Replication Code for 'Is Random Forest Really Better than Logistic Regression for Predicting Civil War Onsets?'

```
## Warning: package 'caret' was built under R version 3.3.2
## Warning: package 'ggplot2' was built under R version 3.3.2
## Warning: package 'pROC' was built under R version 3.3.2
The packages needed for the analysis will be automatically installed (if they aren't installed yet) and loaded.
registerDoMC(cores = detectCores()-1)
rm(list=ls())
data <- read.csv(file="SambnisImp.csv")</pre>
```

Data Pre-processing

```
df <- data[,c("warstds", "ager", "agexp", "anoc", "army85", "autch98", "autc4",
              "autonomy", "avgnabo", "centpol3", "coldwar", "decade1", "decade2",
              "decade3", "decade4", "dem", "dem4", "demch98", "dlang", "drel",
              "durable", "ef", "ef2", "ehet", "elfo", "elfo2", "etdo4590",
              "expgdp", "exrec", "fedpol3", "fuelexp", "gdpgrowth", "geo1", "geo2",
              "geo34", "geo57", "geo69", "geo8", "illiteracy", "incumb", "infant",
              "inst", "inst3", "life", "lmtnest", "ln_gdpen", "lpopns", "major",
              "manuexp", "milper", "mirps0", "mirps1", "mirps2", "mirps3", "nat_war", "ncontig",
              "nmgdp", "nmdp4_alt", "numlang", "nwstate", "oil", "p4mchg",
              "parcomp", "parreg", "part", "partfree", "plural", "plurrel",
              "pol4", "pol4m", "pol4sq", "polch98", "polcomp", "popdense",
              "presi", "pri", "proxregc", "ptime", "reg", "regd4_alt", "relfrac",
              "seceduc", "second", "semipol3", "sip2", "sxpnew", "sxpsq",
              "tnatwar", "trade", "warhist", "xconst")]
# Converting DV into Factor with names for Caret Library
df$warstds<-factor(
 df$warstds,
  levels=c(0,1),
 labels=c("peace", "war"))
dfTrain <- df[data$year < 1990,]
dfTest <- df[data$year >= 1990,]
```

Training the models

All models are trained using the caret R-package.

Setting up train control

```
# create a list of seesd, here change the seed for each resampling
set.seed(221)
# length is = (n_repeats*nresampling)+1
seeds <- vector(mode = "list", length = 11)</pre>
#3 is the number of tuning parameters, mtry for rf
for(i in 1:10) seeds[[i]] <- sample.int(n=1000, 3)</pre>
#for the final model
set.seed(221)
seeds[[11]] <- sample.int(1000, 1)
# Create folds
folds <- 10
cvIndex <- createFolds(factor(dfTrain$warstds), folds, returnTrain = T)</pre>
tc <- trainControl(method = "cv",</pre>
                    number = folds,
                    summaryFunction = twoClassSummary,
                    classProb = TRUE,
                    savePredictions = TRUE,
                    seeds = seeds,
                    index = cvIndex
```

The models with the Fearon/Laitin variables.

First, we train the Logit and Random Forest model using the eleven Fearon/Laitin variables. And have a brief first look at the results.

Logit

Random Forest

The models using all 90 variables in the dataset.

Logit

Random Forest

The plots and confusion matrices to compare the models

Entries for Table 1: Confusion Matrices for the models at a threshold for positive prediction of 0.5

```
table(pred = predict(modelFLlogit, dfTest, type = "raw"), obs = dfTest$warstds)
```

```
##
          obs
## pred
           peace war
                   28
    peace 1813
               0
                    0
##
     war
table(pred = predict(modelFLrf, dfTest, type = "raw"), obs = dfTest$warstds)
##
          obs
## pred
           peace
    peace 1811
                   25
table(pred = predict(modelAlllogit, dfTest, type = "raw"), obs = dfTest$warstds)
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
##
          obs
## pred
           peace
                  war
    peace 1788
                   26
              25
     war
table(pred = predict(modelAllrf, dfTest, type = "raw"), obs = dfTest$warstds)
##
          obs
## pred
           peace
##
     peace 1812
                   26
```

Figure 1: Separation Plots for the four models

Fearon and Laitin Variables (2003) Logit

Fearon and Laitin Variables (2003) Random Forest


```
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
```

