

PHYSICS

CHAPTER 19

Ist secondary

MOVIMIENTO VERTICAL

DE CAIDA LIBRE

HELICOTEORÍA

Características de un MVCL

La trayectoria es rectilínea

Notamos que un MVCL es un caso particular de un MRUV

HELICOTEORÍA

NOTA: Dado que el MVCL es un MRUV sus ecuaciones son las mismas

$$v_f = v_o \pm gt$$

$$\mathbf{h} = \left(\frac{V_O + V_f}{2}\right) t$$

Se suelta una esfera desde la azotea de un edificio llegando al piso luego de 5 s. Determine la altura del edificio. Desprecie la resistencia del aire. $(g = 10 \text{ m/s}^2)$

$$v_f = v_o \pm gt$$

$$v_f = v_o + gt$$

$$V_f = 0 \frac{m}{s} + 10 \frac{m}{s^2}.5s$$

$$V_f = 50 \; \frac{m}{s}$$

$$h = \left(\frac{V_0 + V_f}{2}\right) t$$

$$h = \left(\frac{0\frac{m}{s} + 50\frac{m}{s}}{2}\right)5$$

$$h=125 \text{ m}$$

Una pelota de tenis se lanza verticalmente como se muestra. Determine la altura del edificio. Desprecie la resistencia del aire. $(g=10 \text{ m/s}^2)$

$$v_f = v_o - gt$$

$$10\frac{m}{s} = 30\frac{m}{s} - 10\frac{m}{s^2}.t$$

$$10 \; \frac{m}{s^2}.t = 20 \frac{m}{s}$$

$$2 s = t$$

$$h = \left(\frac{V_O + V_f}{2}\right) t$$

$$h=(\frac{30\frac{m}{s}+10\frac{m}{s}}{2})2$$

$$h = 40 \text{ m}$$

3

 $(g=10 \text{ m/s}^2)$

Se lanza una piedra verticalmente hacia abajo tal como se muestra. Determine la altura h. Desprecie la resistencia del aire.

5 m/s

h

45 m/s

$$v_f = v_o \pm gt$$

$$v_f = v_o + gt$$

$$45\frac{m}{s} = 5\frac{m}{s} + 10\frac{m}{s^2}.t$$

$$40\frac{m}{s} = 10\frac{m}{s^2}.t$$

$$4 s = t$$

$$h = \left(\frac{V_O + V_f}{2}\right) t$$

$$h=(\frac{5\frac{m}{s}+45\frac{m}{s}}{2})4$$

$$h = 100 \text{ m}$$

Se lanza una piedra verticalmente hacia abajo tal como se muestra. Determine la altura h. Desprecie la resistencia del aire. $(g = 10 \text{ m/s}^2)$

$$v_f = v_o \pm gt$$

$$v_f = v_o + gt$$

$$29\frac{m}{s} = 9\frac{m}{s} + 10\frac{m}{s^2}.t$$

$$20\frac{m}{s}=10\,\frac{m}{s^2}.t$$

$$2 s = t$$

$$\mathbf{h} = \left(\frac{V_O + V_f}{2}\right) t$$

$$h = (\frac{9\frac{m}{s} + 29\frac{m}{s}}{2})2$$

$$h = 38m$$

5

HELICOPRÁCTICA

Una esfera se lanza verticalmente tal como se muestra. Determine la máxima altura que logra. Desprecie la resistencia del aire. $(g = 10 \text{ m/s}^2)$

$$v_f = 0 \text{ m/s}$$

$$v_f = v_o \pm gt$$

$$v_f = v_o - gt$$

$$0\frac{m}{s} = 30\frac{m}{s} - 10\frac{m}{s^2}.t$$

$$10 \; \frac{m}{s^2} \cdot t = 30 \; \frac{m}{s}$$

$$3 s = t$$

$$h = \left(\frac{V_0 + V_f}{2}\right) t$$

$$h = \left(\frac{30 \frac{m}{s} + 0 \frac{m}{s}}{2}\right) 3s$$

$$h = (15 \frac{m}{s})3s$$

$$h = 45 \text{ m}$$

$$V_o = 30 \text{ m/s}$$

Por ayudar a su mamá en las compras al mercado, esta le dio una propina a su hijo Luis de s/5.00.

Emocionado lanza la moneda verticalmente y hacia arriba, si alcanza su altura máxima después de 5 s.

Determine la altura máxima que logró la moneda respecto del punto de lanzamiento. $(g=10 \text{ m/s}^2)$

$$v_f = 0 \text{ m/s}$$

$$v_f = v_o \pm gt$$

$$v_f = v_o - gt$$

$$0\frac{m}{s} = v_o - 10\frac{m}{s^2}.5 s$$

$$50\frac{m}{s}=V_{0}$$

$$\mathbf{h} = \left(\frac{V_O + V_f}{2}\right) t$$

$$h=(\frac{50\frac{m}{s}+0\frac{m}{s}}{2})5$$

$$h = 125 \text{ m}$$

Durante la clase de física el profesor trata el tema de caída libre y para llevar el tema a la práctica les propone medir la altura del colegio. Para esté propósito les entrega a dos alumnos un cronómetro que servirá para medir el tiempo que demora la caída. Estando en lo alto del edificio sueltan una esfera demorando 3 s, ¿qué altura tiene el edificio?, desprecie la resistencia del aire. (g=10 m/s²)

$$v_f = v_o \pm gt$$

$$v_f = v_o + gt$$

$$v_f = 0 \frac{m}{s} + 10 \frac{m}{s^2}.3 s$$

$$30\frac{m}{s} = v_f$$

$$\mathbf{h} = \left(\frac{V_O + V_f}{2}\right) t$$

$$h = \left(\frac{0 \frac{m}{s} + 30 \frac{m}{s}}{2}\right) 3$$

$$h = 45 \text{ m}$$