What is claimed is

- 1. A process for stabilising and at the same time phase compatibilising plastics or plastic compositions by incorporating polymeric compounds obtainable by reacting a compound selected from the group consisting of the sterically hindered phenols, sterically hindered amines, lactones, sulfides, phosphites, benzotriazoles, benzophenones and 2-(2-hydroxy-phenyl)-1,3,5-triazines, which compounds contain at least one reactive group, with a compatibilisator.
- 2. A process according to claim 1, wherein the sterically hindered phenols are

compounds of formula I $HO \xrightarrow{(R_1)_n} (R_2)_n$ (I), wherein

SUB_B2/

(

 R_1 and R_2 are each independently of the other hydrogen, C_1 - C_{25} alkyl, phenyl- C_1 - C_3 alkyl which is unsubstituted or substituted once or several times at the aromatic ring by OH or/and C_1 - C_4 alkyl, unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_{12} cycloalkyl, or phenyl;

n is 1, 2 or 3;

E is OH, SH, NHR₃, SO₃H, COOH, -CH=CH₂, —(CH₂)_m—CH—CH₂ or —P-R₄;

m is 0 or 1;

R₃ is hydrogen or C₁-C₉alkyl;

- R₄ is C₁-C₁₂alkyl, or phenyl which is unsubstituted or substituted by one or several C₁-C₄-alkyl, halogen or/and C₁-C₁₈alkoxy;
- A if E is OH, SH or -CH₂+CH₂, is -C_xH_{2x}-, -CH₂-S-CH₂CH₂-, -C_qH_{2q}-(CO)-O-C_pH_{2p}-, -C_qH_{2q}-(CO)-NH-C_pH_{2p}- or -C_qH_{2q}-(CO)-O-C_pH_{2p}-S-C_qH_{2q}-;
- x is a number from 0 to 8;
- p is a number from/2 to 8;
- q is a number from 0 to 3;

R₁ and n are as defined above; or

- A if E is -NHR₃, is - C_xH_{2x} or - C_qH_{2q} -(CO)-NH- C_pH_{2p} , wherein x, p and q have the meanings cited above; or
- A if E is COOH or SO₃H, is -C_xH_{2x}-, -CH₂-S-CH₂- or -CH₂-S-CH₂CH₂-, wherein x has the meaning cited above; or
- A if E is $-(CH_2)_m$ $-CH_2$, is a direct bond, $-C_qH_{2q}$ - $(CO)_m$ -O- CH_2 or $-C_xH_{2x}$ -S- CH_2 -, wherein q, m, x, R₁ and R₂ are/as defined above;
- A if E is $-P-R_4$, is $-CH_2-$.
- 3. A process acording to claim 1, wherein the sterically hindered amines are compounds

SUB_ B2/

of formula II, IIa or IIb R₈ N CH₃ CH₃ (II)

R₈ is hydrogen, C₁-C₂salkyl, C₂-C₂₀alkenyl, C₂-C₂₀alkynyl, C₁-C₂₀alkoxy, phenyl-C₁-C₃alkyl, C₅-C₁₂cycloalkyl, C₅-C₈cycloalkoxy, phenyl, naphthyl, hydroxyethyl, CO-C₁-C₂₅alkyl, CO-phenyl, CO-naphthyl, CO-phenyl-C₁-C₃alkyl, O-CO-C₁-C₂₀alkyl or C₁-C₆alkyl-S-C₁-C₆alkyl, C₁-C₆alkyl-O-C₁-C₆alkyl,

- w is a number from 1 to 10;
- Y is a single bond, C_1 - C_{25} alkylene, phenylene, biphenylene, naphthylene, R_9 - C_1 - C_{25} alkylene, -NR₉-, -O- or R_9 - C_1 - C_2 5alkylene;
- **Z** is hydrogen, -COOR₉, -NH₂, -OR₉, hydroxyethyl, $-CH_2$ -CH- CH_2 or -C-C- CH_2 ;
- R₉ is hydrogen or C₁-C₁₂alkyl;
- R₁₀ has the same definition as R₈.
- 4. A process according to claim 1, wherein the lactones are compounds of formula III

$$R_{11}$$
 R_{12}
 R_{13}
 R_{12a}
(III), wherein

5UB B2/

Ċ

R₁₁, R₁₂, R_{12a} and R₁₃ are each independently of one another hydrogen, C₁-C₂₅alkyl, phenyl-C₁-C₃alkyl, C₅-C₁₂cycloalkyl or phenyl; and

