Claims

coating laundry detergent 1. for A process cleaning product tablets that comprise builder(s) 5 and also, if desired, further laundry detergent and cleaning product ingredients, said process comprising the steps of transporting the tablets at a speed in a conveying plane on a conveyor belt provided with a multiplicity of apertures and 10 forcing coating material through the conveyor belt apertures from below with a force such that the coating material forced over the conveying plane forms a surge through which the tablets transported.

- 2. The process of claim 1, wherein the tablets additionally pass through a mist of coating material.
- 20 3. The process of claim 1, wherein the surge or coating material lifts the tablets from the conveyor belt.
- 4. The process of claim 1, wherein the surge is 25 generated by a roller which rotates in the coating material, the movement of the surge generated in the direction of the conveying direction of the tablets.
- 30 5. The process of claim 4, wherein return flow of the coating material is adjusted by way of a slide valve which is adjustable tangentially in the direction of the roller.
- 35 6. The process of claim 1, wherein the surge has a speed on emergence from the apertures that is approximately the same as the speed of the conveyor belt.

7. The process of claim 1, wherein the coating material is applied in the form of a solution or dispersion or in the form of a melt.

5

20

- 8. The process of claim 1, wherein the coating material comprises water-soluble and/or meltable polymers or polymer mixtures.
- 10 9. The process of claim 8, wherein the polymers or polymer mixtures comprise one or more of:
 - a) water-soluble nonionic polymers from the group of
- 15 al) polyvinylpyrrolidones
 - a2) vinylpyrrolidone-vinyl ester copolymers
 - a3) cellulose ethers
 - a4) homopolymers of vinyl alcohol, copolymers of vinyl alcohol with copolymerizable monomers, or hydrolysis products of vinyl ester homopolymers or vinyl ester copolymers with copolymerizable monomers
- b) water-soluble amphoteric polymers from the group of
 - b1) alkylacrylamide-acrylic acid copolymers
 - b2) alkylacrylamide-methacrylic acid copolymers
 - b3) alkylacrylamide-methylmethacrylic acid copolymers
 - b4) alkylacrylamide-acrylic acid-alkylaminoalkyl-(meth)acrylic acid copolymers
 - b5) alkylacrylamide-methacrylic acid-alkylaminoalkyl(meth)acrylic acid copolymers
- 35 b6) alkylacrylamide-methylmethacrylic acid-alkyl-aminoalkyl(meth)acrylic acid copolymers
 - b7) alkylacrylamide-alkyl methacrylatealkylaminoethyl methacrylate-alkyl methacrylate copolymers

	b8)	copolymers of		
	b8i)	unsaturated carboxylic acids		
	b8ii) cationically derivatized unsaturated		
		carboxylic acids		
5	b8ii:	i) if desired, further ionic or nonionic		
		monomers		
	c)	water-soluble zwitterionic polymers from the		
		group of		
10				
	c1)	acrylamidoalkyltrialkylammonium chloride-		
		acrylic acid copolymers and their alkali		
		metal and ammonium salts		
	c2)	acrylamidoalkyltrialkylammonium chloride-		
15		methacrylic acid copolymers and their alkali		
		metal and ammonium salts		
	c3)	methacroylethyl betaine-methacrylate		
		copolymers		
20	d)	water-soluble anionic polymers from the group		
		of		
	74.			
	d1)	vinyl acetate-crotonic acid copolymers		
0.5	d2)	vinylpyrrolidone-vinyl acrylate copolymers		
25	d 3)	acrylic acid-ethyl acrylate-N-tert-		
	74)	butylacrylamide terpolymers		
	d4)	graft polymers of vinyl esters, esters of		
		acrylic acid or methacrylic acid alone or in		
20		a mixture, copolymerized with crotonic acid,		
30		acrylic acid or methacrylic acid with poly-		
	ae١	alkylene oxides and/or polyalkylene glycols grafted and crosslinked copolymers from the		
	d5)	copolymerization of		
	d5i)	at least one monomer of the nonionic type,		
35	- •	at least one monomer of the honionic type, at least one monomer of the ionic type,		
. J		i) polyethylene glycol, and		
	d5iv) a crosslinker			

