

PREDICTING TSUNAMI INUNDATION AND IMPACTS USING OFFSHORE WAVE DATA AND ML FOR RAPID ASSESSMENT

<u>Naveen</u> Ragu Ramalingam¹, Anirudh Rao², Erlend Briseid Storrøsten³, Kendra Johnson², Gareth Davies⁴, Alice Abbate⁵, Finn Løvholt², Stefano Lorito⁵, Marco Pagani², and Mario Martina¹

- ¹ PhD Candidate at University School for Advanced Studies (IUSS Pavia), Pavia, Italy
- ² Global Earthquake Model Foundation, Pavia, Italy
- ³ Norwegian Geotechnical Institute, Oslo, Norway
- ⁴ Geoscience Australia, Canberra, Australia
- ⁵ Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy

Tsunami Warning

Detect Wave Heights

Inundation and Damage Assessment

Field Surveys

Tsunami Disaster Management Timeline

Rapid Inundation and Damage Assessment:

- Urgent Computing
- Remote Sensing
- Machine Learning
 - Inputs from ocean sensors or low fidelity propagation models
 - High resolution inundation for urban environment
 - Damage assessed as a downstream task

Resolving the information gap in crisis

- NEAMTHM18 Tsunami Hazard Model (Basili et al., 2021)
- 23,086 Events for HSZ
- Stochastic heterogeneous slip (M_w 6.8-9.02)
- 4 hrs of simulations using Tsunami-HySEA(Gibbons et al., 2020)
- High res. inundation(10m) at Catania

Simulated by INGV, NGI and Uni Malaga

- Train at reasonable size of data without overfit, events above 10 cm
- Quality over quantity!
 - Emphasis on input and output range, 2655 events(75:25)
- Extensive evaluation with remaining events
 - 20430 events, wide range of locations and magnitude

Known input variability

Unknown output variability

Stage 1. **Pretraining** – train neural networks with <u>random</u> weights with as much data as you have.

- Offshore Waveforms
 - 9 site(50m isobath)
 - 4 hours (480 times)
 - 1D CNN layers

Offshore Autoencoder

Stage 1. **Pretraining** – train neural networks with <u>random</u> weights with as much data as you have.

- Onshore Inundation
 - 416,318 locations
 - 10m resolution
 - MLP layers

Stage 1. **Pretraining** – train neural networks with <u>random</u> weights with as much data as you have.

Stage 2. Coupling layers and fine-tuning – train neural network with <u>pretrained</u> weights with less data

- Efficient use of available data.
- Converges at a lower minima.
- Faster and more stable training.
- Evaluate intermediate results for better config of architecture.
- Supplement other datasets in pretraining stage

Test Epoch Loss during training

Area at Risk

Population

Settlement

Damage Assessment - Population and settlements at risk?

Main conclusions and open challenges

- A complementary method to fill the much needed information gap - predict rapid inundation estimates
- Real life is more complex more source and mechanisms, secondary effects - tides, deformation
- Benchmarking and open datasets 3.
- Uncertainty of the ML model(stochastic) and training data(synthetic, limited in size and coverage)

