Оглавление

Введен	ние		3
Глава	1. Об	щий подход к трехточечной аппроксимации, аппроксимация	Ī
нор	мально	ого распределения	5
Глава 2	2. Ап	проксимация логнормального распределения	8
2.1.	Про л	огнормальное распределение	8
	2.1.1.	Свойства логнормального распределения	8
	2.1.2.	Связь параметров с квантилями	8
2.2.	Вариа	нты постановки задачи	10
2.3.	Спосо	б нахождения весов для $x_{\pi}, x_{0.5}, x_{1-\pi}$ через математическое ожи-	
	дание	и дисперсию нормального распределения и непосредственная ап-	
	прокс	имация логнормального распределения	11
2.4.	Услов	ие на параметр σ для существования трехточечной аппроксимации	
	логној	омального распределения	12
2.5.	Трехт	очечная несимметричная аппроксимация логнормального распре-	
	делені		16
2.6.	Точно	сть неправильной аппроксимации на основе дискретной аппрокси-	
	мации	нормального распределения	16
Глава 3	3. Пр	оизведение двух логнормальных распределений	20
3.1.	Произ	ведение квантилей	20
3.2.	q-Ква	нтили произведения логнормальных случайных величин для $q=\pi,$	
	q = 0.5	$5, q = 1 - \pi$	22
Глава 4	4. Cy	мма двух логнормальных случайных величин	25
4.1.	Точно	сть аппроксимации	26
	4.1.1.	Ошибки аппроксимации квантилей	26
	4.1.2.	Соответствие квантилей	29
	4.1.3.	Оценки плотностей ξ и η	30
	4.1.4.	Коэффициент асимметрии и эксцесса	31
Заклю	чение		34

Введение

В практических задачах нередко требуется заменить непрерывное распределение на дискретное с сохранением математического ожидания и дисперсии. Одним из методов нахождения такого распределения для аппроксимации нормального распределения является метод Свонсона [1]. Однако в ряде областей, например, в нефтяной промышленности распределением, описывающим запасы нефти, общепринятым является логнормальное распределение. Аппроксимация по методу Свонсона для нормального распределения используется в этих областях, хотя распределение и логнормальное. Соответственно, реальной задачей является аппроксимация логнормального распределения.

С аппроксимируемыми случайными величинами производят сложение и умножение. Например, используем площадь дренирования пласта, среднюю чистую толщину и коэффициент извлечения углеводородов. При перемножении этих параметров получаем количество резервов нефти. Или, зная запасы нефти в разных скважинах, нужно оценить суммарные запасы. Соответственно, возникает задача находить аппроксимацию суммы и произведения по аппроксимациям исходных случайных величин.

Часто бывает на практике, что вместо настоящего распределения известны три его квантили, стандартно это 10-, 50- и 90-процентили. Задачей является нахождение по ним математического ожидания и дисперсии. Обычно задача решается построением весов для квантилей так, чтобы у полученного дискретного распределения были такие же математическое ожидание и дисперсия, как у исходного. Вообще говоря, иногда нужно, чтобы и более старшие моменты также аппроксимировались моментами построенного дискретного распределения с целью, чтобы для функций от распределений равенство математических ожиданий и дисперсий оставалось хотя бы приближенными.

В статье «Discretization, Simulation, and Swanson's (Inaccurate) Mean» [3] одна из частей исследования – сравнение различных методов дискретизации непрерывных распределений, например таких, как Extended Person-Tukey (EPT), McNamee-Celona Shortcut (MCS), Extended Swanson-Megill (ESM). Но нам это не подходит, потому что мы рассматриваем трехточечную симметричную аппроксимацию, а там рассмотрена не симметричная и без указания конкретных формул.

В статье «Discretization, Simulation, and the Value of Information» [4] замечено, что метод Свонсона значительно недооценивает среднее значение, дисперсию и асимметрию большинства распределений, особенно логнормального. Поэтому мы рассматриваем ап-

проксимацию конкретно для логнормального распределения.

Структура работы следующая. В главе 1 рассмотрен общий подход к трехточечной аппроксимации и трехточечная аппроксимация нормального распределения, метод Свонсона и вывод правила 30-40-30. В главе 2 рассматривается аппроксимация логнормального распределения, получено условие на параметр σ для существования трехточечной аппроксимации логнормального распределения и оценена точность неправильной аппроксимации на основе дискретной аппроксимации нормального распределения. В главе 3 получен алгоритм для аппроксимации произведения двух логнормальных распределений. В главе 4 получен алгоритм для аппроксимации суммы двух логнормальных распределений и рассмотрена точность аппроксимации.

Глава 1

Общий подход к трехточечной аппроксимации, аппроксимация нормального распределения

Пусть дана непрерывная случайная величина ξ с функцией распределения $\mathsf{F}(x)$. Обозначим

$$m = \mathbf{E}(\xi), \qquad s^2 = \mathbf{D}(\xi).$$

Для неё заданы квантили $x_{\pi_1}, x_{\pi_2}, x_{\pi_3}$. Также есть случайная дискретная величина $\tilde{\xi}$, которая задана следующим образом

$$\tilde{\xi}: \begin{pmatrix} x_{\pi_1} & x_{\pi_2} & x_{\pi_3} \\ p_1 & p_2 & p_3 \end{pmatrix},$$

для неё обозначим

$$\tilde{m} = \mathbf{E}(\tilde{\xi}), \qquad \tilde{s}^2 = \mathbf{D}(\tilde{\xi}).$$

Мы хотим аппроксимировать распределение случайной величины ξ дискретным распределением $\tilde{\xi}$ с сохранением первых двух моментов. Для этого нужно найти p_1, p_2, p_3 так, чтобы следующие равенства были верными.

$$\begin{cases} p_1 + p_2 + p_3 = 1, \\ \tilde{m} = p_1 x_{\pi_1} + p_2 x_{\pi_2} + p_3 x_{\pi_3} = m, \\ \tilde{s^2} = p_1 x_{\pi_1}^2 + p_2 x_{\pi_2}^2 + p_3 x_{\pi_3}^2 - m^2 = s^2. \end{cases}$$
(1.1)

Запишем систему (1.1) в матричной форме следующим образом

$$\begin{pmatrix} 1 & 1 & 1 \\ x_{\pi_1} & x_{\pi_2} & x_{\pi_3} \\ x_{\pi_1}^2 & x_{\pi_2}^2 & x_{\pi_3}^2 \end{pmatrix} \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} = \begin{pmatrix} 1 \\ m \\ m^2 + s^2 \end{pmatrix}.$$

Теперь введём более изящную форму, которая подчёркивает связь вероятностей с формой распределения путём стандартизации.

Предложение 1 (Swanson, 2000 год). Пусть верно

$$\begin{pmatrix} 1 & 1 & 1 \\ \hat{x}_{\pi_1} & \hat{x}_{\pi_2} & \hat{x}_{\pi_3} \\ \hat{x}_{\pi_1}^2 & \hat{x}_{\pi_2}^2 & \hat{x}_{\pi_3}^2 \end{pmatrix} \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \tag{1.2}$$

 $ede \; \hat{x}_{\pi_i} = \hat{\mathsf{F}}^{-1}(\pi_i), \; \hat{\mathsf{F}}(y) - \phi y$ нкция распределения $\hat{\xi} = \frac{\xi - m}{s}$. Тогда $m = \tilde{m} \; u \; s^2 = \tilde{s}^2$.

Замечание 1. Предложение 1 дает требуемую аппроксимацию дискретным распределением, если найденные вероятности p_i являются неотрицательными.

Аппроксимация нормального распределения. Если $\xi \sim N(\mu, \sigma)$ имеет нормальное распределение, то $\hat{\xi}$ имеет стандартное нормальное распределение, поэтому $\hat{\xi} \sim N(0,1)$ в Предложении 1.

Предложение 2 (Swanson, 2000 год). Пусть $\xi \sim N(\mu, \sigma), \pi_1 = \pi, \pi_2 = 0.5, \pi_3 = 1 - \pi$ и пусть верно

$$\begin{cases}
p_1 = \frac{\delta}{2}, \\
p_2 = 1 - \delta, \\
p_3 = \frac{\delta}{2},
\end{cases}$$
(1.3)

где $\delta = \frac{1}{\Phi^{-1}(\pi)^2}$. Тогда $m = \tilde{m} \ u \ s^2 = \tilde{s}^2$.

