

RESEARCH MEMORANDUM

PRESSURE-DISTRIBUTION DATA FOR THE NACA 64₁-012

AND 64₁A012 AIRFOILS AT HIGH SUBSONIC

MACH NUMBERS

Ву

Milton D. Humphreys

Langley Aeronautical Laboratory

THIS DOCUMENT ON LOAN FROM LANGED TO CHANGED TO

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

LANGLEY AERONAUTICAL LABORATORY

LANGLEY FIELD, HAMPTON, VIRGINIA

UNCLASSIFIED

DATE 8-18-54

CLASSIFIED DOCUMENT AUTHORITY J.W.CHOWLEY

RETURN TO THE ABOVE ADDRESS.

REQUESTS FOR PUBLICATIONS SHOULD UNB INTERPRETATION OF THE PUBLICATION OF THE PUBLICATI

NATIONAL ADVISORY COMMIT

This document contains classified information affecting the National Defense of the United States within the meaning of the Espionage Act, UNIX 5031 and 32. Its transmission for the Espionage Act, Transmission of the Espionage Act, Transmission of the Espionage Act, Transmission of the Carlot of

unitable person is prohibited by law. Information so classified may be imparted only to persons in the military and naval services of the United States, appropriate civilian officers and employees of the Federal Government who have a legitimate Interest therein, and to United States citizens of known loyally and discretton who of necessity must be informed thereof.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON

May 6, 1949

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

PRESSURE-DISTRIBUTION DATA FOR THE NACA 641-012

AND 64, A012 AIRFOILS AT HIGH SUBSONIC

MACH NUMBERS

By Milton D. Humphreys

SUMMARY

Pressure-distribution data of the NACA 641-012 and 641A012 airfoils have been analyzed to determine the effects of increasing the trailingedge angle from 9° to 14°.

The primary effect of increasing the trailing-edge angle was to decrease the loading over the rear portion of the airfoil under lifting conditions. The differences in trailing-edge load increased with Mach number and lift coefficient.

INTRODUCTION

A derivation of the NACA 641-012 airfoil having a trailing-edge cusp and the NACA 641A012 airfoil having the trailing edge formed by straight lines is presented in reference 1. The trailing-edge modification resulted in a change in trailing-edge angle from 9° to 14°

The effect of the change in trailing-edge angle upon the aerodynamic characteristics encountered at high subsonic Mach numbers by the two 12-percent-thick airfoils was discussed in reference 2. Additional data in the form of pressure distributions are needed for loading analysis and design work. The present paper presents pressure-distribution data for the NACA 641-012 and 641A012 airfoils and is supplementary to the force data presented in reference 2. Schlieren photographs of the flow field were made for the two airfoils to determine whether any significant flow changes had occurred.

APPARATUS AND TESTS

The Langley rectangular high-speed tunnel and the test procedure used in obtaining the present data are described in reference 2. The tunnel has a 4- by 18-inch test section and the model spanned the 4-inch

dimension. The NACA 64_1 -012 and 64_1 A012 airfoils investigated had 42 static-pressure orifices located near the center line on the upper and lower surfaces of the $2\frac{1}{2}$ -inch-chord models, as shown in figure 1.

The orifice locations are given in table I. A comparison of the airfoil profiles tested is shown in figure 2. The ordinates for the NACA 641-012 airfoil were changed over the rear 50 percent of the model chord in such a manner that they formed a straight line from approximately the 80-percent-chord station to the trailing edge (reference 1). The ordinates for the airfoils tested are presented in table II. Pressure-distribution measurements and schlieren photographs were made at Mach numbers between 0.30 and 0.89 for angles of attack of 0°, 4°, and 8°. The Reynolds number range was from 4 to 9×10^5 .

CORRECTIONS

The pressure-distribution data and the Mach numbers have been corrected for tunnel-wall constriction effects by the method of reference 3. No correction has been applied to the angles of attack since their correction due to constriction is very small. No choking effects are included in the data as test results within 0.03 of the choking Mach number are not presented.

RESULTS

A direct comparison between the pressure-distribution diagrams obtained at various Mach numbers for each airfoil is presented in figures 3, 4, and 5 for angles of attack of 0°, 4°, and 8°, respectively. The pressure-distribution data over the Mach number range are given in tabular form for the NACA 641-012 airfoil in tables III, IV, and V for angles of attack of 0°, 4°, and 8°, respectively, and for the NACA 641A012 airfoil in tables VI, VII, and VIII for angles of attack of 0°, 4°, and 8°, respectively. Schlieren photographs are shown in figure 6 to illustrate the flow conditions about the two airfoils.

DISCUSSION

The experimental pressure-distribution diagrams for the NACA 641-012 and 641A012 airfoils at 0° incidence and at Mach numbers of 0.30 and 0.65 (figs. 3(a) and 3(b)) show a slightly higher maximum negative pressure coefficient and, at the trailing edge, a larger pressure recovery for the normal section than for the 641A012 airfoil. The same general trends are indicated by the theoretical pressure distributions for these airfoils (reference 1).

