Analisi 3

Luca Vettore

Primo semestre 2022-2023

1 Complementi di calcolo differenziale

1.1 Funzioni definite implicitamente

Sia $F: \Omega \subseteq \mathbb{R}^m \to \mathbb{R}$, l'insieme $z_F = \{x \in \Omega : F(x) = 0\}$ è detto insieme degli zeri di F. Applicando un'opportuna traslazione è possibile descrivere ogni curva di livello di F come insieme degli zeri di G = F + a.

In generale l'insieme z_F può assumere qualsiasi forma e risulta quindi molto difficile studiarne le proprietà. In alcuni casi z_F può essere descritto localmente da una funzione.

Definizione: sia $F: \Omega \subseteq \mathbb{R}^2 \to \mathbb{R}$ e $(x_0, y_0) \in \Omega$ t.c. $F(x_0, y_0) = 0$. Una funzione y = f(x) è detta **definita** implicitamente da F in un intorno I di x_0 se

- $(x, f(x)) \in \Omega \quad \forall x \in I$
- $F(x, f(x)) = 0 \quad \forall x \in I$
- $y_0 = f(x_0)$

(lo stesso per per x = g(y))

Teorema (del Dini)*:

Sia $\Omega \subseteq \mathbb{R}^2$ aperto e $F: \Omega \to \mathbb{R}, F \in C^1$. Sia $(x_0, y_0) \in \Omega$ t.c.

- $F(x_0, y_0) = 0$
- $\bullet \ \frac{\partial F}{\partial y}(x_0, y_0) \neq 0$

Allora $\exists I$ intorno di x_0 e J intorno di y_0 con $I \times J \subseteq \Omega$ t.c. $\exists ! \ y = f(x) \in J$ che soddisfi:

$$\begin{cases} F(x,y) = 0 \\ y_0 = f(x_0) \end{cases}$$

Inoltre $f \in C^1(I)$ e vale $f'(x) = -\frac{\frac{\partial F}{\partial x}(x,f(x))}{\frac{\partial F}{\partial y}(x,f(x))} \ \forall x \in I$

Teorema (del Dini "smart"):

Sia $F: \Omega \to \mathbb{R}$, $\Omega \subseteq \mathbb{R}^2$ aperto, $F \in C^0(\Omega)$ e $\frac{\partial F}{\partial u} \in C^0(\Omega)$.

Se $(x_0, y_0) \in \Omega$ t.c. $F(x_0, y_0) = 0$ e $\frac{\partial F}{\partial y}(x_0, y_0) \neq 0$, allora $\exists \delta, \tau > 0$ t.c $\exists ! \ f : I(x_0, \delta) \to I(y_0, \tau)$ t.c. F(x, f(x)) = 0 $\forall x \in I(x_0, \delta). \ f(x)$ è continua.

Entrambe le forme del teorema possono essere riscritte scambiando le variabili.

Se $\nabla F(x_0, y_0) = 0$ non è possibile applicare il teorema.

Nelle ipotesi sopra $F \in C^k \Rightarrow f \in C^k$.

Se $\frac{\partial F}{\partial x}(x_0, f(x_0)) = 0$ allora:

- $F_{xx}(x_0, f(x_0) \cdot F_u(x_0, f(x_0)) < 0 \Rightarrow x_0$ è minimo forte per f
- $F_{xx}(x_0, f(x_0) \cdot F_y(x_0, f(x_0)) > 0 \Rightarrow x_0$ è massimo forte per f

Teorema (del Dini per funzioni a valori vettoriali)*:

Sia $\Omega \subseteq \mathbb{R}^{n+m}$ aperto, $(x_0, y_0) \in \Omega$, $F : \Omega \to \mathbb{R}^m$, $F \in C^1(\Omega)$ e $F(x_0, y_0) = \underline{0}$. Se $\det \frac{\partial F}{\partial y}(x_0, y_0) \neq 0$, allora $\exists U, V$ interni di x_0, y_0 t.c. $\exists ! \ y = f(x) \in V$ che verifichi:

$$\begin{cases} F(x, f(x)) = 0\\ f(x_0) = y_0 \end{cases}$$

$$f \in C^1 \in J_f(x) = -\left(\frac{\partial F}{\partial y}\right)^{-1} \cdot \frac{\partial F}{\partial x}(x, f(x)) \ \forall x \in U.$$

Teorema (\exists ! globale):

Sia $F \in C^0([a, b] \times [c, d])$ t.c.

- $F(x,c) \cdot F(x,d) < 0 \,\forall x \in [a,b]$
- $F(x,\cdot)$ strettamente monotona in $[c,d] \ \forall x \in [a,b]$

allora $\exists ! g : [a, b] \rightarrow [c, d]$ t.c. $F(x, g(x)) = 0 \forall x \in [a, b]$

1.2 Diffeomorfismi e invertibilità locale

Sia $f:\Omega\subseteq\mathbb{R}^n\to\mathbb{R}^n$ una funzione di classe C^1 e sia Ω aperto

- f è detta localmente invertibile in $x_0 \in \Omega$ se $\exists I \subseteq \Omega$ t.c. $x_0 \in I$ e $f_{|_I}$ è invertibile
- f è detto diffeomorfismo locale se $f_{|_I} \in C^1$ e $f_{|_I}^{-1} \in C^1$ (se $I = \Omega$, allora f è diffeomorfismo globale)

Definizione: Siano $A, B \subseteq \Omega$ aperti, essi sono diffeomorfi se $\exists f : A \to B$ diffeomorfismo

Se $dimA \neq dimB$ essi non possono essere diffeomorfi.

