MÉTODOS NUMÉRICOS E OTIMIZAÇÃO NÃO-LINEAR

Trabalho 1 Versão A Grupo nº 35

Pedro Pereira (A80627) Sofia Marques (A87963) Pedro Pereira (A89232) José Martins (A90122)

1 de fevereiro de 2021

Introdução

Neste primeiro projeto foi-nos proposto a utilização do MATLAB para a resolução de um problema de equações não lineares. O problema que encontrámos pertence à área da física e consiste na equação de Colebrook-White. Esta equação é usada para casos de fluxo torbulento (R>4000) e relaciona o fator de atrito de Darcy-Weisbach com o diâmetro de um tubo, a rugosidade da parede do tubo e o número de Reynolds. A obtenção do fator de atrito é muito útil pois permite calcular perdas de energia na superficie interna de um tubo.

Equação de Colebrook-White: $1/\sqrt{f} = -2log_{10}(k/(3,7D) + 2,52/(R_e\sqrt{f}))$, sendo f o fator de atrito, k a rugosidade da parede do tubo (m), D o diâmetro do tubo (m) e R o número de Reynolds.

Para representar um problema de aplicação real, utilizámos valores realistas nas variáveis da equação. Estes foram: k=0.0012m (coeficiente de rugosidade do ferro fundido), D=0.4m e R=80000.

```
function [f] = colebrook(x)
%Colebrook-White - equação que permite determinar o fator de atrito de
%Darcy-Weisbach no caso de fluxo turbulento (R > 4000)
%x = fator de atrito
k = 0.0012; %rugosidade da parede do tubo (m)
D = 0.400; %diâmetro do tubo (m)
R = 80000; %número de Reynolds (> 4000)

f = (-2 * log10((k / D / 3.72) + (2.51 / (R * sqrt(x)))) - 1/sqrt(x));
end
```

Figura 1: Ficheiro m utilizado

Testes Computacionais

Figura 2: Gráfico da função

Um ponto inicial que permitisse a convergência foi facilmente encontrado, tendo depois sido verificado que qualquer valor no intervalo de [-10000,10000] permitia a solução da equação, utilizando as opções predefinidas do *optimset*.

Com a opções predefinidas do *optimset*, com os valores das variáveis indicados anteriormente e utilizando um ponto inicial $\mathbf{x}=1$, a rotina *fsolve* encontra o valor de x=0,0277 em 21 iterações e com um fsol=9.4147e-14.

Utilizando ainda estas definições predefinidas, variando o ponto inicial, resultam os seguintes resultados:

Ponto inicial x = 5:

>> [xsol, fsol, exitflag, output1] = fsolve('colebrook',5,op)

			Norm of	First-orde	r Trust-region
Iteration	Func-count	t f(x)	step	optimality	radius
0	2	32.7716		0.265	1
1	4	32.1501	1	0.366	1
2	6	28.5496	2.5	1.5	2.5
3	7	28.5496	6.25	1.5	6.25
4	8	28.5496	1.5625	1.5	1.56
5	10	27.1015	0.390625	2.3	0.391
6	12	11.2544	0.976563	35.7	0.977
7	13	11.2544	0.315129	35.7	2.44
8	15	3.06359	0.0787823	71.7	0.0788
9	16	3.06359	0.0427275	71.7	0.197
10	18	1.5253	0.0106819	70.4	0.0107
11	20	0.655404	0.0216758	130	0.0267
12	22	0.0139443	0.00503148	13.9	0.0267
13	24	1.03745e-05	0.00100323	0.359	0.0267
14	26	6.31793e-12	2.89181e-05	0.00028	0.0267
15	28	2.72744e-25	2.26023e-08	5.8le-11	0.0267

fsol = -5.2225e - 13 e como esperado xsol = 0.0277.

Ponto inicial x = 10:

```
>> [xsol, fsol, exitflag, output1] = fsolve('colebrook',10,op)
```

			Norm of	First-order	Trust-region
Iteration	Func-count	f(x)	step	optimality	radius
0	2	34.3395		0.0957	1
1	4	34.1327	1	0.112	1
2	6	33.4252	2.5	0.18	2.5
3	8	16.9889	6.25	17	6.25
4	9	16.9889	0.999115	17	15.6
5	10	16.9889	0.249779	17	0.25
6	12	14.4633	0.0624447	24.1	0.0624
7	14	0.140733	0.156112	34.6	0.156
8	16	0.00166343	0.00407058	4.63	0.39
9	18	1.57444e-07	0.00035958	0.0441	0.39
10	20	1.44798e-15	3.56734e-06	4.23e-06	0.39
11	22	2.27981e-28	3.42174e-10	1.68e-12	0.39

fsol = -1.5099e - 14 e como esperado xsol = 0.0277.

Apesar de 10 ser uma pior aproximação inicial do que 5, a rotina fsolve demora menos iterações a encontrar o x aproximado. Não conseguimos encontrar razão que explicasse isto.

Ponto inicial x = 100000:

```
>> [xsol, fsol, exitflag, output1] = fsolve('colebrook',100000, op)
```

			Norm of	First-order	Trust-region
Iteration	Func-count	f(x)	step	optimality	radius
0	2	38.2366		1.01e-07	1

No solution found.

xsol não encontrado.

Utilizando format long e variando as opções Tolfun e Tolx obtemos os seguintes resultados com o ponto inicial x=1:

```
Tolfun = Tolx = 1e-6 (predefinido): xsol = 0.027736238173341 em 21 iterações.
```

Tolfun = Tolx = 1e-20: xsol = 0.027736238173340 em 22 iterações.

Tolfun = Tolx = 1e-40: xsol = 0.027736238173340 em 22 iterações.

Conclusão

O valor do fator de atrito obtido através da equação de Colebrook-White para os valores das variáveis anteriormente apresentados é então aproximadamente 0,0277.

A maior dificuldade encontrada no decorrer deste projeto foi encontrar problemas de equações não lineares que justificassem o seu estudo. Com a ajuda das aulas práticas, sentimo-nos bastante confortáveis a trabalhar com a plataforma MATLAB, percebendo desde logo a sua vantagem na resolução de problemas deste tipo. Pensámos ter obtido resultados de acordo com o esperado e portanto ter cumprido com os requisitos da proposta de trabalho. Este projeto, para além de se apresentar como um reforço da matéria em causa, permitiu-nos perceber a possível utilidade da mesma na vida real.