Доказательство. Обозначим $\Phi(y) = \mathsf{P}\left(\eta = \frac{\xi - m}{s} \le y\right)$ — функция распределения стандартного нормального распределения, тогда система (1.2) записывается как

$$\begin{pmatrix}
1 & 1 & 1 \\
\Phi^{-1}(\pi_1) & \Phi^{-1}(\pi_2) & \Phi^{-1}(\pi_3) \\
\Phi^{-1}(\pi_1)^2 & \Phi^{-1}(\pi_2)^2 & \Phi^{-1}(\pi_3)^2
\end{pmatrix}
\begin{pmatrix}
p_1 \\
p_2 \\
p_3
\end{pmatrix} = \begin{pmatrix}
1 \\
0 \\
1
\end{pmatrix}.$$
(1.4)

В частном случае симметричных квантилей вида $\pi_1=\pi,\,\pi_2=0.5,\,\pi_3=1-\pi$ получаем $\Phi^{-1}(\pi)=-\Phi^{-1}(1-\pi),\,\Phi^{-1}(0.5)=0,$ тогда система (1.4) упрощается до

$$\begin{pmatrix} 1 & 1 & 1 \\ \Phi^{-1}(\pi) & 0 & -\Phi^{-1}(\pi) \\ \Phi^{-1}(\pi)^2 & 0 & \Phi^{-1}(\pi)^2 \end{pmatrix} \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

Запишем следующим образом

$$\begin{cases} p_1 + p_2 + p_3 = 1, \\ (p_1 - p_3)\Phi^{-1}(\pi) = 0, \\ (p_1 + p_3)\Phi^{-1}(\pi)^2 = 1. \end{cases}$$
 (1.5)

Обозначим $\delta = \frac{1}{\Phi^{-1}(\pi)^2}$, тогда из системы (1.5) получим утверждение Предложения 2.

Рассмотрим случай $\pi=0.1$, имеем $\Phi^{-1}(0.1)=-\Phi^{-1}(0.9)\approx-1.28,$ $\Phi^{-1}(0.5)=0,$ из уравнений системы (1.3) находим значения $p_1,$ $p_2,$ $p_3.$

$$\begin{cases} p_1 \approx 0.305, \\ p_2 \approx 0.390, \\ p_3 \approx 0.305. \end{cases}$$

Эти вероятности примерно равны $0.3,\,0.4,\,0.3,\,$ поэтому это правило называют правилом 30-40-30 или **правилом Свонсона**.

Глава 2

Аппроксимация логнормального распределения

2.1. Про логнормальное распределение

2.1.1. Свойства логнормального распределения

Пусть случайная величина η имеет логнормальное распределение, тогда случайная величина $\xi = \ln(\eta)$ имеет нормальное распределение, $\xi \sim N(\mu, \sigma)$. И поэтому для нее можно использовать формулы, полученные в предыдущих разделах.

Параметры $m={\bf E}(\eta),\ s^2={\bf D}(\eta)$ логнормального распределения можно найти через параметры μ и σ^2 соответствующего нормального распределения. Параметр m выражается как

$$m = \exp\left(\mu + \frac{\sigma^2}{2}\right). \tag{2.1}$$

Параметр s^2 выражается как

$$s^2 = m^2(\exp(\sigma^2) - 1). \tag{2.2}$$

Заметим, что математическое ожидание логнормально распределенной случайной величины всегда положительное.

Коэффициент асимметрии можно найти [3] по следующей формуле

$$\gamma_3 = \sqrt{\exp(\sigma^2) - 1}(\exp(\sigma^2) + 2). \tag{2.3}$$

Коэффициент эксцесса находится [3] как

$$\gamma_4 = \exp(4\sigma^2) + 2\exp(3\sigma^2) + 3\exp(2\sigma^2) - 6.$$
 (2.4)

Обратная функция распределения имеет вид

$$F_{\eta}^{-1}(p) = \exp(\mu + \sigma\sqrt{2}\text{erf}^{-1}(2p-1)).$$
 (2.5)

2.1.2. Связь параметров с квантилями

Предложение 3. Параметр σ выражается через любые два квантиля как

$$\sigma = \frac{\log\left(\frac{x_{\pi_2}}{x_{\pi_1}}\right)}{\Phi^{-1}(\pi_2) - \Phi^{-1}(\pi_1)}, \qquad \pi_1 \neq \pi_2.$$
 (2.6)

Доказательство. Покажем, что дисперсию логнормального распределения можно вычислить из отношения двух квантилей. Распишем вероятность

$$P(\xi \le x_{\pi}) = \pi,$$

$$P\left(\frac{\log(\xi) - \mu}{\sigma} \le \frac{\log(x_{\pi}) - \mu}{\sigma}\right) = \pi.$$

Следовательно,

$$\Phi\left(\frac{\log(x_{\pi}) - \mu}{\sigma}\right) = \pi,$$

и тогда

$$\log(x_{\pi}) = \mu + \sigma \Phi^{-1}(\pi).$$

С помощью двух квантилей мы можем исключить μ из соответствующих уравнений. Запишем

$$\log\left(\frac{x_{\pi_3}}{x_{\pi_1}}\right) = \sigma(\Phi^{-1}(\pi_3) - \Phi^{-1}(\pi_1)).$$

И в итоге получаем

$$\sigma = \frac{\log\left(\frac{x_{\pi_2}}{x_{\pi_1}}\right)}{\Phi^{-1}(\pi_2) - \Phi^{-1}(\pi_1)}.$$

Параметр μ выражается как

$$\mu = \log(x_{\pi_i}) - \sigma\Phi^{-1}(\pi_i) \tag{2.7}$$

и результат не зависит от i.

Предложение 4. В терминах Предложения 1 функция $\hat{\mathsf{F}}^{-1}(\pi)$ выражается через σ как

$$\hat{\mathsf{F}}^{-1}(\pi) = y = \frac{\exp\left(\sigma\Phi^{-1}(\pi) - \frac{\sigma^2}{2}\right) - 1}{\sqrt{\exp(\sigma^2) - 1}}.$$
 (2.8)

Доказательство. Выразим $\hat{\mathsf{F}}(y)$ через функцию стандартного нормального распределения

$$\hat{\mathsf{F}}(y) = \Phi\left(\frac{\log(m+sy) - \mu}{\sigma}\right),$$

так как $\xi = \ln(\eta) \sim N(\mu, \sigma)$. Выразим $\log(m+sy)$ через μ и σ , используя формулы (2.1) и (2.2). Получаем

$$m + sy = e^{\mu + \frac{\sigma^2}{2}} + ye^{\mu + \frac{\sigma^2}{2}}\sqrt{e^{\sigma^2} - 1} = e^{\mu + \frac{\sigma^2}{2}}(1 + y\sqrt{\exp(\sigma^2) - 1}),$$

возьмем натуральный логарифм от обеих частей, получаем

$$\log(m + sy) = \log(e^{\mu + \frac{\sigma^2}{2}} (1 + y\sqrt{\exp(\sigma^2) - 1})) =$$
$$= \mu + \frac{\sigma^2}{2} + \log(1 + y\sqrt{\exp(\sigma^2) - 1}),$$

тогда

$$\frac{\log(m+sy)-\mu}{\sigma} = \frac{\sigma}{2} + \frac{\log(1+y\sqrt{\exp(\sigma^2)-1})}{\sigma}.$$

Теперь можно выразить $\hat{\mathsf{F}}(y)$ следующим образом

$$\hat{\mathsf{F}}(y) = \Phi\left(\frac{\log(m+sy) - \mu}{\sigma}\right) = \Phi\left(\frac{\sigma}{2} + \frac{\log(1 + y\sqrt{\exp(\sigma^2) - 1})}{\sigma}\right).$$

Далее находим $\Phi^{-1}(\pi)$. Получаем

$$\Phi\left(\frac{\sigma}{2} + \frac{\log(1 + y\sqrt{\exp(\sigma^2) - 1})}{\sigma}\right) = \pi,$$

$$\Phi^{-1}(\pi) = \frac{\sigma}{2} + \frac{\log(1 + y\sqrt{\exp(\sigma^2) - 1})}{\sigma}.$$

Теперь можно выразить $\log(1+y\sqrt{\exp(\sigma^2)}-1)$ как

$$\log(1 + y\sqrt{\exp(\sigma^2) - 1}) = \sigma\Phi^{-1}(\pi) - \frac{\sigma^2}{2},$$

$$1 + y\sqrt{\exp(\sigma^2) - 1} = \exp\left(\sigma\Phi^{-1}(\pi) - \frac{\sigma^2}{2}\right).$$

В итоге получаем

$$\hat{\mathsf{F}}^{-1}(\pi) = y = \frac{\exp(\sigma\Phi^{-1}(\pi) - \frac{\sigma^2}{2}) - 1}{\sqrt{\exp(\sigma^2) - 1}}.$$

2.2. Варианты постановки задачи

Задача: имеются квантили $x_{\pi}, x_{0.5}, x_{1-\pi}$ логнормальной случайной величины η . Нужно уметь считать её математическое ожидание и дисперсию.

