Linear Algebra review lecture note

Bill Chung

May 26, 2022

Welcome

House keeping

- Please be on time and turn your camera on
- Please free to ask questions any time.

Recommendd Books

- Linear Algebra and its application by David C.Lay 4th edition
- Linear and Nonlinear Programming by Stephen G. Nash and Ariela Sofer
- The fundamental theorem of linear algebra, Strang, Gilbert
- if you can read Korean: :LINK TO RIDI:

Dancing with Wu Li Masters

• Young man, in mathmatics, you don't understand things. You just get used to them by John Von Neumann from Dancing with Wu Li Masters

Who is John Von Neumann?

- Leonoid Kantorovich (1912 1986): A new method of solving some classes of extrmal problems (1937)
- George B. Dantzig (1914 2005): SIMPLEX (1947)
- Jerzy Neyman (1894 1982) : Confidence Interval, P-value
- John Von Neumann: The duality theorem (1947)

Schedule

Week	Topic	Key concepts
1	Attributes and method of vector and matrix	see notes below
2	Slight detour to probabilities: Joint, conditional, marginal and Bayes formula. Markov chain, eigenvalue, eigenvectors	Linear combinations
3	What is rref(A) and what does it tell you about your matrix?	Basis, subspace, space, span, projection, inverse
4	Fundamental four subspaces of matrix. Given a vector, can you find out where it lives?	Shall we span?
5	Projection, projection, projection	linear combination, change of basis
6	Findings vector multiplication that looks like projection	projection, orthogonal matrix, spanning Space
7	Change of basis and solving systems of equations	matrix decomposition
8	It does not matter how slowly you move as long as you are making	eignevalue, eigenvector, Markov chain
9	$\begin{array}{c} \text{progress} \\ \text{Eignedecomposition} \end{array}$	eigenvalue, eigenvector, eigenspace, nullspace
10	Markov chain	irreducible, reducible, ergodic, regular, absorbing MC. What type of matrix do you have?
11	Singular value decomposition	SVD and PCA
12	Meeting matrix again	PSD, PD, ID, NSD, ND, Condition number, symmetric matrix, gram matrix, diagonailzable matrix
13	$\begin{array}{c} {\rm SIMPLEX~method~and~The~duality} \\ {\rm theorem} \end{array}$	The Martians

Notations

$$\mathbb{A} \cdot \vec{x} = \vec{b}$$

 \vec{v}

A

vectors

Attribute

- Size of a vector
- Direction that it can move
- Direction that it can see
- Norm
- Subspace where it lives
- Space where it lives

Method

- Span
- linear combination
- transpose
- dot product
- projection

Space

• Contains ∞ number of subspaces

Subspace

- Created by spanning a vector or set of vectors
- Always contains $\vec{0}$ and closed under addition and multiplication
- basis
- Has orthogonal complement subspace (they are like best friends)

matrix

Attribute

- Dimension of matrix
- Column Space, $C(\mathbb{A})$, Left Nullspace, $N(\mathbb{A}^T)$
- Row Space, $R(\mathbb{A})$, Nullspace, $N(\mathbb{A})$
- Input space (related to domain)
- Output space (related to codomain and Range)
- basis

- eigenvalue, eignevector
- singular value, singular vector
- condition number
- Rank
- PD, PSD, ID, ND, NSD
- Rank-nullity theorem
- inverse (not every square matrix has it..)
- Gram matrix

method

- transpose
- inverse
- decomposition
 - singular value decomposition
 - eigen decomposition
- projection
- $\operatorname{rref}(\mathbb{A})$

Solving systems of equations

- Homogeneous equations
- Homogeneous equations
- Augmented matrix

How to create matrix and vector in R

```
a1 <- matrix(c(3,0,-1,-5,2,4), nrow = 1, byrow = T)
a2 \leftarrow matrix(c(3,0,-1,5,2,4), nrow = 1, byrow = T)
A <- rbind(a1,a2)
print(A)
        [,1] [,2] [,3] [,4] [,5] [,6]
## [1,]
          3
               0 -1
                       -5
                              2
                                   4
## [2,]
          3
                  -1
print(a2)
        [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 3 0 -1 5
a1 <- matrix(c(3,0,-1,-5,2,4),nrow=1,byrow=T)
print(a1)
```

```
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 3 0 -1 -5 2 4

a2 <- matrix(c(3,0,-1,5,2,4),nrow=1,byrow=T)

A <- rbind(a1,a2)
print(A)

## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 3 0 -1 -5 2 4
## [2,] 3 0 -1 5 2 4</pre>
Rank(A)
```

[1] 2

Definiations

Linear combination

$$\mathbb{A}\vec{x} = \vec{b}$$

Subspace

• If $\vec{v}_1, ... \vec{v}_p \in \mathbb{R}^n$, then $\text{Span}\{\vec{v}_1, ... \vec{v}_p\}$ is called the subset of \mathbb{R}^n by these vectors.

Linear combination, Projection and transformation

$$\mathbb{A}\vec{x} = \vec{b}$$

How to create a matrix

```
a1 <- matrix(c(3,0,-1,-5,2,4), nrow =1, byrow = T)
a2 \leftarrow matrix(c(3,0,-1,5,2,4), nrow = 1, byrow = T)
A \leftarrow rbind(a1,a2)
x \leftarrow c(5,-2,3,-2,5,-1.3)
## [1] 5.0 -2.0 3.0 -2.0 5.0 -1.3
b<- x/Norm(x)
Norm(b)
## [1] 1
A%*%x
         [,1]
##
## [1,] 26.8
## [2,] 6.8
print(A)
         [,1] [,2] [,3] [,4] [,5] [,6]
## [1,]
            3
                      -1
                            -5
                                   2
            3
## [2,]
B \leftarrow A[,c(1,2,5)]
D \leftarrow A[,-c(1,2,5)]
```

```
## [,1] [,2] [,3]
## [1,] 3 0 2
## [2,] 3 0 2

## [1,] [,2] [,3]
## [1,] -1 -5 4
## [2,] -1 5 4

select columns 1, 3 and 6 and put them into B
select columns 2, 4 and 5 and put them into N

B <- A[,c(1,3,6)]
B

## [1,] 3 -1 4
## [2,] 3 -1 4
```

 $\mathbb{B} \cdot \vec{x}_B + \mathbb{N} \cdot \vec{x}_N = \mathbb{A} \cdot \vec{x}$

Creating sample vector

```
#randomly selects number

a <- sample(-5:5, replace=TRUE, 12)

#find out number of elements in the vector
length(a)

## [1] 12

A <- matrix(a, ncol = 4, byrow= TRUE)

A

## [1,1] [2,2] [3,3] [4,4]

## [2,1] -5 -1 -4 -3

## [2,1] -5 5 -5 -5

## [3,1] -2 0 3 3

A <- matrix(sample(-5:5, replace=TRUE, 12), ncol = 4, byrow= TRUE)

A

## [1,1] [2,2] [3,3] [4]

## [1,1] -1 -4 2 -4

## [2,1] 0 -1 3 -1

## [2,1] 0 4 0 4 2
```

```
b <- matrix(sample(-5:5, replace=TRUE, 3), ncol = 1, byrow= TRUE)

H <- cbind(A,b)
rref(H)

## [,1] [,2] [,3] [,4] [,5]</pre>
```

```
## [,1] [,2] [,3] [,4] [,5]

## [1,] 1 0 0 -0.45454545 0.4090909

## [2,] 0 1 0 1.13636364 1.9772727

## [3,] 0 0 1 0.04545455 1.6590909
```

- Go over solving systems of equations with inf solutions
- How to pick one solution

Problems

example 1

```
print(A)
##
       [,1] [,2] [,3] [,4]
## [1,]
       -1 -4 2 -4
## [2,]
            -1
                   3 -1
       0
## [3,]
       -4
            0
dim(A)
## [1] 3 4
Rank(A)
## [1] 3
a1 <- matrix(c(3,0,-1,-5,2,4), nrow = 1, byrow = T)
a2 <- matrix(c(3,0,-1,5,2,4), nrow =1, byrow = T)
a3 <- matrix(c(3,0,-1,5,2,4), nrow =1, byrow = T)
A <- rbind(a1,a2,a3)
print(A)
       [,1] [,2] [,3] [,4] [,5] [,6]
##
## [1,]
       3
            0 -1 -5 2
## [2,]
       3
              0 -1
                     5
                            2
                                4
## [3,]
            0 -1
dim(A)
```

