Energy Scaling Laws for Distributed Inference in Random Networks

A. Anandkumar¹ J. E. Yukich² Lang Tong¹ A. Swami³

¹School of Elect. & Comput. Engineering, Cornell University, Ithaca, NY.
²School of Mathematics, Lehigh University, Bethlehem, Pa.
³Army Research Laboratory, Aldephi, MD

Allerton 2008 24th Sept., 2008

Distributed Statistical Inference

Classical distributed inference

- Many-to-one data fusion
- Rate constraints on fusion links
- Quantization rule at local sensors
- Inference rule at fusion center

Distributed Statistical Inference

Classical distributed inference

- Many-to-one data fusion
- Rate constraints on fusion links
- Quantization rule at local sensors
- Inference rule at fusion center

Sensor networks for inference

- Multihop data fusion
- Energy constraints
- Transmission and routing policies
- Quantization and inference rules

Distributed Statistical Inference

Classical distributed inference

- Many-to-one data fusion
- Rate constraints on fusion links
- Quantization rule at local sensors
- Inference rule at fusion center

Sensor networks for inference

- Multihop data fusion
- Energy constraints
- Transmission and routing policies
- Quantization and inference rules

Energy Consumption for Distributed Inference

Outline

- Introduction
- Models and Assumptions
- 3 Problem Formulation & Summary of Results
- 4 Independent Measurements
- 5 Markov Random Field Measurements
- 6 Conclusion & Outlook

Propagation model and assumptions

Energy cost per sample: $\mathcal{E} = O(d^{\nu}), \quad 2 \leq \nu \leq 4$, ν is Path Loss.

Network Model and Assumptions

Network Model

- Network has a fixed node density $\lambda = \frac{n}{\pi R^2}$: $R = O(\sqrt{n})$.
- Sensor locations $V_i \overset{\text{i.i.d.}}{\sim} \sqrt{\frac{n}{\lambda}} \kappa(x), i=1,\cdots,n$ (e.g., Uniform) • $\kappa(x)$ has support on unit square
- Adjustable transmission power for multihop or direct transmission.
- For connectivity, $\max \mathcal{E}_i$, $i \in \mathbf{V}_n$ grows at least at $O((\sqrt{\log n})^{\nu})$.

Inference Model and Assumptions

Binary Hypothesis Testing

- Location $\mathbf{V}_n \stackrel{\Delta}{=} (V_1, \cdots, V_n)$ and observations $\mathbf{Y}_n \stackrel{\Delta}{=} (Y_1, \cdots, Y_n)$.
- $\mathcal{H}_k: (\mathbf{Y}_n, \mathbf{V}_n) \sim f_k(\mathbf{y}_n | \mathbf{v}_n) \kappa(\mathbf{v}_n), \quad k = 0, 1$

 \mathbf{Y}_n : Markov random field with dependency graph $\mathfrak{G}_k = (\mathbf{V}_n, E_k)$

$$-\log f_k(\mathbf{y}_n|\mathbf{v}_n;\mathcal{G}_{n,k}) = \sum_{c \in \mathcal{C}_k} \Psi_{k,c}(\mathbf{y}_c)$$

 $\mathcal{C}_{n,k}$: collection of maximal cliques, $\Psi_{k,c}>0$: clique potentials

Outline

- Introduction
- 2 Models and Assumptions
- 3 Problem Formulation & Summary of Results
- 4 Independent Measurements
- Markov Random Field Measurements
- 6 Conclusion & Outlook

Energy Consumption For Inference

- Require optimal inference at the fusion center
- Examine average energy expenditure: $\bar{\mathcal{E}}_n = \frac{1}{n} \sum_i \mathcal{E}_i$

Goal: find a scalable data fusion strategy for optimal inference

Finite Scaling for Local Spatial Dependencies

Finite Scaling for Local Spatial Dependencies

Finite Disk Graph: Yes

Finite Scaling for Local Spatial Dependencies

Finite Disk Graph: Yes

Complete Dependency: No

Finite Scaling for Local Spatial Dependencies

Finite Disk Graph: Yes

Complete Dependency: No

Finite Average Energy Scaling

For Stabilizing Dependency Graphs e.g., k-NNG, disk graph

• Construction of a suboptimal fusion scheme DFMRF and its analysis

Finite Average Energy Scaling

For Stabilizing Dependency Graphs e.g., k-NNG, disk graph

Construction of a suboptimal fusion scheme DFMRF and its analysis

Additional Results

- Lower Bound on Energy Consumption for Optimal Inference
- Constant Factor Approximation Ratio for DFMRF

