



Center for Research in Applied Cryptography and Cyber Security

# **DEFENSE AGAINST ADVERSARIAL EXAMPLES**

Yishay Asher • Steve Gutfreund Supervisor: Hanan Rosemarin

#### **Problem Description**

Building high accuracy DNN models which are sufficiently resistant to adversarial attacks



### **Background and Goal**

- ☐ An adversarial example is an instance with small, intentional feature perturbations that causes a machine learning model to make a false prediction.
- ☐ The goal is to find a way to train 'secured' models such that this sort of attacks should not affect them.
- ☐ Project based on the article Bridging machine learning and cryptography in defense against adversarial attacks



example of an adversarial image

## Set-Up

- Mnist and Fashion-Mnist datasets
- ✓ Using well-known neural nets
- ✓ Training 'unsecured' models

## **Securing Models**

Approach: training models on encrypted images. Encryption techniques:

- Permutation
- AES in ECB, CBC and CTR modes



architecture for securing models

# **Cutting Loose Ends**

Eliminated the models that did not learn well. Learning encrypted images is not very intuitive, as can seen below.



sample of the encrypted images.

## Attacking

#### Attacks:

- Carlini & Wagner, CW
- > Fast Gradient Sign Method, FGSM

'gray-box' scenario, i.e. the attacker knows the architecture of the model but has no access to the private key.



visualization of a CW attack secured by permutation

## Results

There's a slight tradeoff between accuracy on the original images and the accuracy on the adversarials, but overall, accuracies are good

|       | model | images          | unencrypted | Permutated | aes · ecb | aes · cbc | aes · ctr |
|-------|-------|-----------------|-------------|------------|-----------|-----------|-----------|
| mnist | A     | originals       | 1.49        | 3.70       | 18.40     | 67.60     | 3.70      |
|       |       | $cw\ l_2$       | 100.00      | 4.50       |           |           | 4.20      |
|       |       | $cw\ l_0$       | 100.00      | 7.30       |           |           | 9.60      |
|       |       | cw $l_{\infty}$ | 100.00      | 5.40       |           |           | 4.90      |
|       | В     | originals       | 2.10        | 4.20       | 19.30     | 87.40     | 2.70      |
|       |       | fgsm            | 39.50       | 8.60       |           |           | 4.90      |

|               | model | images          | unencrypted | permutated | aes · ecb | aes · cbc | aes · ctr |
|---------------|-------|-----------------|-------------|------------|-----------|-----------|-----------|
| fashion-mnist | Α     | originals       | 8.30        | 12.30      | 54.60     | 71.50     | 17.40     |
|               |       | cw $l_2$        | 100.00      | 12.70      |           |           | 17.20     |
|               |       | cw $l_0$        | 100.00      | 12.50      |           |           | 18.70     |
|               |       | cw $l_{\infty}$ | 100.00      | 12.90      |           |           | 17.80     |
|               | В     | originals       | 9.50        | 12.00      | 55.30     | 90.30     | 16.70     |
|               |       | fgsm            | 77.20       | 29.80      |           |           | 26.50     |

classification error (%) on the first 1000 test samples

# **Success with Permutation, Coincidence?**

To verify the learning ability of a permutation model does not result from high density in small images, we trained models on padded images.

|                  | image size | error rate |
|------------------|------------|------------|
|                  | 28x28      | 3.70       |
| mnist            | 40x40      | 3.40       |
|                  | 60x60      | 3.30       |
| fools: on        | 28x28      | 12.30      |
| fashion<br>mnist | 40x40      | 14.40      |
|                  | 60x60      | 10.80      |

results for training permutated data, various image dimensions

#### **Future Work**

- Improve accuracy on AES-ECB model
- Nicholas Carlini ('C' in CW) believes that CW might still defeat these defenses
- Test on more complicated datasets; i.e. Cifar-10

























