

Predictive Modeling

Pradeep Kumar Mishra

PGP-DSBA Online

Jun_B_21

Date: 28:Nov:2021

3

24

24

44

Content View

Problem Statement - 1	Linear Regression	

- 1.1. Read the data and do exploratory data analysis. Describe the data briefly. (Check the null values, Data types, shape, EDA, duplicate values). Perform Univariate and Bivariate Analysis.
- 1.2 Impute null values if present, also check for the values which are equal to zero. Do they have any meaning or do we need to change them or drop them? Check for the possibility of combining the sub levels of a ordinal variables and take actions accordingly. Explain why you are combining these sub levels with appropriate reasoning.
- 1.3 Encode the data (having string values) for Modelling. Split the data into train and test (70:30). Apply Linear regression using scikit learn. Perform checks for significant variables using appropriate method from statsmodel. Create multiple models and check the performance of Predictions on Train and Test sets using Rsquare, RMSE & Adj Rsquare. Compare these models and select the best one with appropriate reasoning.
- 1.4 Inference: Based on these predictions, what are the business insights and recommendations.

Problem 2: Logistic Regression and LDA

- 2.1 Data Ingestion: Read the dataset. Do the descriptive statistics and do null value condition check, write an inference on it. Perform Univariate and Bivariate Analysis.

 Do exploratory data analysis.
- 2.2 Do not scale the data. Encode the data (having string values) for Modelling. Data Split: Split the data into train and test (70:30). Apply Logistic Regression and LDA (linear discriminant analysis).
- 2.3 Performance Metrics: Check the performance of Predictions on Train and Test sets using Accuracy, Confusion Matrix, Plot ROC curve and get ROC_AUC score for each model Final Model: Compare Both the models and write inference which model is best/optimized.
- 2.4 Inference: Based on these predictions, what are the insights and recommendations.

List of Tables:

Table-1 Dataset Sample	3
Table-2 Describe the data	5
Table-3 Data	15
Table-4 Scaling data	16
Table-5 Sample Dataset	25
Table-6 Describe data	26
Table-7 Datasets	34
Table-8 Datasets	43

List of Figures :

Fig.1 Distplot	7
Fig.1 Distplot	8
Fig.3 Countplot	10
Fig.4 Bargraph	11
Fig.4 BargraphFig.5 Pairplot	12
Fig.6 Heatmap	
Fig.7 Distplot	27
Fig.8 Boxplot	28
Fig.9 Countplot	29
Fig10. Bar Graph	29
Fig. 11 Distplott	30
Fig.12 Catplot	31
Fig.13 Catplot	32
Fig.14 Pairplot	55
Fig.15 Heatmap	34
Fig. 16 roc curve	
Fig. 17 roc curve	41
Fig. 18 roc curve	

Problem Statement - 1 Linear Regression

You are hired by a company Gem Stones co ltd, which is a cubic zirconia manufacturer. You are provided with the dataset containing the prices and other attributes of almost 27,000 cubic zirconia (which is an inexpensive diamond alternative with many of the same qualities as a diamond). The company is earning different profits on different prize slots. You have to help the company in predicting the price for the stone on the basis of the details given in the dataset so it can distinguish between higher profitable stones and lower profitable stones so as to have better profit share. Also, provide them with the best 5 attributes that are most important.

1.1. Read the data and do exploratory data analysis. Describe the data briefly. (Check the null values, Data types, shape, EDA, duplicate values). Perform Univariate and Bivariate Analysis.

Sample of the dataset

	Unnamed: 0	carat	cut	color	clarity	depth	table	X	y	Z	price
0	1	0.30	Ideal	Е	SI1	62.1	58.0	4.27	4.29	2.66	499
1	2	0.33	Premium	G	IF	60.8	58.0	4.42	4.46	2.70	984
2	3	0.90	Very Good	Е	VVS2	62.2	60.0	6.04	6.12	3.78	6289
3	4	0.42	Ideal	F	VS1	61.6	56.0	4.82	4.80	2.96	1082
4	5	0.31	Ideal	F	VVS1	60.4	59.0	4.35	4.43	2.65	779

