Конспект к коллоквиуму по математическому анализу

Николаев Всеволод

23 марта 2025 г.

Содержание

1	Равномерная непрерывность. Примеры. Теорема Кантора о равномерной	
	непрерывности.	3
	1.1 Используемые понятия	3
	1.2 Ответ на вопрос	3
2	Дифференциал функции. Теорема Ферма. Теорема Ролля. Примеры.	5
	2.1 Используемые понятия	5
	2.2 Ответ на вопрос	5
3	Теорема Лагранжа. Необходимое и достаточное условие постоянства дифференцируемой функции на промежутке. Необходимое и достаточное	
	условие монотонности дифференцируемой функции на промежутке.	8
	3.1 Используемые понятия	8
	3.2 Ответ на вопрос	8
4	Равномерная непрерывность. Примеры. Теорема Кантора о равномерной	
	непрерывности.	11
	4.1 Используемые понятия	11
	4.2 Ответ на вопрос	11
5	Вывод рядов Тейлора для функций $y=\exp(x), y=\sin x, y=\cos x$ через след-	
	ствие из теоремы Лагранжа. Формула Эйлера.	13
	5.1 Используемые понятия	13
	5.2 Ответ на вопрос	13
6	Теорема Коши. Правило Лопиталя (доказательство – только для случая	
	0/0). Примеры, когда правило неприменимо.	15
	6.1 Используемые понятия	15
	6.2 Ответ на вопрос	15
7	Формула Тейлора для многочлена. Формула Тейлора с остатком в форме	
	Пеано.	18
	7.1 Используемые понятия	18
	7.9 Other Ha politice	1 Ω

8	достаточные условия существования экстремума (по второй производной).	-21
	8.1 Используемые понятия	21
	8.2 Ответ на вопрос	21
9	Теорема Лиувилля. Пример трансцендентного числа.	23
	9.1 Используемые понятия	
	9.2 Ответ на вопрос	23
10	0 Формулы Маклорена для функций $y=\exp(x), y=\sin x, y=\cos x, y=\ln(1+x), y=\exp((1+x),a).$, 25
	у_ром((1+х),а). 10.1 Используемые понятия	$\frac{25}{25}$
	10.1 Используемые попитии 10.2 Ответ на вопрос	
11	Формула Тейлора с остатком в форме Лагранжа. Приближенные вычис-	
	ления по формуле Тейлора.	27
	11.1 Используемые понятия	
	11.2 Ответ на вопрос	27
12	2 Формула Стирлинга (с эквивалентностью).	30
	12.1 Используемые понятия	30
	12.2 Ответ на вопрос	30
13	3 Формула Стирлинга (c равенством).	32
	13.1 Используемые понятия	32
	13.2 Ответ на вопрос	32
14	4 Определение интеграла Римана. Отличие от «обычного» предела.	33
	14.1 Используемые понятия	33
	14.2 Ответ на вопрос	33
15	б Формула Ньютона-Лейбница.	35
	15.1 Используемые понятия	
	15.2 Ответ на вопрос	35

1 Равномерная непрерывность. Примеры. Теорема Кантора о равномерной непрерывности.

1.1 Используемые понятия

Компакт в \mathbb{R} . Множество $K \subset \mathbb{R}$ называется *компактным*, если оно *замкнуто* и ограничено.

Определение непрерывной функции (точечное). Функция f непрерывна в x_0 , если

$$\forall \varepsilon > 0 \; \exists \delta > 0: \; |x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon.$$

Если это верно для каждой точки множества X, говорят, что f непрерывна на X.

Теорема о сходящейся подпоследовательности (Больцано–Вейерштрасса). Всякая ограниченная последовательность в \mathbb{R} имеет сходящуюся подпоследовательность. Если (x_n) лежит в компактном K, то любая подпоследовательность (x_{n_k}) имеет сходящуюся подпоследовательность с пределом в K.

1.2 Ответ на вопрос

Определение (Обычная непрерывность). Функция f называется n непрерывной в точке x_0 , если

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon, x_0) > 0 : \ |x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon.$$

Определение (Равномерная непрерывность). Пусть f задана на $X \subset \mathbb{R}$. Тогда f называется равномерно непрерывной на X, если

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0: \ \forall x_1, x_2 \in X, |x_1 - x_2| < \delta \implies |f(x_1) - f(x_2)| < \varepsilon.$$

Ключевая особенность: δ не зависит от конкретной точки в X, а лишь от ε .

Теорема Кантора (формулировка). Если функция f непрерывна на компактном множестве $X \subset \mathbb{R}$, то f равномерно непрерывна на X.

- 1. Доказываем *от противного*: предположим, что f непрерывна на компакте X, но ne является равномерно непрерывной.
- 2. Это означает, что существует $\varepsilon_0 > 0$, для которого *никогда* нельзя выбрать δ «раз и навсегда». Формально:

$$\forall \delta > 0, \ \exists x, y \in X: \ |x - y| < \delta, \ |f(x) - f(y)| \ge \varepsilon_0.$$

- 3. Выбираем $\delta = 1/n$, строим пары (x_n, y_n) . При компактности X можно выделить подпоследовательность $(x_{n_k}) \to c$. Тогда и $y_{n_k} \to c$.
- 4. По непрерывности $f: f(x_{n_k}) \to f(c)$ и $f(y_{n_k}) \to f(c)$, значит $|f(x_{n_k}) f(y_{n_k})| \to 0$. Это *противоречит* условию $\geq \varepsilon_0$.

Доказательство теоремы Кантора.

1. Шаг 1. Предположение противного. Пусть f непрерывна на компактном X, но не равномерно непрерывна. Тогда существует $\varepsilon_0>0$ такое, что для всякого $\delta>0$ можно найти $x,y\in X$ с

$$|x-y| < \delta, \quad |f(x) - f(y)| \ge \varepsilon_0.$$

2. Шаг 2. Построение последовательностей. Для $n \in \mathbb{N}$ возьмём $\delta = 1/n$. Найдём $x_n, y_n \in X$:

$$|x_n - y_n| < \frac{1}{n}, \quad |f(x_n) - f(y_n)| \ge \varepsilon_0.$$

- 3. Шаг 3. Извлечение сходящейся подпоследовательности. Поскольку X компактно (см. sub_1.tex о необходимости замкнутости и ограниченности), существует подпоследовательность $(x_{n_k}) \to c \in X$. Из условия $|x_{n_k} y_{n_k}| < 1/n_k \to 0$ следует $y_{n_k} \to c$ тоже.
- 4. **Шаг 4. Применение непрерывности** f**.** По непрерывности f:

$$f(x_{n_k}) \to f(c), \quad f(y_{n_k}) \to f(c).$$

Тогда

$$|f(x_{n_k}) - f(y_{n_k})| \rightarrow 0.$$

- 5. **Шаг 5. Противоречие.** Но по выбору (x_{n_k}, y_{n_k}) мы всегда имели $|f(x_{n_k}) f(y_{n_k})| \ge \varepsilon_0 > 0$. Получено противоречие. Значит исходное предположение неверно.
- 6. **Шаг 6. Вывод.** Следовательно, f равномерно непрерывна на X.

2 Дифференциал функции. Теорема Ферма. Теорема Ролля. Примеры.

2.1 Используемые понятия

Локальный экстремум. Точка x_0 называется локальным минимумом (соответственно, максимумом), если существует $\delta > 0$ такое, что для всех x из $(x_0 - \delta, x_0 + \delta)$ выполняется $f(x) \ge f(x_0)$ (или $f(x) \le f(x_0)$ для максимума).

Теорема Вейерштрасса (о достижении экстремума). Если f непрерывна на отрезке [a,b], то f достигает на нём своих наибольшего и наименьшего значений. Формально:

$$\exists x_{\min}, x_{\max} \in [a, b]: \quad f(x_{\min}) \le f(x) \le f(x_{\max}) \quad \forall x \in [a, b].$$

Производная в точке. Напомним, $f'(x_0)$ есть предел

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0},$$

если этот предел конечен.

2.2 Ответ на вопрос

Дифференциал функции. Пусть функция f определена в окрестности точки x_0 и дифференцируема в x_0 . Тогда дифференциалом $df(x_0)$ функции f в точке x_0 называется величина

$$df(x_0) = f'(x_0)(x - x_0),$$

где $dx = x - x_0$ считается «малым» приращением аргумента. В более общем смысле при малом dx пишут

$$df(x_0) = f'(x_0) dx.$$

Это выражает, что приращение функции раскладывается на линейную часть $df(x_0)$ и малую «остаточную» часть o(dx):

$$f(x_0 + dx) - f(x_0) = df(x_0) + o(dx).$$

Теорема Ферма (о локальном экстремуме). Если функция f дифференцируема в точке x_0 и имеет там локальный минимум или максимум, то

$$f'(x_0) = 0.$$

Теорема Ролля. Пусть f удовлетворяет трём условиям:

- 1. Непрерывна на отрезке [a, b];
- 2. Дифференцируема на интервале (a, b);
- 3. При этом f(a) = f(b).