[1] 3 6

```
rref(A)
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1 0 -0.3333333 0 0.6666667 1.333333
## [2,] 0 0 0.0000000 1 0.0000000 0.000000
## [3,] 0 0 0.0000000 0 0.0000000 0.000000
B \leftarrow A[,c(1,4)]
D \leftarrow A[,-c(1,4)]
x \leftarrow c(1,2,5,-2.2,4,1)
b <- A%*%x
A%*%x
## [,1]
## [1,] 21
## [2,] -1
## [3,] -1
G <- t(B)%*%B
invG <- inv(G)</pre>
xB <- invG%*%t(B)%*%b
B%*%xB
## [,1]
## [1,] 21
## [2,] -1
## [3,] -1
problem to solve
a1 <- matrix(c(3,0,-1,-5,2,4,5), nrow =1, byrow = T)
a2 \leftarrow matrix(c(3,0,-1,5,2,4,3.5), nrow = 1, byrow = T)
a3 <- matrix(c(3,0,-1,5,2,4,-2.2), nrow = 1, byrow = T)
A \leftarrow rbind(a1,a2,a3)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] 3 0 -1 -5 2 4 5.0
## [2,] 3 0 -1 5 2 4 3.5
## [3,] 3 0 -1 5 2 4 -2.2
x \leftarrow c(1,-2,3,5,-5.5,-1,3)
```

b<- A%*%x

steps using rref

```
rref(A)
```

```
## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] 1 0 -0.3333333 0 0.6666667 1.333333 0
## [2,] 0 0 0.0000000 1 0.0000000 0.000000 0
## [3,] 0 0 0.0000000 0 0.0000000 1
```

break A in to B and D

```
B <- A[,c(1,4,7)]
D <- A[,-c(1,4,7)]

G <- t(B)%*%B
invG <- inv(G)

xB <- invG%*%t(B)%*%b</pre>
```

```
## [,1]
## [1,] -25.0
## [2,] 20.5
## [3,] 3.4
```

A%*%x

```
## [,1]
## [1,] -25.0
## [2,] 20.5
## [3,] 3.4
```

find xB

shows Ax BxB are the same

$$\mathbb{A}\vec{x} = \mathbb{B}\vec{x}_B$$

Conditional Probablity example

from live sectoin note in wk2

In each week of a class, you are either caught up or behind.

• The probability that you are caught up in Week 1 is 0.7.

- If you are caught up in a given week, the probability that you will be caught up in the next week is 0.7.
- If you are behind in a given week, the probability that you will be caught up in the next week is 0.4.
- What is the probability that you are caught up in week 3?
- Identify as many ways to improve this proof as you can:

Conditional probability with not so good notation

- If you are caught up in a week, there are two possibilities for the previous week: caught up and behind.
- Let P(X) be the probability of being caught up.
 - In week 1, the probability of being caught up P(X) = .7.
 - In week 1, the probability of being behind is P(Y) = 1 .7 = .3.
- We first break down the probability for week 2:

$$P(X) = .7 \cdot .7 + .3 \cdot .4 = .61$$

Now we can repeat the process for week 3:

$$P(X) = .61 * .7 + .39 * .4 = .583$$

- Let C_i be the event that you are caught up in week i.
 - Given:
 - * $P(C_1) = 0.7$ * $P(C_{i+1}|C_i) = 0.7$

$$* P(C_{i+1}|C_i) = 0.7$$

- Let C_i^C be the event that you are behind in week i
 - $-P(C_{i+1}|C_i^C) = 0.4.$
- For week 2, we can partition the sample space into $\{C_1, B_1\}$ and apply the law of total probability:

$$P(C_2) = P(C_1)P(C_2|C_1) + P(B_1)P(C_2|B_1)$$

= 0.7 \cdot 0.7 + 0.3 \cdot 0.4 = 0.61

• Next, repeat the process for week 3:

$$P(C_3) = P(C_2)P(C_3|C_2) + P(B_2)P(C_3|B_2)$$

= 0.7 \cdot 0.61 + 0.39 \cdot 0.4 = 0.58

Solving it using R

• You can write a function in R and solve it

Probability of Being Caught Up

Solving it using matrix

Given: - The probability of getting caught up with homework in this week only depends on the the outcome of the previous period.

- The transition matrix, \mathbb{P} , has nonzero values such that it is regular
- Since \mathbb{P} is regular, it has limiting matrix

$$\begin{array}{c|cc}
 & C_i & C_i^C \\
\hline
C_{i+1} & 0.7 & 0.4 \\
C_{i+1}^C & & & \\
\end{array}$$

- Above matrix contains the given information:
- Let C_i be the event that you are caught up in week i.

$$-P(C_{i+1}|C_i) = 0.7$$

• Let C_i^C be the event that you are behind in week i

$$- P(C_{i+1}|C_i^C) = 0.4.$$

• Then, we can fill in the blank:

$$\begin{array}{c|cc} & C_i & C_i^C \\ \hline C_{i+1} & 0.7 & 0.4 \\ C_{i+1}^C & 0.3 & 0.6 \\ \end{array}$$

And if we multiply the above matrix by the initial state vector, see what you get

```
[0.7, 0.3]^T
```

```
P \leftarrow matrix(c(0.7,0.4,0.3,0.6), mrow=2, byrow =T)
print(P)
        [,1] [,2]
##
## [1,] 0.7 0.4
## [2,] 0.3 0.6
print(P%^%2)
        [,1] [,2]
## [1,] 0.61 0.52
## [2,] 0.39 0.48
print(P%^%1000)
##
             [,1]
                        [,2]
## [1,] 0.5714286 0.5714286
## [2,] 0.4285714 0.4285714
```

Solving it using eigenvalue

• Will talk about this more later in the class

[1] 1.0 0.3

print(E) ## [,1] [,2] ## [1,] 0.8 -0.7071068 ## [2,] 0.6 0.7071068 p_vector <- function(x){ y <- sum(abs(x)) x <- abs(x)/y return(x) } #converting the eigenvector corresponding to eigenvalue = 1 p_vector(E[,1]) ## [1] 0.5714286 0.4285714</pre>

Space and subspace

• Domain, codomain (Range, C(A))

Domain, codomain, Range

• You will see the following notation from time to time

$$T: \mathbb{R}^n \to \mathbb{R}^m$$

- ullet the above notation is saying that matrix T will be used to multiply vector with size of n and the resulting vector will have size m
- And we will get into the details later.
- Vector resize within a space which consist of so many subspaces.
- When you put vectors into a matrix, you get two space, I call them input and output space. Input space can be divided into row space and nullspace, and output space can be divided into column space and left null space
- Think of domain as row space and codomain as output space and range as column space

Rank nullity theorem

If A has n columns, then Rank(A) + dim Nul(A) = n

• see page 156 for the invertible matrix theorem (continued)

Invertible Linear Transformation

• A linear transformation $\mathbb{T}: \mathbb{R}^n \to \mathbb{R}^n$ is said to be invertible if there exists a function $\mathbb{S}: \mathbb{R}^n \to \mathbb{R}^n$ such that

$$\mathbb{S}(\mathbb{T}(\vec{x})) = \vec{x} \text{ for all } \vec{x} \text{ in } R^n$$

 $\mathbb{T}(\mathbb{S}(\vec{x})) = \vec{x} \text{ for all } \vec{x} \text{ in } R^n$

where $\dim(\mathbb{A})=$ n by n, $\vec{x},\vec{b}\in R^n$ - \mathbb{A} is the standard matrix for \mathbb{T}

$$\mathbb{A}\vec{x} = \vec{b}$$

• \mathbb{A}^{-1} is the standard matrix for \mathbb{S}

$$\mathbb{A}^{-1}\vec{b} = \vec{x}$$

```
r1 <- c(0,1,-4)

r2 <- c(2,-3,2)

r3 <- c(5,-8,9)

A <- rbind(r1,r2,r3)

print(rref(A))
```

```
## r1 1 0 0
## r2 0 1 0
## r3 0 0 1
```

- Above matrix is invertible matrix based on rref()
- Inverse transformation undo the transformation

```
x \leftarrow c(3,6,9)
#to use the same notation
T <- A
b<- T%*%x
print("Before the transformation")
## [1] "Before the transformation"
print(x)
## [1] 3 6 9
print("After the transformaiton")
## [1] "After the transformation"
print(T%*%x)
##
      [,1]
## r1
      -30
## r2
         6
## r3
        48
```

When \mathbb{A} is not a square matrix

0

0

0

1

0

r3

- With respect to \mathbb{A} , \vec{b} is in your range and \vec{x} is in domain.
- $\bullet~$ \mathbbm{A} transform vectors in domain to range.
- \mathbb{A}^{-1} can transform values in range back to domain, when the \mathbb{A} involved 1-1 transformation.

```
#chapter 1.1 example 3
r1 < c(0,3,-6,6,4,-5)
r2 \leftarrow c(3,-7,8,-5,8,9)
r3 \leftarrow c(3,-9,12,-9,6,15)
A <- rbind(r1,r2,r3)
rref(A)
##
       [,1] [,2] [,3] [,4] [,5] [,6]
## r1
                    -2
                                  -24
          1
               0
                           3
                                0
## r2
               1
                    -2
                           2
                                 0
                                     -7
```

Group exercise or Homework

• Break out session.

Part 1 (10 min)

- (1) Create 3 by 3 nonsingular matrix, and call it A
 - What is the rank of \mathbb{A}
- (2) Create 3 by 3 singular matrix and call it \mathbb{F}
 - What is the rank of \mathbb{F}
- (3) Can you express $\vec{v}_1 = [641]$ as a linear combination of A or

 \mathbb{F}

If not, what is the closest value you can express? How do you know?

