18.303 Problem Set 4

Due Wednesday, 15 October 2014.

Problem 1:

Consider the operator $\hat{A} = -c(\mathbf{x})\nabla^2$ in some 2d region $\Omega \subseteq \mathbb{R}^2$ with Dirichlet boundaries $(u|_{\partial\Omega} = 0)$, where $c(\mathbf{x}) > 0$. Suppose the eigenfunctions of \hat{A} are $u_n(\mathbf{x})$ with eigenvalues λ_n [that is, $\hat{A}u_n = \lambda_n u_n$] for $n = 1, 2, \ldots$, numbered in order $\lambda_1 < \lambda_2 < \lambda_3 < \cdots$. Let $G(\mathbf{x}, \mathbf{x}')$ be the Green's function of \hat{A} .

- (a) If $f(\mathbf{x}) = \sum_{n} \alpha_{n} u_{n}(\mathbf{x})$ for some coefficients $\alpha_{n} = \underline{\hspace{1cm}}$ (expression in terms of f and u_{n}), then $\int_{\Omega} G(\mathbf{x}, \mathbf{x}') f(\mathbf{x}') d^{2}\mathbf{x}' = \underline{\hspace{1cm}}$ (in terms of α_{n} and u_{n}).
- (b) The maximum possible value of

$$\frac{\int_{\Omega} \int_{\Omega} \frac{1}{c(\mathbf{x})} \overline{u(\mathbf{x})} G(\mathbf{x}, \mathbf{x}') u(\mathbf{x}') d^2 \mathbf{x} d^2 \mathbf{x}'}{\int_{\Omega} \frac{|u(\mathbf{x}'')|^2}{c(\mathbf{x}'')} d^2 \mathbf{x}''},$$

for any possible $u(\mathbf{x})$, is ______ (in terms of quantities mentioned above). [Hint: min–max. Use the fact, from the handout, that if \hat{A} is self-adjoint then \hat{A}^{-1} is also self-adjoint.]

Problem 2:

In this problem, we will solve the Laplacian eigenproblem $-\nabla^2 u = \lambda u$ in a 2d radius-1 cylinder $r \leq 1$ with Dirichlet boundary conditions $u|_{r=1\Omega}=0$ by "brute force" in Julia with a 2d finite-difference discretization, and compare to the analytical Bessel solutions. You will find the IJulia notebooks posted on the 18.303 website for Lecture 9 and Lecture 11 extremely useful! (Note: when you open the notebook, you can choose "Run All" from the Cell menu to load all the commands in it.)

- (a) Using the notebook for a 100×100 grid, compute the 6 smallest-magnitude eigenvalues and eigenfunctions of A with i, Ui=eigs(Ai,nev=6,which=''SM''). The eigenvalues are given by i. The notebook also shows how to compute the exact eigenvalue from the square of the root of the Bessel function. Compared with the high-accuracy λ_1 value, compute the error $\Delta\lambda_1$ in the corresponding finite-difference eigenvalue from the previous part. Also compute $\Delta\lambda_1$ for $N_x = N_y = 200$ and 400. How fast is the convergence rate with Δx ? Can you explain your results, in light of the fact that the center-difference approximation we are using has an error that is supposed to be $\sim \Delta x^2$? (Hint: think about how accurately the boundary condition on $\partial\Omega$ is described in this finite-difference approximation.)
- (b) Modify the above code to instead discretize $\nabla \cdot c \nabla$, by writing A_0 as $-G^T C_g G$ for some G matrix that implements ∇ and for some C_g matrix that multiplies the gradient by $c(r) = r^2 + 1$. Draw a sketch of the grid points at which the components of ∇ are discretized—these will not be the same as the (n_x, n_y) where u is discretized, because of the centered differences. Be careful that you need to evaluate c at the ∇ grid points now! Hint: you can make the matrix $\begin{pmatrix} M_1 \\ M_2 \end{pmatrix}$ in Julia by the syntax [M1;M2].

Hint: Notice in the IJulia notebook from Lecture 11 how a matrix \mathbf{r} is created from a column-vector of \mathbf{x} values and a row-vector of \mathbf{y} values. You will need to modify these \mathbf{x} and/or \mathbf{y} values to evaluate \mathbf{r} on a new grid(s). Given the r matrix $\mathbf{r}\mathbf{c}$ on this new grid, you can evaluate

- c(r) on the grid by $c = rc.^2 + 1$, and then make a diagonal sparse matrix of these values by spdiagm(reshape(c, prod(size(c)))).
- (c) Using this $A \approx \nabla \cdot c\nabla$, compute the smallest- $|\lambda|$ eigensolution and plot it. Given the eigenfunction converted to a 2d $N_x \times N_y$ array u, as in the Lecture 11 notebook, plot u(r) as a function of r, along with a plot of the exact Bessel eigenfunction $J_0(k_0r)$ from the c=1 case for comparison.

```
plot(r[Nx/2:end,Ny/2], u[Nx/2:end,Ny/2])
k0 = so.newton(x -> besselj(0,x), 2.0)
plot(0:0.01:1, besselj(0, k0 * (0:0.01:1))/50)
```

Here, I scaled $J_0(k_0r)$ by 1/50, but you should change this scale factor as needed to make the plots of comparable magnitudes. Note also that the r array here is the radius evaluated on the original u grid, as in the Lecture 11 notebook.

Can you qualitatively explain the differences?

Problem 3:

Recall that the displacement u(x,t) of a stretched string [with fixed ends: u(0,t) = u(L,t) = 0] satisfies the wave equation $\frac{\partial^2 u}{\partial x^2} + f(x,t) = \frac{\partial^2 u}{\partial t^2}$, where f(x,t) is an external force density (pressure) on the string.

- (a) Suppose that $f(x,t) = \Re[g(x)e^{-i\omega t}]$, an oscillating force with a frequency ω . Show that, instead of solving the wave equation with this f(x,t), we can instead use a complex force $\tilde{f}(x,t) = g(x)e^{-i\omega t}$, solve for a complex $\tilde{u}(x,t)$, and then take $u = \Re \tilde{u}$ to obtain the solution for the original f(x,t).
- (b) Suppose that $f(x,t) = g(x)e^{-i\omega t}$, and we want to find a *steady-state* solution $u(x,t) = v(x)e^{-i\omega t}$ that is oscillating everywhere at the same frequency as the input force. (This will be the solution after a long time if there is any dissipation in the system to allow the initial transients to die away.) Write an equation $\hat{A}v = g$ that v solves. Is \hat{A} self-adjoint? Positive/negative definite/semidefinite?
- (c) Solve for the Green's function G(x,x') of this \hat{A} , assuming that $\omega \neq n\pi/L$ for any integer n (i.e. assume ω is not an eigenfrequency [why?]). [Write down the continuity conditions that G must satisfy at x=x', solve for $x\neq x'$, and then use the continuity conditions to eliminate unknowns.]
- (d) Form a finite-difference approximation A of your \hat{A} . Compute an approximate G(x,x') in Matlab by $A \setminus dk$, where d_k is the unit vector of all 0's except for one $1/\Delta x$ at index $k = x'/\Delta x$, and compare (by plotting both) to your analytical solution from the previous part for a couple values of x' and a couple of different frequencies ω (one $< \pi/L$ and one $> \pi/L$) with L = 1.
- (e) Show the limit $\omega \to 0$ of your G relates in some expected way to the Green's function of $-\frac{d^2}{dx^2}$ from class.