Then integration by parts yields for $f \in D(A) = D(C)$

$$Cf,1> = \int_{1/4}^{1/2} (-xf'(x) + k(x)f(2x))w(x) dx - \int_{1/2}^{1} xf'(x)w(x) dx = 0$$
.

Thus 1 (D(C') and C'1 = 0, equivalently S(t)'1 = 1 for all t. This shows that (S(t)) is a semigroup of contractions on E. It remains to show that there is $\alpha>0$ such that ia (c(C)). In fact, considering $\alpha:=2\pi(\log 2)^{-1}$ then ia is an eigenvalue of C. A corresponding eigenfunction is given by $h_1(x):=x^{-i\,\alpha}h_0(x)$, where h_0 is the eigenfunction corresponding to 0 defined as

(2.15)
$$h_{O}(x) := \begin{cases} \int_{1/4}^{x} \frac{k(y)}{y} dy & \text{for } \frac{1}{4} \le x \le \frac{1}{2}, \\ 1 & \text{for } \frac{1}{2} \le x \le 1. \end{cases}$$

The verification of these statements is left as an excercise.

In several of the above results we had to assume that the positive semigroup $(T(t))_{t\geq 0}$ is bounded and has spectral bound zero. In general, these conditions are difficult to verify, in particular, when only the generator is known. In the final example we described a method how to cope with this problem: If s(A) is an eigenvalue of the adjoint A' with a strictly positive eigenvector ϕ , then $(T(t))_{t\geq 0}$ induces in a canonical way a positive semigroup $(T_{\phi}(t))_{t\geq 0}$ on the AL-space (E,ϕ) . This semigroup satisfies $\|T_{\phi}(t)\| \leq \exp(t \cdot s(A))$ and has spectral bound s(A). Hence one may apply the results of this section to the rescaled semigroup $(\exp(-t \cdot s(A))T_{\phi}(t))_{t\geq 0}$ thus obtaining convergence of $(T(t))_{t\geq 0}$ for the weaker topology on E which is induced by (E,ϕ) .