LES SUITES NUMÉRIQUES E07C

EXERCICE N°3 Du concret : Héritage

Mathilde a reçu 80 000 € en héritage. Elle décide de placer cette somme et trouve un placement au taux de 8%. Mais chaque année, elle doit retirer 4000 € pour payer les impôts dus à ce placement. On appelle C_n le capital acquis au bout de n années de placement.

1) Expliquer pourquoi $(C_n)_{n \in \mathbb{N}^*}$ vérifie la relation suivante: $C_{n+1} = 1.08 \times C_n - 4000$.

Une augmentation de 8 % correspond à un coefficient multiplicateur valant 1,08.

Ainsi, chaque année le capital est multiplié par 1,08. Ensuite Mathilde retire 4000 € à ce nouveau montant pour payer les impôts.

Au final pour passer d'un terme au suivant, on multiplie le terme par 1,08 puis on enlève 4000 au résultat : $C_{n+1} = 1,08 \times C_n - 4000$.

2) Calculer à la calculatrice les premiers termes de cette suite. Est-elle arithmétique ? Géométrique?

On peut utiliser la calculatrice... En général trois termes suffisent

Calculons les trois premiers termes :

$$C_0 = 80\,000$$
;

$$C_1 = 1.08 \times 80\,000 - 4000$$
, ainsi $C_1 = 82\,400$

$$C_2 = 1,08 \times 82400 - 4000$$
, ainsi $C_2 = 84992$

• Montrons que la suite n'est pas arithmétique :

Bien sûr, on a d'abord fait les calculs au brouillon pour savoir où l'on va...

$$C_1 - C_0 = 82400 - 80000 = 2400$$

$$C_2 - C_1 = 84922 - 82400 = 2592$$

Les différence successives ne sont pas toutes égales donc la suite ne peut pas être arithmétique.

Montrons que la suite n'est pas géométrique :

Bien sûr, on a d'abord fait les calculs au brouillon pour savoir où l'on va...

$$\frac{C_1}{C} = \frac{82400}{80000} = 1,03$$

$$\frac{C_2}{C_1} = \frac{84992}{82400} \approx 1,031$$

Les quotients successifs ne sont pas tous égaux donc la suite ne pas être géométrique.

- 3) On considère la suite auxiliaire (U_n) définie par : $U_n = C_n 50\,000$.
- Montrer que (U_n) est une suite géométrique dont on précisera les caractéristiques.

$$U_0 = C_0 - 50\,000 = 80000 - 50000 = 30000$$

• Soit $n \in \mathbb{N}$,

$$U_{n+1} = C_{n+1} - 50\,000$$

$$= 1,08\,C_n - 4000 - 50000$$

$$= 1,08\,C_n - 54000$$

$$= 1,08\left(C_n - \frac{54000}{1,08}\right)$$

« Astuce » à retenir : on met « de force » en facteur et

$$= 1,08(C_n - 50000) \blacktriangleleft$$

$$= 1,08 U_n$$

On reconnaît une suite géométrique de raison q = 1.08 et de premier terme

$$U_0 = 30000$$

3.b) Exprimer U_n puis C_n en fonction de n.

Pour tout $n \in \mathbb{N}$,

$$U_n = C_n - 50000 \Leftrightarrow C_n = U_n + 50000$$

Or, d'après la question précédente la suite U est géométrique et on peut écrire $U_n = 30000 \times 1,08^n$.

Donc, en remplaçant :

$$C_n = 30000 \times 1,08^n + 50000$$

3.c) De quelle somme Mathilde disposera-t-elle au bout de 5 ans ?

Il s'agit de calculer C_5

$$C_5 = 30000 \times 1,08^5 + 50000 \approx 94079,84$$

Mathilde disposera d' environ 94 079,84 € .

3.d) Mathilde veut acheter une maison à 180000 €. Combien d'années devra-t-elle attendre avant de disposer de cette somme ?

Avec l'aide de la calculatrice,

$$C_{19} \approx 179041,03$$
 et $C_{20} \approx 189828,71$

Il est important de montrer que $\,C_{20}\,$ est bien le premier terme qui convient, c'est pour cela qu'il faut donner la valeur de $\,C_{19}\,$.

On en déduit que Mathilde devra attendre 20 ans