CS503T: Statistical Pattern Recognition Programming Assignment I

Group 04

Ashish Pawade (CS25MT002) Chinmay Rajesh Manusmare (CS25MT014)

Under the guidance of Prof. Dilip A. D.

September 18, 2025

Contents

1	Intr	oducti	on	9
2	Dat	aset 1:	Linearly Separable Data	10
	2.1	Traini	ng Data	10
	2.2	Consta	ant Density Contour Plot	11
	2.3	Classif	fier: Shared $\sigma^2 I$	11
		2.3.1	Decision Region Plots Between Class Pairs (LS Dataset, Shared $\sigma^2 I)$	13
	2.4	Classif	fier: Shared Full Covariance Σ	13
		2.4.1	Decision Region Plots Between Class Pairs (LS Dataset, Shared Full Covariance)	14
	2.5	Classif	fier: Diagonal Covariance (Per-Class)	15
		2.5.1	Decision Region Plots Between Class Pairs (LS Dataset, Diagonal Covariance (Per-Class))	16
	2.6	Classif	fier: Full Covariance (Per-Class)	17
		2.6.1	Decision Region Plots Between Class Pairs (LS Dataset, Full Covariance (Per-Class)	18
3	Dat	aset 2:	Nonlinearly Separable Data	19
	3.1	Traini	ng Data	19
	3.2	Consta	ant Density Contour Plot	20
	3.3	Classif	fier: Shared $\sigma^2 I$	20
		3.3.1	Decision Region Plots Between Class Pairs (NLS Dataset, Shared $\sigma^2 I$)	22
	3.4	Classif	fier: Shared Full Covariance Σ	22
		3.4.1	Decision Region Plots Between Class Pairs (NLS Dataset, Shared Full Covariance)	23
	3.5	Classif	fer: Diagonal Covariance (Per-Class)	24

		3.5.1	Decision Region Plots Between Class Pairs (NLS Dataset, Diagonal Covariance (Per-Class))	2
	3.6	Classi	fier: Full Covariance (Per-Class)	2
		3.6.1	Decision Region Plots Between Class Pairs (NLS Dataset, Full Covariance (Per-Class)	2
4	Dat	aset 3:	: Real-world Vowel Data	2
	4.1	Traini	ng Data	2
	4.2	Consta	ant Density Contour Plot	2
	4.3	Classi	fier: Shared $\sigma^2 I$	2
		4.3.1	Decision Region Plots Between Class Pairs (RD Dataset, Shared $\sigma^2 I$)	3
	4.4	Classi	fier: Shared Full Covariance Σ	5
		4.4.1	Decision Region Plots Between Class Pairs (RD Dataset, Shared Full Covariance)	ę
	4.5	Classi	fier: Diagonal Covariance (Per-Class)	•
		4.5.1	Decision Region Plots Between Class Pairs (RD Dataset, Diagonal Covariance (Per-Class)	•
	4.6	Classi	fier: Full Covariance (Per-Class)	٠
		4.6.1	Decision Region Plots Between Class Pairs (RD Dataset, Full Covariance (Per-Class)	
5	Cor	nparis	on Across Datasets	•
	5.1	Perfor	mance Metrics Summary	•
6	Obs	servatio	ons and Inferences	ę
	6.1	Datase	et 1 (Linearly separable)	,
	6.2	Datase	et 2 (Nonlinear classes)	٠
	6.3	Datase	et 3 (Real-world vowel data)	٠
	6.4	Decisio	on surfaces	,
	6.5	Confu	sion matrices	٩

SPR Assignment 1				Gr	<u>cou</u> j	p 04
	6.6	Covar	riance Comparison		•	37
		6.6.1	Observations			37
		6.6.2	Inference		•	38
7	Con	ıclusio	on			38

