GCGGACGCGT GGGTGAAATT GAAAATCAAG ATAAAAATGT TCACAATTAA 50 GCTCCTTCTT TTTATTGTTC CTCTAGTTAT TTCCTCCAGA ATTGATCAAG 100 ACAATTCATC ATTTGATTCT CTATCTCCAG AGCCAAAATC AAGATTTGCT 150 ATGTTAGACG ATGTAAAAAT TTTAGCCAAT GGCCTCCTTC AGTTGGGACA 200 TGGTCTTAAA GACTTTGTCC ATAAGACGAA GGGCCAAATT AATGACATAT 250 TTCAAAAACT CAACATATTT GATCAGTCTT TTTATGATCT ATCGCTGCAA 300 ACCAGTGAAA TCAAAGAAGA AGAAAAGGAA CTGAGAAGAA CTACATATAA 350 ACTACAAGTC AAAAATGAAG AGGTAAAGAA TATGTCACTT GAACTCAACT 400 CAAAACTTGA AAGCCTCCTA GAAGAAAAA TTCTACTTCA ACAAAAAGTG 450 AAATATTTAG AAGAGCAACT AACTAACTTA ATTCAAAATC AACCTGAAAC 500 TCCAGAACAC CCAGAAGTAA CTTCACTTAA AACTTTTGTA GAAAAACAAG 550 ATAATAGCAT CAAAGACCTT CTCCAGACCG TGGAAGACCA ATATAAACAA 600 TTAAACCAAC AGCATAGTCA AATAAAAGAA ATAGAAAATC AGCTCAGAAG 650 GACTAGTATT CAAGAACCCA CAGAAATTTC TCTATCTTCC AAGCCAAGAG 700 CACCAAGAAC TACTCCCTTT CTTCAGTTGA ATGAAATAAG AAATGTAAAA 750 CATGATGGCA TTCCTGCTGA ATGTACCACC ATTTATAACA GAGGTGAACA 800 TACAAGTGGC ATGTATGCCA TCAGACCCAG CAACTCTCAA GTTTTTCATG 850 TCTACTGTGA TGTTATATCA GGTAGTCCAT GGACATTAAT TCAACATCGA 900 ATAGATGGAT CACAAAACTT CAATGAAACG TGGGAGAACT ACAAATATGG 950 TTTTGGGAGG CTTGATGGAG AATTTTGGTT GGGCCTAGAG AAGATATACT 1000 CCATAGTGAA GCAATCTAAT TATGTTTTAC GAATTGAGTT GGAAGACTGG 1050 AAAGACAACA AACATTATAT TGAATATTCT TTTTACTTGG GAAATCACGA 1100 AACCAACTAT ACGCTACATC TAGTTGCGAT TACTGGCAAT GTCCCCAATG 1150 CAATCCCGGA AAACAAAGAT TTGGTGTTTT CTACTTGGGA TCACAAAGCA 1200 AAAGGACACT TCAACTGTCC AGAGGGTTAT TCAGGAGGCT GGTGGTGGCA 1250

FIG. 1A-1

TGATGAGTGT GGAGAAAACA ACCTAAATGG TAAATATAAC AAACCAAGAG 1300 CAAAATCTAA GCCAGAGAGG AGAAGAGGAT TATCTTGGAA GTCTCAAAAT 1350 GGAAGGTTAT ACTCTATAAA ATCAACCAAA ATGTTGATCC ATCCAACAGA 1400 TTCAGAAAGC TTTGAATGAA CTGAGGCAAT TTAAAGGCAT ATTTAACCAT 1450 TAACTCATTC CAAGTTAATG TGGTCTAATA ATCTGGTATA AATCCTTAAG 1500 AGAAAGCTTG AGAAATAGAT TTTTTTTTATC TTAAAGTCAC TGTCTATTTA 1550 AGATTAAACA TACAATCACA TAACCTTAAA GAATACCGTT TACATTTCTC 1600 AATCAAAATT CTTATAATAC TATTTGTTTT AAATTTTGTG ATGTGGGAAT 1650 CAATTTTAGA TGGTCACAAT CTAGATTATA ATCAATAGGT GAACTTATTA 1700 AATAACTTTT CTAAATAAAA AATTTAGAGA CTTTTATTTT AAAAGGCATC 1750 ATATGAGCTA ATATCACAAC TTTCCCAGTT TAAAAAACTA GTACTCTTGT 1800 TAAAACTCTA AACTTGACTA AATACAGAGG ACTGGTAATT GTACAGTTCT 1850 TAAATGTTGT AGTATTAATT TCAAAACTAA AAATCGTCAG CACAGAGTAT 1900 GTGTAAAAAT CTGTAATACA AATTTTTAAA CTGATGCTTC ATTTTGCTAC 1950 AAGCAGAATT AAATACTGTA TTAAAATAAG TTCGCTGTCT TT 2042

