Аффинные торические SL_3 -вложения

Н. Ю. Медведь

Московский Государственный Университет имени М.В. Ломоносова, Факультет компьютерных наук Высшей Школы Экономики

18 августа 2018 г.

Основной объект

Пусть \mathbb{K} — алгебраически замкнутое поле характеристики 0.

На неприводимом нормальном аффинном многообразии X действует группа $G=SL_n(\mathbb{K})$ с открытой орбитой.

Основной объект

Пусть \mathbb{K} — алгебраически замкнутое поле характеристики 0.

На неприводимом нормальном аффинном многообразии X действует группа $G=SL_n(\mathbb{K})$ с открытой орбитой.

Такие многообразия можно представлять как замыкания G/H для некоторой подгруппы H. Отдельный интерес представляет случай $H=\{e\}$, то есть случай, когда G действует с тривиальным стабилизатором общей точки. Тогда говорят, что X — аффинное G-вложение.

Классификация SL_2 -вложений

В 1973 году в статье «Квазиоднородные аффинные алгебраические многообразия группы $\mathrm{SL}(2)$ » В. Л. Поповым была получена полная классификация аффинных неприводимых нормальных многообразий с действием группы SL_2 с открытой орбитой.

В этой классификации аффинному неприводимому нормальному многообразию с действием группы SL_2 с открытой орбитой со стабилизатором \mathbb{Z}_r соответствует пара $(\frac{p}{q},r)$, где $p,q,r\in\mathbb{N},0<\frac{p}{q}\leq 1$.

Классификация SL_2 -вложений

В 1973 году в статье «Квазиоднородные аффинные алгебраические многообразия группы SL(2)» В. Л. Поповым была получена полная классификация аффинных неприводимых нормальных многообразий с действием группы SL_2 с открытой орбитой.

В этой классификации аффинному неприводимому нормальному многообразию с действием группы SL_2 с открытой орбитой со стабилизатором \mathbb{Z}_r соответствует пара $(\frac{p}{q},r)$, где $p,q,r\in\mathbb{N},0<\frac{p}{q}\leq 1$.

Отметим, что используемые методы существенно используют свойства группы SL_2 и не продолжаются на случай произвольного SL_n .

Напоминание: торические многообразия

Напомним, что нормальное алгебраическое многообразие X называется торическим, если на нём действует алгебраический тор $T=(\mathbb{K}^\times)^n$ так, что он вкладывается в X и действует при этом на себе левыми сдвигами.

Торические многообразия могут быть описаны комбинаторно, при этом соответствии неприводимые аффинные торические многообразия без обратимых функций соответствуют строго выпуклым полиэдральным конусам в \mathbb{Q}^n .

Торические SL_2 -вложения

С. А. Гайфуллин, 2008: «Аффинные торические SL(2)-вложения».

- В терминах классификации аффинных многообразий с действием группы SL_2 с открытой орбитой указано, какие из них торические (ответ: когда r делится на q-p).
- ullet При этом случай SL_2 -вложения соответствует r=1, то есть высоте $rac{p}{p+1}$.
- Описаны конуса этих многообразий.

Описание результатов

Все аффинные торические многообразия с действием SL_3 с открытой орбитой могут быть получены как категорные факторы линейного представления $SL_3 \times Q$ по действию Q, где Q — некоторый квазитор. Результаты работы таковы:

- описаны все подходящие представления;
- ② среди них перечислены все те, для которых у получившегося фактора стабилизатор общей точки тривиален, то есть фактор является SL_3 -вложением;
- показано, что ранг группы классов дивизоров аффинного торического многообразия может равняться только 0,1,2 или 3;
- приведён пример многообразия с двумя различными действиями SL_3 с открытой орбитой.

Напоминание: дивизоры

Простым дивизором Вейля D на многообразии X называется замкнутое подмногообразие коразмерности 1. Ими можно формально породить абелеву группу дивизоров Вейля WDiv(X).

Каждой рациональной функции f на многообразии соответствует так называемый дивизор нулей и полюсов. Дивизоры, получающиеся подобным образом, называют главными дивизорами, а подгруппу в группе дивизоров, из них состоящую, обозначим PDiv(X).

Факторгруппу WDiv(X)/PDiv(X) называют *группой классов дивизоров* и обозначают Cl(X).

Кольцо Кокса (общий случай)

Здесь и далее X предполагается неприводимым нормальным аффинным многообразием без непостоянных обратимых функций и с конечно порождённой группой классов дивизоров.

$$\mathcal{R}(X) = igoplus_{[D] \in \mathit{CI}(X)} \mathcal{O}(X,D)$$
 — кольцо Кокса мн-я $X,$

где
$$\mathcal{O}(X,D) = \{f | (f) + D \ge 0\} \cup \{0\}.$$

$$Q:\mathfrak{X}(Q)=\mathit{Cl}(X)$$
 — характеристический квазитор

$$\overline{X} = \operatorname{\mathsf{Spec}} \mathcal{R}(X)$$
 — тотальное координатное пространство

$$\pi:\overline{X}\overset{/\!/Q}{ woheadrightarrow}X$$
 — реализация Кокса

Свойства кольца Кокса

Теорема (см. книгу "Cox Rings")

Пусть $\pi:\overline{X}\stackrel{//Q}{ o}X$ — реализация Кокса, а $\mu:G imes X o X$ — действие односвязной полупростой группы G на X.

