Digital Transformation for Leaders

TRANSFORMATION:

3D Printing

implilearn. All rights reserved.

Learning Objectives

By this end of this, you will be able to:

- Define 3D printing
- Identify the applications of 3D printing
- List the pros and cons of 3D printing
- Learn how 3D printing helped companies improve quality and save cost
- Gain an understanding about the future scope of 3D printing

DIGITAL

Overview of 3D Printing

3D Printing: Origin

Chuck Hull is known as the father of 3D printing.

3D Printing: Definition

- The process of making a physical object from a three-dimensional digital model.
- 3D printing is also called additive manufacturing.

3D Printers

3D Printing: Cost

- A simple home-based 3D printer is about \$300, while the commercial ones can cost tens of thousands of dollars.
- There are numerous sites where 3D models, along with files and instructions, are available for free or at a small cost.

3D Printing: Prosthetics

- 3D printing changes the lives of people by providing them with affordable prosthetics: hands, limbs, and arms.
- 10 percent of medical devices are 3D printed and nearly 100 percent of hearing-aid devices are made from 3D printing.

• Non-profit organizations like E-NABLE is empowering volunteers to create and print affordable prosthetics.

DIGITAL

Applications of 3D Printing

3D Printing: Raw Materials

Plastic is the most commonly used raw material 3D printing. However, a wide range of materials can be used for different applications.

3D printers can print delicious and unique Belgium chocolates

3D Printing: Low-Volume Manufacturing

- In low-volume manufacturing, 3D printing helps produce products more frequently and easily.
- Businesses will be able to overcome the restraints that come with traditional methods.

• 3D printing empowers an agile development process for producing physical parts and accelerates the production and time to market.

3D Printing: High-Volume Manufacturing

- For high volume manufacturing, a production line is set up for 3D printing.
- Improvements to machinery, adjustments to the print speed, or a change of product can be done instantly.

AON-M2 2020

3D Printing: Constructing Houses

- Creative use of 3D printing concept is leveraged for large endeavors.
- Homes can now be built in less than 24 hours at a cost of only \$4,000.

Gaia made with soil and agricultural waste

3D Printing: Constructing Bridges

- 3D printing is being used in civil engineering and architecture.
- It reduces cost, provides superior engineering characteristics, and removes physical constraints.

MX3D is replacing the layering process

3D Printing: Scanners

3D scanning is the process of analyzing a real-world object or environment to collect the data on its shape.

EinScan SP 3D Scanner

3D Printing: Robotics

- Robotics is involved to create large, complex products.
- 3D printers can create robotic arms.

Writing robotic arm

3D Printing: Eliminates Physical Barrier

- In traditional production, multiple parts are produced and combined later.
- 3D printing removes these physical barriers.
- It fuels the creativity to solve problems and enables agile processes.

VELO3D breaking barriers in metal additive manufacturing with support-free 3D printing

Case Study: Volkswagen

- Volkswagen's Portugal plant saved \$377,000 in a year by 3D printing wheel assembly jigs and fixtures.
- Jigs and fixtures are parts that hold and guide tools in a machinery.

Case Study: Volkswagen

John Kawola Former North American President Ultimaker (Volkswagen Vendor)

"It used to be if they wanted one of these parts, it would cost \$200 to get the part, and it would take a couple of weeks. Now they can print it in a couple hours and cost \$20"

Case Study: GE Additive

- GE Additive, a subsidiary of General Electric, offers machines that harness Electron Beam Melting and Laser Additive Technology.
- With 3D printing, it began producing metal fuel nozzle for GE Aviation LEAP engine in 2015.

Case Study: GE Additive

3D printing helped the company:

- Eliminate the welding and brazing process
- Increase the strength of metal nozzles by five times
- Reduce the weight by 25 percent

Metal Fuel Nozzle

DIGITAL

Pros and Cons of 3D Printing

3D Printing: Constraints

The three main constraints to 3D printing are:

01	Speed	3D printers are slow when compared to the other methods.
02	Size	Printing large objects is complex and expensive.
03	Material	Plastic is not suitable for all types of work.

©Simplilearn. All rights reserved.

3D Printing: Advantages

Cheaper than traditional methods

Reduction in errors, material wastage, time, and money

No machinery problems or human errors

Develop ideas at a faster pace

Iterative products development

Ease in developing complex products

Decrease in cost over time

Minimal waste

Production on demand

3D Printing: Challenges

Environmental impact

DIGITAL

Case Study of 3D Printing

- People are rejecting the stereotype, monolithic office.
- Organizations are rethinking about their workplace to deliver a more human-centered experience.
- Work environments that allow furniture customization can increase a person's sense of belonging, promote self-expression, and authenticity.

Turnstone (Steelcase brand)

- The three dimensional printing has been around for decades, but it comes with certain limits.
- The Self-Assembly Lab, founded by MIT assistant professor Skylar Tibbits and co-directed by Jared Laucks, aimed to create a new process with improved speed, size, and quality.

Skylar Tibbits and Jared Laucks

- An innovative new technique emerged after months of working on the project with Steelcase.
- The process prints inside of a gel, allowing a product designer to draw in 3D space without the limitations of gravity.
- A two-part mixing process allows the material to be chemically cured.
- The technique mixes, extrudes, and cures.

Rapid Liquid Printing

Rapid Liquid Printing physically draws in 3d space within a gel suspension.

Enables the creation of large scale, customized products with materials.

Addresses three limitations:

- Slow speed
- Small scale
- Low quality material

Materials used, size of the object, and intricacy of the design affect the speed of the Rapid Liquid Printing process.

DIGITAL

Future of 3D Printing

3D Printing: New Approach

3D printing is expected to expand to many areas in the future.

Most promising areas include:

Medical application: Future of heart transplant

Custom part replacement: Serial production

Customized consumer products: Food

3D Printing: Accessibility

3D printing is becoming more accessible.

You can get your own 3D printer at home.

3D Printing: Opportunity

3D printing is evolving and producing consumer products more effectively than traditional business processes.

3D printing is evolving at a fast pace.

3D printing is an enabler to rethink many aspects of an organization.

3D printing enables an agile development cycle.

Key Takeaways

- 3D printing solutions are expensive to implement for engineering and industrial purposes.
- 3D printing involves other concepts such as 3D scanning and robotics.
- 3D printing uses a wide range of materials for custom or mass production.

3D printing is a technology that fuels creativity. However, you need to think holistically about its uses to design impactful solutions.

