Applications linéaires & matrices

Olivier Nicole

24 mars 2021

Définition 1 – Applications linéaires

Soit $(E,+,\bullet)$ et $(F,+,\bullet)$ deux \mathbb{K} -espaces vectoriels. Une application linéaire (ou morphisme ou, plus rarement, homomorphisme) de $(E,+,\bullet)$ dans $(F,+,\bullet)$ est une fonction φ de E dans F qui vérifie les deux propriétés suivantes :

- 1 (additivité) $\forall \mathbf{u}, \mathbf{v} \in \mathbf{E}$, on a : $\varphi(\mathbf{u} + \mathbf{v}) = \varphi(\mathbf{u}) + \varphi(\mathbf{v})$;
- 2 (homogénéité) $\forall \lambda \in \mathbb{K}$, $\forall \mathbf{u} \in \mathbf{E}$, on a : $\varphi(\lambda \bullet \mathbf{u}) = \lambda \bullet \varphi(\mathbf{u})$.

L'ensemble des applications linéaires de $(E, +, \bullet)$ et $(F, +, \bullet)$ est noté $\mathcal{L}(E, F)$.

00000

Définition 2 – Endomorphismes

Soit $(E, +, \bullet)$ un \mathbb{K} -espace vectoriel. Une application linéaire de $(E, +, \bullet)$ dans $(E, +, \bullet)$ dans lui même est appelée un endomorphisme.

L'ensemble des endomorphismes de $(E, +, \bullet)$ est noté $\mathcal{L}(E)$.

Définition 3 – Isomorphismes

Un isomorphisme est une application linéaire bijective. L'ensemble des isomorphismes entre un espace vectoriel $(E, +, \bullet)$ et un autre $(F, +, \bullet)$ est noté Isom(E, F).

Définition 4 – Automorphismes

Un automorphisme est un morphisme bijectif. L'ensemble des automorphismes d'un espace linéaire $(E, +, \bullet)$ est noté $\mathcal{GL}(E)$.

Définition 5 – Forme linéaire

Une application linéaire d'un \mathbb{K} -espace vectoriel dans l'espace $(\mathbb{K},+,ullet)$ est appelée une forme linéaire.

Proposition 1

Soit $(E,+,\bullet)$ et $(F,+,\bullet)$ deux \mathbb{K} -espaces vectoriels et φ une fonction de E dans F. Alors φ est une application linéaire de $(E,+,\bullet)$ dans $(F,+,\bullet)$ si et seulement si, pour tout scalaire $\lambda \in \mathbb{K}$, tout couple de vecteurs $(u,v) \in E^2$, on a : $\varphi(u+\lambda \bullet v) = \varphi(u)+\lambda \bullet \varphi(v)$.

Définition 6 - Noyau d'un morphisme

Soit $(E,+,\bullet)$ et $(F,+,\bullet)$ deux \mathbb{K} -espaces vectoriels et $\varphi\in\mathcal{L}(E,F)$. On appelle noyau de u, qu'on note $\mathrm{Ker}\,(u)$ les antécédents de 0. C'est à dire

$$Ker(u) = \{ \mathbf{x} \in \mathbf{E} \mid u(\mathbf{x}) = 0 \} = u^{-1}(\{0\})$$

Le noyau est donc une partie de l'ensemble E.

Proposition 2

Le noyau d'un morphisme de $\mathcal{L}(E,F)$ est un sous-espace vectoriel de E.

On peut donc se contenter de montrer qu'une partir de *E* est le noyau d'un morphisme pour savoir que c'est un sous-espace vectoriel. C'est une manière très compacte et pratique de prouver qu'un ensemble est un sous espace vectoriel.

Exemple 1

On prend $E=\mathbb{R}^3$. Montrer que l'ensemble $F=\{(x,y,z)\in\mathbb{R}^3\ \big|\ x+2y=0\}$ est un sous espace vectoriel de E.

Exemple 2

Soit E l'espace vectoriel des fonctions \mathcal{C}^{∞} de \mathbb{R} dans \mathbb{R} . On se donne une équation différentielle y''+ay'+by=0. Prouver que l'ensemble F des solutions est un espace vectoriel.

age et rang OO

Théorème 1

Soit $(E,+,\bullet)$ et $(F,+,\bullet)$ deux \mathbb{K} -espaces vectoriels et $\varphi\in\mathcal{L}(E,F)$. φ est injective si et seulement si $\mathrm{Ker}\,(u)=\{0\}$.

Définition 7 – Image d'un morphisme

Soit $(E,+,\bullet)$ et $(F,+,\bullet)$ deux \mathbb{K} -espaces vectoriels et $\varphi\in\mathcal{L}(E,F)$. On appelle image de u, qu'on note $\mathrm{Im}\,(u)$ l'ensemble des images de u. C'est à dire

$$\operatorname{Im}(u) = \{u(x) \in F \mid x \in E\} = u(E)$$

Le noyau est donc une partie de l'ensemble F.

Définition 8 - Rang

Soit $(E, +, \bullet)$ et $(F, +, \bullet)$ deux \mathbb{K} -espaces vectoriels et $\varphi \in \mathcal{L}(E, F)$. On appelle rang de u, qu'on note $\operatorname{rg}(u)$ la dimension de son image.

$$\operatorname{rg}\left(\boldsymbol{u}\right)=\dim(\operatorname{Im}\left(\boldsymbol{u}\right))$$

Théorème 2 – Théorème du rang (morphismes)

Soit $(E, +, \bullet)$ et $(F, +, \bullet)$ deux \mathbb{K} -espaces vectoriels de dimension finie et $\varphi \in \mathcal{L}(E, F)$.

$$\dim \mathbf{E} = \operatorname{rg}(\mathbf{u}) + \dim \operatorname{Ker}(\mathbf{u})$$