Trigonometrija

$$\sin\alpha = \frac{naspramna \quad kateta}{hinotenuza} = \frac{a}{c} \left(\sin\alpha = \cos\beta = \cos(90^{\circ} - \alpha) \right)$$
 < CAB=\alpha

$$\cos \alpha = \frac{\text{nalegla kateta}}{\text{hipotenuza}} = \frac{b}{c}$$
 $(\cos \alpha = \sin \beta = \sin(90^{\circ} - \alpha))$

$$tg\alpha = \frac{naspramna \ kateta}{nalaala \ kateta} = \frac{a}{b}$$
 $(tg\alpha = ctg\beta = ctg(90^{\circ}-\alpha))$

$$ctg\alpha = \frac{nalegla \ kateta}{naspramna \ kateta} = \frac{b}{a} \ \left(ctg\alpha = tg\beta = tg(90^{\circ} - \alpha) \right)$$

Osnovne trigonometrijske formule:

$$\sin^2 \alpha + \cos^2 \alpha = 1$$

$$tg\alpha = \frac{\sin\alpha}{\cos\alpha}$$

$$ctg\alpha = \frac{\cos\alpha}{\sin\alpha}$$

$$tg\alpha \cdot ctg\alpha = 1$$

Vrednosti trigonometrijskih funkcija za neke važne uglove:

α	0°	30°	45°	60°	90°	120°	135°	150°	180°	270°	360°
(stepeni)											
α	0	$\frac{\pi}{\epsilon}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{}$	$\frac{3\pi}{}$	$\frac{5\pi}{}$	π	$\frac{3\pi}{}$	2π
(radijani)		6	4	3	Z	3	4	6		2	
sinα	0	1	$\sqrt{2}$	$\sqrt{3}$	1	$\sqrt{3}$	$\sqrt{2}$	1	0	-1	0
		2	2	2		2	2	2			
cosα	1	$\sqrt{3}$	$\sqrt{2}$	1	0	_ 1	$\sqrt{2}$	$\sqrt{3}$	-1	0	1
		2	2	2		2	$-{2}$	$-{2}$			
tgα	0	$\sqrt{3}$	1	$\sqrt{3}$	±∞	$-\sqrt{3}$	-1	$\sqrt{3}$	0	∓∞	0
		3						-3			
ctgα	±∞	$\sqrt{3}$	1	$\sqrt{3}$	0	$\sqrt{3}$	-1	$-\sqrt{3}$	- 8	0	±∞
				3		-3		, -			

 $\sin \alpha > 0$

 $\cos \alpha > 0$

 $tg\alpha > 0$

 $ctg\alpha > 0$

Treći kvadrant:

 $\sin \alpha < 0$

 $\cos \alpha < 0$

 $tg\alpha > 0$

 $ctg\alpha > 0$

Drugi kvadrant: $\sin \alpha > 0$ $\cos \alpha < 0$

tgα<0

 $ctg\alpha < 0$

 $\cos \alpha > 0$

 $tg\alpha < 0$

 $ctg\alpha < 0$

Parnost i neparnost trigonometrijskih funkcija:

$$\sin(-\alpha) = -\sin\alpha$$
 $\cos(-\alpha) = \cos\alpha$ $\tan(-\alpha) = -\tan\alpha$ $\cot(-\alpha) = -\cot\alpha$

Periodičnost trigonometrijskih funkcija, $k \in \mathbb{Z}$:

$$sin(\alpha + 2k\pi) = sin\alpha
sin(\alpha + 2k\pi) = cos\alpha
sin(\alpha + 2k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha
sin(\alpha + k\pi) = tg\alpha$$

Izražavanje jedne trigonometrijske funkcije pomoću druge za uglove u prvom kvadrantu,

$$0 < \alpha < \frac{\pi}{2}$$
:

$$\sin \alpha = \sqrt{1 - \cos^2 \alpha} = \frac{\operatorname{tg} \alpha}{\sqrt{1 + \operatorname{tg}^2 \alpha}} = \frac{1}{\sqrt{1 + \operatorname{ctg}^2 \alpha}} \quad \cos \alpha = \sqrt{1 - \sin^2 \alpha} = \frac{1}{\sqrt{1 + \operatorname{tg}^2 \alpha}} = \frac{\operatorname{ctg} \alpha}{\sqrt{1 + \operatorname{ctg}^2 \alpha}}$$