FIG. 1A-2

Met 1	Phe	Thr	Ile	Lys 5	Leu	Leu	Leu	Phe	Ile 10	Val	Pro	Leu	Val	Ile 15
Ser	Ser	Arg	Ile	Asp 20	Gln	Asp	Asn	Ser	Ser 25	Phe	Asp	Ser	Leu	Ser 30
Pro	Glu	Pro	Lys	Ser 35	Arg	Phe	Ala	Met	Leu 40	Asp	Asp	Val	Lys	Ile 45
Leu	Ala	Asn	Gly	Leu 50	Leu	Gln	Leu	Gly	His 55		Leu	Lys	Asp	Phe 60
Val	His	Lys	Thr	Lys .65	Gly	Gln	Ile	Asn	Asp 70	Ile	Phe	Gln	Lys	Leu 75
Asn			Asp										Thr	Ser 90
Glu	Ile	Lys	Glu	Glu 95	Glu	Lys	Glu	Leu	Arg 100	Arg	Thr	Thr	Tyr	Lys 105
Leu	Gln	Val	Lys	Asn 110	Glu	Glu	Val	Lys	Asn 115	Met	Ser	Leu	Glu	Leu 120
Asn	Ser	Lys	Leu	Glu 125	Ser	Leu	Leu	Glu	Glu 130	Lys	Ile	Leu	Leu	Gln 135
Gln	Lys	Val	Lys	Tyr 140	Leu	Glu	Glu	Gln	Leu 145	Thr	Asn	Leu	Ile	Gln 150
Asn	Gln	Pro	Glu	Thr 155	Pro	Glu	His	Pro	Glu 160	Val	Thr	Ser	Leu	Lys 165
Thr	Phe	Val	Glu	Lys 170	Gln	Asp	Asn	Ser	Ile 175	Lys	Asp	Leu	Leu	Gln 180
Thr	Val	Glu	Asp	Gln 185	Tyr	Lys	Gln	Leu	Asn 190	Gln	Gln	His	Ser	Gln 195
Ile	Lys	Glu	Ile	Glu 200	Asn	Gln	Leu	Arg	Arg 205	Thr	Ser	Ile	Gln	Glu 210
Pro	Thr	Glu	Ile	Ser 215	Leu	Ser	Ser	Lys	Pro 220	Arg	Ala	Pro	Arg	Thr 225
Thr	Pro	Phe	Leu	Gln 230	Leu	Asn	Glu	Ile	Arg 235	Asn	Val	Lys	His	Asp 240

Gly Ile Pro Ala Glu Cys Thr Thr Ile Tyr Asn Arg Gly Glu His Thr Ser Gly Met Tyr Ala Ile Arg Pro Ser Asn Ser Gln Val Phe His Val Tyr Cys Asp Val Ile Ser Gly Ser Pro Trp Thr Leu Ile Gln His Arg Ile Asp Gly Ser Gln Asn Phe Asn Glu Thr Trp Glu Asn Tyr Lys Tyr Gly Phe Gly Arg Leu Asp Gly Glu Phe Trp Leu Gly Leu Glu Lys Ile Tyr Ser Ile Val Lys Gln Ser Asn Tyr Val Leu Arg Ile Glu Leu Glu Asp Trp Lys Asp Asn Lys His Tyr Glu Tyr Ser Phe Tyr Leu Gly Asn His Glu Thr Asn Tyr Thr Leu His Leu Val Ala Ile Thr Gly Asn Val Pro Asn Ala Ile Pro Glu Asn Lys Asp Leu Val Phe Ser Thr Trp Asp His Lys Ala Lys Gly His Phe Asn Cys Pro Glu Gly Tyr Ser Gly Gly Trp Trp His Asp Glu Cys Gly Glu Asn Asn Leu Asn Gly Lys Tyr Asn Lys Pro Arg Ala Lys Ser Lys Pro Glu Arg Arg Arg Gly Leu Ser Trp Lys Ser Gln Asn Gly Arg Leu Tyr Ser Ile Lys Ser Thr Lys Met Leu Ile His Pro Thr Asp Ser Glu Ser Phe Glu

