ECE 2050 Digital Logic and Systems

Chapter 10: Counters

Instructor: Tinghuan CHEN, Ph.D.

Last Week

- ☐ (Synchronous) Sequential Logic Counters
- ☐ Finite State Machine
 - ☐ Moore FSM
 - ☐ Mealy FSM
- ☐ Timing
 - ☐ Setup time
 - ☐ Hold time
 - ☐ Aperture time
 - ☐ Propagation delay
 - ☐ Contamination delay
 - □ Dynamic Discipline

Counters

- Increments on each clock edge
- Used to cycle through numbers. For example,
 - 000, 001, 010, 011, 100, 101, 110, 111, 000, 001...
- Example uses:
 - Digital clock displays
 - Program counter: keeps track of current instruction executing

Symbol Implementation

Asynchronous Counters

Asynchronous Counters

An asynchronous counter is one in which the flip-flops (FF) within the

counter do not have a common clock;

• The 2-bit asynchronous counter counts # of clock pulses up to 3, and on the 4th pulse, it recycles to its original state ($Q_0 = Q_1 = 0$).

Binary state sequence for the counter in Figure 9-4.

Clock Pulse	Q_1	Q_0
Initially	0	0
1	0	1
2	1	0
3	1	1
4 (recycles)	0	0

A 3-Bit Asynchronous Binary Counter

TABLE 9-2	
State sequence for a 3-bit binary counter.	

Clock Pulse	Q_2	Q_1	Q_0
Initially	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	O	0
5	1	O	1
6	1	1	0
7	1	1	1
8 (recycles)	0	0	0

- ☐ Commonly referred to as ripple counters;
- ☐ The cumulative delay of asynchronous counters is a major drawback.

Propagation Delay

- If each D flip-flop has a propagation delay for t second, then
- The total delay time: $t_{p(tot)} = t * # of D flip-flops$
- The maximum clock frequency: $f_{max}=1/t_{p(tot)}$

Asynchronous Decade Counters

- ☐ Modulus: # of unique states through which the counter will sequence.
- Maximum modulus: 2ⁿ for a counter of n flip-flops.
- ☐ Counters can have less than 2ⁿ states, called a truncated sequence.
- ☐ Example: A decade counter with four flip-flops counts a truncated sequence from 0000 through 1001

1010↔0000

Glitch: the counter is in the 1010 state for a short time before it is reset to 0000

Example 9–2 with J-K Flip-Flops

 J and K inputs are both HIGH → Flip-flops toggle between S/R states

1100↔0000

Synchronous Counters

Synchronous Counters

- Synchronous: All flip-flops are controlled by the same clock
- Both J and K inputs are connected to HIGH
- Example: A synchronous counter with two flip-flops counts a sequence from 00 through 11 in four clock pulses

A 3-Bit Synchronous Binary Counter

Summary of the analysis of the counter in Figure 9–15.

	Outputs		J-K Inputs			At t	ne Next Clock	Pulse				
Clock Pulse	Q_2	Q_1	Q_0	J_2	K_2	J_1	K_1	J_0	K_0	FF2	FF1	FF0
Initially	0	0	0	0	0	0	0	1	1	NC*	NC	Toggle
1	0	0	1	0	0	1	1	1	1	NC	Toggle	Toggle
2	0	1	0	0	0	0	0	1	1	NC	NC	Toggle
3	/ 0	(1)	(1)	1	1	1	1	1	1	Toggle	Toggle	Toggle
4	1	0	0	0	0	0	0	1	1	NC	NC	Toggle
5	1	0	1	0	0	1	1	1	1	NC	Toggle	Toggle
6	1	1	0	0	0	0	0	1	1	NC	NC	Toggle
7	1	(1)	(1)	1	1	1	1	1	1	Toggle	Toggle	Toggle
										Counter re	cycles back to	000.

NC: No Change

A 4-Bit Synchronous Decade Counter

TABLE	9–5	
States o	f a BCD decade counte	r

Clock Pulse	Q_3	Q_2	Q_1	Q_0
Initially	0	0	0	0
1	O	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	O	1	1	1
8	1	0	0	0
9	1	0	0	1
10 (recycles)	0	0	0	0

$$J_1=K_1=Q_0ar{Q}_3$$

$$J_2 = K_2 = Q_0 Q_1$$

$$J_3 = K_3 = Q_0 Q_1 Q_2 + Q_0 Q_3$$

The derivation of the expressions above will be discussed in detail later.

