Stock Portfolio Management Report

#1 Monthly Return

	AXP	MMM	GS	MCD	NKE	
	American Express	3M	Goldman Sachs	McDonald's	Nike	S&P500
mean	0.0080	0.0100	0.0076	0.0102	0.0193	0.0032
std	0.0922	0.0573	0.0917	0.0563	0.0765	0.0419

Monthly return is calculated through P_t/P_{t-1} -1 using the stock price given in the table. From monthly return, mean is calculated by "=AVERAGE()" function with monthly return during 2000-01 to 2018-12 for each stock. Standard deviation is calculated by "=STDEV.S()" function with the same data.

#2 Monthly Excess Return

· ·							
	AXP	MMM	GS	MCD	NKE		
	American Express	3M	Goldman Sachs	McDonald's	Nike	S&P500	
mean	0.0066	0.0087	0.0062	0.0089	0.0179	0.0019	
std	0.0924	0.0574	0.0917	0.0564	0.0765	0.0421	

Monthly excess return is calculated by "monthly return of stock" – "monthly return of T-bills". We get return of T-bill by dividing the given risk-free rate by 12. With monthly excess return data, mean is calculated by "=AVERAGE()" function with monthly return during 2000-01 to 2018-12 for each stock. Standard deviation is calculated by "=STDEV.S()" function with same data, just as in #1

#3	Market Risk Premium	0.0019
	Average Risk-free Rate	0.0013

Market risk premium is a mean of excess return of market portfolio which is S&P 500. We calculated this with "=AVERAGE()" function with the excess return data of S&P 500. Average risk free rate is mean of the return of risk free asset, T-bill. We get the number by "=AVERAGE()" function with the data of monthly return of T-bill.

#4				Alpha	<i>t</i> -stat	<i>p</i> -value	Beta	t-stat	<i>p</i> -value	\mathbb{R}^2
	1	AXP	American Express	0.0039	0.8392	0.4022	1.4303	12.9375	0.0000	0.4255
	2	MMM	3M	0.0071	2.3074	0.0219	0.7962	10.8264	0.0000	0.3415
	3	GS	Goldman Sachs	0.0035	0.7645	0.4454	1.4459	13.3552	0.0000	0.4411
	4	MCD	McDonald's	0.0077	2.3441	0.0199	0.6558	8.4397	0.0000	0.2396

This table is a result of regression analysis with the stock prices. We regress excess return of stock on excess return of market risk premium, which is excess return of S&P 500. For example, using regression analysis tool of the excel, we put excess return of American express on the Y variables, and put excess return of S&P 500 on the X variables.

Alpha is a value of the intercept in the regression result, t-stat is the value of t statistics for alpha(intercept), and p-value is the p-value of alpha(intercept) used for testing significance. Beta is the regression coefficient of S&P 500, t-stat is the value of test statistics for beta(S&P 500), and p-value is the p-value of S&P 500. R² is a value of coefficient of determination.

1	요약 출력								
2									
3	회귀분석	부 통계량							
4	다중 상관기	0.652297							
5	결정계수	0.425491							
6	조정된 결정	0.422949							
7	표준 오차	0.070167							
8	관측수	228							
9									
10	분산 분석								
11		자유도	제곱합	제곱 평균	FΗ	유의한 F			
12	회귀	1	0.824066	0.824066	167.3794	5.1E-29			
13	잔차	226	1.112676	0.004923					
14	계	227	1.936742						
15									
16		계수	표준 오차	t 통계량	P-값	하위 95%	상위 95%	하위 95.0%	상위 95.0%
17	Y 절편	0.003904	0.004652	0.839229	0.402228	-0.00526	0.01307	-0.00526	0.01307
18	S&P500	1.430314	0.110556	12.93752	5.1E-29	1.212463	1.648166	1.212463	1.648166
19									

Captured picture is an example of the regression output

			w1	w2	w3	w4	w5
#5			0	0	0	0	0
		Covariance	AXP	MMM	GS	MCD	NKE
w1	0	AXP	0.008505	0.002675	0.003447	0.001587	0.002768
w2	0	MMM	0.002675	0.003285	0.001778	0.000853	0.001554
w3	0	GS	0.003447	0.001778	0.008413	0.001283	0.002088
w4	0	MCD	0.001587	0.000853	0.001283	0.003174	0.001606
w5	0	NKE	0.002768	0.001554	0.002088	0.001606	0.00585

We can covariance with "=COVARIANCE.S()" function. Using the monthly return or excess return of each stocks, (since covariance is independent to addition or subtraction), we can calculate the covariance of the returns on each two sets of stocks. For example, covariance of the returns on AXP and MMM can be calculated by =COVARIANCE.S(I5:I232, J5:J232).