Part 2 (15 min)

(1) 3 by 10 matrix given below and convert it to rref

```
set.seed(100)
A <- matrix(rnorm(30),ncol = 10)
print(A)</pre>
```

```
##
               [,1]
                         [,2]
                                    [,3]
                                                 [,4]
                                                            [,5]
                                                                        [,6]
## [1,] -0.50219235 0.8867848 -0.5817907 -0.35986213 -0.2016340 -0.02931671
## [2,] 0.13153117 0.1169713 0.7145327 0.08988614
                                                      0.7398405 -0.38885425
## [3,] -0.07891709 0.3186301 -0.8252594
                                          0.09627446
                                                      0.1233795 0.51085626
              [,7]
                        [,8]
                                   [,9]
                                              [,10]
## [1,] -0.9138142 0.7640606 -0.8143791
                                        0.2309445
## [2,] 2.3102968 0.2619613 -0.4384506 -1.1577295
## [3,] -0.4380900 0.7734046 -0.7202216
```

Rank(A)

[1] 3

- (2) Identify multiple basis (i.e., set of basis vectors that can span $C(\mathbb{A})$)
- (3) Find 5 different solution to [6 2.5 3]

Part 3 (5 min)

(1) Identify column and row rank of the following matrix

```
set.seed(100)
A <- matrix(rnorm(10), ncol = 2)
print(A)
                [,1]
                           [,2]
##
## [1,] -0.50219235 0.3186301
## [2,] 0.13153117 -0.5817907
## [3,] -0.07891709 0.7145327
## [4,] 0.88678481 -0.8252594
## [5,] 0.11697127 -0.3598621
Rank(A)
## [1] 2
 (2) Is the following vector in the span of C(A)?
set.seed(110)
v1 <- matrix(rnorm(5), ncol = 1)</pre>
print(v1)
              [,1]
## [1,] 0.2911952
## [2,] 1.3888632
## [3,] 0.6490100
## [4,] 1.4778760
## [5,] 0.4387201
Ab <- cbind(A,v1)
Rank(Ab)
## [1] 3
 (3)
  • see page 173 for adding \mathbb{I}
set.seed(100)
A <- matrix(rnorm(18), nrow=3)
print(A)
                          [,2]
                                      [,3]
##
                [,1]
                                                  [, 4]
                                                              [,5]
                                                                           [,6]
## [1,] -0.50219235 0.8867848 -0.5817907 -0.35986213 -0.2016340 -0.02931671
## [2,] 0.13153117 0.1169713 0.7145327 0.08988614 0.7398405 -0.38885425
## [3,] -0.07891709 0.3186301 -0.8252594 0.09627446 0.1233795 0.51085626
Rank(A)
## [1] 3
```

```
rref(A)
       [,1] [,2] [,3] [,4]
                                    [,5]
                                                 [,6]
## [1,] 1 0 0 1.3013129 3.1020226 0.867073274
            1 0 0.2316328 1.6561283 -0.003415636
       0
## [2,]
## [3,] 0 0 1 -0.1516676 0.1932849 -0.703259440
Rank(t(A))
## [1] 3
AT \leftarrow t(A)
print(AT)
              [,1]
                        [,2]
##
## [1,] -0.50219235  0.13153117 -0.07891709
## [2,] 0.88678481 0.11697127 0.31863009
## [3,] -0.58179068 0.71453271 -0.82525943
## [4,] -0.35986213  0.08988614  0.09627446
## [5,] -0.20163395 0.73984050 0.12337950
## [6,] -0.02931671 -0.38885425 0.51085626
rref(AT)
## [,1] [,2] [,3]
## [1,] 1 0 0
## [2,]
       0
## [3,]
       0
             0
                   1
## [4,]
       0 0
                   0
## [5,]
       0 0
                   0
## [6,]
       0
B \leftarrow A[,c(1,2,3)]
D \leftarrow A[,-c(1,2,3)]
null space <- -inv(t(B)\%*\%B)\%*\%t(B)\%*\%D
I \leftarrow diag(3)
nullspace <- rbind(nullspace,I)</pre>
dim(nullspace)
## [1] 6 3
round(A%*%nullspace,2)
## [,1] [,2] [,3]
## [1,] 0 0 0
## [2,]
       0
                   0
## [3,]
       0 0
                   0
```

Fundamental four subspaces

Fundamental four subspaces of Matrix

```
• R(\mathbb{A}), N(\mathbb{A}), C(\mathbb{A}), N(\mathbb{A}^T)
```

Column space basis

```
use rref(A)
```

[3,]

```
A = matrix(c(-3,6,-1,1,-7,1,-2,2,3,-1,2,-4,5,8,-4),nrow=3,ncol=5,byrow=TRUE)
print(A)
        [,1] [,2] [,3] [,4] [,5]
##
## [1,]
         -3
                   -1
## [2,]
               -2
                             -1
         1
                     2
## [3,]
                             -4
dim(A)
## [1] 3 5
Rank(A)
## [1] 2
rref(A)
        [,1] [,2] [,3] [,4] [,5]
## [1,]
           1 -2
                     0 -1
## [2,]
           0
               0
                     1
                          2
                               -2
## [3,]
                                0
b1 \leftarrow c(9,4,3)
Ab <- cbind(A,b1)
Rank(Ab)
## [1] 3
B \leftarrow A[,c(1,3)]
N \leftarrow A[,-c(1,3)]
В
        [,1] [,2]
## [1,]
        -3 -1
## [2,]
          1
```

```
M
```

```
[,1] [,2] [,3]
## [1,] 6 1 -7
          -2
## [2,]
                 3
                     -1
## [3,] -4
\#BXb + NXn = B1
G \leftarrow (t(B)\%*\%B)
#B^T*B*Xb = B^T*B1
\#inv(G)B^T*B*Xb = inv(B)*B^T*B1
## estimated coefficients
x_hat<- inv(G)%*%t(B)%*%b1</pre>
x_hat
##
             [,1]
## [1,] -3.692308
## [2,] 2.312821
## estimated value
B%*%x_hat
##
              [,1]
## [1,] 8.7641026
## [2,] 0.9333333
## [3,] 4.1794872
#using all features
x \leftarrow c(x_{hat}[1], 0, x_{hat}[2], 0, 0)
A%*%x
##
              [,1]
## [1,] 8.7641026
## [2,] 0.9333333
## [3,] 4.1794872
                                             \mathbb{A}\vec{X} = \vec{b}_1
library(wooldridge)
```

```
## price assess bdrms lotsize sqrft colonial lprice lassess llotsize
## 1 300.000 349.1 4 6126 2438 1 5.703783 5.855359 8.720297
## 2 370.000 351.5 3 9903 2076 1 5.913503 5.862210 9.200593
## 3 191.000 217.7 3 5200 1374 0 5.252274 5.383118 8.556414
```