Table-01Dataset Sample

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 26967 entries, 0 to 26966
Data columns (total 10 columns):
    Column
            Non-Null Count Dtype
    -----
             -----
                            ----
             26967 non-null
                            float64
0
    carat
 1
    cut
           26967 non-null object
 2
    color
           26967 non-null object
    clarity 26967 non-null object
 3
4
    depth
           26270 non-null float64
 5
    table
            26967 non-null float64
             26967 non-null float64
6
7
            26967 non-null float64
    У
             26967 non-null float64
8
             26967 non-null int64
9
    price
dtypes: float64(6), int64(1), object(3)
memory usage: 2.1+ MB
```

- From the above results we can see that there is some missing value present in the dataset.
- There are a total of 26967 rows and 10 columns in the dataset.
- 6 variables out of 10 is float64, 1 variable is int64 and 3 variables out 10 are object data types.

missing values:

carat	0
cut	0
color	0
clarity	0
depth 6	97
table	0
X	0
у	0
Z	0
price	0
dtype: int64	

From the above result we can see that there are 697 values missing in the depth variable.

Duplicate values:

```
dups = df.duplicated()
print('Number of duplicate rows = %d' % (dups.sum()))
executed in 57ms, finished 14:14:17 2021-11-27
```

Number of duplicate rows = 0

There is no duplicate value in the datasets.

Describe datasets:

	carat	cut	color	clarity	depth	table	x	у	z	price
count	26967.000000	26967	26967	26967	26270.000000	26967.000000	26967.000000	26967.000000	26967.000000	26967.000000
unique	NaN	5	7	8	NaN	NaN	NaN	NaN	NaN	NaN
top	NaN	Ideal	G	SI1	NaN	NaN	NaN	NaN	NaN	NaN
freq	NaN	10816	5661	6571	NaN	NaN	NaN	NaN	NaN	NaN
mean	0.798375	NaN	NaN	NaN	61.745147	57.456080	5.729854	5.733569	3.538057	3939.518115
std	0.477745	NaN	NaN	NaN	1.412860	2.232068	1.128516	1.166058	0.720624	4024.864666
min	0.200000	NaN	NaN	NaN	50.800000	49.000000	0.000000	0.000000	0.000000	326.000000
25%	0.400000	NaN	NaN	NaN	61.000000	56.000000	4.710000	4.710000	2.900000	945.000000
50%	0.700000	NaN	NaN	NaN	61.800000	57.000000	5.690000	5.710000	3.520000	2375.000000
75%	1.050000	NaN	NaN	NaN	62.500000	59.000000	6.550000	6.540000	4.040000	5360.000000
max	4.500000	NaN	NaN	NaN	73.600000	79.000000	10.230000	58.900000	31.800000	18818.000000

Table-02 Describe the data

```
CUT: 5
Fair 781
Good 2441
Very Good 6030
Premium 6899
Ideal 10816
Name: cut, dtype: int64
```

```
COLOR: 7
J 1443
I 2771
D 3344
H 4102
F 4729
E 4917
G 5661
```

Name: color, dtype: int64

```
CLARITY:
           8
I1
         365
IF
         894
VVS1
        1839
VVS2
        2531
VS1
        4093
SI2
        4575
VS2
        6099
SI1
        6571
```

Name: clarity, dtype: int64

- We have 3 object variables and the remaining are numerical variables.
- In the cut variable there are 5 unique values, most of the data is Ideal and their frequency is 10816.
- In the color variable there are 7 unique values, most of the color is G and their frequency is 5661.
- In the clarity variable there are 8 unique values, most of the data is SI1 and their frequency is 6571.

• Some of the numerical variables have mean and median are almost equal and some of the variables have skewness.

Univariate / Bivariate analysis:

Distplot:

Figure-01

Boxplot:

Figure-02

carat Skewed: 1.1165 depth Skewed: -0.0286 table Skewed: 0.7658

x Skewed: 0.388 y Skewed: 3.8502 z Skewed: 2.5683

price Skewed: 1.6185

Carat feature:

- Distribution of carat variable seems to right skewed = 1.1165
- In the distplot it seems there are multiple peak points.
- There are large no. of outliers.

Depth feature:

- Distribution of depth variable seems to be left skewed = -0.0289 it is very less no. so we can say depth data is normally distributed.
- There are large no. of outliers in both the direction left and right.

Table feature:

- Distribution of table variable seems to be positively skewed =0.7658
- Boxplot of the table has outliers.

X (Length of the cubic zirconia in mm) feature:

- Distribution of the X (Length of the cubic zirconia in mm) seems positively skewed= 0.388.
- There are outliers.

Y (width of the cubic zirconia in mm) feature:

- Distribution of the Y (width of the cubic zirconia in mm) seems positively skewed= 3.8502.
- There are outliers.

Z (Height of the cubic zirconia in mm) feature :

- Distribution of the Z (Height of the cubic zirconia in mm) seems positively skewed= 2.5683.
- There are outliers.

Price feature:

- Distribution of the price feature seems positively skewed= 1.6185.
- There are outliers.

Countplot:

Figure-03

Figure-04

Cut feature:

- Ideal cut is the most preferred cut for the diamond.
- Ideal cut price is less compared to others.

Color feature:

- G color seems to be the most preferred color.
- J color price is the most expensive.

Clarity feature:

• Sl1 seems to be the most preferred clarity.

Pairplot:

Figure -05

Heatmap:

Figure-06

After seeing the pairplot and heatmap we can say that there is presence of multicollinearity in the datasets.

1.2 Impute null values if present, also check for the values which are equal to zero. Do they have any meaning or do we need to change them or drop them? Check for the possibility of combining the sub levels of a ordinal variables and take actions accordingly. Explain why you are combining these sub levels with appropriate reasoning.

carat 0 cut 0 color 0 clarity 0 depth 697 table 0 Х 0 У 0 Ζ 0 price 0 dtype: int64

