ELEMENTARY COMBINATORICS & PROBABILITY

Lecture 4

Permutations and Combinations II

LAST TIME

- Permutations
 - ordering a set of n objects: n! ways;
 - permutations with repetitions;
 - r-permutations.
- Combinations
 - when order doesn't matter;
 - C(n,k)
 - binomial theorem.
- Problem set 3.

TODAY

- Problem set 3
- Combinations with repetitions
- Problem set 4:
 - Learning to distinguish between different types of arrangements.

• Graded assignment 1 due TODAY 23:59.

WARM-UP

	WITHOUT REPETITIONS	WITH REPETITIONS
ORDERED	In how many ways can n people sit in a row?	How many different n -bit strings are there?
NOT ORDERED	In how many ways can we chose k out of n different candies in a bag?	In how many ways can we distribute n identical candies among k kids?

	WITHOUT REPETITIONS	WITH REPETITIONS
ORDERED	In how many ways can n people sit in a row?	How many different <i>n</i> -bit strings are there?
NOT ORDERED	In how many ways can we chose k out of n different candies in a bag?	In how many ways can we distribute n identical candies among k kids?

	WITHOUT REPETITIONS	WITH REPETITIONS
ORDERED	PERMUTATIONS In how many ways can n people sit in a row?	How many different <i>n</i> -bit strings are there?
NOT ORDERED	COMBINATIONS In how many ways can we chose k out of n different candies in a bag?	In how many ways can we distribute <i>n</i> identical candies among k kids?

	WITHOUT REPETITIONS	WITH REPETITIONS
ORDERED	PERMUTATIONS In how many ways can n people sit in a row? $n!$	How many different <i>n</i> -bit strings are there?
NOT ORDERED	COMBINATIONS In how many ways can we chose k out of n different candies in a bag? $C(n,k) = \frac{n!}{k! (n-k)!}$	In how many ways can we distribute <i>n</i> identical candies among k kids?

• In how many ways can you arrange these 5 bottles?

Elementary Combinatorics and Probability - March 2021

• In how many ways can you arrange these 5 bottles?

5 different bottles -> order matters -> counting permutations -> 5!

• In how many ways can you chose 3 out of these bottles?

Elementary Combinatorics and Probability - March 2021

• In how many ways can you chose 3 out of these bottles? Order **doesn't** matter -> counting **combinations** -> C(5,3) = 5!/(3!2!)

• In how many ways can you arrange these 5 bottles?

Elementary Combinatorics and Probability - March 2021

• In how many ways can you arrange these 5 bottles? Permutations with repetitions -> 5!/3!

• In how many ways can you pick 3 of these bottles for 3 friends?

Elementary Combinatorics and Probability - March 2021

• In how many ways can you pick 3 of these bottles for 3 friends? For **different** people -> order **matters** -> counting 3-permutations -> $5 \cdot 4 \cdot 3$

1. Choosing 10 people out of 12 to award 10 identical awards.

1. Choosing 10 people out of 12 to award 10 identical awards. C

- 1. Choosing 10 people out of 12 to award 10 identical awards. C
- 2. Seating 5 people in line.

- 1. Choosing 10 people out of 12 to award 10 identical awards. C
- 2. Seating 5 people in line. P

- 1. Choosing 10 people out of 12 to award 10 identical awards. C
- 2. Seating 5 people in line. P
- 3. Choosing 3 out of 100 people to be members of a committee.

- 1. Choosing 10 people out of 12 to award 10 identical awards. C
- 2. Seating 5 people in line. P
- 3. Choosing 3 out of 100 people to be members of a committee. C

- 1. Choosing 10 people out of 12 to award 10 identical awards. C
- 2. Seating 5 people in line. P
- 3. Choosing 3 out of 100 people to be members of a committee. C
- Choosing 3 movies out of 10 to get awards: best movie, best music, best costumes.

