ESc201: Introduction to Electronics

Amit Verma

Dept. of Electrical Engineering

IIT Kanpur

Recap: Techniques of Circuit Analysis

Nodal Analysis

- 1. Identify and number the nodes
- 2. Pick Ground node/Reference node wisely, if it is not already specified
- 3. Writing KCL Equations in Terms of the Node Voltages

Mesh Analysis

- 1. Assign mesh currents i₁, i₂, ..., in to the n meshes.
- Apply KVL to each of the n meshes. Use Ohm's law to express the voltages in terms of the mesh currents.
- 3. Solve the resulting n simultaneous equations to get the mesh currents.

Superposition Method for Linear Circuits

The superposition principle states that the total response is the sum of the responses to each of the independent sources acting individually.

Thévenin Equivalent Circuits

Thévenin equivalent circuit

Thévenin Equivalent Circuits

We can apply Thevenin's theorem to any part of the circuit

Thévenin Equivalent Circuits

What is V_t ?

circuit

Thévenin Equivalent Circuits

What is R_t?

$$R_{t} = \frac{V_{t}}{i_{sc}} = \frac{v_{oc}}{i_{sc}}$$

Thévenin equivalent circuit

circuit

Examples

$$V_t = v_{oc}$$

$$V_{t} = \frac{R_{2}}{R_{2} + R_{1}} \times 15 = 5$$

$$i_{sc} = \frac{v_s}{R_1} = 0.15A$$

$$R_{t} = \frac{v_{oc}}{i_{sc}} = 33.3\Omega$$

$$V_t = 5$$

$$R_t = 33.3\Omega$$

Finding the Thévenin Resistance Directly

Suppose we turnoff all independent sources in the circuit

Finding the Thévenin Resistance Directly

- 1. Turn off independent sources in the original network:
 - -A voltage source becomes a short circuit
 - -A current source becomes an open circuit

2. Compute the resistance between the terminals

Find Thevenin resistance for each of the circuits shown below

10 V

$$V_{OC} = V_t = \frac{20}{20+5} \times 10 = 8$$

$$i_{sc} = \frac{10}{5 + (10 \parallel 20)} \cdot \frac{20}{20 + 10} = \frac{20}{35}$$

$$R_{t} = \frac{v_{oc}}{i_{sc}} = \frac{8 \times 35}{20} = 14$$

 10Ω

Find Thevenin resistance for each of the circuits shown below

Find Thevenin resistance for each of the circuits shown below

$$R_{\rm t} = ((20||5)+6)||10) = 5$$

Circuit with dependent Sources

How do we find I_N ?

How do we find R_N ?

Example: Find the Norton equivalent for the following circuit

$$\frac{v_x}{4} + \frac{v_{oc} - 15}{R_1} + \frac{v_{oc}}{R_2 + R_3} = 0$$

$$v_x = \frac{R_3}{R_2 + R_3} v_{oc} = 0.25 v_{oc}$$

$$v_{\rm oc} = 4.62 \text{V}$$

$$i_{sc} = \frac{v_s}{R_1} = \frac{15 \text{ V}}{20\Omega} = 0.75 \text{A}$$

$$R_t = \frac{v_{oc}}{i_{tot}} = \frac{4.62 \text{V}}{0.75 \text{A}} = 6.15 \Omega$$

$$v_{\rm oc} = 4.62 \mathrm{V}$$

$$R_t = 6.15 \Omega$$

Using Thevenin's theorem, find the equivalent circuit to the left of the terminals in the circuit shown below. Hence find i.

Use Superposition

$$v_{oc} = 6V$$

$$V_{oc} = V_{oc1} + V_{oc2} = 6$$

$$V_{oc1} = \frac{4}{4+12} \times 12 = 3$$

$$V_{oc2} = 4 \times \left(2 \times \frac{6}{6+10}\right) = 3$$

Source Transformation

Example $5\,\Omega$ 20 V $R_1 = 5 \Omega$ $R_2 = 10 \Omega$ $R_1 = 4$ 5Ω $R_2 = \begin{cases} R_2 = \\ 10 \Omega \end{cases}$ **)** 1 A 20 V (10 V

Use source transformation to solve for the indicated currents

Maximum Power Transfer for dc circuits

What value of R_L will give rise to maximum load power?

$$I = \frac{V_S}{R + R_L}$$

$$P_{L} = I^{2}R_{L} = V_{S}^{2} \times \frac{R_{L}}{(R + R_{L})^{2}}$$

$$\frac{\partial P_L}{\partial R_L} = 0$$

$$R_L = R$$

$$P_{L\max} = \frac{V_S^2}{4R_L}$$

$$R_L = 1K \Longrightarrow P_L = 6.25mW$$

$$R_L = 10K \Longrightarrow P_L = 2mW$$

$$R_L = 0.2K \Longrightarrow P_L = 3.47 mW$$

Maximum power is delivered to the load when $R_L = R$

General Case

Maximum power is delivered to the load when $R_L = R_t$

Summary

Series/Parallel resistances

$\gtrsim R_2$ $v_{ m total}$

Voltage division

$$v_2 = R_2 i = \frac{R_2}{R_1 + R_2 + R_3} v_{\text{total}}$$

1 A

$$i_2 = \frac{v}{R_2} = \frac{R_1}{R_1 + R_2} i_{\text{total}}$$

Mesh Analysis

- Assign mesh currents i_1 , i_2 , ..., in to the n meshes.
- 2. Apply KVL to each of the n meshes. Use Ohm's law to express the voltages in terms of the mesh currents.
- Solve the resulting n simultaneous equations to get the mesh currents.

Nodal Analysis:

- Identify and number the nodes
- Choose a reference node
- Write KCL for each node such that

Sum of currents leaving a node is

Super node R

Source Transformation

The **superposition principle** states that the total response is the sum of the responses to independent sources acting each of the individually.

Labs

Link for Handouts:

https://iitk-my.sharepoint.com/:f:/g/personal/mnisha_iitk_ac_in/EmZwnMY48-NGmHIMZ7ZmXyEBhKhAR4qfJhuSYm03pHGDIA?e=W8AXrz

Weekly Schedule:

Week	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	M1 - M4	Tu1 - Tu4	W1 - W4	Th1 - Th4	F1 - F4	
00: A01-A05						
01: A08-A12	E1	Moharram	E1	E1	E1	E1 (Tu)
02: A15-A19	Indep. Day	E2	E2	E2	Janmashtami	E2 (M)
03: A22-A26	E3	E3	E3	E3	E2	E3 (F)
04: A29-S02	E4	E4	E4	E4	E4	
05: S05-S09	E5	E5	E5	E5	E5	
06: S12-S16	Make Up					
07: S19-S23	Mid Semester Exam					
08: S26-S30	E6	E6	E6	E6	E6	
09: 003-007	Mid Semester Recess					
10: 010-014	E7	E7	E7	E7	E7	
11: 017-021	E8	E8	E8	E8	E8	
12: 024-028	Diwali	E9	E9	E9	E9	E9 (M)
13: O31-N04	Makeup					
14: N07-N11	Lab Examination					
15: N14-N18	End Semester Exam					
16: N21-N25	End Semester Exam					

Link to youtube videos for labs have also been provided in resources document