Interdisziplinäre und Machine Learning -Grundlagen

Meilenstein 1

Inhalt

- Motivation
 - Feinstaub
 - Untersuchungsgebiet Polen
 - Messdaten
- Related Work
- Forschungsfrage
- Methodik
 - CNN
 - RNN
 - Modell

Feinstaub

- Feinstaub wird nach Größe unterteilt
 - PM₁₀ bezeichnet Partikel mit einem Durchmesser < 10 μm
 - PM_{2.5} ist eine Teilmenge von PM₁₀ mit Partikel von einem Durchmesser < 2.5 μm

Grenzwerte

Untersuchungsgebiet Polen PM_{10}

0 - 20 μg/m³ Very good 20.1 - 50 μg/m³ Good 50.1 - 80 μg/m³ Moderate 80.1 - 110 μg/m³ 110.1 - 150 μg/m³ Bad > 150 µg/m³ Very bad

 $PM_{2.5}$

Wetterdaten

- Temperatur
- Wind/ Luftströmung (
- Niederschlag
- Luftfeuchtigkeit

Inversionswetter

- Die oberen Luftschichten sind wärmer als die unteren
- Die kalte Luftschicht ist schwer und durchmischt sich nicht mit der oberen
- Die obere Luftschicht sperrt den Feinstaub wie eine Käseglocke ein

Beispiel Messdaten PM₁₀

Station 52 SensorID 14397

 $0 - 20 \,\mu g/m^3$

 $> 150 \, \mu g/m^3$

Beispiel Messdaten PM₁₀

Station 52 SensorID 14397

Related Work

Daten

Revisiting air quality forecasting: a regression approach (2018)

- Vorhersage PM₁₀ für nächsten Tag pro Messstation
- Daten:
 - PM₁₀
 - Temperatur
 - Luftfeuchtigkeit
 - Tag
 - Monat

Air-pollution prediction in smart city, deep learning approach (2021)

- Stündliche Vorhersage PM_{2.5}
- Daten:
 - PM₁₀
 - PM_{2.5}
 - Temperatur
 - Luftdruck
 - Regen
 - Windrichtung

Related Work

Modelle

Revisiting air quality forecasting: a regression approach (2018)

- Regression
- Ein Modell pro Messstation
- Vergleich von Modellen
 - Lineare Regression
 - ANN (1 Hidden Layer (10 Neuronen))
 - Random Forest
 - > 1.LR, 2. RF, 3. ANN
 - > ANN recht klein

Air-pollution prediction in smart city, deep learning approach (2021)

- Regression
- Hybridmodell:
 - CNN (räumliche Merkmale) + LSTM (zeitliche Merkmale)
 - 3 Convolution Layer mit Batch Normalization
 - Maxpooling Layer
 - 2 LSTM Layer (100 und 50 Units)
 - 1 Dense Layer

Forschungsfrage

Ziele

- Prognose von stündlichen Feinstaubdaten innerhalb der nächsten 14 Tage
 - Prädiktion von PM₁₀
 - optional PM_{2.5}
 - Aufteilen des Gebietes in Bereiche
 - Prädiktion pro Station
 - Prädiktion für ein Gebiet
 - Wie sehen unsere Prognosen im Vergleich mit denen des polnischen Umweltamts aus? (für einen Tag)
 - Besteht ein Zusammenhang zwischen PM₁₀ und PM_{2.5}?

Forschungsfrage

Forschungsfragen

- Lässt sich mit Hilfe eines neuronalen Netzes unter Verwendung einer CNN-LSTM Kombination eine stündliche Prognose von Feinstaubdaten für die nächsten 14 Tage realisieren?
 - Ulst es möglich den PM₁₀ Wert mit einem MAE unter 10 vorherzusagen?
 - Ulst es möglich den PM_{2.5} Wert mit einem MAE unter 10 vorherzusagen?

 - Wie sehen unsere Prognosen im Vergleich mit denen des polnischen Umweltamts aus? (für einen Tag)
 - Ist es sinnvoll, Stationen zu Gebieten zusammenzufassen, sodass die Aussagekräftigkeit der Prädiktion im Vergleich zu den einzelnen Stationen gleich bleibt oder verbessert wird?

Convolutional neuronale Netze (CNN)

- maschinelles Verarbeiten von Daten
- Beruht auf Faltungsoperation (Convolution)
- Convolution
 - Berechnung des neuen Feldes durch Maske
 - Filterung der Daten

Quelle: https://ai.stackexchange.com/questions/28767/what-does-channel-mean-in-the-case-of-an-1d-convolution

Quelle: https://www.upgrad.com/blog/basic-cnn-architecture/

Rekurrente neuronale Netze (RNN)

- Neuronale Netze mit Rückkopplungen
 - > Erzeugung von Gehirn im Netz
- Besonders geeignet für zeitliche und sequentielle Daten
- Bekannteste Varianten GRU und LSTM

- LSTM (Long short-term memory network)
 - 1997 von Hochreiter & Schmidhuber entwickelt
 - Lernen von Langzeitabhängigkeiten in sequentiellen Daten
 - Verarbeitet Sequenz von Daten
 - Besteht aus Memory Cells
 - Fungieren als Gedächtnis → Speichern
 Informationen der vorrangegangenen Daten
 - Besonders gut geeignet für Feinstaubprädiktion

Modell

- Supervised ML Problem
- CNN-LSTM Kombination zur Lösung des Regressionsproblems
 - Multi-Step Modell
- Multi-Step Forecasting (PM₁₀)
 - Input: Merkmalsvektor
 - Output: PM₁₀ Wert
- Modell mit MSE als Fehlerfunktion trainieren

- Bewertung des Modells mittels RMSE, MSE und MAE
- Einbeziehen von 3 benachbarten
 Stationen
 - Gewichtung nach Entfernung
- Trainieren und erstellen des Netzes mit Tensorflow
- Trainingsdaten und Testdaten jeweils 1 Jahr

Modell

Feature Engineering - Zeit

- Zeit periodisch angeben statt absolut
- Perioden für Tag und Jahr
- Für Modell besser verwendbar
- Periode durch Sin und Cos
 - Eindeutigkeit der Werte durch Kombination
- Gleiches auch für Windrichtung relevant
 - Grad in Radiant umwandeln
 - ➤ Abstand zwischen 360° und 0° nicht vorhanden in Radiant

Data Windowing

- Definition des Offset der Vorhersage
- Definition der Inputdaten-Zeitspanne
- Beispiel:
 - Ergebnis, das 24 Stunden in der Zukunft liegt
 - Historie an 24 Stunden Daten

- In unserem Fall:
 - 14-tägige Frames

Multi-step model

- 1. Single shot predictions
 - Gesamte Vorhersage durch einmalige prediction
- 2. Autoregressive predictions
 - Single step prediction
 - Ergebnis zur Bestimmung der nächsten prediction
 - Verwendet bei Korrelationen der vorherigen Werte