Sequence logos

- Visual representation of positional matrices and "simple" HMM profiles
- Height of each character is proportional to its information content

Sequence logos

- 2 bits if 1 base occurs in all input sequences
- 1 bit if two bases occur 50%
- 0 bits if all bases occur equally

Sequence logos

Height of base b at position I

$$f(b, l)R_{sequence}(l)$$

where

$$R_{sequence}(l) = 2 - (H(l) + e(n))$$

$$H(l) = -\sum_{b=a}^{t} f(b, l) \log_2 f(b, l)$$

Shannon entropy

 $\frac{1}{\ln 2} \times \frac{4-1}{2n}$

- Two scenarios
 - Find known motifs (pattern matching)
 - Protein X binds the region upstream gene Y
 - The binding is significant?
 - Discover new motifs (pattern discovery)
 - Which are the motifs upstream of gene Y?
 - Which is the structure of these motifs?

- Known motifs are stored in online databases
 - Multicellular organisms:
 - Transfac
 - Pazar
 - Jaspar
 - Yeast:
 - Yeastract
 - SCPD
 - Procariots:
 - RegulonDB
 - Prodoric
 - Other
 - UniProbe

TATCAACATGTCGTATACCAACCTTCAACCATGTCTCAACATGTCGCG GGTGTGCCTCCGGACCATGTCTAAGGGGTGTAAGGGTACTAACGAA TCGTAGCATGTCCAGAGGTGCGGAGTACGTAAGGAGGGTGCCCAT ACATGTCCGTTTCATATGAGTGCGCCTGCATTAATGTACCAACCTTCA ACCATGTCTCAACATGTCGCGGGTGTGCCTCCACGTACGAGCCGG AAGTCGACTCGCATGTCTGTAGGTGCGGAGTACGTAAGGAGGGTG CCCATACATGTCCGTTTCATATGAGCCTG

	1	2	3	4	5	6	7	8	9
Α	-inf	1.38	-inf	0.69	0.99	-inf	1.38	1.20	-0.39
C	-inf	-inf	-0.39	-inf	-0.39	-inf	-inf	-inf	0.31
G	-inf	-inf	-inf	0.69	-inf	-inf	-inf	-0.39	0.31
Т	1.38	-inf	1.20	-inf	-0.39	1.38	-inf	-inf	-0.39

PSEUDOCOUNTS!!!

	1	2	3	4	5	6	7	8	9
Α	-3	1.38	-3	0.69	0.99	-3	1.38	1.20	-0.39
					-0.39				
					-3				
Т	1.38	-3	1.20	-3	-0.39	1.38	-3	-3	-0.39

	1	2	3	4	5	6	7	8	9
Α	-3	1.38	-3	0.69	0.99	-3	1.38	1.20	-0.39
C	-3	-3	-0.39	-3	-0.39	-3	-3	-3	0.31
G	-3	-3	-3	0.69	-3	-3	-3	-0.39	0.31
Т	1.38	-3	1.20	-3	-0.39	1.38	-3	-3	-0.39

	1	2	3	4	5	6	7	8	9
Α	-3	1.38	-3	0.69	0.99	-3	1.38	1.20	-0.39
					-0.39				
G	-3	-3	-3	0.69	-3	-3	-3	-0.39	0.31
Т	1.38	-3	1.20	-3	-0.39	1.38	-3	-3	-0.39

$$P(S | M) = -3.24$$

	1	2	3	4	5	6	7	8	9
A	-3	1.38	-3	0.69	0.99	-3	1.38	1.20	-0.39
C	-3	-3	-0.39	-3	-0.39	-3	-3	-3	0.31
G	-3	-3	-3	0.69	-3	-3	-3	-0.39	0.31
Т	1.38	-3	1.20	-3	-0.39	1.38	-3	-3	-0.39

$$P(S | M) = -9.62$$

	1	2	3	4	5	6	7	8	9
Α	-3	1.38	-3	0.69	0.99	-3	1.38	1.20	-0.39
C	-3	-3	-0.39	-3	-0.39	-3	-3	-3	0.31
G	-3	-3	-3	0.69	-3	-3	-3	-0.39	0.31
Т	1.38	-3	1.20	-3	-0.39	1.38	-3	-3	-0.39

$$P(S | M) = 9.91$$

De-novo motifs identification

- Given a set of sequences
- Find the most represented motifs
- Methods:
 - Oligo-Analysis, Weeder
 - MEME
 - Gibbs sampler, MotifSampler

De-novo motifs identification

MEME suite

Align to a custom matrix or IUPAC string ?

```
A [13 13 3 1 54 1 1 1 0 3 2 5]
C [13 39 5 53 0 1 50 1 0 37 0 17]
G [17 2 37 0 0 52 3 0 53 8 37 12]
T [11 0 9 0 0 0 0 52 1 6 15 20]
```

Reset

Fill in an example matrix

Align

				JASPAR matr	ix models:			
TOGGLE	ID	name	species	class	family	score	percent_score	Sequence logo
•	MA0500.1	Myog	10090	Basic helix-loop- helix factors (bHLH)	MyoD / ASC- related factors	20.65	93.8636363636364	2
•	MA0499.1	Myod1	10090	Basic helix-loop- helix factors (bHLH)	MyoD / ASC- related factors	20.5233	85.51375	2
•	MA0521.1	Tcf12	10090	Basic helix-loop- helix factors (bHLH)	E2A-related factors	20.4411	92.9140909090909	2 ACAGC TG T 1 2 3 4 5 6 7 8 9 10 11 Click to view details
	MA0697.1	zic3 2016	9606	C2H2 zinc finger factors	More than 3 adjacent zinc finger factors	20.046	83.525	2 1 2 1 2 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1