SEARCHING FOR MORPHOLOGICAL PRODUCTIVITY

Sarah Payne¹, Caleb Belth², Jordan Kodner³, Charles Yang¹

¹University of Pennsylvania

²University of Michigan

³Stony Brook University

LSA 2022 Annual Meeting

SEARCHING FOR PRODUCTIVITY

How do children discover productive generalizations?

- Overcoming sparsity
- Despite exceptions
- When multilayered

BACKGROUND: SPARSITY

Courtesy of Erwin Chan & Constantine Lignos

BACKGROUND: PRODUCTIVITY

English Past Tense: Statistically dominant rule =

BACKGROUND: PRODUCTIVITY

German Plurals & Mandarin Classifiers: Restricted to subgroups

CONTRIBUTIONS

We present a model of morphological learning capable of extracting linguistically interpretable rules from developmentally plausible vocabularies

DATA

Input: (lemma, inflected, feature)

English: (walk, walked, {3, SINGULAR, PAST})

German: (Sache, Sachen, {FEMININE})

Chinese: (rén, gè rén, {+ANIM, +CONC, -FLAT, +HUM, +NAT, -SLEN, -VEH})

	English Past Tense	German Plurals	Mandarin Classifiers
Max Training Size	600 words	360 words	100 words

MODEL: THE TOLERANCE PRINCIPLE

- Intuition: given a set of items:
 - If many do X, then all do X (generalization)
 - If few do X, then remember the few that do (lexicalization)
- Threshold defined by efficiency:

$$e \leq \theta_N = \frac{N}{\ln N}$$
 exceptions threshold

MODEL: THE TOLERANCE PRINCIPLE

Empirical evidence from artificial language studies

15 children age 6-8 years

Schuler, Yang & Newport (2016, Submitted)

$$\theta_9 = 4.2$$

Emond & Shi (2021)

$$\theta_{16} = 5.7$$

MODEL: ABDUCTIVE SEARCH

TP applied recursively:

- Try forming rule over set of N items
- If rule not productive, subdivide set into disjoint subsets
- Repeat within each subset

Terminates when:

- Productive rule found (generalization)
- Or, no more subdivisions possible (lexicalization)

MODEL: ABDUCTIVE SEARCH

- Find the most frequent color (6 vs. 5
- Hypothesize a rule {Features} →
 - Odd→

4

- Test the rule "Odd→ "
 - TP check (N=6, e=1): 1, 3, 5, 7, 9, 11
- RI productive: Odd→ Exceptions II
- Recurse over remaining items
- R2 productive: Even → Exceptions 6

MODEL: SELECTING A FEATURE

Multiple ways to subdivide **N** items:

12

^[1] Carla L Hudson Kam and Elissa L. Newport. 2005. Regularizing unpredictable variation: The roles of adult and child learners in language formation and change. *Language Learning and Development*, 1(2):151–195. [2] LouAnn Gerken. 2006. Decisions, decisions: Infant language learning when multiple generalizations are possible. *Cognition*, 98(3):B67–B74.

^[3] Patricia A Reeder, Elissa L Newport, and Richard N Aslin. 2013. From shared contexts to syntactic categories: The role of distributional information in learning linguistic form-classes. Cognitive psychology, 66(1):30–54.

RESULTS

Q1: How accurately does our model learn morphology?

- English past tense
- German plurals
- Comparison: Kirov and Cotterell (2018)'s Neural Network model (K&C)

Q2: Are the results developmentally plausible?

- English past tense learning trajectory
- Linguistic interpretability of rules
- Attends to relevant features

RESULTS: ENGLISH PAST TENSE

Child-like developmental trajectory

English Learning Accuracy 1.0 Held-out Test Accuracy 8.0 0.6 Developmental Regression OurModel 0.2 K&C 0.0 600 100 300 Number of Training Instances

Linguistically interpretable rules

RESULTS: GERMAN PLURALS

Child-like developmental trajectory

Linguistically interpretable rules

Gende

[M]
$$\rightarrow$$
 -e / [d, b, f, g, h, z, s, k, m, ...]#

[F] \rightarrow -en / [r, t, n, g, z, hl]#

[F] \rightarrow -n

...

[N] \rightarrow -e / [r, l, m, t, n, z]#
...

[4] Wiese 1996. The protest of Cambridge.

[5] McCurdy, K., Goldwater, S., & Lopez, A. (2020). Inflecting when there's no majority: Limitations of encoder-decoder neural networks as cognitive models for german plurals. In Proceedings of the 58th annual meeting of the association for computational linguistics, ACL (pp. 1745–1756).

RESULTS: MANDARIN CLASSIFIERS

```
[-Veh, -Slen, -Flat, -Hum, -Anim, +Conc, -Nat] → gè (個/个)
[-Veh, -Slen, -Flat, -Hum, -Anim, +Conc, +Nat] → gè (個/个)
[-Veh, -Slen, -Flat, -Hum, -Anim, -Conc, -Nat] →gè (個/个)
[-Anim, -Hum, -Nat, +Conc, -Slen, -Flat, +Veh] → liàng (輛/辆)
```

- Semantic conditions learned
- Irrelevant phonological properties ignored [5]

CONCLUSION

 Abductive, recursive search + TP provides plausible account of morphological acquisition

- Lexicon partitioned into categories
 - The rules yielding these categories are a 'good enough' grammar
 - · That is, they regularize learning
- Preserves explicit distinction between
 - generalization and lexicalization [6, 7]
 - walk →walked vs. run →ran

CONCLUSION

Applicable to linguistic mappings beyond morphology

e.g.,

- {Phonology, Semantics} → Gender
- {Distributional Properties} → Phonological Natural Classes

• •

CONCLUSION

Animate Semantic Hierarchy Mayali

Evans, Brown & Corbett (2002/2019:132)

Maybe general category formation process?

• Object Properties→ Categories

THANK YOU!!!

Thanks to Deniz Beser, John Trueswell and his lab, and the members of LING-570 and LING-300 at the University of Pennsylvania