List of Figures

1	Scatter plot of training data for linearly separable dataset	10
2	Constant density contours for all classes	11
3	Decision Region Plot (All Classes) - Shared $\sigma^2 I$	12
4	Decision Region Plots (Training data points superimposed) between class pairs for Shared $\sigma^2 I$ on LS dataset	13
5	Decision Region Plot (All Classes) - Shared Full Covariance	14
6	Decision Region Plots (Training data points superimposed) between class pairs for Shared Full Covariance on LS dataset	14
7	Decision Region Plot (All Classes) - Diagonal Covariance (Per-Class)	16
8	Decision Region Plots (Training data points superimposed) between class pairs for Diagonal Covariance (Per-Class) on LS dataset	16
9	Decision Region Plot (All Classes) - Full Covariance (Per-Class)	18
10	Decision Region Plots (Training data points superimposed) between class pairs for Full Covariance (Per-Class) on LS dataset	18
11	Scatter plot of training data for nonlinear dataset	19
12	Constant density contours for all classes	20
13	Decision Region Plot (All Classes) - Shared $\sigma^2 I$	21
14	Decision Region Plots (Training data points superimposed) between class pairs for Shared $\sigma^2 I$ on NLS dataset	22
15	Decision Region Plot (All Classes) - Shared Full Covariance	23
16	Decision Region Plots (Training data points superimposed) between class pairs for Shared Full Covariance on NLS dataset	23
17	Decision Region Plot (All Classes) - Diagonal Covariance (Per-Class)	25
18	Decision Region Plots (Training data points superimposed) between class pairs for Diagonal Covariance (Per-Class) on NLS dataset	25
19	Decision Region Plot (All Classes) - Full Covariance (Per-Class)	27
20	Decision Region Plots (Training data points superimposed) between class pairs for Full Covariance (Per-Class) on NLS dataset	27
21	Scatter plot of training data for vowel dataset	28

22	Constant density contours for vowel dataset	29
23	Decision Region Plot (All Classes) - Shared $\sigma^2 I$	30
24	Decision Region Plots (Training data points superimposed) between class pairs for Shared $\sigma^2 I$ on RD dataset	31
25	Decision Region Plot (All Classes) - Shared Full Covariance	32
26	Decision Region Plots (Training data points superimposed) between class pairs for Shared Full Covariance on RD dataset	32
27	Decision Region Plot (All Classes) - Diagonal Covariance (Per-Class)	33
28	Decision Region Plots (Training data points superimposed) between class pairs for Diagonal Covariance (Per-Class) on RD dataset	34
29	Decision Region Plot (All Classes) - Full Covariance (Per-Class)	35
30	Decision Region Plots (Training data points superimposed) between class pairs for Full Covariance (Per-Class) on RD dataset	35

List of Tables

1	Confusion Matrix for Shared $\sigma^2 I$ (Linearly Separable Data)	11
2	Performance Metrics - Shared $\sigma^2 I$	12
3	Confusion Matrix for Shared Full Covariance Σ (Linearly Separable Data)	13
4	Performance Metrics - Shared Full Covariance	13
5	Confusion Matrix for Diagonal Covariance (Per-Class) (Linearly Separable Data)	15
6	Performance Metrics - Diagonal Covariance (Per-Class)	15
7	Confusion Matrix for Full Covariance (Per-Class) (Linearly Separable Data)	17
8	Performance Metrics - Full Covariance (Per-Class)	17
9	Confusion Matrix for Shared $\sigma^2 I$ (Non-Linearly Separable Data)	20
10	Performance Metrics - Shared $\sigma^2 I$	21
11	Confusion Matrix for Shared Full Covariance Σ (Non-Linearly Separable Data)	22
12	Performance Metrics - Shared Full Covariance	22
13	Confusion Matrix for Diagonal Covariance (Per-Class) (Non-Linearly Separable Data)	24
14	Performance Metrics - Diagonal Covariance (Per-Class)	24
15	Confusion Matrix for Full Covariance (Per-Class) (Non-Linearly Separable Data)	26
16	Performance Metrics - Full Covariance (Per-Class)	26
17	Confusion Matrix for Shared $\sigma^2 I$ (Vowel Data)	29
18	Performance Metrics - Shared $\sigma^2 I$	30
19	Confusion Matrix for Shared Full Covariance Σ (Vowel Data)	31
20	Performance Metrics - Shared Σ	31
21	Confusion Matrix for Diagonal Covariance (Per-Class) (Vowel Data)	33
22	Performance Metrics - Diagonal Covariance (Per-Class)	33
23	Confusion Matrix for Full Covariance (Per-Class) (Vowel Data)	34

