2009 年全国硕士研究生入学统一考试数学一试题

- 一、选择题: 1~8 小题,每小题 4 分,共 32 分.
- (1) 当 $x \to 0$ 时, $f(x) = x \sin ax$ 与 $g(x) = x^2 \ln(1 bx)$ 是等价无穷小,则
 - (A) $a=1, b=-\frac{1}{6}$.

- (B) $a=1, b=\frac{1}{6}$.
- (C) $a = -1, b = -\frac{1}{6}$.

- (D) $a = -1, b = \frac{1}{6}$.
- (2) 如图, 正方形 $\{(x,y)||x| \le 1, |y| \le 1\}$ 被其对角线划分 为四个区域 $D_k(k=1,2,3,4)$, $I_k = \iint_{D_k} y \cos x dx dy$,

(

(A) I_1 .

(B) I_2 .

(C) I_3 .

- (D) I_4 .
- (3) 设函数 y = f(x) 在区间[-1,3] 上的图形为

则函数 $F(x) = \int_0^x f(t)dt$ 的图形为

(4) 设有两个数列 $\{a_n\}$, $\{b_n\}$,若 $\lim_{n\to\infty}a_n=0$,则

-)
- (A) 当 $\sum_{n=1}^{\infty} b_n$ 收敛时, $\sum_{n=1}^{\infty} a_n b_n$ 收敛. (B) 当 $\sum_{n=1}^{\infty} b_n$ 发散时, $\sum_{n=1}^{\infty} a_n b_n$ 发散.
- (C) 当 $\sum_{n=1}^{\infty} |b_n|$ 收敛时, $\sum_{n=1}^{\infty} a_n^2 b_n^2$ 收敛. (D) 当 $\sum_{n=1}^{\infty} |b_n|$ 发散时, $\sum_{n=1}^{\infty} a_n^2 b_n^2$ 发散.
- (5) 设 $\alpha_1, \alpha_2, \alpha_3$ 是 3 维向量空间 R^3 的一组基,则由基 $\alpha_1, \frac{1}{2}\alpha_2, \frac{1}{3}\alpha_3$ 到基

$$\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1$$
 的过渡矩阵为 ()

(A) $\begin{pmatrix} 1 & 0 & 1 \\ 2 & 2 & 0 \\ 0 & 3 & 3 \end{pmatrix} .$

- (B) $\begin{pmatrix} 1 & 2 & 0 \\ 0 & 2 & 3 \\ 1 & 0 & 3 \end{pmatrix}$.
- (C) $\begin{bmatrix} \frac{1}{2} & \frac{1}{4} & -\frac{1}{6} \\ -\frac{1}{2} & \frac{1}{4} & \frac{1}{6} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{bmatrix}.$
- (D) $\begin{vmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{4} & -\frac{1}{4} \\ -\frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{vmatrix} .$
- (6) 设 A, B 均为 2 阶矩阵, A^* , B^* 分别为 A, B 的伴随矩阵, $\dot{A}|A|=2$, |B|=3, 则分块矩阵

(A) $\begin{pmatrix} O & 3B^* \\ 2A^* & O \end{pmatrix}$.

(B) $\begin{pmatrix} O & 2B^* \\ 3A^* & O \end{pmatrix}$.

(C) $\begin{pmatrix} O & 3A^* \\ 2B^* & O \end{pmatrix}$.

(D) $\begin{pmatrix} O & 2A^* \\ 3B^* & O \end{pmatrix}$.

第 2 页 共 16 页

- (7) 设随机变量 X 的分布函数为 $F(x) = 0.3\Phi(x) + 0.7\Phi\left(\frac{x-1}{2}\right)$, 其中 $\Phi(x)$ 为标准正态分布的分布函数, 则 EX = (C) 0.7. (D) 1.
- (8) 设随机变量 X 与 Y 相互独立,且 X 服从标准正态分布 N(0,1), Y 的概率分布为 $P\{Y=0\}=P\{Y=1\}=\frac{1}{2}.$ 记 $F_Z(z)$ 为随机变量 Z=XY 的分布函数,则函数 $F_Z(z)$ 的间断点个数为 (C) 2. (D) 3.
- 二、填空题: 9-14 小题,每小题 4 分,共 24 分,请将答案写在答题纸指定位置上.
- (9) 设函数 f(u,v) 具有二阶连续偏导数, z = f(x,xy), 则 $\frac{\partial^2 z}{\partial x \partial y} = \underline{\qquad}$.
- (10) 若二阶常系数线性齐次微分方程 y'' + ay' + by = 0 的通解为 $y = (C_1 + C_2 x)e^x$, 则非齐次方程 y'' + ay' + by = x 满足条件 y(0) = 2, y'(0) = 0 的解为 y =______.
- (11) 已知曲线 $L: y = x^2 (0 \le x \le \sqrt{2})$, 则 $\int_L x ds =$ _____.
- (13) 若 3 维列向量 α , β 满足 $\alpha^T\beta=2$, 其中 α^T 为 α 的转置, 则矩阵 $\beta\alpha^T$ 的非零特征值为
- (14) 设 X_1, X_2, \cdots, X_m 为来自二项分布总体B(n, p)的简单随机样本, \overline{X} 和 S^2 分别为样本均值和样本方差. 若 $\overline{X}+kS^2$ 为 np^2 的无偏估计量,则k=_______.
- 三、解答题: 15-23 小题, 共 94 分. 请将解答写在答题纸指定的位置上. 解答应写出文字说明、证明过程或演算步骤.
- (15)(本题满分9分)

