Funciones de Orden Superior

Ernesto Rodriguez

Universidad del Itsmo erodriguez@unis.edu.gt

Funciones de Orden Superior

- Los lenguajes funcionales no diferencian funciones de valores
- Esto permite escribir funciones que aceptan otras funciones como parametro
- Este patron permite reemplazar muchos componentes tradicionales (ciclos, manejo de excepciones, saltos, etc.) mediante funciones.
 - Los Lambda Papers[2] describen diferentes formas de alcanzar esto.
- La mayoria de lenguajes modernos adopta este patron.
 - Java 8 por fin llego a donde Church estaba en 1930. Phillip Wadler
- Un patron llamado Programación Funcional Reactiva permite crear interfaces graficas mediante funciones de orden superior. Este Patron se utiliza en Elm, React y muchas otras herramientas.

Ejemplo: Composición

- ¿Que **tipo** deberia tener la composición?
- ¿Se puede programar la composición en Elm?

- Consideremos las siguientes funciones sobre listas:
 - ullet duplicar : $\mathcal{L}(\mathbb{Z})
 ightarrow \mathcal{L}(\mathbb{Z})$
 - ullet negar : $\mathcal{L}(\mathbb{B})
 ightarrow \mathcal{L}(\mathbb{B})$
- ¿Tiene algun problema la implementación?
- ¿Podemos simplificar?

- Consideremos las siguientes funciones sobre listas:
 - ullet duplicar : $\mathcal{L}(\mathbb{Z})
 ightarrow \mathcal{L}(\mathbb{Z})$
 - ullet negar : $\mathcal{L}(\mathbb{B})
 ightarrow \mathcal{L}(\mathbb{B})$
- ¿Tiene algun problema la implementación?
 - Repetición de codigo
- ¿Podemos simplificar?
 - Idea: Abstraer la recursión

La función map : $(a \to b) \to \mathcal{L}(a) \to \mathcal{L}(b)$ hace exactamente eso:

La función map : $(a o b) o \mathcal{L}(a) o \mathcal{L}(b)$ hace exactamente eso:

$$map lista f = \begin{cases} [] & \text{if } lista \equiv [] \\ f x :: map xs f & \text{if } lista \equiv x :: xs \end{cases}$$

¿Como implementamos duplicar y negar utilizando map?

La función map : $(a o b) o \mathcal{L}(a) o \mathcal{L}(b)$ hace exactamente eso:

$$map f lista = \begin{cases} [] & \text{if } lista \equiv [] \\ f x :: map f xs & \text{if } lista \equiv x :: xs \end{cases}$$

¿Como implementamos duplicar y negar utilizando map?

- duplicar = map ((*) 2)
- negar = map not

Funciones Anonimas y Let

- A menudo se definen funciónes de uso unico.
- Es conveniente definir la función en donde sera utilizada
- A veces se necesita contexto local para definir la función.
- ullet Ejemplo: multiplicar : $\mathbb{Z} o \mathcal{L}(Z) o \mathcal{L}(Z)$

Funciones Anonimas y Let

- A menudo se definen funciónes de uso unico.
- Es conveniente definir la función en donde sera utilizada
- A veces se necesita contexto local para definir la función.
- ullet Ejemplo: multiplicar : $\mathbb{Z} o \mathcal{L}(Z) o \mathcal{L}(Z)$

```
\begin{array}{ll} \texttt{multiplicar} \ \textit{factor} \ \textit{lista} = \\ & \texttt{let} \\ & \texttt{op} \ \textit{valor} = \textit{factor} * \textit{valor} \\ & \texttt{in} \\ & \texttt{map} \ \textit{op} \ \textit{lista} \end{array} \qquad \begin{array}{ll} \texttt{multiplicar} \ \textit{factor} \ \textit{lista} = \\ & \texttt{map} \ (\lambda \textit{valor} \rightarrow \textit{factor} * \textit{valor}) \ \textit{lista} \end{array}
```

Generalizando los ciclos de Listas

• ¿Existen funciones que no se pueden expresar mediante map?

Generalizando los ciclos de Listas

- ¿Existen funciones que no se pueden expresar mediante map?
 - ¿count : $\mathcal{L}(a) \to \mathbb{N}$?
 - ¿sumatoria : $\mathcal{L}(\mathbb{Z}) o \mathbb{Z}$?

