

Caderno de Questões

Bimestre	Disciplina		Turmas	Período	Data da prova	P 164006
4.0	Matemática -	Geometria	1.a Série	М	17/11/2016	
Questões Testes Páginas Professor(es)						
10		8	Fábio Cáceres / Oliveira / Gilson			

Verifique cuidadosamente se sua prova atende aos dados acima e, em caso negativo, solicite, imediatamente, outro exemplar. Não serão aceitas reclamações posteriores.

Aluno(a)		Turma	N.o
Nota	Professor	Assinatura do Professor	

Instruções

- 1. A prova pode ser resolvida a lápis. Respostas finais somente com tinta azul ou preta.
- 2. Resposta sem resolução não será considerada
- 3. Únicos materiais permitidos: caneta, lápis, borracha, régua e compasso.

Dados:

	30°	45°	60°	120°	135°	150°
sen	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$
cos	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$
tg	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$

01.

a. (valor: 0,5) O lado do triângulo equilátero ABC mede 12 cm. Calcule a área do círculo nele inscrito.

b. (valor: 0,5) O diâmetro da circunferência circunscrita ao quadrado mede 12 cm. Calcule a área desse quadrado.

Resposta:

	por números inteiros. O triângulo cujos lados medem 32 cm, 50 cm e 78 cm é super heror desse triângulo:	niano. Calcule
а.	. (valor: 0,25) a área.	Rascunho
	Resposta:	
b.	. (valor: 0,25) o raio da circunferência nele inscrita.	
	Resposta:	
C.	(valor: 0,25) a maior altura.	
	Resposta:	
d.	. (valor: 0,25) o raio da circunferência circunscrita.	
	Resposta:	

02. Alguns matemáticos definem triângulo super heroniano como sendo um triângulo cujas medidas dos lados, da área, do raio da circunferência inscrita e do raio da circunferência circunscrita, são expressas

Aluno(a)	Turma	N.o	P 164006
			p 3

03.

a. (valor: 0,5) As medianas de um triângulo o dividem em seis triângulos equivalentes (isto é, que têm áreas iguais). Na figura abaixo, \overline{AM} e \overline{BN} são medianas, \overline{GN} =4 cm e \overline{BM} =10 cm. Calcule a área do quadrilátero MCNG.

Rascunho

Resposta:

b. (valor: 0,5) Calcule $x \in y$, sabendo que ABCD é um trapézio, M é ponto médio de \overline{AD} e N é ponto médio de \overline{BC} . (Sendo a unidade de medida o centímetro)

Resposta: x =_____, y =_____

04. (valor: 1,0) Na figura, M é ponto médio de \overline{AB} e N é ponto médio de \overline{AC} ; AM = 21 cm e BC = 58 cm. Calcule a área da região sombreada.

Resposta:	

- 05. Uma diagonal e um lado de um losango medem 18 cm e $3\sqrt{13}$ cm, respectivamente.
- a. (valor: 0,25) Faça um esboço, com régua, da figura desse enunciado.
- b. (valor: 0,75) Calcule a área do quadrilátero cujos vértices são os pontos médios dos lados do losango.

Aluno(a)	Turma	N.o	P 164006
			p 5

06. A figura mostra uma circunferência circunscrita a um quadrado e inscrita em um hexágono regular, cuja área (do hexágono) é $216\sqrt{3}\,\mathrm{cm}^2$. Calcule:

a. (valor: 0,25) a medida a do lado do hexágono.

Rascunho

Resposta:

b. (valor: 0,25) A medida do raio da circunferência.

Resposta: _____

c. (valor: 0,5) A área do quadrado.

07.

a. (valor: 0,25) Na figura abaixo, $\overline{\mathrm{BI}}$ e $\overline{\mathrm{CI}}$ são bissetrizes dos ângulos internos do triângulo ABC. Calcule a medida do ângulo $\mathrm{BIC} = x$.

Rascunho

Resposta:

b. (valor: 0,25) Calcule o raio da circunferência inscrita no triângulo retângulo cujos catetos medem 10 cm e 24 cm.

Resposta:

c. (valor: 0,5) Calcule a área da região sombreada, dado que AB=10~cm e AC=24~cm. (Se for conveniente, use os resultados dos itens a e b).

