Расчёт линейного стабилизатора

Выполнил: Джугели Дмитрий

Вариант 10

Задание 1

Таблица 1 – Параметры для подбора линейного стабилизатора

№ИВ	$U_{\text{BX_min}}, B$	U _{Bx_max} , B	U _{вых} , В	Івых, мА	Company
10	9,5	12	6	300	Texas Instruments

1.1 Выбор стабилизатора

TL5209DR Texas Instruments

TL5209DR 500-mA Low-Noise Low-Dropout Voltage Regulator With Shutdown

1 Features

- Adjustable Output Voltage
- 1%/2% Accuracy (25°C/Full Range)
- 500-mV (Maximum) Dropout at Full Load of 500 mA
- Tight Regulation Overtemperature Range
 - 0.1%/V (Maximum) Line Regulation
 - 0.7% (Maximum) Load Regulation
- Ultra Low-Noise Capability (300 nV/√Hz Typical)
- · Shutdown Current of 3 µA (Maximum)
- · Low Temperature Coefficient
- Current Limiting and Thermal Protection
- · Stable With Minimum Load of 1 mA
- · Reverse-Battery Protection
- Applications
 - Portable Applications (PDAs, Laptops, Cell Phones)
 - Consumer Electronics
 - Post-Regulation for SMPS
- Available in Convenient SOIC-8 Surface-Mount Package

2 Applications

- Set-Top Boxes
- PCs and Notebooks
- EPOS
- Building Automation

3 Description

The TL5209 device is 500-mA low-dropout (LDO) regulator that is well suited for portable applications. It has a lower quiescent current than most traditional PNP regulators and allows for a shutdown current of 0.05 μA (typical). The TL5209 also has very good dropout voltage characteristics, requiring a maximum dropout of 10 mV at light loads and 500 mV at full load. In addition, the LDO also has a 1% output voltage accuracy and very tight line and load regulation that is comparable to its CMOS counterparts.

For noise-sensitive applications, the TL5209 allows for low-noise capability through an external bypass capacitor connected to the BYP pin, which reduces the output noise of the regulator. Other features include current limiting, thermal shutdown, reverse-battery protection, and low temperature coefficient.

The TL5209 is available with adjustable output. Offered in an SOIC-8 surface-mount package, the TL5209 is characterized for operation over the virtual junction temperature ranges of -40°C to 125°C.

Device Information⁽¹⁾

Device information		
PART NUMBER	PACKAGE	BODY SIZE (NOM)
TL5209	SOIC (8)	4.90 mm × 3.91 mm

For all available packages, see the orderable addendum at the end of the data sheet.

4 Typical Application Schematic

Выходное напряжение: 6.5 V

Выходной ток: 500 mA

Количество выходов: 1 Output

Полярность: Positive

Входное напряжение (макс.): 16 V Входное напряжение МИН.: 2.5 V

Минимальная рабочая температура: - 40 C Максимальная рабочая температура: + 125 C

Рис. 1 – Описание выбранного стабилизатора из спецификации

1.2 Расчёт схемы

В данной схеме необходимо произвести расчёт делителя напряжения R1 и R2. В соответствии со спецификацией рекомендуется выбирать резистор менее 200кОм. Примем R2 равным 20кОм. Воспользовавшись формулой, приведённой в спецификации, вычислим R1.

1.3 Расчёт с учётом стандартного ряда номиналов резисторов

Для подбора резистора из ряда E24 я воспользовался сайтом https://www.radiolibrary.ru/reference/resistorseries/e24.html и выбрал R1 и R2 82кОм и 20кОм соответственно.

$$R_1$$
 82кОм
Vout = 1.242 (1 + ___) = 1.242 (1 + ____) = 6 B
 R_2 20кОм

Рис.5 – Схема электрическая принципиальная

1.5 Расчёт тока нагрузки

$$I_{\text{нагр}} = \frac{U_{\text{вых}}}{R_{\text{нагр}}} = \frac{6 \text{ B}}{300 \text{ Om}}$$

1.6 Расчёт рассеивающей мощности

$$P$$
расс = I вых * ($U_{\text{вхмах}} - U_{\text{вых}}$) = 0.3 A * (12 B - 6 B) = 1,8 Вт

С учётом теплового сопротивления стабилизатора, можно рассчитать насколько нагреется микросхема, при вычисленной мощности.

TL5209
SLVSS81B – SEPTEMBER 2006 – REVISED JUNE 2015

WWW.tl.com

7.4 Thermal Information

		TL5209	UNIT	
	THERMAL METRIC ⁽¹⁾	D [SOIC]		
		8 PINS		
R _{eJA}	Junction-to-ambient thermal resistance	116.1	°C/W	
R _{BJC(top)}	Junction-to-case (top) thermal resistance	61.6	°C/W	
R _{eub}	Junction-to-board thermal resistance	56.3	°C/W	
тιΨ	Junction-to-top characterization parameter	14.9	°C/W	
ΨЈВ	Junction-to-board characterization parameter	55.8	°C/W	
R _{BJC(bot)}	Junction-to-case (bottom) thermal resistance	n/a	°C/W	

Рис.6 – Параметры теплового сопротивления

Из таблицы используем параметр, который характеризует тепловое сопротивление микросхемы без учёта дополнительных радиаторов $R\theta_{\rm JA}=116.1\,$ Следовательно при заданной мощности нагрев микросхемы составит $t=P{\rm pacc}*\theta_{\rm JA}=208,98\,$ С°. При комнатной температуре 24 С° температура нагруженного стабилизатора составит приблизительно 230С°. Расчёт приблизительный. Для уменьшения температуры стабилизатора при разработке топологии печатной платы прибегают к использованию дополнительных радиаторов в виде отдельных конструкций или выполняют прямо на плате в виде увеличенной площади металлизации.

С учётом вычисленной температуры и таблицы из спецификации, можно сделать вывод о том, что данный стабилизатор **не** будет сохранять работоспособность в нагруженном состоянии.

The TL5209 is available with adjustable output. Offered in an SOIC-8 surface-mount package, the TL5209 is characterized for operation over the virtual junction temperature ranges of –40°C to 125°C.

Рис.7 – Абсолютные предельные значения рабочих параметров

Задание 2

Таблица 1 – Параметры для подбора линейного стабилизатора

№ИВ	U _{BX_} min, B	U _{BX_} max, B	U _{вых} , В	Rнагр, Ом	Company
10	9,5	12	5	6	Analog Devices

2.1 Расчет тока нагрузки

$$I$$
нагр = $\frac{U_{\text{вых}}}{R_{\text{нагр}}}$ = 0,83A = 830мA

Расчет потребляемой нагрузкой мощности

$$P$$
потр = $U_{\text{вых}}$ * Інагр = 5 В*0,83А = 4,15Вт

2.2 Расчет мощности рассеивания

$$P$$
расс = (U вх_mах- U вых)* I нагр= $5 B$ *0,83 A = 5 ,81 B т

2.3 Расчет температуры стабилизатора

$$t_{\text{стаб}} = P_{\text{pacc}} * \theta_{\text{JA}} = 5.81*20 = 116C$$

2.4 Выбор стабилизатора

ADP3333ARMZ-5-R7

https://ru.mouser.com/ProductDetail/Analog-Devices-Inc/ADP3333ARMZ-5-R7?qs=sGAEpiMZZMsjJi7B1kCaqV022hKUkf69A7SoHfT9CTk%3D

Выходное напряжение:	5 V
Выходной ток:	300 mA
Тип выхода:	Fixed
Входное напряжение (макс.):	12 V
Входное напряжение МИН.:	2.6 V
Минимальная рабочая температура:	- 40 C
Максимальная рабочая температура:	+ 85 C

Figure 2. Typical Application Circuit

Рис. 1 – Описание выбранного стабилизатора из спецификации

Рис.5 – Схема электрическая принципиальная