Тогда существует хотя бы одна точка $c \in (a, b)$ такая, что

$$f'(c) = 0.$$

Идея доказательства Теоремы Ферма.

- Предположим, x_0 точка локального минимума. Тогда для x вблизи x_0 имеем $f(x) \ge f(x_0)$.
- Рассматриваем разность $\frac{f(x)-f(x_0)}{x-x_0}$ при $x>x_0$ и при $x< x_0$.
- Переходя к пределу $x \to x_0^+$ и $x \to x_0^-$, получаем $f'(x_0) \ge 0$ и $f'(x_0) \le 0$ соответственно. Значит $f'(x_0) = 0$.
- Для локального максимума аналогично.

Идея доказательства Теоремы Ролля.

- Если f постоянна на [a,b], то f'(x)=0 на (a,b) и теорема доказана.
- Если f не постоянна, по **теореме о достижении экстремума** (см. sub_2.tex) она достигает минимума и максимума в некотором $x_{\min}, x_{\max} \in [a, b]$.
- Поскольку f(a) = f(b), хотя бы один из экстремумов не может быть только на концах. Тогда внутри (a,b) есть точка локального экстремума c.
- По Теореме Ферма, f'(c) = 0.

Доказательство Теоремы Ферма (пошагово):

- 1. Пусть x_0 точка локального минимума, то есть существует $\delta > 0$ такое, что при $|x x_0| < \delta$, $f(x) \ge f(x_0)$.
- 2. Для $x > x_0$ рассмотрим $\frac{f(x) f(x_0)}{x x_0} \ge 0$. При переходе $x \to x_0^+$, этот предел есть $f'(x_0) \ge 0$.
- 3. Для $x < x_0$ аналогично, но тогда $x x_0 < 0$, и из неравенства $f(x) \ge f(x_0)$ получаем $f'(x_0) \le 0$.
- 4. Значит $f'(x_0) \ge 0$ и $f'(x_0) \le 0$, откуда $f'(x_0) = 0$.
- 5. Случай локального максимума разбирается аналогично (только знак меняется).

Доказательство Теоремы Ролля (пошагово):

- 1. Если f постоянна на [a,b], то f'(x)=0 на всём (a,b), и точка c может быть любая.
- 2. Иначе f непостоянна и, благодаря непрерывности на [a,b], достигает минимума и максимума (Теорема Вейерштрасса, см. sub_2.tex).
- 3. Пусть x_{\min} и x_{\max} точки, где достигаются минимум и максимум. Поскольку f(a) = f(b), как минимум одно из этих значений будет «внутренним» для отрезка, иначе функция была бы постоянно равна этому значению. Значит есть $c \in (a,b)$ точка локального экстремума.
- 4. По Теореме Ферма, в точке локального экстремума c имеем f'(c) = 0.
- 5. Следовательно, нашли искомую точку $c \in (a, b)$, что доказывает Теорему Ролля.

Пример (дифференциал). Для $f(x) = x^2$, в точке $x_0 = 2$ имеем f'(2) = 4. Тогда малому приращению dx соответствует df(2) = 4 dx. Если dx = 0.1, то df(2) = 0.4, а реальное f(2.1) - f(2) = 4.41 - 4 = 0.41, что близко к 0.4.

Пример (Теорема Ферма). Функция $f(x) = x^2$ имеет локальный минимум в x = 0, причём f'(0) = 0.

Пример (Теорема Ролля). На отрезке [0,4] возьмём $f(x)=x^2-4x$. Тогда f(0)=f(4)=0, f непрерывна на [0,4] и дифференцируема на (0,4). По Теореме Ролля существует $c\in(0,4)$ с f'(c)=0. Действительно, f'(x)=2x-4, отсюда c=2.

3 Теорема Лагранжа. Необходимое и достаточное условие постоянства дифференцируемой функции на промежутке. Необходимое и достаточное условие монотонности дифференцируемой функции на промежутке.

3.1 Используемые понятия

Теорема Ролля (напоминание). Пусть f непрерывна на [a,b], дифференцируема на (a,b) и f(a) = f(b). Тогда существует точка $c \in (a,b)$, где f'(c) = 0.

Определение дифференцируемости (напоминание). Функция f называется дифференцируемой в точке x_0 , если существует конечный предел

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$

Если $f'(x_0)$ существует для всех x_0 в (a,b), говорят, что f дифференцируема на (a,b).

Определение монотонности (напоминание). Функция f называется возрастающей на (a,b), если для любых $x_1,x_2 \in (a,b)$, при $x_1 < x_2$ выполняется $f(x_1) \leq f(x_2)$ (нестрого) или $f(x_1) < f(x_2)$ (строго). Аналогично определяется убывание.

Определение постоянной функции. Функция f называется постоянной на (a,b), если $f(x_1) = f(x_2)$ для любых $x_1, x_2 \in (a,b)$.

3.2 Ответ на вопрос

Теорема Лагранжа (о среднем значении). Пусть функция f непрерывна на отрезке [a,b] и $\partial u \phi \phi$ еренцируема на интервале (a,b). Тогда существует точка $c \in (a,b)$ такая, что

$$f(b) - f(a) = f'(c) (b - a).$$

 $(Oстальные определения см. в sub_3.tex — например, производная, непрерывность, и <math>m.n.)$

Необходимое и достаточное условие <u>постоянства</u> дифференцируемой функции. Пусть функция f дифференцируема на промежутке (a,b). Тогда она *постоянна* на (a,b) тогда и только тогда, когда

$$f'(x) = 0$$
 для всех $x \in (a, b)$.

Необходимое и достаточное условие монотонности дифференцируемой функции. Пусть f дифференцируема на промежутке (a,b). Тогда верны следующие утверждения:

- Функция f возрастает на $(a,b) \iff f'(x) \ge 0$ для всех $x \in (a,b)$, причём множество точек, где f'(x) = 0, не содержит интервалов.
- Функция f убывает на $(a,b) \iff f'(x) \le 0$ для всех $x \in (a,b)$, причём множество точек, где f'(x) = 0, не содержит интервалов.

Основная идея доказательства теоремы Лагранжа:

• Эта теорема является обобщением Теоремы Ролля.

- Сущность: Рассмотрим функцию $F(x) = f(x) \alpha x$, где $\alpha = \frac{f(b) f(a)}{b a}$.
- Из условия F(a) = F(b) и непрерывности+дифференцируемости F на [a,b] применяем Теорему Ролля: существует $c \in (a,b)$, где F'(c) = 0.
- Тогда $F'(c) = f'(c) \alpha = 0 \implies f'(c) = \alpha = \frac{f(b) f(a)}{b a}$.

Идея доказательства условия постоянства:

- Если f'(x) = 0 повсюду, то по Теореме Лагранжа (или Ролля) разность $f(x_2) f(x_1)$ всегда равна нулю, значит f постоянна.
- Если f постоянна, ясно, что f'(x) = 0.

Идея доказательства условия монотонности:

- Если $f'(x) \ge 0$ на (a,b), то при $x_2 > x_1$ можно показать $f(x_2) \ge f(x_1)$.
- Обратное: если f возрастает, то для $x_2 > x_1$ имеем $\frac{f(x_2) f(x_1)}{x_2 x_1} \ge 0$. Переходя к пределу, получаем $f'(x) \ge 0$.
- Уточнение, что множество точек с f'(x) = 0 не содержит внутренних отрезков, нужно, чтобы исключить «застревание» функции на целых интервалах.

Доказательство Теоремы Лагранжа

1. Построение вспомогательной функции. Пусть $\alpha = \frac{f(b) - f(a)}{b - a}$. Рассмотрим

$$F(x) = f(x) - \alpha x.$$

Тогда $F(a) = f(a) - \alpha a$ и $F(b) = f(b) - \alpha b$. Заметим:

$$F(b) - F(a) = [f(b) - f(a)] - \alpha [b - a] = 0.$$

- 2. **Применение Теоремы Ролля.** Функция F непрерывна на [a,b] и дифференцируема на (a,b) (как разность непрерывных и дифференцируемых функций). Причём F(a) = F(b). По Теореме Ролля (см. sub_3.tex при необходимости) существует $c \in (a,b)$: F'(c) = 0.
- 3. Заключение. Из $F'(x) = f'(x) \alpha$ получаем $F'(c) = f'(c) \alpha = 0 \implies f'(c) = \alpha$. Но $\alpha = \frac{f(b) f(a)}{b a}$, значит

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

На этом доказательство завершается.