- G is OH, OCH₂CH₂OH, -O-CH₂-CH-CH₂ or -OCH₂COOH.
- 5. A process according to claim 1, wherein the sulfides are compounds of formula IV

$$R_{15}$$
 $-S$ $-R_{16}$ (IV), wherein

 R_{15} is C_1 - C_{18} alkyl, benzyl, phenyl or $P = (OR_{17})_2$; and

R₁₆ is -CH₂CH₂OH -CH₂-CH-CH₂, -CH₂COOH or -CH₂CH₂COOH; and

R₁₇ is C₁-C₁₈alkyl or unsubstituted or C₁-C₄alkyl-substituted phenyl.

6. A process according to claim 1, wherein the phosphites are compounds of formula V

$$R_{16a} - P - (OR_{17a})_2$$
 (V), wherein

 $R_{16a} \;\; \text{is -CH}_2\text{CH}_2\text{OH} \; \text{or -CH}_2\text{CH}_2\text{COOH}; \; \text{and} \;\;$

R_{17a} is C₁-C₁₈alkyl or unsubstituted or C₁-C₄alkyl-substituted phenyl.

7. A process according to claim 1, wherein the benzotriazoles, benzophenones and 2,4,6-triaryl-1,3,5-triazines are compounds of formula VI, VIa, VIb or VIc

$$SUB - B^2/$$

R₁₈ is -(CH₂)₁-R₂₀, —
$$\phi$$
 - CH₂-CH-CH₂ or NH₂

 R_{19} is C_1 - C_{12} alkyl, α_{ν} α -dimethylbenzyl or a radical

(VIa),

(VIc), wherein

R₂₀ is -OH, -SH, -NHR₃₀, -SO₃H, -COOR₂₁, -CH=CH₂, -(CH₂)_m-CH-CH₂ or -(CO)-NH-(CH₂)_u-NCO;

R₂₁ is hydrogen, -CH₂-CH-CH₂ or -CH₂-CH(OH)-CH₂-O-(CO)-R₂₂;

R₂₂ is C₁-C₄alkyl or phenyl;

R₂₃ and R₂₄ are each independently of the other hydrogen or C₁-C₄alkyl;

R₂₅ is hydrogen, -(CH₂)ս-OH, —CH₂—CH−CH₂ ,-(CH₂)սCOOH or -(CO)-NH-(CH₂)ս-NCO;

 R_{26} is hydrogen, OH or C_1 - C_{12} alkoxy;

R₂₇ is hydrogen or OH;

R₂₈ is hydrogen or -CH₂ OH C

R₂₉ is hydrogen or halogen;

R₃₀ is hydrogen or C₁-C₉alkyl;/

m is 0 or 1;

t is a number from 0 to 6;

u is a number from 2 to/12.

8. A process according to claim 1, wherein the compatibiliser compound is a polymer containing acid groups, acid anhydride groups, ester groups, epoxy groups or alcohol groups or wherein the compatibiliser compound is a copolymer or terpolymer of polyethylene, polypropylene, vinyl acetate or styrene with acrylic acid.

9. A process according to claim 8, wherein the compatibiliser compound is a polymer with acrylic acid (AA) function, glycidyl methacrylate (GMA) function, methacrylic acid (MAA) function, maleic anhydride (MAH) function or vinyl alcohol (VA) function.

10. A process according to claim 8, wherein the compatibiliser compound is a copolymer consisting of polyethylene acrylic acid (PE-AA), polyethylene glycidyl methacrylate (PE-GMA), polyethylene methacrylic acid (PE-MAA) or polyethylene maleic anhydride (PE-MAH) or a terpolymer of polyethylene and vinyl acetate with acrylic acid or a terpolymer of polyethylene and acrylates with acrylic acid.

