# CS 240 Note velo.x

# **Contents**

| 1 | Module 1                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|---|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|   | 1.1                                                     | Algorithm Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
|   | 1.2                                                     | Algorithm Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
|   | 1.3                                                     | Order Notation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
|   | 1.4                                                     | Growth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
|   | 1.5                                                     | Recurrence Relations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| 2 | Mod                                                     | ule 2: Priority Oueues and Heaps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| 4 |                                                         | and the state of t |  |  |  |  |  |  |
|   | 2.1                                                     | ADT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
|   | 2.2                                                     | Priority Queue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
|   | 2.3                                                     | Heap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|   | 2.4                                                     | Tutorial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| 3 | Mod                                                     | ule 3: Sorting, Selection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|   | 3.1                                                     | Quick Select                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
|   | 3.2                                                     | Randomized Algorithms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|   | 3.3                                                     | Lower bounds for sorting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
|   | 3.4                                                     | Non-Comparison-Base sorting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
|   | 3.5                                                     | Tutorial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
|   | 3.3                                                     | Tutoriai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| 4 |                                                         | ule 4: BST, AVL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|   | 4.1                                                     | Tutorial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| 5 | Mod                                                     | Module 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
|   | 5.1                                                     | Skip List                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|   | 5.2                                                     | Reordering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| 6 | Mod                                                     | ule 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| U | 6.1                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|   |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|   | 6.2                                                     | Interpolation Search                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|   | 6.3                                                     | Tries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| 7 | Mod                                                     | ule 7: Hashing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
|   | 7.1                                                     | Hashing Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|   | 7.2                                                     | Seperate Chaining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
|   | 7.3                                                     | Linear Probing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
|   | 7.4                                                     | Independent Hash Functions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|   | 7.5                                                     | Double Hashing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
|   | 7.6                                                     | Cuckoo Hashing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
|   | 7.7                                                     | Conclusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|   | 1.1                                                     | Conclusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| 8 | Module 8: Range-Searching in Dictionaries for Points 20 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|   | 8.1                                                     | Quadtrees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|   | 8.2                                                     | kd-trees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
|   | 8.3                                                     | Range Tree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|   | 8.4                                                     | Section Conclusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |

| 9  | Mod  | Module 9: String Matching        |    |  |  |  |
|----|------|----------------------------------|----|--|--|--|
|    | 9.1  | Pattern Matching Definition      | 23 |  |  |  |
|    | 9.2  | Brute-force Algorithm            | 23 |  |  |  |
|    | 9.3  | Knuth-Morris-Pratt Algorithm     | 23 |  |  |  |
|    | 9.4  | Rabin-Karp Fingerprint Algorithm | 23 |  |  |  |
|    | 9.5  | Boyer-Moore Algorithm            | 24 |  |  |  |
|    | 9.6  | Suffix Trees                     | 24 |  |  |  |
|    | 9.7  | Summary                          | 25 |  |  |  |
| 10 | Mod  | ule 10: Data Compression         | 26 |  |  |  |
|    | 10.1 | Run-Length Encoding              | 26 |  |  |  |
|    |      | bzip2                            | 26 |  |  |  |
| 11 | Mod  | ule 11                           | 27 |  |  |  |
|    | 11.1 | Motivation                       | 27 |  |  |  |
|    | 11.2 | External Sorting                 | 27 |  |  |  |
|    |      | 11.2.1 Mergesort external memory | 27 |  |  |  |
|    | 11.3 | External Dictionary              | 28 |  |  |  |
|    |      | 11.3.1 2-4 trees                 | 28 |  |  |  |
|    |      | 11.3.2 (a,b)-trees               | 29 |  |  |  |
|    |      | 11.3.3 (B-trees)                 | 29 |  |  |  |

# Waiting to be added:

• Module 3: quicksort and lower bound for comparison based sorting and Non-Comparison-Based sorting

# 1 Module 1

# 1.1 Algorithm Design

#### **Definition 1.1.1** (Problems).

- **Problems:** Given a problem instance, carry out a particular computational task.
- **Problem Instance:** Input for the specified problem.
- **Problem Solution:** Output (correct answer) for the specified problem instance.
- Size of problem instance: Size(I) is a positive integer that is a measure of the size of the instance I.

#### **Definition 1.1.2** (Efficiency of Algorithms/ Programs).

- Running time: amount of time
- · Auxiliary space: amount of additional memory
- \* the amount of time and/or memory required by a program will depend on Size(I) (usually denoted by "n"), the size of the given problem instance I.

# 1.2 Algorithm Analysis

To overcome dependency on hardware/software:

- Algorithms are presented in structured high-level language-independent **pseudo-code**.
- Analysis of algorithms is based on an idealized computer model.
- Instead of time, count the number of **primitive operations**
- The efficiency of an algorithm (with respect to time) is measured in terms of its growth rate (this is called the **complexity** of the algorithm).

#### Random Access Machine (RAM) model:

A set of memory cells, each of which stores one item (word) of data. Implicit assumption: memory cells are big enough to hold the items that we store.

Any access to a memory location takes constant time.

Any primitive operation takes constant time.

Implicit assumption: primitive operations have fairly similar, though different, running time on different systems

The running time of a program is proportional to the number of memory accesses plus the number of primitive operations.

#### 1.3 Order Notation

#### **Definition 1.3.1.**

 $O: f(n) \in O(g(n))$  if exist constants c > 0 and  $n_0 > 0$  that  $\forall n \ge n_0, |f(n) \le c|g(n)|$ .

 $\Omega$ :  $f(n) \in \Omega(g(n))$  if exist constants c > 0 and  $n_0 > 0$  that  $\forall n \ge n_0, c|g(n)| \le |f(n)|$ .

 $\Theta$ :  $f(n) \in \Theta(g(n))$  if exist constants  $c_1, c_2 > 0$  and  $n_0 > 0$  that  $\forall n \ge n_0, c_1 |g(n)| \le |f(n)| \le c_2 |g(n)|$ .

o:  $f(n) \in o(g(n))$  if for all constants c > 0, exists  $n_0 > 0$  such that  $|f(n)| \le c|g(n)|$  for all  $n \ge n_0$ .

