2CSSID-TP01. Prétraitement

- Binôme 01:....
- Binôme 02:....

```
In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
```

In [2]: **from** typing **import** Tuple

I. Réalisation des algorithmes

Cette partie sert à améliorer la compréhension des algorithmes de préparation de données vus en cours en les implémentant à partir de zéro. Pour ce faire, on va utiliser la bibliothèque numpy qui est utile dans les calcules surtout matricielles.

I.1. Normalisation

Ici, on va réaliser les deux fonctions de nomalisation : standard et min-max. On va prendre une matrice X[N,M] de N échantillons et M colonnes. La normalisation standard d'une colonne j peut être décrite comme :

$$standard(X_j) = rac{X_j - \mu(X_j)}{\sigma(X_j)}$$

La nomalisation min-max d'une colonne j peut être décrite comme :

$$minmax(X_j) = rac{X_j - min(X_j)}{max(X_j) - min(X_j)}$$

```
In [3]: # TODO compléter la standardisation d'une matrice
       # Entrée : la matrice des données (N échantillons X M caractéristiques)
       # Sortie : vecteur de M moyennes, vecteur de M écart-types, une matrice normalisée
       def norm std(X: np.ndarray) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
           return None, None, None
       # TEST UNITAIRE
       # (array([4. , 3. , 0.5]),
       # array([1.87082869, 2. , 0.5 ]),
      [ 0. , -1. , 1. ]]))
       X = np.array([
          [7, 5, 0],
          [2, 1, 1],
          [3, 5, 0],
          [4, 1, 1],
       1)
       norm std(X)
Out[3]: (array([4., 3., 0.5]),
        array([1.87082869, 2. , 0.5 ]),
        array([[ 1.60356745, 1. , -1.
                                          1,
              [-1.06904497, -1. , 1.
              [-0.53452248, 1. , -1. [ 0. , -1. , 1.
                                            ],
                                               ]]))
In [4]: # TODO compléter la standardisation d'une matrice
       # Entrée : la matrice des données (N échantillons X M caractéristiques)
       # Sortie : vecteur de M max, vecteur de M min, une matrice normalisée
       def norm_minmax(X: np.ndarray) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
           return None, None, None
```

```
# TEST UNITAIRE

# array([7, 5, 1]),

# array([1, 1, 0]),

# [0, 0, 1],

# [0.2, 1, 0],

# [0.4, 0, 1]]))

X = np.array([
    [7, 5, 0],
    [2, 1, 1],
    [3, 5, 0],
    [4, 1, 1],
])

norm_minmax(X)

Out[4]: (array([7, 5, 1]),
```

```
Out[4]: (array([7, 5, 1]),
array([2, 1, 0]),
array([[1. , 1. , 0. ],
[0. , 0. , 1. ],
[0.2, 1. , 0. ],
[0.4, 0. , 1. ]]))
```

I.2. Encodage One-Hot

Etant donné un vecteur A[N] représentant une caractéristique nominale donnée, on veut encoder les valeurs en utilisant One-Hot. Pour faciliter la tâche, on vous donne l'algorithme détaillé :

- 1. Trouver les valeurs uniques dans le vecteur A ; on appele ça : un vocabulaire V
- 2. Créer une matrice X[N,|V|]enrecopiant le vecteur VN\$ fois. Dans python, on peut recopier un vecteur en utilisant l'instruction : [V] * N
- 3. Comparer l'égalité entre chaque ligne de A et chaque ligne (qui est un vecteur) de X.
- 4. Transformer les booléens vers des entiers

```
In [5]: # TODO compléter l'encodage One-Hot
        # Entrée : un vecteur d'une caractéristique (N échantillons)
        # Sortie : vecteur du vocabulaire V, matrice N X |V|
        def one hot(A: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
            V = np.unique(A)
            return V, None
          TEST UNITAIRE
        # (array(['COLD', 'HOT', 'MILD'], dtype='<U4'),
          array([[0, 1, 0],
                 [0, 0, 1],
                 [1, 0, 0],
                [0, 1, 0],
                [0, 0, 1]]))
        A = np.array(['HOT', 'MILD', 'COLD', 'HOT', 'MILD'])
        one hot(A)
Out[5]: (array(['COLD', 'HOT', 'MILD'], dtype='<U4'),</pre>
         array([[0, 1, 0],
                [0, 0, 1],
                [1, 0, 0],
                 [0, 1, 0],
                 [0, 0, 1]]))
```

