Ω
R758	ERJ6GEYJ392	S.M.CARB	0.1W	5%	3K9 Ω
R759	ERQ12HJ8R2	FUSIBLE	0.5W	5%	8R2Ω 🛭
R760	ERJ6GEYJ101	S.M.CARB	0.1W	5%	100 Ω
R761	ERG1SJ563	METAL	1W	5%	56K Ω
R762	ERJ6GEYJ102	S.M.CARB	0.1W	5%	1KΩ
R763	ERG3FJ561H	METAL	2W	5%	560 Ω
R802	ERC12ZGK335D	SOLID	0.5W	10%	3M3 Ω Δ
R803	ERF7ZK2R7	WOUND	7W	20%	2R7Ω Δ
R804	ERG2ANJP104H	METAL	2W	5%	100K Ω

		·			
Cct Ref	Parts Number	Description	<u> </u>		
R805	ERDS1TJ103	CARBON	0.5W	5%	10K Ω
R806	ERDS1TJ332	CARBON	0.5W	5%	зкз О
R809	ERW2PKR33	WOUND	2W	20%	яззΩ А
R810	ERDS1TJ152	CARBON	0.5W	5%	1K5 Ω
R811	ERQ12HJ100	FUSIBLE	0.5W	5%	10 Ω 🛦
R812	ERD75TAJ825	CARBON	0.75W	5%	8M2 Ω A
R813	ERDS1TJ103	CARBON	0.5W	5%	10K Ω
R814	ERDS1TJ330	CARBON	0.5W	5%	33 Ω
R815	ERDS1TJ681	CARBON	0.5W	5%	680 Ω
R851	ERG2SJS220H	METAL	2W	5%	220 Ω
R852	ERG2SJS130H	METAL	2W	5%	13 Ω
R855	ERDS1TJ4R7	CARBON	0.5W	5%	4R7 Ω
R856	ERD25TJ101	CARBON	0.25W	5%	100 Ω
R857	ERD25TJ202	CARBON	0.25W	5%	2K Ω
R858	ERDS1TJ103	CARBON	0.5W	5%	10K Ω
R1101	ERJ6GEYJ101	S.M.CARB	0.1W	5%	100 Ω
R1102	ERJ6GEYJ101	S.M.CARB	0.1W	5%	΄ 100 Ω
R1104	ERJ6GEYJ562	S.M.CARB	0.1W	5%	5K6 Ω
R1105	ERJ6GEYJ562	S.M.CARB	0.1W	5%	_: 5K6 Ω
R1106	ERJ6GEYJ184	S.M.CARB	0.1W	5%	180K Ω
R1107	ERJ6GEYJ563	S.M.CARB	0.1W	5%	56K Ω
R1108	ERJ6GEYJ103	S.M.CARB	0.1W	5%	10K Ω
R1110	ERJ6GEYJ102	S.M.CARB	0.1W	5%	1K Ω
R1112	ERJ6GEYJ362	S.M. CAR	0.1W	5%	3K6 Ω
R1113	ERJ6GEYJ242	S.M.CARB	0.1W	5%	2Κ4 Ω
R1114	ERJ6GEYJ432	S.M.CARB	0.1W	5%	4K3 Ω
R1115	ERJ6GEYJ822	S.M.CARB	0.1W	5%	8K2 Ω
R1116	ERJ6GEYJ183	S.M.CARB	0.1W	5%	18K Ω
R1117	ERJ6GEYJ821	S.M.CARB	0.1W	5%	820 Ω
R1118	ERJ6GEYJ101	S.M.CARB	0.1W	5%	100 Ω
R1119	ERJ6GEYJ101	S.M.CARB	0.1W	5%	100 Ω
R1120	ERJ6GEYJ101	S.M.CARB	0.1W	5%	100 Ω
R1121	ERJ6GEYJ101	S.M.CARB	0.1W	5%	100 Ω
R1122	ERJ6GEYJ101	S.M.CARB	0.1W	5%	100 Ω
R1125	ERJ6GEYJ101	S.M.CARB	0.1W	5%	100 Ω
R1127	ERJ6GEYJ101	S.M.CARB	0.1W	5%	100 Ω
R1128	ERJ6GEYJ101	S.M.CARB	0.1W	5%	100 Ω
R1129	ERJ6GEYJ101	S.M.CARB	0.1W	5%	100 Ω
R1130	ERJ6GEYJ473	S.M.CARB	0.1W	5%	47K Ω
R1131	ERJ6GEYJ472	S.M.CARB	0.1W	5%	4Κ7 Ω
R1132	ERJ6GEYJ225	S.M.CARB	_ 0.1W	5%	2M2 Ω
R1133	ERJ6GEYJ104	S.M.CARB	0.1W	5%	100K Ω
R1134	ERJ6GEYJ224	S.M.CARB	0.1W	5%	220K Ω
R1135	ERJ6GEYJ102	S.M.CARB	0.1W	5%	1KΩ
R1136	ERJ6GEYJ221	S.M.CARB	0.1W	5%	220 Ω
R1137	ERJ6GEYJ104	S.M.CARB	0.1W	5%	100K Ω
R1138	ERJ6GEYJ223	S.M.CARB	0.1W		22K Ω
R1139	ERJ6GEYJ273	S.M.CARB	0.1W		27ΚΩ
R1140	ERJ6GEYJ103	S.M.CARB	0.1W	5%	10K Ω
R1141	ERJ6GEYJ103	S.M.CARB	0.1W	5%	10K Ω
R1144	ERJ6GEYJ183	S.M.CARB	0.1W	5%	18K Ω
R1145	ERJ6GEYJ104	S.M.CARB	0.1W	5%	100K Ω
R1.146	ERJ6GEYJ473	S.M.CARB	0.1W	5%	47K Ω
R1147	ERJ6GEYJ184	S.M.CARB	0.1W	5%	180K Ω
R1148	ERJ6GEYJ103	S.M.CARB	0.1W	5%	10K Ω
R1149	ERJ6GEYJ103	S.M.CARB	0.1W		10K Ω
R1150	ERJ6GEYJ103	S.M.CARB	0.1W	5%	10K Ω
R1202	ERDS1TJ680	CARBON	0.5W	5%	68 Ω
R1205	ERJ6GEYJ152	S.M.CARB	0.1W	5%	1K5 Ω
R1206	ERJ6GEYJ223	S.M.CARB	0.1W	5%	22K Ω
R1209	ERDS1TJ560	CARBON	0.5W	5%	56 Ω Ω
R1283	P1201	SENSOR			Ω
R2001	ERJ6GEYJ101	S.M.CARB	0.1W	5%	100 Ω
R2002	ERJ6GEYJ101	S.M.CARB	0.1W	5%	100 Ω
R2003	ERJ6GEYJ222	S.M.CARB	0.1W	5%	2Κ2 Ω
R2004	ERJ6GEYJ222	S.M.CARB	0.1W	5%	2Κ2 Ω