- 1. Choosing 10 people out of 12 to award 10 identical awards. C
- 2. Seating 5 people in line. P
- 3. Choosing 3 out of 100 people to be members of a committee. C
- 4. Choosing 3 movies out of 10 to get awards: best movie, best music, best costumes. **P (3-permutation)**

- 1. Choosing 10 people out of 12 to award 10 identical awards. C
- 2. Seating 5 people in line. P
- 3. Choosing 3 out of 100 people to be members of a committee. C
- 4. Choosing 3 movies out of 10 to get awards: best movie, best music, best costumes. **P (3-permutation)**

- 1. Choosing 10 people out of 12 to award 10 identical awards. C
- 2. Seating 5 people in line. P
- 3. Choosing 3 out of 100 people to be members of a committee. C
- 4. Choosing 3 movies out of 10 to get awards: best movie, best music, best costumes. P (3-permutation)
- 5. Appointing 3 out of 100 people as a president, a vice-president and a secretary in a committee.

- 1. Choosing 10 people out of 12 to award 10 identical awards. C
- 2. Seating 5 people in line. P
- 3. Choosing 3 out of 100 people to be members of a committee. C
- 4. Choosing 3 movies out of 10 to get awards: best movie, best music, best costumes. P (3-permutation)
- 5. Appointing 3 out of 100 people as a president, a vice-president and a secretary in a committee. **P (3-permutation)**

PROBLEM SET 3

Selected problems

• Three adults and five children are seated randomly in a row. In how many ways can this be done?

• Three adults and five children are seated randomly in a row. In how many ways can this be done?

Order matters = permutation of 3 + 5 = 8 objects.

• Three adults and five children are seated randomly in a row. In how many ways can this be done?

Order matters = permutation of 3 + 5 = 8 objects.

8!

• Three adults and five children are seated randomly in a row. In how many ways can this be done if the three adults are seated together?

• Three adults and five children are seated randomly in a row. In how many ways can this be done if the three adults are seated together?

Adults can be permuted in 3! ways.

• Three adults and five children are seated randomly in a row. In how many ways can this be done if the three adults are seated together?

Adults can be permuted in 3! ways.

Once the order is selected, "glue" adults together.

• Three adults and five children are seated randomly in a row. In how many ways can this be done if the three adults are seated together?

Adults can be permuted in 3! ways.

Once the order is selected, "glue" adults together.

Permute 6 objects: 6! ways to do so.

• Three adults and five children are seated randomly in a row. In how many ways can this be done if the three adults are seated together?

Adults can be permuted in 3! ways.

Once the order is selected, "glue" adults together.

Permute 6 objects: 6! ways to do so.

So, there are $3! \cdot 6!$ ways to seat 8 people with this constraint.

• Three adults and five children are seated randomly in a row. In how many ways can this be done if the three adults are seated together, and the five children are also seated together.

• Three adults and five children are seated randomly in a row. In how many ways can this be done if the three adults are seated together, and the five children are also seated together.

ways to permute the adults:

• Three adults and five children are seated randomly in a row. In how many ways can this be done if the three adults are seated together, and the five children are also seated together.

```
# ways to permute the adults: 3!
```

ways to permute the kids:

• Three adults and five children are seated randomly in a row. In how many ways can this be done if the three adults are seated together, and the five children are also seated together.

```
# ways to permute the adults: 3!
```

ways to permute the kids: 5!

ways to permute 2 groups:

• Three adults and five children are seated randomly in a row. In how many ways can this be done if the three adults are seated together, and the five children are also seated together.

ways to permute the adults: 3!

ways to permute the kids: 5!

ways to permute 2 groups: 2!

• Three adults and five children are seated randomly in a row. In how many ways can this be done if the three adults are seated together, and the five children are also seated together.

ways to permute the adults: 3!

ways to permute the kids: 5!

ways to permute 2 groups: 2!

Thus, there are $3! \cdot 5! \cdot 2!$ ways to permute the group of 8 people with the constraints above.

• In how many different ways can *n* people be seated at the round table?

• In how many different ways can n people be seated at the round table?

Order matters \rightarrow counting permutations.

• In how many different ways can n people be seated at the round table?

Order matters \rightarrow counting permutations.

If seated in line:

• In how many different ways can n people be seated at the round table?

Order matters \rightarrow counting permutations.

If seated in line: n! of them.

• In how many different ways can n people be seated at the round table?

Order matters \rightarrow counting permutations.

If seated in line: n! of them.

But in a circle, n permutations obtained by rotation are identical.

• In how many different ways can n people be seated at the round table?

Order matters \rightarrow counting permutations.

If seated in line: n! of them.

But in a circle, n permutations obtained by rotation are identical.

Therefore, the number of unique circular permutations is

• In how many different ways can n people be seated at the round table?

