Statistik I

Inhalt

Statistische Grafiken

Kennwerte & Verteilungseigenschaften Einführung Wichtige parametrische Verteilungen **Datenerhebung und Messung** Schätzung & Grenzwertsätze Wahrscheinlichkeitsrechnung: Grundlagen und Definitionen Zufallsvektoren und multivariate Verteilungen Zufallsvariablen, Verteilungen & Häufigkeiten Zusammenhangsmaße für metrische Merkmale Stochastische Unabhängigkeit und Zusammenhangsmaße für diskrete Merkmale Korrelation und Kausalität

Statistik	Aufgaben	Techniken
Deskriptive Statistik	Beschreibung, graphische Darstellung und Validierung von Daten. ! Keine Rüchschlüsse auf Grundgerantheit unsglich.	Grafiken, Tabellen, Kennzahlen
Explorative Statistik	Suche nach Struktus in den Daken (ohne stochastische Methoden). Formulierung von Hypothesen für das den Daken zugrunde liegende stochastische Modell.	Iterative und interplative. Anwendung von Technikan ans der deskriptiven und induktiven Statistik.
Induktive Statistik	Eichung von Schlüssen von den Daten (Stichprobe) auf Grundgesamtheit. Basierend auf stochastischen Kodellen.	Statistische Modellierung, statistische Tests, Konfidenzintervalle, Schätzer

Datenerhebung & Messung

M	atrikelnummer	Name	Vorname	Geburtsdatum	Haupt fach	Nebenfach
	xxxx 234	Muster	Peter	01.01.2001	Statistik	Informatik
	××××× 556	Schmid	Lena	31.40.2002	Informatik	Statistik
	××××× 123	Múller	Jonas	27.08.A33	Mathematik	NA
	**** 167	Nguyen	Cho	24.12.2000	Medizin	Soziologie <u>—</u>
	XXX XX 444	Nagel	Cosima	26.40.4996	Jura	Ethik

Alle Herkmale

— Herkmalsansprägung vom Markmal "Nebenfach" bei der zweiten Statistischen Einheit.

Eine Beobachtung

Grundgeramtheit: Studenten der LHK (über welche "Objekte" erhebe ich Daten?)

Stichprobe: 2 B. Alle Statistik Studenten ? Stichproben mussen nicht per Definition zufähig gewählt sein.

Statistische Einheit/Untersuchungseinhait (UE) : Ein Student bzw. ein Element der Grundgesamtheit

Merkmal: Messbare Eigenschaft einer statistischen Einheit. In der Tabelle quasi der (sinnvolle) Spaltenhame. E.B. Hauptfach ist ein Markmal

Merkmalsausprägung: Der tatsächliche Wert des Merkmals bei einer stadistischen Einheit. In der Tabelle ist das ein Wert in einer Zelle

Beobachtung: Alle Merhmalsausprägungen einer Statistischen Einheit zu einem Zeitpunkt. In der Tabelle sind das die Werte in einer Zeile.

Unterscheidung nach Quantifizierbarkeit der Ausprägungen	Qualitative Merkmale: • nur zuordenbar (einstufig) • Beispiele: Wohnort, Name	Quantitative Merkmale: • mess- oder zählbar • Beispiele: Alter, Körpergröße		
Anzahl der Ausprägungen*	Diskrete Merkmale: • höchstens abzählbar unendlich viele mögliche Ausprägungen • Beispiele: Gehaltsklassen, Kaufverhalten	Stetige Merkmale: • überabzählbar unendlich viele mögliche Ausprägungen • Beispiele: Geschwindigkeit, Gewicht		
Direktheit der Informationsgewinnung	Beobachtbare Merkmale: • können direkt erhoben werden • Beispiel: Abiturnote	Latente Merkmale: • Operationalisierung über Indik toren/Items notwendig • Beispiele: Bildungsgrad, Kreati ität, Nutzen		

- (*) Markmale die eigentlich diskret sind, aber so viele Ausprögungen haben, dass sie wie Stetige Markmale behandelt werden können, neunt man auch quasi-stetig (e.B. Einkommen)
- (4) Stetige Karkmala können durch Klassenbildung in diskrete Karkmal ungewandelt werden.

Skalenniveaus

Skalenniveau	Beispiele	Erlandte Transformationen um Strukturen zu erhalten	naturliche Ordnung	sinnvolle Abstände	nad-article	natürliche Einheit	Berechenbare Kenntahlen
Nominalskala	Wohnort, Farbe	Bijektionen	×	×	×	×	Mode
Ordinal - Rangskala	Noten, Michelin-Sterne Platzierung bei Sportenent	Sur Marchen Sted , Med.	/	×	×	×	Median
Intervallskola	Temperatur in C° Jahreszablen	affin lin. str. mon. steig. Abb.	V	/	×	×	Arithm. Mittel
Verhältnisskala	Preis, Länge, Gewicht, Temp. in Ko	lineare str. mon. steig. Abb.	-	J	/	×	Geom. Mittel Harm. Mittel
Absolutskala	Hänfigkeit, Anzahl, Prozentpunkte	Identitat	-	/	/	/	Alle

Datenerhebung

Methoden:

<u>beobachtung</u>

Dostengewinnung durch Erfassen von ungestenerten Sachverhalten

Befragung

Fragebögen für mürdliche / schriftliche / online Umfrage.

Experiment

Erzeugung der Daten durch Simulation von Situationen.