Доказательство необходимого и достаточного условия постоянства

- 1. **Необходимость (если** f постоянна). Если f есть константа, то для всех $x \in (a, b)$ приращения $f(x_2) f(x_1) = 0$, значит f'(x) = 0 в любой точке, где она дифференцируема.
- 2. Достаточность (если f'(x) = 0 повсюду). Пусть f'(x) = 0 на (a, b). Возьмём любые $x_1, x_2 \in (a, b)$, причём $x_2 > x_1$. По Теореме Лагранжа существует $c \in (x_1, x_2)$ с

$$f(x_2) - f(x_1) = f'(c)(x_2 - x_1).$$

Но f'(c) = 0, значит $f(x_2) = f(x_1)$. Следовательно, f неизменна на всём промежутке.

Доказательство необходимого и достаточного условия монотонности

(Рассмотрим случай возрастания; для убывания аналогично меняются знаки.)

1. Если $f'(x) \ge 0$ для всех x, то f возрастает. Пусть $x_1 < x_2$. По Теореме Лагранжа на отрезке $[x_1, x_2]$ существует $c \in (x_1, x_2)$ такое, что

$$f(x_2) - f(x_1) = f'(c)(x_2 - x_1).$$

Раз $f'(c) \ge 0$ и $x_2 - x_1 > 0$, то $f(x_2) - f(x_1) \ge 0 \implies f(x_2) \ge f(x_1)$. Значит f неубывает. Для cmpororo возрастания нужно уточнить, что нет интервалов, где f'(x) = 0 постоянно.

- 2. Если f возрастает, то $f'(x) \ge 0$. При $x_2 > x_1$ имеем $\frac{f(x_2) f(x_1)}{x_2 x_1} \ge 0$. Переходя к пределу, получаем $f'(x) \ge 0$.
- 3. **Уточнение про множество нулей** f'(x). Если на каком-то подинтервале f'(x) всё время равно нулю, то f там постоянна, что может «ломать» строгое возрастание (если отрезок ненулевой длины). Поэтому для строгой монотонности требуется, чтобы подмножество нулей не содержало интервалов.

4 Равномерная непрерывность. Примеры. Теорема Кантора о равномерной непрерывности.

4.1 Используемые понятия

Определение компакта в \mathbb{R} . Множество $K \subset \mathbb{R}$ называется *компактным*, если оно *замкнуто* и *ограничено*.

Теорема Болльцано—**Вейерштрасса.** Всякая *ограниченная* последовательность (x_n) в \mathbb{R} имеет cxodsuywcs подпоследовательность. На языке компактных множеств: любая последовательность, целиком лежащая в компактном K, содержит сходящуюся подпоследовательность с пределом в K.

Определение непрерывности (подробно). Напомним: f непрерывна на X, если для любой точки $x_0 \in X$:

$$\forall \varepsilon > 0 \ \exists \delta > 0: \ |x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon.$$

4.2 Ответ на вопрос

Непрерывность (точечная). Функция f называется непрерывной в точке x_0 , если

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon, x_0) > 0: \ |x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon.$$

Если это выполняется для всех x_0 из множества X, то говорят, что f непрерывна на X.

Равномерная непрерывность. Пусть f задана на $X\subseteq\mathbb{R}$. Функция f называется равномерно непрерывной на X, если

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \ \forall x_1, x_2 \in X, \quad |x_1 - x_2| < \delta \implies |f(x_1) - f(x_2)| < \varepsilon.$$

Существенное отличие от обычной непрерывности — в том, что δ выбирается *только* в зависимости от ε и **не** зависит от точки x_0 .

Теорема Кантора. Если f непрерывна на *компактном* множестве $X \subset \mathbb{R}$, то f равномерно непрерывна на X.

- \bullet Доказывать будем *от противного*: предположим, что f непрерывна на компакте, но не равномерно непрерывна.
- Это означает существование $\varepsilon_0 > 0$ такого, что нельзя подобрать «глобальное» δ , выполняющее условие равномерной непрерывности.
- Для каждой n, выбрав $\delta = 1/n$, находятся точки (x_n, y_n) с $|x_n y_n| < 1/n$, но $|f(x_n) f(y_n)| \ge \varepsilon_0$.
- Компактность X обеспечивает возможность извлечения сходящейся подпоследовательности $(x_{n_k}) \to c$. Поскольку $|x_{n_k} y_{n_k}| < 1/n_k \to 0$, то $y_{n_k} \to c$ тоже.
- По непрерывности f получаем $f(x_{n_k}) \to f(c)$ и $f(y_{n_k}) \to f(c)$, что даёт $|f(x_{n_k}) f(y_{n_k})| \to 0$, противореча условию $\geq \varepsilon_0$.
- Противоречие доказывает равномерную непрерывность.

Доказательство Теоремы Кантора

Шаг 1: Предположение от противного. Пусть f непрерывна на компактном X, но не равномерно непрерывна. Тогда

$$\exists \varepsilon_0 > 0: \forall \delta > 0, \exists x, y \in X: |x - y| < \delta, |f(x) - f(y)| \ge \varepsilon_0.$$

Шаг 2: Построение последовательностей. Выбираем $\delta=1/n$. Появляются пары $(x_n,y_n)\in X$ со свойствами:

$$|x_n - y_n| < \frac{1}{n}, \quad |f(x_n) - f(y_n)| \ge \varepsilon_0.$$

Шаг 3: Извлечение сходящейся подпоследовательности (компактность). Последовательность (x_n) , являясь «лежачей» в X, по теореме Болльцано—Вейерштрасса (см. sub_4.tex) имеет сходящуюся подпоследовательность $(x_{n_k}) \to c \in X$. Тогда $|x_{n_k} - y_{n_k}| < 1/n_k \to 0 \implies y_{n_k} \to c$.

Шаг 4: Применение непрерывности к подпоследовательностям. Из непрерывности f в точке c:

$$f(x_{n_k}) \to f(c), \quad f(y_{n_k}) \to f(c),$$

значит $|f(x_{n_k}) - f(y_{n_k})| \to 0.$

Шаг 5: Противоречие. По построению же $|f(x_{n_k}) - f(y_{n_k})| \ge \varepsilon_0 > 0$. Получаем противоречие « $\to 0$ » против « $\ge \varepsilon_0$ ». Значит исходное предположение ложно.

Шаг 6: Вывод. Таким образом, функция f **является** равномерно непрерывной на X.

Пример (равномерная непрерывность на \mathbb{R}).

- Линейная функция: f(x) = kx + b. Для любой пары x_1, x_2 справедливо $|f(x_1) f(x_2)| = |k| |x_1 x_2|$, здесь очевидна равномерная непрерывность (достаточно взять $\delta = \frac{\varepsilon}{|k|}$).
- Тригонометрические функции $\sin x$, $\cos x$ на всей \mathbb{R} тоже равномерно непрерывны (ограничены и периодичны, их изменения «контролируются»).

Пример (не равномерно непрерывные на \mathbb{R}).

- $f(x) = x^2$: хотя непрерывна на \mathbb{R} , она не равномерно непрерывна на всей оси (с ростом x глобальная « δ » становится недостаточной).
- e^x тоже не равномерно непрерывна на всей \mathbb{R} (аналогичная причина).

5 Вывод рядов Тейлора для функций у=exp(x), y=sinx, y=cosx через следствие из теоремы Лагранжа. Формула Эйлера.

5.1 Используемые понятия

Теорема Лагранжа (о среднем значении). Пусть функция f непрерывна на [0, x] (при x > 0) и дифференцируема на (0, x). Тогда существует $c \in (0, x)$ такое, что

$$f(x) - f(0) = f'(c)(x - 0).$$

n-я производная. Функция f называется n раз дифференцируемой в точке, если существуют все производные $f'(x_0), f''(x_0), \ldots, f^{(n)}(x_0)$. Аналогично в окрестности.

Определение комплексной экспоненты (для Формулы Эйлера). Если z комплексное, e^z определяется как $\sum_{n=0}^{\infty} \frac{z^n}{n!}$. Это расширяет понятие экспоненты на комплексную область.

5.2 Ответ на вопрос

Ряд Тейлора (Маклорена) и остаточный член. Пусть функция f имеет все производные в некоторой окрестности точки 0. Тогда *ряд Маклорена* для f есть

$$f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

 $Ocmamovhый член R_n(x)$ (в форме Лагранжа) можно записать как

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} x^{n+1},$$

где ξ лежит между 0 и x (см. sub_5.tex, Теорема о среднем значении в форме Лагранжа).