求二元函数 $f(x,y) = x^2(2+y^2) + y \ln y$ 的极值.

(16)(本题满分9分)

设
$$a_n$$
 为曲线 $y = x^n$ 与 $y = x^{n+1} (n = 1, 2, \cdots)$ 所围成区域的面积, 记 $S_1 = \sum_{n=1}^{\infty} a_n$,

$$S_2 = \sum_{n=1}^{\infty} a_{2n-1}$$
 , $\Re S_1 = S_2$ 的值.

(17)(本题满分11分)

椭球面 S_1 是椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$ 绕 x 轴旋转而成, 圆锥面 S_2 是由过点 (4,0) 且与椭圆

 $\frac{x^2}{4} + \frac{y^2}{3} = 1$ 相切的直线绕*x* 轴旋转而成.

- (I)求 S_1 及 S_2 的方程;
- (II)求 S_1 与 S_2 之间的立体体积.
- (18)(本题满分11分)
- (I)证明拉格朗日中值定理: 若函数 f(x)在 [a,b]上连续, 在 (a,b) 可导, 则存在 $\xi \in (a,b)$,使得 $f(b)-f(a)=f'(\xi)(b-a)$.
- (II)证明: 若函数 f(x) 在 x = 0 处连续, 在 $(0,\delta)(\delta > 0)$ 内可导, 且 $\lim_{x \to 0^+} f'(x) = A$, 则 $f'_+(0)$ 存在, 且 $f'_+(0) = A$.
- (19)(本题满分 10 分)

计算曲面积分
$$I=\bigoplus_{\Sigma}\frac{xdydz+ydzdx+zdxdy}{\left(x^2+y^2+z^2\right)^{\frac{3}{2}}}$$
, 其中 Σ 是曲面 $2x^2+2y^2+z^2=4$ 的外

侧.

(20)(本题满分11分)

设

$$A = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & 1 \\ 0 & -4 & -2 \end{pmatrix}, \ \xi_1 = \begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix}$$

- (I)求满足 $A\xi_2 = \xi_1, A^2\xi_3 = \xi_1$ 的所有向量 ξ_2, ξ_3 ;
- (II)对(I)中的任意向量 ξ_2,ξ_3 ,证明: ξ_1,ξ_2,ξ_3 线性无关.
- (21)(本题满分11分)

设二次型

$$f(x_1, x_2, x_3) = ax_1^2 + ax_2^2 + (a-1)x_3^2 + 2x_1x_3 - 2x_2x_3$$

- (I)求二次型 f 的矩阵的所有特征值;
- (II)若二次型f的规范形为 $y_1^2 + y_2^2$,求a的值.
- (22)(本题满分11分)

第 4 页 共 16 页

袋中有 1 个红球, 2 个黑球与 3 个白球. 现有放回地从袋中取两次, 每次取一个球, 以 X,Y,Z 分别表示两次取球所取得的红球、黑球与白球的个数.

(I) 求
$$P\{X=1|Z=0\};$$

- (II)求二维随机变量(X,Y)的概率分布.
- (23)(本题满分11分)

设总体 X 的概率密度为

$$f(x) = \begin{cases} \lambda^2 x e^{-\lambda x}, & x > 0, \\ 0, & 其他, \end{cases}$$

其中参数 $\lambda(\lambda>0)$ 未知, X_1,X_2,\cdots,X_n 是来自总体 X 的简单随机样本.

- (I) 求参数 λ 的矩估计量;
- (Ⅱ) 求参数 λ 的最大似然估计量.

2009年全国硕士研究生入学统一考试数学一试题

- 一、选择题: 1~8 小题,每小题 4 分,共 32 分.
- (1) 【答案】(A)

【解析】 $f(x) = x - \sin ax$ 与 $g(x) = x^2 \ln(1-bx)$ 是 $x \to 0$ 时的等价无穷小,则

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{x - \sin ax}{x^2 \ln(1 - bx)} \stackrel{\text{figure }}{==} \lim_{x \to 0} \frac{x - \sin ax}{x^2 \cdot (-bx)}$$

$$= \lim_{x \to 0} \frac{x - \sin ax}{-bx^3} \stackrel{\text{figure }}{==} \lim_{x \to 0} \frac{1 - a \cos ax}{-3bx^2} \stackrel{\text{figure }}{==} \lim_{x \to 0} \frac{a^2 \sin ax}{-6bx}$$

$$= \lim_{x \to 0} \left(-\frac{a^3}{6b} \right) \frac{\sin ax}{ax} = -\frac{a^3}{6b} = 1,$$

即 $a^3 = -6b$, 故排除 B, C.

