Сравнительный анализ разностной и вероятностной вычислительных моделей для исследования дифференциального уравнения в частных производных эллиптического типа.

А. Мередова¹

ayjahanmeredova17@mail.ru

platonovaolg@gmail.com

О.С. Платонова²

¹ МГТУ, Москва, Россия

² МГТУ, Москва, Россия

Аннотация

Цель исследования — выполнить сравнительный анализ разностного и вероятностного методов для исследования математической модели, построенной на дифференциальных уравнениях в частных производных. В качестве разностного метода в статье рассмотрен метод конечных разностей, в качестве вероятностного — метод Монте-Карло. Показано применение методов на примере тепловой задачи плоской пластины с отверстием с краевыми условиями ІІІ рода. В результате сравнительного анализа были выявлены преимущества и недостатки каждого метода относительно поставленной задачи, а также относительно более сложных классов задач. В то время, как метод Монте-Карло является более универсальным, используя метод конечных разностей можно добиться результата большей точности.

Ключевые слова

Дифференциальные уравнения, сравнительный анализ, уравнение в частных производных, метод конечных разностей, метод Монте-Карло.

Введение. Для решения различных математических моделей физических явлений можно выделить две основные группы математических методов: аналитические и численные.

Использование аналитических методов позволяет получить решение задачи с помощью формул. Несмотря на точность результатов за сравнительно короткий отрезок, главным недостатком аналитических методов является небольшое число классов задач, к которым методы могут быть применены.

Основным инструментом для решения сложных математических моделей в настоящее время являются численные методы. Они сводят решение задачи к выполнению конечного числа арифметических действий над числами и дают результат в виде числового значения с погрешностью, приемлемой для данной задачи.

При решении дифференциальных уравнений в частных производных наиболее часто используются разностные схемы. Идея заключается в замене приближенного решения уравнений в частных производных к решению систем алгебраических уравнений [1].

Другим подходом решения дифференциальных уравнений являются вероятностные (численно-вероятностные) методы. В основе методов лежит процесс описания математической модели с использованием генератора случайных чисел. Модель многократно обсчитывается, и на основе полученных значений вычисляются вероятностные характеристики рассматриваемого процесса [2].

Целью данной работы является выполнение сравнительного анализа разностной и вероятностной вычислительных моделей для исследования дифференциального уравнения в частных производных эллиптического типа.

Для достижения поставленной цели необходимо решить следующие задачи:

- Описать работу разностного метода на примере тепловой задачи с указанием его преимуществ и недостатков;
- Описать работу вероятностного метода на примере тепловой задачи с указанием его преимуществ и недостатков;
- Сформулировать критерии сравнения и выполнить сравнительный анализ методов.

Постановка задачи. В качестве примера применения разностных и вероятностных методов рассмотрим следующую тепловую задачу.

Анализируется теплопередача через плоскую пластину с внутренним отверстием (рисунок 1).

Рис. 1. Плоская пластина с внутренним отверстием.

Математическая модель в общем квазилинейном виде (1) описывает ее температурное поле.

$$\frac{\partial}{\partial x} \left(k(u) \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(k(u) \frac{\partial u}{\partial y} \right) + f(x, y) = 0 \tag{1}$$

Все краевые условия — III рода (2). Задается взаимосвязь между потоком тепла за счет теплопроводности от твердой стенки и тепловым потоком из окружающей среды.

$$\begin{cases} x = 0, -k(u(0, y)) \frac{\partial u}{\partial x} = \alpha_1(u(0, y) - u_0) \\ x = a, -k(u(a, y)) \frac{\partial u}{\partial x} = \alpha_2(u(a, y) - u_0) \\ y = 0, -k(u(x, 0)) \frac{\partial u}{\partial y} = \alpha_3(u(x, 0) - u_0) \\ y = b, -k(u(x, b)) \frac{\partial u}{\partial y} = \alpha_4(u(x, b) - u_0) \end{cases}$$
(2)

Решение задачи разностным методом. В качестве разностного метода выбирается метод конченых разностей (МКР).

Работа метода основывается на замене производных в дифференциальном уравнении их конечноразностными аппроксимациями. Метод МКР допускает рассмотрение исходного твердого тела в виде совокупности узлов. Аппроксимируя частные производные дифференциального уравнения (1) конечными разностями, получают систему линейных алгебраических уравнений для определения температуры, как локальной характеристики в каждом узле сетки. Полученная система является незамкнутой, для ее замыкания используют разностное представление граничных условий. В результате получают замкнутую систему линейных алгебраических уравнений.

