```
In [2]: import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
%matplotlib inline
```

In [3]: df=pd.read_csv('hranalytics.csv')
df

Out[3]:

	satisfaction_level	last_evaluation	number_project	average_montly_hours	time_spend_
0	0.38	0.53	2	157	
1	0.80	0.86	5	262	
2	0.11	0.88	7	272	
3	0.72	0.87	5	223	
4	0.37	0.52	2	159	
14994	0.40	0.57	2	151	
14995	0.37	0.48	2	160	
14996	0.37	0.53	2	143	
14997	0.11	0.96	6	280	
14998	0.37	0.52	2	158	

14999 rows × 10 columns

In [4]: left=df[df.left==1]
left.shape

Out[4]: (3571, 10)

In [5]: retained=df[df.left==0]
 retained.shape

Out[5]: (11428, 10)

C:\Users\atul\AppData\Local\Temp\ipykernel_1780\588011459.py:1: FutureWarn ing: The default value of numeric_only in DataFrameGroupBy.mean is depreca ted. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.

df.groupby('left').mean()

Out[6]:

satisfaction_level last_evaluation number_project average_montly_hours time_spend_cc

left					
0	0.666810	0.715473	3.786664	199.060203	3.
1	0.440098	0.718113	3.855503	207.419210	3.
4					•

In [7]: pd.crosstab(df.salary,df.left).plot(kind='bar')

Out[7]: <Axes: xlabel='salary'>

In [8]: pd.crosstab(df.Department,df.left).plot(kind='bar')

Out[8]: <Axes: xlabel='Department'>

In [9]: subdf = df[['satisfaction_level','average_montly_hours','promotion_last_5ye
subdf.head()

Out[9]:

	satisfaction_level	average_montly_hours	promotion_last_5years	salary
0	0.38	157	0	low
1	0.80	262	0	medium
2	0.11	272	0	medium
3	0.72	223	0	low
4	0.37	159	0	low

In [10]: salary_dummies = pd.get_dummies(subdf.salary, prefix="salary")

In [11]: df_with_dummies = pd.concat([subdf,salary_dummies],axis='columns')
 df_with_dummies.head()

Out[11]:

	satisfaction_level	average_montly_hours	promotion_last_5years	salary	salary_high	sala
0	0.38	157	0	low	0	
1	0.80	262	0	medium	0	
2	0.11	272	0	medium	0	
3	0.72	223	0	low	0	
4	0.37	159	0	low	0	
4						•

Out[12]:

	satisfaction_level	average_montly_hours	promotion_last_5years	salary_high	salary_low :
0	0.38	157	0	0	1
1	0.80	262	0	0	0
2	0.11	272	0	0	0
3	0.72	223	0	0	1
4	0.37	159	0	0	1
4					•

In [13]: x = df_with_dummies
x.head()

Out[13]:

	satisfaction_level	average_montly_hours	promotion_last_5years	salary_high	salary_low :
0	0.38	157	0	0	1
1	0.80	262	0	0	0
2	0.11	272	0	0	0
3	0.72	223	0	0	1
4	0.37	159	0	0	1
4					•

```
y=df.left
In [14]:
Out[14]: 0
                   1
                   1
                   1
         2
          3
                   1
         4
                   1
         14994
                   1
         14995
                   1
         14996
                   1
         14997
                   1
         14998
                   1
         Name: left, Length: 14999, dtype: int64
In [15]: | from sklearn.model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.3)
In [16]: from sklearn.linear_model import LogisticRegression
         model=LogisticRegression()
In [17]: model.fit(x_train,y_train)
Out[17]:
          ▼ LogisticRegression
          LogisticRegression()
In [20]: |model.predict(x_test)
Out[20]: array([0, 0, 0, ..., 0, 0, 1], dtype=int64)
In [19]: model.score(x_train,y_train)
Out[19]: 0.7781729273171816
 In [ ]:
```