The pressure recovery on the two airfoils was the same at M=0.81 (fig. 3(c)). The maximum negative pressure coefficients were approximately the same at M=0.85 (fig. 3(d)). The larger pressure recovery shown for the NACA 641A012 airfoil at this Mach number, in contrast to that for the low-speed conditions, can be attributed to the less extensive separation and narrower wake for this airfoil as shown in the schlieren photographs (fig. 6(a), M=0.85). These favorable effects produced a drag coefficient for this airfoil approximately 20 percent lower than that shown for the NACA 641-012 airfoil at this speed (reference 2).

It was pointed out in reference 2 that the NACA 641-012 airfoil produced a higher lift-curve slope and, under lifting conditions, a greater variation of moment coefficient with Mach number than the straight-trailing-edge airfoil. The experimental pressure-distribution data for the airfoils at moderate and high angles of attack (figs. 4 and 5) indicate that the larger loading near the trailing edge, and in some cases near the leading edge of the cusped airfoil, produced the higher lift-curve slope shown in reference 2 throughout the Mach number range for the NACA 641-012 airfoil.

The difference in loading near the trailing edge increased with speed up to the highest Mach number of this investigation, and, in general, the differences in trailing-edge load of the airfoils became greater as the angle-of-attack was increased (figs. 4 and 5). The reduced loading over the rear part of the NACA 641A012 airfoil was the important factor in causing the smaller variation in moment coefficient with Mach number shown for this airfoil in reference 2. The lower loading at the trailing edge and the more uniform pressure recovery over the rear surfaces of the modified airfoil could contribute the lower drag coefficients that were observed for the NACA 641A012 airfoil (reference 2). The persistence of the large trailing-edge load on the NACA 641-012 airfoil could contribute to structural problems in the use of trailing-edge flaps in the Mach number range investigated.

CONCLUSIONS

Pressure-distribution tests conducted in the NACA rectangular high-speed tunnel to determine the effect of increasing the trailing-edge angle from 9° to 14° on the NACA 641-012 airfoil at high subsonic Mach numbers indicate that:

1. The primary effect of increasing the trailing-edge angle was to decrease the loading over the rear portion of the airfoil operating

under lifting conditions. The differences in loading near the trailing edge for the two airfoils increased with Mach number and lift coefficient.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Air Force Base, Va.

REFERENCES

- 1. Loftin, Laurence K., Jr.: Theoretical and Experimental Data for a Number of NACA 6A-Series Airfoil Sections. NACA TN No. 1368, 1947.
- 2. Lindsey, W. F., and Humphreys, Milton D.: Tests of the NACA 641-012 and 641A012 Airfoils at High Subsonic Mach Numbers. NACA RM No. L8D23, 1948.
- 3. Allen, H. Julian, and Vincenti, Walter G.: The Wall Interference in a Two-Dimensional-Flow Wind Tunnel with Consideration of the Effect of Compressibility. NACA Rep. No. 782, 1944.

TABLE I

AIRFOIL ORIFICE LOCATIONS

(Stations in percent of wing chord)

NACA 641	012 airfoil
Upper-surface orifice locations	Lower-surface orifice locations
1.4 4.5 7.6 11.0 14.8 20.1 24.8 30.0 35.3 45.2 50.5 55.4 60.3 70.4 75.6 80.5 86.0 90.3 93.6	1.9 4.4 7.4 10.9 15.5 20.7 25.6 30.5 35.7 40.8 50.6 55.7 60.5 70.5 70.5 80.4 85.8 90.3 93.1

NACA 641A	012 airfoil
Upper-surface orifice locations	Lower-surface orifice locations
1.6 4.3 7.3 10.7 15.4 20.2 25.2 30.3 35.4 40.4 45.5 50.4 45.5 60.6 70.3 75.2 80.2 80.2 90.1 93.5	1.6 4.4 7.7 10.1 15.5 20.0 24.6 29.5 34.5 39.8 45.0 49.8 55.2 59.7 65.3 70.4 75.5 80.6 85.2 90.1 93.3

NACA

TABLE II

ORDINATES OF AIRFOILS

(Stations and ordinates in percent of wing chord)

N	ACA 641-012
Station	Upper-or lower- surface ordinates
0 •5 •75 1•25 2•5 5•0 7•5 10•0 20•0 25•0 30•0 40•0 45•0 50•0 60•0 65•0 70•0 80•0 80•0 90•0 90•0 90•0	0 •978 1•179 1•490 2•035 2•810 3•394 3•871 4•620 5•173 5•576 5•844 5•978 5•981 5•798 5•480 5•056 4•548 3•974 3•350 2•695 2•029 1•382 •786 •288 0
L.E. radi	us: 1.040

