

REPUBLIK ÖSTERREICH **Patentamt**

(10) Nummer: AT 406 537 B

(12)

PATENTSCHRIFT

(21) Anmeldenummer:

453/98

(51) Int. Cl. 7: H05K 13/02

(22) Anmeldetag:

13.03.1998

(42) Beginn der Patentdauer:

15.10.1999

(45) Ausgabetag:

26.06.2000

(56) Entgegenhaltungen:

EP 0036826A PATENT ABSTRACTS OF JAPAN, VOL 17, NO 19 (E-1306), 1993; JP 4-247640 A VOM 03.09.1992 PATENT ABSTRACTS OF JAPAN, VOL 14. NO 156 (E-908), 1990; JP 2-14547 A VOM 18.01.1990 PATENT ABSTRACTS OF JAPAN, VOL 13. NO 421 (E-822), 1989; JP 1-157549 A VOM 12.03.1989

(73) Patentinhaber: DATACON SEMICONDUCTOR EQUIPMENT **GMBH**

A-6240 RADFELD, TIROL (AT).

(72) Erfinder:

SCHWEITZER KARL ING. ANGERBERG, TIROL (AT).

(54) EINRICHTUNG ZUM POSITIONIEREN VON AUF EINER FOLIE ANGEORDNETEN **ELEKTRONISCHEN SCHALTUNGEN**

 \mathbf{m}

Einrichtung zum Positionieren von auf einer Folie angeordneten elektronischen Schaltungen, beispielsweise Chips, auf einer Leiterplatte, Keramiksubstrat od. dgl. entsprechend der Flip-Chip-Methode, die einen hohen Bedienungskomfort durch Programmierbarkeit und Reproduzierbarkeit der diversen Einstellungen aufweist und sich durch einen einfachen Aufbau auszeichnet.

Die Chips 1, die auf einer Folie 2 aufgebracht sind, werden im Zugriffsbereich einer Saugnadel 3 angeordnet, wobei unter der Folie 2 Ausstechnadeln 4 vorgesehen sind. Das Abheben des Chips 1 erfolgt über eine exakte, geradlinige, senkrechte und synchrone Bewegung von Ausstechnadeln 4 und Saugnadel 3. Nach der Übernahme des Chip 1 durch die Saugnadel 3 von der Folie 2, wird die Saugnadel 3 über eine Drehmechanik 7, die über einen Riementrieb 8 mit einem Antrieb 9 verbunden ist, um 180 geschwenkt. Der Chip 1 wird nun von einer weiteren Saugnadel 10, die vier Bewegungsfreiheiten aufweist, zum Positionieren auf einer Leiterplatte 11 übernommen.

Vor dem Positionieren des Chip 1 auf der Leiterplatte 11 wird der Chip 1 von einer Vermessungskamera 13 und die Leiterplatte 11 über die Vermessungskamera 14 vermessen. Beide Vermessungskameras 13,14 sind an einen Rechner 15 angeschlossen. Eine Kalibrierung der

beiden Vermessungskameras 13, 14 erfolgt durch Überblenden der beiden Bilder, wobei diese kalibrierte Position im Rechner 15 ebenfalls gespeichert wird. Die im Rechner 15 festgestellte eventuelle Abweichung von der kalibrierten Position wird über die rechnerunterstützte Steuerung für die Saugnadel 10 ausgeglichen.

Die Erfindung betrifft eine Einrichtung zum Positionieren von auf einer Folie angeordneten elektronischen Schaltungen, beispielsweise Chips, auf einer Leiterplatte, Keramiksubstrat od. dgl. entsprechend der Flip-Chip-Methode, wobei die Chips mittels unter der Folie angeordneter Ausstechnadeln von der Folie abgehoben werden und von einer Saugnadel bzw. Sauger erfaßt und 180° geschwenkt, von einer weiteren Saugnadel übernommen und auf der Leiterplatte zum direkten Verbinden der Kontaktbahnen positioniert werden.

Normalerweise werden die elektronische Schaltung bzw. der Chip mit der den Kontakten abgewandten Seite auf der Leiterplatte angebracht und die Kontakte und die Kontaktbahnen mit Mikrodrähten verbunden. Die Verbindung der Drähte mit den Kontakten erfolgt beispielsweise durch Ultraschallschweißen. Dieses Verfahren wird auch als Drahtbonden bezeichnet. Ein derartiges Verfahren ist beispielsweise aus der EP 0036 826 A bekannt. Die Nachteile dieser Methode liegen auf der Hand. Einerseits waren viele Arbeitsgänge zur Herstellung der fertigen Platine notwendig, anderseits sind durch diese Art und Weise der Chipbefestigung die Streueinflüsse schwer zu beherrschen.