Sia f diffeomorfismo globale, allora la sua Jacobiana è invertibile in ogni punto.

Teorema (invertibilità locale)*:

Sia $\Omega \subseteq \mathbb{R}^n$ aperto, $f: \Omega \to \mathbb{R}^n$, $f \in C^1(\Omega)$ e $x_0 \in \Omega$.

Se $det J_f(x_0) \neq 0$, allora $\exists U, V$ intorni di $x_0, f(x_0)$ t.c. $f: U \to V$ è diffeomorfismo di classe C^1 e vale $J_{f^{-1}}(y) = [J_f(f^{-1}(y))]^{-1}$

Corollario

Siano A,Baperti di $\mathbb{R}^n,\, f:A\to B$ di classe $C^1.$

f diffeomorfismo \Leftrightarrow è biunuvoca e $\forall x \ det J_f(x) \neq 0$.

1.3 Curve e integrali curvilinei

1.3.1 Curve

Definizione: Una funzione $\phi: [a,b] \to \mathbb{R}^n$ definita e continua su un intervallo chiuso e limitato è detta curva.

Sia $\phi:[a,b]\to\mathbb{R}^n$ una curva:

- l'immagine dell'intervallo $\phi([a,b])$ è detto sostegno della curva
- se $\phi(a) = \phi(b)$ la curva è detta chiusa
- se per $a \le t_1 < t_2 \le b \ \phi(t_1) = \phi(t_2) \Rightarrow (t_1, t_2) = (a, b)$ è detta semplice.
- una curva è di classe C^1 se è derivabile con derivata continua sul suo intervallo di definizione, C^1 a tratti se è possibile dividere [a, b] in un numero finito di intervalli su cui sia C^1
- una curva semplice è detta regolare se $\phi'(t) \neq 0 \ \forall t \in [a, b]$

Due curve $\phi: I \to \mathbb{R}^n, \psi: J \to \mathbb{R}^n$ sono dette equivalenti se $\exists g: I \to J, g \in C^1, g'(t) \neq 0$ t.c. $\phi(t) = \psi(g(t))$. Le due curve hanno lo stesso sostegno.

Data una curva $\phi: [a,b] \to \mathbb{R}^n$ si definisce la sua lunghezza come:

$$L(\phi) = \int_{a}^{b} ||\phi'(t)|| dt$$

Due curve equivalenti hanno la stessa lunghezza (la parametrizzazione scelta non cambia la lunghezza).

Definizione: Siano ϕ, ψ due curve con sostegno in $\Omega \subseteq \mathbb{R}^n$ definite sullo stesso intervallo [a,b]. ϕ e ψ si dicono omotope se esiste $T: [a,b] \times [0,1] \to \Omega$ continua t.c.

- $T(t,0) = \phi(t)$ e $T(t,1) = \psi(t) \ \forall t \in [a,b]$
- $T(a,\lambda) = p \in T(b,\lambda) = q \ \forall \lambda \in [0,1]$

 $\forall \lambda \ T(t,\lambda)$ è una curva chiusa con sostegno in Ω . La funzione T rappresenta quindi una deformazione continua che porta ϕ in ψ .

1.3.2 Integrali curvilinei

Sia $\phi:[a,b]\to\mathbb{R}^n$ una curva C^1 a tratti e $f:\Omega\to\mathbb{R}$ una funzione definita lungo il sostegno di ϕ . Si definisce integrale curvilineo di f lungo ϕ :

$$\int_{a} f \, ds = \int_{a}^{b} f(\phi(t)) ||\phi'(t)|| dt$$

L'integrale non cambia se calcolato lungo due curve equivalenti.

1.4 Ottimizzazione vincolata e moltiplicatori di Lagrange

Gli strumenti del corso di analisi II permettono di trovare massimi e minimi di una funzione $\mathbb{R}^n \to \mathbb{R}$ nei punti interni del suo dominio. Alcuni punti stazionari possono però trovarsi sulla frontiera del dominio.

Definizione: sia $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$, diciamo che $x_0 \in \Omega$ è un punto di massimo o minimo vincolato per f con vincolo z, se è punto di massimo o minimo per $f_{|_z}$.

Se z è il sostegno di una curva, il problema si riduce ad uno di ottimizzazione in una variabile.

Nel caso generale il teorema del Dini ci permette di ricavare uno strumento utile:

Teorema (del moltiplicatore di Lagrange)*:

Sia $\Omega \subseteq \mathbb{R}^2$ aperto, $f: \Omega \to \mathbb{R}$ e $F: \Omega \to \mathbb{R}$ di classe $C^1(\Omega)$.

Sia $(x_0, y_0) \in \Omega$ estremante di f con vincolo F(x, y) = 0 e sia $\nabla F(x_0, y_0) \neq 0$, allora $\exists \lambda_0 \in \mathbb{R}$ t.c.

$$\begin{cases} \frac{\partial f}{\partial x}(x_0, y_0) = \lambda_0 \frac{\partial F}{\partial x}(x_0, y_0) \\ \frac{\partial f}{\partial y}(x_0, y_0) = \lambda_0 \frac{\partial F}{\partial y}(x_0, y_0) \\ F(x_0, y_0) = 0 \end{cases}$$

Sia $L(x, y, \lambda) = f(x, y) - \lambda F(x, y)$ (lagrangiana del sistema). Sotto le ipotesi del teorema precedente (x_0, y_0, λ_0) è punto stazionario libero di L. Grazie a questo risultato i punti stazionari vincolati di f possono essere trovati risolvendo il sistema:

$$\begin{cases} \nabla L(x_0, y_0, \lambda_0) = \underline{0} \\ F(x_0, y_0) = 0 \end{cases}$$

I risultati precedenti si possono generalizzare al caso di funzioni a valori vettoriali.