wooldridge::hprice1

```
## 4 195.000
               231.8
                               4600
                                      1448
                                                   1 5.273000 5.445875
                                                                         8.433811
                          3
                                                   1 5.921578 5.765504
## 5
      373.000
               319.1
                          4
                               6095
                                      2514
                                                                         8.715224
      466.275
                                                   1 6.144775 6.027073
               414.5
                               8566
                                      2754
                                                                         9.055556
      332.500
               367.8
                                                   1 5.806640 5.907539
## 7
                          3
                               9000
                                      2067
                                                                         9.104980
## 8
      315.000
               300.2
                          3
                               6210
                                      1731
                                                   1 5.752573 5.704449
                                                                         8.733916
## 9
      206.000
               236.1
                          3
                               6000
                                      1767
                                                   0 5.327876 5.464255
                                                                         8.699514
## 10 240.000
                256.3
                          3
                               2892
                                      1890
                                                   0 5.480639 5.546349
                                                                         7.969704
## 11 285.000
               314.0
                          4
                               6000
                                      2336
                                                   1 5.652489 5.749393
                                                                         8.699514
## 12 300.000
               416.5
                          5
                               7047
                                      2634
                                                   1 5.703783 6.031887
                                                                         8.860357
## 13 405.000
               434.0
                          3
                               12237
                                      3375
                                                   1 6.003887 6.073044
                                                                         9.412219
## 14 212.000
               279.3
                          3
                               6460
                                      1899
                                                   0 5.356586 5.632287
                                                                         8.773385
               287.5
## 15 265.000
                          3
                               6519
                                      2312
                                                   1 5.579730 5.661223
                                                                         8.782476
## 16 227.400
               232.9
                          4
                               3597
                                      1760
                                                   1 5.426711 5.450609
                                                                         8.187856
## 17 240.000
               303.8
                               5922
                                      2000
                                                   0 5.480639 5.716370
                                                                         8.686430
## 18 285.000
               305.6
                          3
                               7123
                                      1774
                                                   1 5.652489 5.722277
                                                                         8.871084
## 19 268.000
                266.7
                          3
                               5642
                                      1376
                                                   1 5.590987 5.586124
                                                                         8.637994
## 20 310.000
               326.0
                          4
                               8602
                                                   1 5.736572 5.786897
                                                                         9.059750
                                      1835
## 21 266.000
               294.3
                               5494
                                                   1 5.583496 5.684599
                                                                         8.611412
                                      2048
## 22 270.000
               318.8
                               7800
                                      2124
                                                   1 5.598422 5.764564
                                                                         8.961879
                          3
## 23 225.000
               294.2
                          3
                               6003
                                      1768
                                                   0 5.416101 5.684260
                                                                         8.700015
## 24 150.000
               208.0
                          4
                               5218
                                      1732
                                                   0 5.010635 5.337538
                                                                         8.559870
## 25 247.000
                                                   1 5.509388 5.479388
                239.7
                          3
                               9425
                                      1440
                                                                         9.151121
## 26 275.000
               294.1
                                      1932
                                                   0 5.616771 5.683920
                                                                         8.718336
                          3
                               6114
## 27 230.000
               267.4
                          3
                               6710
                                      1932
                                                   0 5.438079 5.588746
                                                                         8.811355
## 28 343.000
               359.9
                          3
                               8577
                                      2106
                                                   1 5.837730 5.885826
                                                                         9.056840
## 29 477.500
               478.1
                          7
                               8400
                                      3529
                                                   1 6.168564 6.169820
                                                                         9.035987
## 30 350.000
               355.3
                                      2051
                                                   1 5.857933 5.872962
                          4
                               9773
                                                                         9.187379
## 31 230.000
               217.8
                          4
                               4806
                                      1573
                                                   1 5.438079 5.383577
                                                                         8.477620
## 32 335.000
               385.0
                                                   0 5.814130 5.953243
                          4
                               15086
                                      2829
                                                                         9.621523
## 33 251.000
                224.3
                          3
                               5763
                                      1630
                                                   1 5.525453 5.412984
                                                                         8.659213
## 34 235.000
               251.9
                          4
                               6383
                                      1840
                                                   1 5.459586 5.529032
                                                                         8.761394
## 35 361.000
               354.9
                          4
                               9000
                                      2066
                                                   1 5.888878 5.871836
                                                                         9.104980
## 36 190.000
               212.5
                               3500
                                      1702
                                                   0 5.247024 5.358942
                                                                         8.160519
## 37 360.000
               452.4
                               10892
                                      2750
                                                   1 5.886104 6.114567
                                                                         9.295784
                          4
## 38 575.000
               518.1
                          5
                               15634
                                      3880
                                                   1 6.354370 6.250168
                                                                         9.657204
                                                   1 5.342339 5.667810
## 39 209.001
               289.4
                          4
                               6400
                                      1854
                                                                         8.764053
## 40 225.000
                268.1
                               8880
                                      1421
                                                   0 5.416101 5.591360
                                                                         9.091557
## 41 246.000
               278.5
                                                   1 5.505332 5.629418
                          3
                               6314
                                      1662
                                                                         8.750525
## 42 713.500
               655.4
                               28231
                                                   1 6.570182 6.485246 10.248176
                          5
                                      3331
                                                   1 5.513429 5.610570
## 43 248.000
               273.3
                          4
                               7050
                                                                         8.860783
                                      1656
## 44 230.000
                                                   0 5.438079 5.357058
               212.1
                          3
                               5305
                                      1171
                                                                         8.576406
## 45 375.000
               354.0
                                      2293
                                                   1 5.926926 5.869297
                          5
                               6637
                                                                         8.800415
## 46 265.000
               252.1
                          3
                               7834
                                      1764
                                                   1 5.579730 5.529826
                                                                         8.966228
## 47 313.000
               324.0
                               1000
                                                   0 5.746203 5.780744
                          3
                                      2768
                                                                         6.907755
## 48 417.500
                475.5
                          4
                               8112
                                      3733
                                                   0 6.034285 6.164367
                                                                         9.001100
## 49 253.000
               256.8
                          3
                               5850
                                      1536
                                                   1 5.533390 5.548297
                                                                         8.674197
## 50 315.000
               279.2
                          4
                               6660
                                      1638
                                                   1 5.752573 5.631928
                                                                         8.803875
## 51 264.000
               313.9
                          3
                               6637
                                      1972
                                                   1 5.575949 5.749074
                                                                         8.800415
## 52 255.000
               279.8
                          2
                               15267
                                      1478
                                                   0 5.541264 5.634075
                                                                         9.633449
## 53 210.000
                198.7
                          3
                               5146
                                      1408
                                                   1 5.347107 5.291796
                                                                         8.545975
                                                   1 5.192957 5.400423
## 54 180.000
               221.5
                          3
                                                                         8.702344
                               6017
                                      1812
## 55 250.000
               268.4
                          3
                               8410
                                      1722
                                                   1 5.521461 5.592478
                                                                         9.037177
## 56 250.000
               282.3
                          4
                               5625
                                                   1 5.521461 5.642970
                                      1780
                                                                         8.634976
## 57 209.000
               230.7
                          4
                               5600
                                      1674
                                                   1 5.342334 5.441118 8.630522
```

```
## 58 258.000
               287.0
                               6525
                                     1850
                                                  1 5.552959 5.659482 8.783396
                          4
                                                  1 5.666427 5.699440
## 59 289.000
               298.7
                          3
                               6060
                                      1925
                                                                        8.709465
## 60 316.000
               314.6
                               5539
                                      2343
                                                  0 5.755742 5.751302
                                                                        8.619569
## 61 225.000
               291.0
                                                  0 5.416101 5.673323
                                                                        8.931419
                          3
                               7566
                                     1567
## 62 266.000
               286.4
                          4
                               5484
                                      1664
                                                  1 5.583496 5.657390
                                                                        8.609590
## 63 310.000
               253.6
                          6
                               5348
                                      1386
                                                  1 5.736572 5.535758
                                                                        8.584478
## 64 471.250
                482.0
                          5
                              15834
                                      2617
                                                  1 6.155389 6.177944
                                                                        9.669915
## 65 335.000
               384.3
                          4
                               8022
                                      2321
                                                  1 5.814130 5.951424
                                                                        8.989944
## 66 495.000
               543.6
                          4
                              11966
                                      2638
                                                  1 6.204558 6.298213
                                                                        9.389825
## 67 279.500
               336.5
                          4
                               8460
                                     1915
                                                  1 5.633002 5.818598
                                                                        9.043104
## 68 380.000
               515.1
                              15105
                                      2589
                                                  1 5.940171 6.244361
                                                                        9.622781
## 69 325.000
               437.0
                                      2709
                                                  0 5.783825 6.079933
                          4
                              10859
                                                                        9.292749
## 70 220.000
               263.4
                          3
                               6300
                                     1587
                                                  1 5.393628 5.573674
                                                                        8.748305
               300.4
## 71 215.000
                          3
                              11554
                                      1694
                                                  0 5.370638 5.705115
                                                                        9.354787
## 72 240.000
               250.7
                          3
                                                  1 5.480639 5.524257
                               6000
                                      1536
                                                                        8.699514
## 73 725.000
               708.6
                          5
                              31000
                                      3662
                                                  0 6.586172 6.563291 10.341743
## 74 230.000
               276.3
                                                  1 5.438079 5.621487
                          3
                               4054
                                      1736
                                                                        8.307459
## 75 306.000
               388.6
                              20700
                                      2205
                                                  0 5.723585 5.962551
                                                                        9.937889
## 76 425.000
               252.5
                                                  0 6.052089 5.531411 8.617039
                          3
                               5525
                                     1502
## 77 318.000
               295.2
                          4
                              92681
                                      1696
                                                  1 5.762052 5.687653 11.436919
                                     2186
## 78 330.000
               359.5
                          3
                               8178
                                                  1 5.799093 5.884714
                                                                        9.009203
## 79 246.000
                276.2
                               5944
                                                  1 5.505332 5.621125
                                                                        8.690138
                                     1928
## 80 225.000
               249.8
                                                  0 5.416101 5.520660
                          3
                              18838
                                     1294
                                                                        9.843632
## 81 111.000
               202.4
                                                  1 4.709530 5.310246
                          4
                               4315
                                     1535
                                                                        8.369853
## 82 268.125
               254.0
                          3
                               5167
                                      1980
                                                  1 5.591453 5.537334
                                                                        8.550048
## 83 244.000
               306.8
                          4
                               7893
                                      2090
                                                  1 5.497168 5.726196
                                                                        8.973732
## 84 295.000
               318.3
                          3
                               6056
                                                  1 5.686975 5.762994
                                     1837
                                                                        8.708805
## 85 236.000
               259.4
                          3
                               5828
                                     1715
                                                  0 5.463832 5.558371
                                                                        8.670429
## 86 202.500
               258.1
                                                  0 5.310740 5.553347
                          3
                               6341
                                     1574
                                                                        8.754792
## 87 219.000
               232.0
                          2
                               6362
                                     1185
                                                  0 5.389072 5.446737
                                                                        8.758098
## 88 242.000
               252.0
                          4
                               4950
                                     1774
                                                  1 5.488938 5.529429 8.507143
##
        lsqrft
## 1
     7.798934
     7.638198
## 2
## 3
      7.225482
## 4
     7.277938
## 5
     7.829630
## 6
     7.920810
## 7
      7.633853
## 8 7.456455
## 9 7.477038
## 10 7.544332
## 11 7.756196
## 12 7.876259
## 13 8.124150
## 14 7.549083
## 15 7.745868
## 16 7.473069
## 17 7.600903
## 18 7.480992
## 19 7.226936
## 20 7.514800
## 21 7.624619
## 22 7.661057
```

