# ESIR1 BD Bases de données

# calcul relationnel

Olivier Ridoux



#### Plan

- Notions de base
  - schéma, relation, table, requête
- Opérations relationnelles







#### Calcul relationnel

- Un calcul dont les valeurs sont des relations (ou tables)
- Un calcul formalisé par l'algèbre relationnelle (AR)
- Un calcul implémenté dans le langage de manipulation de données (LMD) de SQL
  - présenter AR et SQL en //



# Une table

# Types of broadband connections people use at home

% of those with broadband at home

|      | DSL | Cable | Fixed wireless<br>or satellite | Fiber | T-1 | Other |
|------|-----|-------|--------------------------------|-------|-----|-------|
| 2009 | 33% | 41%   | 17%                            | 5%    | 1%  | 2%    |
| 2008 | 46  | 39    | 11                             | 3     | *   | 1     |
| 2007 | 49  | 39    | 8                              | 1     | .*  | 1     |

Source: Pew Internet & American Life Project April 2009 Survey.



http://www.pewinternet.org/2009/06/17/connections-costs-and-choices/



### Une autre table

|            | UWB              | Bluetooth        | Wi-Fi             | Wi-Fi             | Wi-Fi             | WMAX                             | WMAX                             | Edge                 | CDMA2000 /<br>1 × EV-DO                           | WCDMA /<br>UMTS                                                 |
|------------|------------------|------------------|-------------------|-------------------|-------------------|----------------------------------|----------------------------------|----------------------|---------------------------------------------------|-----------------------------------------------------------------|
| Standard   | 802.15.3a        | 802.15.1         | 802.11a           | 802.11ь           | 802.11g           | 802.16d                          | 802.16e                          | 2.56                 | 36                                                | 36                                                              |
| Usage      | WPAN             | WPAN             | WLAN              | WLAN              | WLAN              | WMAN<br>Fixed                    | WMAN<br>Portable                 | WWAN                 | WWAN                                              | WWAN                                                            |
| Throughput | 110-<br>480Mbps  | Up to<br>720Kbps | Up to<br>54Mbps   | Up to<br>11Mbps   | Up to<br>54Mbps   | Up to<br>75Mbps<br>(20MHz<br>BW) | Up to<br>30Mbps<br>(10MHz<br>BW) | Up to<br>384Kbps     | Up to 2.4<br>Mbps<br>(typical 300-<br>600Kbps)    | Up to<br>2Mbps (Up<br>to 10Mbps<br>with<br>HSDPA<br>technology) |
| Range      | Up to 30<br>feet | Up to 30<br>feet | Up to<br>300 feet | Up to<br>300 feet | Up to<br>300 feet | Typical<br>46<br>miles           | Typical<br>1-3<br>miles          | Typical<br>1-5 miles | Typical 1-5<br>miles                              | Typical 1-5<br>miles                                            |
| Frequency  | 7.5GHz           | 2.49Hz           | 5GHz              | 2.49Hz            | 2.49Hz            | Sub<br>11GHz                     | 2-69Hz                           | 1900MHz              | 400, 800,<br>900, 1700,<br>1800, 1900,<br>2100MHz | 1800,<br>1900,<br>2100MHz                                       |

http://www.embedded.com/design/communications-design/4017788/Beyond-3G-The-Changing-Face-of-Cellular



## Une table hors champs



https://www.opengroup.org/soa/source-book/osimmv2/model.htm



#### Notion de schéma

Nom-tab(Nom-attr<sub>1</sub>: Dom-attr<sub>1</sub>,
 Nom-attr<sub>2</sub>: Dom-attr<sub>2</sub>,

•••

Nom-attr<sub>N</sub>: Dom-attr<sub>N</sub>)

- Schéma ≈ signature ≈ type
- CREATE TABLE Nom-tab
   (Nom-attr<sub>1</sub> Dom-attr<sub>1</sub> [opt<sub>1</sub>],
   Nom-attr<sub>2</sub> Dom-attr<sub>2</sub> [opt<sub>2</sub>],

Nom-attr<sub>N</sub> Dom-attr<sub>N</sub> [opt<sub>N</sub>]);



