Projet Maths

Matthias Zdravkovic, Ameen Mohd Fairuz

Mai 2023

1 Développements mathématiques

1. a) On part de la loi normale bidimensionnelle :

$$f_Z(z) = \frac{1}{2\pi\sqrt{\det\Sigma}} exp(-\frac{1}{2}^t(z-\mu)\Sigma^{-1}(z-\mu))$$

On pose

$$\Sigma = U \cdot \Lambda \cdot U^T$$

$$\Leftrightarrow \det \Sigma = \det U \cdot \det \Lambda \cdot \det(U^T)$$

 $(\det U)^2 = 1$ car c'est une matrice orthogonale

$$\Leftrightarrow \det \Sigma = \det \Lambda$$

avec $\Sigma \in M_2(\mathbb{R})$ matrice symétrique positive définie, $U \in M_2(\mathbb{R})$ matrice orthogonale et $\Lambda \in M_2(\mathbb{R})$ matrice diagonale à coefficients positifs. On pose

$$U = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

et

$$\Lambda = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$$

avec

$$\Sigma^{-1} = U \cdot \Lambda^{-1} \cdot U^{-1}$$

$$= \sin(\theta) \qquad (\cos(\theta) - \cos(\theta)) \qquad \cos(\theta) = \cos(\theta)$$

$$\Leftrightarrow \Sigma^{-1} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{a} & 0 \\ 0 & \frac{1}{b} \end{pmatrix} \cdot \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}^{-1}$$

$$\Leftrightarrow \Sigma^{-1} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{a} & 0 \\ 0 & \frac{1}{b} \end{pmatrix} \cdot \frac{1}{\cos^2 \theta + \sin^2 \theta} \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}$$

$$\Leftrightarrow \Sigma^{-1} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{a} & 0 \\ 0 & \frac{1}{b} \end{pmatrix} \cdot \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}$$

$$\Leftrightarrow \Sigma^{-1} = \begin{pmatrix} \frac{b\cos^2 \theta + a\sin^2 \theta}{ab} & \frac{b\sin \theta \cos \theta - a\sin \theta \cos \theta}{ab} \\ \frac{b\sin \theta \cos \theta - a\sin \theta \cos \theta}{ab} & \frac{b\sin^2 \theta + a\sin^2 \theta}{ab} \end{pmatrix}$$

On injecte dans la formule de $f_Z(z)$:

$$f_Z(z) = \frac{1}{2\pi\sqrt{ab}}exp\left(-\frac{1}{2}\begin{pmatrix}x-\mu_1 & y-\mu_2\end{pmatrix}\cdot\begin{pmatrix}\frac{b\cos^2\theta+a\sin^2\theta}{ab} & \frac{b\sin\theta\cos\theta-a\sin\theta\cos\theta}{ab}\\ \frac{b\sin\theta\cos\theta-a\sin\theta\cos\theta}{ab} & \frac{b\sin^2\theta+a\sin^2\theta}{ab}\end{pmatrix}\begin{pmatrix}x-\mu_1\\ y-\mu_2\end{pmatrix}\right)$$

$$\Leftrightarrow f_Z(z) = \frac{1}{2\pi\sqrt{ab}} exp(-\frac{1}{2ab} (x - \mu_1 \quad y - \mu_2) \cdot \begin{pmatrix} b\cos^2\theta + a\sin^2\theta & b\sin\theta\cos\theta - a\sin\theta\cos\theta \\ b\sin\theta\cos\theta - a\sin\theta\cos\theta & b\sin^2\theta + a\sin^2\theta \end{pmatrix} \cdot \begin{pmatrix} x - \mu_1 \\ y - \mu_2 \end{pmatrix})$$

Calculons le produit matriciel A dans l'exponentielle :

$$A = \begin{pmatrix} x - \mu_1 & y - \mu_2 \end{pmatrix} \cdot \begin{pmatrix} b\cos^2\theta + a\sin^2\theta & b\sin\theta\cos\theta - a\sin\theta\cos\theta \\ b\sin\theta\cos\theta - a\sin\theta\cos\theta & b\sin^2\theta + a\sin^2\theta \end{pmatrix} \cdot \begin{pmatrix} x - \mu_1 \\ y - \mu_2 \end{pmatrix}$$

$$\Leftrightarrow A = ((a\sin^2\theta + b\cos^2\theta)(x - \mu_1) + \cos\theta\sin\theta(b - a)(y - \mu_2))(x - \mu_1) + ((b\sin^2\theta + a\cos^2\theta)(y - \mu_2) + \cos\theta\sin\theta(b - a)(x - \mu_1))(y - \mu_2)$$

