

Exam #3

(µ) Average Score

High Score

78%

100%

Question 1	4 pts
A molecule has a higher concentration inside of a cell than outside of a cell which of the following would allow more of this molecule to enter the ce	
 Using a pump powered by ATP to move the molecule against its concentration gradient 	
 Allowing simple diffusion to take its course, which will eventually allow more of molecule to enter the cell 	the
 All of the other answers are correct 	
 Adding more transporter proteins that have the ability to move the molecule do concentration gradient 	wn its

Question 1 4 pts

A molecule has a higher concentration inside of a cell than outside of a cell.

Which of the following would allow more of this molecule to enter the cell?

- Using a pump powered by ATP to move the molecule against its concentration gradient
- Allowing simple diffusion to take its course, which will eventually allow more of the molecule to enter the cell
- All of the other answers are correct
- Adding more transporter proteins that have the ability to move the molecule down its concentration gradient

High concentration

Low concentration

Question 13 4 pts

Which of the following is NOT a reason FADH₂ enters the electron transport chain at a different point that NADH?

- \bigcirc The redox potential of FADH₂ is greater than that of Complex I and so it would not be able to donate its electrons to Complex I
- FADH₂ utilizes Complex II only to donate its electrons, which is not a proton pump, and so FADH₂ does not contribute to the electrochemical proton gradient utilized for oxidative phosphorylation
- \bigcirc The active site of Complex I is specific to the structure of NADH, and FADH₂ would not be acted on by the enzyme
- These are all reasons why FADH₂ enters the electron transport chain at a different point that NADH

Question 13 4 pts

Which of the following is NOT a reason FADH₂ enters the electron transport chain at a different point that NADH?

- The redox potential of FADH₂ is greater than that of Complex I and so it would not be able to donate its electrons to Complex I
- FADH₂ utilizes Complex II only to donate its electrons, which is not a proton pump, and so FADH₂ does not contribute to the electrochemical proton gradient utilized for oxidative phosphorylation
- The active site of Complex I is specific to the structure of NADH, and FADH₂ would not be acted on by the enzyme
- $\bigcirc\,$ These are all reasons why FADH $_2$ enters the electron transport chain at a different point that NADH

Increasing Redox Potential (ability to accept electrons)

Question 23 4 pts

Below is shown the Bcl2 survival signaling cascade. Which of the following scenarios is accurate:

- A mutation in Bad that prevents it from binding to Bcl2 would promote apoptosis
- A mutation in the receptor tyrosine kinase that leads to autophosphorylation in the absence of extracellular ligand binding would promote apoptosis
- A mutation in AKT that makes it catalytically inactive, and therefore unable to phosphorylate Bad, would promote cell survival
- A mutation in PI3K that causes it to phosphorylate PIP₂ in the absence of extracellular ligand binding would promote cell survival

Consider signaling pathways to be a binary process, A leads to B, a cause leads to an effect.

Here, extracellular ligand binding (A, the cause) leads to Bcl2 release and cell survival (B, the effect).

Ask yourself: does this mutation cause the cascade to <u>occur as normal</u> (i.e., promoting cell survival) or <u>does it prevent the cascade from happening at some point</u> (i.e., promoting apoptosis)

Outcome: Bad does not bind Bcl2 → cell survival

Outcome: Signaling cascade occurs uninterrupted →

cell survival

Outcome: Bad remains bound to Bcl2 \rightarrow apoptosis

Outcome: Signaling cascade occurs uninterrupted →

cell survival

Learning Objectives for Today's Lecture:

Upon completing this module, you should be able to:

- Describe the functions of the eukaryotic cytoskeleton
- Explain the process of dynamic assembly and stability in microtubules
- Understand the roles microtubules play in vesicular trafficking and ciliary movement

