United International University (UIU)

Dept. of Computer Science & Engineering (CSE)

Final Exam

Spring 2023

CSE 2233/CSI 233: Theory of Computation/Theory of Computing

Total Marks: **40** Duration: 2 hours

Answer all questions. Figures in the right-hand margin indicate full marks.

Any examinee found adopting unfair means will be expelled from the trimester / program as per UIU disciplinary rules.

	per U10 aiscipinary rutes.					
1.	$E \to E + E \mid E - E \mid E = E$ $E \to MNV \mid MN$ $M \to - \mid \varepsilon$ $N \to 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9 \mid NN$ $V \to x \mid y \mid z$					
	a)	With the help of Top-Down Parse Trees , figure out if the grammar is Ambiguous or not for the string " $x + y + z = 2$ "	[5]			
	b)	Show the Right Most Derivation for the string " $-26x + 3y - 8z = -83$ "	[4]			
2.	Define a Context Free Grammar for the following languages:		[3 x 3]			
	a)	$L = \{x^i \ y^j z^{k+1} \mid k = 2j \ and \ i \ge 0, j > 0\}$				
	b)	$L = \{a^m \ b^n \ c^u \ d^v \mid m = \frac{n}{2} \ , v = \frac{u}{4} \ , m, n, u, v > 0\}$				
	c)	$L = \{c^p \# d^q g^r h \mid q = 4p , p, q \ge 0 \text{ and } r > 2\}$				
3.	Con	nvert the following Context Free Grammars to Chomsky Normal Form (CNF)	[3 x 4]			
	a)	$S \to ASA \mid aB$ $A \to B \mid S$ $B \to b \mid \varepsilon$				
	b)	$S \rightarrow S + S S - S (S) T$ $T \rightarrow x y z X$ $X \rightarrow X * X X \% X Y$ $Y \rightarrow 0 1$				

	c)	$S \rightarrow ASB$ $A \rightarrow aAS \mid a \mid \varepsilon$ $B \rightarrow SbS \mid A \mid bb$	
4.	Draw PushDown Automata (PDA) for the following Languages		[2 x 5]
	a)	$L = \{a^p b^q c^{2r} \mid p \neq q \text{ and } p, q, r \geq 0\}$	
	b)	L = $\{0^i 1^j 2^k \mid (i = 3j \text{ or } j = k) \text{ and } i, j, k \ge 1\}$	