動的計画(Dynamic Programming : DP)

再帰的に問題を解いていくための考え方・枠組み (を与える理論)

- 問題の中に潜む再帰的な構造を見出す
- 再帰式を構成し、それを利用して解を導く

-例題1.2.3(投資問題)

1000万円の投資資金を4つの投資先に分配し、投資した結果得られる利益を 最大にしたい。1単位を100万円とし、10単位をどのように配分すれば良いだろうか。

投資量 u \各投資先の回収利益	$r_1(u)$	$r_2(u)$	$r_3(u)$	$r_4(u)$
0	0	0	0	0
1	0.28	0.25	0.15	0.20
2	0.45	0.41	0.25	0.33
3	0.65	0.55	0.40	0.42
4	0.78	0.65	0.50	0.48
5	0.90	0.75	0.62	0.53
6	1.02	0.80	0.73	0.56
7	1.13	0.85	0.82	0.58
8	1.23	0.88	0.90	0.60
9	1.32	0.90	0.96	0.60
10	1.38	0.90	1.00	0.60

列挙による解法

配分パターンの列挙

投資先1	10	9	9	9	8	
投資先2	0	1	0	0	2	
投資先3	0	0	1	0	0	
投資先4	0	0	0	1	0	
総利益	1,38	1.57	1.47	1.52	1.64	

0 0 0 0 0 0 0 0 3 2 0 1 7 8 9 10 0.98 0.85 0.75 0.60

1.38 + 0 + 0 + 0

1.32 + 0.25 + 0 + 0

全パターンに対して総利益を求める
最大値を与える配分が最適配分!

再帰を用いた解法

 $\begin{array}{ll} \text{Max} & r_1(x_1) + r_2(x_2) + r_3(x_3) + r_4(x_4) \\ \text{s. t.} & x_1 + x_2 + x_3 + x_4 = 10 \\ & x_i = 0, 1, \dots, 10 \ \ (i = 1, 2, 3, 4) \end{array}$

投資先 1, . . . , n に e 投資したときの最大の利益を $u^n(e)$ であらわす。 すなわち

$$u^{n}(c) = \max \left\{ \sum_{i=1}^{n} r_{i}(x_{i}) \mid \sum_{i=1}^{n} x_{i} = c, \ x_{i} = 0, 1, \dots, c \ (i = 1, \dots, n) \right\}$$

このとき、次の関係が成り立つ:

$$u^{1}(c) = r_{1}(c) \qquad c = 0, 1, \dots, 10$$

$$u^{n+1}(c) = \max_{x=0,1,\dots,c} \{r_{n+1}(x) + u^n(c-x)\}$$
 $c = 0,1,\dots,10$
 $n = 1,2,3$

$$u^{1}(c) = r_{1}(c) \qquad c = 0, 1, \dots, 10$$

$$u^{n+1}(c) = \max_{x=0,1,\dots,c} \{r_{n+1}(x) + u^n(c-x)\}$$
 $c = 0,1,\dots,10$
 $n = 1,2,3$

 $u^{n+1}(c)$ は $u^n(c)$ の結果を利用して求めることができる。

よって、 $u^1(c), u^2(c), u^3(c), u^4(c)$ と順に求めることにより、与問題の最大値 $u^4(10)$ を得る。

最適な投資配分は、各 $u^n(c)$ の最大値を与えるxを $\pi_n(c)$ とおくことにより、以下のように得られる。

$$x_4 = \pi_4(10)$$
 $x_3 = \pi_3(10 - x_4)$ $x_2 = \pi_2(10 - x_4 - x_3)$
 $x_1 = \pi_1(10 - x_4 - x_3 - x_2) = 10 - x_4 - x_3 - x_2$

$$u^{2}(c) = \max_{x=0,1,\dots,c} \left\{ r_{2}(x) + u^{1}(c-x) \right\} \quad \sharp \mathcal{D}$$

$$u^{2}(0) = \max \left\{ r_{2}(x) + u^{1}(0-x) \right\} = r_{2}$$

3 4 5 6

 $u^1(c) = r_1(c) \downarrow 0$

c 0 1

$$u^{2}(0) = \max_{x \to 0} \{r_{2}(x) + u^{1}(0-x)\} = r_{2}(0) + u^{1}(0) = 0, \quad \pi_{2}(0) = 0$$

 $(\pi_1(c) = c)$

 $u^1(c)$ | 0 | 0.28 | 0.45 | 0.65 | 0.78 | 0.90 | 1.02 | 1.13 | 1.23 | 1.32 | 1.38 |

$$u^{2}(1) = \max_{x=0,1} \left\{ r_{2}(x) + u^{1}(1-x) \right\} = (r_{2}(0) + u^{1}(1)) \lor (r_{2}(1) + u^{1}(0))$$

= $(0 + 0.28) \lor (0.25 + 0) = 0.28, \quad \pi_{2}(1) = 0$

$$u^{2}(2) = \max_{x=0,1,2} \{r_{2}(x) + u^{1}(2-x)\}$$

$$= (r_2(0) + u^1(2)) \vee (r_2(1) + u^1(1)) \vee (r_2(2) + u^1(0))$$

=
$$(0+0.45) \lor (0.25+0.28) \lor (0.41+0) = 0.53, \quad \pi_2(2) = 1$$

同様に続けて
$$u^4(10) = \max_{x=0,1,\dots,10} \left\{ r_4(x) + u^3(10-x) \right\}$$

$$= (r_4(0) + u^3(10)) \vee (r_4(1) + u^3(9)) \vee \dots \vee (r_4(10) + u^3(0))$$

$$= 1.81, \quad \pi_4(10) = 2$$
最大値は
$$u^4(10) = 1.81$$
最適配分は
$$(x_1, x_2, x_3, x_4) = (4, 3, 1, 2)$$

