

Attorney Docket No.: 20408-001500US
Client Reference No.: PN017

PATENT APPLICATION

Low Power Large Signal RF Tuned Buffer Amplifier

Inventor:

Arnold R. Feldman, a citizen of United States, residing at
3822, 26th Street
San Francisco, CA 94131

Assignee:

Zeevo, Inc.
2500 Condensa Avenue
Santa Clara, CA 95051

Entity: Small

TOWNSEND and TOWNSEND and CREW LLP
Two Embarcadero Center, 8th Floor
San Francisco, California 94111-3834
Tel: 650-326-2400

Low Power Large Signal RF Tuned Buffer Amplifier

BACKGROUND OF THE INVENTION

The present invention relates to wireless integrated circuits, specifically to tuned RF amplifiers.

We are presently in the midst of a wireless revolution. Mobile phones, once a novelty referred to as car phones, have become ubiquitous. Wireless personal data assistants, local and wide area networks, and computer connections are now everyday pieces of business equipment. Data and voice telecommunications have changed the structure of the economy, and have changed the way people live their lives. And now, a host of new products, enabled by the Bluetooth standard, are poised to enter a marketplace driven by the promise of a wireless Internet. The present invention provides important improvements to a key circuit used in wireless systems.

This circuit is a tuned RF amplifier. These amplifiers are useful in buffering and providing gain for oscillator, received, and transmit signals in RF integrated circuits.

Wireless devices typically transmit and receive data through the air on high frequency electromagnetic waveforms, though some systems, such as satellite dishes and pagers simply receive, and others merely transmit. Data transmission is begun by encoding the data to be transmitted. In Bluetooth systems, encoded data typically has a rate of 1.5 MHz and is used to modulate a high frequency electromagnetic carrier signal. This carrier signal is in the 2.44 GHz range. The modulated carrier signal is then applied to an antenna for broadcasting. The broadcast signal is referred to as a radio frequency (RF) signal. Data reception involves receiving the RF signal. The signal is then amplified, demodulated, filtered, and decoded.

RF integrated circuits often include a voltage controlled oscillator on-chip. The oscillator generates a local oscillator signal, which is buffered by an RF buffer amplifier and applied to a polyphase filter. Quadrature output signals are provided to receive and transmit mixers. The polyphase filters have a loss of 6 dB from input to output and have a minimum phase error when they receive a sinusoidal input.

Thus, what is needed is an RF buffer amplifier that can provide gain to compensate for the 6 dB loss, provide a sinusoidal output, and do so with a low power supply current. Such a buffer is useful for this, as well as several other functions in an RF integrated circuit.

SUMMARY OF THE INVENTION

Accordingly, embodiments of the present invention provide a power efficient RF buffer amplifier that filters signals and produces a large output swing. Specifically, p-channel loads provide a current "re-use" path, thereby reducing supply current by approximately half. These p-channel loads are connected in a positive feedback configuration to improve circuit gain and AC performance. The input devices are biased near cutoff, such that only one device conducts at a time, which further reduces supply current.

An exemplary embodiment of the present invention provides a method of buffering RF signals, including receiving an input signal, wherein the input signal alternates between a first polarity and a second polarity. From the input signal, a first current is generated, wherein the first current is proportional to the input signal when the input signal has the first polarity, and approximately equal to zero when the input signal has the second polarity, and a second current is generated, wherein the second current is proportional to the input signal when the input signal has the second polarity, and approximately equal to zero when the input signal has the first polarity. A third current is generated proportional to the first current, and a fourth current is generated proportional to the second current. The first and fourth currents are applied to a first terminal of an inductor, and the second and third currents are applied to a second terminal of the inductor.

A further embodiment of the present invention provides a circuit for buffering RF signals. The circuit includes a first switch coupled between a first supply node and a first output node, a second switch coupled between the first supply node and a second output node, a third switch coupled between the first output node and a second supply node, a fourth switch coupled between the second node and the second supply node, and an inductor coupled between the first output node and the second output node.

Yet a further exemplary embodiment of the present invention provides a circuit for buffering RF signals. The circuit includes a first device coupled between a first output node and a first supply node, where the first device has a control electrode coupled to a first input node and a second device coupled between a second output node and the first supply node, where the second device has a control electrode coupled to a second input node. Also included are a third device coupled between a second supply node and the first output node, where the third device has a control electrode coupled to the second output node, and a fourth device coupled between the second supply node and the second output node, where the

fourth device has a control electrode coupled to the first output node. An inductor coupled between the first output node and the second output node is also included.

A better understanding of the nature and advantages of the present invention may be gained with reference to the following detailed description and the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a schematic for a conventional RF buffer used in wireless circuits;

Figure 2 shows the voltage and current waveforms at several nodes of the RF buffer of Figure 1;

Figure 3 is a simplified schematic for an RF buffer amplifier consistent with an embodiment of the present invention;

Figure 4 is a schematic of an RF buffer amplifier consistent with one embodiment of the present invention;

Figure 5 is a schematic showing the circuit components in a current path of the circuit shown in Figure 4;

Figure 6 illustrates the current and voltage waveforms and at some of the nodes in the circuit of Figure 4;

Figure 7 shows the gain of the circuit of Figure 4 as a function of frequency;

Figure 8 is a flow chart of a method of buffering an RF signal consistent with an embodiment of the present invention;

Figure 9 is a block diagram for a wireless transceiver that may make use of RF tuned amplifiers consistent with embodiments of the present invention; and

Figure 10 shows a simplified block diagram for one example of an electronic system including circuit blocks using RF tuned amplifiers according to the present invention.