 $\omega$ :  $f(n) \in \omega(g(n))$  if  $g(n) \in o(f(n))$ .

Remark: We always want tight asymptotic bound.

**Proposition 1.3.1.** Suppose that f(n) > 0 and g(n) > 0 for all  $n \ge n_0$ , suppose that

$$L = \lim_{n \to \infty} \frac{f(n)}{g(n)}$$
 exists

then

$$f(n) \in \begin{cases} o(g(n)), & \text{if } L = 0\\ \Theta(g(n)), & \text{if } 0 < L < \infty\\ \omega(g(n)), & \text{if } L = \infty \end{cases}$$

**Proposition 1.3.2** (relations between order notations).

- $f(n) \in \Theta(g(n)) \Leftrightarrow g(n) \in \Theta(f(n))$
- $f(n) \in O(g(n)) \Leftrightarrow g(n) \in \Omega(f(n))$
- $f(n) \in o(g(n)) \Leftrightarrow g(n) \in \omega(f(n))$
- $f(n) \in o(g(n)) \Leftrightarrow f(n) \in O(f(n))$
- $f(n) \in o(g(n)) \Leftrightarrow f(n) \not\in \Omega(f(n))$
- $f(n) \in \omega(g(n)) \Leftrightarrow f(n) \in \Omega(f(n))$
- $f(n) \in \omega(g(n)) \Leftrightarrow f(n) \not\in O(f(n))$

**Proposition 1.3.3.** Assume  $f(n) \ge 0$  and  $g(n) \ge 0$  for all  $n \ge 0$ ,

- Identity rule:  $f(n) \in \Theta(f(n))$
- Transitivity:
  - If  $f(n) \in O(g(n))$  and  $g(n) \in O(h(n))$  then  $f(n) \in O(h(n))$
  - If  $f(n) \in \Omega(g(n))$  and  $g(n) \in \Omega(h(n))$  then  $f(n) \in \Omega(h(n))$
- Maximum rule:
  - $O(g(n) + g(n)) = O(\max\{f(n), g(n)\})$
  - $\Omega(g(n) + g(n)) = \Omega(\max\{f(n), g(n)\})$

# 1.4 Growth

•  $\Theta(1)$ : constant complexity

•  $\Theta(\log n)$  : logarithmic complexity

•  $\Theta(n)$ :linear complexity

•  $\Theta(n \log n)$ : linearithmic

•  $\Theta(n\log^k n)$  : for some constant k (quasi-linear)

•  $\Theta(n^2)$ : quadratic complexity

•  $\Theta(n^3)^3$ : cubic complexity

•  $\Theta(2^n)$ : exponential complexity

# 1.5 Recurrence Relations

| Recursion                               | Resolves to                    | example              |  |
|-----------------------------------------|--------------------------------|----------------------|--|
| $T(n) = T(n/2) + \Theta(1)$             | $T(n) \in \Theta(\log n)$      | Binary search        |  |
| $T(n) = 2T(n/2) + \Theta(n)$            | $T(n) \in \Theta(n \log n)$    | Mergesort            |  |
| $T(n) = 2T(n/2) + \Theta(\log n)$       | $T(n) \in \Theta(n)$           | Heapify              |  |
| $T(n) = T(cn) + \Theta(n), \ 0 < c < 1$ | $T(n) \in \Theta(n)$           | Selection            |  |
| $T(n) = 2T(n/4) + \Theta(1)$            | $T(n) \in \Theta(\sqrt{n})$    | Range search         |  |
| $T(n) = T(\sqrt{n}) + \Theta(1)$        | $T(n) \in \Theta(\log \log n)$ | Interpolation search |  |

# 2 Module 2: Priority Queues and Heaps

#### 2.1 ADT

From video: Heap 1

**Definition 2.1.1. Stack** is an ADT consisting of a collection of items with operations in LIFO order:

- push: inserting an item
- pop: removing the **most** recently inserted item

**Definition 2.1.2. Queue** is an ADT consisting of a collection of items with operations in FIFO order:

- enqueue: inserting an item
- dequeue: removing the **least** recently inserted item

# 2.2 Priority Queue

**Definition 2.2.1. Priority Queue** is consisting of a collection of items each having a **priority**(key) with operations:

- insert: inserting an item tagged with a priority
- deleteMax: removing the item of highest Priority

Realization 1: unsorted arrays

- insert: O(1)
- deleteMax: O(n)

**Realization 2:** sorted arrays

- insert: O(n)
- deleteMax: O(1)

**Realization 3:** heap

**Algorithm 2.2.1** (Using a priority queue to sort).

```
PQ-Sort(A[0 ... n-1])
1. initialize PO to
```

- 1. initialize PQ to an empty priority queue
- 2. for k < 0 to n-1 do
- 3. PQ.insert (A[k], A[k]) (priority and item are equal to A[k])
- 4. for k < -n-1 down to 0 do
- 5. A[k] <- PQ.deleteMax()</pre>

# **2.3** Heap

**Definition 2.3.1** (heap). **Heap** is a certain type of binary tree with two properties:

- Structural property: "complete"
- Heap-order property: for any node i, the key of the parent of i is >= to key of i

**Remark:** the height of a heap with n node is  $\Theta(\log n)$ .

#### **Navigation:**

```
• root: 0, last node: n-1
```

• child: 2i + 1, 2i + 2

• parent:  $\lfloor \frac{i-1}{2} \rfloor$ 

**Algorithm 2.3.1** (insert in Heap). Time:  $O(\log n) = O(height \ of \ heap)$ 

```
fix-up(A, i)
```

- i: an index corresponding to a node of the heap
- while parent(i) exists and A[parent(i)].key < A[i].key do</li>
- swap A[i] and A[parent(i)]
- 3. i parent(i)

**Algorithm 2.3.2** (deletemax in Heap).  $O(\text{height of heap}) = O(\log n)$ 

```
fix-down(A, n, i)
```

A: an array that stores a heap of size n

i: an index corresponding to a node of the heap

- 1. while i is not a leaf do
- 2. // Find the child with the larger key
- 3. j left child of i
- 4. if (j is not last(n) and A[j + 1].key > A[j].key)
- 5. j j + 1
- 6. if A[i].key A[j].key break
- 7. swap A[j] and A[i]
- 8. i j

#### 2.4 Tutorial

Question: merge k sorted arrays into one

IDEA: using a minHeap to track smallest elements of each array which is not in the output

Question: an input array L of co-prime integers, output k-th smallest fraction  $\frac{L[i]}{L[j]}$ , i < j.

