Presentación (3G) Curso 2023/2024

Tecnologías de los Sistemas de Información en la Red

- 1. Objetivos
- Estructura
- 3. Teoría
- 4. Laboratorios
- 5. Evaluación
- 6. Resumen de fechas
- 7. Bibliografía

Horarios y profesor

- José <u>Ramón García</u> Escrivá, DSIC
 - Despacho 1D42, edificio 1F
 - Tutorías previa cita (<u>rgarcia@upv.es</u>)
 - Utilizad <u>siempre</u> remitentes de la UPV

Docencia semanal en TSR

Grupo	Aula 1	Aula 2	Labo turno 1	Labo turno 2
3G	X 08:00-09:30,	V 11:30-13:00,	M 08:00-09:30,	V 09:30-11:00,
	aula 1E 1.4	aula 1E 1.4	labo 6	labo 0
4GIA	L 08:00-09:30,	X 09:30-11:00,	L 12:00-13:30,	L 13:30-15:00,
	aula 1G 1.6	aula 1G 1.6	labo 1	labo 2
3B				V 08:00-9:30, labo 4

- 1. Objetivos
- 2. Estructura
- 3. Teoría
- 4. Laboratorios
- 5. Evaluación
- 6. Resumen de fechas
- 7. Bibliografía

General:

 Transmitir una aproximación pragmática dirigida al diseño y construcción de sistemas distribuidos.

Específicos:

- 1. Entender las propiedades de los sistemas distribuidos:
- Conocer algunas de las tecnologías y aproximaciones existentes más importantes
- 3. Capacitar para el diseño de la arquitectura idónea para la resolución de problemas específicos

Los específicos se detallan a continuación...

General:

- Transmitir una aproximación pragmática dirigida al diseño y construcción de sistemas distribuidos.
- Específicos:
 - 1. Entender las propiedades de los sistemas distribuidos
 - Problemas que aparecen, y que hay que resolver
 - Propiedades obtenibles, ámbitos de aplicación
 - Influencia de la estructura de un sistema (arquitectura) para resolver/mitigar problemas y obtener propiedades deseables.
 - Conocer algunas de las tecnologías y aproximaciones existentes más importantes
 - 3. Capacitar para el diseño de la arquitectura idónea para la resolución de problemas específicos

- General:
 - Transmitir una aproximación pragmática dirigida al diseño y construcción de sistemas distribuidos.
- Específicos:
 - 1. Entender las propiedades de los sistemas distribuidos
 - 2. Conocer algunas de las tecnologías y aproximaciones existentes más importantes
 - Programación asíncrona para la implementación de componentes
 - Middleware para facilitar la interacción entre componentes
 - Capacitar para el diseño de la arquitectura idónea para la resolución de problemas específicos

General:

 Transmitir una aproximación pragmática dirigida al diseño y construcción de sistemas distribuidos.

Específicos:

- 1. Entender las propiedades de los sistemas distribuidos
- 2. Conocer algunas de las tecnologías y aproximaciones existentes más importantes
- 3. Capacitar para el diseño de la arquitectura idónea para la resolución de problemas específicos
 - Estudio de ejemplos de sistemas y su estructura
 - Uso de tecnologías relevantes para la resolución de problemas de laboratorio

- 1. Objetivos
- 2. Estructura
- 3. Teoría
- 4. Laboratorios
- 5. Evaluación
- 6. Resumen de fechas
- 7. Bibliografía

2. Estructura

- Asignatura con 6 créditos
 - ▶ Teoría y seminarios se estructuran en una misma secuencia de temas
- Teoría (1.5 cr)
 - Principios generales
 - Propiedades
 - Problemas
- Seminarios (3 cr)
 - Tecnologías básicas
 - Ejemplos, estudio de casos y resolución de problemas
- Laboratorio (1.5 cr)
 - Implementación de soluciones a problemas sencillos

Estas dos partes se imparten en el aula. Se considerarán conjuntamente como "teoría" en las próximas secciones.