Варианты решения задачи:

1. Не переходить к аппроксимации дискретной случайной величиной, а сразу же из двух уравнений вида (2.7), записанных для двух квантилей, найти значения параметров μ и σ нормальной случайной величины $\ln(\eta) \sim N(\mu, \sigma)$. Далее по формулам (2.1) и (2.2) вычислить значения мат. ожидания m и дисперсии s^2 случайной величины η .

2. Перейти к трехточечной аппроксимации дискретной случайной величиной $\tilde{\xi}$, у которой $\tilde{m}=m,\ \tilde{s}^2=s^2$ и считать значения m и s через квантили $x_\pi,\ x_{0.5},\ x_{1-\pi}$ и вероятности $p_1,\ p_2,\ p_3$. Если условие для положительных вероятностей не выполняется, можно воспринимать задачу не как поиск вероятностей для $\tilde{\xi}$, а как поиск весов для линейной комбинации $x_\pi,\ x_{0.5},\ x_{1-\pi}$ таких, чтобы параметры, полученные из системы (1.1), были равны математическому ожиданию и дисперсии η .

В реальных задачах в нефтяной промышленности используются следующие диапазоны параметров:

$$\mu \le 12, \qquad \sigma \le 1.5.$$

Поэтому мы будем обращать на них особое внимание.

2.3. Способ нахождения весов для x_{π} , $x_{0.5}$, $x_{1-\pi}$ через математическое ожидание и дисперсию нормального распределения и непосредственная аппроксимация логнормального распределения

Заметим, что если $x_{\pi_1}, x_{\pi_2}, x_{\pi_3}$ — квантили логнормального распределения, то $\ln(x_{\pi_1})$, $\ln(x_{\pi_2}), \ln(x_{\pi_3})$ — квантили нормального распределения соответствующие тем же вероятностям. Можно взять эти квантили и использовать в способе нахождения вероятностей для нормального распределения, пользуясь Предложением 2.

Имеем следующий алгоритм.

Алгоритм 1. Дано: квантили $x_{\pi_1}, x_{\pi_2}, x_{\pi_3}$ логнормальной случайной величины $\eta, \ln(\eta) \sim N(\mu, \sigma)$.

Шаги:

- 1. Выражаем параметры μ и σ математическое ожидание и дисперсию соответствующего нормального распределения через известные $x_{\pi_1}, x_{\pi_2}, x_{\pi_3}$ по формулам (2.6) и (2.7).
- 2. Вычисляем значения математического ожидания m и дисперсии s^2 случайной величины η , используя μ и σ по формулам (2.1) и (2.2).
- 3. С помощью системы (1.1) находим значения весов $p_1, p_2, p_3,$ используя вычисленные $m\ u\ s^2.$

Результат: веса p_1, p_2, p_3 для $x_{\pi_1}, x_{\pi_2}, x_{\pi_3}$ случайной величины $\tilde{\xi}$.

Есть другой способ нахождения этого результата. Можно не переходить к нормальному распределению, а сразу вычислять вероятности для квантилей логнормального распределения.

Алгоритм 2. Дано: квантили $x_{\pi_1}, x_{\pi_2}, x_{\pi_3}$ логнормальной случайной величины $\eta, \ln(\eta) \sim N(\mu, \sigma)$.

Шаги:

- 1. Выражаем параметр σ из отношения x_{π_3} к x_{π_1} , используя формулу (2.6).
- 2. Вычисляем значения $\hat{\mathsf{F}}^{-1}(\pi)$ для случайной величины η по формуле (2.8).
- 3. C помощью системы (1.2) находим значения весов p_1, p_2, p_3 .

Результат: веса p_1, p_2, p_3 для $x_{\pi_1}, x_{\pi_2}, x_{\pi_3}$ случайной величины $\tilde{\xi}$.

Замечание 2. Результаты Алгоритмов 1 и 2 совпадают, так как веса для аппроксимации единственны.

2.4. Условие на параметр σ для существования трехточечной аппроксимации логнормального распределения

Мы рассмотрели способы вычисления весов для квантилей при аппроксимации логнормального распределения. Но найденные веса являются вероятностями не при любом σ . Выясним, какое должно быть ограничение на этот параметр. Докажем следующее предложение.

Предложение 5. Неотрицательные вероятности p_1 , p_2 , p_3 для аппроксимации логнормальной случайной величины η с квантилями вида x_{π} , $x_{0.5}$, $x_{1-\pi}$ существуют только при условии

$$\exp(\sigma^2) + \exp(-\sigma^2) - \exp\left(-\frac{\sigma^2}{2}\right) (\exp(c\sigma) + \exp(-c\sigma)) \le 0, \tag{2.9}$$

 $r\partial e \ c = \Phi^{-1}(\pi).$

Доказательство. Рассматриваем $\ln(\eta) \sim N(\mu, \sigma^2)$ и случай симметричных квантилей $\pi_1 = \pi, \, \pi_2 = 0.5, \, \pi_3 = 1 - \pi.$

С помощью формулы (2.8) найдем $\hat{\mathsf{F}}^{-1}(\pi_i)$, делаем следующие обозначения

$$\hat{\mathsf{F}}^{-1}(\pi) = t_1, \qquad \hat{\mathsf{F}}^{-1}(0.5) = t_2, \qquad \hat{\mathsf{F}}^{-1}(1-\pi) = t_3.$$

Теперь рассмотрим систему (1.2), запишем ее через t_1 , t_2 , t_3 и выразим вероятности p_1 , p_2 , p_3 . Имеем

$$p_2(t_2 - t_3) = p_1(t_3 - t_1) - t_3,$$

$$p_1(t_1^2 - t_3^2) + p_2(t_2^2 - t_3^2) = 1 - t_3^2.$$

Тогда получаем

$$p_1(t_1^2 - t_3^2) + (t_2 + t_3)(p_1(t_3 - t_1) - t_3) = 1 - t_3^2,$$
$$p_1(t_1 - t_3)(t_1 - t_2) = 1 + t_2t_3.$$

В итоге вероятности записываются следующим образом

$$p_1 = \frac{1 + t_2 t_3}{(t_1 - t_3)(t_1 - t_2)},\tag{2.10}$$

$$p_2 = \frac{p_1(t_3 - t_1) - t_3}{t_2 - t_3} = \frac{1 + t_1 t_3}{(t_2 - t_1)(t_2 - t_3)},$$
(2.11)

$$p_3 = 1 - p_1 - p_2. (2.12)$$

Все вероятности должны быть положительными, подставим в формулы для вероятностей значения переменных t_1, t_2, t_3 , где $\hat{\mathsf{F}}^{-1}(\pi_i)$ ищутся по формуле (2.8). Вероятность p_1 выражается как

$$p_{1} = \frac{1 + \frac{\left(\exp\left(-\frac{\sigma^{2}}{2}\right) - 1\right)\left(\exp\left(-c\sigma - \frac{\sigma^{2}}{2}\right) - 1\right)}{\exp\left(c\sigma - \frac{\sigma^{2}}{2}\right) - \exp\left(-c\sigma - \frac{\sigma^{2}}{2}\right)} = \frac{\exp\left(c\sigma - \frac{\sigma^{2}}{2}\right) - \exp\left(-\frac{\sigma^{2}}{2}\right)}{\sqrt{\exp(\sigma^{2}) - 1}} = \frac{\exp\left(\sigma^{2}\right) + \exp\left(-c\sigma - \sigma^{2}\right) - \exp\left(-\frac{\sigma^{2}}{2}\right) - \exp\left(-c\sigma - \frac{\sigma^{2}}{2}\right)}{\exp\left(2c\sigma - \sigma^{2}\right) - \exp\left(c\sigma - \sigma^{2}\right) - \exp\left(-\sigma^{2}\right) + \exp\left(-c\sigma - \sigma^{2}\right)}.$$