Cct Ref	Parts Number	Description				
R2007	ERJ6GEYJ103	S.M.CARB	0.1W	5%	10K Ω	
R2008	ERJ6GEYJ101	S.M.CARB	0.1W	5%	100 Ω	
R2009	ERJ6GEYJ101	S.M.CARB	0.1W	5%	100 Ω	
R2010	ERJ6GEYJ471	S.M.CARB	0.1W	5%	.470 Ω	
R2011	ERJ6GEYJ153	S.M.CARB	0.1W	5%	15K Ω	
R2012	ERJ6GEYJ153	S.M.CARB	0.1W	5%	15K Ω	
R2013	ERJ6GEYJ471	S.M.CARB	0.1W	5%	470 Ω	
R2014	ERJ6GEYJ471	S.M.CARB	0.1W	5%	470 Ω	
R2015	ERJ6GEYJ102	S.M.CARB	0.1W	5%	1K Ω	
R2016	ERJ6GEYJ101	S.M.CARB	0.1W	5%	100 Ω	
R2017	ERJ6GEYJ101	S.M.CARB	0.1W	5%	100 Ω	
R2018	ERJ6GEYJ681	S.M.CARB	0.1W	5%	680 Ω	
R2020	ERJ6GEYJ202	S.M.CARB	0.1W	5%	2Κ Ω	
R2021	ERJ6GEYJ103	S.M.CARB	0.1W	5%	10K Ω	
R2022	ERJ6GEYJ303	S.M.CARB	0.1W	5%	30K Ω	
R3106	ERJ6GEYJ101	S.M.CARB	0.1W	5%	100 Ω	\$ 1
R3111	ERDS1TJ101	CARBON	0.5W	5%	100 Ω	
R3115	ERJ6GEYJ151	S.M.CARB	0.1W	5%	150 Ω	
R3116	ERJ6GEYJ750	S.M.CARB	0.1W	5%	75 Ω	
R3117	ERJ6GEYJ750	S.M.CARB	0.1W	5%	75 Ω	
R3118	ERJ6GEYJ750	S.M.CARB	0.1W	5%	75 Ω	
R3120	ERDS1TJ750	CARBON	0.5W	5%	75 Ω	
R3121	ERJ6GEYJ334	S.M.CARB	0.1W	5%	330K Ω	
R3122	ERJ6GEY0R00	S.M.CARB	0.1W	5%	ο Ω	
R3123	ERJ6GEY0R00	S.M.CARB	0.1W	5%	ο Ω	
R3124	ERJ6GEY0R00	S.M.CARB	0.1W	5%	ΩΩ	
R3125	ERJ6GEYJ104	S.M.CARB	0.1W	5%	100K Ω	
R3129	ERDS1TJ750	CARBON	0.5W	5%	75 Ω	
R3130	ERJ6GEY0R00	S.M.CARB	0.1W	5%	. οΩ	
R3131	ERJ6GEY0R00	S.M.CARB	0.1W	5%	0Ω	
R3132	ERJ6GEYJ221	S.M.CARB	0.1W	5%	220 Ω	
	ED ICOEV 1004	OMONDO	0.4347	5%	220 Ω	
R3133	ERJ6GEYJ221	S.M.CARB	0.1W	5/6		
R3133 R3134	ERJ6GEY0R00	S.M.CARB	0.1W	5%	0Ω	
	ERJ6GEY0R00	-				:
R3134	ERJ6GEY0R00	-			0Ω 22μF	:
R3134 CAPACI	ERJ6GEY0R00 TORS	S.M.CARB	0.1W		0 Ω 22μF 100nF	:
R3134 CAPACI C001	ERJ6GEY0R00 TORS ECA1CM220GB	S.M.CARB ELECT	0.1W 16V		0 Ω 22μF 100nF 100nF	:
R3134 CAPACI C001 C002	ERJ6GEY0R00 FORS ECA1CM220GB ECJ2VF1H104Z ECJ2VF1H104Z ECGA1HU101	S.M.CARB ELECT ELECT	0.1W 16V 350V		0 Ω 22μF 100nF 100nF 100μF	:
R3134 CAPACI' C001 C002 C005	ERJ6GEY0R00 FORS ECA1CM220GB ECJ2VF1H104Z ECJ2VF1H104Z ECEA1HU101 ECA1HM330B	S.M.CARB ELECT ELECT ELECT	0.1W 16V 350V 350V		0 Ω 22μF 100nF 100nF 100μF 33μF	:
R3134 CAPACIT C001 C002 C005 C006 C007 C008	ERJ6GEY0R00 FORS ECA1CM220GB ECJ2VF1H104Z ECJ2VF1H104Z ECEA1HU101 ECA1HM330B ECEA1HU010	S.M.CARB ELECT ELECT ELECT ELECT ELECT ELECT	16V 350V 350V 50V 50V 50V		0 Ω 22μF 100nF 100nF 100μF 33μF 1pF	
R3134 CAPACI' C001 C002 C005 C006 C007	ERJ6GEY0R00 FORS ECA1CM220GB ECJ2VF1H104Z ECJ2VF1H104Z ECEA1HU101 ECA1HM330B ECEA1HU010 ECUV1H100DCX	S.M.CARB ELECT ELECT ELECT ELECT ELECT	0.1W 16V 350V 350V 50V 50V		0 Ω 22μF 100nF 100nF 100μF 33μF	:
R3134 CAPACIT C001 C002 C005 C006 C007 C008	ERJ6GEY0R00 FORS ECA1CM220GB ECJ2VF1H104Z ECJ2VF1H104Z ECEA1HU101 ECA1HM330B ECEA1HU010 ECUV1H100DCX ECUV1H100DCX	S.M.CARB ELECT ELECT ELECT ELECT ELECT ELECT S.M. CAP S.M. CAP	0.1W 16V 350V 350V 50V 50V 50V 50V		0 Ω 22μF 100nF 100nF 100μF 33μF 1pF 10pF	:
R3134 CAPACI* C001 C002 C005 C006 C007 C008 C009 C010 C117	ERJ6GEY0R00 FORS ECA1CM220GB ECJ2VF1H104Z ECJ2VF1H104Z ECEA1HU101 ECA1HM330B ECEA1HU010 ECUV1H100DCX ECUV1H100DCX ECJ2VB1H103K	S.M.CARB ELECT ELECT ELECT ELECT ELECT S.M. CAP S.M. CAP ELECT	16V 350V 350V 50V 50V 50V 50V 50V 350V		0 Ω 22μF 100nF 100nF 100μF 33μF 1pF 10pF 10pF 10nF	:
R3134 CAPACI* C001 C002 C005 C006 C007 C008 C009 C010	ERJ6GEY0R00 FORS ECA1CM220GB ECJ2VF1H104Z ECJ2VF1H104Z ECEA1HU101 ECA1HM330B ECEA1HU010 ECUV1H100DCX ECUV1H100DCX ECJ2VB1H103K	S.M.CARB ELECT ELECT ELECT ELECT ELECT S.M. CAP S.M. CAP ELECT ELECT ELECT	0.1W 16V 350V 350V 50V 50V 50V 50V 350V 350V		0 Ω 22μF 100nF 100nF 100μF 33μF 1pF 10pF 10pF 10nF	
R3134 CAPACI C001 C002 C005 C006 C007 C008 C009 C010 C117 C118 C251	ERJ6GEY0R00 FORS ECA1CM220GB ECJ2VF1H104Z ECJ2VF1H104Z ECEA1HU101 ECA1HM330B ECEA1HU010 ECUV1H100DCX ECUV1H100DCX ECJ2VB1H103K ECJ2VB1H103K	S.M.CARB ELECT ELECT ELECT ELECT ELECT S.M. CAP S.M. CAP ELECT ELECT ELECT ELECT	0.1W 16V 350V 350V 50V 50V 50V 50V 350V 350V 50V		0 Ω 22μF 100nF 100nF 100μF 33μF 1pF 10pF 10pF 10nF 10nF 100μF	
R3134 CAPACI C001 C002 C005 C006 C007 C008 C009 C010 C117 C118 C251 C252	ERJ6GEY0R00 FORS ECA1CM220GB ECJ2VF1H104Z ECJ2VF1H104Z ECEA1HU101 ECA1HM330B ECEA1HU010 ECUV1H100DCX ECUV1H100DCX ECJ2VB1H103K ECJ2VB1H103K ECJ2VB1H103K ECJ2VB1H223K	S.M.CARB ELECT ELECT ELECT ELECT ELECT S.M. CAP S.M. CAP ELECT ELECT ELECT ELECT ELECT ELECT	0.1W 16V 350V 350V 50V 50V 50V 50V 350V 350V 35		0 Ω 22μF 100nF 100nF 100μF 33μF 1pF 10pF 10pF 10nF 10nF 10nF 100μF	
R3134 CAPACI C001 C002 C005 C006 C007 C008 C009 C010 C117 C118 C251 C252 C253	ERJ6GEY0R00 FORS ECA1CM220GB ECJ2VF1H104Z ECJ2VF1H104Z ECEA1HU101 ECA1HM330B ECEA1HU010 ECUV1H100DCX ECUV1H100DCX ECJ2VB1H103K ECJ2VB1H103K ECJ2VB1H103K ECJ2VB1H223K ECKC1H103J	ELECT ELECT ELECT ELECT ELECT ELECT S.M. CAP ELECT ELECT ELECT ELECT ELECT ELECT ELECT ELECT	0.1W 16V 350V 350V 50V 50V 50V 350V 350V 50V 350V 50V		0 Ω 22μF 100nF 100nF 100μF 33μF 1pF 10pF 10pF 10nF 10nF 100μF 22nF 100μF	
R3134 CAPACI C001 C002 C005 C006 C007 C008 C009 C010 C117 C118 C251 C252 C253 C254	ERJ6GEY0R00 FORS ECA1CM220GB ECJ2VF1H104Z ECJ2VF1H104Z ECEA1HU101 ECA1HM330B ECEA1HU010 ECUV1H100DCX ECUV1H100DCX ECJ2VB1H103K ECJ2VB1H103K ECJ2VB1H103K ECJ2VB1H103K ECJ2VB1H223K ECKC1H103J ECQV1H334JL3	ELECT ELECT ELECT ELECT ELECT ELECT S.M. CAP S.M. CAP ELECT ELECT ELECT ELECT ELECT ELECT ELECT ELECT	0.1W 16V 350V 350V 50V 50V 50V 50V 350V 350V 50V 350V 50V 50V		0 Ω 22μF 100nF 100nF 100μF 33μF 1pF 10pF 10pF 10nF 10nF 100μF 22nF 100μF 330nF	
R3134 CAPACI C001 C002 C005 C006 C007 C008 C009 C010 C117 C118 C251 C252 C253 C254 C255	ERJ6GEY0R00 FORS ECA1CM220GB ECJ2VF1H104Z ECJ2VF1H104Z ECEA1HU101 ECA1HM330B ECEA1HU010 ECUV1H100DCX ECUV1H100DCX ECJ2VB1H103K ECJ2VB1H103K ECJ2VB1H103K ECEA1HU101 ECJ2VB1H223K ECKC1H103J ECQV1H334JL3 ECEA1CU470	S.M.CARB ELECT ELECT ELECT ELECT ELECT S.M. CAP S.M. CAP ELECT	0.1W 16V 350V 350V 50V 50V 50V 350V 350V 350V 50V 350V 50V 16V		0 Ω 22μF 100nF 100nF 100μF 33μF 1pF 10pF 10pF 10nF 10nF 100μF 22nF 100μF 330nF 47μF	
R3134 CAPACI C001 C002 C005 C006 C007 C008 C009 C010 C117 C118 C251 C252 C253 C254 C255 C256	ERJ6GEY0R00 FORS ECA1CM220GB ECJ2VF1H104Z ECJ2VF1H104Z ECEA1HU101 ECA1HM330B ECEA1HU010 ECUV1H100DCX ECUV1H100DCX ECJ2VB1H103K ECJ2VB1H103K ECJ2VB1H223K ECKC1H103J ECQV1H334JL3 ECGA1CU470 ECJ2VB1H223K	S.M.CARB ELECT ELECT ELECT ELECT ELECT S.M. CAP S.M. CAP ELECT	0.1W 16V 350V 350V 50V 50V 50V 350V 350V 350V 50V 40V 350V 50V 50V 50V 50V 50V		0 Ω 22μF 100nF 100nF 100μF 33μF 1pF 10pF 10nF 10nF 100μF 22nF 100μF 330nF 47μF 22nF	
R3134 CAPACI* C001 C002 C005 C006 C007 C008 C009 C010 C117 C118 C251 C252 C253 C254 C255 C256 C257	ERJ6GEY0R00 FORS ECA1CM220GB ECJ2VF1H104Z ECJ2VF1H104Z ECEA1HU101 ECA1HM330B ECEA1HU010 ECUV1H100DCX ECUV1H100DCX ECJ2VB1H103K ECJ2VB1H103K ECJ2VB1H103L ECGA1HU101 ECJ2VB1H223K ECKC1H103J ECQV1H334JL3 ECEA1CU470 ECJ2VB1H223K ECA1CHG102B	S.M.CARB ELECT ELECT ELECT ELECT ELECT S.M. CAP S.M. CAP ELECT	0.1W 16V 350V 350V 50V 50V 50V 350V 350V 350V 50V 40V 350V 16V 350V 10V		0 Ω 22μF 100nF 100nF 100μF 33μF 1pF 10pF 10pF 10nF 10nF 100μF 22nF 100μF 330nF 47μF 22nF	
R3134 CAPACI* C001 C002 C005 C006 C007 C008 C009 C010 C117 C118 C251 C252 C253 C254 C255 C256 C257 C258	ERJ6GEY0R00 FORS ECA1CM220GB ECJ2VF1H104Z ECJ2VF1H104Z ECEA1HU101 ECA1HM330B ECEA1HU010 ECUV1H100DCX ECUV1H100DCX ECJ2VB1H103K ECJ2VB1H103K ECJ2VB1H223K ECKC1H103J ECQV1H334JL3 ECEA1CU470 ECJ2VB1H223K ECA1CHG102B ECEA1HU101	ELECT ELECT ELECT ELECT ELECT ELECT S.M. CAP S.M. CAP ELECT	0.1W 16V 350V 350V 50V 50V 50V 350V 350V 350V 50V 40V 350V 16V 350V 10V 50V		0 Ω 22μF 100nF 100nF 100μF 33μF 1pF 10pF 10nF 10nF 100μF 22nF 100μF 330nF 47μF 22nF 1000μF 100μF	
R3134 CAPACI C001 C002 C005 C006 C007 C008 C009 C010 C117 C118 C251 C252 C253 C254 C255 C256 C257 C258 C259	ERJ6GEY0R00 FORS ECA1CM220GB ECJ2VF1H104Z ECJ2VF1H104Z ECEA1HU101 ECA1HM330B ECEA1HU010 ECUV1H100DCX ECJ2VB1H103K ECJ2VB1H103K ECJ2VB1H103K ECJ2VB1H223K ECKC1H103J ECQV1H334JL3 ECEA1CU470 ECJ2VB1H223K ECA1CHG102B ECEA1HU101 ECQV1H334JL3	ELECT ELECT ELECT ELECT ELECT ELECT S.M. CAP S.M. CAP ELECT	0.1W 16V 350V 350V 50V 50V 50V 350V 350V 350V 50V 16V 350V 10V 50V 50V		0 Ω 22μF 100nF 100nF 100μF 33μF 1pF 10pF 10nF 10nF 100μF 22nF 100μF 330nF 47μF 22nF 100μF 100μF 330nF	
R3134 CAPACI* C001 C002 C005 C006 C007 C008 C009 C010 C117 C118 C251 C252 C253 C254 C255 C256 C257 C258 C259 C260	ERJ6GEY0R00 FORS ECA1CM220GB ECJ2VF1H104Z ECJ2VF1H104Z ECGA1HU101 ECA1HM330B ECEA1HU010 ECUV1H100DCX ECJ2VB1H103K ECJ2VB1H103K ECJ2VB1H103K ECGA1HU101 ECJ2VB1H223K ECKC1H103J ECQV1H334JL3 ECGA1CU470 ECJ2VB1H223K ECA1CU470 ECJ2VB1H223K ECA1CHG102B ECEA1HU101 ECQV1H334JL3 ECA1VM102GB	S.M.CARB ELECT ELECT ELECT ELECT ELECT S.M. CAP S.M. CAP ELECT	0.1W 16V 350V 350V 50V 50V 50V 350V 350V 350V 50V 350V 50V 16V 350V 10V 50V 50V 35V		0 Ω 22μF 100nF 100nF 100μF 33μF 1pF 10pF 10nF 10nF 100μF 22nF 100μF 330nF 47μF 22nF 100μF 100μF 330nF	
R3134 CAPACI C001 C002 C005 C006 C007 C008 C009 C010 C117 C118 C251 C252 C253 C254 C255 C256 C257 C258 C259 C260 C261	ERJ6GEY0R00 FORS ECA1CM220GB ECJ2VF1H104Z ECJ2VF1H104Z ECGA1HU101 ECA1HM330B ECEA1HU010 ECUV1H100DCX ECUV1H100DCX ECJ2VB1H103K ECJ2VB1H103K ECJ2VB1H103K ECGA1HU101 ECJ2VB1H223K ECKC1H103J ECQV1H334JL3 ECGA1CU470 ECJ2VB1H223K ECA1CU470 ECJ2VB1H223K ECA1CHG102B ECEA1HU101 ECQV1H334JL3 ECA1VM102GB ECA1VM102GB	S.M.CARB ELECT ELECT ELECT ELECT ELECT S.M. CAP S.M. CAP ELECT	0.1W 16V 350V 350V 50V 50V 50V 350V 350V 350V 50V 350V 50V 350V 50V 350V 3		0 Ω 22μF 100nF 100nF 100μF 33μF 1pF 10pF 10nF 10nF 100μF 22nF 100μF 330nF 47μF 22nF 100μF	
R3134 CAPACI C001 C002 C005 C006 C007 C008 C009 C010 C117 C118 C251 C252 C253 C254 C255 C256 C257 C258 C259 C260 C261 C262	ERJ8GEY0R00 FORS ECA1CM220GB ECJ2VF1H104Z ECJ2VF1H104Z ECGA1HU101 ECA1HM330B ECEA1HU010 ECUV1H100DCX ECUV1H100DCX ECJ2VB1H103K ECJ2VB1H103K ECJ2VB1H103K ECGA1HU101 ECJ2VB1H223K ECKC1H103J ECQV1H334JL3 ECGA1CU470 ECJ2VB1H223K ECA1CU470 ECJ2VB1H223K ECA1CHG102B ECEA1HU101 ECQV1H334JL3 ECA1VM102GB ECA1VM102GB ECCA1VM102GB	S.M.CARB ELECT ELECT ELECT ELECT ELECT S.M. CAP S.M. CAP ELECT	0.1W 16V 350V 350V 50V 50V 50V 350V 350V 350V 50V 350V 50V 350V 50V 350V 50V 350V 50V 50V 50V		0 Ω 22μF 100nF 100μF 100μF 33μF 10pF 10pF 10nF 10nF 100μF 22nF 100μF 330nF 47μF 22nF 100μF 330nF 1nF 100μF 330nF	
R3134 CAPACI C001 C002 C005 C006 C007 C008 C009 C010 C117 C118 C251 C252 C253 C254 C255 C256 C257 C258 C259 C260 C261 C262 C263	ERJAGEYOROO TORS ECA1CM220GB ECJ2VF1H104Z ECJ2VF1H104Z ECGA1HU101 ECA1HM330B ECEA1HU010 ECUV1H100DCX ECJ2VB1H103K ECJ2VB1H103K ECJ2VB1H103K ECJ2VB1H103L ECJ2VB1H223K ECKC1H103J ECQV1H334JL3 ECGA1CU470 ECJ2VB1H223K ECA1CU470 ECJ2VB1H223K ECA1CHG102B ECEA1HU101 ECQV1H334JL3 ECA1VM102GB ECA1VM102GB ECA1VM102GB ECEA1HU3R3 ECEA1HU010	ELECT ELECT ELECT ELECT ELECT ELECT S.M. CAP ELECT	0.1W 16V 350V 350V 50V 50V 50V 350V 350V 350V 50V 350V 50V 350V 50V 350V 50V 50V 50V 50V 50V		0 Ω 22μF 100nF 100μF 100μF 33μF 10pF 100μF 10nF 100μF 22nF 100μF 330nF 47μF 22nF 100μF 330nF 100μF 330nF 100μF 330nF	
R3134 CAPACI C001 C002 C005 C006 C007 C008 C009 C010 C117 C118 C251 C252 C253 C254 C255 C256 C257 C258 C259 C260 C261 C262 C263 C264	ERJAGEYOROO TORS ECA1CM220GB ECJ2VF1H104Z ECJ2VF1H104Z ECGA1HU101 ECA1HM330B ECEA1HU010 ECUV1H100DCX ECJ2VB1H103K ECJ2VB1H103K ECJ2VB1H103K ECJ2VB1H103J ECGA1HU101 ECJ2VB1H223K ECKC1H103J ECGV1H334JL3 ECGA1CU470 ECJ2VB1H223K ECA1CU470 ECJ2VB1H223K ECA1CHG102B ECEA1HU101 ECQV1H334JL3 ECA1VM102GB ECA1VM102GB ECEA1HU101 ECGA1HU101 ECGA1HU101 ECGA1HU101	ELECT ELECT ELECT ELECT ELECT ELECT S.M. CAP S.M. CAP ELECT	0.1W 16V 350V 350V 50V 50V 50V 350V 350V 350V 50V 350V 50V 350V 50V 350V 50V 50V 50V 50V 50V		0 Ω 22µF 100nF 100µF 33µF 1pF 10pF 10pF 10nF 10nF 100µF 22nF 100µF 330nF 47µF 22nF 1000µF 100µF 330nF 1nF 100µF 330nF 1nF 100µF 330nF	
R3134 CAPACI C001 C002 C005 C006 C007 C008 C009 C010 C117 C118 C251 C252 C253 C254 C255 C256 C257 C258 C259 C260 C261 C262 C263 C264 C265	ERJAGEYOROO TORS ECA1CM220GB ECJ2VF1H104Z ECJ2VF1H104Z ECJ2VF1H104Z ECEA1HU101 ECA1HM330B ECEA1HU010 ECUV1H100DCX ECJ2VB1H103K ECJ2VB1H103K ECJ2VB1H103K ECJ2VB1H103L ECJ2VB1H223K ECKC1H103J ECQV1H334JL3 ECEA1CU470 ECJ2VB1H223K ECA1CHG102B ECEA1HU101 ECQV1H334JL3 ECA1VM102GB ECEA1HU101 ECQV1H334JL3 ECA1VM102GB ECEA1HU3R3 ECEA1HU010 ECA1HHG222E ECEA1HU3R3	ELECT ELECT ELECT ELECT ELECT ELECT S.M. CAP S.M. CAP ELECT	0.1W 16V 350V 350V 50V 50V 50V 350V 350V 350V 50V 350V 50V 350V 50V 50V 50V 50V 50V 50V 50V 50V		0 Ω 22µF 100nF 100µF 33µF 1pF 10pF 10pF 10nF 10nF 100µF 22nF 100µF 330nF 47µF 22nF 1000µF 100µF 330nF 1nF 100µF 330nF 1nF 383µF 1pF 2200µF 3R3µF	
R3134 CAPACI* C001 C002 C005 C006 C007 C008 C009 C010 C117 C118 C251 C252 C253 C254 C255 C256 C257 C258 C259 C260 C261 C262 C263 C264 C265 C266	ERJ6GEY0R00 TORS ECA1CM220GB ECJ2VF1H104Z ECJ2VF1H104Z ECGA1HU101 ECA1HM330B ECEA1HU010 ECUV1H100DCX ECJ2VB1H103K ECJ2VB1H103K ECJ2VB1H103K ECJ2VB1H103L ECJ2VB1H223K ECKC1H103J ECQV1H334JL3 ECGA1CU470 ECJ2VB1H223K ECA1CHG102B ECEA1HU101 ECQV1H334JL3 ECA1VM102GB ECEA1HU101 ECQV1H334JL3 ECA1VM102GB ECEA1HU101 ECQV1H334JL3 ECA1VM102GB ECEA1HU101 ECA1HHG222E ECEA1HU010	ELECT ELECT ELECT ELECT ELECT ELECT ELECT S.M. CAP ELECT	0.1W 16V 350V 350V 50V 50V 50V 350V 350V 350V 50V 350V 50V 350V 50V 50V 50V 50V 50V 50V 50V 50V		0 Ω 22µF 100nF 100µF 33µF 1pF 10pF 10pF 10nF 10nF 100µF 22nF 100µF 330nF 47µF 22nF 1000µF 100µF 330nF 1nF 100µF 330nF 1nF 383µF 1pF 2200µF 3R3µF 1pF	
R3134 CAPACI C001 C002 C005 C006 C007 C008 C009 C010 C117 C118 C251 C252 C253 C254 C255 C256 C257 C258 C259 C260 C261 C262 C263 C264 C265 C266 C267	ERJAGEYOROO TORS ECA1CM220GB ECJ2VF1H104Z ECJ2VF1H104Z ECJ2VF1H104Z ECEA1HU101 ECA1HM330B ECEA1HU010 ECUV1H100DCX ECJ2VB1H103K ECJ2VB1H103K ECJ2VB1H103K ECJ2VB1H103L ECJ2VB1H223K ECKC1H103J ECQV1H334JL3 ECEA1CU470 ECJ2VB1H223K ECA1CHG102B ECEA1HU101 ECQV1H334JL3 ECA1VM102GB ECEA1HU101 ECQV1H334JL3 ECA1VM102GB ECEA1HU101 ECQV1H334JL3 ECA1VM102GB ECEA1HU101 ECA1HHG222E ECEA1HU010 ECJ2YB1H104K	ELECT ELECT ELECT ELECT ELECT ELECT ELECT S.M. CAP ELECT	0.1W 16V 350V 350V 50V 50V 50V 350V 350V 350V 50V 350V 50V 350V 50V 50V 50V 50V 35V 35V 50V 50V 50V 50V 50V 50V		0 Ω 22μF 100nF 100μF 33μF 1pF 10pF 10pF 10nF 10nF 100μF 22nF 100μF 330nF 47μF 22nF 100μF 330nF 1nF 100μF 330nF	
R3134 CAPACI C001 C002 C005 C006 C007 C008 C009 C010 C117 C118 C251 C252 C253 C254 C255 C256 C257 C258 C259 C260 C261 C262 C263 C264 C265 C266 C267 C268	ERJ8GEY0R00 FORS ECA1CM220GB ECJ2VF1H104Z ECJ2VF1H104Z ECJ2VF1H104Z ECEA1HU101 ECA1HM330B ECEA1HU010 ECUV1H100DCX ECJ2VB1H103K ECJ2VB1H103K ECJ2VB1H103K ECJ2VB1H103L ECJ2VB1H223K ECKC1H103J ECQV1H334JL3 ECEA1CU470 ECJ2VB1H223K ECA1CHG102B ECEA1HU101 ECQV1H334JL3 ECA1VM102GB ECEA1HU101 ECQV1H334JL3 ECA1VM102GB ECEA1HU101 ECQV1H334JL3 ECA1VM102GB ECEA1HU101 ECQV1H334JL3 ECEA1HU101 ECJ2YB1H104K ECJ2YB1H104K	ELECT ELECT ELECT ELECT ELECT ELECT ELECT S.M. CAP ELECT	0.1W 16V 350V 350V 50V 50V 50V 350V 350V 350V 50V 350V 50V 50V 50V 50V 50V 50V 50V 35V 50V 50V 50V 50V 50V 50V 50V 50V 50V		0 Ω 22µF 100nF 100µF 33µF 1pF 10pF 10pF 10nF 100µF 22nF 100µF 330nF 47µF 22nF 1000µF 100µF 330nF 1nF 383µF 1pF 2200µF 3R3µF 1pF 100nF 100nF	
R3134 CAPACI C001 C002 C005 C006 C007 C008 C009 C010 C117 C118 C251 C252 C253 C254 C255 C256 C257 C258 C259 C260 C261 C262 C263 C264 C265 C266 C267 C268 C270	ERJ8GEY0R00 TORS ECA1CM220GB ECJ2VF1H104Z ECJ2VF1H104Z ECGA1HU101 ECA1HM330B ECEA1HU010 ECUV1H100DCX ECJ2VB1H103K ECJ2VB1H103K ECJ2VB1H103K ECJ2VB1H103L ECGA1HU101 ECJ2VB1H223K ECKC1H103J ECQV1H334JL3 ECGA1CU470 ECJ2VB1H223K ECA1CU470 ECJ2VB1H223K ECA1CHG102B ECEA1HU101 ECQV1H334JL3 ECA1VM102GB ECEA1HU101 ECQV1H334JL3 ECA1VM102GB ECEA1HU010 ECA1HHG222E ECEA1HU010 ECJ2YB1H104K ECJ2YB1H104K ECJ2YB1H104K	ELECT ELECT ELECT ELECT ELECT ELECT ELECT S.M. CAP ELECT	0.1W 16V 350V 350V 50V 50V 50V 350V 350V 350V 50V 350V 50V 350V 50V 350V 3		0 Ω 22µF 100nF 100µF 33µF 1pF 10pF 10pF 10nF 10nF 100µF 22nF 100µF 330nF 47µF 22nF 1000µF 100µF 330nF 1nF 383µF 1pF 2200µF 3R3µF 1pF 100nF 10nF 10nF 10nF	
R3134 CAPACI C001 C002 C005 C006 C007 C008 C009 C010 C117 C118 C251 C252 C253 C254 C255 C256 C257 C258 C259 C260 C261 C262 C263 C264 C265 C266 C267 C268 C270 C351	ERJ8GEY0R00 TORS ECA1CM220GB ECJ2VF1H104Z ECJ2VF1H104Z ECJ2VF1H104Z ECEA1HU101 ECA1HM330B ECEA1HU010 ECUV1H100DCX ECJ2VB1H103K ECJ2VB1H103K ECJ2VB1H103K ECJ2VB1H103L ECJ2VB1H223K ECKC1H103J ECQV1H334JL3 ECEA1CU470 ECJ2VB1H223K ECA1CHG102B ECEA1HU101 ECQV1H334JL3 ECA1VM102GB ECEA1HU101 ECQV1H334JL3 ECA1VM102GB ECEA1HU101 ECQV1H334JL3 ECA1VM102GB ECEA1HU101 ECQV1H334JL3 ECEA1HU101 ECQV1H334JL3 ECEA1HU101 ECQV1H334JL3 ECEA1HU101 ECQV1H334JL3 ECEA1HU101 ECQV1H334JL3 ECEA1HU101 ECQV1H34JL3 ECEA1HU101 ECQV1H34JL3 ECEA1HU101 ECQV1H34JL3 ECEA1HU101 ECQV1H34JL3 ECEA1HU101	ELECT	0.1W 16V 350V 350V 50V 50V 50V 350V 350V 350V 3		0 Ω 22µF 100nF 100µF 33µF 1pF 10pF 10pF 10nF 100µF 22nF 100µF 330nF 47µF 22nF 1000µF 100µF 330nF 1nF 100µF 330nF 1nF 100µF	
R3134 CAPACI C001 C002 C005 C006 C007 C008 C009 C010 C117 C118 C251 C252 C253 C254 C255 C256 C257 C258 C259 C260 C261 C262 C263 C264 C265 C266 C267 C268 C270	ERJ8GEY0R00 TORS ECA1CM220GB ECJ2VF1H104Z ECJ2VF1H104Z ECGA1HU101 ECA1HM330B ECEA1HU010 ECUV1H100DCX ECJ2VB1H103K ECJ2VB1H103K ECJ2VB1H103K ECJ2VB1H103L ECGA1HU101 ECJ2VB1H223K ECKC1H103J ECQV1H334JL3 ECGA1CU470 ECJ2VB1H223K ECA1CU470 ECJ2VB1H223K ECA1CHG102B ECEA1HU101 ECQV1H334JL3 ECA1VM102GB ECEA1HU101 ECQV1H334JL3 ECA1VM102GB ECEA1HU010 ECA1HHG222E ECEA1HU010 ECJ2YB1H104K ECJ2YB1H104K ECJ2YB1H104K	ELECT ELECT ELECT ELECT ELECT ELECT ELECT S.M. CAP ELECT	0.1W 16V 350V 350V 50V 50V 50V 350V 350V 350V 50V 350V 50V 350V 50V 350V 3		0 Ω 22µF 100nF 100µF 33µF 1pF 10pF 10pF 10nF 10nF 100µF 22nF 100µF 330nF 47µF 22nF 1000µF 100µF 330nF 1nF 383µF 1pF 2200µF 3R3µF 1pF 100nF 10nF 10nF 10nF	△

