Laporan Prak Konjar

Subnetting

Nama: Muhammad Hafid Azis

Kelas: 2D4 ITB

NRP: 3121600055

PROGRAM STUDI D4 TEKNIK INFORMATIKA
POLITEKNIK ELEKTRONIKA NEGERI SURABAYA
2021/2022

Soal

- 1. Diberikan network dengan IP 100.0.0.0/8, ada 5 network dengan kebutuhan host 10000, 300, 500, 700, 1500.
 - Sebutkan Netmask yang baru

rumus :
$$2^n - 2 \ge 10000$$

$$n = 14$$

$$32 - 14 = /18$$

netmask baru /18 = 255.255.192.0

• Berapa network dan host yang terbentuk

Network

m = netmask baru – netmask class ip awal

$$18 - 8 = 10$$

$$2^m = 2^{10} = 1024$$

$$2^{n}-2=2^{14}-2=16382$$

• sebutkan 2 network pertama dan 2 network terakhir

Rumus

total subnet mask – netmask baru (256 -192 = 64)

2 Network awal

100.0.0.0

100.0.64.0

2 Network akhri

100.255.0.0

100.255.192.0

Network	Ip Awal	Ip Akhir	Broadcast
100.0.0.0	100.0.0.1	100.0.63.254	100.0.63.255
100.0.64.0	100.0.64.1	100.0.127.254	100.0.127.255

Network	Ip Awal	Ip Akhir	Broadcast
100.255.0.0	100.255.0.1	100.255.63.254	100.255.63.255
100.254.192.0	100.254.192.1	100.254.255.254	100.254.255.255

2. Diberikan network dengan IP 10.0.0.0/8, ada 5 network dengan kebutuhan host 100, 300, 500, 700, 50.

Sebutkan Netmask yang baru

rumus:
$$2^n - 2 >= 700$$

$$n = 10$$

total bit
$$-n$$

$$32 - 10 = /22$$

netmask baru /22 = 255.255.252.0

Berapa network dan host yang terbentuk

Network

m = netmask baru – netmask class ip awal

$$22 - 8 = 14$$

$$2^m = 2^{14} = 16384$$

Host

$$2^{n} - 2 = 2^{10} - 2 = 1022$$

sebutkan 5 network pertama dan 5 network terakhir

Rumus

total subnet mask – netmask baru (256 -252 = 4)

5 Network awal

10.0.0.0

10.0.4.0

10.0.8.0

10.0.12.0

10.0.16.0

5 Network akhri

10.255.252.0

10.255.248.0

10.255.244.0

10.255.240.0

10.255.236.0

Network	Ip Awal	Ip Akhir	Broadcast
10.0.0.0	10.0.0.1	10.0.3.254	10.0.3.255
10.0.4.0	10.0.4.1	10.0.7.254	10.0.7.255
10.0.8.0	10.0.8.1	10.0.11.254	10.0.11.255
10.0.12.0	10.12.1	10.0.15.254	10.0.15.255
10.0.16.0	10.0.16.1	10.0.19.254	10.0.19.255

Network	Ip Awal	Ip Akhir	Broadcast
10.255.252.0	10.255.252.1	10.255.225.254	10.255.255.255
10.255.248.0	10.255.248.1	10.255.251.254	10.255.251.255
10.255.244.0	10.255.244.1	10.255.247.254	10.255.247.255
10.255.240.0	10.255.240.1	10.255.243.254	10.255.243.255
10.255.236.0	10.255.236.1	10.255.239.254	10.255.239.255

3. Diberikan network dengan IP 172.30.0.0/16, ada 5 network dengan kebutuhan host 1000, 300, 500, 700

sebutkan netmask baru

rumus :
$$2^n - 2 \ge 1000$$

$$n = 10$$

total bit – n

$$32 - 10 = /22$$

netmask baru /22 = 255.255.252.0

berapa network dan host yang dapat terbentuk

Network

m = netmask baru – netmask class ip awal

$$22 - 16 = 6$$

$$2^{m} = 2^{6} = 64$$

Host

$$2^{n}-2=2^{10}-2=1022$$

sebutkan 5 network pertaman dan 5 network terakhir

Rumus

total subnet mask – netmask baru (256 -252 = 4)

