Dados do Plano de Trabalho									
	Avaliação da Função e Dano Mitocondrial Induzida pela Hipertrofia Cardíaca Durante a Restrição Calórica.								
Modalidade de bolsa solicitada:									
	Avaliação Dos Efeitos Do Canal Mitocondrial De Potássio Sensível Ao ATP Sobre A Hipertrofia Cardíaca Em Corações De Camundongos Submetidos A Restrição Calórica								

1. OBJETIVOS

1.1. Objetivo Geral:

- Avaliar o impacto da restrição calórica com inibição/ativação do MitoKATP sobre a homeostase mitocondrial durante a hipertrofia cardíaca.

1.2. Objetivos Específicos

- Induzir hipertrofia cardíaca em camundongos em restrição calórica.
- Estudar os efeitos de inibição/ativação do mitoKATP na proteção contra hipertrofia induzida pela restrição calórica.
- Determinar o dano mitocondrial nas mesmas condições por avaliação da abertura do Poro de Transição de Permeabilidade.
- Avaliar o impacto da restrição calórica na respiração/função de mitocôndrias isoladas dos corações nos diferentes tratamentos.

2. METODOLOGIA

2.1. Indução de Restrição Calórica.

Camundongos Swiss machos (6 semanas de idade) serão alimentados com uma dieta padrão de roedores ad libitum durante 2 semanas. A ingestão calórica média será calculada a partir da ingestão diária destas 2 semanas. Em seguida, esses camundongos (com 8 semanas de idade) serão divididos aleatoriamente em grupos: (1) Grupo com ingestão ad libitum (Grupo AL), (2) Grupo alimentado com 60% do consumo médio de calorias (calculadas a partir das 2 primeiras semanas) durante as 4 semanas adicionais do experimento (Grupo RC).

2.2. Indução Farmacológica da Hipertrofia Cardíaca

A hipertrofia cardíaca será induzida farmacologicamente com tratamento intraperitonial de camundongos com isoproterenol. O isoproterenol (ISO – agonista beta adrenérgico) será diluído em solução salina estéril na concentração de 30 mg/kg/dia e será aplicado em camundongos Swiss machos alimentados ad libitum (Grupo ISO-AL) e no grupo em restrição calórica (Grupo ISO-RC). Para estudo dos impactos do mitoKATP na hipertrofia cardíaca durante a restrição calórica trataremos o grupo ISO-AL e o grupo ISO-RC com os inibidores do mitoKATP 5-hidroxidecanoato (dois grupos 5 e10 mg/kg/dia, Grupo ISO-RC-5HD) e glibenclamida (3 e 6 mg/kg/dia, Grupo ISO-RC-GLY) por 8 dias. Os grupos serão divididos como abaixo:

- 1. Grupo AL ad libitum
- 2. Grupo RC Restrição Calórica (4 semanas)
- 3. Grupo AL-ISO ad libitum tratado com isoproterenol (30mg/kg/dia) por 8 dias.
- 4. Grupo RC-ISO Restrição calórica (4 semanas) e tratado com isoproterenol (30mg/kg/dia) por 8 dias.
- 5. Grupo RC-ISO-5HD Restrição Calórica (4 semanas) e tratado com isoproterenol (30mg/kg/dia) e 5-hidroxidecanoato (5 ou 10mg/kg/dia) por 8 dias.
- 6. Grupo RC-ISO-Gli Restrição calórica (4 semanas) tratado com isoproterenol (30mg/kg/dia) e Glibenclamida (3 ou 6mg/kg/dia) por 8 dias.
- 7. Grupo RC-ISO-5HD-DZX Restrição Calórica (4 semanas) e tratado com isoproterenol (30mg/kg/dia) e 5-hidroxidecanoato (5 ou 10mg/kg/dia) e DZX (5 mg/kg/dia) por 8 dias.
- 6. Grupo RC-ISO-Gli-DZX Restrição calórica (4 semanas) tratado com isoproterenol (30mg/kg/dia), Glibenclamida (3 ou 6mg/kg/dia) e DZX (5 mg/kg/dia) por 8 dias.

2.3. Preparação de amostras e Isolamento de Mitocôndrias

Os camundongos serão sacrificados após anestesia com 100 mg/kg de quetamina e 10 mg/kg de xilazina. Subsequentemente, o coração será removido e seu peso úmido será obtido. O tecido será submetido a disrupção física com homogeneizador para provocar a lise celular em tampão contendo: 300 mM sacarose, 10 mM de tampão Hepes, pH 7.2, 1mg/mL albumina e 1 mM EGTA. A precipitação do núcleo e resíduos celulares será promovida através de uma centrifugação com baixa rotação (» 600 g). Após esta primeira centrifugação uma alíquota do sobrenadante (1 mL) é congelado e servirá para dosagens enzimáticas, por outro lado o pellet será ressuspendido em 1 mL do tampão de homogeneização e servirá para dosagens de proteínas carboniladas. As mitocôndrias serão então separadas do sobrenadante restanto através de centrifugações com maior rotação (» 10 000 x g), e lavadas até a obtenção de uma suspensão homogênea. As mitocôndrias serão colocadas no tampão de isolamento em quantidade mínima (~100 uL) e usadas imediatamente (dentro de 1 hora) para experimentos de avaliação da abertura do mitoKATP, abertura do poro de permeabilidade e respiração/função mitocondrial ou estocada em -20 °C para posterior análise da susceptibilidade à oxidação com Fe²⁺ e dosagem de proteínas.

2.4. Medida da Respiração/função Mitocondrial

A respiração de mitocondrial isoladas (consumo de oxígênio) será medida utilizando-se um eletrodo de Clark da marca Hansatech Instruments. Este equipamento permite a verificação do oxigênio consumido no meio reacional pela mitocondrias isoladas de cada condição em teste. Este equipamento tem um eletrodo de referência de Ag/AgCl (eletrodo de clark) que é sensível ao oxigênio. As mitocondriais são adicionadas a uma câmara em contato com o eletrodo e ao consumirem o oxigênio diminuem o sinal. Este consumo de oxigênio dá uma ideia da atividade dos complexos mitocondriais e da função mitocondrial. Nosso laboratório tem um equipamento eletrodo de Clark da marca Hansatech Instruments.

2.5. Avaliação da Abertura do Poro de Transição de Permeabilidade.

Alterações de volume mitocondrial serão acompanhadas através da quantificação do espalhamento de luz da suspensão a 520 nm usando espectrofotômetro. A indução da abertura do poro de transição de permeabilidade será por adição de cálcio (200 micromolar/mg de proteína).

3. CRONOGRAMA DE ATIVIDADES

As atividades a serem realizadas pelo estudante são:

- AT1. Indução de restrição calórica/hipertrofia cardíaca e tratamentos.
- AT2. Estudar os efeitos de inibição/ativação do mitoKATP na proteção contra hipertrofia induzida pela restrição calórica
- AT3. Avaliar o impacto da restrição calórica na respiração/função de mitocôndrias isoladas dos corações nos diferentes tratamentos.
- AT4. Determinar o dano mitocondrial por avaliação da abertura do Poro de Transição de Permeabilidade.
 - AT5. Preparação de manuscritos e relatórios.

N°	2019				2020							
	08	09	10	11	12	01	02	03	04	05	06	07
AT1	X	X	X	X	X	X	X	X	X			
AT2		X	X									
AT3				X	X	X	X					
AT4							X	X	X	X		
AT5											X	X