实验 三种最小二乘方法估计参数值

实验报告

学院:_____自动化学院_____

课 程: 过程建模与系统辨识_

学 号: _____20211002601_____

姓 名: ______张所鑫_____

1. 实验题目: 三种最小二乘方法估计参数值

2. 实验目的

- (1) 理解白噪声的产生以及原理, 并加以应用
- (2) 掌握三种最小二乘法的原理,并且在 MATLAB 中应用三种方法辨识的模型
- (3) 掌握系统辨识的方法并熟练掌握 MATLAB 的使用方法

3. 实验主要原理

(1) 一般最小二乘法

最小二乘法通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以 简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。 本文以n阶单输入和单输出系统的输入输出方程为例进行论。

系统模型 G(z)为:

$$G(z) = \frac{Z(k)}{u(k)} = \frac{b_1 z^{-1} + b_2 z^{-2} + \dots + b_n z^{-n}}{1 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_n z^{-n}}$$

单输人单输出的系统模型如下:

其相应的差分方程为:

$$y(k) = -\sum_{i=1}^{n} a_i y(k-i) + \sum_{i=1}^{n} b_i u(k-i)$$
 考虑到被辨识系统或观测信息中含有噪声,上式改写为:

$$Z(k) = -\sum_{i=1}^{n} a_i y(k-i) + \sum_{i=1}^{n} b_i u(k-i) + v(k)$$

式中: Z(k)为系统输出量的第 k 次观测; y(k)为系统输出量的第 k 次真值, u(k)为系统 的第 k 次输入量; v(k)为均值为 0 的白噪声; a_K 和 b_K 分别为未知参数向量。 若定义:

$$\begin{aligned} h(k) &= \left[-y(k-1)\cdots - y(k-n), u(k-1), \cdots, u(k-n) \right] \\ \theta &= \left[a_1, a_2, \cdots a_n, b_1, b_2, \cdots, b_n \right]^T \end{aligned}$$

则 Z(k)可改写为:

$$Z(k) = h(k)\theta + v(k)$$

其中, θ为带估计参数。令 $k=1,2\cdots m$, 则有:

$$\mathbf{Z}_{m} = \begin{bmatrix} z(1) \\ z(2) \\ \vdots \\ z(m) \end{bmatrix}, \mathbf{H}_{m} = \begin{bmatrix} h(1) \\ h(2) \\ \vdots \\ h(m) \end{bmatrix} = \begin{bmatrix} -y(0) & \cdots & -y(1-n) & u(0) & \cdots & u(1-n) \\ -y(1) & \cdots & -y(2-n) & u(1) & \cdots & u(2-n) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ -y(m-1) & \cdots & -y(m-n) & u(m-1) & \cdots & u(m-n) \end{bmatrix} \\
\mathbf{\theta} = \begin{bmatrix} a_{1}, a_{2}, \cdots, a_{n}, b_{1}, b_{2}, \cdots, b_{n} \end{bmatrix}^{\mathsf{T}}, \mathbf{V}_{m} = \begin{bmatrix} v(1) & v(2) & \cdots & v(m) \end{bmatrix}^{\mathsf{T}}$$

最小二乘法的思想就是寻找一个 θ 的估计值 $\hat{\theta}$,使得各次测量的 Zi($i=1,\ldots, m$)与由 估计值 $\hat{\theta}$ 所确定的测量估计 $Zi = H\hat{\theta}$ 之差的平方和最小,即

$$J(\hat{\theta}) = (Z_{m} - H_{m}\hat{\theta})^{T}(Z_{m} - H_{m}\hat{\theta}) = min$$

使 $J(\hat{\theta})$ 最小的估计值 $\hat{\theta}$,称为 θ 的最小二乘估计值,利用求取的 $\hat{\theta}$ 值,最终求得被辨识 系统的待辨识参数。要使上式达到最小,根据极值定理,则有:

$$\frac{\partial J}{\partial \theta} \Big|_{\theta = \widehat{\theta}} = -2H_m^T(Z_m - H_m\widehat{\theta}) = 0$$

进一步整理,得

$$H_m^T H_m \widehat{\theta} = H_m Z_m$$

 $H_m^T H_m \widehat{\theta} = H_m Z_m$ 如果 H_m 的行数大于等于列数,则 $m \geq 2n$, $H_m^T H_m$ 满秩,即 $rank(H_m^T H_m) = 2n$,则 $(H_m^T H_m)^{-1}$ 存在。则 $\hat{\theta}$ 的最小二乘估计为:

$$\hat{\theta} = (\mathbf{H}_m^{\mathrm{T}} \mathbf{H}_{\mathrm{m}})^{-1} H_m^{\mathrm{T}} Z_m$$

(2) 递推最小二乘法

参数递推估计是指对被辨识的系统,每取得一次新的测量数据后,就在前一次估计结 果的基础上,利用新引入的测量数据对前一次估计的结果进行修正,从而递推地得出新 的参数估值。这样,随着新测量数据的引入,一次接一次地进行参数估计,直到估计值 达到满意的精确程度为止。最小二乘递推算法的基本思想可以概括为:

