CH08-320201

Algorithms and Data Structures ADS

Lecture 17

Dr. Kinga Lipskoch

Spring 2019

Choosing a Hash Function (1)

- ▶ What makes a good hash function?
 - ► The goal for creating a hash function is to distribute the keys as uniformly as possible to the slots.
- Division method
 - ▶ Define hashing function $h(k) = k \mod m$.
 - ▶ Deficiency: Do not pick an m that has a small divisor d, as a prevalence of keys with the same modulo d can negatively effect uniformity.
 - **Example:** if m is a power of 2, the hash function only depends on a few bits: If k = 1011000111011010 and $m = 2^6$, then h(k) = 011010.

Choosing a Hash Function (2)

- ► Division method (continue)
 - Common choice: Pick m to be a prime not too close to a power of 2 or 10 and not otherwise prominently used in computing environments.
 - ▶ Example: n = 2000; we are ok with average 3 elements in our collision chain $\Rightarrow m = 701$ (a prime number close to 2000/3), $h(k) = k \mod 701$.

Choosing a Hash Function (3)

► Multiplication method

- On advantage of the multiplication method is that the value of m is not critical
- ▶ Knuth suggests that $A \approx (\sqrt{5} 1)/2$ works well
- Assume all keys are integers, $m = 2^r$, and the computer uses w-bit words.
- ▶ Define hash function $h(k) = (A \cdot k \mod 2^w) >> (w r)$, where ">>" is the right bit-shift operator and A is an odd integer with $2^{w-1} < A < 2^w$.
- Example: $m = 2^3 = 8$ and w = 7.

Resolving Collisions by Open Addressing

- ► No additional storage is used.
- Only store one element per slot.
- Insertion probes the table systematically until an empty slot is found.
- ▶ The hash function depends on the key and the probe number, i.e., $h: U \times \{0, 1, ..., m-1\} \rightarrow \{0, 1, ..., m-1\}$.
- ► The probe sequence < h(k,0), h(k,1), ..., h(k,m-1) > should be a permutation of $\{0,1,...,m-1\}$.

5/26

```
• Insert key k = 496:
                                                             0
                                                    586
  0. Probe h(496,0)
                                                    133
  1. Probe h(496,1)-
  2. Probe h(496,2)
                                                    204
                                                    496
                                                    481
   HASH-INSERT(T, k)
                                                             m-1
     i = 0
     repeat
        j = h(k, i)
       if T[j] == NIL
           T[j] = k
           return j
        else i = i + 1
     until i == m
     error "hash table overflow"
```

Search Example

```
Hash-Search(T, k)
  i = 0
                                                                              586
                                    0. Probe h(496,0)
  repeat
      i = h(k, i)
                                    1. Probe h(496,1)
    if T[i] == k
                                                                              204
                                    2. Probe h(496.2)
          return i
                                                                               496
      i = i + 1
                                                                              481
  until T[i] == NIL or i == m
                                                                                      m-1
  return NIL
```

- ► Search key k = 496
 - Search uses the same probe sequence, terminating successfully if it finds the key and unsuccessfully if it encounters an empty slot (or made it all the way through the list)
 - ightharpoonup Search times no longer depend on load factor lpha
- What about delete?
 - ▶ Have a special node type: DELETED
 - Chaining more commonly used when keys must also be deleted

Probing Strategies (1)

Linear probing:

- ► Given an ordinary hash function h'(k), linear probing uses the hash function $h(k, i) = (h'(k) + i) \mod m$.
- ▶ This is a simple computation.
- ► However, it may suffer from primary clustering, where long runs of occupied slots build up and tend to get longer.
 - empty slot preceded by i full slots gets filled next with probability (i+1)/m

Probing Strategies (2)

Quadratic probing:

- ▶ Quadratic probing uses the hash function $h(k, i) = (h'(k) + c_1 \cdot i + c_2 \cdot i^2) \mod m$.
- Offset by amount that depends on quadratic manner, works much better than linear probing
- ▶ But, it may still suffer from secondary clustering: If two keys have initially the same value, then they also have the same probe sequence
- ▶ In addition c_1 , c_2 , and m need to be constrained to make full use of the hash table

Probing Strategies (3)

Double hashing:

- ▶ Given two ordinary hash functions $h_1(k)$ and $h_2(k)$, double hashing uses the hash function $h(k,i) = (h_1(k) + i \cdot h_2(k))$ mod m.
- ▶ The initial probe goes to position $T[h_1(k)]$; successive probe positions are offset by $h_2(k) \rightarrow$ the initial probe position, the offset, or both, may vary
- ▶ This method generates excellent results, if $h_2(k)$ is relatively prime to the hash-table size m,

Probing Strategies (4)

Hash Tables

Double hashing (continue):

- ▶ e.g., by making m a power of 2 and design h₂(k) to only produce odd numbers.
- or let m be prime and design h₂ such that it always returns a positive integer less than m, e.g. let m' be slightly less than m: h₁(k) = k mod m

$$h_1(k) = k \mod m$$

$$h_2(k) = 1 + (k \mod m')$$

$$h_1(k) = k \mod 13$$

 $h_2(k) = 1 + (k \mod 11)$
 $-> k = 14; h_1(k) = 1, h_2(k) = 4$

-> k=14, $h_1(k)=1$, $h_2(k)=4$ -> k=27; $h_1(k)=1$, $h_2(k)=6$

Analysis of Open Addressing (1)

Theorem:

- ▶ Assume uniform hashing, i.e., each key is likely to have any one of the *m*! permutations as its probe sequence.
- Given an open-addressed hash table with load factor $\alpha = n/m < 1$.
- ► The expected number of probes in an unsuccessful search is, at most $\frac{1}{1-\alpha}$.

Analysis of Open Addressing (2)

Proof:

- ► At least, one probe is always necessary.
- ▶ With probability n/m, the first probe hits an occupied slot, i.e., a second probe is necessary.
- ▶ With probability (n-1)/(m-1), the second probe hits an occupied slot, i.e., a third probe is necessary.
- ▶ With probability (n-2)/(m-2), the third probe hits an occupied slot, i.e., a fourth probe is necessary.
- **.**..

Analysis of Open Addressing (3)

Given that
$$\frac{n-i}{m-i} < \frac{n}{m} = \alpha$$
 for $i = 1, 2, ..., n$.
$$1 + \frac{n}{m} \left(1 + \frac{n-1}{m-1} \left(1 + \frac{n-2}{m-2} \left(\cdots \left(1 + \frac{1}{m-n+1} \right) \cdots \right) \right) \right)$$

$$\leq 1 + \alpha \left(1 + \alpha \left(1 + \alpha \left(\cdots \left(1 + \alpha \right) \cdots \right) \right) \right)$$

$$\leq 1 + \alpha + \alpha^2 + \alpha^3 + \cdots$$

$$= \sum_{i=0}^{\infty} \alpha^i$$

$$= \frac{1}{1-\alpha}.$$

Analysis of Open Addressing (4)

- The successful search takes less number of probes $\left[\text{expected number is at most } \frac{1}{\alpha} \ln \frac{1}{1-\alpha} \right].$
- We conclude that if α is constant, then accessing an open-addressed hash table takes constant time.
- ▶ For example, if the table is half full, the expected number of probes is 1/(1-0.5) = 2.
- ▶ Or, if the table is 90% full, the expected number of probes is 1/(1-0.9) = 10.

Summary

- Dynamic sets with queries and modifying operations.
- Array: Random access, search in $O(\lg n)$, but modifying operations O(n).
- ▶ Stack: LIFO only. Operations in O(1).
- ▶ Queue: FIFO only. Operations in O(1).
- ▶ Linked list: Modifying operations in O(1), but search O(n).
- ▶ BST: All operations in O(h).
- ▶ Red-black trees: All operations in $O(\lg n)$.
- ▶ Heap: All operations in $O(\lg n)$.
- ▶ Hash tables: Operations in O(1), but additional storage space.

