Matematika G1-G2-G3 kidolgozott tételek

Kun László Ákos2022/2023

MINTA!!

• To be continued

MINTA!!

• To be continued

MINTA!!

• To be continued

Matematika G1 szóbeli tételek

Halmazelmélet és komplex számok:

1. Halmaz, unió, metszet, különbség

Halmaz: Közös tulajdonságú elemek összessége.

Unió: Két vagy több halmaz uniója mindazon elemek halmaza, amelyek legalább az egyik halmaznak elemei.

$$A \cup B = \{x \in X \mid x \in A \lor x \in B\}$$

Metszet: Két vagy több halmaz metszete pontosan azoknak az elemeknek a halmaza, melyek mindegyik halmaznak elemei

$$A \cap B = \{ x \in X \mid x \in A \land x \in B \}$$

Különbség: A és B halmaz különbsége az A halmaz mindazon elemeinek halmaza, amelyek a B halmaznak nem elemei

$$A \setminus B = \{ x \in X \mid x \in A \land x \ni B \}$$

Set Operation	Venn Diagram	Interpretation
Union	A B	$A \cup B$, is the set of all values that are a member of A , or B , or both.
Intersection	A B	$A \cap B$, is the set of all values that are members of both A and B .
Difference	A B	A\B, is the set of all values of A that are not members of B

2. Descartes-szorzat, hatványhalmaz

Az A és B Halmazok Descartes-szorzatán az A és B Halmazok elemeiből alkotott összes rendezett elempárok halmazát értjük.

$$A \times B := \{(a, b) \mid a \in A \land b \in B\}$$

Hatványhalmaz: Egy halmaz összes részhalmazainak halmazát a Halmaz hatványhalmazának hívjuk.

3. Csoport, gyűrű, test

Félcsoport: olyan halmaz, melyben a kétváltozós műveletek asszociatívak (pl. természetes számok esetén az összeadás)

Csoport: Legyen $G \neq 0$ és egy \circ művelet (szorzás). Ekkor (G, \circ) csoport, ha teljesülnek az alábbiak:

- 1. $(a \circ b) \circ c = a \circ (b \circ c)$ minden $a, b, c \in G$ esetén
- 2. bármely $e \in G$, hogy $a \circ e = e \circ a = a$ minden $a \in G$ esetén (létezik az egységelem, e, amely asszociatív)
- 3. minden $a \in G$ esetén létezik $a' \in G$, hogy $a \circ a' = a' \circ a = e$ (létezik inverzelem)

Ábel-csoport: olyan halmaz, melyben a kétváltozós műveletek asszociatívak és kommutatívak is ill. létezik a zérus elem és az inverz elem

Gyűrű: Legyen $R \neq 0$ és $+, \circ$ két művelet. Ekkor $(R, +, \circ)$ gyűrű ha teljesülnek az alábbiak:

- 1. (R, +) Ábel csoportot alkot (Ábel csoport = kommutatív csoport)
- 2. A művelet asszociatív (csoportosítható) $(a \circ b) \circ c = a \circ (b \circ c)$ minden $a, b, c \in R$ esetén
- 3. A o művelet disztributív +-ra nézve (összekapcsolható) $(a+b)\circ c=a\circ c+b\circ c$ minden $a,b,c\in R$ esetén

Test: Legyen $T \neq 0$ és $+, \circ$ két művelet. Ekkor $(T, +, \circ)$ test ha teljesülnek az alábbiak:

- 1. (T, +) Ábel csoportot alkot
- 2. A o művelet legyen asszociatív (csoportosítható) $(a \circ b) \circ c = a \circ (b \circ c)$ minden $a, b, c \in R$ esetén
- 3. A o művelet legyen disztributív azaz $(a+b) \circ c = a \circ c + b \circ c$ minden $a,b,c \in R$ esetén
- 4. Létezik $e \in G$, hogy $a \circ e = e \circ a = a$ minden $a \in T$ esetén (létezik egységelem a második műveletre)
- 5. A + műveletekhez tartozó egységelem kivételével bármely $a \in G$ esetén létezik $a' \in G$, hogy $a \circ a' = a' \circ a = e$ (létezik az inverz elem, kivéve az első művelethez (+) tartozó egységelem esetében)