Тогда существует действие $\mu': G \times \overline{X} \to \overline{X}$ такое, что действия G и Q коммутируют, то есть $\pi \circ \mu' = \mu \circ (\mathrm{id}_G \times \pi)$.

Свойства кольца Кокса

Теорема (см. книгу "Cox Rings")

Пусть $\pi:\overline{X}\stackrel{//Q}{ o}X$ — реализация Кокса, а $\mu:G imes X o X$ — действие односвязной полупростой группы G на X.

Тогда существует действие $\mu': G \times \overline{X} \to \overline{X}$ такое, что действия G и Q коммутируют, то есть $\pi \circ \mu' = \mu \circ (\mathrm{id}_G \times \pi)$.

Теорема (D.Cox)

Если X торическое, то $\mathcal{R}(X)$ — кольцо многочленов, то есть \overline{X} — аффинное пространство.

Сводим к модулям

Предложение

Пусть G — односвязная полупростая алгебраическая группа, действующая на аффинном многообразии X с открытой орбитой, а Q — характеристический квазитор многообразия X. Тогда X — торическое тогда и только тогда, когда существует $(G \times Q)$ -модуль V с открытой $(G \times Q)$ -орбитой такой, что X будет G-эквивариантно изоморфно категорному фактору V по действию Q. При этом $V/\!/Q$ является реализацией Кокса многообразия X.

Таким образом, достаточно изучить $(G \times Q)$ -модули с открытой орбитой такие, что $V \to V/\!/Q$ является реализацией Кокса.

Критерий реализации Кокса

Теорема

Пусть на $V=\mathbb{K}^m$ действует линейно квазитор Q. Обозначим веса координатных функций x_i через $\overline{w_i}\in \overline{M}=\mathfrak{X}(Q)$. Через M обозначим факторгруппу $\overline{M}/\mathrm{Tor}(\overline{M})$, образы $\overline{w_i}$ в факторгруппе обозначим w_i . Тогда V с действием Q — тотальное координатное пространство аффинного торического многообразия V//Q тогда и только тогда, когда для $\{\overline{w_i}\}$ выполнены следующие условия:

- $oldsymbol{0}$ при удалении любого $\overline{w_i}$ оставшиеся порождают всю группу \overline{M} ;
- ② для любой гиперплоскости, содержащей начало координат, в каждом из образующихся открытых полупространств лежат хотя бы по два w; с учётом кратности.

Теорема

Все подходящие $(SL_3 \times Q)$ -модули V исчерпываются списком из нижеприведенной таблицы. При этом для модуля

$$V = \underbrace{\mathbb{K}^3 \oplus \ldots \oplus \mathbb{K}^3}_{k} \oplus \underbrace{\mathbb{K} \oplus \cdots \oplus \mathbb{K}}_{r}$$

тор T действует с весами $v_1, v_2, \ldots, v_k, w_1, \ldots, w_r$. Конечная часть квазитора действует произвольно так, чтобы действие квазитора было эффективно.

Теорема

Все подходящие $(SL_3 \times Q)$ -модули V исчерпываются списком из нижеприведенной таблицы. При этом для модуля

$$V = \underbrace{\mathbb{K}^3 \oplus \ldots \oplus \mathbb{K}^3}_{k} \oplus \underbrace{\mathbb{K} \oplus \cdots \oplus \mathbb{K}}_{r}$$

тор T действует с весами $v_1, v_2, \ldots, v_k, w_1, \ldots, w_r$. Конечная часть квазитора действует произвольно так, чтобы действие квазитора было эффективно.

V	dim Q	условия на действие тора
\mathbb{K}^3	0	_

V	dim Q	условия на действие тора
$\mathbb{K}^3\oplus\mathbb{K}^3$	0	_
$\mathbb{K}^3\oplus\mathbb{K}^3$	1	$ec{v}_1$ и $ec{v}_2$ противоположно направлены
		и $ v_1 , v_2 $ взаимно просты
$\mathbb{K}^3\oplus\mathbb{K}^3\oplus\mathbb{K}$	1	v_1 и v_2 противоположно направле-
		ны, $ v_1 $, $ v_2 $ и $ w_1 $ взаимно просты
		в совокупности
$\mathbb{K}^3 \oplus \mathbb{K}^3 \oplus \mathbb{K} \oplus \mathbb{K}$	2	v_1 и v_2 линейно независимы, w_1
		и <i>w</i> ₂ линейно независимы и лежат
		строго в конусе, порождённом $-v_1$
		и $-v_2$; v_1,v_2,w_1,w_2 порождают ре-
		шётку характеров тора
$\mathbb{K}^3 \oplus (\mathbb{K}^3)^*$	1	v_1 и v_2 противоположно направле-
		ны; $ v_1 , v_2 $ взаимно просты и не
		равны одновременно 1

