Statistik 05. ANOVA

Roland Schäfer

Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Jena

stets aktuelle Fassungen: https://github.com/rsling/VL-Deutsche-Syntax

Inhalt

- Graphische EinführungEinfaktorielle ANOVA
- Zweifaktorielle ANOVA

Übersicht

- Vergleiche von Mittelwerten zwischen mehr als zwei Gruppen
- Mittelwertvergleiche mit mehreren Unabhängigen
- Warum kann man über Varianzen Mittelwerte vergleichen?

Literatur

- Gravetter & Wallnau (2007)
- Bortz & Schuster (2010)
- indirekt: Maxwell & Delaney (2004)

Mittelwerte und Varianzen

- Einschränkung beim t-test: immer nur 2 Gruppen
- t-Test bei mehr als 2 Gruppen: komplizierte paarweise Vergleiche
- stattdessen ANOVA: ANalysis Of VAriance
- Vergleich von Varianzen zwischen beliebigen Gruppen
- Schluss auf Mittelwerte nur indirekt über die Varianzen
- bei zwei Gruppen: Konvergenz von t-Test und ANOVA

Achtung: Gruppen vs. Faktoren

- ANOVA vergleicht immer mehrere Gruppen
- Gruppen bei der einfaktoriellen ANOVA = den Ausprägungen einer unabhängigen Variable (z. B. Text-Register)
- diese Variablen heißen hier Faktoren.
- Einfluss der Faktoren auf eine abhängige (z. B. Satzlänge, Lesezeit)
- bei mehreren Faktoren (z. B. Text-Register und Jahrhundert): mehrfaktorielle ANOVA.

Idee bei ANOVA (z. B. drei Gruppen)

- Ho: $\bar{x_1} = \bar{x_2} = \bar{x3}$
- aber: Es gibt keinen "Differenzwert" für drei Mittel (also sowas wie den t-Wert).
- daher Varianzvergleich
- F-Wert (Verteilung unter Ho bekannt) als Test-Statistik

$$F = \frac{\text{Varianz zwischen Stichprobenmitteln}}{\text{Varianz in den Stichproben}} = \frac{\text{Varianz zwischen Stichprobenmitteln}}{\text{Varianz per Zufall}}$$

Roland Schäfer (FSU Jena) Statistik 05. ANOVA 6/39

Drei Stichproben

$$\mathbf{x}_1 = [0, 1, 3, 1, 0]$$

 $\mathbf{x}_2 = [4, 3, 6, 3, 4]$
 $\mathbf{x}_3 = [1, 2, 2, 0, 0]$

Statistik

Komponenten der Varianz von x_1

Komponenten der Varianz von x_2

Komponenten der Varianz von x_3

Varianz in der zusammengefassten Stichprobe X

Varianz zwischen den drei Gruppen

Achtung: Bei unterschiedlichen Stichprobengrößen

Roland Schäfer (FSU Jena) Statistik 05. ANOVA 12 / 39

Es gilt bezüglich der Varianzen

Worn man don Abstand zwischen den Mitteln verschieht

13 / 39

Roland Schäfer (FSU Jena) Statistik 05. ANOVA

Graphische Verdeutlichung des F-Werts

Wenn man den Abstand zwischen den Mitteln verschiebt, **muss** die Gesamtvarianz größer werden!

14 / 39

Wie funktioniert der F-Wert

- ullet $F = rac{ ext{Varianz zwischen Stichprobenmitteln}}{ ext{Varianz in den Stichproben}}$
- Warum?
- F = Unterschied durch Effekt+Unterschiede durch restliche Varianz
 Unterschied durch restliche Varianz
- Unter Annahme der Ho gibt es keinen Effekt, ...
- also Unterschied durch Effekt = 0
- dann: $F = \frac{\text{o} + \text{Unterschiede durch restliche Varianz}}{\text{Unterschied durch restliche Varianz}} = 1$

- Anzahl der Gruppen x_i: k
- Größe der Gruppen: n;
- Größe der Gesamtstichprobe X: N
- Summen der Gruppen: T_i
- Gesamtsumme: G
- Mittel (anders als G&W): $\bar{x_i}$, \bar{X}
- Summe der Quadrate (=Zähler der Varianz): $SQ(x_i)$, SQ(X)

Zur Erinnerung:
$$s^2(x) = \frac{\sum (x - \bar{x})}{n - 1} = \frac{SQ(x)}{df(x)}$$

Varianz ist Varianz beim F-Wert

$$F = \frac{\textit{Varianz zwischen den Gruppen}}{\textit{Varianz in den Gruppen}} = \frac{s_{\textit{zwischen}}^2}{s_{\textit{in}}^2} = \frac{\frac{s_{\textit{Zwischen}}}{s_{\textit{zwischen}}^2}}{\frac{s_{\textit{Q}_{\textit{in}}}}{s_{\textit{fin}}^2}}$$

denn

$$\mathbf{S}^2(\mathbf{X}) = \frac{\mathbf{SQ}(\mathbf{X})}{d\mathbf{f}(\mathbf{X})}$$