Generalizando los ciclos de Listas

- ¿Existen funciones que no se pueden expresar mediante map?
 - ¿count : $\mathcal{L}(a) \to \mathbb{N}$?
 - ullet įsumatoria : $\mathcal{L}(\mathbb{Z}) o \mathbb{Z}$?
- El tipo de la función esta incorrecto, ya que map solo puede producir listas.

Primer intento

Llamaremos a la nueva función fold : $(a o b) o \mathcal{L}(a) o b$:

$$fold f lista = \begin{cases} ? & \text{if } lista \equiv [] \\ f x & \text{if } lista \equiv x :: xs \end{cases}$$

• Problema: No es posible retornar un valor cuando lista esta vacia.

Primer intento

Llamaremos a la nueva función fold : $(a o b) o b o \mathcal{L}(a) o b$:

$$fold f base lista = \begin{cases} base & \text{if } lista \equiv [\] \\ f x & \text{if } lista \equiv x :: xs \end{cases}$$

- Problema: No es posible retornar un valor cuando lista esta vacia.
 - Aceptamos un valor de retorno para cubrir ese caso

Segundo intento

Llamaremos a la nueva función fold : $(a o b) o b o \mathcal{L}(a) o b$:

$$fold f base lista = \begin{cases} base & \text{if } lista \equiv [\] \\ f x & \text{if } lista \equiv x :: xs \end{cases}$$

- Problema: No es posible retornar un valor cuando lista esta vacia.
 - Aceptamos un valor de retorno para cubrir ese caso
- Problema: El valor de retorno solo depende del primer valor.

Segundo intento

Idea:

- "Recordar" el valor producido por cada elemento de la lista
- Permitir que la **funcion de orden superior** o el **reductor** utilize ese valor para producir un nuevo valor
- Retornar el ultimo valor que haya sido calculado.

Segundo intento

Llamaremos a la nueva función fold : $(b o a o b) o b o \mathcal{L}(a) o b$:

$$\texttt{fold } \textit{f base lista} = \left\{ \begin{array}{ll} \textit{base} & \text{if } \textit{lista} \equiv [\] \\ \textit{f (fold } \textit{f base xs)} \; \textit{x} & \text{if } \textit{lista} \equiv \textit{x} :: \textit{xs} \end{array} \right.$$

- Problema: No es posible retornar un valor cuando lista esta vacia.
 - Aceptamos un valor de retorno para cubrir ese caso
- Problema: El valor de retorno solo depende del primer valor.
 - Recordar el valor que fue calculado en el paso anterior

- ¿Podemos implementar la función count?
- ¿Podemos implementar la función sumatoria?
- ¿Podemos implementar la función map?

- ¿Podemos implementar la función count?
 - sumatoria $xs = \text{fold}(\lambda a \rightarrow a + 1) 0 xs$
- ¿Podemos implementar la función sumatoria?
- ¿Podemos implementar la función map?

- ¿Podemos implementar la función count?
 - sumatoria $xs = \text{fold} (\lambda \ a \ _ \rightarrow a + 1) \ 0 \ xs$
- ¿Podemos implementar la función sumatoria?
 - sumatoria $xs = \mathtt{fold} \; (\lambda \; a \; b \rightarrow a + b) \; 0 \; xs$
- ¿Podemos implementar la función map?

- ¿Podemos implementar la función count?
 - sumatoria $xs = \text{fold} (\lambda \ a \ _ \rightarrow a+1) \ 0 \ xs$
- ¿Podemos implementar la función sumatoria?
 - sumatoria $xs = \text{fold}(\lambda \ a \ b \rightarrow a + b) \ 0 \ xs$
- ¿Podemos implementar la función map?
 - map f as = fold $(\lambda \ bs \ a \rightarrow f \ a :: bs)[]$ as
- La función fold generaliza todas las funciones recursivas sobre listas. Ver "Functional Programming with Bananas, Lenses, Envelopes and Barbed Wire" [1].
- La generalización de la función fold para cualquier tipo se conoce como un catamorfismo.

Referencias

Erik Meijer, Maarten Fokkinga, and Ross Paterson.

Functional programming with bananas, lenses, envelopes and barbed wire.

pages 124-144. Springer-Verlag, 1991.

Guy L. Steele and Gerald Jay Sussman.

Lambda papers.

https://en.wikisource.org/wiki/Lambda_Papers.