Teorema (moltiplicatori di Lagrange e Lagrangiana):

Siano $f: \Omega \subseteq \mathbb{R}^{n+m} \to \mathbb{R}$ e $F: \Omega \to \mathbb{R}^n$ di classe C^1 . Se x_0 è estremante di f con vincolo $F(x,y) = \underline{0}$ e J_F ha rango massimo lungo il vincolo, allora $\exists \lambda_1, ..., \lambda_n \in \mathbb{R}$ t.c.

$$\nabla f = \begin{pmatrix} \lambda_1 \\ \dots \\ \lambda_n \end{pmatrix} \cdot \nabla F$$

e
$$(x_0,\lambda)$$
 è punto stazionario di $L(x,y,\lambda_1,...,\lambda_n)=f(x,y)-\begin{pmatrix}\lambda_1\\...\\\lambda_n\end{pmatrix}\cdot F(x,y)$

L'esistenza di massimi e minimi su un vincolo può essere dimostrata utilizzando il teorema di Weirestrass, sfruttando la continuità di F (il vincolo F(x) = 0 con $F \in C^1$ è chiuso perché controimmagine di un chiuso, rimane da dimostrare solo la limitatezza).

2 Forme differenziali

2.1 Insiemi

Definizione: Sia (X,d) metrico. Due suoi sottoinsiemi $A,B \neq \emptyset$ si dicono separati se:

$$\bar{A} \cap B = \emptyset \quad e \quad A \cap \bar{B} = \emptyset$$

Definizione Sia (X, d) metrico. $E \subseteq X$ si dice connesso se non può essere espresso come unione di due insiemi separati.

Definizione: $E \subseteq \mathbb{R}^n$ si dice connesso per archi se $\forall p, q \in E \ \exists \phi : [a, b] \to E \ C^1$ a tratti t.c. $\phi(a) = p \ e \ \phi(b) = q$.

Definizione: $E \subseteq \mathbb{R}^n$ è detto stellato se $\exists x_0 \in E$ t.c. $\forall x \in E$ il segmento che congiunge x e x_0 è contenuto in E

Definizione: Un insieme è detto semplicemente connesso se ogni curva chiusa è omotopa a un punto.

Valgono i seguenti risultati:

- $E \subseteq \mathbb{R}$ è connesso \Leftrightarrow è un intervallo
- $\Omega \subseteq \mathbb{R}^n$ aperto è connesso \Leftrightarrow è connesso per archi
- \bullet convesso \Rightarrow connesso
- stellato \Rightarrow convesso

2.2 Forme differenziali e campi vettoriali

Sia $\Omega \subseteq \mathbb{R}^n$ aperto. $\forall x \in \Omega$ possiamo definire uno spazio vettoriale E_x (vettori applicati in x) e lo spazio duale associato E_x^* (applicazioni lineari in E_x).

Definizione: una mappa che associa ad ogni x un elemento di E_x è detta campo vettoriale.

Definizione: una mappa che associa ad ogni x un elemento di E_x^* è detta forma differenziale.

Dato un campo vettoriale F(x) è sempre possibile ricavare una forma differenziale attraverso al prodotto scalare: $\omega_F(x) = \langle F(x), \cdot \rangle$. Anche il viceversa è vero.

Sia $f: \Omega \to \mathbb{R}$ una funzione di classe C^1 , è sempre possibile definire una funzione che mandi $v \in E_x$ in $(D_v f)(x)$. Questa è una forma differenziale nota come differenziale di f, che si indica con (df)(x). Il campo vettoriale associato a questa forma è il gradiente di f.

Definizione: Un campo vettoriale F è detto conservativo su $\Omega \subseteq \mathbb{R}^n$ se $\exists f : \Omega \to \mathbb{R}$ di classe C^1 con $\nabla f = F$

Definizione: Una forma differenziale ω è detta esatta su $\Omega \subseteq \mathbb{R}^n$ se $\exists f : \Omega \to \mathbb{R}$ di classe C^1 con $df = \omega$.

f è detto potenziale o primitiva per $F \in \omega$.

Il potenziale può non esistere e se esiste non è unico (f potenziale $\Rightarrow f + c$ potenziale).

Se Ω è un aperto connesso allora tutti i potenziali differiscono di una costante.

Denotiamo con ∂_j il campo vettoriale definito come ∂_j = versore di E_x e con d_j la forma differenziale ottenuta differenziando la funzione proiezione sulla j-esima coordinata. Possiamo quindi riscrivere il generico campo vettoriale F e la generica forma differenziale ω come:

$$F = \begin{pmatrix} a_1 \\ \dots \\ a_n \end{pmatrix} \cdot \begin{pmatrix} \partial_1 \\ \dots \\ \partial_n \end{pmatrix} \quad \omega = \begin{pmatrix} a_1 \\ \dots \\ a_n \end{pmatrix} \cdot \begin{pmatrix} d_1 \\ \dots \\ d_n \end{pmatrix}$$

dove $a_j: \Omega \to \mathbb{R}$ sono funzioni.