Вероятность p_2 выражается как

$$p_2 = \frac{1 + \frac{\left(\exp\left(\sigma - \frac{\sigma^2}{2}\right) - 1\right)\left(\exp\left(-\sigma - \frac{\sigma^2}{2}\right) - 1\right)}{\exp\left(\sigma^2\right) - 1}}{\frac{\exp\left(-\frac{\sigma^2}{2}\right) - \exp\left(\sigma - \frac{\sigma^2}{2}\right)}{\sqrt{\exp(\sigma^2) - 1}}} = \frac{1 + \frac{\left(\exp\left(\sigma - \frac{\sigma^2}{2}\right) - \exp\left(-\sigma - \frac{\sigma^2}{2}\right)\right)}{\exp\left(-\frac{\sigma^2}{2}\right) - \exp\left(-\sigma - \frac{\sigma^2}{2}\right)}}{\sqrt{\exp(\sigma^2) - 1}}$$

$$= \frac{\exp(\sigma^2) + \exp(-\sigma^2) - \exp\left(\sigma - \frac{\sigma^2}{2}\right) - \exp\left(-\sigma - \frac{\sigma^2}{2}\right)}{\exp(-\sigma^2) - \exp(-\sigma - \sigma^2) - \exp(\sigma - \sigma^2) + \exp(-\sigma^2)} =$$

$$= \frac{\exp(\sigma^2) + \exp(-\sigma^2) - \exp\left(\frac{\sigma^2}{2}\right) (\exp(\sigma) + \exp(-\sigma))}{2 \exp(-\sigma^2) - \exp(-\sigma^2) (\exp(-\sigma) + \exp(\sigma))}.$$

Докажем, что вероятности p_1 и p_3 положительные при любом параметре σ . Сначала распишем знаменатель p_1 :

$$\exp(2c\sigma - \sigma^2) - \exp(c\sigma - \sigma^2) - \exp(-\sigma^2) + \exp(-c\sigma - \sigma^2) =$$

$$= \exp(-\sigma^2)(\exp(2c\sigma) - \exp(c\sigma) - 1 + \exp(-c\sigma)) =$$

$$= \exp(-\sigma^2)(\exp(2c\sigma) - 2\exp(c\sigma) + 1 + \exp(c\sigma) - 2 + \exp(-c\sigma)) =$$

$$= \exp(-\sigma^2)\left((\exp(\sigma) - 1)^2 + \frac{(\exp(\sigma) - 1)^2}{\exp(\sigma)}\right) \ge 0.$$

Теперь анализируем числитель p_1 . Так как

$$\exp(\sigma^2) + \exp(-c\sigma - \sigma^2) \ge \exp\left(-\frac{\sigma^2}{2}\right) + \exp\left(-c\sigma - \frac{\sigma^2}{2}\right),$$

то числитель p_1 тоже всегда неотрицательный. Рассмотрим знаменатель p_2 . Имеем:

$$2\exp(-\sigma^2) - \exp(-\sigma^2)(\exp(-\sigma) + \exp(\sigma)) =$$

$$= \exp(-\sigma^2)(2 - \exp(-\sigma) - \exp(\sigma)) =$$

$$= -\frac{\exp(-\sigma^2)(\exp(\sigma) - 1)^2}{\exp(\sigma)} \le 0.$$

Вероятность p_3 выражается как

$$p_3 = 1 - \frac{1 + t_2 t_3}{(t_1 - t_3)(t_1 - t_2)} - \frac{1 + t_1 t_3}{(t_2 - t_1)(t_2 - t_3)}.$$

Выяснили, что $(t_1-t_3)(t_1-t_2) \ge 0$, а $(t_2-t_1)(t_2-t_3) \le 0$, значит, знаменатель p_3 всегда отрицательный. Осталось показать, что числитель p_3 тоже всегда отрицательный. Для этого распишем его как

$$(t_1 - t_3)(t_1 - t_2)(t_2 - t_1)(t_2 - t_3) - (1 + t_2t_3)(t_2 - t_1)(t_2 - t_3) - (1 + t_1t_3)(t_1 - t_3)(t_1 - t_2) =$$

$$= (t_1^2 - t_1t_2 - t_1t_3 + t_2t_3)(t_2^2 - t_2t_3 - t_1t_2 + t_1t_3) -$$

$$-(1 + t_2t_3)(t_2^2 - t_2t_3 - t_1t_2 + t_1t_3) - (1 + t_1t_3)(t_1^2 - t_1t_2 - t_1t_3 + t_2t_3) =$$

$$= 2t_1^2t_2^2 - t_1^2t_2t_3 - t_1^3t_2 + t_1^3t_3 - t_1t_2^3 + t_1t_2t_3^2 - t_1^2t_3^2 + t_2^3t_3 - t_2^2t_3^2 - t_1t_2^2t_3 + t_1t_2t_3^3 -$$

$$-t_2^2 + 2t_1t_2 - t_1^2 - t_2^3t_3 + t_2^2t_3^2 + t_1t_2^2t_3 - 2t_1t_2t_3^2 - t_1^3t_3 + t_1^2t_2t_3 =$$

$$= (2t_1^2t_2^2 - t_1^3t_2 - t_1t_2^3) - (t_2^2 - 2t_1t_2 + t_1^2) =$$

$$= -(t_1^{\frac{1}{2}}t_2^{\frac{3}{2}} - t_1^{\frac{3}{2}}t_2^{\frac{1}{2}})^2 - (t_1 - t_2)^2 \le 0.$$

Из условия отрицательности числителя p_2 получаем ограничение (2.9).

Предложение 6. Пусть $\Gamma(\pi) = \{\sigma : (2.9) \ true\}$. Тогда из $\pi \leq \tilde{\pi}$ следует, что $\Gamma(\pi) \supset \Gamma(\tilde{\pi})$.

Доказательство. Имеем неравенство (2.9), рассмотрим $\exp(\sigma) + \exp(-\sigma)$. Эта сумма увеличивается при уменьшении π и фиксированной σ , так как увеличивается по модулю значение $c = \Phi^{-1}(\pi)$. Значит, вычитаемое

$$\exp\left(\frac{\sigma^2}{2}\right)\left(\exp(\sigma) + \exp(-\sigma)\right)$$

становится все больше, и неравенство (2.9) выполняется для большего множества значений σ .

Например, для $\pi=0.1$ получаем ограничение $\sigma\leq0.6913,\,\sigma^2\leq0.4779.$ Посмотрим, какому коэффициенту асимметрии соответствует это значение $\sigma.$ По формуле (2.3) находим $\gamma_3=2.82778.$

Рассмотрим $\pi=0.05$, получаем ограничение $\sigma\leq 1.04585$ и значение коэффициента асимметрии $\gamma_3=7.02529$.

Вычислим, при каком значении π получается ограничение $\sigma \leq 1.5$, имеем

$$\exp(1.5^{2}) + \exp(-1.5^{2}) - \exp\left(-\frac{1.5^{2}}{2}\right) (\exp(1.5c) + \exp(-1.5c)) = 0,$$

$$9.4877 + 0.1054 - 0.3247(\exp(1.5c) + \exp(-1.5c)) = 0,$$

$$(\exp(1.5c) + \exp(-1.5c)) = 29.5491,$$

$$(\exp(3c) - 29.5491 \exp(1.5c)) + 1 = 0,$$

$$\exp(1.5c) = 0.0678, \qquad c = \frac{\ln(0.0678)}{1.5} = -1.794522,$$

$$\pi = \Phi(-1.794522) \approx 3.636\%.$$

2.5. Трехточечная несимметричная аппроксимация логнормального распределения

Рассмотрим трехточечную аппроксимацию логнормального распределения с несимметричными квантилями. Построим график зависимости верхней границы для σ от π для $\pi_1 = 1 - \pi$, $\pi_2 = 0.5$, $\pi_3 = \pi$ и для $\pi_1 = 0.1$, $\pi_2 = 0.5$, $\pi_3 = \pi$. Эта граница находится из условия положительности p_2 , посчитанного по формуле (2.11), где t_1 , t_2 , t_3 найдены по формуле (2.8). График представлен на рисунке 2.1, видим, что $0 \le \sigma \le 1.5$ при $\pi = 0.98$. До значения $\sigma = 1.5$ быстрее доходит зеленая линия, то есть в случае $\pi_1 = 0.1$, $\pi_2 = 0.5$, $\pi_3 = \pi$. Получили, что введение несимметричности не помогло избавиться от ограничения на σ .

