

Introduction to Author Profiling

- Author profiling use sociolect aspects to distinguish among classes of authors [1]. E.g.
 - Age, gender, native language, emotional profile, personality type...
- Author profiling is important in:
 - Forensics
 - Security
 - Marketing

Research Aim

 Our aim is at investigating how people use the language, and especially how they convey verbal emotions, to determine their age and gender

Outline

- Related work
- Representation models
- Experimental setup
- Experimental results
- Analysis
- Conclusions

Outline

- Related work
- Representation models
- Experimental setup
- Experimental results
- Analysis
- Conclusions

Related Work

AUTHOR	COLLECTION	FEATURES	RESULTS	OTHER CHARACTERISTICS
Argamon et al., 2002	British National Corpus	Part-of-speech	Gender: 80% accuracy	
Holmes & Meyerhoff, 2003	* I Formal feyfs I - I		Age and gender	
Burger & Henderson, 2006	SIO9S		They only reported: "Low percentage errors"	Two age classes: [0,18[,[18,-]
Koppel et al., 2003	Blogs	Simple lexical and syntactic functions	Gender: 80% accuracy	Self-labeling
Schler et al., 2006	Blogs	Stylistic features + content words with the highest information gain	Gender: 80% accuracy Age: 75% accuracy	
Goswami et al., 2009	Blogs	Slang + sentence length	Gender: 89.18 accuracy Age: 80.32 accuracy	
Zhang & Zhang, 2010	Segments of blog	Words, punctuation, average words/ sentence length, POS, word factor analysis Gender: 72,10 accuracy		
Nguyen et al., 2011 y 2013	Blogs & Twitter	Unigrams, POS, LIWC Correlation: 0 Mean absolute er 6.8 years		Manual labeling Age as continuous variable
Peersman et al., 2011	Netlog	Unigrams, bigrams, trigrams and tetagrams	Gender+Age: 88.8 accuracy	Self-labeling, min 16 plus 16,18,25

PAN task at CLEF (http://pan.webis.de)

AUTHOR	COLLECTION	FEATURES	RESULTS	OTHER CHARACTERISTICS	
PAN 2013 [1]	Social Media	Style-based features (frequencies,	Gender: ~64% accuracy Age: ~64% accuracy	English & Spanish Age, Gender	
PAN 2014 [2]	Social Media, Blogs, Twitter, Reviews	readability, POS) Content-based features (LDA, topics, BOW) n-grams, language models Collocations	Content-based features (LDA, topics, BOW) n-grams, language models	Gender: ~72% accuracy Age: ~61% accuracy	English & Spanish Age, Gender
PAN 2015 [3]	Twitter	Second Order Representations -	Gender: ~97% accuracy Age: ~84% accuracy Personality: ~6% RMSE	English, Spanish, Italian & Dutch Age, Gender, Personality Traits	

^[1] Rangel, F., Rosso, P., Koppel, M., Stamatatos, E., Inches, G.: Overview of the authorprofiling task at pan 2013. In: Forner P., Navigli R., Tufis D. (Eds.), Notebook Papers of CLEF 2013 LABs and Workshops. CEUR-WS.org, vol. 1179 (2013)

- [2] Rangel, F., Rosso, P., Chugur, I., Potthast, M., Trenkmann, M., Stein, B., Verhoeven, B., Daelemans, W.: Overview of the 2nd author profiling task at pan 2014. In: Cappellato L., Ferro N., Halvey M., Kraaij W. (Eds.) CLEF 2014 Labs and Workshops, Notebook Papers. CEUR-WS.org, vol. 1180 (2014)
- [3] Rangel, F., Celli, F., Rosso, P., Potthast, M., Stein, B., Daelemans, W.: Overview of the 3rd author profiling task at pan 2015. In: Notebook for PAN at CLEF 2014. CEUR Workshop Proceedings, Vol. 1391, 2015

Outline

- Related work
- Representation models
- Experimental setup
- Experimental results
- Analysis
- Conclusions

Style-based Features

PART-OF-SPEECH (GRAMMATICAL CATEGORIES)	Frequency of use of each grammatical category, number and person of verbs and pronouns, mode of verb, proper nouns (NER) and non-dictionary words (words not found in dictionary);
FREQUENCIES	Ratio between number of unique words and total number of words, words starting with capital letter, words completely in capital letters, length of the words, number of capital letters and number of words with flooded characters (e.g. Heeeelloooo);
PUNCTUATION MARKS	Frequency of use of dots, commas, colon, semicolon, exclamations, question marks and quotes;
EMOTICONS	Ratio between the number of emoticons and the total number of words, number of the different types of emoticons representing emotions: joy, sadness, disgust, angry, surprised, derision and dumb;
SPANISH EMOTION LEXICON (SEL)	We obtained the lemma for each word and then its <i>Probability Factor of Affective Use</i> value from the SEL dictionary. If the lemma does not have an entry in the dictionary, we look for its synonyms. We add all the values for each emotion, building one feature per emotion.

