Seeing Things from a Different Angle: Discovering Diverse Perspectives about Claims

Sihao Chen, Daniel Khashabi, Wenpeng Yin, Chris Callison-Burch, Dan Roth

Department of Computer and Information Science, University of Pennsylvania

{sihaoc, danielkh, wenpeng, ccb, danroth}@cis.upenn.edu

Abstract

One key consequence of the information revolution is a significant increase and a contamination of our information supply. The practice of fact checking won't suffice to eliminate the biases in text data we observe, as the degree of factuality alone does not determine whether biases exist in the spectrum of opinions visible to us. To better understand controversial issues, one needs to view them from a diverse yet comprehensive set of *perspectives*.

For example, there are many ways to respond to a *claim* such as "animals should have lawful rights", and these responses form a spectrum of perspectives, each with a stance relative to this claim and, ideally, with evidence supporting it. Inherently, this is a natural language understanding task, and we propose to address it as such. Specifically, we propose the task of substantiated perspective discovery where, given a claim, a system is expected to discover a diverse set of well-corroborated perspectives that take a stance with respect to the claim. Each perspective should be substantiated by evidence paragraphs which summarize pertinent results and facts.

We construct PERSPECTRUM, a dataset of claims, perspectives and evidence, making use of online debate websites to create the initial data collection, and augmenting it using search engines in order to expand and diversify our dataset. We use crowdsourcing to filter out the noise and ensure high-quality data. Our dataset contains 1k claims, accompanied with pools of 10k and 8k perspective sentences and evidence paragraphs, respectively. We provide a thorough analysis of the dataset to highlight key underlying language understanding challenges, and show that human baselines across multiple subtasks far outperform machine baselines built upon state-of-the-art NLP techniques. This poses a challenge and opportunity for the NLP community to address.

Figure 1: Given a *claim*, a hypothetical system is expected to discover various *perspectives* that are substantiated with *evidence* and their *stance* with respect to the claim.

1 Introduction

Understanding most nontrivial *claims* require insights from various *perspectives*. Today, we make use of search engines or recommendation systems to retrieve information relevant to a claim, but this process carries multiple forms of *biases*. In particular, it is optimized relative to the claim (query) presented, and the popularity of the relevant documents returned, rather than with respect to the diversity of the *perspectives* presented in them or whether they are supported by evidence.

In this paper, we explore an approach to mitigate this *selection bias* when studying (disputed) claims. Consider the *claim* shown in Figure 1: "animals should have lawful rights." One might compare the biological similarities/differences between humans and other animals to sup-

port/oppose the claim. Alternatively, one can base an argument on morality and rationality of animals, or lack-thereof. Each of these arguments, which we refer to as *perspectives* throughout the paper, is an opinion, possibly conditional, in support of a given *claim* or against it. A *perspective* thus, constitutes a particular attitude towards a given *claim*.

Natural language understanding is at the heart of developing an ability to identify diverse perspectives for claims. In this work, we propose and study a setting that would facilitate discovering diverse perspectives with respect to a given claim and their supporting evidence. Our goal is to identify and formulate the key NLP challenges underlying this task, and develop a dataset that would allow a systematic study of these challenges. For example, for the claim in Figure 1, multiple (nonredundant) perspectives should be retrieved from a pool of perspective; one of them is "animals have no interest or rationality", a perspective that should be identified as taking an opposing stance with respect the claim. Each perspective should also be well-supported by evidence found in a pool of potential pieces of evidence. While it might be impractical to provide an exhaustive spectrum of ideas with respect to a *claim*, cherry-picking a small but diverse set of perspectives could be a tangible step towards addressing the selection bias problem. Similarly, it would be impractical to develop an exhaustive pool of pieces of evidence for all perspectives, from a diverse set of credible sources. We are not attempting to do that. We aim at formulating the core NLP problems, and developing a dataset that will facilitate studying these problems. Inherently, this objective requires understanding the relations between perspectives and *claims*, the nuances in the meaning of various perspectives in the context of claim, and relations between perspectives and evidence. This, we argue, can be done with a diverse enough, but not exhaustive, dataset. And it can be done without attending to the legitimacy and credibility of sources contributing evidence, an important but orthogonal problem to the one studied here.

To facilitate the research towards developing solutions to such challenging issues, we propose PERSPECTRUM, a dataset of *claims*, *perspectives* and *evidence* paragraphs. For a given *claim* and pools of *perspectives* and *evidence* paragraphs, a hypothetical system is expected to select the rele-

Figure 2: Depiction of few claims, their *perspectives* and evidences from PERSPECTRUM. The *supporting* and *opposing* perspectives are indicated with green and red colors, respectively.

vant perspectives and their supporting paragraphs.

Our dataset contains 907 claims, 11,164 perspectives and 8,092 evidence paragraphs. In constructing it, we use online debate websites as our initial seed data, and augment it with search data and paraphrases to make it richer and more challenging. We make extensive use of crowdsourcing to increase the quality of the data and get clean it from annotation noise.

The contributions of this paper are as follows:

- To facilitate making progress towards the problem of *substantiated perspective discovery*, we create a high-quality dataset for this task.¹
- We identify and formulate multiple NLP tasks that are at the core of addressing the *substanti*ated perspective discovery problem. We show that humans can achieve high scores on these tasks.
- We develop competitive baseline systems for each sub-task, using state-of-the-art techniques.

2 Design Principles and Challenges

In this section we provide a closer look into the challenge and propose a collection of tasks that move us closer towards this goal. First, we define a notation for ease of our depiction. Let c indicate a target claim of interest (for example, the two

¹https://github.com/CogComp/perspectrum

claims c_1 and c_2 in Figure 2). Each claim c is addressed by a collection of perspectives $\{p\}$ that are grouped into clusters of *equivalent* perspectives. Additionally, each perspective is supported by at least one evidence paragraph, i.e. $e \models p|c$.