## Quelques requêtes (1)

CREATE TABLE Adherent (
NumAdherent INT PRIMARY KEY,
Nom CHAR(20),
Prenom CHAR(20),
Telephone CHAR(20),
DateAdhesion DATETIME,
Sexe CHAR(1))

Déclaration d'un schéma



## Quelques requêtes (2)

CREATE TABLE Activite(

NumActivite INT PRIMARY KEY, Intitule CHAR(20), NumResponsable INT)

CREATE TABLE AdherentActivite(
 NumAdherent INT,
 NumActivite INT,
 Expertise INT)



# Représentation graphique du schéma



# Notion de relation et de table (1)



$$\{(x_1,...,x_N),...,(z_1,...,z_N)\}$$

- Pas d'ordre, pas de multiplicité
- Relation ≈ propriété
  - (x<sub>1</sub>,..., x<sub>N</sub>) a la propriété désirée pour être dans cet ensemble



## Notion de relation et de table (2)

 Table = liste de n-uplets conformes à un schéma

```
INSERT INTO Nom-tab [(Nom-attr_1, ..., Nom-attr_N)] VALUES (x_1, x_2, ..., x_N);
```

 Ordre (fortuit ou désiré) et multiplicité (doublons)



# Quelques requêtes (3)



# Quelques requêtes (4)

**INSERT INTO Adherent** 

(NumAdherent, Nom, Prenom) VALUES (123, 'Jones', 'Inigo')

UPDATE Adherent

SET Telephone = '0223231234'

WHERE NumAdherent = 123

 Insertion partielle et progressive des informations

#### Notion de requête

Relations stockées = relations explicite

(extensionnelles)

- Requêtes = relations calculées
  - = relations implicites (intensionnelles)
  - Rôle de l'interpréteur de requêtes

implicite → explicite

Requêtes utilisent relations explicites / implicites



# Opérations relationnelles

calcul relationnel



# Opérations relationnelles (1)

- Opérations ensemblistes
  - tables calculées
  - tables stockées
- Approximation en SQL
  - ordre et multiplicité



# Opérations relationnelles (2)

- Opérations binaires même schéma
  - INTERSECT, UNION, MINUS (EXCEPT)
- Opérations unaires
  - SELECT
- Opérations binaires schémas complémentaires



#### INTERSECT (1)



- BLEU et VIOLET même schéma!
- Relation<sub>1</sub> ∩ Relation<sub>2</sub>
- Propriété₁ ∧ Propriété₂
- Table<sub>1</sub> INTERSECT Table<sub>2</sub>



# INTERSECT (2)

| а | 1 |
|---|---|
| U | 3 |
| е | 5 |
| g | 7 |



| а | 1 |
|---|---|
| g | 7 |



#### UNION (1)



- BEEU et VIOLET même schéma!
- Relation₁ ∪ Relation₂
- Propriété<sub>1</sub> V Propriété<sub>2</sub>
- Table<sub>1</sub> UNION Table<sub>2</sub>



# UNION (2)

| _ |   |   |
|---|---|---|
|   | а | 1 |
|   | С | 3 |
|   | е | 5 |
|   | g | 7 |
|   |   |   |

| $\underline{}$ |    |
|----------------|----|
| а              | 1  |
| b              | 2  |
| d              | 4  |
| g              | 7  |
| k              | 11 |
| р              | 16 |
| V              | 22 |

| а | 1           |
|---|-------------|
| С | 3           |
| е | 5           |
| g | 7           |
| b | 2           |
| d | 4           |
| k | 11          |
| р | 16          |
| V | 22          |
|   | c e g b d k |

ou

| а | 1  |  |
|---|----|--|
| С | 3  |  |
| е | 5  |  |
| g | 7  |  |
| а | 1  |  |
| b | 2  |  |
| d | 4  |  |
| g | 7  |  |
| k | 11 |  |
| р | 16 |  |
| V | 22 |  |

Apparition possible de doublons!



