Georg-August-Universität Göttingen Institut für Theoretische Physik Prof. Dr. M. Müller Priv.-Doz. Dr. S.R. Manmana SoSe 2018

Übungen zur Vorlesung Computergestütztes Wissenschaftliches Rechnen

Blatt 9

Lernziel dieses Übungsblattes

• Erweiterung der Finite-Differenzen-Verfahren für zeitunabhängige partielle Differentialgleichungen auf zeitabhängige Probleme.

Aufgabe 1 Diffusionsgleichung

Wir betrachten die zeitabhängige Diffusionsgleichung in zwei Raumdimensionen:

$$\frac{\partial \rho(\vec{x}, t)}{\partial t} = D\nabla^2 \rho(\vec{x}, t) . \tag{1}$$

Diskretisieren Sie den Laplace-Operator und gehen Sie dabei so vor wie bei zeitunabhängigen partiellen Differentialgleichungen (PDGL). Berechnen Sie mit dieser Diskretisierung die Zeitableitung von $\rho(x_i,t_n)$ an jedem Gitterpunkt. Dies erlaubt es Ihnen, die Lösung $\rho(x_i,t_{n+1})$ im nächsten Zeitschritt zu bestimmen, z.B. mithilfe einer einfachen Euler-Integration. Beachten Sie, dass der benötigte Zeitschritt um einen stabilen Algorithmus zu erhalten nun von der Diskretisierung des Gitters abhängt. Wählen Sie daher als Zeitschritt einen Wert der Größenordnung Δx^2 oder kleiner. Überprüfen Sie die Richtigkeit Ihrer Ergebnisse, indem Sie Rechnungen mit Zeitschritt Δt und $\Delta t/2$ miteinander vergleichen.

Das betrachtete System habe die selbe Geometrie wie bei den in Blatt 7 und 8 betrachteten Elektrostatikaufgaben (s. Abb. 1). Die Parameter seien (in reduzierten Einheiten) $L_x=1.6,\ L_y=1.0,\ x_a=0.4,\ y_a=0.6,\ r_1=0.2,\ x_b=1.1,\ y_b=0.4,\ r_2=0.3$ und D=0.001. Während im Elektrostatikproblem die beiden kreisförmigen Objekte als Elektroden fungierten, nehmen sie nun die Rolle einer Quelle und einer Senke für den Diffusionsprozess an. Wir legen dazu die Werte von ρ auf beiden Kreisen fest und wählen $\rho=0.5$ auf Kreis 1 und $\rho=0$ auf Kreis 2. Als Anfangsbedingung für den Rest des Systems wählen Sie $\rho(\vec{x},t=0)=0.25.$ Die Randbedingungen am Kasten seien durch konstante und verschwindende Ableitungen gegeben. Wählen Sie für die Diskretisierung des Gitters Werte, die Sie auf Ihre bisherige Erfahrung mit vergleichbaren Problemen aus Blatt 7 und 8 basieren. Visualisieren Sie Ihre Ergebnisse für verschiedene Werte von $\Delta t.$ Erreichen Sie einen stationären Zustand?

(Die folgenden Aufgabenteile sind optional)

Bonus 1: Erzeugen Sie ein Video der Zeitentwicklung von $\rho(\vec{x}, t)$.

Hinweis: Erzeugen Sie einzelne Abbildungen, die Sie dann mithilfe von Werkzeugen wie fimmeg oder vergleichbar zu einer Animation kombinieren.

Bonus 2: Versuchen Sie Ihren Code mithilfe von OpenMP zu parallelisieren.

Bonus 3: Anstelle einer zeitunabhängigen Quelle sei diese nun periodisch getrieben. Nehmen Sie das System wie bisher, aber implementieren Sie nun die zeitabhängigen Randbedingungen

$$\rho(\vec{x},t) = 0.5\cos^2\left(\frac{2\pi}{T}t\right) \text{ für } \vec{x} \in \text{Kreis 1.}$$
 (2)

Variieren Sie die Periode mit $T \in [1, 10^3]$. Simulieren Sie mehrere Perioden, bis das Verhalten der Dichte $\rho(\vec{x}, t)$ selbst periodisch in der Zeit wird.

Abbildung 1: Skizze der Quelle und Senke des betrachteten Diffusionsprozesses.

Selbsttest

- Was ist der Hauptunterschied von Finite-Differenzen-Verfahren für zeitabhängige Systeme im Vergleich zu zeitunabhängigen Systemen?
- Kann ich den Zeitschritt bei diesen Verfahren beliebig groß wählen? Wieso?