Creating systems that would address our challenge in its full glory requires solving the following interdependent tasks:

Determination of argue-worthy claims: not every claim requires an in-depth discussion of perspectives. For a system to be practical, it needs to be equipped with understanding argumentative structures (Palau and Moens, 2009) in order to discern disputed claims from those with straightforward responses. We set aside this problem in this work and assume that all the inputs to the systems are discussion-worthy claims.

Discovery of pertinent perspectives: a system is expected to recognize argumentative sentences (Cabrio and Villata, 2012) that directly address the points raised in the disputed claim. For example, while the perspectives in Figure 2 are topically related to the claims, p_1, p_2 do not directly address the focus of claim c_2 (i.e., "use of animals" in "entertainment").

Perspective equivalence: a system is expected to extract a minimal and diverse set of perspectives. This requires the ability to discover equivalent perspectives p, p', with respect to a claim c: $p|c \approx p'|c$. For instance, p_3 and p_4 are equivalent in the context of c_2 ; however, they might not be equivalent with respect to any other claim. The conditional nature of perspective equivalence differentiates it from the paraphrasing task (Bannard and Callison-Burch, 2005).

Stance classification of perspectives: a system is supposed to assess the stances of the perspectives with respect to the given claim (supporting, opposing, etc) (Hasan and Ng, 2014).

Substantiating the perspectives: a system is expected to find valid evidence paragraph(s) in support of each perspective. Conceptually, this is similar to the well-studied problem of textual entailment (Dagan et al., 2013) or fact-checking (Vlachos and Riedel, 2014), except that here the entailment decisions depend on the choice of claims.

3 Related Work

Claim verification. The task of *fact verification* or *fact checking* focuses on the assessment of the truthfulness of a claim, given an evidence

(Vlachos and Riedel, 2014; Mitra and Gilbert, 2015; Samadi et al., 2016; Wang, 2017; Tacchini et al., 2017; Nakov et al., 2018; Hanselowski et al., 2018; Karimi et al., 2018; Alhindi et al., 2018). These tasks are highly related to the task of textual-entailment have has been extensively studied in the field (Bentivogli et al., 2008; Dagan et al., 2013; Khot et al., 2018).

Our problem structure encompasses the *fact verification* problem (as verification of *perspectives* from *evidences*; Figure 1).

Stance classification. Stance classification aims at detection of phrases that support or oppose a given claim. The problem has gained significant attention in the recent years; To note a few important ones, Hasan and Ng (2014) created a dataset of dataset text snippets, annotated with "reasons" (equivalent to *perspectives* in this work) and stances (whether they support or oppose the claim). Unlike this work, our pool of the relevant "reasons" is not restricted. Ferreira and Vlachos (2016) creates a dataset of rumors (claims) couples with news headlines and their stances. There a few other works that fall in this category (Boltužić and Snajder, 2014; Park and Cardie, 2014; Rinott et al., 2015; Swanson et al., 2015; Mohammad et al., 2016; Sobhani et al., 2017; Bar-Haim et al., 2017).

Our approach here is closely related to the existing work in this direction, as a stance classification are incorporated as a part of the task here, while containing a few other problems.

Argumentation. There is a rich literature on *formalizing* argumentative structures from free text. There are a few theoretical work that lay the ground-work that characterize units of arguments and argument-inducing inference (Teufel et al., 1999; Toulmin, 2003; Freeman, 2011).

There is a line of work on extraction of argumentative structures from free-form text; for example, Palau and Moens (2009); Al Khatib et al. (2016); Ajjour et al. (2017) studied elements of arguments and the internal relations between them. Feng and Hirst (2011) classified an input into one of the argument schemes. (Habernal and Gurevych, 2017) provided a large corpus annotated with argument units. (Bex et al., 2013, 2014) presented an interface annotation of argument. (Levy et al., 2018) uses weak linguistic signals to extract arguments. Cabrio and Villata

Dataset	Stance Classification	Evidence Verification	Human Verified	Open Domain
PERSPECTRUM (this work)	√	✓	✓	✓
FEVER (Thorne et al., 2018)	X	✓	✓	✓
(Wachsmuth et al., 2017)	✓	✓	X	✓
LIAR (Wang, 2017)	X	✓	✓	✓
(Vlachos and Riedel, 2014)	X	✓	✓	✓
(Hasan and Ng, 2014)	✓	X	✓	X

Table 1: Comparison of PERSPECTRUM to a few notable datasets in the field.

(2018) provide a thorough survey the recent work in this direction. There are few other works that study different aspects of the argumentative structures (Cabrio and Villata, 2012; Al Khatib et al., 2016; Lippi and Torroni, 2016; Zhang et al., 2017; Stab and Gurevych, 2017; Hua and Wang, 2017).

There are a few recent works use a similar conceptual design that involve a *claim*, *perspectives* and *evidences*. Such works are either too small due to high cost of construction (e.g. (Aharoni et al., 2014)) or too noisy, because of the way they are crawled from online resources (e.g. (Wachsmuth et al., 2017)). In our construction we make a mixed use of online-content and crowdsourcing, in order to construct a sizable and high-quality dataset.

4 The PERSPECTRUM Dataset

In the next steps we describe our efforts to create a multi-step process, as a result of detailed analysis and substantial refinements after multiple pilots studies.

We use crowdsourcing to annotate different aspects of the dataset. We used Amazon Mechanical Turk for our annotations, restricting the task to workers in five English-speaking countries (USA, UK, Canada, New Zealand, and Australia), more than 1000 finished HITs and at least a 95% acceptance rate. For any of the annotations steps described below, the users are guided to an external platform where they first read the instructions and try a verification step to make sure they have understood the instructions. Only after successful completion are they allowed to start the annotation tasks.