DETAILED DESCRIPTION

Sub A
30

Figure 1 is a schematic for a conventional RF buffer 100 used in wireless circuits. Included are differential pair M1 130 and M2 140, inductive loads L1 110 and L2 120, and current source 150. Current source 150 provides a bias current for the buffer. A first supply voltage VDD is applied on line 160, and a second supply voltage VSS is applied on line 155. An input voltage Vin between lines 135 and 145 is applied to the gates of devices M1 130 and M2 140. This differential input voltage creates a differential current in the drains of the input devices, which appears across the inductive loads, resulting in an

output voltage V_{out} between lines 165 and 170. The terms line and node are used interchangeably throughout this document.

The performance of this RF buffer is limited. Specifically, this circuit has an undesirably high supply current. For example, when the input voltage is at a maximum such that the voltage on line 135 is much higher than the voltage on line 145, device M1 130 conducts the current of the current source 150, steering it through load L1 110. This current does not pass through the second load device L2 120, thus the supply current is seen by only one half the differential load L1 110 and L2 120.

When the voltage V_{in} is near zero, the voltage on line 135 is equal to, or nearly equal to, the voltage on line 145, and the currents in devices M1 130 and M2 140 are approximately balanced. At this time, there is no differential current in the drains of the input devices, and the rate of change of current in the loads L1 110 and L2 120 is minimal. Thus, the bias current from current source 150 is wasted, since at this point it does not contribute to the output swing. Furthermore, this circuit has limited output voltage range. Since the loads are inductive, the output lines 165 and 170 swing above and below the supply voltage VDD provided on line 160. But there is a limit to how low an output node can swing. Specifically, if the voltage at line 170 decreases, device M1 130 enters its triode region, reducing the head room from current source 150, either reducing its output or shutting it off. Accordingly, V_{in} should be biased to provide sufficient head room for the operation of current source 150, and the output swing should be limited to avoid driving input devices M1 130 and M2 140 into their triode regions.

As can be seen, an RF buffer that makes better use of its supply current and provides a larger outfit swing is needed.

Figure 2 shows the voltage and current waveforms at several nodes of the RF buffer of Figure 1. Included are waveforms for the input voltage, the drain currents in the input devices, and the output voltage. An exemplary input voltage V_{in} is shown as a differential signal, that is, the voltage on line 145 is subtracted from the voltage on line 135, and the result is plotted along a Y axis 212 corresponding to voltage, and an X 214 axis corresponding to time. V_{in} has a maximum value indicated as V_{inmax} , a minimum value labeled V_{inmin} , and an average value of zero.

The drain currents of devices M1 130 and M2 140 are shown as waveforms 220 and 230 respectively. Each current is plotted against a Y axis, 222 and 232, corresponding to current amplitude, and an X axis, 224 and 234, corresponding to time. If the input voltage is of sufficient magnitude, then each current waveform has a maximum

value of the current in current source 150, ICS, and a minimum value of zero. These two current waveforms are 180 degrees out of phase with each other. The current waveform in M1 130 is out of phase with the input voltage Vin, while the drain current of M2 140 is in phase.

5 These currents appear across load inductors L1 110 and L2 120, where they generate the differential output voltage 240. Waveform 240 is equal to the voltage at line 170 subtracted from the voltage on line 165. This output is plotted against a Y axis 242 corresponding to voltage amplitude, and an X axis 244 which corresponds to time. The single-ended current across each inductor generates a voltage having an average value of the 10 supply voltage VDD provided on line 160, and a swing equal to the product of ICS and the impedance of the inductor. The impedance of the inductor is $2\pi fL$, where f is the frequency of current waveforms 220 and 230, and L is the value of the inductor in Henrys. For low frequencies, the phase of the voltage waveform appears to lead the phase of the current in the inductors. At higher frequencies, the capacitance seen by the inductor shifts the phase of the voltage waveform towards the current waveform, and at some frequency ^{they} are aligned. At this frequency, the impedance of the inductor and the impedance of the capacitances at the drains are equal, and the buffer is said to be tuned. The capacitances include the actual capacitance of the drain, the drain to gate capacitance, interconnect and stray capacitances, as well as the parasitic capacitance of the inductor.

20 *Fig 3* Figure 3 is a simplified schematic for an RF buffer amplifier 300 consistent with an embodiment of the present invention. Included are switches S1 310, S2 320, S3 330, and S4 340, inductive load L1 350, and capacitor C1 355. Inductor L1 350 and capacitor C1 355 form a tank circuit. The capacitor C1 355 may be a real capacitor, it may be the 25 capacitance of the switches plus the capacitance of the interconnect between the inductor and switches, or it may be a combination of the two. A first supply voltage VDD is applied on line 360. A second supply voltage VSS is applied on line 370. In one embodiment of the present invention VDD is equal to 1.8 V and VSS is ground or 0 Volts. Alternately, VDD may be other supply voltages. For example, VDD may be equal to 2.5 or 3.3 Volts. An output voltage is generated across the inductive load L1 350, appearing at lines 385 and 390.

30 An input signal controls the state of the four switches. When the input has a first polarity, switches S4 340 and S1 310 are closed, and S2 320 and S3 330 are open. Current flows from VDD applied on line 360, through S1 310, through the tank circuit L1 350 and C1 355, into S4 340, returning to ground or VSS on line 370. When the input has a

second polarity, S2 320 and S3 330 are closed while S1 310 and S4 340 are open. In this state current flows from the supply voltage VDD on line 360, through the switch S2 320, through the tank circuit L1 350 and C1 355, into switch S3 330, returning to ground or VSS on line 370. The change in current through the tank circuit L1 350 and C1 355 creates a

5 voltage output between the lines 380 and 390.