В рамках поставленной задачи температура будет изменяться в направлении оси Ox и Oy. Температуру в направлении Oz можно считать постоянной. В связи с этим дифференциальное уравнение (1) преобразуется к виду:

$$k(x,y)\left(\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}}\right) + f(x,y) = 0, \qquad 0 < x < a, 0 < y < b$$

$$f(x,y) = f_{0}e^{-\beta(x-x_{0})^{2}(y-y_{0})^{2}}$$
(3)

Если температура окружающей среды u^e , то граничные условия запишутся следующим образом:

$$\begin{cases} x = 0, -k(u(0, y)) \frac{\partial u}{\partial x} = \alpha_1(u^e - u_0) \\ x = a, -k(u(a, y)) \frac{\partial u}{\partial x} = \alpha_2(u^e - u_0) \\ y = 0, -k(u(x, 0)) \frac{\partial u}{\partial y} = \alpha_3(u^e - u_0) \\ y = b, -k(u(x, b)) \frac{\partial u}{\partial y} = \alpha_4(u^e - u_0) \end{cases}$$

$$(4)$$

Полученную задачу в полной математической постановке следует решать МКР на равномерной сетке. Для это выполняется построение конечно-разностной сетки (рисунок 2).

Рис. 2. Разностная сетка области решения.

Аппроксимация уравнения (3) выполняется на основе локально-одномерной схемы. Принцип такого подхода состоит из двух этапов: на первом этапе выполняется дискретизация уравнения (3) только в направлении оси X, результатом является одномерное уравнение. После его решения выполняется дискретизация уравнения (3) в направлении оси У. В результате решения уравнения, полученного на втором этапе, определяется поле температуры на целом шаге.

$$k_{i,j} \left(\frac{u_{i+1,j}^{n+1/2} - 2 u_{i,j}^{n+\frac{1}{2}} + u_{i-1,j}^{n+1/2}}{h_{x}^{2}} \right) + f_{i,j} = 0,$$
(5)

$$k_{i,j} \left(\frac{u_{i,j+1}^{n+1} - 2 u_{i,j}^{n+1} + u_{i,j-1}^{n+1}}{h_y^2} \right) + f_{i,j} = 0,$$

$$x_i = ih_x, x_i = jh_y$$
(6)

Уравнения (5), (6) сводятся к стандартному трехдиагональному виду и решаются последовательно методом прогонки.

Из всего выше сказанного можно сделать вывод о том, что подход к дискретизации дифференциальных уравнений относительно прост. Как следствие, к преимуществам МКР следует отнести простоту алгоритмической и программной реализации. Также к преимуществам относится точность полученных результатов, так как она может быть достигнута путем уменьшения шага разностной сетки [3].

Стоит выделить основные недостатки метода. Это невозможность работы с геометрически более сложными областями, необходимость построения сплайна (например, метод конечных элементов позволяет сразу находить значения в любой точке через функцию) [4]. Также методу присущ быстрый рост вычислительной трудоемкости с увеличением размерности задачи.

Решение задачи вероятностным методом. Для решения задачи вероятностным методом за основу был взят метод Монте-Карло. Этот метод основан на случайном блуждании.

Главной составляющей частью решения дифференциальных уравнений методом Монте-Карло является случайное блуждание [5]. Процесс случайного блуждания обычно моделируется на решетке S_h , вписанной в некоторую область G так, что в каждый момент времени происходит «перескок» броуновской частицы из одного узла в соседний.

В классическом случайном блуждании величина шага и траектории фиксируется заранее. Такой процесс называется фиксированным случайным блужданием. Процесс фиксированного случайного блуждания обычно реализуется на узловой решетке с постоянным шагом.

Рассмотрим область $G = [0 \le x \le a] \times [0 \le y \le b]$. Зададим на этой области квадратную сетку S_h с шагом h. Все возникающие при этом узлы можно разделить на граничные и внутренние. Если в данный момент случайно блуждающая частица находится во внутренней точке, то она имеет равную вероятность перейти в любую из 4 соседних точек. Выбор направлений движения частицы производится с помощью случайных чисел.

Блуждание одной частицы заканчивается в тот момент, когда она перемещается в один из граничных узлов. Очевидно, что с вероятностью, равной 1, блуждание частицы через конечное число шагов закончится на границе.

