Effectively Pairing Artificial Intelligence with Human Intelligence Norman Niemer, UBS Asset Management August 2018

This document is for informational purposes only and is not intended to be construed as an invitation or offer of securities or to conclude a contract or to buy and sell any security or related financial instrument. The facts and opinions presented are those of the author only and not official opinions of UBS

Crossing the Fundamental Investing Big Data / Al Investment Chasm

Big Data and AI in Investment Management

Self-driving Al

Min cost function

S.t. operating constraints⁽¹⁾

Investment Al

Min risk function

S.t. operating constraints

(1) Fletcher, Luke, et al. "The MIT–Cornell collision and why it happened." Journal of Field Robotics 25.10 (2008): 775-807

How to Quantify the Al Opportunity?

Al Bots as Benchmark

Measuring alpha added across investment process

Humans vs Machines: the Result

Source: UBS O'Connor

Case Study: Price Target Optimizer

Goal: improve human sizing alpha with machine input

Optimizer: maximize asymmetric risk / reward s.t. risk and liquidity constraints

Price Target Optimizer Input								
		Price	Probability					
		Target	Target	Price	Price			
Ticker	Current	Up	Down	Up	Down			
A UN	10.0	12.0	8.0	55%	45%			
AAL UW	10.0	11.0	7.0	50%	50%			
AAP UN	10.0	13.0	9.0	45%	55%			

Source: UBS O'Connor

Explaining the Al Algorithm

Case study: Stock Selection

Goal: improve machine stock selection alpha with human input

Optimizer: minimize prediction error

Explaining the AI Algorithm

Explanation

Source: UBS O'Connor

Dashboard

Ticker bbg	Model		Input fac	tors	
ADP UW Equity	0	6	0	3	1
AVY UN Equity	0	6	9	5	2
BDX UN Equity	0	5	5	2	5
CHD UN Equity	0	4	1	5	3
COTY UN Equity	0	0	8	1	9
EVHC UN Equity	0		3		
GILD UW Equity	0	1	9		5
KO UN Equity	0	4	6	2	2
PFE UN Equity	0	2	4		
TSN UN Equity	0	0	5	7	8
WU UN Equity	0	0	5	5	0
ABC UN Equity	1	5	2	6	2
CLX UN Equity	1	4	2		0
DHR UN Equity	1	4	6	5	8
HOLX UW Equity	1	6	3	0	5
ISRG UW Equity	1	9	6	1	3
MCK UN Equity	1	1	1	9	7

Organizational and Incentive Structures

Now

- Quant / data science separate from investment process
- All decisions made by discretionary managers
- Either pure discretionary or pure systematic

Ideal future?

- Quant / data science integrated in investment process
- Some decisions made by discretionary managers, some by machines
- Hybrid discretionary and systematic

Appendix: Our Stack

Stage	Stack	
Data storage	Vendor feed, SQL, parquet	
Data prep	Pandas, dask, d6t-python	
Modeling	Statsmodels, sklearn, lightgbm, pymc3, TF, h2o	
Optimizer	Cvxpy, risk models	
Backtester	pandas, zipline, pyfolio, alphalens	
Front-end	nt-end Email, Tableau, django, PM Sys, Trade Sys	
Human Capital Good coders, not necessarily CS, financial engineers, translators, no PhDs		