Формула Тейлора (с остатком в форме Лагранжа). Пусть f имеет (n+1)-ю производную в окрестности 0. Тогда для x из этой окрестности выполняется:

$$f(x) = f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} x^2 + \dots + \underbrace{\frac{f^{(n)}(0)}{n!} x^n}_{R_{n}(x)} + \underbrace{\frac{f^{(n+1)}(\xi)}{(n+1)!} x^{n+1}}_{R_{n}(x)},$$

где ξ — некоторая точка между 0 и x. Эта запись называется pядом Tейлора (Mаклорена) с остаточным членом в форме Лагранжа.

Идея вывода:

- Используем теорему Лагранжа о среднем значении производной. Рассматриваем многочлен $P_n(x)$, равный сумме до n-го члена ряда, и функцию $f(x) P_n(x)$.
- Применяем теорему Лагранжа к $f(x) P_n(x)$ на отрезке [0, x], получаем «остаток» $R_n(x)$ в виде $f^{(n+1)}(\xi) x^{n+1}/(n+1)!$.
- Далее, зная все производные f, вычисляем $f^{(k)}(0)$ и подставляем в общую формулу.

Вывод ряда Тейлора для e^x

- 1. **Производные в окрестности** 0. Пусть $f(x) = e^x$. Тогда $f^{(k)}(x) = e^x$ для любого k. Следовательно, $f^{(k)}(0) = 1$.
- 2. Запись общего члена. По Формуле Тейлора (Маклорена),

$$e^x = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n + R_n(x).$$

Ho $f^{(n)}(0) = 1$, значит

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} + R_n(x).$$

3. Вид остатка в форме Лагранжа.

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} x^{n+1} = \frac{e^{\xi}}{(n+1)!} x^{n+1}, \quad \xi \in (0,x).$$

4. **При** $n \to \infty$ и фиксированном x, e^{ξ} остаётся конечным. Получаем $\lim_{n\to\infty} R_n(x) = 0$, значит

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

Вывод ряда Тейлора для $\sin x$ и $\cos x$

1. Пусть $f(x) = \sin x$. Производные: $f'(x) = \cos x$, $f''(x) = -\sin x$, $f^{(3)}(x) = -\cos x$, $f^{(4)}(x) = \sin x$ и т.д. На x = 0: f(0) = 0, f'(0) = 1, f''(0) = 0, $f^{(3)}(0) = -1$, $f^{(4)}(0) = 0$, и цикл повторяется.

$$\sin x = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n + R_n(x).$$

Подставляя значения, получаем чётные производные =0 в 0, нечётные чередуются $1,-1,\ldots$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + R_n(x).$$

Остаток $R_n(x)$ (по Лагранжу) будет $\frac{f^{(n+1)}(\xi)}{(n+1)!} x^{n+1}$ для некоторой $\xi \in (0,x)$.

2. Аналогично для $g(x) = \cos x$. g(0) = 1, g'(0) = 0, g''(0) = -1, $g^{(3)}(0) = 0$, $g^{(4)}(0) = 1$, . . .

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + R_n(x).$$

Формула Эйлера:

$$e^{ix} = \cos x + i \sin x.$$

Краткое объяснение. Если подставить в разложение e^x вместо x — комплексное ix, то

$$e^{ix} = 1 + (ix) + \frac{(ix)^2}{2!} + \frac{(ix)^3}{3!} + \dots$$

Распределяя степени i^n на действительную и мнимую часть, получаем чётные степени $i^{2k} = (-1)^k$ и нечётные $i^{2k+1} = i (-1)^k$. В итоге исходные суммы группируются exactly как в рядах для $\cos x$ и $\sin x$.

$$e^{ix} = \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots\right) + i\left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots\right) = \cos x + i\sin x.$$

6 Теорема Коши. Правило Лопиталя (доказательство – только для случая 0/0). Примеры, когда правило неприменимо.

6.1 Используемые понятия

Теорема Ролля (напоминание). Пусть f непрерывна на отрезке [p,q], дифференцируема на (p,q) и f(p)=f(q). Тогда существует точка $c \in (p,q)$, где f'(c)=0.

Определение: проколотая окрестность. Говорят, что функция f дифференцируема (или определена) в проколотой окрестности точки a, если существует $\delta > 0$ такое, что при $0 < |x - a| < \delta$, f(x) (и её производная) определена. При этом в самой точке a она может быть не определена или не дифференцируема.

Неопределённости вида 0/0 **и** ∞/∞ . Правило Лопиталя распространяется на случаи, когда $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$ или $\pm\infty$. В остальных случаях правило не даёт результата.

6.2 Ответ на вопрос

Теорема Коши (обобщённая теорема Лагранжа). Пусть функции f(x) и g(x) удовлетворяют условиям:

- непрерывны на [a, b],
- \bullet дифференцируемы на (a,b),
- $g'(x) \neq 0$ для всех $x \in (a, b)$.

Тогда существует точка $c \in (a, b)$ такая, что

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.$$

Правило Лопиталя (только для случая $\frac{0}{0}$ **).** Пусть функции f(x) и g(x) дифференцируемы в *проколотой* окрестности точки a (то есть всюду, кроме, возможно, самой точки a). Предположим:

$$\lim_{x \to a} f(x) = 0, \quad \lim_{x \to a} g(x) = 0,$$

и $g'(x) \neq 0$ в этой окрестности. Если существует (конечный или бесконечный) предел

$$\lim_{x \to a} \frac{f'(x)}{g'(x)} = L,$$

то существует и предел $\lim_{x\to a} \frac{f(x)}{g(x)}$, причём

$$\lim_{x \to a} \frac{f(x)}{g(x)} = L.$$

Основная идея Теоремы Коши:

• Является обобщением Теоремы Лагранжи (достаточно взять g(x) = x).

• Используется для доказательства Правила Лопиталя: рассматриваем f(x), g(x) и применяем теорему Коши к [a, x].

Основная идея Правила Лопиталя (0/0):

- Рассматриваем отношение $\frac{f(x)}{g(x)}$ при $x \to a$.
- Применяем теорему Коши к функциям F(t) = f(t) f(a), G(t) = g(t) g(a) на отрезке [a, x].
- Переходя к пределу, получаем $\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$, если последний существует.

Доказательство Теоремы Коши (обобщённая Лагранжа)

- 1. Условие: f, g непрерывны на [a, b], дифференцируемы на (a, b), причём $g'(x) \neq 0$.
- 2. Построение. Рассмотрим функцию

$$\Phi(t) = f(t) - f(a) - \frac{f(b) - f(a)}{g(b) - g(a)} [g(t) - g(a)].$$

Тогда
$$\Phi(a)=0$$
 и $\Phi(b)=f(b)-f(a)-\frac{f(b)-f(a)}{g(b)-g(a)}[\,g(b)-g(a)\,]=0.$

- 3. Применение Теоремы Ролля (см. sub_6.tex): Поскольку Φ непрерывна на [a,b] и дифференцируема на (a,b) (как разность таковых), и $\Phi(a) = \Phi(b) = 0$, существует $c \in (a,b)$ с $\Phi'(c) = 0$.
- 4. Производная:

$$\Phi'(t) = f'(t) - \frac{f(b) - f(a)}{g(b) - g(a)}g'(t).$$

Тогда
$$\Phi'(c) = 0 \implies f'(c) = \frac{f(b) - f(a)}{g(b) - g(a)} g'(c).$$

5. Следствие:

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.$$

Доказательство Правила Лопиталя (случай 0/0)

- 1. **Условие:** $\lim_{x\to a} f(x) = 0$, $\lim_{x\to a} g(x) = 0$, $g'(x) \neq 0$. Предположим, что существует $\lim_{x\to a} \frac{f'(x)}{g'(x)} = L$.
- 2. Рассмотрим f и g на отрезке [a,x] (при x>a). По условию f(a)=g(a)=0. Применяем Теорему Коши к f и g на [a,x]:

16

$$\exists c_x \in (a, x) : \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f'(c_x)}{g'(c_x)}.$$

3. **Переход к пределу:** Поскольку f(a) = 0, g(a) = 0, имеем

$$\frac{f(x)}{g(x)} = \frac{f'(c_x)}{g'(c_x)}.$$

Когда $x\to a$, точка c_x тоже $\to a$ (так как c_x лежит между a и x). Если $\lim_{x\to a}\frac{f'(x)}{g'(x)}=L$, то $\frac{f'(c_x)}{g'(c_x)}\to L$. Значит

$$\lim_{x \to a} \frac{f(x)}{g(x)} = L.$$

- Если нет неопределённости 0/0 или ∞/∞ . Пример: $\lim_{x\to 0} \frac{\sin x}{x+1} = \frac{0}{1} = 0$ тут нет неопределённости, применять Лопиталя смысла нет.
- Если $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ не существует. Пример: $\lim_{x\to 0} \frac{\sin(1/x)}{1/x}$: $f(x) = \sin(1/x)$, g(x) = 1/x. При $x\to 0$, f'(x) и g'(x) ведут себя крайне нестабильно. Предел $\frac{f'(x)}{g'(x)}$ не существует.
- Если f или g не дифференцируемы в проколотой окрестности точки. Пример: $f(x) = |x|, \ g(x) = x$ при $x \to 0$ не дифференцируемо в 0.