Order matters \rightarrow counting permutations.

If seated in line: n! of them.

But in a circle, n permutations obtained by rotation are identical.

Therefore, the number of unique circular permutations is

$$\frac{n!}{n} = (n-1)!$$

• In how many different ways can n people be seated at the round table?

Examples for n = 3 and n = 4:

- A total of 6 freshmen, 5 sophomores and 4 juniors have volunteered to serve on a 4-person committee.
- How many such committees are possible?

- A total of 6 freshmen, 5 sophomores and 4 juniors have volunteered to serve on a 4-person committee.
- How many such committees are possible?

Order doesn't matter → counting combinations.

- A total of 6 freshmen, 5 sophomores and 4 juniors have volunteered to serve on a 4-person committee.
- How many such committees are possible?

Order doesn't matter → counting combinations.

$$C(15,4) =$$

- A total of 6 freshmen, 5 sophomores and 4 juniors have volunteered to serve on a 4-person committee.
- How many such committees are possible?

Order doesn't matter → counting combinations.

$$C(15,4) = \frac{15!}{4!(15-4)!} = \frac{15 \cdot 14 \cdot 13 \cdot 12}{4 \cdot 3 \cdot 2} = 1365$$

• A total of 6 freshmen, 5 sophomores and 4 juniors have volunteered to serve on a 4-person committee. How many such committees are possible if at least one freshman must serve on the committee?

• A total of 6 freshmen, 5 sophomores and 4 juniors have volunteered to serve on a 4-person committee. How many such committees are possible if at least one freshman must serve on the committee?

committees without freshmen:

• A total of 6 freshmen, 5 sophomores and 4 juniors have volunteered to serve on a 4-person committee. How many such committees are possible if at least one freshman must serve on the committee?

committees without freshmen:

$$C(9,4) = \frac{9!}{5! \cdot 4!} = \frac{9 \cdot 8 \cdot 7 \cdot 6}{4 \cdot 3 \cdot 2} = 126$$

all possible committees:

• A total of 6 freshmen, 5 sophomores and 4 juniors have volunteered to serve on a 4-person committee. How many such committees are possible if at least one freshman must serve on the committee?

committees without freshmen:

$$C(9,4) = \frac{9!}{5! \cdot 4!} = \frac{9 \cdot 8 \cdot 7 \cdot 6}{4 \cdot 3 \cdot 2} = 126$$

all possible committees:

$$C(15,4) = 1365$$

committees without freshmen:

• A total of 6 freshmen, 5 sophomores and 4 juniors have volunteered to serve on a 4-person committee. How many such committees are possible if at least one freshman must serve on the committee?

committees without freshmen:

$$C(9,4) = \frac{9!}{5! \cdot 4!} = \frac{9 \cdot 8 \cdot 7 \cdot 6}{4 \cdot 3 \cdot 2} = 126$$

all possible committees:

$$C(15,4) = 1365$$

committees without freshmen:

$$1365 - 126 = 1239$$

• A total of 6 freshmen, 5 sophomores and 4 juniors have volunteered to serve on a 4-person committee. How many such committees are possible if at least one freshman, one sophomore and one junior must serve on the committee?

- A total of 6 freshmen, 5 sophomores and 4 juniors have volunteered to serve on a 4-person committee. How many such committees are possible if at least one freshman, one sophomore and one junior must serve on the committee?
- 2 freshmen, 1 sophomore and 1 junior
- 1 freshman, 2 sophomores and 1 junior
- 1 freshman, 1 sophomore and 2 juniors

• A total of 6 freshmen, 5 sophomores and 4 juniors have volunteered to serve on a 4-person committee. How many such committees are possible if at least one freshman, one sophomore and one junior must serve on the committee?

2 freshmen, 1 sophomore and 1 junior $C(6,2) \cdot C(5,1) \cdot C(4,1) = N_{211}$

- 1 freshman, 2 sophomores and 1 junior
- 1 freshman, 1 sophomore and 2 juniors

• A total of 6 freshmen, 5 sophomores and 4 juniors have volunteered to serve on a 4-person committee. How many such committees are possible if at least one freshman, one sophomore and one junior must serve on the committee?