All Variables Logit

All Variables Random Forest

Figure 2: ROC curves for the four models

```
plot.roc(dfTest$warstds,
         predict(modelFLlogit, dfTest, type = "prob")$war,
         col = "black", las = 1, xlim = c(1,0), bty = "n",
         main = "Out-of-sample ROC curves")
plot.roc(dfTest$warstds,
         predict(modelFLrf, dfTest, type = "prob")$war,
         add = T,
         col = "black", lty = "dashed")
plot.roc(dfTest$warstds,
         predict(modelAlllogit, dfTest, type = "prob")$war,
         add = T,
         col = "grey 50", lty = "solid")
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
plot.roc(dfTest$warstds,
         predict(modelAllrf, dfTest, type = "prob")$war,
         add = T,
         col = "grey 50", lty = "dashed")
legend(0.7, 0.25,
       c(paste("Fearon and Laitin (2003) Logit, AUC = ",
               round(as.numeric(roc(dfTest$warstds,
                                    predict(modelFLlogit, dfTest, type = "prob")$war)$auc),2)),
         paste("Fearon and Laitin (2003) Random Forest, AUC = ",
               round(as.numeric(roc(dfTest$warstds,
                                    predict(modelFLrf, dfTest, type = "prob")$war)$auc),2)),
         paste("All Variables Logit, AUC = ",
               round(as.numeric(roc(dfTest$warstds,
```

Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
ifelse(type == : prediction from a rank-deficient fit may be misleading

Out-of-sample ROC curves


```
rocFLlogit <- roc(dfTest$warstds,predict(modelFLlogit, dfTest, type = "prob")$war)
rocFLrf <- roc(dfTest$warstds,predict(modelFLrf, dfTest, type = "prob")$war)

rocAlllogit <- roc(dfTest$warstds,predict(modelAlllogit, dfTest, type = "prob")$war)

## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
rocAllrf <- roc(dfTest$warstds,predict(modelAllrf, dfTest, type = "prob")$war)

set.seed(221)
roc.test(rocAlllogit, rocAllrf, method = "bootstrap")
set.seed(221)
aucCIFLlogit <- ci.auc(rocFLlogit, method = "bootstrap")
set.seed(221)
aucCIFLrf <- ci.auc(rocFLrf, method = "bootstrap")</pre>
```

```
set.seed(221)
aucCIAlllogit <- ci.auc(rocAlllogit, method = "bootstrap")
set.seed(221)
aucCIAllrf <- ci.auc(rocAllrf, method = "bootstrap")</pre>
```

Code for Appendix

The four models with up-sampling within the cross-validation procedure

```
tcup <- trainControl(method = "cv",</pre>
                   number = folds,
                   summaryFunction = twoClassSummary,
                   classProb = TRUE,
                   savePredictions = TRUE,
                   seeds = seeds,
                   index = cvIndex,
                   sampling = "up"
# The Fearon/Laitin models.
# Logit
modelFLlogitup <- train(warstds ~ warhist + ln_gdpen + lpopns + lmtnest + ncontig + oil
                        + nwstate + inst3 + pol4 + ef + relfrac,
                      metric = "ROC", method = "glm", family = "binomial",
                      trControl = tcup, data = dfTrain
)
summary(modelFLlogitup)
modelFLlogitup
confusionMatrix(modelFLlogitup, norm = "average")
# Random Forest
modelFLrfup <- train(warstds ~ warhist + ln_gdpen + lpopns + lmtnest + ncontig + oil
                     + nwstate + inst3 + pol4 + ef + relfrac,
                   metric = "ROC", method = "rf",
                   trControl = tcup, data = dfTrain,
                   keep.inbag = TRUE
)
modelFLrfup
confusionMatrix(modelFLrfup, norm = "average")
############
```

```
# Logit
modelAlllogitup <- train(warstds ~ .,</pre>
                       metric = "ROC", method = "glm", family = "binomial",
                        trControl = tcup, data = dfTrain
)
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(modelAlllogitup)
modelAlllogitup
confusionMatrix(modelAlllogitup, norm = "average")
# Random Forest
modelAllrfup <- train(warstds ~ .,</pre>
                    metric = "ROC", method = "rf",
                    trControl = tcup, data = dfTrain,
                    keep.inbag = TRUE
)
modelAllrfup
confusionMatrix(modelAllrfup, norm = "average")
```