7 Формула Тейлора для многочлена. Формула Тейлора с остатком в форме Пеано.

7.1 Используемые понятия

Определение n-кратной дифференцируемости. Функция f называется n раз дифференцируемой в точке x_0 , если существуют конечные все производные $f'(x_0), f''(x_0), \ldots, f^{(n)}(x_0)$.

Малое «о» и запись o(g(x)). Говорят, что h(x) есть o(g(x)) при $x \to x_0$, если

$$\lim_{x \to x_0} \frac{h(x)}{g(x)} = 0.$$

B таком случае пишут h(x) = o(g(x)).

Остаточный член в форме Лагранжа (напоминание). Если f имеет (n+1)-ю производную в окрестности x_0 , то для

$$f(x) = f(x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x)$$

справедливо

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}, \quad \xi \in (x_0, x).$$

7.2 Ответ на вопрос

Многочлен и его производные. Пусть P(x) — многочлен степени n, т. е.

$$P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n.$$

Он бесконечно дифференцируем на всей \mathbb{R} , но начиная с порядка выше n, все производные равны нулю.

Формула Тейлора для многочлена. Если f(x) = P(x) — многочлен степени n, то для точки $x_0 \in \mathbb{R}$ имеем

$$P(x) = P(x_0) + \frac{P'(x_0)}{1!} (x - x_0) + \dots + \frac{P^{(n)}(x_0)}{n!} (x - x_0)^n.$$

Поскольку производные порядка выше n у многочлена равны 0, ocmamoчный член отсутствует (или равен нулю).

Формула Тейлора с остатком в форме Пеано. Пусть f имеет (n)-ю производную в окрестности x_0 . Тогда

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!} (x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + o((x - x_0)^n).$$

Здесь используется малое «о»:

$$r_n(x) = o((x-x_0)^n), \quad x \to x_0,$$

значит

$$\lim_{x \to x_0} \frac{r_n(x)}{(x - x_0)^n} = 0.$$

Теорема (Формула Тейлора для многочлена). Если P(x) — многочлен степени n, то его разложение в окрестности x_0 совпадает со стандартным полиномом Тейлора степени n, а $ocmamo\kappa$ (производные порядка выше n) равен 0.

Теорема (Формула Тейлора с остатком в форме Пеано). Пусть f n раз дифференцируема в точке x_0 . Тогда

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^n).$$

Для многочлена:

- \bullet Все производные порядка выше n у многочлена равны нулю.
- Поэтому «ряд Тейлора» фактически совпадает с самим многочленом. Остаточный член $R_n(x)$ тождественно 0.

Для формы Пеано:

- Малая функция $o((x-x_0)^n)$ означает, что остаток *«уходит в ноль»* быстрее, чем $(x-x_0)^n$.
- Используется определение непрерывности производных и соответствующих пределов, где высокие приращения в $(x-x_0)^n$ доминируют над остаточным членом.

Доказательство Формулы Тейлора для многочлена

1. **Расширенный полином.** Пусть P(x) — многочлен степени n. Рассмотрим многочлен Тейлора (степени n) вокруг x_0 :

$$T_n(x) = \sum_{k=0}^n \frac{P^{(k)}(x_0)}{k!} (x - x_0)^k.$$

- 2. Равенство старших производных нулю. Поскольку $P^{(m)}(x)\equiv 0$ при m>n, никакой остаточный член не возникает.
- 3. **Сравнение** P(x) и $T_n(x)$. Уже само определение производных наглядно показывает: P(x) и $T_n(x)$ один и тот же полином (коэффициенты совпадают).
- 4. **Вывод.** Таким образом, $P(x) = T_n(x) \implies$ формула Тейлора для многочлена полностью совпадает с самим многочленом.

Доказательство Формулы Тейлора с остатком в форме Пеано

1. Постановка задачи. Требуется показать, что

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + r_n(x),$$

где
$$r_n(x) = o((x - x_0)^n)$$
 при $x \to x_0$.

2. Индикатор быстрого убывания $r_n(x)$. То есть $\lim_{x\to x_0} \frac{r_n(x)}{(x-x_0)^n} = 0$.

- 3. Использование дифференцируемости порядка n. По определению (см. sub_7.tex), если f имеет непрерывные производные до порядка n, то мы можем разложить f по (классической) формуле Тейлора (с формой Лагранжа для остатка) и затем показать, что этот остаток $\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}$ ведёт себя как $o((x-x_0)^n)$, если $f^{(n+1)}$ непрерывна в x_0 и, например, равна нулю там uли $f^{(n+1)}$ ограничена в малой окрестности.
- 4. **Точнее.** Если $f^{(n)}$ непрерывна в x_0 , то $f^{(n+1)}(\xi) \to f^{(n+1)}(x_0)$ при $\xi \to x_0$ (если (n+1)-я производная существует в окрестности). Даже если $f^{(n+1)}(x_0)$ сама равна нулю остаток $(x-x_0)^{n+1}$ «уходит» быстрее, чем $(x-x_0)^n$.
- 5. Вывод о малом «о». Отсюда следует требуемое $r_n(x) = o((x x_0)^n)$.

Пример 1: $f(x) = x^3$. Разложение вокруг $x_0 = 1$:

$$f'(x) = 3x^2$$
, $f''(x) = 6x$, $f^{(3)}(x) = 6$, $f^{(4)}(x) = 0$,...

По формуле Тейлора (степени 3), никакого «остатка» не остаётся, так как это многочлен. Итог:

$$x^{3} = 1 + 3(x - 1) + 3(x - 1)^{2} + (x - 1)^{3}.$$

Пример 2: $f(x) = e^x$. Разложение до n-го члена в точке 0 даёт:

$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + o(x^n), \quad x \to 0.$$

3 dec b уже работает «форма Пеано», так как e^x не полином, но $e^{(k)}(0) = 1$.

8 Достаточные условия существования экстремума (по второй производной).

8.1 Используемые понятия

Теорема Ферма (напоминание). Если f дифференцируема в точке x_0 и имеет там локальный экстремум, то $f'(x_0) = 0$.

Определение непрерывности второй производной. Если f''(x) существует в некоторой окрестности x_0 и является непрерывной в x_0 , то говорят, что f имеет непрерывную вторую производную в x_0 .

Дифференцируемость в (a,b)**.** Говорят, что f дифференцируема на интервале (a,b), если f'(x) существует для всех $x \in (a,b)$.

8.2 Ответ на вопрос

Локальный минимум и максимум. Точка x_0 внутри промежутка (a,b) называется точкой локального минимума функции f, если существует $\delta>0$, что для всех x с $|x-x_0|<\delta$ выполняется

$$f(x) \geq f(x_0).$$

Аналогично, x_0 является точкой локального максимума, если в некоторой окрестности x_0 значение $f(x) \leq f(x_0)$.

Вторая производная. Если функция f дифференцируема на (a, b), и f'(x) тоже дифференцируема на (a, b), то в точках, где это возможно, определена вторая производная f''(x).

Теорема (достаточные условия экстремума по второй производной). Пусть f дифференцируема на (a,b) и $x_0 \in (a,b)$ — такая точка, где $f'(x_0) = 0$. Предположим, что у f существует непрерывная в x_0 вторая производная $f''(x_0)$. Тогда:

- 1. Если $f''(x_0) > 0$, то x_0 точка локального минимума.
- 2. Если $f''(x_0) < 0$, то x_0 точка **локального максимума**.
- 3. Если $f''(x_0) = 0$, вывод не делается (нужен дополнительный анализ).
- Ключевой «трюк»: если $f''(x_0) > 0$, то f'(x) возрастает вблизи x_0 . Но при x_0 мы имеем $f'(x_0) = 0$.
- Следовательно, для $x > x_0$, f'(x) становится положительной (или почти), а для $x < x_0$ отрицательной (или почти), что даёт локальный минимум.
- Аналогично, если $f''(x_0) < 0$, f'(x) убывает вблизи x_0 , и x_0 локальный максимум.

Доказательство достаточности (подробно):

- 1. **Наличие** $f'(x_0) = 0$. По **теореме Ферма** (см. sub_8.tex), это условие часто является необходимым для экстремума. Мы рассматриваем *достаточность*, когда вдобавок знаем про вторую производную.
- 2. Случай $f''(x_0) > 0$.