4. Komplex számok algebrai, trigonometrikus, exponenciális alakja

- Algebrai alak: $z = a + b \cdot i$ (z valós része a, képzetes része pedig b)
 - konjugált: $\overline{z} = a b \cdot i$
 - abszolút érték: $|z| = \sqrt{a^2 + b^2}$ (Pitagorasz-tételből), és mivel: $z \cdot \overline{z} = (a + b \cdot i)(a b \cdot i) = a^2 (b \cdot i)^2 = a^2 + b^2$, ezért $|z| = \sqrt{z \cdot \overline{z}}$
- Trigonometrikus (polár) alak: $z = r(cos(\varphi) + i \cdot sin(\varphi))$, mivel

$$cos(\varphi) = \frac{a}{r}$$

$$sin(\varphi) = \frac{b}{r}$$

Tehát $a = r \cdot cos(\varphi)$ és $b = r \cdot sin(\varphi)$, innen már egyértelműen következik a trigonometrikus alak az algebraiból r-t kiemelve $(a = r \cdot cos(\varphi)$ és $b \cdot i = r \cdot i \cdot sin(\varphi))$

• Exponenciális alak: $z = r \cdot e^{i \cdot \varphi}$ - ez csak egy szimbólum, rövidítés, ami megkönnyíti a számolást a komplex számokkal, lényegében a trigonometrikus alak kicsit rövidebben.

5. Komplex számok hatványozása

de Moivre-képlet:

$$z^{n} = [r(\cos(\varphi) + i \cdot \sin(\varphi))]^{n} = r^{n}(\cos(n\varphi) + i \cdot \sin(n\varphi))$$

Bizonyítás: Teljes indukció használatával

- 1. n = 1-re és n = 2-re **igaz**
- 2. indukciós feltétel: n = k
- 3. Ekkor $z^k = r^k(\cos(k\varphi) + i \cdot \sin(k\varphi))$
- 4. ha n = k + 1, akkor:

$$\begin{split} z^{k+1} &= z^k \cdot k = r^k (\cos(k\varphi) + i \cdot \sin(k\varphi)) \cdot r(\cos(\varphi) + i \cdot \sin(\varphi)) \\ &= r^{k+1} [\cos(k\varphi + \varphi) + i \cdot \sin(k\varphi + \varphi)] = \\ &\qquad \qquad r^{k+1} [\cos((k+1)\varphi) + i \cdot \sin((k+1)\varphi)] \end{split}$$

és k+1 az n volt, tehát a bizonyítás kész.

6. Komplex számok gyökvonása

$$z_1^n = z_2 = r_1^n \cdot (\cos(n\varphi_1) + i \cdot \sin(n\varphi_1)) = r_2 \cdot (\cos(\varphi_2) + i \cdot \sin(\varphi_2))$$
$$z_1 = \sqrt[n]{z_2}$$

Két komplex szám akkor egyenlő, ha a hosszuk és argumentumuk is egyenlő:

- $r_1 = \sqrt[n]{r_2}$ (hossz)
- $n \cdot \varphi_1 = \varphi_2 + k \cdot 2\pi$ (argumentum) \rightarrow forgásszög, periodicitás miatt $p = 2\pi$
- Így $\varphi_1 = \frac{\varphi_2 + k \cdot 2\pi}{n}$ $k \in \{0, 1, 2, ..., n-1\}$
- Tehát:

$$\sqrt[n]{z} = \sqrt[n]{r}(\cos(\frac{\varphi + k \cdot 2\pi}{n}) + i \cdot \sin(\frac{\varphi + k \cdot 2\pi}{n}))$$

Az n-edik gyökvonás után olyan komplex számokat kapunk, amik egy szabályos sokszög (n-szög) csúcsai! Tehát n-edik gyökvonás esetén n db komplex szám a megoldás.