I.3. Binarisation

Etant donné un vecteur A[N] représentant une caractéristique numérique donnée, on veut encoder les valeurs en 0 ou 1 selon un seuil s. La binarization d'un élément A_i est donnée par :

$$A_i' = \left\{ egin{array}{ll} 1 & ext{si } A_i \geq s \ 0 & ext{sinon} \end{array}
ight.$$

```
In [6]: # TODO compléter la binarisation
# Entrée : un vecteur d'une caractéristique (N échantillons), un nombre
```

Out[6]: array([1, 0, 0, 0, 1, 1])

II. Application et analyse

Cette partie sert à appliquer les algorithmes, modifier les paramètres et analyser les résultats.

II.1. L'ecture des données

On va lire 4 fichiers:

- un fichier CSV avec des colonnes séparées par des virgules
- un fichier CSV avec des colonnes séparées par des point-virgules
- un fichier Sqlite
- un fichier XML

```
In [7]: adult1 = pd.read_csv("data/adult1.csv", skipinitialspace=True)
    adult1.head(10)
```

Out[7]:	[7]: age		workclass	education	Marital-status	occupation	sex	Hours-per-week	class
	0	39.0	State-gov	Bachelors	Never-married	Adm-clerical	Male	40	<=50K
	1	50.0	Self-emp-not-inc	Bachelors	Married-civ-spouse	Exec-managerial	Male	13	<=50K
	2	38.0	Private	HS-grad	Divorced	Handlers-cleaners	Male	40	<=50K
	3	53.0	Private	11th	NaN	Handlers-cleaners	Male	40	<=50K
	4	28.0	Private	Bachelors	Married-civ-spouse	Prof-specialty	Female	40	<=50K
	5	37.0	Private	Masters	Married-civ-spouse	Exec-managerial	Female	40	<=50K
	6	49.0	Private	9th	Married-spouse-absent	Other-service	Female	16	<=50K
	7	52.0	Self-emp-not-inc	HS-grad	Married-civ-spouse	Exec-managerial	Male	45	>50K
	8	31.0	Private	Masters	Never-married	Prof-specialty	Female	50	>50K
	9	42.0	Private	Bachelors	Married-civ-spouse	Exec-managerial	Male	40	>50K

```
In [8]: noms = ["class", "age", "sex", "workclass", "education", "hours-per-week", "marital-status"]
   adult2 = pd.read_csv("data/adult2.csv", skipinitialspace=True, sep=";", header=None, names=noms)
   adult2.head(10)
```

Out[8]:		class	age	sex	workclass	education	hours-per-week	marital-status
	0	Ν	25	F	Private	Some-college	40	Married-civ-spouse
	1	Ν	18	F	Private	HS-grad	30	Never-married
	2	Υ	47	F	Private, Prof-school	60	Married-civ-spouse	NaN
	3	Υ	50	M	Federal-gov	Bachelors	55	Divorced
	4	Ν	47	M	Self-emp-inc	HS-grad	60	Divorced
	5	Υ	43	M	Private	Some-college	40	Married-civ-spouse
	6	Ν	46	M	Private	5th-6th	40	Married-civ-spouse
	7	Ν	35	M	Private	Assoc-voc	40	Married-civ-spouse
	8	Ν	41	M	Private	HS-grad	48	Married-civ-spouse
	9	N,30	М	Private, HS-grad	40	Married-civ-spouse	NaN	NaN

```
In [9]: import sqlite3
#établir la connexion avec la base de données
con = sqlite3.connect("data/adult3.db")
#récupérer le résultat d'une réquête SQL sur cette connexion
adult3 = pd.read_sql_query("SELECT * FROM income", con)

#remplacer les valeurs "?" par NaN de numpy
adult3 = adult3.replace('?', np.nan)
adult3.head(10)
```

