	↔ Lyo	A.S.: 2024/2025							
Mat	ière : Mathématiques	Niveau: T S2	Date : 29/05/2025						
	TD : Statistiques								

Exercice 1(02,5 points)(BAC 2005)

Une entreprise a mis au point un nouveau produit et cherche à fixer le prix de vente.

Une enquête est réalisée auprès des clients potentiels ; les résultats sont donnés dans le tableau suivant où y_i représente le nombre d'exemplaires du produit que les clients sont disposés à acheter si le prix de vente, exprimé en milliers de francs, est x_i :

x_i	60	80	100	120	140	160	180	200
y_i	952	805	630	522	510	324	205	84

- 1 Calculer le coefficient de corrélation linéaire de y et x. La valeur trouvée justifie-t-elle la recherche d'un ajustement linéaire ?
- 2 Déterminer l'équation de la droite de régression de y en x.
- 3 Les frais de conception du produit se sont élevés à 28 millions de francs. Le prix de fabrication de chaque produit est de 25 000 francs.
 - Déduire de la précédente question que le bénéfice z en fonction du prix de vente x est donné par l'égalité :

$$z = -5,95x^2 + 1426,25x - 59937,5$$

où x et z sont exprimés en milliers de francs.

b Déterminer le prix de vente x permettant de réaliser un bénéfice maximum et calculer ce bénéfice.

 ${\bf NB}$: Prendre 2 chiffres après la virgule sans arrondir.

Rappel : Bénéfice = Prix de vente - prix de revient.

Exercice 2(04,5 points)(BAC 2008)

Dans cet exercice, le détail des calculs n'est pas exigé. On donnera les formules utilisées pour répondre aux questions. Les résultats seront donnés à 10^{-1} près.

Le tableau ci-dessous donne le poids moyen (y) d'un enfant en fonction de son âge (x).

x (années)	0	1	2	4	7	11	12
y (kg)	3,5	6,5	9,5	14	21	32,5	34

1 Représenter le nuage de points de cette série statistique dans le plan muni du repère orthonormal.

Unité graphique : en abscisse 1 cm pour 1 année et en ordonnée 1 cm pour 2 kg. (01 point)

2 Déterminer les coordonnées du point moyen G puis placer G. (0,5 point)

3 a Déterminer le coefficient de corrélation linéaire r. (0,5 point)

b Interpréter votre résultat. (0,5 point)

4 Donner une équation de la droite de régression (D) de y en x. Tracer (D).

(0.5 point + 0.5 point)

Déterminer graphiquement, à partir de quel âge le poids sera supérieur à 15 kg. Expliciter votre raisonnement. (0,5 point)

b Retrouver ce résultat par le calcul.

(0,5 point)

Exercice 3(03 points)(BAC 2009)

(X,Y) est une série statistique double. Soit (D_1) la droite de régression de Y en X.

Soit (D_2) la droite de régression de X en Y. On suppose que :

$$(D_1): y = ax + b$$
 et $(D_2): x = a'y + b'$

Soit r le coefficient de corrélation linéaire entre X et Y.

Établir que $r^2 = aa'$. (01 point)

- 2 Dans une entreprise, une étude simultanée portant sur deux caractères X et Y donne les résultats suivants :
 - la droite de régression de Y en X a pour équation : 2.4x y = 0
 - la droite de régression de X en Y a pour équation : 3.5y 9x + 24 = 0
 - Calculer le coefficient de corrélation linéaire entre X et Y, sachant que leur covariance est positive. (0,5 point)
 - b Calculer la moyenne de chacun des caractères X et Y. (0,75 + 0,75 point)

Exercice 4(03 points)(BAC 2010)

Une étude sur le nombre d'années d'exercice X, des ouvriers d'une entreprise et leur salaire mensuel Y en milliers de francs, a donné les résultats indiqués dans le tableau ci-dessous avec des données manquantes désignées par a et b.

X Y	2	6	10	14	18	22
75	a	5	0	0	0	0
125	0	7	1	0	2	0
175	2	0	9	1	5	4
225	0	1	0	3	b	1

- 1 Déterminer a et b pour que la moyenne de la série marginale de X soit égale à $\frac{596}{59}$ et celle de la série marginale de Y soit $\frac{8450}{59}$. (0,25 + 0,25 pt)
- 2 Dans la suite, on suppose que a = 40 et b = 20. À chaque valeur x_i de X, on associe la moyenne m_i de la série conditionnelle : $Y/X = x_i$.

 On obtient ainsi la série double (X, M) définie par le tableau ci-dessous. Les calculs se feront à deux chiffres après la virgule.

X	2	6	10	14	18	22
M	80	113	170	189	199	185

- a Calculer le coefficient de corrélation de X et M puis interpréter le résultat. (1,75 pt)
- b Déterminer l'équation de la droite de régression de M en X. (0,5 pt)
- c Quelle serait le salaire moyen d'un ouvrier de l'entreprise si son ancienneté était 30 ans, si cette tendance se poursuit. (0,25 pt)

Exercice 5(05 points)(BAC 2013)

Le tableau statistique ci-dessous donne le degré de salinité Y_i du Lac Rose pendant le $i^{\text{ème}}$ mois de pluie, noté X_i .

X_i	0	1	2	3	4
Y_i	4,26	3,4	2,01	1,16	1,01

Dans ce qui suit il faudra rappeler chaque formule le cas échéant, avant de faire les calculs. On donnera les valeurs approchées par excès des résultats à 10^{-3} près.

- Déterminer le coefficient de corrélation linéaire de cette série (X, Y) et interpréter le résultat. (01,5 point = 0,25pt + 1,25pt)
 - **b** Quelle est l'équation de la droite de régression de Y en X. (0.5 pt = 0.25 pt + 0.25 pt)
 - c Cette équation permet-elle d'estimer le degré de salinité du lac au 6^{ième} mois de pluie, le cas échéant?

 Justifier la réponse.

 (0,25pt)
- 2 On pose $Z = \ln(Y 1)$.
 - Donner le tableau correspondant à la série (X, Z). Les résultats seront arrondis au millième près. (0,5 pt)
 - b Donner le coefficient de corrélation linéaire de cette série (X, Z). (01,5 point = 0,25pt + 1,25pt)
 - Donner l'équation de la droite de régression de Z en X, puis exprimer Y en fonction de X. (0.5 pt = 0.25pt + 0.25pt)
 - d Utiliser cette équation pour répondre à la question 1(c). (0,25pt)

Exercice 6(02,5 points)(BAC 2015)

Au Sénégal, une entreprise veut vérifier l'efficacité de son service de publicité. Elle a relevé chaque mois durant une période de 6 mois les sommes X consacrées à la publicité et le chiffre d'affaire constaté Y (en milliards de FCFA).

On donne le tableau ci-dessous :

Rang du mois	1	2	3	4	5	6
X	1,2	0,5	1	_1	1,5	1,8
Y	19	49	100	125	148	181

Les résultats seront donnés au centième près.

Le détail des calculs n'est pas indispensable. On précisera les formules utilisées.

- 1 Calculer le coefficient de corrélation linéaire de X et Y. (01 pt)
- 2 a Déterminer l'équation de la droite de régression de Y en X. (01 pt)
 - b Déterminer la somme qu'il faut investir en publicité si l'on désire avoir un chiffre d'affaire de 300 milliards si cette tendance se poursuit. (0,5 pt)