DATA 690 Homework 3 (50 points - Due on Sunday, March 5, 2023 by 11:59 pm ET)

The output of this assignment for submission should be in PDF format **AND** .py or .ipynb. The name of the file should be as follows: Lastname_Firstname_Homework3.pdf (example:

 $Thomas_Sunela_Homework 3. pdf) \ \textbf{AND} \ Lastname_Firstname_Homework 3. ipynb \ (example: 1.5 ps. 1$

Thomas_Sunela_Assignment3.ipynb. In short, you are submitting the python notebook as well as the pdf of that notebook. Do **NOT** submit .html file, the system will give you an error.

Incorrect file name will cost you points!

Instructions for converting a Jupyter Python notebook to PDF: Go to the menu and choose, File --> Download As --> html. Open that html file and print it to PDF. Submit the PDF file **NOT** the html file.

If you are using Google Colab, remember to review the PDF before submitting to ensure that all cells and answers are displayed in the PDF.

Things to note:

- · Each cell should display an output
- Use both Markdown and code comments in the Jupyter Notebook as needed

IF YOU ARE MAKING ANY ASSUMPTIONS, WRITE THAT IN A MARKDOWN CELL OR COMMENT

Answer the questions asked as well, not just code

We will be using the SF Salaries dataset from Kaggle! The dataset is provided to you in Blackboard.

#1 Import pandas as pd

```
In [1]: import pandas as pd
```

#2 Read Salaries.csv as a dataframe called sal

```
In [2]: sal = pd.read_csv('https://raw.githubusercontent.com/SravaniRVS/DATA-690/main/Assignments9
sal
```

/Users/sravaniravulaparthi/opt/anaconda3/lib/python3.9/site-packages/IPython/core/interact iveshell.py:3444: DtypeWarning: Columns (12) have mixed types.Specify dtype option on import or set low_memory=False.

exec(code obj, self.user global ns, self.user ns)

	·	_	- ·	_ '					
Out[2]:		Id	EmployeeName	JobTitle	BasePay	OvertimePay	OtherPay	Benefits	TotalPay
	0	1	NATHANIEL FORD	GENERAL MANAGER- METROPOLITAN TRANSIT AUTHORITY	167411.18	0.00	400184.25	NaN	567595.43
	1	2	GARY JIMENEZ	CAPTAIN III (POLICE DEPARTMENT)	155966.02	245131.88	137811.38	NaN	538909.28

	Id	EmployeeName	JobTitle	BasePay	OvertimePay	OtherPay	Benefits	TotalPay	
2	3	ALBERT PARDINI	CAPTAIN III (POLICE DEPARTMENT)	212739.13	106088.18	16452.60	NaN	335279.91	-
3	4	CHRISTOPHER CHONG	WIRE ROPE CABLE MAINTENANCE MECHANIC	77916.00	56120.71	198306.90	NaN	332343.61	
4	5	PATRICK GARDNER	DEPUTY CHIEF OF DEPARTMENT, (FIRE DEPARTMENT)	134401.60	9737.00	182234.59	NaN	326373.19	
•••	•••								
148645	148646	Carolyn A Wilson	Human Services Technician	0.00	0.00	0.00	0.0	0.00	
148646	148648	Joann Anderson	Communications Dispatcher 2	0.00	0.00	0.00	0.0	0.00	
148647	148649	Leon Walker	Custodian	0.00	0.00	0.00	0.0	0.00	
148648	148650	Roy I Tillery	Custodian	0.00	0.00	0.00	0.0	0.00	
148649	148654	Joe Lopez	Counselor, Log Cabin Ranch	0.00	0.00	-618.13	0.0	-618.13	

148650 rows × 13 columns

#3 Check the head of the DataFrame. Is there anything unique? What can you tell about the data? (5 points)

т., [2].	
TU [2]:	sal head()
	Sal. nead()

Out[3]:		Id	EmployeeName	JobTitle	BasePay	OvertimePay	OtherPay	Benefits	TotalPay	TotalPayBer
	0	1	NATHANIEL FORD	GENERAL MANAGER- METROPOLITAN TRANSIT AUTHORITY	167411.18	0.00	400184.25	NaN	567595.43	5675!
	1	2	GARY JIMENEZ	CAPTAIN III (POLICE DEPARTMENT)	155966.02	245131.88	137811.38	NaN	538909.28	5389(
	2	3	ALBERT PARDINI	CAPTAIN III (POLICE DEPARTMENT)	212739.13	106088.18	16452.60	NaN	335279.91	3352
	3	4	CHRISTOPHER CHONG	WIRE ROPE CABLE MAINTENANCE MECHANIC	77916.00	56120.71	198306.90	NaN	332343.61	3323
	4	5	PATRICK GARDNER	DEPUTY CHIEF OF DEPARTMENT, (FIRE DEPARTMENT)	134401.60	9737.00	182234.59	NaN	326373.19	3263

Written Answer:

- We already know that the dataframe contains information about the salaries of employees in the San Francisco area
- Each row represents a different employee, and the columns provide information about each employee, such as their name, job title, and salary etc...
- As we can see the dataset contains some missing values, indicated by the NaN values in some columns
- In my opinion the **Benefits** column contains information about the benefits provided to each employee, such as healthcare or retirement benefits
- The TotalPay column represents the sum of an employee's BasePay, OvertimePay, and OtherPay
- The TotalPayBenefits column represents the sum of an employee's TotalPay and Benefits