Out[9]:		num	age	workclass	education	marital-status	sex	hours-per-day	class
	0	1	76	Private	Masters	married	М	8.0	Υ
	1	2	44	Private	Bachelors	married	М	12.0	Υ
	2	3	47	Self-emp-not-inc	Masters	single	F	10.0	Ν
	3	4	20	Private	Some-college	single	F	8.0	N
	4	5	29	Private	HS-grad	single	М	8.0	N
	5	6	32	Self-emp-inc	HS-grad	married	М	8.0	Υ
	6	7	17	NaN	10th	single	F	6.4	N
	7	8	30	Private	11th	single	М	8.0	Ν
	8	9	31	Local-gov	HS-grad	single	F	8.0	N
	9	10	42	Private	HS-grad	married	М	8.0	Ν

```
In [10]: !pip install lxml
```

Requirement already satisfied: lxml in /opt/penv/ml/lib/python3.8/site-packages (4.9.1)

```
In [11]: from lxml import etree
    #créer le parser et spécifier qu'il doit valider le DTD
    parser = etree.XMLParser(dtd_validation=True)
    #analyser le fichier XML en utilisant ce parser
    arbre = etree.parse("data/adult4.xml", parser)

def valeur_noeud(noeud):
    return noeud.text if noeud is not None else np.nan

noms2 = ["id", "age", "workclass", "education", "marital-status", "sex", "hours-per-week", "class"]
    adult4 = pd.DataFrame(columns=noms2)

for candidat in arbre.getroot():
    idi = candidat.get("id")
    age = valeur_noeud(candidat.find("age"))
```

```
workclass = valeur_noeud(candidat.find("workclass"))
education = valeur_noeud(candidat.find("education"))
marital = valeur_noeud(candidat.find("marital-status"))
sex = valeur_noeud(candidat.find("sex"))
hours = valeur_noeud(candidat.find("hours-per-week"))
klass = valeur_noeud(candidat.find("class"))

adult4 = pd.concat(
    [adult4,
        pd.Series([idi, age, workclass, education, marital, sex, hours, klass],index=noms2).to_frame().T
    ], axis=0, ignore_index=True)
adult4.head(10)
```

Out[11]:

	id	age	workclass	education	marital-status	sex	hours-per-week	class
0	52	47	Local-gov	Some-college	divorced	F	38	N
1	53	34	Private	HS-grad	single	F	40	Ν
2	54	33	Private	Bachelors	single	F	40	Ν
3	55	21	Private	HS-grad	single	М	35	Ν
4	56	52	NaN	HS-grad	divorced	М	45	Υ
5	57	48	Private	HS-grad	married	М	46	N
6	58	23	Private	Bachelors	single	М	40	Ν
7	59	71	Self-emp-not-inc	Some-college	divorced	М	2	Ν
8	60	29	Private	HS-grad	divorced	М	60	Ν
9	61	42	Private	Bachelors	divorced	М	50	Ν

TODO: Analyse

- Que remarquez-vous concernant l'ordre, le nombre et les noms des caractéristiques dans les 4 datasets ?
- Que remarquez-vous à propos des valeurs dans les 4 tables ?

- ...
- ...

II.2. Intégration des données

Dans cette section, on va appliquer des opérations sur les différentes tables. Vous devez à chaque fois figurer ce qu'on a fait et pourquoi.

```
In [12]: # Afficher les noms des colonnes de adult3
         list(adult3.columns)
Out[12]: ['num',
           'age',
           'workclass',
           'education',
           'marital-status',
           'sex',
           'hours-per-day',
           'class'l
In [13]: adult3.rename(columns={"num": "id", "hours-per-day": "hours-per-week"}, inplace=True)
         adult1.rename(columns={"Hours-per-week": "hours-per-week", "Marital-status": "marital-status"}, inplace=True)
         # Afficher les noms des colonnes de adult3
         list(adult3.columns)
Out[13]: ['id',
           'age',
           'workclass',
           'education',
           'marital-status',
           'sex',
           'hours-per-week',
           'class'l
```

TODO: Analyse

- Quelle opération a-t-on appliqué?
- Pourquoi ? (Quel est l'intérêt ?)
- Est-ce qu'en appliquant cette opération, on aura certains problèmes ?

