Новые метрики в теории кодирования

Евгений Чекунов

echekunov@gmail.com

Введение

- Метрика Хэмминга хороша не для всех каналов связи
- Новые метрики могут обеспечить новые возможности для исправления ошибок специального вида
- Применение новых метрик в криптографии и других областях

Определение метрики

Пусть $\Omega = \mathbf{F}_q^n - \mathbf{n}$ -мерное векторное пространство над конечным полем $\mathbf{F}_q = GF(q), \ q = p^r, \ r > 0.$

Линейной оболочкой $\langle X \rangle$ подмножества $X \subset \Omega$ будем называть наименьшее линейное подпространство $F_{_{X}} \subseteq \Omega$, содержащее X

Пусть $\mathcal{F}\coloneqq\{F_1,F_2,...,F_N\}$ — любое семейство подмножеств $F_i\subset\Omega$ таких, что $\langle\bigcup_{i=1}^NF_i\rangle=\Omega$.

Определение метрики

- Опр. 1 \mathcal{F} -нормой (\mathcal{F} -весом) $\mathcal{N}_{\mathcal{F}}$ вектора $x \in \Omega$ называется мощность наименьшего подмножества I множества $\{1,2,...,N\}$ такого, что x принадлежит $\langle \bigcup_{i \in I} F_i \rangle$.
- Опр. 2 \mathcal{F} -расстоянием между точками x и y называется норма их разности: $d_{\mathcal{F}}(x,y) = \mathcal{N}_{\mathcal{F}}(x-y)$.
 - 1) Очевидно выполнены свойства норм
 - 2) Справедливо равенство: $\left\langle \bigcup_{i \in I} F_i \right\rangle = \left\langle \bigcup_{i \in I} \left\langle F_i \right\rangle \right\rangle$
 - 3) Если $F_i \subset F_j, i \neq j$, то удаление F_i из семейства не меняет норму

Примеры метрик

Пр. 1 Пусть $N=n,~\Omega=\mathbf{F}_q^n,~\mathcal{F}\coloneqq\{E_1,E_2,...,E_n\},~$ где $E_i~$ - стандартный базис в \mathbf{F}_q^n . Тогда \mathcal{F} -норма — обычный вес Хэмминга: $\mathcal{N}_{\mathcal{F}}(x)=d_H(x),~\forall x\in\mathbf{F}_q^n.$

Если $\mathcal{F} \coloneqq \{f_1, f_2, ..., f_n\}$, где векторы f_i образуют базис в \mathbf{F}_q^n , то данная метрика эквивалентна метрике Хэмминга.

Пр. 2 Пусть $\Omega = F_q^{m \times l}$ - пространство матриц размера $m \times l$ над полем \mathbf{F}_q . Обозначим через $\mathcal R$ множество матриц еденичного ранга:

$$\mathcal{R} = \left\{ M : \text{rank } M = 1, M \in F_q^{m \times l} \right\}$$

Тогда $\mathcal{N}_{\mathcal{R}}(A) = \operatorname{rank} A, \ \forall \ A \in \mathbf{F}_q^{m \times l}, \ \text{ т.е. ранговая метрика.}$

Другие метрики

Метрика Ли

Весом Ли вектора $(c_0, c_1, ..., c_{n-1}), c_i \in \mathbf{F}_p, p$ – простое, называется сумма весов Ли $V_L(c_i)$ его координат, где

$$V_L(c_i) = |c_i|, c_i \equiv |c_i| \mod p, \ 0 \le c_i \le p/2.$$

Коды в \mathcal{F} -метрике

- Onp. 3 Любое подмножество $C \subseteq \Omega$ называется кодом.
- Опр. 4 \mathcal{F} -расстоянием кода $C \subset \Omega$ называется целое число $d_{\mathcal{F}}(C) \coloneqq \min\{d_{\mathcal{F}}(x,y) \mid x,y \in C, x \neq y\}.$
- Опр. 5 Если элементы семейства $\mathcal{F} := \{F_1, F_2, ..., F_N\}$ векторы, то метрика, порожденная данным семейством, называется проективной \mathcal{F} -метрикой. В этом случае мы будем обозначать элементы семейства через $f_i: \mathcal{F} := \{f_1, f_2, ..., f_N\}$.