FIG. 1B-2

GGCTGAGGG AGGCCCGGAG CCTTTCTGGG GCCTGGGGGA TCCTCTTGCA 50 CTGGTGGGTG GAGAGAGCG CCTGCAGCCA ACCAGGGTCA GGCTGTGCTC 100 ACAGTTTCCT CTGGCGGCAT GTAAAGGCTC CACAAAGGAG TTGGGAGTTC 150 AAATGAGGCT GCTGCGGACG GCCTGAGGAT GGACCCCAAG CCCTGGACCT 200 GCCGAGCGTG GCACTGAGGC AGCGGCTGAC GCTACTGTGA GGGAAAGAAG 250 GTTGTGAGCA GCCCCGCAGG ACCCCTGGCC AGCCCTGGCC CCAGCCTCTG 300 CCGGAGCCCT CTGTGGAGGC AGAGCCAGTG GAGCCCAGTG AGGCAGGGCT 350 GCTTGGCAGC CACCGGCCTG CAACTCAGGA ACCCCTCCAG AGGCCATGGA 400 CAGGCTGCCC CGCTGACGC CAGGGTGAAG CATGTGAGGA GCCGCCCGG 450 AGCCAAGCAG GAGGGAAGAG GCTTTCATAG ATTCTATTCA CAAAGAATAA 500 CCACCATTTT GCAAGGACCA TGAGGCCACT GTGCGTGACA TGCTGGTGGC 550 TCGGACTGCT GGCTGCCATG GGAGCTGTTG CAGGCCAGGA GGACGGTTTT 600 GAGGGCACTG AGGAGGGCTC GCCAAGAGAG TTCATTTACC TAAACAGGTA 650 CAAGCGGCC GGCGAGTCCC AGGACAAGTG CACCTACACC TTCATTGTGC 700 CCCAGCAGCG GGTCACGGGT GCCATCTGCG TCAACTCCAA GGAGCCTGAG 750 GTGCTTCTGG AGAACCGAGT GCATAAGCAG GAGCTAGAGC TGCTCAACAA 800 TGAGCTGCTC AAGCAGAAGC GGCAGATCGA GACGCTGCAG CAGCTGGTGG 850 AGGTGGACGG CGGCATTGTG AGCGAGGTGA AGCTGCTGCG CAAGGAGAGC 900 CGCAACATGA ACTCGCGGGT CACGCAGCTC TACATGCAGC TCCTGCACGA 950 GATCATCCGC AAGCGGGACA ACGCGTTGGA GCTCTCCCAG CTGGAGAACA 1000 GGATCCTGAA CCAGACAGCC GACATGCTGC AGCTGGCCAG CAAGTACAAG 1050 GACCTGGAGC ACAAGTACCA GCACCTGGCC ACACTGGCCC ACAACCAATC 1100 AGAGATCATC GCGCAGCTTG AGGAGCACTG CCAGAGGGTG CCCTCGGCCA 1150 GGCCCGTCCC CCAGCCACCC CCCGCTGCCC CGCCCCGGGT CTACCAACCA 1200

FIG. 2A

CCCACCTACA ACCGCATCAT CAACCAGATC TCTACCAACG AGATCCAGAG 1250 TGACCAGAAC CTGAAGGTGC TGCCACCCCC TCTGCCCACT ATGCCCACTC 1300 TCACCAGCCT CCCATCTTCC ACCGACAAGC CGTCGGGCCC ATGGAGAGAC 1350 TGCCTGCAGG CCCTGGAGGA TGGCCACGAC ACCAGCTCCA TCTACCTGGT 1400 GAAGCCGGAG AACACCAACC GCCTCATGCA GGTGTGGTGC GACCAGAGAC 1450 ACGACCCCGG GGGCTGGACC GTCATCCAGA GACGCCTGGA TGGCTCTGTT 1500 AACTTCTTCA GGAACTGGGA GACGTACAAG CAAGGGTTTG GGAACATTGA 1550 CGGCGAATAC TGGCTGGGCC TGGAGAACAT TTACTGGCTG ACGAACCAAG 1600 GCAACTACAA ACTCCTGGTG ACCATGGAGG ACTGGTCCGG CCGCAAAGTC 1650 TTTGCAGAAT ACGCCAGTTT CCGCCTGGAA CCTGAGAGCG AGTATTATAA 1700 GCTGCGGCTG GGGCGCTACC ATGGCAATGC GGGTGACTCC TTTACATGGC 1750 ACAACGCCAA GCAGTTCACC ACCCTGGACA GAGATCATGA TGTCTACACA 1800 GGAAACTGTG CCCACTACCA GAAGGGAGGC TGGTGGTATA ACGCCTGTGC 1850 CCACTCCAAC CTCAACGGGG TCTGGTACCG CGGGGGCCAT TACCGGAGCC 1900 GCTACCAGGA CGGAGTCTAC TGGGCTGAGT TCCGAGGAGG CTCTTACTCA 1950 CTCAAGAAAG TGGTGATGAT GATCCGACCG AACCCCAACA CCTTCCACTA 2000 AGCCAGCTCC CCCTCCTGAC CTCTCGTGGC CATTGCCAGG AGCCCACCCT 2050 GGTCACGCTG GCCACAGCAC AAAGAACAAC TCCTCACCAG TTCATCCTGA 2100 GGCTGGGAGG ACCGGGATGC TGGATTCTGT TTTCCGAAGT CACTGCAGCG 2150 GATGATGGAA CTGAATCGAT ACGGTGTTTT CTGTCCCTCC TACTTTCCTT 2200 CTCTTTCTTT AAATAAATTA AGTCTCTACA ATAAAAAAA 2290

FIG. 2B

Met Arg Pro Leu Cys Val Thr Cys Trp Trp Leu Gly Leu Leu Ala Ala Met Gly Ala Val Ala Gly Gln Glu Asp Gly Phe Glu Gly Thr Glu Glu Gly Ser Pro Arg Glu Phe Ile Tyr Leu Asn Arg Tyr Lys Arg Ala Gly Glu Ser Gln Asp Lys Cys Thr Tyr Thr Phe Ile Val Pro Gln Gln Arg Val Thr Gly Ala Ile Cys Val Asn Ser Lys Glu Pro Glu Val Leu Leu Glu Asn Arg Val His Lys Gln Glu Leu Glu Leu Leu Asn Asn Glu Leu Leu Lys Gln Lys Arg Gln Ile Glu Thr Leu Gln Gln Leu Val Glu Val Asp Gly Gly Ile Val Ser Glu Val Lys Leu Leu Arg Lys Glu Ser Arg Asn Met Asn Ser Arg Val Thr Gln Leu Tyr Met Gln Leu Leu His Glu Ile Ile Arg Lys Arg Asp Asn Ala Leu Glu Leu Ser Gln Leu Glu Asn Arg Ile Leu Asn Gln Thr Ala Asp Met Leu Gln Leu Ala Ser Lys Tyr Lys Asp Leu Glu His Lys Tyr Gln His Leu Ala Thr Leu Ala His Asn Gln Ser Glu Ile Ile Ala Gln Leu Glu Glu His Cys Gln Arg Val Pro Ser Ala Arg Pro Val Pro Gln Pro Pro Pro Ala Ala Pro Pro Arg Val Tyr Gln Pro Pro Thr Tyr Asn Arg Ile Ile Asn Gln Ile Ser Thr Asn Glu Ile Gln Ser Asp Gln Asn Leu Lys Val Leu Pro Pro Pro Leu