Throughout our annotations, it is our aim to make sure that the workers are responding objectively to the tasks (as opposed to using their personal opinions or preferences). The screen-shots of the annotation interfaces for each step are included in the Appendix (Section A.3).

In the steps outlined below, we filter out a subset of the data with low rater–rater agreement ρ (see Appendix A.2). In certain steps, we use an information retrieval (IR) system² to generate the best candidates for the task at hand.

Step 1: The initial data collection. We start by crawling the content of a few notable debating websites: idebate.com, debatewise.org, procon.org. This yields $\sim 1k$ claims, $\sim 8k$ perspectives and $\sim 8k$ evidence paragraphs (for complete statistics, see Table 4 in the Appendix). This data is significantly noisy and lacks the structure we would like. In the following steps we explain how we denoise it and augment it with additional data.

Step 2a: Perspectives verification. For each perspective we verify that it is a complete English sentence, with a clear stance with respect to the given claim. For a fixed pair of *claim* and *perspective*, we ask the crowd-workers to label the perspective with one of the five categories of *support*, *oppose*, *mildly-support*, *mildly-oppose*, or *not a valid perspective*. The reason that we ask for two levels of intensity is to distinguish *mild* or *conditional* arguments from those that express *stronger* positions.

Every 10 claims (and their relevant perspectives) are bundled to form a HIT. Three independent annotators solve a HIT, and each get paid \$1.5-2 per HIT. To get rid of the ambiguous/noisy perspectives we measure rater-rater agreement on the resulting data and retain only the subset which has a significant agreement of $\rho \geq 0.5$. To account for minor disagreements in the intensity of perspective stances, before measuring any notion of agreement, we collapse the five labels into three labels, by collapsing *mildly-support* and *mildly-oppose* into *support* and *oppose*, respectively.

To assess the quality of these annotations, two

²www.elastic.co

of the authors independently annotate a random subset of instances in the previous step (328 perspectives for 10 claims). Afterwards, the differences were adjudicated. We measure the accuracy adjudicated results with AMT annotations to estimate the quality of our annotation. This results in an accuracy of 94% which shows high-agreement with the crowdsourced annotations.

Step 2b: Perspective paraphrases. To enrich the ways the perspectives are phrased, we crowd-source paraphrases of our perspectives. We ask annotators to generate two paraphrases for each of the 15 perspectives in each HIT, for a reward of \$1.50.

Subsequently, we perform another round of crowdsourcing to verify the generated paraphrases. We create HITs of 24 candidate paraphrases to be verified, with a reward of \$1. Overall, this process gives us ~ 4.5 paraphrases perspectives. The collected paraphrases form clusters of equivalent perspectives, which we refine further in the later steps.

Step 2c: Web perspectives. In order to ensure that our dataset more realistic sentences, we use web search to augment our pool of perspectives with additional sentences that are topically related to what we already have. Specifically, we use Bing search to extract sentences that are similar to our current pool of perspectives, by querying "claim+perspective". We create a pool of relevant web sentences and use an IR system (described earlier) to retrieve the 10 most-similar sentences. The IR sentences are later used as candidate perspectives and are annotated using a similar interface to step 2a to filter out any sentences annotated as perspectives for any claims. In other words, we only retain web sentences that are highly-similar to our current claims, but are not necessarily concrete perspectives.

Step 2d: Final perspective trimming. In a final round of annotation for perspectives, an expert annotator went over all the claims in order to verify that all the equivalent perspectives are clustered together. Subsequently, the expert annotator went over the most-similar claim-pairs (and their perspectives), in order to annotate the missing perspectives shared between the two claims. To cut the space of claim pairs, the annotation was done on top 350 most-similar claim pairs retrieved by an IR system.

Category	Statistic	Value
	# of claims (step 1)	907
Claims	avg. claim length (tokens)	8.9
Ciainis	median claims length (tokens)	8
	max claim length (tokens)	30
	min claim length (tokens)	3
	# of perspectives	11,164
	Debate websites (step 1)	4,230
Perspectives	Perspective paraphrase (step 2b)	4,507
	Web (step 2c)	2,427
	# of perspectives with stances	5,095
	# of "support" perspectives	2,627
	# of "opposing" perspectives	2,468
	avg size of perspective clusters	2.3
	avg length of perspectives (tokens)	11.9
Evidences	# of total evidences (step 1)	8,092
Evidences	avg length of evidences (tokens)	168

Table 2: A summary of dataset statistics

Step 3a: Evidence verification. The goal of this step is to decide whether a given evidence paragraph provides enough substantiations for a perspective or not. Performing these annotations exhaustively for any perspective-evidence pair is not possible. Instead, we make use of a retrieval system to annotate only the relevant pairs. In particular, we create an index of all the perspectives retained from step 2a. For a given evidence paragraph, we retrieve top relevant perspectives. We ask the annotators to annotate whether a given evidence paragraph supports a given perspective or not. Each HIT contains a 20 evidence paragraphs and their top 8 relevant candidates. Each HIT is paid \$1 and annotated by at least 4 independent annotators.

In order to assess the quality of our annotations, a random subset of the instances (4 evidence-perspective pairs) are annotated by two independent authors and the differences are adjudicated. We measure the accuracy of our adjudicated labels versus AMT labels which result in 87.7%. This indicates the high quality of the crowdsourced data.

4.1 Statistics on the dataset

We now provide a brief summary PERSPECTRUM. The dataset contains about 1k claims with a significant length diversity Additionally, the dataset comes (Table 2). with $\sim 12k$ perspectives, most of which were generated through paraphrasing (step 2b). The perspectives which convey the same point with respect to a claim are grouped into clusters. On average, each cluster has a size of 2.3 which shows that, on average, many perspectives have equivalents. More granular details are available in

Figure 3: Distribution of claim topics.