当前估计值
$$\hat{\theta}(k)$$
=上次估计值 $\hat{\theta}(k-1)$ +修正项

即新的估计值 $\hat{\theta}(k)$ 是在旧的估计值 $\hat{\theta}(k-1)$ 的基础上,利用新的观测数据对旧的估计 值进行修正而成的。

(3) 增广递推最小二乘法

当噪声均值为 0 时,最小二乘参数估计算法为无偏估计;当噪声的均值不为 0 时,最 小二乘参数估计算法为有偏估计。为了解决最小二乘参数估计的有偏性,将噪声模型的 辨识同时考虑进去,因此成为增广最小二乘法。该算法可以看出是对一般最小二乘参数 辨识算法的简单推广或扩充,因此又称为扩充最小二乘算法。

单输入单输出的动态系统模型如下:

被辨识模型为:

$$z(k) = -\sum_{i=1}^{n} a_i y(k-i) + \sum_{i=1}^{n} b_i u(k-i) + v'(k)$$
$$v'(k) = N(k)v(k)$$

式中,z(k) 为系统输出量的第 k 次观测值;y(k) 为系统输出量的第 k 次真值; \mathbf{u} (k) 为系统输入量的第 k 次真值, $\mathbf{v}'(\mathbf{k})$ 是均值非 0 的随机噪声; $\mathbf{v}(\mathbf{k})$ 是均值为 0 的 随机噪声。对噪声模型 N(k)的参数也进行辨识,于是上式可写为:

$$z(k) = -\sum_{i=1}^{n} a_{i} y(k-i) + \sum_{i=1}^{n} b_{i} u(k-i) + \sum_{i=1}^{n} c_{i} v(k-i) + v(k)$$

对上式进行参数辨识的过程就是增广最小二乘算法。

4. 实验对象或参数

实验对象为单输入一单输出系统, 其差分方程为:

$$z(k) + a_1 z(k-1) + a_2 z(k-2) = b_1 u(k-1) + b_2 u(k-2) + V(k)$$
$$V(k) = c_1 v(k) + c_2 v(k-1) + c_3 v(k-2)$$

取真值 a_1 =1.6、 a_2 =0.7、 b_1 =1.0、 b_2 =0.4、 c_1 =1.1、 c_2 =1.4、 c_3 =0.3,输入信号采用 4 阶 M 序列,幅值为 1。当 v(k)的均值为 0,方差分别为 0.1 和 0.5 的高斯噪声时,分别用一般最小二乘法、递推最小二乘法和增广递推最小二乘法估计参数 θ 。并通过对三种方法的辨识结果的分析和比较,说明上述三种参数辨识方法的优缺点。

