CORRIGÉ DM N°5: PRODUIT TENSORIEL DE MATRICES 2 × 2. ENSIETA 1996

PARTIE I:

1. D'après les propriétés des lois dans la \mathbb{C} -algèbre $\mathbb{M}_2(\mathbb{C})$, on a facilement :

$$\forall (X,Y) \in (\mathbb{M}_2(\mathbb{C}))^2, \ \forall \lambda \in \mathbb{C}, \ \Phi(\lambda X + Y) = A(\lambda X + Y)B = \lambda AXY + AYB = \lambda \Phi(X) + \Phi(Y)$$

donc Φ est un endomorphisme de $\mathbb{M}_2(\mathbb{C})$.

2. Si
$$B = \begin{pmatrix} b_1 & b_3 \\ b_2 & b_4 \end{pmatrix}$$
 et $A = \begin{pmatrix} a_1 & a_3 \\ a_2 & a_4 \end{pmatrix}$, on calcule, pour tout $i \in [1, 4]$, AE_iB . On trouve

$$\Phi(\mathbf{E}_1) = b_1 a_1 \mathbf{E}_1 + b_1 a_2 \mathbf{E}_2 + b_3 a_1 \mathbf{E}_3 + b_3 a_2 \mathbf{E}_4 \qquad \Phi(\mathbf{E}_2) = b_1 a_3 \mathbf{E}_1 + b_1 a_4 \mathbf{E}_2 + b_3 a_3 \mathbf{E}_3 + b_3 a_4 \mathbf{E}_4$$

$$\Phi(E_3) = b_2 a_1 E_1 + b_2 a_2 E_2 + b_4 a_1 E_3 + b_4 a_2 E_4 \qquad \Phi(E_4) = b_2 a_3 E_1 + b_2 a_4 E_2 + b_4 a_3 E_3 + b_4 a_4 E_4$$

On a donc:

$$\mathbf{A} \circ \mathbf{B} = \begin{pmatrix} b_1 a_1 & b_1 a_3 & b_2 a_1 & b_2 a_3 \\ b_1 a_2 & b_1 a_4 & b_2 a_2 & b_2 a_4 \\ b_3 a_1 & b_3 a_3 & b_4 a_1 & b_4 a_3 \\ b_3 a_2 & b_3 a_4 & b_4 a_2 & b_4 a_4 \end{pmatrix}$$

3. Soient A, B, P, Q des éléments de $\mathbb{M}_2(\mathbb{C})$; notons respectivement Φ et Ψ les endomorphismes de $\mathbb{M}_2(\mathbb{C})$ définis par

$$\forall X \in M_2(\mathbb{C}), \quad \Phi(X) = AXB \quad \text{ et } \quad \Psi(X) = PXQ$$

Les matrices de ces endomorphismes, dans la base ℬ sont resp. A∘B et P∘Q.

 $(P \circ Q).(A \circ B)$ est donc la matrice dans cette même base de l'endomorphisme $\Psi \circ \Phi$. Or, pour tout X de $\mathbb{M}_2(\mathbb{C})$, $(\Psi \circ \Phi)(X) = P(AXB)Q = (PA)X(BQ)$; la matrice de $\Psi \circ \Phi$ dans \mathscr{B} est donc $(PA) \circ (QB)$.

On en déduit l'égalité : $(P \circ Q).(A \circ B) = (PA) \circ (QB).$

- **4.** $A \circ I = \begin{bmatrix} A & 0 \\ 0 & A \end{bmatrix}$. Le calcul du déterminant par blocs donne : $\boxed{\det(A \circ I) = (\det A)^2}$.
 - En posant $A = \begin{pmatrix} a_1 & a_3 \\ a_2 & a_4 \end{pmatrix}$, on a $I \circ A = \begin{pmatrix} a_1 & 0 & a_2 & 0 \\ 0 & a_1 & 0 & a_2 \\ a_3 & 0 & a_4 & 0 \\ 0 & a_3 & 0 & a_4 \end{pmatrix}$. Si on échange dans cette matrice la 2-ième et la 4-

ième colonne, ainsi que la 2-ième et la 4-ième ligne, on obtient une matrice de même déterminant (puisqu'on a fait deux transpositions, chacune de signature -1); on reconnait dans la matrice transformée la matrice (${}^tA \circ I$). Puisque det ${}^tA = \det A$, le calcul précédent donne donc : $\det(I \circ A) = (\det A)^2$.

