

	"Methods of Targeted Mutagenesis Using Triple-Helix Forming Oligomaclotaties" By: Peter M. Glazor Continuation-in-part of U.S. S.N. 09/411,291 Filed: October 15, 2001 Atty. Docket No.: YU.13	32
225.22 189.0.24 215.024 215.024	ESSENGETTSTEGESEASES EDDOCTOCOC SERVICES SILVER SIL	3199)
ୟ ସ ସ ସ	TA A A CA CACAGINGCTGANGCTTCCAAGCTTAGGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAA	(∆168-
AI A I		6 5/2
Multiple point mutations	Single point mutations T T CITAGECTCTC666ACCBACCTCCCCAA666CTCCCCGCTTTCCCTCGTCTCACA1 S0 100 120 GAATTCCAACCCCCCAA6CCCCCAA6CCCTCCTCAACCCCTCTCAACCCTCTCAACCCCTCCTCAACCCCTCCT	