Synthèse d'Images Numériques

Espaces discrets

Philippe.Even@univ-lorraine.fr

Impact de la numérisation

double n = 0; for (int i = 0; i < 100; i ++) n+= 1/100.; System.out.println (n == 1.);

?

2

Espaces discrets

Deux approches duales :

- > Partitionnement par une grille régulière
- > Pavage par un réseau de cellules
 - pixels dans le cas 2D
 - voxels dans le cas 3D

3

Partitionnement par une grille rectangulaire dimension (L x H)

Espaces discrets

Pavage par un réseau de pixels

Espaces discrets

Pavage par un réseau de pixels

Espaces discrets

Grille rectangulaire : coordonnées grille / pixel

Espaces discrets

Grille triangulaire : pavage par des pixels

3

Espaces discrets

Grille triangulaire : maillage des centres

Espaces discrets

Grille hexagonale : **pavage** par des pixels

10

Espaces discrets

Grille hexagonale : maillage des centres

Espaces discrets

Grille hexagonale --> grille rectangulaire!

Espaces discrets Grille hexagonale / triangulaire : dualité

Discrétisation de courbes

Chemin : Code de Freeman en 1-adjacence pour les grilles hexagonale

Discrétisation de courbes

Chemin : Code de Freeman en 1-adjacence pour les grilles hexagonale et triangulaire

Discrétisation de courbes

Courbe : chemin fermé

Discrétisation de courbes

Cas de la 0-adjacence : pas de séparation de l'espace !

Discrétisation de courbes

En 1-adjacence : aucune courbe ne les sépare!

Discrétisation de courbes

Discrétisation de courbes

Paires de Jordan (courbe en 1-adj - région en 0-adj)

Représentation de segments droits

Segment de droite AB, avec $A(X_A, Y_A)$ et $B(X_B, Y_B)$

Droite support :
$$ax + by = c$$
 Pente $m = \frac{\Delta Y}{\Delta X} = -\frac{a}{b}$

$$\begin{cases} a = -\Delta Y = -(Y_B - Y_A) \\ b = \Delta X = X_B - X_A \\ c = aX_A + bY_A \end{cases}$$

Représentation de segments droits

Segment de droite AB, avec $A(X_A, Y_A)$ et $B(X_B, Y_B)$

Equation paramétrique : $\begin{cases} x = a_1 t + b_1 \\ y = a_2 t + b_2 \end{cases}$

en A : t = 0 --> $b_1 = X_A$ et $b_2 = Y_A$

en B : t = 1 --> $a_1 = X_B - X_A$ et $a_2 = Y_B - Y_A$

Représentation de segments droits

Application à l'interpolation d'un paramètre

en B : t = 1 --> $a_1 = X_B - X_A$ et $a_2 = Y_B - Y_A$

Discrétisation de segments droits

Discrétisation du segment de droite P₁P₂

Discrétisation de segments droits

Discrétisation du segment de droite P₁P₂

-> discrétisation du segment $disc(P_1)$ - $disc(P_2)$ = AB

Raisonnement par octants

Discrétisation de segments droits

Algorithme des points médians :

- de
$$X_A$$
 à X_B , numériser (x_i, y_i) --> $y_i = m x_i + c$

Discrétisation de segments droits

Algorithme de Bresenham : approche récursive

Discrétisation de segments droits

Algorithme de Bresenham Où commence le palier suivant ?

Discrétisation de segments droits

Algorithme de Bresenham Critère de décision : $k = d_1 - d_2$

Discrétisation de segments droits

Algorithme de Bresenham

Critère de décision : $k = d_1 - d_2$

Equation de la droite : y = mx+c

$$\begin{cases} d_1 = m(x_i + 1) + c - y_i \\ d_2 = y_i + 1 - m(x_i + 1) - c \end{cases}$$

Si k < 0: $y_{i+1} = y_i$ Sinon : $y_{i+1} = y_i + 1$

Algorithme de Bresenham Critère de décision : $k = d_1 - d_2$

$$\begin{cases} d_1 = m(x_i + 1) + c - y_i \\ d_2 = y_i + 1 - m(x_i + 1) - c \end{cases}$$

$$k_i = 2\frac{\Delta Y}{\Delta X}(x_i + 1) - 2y_i - 1 + 2c$$

On remplace k par k' = ΔX k

Discrétisation de segments droits

Algorithme de Bresenham

Critère de décision :
$$k' = \Delta x (d_1 - d_2)$$

$$k_i' = 2 \Delta Y (x_i + 1) - \Delta X (2y_i + 1 - 2c)$$

Peut-on déduire k_{i+1} à partir de k_i ?

44

Discrétisation de segments droits

Algorithme de Bresenham

$$k_{i}' = 2 \Delta Y (x_{i}+1) - \Delta X (2y_{i}+1-2c)$$

Si
$$k < 0$$
: $y_{i+1} = y_i$
et $k_{i+1}' = k_i' + 2 \Delta Y$
Sinon : $y_{i+1} = y_i + 1$
et $k_{i+1}' = k_i' + 2 \Delta Y - 2 \Delta X$

On peut déduire k_{i+1} à partir de k_{i} !