Una forma differenziale o un campo vettoriali sono detti di classe C^k quando $a_j \in C^k \ \forall j$. Se una forma è esatta o un campo conservativo $\exists f$ t.c. $\frac{\partial f}{\partial x_i} = a_j$.

Definizione: Una forma differenziale $\omega = \sum a_j dx_j$ è detta chiusa se $\frac{\partial a_j}{\partial x_k}(x) = \frac{\partial a_k}{\partial x_j}(x) \ \forall i \neq k \ \forall x.$

Definizione: Un campo vettoriale è detto irrotazionale se $\frac{\partial a_j}{\partial x_k}(x) = \frac{\partial a_k}{\partial x_j}(x) \ \forall i \neq k \ \forall x \ (rotF = \nabla \times F, \ F \ irrotazionale \Rightarrow rotF = 0).$

Teorema*: sia ω forma differenziale di classe C^1 , allora ω esatta \Rightarrow chiusa.

Definizione: sia $\omega = \underline{a} \cdot d\underline{x}$ una forma differenziale continua su $\Omega, \gamma : [a, b] \to \Omega$ una curva regolare a tratti. Si definisce integrale di ω su γ :

$$\int_{\gamma} \omega = \int_{a}^{b} \underline{a}(\gamma(t)) \cdot \underline{\gamma}'(t) dt$$

L'integrale è additivo: $\int_{\gamma_1+\gamma_2}\omega=\int_{\gamma_1}\omega+\int_{\gamma_2}\omega$

Teorema*: sia ω forma differenziale di classe C^0 , siano ϕ, γ due curve equivalenti equiorientate, allora: $\int_{\gamma} \omega = \int_{\phi} \omega$ Se hanno orientamento opposto: $\int_{\gamma} \omega = -\int_{\phi} \omega$

Teorema*: sia ω una forma differenziale esatta su Ω e siano $x_1, x_2 \in \Omega$, $\gamma : [a, b] \to \Omega$ curva regolare a tratti t.c. $\gamma(a) = x_0$ e $\gamma(b) = x_1$; allora:

$$\int_{\mathcal{X}} \omega = f(x_1) - f(x_0)$$

dove f è una primitiva di ω .

Teorema (invarianza omotopica):

Sia $\Omega \subseteq \mathbb{R}^n$ aperto e ω forma differenziale chiusa in Ω , $p, q \in \Omega$ e γ_1, γ_2 curve regolari a tratti equiorientate da p a q. Se γ_1 e γ_2 sono omotope, allora:

$$\int_{\gamma_1} \omega = \int_{\gamma_2} \omega$$

Teorema (invarianza omotopica 2):

Sia Ω aperto connesso e ω forma differenziale chiusa in Ω , γ_1 , γ_2 curve regolari a tratti chiuse. Se γ_1 e γ_2 sono omotope, allora:

$$\int_{\gamma_1} \omega = \int_{\gamma_2} \omega$$

Proposizione (nulla omotopia):

Sia $\Omega \subseteq \mathbb{R}^n$ aperto. Sia γ regolari a tratti, passante per $p \in \Omega$, chiusa e omotopa a un punto (nulla omotopa). Allora: $\int_{\gamma} \omega = 0$

Teorema (condizioni di esattezza)*: sia Ω un aperto connesso e ω una forma differenziale continua in Ω , sono equivalenti:

- ω è esatta
- $\forall p,q \in \Omega$ l'integrale di ω lungo γ , dove γ è una curva regolare che congiunge i due punti, non dipende dalla scelta di γ .
- $\bullet\,$ per ogni curva chiusa γ in Ω regolare a tratti $\int_{\gamma}\omega=0$

Risultati equivalenti a questi teoremi valgono per il campo vettoriale associato a ω .

Teorema: sia Ω un aperto connesso e ω una forma differenziale continua in Ω , allora:

$$\omega$$
 esatta $\Leftrightarrow \int_{\gamma} \omega = 0$

per ogni γ curva semplice, chiusa e regolare a tratti.

Teorema (lemma di Poincaré)*:

Sia $\Omega \subseteq \mathbb{R}^n$ aperto stellato, allora ω forma differenziale chiusa \Rightarrow esatta.

Ogni bolla aperta è un aperto stellato (ogni forma chiusa è localmente esatta).

Il potenziale di una forma differenziale ω in uno stellato può essere trovato integrando lungo un segmento che congiunge un punto generico a uno rispetto al quale l'insieme è stellato.

Lemma (derivazione sotto il segno di integrale):

Teorema:

Sia Ω aperto semplicemente connesso, allora ω chiusa $\Rightarrow \omega$ esatta.

3 Misura e integrazione

3.1 Volumi e misura esterna

Definizione: definiamo intervallo di \mathbb{R}^n un insieme della forma:

$$I = [a_1, b_1] \times \dots \times [a_n, b_n]$$

Definizione: definiamo volume di un intervallo d \mathbb{R}^n il valore:

$$v(I) = \prod_{i} (b_1 - a_1)$$

Sia $I = \bigcup_j I_j$ vale $v(I) \leq \sum_j v(I_j)$. Sia anche $I_j^o \cap I_k^o = \emptyset$ allora $v(I) = \sum_j v(I_j)$.

