Limits of linear regression

Readings for today

Chapter 3: Linear regression. James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning: with applications in R (Vol. 6). New York: Springer.

Topics

1. Interpretation constraints

2. Pitfalls of linear regression

Interpretation constraints

Goals of learning f

1. Inference: understand how changes in X associate with changes in Y.

2. Prediction: predict a future observation in Y from X.

Example: Inference

Q: What factors associate with house value?

Model:

$$Y_{\$} = \hat{\beta}_0 + \hat{\beta}_{crime} X_{crime} + \hat{\beta}_{age} X_{age} + \hat{\beta}_{tax} X_{tax} + \hat{\beta}_{s:t} X_{s:t}$$

	\hat{eta}_i	$SE(\hat{\beta}_i)$	t	p	sig
Intercept	36.46	5.10	7.14	3.28E-12	***
Crime	-1.08	0.33	-3.29	0.002	**
Age	0.01	0.01	0.052	0.85	
Tax	-0.12	0.01	-3.28	0.001	**
S:T ratio	-0.95	0.13	-7.28	0.0005	***

Variables:

- $Y_{\mathbb{S}}$: median house value
- $\cdot X_{crime}$: local crime rate
- X_{age} : # houses over 80 years old
- X_{tax} : local property tax rate
- $X_{s:t}$: school student-teacher ratio

Example: Prediction

Q: What factors predict house value?

Model:

$$Y_{\$} = \hat{\beta}_0 + \hat{\beta}_{crime} X_{crime} + \hat{\beta}_{age} X_{age} + \hat{\beta}_{tax} X_{tax} + \hat{\beta}_{s:t} X_{s:t}$$

Steps:

- 1. Fit $\hat{f}_{train}(X_{train})$
- 2. Predict \hat{Y}_{test} using $\hat{f}_{train}(X_{test})$
- 3. Evaluate test error:

$$\sum_{i=1}^{n} (y_i^{test} - \hat{y}_i^{test})^2$$

$$Y_{train}, X_{train} \begin{pmatrix} y_i \\ \vdots \\ y_m \end{pmatrix} = \begin{pmatrix} x_{1,1} & x_{1,2} & x_{1,3} & x_{1,4} & x_{1,5} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{m,1} & x_{m,2} & x_{m,3} & x_{m,4} & x_{m,5} \end{pmatrix}$$

$$Training set$$

$$Y_{test}, X_{test} \begin{pmatrix} y_{m+1} \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_{1,1} & x_{1,2} & x_{1,3} & x_{1,4} & x_{1,5} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{m,1} & x_{m,2} & x_{m,3} & x_{m,4} & x_{m,5} \end{pmatrix}$$

$$Test set$$

$$x_{n,1} & x_{n,2} & x_{n,3} & x_{n,4} & x_{n,5} \end{pmatrix}$$
Test set

Qualitative predictors

Q: Are there gender differences in reading comprehension?

Variables:

- Y_{read} : content recall score
- X_{gender} : gender (male, female)

Model:

$$Y_{read} = \hat{\beta}_0 + \hat{\beta}_1 X_{gender}$$

Case 1:

$$X_{gender} = \begin{cases} 0, & \text{male} \\ 1, & \text{female} \end{cases}$$

$$\mathsf{male} = \hat{\beta}_0$$

female =
$$\hat{\beta}_1$$

Case 2:

$$X_{gender} = \begin{cases} -1, & \text{male} \\ 1, & \text{female} \end{cases}$$

$$\mathsf{male} = \hat{\beta}_0 - \hat{\beta}_1$$

female =
$$\hat{\beta}_0 + \hat{\beta}_1$$

How you specify your qualitative predictor variables determines how you interpret the effects

Qualitative predictors (>2 levels)

Q: Are there gender differences in reading comprehension?

