UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO.

: 6,830,964 B1

Page 1 of 4

APPLICATION NO. : 10/647061

DATED

: December 14, 2004

INVENTOR(S)

: Robert J. Mears et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

The title page should be deleted to appear as per attached title page.

The sheet of drawing consisting of figure 1 should be deleted to appear as per attached figure 1.

Column 1, Line 44

Delete: "on a binary"

Insert: --on binary--

Column 2. Line 2

Delete: "in a silicon"

Insert: --in silicon--

Column 2, Line 3

Delete: "electromuminescence"

Insert: --electroluminescence--

Column 2, Line 62

Delete: "superlattice and has"

Insert: --superlattice has--

Column 3, Line 49

Delete: "Si/o"

Insert: --Si/O--

Column 4, Line 32

Delete:

$$\mathbf{M}_{k,ij}^{-1}(E_F,T) = \frac{-\sum_{E < E_F} \int_{B.Z.} (\nabla_{\mathbf{k}} E(\mathbf{k}, n))_i (\nabla_{\mathbf{k}} E(\mathbf{k}, n))_j \frac{\partial f(E(\mathbf{k}, n), E_F, T)}{\partial E} d^3 \mathbf{k}}{\sum_{E < E_F} \int_{B.Z.} (1 - f(E(\mathbf{k}, n), E_F, T)) d^3 \mathbf{k}}$$

$$\mathbf{M}_{h,ij}^{-1}(E_F,T) = \frac{-\sum_{E < E_F} \int_{B.Z.} (\nabla_{\mathbf{k}} E(\mathbf{k}, n))_i (\nabla_{\mathbf{k}} E(\mathbf{k}, n))_j \frac{\partial f(E(\mathbf{k}, n), E_F, T)}{\partial E} d^3 \mathbf{k}}{\sum_{E < E_F} \int_{B.Z.} (1 - f(E(\mathbf{k}, n), E_F, T)) d^3 \mathbf{k}}$$

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO.

: 6,830,964 B1

Page 2 of 4

APPLICATION NO.: 10/647061

DATED

: December 14, 2004

INVENTOR(S)

: Robert J. Mears et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 5, Line 13

Delete: "gate 35"

Insert: --gate 38--

Column 5, Line 61

Delete: "gate 35"

Insert: --gate 38--

Column 7, Line 63

Delete: "from the both"

Insert: --from both--

Column 9, Lines

44-46

Delete: "In other processes and devices the structures of the

present invention may be formed on a portion of a wafer or

across substantially all of a wafer."

Column 9, Line 59

Delete: "also formed"

Insert: --also be formed--

Signed and Sealed this

Twenty-fifth Day of September, 2007

JON W. DUDAS Director of the United States Patent and Trademark Office

(12) United States Patent

Mears et al.

(10) Patent No.:

US 6,830,964 B1

(45) Date of Patent:

Dec. 14, 2004

(54) METHOD FOR MAKING SEMICONDUCTOR DEVICE INCLUDING BAND-ENGINEERED SUPERLATTICE

(75) Inventors: Robert J. Mears, Weilesley, MA (US); Jean Augustin Chan Sow Fook Yiptong, Waltham, MA (US); Marek Hytha, Brookline, MA (US); Scott A. Kreps, Southborough, MA (US); Ilija Dukovski, Newton, MA (US)

- (73) Assignee: RJ Mears, LLC, Waltham, MA (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
- (21) Appl. No.: 10/647,061(22) Filed: Aug. 22, 2003

Related U.S. Application Data

(63) Continuation-in-part of application No. 10/503,695, filled on Jun. 26, 2003, and a continuation-in-part of application No. 10/603,621, filed on Jun. 26, 2003.

(51)	Int. Cl
(52)	U.S. Cl
(58)	Field of Search

(56) References Cited

U.S. PATENT DOCUMENTS

4,485,128	A		11/1984	Daial et al 427/85
4.594.603	A		6/1986	Holonyak, Jr 357/16
4.894.691	A			Matsul 257/6
4,937,204	Ä			Ishibashi et al 437/110
4,969,031				Kobayashi et al 357/63
5.023.674				Hikosaka et al 257/24
5,055,887		٠		Yamazaki 257/20
5,216,262				Tau 257/17
5,270,247		٠		Sakuma et al
5,357,119				Wang et al 257/18
5,683,934				Candelaria 437/134
2				

(List continued on next page.)

FOREIGN PATENT DOCUMENTS

GB	2347520	9/2000	G02B/5/18
JP	61145820 A	7/1986	HOLL/21/20
JP .	61220339 A	9/1986	H01L/21/322
wo	99/63580	12/1999	
WO	02/103767	12/2002	

OTHER PUBLICATIONS

Xuan Luo et al.; "Chemical Design of Direct-Gap Light-Emitting Silicon", published Jul. 25, 2002 by The American Physical Society; vol. 89, No. 7.

R. Tsu; University of North Carolina at Charlotte, "Phenomena in Silicon Nanostructure Devices"; published Sep. 6, 2000© Springer-Verlag 2000.

P.D. Ye et al., "GaAs MOSFET with Oxide Gate Dielectric Grown by Atomic Layer Deposition"; @ Agere Systems, Mar. 2003.

Novikov et al.; "Silicon-based Optoelectronics"© 1999-2003 by John Wiley & Sons, Inc.; pp/ 1-6.

Primary Examinar—Savitri Mulpuri (74) Attorney, Agent, or Firm—Allen, Dyer, Doppelt, Milbrath & Gilchrist, P.A.

(57) ABSTRACT

A method is for making a semiconductor device by forming a superlattice that, in turn, includes a plurality of stacked groups of layers. The method may also include forming regions for causing transport of charge carriers through the superlattice in a parallel direction relative to the stacked groups of layers. Each group of the superlattice may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and an energy band-modifying layer thereon. The energy-band modifying layer constrained within a crystal lattice of adjacent base semiconductor portions so that the superlattice may have a higher charge carrier mobility in the parallel direction than would otherwise occur. The superlattice may also have a common energy band structure therein.

76 Claims, 9 Drawing Sheets

U.S. Patent

Dec. 14, 2004

Sheet 1 of 9

6,830,964 B1