Лемма 1 (обобщенная граница Синглтона) Для любого линейного кода $C \subseteq \mathbf{F}_q^n$ размерности k выполняется условие $d_{\mathcal{F}}(C) \leq n-k+1$.

Родительский код

Пусть отображение $\, \varphi : \mathbf{F}_q^N o \mathbf{F}_q^n \,$ задано с помощью $\, \varphi(e_i) \coloneqq f_i, \, i = 1, ..., N \,$, где $\, \{e_1, e_2, ..., e_N\} \,$ - стандарнтный базис $\, \mathbf{F}_q^N \,$, а $\, \{f_1, f_2, ..., f_N\} \,$ - векторы, задающие $\, \mathcal{F}$ -метрику.

Опр. 6 Родительским кодом называется ядро $P := \ker(\varphi) \subset F_q^N$.

Т.к. $x \in \ker(\varphi) \Leftrightarrow Fx = 0$, где F – матрица, столбцы которой координаты векторов $\varphi(e_i) \coloneqq f_i, \ i = 1,...,N$, в пространстве \mathbf{F}_q^N , то родительский код P является [N, N-n]-кодом с проверочной матрицей F.

Пусть w(D) - вес смежного класса $D \in F_q^N / P$.

Лемма 2 \mathcal{F} -норма любого $y \in F_q^n$ равна весу Хэмминга смежного класса, имеющего в качестве синдрома y: $d_{\mathcal{F}}(y) = d_H(\varphi^{-1}(y))$.

Максимальная \mathcal{F} -норма равна радиусу покрытия родительского кода P: $\rho(P)\coloneqq \max\{w(D),\ D\in \mathbf{F}_q^N\ /\ P\}.$

Коды в \mathcal{F} -метрике Вандермонда

$$F = \begin{pmatrix} u_1 & u_2 & \dots & u_N \\ u_1 x_1 & u_2 x_2 & \dots & u_N x_N \\ u_1 x_1^2 & u_2 x_2^2 & \dots & u_N x_N^2 \\ \dots & \dots & \dots & \dots \\ u_1 x_1^{n-1} & u_2 x_2^{n-1} & \dots & u_N x_N^{n-1} \end{pmatrix}, \qquad n \leq N, x_i \in \mathbf{F}_q, x_i \neq x_j, \\ \dots & \dots & \dots \\ u_i \in \mathbf{F}_q \setminus \{0\}, \ i = 1, \dots, N.$$

Родительским кодом для данной \mathcal{F} -метрики является обобщенный код Рида-Соломона (ОРС-код).

Код с максимальным \mathcal{F} -расстоянием

Код, достигающий границы Синглтона назовем кодом с максимальным \mathcal{F} -расстоянием, $d_{\mathcal{F}} = n - k + 1$.

Пусть линейный [n, k]-код C задается с помощью транспонированной порождающей матрицы

$$G^{\tau} = \begin{pmatrix} g_{11} & g_{21} & \cdots & g_{k1} \\ g_{12} & g_{22} & \cdots & g_{k2} \\ \vdots & \vdots & \ddots & \vdots \\ g_{1n} & g_{2n} & \cdots & g_{kn} \end{pmatrix} \implies g = G^{\tau}a, \ a = (a_1, a_2, ..., a_k)^{\tau}.$$

Пусть
$$G^{\tau} = \begin{pmatrix} v_1 & v_2 & \dots & v_k \\ v_1 y_1 & v_2 y_2 & \dots & v_k y_k \\ v_1 y_1^2 & v_2 y_2^2 & \dots & v_k y_k^2 \\ \dots & \dots & \dots & \dots \\ v_1 y_1^{n-1} & v_2 y_2^{n-1} & \dots & v_k y_k^{n-1} \end{pmatrix}$$
, $v_i \in \mathbf{F}_q \setminus \{0\}, \ y_i \neq y_j, y_i \neq x_j$.