另外, $\lim_{x\to 0} \frac{1-a\cos ax}{-3bx^2}$ 存在,蕴含了 $1-a\cos ax\to 0$ $(x\to 0)$,故 a=1,排除 D.

所以本题选 A.

(2) 【答案】(A)

【解析】本题利用二重积分区域的对称性及被积函数的奇偶性.

$$\Leftrightarrow f(x, y) = y \cos x$$
,

 D_2, D_4 两区域关于 x 轴对称, $f(x, -y) = -y \cos x = -f(x, y)$,即被积函数是关于 y 的 奇函数,所以 $I_2 = I_4 = 0$;

 D_1, D_3 两区域关于 y 轴对称, $f(-x,y) = y\cos(-x) = y\cos x = f(x,y)$, 即被积函数是关于 x 的偶函数, 所以

$$\begin{split} I_1 &= 2 \iint\limits_{\left\{(x,y) \mid y \geq x, 0 \leq x \leq 1\right\}} y \cos x dx dy > 0, \\ I_3 &= 2 \iint\limits_{\left\{(x,y) \mid y \leq -x, 0 \leq x \leq 1\right\}} y \cos x dx dy < 0. \end{split}$$

所以正确答案为(A).

(3) 【答案】(D)

【解析】此题为定积分的应用知识考核,由 y = f(x) 的图形可以看出,其图像与x 轴及 y 轴、 $x = x_0$ 所围的图形的代数面积为所求函数 F(x),从而可得出下面几个方面的特征:

- ① $x \in [-1,0]$ 时, $F(x) \le 0$ 为线性函数, 单调递增;
- ② $x \in [0,1]$ 时, $F(x) \le 0$, 且单调递减;

第 6 页 共 16 页

更多考研资源,请上: cn. hongkezhang. com

- ③ $x \in [1,2]$ 时, F(x)单调递增;
- ④ $x \in [2,3]$ 时, F(x)为常函数;
- ⑤ *F*(*x*) 为连续函数.

结合这些特点,可见正确选项为(D).

(4) 【答案】C

【解析】解法1 举反例:

取
$$a_n = b_n = (-1)^n \frac{1}{\sqrt{n}}$$
, 则 $\lim_{n \to \infty} a_n = 0$, $\sum_{n=1}^{\infty} b_n$ 是收敛的, 但 $\sum_{n=1}^{\infty} a_n b_n = \sum_{n=1}^{\infty} \frac{1}{n}$ 发散, 排除 (A);

取
$$a_n = b_n = \frac{1}{n}$$
, 则 $\lim_{n \to \infty} a_n = 0$, $\sum_{n=1}^{\infty} b_n$ 是发散的, 但 $\sum_{n=1}^{\infty} a_n b_n = \sum_{n=1}^{\infty} \frac{1}{n^2}$ 收敛, 排除 (B);

取
$$a_n = b_n = \frac{1}{n}$$
, 则 $\lim_{n \to \infty} a_n = 0$, $\sum_{n=1}^{\infty} |b_n|$ 是发散的, 但 $\sum_{n=1}^{\infty} a_n^2 b_n^2 = \sum_{n=1}^{\infty} \frac{1}{n^4}$ 收敛, 排除 (D),

故答案为(C).

解法 2 因为 $\lim_{n\to\infty} a_n = 0$,则由定义可知 $\exists N_1$,使得 $n > N_1$ 时,有 $\left|a_n\right| < 1$;

又因为 $\sum_{n=1}^{\infty} |b_n|$ 收敛, 可得 $\lim_{n\to\infty} |b_n| = 0$, 则由定义可知 $\exists N_2$, 使得 $n > N_2$ 时, 有 $|b_n| < 1$,

从而, 当 $n > N_1 + N_2$ 时, 有 $a_n^2 b_n^2 < |b_n|$, 则由正项级数的比较判别法可知 $\sum_{n=1}^{\infty} a_n^2 b_n^2$ 收敛.

(5) 【答案】(A)

【解析】根据过渡矩阵的定义,知由基 α_1 , $\frac{1}{2}\alpha_2$, $\frac{1}{3}\alpha_3$ 到 $\alpha_1+\alpha_2$, $\alpha_2+\alpha_3$, $\alpha_3+\alpha_1$ 的过渡矩阵 M 满足:

$$(\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1) = (\alpha_1, \frac{1}{2}\alpha_2, \frac{1}{3}\alpha_3)M$$

$$= (\alpha_1, \frac{1}{2}\alpha_2, \frac{1}{3}\alpha_3)\begin{pmatrix} 1 & 0 & 1 \\ 2 & 2 & 0 \\ 0 & 3 & 3 \end{pmatrix},$$

所以此题选(A).