2 freshmen, 1 sophomore and 1 junior

$$C(6,2) \cdot C(5,1) \cdot C(4,1) = N_{211}$$

1 freshman, 2 sophomores and 1 junior

$$C(6,1) \cdot C(5,2) \cdot C(4,1) = N_{121}$$

1 freshman, 1 sophomore and 2 juniors

• A total of 6 freshmen, 5 sophomores and 4 juniors have volunteered to serve on a 4-person committee. How many such committees are possible if at least one freshman, one sophomore and one junior must serve on the committee?

2 freshmen, 1 sophomore and 1 junior

$$C(6,2) \cdot C(5,1) \cdot C(4,1) = N_{211}$$

1 freshman, 2 sophomores and 1 junior

$$C(6,1) \cdot C(5,2) \cdot C(4,1) = N_{121}$$

1 freshman, 1 sophomore and 2 juniors

$$C(6,1) \cdot C(5,1) \cdot C(4,2) = N_{112}$$

• A total of 6 freshmen, 5 sophomores and 4 juniors have volunteered to serve on a 4-person committee. How many such committees are possible if at least one freshman, one sophomore and one junior must serve on the committee?

2 freshmen, 1 sophomore and 1 junior

$$C(6,2) \cdot C(5,1) \cdot C(4,1) = N_{211}$$

1 freshman, 2 sophomores and 1 junior

$$C(6,1) \cdot C(5,2) \cdot C(4,1) = N_{121}$$

1 freshman, 1 sophomore and 2 juniors

$$C(6,1) \cdot C(5,1) \cdot C(4,2) = N_{112}$$

 $N_{211} + N_{121} + N_{112}$ committees with at least one student from each group

• How many shuffles are there of a deck of cards, such that ace of hearts is not directly on top of king of hearts, and ace of spades is not directly on top of king of spades?

• How many shuffles are there of a deck of cards, such that ace of hearts is not directly on top of king of hearts, and ace of spades is not directly on top of king of spades?

|♡ ∩ ♠ | = ?

- A set of shuffles where ace of hearts is directly on top of king of hearts.
- A set of shuffles where ace of spades is directly on top of king of spades.

• How many shuffles are there of a deck of cards, such that ace of hearts is not directly on top of king of hearts, and ace of spades is not directly on top of king of spades?

• How many shuffles are there of a deck of cards, such that ace of hearts is not directly on top of king of hearts, and ace of spades is not directly on top of king of spades?

shuffles where ace of hearts is on top of king of hearts

shuffles where ace of spades is on top of king of spades

shuffles where both is true

• How many shuffles are there of a deck of cards, such that ace of hearts is not directly on top of king of hearts, and ace of spades is not directly on top of king of spades?

shuffles where ace of hearts **is** on top of king of hearts 51!

shuffles where ace of spades is on top of king of spades

shuffles where both is true

 How many shuffles are there of a deck of cards, such that ace of hearts is not directly on top of king of hearts, and ace of spades is not directly on top of king of spades?

```
# shuffles where ace of hearts is on top of king of hearts 51!
```

shuffles where ace of spades **is** on top of king of spades 51!

shuffles where both is true

DECK OF CARDS

 How many shuffles are there of a deck of cards, such that ace of hearts is not directly on top of king of hearts, and ace of spades is not directly on top of king of spades?

```
# shuffles where ace of hearts is on top of king of hearts 51!

# shuffles where ace of spades is on top of king of spades 51!

# shuffles where both is true
```

50!

DECK OF CARDS

 How many shuffles are there of a deck of cards, such that ace of hearts is not directly on top of king of hearts, and ace of spades is not directly on top of king of spades?

```
# shuffles where ace of hearts is on top of king of hearts 51!
```

shuffles where ace of spades **is** on top of king of spades 51!

shuffles where both is true

50!

So the number of possible shuffles is

$$52! - (51! + 51! - 50!) = 52! - 2 \cdot 51! + 50!$$

DECK OF CARDS

• How many shuffles are there of a deck of cards, such that ace of hearts is not directly on top of king of hearts, and ace of spades is not directly on top of king of spades?

- A set of shuffles where ace of hearts is directly on top of king of hearts.
- A set of shuffles where ace of spades is directly on top of king of spades.

• In how many ways can we rearrange symbols TOM MARVOLO RIDDLE (including spaces)?

