**NUMBERS & ARITHMETIC** 

•CHAPTER V

**CHAPTER V** 

**NUMBER SYSTEMS AND ARITHMETIC** 

### **NUMBERS & ARITHMETIC**

## **NUMBER SYSTEMS**

RADIX-R REPRESENTATION

**•NUMBER SYSTEMS** 

Decimal number expansion

$$73625_{10} = (7 \times 10^4) + (3 \times 10^3) + (6 \times 10^2) + (2 \times 10^1) + (5 \times 10^0)$$

Binary number representation

$$10110_2 = (1 \times 2^4) + (0 \times 2^3) + (1 \times 2^2) + (1 \times 2^1) + (0 \times 2^0) = 22_{10}$$

Hexadecimal number representation

$$3E4B8_{16} = (3 \times 16^{4}) + (14 \times 16^{3}) + (4 \times 16^{2}) + (11 \times 16^{1}) + (8 \times 16^{0})$$
$$= 255160_{10}$$

**NUMBERS & ARITHMETIC** 

## **NUMBER SYSTEMS**

BINARY <-> HEXADECIMAL

•NUMBER SYSTEMS

- -BINARY REPRES.
  - -OCTAL REPRES.
  - -HEXADECIMAL REPRES.

### **BINARY <-> HEXADECIMAL**

$$0000_2 = 0_{16}$$
  $1000_2 = 8_{16}$   
 $0001_2 = 1_{16}$   $1001_2 = 9_{16}$   
 $0010_2 = 2_{16}$   $1010_2 = 10 (A_{16})$   
 $0011_2 = 3_{16}$   $1011_2 = 11 (B_{16})$   
 $0100_2 = 4_{16}$   $1100_2 = 12 (C_{16})$   
 $0101_2 = 5_{16}$   $1101_2 = 13 (D_{16})$   
 $0110_2 = 6_{16}$   $1110_2 = 14 (E_{16})$ 

 $1111_2 = 15 (F_{16})$ 

### **BINARY -> HEXADECIMAL**

Group binary by 4 bits from radix point

Examples:

10 1010 0110.1100 
$$01_2 = 2A6.C4_{16}$$

2 A 6 C 4

 $0111_2 = 7_{16}$ 

#### **NUMBERS & ARITHMETIC**

## **NUMBER SYSTEMS**

BINARY -> DECIMAL

- NUMBER SYSTEMS
- -OCTAL REPRES.
  - -BINARY<->HEXADECIMAL
  - -BINARY<->OCTAL

- Perform radix-2 expansion
  - Multiply each bit in the binary number by 2 to the power of its place.
     Then sum all of the values to get the decimal value.

### Examples:

$$10111_2 = (1 \times 2^4) + (0 \times 2^3) + (1 \times 2^2) + (1 \times 2^1) + (1 \times 2^0) = 23_{10}$$

$$10110.0011_{2} = (1 \times 2^{4}) + (0 \times 2^{3}) + (1 \times 2^{2}) + (1 \times 2^{1}) + (0 \times 2^{0})$$
$$+ (0 \times 2^{-1}) + (0 \times 2^{-2}) + (1 \times 2^{-3}) + (1 \times 2^{-4})$$
$$= 22.1875_{10}$$

#### **NUMBERS & ARITHMETIC**

## NUMBER SYSTEMS

**DECIMAL -> BINARY** 

•NUMBER SYSTEMS

- -BINARY<->HEXADECIMAL
- -BINARY<->OCTAL
- -BINARY->DECIMAL

### Integer part:

 Modulo division of decimal integer by 2 to get each bit, starting with LSB.

### Fraction part:

 Multiplication decimal fraction by 2 and collect resulting integers, starting with MSB. Example: Convert **41.828125**<sub>10</sub>

41 mod 2 = 1 LSB 20 mod 2 = 0 10 mod 2 = 0 5 mod 2 = 1

 $2 \mod 2 = 1$ 

 $1 \mod 2 = 1 \mod 8$ 

 $0.828125 \times 2 = 1.65625$  MSB  $0.65625 \times 2 = 1.3125$   $0.3125 \times 2 = 0.625$   $0.625 \times 2 = 1.25$   $0.25 \times 2 = 0.5$  V  $0.5 \times 2 = 1.0$  LSB

