AN INFINITE SIMPLE GROUP GENERATED BY 4 INVOLUTIONS

STEFAN KOHL

ABSTRACT. We present an infinite simple group which is generated by 4 involutions.

1. Introduction

Let $G := \langle g, h_1, h_2, h_3 \rangle < \operatorname{Sym}(\mathbb{Z})$, where

$$g: n \mapsto \begin{cases} 2n+1 & \text{if } n \in 0(2), \\ (n-1)/2 & \text{if } n \in 1(4), \\ n & \text{if } n \in 3(4), \end{cases} h_1: n \mapsto \begin{cases} n+1 & \text{if } n \in 0(4), \\ n-1 & \text{if } n \in 1(4), \\ n & \text{otherwise,} \end{cases}$$

$$h_2: n \mapsto \begin{cases} n+1 & \text{if } n \in 1(4), \\ n-1 & \text{if } n \in 2(4), \\ n & \text{otherwise}, \end{cases} \quad h_3: n \mapsto \begin{cases} n+1 & \text{if } n \in 2(4), \\ n-1 & \text{if } n \in 3(4), \\ n & \text{otherwise}. \end{cases}$$

In this note, we show that G is an infinite simple group.

We need a more convenient way to write down elements of our group G:

Definition 1.1. Given disjoint residue classes $r_1(m_1)$ and $r_2(m_2)$ of \mathbb{Z} , we define the class transposition $(r_1(m_1), r_2(m_2)) \in \operatorname{Sym}(\mathbb{Z})$ as the permutation which interchanges $r_1 + km_1$ and $r_2 + km_2$ for each integer k and which fixes all other points. Here we assume that $0 \leqslant r_1 < m_1$ and that $0 \leqslant r_2 < m_2$.

In this notation, we have $G = \langle (0(2), 1(4)), (0(4), 1(4)), (1(4), 2(4)), (2(4), 3(4)) \rangle$.

2. The Simplicity of the Group G

In order to prove the simplicity of G, we need the following lemma:

Lemma 2.1. The group G contains all class transpositions which interchange residue classes modulo powers of 2.

Proof. We observe that $h_1 = (0(4), 1(4))$, $h_2 = (1(4), 2(4))$ and $h_3 = (2(4), 3(4))$ generate a symmetric group of degree 4, which acts naturally on the residue classes (mod 4). We denote this group by H. It is $(0(2), 1(2)) = h_1 \cdot h_3 \in H$. We put

$$\begin{split} g_1 &:= (0(2), 1(4)) = g \in G, \\ g_2 &:= (0(2), 3(4)) = g^{h_2 \cdot h_3 \cdot h_2} \in G, \\ g_3 &:= (1(2), 0(4)) = g^{h_1 \cdot h_3} \in G, \text{ and } \\ g_4 &:= (1(2), 2(4)) = g^{h_3 \cdot h_2 \cdot h_1} \in G. \end{split}$$

2000 Mathematics Subject Classification. 20E32, 20B22.

2 STEFAN KOHL

and conclude that G contains the set

```
\mathcal{C}_4 = \{(0(2), 1(2)), (0(2), 1(4)), (0(2), 3(4)), (1(2), 0(4)), (1(2), 2(4)), (0(4), 1(4)), (0(4), 2(4)), (0(4), 3(4)), (1(4), 2(4)), (1(4), 3(4)), (2(4), 3(4))\}
```

of all 11 class transpositions which interchange residue classes modulo 2 or 4.

Let $\tau := (r_1(2^{\bar{k}_1}), r_2(2^{k_2}))$ be a class transposition. We need to show that $\tau \in G$. Without loss of generality, we assume that $\tau \notin C_4$. We describe an algorithm to turn τ into an element of C_4 by successive conjugation by elements of the set $\{g_1, g_2, g_3, g_4, h_1, h_2\}$. Throughout the algorithm, we write $\tau = (r_1(2^{k_1}), r_2(2^{k_2}))$, where $k_1 \leqslant k_2$:

- (1) If $k_1 = 1$, then proceed as follows:
 - (a) If $r_1 = 0$ and $r_2(2^{k_2}) \subset 1(4)$, then put $\tau := \tau^{g_2}$.
 - (b) If $r_1 = 0$ and $r_2(2^{k_2}) \subset 3(4)$, then put $\tau := \tau^{g_1}$.
 - (c) If $r_1 = 1$ and $r_2(2^{k_2}) \subset 0(4)$, then put $\tau := \tau^{g_4}$.
 - (d) If $r_1 = 1$ and $r_2(2^{k_2}) \subset 2(4)$, then put $\tau := \tau^{g_3}$.

Now the moduli of both residue classes interchanged by τ are least 4.

- (2) While $\tau \notin C_4$, repeat the following:
 - (a) If one of the residue classes $r_1(2^{k_1})$ and $r_2(2^{k_2})$ is a subset of 0(2) and the other is a subset of 1(2), then proceed as follows:
 - (i) Let $h \in \{h_1, h_2\}$ be the class transposition whose support is a superset of exactly one of the residue classes $r_1(2^{k_1})$ and $r_2(2^{k_2})$.
 - (ii) Put $\tau := \tau^h$.

Now the support of τ is a subset of either 0(2) or 1(2).

- (b) We are now in the position that we can halve the modulus of at least one of the residue classes which are interchanged by τ (remember our choice $k_2 \ge k_1$):
 - (i) If $r_2(2^{k_2}) \subset 1(4)$, then put $\tau := \tau^{g_1}$.
 - (ii) If $r_2(2^{k_2}) \subset 3(4)$, then put $\tau := \tau^{g_2}$.
 - (iii) If $r_2(2^{k_2}) \subset O(4)$, then put $\tau := \tau^{g_3}$.
 - (iv) If $r_2(2^{k_2}) \subset 2(4)$, then put $\tau := \tau^{g_4}$.

Since each iteration of the loop in Step (2) halves the modulus of at least one of the residue classes which are interchanged by τ , this algorithm terminates. Therefore our original τ is an element of G, as claimed.

Now the announced result follows from Lemma 2.1 and Corollary 3.7 in [1]:

Theorem 2.2. The group G is simple.

REFERENCES

1. Stefan Kohl, *A simple group generated by involutions interchanging residue classes of the integers*, 2007, preprint, available at http://www.cip.mathematik.uni-stuttgart.de/~kohlsn/preprints/simplegp.pdf.

Institut für Geometrie und Topologie, Pfaffenwaldring 57, Universität Stuttgart 70550 Stuttgart, Germany

 $\emph{E-mail address}$: kohl@mathematik.uni-stuttgart.de