Код с максимальным F-расстоянием

(F | G) – обобщенная матрица Вандермонда.

Размерность кода k должна удовлетворять соотношению $k+N \le q$

Лемма 3 Код C, задаваемый матрицей G^{τ} , является кодом с максимальным \mathcal{F} -расстоянием: $d_{\mathcal{F}}(C) = n - k + 1$. Соответственно, код может исправить вплоть до $t_k = \left\lfloor \frac{n-k}{2} \right\rfloor \mathcal{F}$ -ошибок.

Быстрое декодирование

Пусть c = g + e, где g — кодовый вектор, e — вектор ошибки.

Пусть $\mathcal{N}_{\mathcal{F}}(e) = t$. Тогда е можно представить в виде линейной комбинации векторов $\{f_i\}$:

$$e = m_1 f_1 + m_2 f_2 + ... + m_N f_N, d_H(m) = t, m = (m_1, m_2, ..., m_N)^{\tau}.$$

Покажем, что существует алгоритм быстрого декодирования, если $t \le t_k$.

Быстрое декодирование

Пусть R — матрица, образованная последними n столбцами матрицы (*).

Тогда
$$R^{-1}ig(F\mid G^{ au}ig) = ig(ilde{F}\mid ilde{G}^{ au}ig) = egin{pmatrix} B_1 & E_{n-k} & 0 \ B_2 & 0 & E_k \end{pmatrix},$$

 $E_{\scriptscriptstyle l}$ - еденичная матрица порядка $\it l$,

$$egin{aligned} B_1 \ B_2 \end{aligned}$$
 - обобщенная матрица Коши размера n x $(N\text{-}n+k)$ с элементами $B_2 \end{aligned}$ вида $b_{ij} = \dfrac{lpha_i eta_j}{\mu_i - v_j}.$ $R^{-1}c = R^{-1}(g+e) = R^{-1}(g+Fm) = ilde{g} + ilde{F}m = ilde{g} + ilde{e}.$ $ilde{g} = R^{-1}g = (0,0,...,0, ilde{g}_{n-k+1}, ilde{g}_{n-k+2},..., ilde{g}_n)^{ au}$

Это позволяет определить n - k координат вектора $\tilde{e}=R^{-1}Fm=\tilde{F}m$.

Быстрое декодирование

Покажем, что зная n - k координат \tilde{e} можно восстановить вектор m, то есть необходимо решить систему уравнений $\tilde{F}m=\tilde{e}$:

$$egin{pmatrix} B_1 & E_{n-k} \ B_1 & 0 \end{pmatrix} egin{pmatrix} m_1 \ m_2 \ dots \ m_N \end{pmatrix} = egin{pmatrix} ilde{e}_1 \ ilde{e}_2 \ dots \ ilde{e}_{n-k} \ st \ st \ st \ st \ st \end{pmatrix}.$$

Рассмотрим n - k первых строк системы:

Быстрое декодирование
$$\begin{pmatrix}
b_{1,1} & b_{1,2} & \dots & b_{1,N+k-n} & 1 & \dots & 0 \\
b_{2,1} & b_{2,2} & \dots & b_{2,N+k-n} & 0 & \dots & 0 \\
\dots & \dots & \dots & \dots & \dots & \dots \\
b_{n-k,1} & b_{n-k,2} & \dots & b_{n-k,N+k-n} & 0 & \dots & 1
\end{pmatrix}
\begin{pmatrix}
m_1 \\ m_2 \\ \vdots \\ m_N
\end{pmatrix} = \begin{pmatrix}
\tilde{e}_1 \\ \tilde{e}_2 \\ \vdots \\ \tilde{e}_{n-k}
\end{pmatrix}.$$

Матрица $H = (B_1 | E_{n-k})$ может быть преобразована к виду обобщенной матрицы Вандермонда, путем умножения на подходящую невырожденную матрицу Ψ порядка n-k:

подходящую невырожденную матрицу
$$\Psi$$
 порядка n - $H' = (\Psi B_1 \mid \Psi).$
 Т.е. необходимо решить систему $H'm = \Psi \begin{pmatrix} \tilde{e}_1 \\ \tilde{e}_2 \\ \vdots \\ \tilde{e}_{n-k} \end{pmatrix}$

Решение этой системы представляет собой задачу декодирования OPC-кода с проверочной матрицей H' стандартного вида.

