5.2 电流源电路及其应用

5.2
$$I_{R1} = I_{D1} = \frac{1}{2} \mu_{\rm n} C_{\rm ox} \left(\frac{W}{L} \right)_{\rm l} (V_{GS1} - V_t)^2 = 1.5 \times 10^{-4} \times (V_{GS1} - 2)^2$$

$$I_{D1} = \frac{V_{DD} - V_{GS1}}{R_1} = \frac{5 - V_{GS1}}{20k}$$

带入求解得到 $V_{GS1} = 2.85V (V_{GS1} = 0.82V$ 舍去),

$$I_{D1} = 0.11 mA$$

$$I_{D2} = I_{D1} \frac{(W/L)_2}{(W/L)_1} = 0.022 mA$$

5.3
$$I_{REF} = I_{D1} = \frac{1}{2} k_n \left(\frac{W}{L} \right)_1 (V_{GS1} - V_t)^2 = 1.25 \times 10^{-3} \times (V_{GS1} - 0.5)^2 = 50 \mu A$$

所以
$$V_{GS1} = 0.6V(V_{GS1} = 0.4V$$
舍去)

$$I_{REF} = \frac{V_{DD} - V_{GS1}}{R} \Longrightarrow R = \frac{1.8 - 0.6}{50 \,\mu A} = 24k\Omega$$

$$V_o = V_{D2}, V_{GS2} = V_{GS1}$$

由于 VT2 工作在饱和区,所以

$$V_{DS2} = V_{D2} > V_{GS2} - V_t = V_{GS1} - V_t = 0.1V$$

5.4、电流源电路如图所示,设两个三极管完全匹配, V_{BE} = 0.7V, β 足够大, $V_{A=}35$ V,

 $R_{\rm l}=14.3{
m k}\Omega$ 。试求 I_o 和 r_o 的值。

$$I_{REF} = \frac{15 - 0.7}{14.3k} = 1 \text{mA}$$
 , $I_o = I_{REF} = 1 \text{mA}$, $r_o = \frac{V_A}{I_o} = 35 \text{k}\Omega$

5.5、电路如图题所示,两管参数相同, $eta\!=\!100$, $V_{\mathrm{BE}}=0.7\mathrm{V}$,求输出电流 I_{o} 。

解:
$$I_{REF} = \frac{V_{CC} - V_{BE}}{R} = 0.83 \text{mA}$$
 , $I_{REF} = I_{C1} + I_{B1} + I_{B2} = I_{C1}(1 + \frac{2}{\beta})$

$$\therefore I_O = I_{C1} = \frac{I_{REF}}{1 + \frac{2}{\beta}} = 0.814 \text{mA}$$

5.6、一电流源电路如图所示,设 $\mathrm{VT_1}$, $\mathrm{VT_2}$ 管参数相同, β =100, V_{BE} = -0.6V, $V_{CE(sat)}$ = -0.3V。

若要使 I_o =1mA, V_{C2} \leq 0V,且 R_I = R_2 ,试确定电阻 R_I 、 R_2 的最大允许值。

$$:V_{EC2} \ge 0.3 \text{V}, \quad \text{$\mathbb{Z}: V_{C2} \le 0: V_{E2} - V_{C2} \ge 0.3$}, \quad V_{E2} \ge V_{C2} + 0.3: V_{E2 \text{min}} = 0.3 \text{V}$$

$$\because I_o = \frac{15 - V_{E2}}{R_2} \ , \quad \therefore R_{2 \max} = \frac{15 - V_{E2 \min}}{I_o} = 14.7 \text{k}\Omega \ , \ R_1 和 R_2 \ \text{的最大允许值为} \ 14.7 \text{k}\Omega \ \text{o}$$

5.7、如图所示,假设所有 BJT 均匹配,且 β 都很大,求图中标识的四个电流大小。

$$I_{REF} = \frac{5 - 0.7 - 0.7 - (-5)}{8.6k} = 1 \text{mA} , I_1 = 1 \text{mA} , I_2 = 3 \text{mA} , I_3 = 2 \text{mA} ,$$

