TRANSMITTAL OF APPEAL BRIEF (Large Entity)

Docket No. ITL.0690US

71137		
pication Of:	Randolph E.	Crutchfield

Customer No. Group Art Unit Confirmation No. Examiner Application No. Filing Date 2615 4270 Laura A. Grier 21906 10/045,524 November 7, 2001

Invention: Controlling a Digital Audio Player from a Cassette Tape Player Adapter

COMMISSIONER FOR PATENTS:

Transmitted herewith in triplicate is the Appeal Brief in this application, with respect to the Notice of Appeal filed on May 19, 2006

The fee for filing this Appeal Brief is: \$500.00

A check in the amount of the fee is enclosed.

☐ The Director has already been authorized to charge fees in this application to a Deposit Account.

The Director is hereby authorized to charge any fees which may be required, or credit any overpayment to Deposit Account No. 20-1504

☐ Payment by credit card. Form PTO-2038 is attached.

WARNING: Information on this form may become public. Credit card information should not be included on this form. Provide credit card information and authorization on PTO-2038.

Dated: July 6, 2006

Timothy N. Trop, Reg. No. 28,994 TROP, PRUNER & HU, P.C. 1616 S. Voss Road, Suite 750 Houston, TX 77057 713/468-8880 [Phone] 713/468-8883 [Fax]

I hereby certify that this correspondence is being deposited with the United States Postal Service with sufficient postage as first class mail in an envelope addressed to "Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450" [37 CFR 1.8(a)] on

July 6, 2006

Signature of Person Mailing Corres

Nancy Meshkoff

Typed or Printed Name of Person Mailing Correspondence

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Applicant:

Randolph E. Crutchfield

Art Unit:

2644

Serial No.:

10/045,524

Examiner:

Laura A. Grier

Filed:

November 7, 2001

88888

Atty Docket: ITL.0690US (P13221)

For:

Controlling a Digital Audio Player From a Cassette Tape Player Adapter

Assignee:

Intel Corporation

Mail Stop Appeal Brief-Patents Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

APPEAL BRIEF

07/11/2006 MBELETE1 00000023 10045524

01 FC:1402

500.00 OP

Date of Deposit: July 6, 2006
I hereby certify under 37 CFR 1.8(a) that this correspondence is being deposited with the United States Postal Service as first class mail with sufficient postage on the date indicated above and is addressed to the Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

TABLE OF CONTENTS

REAL PARTY IN INTEREST	3
RELATED APPEALS AND INTERFERENCES	4
STATUS OF CLAIMS	5
STATUS OF AMENDMENTS	6
SUMMARY OF CLAIMED SUBJECT MATTER	7
GROUNDS OF REJECTION TO BE REVIEWED ON APPEAL	9
ARGUMENT	10
CLAIMS APPENDIX	13
EVIDENCE APPENDIX	15
RELATED PROCEEDINGS APPENDIX	16

REAL PARTY IN INTEREST

The real party in interest is the assignee Intel Corporation.

RELATED APPEALS AND INTERFERENCES

None.

STATUS OF CLAIMS

Claims 1-31 (Canceled).

Claims 32-41 (Rejected).

Claims 32-41 are rejected and are the subject of this Appeal Brief.

STATUS OF AMENDMENTS

All amendments have been entered.

SUMMARY OF CLAIMED SUBJECT MATTER

In the following discussion, the independent claims are read on one of many possible embodiments without limiting the claims:

32. An electrical device comprising:

a selectively variable impedance (Figure 5, 62, page 7, lines 10-24); a control (Figure 5, 18a, page 7, lines 13-15) to receive one of at least two states and to change the impedance of said selectively variable impedance to signal said state.

FIG. 5

35. A method comprising:

receiving a selection of one of at least two states (Figure 5, page 6, lines 10-13);

and

varying the impedance of a selectively variable impedance in a first device to develop a state signal for a remote second device to indicate said selected state (Figure 5, page 6, lines 14-17).

38. A digital audio player comprising:

an impedance level detector (Figure 5, 64, page 6, lines 15-19); and an interface (Figure 5, 66, lines 19-24) coupled to said detector to change the operation of said digital audio player based on information provided by said impedance level detector.

At this point, no issue has been raised that would suggest that the words in the claims have any meaning other than their ordinary meanings. Nothing in this section should be taken as an indication that any claim term has a meaning other than its ordinary meaning.

GROUNDS OF REJECTION TO BE REVIEWED ON APPEAL

- A. Are claims 32-34 anticipated by Nakabayashi?
- B. Are claims 35-37 anticipated by Osawa?
- C. Are claims 38-39 and 41 anticipated by Adams?
- D. Is claim 40 unpatentable over Adams under § 103?

ARGUMENT

A. Are claims 32-34 anticipated by Nakabayashi?

Claim 32 calls for a control to receive states and to change the impedance of a selectively variable impedance to signal the state. The cited reference to Nakabayashi does not use the impedance of a selectively variable impedance to signal a state. Instead, it uses switch position as shown clearly in the chart at column 7, lines 40-45.

In response to a given control signal, the switches 9 through 12 are placed in various states which result in the appropriate motor operation. Thus, it is not an impedance that is used to signal state, but a switch position by a circuit 7 supplies energizing or drive signals to those switches 9 to 12 which have been selected by the controller 5. For example, at the top of column 8, it is explained that when FETs 9 and 12 are energized by the control signal decoded by control logic 6, current flows from the voltage supply plus V_{CC} to FET 9, through the motor 2, and through the FET 12 to the current detector 4. The other operations are also explained. Thus, the switches 9 through 12 are simply operated to allow or disallow current flow. There is no impedance signaling or use of impedance levels to signal a state.