24	Performance Metrics - Full Covariance (Per-Class)	34
25	Performance Metrics (Precision, Recall, F1 Score, Accuracy) for each classifier across datasets	36
26	Comparison of Mean F1 Scores Across Covariance Types	37

1 Introduction

This report presents the implementation and evaluation of a Bayes classifier under different covariance assumptions for three datasets:

- Dataset 1: Linearly separable data (3 classes, 2D)
- Dataset 2: Nonlinearly separable data (3 classes, 2D)
- Dataset 3: Real-world vowel dataset (3 classes, 2D)

The class-conditional densities are assumed to be Gaussian. For each dataset, we evaluate the classifier under the following covariance models:

- 1. Shared spherical: $\sigma^2 I$
- 2. Shared full: Σ
- 3. Diagonal per-class
- 4. Full per-class

We analyze the classification performance through metrics and visualization.

2 Dataset 1: Linearly Separable Data

2.1 Training Data

Figure 1: Scatter plot of training data for linearly separable dataset

2.2 Constant Density Contour Plot

Figure 2: Constant density contours for all classes

2.3 Classifier: Shared $\sigma^2 I$

Table 1: Confusion Matrix for Shared $\sigma^2 I$ (Linearly Separable Data)

Actual \ Predicted	Class 1	Class 2	Class 3
Class 1	148	0	2
Class 2	0	150	0
Class 3	0	0	150

Table 2: Performance Metrics - Shared $\sigma^2 I$

Class	Precision	Recall	F1-Score	Support	
Class 1	1.0000	0.9867	0.9933	150	
Class 2	1.0000	1.0000	1.0000	150	
Class 3	0.9868	1.0000	0.9934	150	
Accuracy		0.9	9956		
Mean Precision		0.9	9956		
Mean Recall	0.9956				
Mean F1 Score		0.9	9956		

Inference: The classifier with shared $\sigma^2 I$ achieved very high accuracy ($\approx 99.6\%$) on the linearly separable dataset. Only a few misclassifications occurred in Class 1, showing that simple covariance is sufficient for this dataset.

Decision Regions All Classes (sigma2l) Class1 10 Class2 Class3 5 0 Feature2 -10 -15 -5 0 15 20 25 5 10 Feature1

Figure 3: Decision Region Plot (All Classes) - Shared $\sigma^2 I$

2.3.1 Decision Region Plots Between Class Pairs (LS Dataset, Shared $\sigma^2 I$)

Figure 4: Decision Region Plots (Training data points superimposed) between class pairs for Shared $\sigma^2 I$ on LS dataset

2.4 Classifier: Shared Full Covariance Σ

Table 3: Confusion Matrix for Shared Full Covariance Σ (Linearly Separable Data)

Actual \ Predicted	Class 1	Class 2	Class 3
Class 1	149	0	1
Class 2	0	150	0
Class 3	0	0	150

Table 4: Performance Metrics - Shared Full Covariance

Class	Precision	Recall	F1-Score	Support	
Class 1	1.0000	0.9933	0.9967	150	
Class 2	1.0000	1.0000	1.0000	150	
Class 3	0.9934	1.0000	0.9967	150	
Accuracy		0.9	9978		
Mean Precision		0.9	9978		
Mean Recall	0.9978				
Mean F1 Score		0.9	9978		

Inference: The shared full covariance Σ model achieved very high accuracy ($\approx 99.8\%$) with only one misclassification, showing excellent performance on linearly separable data.

