

1F., BlockA of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

Telephone: +86-755-26648640 Fax: +86-755-26648637

Website: <u>www.cqa-cert.com</u>

Report Template Version: V03 Report Template Revision Date: Mar.1st, 2017

Test Report

Report No.: CQASZ20190300201E-01

Applicant: Innovation Sound Technology Co.,Ltd.

Address of Applicant: Building 2nd/3rd/4th, Industrial Area of Huaide Cuihai Fengtang Road,

Fuyong Town, Shenzhen, China

Manufacturer: Innovation Sound Technology Co., Ltd.

Address of Building 2nd/3rd/4th, Industrial Area of Huaide Cuihai Fengtang Road,

Manufacturer: Fuyong Town, Shenzhen, China

Equipment Under Test (EUT):

Product: AmazonBasics Over-Ear Bluetooth Wireless Headset

Model No.: B07LBYLM7B, B07LBX3K5F

Brand Name: N/A

FCC ID: 2AKSL-PBH89366 **IC:** 7540A-PBH89366

Standards: 47 CFR Part 15, Subpart C

RSS-247 Issue 2 February 2017

RSS-Gen Issue 5 April 2018

Date of Test: 2019-03-24 to 2019-04-19

Date of Issue: 2019-04-19
Test Result: PASS*

Tested By:

(Daisy Qin)

Reviewed By:

Aaron Ma`)

Approved By:

(Jack Ai)

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CQA, this report can't be reproduced except in full.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20190300201E-01	Rev.01	Initial report	2019-04-19

3 Test Summary

Test Item	Test Item FCC Test Requirement		Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	RSS-Gen Issue 5	ANSI C63.10 2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	RSS-Gen Issue 5	ANSI C63.10 2013	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	RSS 247 5.4(4)	ANSI C63.10 2013 & RSS-Gen Issue 5	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	RSS 247 5.2(1)	ANSI C63.10 2013 & RSS-Gen Issue 5	PASS
99% Occupied Bandwidth	/	RSS-Gen Issue 5	RSS-Gen Issue 5	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	RSS 247 5.2(2)	ANSI C63.10 2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	RSS 247 5.5	ANSI C63.10 2013	PASS
RF Conducted Spurious Emissions	- Subpart C Section		ANSI C63.10 2013	PASS
Radiated Spurious Emissions	Suppart C Section		ANSI C63.10 2013 & RSS-Gen Issue 5	PASS
Restricted bands around fundamental frequency (Radiated Emission)	Restricted bands around fundamental frequency 47 CFR Part 15, Subpart C Section		ANSI C63.10 2013 & RSS-Gen Issue 5	PASS

4 Contents

			Page
			1
2	VE	ERSION	2
3	TE	EST SUMMARY	3
4	CC	ONTENTS	1
		ENERAL INFORMATION	
5	GE		
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF EUT	
	5.3	ADDITIONAL INSTRUCTIONS	
	5.4	TEST ENVIRONMENT	
	5.5	DESCRIPTION OF SUPPORT UNITS	
	5.6 5.7	TEST LOCATION	
	5.8	TEST FACILITY	
	5.9	DEVIATION FROM STANDARDS	
	5.10	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.11	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	5.12	EQUIPMENT LIST	11
6	TE	EST RESULTS AND MEASUREMENT DATA	12
	6.1	Antenna Requirement	12
	6.2	CONDUCTED EMISSIONS	13
	6.3	CONDUCTED PEAK OUTPUT POWER	
	6.4	6DB OCCUPY BANDWIDTH	
	6.5	99% OCCUPY BANDWIDTH	
	6.6	POWER SPECTRAL DENSITY	
	6.7	BAND-EDGE FOR RF CONDUCTED EMISSIONS	
	6.8 6.9	RADIATED SPURIOUS EMISSION	
	6.10	RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	
7		HOTOGRAPHS - EUT TEST SETUP	
	7.1	RADIATED Spurious Emission	<i>A</i> Q
	7.1	CONDUCTED EMISSION	
8	PH	HOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	51

