Listing Maximal k-Plexes in Large Real-World Graphs Zhengren Wang, Yi Zhou, Mingyu Xiao, Bakhadyr Khoussainov

Zhengren Wang

Algorithms and Logic Group in UESTC

April 1, 2022

- 2 Algorithms
- 3 Implementation Techniques
- **4** Experiments

- 1 Background

Finding cohesive groups (or communities) has received attention from various areas.

- In the WWW, identify clients sharing similar interests and serve them with a common proxy to reduce network traffic.
- In social networks, discover closely related individuals.
- In biological networks, predict the structure and function of protein.

Naturally, cohesive groups can be modeled with *Cliques*.

A clique is a subgraph where vertices are pairwise connected, i.e., a complete graph.

Figure 1: K₇

Figure 2: *K*₁₂

Due to various reasons like *data noise*, communities rarely appear as cliques. k-Plexes allow every vertex missing at most k-1 links to other vertices.

Figure 3: 1, 2, 3, 4-plex

Lemma (Hereditary Property)

- Any induced subgraph of a k-plex is still a k-plex.
- A k-plex is maximal if it is not a subgraph of any larger k-plex.

Lemma (Distance Property)

- Any k-plex with at least 2k-1 vertices has its diameter at most 2.
- A k-plex with at most 2k − 2 vertices may be unconnected.

Figure 4: unconnected 2, 3, 4, 5-plex

We model cohesive groups with *maximal k-plexes*.

Problem (Listing maximal k-plexes)

Given a graph G, a positive integer k, list all maximal k-plexes from G.

Problem (Listing large maximal k-plexes)

Given a graph G, two positive integers k and I where l > 2k - 1, list all maximal k-plexes with at least I vertices.

- Background
- 2 Algorithms
- 3 Implementation Techniques
- 4 Experiments

Our algorithm stems from the Bron-Kerbosch algorithm, say BKPlex.

BKPlex accepts three sets P, C and X as parameters,

- P: **plex vertices** of the growing k-plex,
- C: candidate vertices for further branching,
- X: excluded vertices to avoid non-maximal solutions.

then lists maximal k-plexes G[P'] with three properties:

•
$$P \subseteq P'$$
 • $P' \subseteq P \cup C$ • $\forall v \in X$, the subgraph $G[\{v\} \cup P']$ is not a k -plex.

Hereditary Prop. Any induced subgraph of a k-plex is still a k-plex.

BKPlex branches by doing bipartition recursively. 1

Figure 5: An example of BKPlex.

¹Simplified for clarity. In fact, a variant of bipartition.

- $\eta = v_1, ..., v_n$ is called degeneracy ordering (core ordering) if each vertex v_i has the minimum degree in the induced subgraph $G[\{v_i, ..., v_n\}]$.
- Given a degeneracy ordering $\eta = v_1, ..., v_n$, the degree of v_i in $G[\{v_i, ..., v_n\}]$ is called the core number of vi.
- For any degeneracy ordering of the same graph, the largest core number among all vertices is a constant D called degeneracy.
- Due to the sparsity of many real-world graphs, $D \ll \Delta \ll n$ where Δ is the maximum degree.

Figure 6: An example of degeneracy ordering.

Degeneracy Ordering

- $\eta = v_1, ..., v_n$ is called degeneracy ordering (core ordering) if each vertex v_i has the minimum degree in the induced subgraph $G[\{v_i, ..., v_n\}]$.
- Given a degeneracy ordering $\eta = v_1, ..., v_n$, the degree of v_i in $G[\{v_i, ..., v_n\}]$ is called the core number of vi.
- For any degeneracy ordering of the same graph, the largest core number among all vertices is a constant D called degeneracy.
- Due to the sparsity of many real-world graphs, $D \ll \Delta \ll n$ where Δ is the maximum degree.

Figure 6: An example of degeneracy ordering.

• $\eta = v_1, ..., v_n$ is called degeneracy ordering (core ordering) if each vertex v_i has the minimum degree in the induced subgraph $G[\{v_i, ..., v_n\}]$.

