

Public Key Cryptography: Elliptic Curve Cryptography (ECC) - Part 1

Dr. Ashok Kumar Das

IEEE Senior Member

Associate Professor

Center for Security, Theory and Algorithmic Research International Institute of Information Technology, Hyderabad

E-mail: ashok.das@iiit.ac.in

URL: http://www.iiit.ac.in/people/faculty/ashokkdas
 https://sites.google.com/view/iitkgpakdas/

- ECC makes use of the elliptic curves (not ellipses) in which the variables and coefficients are all restricted to elements of a finite field.
- Two family of elliptic curves are used in ECC:
 - prime curves defined over Z_p , that is, GF(p), p being a prime.
 - ▶ binary curves constructed over $GF(2^n)$.

Elliptic curves over the reals

Definition

Let $a, b \in R$ be constants such that $4a^3 + 27b^2 \neq 0$. A non-singular elliptic curve is the set E of solutions $(x, y) \in R \times R$ to the equation

$$y^2 = x^3 + ax + b,$$

together with a special point $\ensuremath{\mathcal{O}}$ called the point at infinity (or zero point).

Elliptic curves over the reals

- It can shown that the condition $4a^3 + 27b^2 \neq 0$ is the necessary and sufficient to ensure that the equation $x^3 + ax + b = 0$ has three distinct roots (may be real or complex numbers) (by Carden Method).
- If $4a^3 + 27b^2 = 0$, the corresponding elliptic curve is called singular.
- If $P = (x_P, y_P)$ and $Q = (x_Q, y_Q)$, then $P + Q = \mathcal{O}$ implies that $x_Q = x_P$ and $y_Q = -y_P$.
- Also, $P + \mathcal{O} = \mathcal{O} + P = P$ for all $P \in E$.

Elliptic curves over modulo a prime GF(p)

Definition

Let p > 3 be a prime. The elliptic curve $y^2 = x^3 + ax + b$ over Z_p is the set $E_p(a,b)$ of solutions $(x,y) \in E_p(a,b)$ to the congruence

$$y^2 = x^3 + ax + b \pmod{p},$$

where $a, b \in Z_p$ are constants such that $4a^3 + 27b^2 \neq 0 \pmod{p}$, together with a special point \mathcal{O} called the point at infinity (or zero point).

Elliptic curves over modulo a prime GF(p)

Properties of Elliptic Curves

- An elliptic curve E_p(a, b) over Z_p (p prime, p > 3) will have roughly p points on it.
- More precisely, a well-known theorem due to Hasse asserts that the number of points on $E_p(a, b)$, which is denoted by #E, satisfies the following inequality:

$$p + 1 - 2\sqrt{p} \le \#E \le p + 1 + 2\sqrt{p}$$
.

• In addition, $E_p(a, b)$ forms an abelian or commutative group under addition modulo p operation.

References

- N. Koblitz. Elliptic Curve Cryptosystems. Mathematics of Computation, Vol. 48, pp. 203-209, 1987.
- V. Miller. Uses of elliptic curves in cryptography. Advances in Cryptology - CRYPTO'85, Lecture Notes in Computer Science (LNCS), Springer, Vol. 218, pp. 417-426, 1986.
- Douglas R. Stinson. Cryptography: Theory and Practice, Chapman & Hall/CRC, 2nd Edition, 2005.

Elliptic curves over modulo a prime GF(p)

Finding an inverse

- The inverse of a point $P = (x_P, y_P) \in E_p(a, b)$ is $-P = (x_P, -y_P)$, where -y is the additive inverse of y.
- For example, if p = 13, the inverse of (4,2) is $(4,-2) \pmod{13} = (4,11)$.

Elliptic curves over modulo a prime GF(p)

Finding all points on an elliptic curve

Algorithm: EllipticCurvePoints (p, a, b)

- 1: *x* ← 0
- 2: while x < p do
- 3: $w \leftarrow (x^3 + ax + b) \pmod{p}$
- 4: **if** w is a perfect square in Z_p) **then**
- 5: Output $(x, \sqrt{w}), (x, -\sqrt{w})$
- 6: end if
- 7: $x \leftarrow x + 1$
- 8: end while

Example of elliptic curve in case of $y^2 = x^3 + x + 1 \pmod{23}$.