Réponse

- ...
- ...
- ...

```
In [14]: ordre = ["age", "workclass", "education", "marital-status", "sex", "hours-per-week", "class"]
    adult1 = adult1.reindex(ordre + ["occupation"], axis=1)
    #print adult1.head()
    adult2 = adult2.reindex(ordre, axis=1)
    adult3 = adult3.reindex(ordre + ["id"], axis=1)
    adult4 = adult4.reindex(ordre + ["id"], axis=1)

# Afficher les noms des colonnes de adult3
list(adult3.columns)

Out[14]: ['age',
    'workclass',
    'education',
```

TODO: Analyse

'sex',

'class', 'id'l

'marital-status',

'hours-per-week',

- Quelle opération a-t-on appliqué?
- Pourquoi ? (Quel est l'intérêt ?)

Réponse

• ...

• ...

```
In [15]: # Afficher les deux premières lignes de la table adult3
adult3.head(2)
```

Out[15]:

	age	workclass	education	marital-status	sex	hours-per-week	class	id	
0	76	Private	Masters	married	М	8.0	Υ	1	
1	44	Private	Bachelors	married	М	12.0	Υ	2	

In [16]: adult3["hours-per-week"] *= 5
Afficher les deux premières lignes de la table adult3

Out[16]:

	age	workclass	education	marital-status	sex	hours-per-week	class	id	
0	76	Private	Masters	married	М	40.0	Υ	1	
1	44	Private	Bachelors	married	М	60.0	Υ	2	

TODO: Analyse

adult3.head(2)

- Quelle opération a-t-on appliqué?
- Pourquoi ? (Quel est l'intérêt ?)

- ...
- ...

```
In [17]: adult34 = pd.concat([adult3, adult4], ignore_index=True)
adult34.head(10)
```

Out[17]:		age	workclass	education	marital-status	sex	hours-per-week	class	id
	0	76	Private	Masters	married	М	40.0	Υ	1
	1	44	Private	Bachelors	married	М	60.0	Υ	2
	2	47	Self-emp-not-inc	Masters	single	F	50.0	N	3
	3	20	Private	Some-college	single	F	40.0	N	4
	4	29	Private	HS-grad	single	М	40.0	Ν	5
	5	32	Self-emp-inc	HS-grad	married	М	40.0	Υ	6
	6	17	NaN	10th	single	F	32.0	N	7
	7	30	Private	11th	single	М	40.0	N	8
	8	31	Local-gov	HS-grad	single	F	40.0	Ν	9
	9	42	Private	HS-grad	married	М	40.0	N	10

- Quelle opération a-t-on appliqué?
- Pourquoi ? (Quel est l'intérêt ?)

- ...
- ...

```
In [18]: # Transformer le champs "id" à un entier
    adult34["id"] = pd.to_numeric(adult34["id"], downcast="integer")
# Ordonner la table en se basant sur les valeurs de "id"
    adult34 = adult34.sort_values(by="id")

# L'opération que vous devez deviner (une opération de vérification)
```

red = adult34[adult34.duplicated("id", keep=False)]
red

Out[18]:

449445
45
95
46
96
47
97
48
98
49
99
96 47 97 48 98 49

TODO: Analyse

- Quelle opération a-t-on appliqué?
- Pourquoi ? (Quel est l'intérêt ?)

- ...
- ...

```
In [19]: # Il y a un problème avec cette forme
# en attendant qu'il soit réglé
#adult34 = adult34.groupby("id").ffill()

adult34.update(adult34.groupby(['id']).ffill())

adult34.update(adult34.groupby(['id']).bfill())

# L'opération de vérification précédente
red = adult34[adult34.duplicated("id", keep=False)]
red
```