Finite Average Energy Scaling

For Stabilizing Dependency Graphs e.g., k-NNG, disk graph

• Construction of a suboptimal fusion scheme DFMRF and its analysis

Additional Results

- Lower Bound on Energy Consumption for Optimal Inference
- Constant Factor Approximation Ratio for DFMRF

Influence of Node Placement Distribution κ

Finite Average Energy Scaling

For Stabilizing Dependency Graphs e.g., k-NNG, disk graph

• Construction of a suboptimal fusion scheme DFMRF and its analysis

Additional Results

- Lower Bound on Energy Consumption for Optimal Inference
- Constant Factor Approximation Ratio for DFMRF

Influence of Node Placement Distribution κ

Optimality of Uniform Placement Over IID Placements For Scale-Invariant Dependency (k-NNG) and Path loss ≥ 2

Outline

- Introduction
- 2 Models and Assumptions
- 3 Problem Formulation & Summary of Results
- 4 Independent Measurements
- Markov Random Field Measurements
- 6 Conclusion & Outlook

Optimal Fusion: Independent Case

IID Measurements

$$\mathcal{H}_k: \mathbf{Y}_n \sim \prod_i f_k(y_i)$$

Sufficient Statistic

$$L(\mathbf{y}_n) = \log \frac{f_0(\mathbf{y}_n)}{f_1(\mathbf{y}_n)} = \sum_i L_i(y_i)$$

Optimal data fusion is LLR aggregation over MST

- Each node must transmit at least once
- ullet MST minimizes edge sum for spanning trees: $\min \sum_i |e_i|^
 u$
- Fusion rule: $q_i = \sum_{j \in \mathcal{N}(i)} q_j + L_i(Y_i)$

Optimal fusion: energy analysis

Average energy per node

$$\bar{\mathcal{E}}_n = \frac{1}{n} \sum_{e \in \mathsf{MST}} |e|^{\nu}$$

LLN: Steele'88, Penrose-Yukich'03

$$\frac{1}{n} \sum_{e \in \mathsf{MST}} |e|^{\nu} \overset{L^2}{\to} \bar{\mathcal{E}}_{\infty}$$

Optimal fusion: energy analysis

Average energy per node

$$\bar{\mathcal{E}}_n = \frac{1}{n} \sum_{e \in \mathsf{MST}} |e|^{\nu}$$

LLN: Steele'88, Penrose-Yukich'03

$$\frac{1}{n} \sum_{e \in \mathsf{MST}} |e|^{\nu} \overset{L^2}{\to} \bar{\mathcal{E}}_{\infty}$$

Scaling Constant for κ bounded away from $0\ \&\ \infty$

$$\bar{\mathcal{E}}_{\infty} = \zeta(\nu; \mathrm{MST}) \int\limits_{[-\frac{1}{2}, \frac{1}{2}]^2} \kappa(x)^{1-\frac{\nu}{2}} dx, \quad \zeta(\nu; \mathrm{MST}) = \frac{1}{2} \mathbb{E} \left[\sum_{\substack{e \in \mathrm{MST}(\mathcal{P}_1 \cup \mathbf{0}) \\ \mathbf{0} \subset e}} |e|^{\nu} \right]$$

Key idea: global property to local property

Scaling Constant: Law of Large Numbers (Penrose & Yukich '03)

$$\bar{\mathcal{E}}_{\infty} = \zeta(\nu; \mathrm{MST}) \int\limits_{[-\frac{1}{2}, \frac{1}{2}]^2} \kappa(x)^{1-\frac{\nu}{2}} dx, \quad \zeta(\nu; \mathrm{MST}) = \frac{1}{2} \mathbb{E} \left[\sum_{\substack{e \in \mathrm{MST}(\mathcal{P}_1 \cup \mathbf{0}) \\ \mathbf{0} \subset e}} |e|^{\nu} \right]$$

Normalized sum of edge weights

$$\frac{1}{n} \sum_{e \in MST(\mathbf{V}_n)} |e|^{\nu} \longrightarrow$$

Expectation for edges of origin of Poisson process

$$\bar{\epsilon}_{\infty}$$

Outline

- Introduction
- 2 Models and Assumptions
- Problem Formulation & Summary of Results
- 4 Independent Measurements
- 5 Markov Random Field Measurements
- 6 Conclusion & Outlook

