ComSci M51A

Lecture: Tuesdays, Thursdays 8:00 to 9:50

Discussion: Fridays 10:00 to 11:50

• Chapter 1-Introduction

1.1-About Digital Systems

- Digital system-a system in which signals have a finite number of discrete values
- Analog systems-signals have values from a continuous infinite set
- Systems with instants labeled at digital values labeled at discrete instants in which signals change due to the time being discretized are known as synchronous
- Those which changes may occur at any instant are called asynchronous
- Why are digital systems important?
 - Digital systems are used in information processing
 - Digital representation is well suited both numerical and nonnumerical information processing
 - Information processing can use a general-purpose system (a computer) which is programmed for a particular processing test
 - The finite number in digital signals can be represented with binary signals
 - Signals all represent just open and closed
 - Digital signals are quite insensitive to variations of component parameter values
 - Especially true for binary signals
 - Numerical digital systems can be made more accurate by adding the number of digits used in the representation
 - The advances of microelectronics technology in recent years have made possible the fabrication extremely complex digital signals, which are small, fast and cheap
 - Complex digital systems are built as integrated circuits composed of a large number of very simple devices
 - It is possible to select among different implementations of systems that trade-off speed and amount of hardware
 - When are digital systems used?
 - Analog and digital signals
 - Signals in there real world are analog, so it is necessary for us to convert digital signals to analog signals
 - Process of converting from analog to digital is called quantization or digitization
 - Combinational and sequential systems
 - Digital systems have two classes: combinational systems and sequential systems
 - Combination systems-the output at time t depends only on the input
 - These systems have no memory, because the system does not depend on previous systems
 - Sequential systems-the output at time t depends on the input at time t and possibly also depends on the input prior to t

1.2-Specification and Implementation, Analysis and Design

- The specification of a system refers to a description of its function and of other characteristics required for its use
- Specification is related to what the system without reference to how it performs the operation
- Specs should be complete and as simple as possible
- Specifications of a systems must describe its function in a way that is adequate for two purposes:
 - To use the system as a component in more complex systems
 - To serve as the basis for the implementation of the system by a network of simpler components
- On the other hand, an implementation of a system refers to how the system is constructed from simpler components
 - With digital networks, this consists of the interconnection of digital modules
 - This network can be defined at many levels, ranging from complexity of the primitive models
 - I.e. gates to complex processors
- At the physical level, all digital systems are implemented by a complex interconnection of elementary elements such as transistors, resistors, and so on
- It is necessary to define intermediate levels of modules of increasing complexity, whose descriptions

- Modules are more than just conceptual entities used to simplify description of an implementation
 - Often built separately and then put together to finish the larger system
- The distinction between separation of specification of a system and its implementation is very important in complex systems because
 - It shields the description required to use the system from irrelevant implementation details
 - It allows choosing an implementation from different alternatives without influencing the description required for using the system
- Analysis of a system has the objective to determine its specification from implementation
- Design process consists of obtaining an implementation that satisfies the spec of a system
 - Top-down decomposes itself into subsystems in which are decomposed into smaller systems
 - Has the disadvantage that no systematic procedure exists to assure the decomposition at a particular level optimizes the final implementation
 - Bottom-up-Connects available modules to form subsystems and these subsystems are connected to the subsystems until the required functional specification is fulfilled
 - Disadvantage is similar to the top-down case
- Levels of an implementation
 - Module level consists of two registers and adder
 - Logical level consists of modules implemented with gates and flip-flops and signals are binary
 - Physical level are components that are realized in some technology

• 1.3-Computer-aided design tools

- CAD is used to help design of digital systems be efficient, timely, and economical
- Description of digital systems is performed in a hierarchical manner
 - Description provides a logic diagram of the system at different levels, showing the modules and their interconnections
 - This process is called a schematic capture because the tool used to capture the schematic description of the digital system
 - Process is supported by libraries of standard components
 - An alternative method is using a hardware-description language
- Synthesis and optimization tools help in obtaining an implementation from a given description in improving some characteristics such as the number of modules and network delays
- Simulation tools are used to verify the operation of a system
 - These can be used to detect errors in a design and to determine characteristics

• Chapter 2-Appendix A-Boolean Algebras

- Boolean algebras is an important class of algebras
- Switching algebra is an instance of boolean algebras

• A.1-Boolean Algebra

- Boolean algebra is a tuple {B, +, .}, where in
 - B is a set of elements
 - + and . Are binary operations applied over the elements of B
- Which satisfies the following postulates
 - P1: Commutative
 - a+b=b+a
 - a.b=b.a
 - P2: Associative
 - $a + (b \cdot c) = (a + b) \cdot (a + c)$
 - $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$
 - P3: Identity
 - \bullet 0 + a = a + 0 = a
 - -1.a = a.1a
 - P4: Complement
 - a+a'=1
 - a . A'=0

A.2-Switching Algebra

- Switching algebra is a system used to describe switching functions by means of switching expressions
- Switching algebra contains B= {0,1} and operations AND and OR