#### MINUS - EXCEPT (1)



soustraction

- BLEU et VIOLET même schéma!
- Relation<sub>1</sub> \ Relation<sub>2</sub>
- Propriété<sub>1</sub> ∧ ¬Propriété<sub>2</sub>
- $\neg$ (Propriété<sub>1</sub>  $\Longrightarrow$  Propriété<sub>2</sub>)
- Table<sub>1</sub> MINUS Table<sub>224</sub>



# MINUS - EXCEPT (2)

| а | 1 |
|---|---|
| С | 3 |
| е | 5 |
| g | 7 |

| а | 1  |
|---|----|
| b | 2  |
| d | 4  |
| g | 7  |
| k | 11 |
| р | 16 |
| V | 22 |
|   |    |

|   | С | 3 |
|---|---|---|
| _ | е | 5 |



#### Remarque - ∩ vs. MINUS

- Relation<sub>1</sub> ∩ Relation<sub>2</sub>
  - = Relation<sub>1</sub> \ (Relation<sub>1</sub> \ Relation<sub>2</sub>)
  - = Relation<sub>2</sub> \ (Relation<sub>2</sub> \ Relation<sub>1</sub>)





## SELECT – projection (1)



- Projection sur X<sub>1</sub>, ..., X<sub>p</sub>
- $proj_{X1...Xp}$ (Relation) ou  $\Pi_{X1...Xp}$ (Relation)
- $\exists_{Y1...Ym}$ (Propriété( $Y_1, ..., Y_m, X_1, ..., X_p$ ))
- SELECT X<sub>1</sub>, ..., X<sub>p</sub> FROM Relation



# SELECT – projection (2)

 $\Pi_{\sf UW}$ 

| _ | Т | ٦  | ٧   | W    | X |
|---|---|----|-----|------|---|
| Ū | а | 12 | 1.5 | "ac" | q |
| L | b | 23 | 2.6 | "zv" | S |
|   | С | 34 | 3.7 | "eb" | d |
|   | d | 45 | 4.8 | "rn" | f |
|   | е | 56 | 5.9 | "tb" | g |
| ) | f | 67 | 6.0 | "yv" | h |

|   | )  |      |
|---|----|------|
|   | 12 | "ac" |
|   | 23 | "zv" |
| • | 34 | "eb" |
|   | 45 | "rn" |
|   | 56 | "tb" |
|   | 67 | "yv" |

W



# Quelques requêtes (5)

 $\pi_{\text{Nom,Prenom,Telephone}}$  (Adherent)

SELECT Nom, Prenom, Telephone FROM Adherent



## SELECT – restriction (1)



- Restriction / un prédicat Q
- select<sub>Q</sub>(Relation) ou  $\sigma_Q$ (Relation)
- Propriété ∧ Q
- SELECT \* FROM Relation WHERE Q



# Prédicats de restriction (1)

Propriétés intensionnelles

Arithmétique et logique<, <=, =, >=, >, <>, AND, OR, NOT

• • •

WHERE attr < 12 OR attr >= 25



# Quelques requêtes (6)



SELECT \*
FROM Adherent
WHERE Sexe = 'H'



# Quelques requêtes (7)

 $\sigma_{\text{DataAdhesion} < 01/01/2000}$  (Adherent)

SELECT \*

**FROM Adherent** 

**WHERE DateAdhesion < '01/01/2000'** 

 Une date est représentée par une chaîne, mais n'est pas une chaîne

'31/12/1999' < '01/01/2000'



# Prédicats de restriction (2)

- Appartenance
  - BETWEEN, IN, LIKE

•••

WHERE attr NOT BETWEEN 12 AND 24

• • •

WHERE attr IN ('ESIR1', 'ESIR2', 'ESIR3')

• • •

WHERE attr LIKE 'E%'



# Prédicats de restriction (3)

Spécial BD relationnelle

IS NULL, IS NOT NULL



# Quelques requêtes (8)

 $\sigma_{\mathsf{DataAdhesion\ IS\ NULL}}$  (Adherent)

