COS 424 Final Project: Machine Learning in Physics

Nicholas Haubrich and Alan Morningstar

Department of Physics Princeton University

Machine Learning in Statistical Physics

The Ising Model

- binary "spin" degrees of freedom on a 2-d square lattice
- two phases (ferro- and para-magnetic) and a critical point

Sampling (S) and Phase-Discovery (P) Tasks

- physics problem: sample spin configurations from the thermal distribution
- machine learning method: find a generative model whose probability distribution is the thermal Ising distribution and sample that
- physics problem: identify phases and critical points from configurations
- machine learning method: unsupervised pattern recognition

Ising RBM

 an RBM is a bipartite undirected graphical model with hidden variables

$$p_W^{RBM}(\vec{s}, \vec{h}) \propto \exp\left(\vec{h} \cdot W \vec{s}\right)$$

• can solve for parameters in
$$\sum_{ec{h}} p_W^{\mathrm{RBM}}(ec{s}, ec{h}) = p^{\mathrm{Ising}}(ec{s})$$

Ising

Ising RBM

(S)

Burn-in and Heat Capacity

 can efficiently sample Ising RBM with block Gibbs sampling due to bipartite graph

(P)

"Learning by Confusion"

- \vec{s}, T for various temperatures (generated by sampling Ising RBM)
- algorithm:
 - 1. choose T_p and set labels $y(T) = \operatorname{int}(T < T_p)$
 - 2. train classifier on (\vec{s}, y)
 - 3. compute accuracy measure of trained classifier
 - 4. repeat for a range of T_p and record accuracies

(P)

Rediscovering the Ising Critical Point

Machine Learning in Particle Physics

Overview

- Goal: Use supervised machine learning to classify particle collisions at the LHC
- Discriminate proposed signal events from background events using Monte Carlo data from the Compact Muon Solenoid Experiment
- Signal: h→aa→4b, hypothetical 'a' has 60 GeV mass
- Background: Anything that produces 4 b-like particles
- Construct helpful discriminating features via physical principles
- Evaluate neural nets with ROC curve and search significance

LHC and CMS Detector

Signal and Background

tt background

Data

- Training on 770,000 Monte Carlo Events with 20 features
- Four jets, each with:
 - Momentum
 - Angular Location (eta,phi)
 - mass
 - b-tag
- Evaluating performance on equal-sized dataset
 - Plenty of training data, good convergence, accurate evaluation important

Constructing Discriminating Features

Other constructed features: Higgs momentum, position, 'a'
momentum, angular position, mass, b jet angular separation,
scalar momentum sum, top mass: now 37 features

Evaluation

