DCA0121 – INTELIGÊNCIA ARTIFICIAL APLICADA Aula 10 – Algoritmos Genéticos

Prof. Marcelo Augusto Costa Fernandes mfernandes@dca.ufrn.br

Introdução

- Algoritmos de busca baseados no mecanismo de seleção natural e genética.
- Utilizam a representação das soluções através de cadeias de bits (strings), que são modeladas à maneira das cadeias de DNA dos seres vivos orgânicos.
- Foram desenvolvidos por John Holland na Universidade de Michigan.
 - Objetivos do algoritmo original
 - Criar uma abstração para explicar rigorosamente o processo adaptativo dos sistemas naturais
 - Projetar sistemas de software artificial que conservassem os mecanismos mais importantes dos sistemas naturais.

Introdução

- Principais características dos sistemas biológicos:
 - Auto-reparo
 - Auto-orientação
 - Reprodução
 - Aprendizado
 - Evolução
 - Obs: Estas características nem sempre encontram-se presentes nos sistemas artificiais

Para que servem?

- Busca e Otimização
- Amplamente utilizados, com sucesso, em problemas de difícil manipulação pelas técnicas tradicionais
- Eficiência X Flexibilidade

Características Gerais

- Utilizam uma codificação do conjunto de parâmetros (indivíduos) e não com os próprios parâmetros (estados);
- Vasculham várias regiões do espaço de busca de cada vez;
- Utilizam informações diretas de qualidade, em contraste com as derivadas utilizadas nos métodos tradicionais de otimização;
- Utilizam regras de transição probabilísticas e não regras determinísticas.

Características Gerais

Algoritmos Genéticos podem ser considerados como métodos que trabalham com

Buscas <u>Paralelas</u> <u>Randômicas Direcionadas</u>

Diferenças entre Algoritmos Genéticos e métodos Tradicionais

- GA's trabalham com uma codificação do conjunto de parâmetros, não com os próprios parâmetros
- GA's realizam a busca sobre uma população de pontos, não sobre um único ponto
- GA's utilizam a informação do resultado da função objetivo,
 não derivadas ou qualquer outro conhecimento auxiliar
- GA's usam regras de transição probabilísticas, não regras determinísticas.

Funcionamento Fundamental

- 1. Gerar População Inicial
- 2. Descartar uma parte dos Indivíduos menos aptos
- 3. Aplicar operadores de reprodução
- 4. Aplicar operadores de mutação
- 5. Se o critério de parada foi satisfeito, encerrar. Senão, voltar ao passo 2.

Modelagem

- Indivíduos X Estados
- Cada indivíduo possui um código genético
- Esse código é chamado *cromossomo*
- Tradicionalmente, um cromossomo é um vetor de bits
- Vetor de bits nem sempre é o ideal

Questões importantes

- Como criar cromossomos e qual tipo de codificação usar?
- Como escolher os pais para a realização do crossover?
- A geração de uma população a partir de duas soluções pode causar a perda da melhor solução. O que fazer?

Codificação binária

- É a mais comum devido a sua simplicidade
- Cada cromossomo é uma string de bits − 0 ou 1
 - Crom: A = 1011001011
 - Crom: B = 1 1 1 1 1 1 0 0 0 0
- Exemplo de uso: problema da mochila
- Codificação: Cada bit diz se um elemento está ou não na mochila

Codificação por permutação

- Mais usado em problemas de ordenação
- Cada cromossomo é uma string de números que representa uma posição numa seqüência
 - Crom A: 1 5 3 2 6 4 7 9 8
 - Crom B: 8 5 6 7 2 3 1 4 9
- Exemplo de uso: problema do caxeiro viajante
- Codificação: os cromossomos descrevem a ordem em que o caxeiro irá visitar as cidades

Codificação por valor

- Usado em problemas onde valores mais complicados são necessários
- Cada cromossomo é uma seqüência de valores
 - Crom A: 1.2324 5.3243 0.4556 2.3293 2.4545
 - Crom B: ABDJEIFJDHDIERJFDLDFLFEGT
 - Crom C: (back), (back), (right), (forward), (left)

Codificação por valor (Cont.)

• Exemplo de uso: dada uma estrutura, encontrar pesos para uma rede neural

 Codificação: Valores reais num cromossomo representam pesos em uma rede neural

Operadores Fundamentais

Seleção Natural

• Manipulação Genética por Mutação

Manipulação Genética por Reprodução

Seleção Natural

- Princípio básico para o direcionamento da evolução de uma dada população
- Utiliza uma função de avaliação para medir a *aptidão* de cada indivíduo
- Essa aptidão pode ser absoluta ou relativa
- Existem vários métodos de seleção

Seleção

- A função de seleção é escolher os elementos da população que participarão do processo de reprodução
 - Selecionar os pais dos indivíduos que estarão presentes na nova população.
- Esta escolha deve ser feita de tal forma que os membros da população mais adaptados ao meio ambiente, tenham maior chance de reprodução

Principais Métodos de Seleção Natural

Roleta

Torneio

• Amostragem Universal Estocástica

Exemplo

- Exemplo de um Algoritmo Genético simples
 - População Inicial: Strings de 5 bits
 - 01101 $f(x) = x^2 >> 13^2 = 169$
 - 11000 $f(x) = x^2 >> 24^2 = 576$
 - 01000 $f(x) = x^2 >> 8^2 = 64$
 - 10011 $f(x) = x^2 >> 19^2 = 361$

