

UbiLAB-Erasmus+

Faculty of Electrical Engineering and Computer Science

University of Maribor

8.11-12.11.2021

Networked Control Systems and Remote Laboratories

Erasmus+ project no. 2020-1-MK01-KA226-HE-094548

Introduction

- System design
 - Hardware selection
 - Firmware development
 - Mathematical modelling
 - Testing
- Communication properties (TCP/IP, UDP, OPC...)
- Protocol development for NCS
- NCS Control system structure
- NCS Controller design

Wind Levitation System-WLS

- Wind tube
- Floater levitating object
- Wind force controller
- Distance sensor

Mathematical Modeling of WLS

Second Newton law of motion:

$$m\ddot{h} = -mg + F_{fan}$$

Second order differential equation:

$$\ddot{h} = -g + \frac{1}{m} F_{fan}$$

State space equations:

$$x_1 = x_2,$$

$$\dot{x_2} = -g + \frac{1}{m} F_{fan}$$

where is: $F_{fan} \approx \frac{1}{2} \varrho v_1^2 S$

ho-air density, v- air velocity, S-cross surface

Wind Levitation System-Hardware

Hardware

- STM32F767 platform (NUCLEO-dev. board)
- VL53L0X ToF distance sensor
- Brushless wind thruster Wind turbine 14V- 80W
- Brushless controller 10A/16V
- Power supply 14V/4A
- Floater 40g

NCS Control System Structure of WLS

NCS network architecture

NCS feedback structure

- UDP protocol (LwIP-stack)
- Data transmission:
 - Height measurement (floater)
 - Velocity measurement
 - Turbine speed estimation
 - Round trip time measurements (RTT)
 - Server (UDP client/server)
 - Matlab script support
 - Matlab Simulink support
 - Python
 - Labview

Wind Levitation System-WLS

- Wind tube
- Floater levitating object
- Wind force controller
- Distance sensor

Dual Temperature Control System - DTCS **ÜbiLAB**

Heater TIP31C

- Heater TIP31C power transistor
- Temperature sensor LM60
- SMT32F7 LwIP-stack
- Power Supply 5V/2A

https://apmonitor.com/pdc/index.php/Main/ArduinoModeling

Energy balance equation:

$$m\,c_prac{dT}{dt}=\sum \dot{h}_{in}-\sum \dot{h}_{out}+Q$$

Extended form with convection and radiation terms:

$$m\,c_prac{dT}{dt}=U\,A\,\left(T_\infty-T
ight)+\epsilon\,\sigma\,A\,\left(T_\infty^4-T^4
ight)+lpha Q$$

Quantity	Value
Initial temperature (T_0)	296.15 K (23°C)
Ambient temperature ($T\infty$)	296.15 K (23°C)
Heater output (Q)	0 to 1 W
Heater factor (α)	0.01 W/(% heater)
Heat capacity (C_p)	500 J/kg-K
Surface Area (A)	1.2x10 ⁻³ m ² (12 cm ²)
Mass (m)	0.004 kg (4 gm)
Overall Heat Transfer Coefficient (U)	10 W/m ² -K
Emissivity (ε)	0.9
Stefan Boltzmann Constant (σ)	5.67x10 ⁻⁸ W/m ² -K ⁴

Mathematical Modeling of the Dual Heater System (DTCS) – MIMO case

Input 1 Input 2

Energy balance equations:

$$m\,c_prac{dT_1}{dt} = U\,A\,\left(T_\infty - T_1
ight) + \epsilon\,\sigma\,A\,\left(T_\infty^4 - T_1^4
ight) + Q_{C12} + Q_{R12} + lpha_1Q_1$$

$$m\,c_prac{dT_2}{dt} = U\,A\,\left(T_\infty - T_2
ight) + \epsilon\,\sigma\,A\,\left(T_\infty^4 - T_2^4
ight) - Q_{C12} - Q_{R12} + lpha_2Q_2$$

where convection and radiative heat transfer between the two heating elements are:

$$Q_{C12} = U A_s \ (T_2 - T_1)$$

$$Q_{R12}=\epsilon\,\sigma\,A\,\left(T_2^4-T_1^4
ight)$$

Quantity	Value
Heater output (Q ₁)	0 to 1 W
Heater factor (α1)	0.01 W/(% heater)
Heater output (Q ₂)	0 to 1 W
Heater factor (α2)	0.0075 W/(% heater)
Surface Area Not Between Heaters (A)	1.0x10 ⁻³ m ² (10 cm ²)
Surface Area Between Heaters (A₅)	2x10 ⁻⁴ m ² (2 cm ²)

NCS Control System Structure of DTCS UbiLAB

NCS network architecture

NCS feedback structure

- UDP protocol (LwIP-stack)
- Data transmission:
 - Temeprature measurements
 - Round trip time measurements (RTT)
 - Server (UDP client/server)
 - Matlab script support
 - Matlab Simulink support
 - Python
 - Labview

NCS Control System Structure over WebSocket protocol

- Possible integration on different platforms
- Secure
- Fast data exchange
- Real-time operation
- Extension to different MOOC platforms
 - Remote laboratories
 - Collaborative learning
 - E-learning
- Support of different development programming environments
 - C/C++
 - Javascript
 - Matlab script
 - Matlab Simulink
 - Python
 - Labview

NCS Control System Structure over WebSocket protocol

WebSocket Server – Gateway and Embedded System

ÜbiLAB

Internet

- Real-time data strimming (parameters and measurements) with low latency
- Bidirectional communication over Serial or UDP protocol. Communication between Controlled System and WebSocket server

Estimated latency for fixed data length of 200Bytes

< 2ms (for serial) and UDP (with remote server) <

10ms

Data transmission with time-badges for Network-

Controlled System

Embedded

delay estimation

CRC data encoding

Python WebSocket server

Network

TCP/IP

WebSocket Server and Security

- Real-time data strimming
- Secure connection with SSL-Certificate
- Registered domain on Institute for Automation-University of Maribor
- Network delay of approx. 40ms.
- Client request data from the server
- Purposeful data package for network delay estimation
- Package Round-Trip-Time (RTT) measurement for system safety and emergency shoot down.

Client and Data presentation

- Data presentation with Graphical User Interface (GUI)
- Support for different programming language with integrated GUI modules
 - HTML/JavaScript
 - Matlab code and Matlab GUIDE
 - Labview interface
 - Python QT-designer
- Integration to the MOOC platforms

- HTML/JavaScript
- Matlab code
- Labview
- Python

WebSocket Client

HTML-JavaScript GUI for Wind Levitation Control as Remote Laboratory System

- Intuitive graphical user interface
- With possibility to run system in open-loop (without controller)
- Support of industrial controllers such as P, PI, PID structures.
- Support of nonlinear control methods, with adjustable parameters for Super Twister Nonlinear Controller.
- Streaming video

HTML-JavaScript GUI for Temperature Controlv System as Remote Laboratory

- Intuitive graphical user interface
- With possibility to run system in open-loop (without controller)
- Support of industrial controllers such as P, PI, PID structures.
- Support of nonlinear control methods, with adjustable parameters for Super Twister Nonlinear Controller.
- Streaming video

HTML-JavaScript and MOOC

- Both HTML-JavaScript GUI can be further integrated into MOOC platform
- Systems are tested on Moodle platform
- HTML-GUI can be imported as Assignment
- All the functionalities of Moodle plugins can be used
 - Time dependencies (start the exercise, end of the exercise etc..)
 - Scheduling regarding enrolled users
 - Provide exercises to the specific groups of users
 - Exercise report submission
 - Exercises grading system
 - Communication Teacher and Students