5. 程序框图

(1) 一般最小二乘法程序框图

(2) 递推最小二乘法程序框图

6. 程序代码

```
%% 一般最小二乘法
randn('seed',100)
v= sqrt(0.1)*rand(1,16);%产生一组 16 个 N(0,0.1)的高斯分布的随机噪声, 若 N(0,0.5)
%则写为 v=sqrt(0.5)*rand(1,16)
% M 序列的周期
L=15;% M 序列的周期
y1=1;y2=1;y3=1;y4=0; %四个移位寄存器的输出初始值
for i=1:L;
x1=xor(y3,y4);
x2=y1;
x3=y2;
x4=y3;
y(i)=y4;
if y(i)>0.5,u(i)=-5;
else u(i)=5;
y1=x1;y2=x2;y3=x3;y4=x4;
end
```

```
figure
stem(u), grid on
title('输入信号 M 序列')
% 最小二乘辨识系统
z=zeros(1,16); % 定义输出观测值的长度
for k=3:16
z(k)=-1.6*z(k-1)-0.7*z(k-2)+u(k-1)+0.4*u(k-2)+v(k);%观测值为白噪声所以直接加
v(k)即可
end
figure(2)
plot([1:16],z)
title('输出观测值')
figure(3)
stem(z),grid on
title('输出观测值 z 的经线图形')
% 给样本系数矩阵
H=[-z(2)-z(1) u(2) u(1);-z(3)-z(2) u(3) u(2);-z(4)-z(3) u(4) u(3);-z(5)-z(4)
u(5) u(4);-z(6) -z(5) u(6) u(5);-z(7) -z(6) u(7) u(6);
-z(8) -z(7) u(8) u(7); -z(9) -z(8) u(9) u(8); -z(10) -z(9) u(10) u(9); -z(11)
-z(10) u(11) u(10); -z(12) -z(11) u(12) u(11);
-z(13) - z(12) u(13) u(12); -z(14) - z(13) u(14) u(13); -z(15) - z(14) u(15) u(14)];
%给样本观测矩阵
Z=[z(3);z(4);z(5);z(6);z(7);z(8);z(9);z(10);z(11);z(12);z(13);z(14);z(15);
z(16)]
% 计算参数
c=inv(H'*H)*H'*Z;
% 分离参数
a1=c(1), a2=c(2), b1=c(3), b2=c(4)
%% 递推最小二乘法
clear all
clc
randn('seed',100);
v=sqrt(0.1)*randn(1,60);%产生一组 60 个 N(0,0.1)的高斯分布的随机噪声,若 N(0,0.5)
则写为 v=sqrt(0.5)*rand(1,16)
%M 序列产生程序
L=60;%M 序列的周期
y1=1;y2=1;y3=1;y4=0;%四个移位寄存器的输出初始值
for i=1:L;
x1=xor(y3,y4);
x2=y1;
x3=y2;
x4=y3;
y(i)=y4;
if y(i)>0.5,u(i)=-5; M 序列幅值为 5
```

```
else u(i)=5;
end
y1=x1;y2=x2;y3=x3;y4=x4;
figure(1);
stem(u),grid on
title('输入信号 M 序列')
%递推最小二乘辨识程序
z(2)=0; z(1)=0;
%观测值由理想输出值加噪声
for k=3:60;%循环变量从3到60
 z(k)=-1.5*z(k-1)-0.7*z(k-2)+u(k-1)+0.4*u(k-2)+1*v(k);%观测值,此处为白噪声
end
c0=[0.001 0.001 0.001 0.001]';
p0=10^3*eye(4,4);
E=0.000000005;%相对误差
c=[c0,zeros(4,59)]%被辨识参数矩阵的初始值及大小
e=zeros(4,60);%相对误差的初始值及大小
lamt=1;
for k=3:60;
   h1=[-z(k-1),-z(k-2),u(k-1),u(k-2)]';
   k1=p0*h1*inv(h1'*p0*h1+1*lamt);%求出 k 的值
   new=z(k)-h1'*c0;
   c1=c0+k1*new;%求被辨识参数 c
   p1=1/lamt*(eye(4)-k1*h1')*p0;
   e1=(c1-c0)./c0;%求参数当前值与上一次的值的差值
   e(:,k)=e1;%把当前相对变化的列向量加入误差矩阵的最后一列
   c(:,k)=c1;%把辨识参数 c 列向量加入辨识参数矩阵的最后一列
   c0=c1;%新获得的参数作为下一次递推的旧参数
   p0=p1;
   if norm(e1)<=E</pre>
      break;%若参数收敛满足要求,中止计算
   end
end
%分离参数
a1=c(1,:)
a2=c(2,:)
b1=c(3,:)
b2=c(4,:)
ea1=e(1,:);ea2=e(2,:);eb1=e(3,:);eb2=e(4,:);
figure(2);
i = 1:60;
plot(i, a1, '-kp', i, a2, '--bo', i, b1, '-.rs', i, b2, ':m.');
```

```
xlim([0 20])
legend('a1', 'a2', 'b1', 'b2');
title('递推最小二乘辨识');
figure(3);
plot(i, a1, '-kp', i, a2, '--bo', i, b1, '-.rs', i, b2, ':m.');
xlim([0 20])
legend('a1', 'a2', 'b1', 'b2');
title('辨识精度');
%% 增广递推最小二乘辨识法
clear all
clc
% M 序列,噪声信号产生及其显示程序
L=60;% 四位移位寄存器产生的 M 序列的周期
y1=1;y2=1;y3=1;y4=0; %四个移位寄存器的输出初始值
for i=1:L;
   x1=xor(y3,y4);
   x2=y1;
   x3=y2;
   x4=y3;
   y(i)=y4;
   if y(i)>0.5,u(i)=-1;
   else u(i)=1;
   end
   y1=x1;y2=x2;y3=x3;y4=x4;
end
figure(1)
stem(u), grid on%画出M序列输入信号
title('输入信号M序列')
randn('seed',100)
v=sqrt(0.1)*randn(1,60);%产生一个N(0,0.1)的随机噪声
%增广递推最小二乘辨识
z(2)=0;z(1)=0;
theat0=[0.001 0.001 0.001 0.001 0.001 0.001]';
p0=10^4*eye(7,7);%初始状态 p0
theat=[theat0,zeros(7,59)];%被辨析参数矩阵的初始值及大小
for k=3:60;
z(k)=-1.5*z(k-1)-0.7*z(k-2)+u(k-1)+0.5*u(k-2)+1.2*v(k)-v(k-1)+0.2*v(k-2)
   h1=[-z(k-1),-z(k-2),u(k-1),u(k-2),v(k),v(k-1),v(k-2)]';
   x=h1'*p0*h1+1;
   x1=inv(x);
```

```
k1=p0*h1*x1;%k
   d1=z(k)-h1'*theat0;
   theat1=theat0+k1*d1;%辨析参数 c
   theat0=theat1;%给下次用
   theat(:,k)=theat1;%把辨析参数 c 列加入辨析参数矩阵
   p1=p0-k1*k1'*[h1'*p0*h1+1];%find p(k)
   p0=p1;%给下一次用
end%循环结束
%分离变量
a1=theat(1,:)
a2=theat(2,:)
b1=theat(3,:)
b2=theat(4,:)
c1=theat(5,:)
c2=theat(6,:)
c3=theat(7,:)
i=1:60;
figure(2);
plot(i,z);
xlim([0 20])
figure(3);
plot(i,a1,'-rp',i,a2,'--bo',i,b1,'-.ks',i,b2,':y.',i,c1,'-g+',i,c2,'--c*',
i,c3,'-.mp')%画出各个被辨析参数
legend('a1', 'a2', 'b1', 'b2', 'c1', 'c2', 'c3');
xlim([0 20])
title('增广递推最小二乘辨析算法')%标题
```

