Part zero: Introduction

3. Input/output

1. Introduction?

1.1 영상의 획득

Outline

- I. 카메라 영상의 획득
 - A. 카메라
 - B. 스마트폰
 - C. Color 영상 획득
 - D. 해상도
- II. Graphics 영상 획득
 - A. Modeling
 - B. Rendering
- III. AR 영상 획득
 - A. 획득
 - B. 렌더링
 - C. Processing GPU
 - D. Output Hardware
 - E. Interaction
 - F. Applications

o. 영상의 획득

1. 카메라

2. 그래픽

3. AR: 카메라 + 그래픽

Outline

- I. 카메라 영상의 획득
 - A. 카메라
 - B. 스마트폰
 - C. Color 영상 획득
 - D. 해상도

1. 영상의 획득: 카메라

• 디지털 영상 획득

1.1 디지털 영상 획득

• 카메라

https://www.youtube.com/watch?v=XPec2EaBSSM

1.2 스마트 폰

• Smart Phone

MOBILE : SOFTWARE

Google Camera Go Brings Some Google Camera Features to Low-Cost Phones

By Anil Ganti

Mar 19, 2020

f SHARE

▼ TWEET

▼ SUBMIT

1.3 Color 영상 획득

• Bayer filter

r, f, b 35/4.

https://en.wikipedia.org/wiki/Bayer_filter

1.3 Color 영상 획득

• Bayer filter

1.4 해상도 병 씨/ 에/ % 씨

Camera Resolution

https://photographylife.com/camera-resolution-explained

MD (1280 X 120) FHD (1926 X 1080) 4K 3800 X2160 1.4 해상도

Camera Resolution

Outline

- 2. Graphics 영상 획득
 - A. Modeling
 - B. Rendering

2 영상의 획득: Graphic

2.1 획득

• 획득 - Model

Vertex
Mesh
Curve
Spline
Coordinate
Transformation
Animation

Model

2.1 Modeling

제2기는 작게 되지라고 프로세션 시간이 3강아수 한다

2.1.1 Splines

2.1.1 Splines 즉선.

Cardinal Splines

Hermite Splines

2.1.2 Surfaces

Spline 곡면 (국인 복장)-

2.1.2 Surfaces

공간상 4점

2개의 공간 곡선

4개의 경계 곡선

2.1.2 Surfaces

Bezier Surfaces

Quadric Surfaces

2.1.3 Transform

Translation

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & T_x \\ 0 & 1 & 0 & T_y \\ 0 & 0 & 1 & T_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x - y \\ y \\ z \\ 1 - y \end{bmatrix}$$

Rotation

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Scaling

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} S_x & 0 & 0 & 0 \\ 0 & S_y & 0 & 0 \\ 0 & 0 & S_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Shearing

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & Sh_y & 0 & 0 \\ Sh_x & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Reflection

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

2.1.3 Transform

-> 15克 453111901 早世 85 8E4.

2.2 Rendering

Rendering - Pinhole Camera

2.2.1 Projection, 투상변환

Perspective Projection

$$\mathbf{P'} = \begin{pmatrix} x' \\ y' \\ -d \\ 1 \end{pmatrix} = \begin{pmatrix} x \\ y \\ -z \\ z/d \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 1/d & 0 \end{pmatrix} \qquad \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

Orthographic Projection

$$P' = Mparallel \cdot P$$

2.2.2 가시성 변환

후면 제거

 $\textit{Backface} = (N \cdot \ V < 0\,) = (\mid N \mid \mid \ V \mid \cos \theta < 0\,)$

Polygon: 1, 2, 4, 3

Polygon: 1, 3, 4, 2

은면 제거

2.2.3 래스터 변환

2.2.4 Lighting

2.2.5 Shading (음영), Shade (그림자)

2.2.6 Texture Mapping

UV Texture

다각형 곡면

3. 영상의 획득: AR

카메라

그래픽

AR: 카메라 + 그래픽

3. 영상의 획득: AR

