Sistemi di Elaborazione

Andrea Bellu

2023/2024

Contents

1	Introduzione	2
2	Connettivi Proposizionali	2
	2.1 Negazione NOT	2
	2.2 Congiunzione AND	2
	2.3 Disgiunzione OR	2
	2.4 Implicazione condizionale o materiale	2
	2.5 Bicondizionale	3
	2.6 Forme enunciative FINIRE	3
	2.7 Convenzioni tra parentesi	3
	2.8 Esercizio 1	3
	2.9 Forma enunciativa soddisfacibile	3
3	Tautologie e Contraddizioni	4
	3.1 Tautologia	4
	3.2 Contraddizione	4
4	Implicazione ed Equivalenza logica	5
	4.1 Implicazione logica	5
	4.2 Equivalenza logica	5
5	Connettivi e porte logiche	5
	5.1 Transistor	6
6	Forme normali e implicazionie ogica via risoluzione	6
7	Teoria assiomatica per il calcolo proposizionale	6

1 Introduzione

La macchina di Turing è una macchina teoretica che può essere usata per simulare il funzionamento di un computer.

Turing \iff Funzione Ricorsiva (teoria logica dell'aritmetica).

Logica: Logica del Primo Ordina \implies Logica Proposizionale

Teoria: Teoria Logica.

Ci sono cose che un sistema di elaborazione non può fare.

Tutto ciò finisce all'interno delle CPU (Central Processing Unit).

Parleremo di Cache e dei cenni su due architetture, quali: GPU e Quantum Computing.

Una volta costruito l'hardware, bisogna scrivere il software, degli algoritmi per gestirlo.

2 Connettivi Proposizionali

La logica proposizionale è un metodo per calcolare il valore di verità di una proposizione. Il simbolo di vero è 1, mentre il simbolo di falso è 0.

2.1 Negazione NOT

Se A è una frase $\neg A$ è la negazione di A. Quando A è vera, $\neg A$ è falsa e viceversa.

A	$\neg A$
1	0
0	1

2.2 Congiunzione AND

Se A e B sono frasi, $A \wedge B$ è la congiunzione di A e B. $A \wedge B$ è vera solo se entrambe A e B sono vere.

A	В	$A \wedge B$
1	1	1
1	0	0
0	1	0
0	0	0

2.3 Disgiunzione OR

La disgiunzione delle frasi A e B è indicata dal simbolo $A \vee B$. $A \vee B$ è vera se almeno una delle due frasi è vera.

A	В	$A \lor B$
1	1	1
1	0	1
0	1	1
0	0	0

2.4 Implicazione condizionale o materiale

Date due frasi, A e B, l'implicazione condizionale è indicata con $A \implies B$. L'implicazione è falsa solo quando A è vera e B è falsa. Si può leggere come "se A allora B". Per capire l'idea che sta alla base del condizionale, si pensi alla frase:

"Per ogni x, se x è un numero intero positivo dispari, allora x^2 è un numero intero positivo dispari."

- 1. Se il connettivo è \neg e precede una forma enunciativa \mathcal{B} , ripristinare le parentesi sinistra e destra per ottenere $(\neg \mathcal{B})$;
- 2. Se il connettivo è binario \blacksquare ed è preceduto da una forma enunciativa \mathcal{B} e seguito da una forma enunciativa \mathcal{D} , ripristinare le parentesi sinistre e destre per ottenere ($\mathcal{B} \blacksquare \mathcal{D}$);
- 3. Se né 1 né 2 si possono applicare, si ignori temporaneamente il connettivo e si trovi il connettivo non modificato più a sinistra e con maggiore priorità, e ripetere 1-3 per quel connettivo.

Ad esempio:

Figure 1: Convenzioni tra parentesi

A	В	$A \implies B$
1	1	1
1	0	0
0	1	1
0	0	1

2.5 Bicondizionale

Il bicondizionale è indicato con $A \iff B$. Il bicondizionale è vero se entrambe le frasi sono vere o entrambe le frasi sono false.

A	В	$A \iff B$
1	1	1
1	0	0
0	1	0
0	0	1

- 2.6 Forme enunciative FINIRE
- 2.7 Convenzioni tra parentesi
- 2.8 Esercizio 1
- 2.9 Forma enunciativa soddisfacibile

Diremo che una forma enunciativa è soddisfacibile se è vera per qualche assegnazione di valori di verità 1.

Esercizio 1.1. Si scriva la tabella di verità della forma enunciativa $((A \iff B) \Longrightarrow ((\neg A) \land B))$

Figure 2: Esercizio 1

3 Tautologie e Contraddizioni

3.1 Tautologia

Una forma enunciativa è una tautologia se è vera per ogni assegnazione di valori di verità.

A	В	$A \vee \neg A$
1	0	1
0	1	1

Esercizio 2.2

Figure 3: Esercizio 2.2

3.2 Contraddizione

Una forma enunciativa è una contraddizione se è falsa per ogni assegnazione di valori di verità.

A	В	$A \wedge \neg A$
1	0	0
0	1	0

4 Implicazione ed Equivalenza logica

4.1 Implicazione logica

B implica logicamente C o analogamente C è una conseguenza logica di $B \iff$ ogni assegnamento di verità alle lettere enunciative di B e C che rende B vera (con valore 1), rende vera anche C.

4.2 Equivalenza logica

B e C sono logicamente equivalenti se e solo se B e C hanno lo stesso valore di verita per ogni assegnazione di valori di verita di ogni lettera enunciativa di B e C.

5 Connettivi e porte logiche

Ogni funzione di verità e generata da una forma enunciativa che coinvolge i 'connettivi \neg, \wedge, \vee .

Ogni funzione di verità può essere generata da una forma enunciativa che coinvolge i connettivi \neg, \wedge, \vee .

NOR joint denial

A	В	$A \downarrow B$
1	1	0
1	0	0
0	1	0
0	0	1

NAND

A	В	A B
1	1	0
1	0	1
0	1	1
0	0	1

Le porte logiche sono HW fondamentale su cui sono costruiti i computer.

Figure 4: Porte logiche

5.1 Transistor

Figura 4.2: Porte logiche NOT (a) e NAND (b) costruite con l'uso di transistors. Immagini ispirate da Feynman (2001, Fig. 2.12, 2.13).

Figure 5: Transistor

6 Forme normali e implicazionie ogica via risoluzione

7 Teoria assiomatica per il calcolo proposizionale

$$B \implies C = \neg B \vee C$$

•
$$(B \implies (C \implies B)) = B \implies (B \lor \neg C)$$

$$\bullet \ ((B \Longrightarrow (C \Longrightarrow D))) \Longrightarrow ((B \Longrightarrow C) \Longrightarrow (B \Longrightarrow D)) = \\ = ((B \Longrightarrow (B \Longrightarrow B \Longrightarrow B))) \Longrightarrow ((B \Longrightarrow C) \Longrightarrow (B \Longrightarrow D))$$

$$\bullet (((\neg C) \implies (\neg B)) \implies (((\neg C) \implies B) \implies C)) = (C \lor \neg B) \implies ((C \lor B) \implies C)$$