Redes Neurais Artificiais com abordagem estatística

Suellen Teixeira Zavadzki de Pauli

Suellen Teixeira Zavadzki de Pauli

- Qual o peso de determinado indivíduo se sabemos que a altura dele é X?
- ullet Qual o consumo de combustível, em litros, dado que o carro percorreu uma distância de X km?
- Quanto é a despesa de consumo de uma família se a renda semanal é R $\$ X?

$$X;Y o Y\simeq f(X)$$

$$Y = \beta_0 + \beta_1 X + \epsilon$$

"All models are wrong but some are useful" George Box

Funcionamento de um neurônio

Funcionamento de um neurônio (matriz)

$$Xw = y$$

$$egin{pmatrix} 1 & x_{11} & \dots & x_{1p} \ 1 & x_{21} & \dots & x_{2p} \ & \ddots & \ddots & \ddots & \ddots \ & \ddots & \ddots & \ddots & \ddots \ 1 & x_{n1} & \dots & x_{np} \end{pmatrix} imes egin{pmatrix} w_0 \ w_1 \ \ddots \ \ddots \ \ddots \ w_d \end{pmatrix} = egin{pmatrix} y_0 \ y_1 \ \ddots \ \ddots \ \ddots \ y_n \end{pmatrix}$$

Funcionamento de um neurônio

Modelo de um neurônio

$$u_k = \sum_{j=1}^p x_j w_{jk}$$

$$v_k = u_k + b_k$$

$$y_k = arphi(v_k)$$

se
$$\varphi(.)$$
 = I , então

$$\hat{m{y}}_k = b_k + \sum_{j=1}^p x_j w_{jk}$$

Regressão Linear Múltipla

$$\hat{y} = eta_0 + \sum_{j=1}^p x_j eta_j$$

Função de ativação

- ullet Função Identidade: arphi(v)=v
- ullet Função Sigmóide Logística: $arphi(v)=rac{1}{1+e^{-v}}$

Rede Neural Multilayer Perceptron

Rede Neural Multilayer Perceptron

Funcionamento de uma MLP (matriz)

$$(XW)w = y$$

$$egin{pmatrix} 1 & x_{11} & \dots & x_{1p} \ 1 & x_{21} & \dots & x_{2p} \ \vdots & \ddots & \ddots & \ddots & \vdots \ 1 & x_{n1} & \dots & x_{np} \end{pmatrix} imes egin{pmatrix} w_{01} & w_{02} & \dots & w_{0k} \ w_{11} & w_{12} & \dots & w_{1k} \ \vdots & \ddots & \ddots & \ddots & \vdots \ \vdots & \ddots & \ddots & \ddots & \vdots \ \vdots & \ddots & \ddots & \ddots & \vdots \ \vdots & \ddots & \ddots & \ddots & \vdots \ \vdots & \ddots & \ddots & \ddots & \vdots \ \vdots & \ddots & \ddots & \ddots & \vdots \ \vdots & \ddots & \ddots & \ddots & \vdots \ \vdots & \ddots & \ddots & \ddots & \vdots \ \vdots & \ddots & \ddots & \ddots & \vdots \ \vdots & \ddots & \ddots & \ddots & \vdots \ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \ \end{bmatrix} = egin{pmatrix} y_0 \ y_1 \ \vdots \ \vdots \ \ddots \ \vdots \ \ddots \ \vdots \ \ddots \ y_n \end{pmatrix}$$

$$\phi((XW))w = y$$

Rede Neural Multilayer Perceptron

Fase Forward

$$u_k = \sum_{j=1}^p x_j w_{jk}$$

$$v_k = u_k + b_k$$

$$a_k = arphi(v_k) = rac{1}{1+e^{-v_k}}$$

$$z_h = \sum_{j=1}^n a_k w_{kh}$$

$$c_h = z_h + b_h$$

$$y_h=arphi(c_h)$$

Fase Backward

• Função perda

$$E = \sum_{l=1}^L (\hat{y}_l - y_l)^2$$

• Backpropagation

$$\Delta w = rac{\partial E(w)}{\partial w}$$

$$w^{(t+1)}=w^{(t)}-\eta\Delta w^{(t)}$$

Gradiente descendente

Produção do mestrado

Paper 1

- Título: Computational Intelligence Techniques Used for Stock Market Prediction: A Systematic Review;
- Autores: Suellen Teixeira Zavadzki de Pauli, Mariana Kleina, Fabiano Drozda e Marcos Augusto Mendes Marques;
- Revista: IEEE Latin America Transactions.