MV Frontier	w1	w2	w3	w4	w5	min var	min std	mean
0.029	-0.53635	0.14861	-0.33733	-0.12071	1.84578	0.01643	0.12818	0.029
0.025	-0.42876	0.21271	-0.24753	0.00520	1.45838	0.01074	0.10362	0.025
0.021	-0.32117	0.27681	-0.15773	0.13110	1.07098	0.00646	0.08037	0.021
0.017	-0.21358	0.34091	-0.06792	0.25700	0.68359	0.00360	0.05997	0.017
0.013	-0.10599	0.40501	0.02188	0.38290	0.29619	0.00215	0.04637	0.013
0.009	0.00160	0.46912	0.11168	0.50881	-0.09120	0.00212	0.04604	0.009
0.005	0.10919	0.53322	0.20149	0.63471	-0.47860	0.00351	0.05921	0.005
0.001	0.21678	0.59732	0.29129	0.76061	-0.86600	0.00631	0.07942	0.001

We can use the solver for the minimum variance frontier. Our target is to minimize variance, so choose target=pf Var, minimize. The variable cells are the weight on stocks variable (w1, w2, w3, w4, w5), since we are choosing stock weights through which we can get minimum variance at a given mean. Finally, we have two constraints: (1) the sum of stock weights should equal 1 and (2) the portfolio mean should be the given value of mean. The solver setting is attached below.

Setting the solver settings as above, we can get the weights as well as the portfolio variance, given the target mean.

MV Fronti	w1	w2	w3	w4	w5	min var	min std	mean
0.0290	-0.5363	0.1486	-0.3373	-0.1207	1.8458	0.0164	0.1282	0.0290

For example, the results for the mean=0.0290 is as above. It can be interpreted that for the given mean 0.0290, the portfolio with smallest variance can be formed with the weights from the result, and the corresponding variance will be 0.0164. Graphically, if we draw a horizontal line for E(r)=0.0290 it would meet the MVF curve at std(sigma)=0.1282.

Repeating the procedure for each of the mean values, we can earn the MVF table.

#7

ax Sharpe atio		0.2635					
	Mean	0.0155					
	Variance	0.0029					
	Std	0.0539					
w1	w2	w3	w4	w5	var	std	mean
-0.174203	0.364374	-0.035045	0.303095	0.541779	0.002903	0.05388	0.015536

To get the optimal risky portfolio of the five stocks, we again use the MS Excel Solver function to get the ORP with the maximum sharpe ratio. Our target is to maximise pf Sharpe ratio, so choose target=pf S-ratio, maximise. The variable cells are the weight on stocks variable (w1, w2, w3, w4, w5), since we are choosing stock weights of a portfolio through which we can get the maximum Sharpe ratio when combined with the risk-free asset. Finally, we have one constraint: the sum of stock weights should equal 1. The solver setting is attached below.

Now we get the maximised pf S-ratio and each weight. Since weights are newly filled, the adjusted pf Var and pf Mean are also automatically renewed. We copy and paste these values to fill in the yellow shaded tables.

#8	Treynor-Black Sharpe Ratio	0.0646	
	weight on passive portfo	olio	0.1984
	weight on active portfol	io	0.8016
	weight on N	ИCD	0.5780
	weight on N	NKE	0.2236

Here, we first construct a new table of an active portfolio A that consists of MCD and NIKE where each (monthly) alphas of the two stocks are 0.0020 and 0.0015, respectively. See the table below. From the result of the regression analysis of MCD and NIKE done in previous problems, we get the estimate for beta and var(e) by the regression coefficient of S&P500 and MSE(or Mean Squared Residual), respectively. Then we get the optimal weight for each stock in this active portfolio stock by calculating =(alpha/var(e)[stock i])/sum. With this weights, we calculate each alpha and beta of the active pf by calculating weighted average of each individual components. For var(e), we have sum of wi^2var(ei). Then with the formula of Treynor-Black model, we calculate w(0), w*(A), and w*(M), using the S&P 500 index fund as a passive, market portfolio. All the explained results are given below by the table.

	MCD	NKE		
alpha	0.0020	0.0015		
beta	0.6558	0.8070		
var(e)	0.0024	0.0047		
alpha/var(e)	MCD	0.822279	weight on MCD	0.721041
alpha/var(e) MCD alpha/var(e) NKE		0.318126	weight on NKE	0.278959
sum	TVICE	1.140405	Weight off TVKE	0.270333
-				
alpha (portf	olio A)	0.001861		
beta (portfo	lio A)	0.697984		
var(e) (portf	olio A)	0.001631		
w(0)		1.057638		
w*(A)		0.801591		
w*(M)		0.198409		
market shar	ne ratio	0.045222		

Since we have calculated the weight on passive portfolio and the weight on active portfolio by the formula, we fill in the yellow blanks. For the weight on MCD and NKE, we multiply the weight on active pf and the weight on each individual stock inside the active pf. For example, for MCD, we get =AA92*AI96=0.721041*0.801591=0.5780

Finally, we calculate the Treynor-Black Sharpe Ratio by

- =SQRT((market sharpe ratio)^2+(alpha of portfolio A)^2/(var(e) of portfolio A))
- =SQRT(AE108 2 +AE100 2 /AE102)
- =0.0646