Figure 5: Decision Region Plot (All Classes) - Shared Full Covariance

2.4.1 Decision Region Plots Between Class Pairs (LS Dataset, Shared Full Covariance)

Figure 6: Decision Region Plots (Training data points superimposed) between class pairs for Shared Full Covariance on LS dataset

2.5 Classifier: Diagonal Covariance (Per-Class)

Table 5: Confusion Matrix for Diagonal Covariance (Per-Class) (Linearly Separable Data)

	Class 1	Class 2	Class 3
Class 1	150	0	0
Class 2	0	148	2
Class 3	0	0	150

Table 6: Performance Metrics - Diagonal Covariance (Per-Class)

Class	Precision	Recall	F1-Score	Support
Class 1	1.0000	1.0000	1.0000	150
Class 2	1.0000	0.9867	0.9933	150
Class 3	0.9868	1.0000	0.9934	150
Accuracy	0.9956			
Mean Precision	0.9956			
Mean Recall	0.9956			
Mean F1 Score		0.9	9956	

Inference: The diagonal per-class covariance model gave very high accuracy ($\approx 99.6\%$), with only a couple of errors in Class 2, proving it is also effective for linearly separable data.

Figure 7: Decision Region Plot (All Classes) - Diagonal Covariance (Per-Class)

2.5.1 Decision Region Plots Between Class Pairs (LS Dataset, Diagonal Covariance (Per-Class))

Figure 8: Decision Region Plots (Training data points superimposed) between class pairs for Diagonal Covariance (Per-Class) on LS dataset

2.6 Classifier: Full Covariance (Per-Class)

Table 7: Confusion Matrix for Full Covariance (Per-Class) (Linearly Separable Data)

$\boxed{\textbf{Actual} \setminus \textbf{Predicted}}$	Class 1	Class 2	Class 3
Class 1	150	0	0
Class 2	0	150	0
Class 3	0	0	150

Table 8: Performance Metrics - Full Covariance (Per-Class)

Class	Precision	Recall	F1-Score	Support
Class 1	1.0000	1.0000	1.0000	150
Class 2	1.0000	1.0000	1.0000	150
Class 3	1.0000	1.0000	1.0000	150
Accuracy	1.0000			
Mean Precision	1.0000			
Mean Recall	1.0000			
Mean F1 Score		1.0	0000	

Inference: The full per-class covariance model achieved perfect classification (100% accuracy) with no errors, making it the best performer on the linearly separable dataset.

Figure 9: Decision Region Plot (All Classes) - Full Covariance (Per-Class)

2.6.1 Decision Region Plots Between Class Pairs (LS Dataset, Full Covariance (Per-Class)

Figure 10: Decision Region Plots (Training data points superimposed) between class pairs for Full Covariance (Per-Class) on LS dataset

3 Dataset 2: Nonlinearly Separable Data

3.1 Training Data

Figure 11: Scatter plot of training data for nonlinear dataset

3.2 Constant Density Contour Plot

Figure 12: Constant density contours for all classes

3.3 Classifier: Shared $\sigma^2 I$

Table 9: Confusion Matrix for Shared $\sigma^2 I$ (Non-Linearly Separable Data)

Actual \ Predicted	Class 1	Class 2	Class 3
Class 1	0	0	90
Class 2	0	0	150
Class 3	0	77	223

Table 10: Performance Metrics - Shared $\sigma^2 I$

Class	Precision	Recall	F1-Score	Support
Class 1	0.0000	0.0000	0.0000	90
Class 2	0.0000	0.0000	0.0000	150
Class 3	0.4816	0.7433	0.5845	300
Accuracy	0.4130			
Mean Precision		0.1	1605	
Mean Recall	0.2478			
Mean F1 Score	0.1948			

Inference: The shared $\sigma^2 I$ model performed very poorly on nonlinear data (accuracy $\approx 41.3\%$), failing to classify Classes 1 and 2 correctly and showing that simple covariance cannot handle complex boundaries.

Decision Regions All Classes (sigma2l) class1 6 class2 class3 4 2 Feature 2 0 -2 -6 2 -2 0 4 6

Figure 13: Decision Region Plot (All Classes) - Shared $\sigma^2 I$

Feature1

3.3.1 Decision Region Plots Between Class Pairs (NLS Dataset, Shared $\sigma^2 I$)

Figure 14: Decision Region Plots (Training data points superimposed) between class pairs for Shared $\sigma^2 I$ on NLS dataset

3.4 Classifier: Shared Full Covariance Σ

Table 11: Confusion Matrix for Shared Full Covariance Σ (Non-Linearly Separable Data)

Actual \ Predicted	Class 1	Class 2	Class 3
Class 1	0	0	90
Class 2	0	0	150
Class 3	0	75	225

