第3节 诱导公式 (★★)

强化训练

1. (2023 • 江苏无锡模拟 • ★) tan(-420°)的值为 ()

(A)
$$-\frac{\sqrt{3}}{3}$$
 (B) $\frac{\sqrt{3}}{3}$ (C) $-\sqrt{3}$ (D) $\sqrt{3}$

(B)
$$\frac{\sqrt{3}}{3}$$

(C)
$$-\sqrt{3}$$

(D)
$$\sqrt{3}$$

答案: C

解析: -420°绝对值较大,可先拆一个-360°出来,把绝对值化小,便于利用特殊角的三角函数值计算,

$$\tan(-420^{\circ}) = \tan(-360^{\circ} - 60^{\circ}) = \tan(-60^{\circ}) = -\tan 60^{\circ} = -\sqrt{3}.$$

2. $(2023 \cdot 陝西一模 \cdot ★)$ 已知 $\sin^2(\pi - \theta) = \frac{\sqrt{3}}{2}\cos(\frac{3\pi}{2} + \theta)$,且 $0 < |\theta| < \frac{\pi}{2}$,则 θ 等于()

(A)
$$-\frac{\pi}{6}$$
 (B) $-\frac{\pi}{3}$ (C) $\frac{\pi}{6}$ (D) $\frac{\pi}{3}$

(B)
$$-\frac{\pi}{3}$$

(C)
$$\frac{\pi}{6}$$

(D)
$$\frac{\pi}{3}$$

答案: D

解析: 所给的等式中有 π , $\frac{3\pi}{2}$, 先用诱导公式化简,

因为 $\sin(\pi - \theta) = \sin \theta$, $\cos(\frac{3\pi}{2} + \theta) = \sin \theta$, 所以代入题干的等式可得 $\sin^2 \theta = \frac{\sqrt{3}}{2} \sin \theta$,

解得: $\sin \theta = \frac{\sqrt{3}}{2}$ 或 0,又 $0 < |\theta| < \frac{\pi}{2}$,所以 $-\frac{\pi}{2} < \theta < 0$ 或 $0 < \theta < \frac{\pi}{2}$,故 $\sin \theta$ 只能取 $\frac{\sqrt{3}}{2}$,且 $\theta = \frac{\pi}{3}$.

3.
$$(2022 \cdot 四川成都模拟 \cdot \star\star)$$
 已知 $\tan\theta = 2$,则 $\frac{\sin(\frac{\pi}{2} + \theta) - \cos(\pi - \theta)}{\sin(\frac{\pi}{2} - \theta) - \sin(\pi - \theta)} = \underline{\qquad}$.

答案: -2

解析:
$$\frac{\sin(\frac{\pi}{2}+\theta)-\cos(\pi-\theta)}{\sin(\frac{\pi}{2}-\theta)-\sin(\pi-\theta)} = \frac{\cos\theta-(-\cos\theta)}{\cos\theta-\sin\theta} = \frac{2\cos\theta}{\cos\theta-\sin\theta} = \frac{2}{1-\tan\theta} = -2.$$

4. $(2023 \cdot 湖北十堰模拟 \cdot ★★)已知角 α 的终边与单位圆的交点为 <math>P(-\frac{3}{5}, \frac{4}{5})$,则 $\cos(\frac{3\pi}{2} + \alpha) = ($)

(A)
$$\frac{4}{5}$$

(B)
$$-\frac{4}{5}$$

(A)
$$\frac{4}{5}$$
 (B) $-\frac{4}{5}$ (C) $-\frac{3}{5}$ (D) $\frac{3}{5}$

(D)
$$\frac{3}{4}$$

答案: A

解析:给了 α 的终边与单位圆的交点,可用三角函数定义求 α 的各三角函数值,故用诱导公式化去目标式

中的 $\frac{3\pi}{2}$,即可得到结果,

由题意,
$$\cos(\frac{3\pi}{2} + \alpha) = \sin \alpha = \frac{4}{5}$$
.

