Taylor's Theorem

Created by Mr. Francis Hungon 20110422.

Last updated: 12 February 2022

Theorem 1 (Lagrange form)

Suppose $f^{(n-1)}(x)$ is continuous on [a, b] and differentiable on (a, b),

then
$$\forall x \in (a, b) \exists c \in (a, x)$$
 such that $f(x) = f(a) + \sum_{r=1}^{n-1} \frac{f^{(r)}(a)}{r!} (x-a)^r + \frac{f^{(n)}(c)}{n!} (x-a)^n$

Proof: Let $g(t) = (t - a)^n$; Note: $g^{(r)}(a) = 0$ for $0 \le r \le n$ and $g^{(n)}(t) = n!$

Define
$$F(t) = f(t) + \sum_{r=1}^{n-1} \frac{f^{(r)}(t)}{r!} (x-t)^r$$
; $G(t) = g(t) + \sum_{r=1}^{n-1} \frac{g^{(r)}(t)}{r!} (x-t)^r$.

F, G satisfies the conditions of Cauchy's mean value theorem then $\exists c \in (a, x)$ such that [F(x) - F(a)]G'(c) = [G(x) - G(a)]F'(c)

$$F(t) = f(t) + f'(t)(x - t) + \frac{f^{(2)}(t)}{2!}(x - t)^2 + \dots + \frac{f^{(n-1)}(t)}{(n-1)!}(x - t)^{n-1}$$

$$\mathbf{F'}(t) = \mathbf{f'}(t) - \mathbf{f'}(t) + \mathbf{f''}(t)(x-t) - \mathbf{f''}(t)(x-t) + \frac{\mathbf{f}^{(3)}\left(t\right)}{2!}\left(x-t\right)^2 - \frac{\mathbf{f}^{(3)}\left(t\right)}{2!}\left(x-t\right)^2 + \dots + \frac{\mathbf{f}^{(n)}\left(t\right)}{\left(n-1\right)!}\left(x-t\right)^{n-1}$$

$$= \frac{f^{(n)}(t)}{(n-1)!} (x-t)^{n-1}$$

$$G'(t) = \frac{g^{(n)}(t)}{(n-1)!} (x-t)^{n-1} = \frac{n!}{(n-1)!} (x-t)^{n-1} = n(x-t)^{n-1}$$

$$\left[f(x) - f(a) - \sum_{r=1}^{n-1} \frac{f^{(r)}(a)}{r!} (x-a)^r \right] n(x-c)^{n-1} = \left[(x-a)^n - 0 \right] \frac{f^{(n)}(c)}{(n-1)!} (x-c)^{n-1}$$

$$f(x) = f(a) + \sum_{r=1}^{n-1} \frac{f^{(r)}(a)}{r!} (x-a)^r + \frac{f^{(n)}(c)}{n!} (x-a)^n. \text{ Q.E.D.}$$

$$f(a) + \sum_{r=1}^{n-1} \frac{f^{(r)}(a)}{r!} (x-a)^r$$
 is called the **Taylor Polynomial of degree** $n-1$.

$$\frac{f^{(n)}(c)}{n!}(x-a)^n$$
 is the remainder of Lagrange form

Theorem 2 (Cauchy form)

Suppose $f^{(n-1)}(x)$ is continuous on [a, b] and differentiable on (a, b),

then
$$\forall x \in (a, b) \exists c \in (a, x)$$
 such that $f(x) = f(a) + \sum_{r=1}^{n-1} \frac{f^{(r)}(a)}{r!} (x-a)^r + \frac{f^{(n)}(c)}{(n-1)!} (x-a) (x-c)^{n-1}$

Proof: Define
$$F(t) = f(x) - f(t) - \sum_{r=1}^{n-1} \frac{f^{(r)}(t)}{r!} (x-t)^r$$

F'(t) =
$$-\frac{f^{(n)}(t)}{(n-1)!}(x-t)^{n-1}$$

By mean value theorem, $\exists c \in (a, x)$ such that $\frac{F(x) - F(a)}{x - a} = F'(c)$

$$\frac{0-f(x)+f(a)+\sum_{r=1}^{n-1}\frac{f^{(r)}(a)}{r!}(x-a)^r}{x-a}=-\frac{f^{(n)}(c)}{(n-1)!}(x-c)^{n-1}$$

$$f(x) = f(a) + \sum_{r=1}^{n-1} \frac{f^{(r)}(a)}{r!} (x-a)^r + \frac{f^{(n)}(c)}{(n-1)!} (x-a) (x-c)^{n-1}. Q.E.D.$$

Corollary (Maclaurin's Theorem)

Put
$$a = 0$$
, then $\forall x \in (a, b) \exists c \in (a, x)$ such that $f(x) = f(0) + \sum_{r=1}^{n-1} \frac{f^{(r)}(0)}{r!} x^r + \frac{f^{(n)}(c)}{n!} x^n$.

