E CE

Probabilistic Graphical Models Bayesian Network and Markov Network construction for Children's Handwriting analysis (Implemented in R)

Team:

Karthik Kiran(kkiran@buffalo.edu) UB# 50133145 Harshith Kumar Ramadev(harshith@buffalo.edu) UB# 50134007

Under the Guidance of: Prof.Sargur N. Srihari

4

Dataset Cleaning and Inference setup:

- The invalid entries such as "99" and "-1" are converted to legitimate entries spanning in the range from "0" to "5" in all the 12 features
- Compute Mean, Entropy and Relative entropy of cleaned dataset, which are used for inference purposes from the constructed graphical models
- From the observation of mean samples of cursive and hand-printing data, we can infer that there is a slight variation in their handwriting styles over the years. In other words, consistent writing styles are displayed.

Mean for Cursive writing

Entropy for Cursive writing

Mean for Handprint writing

Entropy for Handprint writing

Bayesian Network Construction:

- Apply Pearson's Chi-square test on the features (pairwise) to obtain a dependency matrix between the features
- Sort the matrix in descending order and pick the top 10 pairs, indicating pairs which have the highest dependency between them
- **Log-loss approach** on the identified pairs to determine the directionality of dependency(parent and child relationship) which is shown:
 - a) Find the **frequency of each combination of values that a pair of features** takes in the cleaned dataset. To find the frequency of a pair, count the number of times each combination of values are present in dataset and divide this figure with total sum of count of all possible combinations

Eg: If features (D3,D4) are selected from Chi-square resultant matrix, find the frequency of (D3,D4)= $\{(0,0),(0,1),(0,2),(0,3),(0,4),(1,0),...,(5,5)\}$, select only those value combinations that are present in cleaned dataset for this pair.

- b) Find the **frequency of the second feature** in the identified pair taking the value as taken by it in the pair. Eg: If (D3,D4) pair takes a value (0,1), then calculate the frequency for D4 taking the value 1.
- c)**Divide frequency** obtained in a) and b) to obtain the **Conditional probability distribution (CPD**) for the identified feature pair
- d) Repeat steps a), b) and c) until it covers all possible value combinations for a identified feature pair.
- e) Calculate the log-loss for the pair by taking the **sum of logarithm to base 10** outcome of all the different values obtained in c) = **Log-Loss1**
- f) Swap the features in the identified pair, (Eg: say (D3,D4) becomes (D4,D3) and second feature becomes D3 instead of D4) and repeat the procedure from a) to e) = Log-Loss2
- g) If Log-Loss1<Log-Loss2, then feature 2 is the child of feature 1(Eg: D3->D4) Else, feature 1 is the child of feature 2 (Eg:D4->D3).

Assumption: Any node in the Bayesian network will have a maximum of two children.

 Cursive data Chi-square test output, Log-Loss1, Log-Loss2 and maximum 10 pairs in Chi-square are shown in next slide respectively: (Clockwise)

Note that, the Chi-Square output is 12*12 matrix, where 144 possibilities of feature pairs are considered. Secondly, the Log-loss tables contain top 10 feature pairs which have the maximum dependency in the Chi-square output.