SELECT \*
FROM Adherent
WHERE DateAdhesion IS NULL

 Prise en compte des champs pas encore informés



# SELECT – restriction (2)

|                 | 1 |
|-----------------|---|
| $\sigma_{U>40}$ | 1 |

| Т | J  | ٧   | W    | Х |
|---|----|-----|------|---|
| а | 12 | 1.5 | "ac" | q |
| b | 23 | 2.6 | "zv" | S |
| С | 34 | 3.7 | "eb" | d |
| d | 45 | 4.8 | "rn" | f |
| е | 56 | 5.9 | "tb" | g |
| f | 67 | 6.0 | "yv" | h |

|            | T | U  | <b>V</b> | W    | X |
|------------|---|----|----------|------|---|
| <b>,</b> _ | d | 45 | 4.8      | "rn" | f |
| ) =        | e | 56 | 5.9      | "tb" | യ |
|            | f | 67 | 6.0      | "yv" | h |



#### SELECT (1)



SELECT projection X<sub>1</sub>, ..., X<sub>p</sub>
 FROM Relation

#### WHERE restriction Q

•  $\exists_{Y_{1...Y_{m}}}(Propriété(Y_{1}, ..., Y_{m}, X_{1}, ..., X_{p}))$  $\land Q(Y_{1}, ..., Y_{m}, X_{1}, ..., X_{p}))$ 

JNIVERSITÉ DE RENNES

#### SELECT (2)



|   | T | U  | V   | W    | X |
|---|---|----|-----|------|---|
| 2 | а | 12 | 1.5 | "ac" | q |
|   | b | 23 | 2.6 | "zv" | S |
| 5 | С | 34 | 3.7 | "eb" | d |
| _ | d | 45 | 4.8 | "rn" | f |
|   | е | 56 | 5.9 | "tb" | g |
| 1 | f | 67 | 6.0 | "yv" | h |

• En général,  $\Pi_X(\sigma_Q(R)) \neq \sigma_Q(\Pi_X(R))$ 



# Quelques requêtes (9)

$$\pi_{Nom}(\sigma_{Sexe='H'}(Adherent))$$

SELECT DISTINCT Nom
FROM Adherent
WHERE Sexe = 'H'

Requête type



#### Produit cartésien (1)

$$R_1$$
  $R_2$   $R_2$   $R_3$   $R_4$   $R_5$   $R_6$   $R_7$   $R_8$ 

- Prod( $R_1$ ,  $R_2$ ) ou  $R_1 \times R_2$
- Complétion des noms d'attributs si nécessaire

$$a \rightarrow R_i.a$$

• SELECT \* FROM R<sub>1</sub>, R<sub>2</sub>



# Produit cartésien (2)





| Х | Υ | Z   | U  | V   |
|---|---|-----|----|-----|
| 1 | а | "c" | 11 | 123 |
| 1 | а | "c" | 22 | 234 |
| 1 | а | "c" | 33 | 345 |
| 2 | Z | "v" | 11 | 123 |
| 2 | Z | "v" | 22 | 234 |
| 2 | Z | "v" | 33 | 345 |



#### Remarque - produit cartésien



En général,

$$\Pi_{\rm U}(\sigma_{\rm Q}({\rm R})) \times \Pi_{\rm V}(\sigma_{\rm Q}({\rm R}))$$
 n'est pas contenu dans R

• Le produit cartésien ne peut pas reconstituer une relation scindée par projection



#### Quotient (1)



- Tous les P tels que P × R<sub>2</sub> est dans R<sub>1</sub>
  - les P que tous les R<sub>2</sub> ont
- schéma de R<sub>2</sub> devrait être inclus dans schéma de R<sub>1</sub>
- ...sinon  $(R_1 / R_2)$  est sûrement vide



# Quotient (2)



Vérification

| 1 | а |
|---|---|
| 2 | b |
| 2 | а |
| 1 | b |

$$reste = \begin{array}{c|c} 2 & c \\ \hline 3 & b \end{array}$$



# Remarque – quotient (1)

• 
$$(R_1 / R_2) = \Pi_P(R_1) \setminus \Pi_P((\Pi_P(R_1) \times R_2) \setminus R_1)$$



# Remarque – quotient (2)

•  $(R_1 / R_2) = \Pi_P(R_1) \setminus \Pi_P((\Pi_P(R_1) \times R_2) \setminus R_1)$ 