Paper 1: Primeiro filtro

Web of science IEEE Xplore Science direct Scopus	17.272 148 7.966	Contém as palavras "Stock Exchange" ou "Stock Market" (52.956)
Web of science IEEE Xplore Science direct Scopus	2.597 38 1.157	Contém as palavras "Forecasting" ou "Prediction" (6.556)
Web of science IEEE Xplore Science direct Scopus	1.307 18 494 1.219	Período de 2014 a 2018 (3.038)

Paper 1: Segundo filtro

Paper 1: Terceiro filtro

Paper 1: Nuvem de palavras

Paper 1: Técnicas mais utilizadas

Paper 2

- Título: Comparing artificial neural network architectures for Brazilian stock market prediction;
- Autores: Suellen Teixeira Zavadzki, Mariana Kleina, Wagner Hugo Bonat;
- Revista: Annals of Data Science.

Paper 2: Regressão Linear

Paper 2: Multilayer Perceptron

Paper 2: Elman

Paper 2: Jordan

Paper 2: Sérires históricas

Paper 2: Configurações

Paper 2

- Intervalo de confiança de 95% para cada uma das configurações com base em 100 amostras de bootstrap;
- Para ter um valor predito robusto, usamos a média aparada das 100 amostras de bootstrap;
- O conjunto de teste foi usado para selecionar os hiperparâmetros do modelo;
- A raiz do erro quadrático médio (RMSE) obtido pela previsão da média aparada de 100 amostras de bootstrap foi usado como um comparativo.

Paper 2: RMSE para PETR4

Paper 2: Melhores modelos

	PETR4				ITUB4			
	Test	Validation	Input	Hidden	Test	Validation	Input	Hidder
ELMAN	0.67	0.83	M.t5	2	0.60	0.69	A.t4	20
JORDAN	0.67	0.83	M.t5	2	0.60	0.71	A.t4	20
MLP-TANG.	0.67	0.83	A.t10	2	0.60	0.69	A.t7	20
MLR	0.67	0.79	A.t8	1	0.61	0.69	A.t4	1
RBF	2.06	4.75	M.t10	2	1.98	3.46	M.t10	2
	BBDC4				BOVA11			
ELMAN	0.52	0.70	M.t3	15	1.14	2.09	M.t3	15
JORDAN	0.53	0.71	M.t5	2	1.14	2.09	M.t3	15
MLP-TANG.	0.52	0.73	M.t6	2	1.14	2.11	A.t1	5
MLR	0.52	0.71	M.t1	1	1.14	2.10	A.t2	1
RBF	2.10	2.40	M.t10	2	3.61	6.28	M.t10	2
	B3SA3				VALE3			
ELMAN	0.54	1.33	A.t1	2	1.38	1.38	A.t9	15
JORDAN	0.54	1.33	M.t4	20	1.38	1.40	A.t10	20
MLP-TANG.	0.54	1.36	M.t5	15	1.38	1.41	A.t9	20
MLR	0.54	1.33	A.t4	1	1.38	1.40	A.t8	1
RBF	1.96	3.43	A.t9	15	2.48	1.83	M.t7	2

Paper 3

- Título Multilayer Perceptron artificial neural networks: an approach to learning through the Bayesian context
- Autores: Suellen Teixeira Zavadzki, Mariana Kleina, Wagner Hugo Bonat;
- Revista: Revista Brasileira de Biometria.

- Série histórica de petróleo WTI: estimação dos parâmetros por uma rede MLP;
- ullet Com os parâmetros obtidos passamos as covariáveis e obtivemos μ_i

$$\mu_i = -3.4 + 2.5 rac{1}{(1 + e^{-(2.40 + 1.2x_{i1} + 0.004x_{i2} - 0.002x_{i3} + 0.003x_{i4} - 0.02x_{i5}))}}$$

$$+4.1rac{1}{(1+e^{-(-1.10+0.89x_{i1}+0.006x_{i2}-0.005x_{i3}+0.12x_{i4}-0.08x_{i5}))}}$$

$$Y_i \sim \mathcal{N}(\mu_i, 0.1)$$

$$w_{ij} \sim \mathcal{N}(0,10)$$

Contatos

Rferências

- HAYKIN, S. Redes Neurais: princípios e práticas. Tradução de Paulo Martins Engel (2 ed.). Porto Alegre: Bookman, 2001.
- https://dphi.tech/blog/tutorial-on-linear-regression-using-least-squares/
- https://gfycat.com/discover/gradient-descent-gifs
- https://medium.com/ensina-ai/redes-neurais-roots-1introdu%C3%A7%C3%A3o-ffdd6f8b9f01
- de Pauli, S. T. Z., Kleina, M., & Bonat, W. H. (2020). Comparing artificial neural network architectures for Brazilian stock market prediction. Annals of Data Science, 7(4), 613-628.
- Zavadzki, S. T., Kleina, M., Drozda, F. O., & Marques, M. A. M.
 (2020) Computational Intelligence Techniques Used for Stock