CHAPTER 7

Pushdown Automata PDAs

By R. Ameri

Pushdown Automaton -- PDA

Input String

PDA

- PDA is a finite automata with extra memory called stack which helps Pushdown automata to recognize Context Free Languages.
- PDA has more powerful than Finite Automata automata.
- * PDA is divided into
 - nondeterministic pushdown accepter (npda)
 - deterministic pushdown accepter (dpda)

Formalities for NPDAs

Formal Definition

Non-Deterministic Pushdown Automaton NPDA

- \diamondsuit $\delta: Q \times (\Sigma \cup \{\textbf{A}\}) \times \Gamma \rightarrow set$ of finite subsets of Q \times Γ^*
- $*z \in \Gamma$
- $F \subseteq Q$
- $*q_0 \in \mathbf{Q}$

Instantaneous Description

The States

$$\underbrace{q_1}^{a, b \to w} \underbrace{q_2}$$

Transition function:

$$\delta(q_1, a, b) = \{(q_2, w)\}$$

Transition function:

$$\delta(q_1, a, b) = \{(q_2, w), (q_3, w)\}$$

Example:

Instantaneous Description

 $(q_1,bbb,aaa\$)$

Time 4:

Input

 $a, \lambda \rightarrow a$

 \boldsymbol{a}

 \boldsymbol{a}

 $\lambda \rightarrow \lambda$ q_1

 $b, a \rightarrow \lambda$

 $b, a \rightarrow \lambda$

→\$ (\(\alpha_2 \)

Example:

Instantaneous Description

 $(q_2,bb,aa\$)$

Time 5:

 $(b, a \rightarrow \lambda)$

 $\begin{array}{c}
a, \lambda \to a \\
\lambda, \lambda \to \lambda \\
\end{array}$

 $b, a \rightarrow \lambda$

 $-(q_3)$

We write:

```
(q_1,bbb,aaa\$) \succ (q_2,bb,aa\$)
```

Time 4

Time 5

A computation:

$$(q_0, aaabbb,\$) \succ (q_1, aaabbb,\$) \succ$$

 $(q_1, aabbb, a\$) \succ (q_1, abbb, aa\$) \succ (q_1, bbb, aaa\$) \succ$
 $(q_2, bb, aa\$) \succ (q_2, b, a\$) \succ (q_2, \lambda,\$) \succ (q_3, \lambda,\$)$

$$(q_{0}, aaabbb,\$) \succ (q_{1}, aaabbb,\$) \succ$$

 $(q_{1}, aabbb, a\$) \succ (q_{1}, abbb, aa\$) \succ (q_{1}, bbb, aaa\$) \succ$
 $(q_{2}, bb, aa\$) \succ (q_{2}, b, a\$) \succ (q_{2}, \lambda,\$) \succ (q_{3}, \lambda,\$)$

For convenience we write:

$$(q_0, aaabbb,\$) \stackrel{*}{\succ} (q_3, \lambda,\$)$$

Formal Definition

Language L(M) of NPDA M:

$$L(M) = \{w \colon (q_0, w, s) \succ (q_f, \lambda, s')\}$$
 Initial state Final state

Example:

$$(q_0, aaabbb,\$) \succ (q_3, \lambda,\$)$$

 $aaabbb \in L(M)$

NPDA M:

NPDA M:

Therefore:
$$L(M) = \{a^n b^n : n \ge 0\}$$

NPDA M:

stack

stack

stack

A Possible Transition

A Bad Transition

The automaton Halts in state q_1 and Rejects the input string

A Bad Transition

The automaton Halts in state q_1 and Rejects the input string

No transition is allowed to be followed When the stack is empty

Empty stack

A Good Transition

Non-Determinism

These are allowed transitions in a Non-deterministic PDA (NPDA)

A string is accepted by:

Final State:

All the input is consumed AND

The last state is a final state

At the end of the computation, we do not care about the stack contents

$$L(PDA) = \{w \mid (q_0, w, I) \vdash^* (q, \lambda, x), q \in F\}$$

a string is rejected in acceptance by Final State if in every computation with this string:

The input cannot be consumed

OR

The input is consumed and the last state is not a final state

OR

The stack head moves below the bottom of the stack

A string is accepted by:

Empty Stack:

All the input is consumed

AND

the PDA has emptied its stack

At the end of the computation, we do not care about the last state.

$$L(PDA) = \{w \mid (q_0, w,\$) \vdash^* (q, \lambda,\$), q \in Q\}$$

a string is rejected in acceptance by Empty Stack if in every computation with this string:

The input cannot be consumed

OR

The input is consumed and stack is not empty

OR

The stack head moves below the bottom of the stack

NPDA: Non-Deterministic PDA

Example:

Execution Example: Time 0

Input

Time 1

Input

Input

Input

Input

Input

Input

Input

The input string aaabbb is accepted by the NPDA:

In general,

$$L = \{a^n b^n : n \ge 0\}$$

is the language accepted by the NPDA:

