Edge Colorings of Graphs

Let G be a graph. A k-edge-coloring of G is a mapping

$$c: E(G) \mapsto \{1,2,...,k\}.$$

A edge-coloring c is *proper* if no two adjacent edges are assigned the same color. A graph G is k-edge-colorable (k-边可染的) if G has a proper k-edge-coloring.

The minimum integer k for which a graph G is k-edge-colorable

is called the *edge chromatic number* (边色数) of G, and denoted $\chi'(G)$.

If $\chi'(G) = k$, the graph G is said to be k-edge-chromatic (k-边色的).

Proposition 8. Let G be a connected graph with $\Delta(G) = \Delta$. Then

$$\chi'(G) \geq \Delta$$
.

A 4-edge-chromatic graph

Edge Colorings of Bipartite Graphs

Theorem 21. If G is a bipartite graph with $\Delta(G) = \Delta$, then $\chi'(G) = \Delta$.

Proof. By induction on the size m. Let e = uv be an edge of G.

We assume that $H = G \setminus e$ has a Δ -edge-coloring $\{M_1, M_2, \dots, M_{\Delta}\}$.

If some color is available for e,

that color can be assigned to e to yield a Δ -edge-coloring of G.

So we may assume that each of the Δ colors is represented either at u or at v.

Because the degree of u in $G \setminus e$ is at most $\Delta - 1$,

at least one color i is available at u, hence represented at v.

Likewise, at least one color j is available at v and represented at u.

Consider the subgraph $H_{ii} = G[M_i \cup M_i]$.

Because u has degree one in H_{ij} , the component containing u is an ij-path P.

This *ij*-path P does not terminate at v.

For if it did, it would be of even length, starting with an edge colored j and ending with an edge colored i, and P + e would be a cycle of odd length in G, contradicting the hypothesis that G is bipartite.

Interchanging the colors on P, we obtain a new Δ -edge-coloring of H with respect to which the color j is available at both u and v.

Assigning color j to e, we obtain a Δ -edge-coloring of G.

Theorem 22(Vizing). For any simple graph G with $\Delta(G) = \Delta$, $\chi'(G) \leq \Delta + 1$.

Lemma 4. Let G be a simple graph with $\Delta(G) = \Delta$, v a vertex of G, e an edge of G incident to v, and k an integer, $k \geq \Delta$.

Suppose that $G \setminus e$ has a k-edge-coloring c for which every neighbor of v in G has at least one available color. Then G is k-edge-colorable.

Proof. Consider the restriction \tilde{c} of c to G - v.

If c_0 is available at u and c_i is available at u_i such that $c_i \neq c_j$ for $0 \leq i < j \leq \ell$, then

For convenience, study the bipartite graph H[X, Y], where $X = N_G(v)$ and $Y = \{1, 2, ..., k\}$, and vertices $x \in X$ and color $i \in Y$ being adjacent if color i is available at vertex x in the restriction \tilde{c} of c to G - v.

If H has a matching covering X, then we can obtain a k-edge-coloring of G by combining this with \tilde{c} :

In particular, for any u_i , the color of the edge vu_i is available at in G - v, so H contains the matching

$$M = \left\{ (u_i, c(vu_i)) : 1 \le i \le \ell \right\}.$$

We may suppose that H has no matching covering X.

Our goal is to modify the coloring c to a coloring c' so that the corresponding bipartite graph H' does contain a matching covering X.

By hypothesis, each vertex u_i is incident with at least one edge of $H \setminus M$, and the vertex u is incident with at least one such edge as well, because

$$d_{G \setminus e}(u) = d_G(u) - 1 \le \Delta(G) - 1 \le k - 1.$$

Therefore, each vertex of X is incident with at least one edge of $H \setminus M$.

Denote by Z the set of all vertices of H reachable from u by M-alternating paths, and set $R = X \cap Z$ and $B = Y \cap Z$. As in the proof of Hall's Theorem, $N_H(R) = B$ and B is matched under M with $R \setminus \{u\}$, so |B| = |R| - 1.

Because at least one color is available at each vertex of R and |B| = |R| - 1, some color $i \in B$ is available at two vertices x_1, x_2 of R.

Note that every color in B is represented at v, because B is matched under M with $R \setminus \{u\}$. In particular, color i is represented at v.

Because the $d_{G\setminus e}(v) \leq k-1$, some color j is available at v. Observe that j is not in B because every color in B is represented at v. Thus, j is represented at every vertex of R, in particular, at both x_1 and x_2 . Let us return to consider the graph $G \setminus e$. By the above observations, each of the three vertices v, x_1 and x_2 , is an end of an ij-path in $G \setminus e$.

Consider the ij-path starting at v. Evidently, this path cannot terminate at both x_1 and x_2 . We may suppose that the path starting at v does not terminate at x_2 , and let z be the terminal vertex of the ij-path P starting at x_2 . Interchanging the colors i and j on P, we obtain a new coloring c' of $G \setminus e$.

Let H'[X, Y] be the bipartite graph corresponding to c'. The only differences in the edge sets of H and H' occur at x_2 and possibly z (if $z \in X$). Moreover, because v does not lie on P, the matching M is still a matching in H'.

Consider the alternating ux_2 -path Q in H.

If z lies on Q, then $z \in R$ and the path uQz is still an M-alternating path in H', as it terminates with an edge of M.

Also, because j is not in B, the path P must have originally terminated at z in an edge of color j, and now terminates in an edge of color i.

With respect to the coloring c', the color j is therefore available at z, and Q' = uQzj is an M-augmenting path in H'.

If z does not lie on Q, then $Q' = uQx_2j$ is an M-augmenting path in H'.

Set $M' = M \Delta E(Q')$.

Then M' is a matching in H' which covers every vertex in X.

Example 4. 4-edge coloring of Petersen graph

A 4-edge coloring c of $G \setminus e$

Corresponding bipartite graph H

The *ij*-path from v (to u) and the *ij*-path P from t to z

A 4-edge coloring c' of $G \setminus e$

A 4-edge coloring c' of $G \setminus e$

Corresponding bipartite graph H', an M-augmenting u-path Q

A matching in H' covering X

The resulting 4-edge coloring of G

Exercise 7.

- 1. Show that $\chi'(G) = 4$ if G is Petersen graph.
- 2. Let G be a graph of oder n and size m with maximum degree Δ . Show that if $m > \lfloor n/2 \rfloor \Delta$, then $\chi'(G) = \Delta + 1$.