Rangel, F., Rosso, P. On the Identification of Emotions in Facebook Comments. In Proceedings of the First International Workshop on Emotion and Sentiment in Social and Expressive Media: approaches and perspectives from AI (ESSEM 2013) A workshop of the XIII International Conference of the Italian Association for Artificial Intelligence (AI*IA 2013). Turin, Italy, December 3, 2013

EmoGraph

"He estado tomando cursos en línea sobre temas valiosos que disfruto estudiando y que podrían ayudarme a hablar en público"

Steps to Build an EmoGraph for a Given Text

He estado tomando cursos en línea sobre temas valiosos que disfruto estudiando y que podrían ayudarme a hablar en público.

Morpho-syntactic analysis with Freeling

He estado tomando cursos en línea sobre temas valiosos que disfruto estudiando y que podrían ayudarme a hablar en público.

He	estado	tomando	cursos	en_línea	sobre	temas	valiosos	que	disfruto	estudiando
VAIP1S0	VAP00SM	VMG0000	NCMP000	RG	SPS00	NCMP000	AQ0MP0	PROCN000	VMIP1S0	VMG0000
у	que	podrían	ayu	darme	a	hablar	en	público		
CC	PROCNO00	VMIC3P0) VMI	N0000	SPS00	VMN0000	SPS00	NCMS000	Fp	

POS sequence - Nodes - Edges creation

He estado tomando cursos en línea sobre temas valiosos que disfruto estudiando y que podrían ayudarme a hablar en público.

Topics with Wordnet Pomains

He estado tomando cursos en línea sobre temas valiosos que disfruto estudiando y que podrían ayudarme a hablar en público.

Semantic Classification of Verbs

He estado tomando cursos en línea sobre temas valiosos que disfruto estudiando y que podrían ayudarme a hablar en público.

Polarity

He estado tomando cursos en línea sobre temas valiosos que disfruto estudiando y que podrían ayudarme a hablar en público.

Emotions

He estado tomando cursos en línea sobre temas valiosos que disfruto estudiando y que podrían ayudarme a hablar en público.

EmoGraph

"He estado tomando cursos en línea sobre temas valiosos que disfruto estudiando y que podrían ayudarme a hablar en público"

Resources

Freeling	http://nlp.lsi.upc.edu/freeling/
WordNet Domains (+EuroWordnet)	http://wndomains.fbk.eu/ http://www.illc.uva.nl/EuroWordNet/
Semantic Classification of	Levin, B. English Verb Classes and Alternations. University of Chicago Press, Chicago. (1993)
Verbs	a) perception (see, listen, smell); b) understanding (know, understand, think); c) doubt (doubt, ignore); d) language (tell, say, declare, speak); e) emotion (feel, want, love); f) and will (must, forbid, allow)
Polarity Lexicon	Hu, M., Liu, B. Mining and Summarizing Customer Reviews. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Seattle, Wash- ington, USA, pp. 168-177 (2004)
Spanish Emotion Lexicon	Sidorov,G.,Miranda,S.,Viveros,F.,Gelbukh,A.,Castro,N.,Velásquez,F.,Díaz,I.,Suárez, S., Treviño, A., Gordon, J.: Empirical Study of Opinion Mining in Spanish Tweets. 11th Mex- ican International Conference on Artificial Intelligence, MICAI, pp. 1-14 (2012)

EmoGraph Features

Given a graph G={N,E} where:

- N is the set of nodes
- E is the set of edges

we obtain a set of:

- structure-based features from global measures of the graph
- node-based features from node specific measures

Structure-based Features

Nodes-edges ratio	It gives an indicator of how connected the graph is. In our case, how complicated the discourse is.	Theoretical maximum: $max(E) = N*(N-1)$
Average degree Weighted average degree	It gives an indicator on how much interconnected the graph is. In our case, how much interconnected the grammatical categories are.	Averaging all nodes degrees. Scaling it to [0,1]
Diameter	It indicates the greatest distance between any pair of nodes. In our case, how far a grammatical category is from others, or how far a topic is from an emotion.	$d = max_{n \in N} arepsilon(N)$ where E(N) is the eccentricity
Density	It indicates how close the graph is to be completed. In our case, how dense is the text in the sense of how each grammatical category is used in combination to others.	$D = \frac{2* E }{(N *(N -1))}$
Modularity	It indicates different divisions of the graph into modules. One node has dense connections within the module and sparse with nodes in other modules. In our case, it may indicate how the discourse is modelled in different structural or stylistic units.	Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E. Fast unfolding of communities in large networks. In: Journal of Statistical Mechanics: Theory and Experiment, vol. 2008 (10), pp. 10008 (2008)
Clustering coefficient	It indicates the transitivity of the graph. If a is directlyy linked to b and b is directly linked to c, what's the probability that a is directly linked to c. In our case, how different grammatical categories or semantic information is related to each others	Watts-Strogatzt: $cc1 = rac{\sum_{i=1}^{n} C(i)}{n}$
Average path length	It indicates how far some nodes are from others. In our case, how far some grammatical categories are from others, or for example how far some topics are from some emotions	Brandes, U. A Faster Algorithm for Betweenness Centrality. In: Journal of Mathematical So- ciology 25(2), pp. 163-177 (2001)

