情報理論

1回 講義

2015. 4. 15 植松 芳彦

情報理論ガイダンス

- 1. 講義の進め方について 板書 ・ スライド
- 2. 教科書 情報理論(オーム社)
- 3. 成績評価 レポート、定期試験
- 4. オフィスアワー メールにて適宜質問を受け付けます uematsu.yoshihiko@lab.ntt.co.jp

情報理論の教育目標

情報源の統計的性質を利用して、

- 1. 情報源記号列を効率的に符号化する手法 を学ぶ
- 2. その符号効率化の限界を学ぶ

具体的な達成目標

- 1. 情報源の統計的性質を理解する
- 2. 情報源符号化の条件を理解する
- 3. ハフマン符号等の各種情報源符号を理解する
- 4. 情報源符号化定理を理解する
- 5. 情報源のエントロピーを理解する

情報理論の歴史

シャノン(C. E. Shannon)によって創設

- 1. 情報の量的表示
- 2. 情報源符号化の概念と限界
- 3. 通信路符号化の概念と限界

情報理論の扱う領域

- 1. 基本モデル
- 2. 情報理論と符号理論
- 3. 情報理論の応用分野

情報理論の基本モデル

図 1.2 通信システムのモデル

情報理論の基本モデル

情報源符号化が解く問題

情報源記号あたりの平均符号長を最小化

- 情報源記号の統計的性質を考慮
- 符号の区切りが混乱しない
- 符号/復号装置の構成が簡単

情報源記 号	発生確率	符号則1	符号則2
Α	0.6	0 0	0
В	0.25	0 1	1 0
С	0.1	1 0	1 1 0
D	0.05	1 1	1110

(参考)実際の英文における文字の出現確率

表 5.1 英文における文字の出現確率

文字	確率	文字	確率	文字	確率
Α	8, 29%	J	0. 21%	s	6. 33%
В	1.43	K	0.48	Т	9. 27
С	3.68	L	3. 68	U	2. 53
D	4. 29	М	3, 23	v	1.03
E	12.08	N	7. 16	w	1.62
F	2. 20	0	7. 28	х	0. 20
G	1.71	P	2. 93	Y	1. 57
н	4. 54	Q	0.11	z	0.09
1	7. 16	R	6.90	7	

通信路符号化が解く問題

符号の冗長度を上げるほど情報は確実に届く 確実性を上げつつ冗長度を最小化

- 復号後の記号誤り率を目標値以下に抑える
- •符号/復号装置の構成が簡単

情報と情報量

- 1. 情報とは?
- 2. 情報を得ることによる効果は?
- 3. 推測できる事象の情報量 推測の難しい事象の情報量
- 4. 天気の情報量

情報量とエントロピー

- 1. 熱力学のエントロピー
- 2. 情報理論におけるエントロピー
- 3. 情報を得ることによる効果

情報量の定量的表現

1. 情報源Sから発生しうる事象 {*a*₁, *a*₂, ·····, *a*_M }

- 2. 情報源Sの事象 a_i の発生確率 p_i
- 3. 事象 a_i が発生したことを知ることにより得る情報量 $I(p_i)$

情報量の定量的表現

情報量関数 I(p) に対する条件

- 1. *I(p)* は *p* の単調減少関数
- 2. $I(p_1 \cdot p_2) = I(p_1) + I(p_2)$
- 3. *I*(*p*) は *p* の連続関数
 - $\Rightarrow I(p) = -\log_2 p$

情報量の定量的表現

情報源の事象 a_i が一定の確率 p_i で発生する場合の平均情報量(情報量の期待値)

$$I(S) = -\sum_{i=1}^{M} p_i \cdot \log_2 p_i$$

統計力学におけるエントロピーの定義式と一致(係数部分除く)