1. Suppose $n_1 \sim BIN(n, \pi)$.

(see Homework Set #2)

(a) Derive the maximum likelihood estimate $\hat{\pi}$.

(see Homework Set #6)

(b) The mle $\widehat{\pi}$ has an asymptotic normal distribution $\widehat{\pi} \sim N(\pi, \pi(1-\pi)/n)$.

Use the delta method to determine $\sigma^2 (\log (\hat{\pi}/(1-\hat{\pi})))$, the asymptotic variance of the sample log odds.

(see Homework Set #3)

- 2. Consider data from a prospective study.
- (a) Compute an estimate of the relative risk.
- (b) Provide an interpretation of your result, stated in the context of the problem.
- (c) Explain the difference between a prospective study and a retrospective study. What parameters can be estimated from a prospective study? What parameters can be estimated from a retrospective study?

(see Homework Set #5)

- 3. Consider data from a prospective study.
- (a) Provide an equation for $\sigma^2 \left(\log \widehat{RR} \right)$.
- (b) Provide an equation for $\widehat{\sigma}\left(\log\widehat{RR}\right)$.
- (c) Compute a 95% confidence interval for RR.

(see Homework Set #4)

- 4. Consider data from a retrospective study.
- (a) Compute an estimate of the odds ratio.
- (b) Interpret the direction of the association, stated in the context of the problem.
- (c) What assumption is necessary for the sample odds ratio to serve as an estimate of the relative risk?

(see Homework Set #6)

- 5. Consider data from a retrospective study.
- (a) Provide an equation for $\widehat{\sigma}\left(\log \widehat{\theta}\right)$.
- (b) Does your answer to (a) depend on the sampling scheme? Explain.
- (c) Compute a 95% confidence interval for $\log \theta$.
- (d) Compute an estimate of the correlation γ . Provide an interpretation of the effect size, stated in the context of the problem.