Práctica 1 - Representación de la información

Organización del Computador 1

Verano 2018

Ejercicio 1

- a) Utilizando el método del cociente, expresar en bases 2, 3 y 5 los números 33, 100 y 1023.
- b) Expresar en decimal los números 1111₂, 1111₃, 1111₅ y CAFE₁₆.
- c) Expresar 17_8 en base 5 y BABA₁₃ en base 6.
- d) Pasar (1001 0110 1010 0101)₂ y (1111 1011 0010 1101 0000 0110 0111)₂ a base 4, 8 y $16 \text{ agrupando bits}^1$.

Ejercicio 2 Realizar las siguientes sumas de precisión fija, sin convertir a decimal. Indicar en cada caso si hubo acarreo.

Ejercicio 3 ¿Puede suceder en alguna base que la suma de dos números de precisión fija tenga un acarreo mayor que 1? Exhibir un ejemplo o demostrar lo contrario.

Ejercicio 4 Mostrar que en cualquier base b, el resultado de multiplicar dos números de k dígitos no requiere más de 2 * k dígitos.

Ejercicio 5 Realizar los siguientes productos de precisión fija, sin convertir a decimal. Recordar que la respuesta se debe expresar con el doble de dígitos que los multiplicandos.

$\times 011110_2$	\times 011111 ₂	\times 01111 ₂	$\times 1111_{16}$	\times B0CA ₁₆
100001_2	100001_2	01111_2	9999_{16}	$F0F0_{16}$

Ejercicio 6 Codificar los siguientes números en base 2, usando la precisión y forma de representación indicada en cada caso. Comparar los resultados.

- $0_{10} \longrightarrow \text{usando } 8$ bits notación notación signo+magnitud y notación complemento a 2.
- -1_{10} \longrightarrow usando 8 y 16 bits, en ambos casos notación complemento a 2 y con notación de signo+magnitud.
- 255_{10} \longrightarrow usando 8 bits notación sin signo y 16 bits notación complemento a 2.
- -128_{10} \longrightarrow usando 8 y 16 bits, en ambos casos notación complemento a 2.
- 128_{10} \longrightarrow usando 8 bits notación sin signo y 16 notación complemento a 2.

¹los espacios cada cuatro dígitos binarios se incluyen por claridad.

Ejercicio 7 Sean los siguientes numerales binarios de ocho dígitos: $r = (1011\ 1111)_2$, $s = (1000\ 0000)_2$ y $t = (1111\ 1111)_2$, ¿qué números representan si asumimos que son codificaciones de enteros en complemento a 2? ¿Y si fueran codificaciones en signo+magnitud?

Ejercicio 8 Represente los números 2, -5 y θ en notación complemento a dos de 4 bits de longitud. Luego:

- a) invierta los bits de cada representación obtenida e indique a qué número representa en el mismo sistema;
- b) a partir de lo realizado en el punto anterior, proponga un método para obtener la representación en complemento a 2 del inverso aditivo de un número dada la representación de ese número en el mismo sistema.

Ejercicio 9 Completar la siguiente tabla con las representaciones de los números indicados en los títulos de cada columna, siguiendo el sistema de representación complemento a dos y utilizando la longitud señalada en el encabezado de cada fila.

	-4		-3			-2			-1			0				1				2			3								
2																															
3																															П
4																															

¿Qué particularidades encuentra en los dígitos sombreados? (Si no encuentra ninguna, consulte con su docente más cercano.)

Ejercicio 10 Dar ocho pares de números tales que la suma de las representaciones de cada par en complemento a dos de 4 bits provoque lo siguiente:

- 1) No se produzca acarreo ni overflow.
- 2) Se produzca acarreo pero no overflow.
- 3) Se produzca acarreo y overflow.
- 4) No se produzca acarreo pero sí overflow.
- 5) Se produzca acarreo y el resultado sea cero.
- 6) No se produzca acarreo y el resultado sea cero.
- 7) El resultado sea negativo y se produzca overflow.
- 8) El resultado sea negativo y no se produzca overflow.

Ejercicio 11 ¿Puede alguna cadena binaria de k dígitos, interpretada en complemento a 2, representar un número que no puede ser representado por una cadena de la misma longitud pero utilizando signo+magnitud? ¿Y al revés?

Ejercicio 12 Diremos que un sistema de representación de números como cadenas binarias de longitud fija es *biyectivo* si no admite más de una representación para cada número y toda cadena disponible es utilizada para representar algún numero.

Decidir si la siguiente afirmación es verdadera o falsa: "No es posible dar con un sistema que represente números con signo utilizando cadenas binarias de longitud fija que sea biyectivo, tenga una representación para el cero y donde la cantidad de números positivos y negativos representados sea la misma". Justificar.

Ejercicio 13 Dar un ejemplo de un sistema de representación biyectivo en el que la cantidad de números positivos y negativos representados es la misma.

Ejercicio 14 Interpretar los operandos y resultados de las sumas del ejercicio 2 como representaciones de enteros en complemento a 2 y, para cada una de ellas, indicar cuáles son correctas y cuáles no, y en cuáles se evidencia una condición de *overflow*.