Numerikus sorozatok:

1. Numerikus sorozat határértéke

Az (a_n) sorozatot konvergens és határértéke az $a \in R$ akkor és csak akkor, ha bármely $\varepsilon > 0$ értékhez létezik olyan $N(\varepsilon)$ küszöbindex, hogy a sorozat $N(\varepsilon)$ -nél nagyobb indexű elemei az az ε sugarú környezetében vannak. Az (a_n) sorozatot konvergens és határértéke az $a \in R$ akkor és csak akkor, ha bármely $\varepsilon > 0$ sugarú környezetén kívül a sorozatnak csak véges sok eleme van.

2. Konvergens, divergens sorozat

• **Definíció:** Az (a_n) konvergens, ha van olyan $a \in R$ szám, hogy minden $\varepsilon > 0$ valós szám esetén létezik $N(\varepsilon)$ valós küszöbszám, hogy

$$|a_n - a| < \varepsilon, \ ha \ n > N(\varepsilon)$$

- Az "a" számot az (a_n) határértékének hívjuk, és a $\lim_{n\to\infty}a_n=a$ vagy az $a_n\to a$, ha $n\to\infty$ jelölést használjuk.
- Az (a_n) divergens, ha nem konvergens.

Tételek:

- Konvergens sorozat korlátos.
- Monoton korlátos sorozat konvergens.
- van határértéke/torlódási pontjai → nem biztos, hogy konvergens
- Bolzano-Weierstrass-tétel: minden korlátos sorozatnak van konvergens részsorozata.

3. Nevezetes sorozatok

Olyan sorozatok, amelyek határértékét nem kell bizonyítani, csak felhasználni!

Bernoulli-féle egyenlőtlenség: ha $x \ge -1$, akkor $(1+x)^n \ge 1 + n \cdot x$

- 1. $a^n \to 0$, ha |a| < 1 $a^n \to 1$, ha a = 1 $a^n \to +\infty$, ha a > 1 a^n divergens, ha a < -1
- 2. $\sqrt[n]{a} \to 1$, ha $n \to \infty (a > 0)$
- 3. $a^n \cdot n^k \to 0$, nullsorozat, ha |a| < 1 és k rögzített természetes szám
- 4. $\sqrt[n]{n} \to 1$, ha $n \to \infty$ $(n \ge 2)$
- 5. $\frac{a^n}{n!} \to 0 (a \in \mathbb{R})$

Legfontosabb:

$$(1+\frac{\alpha}{n})^n \to e^{\alpha}$$

4. Cauchy sorozat

Definíció: Az (a_n) -t Cauchy-sorozatnak nevezzük, ha minden $\varepsilon > 0$ esetén $\exists N(\varepsilon)$ küszöbindex, hogy:

$$|a_n - a_m| < \varepsilon$$
, ha $n, m > N(\varepsilon)$ $(n, m \in N)$

Tétel: Cauchy-féle konvergencia kritérium (szükséges és elégséges feltétel). Az (a_n) akkor és csak akkor konvergens, ha Cauchy sorozat!

5. Torlódási pont

Definíció: A h a H halmaz torlódási pontja, ha h bármely környezetében van H-nak h-tól különböző eleme. A t szám a sorozat torlódási pontja, ha t akármilyen kicsi környezete a sorozat végtelen sok elemét tartalmazza. Például: $(-1)^n$

Függvények, derivált:

1. Függvények, értelmezési tartomány, értékkészlet

Függvény: ha az A (nemüres) halmaz minden egyes eleméhez hozzárendeljük a B (nemüres) halmaz pontosan egy elemét, akkor ezt a leképezést függvénynek nevezzük.

$$f:A\to B$$

Értelmezési tartomány: azon elemek halmaza, melyekhez a függvény hozzárendel egy-egy elemet a B halmazból, jelen esetben ez az A halmaz.

$$D_f = A$$

Értékkészlet: A képhalmaz, azaz a B halmaz azon elemei, melyeket az f függvény ténylegesen hozzárendel az A valamelyik eleméhez. Az értékkészlet tehát része a képhalmaznak:

$$R_f \subset B$$

2. Függvény határérték

Azt mondjuk, hogy az f függvény határértéke az "a" pontban A, ha minden $\varepsilon>0$ számhoz létezik olyan $\delta(\varepsilon)>0$, hogy ha $0<|x-a|<\delta(\varepsilon)$, akkor $|f(x)-A|<\varepsilon$. /Ez a Cauchy-féle definíció/

$$|x-a| < \delta(\varepsilon)$$
 azt jelenti, hogy:

$$-\delta(\varepsilon) < x - a < \delta(\varepsilon) / + a$$

$$a - \delta(\varepsilon) < x < a + \delta(\varepsilon)$$

Szemléletesesen: azt jelenti, hogy a függvényértékek (f(x) - ek) tetszőlegesen megközelítik az A számot, ha az ε értékek elég közel kerülnek a-hoz. Az f függvénynek az "a" pontban acsa (akkor és csak akkor) van határértéke, ha van bal- és jobboldali határértéke és ez a kettő megegyezik!