- In how many ways can we rearrange symbols TOM MARVOLO RIDDLE (including spaces)?
- 18 symbols (letters + 2 spaces) with some repetitions:

```
T V
O (3 times) L (2 times)
M (2 times) I
A D (2 times)
R (2 times) E
" " (2 times)
```

• 18 symbols (letters + 2 spaces) with some repetitions:

In total

$$N_{total} =$$

unique permutations.

• 18 symbols (letters + 2 spaces) with some repetitions:

In total

$$N_{total} = \frac{18!}{3! \, 2! \, 2! \, 2! \, 2! \, 2!}$$

unique permutations.

• 18 symbols (letters + 2 spaces) with some repetitions:

In total

$$N_{total} = \frac{18!}{3! \, 2! \, 2! \, 2! \, 2! \, 2!}$$

unique permutations.

• In how many ways can we rearrange symbols TOM MARVOLO RIDDLE (including spaces)?

- Spaces
 - 1. cannot be together
 - 2. cannot be in front
 - 3. cannot be at the end

- In how many ways can we rearrange symbols TOM MARVOLO RIDDLE (including spaces)?
- Spaces cannot be together.

- In how many ways can we rearrange symbols TOM MARVOLO RIDDLE (including spaces)?
- Spaces cannot be together.
- What if there are?

$$N_1 =$$

unique permutations with 2 spaces next to each other.

- In how many ways can we rearrange symbols TOM MARVOLO RIDDLE (including spaces)?
- Spaces cannot be together.
- What if there are? They are glued as a single character:

$$N_1 = \frac{17!}{3! \ 2! \ 2! \ 2! \ 2!}$$

unique permutations with 2 spaces next to each other.

- In how many ways can we rearrange symbols TOM MARVOLO RIDDLE (including spaces)?
- Spaces cannot be together.
- What if there are? They are glued as a single character:

$$N_1 = \frac{17!}{3! \ 2! \ 2! \ 2! \ 2!}$$

unique permutations with 2 spaces next to each other.

 $N_{total} - N_1$ permutations don't have spaces next to each other

• $N_{total} - N_1$ permutations don't have spaces next to each other.

- $N_{total} N_1$ permutations don't have spaces next to each other.
- But still have strings with space in front or / end at the end.
- We need to remove them from our count.

- $N_{total} N_1$ permutations don't have spaces next to each other.
- But still have strings with space in front or / end at the end.
- We need to remove them from our count.
- Inclusion-exclusion

- $N_{total} N_1$ permutations don't have spaces next to each other.
- But still have strings with space in front or / end at the end.
- We need to remove them from our count.
- Inclusion-exclusion
 - # start with a space
 - # end with a space
 - # start and end with a space

Ordered sequences with repetitions

	WITHOUT REPETITIONS	WITH REPETITIONS
ORDERED	PERMUTATIONS Seating n people in a row $n!$	Counting different n -bit strings are there?
NOT ORDERED	COMBINATIONS Choosing k out of n different candies in a bag $C(n,k) = \frac{n!}{k! (n-k)!}$	Distributing k identical candies among n kids

	WITHOUT REPETITIONS	WITH REPETITIONS	
ORDERED	PERMUTATIONS Seating n people in a row $n!$	TUPLES Counting different n -bit strings are there?	
NOT ORDERED	COMBINATIONS Choosing k out of n different candies in a bag $C(n,k) = \frac{n!}{k! (n-k)!}$	Distributing k identical candies among n kids	

	WITHOUT REPETITIONS	WITH REPETITIONS	
ORDERED	PERMUTATIONS Seating n people in a row $n!$	TUPLES Counting different n -bit strings are there? k^n	
NOT ORDERED	Combinations Choosing k out of n different candies in a bag $C(n,k) = \frac{n!}{k! (n-k)!}$	Distributing k identical candies among n kids	

	WITHOUT REPETITIONS	WITH REPETITIONS	
ORDERED	PERMUTATIONS Seating n people in a row $n!$	TUPLES Counting different n-bit strings are there?	
NOT ORDERED	Combinations Choosing k out of n different candies in a bag $C(n,k) = \frac{n!}{k! (n-k)!}$	Distributing k identical candies among n kids	

• Each entry of a string is an element of the set $S=\{0,1,2\}$. How many such strings of length n=6 are there?

