Парный регрессионный анализ

План:

- 1. Парный регрессионный анализ
- 2. Метод наименьших квадратов
- 3. Пример

Основные задачи статистического анализа

- Выявление наличия или отсутствия взаимосвязи между изучаемыми факторами (корреляционный анализ)
- Определение вида взаимосвязи между изучаемыми факторами (регрессионный анализ)
- Проверка гипотезы о виде взаимосвязи между факторами

Корреляционный анализ показывает, что две переменные связаны друг с другом, однако он не дает представления о том, каким образом они связаны.

Для определения вида зависимости между переменными проводят регрессионный анализ

Регрессионный анализ

Пусть изучается зависимость между факторами **X** и **Y**. В результате **n** независимых опытов получены **n** пар чисел:

$$(x_1; y_1), (x_2; y_2), ..., (x_n; y_n)$$

X	\mathbf{x}_1	\mathbf{x}_2	 x _n
Y	y_1	y_2	 y_n

Рассмотрим более подробно случай, когда одна переменная зависит от другой. Рассмотрим простейшую, т.е. линейную модель

$$y = \alpha + \beta x + u$$

где x — независимая переменная; y — зависимая переменная; α и β — истинные значения параметров регрессии; u — случайная составляющая

Оценка параметров по методу наименьших квадратов

Допустим, что мы имеем четыре наблюдения для X и Y.

Мы хотим построить линию регрессии таким образом, чтобы отклонения были минимальными Уравнение этой прямой:

$$Y = a + bx$$

Один из способов решения поставленной проблемы состоит в минимизации суммы квадратов отклонений

$$S(a,b) = \sum_{i} (y_i - Y_i)^2 = \sum_{i=1}^{n} (y_i - a - bx_i)^2 \rightarrow \min$$

Система нормальных уравнений

$$\begin{cases} \frac{\partial S}{\partial a} = -2 & \sum_{i=1}^{n} (y_i - a - bx_i) = 0 \\ \frac{\partial S}{\partial b} = -2 & \sum_{i=1}^{n} (y_i - a - bx_i)x_i = 0 \end{cases}$$

Решение системы

$$a = \frac{\sum x^2 \sum y - \sum x \sum xy}{n \sum x^2 - (\sum x)^2}$$

$$b = \frac{n \sum xy - \sum x \sum y}{n \sum x^2 - (\sum x)^2}$$

Пример

№	Бонитет(Х1)	Удобрения(Х2)	Урожайность(Ү)
1	31	75	22
2	34	72	23
3	40	79	23
4	44	81	24
5	51	83	25
6	56	81	25
7	62	90	27
8	64	95	29
9	69	100	31
10	75	95	33
11	81	110	34
12	83	115	36
13	88	110	35
14	95	120	36
15	98	130	37

Получено следующее уравнение регрессии:

$$Y = 0.92 + 0.29x$$

Полученный результат можно истолковать следующим образом. Если количество вносимых удобрений увеличить на 1 единицу, то урожайность увеличится в среднем на 0,29 ц/га. Если x = 0, то прогнозируемый уровень урожайности равняется 0,92 ц/га

СПАСИБО ЗА ВНИМАНИЕ!

+ 998 71 237 1948

 \bowtie

smirzaev@tiiame.uz