Sea-Bird Electronics, Inc.

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 0748 CALIBRATION DATE: 26-Jan-17

SBE 4 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

g =	-4.13204667e+000	CPcor =	-9.5700e-008	(nominal)
h =	4.36237413e-001	CTcor =	3.2500e-006	(nominal)
2	7 17215721 - 005			

i = -7.17315731e-005j = 2.29049217e-005

BATH TEMP (° C)	BATH SAL (PSU)	BATH COND (S/m)	INSTRUMENT OUTPUT (kHz)	INSTRUMENT COND (S/m)	RESIDUAL (S/m)
0.0000	0.0000	0.00000	3.07768	0.00000	0.00000
-1.0000	34.5610	2.78592	8.55314	2.78592	0.00000
1.0000	34.5609	2.95621	8.77713	2.95622	0.00001
15.0000	34.5611	4.24361	10.31211	4.24356	-0.00005
18.5000	34.5602	4.58805	10.68496	4.58807	0.00002
29.0000	34.5586	5.66484	11.77292	5.66488	0.00004
32.5001	34.5503	6.03484	12.12366	6.03481	-0.00003

f = Instrument Output (kHz)

 $t = temperature \ (^{\circ}C); \quad p = pressure \ (decibars); \quad \delta = CTcor; \quad \epsilon = CPcor;$

Conductivity (S/m) = (g + h * f^2 + i * f^3 + j * f^4) /10 (1 + δ * t + ϵ * p)

Residual (Siemens/meter) = instrument conductivity - bath conductivity