7. 实验结果及分析

1.一般最小二乘法

实验数据结果如下:

参数	a1	a2	b1	b2
真值	1.6	0.7	1.0	0.4
估计值				
(一组 16 个)	1.5690	0.6705	0.9926	0.3806
误差	0.019	0.042	0.007	0.049
估计值				
(一组60个)	1.6120	0.7115	0.9941	0.4088
误差	0.008	0.016	0.006	0.022

(2) 当 v(k)均值为 0, 方差为 0.5 的高斯噪声时

实验结果如下:

参数	a1	a2	b1	b2
真值	1.6	0.7	1.0	0.4
估计值				
(一组16个)	1.5673	0.6862	0.9854	0.3663
误差	0.020	0.020	0.015	0.084
估计值				
(一组60个)	1.5730	0.6740	0.9613	0.3724
误差	0.017	0.037	0.039	0.069

(3) 分析

从结果可以看出,在噪声方差较大时(0.5),估计误差相对较大。这表明噪声水平对最小二乘法的估计准确性有显著影响。当噪声方差较小时(0.1),即使样本数量不多(16个),估计误差也相对较小,这说明最小二乘法在低噪声条件下更为有效。

此外,样本数量的增加在两种噪声水平下都有助于提高估计的准确性。然而,当噪声方差较大时,即使样本数量增加,误差减少的幅度也有限,这意味着在高噪声环境下,可能需要更多的样本或更高级的参数估计技术来提高估计的准确性。

所以,最小二乘法是一种有效的参数估计方法,尤其在噪声水平较低时。在实际应用中,应考虑噪声水平并适当选择样本数量,以确保估计结果的准确性和可靠性。对于高噪声环境,可能需要额外的策略来提高参数估计的质量。

2. 递推最小二乘法

(1) 当 v(k)均值为 0, 方差为 0.1 的高斯噪声时:

实验数据结果								
a1 =								
1 至 14 列								
0.0010 0 0.0010	-0.0508	0.1388	-1 5617	1 7846	1 4729	1 4348	1 3243	1 3217
1.3681 1.3118 1.4092	0.0500	0.1300	1.0017	117010	111725	11.15.10	1.52.5	1.0217
15 至 28 列								
1.3440 1.3486 1.3905	1 3565	1 3558	1 3490	1 3526	1 3731	1.3434	1 4089	1.4015
1.4412 1.4229 1.4307	1.5505	1.5550	1.5470	1.3320	1.5751	1.5454	1.400)	1.4013
29 至 42 列								
1.4437 1.4475 1.4560	1 4551	1 4547	1 4547	1 4547	1 4408	1 4464	1 4460	1.4909
1.4985 1.5195 1.5151	1.4331	1.4547	1.4547	1.4547	1.4400	1.4404	1.4400	1.4707
43 至 56 列								
	1 5200	1 5272	1 5246	1 5220	1 5100	1 5102	1 5201	1 5161
1.5254 1.5285 1.5258 1.5256 1.5262 1.5353	1.3300	1.34/4	1.3240	1.3449	1.3177	1.3194	1.5501	1.5161
57 至 60 列								
1.5217 1.5232 1.5283	1 5262							
a2 =	1.3404							
1 至 14 列								
0.0010 0 0.0010	0.0010	0.2557	1 2652	0.7410	0.8636	0.4230	0.2725	0.3511
0.4922 0.4170 0.5288	0.0010	-0.3337	-1.3033	0.7419	0.8030	0.4230	0.3723	0.5511
15 至 28 列 0.4643 0.4674 0.4959	0.4722	0.4549	0.4664	0.4704	0.4040	0.4661	0.5249	0.5180
0.5503 0.5359 0.5391	0.4723	0.4346	0.4004	0.4704	0.4949	0.4001	0.3249	0.5180
29 至 42 列								
0.5567 0.5604 0.5705	0.5602	0.5602	0.5690	0.5602	0.5542	0.5629	0.5624	0.6030
0.6098 0.6270 0.6237	0.3092	0.3092	0.3089	0.3093	0.3342	0.3038	0.3034	0.0030
43 至 56 列								
0.6281 0.6349 0.6321	0.6272	0.6222	0.6225	0.6291	0.6295	0.6279	0.6405	0.6272
0.6355 0.6360 0.6433	0.0372	0.0332	0.0323	0.0281	0.0283	0.0278	0.0403	0.0272
57 至 60 列								
0.6332 0.6331 0.6394	0.6274							
b1 =	0.0374							
1 至 14 列								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 2722	0.4266	_0.0264	0.0410	0.0220	0.0674	0.0124	0.9145
0.9837 0.9683 0.9463	0.3732	0.4∠00	-0.0204	0.7417	0.9449	0.70/4	0.9134	0.7143
15 至 28 列	0.0712	0.0510	0.0401	0.0411	0.0405	0.0552	0.0749	0.9722
0.9585 0.9623 0.9795 0.9861 0.9911 0.9861	0.9/13	0.9319	0.9401	0.9411	U.7 4 73	0.9332	0.9/48	0.9/22
0.9861 0.9911 0.9861 29 至 42 列								
	0.0601	0.0604	0.0677	0.0672	0.0612	0.0600	0.0600	0.9824
0.9760 0.9751 0.9681	0.7071	0.7004	0.90//	0.90/3	0.9012	U.7U78	0.7077	0.7024
0.9849 0.9906 0.9919								
43 至 56 列	0.0775	0.0005	0.0774	0.0720	0.0679	0.0077	0.0727	0.0763
0.9862 0.9797 0.9804	0.9775	0.9805	0.9774	0.9720	0.9678	0.9676	0.9736	0.9763
0.9792 0.9795 0.9834								

