Name:	

MIDTERM EXAM

Math 237 – Linear Algebra

Version 2

Fall 2017

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

E1. Write a system of linear equations corresponding to the following augmented matrix.

$$\begin{bmatrix} 1 & 0 & 4 & 1 \\ 0 & 1 & -1 & 7 \\ 1 & -1 & 3 & -1 \end{bmatrix}$$

Solution:

$$x_1 + 4x_3 = 1$$
$$x_2 - x_3 = 7$$
$$x_1 - x_2 + 3x_3 = -1$$

E2. Put the following matrix in reduced row echelon form.

$$\begin{bmatrix} -3 & 1 & 0 & 2 \\ -8 & 2 & -1 & 6 \\ 0 & 2 & 3 & -2 \end{bmatrix}$$

Solution:

$$\begin{bmatrix} -3 & 1 & 0 & 2 \\ -8 & 2 & -1 & 6 \\ 0 & 2 & 3 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & -\frac{1}{3} & 0 & -\frac{2}{3} \\ -8 & 2 & -1 & 6 \\ 0 & 2 & 3 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & -\frac{1}{3} & 0 & -\frac{2}{3} \\ 0 & 2 & 3 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & -\frac{1}{3} & 0 & -\frac{2}{3} \\ 0 & -\frac{2}{3} & -1 & \frac{2}{3} \\ 0 & 2 & 3 & -2 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & -\frac{1}{3} & 0 & -\frac{2}{3} \\ 0 & 1 & \frac{3}{2} & -1 \\ 0 & 2 & 3 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & \frac{1}{2} & -1 \\ 0 & 1 & \frac{3}{2} & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

E3. Solve the system of linear equations.

$$2x + y - z + w = 5$$
$$3x - y - 2w = 0$$
$$-x + 5z + 3w = -1$$

Solution:

RREF
$$\left(\begin{bmatrix} 2 & 1 & -1 & 0 & 5 \\ 3 & -1 & 0 & -2 & 0 \\ -1 & 0 & 5 & 0 & -1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & -\frac{1}{12} & 1 \\ 0 & 1 & 0 & \frac{7}{4} & 3 \\ 0 & 0 & 1 & \frac{7}{12} & 0 \end{bmatrix}$$

So the solutions are

$$\left\{ \begin{bmatrix}
1+a \\
3-21a \\
-7a \\
12a
\end{bmatrix} \mid a \in \mathbb{R} \right\}$$

E4. Find a basis for the solution set to the system of equations

$$x + 2y - 3z = 0$$
$$2x + y - 4z = 0$$
$$3y - 2z = 0$$
$$x - y - z = 0$$

Solution:

RREF
$$\begin{pmatrix} \begin{bmatrix} 1 & 2 & -3 \\ 2 & 1 & -4 \\ 0 & 3 & -2 \\ 1 & -1 & -1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 & -\frac{5}{3} \\ 0 & 1 & -\frac{2}{3} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Then the solution set is

$$\left\{ \begin{bmatrix} \frac{5}{3}a\\ \frac{2}{3}a\\ a \end{bmatrix} \middle| a \in \mathbb{R} \right\}$$

So a basis is $\left\{ \begin{bmatrix} \frac{5}{3} \\ \frac{2}{3} \\ 1 \end{bmatrix} \right\}$ or $\left\{ \begin{bmatrix} 5 \\ 2 \\ 3 \end{bmatrix} \right\}$.

V1. Let V be the set of all points on the line x + y = 2 with the operations, for any $(x_1, y_1), (x_2, y_2) \in V$, $c \in \mathbb{R}$,

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2 - 1, y_1 + y_2 - 1)$$

 $c \odot (x_1, y_1) = (cx_1 - (c - 1), cy_1 - (c - 1))$

- (a) Show that this vector space has an additive identity element $\mathbf{0}$ satisfying $(x,y) \oplus \mathbf{0} = (x,y)$.
- (b) Determine if V is a vector space or not. Justify your answer.

Solution: Let $(x_1, y_1) \in V$; then $(x_1, y_1) \oplus (1, 1) = (x_1, y_1)$, so (1, 1) is an additive identity element. Now we will show the other seven properties. Let $(x_1, y_1), (x_2, y_2) \in V$, and let $c, d \in \mathbb{R}$.

1) Since real addition is associative, \oplus is associative.

- 2) Since real addition is commutative, \oplus is commutative.
- 3) The additive identity is (1,1).
- 4) $(x_1, y_1) \oplus (2 x_1, 2 y_1) = (1, 1)$, so $(2 x_1, 2 y_1)$ is the additive inverse of (x_1, y_1) .

5)

$$\begin{split} c\odot(d\odot(x_1,y_1)) &= c\odot(dx_1-(d-1),dy_1-(d-1))\\ &= (c\left(dx_1-(d-1)\right)-(c-1),c\left(dy_1-(d-1)\right))\\ &= (cdx_1-cd+c-(c-1),cdy_1-cd+c-(c-1))\\ &= (cdx_1-(cd-1),cdy_1-(cd-1))\\ &= (cd)\odot(x_1,y_1) \end{split}$$

6)
$$1 \odot (x_1, y_1) = (x_1 - (1 - 1), y_1 - (1 - 1)) = (x_1, y_1)$$

7)

$$\begin{split} c\odot((x_1,y_1)\oplus(x_2,y_2)) &= c\odot(x_1+y_1-1,x_2+y_2-1)\\ &= (c(x_1+y_1-1)-(c-1),c(x_2+y_2-1)-(c-1))\\ &= (cx_1+cx_2-2c+1,cy_1+cy_2-2c+1)\\ &= (cx_1-(c-1),cy_1-(c-1))\oplus(cx_2-(c-1),cy_2-(c-1))\\ &= c\odot(x_1,y_1)\oplus c\odot(x_2,y_2) \end{split}$$

8)

$$(c+d) \odot (x_1, y_1) = ((c+d)x_1 - (c+d-1), (c+d)y_1 - (c+d-1))$$

= $(cx_1 - (c-1), cy_1 - (c-1)) \oplus (dx_1 - (d-1), dy_1 - (d-1))$
= $c \odot (x_1, y_1) \oplus c \odot (x_2, y_2)$

Therefore V is a vector space.

