Math 510b: Midterm

Peter Kagey

Monday, March 18, 2019

Problem 1.

Proof.

(a) (The idea here is that there is an increasing number of irreducible factors of each generator as you go down the chain. Since any element in R has a finite number of irreducible factors, no element can be be in all of the ideals.)

Since R is a PID, each of the ideals in the chain can be written as principal ideals, that is $I_i = (a_i)$ for some $a_i \in R$,

$$(a_1) \supseteq (a_2) \supseteq \dots$$

where $a_i \mid a_{i+1}$ for all $i \in \mathbb{N}_{>0}$, and thus $a_{i+1} = b_i a_i$ where b_i is not a unit (otherwise $(a_{i+1}) = (a_i)$).

Since a PID is a UFD, we can write each of these uniquely (up to units) as the product of irreducible elements of R, namely

$$a_n = \underbrace{b_{n,1} \dots b_{n,k_n}}_{b_n} \dots \underbrace{b_{2,1} \dots b_{2,k_2}}_{b_2} \underbrace{a_{1,1} \dots a_{1,k}}_{a_1}$$

(with $k_i \geq 1$) so the number of irreducible factors of a_n strictly increases as n increases. Since every $r \in R$ has finitely many irreducible factors (say m_r of them), r cannot be in the intersection of the ideals, because in particular $r \notin (a_{m_{r+2}})$. Thus the intersection of all of the ideals in the descending chain must be the zero ideal.

(b) Let $R = \mathbb{R}[x, y]$, which is a UFD, but not a PID. Then let $I_n = (x, y^n)$. It is clear that $I_{n+1} \subsetneq I_n$ and that $x \in I_n$ for all n, so $x \in \bigcup_{n=1}^{\infty} I_n \neq (0)$.

Problem 2.

Proof.

(a) First, notice that $p(x, y, z) = x^2 z^3 + (xy - y^2)z - x^3 y$ is irreducible by the Eisenstein criteria viewed as a function of z over $\mathbb{Q}[x, y]$ with prime y. (In particular, $y \nmid x^2$, $y \mid (xy - y^2)$, $y \mid x^3 y$, and $y^2 \nmid x^3 y$.) So the polynomial is irreducible in $\mathbb{Q}[x, y][z]$. Similarly, viewed as a function of x with prime z it is irreducible over $\mathbb{Q}[y, z][x]$, and viewed as a function of y with prime x it is irreducible over $\mathbb{Q}[x, z][y]$. Thus it is irreducible in $\mathbb{Q}[x, y, z]$.

Next, suppose $[f(x,y,z)], [g(x,y,z)] \neq [0] \in \mathbb{Q}[x,y,z]/(p(x))$, then $[f(x,y,z)g(x,y,z)] \neq [0]$ because if $p(x,y,z) \nmid f(x,y,z)$ and $p(x,y,z) \nmid g(x,y,z)$, then $p(x,y,z) \nmid f(x,y,z) \cdot g(x,y,z)$ since $\mathbb{Q}[x,y,z]$ is a UFD, and in a UFD all irreducible elements are prime.

Thus S is an integral domain.

(b) This follows directly by Corollary 5.39 (iii) which states

For any ideal I in $k[x_1, \ldots, x_n]$ where $[\ldots]$ k is a field, the quotient ring $k[x_1, \ldots, x_n]/I$ is noetherian.

This occurs because generators descend via the quotient map.

- (c) Rotman defines a **Jacobson radical** J(R) as the intersection of all maximal left (or right) ideals in R. Proposition 7.15 (i) states that $x \in J(R)$ if and only if 1 rx has a left inverse for every $r \in R$. Since p(x, y, z) is irreducible, 1 rx having a left inverse is equivalent to rx = 0. However, because R/I is a UFD, so rx = 0 only when x = 0. Thus the only element in the intersection of all maximal ideals is 0.
- (d) Let $[x] = x + R \in R/I$. Then $\mathfrak{m} = ([x-1], [y-1], [z-1])$ is a maximal ideal with $(R/I)/\mathfrak{m} = \mathbb{Q}$. Notice that in this quotient, [x] = [y] = [z] = 1, and this is well-defined since

$$p(1,1,1) = \underbrace{1^2 1^3}_{1} + \underbrace{(1 \cdot 1 - 1^2)1}_{0} - \underbrace{1^3 \cdot 1}_{1} = 0$$

so under this substitution map

$$s([f(x,y,z)]) = f(1,1,1) = f(1,1,1) + \underbrace{p(1,1,1)}_{0} q(x,y,z) = [f(x,y,z) + p(x,y,z)q(x,y,z)].$$

Therefore if [[q]] is the image of [q] = q + I under the quotient map (with respect to \mathfrak{m}) then $(R/I)/\mathfrak{m} = \mathbb{Q}$ with $[[q+I]] \mapsto q$ for all $q \in \mathbb{Q}$.

