Problem Set 6

Natasha Watkins

Exercise 9.1

An unconstrained linear function can be written as $f(\mathbf{x}) = \mathbf{b}^T \mathbf{x} + c$. In the case where $\mathbf{b} = \mathbf{0}$, the function is constant $Df(\mathbf{x}) = 0 \ \forall \ \mathbf{x}$, and therefore the minimum is equal to c. In the case where $\mathbf{b} \neq \mathbf{0}$, $Df(\mathbf{x}) = \mathbf{b}^T \ \forall \ \mathbf{x}$, and therefore there is no minimum.

Exercise 9.2

$$||A\mathbf{x} - \mathbf{b}||_2 = (A\mathbf{x} - \mathbf{b})^T (A\mathbf{x} - \mathbf{b})$$

$$= \mathbf{x}^T A^T A \mathbf{x} - \mathbf{x}^T A^T \mathbf{b} - \mathbf{b}^T A \mathbf{x} + \mathbf{b}^T \mathbf{b}$$

$$= \mathbf{x}^T A^T A \mathbf{x} - 2\mathbf{b}^T A \mathbf{x} + \mathbf{b}^T \mathbf{b} \quad \text{as } \mathbf{b}^T A \mathbf{x} = \mathbf{x}^T A^T \mathbf{b} \text{ is scalar}$$

As $\mathbf{b}^T \mathbf{b}$ is a constant, this term can be dropped. As A is symmetric and positive definite, we can write

$$2A^T A \mathbf{x} - 2 \mathbf{b}^T A \mathbf{x}$$

Setting this equal to 0 and transposing, we find $A^TA = A^T\mathbf{b}$.

Exercises 9.5 - 9.9

See Jupyter notebook.

Exercise 9.10

$$f'(\mathbf{x}) = \mathbf{x}^T Q - \mathbf{b}^T$$
$$f''(\mathbf{x}) = Q^T$$

Setting $f'(\mathbf{x}) = \mathbf{0}$, we find $\mathbf{x}^* = Q^{-1}\mathbf{b}$.

Using Newton's method, given \mathbf{x}_0

$$\mathbf{x}_1 = \mathbf{x}_0 - (Q^T)^{-1} (\mathbf{x}_0^T Q - \mathbf{b}^T)^T$$

$$= \mathbf{x}_0 - Q^{-1} Q \mathbf{x}_0 - Q^{-1} \mathbf{b} \quad \text{as } Q^T = Q$$

$$= Q^{-1} \mathbf{b}$$

Exercise 9.12

Given an eigenvector \mathbf{x}_i of A, where $A\mathbf{x}_i = \lambda_i \mathbf{x}$, we have

$$B\mathbf{x}_{i} = (A + \mu I)\mathbf{x}_{i}$$

$$= A\mathbf{x}_{i} + \mu \mathbf{x}_{i}$$

$$= \lambda_{i}\mathbf{x}_{i} + \mu \mathbf{x}_{i}$$

$$= (\lambda_{i} + \mu)\mathbf{x}_{i}$$

Therefore A and B have the same eigenvectors, and B has eigenvalues of the form $\lambda_i + \mu$.