Notes

Fractions:

Addition/Subtraction:

$$\frac{a}{b} + \frac{c}{d} \Rightarrow \frac{ad + bc}{bd}, \quad \frac{a}{b} - \frac{c}{d} = \frac{ad - bc}{bd}$$

$$\frac{a}{b} - c \Rightarrow \frac{a}{b} - \frac{c}{1} \Rightarrow \frac{a}{b} - \frac{bc}{b} \Rightarrow \frac{a - bc}{b}$$

$$\frac{a}{b} * c = \frac{ac}{b} \qquad \frac{a}{b} / c = \frac{a}{bc}$$

Powers:

Negative:

$$-x^{y} = -(x^{y}) -2^{2} = -(2^{2}) = -4$$

$$(-x)^{y} = -x \cdot -x (-2)^{2} = -2 \cdot -2 = 4$$

Multiple powers:

$$a^{0}=1$$
, $a^{1}=a$, $a^{-1}=\frac{1}{a^{1}}$
 $a^{b}*a^{c}=a^{b+c}$, $\frac{a^{b}}{a^{c}}=a^{b-c}$

example:

$$x^{a} * x^{b} = x^{a+b}$$
 $x^{2} * x^{4} = x^{6}$
 $(x^{a})^{b} = x^{a*b}$ $(2^{3})^{2} = (2*2*2)^{2} = (2*2*2)(2*2*2) = 2^{6}$

Calculus:

Derivatives:

$$\lim_{h \to 0} \left(\frac{f(x+h) - f(x)}{h} \right)$$

Differentiation		Integration	
Function $f(x)$ c x^{n} $\sin x$ $\cos x$ e^{x} $\ln x(x>0)$	Derivative $f'(x)$ 0 nx^{n-1} $\cos x$ $-\sin x$ e^{x} $\frac{1}{x}(x>0)$	$f(x) \qquad \int a \qquad \frac{1}{n+} \\ \frac{1}{x} \qquad \ln a \qquad \frac{1}{n+} \\ e^{ax} \qquad \frac{1}{a} \\ \cos(ax) \qquad \frac{1}{a} \sin(ax) $	$f(x) dx$ $ax + c$ $\overline{1} x^{n+1} + c$ $a(x) + c$ $c e^{ax} + c$ $a(ax) + c$ $c c c (ax) + c$

Notations:

Leibniz: $f'(x) = \frac{dy}{dx}$ $f''(x) = \frac{d^{2y}}{dx^2}$

Newton: $f'(x) = \dot{s}$ $f''(x) = \ddot{s}$

Sum rule: $k(x)=f(x)+g(x)\Rightarrow k'(x)=f'(x)+g'(x)$ Constant multiple rule: $k(x) = cf(x) \Rightarrow k'(x) = cf'(x)$ Product rule: $k(x)=f(x)g(x) \Rightarrow k'(x)=f'(x)g(x)+f(x)g'(x)$ Quotient rule: $k(x)=f(x)/g(x) \Rightarrow k'(x)=\frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}$ Composite rule: $k(x) = g(f(x)) \Rightarrow k'(x) = g'(f(x))f'(x)$

Double angle formulas:

$$\sin(2\theta) = 2\sin(\theta)\cos(\theta)$$
$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) = 2\cos^2(\theta) - 1 = 1 - 2\sin^2(\theta)$$

Logarithms:

$$x = a^{p} \implies \log_{a} x = p$$

$$1 = a^{0} \implies \log_{a} 1 = 0$$

$$a^{1} = a \implies \log_{a} a = 1$$

$$\frac{1}{a} = a^{-1} \implies \log_{a} \left(\frac{1}{a}\right) = -1$$

$$\log_{a}(xy) = \log_{a} x + \log_{a} y$$

$$\log_{a} \left(\frac{x}{y}\right) = \log_{a} x - \log_{a} y$$

$$\log_{a} \left(\frac{1}{y}\right) = -\log_{a} y$$

$$\log_{a}(x^{p}) = p * \log_{a} x$$

Statistics

Sample mean: \bar{x} population mean: μ

Sample standard deviation: *s* population standrad deviation: σ

Standard error of the mean: $SE = \frac{s}{\sqrt{(n)}}$ where n is the number of samples

95% of \bar{x} (sample mean) is in $\mu \pm 1.96$ SE

Central limit theorem $(n \le 25)$

The sampling distribution of the mean for

samples of size n from a population with mean μ and standard deviation σ may be approximated by a normal distribution with mean μ and standard deviation SE

$$(\overline{x} = \mu, s = SE)$$

Two sample z test

Trigonometry

Pythagoras theorem (for right angle triangles) hypothenous²=adjacent² + opposite² ($b^2 = c^2 + h^2$)

$$\sin(\theta) = \frac{Opposite}{Hypothenous} \qquad \left(\sin(A) = \frac{h}{b}\right)$$

$$\cos(\theta) = \frac{adjacent}{hypotenuse} \qquad \left(\cos(A) = \frac{c}{b}\right)$$

$$\tan(\theta) = \frac{Opposite}{Adjacent} \qquad \left(\cos(A) = \frac{h}{c}\right)$$

$$\frac{\sin \text{Rule:}}{\sin(A)} = \frac{\sin(B)}{b} = \frac{\sin(C)}{c}$$

$$\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)}$$

Vectors:

To Component form: $V_x = Vcos(\theta)$ $V_y = Vsin(\theta)$ The Magnitude: $|V| = \sqrt{V_x^2 + V_y^2}$

The angle: $\theta = \tan^{-1}(\frac{V_y}{V_y})$

To add vectors $V + U = (V_x + U_x)i + (V_v + U_v)j$

Polynomials

solving

To solve a Polynomial means to find all values for which the polynomial equals 0.