- Из непрерывности f'' в x_0 вытекает, что при x достаточно близком к x_0 , вторая производная f''(x) «сохраняет» тот же знак (положительный).
- Значит f'(x) строго возрастает вблизи x_0 . Но $f'(x_0) = 0$.
- Тогда для $x > x_0$ с x рядом с x_0 , f'(x) станет положительной, а для $x < x_0$ отрицательной.
- Следовательно, при $x > x_0$, f возрастает, при $x < x_0$, f убывает. Значит x_0 локальный минимум.

3. Случай $f''(x_0) < 0$.

- Аналогичные рассуждения: f'(x) вблизи x_0 будет убывать, и при $x > x_0$ произведёт знак отрицательный, а при $x < x_0$ знак положительный (около x_0).
- ullet Следовательно, слева функция возрастает, а справа убывает. Точка x_0 локальный максимум.

4. Случай $f''(x_0) = 0$.

- Из этого факта *нельзя* вывести строгое заключение об экстремуме: нужны дополнительные рассуждения (см. примеры x^3 , x^4).
- Функция $f(x) = x^2$: f'(0) = 0, f''(0) = 2 > 0. По теореме, x = 0 локальный минимум (что верно).
- Функция $f(x) = x^3$: f'(0) = 0, f''(0) = 0. По рассматриваемой теореме вывод не делается, и действительно x = 0 точка перегиба, ne экстремум.
- Функция $f(x) = -x^2$: f'(0) = 0, f''(0) = -2 < 0. Значит в x = 0 локальный максимум.

9 Теорема Лиувилля. Пример трансцендентного числа.

9.1 Используемые понятия

Минимальный многочлен алгебраического числа. Пусть α — алгебраическое (корень целого ненулевого многочлена). Его минимальным многочленом называется многочлен $P(x) \in \mathbb{Z}[x]$, у которого α — корень, степень P — наименьшая возможная, и старший коэффициент положителен, а все общие делители коэффициентов равны 1.

Оценка "разности корней". Из теории алгебраических уравнений известно, что если P(x) — многочлен степени d с целыми коэффициентами, то расстояния между его корнями не могут быть «слишком маленькими» относительно высоты коэффициентов. Точнее, если r_1, \ldots, r_d — корни, то существуют нижние границы $|r_i - r_j|$ в зависимости от коэффициентов P (см. теорему о разложении в произведение линейных множителей).

Рациональное приближение. Если α действительно алгебраична степени d, то для больших q рациональные приближения $\frac{p}{q}$ не могут удовлетворять $|\alpha - \frac{p}{q}| < \frac{1}{q^n}$ при n > d, иначе возникнет противоречие (Теорема Лиувилля).

9.2 Ответ на вопрос

Алгебраическое и трансцендентное число.

- Алгебраическое число это действительное (или комплексное) число, являющееся корнем многочлена с рациональными (или целыми) коэффициентами. Например, $\sqrt{2}$, $\sqrt[3]{7}$.
- Трансцендентное число это число, **не** являющееся алгебраическим. Примеры: e, π (доказано Линдеманом), а также более специальные конструкции (числа Лиувилля).

Приближение чисел рациональными дробями. Для действительного числа α говорят, что *оно допускает «слишком хорошие» рациональные приближения*, если существуют бесконечные наборы дробей $\frac{p}{q}$, удовлетворя

$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{q^n}$$

для больших q, при некоторых n существенно превосходящих 1.

Теорема Лиувилля (о трансцендентных числах). Если действительное число α удовлетворяет следующему условию: существует n>1 и бесконечно много рациональных дробей $\frac{p}{a}$, для которых

$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{q^n},$$

то число α **не** алгебраично (то есть оно **трансцендентно**).

- Предположим противное: α алгебраическое, но допускает «чрезмерно точные» рациональные приближения.
- Рассматривается соответствующий минимальный многочлен числа α степени d.
- Показывается, что при достаточно хороших приближениях противоречат оценкам, вытекающим из теоремы о том, как далеко корни полинома могут быть друг от друга.

• Возникает противоречие, откуда делается вывод: число α не может быть алгебраическим, оно — трансцендентно.

Доказательство (классический эскиз):

- 1. **Предположение.** Пусть α корень целого многочлена P(x) степени d. Считаем P(x) приведённым (нет общих делителей).
- 2. Рациональные приближения. Допустим, существуют бесконечно многие $\frac{p}{q}$ с $|q\alpha p| < q^{1-n}$, то есть $|\alpha p/q| < 1/q^n$ при n > d.
- 3. Оценка многочлена. Рассмотрим $P\left(\frac{p}{q}\right)$; используя замену $x=\frac{p}{q}$ и разложение $P(\alpha)=0,$ анализируют величину $|P(\frac{p}{q})-P(\alpha)|.$
- 4. **Неравенство:** Т.к. P(x) многочлен степени d, разность $|P(x) P(\alpha)|$ может быть оценена через $|x \alpha|$, где в высших степенях играют роль биномиальные формулы, а коэффициенты целые.
- 5. **Противоречие:** При «слишком» быстром убывании $|x \alpha| < 1/q^n$ с n > d, получается невозможная малая оценка для |P(p/q)|, хотя p/q рациональная точка, где P должно принимать вполне «ограниченное снизу» значение (не равное нулю, раз $p/q \neq \alpha$).
- 6. **Итог.** Противоречие доказывает, что α не может быть алгебраическим. Следовательно, α трансцендентное.

Пример: число Лиувилля. Классический пример:

Здесь в десятичной записи стоят единицы на позициях $1!, 2!, 3!, \ldots$ и нули в остальных. Нетрудно проверить, что для любого n можно найти рациональную дробь p/q с $q = 10^{n!}$, которая приближает β с точностью $1/q^n$. По **теореме Лиувилля**, такое число β *трансцендентно*.

10 Формулы Маклорена для функций $y=\exp(x)$, $y=\sin x$, $y=\cos x$, $y=\ln(1+x)$, y=pow((1+x),a).

10.1 Используемые понятия

Определение n-й производной. Если функция f n раз дифференцируема в окрестности 0, то $f^{(n)}(0)$ есть её n-я производная в точке 0.

Радиус сходимости степенного ряда. Ряд $\sum_{n=0}^{\infty} c_n x^n$ имеет некий *радиус сходи-мости* $R,\ 0 \le R \le \infty$, где ряд сходится при |x| < R и расходится (как правило) при |x| > R.

Бином Ньютона (обобщённый). Для вещественного a при |x| < 1:

$$(1+x)^a = \sum_{n=0}^{\infty} \binom{a}{n} x^n,$$

где
$$\binom{a}{n} = \frac{a(a-1)\dots(a-n+1)}{n!}$$
.

Формула Тейлора (общая). При разложении f(x) в окрестности 0 с учётом всех производных получаем ряд (если сходится) называемый рядом Маклорена, частный случай ряда Тейлора.

10.2 Ответ на вопрос

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n,$$

если этот ряд сходится к f(x) при соответствующих x (см. $sub_10.tex$ о радиусе сходимости).

1) Функция $f(x) = e^x$. Все производные $f^{(n)}(x) = e^x$, значит $f^{(n)}(0) = 1$. Итоговая формула:

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}, \quad x \in \mathbb{R}.$$

Ряд сходится абсолютно для всех x.

2) Функция $f(x) = \sin x$. Набор производных цикличен:

$$f'(x) = \cos x, \ f''(x) = -\sin x, \ f^{(3)}(x) = -\cos x, \ f^{(4)}(x) = \sin x, \dots$$

Значения в 0: f(0) = 0, f'(0) = 1, f''(0) = 0, $f^{(3)}(0) = -1$, . . .

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, \quad x \in \mathbb{R}.$$

3) Функция $f(x) = \cos x$. Аналогично, производные:

$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}, \quad x \in \mathbb{R}.$$

4) Функция $f(x) = \ln(1+x)$. Все производные в точке 0 (для |x| < 1) дают:

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots, \quad |x| < 1.$$

При x=1 ряд сходится условно (это знаменитый « $\ln 2$ » ряд).

5) Функция $f(x) = (1+x)^a$. Для |x| < 1 и произвольного действительного a (бином Ньютона в обобщённом смысле):

$$(1+x)^a = 1 + ax + \frac{a(a-1)}{2!}x^2 + \frac{a(a-1)(a-2)}{3!}x^3 + \dots$$

Ряд сходится при |x| < 1.

- e^x , $\sin x$, $\cos x$: Производные в 0 легко вычислить, дающие конкретные формулы для $f^{(n)}(0)$.
- $\ln(1+x)$: Рассматриваем $f(x) = \ln(1+x)$, находим $f^{(n)}(x)$ и подставляем x = 0, выписываем коэффициенты.
- $(1+x)^a$: Используем обобщённую биномную формулу (либо вывод через производные в 0).

