

FCC TEST REPORT

Test report
On Behalf of
Audio Wear Technology Inc.
For
Buletooth Audio Hat
Model No.: AW-001

FCC ID: 2AGOG-AW001

Prepared for: Audio Wear Technology Inc.

18173 Pioneer Blud. Suite R Artesia CA 90701 U.S.A

Prepared By: Shenzhen WST Testing Technology Co., Ltd.

1F, No.9 Building, TGK Science & Technology Park, Yangtian Rd., NO.72

Bao'an Dist., Shenzhen, Guangdong, China. 518101

Date of Test: Nov. 16, 2015 ~ Nov. 23, 2015

Date of Report: Nov. 23, 2015

Report Number: WST15011128-E

TEST RESULT CERTIFICATION

Applicant's name: Audio Wear Technology Inc.

Address 18173 Pioneer Blud, Suite R Artesia CA 90701 U.S.A

Manufacture's Name.....: Shenzhen JU XIN Electronics Co., Ltd.

Third Floor Of TianKun Technology, HongTian QiaoNan Industrial Address:

Park, ShaJing Street, BaoAn District, Shenzhen, China

Product description

Audiowear Trade Mark:

Product name Buletooth Audio Hat

Model and/or type reference : AW-001

FCC Rules and Regulations Part 15 Subpart C Section 15.249 Standards

ANSI C63.4: 2014

This publication may be reproduced in whole or in part for non-commercial purposes as long as the WST Certification & Testing (HK) Limited is acknowledged as copyright owner and source of the material. WST Certification & Testing (HK) Limited takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test

Test Result..... Pass

(Eric Xie) Testing Engineer

Dola Qin Technical Manager

(Dora Qin)

Authorized Signatory:

(Kait Chen)

Table of Contents	Page
1 . TEST SUMMARY	4
2 . GENERAL INFORMATION	5
2.1 General Description of EUT	5
2.2 Carrier Frequency of Channels	6
2.3 Operation of EUT during testing	6
2.4 Description of Test Setup	7
2.5 Measurement Instruments List	8
3 . CONDUCTED EMISSION TEST	10
3.1 Block Diagram of Test Setup	10
3.2 Conducted Power Line Emission Limit	10
4 RADIATED EMISSION TEST	12
4.2 Limits	13
4.3 Test Procedure	13
4.4 Test Result	14
5 BAND EDGE	18
5.3 Test Procedure	18
5.4 Test Result	18
6 OCCUPIED BANDWIDTH MEASUREMENT	23
6.3Test Procedure	23
6.3 Test Result	23
7 Antenna Requirement	26
8 Photograph of Test	27

1.. TEST SUMMARY

1.1. Description of Test

Description of Test	Result
CONDUCTED EMISSIONS TEST	Compliant
RADIATED EMISSION TEST	Compliant
BAND EDGE	Compliant
OCCUPIED BANDWIDTH MEASUREMENT	Compliant
ANTENNA REQUIREMENT	Compliant

1.2. Test Facility

Test Firm : Shenzhen WST Testing Technology Co., Ltd.

Certificated by FCC, Registration No.: 939433

Address : 1F, No.9 Building, TGK Science & Technology Park, Yangtian Rd., NO.72

Bao'an Dist., Shenzhen, Guangdong, China. 518101

Tel : (86)755-33916437 Fax : (86)755-27822175

1.3. Measurement Uncertainty

Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2 Radiated emission expanded uncertainty(9kHz-30MHz) = 3.08dB, k=2 Radiated emission expanded uncertainty(30MHz-1000MHz) = 4.42dB, k=2 Radiated emission expanded uncertainty(Above 1GHz) = 4.06dB, k=2

2.. GENERAL INFORMATION

2.1. General Description of EUT

Equipment	Buletooth Audio Hat
Model Name	AW-001
Serial No	1
FCC ID	2AGOG-AW001
Model Difference	1
Modulation Type	GFSK
Antenna Type	Internal Antenna
Antenna Gain	0 dBi
BT Operation frequency	2402-2480MHz
Number of Channels	40
Power Source	DC voltage
Power Rating	DC3.7V
Adapter Model	1