(6) 【答案】(B)

【解析】分块矩阵 $\begin{pmatrix} O & A \\ B & O \end{pmatrix}$ 的行列式

$$\begin{vmatrix} O & A \\ B & O \end{vmatrix} = (-1)^{2 \times 2} |A| |B| = 2 \times 3 = 6,$$

第 7 页 共 16 页

更多考研资源, 请上: cn. hongkezhang. com

即分块矩阵可逆,且

$$\begin{pmatrix} O & A \\ B & O \end{pmatrix}^* = \begin{vmatrix} O & A \\ B & O \end{vmatrix} \begin{pmatrix} O & A \\ B & O \end{pmatrix}^{-1} = 6 \begin{pmatrix} O & B^{-1} \\ A^{-1} & O \end{pmatrix}$$
$$= 6 \begin{pmatrix} O & \frac{1}{|B|}B^* \\ \frac{1}{|A|}A^* & O \end{pmatrix} = 6 \begin{pmatrix} O & \frac{1}{3}B^* \\ \frac{1}{2}A^* & O \end{pmatrix} = \begin{pmatrix} O & 2B^* \\ 3A^* & O \end{pmatrix}.$$

故答案为(B).

(7) 【答案】(C)

【解析】因为
$$F(x) = 0.3\Phi(x) + 0.7\Phi\left(\frac{x-1}{2}\right)$$
,所以
$$F'(x) = 0.3\Phi'(x) + \frac{0.7}{2}\Phi'\left(\frac{x-1}{2}\right),$$
因此,
$$EX = \int_{-\infty}^{+\infty} xF'(x)dx = \int_{-\infty}^{+\infty} x\left[0.3\Phi'(x) + 0.35\Phi'\left(\frac{x-1}{2}\right)\right]dx$$
$$= 0.3\int_{-\infty}^{+\infty} x\Phi'(x)dx + 0.35\int_{-\infty}^{+\infty} x\Phi'\left(\frac{x-1}{2}\right)dx .$$

由于 $\Phi(x)$ 为标准正态分布的分布函数,所以

$$\int_{-\infty}^{+\infty} x \Phi'(x) dx = 0,$$

$$\int_{-\infty}^{+\infty} x \Phi'\left(\frac{x-1}{2}\right) dx \quad \frac{x-1}{2} = u \quad 2 \int_{-\infty}^{+\infty} (2u+1) \Phi'(u) du$$

$$= 2 \int_{-\infty}^{+\infty} 2u \Phi'(u) du + 2 \int_{-\infty}^{+\infty} \Phi'(u) du = 2,$$

$$EX = 0.3 \int_{-\infty}^{+\infty} x \Phi'(x) dx + 0.35 \int_{-\infty}^{+\infty} x \Phi'\left(\frac{x-1}{2}\right) dx = 0 + 0.35 \times 2 = 0.7.$$

(8) 【答案】(B)

【解析】

$$\begin{split} F_Z(z) &= P\{XY \le z\} \\ &= P\{XY \le z \, \big| \, Y = 0\} P\{Y = 0\} + P\{XY \le z \, \big| \, Y = 1\} P\{Y = 1\} \\ &= \frac{1}{2} P\{XY \le z \, \big| \, Y = 0\} + \frac{1}{2} P\{XY \le z \, \big| \, Y = 1\} \\ &= \frac{1}{2} P\{X \cdot 0 \le z \, \big| \, Y = 0\} + \frac{1}{2} P\{X \le z \, \big| \, Y = 1\}, \end{split}$$

第 8 页 共 16 页

由于X,Y相互独立,所以

$$F_{Z}(z) = \frac{1}{2}P\{X \cdot 0 \le z\} + \frac{1}{2}P\{X \le z\}$$

- (1) $\exists z < 0 \text{ pt}, F_Z(z) = \frac{1}{2}\Phi(z);$
- (2) $\exists z \ge 0 \text{ pt}, F_z(z) = \frac{1}{2} + \frac{1}{2}\Phi(z),$

因此, z=0为间断点, 故选(B).

- 二、填空题: 9-14 小题,每小题 4 分,共 24 分,请将答案写在答题纸指定位置上.
- (9) 【答案】 $xf_{12}'' + f_2' + xyf_{22}''$

(10) 【答案】 $x(1-e^x)+2$

【解析】由常系数线性齐次微分方程 y'' + ay' + by = 0 的通解为 $y = (C_1 + C_2 x)e^x$ 可知

 $y_1 = e^x$, $y_2 = xe^x$ 为其两个线性无关的解,代入齐次方程,有

$$y_1'' + ay_1' + by_1 = (1+a+b)e^x = 0 \Rightarrow 1+a+b = 0,$$

 $y_2'' + ay_2' + by_2 = [2+a+(1+a+b)x]e^x = 0 \Rightarrow 2+a = 0,$

从而可见a = -2, b = 1, 非齐次微分方程为y'' - 2y' + y = x.