10

20

25

รก

35

40

50

Ferner sind auch verschiedene Verfahren zum Ablösen der Chips von den Folien, auf die sie geklebt sind, bekannt. So ist es beispielsweise aus den Patent Abstracts of Japan, Vol 17, No 19 (E-1306), 1993; JP 4-247640 A vom 3.9.1992 bzw. Vol 14, No 156 (E-908), 1990; JP 2-14547 A vom 18.1.1990 oder Vol 13, No 421 (E-822), 1989; JP 1-157549 A vom 12.3.1989 bekannt, stumpfe Nadeln einzusetzen, um Beschädigungen der Chips beim Ablösen zu vermeiden.

Eine Alternative zum Drahtbonden ist die Flip-Chip-Methode. Dabei werden die Kontakte des Chip direkt, wie eingangs aufgezeigt, mit den Kontaktbahnen der Leiterplatte verbunden. Bei dieser Methode ist eine höhere Kontaktsicherheit, ein kürzerer Verbindungsweg, speziell bei hohen Frequenzen, und der Entfall des aufwendigen Drahtbondens gegeben. Um die unterschiedlichen Dehnungskoeffizienten auszugleichen, wird der Hohlraum zwischen Chip und Leiterplatte nach dem Kontaktieren mit Kleber bzw. Füllstoff ausgefüllt.

Wichtig ist bei diesem Verfahren, daß die Kontakte von Chip und Leiterplatte exakt übereinanderliegen. Um das zu erreichen, müssen die Lage jedes Chips und jeder Leiterplatte vermessen und eine Korrekturbewegung berechnet werden. Wenn die Geometrie der Leiterplatte genau genug ist, reicht es zwei Referenzpunkte der Leiterplatte zu vermessen und die einzelnen Ablagepositionen umzurechnen. Andernfalls wird jede einzelne Ablageposition einzeln vermessen.

Besonders schwierig ist die Programmierung der Sollposition eines Chips, da eine visuelle Korrektur des Ergebnisses nicht möglich ist. Die Strukturen von Chip und Leiterplatte liegen nämlich übereinander. Die Genauigkeit, mit der die Kontakte übereinander liegen, kann nur über zerstörende Methoden geprüft werden.

Aufgabe der Erfindung ist es daher, eine Einrichtung der eingangs genannten Art zu schaffen, die einerseits die Nachteile des Standes der Technik vermeidet und die anderseits einen hohen Bedienungskomfort durch Programmierbarkeit und Reproduzierbarkeit der diversen Einstellungen aufweist und sich durch einen einfachen Aufbau auszeichnet.

Die erfindungsgemäße Einrichtung ist dadurch gekennzeichnet, daß sowohl die Ausstechnadeln zum Abheben des Chips von der Folie, wie auch die Saugnadel zur Übernahme, eine synchrone, insbesondere eine geradlinige bzw. senkrechte Bewegung ausführen, daß die Saugnadel in einer Saugnadelhalterung, die in einem Arm beweglich gelagert ist, vorgesehen ist und dieser Arm über einen Antrieb für die 180°-Drehbewegung antreibbar ist und daß die weitere Saugnadel ebenfalls in einer Saugnadelhalterung gelagert ist, die der Saugnadel vier Bewegungsfreiheiten, nämlich in x, y und z-Richtung und Drehen gewährt.

Mit der Erfindung ist es erstmals möglich, sowohl die 180°-Drehung, wie auch die vertikale Chipabnahmebewegung mit einem Motor zu realisieren und die Chipabnahmebewegung so zu steuern, daß sie synchron zur Bewegung der Ausstechnadeln ist. Dieser synchrone Ausstechvorgang stellt einen entscheidenden Qualitätsvorteil dar, da der Chip dabei, während des gesamten Vorganges, mit konstanter Kraft zwischen den Ausstechnadeln und der Saugnadel festgehalten wird. Außerdem kommt es dabei nie zu einer horizontalen Relativbewegung zwischen den Ausstechnadeln und der Saugnadel, die die Chipoberfläche unweigerlich zerstören würde.

Ferner ist es mit der Erfindung möglich, eine maschinelle Einrichtung für eine äußerst rationelle Fertigung bzw. für eine Erhöhung des Automatisierungsgrades in der Leiterplattenbestückung herzustellen. Darüber hinaus ist es mit der Erfindung möglich, die Qualität der derart hergestellten Leiterplatten enorm zu erhöhen. Ein weiterer gravierender Vorteil ist darin zu sehen, daß der Aufbau der erfindungsgemäßen Einrichtung durch die Anordnung nur eines Antriebes für den Bewegungsablauf zum Positionieren des Chips sehr einfach und dadurch auch wirtschaftlich ist.

