Matlab 神经网络设计

learning note For reading translation

我真的不懂忧郁

Matlab 神经网络设计

learning note For reading translation

by

我真的不懂忧郁

Student Name Student Number

First Surname 1234567

Instructor: I. Surname
Teaching Assistant: I. Surname

Project Duration: Month, Year - Month, Year

Faculty: Faculty of Aerospace Engineering, Delft

Cover: Canadarm 2 Robotic Arm Grapples SpaceX Dragon by NASA under

CC BY-NC 2.0 (Modified)

Style: TU Delft Report Style, with modifications by Daan Zwaneveld

Preface

A preface...

我真的不懂忧郁 Delft, August 2024

Summary

 $A\ summary...$

目录

Pr	Preface Summary				
Su					
No	omenclature	iv			
1	前向神经网络				
	1.1 多层感知机	. 1			
	1.2 BP 神经网络设计				
	1.3 异或问题	. 2			
	1.4 线性网络	. 2			
	1.5 附加动量法和自适应学习速率技术	. 2			
Re	eferences	3			
A	Source Code Example	4			
В	Task Division Example	5			

Nomenclature

If a nomenclature is required, a simple template can be found below for convenience. Feel free to use, adapt or completely remove.

Abbreviations

Abbreviation	Definition
ISA	International Standard Atmosphere

Symbols

Symbol	Definition	Unit
V	Velocity	[m/s]
ρ	Density	[kg/m ³]

Chapter 1

前向神经网络

1.1. 多层感知机

Question 1: 设计感知器实现 26 个英文字母识别网络,实现训练和测试的步骤。训练包括无噪声的理想字母识别网络和含有不同的噪声的识别网络,使得网络具有"理想+噪声"的抗噪能力。在测试步骤中,分别测试在随机加噪声逐步增加的情况下,测试数据为 100 组的网络的平均误差,与利息那个样本值进行比较,得到不同噪声水平下的误差值,作图进行性能对比。

1.2. BP 神经网络设计

Question 2: 根据 BP 神经网络设计实现模拟控制规则为 $T = int\left(\frac{e+ec}{2}\right)$ 的模糊神经网络控制器,其中输入变量 e 和输出变量 ec 的变化范围分别是

$$e \sim \{-2, 2\}$$

$$ec \sim \{-2, 2\}$$
(1.1)

网络设计目标误差 $e_{min} = 0.001$, 试着给出

- 1. 输入输出矢量以及问题描述;
- 2. 网络结构;
- 3. 学习方法;
- 4. 初始化以及必要的参数选取;
- 5. 最后的结果、循环次数、训练时间, 其中着重讨论:
 - (a) 不同隐藏层 S1 时的收敛速度和误差精度的对比分析;
 - (b) 在 S1 设置为较好的情况下,对固定学习速率 lr 取不同值时的训练时间,其中包括稳定性进行观察比较;
 - (c) 采用自适应学习速率,于单一固定的学习速率 lr 中最好的情况进行比较;
- 6. 采用插值法选取多余训练时的输入,对所设计网络进行验证,给出验证的A与T的值。

1.3. 异或问题 2

1.3. 异或问题

Question 3: 采用单层感知机的权值训练公式,通过固定隐藏层的目标输出为线性可分矢量,设计一个两层感知机来解决异或问题,隐藏层用两个神经元。

1.4. 线性网络

Question 4: 设计一个具有单元输入和单元输出的线性网络,注意观察其解的特性

$$P = 1, \quad T = 0.5$$
 (1.2)

1.5. 附加动量法和自适应学习速率技术

Question 5: 用函数 trainbpx.m 训练例 2.10, 并与其他训练方法做比较;

References

[1] I. Surname, I. Surname, and I. Surname. "The Title of the Article". In: *The Title of the Journal* 1.2 (2000), pp. 123–456.

Source Code Example

Adding source code to your report/thesis is supported with the package listings. An example can be found below. Files can be added using \lstinputlisting[language=<language>] {<filename>}.

```
^{2} ISA Calculator: import the function, specify the height and it will return a
_3 list in the following format: [Temperature, Density, Pressure, Speed of Sound].
4 Note that there is no check to see if the maximum altitude is reached.
7 import math
g0 = 9.80665
9 R = 287.0
10 layer1 = [0, 288.15, 101325.0]
11 alt = [0,11000,20000,32000,47000,51000,71000,86000]
a = [-.0065, 0, .0010, .0028, 0, -.0028, -.0020]
14 def atmosphere(h):
      for i in range(0,len(alt)-1):
16
          if h >= alt[i]:
              layer0 = layer1[:]
17
              layer1[0] = min(h,alt[i+1])
18
              if a[i] != 0:
19
                  layer1[1] = layer0[1] + a[i]*(layer1[0]-layer0[0])
20
                  layer1[2] = layer0[2] * (layer1[1]/layer0[1])**(-g0/(a[i]*R))
                  layer1[2] = layer0[2]*math.exp((-g0/(R*layer1[1]))*(layer1[0]-layer0[0]))
23
      return [layer1[1],layer1[2]/(R*layer1[1]),layer1[2],math.sqrt(1.4*R*layer1[1])]
```


Task Division Example

If a task division is required, a simple template can be found below for convenience. Feel free to use, adapt or completely remove.

表 B.1: Distribution of the workload

	Task	Student Name(s)
	Summary	
Chapter 1	Introduction	
Chapter 2		
Chapter 3		
Chapter *		
Chapter *	Conclusion	
	Editors	
	CAD and Figures	
	Document Design and Layout	