# 3 Module 3: Sorting, Selection

# 3.1 Quick Select

**Problem:** Given an array A of n numbers and  $0 \le k \le n$  find the element that would be at position k of the sorted array of A.

– Selection can be done with heaps in time  $\Theta(n + k \log n)$ , where k is the index.

#### **Algorithm 3.1.1** (quick-select1).

#### two subroutines:

- 1. choose-pivot(A): return an index p in A, and use the pivot-value to rearrange the array.
- 2. partition(A, p): rearrange A and return pivot-index i so that
  - the pivot-value is at A[i]
  - all items in A[0, . . . , i 1] are  $\leq$  v, and
  - all items in A[i + 1, . . . , n 1] are  $\geq v$ .

```
partition(A, p)
  A: array of size n, p: integer s.t. 0  p < n
   1. swap(A[n - 1], A[p])
  2. i <- -1, j <- n - 1, v <- A[n - 1]
  3. loop
  4. do i <- i + 1 while i < n and A[i] < v
  5. do j <- j - 1 while j > 0 and A[j] > v
  6. if i >= j then break (goto 9)
  7. else swap(A[i], A[j])
  8. end loop
  9. swap(A[n - 1], A[i])
  10. return i
```

#### main algorithm:

```
quick-select1(A, k)
A: array of size n, k: integer s.t. 0 <= k < n
    1. p <- choose-pivot1(A)
    2. i <- partition(A, p)
    3. if i = k then
    4. return A[i]
    5. else if i > k then
    6. return quick-select1(A[0, 1, . . . , i - 1], k)
    7. else if i < k then
    8. return quick-select1(A[i + 1, i + 2, . . . , n - 1], k - i - 1</pre>
```

#### analysis:

- Worst Case:  $\Theta(n^2)$
- Best Case:  $\Theta(n)$
- Average Case:  $\Theta(n)$

# 3.2 Randomized Algorithms

**Definition 3.2.1.** A **randomized algorithm** is one which relies on some random numbers in addition to the input.

The run-time will depend on the input and the random numbers used.

**Goal:** Shift the dependency of run-time from what we cant control (the input) to what we can control (the random numbers).

**Definition 3.2.2.** The expected running time  $T^{(exp)}(I)$  for instance I is the expected value for T(I,R):

$$T^{(exp)}(I) = E[T(I,R)] = \sum_R T(I,R) \cdot Pr[R]$$

# 3.3 Lower bounds for sorting

**Theorem 3.3.1.** Any correct comparison-based sorting algorithm requires at least  $\Omega(n \log n)$  comparison operations to sort n distinct items.

# 3.4 Non-Comparison-Base sorting

### 3.5 Tutorial

Question 1: - input: an array which is partially sorted for  $n-n^{\varepsilon}$ ,  $0<\varepsilon<1$  - output: completely sorted array - requirement: O(n)

# 4 Module 4: BST, AVL

**Definition 4.0.1. Dictionary**: collection of items each with a **key** and some **data** (**key-value pair**).

- Common assumptions:
  - Dictionary has n KVPs.
  - Each KVP uses constant space.
  - Keys can be compared in constant time.

**Definition 4.0.2. AVL tree**: BST tree with height-balance property, that is:

$$| \text{height}(L) - \text{height}(R) | \le 1$$
,

where L is the left tree and R is the right tree.

**Balance**: height(R) - height(L)  $\in \{-1, 0, 1\} \Rightarrow \{\text{left-heavy, equal, right-heavy}\}.$ 

**Remark:** Each node consists of a key, a value and a height (or balance). Height of empty tree: -1, height of a single node: 0.

**Theorem 4.0.1.** An AVL tree on n nodes has  $\Theta(\log n)$  height.

- search, insert, delete worst case:  $\Theta(\log n)$ 

*Proof.* Define N(h) to be the least number of nodes in a height-h AVL tree.

$$N(0) = 1, N(1) = 2, N(2) = 4$$
, then

$$N(h) = N(h-1) + N(h-2) + 1$$
, one is L and one is R.

Algorithm 4.0.1 (insertion in AVL tree).

- Steps:
  - 1. insert (k, v) with the usual BST insertion, return the new leaf z where the key is stored.
  - 2. move up the tree from z, updating heights.

```
AVL::insert(k, v)
    1. z <- BST::insert(k, v) // leaf where k is now stored</pre>
    2. z.height <- 0</pre>
    3. while (z is not null)
            setHeightFromChildren(z)
    4.
    5.
            if (|z.left.height - z.right.height| > 1) then
                 AVL-fix(x)
    6.
    7.
                 break
            else
                 z \leftarrow parent of z
setHeightFromSubtrees(u)
    1. u.height <- 1 + max{u.left.height, u.right.height}</pre>
```

3. If the height difference becomes  $\pm 2$  at node z, then z is unbalanced, re-structure the tree to rebalance.

```
AVL-fix(z)
    1. if (z.right_height > z.left_height) then
    2.
           y <- z.right
           if (y.left.height > y.right.height) then
    3.
    4.
               x <- y.left
    5.
           else x <- y.right
    6. else
           y <- z.left
    7.
    8.
           if (y.right.height > y.left.height) then
    9.
              x <- y.right
           else x <- y.left
    10.
    11.
```

