Solubilidade

Gabriel Braun

Colégio e Curso Pensi, Coordenação de Química

1 Solubilidade em Nível Molecular

- 1. Solvatação.
- 2. Interações soluto-solvente.
- 3. Semanhante-dissolve-semelhante.
- 4. Espécies hidrofílicas e hidrofóbicas.
- 5. Micelas.
- 6. Surfactantes.

1.0.1 Habilidades

a. **Comparar** a solubilidades com base na estrutura molecular

2 Limites da Solubilidades

- 1. Soluções saturadas.
- 2. Solubilidade e temperatura.
- 3. Curvas de solubilidades.
- 4. Soluções supersaturadas.

2.0.1 Habilidades

a. **Determinar** a solubilidade de uma substância a partir da curva de solubilidade.

3 Solubilidade de Gases

1. Lei de Henry:

$$s = k_H P$$

2. Solubulidade de gases e temperatura.

3.0.1 Habilidades

 a. Calcular a solubilidade de um gás em um líquido a partir da Lei de Henry.

4 Termodinâmica da Dissolução

- 1. Entalpia rede.
- 2. Ciclo de Born-Haber.
- 3. Entalpia de hidratação.
- 4. Entalpia de dissolução.

4.0.1 Habilidades

- a. Calcular a entalpia de rede utilizando o ciclo de Born-Haber.
- b. Calcular a entalpia de dissolução em função das entalpias de rede e de hidratação.

5 Coloides

- 1. Movimento Browniano.
- 2. Definição de coloides:

$$1\,\text{nm} < d < 1\,\text{\mu m}$$

- 3. Classificação de coloides.
- 4. Efeito Tyndall.

5.0.1 Habilidades

a. Identidicar os tipos de coloides e suas propriedades.

Nível I

PROBLEMA 5.1

2E01

Assinale a alternativa que mais se aproxima da solubilidade do dióxido de carbono em uma solução sob 500 Torr desse gás a $20\,^{\circ}$ C.

- \mathbf{A} 5 mmol L⁻¹
- ${\bf B}$ 10 mmol ${\bf L}^{-1}$
- \mathbf{C} 15 mmol L^{-1}
- \mathbf{D} 20 mmol L⁻¹
- \mathbf{E} 25 mmol \mathbf{L}^{-1}

Dados

• $k_H(CO_2) = 0.023 \, \text{mol} \, L^{-1} \, \text{atm}^{-1}$

A concentração mínima em massa de oxigênio necessária para a vida dos peixes é 4 ppm.

Assinale a alternativa que mais se aproxima da pressão atmosférica mínima que forneceria a concentração mínima em massa de oxigênio na água para permitir a vida dos peixes a 20 °C.

- A 160 Torr
- **B** 360 Torr
- **c** 560 Torr
- **D** 760 Torr
- **E** 960 Torr

Dados

 $\bullet \ k_H(O_2) = 0.0013 \, mol \, L^{-1} \, atm^{-1}$

PROBLEMA 5.3 2E03

Compressas frias contendo nitrato de amônio, podem ser utilizadas para amenizar a dor. Essas compressas consistem em cristais de nitrato de amônio e água, e esfriam à medida que o nitrato de amônio se dissolve na água.

Assinale a alternativa que explica porque dissolução do nitrato de amônio em água é espontânea.

- A Variação de entalpia reticular é maior que a de solvatação dos íons.
- **B** A reação é exergônica, já que é exotérmica e possui variação positiva de entropia.
- A reação é endotérmica, e isso faz com que o calor das vizinhanças seja disperso nas compressas.
- As partículas de nitrato de amônio dissolvidas estão mais randomicamente organizadas que as do retículo cristalino, favorecendo a espontaneidade do processo endotérmico.
- A reação é endotérmica e a solução mais fria apresenta menor energia, o que é favorável.

PROBLEMA 5.4

Considere as proposições.

- 1. O valor absoluto da entalpia de hidratação do Na^+ é maior que o do K^+ .
- O valor absoluto da entalpia de hidratação do Br⁻ é maior que o do Cl⁻.
- **3.** O valor absoluto da entalpia de hidratação do Ca²⁺ é maior que o do Al³⁺.
- **4.** O valor absoluto da entalpia de hidratação do Ga^{3+} é maior que o do Al^{3+} .