Table 12: Performance Metrics - Shared Full Covariance

Class	Precision	Recall	F1-Score	Support
Class 1	0.0000	0.0000	0.0000	90
Class 2	0.0000	0.0000	0.0000	150
Class 3	0.4839	0.7500	0.5882	300
Accuracy	0.4167			
Mean Precision	0.1613			
Mean Recall	0.2500			
Mean F1 Score		0.1	1961	

Inference: The shared full covariance Σ also failed on nonlinear data (accuracy \approx 41.7%), misclassifying all samples of Classes 1 and 2 while performing only moderately on Class 3.

Figure 15: Decision Region Plot (All Classes) - Shared Full Covariance

3.4.1 Decision Region Plots Between Class Pairs (NLS Dataset, Shared Full Covariance)

Figure 16: Decision Region Plots (Training data points superimposed) between class pairs for Shared Full Covariance on NLS dataset

3.5 Classifier: Diagonal Covariance (Per-Class)

Table 13: Confusion Matrix for Diagonal Covariance (Per-Class) (Non-Linearly Separable Data)

Actual \ Predicted	Class 1	Class 2	Class 3
Class 1	90	0	0
Class 2	0	140	10
Class 3	0	0	300

Table 14: Performance Metrics - Diagonal Covariance (Per-Class)

Class	Precision	Recall	F1-Score	Support
Class 1	1.0000	1.0000	1.0000	90
Class 2	1.0000	0.9333	0.9655	150
Class 3	0.9677	1.0000	0.9836	300
Accuracy	0.9815			
Mean Precision	0.9892			
Mean Recall	0.9778			
Mean F1 Score		0.9	9830	

Inference: The diagonal per-class covariance model performed very well on nonlinear data with an accuracy of 98.15%, showing high precision and recall across all classes and only minor misclassifications in Class 2.

Figure 17: Decision Region Plot (All Classes) - Diagonal Covariance (Per-Class)

3.5.1 Decision Region Plots Between Class Pairs (NLS Dataset, Diagonal Covariance (Per-Class))

Figure 18: Decision Region Plots (Training data points superimposed) between class pairs for Diagonal Covariance (Per-Class) on NLS dataset

3.6 Classifier: Full Covariance (Per-Class)

Table 15: Confusion Matrix for Full Covariance (Per-Class) (Non-Linearly Separable Data)

Actual \ Predicted	Class 1	Class 2	Class 3
Class 1	90	0	0
Class 2	0	142	8
Class 3	0	0	300

Table 16: Performance Metrics - Full Covariance (Per-Class)

Class	Precision	Recall	F1-Score	Support
Class 1	1.0000	1.0000	1.0000	90
Class 2	1.0000	0.9467	0.9726	150
Class 3	0.9740	1.0000	0.9868	300
Accuracy	0.9852			
Mean Precision	0.9913			
Mean Recall	0.9822			
Mean F1 Score	0.9865			

Inference: The full per-class covariance model achieved the highest accuracy of 98.52% on nonlinear data, with excellent precision and recall, making it the most effective among all covariance approaches.

Figure 19: Decision Region Plot (All Classes) - Full Covariance (Per-Class)

3.6.1 Decision Region Plots Between Class Pairs (NLS Dataset, Full Covariance (Per-Class)

Figure 20: Decision Region Plots (Training data points superimposed) between class pairs for Full Covariance (Per-Class) on NLS dataset

4 Dataset 3: Real-world Vowel Data

4.1 Training Data

Figure 21: Scatter plot of training data for vowel dataset

4.2 Constant Density Contour Plot

Figure 22: Constant density contours for vowel dataset

4.3 Classifier: Shared $\sigma^2 I$

Table 17: Confusion Matrix for Shared $\sigma^2 I$ (Vowel Data)

Actual \ Predicted	Class 1	Class 2	Class 3
Class 1	746	1	0
Class 2	19	631	0
Class 3	1	2	714

Table 18: Performance Metrics - Shared $\sigma^2 I$

Class	Precision	Recall	F1-Score	Support	
Class 1	0.9739	0.9987	0.9861	747	
Class 2	0.9953	0.9708	0.9829	650	
Class 3	1.0000	0.9958	0.9979	717	
Accuracy	0.9891				
Mean Precision	0.9897				
Mean Recall	0.9884				
Mean F1 Score	0.9890				

Inference: The shared $\sigma^2 I$ classifier performed very well on vowel data with an accuracy of 98.91%, showing strong precision and recall across all classes.