 $R_2$ 



# Remarque – quotient (3)

• 
$$(R_1 / R_2) = \Pi_P(R_1) \setminus \Pi_P((\Pi_P(R_1) \times R_2) \setminus R_1)$$





 $R_2$ 



# Remarque – quotient (4)

• 
$$(R_1 / R_2) = \Pi_P(R_1) \setminus \Pi_P((\Pi_P(R_1) \times R_2) \setminus R_1)$$





 $R_2$ 



# Remarque – quotient (5)

• 
$$(R_1 / R_2) = \Pi_P(R_1) \setminus \Pi_P((\Pi_P(R_1) \times R_2) \setminus R_1)$$





# Remarque – quotient (6)

• 
$$(R_1 / R_2) = \Pi_P(R_1) \setminus \Pi_P((\Pi_P(R_1) \times R_2) \setminus R_1)$$





# Remarque – quotient (7)

• 
$$(R_1 / R_2) = \Pi_P(R_1) \setminus \Pi_P((\Pi_P(R_1) \times R_2) \setminus R_1)$$





# Remarque – quotient (8)

• 
$$(R_1 / R_2) = \Pi_P(R_1) \setminus \Pi_P((\Pi_P(R_1) \times R_2) \setminus R_1)$$





# Remarque – quotient (9)

• 
$$(R_1 / R_2) = \Pi_P(R_1) \setminus \Pi_P((\Pi_P(R_1) \times R_2) \setminus R_1)$$





# Remarque – quotient (10)

• 
$$(R_1 / R_2) = \Pi_P(R_1) \setminus \Pi_P((\Pi_P(R_1) \times R_2) \setminus R_1)$$

$$(R_1/R_2)$$



# $\Theta$ -Jointure (1)



- $join_Q(R_1, R_2)$  ou  $R_1 \bowtie_Q R_2$
- SELECT ... FROM R<sub>1</sub>, R<sub>2</sub> WHERE Q



# $\Theta$ -Jointure (2)





X+Z=V

| U  | V  |
|----|----|
| 11 | 4  |
| 22 | 22 |
| 33 | 9  |

| Х | Υ | Z | U  | V |
|---|---|---|----|---|
| 1 | а | 3 | 11 | 4 |
| 2 | Z | 7 | 33 | 9 |

# Variantes ⊕-Jointure (1)

•  $join_Q(R_1, R_2) = \sigma_Q(R_1 \times R_2)$ 

• Équijointure : Q = EQUAL

Autojointure: R<sub>1</sub> = R<sub>2</sub>
 application?



#### Quelques requêtes (10)

SELECT **DISTINCT** adh1.Nom
FROM Adherent adh1, Adherent adh2
WHERE adh1.Nom = adh2.Nom
AND adh1.NumAdherent
<> adh2.NumAdherent

• Jointure implicite



# Quelques requêtes (11)

Jointure implicite entre 3 relations



#### Quelques requêtes (12)

- SELECT Nom, Prenom, Intitule
  - FROM Adherent adh, AdherentActivite adac,
    Activite act
  - WHERE adh.NumAdherent = adac.NumAdherent
    AND adac.NumActivite = act.NulActivite
    AND act.Expertise > 5
  - Même chose avec des alias pour alléger la notation.



# Variantes ⊕-Jointure (2)

- Jointure naturelle : 
   <sup>⋈</sup> (sans Q)
  - = équijointure + projection

= 
$$\Pi_{\text{UnionSchéma}}(\sigma_{=}(R_1 \times R_2))$$

SELECT ...

FROM  $R_1$  INNER JOIN  $R_2$  ON  $R_1$ .attr =  $R_2$ .attr



#### Quelques requêtes (13)

SELECT Nom, Prenom, Intitule

FROM (Adherent adh

INNER JOIN AdherentActivite adac

ON adh.NumAdherent = adac.NumAdherent )

**INNER JOIN** Activite act

**ON** adac.NumActivite = act.NumActivite

WHERE act.Expertise > 5

Même chose avec des jointures explicites



#### Quelques requêtes (14)

SELECT Nom, Prenom

FROM Adherent adh

INNER JOIN AdherentActivite adac

ON adh.NumAdherent =

adac.NumAdherent

WHERE act.Expertise > 5

 Ne faire la jointure qu'avec les tables nécessaires



# Quelques requêtes (15)

SELECT Nom, Prenom
FROM (Adherent adh
INNER JOIN AdherentActivite adac ...)
INNER JOIN Activite act ...
WHERE act.Intitule <> 'Violon'

 Tous les noms-prénoms d'adhérents qui ont une activité autre que le violon

ils peuvent quand même avoir l'activité violon!



