TD1: Ordonnancement Processus

Exercice 1

On considère 3 processus, A, B, C dont on suppose que l'exécution se compose d'une répétition de giclées d'UCT et d'opération d'E/S de longueur constante.

- Pour A, 7 unités de temps d'accès à (ut) l'UCT puis 2 ut d'E/S, 7 UCT, 2 E/S, 7, 2, etc.
- Pour B, 2 UCT, 2 E/S, 2 UCT, 2 E/S, etc.
- Pour C, 5 UCT, 4 E/S, 5, 4, etc.

On supposera que A se présente en premier, suivi de B 1 ut plus tard, puis C, 1 ut après B.

Montrez comment les 3 processus vont utiliser l'UCT pendant les 30 unités de temps à venir dans les cas suivants :

- I. Les processus n'attendent pas pour leurs E/S, par exemple, ils ont chacun leur périphérique propre :
 - 1. le répartiteur fonctionne selon PAPS.
 - 2. le répartiteur fonctionne selon SJF.
 - 3. le répartiteur utilise l'algorithme du tourniquet, avec un quantum de 3.
- II. Les trois processus utilisent le même périphérique d'E/S dont la file d'attente est gérée par SJF (attention, SJF concerne dans ce cas la durée d'E/S et non celle de la giclée d'UCT). Le répartiteur de l'UCT utilise l'algorithme du tourniquet, avec un quantum de 3.

Rappel:

- ✓ Débit = Throughput: nombre de processus qui terminent leur exécution dans une unité de temps
- ✓ Temps de rotation = turnaround: le temps pris par le processus de son arrivée à sa terminaison.
- ✓ Temps d'attente: attente dans la file prêt (somme de tout le temps passé en file prêt)
- ✓ Temps de réponse (pour les systèmes interactifs): le temps entre une demande et la réponse

Exercice 2

On considère 5 processus, A, B, C, D et E, devant partager l'accès à une même UCT. On supposera que l'exécution de chaque processus se compose d'une seule giclée d'UCT suivie d'une opération d'E/S prenant une unité de temps (l'unité de temps utilisée ici est arbitraire). La table suivante donne les instants d'arrivée et les durées des giclées d'UCT de chaque processus

Processus	Instant d'arrivée	Durée giclée UCT
A	0	25
В	1	6
C	2	11
D	3	17
E	4	10

Calculez le temps de virement de chaque processus dans les deux cas suivants :

Université Mohammed V Faculté des Sciences

Département de Mathématiques et d'informatique

- 1. Le répartiteur utilise l'algorithme du tourniquet avec un quantum de temps de 5 unités et on suppose que les changements de contexte sont instantanés.
- 2. Le répartiteur utilise l'algorithme du tourniquet et un quantum = 5 ut. De plus, on suppose que chaque changement de contexte dure 1 unité de temps.

Exercice 3

On considère quatre processus, A, B, C et D, devant partager l'accès à une même UCT. On supposera que l'exécution de chaque processus se compose d'une répétition de giclées d'UCT et d'opérations d'E/S de longueur constante. L'unité de temps utilisée ici est arbitraire.

- Pour A: 6 unité de temps (ut) d'accès à l'UCT puis 3 ut d'E/S, 6 UCT, 3 E/S, 6, 3, etc.
- Pour B: 2 UCT, 6 E/S, 2 UCT, 6 E/S, etc.
- Pour C: 4 UCT, 1 E/S, 4, 1, etc.
- Pour D: 1 UCT, 3 E/S, 1, 3, etc.

On suppose que A se présente en premier, suivi de B, 1 ut plus tard, puis C, 1 ut après B, et enfin D une ut après C. On souhaite voir comment les quatre processus partageront l'UCT pendant les 30 premières ut, selon le type de répartiteur utilisé.

- 1. On suppose que les processus n'attendent pas pour leurs E/S (par exemple, ils ont chacun leur périphérique propre) et que le répartiteur applique un mécanisme de tourniquet avec priorité et un quantum de 3 ut. On incrémente de 1 l'indice de priorité d'un processus à chaque fois qu'il quitte l'état "élu". On suppose que A, B, C et D démarrent avec le même indice de priorité initial = 1. Le processus le plus prioritaire sera celui avec le plus petit indice de priorité.
- 2. Dans cette question, on suppose qu'il existe deux périphériques d'entrées/sorties partagés par les 4 processus. A et C partagent le premier périphérique, B et D partagent le deuxième. Le répartiteur applique l'algorithme du tourniquet sans priorités avec un quantum = 4 ut. Les deux files d'attentes des périphériques sont gérées par un algorithme de PAPS.

Exercice 4

On considère 5 processus, A, B, C, D et E partageant une même UCT.

Pour A: 6 UT d'accès à l'UCT puis 3 d'E/S, 6 UCT, 3 E/S, etc.;

Pour B: 3 UCT, 4 E/S, 3 UCT, 4 E/S, etc.;

Pour C: 3 UCT, 1 E/S, 3, 1, etc.;

Pour D: 1 UCT, 3 E/S, 1, 3, etc. Et pour

E: 5 UCT, 2 E/S, 5, 2, etc.

On suppose que A se présente en premier (t=0), suivi de B, 1 UT plus tard (t=1), puis C, 1 UT après B (t=2). D se présente 8 UT après C (t=10) et E 1 UT après D (t=11).

- β On suppose que les cinq processus partagent le même système d'E/S.
- β Le répartiteur de la file d'attente des E/S fonctionne selon le PAPS.
- β Le répartiteur de bas niveau applique le mécanisme de RR avec priorité et q=3 UT
- β On incrémente de 1 l'indice de priorité d'un processus à chaque fois qu'il quitte l'état élu.
- β On suppose que A, B, C, D et E démarrent avec le même indice de priorité initial = 1.
- β Le processus le plus prioritaire est celui avec le plus petit indice de priorité.

Montrez l'état d'occupation de l'UCT ainsi que l'ordre des processus dans les deux files d'attente (UCT et E/S) pendant les 30 premières unités de temps d'exécution