```
carat
           0.000000
cut
           0.000000
color
           0.000000
clarity
           0.000000
depth
           0.025846
table
           0.000000
           0.000000
Х
           0.000000
y
           0.000000
price
           0.000000
dtype: float64
```

dtype: int64

There are null values in depth variables and this is less than 5% so we can fill them using median imputation.

After the median imputation we see below there are no null values now.

```
median = df['depth'].median()
df['depth'] = df['depth'].fillna(median)
df.isnull().sum()
executed in 28ms, finished 16:41:05 2021-11-27
carat
            0
cut
            0
color
            0
clarity
            0
depth
            0
table
            0
            0
Х
у
            0
Z
            0
price
```

Checking if there is value that is "0":

df.all()						
executed in	17ms, finished	16:41:15 2021-11-27				
carat	True					
cut	True					
color	True					
clarity	True					
depth	True					
table	True					
X	False					
у	False					
Z	False					
price	True					
dtype: b	ool					

	carat	cut	color	clarity	depth	table	X	y	Z	price
5821	0.71	Good	F	SI2	64.1	60.0	0.00	0.00	0.0	2130
6034	2.02	Premium	Н	VS2	62.7	53.0	8.02	7.95	0.0	18207
6215	0.71	Good	F	SI2	64.1	60.0	0.00	0.00	0.0	2130
10827	2.20	Premium	Н	SI1	61.2	59.0	8.42	8.37	0.0	17265
12498	2.18	Premium	Н	SI2	59.4	61.0	8.49	8.45	0.0	12631
12689	1.10	Premium	G	SI2	63.0	59.0	6.50	6.47	0.0	3696
17506	1.14	Fair	G	VS1	57.5	67.0	0.00	0.00	0.0	6381
18194	1.01	Premium	Н	11	58.1	59.0	6.66	6.60	0.0	3167
23758	1.12	Premium	G	I1	60.4	59.0	6.71	6.67	0.0	2383

Table-03

- I found that there is some row containing zero that has an X,Y,Z feature and has 0 values.
- We have to drop the zero value containing row.

Remove outliers:

• As we know there are outliers in the datasets so we have to impute the outliers.

• After the imputation of outliers we have seen there is now outliers now.

Figure-07

Scaling:

- Scaling is required for the linear regression because it reduces the multicollinearity.
- I use StandardScaler for scaling the datasets.

	carat	cut	color	clarity	depth	table	x	у	z	price
0	-1.067306	Ideal	Е	SI1	0.286726	0.261941	-1.296438	-1.289580	-1.261448	-0.933219
1	-1.002414	Premium	G	IF	-0.780109	0.261941	-1.163237	-1.137532	-1.203982	-0.793428
2	0.230546	Very Good	Е	VVS2	0.368790	1.189304	0.275339	0.347170	0.347606	0.735631
3	-0.807736	Ideal	F	VS1	-0.123596	-0.665422	-0.808033	-0.833436	-0.830451	-0.765181
4	-1.045675	Ideal	F	VVS1	-1.108366	0.725622	-1.225398	-1.164364	-1.275814	-0.852515

Table-04

1.3 Encode the data (having string values) for Modelling. Split the data into train and test (70:30). Apply Linear regression using scikit learn. Perform checks for significant variables using appropriate method from statsmodel. Create multiple models and check the performance of Predictions on Train and Test sets using Rsquare, RMSE & Adj Rsquare. Compare these models and select the best one with appropriate reasoning.

Encode the string variables:

After encoding the datasets then shape is 5X24

Dropping target variables for the model and split the data 70:30 ratio for the train and test respectively.

