Fibonacci numbers

Fibonacci Numbers

Figure 1: Fibonacci

The Fibonacci numbers F_n are defined by a *recursive* formula. The first two numbers are given by $\underline{F_1} = 1$ and $\underline{F_2} = 1$ and, for all $n \geq 3$, $\underline{F_n} = \underline{F_{n-1}} + \underline{F_{n-2}}$.

Fibonacci Numbers and the Golden Ratio

See Donald Duck in Mathmagic Land (7 minute mark - 14 minute mark).

Fibonacci Numbers and the Golden Ratio

The golden ratio

is the larger root of the quadratic polynomial $x^2 - x - 1 = 0$.

Proposition: The ratio of successive Fibonacci numbers F_{n+1}/F_n converges to the Golden ratio.

Some Data

$\overline{1}$	1	-1.000000000	
1	6	-2.000000000	
2	3	1.500000000	
3	5	1.666666667	
5	8	1.60000000	
8	13	1.625000000	
13	21	1.615384615	
21	34	1.619047619	
34	55	1.617647059	
55	89	1.618181818	
89	144	1.617977528	
144	233	1.618055556	
(233)	(377)	1.618025751	
377	610	1.618037135	1+ \(\sigma \)
610	987	1.618032787 ~	1+1

Fibonacci Numbers cont'd

Proposition:
$$F_{n+1}^2 - F_n F_{n+1} - F_n^2 = (-1)^n$$
.

$$3^{2} - (2)(3) - 2^{2} = -1$$

$$5^{2} - (3)(5) - 3^{2} = +1$$

$$8^{2} - (5)(8) - 5^{2} = -1$$

$$3, 2$$

$$5, 3$$

$$8, 3$$

Corollary
$$\lim_{n\to\infty} \frac{F_{n+1}}{\overline{F_n}} = \phi.$$

Proof: Divide through by F_n^2 :

rough by
$$F_n$$
:
$$= 0$$

$$(\overbrace{F_{n+1}}^{n})^2 - (\underbrace{F_{n+1}}^{F_{n+1}}) - 1 = \underbrace{(-1)^n}_{F_n}$$

The right hand side goes to zero, so (F_{n+1}/F_n) converges to a root of the polynomial which is greater than one.

Proof of proposition

First check that $F_2^2 - F_1F_2 - F_1^2 = -1$, which is $1^2 - 1 - 1 = -1$ as we want.

- Now suppose that the formula holds for F_n , so $F_n^2 F_n F_{n-1} F_{n-1}^2 = (-1)^{n-1}$.
- Consider $F_{n+1}^2 F_{n+1}F_n F_n^2$.
- Substitute $F_{n+1} = F_n + F_{n-1}$ to get

$$(F_{n} + F_{n-1})^{2} - (F_{n} + F_{n-1})F_{n} - F_{n}^{2} = F_{n}^{2} + 2F_{n}F_{n-1} + F_{n-1}^{2} - F_{n}^{2} + F_{n-1}F_{n} - F_{n}^{2}$$

Then the right hand side of this equation is

$$-F_n^2 + F_n F_{n-1} + F_{n-1}^2 = -(F_n^2 - F_n F_{n-1} - F_{n-1}^2) = (-1)^n$$

where we used the inductive hypothesis to in the second-to-last step.