

Concept

Use a convolution neural network to predict the pressure solution in a fluid dynamics model.

Reduce the iterative workload of the numerical solver

Training data

Initial Pressure and converged Pressure solution

Method

Convolutional autoencoder network

Implementation

Neural Network predicts converged solution, CFD software proceeds as usual

CFD model

Rayleigh-Bernard Convection

instabilities caused by rising hot fluid and falling cold fluid

 $Ra = 1x10^6$

 $Ra = 1x10^9$

CFD model

The algorithm is

1. Compute F^n , G^n from the velocities u^n and v^n ,

- 2. Solve the Poisson equation for the pressure p^{n+1} ,
- 3. Compute the new velocity field for u^{n+1} and v^{n+1} with the pressure field p^{n+1} .

$$\frac{\partial u}{\partial t} + (u \cdot \nabla)u + \nabla p = \frac{1}{Re} \nabla^2 u + f$$
$$\nabla \cdot u = 0$$
$$\frac{\partial T}{\partial t} + u \cdot \nabla T = \alpha \nabla^2 T + q$$

$$F = u^{n} + \delta t \left[\frac{1}{Re} \left(\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} \right) - \frac{\partial(u^{2})}{\partial x} - \frac{\partial(uv)}{\partial y} + f_{x} \right]$$

$$G = v^{n} + \delta t \left[\frac{1}{Re} \left(\frac{\partial^{2} v}{\partial x^{2}} + \frac{\partial^{2} v}{\partial y^{2}} \right) - \frac{\partial(u^{2})}{\partial y} - \frac{\partial(uv)}{\partial x} + f_{y} \right]$$

$$\frac{\partial^2 p^{n+1}}{\partial x^2} + \frac{\partial^2 p^{n+1}}{\partial y^2} = \frac{1}{\delta t} \left(\frac{\partial F^n}{\partial x} + \frac{\partial G^n}{\partial y} \right)$$

$$u^{n+1} = u^n + \delta t \left[\frac{1}{Re} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) - \frac{\partial (u^2)}{\partial x} - \frac{\partial (uv)}{\partial y} + f_x - \frac{\partial p}{\partial x} \right]$$
$$v^{n+1} = v^n + \delta t \left[\frac{1}{Re} \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) - \frac{\partial (u^2)}{\partial y} - \frac{\partial (uv)}{\partial x} + f_y - \frac{\partial p}{\partial y} \right]$$

Algorithm

```
Set t=0, n=0
Initialise variables u,v,p,T
While t<tend
     choose delta t (timestep)
     set boundary conditions for u, v, T
     compute Tn+1
     compute F<sup>n</sup> and G<sup>n</sup>
     compute RHS of pressure equation
     set it = 0
     while it < it<sub>max</sub> and (residual norm > tolerance)
          perform SOR cycle
          compute residual norm of pressure equation
          it += 1
     compute un+1 and vn+1
     t += delta t
     n +=1
```

$$F = u^{n} + \delta t \left[\frac{1}{Re} \left(\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} \right) - \frac{\partial(u^{2})}{\partial x} - \frac{\partial(uv)}{\partial y} + f_{x} \right]$$

$$G = v^{n} + \delta t \left[\frac{1}{Re} \left(\frac{\partial^{2} v}{\partial x^{2}} + \frac{\partial^{2} v}{\partial y^{2}} \right) - \frac{\partial(u^{2})}{\partial y} - \frac{\partial(uv)}{\partial x} + f_{y} \right]$$

$$\frac{\partial^2 p^{n+1}}{\partial x^2} + \frac{\partial^2 p^{n+1}}{\partial y^2} = \frac{1}{\delta t} \left(\frac{\partial F^n}{\partial x} + \frac{\partial G^n}{\partial y} \right)$$

$$u^{n+1} = u^n + \delta t \left[\frac{1}{Re} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) - \frac{\partial (u^2)}{\partial x} - \frac{\partial (uv)}{\partial y} + f_x - \frac{\partial p}{\partial x} \right]$$
$$v^{n+1} = v^n + \delta t \left[\frac{1}{Re} \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) - \frac{\partial (u^2)}{\partial y} - \frac{\partial (uv)}{\partial x} + f_y - \frac{\partial p}{\partial y} \right]$$