• D'après I.3, $(I \circ B).(A \circ I) = (AI) \circ (IB) = A \circ B$; on déduit alors directement des résultats précédents : $\det(A \circ B) = (\det A)^2(\det B)^2$.

PARTIE II:

1. Pour tout $i \in [1, k]$, notons Φ_i l'endomorphisme de $\mathbb{M}_2(\mathbb{C})$ défini par $\Phi_i(X) = A_i X B_i$. On a alors $H = \sum_{i=1}^k \Phi_i$, donc H est un endomorphisme (l'ensemble \mathscr{L} des endomorphismes de $\mathbb{M}_2(\mathbb{C})$ est un espace vectoriel!).

 $\text{La matrice de } \Phi_i \text{ dans la base } \mathscr{B} \text{ est } A_i \circ B_i \text{, donc } \widehat{H} = \sum_{i=1}^k A_i \circ B_i = \sum_{i=1}^k \begin{bmatrix} b_1^{(i)} A_i & b_2^{(i)} A_i \\ b_3^{(i)} A_i & b_4^{(i)} A_i \end{bmatrix} = \begin{bmatrix} U_1 & U_3 \\ U_2 & U_4 \end{bmatrix} \text{ avec : } \frac{1}{k} \left[b_1^{(i)} A_i & b_2^{(i)} A_i \\ b_3^{(i)} A_i & b_4^{(i)} A_i \end{bmatrix} = \begin{bmatrix} U_1 & U_3 \\ U_2 & U_4 \end{bmatrix}$

$$\mathbf{U}_1 = \sum_{i=1}^k b_1^{(i)} \mathbf{A}_i \quad \mathbf{U}_2 = \sum_{i=1}^k b_3^{(i)} \mathbf{A}_i \quad \mathbf{U}_3 = \sum_{i=1}^k b_2^{(i)} \mathbf{A}_i \quad \mathbf{U}_4 = \sum_{i=1}^k b_4^{(i)} \mathbf{A}_i$$

2. • Soit $(A_1, ..., A_k)$ un système libre de $\mathbb{M}_2(\mathbb{C})$ (on a forcément $k \leq 4$, puisque dim $\mathbb{M}_2(\mathbb{C}) = 4$!). Soient B_1, \ldots, B_k et B'_1, \ldots, B'_k des matrices de $\mathbb{M}_2(\mathbb{C})$, H, H' les endomorphismes de $\mathbb{M}_2(\mathbb{C})$ définis par $H(X) = \sum_{i=1}^{n} A_i X B_i \text{ et } H'(X) = \sum_{i=1}^{n} A_i X B_i', \text{ et } \widehat{H}, \widehat{H'} \text{ leurs matrices dans la base } \mathscr{B}.$

Notons enfin, pour tout $i \in [1, k]$: $B_i = \begin{pmatrix} b_1^{(i)} & b_3^{(i)} \\ b_2^{(i)} & b_2^{(i)} \end{pmatrix}$ et $B_i' = \begin{pmatrix} b_1'^{(i)} & b_3'^{(i)} \\ b_1'^{(i)} & b_2'^{(i)} \end{pmatrix}$

Si $\widehat{\mathbf{H}} = \widehat{\mathbf{H}'}$, on déduit alors des calculs du II.1 que, pour tout $j \in [1,4]$, $\sum_{i=1}^{K} b_{j}^{(i)} \mathbf{A}_{i} = \sum_{i=1}^{K} b_{j}^{\prime(i)} \mathbf{A}_{i}$. Comme la famille $(A_i)_{1 \le i \le k}$ est libre, on en tire $b_j^{(i)} = b_j^{\prime(i)}$ pour tous i et j.