Umfang:

Vollerhebung

Alle stat. Einheiten einer GG werden untersucht.

Stichprobe (Teilerhebung)

Ein Teil der UE in eines GG wird untersucht.

Datenform:

Querschnitdaten

Eine Beobachtung pro HE.

· Noten, Aktivitäten, Geschlecht, konnen zu bestimmtem Zeit punkt von UE erhoben werden und z.B. mitels Regression auf Zusammenhänge untersucht werden. <u>Zeitreihe</u>

Mehrere Beobachtungen einer UE

· Temperatus, Wind & Luftfeuchtigkeit werden in regelmässigen Abständen genessen um Prognosen über die Zeitliche Entwicklung der UE 'Wetter' zu machen Längsschnittdaten

Mehrere Beobachtungen mehrerer UE.

- · Kohorentstudien in Medizin
- · Milerozensus

Wahrscheinlichkeitsrechnung

Elementarereignisse

For eine Grundmenge SI wird die ein-elementige For eine Grundmenge SI wird Teilmenge {wj = 12 als Elementarereignis bezeichnet A = 12 als Ereignis bezeichnet.

Ereignisse

Laplace - Wahrscheinlichkeit

Fix eine abzählbare Grundmenge Ω und ein Ereignis $A \subseteq \Omega$ ist die Laplace-Wahrscheidlichkeit IP(A) := IAI

Wahrscheinlichkeitsverteilung (Axiome von Kolmogorov) (vereinfacht)

Sei I eine Grundmenge und Pein Imbation auf P(II). Phaisit Wahrscheinlichkeitsverteilung oder Wahrscheinlichkeitsmaß auf IZ, wenn sie folgende Eigenschaft ecfillt: 1) P(1)=1 2) VA = 1: P(A) ≥0 3) VA,B = 1: A n 0 = \$ ⇒ P(A ∪ B) = P(A)+P(B)

Bedingte Wahrscheinlichkeit

Die bedingte Wahrscheinlichkeit von A gegaben B für Ereignisse A,B & II wit P(B) > 0 ist $P(A|B) := \frac{P(A \cap B)}{P(B)}$

Folgerungens

- Korollar · P(ø)=0
- · P(A) = 1-P(A)
- $B = A \Rightarrow P(A \setminus B) = P(A) P(B)$
- B ⊆ A ⇒ P(B) ≤ P(A)

Siebbornel von Sylvester-Poincaré $\cdot P[\bigcup_{i=1}^{n} A_{i}] = \sum_{k=1}^{n} (-n)^{k+1} \cdot \sum_{1 \leq i_{1} \leq \dots \leq k \leq k} P[A_{i_{1}} \wedge \dots \wedge A_{i_{k}}]$ $= \sum_{i=1}^{n} P[A_i] - \sum_{j \leq i \leq j \leq n} P[A_i \cap A_j] + \sum_{j \leq i \leq j \leq k \leq n} P[A_i \cap A_j \cap A_k] - \dots + (-n)^{n+1} P[\bigcap_{i = 1}^{n} A_i]$ Spezialfall: P(A v B) = P(A) + P(B) - P(A n B)

- P[] A,] = T, P[A, | A] = P[A,] P[A, 1A, 1A, A] ... P[A, 1A, ... A.] (Multiplikationssatz)
- Sei (A;)_{ie I} eine disjunkte Zerlogung von Ω · D.h. -Ω = UA; . Dann giet für beliebiges B P[B] = [P[B|A,] P[A,] (Soutz von totales Wahrscheinlichkeit) Specialfall: P(B) = P(D(A).P(A) + P(B(A).P(A)

mit Wiederholung/ mit Eurücklegen ohne Wiederholung/ Kombinatorik ohne Eurückstegen Anzahl Kombinationen Ohne Reihenfolge (m) (n-m)! Ansahl Kombinationen mit Reihenfolge Anzahl Permutationen

Stochastische Unabhängigkeist

Eine Kollektion von Ereignissen (Ai) iet heisst (stochastisch) unabhängig, wenn für jede endliche Kollektion $J \subseteq I$ giet : $P[\bigcap_{i \in I} A_i] = \prod_{i \in I} P[A_i]$

- · ALB <> A.B stochastisch unabhängig
- · Paarweise Unabhängig +> Unabhängigkeit
- $\cdot A \perp B \Leftrightarrow P(A \mid B) = P(A) \Leftrightarrow P(B \mid A) = P(B)$

Satz

Die Ereignisse (Ai)iez seien unabhängig. Für jedes i sei B; =A; v B; = A;. Dann sind die Ereignisse (B;) iEI unabhangig.

Satt von Bayes

(A;) eI sei so, dass IZ = (A; . B sei so, dass P[6] + 0. Dam ist $P[A, 18] = \frac{P[O|A,] \cdot P[A;]}{\sum_{i} P[B|A_{i}] \cdot P[A_{i}]}$ Specialfall: $P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)} = \frac{P(B|A) \cdot P(A)}{P(B|A) \cdot P(A) + P(B|A^{c}) \cdot P(A^{c})}$

Wettverhalthis (Odds-Update)

Falktor der nenen Information $\frac{P[G|A]}{P[G'|A]} = \frac{P[A|B]}{P[A|G']} \cdot \frac{P[B]}{P[G']}$ a-posteriori Verhaltus a-priori-Verhaltus