Data Communications Networks

Text Book Definition

"Movement of *computer information* from one point to another by means of electrical or optical transmission systems"

More Universal Definition (by TF)

"Movement of digital information from one point to another across a transmission medium"

Data Communications Network's Three Basic Components

Text Book Definitions

Server

Stores data or software that may be accessed by the client.

(TF Comment: "INCOMPLETE")

Client

The input-output hardware device at the user's end of a communication circuit.

(TF Comment: "INCOMPLETE")

Circuit

The pathway through which messages travel. (TF Comment: "SATISFACTORY")

Data Communications Network's

Functional Definitions (as implemented by TCP/IP)

Client

- 1. Generates Requests
- 2. Transmits Requests
- 6. Receives Responses

Server

- 3. Receives Requests
- 4. Generates Responses
- 5. Transmits Responses

A network with two clients and one server.

Types of Networks

LAN's

Backbones

MAN's

WAN's

"Usually" categorized by geographic scope

Classification of interconnected processors by scale.

Interprocessor distance	Processors located in same	Example	
1 m	Square meter	Personal area network	
10 m	Room		
100 m	Building	 	
1 km	Campus		
10 km	City	Metropolitan area network	
100 km	Country		
1000 km Continent		→ Wide area network	
10,000 km	Planet	The Internet	

Two broadcast networks

- (a) Bus
- (b) Ring

A metropolitan area network based on cable TV.

Open Systems Interconnection (OSI)

Reference Model

(by the ISO)

Server Client Application Application Presentation Presentation Session Session Router Transport Transport Network Network Network Data Link Data Link Data Link Physical Physical Physical

Physical Layer 1:

Provides the path for transmission between end points. Defines the rules by which binary ones and zeros are transmitted, including the speed (bps).

Example standard: IEEE 802.2, RS232

Data Link Layer 2:

"Manages" the physical transmission of layer 1, and provides protection against transmission errors. (Detail in chapter 4).

Example standard: LLC, LAPB, LAPD, HDLC, SDLC

Network Layer 3:

Performs routing. Joins together concatenated subnetworks and links to provide a path for the end-to-end transfer of data.

Example standard: IP, ISDN, X.25, MPLS, ARP

Transport Layer 4:

Manages the end-to-end transfer of data over the path provided by the Network Layer, including:, error detection and correction, retransmission, and block sizes.

Example standard: TCP, UDP

Session Layer 5:

Manages a transmission session set-up and tear-down, accounting, and other end-system application specific coordination requirements.

Typical example: Login and logout, "Transaction" routing, "Stand-in" processing, session hits and advertising billing

Presentation Layer 6:

Defines Request/Response message formats and structures. (When using TCP/IP, then correlates to a well defined service port)

Example standard: HTML

Application Layer 7:

Provides services to end users.

Example standard: HTTP, DNS, POP, IMAP, SMTP, FTP, Telnet

OSI Reference Model Typical WEB Client/Server Session

The IP Protocol

4-bit	4-bit Hdr	9 hit Type Of Convice		
version	length	8-bit Type Of Service (TOS)	16-bit total byte length	
16-bit Identification		3-bit flags 13-bit packet offset		
	ne To Live TL)	8-bit protocol	16-bit header checksum	
32-bit Source IP Address				
32-bit Destination IP Address				
Options if any				
Data				

The TCP Segment Header

16-bit Source Port	16-bit destination port				
32-bit sequence no.					
32-bit Ack. no.					
32-bit Source IP Address					
4-bit hdr reserved R C S S Y G K H T N	I 16-bit window size				
16-bit TCP Checksum	16-bit urgent pointer				
Options if any					
Data					

Standards Bodies

International Organization for Standardization (ISO.... why ISO and not IOS?)