Assinale a alternativa que relaciona as proposições corretas.

Α

B

C 1 e 4

- **D** 1, 2 e 4
- **E** 1, 3 e 4

PROBLEMA 5.5

2E05

2E04

O gás dióxido de carbono dissolvido em uma amostra de água em um recipiente parcialmente cheio e lacrado entrou em equilíbrio com sua pressão parcial no ar que está acima da solução. Considere as operações.

- 1. A pressão parcial do gás CO_2 dobra por adição de mais CO_2 .
- **2.** A pressão total do gás sobre o líquido dobra por adição de nitrogênio.
- **3.** A pressão parcial de CO₂ é aumentada por compressão do gás até um terço do volume original.
- A temperatura é aumentada mantendo a pressão total constante.

Assinale a alternativa que relaciona as operações que levam ao aumento da concentração de CO₂ em solução.

A 1

В

c 1 e 3

- **D** 1, 2 e 3
- **E** 1, 3 e 4

Considere as curvas de solubilidade de duas substâncias **A** e **B**.

Assinale a alternativa correta.

- A No ponto P as soluções apresentam a mesma temperatura mas as solubilidades de A e B são diferentes.
- **B** A solução da substância **A** está supersaturada no ponto O.
- C Soluções preparadas com 40 g de **A** ou **B** em 100 g de água são instáveis.
- **D** As curvas de solubilidade não indicam mudanças na estrutura dos solutos.
- A solubilidade da substância **B** segue o perfil esperado para a solubilidade de gases em água.

PROBLEMA 5.7 2E07

Considere as curvas de solubilidade.

Assinale a alternativa incorreta.

- A 25 °C, a solubilidade em água do NaNO $_3$ é maior que a do Na $_2$ SO $_4 \cdot 10$ H $_2$ O.
- **B** A 25 $^{\circ}$ C, uma mistura de 120 g de NaNO₃ com 100 g água é bifásica, sendo uma das fases o nitrato de amônio sólida e a outra a água líquida.
- C A 0°C, uma mistura de 20 g de NaCl com 100 g de água é monofásica, sendo esta fase uma solução aquosa não saturada em NaCl.
- D A 25 °C, a concentração de íons de sódio existentes na fase líquida de uma mistura preparada pela adição de 6 g de NaCl à 100 g de água é 1 mol L^{-1} .
- E A 25 °C, a quantidade de íons de sódio presentes em uma solução preparada pela dissolução de 1 g de Na₂SO₄ em 10 g de água é maior do que a existente em outra solução preparada pela dissolução de 1 g de Na₂SO₄ em 10 g de água é maior do que a existente em outra solução preparada pela dissolução de 1 g de Na₂SO₄ · 10 H₂O na mesma quantidade de água.

Considere as curvas de solubilidade.

Considere as proposições.

- 1. Ao dissolver $130\,\mathrm{g}$ de $\mathrm{KNO_3}$ em $200\,\mathrm{g}$ de água, a $40\,^\circ\mathrm{C}$, a solução obtida é saturada e possui $70\,\mathrm{g}$ de corpo de fundo.
- 2. Ao dissolver 20 g de Ce₂(SO₄)₃ em 300 g de água a 10 °C e, posteriormente, aquecer a solução até 90 °C haverá gradativa precipitação da substância.
- **3.** A menor quantidade de água necessária para dissolver completamente 140 g de K₂Cr₂O₇ a 90 °C é cerca de 150 g.
- 4. O nitrato de sódio é a substância mais solúvel a 100 °C.

Assinale a alternativa que relaciona as proposições *corretas*.

A 1

B 2

- C 1 e 2
- **D** 2 e 3
- **E** 2 e 4

PROBLEMA 5.9 2E11

Considere as curvas de solubilidade do brometo de potássio em água.

Assinale a alternativa *incorreta*.

