CSC320: Visual Computing Term Test 1 March 3rd, 2006 9:10-10:00

Student Number:	
Last Name:	First Name:
This exam consists of 3 questions on Aids allowed: None.	7 single-sided pages (including cover page).
Total Marks: 50 Minutes: 50	

1. 2D Curves [15 Marks]

Consider the 2D curve $\gamma(\theta) = (2 + 6\cos\theta, 10\sin\theta)$ with $\theta \in [0, 2\pi)$.

(a) [5 Marks] Draw the curve in the grid provided below. Be as precise as possible.

(b) [10 Marks] Derive the expression for the unit normal, $\mathbf{n}(\theta)$, at point $\gamma(\theta)$ along the curve.

2. Isophotes & Image Gradients [15 Marks]

Consider the image I shown below.

- (a) [5 Marks] Give the definition of the *isophote* through pixel (x, y), and draw it on the image above.
- (b) [5 Marks] Draw on the image a vector that begins at (x, y) and is in the direction of $\nabla I(x, y)$. Explain in a sentence its relationship to the isophote through (x, y).
- (c) [5 Marks] Give the definition of the gradient magnitude using standard calculus notation.

3. Weighted Least Squares Estimation [20 Marks]

Consider the 1D image shown below, whose 41 pixels have intensities I_0, \ldots, I_{40} , respectively. We want to estimate the image intensity, I(x), and its first derivative, $\frac{d}{dx}I(x)$, at pixel x using the sliding window algorithm with a first-order, weighted least squares fit. Assume the window has size 2*2+1 pixels and the weights are given by a function $\Omega(q)$, with $q \in [-2,2]$.

(a) [5 Marks] Using matrix notation, show the linear system that must be solved to compute the fit for pixel x=20. Be sure to indicate the dimensions and contents of each matrix.

(b) [10 Marks] Now suppose that the weight function is a Gaussian

$$\Omega(q) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{q^2}{2\sigma^2}} ,$$

with $\sigma = 1$ (plotted below). Observe that the function is maximized at q = 0 and is almost zero when q is outside the range $[-2\sigma, 2\sigma]$.

Plot of the Gaussian weight function $\Omega(q)$ with $\sigma=1$

(b1) [5 Marks] Plot the estimated intensity I(x) on the graph below for $x \in [5,35]$ and indicate the x values where important transitions in the shape of I(x) will occur. For reference, the original pixel intensities are shown as well.

(b2) [5 Marks] Plot the estimated intensity derivative $\frac{d}{dx}I(x)$ for $x\in[5,35].$ Indicate the x values where important transitions in the shape of $\frac{d}{dx}I(x)$ will occur and indicate the (approximate) value of $\frac{d}{dx}I(x)$ at those locations. For reference, the original pixel intensities are shown as well.

(c) [5 Marks] Finally, suppose that we do our estimation with a Gaussian weight function that *changes* from window to window and depends on pixel *intensities* within the window. Specifically, for the window centered at pixel x, we use the weight function

$$\Omega_x(q) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(I(x+q)-I(x))^2}{2\sigma^2}} ,$$

with $\sigma = 10$ (plotted below).

Plot of the Gaussian weight function $\Omega_{\rm X}({\bf q})$ with σ =10 $\Omega_{\rm X$

Plot the estimated intensity I(x) on the graph below for $x \in [5,35]$ and indicate the x values where important transitions in the shape of I(x) will occur. For reference, the original pixel intensities are shown as well.