Aluno(a)	Turma	N.o	P 164006
			p 7

08. (valor: 1,0) ABCD é quadrado de lado 1cm e os arcos têm centros nos vértices desse quadrado. Calcule a área da região sombreada.

Rascunho

Resposta:

09. (valor: 1,0) Na figura os pontos A, B, C, ..., L, são vértices de um dodecágono regular e os arcos têm centros nos pontos A, C, E, G, I e K. Calcule a área da região sombreada, dado que o raio da circunferência mede 6 cm.

10. (valor: 1,0) Os raios das circunferências inscrita e circunscrita no triângulo ABC medem 4 cm e 25 cm. Calcule a área desse triângulo, dado $AB=30 \ cm$ e $BC=40 \ cm$.

Rascunho

P 164006G 1.a Série Matemática – Geometria Fábio Cáceres/Oliveira/Gilson 17/11/2016

01.

a. (valor: 0,5) O lado do triângulo equilátero ABC mede 12 cm. Calcule a área do círculo nele inscrito.

(1)
$$h = \frac{a\sqrt{3}}{2} \Rightarrow h = \frac{12\sqrt{3}}{2} \Rightarrow h = 6\sqrt{3}$$

(2)
$$r = \frac{1}{3}h \Rightarrow r = \frac{1}{3} \cdot 6\sqrt{3} \Rightarrow r = 2\sqrt{3}$$

(3) área do círculo =
$$\pi r^2 = \pi (2\sqrt{3})^2 = 12\pi$$

Resposta: $12\pi \text{ cm}^2$

b. (valor: 0,5) O diâmetro da circunferência circunscrita ao quadrado mede 12 cm. Calcule a área desse quadrado.

$$(1) a\sqrt{2} = 12 \Rightarrow a = 6\sqrt{2}$$

(2) área do quadrado =
$$a^2 = (6\sqrt{2})^2 = 72$$

Resposta: 72 cm²

02. Alguns matemáticos definem triângulo super heroniano como sendo um triângulo cujas medidas dos lados, da área, do raio da circunferência inscrita e do raio da circunferência circunscrita, são expressas por números inteiros. O triângulo cujos lados medem 32 cm, 50 cm e 78 cm é super heroniano. Calcule desse triângulo:

a. (valor: 0,25) a área.

$$s = \frac{32 + 50 + 78}{2}$$

$$s = 80$$

$$A = \sqrt{80 \cdot (80 - 32)(80 - 50) \cdot (80 - 78)}$$

$$A = \sqrt{80 \cdot 48 \cdot 30 \cdot 2}$$

$$A = \sqrt{16 \cdot 5 \cdot 16 \cdot 3 \cdot 30 \cdot 2}$$

$$A = 16 \cdot 30 = 480$$

Resposta: 480 cm²

Sendo r a medida do raio da circunferência inscrita:

$$A = r \cdot s \Rightarrow 480 = r \cdot 80 \Rightarrow r = 6$$

Resposta: 6 cm

c. (valor: 0,25) a maior altura.

A maior altura, H, é relativa ao menor lado. Então

$$\frac{32 \cdot H}{2} = 480 \Rightarrow 16H = 480 \Rightarrow H = 30$$

Resposta: 30 cm

d. (valor: 0,25) o raio da circunferência circunscrita.

Sendo R a medida do raio da circunferência circunscrita.

$$A = \frac{a \cdot b \cdot c}{4R} \Rightarrow 480 = \frac{32 \cdot 50 \cdot 78}{4R} \Rightarrow R = 65$$

Resposta: 65 cm

03.

a. (valor: 0,5) As medianas de um triângulo o dividem em seis triângulos equivalentes (isto é, que têm áreas iguais). Na figura abaixo, \overline{AM} e \overline{BN} são medianas, $\overline{GN} = 4$ cm e $\overline{BM} = 10$ cm. Calcule a área do quadrilátero MCNG.