Fusion for Markov random field

Null Hypothesis

Alternative Hypothesis

Binary hypothesis on MRF

for
$$k=0,1, \quad \mathcal{H}_k: \mathbf{Y}_n \sim f_k(\mathbf{y}_{\mathbf{V}}; \mathcal{G}_k) = \exp\{-\sum_{c \in \mathcal{C}_k} \Psi_{k,c}(\mathbf{y}_c)\}$$

Fusion for Markov random field

Null Hypothesis

Alternative Hypothesis

Binary hypothesis on MRF

for
$$k = 0, 1$$
, $\mathcal{H}_k : \mathbf{Y}_n \sim f_k(\mathbf{y}_{\mathbf{V}}; \mathcal{G}_k) = \exp\{-\sum_{c \in \mathcal{C}_k} \Psi_{k,c}(\mathbf{y}_c)\}$

Minimal Sufficient Statistic:
$$\mathcal{G} \stackrel{\Delta}{=} \mathcal{G}_0 \bigcup \mathcal{G}_1 = (\mathbf{V}, \mathcal{E}_0 \bigcup \mathcal{E}_1)$$

$$L_{\mathcal{G}}(\mathbf{Y}_{\mathbf{V}}) = \log \frac{f_0(\mathbf{Y}_{\mathbf{V}}; \mathcal{G}_0)}{f_1(\mathbf{Y}_{\mathbf{V}}; \mathcal{G}_1)} = \sum_{c \in \mathcal{C}} \phi_c(\mathbf{Y}_c),$$

where ${\mathfrak C}$ is the collection of maximal cliques of ${\mathfrak G}$

Fusion for Markov random field

Null Hypothesis

Alternative Hypothesis

Effective MRF For LLR

Binary hypothesis on MRF

for
$$k = 0, 1$$
, $\mathcal{H}_k : \mathbf{Y}_n \sim f_k(\mathbf{y}_{\mathbf{V}}; \mathcal{G}_k) = \exp\{-\sum_{c \in \mathcal{C}_k} \Psi_{k,c}(\mathbf{y}_c)\}$

Minimal Sufficient Statistic:
$$\mathcal{G} \stackrel{\Delta}{=} \mathcal{G}_0 \bigcup \mathcal{G}_1 = (\mathbf{V}, \mathcal{E}_0 \bigcup \mathcal{E}_1)$$

$$L_{\mathcal{G}}(\mathbf{Y}_{\mathbf{V}}) = \log \frac{f_0(\mathbf{Y}_{\mathbf{V}}; \mathcal{G}_0)}{f_1(\mathbf{Y}_{\mathbf{V}}; \mathcal{G}_1)} = \sum_{c \in \mathcal{C}} \phi_c(\mathbf{Y}_c),$$

where ${\mathfrak C}$ is the collection of maximal cliques of ${\mathfrak G}$

Optimization Statement: π^*

- ullet Minimize sum routing costs s.t. $L_{\mathcal{G}}(\mathbf{Y}_n) = \sum_{c \in \mathcal{C}} \Phi_c(\mathbf{Y}_c)$ is delivered
- Steiner tree reduction under local processor assignment: NP-hard

Optimization Statement: π^*

- \bullet Minimize sum routing costs s.t. $L_{\mathfrak{G}}(\mathbf{Y}_n) = \sum\limits_{c \in \mathcal{C}} \Phi_c(\mathbf{Y}_c)$ is delivered
- Steiner tree reduction under local processor assignment: NP-hard

Optimization Statement: π^*

- \bullet Minimize sum routing costs s.t. $L_{\mathcal{G}}(\mathbf{Y}_n) = \sum\limits_{c \in \mathcal{C}} \Phi_c(\mathbf{Y}_c)$ is delivered
- Steiner tree reduction under local processor assignment: NP-hard

Optimization Statement: π^*

- \bullet Minimize sum routing costs s.t. $L_{\mathfrak{G}}(\mathbf{Y}_n) = \sum\limits_{c \in \mathcal{C}} \Phi_c(\mathbf{Y}_c)$ is delivered
- Steiner tree reduction under local processor assignment: NP-hard

Optimization Statement: π^*

- \bullet Minimize sum routing costs s.t. $L_{\mathfrak{G}}(\mathbf{Y}_n) = \sum\limits_{c \in \mathcal{C}} \Phi_c(\mathbf{Y}_c)$ is delivered
- Steiner tree reduction under local processor assignment: NP-hard

