Computer Programming 143 – Lecture 10 Functions I

Electrical and Electronic Engineering Department University of Stellenbosch

Corné van Daalen Thinus Booysen Willie Smit Willem Jordaan

(E&E Eng. Dept. US)

CP143 Lecture 10

8 August 2016 1 / 22

Module Overview

(F&F Eng. Dept. US)

CP143 Lecture 1

8 August 2016 2 / 22

Lecture Overview

- 5.1-5.2 Introduction to Functions
- 2 5.3 Math Library Functions
- 3 5.4 Benefits of Functions
- 4 5.5 Function Definitions
- 5.6 Function Prototypes

5.1 Introduction

This chapter introduces

- Construction of a program from smaller pieces or components
 These smaller pieces are called modules or functions
- Each piece more manageable than the original program
- Reduces the duplication of code in a program
- Enabling reuse of code across multiple programs
- Improving readability of a program

E&E Eng. Dept. US) CP143 Lecture 10 8 August 2016 3 / 22 (E&E Eng. Dept. US) CP143 Lecture 10 8 August 2016

5.2 Introduction to Functions I

What are functions?

A function is a piece of code or a module that

- Has been "packaged" as a unit
- Usually serve a single function / task
- Performs a task and then returns control to the caller
 - After the function has perfored the task, the program will continue execution from the point after the call
- Can be executed several times and called from different places during a single execution of a program

5.2 Introduction to Functions II

Functions we have used:

From stdio.h

Print text on the screen

printf("The value of x is $d\n$ ", x);

Read input from user

From math.h

• Calculate one number raised to the power of a second number

$$x = pow(5, 3);$$

main()

• The main function in every C program

5.2 Introduction to Functions III

The components of a function

- A body of code to be executed
- Arguments that are passed to the function (input/data)
- A value that is returned (output/result)

5.2 Introduction to Functions IV

How does a program execute the code in a function?

Function calls

$$x = \cos(1.15);$$

- Provide function name and arguments
- Function performs operations or manipulations
- Function returns a result

5.3 Math Library Functions 1

Math library functions

- perform common mathematical calculations
- #include <math.h>

Format for calling functions

functionName(argument1, argument2, ...);

- If multiple arguments, use comma-separated list
- Arguments may be constants, variables or expressions
- Example:

```
double x;
x = sqrt(1000.0);
```

- Calls function sqrt, which returns the square root of its argument
- All math functions return data type double

Commonly used math library functions:

5.3 Math Library Functions II

Function	Description	Example
sqrt(x)	square root of x	sqrt(900.0) is 30.0
		sqrt(9.0) is 3.0
exp(x)	exponential function e^x	exp(1.0) is 2.718282
		exp(2.0) is 7.389056
log(x)	natural logarithm of x (base	log(2.718282) is 1.0
	e)	log(7.389056) is 2.0
log10(x)	logarithm of x (base 10)	log10(1.0) is 0.0
		log10(10.0) is 1.0
		log10(100.0) is 2.0
fabs(x)	absolute value of x	fabs(5.0) is 5.0
		fabs(0.0) is 0.0
		fabs(-5.0) is 5.0

5.3 Math Library Functions III

Function	Description	Example
ceil(x)	rounds x to the smallest	ceil(9.2) is 10.0
	integer greater than x	ceil(-9.8) is -9.0
floor(x)	rounds x to the largest	floor(9.2) is 9.0
	integer less than x	floor(-9.8) is -10.0
pow(x,y)	x raised to power y (x^y)	pow(2,7) is 128.0
		pow(9, .5) is 3.0
<pre>fmod(x, y)</pre>	remainder of x/y as a	fmod(13.657, 2.333)
	floating point number	is 1.992
sin(x)	trigonometric sine of x	sin(0.0) is 0.0
	(x in radians)	
cos(x)	trigonometric cosine of x (x	cos(0.0) is 1.0
	in radians)	
tan(x)	trigonometric tangent of x (x	tan(0.0) is 0.0
	in radians)	

5.4 Benefits of Functions

Benefits of functions

- Divide and conquer
 - Manageable program development
- Software reusability
 - Use existing functions as building blocks for new programs
 - Abstraction hide internal details (library functions)
- Avoid code repetition

5.5 Function Definitions 1

Function definition format return value type function name(argument list) { declarations: statements: return control; Function name: any valid identifier Return value type: data type of the result void – indicates that the function returns nothing • Argument list: comma-separated list, declares arguments • A type must be listed explicitly for each argument

Function definition format (cont...)