Примерный план доказательства (для e^x).

- 1. Показываем, что все производные $f^{(n)}(0) = 1$.
- 2. Формула Маклорена:

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$

3. Радиус сходимости — неограничен. По признаку д'Аламбера или частному признаку Бернулли, ряд сходится для всех $x \in \mathbb{R}$.

Для $\sin x$, $\cos x$, $\ln(1+x)$, $(1+x)^a$ аналогично расписываются производные и их значения в 0, а сходимость анализируется по радиусу, связанному с разложением и возможными особенностями (см. $\mathrm{sub_10.tex}$).

- \bullet sin x при $x=\pi$: sin $\pi=0$. Ряд даёт $0-\frac{\pi^3}{3!}+\frac{\pi^5}{5!}-\dots$ (проверка сходимости).
- $\ln(1+x)$ при $x=\frac{1}{2}$: $\ln\left(\frac{3}{2}\right)\approx 0.40536$. Ряд: $\frac{1}{2}-\frac{1}{8}+\frac{1}{24}-\ldots$
- $(1+x)^a$ при $a=\frac{1}{2}$: $\sqrt{1+x}=\dots$ бином Ньютона.

11 Формула Тейлора с остатком в форме Лагранжа. Приближенные вычисления по формуле Тейлора.

11.1 Используемые понятия

Обобщённая теорема Ролля (Теорема Коши). Если f и g непрерывны на [a,b], дифференцируемы на (a,b), и $g'(x) \neq 0$ на (a,b), то существует $c \in (a,b)$:

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.$$

При удачном выборе «вспомогательных» функций подстановка даёт нужный результат о $F^{(n+1)}(\xi)=0$.

п-кратная производная в точке. Если f дифференцируема n раз в окрестности x_0 , мы обозначаем $f^{(n)}(x_0)$ как производную n-го порядка, если та существует и непрерывна.

Пример применения индукции. Чтобы показать наличие ξ с $F^{(n+1)}(\xi) = 0$, обычно делают «по шагам»: сначала доказывают, что в (a,b) есть c_1 с $F^{(1)}(c_1) = 0$ (Теорема Ролля), затем в (a_1,b_1) подинтервале ищут c_2 с $F^{(2)}(c_2) = 0$, и т. д.

11.2 Ответ на вопрос

Формула Тейлора и остаточный член. Пусть f имеет (n+1)-ю производную в окрестности точки x_0 . Тогда можно представить f(x) в виде:

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!} (x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + R_n(x),$$

где $R_n(x)$ называется остаточным членом.

Форма Лагранжа остаточного члена. Существует точка ξ между x_0 и x (включая возможность $\xi \in (x, x_0)$), такая что

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}.$$

Это утверждение мы будем доказывать ниже (используя теорему Лагранжа о среднем значении).

Формулировка (Тейлор + **Лагранж).** Пусть f непрерывно дифференцируема на отрезке $[x_0, x]$ (или $[x, x_0]$) до порядка (n + 1). Тогда:

$$f(x) = \underbrace{\sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k}_{\text{многочлен Тейлора порядка } n} + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1},$$

где ξ лежит между x_0 и x.

Приближённые вычисления. Чтобы вычислить f(x) примерно, берут полином Тейлора степени n:

$$P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k,$$

и оценивают ошибку (погрешность) через

$$|R_n(x)| = \left| \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1} \right|.$$

Обычно используют верхнюю оценку: если $|f^{(n+1)}(t)| \leq M$ на $[x_0, x]$, то

$$|R_n(x)| \le \frac{M|x-x_0|^{n+1}}{(n+1)!}.$$

- Рассмотрим функцию $F(x) = f(x) P_n(x)$, где $P_n(x)$ многочлен Тейлора степени n вокруг x_0 .
- По определению P_n , все производные F до порядка n в точке x_0 равны нулю.
- Применяем теорему Лагранжа в обобщённом виде (Теорема Коши или вариант теоремы Ролля) к F на отрезке $[x_0, x]$, получаем существование точки ξ , где (n + 1)-я производная $F^{(n+1)}(\xi) = 0$. Но $F^{(n+1)}(t) = f^{(n+1)}(t)$, потому что (n+1)-я производная многочлена P_n равна нулю.
- Отсюда возникает

$$F(x) = F(x_0) + \dots + \frac{F^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1},$$

но
$$F(x_0) = F'(x_0) = \cdots = F^{(n)}(x_0) = 0$$
. Значит $F(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}$.

Шаг 1: Построение многочлена Тейлора.

$$P_n(t) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (t - x_0)^k.$$

По определению производной порядок k, P_n «согласован» с f до n-го порядка в точке x_0 .

Шаг 2: Рассмотрим $F(t) = f(t) - P_n(t)$. Тогда

$$F^{(k)}(x_0) = f^{(k)}(x_0) - P_n^{(k)}(x_0) = 0$$
 для $k = 0, 1, \dots, n$.

Шаг 3: Применяем обобщённую теорему Ролля. На отрезке $[x_0,x]$ (или $[x,x_0]$), функция F удовлетворяет условию $F^{(k)}(x_0)=F^{(k)}(x)\dots$ (не все равны, но ключ в том, что мы можем включить вспомогательную функцию « $G(t)=\dots$ » — см. $\mathrm{sub_11.tex}$ о теореме Коши). В итоге $no\ undykuuu$ выводится, что существует ξ между x_0 и x, где $F^{(n+1)}(\xi)=0$. А $F^{(n+1)}(t)=f^{(n+1)}(t)$.

Шаг 4: Остаточный член.

$$F(x) = f(x) - P_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}.$$

Перенося, получаем:

$$f(x) = P_n(x) + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}.$$

Это и есть искомая формула Тейлора с остатком в форме Лагранжа.

Пример: функция $f(x) = \sqrt{1+x}$, при x мало.

- Выбираем $x_0 = 0$. Имеем f(0) = 1, $f'(0) = \frac{1}{2}$, $f''(0) = -\frac{1}{8}$,
- Третьепорядочное приближение:

$$P_2(x) = 1 + \frac{1}{2}x - \frac{1}{8}x^2.$$

• Ошибка (остаток) $R_2(x) = \frac{f^{(3)}(\xi)}{3!} x^3$ для некоторого $\xi \in (0,x)$. Используя оценку $|f^{(3)}(t)| \leq M$ на [0,x], будет $\left|R_2(x)\right| \leq \frac{M|x|^3}{6}$.

Так можно оценить точность приближённого вычисления $\sqrt{1+x}\approx 1+\frac{1}{2}x-\frac{1}{8}x^2$ для малых x.

12 Формула Стирлинга (с эквивалентностью).

12.1 Используемые понятия

Интегральная аппроксимация суммы. Ключ к доказательству формулы Стирлинга:

$$\sum_{k=1}^{n} \ln k$$
 сравнивается с
$$\int_{1}^{n} \ln x \, dx.$$

Разность между этой суммой и интегралом — «погрешность», часто контролируемая приёмами типа «прямоугольников» или *упрощённой* формулы Эйлера—Маклорена.

Обозначения: $O(\cdot),\ o(\cdot).$ Символ O(g(n)) означает, что рассматриваемая величина не превосходит по абсолютному значению $C\left|g(n)\right|$ при достаточно больших n. Символ r(n)=o(g(n)) значит $\lim_{n\to\infty}\frac{r(n)}{g(n)}=0.$

Эквивалентность функций. Запись $f(n) \sim g(n)$ означает $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 1$. В контексте формулы Стирлинга: $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$.

12.2 Ответ на вопрос

Факториал n!. Для натурального n вводится произведение:

$$n! = 1 \cdot 2 \cdot \cdots \cdot n.$$

Формула Стирлинга (эквивалентность). При $n \to \infty$

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

то есть

$$\lim_{n \to \infty} \frac{n!}{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n} = 1.$$

Основная идея. Используется:

$$\ln(n!) = \sum_{k=1}^{n} \ln k \quad \approx \quad \int_{1}^{n} \ln x \, dx = n \ln n - n + 1.$$

Разность «сумма – интеграл» даёт поправку, которая приводит к множителю $\sqrt{2\pi n}$.

1. Переход к логарифмам.

$$\ln(n!) = \sum_{k=1}^{n} \ln k.$$

2. Сравнение с интегралом.

$$\sum_{k=1}^{n} \ln k \approx \int_{1}^{n} \ln x \, dx = n \ln n - n + 1.$$

3. Тонкая оценка (через формулу Эйлера-Маклорена).

$$\ln(n!) = n \ln n - n + \frac{1}{2} \ln(n) + O(1).$$

4. Экспоненцирование.

$$n! = \exp(n \ln n - n + \frac{1}{2} \ln n + O(1)) = \sqrt{n} \left(\frac{n}{e}\right)^n \exp(O(1)).$$

При более точном разборе получается желаемый множитель $\sqrt{2\pi},$ то есть

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
.