Confusion Matrices

```
table(pred = predict(modelFLlogitup, dfTest, type = "raw"), obs = dfTest$warstds)
##
         obs
## pred
          peace war
    peace 1332
                   10
    war
            481
table(pred = predict(modelFLrfup, dfTest, type = "raw"), obs = dfTest$warstds)
##
         obs
## pred
          peace war
##
    peace 1744
                   24
              69
table(pred = predict(modelAlllogitup, dfTest, type = "raw"), obs = dfTest$warstds)
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
         obs
## pred
          peace war
##
    peace 1497
                   8
##
            316
     war
table(pred = predict(modelAllrfup, dfTest, type = "raw"), obs = dfTest$warstds)
```

```
## obs
## pred peace war
## peace 1807 25
## war 6 3
```

Separation Plots and ROC curves for the models with up-sampling

Fearon and Laitin (2003) Logit with up-sampling

Fearon and Laitin (2003) Random Forest with up-sampling


```
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
```

All Variables Logit with up-sampling

All Variables Random Forest with up-sampling


```
plot.roc(dfTest$warstds,
         predict(modelFLrfup, dfTest, type = "prob")$war,
         add = T,
         col = "grey 80", lty = "dashed")
plot.roc(dfTest$warstds,
         predict(modelAlllogitup, dfTest, type = "prob")$war,
         add = T,
         col = "grey 50", lty = "solid")
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
plot.roc(dfTest$warstds,
         predict(modelAllrfup, dfTest, type = "prob")$war,
         add = T,
         col = "grey 50", lty = "dashed")
legend(0.7, 0.25,
       c(paste("Fearon and Laitin (2003) Logit, AUC = ",
               round(as.numeric(roc(dfTest$warstds,
                                    predict(modelFLlogitup, dfTest, type = "prob")$war)$auc),2)),
         paste("Fearon and Laitin (2003) Random Forest, AUC = ",
               round(as.numeric(roc(dfTest$warstds,
                                    predict(modelFLrfup, dfTest, type = "prob")$war)$auc),2)),
         paste("All Variables Logit, AUC = ",
               round(as.numeric(roc(dfTest$warstds,
                                    predict(modelAlllogitup, dfTest, type = "prob")$war)$auc),2)),
         paste("All Variables Random Forest, AUC = ",
               round(as.numeric(roc(dfTest$warstds,
                                    predict(modelAllrfup, dfTest, type = "prob")$war)$auc),2))),
       lty=c("solid", "dashed", "solid", "dashed"),
       col = c("black", "black", "grey 50", "grey 50"), bty="n",
       cex = .75)
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
```

Out-of-sample ROC curves with up-sampling

The four models with down-sampling within the cross-validation procedure

```
tcdown <- trainControl(method = "cv",</pre>
                   number = folds,
                    summaryFunction = twoClassSummary,
                    classProb = TRUE,
                    savePredictions = TRUE,
                    seeds = seeds,
                    index = cvIndex,
                    sampling = "down"
)
# The Fearon/Laitin models.
# Logit
modelFLlogitdown <- train(warstds ~ warhist + ln_gdpen + lpopns + lmtnest + ncontig + oil</pre>
                           + nwstate + inst3 + pol4 + ef + relfrac,
                      metric = "ROC", method = "glm", family = "binomial",
                       trControl = tcdown, data = dfTrain
)
summary(modelFLlogitdown)
modelFLlogitdown
confusionMatrix(modelFLlogitdown, norm = "average")
```

```
# Random Forest
modelFLrfdown <- train(warstds ~ warhist + ln_gdpen + lpopns + lmtnest + ncontig + oil</pre>
                       + nwstate + inst3 + pol4 + ef + relfrac,
                   metric = "ROC", method = "rf",
                   trControl = tcdown, data = dfTrain,
                   keep.inbag = TRUE
)
modelFLrfdown
confusionMatrix(modelFLrfdown, norm = "average")
############
# Logit
modelAlllogitdown <- train(warstds ~ .,</pre>
                       metric = "ROC", method = "glm", family = "binomial",
                       trControl = tcdown, data = dfTrain
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(modelAlllogitdown)
modelAlllogitdown
confusionMatrix(modelAlllogitdown, norm = "average")
# Random Forest
modelAllrfdown <- train(warstds ~ .,</pre>
                    metric = "ROC", method = "rf",
                    trControl = tcdown, data = dfTrain,
                    keep.inbag = TRUE
)
modelAllrfdown
confusionMatrix(modelAllrfdown, norm = "average")
```