Durch die Bewegungsfreiheit der zweiten Saugnadel ist eine qualitativ hochstehende Positionierung des Chips auf der Leiterplatte gewährleistet.

Nach einem besonderen Merkmal der Erfindung sind zwei Vermessungskameras vorgesehen, wobei eine Vermessungskamera zum Vermessen der Leiterplatte und die zweite Vermessungskamera zum Vermessen des Chips dient und beide Vermessungskameras an einen Rechner angeschlossen sind und die Kalibrierung der beiden Vermessungskameras durch Überblenden der beiden Bilder auf Deckung erfolgt und diese kalibrierte Position in einem Rechner speicherbar ist. Durch die beiden Vermessungskameras ist eine weitere Qualitätserhöhung zu erreichen. Jede Leiterplatte bzw. jedes Substrat wird fix positioniert und über eine Vermessungskamera an zwei Punkten vermessen. Dabei kann es bereits zu einer Differenz zum programmierten, ursprünglichen Substrat kommen. Die erfaßten, definitiven Werte der Leiterplatte werden in den Rechner eingegeben und gespeichert. Die zweite Vermessungskamera vermißt jeden Chip, wobei auch diese Werte in den Rechner eingegeben werden. Natürlich ist auch die kalibrierte Position, die durch Überblenden der beiden Bilder erfolgt, im Rechner gespeichert.

Gemäß einer Weiterbildung der Erfindung errechnet bzw. stellt der Rechner nach einer Vermessung eines Chips eine eventuelle Abweichung von der kalibrierten Position fest und steuert die weitere Saugnadel entsprechend der Differenz an. Durch die Vermessung bzw. Erfassung der Chipdaten über die zweite Vermessungskamera und die entsprechende Auswertung über eine geeignete Software ist eine Programmierhilfe für die Positionierung des Chips auf der Leiterplatte gegeben. Entsprechend der im Rechner errechneten Werte wird die zweite Saugnadel angesteuert. Von Vorteil ist dabei vor allem die Programmierbarkeit der Steuerung für die Einrichtung, wobei beispielsweise der Weg, die Geschwindigkeit und / oder der Zeitpunkt o.dgl. programmierbar ist. Weiters ist von immensen Vorteil, daß alle Werte bzw. Daten, insbesondere über die Rechneranlage, reproduzierbar sind. Die Reproduzierbarkeit der Einstellungen ist in einer derart hochspezialisierten Technologie eine unabdingbare Notwendigkeit, vor allem auch um eine einwandfreie Qualität sicherzustellen.

20

25

30

40

50

Wie bereits erwähnt, ist die Programmierung der Sollposition eines Chips gemäß dem Stand der Technik besonders schwierig, da eine visuelle Korrektur des Ergebnisses nicht möglich ist. Um nun diesen Vorgang für den Bediener möglichst einfach zu gestalten, wurde das erfindungsgemäße Verfahren entwickelt, mit dem es genügt, das Bild, das die Kamera von der Chipstruktur aufgenommen hat und das überblendete Bild der Leiterbahnen der weiteren Kamera in Deckung zu bringen. Aus diesem Vorgang ermittelt der Rechner selbständig die Sollposition der Chipablage.

Nach einer besonderen Ausgestaltung der Erfindung ist als Antrieb für die 180°-Drehbewegung des Armes ein Schrittmotor vorgesehen. Vorteilhaft dabei ist, daß ein Schrittmotor einerseits eine ausgereifte Antriebskomponente, die zudem sehr wartungsarm ist, darstellt und anderseits sehr genau mit kleinsten Maßeinheiten steuerbar ist. Nach einer weiteren Ausgestaltung der Erfindung ist der Arm radial auf einer Welle angeordnet, wobei diese Welle in einer konzentrischen Hohlwelle gelagert ist und die Hohlwelle mit einem Schlitz für den Durchtritt des Armes versehen ist, der einen größeren Winkel als 180°, vorzugsweise 191°, aufweist und die Hohlwelle über einen Riementrieb vom Schrittmotor antreibbar ist. Durch den größeren Winkel als 180° ist vorteilhafterweise gewährleistet, daß bei der Übernahme des Chips von der Folie eine senkrechte Bewegung der Saugnadel ausgeführt werden kann. Ferner ist durch die Anordnung des Armes auf einer Welle, die wiederum in einer Hohlwelle gelagert ist, eine einfache und funktionssichere Konstruktion gegeben.