2.6. Точность неправильной аппроксимации на основе дискретной аппроксимации нормального распределения

Предлагаемые методы аппроксимации трехточечным дискретным распределением логнормального распределения не работают при $\sigma \leq 0.6913$. На практике часто используют правило 30-40-30 выведенное для аппроксимации нормального распределения, значения весов вычисляются с помощью системы (1.3). Посмотрим на точность правила 30-40-30, особенно это важно при $\sigma \geq 0.6913$.

Предложение 7. Пусть $\pi_1 = \pi$, $\pi_2 = 0.5$, $\pi_3 = 1 - \pi$ и значения вероятностей аппроксимации равны $p_1 = \delta/2$, $p_2 = 1 - \delta$, $p_3 = \delta/2$, тогда

1. Относительная ошибка аппроксимации математического ожидания равна

$$\frac{m - \widetilde{m}}{m} = \frac{\exp\left(\frac{\sigma^2}{2}\right) - \frac{1}{2c^2}\left(\exp(\sigma c) - 1 + \exp(-\sigma c)\right) + 1}{\exp\left(\frac{\sigma^2}{2}\right)},$$

где $c = \Phi^{-1}(\pi)$, и не зависит от параметра μ .

2. Относительная ошибка аппроксимации дисперсии равна

$$\frac{s^2 - \tilde{s}^2}{s^2} = \frac{\exp(\sigma^2)(\exp(\sigma^2 - 1)) - \frac{1}{2c^2}\exp(-2c\sigma) - \left(1 - \frac{1}{c^2}\right)\exp(2c\sigma)}{\exp(\sigma^2)(\exp(\sigma^2 - 1))} + \frac{\left(\frac{1}{2c^2}(\exp(c\sigma) - 1 + \exp(-c\sigma)) + 1\right)^2}{\exp(\sigma^2)(\exp(\sigma^2 - 1))},$$

где $c = \Phi^{-1}(\pi)$, и не зависит от параметра μ .

Рис. 2.1. Граница для σ при $\pi_1=1-\pi,\,\pi_2=0.5,\,\pi_3=\pi$ (красный), при $\pi_1=0.1,\,\pi_2=0.5,\,\pi_3=\pi$ (зелёный).

Доказательство. 1. Выразим ошибку аппроксимации математического ожидания логнормального распределения через параметры μ и σ , используя формулы (2.1) и (2.2). Значения вероятностей p_1, p_2, p_3 находятся из системы (1.3) Предложения 2. Тогда математическое ожидание аппроксимации равно

$$\tilde{m} = \frac{1}{2c^2} \exp(\mu + c\sigma) + \left(1 - \frac{1}{c^2}\right) \exp(\mu) + \frac{1}{2c^2} \exp(\mu - c\sigma) =$$

$$= \frac{1}{2c^2} \exp(\mu)(\exp(c\sigma) - 1 + \exp(-c\sigma)) + \exp(\mu).$$

Получили ошибку

$$\frac{m-\widetilde{m}}{m} =$$

$$= \frac{\exp\left(\mu + \frac{\sigma^2}{2}\right) - \frac{1}{2c^2}\exp(\mu)(\exp(c\sigma) - 1 + \exp(-c\sigma)) + \exp(\mu)}{\exp\left(\mu + \frac{\sigma^2}{2}\right)} = \frac{\exp\left(\frac{\sigma^2}{2}\right) - \frac{1}{2c^2}\left(\exp(c\sigma) - 1 + \exp(-c\sigma)\right) + 1}{\exp\left(\frac{\sigma^2}{2}\right)}.$$

2. Выразим ошибку аппроксимации дисперсии через параметры распределения.

$$s^{2} = \exp(2\mu + \sigma^{2})(\exp(\sigma^{2} - 1)),$$

$$\tilde{s}^{2} = \frac{1}{2c^{2}}\exp(2\mu + 2c\sigma) + \left(1 - \frac{1}{c^{2}}\right)\exp(2\mu) + \frac{1}{2c^{2}}\exp(2\mu - 2c\sigma) - \tilde{m}^{2}.$$

Получили ошибку

$$\frac{s^2 - \tilde{s}^2}{s^2} = \frac{\exp(2\mu + \sigma^2)(\exp(\sigma^2 - 1)) - \frac{1}{2c^2}\exp(2\mu + 2c\sigma) - \left(1 - \frac{1}{c^2}\right)\exp(2\mu)}{\exp(2\mu + \sigma^2)(\exp(\sigma^2 - 1))} - \frac{\frac{1}{2c^2}\exp(2\mu - 2c\sigma) - \tilde{m}^2}{\exp(2\mu + \sigma^2)(\exp(\sigma^2 - 1))} =$$

$$= \frac{\exp(\sigma^2)(\exp(\sigma^2 - 1)) - \frac{1}{2c^2}\exp(2c\sigma) - \left(1 - \frac{1}{c^2}\right) + \frac{1}{2c^2}\exp(2c\sigma) + \tilde{m}^2/2\mu}{\exp(\sigma^2)(\exp(\sigma^2 - 1))}.$$

Замечание 3. При уменьшении значения π ошибки аппроксимации математического ожидания и дисперсии становятся меньше.

Построим график зависимости от σ . Видим, что при $\sigma \leq 1.5$, взятых из нашего диапазона, ошибка аппроксимации математического ожидания меньше 12%, а ошибка аппроксимации дисперсии может достигать 80%. Для $\sigma \geq 0.69$, когда условие (2.9) не выполнено, ошибка математического ожидания может быть как маленькой, так и очень большой. Ошибка дисперсии при этом точно больше 25%. Мои результаты согласуются со статьей [4], но там рассмотрены другие способы вычисления.

Рис. 2.2. Ошибка аппроксимации математического ожидания и дисперсии

Глава 3

Произведение двух логнормальных распределений

Рассмотрим произведение логнормально распределенных случайных величин. Эта процедура применяется в нефтяной промышленности, например, используем площадь дренирования пласта, среднюю чистую толщину и коэффициент извлечения углеводородов. При перемножении этих параметров получаем количество резервов нефти. В статье «Uncertainties impacting reserves, revenue, and costs» [2] содержатся идеи доказательств Предложений этого раздела, но полных доказательств нет.

Мы рассмотрим произведение двух логнормально распределенных случайных величин

$$\ln(\xi_1) \sim N(\mu_1, \sigma_1^2), \qquad \ln(\xi_2) \sim N(\mu_2, \sigma_2^2).$$

Введем следующие обозначения:

 $x_{\pi}, x_{0.5}, x_{1-\pi}$ — квантили случайной величины ξ_1 ,

 $y_{\pi}, y_{0.5}, y_{1-\pi}$ — квантили случайной величины ξ_2 .

3.1. Произведение квантилей

Предложение 8. Величина $x_{\pi}y_{\pi}$ является q-квантилью случайной величины $\xi_{1}\xi_{2}$, где

$$q = \mathsf{P}(\xi_1 \xi_2 < x_\pi y_\pi) == \Phi\left(\frac{\Phi^{-1}(\pi)(\ln(x_{0.5}) + \ln(y_{0.5}) - \ln(x_\pi) - \ln(y_\pi))}{\sqrt{(\ln(x_{0.5}) - \ln(x_\pi))^2 + (\ln(y_{0.5}) - \ln(y_\pi))^2}}\right). \tag{3.1}$$

Доказательство. Выразим параметры распределений μ_1 , μ_2 , σ_1 , σ_2 через квантили, используя формулу (2.7). Теперь рассмотрим случайную величину $\eta = \xi_1 \xi_2$. Мы хотим вычислить, каким квантилем для η является произведение квантилей x_{π} и y_{π} . Для этого надо найти, чему равна вероятность $P(\xi_1 \xi_2 < x_{\pi} y_{\pi})$. Получаем

$$P(\xi_1 \xi_2 < x_\pi y_\pi) = P(\ln(\xi_1) + \ln(\xi_2) < \ln(x_\pi) + \ln(y_\pi)) =$$

$$= P\left(\frac{\ln(\xi_1) + \ln(\xi_2) - (\mu_1 + \mu_2)}{\sqrt{\sigma_1^2 + \sigma_2^2}} < \frac{\ln(x_\pi) + \ln(y_\pi) - (\mu_1 + \mu_2)}{\sqrt{\sigma_1^2 + \sigma_2^2}}\right).$$

Так как ξ_1 распределена логнормально с параметрами μ_1 и σ_1^2 , а ξ_2 распределена логнормально с параметрами μ_2 и σ_2^2 , то

$$\ln(\xi_1) + \ln(\xi_2) \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2),$$

$$\frac{\ln(\xi_1) + \ln(\xi_2) - (\mu_1 + \mu_2)}{\sqrt{\sigma_1^2 + \sigma_2^2}} \sim N(0, 1).$$

