EXAME NACIONAL DO ENSINO SECUNDÁRIO

12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos de Carácter Geral e Cursos Tecnológicos

Duração da prova: 120 minutos

1.ª FASE 1.ª CHAMADA VERSÃO 1

1998

PROVA ESCRITA DE MATEMÁTICA

Primeira Parte

Para cada uma das nove questões desta primeira parte, seleccione a resposta correcta, de entre as alternativas que lhe são apresentadas, e **escreva na sua folha de respostas a letra que lhe corresponde**. Não apresente cálculos. Atenção! Se apresentar mais do que uma resposta, a questão será anulada, o mesmo acontecendo se a letra transcrita for ilegível.

Cotação: cada resposta certa, +9 pontos; cada resposta errada, -3 pontos; questão não respondida ou anulada, 0 pontos. Um total negativo nesta primeira parte da prova vale 0 pontos.

1. O valor de
$$\lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^{2n}$$
 é

(B)
$$+\infty$$

(C)
$$\sqrt{e}$$

(D)
$$e^2$$

- 2. Na figura estão representadas:
 - \bullet parte do gráfico de uma função f diferenciável em $\mathbb R$
 - \bullet uma recta $\,r\,$ tangente ao gráfico de $\,f\,$ no ponto de abcissa $\,3\,$

O valor de f'(3), derivada da função f no ponto 3, pode ser igual a

(B) 0

(C) $\frac{1}{f(3)}$

(D) 1

- **3.** De uma função g, de domínio \mathbb{R} , sabe-se que:
 - g(0) = 1
 - g é estritamente crescente em $[0, +\infty[$
 - *q* é par

Indique qual das seguintes afirmações é verdadeira.

- **(A)** O contradomínio de g é $[0, +\infty[$
- **(B)** g é estritamente crescente em \mathbb{R}

(C) q é injectiva

(D) q não tem zeros

4. Na figura abaixo está parte da representação gráfica de uma função s de domínio \mathbb{R} .

Indique qual das figuras seguintes pode ser parte da representação gráfica da função $\,t\,$ $\text{ definida por } t(x) = \frac{1}{s(x)}$

(A)

(B)

(C)

(D)

- Considere, num referencial o.n. Oxyz: 5.
 - a esfera ${\cal E}$ definida pela condição $(x-1)^2+(y-2)^2+(z-3)^2\leq 36$ a recta ${\bf r}$ de equação $(x,\,y,\,z)=(1,2,3)+k\,(-2,0,1)\,,\,\,k\in{\mathbb R}$

A intersecção da recta $\,r\,$ com a esfera $\,\mathcal{E}\,$ é um segmento de recta.

Qual é o comprimento desse segmento de recta?

- **(A)** 8
- **(B)** 10
- **(C)** 12
- **(D)** 14

6. Na figura está representado um tetraedro regular (sólido geométrico com quatro faces, que são todas triângulos equiláteros).

- A, B, C e D são os vértices do tetraedro
- $\overline{AB} = 6$

O valor do produto escalar $\ \overrightarrow{BC}$, \overrightarrow{BD} é

- **(A)** 18
- **(B)** $18\sqrt{2}$
- **(C)** 36
- **(D)** $36\sqrt{2}$
- 7. Considere, num referencial o.n. xOy, os pontos A(2, 0) e B(6, 0). Indique qual das figuras seguintes pode representar o conjunto de pontos ${\cal P}$ do plano tais que $\overline{PA} + \overline{PB} = 5$.

(A)

(B)

(C)

(D)

- 8. O penúltimo número de uma certa linha do Triângulo de Pascal é 10. Qual é o terceiro número dessa linha?
 - **(A)** 11
- **(B)** 19
- **(C)** 45
- **(D)** 144
- 9. Um dado é lançado cinco vezes. Qual é a probabilidade de que a face seis apareça pelo menos uma vez?

- (A) $1 \left(\frac{1}{6}\right)^5$ (B) $1 \left(\frac{5}{6}\right)^5$ (C) $C_1^5 \left(\frac{1}{6}\right)^5$ (D) $C_1^5 \left(\frac{5}{6}\right)^5$

Segunda Parte

Nas questões desta segunda parte, apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efectuar e todas as justificações que entender necessárias. Atenção: pode ser-lhe útil consultar o formulário apresentado no final da prova.

