CS2022

Shift-and-Add Multiplication ASM

- Note the concatenation notation
- From the ASM we can write out the RT description of the system in terms of:
 - System state
 - ▶ Input signals
- ► The table on the following slide allows us to deduce the design of each register:

CS2022 Control and Sequencing

- Two distinct aspects in control unit design
 - Control of micro-operations
 - Sequencing
- We separate the two aspects by providing:
 - ► A state table
 - ▶ Defines signals in terms of states and inputs
 - A simplified ASM chart
 - Represents only state transitions

CS2022 Register Transfers

- From the ASM we can write out the RT description of the system in terms of:
 - System state
 - ► Input signals
- By gathering together the RTs loading each register we may easily deduce the design of each register.

CS2022 Control Signals for Binary Multiplier

Block Diagram Module	Microoperation	Control Signal Name	Control Expression $IDLE \cdot G$ $MUL0 \cdot Q_0$ $MUL1$	
Register A:	$A \leftarrow 0$ $A \leftarrow A + B$ $C \ A\ Q \leftarrow \text{sr } C \ A\ Q$	Initialize Load Shift_dec		
Register B:	$B \leftarrow IN$	Load_B	LOADB	
Flip-Flop <i>C</i> :	$C \leftarrow 0$ $C \leftarrow C_{\text{out}}$	Clear_C Load	$IDLE \cdot G + MUL1$	
Register Q:	$Q \leftarrow IN$ $C A Q \leftarrow \text{sr } C A Q$	Load_Q Shift_dec	LOADQ —	
Counter P:	$P \leftarrow n-1 \\ P \leftarrow P-1$	Initialize Shift_dec	_	

CS2022, 11th Lecture, Dr. M. Manzke, Page: 4

Sequence Register and Decoder This method uses: ► Sequence Register: ▶That holds control states ▶ Register with n flop-flops has 2ⁿ states Decoder Provides output signal for each state. ►An n-to-2ⁿ decoder has 2ⁿ outputs CS2022, 11th Lecture, Dr. M. Manzke, Page: 6

State Table

Derived from the Sequencing Part of ASM Chart

D_{MO}=IDLE • G + MUL1 • Z

► D_{M1} = MUL0

Present state			Inputs		Next state		Decoder Outputs		
Name	M ₁	Mo	G	z	M ₁	Mo	IDLE	MULO	MUL1
IDLE	0	0	0	×	0	0	1	0	0
	0	0	1	\times	0	1	1	0	0
MUL0	0	1	×	×	1	0	0	1	0
MUL1	1	0	×	0	0	1	0	0	1
	1	0	X	1	0	0	0	0	1
-	1	1	X	×	×	×	×	×	×

CS2022, 11th Lecture, Dr. M. Manzke, Page: 7

\$2022 Control Unit for Binary Multiplier Initialize Mo Clear_C **DECODER** IDLE A₀ MULO MUL1 Shift_dec A₁ M_1 Load Q_0 Clock CS2022, 11th Lecture, Dr. M. Manzke, Page: 8