This architecture improves on several of the drawbacks of the architecture of the conventional RF buffer shown in Figure 1. The current supplied by VDD flows through the entire inductive load, first in one direction, then the other. In the circuit of Figure 1, the current of the current source 150 flows first through one of two inductors, then the other
10 inductor, that is, the current flows through only one half of the inductive load at a time. Embodiments of the present invention thus provide approximately a 50 percent power reduction for this reason.

Also, the conventional RF buffer wastes current when the input devices are both on. At this point, the rate of change of current is low, so the AC voltage out is not increased, though power is being dissipated. The circuit of Figure 3 does not provide a common mode current signal to the inductor. The current flows one direction or the other, so the power is again reduced, by approximately 20 percent. This, along with the above 50 percent power savings, means that the circuit in Figure 3 provides the same output swing as the conventional RF buffer of Figure 1, while dissipating approximately 40 percent of the power. In other words, the circuit of Figure 3 provides approximately a 60 percent reduction in power over a conventional RF buffer.
15
20

Figure 4 is a schematic of an RF buffer amplifier 400 consistent with one embodiment of the present invention. This RF buffer is typically formed on an integrated circuit. Included are input devices M2 420 and M3 430, cascode devices M4 440 and M5 450, inductive load L1 480, and M6 460 and M7 470, which are p-channel active loads in a positive feedback configuration. In an embodiment of the present invention, M1 is an NMOS device having an approximate size of 5/0.18, where 5 is the device width, and 0.18 is the device length. In that embodiment, M2, M3, M4, and M5 are NMOS devices each having an approximate size of 20/0.18, M6 and M7 are PMOS devices each having an approximate size
25 of 50/0.18, and the inductor has an approximate value of 6 nH with a Q of approximately 8-10. The inductor L1 is typically on-chip metal traces formed in spiral shapes. Alternately, the inductor L1 480 may be off-chip. The inductor L1 480, together with the capacitance across it, forms a tank circuit. This capacitance includes the drain capacitances of M4 440, M5 450, M6 460, and M7 470, the drain to gate capacitances of the same devices, the plate
30

and fringe capacitance of the metal interconnect of lines 445 and 455, as well as the parasitic capacitance of the inductor L1 480. The capacitance may also include an on-chip capacitor.

It will be obvious to one skilled in the art that modifications can be made to this schematic consistent with embodiments of the present invention. For example, this schematic can be "inverted", with p-channel (PMOS) input devices, and n-channel (NMOS) loads. Moreover, bipolar npn transistors may replace some or all of the NMOS devices, and bipolar pnp transistors ^{may} be used instead of the PMOS devices. Also, the cascode devices M4 440 and M5 450 provide a high degree of isolation between the input and output. If a VCO is generating the input voltage, this isolation is useful in avoiding kickback from the output into the VCO. But in applications not requiring this isolation, the circuit may be simplified by removing M4 440 and M5 450. This figure, as all the figures included, are for exemplary purposes only, and do not limit the scope of the invention or the claims.

Biassing circuitry including M1 410, R1 422, R2 432, and input capacitors C1 490 and C2 495, are also included. A first supply voltage, VDD, is applied on line 465. A second supply voltage, VSS, is applied on line 475. In one embodiment of the present invention the supply voltage VDD is equal to 1.8 Volts, and the supply voltage VSS is equal to ground or 0 Volts. In other embodiments, VDD may be equal to other supply voltages. For example, VDD may be equal to 2.5 or 3.3 Volts. Alternately, VDD may be grounded while VSS is a negative voltage, such as -1.8 Volts. Each side of a differential input voltage signal is applied to one node of the capacitors C1 490 and C2 495. An input bias current, Ibias, is applied on line 405 to the diode connected device M1 410. This current is mirrored by the input devices M2 420 and M3 430. The bias voltage Vbias is applied to the gates of cascode devices M4 440 and M5 450 on line 435. In an embodiment of the present invention this bias line is connected to the VDD supply voltage on line 465. Alternately, this bias line may be coupled to other voltages.

In the absence of an AC signal at input nodes 415 and 425, the DC bias conditions of this RF buffer are as follows. A relatively small current is applied to the Ibias line 405, thus generating a Vgs for device M1 410 that is very near its threshold voltage, Vt. Since there is no current flow through resistors R1 422 and R2 432, the Vgs for devices M2 420 and M3 430 are equal to the Vgs of device M1 410. Ibias is mirrored by devices M2 420 and M3 430 and flows through cascode devices M4 440 and M5 450. To reduce power, M1 410 can be scaled relative to M2 420 and M3 430. For example, an embodiment of the present invention scales the devices in a 1:4 ratio, such that M2 420 and M3 430 conduct a DC bias current of approximately 10-100 uA, while M1 410 conducts one-fourth that

amount. If the gates of M4 440 and M5 450 are tied to VDD, the sources of the cascode devices are a Vgs below VDD, which is approximately equal to VDD minus V_t . The current in cascode devices M4 440 and M5 450 flow through p-channel devices M6 460 and M7 470. The Vgs of these devices are likewise near their threshold voltage. Accordingly the DC voltages at the outputs lines 445 and 455 are equal to VDD minus V_t .

Again, a small bias current is applied to the Ibias line 405, which flows through device M1 to ground VSS. This current generates a gate-to-source voltage for device M1. If there is no AC input signal, this voltage is applied across the gate to source of devices M2 420 and M3 430. Devices M2 420 and M3 430 are conducting under these conditions.