16/26

Design Concepts

- ▶ We have been looking into different algorithms and, in particular, emphasized one design concept, namely, the Divide & Conquer strategy, which was based on recursions and whose analysis was given by recurrences.
- ▶ Now, we are going to look into further design concepts.

Activity-Selection Problem (1)

- ▶ Suppose we have a set $S = \{a_1, a_2, ..., a_n\}$ of n activities.
- ► The activities wish to use a resource, which can only be used by one activity at a time.
- ▶ Each activity a_i has a start time s_i and a finish time f_i , where $0 \le s_i < f_i < \infty$.
- ▶ Two activities a_i and a_j are compatible, if $[s_i, f_i)$ and $[s_j, f_j)$ are disjoint.
- The activity-selection problem is to select a maximum-size subset of mutually compatible activities.

Activity-Selection Problem (2)

► Example:

- ► {a₃, a₉, a₁₁} is a subset of mutually compatible activities.
- ▶ $\{a_1, a_4, a_8, a_{11}\}$ is a largest subset of mutually compatible activities.
- ► {a₂, a₄, a₉, a₁₁} is another largest subset of mutually compatible activities.

Sorting

- ▶ We can apply a sorting algorithm to the finish times, which operates in $O(n \lg n)$ time.
- ► Then, we can assume that the activities are sorted, i.e., $f_1 \le f_2 \le ... \le f_n$.

Greedy Algorithm

- ► A greedy algorithm always makes the choice that looks best at the moment.
- ▶ I.e., it makes a locally optimal choice in the hope that it will lead to a globally optimal solution.

Greedy Approach (1)

- ▶ After sorting, a_1 has the earliest finish time f_1 .
- ► A greedy approach starts with taking *a*₁ as a locally optimal choice.
- ► Lemma:

The greedy choice of picking a_1 as first choice is optimal.

- ► Proof:
 - ▶ Suppose *A* is a globally optimal solution for set *S*.
 - ▶ Let $a_k \in A$ be the activity with earliest finish time f_k in A.
 - ▶ If k = 1, then $a_1 \in A$ and we are done.
 - ▶ If k > 1, then we can replace A by $(A \setminus \{a_k\}) \cup \{a_1\}$.
 - ▶ Since $f_1 \le f_k$, this is still an optimal solution.
 - ▶ Hence, we can always start with a₁.

Greedy Approach (2)

- ▶ After the first step, we consider the subproblem $S' = \{a_i \in S : s_i \geq f_1\}.$
- ▶ We apply the same greedy strategy.
- ► Lemma:

 $A \setminus \{a_1\}$ is the optimal solution for S'.

- ► Proof:
 - ▶ Let *B* be a solution for *S'* that is larger than $A \setminus \{a_1\}$.
 - ▶ Then, $B \cup \{a_1\}$ would be solution for S that is larger than A.
 - Contradiction.

Using the two lemmata we can prove by induction that the greedy approach delivers the globally optimal solution.

Greedy Algorithm

```
1 Greedy-Selector(S)
2    // Assume S = {a[1], ..., a[n]}
3    // with activities sorted by f[i].
4    A := {a[1]}
5    j := 1
6    for i := 2 to n do
7     if s[i] >= f[j]
8         then A := A union {a[i]}
9         j := i
```

Greedy Algorithm (Recursive)

```
RECURSIVE-ACTIVITY-SELECTOR (s, f, k, n)
```

```
1 \quad m = k + 1
```

- 2 while $m \le n$ and s[m] < f[k] // find the first activity in S_k to finish
- 3 m = m + 1
- 4 if m < n
- 5 **return** $\{a_m\} \cup \text{Recursive-Activity-Selector}(s, f, m, n)$
- 6 else return Ø

RECURSIVE-ACTIVITY-SELECTOR (s, f, 0, n).