Convergence of Proximal-Gradient Stochastic Variational Inference under Non-Decreasing Step-Size Sequence

Mohammad Emtiyaz Khan¹, Reza Babanezhad², Wu Lin³, Mark Schmidt², Masashi Sugiyama⁴

¹Ecole Polytechnique Fédérale de Lausanne, ²University of British Columbia, ³University of Waterloo, ⁴University of Tokyo

Introduction

Variational methods: optimization for high-dimensional Bayesian integral.

Drawbacks of existing approaches:

- ► "Black box": ignore the structure and geometry of the problem.
- Non-blackbox methods (SVI) do not extend to non-conjugate models.
- ► Slow convergence due to decreasing step-size sequence.

Contribution: Proximal-gradient method exploiting structure/geometry:

- Exploit the geometry with divergence functions (many existing methods as special cases).
- Exploit structure using convex/non-convex splitting.
- ► Convergence under a constant step size.
- Setting step-size using structure and geometry.

Variational Inference

Bayesian inference:

▶ Marginalize unknowns z over the joint p(y, z|x), given data $\{y, x\}$.

Variational inference:

▶ Introduce distribution $q(\mathbf{z}|\boldsymbol{\lambda})$, maximize lower bound on integral,

$$\log \int p(\mathbf{y}, \mathbf{z} | \mathbf{x}) d\mathbf{z} = \log \int q(\mathbf{z} | \boldsymbol{\lambda}) \frac{p(\mathbf{y}, \mathbf{z})}{q(\mathbf{z} | \boldsymbol{\lambda})} d\mathbf{z} \ge \max_{\boldsymbol{\lambda}} \mathbb{E}_{q(\mathbf{z} | \boldsymbol{\lambda})} \left[\log \frac{p(\mathbf{y}, \mathbf{z})}{q(\mathbf{z} | \boldsymbol{\lambda})} \right] \triangleq \underline{\mathcal{L}}(\boldsymbol{\lambda}),$$
 where $\boldsymbol{\lambda}$ contains variational parameters.

Geometry and Natural Gradients

Gradient-Descent:
$$\lambda_{k+1} = \arg \max_{\lambda} \lambda^T \nabla \underline{\mathcal{L}}(\lambda_k)$$
, s.t. $\|\lambda - \lambda_k\|_2^2 \le \epsilon_k$, $\lambda_{k+1} = \lambda_k + \delta_k \nabla \underline{\mathcal{L}}(\lambda_k)$

Symmetric KL divergence because optimizing distribution parameters:

Natural-Gradient:
$$\boldsymbol{\lambda}_{k+1} = \arg\max_{\boldsymbol{\lambda}} \boldsymbol{\lambda}^T \bigtriangledown \underline{\mathcal{L}}(\boldsymbol{\lambda}_k), \text{ s.t. } \mathbb{D}^{sym}_{KL}[q(\mathbf{z}|\boldsymbol{\lambda}) \parallel q(\mathbf{z}|\boldsymbol{\lambda}_k)] \leq \epsilon_k,$$

$$\boldsymbol{\lambda}_{k+1} = \boldsymbol{\lambda}_k + \delta_k \mathbf{I}_k^{-1} \bigtriangledown \underline{\mathcal{L}}(\boldsymbol{\lambda}_k),$$

Equal to gradient multiplied by inverse of Fisher information I_k of $q(\mathbf{z}|\boldsymbol{\lambda}_k)$

Proximal-Gradient SVI

Split $\underline{\mathcal{L}}(\lambda)$ into difficult and easy parts,

$$\underline{\mathcal{L}}(\boldsymbol{\lambda}) = \mathbb{E}_{q(\mathbf{z}|\boldsymbol{\lambda})} \left[\log \frac{p(\mathbf{y}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z}|\boldsymbol{\lambda})} \right] := \underbrace{\mathbb{E}_{q(\mathbf{z}|\boldsymbol{\lambda})} [\log \tilde{p}_d(\mathbf{z}|\boldsymbol{\lambda})]}_{-f(\boldsymbol{\lambda})} + \underbrace{\mathbb{E}_{q(\mathbf{z}|\boldsymbol{\lambda})} [\log \tilde{p}_e(\mathbf{z}|\boldsymbol{\lambda})]}_{-h(\boldsymbol{\lambda})},$$

Linearize the difficult terms to yield the iteration

$$\lambda_{k+1} = \arg\min_{\lambda} \lambda^T \left(\sum_{k=1}^M \hat{\mathbf{g}}(\lambda_k, \xi_k) \right) + h(\lambda) - \frac{1}{\beta_k} \mathbb{D}\left[q(\mathbf{z}|\lambda) || q(\mathbf{z}|\lambda_k)\right].$$

where $\hat{\mathbf{g}}(\boldsymbol{\lambda}_k, \xi_k)$ is approximation of f at iteration k and with batch-size M. We assume:

- ▶ f may be non-convex but ∇f is L-Lipschitz continuous, h is convex.
- $ightharpoonup \hat{\mathbf{g}}(\boldsymbol{\lambda}_k, \boldsymbol{\xi}_k)$ is an unbiased estimate of ∇f , with bounded variance σ^2 .
- ightharpoonup Divergence and q chosen so that

$$(\boldsymbol{\lambda}_{k+1} - \boldsymbol{\lambda}_k)^T \nabla_1 \mathcal{D}(\boldsymbol{\lambda}_{k+1} \| \boldsymbol{\lambda}_k) \ge \alpha ||\boldsymbol{\lambda}_{k+1} - \boldsymbol{\lambda}_k||^2,$$

for some $\alpha > 0$.