Report No.: CQASZ20190300201E-01

5 General Information

5.1 Client Information

Applicant:	Innovation Sound Technology Co.,Ltd.
Address of Applicant:	Building 2nd/3rd/4th, Industrial Area of Huaide Cuihai Fengtang Road, Fuyong Town, Shenzhen, China
Manufacturer:	Innovation Sound Technology Co.,Ltd.
Address of Manufacturer:	Building 2nd/3rd/4th, Industrial Area of Huaide Cuihai Fengtang Road, Fuyong Town, Shenzhen, China

5.2 General Description of EUT

Product Name:	AmazonBasics Over-Ear Bluetooth Wireless Headset
Model No.:	B07LBYLM7B, B07LBX3K5F
Trade Mark:	N/A
Hardware Version:	SPEC-BTH-1192-01A
Software Version:	SPEC-BTH-1192-01A
Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	5.0
Modulation Type:	GFSK
Transfer Rate:	1Mbps
Number of Channel:	40
Product Type:	☐ Mobile ☐ Portable ☐ Fix Location
Test Software of EUT:	Bluetooth test 3(manufacturer declare)
Antenna Type:	PCB antenna
Antenna Gain:	3.3dBi
EUT Power Supply:	lithium battery:DC3.7V

Report No.: CQASZ20190300201E-01

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

Report No.: CQASZ20190300201E-01

5.3 Additional Instructions

EUT Test Software Settings:						
Mode:		☑Special software is used				
		☐ Through engineering command into the engineering mode.				
		engineering command: *#*	#3646633#*#*			
EUT Power lev	æl:	Class1 (Power level is built-in set parameters and cannot be changed and selected)				
Use test software to	Use test software to set the lowest frequency, the middle frequency and the highest frequency keep					
transmitting of the E	UT.					
	Test Mo	ode	Channel	Frequency(MHz)		
Mode a		GFSK_1Mbps	CH0	2402		
Mode b	GFSK_1Mbps		CH19	2440		
Mode c		GFSK_1Mbps	CH39	2480		

Report No.: CQASZ20190300201E-01

5.4 Test Environment

Operating Environment	Operating Environment:				
Temperature:	25.0 °C				
Humidity:	53 % RH				
Atmospheric Pressure:	1010mbar				
Test Mode:	Use test software to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT. Note: In the process of transmitting of EUT, the duty cycle >98%.				

5.5 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Remark	FCC certification
PC	Lenovo	ThinkPad E450c	Provide by lab	ID
AC/DC Adapter	Lenovo	ADLX65NLC3A	Provide by lab	DOC

5.6 Test Location

All tests were performed at:

Shenzhen Huaxia Testing Technology Co., Ltd.,

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua New District, Shenzhen, Guangdong, China

5.7 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the **Shenzhen Huaxia Testing Technology Co., Ltd.** quality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device

Hereafter the best measurement capability for CQA laboratory is reported:

No.	Item	Uncertainty	Notes
1	Radiated Emission (Below 1GHz)	±5.12dB	(1)
2	Radiated Emission (Above 1GHz)	±4.60dB	(1)
3	Conducted Disturbance (0.15~30MHz)	±3.34dB	(1)
4	Radio Frequency	3×10 ⁻⁸	(1)
5	Duty cycle	0.6 %.	(1)
6	Occupied Bandwidth	1.1%	(1)
7	RF conducted power	0.86dB	(1)
8	RF power density	0.74	(1)
9	Conducted Spurious emissions	0.86dB	(1)
10	Temperature test	0.8℃	(1)
11	Humidity test	2.0%	(1)
12	Supply voltages	0.5 %.	(1)
13	time	0.6 %.	(1)
14	Frequency Error	5.5 Hz	(1)

⁽¹⁾This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: CQASZ20190300201E-01

5.8 Test Facility

The test facility is recognized, certified, or accredited by the following organizations: ISED#: 22984

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements

A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

• FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

5.9 Deviation from Standards

None.

5.10 Abnormalities from Standard Conditions

None.

5.11Other Information Requested by the Customer

None.