Therefore  $41.828125_{10} = 101001.110101_2$ 

### **NUMBERS & ARITHMETIC**

## **BINARY NUMBERS**

#### **UNSIGNED INTEGER**

•NUMBER SYSTEMS
-DECIMAL->BINARY
-POWERS OF 2
-FLOATING POINT

• The range for an *n*-bit radix-*r* unsigned integer is

$$[0, r_{10}^n - 1]$$

Example: For a 16-bit binary unsigned integer, the range is

$$[0, 2^{16} - 1] = [0, 65535]$$

which has a binary representation of

 $0000\ 0000\ 0000\ 0000 = 0$ 

 $0000\ 0000\ 0000\ 0001 = 1$ 

 $0000\ 0000\ 0000\ 0010 = 2$ 

- - -

**1111 1111 1111 1110 = 65534** 

1111 1111 1111 1111 = 65535

### **NUMBERS & ARITHMETIC**

## **BINARY NUMBERS**

SIGNED INTEGERS (1)

•NUMBER SYSTEMS
•BINARY NUMBERS
-UNSIGNED INTEGERS

• The range for an *n*-bit radix-*r* signed integer is

$$[-r_{10}^{n-1}, r_{10}^{n-1}-1]$$

• The most-significant bit is used as a sign bit, where **0** indicates a positive integer and **1** indicates a negative integer.

Example: For a 16-bit binary signed integer, the range is

$$[-2^{16-1}, 2^{16-1}-1] = [-32768, 32767]$$

#### **NUMBERS & ARITHMETIC**

## **BINARY NUMBERS**

SIGNED INTEGERS (2)

- •NUMBER SYSTEMS
  •BINARY NUMBERS
  -UNSIGNED INTEGERS
  -SIGNED INTEGERS
- There are a number of different representations for signed integers, each which has its own advantage
  - Signed-magnitude representation:
    - 1010 0001 0110 1111
  - Signed-1's complement representation:
    - 1101 1110 1001 0000
  - Signed-2's complement representation:
    - 1101 1110 1001 0001
- The above examples are all the same number, –8559<sub>10</sub>.

#### **NUMBERS & ARITHMETIC**

## **BINARY NUMBERS**

SIGNED-MAGNITUDE

- •NUMBER SYSTEMS
  •BINARY NUMBERS
  -UNSIGNED INTEGERS
  -SIGNED INTEGERS
- The signed-magnitude binary integer representation is just like the unsigned representation with the addition of a sign bit.
  - For instance, using 8-bits, the number –6<sub>10</sub> can be represented as the
     7-bit magnitude of 6<sub>10</sub> using

000 0110

and then the sign bit appended to the MSB to form

1000 0110

#### **NUMBERS & ARITHMETIC**

## **BINARY NUMBERS**

#### 1'S COMPLEMENT

- BINARY NUMBERS
  - -SIGNED INTEGERS
  - -SIGNED-MAGNITUDE
  - -RADIX COMPLEMENTS
- The 1's complement (diminished radix complement) binary integer representation for an n-bit integer is defined as

$$(2^{n}_{10} - 1_{10})$$
 – number<sub>10</sub>

- In essence, this takes the positive version of the number and flips all of the bits.
  - For instance, using 8-bits, the number -6<sub>10</sub> can be represented as the
     8-bit positive number 6<sub>10</sub> using

0000 0110

and then each of the bits flipped to form the 1's complement

1111 1001

#### **NUMBERS & ARITHMETIC**

## **BINARY NUMBERS**

#### 2'S COMPLEMENT

BINARY NUMBERS

- -SIGNED-MAGNITUDE
- -RADIX COMPLEMENTS
- -1'S COMPLEMENT
- The **2's complement** (radix complement) binary integer representation for an *n*-bit integer is defined as

$$2^{n}_{10}$$
 – number<sub>10</sub>

- In essence, this takes the 1's complement and adds one.
  - For instance, using 8-bits, the number -6<sub>10</sub> can be represented as the
     8-bit positive number 6<sub>10</sub> using

### 0000 0110

and then each of the bits flipped to form the 1's complement

1111 1001

and then add 1 to form the 2's complement

1111 1010

#### **NUMBERS & ARITHMETIC**

## **BINARY NUMBERS**

SIGNED EXAMPLES

**•BINARY NUMBERS** 

- -RADIX COMPLEMENTS
- -1'S COMPLEMENT
- -2'S COMPLEMENT

Below are some examples for the signed binary numbers using 6 bits.