5.8、如图所示,已知 $(W/L)_1 = (W/L)_2 = 0.5(W/L)_3$, $(W/L)_4 = 0.25(W/L)_5$,假设所有晶体管其他参数均匹配,且都工作在饱和区,求电路中的 I_2 和 I_5 的大小。

解:
$$I_2 = \frac{(W/L)_2}{(W/L)_1} I_{REF} = 10$$
μA , $I_3 = \frac{(W/L)_3}{(W/L)_1} I_{REF} = 20$ μA , $I_4 = I_3 = 20$ μA ,

$$I_5 = \frac{(W/L)_5}{(W/L)_4} I_4 = 80 \mu A$$

5.9、如图所示, $I_5=2$ mA , $V_{CC}=-V_{EE}=10$ V , $|V_{BE}|=0.7$ V , β 足够大。若各管其他参数匹配,结面积关系为 $A_{E1}:A_{E3}:A_{E5}=1:2:2$, $A_{E2}:A_{E4}=2:1$,则求 R 值及图中所标的其他电流值。

解:由于结面积关系为 A_{E1} : A_{E3} : A_{E5} = 1 : 2 : 2 ,故 I_3 = $\frac{A_{E3}}{A_{E5}}I_5$ = 2 mA ,

$$I_R = \frac{A_{E1}}{A_{E5}} I_5 = 1 \text{mA}$$
 $\circ :: I_R = \frac{10 - 0.7 - 0.7 - (-10)}{R} = 1 \text{mA}$ $:: R = 18.6 \text{k}\Omega$

$$A_{E2}: A_{E4} = 2:1$$
, $I_4 = \frac{A_{E4}}{A_{E2}}I_R = 0.5 \text{mA}$

5.3 差分放大单元电路

- 5.10、如图题所示电路,已知W/L=50 , $\mu_{\rm n}C_{
 m ox}=250\mu{\rm A/V}^2$, $V_{
 m A}=10{
 m V}$,恒流源 I 的输出电阻为 $400{
 m k}\Omega$, $R_{
 m L}=8{
 m k}\Omega$,求:
- (1) 差分输出时的差模增益 A_{α} ;
- (2) 如果 $R_{\scriptscriptstyle L}$ 接在 $VT_{\scriptscriptstyle L}$ 的漏极与地之间,求共模抑制比 CMRR。

解:直流分析: $I_{D1} = I_{D2} = I/2 = 0.25 \text{mA}$

小信号参数: $g_m = g_{m1} = g_{m2} = \sqrt{2\mu_n C_{ox}(W/L)I_{D1}} = 2.5 \text{mA/V}$,

$$r_o=r_{o1}=r_{o2}=\frac{V_A}{I_{D1}}=40\mathrm{k}\Omega\, \circ$$

- (1) 差分输出时的差模增益: $A_d = g_m (r_o //R_D //\frac{R_L}{2}) = 4.762 \text{V/V}$
- (2)单端输出时的差模增益为: $A_{d1} = -\frac{1}{2} g_m (r_o //R_D //R_L) = -3.125 \text{V/V}$

共模增益为: $A_{vcm1} = -\frac{R_D //R_L}{2R_{SS}} = -0.0033 \text{V/V}$

共模抑制比为: $CMRR = \frac{A_{d1}}{A_{min}} = 937.5$

5.11

5.12~解:(1)对于 $\mathrm{VT_1}~\mathrm{VT_2}$ 组成的差分放大器的增益为 $10\mathrm{V/V}$,则

$$|A_{vd}| = g_m R_D = 10V / V \Longrightarrow g_{m1} = g_{m2} = 1ms$$

对于
$$VT_1 VT_2$$
 ,有 $I_{D1} = I_{D2} = \frac{1}{2}I_{SS} = 0.2$ mA

则有

$$g_{m1} = \frac{2I_{D1}}{V_{OV1}} = \frac{2I_{D1}}{V_{GS1} - V_t} = 1ms \Rightarrow V_{GS1} - V_t = 0.4V$$

$$\triangleq I_{D1} = \frac{1}{2} k_n \left(\frac{W}{L} \right)_1 (V_{GS1} - V_t)^2 \Rightarrow \left(\frac{W}{L} \right)_1 = \left(\frac{W}{L} \right)_2 = 25$$

