Diskrete Strukturen (WS 2023-24) - Halbserie 13

13.2 Seien A,B,C kommutative Gruppen und seien $\alpha\colon A\to B,\,\beta\colon B\to C$ homomorphismen. Zeigen Sie dass $\alpha;\beta\colon A\to C$ auch ein homomorphismus ist.

13.3 Führen Sie die Division von $x^5 - 2x^2 + 4x + 7 \in \mathbb{Q}[x]$ durch $x^2 + 1 \in \mathbb{Q}[x]$ durch, um Polynome $A, B \in \mathbb{Q}[x]$ zu finden, so dass $x^5 - 2x^2 + 4x + 7 = A(x^2 + 1) + B$, und $\deg(B) < 2$.

13.4 Sei p eine Primzahl und sei $a \in \mathbb{Z}/p^*$. Beweisen Sie dass $a^{p-1} \equiv 1 \mod p$.

Hinweis: beweisen Sie erst dass die Abbildung $f\colon \mathbb{Z}/p^* \to \mathbb{Z}/p^*, \ f(x) := ax$ eine Bijektion ist. Dann betrachten Sie die zwei Produkte $\prod_{x\in \mathbb{Z}/p^*} x$ und $\prod_{x\in \mathbb{Z}/p^*} ax$

13.5 Sei $n \in \mathbb{N}$ und sei $\mathbb{Z}/n^* := \{a \in \mathbb{Z}/n : ggt(a,n) = 1\}$. Sei $\phi(n) := |\mathbb{Z}/n^*$, und sei $a \in \mathbb{Z}/n^*$. Beweisen Sie dass $a^{\phi(n)} \equiv 1 \mod n$.

13.6 (Schwerere Aufgabe) Aus der Vorlesung wissen wir dass jede zwei Körper mit 25 Elemente sind isomorph.

Definieren Sie ein Isomorphismus zwischen den Körpern

$$\mathbb{Z}/5[x]/(x^2+x+1)$$

und

$$\mathbb{Z}/5[x]/(x^2+2)$$