- A dissolução do KBr em água é um processo endotérmico.
- **B** A 30 °C, a concentração de uma solução aquosa saturada em KBr é de aproximadamente 6 mol kg $^{-1}$.
- C Misturas correspondentes a pontos situados na região I da figura são bifásicas.
- Misturas correspondentes a pontos situados na região II da figura são monofásicas.
- Misturas correspondentes a pontos situados sobre a curva são saturadas em KBr.

A dissolução do sulfato de lítio ocorre com aumento de temperatura da solução, já a dissolução do nitrato de amônio ocorre com o resfriamento da solução.

- **1.** A entalpia de rede do sulfato de lítio é menor que sua entalpia de hidratação.
- **2.** A entalpia de rede do nitrato de amônio é maior que sua entalpia de hidratação.
- A dissolução do sulfato de lítio aumenta a entropia do sistema.
- **4.** A dissolução do nitrato de amônio diminui a entropia do sistema.

Assinale a alternativa que relaciona as proposições corretas.

A 1 e 2

- **B** 1 e 3
- **C** 2 e 3
- **D** 1, 2 e 3
- **E** 1, 2, 3 e 4

PROBLEMA 5.11

2E13

2E12

Assinale a alternativa que mais se aproxima da entalpia de solução do cloreto de sódio.

- \mathbf{A} 1 kJ mol⁻¹
- \mathbf{B} 2 kJ mol⁻¹
- \mathbf{c} 3 kJ mol⁻¹
- \mathbf{D} 4 kJ mol⁻¹
- \mathbf{E} 5 kJ mol⁻¹

Dados

- $\bullet \ \Delta H_{hid}(NaCl) = 784 \, kJ \, mol^{-1}$
- $\Delta H_{rede}^{\circ}(NaCl) = 787 \, kJ \, mol^{-1}$

PROBLEMA 5.12

2E14

Assinale a alternativa que mais se aproxima da entalpia de rede do brometo de cálcio.

- $\mathbf{A} = -983 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- **B** $-1125 \, \text{kJ mol}^{-1}$
- $-1928 \, \text{kJ mol}^{-1}$
- $-2254 \, \text{kJ} \, \text{mol}^{-1}$
- $-2414 \, \text{kJ} \, \text{mol}^{-1}$

Dados

- $\Delta H_{hid}(Ca^{2+}) = -1579 \, kJ \, mol^{-1}$
- $\Delta H_{hid}(Cl^{-}) = -336 \, kJ \, mol^{-1}$
- $\Delta H_{sol}(CaCl_2) = -103 \, kJ \, mol^{-1}$

Uma amostra de 4 g de MgBr $_2$ é dissolvida em 100 g de água a 25 °C.

Assinale a alternativa que mais se aproxima da temperatura final da solução.

- **A** 15 °C
- **B** 25 °C
- **c** 35 °C
- **D** 45 °C

E 55 °C

Dados

- $\Delta H_R(MgBr_2) = -2406 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- $\Delta H_{hid}(MgBr_2) = -2591,6 \, kJ \, mol^{-1}$
- \bullet C_P (H₂O, 1) = 75,3 J K⁻¹ mol⁻¹

PROBLEMA 5.14

2E16

Uma amostra de $10\,\mathrm{g}$ de $\mathrm{NH_4NO_3}$ é dissolvida em $100\,\mathrm{g}$ de água a $25\,^\circ\mathrm{C}$.

Assinale a alternativa que mais se aproxima da temperatura final da solução.

- **A** 21 °C
- **B** 23 °C
- **c** 25 °C

- **D** 27 °C
- **E** 29 °C

Dados

- $\Delta H_R(NH_4NO_3) = -628 \text{ kJ mol}^{-1}$
- $\Delta H_{hid}(NH_4^+) = -307 \, kJ \, mol^{-1}$
- $\Delta H_{hid}(NO_3^-) = -314 \, kJ \, mol^{-1}$
- $C_P(H_2O, 1) = 75.3 \, \text{J K}^{-1} \, \text{mol}^{-1}$

PROBLEMA 5.15

2E17

Assinale a alternativa que mais se aproxima da entalpia de formação do cloreto de potássio.

