Álgebra Linear I

Professora Kelly Karina

Definição

Exemplos Interseção de dois subespaços vetoriais Soma de dois subespaços vetoriais

Definição:

Sejam V um espaço vetorial. Se S é um subconjunto não vazio de V tal que, com as operações (soma e produto por escalar) de V também é um espaço vetorial, então dizemos que S é um subespaço vetorial de V.

Observações:

- S herda várias propriedades de V;
- É necessário verificar se a soma e o produto por escalar são operações fechadas em *S*.

Definição

Teorema:

Um subconjunto S, não-vazio, de um espaço vetorial V é um subespaço vetorial de V se forem satisfeitas as seguintes condições:

- Para quaisquer $u, v \in S$ tem-se $u + v \in S$;
- Para quaisquer $u \in S$ e $k \in \mathbb{R}$, tem-se $ku \in S$.

Demonstração: Exercício.

Seja $V=\mathbb{R}^2$ munido das operações usuais. O conjunto $S_1=\{(x,y)\in\mathbb{R}^2;y=3x\}$ é um subespaço vetorial de V.

Demonstração:

- Note que $S_1 \neq \emptyset$, pois $(0,0) \in S_1$.
- Sejam agora $u=(x_1,y_1)$ e $v=(x_2,y_2)$ elementos de S_1 (e portanto $y_1=3x_1,y_2=3x_2$).

Podemos escrevê-los então como $(x_1, 3x_1)$ e $(x_2, 3x_2)$.

$$u + v = (x_1, y_1) + (x_2, y_2)$$

$$= (x_1, 3x_1) + (x_2, 3x_2)$$

$$= (x_1 + x_2, 3x_1 + 3x_2)$$

$$= (x_1 + x_2, 3(x_1 + x_2))$$

Ou seja $u + v \in S_1$ (pois a segunda coordenada é o triplo da primeira).

• Seja $k \in \mathbb{R}$ e $u = (x, y) \in S_1$.

$$ku = k(x,y)$$

$$= k(x,3y)$$

$$= (kx,k3y)$$

$$= (kx,3(kx))$$

Ou seja $ku \in S_1$ (pois aqui a segunda coordenada também é o triplo da primeira).

Concluimos que S_1 é subespaço vetorial de V.

Definicão

Exemplo:

Seja $V=\mathbb{R}^2$ munido das operações usuais. O conjunto $S_2=\{(x,y)\in\mathbb{R}^2;y=x+1\}$ não é um subespaço vetorial de V.

Por que S_2 não é um subespaço vetorial de V?

$$0=(0,0)\notin S_2.$$

Ou ainda, note que se u=(x,x+1) e v=(y,y+1) são elementos de S_2 então $u+v=(x+y,x+y+2)\notin S_2$.

O conjunto $S = \{(x, y); x \in \mathbb{R}, y = |x|\}$ não é um subespaço vetorial do \mathbb{R}^2 .

Note que $0 = (0, 0) \in S$;

Mas, observe que $u = (1,1) \in S$, $v = (-1,1) \in S$ mas $u + v = (0,2) \notin S$.

Segue que S não é subespaço vetorial de V.

Seja $V=\mathbb{R}^3$, com as operações usuais. O conjunto $S=\{(x,y,z); x+2y-z=0\}$ é um subespaço vetorial de V.

Observações:

 Este conjunto representa um plano que passa pela origem, de forma que sabemos que de fato é um subespaço.

Seja
$$V=M(2,2)=\left\{\left[\begin{array}{cc}a&b\\c&d\end{array}\right];a,b,c,d\in\mathbb{R}\right\}.$$

O conjunto
$$S = \left\{ \begin{bmatrix} a & 0 \\ c & 0 \end{bmatrix}; a, c, \in \mathbb{R} \right\}$$
 é um subespaço vetorial de V .

Definição:

Seja V um espaço vetorial e sejam ainda S_1 e S_2 subespaços vetoriais de V. A interseção S de S_1 e S_2 (que denotaremos por $S=S_1\cap S_2$) é o conjunto dos vetores de V que pertencem a S_1 e a S_2 . Em símbolos:

$$S = S_1 \cap S_2 = \{v \in V; v \in S_1 \text{ e } v \in S_2\}$$

Teorema:

A interseção S de dois subespaços vetoriais S_1 e S_2 de V é um subespaço vetorial de V.