Gemäß einer besonderen Ausgestaltung der Erfindung weisen sowohl die Welle als auch die Hohlwelle einen radialen Bolzen auf, wobei der Bolzen der Welle durch den Schlitz bzw. eine Ausnehmung in der Hohlwelle ragt und diese beiden Bolzen über eine Zugfeder miteinander verbunden sind. Der Vorteil dieser Ausgestaltung ist darin zu sehen, daß durch die technisch einfachen Bauteile ein zuverlässiger und wartungsarmer Betrieb gewährleistet ist.

Nach einem weiteren Merkmal der Erfindung führt der auf der Welle angeordnete radiale Arm eine durch Anschläge begrenzte exakte 180°-Drehbewegung aus. Für die exakte Übergabe des Chips, einerseits von den Ausstechnadeln zu Saugnadel und anderseits von Saugnadel zu Saugnadel, ist die genaue 180°-Drehbewegung eine vorteilhafte Grundforderung, die einen reibungslosen Ablauf garantiert.

Gemäß einer Weiterbildung der Erfindung weist die Hohlwelle einen weiteren Radialbolzen auf und die Saugnadelhalterung ist mit einem Anschlag versehen, wobei der Radialbolzen in der waagrechten Stellung des Armes an diesem Anschlag anliegt. Dadurch kann vorteilhafterweise mit

einer einfachen Konstruktion die geradlinige, exakte senkrechte Bewegung der Saugnadel gesteuert durchgeführt werden.

Nach einem weiteren Merkmal der Erfindung ist die Saugnadelhalterung in dem Arm beweglich gelagert, wobei eine Feder vorgesehen ist, die einerseits mit der Saugnadelhalterung und anderseits mit dem Radialbolzen verbunden ist. Mit dieser Ausgestaltung ist der Vorteil gegeben, daß mit technisch einfachsten Bauteilen ein hochtechnisierter Arbeitsablauf durchgeführt werden kann. Vor allem kann über den Winkel den der Radialbolzen ausführt, wenn der Arm am Anschlag aufliegt, also der über 180° hinausgehende Winkel, die auf den Chip von der Saugnadel wirkende Kraft genau definiert werden. Dies ist von Vorteil, da es praktisch eine technologische Notwendigkeit ist, bei größeren Chips eine größere Kraft aufzubringen als bei kleinen Chips. Ferner ist auch die definierte Kraftaufbringung vorteilhaft, wenn verschiedene Werkzeuge verwendet werden. Bei einem Werkzeug aus Gummi wird eine größere Kraft Anwendung finden, als wenn ein Stahlwerkzeug zum Einsatz kommt. Darüber hinaus kann während des Ausstechvorganges die auf den Chip wirkende Kraft weitgehenst konstant gehalten werden.

Nach einer vorteilhaften Weiterbildung ist die Feder eine Zugfeder. Dadurch ist der Vorteil gegeben, daß der Abstand zwischen dem Radialbolzen und dem Anschlag an der Saugnadelhalterung an dem der Radialbolzen anliegt, praktisch null ist. Dadurch bleibt aber auch die Feder immer gleich lang, so daß eine konstante Kraft gegeben ist.

Gemäß einer Weiterbildung der Erfindung ist die Hohlwelle entgegen der Kraft der Zugfeder weiterverdrehbar. Durch das Antreiben der Hohlwelle über den Schrittmotor ist eine genaue und einwandfreie Steuerung der Bewegung möglich, wobei die Zugfeder dem Grundstreben der Erfindung nach Einfachheit, Zuverlässigkeit und Wirtschaftlichkeit entgegenkommt.

Die Erfindung wird anhand von Ausführungsbeispielen, die in den Zeichnungen dargestellt sind, näher erläutert.

Fig. 1 zeigt in einer Prinzipskizze die Einrichtung und

10

20

25

30

50

Fig. 2a bis 2d den Bewegungsablauf der Saugnadel.

Gemäß der Fig. 1 weist die Einrichtung zum Positionieren von elektronischen Schaltungen, im allgemeinen Chips 1 genannt, einen - nicht dargestellten - Maschinenrahmen auf, auf dem die nachstehend aufgezeigten Bauteile, entsprechend ihrer Funktion fix oder beweglich angeordnet sind.

