RUNNING TIME ANALYSIS

Problem Solving with Computers-I

https://ucsb-cs24-sp17.github.io/

Performance questions

- How efficient is a piece of code?
 - CPU time usage (Running time complexity)
 - Memory usage
 - Disk usage
 - Network usage

Which implementation is faster?

```
function F(n) {
    if(n == 1) return 1
    if(n == 2) return 1
return F(n-1) + F(n-2)
}
```

for i = 3 to n:
 fib[i] = fib[i-1] + fib[i-2]
return fib[n]
}

Create an array fib[1..n]

A. Recursive algorithm

B. *Iterative* algorithm

function F(n) {

fib[1] = 1

fib[2] = 1

C. Both are equally fast

What we really care about is how the running time scales as a function of input size

```
function F(n) {
    if(n == 1) return 1
    if(n == 2) return 1
return F(n-1) + F(n-2)
}
```

```
function F(n) {
   Create an array fib[1..n]
   fib[1] = 1
   fib[2] = 1
   for i = 3 to n:
      fib[i] = fib[i-1] + fib[i-2]
   return fib[n]
}
```

The "right" question is: How does the running time scale? E.g. How long does it take to compute F(200)?let's say on....

NEC Earth Simulator

Can perform up to 40 trillion operations per second.

Ack: Prof. Sanjoy Das Gupta

The running time of the recursive implementation

The Earth simulator needs 2^{95} seconds for F_{200} .

Time in seconds

210

2²⁰

230

240

270

Interpretation

17 minutes

12 days

32 years

cave paintings

The big bang!

```
function F(n) {
    if(n == 1) return 1
    if(n == 2) return 1
return F(n-1) + F(n-2)
}
```

What is the fundamental difference between the two

```
function F(n) {
    if (n == 1) return 1
    if (n == 2) return 1
return F(n-1) + F(n-2)
}
```

```
function F(n) {
   Create an array fib[1..n]
   fib[1] = 1
   fib[2] = 1
   for i = 3 to n:
      fib[i] = fib[i-1] + fib[i-2]
   return fib[n]
}
```

Algorithm Analysis

- Focus on primitive operations:
 - Data movement (assignment)
 - Control statements (branch, function call, return)
 - Arithmetic and logical operation

 By inspecting the pseudo-code, we can count the number of primitive operations executed by an algorithm

```
function F(n) {
    if(n == 1) return 1
    if(n == 2) return 1
return F(n-1) + F(n-2)
}
```

Post mortem on the recursive function

What takes so long? Let's unravel the recursion...

The same subproblems get solved over and over again!

How bad is exponential time?

Need $2^{0.694n}$ operations to compute F_n .

Eg. Computing F_{200} needs about 2^{140} operations.

How long does this take on a fast computer?

40 trillion operations per second on NEC supercomputer -> 295 seconds

Running time analysis of the iterative algorithm

```
function F(n)
Create an array fib[1..n]
fib[1] = 1
fib[2] = 1
for i = 3 to n:
    fib[i] = fib[i-1] + fib[i-2]
return fib[n]
```

The number of operations is proportional to n. [Previous method: $2^{0.7n}$]

 F_{200} is now reasonable to compute, as are F_{2000} and F_{20000} .

We just did an asymptotic analysis of the two algorithms

Asymptotic Analysis

- Goal: to simplify the analysis of running time by ignoring "details" which may be an artifact of the underlying implementation:
 - E.g., 1000001 ≈ 1000000
 - Similarly, 3n² ≈ n²
- Capture the essence: how the running time of an algorithm increases with the size of the input in the limit (for large input sizes)

How do you do the analysis:

- Count the number of primitive operations executed as a function of input size.
- Express the count using O-notation to express

What is big-Oh about?

- Intuition: avoid details when they don't matter, and they don't matter when input size (N) is big enough
 - For polynomials, use only leading term, ignore coefficients: linear, quadratic

$$y = 3x$$
 $y = 6x-2$ $y = 15x + 44$
 $y = x^2$ $y = x^2-6x+9$ $y = 3x^2+4x$

- Compare algorithms in the limit
- 20N hours v. N² microseconds:
 - which is better?

Big-O: More formal definition

- The big-oh Notation:
 - Asymptotic upper bound
 - f(n) = O(g(n)), if there exists constants c and n_0 such that $f(n) \le c g(n)$ for $n \ge n_0$
 - f(n) and g(n) are functions over non-negative integers
- Used for worst case analysis

Writing Big O

- Simple Rule: Ignore lower order terms and constant factors:
 - 50n log n is O(n log n)
 - -7n 3 is O(n)
 - $-8n^2 \log n + 5 n^2 + n + 1000 \text{ is } O(n^2 \log n)$
- Note: even though 50 n log n is O(n⁵), it is expected that such approximation be as tight as possible (*tight upper bound*).

Comparing asymptotic running times

N	O(log N)	O(N)	O(N log N)	$O(N^2)$
10	0.000003	0.00001	0.000033	0.0001
100	0.00007	0.00010	0.000664	0.1000
1,000	0.000010	0.00100	0.010000	1.0
10,000	0.000013	0.01000	0.132900	1.7 min
100,000	0.000017	0.10000	1.661000	2.78 hr
1,000,000	0.000020	1.0	19.9	11.6 day
1,000,000,000	0.000030	16.7 min	18.3 hr	318 centuries

An algorithm that runs in O(n) is better than one that runs in $O(n^2)$ time Similarly, $O(\log n)$ is better than O(n) Hierarchy of functions: $\log n < n < n^2 < n^3 < 2^n$

Next time

More linked list with classes