International Telecommunications Union - Telecommunications Group (ITU-T)

American National Standards Institute (ANSI)

Institute of Electrical and Electronics Engineers (IEEE)

Standards Bodies (continued)

International Electrotechnical Commission (IEC)

Inernational Telegraph and Telephone Consultative Commitee (CCITT)

Eurpean Computer Manufactures' Association (ECMA)

Electronic Industries Association (EIA)

Standards Bodies

(Internet Specific)

Internet Engineering Task Force (IETF) www.ietf.org

Internet Corporation for Assigned Names and Numbers (ICANN) www.icann.org

Internet Assigned Numbers Authority (IANA) www.iana.org

The IEEE 802 Working Group

802.1	Overview and architecture of LANS
802.2	Logical Link Control
802.3	Ethernet
802.4	Token bus (briefly used in manufacturing plants)
802.5	Token ring (IBM's entry into the LAN world)
802.6	Dual queue dual bus (early metropolitan area network)
802.7	Technical advisory group on broadcast technologies
802.8	Technical advisory group on fiber optic technologies
802.9	Isochronous LANs (for real time applications)
802.10	Virtual Local Area Networks (VLANs) and security
802.11	Wireless LANs (Wi-Fi)
802.12	Demand priority (Hewlett-Packard's AnyLAN)
802.13	Unlucky number, nobody wanted it
802.14	Cable modems (now defunct)
802.15	Personal area networks (Bluetooth, Zigbee)
802.16	Broadband wireless (WiMAX)
802.17	Resilient packt ring
802.18	Technical advisory group on radio regulatory issues
802.19	Technical advisory group on coexistence of all these standards
802.20	Mobil broadband wireless (similar to 802.16e)
802.21	Media independent handoff (for roaming across technologies)
802 22	Wireless regional area network

Standards Bodies (continued)

"The nice thing about standards is that there are so many of them to choose from." (Andrew S. Tanenbaum)

"Open" and "Closed" Systems

"At its most basic, the Reference Model is an architecture for the development of standards. The purpose of the architecture and the standards is to enable processing systems to communicate easily with others. This is the distinction between '<u>open</u>' and '<u>closed</u>' systems that do not need to communicate outside their own community of similar types of systems."

<u>Open Systems Interconnection Computer Communications Standards</u>, Gary Dickson and Alan Llyod, page 8. Printice Hall.

Why The OSI Reference Model ???

Why The OSI Reference Model ???

"At its most basic, the Reference Model is an architecture for the development of standards."

Why Standards ???

"Ensure that hardware and software produced by different vendors will work together." (FitzGerald and Dennis)

References

W. Richard Stevens, "TCP/IP Illustrated, Volume 1 The Protocols". Addison Wesley

Gary Dickson and Alan Llyod, "Open Systems Interconnection Computer Communications Standards". Printice Hall

Future Trends

Pervasive Networking: Anything-to-anything, anywhere

Bit speeds expected to reach and exceed 25 terabits per second! In other words, 25 trillion bits per second. Some research centers advocating one petabit per second (1 quadrillion bits per second, also called a femto-second)

Integration of Voice, Video, Data, and ???

"Application" Service Providers

Metric Units

Exp.	Explicit	Prefix	Exp.	Explicit	Prefix
10 ⁻³	0.001	milli	10 ³	1,000	Kilo
10-6	0.000001	micro	10 ⁶	1,000,000	Mega
10 ⁻⁹	0.00000001	nano	10 ⁹	1,000,000,000	Giga
10 ⁻¹²	0.00000000001	pico	10 ¹²	1,000,000,000,000	Tera
10 ⁻¹⁵	0.0000000000001	femto	10 ¹⁵	1,000,000,000,000,000	Peta
10 ⁻¹⁸	0.000000000000000001	atto	10 ¹⁸	1,000,000,000,000,000	Exa
10 -21	0.0000000000000000000000001	zepto	10 ²¹	1,000,000,000,000,000,000	Zetta
10 -24	0.0000000000000000000000000000000000000	yocto	10 ²⁴	1,000,000,000,000,000,000,000	Yotta