MA4702 Integration

Integration

Constants of integration omitted.

f(x)	$\int f(x)dx$
$x^n, (n \neq -1)$	$\frac{x^{n+1}}{n+1}$
$\frac{1}{x}$	$\ln x $
e ^x	e ^x
e ^{ax}	$\frac{1}{a}e^{ax}$
a^x $(a>0)$	$\frac{a^x}{\ln a}$
cos x	$\sin x$
sin x	$-\cos x$
tan x	In sec x
$\frac{1}{\sqrt{a^2 - x^2}} (a > 0)$	$\sin^{-1}\frac{x}{a}$
$\frac{1}{x^2 + a^2} (a > 0)$	$\frac{1}{a} \tan^{-1} \frac{x}{a}$

Addition and Subtraction Rules of Integration

$$\int_a^b (f(x) + g(x))dx = \int_a^b f(x)dx + \int_a^b g(x)dx.$$

$$\int_a^b (f(x) - g(x))dx = \int_a^b f(x)dx - \int_a^b g(x)dx.$$

The Power Rule for Integration

The power rule for derivatives can be reversed to give us a way to handle integrals of powers of x. Since

$$\frac{d}{dx}x^n = nx^{n-1},$$

we can conclude that

$$\int nx^{n-1} \, dx = x^n + C,$$

or, a little more usefully,

$$\int x^n \, dx = \frac{x^{n+1}}{n+1} + C$$

Question 33: Introduction to Integration

Part A

Using appropriate substitutions, evaluate the indefinite integrals:

(i)
$$\int (s-4)^5 ds$$
 (iii)
$$\int (2y+3)(y^2+3y+2)^2 dy$$
 (ii)
$$\int \frac{3}{(x+1)^4} dx$$

Part B

Using appropriate substitutions, evaluate the indefinite integrals:

(i)
$$\int 3x^2(x^3+1)^5 dx$$
 (ii)
$$\int x^4 \sin(x^5) dx$$

Question 34: Integration

Evaluate the following indefinite integrals using partial fractions:

(i)
$$\int \frac{x}{x^2 - 9} dx$$
 (ii)
$$\int \frac{2x - 4}{x^2 - 4x + 8} dx$$
 (ii)
$$\int \frac{x - 2}{x^2 - 4x + 3} dx$$

Question 35: Integration by Parts

Evaluate the following using integration by parts.

(i)
$$\int -4\ln(x) dx$$

$$\int (5x+1) (x-6)^4 dx$$

(ii)
$$\int (-7x + 38) \cos(x) dx$$

$$\int_{-1}^{1} (2x + 8)^{3} (-x + 2) dx$$

(iii)
$$\int_0^{\frac{\pi}{2}} (-6x + 45) \cos(x) dx$$
 (vi)
$$\int \sin(x) e^x dx$$

Question 36: Integration by Parts

Formula:

If u and v are functions of x that have continuous derivatives, then

$$\int udv = uv - \int vdu$$

The LIPET rule

It is considered a rule of thumb to remember the acronym **LIPET** when performing integration by parts. This acronym will help you to determine what to use as u.

 ${f L}$ -logarithms,

I -inverse trigonometric functions,

 \mathbf{P} -polynomials (i.e. x, x^2),

E -exponentials (i.e. e^x , e^{3x}),

 ${\bf T}\,$ -trigonometric functions.

- $\cosh(x)$ is both the derivative and integral of $\sinh(x)$
- $\sinh(x)$ is both the derivative and integral of $\cosh(x)$

Question 37: Integration by Parts

Evaluate the following indefinite integrals by integration by parts:

(a)
$$\int x^2 e^x dx$$

(d)
$$\int x \sin x \, dx$$

(b)
$$\int x \ln x \, dx$$

(e)
$$\int e^x \sin x \, dx$$

(c)
$$\int x^2 \cos x \, dx$$

(f)
$$\int \ln x \, dx$$

Question 38 : Integration (Video)

Evaluate the following:

$$\int x^2 - (2x)^2 dx$$

(iii)
$$\int (4x^2 + 11x^3) \, dx$$

(ii)
$$\int 8x^3 dx \qquad \qquad \int (31x^{32} + 4x^3 - 9x^4) dx$$

$$\int 5x^{-2} dx$$

Question 39: Definite Integrals (Video)