11. A process according to claim 8, wherein the compatibiliser compound is a grafted polyethylene or polypropylene copolymer selected from the group consisting of maleic anhydride grafted to polyethylene vinyl acetate (MAH-g-PE-vinyl acetate), maleic anhydride grafted to low density polyethylene (MAH-g-LDPE), maleic anhydride grafted to high density

SUB B2/ polyethylene (MAH-g-HDPE), maleic anhydride grafted to linear low density polyethylene (MAH-g-LLDPE), acrylic acid grafted to polypropylene (AA-g-PP), glycidyl methacrylate grafted to polypropylene (GMA-g-PP), maleic anhydride grafted to polypropylene (MAH-g-PP), maleic anhydride grafted to ethylene/propylene terpolymer (MAH-g-EPDM), maleic anhydride grafted to ethylene/propylene rubber (MAH-g-EPM) and maleic anhydride grafted to polyethylene/polypropylene copolymer (MAH-g-PE/PP).

12. A process according to claim 8, wherein the compatibiliser compound is a grafted styrene co- or terpolymer selected from the group/consisting of styrene/acrylonitrile grafted with maleic anhydride (SAN-g-MAH), styrene/maleic anhydride/methyl methacrylate, styrene/butadiene/styrene block copolymer grafted with maleic anhydride (SBS-g-MAH), styrene/ethylene/propylene/styrene block copolymer grafted with maleic anhydride (SEPS-g-MAH), styrene/ethylene/butadiene/styrene/block copolymer grafted with maleic anhydride (SEPS-g-MAH) and acrylic acid/polyethylene/polystyrene terpolymer (AA-PE-PS-terpolymer).

Br/

(

- 13. A process according to claim 8, wherein the compatibiliser compound is a vinyl alcohol copolymer.
- 14. A process according to claim 1/ wherein the polymers to be stabilised are at least two different polymers.
- 15. A process according to claim 1, wherein the polymers to be stabilised are recycled material.
- 16. A compound obtainable/by reacting sterically hindered phenois of formula I

m is 0 or 1;

R₃ is hydrogen or C₁-C₉alkyl;

R₄ is C₁-C₁₂alkyl, phenyl which is unsubstituted or substituted by one or several C₁-C₄-alkyl, halogen or/and C₁-C₁₈alkøxy;

A if E is OH, SH or -CH=CH₂, is $C_xH_{2x^-}$, -CH₂-S-CH₂CH₂-, -C_qH_{2q}-(CO)-O-C_pH_{2p}-, -C_qH_{2q}-(CO)-NH-C_pH_{2p}- or -C_qH_{2q}-(CO)-O-C_pH_{2p}-S-C_qH_{2q}-;

x is a number from 0 to 8;

p is a number from 2 to 8;

q is a number from 0 to 3;

R₁ and n are as defined above; or

A if E is -NHR₃, is - C_xH_{2p} or - C_qH_{2q} -(CO)-NH- C_pH_{2p} -, wherein x, p and q have the meanings cited above; or

A if E is COOH or SO₃H, is -C_xH_{2x}-, -CH₂-S-CH₂- or -CH₂-S-CH₂CH₂- , wherein x has the meaning cited above; or

A if E is $-(CH_2)_{m}$ $CH-CH_2$, is a direct bond, $-C_qH_{2q}$ -(CO)-O-CH₂- or $-C_xH_{2x}$ -S-CH₂-, wherein q, m, x, R₁ and R₂ are as defined above;

A if E is
$$-P - R_4$$
, is $-CH_2$;

or sterically hindered amines of formula II, IIa or IIb

R₈ is hydrogen, C₁-C₂₅alkyl, C₂-C₂₀alkenyl, C₂-C₂₀alkynyl, C₁-C₂₀alkoxy, phenyl-C₁-C₃alkyl, C₅-C₁₂cycloalkyl, C₅-C₈cycloalkoxy, phenyl, naphthyl, hydroxyethyl, CO-C₁-C₂₅alkyl, CO-phenyl, CO-naphthyl, CO-phenyl-C₁-C₃alkyl, O-CO-C₁-C₂₀alkyl or C₁-C₆alkyl-S-C₁-C₆alkyl, C₁-C₆alkyl-O-C₁-C₆alkyl,

