## Лабораторная работа № 3

Исследование методов планирования и управления процессами в однопроцессорных системах при использовании дисциплин обслуживания процессов с относительными и абсолютными приоритетами

При выполнении задания по лабораторной работе предлагается провести математическое моделирование и исследовать характеристики дисциплин обслуживания процессов с относительными и абсолютными приоритетами при их обработке в однопроцессорной системе, структурная организация которой приведена на рис.1. в лабораторной работе № 1. При выполнении исследования в качестве исходных данных принимаются данные по варианту задания лабораторной работы № 1.

Результаты математического моделирования должны быть представлены графиками зависимостей времени ожидания  $\omega$  и времени обслуживания u очередей процессов с относительными приоритетами при различных значениях производительности процессора  $V_{\pi}$  однопроцессорной системы.

При построении зависимости  $\,\omega=f\,(\,V_{\,\pi}\,)\,$  и  $\,u=f\,(\,V_{\,\pi}\,)\,$  значение  $\,V_{\,\pi}\,$  должно варьироваться в пределах от  $\,10^{\,5}\,$  оп/c  $\,$  до  $\,10^{\,12}\,$  оп/c  $\,$ .

Полученные результаты необходимо сравнить с результатами, полученными при выполнении лабораторной работы № 1, и сделать выводы об эффективности дисциплин обслуживания процессов.

## Порядок выполнения программы исследований

В случае рассмотрения дисциплин обслуживания процессов с относительными приоритетами при их обработке в однопроцессорной системе принимается :

1. Процессы некоторого типа имеют преимущество перед другими процессами с точки зрения порядка обслуживания в системе.

При выполнении задания необходимо самостоятельно назначить приоритеты обслуживания потокам процессов, заданным по варианту задания. Приоритеты процессов характеризовать положительными целыми числами 1,2,3,4, ...., причем, более высокий приоритет характеризуется соответственно меньшим числом.

- 2. Приоритеты принято называть относительными приоритетами, если приоритет процесса учитывается только в момент выбора очередного процесс для обслуживания. В данном случае если процесс принят для обслуживания в систему, то вновь поступивший процесс с еще более высоким приоритетом не принимается к обслуживанию до момента полного обслуживания еже исполняемого процесса.
- 3. При использовании относительных приоритетов обработка процессов выполняется в соответствии со схемой обработки, приведенной на рис. 1

Набор входных очередей процессов с одинаковыми приоритетами для обслуживания в системе



Рис. 1

- 4. Система рассматривается как один ресурс, обеспечивающий обслуживание группы M входных потоков процессов  $\mathbf{Z}_1$ ,  $\mathbf{Z}_2$ ,  $\mathbf{Z}_3$ ,...,  $\mathbf{Z}_M$ , которым присвоены относительные приоритеты 1,2,3,....M. Причем, процесс  $\mathbf{Z}_p$ , поступивший в очередь  $\mathbf{O}_p$ , будет принят к обслуживанию только при условии отсутствия в других очередях процессов с более высокими приоритетами. Процессы принимаются для обслуживания из каждой очереди  $\mathbf{O}_p$  в порядке их поступления в очередь локально применяется бесприоритетная дисциплина обслуживания **FIFO**.
- 5. Если в системе обслуживается **M** простейших потоков процессов **Z**<sub>1</sub> , **Z**<sub>2</sub> , **Z**<sub>3</sub> ,..., **Z**<sub>M</sub> с интенсивностями поступления на обслуживание в систему равным  $\lambda_1$  ,  $\lambda_2$  ,  $\lambda_3$  ....., $\lambda_M$  и длительностями обслуживания равным  $\vartheta_1$  ,  $\vartheta_2$  ,  $\vartheta_3$  ...... $\vartheta_M$  , то среднее время ожидания заявок на обслуживание определяется выражением :

$$\omega_{k} = \sum_{i=1}^{M} \frac{\rho_{i} \vartheta_{i} (1 + v_{i}^{2})}{2 (1 - R_{k}) (1 - R_{k-1})}, \qquad (1.1.)$$

где

M – количество процессов, поступающих на обслуживание в систему,

$$R = (\rho_1 + \rho_2 + \rho_3 + .... + \rho_M),$$

 $ho_{i}$  - коэффициент загрузки ресурсов системы i – ым процессом.

Значение  $\rho_i$  определяется по выражению (1.2.):

$$\rho_i = \lambda_i \vartheta_i$$
, (1.2.),

где  $\lambda_i$  - интенсивность i – потока процессов на обслуживание в систему,  $\vartheta_k$  - длительность обслуживания процесса в k – ом ресурсе системы. В частности, длительность обслуживания процесса в процессорной части системы определяется по выражению (1.3):

$$\vartheta_{pi} = \Theta_i / V_p, \tag{1.3}$$

где

 $\mathbf{V}_{\mathbf{p}}$  – производительность процессора,

 $\Theta_{i}$  - количество вычислительных операций, выполняемых при обслуживании i-го процесса в моделируемой системе.