	Pro	Thr	Met	Pro	Thr 260	Leu	Thr	Ser						Asp	
•	Pro	Ser	Gly	Pro	Trp 275	Arg	Asp	Суs			Ala	Leu	Glu		Gly
	His	Asp	Thr	Ser	Ser 290	Ile	Tyr	Leu	Val	Lys 295	Pro	Glu	Asn	Thr	Asn 300
	Arg	Leu	Met	Gln	Val 305	Trp	Cys	Asp	Gln	Arg 310	His	Asp	Pro	Gly	Gly 315
	Trp	Thr	Val	Ile	Gln 320	Arg	Arg	Leu	Asp	Gly 325	Ser	Val	Asn	Phe	Phe 330
	Arg	Asn	Trp	Glu	Thr 335	Tyr	Lys	Gln	Gly	Phe 340	Gly	Asn	Ile	Asp	Gly 345
	Glu	Tyr	Trp	Leu	Gly 350	Leu	Glu	Asn	Ile	Tyr 355	Trp	Leu	Thr	Asn	Gln 360
	Gly	Asn	Tyr	Lys	Leu 365	Leu	Val	Thr	Met	Glu 370	Asp	Trp	Ser	Gly	Arg 375
	Lys	Val	Phe	Ala	Glu 380	Tyr	Ala	Ser	Phe	Arg 385	Leu	Glu	Pro	Glu	Ser 390
	Glu	Tyr	Tyr	Lys	Leu 395	Arg	Leu	Gly	Arg	Tyr 400	His	Gly	Asn	Ala	Gly 405
	Asp	Ser	Phe	Thr	Trp 410	His	Asn	Gly	Lys	Gln 415	Phe	Thr	Thr	Leu	Asp 420
	Arg	Asp	His	Asp	Val 425	Tyr	Thr	Gly	Asn	Cys 430	Ala	His	Tyr	Gln	Lys 435
	Gly	Gly	Trp	Trp	Tyr 440	Asn	Ala	Cys	Ala	His 445	Ser	Asn	Leu	Asn	Gly 450
	Val	Trp	Tyr	Arg	Gly 455	Gly	His	Tyr	Arg	Ser 460	Arg	Tyr	Gln	Asp	Gly 465
	Val	Tyr	Trp	Ala	Glu 470	Phe	Arg	Gly	Gly	Ser 475	Tyr	Ser	Leu	Lys	Lys 480
	Val	Val	Met	Met	Ile 485	Arg	Pro	Asn	Pro	Asn 490	Thr	Phe	His 493		

FIG. 3B

GCAGCTGGTT ACTGCATTTC TCCATGTGGC AGACAGAGCA AAGCCACAAC 50 GCTTTCTCTG CTGGATTAAA GACGGCCCAC AGACCAGAAC TTCCACTATA 100 CTACTTAAAA TTACATAGGT GGCTTGTCAA ATTCAATTGA TTAGTATTGT 150 AAAAGGAAAA AGAAGTTCCT TCTTACAGCT TGGATTCAAC GGTCCAAAAC 200 AAAAATGCAG CTGCCATTAA AGTCTCAGAT GAACAAACTT CTACACTGAT 250 TTTTAAAATC AAGAATAAGG GCAGCAAGTT TCTGGATTCA CTGAATCAAC 300 AGACACAAAA AGCTGGCAAT ATAGCAACTA TGAAGAGAAA AGCTACTAAT 350 AAAATTAACC CAACGCATAG AAGACTTTTT TTTCTCTTCT AAAAACAACT 400 AAGTAAAGAC TTAAATTTAA ACACATCATT TTACAACCTC ATTTCAAAAT 450 GAAGACTTTT ACCTGGACCC TAGGTGTGCT ATTCTTCCTA CTAGTGGACA 500 CTGGACATTG CAGAGGTGGA CAATTCAAAA TTAAAAAAAAT AAACCAGAGA 550 AGATACCCTC GTGCCACAGA TGGTAAAGAG GAAGCAAAGA AATGTGCATA 600 CACATTCCTG GTACCTGAAC AAAGAATAAC AGGGCCAATC TGTGTCAACA 650 CCAAGGGCA AGATGCAAGT ACCATTAAAG ACATGATCAC CAGGATGGAC 700 CTTGAAAACC TGAAGGATGT GCTCTCCAGG CAGAAGCGGG AGATAGATGT 750 TCTGCAACTG GTGGTGGATG TAGATGGAAA CATTGTGAAT GAGGTAAAGC 800 TGCTGAGAAA GGAAAGCCGT AACATGAACT CTCGTGTTAC TCAACTCTAT 850 ATGCAATTAT TACATGAGAT TATCCGTAAG AGGGATAATT CACTTGAACT 900 TTCCCAACTG GAAAACAAAA TCCTCAATGT CACCACAGAA ATGTTGAAGA 950 TGGCAACAAG ATACAGGGAA CTAGAGGTGA AATACGCTTC CTTGACTGAT 1000 CTTGTCAATA ACCAATCTGT GATGATCACT TTGTTGGAAG AACAGTGCTT 1050 GAGGATATTT TCCCGACAAG ACACCCATGT GTCTCCCCCA CTTGTCCAGG 1100 TGGTGCCACA ACATATTCCT AACAGCCAAC AGTATACTCC TGGTCTGCTG 1150 GGAGGTAACG AGATTCAGAG GGATCCAGGT TATCCCAGAG ATTTAATGCC 1200 FIG. 4A