Alternately, input devices M2 420 and M3 430 may be biased such that they are below the conducting threshold. When an input signal is applied, one of the input devices is turned on and begins conducting current, while the other device shuts off, or remains off, and does not conduct current. The current flows through one of the cascode devices and through the inductive load L1 480. The current flow in L1 480 generates a voltage such that one of the active loads M6 460 and M7 470, which are configured in a positive feedback connection, turns on, supplying current through L1, while the other shuts off.

Specifically, if the input swings positive, the voltage at the gate of device M2 420 increases, while the gate voltage of the input device M3 430 decreases. Input device M2 420 turns on and conducts current, while input device M3 430 shuts off. The current in M2 420 flows through cascode device M4 440, through inductor L1 480 in the direction from right to left as shown in the Figure. This change in current develops a voltage at the output between ~~nodes~~ 455 and 445 such that the voltage on line 455 increases, and the voltage on line 445 decreases. As the voltage on line 445 decreases, device M7 470 turns on and begins to conduct. As the voltage on line 455 increases, the gate-to-source voltage of device M6 460 decreases, shutting that device off. Device M7 470 conducts current through the inductor L1 480, through cascode M4 440, and back to the input device M2 420. The p-channel device M7 470 generates a current through L1 480 in the same right to left direction, thus increasing the output voltage across the inductor L1 480.

It is interesting to note that as the voltage on line 445 decreases, device M7 470 turns on harder, and provides more current to the inductive load L1 480. As the device M7 470 provides more current, the output voltage on line 455 increases at a faster rate and the voltage on line 445 decreases at a faster rate, which turns on M7 470 at an even faster rate. This mechanism is referred to as positive feedback, and accounts for the very high performance of this circuit. Also, this feedback path, where a current from the input device

M2 420 results in a "re-use" current in M7 470, provides a 50 percent power savings over conventional RF buffers.

Sub 5
Figure 5 is a schematic showing the circuit components in the current path discussed above. Again, as the input voltage increases, the voltage on line 415 increases, and the gate voltage of device M2 420 increases. Device M2 420 conducts an increasing amount of current which flows through cascode device M4 440. This current flows through inductor L1 480. Accordingly, the voltage at line 445 decreases, while the voltage at line 455 increases. This decreasing voltage at line 455 turns on device M7 470, which conducts current back through inductor L1 480. Again, as the voltage on line 445 continues to decrease, the device M7 470 turns on harder, thus increasing the voltage at 455 and decreasing voltage at 445 at an increasing rate.
10

Sub 15
Returning to Figure 4, as the input voltage swings the other way and becomes negative, device M3 430 conducts and device M2 420 shuts off. The current in device M3 430 flows through cascode device M5 450 and into the inductor L1 480 in the direction opposite to the existing current flow, and also through device M7 470, which is still conducting. The voltage on line 455 begins to decrease, while the voltage at line 445 increases. This acts to shut off device M7 470, and turns on device M6 460, thus reversing the current flow in inductor L1 480.

Sub 20
Figure 6 illustrates the current and voltage waveforms at some of the nodes in the circuit of Figure 4. Input voltage waveform 610 and is plotted as a function of time along X axis 640. Input waveform 640 is an example of a signal Vin which may be applied between lines 415 and 425. Input waveform 610 has an average value of zero, a peak voltage of Vinmax, and a minimum voltage of Vinmin. Input waveform 610 is shown as being approximately sinusoidal, as if generated by a voltage controlled oscillator (VCO) or similar circuit.
25

Sub 30
When Vin is high, that is, Vin is between the values of Vinmax and approximately zero, a current is generated in the drain of device M2. When Vin is negative, that is, Vin has a value between approximately zero and Vinmin, the drain current of device M2 is approximately zero. As waveform 610 increases, the drain current in M2 increases geometrically and reaches a maximum value shown here as I1. The drain current of device M2 is shown as waveform 620, and is graphed as a function of time along X axis 644.

The drain current of device M3 is shown as waveform 630. When Vin 610 is positive, the drain current in device M3 is approximately zero. When the input voltage Vin 610 is negative, that is, Vin is approximately between zero Volts and Vinmin, drain current

flows in device M3. When the voltage Vin is negative, the drain current in device M3 is geometrically proportional to the inverse of the input voltage 610. Current waveform 630 is plotted as a function of time along X axis 634.

When current flows in the drain of device M2, the current flows through cascode device M4, thus pulling down the voltage at line 445. Accordingly, device M7 begins to turn on, and a drain current in device M7, shown as waveform 640, begins to flow. The finite transit time of M7 means that waveform 640 is delayed in time from waveform 620, though for simplicity it is shown as being in phase in this figure. Waveform 640 is shown as a function of time along X axis 644.

When current flows in the drain of device M3, the current flows through cascode device M5, thus pulling down the voltage at line 455. Accordingly, device M6 begins to turn on, and a drain current in device M6, shown as waveform 650, begins to flow. Again, waveform 650 is delayed in time from waveform 630, though for simplicity it is shown as being in phase. Waveform 650 is shown as a function of time along X axis 654.

As can be seen, when Vin 610 is high, devices M2 and M7 conduct current through the inductor L1 480 from right to left as shown in Figure 4, from line 455 to line 445. When Vin is low, current flows in devices M3 and M6, resulting in a current flow through the inductor L1 480 from left to right as shown in Figure 4, from line 445 to line 455. This alternating current through the inductive load L1 480 generates a voltage between lines 455 and 445 shown as waveform 660. Waveform 660 is plotted as a function of time along the X axis 664. The peak voltage output is approximately two times the impedance of the inductor times the peak current through the inductor, which is I1. The minimum voltage output is approximately negative two times the impedance of the inductor times the peak current through the inductor. The average value of the waveform is zero. If the frequency of the input waveform 610 is equal to the resonant frequency of the tank formed by the inductor L1 and the capacitance across it, the output voltage waveform 660 is in phase with the current through the inductor.