5 Network awal

172.30.0.0

172.30.4.0

172.30.8.0

172.30.12.0

172.30.16.0

5 Network akhri

172.30.252.0

172.30.248.0

172.30.244.0 172.30.240.0 172.30.236.0

sebutkan range host tiap network bersama broadcastnya

NETWORK	IP HOST	IP HOST	BROADCAST
	AWAL	AKHIR	
172.30.0.0	172.30.0.1	172.30.3.254	172.30.3.255
172.30.4.0	172.30.4.1	172.30.7.254	172.30.7.255
172.30.8.0	172.30.8.1	172.30.11.254	172.30.11.255
172.30.12.0	172.30.12.1	172.30.15.254	172.30.15.255
172.30.16.0	172.30.16.1	172.30.19.254	172.30.19.255

NETWORK	IP HOST	IP HOST	BROADCAST
	AWAL	AKHIR	
172.30.252.0	172.30.252.1	172.30.255.254	172.30.255.255
172.30.248.0	172.30.248.1	172.30.251.254	172.30.251.255
172.30.244.0	172.30.224.1	172.30.247.254	172.30.247.255
172.30.240.0	172.30.240.1	172.30.223.254	172.30.223.255
172.30.236.0	172.30.236.1	172.30.239.254	172.30.239.255

4. Diberikan network dengan IP 200.10.4.0/24, jumlah host yang dibutuhkan maksimum 5

sebutkan netmask yang baru

rumus
$$2^{n} - 2 >= 5$$

$$n = 3$$

total bit – n

$$32 - 3 = /29$$

netmask baru = /29 = 255.255.255.248

berapa network dan host yang dapat terbentuk

Network

m = netmask baru – netmask class ip awal

$$29 - 24 = 5$$

$$2^m = 2^5 = 32$$

Host

$$2^n - 2 = 2^3 - 2 = 6$$

Sebutkan 5 network pertama dan 5 network terakhir rumus

total subnetmask – netmask baru (256 - 248 = 8)

Network awal

200.10.4.0

200.10.4.8

200.10.4.16

200.10.4.24

200.10.4.32

Network akhir

200.10.4.248

200.10.4.240

200.10.4.232

200.10.4.224

200.10.4.216

NETWORK	IP HOST	IP HOST	BROADCAST
	AWAL	AKHIR	
200.10.4.0	200.10.4.1	200.10.4.6	200.10.4.7
200.10.4.8	200.10.4.9	200.10.4.15	200.10.4.16
200.10.4.16	200.10.4.17	200.10.4.22	200.10.4.23
200.10.4.24	200.10.4.25	200.10.4.30	200.10.4.31
200.10.4.32	200.10.4.33	200.10.4.38	200.10.4.39

NETWORK	IP HOST	IP HOST	BROADCAST
	AWAL	AKHIR	
200.10.4.248	200.10.4.249	200.10.4.254	200.10.4.255
200.10.4.240	200.10.4.241	200.10.4.246	200.10.4.247
200.10.4.232	200.10.4.233	200.10.4.238	200.10.4.239
200.10.4.224	200.10.4.225	200.10.4.230	200.10.4.231
200.10.4.216	200.10.4.217	200.10.4.222	200.10.4.223

5. Diberikan network dengan IP 60.0.0/8, ada dengan kebutuhan network 2000

sebutkan netmask yang baru rumus $2^m \ge 2000$ $m = 11 = 2^{11}$

netmask class ip saat ini + m 8 + 11 = 19netmask /19 = 255.255.224.0

berapa network dan host yang dapat terbentuk network m = netmask baru – netmask class ip awal 19 - 8 = 11 $2^{11} = 2048$ network

Host total bit – netmask baru (32 - 19 = 13) $2^n - 2 = 2^{13} = 8190$ host

Sebutkan 5 network pertama dan terakhir

rumus range (256 - 224 = 32)

5 Network Awal

NETWORK		
60.0.0.0		
60.0.32.0		
60.0.64.0		
60.0.96.0		
60.0.128.0		

5 Network Akhir

	NETWORK
60.255.224.0	
60.255.192.0	
60.255.160.0	
60.255.128.0	
60.255.96.0	

NO	NETWORK	IP HOST	IP HOST	BROADCAST
		AWAL	AKHIR	
1	60.0.0.0	60.0.0.1	60.0.31.254	60.0.31.255
2	60.0.32.0	60.0.32.1	60.0.63.254	60.0.63.255