- ## 23 7.477604
- ## 24 7.457032
- ## 25 7.272398
- ## 26 7.566311
- ## 27 7.566311
- ## 28 7.652546
- ## 29 8.168770
- ## 30 7.626083
- ## 31 7.360740
- ## 32 7.947679
- ## 33 7.396335
- ## 34 7.517521
- ## 35 7.633369
- ## 36 7.439559
- ## 37 7.919356
- ## 38 8.263591
- ## 39 7.525101
- ... 40 5 050440
- ## 40 7.259116
- ## 41 7.415777
- ## 42 8.111028
- ## 43 7.412160
- ## 44 7.065613
- ## 45 7.737616
- ## 46 7.475339
- ## 47 7.925880
- ## 48 8.224967
- ## 49 7.336937
- ## 50 7.401231
- ## 51 7.586803
- ## 52 7.298445
- ## 53 7.249926
- ## 54 7.502186
- ## 55 7.451241
- ## 56 7.484369
- ## 57 7.422971
- ## 58 7.522941
- ## 59 7.562681
- ## 60 7.759187
- ## 61 7.356918
- ## 62 7.416980
- ## 63 7.234177
- ## 64 7.869784
- ## 65 7.749753
- ## 66 7.877776
- ## 67 7.557473
- ## 68 7.859027 ## 69 7.904335
- ## 70 7.369601
- ## 71 7.434848
- ## 72 7.336937
- ## 73 8.205765
- ## 74 7.459339
- ## 75 7.698483
- ## 76 7.314553

```
## 77 7.436028
## 78 7.689829
## 79 7.564239
## 80 7.165493
## 81 7.336286
## 82 7.590852
## 83 7.644919
## 84 7.515889
## 85 7.447168
## 86 7.361375
## 87 7.077498
## 88 7.480992
library(tidyverse)
glimpse(hprice1)
## Rows: 88
## Columns: 10
             <dbl> 300.000, 370.000, 191.000, 195.000, 373.000, 466.275, 332.500~
## $ price
            <dbl> 349.1, 351.5, 217.7, 231.8, 319.1, 414.5, 367.8, 300.2, 236.1~
## $ assess
## $ bdrms
             <int> 4, 3, 3, 3, 4, 5, 3, 3, 3, 4, 5, 3, 3, 3, 4, 4, 3, 3, 4, 3~
## $ lotsize <dbl> 6126, 9903, 5200, 4600, 6095, 8566, 9000, 6210, 6000, 2892, 6~
             <int> 2438, 2076, 1374, 1448, 2514, 2754, 2067, 1731, 1767, 1890, 2~
## $ sqrft
## $ colonial <int> 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1~
## $ lprice
             <dbl> 5.703783, 5.913503, 5.252274, 5.273000, 5.921578, 6.144775, 5~
## $ lassess <dbl> 5.855359, 5.862210, 5.383118, 5.445875, 5.765504, 6.027073, 5~
## $ llotsize <dbl> 8.720297, 9.200593, 8.556414, 8.433811, 8.715224, 9.055556, 9~
             <dbl> 7.798934, 7.638198, 7.225482, 7.277938, 7.829630, 7.920810, 7~
## $ lsqrft
mod1 <- lm(price ~ lotsize + sqrft, data = hprice1)</pre>
summary(mod1)
##
## Call:
## lm(formula = price ~ lotsize + sqrft, data = hprice1)
## Residuals:
##
        Min
                  1Q
                       Median
                                    3Q
                      -5.553
                               27.848 207.081
## -109.995 -36.210
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.932e+00 2.351e+01
                                     0.252 0.80141
## lotsize
              2.113e-03 6.466e-04
                                      3.269 0.00156 **
## sqrft
               1.334e-01 1.140e-02 11.702 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 60.31 on 85 degrees of freedom
## Multiple R-squared: 0.6631, Adjusted R-squared: 0.6552
## F-statistic: 83.67 on 2 and 85 DF, p-value: < 2.2e-16
```

```
round(mod1$coefficients,2)
## (Intercept)
                  lotsize
                                 sqrft
##
          5.93
                      0.00
                                 0.13
head(hprice1)
       price assess bdrms lotsize sqrft colonial
##
                                                  lprice lassess llotsize
## 1 300.000 349.1
                    4 6126 2438
                                              1 5.703783 5.855359 8.720297
## 2 370.000 351.5
                            9903 2076
                                              1 5.913503 5.862210 9.200593
                       3
                       3 5200 1374
## 3 191.000 217.7
                                              0 5.252274 5.383118 8.556414
                    3 4600 1448
## 4 195.000 231.8
                                             1 5.273000 5.445875 8.433811
## 5 373.000 319.1
                    4 6095 2514
                                             1 5.921578 5.765504 8.715224
## 6 466.275 414.5
                    5 8566 2754
                                             1 6.144775 6.027073 9.055556
##
       lsqrft
## 1 7.798934
## 2 7.638198
## 3 7.225482
## 4 7.277938
## 5 7.829630
## 6 7.920810
B \leftarrow as.matrix(hprice1[,c(4,5)])
B \leftarrow cbind(1,B)
class(B)
## [1] "matrix" "array"
#gram matrix
G <- t(B)%*%B
xb <- inv(G)%*%t(B)%*%hprice1$price</pre>
##
                  [,1]
##
           5.932414240
## lotsize 0.002113495
## sqrft
          0.133362017
#last line
{\it \#residual is always orthogonal to features you have in your dataset}.
round(B[,c(2)]%*%mod1$residuals,3)
##
        [,1]
## [1,]
#error and residual
```

Codomain

- column space + left nullspace
- column space (range) is \mathbb{R}^3

```
use orth()
```

```
C_A = orth(A)
C_A
##
               [,1]
                           [,2]
## [1,] 0.03354216 0.99686846
## [2,] -0.36102371 -0.05472854
## [3,] -0.93195322 0.05707950
Left Nullspace(\mathbb{A}^T)
N_AT <- null(t(A))</pre>
N_AT
               [,1]
##
## [1,] -0.07161149
## [2,] -0.93094934
## [3,] 0.35805744
Basis for output space
OUT <- cbind(C_A, N_AT)
rref(OUT)
     [,1] [,2] [,3]
##
## [1,] 1 0
        0
## [2,]
## [3,]
        0
                    1
Row space basis
Using transformation
using orth()
C_AT <- orth(t(A))</pre>
C_AT
##
              [,1]
                          [,2]
## [1,] -0.1940942 0.29847614
## [2,] 0.3881884 -0.59695228
## [3,] -0.4519731 0.08359359
## [4,] -0.7098521 -0.13128896
## [5,] 0.3216637 0.72824124
```

Nullspace basis

• Suppose $T(\vec{x}) = A\vec{x}$, then the kernel or null space of such T can be found as below.

using nullspace()

```
N_A <- nullspace(A)</pre>
N_A
##
                           [,2]
                                       [,3]
               [,1]
        0.04416189
                     0.3476413 -0.86627634
## [1,]
## [2,]
         0.41326313
                     0.5658536 -0.04450838
## [3,]
        0.85611211 -0.2202874
                                 0.08531064
## [4,] -0.25090190
                     0.5572485
                                 0.32464681
## [5,] 0.17715416 0.4471048 0.36730213
```

Basis spanning the input space

```
IN <- cbind(C_AT, N_A)</pre>
##
              [,1]
                          [,2]
                                      [,3]
                                                 [,4]
## [1,] -0.1940942 0.29847614
                                0.04416189
                                            0.3476413 -0.86627634
## [2,] 0.3881884 -0.59695228
                                0.41326313
                                            0.5658536 -0.04450838
## [3,] -0.4519731 0.08359359
                               0.85611211 -0.2202874
                                                      0.08531064
## [4,] -0.7098521 -0.13128896 -0.25090190 0.5572485
                                                       0.32464681
## [5,] 0.3216637 0.72824124 0.17715416 0.4471048 0.36730213
```

- Suppose we have $\vec{H} = [a 3b, b a, a, b]^T$, this can be written as linear combination of two vectors $a\vec{v}_1$ and $b\vec{v}_2$ where $\vec{v}_1 = [1, -1, 1, 0]$ and $\vec{v}_2 = [-3, 1, 0, 1]$.
- This is very useful technique of expressing a subspace of \vec{H} as the linear combination of some small collectoin of vectors.
- Subspace of $\vec{H} \in \text{Span}\{\vec{v}_1, \vec{v}_2\}$

How to find the basis of null space

```
• Step 1: Given \mathbb{A}, find its rref
• Step 2: Solve for \vec{x} in \mathbb{A}\vec{x} = \vec{0}
```