5.12Equipment List

			Instrument	Calibration	Calibration
Test Equipment	Manufacturer	Model No.	No.	Date	Due Date
EMI Test Receiver	R&S	ESR7	CQA-005	2018/9/26	2019/9/25
Spectrum analyzer	R&S	FSU26	CQA-038	2018/10/28	2019/10/27
Preamplifier	MITEQ	AFS4-00010300-18-10P- 4	CQA-035	2018/9/26	2019/9/25
Preamplifier	MITEQ	AMF-6D-02001800-29- 20P	CQA-036	2018/11/2	2019/11/1
Loop antenna	Schwarzbeck	FMZB1516	CQA-087	2018/10/28	2020/10/27
Bilog Antenna	R&S	HL562	CQA-011	2018/9/26	2020/9/25
Horn Antenna	R&S	HF906	CQA-012	2018/9/26	2020/9/25
Horn Antenna	Schwarzbeck	BBHA 9170	CQA-088	2018/9/26	2020/9/25
Coaxial Cable (Above 1GHz)	CQA	N/A	C019	2018/9/26	2019/9/25
Coaxial Cable (Below 1GHz)	CQA	N/A	C020	2018/9/26	2019/9/25
Antenna Connector	CQA	RFC-01	CQA-080	2018/9/26	2019/9/25
RF cable(9KHz~40GHz)	CQA	RF-01	CQA-079	2018/9/26	2019/9/25
Power divider	MIDWEST	PWD-2533-02-SMA-79	CQA-067	2018/9/26	2019/9/25
EMI Test Receiver	R&S	ESPI3	CQA-013	2018/9/26	2019/9/25
LISN	R&S	ENV216	CQA-003	2018/11/5	2019/11/4
Coaxial cable	CQA	N/A	CQA-C009	2018/9/26	2019/9/25

Note:

The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement:	47 CFR Part 15C Section 15.203 /247(c),			
	RSS-Gen Issue 5			
EUT Antenna:	PCB Antenna			
The antenna is integrated o	n the main PCB and no consideration of replacement. The best case gain			
of the antenna is 3.3dBi.				

6.2 Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.207,				
rest requirement.	RSS-Gen Issue 5				
Test Method:	ANSI C63.10: 2013				
Test Frequency Range:	150kHz to 30MHz				
Limit:	Limit (dBuV)			1	
Elitilit.	Frequency range (MHz)	`	, , , , , , , , , , , , , , , , , , ,	-	
	0.45.0.5	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30 60 50				
T 10	* Decreases with the logarithm of the frequency.				
Test Procedure:	 The mains terminal disturb room. The EUT was connected Impedance Stabilization Not impedance. The power connected to a second LIS plane in the same way a multiple socket outlet strip single LISN provided the reasonable of the transport of the tabletop EUT was play ground reference plane. A placed on the horizontal given the EUT shall be 0.4 movertical ground reference reference plane. The LISN unit under test and born mounted on top of the ground resonable of the Land associated equipments. In order to find the maximum and all of the interface cannot be a sociated equipment and all of the interface cannot be a sociated equipment. 	to AC power source letwork) which provide cables of all other SN 2, which was bonders the LISN 1 for the was used to connect a tring of the LISN was raced upon a non-metal and for floor-standing a round reference plane that a vertical ground reference plane was bonded N 1 was placed 0.8 m and the area of the area of the condition of the condition of the tring of the tring of the tring of the condition of the co	e through a LISN 1 s a 50Ω/50μH + 5Ω units of the EUT ed to the ground reference unit being measure multiple power cables not exceeded. Allic table 0.8m above trangement, the EUT efference plane. The refund reference plane for Libing to the horizontal graph of the boundary of the form the boundary of the list distance was bet All other units of the form the LISN 2. The through a LISN 1 is the list of the lis	(Line linear were rence ed. A s to a e the T was ear of the LISNs ween EUT	
Test Setup:	ANSI C63.10: 2014 on cor	AE LISN2 AC Ma Ground Reference Plane	Test Receiver		

Test Mode:	All mode had been tested, only the worst test "mode c" was recorded in the report.
Test Results:	Pass

