Course Code	Course Title	L T	Р	С	
BSTS301P	Advanced Competitive Coding – I	0 0	3	1.5	
Pre-requisite	NIL	Syllab	us ver	sion	
			1.0		
Course Objective					
	op the step by step approach in solving prob	olems wit	th the	help	
	ning techniques of data structures.				
To deploy algorithms in real time applications.					
Course Outeen					
Course Outcomes					
At the end of the course the student should be able to					
Provide a basic understanding of core Java concepts Identify Bitwing algorithms for colving real world problems.					
 Identify Bitwise algorithms for solving real world problems. Illustrate various techniques for searching, sorting and hashing 					
	nd and implement Greedy Algorithm.	or in 19			
T. Oligolotai	ia and implement Greedy / agentium.				
Module:1 Algo	prithms		6 h	ours	
	n, Features, Structure, Data Types, Basic I/O	Operator	s, Dec	ision	
making and Con	trol structure, Time & Space complexity.				
Module:2 Mat	n based problems		6 h	ours	
	Segmented & Incremental Sieve, Euler				
Strobogrammatic Number, Remainder Theorem, Toggle the switch & Alice Apple					
<mark>tree</mark> , Binary Palir			ı		
	vise algorithms			ours	
Booth's Algorithm, Euclid's Algorithm, Karatsuba Algorithm, Longest					
Sequence of 1 after flipping a bit Swap two nibbles in a byte					
Module:4 Arrays and Searching 6 hours					
Block Swap Algorithm, Max product subarray, Maximum sum of hour glass in matrix,					
	Sum, Leaders in array, Majority element.		6 h		
Module:5Sorting and String6 hoursLexicographically first palindromic string, Natural Sort order , Weightes substring					
	beginning, Manacher's Algorithm	vveignie	s subs	unig	
	ursion and Back tracking		6 h	ours	
Sorted Unique Permutation, Maneuvering, Combination, Josephus trap, Maze					
Solving, N Quee	, , , , , , , , , , , , , , , , , , , ,	oopiido	ар, п	na_o	
Module:7 Gree			6 h	ours	
	gorithm, Hamiltonian Cycle, Kruskal's Algorithn	n ,Activit			
-	Coloring, Huffman Coding	,	,		
	rview Preparation		3 h	ours	
	curity, Cryption Techniques		l		
Total Lecture he	ours:		45 h	ours	
Text Book					
Mark Allen V	Veiss, "Data structures and algorithm analysis in	C++", 20)19, 4th	1	
1. Edition, Pea	rson Education.				
Reference Books					
	ay and P.G. Sorenson, "An Introduction to D	ata Stru	ctures	with	
applications	", 2017, Second Edition, Tata Mc Graw Hill.				
- I Richard M	Reese Jennifer I Reese Alexey Grigorey	.ıa∨a: I)a	ita Scie	عnca	

Made Easy,2019, Pocket Publishing.

Richard M. Reese, Jennifer L. Reese, Alexey Grigorev , Java: Data Science

Mode of Evaluation: Written assignment, Quiz, Project & FAT.					
Recommended by Board of Studies	24-02-2023				
Approved by Academic Council	No. 69	Date	16-03-2023		