Cat Dat	Danta Numban	Description			
Cct Ref	Parts Number	Description			
C354	ECJ2VF1H104Z	ELECT	350V	100nF	
C356	ECUV1H102ZFX	S.M. CAP	50V	1nF	Λ
C357	ECKC3D152J	CERAMIC	2KV	1.5nF	<u> </u>
C358	ECUV1H561KBX	S.M. CAP	50V	560pF 220pF	
C370	ECEA1CU221	ELECT	16V	220pF 10pF	
C405	ECUV1H100CCX	S.M. CAP	50V	100µF	
C406	ECA1HHG101B	ELECT	50V	270nF	
C408	ECQV1H274JL3	FILM ELECT	50V 50V	27011 2R2µF	
C409 C410	ECEA1HU2R2 ECEA1HU101	ELECT	50V 50V	100uF	
C501	EEUFC1H390B	CERAMIC	50V	390pF	
C502	ECQB1273J	FILM	100V	27nF	
C502	ECUV1H222JCX	S.M. CAP	50V	2.2nF	i
C551	ECUV1H220JCX	S.M. CAP	50V	22pF	
C552	ECA2EM100B	ELECT	250V	10µF	
C554	ECA1VM471GB	ELECT	35V	470µF	
C555	ECKC2H471J	CERAMIC	500V	470pF	Λ
C556	ECKC2H471J	CERAMIC	500V	470pF	Δ
C557	ECKC2H331J	CERAMIC	500V	330pF	Α
C558	ECA2CM3R3B	ELECT	160V	зкзµГ	
C560	ECQF4273JZH	FILM	400V	27nF	Λ
C562	ECA2GHG2R2B	ELECT	400V	27nF	
C564	ECA1VM471GB	ELECT	35V	470µF	
C565	ECKC2H471J	CERAMIC	500V	470pF	\mathbf{A}
C566	ECA1VM471GB	ELECT	35V	470µF	
C567	ECKC3D681J	CERAMIC	2KV	680pF	A
C570	ECKC2H152J	CERAMIC	500V	1.5nF	Λ
C601	ECA1CM102B	ELECT	16V	1000μF	
C602	ECJ2YB1H104K	ELECT	350V	100nF	
C603	ECJ2VB1H472K	ELECT	350V	4.7nF	
C604	ECQV1H224JL3	FILM	50V	220nF	
C605	ECQV1H224JL3	FILM	50V	220nF	
C606	ECUV1H222JCX	S.M. CAP	50V	2.2nF	
C607	ECEA1HU010	ELECT	50V	1pF	
C608	ECEA1HU2R2	ELECT	50V	2R2µF	
C609	ECJ2YB1H104K	ELECT	350V	100nF	
C610	ECJ2VB1H103K	ELECT	350V	10nF	
C612	ECJ2VB1H472K	ELECT	350V	4.7nF	
C613	ECJ2VB1H472K	ELECT	350V	4.7nF	
C614	ECQV1H104J	FILM	50V	100nF	
C615	ECQV1H224JL3	FILM	50V	220nF	
C618	ECEA1CU100	ELECT	16V	10µF	
C620	ECUV1H470GCG	S.M. CAP	. 50V	47pF	
C621	ECJ2VF1H104Z	ELECT	350V	100nF	
C622	ECUV1H101JCX	S.M. CAP	50V	100pF	
C623	ECUV1H220GCG	S.M. CAP	50V	22pF 22nF	
C624	ECQB1H223K	FILM	50V	22nF	
C625	ECQB1H223K	FILM	50V	22nF	
C626	ECQB1H223K	FILM	50V	47nF	
C627	ECJ2YB1H473K	ELECT	350V	47nF	
C628	ECJ2YB1H473K	ELECT ELECT	350V 350V	100nF	
C629	ECJ2YB1H104K ECJ2VF1H104Z	ELECT	350V 350V	100nF	
C630	ECEA1HU101	ELECT	50V	100µF	
C631 C632	ECEATHU101	ELECT	50V	100µF	
C633	ECJ2VF1H104Z	ELECT	350V	100nF	
C634	ECEA1HU101	ELECT	50V	100µF	
C635	ECJ2VF1H104Z	ELECT	350V	100nF	
C636	ECA1CM102B	ELECT	16V	1000µF	
C637	ECEA1HU101	ELECT	50V	100µF	
C638	ECEA1HU101	ELECT	50V	100µF	
C639	ECA1HM220GB	ELECT	50V	22µF	
C640	ECEA1HU2R2	ELECT	50V	2R2µF	
C642	ECEA1HU010	ELECT	50V	1pF	
C646	ECJ2YB1H104K	ELECT	350V	100nF	
C650	ECUV1H390JCX	S.M. CAP	50V	39pF	

