MSP430X port - basic checkpointing design documentation

David Garriou, Jean-Luc Béchennec November 21, 2019

1 Normal MSP430X startup sequence

The MSP430X startup sequence is as follow:

- 1. After a reset, the tpl_reset_handler executes (see tpl_startup.S file). It:
 - (a) stops the watchdog timer;
 - (b) disables the interrupts;
 - (c) sets up the stack;
 - (d) calls tpl_continue_reset_handler C function.
- 2. tpl_continue_reset_handler (see tpl_startup.c file) does:
 - (a) initialization of the .bss section to 0 (uninitialized variables) and initialization of the .data section by copying the initial values from FRAM (initialized variables)¹;
 - (b) clock setup by calling tpl_set_mcu_clock;
 - (c) initialization of the MPU;
 - (d) a call to main.
- 3. main is responsability of the user but usually it:
 - (a) initializes application level devices;
 - (b) calls StartOS.
- 4. StartOS:
 - (a) calls tpl_init_machine that calls;

¹Why not use the DMA to do that, it would use less energy

- i. tpl_init_machine_generic that calls:
 - A. tpl_init_mpu which is not implemented yet (and would be redundant with 2c).
- ii. tpl_init_machine_specific that calls:
 - A. tpl_set_systick_timer.
- (b) calls tpl_start_os that does a system call to tpl_start_os_service that.
 - i. calls tpl_init_os;
 - ii. calls tpl_enable_counters;
 - iii. calls StartupHook if any;
 - iv. calls tpl_start_scheduling.

when returning a task is schedule.

2 Modified sequence to restore a checkpoint

Following items shall be modified when restarting from a checkpoint:

- item 2a should be replaced by a copy from the checkpoint data in FRAM to SRAM.
- item 2b should use the replaced by an init with the clock frequency when the checkpoint was done. This can be done by having a variable (in .data segment) to store the clock frequency so that it would restored as part of the checkpoint data.
- item 2d should be replaced by a call to a mandatory function used to initialize the devices for the application (UART for instance) and to a new service, let's call it RestartOS. RestartOS would:
 - 1. Call tpl_init_machine;
 - 2. Call tpl_restart_os that does a system call to tpl_restart_os_service that does a tpl_start. tpl_start moves the highest priority task from the ready list to the elected slot of tpl_kern. Conditions shall be NEED_SWITCH true and NEED_SAVE false.

When returning from the RestartOS service, the highest priority task is scheduled and the system continues execution.

A boolean variable stored in FRAM, let's call it tpl_checkpoint_available, shall be used to select, when true, the modified sequence instead of the normal one.

3 Checkpointing

A new service is necessary, let's call it Hibernate. When called, Hibernate, terminates the caller. It copies the SRAM to the FRAM (checkpoint), stops the Systick, stops application

interrupts (a user function shall be provided for that), programs the RTC to emit an interrupt every x seconds, enables interrupts and goes in LPM3.

The RTC ISR check the voltage of the MCU. If it is above a threshold (RESUME_FROM_HIBERNATE_THRESHOLD, 1.9 V?), it exists from LPM3. If this never happens, after a while, the MCU will power off. When in the future the MCU restart, what is described in section 2 applies.

If Hibernate resumes because the RTC ISR exited from LPM3 then it disables interrupt, starts application interrupts, starts the Systick, stop the RTC. It calls tpl_start to elect the highest priority task and returns.

In addition, a periodic basic task, energy_task checks (every 5 seconds? more?) the voltage. If the voltage drops below a threshold (HIBERNATE_THRESHOLD), energy_task calls Hibernate (and terminates):

```
TASK(energy_task)
{
  uint16 voltage = readPowerVoltage();
  if (voltage < HIBERNATE_THRESHOLD) {
    Hibernate();
  }
  else {
    TerminateTask();
  }
}</pre>
```

HIBERNATE_THRESHOLD shall be chosen so that the worst voltage drop between 2 executions of energy_task plus the voltage drop due to checkpointing is lower than the threshold.