Table 2.

To better understand the topical breakdown of claims in the dataset, we crowdsource the set of "topics" associated with each *claim* (e.g., *Law, Ethics, etc*). We observe that, as expected, the three topics of *Politics, World, Society* have the biggest portion (Figure 3). Additionally, the included claims touch upon +10 different topics. Figure 4 depicts a few popular categories and sampled questions from each.

4.2 Required skills

We perform a closer investigation of the abilities required to solve the stance classification task. One of the authors went through a random subset of claim-perspectives pairs and annotated each with the abilities required in determining their stances labels. We follow the common definitions used in prior work (Sugawara et al., 2017; Khashabi et al., 2018). The result of this annotation is depicted in Figure 5. As can be seen, the problem requires a heavy comprehension of common-sense understanding, i.e., an understanding that is commonly shared among humans and rarely get explicitly mentioned in the text. Additionally, the task requires various types of coreference understanding, such as event coreference and entity coreference.

5 Analysis

In this section we provide empirical analysis to address the tasks. We create a split of 60%/15%/25% of the data train/dev/test. In order to make sure our baselines are not overfitting to the keywords of each topic (the "topic" annotation from Section 4.1), we make sure to have claims with the same topic fall into the same split.

For simplicity, we define a notation which we will extensively use for the rest of this paper. The

clusters of equivalent perspectives are denoted as $\llbracket p \rrbracket$, given a representative member p. Let P(c) denote the collection of relevant perspectives to a claim c, which is the union of all the equivalent perspectives participating in the claim: $\{\llbracket p_i \rrbracket\}_i$. Let $E(\llbracket p \rrbracket) = E(p) = \bigcup_i e_i$ denote the set of evidences documents lending support to a perspective p. Additionally, denote the two pools of perspectives and evidences with \mathcal{U}^p and \mathcal{U}^e , respectively.

5.1 Evaluation metrics.

We perform evaluations on four different subtasks in our dataset. In all of the following evaluations, the systems are given the two pools of perspectives \mathcal{U}^p and evidences \mathcal{U}^e .

T1: Perspective extraction. a system is expected to return the collection of mutually disjoint perspectives with respect to a given claim. Let $\hat{P}(c)$ be the set of output perspectives. Define the precision and recall as $\operatorname{Pre}(c) = \frac{\sum_{\hat{p} \in \hat{P}(c)} \mathbf{1}\{\exists p, s.t. \hat{p} \in \llbracket p \rrbracket\}}{|\hat{P}(c)|}$ and $\operatorname{Rec}(c) = \frac{\sum_{\hat{p} \in \hat{P}(c)} \mathbf{1}\{\exists p, s.t. \hat{p} \in \llbracket p \rrbracket\}}{|P(c)|}$ respectively, and are averaged across all the claims in the test set.

T2: Perspective stance classification. given a claim, a system is expected to label every perspective in P(c) with one of two labels *support* or *oppose*. We use the well-established definitions of precision-recall for binary classification task.

T3: Perspective equivalence. a system is expected to decide whether two given perspectives are equivalent or not, with respect to a given claim. We evaluate this task similar to a clustering problem. For a pair of perspectives $p_1, p_2 \in P(c)$, a system predicts whether the two are in the same cluster or not. The ground-truth is whether there is a cluster which contains both of the perspectives or not: $\exists \tilde{p} \ s.t. \ \tilde{p} \in P(c) \land p_1, p_2 \in [\![\tilde{p}]\!]$. We use this pairwise definition for all the pairs in $P(c) \times P(c)$, for any claim c in the test set.

T4: Extraction of supporting evidences. given a perspective p, we expect a system to return all the evidences $\{e_i\}$ from the pool of evidences \mathcal{U}^e . Let $\hat{E}(p)$ and E(p) be the predicted and gold evidences for a perspective p. Define macro-precision and macro-recall as $\operatorname{Pre}(p) = \frac{|\hat{E}(p) \cap E(p)|}{|\hat{E}(p)|}$ and $\operatorname{Rec}(p) = \frac{|\hat{E}(p) \cap E(p)|}{|E(p)|}$, respectively. The metrics

Figure 4: Visualization of the major topics and sample claims in each category.

Figure 5: The set of reasoning abilities required to solve the stance classification task.

are averaged across all the perspectives p participating in the test set.

T5: Overall performance. The goal is to get estimates of the overall performance of the systems. Instead of creating a complex measure that would take all the aspects into account, we approximate the overall performance by multiplying the disjoint measures in T1, T2 and T4. While this gives an estimate on the overall quality, it ignores the pipeline structure of the task (e.g., the propagation of the errors throughout the pipeline). We note that the task of T3 (perspective equivalence) is indirectly being measured within T1.

5.2 Systems

We make use of the following systems in our evaluation: IR (Information Retrieval baseline). This baseline has successfully been used for related tasks like Question Answering (Clark et al., 2016). We create two versions of this baseline: one with the pool of perspectives \mathcal{U}^p and one with the pool of evidences \mathcal{U}^e . We use this system to retrieve a ranked list of best matching perspective/evidence from the corresponding index.

BERT (Contextual representations). A recent state-of-the-art contextualized representation (Devlin et al., 2018). This system has been shown to be effective on a broad range of natural language understanding tasks.

Human Performance. Human performance provides us with an estimate of the best achievable results on datasets. We use human annotators to measure human performance for each task. We randomly sample 10 claims from the test set, and instruct two expert annotators to solve each of T1 to T4.