Out[19]:

	age	workclass	education	marital-status	sex	hours-per-week	class	id
4	4 70	Private	Some-college	single	М	40.0	Ν	45
9	4 70	Private	Some-college	single	М	8	Ν	45
4	5 31	Private	HS-grad	single	F	30.0	Ν	46
9	5 31	Private	HS-grad	single	F	6	N	46
4	6 22	Private	Some-college	married	М	24.0	Ν	47
9	6 22	Private	Some-college	married	М	4.8	Ν	47
4	7 36	Private	HS-grad	widowed	F	24.0	Ν	48
9	7 36	Private	HS-grad	widowed	F	4.8	N	48
4	8 64	Private	11th	married	М	40.0	Ν	49
9	8 64	Private	11th	married	М	8	Ν	49
4	9 43	Federal-gov	Some-college	divorced	F	40.0	Ν	50
9	9 43	Federal-gov	Some-college	divorced	F	8	Ν	50

TODO: Analyse

• Quelle opération a-t-on appliqué?

• Pourquoi ? (Quel est l'intérêt ?)

Réponse

```
• ...
```

• ...

```
In [20]: adult34.drop_duplicates("id", keep="last", inplace=True)

# On refait la même opération précédente
red = adult34[adult34.duplicated("id", keep=False)]
red
```

 $\hbox{\tt Out[20]:} \qquad \hbox{\tt age} \quad \hbox{\tt workclass} \quad \hbox{\tt education} \quad \hbox{\tt marital-status} \quad \hbox{\tt sex} \quad \hbox{\tt hours-per-week} \quad \hbox{\tt class} \quad \hbox{\tt id}$

TODO: Analyse

- Quelle opération a-t-on appliqué?
- Pourquoi ? (Quel est l'intérêt ?)

- ...
- ...

```
In [21]: list(adult1.columns)
```

```
In [22]: adult1.drop(["occupation"], axis=1, inplace=True)
         adult34.drop(["id"], axis=1, inplace=True)
         list(adult1.columns)
Out[22]: ['age',
           'workclass',
           'education',
           'marital-status',
           'sex',
           'hours-per-week',
           'class'l
         TODO: Analyse
           • Quelle opération a-t-on appliqué?
           • Pourquoi ? (Quel est l'intérêt ?)
         Réponse
In [23]: # les différentes valeurs du colonne adult1.marital-status
         adult1["marital-status"].unique()
Out[23]: array(['Never-married', 'Married-civ-spouse', 'Divorced', nan,
                 'Married-spouse-absent', 'Separated', 'Married-AF-spouse'],
                dtype=object)
In [24]: dic = {
              "Never-married": "single",
              "Married-civ-spouse": "married",
              "Married-spouse-absent": "married",
              "Married-AF-spouse": "married",
              "Divorced": "divorced",
              "Separated": "divorced",
              "Widowed": "widowed"
```

```
adult1["marital-status"] = adult1["marital-status"].map(dic)
adult2["marital-status"] = adult2["marital-status"].map(dic)

# les différentes valeurs du colonne adult1.marital-status après mappage
adult1["marital-status"].unique()
```

Out[24]: array(['single', 'married', 'divorced', nan], dtype=object)

TODO: Analyse

- Quelle opération a-t-on appliqué?
- Pourquoi ? (Quel est l'intérêt ?)

Réponse

- ...
- ...

Out[25]: (194, 7)

```
In [25]: # On va appliquer la même opération sur d'autres caractéristiques
adult1["sex"] = adult1["sex"].map({"Female": "F", "Male": "M"})
adult1["class"] = adult1["class"].map({"<=50K": "N", ">50K": "Y"})

# Ensuite, on fusionne les tables dans une seule
adult = pd.concat([adult1, adult2, adult34], ignore_index=True)

# dimension de la table adult
adult.shape
```