- Given a degeneracy ordering $\eta = v_1, ..., v_n$, the degree of v_i in $G[\{v_i, ..., v_n\}]$ is called the core number of vi.
- For any degeneracy ordering of the same graph, the largest core number among all vertices is a constant D called degeneracy.
- Due to the sparsity of many real-world graphs, $D \ll \Delta \ll n$ where Δ is the maximum degree.

Figure 6: An example of degeneracy ordering.

- $\eta = v_1, ..., v_n$ is called degeneracy ordering (core ordering) if each vertex v_i has the minimum degree in the induced subgraph $G[\{v_i, ..., v_n\}]$.
- Given a degeneracy ordering $\eta = v_1, ..., v_n$, the degree of v_i in $G[\{v_i, ..., v_n\}]$ is called the core number of vi.
- For any degeneracy ordering of the same graph, the largest core number among all vertices is a constant D called degeneracy.
- Due to the sparsity of many real-world graphs, $D \ll \Delta \ll n$ where Δ is the maximum degree.

Figure 6: An example of degeneracy ordering.

- $\eta = v_1, ..., v_n$ is called degeneracy ordering (core ordering) if each vertex v_i has the minimum degree in the induced subgraph $G[\{v_i, ..., v_n\}]$.
- Given a degeneracy ordering $\eta = v_1, ..., v_n$, the degree of v_i in $G[\{v_i, ..., v_n\}]$ is called the core number of vi.
- For any degeneracy ordering of the same graph, the largest core number among all vertices is a constant D called degeneracy.
- Due to the sparsity of many real-world graphs, $D \ll \Delta \ll n$ where Δ is the maximum degree.

Figure 6: An example of degeneracy ordering.

- $\eta = v_1, ..., v_n$ is called degeneracy ordering (core ordering) if each vertex v_i has the minimum degree in the induced subgraph $G[\{v_i, ..., v_n\}]$.
- Given a degeneracy ordering $\eta = v_1, ..., v_n$, the degree of v_i in $G[\{v_i, ..., v_n\}]$ is called the core number of vi.
- For any degeneracy ordering of the same graph, the largest core number among all vertices is a constant D called degeneracy.
- Due to the sparsity of many real-world graphs, $D \ll \Delta \ll n$ where Δ is the maximum degree.

Figure 6: An example of degeneracy ordering.

- $\eta = v_1, ..., v_n$ is called degeneracy ordering (core ordering) if each vertex v_i has the minimum degree in the induced subgraph $G[\{v_i, ..., v_n\}]$.
- Given a degeneracy ordering $\eta = v_1, ..., v_n$, the degree of v_i in $G[\{v_i, ..., v_n\}]$ is called the core number of vi.
- For any degeneracy ordering of the same graph, the largest core number among all vertices is a constant D called degeneracy.
- Due to the sparsity of many real-world graphs, $D \ll \Delta \ll n$ where Δ is the maximum degree.

Figure 6: An example of degeneracy ordering.

• $\eta = v_1, ..., v_n$ is called degeneracy ordering (core ordering) if each vertex v_i has the minimum degree in the induced subgraph $G[\{v_i, ..., v_n\}]$.

- Given a degeneracy ordering $\eta = v_1, ..., v_n$, the degree of v_i in $G[\{v_i, ..., v_n\}]$ is called the core number of vi.
- For any degeneracy ordering of the same graph, the largest core number among all vertices is a constant D called degeneracy.
- Due to the sparsity of many real-world graphs, $D \ll \Delta \ll n$ where Δ is the maximum degree.

Figure 6: An example of degeneracy ordering.

Degeneracy Ordering

Algorithms

- $\eta = v_1, ..., v_n$ is called degeneracy ordering (core ordering) if each vertex v_i has the minimum degree in the induced subgraph $G[\{v_i, ..., v_n\}]$.
- Given a degeneracy ordering $\eta = v_1, ..., v_n$, the degree of v_i in $G[\{v_i, ..., v_n\}]$ is called the core number of v_i .
- For any degeneracy ordering of the same graph, the largest core number among all vertices is a constant D called degeneracy.
- Due to the sparsity of many real-world graphs, $D \ll \Delta \ll n$ where Δ is the maximum degree.