Задача имеет единственное решение если $d_H(m) \leq \left| \frac{n-k}{2} \right|$.

Криптосистема Нидеррайтера

Секретный ключ: $\{S, H, P\}$

H – проверочная матрица ОРС-кода размера $(n-k) \times n$

S – некоторая случайная невырожденная матрица размера (n-k) x (n-k)

Р – случайная перестановочная матрица размера *n x n*

Открытый ключ: $H_{pub} = SHP$

Шифрование:
$$c = H_{pub}e = SHPe, d_H(e) \le \left\lfloor \frac{n-k}{2} \right\rfloor$$

Расшифрование: 1) $S^{-1}c = HPe = H\tilde{e}$

2) Запускаем алгоритм быстрого декодирования и находим $ilde{e}$

3)
$$P^{-1}\tilde{e} = e$$

Возможные улучшения криптосистемы Нидеррайтера

1) Введение скрывающей матрицы X еденичного ранга в секретный ключ, тогда $H_{\it pub} = S(H+X)P$

2) Применение \mathcal{F} -метрики для улучшения криптосистемы Нидеррайтера, используя скрывающую матрицу большего ранга

ГМодификация криптосистемы Нидеррайтера

- 1) Легальный пользователь выбирает матрицу F, столбцы которой задают \mathcal{F} -метрику. Родительский код с проверочной матрицей F должен обладать быстрым алгоритмом декодирования в метрике Хэмминга
- 2) Выбирается транспонированная порождающая матрица G^{τ} некоторого линейного кода, обладающего быстрым алгоритмом декодирования в заданной \mathcal{F} -метрике

Секретный ключ: $\left\{F,G^{\tau},S,P\right\}$

S – случайная невырожденная матрица порядка n

Р – случайная перестановочная матрица порядка N

Открытый ключ: $H_{pub} = S(F + G^{\tau}U)P$

 $\mathsf{U} - \mathsf{c}$ лучайная матрица размера $k \, x \, N$

Сообщение $m = (m_1, m_2, ..., m_N)^{\tau}, m_i \in \mathbf{F}_q, d_H(m) = t_{\min} = \min\{t_k, t_p\}$

 t_k - корректирующая способность кода, задаваемого $G^{ au}$ в пространстве с \mathcal{F} -метрикой

 t_p - корректирующая способность родительского кода

ГМодификация криптосистемы Нидеррайтера

Шифрование:
$$c = H_{pub} m = S(F + G^{\tau}U) Pm = S(F + G^{\tau}U) \tilde{m} =$$

$$= S(\tilde{m}_1(f_1 + G_1) + \tilde{m}_2(f_2 + G_2) + ... + \tilde{m}_N(f_N + G_N)) = S(g + e),$$

$$\tilde{m} = Pm, \ f_i, G_i \text{ - столбцы матриц } F \text{ и } G^{\tau}U \text{ соответственно.}$$

Расшифрование: 1) $S^{-1}c = g + e$

- 2) С помощью быстрого алгоритма декодирования в \mathcal{F} -метрике находим g и e
- 3) С помощью быстрого алгоритма декодирования в метрике родительского кода находим \tilde{m}
- 4) Вычисляем $P^{-1}\tilde{m} = m$

Если
$$U = VF \implies H = S(E_n + G^{\tau}V)FP$$

Литература

- Габидулин Е.М., Обернихин В.А. Коды в *F*-метрике Вандермонда и их применение // Пробл. передачи информ. 2003. Т. 39. № 2. С. 3-14.
- Габидулин Э.М., Симонис Ю. Совершенные коды для метрик, порождаемых примитивными двоичными БЧХ-кодами, исправляющими двойные ошибки / / Пробл. передачи информ. 1999. Т. 35. № 3. С. 40-47.
- Берлекэмп Э. Алгебраическая теория кодирования.
- Сидельников В.М. Теория кодирования