The peak power dissipation of this circuit is I1 times the supply voltage VDD. If the waveform Vin is sinusoidal, the current waveforms in the drains of devices M2, M3, M7, and M6 are proportional to the square of the input voltage. The average power dissipation of the circuit is equal to the sum of the drain current in devices M6 and M7 times VDD. If the circuit is unloaded, this power dissipation is equal to the sum of the currents in devices M2 and M3 times VDD. This is approximately equal to 0.8 times I1 times VDD.

This compares favorably to the conventional RF buffer shown in Figure 1. The circuit in Figure 4 reuses the current in the input devices M2 and M3, by generating currents in devices M6 and M7. Accordingly, for the same output voltage swing, only half of the current is needed. Also, there is additional current savings since the average current is
5 less than I₁. That is, the average current is less than the peak current through the inductor. In the conventional RF buffer circuit of Figure 1, the peak current through the inductive load is equal to the current source 150, so the average current is equal to the peak current through the inductor. In the circuit of Figure 4 the average current is only approximately 80 percent of the peak current through the inductor.

10 This can be understood graphically by examining the current waveforms 620, 630, 640, and 650 at the times when the input voltage 610 is zero. The total current of all waveforms at that time is near zero. Again, in the conventional buffer of Figure 1, the total current is never zero, but stays constant at I_{CS}. Also, if the currents were sinusoidal, the average current would be 0.707 times the peak current through the inductor. But the current waveforms are geometrically proportional to the input, so an approximation of 0.8 is more accurate. Thus, the total power of circuit in Figure 4 is 0.8 times a one half, or 0.4 that of the conventional buffer. In other words, the circuit of Figure 4 dissipates only approximately 40 percent the power of the circuit shown in Figure 1.
15

20 The circuit of Figure 4 also has a large output swing. The DC bias point for the output lines 445 and 455 in Figure 4 is approximately a V_t below V_{DD}. The lowest each output line can swing is approximately ground, meaning that each line can swing approximately two times V_{DD} minus V_t, for a total output swing of four times V_{DD} minus V_t. For example, as line 455 goes low, M5 450 enters the triode region, and its V_{gs} becomes larger. When the V_{gs} of device M5 450 is approximately V_{DD}, device M3 begins to shut off
25 and does not supply current to the inductor L1 480, thus limiting its swing.

Figure 7 shows the gain of the circuit of Figure 4 as a function of frequency. Shown are the gain of the circuit with a high Q 730 and a low Q 740. The Q of the circuit can be changed by adjusting the load seen at the output. Specifically, a resistive load decreases the Q, and if the output is unloaded, the Q is high. The Q of the high-Q gain curve
30 730 is equal to the difference in frequency of the minus 3 dB points shown as 750, divided by the center frequency F₀. The Q of the low-Q gain curve 740 is the difference in frequency between the minus 3 dB points, 760, divided by the center frequency F₀.

Since the inductor provides a short at DC, there is no gain at low frequencies. As the frequency increases, the inductor impedance increases, and the gain of the circuit

increases. At some point the impedance of the inductor, and the impedance of the capacitance seen by the inductor are equal. At this frequency the circuit is tuned, and is at its maximum gain. At still higher frequencies, the capacitor attenuates the output signal, and the gain declines.

5 Designing the buffer such that it is tuned to the frequency of the input voltage imparts several important benefits. Specifically, signals at other frequencies, such as noise and cross talk, have a lower gain, and thus are comparatively, or actually attenuated. Also, the circuit acts as a bandpass filter, thus the output waveforms tend to be sinusoidal. This is important when driving some circuits, including polyphase filters.

10 Figure 8 is a flow chart 800 of a method of buffering an RF signal consistent with an embodiment of the present invention. In act 810, an input signal which alternates between positive and negative values is received. A first current that is proportional to the input signal when input signal is positive, and zero when input signal is negative, is generated in act 820. A second current that is proportional to the input signal when input signal is negative, and zero when input signal is positive, is generated in act 830. The first current and the second current may be geometrically proportional, or exponentially proportional to the input signal. In act 840, a third current proportional to the first current is generated. A fourth current proportional to the second current is generated in act 850. The first and fourth currents are applied to a first terminal of the inductor, and the second and third currents are applied to a second terminal of the inductor in acts 860 and 870, respectively.

15 Figure 9 is a block diagram for a wireless transceiver that may make use of RF tuned amplifiers consistent with embodiments of the present invention. For example, the VCO buffer block 955 may use of such an RF tuned buffer amplifier.

20 Included in block diagram 900 are an antenna 905, a switch 910, low noise amplifier 915, downconverter mixers 920 and 925, low pass filters 930 and 932, analog to digital (A/D) converters 935 and 937, RSSI block 940, baseband circuit 945, digital to analog (D/A) converters 977 and 985, low pass filters 972 and 990, upconverter mixers 970 and 980, power amplifier 995, voltage controlled oscillator (VCO) 950, VCO buffer 955, PLL 952, and polyphase filter 960. Most of the circuits are typically formed on an integrated circuit, 30 though the antenna may be off-chip, and the baseband may be on a separate integrated circuit.