Par conséquent, pour tout $i \in [1, k]$, $B_i = B_i'$.

• Soit (B_1, \ldots, B_k) un système libre de $\mathbb{M}_2(\mathbb{C})$, et $A_1, \ldots, A_k, A_1', \ldots, A_k'$ des matrices de $\mathbb{M}_2(\mathbb{C})$ telles que, pour tout $X \in M_2(\mathbb{C})$, on ait $\sum_{i=1}^{k} A_i X B_i = \sum_{i=1}^{k} A_i' X B_i$.

On aura alors, en transposant : $\sum_{i=1}^{K} {}^{t}B_{i}{}^{t}X^{t}A_{i} = \sum_{i=1}^{K} {}^{t}B_{i}{}^{t}X^{t}A_{i}'$ pour tout $X \in \mathbb{M}_{2}(\mathbb{C})$, donc aussi, pour tout

 $\mathbf{Y} \in \mathbb{M}_{2}(\mathbb{C}) : \sum_{i=1}^{K} {}^{t}\mathbf{B}_{i}\mathbf{Y}^{t}\mathbf{A}_{i} = \sum_{i=1}^{K} {}^{t}\mathbf{B}_{i}\mathbf{Y}^{t}\mathbf{A}_{i}'.$

Mais la famille $({}^{t}B_{1},...,{}^{t}B_{k})$ est encore libre (on peut faire une vérification directe en revenant à la définition, ou, mieux, remarquer que l'application $M \mapsto {}^tM$ est un automorphisme de $\mathbb{M}_2(\mathbb{C})$). Il suffit alors d'appliquer directement le résultat précédent; on en tire ${}^tA_i = {}^tA_i'$ pour tout i, donc pour tout $i \in [[1, k]]$, $A_i = A_i'$.

3. • Soit $L \in \mathcal{L}$, et $\widehat{L} = \begin{bmatrix} V_1 & V_3 \\ V_2 & V_4 \end{bmatrix}$ sa matrice dans la base \mathcal{B} . Puisque (E_1, E_2, E_3, E_4) est une base de $\mathbb{M}_2(\mathbb{C})$, il existe des complexes $d_k^{(i)}$ avec $1 \le i, k \le 4$ tels que

$$\mathbf{V}_1 = \sum_{i=1}^4 d_1^{(i)} \mathbf{E}_i \quad \mathbf{V}_2 = \sum_{i=1}^4 d_3^{(i)} \mathbf{E}_i \quad \mathbf{V}_3 = \sum_{i=1}^4 d_2^{(i)} \mathbf{E}_i \quad \mathbf{V}_4 = \sum_{i=1}^4 d_4^{(i)} \mathbf{E}_i$$

En notant alors $D_i = \begin{pmatrix} d_1^{(i)} & d_3^{(i)} \\ d_2^{(i)} & d_4^{(i)} \end{pmatrix}$ pour $1 \le i \le 4$, les calculs faits en II.1 donnent directement :

 $\widehat{L} = \sum_{i=1}^{4} E_i \circ D_i .$

- Soit maintenant une décomposition de L, avec $L \neq 0$, de longueur β minimale : $L(X) = \sum_{i=1}^{p} C_i X D_i$ pour tout $X \in \mathbb{M}_2(\mathbb{C}).$
 - si $\beta = 1$, on a $L(X) = C_1 X D_1$ pour toute X; L n'étant pas nul, on en déduit C_1 et D_1 non nulles, donc les familles $\{C_1\}$ et $\{D_1\}$ sont libres!
 - si $2 \le \beta \le 4$:

Supposons que la famille $(C_1, ..., C_\beta)$ soit liée; une de ces matrices est alors combinaison linéaire des autres;

pour simplifier les notations, supposons qu'il s'agisse de $C_{\beta}: C_{\beta} = \sum_{i=1}^{p-1} \lambda_i C_i$, avec $\lambda_i \in \mathbb{C}$. On aurait alors, pour tout $X \in M_2(\mathbb{R})$:

$$L(X) = \sum_{i=1}^{\beta-1} C_i X D_i + C_{\beta} X D_{\beta} = \sum_{i=1}^{\beta-1} C_i X (\lambda_i D_{\beta} + D_i)$$

et on obtiendrait une décomposition de L de longueur $\beta - 1$, ce qui contredit la définition de β .

On pourrait évidemment faire de même en supposant (D_1,\dots,D_β) liée. En conclusion :

Les familles $\left\{C_1,\dots,C_{\beta}\right\}$ et $\left\{D_1,\dots,D_{\beta}\right\}$ sont libres.

a) $T(E_1) = E_1$ $T(E_2) = E_3$ $T(E_3) = E_2$ $T(E_4) = E_4$, donc $\widehat{T} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$, soit $\widehat{T} = \begin{bmatrix} E_1 \\ E_3 \end{bmatrix}$

- b) Soit $T(X) = \sum_{i=1}^{\beta} C_i X D_i$ une décomposition de T. En utilisant II.1, et avec les mêmes notations, on a, compte tenu du calcul précédent : $\forall k \in \llbracket 1,4 \rrbracket$, $E_k = \sum_{i=1}^{\beta} d_k^{(i)} C_i$. Les E_k sont donc dans le sous-espace vectoriel de $\mathbb{M}_2(\mathbb{C})$ engendré par (C_1,\ldots,C_{β}) ; comme les E_k forment une base de $\mathbb{M}_2(\mathbb{C})$, on a nécessairement $\beta \geqslant 4$, et, par suite $\boxed{\beta=4}$.
- c) En utilisant les calculs précédents, il est facile de montrer que : $\widehat{T} = \sum_{i=1}^4 E_i \circ E_i$.

PARTIE III:

1. f est un endomorphisme d'un \mathbb{C} -espace vectoriel, donc il admet (au moins) une valeur propre (car son polynôme caractéristique est scindé dans $\mathbb{C}[X]$). Il existe donc $\lambda \in \mathbb{C}$ et $u \in E$, $u \neq 0$ tels que $f(u) = \lambda u$.

Supposons que f ait la même matrice A dans toute base de E. Pour tout $i \in [\![1,n]\!]$, on peut toujours trouver une base \mathcal{B}_i de E dont le i-ième vecteur soit u; la i-ème colonne de la matrice de f dans \mathcal{B}_i (donc de A) est donc $t(0,\ldots,\lambda,0,\ldots,0)$ (où λ est à la i-ème place). Donc $A=\lambda I_n$, et $f=\lambda Id_E$.

Soit X une matrice de $\mathbb{M}_n(\mathbb{C})$ telle que, pour toute matrice $S \in GL_n(\mathbb{C})$, $SXS^{-1} = X$; si f désigne l'endomorphisme de E de matrice X dans une certaine base \mathcal{B} de E, f aura donc pour matrice X dans toute base de E (d'après le cours sur les changements de base : si P est la matrice de passage de \mathcal{B} à une base \mathcal{B}' , la matrice de f dans \mathcal{B}' est $P^{-1}XP$); d'après ce qui précède, \underline{X} est une matrice scalaire.

Autre démonstration possible : la relation précédente exprime aussi le fait que X commute avec toute matrice inversible. On pouvait alors reprendre un exercice fait en classe...