• Each entry of a string is an element of the set $S=\{0,1,2\}$. How many such strings of length n=6 are there?

n = 6 values to choose:

?	?	?	?	?	?
•	•		•		

• Each entry of a string is an element of the set $S=\{0,1,2\}$. How many such strings of length n=6 are there?

n = 6 values to choose:

	?	?	?	?	?	?
L	-	-			-	

Order matters

• Each entry of a string is an element of the set $S=\{0,1,2\}$. How many such strings of length n=6 are there?

n = 6 values to choose:

? ? ? ? ?	
-----------	--

Order matters

k = 3 options for each value

• Each entry of a string is an element of the set $S=\{0,1,2\}$. How many such strings of length n=6 are there?

n = 6 values to choose:

|--|

Order matters

k = 3 options for each value

$$3 \cdot 3 \cdot \dots \cdot 3 = k^n = 3^6$$
 different sequences

• Each entry of a string is an element of the set $S = \{0, 1, 2\}$. How many such strings of length 6 are there that begin with 022 or end with 01?

• Each entry of a string is an element of the set $S = \{0, 1, 2\}$. How many such strings of length 6 are there that begin with 022 or end with 01?

Inclusion-exclusion

• Each entry of a string is an element of the set $S = \{0, 1, 2\}$. How many such strings of length 6 are there that begin with 022 or end with 01?

Inclusion-exclusion

- # strings beginning with 022:
- # string ending with 01:
- # strings beginning with 002 and ending with 01:

• Each entry of a string is an element of the set $S = \{0, 1, 2\}$. How many such strings of length 6 are there that begin with 022 or end with 01?

Inclusion-exclusion

```
# strings beginning with 022: 3^3 = 27
```

string ending with 01:

strings beginning with 002 and ending with 01:

• Each entry of a string is an element of the set $S = \{0, 1, 2\}$. How many such strings of length 6 are there that begin with 022 or end with 01?

Inclusion-exclusion

strings beginning with 022:
$$3^3 = 27$$

string ending with 01:
$$3^4 = 81$$

strings beginning with 002 and ending with 01:

• Each entry of a string is an element of the set $S = \{0, 1, 2\}$. How many such strings of length 6 are there that begin with 022 or end with 01?

Inclusion-exclusion

strings beginning with 022:
$$3^3 = 27$$

string ending with 01:
$$3^4 = 81$$

strings beginning with 002 and ending with 01: 3

• Each entry of a string is an element of the set $S = \{0, 1, 2\}$. How many such strings of length 6 are there that begin with 022 or end with 01?

Inclusion-exclusion

strings beginning with 022:
$$3^3 = 27$$

string ending with 01:
$$3^4 = 81$$

$$27 + 81 - 3 = 105$$
 different sequences that start with 002 or end with 01

COMBINATIONS WITH REPETITIONS

	WITHOUT REPETITIONS	WITH REPETITIONS
ORDERED	PERMUTATIONS Seating n people in a row $n!$	TUPLES Counting different n -bit strings are there? k^n
NOT ORDERED	Combinations Choosing k out of n different candies in a bag $C(n,k) = \frac{n!}{k! (n-k)!}$	Distributing k identical candies among n kids

POSSIBLE ARRANGEMENTS

• Imagine you have n objects. How can you arrange them?

	WITHOUT REPETITIONS	WITH REPETITIONS
ORDERED	PERMUTATIONS Seating n people in a row $n!$	TUPLES Counting different n -bit strings are there? k^n
NOT ORDERED	Combinations Choosing k out of n different candies in a bag $C(n,k) = \frac{n!}{k! (n-k)!}$	COMBINATIONS WITH REPETITIONS Distributing k identical candies among n kids ?

COMBINATIONS

• There are C(n,k) ways to choose k distinct elements without regard to order from a set of n elements.

COMBINATIONS

• There are C(n,k) ways to choose k distinct elements without regard to order from a set of n elements.

• How many ways are there to choose k elements without regard to order from a set of n elements if repetition is allowed?

• How many ways are there to place 4 colored balls in a bag, when each ball should be either Red, Green, or Blue?

order doesn't matter;

- How many ways are there to place 4 colored balls in a bag, when each ball should be either Red, Green, or Blue?
 - order doesn't matter;
 - several balls can be given the same colour (assume there are at least 4 balls of each colour available);

- How many ways are there to place 4 colored balls in a bag, when each ball should be either Red, Green, or Blue?
 - order doesn't matter;
 - several balls can be given the same colour (assume there are at least 4 balls of each colour available);
 - we don't have to use all colours.