Discrétisation de segments droits

Algorithme de Bresenham (démarrage)

$$\begin{aligned} k_{_{i}}' &= 2 \; \Delta Y \; (x_{_{i}} + 1) - \Delta X \; (2y_{_{i}} + 1 - 2c) \\ k_{_{0}}' &= 2 \; \Delta Y \; (x_{_{A}} + 1) - \Delta X \; (2y_{_{A}} + 1 - 2c) \end{aligned}$$

or
$$c = y_A - mx_A \rightarrow \Delta X c = \Delta X y_A - \Delta Y x_A$$

$$k_0' = 2 \Delta Y (x_A + 1) - \Delta X (2y_A + 1) + 2 (\Delta X y_A - \Delta Y x_A)$$

$$k_0' = 2 \Delta Y - \Delta X$$

46

Discrétisation de segments droits

Algorithme de Bresenham (algorithme pour l'octant 1)

$$\begin{array}{c} \text{i1} < -- 2 \, \Delta Y \\ \text{i2} < -- 2 \, \Delta Y - 2 \, \Delta X \\ k < -- 2 \, \Delta Y - \Delta X \\ x < -- X_A \\ y < -- Y_A \\ \text{tracer} (x, y) \\ \text{Tant que} (x < X_B) \\ & x +\!\!\!\! + \\ \text{Si} \ k >\!\!\! = 0 \\ & y +\!\!\!\! + \\ k +\!\!\!\! = \text{i2} \\ \text{Sinon} \\ k +\!\!\!\! = \text{i1} \\ \text{tracer} (x, y) \\ \end{array}$$

Discrétisation de segments droits

Algorithme arithmétique

-> basé sur la notion de droite discrète

$$0 \le ax + by + c < \omega$$

épaisseur arithmétique (contrôle l'écart entre les droites support)

a, b, c, ω , x et y entiers

 $\begin{cases} a = \Delta Y / pgdc (\Delta X, \Delta Y) \\ b = -\Delta X / pgdc (\Delta X, \Delta Y) \end{cases}$

Algorithme arithmétique

-> basé sur la notion de droite discrète $0 \le ax + by + c < \omega$

 $0 \le 3 x + (-7) y + 35 < 7$

épaisseur arithmétique (contrôle l'écart entre les droites support)

a, b, c, ω , x et y entiers

$$\begin{cases} a = \Delta Y / pgdc (\Delta X, \Delta Y) \\ b = -\Delta X / pgdc (\Delta X, \Delta Y) \end{cases}$$

 $\omega = \max(|a|, |b|)$: droite naïve (0-connexe)

4

Discrétisation de segments droits

Algorithme arithmétique

-> basé sur la notion de droite discrète

$$0 \le ax + by + c < \omega$$

épaisseur arithmétique (contrôle l'écart entre les droites support)

a, b, c, ω , x et y entiers

$$\begin{cases} a = \Delta Y / pgdc (\Delta X, \Delta Y) \\ b = -\Delta X / pgdc (\Delta X, \Delta Y) \end{cases}$$

 $\omega = |a| + |b|$: droite standard (1-connexe)

50

Discrétisation de segments droits

Algorithme arithmétique

-> basé sur la notion de droite discrète

$$0 \le ax + by + c < \omega$$

épaisseur arithmétique (contrôle l'écart entre les droites support)

a, b, c, ω , x et y entiers

$$\begin{cases} a = \Delta Y / pgdc (\Delta X, \Delta Y) \\ b = -\Delta X / pgdc (\Delta X, \Delta Y) \end{cases}$$

5

Discrétisation de segments droits

Algorithme arithmétique

Principe : dans l'octant O1, quand on augmente de 1 en x, on augmente de $\Delta Y / \Delta X$ en y

Pour chaque position i : $(i * \Delta Y) / \Delta X \rightarrow \text{palier}$ $(i * \Delta Y) \% \Delta X \rightarrow \text{hauteur}$

52

Discrétisation de segments droits

Algorithme de Bresenham

Algorithme arithmétique

$$\begin{array}{c} r < -- r_{_{ini}} \\ x < -- X_{_{A}} \\ y < -- Y_{_{A}} \\ tracer (x, y) \\ Tant que (x < X_{_{B}}) \\ x ++ \\ r += \Delta Y \\ Si \ r >= \Delta X \\ y ++ \\ r -= \Delta X \\ Sinon \\ r += \Delta Y \\ tracer (x, y) \\ \end{array}$$

Discrétisation de segments droits

Algorithme arithmétique

Avantage sur Bresenham, un meilleur contrôle de la hauteur du segment

Discrétisation basée-frontière : $r_i = \Delta X / 2$

Algorithme arithmétique

Avantage sur Bresenham : meilleur contrôle de la hauteur du segment

Discrétisation basée-objet sup : $r_i = 0$

55

Discrétisation de segments droits

Algorithme arithmétique

Avantage sur Bresenham : meilleur contrôle de la hauteur du segment

Discrétisation basée-objet inf : $r_i = \Delta X - 1$