Key Terms

- <u>Cytoskeleton</u>: A complex, dynamic network of interlinking protein filaments present in the cytoplasm of all cell
- <u>Microtubule</u>: Long rigid tubes extending from the center of cell toward periphery creating a system of tracks to maintain cell shape and facilitate transport within the cell
- Microtubule Organizing Center (MTOC): Protect "— end" of the microtubule and allow for initial microtubule formation
- **Protein filament**: Long chains of protein monomers that form the cytoskeleton
- **<u>Dynamic instability</u>**: A property of microtubules that allows them to rapidly reorganize the cytoskeleton. This process involves microtubules alternating between growing and shrinking states
- **Vesicle**: A small, fluid-filled internal cellular compartment
- <u>Cilia</u>: Hairlike protrusions from cell surfaces that contribute to particle movement using microtubules
- Flagella: Hairlike organelles that provide motility to sperm and protozoans

Learning Objectives for Today's Lecture:

Upon completing this module, you should be able to:

- Describe the functions of the eukaryotic cytoskeleton
- Explain the process of dynamic assembly and stability in microtubules
- Understand the roles microtubules play in vesicular trafficking and ciliary movement

The Cytoskeleton provides structural support and maintains the shape of cells

Human body with organs

Human skeletal system

The Cytoskeleton supports cell shape in different tissues

Muscle contraction

Chromosome segregation during cell division

Cell shape maintenance and support

Functions of the Cytoskeleton

Aid in signal transduction

Cell movement

Transport of vesicles and organelles

The Cytoskeleton is a dynamic network of protein filaments

The 3 essential components of the Cell's skeleton

Microtubules

Actin filaments

The 3 essential components of the Cell's skeleton

Microtubules

Intermediate filaments

Actin filaments

Microtubules are composed of tubulin proteins

Microtubules

Microtubules are the largest component of

the cytoskeleton, with a diameter of ~25 nm

Microtubules are dynamic structures, with their growth regulated by GTP

- β-tubulin bound to GDP leads to shrinking (depolymerization) of microtubules
- Microtubules grow or shrink depending on the rate of GTP hydrolysis relative to the rate of tubulin addition = dynamic instability

Microtubule Assembly is Dynamic

- β-tubulin in the dimer binds GDP or GTP, with the GTP-bound dimer binding *more tightly* than the GDP-bound dimer in the growing microtubule
- Rapidly growing microtubules will thus form a GTP cap on the growing end that allows it to keep assembling
- GTP is hydrolyzed to GDP shortly after being added. The <u>rate of GTP hydrolysis relative</u> to the <u>rate of assembly</u> determines growth or shrinkage of the microtubule
- Slowly growing microtubules will therefore deplete the GTP cap
- This causes disassembly (catastrophe) due to the lower binding affinity of the GDP-bound tubulin dimers

Microtubule polarity determines its growth rate

Cytosol

α-tubulin
(- end)

γ-tubulin

γ-tubulin

γ-tubulin

- The "-end" is the slower growth end where α-tubulin is exposed
- "- end" protected by a microtubule organizing center (MTOC)
 - e.g., γ-tubulin, basal body, centrioles
- MTOCs allow for initial microtubule nucleation (creation of microtubules)

Microtubule polarity determines its growth rate

- The "-end" is the slower growth end where α-tubulin is exposed
- "- end" protected by a microtubule organizing center (MTOC)
 - e.g., γ-tubulin, basal body, centrioles
- MTOCs allow for initial microtubule nucleation (creation of microtubules)

- The "+ end" refers to the rapid growth end where β-tubulin is exposed
- Microtubule polymerization and depolymerization primarily occurs at the "+ end"
- "+ end" are protected by microtubule associated proteins (MAPs)

Microtubule—associated proteins (MAPs) regulate dynamics and organization

Dissociation of tau protein from microtubules contributes to Alzheimer's Disease

Dissociation of tau protein from microtubules contributes to Alzheimer's Disease

Dynamic instability of microtubules can be modified by microtubule targeting agents

Prevents microtubule depolymerization by binding to protofilaments

Prevents microtubule polymerization by binding to α- and β-tubulin

Prevents α - and β tubulin from dimerizing

*These drugs are used in cancer treatments to prevent cell division

Squarecap #1-2

Learning Objectives for Today's Lecture:

Upon completing this module, you should be able to:

- Describe the functions of the eukaryotic cytoskeleton
- Explain the process of dynamic assembly and stability in microtubules
- Understand the roles microtubules play in vesicular trafficking and ciliary movement

Muscle contraction

Chromosome segregation during cell division

Cell shape maintenance and support

Functions of the Cytoskeleton (Microtubules)

Aid in signal transduction

Cell movement

Transport of vesicles and organelles

Muscle contraction

Chromosome segregation during cell division

Cell shape maintenance and support

Functions of the Cytoskeleton (Microtubules)

Aid in signal transduction

Cell movement

Transport of vesicles and organelles

Motor proteins move along microtubules to transport cellular cargo:

- Movement of intracellular cargo (vesicle or organelle) occur over long distances on microtubules
- Dynein and Kinesin can bind cargo directly or use adaptor proteins that help bind cargo

Kinesins utilize ATP to "walk" along microtubules

- Globular heads (1 & 2) of kinesins are enzymes with ATP hydrolyzing activity
 - Hydrolysis of ATP on Globular head 1 loosens grip on microtubule
 - Globular head 2 releases ADP, and binds ATP to induce conformational change
 - Globular head 1 swings forward and cycle can repeat for subsequent steps

Note that the conformation of the ADP-bound state is time-dependent, with increased affinity for microtubule binding with time

Kinesins mediate Vesicle and Organelle Transport

- Kinesins transports:
 - Synaptic vesicles
 - Mitochondria
 - Golgi apparatus
 - Endosomes
 - Multiprotein complexes
 - Viruses!
- Move cargo over long distances: 100 steps, ~1 μm

Microtubule motor proteins shape the endomembrane system

- ER (blue) extends out from nuclear envelope to edge of cell
 - Kinesins attached to outside of ER pull it along length of microtubule toward edge
- Golgi (yellow) is located near centrosome on one side of nucleus
 - Dyneins attached to outside of Golgi pull it along microtubule toward nucleus
- Vesicles to and from Golgi are carried by motor proteins

ER (blue); MT (green)

Golgi (yellow); MT (green)

Microtubule-based organelles

Cilia: hair-like organelles that protrude from cell surfaces

- Cilia are primarily found in epithelial cells
 - Respiratory, reproductive, GI tracts
- <u>Move environment</u> past the cell (e.g., mucus across epithelial cells of respiratory tract, eggs across oviduct)
- Present in huge numbers (1 cm² of epithelial tissue contains ~1 billion cilia!)
- Power-strokes (whip-like motions) help to move fluid over the cell (dotted lines show slower recovery stroke)

Cilia in human respiratory tract

Flagellum: hair-like organelles that propel cells

- Provides motility to sperm and protozoa (e.g., amoeba)
- Designed to <u>move entire cell through</u> <u>environment</u> with 'propagated bending motion'
- Microtubules are essential in flagellum for chemotaxis (movement in response to chemical signals)

Microtubules are arranged in a "9+2" array in Cilia and Flagella

- Contain a pair of microtubules surrounded by 9 doublets of microtubules
- Numerous accessory proteins that aid in microtubule stability, including dyneins
 - Each microtubule doublet carries two rows of dynein motor proteins (inner and outer arm)
 - Bind to adjacent doublet microtubules to pull itself along and cause sliding of microtubules past each other

Cilia and flagella contain stable microtubules moved by dynein

- Sliding of microtubules is mediated by dynein motor proteins
- Bending is due to microtubules being tied to each other by linking proteins (blue)

Squarecap #3-4

Learning Objectives for Today's Lecture:

Upon completing this module, you should be able to:

- Describe the functions of the eukaryotic cytoskeleton
- Explain the process of dynamic assembly and stability in microtubules
- Understand the roles microtubules play in vesicular trafficking and ciliary movement

Metacognitive Reflection Form