VCO 950 generates a local oscillator (LO) signal having a frequency near that of the signal to be received on antenna 905. VCO buffer 955 filters and amplifies the LO signal from the VCO and provides it to polyphase filter 960 and PLL 952. PLL 952 typically includes dividers and a frequency synthesizer. The PLL 952 receives a reference clock 954

which is generated by a crystal or other similar stable frequency source, compares its phase to that of a divided down version of the LO signal, and provides a control voltage to the VCO 950. Polyphase filter provides quadrature signals of the LO signal to the transmit and receive mixers. In the receive mode, the received signal appears at antenna 905, and is coupled 5 through the switch 910 to the low noise amplifier 915. The signal is amplified, and provided to the downconverter mixers 920 and 925, which generate incident and quadrature intermediate frequency (IF) signals. The IF signals are filtered by low pass filters 930 and 932, and are digitized by A/D converters 935 and 937, and provided to the baseband 945. Baseband 945 typically includes a modem and digital signal processing (DSP) circuits.

Sub 1
Sub 2
Sub 3
Sub 4
Sub 5
Sub 6
Sub 7
Sub 8
Sub 9
Sub 10
Sub 11
Sub 12
Sub 13
Sub 14
Sub 15
Sub 16
Sub 17
Sub 18
Sub 19
Sub 20
Sub 21
Sub 22
Sub 23
Sub 24
Sub 25
Sub 26
Sub 27
Sub 28
Sub 29
Sub 30
Sub 31
Sub 32
Sub 33
Sub 34
Sub 35
Sub 36
Sub 37
Sub 38
Sub 39
Sub 40
Sub 41
Sub 42
Sub 43
Sub 44
Sub 45
Sub 46
Sub 47
Sub 48
Sub 49
Sub 50
Sub 51
Sub 52
Sub 53
Sub 54
Sub 55
Sub 56
Sub 57
Sub 58
Sub 59
Sub 60
Sub 61
Sub 62
Sub 63
Sub 64
Sub 65
Sub 66
Sub 67
Sub 68
Sub 69
Sub 70
Sub 71
Sub 72
Sub 73
Sub 74
Sub 75
Sub 76
Sub 77
Sub 78
Sub 79
Sub 80
Sub 81
Sub 82
Sub 83
Sub 84
Sub 85
Sub 86
Sub 87
Sub 88
Sub 89
Sub 90
Sub 91
Sub 92
Sub 93
Sub 94
Sub 95
Sub 96
Sub 97
Sub 98
Sub 99
Sub 100
Sub 101
Sub 102
Sub 103
Sub 104
Sub 105
Sub 106
Sub 107
Sub 108
Sub 109
Sub 110
Sub 111
Sub 112
Sub 113
Sub 114
Sub 115
Sub 116
Sub 117
Sub 118
Sub 119
Sub 120
Sub 121
Sub 122
Sub 123
Sub 124
Sub 125
Sub 126
Sub 127
Sub 128
Sub 129
Sub 130
Sub 131
Sub 132
Sub 133
Sub 134
Sub 135
Sub 136
Sub 137
Sub 138
Sub 139
Sub 140
Sub 141
Sub 142
Sub 143
Sub 144
Sub 145
Sub 146
Sub 147
Sub 148
Sub 149
Sub 150
Sub 151
Sub 152
Sub 153
Sub 154
Sub 155
Sub 156
Sub 157
Sub 158
Sub 159
Sub 160
Sub 161
Sub 162
Sub 163
Sub 164
Sub 165
Sub 166
Sub 167
Sub 168
Sub 169
Sub 170
Sub 171
Sub 172
Sub 173
Sub 174
Sub 175
Sub 176
Sub 177
Sub 178
Sub 179
Sub 180
Sub 181
Sub 182
Sub 183
Sub 184
Sub 185
Sub 186
Sub 187
Sub 188
Sub 189
Sub 190
Sub 191
Sub 192
Sub 193
Sub 194
Sub 195
Sub 196
Sub 197
Sub 198
Sub 199
Sub 200
Sub 201
Sub 202
Sub 203
Sub 204
Sub 205
Sub 206
Sub 207
Sub 208
Sub 209
Sub 210
Sub 211
Sub 212
Sub 213
Sub 214
Sub 215
Sub 216
Sub 217
Sub 218
Sub 219
Sub 220
Sub 221
Sub 222
Sub 223
Sub 224
Sub 225
Sub 226
Sub 227
Sub 228
Sub 229
Sub 230
Sub 231
Sub 232
Sub 233
Sub 234
Sub 235
Sub 236
Sub 237
Sub 238
Sub 239
Sub 240
Sub 241
Sub 242
Sub 243
Sub 244
Sub 245
Sub 246
Sub 247
Sub 248
Sub 249
Sub 250
Sub 251
Sub 252
Sub 253
Sub 254
Sub 255
Sub 256
Sub 257
Sub 258
Sub 259
Sub 260
Sub 261
Sub 262
Sub 263
Sub 264
Sub 265
Sub 266
Sub 267
Sub 268
Sub 269
Sub 270
Sub 271
Sub 272
Sub 273
Sub 274
Sub 275
Sub 276
Sub 277
Sub 278
Sub 279
Sub 280
Sub 281
