Jeux et Automates Plan Présentation LFCC

Matthieu Boyer

Introduction

- Définition d'un Jeu : Un jeu est un triplet (P, A_i, \succeq_i) où P est un ensemble de joueurs, A_i est un ensemble d'actions pour le joueur $i \in P$ et \succeq_i est une relation de préférence pour le joueur i. Exemple du dilemme du prisonnier par exemple.
- Jeu extensif, jeu à information partielle.

1 Jeux et Automates

1.1 Les Automates vus comme des Jeux

• Définition du Jeu d'un automate : Si $A = (Q, \Sigma, \delta, \iota, F)$ est un automate, on définit G_A un jeu à deux joueurs P_1 et P_2 . Dans ce jeu, P_1 joue des états de Q et P_2 joue des lettres de Σ . Si P_1 joue $q \in \Sigma$ alors P_2 doit jouer s tel que $\delta(q, s) \neq \emptyset$.

1.2 Information et Déterminisme

- Si A est déterministe, G_A est équivalent à un jeu à information parfaite, ou jeu extensif.
- \bullet Réciproquement, si A n'est pas déterministe, on peut d'une meilleure manière définir des ensembles d'informations pour chacun des joueurs récursivement.

1.3 Langage et Stratégies Gagnantes

- Une stratégie gagnante pour P_1 est une stratégie telle que P_1 a joué un état final et P_2 ne peut plus jouer.
- Une stratégie pour P_2 définie par $w \in \Sigma^*$ est telle que P_2 joue les lettres de w indépendamment de ce que P_1 joue.
- \bullet Une stratégie gagnante pour P_2 est une stratégie w de longueur n où P_1 n'a pas de coup valide
- On note $S(G_A)^n$ l'ensemble de ces stratégies, et $L(A)^n$ l'ensemble des mots de longueur n reconnus par A. Alors, on prouve que $S(G_A)^n = L(A)^n$.

2 Jeux et Grammaires

2.1 Jeux Hors-Contexte

- Définition d'un Jeu par une Grammaire
- Définition de la Victoire d'un Jeu pour un mot (similaire à ce qui précède).

2.2 Jeux et Systèmes à Pile

- Définition d'un Système à Pile comme un automate à pile sans entrée.
- Preuve qu'on peut construire un automate à pile de sorte qu'un joueur gagne le jeu G, w si et seulement si le calcul sur w de l'automate atteint un état gagnant et réciproquement, qu'on peut construire un jeu à partir d'un automate à pile.

2.3 Application aux Jeux de Cartes

• Description du Uno par une Grammaire.

3 Game Design et Automates

Je ne sais pas encore exactement à quel point aller loin dans ce sujet.

- Définition des objets par des alphabets
- Représentation du fil du jeu par un automate dont les transitions sont liées aux actions du joueur.

Références

- [1] A-Games: using game-like representation for representing finite automatas Cleyton Slaviero, Edward Hermann Haeusler
- [2] A Card Game Description Language Jose M. Font, Tobias Mahlmann, Daniel Manrique, and Julian Togelius
- [3] Active Context-Free Games Anca Muscholl, Thomas Schwentick, and Luc Segoufin
- [4] Computing Game Design with Automata Theory Noman Sohaib Qureshi, Hassan Mushtaq, Muhammad Shehzad Aslam, Muhammad Ahsan, Mohsin Ali and Muhammad Aqib Atta
- [5] Summary for Context Free Games Lukáš Holík, Roland Meyer and Sebastian Muskalla