Project Planning Phase Sprint Delivery Plan

Date	03 November 2022
Team ID	PNT2022TMID34032
Project Name	Project - Classification of Arrhythmia by Using Deep Learning with 2-D ECG Spectral Image Representation
Marks	8 marks

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Use the below template to create product backlog and sprint schedule

Sprint	Functional Requirement	User Story	User Story / Task	Story Points	Priority	Team Members
	(Epic)	Number	10011			
Sprint-1	Information	USN-1	As a user, I can know about Arrhythmia	2	Medium	Manju.A.M
Sprint-1		USN-2	As a user, I can know about the different types of arrhythmia	1	Medium	Manju.A.M
Sprint-2	Details	USN-2	As a user, I can know about the details to be known about ECG	2	Medium	Muthu Priya.E
Sprint-3	Input	USN-3	As a user,I can upload ECG as an input to predict arrhythmia	2	High	Vishahini.K.L

S	print-4	App.py	USN-4	As a user ,I can	2	High	Pavatharani.S
				get the predicted			
				values			

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$