Optimal Fusion Scheme for Inference

Optimization Statement: π^*

- \bullet Minimize sum routing costs s.t. $L_{\mathfrak{G}}(\mathbf{Y}_n) = \sum\limits_{c \in \mathcal{C}} \Phi_c(\mathbf{Y}_c)$ is delivered
- Steiner tree reduction under local processor assignment: NP-hard

Data Fusion for Markov random field: DFMRF

Optimal Fusion Scheme for Inference

Optimization Statement: π^*

- \bullet Minimize sum routing costs s.t. $L_{\mathcal{G}}(\mathbf{Y}_n) = \sum\limits_{c \in \mathcal{C}} \Phi_c(\mathbf{Y}_c)$ is delivered
- Steiner tree reduction under local processor assignment: NP-hard

Data Fusion for Markov random field: DFMRF

Optimal Fusion Scheme for Inference

Optimization Statement: π^*

- ullet Minimize sum routing costs s.t. $L_{\mathcal{G}}(\mathbf{Y}_n) = \sum_{c \in \mathcal{C}} \Phi_c(\mathbf{Y}_c)$ is delivered
- Steiner tree reduction under local processor assignment: NP-hard

Data Fusion for Markov random field: DFMRF

DFMRF

- Local processor assignment and MST aggregation
- Total energy consumption = Data Forwarding + Aggregation

Fusion on Markov random field: energy scaling law

Assumptions

- Dependency G translation & scale invariant, stablizing (k-NNG)
- ullet Set of feasible links is a u-energy spanner for finite constant u
 - ightharpoonup SP energy no more than u times SP energy on complete graph
- \bullet Placement distribution κ is bounded away from 0 and ∞ on $[-\frac{1}{2},\frac{1}{2}]^2$

Fusion on Markov random field: energy scaling law

Assumptions

- Dependency $\mathfrak G$ translation & scale invariant, stablizing (k-NNG)
- ullet Set of feasible links is a u-energy spanner for finite constant u
 - ightharpoonup SP energy no more than u times SP energy on complete graph
- \bullet Placement distribution κ is bounded away from 0 and ∞ on $[-\frac{1}{2},\frac{1}{2}]^2$

Scaling Result for DFMRF

$$\limsup_{n \to \infty} \frac{\mathcal{E}(\mathsf{DFMRF})}{n} \quad \leq \quad \lambda^{-\frac{\nu}{2}} \underbrace{\left[u \, \zeta(\nu; \mathfrak{G}) + \underbrace{\zeta(\nu; \, \mathsf{MST})}_{\mathsf{MST \, aggregation}} \right] \int\limits_{[-\frac{1}{2}, \frac{1}{2}]^2} \kappa(x)^{1-\frac{\nu}{2}} dx},$$

$$\zeta(\nu; \mathfrak{G}) \quad \stackrel{\triangle}{=} \quad \frac{1}{2} \mathbb{E} \left[\sum_{\substack{e \in \mathcal{G}(\mathcal{P}_1 \cup \mathbf{0}) \\ \mathbf{0} \subseteq e}} |e|^{\nu} \right]$$

Key ideas

Bound on Energy for Forwarding to Processors Proc

$$\mathcal{E}(\mathsf{Forward}) \leq \sum_{c \in \mathcal{C}(\mathbf{V})} \sum_{i \subset c} \mathsf{SP}(i, \mathsf{Proc}(c)) \leq u \sum_{c \in \mathcal{C}(\mathbf{V})} \sum_{i \subset c} |i, \mathsf{Proc}(c)|^{\nu} \leq u \sum_{e \in \mathcal{G}} |e|^{\nu}$$

$$\frac{1}{n} \sum_{e \in \mathfrak{I}(\mathbf{V}_n)} |e|^{\nu}$$

Expectation for edges of origin of Poisson process

$$\frac{1}{2}\mathbb{E}\left[\sum_{\substack{e \in \mathbb{S}(\mathcal{P}_1 \cup 0) \\ \mathbf{0} \subset e}} |e|^{\nu}\right] \int_{[-\frac{1}{2}, \frac{1}{2}]^2} \kappa(x)^{1-\frac{\nu}{2}} dx$$

$$\frac{1}{n} \sum_{e \in \mathcal{G}(\mathbf{V}_n)} |e|^{\nu} \to \text{constant}$$

$$\frac{1}{n} \sum_{e \in \mathfrak{G}(\mathbf{V}_n)} |e|^{\nu} \to \mathsf{constant}$$

$$\frac{1}{n} \sum_{e \in \mathcal{G}(\mathbf{V}_n)} |e|^{\nu} \to \text{constant}$$

$$\frac{1}{n} \sum_{e \in \mathfrak{G}(\mathbf{V}_n)} |e|^{\nu} \to \mathsf{constant}$$

$$\frac{1}{n} \sum_{e \in \mathfrak{G}(\mathbf{V}_n)} |e|^{\nu} \to \mathsf{constant}$$

$$\frac{1}{n} \sum_{e \in \mathfrak{G}(\mathbf{V}_n)} |e|^{\nu} \to \mathsf{constant}$$

$$\frac{1}{n} \sum_{e \in \mathfrak{G}(\mathbf{V}_n)} |e|^{\nu} \to \mathsf{constant}$$