	3	60.0.64.0	60.0.64.1	60.0.95.254	60.0.95.255
	4	60.0.96.0	60.0.96.1	60.0.127.254	60.0.127.255
Ī	5	60.0.128.0	60.0.128.1	60.0.159.254	60.0.159.255

NO	NETWORK	IP HOST	IP HOST	BROADCAST
		AWAL	AKHIR	
1	60.255.224.0	60.255.224.1	60.255.255.254	60.255.255.255
2	60.255.192.0	60.255.192.1	60.255.223.254	60.255.223.255
3	60.255.160.0	60.255.160.1	60.255.191.254	60.255.191.255
4	60.255.128.0	60.255.128.1	60.255.159.254	60.255.159.255
5	60.255.96.0	60.255.96.1	60.255.127.254	60.255.127.255

6. Diberikan network dengan IP 160.13.0.0/16, dengan kebutuhan network 70

sebutkan netmask yang baru

rumus
$$2^{m} > = 70$$

$$m = 7 = 2^7$$

netmask class ip saat ini + m

$$16 + 7 = 23$$

netmask
$$/23 = 255.255.254.0$$

berapa network dan host yang dapat terbentuk

network

m = netmask baru – netmask class ip awal

$$23 - 16 = 7$$

$$2^7 = 128 \text{ network}$$

host

total bit – netmask baru
$$(32 - 23 = 9)$$

$$2^n - 2 = 2^9 = 510$$

• Sebutkan 5 network pertama dan terakhir

rumus range
$$(256-254 = 2)$$

5 Network Awal

NO	NETWORK
1	160.13.0.0
2	160.13.2.0
3	160.13.4.0
4	160.13.6.0

J 100.13.0.0	5	160.13.8.0
----------------	---	------------

5 Network Akhir

NO	NETWORK
1	160.13.254.0
2	160.13.252.0
3	160.13.250.0
4	160.13.248.0
5	160.13.246.0

Sebutkan range host tiap network bersama broadcastnya

NO	NETWORK	IP HOST	IP HOST	BROADCAST
		AWAL	AKHIR	
1	160.13.0.0	160.13.0.1	160.13.1.254	160.13.1.255
2	160.13.2.0	160.13.2.1	160.13.3.254	160.13.3.255
3	160.13.4.0	160.13.4.1	160.13.5.254	160.13.5.255
4	160.13.6.0	160.13.6.1	160.13.7.254	160.13.7.255
5	160.13.8.0	160.13.8.1	160.13.9.254	160.13.9.255

NO	NETWORK	IP HOST	IP HOST	BROADCAST
		AWAL	AKHIR	
1	160.13.254.0	160.13.254.1	160.13.255.254	160.13.255.255
2	160.13.252.0	160.13.252.1	160.13.253.254	160.13.253.255
3	160.13.250.0	160.13.250.1	160.13.251.254	160.13.251.255
4	160.13.248.0	160.13.248.1	60.255.249.254	160.13.249.255
5	160.13.246.0	160.13.246.1	160.13.247.254	160.13.247.255

7. Diberikan network dengan IP 120.0.0.0/8, ada 5 network dengan kebutuhan host 40, 50, 100, 70, 15.

sebutkan netmask yang baru

rumus
$$2^n$$
 - 2

$$2^7 - 2 > = 100$$

$$n = 7$$

netmask yang baru= 32 - 7

$$= /25$$

Subnet mask = 255.255.255.128

• Berapa network dan host yg dapat terbetuk

netmask baru – netmask class ip awal

$$25 - 8 = 17$$

Network =
$$2^7$$

= 131.072 network

Host

$$2^{n}-2$$

$$=2^{7}-2$$

= 126 Host

Sebutkan 5 network pertama dan terakhir

Rumus 256 - 128 = 128

5 Network Awal

NO	NETWORK
1	120.0.0.0
2	120.0.0.128
3	120.0.1.0
4	120.0.1.128
5	120.0.2.0

5 Network Akhir

NO	NETWORK
1	120.255.255.128
2	120.255.255.0
3	120.255.254.128
4	120.255.254.0
5	120.255.253.128

NO	NETWORK	IP HOST	IP HOST	BROADCAST
		AWAL	AKHIR	
1	120.0.0.0	120.0.0.1	120.0.0.126	120.0.0.127
2	120.0.0.128	120.0.0.129	120.0.0.254	120.0.0.255
3	120.0.1.0	120.0.1.1	120.0.1.126	120.0.1.127
4	120.0.1.128	120.0.1.129	120.0.1.254	120.0.1.255
5	120.0.2.0	120.0.2.1	120.0.2.126	120.0.2.127