	Cct Ref	Parte Number	Description	 -		-
		Parts Number	Description		20	
	C651	ECUV1H390JCX	S.M. CAP	50V	39pF	
	C652	ECUV1H390JCX	S.M. CAP	50V	39pF 68nF	
	C653	ECJ2YB1H683K	ELECT	350V	10nF	
	C654	ECJ2VB1H103K	ELECT	350V	10µF	
	C701	ECEA1HU100	ELECT	50V	100nF	
İ	C702	ECJ2VF1H104Z	ELECT ELECT	350V 50V	100/IF	
	C703	ECA1HHG100B ECQB1H122J	FILM	50V	1.2nF	
	C704 C705	ECQB1H1223 ECQB1H223K	FILM	50V 50V	22nF	i
	C705	ECQP1152GZ	FILM	200V	1500nF	
	C706	ECQP1102JZ3	FILM	100V	1pF	
į	C707	ECA1HM220GB	ELECT	50V	22µF	
	C752	ECJ2VF1H104Z	ELECT	350V	100nF	
i	C752	ECJ2VF1H104Z	ELECT	350V	100nF	
	C754	ECA1JM101B	ELECT	63V	100µF	ļ
	C755	ECKC2H471J	CERAMIC	500V	470pF	Δ
	C802	ECKWNA332MEC	CERAMIC	250V	3.3nF	$\overline{\mathbb{A}}$
	C803	ECKWNA152MEC	CERAMIC	400V	1.5nF	Δ
	C805	ECQE2A474MWB	FILM	250V	470nF	Δ
	C806	ECKC2H472J	CERAMIC	500V	4.7nF	Δ
	C807	ECKC2H472J	CERAMIC	500V	4.7nF	Δ
	C808	ECKC2H472J	CERAMIC	500V	4.7nF	. 🛦
	C809	ECOS2GA151BB	ELECT	400V	150pF	
	C810	ECA1HHG101B	ELECT	50V	100µF	
	C811	ECKC1H471J	CERAMIC	50V	470pF	Ì
	C812	ECKC3A182J	CERAMIC	1KV	1800pF	A
	C813	ECKW3D221JBN	CERAMIC	2KV	220pF	-
	C814	ECKC3D102J	CERAMIC	2KV	1nF	Δ
	C815	ECA2CHG221E	ELECT	160V	220µF	
	C816	ECKC2H472J	CERAMIC	500V	4.7nF	\mathbf{A}
	C818	ECQB1H683K	FILM	50V	68nF	
	C851	ECEA1CU471	ELECT	16V	470µF	
	C854	ECKC2H471J	CERAMIC	500V	470pF	Δ
	C855	ECJ2VF1H104Z	ELECT	350V	100nF	
	C856	ECA1VM471GB	ELECT	35V	470µF	٠.
	C857	ECEA1CU471	ELECT	16V	470µF	
	C858	ECJ2VF1H104Z	ELECT	350V	100nF	
	C859	ECA1HHG471E	ELECT	50V	470µF	
	C860	ECA1VHG331B	ELECT	35V	330pF	
	C1101	ECJ2VF1H104Z	ELECT	350V	100nF	- 1
	C1102	ECA1CM220GB	ELECT	16V	22µF	
	C1103	ECUV1H331JCX	S.M. CAP	50V	330pF	
	C1104	ECEA1HU101	ELECT	50V	100µF	
	C1105	ECJ2VF1H104Z	ELECT	350V	100nF	
	C1106	ECEA1HU010	ELECT	50V	1pF	
	C1107	ECUV1H221JCX	S.M. CAP	50V	220pF	
	C1108	ECUV1H221JCX	S.M. CAP	50V	220pF	
	C1201	ECEA1CU471	ELECT	16V	470µF	
	C1202	ECQV1H334JL3	FILM	50V	330nF	
	C1203	ECEA1HU101	ELECT	50V	100µF	.
	C1204	ECEA1HU101	ELECT	50V	100µF	
	C1205	ECJ2VF1C334Z	ELECT	350V	330nF	
1	C1210	ECEA1HU101	ELECT	50V	100µF	
	C2001	ECJ2VB1H103K	ELECT	350V	10nF	ļ
	C2002	ECJ2VB1H103K	ELECT	350V	10nF	
	C2003	ECEA1HU101	ELECT	50V	100μF	
	C2004	ECJ2VF1H104Z	ELECT	350V	100nF	
	C2005	ECUV1H102JCX	S.M. CAP	50V	. 1nF	
	C2006	ECUV1H102JCX	S.M. CAP	50V	1nF	
	C2007	ECUV1H102JCX	S.M. CAP	50V	1nF	
	C2008	ECUV1H010CCX	S.M. CAP	50V	1pF	
	C2009	ECUV1H010CCX	S.M. CAP	50V	1pF	
	C2012	ECUV1H470JCX	S.M. CAP	50V	47pF	ĺ
	C2013	ECUV1H070DTX	S.M. CAP	50V	70pF	
	C2014	ECUV1H560GCG	S.M. CAP	50V	56pF	
	C2015	ECUV1H220JCX	S.M. CAP	50V	22pF	İ
	ł					

