Examen scris Structuri Algebrice în Informatică 25/01/2021

Nume:	Punctaj parţial 1
Prenume:	Punctaj parțial 2

IMPORTANT!!. Punctul din oficiu este acordat pentru aflarea lui a şi b pe care, ulterior, le veţi înlocui în toate enunţurile problemelor. Pe foile voastre de examen veţi scrie enunţurile problemelor cu a şi b înlocuite cu valorile anterior determinate.

$$a = \dots,$$
 $b = \dots,$

unde

- (1) a este egal cu maximul dintre numerele de litere ale cuvintelor care compun numele vostru de familie. (de exemplu, dacă numele de familie este Popescu-Simion atunci a=7, maximul dintre 7 (nr. de litere al cuvântului Popescu) și 6 (nr. de litere al cuvântului Simion); dacă numele de familie este Moisescu atunci a=8)
- (2) b este egal cu maximul dintre numerele de litere ale cuvintelor care compun prenumele vostru. (de exemplu, dacă prenumele este Andreea-Beatrice-Luminița atunci b=8, maximul dintre 7 (nr. de litere al cuvântului Andreea) și 8 (nr. de litere atât al cuvântului Beatrice cât și al cuvântului Luminița).)

Problema	Punctaj	Total
1	1	
2	1	
3	1	
4	1	
5	1	
6	1	
7	1	
8	1	
9	1	
oficiu	1	
Total	10	

Justificați toate răspunsurile!

- 1. Există permutări de ordin $a \cdot b 1$ în grupul de permutări S_{a+b} ?
- 2. Se consideră permutarea $\sigma = (1, \dots, a)(a+1, \dots, a+b)$, un produs de 2 cicli disjuncți de lungime a, respectiv b, din S_{a+b} . Determinați toate permutările $\tau \in S_{a+b}$ astfel încât $\tau^3 = \sigma$.
- 3. Calculați $a^{a^{b^b}} \pmod{31}$.
- 4. Considerăm polinomul cu coeficienți întregi $P(X) = X^3 aX + b$. Determinați dacă polinomul P(X) este ireductibil în $\mathbb{Q}[X]$.
- 5. Determinați numărul elementelor de ordin 8 din grupul produs direct $(\mathbb{Z}_{2^a}, +) \times (\mathbb{Z}_{2^b}, +)$.
- 6. Fie p cel mai mic număr prim din descompunerea în factori primi a lui a și q cel mai mare număr prim mai mic sau egal cu a+b, diferit de p. Pentru un număr natural nenul n notăm cu $\exp_p(n)$ exponentul la care apare p în descompunerea în factori primi a lui n. Considerăm pe $\mathbb N$ relația binară ρ dată astfel: $m\rho n$ dacă $\exp_p(n) = \exp_p(m)$ și $\exp_q(n) = \exp_q(m)$. Să se arate că ρ este relație de echivalență, să se calculeze clasele de echivalență ale lui a și b și să se determine un sistem complet de reprezentanți pentru această relație de echivalență.
- 7. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$ definită astfel:

$$f(x) = \begin{cases} ax + b(1+a), & \text{dacă } x < -b, \\ ax^2 + 2a(a-1)x + a^3 - 2a^2 + a + b, & \text{dacă } x \ge -b. \end{cases}$$

Decideţi dacă funcţia f este injectivă, surjectivă, respectiv bijectivă. Calculaţi $f^{-1}([-b-1,b+1])$.

- 8. Demonstrați că inelul factor $\mathbb{Q}[X]/(X^2-a^2-a)$ este izomorf cu inelul $(\mathbb{Q}[\sqrt{a^2+a}],+,\cdot)$, unde $\mathbb{Q}[\sqrt{a^2+a}]=\{\alpha+\beta\sqrt{a^2+a}|\alpha,\beta\in\mathbb{Q}\}.$
- 9. Determinați constantele $c, d \in \mathbb{Q}$ astfel încât polinoamele $X^b aX + 1$ și cX + d să fie în aceeași clasă de echivalență în inelul $\mathbb{Q}[X]/(X^2 a^2 a)$.