ACCACCTGAT CTGGCAACTT CTCCCACCAA AAGCCCTTTC AAGATACCAC 1250 CGGTAACTTT CATCAATGAA GGACCATTCA AAGACTGTCA GCAAGCAAAA 1300 GAAGCTGGGC ATTCGGTCAG TGGGATTTAT ATGATTAAAC CTGAAAACAG 1350 CAATGGACCA ATGCAGTTAT GGTGTGAAAA CAGTTTGGAC CCTGGGGGTT 1400 GGACTGTTAT TCAGAAAAGA ACAGACGGCT CTGTCAACTT CTTCAGAAAT 1450 TGGGAAAATT ATAAGAAAGG GTTTGGAAAC ATTGACGGAG AATACTGGCT 1500 TGGACTGGAA AATATCTATA TGCTTAGCAA TCAAGATAAT TACAAGTTAT 1550 TGATTGAATT AGAAGACTGG AGTGATAAAA AAGTCTATGC AGAATACAGC 1600 AGCTTTCGTC TGGAACCTGA AAGTGAATTC TATAGACTGC GCCTGGGAAC 1650 TTACCAGGGA AATGCAGGGG ATTCTATGAT GTGGCATAAT GGTAAACAAT 1700 TCACCACACT GGACAGAGAT AAAGATATGT ATGCAGGAAA CTGCGCCCAC 1750 TTTCATAAAG GAGGCTGGTG GTACAATGCC TGTGCACATT CTAACCTAAA 1800 TGGAGTATGG TACAGAGGAG GCCATTACAG AAGCAAGCAC CAAGATGGAA 1850 TTTTCTGGGC CGAATACAGA GGCGGGTCAT ACTCCTTAAG AGCAGTTCAG 1900 ATGATGATCA AGCCTATTGA CTGAAGAGAG ACACTCGCCA ATTTAAATGA 1950 CACAGAACTT TGTACTTTTC AGCTCTTAAA AATGTAAATG TTACATGTAT 2000 ATTACTTGGC ACAATTTATT TCTACACAGA AAGTTTTTAA AATGAATTTT 2050 ACCGTAACTA TAAAAGGGAA CCTATAAATG TAGTTTCATC TGTCGTCAAT 2100 TACTGCAGAA AATTATGTGT ATCCACAACC TAGTTATTTT AAAAATTATG 2150 TTGACTAAAT ACAAAGTTTG TTTTCTAAAA TGTAAATATT TGCCACAATG 2200 TAAAGCAAAT CTTAGCTATA TTTTAAATCA TAAATAACAT GTTCAAGATA 2250 CTTAACAATT TATTTAAAAT CTAAGATTGC TCTAACGTCT AGTGAAAAAA 2300 GACAGAAAAT TAGGGAGAAA CTTCTAGTTT TGCCAATAGA AAATGTTCTT 2400

FIG. 4B

The state of the contract of the state of th CCATTGAATA AAAGTTATTT CAAATTGAAT TTGTGCCTTT CACACGTAAT 2450 GATTAAATCT GAATTCTTAA TAATATATCC TATGCTGATT TTCCCAAAAC 2500 ATGACCCATA GTATTAAATA CATATCATTT TTAAAAATAA AAAAAAACCC 2550 AAAAATAATG CATGCATAAT TTAAATGGTC AATTTATAAA GACAAATCTA 2600 TGAATGAATT TTTCAGTGTT ATCTTCATAT GATATGCTGA ACACCAAAAT 2650 CTCCAGAAAT GCATTTTATG TAGTTCTAAA ATCAGCAAAA TATTGGTATT 2700 ACAAAAATGC AGAATATTTA GTGTGCTACA GATCTGAATT ATAGTTCTAA 2750 TTTATTATTA CTTTTTTTCT AATTTACTGA TCTTACTACT ACAAAGAAAA 2800 AAAAACCCAA CCCATCTGCA ATTCAAATCA GAAAGTTTGG ACAGCTTTAC 2850 AAGTATTAGT GCATGCTCAG AACAGGTGGG ACTAAAACAA ACTCAAGGAA 2900 CTGTTGGCTG TTTTCCCGAT ACTGAGAATT CAACAGCTCC AGAGCAGAAG 2950 CCACAGGGGC ATAGCTTAGT CCAAACTGCT AATTTCATTT TACAGTGTAT 3000 GTAACGCTTA GTCTCACAGT GTCTTTAACT CATCTTTGCA ATCAACAACT 3050 TTACTAGTGA CTTTCTGGAA CAATTTCCTT TCAGGAATAC ATATTCACTG 3100 CTTAGAGGTG ACCTTGCCTT AATATATTTG TGAAGTTAAA ATTTTAAAGA 3150 TAGCTCATGA AACTTTTGCT TAAGCAAAAA GAAAACCTCG AATTGAAATG 3200 TGTGAGGCAA ACTATGCATG GGAATAGCTT AATGTGAAGA TAATCATTTG 3250 GACAACTCAA ATCCATCAAC ATGACCAATG TTTTTCATCT GCCACATCTC 3300 AAAATAAAAC TTCTGGTGAA ACAAATTAAA CAAAATATCC AAACCTCAAA 3350 AAAAA 3355