- **1.** Seja f a função definida em \mathbb{R}^+ por $f(x) = log_2(8x^2) log_2(x^2)$
- **a)** Mostre que $\ f(x) = \ 3 + \ log_2 \ x \ , \ \$ para qualquer $\ x \in \mathbb{R}^+$
- **b)** Determine a abcissa do ponto de intersecção do gráfico de f com a recta de equação y=8
- **2.** Duas povoações, $A \in B$, distanciadas 8 km uma da outra, estão a igual distância de uma fonte de abastecimento de água, localizada em F.

Pretende-se construir uma canalização ligando a fonte às duas povoações, como se indica na figura abaixo. A canalização é formada por três canos: um que vai da fonte $\,F\,$ até um ponto $\,P\,$ e dois que partem de $\,P\,$, um para $\,A\,$ e outro para $\,B\,$. O ponto $\,P\,$ está a igual distância de $\,A\,$ e de $\,B\,$.

Tem-se ainda que:

- o ponto M, ponto médio de [AB], dista 4 km de F
- x é a amplitude do ângulo PAM $\left(x \in \left[0, \frac{\pi}{4}\right]\right)$

 Tomando para unidade o quilómetro, mostre que o comprimento total da canalização é dado por

$$g(x) = 4 + \frac{8 - 4 \operatorname{sen} x}{\cos x}$$

(Sugestão: comece por mostrar que $\ \overline{PA} = \frac{4}{\cos x} \ \ {
m e \ que \ } \ \overline{FP} = 4 - 4 \, tg \, x$)

- **b)** Calcule g(0) e interprete o resultado obtido, referindo a forma da canalização e consequente comprimento.
- **c)** Determine o valor de x para o qual o comprimento total da canalização é mínimo.

- 3. Uma turma de uma escola secundária tem 27 alunos: 15 raparigas e 12 rapazes. O delegado de turma é um rapaz. Pretende-se constituir uma comissão para organizar um passeio. A comissão deve ser formada por 4 raparigas e 3 rapazes. Acordou-se que um dos 3 rapazes da comissão será necessariamente o delegado de turma.
- a) Quantas comissões diferentes se podem constituir?
- **b)** Admita que os 7 membros da comissão, depois de constituída, vão posar para uma fotografia, colocando-se uns ao lado dos outros.

Supondo que eles se colocam ao acaso, qual é a probabilidade de as raparigas ficarem todas juntas?

Apresente o resultado na forma de dízima, com aproximação às milésimas.

- **4.** Na figura está representado, em referencial o.n. Oxyz, um sólido formado por um cubo e uma pirâmide quadrangular regular.
 - A base da pirâmide coincide com a face superior do cubo
 - ullet O vértice O coincide com a origem do referencial
 - ullet O vértice N pertence ao semieixo positivo Ox
 - ullet O vértice P pertence ao semieixo positivo Oy
 - ullet O vértice S pertence ao semieixo positivo Oz
 - \bullet A altura da pirâmide, $\overline{VM},$ é igual ao comprimento da aresta do cubo
 - O vértice V tem coordenadas (3,3,12)

- a) Justifique que $\overline{UQ}=6$ e que $\overline{UV}=3\sqrt{6}$
- b) Determine a intersecção da recta que contém a aresta $\ [UV]$ com o plano de equação $\ x=4$
- Considere um ponto A pertencente à aresta [UQ]. Um plano que contenha o ponto A e que seja paralelo ao plano xOy divide o sólido representado na figura em duas partes. Determine a cota do ponto A de modo que sejam iguais os volumes dessas duas partes.

Formulário

Volume da pirâmide = $\frac{1}{3}$ × Área da base × Altura

COTAÇÕES

Primeira	ı Parte	81
	Cada questão certa Cada questão errada Cada questão não respondida ou anulada	- 3
	Nota: um total negativo nesta parte da prova vale 0 (zero) por	ntos.
Segunda	a Parte	119
	1	22
	2	39
	a)	22
	4	36
TOTAL .		200