- (1) G é baricentro \Rightarrow BG = $2 \cdot 4 = 8$
- Por Pitágoras: $x^2 + 8^2 = 10^2 \Rightarrow x = 6$
- área (MCNG) = $2 \cdot \text{área (BGM)}$ (3)área (MCNG) = $2 \cdot \frac{6 \cdot 8}{2} = 48$

Resposta: 48 cm²

b. (valor: 0,5) Calcule $x \in y$, sabendo que ABCD é um trapézio, M é ponto médio de \overline{AD} e N é ponto médio de \overline{BC} (sendo a unidade de medida o centímetro).

Pelo teorema da base média:

(1)
$$2 \cdot (2x+3) = 3y-4$$

(2) $2 \cdot (y-3) = x+4$ $\Rightarrow \begin{cases} 4x-3y=-10 \\ x-2y=-10 \end{cases}$

(2)
$$2 \cdot (y-3) = x+4$$
 $x-2y=-10$

Resolvendo o sistema obtido encontramos x = 2 e y = 6

Resposta:
$$x = 2$$
 cm, $y = 6$ cm

04. (valor: 1,0) Na figura, M é ponto médio de \overline{AB} e N é ponto médio de \overline{AC} ; AM = 21 cm e BC = 58 cm. Calcule a área da região sombreada.

- (1) Pelo teorema da base média, MN = 29
- (2) Por Pitágoras: $x^2 + 21^2 = 29^2 \Rightarrow x = 20$
- (3) Seja S a área da região sombreada.

$$S = \text{área } (ABC) - \text{área } (AMN)$$

$$S = \frac{40 \cdot 42}{2} - \frac{20 \cdot 21}{2}$$

$$S = 630$$

Resposta: 630 cm²

- 05. Uma diagonal e um lado de um losango medem 18 cm e $3\sqrt{13}$ cm, respectivamente.
- a. (valor: 0,25) Faça um esboço, com régua, da figura desse enunciado.

$$x^2 + 9^2 = (3\sqrt{13})^2 \Rightarrow x = 6$$

b. (valor: 0,75) Calcule a área do quadrilátero cujos vértices são os pontos médios dos lados do losango.

Pelo teorema da base média:

$$MN = \frac{12}{2} = 6$$

$$NP = \frac{18}{2} = 9$$

Área (MNPQ) =
$$6 \cdot 9$$

Área
$$(MNPQ) = 54$$

Resposta: 54 cm²

- 06. A figura mostra uma circunferência circunscrita a um quadrado e inscrita em um hexágono regular, cuja área (do hexágono) é $216\sqrt{3}~{\rm cm}^2$. Calcule:
 - a. (valor: 0,25) a medida a do lado do hexágono.

$$6 \cdot \frac{a^2 \sqrt{3}}{4} = 216\sqrt{3}$$
$$a^2 = 4 \cdot 36$$
$$a = 12$$

Resposta: 12 cm

b. (valor: 0,25) A medida do raio da circunferência.

Note que o raio r da circunferência é altura de um triângulo equilátero de lado a. Então:

$$r = \frac{a\sqrt{3}}{2} \Rightarrow r = \frac{12\sqrt{3}}{2} \Rightarrow r = 6\sqrt{3}$$

Resposta: $6\sqrt{3}$ cm

c. (valor: 0,5) A área do quadrado.

O diâmetro da circunferência é diagonal do quadrado. Logo, sendo b a medida do lado do quadrado, temos:

$$b\sqrt{2} = 2r \Rightarrow b\sqrt{2} = 2 \cdot 6\sqrt{3} \Rightarrow b = 6\sqrt{6}$$

A área do quadrado é igual a $b^2 = (6\sqrt{6})^2 = 216$

Resposta: 216 cm²

07.

a. (valor: 0,25) Na figura abaixo, $\overline{\mathrm{BI}}$ e $\overline{\mathrm{CI}}$ são bissetrizes dos ângulos internos do triângulo ABC. Calcule a medida do ângulo $\mathrm{B}\mathrm{\hat{I}}\mathrm{C} = x$.

(1)
$$2b + 2c + 90^{\circ} = 180^{\circ}$$

 $2b + 2c = 90^{\circ}$
 $b + c = 45^{\circ}$

(2)
$$x + b + c = 180^{\circ}$$

 $x + 45^{\circ} = 180^{\circ} \Rightarrow x = 135^{\circ}$

Resposta: 135°

b. (valor: 0,25) Calcule o raio da circunferência inscrita no triângulo retângulo cujos catetos medem 10 cm e 24 cm.