57 至 60 列									
0.9884 0.9863 (0.9830	0.9835							
b2 =									
1 至 14 列									
0.0010 0	-0.2788	-0.1863	-0.1330	-0.5859	0.3717	0.3067	0.2400	0.2272	0.2162
0.2602 0.2300 0.293	34								
15 至 28 列									
0.2197 0.2200	0.2392	0.2177	0.2066	0.1795	0.1833	0.1916	0.1711	0.2492	0.2452
0.2661 0.2527 0.265	56								
29 至 42 列									
0.2687 0.2733	0.2887	0.2868	0.2872	0.2868	0.2861	0.2687	0.2651	0.2649	0.3174
0.3219	.7								
43 至 56 列									
0.3490 0.3455	0.3421	0.3493	0.3434	0.3440	0.3382	0.3302	0.3293	0.3335	0.3237
0.3353)3								
57 至 60 列									
0.3318 0.3354 0	0.3367	0.3341							

参数	a1	a2	b1	b2
真值	1.6	0.7	1.0	0.4
估计值(第20	1.3490	0.4664	0.9401	0.1795
次迭代)				
估计值(第 40	1.4551	0.5692	0.9691	0.2868
次迭代)				
估计值(第60	1.5262	0.6374	0.9835	0.3341
次迭代)				

(2) 当 v(k)均值为 0, 方差为 0.5 的高斯噪声时

0.0010	0	0.0010	0.0010	0.4477	0.6264	0.7507	0.7822	0.6475	0.6397	0.6437
列 12 至 2	22									
0.6779	0.6731	0.7193	0.6892	0.6760	0.6834	0.6816	0.6762	0.6843	0.6760	0.6843
列 23 至 3	33									
0.6628	0.6676	0.6677	0.6675	0.6683	0.6607	0.6756	0.6776	0.6803	0.6818	0.6779
列 34 至 4	14									
0.6779	0.6805	0.6699	0.6812	0.6713	0.6793	0.6791	0.6788	0.6802	0.6793	0.6810
列 45 至 5	55									
0.6733	0.6735	0.6745	0.6738	0.6737	0.6745	0.6762	0.6831	0.6793	0.6860	0.6858
列 56 至 6	50									
0.6855	0.6855	0.6844	0.6904	0.6890						
b1 =										
列 1 至 11										
0.0010	0	0.2906	0.5060	0.4916	0.8925	0.9916	0.9941	0.9981	0.9841	0.9930
列 12 至 2	22									
1.0090	1.0078	1.0069	1.0098	0.9970	1.0023	1.0011	0.9958	0.9912	0.9888	0.9914
列 23 至 3	3									
0.9948	0.9978	0.9973	0.9984	0.9993	0.9961	0.9929	0.9925	0.9885	0.9925	0.9892
列 34 至 4	14									
0.9889	0.9854	0.9817	0.9868	0.9890	0.9942	0.9925	0.9935	0.9949	0.9945	0.9941
列 45 至 5	55									
0.9957	0.9947	0.9960	0.9953	0.9938	0.9921	0.9927	0.9955	0.9965	1.0002	0.9994

列 56 至	60									
1.0007	1.0007	1.0002	0.9985	0.9988						
b2 =										
列1至1	1									
0.0010	0	-0.2886	-0.0733	-0.0877	0.3132	0.3924	0.3875	0.3700	0.3706	0.3753
列 12 至	22									
0.3877	0.3855	0.4200	0.3786	0.3764	0.3818	0.3800	0.3771	0.3731	0.3646	0.3696
列 23 至	33									
0.3516	0.3606	0.3609	0.3606	0.3613	0.3600	0.3705	0.3733	0.3811	0.3797	0.3766
列 34 至	44									
0.3765	0.3724	0.3597	0.3652	0.3570	0.3729	0.3735	0.3731	0.3745	0.3743	0.3755
列 45 至	55									
0.3639	0.3653	0.3656	0.3650	0.3646	0.3622	0.3644	0.3683	0.3650	0.3778	0.3780
列 56 至	60									
0.3775	0.3775	0.3775	0.3816	0.3794						
参	数		a1		a2		b1		b	2
真			1.6		0.7		1.0		0.	4
估计值 次选		1.	.4777		0.6843		0.991	4	0.36	596
估计值	(第 40	1.	.4725		0.6802		0.994	9	0.37	745
估计值		1.	.4831		0.6890		0.998	8	0.37	794