Тогда можно записать

$$\begin{split} \mathsf{P}(\xi_1 \xi_2 < x_\pi y_\pi) = \\ = \mathsf{P}\left(\frac{\ln(\xi_1) + \ln(\xi_2) - (\mu_1 + \mu_2)}{\sqrt{\sigma_1^2 + \sigma_2^2}} < \frac{(\mu_1 + \Phi^{-1}(\pi)\sigma_1) + (\mu_2 + \Phi^{-1}(\pi)\sigma_2) - (\mu_1 + \mu_2)}{\sqrt{\sigma_1^2 + \sigma_2^2}}\right) = \\ = \mathsf{P}\left(\frac{\ln(\xi_1) + \ln(\xi_2) - (\mu_1 + \mu_2)}{\sqrt{\sigma_1^2 + \sigma_2^2}} < \frac{\Phi^{-1}(\pi)(\sigma_1 + \sigma_2)}{\sqrt{\sigma_1^2 + \sigma_2^2}}\right) = \\ = \Phi\left(\frac{\Phi^{-1}(\pi)(\sigma_1 + \sigma_2)}{\sqrt{\sigma_1^2 + \sigma_2^2}}\right). \end{split}$$

Перепишем эту дробь через значения квантилей, получаем

$$\frac{\Phi^{-1}(\pi)(\sigma_1 + \sigma_2)}{\sqrt{\sigma_1^2 + \sigma_2^2}} = \frac{\Phi^{-1}(\pi) \left(\frac{(\ln(x_{0.5}) - \ln(x_\pi)) + (\ln(y_{0.5}) - \ln(y_\pi))}{-\Phi^{-1}(\pi)} \right)}{\sqrt{\frac{(\ln(x_{0.5}) - \ln(x_\pi))^2 + (\ln(y_{0.5}) - \ln(y_\pi))^2}{(\Phi^{-1}(\pi))^2}}} = \frac{\Phi^{-1}(\pi) \left(\frac{(\ln(x_{0.5}) - \ln(x_\pi)) + (\ln(y_{0.5}) - \ln(y_\pi))}{(\Phi^{-1}(\pi))^2} \right)}{(\Phi^{-1}(\pi))^2} = \frac{\Phi^{-1}(\pi) \left(\frac{(\ln(x_{0.5}) - \ln(x_\pi)) + (\ln(y_{0.5}) - \ln(y_\pi))}{(\Phi^{-1}(\pi))^2} \right)}{(\Phi^{-1}(\pi))^2}$$

$$= \frac{(\ln(x_{0.5}) - \ln(x_{\pi})) + (\ln(y_{0.5}) - \ln(y_{\pi}))}{\sqrt{(\ln(x_{0.5}) - \ln(x_{\pi}))^{2} + (\ln(y_{0.5}) - \ln(y_{\pi}))^{2}}} \cdot \frac{1}{\Phi^{-1}(\pi)}$$

Тогда получаем следующую формулу

$$\mathsf{P}(\xi_1 \xi_2 < x_\pi y_\pi) = \Phi\left(\frac{\Phi^{-1}(\pi)(\ln(x_{0.5}) + \ln(y_{0.5}) - \ln(x_\pi) - \ln(y_\pi))}{\sqrt{(\ln(x_{0.5}) - \ln(x_\pi))^2 + (\ln(y_{0.5}) - \ln(y_\pi))^2}}\right).$$

Следствие 9. При перемножение квантилей $x_{0.5}$ и $y_{0.5}$ получается снова 0.5-ый квантиль.

Доказательство. Запишем вероятность $\mathsf{P}(\xi_1 \xi_2 < x_{0.5} y_{0.5})$ следующим образом:

$$\mathsf{P}(\xi_1 \xi_2 < x_{0.5} y_{0.5}) = \Phi\left(\frac{\ln(x_{0.5}) + \ln(y_{0.5}) - (\mu_1 + \mu_2)}{\sqrt{\sigma_1^2 + \sigma_2^2}}\right).$$

Но в числителе получается 0, значит,

$$P(\xi_1 \xi_2 < x_{0.5} y_{0.5}) = \Phi(0) = 0.5.$$

3.2. q-Квантили произведения логнормальных случайных

величин для
$$q=\pi, \ q=0.5, \ q=1-\pi$$

Как по каким-то произвольным получившимся квантилям, полученным при перемножении данных квантилей для двух логнормальных случайных величин, найти нужные нам, такие же, как исходные π , 0.5, $1-\pi$ квантили произведения этих двух случайных величин? Сначала нужно понять, на какой прямой лежат точки вида $(x_{\pi}; \Phi^{-1}(\pi))$.

Нужно выяснить, как связаны параметры нормального распределения, квантили которого откладываются по оси X, и параметры прямой, на которой лежат точки QQ плота.

Предложение 10. Точки QQ-плота: $\{x_i, \mathsf{F}_\eta^{-1}(\mathsf{F}_\xi(x_i))\}_{i=1}^n$, где ось X: $\xi \sim N(a,b^2)$, ось Y: $\eta \sim N(0,1)$ лежат на прямой $y = \frac{x-a}{b}$.

Доказательство. Возьмем две точки и построим по ним уравнение прямой. Например, точки

$$(\mathsf{F}_{\varepsilon}^{-1}(0.1), \mathsf{F}_{\eta}^{-1}(0.1)),$$

$$(\mathsf{F}_{\xi}^{-1}(0.5),\mathsf{F}_{\eta}^{-1}(0.5)).$$

Имеем

$$\Phi\left(\frac{x_p-a}{b}\right)=p$$
 \Rightarrow $\frac{x_p-a}{b}=\Phi^{-1}(p).$

Получаем, что

$$x_p = a + b\Phi^{-1}(p).$$

Для первой точки возьмем p = 0.1, тогда

$$(a + b\Phi^{-1}(0.1); \Phi^{-1}(0.1)).$$

Для второй точки возьмем p = 0.5, тогда

$$(a + b\Phi^{-1}(0.5); \Phi^{-1}(0.5)) \Rightarrow (a; 0).$$

Составим уравнение прямой:

$$\frac{x-a}{(a+\Phi^{-1}(0.1)b)-a} = \frac{y}{\Phi^{-1}(0.1)}, \qquad \frac{x-a}{\Phi^{-1}(0.1)b} = \frac{y}{\Phi^{-1}(0.1)}.$$

Следовательно,

$$by = x - a$$

Получили уравнение прямой на которой лежат точки данного QQ-плота:

$$y = \frac{x-a}{h}$$
.

Предложение 11. Зная квантили x_{π} , $x_{0.5}$, $x_{1-\pi}$ случайной величины ξ_1 и квантили y_{π} , $y_{0.5}$, $y_{1-\pi}$ случайной величины ξ_2 , можно найти квантили z_{π} , $z_{0.5}$, $z_{1-\pi}$ случайной величины $\xi_1\xi_2$ как

$$z_{\pi} = \exp(b\Phi^{-1}(\pi) + a),$$

$$z_{0.5} = x_{0.5} y_{0.5},$$

$$z_{1-\pi} = \exp(b\Phi^{-1}(1-\pi) + a),$$

где a u b maкие, что <math>npямая $y=\frac{x-a}{b}$ npoxoдum через moчки $(\ln(x_{\pi}y_{\pi}),t)$ u $(\ln(x_{0.5}y_{0.5}),0)$ npu

$$t = \frac{\Phi^{-1}(\pi)((\ln(x_{0.5}) + \ln(y_{0.5})) - (\ln(x_{\pi}) + \ln(y_{\pi})))}{\sqrt{(\ln(x_{0.5}) - \ln(x_{\pi}))^2 + (\ln(y_{0.5}) - \ln(y_{\pi}))^2}}.$$

Доказательство. С помощью формулы (3.1) можно посчитать, какой получается квантиль для случайной величины $\xi_1\xi_2$, если перемножить квантили x_π и y_π исходных случайных величин. Обозначим z_π , $z_{0.5}$, $z_{1-\pi}$ — квантили случайной величины η . Тогда по Следствию 9 имеем $x_{0.5}y_{0.5}=z_{0.5}$.