$$\cos \alpha = \sqrt{1 - \sin^2 \alpha} = \frac{1}{\sqrt{1 + \tan^2 \alpha}} = \frac{\cot \alpha}{\sqrt{1 + \cot \alpha}}$$

$$tg \alpha = \frac{\sin \alpha}{\sqrt{1 - \sin^2 \alpha}} = \frac{\sqrt{1 - \cos^2 \alpha}}{\cos \alpha} = \frac{1}{\cot \alpha}$$

$$\operatorname{ctg} \alpha = \frac{\cos \alpha}{\sqrt{1 - \cos^2 \alpha}} = \frac{\sqrt{1 - \sin^2 \alpha}}{\sin \alpha} = \frac{1}{\operatorname{tg} \alpha}$$

Adicione formule:

$$sin(\alpha \pm \beta) = sin\alpha cos\beta \pm cos\alpha sin\beta$$

$$\cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta$$

$$tg(\alpha \pm \beta) = \frac{tg \ \alpha \pm tg \beta}{1 \mp tg \ \alpha tg \beta}$$

$$\operatorname{ctg}(\alpha \pm \beta) = \frac{\operatorname{ctg} \alpha \operatorname{ctg} \beta \mp 1}{\operatorname{ctg} \beta + \operatorname{ctg} \alpha}$$

Trigonometrijski identiteti za dvostruki ugao:

$$sin 2α = 2sinαcosβ$$
 $cos 2α = cos²α - sin²α$ $tg 2α = {2tg α \over 1 - tg²α}$ $ctg 2α = {ctg²α - 1 \over 2ctg α}$

$$tg 2\alpha = \frac{2tg \alpha}{1 - tg^2 \alpha}$$

$$\operatorname{ctg} 2\alpha = \frac{\operatorname{ctg}^2 \alpha - 1}{2\operatorname{ctg} \alpha}$$

Trigonometrijski identiteti za polovinu ugla:

$$\sin^2\frac{\alpha}{2} = \frac{1-\cos\alpha}{2}$$

$$\cos^2 \frac{\alpha}{2} = \frac{1 + \cos \alpha}{2}$$

$$tg^2 \frac{\alpha}{2} = \frac{1-\cos\alpha}{1+\cos\alpha}$$

$$ctg^2 \frac{\alpha}{2} = \frac{1+\cos\alpha}{1-\cos\alpha}$$

Zbir i razlika trigonometrijskih funkcija:

$$\sin\alpha + \sin\beta = 2 \cdot \sin\frac{\alpha + \beta}{2} \cdot \cos\frac{\alpha - \beta}{2}$$

$$\sin\alpha - \sin\beta = 2 \cdot \cos\frac{\alpha + \beta}{2} \cdot \sin\frac{\alpha - \beta}{2}$$

$$\cos \alpha + \cos \beta = 2 \cdot \cos \frac{\alpha + \beta}{2} \cdot \cos \frac{\alpha - \beta}{2}$$

$$\cos\alpha + \cos\beta = 2 \cdot \cos\frac{\alpha + \beta}{2} \cdot \cos\frac{\alpha - \beta}{2}$$

$$\cos\alpha - \cos\beta = -2 \cdot \sin\frac{\alpha + \beta}{2} \cdot \sin\frac{\alpha - \beta}{2}$$

$$tg \alpha \pm tg\beta = \frac{\sin(\alpha \pm \beta)}{\cos \alpha \cos \beta}$$

$$tg \alpha \pm tg\beta = \frac{\sin(\alpha \pm \beta)}{\cos \alpha \cos \beta} \qquad ctg \beta \pm ctg\alpha = \frac{\sin(\alpha \pm \beta)}{\sin \alpha \sin \beta} \qquad ctg \alpha \mp tg\beta = \frac{\cos(\alpha \pm \beta)}{\sin \alpha \cos \beta}$$

$$\operatorname{ctg} \alpha \mp \operatorname{tg} \beta = \frac{\cos (\alpha \pm \beta)}{\sin \alpha \cos \beta}$$

Proizvod trigonometrijskih funkcija:

$$\sin\alpha\sin\beta = \frac{1}{2}[\cos(\alpha - \beta) - \cos(\alpha + \beta)]$$

$$\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha - \beta) + \cos(\alpha + \beta)]$$

$$\sin\alpha\cos\beta = \frac{1}{2}[\sin(\alpha - \beta) + \sin(\alpha + \beta)]$$