Ejercicio 15 ¿Cómo acomodaría esta suma de números hexadecimales de 4 dígitos en notación complemento a 2, para que en ningún momento se produzca overflow?

$$7744_{16} + 5499_{16} + 6788_{16} + AB68_{16} + 88BD_{16} + 9879_{16} = 0003_{16}$$

Ejercicio 16 ¿Son correctos los resultados de las multiplicaciones del Ejercicio 5 si los valores se interpretan en notación complemento a 2? De no ser así, ¿cómo se podría adaptar el algoritmo de multiplicación?

Ejercicio 17

- a) Expresar los siguientes números en base 10. Distinguir numerales finitos e infinitos.
 - -0.1_2
 - **10**,01011₂
 - -0.1_3
 - -0.47
- b) Expresar los siguientes números en la base indicada, utilizando el método de la multiplicación para la parte fraccionaria. Distinguir numerales finitos e infinitos.
 - \bullet 0,1₁₀ \longrightarrow base 2
 - $0,1_{10} \longrightarrow \text{base } 3$
 - $0.375_{10} \longrightarrow \text{base } 2$
 - $12,375_{10} \longrightarrow base 2$

Ejercicio 18 En este ejercicio trabajaremos sobre una representación de racionales en cadenas binarias de 32 dígitos, donde los 28 más significativos representan la parte entera del número y los 4 restantes la parte fraccionaria.

- a) Si la parte entera se representa utilizando el sistema signo+magnitud,
 - 1) ¿Cuál es el máximo número que se puede representar? ¿Y el mínimo?
 - 2) ¿Existe algún número estrictamente real (que sea real pero no sea racional) que se encuentre entre el máximo y el mínimo pero no sea representable?
 - 3) ¿Cuáles son el máximo y el mínimo número representables entre 0 y 1?
 - 4) ¿Cuántos números se pueden representar?
- b) Repetir el ítem anterior, pero esta vez suponiendo codificación complemento a 2 para la parte entera.
- c) Mostrar un número cuyas representaciones en ambos sistemas coincidan y otro para el cual difieran.

Ejercicio 19

- a) Realizar las siguientes operaciones de punto flotante **decimal** con mantisa de cuatro dígitos y exponente de dos. Indicar en qué casos se produjo *overflow* o *underflow*. Asuma que se dispone de la precisión que sea necesaria para realizar los cálculos intermedios:
 - $-0.6020 \times 10^{24} + 0.8051 \times 10^{-99}$
 - -0.0001×10^{-99} / 0.1000×10^2
 - $-0.550 \times 10^{65} \times -0.0001 \times 10^{43}$
- b) ¿Cuáles son las ventajas de trabajar con números normalizados?

Ejercicio 20 Responder las siguientes preguntas sobre los formatos IEEE 754 de precisión simple y doble:

- a) ¿Con cuántos bits se representan los números en estos sistemas?
- b) ¿Cuántos bits tiene el significante (fracción)?
- c) ¿Cuántos bits tiene el exponente?
- d) ¿Con qué sistema está representado el exponente? (sin signo, notación complemento a 2, exceso a..., etc)
- e) ¿Existe bit de signo?
- f) ¿Cuál es el intervalo de valores posibles del exponente?
- g) ¿Entre qué valores de \mathbb{R} se encuentran los valores representados por el significante cuando el número se encuentra normalizado?
- h) ¿Cuáles son los números que representan los infinitos?
- i) ¿Cuáles números representan el cero?
- j) ¿Cuáles son los rangos del exponente y el significante que representan un número normalizado?
- k) ¿Cuáles son los rangos del exponente y el significante que representan un número desnormalizado?
- l) ¿Cuáles son los rangos del exponente y el significante que representan un NaN (Not a Number)?

Ejercicio 21 a) Convertir los siguientes números al formato IEEE 754 de precisión simple. Representar los resultados con ocho dígitos hexadecimales.

- 9₁₀
- -0.15625_{10}
- **6.125**₁₀
- b) ¿Qué números reales representan las siguientes cadenas hexadecimales si la codificación es IEEE 754 de precisión simple?
 - 42E48000₁₆
 - 00800000₁₆
 - **40000000**₁₆

Ejercicio 22 Dada la siguiente secuencia de *bytes* (ordenada de izquierda a derecha y de arriba a abajo)

Decidir que representa los datos cuando se interpreta como:

- un vector (array) de 8 números de 32 bits, en notación complemento a 2, little-endian²;
- una matriz de 4×4 números de 16 bits, sin signo, big-endian³;
- dos números de punto flotante IEEE 754 de precisión doble, little-endian;
- un string UTF-8.

 $^{^2}$ Es decir, escribiendo el *byte* menos significativo primero. El valor ABCD se almacena en la memoria como D, C, B, A, donde A,B,C y D son bytes.

 $^{^3}$ Es decir, escribiendo el byte más significativo primero. El valor ABCD se almacena en la memoria como A,B,C,D, donde A,B,C y D son bytes.