II.3. Nétoyage des données

Ici, on va appliquer des opérations de nétoyage. C'est à vous de déviner quelle opération a-t-on utilisé et pourqoi.

```
In [26]: # Afficher le nombre des valeurs nulles dans chaque colonne
adult.isnull().sum()
```

```
Out[26]: age
                              5
          workclass
                            10
          education
                             1
          marital-status
                              4
          sex
                              2
          hours-per-week
                              2
          class
          dtype: int64
In [27]: adult.dropna(subset=["workclass", "education", "marital-status", "sex", "hours-per-week", "class"], inplace=True)
         adult.isnull().sum()
Out[27]: age
          workclass
          education
          marital-status
          sex
          hours-per-week
          class
          dtype: int64
         TODO: Analyse
           • Quelle opération a-t-on appliqué?
           • Pourquoi ? (Quel est l'intérêt ?)
         Réponse
           • ...
         adult["age"] = pd.to_numeric(adult["age"])
```

adult["age"] = adult.groupby(["class", "education"])["age"].transform(lambda x: x.fillna(int(round(x.mean()))))

adult.isnull().sum()

```
Out[28]: age workclass 0 education 0 marital-status sex hours-per-week class 0 dtype: int64
```

- Quelle opération a-t-on appliqué?
- Pourquoi ? (Quel est l'intérêt ?)

Réponse

- ...
- ...

II.4. Transformation des données

```
Out[30]: array([[6.], [6.], [8.], [6.], [9.], [3.]])
```

- Quel est le type d'encodage utilisé?
- A votre avis, dans quel cas peut-on utiliser ce type d'encodage?

```
• ...
```

```
In [31]: adult["sex"].head(6)
Out[31]: 0
              Μ
              М
              М
              F
              F
         Name: sex, dtype: object
In [32]:
         from sklearn.preprocessing import OneHotEncoder
         onehot enc = OneHotEncoder()
         # le résultat c'est un numpy.ndarray
         sex_enc = onehot_enc.fit_transform(adult[["sex"]])
         sex_enc.toarray()[:6,]
Out[32]: array([[0., 1.],
                 [0., 1.],
                 [0., 1.],
                 [1., 0.],
                 [1., 0.],
                 [1., 0.]]
```

- Quel est le type d'encodage utilisé?
- A votre avis, dans quel cas peut-on utiliser ce type d'encodage?

```
In [33]: adult["hours-per-week"] = pd.to numeric(adult["hours-per-week"])
         adult["hours-per-week"].head(3)
Out[33]: 0
              40.0
              13.0
               40.0
          Name: hours-per-week, dtype: float64
In [34]: from sklearn.preprocessing import MinMaxScaler
         min max scaler = MinMaxScaler()
         # le résultat c'est un numpy.ndarray
         hours per week prop = min max scaler.fit transform(adult[["hours-per-week"]])
         hours per week prop[:3,]
Out[34]: array([[0.49367089],
                 [0.15189873],
                 [0.49367089]])
In [35]: # pour ajouter la nouvelle caractéristique au dataframe
         adult["hours-per-week-prop"] = hours per week prop
         adult.head(3)
```

Out[35]:		age	workclass	education	marital-status	sex	hours-per-week	class	hours-per-week-prop
	0	39.0	State-gov	Bachelors	single	М	40.0	Ν	0.493671
	1	50.0	Self-emp-not-inc	Bachelors	married	М	13.0	N	0.151899
	2	38.0	Private	HS-grad	divorced	М	40.0	Ν	0.493671

- Comment la normalisation MinMax est calculée ?
- Décrire les valeurs résultats (plage de valeurs, etc.)?
- Est-ce que les valeurs du dataset de test sont garanties d'être dans la plage?
- Si oui, expliquer pouruoi. Si non, comment garantir la plage des valeurs?

- ...
- ...
- ...
- ..

```
Out[37]: array([[0.3442623], [0.52459016], [0.32786885]])
```

- Comment la normalisation standard est calculée ?
- Décrire les valeurs résultats (plage de valeurs, etc.)?

- ...
- ...

```
In [38]: adult["age"].head(10)
Out[38]: 0
                39.0
               50.0
               38.0
               28.0
               37.0
               49.0
               52.0
               31.0
               42.0
               43.0
          10
         Name: age, dtype: float64
In [39]: from sklearn.preprocessing import Binarizer
         binarizer = Binarizer(threshold=40)
         # le résultat c'est un numpy.ndarray
         age_bin = binarizer.fit_transform(adult[["age"]])
         age_bin[:10,]
```

- Quelle est l'opération appliquée ici?
- Quel est son rôle?

- ...
- ...