$$\Leftrightarrow A = (a\sin^{2}\theta + b\cos^{2}\theta)(x - \mu_{1})^{2} + \cos\theta\sin\theta(b - a)(x - \mu_{1})(y - \mu_{2}) + (b\sin^{2}\theta + a\cos^{2}\theta)(y - \mu_{2})^{2} + \cos\theta\sin\theta(b - a)(x - \mu_{1})(y - \mu_{2})$$

$$\Leftrightarrow A = (a \sin^2 \theta + b \cos^2 \theta)(x - \mu_1)^2 + 2 \cos \theta \sin \theta (b - a)(x - \mu_1)(y - \mu_2) + (b \sin^2 \theta + a \cos^2 \theta)(y - \mu_2)^2$$

$$\Leftrightarrow A = a \sin^2 \theta (x - \mu_1)^2 + b \cos^2 \theta (x - \mu_1)^2 + 2 \cos \theta \sin \theta (b - a)(x - \mu_1)(y - \mu_2)$$
$$+ b \sin^2 \theta (y - \mu_2)^2 + a \cos^2 \theta (y - \mu_2)^2$$

$$\Leftrightarrow A = a(\sin^2\theta(x-\mu_1)^2 + \cos^2\theta(y-\mu_2)^2) + 2\cos\theta\sin\theta(b-a)(x-\mu_1)(y-\mu_2) + b(\sin^2\theta(y-\mu_2)^2 + \cos^2\theta(x-\mu_1)^2)$$

$$\Leftrightarrow A = a((x - \mu_1)^2 \sin^2 \theta + (y - \mu_2)^2 \cos^2 \theta - 2\cos \theta \sin \theta (x - \mu_1)(y - \mu_2)) + b((y - \mu_2)^2 \sin^2 \theta + (x - \mu_1)^2 \cos^2 \theta + 2\cos \theta \sin \theta (x - \mu_1)(y - \mu_2))$$

$$\Leftrightarrow A = a((x - \mu_1)\sin\theta - (y - \mu_2)\cos\theta)^2 + b((x - \mu_1)\cos\theta + (y - \mu_2)\sin\theta)^2$$

On obtient donc:

$$f_Z(z) = \frac{1}{2\pi\sqrt{ab}}exp(-\frac{((x-\mu_1)\sin\theta - (y-\mu_2)\cos\theta)^2}{2b} - \frac{((x-\mu_1)\cos\theta + (y-\mu_2)\sin\theta)^2}{2a}) = K$$

$$\Leftrightarrow \frac{((x-\mu_1)\sin\theta - (y-\mu_2)\cos\theta)^2}{2b} + \frac{((x-\mu_1)\cos\theta + (y-\mu_2)\sin\theta)^2}{2a} = -\ln(K2\pi\sqrt{ab})$$

$$\Leftrightarrow \frac{((x-\mu_1)\sin\theta - (y-\mu_2)\cos\theta)^2}{2b\ln(\frac{1}{K2\pi\sqrt{ab}})} + \frac{((x-\mu_1)\cos\theta + (y-\mu_2)\sin\theta)^2}{2a\ln(\frac{1}{K2\pi\sqrt{ab}})} = 1$$

Ici, le centre de l'ellipse est donné par $\mu = (\mu_1, \mu_2)$, $\sqrt{2a \log(\frac{1}{2\pi K \sqrt{ab}})}$ est la demi-longueur de l'axe principal et $\sqrt{2b \log(\frac{1}{2\pi K \sqrt{ab}})}$ la demi-longueur de l'axe secondaire, K est la constante de normalisation et θ est l'angle de rotation de l'ellipse.

1. b) Pour calculer la probabilité qu'un point tiré selon la loi Z appartienne à la surface interne S_k délimitée par l'ellipse d'isodensité K, on intègre la densité de Z par la surface de l'ellipse:

$$P(Z \in S_k) = \int \frac{1}{\sqrt{2\pi^2 det \Sigma}} exp(-\frac{1}{2}t(z-\mu)\Sigma^{-1}(z-\mu))dz$$

$$\Leftrightarrow \int \int_{S_k} \frac{1}{2\pi\sqrt{ab}} exp(-\frac{[(x-\mu_1)cos\theta + (y-\mu_2)sin\theta]^2}{2a} - \frac{[(x-\mu_1)sin\theta - (y-\mu_2)cos\theta]^2}{2b})dxdy$$