Уже при умеренных n, например n=10, точность формулы достаточно хороша; отклонение от $\sqrt{2\pi n}\left(\frac{n}{e}\right)^n$ в долях процента относительно n!.

13 Формула Стирлинга (с равенством).

13.1 Используемые понятия

Формула Эйлера—**Маклорена (намёк).** Для достаточно гладкой функции f, при суммировании:

$$\sum_{k=a}^{b} f(k) \approx \int_{a}^{b} f(x) dx + (\text{пограничные и высшие члены}),$$

используются числа Бернулли. В частности, для $f(k) = \ln k$ даёт точное выражение логарифма факториала:

$$\ln(n!) = n \ln n - n + \frac{1}{2} \ln(n) + \dots$$

Числа Бернулли. Обозначаются B_m , входят в разложение. Не нужны формулы здесь, достаточно знать: они позволяют оценивать дополнительный член, который даёт диапазон $0 < \theta_n < \frac{1}{12n}$.

Точный вид остатка. При экспоненцировании логарифмической оценки:

$$\ln(n!) = n \ln n - n + \frac{1}{2} \ln(2\pi n) + \theta_n$$

возникает $n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n e^{\theta_n}$. Ограничения на θ_n следуют из дополнительных членов Эйлера–Маклорены.

13.2 Ответ на вопрос

14 Определение интеграла Римана. Отличие от «обычного» предела.

14.1 Используемые понятия

Верхние и нижние суммы (Дарбу). Для разбиения $D = \{x_0, \dots, x_n\}$:

$$\overline{S}(f,D) = \sum_{i=1}^{n} \sup_{x \in [x_{i-1},x_i]} f(x) \ \Delta x_i, \quad \underline{S}(f,D) = \sum_{i=1}^{n} \inf_{x \in [x_{i-1},x_i]} f(x) \ \Delta x_i.$$

Если при $||D|| \to 0$, $\overline{S}(f,D)$ и $\underline{S}(f,D)$ сходятся к одной величине, эта величина называется $\int_{-b}^{b} f$.

Уточнение разбиения. Дано два разбиения D, D'. Их ymoчneнueм называют разбиение, содержащее **все** точки D и D'. При сопоставлении интегральных сумм на этом уточнённом разбиении можно показать, что они близки при мелком $||D|| \to 0$.

Сущность «обычного» предела vs. интеграл. - Обычный предел $\lim_{x\to x_0} f(x)$ говорит о локальном поведении f возле одной точки x_0 . - Интеграл Римана — предел cymm на всем отрезке [a,b] с измельчающимся разбиением. Глобальное свойство. 7

14.2 Ответ на вопрос

Интеграл Римана. Пусть f задана на [a,b]. Разобьём отрезок:

$$a = x_0 < x_1 < \dots < x_n = b, \quad \Delta x_i = x_i - x_{i-1}, \quad \xi_i \in [x_{i-1}, x_i].$$

Тогда интегральная сумма:

$$S = \sum_{i=1}^{n} f(\xi_i) \, \Delta x_i.$$

Если при $\max_i \Delta x_i \to 0$ все такие суммы S стремятся κ одному u тому эсе числу I, независимо от выбора точек ξ_i , то f называется **интегрируемой по Риману**, а I — её интегралом:

$$I = \int_a^b f(x) \, dx.$$

- При непрерывности f на [a,b] интеграл Римана существует.
- Критерий Дарбу: если верхние и нижние суммы сближаются, интеграл существует.
- Рассматривается равномерная непрерывность на [a, b] и «мелкие» разбиения, чтобы функция не успевала сильно меняться в каждом отрезке.
- Используется факт, что всякая пара разбиений «уточняется» до одного общего, и разность сумм делается малой.
- 1. Два разбиения. Пусть D и D' любые разбиения, $||D|| \to 0$ и $||D'|| \to 0$.
- 2. **Уточнение.** Построить «общее» разбиение D'' содержащее все точки D и D'. Сопоставить интегральные суммы.

- 3. Оценка разницы. При малых Δx_i , из равномерной непрерывности (или ограниченности) f следует, что интегральные суммы S(f,D) и S(f,D') близки.
- 4. Вывод. Предел един, определение интеграла однозначно.
- Обычный предел: $\lim_{x \to x_0} f(x) m$ очечный анализ, рассматриваем поведение функции в одной точке.
- Интеграл Римана: глобальный (берёт во внимание всё множество [a,b]), есть npeden сумм при возрастании числа разбиений.

Если $f(x)=\mathrm{const},$ то любая интегральная сумма есть $\mathrm{const}(b-a),$ предел одинаков независимо от разбиения.

15 Формула Ньютона-Лейбница.

15.1 Используемые понятия

Непрерывность и существование первообразной. Если f непрерывна на [a,b], то любая первообразная F (то есть F'(x) = f(x)) будет непрерывно дифференцируема на (a,b).

Теорема о среднем значении для интегралов. Для каждого отрезка $[x_{i-1},x_i]$ най-дётся η_i с

$$\int_{x_{i-1}}^{x_i} f(x) \, dx = f(\eta_i) \, (x_i - x_{i-1}).$$

(Аналогична теореме Лагранжа для дифференцирования.)

Смысл формулы Ньютона—**Лейбница.** Определённый интеграл — площадь под f, а F — функция, чья производная равна f. Тогда приращение F(b) - F(a) «накрывает» общую «площадь» (или суммирует мгновенные приращения).

15.2 Ответ на вопрос

Определённый интеграл. Функция f называется интегрируемой по Риману на [a,b], если предел сумм вида

$$S = \sum_{i=1}^{n} f(\xi_i) \, \Delta x_i,$$

при разбиении [a,b] на всё более мелкие отрезки (с максимальной длиной $\Delta x_i \to 0$), существует и не зависит от выбора ξ_i . Этот предел есть $\int_a^b f(x) \, dx$.

Первообразная (примитив). Функция F называется nepвooбразной для f на [a,b], если F'(x) = f(x) для всех $x \in (a,b)$. Если F дифференцируема на (a,b) и непрерывна на [a,b], то это достаточно для теоремы Ньютона–Лейбница.

Формула Ньютона—**Лейбница.** Пусть f непрерывна на [a,b] и F — первообразная f на [a,b]. Тогда

$$\int_a^b f(x) \, dx = F(b) - F(a).$$

- Рассматривается $\int_a^b f(x) dx$ и разбиение отрезка [a, b].
- По определению первообразной F'(x) = f(x) на (a,b).
- Считаем интегральные суммы $S = \sum f(\xi_i) \, \Delta x_i$ и замечаем связь с приростами $F(x_i) F(x_{i-1})$.
- Подсчитываем $\sum [F(x_i) F(x_{i-1})] = F(b) F(a)$.
- Показываем, что эта сумма совпадает с $\int_a^b f(x) \, dx$ в пределе.
- 1. Разбиение отрезка [a,b]. Пусть $a=x_0 < x_1 < \cdots < x_n = b$ любое разбиение, $\Delta x_i = x_i x_{i-1}$.
- 2. Интегральная сумма. Рассмотрим $S = \sum_{i=1}^{n} f(\xi_i) \Delta x_i, \, \xi_i \in [x_{i-1}, x_i].$

3. Прирост первообразной. Так как F'(x) = f(x), то по теореме о среднем значении существует $\eta_i \in [x_{i-1}, x_i]$ с

$$F(x_i) - F(x_{i-1}) = F'(\eta_i) \Delta x_i = f(\eta_i) \Delta x_i.$$

4. Сравнение с интегральной суммой. Если выбрать $\xi_i = \eta_i$, видим, что $\sum [F(x_i) - F(x_{i-1})] = \sum f(\eta_i) \Delta x_i = S$. Но слева — телескопическая сумма:

$$\sum_{i=1}^{n} [F(x_i) - F(x_{i-1})] = F(x_n) - F(x_0) = F(b) - F(a).$$

5. **Вывод.** Переходя к пределу при $\|D\| \to 0$, интегральная сумма $\sum f(\xi_i) \Delta x_i$ стремится к $\int_a^b f(x) \, dx$, а мы установили её равенство F(b) - F(a). Следовательно,

$$\int_a^b f(x) \, dx = F(b) - F(a).$$

Функция $f(x)=x^2$. Одна из первообразных: $F(x)=\frac{x^3}{3}$. По формуле Ньютона–Лейбница:

$$\int_0^2 x^2 \, dx = \left[\frac{x^3}{3} \right]_0^2 = \frac{2^3}{3} - 0 = \frac{8}{3}.$$