Computer Security Assignment

Group Member

1142701102 Wong Zi Xiang

1142701565 Andy Yong Jun Jie

1142701239 Lee Boon Ping

1141328079 Fang Siaw Tung

Background Study

- ◆ Caesar Cipher
- ♦ Vigenere Cipher
- Advanced Encryption Standard (AES)

Caesar Cipher

- One of the earliest known example of substitution cipher
- Used by Julius Caesar
- ◆ Each character of a plaintext message is replaced by a character n position down in the alphebet

Vigenere Cipher

- Effectively multiple Caesar ciphers
- ♦ Key is multiple letter long K = k1 k2 ...kd
- Use each alphabet in turn
- Repeat from start after d letter in message
- Decryption simply works in reverse

Advanced Encryption Standard (AES)

- ♦ Is a symmetric-key block cipher
- Published by the (NIST) in December 2001
- Rijndeal was selected as the AED in OCT-2000
- Variable bit block cipher and user variable key

length of 128, 192, 256 bits

Implementation Details

- Caesar Cipher
- ♦ Vigenère Cipher
- Advanced Encryption Standard with Cipher

Feedback

Caesar Cipher

Comparison of results (Caeser Cipher and Vigenere Cipher)

$$E(x) = (x + n) \mod 26$$

 $D(x) = (x - n) \mod 26$

Α	В	С	D	E	F	G	Н	Ι	J	K	L	М
1	\uparrow	\uparrow	1	\uparrow	1	1	1	1	\uparrow	\uparrow	1	1
Ò												
N	0	Р	Q	R	S	Т	U	V	W	Х	Y	Z
N ↓			-									

Caesar Cipher

Plaintext: $h \rightarrow 07$	Encryption: (07 + 15) mod 26	Ciphertext: $22 \rightarrow W$
Plaintext: $e \rightarrow 04$	Encryption: (04 + 15) mod 26	Ciphertext: $19 \rightarrow T$
Plaintext: $1 \rightarrow 11$	Encryption: (11 + 15) mod 26	Ciphertext: $00 \rightarrow A$
Plaintext: $1 \rightarrow 11$	Encryption: (11 + 15) mod 26	Ciphertext: $00 \rightarrow A$
Plaintext: $o \rightarrow 14$	Encryption: (14 + 15) mod 26	Ciphertext: $03 \rightarrow D$

Vigenere Cipher

 $M = M_1 \dots M_n$ is the message, $C = C_1 \dots C_n$ is the ciphertext and $K = K_1 \dots K_n$ is the key.

Encryption:

$$C_i = E_K(M_i) = (M_i + K_i) \mod 26$$

Decryption:

$$M_i = D_K(C_i) = (C_i - K_i) \mod 26$$

M is message or plaintext, C is ciphertext and K is key for encryption and decryption.

Vigenere Cipher (Cont.)

Α	В	С	D	E	F	G	Н	I	J	K	L	М
1	\uparrow	1	1	\uparrow	1	\uparrow	1	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow
Ò	i	$\dot{2}$	$\dot{3}$		$\dot{5}$						11	
N	0	Р	Q	R	S	T	U	V	W	Х	Y	Z
N ↓												

Table of alphabet code for encrypt and decrypt

Vigenere Cipher (Cont.)

Plaintext:

P's values:

Key stream:

C's values:

Ciphertext:

s	h	e	i	S	1	i	S	t	e	n	i	n	g
					11	ı							
15	00	18	02	00	11	15	00	18	02	00	11	15	00
07	07	22	10	18	22	23	18	11	6	13	19	02	06
Н	Н	W	K	S	W	X	S	L	G	N	T	С	G

Encryption of vigenere cipher

Vigenere Cipher (Cont.)

Table is locate the first letter of plaintext message in the first line of the table and first letter of the key from the left column.

KeyExpansion

A key schedule is used to expand a short key into number of separate round keys. It produces the needed round keys from the initial cipher key.

AddRoundKey

In this step, each byte of the plaintext is combined with respective byte of the round subkey using bitwise XOR.

SubBytes

In this step, each byte in the state matrix is replaced with SubByte using an 8-bit substitution box (S-box).