Scaling Law for Optimal Fusion

Lower and Upper Bounds For Any Network

$$\bar{\mathcal{E}}_n(\mathsf{MST}(\mathbf{V}_n)) \leq \bar{\mathcal{E}}_n(\pi^*(\mathbf{V}_n)) \leq \bar{\mathcal{E}}_n(\mathsf{DFMRF}(\mathbf{V}_n))$$

Bounds For Large Random Networks Under 9 Dependency

$$\zeta(\nu;\mathsf{MST}) \leq \lim_{n \to \infty} \frac{\mathcal{E}_n(\pi^*(\mathbf{V}_n))}{\lambda^{-\frac{\nu}{2}} \int\limits_{[-\frac{1}{2},\frac{1}{2}]^2} \kappa(x)^{1-\frac{\nu}{2}} dx} \leq [u\,\zeta(\nu;\mathfrak{G}) + \zeta(\nu;\mathsf{MST})]$$

Finite Average Energy Scaling For Distributed Inference

Approximation ratio of DFMRF for Large Random Networks

$$\limsup_{n \to \infty} \frac{\mathcal{E}(\mathsf{DFMRF}(\mathbf{V}_n))}{\mathcal{E}(\pi^*(\mathbf{V}_n))} \le \left(1 + u \frac{\zeta(\nu; \mathcal{G})}{\zeta(\nu; \mathsf{MST})}\right)$$

Constant Factor Approximation for DFMRF

Outline

- Introduction
- 2 Models and Assumptions
- 3 Problem Formulation & Summary of Results
- 4 Independent Measurements
- Markov Random Field Measurements
- 6 Conclusion & Outlook

Summary

Network graph
Feasible Links for Communication

Dependency graph Correlation Model of Data

Summary

Network graph
Feasible Links for Communication

Dependency graph Correlation Model of Data

DFMRF Scheme

Forwarding on shortest path

Aggregation on MST

Conclusion and future work

Concluding remarks

- Energy consumption is a key design parameter for large wireless sensor networks.
- Sensor location is a new source of randomness in distributed inference
- Asymptotic techniques are useful in overall network design.

Conclusion and future work

Concluding remarks

- Energy consumption is a key design parameter for large wireless sensor networks.
- Sensor location is a new source of randomness in distributed inference
- Asymptotic techniques are useful in overall network design.

Future work

- General behavior of error exponents in MRF
- Impact of sensor distribution on energy-performance tradeoff.

References

http://acsp.ece.cornell.edu/members/anima.html

Aggregation and Error Exponents in Large Random Networks

- A. Anandkumar, J.E. Yukich, L. Tong, and A. Swami "Energy Scaling Laws for Distributed Inference in Random Networks," sub. to JSAC, Aug.08. Available on Arxiv
- A. Anandkumar, L. Tong, and A. Swami, "Detection of Gauss-Markov random fields with nearest-neighbor dependency," accepted to IEEE Tran. Information Theory, Jul. 08
- A. Anandkumar, L. Tong, and A. Swami, "Optimal Node Density for Detection in Energy Constrained Random Networks," accepted to IEEE Tran. Signal Processing

Minimum Cost Data Fusion in Arbitrary Networks

- A. Anandkumar, L. Tong, A. Swami, A. Ephremides, "Minimum Cost Data Aggregation with Localized Processing for Statistical Inference," INFOCOM 2008
- A. Anandkumar, A. Ephremides, L. Tong, and A. Swami, "Minimum Cost Routing with Local Processing for Distributed Statistical Inference," in handbook on Array Processing and Sensor Networks, (S. Haykin and R. Liu, eds.), 2008.

Cost-Performance Tradeoff in Arbitrary Networks

 A. Anandkumar, L. Tong, A. Swami, and A. Ephremides, "Cost-Performance Tradeoff in Multi-hop Aggregation for Statistical Inference," in Proc. IEEE ISIT, July 2008