#### - Different types of unbalance:

• Right Rotation:



```
rotate-right(z)
1. y <- z.left, z.left <- y.right, y.right <- z
2. setHeightFromSubtrees(z), setHeightFromSubtrees(y)
3. return y // returns new root of subtree</pre>
```

• Left Rotation:



```
rotate-left(z)
1. y <- z.right, z.right <- y.left, y.left <- z
2. setHeightFromSubtrees(z), setHeightFromSubtrees(y)
3. return y // returns new root of subtree</pre>
```

# • Double Right Rotation:



```
double-rotate-left(z):
- First: perform a left rotation at y,
- Second: a right rotation at z.
```

#### • Double Left Rotation:



```
double-rotate-left(z):
- First: perform a right rotation at y,
- Second: a left rotation at z.
```

# 4.1 Tutorial

Question 1: comparison based question

# 5 Module 5

# 5.1 Skip List

**Definition 5.1.1** (Skip List). Skip List is a hierarchy S of ordered linked lists (levels)  $S_0, S_1, ..., S_h$ :

- Each list  $S_i$  contains the special keys  $-\infty$  and  $+\infty$  (sentinals)
- List  $S_0$  contains the KVPs of S in non-decreasing order.
- Each list is a subsequence of the previous one.
- List  $S_h$  contains only the sentinels; the left sentinel is the root

#### **Algorithm 5.1.1** (Skip List Search).

#### **Expected Running time:** $O(\log n)$

```
getPredecessors (k)
1.  p <- topmost left sentinel
2.  P <- stack of nodes, initially containing p
3.  while p.below != NIL do
4.    p <- p.below
5.    while p.after.key < k do p <- p.after
6.    P.push(p)
7.  return P

skipList::search (k)
1.  P <- getPredecessors(k)
2.  p0 <- P.top() // predecessor of k in S0
3.  if p0.after.key = k return p0.after
4.  else return not found, but would be after p0</pre>
```

#### **Algorithm 5.1.2** (Skip List Insert).

#### **Expected Running time:** $O(\log n)$

```
skipList::insert(k, v)
1. P <- getPredecessors(k)
2. for (i <- 0; random(2) = 1; i <- i+1) {} // random tower height
3. while i >= P.size() // increase skip-list height?
4.    root <- new sentinel-only list, linked to previous root-list appropriately
5.    P.append(left sentinel of root)
6. p <- P.pop() // insert (k, v) in S0
7. k_below <- new node with (k, v), inserted after p
8. while i > 0 // insert k in S1, . . . , Si
9. p <- P.pop()
10. k_below <- new node with k, inserted after p with below-reference to kbelow
11. i <- i - 1</pre>
```

#### **Algorithm 5.1.3** (Skip List Insert).

#### **Expected Running time:** $O(\log n)$

p.below <- p.below.below</li>
 p.after.below <- p.after.below.below</li>

# 5.2 Reordering

**Recall:** Unordered list/array implementation of ADT Dictionary search:  $\Theta(n)$ 

If the items are accessed unequally likely, and if we have a probability distribution of the items being accessed, and we can use this information to make search more effective.

**Optimal Static Ordering:** used when we KNOW the probability distribution beforehand.

Claim: Over all possible static orderings, the one that sorts items by non-increasing access-probability minimizes the expected access cost.

Proof Idea: For any other ordering, exchanging two items that are out-of-order according to their access probabilities makes the total cost decrease.

#### Example:

| key                 | A    | В    | C    | D     | Е    |
|---------------------|------|------|------|-------|------|
| frequency of access | 2    | 8    | 1    | 10    | 5    |
| access-probability  | 2/26 | 8/26 | 1/26 | 10/26 | 5/26 |

• Order A, B, C, D, E has expected access cost:

$$1 \cdot \frac{2}{26} + 2 \cdot \frac{8}{26} + 3 \cdot \frac{1}{26} + 4 \cdot \frac{10}{26} + 5 \cdot \frac{5}{26} \approx 3.31$$

• Order D, B,E,A,C has expected access cost:

$$1 \cdot \frac{10}{26} + 2 \cdot \frac{8}{26} + 3 \cdot \frac{5}{26} + 4 \cdot \frac{2}{26} + 5 \cdot \frac{1}{26} \approx 2.07$$

**Dynamic Ordering:** when we DO NOT know the probability distribution deforehand.

- Move-To-Front heuristic (MTF): Upon a successful search, move the accessed item to the front of the list
  - works well in practice
  - rule of thumb (temporal locality): a recently accessed item is likely to be used soon again.
  - can show: MTF is 2-competitive. No more than twice as bad as the optimal static ordering.
- **Transpose heuristic:** Upon a successful search, swap the accessed item with the item immediately preceding it.
  - Transpose does not adapt quickly to changing access patterns.

# 6 Module 6

#### 6.1 Lower bound for search

**Theorem 6.1.1.** In the comparison model,  $\Omega(\log n)$  comparisons are required to search a size-n dictionary.

*Proof.* The number of distinct answers is n+1 and they correspond to leaves.

The corresponding decision trees has at least n+1 leaves and there are at most three children for any node at any level, so the decision tree has height at least  $\log_3(n+1) \in \Omega(\log n)$ .