NO	NETWORK	IP HOST	IP HOST	BROADCAST
		AWAL	AKHIR	
1	120.255.255.128	120.255.255.129	120.255.255.254	120.255.255.255
2	120.255.255.0	120.255.255.1	120.255.255.126	120.255.255.127
3	120.255.254.128	120.255.254.129	120.255.254.254	120.255.254.255
4	120.255.254.0	120.255.254.1	120.255.254.126	120.255.254.127

8. Diberikan network dengan IP 200.40.35.0/24 , ada 5 network dengan kebutuhan host 12

Sebutkan netmask yg baru

$$2^4 - 2 > = 12$$

$$n = 4$$

netmask baru = 32 - 4

$$= /28$$

Subnet mask = 255.255.255.240

Berapa network dan host yg dapat terbetuk

Network = 2^4

netmask baru – netmask class ip awal 28-24 = 4

= 16 network

Host

$$2^{n} - 2$$

$$= 2^4 - 2$$

= 14 Host

Sebutkan 5 network pertama dan terakhir

5 Network Awal

NO	NETWORK
1	200.40.35.0
2	200.40.35.16
3	200.40.35.32
4	200.40.35.48
5	200.40.35.64

5 Network Akhir

NO	NETWORK
1	200.40.35.240
2	200.40.35.224
3	200.40.35.208
4	200.40.35.192

5	200.40.3	5.176

Sebutkan range host tiap network bersama broadcastnya

NO	NETWORK	IP HOST	IP HOST	BROADCAST
		AWAL	AKHIR	
1	200.40.35.0	200.40.35.1	200.40.35.14	200.40.35.15
2	200.40.35.16	200.40.35.17	200.40.35.30	200.40.35.31
3	200.40.35.32	200.40.35.33	200.40.35.46	200.40.35.47
4	200.40.35.48	200.40.35.49	200.40.35.62	200.40.35.63
5	200.40.35.64	200.40.35.65	200.40.35.78	200.40.35.79

NO	NETWORK	IP HOST	IP HOST	BROADCAST
		AWAL	AKHIR	
1	200.40.35.240	200.40.35.241	200.40.35.254	200.40.35.255
2	200.40.35.224	200.40.35.225	200.40.35.238	200.40.35.239
3	200.40.35.208	200.40.35.209	200.40.35.222	200.40.35.223
4	200.40.35.192	200.40.35.193	200.40.35.206	200.40.35.207
5	200.40.35.176	200.40.35.177	200.40.35.190	200.40.35.191

9. Diberikan network dengan IP 160.130.0.0/16 , dengan kebutuhan network 30

Sebutkan netmask yg baru

$$30 \le 2^5$$

$$n = 5$$

prefix =
$$16+5$$

$$= 21$$

Subnet mask = 255.255.248.0

a. Berapa network dan host yg dapat terbetuk

Network = 2^5

= 32 network

Host
$$= 2^{32-21} - 2$$

= 2046 Host

b. Sebutkan 5 network pertama dan terakhir

5 Network Awal

NO	NETWORK
1	160.130.0.0
2	160.130.8.0
3	160.130.16.0
4	160.130.24.0
5	160.130.32.0

5 Network Akhir

NO	NETWORK
1	160.130.248.0
2	160.130.240.0
3	160.130.232.0
4	160.130.224.0
5	160.130.216.0

NO	NETWORK	IP HOST	IP HOST	BROADCAST
		AWAL	AKHIR	
1	160.130.0.0	160.130.0.1	160.130.7.254	160.130.7.255
2	160.130.8.0	160.130.8.1	160.130.15.254	160.130.15.255
3	160.130.16.0	160.130.16.1	160.130.23.254	160.130.23.255
4	160.130.24.0	160.130.24.1	160.130.31.254	160.130.31.255
5	160.130.32.0	160.130.32.1	160.130.39.254	160.130.39.255