设特解 $y^* = Ax + B$, 代入非齐次微分方程, 得 -2A + Ax + B = x, 即

$$Ax + (-2A + B) = x \Rightarrow \begin{cases} A = 1 \\ -2A + B = 0 \end{cases} \Rightarrow \begin{cases} A = 1 \\ B = 2 \end{cases}$$

所以特解 $y^* = x + 2$, 通解 $y = (C_1 + C_2 x)e^x + x + 2$.

把y(0) = 2, y'(0) = 0代入通解, 得 $C_1 = 0, C_2 = -1$. 所以所求解为

$$y = -xe^x + x + 2 = x(1-e^x) + 2$$
.

(11)【答案】 $\frac{13}{6}$

【解析】由题意可知, $v = x^2, 0 \le x \le \sqrt{2}$, 则

第 9 页 共 16 页

$$ds = \sqrt{1 + (y')^2} dx = \sqrt{1 + 4x^2} dx ,$$

$$\int_L x ds = \int_0^{\sqrt{2}} x \sqrt{1 + 4x^2} dx = \frac{1}{8} \int_0^{\sqrt{2}} \sqrt{1 + 4x^2} d \left(1 + 4x^2 \right) dx = \frac{1}{8} \cdot \frac{2}{3} \sqrt{\left(1 + 4x^2 \right)^3} \Big|_0^{\sqrt{2}} = \frac{13}{6} .$$

(12) 【答案】 $\frac{4}{15}\pi$

【解析】解法1:

$$\iiint_{\Omega} z^2 dx dy dz = \int_0^{2\pi} d\theta \int_0^{\pi} d\phi \int_0^1 \rho^2 \sin\phi \rho^2 \cos^2\phi d\rho$$
$$= \int_0^{2\pi} d\theta \int_0^{\pi} \cos^2\phi d\left(-\cos\phi\right) \int_0^1 \rho^4 d\rho$$
$$= 2\pi \cdot \left(-\frac{\cos^3\phi}{3}\right) \Big|_0^{\pi} \cdot \frac{\rho^5}{5} \Big|_0^1 = \frac{4}{15}\pi.$$

解法 2: 由轮换对称性可知

所以,
$$\iint_{\Omega} z^2 dx dy dz = \iint_{\Omega} x^2 dx dy dz = \iint_{\Omega} y^2 dx dy dz$$
 所以,
$$\iint_{\Omega} z^2 dx dy dz = \frac{1}{3} \iiint_{\Omega} \left(x^2 + y^2 + z^2 \right) dx dy dz = \frac{1}{3} \int_0^{\pi} d \varphi \int_0^{2\pi} d \theta \int_0^1 r^4 \sin \varphi dr$$

$$= \frac{2\pi}{3} \int_0^{\pi} \sin \varphi d \varphi \int_0^1 r^4 dr = \frac{2\pi}{3} \cdot \frac{1}{5} \cdot \int_0^{\pi} \sin \varphi d \varphi = \frac{4}{15} \pi .$$

(13) 【答案】2

【解析】 $\alpha^T \beta = 2$, $\therefore \beta \alpha^T \beta = \beta (\alpha^T \beta) = 2 \cdot \beta$, 又由于 $\beta \neq 0$, $\therefore \beta \alpha^T$ 的非零特征值为 2.

(14) 【答案】-1

【解析】由于 $\overline{X} + kS^2$ 为 np^2 的无偏估计量,所以 $E(\overline{X} + kS^2) = np^2$,即

$$E(\overline{X} + kS^{2}) = np^{2} \Rightarrow E(\overline{X}) + E(kS^{2}) = np^{2}$$

$$\Rightarrow np + knp(1-p) = np^{2}$$

$$\Rightarrow 1 + k(1-p) = p$$

$$\Rightarrow k(1-p) = p - 1 \Rightarrow k = -1.$$

- 三、解答题: 15-23 小题, 共 94 分. 请将解答写在答题纸指定的位置上. 解答应写出文字说明、证明过程或演算步骤.
- (15)(本题满分9分)

【解析】
$$f_x'(x,y) = 2x(2+y^2)$$
,
$$f_y'(x,y) = 2x^2y + \ln y + 1.$$

第 10 页 共 16 页

更多考研资源,请上: cn. hongkezhang. com

令
$$\begin{cases} f_x'(x,y) = 0, \\ f_y'(x,y) = 0, \end{cases}$$
解得唯一驻点 $(0,\frac{1}{e})$.