TF	radius:	1.040
1 • □ •	raurus.	T.040

I	IACA 641A012
Station	Upper-or lower- surface ordinates
0 •5 •75 1•25 2•5 5•0 7•5 10•0 15•0 20•0 25•0 30•0 45•0 50•0 60•0 65•0 70•0 80•0 85•0 90•0 90•0	0 •961 1•158 1•464 2•018 2•788 3•364 3•839 4•580 5•132 5•534 5•809 5•965 5•993 5•863 5•605 5•244 4•801 4•289 3•721 3•118 2•500 1•882 1•263 •644 •025

L.E. radius: 0.994 T.E. radius: 0.028

TABLE III

NACA 64_1 -012 AIRFOIL AT $\alpha = 0^\circ$

Station	M = (0.293	M = 0	0.409	M = 0	0.454	M =	0.515
(percent c)	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower
0.5 2.5 5.0 7.5 10 15 20 25 30 35 40 50 55 60 65 70 75 80 85 90 95	0.162105222281322352361371391410395372334294250190122062062007 .058 .101 .094	0.162071195264302358382401416424421396361320274218158089022 .038 .054	0.079131236296337363370377394415395376339291246181112057 .013 .082 .114 .111	0.089086199261299344376395412425421360312258196140081006 .062 .078 .097	0.157098233296327368377397417432415388356317268186109052 .020 .081 .115 .111	0.276028199272308368397419439451443416317332282210137068001 .053 .071 .093	0.021123234303344372379382402424407379344298233169096096 .031 .096 .134 .130	0.081076191253292342377396424438435403364313254179124066 .011 .076 .096 .111
Station	M = 0.552 M = 0		= 0.614 $M = 0.660$.660	M = 0.705		
(percent c)	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower
0.5 2.5 5.0 7.5 10 15 20 25 30 35 40 45 50 50 65 70 75 80 85 90 95	0.056174288342378409413427453468445417378333274177104046 .023 .085 .124 .119	0.066125237296328387423449468479447404353292209138069001 .061 .085 .098	0.079102231311355390405416441460444412372321256167096036 .037 .114 .145 .143	0.153 050 186 266 314 376 415 445 446 398 344 274 184 126 059 .012 .084 .110	0.136088224311367415427444473493476442398347267168098037038115151	0.206024174263312391437471499512510479431373292188129062 .014 .086 .107 .127	0.119091249341399450474493529561536493447395310165090032 .040 .109 .166 .148	0.168043206294354434482526569589578536487434320197130054 .020 .084 .110 .130

TABLE III - Concluded

CORRECTED PRESSURE COEFFICIENTS FOR THE

NACA 64_1 -012 AIRFOIL AT $\alpha = 0^{\circ}$ - Concluded

Station	M = 0.770		M = 0	817	M = 0.856		M = 0.890	
(percent c)	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower
0.5 2.5 5.0 7.5 10 15 20 25 30 340 45 50 55 60 65 70 75 80 90 95	0.131 072 230 331 403 480 511 535 603 663 599 553 496 301 161 090 019 .053 .133 .169 .159	037 184 263 331 437 509 570 639 715 667 620 569 350 192 122 050 .033 .101	281 368 475 525 546 603 696 735 685 666 595 347 184 075 .010 .087 .134	.076097211289402469529613702760715686696644425260137035 .049	112 224 308 422 488 517 573 656 664 643 639	.140 037 140 215 337 418 479 547 641 723 729 726 721 690 605 518 411 313 203 108	.129 054 160 247 356 424 459 517 596 684 727 753 749 738 749 738 749 635 635 563 455	.249 .033 074 147 275 350 415 483 568 649 727 774 777

TABLE IV

NACA 64_1 -012 AIRFOIL AT $\alpha = 4^{\circ}$

Station	M = 0		M = 0	.433	M = 0).504	M = 0	0.559
(percent c)	Upper	Lower	Upper	Lower	-	Lower	Upper	Lower
0.5 2.5 5.0 7.5 10 15 20 25 30 35 40 45 50 560 665 70 775 80 85 90 95	-1.319 -1.046944880780650650615612514452395321245173108039 .027 .070 .092	0.650 .403 .259 .160 .030 042 094 139 177 209 193 167 131 107 082 043 .022 .090 .126 .121	-1.371 -1.121 -1.010945827727688674661608552490418343264189115044 .065 .081	0.653 .403 .258 .166 .035 042 102 152 197 222 207 176 142 082 037 .033 .114 .116 .103	-1.493 -1.219 -1.099 -1.037 909 800 760 755 675 675 543 460 381 294 212 059 0	0.679 .408 .250 .149 .019 080 138 187 235 260 258 238 204 171 140 050 .029 .084 .089	-1.435 -1.179 -1.066 -1.007897780740730714652585508427348261187108029 .035 .080 .102	0.719 .454 .300 .198 .061 028 099 155 204 230 230 210 181 076 024 .048 .120 .119 .123
Station	M = 0		M = 0		M = 0	.707	M = 0.762	
(percent c)	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower
0.5 2.5 5.0 7.5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90	-1.555 -1.291 -1.170 -1.115992847788783772704623543459369277195045 .029 .073	0.630 .430 .281 .190 .046 046 119 228 258 257 239 165 130 092 028 .042 .110 .109	-1.541 -1.417 -1.312 -1.250 -1.132 -1.004 823 827 743 663 569 468 375 280 192 111 032 032 .082 .102	0.692 .458 .299 .194 .038 049 113 265 265 246 210 169 135 094 025 .050 .114 .120	-1.294 -1.309 -1.309 -1.353 -1.348 -1.297 -1.236 -1.162953642515422334249169088015 .050 .098 .121	0.702 .447 .298 .204 .057 045 125 188 247 281 283 260 220 176 139 091 012 .064 .128 .138 .131	-0.952 996 -1.029 -1.063 -1.130 -1.052 -1.065 983 794 652 564 490 410 341 274 213 110	0.608 .375 .238 .148 .009099184262335377375350301254069 .016 .077 .075 .072