# **6.2** Interpolation Search

For an ordered array,

• insert, delete:  $\Theta(n)$ 

• search:  $\Theta(\log n)$ 

**Interpolation Search**(A[l, r], k): Compare at index " $l + \frac{k-A[l]}{A[r]-A[l]} \times (r-l)$ ",

Works well if keys are uniformly distributed,

- recurrence relation is  $T^{(avg)}(n) = T^{(avg)}(\sqrt{n}) + \Theta(1)$ , which resolves to  $T^{(avg)}(n) \in \Theta(\log \log n)$ .
- worst performance  $\Theta(n)$

```
Interpolation-search(A,n,k) A: array of size n, k: key 1:\ l\leftarrow 0 2:\ r\leftarrow n-1 3:\ \text{while}\ (A[r]!=A[l])\ \&\&\ (k>=A[l])\ \&\&\ (k<=A[r])\ \text{do} 4:\ m\leftarrow l+\frac{k-A[l]}{A[r]-A[l]}\times (r-l) 5:\ \text{if}\ A[m]< k\ \text{then}\ l=m+1 6:\ \text{else if}\ k< A[m]\ \text{then}\ r=m-1 7:\ \text{else return}\ m 8:\ \text{if}\ k=A[l]\ \text{then}\ \text{return}\ l 9:\ \text{else return}\ \text{"not found"}
```

#### 6.3 Tries

**Definition 6.3.1.** Trie (also know as radix tree): A dictionary for bitstrings,  $\Sigma = \{0, 1\}$ .

Used for: string, word, |w|, alphabet, prefix, suffix, comparing words,....

**Definition 6.3.2.** Prefix of a string S[0,...,n-1]: a substring S[0,...,i] of S for some  $0 \le i \le n-1$ .

Prefix-free: no pair of binary strings in the dictionary where one is the prefix of the other.

# **Definition 6.3.3. Compressed Trie:** compress paths of nodes with only one child

- Each node stores an *index* corresponding to the depth in the uncompressed trie, and store the string at the leaf.
- A compressed trie with n keys has at most n-1 internal nodes.
- All operations take O(|x|) time, where x is the string getting operated on.



# 7 Module 7: Hashing

# 7.1 Hashing Introduction

**Direct Addressing:** For a known  $M \in \mathbb{N}$ , every key k is an integer with  $0 \le k < M$ . We can then implement a dictionary easily by using an array A of size M that stores (k, v) via  $A[k] \leftarrow v$ .

- search(k): check whether A[k] is NIL.
- insert(k, v): A[k] = v
- delete(k,v):  $A[k] \leftarrow NIL$ .

**Hashing:** map keys to integers in range  $\{0, \ldots, M_1\}$  and then use direct addressing.

- Hash function  $h:U\to\{0,1,\ldots,M-1\}$ , where U is some universe that keys all come from.
- Hash table: an array T of size M.
- Collisions: generally hash function h is not injective, so keys can map to the same integer.
  - we want to insert(k,v), but T[h(k)] is already occupied.
  - We will discuss strategies of solving collisions in the next couple subsections.
  - Probability of having a collision when we pick n values from  $\{w=0,\ldots,M-1\}$ :
    - the probability of no collision:  $\frac{M(M-1)(M-2)...(M-(n-1))}{M^n}.$
    - the probability of collision:  $1 \frac{M(M-1)(M-2)...(M-(n-1))}{M^n}$

# 7.2 Seperate Chaining

IDEA: every slot of the array stores a bucket containing 0 or more KVPs. We will use unsorted linked lists for buckets.

- search(k): Apply MTF-heuristic. O(1).
- insert(k, v): Add (k,v) to the front of the list at T[h(k)]. O(1 + size of bucket T(h(k)))
- delete(k): Perform a search, then delete from the list. O(1 + size of bucket T(h(k))).

### Complexity analysis:

- the average bucket-size is  $\frac{n}{M} = \alpha$ , (load factor)

  However, this <u>DOES NOT</u> imply that the average-case cost of search and delete is  $O(1 + \alpha)$ .
- Uniform Hashing Assumption: for any key k, and for any  $j \in \{0, ..., M-1\}$ , h(k) = j happens with probability  $\frac{1}{M}$  independently.

Under this assumption, we can expect search and delete to have average cost  $\Theta(1+\alpha)$ .

# 7.3 Linear Probing

IDEA: Avoid the links needed for chaining by permitting only one item per slot, but allowing a key k to be in multiple slots.

- Hash function:  $h(k, i) = (h(k) + i) \mod M$ .
- Search and Insert: follow a probe sequence of possible positions for key k, until an empty spot is found.
- Delete: lazy delete, mark deleted spot as "deleted".

### Algorithm 7.3.1 (Probe Sequence Insert).

```
Linear-Probing::insert(T, (k,v))

1: for j=0; j < M; j++ do

2: if T[h(k,j)] is NIL or deleted then

3: T[h(k,j)] = (k,v)

4: return success

5: return failure to insert // need to rehash
```

#### **Algorithm 7.3.2** (Probe Sequence Search).

```
Linear-Probing::insert(T, (k,v))

1: for j=0; j < M; j++ do

2: if T[h(k,j)] is NIL then

3: return item not found

4: else if T[h(k,j)] has key k then

5: return T[h(k,j)] // ignore deleted and keep searching

6: return item not found
```

# 7.4 Independent Hash Functions

Two hash functions  $h_0$ ,  $h_2$  that are independent.

multiplicative method:  $h_1(k) = \lfloor M(kA - \lfloor kA \rfloor) \rfloor$ 

- A is some floating-point number
- $kA \lfloor kA \rfloor$  computes the fractional part of kA, which is in [0,1), then multiply with M to get floating-point number in [0,M), and we round it down.
- suggests  $A=\varphi=\frac{\sqrt{5}-1}{2}\approx 0.618$ .

# 7.5 Double Hashing

IDEA: open addressing with probe sequence with hash function:

$$h(k,i) = h_0(k) + i \cdot h_1(k) \mod M ,$$

which  $h_0$  uses mod method and  $h_1$  is multiplicative using  $\varphi$ . So in linear probing, each time we go to next spot (index + 1), but here, the index increments by  $h_1(k)$ , so  $h_1(k) \neq 0$  for any k.

\* If  $T[h_0(k)]$  is empty, we do not need to compute  $h_1$ .

# 7.6 Cuckoo Hashing

IDEA: Use two independent hash functions  $h_0$ ,  $h_1$  and two tables  $T_0$ ,  $T_1$ . An item with key k can only be at  $T_0[H_0(k)]$  or  $T_1[T_1(k)]$ .