Examples

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n-1}}{(2n-1)!} + \dots$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots$$

$$\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + (-1)^{n-1} \frac{x^{2n-1}}{2n-1} + \dots$$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} - \dots + \frac{x^n}{n!} + \dots$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^n \frac{x^n}{n} + \dots; |x| < 1 \text{ (ln } 2 = 1 - \frac{1}{2} + \frac{1}{3} - \dots + (-1)^n \frac{1}{n} + \dots)$$

$$-\ln(1-x) = x + \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n} + \dots; |x| < 1$$

$$\ln\left(\frac{1-x}{1+x}\right) = 2\left(x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n} + \dots\right); |x| < 1$$

Theorem 3 (Integral form) 1984 Paper 2 Q2, 2003 Paper 2 Q12

If f is n times continuously differentiable on [a - h, a + h], then

$$f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (x-a)^k + \int_a^x f^{(n)}(t) \frac{(x-t)^{n-1}}{(n-1)!} dt$$

Proof: Let
$$I_m = \frac{1}{(m-1)!} \int_0^x (x-t)^{m-1} f^{(m)}(t) dt$$
, $m \ge 1$

$$I_{m+1} = \frac{1}{m!} \int_0^x (x-t)^m f^{(m+1)}(t) dt = \frac{1}{m!} \int_0^x (x-t)^m df^{(m)}(t)$$

$$= \frac{1}{m!} \Big[(x-t)^m f^{(m)}(t) \Big]_0^x - \frac{1}{m!} \int_0^x f^{(m)}(t) d(x-t)^m \text{ (integration by parts)}$$

$$= -\frac{1}{m!} x^m f^{(m)}(0) + \frac{1}{(m-1)!} \int_0^x (x-t)^{m-1} f^{(m)}(t) dt$$

$$= I_m - \frac{\mathbf{f}^{(m)}(0)}{m!} x^m$$

$$I_{n} = I_{n-1} - \frac{f^{(n-1)}(0)}{(n-1)!} x^{n-1}$$

$$= I_{n-2} - \frac{f^{(n-2)}(0)}{(n-2)!} x^{n-2} - \frac{f^{(n-1)}(0)}{(n-1)!} x^{n-1}$$

=

$$= I_1 - \frac{f^{(1)}(0)}{1!} x - \dots - \frac{f^{(n-2)}(0)}{(n-2)!} x^{n-2} - \frac{f^{(n-1)}(0)}{(n-1)!} x^{n-1}$$

On the other hand, $I_1 = \frac{1}{1!} \int_0^x (x - t)^{1-1} f^{(1)}(t) dt = \int_0^x f'(t) dt = \int_0^x df(t) = f(x) - f(0)$

$$\therefore I_n = f(x) - f(0) - \frac{f^{(1)}(0)}{1!}x - \dots - \frac{f^{(n-2)}(0)}{(n-2)!}x^{n-2} - \frac{f^{(n-1)}(0)}{(n-1)!}x^{n-1}$$

$$f(x) = f(0) + \frac{f^{(1)}(0)}{1!}x + \dots + \frac{f^{(n-2)}(0)}{(n-2)!}x^{n-2} + \frac{f^{(n-1)}(0)}{(n-1)!}x^{n-1} + \frac{1}{(n-1)!}\int_a^x f^{(n)}(t)(x-t)^{n-1} dt$$

1984 Paper 2 Q2c Show that $0 < \ln(1+x) - x + \frac{1}{2}x^2 - \frac{1}{3}x^3 + \frac{1}{4}x^4 < \frac{1}{5}x^5$, for 0 < x < 1

Putting $f(x) = \ln(1+x)$ which is infinitely differentiable on (-1, 1),

$$f'(x) = \frac{1}{1+x}; f^{(n)}(x) = \frac{(-1)^{n-1}(n-1)!}{(1+x)^n}$$

For any 0 < x < 1, $\ln(1+x) = \ln 1 + x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + I_5$

