fn make_float_to_bigint_threshold

Michael Shoemate

This proof resides in "contrib" because it has not completed the vetting process.

Proves soundness of the implementation of make_float_to_bigint_threshold in mod.rs at commit f5bb719 (outdated1).

1 Hoare Triple

Precondition

Compiler-Verified

- Generic TK implements trait Hashable
- Generic TV implements trait Float
- Const-generic P is of type usize
- Generic QI implements trait Number
- Type RBig implements traits TryFrom<TV> and TryFrom<QI>. This is for fallible exact casting to rationals from floats in the function and input sensitivity in the privacy map.
- Type i32 implements trait ExactIntCast«T as FloatBits>::Bits>, This requirement means that the raw bits of T can be exactly cast to an i32.

User-Verified

None

Pseudocode

```
def make_float_to_bigint_threshold(
   input_space: tuple[
        MapDomain[AtomDomain[TK], MapDomain[TV]], LOPInfDistance[P, AbsoluteDistance[QI]]
   ],
   threshold: TV,
   k: i32,
   ) -> Transformation[
   MapDomain[AtomDomain[TK], AtomDomain[TV]],
   MapDomain[AtomDomain[TK], AtomDomain[IBig]],
   LOPInfDistance[P, AbsoluteDistance[QI]],
   LOPInfDistance[P, AbsoluteDistance[RBig]],
   input_domain, input_metric = input_space
```

¹See new changes with git diff f5bb719..453baf6 rust/src/measurements/noise_threshold/nature/float/mod.rs

```
if input_domain.value_domain.nan():
14
15
           raise "input_domain hashmap values may not contain NaN elements"
16
17
      r_threshold = RBig.try_from(threshold)
18
      min_k = get_min_k(TV)
19
      if k < min_k: #</pre>
20
           raise f"k ({k}) must not be smaller than {min_k}"
21
22
      def value_function(val): #
23
24
               val = RBig.try_from(val)
25
           except Exception:
26
               val = RBig.ZERO
27
28
29
           return find_nearest_multiple_of_2k(val, k) #
30
      def stability_map(d_in):
31
           10, lp, li = d_in
32
33
34
           r_lp = RBig.try_from(lp)
           r_lp_round = get_rounding_distance(k, usize.from_(10), P)
35
           r_{p} = x_{mul_2k}(r_{p} + r_{p_round}, -k)
36
37
           r_li = RBig.try_from(li)
38
           if r_li > x_mul_2k(r_threshold, -k): #
39
               raise f"li ({li}) must not be larger than threshold ({threshold})"
40
           r_li_round = get_rounding_distance(k, 1, P)
41
           r_li = x_mul_2k(r_li + r_li_round, -k)
42
43
           return 10, r_lp, r_li
44
45
      return Transformation.new(
46
47
          input_domain,
           MapDomain(#
48
49
               key_domain=input_domain.key_domain,
               value_domain=AtomDomain.default(IBig),
50
51
           Function.new(lambda x: {k: value_function(v) for k, v in x.items()}),
52
53
           input_metric,
           LOPI.default(),
54
55
           StabilityMap.new_fallible(stability_map),
```

Postcondition

Theorem 1.1.

Theorem 1.2. For every setting of the input parameters (input_space, k, TK, TV, P, QI) to make_float_to_bigint_threshold raises an exception (at compile time or run time) or returns a valid transformation. A valid transformation has the following properties:

- 1. (Appropriate output domain). For every element x in input_domain, function(x) is in output_domain or raises a data-independent runtime exception.
- 2. (Stability guarantee). For every pair of elements x, x' in input_domain and for every pair (d_{in}, d_{out}) , where d_in has the associated type for input_metric and d_out has the associated type for output_metric, if x, x' are d_in-close under input_metric, stability_map(d_in) does not raise an exception, and stability_map(d_in) \leq d_out, then function(x), function(x') are d_out-close under output_metric.

Proof. In the definition of the function on line 23, RBig.try_from is infallible when the input is non-nan. The precondition for find_nearest_multiple_of_2k is satisfied by line 20, so find_nearest_multiple_of_2k

is infallible. There are no other sources of error in the function, so the function cannot raise data-dependent errors.

The function also always returns a hashmap with the same keys, and IBig values, meaning the output of the function is always a member of the output domain, as defined on line 48.

The stability argument breaks down into three parts:

- The casting from float to rational on line 24 is 1-stable, because the real values of the numbers remain un-changed, meaning the distance between adjacent inputs always remains the same.
- The rounding on line 29 can cause an increase in the sensitivity equal to $\Delta_0^{1/p}(2^k-2^{k_{min}})$.

$$\max_{x \in \mathcal{X}} d_{Lp}(f(x), f(x')) \tag{1}$$

$$= \max_{x \in x'} |\operatorname{round}_k(x) - \operatorname{round}_k(x')|_p \tag{2}$$

$$\leq \max_{x \sim x'} |(x+2^{k-1}) - (x'-2^{k-1} + 2^{k_{min}})|_p \tag{3}$$

$$\leq \max_{x \sim x'} |x - x'|_p + |R \cdot (2^k - 2^{k_{min}})|_p \qquad \text{where } R \in \{0, 1\}^n \text{ with weight } \Delta_0$$
 (4)

$$= \max_{x \in x'} d_{Lp}(x, x') + \Delta_0^{1/p} (2^k - 2^{k_{min}})$$
(5)

$$= d_{-}in + \Delta_0^{1/p} (2^k - 2^{k_{min}}) \tag{6}$$

This increase in the sensitivity is reflected on line 36, which, by the postcondition of get_rounding_distance, returns the maximum increase in sensitivity due to rounding. The rounding distance is added to the L_p sensitivity.

A similar analysis follows for L_{∞} sensitivity on line 42, where only one rounding occurs instead of Δ_0 . Notice that the check on line 39 is not necessary for the privacy guarantee, it improves the quality of the error message. The equivalent error raised from the core mechanism privacy map is not as user-friendly, because the constants are scaled by 2^k .

• The discarding of the denominator on line 29 is 2^k -stable, as the denominator is 2^k . This increase in sensitivity is also reflected on lines 36 and 42, where the sensitivity is multiplied by 2^{-k} .

For every pair of elements x, x' in input_domain and for every pair (d_{in}, d_{out}) , where d_{in} has the associated type for input_metric and d_{out} has the associated type for output_metric, if x, x' are d_{in} -close under input_metric, stability_map (d_{in}) does not raise an exception, and stability_map $(d_{in}) \le d_{out}$, then function(x), function(x') are d_{out} -close under output_metric.