Cct Ref	Parts Number	Description			
C2016	ECJ2VF1H104Z	ELECT	350V	100nF	
C2017	ECJ2VF1H104Z	ELECT	350V	100nF	
C2018	ECEA1CU100	ELECT	16V	10μF	
C2019	ECEA1HU101	ELECT	50V	100μF	
C2020	ECQV1H474JZ	FILM	50V	470nF	
C2021	ECQV1H474JZ	FILM	50V	470nF	
C2022	ECUV1H221JCX	S.M. CAP	50V	220pF	
C2023	ECUV1H221JCX	S.M. CAP	50V	220pF	
C2024	ECJ2VF1H104Z	ELECT	350V	100nF	
C2025	ECEA1HU2R2	ELECT	50V	2R2µF	
C2026	ECEA1CU100	ELECT	16V	10μF	
C2027	ECEA1HU101	ELECT	50V	100μF	
C2029	ECEA1CU470	ELECT	16V	47µF	
C2030	ECEA1CU470	ELECT	16V	47µF	
C2031	ECUV1H102JCX	S.M. CAP	50V	1nF	
C2032	ECUV1H102JCX	S.M. CAP	50V	1nF	
	ECJ2VF1H104Z	ELECT	350V	100nF	
C2033		S.M. CAP	50V	470pF	
C2036	ECUV1H471JCX			220pF	
C2037	ECUV1H221JCX	S.M. CAP	50V	بر 20pi 10nF	
C2038	ECJ2VB1H103K	ELECT	350V	100nF	
C2039	ECJ2VF1H104Z	ELECT	350V		
C2040	ECEA1HU101	ELECT	50V	100µF	
C2041	ECUV1H100DCX	S.M. CAP	50V	10pF	
C2042	ECUV1H100DCX	S.M. CAP	50V	10pF	
C3103	ECEA1HU101	ELECT	50V	100µF	
C3104	ECJ2VF1H104Z	ELECT	350V	100nF	
C3109	ECUV1H222KBX	S.M. CAP	50V	2.2nF	
C3110	ECUV1H222KBX	S.M. CAP	50V	2.2nF	
C3111	ECUV1H222KBX	S.M. CAP	50V	2.2nF	
C3112	ECUV1H222KBX	S.M. CAP	50V	2.2nF	
C3113	ECUV1H222KBX	S.M. CAP	50V	2.2nF	
C3114	ECUV1H222KBX	S.M. CAP	50V	2.2nF	
C3116	ECUV1H561KBX	S.M. CAP	50V	560pF	
C3117	ECUV1H561KBX	S.M. CAP	50V	560pF	
TERMINA	ALS AND LINKS				
		A.V. TERMIN	ŧÁΙ		
JK3101	TJB16673				
JK3102	TJB8E011	21 PIN SOCH	\E I		
SWITCH	ES	•			
S801	ESB92S11B	SWITCH			Δ
S1101	EVQ21405R	SWITCH			
S1102	EVQ21405R	SWITCH			
S1103	EVQ21405R	SWITCH			
	EVQ21405R	SWITCH			
	EVQ21405R EVQ21405R	SWITCH			
		GWITOH			
RELAYS					,
RL801	DJ5D1-0M	RELAY			A
DIFFER	ENCES FOR	MODEL T	X25L	(1C	
EXPLOD	ED VIEW				
15	A59EEQ15X97	C.R.T.			Δ
	TKY8E530	CABINET			
16		DEGAUSS C	OIL		A
	TLK8E05162				A
17	TLK8E05162 TNP8EE011DV	E PCB			_
17 18	TNP8EE011DV	E PCB	Fľ		
17 18 19	TNP8EE011DV TBM8E2005-1	MODEL LAB			A
17 18 19 20	TNP8EE011DV TBM8E2005-1 TKU8E00610	MODEL LAB REAR COVE			
17 18 19 20 21	TNP8EE011DV TBM8E2005-1 TKU8E00610 TNP8EY015AG	MODEL LAB REAR COVE Y P.C.B.			
17 18 19 20 21	TNP8EE011DV TBM8E2005-1 TKU8E00610 TNP8EY015AG LANEOUS COMP	MODEL LAB REAR COVE Y P.C.B.			
17 18 19 20 21	TNP8EE011DV TBM8E2005-1 TKU8E00610 TNP8EY015AG LANEOUS COMP TPC8E4832	MODEL LAB REAR COVE Y P.C.B. PONENTS CARTON	ER.		Æ
17 18 19 20 21	TNP8EE011DV TBM8E2005-1 TKU8E00610 TNP8EY015AG LANEOUS COMP TPC8E4832 TPD8E728	MODEL LAB REAR COVE Y P.C.B. ONENTS CARTON TOP CUSHO	ER DN		
17 18 19 20 21	TNP8EE011DV TBM8E2005-1 TKU8E00610 TNP8EY015AG LANEOUS COMP TPC8E4832	MODEL LAB REAR COVE Y P.C.B. PONENTS CARTON	ER DN		
17 18 19 20 21 MISCELI	TNP8EE011DV TBM8E2005-1 TKU8E00610 TNP8EY015AG LANEOUS COMP TPC8E4832 TPD8E728	MODEL LAB REAR COVE Y P.C.B. ONENTS CARTON TOP CUSHO	ER DN		
17 18 19 20 21 MISCELI	TNP8EE011DV TBM8E2005-1 TKU8E00610 TNP8EY015AG LANEOUS COMP TPC8E4832 TPD8E728 TPD8E729	MODEL LAB REAR COVE Y P.C.B. CONENTS CARTON TOP CUSHO BOTTOM CL	ER DN		<i>A</i>
17 18 19 20 21 MISCELI	TNP8EE011DV TBM8E2005-1 TKU8E00610 TNP8EY015AG LANEOUS COMP TPC8E4832 TPD8E728 TPD8E729 CTION BOOKS	MODEL LAB REAR COVE Y P.C.B. CONENTS CARTON TOP CUSHO BOTTOM CL	ER DN		

