Εξασφάλιση Ποιότητας και Πρότυπα 3η εργασία

Ερώτημα 1:

Α΄ Υλοποίηση: 1^{η} ρουτίνα:

Τελεστές	Αριθμός Εμφανίσεων	Έντελα	Αριθμός Εμφανίσεων
int	3	temp	3
,	5	i	5
for(;;)	3	j	8
<	3	k	7
>	1	0	2
=	6	1	1
++	3	count	4
+	1	"Numbers in ascending order:\n"	1
;	6	"%d\n"	1
if()	1		
printf()	2		
void	1		
sort_numbers_ascending()	1		
{}	4		
number[]	8		
n1=15	N1=48	n2=9	N2=32

2η ρουτίνα:

Τελεστές	Αριθμός Εμφανίσεων	Έντελα	Αριθμός Εμφανίσεων
int	1	i	5
,	7	0	2
for(;;)	1	count	5
<	1	t	2
>	1	20	2
=	2	"How many numbers you are going to enter:"	1
++	1	"%d"	3
;	8	"\nEnter the numbers one by one:"	1
printf()	3	"\nThis is a test"	1
scanf()	3	number	1
while()	1		
&	3		
void	1		
{}	2		
main()	1		
number[]	2		
sort_numbers_ascending()	1		
n1=17	N1=39	n2=10	N2=23

Β' Υλοποίηση

Τελεστές	Αριθμός Εμφανίσεων	Έντελα	Αριθμός Εμφανίσεων
int	2	i	16
printf()	6	t	5
scanf()	5	n	3
while()	1	count	7
for(;;)	5	j	7
if()	1	a	3
=	9	Х	1
>	2	b	1
<	5	"How many numbers you are going to enter:"	1
	1	"%d"	5
++	4	"\nEnter the numbers one by one:"	1
+	1	"\nThis is a test"	1
,	13	"\nThis is my test"	1
;	16	"Numbers in ascending order:\n"	1
&	5	"%d\n"	1
void	1	20	4
main()	1	0	4
{}	6	1	1
num[]	9		
n1=19	N1=93	n2=18	N2=63

Παραδοχές:

- 1. Δεν υπολογίζω το #include και τα σχόλια στα πινακάκια.
- 2. Υπολογίζω τις συναρτήσεις και την κλήση της συνάρτησης στην Α υλοποίηση, αφού η εκφώνηση δεν αναφέρει κάτι διαφορετικό.
- 3. Στην Α υλοποίηση στην κλήση της συνάρτησης, ως όρισμα υπάρχει ο πίνακας number. Θεωρώ ότι είναι έντελο.
- 4. Τους πίνακες number και num, τους θεωρώ τελεστές, μαζί με τις παρενθέσεις τους (number[], num[])
- 5. Στον υπολογισμό των μετρικών και των μέσων όρων έχω κρατήσει 3 ψηφία μετά την υποδιαστολή, για λόγους ευκρίνειας.

6. Θεωρώ ότι η πρώτη ρουτίνα είναι:

```
void sort_numbers_ascending(int number[], int count)
{
   int temp, i, j, k;
   for (j = 0; j < count; ++j)
   {
      for (k = j + 1; k < count; ++k)
      {
        if (number[j] > number[k])
        {
            temp = number[j];
            number[j] = number[k];
            number[k] = temp;
        }
    }
   printf("Numbers in ascending order:\n");
   for (i = 0; i < count; ++i)
        printf("%d\n", number[i]);
}</pre>
```

Η δεύτερη ρουτίνα είναι:

```
void main()
{
   int i, count, number[20], t=0;

   printf("How many numbers you are going to enter:");
   scanf("%d", &count);
   printf("\nEnter the numbers one by one:");

   while (t>20)
   {
      printf("\nThis is a test");
      scanf("%d", &count);
   }
   for (i = 0; i < count; ++i)
      scanf("%d", &number[i]);
   /* Calling the Function*/
   sort_numbers_ascending(number, count);
}</pre>
```