分析:

次迭代)

在噪声方差为 0.1 的情况下,参数估计值随着迭代次数的增加而逐渐接近真实值。而在 噪声方差为 0.5 的情况下,虽然估计值也显示出向真值逼近的趋势,但整体偏差较大。

与方差为 0.1 相比, 方差为 0.5 的情况下参数估计的精度明显较低。这表明噪声水平对 参数估计精度有显著影响。递推最小二乘法相较于传统最小二乘法在处理实时数据和动 态系统时更为灵活,但在高噪声水平下,其估计结果的可信度降低。

所以,虽然递推最小二乘法是一个有效的在线参数估计方法,但噪声水平对估计精度 有重要影响。在实际应用中,应考虑到噪声的影响,并采取相应的措施以提高参数估计 的准确性。

(3) 增广递推最小二乘辨识法

● 当 v(k)均值为 0, 方差为 0.1 的高斯噪声时

2				- a1
1.5 -	/	***	* * * *	O - a2 -⊡ - b1
1 -	Á	P-8-0-0-0		b2 c1 * c2
0.5 -	p.	0-0-0-0	-0-0-0-0	÷ c3
0 - •-•		****		
-0.5	6-6			=
-1 -		* * * * *	-*-*-*-*	-* -* -:
-1.5				

实验数据结果

1 至 13 列

a1 = 1 至 13 列 1.2277 1.3730 0.0010 0.0010 0.0285 0.2769 0.5250 1.5874 1.5983 0.7899 1.5984 1.5989 14 至 26 列 1.5993 1.5994 1.5994 1.5994 1.5994 1.5995 1.5995 1.5995 1.5995 1.5997 1.5998 1.5998 1.5999 27 至 39 列 1.5999 1.5999 1.5999 1.5999 1.5999 1.5999 1.5999 1.5999 1.5999 1.5999 1.5999 1.5999 1.5999 40 至 52 列 1.5999 1.6000 1.6000 1.6000 1.6000 1.6000 1.6000 1.6000 1.6000 1.6000 1.6000 1.6000 1.6000 53 至 60 列 1.6000 1.6000 1.6000 1.6000 1.6000 1.6000 1.6000 1.6000 a2 =

0.0010 0	0.0010	0.0010	-0.3274	0.0379	0.3278	0.3787	0.4994	0.6880	0.6981
0.6981 0.6988									
14 至 26 列									
0.6993 0.6994	0.6994	0.6994	0.6994	0.6995	0.6995	0.6995	0.6995	0.6997	0.6998
0.6998 0.6999									
27 至 39 列									
0.6999 0.6999	0.6999	0.6999	0.6999	0.6999	0.6999	0.6999	0.6999	0.6999	0.699
0.6999 0.7000									
40 至 52 列									
0.7000 0.7000	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000	0.700
0.7000 0.7000									
53 至 60 列									
0.7000 0.7000	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000			
b1 =									
1 至 13 列									
0.0010 0	0.4579	0.4285	0.5521	0.7648	0.8601	0.8998	0.9399	0.9969	0.999
0.9996 0.9999	0.1575	0.1203	0.5521	0.7010	0.0001	0.0770	0.7577	0.5505	0.777
14 至 26 列									
1.0000 0.9999	0.9999	0.9999	0.9999	1.0000	1.0000	1.0000	1.0000	1.0000	1.000
	0.9999	0.9999	0.9999	1.0000	1.0000	1.0000	1.0000	1.0000	1.000
1.0000 1.0000									
27 至 39 列	1 0000	1 0000	1 0000		1 0000	1 0000	1 0000	1 0000	1 000
1.0000 1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.000
1.0000 1.0000									
40 至 52 列									
1.0000 1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.000
1.0000 1.0000									
53 至 60 列									
1.0000 1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000			
b2 =									
1 至 13 列									
0.0010 0	-0.4559	-0.4856	-0.3756	-0.2113	-0.1506	0.1718	0.2616	0.3909	0.398
0.3986 0.3991									
14 至 26 列									
0.3993 0.3994	0.3994	0.3995	0.3995	0.3995	0.3995	0.3995	0.3996	0.3997	0.399
0.3998 0.3999									
27 至 39 列									
0.3999 0.3999	0.3999	0.3999	0.3999	0.3999	0.3999	0.3999	0.3999	0.3999	0.399
0.3999 0.3999									
40 至 52 列									
0.3999 0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.400
0.4000 0.4000									
53 至 60 列									
0.4000 0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000			