# Quelques requêtes (16)

SELECT Nom, Prenom FROM Adherent

**EXCEPT** 

SELECT Nom, Prenom

FROM (Adherent adh

INNER JOIN AdherentActivite adac ...)

INNER JOIN Activite act ...

WHERE act.Intitule = 'Violon'

 Tous les noms-prénoms d'adhérents qui n'ont pas l'activité violon!

calcul relationnel

#### Remarques

Différence entre

« Aimez-vous Brahms? »

et

« N'aimez-vous que Brahms? »

 Les choses se compliquent si l'activité NULL est acceptée...

...différence entre

« Ne pas avoir d'activité enregistrée »

et

« Avoir une activité enregistrée mais non renseignée »

# Jointure externe (1)

 Pour conserver les informations d'une table

• Insérer des (ligne, NULL, ...)



# Jointure externe (2)

|   | Х | Υ | Z |
|---|---|---|---|
|   | 1 | а | 3 |
| - | 2 | Z | 7 |
|   | 3 | g | 5 |



X+Z=V

| U  | V  |
|----|----|
| 11 | 4  |
| 22 | 22 |
| 33 | 9  |

| U  | ٧  |   |
|----|----|---|
| 11 | 4  | _ |
| 22 | 22 | _ |
|    |    |   |

| Х    | Υ    | Z    | U    | V    |
|------|------|------|------|------|
| 1    | а    | 3    | 11   | 4    |
| 2    | z    | 7    | 33   | 9    |
| 3    | g    | 5    | NULL | NULL |
| NULL | NULL | NULL | 22   | 22   |



#### Doublons et ordre

• SELECT DISTINCT projection...
FROM produit...
WHERE restriction...

• SELECT projection...

FROM ...

WHERE ...

**ORDER BY projection... ASC ou DESC** 



# Quelques requêtes (17)

 $\sigma_{\mathsf{DataAdhesion\ IS\ NULL}}$  (Adherent)

SELECT \*
FROM Adherent
WHERE DateAdhesion IS NULL
ORDER BY Nom, Prenom



# Quelques requêtes (18)

SELECT Nom, Prenom, Intitule
FROM (Adherent adh
INNER JOIN AdherentActivite adac ...)

**ORDER BY Intitule, Nom, Prenom** 

INNER JOIN Activite act ...



#### Agrégation (1)

- Statistique
  - AVG, COUNT, MAX, MIN, SUM

SELECT COUNT(\*), SUM(qte), MAX(qte), MIN(qte), AVG(qte)
FROM commandes;



#### Agrégation (2)

COUNT(\*) compte toutes les lignes

 COUNT(ALL attr) compte les lignes où l'attribut n'est pas NULL

 COUNT(DISTINCT attr) compte les valeurs différentes



### Agrégation (3)

### SELECT COUNT(\*), SUM(qte), MAX(qte), MIN(qte), AVG(qte)

#### FROM commandes;

| ref   | qte |
|-------|-----|
| 36568 | 2   |
| 24086 | 5   |
| 90636 | 2   |
| 13234 | 10  |
| 63028 | 1   |
| 56664 | 5   |



| count | sum | max | min | avg  |
|-------|-----|-----|-----|------|
| 6     | 25  | 10  | 1   | 4,16 |



### Quelques requêtes (19)

 $card(\sigma_{DataAdhesion IS NULL}(Adherent))$ 

SELECT COUNT(\*)

**FROM Adherent** 

WHERE DateAdhesion IS NULL



#### Quelques requêtes (20)

SELECT Nom, Prenom, AVG(Expertise)