**Algorithm 7.6.1** (Cuckoo Hashing Insert). Insert always initially puts a new item into  $T_0[h_0(k)]$ .

If  $T_0[h_0(k)]$  is occupied: kick out the other item k', which we then attempt to re-insert into its alternate position  $T_1[h_1(k')]$ . This may lead to a loop of kicking out. We detect this by aborting after too many attempts. In case of failure: rehash with a larger M and new hash functions.

#### 7.7 Conclusion

Load Factor  $\alpha = \frac{n}{M}$ :

- $\alpha < 1$  for linear probing and double hashing,  $\alpha < \frac{1}{2}$  for cuckoo hashing
- $\alpha$  no constraint for seperate chaining

| Avgcase costs: | search<br>(unsuccessful) | insert                         | search<br>(successful)                                 |  |
|----------------|--------------------------|--------------------------------|--------------------------------------------------------|--|
| Linear Probing | $\frac{1}{(1-\alpha)^2}$ | $\frac{1}{(1-\alpha)^2}$       | $\frac{1}{1-lpha}$                                     |  |
| Double Hashing | $\frac{1}{1-lpha}$       | $rac{1}{1-lpha}$              | $\frac{1}{\alpha}\log\biggl(\frac{1}{1-\alpha}\biggr)$ |  |
| Cuckoo Hashing | 1<br>(worst-case)        | $\frac{\alpha}{(1-2\alpha)^2}$ | 1<br>(worst-case)                                      |  |

Summary: All operation has O(1) average-case run-time if the hash-function is uniform and  $\alpha$  is kept sufficiently small, but worst-case run-time is usually  $\Theta(n)$ .

# 8 Module 8: Range-Searching in Dictionaries for Points

**Range Search:** look for all itesm that fall within a given range.

- input: an interval I=(x, x'), in higher dimensions, it will be a rectangle.
- output: all KVPs which the key falls in the range.
- The time is at least  $\Omega(s)$ , which s is the size of points in the range.

#### Range searches in existing dictionary realizations:

- Unsorted list, array, hash table:  $\Omega(n)$
- Sorted array:  $O(\log n + s)$  time.
  - Using binary search to find i which  $A[i] \approx x$  and find i' which  $A[i'] \approx x'$ , and report all items in A[i+1,...,i'-1], report A[i] and A[i'] if they are in the range.
- BST: O(height + s)

#### **Multi-dimensional data:**

- Each item has d aspects(coordinates):  $(x_0, x_1, \dots, x_d)$
- we concentrate on d=2

**D-dimensional range search:** given a query rectangle A find all points that lie within A

# 8.1 Quadtrees

```
We have n points S = \{(x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1})\},\
```

#### **Structure:**

- Root r of the quadtree is associated with region R, if R contains 0 or 1 points, then root r is a leaf that stores the point.
- Else split: Partition R into four quadrants,  $R_{NE}$ ,  $R_{NW}$ ,  $R_{SW}$ ,  $R_{SE}$ .
- Convention: points on split lines belong to right/top side
- Recursively build tree  $T_i$  for points  $S_i$  in region  $R_i$  and make them children of the root.

#### Algorithm 8.1.1 (Quadtree Search).

```
QuadTree::RangeSearch(r \leftarrow root, A) if R \subseteq A then report all points below R then return else if R \cap A is empty then return else if r is a leaf then p \leftarrow point stored at r if p is in A then return p else return for each child v of r do QuadTree::RangeSearch(v, A)
```

### **Analysis of QuadTree:**

- The height of a quadtree can be very large for bad distribution of points
- spread factor:

$$\beta = \frac{\text{side length of } R}{\text{minimum distance between points in } S}$$

- Complexity to build initial tree:  $\Theta(nh)$  worst-case
- Complexity of range search:  $\Theta(nh)$  worst-case even if the answer is  $\varnothing$ . But in practice much faster.
- A quadtree of 1-dimensional space is a trie.
- Variation:
  - stop spliting earlier and allow up to M points in a leaf
  - store pixelated images by splitting until each region has the same color

#### 8.2 kd-trees

#### **Structure:**

- Split the region such that (roughly) half the point are in each subtree.
- Each node of the kd-tree keeps track of a splitting line in one dimension (2D: either vertical or horizontal)
- Convention: points on split lines belong to right/top side
- Continue splitting, switching between vertical and horizontal lines.

# **8.3** Range Tree

# **Definition 8.3.1.** A **Range-tree** is a tree of trees.

- $\bullet$  Primary structure: balanced BST T that stores P and uses x–cordinates as keys. O(n) space
- Associate structure: For each node v of T stores a balanced BST T(v) which
  - let P(v) be all points in subtree v in T
  - T(v) stores P(v) in a balanced BST using y–coordinates as key.
  - Note: v is not necessarily the root of T(v).
  - Uses  $O(n \log n)$  space

# **Definition 8.3.2.** In d-dimensional space

- Space:  $O(n(\log n)^{d-1})$
- Construction Time:  $O(n(\log n)^d)$
- Range search time:  $O(s + (\log n))^d$

# **8.4 Section Conclusion**

- Quadtrees:
  - Simple, works well only if points are evenly distributed
  - wastes space for higher dimensions
- kd-trees:
  - linear space
  - range search time  $O(\sqrt{n} + s)$
  - inserts/deletes destory balance
  - care needed if not in general position
- range tree:
  - range search time  $O(\log^2 n + s)$
  - wastes some space
  - inserts/deletes/ destory balance

# 9 Module 9: String Matching

# 9.1 Pattern Matching Definition

Problem: given a text(or haystack) T[0...n-1] and a pattern(or needle) P[0...m-1], does P occur in T? Pattern matching algorithm consists of **guesses** and **checks**.