Και η τρίτη ρουτίνα είναι:

```
void main()
   int i, num[20], t=0;
   int n, count, j, a, x, b;
   printf("How many numbers you are going to enter:");
   scanf("%d", &count);
   printf("\nEnter the numbers one by one:");
Test this code
   while (t>20)
/*test*/
   printf("\nThis is a test");
    scanf("%d", &count);
printf("\nThis is my test");
     scanf("%d", &count);
for(t=20; t<20; t--)
scanf("%d", &count);
/*My loop begins*/
   for (i = 0; i < count; ++i) scanf("%d", &num[i]);
for (i = 0; i < n; ++i) {
  for (j = i + 1; j < n; ++j) {
    if (num[i] > num[j]) {
           a = num[i];
           num[i] = num[j];
num[j] = a;
       }
/*Here are the data*/
 printf("Numbers in ascending order:\n");
for (i = 0; i < count; ++i)
  printf("%d\n", num[i]);</pre>
```

Οτιδήποτε άλλο έξω από τις συναρτήσεις δεν έχει ληφθεί υπόψιν σε καμία μετρική.

Ερώτημα 2:

Α' Υλοποίηση: 1η ρουτίνα

Nest/N = 87.132 / 80 = 1.089

όπου Nest = $n1log_2n1 + n2log_2n2 = 15log_215 + 9log_29 = 58.6033589341 + 28.529325013 = 87.1326839471$

και N=N1+N2 = 48 + 32 = 80

Αρα Nest / N = 87.1326839471/80 = 1.08915854934

L = 0.037

όπου L = V*/V, καθώς όμως δεν γνωρίζουμε τον όγκο V*, θα υπολογίσουμε την εκτίμηση του L:

Lest =
$$(2 * n2) / (n1 * N2) = 18 / 480 = 0.0375$$

$$\lambda = (0.0375)^2 * 366.797000058 = 0.515$$

όπου $\lambda = LV^* = L^2V$

 $\kappa \alpha \iota V = N \log_2 n = 80 \log_2 24 = 366.797000058$

Lines of Comments / Physical Lines of Code = 0/20 = 0

Σύνοψη τιμών σε πίνακα:

Nest/N	1.089
L	0.037
λ	0.515
Lines of Comments / Physical Lines of Code	0

Α' Υλοποίηση: 2η ρουτίνα

Nest/N = 102.70 /62 = 1.656

όπου Nest = $n1\log_2 n1 + n2\log_2 n2 = 17\log_2 17 + 10\log_2 10 = 69.4868683013 + 33.2192809489 = 102.70614925$

και N=N1+N2 = 39 + 23 = 62

Άρα Nest/N = 102.70614925 / 62 = 1.65655079436

L = 0.051

όπου L = V*/V

, καθώς όμως δεν γνωρίζουμε τον όγκο V*, θα υπολογίσουμε την εκτίμηση του L:

Lest = (2 * n2) / (n1 * N2) = 20 / 391 = **0.0511509**

$$\lambda = (0.0511509)^2 * 294.803025134 = 0.771$$

όπου $\lambda = LV^* = L^2V$

 $\kappa \alpha \iota V = N \log_2 n = 62 \log_2 27 = 294.803025134$

Lines of Comments / Physical Lines of Code = 1/18 = 0.055

Σύνοψη τιμών σε πίνακα:

Nest/N	1.656
L	0.051
λ	0.771
Lines of Comments / Physical Lines of Code	0.055

Β' Υλοποίηση:

Nest/N = 155.76 / 156 = 0.998

όπου Nest = $n1log_2n1 + n2log_2n2 = 19log_219 + 18log_218 = 80.7106227554 + 75.058650026 = 155.769272781$