FIG. 4C

Met Lys Thr Phe Thr Trp Thr Leu Gly Val Leu Phe Phe Leu Leu Val Asp Thr Gly His Cys Arg Gly Gly Gln Phe Lys Ile Lys Lys 25, miles Ile Asn Gln Arg Arg Tyr Pro Arg Ala Thr Asp Gly Lys Glu Glu Ala Lys Lys Cys Ala Tyr Thr Phe Leu Val Pro Glu Gln Arg Ile Thr Gly Pro Ile Cys Val Asn Thr Lys Gly Gln Asp Ala Ser Thr Ile Lys Asp Met Ile Thr Arg Met Asp Leu Glu Asn Leu Lys Asp Val Leu Ser Arg Gln Lys Arg Glu Ile Asp Val Leu Gln Leu Val Val Asp Val Asp Gly Asn Ile Val Asn Glu Val Lys Leu Leu Arg Lys Glu Ser Arg Asn Met Asn Ser Arg Val Thr Gln Leu Tyr Met Gln Leu Leu His Glu Ile Ile Arg Lys Arg Asp Asn Ser Leu Glu Leu Ser Gln Leu Glu Asn Lys Ile Leu Asn Val Thr Thr Glu Met Leu Lys Met Ala Thr Arg Tyr Arg Glu Leu Glu Val Lys Tyr Ala Ser Leu Thr Asp Leu Val Asn Asn Gln Ser Val Met Ile Thr Leu Leu Glu Glu Gln Cys Leu Arg Ile Phe Ser Arg Gln Asp Thr His Val Ser Pro Pro Leu Val Gln Val Val Pro Gln His Ile Pro Asn Ser Gln Gln Tyr Thr Pro Gly Leu Leu Gly Gly Asn Glu Ile Gln Arg Asp Pro Gly Tyr Pro Arg Asp Leu Met Pro Pro Pro Asp Leu

FIG. 5A

Ala	Thr	Ser	Pro	Thr 260	Lys	Ser	Pro		-		Pro			Thr 270
Phe	Ile	Asn	Glu	Gly 275	Pro	Phe	Lys	Asp	Cys 280	Gln	Gln	Ala	Lys	Glu 285
Ala	Gly	His	Ser	Val 290	Ser	Gly	Ile	Tyr	Met 295	Ile	Lys	Pro	Glu	Asn 300
Ser	Asn	Gly	Pro	Met 305	Gln	Leu	Trp	Cys	Glu 310	Asn	Ser	Leu	Asp	Pro 315
Gly	Gly	Trp	Thr	Val 320	Ile	Gln	Lys	Arg	Thr 325	Asp	Gly	Ser	Val	Asn 330
Phe	Phe	Arg	Asn	Trp 335	Glu	Asn	Tyr	Lys	Lys 340	Gly	Phe	Gly	Asn	Ile 345
Asp	Gly	Glu	Tyr	Trp 350	Leu	Gly	Leu	Glu	Asn 355	Ile	Tyr	Met	Leu	Ser 360
Asn	Gln	Asp	Asn	Tyr 365	Lys	Leu	Leu	Ile	Glu 370	Leu	Glu	Asp	Trp	Ser 375
Asp	Lys	Lys	Val	Tyr 380	Ala	Glu	Tyr	Ser	Ser 385	Phe	Arg	Leu	Glu	Pro 390
Glu	Ser	Glu	Phe	Tyr 395	Arg	Leu	Arg	Leu	Gly 400	Thr	Tyr	Gln	Gly	Asn 405
Ala	Gly	Asp	Ser	Met 410	Met	Trp	His	Asn	Gly 415	Lys	Gln	Phe	Thr	Thr 420
Leu	Asp	Arg	Asp	Lys 425	Asp	Met	Tyr	Ala	Gly 430	Asn	Cys	Ala	His	Phe 435
His	Lys	Gly	Gly	Trp 440	Trp	Tyr	Asn	Ala	Cys 445	Ala	His	Ser	Asn	Leu 450
Asn	Gly	Val	Trp	Tyr 455	Arg	Gly	Gly	His	Tyr 460	Arg	Ser	Lys	His	Gln 465
Asp	Gly	Ile	Phe	Trp 470	Ala	Glu	Tyr	Arg	Gly 475	Gly	Ser	Tyr	Ser	Leu 480
Arg	Ala	Val	Gln	Met 485	Met	Ile	Lys	Pro	Ile 490	_				