- A guess or shift is a position i which P might start at T[i] valid guesses are  $0 \le i \le n m$
- A check of a guess is a single position j with  $0 \le j < m$  where we compare T[i+j] to P[j]. We must perform m checks of a single correct guess, but may make fewer checks of an incorrect guess.
- We represent a single run of any pattern matching algorithm by a matrix of checks, where each row represents a single check

# 9.2 Brute-force Algorithm

**Algorithm 9.2.1.** The worst case performance  $\Theta((n-m+1)m)$ .

```
BruteforcePM(T[0, ...,n-1], P[0,...,m-1])
T: string of length n, P: string of length m
1: for i \leftarrow 0 to n-m do
2: for j \leftarrow 0 to m-1 do
3: if T[i+j] != P[j] then Break
4: if j=m then return i
5: return FAIL
```

# 9.3 Knuth-Morris-Pratt Algorithm

IDEA: Compute the failure array, then

# 9.4 Rabin-Karp Fingerprint Algorithm

IDEA: use hashing to eliminate guesses, compute hash function for each guess, compare with pattern hash.

• We can use the previous hash to compute the next hash.

#### Algorithm 9.4.1.

```
\begin{array}{l} \operatorname{Rabin-Karp}(\mathsf{T}[0,...,\mathsf{n-1}],\,\mathsf{P}[0,...,\mathsf{m-1}]) \\ h_P \leftarrow h(P[0,...,m-1]) \\ \text{1: for } i \leftarrow 0 \text{ to } n-m \text{ do } h_T \leftarrow h(T[i..i+m-1]) \\ \text{2:} \qquad \text{if } h_T = h_P \text{ then} \\ \text{3:} \qquad \text{if strcmp}(T[i..i+m-1],P) = 0 \text{ then return 'found at guess i'} \\ \text{4: return FAIL} \end{array}
```

- Choose table size M at random to be huge prime
- Expected running time is O(m+n)
- $\Theta(mn)$  worst-case, but this is unbelievably unlikely

# 9.5 Boyer-Moore Algorithm

**Idea:** Brute-force search with three changes:

- Reverse-order searching
- Bad character jumps: build the last-occurrence array L mapping  $\Sigma$  to integers which L(c) is the largest index such that P[i] = c, can build this in  $O(m + |\Sigma|)$ .
- Good suffix jumps: S[j] is the maximum l that
  - P[j+1...m-1] is a prefix of P[l+1...m-1] and  $P[j] \neq P[l]$
  - P[j-l...m-1] is a prefix of P and l<0.
  - l = -j if neither of the above is possible

#### 9.6 Suffix Trees

**Problem:** want to find many patterns P within the same fixed text T?

**Idea**: Preprocess the text T rather than the pattern P.

**Observation**: P is a substring of T if and only if P is a prefix of some suffix of T.

**Algorithm:** store all suffixes of T in the trie as indices(begin-end), compress the trie. Text T has n characters and n+1 suffixes. We can build the suffix tree by inserting each suffix of T into a compressed trie. This takes time  $\Theta(n^2)$ . There is a way to build a suffix tree of T in  $\Theta(n)$  time(beyond scope of course).

Assume we have a suffix tree of text T, to search for pattern P of length m:

- We assume that P does not have the final \$.
- P is the prefix of some suffix of T.

then, we search for P until one of the following occurs:

- 1. If search fails due to "no such child" then P is not in T
- 2. If we reach end of P, say at node v, then jump to leaf l in subtree of v.
- 3. Else we reach a leaf l = v while characters of P left.

For case 2, 3, left index at l gives the shift that we should check. This takes O(|P|) time.

# 9.7 Summary

|                | Brute-<br>Force | Karp-<br>Rabin  | DFA            | Knuth-<br>Morris-<br>Pratt | Boyer-<br>Moore   | Suffix<br>Tree                    | Suffix<br>Array        |
|----------------|-----------------|-----------------|----------------|----------------------------|-------------------|-----------------------------------|------------------------|
| Preproc.       | _               | O(m)            | $O(m \Sigma )$ | O(m)                       | $O(m+ \Sigma )$   | $O(n^2 \Sigma ) \ [O(n \Sigma )]$ | $O(n \log n)$ $[O(n)]$ |
| Search<br>time | O(nm)           | O(n+m) expected | O(n)           | O(n)                       | O(n) or better    | O(m)                              | $O(m \log n)$          |
| Extra space    | _               | O(1)            | $O(m \Sigma )$ | O(m)                       | $O(m{+} \Sigma )$ | $O(n \Sigma )$                    | O(n)                   |

# 10 Module 10: Data Compression

# 10.1 Run-Length Encoding

- Variable-length code
- Example: multiple source-text characters receive one code-word.
- The source alphabet and coded alphabet are both binary:  $\{0,1\}$
- Decoding dictionary is uniquely defined and not explicitly stored.

### **Example:**

#### **Encoding:**

- S = 11111 11001 00000 00000 00000 00000 11111 11111 1
- C = 1 00111 01 01 000010100 0001011

#### Decoding:

- C = 00001101001001010
- $S = 00000\ 00000\ 00011\ 11011$
- All all-0 string of length n would be compressed to  $2|\log n| + 2 \in o(n)$  bits.
- may cause space waste for string with small length

# 10.2 bzip2

IDEA: uses text transform: change input into a different text that is not necessarily shorter but that has other desirable qualities

Move-To-Front transform:

Example: GOOOOD

# **11 Module 11**

#### 11.1 Motivation

External memory: disk, cloud. (size unbounded, but slow)

Internal memory: registers, main memory. (fast but small)

Want to transfer memory between internal and external.

- accessing a single location in external memory automatically loads a whole block, one block access take as much time as executing 100,000 CPU instructions(need to care about the number of block accesses)
- External memory must be loaded into internal memory before processed by CPU.
- The running time is dominated by block transfers, so we can ignore the running time of CPU instructions.

### 11.2 External Sorting

Sort array A or n memory, assume n is large so that A is stored in blocks in external memory.

Mergesort adapts well for external memory.

**2-Way Mergesort:** An array, which first half and second half are both of size k are are both sorted seperately. Then we merge them using mergesort.