Figure 23: Decision Region Plot (All Classes) - Shared $\sigma^2 I$

4.3.1 Decision Region Plots Between Class Pairs (RD Dataset, Shared $\sigma^2 I$)

Figure 24: Decision Region Plots (Training data points superimposed) between class pairs for Shared $\sigma^2 I$ on RD dataset

4.4 Classifier: Shared Full Covariance Σ

Table 19: Confusion Matrix for Shared Full Covariance Σ (Vowel Data)

Actual \ Predicted	Class 1	Class 2	Class 3
Class 1	746	1	0
Class 2	19	631	0
Class 3	1	4	712

Table 20: Performance Metrics - Shared Σ

Class	Precision	Recall	F1-Score	Support	
Class 1	0.9739	0.9987	0.9861	747	
Class 2	0.9921	0.9708	0.9813	650	
Class 3	1.0000	0.9930	0.9965	717	
Accuracy	0.9882				
Mean Precision	0.9887				
Mean Recall	0.9875				
Mean F1 Score	0.9880				

Inference: The shared Σ classifier performed very well on vowel data with an accuracy of 98.82%, showing strong precision and recall across all classes.

Figure 25: Decision Region Plot (All Classes) - Shared Full Covariance

4.4.1 Decision Region Plots Between Class Pairs (RD Dataset, Shared Full Covariance)

Figure 26: Decision Region Plots (Training data points superimposed) between class pairs for Shared Full Covariance on RD dataset

4.5 Classifier: Diagonal Covariance (Per-Class)

Table 21: Confusion Matrix for Diagonal Covariance (Per-Class) (Vowel Data)

	Class 1	Class 2	Class 3	
Class 1	746	1	0	
Class 2	19	631	0	
Class 3	1	1	715	

Table 22: Performance Metrics - Diagonal Covariance (Per-Class)

Class	Precision	Recall	F1-Score	Support	
Class 1	0.9739	0.9987	0.9861	747	
Class 2	0.9968	0.9708	0.9836	650	
Class 3	1.0000	0.9972	0.9986	717	
Accuracy	0.9896				
Mean Precision	0.9902				
Mean Recall	0.9889				
Mean F1 Score	0.9895				

Inference: The diagonal covariance (per-class) classifier performed excellently on vowel data with an accuracy of 98.96%, achieving high precision and recall across all classes.

Figure 27: Decision Region Plot (All Classes) - Diagonal Covariance (Per-Class)

4.5.1 Decision Region Plots Between Class Pairs (RD Dataset, Diagonal Covariance (Per-Class)

Figure 28: Decision Region Plots (Training data points superimposed) between class pairs for Diagonal Covariance (Per-Class) on RD dataset

4.6 Classifier: Full Covariance (Per-Class)

Table 23: Confusion Matrix for Full Covariance (Per-Class) (Vowel Data)

	Class 1	Class 2	Class 3
Class 1	745	2	0
Class 2	19	631	0
Class 3	1	1	715

Table 24: Performance Metrics - Full Covariance (Per-Class)

Class	Precision	Recall	F1-Score	Support	
Class 1	0.9739	0.9973	0.9854	747	
Class 2	0.9953	0.9708	0.9829	650	
Class 3	1.0000	0.9972	0.9986	717	
Accuracy	0.9891				
Mean Precision	0.9897				
Mean Recall	0.9884				
Mean F1 Score	0.9890				

Inference: The full covariance (per-class) classifier performed very well on vowel data with an accuracy of 98.91%, showing consistently high precision and recall across all classes.

