A representação do problema do caminho mais curto (Exemplo 5.11) na caixa de diálogo **Parâmetros do Solver** está ilustrada na Figura 5.34.

Figura 5.34 Parâmetros do Solver referentes ao problema do caminho mais curto.

Na caixa de diálogo **Opções do Solver**, selecionar as opções **Presumir modelo linear** e **Presumir não negativos**. A Figura 5.35 apresenta a solução ótima do problema do caminho mais curto (Exemplo 5.11).

Figura 5.35 Solução ótima do problema do caminho mais curto pelo Solver do Excel.

A SBF ótima é, portanto, $x_{12}=1, x_{24}=1, x_{47}=1, x_{79}=1$ (Osasco \rightarrow Lapa \rightarrow Santa Cecília \rightarrow Mooca \rightarrow Vila Formosa) com z=24.

5.7 Problema do Fluxo Máximo

O problema do fluxo máximo busca maximizar o fluxo (de mercadorias, materiais, energia etc.) a partir de um nó de origem para um nó destino da rede, respeitando os limites mínimo e máximo de fluxo nos arcos. O fluxo pode ser medido em duas direções: fluxo máximo de saída do nó de origem ou fluxo máximo de chegada no nó de destino. Como exemplos de aplicações do problema do fluxo máximo têmse: a) maximizar o fluxo de mercadorias em uma rede de distribuição; b) maximizar o fluxo de óleo, gás ou água por meio de um sistema de dutos, gasodutos ou aquedutos, respectivamente; c) maximizar o fluxo de veículos em uma rede de transportes. A notação matemática é apresentada a seguir.

Considere determinado nó $i \in I$. Os nós de origem a i são representados pelo índice $k \in K$ e os nós de destino de i são representados pelo índice $j \in J$. O nó de origem da rede é representado por O e o nó de destino da rede é representado por T. Se o nó i analisado corresponder ao nó de oferta da rede, tem-se que i = O. Por outro lado, se o nó i corresponder ao nó de demanda da rede, tem-se que i = T. O fluxo do nó i para o nó j é representado por x_{ij} . O objetivo deste problema de transbordo é determinar o fluxo máximo de saída do nó de origem O (max $\sum_i x_{Oj}$) ou o fluxo máximo de chegada no nó de destino I (max I0), respeitando as restrições de conservação dos fluxos entre os nós de origem I1) e saída I2), a restrição de conservação dos fluxos de entrada e saída para cada um dos nós intermediários ou de transbordo, além da restrição de limites mínimo e máximo em cada arco.

5.7.1 Formulação Matemática do Problema do Fluxo Máximo

Os parâmetros do modelo, as variáveis de decisão e a formulação matemática geral do problema de transbordo estão especificadas a seguir.

Parâmetros do modelo:

 l_{ij} = limite mínimo para o fluxo no arco (i, j), $\forall i, j$ u_{ii} = limite máximo para o fluxo no arco (i, j), $\forall i, j$

Variáveis de decisão:

 x_{ij} = fluxo no arco (i, j), $\forall i, j$

Formulação geral:

$$\max z = \sum_{j} x_{Oj} \qquad \left(\text{ou } \max z = \sum_{k} x_{kT} \right)$$
s. a.
$$\sum_{k} x_{kT} - \sum_{j} x_{Oj} = 0, \qquad i = O, T \qquad (1)$$

$$\sum_{k} x_{ki} - \sum_{j} x_{ij} = 0, \qquad \forall i \neq O, T \qquad (2)$$

$$l_{ij} \leq x_{ij} \leq u_{ij}, \qquad \forall i, j \qquad (3)$$

$$x_{ij} \geq 0, \qquad \forall i, j \qquad (4)$$

que corresponde a um problema de programação linear.

A função objetivo busca, portanto, maximizar o fluxo total de saída do nó de origem da rede (O) para os nós de destino j ou o fluxo total de chegada no nó de destino da rede (T) a partir dos nós de origem k. A restrição (1) garante que o fluxo total de chegada no nó de destino da rede (T) é igual ao fluxo total de saída no nó de origem da rede (O). A restrição (2) é de conservação dos fluxos de entrada e saída para cada um dos nós intermediários ou de transbordo. Já a restrição (3) garante fluxos mínimo e máximo no arco (i, j). Finalmente, têm-se as restrições de não negatividade das variáveis de decisão.

