Лабораторная работа 1.2.5 Исследование прецессии уравновешенного гироскопа

Панферов Андрей 9.12.2019

1 Аннотация

В работе исследуется вынужденная прецессия гироскопа. Устанавливается зависимость скорости вынужденной прецессии от величины момента сил, действующих на ось гироскопа. Определяется скорость вращения ротора гироскопа и сравнивается со скоростью, рассчитанной по скорости прецессии.

2 Теоретические сведения

Так как уравнения движения твердого тела можно записать в виде.

$$\frac{d\vec{P}}{dt} = \vec{F},$$

$$\frac{d\vec{L}}{dt} = \vec{M}.$$

Этих двух уравнений достаточно для полного описания состояния его движения.

Так как если сила не зависит от угловой скорости, а момент — от скорости поступательного движения, то эти уравнения можно рассматривать независимо друг от друга. Момент импульса твердого тела в его главных осях x, y, z равен

$$\vec{L} = \vec{i} I_x \omega_x + \vec{j} I_y \omega_y + \vec{k} I_z \omega_z,$$

Под действием момента внешних сил ось гироскопа медленно вращается вокруг оси у с угловой скоростью Ω . Длягироскопамассойт, у которого ось собственного вращения наклонена на углол α отвертикали, скоростьпрецессии, пр

$$\Omega = \frac{M}{I_z \omega_0 \sin \alpha} = \frac{m_{\rm r} g l_{\rm u} \sin \alpha}{I_z \omega_0 \sin \alpha} = \frac{m_{\rm r} g l_{\rm u}}{I_z \omega_0},$$

Схема экспериментальной установки

В данной работе исследуется регулярная прецессия уравновешенного гироскопа. Измерение скорости прецессии гироскопа позволяет вычислить угловую скорость вращения его ротора.

3 Оборудование и инструментальные погрешности

В работе используются: гироскоп в кардановом подвесе, секундомер, набор грузов, отдельный ротор гироскопа, цилиндр известной массы, крутильный маятник, штангенциркуль, линейка.

- 1. Точность измерения с помощью штангенциркуля 0,1 мм.
- 2. Точность измерения с помощью линейки -0.5 мм.
- 3. Точность измерения времени -0.1 с.
- 4. Точность измерения угла поворота гироскопа вокруг своей оси 3 градуса.
- 5. Точность измерения угла поворота во время опускания рычага 1 градус.

4 Результаты измерений и обработка данных

4.1 Подготовка к эксперименту

Установим ось гироскопа в горизонтальное положение, осторожно поворачивая ее за рычаг С. Включим питание гироскопа и подождем несколько минут, чтобы вращение ротора успело стабилизироваться. Убедимся в том, что ротор вращается достаточно быстро: при легком постукивании по рычагу С последний не изменяет своего положения в пространстве.

Ротор вращается против часовой стрелки.

При подвешивании к рычагу C груза Г начинается прецессия гироскопа, а трение в горизонтальной оси приводит к тому, что рычаг начинает медленно опускаться.

4.2 Измерение момента инерции ротора относительно оси симметрии I_0

Повесим ротор, извлеченный из такого же гироскопа, к концу висящей проволоки так, чтобы ось симметрии гироскопа была вертикальна, и измерим период крутильных колебаний получившегося маятника.

$$30T_2 = 97.0 \pm 0.5 c$$
 $T_2 = 3.23 \pm 0.02 c$

Заменим ротор гироскопа цилиндром, для которого известны данные:

$$m = 1617, 8 \pm 0, 1$$
 г $d = 7, 8 \pm 0, 1$ см

Где m, h и d – масса, высота и диаметр цилиндра соответственно.

И проведем аналогичное измерение для цилиндра:

$$30T_1 = 118.7 \pm 0.5 c$$
 $T_1 = 3.96 \pm 0.02 c$

Так как момент инерции цилиндра относительно оси симметрии равен:

$$I_1 = \frac{md^2}{8}$$

$$I_1 = (1, 23 \pm 0, 03) \cdot 10^{-3} \text{kg} \cdot \text{m}^2$$

Тогда исходя из формулы вычислим момент инерции ротора I_2

$$I_2 = I_1 \frac{T_2^2}{T_1^2}$$
 $I_2 = (0.82 \pm 0.05) \cdot 10^{-3} \text{kg} \cdot \text{m}^2$

4.3 Измерение угловой скорости регулярной прецессии

Отклоним рычаг на небольшой угол вверх и с помощью секундомера найдем угловую скорость регулярной прецессии Ω для разных значений приложенного момента сил, приложенных к рычагу C.