FROM Adherent adh

INNER JOIN AdherentActivite adac

ON adh.NumAdherent = adac.NumAdherent

WHERE adh.NumAdherent = act.NumResponsable

 L'expertise moyenne des adhérents qui sont responsables d'activité



#### Regroupement (1)

# SELECT num-fournisseur, SUM(qte) FROM commandes GROUP BY num-fournisseur;

| ref   | qte | numf |
|-------|-----|------|
| 36568 | 2   | 13   |
| 24086 | 5   | 25   |
| 90636 | 2   | 25   |
| 13234 | 10  | 7    |
| 63028 | 1   | 13   |
| 56664 | 5   | 25   |

|               | numf | sum |
|---------------|------|-----|
| $\rightarrow$ | 13   | 3   |
|               | 25   | 12  |
|               | 7    | 10  |



#### Regroupement (2)

# SELECT num-fournisseur, COUNT(\*) FROM commandes GROUP BY num-fournisseur;

| ref   | qte | numf |
|-------|-----|------|
| 36568 | 2   | 13   |
| 24086 | 5   | 25   |
| 90636 | 2   | 25   |
| 13234 | 10  | 7    |
| 63028 | 1   | 13   |
| 56664 | 5   | 25   |

|               | numf | count |
|---------------|------|-------|
| $\rightarrow$ | 13   | 2     |
|               | 25   | 3     |
|               | 7    | 1     |



#### Regroupement (3)

SELECT num-fournisseur, COUNT(\*)
FROM commandes
GROUP BY num-fournisseur
HAVING COUNT(\*) < 3;

| ref   | qte | numf |
|-------|-----|------|
| 36568 | 2   | 13   |
| 24086 | 5   | 25   |
| 90636 | 2   | 25   |
| 13234 | 10  | 7    |
| 63028 | 1   | 13   |
| 56664 | 5   | 25   |

|                   | numf | count |
|-------------------|------|-------|
| $\longrightarrow$ | 13   | 2     |
|                   | 7    | 1     |



#### Quelques requêtes (21)

SELECT adh1.Nom
FROM Adherent adh1, Adherent adh2
WHERE adh1.Nom = adh2.Nom
GROUP BY adh1.Nom
HAVING COUNT(adh2.Nom) > 1



#### Quelques requêtes (22)

SELECT Nom, Prenom, COUNT(NumActivite)

FROM Adherent adh

INNER JOIN AdherentActivite adac ...

**GROUP BY Nom, Prenom** 



#### Quelques requêtes (23)

SELECT Nom, Prenom, COUNT(NumActivite) FROM Adherent adh

INNER JOIN AdherentActivite adac ... GROUP BY Nom, Prenom

**HAVING COUNT(NumActivite) > 5** 



#### Quelques requêtes (24)

SELECT Nom, Prenom, AVG(Expertise)

FROM Adherent adh

INNER JOIN AdherentActivite adac

ON adh.NumAdherent = adac.NumAdherent

WHERE adh.NumAdherent = act.NumResponsable

#### **GROUP BY Nom, Prenom**

 L'expertise moyenne pour chaque adhérentresponsable dans les activités dont il est responsable



## Remarque agrégats et groupements (1)

SELECT colonnes<sub>SELECT</sub>,
colonnes<sub>AGRÉGATS</sub>
FROM tables<sub>FROM</sub>
WHERE ...
GROUP BY colonnes<sub>GROUP</sub>
HAVING ...;



### Remarque agrégats et groupements (2)

- On doit avoir  $\subseteq$  colonnes<sub>GROUP</sub>  $\subseteq$  tables<sub>FROM</sub>
  - et souvent colonnes<sub>AGRÉGATS</sub> ⊆ tables<sub>FROM</sub> \ colonnes<sub>GROUP</sub>

GROUP BY est une sorte de projection qui n'oublie pas complètement les colonnes non-projetées



### Remarque agrégats et groupements (3)







#### Conclusion (1)

• Unité de calcul = relation ou table

Opérations macroscopiques sur les relations ou tables

Pas d'itération explicite



### Conclusion (2)

- SQL spécialisation de AR
  - $-\Pi(\sigma(.\times.))$
- SQL approximation de AR
  - ensemble ≠ table
- SQL extension de AR
  - agrégats et groupements

