https://bit.ly/20WCVNI

KYOTO UNIVERSITY

統計的モデリング基礎④ ~最尤推定~

鹿島久嗣 (情報学科 計算機科学コース)

DEPARTMENT OF INTELLIGENCE SCIENCE
AND TECHNOLOGY

中間テスト: 6/5(水) 4限場所はここ

- 講義内で行います
- 範囲は第1~7回
- ■持ち込み等なし

(いろいろな話題についての) 参考書

現代統計学

出版社:日本評論社

発刊年月: 2017.03

ISBN: 978-4-535-78818-3

A5判; 256ページ

幅広いトピックで基本的事項がコ ンパクトにまとまっている

統計モデリングの考え方: 部分から全体について知る

- ■母集団:確率分布で表される、我々が本当に興味のある集合
 - -分布のクラスやパラメータで指定されるとする
- ■標本:実際に観測できる母集団の一部
 - -確率分布に従って抽出された具体的なデータ
- 目的: 標本から母集団について推測する (標本抽出の逆)
 - パラメータを推定する(どうやって?)

パラメータの推定問題:サイコロの各目の出る確率を実際の出目から推定する

■ 母集団は離散分布に従うとする

$$-P(X = k) = f(k)$$
 (ただし $\sum_{k \in \mathcal{X}} f(k) = 1, f(k) \ge 0$)

$$-$$
たとえば(厳密な)サイコロであれば $P(X=k)=\frac{1}{6}\approx 0.17$

■標本抽出:

-20回(独立に)振ったところ、 63513141226122544465が出た

出目	1	2	3	4	5	6
回数	4	4	2	4	3	3

■ 母集団のパラメータ(それぞれの目の出る確率)は?

サイコロの推定問題へのひとつの解:出た目の回数の割合で推定する

■ ひとつのアイディア:

20回中で1が4回出たのだから
$$P(X=1) \approx \frac{4}{20} = 0.2$$
 と推定する

出目	1	2	3	4	5	6
回数	4	4	2	4	3	3
確率の推 定値	0.2	0.2	0.1	0.2	0.15	0.15

- 正解が約0.17なので悪くない...
- この推定値はどのような原理に基づいているのか?

最尤推定: 確率分布の代表的な推定手法のひとつ

- 標本からの母集団確率分布の推定
- 代表的な推定手法
 - -最尤推定
 - -モーメント推定
 - -ベイズ推定

最尤推定とは:

標本をもっともよく再現するパラメータを推定値とする

■ n個のデータ: $x_1, x_2, ..., x_n$ が生成される確率(尤度):

$$L = P(X = x_1)P(X = x_2) \cdots P(X = x_n) = \prod_{i=1}^{n} P(X = x_i)$$

- サイコロの例:
 - -目kが出る確率を p_k , 目kが出た回数を n_k とする
 - 尤度 $L(p_1, p_2, ..., p_n) = p_1^{n_1} p_2^{n_2} \cdots p_6^{n_6} = \prod_{k=1}^6 p_k^{n_k}$
 - -これを最大化する $p_1, p_2, ..., p_n$ を求める(最大化問題を解く)と $\hat{p}_k = \frac{n_k}{n_1 + n_2 + \dots + n_6}$

サイコロの最尤推定: ラグランジュの未定乗数法によって推定値が求まる

北度の代わりに対数尤度を最大化すると扱いやすい(解は変わらない):

$$\log L(p_1, p_2, ..., p_n) = \sum_{k=1}^{6} n_k \log p_k$$

- 確率分布の制約: $\sum_{k=1}^{6} p_k = 1, p_k > 0$
- ラグランジュ未定乗数法:

$$G(\{p_k\}_{k=1}^6, \lambda) = \sum_{k=1}^6 n_k \log p_k + \lambda \left(1 - \sum_{k=1}^6 p_k\right)$$

応用問題:

どちらのサイコロが使われた?

- 2つの(いびつな)サイコロA, Bがある
 - -サイコロAを20回振ったところ:

出目	1	2	3	4	5	6
回数	5	1	4	2	4	4

-サイコロBを16回振ったところ:

出目	1	2	3	4	5	6
回数	2	8	2	2	1	1

■ 2つのサイコロのいずれかを選んで (Cとする) 5回振ったところ:

出目	1	2	3	4	5	6
回数	1	1	0	2	0	1

■ 使われたサイコロはA, Bのいずれだろうか? (C=A or C=B?)

ベイズ決定:

事後確率によって決定する

- A, B どちらのサイコロを選んだかを確率変数Xで表す
 - -事前確率:でたらめに選ぶとP(X = A) = P(X = B) = 1/2
 - -何も情報がなければこれ以上はわからない
- 事後分布: C(A, Bのいずれか)振って出たデータDを見たあとの Xの確率分布 P(X|D)によって判断
 - -事後確率がP(X = A|D) > P(X = B|D)であれば、Aが使われた可能性が高い
- 事後確率の計算: $P(X|D) = \frac{P(D|X)P(X)}{P(D)}$ (ベイズの定理)

事後確率の計算:

ベイズの定理と最尤推定で事後確率を計算

■ 事後確率の計算には「ベイズの定理」:

J. Bayes.

$$P(X|D) = \frac{P(D|X)P(X)}{P(D)}$$

- -判断基準:P(X = A|D) ≥ P(X = B|D)
 - $\leftrightarrow P(D|X = A)P(X = A) \ge P(D|X = B)P(X = B)$
 - -注意:分母 $P(D) = \sum_{X} P(D|X)P(X)$ を計算する必要はない
- サイコロのパラメータ $\left\{p_k^{\text{A}}\right\}_{k=1}^6$ 、 $\left\{p_k^{\text{B}}\right\}_{k=1}^6$ は最尤推定によって推定

サイコロCの出目回数
$$P(D|X=A)=\prod_{k=1}^6 p_k^{An_k^C} \gtrless P(D|X=B)=\prod_{k=1}^6 p_k^{Bn_k^C}$$
で判断

■ では、サイコロAが2個サイコロBが1個あった場合にはどうなる?

ポアソン分布の最尤推定:

標本平均がパラメータの最尤推定量になる

• ポアソン分布:
$$P(X = k \mid \lambda) = \frac{\lambda^k}{k!} \exp(-\lambda)$$

■ データ: $x_1, x_2, ..., x_n$ に対する対数尤度:

$$L(\lambda) = \sum_{i=1}^{n} \log P(X = x_i \mid \lambda) = \log \lambda \sum_{i=1}^{n} x_i - n\lambda + \text{const.}$$

パラメータの最尤推定量:

$$\hat{\lambda} = \frac{\sum_{i=1}^{n} x_i}{n}$$

https://en.wikipedia.org/wiki/Poisson_distribution# /media/File:Poisson_pmf.svg

練習:

正規分布のパラメータの最尤推定

• 正規分布:
$$f(x) = N(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

- パラメータ: 平均μと分散σ²の最尤推定量を求めてみよう
 - 1. データ: $x_1, x_2, ..., x_n$ に 対する対数尤度をつくる
 - パラメータについての最大化 問題を解く

f(x)