Berechnung der SQ

Am einfachsten unter Beachtung von:

$$SQ_{gesamt} = SQ_{zwischen} + SQ_{in}$$

Es gilt:
$$SQ_{gesamt} = SQ(X) = \sum (X - \bar{X})$$

Außerdem:
$$SQ_{in} = \sum SQ(x_i)$$

$$\textbf{Damit: } \textit{SQ}_{\textit{zwischen}} = \textit{SQ}_{\textit{gesamt}} - \textit{SQ}_{\textit{in}}$$

SQ_{zwischen} kann man auch direkt ausrechnen:

$$SQ_{zwischen} = \sum_{i} (rac{T_{i}^{2}}{n_{i}}) - rac{G^{2}}{N}$$

19 / 39

Aufgabe

$$\mathbf{x}_1 = [0, 1, 3, 1, 0]$$

 $\mathbf{x}_2 = [4, 3, 6, 3, 4]$
 $\mathbf{x}_3 = [1, 2, 2, 0, 0]$

Bitte alle SQ ausrechnen, inkl. SQ_{zwischen} direkt.

Tipp: Sie brauchen als Vorwissen nur den Stoff der ersten Statistik-Sitzung:

- arithmetisches Mittel
- SQ

Freiheitsgrade ausrechnen

Es gilt auch hier, ähnlich wie bei den SQ:

$$df_{gesamt} = df_{zwischen} + df_{in}$$

$$df_{qesamt} = N - 1$$

$$df_{zwischen} = k - 1$$

$$df_{in} = \sum_{i=1}^{k} (n_i - 1) = (N - 1) - (k - 1)$$

Alles zusammen: F-Wert

$$F = \frac{s_{zwischen}^2}{s_{in}^2} = \frac{\frac{sQ_{zwischen}}{df_{zwischen}}}{\frac{sQ_{in}}{df_{in}}}$$

Bitte ausrechnen für o.g. Beispiel.

F-Verteilung:

In R für $df_{zwischen}=2$ und $df_{in}=12$ bei sig=0.05: > qf (0.95, 2, 12) \Rightarrow 3.885294

Effektstärke

$$\eta^2 = rac{ ext{SQ}_{ ext{zwischen}}}{ ext{SQ}_{ ext{gesamt}}}$$

(wieder ein r^2 -Maß)

24/39

- Problem: Welche Gruppen unterscheiden sich denn nun?
- Lösung: Post(-Hoc)-Tests, z. B. Scheffé-Test:
 - paarweise ANOVA
 - ▶ aber: k wird gesetzt wie bei ursprünglicher ANOVA
 - dadurch Vermeidung kumulierten Alpha-Fehlers (Vorteil ggü. paarweisen t-Tests)
 - weiterer Vorteil: paarweise Post-Tests nur erforderlich, wenn Omnibus-ANOVA bereits Signifikanz gezeigt hat
 - und: Generalisierbarkeit zu mehrfaktorieller ANOVA (geht mi t-Test nicht)

Bitte ausrechnen für die oben gerechnete ANOVA.

Wozu mehrfaktorielle Designs

Oft vermutet man den Einfluss mehrerer Unabhängiger auf eine Abhängige. Beispiel: Satzlängen

		Textsorte		
		Fiktion	Zeitung	Wissenschaft
Jahrhundert	19	X 11	X 12	X 13
	20	x_{21}	$\mathbf{\textit{X}}_{22}$	x_{23}

Hier also: $2 \cdot 3 = 6$ Gruppen

Ablauf der zweifaktoriellen ANOVA

- erste ANOVA zwischen Zeilen
- zweite ANOVA zwischen Spalten
- 3 dritte ANOVA für Interaktionen zwischen Zeilen und Spalten
- Interaktion: Ungleichverteilung in Gruppen, die nicht durch die Spalten- und Zeileneffekte erklärt werden kann
- 5 Alle drei ANOVAs sind unabhängig voneinander!

Komponenten der zweifaktoriellen ANOVA

- Gesamtvarianz = Varianz zwischen Gruppen + Varianz in den Gruppen
- Varianz zwischen den Gruppen = Haupt-Faktoren-Varianz + Interaktions-Varianz
- Haupt-Faktoren-Varianz =
 Varianz zwischen Faktor A-Gruppen +
 Varianz zwischen Faktor B-Gruppen

Schritt 1(1): SQ/df zwischen den Gruppen

Jede Zelle der Tabelle ist eine Gruppe.

$$SQ_{zwischen} = \sum\limits_i (rac{T_i^2}{n_i}) - rac{G^2}{N}$$
 $df_{zwischen} = k-1$ (k = Anzahl der Zellen/Gruppen)

Beachte: Keine Änderung verglichen mit einfaktorieller ANOVA!

Schritt 1(2): SQ/df in den Gruppen

Jede Zelle der Tabelle ist eine Gruppe.

$$SQ_{in} = \sum SQ(x_i)$$
$$df_{in} = \sum df(x_i)$$

Beachte: Keine Änderung verglichen mit einfaktorieller ANOVA!