Pour simplifier les calculs, on fait un changement de variable:

$$\begin{cases} x_1 = \frac{(x-\mu_1)\cos\theta + (y-\mu_2)\sin\theta}{\sqrt{2a}} \\ x_2 = \frac{(x-\mu_1)\sin\theta - (y-\mu_2)\cos\theta}{\sqrt{2a}} \end{cases}$$

$$\Leftrightarrow \begin{cases} x = \sqrt{2a}\cos\theta x_1 + \sqrt{2b}\sin\theta y_1 + \mu_1 \\ y = \sqrt{2a}\sin\theta x_1 - \sqrt{2b}\cos\theta y_1 + \mu_2 \end{cases}$$

$$\Leftrightarrow \frac{\partial x}{\partial x_1} = \sqrt{2a}\cos\theta \; ; \; \frac{\partial x}{\partial y_1} = \sqrt{2b}\sin\theta$$

$$\frac{\partial y}{\partial x_1} = \sqrt{2a}\sin\theta \; ; \; \frac{\partial y}{\partial y_1} = -\sqrt{2b}\cos\theta$$

En changeant (x, y) à (x_1, y_1) , nous avons maintenant:

$$\int \int_{S_k} \frac{1}{2\pi\sqrt{ab}} exp(-x_1^2 - y_1^2) \begin{vmatrix} \frac{\partial x}{\partial x_1} & \frac{\partial x}{\partial y_1} \\ \frac{\partial y}{\partial x_1} & \frac{\partial y}{\partial y_1} \end{vmatrix} dx_1 dy_1$$

$$\Leftrightarrow \int \int_{S_k} \frac{1}{2\pi\sqrt{ab}} exp(-x_1^2 - y_1^2) \left| -\sqrt{4ab}cos^2\theta - \sqrt{4ab}sin^2\theta \right| dx_1 dy_1$$

$$\Leftrightarrow \int \int_{S_k} \frac{2\sqrt{ab}}{2\pi\sqrt{ab}} exp(-x_1^2 - y_1^2) dx_1 dy_1$$
$$\Leftrightarrow \int \int_{S_k} \frac{1}{\pi} exp(-x_1^2 - y_1^2) dx_1 dy_1$$

Changement en base polaire: on utilise $x_1 = rcos\varphi$ et $y_1 = rsin\varphi$

$$\int \int_{S_k} \frac{1}{\pi} exp(-r^2) r dr d\varphi$$

$$\Leftrightarrow \frac{1}{\pi} \int_0^r \int_0^{2\pi} r e^{-r} d\varphi dr$$

$$\Leftrightarrow \int_0^r 2r e^{-r} dr$$

Or, ici il faut utiliser r = l'équation de l'ellipse en base (r, φ) Pour cela, nous reprenons l'équation de l'ellipse trouvée à la question 1.a)

$$\frac{((x-\mu_1)\sin\theta - (y-\mu_2)\cos\theta)^2}{2b\ln(\frac{1}{K2\pi\sqrt{ab}})} + \frac{((x-\mu_1)\cos\theta + (y-\mu_2)\sin\theta)^2}{2a\ln(\frac{1}{K2\pi\sqrt{ab}})} = 1$$

$$\Leftrightarrow \frac{x_1^2}{\ln(\frac{1}{K2\pi\sqrt{ab}})} + \frac{y_1^2}{\ln(\frac{1}{K2\pi\sqrt{ab}})} = 1$$

$$\Leftrightarrow \frac{r^2}{\ln(\frac{1}{K2\pi\sqrt{ab}})} = 1$$

$$\Leftrightarrow r = \sqrt{\ln(\frac{1}{K2\pi\sqrt{ab}})}$$

Nous utilisons cette équation de r comme borne superieure de notre intégrale:

$$\int_{0}^{\sqrt{\ln(\frac{1}{K2\pi\sqrt{ab}})}} 2re^{-r} dr$$

$$\Leftrightarrow \left[-e^{r^{2}} \right]_{0}^{\sqrt{\ln(\frac{1}{K2\pi\sqrt{ab}})}}$$

$$\Leftrightarrow -e^{\sqrt{\ln(\frac{1}{K2\pi\sqrt{ab}})}} + e^{0}$$

Nous trouvons donc:

$$p = P(Z \in S_k)$$
$$\Leftrightarrow p = 1 - 2\pi K \sqrt{ab}$$

2.

$$\Sigma = \begin{pmatrix} \sigma_x^2 & \sigma_{xy} \\ \sigma_{xy} & \sigma_y^2 \end{pmatrix}$$