Therefore, the rejection should be reversed.

B. Are claims 35-37 anticipated by Osawa?

Claim 35 calls for receiving a selection of one of at least two states and varying the impedance of a selectively variable impedance in a first device to develop a state signal for a remote second device to indicate the selected state.

The final rejection indicates that an impedance adjusting circuit 11 varies the impedance, presumably to indicate a state. While the circuit 11 may have an impedance adjusting function, it does not indicate a state. It is believed that while the operation of the circuit 11 is not explained, that its function is to adjust for the impedance of the device to which the plug 4B connects. It does not in any way indicate any kind of state.

Referring to Figure 3, it is seen that the impedance adjusting circuit 11 has simply fixed resistors. It is not seen how it could indicate a state and nothing in the reference suggests how this might be done.

Thus there is no reason to believe that the circuit 11 provides any state signaling function but merely adjusts impedance to adapt for apparently the different impedance of different items that could be connected to the plug 4B, although the exact function of the impedance adjusting circuit 11 is never clearly stated.

The sum total of the final rejection is that the circuit varies the impedance. But even if it does vary the impedance, it does not develop a state signal for a remote second device to indicate a selected state. Therefore it cannot possibly meet the elements of claim 35.

Because the rejection fails to meet the full scope of the claim, a *prima facie* rejection is not made out.

Claim 36 is more specific, calling for a cassette player command and translating the command by varying the impedance. Again, nothing of the sort is anywhere set forth within the reference.

C. Are claims 38-39 and 41 anticipated by Adams?

Claim 38 calls for an impedance level detector and an interface connected to the detector to change the operation of the digital audio player based on information provided by the impedance level detector.

This claim is rejected under Adams as being anticipated.

The circuits 201 and 210 are the plug sensing circuit shown in Figure 2 and the sensor shown in Figure 2. All the sensor 210 does is detect the presence of one or more types of 2.5mm plugs. See column 3, lines 38-39. Its operation is explained in column 4, lines 16-25.

Claim 38 also calls for an interface coupled to the detector to change the operation of the digital audio player based on information provided by the impedance level detector. Nothing is specifically pointed out as accomplishing the interface function. The interface must change the operation of the digital audio player based on the information provided by the impedance level detector. Nothing of the sort happens in the cited reference. Once the system adapts for the particular type of headphone that is installed, the operation of the player is unchanged and unaffected—that is the function of the sensing circuit 201, 210.

Claim 41 calls for the impedance level detector to detect an impedance indicative of a condition such as play, stop, pause, or rewind. Clearly nothing of the sort could possibly be provided by Adams. All he does is determine what type of headphone is connected. He cannot

possibly determine whether a play, stop, pause, or rewind command is indicated. The assertion set forth in the final rejection on page 4 for claim 41 is totally uninforming and points out nothing. There is no basis for the rejection and it should be reversed.

D. Is claim 40 unpatentable over Adams under § 103?

Claim 40 calls for the detection of one of at least four impedance levels. Claim 40 was apparently rejected in paragraph 5 of the final rejection although it improperly suggests the rejection is based on claim 41. The rejection is over Adams, which for the reasons described above, is insufficient. Moreover, Adams clearly fails to disclose detecting four impedance levels. All Adams checks for is a low impedance level on one or both of two channels.

Therefore the rejection of claim 40 should be reversed.

Applicant respectfully requests that each of the final rejections be reversed and that the claims subject to this Appeal be allowed to issue.

Respectfully submitted,

Date: July 6, 2006

Timothy M. Trop, Reg. No. 28,994 TROP, PRUNER & HU, P.C. 1616 S. Voss Road, Suite 750 Houston, TX 77057 713/468-8880 [Phone] 713/468-8883 [Fax]

Attorneys for Intel Corporation

CLAIMS APPENDIX

The claims on appeal are:

- 32. An electrical device comprising:
 - a selectively variable impedance;
- a control to receive one of at least two states and to change the impedance of said selectively variable impedance to signal said state.
 - 33. The device of claim 32 wherein said device is in the form of a cassette tape.
- 34. The device of claim 32 wherein said device includes a sensor to sense an operation of the cassette player and to provide said information to said control to control the impedance of said selectively variable impedance.
- 35. A method comprising:

 receiving a selection of one of at least two states; and

 varying the impedance of a selectively variable impedance in a first device to

 develop a state signal for a remote second device to indicate said selected state.
- 36. The method of claim 35 including receiving a cassette player command and translating said command by varying the impedance of said selectively variable impedance.
- 37. The method of claim 35 including varying said impedance to enable cassette player commands to control a remote device in the form of a digital audio player.
- 38. A digital audio player comprising:

 an impedance level detector; and

 an interface coupled to said detector to change the operation of said digital audio
 player based on information provided by said impedance level detector.

- 39. The apparatus of claim 38 wherein said impedance level detector detects one of at least two different impedance levels.
- 40. The apparatus of claim 38 wherein said impedance level detector detects one of at least four impedance levels.
- 41. The apparatus of claim 38 wherein said impedance level detector detects an impedance which is indicative of a condition including one of a play, a stop, a pause, or a rewind command.

EVIDENCE APPENDIX

None.

RELATED PROCEEDINGS APPENDIX

None.