Нужно вычислить значения z_{π} и $z_{1-\pi}$. Введем обозначение:

$$t = \frac{\Phi^{-1}(\pi)((\ln(x_{0.5}) + \ln(y_{0.5})) - (\ln(x_{\pi}) + \ln(y_{\pi})))}{\sqrt{(\ln(x_{0.5}) - \ln(x_{\pi}))^2 + (\ln(y_{0.5}) - \ln(y_{\pi}))^2}}.$$

Тогда по Предложению 10 с помощью точек $(\ln(x_{\pi}y_{\pi}),t)$ и $(\ln(x_{0.5}y_{0.5}),0)$ можно найти параметры a и b прямой, на которой они лежат.

$$\frac{\ln(x_{0.5}y_{0.5}) - a}{b} = 0 \qquad \Rightarrow \qquad a = \ln(x_{0.5}y_{0.5}),$$

$$\frac{\ln(x_{\pi}y_{\pi}) - a}{b} = t,$$

$$b = \frac{\ln(x_{\pi}y_{\pi}) - a}{t} = \frac{\ln(x_{\pi}y_{\pi}) - \ln(x_{0.5}y_{0.5})}{t}.$$

Так как точки $(\ln(z_{\pi}), \Phi^{-1}(\pi))$ и $(\ln(z_{1-\pi}), \Phi^{-1}(1-\pi))$ тоже лежат на этой прямой, то мы можем вычислить значения $\ln(z_{\pi})$ и $\ln(z_{0.5})$, зная уравнение прямой, следующим образом:

$$\frac{\ln(z_{\pi}) - a}{b} = \Phi^{-1}(\pi), \qquad \ln(z_{\pi}) = b\Phi^{-1}(\pi) + a,$$

$$\frac{\ln(z_{1-\pi}) - a}{b} = \Phi^{-1}(1-\pi), \qquad \ln(z_{1-\pi}) = b\Phi^{-1}(1-\pi) + a.$$

И, наконец, находим z_{π} и $z_{1-\pi}$.

$$z_{\pi} = \exp(b\Phi^{-1}(\pi) + a),$$

$$z_{1-\pi} = \exp(b\Phi^{-1}(1-\pi) + a).$$

По Алгоритму 1, используя найденные $z_\pi, z_{0.5}, z_{1-\pi}$, можно вычислить значения весов p_1, p_2, p_3 дискретной аппроксимации.

Глава 4

Сумма двух логнормальных случайных величин

Рассмотрим сумму двух логнормальных случайных величин.

$$\ln(\xi_1) \sim N(\mu_1, \sigma_1^2), \qquad \ln(\xi_2) \sim N(\mu_2, \sigma_2^2),$$

$$\xi = \xi_1 + \xi_2.$$

Дано: квантили $x_{\pi}, x_{0.5}, x_{1-\pi}$ случайной величины ξ_1 и квантили $y_{\pi}, y_{0.5}, y_{1-\pi}$ случайной величины ξ_2 .

Поставим задачу аппроксимации суммы логнормальным распределением $\ln(\eta) \sim N(\mu, \sigma^2)$, так как нужно рассматривать сумму не обязательно двух, а произвольного числа случайных величин.

Нужно найти квантили $z_{\pi}, z_{0.5}, z_{1-\pi}$ случайной величины η . По известным квантилям уже знаем, как вычислять вероятности p_1, p_2, p_3 такие, что $m = \tilde{m}$ и $s^2 = \tilde{s}^2$.

У нас есть следующие ограничения на параметры: $\mu_1, \mu_2 < 12, \sigma_1, \sigma_2 < 1.5$. Пусть мы нашли аппроксимацию суммы двух логнормальных величин, тогда с учетом этих ограничений её значения μ и σ тоже будут иметь свои ограничения. При этом, чтобы найти значения вероятностей p_1, p_2, p_3 нужно, чтобы выполнялось то же условие, что в разделе 2.4, а именно (2.9).

Имеем следующий алгоритм для решения задачи.

Алгоритм 3. Дано: Квантили x_{π} , $x_{0.5}$, $x_{1-\pi}$ — квантили ξ_1 , y_{π} , $y_{0.5}$, $y_{1-\pi}$ — квантили ξ_2 .

1.
$$x_{\pi}, x_{0.5}, x_{1-\pi} \to \mu_1, \sigma_1$$

По набору квантилей ξ_1 находим параметры μ_1 , σ_1 нормального распределения по формулам (2.6) u (2.7).

2.
$$y_{\pi}, y_{0.5}, y_{1-\pi} \to \mu_2, \sigma_2$$

По набору квантилей ξ_2 находим параметры μ_2 , σ_2 нормального распределения по формулам (2.6) u (2.7).

3.
$$\mu_i, \, \sigma_i \to m_i, \, s_i^2$$

C помощью формул (2.1) u (2.2) находим математические ожидания u дисперсии ξ_1 u ξ_2 .

4. $m = m_1 + m_2$

Вычисляем математическое ожидание $\xi_1 + \xi_2$.

5.
$$s^2 = s_1^2 + s_2^2$$

Вычисляем дисперсию $\xi_1 + \xi_2$.

6. $m, s^2 \rightarrow \mu, \sigma$

C помощью формул (2.1) u (2.2) находим параметры нормального распределения.

7. μ , $\sigma \to z_{\pi}$, $z_{0.5}$, $z_{1-\pi}$

C помощью формулы (2.7) находим значения квантилей через μ и σ .

8. $z_{\pi}, z_{0.5}, z_{1-\pi} \rightarrow p_1, p_2, p_3$

По Алгоритму 1 находим значения вероятностей p_1, p_2, p_3 .

Результат: вероятности p_1 , p_2 , p_3 для квантилей z_{π_1} , z_{π_2} , z_{π_3} случайной величины η , которая является дискретной аппроксимацией аппроксимации суммы логнормальным распределением.

4.1. Точность аппроксимации

4.1.1. Ошибки аппроксимации квантилей

Выразим ошибки аппроксимации квантилей $q_{\pi},\ q_{0.5},\ q_{1-\pi}$ случайной величины ξ через параметры $\mu_1,\ \mu_2,\ \sigma_1^2,\ \sigma_2^2.$

$$\frac{|q_{\pi}-z_{\pi}|}{q_{\pi}}, \qquad \frac{|q_{0.5}-z_{0.5}|}{q_{0.5}}, \qquad \frac{|q_{1-\pi}-z_{1-\pi}|}{q_{1-\pi}}.$$

$$z_{\pi} = F_{\eta}^{-1}(\pi), \qquad z_{0.5} = \exp(\mu), \qquad z_{1-\pi} = F_{\eta}^{-1}(1-\pi),$$

$$F_{\eta}^{-1}(p) = \exp(\mu + \sigma\sqrt{2}\operatorname{erf}^{-1}(2p-1)).$$

Параметры μ , σ можно найти через параметры случайных величин ξ_1 , ξ_2 , используя формулы (2.1), (2.3) и вычисленные значения

$$m = \exp\left(\mu_1 + \frac{\sigma_1^2}{2}\right) + \exp\left(\mu_2 + \frac{\sigma_2^2}{2}\right),\,$$

$$s^{2} = m_{1}^{2}(\exp(\sigma_{1}^{2}) - 1) + m_{2}^{2}(\exp(\sigma_{2}^{2}) - 1).$$

Квантили η выражаются как

$$q_{\pi} = F_{\xi}^{-1}(\pi), \qquad q_{0.5} = F_{\xi}^{-1}(0.5), \qquad q_{1-\pi} = F_{\xi}^{-1}(1-\pi),$$

$$F_{\xi}(x) = \int_{0}^{x} \left(\frac{1}{2} + \frac{1}{2}\operatorname{erf}\left(\frac{\ln(x-y) - \mu_{1}}{\sigma_{1}\sqrt{2}}\right)\right) \left(\frac{1}{\sqrt{2\pi}y\sigma_{2}}\exp\left(-\left(\frac{\ln(y) - \mu_{2}}{\sqrt{2}\sigma_{2}}\right)^{2}\right)\right) dy.$$

Здесь $F_{\xi}(x)$ — функция распределения $\xi=\xi_1+\xi_2$, найденная с помощью формулы свертки.

В таблицах 4.1, 4.2 и 4.3 представлены ошибки для $\ln(\xi_1) \sim N(4, \sigma_1^2)$, $\ln(\xi_2) \sim N(4, \sigma_2^2)$ при $\pi = 0.1$, полученные с помощью моделирования, объемы выборок равны 10^6 . По построению аппроксимации суммы двух логнормальных распределений логнормальным распределением ошибки математического ожидания и дисперсии равны 0, то есть $m = \tilde{m}$ и $s^2 = \tilde{s}^2$. Но если для каких-либо расчетов понадобятся квантили η , то ошибка медианы может достигать 21%, ошибка квантиля q_{10} достигает 67%, ошибка квантиля q_{90} достигает 20%.