```
X = data.drop('price', axis=1)
# Copy target into the y dataframe.
y = data[['price']]
executed in 22ms, finished 19:02:53 2021-11-27
```

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3 , random_state=1)
executed in 26ms, finished 19:02:55 2021-11-27
```

Linear Regression Model:

```
regression_model = LinearRegression()
regression_model.fit(X_train, y_train)
executed in 50ms, finished 19:02:55 2021-11-27
```

LinearRegression()

Coefficient of variables:

```
The coefficient for carat is 1,2358093063484565
The coefficient for depth is 0.005681781619185346
The coefficient for table is -0.0149297410250086
The coefficient for x is -0.35355573073496177
The coefficient for y is 0.338428967376515
The coefficient for z is -0.15648799801269386
The coefficient for cut Good is 0.10904474596752811
The coefficient for cut Ideal is 0.1766242155294696
The coefficient for cut Premium is 0.1722373351767154
The coefficient for cut Very Good is 0.14592655610103092
The coefficient for color E is -0.054565752180473735
The coefficient for color F is -0.072690724250613
The coefficient for color G is -0.1167998797001075
The coefficient for color H is -0.24082413839492464
The coefficient for color I is -0.37566722366410227
The coefficient for color J is -0.5433905358981461
The coefficient for clarity IF is 1.1593629758064512
The coefficient for clarity SI1 is 0.7409791729531008
The coefficient for clarity SI2 is 0.49817342838278567
The coefficient for clarity VS1 is 0.9718720807450599
The coefficient for clarity VS2 is 0.8883054566346622
The coefficient for clarity_VVS1 is 1.092461357490716
The coefficient for clarity VVS2 is 1.0800417891526692
```

Intercept of model:

```
intercept = regression_model.intercept_[0]
print("The intercept for our model is {}".format(intercept))
executed in 23ms, finished 19:02:57 2021-11-27
```

The intercept for our model is -0.8323524295093438

```
# R square on training data
regression_model.score(X_train, y_train)
executed in 36ms, finished 19:02:57 2021-11-27
```

0.9419557931252712

```
# R square on testing data
regression_model.score(X_test, y_test)
executed in 40ms, finished 19:02:58 2021-11-27
```

0.9381643998102491

```
#RMSE on Training data
predicted_train=regression_model.fit(X_train, y_train).predict(X_train)
np.sqrt(metrics.mean_squared_error(y_train,predicted_train))
executed in 42ms, finished 19:02:59 2021-11-27
```

0.23992842984922294

```
#RMSE on Testing data
predicted_test=regression_model.fit(X_train, y_train).predict(X_test)
np.sqrt(metrics.mean_squared_error(y_test,predicted_test))
executed in 75ms, finished 19:02:59 2021-11-27
```

0.25103473833743095

VIF (variance inflation factor):

```
carat ---> 33.35287649550623
depth ---> 4.574003842337532
table ---> 1.7722022611198982
x ---> 463.94494858728734
y ---> 463.08309600508517
z ---> 238.6002431605187
cut_Good ---> 3.6104961328079184
cut_Ideal ---> 14.347409690217939
cut_Premium ---> 8.623207030351887
cut_Very Good ---> 7.852218650260111
color E ---> 2.3710537954581707
```

We can see in VIF there is multicollinearity in the datasets from the state models. We can understand which feature is not more important for the model. We can remove those variables . Ideal value of VIF is less than 10%.