- 5. $(2023 \cdot 安徽马鞍山模拟 \cdot \star \star \star \star)$ 如图,在平面直角坐标系内,角 α 的始边与 x 轴的非负半轴重合, 终边与单位圆交于点 $P_1(\frac{3}{5},\frac{4}{5})$,若线段 OP_{n-1} 绕点O 逆时针旋转 $\frac{\pi}{4}$ 得到 $OP_n(n \ge 2, n \in \mathbb{N}^*)$,则点 P_{2023} 的纵坐 标为()
- (A) $-\frac{4}{5}$ (B) $-\frac{3}{5}$ (C) $\frac{3}{5}$ (D) $\frac{4}{5}$

答案: B

解析: 先找到以射线 OP_{2023} 为终边的角,根据三角函数定义,其正弦值即为点 P_{2023} 的纵坐标,

由题意, α 与单位圆的交点为 $P_1(\frac{3}{5},\frac{4}{5})$,由三角函数定义, $\cos \alpha = \frac{3}{5}$, $\sin \alpha = \frac{4}{5}$,

设以 OP_{2023} 为终边的角为 β ,因为 OP_{2023} 由 OP_1 逆时针旋转 2022 个 $\frac{\pi}{4}$ 后得到,

所以
$$\sin \beta = \sin(2022 \times \frac{\pi}{4} + \alpha) = \sin(504\pi + \frac{3\pi}{2} + \alpha) = \sin(\frac{3\pi}{2} + \alpha) = -\cos \alpha = -\frac{3}{5}$$
,故点 P_{2023} 的纵坐标为 $-\frac{3}{5}$.

6.
$$(2022 \cdot 四川自贡期末 \cdot ★★) 已知 sin($\frac{\pi}{5} - x$) = $\frac{3}{5}$,则 cos($\frac{7\pi}{10} - x$) = _____.$$

答案: $-\frac{3}{5}$

解析:给值求值问题,先尝试探究角之间的关系,为了便于观察,可将已知的角换元来看,

设
$$t = \frac{\pi}{5} - x$$
,则 $x = \frac{\pi}{5} - t$,且 $\sin t = \frac{3}{5}$,

所以
$$\cos(\frac{7\pi}{10} - x) = \cos[\frac{7\pi}{10} - (\frac{\pi}{5} - t)] = \cos(\frac{\pi}{2} + t) = -\sin t = -\frac{3}{5}.$$

7.
$$(2022 \cdot 湖南模拟 \cdot \star \star)$$
 已知 $\cos(\frac{5\pi}{12} + \alpha) = \frac{1}{3}$,且 $-\pi < \alpha < -\frac{\pi}{2}$,则 $\cos(\frac{\pi}{12} - \alpha) = ($)

(A)
$$\frac{2\sqrt{2}}{3}$$
 (B) $\frac{1}{3}$ (C) $-\frac{1}{3}$ (D) $-\frac{2\sqrt{2}}{3}$

答案: D

解析: 设
$$t = \frac{5\pi}{12} + \alpha$$
, 则 $\alpha = t - \frac{5\pi}{12}$, 且 $\cos t = \frac{1}{3}$, 所以 $\cos(\frac{\pi}{12} - \alpha) = \cos[\frac{\pi}{12} - (t - \frac{5\pi}{12})] = \cos(\frac{\pi}{2} - t) = \sin t$,

已知 $\cos t$ 求 $\sin t$,得研究t 的范围,才能确定开平方该取正还是取负,

因为 $-\pi < \alpha < -\frac{\pi}{2}$,所以 $-\frac{7\pi}{12} < t = \frac{5\pi}{12} + \alpha < -\frac{\pi}{12}$,故 $\sin t < 0$,

所以 $\sin t = -\sqrt{1 - \cos^2 t} = -\frac{2\sqrt{2}}{3}$,故 $\cos(\frac{\pi}{12} - \alpha) = -\frac{2\sqrt{2}}{3}$.