30 / 39

Schritt 2(2): SQ/df für Gruppe A

Berechnung nach dem Schema für Zwischen-Gruppen-Varianz

		Textsorte			
		Fiktion	Zeitung	Wissenschaft	
Jahrhundert	19	X 11	X 12	X 13	A_1
	20	x ₂₁	\mathbf{x}_{22}	$\textit{\textbf{X}}_{23}$	A_2

Auch hier keine wesentliche Änderung:
$$SQ_A = \sum_i (\frac{T_{A_i}^2}{n_{A_i}}) - \frac{G^2}{N}$$

$$df_A = k_A - 1 \ (k_A = \text{Anzahl der Zeilen})$$

Schritt 2(2): SQ/df für Gruppe A

Berechnung nach dem Schema für Zwischen-Gruppen-Varianz

		Textsorte		
		Fiktion	Zeitung	Wissenschaft
Jahrhundert	19	X 11	X 21	X 31
	20	x_{12}	$\mathbf{\textit{X}}_{22}$	x_{32}
		B_1	B_2	B_3

Auch hier keine Änderung:
$$SQ_B = \sum_i (\frac{T_{B_i}^2}{n_{B_i}}) - \frac{G^2}{N}$$

 $df_B = k_B - 1$ (k_B = hier Anzahl der Spalten)

Schritt 2(3): SQ/df für Interaktion $A \times B$

Die Varianz, die auf Kosten der Interaktion geht, ist die Zwischen-Gruppen-Varianz ohne die Einzelfaktor-Varianz.

$$SQ_{A \times B} = SQ_{zwischen} - SQ_A - SQ_B$$

 $df_{A \times B} = df_{zwischen} - df_A - df_B$

Alle drei F-Werte ausrechnen

Die zweifaktorielle ANOVA erfordert wie gesagt drei Einzel-ANOVAs.

$$F_A = rac{rac{SQ_A}{df_A}}{rac{SQ_{zwischen}}{df_{zwischen}}} = rac{S_A^2}{S_{zwischen}^2}$$

$$F_B = rac{rac{SQ_A}{df_B}}{rac{SQ_{zwischen}}{df_{zwischen}}} = rac{S_B^2}{S_{zwischen}^2}$$

$$F_{A imes B} = rac{rac{SQ_{A imes B}}{df_{A imes B}}}{rac{SQ_{zwischen}}{df_{zwischen}}} = rac{S_{A imes B}^2}{S_{zwischen}^2}$$

Effektstärken

Entsprechend sind drei η^2 auszurechnen:

$$\eta_{\rm A}^2 = \frac{{\rm SQ_A}}{{\rm SQ_{gesamt}} - {\rm SQ_B} - {\rm SQ_{A \times B}}}$$

$$\eta_{\mathrm{B}}^2 = \frac{\mathrm{SQ_B}}{\mathrm{SQ_{gesamt}} - \mathrm{SQ_A} - \mathrm{SQ_{A imes B}}}$$

$$\eta_{\rm A\times B}^2 = \frac{{\rm SQ}_{\rm A\times B}}{{\rm SQ}_{\rm gesamt} - {\rm SQ}_{\rm A} - {\rm SQ}_{\rm B}}$$

Wir fragen jeweils, welchen Anteil an der Varianz, die die anderen beiden Faktoren nicht erklären, der jeweilige dritte Faktor hat.

Das jetzt alles zusammen

Bitte vollständige zweifaktorielle ANOVA bei sig=0.05 und sig=0.01 rechnen:

	B1	B2	В3
A 1	1, 3, 1, 4	4, 3, 3, 6	8, 6, 8, 10
A2	8, 6, 6, 8	1, 6, 8, 1	1, 4, 1, 4

Literatur I

- Bortz, Jürgen & Christof Schuster. 2010. Statistik für Human- und Sozialwissenschaftler. 7. Aufl. Berlin: Springer.
- Gravetter, Frederick J. & Larry B. Wallnau. 2007. Statistics for the Behavioral Sciences. 7. Aufl. Belmont: Thomson.
- Maxwell, Scott E. & Harold D. Delaney. 2004. Designing experiments and analyzing data: a model comparison perspective. Mahwa, New Jersey, London: Taylor & Francis.

Autor

Kontakt

Prof. Dr. Roland Schäfer Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Jena Fürstengraben 30 07743 Jena

https://rolandschaefer.net roland.schaefer@uni-jena.de

Lizenz

Creative Commons BY-SA-3.0-DE

Dieses Werk ist unter einer Creative Commons Lizenz vom Typ Namensnennung - Weitergabe unter gleichen Bedingungen 3.0 Deutschland zugänglich. Um eine Kopie dieser Lizenz einzusehen, konsultieren Sie

http://creativecommons.org/licenses/by-sa/3.0/de/ oder wenden Sie sich brieflich an Creative Commons, Postfach 1866, Mountain View, California, 94042, USA.