Ideia da dem:

$$u, v \in S = S_1 \cap S_2 \qquad \rightarrow \qquad \begin{cases} u \in S_1, v \in S_1 & \rightarrow & u + v \in S_1 \\ u \in S_2, v \in S_2 & \rightarrow & u + v \in S_2 \end{cases}$$

$$\rightarrow \qquad u + v \in S_1 \cap S_2 = S$$

$$u \in S = S_1 \cap S_2, k \in \mathbb{R} \qquad \rightarrow \qquad \begin{cases} u \in S_1 & \rightarrow & ku \in S_1 \\ u \in S_2 & \rightarrow & ku \in S_2 \end{cases}$$

$$\rightarrow \qquad ku \in S_1 \cap S_2 = S$$

• Considere o espaço vetorial $V=\mathbb{R}^3$ com as operações usuais e os seguintes subespaços vetoriais:

$$S_1 = \{(x, y, 0); x, y \in \mathbb{R}\}$$

$$S_2 = \{(x, 0, z); x, z \in \mathbb{R}\}$$

Temos então que $S_1 \cap S_2 = \{(x,0,0); x \in \mathbb{R}\}.$

Seja $V = M_2(\mathbb{R})$ com as operações usuais e os seguintes subespaços vetoriais:

$$S_1 = \left\{ \left(egin{array}{cc} a & b \ 0 & 0 \end{array}
ight); a,b \in \mathbb{R}
ight\}$$

$$S_2 = \left\{ \left(egin{array}{cc} a & 0 \ 0 & d \end{array}
ight); a, d \in \mathbb{R}
ight\}$$

Temos então que $S_1\cap S_2=igg\{\left(egin{array}{cc}a&0\0&0\end{array}
ight);a\in\mathbb{R}igg\}.$

Definição:

Seja V um espaço vetorial e sejam S_1 e S_2 subespaços vetoriais de V. A soma de S_1 e S_2 (que denotaremos por $S=S_1+S_2$) é o conjunto de todos os vetores de V que são a soma de um vetor de S_1 e um vetor de S_2 . Em símbolos:

$$S = S_1 + S_2 = \{ v \in V; v = v_1 + v_2 \text{ onde } v_1 \in S_1 \text{ e } v_2 \in S_2 \}$$

Teorema:

A soma de dois subespaços vetoriais S_1 e S_2 de V é um subespaço vetorial de V.

Ideia da dem:

$$u, v \in S = S_1 + S_2 \rightarrow \begin{cases} u = u_1 + u_2; \ u_1 \in S_1, u_2 \in S_2 \\ v = v_1 + v_2; \ v_1 \in S_1, v_2 \in S_2 \end{cases}$$

$$\rightarrow u + v = u_1 + u_2 + v_1 + v_2$$

$$= (u_1 + v_1) + (u_2 + v_2)$$

$$Como \begin{cases} u_1 + u_2 \in S_1 \\ v_1 + v_2 \in S_2 \end{cases}$$
Segue que $u + v \in S_1 + S_2 = S$

$$u \in S = S_1 + S_2, k \in \mathbb{R}$$
 \rightarrow $u = u_1 + u_2; u_1 \in S_1, u_2 \in S_2$ $ku = k(u_1 + u_2) = ku_1 + ku_2$ $Como$ $ku_1 \in S_1$ $kv_1 \in S_2$

Segue que
$$ku \in S_1 + S_2 = S$$

Consideremos os mesmos espaços com seus respectivos subespaços vetoriais do exemplo anterior e verifiquemos qual será o subespaço $S = S_1 + S_2$.

• O espaço vetorial $V = \mathbb{R}^3$ com as operações usuais e os subespaços vetoriais:

$$S_1 = \{(x, y, 0); x, y \in \mathbb{R}\}\$$

 $S_2 = \{(x, 0, z); x, z \in \mathbb{R}\}\$

Temos então que $S_1+S_2=\{(x,y,z);x,y,z\in\mathbb{R}\}$.