2.2. Carrier Frequency of Channels

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
1	2402	2	2404
3	2406	4	2408
5	2410	6	2412
7	2414	8	2416
9	2418	10	2420
11	2422	12	2424
13	2426	14	2428
15	2430	16	2432
17	2434	18	2436
19	2438 20		2440
21	2442	22	2444
23	2446	24	2448
25	2450	26	2452
27	2454	28	2456
29	2458	30	2460
31	2462	32	2464
33	2466	34	2468
35	2470	36	2472
37	2474	38	2476
39	2478	40	2480

2.3. Operation of EUT during testing

Operating Mode

The mode is used: **Transmitting mode**

Low Channel: 2402MHz Middle Channel: 2440MHz High Channel: 2480MHz

2.4. Description of Test Setup

Operation of EUT during testing

Model 1

Model 2

EUT

Item	Equipment	uments List Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interva
1.	EMI Receiver	Rohde & Schwarz	ESCI	100627	May 19, 2015	1 Year
2.	LISN	SchwarzBeck	NSLK 8126	8126377	May 19, 2015	1 Year
3.	RF Switching Unit	Compliance Direction	RSU-M2	38303	May 19, 2015	1 Year
4.	EMI Test Software ES-K1	Rohde & Schwarz	N/A	N/A	N/A	N/A
5.	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	May 19, 2015	1 Year
6.	Trilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	May 17, 2015	1 Year
7.	Pre-amplifier	Compliance Direction	PAP-0203	22008	May 19, 2015	1 Year
8.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A
9.	EMI Receiver	Rohde & Schwarz	ESCI	100627	May 19, 2015	1 Year
10.	LISN	SchwarzBeck	NSLK 8126	8126377	May 19, 2015	1 Year
11.	RF Switching Unit	Compliance Direction	RSU-M2	38303	May 19, 2015	1 Year
12.	EMI Test Software ES-K1	Rohde & Schwarz	N/A	N/A	N/A	N/A
13.	EMI Receiver	Rohde & Schwarz	ESCI	100627	May 19, 2015	1 Year
14.	EMI Receiver	Rohde & Schwarz	ESCI	100627	May 19, 2015	1 Year
15.	LISN	SchwarzBeck	NSLK 8126	8126377	May 19, 2015	1 Year
16.	RF Switching Unit	Compliance Direction	RSU-M2	38303	May 19, 2015	1 Year
17.	EMI Test Software ES-K1	Rohde & Schwarz	N/A	N/A	N/A	N/A
18.	Programmable AC Power source	SOPH POWER	PAG-1050	630250	May 26, 2015	1 Year
19.	Harmonic and Flicker Analyzer	LAPLACE	AC2000A	272629	May 26, 2015	1 Year
20.	Harmonic and Flicker Test Software AC 2000A	LAPLACE	N/A	N/A	N/A	N/A
21.	ESD Simulators	KIKUSUI	KES4021	LJ003477	May 25, 2015	1 Year
22.	EFT Generator	EMPEK	EFT-4040B	0430928N	May 19, 2015	1 Year
23.	Shielding Room	ChangZhou ZhongYu	JB88	SEL0166	May 19, 2015	1 Year
24.	Signal Generator 9KHz~2.2GHz	R&S	SML02	SEL0143	May 19, 2015	1 Year
25.	Signal Generator 9KHz~1.1GHz	R&S	SML01	SEL0135	May 19, 2015	1 Year
26.	Power Meter	R&S	NRVS	SEL0144	May 19, 2015	1 Year
27.	RF Level Meter		URV35	SEL0137	May 19, 2015	1 Year
28.	Audio Analyzer	R&S	UPL	SEL0136	May 19, 2015	1 Year