	d6) c	d6) copolymers obtained by copolymerizing at			
	least one monomer from each of the three				
	£	ollowing	groups:		
	d6i)	esters o	of unsaturated alcohols and short-		
5		chain sa	aturated carboxylic acids and/or		
		esters o	of short-chain saturated alcohols		
		and unsa	aturated carboxylic acids,		
	d6ii)	unsatura	ated carboxylic acids,		
	d6iii)	esters o	of long-chain carboxylic acids and		
10		unsatura	ated alcohols and/or esters of the		
		carboxy]	ic acids of group d6ii) with		
		saturate	ed or unsaturated, straight-chain or		
		branched	l C ₈₋₁₈ alcohol		
	d7) g	raft cope	olymers obtainable by grafting d7i)		
15	р	olyalkyle	ene oxides with d7ii) vinyl acetate		
	d8) t	erpolymen	rs of crotonic acid, vinyl acetate		
	а	nd an all	lyl or methallyl ester		
	d9) t	etra- and	d pentapolymers of		
	đ	8i)	crotonic acid or allyloxyacetic		
20			acid		
	d	8ii)	vinyl acetate or vinyl propionate		
	d	8iii)	branched allyl or methallyl esters		
	đ	8iv)	vinyl ethers, vinyl esters or		
			straight-chain allyl or methallyl		
25			esters		
	d10) c	rotonic a	acid copolymers with one or more		
			from the group consisting of		
	е	thylene,	vinylbenzene, vinyl methyl ether,		
	a	crylamide	e and water-soluble salts thereof		
30	d11) t	erpolymen	rs of vinyl acetate, crotonic acid		
			esters of a saturated aliphatic		
	α	-branched	d monocarboxylic acid		
			able cationic polymers from the		
35	g	roup of			
	el) q	uaternize	ed cellulose derivatives		
	e2) p	olysiloxa	nes with quaternary groups		
	e3) c	ationic o	mar derivatives		

- e4) polymeric dimethyldiallylammonium salts and their copolymers with esters and amides of acrylic acid and methacrylic acid
- e5) copolymers of vinylpyrrolidone with quaternized derivatives of dialkylaminoacrylate and -methacrylate
- e6) vinylpyrrolidone-methoimidazolinium chloride copolymers
- e7) quaternized polyvinyl alcohol
- 10 e8) polymers indicated under the INCI designations
 Polyquaternium 2, Polyquaternium 17, Polyquaternium 18, and Polyquaternium 27
 - f) polyurethanes

5

- g) LCST polymers, preferably selected from
 alkylated and/or hydroxyalkylated
 polysaccharides, cellulose ethers,
 acrylamides, such as polyisopropylacrylamide,
 copolymers of acrylamides, polyvinylcaprolactam, copolymers of polyvinylcaprolactam,
 particularly those with polyvinylpyrrolidone,
 polyvinyl methyl ether, copolymers of
 polyvinyl methyl ether, and blends of these
 substances.
- 25 10. The process of claim 1, wherein the coating material has a temperature of from 30 to 300°C.
- 11. The process of claim 1, wherein the coating material is applied in the form of an aqueous solution or dispersion, and the tablets are subsequently subjected to a drying step.
 - 12. The process of claim 1, wherein the weight ratio of uncoated tablet to coating is > 10:1.
 - 13. The process of claim 1, wherein the thickness of the coating on the tablet is from 0.1 to 500 μm .

14. The process of claim 1, wherein the coating additionally comprises substances selected from the groups consisting of disintegration aids, dyes, optical brighteners, fragrances, enzymes, bleaches, bleach activators, silver protectants, complexing agents, surfactants, graying inhibitors, and mixtures thereof in total amounts of from 0.5 to 30% by weight based on the weight

10

5

- 15. The process of claim 10, wherein the coating has a temperature of from 35 to 90°C.
- 16. The process of claim 15, wherein the coating has a temperature of from 40 to 85°C.

of the coating.

- 17. The process of claim 16, wherein the coating has a temperature of from 50 to 80°C.
- 20 18. The process of claim 12, wherein the weight ratio of uncoated tablet to coating is > 25:1.
 - 19. The process of claim 18, wherein the weight ratio of uncoated tablet to coating is > 50:1.

- 20. The process of claim 13, wherein the thickness of the coating on the tablet is from 0.5 to 250 μm_{\odot}
- The process of claim 20, wherein the thickness of the coating on the tablet is from 5 to 100 μm .
- 22. The process of claim 14, wherein the coating additionally comprises substances selected from the groups consisting of disintegration aids, dyes, optical brighteners, fragrances, enzymes, bleaches, bleach activators, silver protectants, complexing agents, surfactants, graying inhibitors, and mixtures thereof in total amounts

of from from 1 to 20% by weight based on the weight of the coating.

23. The process of claim 22, wherein the coating 5 additionally comprises one or more substances selected from the groups consisting of disintegration aids, dyes, optical brighteners, fragrances, enzymes, bleaches, bleach activators, silver protectants, complexing agents, surfactants, 10 graying inhibitors, and mixtures thereof in total amounts of from 2.5 to 10% by weight, based on the weight of the coating.