Algorithm

```
Set t=0, n=0
Initialise variables u,v,p,T
While t<tend
     choose delta t (timestep)
     set boundary conditions for u, v, T
     compute T<sup>n+1</sup>
     compute F<sup>n</sup> and G<sup>n</sup>
     compute RHS of pressure equation
     set it = 0
     while it < it<sub>max</sub> and (residual norm > tolerance)
           perform SOR cycle
           compute residual norm of pressure equation
          it += 1
     compute u<sup>n+1</sup> and v<sup>n+1</sup>
     t += delta t
     n +=1
```

```
Inputs: A, b, \omega
Output: \phi
Choose an initial guess \phi to the solution
repeat until convergence
     for i from 1 until n do
           \sigma \leftarrow 0
           for j from 1 until n do
                 if j \neq i then
                      \sigma \leftarrow \sigma + a_{ij}\phi_j
                end if
           end (j-loop)
          \phi_i \leftarrow (1-\omega)\phi_i + rac{\omega}{a_{ii}}(b_i - \sigma)
     end (i-loop)
     check if convergence is reached
end (repeat)
```

Profile

t += delta t

n +=1

5200 steps at Ra = $5x10^6$, Pressure tolerance $1x10^{-9}$

```
Set t=0, n=0
Initialise variables u,v,p,T
While t<tend
    choose delta t (timestep)
    set boundary conditions for u, v, T
    compute T<sup>n+1</sup>
    compute F<sup>n</sup> and G<sup>n</sup>
    compute RHS of pressure equation
```

```
set it = 0
while it < it<sub>max</sub> and (residual norm > tolerance)
perform SOR cycle
compute residual norm of pressure equation
it += 1
compute u<sup>n+1</sup> and v<sup>n+1</sup>
```

granularity: each sample hit covers 2 byte(s) for 0.01% of 96.54 seconds

index %	time	self	children	called	name
					<spontaneous></spontaneous>
[1]	99.2	95.78	0.00		<pre>poisson [1]</pre>
					<spontaneous></spontaneous>
[2]	0.6	0.24	0.36		comp_fg [2]
		0.09	0.00 19	530248/19530	248 d2u_dy2 [3]
		0.09	0.00 19	530248/19530	248 du2_dx [4]
		0.04	0.00 19	530248/19530	248 d2u_dx2 [7]
		0.04	0.00 19	530248/19530	
		0.04	0.00 19	530248/19530	248 duv_dx [8]
		0.03	0.00 19	530248/19530	248 d2v_dx2
[10]					
		0.03	0.00 19	530248/19530	248 dv2_dy [11]
		0.00	0.00 19	530248/19530	248 d2v_dy2
[16]					
		0.09	0.00 19	530248/19530	248 comp_fg [2]
[3]	0.1	0.09	0.00 19	530248	d2u_dy2 [3]
					248 comp_fg [2]
[4]	0.1	0.09	0.00 19	530248	du2_dx [4]
					<spontaneous></spontaneous>
[5]	0.1		0.00		comp_temp [5]
		0.00	0.00	5164/5164	RMATRIX [17]

99%

Pressure Iterations

Pressure Iterations

ML MOCE Autoencoder network

Input

Encode

Compressed representation

Decode

Output

Data

```
Set t=0, n=0
Initialise variables u,v,p,T
While t<tend
     choose delta t (timestep)
     set boundary conditions for u, v, T
     compute T<sup>n+1</sup>
     compute F<sup>n</sup> and G<sup>n</sup>
     compute RHS of pressure equation
     set it = 0
     while it < it<sub>max</sub> and (residual norm > tolerance)
          perform SOR cycle
          compute residual norm of pressure equation
          it += 1
     compute un+1 and vn+1
    t += delta t
     n +=1
```

Training Data

Save initial Pressure field
Save converged Pressure field
64x64 mesh
Run over a range of Ra:

3x10⁶
4.9x10⁶
5x10⁶
5.1x10⁶
8x10⁶

ML MOCE Autoencoder network

ML MOCE Data Pre-processing

ML MOCE Autoencoder network

Autoencoder Output & SOR (Ra = 5x10⁶)

Algorithm

```
Set t=0, n=0
Initialise variables u,v,p,T
While t<tend
     choose delta t (timestep)
     set boundary conditions for u, v, T
     compute T<sup>n+1</sup>
     compute F<sup>n</sup> and G<sup>n</sup>
     compute RHS of pressure equation
     set it = 0
     set p = autoecoder prediction
     while it < it<sub>max</sub> and (residual norm > tolerance)
          perform SOR cycle
          compute residual norm of pressure equation
          it += 1
     compute un+1 and vn+1
     t += delta t
     n +=1
```


Autoencoder Output & SOR (Ra =6x10⁶)

Thank You

Justin Freeman justin.freeman@bom.gov.au