5.3 Minimal perspective extraction

Table 3 shows a summary of the experimental results. To measure the performance of the IR system, we use the index containing \mathcal{U}^p . Given each claim, we query top k perspectives, ranked according to their retrieval scores. We tune k on our development set and report the results on the test section according to the tuned parameter. We use IR results as candidates for other solvers (including humans). For this task, IR with top-15 candidates

yields +90% recall (for the PR-curve, see Figure 6 in the Appendix). In order to train BERT on this task, we use the IR candidates as the training instances. We then tune a threshold on the dev data to select the top relevant perspectives. In order to measure human performance, we create an interface where two human annotators see IR top-k and select a *minimal* set of perspectives (i.e., no two equivalent perspectives).

5.4 Perspective stance classification

We measure the quality of perspective stance classification, where the input is a claim-perspective pair, mapped to $\{\text{support, oppose}\}$. The candidate inputs are generated on the collection of perspectives P(c) relevant to a claim c. To have an understanding of a "lowerbound" for the metric, we measure the quality of always-support baseline. We measure the performance of BERT on this task as well, which is about 20% below human performance. This might be because this task requires a deep understanding of commonsense knowledge/reasoning (as indicated in Section 5). Since a retrieval system is unlikely to distinguish perspective with different stances, we do not report the IR performance for this task.

5.5 Perspective equivalence

We create instances in the form of (p_1, p_2, c) where $p_1, p_2 \in P(c)$. The expected label is whether the two perspectives belong to the same equivalence class or not. In the experiments, we observe that BERT has significant performance gain of $\sim 36\%$ over the IR baseline. Meanwhile, this system is behind human performance by a margin of $\sim 20\%$.

5.6 Extraction of supporting evidence

We evaluate the systems on the extraction of items from the pool of evidences \mathcal{U}^e , given a claim-perspective pair. To measure the performance of the IR system working with the index containing \mathcal{U}^e we issue a query containing the concatenation of perspective-claim pair. Given the sorted results (according to their retrieval confidence score), we select the top candidates using a threshold parameter tuned on the dev set. We also use the IR system's candidates for other baselines. In particular, we use top-60 IR candidates for each baseline. This set of candidates yield a +85% recall (for the PR-curve, see Figure 6 in the Appendix). We train BERT on a semi-balanced subset of this

Setting	Target set	System	Pre.	Rec.	<i>F</i> 1
ive		IR	46.8	34.9	40.0
T1: Perspective relevance	\mathcal{U}^p	IR + BERT	47.3	54.8	50.8
T Pers rele		IR + Human	63.8	83.8	72.5
ive		Always "supp."	51.6	100.0	68.0
T2: Perspective stance	P(c)	BERT	70.5	71.1	70.8
T Pers sta		Human	91.3	90.6	90.9
e %		Always "¬equiv."	100.0	11.9	21.3
cti	D()2	Always "equiv."	20.3	100.0	33.7
F3: spe tiva	$P(c)^2$	IR Î	36.5	36.5	36.5
T3: Perspective equivalence		BERT	85.3	50.8	63.7
		Human	87.5	80.2	83.7
		IR	42.2	52.5	46.8
T4: Evidence extraction	\mathcal{U}^e	IR + BERT	53.1	55.2	54.1
Evic extr		IR + Human	70.8	53.1	60.7
=		IR	-	_	12.8
T5:)veral	$\mathcal{U}^p,\mathcal{U}^e$	IR + BERT	-	-	17.5
Ď		IR + Human	-	-	40.0

Table 3: Quality of different baselines in different subtasks (Section 5). All the numbers are in percentage. Top machine baselines are indicated as **bold**. [SC: Note that since we don't report IR performance on T2, we use "Always supp" in T2 to calculate the overall performance for IR]

data and evaluate it on the test set, after tuning its threshold parameter on the development set. Overall, the performances on this task are lower, which could probably be expected, by the length of the evidence paragraphs.

6 Discussion

With the increasing presence of "information pollution" in our daily lives, there are significant demands for better organization and access to information. Our proposal is an effort towards this goal, although we do not necessarily view it as the best or the only way to do this. In fact, as we discuss below, there are many limitations not addressed in this work.

While the goal of this work is to facilitate the development of systems that can discover more diverse sets of perspectives, the dataset presented here is not necessarily exhaustive, nor does it reflect a true distribution of all the important claims and perspectives in the world. In a similar vein, since our main focus is to study the relations between claims, perspectives, evidence, we leave out their degree of factuality or trustworthiness (Vlachos and Riedel, 2014) as a separate aspect of problem. For the same reason, we choose not to

explicitly ask annotators to filter contents based on the intention of their creators (e.g. offensive content) during the construction of the dataset.

There are a few algorithmic components not addressed in this work, although they seem to be important in order to complete the pipeline of *perspective discovery*. For instance, before any steps, one has to first verify that the input to the system is a reasonably well-phrased and argueworthy claim. To construct the pool of perspectives, one has to automatically extract relevant arguments within free-form text (Levy et al., 2014).

We hope some of the challenges and limitations discussed above will be addressed in future work.

7 Conclusion

This work touches upon a class of claims that answering them requires addressing multiple angles. The importance of this work is three-fold; we define the task of *substantiated perspective discovery* and characterized prerequisite language understanding skills for the problem. We mix online resources, web data and crowdsourcing to creating a high-quality dataset, in order to facilitate research and progress on this problem. Finally, we built and evaluated strong supervised systems for this problem. Our hope is that this dataset would bring more attention to this important problem and would speed up the progress in this important direction.

There are two aspects that here we defer to future. First, the systems designed here assumed that the input are valid claim sentence. To make use of such systems, one needs to develop mechanisms to recognize valid argumentative structures. In addition, we ignored the trustworthiness and credibility issues related to evidences, which themselves are subject of research in other works.