- keep track of two fronts of each two halves
- Runtime:  $\Theta(2k) = \Theta(n)$ . n = size of array.

**d-Way Mergesort:** Generalize the 2-way mergesort to d-way. Each round, merge d blocks of size k together to be a new block of size dk. The number of new blocks in the array is n/(dk).

- use minheap to keep track of minimum of all fronts
- Runtime: we merge d sequences each of size k dk iterations.
  - at each iteration, we perform one deleteMin() on heap of size d which cost  $\Theta(\log_2 d)$  time, and one insert() on heap of size d which cost  $\Theta(\log_2 d)$  time. So total  $\Theta(\log_2 d)$ .
  - For each new block, we merged d sequences of size k, therefore, for each block, the time to merge was  $\Theta(kd \log_2 d)$ .
  - And there are n/(dk) of these blocks in one round, so for one round, the, runtime is  $\Theta(\frac{n}{kd} \cdot kd \log_2 d) = \Theta(n \log_2 d)$ .
  - in total, there are  $\log_d n$  rounds so runtime is  $\Theta(n \log_2 n)$ .
- In external memory, we only count block accesses. We have  $\log_d n$  rounds and the time for each round is not  $\Theta(n \log_2 d)$  but  $\Theta(n)$  or better in block accesses. Then the total time becomes  $\Theta(n \log_d n)$ .

#### 11.2.1 Mergesort external memory

We cannot merge external memory directly, we have to transfer them into internal memory first.

# 11.3 External Dictionary

#### 11.3.1 2-4 trees

- Structural properties:
  - Every node is either
    - 1-node: 1 KVP and 2 subtrees(possibly empty)
    - 2-node: 2 KVPs and 3 subtrees(possible emtpy)
    - 3-node: 3 KVPs and 4 subtrees(possibly empty)
  - All empty subtrees are at the same level
- Order property: keys at any node are between the keys in the subtrees.
- need nodes that store more than one key



Algorithm 11.3.1 (2-4 tree operations).

```
 \begin{array}{l} \textit{24TreeSearch}(k,v \leftarrow \mathsf{root},p \leftarrow \mathsf{empty} \ \mathsf{subtree}) \\ & \textbf{if} \ v \ \mathsf{represents} \ \mathsf{empty} \ \mathsf{subtree} \\ & \textbf{return} \ \text{``not} \ \mathsf{found,} \ \mathsf{would} \ \mathsf{be} \ \mathsf{in} \ p'' \\ & \mathsf{let} \ T_0,k_1,\ldots,k_d \ , T_d \ \mathsf{be} \ \mathsf{keys} \ \mathsf{and} \ \mathsf{subtrees} \ \mathsf{at} \ v \ , \mathsf{in} \ \mathsf{order} \\ & \textbf{if} \ k \ \geq \ k_1 \\ & i \leftarrow \mathsf{maximal} \ \mathsf{index} \ \mathsf{such} \ \mathsf{that} \ k_i \ \leq \ k \\ & \textbf{if} \ k_i \ = \ k \\ & \textbf{return} \ \text{``at} \ i \mathsf{th} \ \mathsf{key} \ \mathsf{in} \ v \ \text{`'} \\ & \textbf{else} \ \textit{24TreeSearch}(k,T_i,v) \ ) \\ & \textbf{else} \ \textit{24TreeSearch}(k,T_0,v) \end{array}
```

```
 \begin{array}{c} \textit{24TreeInsert}(k) \\ v \leftarrow \textit{24TreeSearch}(k) \text{ //node where } k \text{ should be} \\ \text{add } k \text{ and an empty subtree in key-subtree-list of } v \\ \text{while } v \text{ has 4 keys (overflow} \rightarrow \text{node split)} \\ \text{let } T_0, k_1, \ldots, k_4, T_4 \text{ be keys and subtrees at } v \text{ , in order} \\ \text{if (} v \text{ has no parent) create a parent of } v \text{ (empty)} \\ p \leftarrow \text{parent of } v \\ v' \leftarrow \text{new node with keys } k_1, k_2 \text{ and subtrees } T_0, T_1, T_2 \\ v'' \leftarrow \text{new node with key } k_4 \text{ and subtrees } T_3, T_4 \\ \text{replace } < v > \text{by } < v', k_3, v'' > \text{in key-subtree-list of } p \\ v \leftarrow p \text{ //continue checking for overflow upwards} \\ \end{array}
```

```
24TreeDelete(k)
        w \leftarrow 24 Tree Search(k) //node containing k
        if w is not a node with only leaf children
                        v \leftarrow \text{leaf containing predecessor or successor } k' \text{ of } k
                        replace k by k' in w
        delete k' and an empty subtree in key-subtree-list of v
        while v has 0 keys // underflow
               if v is the root, delete it and break
               p \leftarrow \text{parent of } v
               if v has sibling u with 2 or more keys // transfer/rotate
                  let u be that sibling
                    if u is a right sibling // say p contains \langle v, k, u \rangle
                               replace key k in p by u.k_1
                            remove < u.T_0, u.k_1 > from u and append < k, u.T_0 > to v
                    else // symmetrical procedure if u is a left sibling
              else // merge/repeat
                       if v has a right sibling
                               v' \leftarrow new node with list (v.T_0, k, u.T_0, u.k_1, u.T_1)
                               replace < v, k, u >  by < v > in p
                               v \leftarrow p
                        else ... // symmetrically with left sibling
```

#### 11.3.2 (a,b)-trees

- Structural Property:
  - each node has at least a subtrees, at most b subtrees
  - if node has k subtrees, then it stores k-1 KVPs
  - all empty subtrees are at the same level
  - keys in the node are between keys in the corresponding subtrees
- Height of (a,b) trees: not counting the last empty level,  $O(\log_a n)$ ,  $\Theta(\log_b n)$ .

#### 11.3.3 (B-trees)

A B-tree of order m is a  $(\lceil m/2 \rceil, m)$ -tree.