Bei der Flip-Chip- Methode werden die Chips 1, die auf einer Folie 2 aufgebracht sind, im Zugriffsbereich einer Saugnadel 3 angeordnet. Unter der Folie 2 mit den Chips 1 ist eine Vorrichtung mit Ausstechnadeln 4 vorgesehen. Zum Abheben des Chips 1 von der Folie 2 durchstechen die Ausstechnadeln die Folie 2, wobei die Saugnadel 3 - in dieser Stellung strichliert dargestellt - an der gegenüberliegenden Seite des Chips 1 aufliegt. Das Abheben des Chips 1 erfolgt über eine exakte, geradlinige, senkrechte und synchrone Bewegung von Ausstechnadeln 4 und Saugnadel 3, wobei dies über eine exakte Vertikalbewegung - wie sie später beschrieben wird - erfolgt. Die Saugnadel 3 ist in einer Saugnadelhalterung 5 angeordnet, wobei diese Saugnadelhalterung 5 in einem Arm 6 gelagert ist. Nach der Übernahme des Chip 1 durch die Saugnadel 3 von der Folie 2, wird die Saugnadel 3, vorzugsweise um eine Horizontalachse 180° geschwenkt. Die Schwenk- bzw. Drehbewegung erfolgt über eine Drehmechanik 7 die über einen Riementrieb 8 mit einem Antrieb 9 verbunden ist. Der Chip 1 wird nun von einer weiteren Saugnadel 10 zum Positionieren auf einem Substrat, insbesondere Keramiksubstrat bzw. einer Leiterplatte 11 übernommen. Die Saugnadel 10 ist ebenfalls in einer Saugnadelhalterung 12 vorgesehen, wobei diese Saugnadelhalterung 12 der Saugnadel 10 vier Bewegungsfreiheiten gewährt. Die vier Bewegungsfreiheiten sind die x, y und z-Richtung sowie Drehen. Diese vier Bewegungsfreiheiten sind für das Positionieren des Chip 1 auf der Leiterplatte 11 erforderlich. Darüber hinaus hat jede Saugnadel 3, 10 in ihrer Saugnadelhalterung 5, 12 einen vertikalen Federweg, um ganz weich den Chip 1 aufnehmen bzw. übergeben zu können.

Vor dem Positionieren des Chip 1 auf der Leiterplatte 11 wird der Chip 1 von einer Vermessungskamera 13 vermessen. Ebenso wird vorher die Leiterplatte 11 über die Vermessungskamera 14 vermessen. Beide Vermessungskameras 13, 14 sind an einen Rechner 15 angeschlossen, wobei dieser die vermessenen Daten speichert.

Eine Kalibrierung der beiden Vermessungskameras 13,14 erfolgt durch Überblenden der beiden Bilder, wobei diese kalibrierte Position im Rechner 15 gespeichert wird. Durch die Vermessung des Chip 1 mit der Vermessungskamera 13 wird im Rechner 15 eine eventuelle Abweichung von der kalibrierten Position errechnet bzw. festgestellt. Über den Rechner 15 wird

nun die Saugnadel 10 entsprechend der Differenz gesteuert und der Chip 1 auf der Leiterplatte 11 positioniert. Die im Rechner 15 hinterlegte Software dient also als Programmierhilfe.

Gemäß der Fig. 2a bis 2d ist der Bewegungsablauf der Saugnadel 3 von der Chipaufnahme bis zur Übergabe an die zweite Saugnadel 10 aufgezeigt.

5

10

15

20

25

35

55

Gemäß der Fig. 2a ist die Saugnadel 3 in der Saugnadelhalterung 5 angeordnet, wobei die Saugnadelhalterung 5 im Arm 6 längsverschieblich gelagert ist. Im Zugriffsbereich der Saugnadel 3 ist die Folie 2 mit den auf ihr angeordneten Chips 1 vorgesehen, wobei auf der der Saugnadel 3 abgewandten Seite der Folie 2 die Ausstechnadeln 4 angeordnet sind.

