

FACULTY OF SCIENCE, TECHNOLOGY, ENGINEERING AND MATHEMATICS

SCHOOL OF ENGINEERING

Electronic and Electrical Engineering

Engineering MAI/MSc

Semester 2, 2022

EEP55C25 Algorithms for Quantum Computing

05/05/2022

RDS - MAIN HALL

09:30-11:30

Prof. B. Basu

Instructions to Candidates:

Answer any four (4) questions.

Start the answer to each question on a new page.

Use of calculator is permitted.

Q.1 [Total: 25 marks]

(a) Describe the effect of the CNOT gate with respect to the following bases:

$$B_1 = \left\{ |0\rangle\left(\frac{|0\rangle + |1\rangle}{2}\right), |0\rangle\left(\frac{|0\rangle - |1\rangle}{2}\right), |1\rangle\left(\frac{|0\rangle + |1\rangle}{2}\right), |1\rangle\left(\frac{|0\rangle - |1\rangle}{2}\right) \right\}$$

Express your answer using Dirac notation.

[3 marks]

- (b) Given any 1 qubit quantum gate denoted by U, a controlled U gate can be defined as a 2-qubit gate denoted by c-U which acts on the second qubit only if the first qubit is in state $|1\rangle$. Prove that c-U and c- $(e^{i\theta}$ U) are not equivalent for θ not equal to an integer multiple of 2π .
- (c) A photon is passed through two successive beam splitters along a straight line. Explain what happens with mathematical justification.

[7 marks]

(d) Find out the eigenvector of the X(NOT) gate with eigenvalue -1. Show that this gate is useful for phase kickback algorithm.

[7 marks]

Q.2 [Total: 25 marks]

- (a) Illustrate with a diagram how a state of a qubit can be represented on the surface of the Bloch sphere. Also show how a probabilistic bit can be represented.[7 marks]
- (b) Verify that Hadamard bases in a 2D Hilbert space form a set of orthonormal bases.[4 marks]
- (c) Consider the state $|\varphi\rangle=\left(\frac{|0\rangle+|1\rangle}{2}\right)$. Compute the quantum state $|\varphi\rangle|\varphi\rangle$. Is it a pure state? Why/Why not? **[6 marks]**
- (d) We have a blackbox U_f to compute an unknown function $f: \{0,1,2,...,N\} \rightarrow \{0,1\}$. Suppose there are t solutions to f(x) = 1, with 0 < t < N and t known. Show that amplitude amplification algorithm finds a solution with probability at least 1 O(t/N).

Aide memoir: After k iterations of applying $Q = U_{\psi}^{\perp}U_f$, the initial state becomes $Q^k \mid \psi \rangle = \cos((2k+1)\theta) \mid \psi_{bad} \rangle + \sin((2k+1)\theta) \mid \psi_{good} \rangle$. The notations have their usual meaning. [8 marks]

Q.3 [Total: 25 marks]

(a) Consider the following state in a 4-dimensional Hilbert space

$$H_A \otimes H_B$$
, $|\varphi\rangle = \frac{1+\sqrt{6}}{2\sqrt{6}} |00\rangle + \frac{1-\sqrt{6}}{2\sqrt{6}} |01\rangle + \frac{\sqrt{2}-\sqrt{3}}{2\sqrt{6}} |10\rangle + \frac{\sqrt{2}+\sqrt{3}}{2\sqrt{6}} |11\rangle$.

If one of the Schmidt bases is

$$\left\{\frac{1}{\sqrt{3}}\left|0\right\rangle + \frac{\sqrt{2}}{\sqrt{3}}\left|1\right\rangle, \frac{1}{\sqrt{2}}\left|0\right\rangle + \frac{1}{\sqrt{2}}\left|1\right\rangle\right\}$$
 with Schmidt coefficient ¼,

derive the other Schmidt basis and coefficient.

[14 marks]

(b) Derive the density matrix of the following state:

$$\left\{ \left(\frac{1}{\sqrt{2}}\left|0\right\rangle + \frac{1}{\sqrt{2}}\left|1\right\rangle, \frac{1}{2}\right), \left(\frac{1}{\sqrt{2}}\left|0\right\rangle - \frac{1}{\sqrt{2}}\left|1\right\rangle, \frac{1}{2}\right) \right\}.$$

[4 marks]

(c) Verify if the following state on the 4-dimensional space

$$|\varphi\rangle = \frac{1}{2} |00\rangle + \frac{1}{2} |01\rangle + \frac{1}{2} |10\rangle + \frac{1}{2} |11\rangle$$

is entangled.

[7 marks]

Q.4 [Total: 25 marks]

- (a) Explain with mathematical calculations how the phase $\omega=0.0x$ can be estimated. [8 marks]
- (b) What is a phase rotation gate? Express the gate R_4^{-1} in a matrix form. [6+2 = 8 marks]
- (c) Compute the probabilities of accessing the states in a 2 step quantum random walk starting from origin (0,0). Compare and contrast the result with a classical 2 step random walk. What happens if the walk starts from (0,1)? [9 marks]

Q.5 [Total: 25 marks]

- (a) What is the fundamental difference between quantum computing and classical computing? Explain the concept of superposition of a quantum state.

 [4 marks]
- (b) A pure state can be decomposed as

$$|\psi\rangle = \sum_{i} \alpha_{i} |\psi_{i}\rangle$$

where $|\psi_i\rangle$ form a set of orthonormal bases and $|\alpha_i|^2=p(i)$, with p(i) as the probability of occurrence of state ψ_i . Show that (i) $\alpha_i=\langle\psi_i|\psi\rangle$;

(ii) $p(i)=\langle \psi|P_i|\psi\rangle$, where P_i is an orthogonal projection operator such that $P_i\,P_j\,=\,0$ for $i\,\neq\,j$

and

 $(iii) \quad |\psi_i\rangle = \ \frac{P_i|\psi\rangle}{\sqrt{p(i)}} \ \mbox{(i.e., are equivalent states differing by a global phase)}.$

[15 marks]

(c) Implement a circuit for basis change from the computational basis to the Bell basis

$$\beta = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle.$$

[6 marks]