Definizione: sia $A \subseteq \mathbb{R}^n$, definiamo ricoprimento una successione numerabile di intervalli $\{I_j\}_{j \in k}$ t.c. $A \subseteq \bigcup_j I_j$. Definiamo volume del ricoprimento $R = \{I_j\}_{j \in k}$ il valore:

$$vol(R) = \sum_{j} v(I_j)$$

Definizione: definiamo misura esterna di $A \subseteq \mathbb{R}^n$ il valore:

$$m^*(A) = inf_{R \in R_a}(vol(R))$$

dove R_a è l'insieme di tutti i ricoprimenti possibili di A.

La misura esterna ha le seguenti proprietà:

- $m^*(A) \in [0, +\infty] \ \forall A$
- Se A è intervallo, allora la misura esterna coincide con il volume.
- Se $A \subseteq B \Rightarrow m^*(A) \le m^*(B)$
- Sia I intervallo, allora $m^*(I^o) = m^*(I)$
- Data una successione numerabile di insiemi $\{A_j\}$ vale $m^*(\bigcup_j A_j) \leq \sum_j m^*(A_j)$
- $m^*(A) = \inf\{m^*(E) | \forall E \text{ aperto } t.c. \ A \subseteq E\} \ \forall A$
- Siano $A, B \subseteq \mathbb{R}^n$ t.c. d(A, B) > 0, allora $m^*(A \cup B) = m^*(A) + m^*(B)$

3.2 Misura di Lebesgue

Definizione: un insieme $E \subseteq \mathbb{R}^n$ si dice misurabile secondo Lebsegue e si denota $E \in M(\mathbb{R}^n)$ se

$$\forall \epsilon > 0 \; \exists G \; aperto \; t.c. \; m^*(G \setminus E) \leq \epsilon$$

 $M(\mathbb{R}^n)$ ha le seguenti proprietà:

- $A \text{ aperto} \Rightarrow A \in M$
- $m^*(E) = 0 \Rightarrow E \in M$
- $E \sim \mathbb{N} \Rightarrow E \in M$
- $\{E_k\} \subset M \Rightarrow \bigcup E_k \in M$
- $E \in M \Rightarrow E^c \in M$
- $E \text{ chiuso} \Rightarrow E \in M$
- $\{E_k\} \subset M \Rightarrow \bigcap E_k \in M$
- $A, B \in M \Rightarrow A \setminus B \in M$

Definizione: sia $E \in M$, si definisce misura di Lebesgue: $m(E) = m^*(E)$

Oltre alle proprietà della misura esterna, per la misura di Lebesgue valgono:

- $\{A_i\}_{i \in K} \subset M, k \subseteq \mathbb{N}, A_i \cap A_j = \emptyset \ \forall i \neq j \Rightarrow m(\bigcup A_j) = \sum m(A_j)$
- $\{A_i\}_{i \in K} \subset M, k \subseteq \mathbb{N}, m(A_i \cap A_j) = 0 \ \forall i \neq j \Rightarrow m(\bigcup A_i) = \sum m(A_i)$
- $A, B, \in M, B \subset A \in m(B) < +\infty \Rightarrow m(A \setminus B) = m(A) m(B)$

Definizione: La funzione $F: E \subseteq \mathbb{R}^n \to \mathbb{R}$ è detta misurabile se $\forall A \subseteq \overline{\mathbb{R}}$ aperto $f^{-1}(A) \in M(\mathbb{R}^n)$. In tal caso si denota $f \in Mis(\mathbb{R}^n)$.

La classe $Mis(\mathbb{R}^n)$ ha le seguenti proprietà:

- $f, g \in Mis, \lambda \in \mathbb{R} \Rightarrow (f + \lambda g) \in Mis$
- $f \in Mis \ e \ \phi \in C \Rightarrow (\phi(f)) \in Mis$
- $f, g \in Mis \Rightarrow f^2, f \cdot g, |f|, f^+, f^- \in Mis$
- $f \in Mis \Rightarrow \frac{1}{f} \in Mis$
- $f_n \in Mis \ \forall n \Rightarrow sup_n(f_n), inf_n(f_n) \in Mis \ e \ liminf(f_n), limsup(f_n) \in Mis$

3.3 Funzioni semplici e integrale secondo Lebesgue

Definizione: si definisce funzione semplice una funzione della forma:

$$s(x) = \sum_{j=0}^{k} c_{j} \chi_{A_{j}}(x)$$

dove $\chi_A(x) = 0$ se $x \notin A$ o 1 se $x \in A$.

Una funzione semplice assume un numero finito di valori.

Teorema:

Sia $f \in Mis \Rightarrow \exists \{s_n\}$ successione di funzioni semplici t.c. $s_n(x) \to f(x) \ \forall x$. Se f è limitata $s_n \to f$ uniformemente.

Definizione: sia s(x) funzione semplice, si definisce integrale di Lebesgue di s il valore:

$$\int_{E} s(x)dx = \sum_{n=1}^{N} m(A_n \cap E)$$

Definizione: sia f una funzione non negativa, si definisce integrale di Lebesgue il valore:

$$\int_{E} f dx = sum \left\{ \int_{E} s(x) dx | 0 \le s(x) \le f(x) \, \forall x \in E, \, s \, semplice \right\}$$

Sia $f: E \to \bar{\mathbb{R}}$ misurabile. Si dice che f ha integrale se esiste finito almeno uno di $\int f^+$ e $\int f^-$. Se esistono finiti entrambi si dice integrabile e si definisce:

$$\int_E f = \int_E f^+ - \int_E f^-$$

si denota $f \in L(E)$ e vale l'implicazione $f \in L(E) \Leftrightarrow \int_{E} |f| < +\infty$.