Таблица 4.1. Ошибка аппроксимации медианы (%) в зависимости от σ_1^2 (строка) и σ_2^2 (столбец) при $\mu_1=\mu_2=4$.

	0.25	0.75	1.25	1.75	2.25
0.25	0.24	0.46	4.19	11.67	21.10
0.75	0.74	0.40	3.06	11.46	20.99
1.25	4.25	3.27	2.48	6.18	16.15
1.75	12.18	10.12	5.57	5.24	9.92
2.25	20.94	20.20	16.29	9.59	8.47

Таблица 4.2. Ошибка аппроксимации q_{10} (%) в зависимости от σ_1^2 (строка) и σ_2^2 (столбец) при $\mu_1=\mu_2=4.$

	0.25	0.75	1.25	1.75	2.25
0.25	0.72	12.75	33.79	52.58	66.98
0.75	12.30	3.81	15.13	35.85	53.91
1.25	33.42	14.81	10.81	22.58	40.49
1.75	52.84	35.57	19.95	18.15	27.68
2.25	66.40	53.63	41.42	26.75	24.57

Таблица 4.3. Ошибка аппроксимации q_{90} (%) в зависимости от σ_1^2 (строка) и σ_2^2 (столбец) при $\mu_1=\mu_2=4.$

	0.25	0.75	1.25	1.75	2.25
0.25	0.16	5.03	13.69	17.74	19.37
0.75	5.63	1.89	5.77	10.70	16.03
1.25	13.55	5.75	2.52	6.00	9.79
1.75	19.95	11.88	5.77	3.50	4.89
2.25	18.47	15.44	9.42	5.50	5.27

Построим графики зависимости ошибки аппроксимации квантилей от σ_2^2 при фиксированной $\sigma_1^2=0.75$. При моделировании объемы выборок равны 10^6 . Они представлены на рисунках $4.1,\,4.2$ и 4.3.

Рис. 4.1. Ошибка аппроксимации медианы при $\sigma_1^2=0.75.$

Рис. 4.2. Ошибка аппроксимации q_{10} при $\sigma_1^2=0.75$.

4.1.2. Соответствие квантилей

Теперь посчитаем значения функции $F_{\xi}(x)$ от квантилей $z_{10},\ z_{50},\ z_{90}$ случайной величины η . Они показывают, каким квантилем для ξ являются квантили z_{i} . Результаты приведены в таблицах $4.4,\ 4.5$ и 4.6.

Таблица 4.4. $F_{\eta}(z_{50})$ (%) в зависимости от σ_1^2 (строка) и σ_2^2 (столбец) при $\mu_1=\mu_2=4$.

	0.25	0.75	1.25	1.75	2.25
0.25	50.10	49.87	46.96	42.18	36.95
0.75	49.87	49.82	48.30	44.55	39.74
1.25	46.96	48.30	49.00	47.19	43.31
1.75	42.18	44.55	47.19	47.91	46.03
2.25	36.95	39.74	43.31	46.03	46.73

Рис. 4.3. Ошибка аппроксимации q_{90} при $\sigma_1^2=0.75.$

Таблица 4.5. $F_{\eta}(z_{10})$ (%) в зависимости от σ_1^2 (строка) и σ_2^2 (столбец) при $\mu_1=\mu_2=4$.

	0.25	0.75	1.25	1.75	2.25
0.25	9.79	5.84	1.82	0.32	0.04
0.75	5.84	8.89	6.45	3.14	1.19
1.25	1.82	6.45	7.85	6.00	3.35
1.75	0.32	3.14	6.00	6.89	5.43
2.25	0.04	1.19	3.35	5.43	6.08

4.1.3. Оценки плотностей ξ и η

Построим оценки плотности для ξ и η , когда ошибки имеют очень маленькие значения и когда достаточно большие. Они представлены на рисунках 4.4 и 4.5.

Таблица 4.6. $F_{\eta}(z_{90})$ (%) в зависимости от σ_1^2 (строка) и σ_2^2 (столбец) при $\mu_1=\mu_2=4$.

	0.25	0.75	1.25	1.75	2.25
0.25	90.08	91.47	92.31	92.42	92.19
0.75	91.47	90.38	91.11	91.83	92.02
1.25	92.31	91.11	90.57	90.93	91.31
1.75	92.42	91.83	90.93	90.62	90.75
2.25	92.19	92.02	91.31	90.75	90.56

Рис. 4.4. $\sigma_1^2=0.25,\,\sigma_2^2=0.25,\,err_{med}=0.17\%,\,err_{q_{10}}=0.35\%,\,err_{q_{90}}=0.12\%.$

4.1.4. Коэффициент асимметрии и эксцесса

Посмотрим на таблицы 4.7 и 4.8 с коэффициентами асимметрии и эксцесса.

Рис. 4.5. $\sigma_1^2=2.25,\,\sigma_2^2=0.75,\,err_{med}=20.4\%,\,err_{q_{10}}=54.13\%,\,err_{q_{90}}=15.54\%.$

Таблица 4.7. Коэффициент асимметрии суммы (голубой) и аппроксимации (розовый) в зависимости от σ_1^2 (строка) и σ_2^2 (столбец) при $\mu_1=\mu_2=4$.

	0.25	0.75	1.25	1.75	2.5
0.05	1.77	4.23	6.71	15.59	16.68
0.25	1.53	3.75	7.48	14.76	29.70
0.75	1.66	3.86	7.39	11.43	54.43
0.75	1.55	3.65	7.22	14.25	28.77
1.25	2.13	3.68	8.73	13.76	29.28
1.23	1.71	3.60	6.97	13.68	27.66
1.75	5.88	4.06	7.50	31.50	24.89
	2.17	3.71	6.79	13.09	26.41
2.5	11.18	8.85	8.55	10.34	23.61
	3.30	4.29	6.90	12.66	25.13

Таблица 4.8. Коэффициент эксцесса суммы (голубой) и аппроксимации (розовый) в зависимости от σ_1^2 (строка) и σ_2^2 (столбец) при $\mu_1=\mu_2=4$.

	0.25	0.75	1.25	1.75	2.5
0.05	6.54	51.70	227.68	408.58	734.47
0.25	4.42	32.60	180.39	1088.57	7274.56
0.75	6.21	61.66	144.59	201.69	1304.88
0.75	4.56	30.53	164.86	990.42	6666.16
1.05	11.47	27.75	179.22	193.95	546.57
1.25	5.61	29.53	150.21	886.71	5989.44
1.75	122.65	46.01	110.03	276.24	14081.05
	9.44	31.88	140.69	788.78	5280.07
2.5	195.77	283.81	344.56	4837.85	1292.23
2.5	24.08	44.88	146.68	720.26	4612.33

Заключение

Таким образом, мною были получены следующие результаты.

Получено условие на σ для существования трехточечной симметричной аппроксимации логнормального распределения. Численно оценена точность аппроксимации мат. ожидания и дисперсии логнормального распределения с помощью метода Свонсона, применяемого к нормальному распределению. Построен алгоритм для нахождения трехточечной симметричной аппроксимации суммы логнормальных распределений. Численно оценена точность трехточечной аппроксимации суммы логнормальных распределений.

Список литературы

- 1. Keith G. Swanson's Swansong.—Текст: электронный // stochastic: [сайт].—URL: https://www.stochastic.dk/post/swanson-s-swansong (дата обращения: 23.12.2021).
- 2. Uncertainties impacting reserves, revenue, and costs—Текст: электронный // AAPG Wiki: [сайт].—URL: https://wiki.aapg.org/Uncertainties impacting reserves, revenue, and costs (дата обращения: 27.05.2022).
- 3. Bickel, J. Eric, Lake, Larry W., and John Lehman. "Discretization, Simulation, and Swanson's (Inaccurate) Mean."SPE Econ Mgmt 3 (2011): 128–140. doi: https://doi.org/10.2118/148542-PA.
- Bickel, J. Eric. "Discretization, Simulation, and the Value of Information." Paper presented at the SPE Annual Technical Conference and Exhibition, Denver, Colorado, USA, October 2011. doi: https://doi.org/10.2118/145690-MS.
- 5. Moghadasi, Maryam and Jerry L. Jensen. "Performance Evaluation of Swanson's Rule for the Case of Log-Normal Populations." (2014). DOI:10.1007/978-3-642-32408.