Sub 282
Sub 283
Sub 284
Sub 285
Sub 286
Sub 287
Sub 288
Sub 289
Sub 290
Sub 291
Sub 292
Sub 293
Sub 294
Sub 295
Sub 296
Sub 297
Sub 298
Sub 299
Sub 299
Sub 300
Sub 301
Sub 302
Sub 303
Sub 304
Sub 305
Sub 306
Sub 307
Sub 308
Sub 309
Sub 310
Sub 311
Sub 312
Sub 313
Sub 314
Sub 315
Sub 316
Sub 317
Sub 318
Sub 319
Sub 320
Sub 321
Sub 322
Sub 323
Sub 324
Sub 325
Sub 326
Sub 327
Sub 328
Sub 329
Sub 330
Sub 331
Sub 332
Sub 333
Sub 334
Sub 335
Sub 336
Sub 337
Sub 338
Sub 339
Sub 339
Sub 340
Sub 341
Sub 342
Sub 343
Sub 344
Sub 345
Sub 346
Sub 347
Sub 348
Sub 349
Sub 349
Sub 350
Sub 351
Sub 352
Sub 353
Sub 354
Sub 355
Sub 356
Sub 357
Sub 358
Sub 359
Sub 359
Sub 360
Sub 361
Sub 362
Sub 363
Sub 364
Sub 365
Sub 366
Sub 367
Sub 368
Sub 369
Sub 369
Sub 370
Sub 371
Sub 372
Sub 373
Sub 374
Sub 375
Sub 376
Sub 377
Sub 378
Sub 379
Sub 379
Sub 380
Sub 381
Sub 382
Sub 383
Sub 384
Sub 385
Sub 386
Sub 387
Sub 388
Sub 389
Sub 389
Sub 390
Sub 391
Sub 392
Sub 393
Sub 394
Sub 395
Sub 396
Sub 397
Sub 398
Sub 399
Sub 399
Sub 400
Sub 401
Sub 402
Sub 403
Sub 404
Sub 405
Sub 406
Sub 407
Sub 408
Sub 409
Sub 409
Sub 410
Sub 411
Sub 412
Sub 413
Sub 414
Sub 415
Sub 416
Sub 417
Sub 418
Sub 419
Sub 419
Sub 420
Sub 421
Sub 422
Sub 423
Sub 424
Sub 425
Sub 426
Sub 427
Sub 428
Sub 429
Sub 429
Sub 430
Sub 431
Sub 432
Sub 433
Sub 434
Sub 435
Sub 436
Sub 437
Sub 438
Sub 439
Sub 439
Sub 440
Sub 441
Sub 442
Sub 443
Sub 444
Sub 445
Sub 446
Sub 447
Sub 448
Sub 449
Sub 449
Sub 450
Sub 451
Sub 452
Sub 453
Sub 454
Sub 455
Sub 456
Sub 457
Sub 458
Sub 459
Sub 459
Sub 460
Sub 461
Sub 462
Sub 463
Sub 464
Sub 465
Sub 466
Sub 467
Sub 468
Sub 469
Sub 469
Sub 470
Sub 471
Sub 472
Sub 473
Sub 474
Sub 475
Sub 476
Sub 477
Sub 478
Sub 479
Sub 479
Sub 480
Sub 481
Sub 482
Sub 483
Sub 484
Sub 485
Sub 486
Sub 487
Sub 488
Sub 489
Sub 489
Sub 490
Sub 491
Sub 492
Sub 493
Sub 494
Sub 495
Sub 496
Sub 497
Sub 498
Sub 499
Sub 499
Sub 500
Sub 501
Sub 502
Sub 503
Sub 504
Sub 505
Sub 506
Sub 507
Sub 508
Sub 509
Sub 509
Sub 510
Sub 511
Sub 512
Sub 513
Sub 514
Sub 515
Sub 516
Sub 517
Sub 518
Sub 519
Sub 519
Sub 520
Sub 521
Sub 522
Sub 523
Sub 524
Sub 525
Sub 526
Sub 527
Sub 528
Sub 529
Sub 529
Sub 530
Sub 531
Sub 532
Sub 533
Sub 534
Sub 535
Sub 536
Sub 537
Sub 538
Sub 539
Sub 539
Sub 540
Sub 541
Sub 542
Sub 543
Sub 544
Sub 545
Sub 546
Sub 547
Sub 548
Sub 549
Sub 549
Sub 550
Sub 551
Sub 552
Sub 553
Sub 554
Sub 555
Sub 556
Sub 557
Sub 558
Sub 559
Sub 559
Sub 560
Sub 561
Sub 562
Sub 563
Sub 564
Sub 565
Sub 566
Sub 567
Sub 568
Sub 569
Sub 569
Sub 570
Sub 571
Sub 572
Sub 573
Sub 574
Sub 575
Sub 576
Sub 577
Sub 578
Sub 579
Sub 579
Sub 580
Sub 581
Sub 582
Sub 583
Sub 584
Sub 585
Sub 586
Sub 587
Sub 588
Sub 589
Sub 589
Sub 590
Sub 591
Sub 592
Sub 593
Sub 594
Sub 595
Sub 596
Sub 597
Sub 598
Sub 599
Sub 599
Sub 600
Sub 601
Sub 602
Sub 603
Sub 604
Sub 605
Sub 606
Sub 607
Sub 608
Sub 609
Sub 609
Sub 610
Sub 611
Sub 612
Sub 613
Sub 614
Sub 615
Sub 616
Sub 617
Sub 618
Sub 619
Sub 619
Sub 620
Sub 621
Sub 622
Sub 623
Sub 624
Sub 625
Sub 626
Sub 627
Sub 628
Sub 629
Sub 629
Sub 630
Sub 631
Sub 632
Sub 633
Sub 634
Sub 635
Sub 636
Sub 637
Sub 638
Sub 639
Sub 639
Sub 640
Sub 641
Sub 642
Sub 643
Sub 644
Sub 645
Sub 646
Sub 647
Sub 648
Sub 649
Sub 649
Sub 650
Sub 651
Sub 652
Sub 653
Sub 654
Sub 655
Sub 656
Sub 657
Sub 658
Sub 659
Sub 659
Sub 660
Sub 661
