Quantum Computing (量子计算)

Get ready to grasp the leading edge technologies

Driss BOUTAT

Institut National des Sciences Appliquées Centre Val de Loire .

Periodic behavior

• If J is a matrix such that $J^2 = -I$ then

$$e^{tJ} = \cos(t)I + \sin(t)J.$$

Example: $J\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} J$ behaves as the imaginary unit i.

ullet If H is a Hermitian matrix such that $H^2=I$ then

$$e^{-itH} = \cos(t)I - i\sin(t)H.$$

Examples: Pauli matrices
$$\sigma_1=\begin{pmatrix}0&1\\1&0\end{pmatrix}$$
, $\sigma_2=\begin{pmatrix}0&-i\\i&0\end{pmatrix}$ and $\sigma_3=\begin{pmatrix}1&0\\0&-1\end{pmatrix}$. We can prove that in general we have $H=\eta_1\sigma_1+\eta_2\sigma_2+\eta_3\sigma_3$ with $\eta_1^2+\eta_2^2+\eta_3^2=1$ and $e^{\frac{-i\gamma t}{\hbar}H}=\cos(\frac{\gamma t}{\hbar})I-i\sin(\frac{\gamma t}{\hbar})H$ is a rotation around the vector $\eta^T=\begin{pmatrix}\eta_1,\eta_2,\eta_3\end{pmatrix}$

Spin Schrodinger equation

The Schrodinger equation of a particle within a magnetic field with Hamiltonian γH is given by:

$$i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = \gamma H |\psi(t)\rangle.$$

Its solution $e^{\frac{-i\gamma t}{\hbar}H}|\psi(0)\rangle$ is a rotation (up to overall phase) of the initial state $|\psi(0)\rangle$ around the vector $\eta^T=\left(\begin{array}{c}\eta_1,\eta_2,\eta_3\end{array}\right)$ by an amount of $\frac{2\gamma t}{\hbar}$.

Spin Schrodinger equation

The Schrodinger equation of a particle within a magnetic field with Hamiltonian γH is given by:

$$i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = \gamma H |\psi(t)\rangle.$$

Its solution $e^{rac{-i\gamma t}{\hbar}H}|\psi(0)
angle$. Simulation for $H=J(\sigma_1+\sigma_3)$. Create the trotterized circuit $e^{rac{-i\gamma t}{\hbar}H}=\lim_{n
ightarrow+\infty}[e^{rac{-i\gamma t}{n\hbar}\sigma_1}e^{rac{-i\gamma t}{n\hbar}\sigma_3}]^n$

Create the trotterized circuit

simulation

Assume we how to simulate $R_z(t) = e^{-itZ}$, and we want to simulate $R_{zz} = e^{-itZ \otimes Z}$.

•
$$R_{zz} = Cx \times \left(R_{zz} = e^{-itI \otimes Z}\right) \times Cx$$

- $R_{zz} = \cos(t)I \otimes I i\sin(t)Z \otimes Z$
- where we can write the Cnot Cx operator as follows: $Cx = |0\rangle\langle 0| \otimes I + |1\rangle\langle 1| \otimes X$
- $R_{Iz} = \cos(t)I \otimes I i\sin(t)I \otimes Z$
- $Cx \times R_{Iz} = \cos(t)Cx i\sin(t)|1\rangle\langle 1| \otimes XZ$
- $Cx \times R_{Iz} \times Cx = \cos(t)I \otimes I i\sin(t) (|0\rangle\langle 0| \otimes Z + |1\rangle\langle 1| \otimes XZX)$
- $Cx \times R_{Iz} \times Cx = \cos(t)I \otimes I i\sin(t) (|0\rangle\langle 0| \otimes Z |1\rangle\langle 1| \otimes Z)$
- $Z = |0\rangle\langle 0| |1\rangle\langle 1|$