2. a) On a : $\forall X \in \mathbb{M}_2(\mathbb{C})$, $\Gamma(X) = \Gamma(XI) = \Gamma(X)\Gamma(I) = \Gamma(IX) = \Gamma(I)\Gamma(X)$. Γ étant surjective, on en déduit : $\forall Y \in \mathbb{M}_2(\mathbb{C})$, $Y\Gamma(I) = \Gamma(I)Y = Y$, donc $\Gamma(I)$ est l'élément neutre de $\mathbb{M}_2(\mathbb{C})$ pour la loi \times , donc $\Gamma(I) = I$.

 Γ étant injective, on en déduit : $\Gamma(X_0) = I = \Gamma(I) \Longrightarrow X_0 = I$.

- **b)** Soit X une matrice inversible de $\mathbb{M}_2(\mathbb{C})$. On a $XX^{-1} = X^{-1}X = I$ d'où $\Gamma(X)\Gamma(X^{-1}) = \Gamma(X^{-1})\Gamma(X) = \Gamma(I) = I$. On en déduit que $\Gamma(X)$ est inversible, d'inverse $\Gamma(X^{-1})$.
 - Réciproquement, supposons $\Gamma(X)$ inversible, et notons Y son inverse. Γ étant surjective, il existe une matrice Z telle que $Y = \Gamma(Z)$; de la relation $\Gamma(X)\Gamma(Z) = \Gamma(Z)\Gamma(X) = I$, on déduit alors $\Gamma(XZ) = \Gamma(ZX) = I$, d'où, d'après la question 2.a, XZ = ZX = I. X est donc inversible, d'inverse Z.
- $\textbf{3. Pour toutes } X,Y \in \mathbb{M}_2(\mathbb{C}), \ \Gamma(X)\Gamma(Y) = \left(\sum_{i=1}^{\beta} A_i X B_i\right)\Gamma(Y) = \Gamma(XY) = \sum_{i=1}^{\beta} A_i X Y B_i, \ \text{soit}: \\ \sum_{i=1}^{\beta} A_i X (Y B_i) = \sum_{i=1}^{\beta} A_i X (B_i \Gamma(Y)).$

D'après II.3, la décomposition de Γ étant de longueur minimale, les familles (A_1,\ldots,A_β) et (B_1,\ldots,B_β) sont libres, puis, en utilisant II.2, on en déduit A_1,\ldots,A_β value A_2,\ldots,A_β value A_1,\ldots,A_β value A_2,\ldots,A_β

De la même façon, la relation $\Gamma(YX) = \Gamma(Y)\Gamma(X)$ s'écrit : $\sum_{i=1}^{\beta} (A_iY)XB_i = \sum_{i=1}^{\beta} (\Gamma(Y))A_i)XB_i$, et on conclut de même $\boxed{A_iY = \Gamma(Y)A_i} \text{ pour toute } Y \in \mathbb{M}_2(\mathbb{C}) \text{ et tout } i \in \llbracket 1, \beta \rrbracket.$

4. • Pour toute matrice Y de $\mathbb{M}_2(\mathbb{R})$ et tous $i, j \in [1, \beta]$, on a donc, d'après le résultat précédent :

$$\Gamma(Y^{-1})A_iB_j\Gamma(Y) = (A_iY^{-1})(YB_j) = A_iB_j.$$

- Soit S une matrice inversible, et $Y = \Gamma^{-1}(S)$; Y est inversible et $S^{-1} = \Gamma(Y^{-1})$ d'après 2.b. La relation trouvée précédemment s'écrit alors $S^{-1}A_iB_jS = A_iB_j$, pour toute matrice inversible S. D'après III.1, les matrices A_iB_j sont scalaires.
- Si toutes les matrices A_iB_i étaient nulles, on aurait $\Gamma(I) = \sum_{i=1}^{\beta} A_iB_i = 0$, ce qui est faux!