και N=N1+N2 = 93 + 63 =156

Άρα Nest / N = 155.769272781/ 156 = 0.99852097936

L = 0.030

Όπου L = V*/V

, καθώς όμως δεν γνωρίζουμε τον όγκο V^* , θα υπολογίσουμε την εκτίμηση του L:

$$\lambda = (0.03007519)^2 * 812.674725038 = 0.735$$

όπου $\lambda = LV^* = L^2V$

 $\kappa \alpha \iota V = N \log_2 n = 156 \log_2 37 = 812.674725038$

Lines of Comments / Physical Lines of Code = 12/48 = 0.25

Σύνοψη τιμών σε πίνακα:

Nest/N	0.998
L	0.030
λ	0.735
Lines of Comments / Physical Lines of Code	0.25

Ερώτημα 3:

Σ1. οι συνολικές τιμές στις μετρικές υπολογίζονται από το μέσο όρο των τιμών τους σε κάθε ρουτίνα

MO-Nest / N = (Nest / N(1) + Nest / N(2)) / 2 = (1.08915854934 + 1.65655079436) / 2 = 1.372

Όπου Nest / N(1) για τη ρουτίνα 1 και Nest / N(2) για τη ρουτίνα 2. Διαιρώ με το 2 γιατί έχουμε 2 ρουτίνες.

$$MO-L = (L(1) + L(2)) / 2 = (0.0375 + 0.0511509) / 2 = 0.044$$

Όπου L(1) για τη ρουτίνα 1 και L(2) για τη ρουτίνα 2. Διαιρώ με το 2 γιατί έχουμε 2 ρουτίνες.

$$MO-\lambda = (\lambda(1) + \lambda(2)) / 2 = (0.51580828133 + 0.77132693047) / 2 = 0.643$$

Όπου $\lambda(1)$ για τη ρουτίνα 1 και $\lambda(2)$ για τη ρουτίνα 2. Διαιρώ με το 2 γιατί έχουμε 2 ρουτίνες.

MO-Lines of Comments / Physical Lines of Code = ($\kappa(1) + \kappa(2)$) / 2= (0 + 0.05555556) /2 = **0.027**

Όπου κ(1) το Lines of Comments / Physical Lines of Code για τη ρουτίνα 1 και κ(2) το Lines of Comments / Physical Lines of Code για τη ρουτίνα 2. Δ ιαιρώ με το 2 γιατί έχουμε 2 ρουτίνες.

Σ2. οι συνολικές τιμές στις μετρικές υπολογίζονται από το σταθμισμένο μέσο όρο των τιμών τους σε κάθε ρουτίνα, με βάση το Ν

EMO-Nest / N = (Nest / N(1) * N1 + Nest / N(2) * N2) / N = (1.08915854934 * 80 + 1.65655079436 * 62) / 142 =**1.336**

Αφού έχουμε ως βάση το N, πολλαπλασιάζω την κάθε ρουτίνα με το δικό της N και διαιρώ δια N = N (1) + N (2) = 80 + 62 = 142, όπου N(1)= N1 (1) + N2 (1) = 48 + 32 = 80 και N(2) = N1 (2) + N2 (2) = 39 + 23 = 62.

EMO-L = (L(1)*N1 + L(2)*N2) / N = (0.0375 * 80 + 0.0511509 * 62) / 142 =**0.043**

Αφού έχουμε ως βάση το N, πολλαπλασιάζω την κάθε ρουτίνα με το δικό της N και διαιρώ δια N = N (1) + N (2) = 80 + 62 = 142, όπου N(1)= N1 (1) + N2 (1) = 48 + 32 = 80 και N(2) = N1 (2) + N2 (2) = 39 + 23 = 62.

EMO- λ = ($\lambda(1)*N1 + \lambda(2)*N2$) / N = (0.51580828133 * 80 + 0.77132693047 * 62) / 142 = **0.627**

Αφού έχουμε ως βάση το N, πολλαπλασιάζω την κάθε ρουτίνα με το δικό της N και διαιρώ δια N = N (1) + N (2) = 80 + 62 = 142, όπου N(1)= N1 (1) + N2 (1) = 48 + 32 = 80 και N(2) = N1 (2) + N2 (2) = 39 + 23 = 62.