RF-Amplifier **BONN Elektronik** BSA1515-25 SEL0157 29. 150KHz~150MH May 19, 2015 1 Year Stripline Test Cell Erika Fiedler VDE0872 SEL0167 N/A 30. N/A TV Test Transmitter R&S SFM SEL0159 May 17, 2015 1 Year 31. TV Generator PAL R&S **SGPF** SEL0138 32. May 19, 2015 1 Year TV Generator Ntsc R&S **SGMF** SEL0140 33. May 19, 2015 1 Year TV Generator R&S SGSF SEL0139 34. May 19, 2015 1 Year Secam TV Test Transmitter R&S SFQ SEL0142 35. May 19, 2015 1 Year 0.3MHz~3300MHz MPEG2 R&S DVG SEL0141 36. Measurement May 19, 2015 1 Year Generator Spectrum Analyzer R&S FSP SEL0177 37. May 19, 2015 1 Year Matching R&S RAM SEL0146 N/A 38. N/A R&S **RAM** SEL0148 N/A N/A Matching 39. **Absorbing Clamp** R&S MDS21 SEL0158 May 17, 2015 40. 1 Year Coupling Set Erika Fiedler Rco. Rci. SEL0149 N/A N/A 41. MC, AC, LC Filters N/A SEL0150 Erika Fiedler 42. Sr, LBS N/A N/A N/A Matching Network SEL0151 43. Erika Fiedler MN, T1 Fully Anechoic ChangZhou Jun. 10, 2015 SEL0169 44. 854 1 Year Room ZhongYu Signal Generator SEL0068 May 17, 2015 1 Year 45. R&S SML03 **RF-Amplifier Amplifier** Oct. 24, 2015 SEL0066 46. 250W1000A 1 Year 30M~1GHz Reasearch RF-Amplifier Amplifier SEL0065 Oct. 24, 2015 1 Year 47. 60S1G3 0.8~3.0GHz Reasearch Power Meter NRVD May 17, 2015 R&S SEL0069 48. 1 Year Power Sensor R&S SEL0071 May 17, 2015 1 Year URV5-Z2 49 Power Sensor R&S SEL0072 May 17, 2015 50. URV5-Z2 1 Year R&S Software SEL0082 N/A N/A 51. EMC32-S EMC32 Log-periodic Amplifier SEL0073 N/A 52. AT1080 N/A Antenna Reasearch Antenna Tripod Amplifier SEL0074 N/A N/A 53. TP1000A Reasearch High Gain Horn SEL0075 N/A 54. Amplifier Antenna(0.8-5G AT4002A N/A Reasearch Hz)

3.. CONDUCTED EMISSION TEST

3.1. Block Diagram of Test Setup

3.2. Conducted Power Line Emission Limit

For unintentional device, according to § 15.107(a) Line Conducted Emission Limits is as following

F=====================================	M	Maximum RF Line Voltage (dBμV)							
Frequency (MHz)	CLAS	SS A	C	CLASS B					
(111112)	Q.P.	Q.P. Ave.		Ave.					
0.15 - 0.50	79	66	66-56*	56-46*					
0.50 - 5.00	73	60	56	46					
5.00 - 30.0	73	60	60	50					

^{*} Decreasing linearly with the logarithm of the frequency

For intentional device, according to §15.207(a) Line Conducted Emission Limit is same as above table.

3.3. Test Procedure

- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.4.
- 2, Support equipment, if needed, was placed as per ANSI C63.4.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4.
- 4, If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes

Wstlab

Item	Freq	Read Level	LISN Factor	Cable Loss	Pulse Limiter Factor	Result Level	Limit Line	Over Limit	Detector	Phase
(Mark)	(MHz)	(dBµV)	(dB)	(dB)	(dB)	(dBµV)	(dBµV)	(dB)		
1	0.30	19.12	9.60	0.02	9.85	38.59	50.28	-11.69	Average	NEUTRAL
2	0.30	29.48	9.60	0.02	9.85	48.95	60.28	-11.33	QP	NEUTRAL
3	0.36	15.09	9.60	0.02	9.86	34.57	48.78	-14.21	Average	NEUTRAL
4	0.36	25.30	9.60	0.02	9.86	44.78	58.78	-14.00	QP	NEUTRAL
5	0.72	13.89	9.62	0.07	9.85	33.43	46.00	-12.57	Average	NEUTRAL
6	0.72	21.86	9.62	0.07	9.85	41.40	56.00	-14.60	QP	NEUTRAL
7	0.78	15.86	9.61	0.08	9.86	35.41	46.00	-10.59	Average	NEUTRAL
8	0.78	22.66	9.61	0.08	9.86	42.21	56.00	-13.79	QP	NEUTRAL
9	0.89	13.07	9.61	0.06	9.86	32.60	46.00	-13.40	Average	NEUTRAL
10	0.89	20.86	9.61	0.06	9.86	40.39	56.00	-15.61	QP	NEUTRAL

Note: 1. Result Level = Read Level +LISN Factor + Pulse Limiter Factor + Cable loss.

2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Test setup: RBW: 200 Hz (9 kHz—150 kHz), 9 kHz (150 kHz—30 MHz), Step size: 4 kHz, Scan time: auto.

Item	Freq	Read Level	LISN Factor	Cable Loss	Pulse Limiter Factor	Result Level	Limit Line	Over Limit	Detector	Phase
(Mark)	(MHz)	(dBµV)	(dB)	(dB)	(dB)	(dBµV)	(dBµV)	(dB)		
1	0.30	24.27	9.62	0.02	9.85	43.76	50.37	-6.61	Average	LINE
2	0.30	30.06	9.62	0.02	9.85	49.55	60.37	-10.82	QP	LINE
3	0.36	19.38	9.63	0.02	9.86	38.89	48.83	-9.94	Average	LINE
4	0.36	25.68	9.63	0.02	9.86	45.19	58.83	-13.64	QP	LINE
5	0.41	19.29	9.63	0.03	9.86	38.81	47.59	-8.78	Average	LINE
6	0.41	23.04	9.63	0.03	9.86	42.56	57.59	-15.03	QP	LINE
7	0.71	18.31	9.62	0.07	9.85	37.85	46.00	-8.15	Average	LINE
8	0.71	22.77	9.62	0.07	9.85	42.31	56.00	-13.69	QP	LINE
9	0.77	18.64	9.62	0.08	9.86	38.20	46.00	-7.80	Average	LINE
10	0.77	23.24	9.62	0.08	9.86	42.80	56.00	-13.20	QP	LINE

Note: 1. Result Level = Read Level +LISN Factor + Pulse Limiter Factor + Cable loss.

2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Test setup: RBW: 200 Hz (9 kHz—150 kHz), 9 kHz (150 kHz—30 MHz), Step size: 4 kHz, Scan time: auto.

4 RADIATED EMISSION TEST

- 4.1 Block Diagram of Test Setup
- (1) Radiated Emission Test-Up Frequency Below 30MHz

(2) Radiated Emission Test-Up Frequency 30MHz~1GHz

(3) Radiated Emission Test-Up Frequency Above 1GHz

4.2 Limits

For unintentional device, according to § 15.109(a), except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (μV/m)
30-88	3	40	100
88-216	3	43.5	150
216-960	3	46	200
Above 960	3	54	500

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the above table.

4.3 Test Procedure

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. Based on the Frequency Generator in the device include 26MHz. The test frequency range from 9KHz to 25GHz per FCC PART 15.33(a).

Note:

Three axes are chosen for pretest, the Y axis is the worst mode for final test.

For battery operated equipment, the equipment tests shall be performed using a new battery.

4.4 Test Result

PASS

All the test modes completed for test. The worst case of Radiated Emission is playing music; the test data of this mode was reported.