Acknowledgments

The authors would like to thank Jennifer Sheffield, Stephen Mayhew, Nitish Gupta and the anonymous reviewers for insightful comments and suggestions. This work was supported by Contract HR0011-15-2-0025 with the US Defense Advanced Research Projects Agency (DARPA). Approved for Public Release, Distribution Unlimited. The views expressed are those of the authors and do not reflect the official policy or position of the Department of Defense or the U.S. Government. This work was funded in part by a gift from

Google.

References

- Ehud Aharoni, Anatoly Polnarov, Tamar Lavee, Daniel Hershcovich, Ran Levy, Ruty Rinott, Dan Gutfreund, and Noam Slonim. 2014. A benchmark dataset for automatic detection of claims and evidence in the context of controversial topics. In *Proceedings of the First Workshop on Argumentation Mining*, pages 64–68.
- Yamen Ajjour, Wei-Fan Chen, Johannes Kiesel, Henning Wachsmuth, and Benno Stein. 2017. Unit Segmentation of Argumentative Texts. In *Proceedings of the Fourth Workshop on Argument Mining* (*ArgMining 2017*), pages 118–128.
- Khalid Al Khatib, Henning Wachsmuth, Johannes Kiesel, Matthias Hagen, and Benno Stein. 2016. A news editorial corpus for mining argumentation strategies. In *Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers*, pages 3433–3443.
- Tariq Alhindi, Savvas Petridis, and Smaranda Muresan. 2018. Where is your evidence: Improving fact-checking by justification modeling. In *Proceedings of the First Workshop on Fact Extraction and VERification (FEVER)*, pages 85–90.
- Colin Bannard and Chris Callison-Burch. 2005. Paraphrasing with bilingual parallel corpora. In *Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics*, pages 597–604. Association for Computational Linguistics.
- Roy Bar-Haim, Indrajit Bhattacharya, Francesco Dinuzzo, Amrita Saha, and Noam Slonim. 2017. Stance classification of context-dependent claims. In *Pro*ceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, volume 1, pages 251–261.
- Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Giampiccolo. 2008. The sixth pascal recognizing textual entailment challenge. In *TAC*.
- Floris Bex, John Lawrence, Mark Snaith, and Chris Reed. 2013. Implementing the argument web. *Communications of the ACM*, 56(10):66–73.
- Floris Bex, Mark Snaith, John Lawrence, and Chris Reed. 2014. Argublogging: An application for the argument web. *Web Semantics: Science, Services and Agents on the World Wide Web*, 25:9–15.
- Filip Boltužić and Jan Šnajder. 2014. Back up your stance: Recognizing arguments in online discussions. In *Proceedings of the First Workshop on Argumentation Mining*, pages 49–58.

- Elena Cabrio and Serena Villata. 2012. Combining textual entailment and argumentation theory for supporting online debates interactions. In *Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Short Papers-Volume 2*, pages 208–212. Association for Computational Linguistics.
- Elena Cabrio and Serena Villata. 2018. Five years of argument mining: a data-driven analysis. In *IJCAI*, pages 5427–5433.
- Peter Clark, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Oyvind Tafjord, Peter Turney, and Daniel Khashabi. 2016. Combining retrieval, statistics, and inference to answer elementary science questions. In *Thirtieth AAAI Conference on Artificial Intelligence*.
- Ido Dagan, Dan Roth, Mark Sammons, and Fabio Massimo Zanzotto. 2013. Recognizing textual entailment: Models and applications. Synthesis Lectures on Human Language Technologies, 6(4):1–220.
- Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of Conference of the North American Chapter of the Association for Computational Linguistics.
- Vanessa Wei Feng and Graeme Hirst. 2011. Classifying arguments by scheme. In *Proceedings* of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1, pages 987–996. Association for Computational Linguistics.
- William Ferreira and Andreas Vlachos. 2016. Emergent: a novel data-set for stance classification. In Proceedings of the 2016 conference of the North American chapter of the association for computational linguistics: Human language technologies, pages 1163–1168.
- Joseph L Fleiss and Jacob Cohen. 1973. The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability. *Educational and psychological measurement*, 33(3):613–619
- James B Freeman. 2011. Argument Structure:: Representation and Theory, volume 18. Springer Science & Business Media.
- Ivan Habernal and Iryna Gurevych. 2017. Argumentation mining in user-generated web discourse. *Computational Linguistics*, 43(1):125–179.
- Andreas Hanselowski, Avinesh PVS, Benjamin Schiller, Felix Caspelherr, Debanjan Chaudhuri, Christian M Meyer, and Iryna Gurevych. 2018. A retrospective analysis of the fake news challenge stance detection task. arXiv preprint arXiv:1806.05180.