TABLE IV - Concluded

NACA 64_1 -012 AIRFOIL AT $\alpha = 4^{\circ}$ - Concluded

						0 (06-	
Station	$\mathbf{M} = 0.789$		$\mathbf{M} = 0.$	M = 0.799		M = 0.826		M = 0.869	
(percent c)	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	
0.5 2.5 5.0 7.5 10 15 20 25 30 35 45 50 55 66 70 75 80 85 90 95	951 876 723 633 573 524 474 421 380	.347 .202 .113 .038 145 238 415 483 491 445 389 343 287 192 091 017 .039 .024	811862939971926905915836711619570531490452409368271	.341 .193 .094 058 169 256 453 532 561 527 456 409 335 108 034 .030 .011	612684743840885852811801704603555524493460435400317246	.318 .174 .081 072 183 279 381 494 597 674 688 657 610 365 236 122 041 043	427 512 577 677 730 763 804 876 896 900 892 868 835 181 740 689 636	.336 .198 .102 046 156 236 332 439 539 627 693 738 766 779 771 735 713 679 679	

CORRECTED PRESSURE COEFFICIENTS FOR THE

NACA 64_1 -Ol2 AIRFOIL AT $\alpha = 8^{\circ}$

TABLE V

Station	M = 0	.327	M = 0	.431	M = 0	.554	M = 0	.609
(percent c)	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower
0.5 2.5 5.0 7.5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95	-2.376 -1.744 -1.474 -1.330 -1.120986881821761677512427343263194129084039020 0	0.970 .751 .596 .481 .307 .207 .132 .062 .007 -043 -073 -068 -068 -048 -028 -008 .012 .042 .067	-2.572 -2.328 -1.895 -1.581 -1.214 -1.038921839774697612521442363282214152108075052033	0.955 .731 .578 .464 .303 .191 .103 .034 019 075 092 091 082 066 047 032 004 .026 .048 .064	-2.432 -2.432 -2.140 -1.856 -1.372 -1.145978872790697610527439355277221171127097073053	0.964 .723 .560 .445 .282 .178 .101 .017 -047 -092 -112 -113 -101 -081 -063 -043 -018 .019	-2.120 -2.159 -1.921 -1.732 -1.419 -1.186 -1.019875764669585506439385389287249218189174145	0.905 .686 .538 .423 .273 .156 .049 016 079 120 138 143 128 102 077 059 045 002 .064
Station	M = 0.656		M = 0.691		M = 0.742		M = 0	. 764
(percent c)	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower
0.5 2.5 5.0 7.5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90	-1.933 -1.992 -1.940 -1.876 -1.677 -1.305 -1.032 864 761 667 597 527 459 416 377 329 289 260 254 236 209	0.905 .672 .523 .419 .260 .151 .061 021 070 133 161 158 142 120 098 077 049 001 .034 .081 .043	-1.776 -1.810 -1.759 -1.710 -1.640 -1.531 -1.256 -1.015841726643577527486444411378345341321288	0.887 .654 .508 .397 .238 .128 .032 050 123 181 202 199 179 155 129 179 155 129 114 077 034 .016	-1.586 -1.524 -1.456 -1.413 -1.351 -1.293 -1.150953830752688636594556519481446414382347302	0.809 .626 .489 .379 .217 .095 009 096 172 222 250 250 226 199 172 152 083 040 .008 032	-1.452 -1.425 -1.381 -1.341 -1.290 -1.262 -1.187 -1.004 854 760 702 663 629 601 575 546 519 492 464 440 371	0.826 .585 .433 .340 .191 .077 028 119 208 267 304 300 272 246 216 192 165 110 058 009 072