$N_{\bar{0}}$	N, об o ротов	NT, c	$\Delta \phi$, град
1	3	105.9	10
2	3	106.3	10
3	3	106.1	10
4	3	106.1	10
5	4	141.4	10

No॒	N, об o ротов	NT, c	$\Delta\phi$, град
1	5	222.4	10
2	3	133.3	10
3	3	133.2	11
4	3	133.2	10
5	3	133.2	10

Масса груза 343г

масса груза 273г

No	N, об o ротов	NT, c	$\Delta \phi$, град
1	4	220.3	10
2	3	164.0	11
3	3	164.7	10
4	3	164.4	10
5	2	164.2	9

масса груза 220г

No	N, об o ротов	NT, c	$\Delta\phi$, град
1	3	297.5	9
2	3	206.3	10
3	3	206.0	9
4	3	206.9	9
5	3	206.6	10

масса груза 176г

No	N, об o ротов	NT, c	$\Delta\phi$, град
1	3	256.4	10
2	2	171.7	10
3	2	171.2	10
4	2	171.1	11
5	2	171.5	10

масса груза 142г

Усредним значения, пересчитаем данные.

m, г	M , м $\mathbf{H} \cdot \mathbf{m}$	T, c	$\Omega, \frac{\mathrm{pag}}{\mathrm{c}} \cdot 10^{-3}$	$\Delta\phi$, град	$\Omega_{\mathrm{Tp}}, \frac{\mathrm{pag}}{\mathrm{c}} \cdot 10^{-3}$
343	403	35.4 ± 0.3	177.7	10	4.93
267	314	44.4 ± 0.3	141.4	10	3.93
215	253	54.8 ± 0.3	114.6	10	3.18
141	166	68.9 ± 0.4	74,1	10	2.53
116	136	85.7 ± 0.4	58,0	10	2.04

4.4 Расчет частоты вращения ротора гироскопа и величины момента сил трения

С помощью формулы

$$\Omega = \frac{mgl}{I_2\omega_0}$$

Рассчитаем частоту вращения ротора гироскопа. Из графика зависимости Ω от M получаем коэффициент наклона, равный $0{,}448 \pm 0{,}005$, откуда получаем

$$f=433\pm7$$
 Гц

По скорости опускания рычага C во время прецессии определим момент сил трения. Из графика зависимоти $\Omega_{ t Tp}$ от Ω получаем отношенние

$$\frac{\Omega_{\rm TP}}{\Omega} = 0,0234 \pm 0,0007$$

4.5 Определение частоты вращения ротора гироскопа по фигурам Лиссажу

Для этого подключим осциллограф и генератор в сеть, подадим на "Вход Y"сигнал второй обмотки статора гироскопа. Получим динамическую картину фигур Лиссажу на экране осциллографа и добьемся появления фигуры, похожей на эллипс, в таком случае, если эллипс будет неподвижен, частота вращения ротора и частота сигнала, подаваемая с генератора будут совпадать.

Вращающийся ротор через небольшое время после выключения

Из полученных на осциллографе результатов можно сделать вывод о том, что частота вращения ротора лежит в диапазоне $440 \pm 10 \, \Gamma$ ц, к сожалению измерить частоту его вращения более точно не удалось.

5 Обсуждение результатов и выводы

Измерение частоты вращения ротора гироскопа с помощью прецессии гироскопа совпало с измерением частоты вращения с помощью фигур Лиссажу. В первом способе погрешность измерения момента инерции рассчитывается по формуле:

$$\frac{\Delta I_2}{I_2} = \sqrt{\left(\frac{\Delta I_1}{I_1}\right)^2 + 4\left(\frac{\Delta T_1}{T_1}\right)^2 + 4\left(\frac{\Delta T_2}{T_2}\right)^2} = 3,2\%$$

$$\frac{\Delta I_1}{I_1} = \sqrt{\left(\frac{\Delta m}{m}\right)^2 + 4\left(\frac{\Delta d}{d}\right)^2} = 2,8\%$$

Так как для каждого измерения вращения использовалась серия из 5 измерений, то необходимо учитывать случайную погрешность времени и угла.

$$\sigma_{\mathrm{c}\pi_T} = \frac{1}{N} \sqrt{\sum_{i=1}^n (T - \bar{T})} \ (\text{в пределах до } 0,5 \%)$$

$$\sigma_{\mathrm{c}\pi_\phi} = \frac{1}{N} \sqrt{\sum_{i=1}^n (\phi - \bar{\phi})} \ (\text{в пределах от } 0,3 \text{ до } 1 \%)$$

Полная погрешность считается по формуле

$$\sigma = \sqrt{\sigma_{\rm ch}^2 + \sigma_{\rm chct}^2}$$

Откуда получаем выражение для погрешности частоты вращения ротора гироскопа

$$\sigma_f = \sqrt{\sigma_{\text{\tiny CH}}^2 + (\frac{\Delta I_2}{I_2})^2 + (\frac{\Delta m}{m})^2 + (\frac{\Delta T}{T})^2} = 4\%$$