1 至 13 列									
0.0010 0	0.0309	0.0346	-0.0067	0.3614	0.1105	1.5462	1.3897	1.1066	1.0995
1.0998 1.1007									
14 至 26 列									
1.1003 1.1004	1.1003	1.1004	1.1003	1.1003	1.1002	1.1002	1.1002	1.1001	1.1000
1.0999 1.0999									
27 至 39 列									
1.0999 1.0999	1.0999	1.0999	1.0999	1.0999	1.0999	1.0999	1.0999	1.0999	1.0999
1.1000 1.1000									
40 至 52 列									
1.1000 1.1000	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000
1.1000 1.1000									
53 至 60 列									
1.1000 1.1000	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000			
c2 =									
1 至 13 列									
0.0010 0	0.0839	0.0820	0.0237	-0.3340	-0.4711	0.4796	0.8383	1.3640	1.3961
1.3963 1.3980									
14 至 26 列									
1.3984 1.3984	1.3985	1.3985	1.3987	1.3988	1.3989	1.3990	1.3990	1.3993	1.3995
1.3996 1.3998									
27 至 39 列									
1.3998 1.3998	1.3998	1.3998	1.3998	1.3998	1.3998	1.3998	1.3998	1.3999	1.3999
1.3999 1.3999									
40 至 52 列									
1.3999 1.3999	1.3999	1.3999	1.3999	1.3999	1.3999	1.3999	1.3999	1.3999	1.3999
1.3999 1.3999									
53 至 60 列									
1.3999 1.3999	1.3999	1.3999	1.3999	1.3999	1.3999	1.3999			
c3 =									
1 至 13 列									
0.0010 0	0.0093	0.0039	-0.0157	-0.4367	-0.0604	0.8346	0.6299	0.3131	0.3003
0.3000 0.3007									
14 至 26 列									
0.2998 0.3002	0.3002	0.3001	0.3001	0.3000	0.3000	0.2999	0.3000	0.3000	0.3000
0.3000 0.2999		* -	* -						
27 至 39 列									
0.2999 0.2999	0.2999	0.2999	0.2999	0.2999	0.2999	0.2999	0.2999	0.2999	0.2999
0.2999 0.2999									
40 至 52 列									
0.2999 0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000
0.3000 0.3000	0.5000	0.5000	0.5000	0.5000	3.5000	0.5000	0.5000	0.5000	0.5000
53 至 60 列									
	0.2000	0.2000	0.2000	0.2000	0.2000	0.3000			
0.3000 0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000			

参数	a1	a2	b1	b3	c1	c2	c3
真值	1.6	0.7	1.0	0.4	1.1	1.4	0.3
估计值	1.6000	0.7000	1.0000	0.4000	1.1000	1.4000	0.3000

当 v(k)均值为 0, 方差为 0.5 的高斯噪声时

a2 =										
1 至 14 列										
0.0010	0	0.0010	0.0010	-0.3445	0.0289	-0.0392	-0.1215	0.5721	0.5945	0.6968
0.6968 0.6971	0.69	986								
15 至 28 列										
0.6990 0.69	991	0.6991	0.6992	0.6993	0.6993	0.6993	0.6993	0.6995	0.6997	0.6998
0.6998 0.6999	0.69	999								
29 至 42 列										
0.6999 0.69	999	0.6999	0.6999	0.6999	0.6999	0.6999	0.6999	0.6999	0.6999	0.700
0.7000 0.7000	0.70	000								
43 至 56 列										
0.7000 0.70	000	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000
0.7000 0.7000	0.70	000								
57 至 60 列										
0.7000 0.70	000	0.7000	0.7000							
b1 =										
1 至 14 列										
0.0010	0	0.6137	0.4322	0.6370	0.9246	0.9091	0.8824	0.9795	0.9835	0.999
0.9997 0.9998	1.00	000								
15 至 28 列										
0.9999 0.99	999	0.9999	0.9999	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
1.0000 1.0000	1.00	000								
29 至 42 列										
1.0000 1.00	000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
1.0000 1.0000	1.00	000								
43 至 56 列										
1.0000 1.00	000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
1.0000 1.0000	1.00	000								
57 至 60 列										
1.0000 1.00	000	1.0000	1.0000							
b2 =										
1 至 14 列										
0.0010	0	-0.6117	-0.7990	-0.6374	-0.4623	-0.4417	-0.2195	0.2983	0.3152	0.3975
0.3975 0.3977	0.39	987								
15 至 28 列										
0.3991 0.39	991	0.3992	0.3992	0.3993	0.3993	0.3993	0.3993	0.3995	0.3997	0.3998
0.3998 0.3999	0.39	999								
29 至 42 列										
0.3999 0.39	999	0.3999	0.3999	0.3999	0.3999	0.3999	0.3999	0.3999	0.3999	0.400
0.4000 0.4000	0.40	000								
43 至 56 列										
0.4000 0.40	000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.400
0.4000 0.4000	0.40	000								
57 至 60 列										

