Formulaire de trigonométrie circulaire

$$\cos(x) = \text{abscisse de } M$$

 $\sin(x) = \text{ordonn\'ee de } M$
 $\tan(x) = \overline{AH}$
 $\cot \tan(x) = \overline{BK}$
 $e^{ix} = z_M$

Pour $x \notin \frac{\pi}{2} + \pi \mathbb{Z}$, $\tan(x) = \frac{\sin(x)}{\cos(x)}$ et pour $x \notin \pi \mathbb{Z}$, $\cot(x) = \frac{\cos(x)}{\sin(x)}$. Enfin pour $x \notin \frac{\pi}{2} \mathbb{Z}$, $\cot(x) = \frac{1}{\tan(x)}$. Valeurs usuelles.

x en °	0	30	45	60	90
x en rd	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin(x)$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos(x)$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tan(x)	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	∞
$\cot an(x)$	∞	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0

$$\begin{aligned} \forall x \in \mathbb{R}, & \cos^2 x + \sin^2 x = 1 \\ \forall x \notin \frac{\pi}{2} + \pi \mathbb{Z}, & 1 + \tan^2 x = \frac{1}{\cos^2 x}. \\ \forall x \notin \pi \mathbb{Z}, & 1 + \cot^2 x = \frac{1}{\sin^2 x}. \end{aligned}$$

addition d'un tour	addition d'un demi-tour	angle opposé	angle supplémentaire
$cos(x + 2\pi) = cos x$ $sin(x + 2\pi) = sin x$ $tan(x + 2\pi) = tan x$ $cotan(x + 2\pi) = cotan x$	$cos(x + \pi) = -cos x$ $sin(x + \pi) = -sin x$ $tan(x + \pi) = tan x$ $cotan(x + \pi) = cotan x$	cos(-x) = cos x $sin(-x) = -sin x$ $tan(-x) = -tan x$ $cotan(-x) = -cotan x$	$cos(\pi - x) = -cos x$ $sin(\pi - x) = sin x$ $tan(\pi - x) = -tan x$ $cotan(\pi - x) = -cotan x$
angle complémentaire	quart de tour direct	quart de tour indirect	
$\cos(\frac{\pi}{2} - x) = \sin x$	$\cos(x + \frac{\pi}{2}) = -\sin x$	$\cos(x - \frac{\pi}{2}) = \sin x$	
$\sin(\frac{\pi}{2} - x) = \cos x$	$\sin(x + \frac{\pi}{2}) = \cos x$	$\sin(x - \frac{\pi}{2}) = -\cos x$	
$\tan(\frac{\pi}{2} - x) = \cot x$	$\tan(x + \frac{\pi}{2}) = -\cot x$	$\tan(x - \frac{\pi}{2}) = -\cot x$	
$\cot (\frac{\pi}{2} - x) = \tan x$	$\cot (x + \frac{\pi}{2}) = -\tan x$	$\cot (x - \frac{\pi}{2}) = -\tan x$	

Formules d'addition

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$\cos(a-b) = \cos a \cos b + \sin a \sin b$$

$$\sin(a+b) = \sin a \cos b + \sin b \cos a$$

$$\sin(a-b) = \sin a \cos b - \sin b \cos a$$

Formules de duplication

$$\cos(2\alpha) = \cos^2 \alpha - \sin^2 \alpha$$
$$= 2\cos^2 \alpha - 1$$
$$= 1 - 2\sin^2 \alpha$$
$$\sin(2\alpha) = 2\sin \alpha \cos \alpha$$

$$\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$$

$$\tan(2\alpha) = \frac{2\tan\alpha}{1 - \tan^2\alpha}$$

$$\tan(a - b) = \frac{\tan a - \tan b}{1 + \tan a \tan b}$$

Formules de linéarisation

$$\cos a \cos b = \frac{1}{2}(\cos(a - b) + \cos(a + b)) \qquad \cos^2 a = \frac{1 + \cos(2a)}{2}$$
$$\sin a \sin b = \frac{1}{2}(\cos(a - b) - \cos(a + b)) \qquad \sin^2 a = \frac{1 - \cos(2a)}{2}$$