Cct Ref	Parts Number	Description				
	TQB8E2938C-1	ITALIAN				⚠
I.C.s						
IC1103	XPK2-2KCZ	EAROM*				Δ
COILS	#111#1444B					
RESISTO	ELH5L4119 DRS	COIL				
R416	ERDS1TJ1R0	CARBON	0.5W	5%	1Ω	
R417	ERDS1TJ1R0	CARBON	0.5W	5%	1Ω	
R559	ERQ1ZJP1R5S	FUSIBLE	1W	5%	1R5 Ω	Δ.
CAPACIT					40	
	ECWH20103JVB		200V		10nF 330nF	
C563 C751	ECWF2334JBB ECWF2684JBB	FILM FILM	200V 500V		680nF	
	RENCES FOR			K1C		
DIFFER	IENCES FOR	WIODEL 17	\20L	.K10		
	ED VIEW	0.07				Δ
15 16	A66ECF50X04 TKY8E520	C.R.T. CABINET				Δ
17	TLK8E05140	DEGAUSS CO	DIL ·			Δ
18	TNP8EE011EA	E PCB	_			Λ
19	TBM8E2004-1	MODEL LABE	L			A
20	TKU8E00620	REAR COVER	3			Ā
21	TNP8EY015AH	Y P.C.B.				Δ
MISCEL	LANEOUS COMP					•
-	TPC8E4831	CARTON	-			
	TPD8E726	TOP CUSHON				
INCTDU	TPD8E727 CTION BOOKS	BOTTOM CUS	HION			
INSTRUC		OFFRANK				Δ
	TQB8E2938A-1 TQB8E2938B-1	GERMAN DUTCH				∇
	TQB8E2938C-1	ITALIAN				Δ
I.C.s						
IC1103	XPK2-3MCZ	EAROM*				Δ
COILS	,					
L501	ELH5L4105	COIL				
RESIST	ORS					
R416	ERDS1TJ1R5	CARBON	0.5W	5%	1R5 Ω	
R417	ERDS1TJ1R2	CARBON	0.5W	5%	1R2 Ω	
R418	ERDS1TJ1R2	CARBON	0.5W		1R2 Ω	۸
R559	ERQ1ABJP3R0S	METAL	0.5W	5%	3R0 Ω	Δ
CAPACI						
C559	ECWH20123JVB	FILM	200V		12F	
C563 C751	ECWF2394JBB ECWF2334JBB	FILM FILM	250V 200V		0.39µF 330nF	
	RENCES FOR			SK1C		
EXPLO	DED VIEW					
15	A66ECF50X04	C.R.T.				Λ
16	TKY8E522	CABINET				٨
17	TLK8E05140	DEGAUSS CO	OIL			A
18	TNP8EE011ED	E PCB	:1			Δ
19 20	TBM8E2035 TKU8E00620	MODEL LABE				Δ
20	TNP8EY015AH	Y P.C.B.	1			Δ
	LANEOUS COMP				•	_
	TPC8E4833	CARTON				
1.	TPD8E726	TOP CUSHO	vi .			
.	TPD8E727	BOTTOM CU				