- (1) Por Pitágoras: $x^2 = 10^2 + 24^2 \Rightarrow x = 26$
- (2) $A = r \cdot s \Rightarrow \frac{10 \cdot 24}{2} = r \cdot \frac{10 + 24 + 26}{2}$: r = 4

Resposta: 4 cm

c. (valor: 0,5) Calcule a área da região sombreada, dado que AB = 10 cm e AC = 24 cm (se for conveniente, use os resultados dos itens $a \in b$).

- (1) De acordo com o item a, $\alpha = 45^{\circ}$
- (2) Pelo item anterior, r = 4 cm
- (3) A_F : área sombreada $A_F = \frac{\alpha \cdot \pi \cdot r^2}{360^{\circ}}$ $A_F = \frac{45^{\circ} \cdot \pi \cdot 4^2}{360^{\circ}} \Rightarrow A_F = 2\pi$

08. (valor: 1,0) ABCD é quadrado de lado 1 cm e os arcos têm centros nos vértices desse quadrado. Calcule a área da região sombreada.

(1) De acordo com as medidas indicadas:

 A_I = (área do setor de 45° e raio $\sqrt{2}$) – (área do ΔBCD)

$$A_{I} = \frac{\pi \cdot (\sqrt{2})^{2}}{8} - \frac{1 \cdot 1}{2}$$
$$A_{I} = \frac{\pi}{4} - \frac{1}{2}$$

(2) A_F : área final

$$A_F = 4 \cdot A_I$$

$$A_F = 4 \left(\frac{\pi}{4} - \frac{1}{2}\right)$$

$$A_F = (\pi - 2) \text{ cm}^2$$

Resposta: $(\pi - 2)$ cm²

09. (valor: 1,0) Na figura os pontos A, B, C, ..., L, são vértices de um dodecágono regular e os arcos têm centros nos pontos A, C, E, G, I e K. Calcule a área da região sombreada, dado que o raio da circunferência mede 6 cm.

(1)
$$A_{\text{seg}} = A_{\text{setor } 60^{\circ}} - A_{\Delta \text{OAC}}$$
$$A_{\text{seg}} = \frac{\pi \cdot 6^{2}}{6} - \frac{6^{2} \sqrt{3}}{4}$$
$$A_{\text{seg}} = 6\pi - 9\sqrt{3}$$

(2)
$$A_{F} = 6 \cdot [A_{\text{setor } 30^{\circ}} - A_{\text{seg}}]$$

$$A_{F} = 6 \cdot \left[\frac{\pi \cdot 6^{2}}{12} - (6\pi - 9\sqrt{3}) \right]$$

$$A_{F} = 6 \cdot [3\pi - 6\pi + 9\sqrt{3}]$$

$$A_{F} = 18 [3\sqrt{3} - \pi]$$

Resposta: $18[3\sqrt{3} - \pi]$ cm²

10. (valor: 1,0) Os raios das circunferências inscrita e circunscrita no triângulo ABC medem 4 cm e 25 cm. Calcule a área desse triângulo, dado AB = 30 cm e BC = 40 cm.

Seja AC = 2x

- (1) Assim, o semiperímetro s do triângulo será $s = \frac{2x + 30 + 40}{2} \Rightarrow s = x + 35$
- (2) Sendo **A** a área do triângulo, temos:

$$A = r \cdot s \in A = \frac{a \cdot b \cdot c}{4R}$$

Logo: $4 \cdot (x + 35) = \frac{2x \cdot 30 \cdot 40}{4 \cdot 25} \Rightarrow x + 35 = \frac{2x \cdot 30 \cdot 10}{4 \cdot 25} \Rightarrow x + 35 = 6x \Rightarrow x = 7 \Rightarrow AC = 14 \text{ cm}$

(3) A área do triângulo é $A = r \cdot s = 4 \cdot (7 + 35)$ Portanto, $A = 168 \text{ cm}^2$

Resposta: 168 cm²