CO₂ Emissions Report

Lin Li

Introduction

Monitoring carbon dioxide (CO_2) emissions from fossil fuel combustion, nonenergy use of fossil fuels, and other industrial processes is essential for addressing anthropogenic climate change. CO_2 is a major greenhouse gas contributing to global warming, and its continued accumulation in the atmosphere poses severe risks to ecosystems, economies, and societies worldwide. Fossil fuel combustion, including the use of coal, oil, and natural gas, remains the largest source of CO_2 emissions. In addition, industrial processes such as cement production and gas flaring further contribute to the atmospheric burden of CO_2 .

Understanding the magnitude and sources of CO_2 emissions is crucial for devising effective strategies to mitigate climate change. By systematically monitoring and analyzing CO_2 emissions, particularly across various sectors and countries, policymakers can identify key drivers of emissions and develop targeted interventions. Furthermore, tracking emissions over time allows for evaluating the effectiveness of policies and measures aimed at reducing emissions.

In this report, we examine historical CO_2 emissions data, focusing on contributions from different types of fossil fuels—solid, liquid, and gas—as well as emissions from cement production and gas flaring. We also analyze emissions on a per capita basis to assess the relative carbon footprints of different countries and how these change over time. The aim is to provide insights into the current state of global CO_2 emissions, highlight trends, and identify potential areas for emissions reduction.

Dataset Description

I merged two datasets from https://doi.org/10.3334/CDIAC/00001_V2017. The dataset contains the following columns:

- 1. **Year**: The year for which the data was recorded.
- 2. Country: The country for which the data was collected.
- 3. Total: The total emissions (possibly in terms of CO₂ or other pollutants).
- 4. Solid Fuel: Emissions from solid fuel (e.g., coal).
- 5. Liquid Fuel: Emissions from liquid fuel (e.g., gasoline or oil).

- 6. Gas Fuel: Emissions from gas fuel (e.g., natural gas).
- 7. Cement: Emissions from cement production.
- 8. **Gas Flaring**: Emissions from the burning of excess gas during oil extraction.
- 9. Per Capita: Emissions per person.
- 10. **Bunker Fuels (Not in Total)**: Emissions from bunker fuels, which may not be included in the total value.

Method and Result

The dataset includes changes of stock for all fuels used in both energy and non-energy uses, along with per capital data. CDIAC-FF is to estimate CO_2 emissions by focusing on emissions from different types of fuel. The formula we are using to analysis the CO_2 emission is

$$CO_2 = P_i F O_i C_i$$

Figure 1. The change in estimated global CO_2 emission by using the change in stocks, not directly from energy source data. In early 1900s to Mid-1900s, emission changes appear relatively small, suggesting that industrial activities and energy usage had a modest and gradual impact on emissions globally during this period. There is a sharp increase in emission changes, indicating rapid industrialization, urbanization, and increased reliance on fossil fuels, particularly post-World War II. Between the 1960s and 1970s, global emissions increased by an average of 3.2% per year, with solid fuels contributing to nearly 60% of this increase. In contrast, post-2000s changes slowed to around 1.12% annually, reflecting modern efforts to transition to cleaner energy sources.

Figure 2. The total emissions show a steep rise starting in the late 19th century, with a dramatic acceleration post-1950 ("Great Acceleration"). Solid emissions (black) appear to be $\frac{1}{3}$ of gas emissions (yellow), highlighting a major shift in energy systems where natural gas has become a dominant contributor to CO_2 emissions, surpassing coal by a significant margin. Gas (yellow) is the largest single contributor to emissions, and cement (gray) is a close second in proportional terms. Together, they represent the majority of emissions, reflecting industrialization and the transition to alternative fuels.

Table 1. The table highlights the top $10\ CO_2$ -emitting countries, emphasizing the differences in emissions, population trends, and per capita contributions. China ranks first, contributing nearly twice the CO_2 emissions of the United States, the second-largest emitter. However, China's per capita emissions are less than half of those in the United States, reflecting its larger population base and relatively lower emissions intensity per individual. In contrast, India, ranked third, emits less than half the CO_2 of the United States and only about a fifth of China's emissions, yet its emissions growth is over five times faster than that of most developed nations, indicating its rapid industrialization.

Rank	Country	Total_CO2_Emissions	Population	Emissions_Change	Population_Change(%)	Per Capita_2014
1	CHINA (MAINLAND)	2806634	5753599.7	0.3306661	0.3306661	2.05
2	UNITED STATES OF AMERICA	1432855	6347547.6	1.8436779	3.0062770	4.43
3	INDIA	610411	286893.2	10.0073529	20.2405950	0.47
4	RUSSIAN FEDERATION	465052	1506768.5	-4.1165483	-8.0880522	3.24
5	JAPAN	331074	864103.1	-2.6046692	-5.1485771	2.61
6	GERMANY	196314	477043.0	-4.9423545	-9.7695006	2.43
7	ISLAMIC REPUBLIC OF IRAN	177115	402051.0	4.7924740	8.6205096	2.27
8	SAUDI ARABIA	163907	870346.2	11.0894981	20.6309274	5.31
9	REPUBLIC OF KOREA	160119	512380.8	-0.9017428	-2.1251781	3.20
10	CANADA	146494	603555.3	3.8736164	6 9898249	4.12