0.4000 0.4000 0.4000	0.4000							
c1 =								
1 至 14 列								
0.0010 0 0.0905	0.1425	0.0502	0.3074	0.3752	1.4756	1.1441	1.1327	1.1006
1.1006 1.1009 1.1003								
15 至 28 列								
1.1003 1.1003 1.1003	1.1002	1.1002	1.1002	1.1002	1.1002	1.1001	1.1000	1.1000
1.1000 1.1000 1.1000								
29 至 42 列								
1.1000 1.1000 1.1000	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000
1.1000 1.1000 1.1000								
43 至 56 列								
1.1000 1.1000 1.1000	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000	1.1000
1.1000 1.1000 1.1000								
57 至 60 列								
1.1000 1.1000 1.1000	1.1000							
c2 =								
1 至 14 列								
0.0010 0 0.2496	0.2238	0.1497	-0.1861	-0.1098	0.0311	1.1803	1.2175	1.3956
1.3956 1.3962 1.3979								
15 至 28 列								
1.3984 1.3985 1.3986	1.3987	1.3988	1.3989	1.3989	1.3989	1.3992	1.3995	1.3996
1.3998 1.3998 1.3998								
29 至 42 列								
1.3998 1.3998 1.3998	1.3998	1.3998	1.3998	1.3998	1.3999	1.3999	1.3999	1.3999
1.3999 1.4000 1.4000								
43 至 56 列								
	1.4000	1.4000	1.4000	1.4000	1.4000	1 4000	1.4000	1.4000
1.4000 1.4000 1.4000	11.1000	11.000	11.000	11.000	11.000	11.000	11.000	111000
57 至 60 列								
	1.4000							
c3 =	1.7000							
1 至 14 列								
0.0010 0 0.0258	0.0490	0.0406	0.2910	0.4006	0.2645	0.2805	0.2806	0.2992
	-0.0469	-0.0400	-0.3619	-0.4990	0.2043	0.2893	0.2890	0.2992
0.2992 0.2996 0.2992								
15 至 28 列	0.2007	0.2007	0.2007	0.2007	0.2007	0.2000	0.2000	0.2000
0.2997 0.2998 0.2998	0.299/	0.299/	0.299/	0.299/	0.299/	0.2998	0.2999	0.2999
0.2999 0.2999 0.2999								
29 至 42 列	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000
0.2999 0.2999 0.2999	0.2999	0.2999	0.2999	0.2999	0.2999	0.2999	0.3000	0.3000
0.3000 0.3000 0.3000								
43 至 56 列								
0.3000 0.3000 0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000
0.3000 0.3000 0.3000								

57 至 60 列

0.3000	0.3000 0.300	0.3000						
参数	数 al a2		b1	b2	c1	c2	c3	
真值	1.6	0.7	1.0	0.4	1.1	1.4	0.3	
估计值	1.6000	0.7000	1.0000	0.4000	1.1000	1.3999	0.3000	

● 分析:

在噪声方差为 0.1 的条件下,所有参数的估计值与其真实值完全一致。这表明在低噪声水平下,增广递推最小二乘辨识法能够准确地估计出系统参数。

在噪声方差为 0.5 的条件下,除了参数 c2 的估计值略微偏离真实值(1.3999 与 1.4 的微小差别),其他参数的估计值仍然与其真实值完全一致。这说明即使在较高噪声水平下,该方法也能够提供非常准确的参数估计。

噪声是影响参数估计精度的一个重要因素。本次分析的结果显示,即便在噪声方差增加时,增广递推最小二乘辨识法仍然能够保持高精度的估计。参数 c2 的微小偏差可能是由于噪声方差增大导致的随机误差,但其对整体系统性能的影响可以忽略不计。

增广递推最小二乘辨识法在不同噪声水平下均表现出优秀的参数估计性能。即使在较高的噪声方差条件下,该方法也能够提供接近真实值的估计。这一结果证明了该方法在实际应用中的可靠性和有效性。

8. 结论

本次实验将三种最小二乘辨识方法进行对比,可得出如下结论:

- ➤ 一般最小二乘法:
 - 适用于理论分析,能够在白噪声的假设下提供无偏渐进估计。
 - 计算可以一次性完成, 但当模型复杂度增加时, 计算量和存储需求急剧增加。
 - 不适合在线辨识,无法跟踪参数的时间变化。
 - 估计精度不如其他方法高,且对所有数据平等处理,未考虑数据的时间效应。
- ➤ 递推最小二乘法:
 - 减少了计算量和数据存储需求,适合实时在线辨识。
 - 通过递归计算避免矩阵求逆,降低运算量。
 - 随着迭代次数的增加,估计值趋向真实值,但精度相对较低。
 - 受噪声方差的影响较大,需要限制过去数据的影响以避免数据饱和现象。
- ➤ 增广递推最小二乘法:
 - 适用于有色噪声的情况,通过对数据的滤波预处理,可以获得无偏估计。
 - 精度高, 能同时获得过程模型和噪声模型的参数估计。
 - 对噪声方差的影响较小,表现出较好的鲁棒性。

由此可得,每种最小二乘法都有其适用场景和优缺点。一般最小二乘法在处理理论问题和简单模型时效率高,但不适用于复杂或在线动态系统。递推最小二乘法和增广递推最小二乘法更适合实时在线应用,尤其是增广递推最小二乘法在处理有色噪声时更为有效。