$$\left(\frac{W}{L}\right)_3 = \left(\frac{W}{L}\right)_4 = 50$$

(2) 对于 $\mathrm{VT_3}$ 有 $I_{R}=I_{D3}=I_{SS}=0.4$ mA

$$R = \frac{V_{DD} - V_{GS3} - (-V_{SS})}{I_{D3}} = 15k\Omega$$

- 5.13、电路如图所示,NMOS 差分对由 $I_{SS}=0.2$ mA 的电流源提供偏置,电流源的输出电阻 $R_{SS}=100 {\rm k}\Omega~{\rm o}~{\rm i}~{\rm i}~$
- (1)求直流工作点电压 $V_{\scriptscriptstyle D}$ 和 $V_{\scriptscriptstyle S}$ 。(2)如果是单端输出,求 $\left|A_{\scriptscriptstyle d}
 ight|$, $\left|A_{\scriptscriptstyle cm}
 ight|$ 和 CMRR。

解:(1),
$$I_D = I_{D1} = I_{D2} = \frac{1}{2}I_{SS} = 0.1$$
mA , $V_D = V_{DD} - I_D R_D = 1.5$ V

$$I_{D1} = \frac{1}{2} k_n \frac{W}{L} (V_{GS1} - V_t)^2$$
, $V_{GS} = 1.058 \text{V} \text{ BV}_{GS} = 0.542 \text{ V} (\text{ Ξ} \text{ Z})$, $\because V_G = 0, \because V_S = -1.058 \text{V}$

(2),
$$g_m = \frac{2I_D}{V_{OV}} = 0.775$$
nW , $|A_d| = \frac{1}{2} g_m R_D = 3.875$ V/V

$$|A_{cm}| = \frac{R_D}{2R_{SS}} = 0.05 \text{V/V}$$
, $CMRR = \frac{|A_d|}{|A_{cm}|} = 77.5$

- 5.14、如图题所示,设三极管参数 $\beta\!\!=\!100$, V_{BE} = $0.7\mathrm{V}$,求:
- (1)静态工作点;
- (2) 差模电压增益 A_d;
- (3) 当 v_i 为一直流电压 $16 \mathrm{mV}$ 时,计算输入端信号的差模分量与共模分量。

解:(1) 直流分析:假设所有 BJT 都工作在放大区

$$I_{E3} = \frac{V_Z - V_{BE}}{4.7k} = 0.978 \text{mA}$$
, $\therefore I_C = I_{C1} = I_{C2} = I_{C3} / 2 = \alpha I_{E3} / 2 = 0.485 \text{mA}$

$$V_{E1} = V_{E2} = V_{C3} = -0.7 \text{V}$$
 , $V_{C1} = V_{C2} = V_{CC} - I_C R_C = 9.5265 \text{V}$

$$V_{E3} = V_{EE} + V_Z - V_{BE} = -7.4 \mathrm{V}$$
,显然三个 BJT 都工作在放大区

(2)小信号参数:
$$g_m = I_C/V_T = 19.4 \text{mA/V}$$

差模电压增益 $A_d = -g_m R_C = -98.94 \text{V/V}$

(3)
$$v_{i1} = 16 \text{mV}, v_{i2} = 0 : v_{id} = 16 \text{mV}, v_{icm} = 8 \text{mV}$$

- 5.15、差动放大电路如图所示,设两管的特性相同, β =100, $V_{BE\;(ON\;)}$ =0.7V, r_{ce} 可忽略,求:
- (1) 差模电压放大倍数 $A_{vd}=vo/vi$;
- (2) 差模输入电阻 R_{id} 和差模输出电阻 R_{od} 。
- (3) T_1 管单端输出时的差模电压放大倍数 A_{vd1} 。
- (4)求单端输出时的共模抑制比 CMRR。

解:(1),
$$I_{EE} = \frac{0 - 0.7 - (-6)}{5.3 \text{k}} = 1 \text{mA}$$
, $I_{C1} = I_{C2} = \frac{1}{2} I_{EE} = 0.5 \text{mA}$

$$g_m = \frac{I_{C1}}{V_T} = 20 \text{mA/V}$$
, $A_{vd} = -g_m R_{C1} = -102 \text{V/V}$

(2),
$$r_{\pi} = \frac{\beta}{g_m} = 5k\Omega$$
, $R_{id} = 2r_{\pi} = 10k\Omega$, $R_{od} = 2R_C = 10.2k\Omega$.