Variables:

- Y_{read} : content recall score
- $\cdot X_{gender}$: gender (male, female, nonbinary)

Model:

$$Y_{read} = \hat{\beta}_0 + \hat{\beta}_1 X_{female} + \hat{\beta}_2 X_{nb}$$

Dummy (binary) coding:

$$X_{female} = \begin{cases} 1, & \text{female} \\ 0, & \text{otherwise} \end{cases}$$
 $X_{nb} = \begin{cases} 1, & \text{non-binary} \\ 0, & \text{otherwise} \end{cases}$

$$\mathrm{male} = \hat{\beta}_0$$

$$\mathrm{female} = \hat{\beta}_0 + \hat{\beta}_2$$

$$\mathrm{non-binary} = \hat{\beta}_0 + \hat{\beta}_1$$

Interactions

Q: Does gender influence the effect of age on reading comprehension?

Variables:

- Y_{read} : content recall score
- $\cdot X_{gender}$: gender (male, female)
- X_{age} : age (in years)

Model:

$$Y_{read} = \hat{\beta}_0 + \hat{\beta}_1 X_{gender} + \hat{\beta}_2 X_{age} + \hat{\beta}_3 X_{gender} X_{age}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
main effect main effect gender by age interaction

Hierarchical Principle:

When including interaction terms, *always* include the main effect terms in the model.

Why need the Hierarchical Principle?

$$Y = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2 + \hat{\beta}_3 X_1 X_2$$

$$= \hat{\beta}_0 + (\hat{\beta}_1 + \hat{\beta}_3 X_2) X_1 + \hat{\beta}_2 X_2$$

$$= \hat{\beta}_0 + \hat{\beta}_1^* X_1 + \hat{\beta}_2 X_2$$

$$= \hat{\beta}_0 + \hat{\beta}_1^* X_1 + \hat{\beta}_2 X_2$$

- \cdot \hat{eta}_1^* depends on both X_1 and X_2 in order to describe the total relationship that X_1 has with Y.
- Excluding the main effect term $\hat{\beta}_1 X_1$ removes that portion of the variance explained by $\hat{\beta}_1^*$.

Pitfalls of linear regression

Structure of a linear model

Fundamental form:

$$Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p + \epsilon$$

Solution:

$$\hat{\beta}_{0} = E[Y] + \hat{\beta}_{1}E[X]$$

$$= \bar{y} + \sum_{j=1}^{p} \hat{\beta}_{j}\bar{x}_{p}$$

$$\hat{\beta}_{j} = \frac{\sum_{i=1}^{n} (x_{i,j} - \bar{x}_{j})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i,j} - \bar{x}_{j})^{2}}$$

Assumptions:

- 1. f(X) describes a linear relationship between X and Y.
- 2. Y is normally distributed.
- 3. There is no collinearity between features in X.
- -i.i.d.

4. f(X) is stationary.

Outliers

A subset of values that violate the assumed sampling distribution of Y.

High leverage points

A subset of values in X that bias the outcome of $\hat{f}(X)$.

Leverage Statistic (h)

$$h_i = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum_{i'=1}^n (x_{i'} - \bar{x})^2}$$

Collinearity

A correlation between two or more predictor variables in X.

Strong case:
$$Y = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2$$

Set:
$$X_1 = X_2 \rightarrow \rho(X_1, X_2) = 1$$

Then:
$$Y = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2$$

 $= \hat{\beta}_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_1$
 $= \hat{\beta}_0 + X_1 (\hat{\beta}_1 + \hat{\beta}_2)$
 $= \hat{\beta}_0 + \tilde{\beta}_1 X_1$
 $= \hat{\beta}_0 + \tilde{\beta}_1 X_1$

Variance Inflation Factor (VIF)

$$VIF = \frac{1}{1 - r_{X_{j}|X_{-j}}^{2}}$$

The closer to 1 that $r_{X_j|X_{-j}}^2$ gets, the more likely that the correlation is impacting $\hat{f}(X)$.

Take home message

 Interpreting linear regression models depends critically on how they are setup and how closely the data aligns to the assumptions of the fitting routine.