Confusion Matrices

```
table(pred = predict(modelFLlogitdown, dfTest, type = "raw"), obs = dfTest$warstds)

## obs
## pred peace war
## peace 1274 9
## war 539 19
```

```
table(pred = predict(modelFLrfdown, dfTest, type = "raw"), obs = dfTest$warstds)
##
          obs
## pred
           peace
    peace 1303
##
                   11
     war
            510
                   17
table(pred = predict(modelAlllogitdown, dfTest, type = "raw"), obs = dfTest$warstds)
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
##
## pred
           peace war
    peace 1360
##
##
    war
            453
                   20
table(pred = predict(modelAllrfdown, dfTest, type = "raw"), obs = dfTest$warstds)
##
          obs
## pred
           peace
    peace 1579
##
                    6
##
     war
             234
                   22
```

Separation Plots and ROC curves for the models with down-sampling

Fearon and Laitin (2003) Logit with down-sampling


```
heading="Fearon and Laitin (2003) Random Forest with down-sampling", height=1.5, col0="white", col1="black", newplot = F)
```

Fearon and Laitin (2003) Random Forest with down-sampling

Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
ifelse(type == : prediction from a rank-deficient fit may be misleading

All Variables Logit with down-sampling

All Variables Random Forest with down-sampling


```
plot.roc(dfTest$warstds,
         predict(modelFLlogitdown, dfTest, type = "prob")$war,
         col = "grey 80", las = 1, xlim = c(1,0), bty = "n", main = "Out-of-sample ROC curves with down
plot.roc(dfTest$warstds,
         predict(modelFLrfdown, dfTest, type = "prob")$war,
         add = T.
         col = "grey 80", lty = "dashed")
plot.roc(dfTest$warstds,
         predict(modelAlllogitdown, dfTest, type = "prob")$war,
         col = "grey 50", lty = "solid")
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
plot.roc(dfTest$warstds,
         predict(modelAllrfdown, dfTest, type = "prob")$war,
         col = "grey 50", lty = "dashed")
legend(0.7, 0.25,
       c(paste("Fearon and Laitin (2003) Logit, AUC = ",
               round(as.numeric(roc(dfTest$warstds,
                                    predict(modelFLlogitdown, dfTest, type = "prob")$war)$auc),2)),
         paste("Fearon and Laitin (2003) Random Forest, AUC = ",
               round(as.numeric(roc(dfTest$warstds,
                                    predict(modelFLrfdown, dfTest, type = "prob")$war)$auc),2)),
         paste("All Variables Logit, AUC = ",
               round(as.numeric(roc(dfTest$warstds,
                                    predict(modelAlllogitdown, dfTest, type = "prob")$war)$auc),2)),
         paste("All Variables Random Forest, AUC = ",
              round(as.numeric(roc(dfTest$warstds,
                                    predict(modelAllrfdown, dfTest, type = "prob")$war)$auc),2))),
       lty=c("solid", "dashed", "solid", "dashed"),
       col = c("black", "black", "grey 50", "grey 50"), bty="n",
       cex = .75
```

```
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
```

Out-of-sample ROC curves with down-sampling

Collier/Hoeffler Logit

```
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(modelCHlogit) # Not in paper

modelCHlogit # Not in paper

confusionMatrix(modelCHlogit, norm = "average") # Not in paper
```

Collier/Hoeffler Random Forest

```
keep.inbag = TRUE
)

modelCHrf # Not in paper

confusionMatrix(modelCHrf, norm = "average") # Not in paper
```

The plots and confusion matrices to compare the models. Collier/Hoeffler vs. all 90 variables

Confusion Matrices for the models at a threshold for positive prediction of 0.5

```
table(pred = predict(modelCHlogit, dfTest, type = "raw"), obs = dfTest$warstds)
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
##
          obs
## pred
           peace
                 war
    peace 1813
                   28
    war
table(pred = predict(modelCHrf, dfTest, type = "raw"), obs = dfTest$warstds)
##
          obs
## pred
           peace
    peace 1807
##
                   19
                    9
     war
table(pred = predict(modelAlllogit, dfTest, type = "raw"), obs = dfTest$warstds)
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
##
## pred
           peace war
    peace 1788
                   26
    war
              25
                    2
table(pred = predict(modelAllrf, dfTest, type = "raw"), obs = dfTest$warstds)
##
          obs
## pred
           peace
    peace 1812
                  26
##
     war
```