4-Bit Synchronous Binary Counter

74HC163 4-bit synchronous binary counter.

- When LOAD is LOW, the counter will load D₃D₂D₁D₀ on the next clock pulse → the counter sequence can be started with any 4bit binary number.
- The ripple clock output (RCO) goes HIGH when the counter reaches the last state in its sequence of fifteen, called the terminal count (TC = 15).

2 enable inputs, ENP and ENT, must both be HIGH for the CTR to sequence through its binary states

Up/Down sequence for a 3-bit binary counter.

Clock Pulse	Up	Q_2	Q_1	Q_0	Down
0	1 (0	0	0)
1	(0	0	1	5
2	Ç	O	1	0	5
3	(0	1	1	3
4	Ç	1	0	0	3
5	(1	0	1	5
6	(1	1	0	5
7	(1	1	1	3

$$J_0 = K_0 = 1$$
 $J_1 = K_1 = (Q_0 \cdot ext{UP}) + ig(ar{Q}_0 \cdot ext{DOWN}ig)$

$$J_2 = K_2 = \left(Q_0 \cdot Q_1 \cdot \mathrm{UP}
ight) + \left(ar{Q}_0 \cdot ar{Q}_1 \cdot \mathrm{DOWN}
ight)$$

Again, the derivation of the expressions above will be discussed in detail later.

- Also known as the bidirectional counter that can progress in either direction
- In general, an UP/Down counter can be reversed at any point in its sequence

Up/Down sequence for a 3-bit binary counter.

Clock Pulse	Up	Q_2	Q_1	Q_0	Down
0	15	0	0	0)
1	(0	0	1	5
2	Ç	O	1	0	5
3	(O	1	1	3
4	(1	0	0	5
5	(1	0	1	5
6	(1	1	0	5
7	(1	1	1	3 1

$$egin{aligned} J_0 &= K_0 = 1 \ \ J_1 &= K_1 = (Q_0 \cdot ext{UP}) + ig(ar{Q}_0 \cdot ext{DOWN}ig) \ \ J_2 &= K_2 = (Q_0 \cdot Q_1 \cdot ext{UP}) + ig(ar{Q}_0 \cdot ar{Q}_1 \cdot ext{DOWN}ig) \end{aligned}$$

Again, the derivation of the expressions above will be discussed in detail later.

- Also known as the bidirectional counter that can progress in either direction
- In general, an UP/Down counter can be reversed at any point in its sequence

Up/Down sequence for a 3-bit binary counter.

Clock Pulse	Up	Q_2	Q_1	Q_0	Down
0	1 (0	0	0)
1	(0	0	1	5
2	Ç	O	1	0	5
3	(0	1	1	3
4	Ç	1	0	0	3
5	(1	0	1	5
6	(1	1	0	5
7	(1	1	1	3

$$egin{aligned} J_0 &= K_0 = 1 \ \ J_1 &= K_1 = (Q_0 \cdot ext{UP}) + ig(ar{Q}_0 \cdot ext{DOWN}ig) \ \ J_2 &= K_2 = (Q_0 \cdot Q_1 \cdot ext{UP}) + ig(ar{Q}_0 \cdot ar{Q}_1 \cdot ext{DOWN}ig) \end{aligned}$$

Again, the derivation of the expressions above will be discussed in detail later.

- Also known as the bidirectional counter that can progress in either direction
- In general, an UP/Down counter can be reversed at any point in its sequence

Example

• The direction of the count is determined by the level of the up/down input (D/U). When this input is HIGH, the counter counts down; when it is LOW, the counter counts up.

74HC190 : a U/D synchronous decade counter

Design of Synchronous Counters

Design of Synchronous Counters (I)

- Step 1: State Diagram
- Step 2: Next-State Table
- Step 3: Flip-Flop Transition Table
- Step 4: Karnaugh Maps
- Step 5: Logic Expressions for Flip-Flop Inputs
- Step 6: Counter Implementation

Example

Step 1: State Diagram

Step 2: Next-State Table

Step 3: Flip-Flop Transition Table

Next-state table for 3-bit Gray code counter.