- Step 3: express \vec{x} as linear combination of smaller vectors.
- Step 4: identify basis spanning the null space

```
r1 <- c(-3,6,-1,1,-7)

r2 <- c(1,-2,2,3,-1)

r3 <- c(2,-4,5,8,-4)

A <- rbind(r1,r2,r3)

rref(A)
```

```
## [,1] [,2] [,3] [,4] [,5]
## r1 1 -2 0 -1 3
## r2
     0 0 1
                2 -2
## r3
       0
        0
              0
                  0 0
n1 \leftarrow c(2,1,0,0,0)
n2 \leftarrow c(1,0,-2,1,0)
n3 \leftarrow c(-3,0,2,0,1)
# Any vector in the null space with A
print(A%*%n1)
    [,1]
##
## r1 0
## r2
## r3
       0
print(A%*%(n1+n2+n3))
##
    [,1]
## r1
     0
## r2
       0
## r3
     0
print(round(A%*\%(100*n1+0.1*n2-305*n3),3))
##
    [,1]
## r1
      0
## r2
## r3
       0
```

Group exercise or Homework

- Get 5 matrices from class
- Given a matrix and a vector,
- (1) find out where the vector lives
- Space and subspace
- (2) basis of the subspace
- (3) Provide a vector that is not in the span of these two subspaces

Concept check questions

- What is the relationship between C(A) and $N(A^T)$?
- What is the relationship between R(A) and N(A)?
- What is the relationship between C(A) and R(A)?
- What is the relationship between N(A) and $N(A^T)$?
- If the basis spanning C(A) are given, can you find out the basis spanning $N(A^T)$?
- If the basis spanning R(A) are given, can you find out the basis spanning $N(A^T)$?

Projection matrix

Review

- Given: Suppose $A \in \mathbb{R}^{n \times n}$ and A^{-1} exist, then the following can be said
 - The columns of A is the basis of \mathbb{R}^n
 - $\operatorname{rank} A = n$
 - $NulA = \{\vec{0}\}\$
 - $-\dim NulA = 0$
 - $-\ A^{-1}A=I$
 - $-AA^{-1} = I$

 - $-A^{T}$ is an invertible matrix

Space, subspace, orthogonal complement subspace

- Let S be space of \mathbb{R}^n , A is \mathbb{R}^{mxn} matrix.
- Let C(A) and $N(A^T)$ be the column space and left nullspace of A
- C(A) and $N(A^T)$ are orthogonal complement subspace of each other.
- Then, any vector, $\vec{x} \in S$ but $\vec{x} \notin C(A)$ or $\vec{x} \notin N(A^T)$ can be expressed by the linear combination of basis of C(A) and $N(A^T)$

Change of basis

Given: $\vec{y} \notin C(A)$, and Rank of A = 2, and $\vec{y} \in R^3$

Problem 1

- Let $\hat{\vec{y}} \subset C(A)$ where \vec{C}_1 and \vec{C}_2 are the basis of C(A)
- Find $\hat{\vec{y}}$ that minimizes $||\vec{y} \hat{\vec{y}}||$

Solution:

- let C and N be the matrix that contains the basis of C(A) and $N(A^T)$
- Since: $C\vec{x} = \hat{\vec{y}}$ and $C\vec{x} + N\vec{z} = \vec{y}$
- Simplify the expression

$$C^T C \vec{x} = C^T \vec{y}$$
$$\vec{x} = (C^T C)^{-1} C^T \vec{y}$$

• Then,

$$C(C^TC)^{-1}C^T\vec{y} = \hat{\vec{y}}$$

• $C(C^TC)^{-1}C^T$ is called **projection matrix***

$$\mathbb{A}$$

$$\hat{\vec{b}}$$

$$\mathbb{A} \cdot \vec{x} = \vec{b}$$

$$\mathbb{B} \cdot \vec{x}_B + \mathbb{D} \cdot \vec{x}_D = \vec{b}$$

Projection matrix

$$\begin{split} \mathbb{I} &= \mathbb{P} + \mathbb{B} \\ \vec{y} &= \mathbb{P} \vec{y} + \mathbb{B} \vec{y} \end{split}$$

• where P and B are the projection matrices for C(A) and $N(A^T)$

Example

```
A <- matrix(c(1,1,2,-1,3,3,1,2,4), nrow = 3, byrow=TRUE)
print(A)
        [,1] [,2] [,3]
##
## [1,]
## [2,]
        -1
                 3
## [3,]
Rank(A)
## [1] 3
dim(A)
## [1] 3 3
b \leftarrow c(1,4,-4)
x <- inv(A)%*%b
A%*%x
##
        [,1]
## [1,]
## [2,]
## [3,]
```

DOT Product

$$\hat{\vec{y}} = P_{\vec{u}}^{\vec{y}} = \frac{\vec{y} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u}$$

where

 $\vec{y} \centerdot \vec{u}$ and $\vec{u} \centerdot \vec{u}$ are scalar quantity.

Projection tells you the length of the projected vector, $\hat{\vec{y}}$ in terms of the vector that is being projected onto \vec{u}

```
# y will be projected onto u
y <- matrix(c(7,6),nrow=2)
u <- matrix(c(4,2),nrow=2)
u0 <- matrix(c(16,8),nrow=2)</pre>
```

Using projection matrix

```
## using projection matrix
P <- u%*%(solve(t(u)%*%u)%*%t(u))
print(P)

## [,1] [,2]
## [1,] 0.8 0.4
## [2,] 0.4 0.2

print(P%*%y)

## [,1]
## [1,] 8
## [2,] 4</pre>
```

Using Projection formula on to \vec{u}

```
print(drop((t(y)%*%u)/(t(u)%*%u))*u)
```

```
## [,1]
## [1,] 8
## [2,] 4

print(drop((t(y)%*%u)/(t(u)%*%u)))
```

[1] 2

Using Projection formula on to \vec{u}_0

```
print(drop((t(y)%*%u0)/(t(u0)%*%u0))*u0)
```

```
## [,1]
## [1,] 8
## [2,] 4
```

```
print(drop((t(y)%*%u0)/(t(u0)%*%u0)))
```

[1] 0.5

Orthogonal

- Two vectors $\vec{v_1}$ and $\vec{v_2} \in \mathbb{R}^m$ are orthogonal, if $\vec{v_1} \cdot \vec{v_2} = 0$
- Note that the dot product produce scalar quantity 0 not $\vec{0}$
- Notice \vec{v}_1 is size of 3 vector and orth() returns normalized \vec{v}_1

```
v1 <- c(3,4,5)
```

Orthonormal basis

```
mybasis \leftarrow matrix(c(1,2,3,4,5,6),nrow=3)
print(mybasis)
##
        [,1] [,2]
## [1,]
           1
## [2,]
           2
                5
## [3,]
           3
print(orthonormalization(mybasis))
##
             [,1]
                         [,2]
                                     [,3]
## [1,] 0.2672612 0.8728716 0.4082483
## [2,] 0.5345225 0.2182179 -0.8164966
## [3,] 0.8017837 -0.4364358 0.4082483
Z <- (orthonormalization(mybasis))</pre>
# z is orthonormal basis of codomain (I called it output space)
A \leftarrow matrix(c(4,3,5,6,8,10,5,12,13), nrow=3, byrow=T)
print(A)
##
        [,1] [,2] [,3]
## [1,]
                6
## [2,]
           3
                     12
                8
## [3,]
           5
               10
c(Norm(A[1,]),Norm(A[2,]),Norm(A[3,])) #norm of each row vectors in A (i.e., sample)
## [1] 8.774964 14.730920 17.146428
B <- A%*%Z
print(B)
##
              [,1]
                         [,2]
                                     [,3]
## [1,] 8.285098 2.6186147 -1.2247449
## [2,] 14.699368 -0.8728716 -0.4082483
## [3,] 17.104719 0.8728716 -0.8164966
```

```
print(Z)
            [,1]
                       [,2]
                                  [,3]
##
## [1,] 0.2672612 0.8728716 0.4082483
## [2,] 0.5345225 0.2182179 -0.8164966
## [3,] 0.8017837 -0.4364358 0.4082483
Explain the following
print(Z%*%B[1,])
      [,1]
## [1,] 4
## [2,]
          6
## [3,]
print(Z%*%B[2,])
##
        [,1]
## [1,]
## [2,]
        8
## [3,]
print(Z%*%B[3,])
     [,1]
##
## [1,] 5
## [2,]
         10
## [3,]
        13
Normalizing the basis
c_A <- orth(v1)</pre>
print(c_A)
            [,1]
##
## [1,] 0.4242641
## [2,] 0.5656854
## [3,] 0.7071068
#notice what happens when you dot v1 and c_A
print(v1%*%c_A)
           [,1]
## [1,] 7.071068
```

```
Norm(v1)
## [1] 7.071068
Diagonal matrix
D1 \leftarrow diag(c(5,2,10),3,3)
print(D1)
        [,1] [,2] [,3]
## [1,]
        5
                0
## [2,]
           0
                     0
## [3,]
          0
                0
                    10
print(inv(D1)) #notice when the diagonal elements has zero in it, D1 becomes singular.
##
        [,1] [,2] [,3]
## [1,] 0.2 0.0 0.0
## [2,] 0.0 0.5 0.0
## [3,] 0.0 0.0 0.1
print(D1 %^% 3) # using the function in expm
##
        [,1] [,2] [,3]
## [1,] 125
## [2,]
         0
## [3,]
        0
                0 1000
```

Orthogonal matrix

$$U^{-1} = U^T$$

- Let W be a subspace of \mathbb{R}^n and let $\vec{y} \in \mathbb{R}^n$ but $\vec{y} \notin W$.
- Then, $\hat{\vec{y}} \in W$ that is the closest approximation of \vec{y} is the \vec{y} projected onto W

Proerty of matrx that is not square, but has orthonormal basis

```
v <- matrix(c(2,1,2),nrow=3)
0 <- orthonormalization(v)
print(0)

## [,1] [,2] [,3]
## [1,] 0.6666667 -0.2357023 -0.7071068
## [2,] 0.3333333  0.9428090  0.0000000
## [3,] 0.6666667 -0.2357023  0.7071068</pre>
```

Suppose C is matrix that contains orthonormal basis of W. Since there exist $\vec{y} \notin W$, C can't be square matrix.