Problem 3.

Proof. Let R_0 be the subalgebra of R generated by the entries of all the matrices A_i , and let $S_0 = M_n(R_0)$, as per the hint. The number of entries in all of the m matrices is at most mn^2 , so R_0 is a finitely generated commutative k-algebra. Since k is (presumably) a field and thus Noetherian, thus by Hilbert's Basis Theorem, since R_0 is a finitely generated commutative k-algebra, it is also a Noetherian ring.

Thus it is sufficient to show that S_0 is finitely generated, because a finitely generated module over a Noetherian ring is a Noetherian module. If R_0 includes 1 (that is $R_0 = R$), then S_0 is finitely generated because each matrix in S_0 can be written as

$$\begin{bmatrix} r_{11} & r_{12} & \dots & r_{1n} \\ r_{21} & r_{22} & \dots & r_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ r_{n1} & r_{n2} & \dots & r_{nn} \end{bmatrix} = r_{11} \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix} + r_{12} \begin{bmatrix} 0 & 1 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix} + \dots + r_{nn} \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix},$$

so S_0 is generated by n^2 elements in M. But if R_0 does not include 1, we can exploit the fact that each entry in S_0 is finitely generated, so each element of S_0 can be written as

$$r_{11}^{(1)} \begin{bmatrix} a_1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix} \\ + r_{12}^{(1)} \begin{bmatrix} 0 & a_1 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix} \\ + r_{11}^{(2)} \begin{bmatrix} a_1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix} \\ + r_{12}^{(2)} \begin{bmatrix} 0 & a_2 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix} \\ + \dots + r_{nn}^{(m)} \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix} \\ + \dots + r_{12}^{(m)} \begin{bmatrix} 0 & a_m & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix} \\ + \dots + r_{nn}^{(m)} \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix} \\ + \dots + r_{nn}^{(m)} \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix} \\ + \dots + r_{nn}^{(m)} \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix} \\ + \dots + r_{nn}^{(m)} \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_m \end{bmatrix}$$

where $R_0 = (a_1, \ldots, a_m)$. Thus S_0 is finitely generated over a Noetherian ring and thus is a Noetherian module and algebra.

Problem 4.

Proof. The **Hilbert's Basis Theorem** states simply that that if R is a Noetherian ring, then R[x] is also a Noetherian ring.

(a) I chose this theorem because it allows us to construct lots of natural examples of Noetherian rings which turn out to be very familiar and important, like $\mathbb{R}[x,y,z]$, $\mathbb{C}[x,y]$ and k[x] (where k is a field).

The Wikipedia page for Hilbert's Basis Theorem lists two specific applications

- (i) "Since any affine variety over \mathbb{R}^n may be written as the locus of an ideal $\mathfrak{a} \subset \mathbb{R}[X_0, \dots, X_{n-1}]$ and further as the locus of its generators, it follows that every affine variety is the locus of finitely many polynomials—i.e. the intersection of finitely many hypersurfaces."
- (ii) "If A is a finitely-generated R-algebra, then we know that $A \simeq R[X_0, \ldots, X_{n-1}]/\mathfrak{a}$ where \mathfrak{a} is an ideal. The basis theorem implies that \mathfrak{a} must be finitely generated, $[\ldots]$ i.e. A is finitely presented."

At nLab it's mentioned that one reason to care about a ring being Noetherian at all is because it allows for induction over its ideals since, by one definition, a noetherian ring is one that satisfies the ascending chain condition on ideals, i.e. for any chain

$$I_1 \subseteq \ldots \subseteq I_j \subseteq I_{j+1} \subseteq \ldots$$

there exists some large N such that $I_n = I_{n+1}$ for all $n \ge N$

(b) The proof assumes that R is noetherian and J is a nonzero ideal of R[x], and shows that J is finitely generated.

First one considers all ideals of F defined by $I_m = \{r \in R : rx^m + a_{m-1}x^m - 1 + \ldots + a_0 \in J\}$ and notes that I_j is an ideal of R and $I_j \subseteq I_{j+1}$, so that we can use the ascending chain condition on R—this means that eventually $I_n = I_{n+1}$ for all $n \geq N$. Since R is noetherian, all rings are finitely generated so $I_N = (a_1, \ldots, a_m)$. Next the proof constructs an ideal $J' = (f_1, \ldots, f_m)$ where each f_i is in I and has leading coefficient a_i , which by definition is contained in J.

The remainder of the proof shows (by contradiction) that J is also contained in J'. In particular, it assumes there is some polynomial $g \in J \setminus J'$, chosen to be of minimal degree, and then constructs a polynomial of smaller degree: In particular, it constructs another function of degree $\deg(g)$ in I with the same leading coefficient, and the difference of these two functions is a polynomial in I of strictly smaller degree.