Measurement Data

Mode c:

Live line:

No. I	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBu∨	dB	Detector
1	*	0.1500	45.71	9.73	55.44	66.00	-10.56	QP
2		0.1500	23.09	9.73	32.82	56.00	-23.18	AVG
3		17.5500	38.42	9.86	48.28	60.00	-11.72	QP
4		17.5500	29.47	9.86	39.33	50.00	-10.67	AVG

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level = Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Neutral line:

	No. N	Λk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV	dBuV	dB	Detector
-	1	C	.1500	46.16	9.79	55.95	66.00	-10.05	QP
-	2	C	.1500	21.96	9.79	31.75	56.00	-24.25	AVG
	3	17	.4939	40.07	9.88	49.95	60.00	-10.05	QP
-	4 *	17	.4939	30.92	9.88	40.80	50.00	-9.20	AVG

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level = Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

6.3 Conducted Peak Output Power

Measurement Data

-								
	GFSK_1Mbps mode							
	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result				
	Lowest	-1.14	30.00	Pass				
	Middle	0.54	30.00	Pass				
	Highest	2.42	30.00	Pass				

Test plot as follows:

Report No.: CQASZ20190300201E-01

6.4 6dB Occupy Bandwidth

Measurement Data

GFSK_1Mbps mode					
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result		
Lowest	0.712	≥500	Pass		
Middle	0.705	≥500	Pass		
Highest	0.705	≥500	Pass		

Test plot as follows:

Report No.: CQASZ20190300201E-01

6.5 99% Occupy Bandwidth

Measurement Data

GFSK_1Mbps mode			
Test channel 99% Occupy Bandwidth (MHz)			
Lowest	1.051		
Middle	1.051		
Highest	1.058		

Test plot as follows:

Report No.: CQASZ20190300201E-01

6.6 Power Spectral Density

Measurement Data

GFSK_1Mbps mode						
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result			
Lowest	-17.020	≤8.00	Pass			
Middle	-15.180	≤8.00	Pass			
Highest	-13.410	≤8.00	Pass			

Test plot as follows:

Report No.: CQASZ20190300201E-01

6.7 Band-edge for RF Conducted Emissions

GFSK_1Mbps mode							
Test channel Frequency(MHz) Emission Level(dBm) Limit(dBm) Result							
Lowest	2400	-46.590	-21.77	Pass			
Highest	2483.5	-52.490	-17.76	Pass			

Test plot as follows:

6.8 Spurious RF Conducted Emissions

Test plot as follows:

Report No.: CQASZ20190300201E-01

Report No.: CQASZ20190300201E-01

BLE_HCH_Graphs

Report No.: CQASZ20190300201E-01

Report No.: CQASZ20190300201E-01

Remark:

Pretest 9kHz to 25GHz, find the highest point when testing, so only the worst data were shown in the test report. Per FCC Part 15.33 (a) and 15.31 (o) ,The amplitude of spurious emissions from intentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this part.

6.9 Radiated Spurious Emission

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205, RSS-Gen Issue 5					
Test Method:	ANSI C63.10 2013 & RSS-Gen Issue 5					
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)					
Receiver Setup:	Frequency Detec			RBW	VBW	Remark
			Peak	10kHz	z 30kHz	Peak
			Average	10kHz	z 30kHz	Average
			Quasi-peak	10kHz	z 30kHz	Quasi-peak
	0.110MHz-0.490MH	lz	Peak	10kHz	z 30kHz	Peak
	0.490MHz -30MHz Quasi 30MHz-1GHz Quasi Above 1GHz		Average	10kHz	z 30kHz	Average
			Quasi-peak	10kHz	z 30kHz	Quasi-peak
			Quasi-peak	100 kH	Iz 300kHz	Quasi-peak
			Peak	1MHz	3MHz	Peak
			Peak	1MHz	z 10Hz	Average
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2	400/F(kHz)	-	-	300
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	-	30
	1.705MHz-30MHz		30	-	-	30
	30MHz-88MHz		100	40.0	Quasi-peak	3
	88MHz-216MHz		150	43.5	Quasi-peak	3
	216MHz-960MHz		200	46.0	Quasi-peak	3
	960MHz-1GHz		500	54.0	Quasi-peak	3
	Above 1GHz		500	54.0	Average	3