(3),
$$A_{vd1} = \frac{1}{2}A_{vd} = -51$$
V

(4),
$$CMRR = g_m R_{EE} = 106$$
V

5.16 解:(1)由于静态时V_a=5V

所以
$$I_{C2} = \frac{V_{CC} - V_o}{R_{c2}} = 0.2 mA$$
 ,而β足够大 ,则 $I_{E2} \approx 0.2 {
m mA}$

$$I_{\text{Re2}} = 0.4 \text{mA} \Rightarrow \text{Re} = \frac{0 - 0.7 - (-V_{EE})}{I_{\text{Re2}}} = 23.25 k\Omega$$

(2)小信号参数
$$g_m = \frac{I_{C2}}{V_T} = 8\text{mA/V}$$

$$A_{vd} = -g_m R_{C2} = -80 \text{V/V}$$

$$(3) A_{cm} = 0$$

5.4 组合放大单元电路——中间放大级设计

假设 T1 管工作在放大区: $I_{B1}=\frac{24-0.7}{240k}=97\mu\mathrm{A}$, $I_{C1}=\beta_1I_{B1}=4.365\mathrm{mA}$,忽略 T2 管 的基极电流, $V_{CE1}=24-4.365m\times3.9k=6.9765\mathrm{V}>0.3\mathrm{V}$,故 T1 管工作在放大区。: D_Z 反向击穿 ,: $V_{C1}=V_{B2}=0.7+4=4.7\mathrm{V}$, $V_{CE1}=V_{C1}=4.7\mathrm{V}$ 。 $I_{RC1}=\frac{24-4.7}{3.9k}=4.95\mathrm{mA}$, $I_{B2}=I_{RC1}-I_{C1}=4.95\mathrm{m}-4.365\mathrm{m}=0.585\mathrm{mA}$, $I_{C2}=\beta_2I_{B2}=23.4\mathrm{mA}$,

$$V_{CE2} = 24 - 23.4 \text{m} \times 500 - 4 = 8.3 \text{V}$$

5.18、两级阻容耦合放大电路如图所示,设旁路电容和耦合电容的容抗可忽略不计。

求:1)画出整个电路在中频段的小信号模型电路;

- 2)第一级放大电路的电压增益 Avi 的表达式:
- 3)放大电路总的电压放大倍数 A_V 的表达式。

(1),

(2),
$$A_{v1} = \frac{v_{o1}}{v_i} = \frac{g_m v_{gs}(R_s /\!\!/ R_{i2})}{v_{gs} + g_m v_{gs}(R_s /\!\!/ R_{i2})} = \frac{g_m(R_s /\!\!/ R_{i2})}{1 + g_m(R_s /\!\!/ R_{i2})}$$
,其中: $R_{i2} = R_{B1} /\!\!/ R_{B2} /\!\!/ r_{\pi}$

(3),
$$A_{v2} = \frac{v_o}{v_{o1}} = -g_{m2}(R_C/\!/R_L)$$
, $A_v = A_{v1}A_{v2}$

5.19

5.20 解 (1) Casecode 电路

(2) 直流偏置,保证 VT1 和 VT2 工作在放大区或饱和区

(3)均增大

5.5 有源负载放大器

- 5.22、某集成运放的单元电路如图所示,设 V_{cc} 、R、晶体管的 β 、 $V_{BE(on)}$ 和 V_A 均为已知, VT1、VT2 管特性相同,
- 1) 写出 I_R 和 I_{c2} 的表达式;
- 2) 写出 VT2 管集电极的输出电阻的表达式。

