Sözcük Çözümleyici (2)

NFA → DFA belirgin olmayan sonlu otomat → belirgin sonlu otomat Belirsizliğin giderilmesi gerekir Çözümlenmesi gereken sorunlar ε geçişlerinin giderilmesi belirli bir giriş işareti için bulunan çoklu geçişlerin giderilmesi (a*| b*) c*

$NFA \rightarrow DFA (2)$

- ε geçişlerinin giderilmesi
- Fonksiyon: ε_closure(s)
 - s durumunu giriş parametresi olarak alır ve geriye s durumundan "ɛ" geçişleriyle ulaşılabilen tüm durumları içeren bir durumlar kümesi getirir
 - 1. s durumunu sonuç kümesine ekle ε
 - 2. t durumu sonuç kümesinde ise ve t → u ise, u durumunu da sonuç kümesine ekle
 - 3. Yukarıdaki iki adımı, sonuç kümesine yeni durum eklenemez olana kadar tekrarla

1

NFA→DFA Geçiş Algoritması

- Kabul:
 - s_0 NFA'nın başlangıç durumu ise, $d_{0=}$ ϵ -closure(s_0) DFA'nın başlangıç durumudur
 - D oluşturulacak olan DFA'nın durumlar kümesidir ve başlangıçta D= {d₀} ve d₀ işaretlenmemiştir

DFA Eniyileme

- DFA Eniyileme: durum sayısını en aza indirgeme, (gereksiz veya birleştirilebilir durumlar bulunabilir)
- Önemli Durum: Bir DFA durumunu oluşturan NFA durumlarından "ɛ" çıkışlarının bulunmaması hali.

NFA'daki önemli durumlar = {2,4,7,8,9}

DFA Eniyileme

- İki DFA durumunun bire indirgenebilmesi için:
 - · Her ikisinin de aynı önemli durumları içermesi
 - Her ikisinin de "kabul" durumunu içermesi/içermemesi gerekir

14

DFA Eniyileme (2)

- Örnek: (a|b)*abb için üretilen DFA'yı incelersek
 - NFA'daki önemli durumlar = {2,4,7,8,9}
 - DFA durumu A={0, 1, 2, 4, 7}
 - DFA durumu C= {1, 2, 4, 5, 6, 7}
- A ve C tek duruma indirgenebilir, çünkü
 - her ikisi de aynı önemli durumları içeriyor, ve
 - her ikisi de kabul durumunu içermiyor
- Durum tablosunda "C" durumunu "A" ile yer değiştir

DFA Eniyileme (3)

DFA durum tablosu
 Eniyilenmiş DFA durum tablosu

durum	simge	durum	ım simge	
	a b		a	b
A	B C	A	В	Α
В	B D	В	В	D
C	B C			
D	B E	D	В	E
E	B C	E	В	Α

4

DFA' nın Gerçeklenmesi DFA'nın bir C programına dönüştürülmesi Sonlu otomatı gerçekleyen bir durum tablosuna ve Tablo, her durum ve giriş simgesi için geçişleri tanımlar Tabloyu simüle eden bir program parçasına gerek duyulur gecis tablo[durum sayısı][giris sayısı]; // sonlu otomat tablosu kabul_durumul[durum_sayısı]; // durumna habıd durum opo olmadığını gösteren loğik dızı durum = ilk_durum; while (durum! = HATA) { // yen ibr duruma geçiş mimkin olduğu sürece ci input.read(); // komakanı bir kuruker olsu geriş bilgisi if (c == EOF) break; durum = gecis_tablo[durum][c]; // giriş kilgisi ile bir sonraki duruma geç return kabul_durum[durum]; // ulaşılan son durum kabul durumu te "TRUE" döndürür

Genel Amaçlı Bir Tarayıcının Tasarlanması

- Birleştirilmiş NFA içinde birden çok kabul durumu bulunacaktır.
- DFA'nın bir kabul durumu birden fazla NFA kabul durumu içerebilir.
- AMAC: uygun olan en uzun katar ile eşleştirme
- Tarayıcının çalışma yöntemi:
 - Bir kabul durumu ile karşılaşınca, çalışmayı sonlandırmayıp bir sonraki durum tanımlı olmayana kadar işlemi sürdür
 - Daha sonra geri dönüp, kabul durumu içeren ilk DFA durumunu geri getir

21

Tarayıcı Tasarımı İçin Örnek Düzgün ifadeler: a, abb, a*b+ başla E NFA 1 (a) NFA 2 (abb) NFA 3 (a*b+) a b

Tarayıcı Tasarımı İçin Örnek (2)

■ NFA → DFA: Geçiş Tablosu -{2,6,8} kabul durumları

b A={0,1,3,7} {2,4,7} {8} $B = \{2,4,7\}$ {7} {5,8} $C = \{8\}$ {8} a*b+ $D = \{7\}$ {8} $E = \{5, 8\}$ {6,8} a*b+ $F = \{6, 8\}$ abb

- DFA'nın sonlanma durumları: {B, C, E, F}
 - F iki kabul durumu içeriyor, tanım sırası dikkate alınarak
 6 (abb) seçilir

_

DFA Üzerinde Örnek Uygulama Örnek katar: "aba" •Başla → A •"a" → B •"b" → E (E kabul durumu başla fakat devam et) •"a" → -- (bir sonraki durum tanımlı değil) •işlemi durdur ve geri dön, en yakın kabul durumu E: a*b+ •Örnek katar: "abbbba" $\bullet A \rightarrow B \rightarrow E \rightarrow F \rightarrow C \rightarrow C$ $a....b....b....b....b....a\ X$ •Geri dön, kabul durumu C ·Mümkün olan en uzun katar, abb değil, a*b+ seçilir