NBA Salary Linear Regression

Introduction

Objective: Analyze NBA player stat data to predict salary and pinpoint which stats are desirable for a higher salary

Methodology

Data:

-2 years worth of salary data for every player

Tools:

- -NumPy and Pandas for data manipulation
- -Matplotlib and Seaborn for data visualizations
- -BeautifulSoup for web-scraping
- -Sklearn for linear modeling

Methodology

Predictor Values: "3P%", "2P%", "FT%", "ORB", "DRB", "AST", "STL", "BLK", "TOV", "PF"

Predicting Value: "Salary"

Results

	variables	vif
0	3P%	8.379234
1	2P%	15.329776
2	FT%	19.967706
3	ORB	8.442780
4	DRB	15.073159
5	AST	12.357243
6	STL	9.077994
7	BLK	5.455680
8	TOV	17.927051
9	PF	15.679048

Log Q-Q plot

Theoretical quantiles

Results

Simple Linear Regression Model

Split the data: 20/80

MAE: \$1,996,622

R^2: 0.211

Added Polynomial Feature:

MAE: \$1,925,832

R^2: 0.213

Results

Lasso Model

Split the data: 20/80

R² Train: 0.160

R^2 Test: 0.210

Entry Variable:

AST: 1st

3P%: 2nd

DRB: 3nd

Future Work

If I had more time:

- Investigate further into the data to improve upon the R^2
- Lowering the heteroskedasticity
- Incorporating interaction terms to help with the model

End