UNIVERSIDAD DE LA REPÚBLICA FACULTAD DE CIENCIAS ECONÓMICAS Y DE ADMINISTRACIÓN

1ª REVISIÓN DE ECONOMETRÍA I 29 de setiembre de 2014

IMPORTANTE: Salvo indicación contraria, se trabajará con $\alpha = 0.05$

EJERCICIO 1 (25 puntos)

Se desea analizar la (in)eficiencia de los bancos italianos, para lo cual se pretende explicar el costo variable total en función de ciertas variables. Los datos disponibles para el trabajo corresponden a 198 bancos comerciales, y al año 1991¹.

Las variables tenidas en cuenta son:

y: log del 'output' (suma de préstamos y depósitos)

 p_1 : log del costo unitario del factor trabajo

 p_2 : log del costo unitario del factor capital fijo

 p_3 : log del costo unitario de los fondos intermediados

cost: log del costo variable total

<u>Modelo 1</u>: $\cos t_i = \beta_1 + \beta_2 p_{1_i} + \beta_3 p_{2_i} + \beta_4 p_{3_i} + \beta_5 y_i + \varepsilon_i$

Modelo 1: MCO, usando las observaciones 1-198 Variable dependiente: cost

	Coeficiente	Desv. Típica	Estadístico t	Valor p	
const	-1,13819	0,373188	-3,0499	0,00261	***
p1	0,16165	0,071812	2,2510	0,02551	**
p2	0,180052	0,0310701	5,7950	<0,00001	***
p3	0,600621	0,061552	9,7579	<0,00001	***
y	1,0162	0,00571846	177,7054	<0,00001	***

Media de la vble. dep.	12,27418	D.T. de la vble. dep.	1,509853
Suma de cuad. residuos	1,790899	D.T. de la regresión	0,096329
R-cuadrado	0,996012	R-cuadrado corregido	0,995930
F(4, 193)	12051,09	Valor p (de F)	2,9e-230
Log-verosimilitud	184,8995	Criterio de Akaike	-359,7991

Modelo 2:
$$\cos t_i = \beta_1 + \beta_3^* (p_{2_i} - p_{1_i}) + \beta_4^* (p_{3_i} - p_{1_i}) + \beta_5^* (y_i + p_{1_i}) + \varepsilon_i^*$$

Modelo 2: MCO, usando las observaciones 1-198 Variable dependiente: cost 1

	Coeficiente	Desv. Típica	Estadístico t	Valor p	
const	-0,63327	0,453665	-1,3959	0,16434	
p_21	-0,943633	0,0349427	-27,0051	<0,00001	***
p_31	0,241438	0,0611878	3,9458	0,00011	***
<u>y_1</u>	1,02832	0,00685586	149,9917	<0,00001	***

¹ Datos del 'Centrale dei Bilanci', utilizados en Lucchetti, R., Papi, L., and Zazzaro, A. (2001) "*Banks' Inefficiency and Economic Growth: A Micro Macro Approach*", Scottish Journal of Political Economy, 48, pp. 400--424.

1

Media de la vble. dep.	16,36147	D.T. de la vble. dep.	1,626995
Suma de cuad. residuos	2,710373	D.T. de la regresión	0,118199
R-cuadrado	0,994803	R-cuadrado corregido	0,994722
F(3, 194)	12377,34	Valor p (de F)	3,0e-221
Log-verosimilitud	143,8771	Criterio de Akaike	-279,7542
Criterio de Schwarz	-266,6011	Crit. de Hannan-Quinn	-274,4302

Se pide:

- 1. ¿Qué tipo de función se utilizó para modelar *el costo* variable total en el Modelo 1? (por ejempo: polinómica, potencial, exponencial). Escriba la ecuación correspondiente.
- **2.** Observe la salida de *Gretl* correspondiente al Modelo 1. Basándose en ella, analice la significación global e individual de sus coeficientes.
- 3. Interprete económicamente los valores estimados del Modelo 1.
- **4.** Suponga se desea predecir *el costo* variable total de un banco comercial que, por error no fue incluido en la muestra. Explique las dificultades que plantea esa predicción a partir del modelo estimado 1.
- 5. Obtenga una *predicción del costo* variable total (puede no ser óptima) para los valores:

$$y = 14.6$$
; $p_1 = 4.4$; $p_2 = -4.1$; $p_3 = -2.7$

6. La salida correspondiente al Modelo 2 se obtuvo trabajando con una base de datos que surge de ciertas transformaciones de las variables intervinientes en el Modelo 1. Las nuevas variables son:

$$cost_1 = cost - p_1$$

 $p_2 1 = p_2 - p_1$
 $p_3 1 = p_3 - p_1$
 $p_1 1 = p_2 - p_1$

¿Qué supuesto sobre los coeficientes del Modelo 1 se intenta verificar comparando ambas salidas? Plantee el contraste adecuado y decida en base a la información disponible. No olvide concluir con una interpretación económica de su respuesta.

