MultiNicheNet parameter interpretation guidelines

Parameter	Consequences of	Consequences of	Notes and
	being more	being more	recommendations
	lenient	stringent	
Sample filtering: min_cells = 10	You can be more lenient by decreasing this value.	You can be more stringent by increasing this value.	For datasets with several lowly abundant cell types of interest, we recommend using <i>min_cells</i> = 5.
For each cell type, the considered samples are those samples with nr. of cells >= min_cells parameter	This will keep more samples per cell type in the analysis, and thus possibly more cell types as well. However, DE analysis-based results and prioritization criteria may be less trustworthy if based on several samples with a low nr of cells.	This can lead to a loss of cell types relevant to the condition of interest. For example, cell types that are more abundant in the condition of interest can be left out from analysis if not sufficiently present in the steady-state condition.	We explicitly recommend against using min_cells < 5 and min_cells > 50.
	Based on the mock analysis, the potential disadvantage of being lenient is likely to be limited (if not too extreme).	Based on the mock analysis, being more stringent will probably not lead to improved prioritization of interactions between abundant cell types.	
Gene filtering - sample proportion: min_sample_prop = 0.50	You can be more lenient by decreasing this value.	You can be more stringent by increasing this value.	We recommend using the default value.
For each cell type, we consider genes expressed if they are expressed in at least min_sample_prop fraction of samples in the smallest condition.	Based on the mock analysis, the influence of decreasing this parameter is limited.	Based on the mock analysis, the influence of increasing this parameter is limited.	
Gene filtering - cell proportion: fraction_cutoff = 0.05 Genes are considered to be expressed in a sample if they have non-zero expression values in fraction_cutoff	You can be more lenient by decreasing this value. This will lead to a higher probability of discovering weakly-expressed interactions. The	You can be more stringent by increasing this value. This will lead to risking the loss of condition-specific but weakly expressed	We recommend using the default value, unless you are specifically interested in prioritizing (very) weakly expressed interactions. We explicitly recommend against using fraction_cutoff > 0.10.
fraction of cells of that cell type.	potential downside is that condition-specific strongly-expressed interactions may be more hidden among all the weakly-expressed interactions while exploring the top predictions.	interactions. Based on the mock analysis, the potential benefit of better prioritizing strongly expressed interactions is likely to be limited.	

Thresholds before the ligand	You can be more lenient	You can be more	We recommend inspecting the nr. of
activity analysis: define the	by decreasing the	stringent by increasing	DE genes for all cell types based on the
geneset_oi per cell type:	logFC_threshold and	the logFC_threshold,	default thresholds and adapting
	keeping <i>p_val_adj =</i>	and changing <i>p_val_adj</i>	accordingly. The ratio
*logFC_threshold = 0.50	FALSE.	= TRUE.	geneset_oi/background should ideally
*p val adj = FALSE			be between 0.005 and 0.1.
*p_val_threshold = 0.05	This will increase the	This will decrease the	
	size of the genesets of	size of the genesets of	If the smallest group >= 20 samples, we
These thresholds are used to	interest. As a result, the	interest. As a result, the	typically recommend using <i>p_val_adj</i> =
define the up- and	results of the ligand	results of the ligand	TRUE.
downregulated genes per cell	activity analysis can	activity analysis can	If the biological difference between the
type/contrast combination.	change.	change.	conditions is very large, we typically
These genesets are then used			recommend increasing the
as input for the ligand activity			logFC threshold and/or using
predictions.			p val adj = TRUE.
The nr. of considered	You can be more lenient	You can be more	We recommend users to test other
top-predicted prior target	by increasing this value.	stringent by decreasing	settings in case they would be
genes of each ligand:		this value.	interested in exploring fewer, but more
top_n_target = 250	This will consider more		confident target genes, or vice versa.
	genes as potential	This will consider fewer	
For target gene inference	target genes of a ligand.	genes as potential	
during visualizations and	However, some	target genes of a ligand.	
construction of the	considered target genes	But, the considered	
intercellular regulatory	could be supported by	target genes are	
network, we only consider the	less prior knowledge.	supported by more prior	
top_n_target genes with the		knowledge.	
highest regulatory potential			
scores as targets of a ligand.			

Parameter	Consequences of different parameter settings	Notes and recommendations
ligand_activity_down	ligand_activity_down = TRUE: For prioritization based on ligand activity: consider the maximum of up- and downregulation Both LR pairs with high upregulatory and downregulatory activity will be strongly prioritized. ligand_activity_down = FALSE: consider only upregulated activity Only LR pairs with high upregulatory activity will be strongly prioritized. Because ligand activity is only one criterion, LR pairs with high downregulatory activity may still be prioritized if they score high on the other criteria.	The setting "ligand_activity_down = FALSE" is more complete, but the setting "ligand_activity_down = FALSE" results in more interpretable results. In any case, we would rather suggest users validate LR pairs with high upregulatory activity (= target gene enrichment in the condition of interest) compared to high downregulatory activity (= target gene enrichment in the other condition(s)).
scenario	scenario = "regular": The setting "regular" is strongly recommended and gives each criterion equal weight. scenario = "lower_DE": It halves the weight for DE criteria, and doubles the weight for ligand activity. This setting will emphasize interactions with higher ligand activity compared to strong differential expression. scenario = "no_frac_LR_expr": It does not consider the criterion that represents the fraction of samples with sufficient expression of the L-R pair. This setting will result in prioritized interactions that may be strongly differentially expressed and active in general, but not expressed in all samples.	The setting "lower_DE" is recommended in case you hypothesize that the differential CCC patterns in your data are less likely to be driven by DE (eg in cases of differential migration into a niche) no_frac_LR_expr: if you have a limited nr of samples in your conditions (< 10) and you don't want to penalize interactions if they are not sufficiently expressed in some samples.