Introduction to NumPy: Takeaways 🖻

by Dataquest Labs, Inc. - All rights reserved $\ensuremath{\text{@}}$ 2020

Syntax

SELECTING ROWS, COLUMNS, AND ITEMS FROM AN NDARRAY

• Convert a list of lists into a ndarray:

```
import numpy as np

f = open("nyc_taxis.csv", "r")

taxi_list = list(csv.reader(f))

taxi = np.array(converted_taxi_list)
```

• Selecting a row from an ndarray:

```
second_row = taxi[1]
```

• Selecting multiple rows from an ndarray:

```
all_but_first_row = taxi[1:]
```

• Selecting a specific item from an ndarray:

```
fifth_row_second_column = taxi[4,1]
```

SLICING VALUES FROM AN NDARRAY

• Selecting a single column:

```
second_column = taxi[:,1]
```

• Selecting multiple columns:

```
second_third_columns = taxi[:,1:3]
cols = [1,3,5]
second_fourth_sixth_columns = taxi[:, cols]
```

• Selecting a 2D slice:

```
twod_slice = taxi[1:4, :3]
```

VECTOR MATH

- vector_a+vector_b: Addition
- vector_a vector_b: Subtraction
- **vector_a* vector_b**: Multiplication (this is unrelated to the vector multiplication used in linear algebra).
- vector a/ vector b: Division

CALCULATING STATISTICS FOR 1D NDARRAYS

- **ndarray.min()**to calculate the minimum value
- **ndarray.max()**to calculate the maximum value
- **ndarray.mean(t**o calculate the mean average value
- **ndarray.sum()**to calculate the sum of the values

CALCULATING STATISTICS FOR 2D NDARRAYS

• Max value for an entire 2D Ndarray:

```
taxi.max()
```

• Max value for each row in a 2D Ndarray (returns a 1D Ndarray):

```
taxi.max(axis=1)
```

• Max value for each column in a 2D Ndarray (returns a 1D Ndarray):

```
taxi.max(axis=0)
```

Concepts

Python is considered a high-level language because we don't have to manually allocate
memory or specify how the CPU performs certain operations. A low-level language like C
gives us this control and lets us improve specific code performance, but a tradeoff in
programmer productivity is made. The NumPy library lets us write code in Python but take
advantage of the performance that C offers. One way NumPy makes our code run quickly is
vectorization, which takes advantage of Single Instruction Multiple Data (SIMD) to
process data more quickly.

• A list in NumPy is called a 1D Ndarray and a list of lists is called a 2D Ndarray. NumPy ndarrays use indices along both rows and columns and is the primary way we select and slice values.

Resources

- Arithmetic functions from the NumPy documentation.
- NumPy ndarray documentation

Takeaways by Dataquest Labs, Inc. - All rights reserved $\ \odot$ 2020