 C_1 - C_6 alkyl-(CO)- C_1 - C_6 alkyl- CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - CH_3 or $-CH_2$ - CH_3 ;

w is a number from 1 to 10;

Y is a single bond, C_1 - C_{25} alkylene, phenylene, biphenylene, naphthylene, R_9 —C=O-O- C_1 - C_{25} alkylene, -N R_9 -, -O- or —N- C_1 - C_{25} alkylene;

Z is hydrogen, -COOR₉, -NH₂, -OR₉, hydroxyethyl, -CH₂--CH-CH₂ or -C-C=CH₂;

 R_9 is hydrogen or C_1 - C_{12} alkyl;

R₁₀ has the same definition as R₈;

or lactones of formula/III

$$R_{11}$$
 R_{12}
 R_{13}
 R_{13}
 R_{12a}
(III), wherein

R₁₁, R₁₂, R_{12a}/and R₁₃ are each independently of one another hydrogen, C₁-C₂₅alkyl,

VIc

phenyl-C₁-C₃alkyl, C₅-C₁₂cycloalkyl or phenyl; and

G is OH, OCH₂CH₂OH, −CH₂−CH−CH₂/or -OCH₂COOH;

or sulfides of formula IV

$$R_{15}$$
 $\rightarrow S$ $\neq R_{16}$ (IV), wherein

 R_{15} is C_1 - C_{18} alkyl, benzyl, phenyl or P- $(OR_{17})_2$; and

 $m R_{16}$ is -CH₂CH₂OH, —CH₂—CH $m -CH_2$, -CH₂COOH or -CH₂CH₂COOH; and

R₁₇ is C₁-C₁₈alkyl or unsubstituted or C₁-C₄alkyl-substituted phenyl; or phosphites of formula V

$$R_{16a} = P - (OR_{17a})_2$$
 (V), wherein

R_{16a} is -CH₂CH₂OH or -CH₂CH₂COOH; and

R_{17a} is C₁-C₁₈alkyl or unsubstituted or C₁-C₄alkyl-substituted phenyl; or benzotriazoles, benzophenones or 2,4,6-triaryl-1,3,5-triazines of formula VI, VIa, VIb or

 R_{18} is -(CH_2),- R_{20} , ---O- CH_2 -CH- CH_2 or NH_2 ;

 R_{19} is C_1 - C_{12} alkyl, α, α -dimethylbenzyl or a radical $-CH_2$ HO
N
N

R₂₀ is -OH, -SH, -NHR₃₀, -SO₃H, -COOR₂₁, -CH=CH₂, -(CH₂)_m-CH-CH₂ or -(CO)-NH-(CH₂)_u-NCO;

R₂₁ is hydrogen, -CH₂-CH₂-CH₂-CH₂-CH(OH)-CH₂-O-(CO)-R₂₂;

R₂₂ is C₁-C₄alkyl or phenyl;

R₂₃ and R₂₄ are each independently/of the other hydrogen or C₁-C₄alkyl;

 R_{25} is hydrogen, -(CH₂)_u-OH, -¢H₂-CH-CH₂,-(CH₂)_uCOOH or -(CO)-NH-(CH₂)_u-NCO;

R₂₆ is hydrogen, OH or C₁-C₁₂a/koxy;

R₂₇ is hydrogen or OH;

SUB_ BZ/

R₂₈ is hydrogen or —CH₂

R₂₉ is hydrogen or halogen;

R₃₀ is hydrogen or C₁-C₉alkyl;

m is 0 or 1;

t is a number from 0 to 6;

u is a number from 2 to 12;

with a compatibiliser compound.

17. Use of compounds according to claim 16 as stabilisers and at the same time as phase compatibilisers in plastics or plastic compositions.