Parts Number	Description				
CTION BOOKS					
TQB8E2953A-1	GERMAN				Æ
TQB8E2953B-1	DUTCH				Λ
TQB8E2953C-1	ITALIAN				Δ
XPK2-1LCZ	EAROM*				҈Ѧ
ELH5L4105	COIL				
DRS					
ERDS1TJ1R5	CARBON	0.5W	5%	1R5 Ω	
ERDS1TJ1R2	CARBON	0.5W	5%	1R2 Ω	
ERDS1TJ1R2	CARBON	0.5W	5%	1R2 Ω	
ERQ1ABJP3R0S	METAL	0.5W	5%	3R0 Ω	Δ
TORS				•	
ECWH20123JVB	FILM	200V		12F	
ECWF2394JBB	FILM	250V		0.39µF	
ECWF2334JBB	FILM	200V	•	330nF	
	TON BOOKS TQB8E2953A-1 TQB8E2953B-1 TQB8E2953C-1 XPK2-1LCZ ELH5L4105 ORS ERDS1TJ1R5 ERDS1TJ1R2 ERDS1TJ1R2 ERQ1ABJP3R0S TORS ECWH20123JVB ECWF2394JBB	TQB8E2953A-1 GERMAN TQB8E2953B-1 DUTCH TQB8E2953C-1 ITALIAN XPK2-1LCZ EAROM* ELH5L4105 COIL DRS ERDS1TJ1R5 CARBON ERDS1TJ1R2 CARBON ERDS1TJ1R2 CARBON ERDS1TJ1R2 CARBON ERQ1ABJP3R0S METAL TORS ECWH20123JVB FILM ECWF2394JBB FILM	TQB8E2953A-1 GERMAN TQB8E2953B-1 DUTCH TQB8E2953C-1 ITALIAN XPK2-1LCZ EAROM* ELH5L4105 COIL DRS ERDS1TJ1R5 CARBON 0.5W ERDS1TJ1R2 CARBON 0.5W ERDS1TJ1R2 CARBON 0.5W ERQ1ABJP3R0S METAL 0.5W TORS ECWH20123JVB FILM 200V ECWF2394JBB FILM 250V	TQB8E2953A-1 GERMAN TQB8E2953B-1 DUTCH TQB8E2953C-1 ITALIAN XPK2-1LCZ EAROM* ELH5L4105 COIL DRS ERDS1TJ1R5 CARBON 0.5W 5% ERDS1TJ1R2 CARBON 0.5W 5% ERDS1TJ1R2 CARBON 0.5W 5% ERDS1TJ1R2 CARBON 0.5W 5% ERQ1ABJP3R0S METAL 0.5W 5% TORS ECWH20123JVB FILM 200V ECWF2394JBB FILM 250V	TORS TQB8E2953A-1 GERMAN TQB8E2953B-1 DUTCH TQB8E2953C-1 ITALIAN XPK2-1LCZ EAROM* ELH5L4105 COIL DRS ERDS1TJ1R5 CARBON 0.5W 5% 1R5 Ω ERDS1TJ1R2 CARBON 0.5W 5% 1R2 Ω ERDS1TJ1R2 CARBON 0.5W 5% 1R2 Ω ERDS1TJ1R2 CARBON 0.5W 5% 3R0 Ω TORS ECWH20123JVB FILM 200V 12F ECWF2394JBB FILM 250V 0.39μF

Cct Ref	Parts Number	Description
-		
}		
•		
		•
		•
		•
-	to the second se	
	ι	
		· ·
		en en en en en en en en en en en en en e
•		

SCHEMATIC DIAGRAMS FOR MODELS TX-28LK1C,TX-25LK1C, TX-28SK1C

(Z8 CHASSIS)

IMPORTANT SAFETY NOTICE

Components identified by mark have special characteristics important for safety. When replacing any of these components, use only manufacturer's specified parts.

NOTES

1. RESISTOR

All resistors are carbon ¼W resistor, unless marked otherwise.

Unit of resistance is OHM (Ω) (k=1,000, M=1,000,000)

2. CAPACITORS

All capacitors are ceramic 50V unless marked otherwise. Unit of capacitance is μF unless otherwise stated.

3. COIL

Unit of inductance is μH , unless otherwise stated.

 Components marked "L" on the schematic diagram shows leadless parts.

5. TEST POINT

Test Point Position

6. EARTH SYMBOL

Chassis Earth (Cold)

Line Earth (Hot)

7. VOLTAGE MEASUREMENT

Voltage is measured by a d.c. voltmeter. Measurement conditions are as follows:

Power source

a.c. 220V-240V, 50Hz

Receiving Signal

Colour Bar signal (RF)

All customer controls

controls Maximum position Indicates the Video signal path

Indicates the Audio signal path

These schematic diagrams are the latest at time of printing and are subject to change without notice.

REMARKS

8.

- The Power Supply Circuit contains a circuit area which uses a separate power supply to isolate the earth connection. The circuit is defined by HOT and COLD indications in the schematic diagram. All circuits except the Power Circuit, are COLD.
 Take the following precautions:-
- a. Do not touch the hot part, or the hot and cold parts at the same time, as you are liable to a shock hazard.
- Do not short circuit the hot and cold circuits as electrical components may be damaged.
- c. Do not connect an instrument, such as an oscilloscope, to the hot and cold circuits simultaneously as this may cause fuse failure. Connect the earth of the instruments to the earth connection of the circuit being measured.
- Make sure to disconnect the power plug before removing the chassis.

ZEICHENERKLÄRUNG FÜR MODELL TX-28LK1C, TX-25LK1C, TX-28SK1C

(Z8 CHASSIS)

WICHTIGER SICHERHEITSHINWEIS

Teile, die mit einen Hinweis gekennzeichnet sind, sind wichtig für die Sicherheit, Sollte ein Auswechsein erforderlich sein, sind unbedingt Originalteile einzusetzen.