由于

$$A = f_{xx}''(0, \frac{1}{e}) = 2(2 + y^2)\Big|_{(0, \frac{1}{e})} = 2(2 + \frac{1}{e^2}),$$

$$B = f_{xy}''(0, \frac{1}{e}) = 4xy\Big|_{(0, \frac{1}{e})} = 0,$$

$$C = f_{yy}''(0, \frac{1}{e}) = (2x^2 + \frac{1}{y})\Big|_{(0, \frac{1}{e})} = e,$$

所以
$$B^2 - AC = -2e(2 + \frac{1}{e^2}) < 0$$
, 且 $A > 0$.

从而 $f(0,\frac{1}{e})$ 是 f(x,y) 的极小值, 极小值为 $f(0,\frac{1}{e}) = -\frac{1}{e}$.

(16)(本题满分9分)

【解析】曲线 $y = x^n$ 与 $y = x^{n+1}$ 的交点为(0,0) 和(1,1),所围区域的面积

$$a_{n} = \int_{0}^{1} (x^{n} - x^{n+1}) dx = \left(\frac{1}{n+1} x^{n+1} - \frac{1}{n+2} x^{n+2}\right) \Big|_{0}^{1} = \frac{1}{n+1} - \frac{1}{n+2},$$

$$S_{1} = \sum_{n=1}^{\infty} a_{n} = \lim_{N \to \infty} \sum_{n=1}^{N} a_{n}$$

$$= \lim_{N \to \infty} \left(\frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{N+1} - \frac{1}{N+2}\right) = \lim_{N \to \infty} \left(\frac{1}{2} - \frac{1}{N+2}\right) = \frac{1}{2},$$

$$S_{2} = \sum_{n=1}^{\infty} a_{2n-1} = \sum_{n=1}^{\infty} \left(\frac{1}{2n} - \frac{1}{2n+1}\right) = \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{5} + \frac{1}{6} + \dots = \sum_{n=2}^{\infty} \left(-1\right)^{n} \frac{1}{n}.$$

考查幂级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} x^n$, 知其收敛域为 (-1,1], 和函数为 $-\ln(1+x)$.

因为
$$S(x) = \sum_{n=2}^{\infty} \frac{(-1)^n}{n} x^n = x - \ln(1+x)$$
,令 $x = 1$,得

$$S_2 = \sum_{n=1}^{\infty} a_{2n-1} = S(1) = 1 - \ln 2$$
.

(17)(本题满分11分)

【解析】(I)椭球面 S_1 的方程为 $\frac{x^2}{4} + \frac{y^2 + z^2}{3} = 1$.

设切点为 (x_0, y_0) ,则 $\frac{x^2}{4} + \frac{y^2}{3} = 1$ 在 (x_0, y_0) 处的切线方程为 $\frac{x_0x}{4} + \frac{y_0y}{3} = 1$.

将
$$x = 4$$
, $y = 0$ 代入切线方程得 $x_0 = 1$, 从而 $y_0 = \pm \frac{\sqrt{3}}{2} \sqrt{4 - x_0^2} = \pm \frac{3}{2}$.

所以切线方程为 $\frac{x}{4}\pm\frac{y}{2}=1$,从而圆锥面 S_2 的方程为 $(\frac{x}{4}-1)^2=\frac{y^2+z^2}{4}$,即

$$(x-4)^2-4v^2-4z^2=0$$
.

(II) S_1 与 S_2 之间的体积等于一个底面半径为 $\frac{3}{2}$ 、高为 3 的锥体体积 $\frac{9}{4}\pi$ 与部分椭球体体积 V之差,其中 $V=\frac{3\pi}{4}\int_1^2 (4-x^2)dx=\frac{5}{4}\pi$. 故所求体积为 $\frac{9}{4}\pi-\frac{5}{4}\pi=\pi$.

(18)(本题满分11分)

【解析】(I)取
$$F(x) = f(x) - \frac{f(b) - f(a)}{b - a}(x - a)$$
,

由题意知F(x)在[a,b]上连续,在(a,b)内可导,且

$$F(a) = f(a) - \frac{f(b) - f(a)}{b - a}(a - a) = f(a),$$

$$F(b) = f(b) - \frac{f(b) - f(a)}{b - a}(b - a) = f(a).$$

根据罗尔定理, 存在 $\xi \in (a,b)$, 使得 $F'(\xi) = f'(\xi) - \frac{f(b) - f(a)}{b - a} = 0$, 即

$$f(b)-f(a)=f'(\xi)(b-a).$$

(II)对于任意的 $t \in (0,\delta)$,函数f(x)在[0,t]上连续,在(0,t)内可导,由右导数定义及拉格朗日中值定理

$$f'_{+}(0) = \lim_{t \to 0^{+}} \frac{f(t) - f(0)}{t - 0} = \lim_{t \to 0^{+}} \frac{f'(\xi)t}{t} = \lim_{t \to 0^{+}} f'(\xi), \ \sharp \oplus \xi \in (0, t).$$

由于 $\lim_{t\to 0^+} f'(t) = A$,且当 $t\to 0^+$ 时, $\xi\to 0^+$,所以 $\lim_{t\to 0^+} f'(\xi) = A$,故 $f'_+(0)$ 存在,且

第 12 页 共 16 页

$$f'_{+}(0) = A$$
.

