

Comparison between CERES-CALIPSO-CloudSat-MODIS (CCCM) and CloudSat-Lidar Products and Its Implications

Seung-Hee Ham¹, Seiji Kato², Fred G Rose¹, Sunny Sun-Mack¹, Walter F Miller¹, and Yan Chen¹

¹Science Systems and Applications Inc., Hampton, Virginia ²NASA Langley Research Center Hampton, Virginia

Objectives

- Compare CERES-team-produced CERES-CALIPSO-CloudSat-MODIS (CCCM) and CloudSat-team-produced CloudSat-Lidar merged cloud properties
 - ✓ Cloud Fraction
 - ✓ Cloud Optical Thickness
 - ✓ Cloud Particle Size
- Examine how the different cloud properties produce difference cloud radiative effects in CCCM and FLXHR-LIDAR
- Suggest possible ways for improving CCCM flux and heating rate computations for cloudy atmosphere

Datasets

- CERES-Team Products: CERES-CALIPSO-CloudSat-MODIS (CCCM)
 - Spatial resolution of CERES footprint (~ 20 km)
 - Vertical resolution of CALIPSO (30 m or 60 m)
 - Primarily use CALIPSO for assigning cloud boundary
 - GOES-4 Atmospheres for flux computations
- 2. CloudSat-Team Products: 2B-GEOPROF-Lidar, 2B-FLXHR-Lidar, 2B-CWC, 2C-ICE
 - Spatial resolution of CloudSat footprint (1.4 km x 1.1 km)
 - Vertical resolution of CloudSat (~480 m, every 240 m)
 - ISCCP Atmospheres for flux computations

Except TOA radiative closure, we will compare [all minus clear] fluxes to exclude impacts of different atmosphere and surface properties.

Volumetric Cloud Fraction from Cloud Top/Base

- CCCM CF > GEOPROF-LIDAR CF when |lat| > 40°, and 1 km < z < 8 km.
- GEOPROF-LIDAR CF < CCCM CF when |lat| < 30° and z < 1 km.
- CF difference is often up to 0.05.

Multi-Layered in CCCM but Single-Layered in GEO-LIDAR

There are some vertical bins that Lidar reports clear but Radar reports cloudy → Different treatment of this region

Low-level Clouds Only Shown in CCCM

There are some vertical bins that Lidar reports cloudy, but with low Cloud-Aerosol-Discrimination (CAD) score.

Occurrence of Low-Level (0-1 km) Clouds with Low CAD Scores Observed by Lidar (JAN 2011)

CERES-MODIS COT: Used for normalizing extinction profiles for CCCM Flux CloudSat 2B-TAU COT: Used for normalizing extinction profiles for FLXHR-LIDAR

Current Issue of CCCM Algorithm I

- CCCM combines effective radius from Radar only algorithm (2B-CWC) and MODIS algorithm. Comparison with insitu measurement, or with 2C-ICE shows that ice particle size in 2B-CWC may have large biases (Deng et al, 2013).
- CCCM uses area-volume relationship of nonspherical particle, in order to get IWC from 2B-CWC r_{eff}. This relation artificially increases IWC, and further IWC/EXT ratio (size information in RTM).
 - → Being fixed for the next version.

Current Issue of CCCM Algorithm II

 CCCM brings effective radius from Radar only algorithm (2B-CWC). When 2B-CWC r_{eff} is not available (usually occurred in lidar-only cloud layer), MODIS r_{eff} is used, often showing discontinuity of size profile, depending on the source of particle size information.

Availability of 2C-ICE Profiles

120

180

Clouds (T ≤ 253 K)

Cloud Radiative Effects

TOA Outgoing CLR minus ALL Absorption by Atmosphere ALL minus CLR SFC Incoming ALL minus CLR

+ Warming - Cooling by Clouds

CLR - ALL SW TOAUP (CRE)

- is Earth Cooling by Cloud Reflection

ALL - CLR SW SFCDN (CRE)

- is SFC Cooling by Cloud Extinction

CLR - ALL SW TOAUP (CRE)

- is Earth Cooling by Cloud Reflection

ALL - CLR SW SFCDN (CRE)

- is SFC Cooling by Cloud Extinction

CRE Diff versus COT Diff

FLXHR-LIDAR minus CCCM SW TOA CRE (CLR – ALL)

FLXHR-LIDAR minus CCCM SW SFC CRE (ALL – CLR)

CS-TAU minus **CCCM**

COT differences do not explain SW CRE differences.

CLR - ALL LW TOAUP (CRE)

+ is Earth Warming by Cloud IR Trapping

ALL - CLR LW SFCDN (CRE)

+ is SFC Warming by Cloud Emission

CLR - ALL LW TOAUP (CRE)

+ is Earth Warming by Cloud IR Trapping

+ is SFC Warming by Cloud Emission

ALL - CLR LW SFCDN (CRE)

ALL - CLR SW ABS

+ is Cloud SW Absorption

ALL - CLR LW ABS

+ and - are IR Trapping and Emission by Cloud

FLXHR-LIDAR minus CCCM

FLXHR-LIDAR minus CCCM

180

-120

-80

-60

60

120

ALL - CLR SW HR

ALL - CLR LW HR

SW Radiative Closure at TOA (Using CERES Observation)

-50.00

-33.33

-16.67

0.00

16.67

33.33

50.00

CCCM extinction coeff profile is normalized using MODIS COT and $g(r_{eff})$:

$$\tau_{M} \{1 - g(r_{M})\} = \sum_{iz=1}^{nz} \tau_{CC} \{1 - g(r_{CC})\}$$

Once MODIS-derived parameters are used to normalize cloud extinction profile, it reproduce TOA flux well!