Sub 662
Sub 663
Sub 664
Sub 665
Sub 666
Sub 667
Sub 668
Sub 669
Sub 669
Sub 670
Sub 671
Sub 672
Sub 673
Sub 674
Sub 675
Sub 676
Sub 677
Sub 678
Sub 679
Sub 679
Sub 680
Sub 681
Sub 682
Sub 683
Sub 684
Sub 685
Sub 686
Sub 687
Sub 688
Sub 689
Sub 689
Sub 690
Sub 691
Sub 692
Sub 693
Sub 694
Sub 695
Sub 696
Sub 697
Sub 698
Sub 698
Sub 699
Sub 699
Sub 700
Sub 701
Sub 702
Sub 703
Sub 704
Sub 705
Sub 706
Sub 707
Sub 708
Sub 709
Sub 709
Sub 710
Sub 711
Sub 712
Sub 713
Sub 714
Sub 715
Sub 716
Sub 717
Sub 718
Sub 719
Sub 719
Sub 720
Sub 721
Sub 722
Sub 723
Sub 724
Sub 725
Sub 726
Sub 727
Sub 728
Sub 729
Sub 729
Sub 730
Sub 731
Sub 732
Sub 733
Sub 734
Sub 735
Sub 736
Sub 737
Sub 738
Sub 739
Sub 739
Sub 740
Sub 741
Sub 742
Sub 743
Sub 744
Sub 745
Sub 746
Sub 747
Sub 748
Sub 749
Sub 749
Sub 750
Sub 751
Sub 752
Sub 753
Sub 754
Sub 755
Sub 756
Sub 757
Sub 758
Sub 759
Sub 759
Sub 760
Sub 761
Sub 762
Sub 763
Sub 764
Sub 765
Sub 766
Sub 767
Sub 768
Sub 769
Sub 769
Sub 770
Sub 771
Sub 772
Sub 773
Sub 774
Sub 775
Sub 776
Sub 777
Sub 778
Sub 779
Sub 779
Sub 780
Sub 781
Sub 782
Sub 783
Sub 784
Sub 785
Sub 786
Sub 787
Sub 788
Sub 789
Sub 789
Sub 790
Sub 791
Sub 792
Sub 793
Sub 794
Sub 795
Sub 796
Sub 797
Sub 798
Sub 798
Sub 799
Sub 799
Sub 800
Sub 801
Sub 802
Sub 803
Sub 804
Sub 805
Sub 806
Sub 807
Sub 808
Sub 809
Sub 809
Sub 810
Sub 811
Sub 812
Sub 813
Sub 814
Sub 815
Sub 816
Sub 817
Sub 818
Sub 819
Sub 819
Sub 820
Sub 821
Sub 822
Sub 823
Sub 824
Sub 825
Sub 826
Sub 827
Sub 828
Sub 829
Sub 829
Sub 830
Sub 831
Sub 832
Sub 833
Sub 834
Sub 835
Sub 836
Sub 837
Sub 838
Sub 839
Sub 839
Sub 840
Sub 841
Sub 842
Sub 843
Sub 844
Sub 845
Sub 846
Sub 847
Sub 848
Sub 849
Sub 849
Sub 850
Sub 851
Sub 852
Sub 853
Sub 854
Sub 855
Sub 856
Sub 857
Sub 858
Sub 859
Sub 859
Sub 860
Sub 861
Sub 862
Sub 863
Sub 864
Sub 865
Sub 866
Sub 867
Sub 868
Sub 869
Sub 869
Sub 870
Sub 871
Sub 872
Sub 873
Sub 874
Sub 875
Sub 876
Sub 877
Sub 878
Sub 879
Sub 879
Sub 880
Sub 881
Sub 882
Sub 883
Sub 884
Sub 885
Sub 886
Sub 887
Sub 888
Sub 889
Sub 889
Sub 890
Sub 891
Sub 892
Sub 893
Sub 894
Sub 895
Sub 896
Sub 897
Sub 898
Sub 898
Sub 899
Sub 899
Sub 900
Sub 901
Sub 902
Sub 903
Sub 904
Sub 905
Sub 906
Sub 907
Sub 908
Sub 909
Sub 909
Sub 910
Sub 911
Sub 912
Sub 913
Sub 914
Sub 915
Sub 916
Sub 917
Sub 918
Sub 919
Sub 919
Sub 920
Sub 921
Sub 922
Sub 923
Sub 924
Sub 925
Sub 926
Sub 927
Sub 928
Sub 929
Sub 929
Sub 930
Sub 931
Sub 932
Sub 933
Sub 934
Sub 935
Sub 936
Sub 937
Sub 938
Sub 939
Sub 939
Sub 940
Sub 941
Sub 942
Sub 943
Sub 944
Sub 945
Sub 946
Sub 947
Sub 948
Sub 949
Sub 949
Sub 950
Sub 951
Sub 952
Sub 953
Sub 954
Sub 955
Sub 956
Sub 957
Sub 958
Sub 959
Sub 959
Sub 960
Sub 961
Sub 962
Sub 963
Sub 964
Sub 965
Sub 966
Sub 967
Sub 968
Sub 969
Sub 969
Sub 970
Sub 971
Sub 972
Sub 973
Sub 974
Sub 975
Sub 976
Sub 977
Sub 978
Sub 979
Sub 979
Sub 980
Sub 981
Sub 982
Sub 983
Sub 984
Sub 985
Sub 986
Sub 987
Sub 988
Sub 988
Sub 989
Sub 989
Sub 990
Sub 991
Sub 992
Sub 993
Sub 994
Sub 995
Sub 996
Sub 997
Sub 998
Sub 998
Sub 999
Sub 999
Sub 1000

Embodiments of the present invention have been explained with reference to particular examples and Figures. Other embodiments will be apparent to those of ordinary skill in the art. Therefore, it is not intended that this invention be limited except as indicated by the claims.