(19)(本题满分 10 分)

【解析】取 $\Sigma_1: x^2 + y^2 + z^2 = 1$ 的外侧, Ω 为 Σ 与 Σ_1 之间的部分.

$$I = \bigoplus_{\Sigma} \frac{xdydz + ydzdx + zdxdy}{\left(x^2 + y^2 + z^2\right)^{\frac{3}{2}}}$$

$$= \bigoplus_{\Sigma - \Sigma_1} \frac{xdydz + ydzdx + zdxdy}{\left(x^2 + y^2 + z^2\right)^{\frac{3}{2}}} + \bigoplus_{\Sigma_1} \frac{xdydz + ydzdx + zdxdy}{\left(x^2 + y^2 + z^2\right)^{\frac{3}{2}}}.$$

根据高斯公式

$$\bigoplus_{\Sigma - \Sigma_1} \frac{xdydz + ydzdx + zdxdy}{\left(x^2 + y^2 + z^2\right)^{\frac{3}{2}}} = \iiint_{\Omega} 0 dx dy dz = 0.$$

$$\bigoplus_{\Sigma_1} \frac{xdydz + ydzdx + zdxdy}{\left(x^2 + y^2 + z^2\right)^{\frac{3}{2}}} = \bigoplus_{\Sigma_1} xdydz + ydzdx + zdxdy$$

$$= \iiint_{x^2 + y^2 + z^2 \le 1} 3 dx dy dz = 4\pi.$$

所以 $I = 4\pi$.

(20)(本题满分11分)

【解析】(I)对矩阵(A: ξ_{I})施以初等行变换

$$(A:\xi_1) = \begin{pmatrix} 1 & -1 & -1 & \vdots & -1 \\ -1 & 1 & 1 & \vdots & 1 \\ 0 & -4 & -2 & \vdots & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -\frac{1}{2} & \vdots & -\frac{1}{2} \\ 0 & 1 & \frac{1}{2} & \vdots & \frac{1}{2} \\ 0 & 0 & 0 & \vdots & 0 \end{pmatrix}$$

可求得

$$\xi_2 = \begin{pmatrix} -\frac{1}{2} + \frac{k}{2} \\ \frac{1}{2} - \frac{k}{2} \\ k \end{pmatrix}, 其中 k 为任意常数.$$

又
$$A^2 = \begin{pmatrix} 2 & 2 & 0 \\ -2 & -2 & 0 \\ 4 & 4 & 0 \end{pmatrix}$$
, 对矩阵 $(A^2 : \xi_1)$ 施以初等行变换

第 13 页 共 16 页

$$(A^{2} \vdots \xi_{1}) = \begin{pmatrix} 2 & 2 & 0 & \vdots & -1 \\ -2 & -2 & 0 & \vdots & 1 \\ 4 & 4 & 0 & \vdots & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & \vdots & -\frac{1}{2} \\ 0 & 0 & 0 & \vdots & 0 \\ 0 & 0 & 0 & \vdots & 0 \end{pmatrix},$$

可求得
$$\xi_3 = \begin{pmatrix} -\frac{1}{2} - a \\ a \\ b \end{pmatrix}$$
, 其中 a,b 为任意常数.

(Ⅱ)解法1 由(Ⅰ)知

$$|\xi_{1}, \xi_{2}, \xi_{3}| = \begin{vmatrix} -1 & -\frac{1}{2} + \frac{k}{2} & -\frac{1}{2} - a \\ 1 & \frac{1}{2} - \frac{k}{2} & a \\ -2 & k & b \end{vmatrix} = -\frac{1}{2} \neq 0,$$

所以 ξ_1,ξ_2,ξ_3 线性无关.

解法 2 由题设可得 $A\xi_1 = 0$. 设存在数 k_1, k_2, k_3 , 使得

$$k_1 \xi_1 + k_2 \xi_2 + k_3 \xi_3 = 0, \qquad (1)$$

等式两端左乘 A, 得 $k_2A\xi_2+k_3A\xi_3=0$, 即

$$k_2 \xi_1 + k_3 A \xi_3 = 0$$
, 2

等式两端再左乘 A, 得 $k_3 A^2 \xi_3 = 0$, 即 $k_3 \xi_1 = 0$.

由于 $\xi_1 \neq 0$,于是 $k_3 = 0$,代入②式,得 $k_2 \xi_1 = 0$,故 $k_2 = 0$.将 $k_2 = k_3 = 0$ 代入①式,可得 $k_1 = 0$,从而 ξ_1 , ξ_2 , ξ_3 线性无关.