Der Arm 6 ist über die Drehmechanik 7 um genau 180° verdrehbar bzw. schwenkbar. Um die genaue 180°- Drehbewegung zu erreichen, sind beiderseits der Schwenkachse je ein Anschlag 17 vorgesehen, die die Drehbewegung des Armes 6 begrenzen. Die Drehmechanik 7 besteht aus einer Welle 18, die in einer konzentrischen Hohlwelle 19 gelagert ist. Auf der Welle 18 ist radial bzw. tangential der Arm 6 befestigt, wobei die Hohlwelle 19 für den Durchtritt des Armes 6 einen Schlitz 20 aufweist. Dieser Schlitz 20 ist derart bemessen, daß der Arm 6 gegenüber der Hohlwelle 19 einen größeren Drehwinkel wie 180° ausführen kann. Insbesondere soll der Arm 6 einen Winkel von 191° gegenüber der Hohlwelle 19 ausführen können. Die Drehung zwischen 180° und 191° wird in eine vertikale Bewegung der Saugnadel 3 umgesetzt. Darüber hinaus weisen sowohl die Welle 18 als auch die Hohlwelle 19 einen radialen Bolzen 21, 22 auf, die mit einer Zugfeder 23 verbunden sind. Der Bolzen 21 der Welle 18 ragt ebenfalls durch den Schlitz 20 der Hohlwelle 19. Natürlich könnte die Hohlwelle 19 auch eine eigene Ausnehmung für den Durchtritt des Bolzens 21 aufweisen. Ferner weist die Hohlwelle 19 einen Radialbolzen 24 auf, der an einem auf der Saugnadelhalterung 5 vorgesehenen Anschlag 25 anliegt. Die Drehmechanik 7 wird über den Riementrieb 8 bewegt, wobei der Riementrieb 8 die Hohlwelle 19 antreibt. Als Antrieb 9 für den Riementrieb 8 wird ein Schrittmotor verwendet.

Die Längsverschieblichkeit der Saugnadelhalterung 5 im Arm 6 wird indirekt über den Radialbolzen 24 bestimmt. Es ist eine Feder 26, insbesondere eine Zugfeder, vorgesehen, die einerseits am Befestigungspunkt 27 am Radialbolzen 24 und anderseits am Befestigungspunkt 28 an der Saugnadelhalterung 5 angelenkt ist.

Anhand der Fig. 2b wird das Abheben eines Chips 1 von der Folie 2 aufgezeigt. Wie bereits eingangs erwähnt, ist für das Abheben des Chips 1 von der Folie 2 eine synchrone Bewegung der Saugnadel 3 und der Ausstechnadeln 4 erforderlich, um während der Abnahme eine konstante Kraft zwischen Ausstechnadeln 4 und Saugnadel 3 zu erhalten. Die exakte Senkrechtbewegung der Ausstechnadeln 4 ist relativ leicht durchzuführen. Um nun eine geradlinige, in diesem Fall senkrechte. Synchronbewegung von der Saugnadel 3 zu den Ausstechnadeln 4 zu erreichen, wird die Hohlwelle 19 nach dem Punkt, wo der Arm 6 am Anschlag 17 anliegt, weiterverdreht, wodurch der Radialbolzen 24 in Richtung der Folie 2 bewegt wird. Gleichzeitig wird die Zugfeder 23 zwischen den Bolzen 21, 22 gespannt. Die Saugnadelhalterung 5, die mit dem Anschlag 25 am Radialbolzen 24 anliegt, wird auf Grund der Kraft der Feder 26 in Richtung der Folie 2 auf den Chip 1 bewegt, wo die Saugwirkung der Saugnadel 3 zur Wirkung kommt. Die Ausstechnadeln 4 durchdringen die Folie 2 und liegen am Chip 1 an. Die Drehrichtung des Antriebes 9 wird, durch die Anordnung eines Schrittmotors problemlos, umgedreht.

Gemäß der Fig. 2c wird die Hohlwelle 19 mit dem Radialbolzen 24 entgegen dem Uhrzeigersinn so lange verdreht, bis die Schlitzbegrenzung am Bolzen 21 der Welle 18 anliegt. Die Zugfeder 23 wird entspannt und der Radialbolzen 24 bewegt die Saugnadelhalterung 5 geradlinig hoch, wobei durch die Kraft der Feder 26 der Anschlag 25 immer am Radialbolzen 24 anliegt. Synchron dazu werden die Ausstechnadeln 4 geradlinig, bis der Chip 1 sich von der Folie 2 gelöst hat, bewegt. Nach der Übernahme des Chip 1 durch die Saugnadel 3 wird die 180°-Drehbewegung des Armes 6 ausgeführt und die Ausstechnadeln 4 abgesenkt. Die Ausstechnadeln 4 dürfen zu diesem Zeitpunkt keinen Kontakt mehr zur Chiprückseite haben, da der Chip 1 sich durch die 180°-Drehbewegung auf einer Kreisbahn um den Mittelpunkt der Drehachse, also nicht vertikal bewegt. Die Ausstechnadeln 4 würden sonst die Rückseite des Chips 1 beschädigen.

Entsprechend der Fig. 2d liegt der Arm 6 am zweiten Anschlag 17 auf und der Chip 1 kann von der zweiten Saugnadel 10 übernommen werden. Mit der Saugnadel 10 wird der Chip 1 zum Vermessen über die Vermessungskamera 13 gebracht und anschließend entsprechend der rechnerunterstützten Steuerungsdaten auf der Leiterplatte 11 positioniert.

