Mouvement RT ★

C2-09

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus :

- ► G_1 désigne le centre d'inertie de $\mathbf{1}$ et $\overrightarrow{AG_1} = L_1 \overrightarrow{i_1}$, on note m_1 la masse de $\mathbf{1}$ et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathfrak{B}_1}$;

 ► $G_2 = B$ désigne le centre d'inertie de $\mathbf{2}$, on note m_2 la masse de $\mathbf{2}$ et $I_{G_2}(2) = A_1 = A_2 = A_3$
- ► $G_2 = B$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathfrak{B}_2}$.

Un moteur électrique positionné entre 0 et 1 permet d'actionner le solide 1. Un vérin électrique positionné entre 1 et 2 permet d'actionner le solide 2

L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Dans le but d'obtenir les lois de mouvement, appliquer le théorème de la résultante dynamique au solide **2** en projection sur $\overrightarrow{i_1}$.

Question 2 Dans le but d'obtenir les lois de mouvement, appliquer le théorème du moment dynamique à l'ensemble **1+2** au point A en projection sur $\overrightarrow{k_0}$.

Eléments de correction :

- 1. $F_v m_2 g \sin \theta = m_2 (\ddot{\lambda}(t) \lambda(t)\dot{\theta}^2(t))$.
- 2. $C_m (m_1 L_1 + m_2 \lambda(t)) g \cos \theta(t) = C_1 \ddot{\theta}(t) + m_1 L_1^2 \ddot{\theta}(t) + C_2 \ddot{\theta}(t) + 2m_2 \lambda(t) \dot{\lambda}(t) \dot{\theta}(t) + m_2 \lambda^2(t) \ddot{\theta}(t)$.

Corrigé voir .