Exemplo 5.12

A empresa Petroduto transporta óleo, gás natural, biocombustíveis renováveis, dentre outros produtos, por meio de uma malha sólida de dutos de 1.000 quilômetros. A empresa busca determinar o fluxo máximo de óleo (em m^3/s) que pode ser transportado na rede da Figura 5.36, que tem como nó de origem (O) a estação de Minas e como nó de destino (T) um consumidor final localizado em São Paulo. Os valores nos arcos representam as capacidades máximas em cada arco (em m^3/s).

Figura 5.36 Rede de dutos da empresa Petroduto.

→ Solução

Primeiramente, definem-se as variáveis de decisão do modelo:

 x_{ii} = fluxo de óleo (em m³/s) no arco (i, j), $\forall i$, j

Assim, tem-se que:

 $x_{\it OA}=$ fluxo de óleo (em m³/s) da estação de Minas para a estação A.

 x_{OB} = fluxo de óleo (em m³/s) da estação de Minas para a estação B.

 x_{AC} = fluxo de óleo (em m³/s) da estação A para a estação C.

 x_{AD} = fluxo de óleo (em m³/s) da estação A para a estação D.

 x_{BC} = fluxo de óleo (em m³/s) da estação B para a estação C.

 x_{BD} = fluxo de óleo (em m³/s) da estação B para a estação D.

 x_{CT} = fluxo de óleo (em m³/s) da estação C para São Paulo.

 x_{DT} = fluxo de óleo (em m³/s) da estação D para São Paulo.

A função objetivo busca maximizar o fluxo total de saída da estação de Minas (O):

 $\max x_{OA} + x_{OB}$

ou maximizar o fluxo total de chegada em São Paulo (*T*):

 $\max x_{CT} + x_{DT}$

As restrições do modelo estão especificadas a seguir:

1. Fluxo de entrada em T é igual ao fluxo de saída em O:

$$x_{CT} + x_{DT} - x_{OA} - x_{OB} = 0$$
 (nó s $O \ e \ T$)

2. Conservação dos fluxos de entrada e saída em cada nó de transbordo:

$$\begin{aligned} x_{OA} - x_{AC} - x_{AD} &= 0 \text{ (nó A)} \\ x_{OB} - x_{BC} - x_{BD} &= 0 \text{ (nó B)} \\ x_{AC} + x_{BC} - x_{CT} &= 0 \text{ (nó C)} \\ x_{AD} + x_{BD} - x_{DT} &= 0 \text{ (nó D)} \end{aligned}$$

3. Capacidade máxima em cada arco:

$$\begin{split} x_{OA} & \leq 50 \; (\text{arco } O, A) \\ x_{OB} & \leq 60 \; (\text{arco } O, B) \\ x_{AC} & \leq 40 \; (\text{arco } A, C) \\ x_{AD} & \leq 60 \; (\text{arco } A, D) \\ x_{BC} & \leq 80 \; (\text{arco } B, C) \\ x_{BD} & \leq 60 \; (\text{arco } B, D) \\ x_{CT} & \leq 50 \; (\text{arco } C, T) \\ x_{DT} & \leq 70 \; (\text{arco } D, T) \end{split}$$

4. Restrições de não negatividade:

$$x_{_{OA}}, x_{_{OB}}, x_{_{AC}}, x_{_{AD}}, x_{_{BC}}, x_{_{BD}}, x_{_{CT}}, x_{_{DT}} \ge 0$$

5.7.2 Solução do Problema do Fluxo Máximo pelo Solver do Excel

O Exemplo 5.12 da empresa Petroduto referente ao problema do fluxo máximo será resolvido nesta seção pelo Solver do Excel. A representação do problema em uma planilha do Excel está ilustrada na Figura 5.37 (ver arquivo Exemplo 5.12_Petroduto.xls).

Figura 5.37 Representação em Excel do problema do fluxo máximo (Exemplo 5.12).

A	A	В	С	D	E	F	G	Н	1	J	K	L	M
1													
2		Petroduto											
3													
4		De	Para	Fluxo		Capacidade		Nó	Fluxo_entrada	Fluxo_saída	Fluxo entrada - saída		Oferta_ou_demanda
5		0	Α	0	<=	50		0	100	0			
6		0	В	0	<=	60		Α	0	0	0	=	0
7		Α	С	0	<=	40		В	0	0	0	=	0
8		Α	D	0	<=	60		С	0	0	0	=	0
9		В	С	0	<=	80		D	0	0	0	=	0
10		В	D	0	<=	60		T	0				
11		C	Т	0	<=	50		/					
12		D	T	0	<=	70							
13													
14													
15						Fluxo_máximo							
16					Z	0							

As fórmulas utilizadas na Figura 5.37 estão especificadas no Quadro 5.9.