1(a)

Yes. Suppose $(x, y), (u, v) \in M \times M$. Then

$$\varphi((x,y) + (u,v)) = \varphi(x+u,y+v)$$

$$= (x+u) - (y+v)$$

$$= x+u-y-v$$

$$= x-y+u-v$$

$$= \varphi(x,y) + \varphi(u,v).$$

And for $r \in R$ and $(x, y) \in M \times M$, we find

$$\varphi(r(x,y)) = \varphi(rx, ry)$$

$$= rx - ry$$

$$= r(x - y)$$

$$= r\varphi(x, y).$$

1(b)

No. Consider $1, x \in \mathbb{Q}[x]$. First, we have

$$\varphi(x1) = \varphi(x) = \frac{\mathrm{d}}{\mathrm{d}x}x = 1.$$

However,

$$x\varphi(1) = x\frac{\mathrm{d}}{\mathrm{d}x}1 = x0 = 0.$$

Thus, $\varphi(x1) \neq x\varphi(1)$, so φ is not a $\mathbb{Q}[x]$ -module homomorphism.

2

Yes. It is a field if and only if the ideal is maximal in $\mathbb{Q}[x]$. Since $\mathbb{Q}[x]$ is a UFD, ideals are maximal if and only if prime, and elements are prime if and only if irreducible. The polynomial has integer coefficients with GCD 1, so it is irreducible in $\mathbb{Q}[x]$ if and only if it is irreducible in $\mathbb{Z}[x]$. Since it is monic and 3 divide all but the leading coefficient, but 3^2 does not divide the constant term, then by Eisenstein's criterion, the polynomial is irreducible in $\mathbb{Z}[x]$. Hence, the quotient ring is a field.

3

Here, all integers implicitly represent their equivalence class mod 11. First, we find the characteristic polynomial.

$$c_{A}(x) = \det(xI_{3} - A)$$

$$= \det\begin{bmatrix} x - 1 & -2 & 0 \\ -3 & x - 4 & -5 \\ -2 & 0 & x + 1 \end{bmatrix}$$

$$= (x - 1) \det\begin{bmatrix} x - 4 & -5 \\ 0 & x + 1 \end{bmatrix} - (-2) \det\begin{bmatrix} -3 & -5 \\ -2 & x + 1 \end{bmatrix}$$

$$= (x - 1)((x - 4)(x + 1) - (-5)0) + 2(-3(x + 1) - (-5)(-2))$$

$$= (x - 1)(x - 4)(x + 1) + 2(-3x - 13)$$

$$= (x^{2} - 1)(x - 4) - 6x - 26$$

$$= x^{3} - 4x^{2} - 7x + 11$$

$$= x(x^{2} - 4x - 7)$$

$$= x(x^{2} - 4x + 4)$$

$$= x(x - 2)^{2}.$$

The possibilities for the minimal polynomial are therefore $x(x-2)^2$ or x(x-2). We check if the latter evaluates to zero at A.

$$A(A-2I_3) = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 4 & 5 \\ 2 & 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 2 & 0 \\ 3 & 2 & 5 \\ 2 & 0 & -3 \end{bmatrix} = \begin{bmatrix} 5 & * & * \\ * & * & * \\ * & * & * \end{bmatrix} \neq 0.$$

Therefore, the minimal polynomial is $m_A(x) = x(x-2)^2$.

3(a)

The invariant factor is $x(x-2)^2$.

3(b)

The elementary divisors are x and $(x-2)^2$.

3(c)

The Jordan canonical form is $\begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$

4(a)

Let $s \in R$ and $x, y \in M$. Then

$$\varphi_r(sx + y) = r(sx + y)$$

$$= rsx + ry$$

$$= srx + ry$$

$$= s\varphi_r(x) + \varphi_r(y).$$

Since $1 \in R$, this proves φ_r is an R-module homomorphism.

4(b)

Let $r, s, t \in R$. We want to show that f(rs + t) = rf(s) + f(t), i.e., that

$$\varphi_{rs+t} = r\varphi_s + \varphi_t.$$

Let $x \in M$, then

$$\varphi_{rs+t}(x) = (rs+t)(x)$$

$$= rsx + tx$$

$$= r\varphi_s(x) + \varphi_t(x)$$

$$= (r\varphi_s + \varphi_t)(x).$$

Hence, f is an R-module homomorphism.

4(c)

Let $x \in M$ such that M = Rx and $\varphi \in \text{Hom}_R(M, M)$. Since M is cyclic, then for some $r \in R$ we have $rx = \varphi(x)$. We claim that $f(r) = \varphi_r = \varphi$. Let $sx \in M$ (arbitrary element since M = Rx), then

$$\varphi_r(sx) = rsx$$

$$= srx$$

$$= s\varphi(x)$$

$$= \varphi(sx).$$

Hence, $f(r) = \varphi$, so f is surjective.

Let $I \subseteq R$ be an ideal. Since I is a free R-module, then there exists a basis $\{x_1, \ldots, x_n\}$ for I, with $x_1, \ldots, x_n \in R$ nonzero. Suppose for contradiction that n > 1, so $x_1, x_2 \in R$ nonzero. Then we have the R-linear combination of basis elements

$$(x_2)x_1 + (-x_1)x_2 + 0x_3 + \dots + 0x_n = x_1x_2 - x_1x_2 = 0.$$

This implies that all the coefficients are zero, so $x_2 = -x_1 = 0$. This is a contradiction, since all basis elements are assumed nonzero. Therefore, $\{x_1\}$ is a basis for I, meaning that $I = Rx_1 = (x_1)$. Hence, all ideals of R are principal, so R is a PID.

6(a)

Since φ is an R-module homomorphism, its image $\varphi(M) \subseteq M$ is an R-submodule of M. Since M is irreducible, this implies that $\varphi(M) = 0$ or $\varphi(M) = M$. Since φ is nonzero, then we must have $\varphi(M) = M$, i.e., φ is surjective. Now, $\ker \varphi \subseteq M$ is also an R-submodule of M, so we must have $\ker \varphi = 0$ or $\ker \varphi = M$. Since φ is nonzero, then we cannot have $\ker \varphi = M$, as that would imply $\varphi(M) = 0$. Therefore, $\ker \varphi = 0$, so φ is injective. Thus, φ is a bijective R-module homomorphism, so it is an R-module isomorphism.

6(b)

Since V is irreducible it has only itself and 0 as $\mathbb{C}[x]$ -submodules. The $\mathbb{C}[x]$ -submodules correspond bijectively to the T_A -stable subspaces. That is, the only T_a -stable subspaces are 0 and V, so must have A = 0? If $A = \lambda I_n$ with λ nonzero, then the span of any basis vector would be T_A -stable, so maybe I'm missing something.