

Python Implementation of the SUBSCALE algorithm

Supervisor:

Prof. Dr. rer. nat. Tobias Lauer

M. Sc. Jürgen Prinzbach

based on Java reference

Introduction

- First implemented
 - University of Western Australia in 2014
 - Ph.D. Amardeep Kaur
 - Java
- M.Sc. Nicolas Kiefer
 - C++
 - CUDA for GPU support
 - In 2020

- Outline
 - Why Python?
 - Theory
 - Clustering
 - Problems
 - Solutions
 - Subscale Algorithm
 - Performance and Comparison
 - Trade offs SUBSCALE
 - Other Clustering Algorithms

Why Python?

PYPL PopularitY:

- Usability, System integration
 - State of the art for Machine learning
 - Front end for C and C++ programs
 - In Docker container

Worldwide, Jan 2021 compared to a year ago:				
Rank	Change	Language	Share	Trend
1		Python	30.44 %	+1.2 %
2		Java	16.76 %	-2.0 %
3		JavaScript	8.44 %	+0.3 %
4		C#	6.53 %	-0.7 %
5	^	C/C++	6.33 %	+0.3 %

TIOBE Programming Community Index

[7]

[8]

29.01.2021

Curse of Dimensionality

Bottom-up clustering

Cluster in 1d space

 P_0, P_1, P_2 clustered in C_1^x s

Cluster in 2d space

Solved Problems (I)

- Problem 1
 - Only Points in full dimensional space are discovered

- Solution 1
 - Search in all Subspaces of the features

Solved Problems (II)

- Problem 2
 - d: number of dimensions or features
 - 2^d-1 possible subsets (subspaces)
 - Example:
 - For d = 3
 - Subspaces = 7 $\{x, y, z, xy, xz, yz, xyz\}$

- Solution: SUBSPACE
 - Each dimension: processed 1 x 🖸

 Good parallelization when data has a lot of dimensions

Instructions

Only 1 scan per dimension

$$D_0$$
: P_0 P_1 P_2 $P_{...}$ P_n

SUBSCALE Overview

Data
 Projection

2. CoreSet creation

3. Calc. of Dense Units

4. Collision of Dense Units

5. Transformation

6. Final Clustering

DU

$c: P_0, P_1, \dots, P_5$

 P_0

- Number of calculations
 - $C = \{0, 1, 2, 3, 4, 5\}, |C| = 6$
 - $\binom{n}{k}$: # of k-sized subsets of n
 - k = minPoint = |DU| = 3
 - n = |C|
 - E.g. $\binom{6}{3} = 20$ with n = |C|
- Co-Lexicographic Order
 - Sequential Calculation:

- Runtime
 - 0(1)

- Direct calculation of i-th subset
 - Knowledge of predecessor
 DU not required
 - useful for parallelization

•
$$N_i = {c_k \choose k} + {c_{k-1} \choose k-1} + \dots + {c_1 \choose 1}$$

- k = |DU|
- $n > c_k > c_{k-1} > \dots > c_1$
- Example: 18. subset: {2,4,5}

•
$$18 = {5 \choose 3} + {4 \choose 2} + {2 \choose 1}$$

= $10 + 6 + 2$

- Runtime:
 - With lookup-table: $O(k \cdot log_2 n)$
 - $0 \le N_i \le \binom{n}{k}$

- Optimizing: binominal coefficient
 - Pascal Triangle as lookup-table

4. Collisions

- Label each point with random value
 - E.g. $Label(P_i) = 615233464694684$

Signature	DUs	Subsp
$Sig(DU_1)$	$P_1 \mid P_2 \mid$	D_0
$Sig(DU_x)$	$oxed{P_{\mathcal{X}} \mid P_{\mathcal{Y}}}$	D_1

895838767896987

mation 6. Final

Clustering

1. Data

Projection

2. CoreSet

creation

3. Calc. of

Dense Units

4. Collision of

Dense Units

5. Transfor-

Signature Calculation

$$\sum_{i=0}^{(minPoints)}$$

 $Label(P_i)$, $P_i \in DU$

table:

5. Mapping

Potential cluster in 1d space

 P_3 , P_5 , P_7 , P_9 : maybe clustered in \mathcal{C}_1^{D1}

- 1. Data Projection
- 2. CoreSet creation
- 3. Calc. of Dense Units
- 4. Collision of Dense Units
- 5. Transformation
- 6. Final Clustering

Final Clustering

- Input for DBSCAN:
 - [Dims, Points]

Subspace	Points	
D_0, D_1	$\begin{array}{ c c c c c }\hline P_i & P_j & P_y & P_k & P_l \\ \hline \end{array}$	+
D_1	$P_x \mid P_j \mid P_y$	

Output

Point	ClusterID
P_i	1
P_{j}	1
P_{χ}	3
•••	

DBSCAN

[5]

- 1. Data Projection
- 2. CoreSet creation
- 3. Calc. of Dense Units
- 4. Collision of Dense Units
- 5. Mapping to Subspaces
 - 6. Final Clustering

Performance Trade Offs

- Keep in mind
 - Computer memory
 - # Cores

- Bottleneck: memory
 - Because $\binom{n}{k}$ becomes huge
 - Partwise processing of DUs
 - Keep only DUs of current bounds in Signatures-Datastructure
 - LowerBound $\leq Sig(DU) < HigherBound$

- Parallelization approaches with multicores
 - DUs
 - Bounds
 - Dimensions

Increasing performance

Comparison

Size of dataset: 1600

Python - The Slowpoke

- Runtime
 - Dataset: 100x500 (rows x dimensions)
- Java "Subscale Extended"
 - 4,6 [s]
- Python
 - Default data structure for a hash map
 - ca. 19 [s]
 - 4 x slower than Java
 - Shared memory data structure for a hash map
 - ca. 11 [Min]
 - 34 x slower than normal dictionary
- → Use Python as front end

	7		
source	secs	mem	
Python 3	172.58	12,216	
Java	4.11	68,204	
	VS		

^	
secs	mem
1.36	112,052
	secs

5.70

redev-reduv

Java

656,328

Python: my Outlook list

- Multi- / Manycore support
- Performance improvement with specialized libraires
 - Numpy
- Use Python as front end suite for C++ implementation

Link to this document: https://bit.ly/2KXjdnw

01.2021 Stanislav Ramin, AI, HS Offenburg

Sources

- [0]: https://en.wikipedia.org/wiki/Iris flower data-set#/media/File:Principal tree for Iris data-set.png
- [1]: https://de.wikipedia.org/wiki/Bl%C3%BCte#/media/Datei:Bluete-Schema.svg
- [2]: https://morioh.com/p/eafb28ccf4e3
- [3]: https://wikimedia.org/api/rest_v1/media/math/render/svg/23050fcb53d6083d9e42043bebf2863fa9746043
- [4]: https://de.wikipedia.org/wiki/Datei:2-Dice-Icon.svg
- [5]: Amardeep Kaur (2016). "Fast and Scalable Subspace Clustering of High Dimensional Data", Perth, Australia, The University of Western Australia
- [6]: Nicolas Kiefer (2020) "Datenparalleles Subspace Clustering mit Grafikprozessoren", Offenburg, Deutschland, Hochschule Offenburg
- [7]: https://pypl.github.io/PYPL.html
- [8]: https://www.tiobe.com/tiobe-index/