Point addition on elliptic curve over finite field GF(p)

Doubling on elliptic curve over finite field GF(p)

Doubling a Point P on E

Point addition on elliptic curve over finite field GF(p)

If $P = (x_P, y_P)$ and $Q = (x_Q, y_Q)$ be two points on elliptic curve $y^2 = x^3 + ax + b \pmod{p}$, $R = (x_R, y_R) = P + Q$ is computed as follows:

$$x_R = (\lambda^2 - x_P - x_Q) (\bmod \, p),$$

$$y_R = (\lambda(x_P - x_R) - y_P) (\bmod \, p),$$
 where $\lambda = \left\{ \begin{array}{l} \frac{y_Q - y_P}{x_Q - x_P} \, (\bmod \, p), \text{if } P \neq -Q \, \, \text{[Point Addition]} \\ \frac{3x_P^2 + a}{2y_P} \, (\bmod \, p), \text{if } P = Q. \, \, \text{[Point Doubling]} \end{array} \right.$

Base point: Let G be the base point on $E_p(a, b)$ whose order be n, that is, $nG = G + G + \ldots + G(n \text{ times}) = \mathcal{O}$.

Scalar multiplication on elliptic curve over finite field GF(p)

If $P = (x_P, y_P)$ be a point on elliptic curve $y^2 = x^3 + ax + b \pmod{p}$, then 5P is computed as 5P = P + P + P + P + P. Think about optimization method?

Reference: N Tiwari, S Padhye. Provable Secure Multi-Proxy Signature Scheme without Bilinear Maps. International Journal of Network Security, Vol. 17, No. 1, pp. 288-293, 2015.

Problem: Consider two points P = (11,3) and Q = (9,7) in the elliptic curve $E_{23}(1,1)$. Compute P + Q and 2P.

In order to compute $R = P + Q = (x_R, y_R)$, we first compute λ as

$$\lambda = \frac{7-3}{9-11} \pmod{23}$$

= -2 (mod 23)
= 21. (1)

Thus, x_R and y_R are derived as

$$x_R = (21^2 - 11 - 9) \pmod{23} = 7,$$

 $y_R = (21(11 - 7) - 3) \pmod{23} = 12.$

As a result, P + Q = (7, 12).

Problem: Consider two points P = (11,3) and Q = (9,7) in the elliptic curve $E_{23}(1,1)$. Compute P + Q and 2P.

In order to compute $R = 2P = (x_R, y_R)$, we must first derive λ as follows:

$$\lambda = \frac{3(11^2) + 1}{2 \times 3} \pmod{23} = 7.$$

Hence, $R = P + P = (x_R, y_R)$ is computed as

$$x_R = (7^2 - 11 - 11) \pmod{23} = 4,$$

 $y_R = (7(11 - 4) - 3) \pmod{23} = 0,$

and, thus 2P = (4, 0).

Elliptic Curve Computational Problems

Elliptic Curve Discrete Logarithm Problem (ECDLP)

- Let $E_p(a, b)$ be an elliptic curve modulo a prime p.
- Given two points $P \in E_p(a, b)$ and $Q = kP \in E_p(a, b)$, for some positive integer k, where Q = kP represent the point P on elliptic curve $E_p(a, b)$ be added to itself k times.
- Then the elliptic curve discrete logarithm problem (ECDLP) is to determine *k* given *P* and *Q*.
- It is computationally easy to calculate Q given k and P, but it is computationally infeasible to determine k given Q and P, when the prime p is large.

Elliptic Curve Discrete Logarithm Problem (ECDLP)

Definition

Let $E_p(a,b)$ be an elliptic curve modulo a prime p, and $P \in E_p(a,b)$ and $Q = kP \in E_p(a,b)$ be two points, where $k \in_R Z_p^* = \{1,2,\cdots,p-1\}$ (We use the notation $a \in_R B$ to denote that a is randomly chosen from the set B).

Instance: (P, Q, m) for some $k, m \in_R Z_p^*$.

Output: **Yes**, if Q = mP, i.e., k = m, and **No**, otherwise.