Separation Plots for the four models (Collier/Hoeffler)

```
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
```

Collier and Hoeffler Variables (2004) Logit

Collier and Hoeffler Variables (2004) Random Forest


```
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
```

All Variables Logit


```
separationplot(predict(modelAllrf, dfTest, type = "prob")$war,
          as.numeric(dfTest$warstds)-1, type = "line",
          line = T, lwd2 = 1,
          show.expected = T,
          heading = "All Variables Random Forest",
          height = 1.5, col0 = "white", col1 = "black", newplot = F)
```

All Variables Random Forest

ROC curves for the four models (Collier/Hoeffler)

```
plot.roc(dfTest$warstds,
         predict(modelAlllogit, dfTest, type = "prob")$war,
         col = "grey 50", lty = "solid")
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
plot.roc(dfTest$warstds,
         predict(modelAllrf, dfTest, type = "prob")$war,
         add = T,
         col = "grey 50", lty = "dashed")
legend(0.5, 0.25, c("Collier and Hoeffler (2004) Logit",
                    "Collier and Hoeffler (2004) Random Forest",
                     "All Variables Logit",
                    "All Variables Random Forest" ),
      lty=c("solid", "dashed", "solid", "dashed"),
       col = c("grey 80", "grey 80", "grey 50", "grey 50"), bty="n",
       cex = .75)
```

Out-of-sample ROC curves

Hegre/Sambanis model specifications

Logit

Random Forest

The plots and confusion matrices to compare the models. Hegre/Sambanis vs. all 90 variables

Confusion Matrices for the models at a threshold for positive prediction of 0.5

```
table(pred = predict(modelHSlogit, dfTest, type = "raw"), obs = dfTest$warstds)
##
         obs
## pred
          peace
                 war
    peace 1811
                  27
table(pred = predict(modelHSrf, dfTest, type = "raw"), obs = dfTest$warstds)
##
## pred
          peace war
    peace 1813
                  27
##
           0
    war
```

```
table(pred = predict(modelAlllogit, dfTest, type = "raw"), obs = dfTest$warstds)
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
##
          obs
## pred
           peace
                 war
##
    peace 1788
##
    war
table(pred = predict(modelAllrf, dfTest, type = "raw"), obs = dfTest$warstds)
##
## pred
           peace war
    peace 1812
##
##
     war
               1
```

Separation Plots for the four models (Hegre/Sambanis)

Hegre and Sambanis Variables (2006) Logit

Hegre and Sambanis Variables (2006) Random Forest


```
separationplot(predict(modelAlllogit, dfTest, type = "prob")$war,
    as.numeric(dfTest$warstds)-1, type = "line",
    line = T, lwd2 = 1,
    show.expected = T,
    heading = "All Variables Logit",
    height = 1.5, col0 = "white", col1 = "black", newplot = F)
```

Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
ifelse(type == : prediction from a rank-deficient fit may be misleading

All Variables Logit

All Variables Random Forest

ROC curves for the four models (Hegre/Sambanis)

```
plot.roc(dfTest$warstds,
         predict(modelHSlogit, dfTest, type = "prob")$war,
         col = "grey 80", las = 1, xlim = c(1,0), bty = "n",
         main = "Out-of-sample ROC curves")
plot.roc(dfTest$warstds,
         predict(modelHSrf, dfTest, type = "prob")$war,
         add = T,
         col = "grey 80", lty = "dashed")
plot.roc(dfTest$warstds,
         predict(modelAlllogit, dfTest, type = "prob")$war,
         add = T,
         col = "grey 50", lty = "solid")
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
plot.roc(dfTest$warstds,
         predict(modelAllrf, dfTest, type = "prob")$war,
         add = T,
         col = "grey 50", lty = "dashed")
legend(0.5, 0.25, c("Hegre and Sambanis (2006) Logit",
                    "Hegre and Sambanis (2006) Random Forest",
                    "All Variables Logit",
                    "All Variables Random Forest" ),
       lty=c("solid", "dashed", "solid", "dashed"),
       col = c("grey 80", "grey 80", "grey 50", "grey 50"), bty="n",
       cex = .75)
```

Out-of-sample ROC curves