• How many ways are there to place 4 colored balls in a bag, when each ball should be either Red, Green, or Blue?

TRY TO LIST ALL OPTIONS (AND COUNT THEM)

HOW MANY DID YOU OBTAIN?

What were we doing essentially?

$$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$$

What were we doing essentially?

What were we doing essentially?

What were we doing essentially?

Placing 3 - 1 = 2 delimiters to indicate where the 3 possible colours change from one to another:

- We don't even need to note the colours anymore:
 - RED before the 1st delimiter
 - GREEN between the 1st and the 2nd delimeters
 - BLUE after the 2nd one

- We don't even need to note the colours anymore:
 - RED before the 1st delimiter
 - GREEN between the 1st and the 2nd delimeters
 - BLUE after the 2nd one

- We don't even need to note the colours anymore:
 - RED before the 1st delimiter
 - GREEN between the 1st and the 2nd delimeters
 - BLUE after the 2nd one

- We don't even need to note the colours anymore:
 - RED before the 1st delimiter
 - GREEN between the 1st and the 2nd delimeters
 - BLUE after the 2nd one

- We don't even need to note the colours anymore:
 - RED before the 1st delimiter
 - GREEN between the 1st and the 2nd delimeters
 - BLUE after the 2nd one

• Where to put 3 - 1 = 2 bars?

• Where to put 3 - 1 = 2 bars?

• Where to put 3 - 1 = 2 bars?

$$C(4+3-1,3-1) =$$

• Where to put 3-1=2 bars?

$$C(4+3-1,3-1) = C(6,2) = \frac{6!}{2! \, 4!} = 15$$

• How many ways are there to place k colored balls in a bag, when each ball can be of one of the n colours?

$$C(k + n - 1, n - 1)$$

POSSIBLE ARRANGEMENTS

• Imagine you have n objects. How can you arrange them?

	WITHOUT REPETITIONS	WITH REPETITIONS
ORDERED	PERMUTATIONS Seating n people in a row $n!$	TUPLES Counting different n -bit strings are there? k^n
NOT ORDERED	COMBINATIONS Choosing k out of n different candies in a bag $C(n,k) = \frac{n!}{k! (n-k)!}$	COMBINATIONS with repetitions Distributing k identical candies among n kids $C(k+n-1,n-1)$

BOOKS

• In how many ways can we place 20 books on 5 bookshelves? Each shelf can accommodate from 0 to 20 books.

BOOKS

- In how many ways can we place 20 books on 5 bookshelves? Each shelf can accommodate from 0 to 20 books.
- n = 5 bookshelves = "colours", "categories"

BOOKS

- In how many ways can we place 20 books on 5 bookshelves? Each shelf can accommodate from 0 to 20 books.
- n = 5 bookshelves = "colours", "categories"
- k = 20 books = "balls"

BOOKS

- In how many ways can we place 20 books on 5 bookshelves? Each shelf can accommodate from 0 to 20 books.
- n = 5 bookshelves = "colours", "categories"
- k = 20 books = "balls"
- We need to assign colours to the balls

BOOKS

- In how many ways can we place 20 books on 5 bookshelves? Each shelf can accommodate from 0 to 20 books.
- n = 5 bookshelves = "colours", "categories"
- k = 20 books = "balls"
- We need to assign colours to the balls

$$C(k + n - 1, n - 1) =$$

BOOKS

- In how many ways can we place 20 books on 5 bookshelves? Each shelf can accommodate from 0 to 20 books.
- n = 5 bookshelves = "colours", "categories"
- k = 20 books = "balls"
- We need to assign colours to the balls

$$C(k+n-1,n-1) = C(24,4) = \frac{24!}{4!20!} = 10626$$

• Consider the following equation:

$$x_1 + x_2 + x_3 = 10, \qquad x_i \ge 0$$

Consider the following equation:

$$x_1 + x_2 + x_3 = 10, \qquad x_i \ge 0$$

- How many non-negative integer solutions does it have?
 - $x_1 = 0$, $x_2 = 5$, $x_3 = 5$
 - $x_1 = 5$, $x_2 = 2$, $x_3 = 3$
 - ...

Consider the following equation:

$$x_1 + x_2 + x_3 = 10, \qquad x_i \ge 0$$

• How many non-negative integer solutions does it have?