解:(1),
$$I_{C2}=I_R=rac{V_{CC}-V_{BE(on)}}{R}$$
,(2), $r_{o2}=r_{o1}=rac{V_A}{I_{C2}}$,

$$R_{o2} = r_{o1} / / r_{o2} = \frac{V_A}{2} \frac{R}{V_{CC} - V_{BE(on)}}$$

5.23、如图题所示,已知各晶体管 $\left|V_{\rm BE}\right|=0.7{\rm V}$, $\left|V_{\rm Al}\right|=\left|V_{\rm A2}\right|=50{\rm V}$, $\beta_{\rm l}=50$, $\beta_{\rm 2}$ 和 $\beta_{\rm 3}$ 很大 ,

求 : (1) 假设 VT_2 的集电结面积和 VT_3 相等,求 I 的值 ; (2) A_{v} 、 R_{i} 和 R_{o} 的值。

解:(1)、VT2 和 VT3 构成一对电流源,为 VT1 提供直流偏置,并作为 VT1 的有源负载

$$I = \frac{3 - V_{BE}}{2.3} = 1 \text{mA}$$

(2)
$$r_{\pi 1} = \beta_1 \frac{V_T}{I} = 1.25 \text{k}\Omega$$
, $g_{m1} = \frac{I_C}{V_T} = 40 \text{mA/V}$, $r_{o1} = r_{o2} = \frac{|V_A|}{I} = 50 \text{k}\Omega$

$$A_v = -g_{m1}(r_{o1}/r_{o2}) = -1000 \text{V/V}$$
, $R_i = r_{\pi 1} = 1.25 \text{k}\Omega$, $R_o = r_{o1}/r_{o2} = 25 \text{k}\Omega$

5.24、如图题所示,已知 $V_{\rm tn}=\mid V_{\rm tp}\mid =0.6{
m V}$, $\mu_{\rm n}C_{\rm ox}=200\mu{\rm A/V}^2$, $\mu_{\rm p}C_{\rm ox}=65\mu{\rm A/V}^2$, $V_{\rm An}=20{
m V}$,,

 $|V_{\rm Ap}|$ =10V , $I_{\rm REF}$ = 200μA 。对于 VT₁、VT₂有 L = 0.4μm ,W = 4μm ,对于 VT₃有 L = 0.4μm ,

 $W = 8 \mu \text{m}$ 。 求 A_{y} 、 R_{i} 和 R_{o} 。

解: VT2 和 VT3 组成恒流源电路,作为放大管 VT1 的有源负载,则

$$I_{D1} = I_{D2} = \frac{(W/L)_2}{(W/L)_3} I_{REF} = 100 \mu A , g_{m1} = \sqrt{2\mu_n C_{ox} (W/L)_1 I_{D1}} = 0.632 \text{mA/V}$$

$$r_{o1} = \frac{V_{An}}{I_{D1}} = 200 \text{k}\Omega$$
 , $r_{o2} = \frac{|V_{Ap}|}{I_{D2}} = 100 \text{k}\Omega$

$$A_{v} = -g_{m1}(r_{o1}//r_{o2}) = -42.164 \text{V/V}$$
 , $R_{i} = \infty$, $R_{o} = r_{o1}//r_{o2} = 66.667 \text{k}\Omega$

5.25、(设计题)如图所示电路,假设 VT2 管发射结的面积是 VT3 管的 5 倍,各晶体管的 $\left|V_{BE}\right|=0.7\mathrm{V}~,~eta_2~,~eta_3$ 均很大。(1),设计 R 值,使参考电流 $I_{REF}=0.1\mathrm{mA}$ 。(2),若放大器的输出电阻 $R_o=50\mathrm{k}\Omega$,求 A_v 。