N	NETWORK	IP HOST	IP HOST	BROADCAST
О		AWAL	AKHIR	
1	160.130.248.	160.130.248.1	160.130.255.254	160.130.255.25
	0			5
2	160.130.240.	160.130.240.1	160.130.247.254	160.130.247.25
	0			5
3	160.130.232.	160.130.232.1	160.130.239.254	160.130.239.25
	0			5
4	160.130.224.	160.130.224.1	160.130.231.254	160.130.231.25
	0			5
5	160.130.216.	160.130.216.1	160.130.223.254	160.130.223.25
	0			5

10. Diberikan network dengan IP 110.0.0.0/8, ada 5 network dengan kebutuhan host 40, 70, 50, 30, 15.

Sebutkan netmask yg baru

$$70 \le 2^7 - 2$$

$$n = 7$$

prefix =
$$32 - 7$$

$$=25=8+8+8+1$$

255.255.255.128

Berapa network dan host yg dapat terbetuk

Network = 2^{25-8}

= 131.072 network

Host $= 2^7 - 2$

= 126 Host

Sebutkan 5 network pertama dan terakhir

5 Network Awal

NO	NETWORK
1	110.0.0.0
2	110.0.0.128
3	110.0.1.0
4	110.0.1.128
5	110.0.2.0

5 Network Akhir

NO	NETWORK
1	110.255.255.128
2	110.255.255.0
3	110.255.254.128
4	110.255.254.0
5	110.255.253.128

NO	NETWORK	IP HOST	IP HOST	BROADCAST
		AWAL	AKHIR	
1	110.0.0.0	110.0.0.1	110.0.0.126	110.0.0.127
2	110.0.0.128	110.0.0.129	110.0.0.254	110.0.0.255
3	110.0.1.0	110.0.1.1	110.0.1.126	110.0.1.127
4	110.0.1.128	110.0.1.129	110.0.1.254	110.0.1.255

5 110.0.2.0 110.0.2.1 110.0.2.126 110.0.2.12	7
--	---

NO	NETWORK	IP HOST	IP HOST	BROADCAST
		AWAL	AKHIR	
1	110.255.255.128	110.255.255.129	110.255.255.254	110.255.255.255
2	110.255.255.0	110.255.255.1	110.255.255.126	110.255.255.127
3	110.255.254.128	110.255.254.129	110.255.254.254	110.255.254.255
4	110.255.254.0	110.255.254.1	110.255.254.126	110.255.254.127
5	110.255.253.128	110.255.253.129	110.255.253.254	110.255.253.255

11. Diberikan IP address 110.112.33.125/, ada 5 network dengan kebutuhan host 40, 70, 50, 30, 15.

Sebutkan netmask yg baru

$$70 \le 2^7 - 2$$

$$n = 7$$

prefix =
$$32 - 7$$

= $25 = 8 + 8 + 8 + 1$

255.255.255.128

a. Berapa network dan host yg dapat terbetuk

Network =
$$2^{25-8}$$

= 131.072 network

Host
$$= 2^7 - 2$$

= 126 Host

Sebutkan 5 network pertama dan terakhir

5 Network Awal

NO	NETWORK
1	110.0.0.0
2	110.0.0.128
3	110.0.1.0
4	110.0.1.128
5	110.0.2.0

5 Network Akhir

NO	NETWORK
1	110.255.255.128
2	110.255.255.0

3	110.255.254.128
4	110.255.254.0
5	110.255.253.128

Sebutkan range host tiap network bersama broadcastnya

NO	NETWORK	IP HOST	IP HOST	BROADCAST
		AWAL	AKHIR	
1	110.0.0.0	110.0.0.1	110.0.0.126	110.0.0.127
2	110.0.0.128	110.0.0.129	110.0.0.254	110.0.0.255
3	110.0.1.0	110.0.1.1	110.0.1.126	110.0.1.127
4	110.0.1.128	110.0.1.129	110.0.1.254	110.0.1.255
5	110.0.2.0	110.0.2.1	110.0.2.126	110.0.2.127

NO	NETWORK	IP HOST	IP HOST	BROADCAST
		AWAL	AKHIR	
1	110.255.255.128	110.255.255.129	110.255.255.254	110.255.255.255
2	110.255.255.0	110.255.255.1	110.255.255.126	110.255.255.127
3	110.255.254.128	110.255.254.129	110.255.254.254	110.255.254.255
4	110.255.254.0	110.255.254.1	110.255.254.126	110.255.254.127
5	110.255.253.128	110.255.253.129	110.255.253.254	110.255.253.255