Node-based Features

EigenVector	It gives a measure of the influence of each node. In our case, it may give what are the grammatical categories with the most central use in the author's discourse, for example, which nouns, verbs or adjectives	Given a graph and its adjacency matrix $A=a_{n,t}$ where $a_{n,t}$ is I if a node n is linked to a node t, and 0 otherwise: $x_n=\frac{1}{\lambda}\sum_{t\in M(n)}x_t=\frac{1}{\lambda}\sum_{t\in G}a_{n,t}x_t$ where λ is a constant representing the greatest eigenvalue associated with the centrality measure.
Betweenness	It gives a measure of the importance of a each node depending on the number of shortest paths of which it is part of. In our case, if one node has a high betweenness centrality means that it is a common element used for link among parts-of-speech, for example, prepositions, conjunctions or even verbs and nouns. Hence, this measure may give us an indicator of what the most common connectors in the linguistic structures used by authors	

Outline

- Related work
- Representation models
- Experimental setup
- Experimental results
- Analysis
- Conclusions

Experiments

- ... with PAN-AP13
- ... with PAN-AP14

PAN-AP13 Corpus (Spanish)

Age	Gender	No. of Author		
		Training	Test	
10-	male	1 250	144	
10s	female	1 250	144	
20s	male	21 300	2304	
208	female	21 300	2304	
20-	male	15 400	1632	
30s	female	15 400	1 632	
$\overline{\Sigma}$		75 900	8 160	

- Social Media in Spanish
- Noisy data

Rangel, F., Rosso, P., Koppel, M., Stamatatos, E., Inches, G.: Overview of the author profiling task at pan 2013. In: Forner P., Navigli R., Tufis D. (Eds.), Notebook Papers of CLEF 2013 LABs and Workshops. CEUR-WS.org, vol. 1179 (2013)

Methodology - PAN-AP13

Features: Style features + EmoGraph

Machine learning: Weka toolkit

Gender Identification	Support Vector Machine Gaussian Kernel g=0.20 c=1	
Age Identification	Support Vector Machine Gaussian Kernel g=0.08 c=1	

Evaluation measure: Accuracy

t-Student $H_0: p_1=p_2$

PAN-AP14 Corpus

	Social	Media	Ble	ogs	Tw	itter	Reviews
	English	Spanish	English	Spanish	English	Spanish	English
18-24	680	150	10	4	12	4	74
25-34	900	180	24	12	56	26	200
35-49	980	138	32	26	58	46	200
50-64	790	70	10	10	26	12	200
65+	26	28	2	2	2	2	147
Σ	3376	566	78	54	154	90	821

^{*} Balanced by gender

Rangel, F., Rosso, P., Chugur, I., Potthast, M., Trenkmann, M., Stein, B., Verhoeven, B., Daelemans, W.: Overview of the 2nd author profiling task at pan 2014. In: Cappellato L., Ferro N., Halvey M., Kraaij W. (Eds.) CLEF 2014 Labs and Workshops, Notebook Papers. CEUR-WS.org, vol. 1180 (2014)

Methodology - PAN-AP14

Features: EmoGraph + 1000 char 6-grams

Machine learning: Weka toolkit

Gender Identification English Twitter	Logistic Regression
Age & Gender Identification English Reviews English Social Media	Support Vector Machines
Age Identification Spanish Twitter	Support Vector Machines
All the rest	AdaBoost (Decision Stump)

Evaluation measure: Accuracy

Outline

- Related work
- Representation models
- Experimental setup
- Experimental results
- Analysis
- Conclusions

Age Identification - PAN-AP13

Ranking	Team	Accuracy
1	Rangel-EG	0.6624
2	Pastor	0.6558
3	Santosh	0.6430
4	Rangel-S	0.6350
5	Haro	0.6219
6	Rangel-nG	0.6162
7	Flekova	0.5966
•••		
21	Baseline	0.3333
23	Mechti	0.0512

$$(z_{0.05} = 0.8894 < 1.960)$$

Rangel F., Rosso P. On the impact of emotions on author profiling. Information, Processing & Management, 2015 (In Press) DOI: 10.1016/j.ipm.2015.06.003