Határérték a végtelenben:

- Az f függvény határértéke +∞-ben A, ha minden $\varepsilon > 0$ esetén van olyan $N(\varepsilon)$, hogy $|f(x) A| < \varepsilon$, ha $x > N(\varepsilon)$.
- Az f függvény határértéke -∞-ben A, ha minden $\varepsilon > 0$ esetén van olyan $N(\varepsilon)$, hogy $|f(x) A| < \varepsilon$, ha $x < N(\varepsilon)$.

• A végtelen, mint határérték:

- Az f függvény határértéke a-ban $+\infty$, ha bármely N>0 esetén van olyan $\delta(N)$, hogy f(x)>N, ha $0<|x-a|<\delta(N)$.
- Az f függvény határértéke a-ban $-\infty$, ha bármely N>0 esetén van olyan $\delta(N)$, hogy f(x)< N, ha $0<|x-a|<\delta(N)$.

3. Függvény folytonosság

Az f függvény az értelmezési tartományának "a" pontjában folytonos, ha ebben a pontban létezik határértéke és ez egyenlő az adott pontbeli helyettesítési értékkel, azaz ha

$$\lim_{x \to a} f(x) = f(a)$$

• **Definíció:** Az f függvényt folytonosnak nevezzük az $a \in D_f$ pontban, ha bármely $\varepsilon > 0$ esetén van olyan $\delta(\varepsilon) > 0$ szám, hogy ha $|x - a| < \delta(\varepsilon)$, akkor $|f(x) - f(a)| < \varepsilon$.

Az f függvény egy intervallumon egyenletesen folytonos, ha bármely $\varepsilon > 0$ számhoz van olyan $\delta > 0$ szám, hogy f értelmezési tartományának bármely x_1 , x_2 elemére, amelyek távolsága egymástól kisebb δ -nál, fennáll az alábbi egyenlőtlenség.

$$|f(x_1) - f(x_2)| < \varepsilon$$

- **Tétel:** Az f függvény pontosan akkor folytonos értelmezési tartományának "a" pontjában, ha ott balról és jobbról is folytonos.
- **Definíció:** Az f függvény folytonos az]a,b[-on, ha folytonos]a,b[minden pontjában. Az f függvény folytonos az [a,b]-on, ha folytonos]a,b[-on és a-ban balról, b-ben jobbról folytonos.

A folytonosság néhány nevezetes következménye:

Ha f folytonos egy zárt intervallumon, akkor ott egyenletesen folytonos.

Bolzano-tétel: ha a függvény a zárt intervallumon folytonos, és az intervallum két végpontjában az értékei különböző előjelűek, akkor az intervallum belsejében van zérushelye. Másképp: felvesz minden f(a) és f(b) közé eső értéket egy folytonos függvény egy zárt intervallumon.

Weierstrass-tétel: Zárt intervallumon folytonos függvény felveszi a minimumát és a maximumát is függvényértékként; továbbá minden olyan értéket, ami a legnagyobb és legkisebb érték közé esik.

4. Inverz függvény

Ha az $f:X\to Y$ függvénynél a leképezés irányát megfordítjuk, vagyis az Y halmaz elemeit képezzük le az X halmaz elemeire, akkor ez a fordított leképezés általában nem függvény, mert nem biztos, hogy egy $y\in Y$ elemnek egyetlen $x\in X$ elem felel meg. Ezért fontos az, hogy f bijektív, azaz kölcsönösen egyértelmű legyen, mert ekkor az f-1-gyel jelölt fordított leképezés is már függvény lesz.