FIG. 5B

GGCTCAGAGG CCCCACTGGA CCCTCGGCTC TTCCTTGGAC TTCTTGTGTG 50 TTCTGTGAGC TTCGCTGGAT TCAGGGTCTT GGGCATCAGA GGTGAGAGGG 100 TGGGAAGGTC CGCCGCGATG GGGAAGCCCT GGCTGCGTGC GCTACAGCTG 150 CTGCTCCTGC TGGGCGCGTC GTGGGCGCGGGGGGGGCGCCC CGCGCTGCAC 200 CTACACCTTC GTGCTGCCCC CGCAGAAGTT CACGGGCGCT GTGTGCTGGA 250 GCGGCCCCGC ATCCACGCGG GCGACGCCCG AGGCCGCCAA CGCCAGCGAG 300 CTGGCGCGC TGCGCATGCG CGTCGGCCGC CACGAGGAGC TGTTACGCGA 350 GCTGCAGAGG CTGGCGGG CCGACGGCGC CGTGGCCGGC GAGGTGCGCG 400 CGCTGCGCAA GGAGAGCCGC GGCCTGAGCG CGCGCCTGGG CCAGTTGCGC 450 GCGCAGCTGC AGCACGAGGC GGGGCCCGGG GCGGGCCCGG GGGCGGATCT 500 GGGGGGGAG CCTGCCGCG CGCTGCCCT GCTCGGGGAG CGCGTGCTCA 550 ACGCGTCCGC CGAGGCTCAG CGCGCAGCCG CCCGGTTCCA CCAGCTGGAC 600 GTCAAGTTCC GCGAGCTGGC GCAGCTCGTC ACCCAGCAGA GCAGTCTCAT 650 CGCCCGCCTG GAGCGCCTGT GCCCGGGAGG CGCGGGGGGGG CAGCAGCAGG 700 TCCTGCCGCC ACCCCCACTG GTGCCTGTGG TTCCGGTCCG TCTTGTGGGT 750 AGCACCAGTG ACACCAGTAG GATGCTGGAC CCAGCCCCAG AGCCCCAGAG 800 AGACCAGACC CAGAGACAGC AGGAGCCCAT GGCTTCTCCC ATGCCTGCAG 850 GTCACCCTGC GGTCCCCACC AAGCCTGTGG GCCCGTGGCA GGATTGTGCA 900 GAGGCCCGCC AGGCAGGCCA TGAACAGAGT GGAGTGTATG AACTGCGAGT 950 GGGCCGTCAC GTAGTGTCAG TATGGTGTGA GCAGCAACTG GAGGGTGGAG 1000 GCTGGACTGT GATCCAGCGG AGGCAAGATG GTTCAGTCAA CTTCTTCACT 1050 ACCTGGCAGC ACTATAAGGC GGGCTTTGGG CGGCCAGACG GAGAATACTG 1100 GCTGGGCCTT GAACCCGTGT ATCAGCTGAC CAGCCGTGGG GACCATGAGC 1150 TGCTGGTTCT CCTGGAGGAC TGGGGGGGCC GTGGAGCACG TGCCCACTAT 1200

FIG. 6A

GATGGCTTCT CCCTGGAACC CGAGAGCGAC CACTACCGCC TGCGGCTTGG 1250
CCAGTACCAT GGTGATGCTG GAGACTCTCT TTCCTGGCAC AATGACAAGC 1300
CCTTCAGCAC CGTGGATAGG GACCGAGACT CCTATTCTGG TAACTGTGCC 1350
CTGTACCAGC GGGGAGGCTG GTGGTACCAT GCCTGTGCCC ACTCCAACCT 1400
CAACGGTGTG TGGCACCACG GCGGCCACTA CCGAAGCCGC TACCAGGATG 1450
GTGTCTACTG GGCTGAGTTT CGTGGTGGGG CATATTCTCT CAGGAAGGCC 1500
GCCATGCTCA TTCGGCCCCT GAAGCTGTA CTCTGTGTC CTCTGTCCC 1550
TAGGCCCTAG AGGACATTGG TCAGCAGGAG CCCAAGTTGT TCTGGCCACA 1600
CCTTCTTTGT GGCTCAGTGC CAATGTGTC CACAGAACTT CCCACTGTGG 1650
ATCTGTGACC CTGGGCGCTG AAAATGGGAC CCAAGGATCC CCCCCGTCAA 1700
TATCTTGGCC TCAGATGGCT CCCCAAGGTC ATTCATATCT CGGTTTGAGC 1750
TCATATCTTA TAATAACACA AAGTAGCCAC 1780