- Kazi Saidul Hasan and Vincent Ng. 2014. Why are you taking this stance? identifying and classifying reasons in ideological debates. In *Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pages 751–762.
- Xinyu Hua and Lu Wang. 2017. Understanding and detecting supporting arguments of diverse types. In *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)*, volume 2, pages 203–208.
- Hamid Karimi, Proteek Roy, Sari Saba-Sadiya, and Jiliang Tang. 2018. Multi-source multi-class fake news detection. In *Proceedings of the 27th International Conference on Computational Linguistics*, pages 1546–1557.
- Daniel Khashabi, Snigdha Chaturvedi, Michael Roth, Shyam Upadhyay, and Dan Roth. 2018. Looking beyond the surface:a challenge set for reading comprehension over multiple sentences. In *Proceedings* of North American Chapter of the Association for Computational Linguistics (NAACL).
- Tushar Khot, Ashish Sabharwal, and Peter Clark. 2018. Scitail: A textual entailment dataset from science question answering. In *Proceedings of AAAI*.
- Ran Levy, Yonatan Bilu, Daniel Hershcovich, Ehud Aharoni, and Noam Slonim. 2014. Context dependent claim detection. In *Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers*, pages 1489–1500.
- Ran Levy, Ben Bogin, Shai Gretz, Ranit Aharonov, and Noam Slonim. 2018. Towards an argumentative content search engine using weak supervision. In *Proceedings of the 27th International Conference on Computational Linguistics*, pages 2066–2081.
- Marco Lippi and Paolo Torroni. 2016. Argument mining from speech: Detecting claims in political debates. In *AAAI*, pages 2979–2985.
- Tanushree Mitra and Eric Gilbert. 2015. CREDBANK: A large-scale social media corpus with associated credibility annotations. In *ICWSM*, pages 258–267. AAAI Press.
- Saif Mohammad, Svetlana Kiritchenko, Parinaz Sobhani, Xiaodan Zhu, and Colin Cherry. 2016. Semeval-2016 task 6: Detecting stance in tweets. In *Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016)*, pages 31–41.
- Preslav Nakov, Alberto Barrón-Cedeño, Tamer Elsayed, Reem Suwaileh, Lluís Màrquez, Wajdi Zaghouani, Pepa Atanasova, Spas Kyuchukov, and Giovanni Da San Martino. 2018. Overview of the clef-2018 checkthat! lab on automatic identification and verification of political claims. In *International Conference of the Cross-Language Evaluation Forum for European Languages*, pages 372–387. Springer.

- Raquel Mochales Palau and Marie-Francine Moens. 2009. Argumentation mining: the detection, classification and structure of arguments in text. In *Proceedings of the 12th international conference on artificial intelligence and law*, pages 98–107. ACM.
- Joonsuk Park and Claire Cardie. 2014. Identifying appropriate support for propositions in online user comments. In *Proceedings of the First Workshop on Argumentation Mining*, pages 29–38.
- Ruty Rinott, Lena Dankin, Carlos Alzate Perez, Mitesh M Khapra, Ehud Aharoni, and Noam Slonim. 2015. Show me your evidence-an automatic method for context dependent evidence detection. In *Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing*, pages 440–450.
- Mehdi Samadi, Partha Pratim Talukdar, Manuela M Veloso, and Manuel Blum. 2016. Claimeval: Integrated and flexible framework for claim evaluation using credibility of sources. In *AAAI*, pages 222–228.
- Parinaz Sobhani, Diana Inkpen, and Xiaodan Zhu. 2017. A dataset for multi-target stance detection. In *Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers*, volume 2, pages 551–557.
- Christian Stab and Iryna Gurevych. 2017. Parsing argumentation structures in persuasive essays. *Computational Linguistics*, 43(3):619–659.
- Saku Sugawara, Hikaru Yokono, and Akiko Aizawa. 2017. Prerequisite skills for reading comprehension: Multi-perspective analysis of mctest datasets and systems. In *Thirty-First AAAI Conference on Artificial Intelligence*.
- Reid Swanson, Brian Ecker, and Marilyn Walker. 2015. Argument mining: Extracting arguments from online dialogue. In *Proceedings of the 16th Annual Meeting of the Special Interest Group on Discourse and Dialogue*, pages 217–226.
- Eugenio Tacchini, Gabriele Ballarin, Marco L Della Vedova, Stefano Moret, and Luca de Alfaro. 2017. Some like it hoax: Automated fake news detection in social networks. In 2nd Workshop on Data Science for Social Good, SoGood 2017, pages 1–15. CEUR-WS.
- Simone Teufel et al. 1999. *Argumentative zoning: In*formation extraction from scientific text. Ph.D. thesis, Citeseer.
- James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. 2018. Fever: a large-scale dataset for fact extraction and verification. In *Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)*, volume 1, pages 809–819.

- Stephen E Toulmin. 2003. *The uses of argument*. Cambridge university press.
- Andreas Vlachos and Sebastian Riedel. 2014. Fact checking: Task definition and dataset construction. In Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pages 18–22.
- Henning Wachsmuth, Martin Potthast, Khalid Al Khatib, Yamen Ajjour, Jana Puschmann, Jiani Qu, Jonas Dorsch, Viorel Morari, Janek Bevendorff, and Benno Stein. 2017. Building an argument search engine for the web. In *Proceedings of the 4th Workshop on Argument Mining*, pages 49–59.
- William Yang Wang. 2017. "liar, liar pants on fire": A new benchmark dataset for fake news detection. In *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)*, volume 2, pages 422–426.
- Fan Zhang, Homa B Hashemi, Rebecca Hwa, and Diane Litman. 2017. A corpus of annotated revisions for studying argumentative writing. In *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, volume 1, pages 1568–1578.

A Supplemental Material

A.1 Statistics

We provide brief statistics on the sources of different content in our dataset in Table 4. In particular, this table shows:

- 1. the size of the data was collected from online debate websites (step 1).
- 2. the size of the data was filtered out (step 2a).
- 3. the size of the perspectives added by paraphrases (step 2b).
- 4. the size of the perspective candidates added by web (step 2c).

	Website	# of claims	# of perspectives	# of evidences
after step 1	idebate procon debatewise total	561 50 395 1006	4136 960 3039 8135	4133 953 3036 8122
after step 2a	idebate procon debatewise total	537 49 361 947	2571 619 1462 4652	- - - -
step 2b	paraphrases	-	4507	-
step 2c	web perspectives	-	2427	-

Table 4: The dataset statistics (See section 4).