• **Definíció:** Ha az $f: X \to Y$ függvény kölcsönösen egyértelmű, akkor az $f^{-1} = Y \to X$ függvényt f inverz függvényének nevezzük. Ekkor igaz az alábbi összefüggés:

$$f^{-1}(f(x)) = f(f^{-1}(x)) = x$$

5. Derivált

Ha létezik és véges az alábbi differenciálhányados határértéke:

$$Lim_{x\to a} \frac{f(x) - f(a)}{x - a}$$

akkor azt az f függvény deriváltjának vagy "a" pontbeli differenciálhányadosának nevezzük. **Jelölés:**

$$\frac{df(a)}{dx} = f'(a)$$

6. Lokális szélsőérték definíciója és feltétele

Legyen $f: I \subset R \to R; a \subset I$

Azt mondjuk, hogy f függvénynek a pontban lokális maximuma van, ha létezik $\delta > 0$, hogy:

$$f(x) \le f(a) (\forall x \in K)$$

Azt mondjuk, hogy f függvénynek a pontban lokális minimuma van, ha létezik $\delta > 0$, hogy:

$$f(x) \ge f(a) (\forall x \in K)$$

Szükséges feltétel:

Ha $f:I\subset R\to R$ differenciálható függvény és f-nek $\alpha\in int.$ I-ben (I belseje) szélsőértéke van, akkor $f'(\alpha)=0$

Elégséges feltétel:

Ha $f:I\subset R\to R$ differenciálható függvény és $\alpha\in int.$ I továbbá létezik r>0, és teljesül az alábbi feltétel, akkor f-nek α -ban lokális minimuma van.

$$f'(x) \le 0 \to x \in](\alpha - r); \alpha[$$

$$f'(x) \ge 0 \to x \in]\alpha; (\alpha + r)[$$

Ha $f:I\subset R\to R$ differenciálható függvény és $\alpha\in int.$ I továbbá létezik r>0, és teljesül az alábbi feltétel, akkor f-nek α -ban lokális maximuma van.

$$f'(x) \ge 0 \to x \in](\alpha - r); \alpha[$$

$$f'(x) \le 0 \to x \in]\alpha; (\alpha + r)[$$

7. L'Hôpital szabály

Legyen f és g differenciálható függvények az α pont egy környezetében, továbbá:

$$Lim_{x\to\alpha}f(x) = Lim_{x\to\alpha}g(x) = 0$$
 vagy $|Lim_{x\to\alpha}f(x)| = |Lim_{x\to\alpha}g(x)| = \infty$ $\alpha \in \{0; \pm \infty\}$

Ekkor:

$$\frac{Lim_{x\to\alpha}f'(x)}{Lim_{x\to\alpha}g'(x)} = \frac{Lim_{x\to\alpha}f(x)}{Lim_{x\to\alpha}f(x)}$$

Középérték tételek és Integrálás:

1. Lagrange középérték tétel

Legyen $f:I\subset R\to R$ folytonos [a;b] intervallumon és differenciálható]a;b[intervallumon. Ekkor létezik olyan $\delta\in]a;b[$ hogy:

$$f'(\delta) = \frac{f(b) - f(a)}{b - a}$$

2. Rolle középérték tétel

Legyen f folytonos [a; b] intervallumon és differenciálható]a; b[intervallumon, továbbá f(a) = f(b) = 0 Ekkor létezik $\xi \in]a; b[$ melyre teljesül, hogy:

$$f'(\xi) = 0$$

3. Cauchy középérték tétel

Legyen f és g függvények folytonosak [a;b] intervallumon és differenciálhatóak]a;b[intervallumon, valamint tegyük fel, hogy $g'(x) \neq 0$ bármely $x \in]a;b[$ esetén. Ekkor létezik olyan $\delta \in]a;b[$ hogy:

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\delta)}{g'(\delta)}$$

4. Riemann-Integrálhatóság

Az f függvény Riemann-integrálható [a;b] intervallumon, ha a Darboux-féle alsó- és felső-integrálja megegyezik. Ezt a közös értéket az f függvény Riemann-integráljának nevezzük.

