logarithms
$$\log_b(a) = c \implies b^c = a$$

$$log_{2}(64) = 6$$
 $2^{6} = 64$ $log_{5}(25) = 2$ $5^{2} = 25$

$$\log_2(10) = 3.$$
 $2^3 < 10 < 2^4$ 8 16

int
$$(\log_2(40)) = 5$$
 $2^5 < 40 < 2^6$

Q → Giver a + ve isteger N, how many times we need to divide it by 2 to reach 1. (integer division) $\frac{5}{2} = 2$

$$\frac{2}{50} \rightarrow 50$$

$$50 \rightarrow 25 \rightarrow 12 \rightarrow 6 \rightarrow 3 \rightarrow 1 \quad \text{Ans} = 5$$

$$9 \rightarrow 4 \rightarrow 2 \rightarrow 1$$
 Ans = 3
 $27 \rightarrow 13 \rightarrow 6 \rightarrow 3 \rightarrow 1$ Ans = 4

$$N \longrightarrow N \longrightarrow N \longrightarrow N \longrightarrow N \longrightarrow N = 1$$

$$\Rightarrow N = 2^{K}$$

$$\Rightarrow \log_{2}(N) = K$$

No. of iterations

```
) // N > 0
                                          Tc = 0(log (N))
   while (i > 1) of
   i = i/2
   2 \qquad \text{for } (i=1); i < N; \underline{i=i+2}) 
    i = 1 \longrightarrow 2 \longrightarrow 2^2 \longrightarrow 2^3 \longrightarrow N
   #iterations = log_2(N) TC = O(log(N))
3> // N >= 0
    for (i=0; i <= N; i=i * 2) {
       # iterations = 0
4) for (i=1; i <= 10; i++) d
       for (j=1; j <= N; j++) &
                     i # iterations
                     N [N I] I
                       [IN 1]
```

```
N [N 1] 01
                   10 * N / TC = O(N)
5) for (i=1; i <= N; i++) &
     for (j=1; j <= N; j++) &
               i # iterations
               I CI NJ N
                (I N] N
              <u>N</u> [N 1] N
                   6) for (i=1; i <= N; i++) d
  for (j=1; j \le N; j=j*2)
              i # iterations
              N 1_N log_(N)
                    N * log_2(N) TC = O(N log(N))
```

 $\frac{N*(N+1)}{2} \qquad TC = \frac{O(N^2)}{2}$

9) for
$$(i=1; i <= N; i++) d$$

for $(j=1; j <= 2^{i}; j++) d$

:

}	i	j	# iterations
}	1	(1 2]	21
	2	$\begin{bmatrix} 1 & 2^2 \end{bmatrix}$	2 ²
	;		:
	N	[1 2]	2 ^N
			1 2 3

 $2^{1}+2^{2}+2^{3}+\ldots+2^{4}$

$$a = 2$$
 $k = 2$ $= 2 \times (2^{N} - 1) = 2 \times (2^{N} - 1)$
 $(2 - 1)$ $TC = O(2^{N})$

$$S = \underbrace{a * (x^{N} - 1)}_{(x - 1)}$$

Somare # iterations Fairal Algo 1

Real World → 1) live match views ≈ 10 M

2) Highest watched youtube vides

⇒ "Baby Shark" ≈ 13 B

very large data

Asymptotic Analysis 1 Big,0 Analysing performance of algorithms for large inputs.

→ 3} Igrare constart coefficient

Eg
$$\rightarrow$$
 #iterations \rightarrow $(4N^2 + 3N - 1) \rightarrow 0(N^2)$

$$4N^2$$

$$N^2$$

$$\rightarrow log(N) < JN < N < N * log(N) < NJN < N^2 < N^3 < 2^N < N! < N^N$$

$$2N^3 - 4\log(N) + 1500 * NJN \rightarrow O(N^3)$$

Time complexity #iterations

Rate of growth of time west input.

$$0(4N + 3N\log(N) + 1) \rightarrow 0(N\log(N))$$

$$0(4N\log(N) + 3NJN + 10^{6}) \longrightarrow 0(NJN)$$

Why to neglect lower order terms?

N	#iterations	% contribution of lower order term
	$(N^2 + 10 \times N)$	order term
10	102+ 10 * 10	1 00 × 100 = <u>50%</u>
	= 100 + 100 = 200	20 0
100	1002+10*100	
	= 10000 + 1000	<u>1000 × 100 ≈ 9 %.</u>
	= 11000	11000

$$|0000| |0000^{2} + 10 * 10000| |0^{5} * 100 = |0^{7} = |0 \cdot 1|^{9} |0^{8} = |0 \cdot 1|^{9} |0^$$

% contribution of lower order term is significantly low for large inputs.

Issues with Big O

iteratione
$$\rightarrow$$
 5000 \Rightarrow N N²

TC \rightarrow (0(N) (0(N²))

N=1000 \rightarrow 5 \Rightarrow 10⁶

Big 0 is only useful to understand algowert very large ispute.

2) Algo I Algo 2

iteratione
$$\rightarrow$$
 5000 $+$ N 2 $+$ N \rightarrow

TC \rightarrow 0(N) 0(N)

For algorithms where O(-) is same, we have to check # iterations to becide which algo. is better.

TLE (Time Limit Exceeded)

Amazon

Arus - 2 questions is I hour

understand the question Expected TC > fird bruteforce

use examples to find observations of fird optimised code

code it (TLE)

Why TLE occurs

online coding platform - 16thz processing speed

Expected

10 instructions per sec

time = 1 sec

a=2

6+6

Let say literation take 10 to 100 instructions.

10 instructions → 1 iteration ⇒ 10 instructions → 10 iterations

100 instructions → 1 iterations 109 instructions → 107 iterations

If time limit is I see

then # iterations → 107 to 108

$$1 <= N <= 10^5$$
 largest $TC \approx O(N \log N) / O(N)$...

 $1 <= N <= 10^5$
 $1 <= N <= 10^5$