Artin's famous book [6], which contains an in-depth study of the orthogonal group, as well as other groups arising in geometry. It is still worth consulting some of the older classics, such as Hadamard [84, 85] and Rouché and de Comberousse [139]. The first edition of [84] was published in 1898 and finally reached its thirteenth edition in 1947! In this chapter it is assumed that all vector spaces are defined over the field \mathbb{R} of real numbers unless specified otherwise (in a few cases, over the complex numbers \mathbb{C}).

First we define a Euclidean structure on a vector space. Technically, a Euclidean structure over a vector space E is provided by a symmetric bilinear form on the vector space satisfying some extra properties. Recall that a bilinear form $\varphi \colon E \times E \to \mathbb{R}$ is definite if for every $u \in E$, $u \neq 0$ implies that $\varphi(u, u) \neq 0$, and positive if for every $u \in E$, $\varphi(u, u) \geq 0$.

Definition 12.1. A *Euclidean space* is a real vector space E equipped with a symmetric bilinear form $\varphi \colon E \times E \to \mathbb{R}$ that is *positive definite*. More explicitly, $\varphi \colon E \times E \to \mathbb{R}$ satisfies the following axioms:

$$\varphi(u_1 + u_2, v) = \varphi(u_1, v) + \varphi(u_2, v),
\varphi(u, v_1 + v_2) = \varphi(u, v_1) + \varphi(u, v_2),
\varphi(\lambda u, v) = \lambda \varphi(u, v),
\varphi(u, \lambda v) = \lambda \varphi(u, v),
\varphi(u, v) = \varphi(v, u),
u \neq 0 \text{ implies that } \varphi(u, u) > 0.$$

The real number $\varphi(u,v)$ is also called the *inner product (or scalar product) of u and v*. We also define the *quadratic form associated with* φ as the function $\Phi \colon E \to \mathbb{R}_+$ such that

$$\Phi(u) = \varphi(u, u),$$

for all $u \in E$.

Since φ is bilinear, we have $\varphi(0,0)=0$, and since it is positive definite, we have the stronger fact that

$$\varphi(u, u) = 0$$
 iff $u = 0$,

that is, $\Phi(u) = 0$ iff u = 0.

Given an inner product $\varphi \colon E \times E \to \mathbb{R}$ on a vector space E, we also denote $\varphi(u,v)$ by

$$u \cdot v$$
 or $\langle u, v \rangle$ or $(u|v)$,

and $\sqrt{\Phi(u)}$ by ||u||.

Example 12.1. The standard example of a Euclidean space is \mathbb{R}^n , under the inner product \cdot defined such that

$$(x_1,\ldots,x_n)\cdot(y_1,\ldots,y_n) = x_1y_1 + x_2y_2 + \cdots + x_ny_n.$$

This Euclidean space is denoted by \mathbb{E}^n .