

Course Name: Digital System Design

Course Number and Section: 14:332:437:03

Experiment: # 3 – Thunderbird Turn Signal
Lab Instructor: Sumit Maheshwari and Chen Wang
Date Performed : November 18 th , 2017
Date Submitted: December 1 st , 2017
Submitted by: Pawel Derkacz (151-00-5994)
For Lab Instructor Use ONLY
GRADE:
COMMENTS:

Electrical and Computer Engineering Department School of Engineering Rutgers University, Piscataway, NJ 08854

PURPOSE

To create a Thunderbird turn signal FSM by use of SystemVerilog and Quartus' compiler, in order to have the student obtain experience in coding such mechanics. Time spent: 7 hours total.

FSM Design

Where:

- S₀₀₀ means all lights are off
- S₀₀₁ means RA is on
- S₀₁₀ means RA and RB are on
- S₀₁₁ means RA, RB, and RC are on
- S₁₀₁ means LA is on
- S₁₁₀ means LA and LB are on
- S₁₁₁ means LA, LB, and LC are on

FSM Transition Table

Inputs			Current State (S2:0)		Next State (S2:0')			
RESET	Left	Right	S2	S1	SO.	S2'	S1'	SO'
X	X	X	S2	S1	SO.	S2	S1	SO.
1	X	X	S2	S1	SO SO	0	0	0
0	1	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	1	0	1
0	0	1	0	0	0	0	0	1
0	X	X	0	0	1	0	1	0
0	X	X	0	1	0	0	1	1
0	0	1	0	1	1	0	0	1
0	1	1	0	1	1	0	0	0
0	0	0	0	1	1	0	0	0
0	1	0	0	1	1	1	0	1
0	X	X	1	0	1	1	1	0
0	X	X	1	1	0	1	1	1
0	1	0	1	1	1	1	0	1
0	1	1	1	1	1	0	0	0
0	0	0	1	1	1	0	0	0
0	0	1	1	1	1	0	0	1

SystemVerilog Code

Attached on end.

TAT	C	
1/1/2	ιτιΔτα	rms
V V C	$\mathbf{v} \mathbf{c} \mathbf{r}$	כווו וו

Δ	lcn	atta	ched	On	end
А	150	aua	CHEU		ena.

CONCLUSIONS

The compiler only seemed to use 1 register, instead of the expected 3 (S0, S1, and S2), which came as a complete shock. As for the I/O pins, the compiler assigned 10 pins - which is the exact amount of variables found in the code. So, I can fairly say that the compiler managed to perform some amount of ingenuity that exceeded my expectations.