A.2 Measure of agreement

We use the following definition formula in calculation of our measure of agreement. For a fixed subject (problem instance), let n_j represent the number of raters who assigned the given subject to the j-th category. The measure of agreement is defined as

$$\rho \triangleq \frac{1}{n(n-1)} \sum_{j=1}^{k} n_j (n_j - 1)$$

where for $n = \sum_{j=1}^{k} n_j$. Intuitively, this function measure concentration of values the vector $(n_1, ..., n_k)$. Take the edge cases:

- Values concentrated: $\exists j, n_j = n$ (in other words $\forall i \neq j, n_i = 0$) $\Rightarrow P = 1.0$.
- Least concentration (uniformly distribution): $n_1 = n_2 = ... = n_k \Rightarrow \rho = 0.0$.

This definition is used in calculation of more extensive agreement measures (e.g, Fleiss' kappa (Fleiss and Cohen, 1973)). There multiple ways of interpreting this formula:

Figure 6: Candidates retrieved from IR baselines vs Precision, Recall, F1, for T1 and T4 respectively.

- It indicates how many rater—rater pairs are in agreement, relative to the number of all possible rater—rater pairs.
- One can interpret this measure by a simple combinatorial notions. Suppose we have sets A₁,...A_k which are pairwise disjunct and for each j let n_j = |A_j|. We choose randomly two elements from A = A₁ ∪ A₂ ∪ ... ∪ A_k. Then the probability that they are from the same set is the expressed by ρ.
- We can write ρ in terms of $\sum_{i=1}^k (n_i n/k)^2/(n/k)$ which is the conventional *Chi-Square statistic* for testing if the vector of n_i values comes from the all-categories-equally-likely flat multinomial model.

A.3 crowdsourcing interfaces

Figure 7: Histogram of popular noun-phrases in our dataset. The y-axis shows count in logarithmic scale.

Figure 8: Graph visualization of three related example *claims* (colored in red) in our dataset with their *perspectives*. Each edge indicates a supporting/opposing relation between a perspective and a claim.

[
Instructions:	n evidence supports , undermines a given	claim Or if you are Not Sure		
For the given claim, annotate the paragr		ciam. Of it you are Not Sure.		
Note that in this task we are NOT askin	g for your personal oninions : instead our aim is	to discover perspectives that could possibly be		
convincing for those with different wor		to discover perspectives trial could possibly be		
Claim:				
We should expand NATO				
We should expulle 17410				
Perspective:				
the United States for European NA	ATO member states to meet their financial obli	gations to NATO.		
Q: Do you think the perspective sup	oports or undermines the claim?			
O Supports O Le	aning Support Leaning Undermines	Undermines Not a Valid Perspective		
		d evidence. In other words, do you think the evidence		
contain sufficient proof for each claim of Please solve the following examples, ac				
riease solve the following examples, ac	cording the above hist decions.			
Indicate whether each claim is su	pported by the given evidence:			
Evidence Keywords: cuba the emi	pargo the united states the cuban government			
Evidence:		Claim: Cuba deserves sanctions		
The 90% state-owned economy of	ensures that the Cuban government and	Supported Not supported		
	open trade with the United States, not	Claims. The United States is able to taxaet the Cuber		
private citizens. Foreign compani	es operating in Cuba are required to hire	Claim: The United States is able to target the Cuban government with its embargo while still providing		
	s are converted into local currency and	assistance to Cuban citizens.		
	500 wage becomes a \$21 paycheck. A ring said, "In Cuba, it's a great myth that we	Supported Not supported		
live off the state. In fact, it's the s		Claims Canadiana hayra tha Cuhan yangla		
		Claim: Sanctions harm the Cuban people. Supported Not supported		
	phrases for a given input opinion sentence.			
Note that this is NOT a survey . We are I	NOT asking for your personal opinions;			
Claim:	Opinion:			
Gay marriage should be legal		nanged over time, and the definition of marriage as		
	always being between one man and one wo	man is historically inaccurate.		
	Paraphrase 1:			
	Write a paraphrase to the above opinion here			
	Paraphrase 2:			
	Write a paraphrase to the above opinion here			
	Hints:	a man and a warmer		
	 Barack Obama: 'marriage is between Gay Marriage Should Not Be Legal 	а тап апи а woman		
	Should Gay Marriage Be Legal?			
	'Gay Marriage' and 'Marriage Equality			
	I think marriage should be between a			
	 Gay marriage legal definition of gay m Should Gay Marriage be Legal Nation 	-		
	Why marriage should be between a marriage.			
	· Secular marriage legal definition of Se	ocular marriage		

Figure 9: Interfaces shown to the human annotators. Top: the interface for verification of perspectives (step 2a). Middle: the interface for annotation of evidences (step 3a). Bottom: the interface for generation of perspective paraphrases (step 2b).

Te	opic Annotation Interface		
	ntence, select which topic(s) are relevant to the gi	ven sentence:	
se "Yes" for all topics that can apply. Choose at	t least one topic for each sentence.		
Sentence:	Topic: Culture	Yes	O No
Everyone should go vegetarian	Topic: Economy	Yes	O No
Everyone should go vegetarian	Topic: Education	O Yes	O No
	Topic: Environment	Yes	O No
	Topic: Freedom of Speech	Yes	No
	Topic: Health and Medicine	Yes	O No
	Topic: World/International	Yes	O No
	Topic: Law	Yes	No
	Topic: Philosophy	Yes	O No
	Topic: Politics	Yes	O No
	Topic: Religion	O Yes	O No
	Topic: Science and Technology	Yes	O No
	Topic: Society	Yes	O No
	Topic: Sports and Entertainments	O Yes	O No
	Topic: Digital Freedom	Yes	O No
	Topic: Human Rights	O Yes	O No
	Topic: Sex and Gender	Yes	O No
	Topic: Ethics	Yes	No

Figure 10: Annotation interface used for topic of claims (Section 4.1)