	Present St	ate		Next State	
Q_2	Q_1	Q_0	Q_2	Q_1	Q_0
0	0	0	0	0	1
O	0	1	0	1	1
0	1	1	0	1	0
0	1	0	1	1	0
1	1	0	1	1	1
1	1	1	1	0	1
1	0	1	1	0	0
1	0	0	0	0	0

Transition table for a J-K flip-flop.

	Output Trans	sitions	Flip-Flo	p Inputs
Q_N		Q_{N+1}	J	K
0	\longrightarrow	0	٥	X
0	\longrightarrow	1	(1)	(X)
1	\longrightarrow	0	X	T
1	\longrightarrow	1	X	0

Example: Cont'd

Step 4: Karnaugh Maps

Next-state table for 3-bit Gray code counter.

	Present St	ate		Next State	
Q_2	Q_1	Q_0	Q_2	Q_1	Q_0
0	0	0	0	0	1
0	0	1	0	1	1
0	1	1	0	1	0
0	1	0	1	1	0
1	1	0	1	1	1
1	1	1	1	O	1
1	0	1	1	0	0
1	0	0	0	0	0

Example: Cont'd

Step 5: Logic Expressions for Flip-Flop Inputs

$J_0=Q_2Q_1$	$+ar{Q}_2ar{Q}_1$	$=\overline{Q_{2}}$	$\oplus Q$	1
$K_0=Q_2ar{Q}_1$	$+ar{Q}_2Q_1$	$=Q_2$	$\oplus Q_1$	1
$J_1=ar Q_2Q_0$				
$K_1=Q_2Q_0$				
$J_2=Q_1ar{Q}_0$				
$K_2=ar{Q}_1ar{Q}_0$				

Example: Cont'd

Step 6: Counter Implementation

$$egin{split} J_0 &= Q_2 Q_1 + ar{Q}_2 ar{Q}_1 = \overline{Q_2 \oplus Q_1} \ K_0 &= Q_2 ar{Q}_1 + ar{Q}_2 Q_1 = Q_2 \oplus Q_1 \end{split}$$

$$J_1=ar{Q}_2Q_0$$

$$K_1 = Q_2 Q_0$$

$$J_2=Q_1ar{Q}_0$$

$$K_2=ar{Q}_1ar{Q}_0$$

More Example

Next-state table. Step 2

P	resent Sta	te	1	Next Stat	e
Q_2	Q_1	Q_0	Q_2	Q_1	Q_0
	0	1		$\left(\begin{array}{c}1\\0\end{array}\right)$	0
1	0	1	1	1	1
1	1	1	0	0	1

Transition table for a D flip-flop.

Οι	itput Trans	sitions	Flip-Flop Input
Q_N		Q_{N+1}	D
0	→	0	0
0	\longrightarrow	1	(> ≠ 3
1	\longrightarrow	0	(0)
1	\longrightarrow	1	T

Step 3

$$egin{aligned} D_0 &= ar{Q}_0 + Q_2 \ D_1 &= ar{Q}_1 \ D_2 &= ar{Q}_0 + Q_2 ar{Q}_1 \end{aligned}$$

Step 6

Example: Synchronous 3-bit U/D Counters

Step 3

Transition table for a J-K flip-flop.

Output Transitions			Flip-Flop Inputs		
Q_N	Q_{N+1}		J	\boldsymbol{K}	
0	\longrightarrow	0	0	X	
O	\longrightarrow	1	1	X	
1	\longrightarrow	0	X	1	
1	\longrightarrow	1	X	0	

 Q_N : present state

 Q_{N+1} : next state

X: "don't care"

Step 2

Next-state table for 3-bit up/down Gray code counter.

			Next State						
Present State			Y = 0 (DOWN)			Y	Y = 1 (UP)		
Q_2	Q_1	Q_0	Q_2	Q_1	Q_0	Q_2	Q_1	Q_0	
0	0	0	1	0	0	0	0	1	
0	0	1	0	0	0	0	1	1	
0	1	1	0	0	1	0	1	0	
0	1	0	0	1	1	1	1	0	
1	1	0	0	1	0	1	1	1	
1	1	1	1	1	0	1	0	1	
1	0	1	1	1	1	1	0	0	
1	0	0	1	0	1	0	0	0	

 $Y = \text{UP}/\overline{\text{DOWN}}$ control input.