8. (2022 · 山西二模 · ★★★) 若 sin 10° = a sin 100°, 则 sin 20° = ()

(A)
$$\frac{a}{a^2+1}$$

(B)
$$-\frac{a}{a^2+1}$$

(C)
$$\frac{2a}{a^2+1}$$

(A)
$$\frac{a}{a^2+1}$$
 (B) $-\frac{a}{a^2+1}$ (C) $\frac{2a}{a^2+1}$ (D) $-\frac{2a}{a^2+1}$

答案: C

解析:注意到求值的角 $20^{\circ} = 2 \times 10^{\circ}$,所以将已知等式中的 100° 转换成 10° ,

曲题意, $\sin 10^\circ = a \sin 100^\circ = a \sin (90^\circ + 10^\circ) = a \cos 10^\circ$,所以 $\tan 10^\circ = a$,

故
$$\sin 20^\circ = 2\sin 10^\circ \cos 10^\circ = \frac{2\sin 10^\circ \cos 10^\circ}{\sin^2 10^\circ + \cos^2 10^\circ} = \frac{2\tan 10^\circ}{\tan^2 10^\circ + 1} = \frac{2a}{a^2 + 1}$$
.

9. (★★★) 计算:

(1)
$$\sin^2 1^\circ + \sin^2 2^\circ + \sin^2 3^\circ + \dots + \sin^2 89^\circ =$$
___;

(1)
$$\sin^2 1^\circ + \sin^2 2^\circ + \sin^2 3^\circ + \dots + \sin^2 89^\circ =$$
____; (2) $\frac{\lg(\tan 1^\circ) + \lg(\tan 2^\circ) + \dots + \lg(\tan 89^\circ)}{\sin^2 1^\circ + \sin^2 2^\circ + \dots + \sin^2 89^\circ} =$ ____.

答案: (1) $\frac{89}{2}$; (2) 0

解析: (1) sin²1°, sin²2°等无法直接计算,考虑组合计算,注意到sin²1°+sin²89°=sin²1°+cos²1°=1,

类似的, $\sin^2 2^\circ + \sin^2 88^\circ = \sin^2 2^\circ + \cos^2 2^\circ = 1$,…,计算的方法就出来了,

 $i \exists S = \sin^2 1^\circ + \sin^2 2^\circ + \sin^2 3^\circ + \dots + \sin^2 89^\circ$ 1,

因为 $\sin 1^\circ = \sin(90^\circ - 89^\circ) = \cos 89^\circ$, $\sin 2^\circ = \sin(90^\circ - 88^\circ) = \cos 88^\circ$, …, $\sin 89^\circ = \sin(90^\circ - 1^\circ) = \cos 1^\circ$,

代入式①得: $S = \cos^2 89^\circ + \cos^2 88^\circ + \cos^2 87^\circ + \dots + \cos^2 1^\circ = \cos^2 1^\circ + \cos^2 2^\circ + \cos^2 3^\circ + \dots + \cos^2 89^\circ$ ②,

所以①+②可得:
$$2S = (\sin^2 1^\circ + \cos^2 1^\circ) + (\sin^2 2^\circ + \cos^2 2^\circ) + \dots + (\sin^2 89^\circ + \cos^2 89^\circ) = 89$$
,故 $S = \frac{89}{2}$.

(2) 先用对数的运算性质将分子合并, $lg(tan 1^\circ) + lg(tan 2^\circ) + \cdots + lg(tan 89^\circ) = lg(tan 1^\circ tan 2^\circ \cdots tan 89^\circ)$,

因为
$$\tan 1^\circ \tan 2^\circ \cdots \tan 89^\circ = \frac{\sin 1^\circ}{\cos 1^\circ} \cdot \frac{\sin 2^\circ}{\cos 2^\circ} \cdots \frac{\sin 89^\circ}{\cos 89^\circ} = \frac{\sin 1^\circ}{\sin 89^\circ} \cdot \frac{\sin 2^\circ}{\sin 89^\circ} \cdots \frac{\sin 89^\circ}{\sin 1^\circ} = 1$$
,

所以 $\lg(\tan 1^{\circ} \tan 2^{\circ} \cdots \tan 89^{\circ}) = \lg 1 = 0$,故原式=0.