Homework 8

ALECK ZHAO

April 20, 2017

- 1. Let $p, x, n \in \mathbb{Z}$ with p prime and n > 0.
 - (a) Prove that if $p \mid x^n$ then $p \mid x$.
 - (b) Show that the statement need not be true if p is not prime.
- 2. Use the Fundamental Theorem of Arithmetic (FTA) to show that $\log_{21} 143$ is irrational.
- 3. Let $a, b, c, n \in \mathbb{Z}$ with n > 1.
 - (a) Prove that if gcd(c, n) = 1 and $ac \equiv bc \pmod{n}$, then $a \equiv b \pmod{n}$.
 - (b) Show that the statement in part (a) need not be true if c and n are not relatively prime.
- 4. Let $a, b, c, d, n \in \mathbb{Z}$ with n > 1. Prove that if $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$ then
 - (a) $a + c \equiv b + d \pmod{n}$
 - (b) $ac \equiv bd \pmod{n}$
- 5. In this problem we will use direct proof to prove the following statement: Let $a, p \in \mathbb{Z}$. If p is prime and $p \nmid a$ then $a^{p-1} \equiv 1 \pmod{p}$.
 - (a) We are given that $a, p \in \mathbb{Z}$, p is prime, and $p \nmid a$. Explain why this mean $a \neq 0$.
 - (b) Let $S = \{a, 2a, 3, \dots, (p-1)a\}$. Let $x, y \in S$ with $x \neq y$. Prove $x \not\equiv y \pmod{p}$.
 - (c) Let $T = \mathbb{Z}/p\mathbb{Z} \setminus \{0\}$ and let $f: S \to T$ be given by the rule $f(s) = s \mod p$. Prove f is a bijection.
 - (d) Explain why

$$\prod_{s \in S} s \equiv \prod_{t \in T} t \pmod{p}$$

- (e) Explain why p and (p-1)! are relatively prime.
- (f) Based on your work in parts (d) and (e), conclude that $a^{p-1} \equiv 1 \pmod{p}$.
- 6. In a transposition cipher we use permutations to help encode text. First we select a positive integer m. Let $M = \{x \in \mathbb{N} \mid 1 \le x \le m\}$. Next, we create a permutation $f: M \to M$. we then take the text message and split its letters into blocks of size m. We encode the block $b_1b_2\cdots b_m$ as $c_1c_2\cdots c_m$ where $c_i = b_{f(i)}$.
 - (a) Suppose m = 4 and f(1) = 3, f(2) = 1, f(3) = 4, f(4) = 2. Use the transposition cipher to encode PIRATE ATTACK.
 - (b) We decrypt an encoded transposition cipher message by using f inf. For the function provided in part (a), what is f^{-1} ?
 - (c) Using the decryption function you obtained in part (b), decode SWUETRAEOEHS.
- Suppose $n = 713 = 23 \times 31$.
 - (a) Let e = 43. Bob's encryption function is $E(M) = M^e \mod n$, what is his decryption function?
 - (b) Encrypt the word I using Bob's encryption function.
 - (c) Let d = 43. Sue's decryption function is $D(N) = N^d \mod n$. What is Sue's encryption function?