- Operations are used to evaluate switching expressions
- Theorem 1
 - The switching algebra is a Boolean Algebra
- P1: Commutativity of (+), (.)
 - Shown by inspection of the operation tables
 - Holds if operation is symmetric about the main diagonal
- P2: Distributivity of (+), (.)
 - Shown by perfect induction, by considering all possible values of the elements a, b, c
- P3: Existence of additive and multiplicative identity element
 - 0+1=1+0=1
 - 0.1 = 1.0 = 0
- P4: Existence of the complement
 - 1 is the complement of 0 and 0 is the complement of 1

• A.3-Important Theorems in Boolean Algebra

- Theorem 2: Principle of duality
 - Every algebraic identity deducible from the postulates of a Boolean algebra remains valid if
 - The operations + and . Are interchanged throughout
 - The identity elements 0 and 1 are also interchanged throughout
- Theorem 3
 - Every element in B has a unique complement
- Theorem 4
 - For any a in B p-p ,.
 - -1 + a = 1
 - 0.a = 0
- Theorem 5
 - The complement of the element 1 is 0 and vice versa
- Theorem 6 Idempotent Law
 - For every a in B
 - a + a = a
 - a.a = a
- Theorem 7 Involution Law
 - For every a in B,
 - (a')' = a
- Theorem 8 Absorption Law
 - For every pair of element a, b in B
 - a+a.b=a
 - $a \cdot (a + b) = a$
- Theorem 9
 - For every pair of elements a, b in B
 - a + a' = a + b
 - a(a' + b) = ab
- Theorem 10
 - In a Boolean algebra, each of the binary operators, (+) and (.) is associative. That is, for every a, b, c in B
 - a + (b + c) = (a + b) + c
 - a(bc) = (ab)c
- Corollary 1
 - The order in applying the + and . operator among n elements does not matter
- Theorem 11 DeMorgan's Laws
 - For every pair of elements a,b in B:
 - (a + b)' = a'b'
 - (ab)' = a' + b'
- Theorem 12 Generalized DeMorgan's Laws
 - Let {a, b,..., c, d} be a set elements in a Boolean algebra. Then, the following identities hold:
 - (a + b + ... + c + d)' = [(a + b + ... + c) + d]'
 - = (a + b + ... + c)'d'

- Other examples of Boolean Algebras
 - Algebra of sets
 - Algebra of Logic (Propositional Calculus)

• Chapter 3-Combinatorial Integrated Circuits: Characteristics and Capabilities

- Logic gates-and, or, nor, etc
- Circuit level-Physical representation of the gates
- PMOS-Pull-up
- NMOS-Pull-down
- The not gate is formed by simply two gates inverting the input value to allow for output
- AND and OR gates must be created by adding a NOT gate to invert the value of the circuit
- Transmission gates are often used to represent XOR
- We cannot get instantaneous change, so we will have propagation delay
- Total load is the sum of all load factors
 - Assume load factor is 1

• Chapter 4-Description and Analysis of Gate Networks

- Gate network-Interconnections of data
- Connections all carried signals
- Description of a gate network contains
 - Graphical representation (Logic diagram)
 - Tabular representation (a net list)
 - Representation based on a hardware description language (a set of language statements
- Specification of a gate networks includes
 - Functional specification
 - The input load factors of the network inputs
 - The fanout factors of the network outputs
 - The propagation delays through the network
- Universal sets
 - {AND, OR, NOT}
 - {AND, NOT}
 - {OR, NOT}
 - {NAND}
 - {NOR}

• Chapter 5-Design of Combinational Systems: Two-Level Gate Networks

- Two level networks are networks with two layers of gates
- Karnaugh maps are a method of determining a minimal expression via a visual representation
- Implicant is a value 1 in the karnaugh map
- Prime implicant is the larges 2^(n) value of grouping 1s
- Essential Prime implicants contain at least one 1 which is not covered by any other primes

• Chapter 7-Specification of Sequential Systems

- Sequential system
- Synchronous and asynchronous
- State diagrams
- Initial case
- States influence the output
- Note input also influence output
- Two types of state diagrams

• Chapter 8-Sequential Networks

- Sequential Network is a collection of combinational and sequential networks
- Canonical Implementation
 - Huffman-Moore implementation is based directly on the state description of a system
 - State register stores the state
 - Combinational network implements the transition and output functions
 - Synchronizing signal determines time instants at which the next state is loaded into the state register
 - Clock pulses
 - Initialize is the input to initialize the state

- Hip-Hop
 - JK
 - D
 - SR
 - T
- Only flips the output value
- We only really care about how everything initiates wrt the clock
- · Clock will always run at any given time

• Chapter 9-Standard Combinational Modules

- o n-input binary decoder-combinational system that has n binary outputs
- Coincident decoding and tree decoding
- 2⁽ⁿ⁾ output binary-decoder
- Additional I/O can be used with module enable E
- 2^(n) input binary-multiplexer
- o 2^(n) output binary-demultiplexer
- Multiplexer trees
- Simple Shifter
- p-shifter
- Unidirectional shifter

• Chapter 10

- Adders
 - Full
 - With carry in and carry out
 - Half
 - Without carry in and carry out
- Carry ripple adder