Programming languages – **ProLog**

Project exercise no. 4 (2020/21)

T. Goluch

- 1. Implement a sort(list, sorted) predicate, that returns a not ascending sorted list. Apply the chosen one sorting algorithm e.g. selection¹, insertion², buble³, merge⁴, quick⁵ etc ... (2 pkt.):
- 2. Implement is_graphic(list, response) predicate, stating whether the list creates a graphic sequence⁶. Use the sort predicate from the previous task. (3 pkt.).
- 3. Implement is_connected(list, response) predicate, stating whether the list of vertex degrees creates a graphic sequence from which a connected graph can be created. Use the predicate from the previous task to check whether a graph can be created from vertex degrees list. (2 pkt.).

In the penultimate case, we can create a path P_5 or cycle/clique C_3/K_3 and cycle/clique P_2/K_2 . So, you can create a connected graph.

The last case is an example of an disconnected graph in which the number of edges is greater than the number of vertices.

https://mrpandey.github.io/d3graphTheory/unit.html?graphic-sequence

¹ https://en.wikipedia.org/wiki/Selection_sort

² https://en.wikipedia.org/wiki/Insertion sort

³ https://en.wikipedia.org/wiki/Bubble sort

⁴ https://en.wikipedia.org/wiki/Merge_sort

⁵ https://en.wikipedia.org/wiki/Quicksort

⁶ http://mathworld.wolfram.com/GraphicSequence.html,