Quadratic polynomial formula:

$$ax^{2}+bx+c=0 \Rightarrow x = \frac{-b \pm \sqrt{(b^{2}-4ac)}}{2a}$$

Steps for completing the square and proof:

$$ax^2 + bx + c$$

$$a\left[x^{2} + \frac{b}{a}x + \frac{c}{a}\right] \qquad \left(\frac{1}{2}\right)\left(\frac{b}{a}\right) = \left(\frac{b}{2a}\right) \qquad \left(\frac{b}{2a}\right)^{2} = \frac{b^{2}}{4a^{2}}$$

$$a\left[x^{2} + \frac{b}{a}x + \frac{b^{2}}{4a^{2}} + \frac{c}{a} - \frac{b^{2}}{4a^{2}}\right]$$

$$a\left[\left(x + \frac{b}{2a}\right)^{2} + \frac{c}{a} - \frac{b^{2}}{4a^{2}}\right]$$

$$a\left[\left(x + \frac{b}{2a}\right)^{2} + \frac{4a^{2}c - b^{2}a}{4a^{3}}\right] \qquad a\left[\left(x + \frac{b}{2a}\right)^{2} + \frac{4ac - b^{2}}{4a^{2}}\right]$$

$$a\left(x+\frac{b}{2a}\right)^2+\frac{4ac-b^2}{4a} \qquad a\left(x+\frac{b}{2a}\right)^2=-\frac{4ac-b^2}{4a} \quad \text{Vertex: } \boxed{x=-\frac{b}{2a}} \quad \text{when } \boxed{y=-\frac{4ac-b^2}{4a}}$$

$$\left(x + \frac{b}{2a}\right)^2 = -\frac{4ac - b^2}{4a^2}$$
 $x + \frac{b}{2a} = \pm \sqrt{\frac{4ac - b^2}{4a^2}}$ $x + \frac{b}{2a} = \frac{\pm \sqrt{4ac - b^2}}{2a}$

Solution:
$$x = \frac{-b \pm \sqrt{4ac - b^2}}{2a}$$
 (then y=0)

Discriminant: $\Delta = b^2 - 4ac$

if $\Delta > 0$ then there are 2 real roots (solutions).

if $\Delta = 0$ then there is 1 root.

if Δ < 0 then there are no roots.

factorising

for $ax^2+bx+c=0$, if a=1 then find two numbers that multiplied together = c and added together = b. if $a \ne 1$ then multiply a by c and find the two factors that add up to b. example:

$$8x^2 + 18x + 9 = 0$$
 $8*9 = 72$ (that's ac=8*9=72)

the factors of 72 which are added together to give 18 are 6 and 12

rewrite formula splitting bx into those factors

$$8x^2 + 12x + 6x + 9$$

4x(2x+3) + 3(2x+3) (NOTE if the brackets are different then something is wrong) (4x+3)(2x+3)

so solutions are $-\frac{3}{4}$ (-0.75) and $-\frac{3}{2}$ (-1.5)

expanding

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a-b)^2 = a^2 - 2ab + b^2$$

$$(a+b)(a-b)=a^2-b^2$$

$$(a+b)^3 = a^3 + a^2b + ab^2 + b^3$$
 $(a-b)^3 = (a-b)(a-b)^2 = (a-b)(a^2 - 2ab + b^2) = a^3 - 3a^2b + 3ab^2 - b^3$ Pascal's Triangle

Start with two 1s and then add the sum of the two cells above to get the coefficient.

Pov	wei	1_							· ·
1				1	1				$(x+y)^1=1x^1+1y^1$
2			1		2 1				$(x+y)^2 = 1x^2 + 2x^1 y^1 + 1y^2$
3		-	1	3	3	1			$(x+y)^3=1x^3+3x^2y^1+3x^1y^2+1y^3$
4		1	4		6	4	1		$(x+y)^4 = 1x^4 + 4x^3y^1 + 6x^2y^2 + 4x^1y^3 + 1y^4$
5	1	5	1	10	10	Į.	5	1	$(x+y)^5 = 1x^5 + 5x^4y^1 + 10x^3y^2 + 10x^2y^3 + 5x^1y^4 + 1y^5$

power of **x** decrease (from **power** to 0) as power of **y** increase(from 0 to **power**). coefficient taken from pascal's triangle. i.e.: $(x+y)^2=1x^2y^0+2x^1y^1+1x^0y^2$

i.e.:
$$(x+y)^2 = 1x^2y^0 + 2x^1y^1 + 1x^0y^2$$