Using Statsmodel library:

Intercept	-0.832352
carat	1.235809
depth	0.005682
table	-0.014930
X	-0.353556
y	0.338429
Z	-0.156488
cut_Good	0.109045
cut_Ideal	0.176624
cut_Premium	0.172237
cut_Very_Good	0.145927
color_E	-0.054566
color_F	-0.072691
color_G	-0.116800
color_H	-0.240824
color_I	-0.375667
color_J	-0.543391
clarity_IF	1.159363
clarity_SI1	0.740979
clarity_SI2	0.498173
clarity_VS1	0.971872
clarity_VS2	0.888305
clarity_VVS1	1.092461
clarity_VVS2	1.080042
dtype: float64	

		OLS Regres	sion Result	S			
Dep. Variable: Model: Method: Date: Time: No. Observation Df Residuals: Df Model: Covariance Type	el: hod: Lea e: Sat, 2 e: Observations: Residuals: Model:		R-squared Adj. R-sq F-statist Prob (F-s Log-Likel AIC: BIC:	uared: ic: tatistic):	0.942 0.942 1.330e+04 0.00 159.94 -271.9 -83.60		
	coef	std err	t	P> t	[0.025	0.975]	
Intercept	-0.8324	0.019	-44.588	0.000	-0.869	-0.796	
carat	1.2358	0.010	121.892	0.000	1.216	1.256	
depth	0.0057	0.004	1.525	0.127	-0.002	0.013	
table	-0.0149	0.002	-6.356	0.000	-0.020	-0.010	
X	-0.3536	0.037	-9.531	0.000	-0.426	-0.281	
y	0.3384	0.038	8.934	0.000	0.264	0.413	
Z	-0.1565	0.027	-5.742	0.000	-0.210	-0.103	
cut_Good	0.1090	0.012	8.755	0.000	0.085	0.133	
cut_Ideal	0.1766	0.012	14.581	0.000	0.153	0.200	
cut_Premium	0.1722	0.012	14.785	0.000	0.149	0.195	
cut_Very_Good	0.1459	0.012	12.269	0.000	0.123	0.169	
color_E	-0.0546	0.006	-8.429	0.000	-0.067	-0.042	
color_F	-0.0727	0.007	-11.075	0.000	-0.086	-0.060	
color_G	-0.1168	0.006	-18.258	0.000	-0.129	-0.104	
color_H	-0.2408	0.007	-35.323	0.000	-0.254	-0.227	
color_I	-0.3757	0.008	-49.521	0.000	-0.391	-0.361	
color_J	-0.5434	0.009	-58.186	0.000	-0.562	-0.525	
clarity_IF	1.1594	0.019	62.524	0.000	1.123	1.196	
clarity_SI1	0.7410	0.016	46.643	0.000	0.710	0.772	
clarity_SI2	0.4982	0.016	31.177	0.000	0.467	0.529	
clarity_VS1	0.9719	0.016	59.986	0.000	0.940	1.004	
clarity_VS2	0.8883	0.016	55.618	0.000	0.857	0.920	
clarity_VVS1 clarity VVS2	1.0925 1.0800	0.017 0.017	63.630 64.730	0.000 0.000	1.059 1.047	1.126 1.113	
 Omnibus: Prob(Omnibus): Skew: Kurtosis:		4696.785 0.000 1.208 7.076					

In this model we found that depth p>|t| is greater than 0.5 so we should remove and again build the model.

Intercept	-0.832269
carat	1.236946
table	-0.015612
X	-0.365810
у	0.315607
Z	-0.122330
cut_Good	0.110307
cut_Ideal	0.175305
cut_Premium	0.170878
cut_Very_Good	0.145550
color_E	-0.054635
color_F	-0.072740
color_G	-0.116725
color_H	-0.240702
color_I	-0.375359
color_J	-0.543203
clarity_IF	1.159684
clarity_SI1	0.741936
clarity_SI2	0.498868
clarity_VS1	0.972497
clarity_VS2	0.889069
clarity_VVS1	1.092825
clarity_VVS2	1.080657
dtype: float64	

print(lm2.summary()) executed in 41ms, finished 19:56:43 2021-11-27

OLS Regression Results

===========	=======================================		=======================================
Dep. Variable:	price	R-squared:	0.942
Model:	OLS	Adj. R-squared:	0.942
Method:	Least Squares	F-statistic:	1.390e+04
Date:	Sat, 27 Nov 2021	Prob (F-statistic):	0.00
Time:	19:56:43	Log-Likelihood:	158.78
No. Observations:	18870	AIC:	-271.6
Df Residuals:	18847	BIC:	-91.12
Df Model:	22		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-0.8323	0.019	-44.583	0.000	-0.869	-0.796
carat	1.2369	0.010	122.331	0.000	1.217	1.257
table	-0.0156	0.002	-6.770	0.000	-0.020	-0.011
X	-0.3658	0.036	-10.101	0.000	-0.437	-0.295
y	0.3156	0.035	9.069	0.000	0.247	0.384
Z	-0.1223	0.016	-7.883	0.000	-0.153	-0.092
cut_Good	0.1103	0.012	8.876	0.000	0.086	0.135
cut_Ideal	0.1753	0.012	14.508	0.000	0.152	0.199
cut_Premium	0.1709	0.012	14.711	0.000	0.148	0.194
cut_Very_Good	0.1455	0.012	12.239	0.000	0.122	0.169
color_E	-0.0546	0.006	-8.439	0.000	-0.067	-0.042
color_F	-0.0727	0.007	-11.082	0.000	-0.086	-0.060
color_G	-0.1167	0.006	-18.246	0.000	-0.129	-0.104
color_H	-0.2407	0.007	-35.306	0.000	-0.254	-0.227
color_I	-0.3754	0.008	-49.497	0.000	-0.390	-0.360
color_J	-0.5432	0.009	-58.169	0.000	-0.562	-0.525
clarity_IF	1.1597	0.019	62.544	0.000	1.123	1.196
clarity_SI1	0.7419	0.016	46.738	0.000	0.711	0.773
clarity_SI2	0.4989	0.016	31.232	0.000	0.468	0.530
clarity_VS1	0.9725	0.016	60.042	0.000	0.941	1.004
clarity_VS2	0.8891	0.016	55.691	0.000	0.858	0.920
clarity_VVS1	1.0928	0.017	63.655	0.000	1.059	1.126
clarity_VVS2	1.0807	0.017	64.784	0.000	1.048	1.113
Omnibus:	=======	4699.504	======= Durbin-۷	atson:	=======	1.994
Prob(Omnibus):		0.000		Bera (JB):	1	7704.272
Skew:		1.208	Prob(JB)	, ,		0.00
Kurtosis:		7.084	Cond. No			56.9

Conclusion:

The final Linear Regression equation is:

Remarks: Dropping variables would bring down the multicollinearity level down.

1.4 Inference: Based on these predictions, what are the business insights and recommendations.

Please explain and summarise the various steps performed in this project. There should be proper business interpretation and actionable insights present.

- From the EDA analysis we understand that ideal cuts have more profit to the company.
- Color H, I, J have more profit for the company.
- need to run promotional marketing campaigns or evaluate if we need to tie up with an alternate agency. It will increase sales.
- Using sats model, if we could run the model again we can have P values and coefficients which will give us better understanding of the relationship, so that values more 0.05 we can drop those variables and run again the model for better result.
- The ideal, premium, very good, cut types are those which are bringing profit so that we could use marketing for these to bring us more profits.

Problem 2: Logistic Regression and LDA

You are hired by a tour and travel agency which deals in selling holiday packages. You are provided details of 872 employees of a company. Among these employees, some opted for the package and some didn't. You have to help the company in predicting whether an employee will opt for the package or not on the basis of the information given in the data set. Also, find out the important factors on the basis of which the company will focus on particular employees to sell their packages.

2.1 Data Ingestion: Read the dataset. Do the descriptive statistics and do null value condition check, write an inference on it. Perform Univariate and Bivariate Analysis. Do exploratory data analysis.

Sample of the dataset:

	Unnamed: 0	Holliday_Package	Salary	age	educ	no_young_children	no_older_children	foreign
0	1	no	48412	30	8	1	1	no
1	2	yes	37207	45	8	0	1	no
2	3	no	58022	46	9	0	0	no
3	4	no	66503	31	11	2	0	no
4	5	no	66734	44	12	0	2	no

Table-05 Sample datasets

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 872 entries, 0 to 871
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Holliday_Package	872 non-null	object
1	Salary	872 non-null	int64
2	age	872 non-null	int64
3	educ	872 non-null	int64
4	no_young_children	872 non-null	int64
5	no_older_children	872 non-null	int64
6	foreign	872 non-null	object

dtypes: int64(5), object(2)

memory usage: 47.8+ KB

- From the above results we can see that there is no missing value present in the dataset.
- There are a total of 872 rows and 7 columns in the dataset.
- 2 variables out of 7 are objects and 5 variables are int64 data types.

