Horizon 2020

Innovative Tools for Cyber-Physical Energy Systems

Secure self-healing software-defined industrial OT networks in extreme environments

Ørsted Secondment Logbook

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 956433.

Project acronym Project full title Grant number

InnoCyPES
Innovative Tools for Cyber-Physical Energy Systems

956433

Project URL http://www.innocypes.eu

Editor	Agrippina Mwangi
Deliverable type	Ørsted Secondment LogBook
Contractual Delivery date	1st October 2024
Actual Delivery date	
Number of pages	?
Keywords	offshore wind, cyber security, autonomous networks, industrial OT Networks, software-defined networking
Authors	Agrippina Mwangi
	León Navarro-Hilfiker
Supervised by	Lukasz Brewka
	Mikkel Gryning
	Elena Fumagalli
	Madeleine Gibescu

Executive Summary

This report addresses ...

Table of Contents

1	Research Objective	4
2	Related works	4
	Experimental Setup	4
4	Results	6
5	Discussion	6
6	Conclusion	6
7	References	6

Abbreviations

SDN Software Defined Networking

1 Research Objective

 To design and test a self-healing module for software-defined Industrial OT networks in extreme environments.

2 Related works

3 Experimental Setup

This section highlights a step-by-step guide on how to develop the self-healing module on Microsoft Azure Sandbox and the stress tests conducted to evaluate the network performance with/without the self-healing module.

3.1 MS-Azure Resource Group Design and VM Instantiation

- Create an account in Microsoft Azure Portal
- A resource group A container that holds related resources for an Azure solution. The resource
 group can include all the resources for the solution, or only those resources that you want to
 manage as a group. You decide how you want to allocate resources to resource groups based on
 what makes the most sense for your organization. To create a resource group on the MS-Azure
 portal:
 - Go to "create a resource". Search for "Resource Group" on the Marketplace and create a
 "Resource Group". Type a unique name for your resource group and choose the resource
 details region closest to you.
- Create a Virtual Network and a Subnet. Virtual Networks make it easy for you to take advantage
 of the scalable, on-demand infrastructure of Azure while providing connectivity to data and
 applications on-premises, including systems running on Windows Server, mainframes, and UNIX
 as defined in Figure 2.
- Protect a subnet using a Network Security Group
- · Deploy Bastion to connect to a virtual machine
- Create an Ubuntu Server Virtual Machine
- Install Mininet and ONOS via SSH using Bastion

Figure 1: Caption

IP addresses

Address space 192.168.0.0/16 (65,536 addresses)

 Subnet
 SNET_AS1_WF1OSS1 (192.168.0.0/19) (8,192 addresses)

 Subnet
 SNET_AS2_WF2OSS2 (192.168.32.0/19) (8,192 addresses)

 Subnet
 SNET_AS1_WF3OSS3 (192.168.64.0/19) (8,192 addresses)

Subnet SNET_Onshore_Control_Center (192.168.96.0/19) (8,192 addresses)

Subnet SNET_Cloud_Control_Center_EXT (192.168.128.0/20) (4,096 addresses)

Figure 2: Offshore wind farm application scenario VNET Subnets for the communicating AS

- · Publish an IP
- · Create a DNS label

3.2 Topology Design and Scripting

Creating a customized mininet topology.

3.3 Self-healing Module Design and Testing

- 4 Results
- 5 Discussion
- 6 Conclusion
- 7 References