Formules de factorisation

 $\sin a \cos b = \frac{1}{2}(\sin(a+b) + \sin(a-b))$

$\cos x$, $\sin x$ et $\tan x$ en fonction de t=tan(x/2)

Divers

$$\cos p + \cos q = 2\cos\frac{p+q}{2}\cos\frac{p-q}{2}$$

$$\cos p - \cos q = -2\sin\frac{p+q}{2}\sin\frac{p-q}{2}$$

$$\sin p + \sin q = 2\sin\frac{p+q}{2}\cos\frac{p-q}{2}$$

$$\sin p - \sin q = 2\sin\frac{p-q}{2}\cos\frac{p+q}{2}$$

$$\cos x = \frac{1 - t^2}{1 + t^2}$$
$$\sin x = \frac{2t}{1 + t^2}$$
$$\tan x = \frac{2t}{1 - t^2}$$

$$1 + \cos x = 2\cos^2\frac{x}{2}$$
$$1 - \cos x = 2\sin^2\frac{x}{2}$$
$$\cos(3x) = 4\cos^3 x - 3\cos x$$
$$\sin(3x) = 3\sin x - 4\sin^3 x$$

Résolution d'équations

$$\begin{array}{lll} \cos x = \cos \alpha \Leftrightarrow & \sin x = \sin \alpha \Leftrightarrow & \tan x = \tan \alpha \Leftrightarrow \\ \exists k \in \mathbb{Z}/x = \alpha + 2k\pi & \exists k \in \mathbb{Z}/x = \alpha + 2k\pi & \exists k \in \mathbb{Z}/x = \alpha + k\pi \\ \text{ou} & \text{ou} & \\ \exists k \in \mathbb{Z}/x = -\alpha + 2k\pi & \exists k \in \mathbb{Z}/x = \pi - \alpha + 2k\pi \end{array}$$

Exponentielle complexe

 $\forall x \in \mathbb{R}, e^{ix} = \cos x + i \sin x.$

Valeurs usuelles

$$e^0=1,\ e^{i\pi/2}=i,\ e^{i\pi}=-1,\ e^{-i\pi/2}=-i,\ e^{2i\pi/3}=j=-\frac{1}{2}+i\frac{\sqrt{3}}{2},\ \sqrt{2}e^{i\pi/4}=1+i.$$

Propriétés algébriques

$$\begin{aligned} &\forall x \in \mathbb{R}, \, |e^{ix}| = 1. \\ &\forall (x,y) \in \mathbb{R}^2, \, e^{ix} \times e^{iy} = e^{i(x+y)}, \quad \frac{e^{ix}}{e^{iy}} = e^{i(x-y)}, \quad \frac{1}{e^{ix}} = e^{-ix} = \overline{e^{ix}} \end{aligned}$$

$$e^{i(x+y)}, \quad \frac{e^{ix}}{e^{iy}} = e^{i(x-y)}, \quad \frac{1}{e^{ix}} = e^{-ix} = \overline{e^{ix}}$$

Formules d'Euler

$$\begin{split} \forall x \in \mathbb{R}, & \cos x = \frac{e^{\mathrm{i}x} + e^{-\mathrm{i}x}}{2} \text{ et } e^{\mathrm{i}x} + e^{-\mathrm{i}x} = 2\cos x. \\ \forall x \in \mathbb{R}, & \sin x = \frac{e^{\mathrm{i}x} - e^{-\mathrm{i}x}}{2\mathrm{i}} \text{ et } e^{\mathrm{i}x} - e^{-\mathrm{i}x} = 2\mathrm{i}\sin x. \end{split}$$

Formule de Moivre

 $\forall x \in \mathbb{R}, \forall n \in \mathbb{Z}, (e^{ix})^n = e^{inx}.$