При решении задач стационарной теплопроводности температура внутренней точки определяется усреднением N температуры граничных точек, достигнутых беспорядочно блуждающими частицами.

$$T(x,z) = \frac{1}{N} \int_{j=1}^{N} T_{\omega}(j), \tag{7}$$

где $T_{\omega}(j)$ – температура на граничном узле.

Если в теле имеется источник объемного тепла, то формула принимает вид:

$$T(x,z) = \frac{1}{N} \int_{j=1}^{N} T_{\omega}(j) + \left[\frac{Qh^2}{4k} \right] \frac{1}{N} \int_{j=1}^{N} M_{j}, \tag{8}$$

где Q — мощность тепловыделения на единицу объема, k — коэффициент теплопроводности, M_j — количество шагов, потребовавшееся j — случайно блуждающей частице для достижения границы из точки (x, z).

Следовательно, для решаемой задачи имеем следующее:

$$T(x,z) = u_0 + \left[\frac{Qh^2}{4k}\right] \frac{1}{N} \int_{j+1}^{N} M_j \tag{9}$$

Из всего вышеизложенного можно выделить две характерные особенности метода Монте-Карло. Во-первых, метод позволяет моделировать любой процесс, на протекание которого влияют случайные факторы. Во-вторых, для многих математических задач, не связанных с какими-либо случайными процессами, можно искусственно построить вероятностную модель, позволяющую решать эта задачи. Таким образом, можно говорить об универсальности метода. Более того, использование метода не вызывает трудностей в выборе геометрии рассматриваемой задачи.

Основной недостаток метода заключается в определении погрешности. Погрешность обратно пропорциональна числу проводимых испытаний. Следовательно, для получения более точного результата требуется проведения большого числа однотипных испытаний.

Сравнительный анализ методов. Для описанных выше методов была выполнена программная реализация на языке Python. С ее помощью требуется определить временную эффективность методов. Для решения задачи были установлены следующие параметры: Прямоугольная область:

$$a = 60, b = 40$$

$$c = 40, d = 20$$

Температура:

$$u_0 = 300$$
K
 $u^e = 100$ K
 $f(x, y) = 10^5 * e^{-2(x - x_0)^2(y - y_0)^2}$

В таблице 1 приведено время расчета решения поставленной задачи для каждого метода.

Время расчета методов

Таблица 1

Метод	$IIIaz, h = h_x = h_y$	Результат	Время расчета, с
Конечных разностей	0.025	491.2	1.299116
	0.012	357.3	5.078588
	0.006	306.4	20.655901
Монте-Карло	0.1	361.1	32.037218

По результатам, представленным в таблице, можно сделать вывод о том, МКР работает быстрее Монте-Карло. Так, при шаге в 4 раза больше, чем шаг МКР, метод Монте-Карло работает в 24,6 раз дольше. Однако в этом случае результат более точный.

На рисунках 1-3 представлены температурные поля, полученные в результате решения задачи методом конечных разностей для разностной сетки с параметрами 25, 50, 100. На рисунке 4 изображено температурное поле, полученное методом Монте-Карло.

Рис. 1-4. Температурные поля МКР и Монте-Карло.

Заключение. Рассмотренная задача теплопроводности является относительно простой, разностный и вероятностный методы решили ее с заданной точностью. Результат разностного метода является более точным за более короткий промежуток времени. Однако вероятностный метод позволяет устранять недостаток разностного: находить решение задач с произвольными геометрическими областями и краевыми условиями. Также вероятностный подход применяется для нахождения решения в отдельной точке, в то время как разностный метод необходим для построения температурного поля во всех точках. Как следствие, вероятностный метод требует меньших затрат для программной реализации.

ЛИТЕРАТУРА

- [1] Волков К.Н. и др. Разностные схемы в задачах газовой динамики на неструктурированных сетках //М.: Физматлит. 2014.
- [2] Крайнов А.Ю., Рыжих Ю.Н., Тимохин А.М. Численные методы в задачах теплопереноса. Томск: Изд-во ТПУ, 2009, 114 с.
- [3] Ковеня В.М., Чирков Д. В. Методы конечных разностей и конечных объемов для решения задач математической физики //Новосибирск: НГУ. 2013. С. 24-26.
- [4] Степанчук А.П. Метод конечных разностей в электродинамических задачах //Будущее науки-2017. 2017. С. 98-101.
- [5] В. Ф. Кузнецов, «Решение задач теплопроводности методом Монте-Карло,» 1973. [Электронный ресурс]: https://inis.iaea.org/collection/NCLCollectionStore/_Public/05/128/51.pdf.