CLAIMS

We claim:

- 1 1. A method of decoding a bitstream encoded via a plurality of encoders, the
- 2 bitstream arranged in portions, the method comprising:
- 3 identifying the portions within the bitstream; and
- 4 routing the identified portions to one of a plurality of decoders based on a
- 5 portion model associated with each identified portion.
- 1 2. The method of claim 1, wherein each portion model is assigned from a plurality
- 2 of predetermined models.
- 1 3. The method of claim 2, wherein if a content of a portion does not match a
- 2 predetermined model, then the portion is assigned a generic model.
- 1 4. The method of claim 3, wherein each decoder of the plurality of decoders is
- 2 optimized for one of the predetermined models.
- 1 5. The method of claim 4, wherein the plurality of decoders further comprises a
- 2 generic decoder.
- 1 6. The method of claim 5, wherein routing the identified portions to one of a
- 2 plurality of decoders based on a portion model associated with each identified portion
- further comprises routing the identified portions to the generic decoder if the identified
- 4 portions have the generic model.
- 1 7. A method of decoding a bitstream divided into portions, each portion being
- 2 encoded by an encoder of a plurality of encoders, the encoder being chosen based on a
- 3 profile of each segment, the method comprising:
- 4 receiving the bitstream at an input switch;
- 5 routing each bitstream portion from the input switch to a decoder of a plurality
- of decoders based on the portion model;

2

- 7 decoding each bitstream portion based on which encoder encoded that portion
- of the bitstream; and 8
- 9 outputting each decoded bitstream portion.
- 1 8. The method of decoding a bistream divided into segment of claim 7, further
- comprising: 2
- 3 receiving an output from each of the plurality of decoders at an output switch;
- and 4
- 5 outputting a decoded bitstream from the output switch.
- The method of claim 8, wherein the portion model is chosen from the group of 9. 1
- 2 models consisting of action, slow, opposing glances, scene detail, establishing shot,
- 3 camera handling, animation mixture, and light changes.
- 1 10. The method of claim 9, wherein the portion model further comprises
- information associated with a source format, scene concepts, properties of the scene,
- 3 camera operations and special effects.
- 1 11. A method of decoding a bitstream divided into segments, each segment being
 - encoded by one encoder of a plurality of encoders, the one encoder being chosen based
- on a profile of each segment and the plurality of encoders including a generic encoder,
- the method comprising: 4
- 5 receiving the bitstream at an input switch;
- routing each bitstream segment from the input switch to one decoder of a 6
- 7 plurality of decoders based on the segment profile, each decoder of the plurality of
- decoders being associated with one of a plurality of profiles and the plurality of decoders 8
- including a generic decoder; 9
- routing the bitstream segment to the generic decoder if the bitstream segment 10
- does not have a profile; and 11

1

2

12	decoding each bitstream segment using one decoder of the plurality of decoders,
13	wherein each segment having a profile is decoded via a decoder associated with that
14	profile, and wherein a segment not having an associated profile is decoded using the
15	generic decoder.
1	12. A method of encoding and decoding video content, the method using a plurality
2	of encoders each associated with one of a plurality of content models and including a
3	generic encoder associated with a generic content model, the method further uses a
4	plurality of decoders each associated with one of the plurality of content models and
5	including a generic decoder associated with the generic content model, the method
6	comprising:
7	extracting a portion from the video content;
8	mapping the portion to associate a model from the plurality of models;
9	if a model is mapped to the portion:
10	encoding the portion using an encoder associated with the
11	portion model;
12	if a model is not mapped to the model:
13	encoding the portion using the generic encoder;
14	transmitting the portion to a switch;
15	if a model is mapped to the portion:
16	routing the portion via the switch to a decoder associated with the
17	portion model; and
18	if a model is not mapped to the portion:
19	routing the portion via the switch to the generic decoder.

13. The method of encoding and decoding video content of claim 12, further comprising:

\sim		
C		

3	connecting an output from each decoder of the plurality of decoders to a second		
4	switch; and		
5	receiving output from each decoder of the plurality of decoders to assemble the		
6	decoded segments for display.		
1	14. A method of decoding a bitstream, the bitstream divided into a plurality of		
2	portions including description portions and video content portions, each video content		
3	portion having an associated model which is either a generic model or a predetermined		
4	model from a plurality of models related to the video content, the method comprising:		
5	determining whether each portion is a description portion or a video content		
6	portion;		
7	if a portion is determined to be a description portion:		
8	decoding the description portion using a first decoder; and		
9	if a portion is determined to be a video content portion:		
10	determining whether the associated model of the video content portion is		
11	the generic model or one of the predetermined models from the plurality of models; and		
12	if the associated model is a generic model:		
13	decoding the portion using a generic decoder; and		
14	if the associated model is one of the predetermined models:		
15	decoding the portion using a decoder chosen from a plurality of		
16	decoders, each decoder of the plurality of decoders being associated with one of the		
17	predetermined models from the plurality of models.		
1	15. The method of decoding a bitstream of claim 14, further comprising:		
2	using decoded descriptions from the description portions to determine whether		
3	the associated model of the video content portion is the general model or one of the		
4	predetermined models from the plurality of models.		
1	16. The method of claim 15, wherein a portion of the bitstream is a segment.		

- 1 17. The method of claim 15, wherein a portion of the bitstream is a subsegment.
- 1 18. The method of claim 15, wherein a portion of the bitstream is a region of
- 2 interest.
- 1 19. A method of decoding a bitstream, the bitstream being divided into a plurality of
- 2 video content segments, each video content segment having an associated model which
- 3 is either a generic model or a predetermined model from a plurality of models related to
- 4 the video content, the method comprising:
- determining whether the associated model of each video content segment is the
- 6 generic model or one of the predetermined models from the plurality of models; and
- 7 if the associated model is a generic model:
- 8 decoding the segment using a generic decoder; and
- 9 if the associated model is one of the predetermined models:
 - decoding the segment using a decoder chosen from a plurality of
 - decoders, each decoder of the plurality of decoders being associated with one of the
- 12 predetermined models from the plurality of models.
 - 1 20. The method of decoding a bitstream of claim 19, wherein the predetermined
- 2 models relate to concepts of a segment, properties of a segment, camera operation in a
- 3 segment or special effects in a segment.
- 1 21. A decoded bitstream, decoded according to the method of claim 1.
- 1 22. A decoded bitstream, decoded according to the method of claim 7.
- 1 23. A decoded bitstream, decoded according to the method of claim 11.
- 1 24. A decoded bitstream, decoded according to the method of claim 12.
- 1 25. A decoded bitstream, decoded according to the method of claim 14.

1

26. A decoded bitstream, decoded according to the method of claim 19.