Note: High-Latitude (> 60°) is excluded in the comparison because of frequent missing of flux computation (different sampling issues)

Comparison with CERES SW TOA Measurements (2°-Gridded)

- Even though CCCM ice particle size, it produces TOA SW flux since extinction profile is normalized by MODIS cloud optical depth anyway.
- FLXHR-LIDAR TOA fluxes show deviations from the CERES measurements, caused by surface albedo assumption (particularly desert area).

Summary of Cloud Radiative Effects in CCCM and FLXHR-LIDAR

- Low-level clouds in Eastern Pacific Coast show larger SW reflection and SW/LW absorption in CCCM, compared to FLXHR-LIDAR. → "Larger CCCM COT"
- 2. Sub-tropical low-level marine clouds show similar SW reflection but larger SW absorption in CCCM, compared to FLXHR-LIDAR.
 - → "Larger CCCM r_{eff}"
- 3. Tropical marine clouds in subsidence region show larger SW reflection in FLXHR-LIDAR, compared to CCCM. → Larger FLXHR COT
- 4. Tropical deep convective region shows colder LW emission at TOA and larger LW absorption. SW difference is not noticeable.
 - → Larger CCCM r_{eff} but with small occurrence

Summary

- Eastern Pacific low-level clouds show larger reflection and absorption in CCCM products, in comparison to FLXHR-LIDAR. Moreover, subtropical low clouds show similar reflection, but larger absorption in CCCM.
- CCCM and GEOPROF-LIDAR show generally well agreed cloud fraction profiles, and the differences would not produce significant radiative impacts. High-latitude mid-level clouds show differences, probably related to precipitation. Tropical low-level marine clouds are related to low CAD score.
- Two MODIS-derived COTs (CERES-MODIS and CS-TAU, respectively) agree well, when taking into account cloud fraction (COT x CF).
- Eastern Pacific low-level clouds have similar MODIS COT in two products, but FLXHR-LIDAR seems to have clear sky in that region.
- CCCM uses larger ice cloud particle sizes than those provided in 2B-CWC, because of double size conversion. Moreover, merged cloud particle size profile often has sharp transition when different sources are used.
- CCCM TOA SW fluxes show good agreement with CERES observation. This shows importance of normalization of extinction profile by MODIS COT.
- FLXHR-LIDAR shows generally good agreement with CERES observation, but larger deviation from observation is found over desert than over ocean.

Summary

- High-latitude mid-level clouds have larger volumetric cloud fraction in 2B-GEOPROF-LIDAR than CCCM, which is related to precipitation. Moreover, CCCM has more frequent low-level clouds, which are related low CAD scores in CALIPSO cloud detection. The differences in two cloud fractions are up to 5%.
- Cloud optical thicknesses (COT) x CF in CERES-MODIS and 2B-TAU show comparable monthly mean distribution. These are used for normalizing extinction profiles from active sensors.
- Both CCCM and FLXHR-LIDAR composite effective radii from 2B-CWC and MODIS-derived effective radius for flux computation. However, CCCM ice effective radius is larger because of duplicated conversion between effective radius and geometric diameter.
- CCCM sub-tropical clouds more reflect and absorb SW than FLXHR-LIDAR clouds. FLXHR-LIDAR tropical marine clouds reflect more SW than CCCM, but SW absorption is similar. This suggests that effective radius of subtropical CCCM clouds have larger ice particles.
- From the case study, we have

Summary

- We have found noticeable differences in cloud fraction between CCCM and GEOPROF-LIDAR products. The differences in marine low-level clouds are due to aerosol contamination, and the differences in high-latitude mid-level clouds may be related to precipitating clouds.
- 2. Compared to cloud fractions, optical properties such as particle sizes and extinction coefficient are more variable between CCCM and CloudSat-LIDAR products. Compared to 2B-CWC or 2C-ICE products, CCCM uses larger ice particle sizes, resulting in larger cloud absorption.
- 3. Cloud radiative effects (CREs) on SW heating rates (all sky minus clear sky) are much larger in CCCM products, in comparison to FLXHR-LIDAR products. For the similar cloud optical depths, CCCM shows much larger cloud absorption, suggesting larger ice particle sizes.
- 4. Despite of lager ice particle size, CCCM shows fairly good agreement of TOA flux with CERES measurements, due to normalization of cloud extinction by MODIS cloud optical depth. FLXHR-LIDAR shows more scattered patterns from measurements due to surface albedo problem.

Ice Column Particle Effective Radius

CCCM r_{eff}: Combination of CERES-MODIS r_{eff} and 2B-CWC r_{eff}
2B-CWC r_{eff}: Radar-Only (CloudSat-Only) products
2C-ICE r_{eff}: Radar-Lidar combined products for ice

SW Radiative Closure at TOA (Using CERES Observation)

LW Radiative Closure at TOA (Using CERES Observation)

Comparison with CERES SW TOA Measurements (8°-Gridded)

Comparison with CERES SW TOA Measurements (4°-Gridded)

Comparison with CERES SW TOA Measurements (2°-Gridded)

Zonal Mean Cloud Fraction Profiles