Il existe donc i_0 tel que la matrice $A_{i_0}B_{i_0}$ soit non nulle. Puisque c'est une matrice scalaire, elle est donc inversible, et, par suite, B_{i_0} est inversible.

En utilisant les résultats du III.3, on a alors, pour toute matrice $Y \in \mathbb{M}_2(\mathbb{C})$, $\Gamma(Y) = B_{i_0}^{-1} Y B_{i_0}$ et donc $\beta = 1$

PARTIE IV:

1. Soit
$$X = \begin{pmatrix} x_1 & x_3 \\ x_2 & x_4 \end{pmatrix} = \sum_{i=1}^4 x_i E_i$$
.

$$\Delta(X) = x_1 x_4 - x_2 x_3 \; ; \; \text{d'après le cours, } \Delta \; \text{ est une forme quadratique sur } \mathbb{M}_2(\mathbb{C}), \; \text{dont la matrice dans la base}$$

$$(E_1, E_2, E_3, E_4) \; \text{est } A = \begin{pmatrix} 0 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & -\frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 0 \end{pmatrix} \; ; \; \text{son rang est \'egal \`a 4}.$$

Avec des notations évidentes, on a, directement d'après le cours : $\widetilde{\Delta}(X,Y) = \frac{1}{2}(x_1y_4 + x_4y_1 - x_2y_3 - y_2x_3)$

- $\textbf{a)} \ \ \underline{\Phi} \ \ \text{est non nulle, donc il existe} \ \ X_0 \in \mathbb{M}_2(\mathbb{C}) \ \ \text{telle que} \ \ \Phi(X_0) \neq 0. \ \ \text{Or} \ \ \Phi(X_0) = \Phi(X_0I) = \Phi(X_0)\Phi(I) \ ; \ \text{donc}$
 - **b)** Si X est inversible, $\Phi(X)\Phi(X^{-1}) = \Phi(I) = 1$; donc $\Phi(X) \neq 0$.
 - c) Si $X \in M_2(\mathbb{R})$ est non inversible, elle est donc de rang 0 ou 1.
 - Si $\operatorname{rg} X = 0$, X = 0 et $\Phi(X) = 0$ (puisque Φ est une forme quadratique).
 - Si rg X = 1, on sait d'après le cours que X est équivalente à n'importe quelle matrice de rang 1; elle est donc équivalente à E_2 : il existe P et Q inversibles telles que $X = PE_2Q$. On a alors $\Phi(X) = \Phi(P)\Phi(E_2)\Phi(Q)$; mais $E_2^2=0$, donc $[\Phi(E_2)]^2=0$ donc $\Phi(E_2)=0$. On en déduit $\Phi(X)=0$.
 - d) Soit $X \in \mathbb{M}_2(\mathbb{C})$, et $\widetilde{\Phi}$ la forme bilinéaire symétrique associée à Φ . On a alors, pour tout $\lambda \in \mathbb{C}$, $\Phi(X + \lambda I) = \Phi(X) + 2\lambda \widetilde{\Phi}(X, I) + \lambda^2$ (car $\Phi(I) = 1$).

Notons $f(\lambda) = \Phi(X + \lambda I)$ et $g(\lambda) = \Delta(X + \lambda I)$. f et g sont donc deux fonctions polynômes de degré 2; de plus, d'après 2.b et 2.c, $f(\lambda) = 0 \iff X + \lambda I$ non inversible $\iff \det(X + \lambda I) = 0 \iff g(\lambda) = 0$.

Ainsi : λ racine de $f \iff \lambda$ racine de g. Donc f = g, puisqu'il s'agit de fonctions polynômes de degré 2 et de coefficient dominant égal à 1.

Donc $\forall X \in \mathbb{M}_2(\mathbb{C}), \ \forall \lambda \in \mathbb{C}, \ \Phi(X + \lambda I) = \Delta(X + \lambda I) \text{ et, en prenant } \lambda = 0, \text{ on obtient } | \Phi = \Delta.$