

AIXM

The Aeronautical Information Exchange Model

Kanishk Chaturvedi

Lehrstuhl für Geoinformatik Technische Universität München kanishk.chaturvedi@tum.de

8 September 2014

Introduction

- AIXM is a specification to support aeronautical information collection, dissemination and transformation
- It consists of two major components
 - ► The AIXM Conceptual Model (UML)
 - Describes the features and their properties within the aeronautical domain
 - ▶ The AIXM XML Schema
 - Implementation of the Conceptual Model as an XML schema
 - Used as an exchange model for aeronautical data

Features of AIXM Version 5

- A temporality model (AIXM 5.1)
- Alignment with ISO standards for geospatial information, including GML
- Use of UML as conceptual schema language
- Support for latest industry and ICAO (International Civil Aviation Organization) requirements for aeronautical data

Digital NOTAM

- Digital NOTAM (Notice(s) to Airmen) is the way of handling of temporary values in a structured manner to enable automated processing
- For example:
 - Instead of

```
<text>TAXIWAYS OUTER 7 AND E6 CLSD</text>
```

use explicit feature properties

```
<taxiway>
<name>OUTER 7</name>
<status>CLOSED</status>
</taxiway>
<taxiway>
<name>E6</name>
<status>CLOSED</status>
</taxiway>
```


Temporality Model

- Definition
 - A model that incorporates the concept of time at feature level
- Key assertion
 - All features are temporal from start of life until end of life
 - All features can change over time
 - Additional issue: feature properties can have different values according to a repetitive schedule
- AIXM Temporality Model
 - Relates feature properties to the time extent in which they are valid

Step 1 – Time varying properties of features

The first step is to show the values of a feature's properties along a timeline

Step 2 – The basic Time Slice Model

 Times, where properties change, are marked with vertical lines. The vertical lines are called 'Events'.

Step 2 – The basic Time Slice Model

 Each timeslice describes feature properties during a state and event

Step 3 – Temporary Events (Digital NOTAM)

Temporary value is modelled as an overlay on permanent value.

Step 4-Current Status (SNAPSHOT Time Slices)

 SNAPSHOT carries the result of merging the baseline information with overlaying temporary value at a specific moment of time.

Step 5 – PERMDELTA Time Slices

PERMDELTA is the difference between two consecutive baselines.

Temporality applied to the abstract model

08.09.2014

Properties with schedule

The idea is to associate the properties that have cyclic varying values with a Timesheet that describes the times when each value is applicable.

Properties with schedule

An Example: Navaid frequency change

AML Navaid undergoes an upgrade that changes its frequency from 112.0 MHz to 113.2 MHz...

Reference

Aeronautical Information Exchange Model (AIXM), AIXM 5
 Temporality Model, September 2010, www.aixm.aero

Reference

Aeronautical Information Exchange Model (AIXM), AIXM 5
 Temporality Model, September 2010, www.aixm.aero

Additional Slides

Start of life

Feature

gml:identifier

TimeSlice

- validTime = timeInstant...
- interpretation = PERMDELTA
- sequenceNumber = 1
- featureLifetime/beginPosition = same timeInstant...
- property 1
- property 2
- property 3
- property 4

- validTime = timeInterval with undetermined end
- interpretation = BASELINE
- sequenceNumber = 1
- featureLifetime/beginPosition = same timeInstant...
- property 1
- property 2
- property 3
- property 4

Permanent Changes

TimeSlice

- validTime = timeInstant...
- interpretation = PERMDELTA
- sequence Number = 2
- property 3 (new value)
- property 5 (new value)

- validTime = timeInterval with undetermined end
- *interpretation* = *BASELINE*
- sequence Number = 2
- featureLifetime/beginPosition = timeInstant...
- property 1
- property 2
- property 3 (new value)
- property 4
- property 5 (new value)

Temporary Change (Digital NOTAM)

Feature

gml:identifier

- validTime = timeInterval...
- interpretation = TEMPDELTA
- sequenceNumber = 1
- property 4 (temporary value)

End of life

Feature

gml:identifier

TimeSlice

- validTime = timeInstant...
- interpretation = PERMDELTA
- sequenceNumber = 3
- featureLifetime/endPosition = same timeInstant...

- validTime = timeInterval with the end as specified by the PERMDELTA
- interpretation = BASELINE
- sequenceNumber = 2
- correctionNumber = 1
- featureLifetime/beginPosition = timeInstant...
- featureLifetime/endPosition = timeInstant, as specified by the PERMDELTA
- property 1
- property 2
- property 3
- property 4
- property 5