L'integrale di Lebesgue ha le seguenti proprietà:

- sia $E \in M$ e $f \in M$ is allora per $0 < a < +\infty$ e $E_a = \{x \in E | f(x) \ge a\}$ vale $m(E_a) \le \frac{1}{a} \int_E f(x) dx$
- se $\exists g \in L(E)$ t.c. $|f| \leq g$ q.o. $\Rightarrow f \in L(E)$
- $f \leq g$ q.o. $e f, g \in L \Rightarrow \int_E f \leq \int_E g$
- $A \subseteq E$ misurabile, $f \in L(E) \Rightarrow f \in L(A)$
- $m(E) = 0, f \in Mis(E) \Rightarrow \int_E f = 0$
- $f \in L(E), E = \bigcup_{j=1}^{\infty} E_j \text{ con } E_j \cap E_i = \emptyset \ i \neq j, \text{ allora } \int_E f = \sum_{i=1}^{\infty} \int_E jf$
- $f, g \in L, \lambda \in \mathbb{R} \Rightarrow f + \lambda g \in L \text{ e } \int_{E} (f + \lambda g) = \int_{E} f + \lambda \int_{E} g$
- $f \in L, g \in Mis \in \exists k \text{ t.c. } |g(x)| \leq k \text{ q.o., allora } f \cdot g \in L(E)$
- $f \in Mis(E), |f| \le k \in \mathbb{R}$ q.o. $em(E) < +\infty$, allora $f \in L(E)$
- f continua e limitata su E, $m(E) < +\infty$, allora $f \in L(E)$
- $f \in R(E) \Rightarrow f \in L(E)$
- $f \in R([a.b]) \Rightarrow \int_a^b f = \int_{[a,b]} f$

Teorema (convergenza uniforme)*:

Sia $E \in M(\mathbb{R}^n), m(E) < +\infty, \{f_k\} \subseteq L(E), f_k \to f$ uniformemente in E, allora $f \in L(E)$ e

$$\int_E f_k \to \int_E f$$

Teorema (convergenza monotona di Bebbo Levi*):

Sia $\{f_k\} \subseteq Mis(E), f_{\rightarrow}f$ in E con monotonia. Se $\exists g \in L(E)$ t.c. $g(x) \leq f(x)$ q.o., allora f_k ha integrale $\forall k \in \exists \int_E f_k = \int_E f$.

Teorema (integrazione serie a termini non negativi*):

Sia $\{f_k\}\subseteq Mis(E), f_k\geq 0 \ \forall k$, allora:

$$\int \sum_{k}^{\infty} f_k = \sum_{k}^{\infty} \int_{E} f_k$$

Lemma (di Fatou*):

...

Teorema (convergenza dominata*):

Siano $f_k: E \to \bar{\mathbb{R}}$ t.c.

- $f_k \in L(E) \ \forall k$
- $\lim f_k = f$ q.o. su E
- $\exists G \in L(E) \text{ t.c. } |f_k| \leq G \text{ q.o. } \forall k$

Allora $f \in L(E)$ e

$$\lim \int_{E} f_{k} = \int_{E} \lim f_{k} = \int_{E} f$$

Teorema (continuità rispetto a un parametro):

Sia $f: E \to \mathbb{R}$ t.c.

- $E \in M(\mathbb{R}^n)$ e Ω aperto di \mathbb{R}^n
- $f(\cdot, x) \in L(E) \ \forall x \in \Omega$
- $f(u, \cdot)$ continua $\forall u \in E$
- $\exists g \in L(E) : |f(u,x)| \le g(u) \ \forall u, x$

Allora $F: \Omega \to \mathbb{R}, F:=\int_E f(x,u)du$ è continua.

Teorema (regolarità rispetto a un parametro):

Sia $f: E \to \mathbb{R}$ t.c.

- Ω aperto di \mathbb{R}^n
- $f(\cdot, x) \in L(E) \ \forall x \in \Omega$
- $f(u,\cdot) \in C^1 \ \forall u \in E$
- $\exists g \in L(E) : |\frac{\partial f}{\partial x_j}(x, u)| \le g_j(u) \ \forall u, x, j$

Allora $F:=\int_E f(x,u)du$ è $C^1(\Omega)$ e $\frac{\partial F}{\partial x_j}(x)=\int_E \frac{\partial f}{\partial x_j}(x,u)du$.