(21)(本题满分11分)

【解析】(I)二次型f的矩阵

$$A = \begin{pmatrix} a & 0 & 1 \\ 0 & a & -1 \\ 1 & -1 & a - 1 \end{pmatrix}.$$

第 14 页 共 16 页

由于

$$|\lambda E - A| = \begin{vmatrix} \lambda - a & 0 & -1 \\ 0 & \lambda - a & 1 \\ -1 & 1 & \lambda - a + 1 \end{vmatrix} = (\lambda - a)(\lambda - (a + 1))(\lambda - (a - 2)),$$

所以
$$A$$
 的特征值为 $\lambda_1=a,\lambda_2=a+1,\lambda_3=a-2$.
$$(II)$$
 解法 1 由于 f 的规范形为 $y_1^2+y_2^2$, 所以 A 合同于 $\begin{pmatrix} 1&0&0\\0&1&0\\0&0&0 \end{pmatrix}$, 其秩为 2 , 故

$$|A| = \lambda_1 \lambda_2 \lambda_3 = 0$$
, $\exists A = 0 \ \exists A = -1 \ \exists A = 2$.

当
$$a=0$$
 时, $\lambda_1=0,\lambda_2=1,\lambda_3=-2$,此时 f 的规范形为 $y_1^2-y_2^2$,不合题意.

当
$$a=-1$$
 时, $\lambda_1=-1,\lambda_2=0,\lambda_3=-3$,此时 f 的规范形为 $-y_1^2-y_2^2$,不合题意.

当
$$a=2$$
 时, $\lambda_1=2,\lambda_2=3,\lambda_3=0$,此时 f 的规范形为 $y_1^2+y_2^2$.

综上可知, a=2.

解法 2 由于 f 的规范形为 $y_1^2 + y_2^2$, 所以 A 的特征值有 2 个为正数, 1 个为零.

又
$$a-2 < a < a+1$$
, 所以 $a=2$.

(22)(本题满分11分)

【解析】(I)
$$P(X=1|Z=0) = \frac{P\{X=1,Z=0\}}{P\{Z=0\}} = \frac{C_2^1 \frac{1}{6} \cdot \frac{1}{3}}{(\frac{1}{2})^2} = \frac{4}{9}.$$

(II) 由题意知 X 与 Y 的所有可能取值均为 0, 1, 2.

$$P(X = 0, Y = 0) = \frac{C_3^1 \cdot C_3^1}{C_6^1 \cdot C_6^1} = \frac{1}{4}, P(X = 1, Y = 0) = \frac{C_2^1 \cdot C_3^1}{C_6^1 \cdot C_6^1} = \frac{1}{6},$$

$$P(X = 2, Y = 0) = \frac{1}{C_6^1 \cdot C_6^1} = \frac{1}{36}, P(X = 0, Y = 1) = \frac{C_2^1 \cdot C_2^1 \cdot C_3^1}{C_6^1 \cdot C_6^1} = \frac{1}{3},$$

$$P(X = 1, Y = 1) = \frac{C_2^1 \cdot C_2^1}{C_6^1 \cdot C_6^1} = \frac{1}{9}, P(X = 2, Y = 1) = 0,$$

$$P(X = 0, Y = 2) = \frac{C_2^1 \cdot C_2^1}{C_6^1 \cdot C_6^1} = \frac{1}{9},$$

$$P(X = 1, Y = 2) = 0, P(X = 2, Y = 2) = 0,$$

故(X,Y)的概率分布为

Y			
0	1/4	1/6	1/36
1	1/3	1/9	0
2	1/9	0	0
(23)(本题满分 11 分)			

【解析】(I)
$$EX = \int_{-\infty}^{+\infty} x f(x) dx = \int_{0}^{+\infty} \lambda^2 x^2 e^{-\lambda x} dx = \frac{2}{\lambda}.$$

令
$$\overline{X} = EX$$
,即 $\overline{X} = \frac{2}{\lambda}$,得 λ 的矩估计量为 $\hat{\lambda}_1 = \frac{2}{\overline{X}}$.

(II)设 $x_1, x_2, \dots, x_n(x_i > 0, i = 1, 2, \dots, n)$ 为样本观测值,则似然函数为

$$L(x_1, x_2, \dots, x_n; \lambda) = \lambda^{2n} \cdot e^{-\lambda \sum_{i=1}^{n} x_i} \prod_{i=1}^{n} x_i,$$

$$\ln L = 2n \ln \lambda - \lambda \sum_{i=1}^{n} x_i + \sum_{i=1}^{n} \ln x_i ,$$

由
$$\frac{d \ln L}{d \lambda} = \frac{2n}{\lambda} - \sum_{i=1}^{n} x_i = 0$$
,得 λ 的最大似然估计量为 $\hat{\lambda}_2 = \frac{2}{X}$.