EJERCICIO 2 (25 puntos)

Parte 1 –

Suponga que $y_i = \beta_0 + x_{i1}\beta_1 + \varepsilon_i[1]$, con ε_i v.a. i.i.d. con media nula y varianza constante. Por error se incluye la variable adicional x_{i2} y se especifica $y_i = \beta_0 + x_{i1}\beta_1 + x_{i2}\beta_2 + \varepsilon_i[2]$.

- 1. Analice el sesgo del estimador de mínimos cuadrados de β_1 si se usa el modelo incorrecto.
- **2.** ¿Qué relación hay entre las varianzas del estimador de β_1 en [2] y la varianza del estimador de mínimos cuadrados de β_1 en el modelo correcto? Justificar.

Parte 2 –

Suponga que se quiere estimar el modelo $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \varepsilon_i$ donde x_{i2} es aproximadamente $1 - x_{i1}$.

- 1. ¿Qué problemas pueden presentar los estimadores por mínimos cuadrados de los coeficientes beta?
- 2. Si la relación entre x_{i2} y x_{i1} es exacta, ¿existe algún estimador lineal e insesgado para $\beta_1 + \beta_2$? En caso afirmativo, justifique y escríbalo.

Parte 3 -

Para analizar la discriminación salarial por género se estima el modelo

$$\log W_i = \beta_0 + Mujer_i\beta_1 + Educ_i\beta_2 + \varepsilon_i$$

donde $\log W_i$ es el logaritmo del salario por hora del individuo i, y $Mujer_i$ es una variable indicadora del género (=1 si i es mujer) y $Educ_i$ es la educación en años del individuo i.

Modelo 1: MCO, usando las observaciones 1-10816 Variable dependiente: logW

Coeficiente	Desv. Típica	Estadístico t	Valor p	
4,84827	0,0140788	344,3656	<0,00001	***
-0,207532	0,0125938	-16,4789	<0,00001	***
0,147173	0,00231697	63,5195	<0,00001	***
ep. 5,5	32280 D.T	. de la vble. de	p. 0,7	53521
duos 444	14,282 D.T	. de la regresió	on 0,6	41103
0,2	76257 R-c	uadrado corre	gido 0,2	76123
206	53.691 Val	or n (de F)	0.0	00000
	4,84827 -0,207532 0,147173 ep. 5,5 duos 444 0,2	4,84827 0,0140788 -0,207532 0,0125938 0,147173 0,00231697 ep. 5,532280 D.T duos 4444,282 D.T 0,276257 R-c	4,84827 0,0140788 344,3656 -0,207532 0,0125938 -16,4789 0,147173 0,00231697 63,5195 ep. 5,532280 D.T. de la vble. de duos 4444,282 D.T. de la regresió 0,276257 R-cuadrado corre	4,84827 0,0140788 344,3656 <0,00001 -0,207532 0,0125938 -16,4789 <0,00001 0,147173 0,00231697 63,5195 <0,00001 ep. 5,532280 D.T. de la vble. dep. 0,7 duos 4444,282 D.T. de la regresión 0,6 0,276257 R-cuadrado corregido 0,2

- 1. ¿Hay diferencia entre los salarios de las mujeres y el de los hombres para un mismo nivel de educación? (Concluya a partir del contraste adecuado. Interpretación económicamente la conclusión del contraste).
- 2. Realice el test Reset sobre la especificación del modelo con los datos que se proporcionan a continuación (especifique las hipótesis nula y alternativa, el estadístico de prueba, su distribución en el muestreo, la forma de la región crítica y concluya sobre la sostenibilidad de la hipótesis nula).

Modelo 2: MCO, usando las observaciones 1-10816 Variable dependiente: logW

	Coeficiente	e Desv.	Típica	Estadístico t	Valor p	
const	277,006	22,4	237	12,3532	<0,00001	***
Mujer	-18,8462	1,55	742	-12,1009	<0,00001	***
Educ	13,3804	1,10	062	12,0959	<0,00001	***
yhat2	-16,3916	1,33	894	-12,2423	<0,00001	***
yhat3	0,992085	0,079	2798	12,5137	<0,00001	***
Media de la vble. d	ep. 5,5	332280	D.T.	de la vble. de	p. 0.	753521
Suma de cuad. resi	duos 43	42,467	D.T.	de la regresió	n 0,	633775
R-cuadrado	0,2	292837	R-cu	ıadrado corre	gido 0,	292576
F(4, 10811)	11	19,213	Valo	or p (de F)	0.	000000
Log-verosimilitud	-10	411,99	Crit	erio de Akaiko	20	0833,97
Criterio de Schwar	z 20	870,41	Crit	. de Hannan-Q	Quinn 20	0846,26