Missing values:

Holliday_Package	0
Salary	0
age	0
educ	0
no_young_children	0
no_older_children	0
foreign	0
dtype: int64	

From the above result we can see that there is no missing value in the datasets.

Duplicate values:

```
dups = df.duplicated()
print('Number of duplicate rows = %d' % (dups.sum()))
executed in 17ms, finished 16:32:37 2021-11-28
```

Number of duplicate rows = 0

There is no duplicate value in the datasets.

Describe datasets:

	Holliday_Package	Salary	age	educ	no_young_children	no_older_children	foreign
count	872	872.000000	872.000000	872.000000	872.000000	872.000000	872
unique	2	NaN	NaN	NaN	NaN	NaN	2
top	no	NaN	NaN	NaN	NaN	NaN	no
freq	471	NaN	NaN	NaN	NaN	NaN	656
mean	NaN	47729.172018	39.955275	9.307339	0.311927	0.982798	NaN
std	NaN	23418.668531	10.551675	3.036259	0.612870	1.086786	NaN
min	NaN	1322.000000	20.000000	1.000000	0.000000	0.000000	NaN
25%	NaN	35324.000000	32.000000	8.000000	0.000000	0.000000	NaN
50%	NaN	41903.500000	39.000000	9.000000	0.000000	1.000000	NaN
75%	NaN	53469.500000	48.000000	12.000000	0.000000	2.000000	NaN
max	NaN	236961.000000	62.000000	21.000000	3.000000	6.000000	NaN

Table-06 Describe data

HOLLIDAY_PACKAGE: 2

yes 401 no 471

Name: Holliday_Package, dtype: int64

FOREIGN: 2 yes 216 no 656

Name: foreign, dtype: int64

- We have 2 object variables and the remaining are numerical variables.
- The Holloday_package variable is target variable.
- In the FOREIGH variable most of the data is non-foreigner.

Univariate / Bivariate analysis:

Distplot:

Figure-07

Boxplot:

Figure-08

Salary Feature:

- Distribution of salary feature seems right skewed.
- In the distplot there seem to be outliers.

Age feature:

- Distribution of age feature seems normally distributed.
- In the distplot there seems to be no outliers.

Educ feature:

- Distribution of educ features there are multiple peak points.
- There are some outliers in the datasets.

Countplot:

Figure-09

Bivariant:

Figure-10

In the above figure we can say that foreigners are more interested in holiday packages.

Figure -11

Figure -12

Figure-13

Pairplot:

Figure - 14

Heatmap:

Figure-15

After seeing the pairplot and heatmap we can say that there is presence of multicollinearity in the datasets.

2.2 Do not scale the data. Encode the data (having string values) for Modelling. Data Split: Split the data into train and test (70:30). Apply Logistic Regression and LDA (linear discriminant analysis).

Encode the string variables :

	Holliday_Package	Salary	age	educ	no_young_children	no_older_children	foreign
0	0	48412.0	30	8	1	1	0
1	1	37207.0	45	8	0	1	0
2	0	58022.0	46	9	0	0	0
3	0	66503.0	31	11	2	0	0
4	0	66734.0	44	12	0	2	0

Table-07

Dropping target variables for the model and split the data 70:30 ratio for the train and test respectively.

```
# Copy all the predictor variables into X dataframe
X = df.drop('Holliday_Package', axis=1)

# Copy target into the y dataframe.
y = df['Holliday_Package']
executed in 17ms, finished 16:33:03 2021-11-28

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30 , random_state=1,stratify=y)
executed in 12ms, finished 16:33:05 2021-11-28
```

Logistic Regression:

Grid Search Method:

Grid search method is used for logistic regression to find the optimal solving and the parameters.

```
print(grid_search.best_params_,'\n')
print(grid_search.best_estimator_)
executed in 14ms, finished 16:33:10 2021-11-28

{'penalty': 'l1', 'solver': 'liblinear', 'tol': 1e-06}

LogisticRegression(max_iter=100000, n_jobs=2, penalty='l1', solver='liblinear', tol=1e-06)
```

The Grid search method give, solver= liblinear, penalty= I1

Predicting the training data:

ytrain_predict

executed in 16ms, finished 16:33:15 2021-11-28

```
array([1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0,
      1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1,
      1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1,
      0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0,
      0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0,
      1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0,
      1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0,
      1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0,
      1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1,
      1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0,
      0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1,
      1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0,
      0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0,
      0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1,
      0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1,
      0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0,
      1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0,
      1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1,
      0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1,
      0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1,
      0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1,
      0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0,
      0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0,
      0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
      0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1,
      1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0,
      0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0,
      0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, dtype=int8)
```