5. Newton-Leibniz formula

Legyen f függvény Riemann-integrálható [a;b] intervallumon és $F:[a;b] \to \mathbb{R}$ olyan primitív függvény, hogy F folytonos [a;b] intervallumon, F differenciálható]a;b[intervallumon és F'(x) = f(x) bármely $x \in]a;b[$ Ekkor:

$$\int_{a}^{b} f = F(b) - F(a)$$

6. Improprius integrál

Legyen $(a; b) \in \mathbb{R}_b$ és (a < b) valamint

- 1. minden $[x;y] \subset a; b$ esetén f Riemann-int. [x;y] intervallumon és $(x;y) \subset \mathbb{R}$
- 2. létezik olyan $c \in \mathbb{R}(a < c < b)$, hogy az alábbi határértékek léteznek és végesek:

$$Lim_{x\to\alpha} \int_x^c f(t) dt$$
 és $Lim_{y\to b} \int_c^y f(t) dt$

Ekkor az $I:=Lim_{x\to\alpha}\int_x^c f(t)\,dt+Lim_{y\to b}\int_c^y f(t)\,dt$ összeget az f függvény improprius integráljának nevezzük]a;b[intervallumon és $\int_a^b f(b)\,dt$ jelöljük.

Azt is mondjuk, hogy az f függvény improprius Riemann-integrálja az]a;b[intervallumon konvergens. Ha az 1. feltétel teljesül, de a 2. feltétel nem, akkor az f függvény improprius Riemann-integrálja divergens.

Numerikus sorok:

1. Numerikus sor fogalma

Az a_n numerikus sorozat tagjaiból képzett végtelen összeget numerikus sornak nevezzük. Jelölése:

$$\sum_{n=1}^{\infty} a_n$$

2. Numerikus sor konvergenciája

A $\sum_{n=1}^{\infty} a_n$ numerikus sor konvergens, akkor és csak akkor, ha bármely $\varepsilon > 0$ esetén létezik olyan $N(\varepsilon)$ hogy:

$$|a_{n+1} + a_{n+2} + \dots + a_m| < \varepsilon \qquad (n, m > N_{(\varepsilon)})$$

Feltételes konvergencia:

Ha $\sum a_n$ sor konvergens, de nem abszolút konvergens (abszolút konvergens, ha $\sum |a_n|$ konvergens), akkor feltételes konvergenciáról beszélünk.

3. Numerikus sor divergenciája

Ha a numerikus sor nem konvergens, akkor divergens.

4. Konvergencia tesztek

• Majorálás/minorálás:

Legyen $\sum a_n$ és $\sum b_n$ nemnegatív tagú sorok, melyekre teljesül az hogy $a_n < b_n$ bármely $n \in N$ esetén, ekkor:

- Minorálás: Ha $\sum a_n$ divergens, akkor $\sum b_n$ is az
- **Majorálás:** Ha $\sum b_n$ konvergens, akkor $\sum a_n$ is az

• D'Alambert-féle hányadosteszt:

Legyen $\sum a_n$ egy pozitív tagú sor, ha létezik olyan 0 < q < 1 valós szám, amelyre az $n \in N$ feltétel mellett az alábbi egyenlet teljesül, akkor konvergens:

$$\frac{a_n + 1}{a_n} < q$$

• Cauchy-féle gyökteszt:

Legyen $\sum a_n$ egy nemnegatív tagú sor, ha létezik olyan 0 < q < 1 valós szám, amelyre az $n \in N$ feltétel mellett az alábbi egyenlet teljesül, akkor konvergens:

$$\sqrt[n]{a_n} < q$$

Matematika G2 szóbeli tételek

Lineáris algebra I:

1. Csoport, gyűrű, test

Félcsoport: olyan halmaz, melyben a kétváltozós műveletek asszociatívak (pl. természetes számok esetén az összeadás)

Csoport: Legyen $G \neq 0$ és egy \circ művelet (szorzás). Ekkor (G, \circ) csoport, ha teljesülnek az alábbiak:

- 1. $(a \circ b) \circ c = a \circ (b \circ c)$ minden $a, b, c \in G$ esetén
- 2. bármely $e \in G$, hogy $a \circ e = e \circ a = a$ minden $a \in G$ esetén (létezik az egységelem, e, amely asszociatív)
- 3. minden $a \in G$ esetén létezik $a' \in G$, hogy $a \circ a' = a' \circ a = e$ (létezik inverzelem)