Gender Identification - PAN-AP13

Team	Accuracy
Santosh	0.6473
Rangel-EG	0.6365
Pastor	0.6299
Haro	0.6165
Ladra	0.6138
Flekova	0.6103
Rangel-nG	0.6016
Jankowska	0.5846
Rangel-S	0.5713
Baseline	0.5000
Gillam	0.4784
	Santosh Rangel-EG Pastor Haro Ladra Flekova Rangel-nG Jankowska Rangel-S Baseline

$$(z_{0.05} = 1.4389 < 1.960)$$

Rangel F., Rosso P. On the impact of emotions on author profiling. Information, Processing & Management, 2015 (In Press) DOI: 10.1016/j.ipm.2015.06.003

Age & Gender Identification - PAN-AP14

Rangel F., Rosso P. On the Multilingual and Genre Robustness of EmoGraphs for Author Profiling in Social Media. In: 6th Int. Conf. of CLEF on Experimental IR meets Multilinguality, Multimodality, and Interaction, CLEF 2015, Springer-Verlag, LNCS(9283)

Outline

- Related work
- Representation models
- Experimental setup
- Experimental results
- Analysis
- Conclusions

Error Analysis - PAN-AP13

Topics per Gender - PAN-AP13

Females

- No significative differences between genders
- No matter the gender, people seem to worry about life (vida), love (amor), want (quiero) and hope (espero)

Evolution of Topics per Age - PAN-AP13

Females 10s

linguistics gastronomy religion planning metrology industry animals card money administration buildings fashion music art literature phatrics free pharmocy buildings fashion music art military playmedicine geography chemistry and pharmocy sociology sociology

Females 20s

Females 30s

Males 10s

Males 20s

Males 30s

- Younger people tend to write more about disciplines such as: (males) physics, law... (females)
 chemistry, linguistics...
- 10s females talk more about sexuality whereas 10s males talk about shopping
- As they grow both males and females are interested in buildings, animals, gastronomy, medicine or religion

Emotions per Gender - PAN-AP13

- No significative differences between genders
- Females seem to express more disgust than males
- Males seem to express more sadness

Verb Types per Gender - PAN-AP13

- Females use more emotional verbs (feel, want, love...)
- Males use more language verbs (tell, say, speak...)

Evolution of Verb Types per Gender - PAN-AP13

- The use of emotional verbs decreases over years
- Females start using verbs of understanding at higher rate than males
- Verbs of understanding seems to increase for males and remains stable for females
- Verbs of will increases for both genders, but more for males
- Females use emotional verbs more than males in any stage of life vs. males use more verbs of language

Most Discriminating Features - PAN-AP13

Ranking	Gender	Age	Ranking	Gender	Age
1	punctuation-semicolon	words-length	11	BTW-NC00000	EIGEN-SPS00
2	EIGEN-VMP00SM	Pron	12	BTW-Z	BTW-NC00000
3	EIGEN-Z	BTW-SPS00	13	EIGEN-DA0MS0	punctuation-exclamation
4	EIGEN-NCCP000	BTW-NCMS000	14	BTW-Fz	emoticon-happy
5	Pron	Intj	15	BTW-NCCP000	BTW-Fh
6	words-length	EIGEN-Fh	16	EIGEN-AQ0MS0	punctuation-colon
7	EIGEN-NC00000	BTW-PP1CS000	17	SEL-disgust	punctuation
8	EIGEN-administration	EIGEN-Fpt	18	EIGEN-DP3CP0	BTW-Fpt
9	Intj	EIGEN-NC00000	19	EIGEN-DP3CS0	EIGEN-DA0FS0
10	SEL-sadness	EIGEN-NCMS000	20	SEL-anger	Verb

- Eigen features in gender vs. betweenness in age
- Verbs, nouns and adjectives in gender vs. prepositions and punctuation marks in age
- Higher presence of emotion-based features in gender identification

EmoGraph Contribution-PAN-AP14

Outline

- Related work
- Representation models
- Experimental setup
- Experimental results
- Analysis
- Conclusions

Conclusions

- We investigated the impact of emotions on gender and age identification
- An emotion-labeled graph (EmoGraph) has been proposed
- Results are competitive with the state-of-the-art
- Results are robust wrt. languages and genres
- The most discriminating features show the importance of emotions and graph-based model
- Some conclusions were drawn with respect to the use of the language depending age and gender

Thank you for your attention!

Paolo Rosso

http://www.kicorangel.com

http://users.dsic.upv.es/~prosso/