TABLE V - Concluded

NACA 64_1 -012 AIRFOIL AT $\alpha = 8^{\circ}$ - Concluded

Station	ation M = 0.785		M = (M = 0.819		M = 0.840		.867
(percent c)	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower
0.5 2.5 7.5 10 15 20 25 30 35 40 45 50 55 65 70 78 85 90 95	645 624 605 583 557 532 514 487	.439 .331 .170 .061 046 140 233 341 342 316 277 245 223	-1.139 -1.130 -1.124 -1.079 -1.051 -1.034952824736659642626615597582562	.424 .319 .161 .041 063 165 268 364 422 427 392 344 303 274 246 181 028	-1.034 -1.033 -1.042 -1.057 -1.036 -1.004 989 974 913 811 746 708 681 662 648 637 626 595 547	.556 .417 .317 .157 .041 068 167 272 378 456 489 463 463 402 350 287 171 002 045	916 938 961 965 956 940 935 907 861 779 759 759 788 686 634	.548 .407 .315 .149 .039 061 167 281 381 537 577 576 546 488 418 418

NACA

TABLE VI

NACA 64_1 A012 AIRFOIL AT $\alpha = 0^\circ$

1		W (2 000	1	1.26	1,4	. 500	1	- (0
	Station	M = (M = (0.530	-	0.569
-	(percent c)	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower
	0.5 2.5 2.5 5.0 7.5 10 15 20 30 340 45 50 560 65 70 75 80 90 95	0.731 165 252 292 314 337 355 377 387 387 387 313 345 262 205 137 078 036 015 052 048	0.731 126 202 247 268 318 345 368 377 351 325 287 287 287 285 147 084 036 032 .020	0.182107242287318348370386395400351261202129069022 .028 .073 .082	0.182 087 216 263 291 331 361 383 404 406 397 341 302 261 204 139 085 037 .003 .042 .073	0.873153249324360381398418427410398367326263179104058010 .034 .080 .093	0.873 138 213 259 291 336 368 398 413 427 410 383 346 308 263 194 119 069 028 .020 .055 .085	0.869158255301333366398412428437430409375341277190118068011 .090 .101	0.869158227275306357392412428447430401368277201133073043 .088
-	Station	M = 0	612	M = 0	6)17	M = 0	710	M = 0	756
-	(percent c)	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower
+	(10000000)		-			opper	TOWOT	obbet	TOMAT
	0.5 2.5 5.0 7.5 10 15 20 25 30 35 45 50 55 60 65 70 75 80 85 90 95	0.851110240291333366416432449438415381340186115057005 .049 .095 .108	0.851085210264295343393416434454438407369326270194125075022 .035 .072 .098	0.852 173 259 314 350 396 423 448 478 471 448 471 366 297 119 065 013 .054 .097 .106	0.852 159 239 291 332 374 423 444 478 471 471 397 353 219 219 219 134 084 031 .026 .073 .095	0.857134253318360415462497522544530496446412338104053006066115120	0.857 089 223 292 337 406 462 497 534 558 544 502 448 338 207 130 068 014 .0014 .074 .110	0.726077226317376447496554599634619578517475385096054 0 .063 .117 .121	0.726022201285335419496554603654639580534479373188125067017 .039 .077 .111

TABLE VI - Concluded

NACA 641A012 ATRFOIL AT $\alpha = 0^{\circ}$ - Concluded

Station	M = 0.785		M = 0.807		M = 0.844		M = 0.893	
(percent c)	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower
0.5 2.5 5.0 7.5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95	0.505 041 236 328 390 451 517 573 630 697 708 650 611 585 399 173 042 .012 .069 .111	0.505 041 234 299 423 517 573 630 711 730 690 632 603 187 115 052 .001 .048 .088 .122	300	014 181 264 325 410 510	0.664 .098 146 245 309 466 527 591 661 689 660 642 635 624 536 387 285 187 102 029 .045	0.664 .098 092 198 259 343 444 516 579 655 692 673 661 561 562 414 296 197 108 029 .045	•183 -•035 -•142 -•214 -•315	0.633 .183 .009 086 159 253 349 417 483 567 653 706 746 748 742 741 738 706 669 621 507 385

TABLE VII CORRECTED PRESSURE COEFFICIENTS FOR THE NACA 64_1 AO12 AIRFOIL AT $\alpha = 4^{\circ}$

Station	M = 0	0.304	M = 0.408		M = 0.509		M = 0.556	
(percent c)	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower
0.5 2.5 5.0 7.5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95	-1.220 -1.006894824675635635549588461398461316245124068017 .025	0.594 .364 .239 .145 .030 045 140 173 199 168 139 168 139 115 084 055 022 .010	-1.312 -1.094 963 888 782 672 646 615 533 479 413 340 263 126 072 017 .035 .064	0.596 .361 .232 .152 .034053121167197208210203179152120089057019016 .055 .074	-1.297 -1.094988917811734679644594594594177111046012061103	0.630 .392 .251 .163 .053 029 029 148 183 203 207 190 169 144 110 073 036 .006 .042 .082	-1.392 -1.165 -1.058 985 871 728 695 695 521 438 347 258 117 056 .002 .053	0.584 .365 .248 .171 .045045118171204221224190158127090046002 .045 .070 .085
Station	M = 0		M = 0.659		M = 0.709		M = 0.759	
(percent c)	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower
0.5 2.5 5.0 7.5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95	-1.398 -1.212 -1.109 -1.031898812740709658600527437341255183108039 .024 .074 .106	0.651 .412 .278 .180 .058 027 098 156 197 222 227 214 185 147 115 036 .014 .058 .034 .086	-1.388 -1.364 -1.286 -1.175 -1.037931852787756708642560469367268111043 .002 .068 .110	0.640 .407 .275 .182 .052 045 118 169 221 244 234 234 183 143 046 .002 .038 .068 .106	-1.187 -1.250 -1.283 -1.299 -1.291 -1.261 -1.215 -1.142 -1.039883671535444361258168099038 .021 .075 .100	0.668 .412 .277 .185 .038 054 136 195 243 270 254 254 161 112 054 .004 .056 .068	-0.913 -1.010 -1.061 -1.088 -1.109 -1.148 -1.124 -1.055 -1.048 -1.067 702 539 416 309 225 148 080 020 039 088	0.591 .474 .249 .149 .014 079 160 224 307 332 323 302 272 238 194 146 094 094 094 033 .036 .045