Figure 6: An example of degeneracy ordering.

Pivot Heuristic Zhou et al. (2020) proposed BKPivot with a pivot heuristic in the branch scheme of BKPlex, and improved its running time from $O^*(2^n)$ to $O^*(\gamma_k^n)$, where $\gamma_k < 2$. ²

Graph Decomposition Conte et al. (2018) proposed D2K, a decomposition-based algorithm for listing k-plexes with the diameter at most 2.

For each vertex, D2K builds a local subgraph and then adopts BKPlex to list maximal k-plexes locally which runs in $O^*(2^{D\Delta})$.

Distance Prop. Any k-plex with at least 2k-1 vertices has the diameter at most 2.

²The notation O* omits the polynomial factors.

³Simplified for clarity.

Pivot Heuristic Zhou et al. (2020) proposed BKPivot with a pivot heuristic in the branch scheme of BKPlex, and improved its running time from $O^*(2^n)$ to $O^*(\gamma_{\iota}^n)$, where $\gamma_k < 2$. ²

Graph Decomposition Conte et al. (2018) proposed D2K, a decomposition-based algorithm for listing k-plexes with the diameter at most 2.

For each vertex, D2K builds a local subgraph and then adopts BKPlex to list maximal k-plexes locally which runs in $O^*(2^{D\Delta})$.

Distance Prop. Any k-plex with at least 2k-1 vertices has the diameter at most 2.

We combine them and propose ListPlex running in $O^*(\gamma_k^D)$.

²The notation O* omits the polynomial factors.

³Simplified for clarity.

Based on Distance Property, ListPlex divides its task into two parts.

- Part I: k-plexes with size at most 2k 2. (Solved directly by BKPlex)
- **Part II**: k-plexes with size at least 2k 1.

Distance Prop. Any k-plex with at least 2k-1 vertices has the diameter at most 2.

Procedure

- 1) Sort V by a degeneracy ordering $\eta = v_1 \dots v_n$.
 - N^k(v) denotes k-hop neighbors of v.
 - $N_{\succ}^k(v_i)$ denotes $N^k(v_i) \cap \{v_{i+1}, ..., v_n\}$, say **forward** k-hop neighbors of v_i
- 2) From v_1 to v_n , in the *i*-th iteration, list maximal k-plexes with i as the minimum index of vertices.
 - Build **seed graph** $G_i = G[\{v_i\} \cup N_{\succ}(v_i) \cup N_{\succ}^2(v_i)].$
 - Call BKPivot with given combinations of $N_{>}^2(v_i)$, say **seed set** S.
 - Validate maximality in G for k-plexes generated in G_i .

Figure 7: An example of ListPlex's Part II.

- (L) sort V in degeneracy ordering η and induce seed graphs G_i for each $v_i \in \eta$.
- (R) enumerate $S \subseteq N^{\geq}(v_i)$ with bound $|S| \leq k-1$ (k=3) and call BKPivot with P_s, C_s, X_s .

- Cohesive groups appear locally in large real-world graphs,
- Parallelism,

- Smaller scale and better locality,
- D ≪ Δ.

	Ps	Cs	Xs
Ø	{2}	{1,3}	{4,5,6}
{4}	{2,4}	{1,3}	{5,6}
{5}	{2,5}	{1,3}	{4,6}
{6}	{2,6}	{1,3}	{4,5}
{4,5}	{2,4,5}	{1,3}	{6}
{4,6}	{2,4,6}	{1,3}	{5}
{5,6}	{2,5,6}	{1,3}	{4}

- At most k-1 vertices come from $N_{\succ}^2(v_i)$,
- · Reducing candidates fast,

- $|N_{\succ}^2(v_i)|$ is potentially $D\Delta$,
- Pruning rules.

With lower bound I, a related lower bound I' can be derived.