Definicão

• Seja $V = M_2(\mathbb{R})$ com as operações usuais e os seguintes subespaços vetoriais:

$$S_1 = \left\{ \left(egin{array}{cc} a & b \ 0 & 0 \end{array}
ight); a,b \in \mathbb{R}
ight\}$$

$$S_2 = \left\{ \left(egin{array}{cc} a & 0 \ 0 & d \end{array}
ight); a, d \in \mathbb{R}
ight\}$$

Temos então que $S_1+S_2=\left\{\left(egin{array}{cc}a&b\\0&d\end{array}
ight);a\in\mathbb{R}
ight\}{}^1.$

¹Aqui vale uma nota análoga à anterior.

Soma Direta de dois subespaços vetoriais

Definição:

Seja V um espaço vetorial e sejam S_1 e S_2 subespaços vetoriais de V. Dizemos que V é a soma direta de S_1 e S_2 (e representamos por $V=S_1\oplus S_2$ se:

$$V = S_1 + S_2$$
;

$$2 S_1 \cap S_2 = \{0\}.$$

Soma de dois subespacos vetoriais

Exemplo:

• Consideremos o espaço vetorial $V=\mathbb{R}^3$ com as operações usuais e os subespaços vetoriais:

$$S_1 = \{(x, y, 0); x, y \in \mathbb{R}\}\$$

 $S_2 = \{(x, 0, z); x, z \in \mathbb{R}\}\$

Já sabemos que $S_1 + S_2 = \{(x, y, z); x, y, z \in \mathbb{R}\} = \mathbb{R}^3 = V;$ Se $(x, y, z) \in S_1 \cap S_2$ então z = 0 e y = 0, ou seja, ele é do tipo (x, 0, 0). Neste caso não podemos dizer que V é soma direta de S_1 e S_2 .

• Consideremos, mais uma vez, o espaço vetorial $V=\mathbb{R}^3$ com as operações usuais mas agora consideremos os seguintes subespaços vetoriais:

$$S_1 = \{(x, y, 0); x, y \in \mathbb{R}\}\$$

 $S_2 = \{(0, 0, z); x, z \in \mathbb{R}\}\$

Temos que $S_1 + S_2 = \{(x, y, z); x, y, z \in \mathbb{R}\} = \mathbb{R}^3 = V$.

Se $(x, y, z) \in S_1 \cap S_2$ então z = 0 e x = y = 0, ou seja, ele é necessariamente o elemento (0, 0, 0). Neste caso $V = S_1 \oplus S_2$.

Teorema:

Se V é a soma direta de S_1 e S_2 então todo vetor $v \in V$ se escreve, de modo único, na forma $u = u_1 + u_2$ onde $u_1 \in S_1$ e $u_2 \in S_2$.

Demonstração:

Suponha que $u=u_1+u_2$ e que $u=v_1+v_2$ onde $u_1,v_1\in S_1$ e $u_2,v_2\in S_2$. Então temos:

$$u_1 + u_2 = v_1 + v_2$$

 $u_1 - v_1 = v_2 - u_2$

Note que $u_1-v_1\in S_1$ e $v_2-u_2\in S_2$, além disso, estas expressões são iguais, então ambas estão em $S_1\cap S_2$. Como $S_1\cap S_2=\{0\}$ (pois a soma é direta) então

$$u_1 - v_1 = v_2 - u_2 = 0$$

Ou seja, $u_1 = v_1$ e $u_2 = v_2$.

No exemplo anterior vimos que $V = \mathbb{R}^3$ é a soma direta de:

$$S_1 = \{(x, y, 0); x, y \in \mathbb{R}\} \text{ e}$$

 $S_2 = \{(0, 0, z); x, z \in \mathbb{R}\}$

Pelo Teorema sabemos que se $(x,y,z) \in \mathbb{R}^3$ então se escreve como soma de um elemento de S_1 e um de S_2 de maneiro única. De fato, (x,y,z) = (x,y,0) + (0,0,z).