	T	Ъ	Univore	ity at Bı	uffala T	ha Stata I	Injvarci	w of A	Jaw Va	rk	DE/	ACHIN	e o	THED	S							
		3	Jiiwers	nty at Be	mialo 1/	ie state C	niiversii	y oj N	vew 10	TK	KE/	ACHIN	00	ПЕК	3	WARRANCE.				row.names	nodepairs	logloss1
	D1	D	2	D3	D4	D 5	D 6	D 7		D 8	1	D 9		D 10		D 11	D 12		1	Node1	2	-4.1235665
1	0.0000	00e+00 8.	420599e-02	1.314271e-02	7.828903e-02	6.302874e-07	5.252668e-0	2 000	278e-03	5.064977e	12	1.997354e-	16	5.5142086	- 03	4.732948e-01	8.556749e-	01	2	Node2	3	-4.1235665
4	0.0000	OUETOD O	4203336-02	1.3142/16-02	1.0203036-02	0.3020746-07	3.2320006-0	2.502	210E-03	3.0043776	-10	1.3313346-	10	3.3142000	5-03	4./323406-01	0.330/436-	01	3	Node1	1	-6.2256328
2	8.4205	99e-02 0.	000000e+00	5.560520e-01	4.625042e-01	1.199527e-01	6.974525e-0	1.043	1933e-05	1.817290e	-02	5.035703e-	03	5.0635506	e-02	5.666434e-02	5.760110e-	01	4	Node2	6	-6.2256328
,	1 21/2	71-02 5	EC0520- 01	1 077757- 246	0.60554206	2.021122- 22	2.414260- 0	2 500	873e-59	4 601040-	53	4 720200-	21	2 002217.	- 02	2 220521 - 01	C 03C474-	00	5	Node1	4	-3.6055970
,	1.3142	/1e-02 5.	560520e-01	1.977752e-246	9.605542e-06	2.021123e-23	3.414269e-0	1 3.303	0736-39	4.601840e	.02	4.730208e-31		2.693317e-02		3.238531e-01	6.936474e-	UZ	6	Node2	6	-3.6055970
4	7.8289	03e-02 4.	625042e-01	9.605542e-06	0.0000000e+00	6.428209e-02	9.155768e-0	6.673	982e-01	4.374931e	-02	1.396587e-	01	7.1856986	e-01	3.887232e-01	7.752951e-	01	7	Node1	4	-1.6055825
	6 2020	74-07 1	100527- 01	2.021122+ 22	C 420200+ 02	(2000 A) 0.000000 co				1.621054e	22 1122474- 25		35	1 101075- 01		3 501307+ 01	7.7501044.02		8	Node2	7	-1.6055825
3	6.3028	/4e-0/ 1.	199527e-01	2.021123e-23	6.428209e-02 0.000000e+00		1.408937e-03 7.5		517706e-11 1.621		54e-32 1.132474e		33	1.191076e-01		2.581297e-01	7.750194e-03		9	Nodel	4	-4.0539744
6	5.2526	68e-01 6.	974525e-05	3.414269e-01 9.155768e-01		1.408937e-03	0.000000e+	0000e+00 7.3093		4e-02 5.311160e		4.069559e-01		1.571098e-01		4.229680e-03	2.842781e-03		10	Node2	10	-4.0539744
	3.0033	70-03 1	043033- 05			7.517705-11			000-100	3.00.000	13					4 470505 - 01	1 435153-	69	11	Nodel	1	-2.7477833
1	2.9022	78e-03 1.	043933e-05	3.509873e-59 6.673982e-01		7.517706e-11	7.3093346-0	7.309334e-02 0.000		2.694926e	-43	1.046420e-1		3.707025e-02		4.479505e-01	1.076157e-	0Z	12	Node2	11	-2.7477833
8	5.0649	77e-13 1.	817290e-02	4.601840e-52	4.374931e-02	1.621054e-32	5.311160e-0	2,694	926e-43	0.000000e+00		1.455024e-41		1.035224e-03		2.321880e-01	6.185613e-	02	13	Node1	9	-0.9323562
-			79.00 M. 1910											And the second			San		14	Node2	11	-0.9323562
9	1.9973	54e-16 5.	035703e-03	4.730208e-31	1.396587e-01	1.132474e-35	4.069559e-0	4.069559e-01 1.04		1.455024e	41	4.376448e-	246	1.800788e-01		4.935696e-01	1.619884e-	9884e-01 15		Node1 Node2	12	-3.4075541 -3.4075541
10	5.5142	08e-03 5.	063550e-02	2.693317e-02	7.185698e-01	1.191076e-01	1.571098e-0	3.707	025e-02	1.035224e-03		1.800788e-01		0.000000e+00		4.984147e-172	3.161566e-124	124	17	Node2 Node1	2	-4.5378209
	77.77.77	20000 100					ALTERNATIVE STATE												18	Node2	12	-4.5378209
11	4.7329	48e-01 5.	666434e-02	3.238531e-01	3.887232e-01	2.581297e-01	4.229680e-0	4.479	505e-01	2.321880e	-01	4.935696e-01	01	4.9841476	8-172	0.000000e+00	5.174183e-14	147	19	Nodel	4	-4.3173071
12	8.5567	49e-01 5.	760110e-01	6.936474e-02	7.752951e-01	7.750194e-03	2.842781e-0	3 1.076	157e-02	6.185613e	-02	1.619884e-	01	3.1615666	e-124	5.174183e-147	0.000000e-	100	20	Node2	12	-4.3173071
	D1	D 2	D 3	D4	D 5	D 6	D7		D8	0	9	1	0 10		D 11	D1	2		re	w.names	nodepairs	logloss2
,	0	0.00430500	0.01314371	7.828903e-02	C 202074-	17 5 15 16 66	01 2002	370 - 03	E 05407	7-12 1	00725	1-16 0	0.00000	14200	4 7220	40-01 055	C740 - 01	1	N	odee1	3	-2.335282
1	0 1	0.08420599	0.01314271	7.0209036-02	6.302874e-0	07 5.252668	-01 2.902	278e-03	5.06497	/e-13 1	.99/354	7354e-16 0		14208	4.7329	406-01 0.55	6749e-01	2		odee2	2	-2.335282
2	0 (0.000000000	0.55605201	4.625042e-01	1.199527e-	01 6.9745256	-05 1.043	933e-05	1.81729	0e-02 5	.035703	3e-03 0	0.05063	35499	5.6664	34e-02 5.76	0110e-01	3		odee1 odee2	6	-5.476111 -5.476111
3	0 (0.000000000	0.00000000	9.605542e-06	2.021123e-7	3.414269	-01 3.509	873e-59	4.60184	0e-52 4.73020		08e-31 0.0269		3.238		31e-01 6.93	6474e-02			odee1	6	-3.959986
	0	0.0000000	0.00000000					6.673982e-01			1.396587e-01						2951e-01		N	odee2	4	-3.959986
4	0 (0.00000000	0.00000000	0.0000000000000000000000000000000000000	0 6.428209e-0										3.8872					odee1	7	-7.961990
5	0	0.00000000	0.00000000	0.000000e+0	0.000000e+	00 1.4089376	-03 7.517	7.517706e-11		4e-32 1	1.132474e-35		0.119107611		2.581297e-01 7.750		0194e-03			odee2	4	-7.961990
6	0 (0.00000000	0.000000000	0.000000e+0	0.000000e+	-00 0.000000	+00 7.309	334e-02	5.31116	i0e-06 4	.069559	9e-01 0	0.15710	09844	4.2296	80e-03 2.84	2781e-03	10		odee1 odee2	10	-7.250261 -7.250261
7	0 (0.00000000	0.00000000	0.000000e+0	0 0.000000e+	00 0,000000	+00 0.000	000+000	2.69492		046436				4.4795		6157e-02	11		odee1	11	-6.434708
		0.00000000	0.00000000			0.0000000	TUU 0.000			00-43	.040420					036-01 1.07	013/6-02	12		odee2	1	-6.434708
8	0 (0.000000000	0.000000000	0.00000000 0.000000e+0		0.000000	+00 0.000	000e+00	0.00000	0e+00 1	.455024	4e-41 0	0.00103	35224	2.3218	80e-01 6.18	5613e-02	13		odee1	11	-3.999560
9	0 (0.00000000	0.00000000	0.000000e+0	0.000000e+	00 0.000000	+00 0.000	000e+00	0.00000	0 00+90	.000000	0e+00 0	0.18007	78780	4.9356	96e-01 1.61	9884e-01	14		odee2	9	-3.999560
																		15		odee1 odee2	12	-6.106383 -6.106383
10	0 (0.00000000	0.00000000	0.000000e+0	0 0.000000e+	-00 0.000000	+00 0.000	000e+00	0.00000	0 00+90	0.000000	JE+00 (0.00000	00000	4.9041	47e-172 3.16	1566e-124	17		odee2	12	-4.425804
11	0 (0.00000000	0.000000000	0.000000e+0	0.000000e+	0.000000	+00 0.000	000e+00	0.00000	00+900	0000000	0e+00 0	0.0000	00000	0.0000	00e+00 5.17	4183e-147	18		odee2	2	-4.425804
12	0 (0.00000000	0.00000000	0.000000e+0	0 0.000000e+	00 0.000000	+00 0.000	000e+00	0.00000	0e+00 0	0.000000	0e+00 0	0.00000	00000	0.0000	00e+00 0.00	0000e+00	19	N	odee1	12	-7.301414
					2.220000	2.000000	0.000		2.30000							2104		20	N	odee2	4	-7.301414