| Decimal | Signed-magnitude | 1's complement | 2's complement |
|---------|------------------|----------------|----------------|
| 0       | 00 0000          | 00 0000        | 00 0000        |
| 1       | 00 0001          | 00 0001        | 00 0001        |
| -1      | 10 0001          | 11 1110        | 11 1111        |
| 5       | 00 0101          | 00 0101        | 00 0101        |
| -5      | 10 0101          | 11 1010        | 11 1011        |
| 12      | 00 1100          | 00 1100        | 00 1100        |
| -12     | 10 1100          | 11 0011        | 11 0100        |
| 15      | 00 1111          | 00 1111        | 00 1111        |
| -15     | 10 1111          | 11 0000        | 11 0001        |
| 16      | 01 0000          | 01 0000        | 01 0000        |
| -16     | 11 0000          | 10 1111        | 11 0000        |

Notice that all representations are the same for positive numbers!!!!

#### **NUMBERS & ARITHMETIC**

## **BINARY ARITHMETIC**

#### **UNSIGNED ADDITION**

**•BINARY NUMBERS** 

- -1'S COMPLEMENT
- -2'S COMPLEMENT
- -SIGNED EXAMPLES
- Unsigned binary addition follows the standard rules of addition.
  - Examples

| 1111 0100 Carries | 0000 0010 Carries |
|-------------------|-------------------|
| 0011 1011         | 1011 1001         |
| + 0111 1010       | + 0100 0101       |
| 1011 0101         | 1111 1110         |

1111 0000 Carries
1111 1001
+ 0100 1000
1 0100 0000
1 0100 0000
1 0100 0000
1 0100 1001 1101 1101 1101

### **NUMBERS & ARITHMETIC**

## **BINARY ARITHMETIC**

#### UNSIGNED SUBTRACTION

•BINARY NUMBERS
•BINARY ARITHMETIC
-UNSIGNED ADDITION

- Unsigned binary subtraction follows the standard rules.
  - Examples

| 0000 0000 Borrows | 1000 1000 Borrows |
|-------------------|-------------------|
| 1111 1001         | 1011 1001         |
| - 0100 1000       | - 0100 0101       |
| 1011 0001         | 0111 0100         |

| 1000 0000   | Borrows | 0100 1110 1000.1000 | Borrows |
|-------------|---------|---------------------|---------|
| 0011 1011   |         | 0101 1000 1001.1001 |         |
| - 0111 1010 |         | - 0011 0011 0100.01 |         |
| 1100 0001   |         | 0010 0101 0101.0101 |         |

#### **NUMBERS & ARITHMETIC**

## **BINARY ARITHMETIC**

#### SIGNED ADDITION

•BINARY NUMBERS
•BINARY ARITHMETIC
-UNSIGNED ADDITION
-UNSIGNED SUBTRACT.

### Signed-magnitude

- Add magnitudes if signs are the same, give result the sign
- Subtract magnitudes if signs are different. Absence or presence of an end borrow determines the resulting sign compared to the augend. If negative, then a 2's complement correction must be taken.

### • 2's complement

Add the numbers using normal addition rules. Carry out bit is discarded.

### 1's complement

- Easiest to convert to 2's complement, perform the addition, and then convert back to 1's complement. This is done as follows:
  - Add 1 to each integer, add the integers, subtract 1 from the result

### **NUMBERS & ARITHMETIC**

## **BINARY ARITHMETIC**

#### SIGNED SUBTRACTION

**•BINARY ARITHMETIC** 

- **-UNSIGNED ADDITION**
- -UNSIGNED SUBTRACT.
- -SIGNED ADDITION
- Typically want to do addition or subtraction of A and B as follows.

$$SUM = A + B$$

$$DIFFERENCE = A - B$$

- If we use 2's complement, we can make life easy on us since addition and subtraction are done in the same manner: with addition only!!!
- A subtraction can be re-reprepensented as follows.

$$SUM = A + (-B)$$

Or in general any two numbers can be added as follows.

$$SUM = (\pm A) + (\pm B)$$

#### **NUMBERS & ARITHMETIC**

## **BINARY ARITHMETIC**

SIGNED MATH EXAMPLE

- BINARY ARITHMETIC
  - **-UNSIGNED ADDITION**
  - -UNSIGNED SUBTRACT.
  - -SIGNED ADDITION
- Subtraction of signed numbers can best be done with 2's complement.
  - Performed by taking the 2's complement of the subtrahend and then performing addition (including the sign bit).
    - Example:

