

Sviluppo di un contatore elettrico intelligente

Stefano Antonio Labianca 22 Gennaio 2024

matricola: 758364 email: s.labianca10@studenti.uniba.it

Tabella dei contenuti

1	Introduzione		
	1.1	Dispositivo salvavita	
		Obiettivo del progetto	
2	Pro	getto	
	2.1	Inizializzare il progetto	
		2.1.1 Scaricare da GitHub	
		2.1.2 Impostare l'ambiente virtuale	
		2.1.3 Avviare il progetto	
	2.2	Struttura del progetto	
3	Tro	ubleshooting	
	3.1	Risolvere il problema di esecuzione con la PowerShell	
		Errore di esecuzione del programma Python	

1 Introduzione

Nell'arco della nostra giornata, usiamo diversi dispositivi elettronici e, alle volte, anche per diverse ore della giornata o addirittura per tutto il giorno.

Per chi abita nelle zone di campagna, o in abitazioni singole, usare molti dispositivi elettronici contemporaneamente, specialmente se hanno alti consumi o possiedono una classe energetica bassa, fa scattare il salvavita.

Figura 1: Esempio di contatore differenziale

1.1 Dispositivo salvavita

Il "salvavita", o più propriamente detto interruttore differenziale, è un dispositivo che arresta il flusso di energia elettrica dal contatore di un'abitazione, proteggendo persone e animali.

Questi interruttori, monitorano la differenza di corrente in entrata e in uscita dal dispositivo e, quando la differenza di corrente in entrata e in uscita supera una certa soglia, allora l'interruttore scatta togliendo l'alimentazione al circuito.

1.2 Obiettivo del progetto

Il progetto si pone l'obiettivo di sviluppare un programma in grado di svolgere i seguenti task:

- 1. Determinare da una lista di dispositivi, quali possono tenere accesi contemporaneamente senza che salti il salvavita.
- 2. Tenere traccia dei dispositivi elettronici e del loro consumo in Watt.
- 3. Ottenere tutti quei dispositivi che rispettano certi vincoli di consumo energetico.

2 Progetto

2.1 Inizializzare il progetto

2.1.1 Scaricare da GitHub

Il primo passaggio è quello di clonare la repository cliccando al seguente link.

2.1.2 Impostare l'ambiente virtuale

Va creato successivamente un ambiente virtuale. In questo modo l'interprete Python, le librerie e gli script installati al suo interno, saranno isolati dagli altri ambienti virtuali e da qualsiasi libreria installata sul proprio sistema.

Per creare l'ambiente virtuale, entrate nella cartella del progetto e digitate il seguente comando:

```
python -m venv .venv
```

Grazie a questo comando, verrà creata una cartella /.venv che conterrà tutto il necessario per lavorare con l'ambiente virtuale.

Una volta creato, è necessario attivare l'ambiente virtuale. Se siente in ambiente MacOS o Linux, digitate il comando

```
source .venv/bin/activate
```

Il file activate serve per "accendere" l'ambiente virtuale.

Se invece siete in ambiente Windows, allora posizionatevi prima dentro la cartella ./venv/Scripts/ per poi digitare uno dei seguenti comandi, in base al tipo di terminale in uso:

```
activate.bat // Se usi il CMD
.\Activate.ps1 // Se usi la PowerShell
```

Se invece si sta usando il GitBash, in ambiente Windows, allora il comando da appliace è il seguente:

source .venv/Scripts/activate

L'ambiente virtuale sarà attivato con successo quando sul vostro terminale avrete qualcosa di simile alla figura 2.

In caso di problemi nell'uso della PowerShell, è possibile andare alla sezione: Risolvere il problema di esecuzione con la PowerShell.

(a) Uso di GitBash

(b) Uso del CMD

```
(.venv) PS D:\ICON\smart-energy-controller\.venv\Scripts>
```

(c) Uso della PowerShell

Figura 2: Risultato dell'attivazione dell'ambiente virtuale. In figura (a) abbiamo l'uso del GitBash, in figura (b) del CMD mentre infine, nella figura (c), abbiamo l'uso della PowerShell.

2.1.3 Avviare il progetto

Per avviare il progetto, bisogna tornare alla directory principale del progetto e installare le dipendenze con il comando:

```
pip install -r requirements.txt
```

Una volta installate, digitare il seguente comando per avviare il programma

```
python main.py
```

In caso di errore, vedere la sezione: Risolvere il problema di esecuzione con la PowerShell.