Evaluate the following definite integrals

(i)
$$\int_{1}^{2} (x^{2} - 1) dx$$
 (iv)
$$\int_{1}^{2} (y^{2} - y^{-2}) dy$$
 (ii)
$$\int_{0}^{\frac{\pi}{2}} \cos x dx$$
 (v)
$$\int_{-3}^{1} (6x^{2} - 5x + 2) dx$$
 (iii)
$$\int_{0}^{\pi} \cos x dx$$
 (vi)
$$\int_{4}^{0} \sqrt{t} (t - 2) dt$$

Hint:
$$\int \sqrt{t}(t-2)dt$$

$$\sqrt{t}(t-2) = t^{1/2} \times (t-2) = t^{3/2} - 2t^{1/2}$$

Question 40 : Definite Integrals (Video)

Evaluate the following definite integrals:

(a)
$$\int_{-2}^{2} \frac{1}{x+3} dx$$

(e)
$$\int_0^{\sqrt{\pi}} x \cos\left(x^2 - \frac{\pi}{2}\right) dx$$

(b)
$$\int_0^2 (x^4 + 3x^2 + 2) dx$$
 (f) $\int_0^\pi x \sin x dx$

(f)
$$\int_0^{\pi} x \sin x \, dx$$

(c)
$$\int_{-\pi}^{\pi} (5\sin x - 7\cos x) dx$$
 (g) $\int_{0}^{1} \frac{1}{x^2 - 4} dx$

(g)
$$\int_0^1 \frac{1}{x^2 - 4} dx$$

(d)
$$\int_{-3}^{2} 2x e^{(x^2+1)} dx$$

(h)
$$\int_0^2 \frac{1}{x^2 + 4} dx$$

Question 41: Definite Integrals

Exercise: Evaluate the following definite integral

$$\int_{1}^{3} \frac{x}{3} dx$$

Solution

$$\int_{1}^{3} \frac{x}{3} dx = \left[\frac{x^{4}}{4} \right]_{1}^{3} = \frac{81}{4} - \frac{1}{4} = 20$$

Exercise: Evaluate the following definite integral

$$\int_{1}^{3} \frac{x^2 - 4x + 3}{x - 3} dx$$

Factorize the numerator $x^2 - 4x + 3 = (x - 1)(x - 3)$

Treat it as an indefinite integral for time being.

$$\int \frac{x^2 - 4x + 3}{x - 3} dx = \int \frac{(x - 1)(x - 3)}{x - 3} dx = \int (x - 1) dx = \frac{x^2}{2} - x + c$$

$$\left[\frac{x^2}{2} - x\right]_1^3 = (4.5 - 3) - (0.5 - 1) = 2$$

Question 42: Integration by Parts (Exam Standard)

the following questions are from previous past papers. Please be advised of the notes below.

- (i) (2005) Use integration by parts to find $\int xe^x dx$
- (ii) (2006) Use integration by parts to find $\int x ln(x) dx$
- (iii) (2007) Use integration by parts to find $\int x \sinh(x) dx$
- (iv) (2008) Use integration by parts to find $\int x\cos(x)dx$
- (v) (2009) Use integration by parts to find $\int x \cosh(x) dx$
- (vi) (2010) Use integration by parts to find $\int xe^x dx$

Important:

- You should expect to see hyperbolic functions (i.e. $\cosh(x)$ and $\sinh(x)$) in the end of semester exam.
- However you should expect to see terms like x^2 , e^{2x} and $\ln(x)$, as well as what was in previous exams.
- **VERY Important:** Make sure you know how to integrate and differentiate expressions of the form e^{ax} , $\cos(ax)$, $\cos(ax)$, $\sin(ax)$ and $\sinh(ax)$.

Question 43: Definite Integrals

Evaluate the following definite integrals

- (i) Find the area between $f(x) = x^2 + 4x$ and the x-axis between x = -4 and x = 3.
- (ii) Calculate the following:

$$\int_0^1 \frac{4x^3}{x^4 + 1} dx$$

(iii) Evaluate

$$\int_0^{\frac{\pi}{2}} \cos^4(x) \sin(x) dx$$