V2. Determine if $\begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$ can be written as a linear combination of the vectors $\begin{bmatrix} -1 \\ -9 \\ 15 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 5 \\ -5 \end{bmatrix}$.

Solution:

RREF
$$\begin{pmatrix} \begin{bmatrix} -1 & 1 & 0 \\ -9 & 5 & 0 \\ 15 & -5 & 2 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Since this system has no solution, $\begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$ cannot be written as a linear combination of the vectors $\begin{bmatrix} -1 \\ -9 \\ 15 \end{bmatrix}$ and

$$\begin{bmatrix} 1 \\ 5 \\ -5 \end{bmatrix}.$$

V3. Determine if the vectors
$$\begin{bmatrix} 1\\1\\2\\1 \end{bmatrix}$$
, $\begin{bmatrix} 3\\3\\6\\3 \end{bmatrix}$, $\begin{bmatrix} 3\\-1\\3\\-2 \end{bmatrix}$, and $\begin{bmatrix} 7\\-1\\8\\-3 \end{bmatrix}$ span \mathbb{R}^4 .

Solution:

$$RREF \begin{pmatrix} \begin{bmatrix} 1 & 3 & 3 & 7 \\ 1 & 3 & -1 & -1 \\ 2 & 6 & 3 & 8 \\ 1 & 3 & -2 & -3 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since there are zero rows, they do not span. Alternatively, by inspection $\begin{bmatrix} 3 \\ 3 \\ 6 \\ 3 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \\ 2 \\ 1 \end{bmatrix}$, so the set is linearly dependent, so it spans a subspace of dimension at most 3, therefore it does not span \mathbb{R}^4 .

V4. Let W be the set of all \mathbb{R}^3 vectors $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ satisfying x+y+z=0 (this forms a plane). Determine if W is a subspace of \mathbb{R}^3 .

Solution: Yes, because z = -x - y and $a \begin{bmatrix} x_1 \\ y_1 \\ -x_1 - y_1 \end{bmatrix} + b \begin{bmatrix} x_2 \\ y_2 \\ -x_2 - y_2 \end{bmatrix} = \begin{bmatrix} ax_1 + bx_2 \\ ay_1 + by_2 \\ -(ax_1 + bx_2) - (ay_1 + by_2) \end{bmatrix}$. Alternately, yes because W is isomorphic to \mathbb{R}^2 .

S1. Determine if the set of vectors $\left\{ \begin{bmatrix} 3\\-1\\0\\4 \end{bmatrix}, \begin{bmatrix} 1\\2\\-2\\1 \end{bmatrix}, \begin{bmatrix} 3\\-8\\6\\5 \end{bmatrix} \right\}$ is linearly dependent or linearly independent.

Solution:

$$RREF \left(\begin{bmatrix} 3 & 1 & 3 \\ -1 & 2 & -8 \\ 0 & -2 & 6 \\ 4 & 1 & 5 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Since the reduced row echelon form has a nonpivot column, the vectors are linearly dependent.

S2. Determine if the set $\left\{ \begin{bmatrix} 1\\1\\-1 \end{bmatrix}, \begin{bmatrix} 3\\-1\\1 \end{bmatrix}, \begin{bmatrix} 2\\0\\-2 \end{bmatrix} \right\}$ is a basis of \mathbb{R}^3

Solution:

RREF
$$\begin{pmatrix} \begin{bmatrix} 1 & 3 & 2 \\ 1 & -1 & 0 \\ -1 & 1 & -2 \end{pmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Since the resulting matrix is the identity matrix, it is a basis.

S3. Let
$$W = \text{span}\left(\left\{\begin{bmatrix} 2\\0\\-2\\0 \end{bmatrix}, \begin{bmatrix} 3\\1\\3\\6 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\0\\1 \end{bmatrix}\right\}\right)$$
. Find a basis of W .

Solution:

RREF
$$\begin{pmatrix} \begin{bmatrix} 2 & 3 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ -2 & 3 & 1 & 0 \\ 0 & 6 & 1 & 1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 & -\frac{5}{2} \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -11 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Then
$$\left\{ \begin{bmatrix} 2\\0\\-2\\0 \end{bmatrix}, \begin{bmatrix} 3\\1\\3\\6 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix} \right\}$$
 is a basis of W .

S4. Let
$$W = \operatorname{span}\left(\left\{\begin{bmatrix} -3\\-8\\0\end{bmatrix}, \begin{bmatrix} 1\\2\\2\end{bmatrix}, \begin{bmatrix} 0\\-1\\3\end{bmatrix}\right\}\right)$$
. Compute the dimension of W .

Solution: Let
$$A = \begin{bmatrix} -3 & 1 & 0 \\ -8 & 2 & -1 \\ 0 & 2 & 3 \end{bmatrix}$$
, and compute $\text{RREF}(A) = \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \end{bmatrix}$. Since there are two pivot columns, dim $W = 2$.

E1:	V3:	
E2:	V4:	
E3:	S1:	
E4:	S2:	
V1:	S3:	
V2:	S4:	