However, the basis in C can still be orthonormal.

Let C be retangular matrix with orthonormal basis,

$$\vec{y} = C\vec{x}_w + N\vec{x}_N$$

where - N is the basis spanning orthogonal complement subspace of W. Then,

$$C^T \vec{y} = C^T C \vec{x}_w$$

Since C is matrix that contains orthonormal basis, C^TC becomes identify matrix.

$$C^T \vec{y} = \vec{x}_W$$

Now, the location of $\hat{\vec{y}}$ in terms of the basis in C can be expressed as below

$$C\vec{x}_W = \hat{\vec{y}}$$

Solving for \vec{x}_W

$$\vec{x}_W = C^T \hat{\vec{y}}$$

Sub the above expression of \vec{x}_W to the following equation

$$C^T \vec{y} = C^T C \vec{x}_w$$

$$C^T \vec{y} = C^T C (C^T \hat{\vec{y}})$$

Then,

$$CC^T\vec{y} = \hat{\vec{y}}$$

Gram-Schmidt Process

- Let $\{\vec{x}_1, \vec{x}_2...\vec{x}_p\}$ be basis for a nonzero subspace W of R^n where p < n. Gram-Schimidt process converts $\{\vec{x}_1, \vec{x}_2...\vec{x}_p\}$ to $\{\vec{v}_1, \vec{v}_2...\vec{v}_p\}$ where $\{\vec{v}_1, \vec{v}_2...\vec{v}_p\}$ are orthogonal basis for W
- Gram-Schimit process is projecting one set of basis to another basis that is orthogonal to them.
- Notice the orthonormalization() in R returns 3 x 3 matrix. This function in R returns the basis spanning the subspace that is orthogonal to subspace spanned by \vec{v}_1

GS <- orthonormalization(v1) print(GS)</pre>

```
## [,1] [,2] [,3]
## [1,] 0.4242641 0.9055385 0.0000000
## [2,] 0.5656854 -0.2650357 0.7808688
## [3,] 0.7071068 -0.3312946 -0.6246950
```

 ${\bf Gram\text{-}Schmidt}$

Group exercise or Homework

Gram-Schmidt Process

• Perform gram schmit process and explain the result

Find the basis spanning the four subspaces using R built-in function

```
r1 \leftarrow c(1,3,4,5,6)
r2 \leftarrow c(1,5,4,5,3)
r3 \leftarrow c(1,-2,4,7,6)
A <- cbind(r1,r2,r3)
print(A)
##
        r1 r2 r3
## [1,]
         1 1 1
         3 5 -2
## [2,]
## [3,]
         4 4 4
## [4,]
         5 5 7
## [5,]
```

Find the basis spanning the nullspace without using R built-in function

• You can use rref()

Projection and MLE

```
#6.2 Example 1
u1 <- c(3,1,1)
u2 \leftarrow c(-1,2,1)
u3 \leftarrow c(-0.5, -2, 7/2)
print(t(u1)%*%u2)
##
       [,1]
## [1,] 0
print(t(u3)%*%u2)
## [,1]
## [1,] 0
print(t(u1)%*%u3)
## [,1]
## [1,] 0
#page 399, example 2
y \leftarrow c(6,1,-8)
A <- cbind(u1,u2,u3)
print(A)
     u1 u2 u3
## [1,] 3 -1 -0.5
## [2,] 1 2 -2.0
## [3,] 1 1 3.5
  • is \vec{y} in C(\mathbb{A})?
Rank(A)
## [1] 3
Since \mathbb{A} is full rank, we can get \sim the following way
x <- inv(A)%*%y
print(A%*%x)
       [,1]
##
## [1,]
        1
## [2,]
## [3,] -8
```

```
## [1] "++++++++++++++++++++++++++++++
# PROJECTION
# since each column vector of A are orthogonal we can use projection
# as well
x1 <- y%*%u1/(Norm(u1)^2)
x2 <- y\%*\%u2/(Norm(u2)^2)
x3 <- y%*%u3/(Norm(u3)^2)
# then using these coordinate you can get the following result as well
x \leftarrow c(x1, x2, x3)
print(A%*%x)
      [,1]
##
## [1,]
## [2,]
        1
## [3,]
       -8
```

Orthogonal projection

- Very important concept and may take a few days of practice.
- see page 340.
- Suppose you have \vec{u} and denote its subspace by L, and you have \vec{y} that is not in the span of \vec{u}

projecting \vec{y} onto L

$$\operatorname{proj}_L \vec{y} = \hat{y} = \frac{\vec{y}\vec{u}}{\vec{u}\vec{u}}\vec{u}$$

```
# Example 3 (see slide 8)
y <- c(7,6)
u <- c(4,2)
hat_y <- y%*%u/(Norm(u)^2)*u
residual <- y - hat_y
print(y)

## [1] 7 6

print(hat_y + residual)</pre>
```

[1] 7 6

```
# what is the relationship between hat y and residuel?
print(round(hat_y %*% residual,3))
     [,1]
## [1,]
# Example 3 (see slide 8)
# the same problem, but solved without using Norm()
y < -c(7,6)
u \leftarrow c(4,2)
#what would be the physical meaning of this?
#see I wonder by Sam. =)
print((y%*%u)/(u%*%u))
     [,1]
##
## [1,]
hat_y <- (y%*%u)/(u%*%u)*u
print(hat_y)
## [1] 8 4
residual <- y - hat_y
# Will this always be zero?
# Why or why not?
print(hat_y%*%residual)
##
     [,1]
## [1,]
# example 6, see slide 13
# Orthonomal colums
# Special property of matrix with orthonormal columns
u1 <- c(1/sqrt(2), 1/sqrt(2), 0)
u2 \leftarrow c(2/3, -2/3, 1/3)
U \leftarrow cbind(u1, u2)
x \leftarrow c(sqrt(2), 3)
##########################
print("Printing the norm of the vectors")
```

```
## [1] "Printing the norm of the vectors"
print(Norm(u1))
## [1] 1
print(Norm(u2))
## [1] 1
print("+++++++++++++++++++")
## [1] "++++++++++++++++
print(round(t(U)%*%U,2))
    u1 u2
## u1 1 0
## u2 0 1
print("======="")
## [1] "======="
RHS <- U%*%x
print(U%*%x)
      [,1]
##
## [1,]
## [2,]
      -1
## [3,]
print("+++++++++++++++++++++++++++++")
## [1] "+++++++
print(Norm(U%*%x))
## [1] 3.316625
print(Norm(x))
## [1] 3.316625
```

```
## [1] "++++++++++++++++++++++++++++++++++
print(t(U)%*%RHS)
##
          [,1]
## u1 1.414214
## u2 3.000000
print(x)
## [1] 1.414214 3.000000
y \leftarrow matrix(c(1,2,5,7), nrow = 4)
A <- matrix(c(1,-1,3,2,1,4,4,1), nrow = 4, byrow = TRUE)
print(A)
##
        [,1] [,2]
## [1,]
## [2,]
## [3,]
          1
## [4,]
Discussion
  • U transformed a vector in \mathbb{R}^2 to \mathbb{R}^3.
  • The size of vector changed, but the norm of the vector did not change.
  • Recall that \mathbb{A}^{-1}\vec{b} only works when \mathbb{A} is singular.
  • But notice, when \mathbb{U} has orthonormal columns, we can use \mathbb{U}^T to transform the RHS be to row space!
```

```
#page 351, example 3
u1 <- c(2,5,-1)
u2 <- c(-2,1,1)
y <- c(1,2,3)

#since the norm is not 1
#you still need to normalize it
print(Norm(u1))

## [1] 5.477226

U <- cbind(u1,u2)

#using Gram matrix
print("using gram matrix")</pre>
```

```
## [1] "using gram matrix"
```

```
x_hat<- inv(t(U)%*%U)%*%t(U)%*%y
print(U%*%x_hat)

## [,1]
## [1,] -0.4
## [2,] 2.0
## [3,] 0.2

# using projection
print("using projection")

## [1] "using projection"

x1 <- y%*%u1/(Norm(u1)^2)
x2 <- y%*%u2/(Norm(u2)^2)
x <- rbind(x1,x2)</pre>
```

```
## [,1]
## [1,] -0.4
## [2,] 2.0
## [3,] 0.2
```

print(U%*%x)