5.5 Function Definitions II

```
return value type function name( argument list )
  declarations:
  statements:
  return control;
```

- Definitions and statements: function body (block)
 - Variables can be declared inside blocks (can be nested)
 - Functions cannot be defined inside other functions
- Returning control
 - If nothing returned (void)
 - o return;
 - or, until reaches right brace (})
 - If something returned
 - return expression;

Example

5.5 Function Definitions - Example 1

```
int maximum( int x, int y, int z ); //function prototype
int main() {
  int num1, num2, num3; // three integers
   setbuf(stdout, 0);
  printf( "Enter three integers: \n" );
   scanf( "%d", &num2 );
  scanf( "%d", &num1 );
   scanf( "%d", &num3 );
  // num1, num2 and num3 are arguments to the maximum function call
  printf( "Maximum is: %d\n", maximum( num1, num2, num3 ) );
```

5.5 Function Definitions - Example II

```
Function body:
/* Function maximum definition */
int maximum( int x, int y, int z ){
  int max = x; // assume x is largest
  if ( y > max ) { // if y > max, then max = y
     max = y;
  if (z > max) { // if z > max, then max = z
     max = z;
                    // max is largest value
   return max;
```

return 0;

5.5 Function Definitions - Example III

```
Output:
Enter three integers:
22
85
17
Maximum is: 85
Enter three integers:
85
22
17
Maximum is: 85
Enter three integers:
22
17
85
Maximum is: 85
```

5.6 Function Prototypes I

Function prototype

- Function name
- Arguments parameters that the function receives
- Return type data type function returns
- Used to validate functions and function calls
- In Structured Programming function prototypes must always be given

```
int maximum( int x, int y, int z );
```

- Receives 3 int's
- Returns an int

(E&E Eng. Dept. US

CP143 Lecture 10

8 August 2016 17 / 22

(E&E Eng. Dept. US

CP1/13 Locture

9 August 2016 19 / 22

5.6 Function Prototypes II

Promotion rules and conversions

- Casting to different types:
 - Using an integer as a real number: (float) int1
 - Using a real number as an integer: (int) float1
- Converting to "lower" types can lead to errors
- Convert type

```
int mval;
float a,b,c;
a = 10.0;
b = 12.0;
c = 11.0;
mval = maximum( ( int ) a, ( int ) b, ( int ) c );
```

5.6 Function Prototypes III

Promotion hierarchy for data types

Data types	printf conversion specifications	scanf conversion specifications
long double	%Lf	%Lf
double	%f	%lf
float	%f	%f
unsigned long int	%lu	%lu
long int	%ld	%ld
unsigned int	%u	%u
int	%d	%d
short	%hd	%hd
char	%C	%C

SE Eng. Dept. US) CP143 Lecture 10 8 August 2016 19 / 22 (E&E Eng. Dept. US) CP143 Lecture 10 8 August 2016 20

Perspective

Today

Functions I

- Introduction to functions
- math library functions
- Benefits of functions
- Function definitions
- Function prototypes

Next lecture

Functions II

- Header files
- Function calls: by value and by reference
- Example

Homework

- Study Sections 5.1-5.6 in Deitel & Deitel
- O Do Self Review Exercises 5.1(a)-(h), 5.3-5.5 in Deitel & Deitel
- **1** Do Exercises 5.8, 5.15, 5.18, 5.25 in Deitel & Deitel

E&E Eng. Dept. US

CP143 Lecture 10

9 August 2016 21

(E&E Eng. Dept. II

CP143 Lecture

0.4 1.2026 22.12