Since
$$I_5 = \frac{1}{4!} \int_0^x (x-t)^4 \cdot \frac{(-1)^4 (4!)}{(1+t)^5} dt$$

$$> 0$$
 as $(x-t)^4$, $(1+x)^5 > 0$ for $t \in (0, x)$

$$\therefore \ln(1+x) - x + \frac{x^2}{2} - \frac{x^3}{3} + \frac{x^4}{3} = I_5 > 0$$

Similarly,
$$I_6 = \frac{1}{5!} \int_0^x \frac{(x-t)^5 (-1)^5 (5!)}{(1+t)^6} dt < 0$$

$$\therefore \ln(1+x) - x + \frac{x^2}{2} - \frac{x^3}{3} + \frac{x}{4} = I_6 + \frac{x^5}{5} < \frac{x^5}{5}$$

2003 Paper 2Q12 (b)

Define $g(x) = \frac{1}{\sqrt{1-x^2}}$ for all $x \in (-1, 1)$. Let *n* be a positive integer.

- (i) Prove that $(1 x^2)g'(x) x g(x) = 0$. Hence deduce that $(1 - x^2)g^{(n+1)}(x) - (2n+1)xg^{(n)}(x) - n^2g^{(n-1)}(x) = 0$, where $g^{(0)} = g$.
- (ii) Prove that $g^{(2n-1)}(0) = 0$ and $g^{(2n)}(0) = \left(\frac{(2n)!}{(2^n)(n!)}\right)^2$.
- (iii) Using (a), prove that $g(x) = \sum_{k=0}^{n-1} \frac{C_k^{2n}}{2^{2k}} x^{2k} + \frac{1}{(2n-1)!} \int_0^x (x-t)^{2n-1} g^{(2n)}(t) dt$
- (i) $(1 x^2)g^2(x) = 1$

Differentiate both sides w.r.t. *x* :

$$2(1 - x^2)g(x)g'(x) - 2x g^2(x) = 0$$

:
$$g(x) \neq 0$$
, $(1 - x^2)g'(x) - x g(x) = 0 \cdots (*)$

Use Leibniz rule to differentiate (*) w.r.t. *x n* times.

$$(1 - x^2) g^{(n+1)}(x) - 2nx g^{(n)}(x) - n(n-1)g^{(n-1)}(x) - x g^{(n)}(x) - n g^{(n-1)}(x) = 0$$

$$(1 - x^2) g^{(n+1)}(x) - (2n+1) x g^{(n)}(x) - n^2 g^{(n-1)}(x) = 0 \cdots (**)$$

(ii)
$$g(0) = 1 = \left(\frac{(2 \times 0)!}{(2^0)(0!)}\right)^2$$

Put
$$x=0$$
 in (*), $g'(0) = 0$

Put
$$x = 0$$
, $n = 1$ into (**), $g''(0) = 1 = \left(\frac{2!}{(2!)(1!)}\right)^2$

 \therefore the statement is true for n = 1

Suppose
$$g^{(2k-1)}(0) = 0$$
 and $g^{(2k)}(0) = \left(\frac{(2k)!}{(2^k)(k!)}\right)^2$

Put
$$x = 0$$
, $n = 2k$ into (**): $g^{(2k+1)}(0) = (2k)^2 g^{2k-1}(0) = 0$

Put
$$x = 0$$
, $n = 2k+1$ into (**): $g^{(2k+2)}(0) = (2k+1)^2 g^{(2n)}(0) = \left(\frac{(2k+1)!}{(2^k)(k!)}\right)^2 = \left[\frac{(2k+2)!}{(2^{k+1})(k+1)!}\right]^2$

The statement is also true for n = k + 1, by M. I., the statement is true for all $n \in \mathbb{N} \cup \{0\}$

(iii) By Taylor's Theorem (integral form), (replace n by 2n, put a = 0)

$$g(x) = \sum_{k=0}^{2n-1} \frac{g^{(k)}(0)}{k!} x^k + \int_0^x g^{(2n)}(t) \frac{(x-t)^{2n-1}}{(2n-1)!} dt$$

$$= \sum_{k=0}^{n-1} \frac{\left[\frac{(2k)!}{(2^k)(k!)}\right]^2}{(2k)!} x^{2k} + \frac{1}{(2n-1)!} \int_0^x (x-t)^{2n-1} g^{(2n)}(t) dt$$

$$= \sum_{k=0}^{n-1} \frac{C_k^{2n}}{2^{2k}} x^{2k} + \frac{1}{(2n-1)!} \int_0^x (x-t)^{2n-1} g^{(2n)}(t) dt$$