- 1. Objetivos
- 2. Estructura
- 3. Teoría
- 4. Laboratorios
- 5. Evaluación
- 6. Resumen de fechas
- 7. Bibliografía

3. Teoría. Temario

- 1. Introducción
- JavaScript y NodeJS
- 3. Middleware. ZeroMQ
- 4. Despliegue de servicios. Docker
- Gestión de fallos
- Escalabilidad

3. Teoría. Temario

Considerando las 28 clases que habrá en el cuatrimestre, los temas se distribuirán como sigue:

Introducción		Middleware. ZeroMQ		Gestión fallos	Escalabilidad
3	7	6	6	3	3

En cada tema:

- Hay vídeos (screencasts) que describen cada uno de sus apartados.
 - Disponibles en PoliformaT, en su sección de "Docencia Inversa"
 - Accesibles para todos los grupos
 - Complementados con boletines de ejercicios específicos
- Cada apartado dispone de exámenes de autoevaluación.
 - Disponibles en PoliformaT, sección "Exámenes"

3. Teoría. Sesiones EXTRA

- En los grupos de Ramón García, hay dos sesiones extra de aula, en el horario que se indica:
 - Grupo 3G: M 12/09 y 19/09, 11.30-13h (la ETSINF ya ha *oficializado* estas sesiones)
- El propósito de dichas sesiones es adelantar el temario para poder aplicarlo al laboratorio
 - La planificación de teoría para poder realizar las prácticas está demasiado ajustada

- 1. Objetivos
- 2. Estructura
- 3. Teoría
- 4. Laboratorios
- 5. Evaluación
- 6. Resumen de fechas
- 7. Bibliografía

4. Laboratorios

- Hay, además, un "Proyecto 0: JavaScript básico"
 - No tiene reserva en el calendario, ni supervisión por el profesor
 - Debe realizarse ANTES del Proyecto 1, incluso si el/la estudiante cuenta con experiencia previa en JavaScript
- Planificación del resto de proyectos en PoliformaT
 - Ver hoja siguiente

4. Laboratorios

Planificación

Proyecto	SESIÓN	L	М	Х	J	V	
	1	2 oct	3 oct	4 oct	5 oct	6 oct	
1	2	16 oct	17 oct	18 oct	19 oct	20 oct	
	3	23 oct	24 oct	25 oct	26 oct	27 oct	
	4	30 oct	31 oct	15 nov	9 nov	10 nov	
2	5	13 nov	14 nov	22 nov	16 nov	17 nov	
	6	20 nov	21 nov	29 nov	23 nov	24 nov	
	7	27 nov	28 nov	5 dic (CL)	30 nov	1 dic	
	8	11 dic	12 dic	13 dic	14 dic	15 dic	
3	9	18 dic	19 dic	20 dic	20 dic 21 dic		
	10	8 ene	9 ene	10 ene	11 ene	12 ene	
CL (cambio	lectivo): Fl 5	de diciemb	re martes o	será miércol	es a efectos	lectivos	

| CL (cambio lectivo): El 5 de diciembre, martes, sera miercoles a efectos lectivos.

4. Laboratorios

- Tecnologías a usar:
 - JavaScript + NodeJS
 - ØMQ (y su adaptación a NodeJS)
 - Docker
- Tres proyectos que hacen uso de las tecnologías anteriores:
 - Proxy inverso TCP/IP (3 sesiones)
 - Desarrollo de aplicaciones en NodeJS con ØMQ (4 sesiones)
 - 3. Despliegue (3 sesiones)

Se detallan <u>a continuación</u>...

4. Laboratorios: Proyectos

Proxy inverso TCP/IP (3 sesiones)

- Tecnologías: JavaScript, NodeJS
- Objetivos: Iniciación al desarrollo con JS+NodeJS, programación asincrónica en el servidor, callbacks, desarrollo de aplicaciones
- Evaluación: mediante test junto al primer parcial
- 2. Desarrollo de aplicaciones en NodeJS con ØMQ (4 sesiones)
- 3. Despliegue (3 sesiones)

4. Laboratorios: Proyectos

- Proxy inverso TCP/IP (3 sesiones)
- Desarrollo de aplicaciones en NodeJS con ØMQ (4 sesiones)
 - Tecnologías: ØMQ, JSON
 - Objetivos: Desarrollar aplicaciones distribuidas en las que los componentes son procesos que se comunican mediante un sistema de mensajería (ØMQ) adoptando roles específicos
 - Evaluación:
 - Examen específico de respuesta abierta: 11 de diciembre.
- 3. Despliegue (3 sesiones)

4. Laboratorios: Proyectos

- Proxy inverso TCP/IP (3 sesiones)
- Desarrollo de aplicaciones en NodeJS con ØMQ (4 sesiones)

3. Despliegue (3 sesiones)

- Tecnología puntera: Docker
- Objetivos: Entender y preparar el despliegue de un servicio distribuido multi-componente, incluyendo tecnologías actuales de contenerización y de configuración del despliegue
- Evaluación: mediante test junto al segundo parcial