Аналогично определяются и длительности обслуживания процесса  $\vartheta_{j}$  в других **j**-ых функциональных модулях и подсистемах.

Результаты исследований по данному пункту задания должны быть представлены в виде графика зависимости длительности обслуживания процессов в системе при варьировании производительности процессора в заданном диапазоне при значениях коэффициента вариаций

$$v_i = 0$$
 и  $v_i = 1$ .

Соответственно коэффициент вариации при постоянном времени обслуживания процессов  $\mathbf{v_i} = 0$  , а и при экспоненциальном законе распределения времени выполнения потока процессов  $\mathbf{v_i} = 1$ .

2. В качестве более точной математической модели исследуемой однопроцессорной системы предлагается рассмотреть аналогично как и в 1 задании трехкомпонентную стохастическую сеть одноканальных СМО с дисциплиной обслуживания с относительными приоритетами. В этом случае

каждая из СМО сети также моделирует соответствующий ресурс системы – процессор, ВЗУ1 и ВЗУ 2.

Для полного определения этой модели необходимо знать вероятности переходов процессов между **СМО** сети при их обслуживании в системе.

В качестве модели процесса организации обслуживания процессов в стохастической сети **СМО** предлагается модель, показанная на рис. 3.б. в виде графа Маркова.

В этом случае вероятности переходов процессов для обслуживания между СМО сети определяются по выражению 1.4:

$$\mathbf{p}_{i,j} = (\mathbf{N}_{i,j} / \mathbf{\Sigma} \mathbf{N}_{J,I}) , \qquad (1.4)$$

где  $N_{i,j}$  - количество переходов процесса из i – состояния обслуживания в j-ое состояние ,

 $\Sigma$  **N**<sub>i,j</sub> - количество переходов процесса при его обслуживании в состояние **j** из всех других состояний. Значения **N**<sub>i,j</sub> рассчитываются по исходным данным варианта задания.

В результате определения вероятностей переходов  $\mathbf{p}_{i,j}$  строится аналитическая модель обслуживания процессов в системе в виде системы линейных уравнений. Определяются интенсивности  $\lambda_i$  поступления процессов на обработку в каждый из ресурсов системы аналогично тгому, как это было выполнено для задании  $N \ge 1$ .

В результате решения системы уравнений определяются интенсивности поступления процессов  $\lambda_i$  на обслуживание в каждый из ресурсов системы — интенсивность поступления процессов на обслуживание в процессор, **B3У1** и **B3У2**.

Определение значений интенсивностей  $\lambda_i$  дает возможность выполнить более точное построение графиков зависимостей времени ожидания  $\omega$  и времени обслуживания u от варьируемых параметров  $\vartheta_i$  для дисциплины обслуживания процессов с относительными приоритетами.

При построении зависимостей при расчетах также используется выражение 1.1.

$$\mathbf{u}_{i} = \sum_{j=1}^{\mathbf{k}} \omega_{j} + \sum_{j=1}^{\mathbf{k}} \vartheta_{j}, \qquad (1.5)$$

$$\mathbf{u} = \sum_{i=1}^{\mathbf{M}} \mathbf{u}_{i}$$

$$(1.6.)$$

где

М – количество исполняемых в системе процессов,

**k** – количество ресурсов в системе, используемых при обслуживании процесса,

 $\omega$  j – длительность ожидания i -го процесса обслуживания в j -ом ресурсе системы,

9 ј - длительность обслуживания і -го процесса в ј -ом ресурсе системы.

Набор входных очередей процессов с одинаковыми приоритетами для обслуживания в системе



Рис. 2

При использовании дисциплины с абсолютными приоритетами принимается, что исполнение процесса с более низким приоритетом по сравнению с вновь поступившим на обработку процессом прерывается в системе и начинается обслуживание нового процесса с более высоким приоритетом.

Длительность ожидания процесса обслуживания в системе при применении дисциплин обслуживания с абсолютными приоритетами выполняется по схеме рис. 2 и рассчитывается по выражению:

$$\omega_{k} = \frac{\vartheta_{i} R_{k-1}}{(1 - R_{k})} + \sum_{i=1}^{M} \frac{\rho_{i} \vartheta_{i} (1 + v^{2}_{i})}{2 (1 - R_{k}) (1 - R_{k-1})} ,$$

$$(1.7.)$$

В качестве результата исследований следует привести график зависимости времени ожидания обслуживания процессов и график зависимости времени их обслуживания при дисциплинах с относительными и абсолютами приоритетами, выполнить их сравнение и сформулировать выводы.