

deried the Im oo thing P(w) denied the) Unigram- prior smoothing 500,000 woods with 1 million

Quiz on Transl(iter)ation

There are names of some countries in South America, written in the Georgian language, together with their translations to English:

Reference

Speech and Language Processing, 3rd Edition (draft): Chapter 9. Sequence Processing with Recurrent Networks

https://web.stanford.edu/~jurafsky/slp3/9.pdf

Many of these slides have been adapted from CS 224n. Some material is from the Deep Learning book.

Language Modeling

Language Modeling is the task of predicting what word comes next.

Goal: Compute the probability of a sentence or sequence of words:

$$P(W) = P(w_1, w_2, w_3, \dots, w_n)$$

Language Modeling

Language Modeling is the task of predicting what word comes next.

Goal: Compute the probability of a sentence or sequence of words:

$$P(W) = P(w_1, w_2, w_3, \dots, w_n)$$

auto-completion

• Related Task: probability of an upcoming word:

$$P(w_4|w_1,w_2,w_3)$$

Language Modeling

Language Modeling is the task of predicting what word comes next.

Goal: Compute the probability of a sentence or sequence of words:

$$P(W) = P(w_1, w_2, w_3, \dots, w_n)$$

• Related Task: probability of an upcoming word:

$$P(w_4|w_1,w_2,w_3)$$

• A model that computes either of these is called a language model

Why should we care about language modeling?

- Language Modeling is a benchmark task that helps us measure our progress on understanding language
- Language Modeling is a subcomponent of many NLP tasks, especially those involving generating text or estimating the probability of text:

n-gram language models

the students opened their _____

Question: How to learn a Language Model?

<u>Answer</u> (pre- Deep Learning): learn a *n*-gram Language Model!

<u>Definition:</u> A *n*-gram is a chunk of *n* consecutive words.

- unigrams: "the", "students", "opened", "their"
- bigrams: "the students", "students opened", "opened their"
- trigrams: "the students opened", "students opened their"
- 4-grams: "the students opened their"

<u>Idea:</u> Collect statistics about how frequent different n-grams are, and use these to predict next word.

n-gram language models

• First we make a simplifying assumption: $x^{(t+1)}$ depends only on the preceding n-1 words.

- Question: How do we get these n-gram and (n-1)-gram probabilities?
- Answer: By counting them in some large corpus of text!

n-gram language models: Example

Suppose we are learning a 4-gram Language Model.

The proctor started the clock, the students opened their condition on this

P(w|students opened their)

Count(students opened their)

For example, suppose that in the corpus:

- "students opened their" occurred 1000 times
- "students opened their books" occurred 400 times
 - → P(books | students opened their) = 0.4
- "students opened their exams" occurred 100 times
 - \rightarrow P(exams | students opened their) = 0.1

undgroom IM: NI

Should we have discarded the "proctor" context?

bi-grom; 1V12

Storage Problems with n-gram Language Model

Increasing *n* or increasing corpus increases model size!

A fixed-window neural language model

A fixed-window neural language model

Delay t played & dxh dxh dra Sachin Tendukor chil Sachin Tendulos WU Swaly

A fixed-window neural language model

Improvements over *n*-gram LM:

- No sparsity problem
- Don't need to store all observed n-grams

Remaining problems:

- Fixed window is too small
- Enlarging window enlarges W
- Window can never be large enough!
- x⁽¹⁾ and x⁽²⁾ are multiplied by completely different weights in W.
 No symmetry in how the inputs are processed.

We need a neural architecture that can process any length input

Core Idea

Apply the same weights repeatedly!

We can process a sequence of vectors x by applying a recurrence formula at each step:

We can process a sequence of vectors \boldsymbol{x} by applying a recurrence formula at each step:

$$h_t = f_W(h_{t-1}, x_t)$$

$$\text{new state} \qquad \text{old state input vector at some time step}$$

$$\text{some function with parameters W}$$

$$\text{ce: the same function and the same set}$$

Notice: the same function and the same set of parameters are used at every time step.

X

Activation function for the hidden units

Assume the hyperbolic tangent activation function

Activation function for the hidden units

Assume the hyperbolic tangent activation function

Form of output and loss function

Assume output is discrete - predicting words

We can obtain a vector normalized probabilities over the output - \hat{y} .

Activation function for the hidden units

Assume the hyperbolic tangent activation function

Form of output and loss function

Assume output is discrete - predicting words

We can obtain a vector normalized probabilities over the output - \hat{y} .

Update Equations

Initial state - $h^{(0)}$

Activation function for the hidden units

Assume the hyperbolic tangent activation function

Form of output and loss function

Assume output is discrete - predicting words

We can obtain a vector normalized probabilities over the output - \hat{y} .

Update Equations

Initial state - $h^{(0)}$

From t = 1 to $t = \tau$, the following update equation is applied:

$$a^{(t)} = b + Wh^{(t-1)} + Ux^{(t)}$$

Forward Propagation

$$a^{(t)} = b + Wh^{(t-1)} + Ux^{(t)}$$

$$h^{(t)} = \tanh(a^{(t)})$$

$$o^{(t)} = c + Vh^{(t)}$$

$$\hat{y}^{(t)} = softmax(o^{(t)})$$

Forward Propagation

$$a^{(t)} = b + Wh^{(t-1)} + Ux^{(t)}$$
$$h^{(t)} = tanh(a^{(t)})$$
$$o^{(t)} = c + Vh^{(t)}$$
$$\hat{y}^{(t)} = softmax(o^{(t)})$$

This maps an input sequence to an output sequence of the same length.

Total loss is sum of the losses over all the time steps. So, if $L^{(t)}$ is the negative log likelihood of $y^{(t)}$ given $x^{(1)}, \dots, x^{(\tau)}$, then

Total loss is sum of the losses over all the time steps. So, if $L^{(t)}$ is the negative log likelihood of $y^{(t)}$ given $x^{(1)}, \dots, x^{(\tau)}$, then

$$L(\{x^{(1)},...,x^{(\tau)}\},\{y^{(1)},...,y^{(\tau)}\})$$

$$= \sum_{t} L^{(t)}$$

$$= -\sum_{t} log \ p_{model}(y^{(t)}|\{x^{(1)},...,x^{(\tau)}\})$$
Correct Class

Total loss is sum of the losses over all the time steps. So, if $L^{(t)}$ is the negative log likelihood of $y^{(t)}$ given $x^{(1)}, \dots, x^{(\tau)}$, then

$$L(\{x^{(1)},...,x^{(\tau)}\},\{y^{(1)},...,y^{(\tau)}\})$$

$$= \sum_{t} L^{(t)}$$

$$= -\sum_{t} log \ p_{model}(y^{(t)}|\{x^{(1)},...,x^{(\tau)}\})$$

where $p_{model}(y^{(t)}|\{x^{(1)},\dots,x^{(\tau)}\})$ is given by reading the entry for $y^{(t)}$ from the model's output vector $\hat{y}^{(t)}$

Total loss is sum of the losses over all the time steps. So, if $L^{(t)}$ is the negative log likelihood of $y^{(t)}$ given $x^{(1)}, \dots, x^{(\tau)}$, then

$$L(\{x^{(1)},...,x^{(\tau)}\},\{y^{(1)},...,y^{(\tau)}\})$$

$$= \sum_{t} L^{(t)}$$

$$= -\sum_{t} log \ p_{model}(y^{(t)}|\{x^{(1)},...,x^{(\tau)}\})$$

where $p_{model}(y^{(t)}|\{x^{(1)},\dots,x^{(\tau)}\})$ is given by reading the entry for $y^{(t)}$ from the model's output vector $\hat{y}^{(t)}$

Back propagation - right to left - back propagation through time (BPTT)

Example RNN