2.2 Struttura del progetto

All'intero del progetto, possiamo trovare le seguenti cartelle:

- /.vevn: Cartella contenente tutto il necessario per lavorare con l'ambientevirtuale.
- /appliance: Qui è possibile trovare la classe Appliance, che definisce un elettrodomestico, insieme ad una serie di metodi di suppporto, contenuti in appliances_controller.py
- /cli: Troviamo una classe che incapsula tutta la logica legata agli input e all'output del terminale
- /csp_problem: Questa cartella contiene tutti i file legati all'argomento del CSP.
 - Infatti è possibile trovare la rappresentazione delle variabili e dei vincoli, fatta rispettivamente usando le classi Variable e Constraint.
 - Inoltre è presente anche la classe CSP usata come wrapper per rappresentare un generico problema di questa categoria.
 - Infine è presenta la cartella /algorithm che contiene le realizzazioni degli algoritmi DFS e GAC usati per risolvere i problemi legati al CSP.
- /knowledge_base: Contiene una classe usata per rappresentare il Sistema Esperto realizzato.
- /ontology: Questa cartella contiene una classe che permette di manipolare l'ontologia contenuta all'intero del file appliance_ontology.rdf.
- /test: Contiene tutti quei file contenente vari test fatti al programma.

• /utils: Contiene file di utilità che facilitano alcune operazioni interne al programma. Per esempio, il file pagination.py viene usato per impaginare l'output del programma.

3 Troubleshooting

3.1 Risolvere il problema di esecuzione con la Power-Shell

In caso non si riesca ad eseguire con la PowerShell l'attivazione dell'ambiente virtuale, provate a svolgere i seguenti passi.

Aprire innanzitutto la PowerShell come amministratore nella cartella del progetto. Una volta aperta la PowerShell, digitare il comando:

Get-ExecutionPolicy

Grazie a questo comando, possiamo sapere quale execution policy è impostata per la PowerShell. In figura 3, è mostrato una possibile execution policy impostata nella PowerShell.

```
PS D:\ICON\smart-energy-controller> Get-ExecutionPolicy
Restricted
PS D:\ICON\smart-energy-controller>
```

Figura 3: Possibile execution policy

Per permettere l'esecuzione degli script .ps1, allora bisogna impostare su AllSigned la execution policy.

Per farlo si usa il comando:

Set-ExecutionPolicy -ExecutionPolicy AllSigned

Una volta eseguito questo comando, andare nella cartella /.venv/Scripts/e digitare il comando:

.\Activate.ps1

Apparirà sul terminale il seguente output:

```
PS D:\ICON\smart-energy-controller\.venv\Scripts> .\Activate.ps1

Eseguire software di questo autore non attendibile?
Il file D:\ICON\smart-energy-controller\.venv\Scripts\Activate.ps1 è pubblicato da CN=Python Software Foundation, D=Python Software Foundation, L=Beaverton, S=Oregon, C=US e non è considerato attendibile nel sistema in uso. Eseguire solo script creati da autori attendibili.
[M] Non eseguire mai [N] Non eseguire [V] Esegui una volta
[S] Esegui sempre[?] Guida (il valore predefinito è "N"):
```

Figura 4: Messaggio di conferma

Per eseguire lo script di attivazione, allora inserite V e premete invio.

Una volta che avete finito l'esecuzione del programma, potete anche reimpostare la execution policy al suo stato orinario, usando il comando:

Set-ExecutionPolicy -ExecutionPolicy <PolicyNamePrecedente>

3.2 Errore di esecuzione del programma Python

E' possibile che, durante l'esecuzione del programma, possa apparire questo messaggio di errore:

Questo errore è dovuto ad una versione datata della libreria frozendict usata come dipendenza della libreria experta.

Fare l'upgrade della libreria frozendict alla versione più recente, andrebbe a creare dei conflitti di dipendenza tra le due versioni della librerie.

Per risolvere questo problema, bisogna andare nella cartella /.venv/Lib/site-packages/frozendict e aprire il file __init__.py.

Una volta aperto, bisogna cambiare la seguente linea di codice:

```
class frozendict(collections.Mapping):
```

. . .

Figura 5: Errore di esecuzione

```
Nella seguente:
```

```
class frozendict(collections.abc.Mapping):
    ...
```