1 主問題

1.1 所与の条件

特徴空間 (距離空間) (\mathcal{F},d) $d: \mathcal{F} \times \mathcal{F} \rightarrow [0,\infty)$)

ラベル空間 \mathcal{L}

学習済み分類器 $f:\mathcal{F} \to \mathcal{L}$

目的データ $x^* \in \mathcal{F}$ 深さ制約 $D_{\max} \in \mathbb{N}$ 精度制約 $A_{\min} \in [0,1]$

1.2 決定木

仮説空間 $\mathcal{T}_{\mathcal{F}}$ — 特徴空間 \mathcal{F} において, 可能な決定木の集合

決定木 $t \in \mathcal{T}_{\mathcal{F}}$

 $t:\mathcal{F}\to\mathcal{L}$

木の深さ $D(t): \mathcal{T}_{\mathcal{F}} \to \mathbb{N}$

1.3 変数

近傍半径 $r \in [0, \infty)$

1.4 関数など

近傍 $V_{x^*}(r): [0,\infty) \to 2^{\mathcal{F}}$ $V_{x^*}(r) = \{x \in \mathcal{F} \mid d(x,x^*) \leq r\}$

ノイズ集合 $\operatorname{noise}(V): 2^{\mathcal{F}} \to 2^{\mathcal{F}} \quad \forall V \in 2^{\mathcal{F}} \; ; \; \operatorname{noise}(V) \subseteq V \wedge \operatorname{noise}(V) \; \text{is finite}.$

近似精度 $A_{f,x^*}(t,r):\mathcal{T}_{\mathcal{F}}\times[0,\infty)\to[0,1]$

$$A_{f,x^*}(t,r) = \frac{1}{|\text{noise}(V_{x^*}(r))|} \sum_{x \in \text{noise}(V_{x^*}(r))} \mathbb{I}(t(x) = f(x))$$

1.5 問題

 $\exists t \in \mathcal{T}_{\mathcal{F}} \; ; \; D(t) \leq D_{\max} \land A_{f,x^*}(t,r) \geq A_{\min}$ を満足する最大の近傍半径 $r \in [0,\infty)$ を求める.

2 固定されたデータセットの場合

2.1 所与の条件

特徴空間 (距離空間) (\mathcal{F},d) $d: \mathcal{F} \times \mathcal{F} \rightarrow [0,\infty)$

ラベル空間 *£*

 $ec{r}$ ータセットのサイズ $N\in\mathbb{N}$

データセット $X = \{x_i \in \mathcal{F}\}_{i=1}^N$

学習済み分類器 $f:\mathcal{F} \to \mathcal{L}$

目的データ $x^* \in X$ 深さ制約 $D_{\max} \in \mathbb{N}$ 精度制約 $A_{\min} \in [0,1]$

2.2 決定木

仮説空間 $\mathcal{T}_{\mathcal{F}}$ — 特徴空間 \mathcal{F} において、可能な決定木の集合

決定木 $t \in \mathcal{T}_{\mathcal{F}}$

 $t: \mathcal{F} o \mathcal{L}$

木の深さ $D(t): \mathcal{T}_{\mathcal{F}} \to \mathbb{N}$

2.3 変数

近傍半径 $r \in [0, \infty)$

2.4 関数など

ノイズ集合 $\operatorname{noise}_{x^*}(r):[0,\infty)\to 2^{\mathcal{F}}$ $\operatorname{noise}_{x^*}(r)=\{x\in X\mid d(x-x^*)\leq r\}\subseteq X$

近似精度 $A_{f,x^*}(t,r): \mathcal{T}_{\mathcal{F}} \times [0,\infty) \rightarrow [0,1]$

 $A_{f,x^*}(t,r) = \frac{1}{|\text{noise}_{x^*}(r)|} \sum_{x \in \text{noise}_{x^*}(r)} \mathbb{I}(t(x) = f(x))$

2.5 問題

 $\exists t \in \mathcal{T}_{\mathcal{F}} \; ; \; D(t) \leq D_{\max} \wedge A_{f,x^*}(t,r) \geq A_{\min}$ を満足する最大の近傍半径 $r \in [0,\infty)$ を求める.