Exemplo

No	String	Fitness	% do total
1	01101	169	14,4
2	11000	576	49,2
3	01000	64	5,5
4	10011	361	30,9
Total		1170	100,0

População Exemplo

Indivíduo	Aptidão Absoluta	Aptidão Relativa
1	2	0,052631579
2	4	0,105263158
3	5	0,131578947
4	9	0,236842105
5	18	0,473684211
Total	38	1

Método da Roleta

- Coloca-se os indivíduos em uma roleta, dando a cada um uma "fatia" proporcional à sua aptidão relativa
- Depois roda-se a agulha da roleta. O indivíduo em cuja fatia a agulha parar permanece para a próxima geração
- Repete-se o sorteio quantas vezes forem necessárias para selecionar a quantidade desejada de indivíduos

Roleta - Exemplo

Método do Torneio

- Utiliza sucessivas disputas para realizar a seleção
- Para selecionar *k* indivíduos, realiza *k* disputas, cada disputa envolvendo *n* indivíduos escolhidos ao acaso
- O indivíduo de maior aptidão na disputa é selecionado
- É muito comum utilizar n = 3

Torneio - Exemplo

Amostragem Universal Estocástica - SUS

- SUS Stochastic Universal Sampling
- Semelhante à Roleta, mas para selecionar k indivíduos utiliza k agulhas igualmente espaçadas, girando-as em conjunto uma só vez
- Apresenta resultados menos variantes que a Roleta

SUS - Exemplo

Operador de Mutação

- Operador randômico de manipulação
- Introduz e mantém a variedade genética da população
- Garante a possibilidade de se alcançar qualquer ponto do espaço de busca
- Contorna mínimos locais

Operador de Mutação

- É um operador genético secundário
- Se seu uso for exagerado, reduz a evolução a uma busca totalmente aleatória
 - Logo um indivíduo sofre mutações com probabilidade baixa (normalmente entre 0,001 e 0,1)

Exemplo de Mutação

Operador de Cruzamento

- Também chamado de reprodução ou crossover
- Combina as informações genéticas de dois indivíduos (pais) para gerar novos indivíduos (filhos)
- Versões mais comuns criam sempre dois filhos para cada operação

Operador de Cruzamento

- Operador genético principal
- Responsável por gerar novos indivíduos diferentes (sejam melhores ou piores) a partir de indivíduos já promissores
- Aplicado a cada par de indivíduos com alta probabilidade (normalmente entre 0,6 e 0,99)

Abordagens para Cruzamento

Cruzamento Um-Ponto

Cruzamento Multi-Pontos

Cruzamento Uniforme

Cruzamento Um-Ponto

Cruzamento Multi-Ponto

Cruzamento Uniforme

Tipos de Substituição

- Substituição por geração
 - A cada geração os N filhos gerados substituem seus pais
- Substituição por geração com elitismo
 - É mantida um quantidade fixa de pais na troca de geração
 - O *Elitismo* garante uma cópia do melhor indivíduo na geração seguinte.
- Substituição com estado fixo
 - A cada geração k filhos substituem
 - k pais
 - k piores indivíduos
 - k indivíduos mais velhos

- Tamanho da população
 - Condiciona a qualidade da solução obtida e o tempo de processamento.
- Taxa de cruzamento
 - Define a probabilidade com a qual 2 indivíduos da população serão cruzados para gerar nova descendência.
- Taxa de mutação
 - Define a probabilidade no qual um indivíduo pode sofrer mutação
- Taxa de substituição
 - Define a percentagem de população que será substituída em cada transição de gerações.
- Critério de parada
 - Quando se atinge uma solução com um determinado valor de aptidão;
 - Quando se atinge um determinado limite temporal;
 - Quando se atinge um determinado número de gerações.

- Tamanho da população
 - Se pequeno
 - Executa rápido
 - Baixa qualidade
 - Se grande
 - Boa qualidade
 - Custo computacional

- Taxa de cruzamento
 - Pequeno
 - Convergência demorada
 - Grande
 - Perda de material genético
 - Entre 60% e 100%

- Taxa de mutação
 - Previne a permanência em espaço de busca limitado
 - Máximos locais
 - Se muito elevado
 - Busca aleatória (ruim)
- Menor que 1%

- Taxa de substituição
 - Quantidade de indivíduos a ser descartada
 - Bons sobrevivem
 - Menos aptos são excluídos
 - Material genético desconsiderado

Esboço do algoritmo

- [Início] Geração aleatória de uma população de *n* cromossomos
- [Adaptação] Verificar a função objetiva f(x) de cada cromossomo x
- [População] Cria-se uma nova população pela repetição a seguir:
 - 1. [Seleção] Selecione um par de cromossomos da população de acordo com a adaptação de cada um (os mais bem adaptados tem maior chance de serem escolhidos)
 - **2. [Crossover]** Produza dois descendentes (filhos) realizando crossover com os cromossomos dos pais. O ponto para a realização do crossover deve ser aleatório.
 - 3. [Mutação] Com uma certa probabilidade, o descendente sofre mutação em cada locus (posição no cromossomo).
 - 4. [Aceitação] Coloque os descendentes em uma nova população, juntamente com a melhor solução da geração velha

Esboço do algoritmo (Cont.)

- [Troca] Substitua a população velha pela nova
- **[Teste]** Se a condição de finalização é satisfeita, **pare**, e retorne a melhor solução da população atual
- [Adaptação]
- [Laço] Volte ao passo 1