Below 1GHz Test Results:

Item (Mark)	Freq (MHz)	Read Level (dBµV)	Antenna Factor (dB/m)	Cable Loss dB	Result Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Detector	Polarization
1	43.35	5.18	14.90	1.02	21.10	40.00	-18.90	Peak	HORIZONTAL
2	178.13	13.90	9.57	2.07	25.54	43.50	-17.96	Peak	HORIZONTAL
3	208.58	19.09	9.34	2.17	30.60	43.50	-12.90	Peak	HORIZONTAL
4	230.91	28.91	10.41	2.26	41.58	46.00	-4.42	Peak	HORIZONTAL
5	612.06	10.31	18.23	4.00	32.54	46.00	-13.46	Peak	HORIZONTAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss.
2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

Item	Freq	Read Level	Antenna Factor	Cable Loss	Result Level	Limit Line	Over Limit	Detector	Polarization
(Mark)	(MHz) 31.73	(dBµV) 6.94	(dB/m) 11.95	dB 0.92	(dBμV/m) 19.81	(dBµV/m) 40.00	(dB) -20.19	Peak	VERTICAL
2	46.34	4.67	14.70	1.04	20.41	40.00	-19.59	Peak	VERTICAL
3	189.74	15.41	10.90	2.12	28.43	43.50	-15.07	Peak	VERTICAL
4	234.17	13.87	10.85	2.28	27.00	46.00	-19.00	Peak	VERTICAL
5	605.66	12.43	18.22	3.98	34.63	46.00	-11.37	Peak	VERTICAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss.
2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

- (1) Measuring frequencies from 9 KHz to the 1 GHz, Radiated emission test from 9KHz to 30MHz was verified, and no any emission was found except system noise floor.
- (2) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (3) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.

Above 1 GHz Test Results: Horizontal CH Low (2402MHz)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Datastar Tuna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
1253.74	53.24	-3.83	49.41	74	-24.59	peak
1253.74	43.25	-3.83	39.42	54	-14.58	AVG
2402.18	97.16	-0.69	96.47	114.0 0	-17.53	peak
2402.18	87.57	-0.69	86.88	94	-7.12	AVG
4804.43	41.25	10.4	51.65	74	-22.35	peak
4804.43	35.15	10.4	45.55	54	-8.45	AVG
7212.6	42.15	12.39	54.54	74	-19.46	peak
7212.6	31.25	12.39	43.64	54	-10.36	AVG

Vertical CH Low (2402MHz)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type	
(MHz)	(dBµ∀)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type	
1452.25	51.32	-3.61	47.71	74	-26.29	peak	
1452.25	40.35	-3.61	36.74	54	-17.26	AVG	
2402.26	97.15	-0.69	96.46	114.0 0	-17.54	peak	
2402.26	86.57	-0.69	85.88	94	-8.12	AVG	
4804.52	46.22	10.4	56.62	74	-17.38	peak	
4804.52	35.15	10.4	45.55	54	-8.45	AVG	
7212.52	42.15	12.39	54.54	74	-19.46	peak	
7212.52	33.65	12.39	46.04	54	-7.96	AVG	

Horizontal CH Middle (2440MHz)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Datastar Tura
(MHz)	(dBµ∨)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
1414.15	50.32	-3.86	46.46	74	-27.54	peak
1414.15	43.52	-3.86	39.66	54	-14.34	AVG
2440.02	99.68	-0.64	99.04	114.0 0	-14.96	peak
2440.05	88.32	-0.64	87.68	94	-6.32	AVG
4882.35	45.62	10.36	55.98	74	-18.02	peak
4882.35	33.65	10.36	44.01	54	-9.99	AVG
7323.65	41.25	12.77	54.02	74	-19.98	peak
7323.65	31.28	12.77	44.05	54	-9.95	AVG

Vertical CH Middle (2440MHz)

Frequency	Frequency Meter Reading Fac		Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµ∀)	(dB)	(dB) (dBμV/m) (dl		(dB)	Detector Type
1762.35	56.35	-2.5	53.85	74	-20.15	peak
1762.35	47.15	-2.5	44.65	54	-9.35	AVG
2440.25	89.35	-0.64	88.71	94	-5.29	AVG
2440.35	98.62	-0.64	97.98	114.0 0	-16.02	peak
4882.13	41.94	10.36	52.3	74	-21.7	peak
4882.13	35.65	10.36	46.01	54	-7.99	AVG
7323.52	41.57	12.77	54.34	74	-19.66	peak
7323.52	33.35	12.77	46.12	54	-7.88	AVG

