D1.1.1: Complex numbers

L1.1.3

properties of complex numbers

Remark

 \mathbb{C} is a field.

D1.1.5 and D1.1.7

polar and exp forms

L1.1.6

de moivre

L1.1.9

conjugate properties

L1.1.10 – 11: Triangle inequalities

D1.1.12: Argument of z

P1.1.14

properties of arg z

Remark

set addition

D1.2.1: Open and closed ϵ -discs

Let $z_0 \in \mathbb{C}$ and $\epsilon > 0$.

1. An **open** ϵ -disc centred at z_0 is:

$$D_{\epsilon}(z_0) := \{ z \in \mathbb{C} : |z - z_0| < \epsilon \}.$$

2. A **closed** ϵ -disc centred at z_0 is:

$$\overline{D}_{\epsilon}(z_0) := \{ z \in \mathbb{C} : |z - z_0| \le \epsilon \}.$$

A **punctured** ϵ -disc centred at z_0 is:

$$D'_{\epsilon}(z_0) := \{ z \in \mathbb{C} : 0 < |z - z_0| < \epsilon \}.$$

D1.2.2: Open sets

Let $U \subset \mathbb{C}$. Set U is **open** if:

$$\forall z_0 \in U; \exists \epsilon > 0 : D_{\epsilon}(z_0) \subseteq U.$$

Subset F is **closed** if $\mathbb{C} \setminus F$ is open.

A **neighbourhood** of point $z_0 \in \mathbb{C}$ is an open set that contains z_0 .

L1.2.3

Punctured disc $D'_{\epsilon}(z_0)$ is open.

D1.2.4: Limit points

Let $S \subseteq \mathbb{C}$. z_0 is a **limit point** of S if:

$$\forall \epsilon > 0; D'_{\epsilon}(z_0) \cap S \neq \emptyset.$$

The closure of S is set \overline{S} and contains S and all its limit points.

L1.2.6

Let $S \subseteq \mathbb{C}$. S is closed **iff** $S = \overline{S}$.

D1.2.7: Bounded sets

Let $S \subseteq \mathbb{C}$. Set S is **bounded** if:

$$\forall z \in S; \exists M > 0: |z| < S.$$

D1.2.8: ϵ -N convergence

Let
$$\mathbb{N} = \{0, 1, 2, \dots\}.$$

Let $(z_n)_{n\in\mathbb{N}}\subseteq\mathbb{C}$ be a sequence and $z\in\mathbb{C}$. Then $\lim_{n\to\infty}z_n=z$ if:

$$\forall \epsilon > 0; \exists N \in \mathbb{N} : \forall n \ge N$$
$$\implies |z_n - z| < \epsilon.$$

L1.2.9

L1.2.10

D1.2.11: Cauchy sequences

L1.2.12

seq conv iff cauchy

L1.2.15: Bolzano-Weierstrass

Remark

define a complex valued function

D1.3.1: Bounded functions

D1.3.2: ϵ - δ convergence

L1.3.3?

L1.3.4

results on function limits

L1.3.5

limit algebra

D1.3.6: ϵ - δ continuity

L1.3.7

L1.3.8

composition of functions are also continuous

L1.3.9

L1.3.10