Analiza wariancji (ANOVA)

Jednoczynnikowa ANOVA

- Na test jednoczynnikowej analizy wariancji możemy patrzeć jak na uogólnienie testu t-Studenta dla dwóch prób niezależnych, na przypadek k, (k>2) prób niezależnych
- Model:

$$X_{ij} = \mu_i + \varepsilon_{ij}, \qquad i = 1, \dots, k, \qquad j = 1, \dots, n_i$$

gdzie:

 μ_i - "prawdziwa" wartość badanej cechy w i-tej grupie ε_{ij} - błędy (niezależne zmienne losowe o jednakowym rozkładzie $N(0,\sigma^2)$)

Jednoczynnikowa ANOVA

Hipoteza zerowa:

Wartości oczekiwane (średnie) badanej cechy w k grupach **nie różnią** się istotnie:

$$H_0$$
: $\mu_1 = \mu_2 = \dots = \mu_k$

Hipoteza alternatywna:

Co najmniej dla jednej pary grup, wartości oczekiwane (średnie) badanej cechy **różnią się istotnie**:

$$H_1$$
: $\sim H_0$

• Statystyka testowa:

$$F = \frac{n - k}{k - 1} \frac{SSA}{SSE}$$

Jednoczynnikowa ANOVA

gdzie

$$SSA = \sum_{i=1}^{k} n_i (\bar{X}_i - \bar{X})^2$$
 $SSE = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (X_{ij} - \bar{X}_i)^2$

$$\bar{X}_i = \frac{1}{n_i} \sum_{j=1}^{n_i} X_{ij}$$
 $\bar{X} = \frac{1}{n} \sum_{i=1}^{k} \sum_{j=1}^{n_i} X_{ij}$ $n = \sum_{i=1}^{k} n_i$

Rozkład statystyki testowej:

$$F\Big|_{H_0} \sim F(k-1,n-k)$$

Tabela analizy wariancji

• Tradycyjnie wyniki analizy wariancji przedstawiamy w postaci tabeli:

Zmienność	Suma kwadratów	Liczba stopni swobody	Średnie kwadraty	Statystyka testowa
Pomiędzy grupami	SSA	k - 1	$MSA = \frac{SSA}{k-1}$	F
Wewnątrz grup	SSE	n-k	$MSE = \frac{SSE}{n - k}$	I'
Całość	SST	n-1	$MST = \frac{SST}{n-1}$	

Założenia jednoczynnikowej analizy wariancji

- Niezależność obserwacji dla poszczególnych jednostek eksperymentalnych
- Błędy mają rozkłady normalne z zerową wartością oczekiwaną (brak błędu systematycznego) i jednorodną wariancję

• Uwaga:

Założenie jednorodności wariancji możemy zweryfikować testem Barletta

Test Barletta

- Założenia: Model normalny, wiele prób niezależnych
- Hipoteza zerowa:

$$H_0$$
: $\sigma_1^2 = \sigma_2^2 = \dots = \sigma_k^2$

Hipoteza alternatywna:

$$H_1$$
: $\sim H_0$

Statystyka testowa:

$$B = \frac{1}{C}(n-k)\ln MSE - \sum_{i=1}^{k} (n_i - 1)\ln S_i^2$$

$$C = 1 + \frac{1}{3(k-1)} \left(\sum_{i=1}^{k} \frac{1}{n_i - 1} - \frac{1}{n-k} \right)$$

• Rozkład statystyki testowej:

$$B \Big|_{H_0} \sim \chi^2(k-1)$$
 (graniczny)

Porównania wielokrotne (post hoc)

- Procedury porównań wielokrotnych stosujemy wtedy, gdy zostanie odrzucona hipoteza zerowa w analizie wariancji
- Procedura NIR Fishera
- Polega na testowaniu, dla każdej pary (i, j), i, j = 1, 2, ..., k, $i \neq j$ oddzielnie hipotezy zerowej:

przeciwko hipotezie alternatywnej: H_0 : $\mu_i = \mu_j$ H_1 : $\mu_i \neq \mu_j$

Wartość statystyki testowej:

$$t = \frac{\bar{X}_i - \bar{X}_j}{\sqrt{MSE}} \sqrt{\frac{n_i n_j}{n_i + n_j}}$$

Rozkład statystyki testowej (t-Studenta):

$$t\Big|_{H_0} \sim t(n-k)$$

Porównania wielokrotne (post hoc)

- Procedura HSD Tukey'a
- Założenie:

$$n_1 = n_2 = \cdots = n_k = m$$

• Polega na testowaniu, jednocześnie dla wszystkich par $(i,j), i,j=1,2,...,k, i\neq j$ hipotez zerowych:

 H_0 : $\mu_i = \mu_j$ przeciwko hipotezom alternatywnym

$$H_1$$
: $\mu_i \neq \mu_j$

Wartość statystyki testowej:

$$q = \frac{\bar{X}_i - \bar{X}_j}{\sqrt{MSE}} \sqrt{m}$$

• Rozkład statystyki testowej ma rozkład q (rozkład studentyzowanego rozstępu) z k i m-k stopniami swobody

$$q\Big|_{\mathbf{H}_0} \sim q(k, m-k)$$