ASSIGNMENT-4

-SHUBHAM KUMAR

QUES 1.

To test my implementation, I have run it for 5 iterations. And the screenshots are above. Q-values are numbers in square quarters, and policies are arrows out from each square.

It converges at 15th iteration.

1.2.

Running it to the default values.

Unsuccessful Attempts

- Discount same, noise = 0.1, 0.3

- noise = 0.2, discount = 1, 0.8

Successful Attempt

Noise = 0.01 Discount = 0.9 (same): As, the fig shows the agent will cross the bridge. Changing discount doesn't help because the goal is fixed. And the path between source and goal is fixed i.e. straight line.

We have to reduce the noise, so that the agent goes to west and doesn't move to north or south. We are reducing degree of randomness.

1.3.

- 1. Wrong attempts.
- Taking too much discount

Final: 0.2, 0.18, -6.99, because we want to go to close terminal, therefore discount is small. To avoid going into cliff, our noise is less. Living reward should be negative and big number because we want to be closer to cliff.

2. Wrong attempt

Final ans: 0.2, 0.18, -0.3 living reward is kept high to take longer path avoiding the cliffs.

3. Wrong attempt:

Final ans: 0.9, 0.01, 0.01

We are risking the cliff, therefore, noise should be less. Whereas the discount should be kept high to reach 10. And living reward should be low, to follow lower path.

5.33 →	5.92 →	6.57 →	7.29 ▶	8.10
4.80		7.26 ▶	8.10 ▶	9.00 •
5.07 -		1.00		10.00
5.63 →	6.33 →	7.11 >	8.02 →	9.00
-10.00	-10.00	_10.00	_10.00	_10.00

4. Wrong answer

Final ans: 0.9 , 0.2 , 0.3; going north then east, therefore more discount and living reward.

6.66 →	7.07 ▶	7.50 ▶	8.01	8.51
6.34		7.29 ▶	8.51 →	9.19
6.05		1.00		10.00
↑ 5.69	4.65	4.32 →	6.57 →	9.00
10.00	-10.00	10.00	10.00	10.00

5. Wrong ans

Final ans: 0.99 , 0.12, 1

Gridworld Display						
66.15	66.15	66.15	66.15	66.15		
66.15		66.15	66.15	66.15		
66.15		1.00		10.00		
↑ 65.83	4 61.07	√ 53.39	↑ 51.52	4 45.67		
_10.00	_10.00	_10.00	_10.00	_10.00		

\

QUES 2.

IRIS W/O K MEANS

WITH K MEANS

OBJECTIVE FUNCTION - ITERATIONS

VERTEBRAL W/O K MEANS

WITH K MEANS

OBJECTIVE FUNCTION - ITERATIONS

SEEDS DATASET

W/O K MEANS

WITH K MEANS

OBJECTIVE FUNCTION - ITERATIONS

SEGMENTATION

W/O K MEANS

WITH K MEANS

OBJECTIVE FUNCTION - ITERATIONS

INFERENCE:

The division was prety much same as the one obtained in the original graphs and the best division was when k = truth value. The outliers were removed, which provided such a clear division.

TABLE:

DATA	K=2		K= True			K=12			
	ARI	NMI	AMI	ARI	NMI	АМІ	ARI	NMI	АМІ
IRIS	0.528	0.6290	0.4972	0.73071	0.73768	0.7291	0.532163	0.66351	0.513129
	3712	48024	1491	892874	173981	83278	8716	263921	379712
SEGM ENTAT ION	0.093 8196	0.3818 291873	0.1790 28398	0.10982 78311`	0.48920 390230	0.2152 78367	0.041923 1231123	0.04272 692712	0.101783 6876764
SEEDS	0.452	0.5429	0.4227	0.69297	0.70298	0.6928	0.323471	0.57236	0.398374
	3921	738493	31231`	133428	1131227	89171	3242178	8124236	891469
VERTE	0.063	0.2187	0.1817	0.28173	0.37248	0.3283	0.138783	0.21287	0.237863
BRAL	8712	837981	39871	2891318	246745	17811	979873	e38921	786987

The results were the best for k = truth value. The values were closer to 1, when we had the correct value of k.

Consistency between qualitative and quantitative analysis:

As in the graphs, best results were obtained when k= truth value was chosen and also, the qualitative and qualitative analysis were consistent.