LDA MODEL:

```
#Build LDA Model
clf = LinearDiscriminantAnalysis()
model=clf.fit(X_train,y_train)
executed in 20ms, finished 16:33:18 2021-11-28
```

2.3 Performance Metrics: Check the performance of Predictions on Train and Test sets using Accuracy, Confusion Matrix, Plot ROC curve and get ROC_AUC score for each model Final Model: Compare Both the models and write inference which model is best/optimized.

Logistic Regression Performance :

Confusion matrix on training data:

Confusion matrix on the training data

plot_confusion_matrix(best_model,X_train,y_train)
print(classification_report(y_train, ytrain_predict),'\n');

executed in 163ms, finished 16:33:49 2021-11-28

	precision	recall	f1-score	support
0	0.67	0.74	0.71	329
1	0.66	0.57	0.61	281
accuracy	0.55	0.55	0.66	610
macro avg	0.66	0.66	0.66	610
weighted avg	0.66	0.66	0.66	610

Confusion matrix on testing data:

```
## Confusion matrix on the test data

plot_confusion_matrix(best_model,X_test,y_test)
print(classification_report(y_test, ytest_predict),'\n');
executed in 158ms, finished 16:33:49 2021-11-28
```

	precision	recall	f1-score	support
0	0.65	0.77	0.71	142
1	0.66	0.52	0.58	120
accuracy			0.66	262
macro avg	0.66	0.65	0.64	262
weighted avg	0.66	0.66	0.65	262

Accuracy:

```
# Accuracy - Training Data

lr_train_acc = best_model.score(X_train, y_train)
lr_train_acc
executed in 10ms, finished 16:33:50 2021-11-28
```

0.6639344262295082

AUC, ROC curve for train data:

AUC: 0.733

Figure-16

AUC, ROC cure for test data:

AUC: 0.716

Figure- 17

LDA MODEL Performance:

Classification report on training data:

print(classification_report(y_train, pred_class_train))
executed in 16ms, finished 16:33:55 2021-11-28

	precision	recall	f1-score	support
0	0.67	0.74	0.70	329
1	0.65	0.57	0.61	281
accuracy			0.66	610
macro avg	0.66	0.66	0.66	610
weighted avg	0.66	0.66	0.66	610

```
confusion_matrix(y_train, pred_class_train)
```

executed in 9ms, finished 16:33:56 2021-11-28

Classification report on testing data:

```
print(classification_report(y_test, pred_class_test))
```

executed in 19ms, finished 16:33:57 2021-11-28

	precision	recall	f1-score	support
0	0.65	0.76	0.70	142
1	0.65	0.52	0.57	120
accuracy			0.65	262
macro avg	0.65	0.64	0.64	262
weighted avg	0.65	0.65	0.64	262

confusion_matrix(y_test, pred_class_test)

executed in 9ms, finished 16:33:58 2021-11-28

AUC and ROC for the training and testing data:

AUC for the Training Data: 0.731 AUC for the Test Data: 0.714

Figure-18

Comparison:

	LR Train	LR Test	LDA Train	LDA Test
Accuracy	0.66	0.66	0.66	0.65
AUC	0.73	0.72	0.73	0.71
Recall	0.57	0.52	0.57	0.52
Precision	0.66	0.66	0.65	0.65
F1 Score	0.61	0.58	0.61	0.57

Table-08

2.4 Inference: Based on these predictions, what are the insights and recommendations.

Please explain and summarise the various steps performed in this project. There should be proper business interpretation and actionable insights present.

- We have done predictions for both logistic regression and LDA. Since both results are the same.
- EDA analysis clearly indicates certain people aged above 50 are not interested much for holiday.
- People ranging from 35 to 45 generally opted for holiday.
- The important factor deciding the predictions are salary, age and educ.
- To improve holiday packages above 50 we can provide them religious destination places.
- For people earning more than 150000 we can provide them vacation holiday packages.
- Who have more than a number of older children we can provide packages in holiday vacation places.
- need to run promotional marketing campaigns or evaluate if we need to tie up with an alternate agency. It will increase sales.