TABLE VII - Concluded

NACA 64_1 A012 AIRFOIL AT $\alpha = 4^{\circ}$ - Concluded

Station (percent c)	M = 0.798		M = 0.813		M = 0.851		M = 0.882	
	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower
0.5 2.5 5.0 7.5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95	-0.636 759 834 940 941 898 896 885 769 640 556 485 421 368 312 251 176 089 .006	.333 .208 .119 028 129 216 323 413 442 436 422 386 346 295 235 136 062 028	-0 ·533 - ·655 - ·732 - ·787 - ·859 - ·883 - ·834 - ·819 - ·734 - ·612 - ·543 - ·455 - ·413 - ·364 - ·299 - ·223 - ·137 - ·048		-0 · 380 - · 515 - · 599 - · 656 - · 729 - · 783 - · 783 - · 730 - · 726 - · 681 - · 579 - · 469 - · 445 - · 422 - · 386 - · 342 - · 342 - · 277 - · 191 - · 132	.075 063 175 254 343 455 556 623 666 686 685	-0.266422507561636686728760783797801792768765610560560507453392	.309

TABLE VIII

NACA 641A012 AIRFOIL AT $\alpha = 8^{\circ}$

1 16 0),75	35	M = 0 505		M = 0.558		M = 0.620	
				M = 0.550		M = 0.620		
Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	
-3.013 -2.107 -1.571 -1.363 -1.109969875800732617593515433349268200134085046013 .007	0.950 .724 .557 .445 .300 .203 .124 .054 067 077 075 064 047 025 008 .011 .030 .041	-2.865 -2.631 -1.930 -1.492 -1.156 -1.004920845774698620536453364288222161101055026002	0.955 .738 .569 .446 .296 .195 .113 .039 022 061 084 090 078 060 037 017 002 .005 .012 .014	-2.687 -2.582 -2.234 -1.778 -1.225 -1.031922836775704624531441361284220160104061026006	0.942 .709 .557 .450 .302 .197 .111 .035 032 074 095 098 096 082 045 045 005	-2.360 -2.289 -2.232 -2.129 -1.618 -1.230 -1.020873766673592507424346270210159117081055033	0.944 .711 .547 .431 .286 .183 .098 .023 041 083 102 111 105 090 069 045 004 0	
M = 0.	.661	M = 0.715		M = 0.	M = 0.773		M = 0.796	
Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	
-2.072 -1.975 -1.926 -1.893 -1.729 -1.411 -1.151976853718620535457387323269228190156127094	0.927 .690 .523 .408 .263 .161 .073 -003 -078 -116 -136 -141 -139 -127 -108 -084 -084 -039 -027 -019	-1.698 -1.672 -1.615 -1.556 -1.457 -1.224 -1.054934845769702638581529477428334278204130	0.882 .639 .477 .370 .234 .130 .041 -039 .116 -161 -186 -194 -188 -174 -151 -126 -087 -081 -084 -093	-1.272 -1.312 -1.309 -1.256 -1.168 -1.062 918 726 685 653 626 605 584 563 544 521 488 442 371 269	0.855 .608 .435 .325 .187 .068 025 112 203 254 284 300 293 274 213 172 171 180 203	-1.136 -1.185 -1.197 -1.174 -1.038 -1.058956813719671641621599584573557540517483424321	0.837 .578 .412 .302 .164 .054 -043 -140 -301 -336 -354 -350 -328 -291 -257 -230 -210 -203 -207 -230	
	Upper -3.013 -2.107 -1.571 -1.363 -1.109969875800732617593515433515433515433046013 .007 M = 0 Upper -2.072 -1.975 -1.926 -1.893 -1.729 -1.411 -1.151976853718620535457387383269228190156127	-3.013 0.950 -2.107 .724 -1.571 .557 -1.363 .445 -1.109 .300969 .203875 .124800 .054732008617048593067515077433075349064268047200025134008085 .011046 .030013 .041 .007 .035 M = 0.661 Upper Lower -2.072 0.927 -1.975 .690 -1.926 .523 -1.893 .408 -1.729 .693 -1.411 .073976 .003853 .0781161 -1.151 .073976003853078118116620136535141457139387127323084228084228089190039156027127019	Upper Lower Upper -3.013 0.950 -2.865 -2.107 .724 -2.631 -1.571 .557 -1.930 -1.363 .445 -1.492 -1.109 .300 -1.156969 .203 -1.004875 .124920800 .054845732008774617048698593067620515077536433075453349064364268047288200025222134008161085 .011101046 .030055013 .041026 .007 .035002 M = 0.661 M = 0 Upper Lower Upper -2.072 0.927 -1.698 -1.975 .690 -1.672 -1.926 .523 -1.615 -1.893 .408 -1.556 -1.729 .263 -1.457 -1.411 .161 -1.224 -1.151 .073 -1.054976003934853078845718116769620136702535141638457139581387127529323 .108477269084428228059382190039334156027278127019204	Upper Lower Upper Lower -3.013 0.950 -2.865 0.955 -2.107 .724 -2.631 .738 -1.571 .557 -1.930 .569 -1.363 .445 -1.492 .446 -1.109 .300 -1.156 .296969 .203 -1.004 .195875 .124920 .113800 .054845 .039732 .008774 .022617048698 .061593067620084515077536 .090433075453089349064364078268047288060200025222037134008161017085 .011101002046 .030055 .005013 .041026 .012 .007 .035002 .014 M = 0.661 M = 0.715 Upper Lower Upper Lower -2.072 0.927 -1.698 0.882 -1.975 .690 -1.672 .639 -1.926 .523 -1.615 .477 -1.893 .408 -1.556 .370 -1.729 .263 -1.457 .234 -1.411 .161 -1.224 .130 -1.151 .073 -1.054 .041976 .003934 .039853 .078845 .116160 .136702 .186535 .141 .638 .194457 .139 .581 .188387 .127 .529 .174323 .108 .477151269 .084 .428 .126228 .059 .382 .103190 .039 .334 .087127 .019 .204 .084	Upper Lower Upper Lower Upper -3.013 0.950 -2.865 0.955 -2.687 -2.107 .724 -2.631 .738 -2.582 -1.571 .557 -1.930 .569 -2.234 -1.363 .445 -1.492 .446 -1.778 -1.109 .300 -1.156 .296 -1.225969 .203 -1.004 .195 -1.031875 .124920 .113922800 .054845 .039836732008774022775617048698061704593067620084624515077536090531433075453089441349064364078361268047288060284200025222037220134008161017160085 .011101002104046 .030055 .005061013 .041026 .012026007 .035002 .014006 M = 0.661 M = 0.715 M = 0. Upper Lower Upper Lower Upper -2.072 0.927 -1.698 0.882 -1.272 -1.975 .690 -1.672 .639 -1.312 -1.926 .523 -1.615 .477 -1.309 -1.893 .408 -1.556 .370 -1.256 -1.729 .263 -1.457 .234 -1.168 -1.729 .263 -1.457 .234 -1.168 -1.729 .263 -1.457 .234 -1.168 -1.729 .263 -1.457 .234 -1.168 -1.729 .263 -1.457 .234 -1.168976 .003934 .039798853 .078845 .116726118 .116724 .130 -1.062151 .073 -1.054 .041 .918976 .003934 .039798853 .078845 .116 .726718 .116769 .161 .685535 .141 .638 .194 .626457 .139 .581 .188 .605535 .141 .638 .194 .626457 .139 .581 .188 .605535 .141 .638 .194 .626457 .139 .581 .188 .605535 .141 .638 .194 .626457 .139 .581 .188 .605535 .141 .638 .194 .626457 .139 .581 .188 .605535 .141 .638 .194 .626457 .139 .581 .188 .605535 .141 .5638 .194 .626457 .139 .581 .188 .605535 .141 .5638 .194 .626457 .139 .581 .188 .605535 .141 .5638 .194 .626457 .139 .581 .188 .605535 .141 .5638 .194 .626457 .139 .581 .188 .605535 .141 .5638 .194 .626457 .139 .581 .188 .605535 .141 .5638 .194 .626457 .139 .581 .188 .605535 .141 .638 .194 .626457 .139 .581 .188 .605535 .141 .638 .194 .6264569 .084 .428 .126 .544	Upper Lower Upper Lower Upper Lower -3.013 0.950 -2.865 0.955 -2.687 0.942 -2.107 .724 -2.631 .733 -2.582 .709 -1.571 .557 -1.930 .569 -2.234 .557 -1.363 .445 -1.492 .446 -1.778 .450 -1.109 .300 -1.156 .296 -1.225 .302 -969 .203 -1.004 .195 -1.031 .197 -875 .124 920 .113 922 .111 -800 .054 845 .039 836 .035 -732 008 774 .022 .775 .032 -617 .048 698 .061 .704 .074 -593 .067 620 .084 .624 .095 -515 .077 .536 .090 .531 .098 -349 .064 364 .078 .361 .082 -2.268 .047 .288 .060 .284 .064 -2.06 .025 .222 .037 .220 .045 -1.34 .008 -1.61 .017 .160 .025 -1.34 .008 .161 .017 .160 .025 -1.34 .008 .161 .017 .160 .025 -1.34 .008 .161 .017 .160 .025 -1.34 .008 .161 .017 .160 .025 -1.34 .008 .161 .017 .160 .025 -1.35 .011 .101 .002 .104 .005 -0.05 .046 .030 .055 .005 .061 .004 -0.07 .035 .002 .014 .006 .005 -0.13 .041 .026 .012 .026 .011 -0.07 .035 .002 .014 .006 .005 -1.79 .263 .1457 .234 .1.68 .187 -1.411 .161 .1.224 .130 .1.68 .187 -1.411 .161 .1.224 .130 .1.68 .187 -1.411 .161 .1.224 .130 .1.68 .187 -1.411 .161 .1.224 .130 .1.68 .187 -1.411 .161 .1.224 .130 .1.66 .068 -1.151 .073 .1.054 .041 .918 .025 -776 .003 .934 .039 .798 .112 -853 .078 .845 .116 .726 .203 -78 .116 .769 .161 .685 .254 -853 .078 .845 .116 .769 .161 .685 .254 -853 .108 .477 .151 .563 .244 -228 .059 .382 .103 .521 .190 -1.160 .039 .334 .087 .488 .172 -288 .059 .382 .103 .521 .190 -1.161 .019 .204 .084 .371 .180 -1.127 .019 .204 .084 .371 .180	Upper Lower Upper Lower Upper Lower Upper	