Cursive writing Bayesian network (Grade 3+Grade 4+Grade 5) Inference: (Left figure)

We can observe the direct dependency between feature 12(n-d relationship) and feature 4(Shape of "n" arches) and another direct dependency between feature 12 and feature 1(Initial stroke of "a"). Also, there exists a dependency between feature 1 to feature 6(Formation of "d" staff) and from feature 6 to feature 4. Hence, the relationships between these 4 features constitute that important specifications of each "a", "n" and "d" letters are important to analyze the whole word "and". On a contrary, less significant features like feature 5(Location of "n" mid) and feature 8(Formation of "d" terminal) are independent.

Hand-print writing Bayesian network (Grade 1+ Grade 2+ Grade 3+Grade 4+Grade 5) Inference: (Right figure)

It is observant from the figure that the feature 11(a-d relationship) is dependent on feature 4(formation of "n" staff) which is in turn dependent on feature 12(n-d relationship). Hence, a-d relationship is determined through n-d relationship

Dynamic Bayesian Network:

As the dataset is progressive over the years, we can construct the Bayesian networks for Grade 3, Grade 4 with respect to Cursive writing and for Grade 3, Grade 4 and Grade 5 with respect to Hand-print writing. The transition in dependency between the features can be noted from these figures which are shown in the following slide:

Markov Network construction:

Moralization: The existent Bayesian network is transformed into a Markov network except for the fact that directed edges are converted to non-directed edges and an extra edge is added between those pair of nodes which are having a common child.

KL Divergence threshold approach: Here, we take the inverse of the Co-variance matrix to get the matrix containing values that indicate the divergence between the features. Now we set a threshold value and then consider all the feature pairs which are having a value greater than this threshold for Markov network construction

Initially, we assume all the variables to be independent, i.e. there are no edges between any nodes. Edges are added to the graph based on the pairwise chi-square values on the condition that the resulting hyper-graph is a hyper-tree At each stage the entropy is computed and the graph corresponding to the minimum entropy is selected for adding edges in the next step. This process is repeated till a threshold is reached with respect to the decrease in entropy between two successive stages. Setting the threshold is important and generally set according to the size of the dataset. Smaller the dataset larger the threshold, this is to handle the erroneous samples in the small dataset, so using a higher threshold can suppress false dependencies.

The below graphs demonstrate the Markov networks constructed by applying the Moralization technique to Cursive Bayesian and Handprint Bayesian networks:

Handprint Markov network