4 Integrazione multidimensionale

4.1 Proiezioni e sezioni

Definizione: definiamo proiezione di $E \subseteq \mathbb{R}^n = \mathbb{R}^m \times \mathbb{R}^k$ sull'asse x l'insieme:

$$P_x(E) = \{ x \in \mathbb{R}^m | \exists y \in \mathbb{R}^k \, t.c \, (x, y) \in E \}$$

Definizione: definiamo sezione x di E l'insieme:

$$E(x) = \{ y \in \mathbb{R}^k | (x, y) \in E \}$$

Teorema:

sia $E \in M(\mathbb{R}^{m+k}) \Rightarrow E(x) \in M(\mathbb{R}^k)$ q.o. $x \in \mathbb{R}^m$

4.2 Teoremi di Fubini e Tonelli

Per $f: \mathbb{R}^n \to \mathbb{R}$, con $n \geq 2$, non vale il teorema fondamentale del calcolo integrale, non risulta quindi possibile calcolare direttamente il valore dell'integrale. In alcuni casi risulta però possibile spezzare l'integrale in integrali iterati, ad esempio:

$$f: \mathbb{R}^2 \to \mathbb{R} \quad E = [a, b] \times [c, d] \quad \int_E f = \int_c^d \left(\int_a^b f(x, y) dx \right) dy$$

Teorema (di Tonelli):

Sia $\mathbb{R}^n = \mathbb{R}^m \times \mathbb{R}^k$, $f: E \subseteq \mathbb{R}^n \to [0, +\infty]$, $f \in Mis(E)$. Sia inoltre f estesa con valore 0 fuori da E. Allora:

- $f(x,\cdot) \in Mis(E(x))$ per q.o. $x \in P_x(E)$
- sia $g(x) = \int_{E(x)} f(x, y) dy \Rightarrow g \in Mis(\mathbb{R}^m)$
- $\int_E f = \int_{\mathbb{R}^m} \left(\int_{E(x)} f(x, y) dy \right) dx$

Gli integrali nella tesi possono essere infiniti $(f \notin L(E))$.

Il teorema vale per qualsiasi decomposizione di \mathbb{R}^n . In particolare rimane valido scambiando le variabili x e y. Il teorema richiede misurabilità e non negatività di f.

Sotto le ipotesi del teorema si ha:

$$\int_{E} f(x,y)dxdy = \int_{P_{x}(E)} dx \int_{E(x)} f(x,y)dy = \int_{P_{y}(E)} dy \int_{E(y)} f(x,y)dx$$

e che l'esistenza di un integrale implica quella degli altri.

Teorema (di Fubini):

Sia $\mathbb{R}^n = \mathbb{R}^m \times \mathbb{R}^k$, $f: E \subseteq \mathbb{R}^n \to \overline{\mathbb{R}}$, $f \in Mis(E)$, allora $f(x, \cdot) \in Mis(E(x))$ q.o. $x \in \mathbb{R}^m$. Se $f \in L(E)$, allora:

- $f(x,\cdot) \in L(E(x))$ per q.o. x
- $g(x) = \int_{E(x)} f(x,y) dy \Rightarrow g \in L(\mathbb{R}^m)$
- $\int_{\mathbb{R}^m} \left(\int_{E(x)} f(x, y) dy \right) dx = \int_E f$

analogamente scambiando x e y.

Questo teorema permette di calcolare l'integrale scomponendo \mathbb{R}^n a piacere ed eventualmente scambiando le variabili, ma richiede che la funzione sia integrabile.

Per dimostrare l'integrabilità di una funzione e valutarne l'integrale si procede prima studiando $\int_E |f|$ (sempre > 0, quindi si applica Tonelli). Se questo integrale è limitato, allora la funzione è integrabile e si può procedere con il teorema di Fubini.

4.3 Calcolo di integrali in \mathbb{R}^n

4.3.1 Cambiamento di variabili

Definizione: dati due aperti $A, B \subseteq \mathbb{R}^n$ definiamo cambiamento di variabili un diffeomorfismo $\phi: A \to B$

Teorema:

Sia $\phi: A \to B$ un cambiamento di variabili, sia $E \subseteq A$, $E \in M$, allora $\phi^{-1}(E) \in Mis(\mathbb{R}^n)$. Sia $f: E \to \overline{\mathbb{R}}, f \in L(E)$, allora $(f(\phi) \cdot det J_{\phi}) \in L(\phi^{-1}(E))$ e

$$\int_{E} f dy = \int_{\phi^{-1}(E)} f(\phi(x)) \cdot |det J_{\phi}| dx$$

Per roto-traslazioni $\phi(x) = L \cdot x + q,$ quindi $J_\phi = L$ e $det L = \pm 1$

Definizione: Sia $D \subseteq \mathbb{R}^2$, è detto normale se:

$$D = \{(x, y) \in \mathbb{R}^2 | x \in [a, b], \ \alpha(x) \le y \le \beta(x) \} \quad o \quad D = \{(x, y) \in \mathbb{R}^2 | y \in [a, b], \ \alpha(y) \le x \le \beta(y) \}$$

 $\operatorname{se}\alpha, \beta \in C^1$ l'insieme è detto regolare.

Definizione: si dice dominio regolare un insieme formato da un unione finita di insiemi normali regolari con interni disgiunti.

La frontiera di un dominio regolare è sostegno di una curva o unione di curve.

Definizione: sia D un dominio regolare, siano ν, τ rispettivamente un versore normale e tangente a D tali che la coppia (ν, τ) abbia la stessa orientazione della base canonica. L'orientazione così ottenuta di ∂D è detta positiva e si denota ∂D^+ .

Teorema (formule di Green in \mathbb{R}^2)*:

Sia $D \subseteq \Omega \subseteq \mathbb{R}^2$ dominio regolare, $f: \Omega \to \mathbb{R}$, $f \in C^1(\Omega)$, Ω aperto, allora:

$$\int_{D} \frac{\partial f}{\partial x}(x,y) dx dy = \int_{\partial D^{+}} f(x,y) dy$$

$$\int_{D} \frac{\partial f}{\partial y}(x, y) dx dy = -\int_{\partial D^{+}} f(x, y) dx$$

Le formule di Green permettono di valutare un integrale doppio calcolando l'integrale curvilineo di una forma differenziale.