Lemma

Assume $|P| \ge I$, for any vertex pair $u, v \in P$, $|N(u) \cap N(v) \cap P| \ge I'$

Removing unfruitful candidates from G_i reduces the scale of G_i .

• Consider vertex pair $(v_i, u), u \in V_i$.

Dropping unfruitful seed sets S saves the forthcoming exponential search.

Consider vertex pair (u, v) from some S.

Implementation Techniques

•00

- 3 Implementation Techniques

Validating maximality in G for maximal k-plex of G_i suffers a high amount of cache misses

Implementation Techniques

000

Alleviation:

- Build a bipartite graph B_i for each G_i , which serves as a cache of currently useful data of large G.
- Pruning bipartite graph just like seed graph.

ListPlex owns appealing parallel features.

How To:

- Parallelize searches of maximal k-plexes on each G_i , say T_i ,
- Split T_i when some cores are idle for better load balance,
- Construct degeneracy ordering and perform generated T_i in parallel.

Implementation Techniques

000

- Background

- 4 Experiments

All graphs are taken from SNAP and LAW 4.

Table 1: Considered networks and their properties

				-
Network	n	m	Δ	D
jazz	198	2742	100	29
ca-grqc	5241	14484	81	43
gnutella08	6301	41554	97	10
wiki-vote	7116	100763	1065	53
lastfm	7624	55612	216	20
as-caida	26475	53381	2628	22
soc-epinions	75888	405739	3044	67
soc-slashdot	82144	500480	2548	54
email-euall	265214	365569	7636	37
amazon0505	410236	2439436	2760	10
in-2004	1353703	13126172	21869	488
soc-pokec	1632803	22301964	14854	47
as-skitter	1696415	11095298	35455	111
soc-livejournal	4847571	68993773	14815	360
arabic-2005	22744080	639999458	575628	3247
uk-2005	39459925	936364282	1372171	584
it-2004	41291594	1150725436	1243927	3209
webbase-2001	118142155	1019903190	816127	1506

⁴http://law.di.unimi.it/

Table 2: Listing all maximal k-plexes in small graphs

Network	l.	#k-plexes		Speedup				
Network	k		BKPlex	BKPivot	ListPlex	ListPlex(16)	Speedup	
jazz	2	35214	648.864	0.29	0.086	0.408	0.211	
jazz	3	3602575	772.826	17.55	6.477	0.832	7.785	
jazz	4	193056583	3226.746	829.40	417.646	26.187	15.949	
ca-grqc	2	13718439	OOT	1858.02	649.985	40.880	15.899	
gnutella08	2	19866959	1500.208	3627.57	1117.858	70.207	15.922	
wiki-vote	2	66193264	10356.553	10671.92	1526.884	95.656	15.962	
lastfm	2	29086855	2643.394	6676.89	1989.701	124.525	15.978	

Listing Large Maximal k-Plexes

Table 3: The running time of listing large maximal k-plexes from small and medium graphs by CommuPlex⁵, D2K⁶ and ListPlex.