EMO-Lines of Comments / Physical Lines of Code = ($\kappa(1)*N1 + \kappa(2)*N2$) / N = (0*80 + 0.05555556*62) / 142 = 0.024

Αφού έχουμε ως βάση το N, πολλαπλασιάζω την κάθε ρουτίνα με το δικό της N και διαιρώ δια N = N (1) + N (2) = 80 + 62 = 142, όπου N(1)= N1 (1) + N2 (1) = 48 + 32 = 80 και N(2) = N1 (2) + N2 (2) = 39 + 23 = 62.

Σύνοψη ΜΟ μετρικών:

Μέσος Όρος	Σταθμισμένος Μέσος Όρος
MO-Nest / N = 1.372	ΣMO-Nest / N = 1.336
MO-L = 0.044	ΣMO-L = 0.043
ΜΟ-λ = 0.643	ΣMO-λ = 0.627
MO-Lines of Comments / Physical Lines of Code = 0.027	ΣMO-Lines of Comments / Physical Lines of Code =0.024

⇒ Ποιο σενάριο θεωρείτε καταλληλότερο;

Παρατηρούμε ότι ο μέσος όρος και ο σταθμισμένος μέσος όρος είναι πολύ κοντά μεταξύ τους, όποτε για το συγκεκριμένο παράδειγμα δεν μπορούμε να πούμε ποιο είναι το καταλληλότερο. Ωστόσο θεωρώ ότι ο σταθμισμένος μέσος όρος είναι πιο κατάλληλος, σε περίπτωση που έχουμε περισσότερες ρουτίνες και όταν οι ρουτίνες μεταξύ τους έχουν μεγάλη διαφορά στο μέγεθος, ενώ ο μέσος όρος μπορεί να αλλάξει κατά πολύ το αποτέλεσμα. Όποτε θα επιλέξω τον σταθμισμένο μέσο όρο, αφού είναι πιο ακριβής και συνήθως τα προγράμματα έχουν μεγάλο αριθμό από ρουτίνες.

Ερώτημα 4:

Σύγκριση υλοποιήσεων και σχολιασμός:

Μετρικές για την υλοποίηση Β		
Nest/N	0.998	
L	0.030	
λ	0.735	
Lines of Comments / Physical Lines of Code	0.25	

Μετρικές από το ΣΜΟ της υλοποίησης Α		
Nest/N	1.336	
L	0.043	
λ	0.627	
Lines of Comments / Physical Lines of Code	0.024	

Παρατηρούμε ότι οι τιμές είναι αρκετά κοντά, αφού και οι δύο υλοποιήσεις έχουν παρόμοιο μέγεθος, είναι γραμμένες στην ίδια γλώσσα προγραμματισμού και περιέχουν λίγα σχόλια. Ωστόσο βλέπουμε ότι η υλοποίηση Α έχει μεγαλύτερο λόγο Nest/N, ό οποίος είναι πάνω από 1 (που είναι το ιδανικό). Όμως, επειδή και οι δύο υλοποιήσεις είναι αρκετά μικρές, δεν μπορούμε να βγάλουμε πολλά συμπεράσματα. Βλέπουμε ότι το επίπεδο προγράμματος στην υλοποίηση Α είναι μεγαλύτερο από αυτό της Β, οπότε η Α έχει υψηλότερου επιπέδου υλοποίηση. Το επίπεδο γλώσσας λ είναι μεγαλύτερο στην υλοποίηση Β από ότι στην υλοποίηση Α. Τέλος, βλέπουμε ότι η υλοποίηση Β έχει περισσότερα σχόλια. Εφόσον, λοιπόν, σε μερικά είναι καλύτερη η υλοποίηση Α, ενώ σε άλλα είναι καλύτερη η υλοποίηση Β, δεν μπορούμε να αποφανθούμε για το ποιο από τα δύο είναι το καλύτερο.