Another NPDA example

NPDA
$$M$$

$$L(M) = \{w: n_a \ge n_b - 1\}$$

$$a, \lambda \to a$$

$$b, a \to \lambda$$

$$b, \$ \to \lambda$$

$$q_0$$

Execution Example: Time 0

Input

$$a, \lambda \rightarrow a$$

$$b, a \rightarrow \lambda$$

$$b, \$ \rightarrow \lambda$$

Input

Input

Input

Stack

accept

Rejection example: Time 0

Input

Input

Input

Input

Halt and Reject

Pushing Strings

Example:

Another NPDA example

NPDA M

$$L(M) = \{w: n_a = n_b\}$$

$$a, \$ \rightarrow 0\$$$
 $b, \$ \rightarrow 1\$$
 $a, 0 \rightarrow 00$ $b, 1 \rightarrow 11$
 $a, 1 \rightarrow \lambda$ $b, 0 \rightarrow \lambda$

$$\lambda, \$ \rightarrow \$$$

$$q_1 \qquad \lambda, \$ \rightarrow \$$$

Execution Example: Time 0

Input

$$a, \$ \rightarrow 0\$$$
 $b, \$ \rightarrow 1\$$

$$a, 0 \rightarrow 00$$
 $b, 1 \rightarrow 11$

$$a, 1 \rightarrow \lambda$$
 $b, 0 \rightarrow \lambda$

current state

$$\lambda, \$ \rightarrow \$$$

Input

$$a, 0 \rightarrow 00$$
 $b, 1 \rightarrow 11$

$$(a, 1 \rightarrow \lambda)$$
 $b, 0 \rightarrow \lambda$

Stack

$$b, \$ \rightarrow 1\$$$

$$a, 0 \rightarrow 00$$
 $b, 1 \rightarrow 11$

$$b, 1 \rightarrow 11$$

$$(a, 1 \rightarrow \lambda)$$

$$b, 0 \rightarrow \lambda$$

Stack

Deterministic Pushdown Automaton

- \star Let M = (Q, Σ , Γ , δ , q0, Z0, F) be a PDA
- \clubsuit M is deterministic if $(a \in \Sigma \& X \in \Gamma)$:
 - δ (q, a, X) has at most one element
 - -If $\delta(q, \Lambda, X) \neq \emptyset$ then $\delta(q, a, X) = \emptyset$ for all $a \in \Sigma$

Deterministic PDAs

In other words:

- There is no configuration where the machine has a "choice" of moves
 - · Each transition has at most 1 element.
- If you can make a λ -transition from a state with a given symbol on the stack,
- You cannot make that same transition on any tape input symbol.

deterministic context-free language

❖ A language L is a deterministic context-free language (DCFL) if there is a DPDA that accepts L

deterministic context-free language

Example of DCFL:

$$L = \{a^n b^n : n \ge 0\}$$

Another NPDA example

NPDA M

Example of NCFL:

$$L(M) = \{ww^R\}$$

Execution Example: Time 0

Input

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \rightarrow \lambda$$

Input

Stack

$$a, a \rightarrow \lambda$$

$$b, \lambda \rightarrow b$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \rightarrow \lambda$$

 $\lambda, \$ \rightarrow \$$

Input

$$\begin{array}{c}
a, \lambda \to a \\
b, \lambda \to b
\end{array}$$

$$\begin{array}{c}
\lambda, \lambda \to \lambda
\end{array}$$

$$a, a \rightarrow \lambda$$

 $b, b \rightarrow \lambda$

Input

Guess the middle of string

Stack

 $a, \lambda \rightarrow a$

$$b, \lambda \rightarrow b$$

 $a, a \rightarrow \lambda$ $b, b \rightarrow \lambda$

$$b, b \rightarrow \lambda$$

Input

Stack

76

Input

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$(a, a \rightarrow \lambda)$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \rightarrow \lambda$$

$$\lambda$$
, \$ \rightarrow \$

Input

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

Rejection Example: Time 0

Input

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \to \lambda$$

Input

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

Input

$$\begin{array}{c}
a, \lambda \to a \\
b, \lambda \to b
\end{array}$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

$$\lambda$$
, \$ \rightarrow \$

Input

Guess the middle of string

 $a, \lambda \rightarrow a$ $b, \lambda \rightarrow b$

 $a, a \rightarrow \lambda$ $b, b \rightarrow \lambda$

Input

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$\lambda, \lambda \rightarrow \lambda$$

$$q_0$$

Input

There is no possible transition.