Graph	k	/ #k-plexes		The running time (s)		Graph		,	#k-plexes	The running time (s)			
(V , E)	^	'	# K-piexes	CommuPlex	D2K	ListPlex	(V , E)	k	,	# K-piexes	CommuPlex	D2K	ListPlex
jazz (198, 2742)	4	12	2745953	25.218	33.054	4.498		\Box	12	2919931	75.871	115.757	17.653
lastfm (7624, 55612)	4	12	1827337	20.724	23.991	4.586		2	20	52	4.52	11.289	0.591
as-caida	3	12	281251	5.684	13.421	0.867		l	30	0	1.033	0.027	0.091
(26475, 53381)	4	12	15939891	300.388	785.506	47.98	wiki-vote		12	458153397	OOT	OOT	2185.598
amazon0505	2	12	376	1.825	0.641	0.137	(7116, 100763)	4	20	156727	595.636	1852.186	9.384
(410236, 2439436)	3	12	6347	11.359	0.77	0.286	(7110, 100703)		30	0	1.072	0.029	0.1
(410230, 2439430)	4	12	105649	47.049	5.338	1.171			20	46729532	OOT	ООТ	1174.2
	2	12	412779	8.793	11.199	1.946		"	30	0	9.17	3.627	0.112
email-euall	3	12	32639016	619.384	1043.266	91.62			12	7679906	1537.506	172.987	47.475
(265214, 365569)	,	20	2637	10.754	53.691	0.429		2	20	94184	1064.371	20.03	15.161
4	4	20	1707177	825.126	3800.889	24.089			30	3	662.64	8.637	9.557
	12	27208777	376.071	213.141	59.42	soc-pokec		12	520888893	OOT	OOT	1607.285	
	2	20	11411028	227.016	137.159	32.988	(1632803, 22301964)	4	20	5911456	1470.536	856.393	46.262
soc-slashdot		30	453	10.77	16.481	0.688			30	5	717.425	9.993	10.127
(82144, 500480)	3	12	2807943240	OOT	26029.006	7813.045			20	318035938	34048.155	OOT	1825.216
(02144, 300400)		20	1303148522	28361.707	15308.777	4538.022			30	4515	1140.117	111.987	11.211
		30	1679468	699.876	2066.598	51.364			12	49823056	843.9	735.589	193.307
	4	30	502699966	OOT	ООТ	6680.261		2	20	3322167	137.427	180.061	19.382
	2	50	47969775	OOT	OOT	520.884	soc-epinions	1	30	0	8.995	12.109	0.492
(1696415, 11095298)	2	100	0	1.793	2.951	0.716	(75888, 405739)	3	20	548634119	27037.614	35525.693	3072.267
	3	50	21070497438	OOT	OOT	OOT		3	30	16066	546.69	2591.439	6.123
	3	100	0	2.37	3.285	0.718		4	30	13172906	OOT	OOT	661.103
in-2004 (1353703, 13126172)	2	50	25855779	7663.843	576.06	150.212		2	340	650322	2284.435	OOT	109.382
	2	100	9978037	5899.638	256.225	72.063	com-livejournal	2	345	0	57.548	13589.487	6.914
	3	50	29045783792	OOT	OOT	OOT	(4847571, 68993773)	3	340	555718694	OOT	OOT	22863.467
	3	100	4257410159	OOT	ООТ	28384.76		3	345	3963139	24861.871	OOT	826.183

 $^{^{5}}$ Zhou et al. (2020)

⁶Conte et al. (2018)

Listing Large Maximal k-Plexes

Table 4: The parallel running time of large networks by ListPlex and D2K with 16 threads.

Graph	k	1	#k-plexes	The running time (s)		
(V , E)			# K-piexes	D2K(16)	ListPlex(16)	
	2	800	224870903	2195.272	714.159	
arabic-2005	2	1000	236897	151.328	40.202	
(22744080, 639999458)	3	800	>25062182205	OOT	OOT	
	3	1000	34155502	587.967	128.737	
	2	250	106243475	00T	355.855	
uk-2005	2	500	256406	318.118	35.001	
(39459925, 936364282)	3	250	>18336111409	OOT	OOT	
	3	500	28199814	9506.661	121.726	
	2	2000	675111	340.904	41.983	
it-2004	2	3000	675111	307.735	38.468	
(41291594, 1150725436)	3	2000	197679229	4254.456	724.979	
	3	3000	197679229	4235.389	715.002	
	2	800	1599005	374.134	54.19	
webbase-2001	2	1000	1164383	346.393	53.651	
(118142155, 1019903190)	3	800	1785341050	36116.817	5521.386	
	3	1000	1484341137	35005.343	6960.816	

Figure 8: The speedup of ListPlex for the large graphs with different parameters.

Excluding unfruitful seed sets

Figure 9: The number of seed sets and running time with and without Prune Rule 2.

Reducing cache misses

Figure 10: The total number of data cache misses and the running time with and without using bipartite graph B_i .

Q&A

Thanks!