NACA

TABLE VIII - Concluded

CORRECTED PRESSURE COEFFICIENTS FOR THE NACA 64_{1} AO12 AIRFOIL AT $\alpha = 8^{\circ}$ - Concluded

Station	M = 0	.818	M = 0	.835	M = 0.868		
(percent c)	Upper	Lower	Upper	Lower	Upper	Lower	
0.5 2.5 5.0 7.0 15 20 25 30 35 40 45 50 55 66 70 75 80 85 90 95	-1.011 -1.068 -1.086 -1.105 -1.057 -1.035 -1.003 907 776 702 653 622 600 586 573 560 549 531 505 461 394	0.814 .570 .402 .290 .159 .044 061 160 269 347 384 411 384 411 384 411 384 422 247 232 247 232 238	-0.903 969 -1.006 -1.038 -1.025 988 979 833 731 673 639 618 596 589 581 567 544 509 441	0.811 .556 .389 .283 .139 .027 075 172 290 434 480 435 480 435 393 358 318 271 230 237	-0.690 764 832 878 926 950 955 955 955 955 954 930 830 832 816 800 780 746 630		

Figure 1.—Airfoil profiles and static-pressure-orifice locations.

(Orifice locations are given in Table I)

CONFIDENTIAL

Figure 2.- A comparison of airfoil profiles showing the effect of removing the cusp from the NACA 64₁-012 airfoil. (Ordinates expanded.)

Figure 3.- A comparison of pressure-distribution diagrams for the NACA 64 $_1$ -012 and 64 $_1$ A012 airfoils. α = 0°.

Figure 3.- Concluded.

CONFIDENTIAL

Figure 4.- A comparison of pressure-distribution diagrams for the NACA 64_1 -012 and 64_1 A012 airfoils. α = 4° .

Figure 4.- Continued.

CONFIDENTIAL

Figure 4.- Continued. CONFIDENTIAL

Figure 4.- Continued.

CONFIDENTIAL

Figure 4.- Continued.

CONFIDENTIAL

Figure 4.- Concluded.

CONFIDENTIAL

Figure 5.- A comparison of pressure-distribution diagrams for the NACA 641-012 and 641A012 airfoils. α = 8°.

Figure 5.- Continued.

CONFIDENTIAL

Figure 5.- Continued. CONFIDENTIAL

Figure 5.- Concluded.

CONFIDENTIAL

M = 0.61

M = 0.61

M = 0.75

M = 0.74

M = 0.84

M = 0.85

NACA 641-012 airfoil

NACA 64, A012 airfoil

(a) $\alpha = 0^{\circ}$.

Figure 6.— Schlieren photographs of the flow about the NACA 64_1 -012 and 64_1 A012 airfoils.

M = 0.70

M = 0.70

M = 0.75

 $\mathbf{M} = 0.75$

M = 0.81

M = 0.81

NACA 641-012 airfoil NACA 641A012 airfoil

(b) $\alpha = 4^{\circ}$.

Figure 6.— Continued. L-59836
CONFIDENTIAL

M = 0.65

M = 0.65

M = 0.78

 $\mathbf{M} = 0.79$

M = 0.82NACA 641-012 airfoil

 $\mathbf{M} = 0.82$ NACA 641A012 airfoil

(c) $\alpha = 8^{\circ}$.

Figure 6.— Concluded. L-59837 CONFIDENTIAL