	-			_		_		_	-	-		_	-	_	_	_
	0	1	2	3	4	5	6	7	8	9	Α	В	C	D	Е	F
0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	C0
2	B7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
3	04	C7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	B2	75
4	09	83	2C	1A	1B	6E	5A	A0	52	3B	D6	В3	29	E3	2F	84
5	53	D1	00	ED	20	FC	B1	5B	6A	СВ	BE	39	4A	4C	58	CF
6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A8
7	51	A3	40	8F	92	9D	38	F5	BC	В6	DA	21	10	FF	F3	D2
8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
9	60	81	4F	DC	22	2A	90	88	46	EE	B8	14	DE	5E	0B	DB
Α	E0	32	3A	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	AE	08
С	BA	78	25	2E	1C	A6	B4	C6	E8	DD	74	1F	4B	BD	8B	8A
D	70	3E	B5	66	48	03	F6	0E	61	35	57	В9	86	C1	1D	9E
Е	E1	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
F	8C	A1	89	0D	BF	E6	42	68	41	99	2D	0F	В0	54	BB	16

ShiftRows

This step operates on the rows of the state. Bytes in each row is cyclically shifted by a certain offset. The first row is unchanged. The second row is shifted one to the left. Third and fourth row is shifted two and three to the left respectively.

MixColumns

In this step, each column is transformed using a fixed matrix.

Each column of the state is multiplied with the fixed matrix

Cipher Feedback Mode

Previous ciphertext is used to encrypt the next block of data. Often used to encrypt individual characters (Terminals)

$$C_{i} = head(E_{K}(S_{i-1}), x) \oplus P_{i}$$

$$P_{i} = head(E_{K}(S_{i-1}), x) \oplus C_{i}$$

$$S_{i} = ((S_{i-1} < < x) + C_{i}) \mod 2^{n}$$

$$S_{0} = IV$$

Cipher Feedback Mode Encryption

Cipher Feedback Mode Decryption

Comparison of results

Cipher Feedback Mode Bit-error Propagation

```
Plaintext : Computer security is fun!

Original Ciphertext : IûfÅ5 14 95 fѰñ; 3!83.sŽbÆa 8885+ĐÉ

Error Ciphertext : IûfÅ7 14 95 fѰñ; 3!83.sŽbÆa 8885+ĐÉ

Decrypted ciphertext: Computer security is fun!
```

Comparison of results (Cont.)

Comparison of results (Caeser Cipher and Vigenere Cipher)

```
Caesar Cipher
What do you want to perform:
1. Encryption
2. Decryption
==>1

Enter Key(0 until 25):23
Time : 62.0096 microseconds
Total bytes : 52
Total plaintext in bytes encrypted/Encryption Time : 0.83858bytes/microseconds
Done
```

```
Vigenere Cipher
What do you want to perform:

1. Encryption

2. Decryption

3. Encryption Time

4. Decryption Time
==>3

Enter Key:happy
Time : 53.4565 microseconds
Total bytes : 44 bytes
Total plaintext in bytes encrypted/Encryption Time : 0.823098bytes/microseconds

Done
D:\Degree IT\Trimester 1 (Y3)\TSN3251 - COMPUTER SECURITY\Assignment\Monocipher\Polyalphabetic Cipher>
```

Comparison of results (Cont.)

```
Caesar Cipher
What do you want to perform:

1. Encryption
2. Decryption
==>2

Enter Key(0 until 25):23

Time : 53.0289 microseconds

Total bytes : 52

Total ciphertext in bytes decrypted/Decryption Time : 0.980598bytes/microseconds

Done
```

```
Vigenere Cipher
What do you want to perform:

1. Encryption
2. Decryption
3. Encryption Time
4. Decryption Time
=> 4

Enter Key:happy
Time : 54.3118 microseconds
Total bytes : 48 bytes
Total ciphertext in bytes decrypted/Decryption Time : 0.883785bytes/microseconds

Done
D:\Degree IT\Trimester 1 (Y3)\TSN3251 - COMPUTER SECURITY\Assignment\Monocipher\
Polyalphabetic Cipher>
```

The End