V	dim Q	условия на действие тора
$\mathbb{K}^3\oplus\mathbb{K}^3\oplus\mathbb{K}^3$	1	
$\mathbb{K}^3 \oplus \mathbb{K}^3 \oplus \mathbb{K}^3$	2	
$\mathbb{K}^3 \oplus \mathbb{K}^3 \oplus \mathbb{K}^3 \oplus \mathbb{K}$	2	
$\mathbb{K}^3 \oplus \mathbb{K}^3 \oplus \mathbb{K}^3 \oplus \mathbb{K} \oplus \mathbb{K}$	3	
$\mathbb{K}^3 \oplus \mathbb{K}^3 \oplus (\mathbb{K}^3)^*$	2	

Случай тривиального стабилизатора

Теорема

Группа SL_3 действует на аффинном торическом многообразии X с открытой орбитой и тривиальным стабилизатором общей точки тогда и только тогда, когда X является категорным фактором аффинного пространства V по действию тора T, где действие T на V удовлетворяет одному из следующих условий:

Случай тривиального стабилизатора

V	dim T	условия на действие тора
$\mathbb{K}^3 \oplus \mathbb{K}^3 \oplus \mathbb{K}^3$	1	$v_1 + v_2 + v_3 = \pm 1$
$\mathbb{K}^3 \oplus \mathbb{K}^3 \oplus \mathbb{K}^3 \oplus \mathbb{K}$	2	$\left \ \operatorname{dim} \left\langle v_1, v_2, v_3 ight angle \right. = 2$, система $\left \ \right $
		векторов v_1, v_2, v_3, w_1 порож-
		дает всю решетку, существу-
		ет натуральное число <i>а</i> такое,
		что $\frac{1}{2}w_1$ и $v_1+v_2+v_3$ порож- $ $
		дают всю решетку
$\mathbb{K}^3 \oplus \mathbb{K}^3 \oplus \mathbb{K}^3 \oplus \mathbb{K} \oplus \mathbb{K}$	3	$ \operatorname{dim}\langle v_1,v_2,v_3 angle = 3$, система
		векторов v_1, v_2, v_3, w_1, w_2 по-
		рождает всю решетку, суще-
		ствуют a_1 и a_2 такие, что 1
		$\left \begin{array}{c} \frac{1}{a_1} w_1, \frac{1}{a_2} w_2 \text{ и } v_1 + v_2 + v_3 \text{ по-} \end{array} \right $
		рождают всю решетку

Пример двух различных действий SL_3

Заметим, что в случае SL_2 вместо 20-ти приведённых выше случаев возможен был только один ($\mathbb{K}^2\oplus\mathbb{K}^2$), поэтому не возникало модулей равной размерности, но с разным разложением на неприводимые SL-модули. В случае же SL_3 не только возникают сопряженные модули, но возможна и ситуация, когда действие Q на V совместимо с двумя принципиально различными разложениями на SL-модули.

Пример

Рассмотрим пятимерное многообразие $X \cong \mathbb{A}^6/\!/\mathbb{K}^\times$, где $T = \mathbb{K}^\times$ действует с весами (2,2,2,-1,-1,-1). Рассмотрим два действия SL_3 на \mathbb{A}^6 , коммутирующих с действием T: действие на $\mathbb{K}^3 \oplus \mathbb{K}^3$ и на $\mathbb{K}^3 \oplus (\mathbb{K}^3)^*$.

В первом случае на X возникают орбиты размерностей 5 (открытая), 3, 0. Во втором случае размерности орбит равны 5, 4, 0. Таким образом, действия различны.

Что не вошло в заявленный анонс?

Теорема

При $n \geq 4$ для любого d существует SL_n -вложение c группой классов \mathbb{Z}^d .

Набросок доказательства.

Мы рассматриваем модуль $\underbrace{\mathbb{K}^n\oplus\cdots\oplus\mathbb{K}^n}_n\oplus\underbrace{\mathbb{K}\oplus\cdots\oplus\mathbb{K}}_{d-1}$. Для него мы

строим специальный набор весов $v_1,\ldots,v_n,w_1,\ldots,w_{d-1}$, удовлетворяющий условиям для реализации Кокса. При построении набора существенно используется то, что весов хотя бы d+3. Далее оказывается, что для этого набора открытой орбиты нет, но его можно скорректировать так, что все еще будет реализация Кокса, но у действия будет открытая орбита.

Спасибо!