Input is not consumed

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

Another computation on same string:

Input

$$a, a \rightarrow \lambda$$

$$b, \lambda \rightarrow b$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \rightarrow \lambda$$

$$\lambda$$
, $\$ \rightarrow \$$

Input

Stack

$$a, \lambda \rightarrow a$$

$$a, a \rightarrow \lambda$$

$$b, \lambda \rightarrow b$$
 b, b

 $\lambda, \lambda \rightarrow \lambda$

Input

$$a, \lambda \rightarrow a$$

$$(b, \lambda \rightarrow b)$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

Input

$$a, \lambda \rightarrow a$$

$$(b, \lambda \rightarrow b)$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \rightarrow \lambda$$

Input

No final state is reached

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

There is no computation that accepts string abbb

 $abbb \notin L(M)$

DPDA example

DPDA M

Example of DCFL:
$$L(M) = \{wcw^R\}$$

$$\delta (q0,a,z)=\{(q1,az)\},\delta (q1,b,z)=\{(q1,bz)\},$$

$$\delta$$
 (q1,a,a)={(q1,aa)}, δ (q1,b,b)={(q1,bb)}, δ (q1,a,b)={(q1,ab)}, δ (q1,b,a)={(q1,ba)},

$$\delta$$
 (q1,c,a)={(q2,a)}, δ (q1,c,b)={(q2,b)},

$$\delta(q^2, \alpha, \alpha) = \{(q^2, \lambda)\}, \delta(q^2, b, b) = \{(q^2, \lambda)\}, \delta(q^2, \lambda, z) = \{(q^2, \lambda)\}$$

Example of NCFL

$$L(M) = \{a^n b^m c^k \mid n = m \text{ or } m = k\}$$
$$= \{a^n b^n c^k \mid n, k \ge 0\} \cup \{a^n b^m c^m \mid n, m \ge 0\}$$

Theorem:

Context-Free Languages
(Grammars)

Languages
NPDAs

PDAs And CLFs

For any context-free language L, there exists an NPDA M such that L=L(M)

Proof:

If L is a context-free language (without λ), there exists a context-free grammar G that generates it.

We can always convert a context-free grammar into Greibach Normal Form.

We can always construct an NPDA which simulates leftmost derivations in the GNF grammar.

Greinbach Normal Form

All productions have form:

$$k \ge 0$$

The Procedure for convert to Greinbach normal form

First remove:

- 1. λ-productions
- 2. left recursive productions
- 3. Unit productions

Then

Convert to Greinbach normal form

To convert a context-free grammar to an equivalent PDA:

- 1. Convert the grammar to Greibach Normal Form (GNF).
- 2. Write a transition rule for the PDA that pushes S (the start symbol in the grammar) onto the stack.

$$\delta$$
 (q0,\(\lambda\),\(z\))={(q1,\(Sz\))}

3. For each production rule in the grammar, write an equivalent transition rule.

$$A \rightarrow a B_1 B_2 \cdots B_n \Rightarrow \delta(q_1, a, A) = \{(q_1, B_1 B_2 \cdots B_n)\}$$

4. Write a transition rule that takes the automaton to the accepting state when you run out of characters in the output string and the stack is empty.

$$\delta (q1,\lambda,z)=\{(qf,z)\}$$

5. If the empty string is a legitimate string in the language described by the grammar, write a transition rule that takes the automaton to the accepting state directly from the start state.

$$\delta (q0,\lambda,z)=\{(qf,z)\}$$

```
Input: G=(V,\Sigma,P,S)
Output:
PDA = ({q0,q1,qf}, \Sigma,V\cup\{z\}, \delta,q0,z,\{qf\}),
accepting L(G)
```


Here is a grammar in GNF: G=(V,T,S,P), where $V=\{S,A,B,C\}$, $T=\{a,b,c\},S=S,A,d$

$$S \rightarrow aA$$
 $A \rightarrow aABC \mid bB \mid a$
 $B \rightarrow b$
 $C \rightarrow c$

Let's convert this grammar to a PDA.

Grammer rule:

(none)

$$S \rightarrow aA$$

$$A \rightarrow aABC$$

$$A \rightarrow bB$$

$$A \rightarrow a$$

$$B \rightarrow b$$

$$C \rightarrow c$$

(none)

PDA transition rule:

$$\delta(q_0, \lambda, z) = \{(q_1, Sz)\}$$

$$\delta(q_1, a, S) = \{(q_1, A)\}$$

$$\delta(q_1, b, A) = \{(q_1, B)\}$$

$$\delta(q_1, a, A) = \{(q_1, \lambda)\}$$

$$\delta(q_1, b, B) = \{(q_1, \lambda)\}$$

$$\delta(q_1, c, C) = \{(q_1, \lambda)\}$$

$$\delta(q_1, \lambda, z) = \{(q_2, z)\}$$

NPDAS

Have More Power than

DPDAs

It holds that:

Deterministic
Context-Free
Languages
(DPDA)

Context-Free
Languages
NPDAs

Since every DPDA is also a NPDA

We will actually show:

there exists a context-free language which is not accepted by any DPDA For example: $L(M) = \{ww^R\}$

The language is:

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\} \qquad n \ge 0$$

- · L is context-free
- L is not deterministic context-free

Finite automaton & DPDA

any language that can be accepted by a finite automaton can also be accepted by a deterministic pushdown automaton.

Venn-diagram for Chomsky classification of formal languages

