analytische Funktion f definiert man das Residuum im Punkt a als $\mathop{\rm Res}_{z=a} f(z) = \mathop{\rm Res}_a f = \frac{1}{2\pi \mathrm{i}} \int\limits_{\Omega} f(z) \,\mathrm{d}z,$

Theorem 1 (Residuum). Für eine in einer punktierten Kreisscheibe $D\setminus\{a\}$

wobei
$$C \subset D \setminus \{a\}$$
 ein geschlossener Weg mit $n(C, a) = 1$ ist (z. B. ein entgegen dem Uhrzeigereine durchlaufenen Kreie)

gen dem Uhrzeigersinn durchlaufener Kreis). $A\Lambda\Delta\nabla BCD\Sigma EF\Gamma GHIJKLMNO\Theta\Omega P\Phi\Pi\Xi QRSTUVWXYY\Psi Z$

ΑΛ $\Delta \nabla$ BCD Σ EFΓGHIJ $KLMNO\Theta$ Ω P Φ Π Ξ QRSTUVWXYY Ψ Z ABCDabcd1234

ABCDabcd1254
$$aαbβc∂dδeεεfζξgγhħιiιjkκlℓλmnηθϑοσςφφρρροqrstτπuμννυwωω$$

$$\sum \int \prod \int \sum \sum_{a}^{b} \int_{a}^{b} \prod_{a}^{b} \sum_{a}^{b} \int \prod_{a}^{b}$$