Abschließend sei festgehalten, daß in den unterschiedlich beschriebenen Ausführungsbeispielen gleiche Teile mit gleichen Bezugszeichen bzw. mit gleichen Bauteilbezeichnungen versehen sind, wobei in der gesamten Beschreibung enthaltenen

Offenbarungen sinngemäß auf gleiche Teile mit gleichen Bezugszeichen bzw. gleichen Bauteilbezeichnungen übertragen werden können. Auch sind die in der Beschreibung gewählten Lageangaben, wie z.B. oben, unten, seitlich usw. auf die unmittelbar beschriebene sowie dargestellte Figur bezogen und sind bei einer Lageänderung sinngemäß auf die neue Lage zu übertragen. Weiters können auch Einzelmerkmale oder Merkmalskombinationen aus den gezeigten und beschriebenen unterschiedlichen Ausführungsbeispielen für sich eigenständige, erfinderische oder erfindungsgemäße Lösungen darstellen.

Die den eigenständigen erfinderischen Lösungen zugrundeliegende Aufgabe kann der Beschreibung entnommen werden.

Der Ordnung halber sei abschließend daraufhingewiesen, daß zum besseren Verständnis des Aufbaus des Antriebes die Bestandteile teilweise unmaßstäblich und/oder vergrößert und/oder verkleinert dargestellt wurden.

15

10

BEZUGSZEICHENLISTE

	1	Chip
20	2	Folie
	3	Saugnadel
	4	Ausstechnadeln
	5	Saugnadelhalterung
	6	Arm
25	7	Drehmechanik
	8	Riementrieb
	9	Antrieb
	10	Saugnadel
	11	Leiterplatte
30	12	Saugnadelhalterung
	13	Vermessungskamera
	14	Vermessungskamera
	15	Rechner
	17	Anschlag
35	18	Welle
	19	Hohlwelle
	20	Schlitz
	21	Bolzen
	22	Bolzen
40	23	Zugfeder
	24	Radialbolzen
•	25	Anschlag
	26	Feder
	27	Befestigungspunkt
45	28	Befestigungspunkt

Patentansprüche:

Einrichtung zum Positionieren von auf einer Folie angeordneten elektronischen Schaltungen, beispielsweise Chips, auf einer Leiterplatte, Keramiksubstrat od. dgl. entsprechend der Flip-Chip-Methode, wobei die Chips mittels unter der Folie angeordneter Ausstechnadeln von der Folie abgehoben werden und von einer Saugnadel bzw. Sauger erfaßt und 180° geschwenkt, von einer weiteren Saugnadel übernommen und auf der Leiterplatte zum direkten Verbinden der Kontaktbahnen positioniert werden, dadurch gekennzeichnet, daß sowohl die Ausstechnadeln (4) zum Abheben des Chips (1) von der Folie (2), wie auch die Saugnadel (3) zur Übernahme, eine synchrone, insbesondere

geradlinige bzw. senkrechte Bewegung ausführen, daß die Saugnadel (3) in einer Saugnadelhalterung (5), die in einem Arm (6) beweglich gelagert ist, vorgesehen ist und dieser Arm (6) über einen Antrieb (9) für die 180°-Drehbewegung antreibbar ist und daß die weitere Saugnadel (10) ebenfalls in einer Saugnadelhalterung (12) gelagert ist, die der Saugnadel (10) vier Bewegungsfreiheiten, nämlich in x, y und z-Richtung und Drehen gewährt.

- 2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß zwei Vermessungskameras (13, 14) vorgesehen sind, wobei eine Vermessungskamera (14) zum Vermessen der Leiterplatte (11) und die zweite Vermessungskamera (13) zum Vermessen des Chips (1) dient und beide Vermessungskameras (13, 14) an einen Rechner (15) angeschlossen sind und die Kalibrierung der beiden Vermessungskameras (13, 14) durch Überblenden der beiden Bilder auf Deckung erfolgt und diese kalibrierte Position im Rechner (15) speicherbar ist.
- Einrichtung nach Anspruch 2, dadurch gekennzeichnet, daß der Rechner (15) nach einer Vermessung eines Chips (1) eine eventuelle Abweichung von der kalibrierten Position errechnet bzw. feststellt und die weitere Saugnadel (10) entsprechend der Differenz ansteuert
- Einrichtung nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als Antrieb (9) für die 180°-Drehbewegung des Armes (6) ein Schrittmotor vorgesehen ist
- 5. Einrichtung nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Arm (6) radial auf einer Welle (18) angeordnet ist, wobei diese Welle (18) in einer konzentrischen Hohlwelle (19) gelagert ist und die Hohlwelle (19) mit einem Schlitz (20) für den Durchtritt des Armes (6) versehen ist, der einen größeren Winkel als 180°, vorzugsweise 191°, aufweist und die Hohlwelle (19) über einen Riementrieb (8) vom Schrittmotor antreibbar ist.
- 6. Einrichtung nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß sowohl die Welle (18) als auch die Hohlwelle (19) einen radialen Bolzen (21, 22) aufweisen, wobei der Bolzen (21) der Welle (18) durch den Schlitz (20) bzw. eine Ausnehmung in der Hohlwelle (19) ragt und diese beiden Bolzen (21, 22) über eine Zugfeder (23) miteinander verbunden sind.
- 7. Einrichtung nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der auf der Welle (18) angeordnete radiale Arm (6) eine durch Anschläge (17) begrenzte exakte 180°-Drehbewegung ausführt.
- 8. Einrichtung nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Hohlwelle (19) einen weiteren Radialbolzen (24) aufweist und die Saugnadelhalterung (5) mit einem Anschlag (25) versehen ist, wobei der Radialbolzen (24) in der waagrechten Stellung des Armes (6) an diesem Anschlag (25) anliegt.
 - 9. Einrichtung nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Saugnadelhalterung (5) in dem Arm (6) beweglich gelagert ist, wobei eine Feder (26) vorgesehen ist, die einerseits mit der Saugnadelhalterung (5) und anderseits mit dem Radialbolzen (24) verbunden ist.
 - 10. Einrichtung nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Feder (26) eine Zugfeder ist.
- 11. Einrichtung nach einem oder mehreren der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Hohlwelle (19) entgegen der Kraft der Zugfeder (23) weiterverdrehbar ist.

Hiezu 3 Blatt Zeichnungen

50

5

10

15

20

25

30

40

Patentschrift Nr.: AT 406 537 B Int. Cl. ⁷: H05K 13/02

Blatt: 2

Patentschrift Nr.: AT 406 537 B

Int. Cl. ⁷: H05K 13/02

ÖSTERREICHISCHES PATENTAMT

Ausgegeben: 26.06.2000

Blatt: 3

Patentschrift Nr.: AT 406 537 B

Int. Cl. 7: H05K 13/02

AT406537A.txt

```
#DataBase:
  espacenet
 #PatmonitorVersion:
  172
  #DownloadDate:
 2004-10-07
#Title:
  Device for positioning electronic circuits which are arranged on a film
  #PublicationNumber:
  AT406537B
  #PublicationDate:
  2000-06-26
  #Inventor:
  SCHWEITZER KARL ING (AT)
  #Applicant:
 DATACON SEMICONDUCTOR EQUIPMEN (AT)
  #RequestedPatent:
 AT406537B #ApplicationNumber:
 AT19980000453
  #ApplicationDate:
  1998-03-13
  #PriorityNumber:
  AT19980000453;1998-03-13
  H05K13/02
  #Equivalents:
  AT45398
#Abstract:
Device for positioning electronic circuits which are arranged on a film, for example chips, on a printed circuit board, ceramic substrate or the like using the flip-chip method, which is highly convenient to use due to programmability and reproducibility of the various settings, and is distinguished by simple construction. The chips 1 which are mounted on the film 2 are arranged in the access area of a suction needle 3, with push-out needles 4 being provided under the film 2. The chip 1 is lifted off by means of an exact movement, synchronously, vertically and in a straight line, of the push-out needles 4 and suction needle 3. Once the chip 1 has been transferred by the suction needle 3 from the film 2, the suction needle 3 is pivoted through 180 via a rotary mechanism 7 which is connected to a drive 9 via a belt drive 8. The chip 1 is now transferred for positioning on a printed circuit board 11 by a further suction needle 10, which has four degrees of freedom. Before the chip 1 is positioned on the printed circuit board 11, the chip 1 is measured by a measurement camera 13, and the printed circuit board 11 is measured by a measurement camera 14. The two measurement cameras 13, 14 are connected to a computer 15. The two measurement cameras 13, 14 are calibrated by overlaying the two images, with this calibrated position which is found in the computer 15 is compensated for by computer-aided control for the suction needle 10.
  #Abstract:
```

street and beginners at extent to

DOCKET NO: MAS-FIN-410

SERIAL NO: 10/698,081

APPLICANT: Lehner

LERNER AND GREENBERG P.A.

P.O. BOX 2480

HOLLYWOOD, FLORIDA 33022

TEL. (954) 925-1100