Teorema (di Gauss)*:

Sia $D \subseteq \Omega$ dominio regolare, $F \in C^1(\Omega)$ un campo vettoriale, allora:

$$\int_{D} div F \ dx dy = \int_{\partial D^{+}} F \cdot \nu \ ds$$

 $divF = \nabla \cdot F \text{ e } \nu = \frac{1}{||\phi'||} \begin{pmatrix} \phi_2' \\ -\phi_1' \end{pmatrix} \text{ è il versore normale a D, data una parametrizzazione } \phi \text{ di } \partial D.$

Teorema (di Stokes):*

Sia $D \subseteq \Omega$ dominio regolare, $F \in C^1(\Omega), F(x) = \begin{pmatrix} f(x) \\ g(x) \end{pmatrix}$, allora:

$$\int_{D} \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} \right) dx dy = \int_{\partial D^{+}} f \, dx + \int_{\partial D^{+}} g \, dy$$

Teorema (formula di integrazione per parti)*:

Sia $D \subset \Omega$ dominio regolare connesso, $f, g \in C^1(\Omega)$, allora:

$$\int_{D} f \frac{\partial g}{\partial x} dx dy = \int_{\partial D^{+}} fg dy - \int_{D} g \frac{\partial f}{\partial x} dx dy$$

4.3.3 In \mathbb{R}^3

Definizione: si definisce dominio normale regolare in \mathbb{R}^3 un insieme della forma:

$$T = \{(x, y, z) \in \mathbb{R}^3 | (x, y) \in D, \alpha(x, y) < z < \beta(x, y) \}$$

dove D è un dominio regolare in \mathbb{R}^2 e $\alpha, \beta: D \to \mathbb{R}$ sono funzioni di classe C^1 . Allo stesso modo scambiando le variabili.

Definizione: sia $D \in \mathbb{R}^2$ un dominio connesso, una mappa $\phi : D \to \mathbb{R}$ di classe C^1 t.c.

- ϕ ristretta a D^o è iniettiva
- J_{ϕ} ha rango 2 su D

 $S = \phi(D)$ è detto sostegno della superficie.

Il piano tangente alla superficie nel punto $\phi(u,v)$ ha equazione:

$$det(x - \phi(u, v) \quad \partial_u \phi(u, v) \quad \partial_v \phi(u, v)) = 0$$

Il versore normale:

$$\nu = \frac{\partial \phi_u \times \partial \phi_v}{||\partial \phi_u \times \partial \phi_v||}$$

e la superficie è detta continua se ν varia con continuità rispetto a (u, v).

Definizione: sia $\phi:D\subseteq\mathbb{R}^2\to\mathbb{R}^3$ una superficie regolare con sostegno S, si definisce integrale di f lungo S:

$$\int_{S} f d\sigma = \int_{D} f(\phi(u, v)) \cdot ||\partial \phi_{u} \times \partial \phi_{v}|| du dv$$

Definizione: Sia D un dominio connesso e $\phi \in C^1$ t.c.

- ϕ iniettiva su D
- J_{ϕ} ha rango 2 su D

allora ϕ è detta curva regolare con bordo.

Teorema (di Gauss in \mathbb{R}^3):

Sia T un dominio regolare e $F=\begin{pmatrix} F_1\\F_2\\F_3 \end{pmatrix}$ un campo vettoriale di classe $C^1,$ allora vale:

$$\int_T div F \, dx dy dz = \int_{\partial T^+} F \cdot \nu \, d\sigma$$

Teorema (di Stokes in \mathbb{R}^3):

Sia $\phi:D\subseteq\mathbb{R}^2\to\mathbb{R}^3$ una superficie regolare con bordo con sostegno S, sia F un campo vettoriale di classe C^1 , allora:

$$\int_S rot F \cdot \nu \, d\sigma = \int_{\partial S^+} F \cdot \tau \, ds$$

dove:

$$rot F = det \begin{pmatrix} i & \partial_x & F_1 \\ j & \partial_y & F_2 \\ k & \partial_z & F_2 \end{pmatrix} = \begin{pmatrix} \partial_y F_3 - \partial_z F_2 \\ \partial_z F_1 - \partial_x F_3 \\ \partial_x F_2 - \partial_y F_1 \end{pmatrix}$$

Indice

1	Cor	nplementi di calcolo differenziale	1
	1.1	Funzioni definite implicitamente	1
	1.2		2
	1.3	Curve e integrali curvilinei	2
		1.3.1 Curve	2
		1.3.2 Integrali curvilinei	2
	1.4	Ottimizzazione vincolata e moltiplicatori di Lagrange	3
2	For	me differenziali	4
	2.1	Insiemi	4
	2.2	Forme differenziali e campi vettoriali	4
3	Mis	sura e integrazione	6
		Volumi e misura esterna	6
	3.2	Misura di Lebesgue	6
	3.3	Funzioni semplici e integrale secondo Lebesgue	7
4	Inte	egrazione multidimensionale	9
-	4.1		9
	4.2	Teoremi di Fubini e Tonelli	9
	4.3		9
	4.5	Calcolo di integrali in \mathbb{R}^n	
			9
		4.3.2 In \mathbb{R}^2	10