Horizontal

CH High (2480MHz)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type	
(MHz)	(dBµ∀)	(dBμV) (dB) (dBμV/m) (dBμV/		(dBµV/m)	(dB)	Detector Type	
1754.16	52.13	-2.54	49.59	74	-24.41	peak	
1754.16	40.98	-2.54	38.44	54	-15.56	AVG	
2480.32	102.35	-0.49	101.86	114.0 0	-12.14	peak	
2480.32	90.35	-0.49	89.86	94	-4.14	AVG	
4956.64	41.35	10.47	51.82	74	-22.18	peak	
4956.64	33.35	10.47	43.82	54	-10.18	AVG	
7434.96	40.68	13.08	53.76	74	-20.24	peak	
7434.96	32.65	13.08	45.73	54	-8.27	AVG	

Vertical

CH High (2480MHz)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotostor Typo
(MHz)	(dBµ∨)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
1754.16	52.31	-2.54	49.77	74	-24.23	peak
1754.16	43.66	-2.54	41.12	54	-12.88	AVG
2480.32	99.67	-0.49	99.18	114.0 0	-14.82	peak
2480.32	86.74	-0.49	86.25	94	-7.75	AVG
4956.64	45.62	10.47	56.09	74	-17.91	peak
4956.64	37.62	10.47	48.09	54	-5.91	AVG
7434.96	42.13	13.08	55.21	74	-18.79	peak
7434.96	33.35	13.08	46.43	54	-7.57	AVG

5 BAND EDGE

5.1 Block Diagram of Test Setup

5.2 Limits

FCC PART 15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

5.3 Test Procedure

The band edge compliance of RF radiated emission should be measured by following the guidance in ANSI C63.4 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW to 100KHz and VBM to 300KHz to measure the peak field strength and set RBW to 1MHz and VBW to 10Hz to measure the average radiated field strength. The conducted RF band edge was measured by using a spectrum analyzer. Set span wide enough to capture the highest in-band emission and the emission at the band edge. Set RBW to 100 KHz and VBM to 300 KHz, to measure the conducted peak band edge.

5.4 Test Result PASS

CH: Low 2402MHz Antenna polarization: H

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2390.000	37.20	10.14	47.34	74.00	-26.66	peak			
2	*	2390.000	32.95	10.14	43.09	54.00	-10.91	AVG			

CH: Low 2402MHz Antenna polarization: V

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2390.000	37.99	10.15	48.14	74.00	-25.86	peak			
2	*	2390.000	33.40	10.15	43.55	54.00	-10.45	AVG			

CH: High 2480MHz Antenna polarization: H

No.	M	ι. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2483.500	38.63	9.13	47.76	74.00	-26.24	peak			
2	*	2483.500	34.17	9.13	43.30	54.00	-10.70	AVG			

CH: High 2480MHz Antenna polarization: V

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2483.500	37.42	9.13	46.55	74.00	-27.45	peak			
2	*	2483.500	32.81	9.13	41.94	54.00	-12.06	AVG			

6 OCCUPIED BANDWIDTH MEASUREMENT

6.1 Block Diagram of Test Setup

6.3Test Procedure

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Set EUT as normal operation.
- 3. Based on FCC Part15 C Section 15.239(a): RBW= 10KHz. VBW= 30 KHz, Span=1MHz.
- 4. The useful radiated emission from the EUT was detected by the spectrum analyser with peak detector.

6.3 Test Result

PASS

Channel Frequency	20dB Bandwidth	Result
(MHz)	(MHz)	
2402	1.336	Pass
2440	1.345	Pass
2480	1.346	Pass

CH: 2402MHz

CH: 2440MHz

CH: 2480MHz

7 Antenna Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. Antenna is fixed by enclosure, can not be changed except take apart the product.

<u>Antenna</u>

8 Photograph of Test

8.1 Radiated Emission

8.2 AC Power Line Conducted Emission

