JAN 2 0 2004 SOLUTION OF STATE OF STATE

kuvshinov 1-intron.ST25 SEQUENCE LISTING

MARKO	SEQUENCE EISTING	
<110>	UniCrop Ltd	
<120>	A molecular mechanism for gene containment in plants	
<130>	kuvshinov 1-intron	
<160>	13	
<170>	PatentIn version 3.2	
<210> <211> <212> <213>	1 357 DNA artificial sequence	
<220> <223>	Plant adapted synthetic coding sequence of barnase gene	
<400> cgcgga	1 tcca tggcacaagt tatcaacacc tttgatggag ttgctgacta ccttcagacc	60
taccata	aagc ttccagataa ctacatcacc aagtctgagg ctcaggctct tggatgggtt	120
gcttcta	aagg gaaaccttgc tgatgtcgct ccaggaaagt ctatcggagg tgatatcttc	180
tctaaca	aggg agggaaagct tccaggaaag tctggaagga cctggaggga ggctgatatc	240
aactac	acct ctggattcag gaactctgat aggatccttt actcttccga ctggcttatc	300
tacaaga	acca ctgaccacta ccagaccttc accaagatcc ggtgagagct cgagcgc	357
<210> <211> <212> <213>	2 299 DNA artificial sequence	
<220> <223>	Plant adapted synthetic coding sequence of barstar gene	
<400> cgcgga	2 tcct gatcatgaag aaggctgtta tcaacggtga gcaaattagg tctatctctg .	60
atcttca	acca gacccttaag aaggagcttg ctcttccaga gtactacgga gagaaccttg	120
atgctc	tatg ggattgcctt accggatggg tggagtaccc acttgttttg gagtggaggc	180
agtttga	agca gtctaagcag cttactgaga atggagctga gagtgttctt caggttttcc	240
gggagg	ctaa ggctgaggga tgcgatatca ccatcattct ttcttgagag ctcgagcgc	299
<210> <211> <212> <213>	3 529 DNA artificial sequence	
<220> <223>	intron of uidA gene	
<400>	3	

	kuvshinov 1-intron.ST25			
actagt	ttac aaacgtttcc ctatataaac cctcctttgt tcactgcttt cctccctgct	60		
gtggct	tctc tccgaagttc atcccggtcc acctgcaaaa taagtaataa gataaagtaa	120		
aaaagt	tagt atggctcaag ttattaatac ttttgatgga gttgctgatt atcttcaaac	180		
ttatca	taaa cttccagata attatattac taaatctgaa gctcaagctc ttggatgggt	240		
tgcttc	taaa ggaaatcttg ctgatgttgc tccaggaaaa tctattggag gagatatttt	300		
ttcaaa	taga gaaggaaaac ttccaggaaa atctggaaga acatggagag aágctgatat	360		
taatta	tact tctggattta gaaattcaga tagaatcctt tattcatctg attggcttat	420		
ttataa	aact acagatcatt atcaaacttt tacaaaaatt agataaatat ttgtatttt	480		
tgtatg	ttgt gatcattaat aaataaataa atacatacct cttctgcag	529		
<210> <211> <212> <213>	4 52 DNA artificial sequence			
<220> <223>	the last (third exon) of uiD gene			
<400> gtggac	4 cggg atgaacttcg gagagaagcc acagcaggga ggaaagcagt ga	52		
<210> <211> <212> <213>	5 51 DNA artificial sequence			
<220> <223>	5'UTR of barnase gene			
<400> catccc	5 ggtc cacctgcaaa ataagtaata agataaagta aaaaagttag t	51		
<210> <211> <212> <213>	6 38 DNA artificial sequence			
<220> <223>	3' flanking signal of the intron of uidA			
<400> 6 actaactttt ttactttatc ttattactta ttttgcag 38				
<210> <211> <212> <213>	7 474 DNA artificial sequence			
<220> <223>	35 S promoter of CaMV			

kuvshinov 1-intron.ST25

• <400> 7

gcggaattca attgatcaac atggtggagc acgacactct cgtctactcc aagaatatca 60)
aagatacagt ctcagaagac cagagggcta ttgagacttt tcaacaaagg gtaatatcgg 120)
gaaacctcct cggattccat tgcccagcta tctgtcactt catcgaaagg acagtagaaa 180)
aggaagatgg cttctacaaa tgccatcatt gcgataaagg aaaggctatc gttcaagaat 240)
gcctctaccg acagtggtcc caaagatgga cccccaccca cgaggaacat cgtggaaaaa 300)
gaagacgttc caaccacgtc ttcaaagcaa gtggattgat gtgatatctc cactgacgta 360)
agggatgacg cacaatccca ctatactcta tcactgatag agtctatata agactctatc 420)
actgatagag tgaactctat cactgataga gtcgacggat ccatggaatc cgcg 474	1
<210> 8 <211> 10 <212> DNA <213> artificial sequence <220> <223> sequence upstream the PstI site	
<400> 8	_
cgcttttctg 1()
<210> 9 <211> 10 <212> DNA <213> artificial sequence	
<220> <223> changed sequence upstream the pstI site	
<400> 9	
tgccttcctg 10)
<210> 10 <211> 10 <212> DNA <213> artificial sequence	
<220> <223> polyadenylation signal in transcription unit near the upstream element (NUE)	
<400> 10 ttatttattt)
<210> 11 <211> 18 <212> DNA <213> artificial sequence	
<220> <223> Forward GUS-LcF primer	

kuvshinov 1-intron.ST25

• <400> 11 atcagcgttg gtgggaaa	18
<210> 12 <211> 18 <212> DNA <213> artificial sequence	
<220> <223> reverse GUS-LCR primer	
<400> 12 acgaatatct gcatcggc	18
<210> 13 <211> 716 <212> DNA <213> artificial sequence	
<220> <223> Vigna mungo (SH-EP promoter), Bacillus amyloliquefaciens gene), Esherichia coli (uidA gene)	(barnase
<400> 13 tattgaatcc tttggctacc attcttgaga aacacaaaca cttcttatat ctgttctaca	a 60
caattctctg agtgcgtgcc acagtttggt atcttcatga ttgctcattg ttcatgccca	a 120
taaggaacat gtaacttcct catttattta ttattgcttt tgttttcttc tcactagtt	t 180
acaaacgttt ccctatataa accctccttt gttcactgct ttcctccctg ctgtggctt	c 240
tctccgaagt tcatcccggt ccacctgcaa aataagtaat aagataaagt aaaaaagtta	a 300
gtatggctca agttattaat acttttgatg gagttgctga ttatcttcaa acttatcata	a 360
aacttccaga taattatatt actaaatctg aagctcaagc tcttggatgg gttgcttct	a 420
aaggaaatct tgctgatgtt gctccaggaa aatctattgg aggagatatt ttttcaaata	a 480
gagaaggaaa acttccagga aaatctggaa gaacatggag agaagctgat attaattata	a 540
cttctggatt tagaaattca gatagaattc tttattcatc tgattggctt atttataaaa	a 600
ctacagatca ttatcaaact tttacaaaaa ttagataaat atttgtattt tttgtatgt	t 660
gtgatcatta ataaataaat aaatacatac ctcttctgca gcaggaaggc agccga	716