#4 Use the .info() method to find out how many entries there are. Can you tell anything more about the data? (3 points)

```
In [4]:
```

```
sal.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 148650 entries, 0 to 148649
Data columns (total 13 columns):
 # Column Non-Null Count Dtype
                    _____
                    148650 non-null int64
 0 Id
1 EmployeeName 148650 non-null object
 2 JobTitle
                    148650 non-null object
148045 non-null float64
4 OvertimePay 148650 non-null float64
5 OtherPay 148650 non-null float64
6 Benefits
 6 Benefits
                    112491 non-null float64
7 TotalPay 148650 non-null float64
 8 TotalPayBenefits 148650 non-null float64
 9 Year 148650 non-null int64
10 Notes
                    0 non-null float64
11 Agency
12 Status
                    148650 non-null object
                    38119 non-null object
dtypes: float64(7), int64(2), object(4)
memory usage: 14.7+ MB
```

Written Answer:

- As indicated by the Rangelndex, the dataframe contains 148,654 entries
- There are 13 columns in the dataframe, with a mix of numerical and non-numerical data types
- Some columns contain missing values, as indicated by the difference between the Non-Null Count and the total number of entries in the dataframe
 - In particular, the **Benefits** and **Status** columns contain a relatively large number of missing values.
- The **Notes** column appears to contain entirely missing values and I think it can be dropped from the dataframe
- The EmployeeName and JobTitle columns contain non-numeric data types
- The BasePay, OvertimePay, OtherPay, Benefits, TotalPay, and TotalPayBenefits columns are all represented as floating-point numbers (float64 data type)
- The **Status** column also contains a relatively large number of missing values

#5 What is the average BasePay? (3 points)

```
In [5]: round(sal['BasePay'].mean(),2)
Out[5]: 66325.45
```

Explanation:

- Used .mean() method to calculate the avereage BasePay
- Also used round() function to limit the output to specific number of decimal points, 2 in this case

#6 What is the highest amount of OvertimePay in the dataset? (3 points)

```
In [6]: sal['OvertimePay'].max()
Out[6]: 245131.88
```

Explanation:

• Used .max() which is a method that returns the maximum value of a column in a DataFrame or a Series

#7 What is the job title of JOSEPH DRISCOLL? (4 points)

Explanation:

24 CAPTAIN, FIRE SUPPRESSION

- The above mentioned code, first locates the row where the EmployeeName column is equal to
 'JOSEPH DRISCOLL' using the .loc[] method, and
- then selects the value in the **JobTitle** column for that row

#8 How much does JOSEPH DRISCOLL make (including benefits)? (4 points)

Explanation:

- The code for this is similar to the above question, first it locates the row where the **EmployeeName** column is equal to **'JOSEPH DRISCOLL'** using the **.loc[]** method, and
- Then selects the value in the **TotalPayBenefits** column for that row

#9 What is the name of highest paid person (including benefits)? (3 points)

```
In [9]: sal.sort_values(by='TotalPayBenefits', ascending=False).iloc[0].EmployeeName
Out[9]: 'NATHANIEL FORD'
```

Explanation:

- The code first sorts the **sal** dataframe by the **TotalPayBenefits** column in descending order using the **sort_values()** method. The **ascending=False** argument sorts the output in descending order.
- Then used .ilooc[0] to get the row with the highest TotalPayBenefits value from sorted sal
- Finally, the code selects the employee name from that row using .EmployeeName

#10 What is the name of lowest paid person (including benefits)? Do you notice something strange about how much he or she is paid? (5 points)

```
In [10]:
          sal.sort values(by='TotalPayBenefits').iloc[0]
                                                   148654
Out[10]:
         EmployeeName
                                                Joe Lopez
         JobTitle
                              Counselor, Log Cabin Ranch
                                                      0.0
         BasePay
         OvertimePay
                                                      0.0
                                                  -618.13
         OtherPay
         Benefits
                                                      0.0
         TotalPay
                                                  -618.13
         TotalPayBenefits
                                                  -618.13
                                                      2014
                                                      NaN
         Notes
         Agency
                                           San Francisco
                                                       РΤ
         Status
         Name: 148649, dtype: object
```

Written Answer:

- Yes, there is something strange about the amount **Joe Lopez** is paid.
- According to the output, his **TotalPayBenefits** is negative, which means he owes the company money instead of receiving a salary.

#11 What was the average (mean) BasePay of all employees in 2011? (5 points)

```
In [11]: round(sal[sal['Year'] == 2011]['BasePay'].mean(),2)
Out[11]: 63595.96
```

Explanation:

- This code first selects only the rows from sal where the Year column is equal to 2011
- Next, the code selects only the **BasePay** column from the filtered rows using bracket notation
- Finally, the code uses the **mean()** method to calculate the average (mean) of the values in the 'BasePay' column

#12 How many unique job titles are there? (5 points)

```
In [12]: sal['JobTitle'].nunique()
Out[12]: 2158
```

Explanation:

- This code selects only the **JobTitle** column from **sal** using bracket notation.
- Then, the code uses the nunique() method to calculate the number of unique job titles in the JobTitle column

#13 What are the top 5 most common jobs? (5 points)

Explanation:

- This code selects only the **JobTitle** column from **sal** using bracket notation
- Then, the code uses the **value_counts()** method to count the number of occurrences of each unique job title in the **JobTitle** column
- Finally, the code uses the **head()** method to select only the top 5 most common job titles

#14 How many Job Titles were represented by only one person in 2013? (e.g. Job Titles with only one occurence in 2013?) (5 points)

```
In [14]: sum(sal[sal['Year']==2013]['JobTitle'].value_counts() == 1)
Out[14]: 202
```

Explanation:

- This code first selects only the rows in sal where the Year column is equal to 2013
- Then, it selects only the **JobTitle** column using bracket notation
- Next, it uses the value_counts() method to count the number of occurrences of each unique job
 title in the JobTitle column and used the comparison operator == to check which counts are equal to 1,
 and
- Then uses the **sum()** function to count the number of True values