解:(1),
$$I_{REF} = \frac{3-0.7}{R} = 0.1 \text{mA}$$
, $R = 23 \text{k}\Omega$

(2), :
$$\frac{I}{I_{REF}} = 5$$
, : $I = 0.5 \text{mA}$, $g_{m1} = I/V_T = 20 \text{mA/V}$

$$A_{v} = -g_{m1}R_{o} = -1000\text{V/V}$$

5.26

解:
$$I_{D1} = I_{D2} = I_{D3} = I_{D4} = \frac{1}{2}I$$

$$I_{D2} = \frac{1}{2}k_n \frac{W}{L}V_{OV2}^2 \Rightarrow V_{OV2}^2 = \frac{I}{k_n \frac{W}{L}} = \frac{I}{3.2}$$

$$\frac{v_o}{v_{id}} = \frac{1}{2} g_m r_o = 80$$
 , $g_m = \frac{2I_D}{V_{OV}} = \frac{I}{V_{OV}}$, $r_o = \frac{V_A}{I_D} = \frac{2V_A}{I}$

$$\text{MI} \frac{I}{V_{OV}} \times \frac{2V_{A}}{I} = 160 = \frac{40}{V_{OV}} \Longrightarrow {V_{OV}}^{2} = \frac{1}{16}V^{2}$$

则
$$I=3.2\times\frac{1}{16}=0.2mA$$

5.27

5.6 单级集成放大器的频率响应

- 5.30、BJT 的有源负载共射放大电路如图所示,已知各晶体管 $|V_{BE}|$ =0.7V, $|V_{AI}|$ = $|V_{A2}|$ =50V, β_I =50, β_2 和 β_3 都很大, C_p =10 pF , C_μ =0.5 pF 。
- (1) 求共射放大器的输出电阻 R_o ;
- (2) 求共射放大器的电压增益 v_o/v_i ;
- (3) 不考虑 VT2 输出电容的影响,求 f_{H} 的值(利用米勒等效)。

解:(1),
$$I = I_3 = \frac{5 - 0.7}{4.3 \text{k}} = 1 \text{mA}$$
, $r_{o1} = r_{o2} = \frac{|V_A|}{I} = 50 \text{k}\Omega$, $R_o = r_{o1} // r_{o2} = 25 \text{k}\Omega$

(2),
$$g_{m1} = \frac{I}{V_T} = 40 \text{nW}$$
 , $A_v = \frac{V_o}{V_i} = -g_{m1} R_o = -1000 \text{V/V}$

(3),
$$C_{eq} = (1 + g_{m1}R_o)C_{\mu} = 500.5 \text{pF}$$
, $C_{in} = C_{eq} + C_{\pi} = 510.5 \text{pF}$

$$r_{\pi 1} = \frac{\beta_1}{g_{m1}} = 1.25 \text{k}\Omega$$
, $f_H = \frac{1}{2\pi C_{in}r_{\pi}} = 250 \text{kHz}$

$$5.31$$
、如图所示,已知 $V_m=|V_{pp}|=0.6{
m V}$, $\mu_n C_{ox}=200{
m \mu A/V}^2$, $\mu_p C_{ox}=65{
m \mu A/V}^2$,
$$V_{An}=\left|V_{Ap}\right|=10{
m V}$$
 , $I_{REF}=100{
m \mu A}$, $R_{sig}=5{
m k}\Omega$ 。所有晶体管的 $L=0.4{
m \mu m}$, $W=0.8{
m \mu m}$

 ${
m VT_1}$ 的 $C_{gs}=0.02{
m pF}$, $C_{gd}=0.005{
m pF}$ 。试求:1)中频增益 A_{M} ;2)电流源 ${
m VT2}$ 的输出电阻;

3)不考虑 VT2 输出电容的影响,求 $f_{\scriptscriptstyle H}$ 的值(利用米勒等效)。

解:(1)、 $:I_1 = I_2 = I_3 = I_{REF} = 100$ μA , $:g_{m1} = I_1/V_T = 4$ mA/V , $r_{o1} = r_{o2} = |V_A|/I_{REF} = 100$ kΩ , $A_M = -g_{m1}(r_{o1}//r_{o2}) = -200$ V/V

(2)、 电流源的输出电阻为: $r_{\!\scriptscriptstyle o2}$ = $100\mathrm{k}\Omega$

(3),
$$C_{in} = [1 + g_{m1}(r_{o1} // r_{o2})]C_{gd} + C_{gs} = 1.025 \text{pF}$$

$$f_H = \frac{1}{2\pi R_{sig}C_{in}} = 31 \text{MHz}$$