Problem

As shown in the figure, $AB//CD.AD \perp AB.AD$ and BC meet at E such that EB=2AC. Show that $\angle ACD=3\angle BCD$.

Solution

(C).

Draw $DG \perp BC$ where G is on BC. Let AC = x and GC = y. We know that BCD is isosceles so BC = 2y.

Since $\triangle DCG$, $\triangle ACF$, and $\triangle BCA$ are similar, we have: $\frac{DC}{CG} = \frac{AC}{CF} = \frac{BC}{AC}$ $\Rightarrow \quad \frac{6\sqrt[3]{2}}{y} = \frac{x}{6\sqrt[3]{2}} = \frac{2y}{x}.$ So $y = \frac{36\sqrt[3]{4}}{x}$ and $y = \frac{2x^2}{6\sqrt[3]{2}} \cdot x^3 = \frac{36\sqrt[3]{4} \times 6\sqrt[3]{2}}{2} = 6^3 \Rightarrow \quad x = 6.$