Ábel-csoport: olyan halmaz, melyben a kétváltozós műveletek asszociatívak és kommutatívak is ill. létezik a zérus elem és az inverz elem

Gyűrű: Legyen $R \neq 0$ és $+, \circ$ két művelet. Ekkor $(R, +, \circ)$ gyűrű ha teljesülnek az alábbiak:

- 1. (R, +) Ábel csoportot alkot (Ábel csoport = kommutatív csoport)
- 2. A művelet asszociatív (csoportosítható) $(a \circ b) \circ c = a \circ (b \circ c)$ minden $a, b, c \in R$ esetén
- 3. A o művelet disztributív +-ra nézve (összekapcsolható) $(a+b) \circ c = a \circ c + b \circ c$ minden $a,b,c \in R$ esetén

Test: Legyen $T \neq 0$ és $+, \circ$ két művelet. Ekkor $(T, +, \circ)$ test ha teljesülnek az alábbiak:

- 1. (T, +) Abel coportot alkot
- 2. A o művelet legyen asszociatív (csoportosítható) $(a \circ b) \circ c = a \circ (b \circ c)$ minden $a, b, c \in R$ esetén
- 3. A o művelet legyen disztributív azaz $(a+b) \circ c = a \circ c + b \circ c$ minden $a,b,c \in R$ esetén
- 4. Létezik $e \in G$, hogy $a \circ e = e \circ a = a$ minden $a \in T$ esetén (létezik egységelem a második műveletre)
- 5. A + műveletekhez tartozó egységelem kivételével bármely $a \in G$ esetén létezik $a' \in G$, hogy $a \circ a' = a' \circ a = e$ (létezik az inverz elem, kivéve az első művelethez (+) tartozó egységelem esetében)

2. Euklideszi tér

Euklideszi térnek nevezzük azon T számtest feletti vektortereket, amelyekben a verktorterek axiómái értelmezve vannak, valamint az ún. skaláris szorzást:

1. A skaláris szorzat V-beli rendezett párokhoz egy T-beli nemnegatív elemet rendelő függvény, vagyis:

$$\forall \underline{a}, \underline{b} \in V, \langle \underline{a}, \underline{b} \rangle : V \times V \to T$$

2. a skaláris szorzat kommutatív:

$$\forall \underline{a}, \underline{b} \in V, \langle \underline{a}, \underline{b} \rangle = \langle \underline{b}, \underline{a} \rangle$$

3. A skalárszorzás kiemelhető:

$$\forall \underline{a}, \underline{b} \in V, \lambda \in T, \langle \lambda \underline{a}, \underline{b} \rangle = \lambda \langle \underline{a}, \underline{b} \rangle$$

4. Az összeg asszociatív:

$$\forall a, b, c \in V, < a + b, c > = < a, c > + < b, c >$$

3. Vektortér

Legyen V nem üres halmaz, +, \circ műveletek, T test. $(V, +, \circ)$ T test feletti vektortér, ha:

- 1. (V, +) Ábel-csoport
- 2. valamint:

$$\forall \alpha, \beta \in T$$
, és $x \in V : (\alpha \circ \beta) \circ x = a \circ (\beta \circ x)$

3. Ha ϵ a T-beli egység, akkor:

$$\forall x \in V : \epsilon \circ x = x$$

$$\forall \alpha, \beta \in T \text{ és } \underline{x}, y \in V : (\alpha + \beta) \circ \underline{x} = \alpha \circ \underline{x} + \beta \circ \underline{x} \text{ (rendes +)}$$

valamint:

$$\alpha \circ (\underline{x} + y) = \alpha \circ \underline{x} + \alpha \circ y \ (V \text{-beli } +)$$

4. Vektorok lineáris függősége és függetlensége

 $\{b_1, b_2, ..., b_n\}$ vektor lineárisan független, amennyiben az alábbi egyenletnek csak a triviális megoldása létezik, ellenkező esetben lineárisan függő:

$$\lambda_1 b_1 + \ldots + \lambda_n b_n$$