- $-238 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- $-347 \, \text{kJ} \, \text{mol}^{-1}$
- $-411 \, \text{kJ mol}^{-1}$
- $-513 \, \text{kJ mol}^{-1}$
- $-673 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$

Dados

- $AE(Cl) = -349 \, \text{kJ mol}^{-1}$
- $EI(K) = 419 \, kJ \, mol^{-1}$
- $\Delta H_R(KCl) = -690 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- $\Delta H_{\text{sub}}(K) = 90 \,\text{kJ mol}^{-1}$
- $\bullet \ \Delta \mathsf{H}_L(\mathsf{Cl}_2) = 242\, k\text{J}\, \text{mol}^{-1}$

Assinale a alternativa que mais se aproxima da entalpia de rede do cloreto de cálcio.

- $-790 \, \text{kJ} \, \text{mol}^{-1}$
- **B** $-1029 \, \text{kJ} \, \text{mol}^{-1}$

2E18

- $-2070 \, \text{kJ} \, \text{mol}^{-1}$
- $-2260 \, \text{kJ} \, \text{mol}^{-1}$
- $-2609 \, \text{kJ} \, \text{mol}^{-1}$

Dados

- $AE(Cl) = -349 \, kJ \, mol^{-1}$
- $EI_1(Ca) = 590 \, kJ \, mol^{-1}$
- $EI_2(Ca) = 1146 \, kJ \, mol^{-1}$
- $\Delta H_{\text{sub}}(\text{Ca}) = 190 \,\text{kJ} \,\text{mol}^{-1}$
- $\Delta H_f^{\circ}(CaCl_2, s) = -796 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- $\Delta H_L(Cl_2) = 242 \, \text{kJ mol}^{-1}$

PROBLEMA 5.17

2E19

Assinale a alternativa que mais se aproxima da entalpia de sublimação do lítio.

- \mathbf{A} 80 kJ mol⁻¹
- **B** $161 \, \text{kJ} \, \text{mol}^{-1}$
- \mathbf{C} 242 kJ mol $^{-1}$
- \mathbf{D} 324 kJ mol⁻¹
- \mathbf{E} 405 kJ mol⁻¹

Dados

- $AE_1(I) = -295 \,\text{kJ mol}^{-1}$
- $EI(Li) = 520 \, kJ \, mol^{-1}$
- $\Delta H_R(LiI) = -753 \, kJ \, mol^{-1}$
- $\Delta H_f(LiI) = -292 \, kJ \, mol^{-1}$
- $\Delta H_L(I_2) = 151 \,\text{kJ mol}^{-1}$

Assinale a alternativa que mais se aproxima da segunda afinidade eletrônica do enxofre.

- A 2 eV
- B 3eV
- **c** 4 eV

- **D** 5 eV
- E 6eV

Dados

- $AE_1(S) = 2.1 \, eV$
- EI(K) = 4.4 eV
- $\Delta H_R(K_2S) = 2052 \, kJ \, mol^{-1}$
- $\Delta H_{\text{sub}}(K) = 90 \,\text{kJ mol}^{-1}$
- $\Delta H_{\text{sub}}(S) = 277 \,\text{kJ mol}^{-1}$
- $\Delta H_f^{\circ}(K_2S, s) = -381 \,\text{kJ mol}^{-1}$

PROBLEMA 5.19

2E21

Os mingaus contêm grandes moléculas de amido que fazem a mistura engrossar por um mecanismo semelhante ao da gelatina.

Assinale a alternativa com a descrição para o mecanismo de endurecimento dos mingaus.

- As moléculas de amido dos mingaus são insolúveis em água e precipitam quando misturadas com água.
- As moléculas de amido dos mingaus são solubilizadas em água, aumentando a densidade da solução.
- C Os fios das moléculas de amido se ligam uns aos outros por ligações covalentes.
- As moléculas de amido formam ligações hidrogênio com as moléculas de água e encapsulam a água em uma rede.
- As moléculas de água hidratam as moléculas de amido do pudim, e o calor de hidratação decompõe as moléculas de amido.

PROBLEMA 5.20

2E22

Quando submersos em águas profundas, os mergulhadores necessitam voltar lentamente à superfície para evitar a formação de bolhas de gás no sangue.