FIG. 6B

Met 1	Gly	Lys	Pro					Leu			Leu	Leu	Leu	Leu 15
Gly	Ala	Ser	Trp										Tyr	
Phe	Val	Leu	Pro	Pro 35	Gln	Lys	Phe	Thr	Gly 40	Ala	Val	Cys	Trp	Ser 45
Gly	Pro	Ala	Ser	Thr 50	Arg	Ala	Thr	Pro	Glu 55	Ala	Ala	Asn	Ala	Ser 60
Glu	Leu	Ala	Ala	Leu 65	Arg	Met	Arg	Val	Gly 70	Arg	His	Glu	Glu	Leu 75
Leu	Arg	Glu	Leu	Gln 80	Arg	Leu	Ala	Ala	Ala 85	Asp	Gly	Ala	Val	Ala 90
Gly	Glu	Val	Arg	Ala 95	Leu	Arg	Lys	Glu	Ser 100	Arg	Gly	Leu	Ser	Ala 105
Arg	Leu	Gly	Gln	Leu 110	Arg	Ala	Gln	Leu	Gln 115	His	Glu	Ala	Gly	Pro 120
Gly	Ala	Gly	Pro	Gly 125	Ala	Asp	Leu	Gly	Ala 130	Glu	Pro	Ala	Ala	Ala 135
Leu	Ala	Leu	Leu	Gly 140	Glu	Arg	Val	Leu	Asn 145	Ala	Ser	Ala	Glu	Ala 150
Gln	Arg	Ala	Ala	Ala 155	Arg	Phe	His	Gln	Leu 160	Asp	Val	Lys	Phe	Arg 165
Glu	Leu	Ala	Gln	Leu 170	Val	Thr	Gln	Gln	Ser 175	Ser	Leu	Ile	Ala	Arg 180
Leu	Glu	Arg	Leu	Cys 185	Pro	Gly	Gly	Ala	Gly 190	Gly	Gln	Gln	Gln	Val 195
Leu	Pro	Pro	Pro	Pro 200	Leu	~Val	Pro	Val	Val 205	Pro	Val	Arg	Leu	Val 210
Gly	Ser	Thr	Ser	Asp 215	Thr	Ser	Arg	Met	Leu 220	Asp	Pro	Ala	Pro	Glu 225
Pro	Gln	Arg	Asp	Gln 230	Thr	Gln	Arg	Gln	Gln 235	Glu	Pro	Met	Ala	Ser 240
Pro	Met	Pro	Ala	Gly 245	His	Pro	Ala	Val	Pro 250	Thr	Lys	Pro	Val	Gly 255

FIG. 7A

Pro	Trp	Gln	Asp	Cys 260	Ala	Glu	Ala	Arg	Gln 265	Ala	Gly	His.	Glu	Gln 270
Ser	Gly	Val	Tyr	Glu 275	Leu	Arg	Val			4				
Trp	Cys	Glu	Gln	Gln 290	Leu	Glu	Gly	Gly	Gly 295	Trp	Thr	Val	Ile	Gln 300
Arg	Arg	Gln	Asp	Gly 305	Ser	Val	Asn	Phe	Phe 310	Thr	Thr	Trp	Gln	His 315
Tyr	Lys	Ala	Gly	Phe 320	Gly	Arg	Pro	Asp	Gly 325	Glu	Tyr	Trp	Leu	Gly 330
Leu	Glu	Pro	Val	Tyr 335	Gln	Leu	Thr	Ser	Arg 340	Gly	Asp	His	Glu	Leu 345
Leu	Val	Leu	Leu	Glu 350	Asp	Trp	Gly	Gly	Arg 355	Gly	Ala	Arg	Ala	His 360
Tyr	Asp	Gly	Phe	Ser 365	Leu	Glu	Pro	Glu	Ser 370	Asp	His	Tyr	Arg	Leu 375
Arg	Leu	Gly	Gln	Tyr 380	His	Gly	Asp	Ala	Gly 385	Asp	Ser	Leu	Ser	Trp 390
His	Asn	Asp	Lys	Pro 395	Phe	Ser	Thr	Val	Asp 400	Arg	Asp	Arg	Asp	Ser 405
Tyr	Ser	Gly	Asn	Cys 410	Ala	Leu	Tyr	Gln	Arg 415	Gly	Gly	Trp	Trp	Tyr 420
His	Ala	Cys	Ala	His 425	Ser	Asn	Leu	Asn	Gly 430	Val	Trp	His	His	Gly 435
Gly	His	Tyr	Arg	Ser 440	Arg	Tyr	Gln	Asp	Gly 445	Val	Tyr	Trp	Ala	Glu 450
Phe	Arg	Gly	Gly	Ala 455	Tyr	Ser	Leu	Arg	Lys 460	Ala	Ala	Met	Leu	Ile 465
Arg	Pro	Leu	Lys	Leu 470		RE	CE		D					

RFG. 7B

Publishing Division

DNA 22779 DARK FIELD

THE WHITE SPOTS REPRESENT THE SILVER GRAINS.

FIG. 8A

DNA 22779 H&E

FIG. 8B

DNA 28497 H&E

FIG. 9A

DNA 28497 DARK FIELD

THE WHITE SPOTS REPRESENT THE SILVER GRAINS.

FIG. 9B

DNA 23339 H&E

FIG. 10A

DNA 23339 DARK FIELD

THE WHITE SPOTS REPRESENT THE SILVER GRAINS.

FIG. 10B

NL1 Northern

FIG. 11

NL5 Northern

FIG. 12