Step 4

 Q_2Q_1Y

The counter should count up when UP/DOWN is 1 and count down when 0.

$$egin{aligned} J_0 &= Q_2 Q_1 Y + Q_2 ar{Q}_1 ar{Y} + ar{Q}_2 ar{Q}_1 Y + ar{Q}_2 Q_1 ar{Y} \ J_1 &= ar{Q}_2 Q_0 Y + Q_2 Q_0 ar{Y} \ J_2 &= Q_1 ar{Q}_0 Y + ar{Q}_1 ar{Q}_0 ar{Y} \ K_0 &= ar{Q}_2 ar{Q}_1 ar{Y} + ar{Q}_2 Q_1 Y + Q_2 ar{Q}_1 Y + Q_2 Q_1 ar{Y} \ K_1 &= ar{Q}_2 Q_0 ar{Y} + Q_2 Q_0 Y \ K_2 &= Q_1 ar{Q}_0 ar{Y} + ar{Q}_1 ar{Q}_0 Y \end{aligned}$$

Cascaded Counters

Cascaded Counters: Asynchronous

• The overall modulus of the two cascaded counters is 4 * 8 = 32; that is, they act as a divide-by-32 counter.

Cascaded Counters: Synchronous

 The overall modulus of these two cascaded counters is 10 * 10 = 100.

A divide-by-100
 counter using two
 74HC190 up/down
 decade counters
 connected for the up
 sequence.

Cascaded Counters with Truncated Sequences

- Full-modulus cascading: the resulting overall modulus is the product of the individual moduli of all the cascaded counters.
- If the required modulus is less than that achieved by full modulus cascading, a truncated sequence must be implemented with cascaded counters.
- Example: to achieve a modulus-40,000 counter with four cascaded 74HC161s whose full modulus is 2¹⁶=65,536, we preset the cascaded counter to 25,536 (63C0 in hexadecimal) each time it recycles.

Counter Decoding

- The decoding of a counter involves using decoders or logic gates to determine when the counter is in a certain binary state in its sequence.
- For example, when $Q_2 = 1$, $Q_1 = 1$, and $Q_0 = 0$, a HIGH appears on the output of the following decoding gate, indicating that the counter is at state 6.

Decoding Glitches (I)

 The glitch problem can also occur to synchronous counters because the propagation delays from the clock to the Q outputs of each flip-flop in a counter can vary slightly.

Asynchronous BCD decade counter

Decoding Glitches (II)

 For an active-HIGH clock, use the LOW level of the clock to enable the decoder.

Counter Applications

Example: A Digital Clock

- Input: a 60 Hz pulse waveform generated from a 60 Hz sinusoidal ac voltage;
- Counters for Seconds and Minutes: count from 0 to 59 and then recycle to 0;
- The hour counter: a decade counter and a flip-flop to illuminate a 1 on the tens-ofhours display.

The Second/Minute/Hour Counter

The right-most bit is the LSB

- In state 12, the G2 output is LOW (i.e. Q and Q1 are HIGH), which activates the LOAD input of the decade counter.
- On the next clock pulse, the decade counter is preset to 0001.

• The terminal count, 59, is decoded to enable the next counter in the chain.

Example: P/S Data Conversion (Multiplexing)

- The 1st byte of parallel data is applied to the multiplexer inputs.
- After 8 clock pulses the data byte has been converted to a serial format and sent out on the transmission line.

Chapter Review

- □ Counters
 - □ Asynchronous
 - □ Synchronous
- □ Up/Down Counters
- ☐ Design of Synchronous Counters
- ☐ Cascaded Counters
- ☐ Counter Decoding

True/False Quiz

- Synchronous counters cannot be realized using J-K flip-flops.
- An asynchronous counter is also known as a ripple counter.
- A decade counter has twelve states.
- A counter with four stages has a maximum modulus of sixteen.
- To achieve a maximum modulus of 32, sixteen stages are required.
- If the present state is 1000, the next state of a 4-bit up/down counter in the DOWN mode is 0111.
- Two cascaded decade counters divide the clock frequency by 10.
- A counter with a truncated sequence has less than its maximum number of states.
- To achieve a modulus of 100, ten decade counters are required.