12. Jika diberikan alamat host 11.43.243.89/20.

Sebutkan network addresnya

$$/20 = 255.255.240.0$$

network address 11.43.240.0/20

Sebutkan berapa host dan network maksimum yang bisa dibentuk

Host

konversi class A class B = class C

$$/20 + 8 = /28$$

total bit – netmask class baru

$$32 - 28 = 4$$

$$n = 4$$

$$2^n = 2^4 = 16$$

$$16 \times 256 = 4096 - 2 = 4094 \text{ host}$$

Network

network bit baru (m) = netmask – netmask kelas B = 20-16=4

Jumlah network = $2^m = 2^4 = 16$

Sebutkan range host dan alamat broadcastnya pada network tersebut

Rumus
$$256 - 240 = 16$$

$$11.43.240.1 - 11.43.255.254 - 11.43.255.255$$

13. Jika diberikan alamat host 130.113.213.89/21.

Sebutkan network addresnya

$$/21 = 255.255.248.0$$

network address 130.113.208.0/21

Sebutkan berapa host dan network maksimum yang bisa dibentuk

Host

konversi class A class B = class C

$$/21 + 8 = /29$$

total bit – netmask class baru

$$32 - 29 = 3$$

$$n = 3$$

$$2^n = 2^3 = 8$$

$$8 \times 256 = 2048 - 2 = 2046 \text{ host}$$

Network

network bit baru (m) = netmask - netmask kelas B = 21-16 = 4

Jumlah network =
$$2^m = 2^5 = 32$$

Sebutkan range host dan alamat broadcastnya pada network tersebut

rumus
$$256 - 248 = 8$$

$$130.113.208.1 - 130.113.215.254 - 130.113.215.255$$

14. Jika diberikan alamat host 200.78.135.34/28

Sebutkan network addresnya

$$/28 = 255.255.255.240$$

$$32 - 28 = 4 = 2^4 = 16$$

$$16 \times 2 = 32 \text{ range } 32 - 47$$

network address 200.78.135.32/28

Sebutkan berapa host dan network maksimum yang bisa dibentuk

Host

total bit – netmask class

$$32 - 28 = 4$$

$$n = 4$$

$$2^n - 2 = 2^4 - 2 = 14$$

Network

network bit baru (m) = netmask - netmask kelas C = 28-24 = 4

Jumlah network =
$$2^m = 2^4 = 16$$

Sebutkan range host dan alamat broadcastnya pada network tersebut

15. Jika diberikan alamat host 89.143.250.189/18.

Sebutkan network addresnya

$$256 - 64 = 192$$

$$/18 = 255.255.192.0$$

$$64 \times 3 = 192$$

network address 89.143.192.0/18

Sebutkan berapa host dan network maksimum yang bisa dibentuk

Host

konversi class A class B = class C

$$/18 + 8 = /26$$

total bit – netmask class baru

$$32 - 26 = 6$$

$$n = 6$$

$$2^n = 2^6 = 64$$

$$64 \times 256 = 16384 - 2 = 16382 \text{ host}$$

Network

network bit baru (m) = netmask - netmask kelas B = 18-16 = 4

Jumlah network = $2^m = 2^4 = 16$

Sebutkan range host dan alamat broadcastnya pada network tersebut

16. Jika diberikan alamat host 130.243.250.167/28.

Sebutkan network addresnya

$$/28 = 255.255.255.240$$

$$32 - 28 = 4 = 2^4 = 16$$

$$16 \times 10 = 160 \text{ range } 160 - 175$$

network address 130.243.250.160/28

Sebutkan berapa host dan network maksimum yang bisa dibentuk

Host

total bit – netmask class

$$32 - 28 = 4$$

$$n = 4$$

$$2^n - 2 = 2^4 - 2 = 14$$

Network

network bit baru (m) = netmask – netmask kelas C = 28-24 = 4

Jumlah network = $2^m = 2^4 = 16$

Sebutkan range host dan alamat broadcastnya pada network tersebut

130.243.250.161 - 130.243.250.174 - 130.243.250.175