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both

	horizontal and vertical polarizations of the antenna are set to make the measurement.			
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.			
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.			
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.			
	g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)			
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.			
	i. Repeat above procedures until all frequencies measured was complete.			
Exploratory Test Mode:	Transmitting with GFSK modulation. Transmitting mode.			
Final Test Mode:	Transmitting with GFSK modulation.			
	Pretest the EUT at Transmitting mode, found Transmitting mode which it is			
	worse case.			
	For below 1GHz part, through pre-scan, the worst case is mode c.			
	Only the worst case is recorded in the report.			
Test Results:	Pass			

Report No.: CQASZ20190300201E-01

Transmitter Emission above 1GHz

Test mode:		GFSK_1Mbps_TX_2402MHz					
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
4804	49.37	-1.33	48.04	74	-25.96	Peak	Н
7206	43.47	5.98	49.45	74	-24.55	Peak	Н
4802	47.27	-1.34	45.93	74	-28.07	Peak	V
7206	43.15	5.98	49.13	74	-24.87	Peak	V
Test mode:		GFSK_1Mbps_TX_2440MHz					
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
4880	50.64	-0.82	49.82	74	-24.18	Peak	Н
7320	46.25	5.91	52.16	74	-21.84	Peak	Н
4880	49.71	-0.82	48.89	74	-25.11	Peak	V
7320	45.78	5.91	51.69	74	-22.31	Peak	V
Test mode:		GFSK_1Mbps_TX_2480MHz					
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
4960	47.09	-0.45	46.64	74	-27.36	Peak	Н
7440	42.66	5.77	48.43	74	-25.57	Peak	Н
4960	45.33	-0.45	44.88	74	-29.12	Peak	V
7440	42.83	5.77	48.6	74	-25.4	Peak	V

Remark:

- The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 8GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

6.10Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205,					
	RSS-Gen Issue 5					
Test Method:	ANSI C63.10 2013 & RSS-Gen Issue 5					
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)					
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MH	lz	Peak	10kHz	z 30kHz	Peak
	0.009MHz-0.090MH	łz	Average	10kHz	z 30kHz	Average
	0.090MHz-0.110MH	łz	Quasi-peak	10kHz	z 30kHz	Quasi-peak
	0.110MHz-0.490MH	łz	Peak	10kHz	z 30kHz	Peak
	0.110MHz-0.490MH	0.110MHz-0.490MHz Average		10kHz	z 30kHz	Average
	30MHz-1GHz Quasi-p Above 1GHz		Quasi-peak	10kHz	z 30kHz	Quasi-peak
			Quasi-peak	100 kH	łz 300kHz	Quasi-peak
			Peak	1MHz	z 3MHz	Peak
			Peak	1MHz	z 10Hz	Average
Limit:	Frequency Field strength (microvolt/meter		•	Limit (dBuV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	0.009MHz-0.490MHz 2400/F(kHz) 0.490MHz-1.705MHz 24000/F(kHz)		-	-	300
	0.490MHz-1.705MHz			-	-	30
	1.705MHz-30MHz 30 30MHz-88MHz 100 88MHz-216MHz 150 216MHz-960MHz 200 960MHz-1GHz 500 Above 1GHz 500		-	-	30	
			40.0	Quasi-peal	3	
			43.5	Quasi-peal	3	
			46.0	Quasi-peal	3	
			500	54.0	Quasi-peal	3
			54.0	Average	3	

1 igure 1. Below 30ivii iz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

- j. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- k. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- I. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both

Test Results:	Pass
Test Mode:	Transmitting with GFSK at lowest, middle and highest channel.
	r. Repeat above procedures until all frequencies measured was complete.
	q. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	p. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
	o. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	n. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	 m. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	horizontal and vertical polarizations of the antenna are set to make the

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Report No.: CQASZ20190300201E-01

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: