ESE 402/542: Statistics for Data Science Instructor: Hamed Hassani Fall 2021

Midterm Examination SOLUTIONS

Problem 1. [50 pts] We have access to a data set X_1, X_2, \dots, X_n where X_i 's are generated i.i.d. according to a distribution with the following pdf:

$$f(x|a,p) = p \times \frac{1}{\sqrt{2\pi}} e^{-\frac{(x+a)^2}{2}} + (1-p) \times \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-a)^2}{2}}.$$

where the parameters p is known to be between 0 and 1.

In the following, for parts (a)-(f) we assume that a=1 is given, but the value of p is to be estimated from data.

(a) Draw the pdf f(x|a, p) as a function of x for the case p = 1/4.

Accept answers that look like

(b) Find the variance of X_i in terms of p. We first observe that the pdf f(x) is a combination of two gaussian pdfs corresponding to $\mathcal{N}(-a,1)$ and $\mathcal{N}(a,1)$. We recall the formula $\operatorname{var}(X) = \mathbb{E}[X^2] + \mathbb{E}[X]^2$. We evaluate

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x \left(p \times \frac{1}{\sqrt{2\pi}} e^{-\frac{(x+a)^2}{2}} + (1-p) \times \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-a)^2}{2}} \right) dx$$

$$= p \int x \left(\frac{1}{\sqrt{2\pi}} e^{-\frac{(x+a)^2}{2}} \right) dx + (1-p) \int x \left(\frac{1}{\sqrt{2\pi}} e^{-\frac{(x-a)^2}{2}} \right) dx$$

$$= p \mathbb{E}_{\mathcal{N}(-a,1)}[X] + (1-p) \mathbb{E}_{\mathcal{N}(a,1)}[X]$$

$$= p(-a) + (1-p)a$$

$$= a(1-2p).$$

When a = 1, we have $\mathbb{E}[X] = 1 - 2p$. Similarly, we write

$$\mathbb{E}\left[X^{2}\right] = \int_{-\infty}^{\infty} x^{2} \left(p \times \frac{1}{\sqrt{2\pi}} e^{-\frac{(x+a)^{2}}{2}} + (1-p) \times \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-a)^{2}}{2}}\right) dx$$

$$= p \int x^{2} \left(\frac{1}{\sqrt{2\pi}} e^{-\frac{(x+a)^{2}}{2}}\right) dx + (1-p) \int x^{2} \left(\frac{1}{\sqrt{2\pi}} e^{-\frac{(x-a)^{2}}{2}}\right) dx$$

$$= p \mathbb{E}_{\mathcal{N}(-a,1)}[X^{2}] + (1-p) \mathbb{E}_{\mathcal{N}(a,1)}[X^{2}]$$

$$= p(1+a^{2}) + (1-p)(1+a^{2})$$

$$= 1+a^{2},$$

where we used the provided hint that $\mathbb{E}[X^2] = \sigma^2 + \mu^2 = 1 + a^2$ for normal distributions $\mathcal{N}(\pm a, 1)$. Therefore, when a = 1, the variance is

$$\operatorname{var}(X) = \mathbb{E}\left[X^2\right] - \mathbb{E}\left[X\right]^2 = 2 - (1 - 2p)^2$$

(c) Use the method of moments to estimate the parameter p from data. Let's denote this estimator by \hat{p} .

Recall that when a=1, we derived the mean of X as

$$\mathbb{E}[X] = 1 - 2p \iff p = \frac{1 - \mathbb{E}[X]}{2}.$$

Therefore, we can write the method of moments estimator of p as

$$\hat{p}_{\text{MoM}} = \frac{1 - \bar{X}}{2}.$$

(d) Is \hat{p} an unbiased estimator?

We could immediately observe that since \hat{p}_{MoM} is a *linear* function of \bar{X} , it will be an unbiased estimator of p. In other words

$$\mathbb{E}\left[\hat{p}_{\text{MoM}}\right] = \mathbb{E}\left[\frac{1-\bar{X}}{2}\right]$$
$$= \frac{1-\mathbb{E}\left[X\right]}{2} = p.$$

(e) Let $\mu = \mathbb{E}[X_1]$ and also let $\hat{\mu}$ be the empirical mean of the data (i.e. $\hat{\mu} = (X_1 + \cdots + X_n)/n$). For any $\beta > 0$, find β' such that the following holds:

$$\Pr(\mu \in [\hat{\mu} - \beta, \hat{\mu} + \beta]) = \Pr(p \in [\hat{p} - \beta', \hat{p} + \beta']).$$

We recall $\mu = 1 - 2p$, $p = \frac{1-\mu}{2}$. Writing

$$\mu \in [\hat{\mu} - \beta, \hat{\mu} + \beta] \iff \hat{\mu} - \beta \le \mu \le \hat{\mu} + \beta$$

$$\iff \frac{1 - (\hat{\mu} + \beta)}{2} \le \frac{1 - \mu}{2} \le \frac{1 - (\hat{\mu} - \beta)}{2}$$

$$\iff \frac{1 - \hat{\mu}}{2} - \frac{\beta}{2} \le p \le \frac{1 - \hat{\mu}}{2} + \frac{\beta}{2}.$$

We recall from the previous two parts that $\hat{p} = \frac{1-\hat{\mu}}{2}$, and therefore

$$\Pr(\mu \in [\hat{\mu} - \beta, \hat{\mu} + \beta]) = \Pr(p \in [\hat{p} - \beta/2, \hat{p} + \beta/2]).$$

This implies $\beta' = \beta/2$.

(f) Use part (e) to find the $1 - \alpha$ confidence interval for p using the estimate \hat{p} . If we wanted to find a $1 - \alpha$ confidence interval for $\hat{\mu}$, by CLT we would set $\beta = z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$, where

$$\sigma^2 = \text{var}(X) = 2 - (1 - 2p)^2,$$

such that

$$\beta = z_{\alpha/2} \sqrt{\frac{2 - (1 - 2p)^2}{n}}.$$

From the previous part, we know $\beta' = \beta/2$ and thus the $1 - \alpha$ confidence interval for p using \hat{p} is

$$\left[\hat{p} - z_{\alpha/2} \frac{\sqrt{2 - (1 - 2p)^2}}{2\sqrt{n}}, \hat{p} + z_{\alpha/2} \frac{\sqrt{2 - (1 - 2p)^2}}{2\sqrt{n}}\right].$$

In other words, there is a $1 - \alpha$ probability that p is contained in the aforementioned confidence interval.

Accept answers that use \hat{p} in place of p in the variance, complete with Bessel's correction (justification unnecessary). Make note if Bessel's correction not present (no deduction).

(g) Let us now assume that the value of a is also unknown (in addition to p). Use the method of moments to estimate both a and p from data. Assume $a \ge 0$. (Hint: treat this as solving a system of equations with two variables.)

Observe from the formulas for the first and second moments derived in part b:

$$\mathbb{E}[X] = a(1 - 2p)$$

$$\mathbb{E}[X^2] = 1 + a^2.$$

From the second equation, we can write $a^2 = \mathbb{E}[X^2] - 1$, $a = \sqrt{\mathbb{E}[X^2] - 1}$ (since a assumed non-negative). Plugging this into the first equation, we have

$$\mathbb{E}[X] = \sqrt{\mathbb{E}[X^2] - 1}(1 - 2p)$$

$$\iff p = \frac{1}{2} - \frac{\mathbb{E}[X]}{2\sqrt{\mathbb{E}[X^2] - 1}}.$$

Thus, denoting $\hat{\mu}$ as earlier and $\hat{M} = \frac{1}{2}(X_1^2 + \cdots + X_n^2)$, our method of moments estimates for a, p are

$$\hat{a} = \sqrt{\hat{M} - 1} \\ \hat{p} = \frac{1}{2} - \frac{\hat{\mu}}{2\sqrt{\hat{M} - 1}}.$$

Accept answers that only derive formulas for a, p.

Problem 2. [50 pts] We have access to a data set X_1, X_2, \dots, X_n where X_i 's are generated i.i.d. according to a distribution with the following pdf:

$$f(x|\sigma) = \frac{1}{2\sigma} e^{-\frac{|x|}{\sigma}}. (1)$$

We are given that $\mathbb{E}[X_i] = 0$, $\mathbb{E}[|X_i|] = \sigma$, and $\text{Var}(X_i) = 2\sigma^2$.

We consider a hypothesis testing problem with $H_0: \sigma = \sigma_0$ and $H_a: \sigma = \sigma_1$. For this setting, we consider the following test statistic:

$$T(X_1, X_2, \dots, X_n) = \frac{1}{n} \log f(X_1, X_2, \dots, X_n | \sigma_0) - \frac{1}{n} \log f(X_1, X_2, \dots, X_n | \sigma_1),$$

where $f(X_1, X_2 \cdots, X_n | \sigma_0)$ is the joint density of X_1, \cdots, X_n given $\sigma = \sigma_0$ (and the other term is defined similarly).

For this problem, assume $\sigma_0 < \sigma_1$.

(a) Explain why

$$f(X_1, X_2 \cdots, X_n | \sigma_0) = f(X_1 | \sigma_0) \times f(X_2 | \sigma_0) \times \cdots \times f(X_n | \sigma_0).$$

 X_1, X_2, \ldots, X_2 are independent, and thus their joint density is the product of their individual densities.

(b) Using part (a) and (1) expand and simplify the term $\frac{1}{n} \log f(X_1, X_2 \cdots, X_n | \sigma_0)$ as much as you can.

Using part a, we can write

$$\frac{1}{n}\log f(X_1, \dots, X_n | \sigma_0) = \frac{1}{n} \sum_{i=1}^n \log f(X_i | \sigma_0)$$

$$= \frac{1}{n} \sum_{i=1}^n \left(-\log(2\sigma_0) - |X_i| / \sigma_0 \right)$$

$$= -\log(2\sigma_0) - \sigma_0^{-1} \frac{1}{n} \sum_{i=1}^n |X_i|$$

(c) Derive an approximate formula for the distribution of $T(X_1, \dots, X_n)$ in the case that H_0 is the true hypothesis.

Adapting the formula from part b, we write

$$T(X_1, X_2, \dots, X_n) = \frac{1}{n} \log f(X_1, X_2, \dots, X_n | \sigma_0) - \frac{1}{n} \log f(X_1, X_2, \dots, X_n | \sigma_1)$$
$$= (\log(2\sigma_1) - \log(2\sigma_0)) + (\sigma_1^{-1} - \sigma_0^{-1}) \frac{1}{n} \sum_{i=1}^n |X_i|.$$

The only part that depends on data is $\sum |X_i|$. Under the null hypothesis, we know that $\mathbb{E}[|X|] = \sigma_0$. To compute the variance var(|X|), we observe that since $\mathbb{E}[X] = 0$,

$$var(X) = \mathbb{E}\left[X^2\right] - \mathbb{E}\left[X\right]^2$$
$$= \mathbb{E}\left[|X|^2\right] - 0 = 2\sigma_0^2.$$

Therefore, we have

$$\operatorname{var}(|X|) = \mathbb{E}[|X|^2] - \mathbb{E}[|X|]^2$$
$$= 2\sigma_0^2 - \sigma_0^2 = \sigma_0^2.$$

We may now apply the CLT to claim that $\frac{1}{n}\sum_{i=1}^{n}|X_i|$ approximately follows the normal distribution $\mathcal{N}\left(\sigma_0, \frac{\sigma_0^2}{n}\right)$. Using the properties of gaussian distributions, this tells us that

$$T(X_1, X_2, \dots, X_n) = (\log(2\sigma_1) - \log(2\sigma_0)) + (\sigma_1^{-1} - \sigma_0^{-1}) \frac{1}{n} \sum_{i=1}^n |X_i|$$

is approximately normally distributed with mean

$$(\log(2\sigma_1) - \log(2\sigma_0)) + (\sigma_1^{-1} - \sigma_0^{-1})\sigma_0 = (\log(2\sigma_1) - \log(2\sigma_0)) + \left(\frac{\sigma_0}{\sigma_1} - 1\right)$$

and variance

$$(\sigma_1^{-1} - \sigma_0^{-1})^2 \frac{\sigma_0^2}{n}$$

(d) Given a significance level α , design the acceptance/rejection regions for the above hypothesis testing problem and test statistic T.

From the previous part, we determined that $T(X_1, ..., X_n)$ is approximately normally distributed with a certain mean μ and variance s^2 , under the assumption of H_0 .

We observe that in the case $\sigma_0 < \sigma_1$, $\sigma_1^{-1} - \sigma_0^{-1} < 0$, and thus $T(X_1, \dots, X_n)$ is smaller when $\sum_{i=1}^n |X_i|$ is larger, which is more likely to happen when X_i follow the alternate hypothesis. Therefore, the rejection region is one-sided of the form $\{T(X_1, \dots, X_n) < C_\alpha\}$. From the previous part, since T is asymptotically normal, C_α takes form $C_\alpha = \mu - z_\alpha s$, where μ and s^2 are the corresponding mean and variance of the asymptotic normal distribution. This ensures that

$$\mathbb{P}\left[\mu - z_{\alpha}s \le T(X_1, \dots, X_n)\right] = 1 - \alpha.$$

Plugging in the values we derived in the previous part, we get the acceptance region

$$\left[(\log(2\sigma_1) - \log(2\sigma_0)) + \left(\frac{\sigma_0}{\sigma_1} - 1 \right) - z_\alpha |\sigma_1^{-1} - \sigma_0^{-1}| \frac{\sigma_0}{\sqrt{n}}, \quad \infty \right].$$