

Mars2020 Entry, Descent, and Landing Instrumentation (MEDLI2): Science Objectives and Instrument Requirements

Deepak Bose,¹ Todd White,² Mark Schoenenberger,³ Chris Karlgaard,³ and Henry Wright³

¹NASA Ames Research Center, Moffett Field, CA ²ERC, Inc. Moffett Field, CA ³NASA Langley Research Center, Hampton, VA

Mars Entry Instrumentation

MEDLI2 maintains the same sensor count as MEDLI, but targets different aspects of EDL at a higher data sampling rate

Impact of MEDLI

- Improved system performance using flight data to substantiate reduction in TPS design margins → lower mass or additional capability
- Reduced risk by validating vehicle aerodynamics, TPS performance and entry environment
- Reconstructed aerodynamics for wind relative attitude and force coefficients
- Reconstructed as-flown atmospheric density
- Flight qualified sensors for pressure and temperature measurements

MEDLI2 Objectives

Backshell Aerothermal Environment

- Large uncertainty applied in backshell TPS design
- Radiative heating predicted to be a contributor
- Wind tunnel testing and CFD simulations have lower fidelity

Supersonic Aerodynamics

- Larger uncertainty in supersonic aerodynamics than hypersonic phase (3% vs. 10%)
- IMU-only based reconstruction does not account for contribution of winds
- Afterbody pressure contribution to drag based on Viking era pressure model

Turbulent Heating Footprint on Forebody

- No predictive tool for onset and coverage of turbulent heating
- Uncertain mechanisms of transition to turbulence

Atmospheric Density Reconstruction

For atmosphere reconstruction and evaluation of EDL system performance

MEDLI2 Forebody Thermal Instrumentation

- O PICA Aerothermal Plug
- PICA Thermal Response Plug

- Science objectives: Measure baseline heating, transition to turbulence, turbulent heating footprint, heating augmentation due to fencing at tile gaps
- Forebody thermal instrumentation includes 11
 PICA plugs with embedded thermocouples
 - Two plugs (1-2) with three thermocouples each to measure in-depth thermal response
 - Nine plugs (3-11) with one thermocouple for aerothermal reconstruction
- A combination of Type-S and Type-K TCs
 - Range: -100 to 1800 C
 - Data Rate: 2-8 Hz
- Post-flight reconstruction target:
 - Heat flux: ±15 W/cm2
 - Transition to turbulence: 1 sec

MEDLI2 Afterbody Thermal Instrumentation

- Science objectives: Measure/reconstruct
 - Aeroheating (reconstructed and direct measurement)
 - RCS interaction (if any)
 - Radiative heating (under consideration)
- Afterbody instrumentation includes 6 SLA-561V thermal plugs
- Each plug will have 1 or 2 Type-K thermocouple for aerothermal reconstruction

Range: -100 to 1400 C

Data Rate: 2-8 Hz

 3 Heat flux gages will also be used for fastresponse direct heat flux measurements

Range: 0-15 W/cm2

Data Rate: 16 Hz

- Post-flight reconstruction target:
 - Heat flux reconstruction: ±3 W/cm² at 8 Hz
 - Direct heat flux measurement: ±1 W/cm² at 16 Hz

MEDLI2 Forebody Pressure Measurement

- O Supersonic Pressure
- Hypersonic Pressure

- Science objectives: Reconstruct
 - wind relative vehicle attitude (supersonic)
 - axial force coefficient (supersonic)
 - as-flown atmospheric density
- Six pressure transducers measure surface pressure in the range relevant for supersonic flight
 - Range: 0-1 psia
 - Data Rate: 8 Hz
- One pressure transducer to measure stagnation point pressure during hypersonic flight for reconstruction of atmospheric density
 - Range: 0-5 psia
 - Data Rate: 8 Hz
- The "supersonic" port locations are based on a constrainedoptimization process to minimize error in the reconstruction of angles of attack and side-slip
- · Post-flight reconstruction target:
 - Vehicle attitude: ±0.5 degrees
 - Axial force coefficient: ±2%
 - Atmospheric winds: ±10 m/s, Atmospheric density: ±5%

MEDLI2 Afterbody Pressure Measurement

Science Objectives:

- Improve backshell pressure model
- Estimate backshell contribution to drag
- One pressure measurement port in the afterbody
 - Range: 0-0.1 psia
 - Data Rate: 8 Hz
 - Engagement with suitable vendors ongoing based on responses from industry
- The current port location is defined based on available wind tunnel data and CFD analysis
- Further refinement of the location will occur based on the results of on-going ballistics range test
- Post-flight reconstruction target:
 - Measure backshell pressure within 4 Pa

Summary

- EDL instrumentation for Mars-2020 mission (called MEDLI2) is being developed with an extended scope beyond MEDLI
- MEDLI2 will emphasize
 - Backshell aerothermal and TPS
 - Supersonic aerodynamics
 - Forebody turbulent heating footprint
 - Atmospheric density
- Instrument requirements and reconstruction targets have been defined
- Vendors for instrumentation being identified for off-the-shelf sensor technologies
- Sensors selection, performance testing/calibration, and "do-noharm" demonstration will occur in the next 1-2 years