Orthogonal complement subspace

$$R(\mathbb{A})^{\perp} = N(\mathbb{A})$$

$$C(\mathbb{A})^{\perp} = N(\mathbb{A}^T)$$

- Orthogonal basis for subspace W is a basis for W that is also an orthogonal set
- $\mathbb{U} \in \mathbb{R}^{mbyn}$ has orthogonal columns if and only if $\mathbb{U}^T \mathbb{U} = \mathbb{I}$

Angle between vectors

• This concept can be extended to beyond R^3

$$\vec{u}\vec{v} = ||\vec{u}||||\vec{v}||cos(\theta)$$

Difference between projecting onto orthogonal basis vs basis

• Explain what will be difference

More on matrix with orthonormal columns

• Orthonormal columns

$$\begin{split} \mathbb{U}\vec{x} &= ||\vec{x}||\\ (\mathbb{U}\vec{x})(\mathbb{U}\vec{y}) &= \vec{x}\vec{y}\\ (\mathbb{U}\vec{x})(\mathbb{U}\vec{y}) &= 0 \text{ if and only if } \vec{x}\vec{y} &= 0 \end{split}$$

Orthogonal decomposition

- Projecting \vec{y} on the the orthogonal basis or orthogonal complement subsapce (i.e., this is linear regression)
- Given baiss, you can create orthonormal basis that spans the same space. The Gram-schmidt process

```
# see the example 1 from Chapter 6
# page 362

r1 <- c(4,0)
r2 <- c(0,2)
r3 <- c(1,1)

#your feature
A <- rbind(r1,r2,r3)

#your response
b <- c(2,0,11)</pre>
```

$$\mathbb{A}\vec{x} = \vec{b}$$

$$\mathbb{A}^T \mathbb{A}\vec{x} = \mathbb{A}^T \vec{b}$$

$$\mathbb{G}\vec{x} = \mathbb{A}^T \vec{b}$$

$$\mathbb{G}^{-1} \mathbb{G}\vec{x} = \mathbb{G}^{-1} \mathbb{A}^T \vec{b}$$

$$\vec{x} = \mathbb{G}^{-1} \mathbb{A}^T \vec{b}$$

• Above set of equations require set of assumptions. can you identify them?

```
## [,1]
## [1,] 1
## [2,] 2
print("++++++++++++++++++++++++")
## [1] "+++++++++++++++++++++++
print(b)
## [1] 2 0 11
print("++++++++++++++++++++++++")
## [1] "+++++++++++++++++++++++
# predict the value
y_hat <-A%*%x</pre>
print(y_hat)
## [,1]
## r1 4
## r2 4
## r3 3
print("----")
## [1] "----"
residual <- b - y_hat
print(residual)
##
  [,1]
## r1 -2
## r2
    -4
## r3
# Why is this value zero? can anyone explain?
print(round(t(y_hat)%*%residual,4))
## [,1]
```

[1,] 0

```
\# see the example 2 from Chapter 6
# page 363 continue
v1 \leftarrow c(1,1,1,1,1,1)
v2 \leftarrow c(1,1,0,0,0,0)
v3 \leftarrow c(0,0,1,1,0,0)
v4 \leftarrow c(0,0,0,0,1,1)
b <-c(-3,-1,0,2,5,1)
A <- cbind(v1,v2,v3,v4)
# Will the gram matrix invertible?
print(Rank(A))
## [1] 3
print("======="")
## [1] "======="
# is b in C(A)
Ab <- cbind(A,b)
print(Rank(Ab))
```

[1] 4

Group exercise or Homework

1. Will the gram matrix be invertible?

2.

Is \vec{b} in $C(\mathbb{A})$?

3.

How can we get $\hat{\vec{x}}$?

$$\mathbb{A}\vec{x} = \vec{b}$$

$$\mathbb{A}^T \mathbb{A}\vec{x} = \mathbb{A}^T \vec{b}$$

4.

• Note that this process is different from when you have ∞ number of solution

```
## v1 v2 v3 v4

## v1 1 0 0 1 3

## v2 0 1 0 -1 -5

## v3 0 0 1 -1 -2

## v4 0 0 0 0 0
```

$$x_1 = 3 - x_4$$

 $x_2 = -5 + x_4$
 $x_3 = -2 + x_4$
 $x_4 = \text{free}$

```
shift <- c(3,-5,-2,0)
basis <- c(-1,1,1,1)

#One solution
print(A%*%shift)</pre>
```

```
## [,1]
## [1,]
         -2
       -2
## [2,]
       1
1
## [3,]
## [4,]
       3
## [5,]
## [6,]
#Another solution
print("======"")
## [1] "========"
x_another \leftarrow shift + 0.01*basis
print(A%*%x_another)
##
       [,1]
## [1,] -2
## [2,]
       -2
       1
1
3
## [3,]
## [4,]
## [5,]
## [6,]
       3
# page 370 example 1
v1 \leftarrow c(1,1,1,1)
v2 \leftarrow c(2,5,7,8)
y \leftarrow c(1,2,3,3)
A \leftarrow cbind(v1, v2)
plot(v2,y)
```


fractions() is function in MASS fractions(inv(t(A)%*%A)%*%t(A)%*%y)

[,1] ## v1 2/7 ## v2 5/14

MLE

• See page 317, is the following model linear?

$$y = \beta_0 + \beta_1 + \beta_2 x^2$$

• In the equation above β_0 is the constant term, what would be the effect of leaving this constant out of the model? Explain the effect using the following terms: hyperplane and subspace

Covarianc matrix

```
x1 \leftarrow matrix(c(1,2,1,4,2),nrow=5)
x2 \leftarrow matrix(c(4,2,13,2,1), nrow=5)
x3 \leftarrow matrix(c(7,8,1,3,4),nrow=5)
x4 \leftarrow matrix(c(8,4,5,5,6), nrow=5)
X \leftarrow cbind(x1,x2,x3,x4)
print(X)
##
        [,1] [,2] [,3] [,4]
## [1,]
            1
                 4
                       7
## [2,]
            2
                 2
                       8
                            4
                            5
## [3,]
           1
                13
                       1
                            5
## [4,]
            4
                2
                       3
            2
## [5,]
                       4
                            6
using built in function
cov(X)
         [,1] [,2] [,3] [,4]
## [1,] 1.50 -3.25 -0.50 -0.75
## [2,] -3.25 24.30 -8.55 -0.55
## [3,] -0.50 -8.55 8.30 0.80
## [4,] -0.75 -0.55 0.80 2.30
step by step
rSum <- colSums(X)/5
mean <- matrix(rep(rSum,5),nrow=5, byrow=TRUE)</pre>
M <- X - mean
S \leftarrow t(M) %*%M/4
##
          [,1] [,2] [,3] [,4]
## [1,] 1.50 -3.25 -0.50 -0.75
## [2,] -3.25 24.30 -8.55 -0.55
## [3,] -0.50 -8.55 8.30 0.80
```

Additional problem that estimates sample covariance LINK

[4,] -0.75 -0.55 0.80 2.30

- Think about how $X_i \bar{x}$ will change if X_i are all centered. Then, \bar{x} will be zero.
- Can you express the numerator using vector multiplication?

Bayes Formula

```
P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A^C)P(A^C)}
c.table \leftarrow array(data = c(5,15,10,20,35,15), dim=c(3,2),
                   dimnames = list(Group=c("A","B","C"),
                                    TestResult = c("Positive", "Negative")))
c.table
        TestResult
##
## Group Positive Negative
       Α
                5
##
       В
                15
                          35
##
       С
                10
                          15
\#condition \ on \ X
c_X <- c.table/rowSums(c.table)</pre>
c_X
        TestResult
##
## Group Positive Negative
       Α
               0.2
##
       В
               0.3
                         0.7
       C
##
               0.4
                         0.6
#joint
c_j <- c.table/sum(c.table)</pre>
c_j
##
        TestResult
## Group Positive Negative
##
              0.05
                        0.20
       Α
              0.15
                        0.35
##
       В
```

Given that Test Result is Positive, what will be P(A|P), P(B|P), P(C|P)?

0.15

Related to CLT

C

0.10

##

```
a <- rnorm(25)
A <- matrix(rnorm(25), nrow=5)
A

## [,1] [,2] [,3] [,4] [,5]

## [1,] -0.2217942 -0.1016292 1.32223096 -0.4470622 0.9804641

## [2,] 0.1829077 1.4032035 -0.36344033 -1.7385979 -1.3988256

## [3,] 0.4173233 -1.7767756 1.31906574 0.1788648 1.8248724

## [4,] 1.0654023 0.6228674 0.04377907 1.8974657 1.3812987

## [5,] 0.9702020 -0.5222834 -1.87865588 -2.2719255 -0.8388519
```

diag(A)

[1] -0.2217942 1.4032035 1.3190657 1.8974657 -0.8388519