Figure 29: Decision Region Plot (All Classes) - Full Covariance (Per-Class)

4.6.1 Decision Region Plots Between Class Pairs (RD Dataset, Full Covariance (Per-Class)

Figure 30: Decision Region Plots (Training data points superimposed) between class pairs for Full Covariance (Per-Class) on RD dataset

5 Comparison Across Datasets

5.1 Performance Metrics Summary

Table 25: Performance Metrics (Precision, Recall, F1 Score, Accuracy) for each classifier across datasets

Dataset	Classifier	Precision	Recall	F1 Score	Accuracy
	sigma2I	0.9956	0.9956	0.9956	0.9956
Dataset 1 (Linear)	shared_full	0.9978	0.9978	0.9978	0.9978
Dataset I (Linear)	diag_per_class	0.9956	0.9956	0.9956	0.9956
	full_per_class	1.0000	1.0000	1.0000	1.0000
	sigma2I	0.4130	0.1605	0.2478	0.1948
Dataset 2 (Nonlinear)	shared_full	0.4167	0.1613	0.2500	0.1961
Dataset 2 (Nonlinear)	diag_per_class	0.9815	0.9892	0.9778	0.9830
	full_per_class	0.9852	0.9913	0.9822	0.9865
	sigma2I	0.9891	0.9897	0.9884	0.9890
Dataset 3 (Real-world)	shared_full	0.9882	0.9887	0.9875	0.9880
	diag_per_class	0.9896	0.9902	0.9889	0.9895
	full_per_class	0.9891	0.9897	0.9884	0.9890

6 Observations and Inferences

6.1 Dataset 1 (Linearly separable)

- All covariance types gave very high accuracy and F1-scores (close to 1.0).
- The data is almost perfectly separable.
- Even simple covariance assumptions work well.
- The decision surfaces are smooth and nearly linear.

6.2 Dataset 2 (Nonlinear classes)

- Shared covariance models performed very poorly (F1 ≈ 0.19).
- Accuracy improved a lot (F1 ≈ 0.98) with per-class diagonal or full covariance.
- The dataset has complex class boundaries.
- Simple shared covariance is not sufficient.

6.3 Dataset 3 (Real-world vowel data)

- All models gave high performance (F1 ≈ 0.99).
- Differences between covariance types were very small.
- Vowel features are already well separated across classes.

6.4 Decision surfaces

- For the linear dataset, boundaries are straight and clean.
- For the nonlinear dataset, per-class covariance gave curved and accurate regions.
- For the vowel dataset, decision regions are stable and robust.

6.5 Confusion matrices

- Linear and vowel datasets show almost perfect classification with very few misclassifications.
- Nonlinear dataset shows many misclassifications under shared covariance.
- Performance improves significantly with per-class covariance.

6.6 Covariance Comparison

Table 26: Comparison of Mean F1 Scores Across Covariance Types

Covariance Type	Linear Dataset	Nonlinear Dataset	Vowel Dataset
Shared $\sigma^2 I$	0.9956	0.2478	0.9884
Shared Σ	0.9978	0.2500	0.9875
Diagonal Per Class	0.9956	0.9778	0.9889
Full Per Class	1.0000	0.9822	0.9884

6.6.1 Observations

- For the **linear dataset**, all covariance types give almost perfect performance (F1 close to 1.0).
- For the **nonlinear dataset**, shared covariance performs very poorly (F1 ≈ 0.25), while per-class covariance (diagonal and full) gives excellent results (F1 ≈ 0.98).
- For the **vowel dataset**, performance is consistently high (F1 ≈ 0.99) across all covariance types.

6.6.2 Inference

- Shared covariance $(\sigma^2 I \text{ or } \Sigma)$ is the **odd one out**, as it fails on nonlinear data.
- Per-class covariance (diagonal or full) is more flexible and reliable across all datasets.
- In general, when class boundaries are complex, per-class covariance is necessary for good classification.

7 Conclusion

- For the **linear dataset**, all covariance assumptions work well, as the classes are almost perfectly separable.
- For the **nonlinear dataset**, shared covariance models fail, but per-class covariance (diagonal or full) gives strong performance.
- For the **vowel dataset**, all covariance types perform consistently well since the classes are naturally well separated.
- Overall, **per-class covariance** is the most reliable approach, while shared covariance is the weak option and the odd one out.