- a. Explique o motivo da não formação de bolhas de gás no sangue quando o mergulhador desloca-se de regiões próximas à superfície para as regiões de águas profundas.
- Explique o motivo da não formação de bolhas de gás no sangue quando o mergulhador desloca-se muito lentamente de regiões de águas profundas para as regiões próximas da superfície.
- c. Explique o motivo da formação de bolhas de gás no sangue quando o mergulhador desloca-se muito rapidamente de regiões de águas profundas para as regiões próximas da superfície.

PROBLEMA 5.21

2E23

O volume de sangue no corpo de um mergulhador de mar profundo é cerca de 6 L. As células sanguíneas compõem cerca de 55% do volume do sangue. Os restantes 45% formam a solução em água conhecida como plasma. A solubilidade do N_2 no sangue a uma pressão parcial de 1 atm é 5.8×10^{-4} mol L^{-1} atm $^{-1}$. **Assinale** a alternativa que mais se aproxima do volume de nitrogênio, medido sob 1 atm e 37 °C, eliminado por um mergulhador em profundidade de 90 m em seu retorno à superfície.

- **A** 100 mL
- 3 200 mL
- **c** 300 mL
- **D** 400 mL
- **E** 500 mL

PROBLEMA 5.22

2E24

Um recipiente $\bf A$, dotado de uma válvula na parte superior, está totalmente preenchido por uma solução de n mols de CO_2 em 1800 g de água. O recipiente $\bf A$ foi, então, conectado ao recipiente $\bf B$ previamente evacuado, fechado por válvula e com volume de 1,64 L. Em um dado momento, as válvulas foram abertas deixando o sistema nesta condição durante tempo suficiente para atingir o equilíbrio. Após o equilíbrio, as válvulas foram fechadas e os recipientes foram desconectados. Todo o processo ocorreu à temperatura constante de 300 K. A constante de Henry para a solubilidade do CO_2 na água, $k_H=33,3$ atm $^{-1}$.

Determine o número de mols de CO_2 que migraram para o recipiente ${\bf B}$ em função de ${\bf n}$.

2E28

Considere as propriedades dos sólidos iônicos.

- a. **Explique** porque o valor absoluto da entalpia de rede cresce na ordem $Na_2Te < Na_2Se < CaTe < CaSe$.
- b. Ordene os compostos FeCl₃, FeCl₂ e Fe₂O₃ em função do valor absoluto de entalpia de rede.

PROBLEMA 5.24

2E29

Considere as propriedades dos sólidos iônicos.

- a. Explique porque, mesmo sendo a primeira afinidade eletrônica do oxigênio exotérmica e a segunda é endotérmica, na maioria dos compostos iônicos o oxigênio está na forma de óxido.
- Explique porque o composto NaCl₂ é improvável, supondo que sua entalpia de rede seja igual à do MgCl₂.

Gabarito

Nível I

1.	C	2.	В	3.	D	4.	C	5.	C
6.	E	7.	В	8.	В	9.	В	10.	D
11.	C	12.	C	13.	C	14.	В	15.	C
16.	D	17.	В	18.	E	19.	D		

Nível II

- 1. a. O aumento da solubilidade do gás no sangue devido ao aumento da pressão é o motivo de não haver a formação de bolhas de gás no sangue quando o mergulhador se desloca de regiões próximas à superfície para as regiões de águas profundas.
 - b. O motivo de não se formarem bolhas de gás no sangue quando o mergulhador se desloca muito lentamente de regiões de águas profundas para as regiões próximas da superfície é o fato da variação de pressão ocorrer lentamente e, portanto, a liberação de gás ser pequena.
 - c. A formação de bolhas de gás no sangue quando o mergulhador se desloca muito rapidamente de regiões de águas profundas para águas superficiais é a repentina variação de pressão, diminuindo a solubilidade do gás no sangue. Ocorre intensa liberação do gás, com formação de bolhas.
- 2. D

3.
$$\frac{102 + n + \sqrt{(102 + n)^2 - 8n}}{2}$$

- 4.
- 5. -