•
$$x_1 = 0$$
, $x_2 = 5$, $x_3 = 5$

•
$$x_1 = 5$$
, $x_2 = 2$, $x_3 = 3$

• ...

How is this related to combinations with repetitions?

• Consider the following equation:

$$x_1 + x_2 + x_3 = 10, \qquad x_i \ge 0$$

Consider the following equation:

$$x_1 + x_2 + x_3 = 10, \qquad x_i \ge 0$$

Consider the following equation:

$$x_1 + x_2 + x_3 = 10, \qquad x_i \ge 0$$

1 1 1 1 1 1 1 1

Consider the following equation:

$$x_1 + x_2 + x_3 = 10, \qquad x_i \ge 0$$

1 1 1 1 1 1 1 1 1

Consider the following equation:

$$x_1 + x_2 + x_3 = 10, \qquad x_i \ge 0$$

1 1 1 1 1 1 1 1 1

$$C(10 + 3 - 1, 3 - 1) =$$

Consider the following equation:

$$x_1 + x_2 + x_3 = 10, \qquad x_i \ge 0$$

1 1 1 1 1 1 1 1 1

$$C(10+3-1,3-1) = C(12,2) = \frac{12!}{10!2!} = 66$$
 solutions

Consider the following equation:

$$x_1 + x_2 + x_3 = 10$$

• What is there are constraints:

$$x_1 \ge 1$$
, $x_2 \ge 2$, $x_3 \ge 3$

Consider the following equation:

$$x_1 + x_2 + x_3 = 10$$

• What is there are constraints:

$$x_1 \ge 1$$
, $x_2 \ge 2$, $x_3 \ge 3$

New variables:

$$y_1 = x_1 - 1$$
, $y_2 = x_2 - 2$, $y_3 = x_3 - 3$, $y_i \ge 0$

Consider the following equation:

$$x_1 + x_2 + x_3 = 10$$

• What is there are constraints:

$$x_1 \ge 1$$
, $x_2 \ge 2$, $x_3 \ge 3$

New variables:

$$y_1 = x_1 - 1$$
, $y_2 = x_2 - 2$, $y_3 = x_3 - 3$, $y_i \ge 0$

$$x_1 + x_2 + x_3 = 10 \iff y_1 + 1 + y_2 + 2 + y_3 + 3 = 10$$

$$y_1 + 1 + y_2 + 2 + y_3 + 3 = 10$$

$$\Leftrightarrow$$

$$y_1 + 1 + y_2 + 2 + y_3 + 3 = 10$$
 \Leftrightarrow
 $y_1 + y_2 + y_3 = 4, \quad y_i \ge 0$

How many positive integer solutions are there?

$$y_1 + 1 + y_2 + 2 + y_3 + 3 = 10$$
 \Leftrightarrow
 $y_1 + y_2 + y_3 = 4$, $y_i \ge 0$

How many positive integer solutions are there?

$$C(k + n - 1, n - 1) =$$

$$y_1 + 1 + y_2 + 2 + y_3 + 3 = 10$$
 \Leftrightarrow
 $y_1 + y_2 + y_3 = 4, \quad y_i \ge 0$

How many positive integer solutions are there?

$$C(k+n-1, n-1) = C(3+4-1, 4-1) = C(6,3) =$$

$$= \frac{6!}{3! \, 3!} = 20$$

• Equation:

$$x_1 + x_2 + x_3 = 10$$

• With constraints:

$$x_1 \ge 1$$
, $x_2 \ge 2$, $x_3 \ge 3$

Has 20 positive integer solutions.

PROBLEM SET 4

https://docs.google.com/document/d/1m0Q5laEdLtz5kezjI4ZNf1o46FxUVCJCT0pjzp84C4A/edit?usp=sharing

TO SUM UP

• Imagine you have n objects. How can you arrange them?

	WITHOUT REPETITIONS	WITH REPETITIONS
ORDERED	PERMUTATIONS Seating n people in a row $n!$	TUPLES Counting different n -bit strings are there? k^n
NOT ORDERED	COMBINATIONS Choosing k out of n different candies in a bag $C(n,k) = \frac{n!}{k! (n-k)!}$	COMBINATIONS with repetitions Distributing k identical candies among n kids $C(k+n-1,n-1)$