Mid-sem Exam

Full Marks: 40, Time: 2 hours

Roll Number:

Name

- 1. Answer each question on a new page of the answer booklet.
- 2. Do not use pencils. Pens only!
- 3. If you want, use me as your cheat sheet and ask me for definitions.
- 4. To give proof of security, an intuitive explanation will only get you part points. Give a complete security reduction or hybrid argument to get full marks.

Problem 1: [3 marks]

When using the one-time pad with the key $k = 0^{\ell}$, we have $\operatorname{Enc}_k(m) = k \oplus m = m$, and the message is sent in the clear! Therefore, we modify the one-time pad by only encrypting with $k \neq 0^{\ell}$ (i.e., Gen chooses k uniformly from the set of *nonzero* keys of length ℓ). Is this modified scheme still perfectly secure? Explain.

Problem 2: [9 marks (3+3+3)]

Let F be a pseudorandom function and G be a pseudorandom generator with expansion factor $\ell(n) = n + 1$. In each case below, the shared key is a uniform $k \in \{0,1\}^n$. Against which of the following attacks is each encryption scheme below secure: ciphertext only attack (COA), chosen plaintext attack (CPA), and chosen ciphertext attack (CCA)? If secure, show proof of security; if not, show an attack.

- a) To encrypt $m \in \{0,1\}^{n+1}$, choose uniform $r \in \{0,1\}^n$ and output the ciphertext $\langle r, G(r) \oplus m \rangle$.
- b) To encrypt $m \in \{0,1\}^n$, output the ciphertext $m \oplus F_k(0^n)$.
- c) To encrypt $m \in \{0, 1\}^{2n}$, parse m as $m_1 || m_2$ with $|m_1| = |m_2|$, then choose uniform $r \in \{0, 1\}^n$ and send $\langle r, m_1 \oplus F_k(r), m_2 \oplus F_k(r+1) \rangle$.

Problem 3: [6 marks (3+3)]

Let $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a pseudorandom function. In each part below, is (Gen, Mac, Vrfy) EU-CMA secure? If yes, give proof of security; if not, show an attack.

- a) Gen outputs a uniform $k \in \{0,1\}^n$. To authenticate a message $m_1||m_2|$ with $|m_1| = |m_2| = n$, Mac_k computes the tag $t = F_k(m_1)||F_k(F_k(m_2))|$. Verification is the canonical verification.
- b) Gen outputs a uniform $k \in \{0,1\}^n$. To authenticate a message m, Mac_k computes the tag $t = (F_k(m), F_k(m))$. Verification is the canonical verification.

Problem 4: [7 marks (2+2+3)]

Let $\Pi_E = (\mathsf{Gen}_E, \mathsf{Enc}, \mathsf{Dec})$ be a CPA-secure encryption scheme, and let $\Pi_M = (\mathsf{Gen}_M, \mathsf{Mac}, \mathsf{Vrfy})$ be an EU-CMA secure message authentication code. Consider the following authenticate-then-encrypt approach for encryption.

Authenticate-then-encrypt

Define $\Pi = (\mathsf{Gen}, \mathsf{AEnc}, \mathsf{ADec})$ as follows:

- $\operatorname{\mathsf{Gen}}(1^n)$: Choose independent $k_E \leftarrow \operatorname{\mathsf{Gen}}_E(1^n)$ and $k_M \leftarrow \operatorname{\mathsf{Gen}}_M(1^n)$. Output (k_E, k_M) .
- AEnc: on input a key (k_E, k_M) and a plaintext message m, compute $t \leftarrow \mathsf{Mac}_{k_M}(m)$ and $c \leftarrow \mathsf{Enc}_{k_E}(m||t)$. Output the ciphertext c.
- ADec: on input a key (k_E, k_M) and a ciphertext c, compute $\mathsf{Dec}_{k_E}(c) = m||t$. If $\mathsf{Vrfy}_{k_M}(m,t) = 1$, output m, else output \perp .
- a) Prove that Π is a CPA-secure encryption scheme.
- b) Prove that Π satisfies ciphertext integrity.
- c) Is Π CCA secure? If yes, prove it, else, show an attack (for some Π_E and Π_M).

Problem 5: [5 marks]

Recall the Merkle-Damgård transform described below. Let (Gen, h) be a fixed-length collision resistant hash function for inputs of length 2n and with output length n.

Merkle-Damgård Transform

Construct the hash function (Gen, H) (with the same Gen) as follows:

H: on input a key k and a string $x \in \{0,1\}^*$ of length $L < 2^n$, do the following:

- 1. Set $B := \left\lceil \frac{L}{n} \right\rceil$ (i.e., the number of blocks in x). Pad x with zeroes so its length is a multiple of n. Parse the padded result as the sequence of n-bit blocks x_1, \ldots, x_B . Set $x_{B+1} := L$, where L is encoded as an n-bit string.
- 2. Set $z_0 := 0^n$. (also called the IV.)
- 3. For i = 1, ..., B + 1, compute $z_i := h^k(z_{i-1}||x_i)$.
- 4. Output z_{B+1} .

For each of the following modifications to the Merkle-Damgård transform, determine whether the result is collision resistant. If yes, provide a proof; if not, demonstrate an attack.

- a) Instead of using a fixed IV, set $z_0 := L$ and compute $z_i := h^k(z_{i-1}||x_i)$ for $i = 1, \ldots, B$. Output z_B .
- b) Modify the construction so that instead of $z_{B+1} = h^k(z_B||L)$, the output is $z_B||L$.

Problem 6: [5 marks]

Let (Gen, \hat{h}) be a fixed-length collision resistant hash function with input length 2n-1 and output length n-1. Define (Gen, h) using the same Gen , on inputs of length 2n as:

$$h^{k}(b||x) := \begin{cases} b||\hat{h}^{k}(x), & \text{if } b = 0\\ 1^{n}, & \text{otherwise} \end{cases}$$

- a) Is (Gen, h) a collision resistant hash function?
- b) Is the (Gen, H) obtained using Merkle-Damgård transform to (Gen, h) collision resistant?

Problem 7: [5 marks]

Let $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a strong pseudorandom permutation (SPRP). Define the following encryption scheme $\Pi = (\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$:

- Gen(1ⁿ): Generate and output $k \in_R \{0,1\}^n$.
- $\mathsf{Enc}(k,m)$: For $m \in \{0,1\}^{n/2}$, generate a random $r \in_R \{0,1\}^{n/2}$ and output $c = F_k(m||r)$.
- $\mathsf{Dec}(k,m)$: Compute $m||r:=F_k^{-1}(c),$ and output the first n/2-bits, m.

Prove that Π is CCA-secure but is not an authenticated encryption scheme.