Consider the following two probability distributions:

$$D_{real} = \{k \in_R Z_p, U = P, V = Q(=kP), W = k : (U, V, W)\}, \text{ and } D_{rand} = \{k, m \in_R Z_p, U = P, V = Q(=kP), W = m : (U, V, W)\}.$$

Elliptic Curve Discrete Logarithm Problem (ECDLP)

Definition

The advantage of any probabilistic polynomial-time (PPT), 0/1-valued distinguisher \mathcal{D} in solving *ECDLP* on $E_p(a,b)$ is defined as

$$Adv_{\mathcal{D}, \mathcal{E}_{p}(a,b)}^{ECDLP} = |Pr[(U, V, W) \leftarrow D_{real} : \mathcal{D}(U, V, W) = 1] -Pr[(U, V, W) \leftarrow D_{rand} : \mathcal{D}(U, V, W) = 1]|,$$

where the probability $Pr[\cdot]$ is taken over the random choices of k and m. \mathcal{D} is called an (t, ϵ) -ECDLP distinguisher for $E_p(a, b)$ if \mathcal{D} runs at most in time t with $Adv_{\mathcal{D}, E_p(a,b)}^{ECDLP}(t) \geq \epsilon$.

ECDLP assumption: There exists no (t, ϵ) -ECDLP distinguisher for $E_p(a, b)$. Thus, for every \mathcal{D} , $Adv_{\mathcal{D}, E_p(a, b)}^{ECDLP}(t) \leq \epsilon$, with atmost time t.

Elliptic Curve Discrete Logarithm Problem (ECDLP)

In other words, ECDLP can be also formally defined as follows. For any PPT algorithm, say A (in the security parameter I), $Pr[A(P,Q)=k]<\epsilon(I)$, where $\epsilon(I)$ is a negligible function depending on I.

References:

- Vanga Odelu, Ashok Kumar Das, and Adrijit Goswami. "A secure effective key management scheme for dynamic access control in a large leaf class hierarchy," in *Information Sciences (Elsevier)*, Vol. 269, No. C, pp. 270-285, 2014. (2019 SCI Impact Factor: 5.910) [This article has been downloaded or viewed 484 times since publication during the period October 2013 to September 2014]
- Ashok Kumar Das, Nayan Ranjan Paul, and Laxminath Tripathy.
 "Cryptanalysis and improvement of an access control in user hierarchy based on elliptic curve cryptosystem," in *Information Sciences* (*Elsevier*), Vol. 209, No. C, pp. 80 92, 2012. (2019 SCI Impact Factor: 5.910)

Definition (Elliptic curve computational Diffie-Hellman problem (ECCDHP))

Let $P \in E_p(a,b)$ be a point in $E_p(a,b)$. The ECCDHP states that given the points $k_1.P \in E_p(a,b)$ and $k_2.P \in E_p(a,b)$ where $k_1,k_2 \in Z_p^*$, it is computationally infeasible to compute $k_1k_2.P$, where $Z_p^* = \{1,2,\cdots,p-1\}$.

Definition (Elliptic curve decisional Diffie-Hellman problem (ECDDHP))

Let $P \in E_p(a, b)$ be a point in $E_p(a, b)$. The ECDDHP states that given a quadruple $(P, k_1.P, k_2.P, k_3.P)$, decide whether $k_3 = k_1k_2$ or a uniform value, where $k_1, k_2, k_3 \in Z_p^*$.

The ECDLP, ECCDHP and ECDDHP are computationally infeasible when p is large. To make ECDLP, ECCDHP and ECDDHP intractable, p should be chosen at least 160-bit prime.

Elliptic Curves over $GF(2^m)$

• In this the elliptic curve is of the form:

$$y^2 + xy = x^3 + ax^2 + b,$$

whose coefficients are in $GF(2^m)$ and the addition is modulo 2 (\oplus) and multiplication is AND operation.

- The rules for addition can be stated as follows. For all points $P, Q \in E_{2^m}(a, b)$:
 - P + O = O + P = P, where O is the point at infinity (or zero point).
 - If $P = (x_P, y_P)$, then $P + (x_P, x_P + y_P) = \mathcal{O}$. Then $-P = (x_P, x_P + y_P)$.

Elliptic Curves over $GF(2^m)$

• If $P = (x_P, y_P)$ and $Q = (x_Q, y_Q)$ with $P \neq -Q$ and $P \neq Q$, then $R = P + Q = (x_R, y_R)$ is defined by the following rules:

$$x_R = \lambda^2 + \lambda + x_P + x_Q + a,$$

$$y_R = \lambda(x_P + x_R) + x_R + y_P,$$

$$\lambda = \frac{y_Q + y_P}{x_Q + x_P} \pmod{2}.$$

• If $P = (x_P, y_P)$, then $R = P + P = (x_R, y_R)$ is defined by the following rules:

$$x_R = \lambda^2 + \lambda + a,$$

$$y_R = x_P^2 + (\lambda + 1)x_R,$$

$$\lambda = x_P + \frac{y_P}{x_P} \pmod{2}.$$