ANMERKUNG

WIDERSTÄNDE

Alle $\frac{1}{2}$ W Widerstände sind Kohlewiderstände, Abweichungen sind folgt gekennzeichnet. Die Maßeinheit ist OHM (Ω) (k=1,000, M=1,000,000)

KONDENSATOREN

Alle Kondensatoren sind Keramikausführungen. Spannungsfestigkeit 50V. Abweichungen sind wie folgt gekennzeichnet. Die Maßeinheit ist μF , wenne keine anderen Bezeichnungen gennant sind.

3. SPULEN

Die Maßeinheit ist μH, Abweichungen sind gekennzeichnet.

4. Mit "L" gekennzeichnete Teile sind ohne Anschlußdrähte.

5. TESTPUNKTE

Kennzeichnung der Testpunktposition

6. MASSE SYMBOL

Erdung am Chassis

Erdung an Masse-Leitung

7. SPANNUNGSMESSUNG

Spannungsmessungen sind mit einem d.c.-Voltmeter durchzuführen. Die Meßbedingungen sind folgende:
Netzspannung a.c. 220V-240V, 50Hz
Wiedregabe Signal Farbbalken-Testbild
Wiedergabesignal Farbbalken-Testbild (HF)

8. Videosignalweg

Audiosignalweg

Änderungen im Laufe der Fertigung sind möglich.

BEMERKUNGEN

- Das Schaltnetzteil enthält Bereiche, die direkt mit dem Netz verbunden sind. Diese Bereiche sind im Schaltplan mit HOT gekennzeichnet. Alle anderen Schaltungen sind mit COLD gekennzeichnet und haben keine direkte Verbindung mit den Netz:-
- a. Weder die Leitungen im heißen noch Leitungen im heißen und im kalten Bereich gleichzeitig berühren. Es besteht die Gefahr eines elektrischen Schlages.
- b. Keinesfalls die Leitungen im heißen Bereich mit denen im kalten Bereich verbinden oder kurzschliessen. Dies kann zur Zerstörung von Bauteilen oder Sicherungen führen. Außerdem ist die elektrische Betriebssicherheit des Gerätes nicht mehr gegeben.
- c. Keine Messinstrumente gleichzeitig an Leitungen im heissen und kalten Bereich anschliessen. Sicherungen könnten zerstört werden. Die Erde des Messinstrumentes immer mit der des zu prüfenden Schaltkreises verbinden.
- d. Vor Ausbau des Chassis, Stecker aus der Netzsteckdose ziehen.

TX-28LK1C, TX-25LK1C, TX-28SK1C

CONDUCTOR VIEWS FOR MODELS TX-28LK1C, TX-25LK1C, TX-28SK1C

ANSICHT DER LEITERBAHNEN FÜR TX-28LK1C, TX-25LK1C, TX-28SK1C

E - BOARD TNP8EE011

		E - D(JAND	INFOLL	-011
TRAN'S		DIOD	ES	D852	B4
Q253	B4	D002	E4	D853	B4
Q255	B5	D003	E4	D1101	B5
Q401	E4	D260	B4	D1104	A1
Q402	E4	D261	B4	D1106	A2
Q501	D3	D262	B4	D1107	A3
Q551	D1	D401	E4	D1201	A3
Q601	D6	D402	E3	D1202	A3
Q602	A2	D403	E4	D1205	A3
Q603	E6	D501	C4	D3101	E5
Q606	E3	D502	D4		
Q701	D4	D510	E3	I.C.'	S
Q702	D3	D551	E3	IC251	B4
Q751	C3	D552	D2	IC451	E3
Q752	C2	D553	E2	IC601	D6
Q753	D2	D554	E3	IC701	C4
Q851	B3	D555	E3	IC702	C4
Q852	B3	D556	D1	IC801	C2
Q1101	D5	D557	D1	IC802	C3
Q1102	A3	D559	E2	IC851	D4
Q1103	E5	D601		IC852	D4
Q1104	D6	D603	E6	IC1102	D5
Q1105	D5	D606	E6	IC1103	B5
Q1106	E5	D607	E3	IC1104	A2
Q1107	A2	D701	C3	IC1105	B6
Q1107	A3	D701	D3	IC1201	A3
Q1110	A3	D703	D4	IC1202	A3
Q1201	B3	D703	D3	IC2001	B5
Q1204	A3	D705	D3	102001	
Q2001	B7	D705	D3	T.P.	-
Q2001 Q2002	B7	D700	D4	TP1	A3
	B7			TP2	E2
Q2003		D751	C3	TP3	E3
Q2004	B7	D753	C2 C3	TP4	
Q3104	<u>E4</u>	D754		TP5	E3
		D801	E7		B7
		D802	E7	TP6	E3
		D803	C2	TP8	A3
		D804	C3	TP10	B7
		D805	B3	TP13	E3
		D806	B3	TP14	B4
		D808	C2	TP15	B3
		D809	C2	TP16	C4
		D810	B3	TP17	D4
		D811	B2	TP18	D4
		D812	C2	TP19	E3
		D813	B2	TP20	E7
		D814	C3	TP21	D5
		D851	C4	TP22	E2
				TPE11	B1

Y - BOARD TNP8EY015

TRAN'S Q351 B1 DIODES D350 A1 D351 B1 D352 A2 D353 A3 D370 B1 D371 B1 D372 B1 D373 B1 T.P.'S TPY4 B2 TPY5 A3 I.C.'S IC351 A1	A		R 358 R 32 Y51-1 G G KR G Z KR 1500 R 300 R	354 354	R: 3	
		1		2	4	2

25

Service Manual

Colour Television
TX-28LK1C/S
Z8 Chassis

NOTE:

This supplement applies to the model TX-28LK1C/S only and should be used in conjunction with the Service Manual for the model TX-28LK1C (00-SM-012).

HINWEIS

Bitte benutzen Sie diesen Nachtrag zusammen mit dem Service Manual für die Modelle TX-28LK1C (00-SM-012).

DIFFERENCE LIST

TX-28LK1C/S	TX-28LK1C
TQB8E3195A	TQB8E2938A-1
NIL	TQB8E2938B-1
NIL	TQB8E2938C-1
TKY8E524-1	TKY8E520-1
TBM8E2128-1	TBM8E2004-1
TBX8E085	TBX8E082
TKK8E045	TKK8E041
TBX8E087-1	TBX8E081-1
TNP8EE011ET	TNP8EE011EA
	TQB8E3195A NIL NIL TKY8E524-1 TBM8E2128-1 TBX8E085 TKK8E045 TBX8E087-1

Service Manual

Colour Television

TX-28LK1C TX-28LK1C/S TX-28SK1C

Z8 Chassis

NOTE:

This supplement should be used in conjunction with the Service Manual for the models TX-28LK1C, TX-28LK1C/S, TX-28SK1C (00-SM-012).

HINWEIS:

Bitte benutzen Sie diesen Nachtrag zusammen mit dem Service Manual für die Modelle TX-28LK1C, TX-28LK1C/S, TX-28SK1C (00-SM-012).

POWER FACTOR CORRECTION BEGRENZUNG DES HARMONISCHEN STROMS

DIFFERENCE LIST

Description	Before correction	After correction	
D801	232266296706	232266296684	
D814	MTZJT-775.6A	MTZJT-772.0A	
R803	ERF7ZK2R7	ERF7ZK1R0	
SCHEMATIC DIAGRAM	TQA8E2149	TQA8E2149-1	
SCHEMATIC DIAGRAM	TQA8E2156	TQA8E2156-1	
T552	ZTFL84001A	ZTFL84001B	
T802	10653050-A	10711990	
Power consumption	76W	66W	
High voltage	28kV ± 1kV	27,5kV ± 1kV	

NOTE: Power Factor Correction was implemented from the serial number of TV set:

NA-0651703 - TX-28LK1C, NA-0650996 - TX-28LK1C/S.

ND-0650296 - TX-28SK1C

HINWEIS: Begrenzung des harmonischen Stroms wurde appliziert seit Serien-NR. des Fernsehgerätes: NA-0651703 – TX-28LK1C , NA-0650996 – TX-28LK1C/S, ND-0650296 – TX-28SK1C

Panasonic

Service Manual

Colour Television

TX-28EX2C TX-28LD8C

Z8 Chassis

NOTE: This supplement applies to the models TX-28EX2C, TX-28LD8C only and should be used in conjunction with the Service Manual for the model TX-28LK1C (00-SM-012).

HINWEIS:

Bitte benutzen Sie diesen Nachtrag zusammen mit dem Service Manual für die Modelle **TX-28LK1C** (00-SM-012).

DIFFERENCE LIST

Description.	TX-28EX2C	TX-28LD8C	TX-28LK1C
INSTRUCTION BOOK GERMAN	TQB8E3257A	TQB8E3259A	TQB8E2938A-1
INSTRUCTION BOOK DUTCH	NIL	NIL	TQB8E2938B-1
INSTRUCTION BOOK ITALIAN	NIL	NIL	TQB8E2938C-1
MODEL LABEL	TBM8E2160	TBM8E2162	TBM8E2004-1
E P.C.B.	TNP8EE011FL	TNP8EE011FN	TNP8EE011EA