- Objetivos
- 2. Estructura
- 3. Teoría
- 4. Laboratorios
- 5. Evaluación
- 6. Resumen de fechas
- 7. Bibliografía

- Deben considerarse dos partes:
 - Teoría (60%)
 - 2. Laboratorio (40%)
- Esas dos partes se estructuran en tres exámenes:
 - 1. Primer parcial:
 - Teoría: Temas 1, 2 y (parte del) 3 (30%)
 - Proyecto 1 (10%)
 - 2. Proyecto 2 (20%)
 - 3. Segundo parcial:
 - Teoría: Temas (fin del 3), 4, 5 y 6 (30%)
 - Proyecto 3 (10%)

- Dos exámenes parciales, recuperables (80%)
- 2. Examen del segundo proyecto, recuperable (20%)
- 3. Examen de recuperación

Estas 3 pruebas se detallan a continuación...

Dos exámenes parciales, recuperables (80%)

- Exámenes tipo test individuales
 - Cuestiones de opción múltiple
 - Nota mínima: 3 puntos
- Estas pruebas incluirán este contenido:
 - Teoría (60% de la nota global)
 - Proyectos 1 y 3 (20% de la nota global)
- Fechas:
 - Primer parcial: 2 de noviembre.
 - Segundo parcial: 23 de enero.
- 2. Examen del segundo proyecto, recuperable (20%)
- 3. Examen de recuperación

- 1. Dos exámenes parciales, recuperables (80%)
- 2. Examen del segundo proyecto, recuperable (20%)
 - Ejercicio individual
 - Fecha: 11 de diciembre
 - Se requiere una calificación mínima de 3 puntos
- 3. Examen de recuperación

- 1. Dos exámenes parciales, recuperables (80%)
- 2. Examen del segundo proyecto, recuperable (20%)

3. Examen de recuperación

- Permite recuperar los exámenes anteriores
- Fecha: 3 de febrero
- Su nota prevalece sobre la del examen a recuperar

- 1. Objetivos
- Estructura
- 3. Teoría
- 4. Laboratorios
- 5. Evaluación
- 6. Resumen de fechas
- 7. Bibliografía

6. Resumen de fechas

- Actos de evaluación:
 - 2 de noviembre: primer parcial
 - ▶ 11 de diciembre: examen individual sobre el proyecto 2
 - 23 de enero: segundo parcial
 - 8 de febrero: recuperaciones de todas las pruebas
 - La nota de la recuperación prevalece sobre el acto original a recuperar

6. Resumen de fechas: calendario TSR/3G

2023	L	M	X	J	٧	S	D	L	M	X	J	٧	S	D	L	M	X	J	٧	S	D	L	M	X	J	٧	S	D	L	M	X	J	٧	S	D	L	M
septiembre					1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30			
octubre							1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
noviembre			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30					
diciembre					1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31		
enero	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31						

TSR 3G

Los días 12 y 19 de septiembre habrá clase de aula en horario 11.30-13.00

5 de diciembre se considera miércoles

- 1. Objetivos
- 2. Estructura
- 3. Teoría
- 4. Laboratorios
- 5. Evaluación
- 6. Resumen de fechas
- 7. Bibliografía

7. Bibliografía

- No existe un texto que se adecúe a los contenidos del curso.
 - Para cada unidad se ha elaborado una guía del alumno
 - ES EQUIVALENTE A UN LIBRO DE LA ASIGNATURA.
 - DEBÉIS ESTUDIARLAS TODAS.
 - También se dispone de pequeñas presentaciones que explican varios conceptos importantes
- Existe mucho material disperso
 - Gran parte del material está en inglés.
- Textos generales de consulta y sitios web para profundizar en los materiales presentados en clase

7. Bibliografía

Consulta general

- Distributed Systems: Principles and Paradigms (2nd Edition). Andrew S. Tanenbaum and Maarten van Steen. Prentice Hall International, 2006. (Existe traducción al español)
- Distributed Systems: Concepts and Design (5th Edition).
 George Coulouris, Jean Dollimore, Tim Kindberg, Gordon Blair. Addison-Wesley, 2011. (Existe traducción al español)
- http://zguide.zeromq.org. Buena fuente de discusiones y ejemplos sobre estructuras de componentes distribuidos.

7. Bibliografía

Tecnología

- Se presenta una bibliografía básica.
 - http://nodejs.org
 - http://zguide.zeromq.org
 - http://mongodb.org
 - http://docker.com/

Estudio de casos

Las referencias serán suministradas en su caso por cada profesor.