Special cases when q is an exponential family distribution:

Mirror descent by using:

$$\mathbb{D}_{Breg}(q(\mathbf{z}|\boldsymbol{\lambda}') \parallel q(\mathbf{z}|\boldsymbol{\lambda})) := A(\boldsymbol{\lambda}) - A(\boldsymbol{\lambda}') - \nabla A(\boldsymbol{\lambda}')(\boldsymbol{\lambda} - \boldsymbol{\lambda}').$$

KL proximal variational inference by using:

$$\mathbb{D}_{KL}(q(\mathbf{z}|\boldsymbol{\lambda}) || q(\mathbf{z}|\boldsymbol{\lambda}')) := A(\boldsymbol{\lambda}') - A(\boldsymbol{\lambda}) - \nabla A(\boldsymbol{\lambda})(\boldsymbol{\lambda}' - \boldsymbol{\lambda}).$$

Stochastic variational inference (SVI) by using:

$$\mathbb{D}^{sym}_{KL}(\boldsymbol{\lambda}\|\boldsymbol{\lambda}') := \mathbb{D}_{KL}(\boldsymbol{\lambda}\|\boldsymbol{\lambda}') + \mathbb{D}_{Breg}(\boldsymbol{\lambda}\|\boldsymbol{\lambda}').$$

Examples of Splitting

Generalized linear model:

$$p(\mathbf{y}, \mathbf{z} | \mathbf{x}, \boldsymbol{\theta}) = \prod_{n=1}^{N} p(y_n | \mathbf{x}_n^T \mathbf{z}) \mathcal{N}(\mathbf{z} | \boldsymbol{\mu}, \boldsymbol{\Sigma}), \quad q(\mathbf{z} | \boldsymbol{\lambda}) = \mathcal{N}(\mathbf{m}, \mathbf{V})$$
$$\underline{\mathcal{L}}(\mathbf{m}, \mathbf{V}) := \sum_{n=1}^{N} \mathbb{E}_{\mathcal{N}(\mathbf{z} | \mathbf{m}, \mathbf{V})} [\log p(y_n | \mathbf{x}_n^T \mathbf{z})] - \mathbb{D}_{KL} [\mathcal{N}(\mathbf{z} | \mathbf{m}, \mathbf{V}) \parallel \mathcal{N}(\mathbf{z} | \boldsymbol{\mu}, \boldsymbol{\Sigma})]$$

Bayesian network with conditional-conjugacy:

$$p(\mathbf{z}|\boldsymbol{\eta}) := \prod_{i} p(\mathbf{z}_{i}|\mathbf{pa}_{i}) = \prod_{i} h_{i}(\mathbf{z}) \exp \left[\boldsymbol{\eta}_{i}^{T} \mathbf{T}_{i}(\mathbf{z}_{i}) - A_{i}(\boldsymbol{\eta}_{i})\right]$$
 $q_{i}(\mathbf{z}_{i}|\boldsymbol{\lambda}_{i}) := h_{i}(\mathbf{z}) \exp \left[\boldsymbol{\lambda}_{i}^{T} \mathbf{T}_{i}(\mathbf{z}_{i}) - A_{i}(\boldsymbol{\lambda}_{i})\right],$

$$\underline{\mathcal{L}}(\boldsymbol{\lambda}_i) := (\boldsymbol{\lambda}_i - \boldsymbol{\lambda}_i^*)^T \nabla A_i(\boldsymbol{\lambda}_i) - A_i(\boldsymbol{\lambda}_i)$$

Convergence

Main result: Set the step-size β_k so that $0 < \beta_k \le 2\alpha_*/L$, where $\alpha_* = \alpha - 1/(2c)$ and $c > 1/(2\alpha)$ is a constant. If K is the number of iterations and we sample $R \in \{1, 2, ..., K\}$ with density:

$$P_R(k) := Prob(R = k) = \frac{\alpha_* \beta_k - L \beta_k^2 / 2}{\sum_{k=1}^K (\alpha_* \beta_k - L \beta_k^2 / 2)},$$

then with $\underline{\mathcal{L}}^*$ the local maximum we have

$$\frac{1}{\beta_R} \mathbb{E}(\|\boldsymbol{\lambda}_R - \boldsymbol{\lambda}_{R-1}\|^2) \leq \frac{\underline{\mathcal{L}}^* - \underline{\mathcal{L}}(\boldsymbol{\lambda}^0) + \frac{1}{2}q\sigma^2 \sum_{k=1}^K (\beta_k/M_k)}{\sum_{k=1}^K \left[\alpha_* \beta_k - \frac{1}{2}L\beta_k^2\right]}.$$

Constant step-size: If simply set $\beta_k = \alpha_*/L$ and $M_k = M$ then we have

$$\mathbb{E}(\|\boldsymbol{\lambda}_R - \boldsymbol{\lambda}_{R-1}\|^2)/\beta_R \le \frac{2L}{K\alpha_*^2} [\underline{\mathcal{L}}^* - \underline{\mathcal{L}}(\boldsymbol{\lambda}^0)] + \frac{q\sigma^2}{M\alpha_*}$$

Experiments

Results for GP classification using negative log-likelihood (lower is better).

Pass

Pass