HW 2 Solution

CS 421 – Spring 2014 Revision 1.0

Assigned January 30, 2014 **Due** February 9, 2014, 11:59 pm

1 Change Log

1.0 Initial Release.

2 Solutions

1. (25 pts) Below is a fragment of OCaml code, with various program points indicated by numbers with comments. (code inlined in solution)

For each of program points 1, 2, and 3, please describe the environment in effect after evaluation has reached that point (8pts). Finally, show step by step how the application of $f_z y$ would be evaluated (17pts). You may assume that the evaluation begins in an empty environment, and that the environment is cumulative thereafter. The program points are supposed to indicate points at which all complete preceding declarations (including local ones) have been fully evaluated.

Solution:

let $f_z x = if plus_x x < z$ then $plus_x z$ else $sub_z x$;

$$\begin{array}{ll} \rho_3 &=& \{\mathrm{f.z} \mapsto c_f\} + \rho_2 \\ &=& \{\mathrm{f.z} \mapsto c_f, \; \mathrm{sub.z} \mapsto c_{sub}, \; y \mapsto 0\} + \rho_1 \\ &=& \{\mathrm{x} \mapsto 2, \; \mathrm{plus.x} \mapsto c_{plus}, \; \mathrm{y} \mapsto 0, \; \mathrm{z} \mapsto 4, \; \mathrm{sub.z} \mapsto c_{sub}, \; \mathrm{f.z} \mapsto c_f\} \\ &\quad \mathrm{where} \; c_{plus} = <\mathrm{y} \to \mathrm{x} + \mathrm{y}, \; \{\mathrm{x} \mapsto 2\} > \\ &\quad \mathrm{and} \; c_{sub} = <\mathrm{x} \to \mathrm{y} - \mathrm{z}, \rho_1 > \\ &\quad \mathrm{and} \; c_f = <\mathrm{x} \to \mathrm{if} \; \mathrm{plus.x} \; \mathrm{x} < \mathrm{z} \; \mathrm{then} \; \mathrm{plus.x} \; \mathrm{z} \; \mathrm{else} \; \mathrm{sub.z} \; \mathrm{x}, \rho_2 > \end{array}$$

f_z y;;

Eval (f_z y,
$$\{x \mapsto 2$$
, plus_x $\mapsto c_{plus}$, y \mapsto 0, z \mapsto 4, sub_z $\mapsto c_{sub}$, f_z $\mapsto c_f\}$)

$$\Rightarrow$$
 Eval (f_z 0, {x \mapsto 2, plus_x \mapsto c_{plus} , y \mapsto 0, z \mapsto 4, sub_z \mapsto c_{sub} , f_z \mapsto c_f })

$$\Rightarrow$$
 Eval (app $<$ x \rightarrow if plus_x x $<$ z then plus_x z else sub_z x, $\rho_2 > 0$, $\{$ x \mapsto 2, plus_x \mapsto c_{plus} , y \mapsto 0, z \mapsto 4, sub_z \mapsto c_{sub} , f_z \mapsto $c_f\}$)

$$\Rightarrow$$
 Eval (if plus_x x < z then plus_x z else sub_z x, $\{x\mapsto 0\}+\rho_2$)

$$\Rightarrow$$
 Eval (if plus_x x < 4 then plus_x z else sub_z x, $\{x\mapsto 0\}+\rho_2$)

$$\Rightarrow$$
 Eval (if plus_x 0 < 4 then plus_x z else sub_z x,{x \mapsto 0}+ ρ_2)

$$\Rightarrow$$
 Eval (if (app $\langle y \rightarrow x+y, \{x \mapsto 2\} \rangle 0) < 4$ then plus_x z else sub_z x, $\{x \mapsto 0\} + \rho_2$)

$$\Rightarrow$$
 Eval (if (Eval(x+y, {y \mapsto 0} + {x \mapsto 2}> 0)) < 4 then plus_x z else sub_z x,{x \mapsto 0}+ ρ_2)

$$\Rightarrow$$
 Eval (if (Eval(x+0, {y \mapsto 0, x \mapsto 2}>0)) < 4 then plus_x z else sub_z x,{x \mapsto 0}+ ρ_2)

$$\Rightarrow$$
 Eval (if (Eval(2+0, {y \mapsto 0, x \mapsto 2}>0)) < 4 then plus_x z else sub_z x,{x \mapsto 0}+ ρ_2)

$$\Rightarrow$$
 Eval (if 2 < 4 then plus_x z else sub_z x, $\{x\mapsto 0\}+\rho_2$)

$$\Rightarrow$$
 Eval (if true then plus_x z else sub_z x, $\{x\mapsto 0\}+\rho_2$)

$$\Rightarrow$$
 Eval (plus_x z {x \mapsto 0}+ ρ_2)

$$\Rightarrow$$
 Eval (plus_x 4,{x $\mapsto 0$, plus_x $\mapsto c_{plus}$, y $\mapsto 0$, z $\mapsto 4$, sub_z $\mapsto c_{sub}$ }) where c_{plus} =< y \mapsto x + y, {x \mapsto 2} >

$$\Rightarrow$$
 Eval (app $\langle y \mapsto x+y, \{x \mapsto 2\} \rangle 4, \{x \mapsto 0, \text{plus}_x \mapsto c_{plus}, y \mapsto 0, z \mapsto 4, \text{sub}_z \mapsto c_{sub}\}$)

$$\Rightarrow$$
 Eval $(x+y, \{y \mapsto 4\} + \{x \mapsto 2\})$

$$\Rightarrow$$
 Eval (x+4,{x \mapsto 2,y \mapsto 4})

$$\Rightarrow$$
 Eval $(2+4, \{x \mapsto 2, y \mapsto 4\}) = 6$