

Grafos e Algoritmos Computacionais

Técnica de Ordenação por Caixas

Prof. André Britto

Grafo Ponderado

Grafo Ponderado

Um Grafo G = (VG, EG) é poderado se existem valores numéricos (pesos) associados à suas arestas ou vértices.

Grafo Ponderado

Matriz de Pesos

Quando o grafo é ponderado, é possível aproveitar a estrutura em matriz de adjacência, incidência e lista de adjacência para representar os pesos na própria estrutura.

Grafo Ponderado

Matriz de Pesos

No caso da matriz de adjacência substituem-se os elementos "1"s pelo peso da aresta associada. Denominaremos essa matriz no presente texto matriz de pesos.

Técnica de Ordenação

Técnica de Ordenação

- Ordenação dos vértices segundo algum critério (que depende da aplicação).
- Critérios mais comuns:
 - arestas (pesos)
 - vértices (grau)

Técnica de Ordenação

Técnica de Ordenação

 Método de ordenação frequentemente utilizado em grafos – Ordenação por Caixas

Método de Ordenação por Caixas

- $S \rightarrow$ conjunto dos números inteiros a serem ordenados.
- $a,b \rightarrow$ elementos mínimo e máximo de S respectivamente.
- S_a , S_{a+1} ,..., S_b \rightarrow Caixas.

<u>Algoritmo</u>

- No início as caixas estão vazias.
- Cada elemento de *S* com valor *j* é inserido em *Sj*.
- Após inserção de todos os elementos esvazia-se as caixas.

Exemplo

- Critério : Grau dos vértices
- Faixa de graus : 2-4
- a = 2, b = 4

Ordenação por Caixas

*V*2

*V*3

Ordenação por Caixas

• Saída:
$$V_1$$
, V_3 , V_4 , V_2 , V_5

Como implementar ?

<u>Implementação</u>

- Supõe grafo armazenado em EA.
- Caixas -> vetor de ponteiros para listas de vértices.
- Ex.: S_2 \rightarrow S_3 \rightarrow S_4 \rightarrow

```
algoritmo OrdenaçãoPorCaixas (EA, n, a, b)
{dados: grafo G representado na EA, ordem do
grafo (n), graus mínimo (a) e máximo (b) dos
vértices}
início
   para i = a,a+1,...,b faça
      S[i] := nulo;
   para i = 1,2,...,n faça
     início
       calculoGrau(EA(vi), grau);
       insereLista(S[grau], vi);
     fim
   para i = a,a+1,...,b faça
      esvazieLista(S[i]);
fim
```

```
algoritmo OrdenaçãoPorCaixas (EA, n, a, b)
{dados: grafo G representado na EA, ordem do
grafo (n), graus mínimo (a) e máximo (b) dos
vértices}
início
   para i = a,a+1,...,b faça
      S[i] := nulo;
   para i = 1,2,...,n faça
     início
       calculaGrau(EA(vi),grau);
       insereLista(S[grau], vi);
     fim
   para i = a,a+1,...,b faça
      esvazieLista(S[i]);
fim
```

```
algoritmo OrdenaçãoPorCaixas (EA, n, a, b)
{dados: grafo G representado na EA, ordem do
grafo (n), graus mínimo (a) e máximo (b) dos
vértices}
início
   para i = a,a+1,...,b faça
      S[i] := nulo;
   para i = 1, 2, \ldots, n faça
     início
       calculaGrau(EA(vi),grau);
       insereLista(S[grau], vi);
     fim
   para i = a,a+1,...,b faça
      esvazieLista(S[i]);
fim
```

```
algoritmo OrdenaçãoPorCaixas (EA, n, a, b)
{dados: grafo G representado na EA, ordem do
grafo (n), graus mínimo (a) e máximo (b) dos
vértices}
início
   para i = a,a+1,...,b faça
      S[i] := nulo;
   para i = 1, 2, \ldots, n faça
     início
       calculaGrau (EA (vi), grau);
       insereLista(S[grau], vi);
     fim
   para i = a,a+1,...,b faça
      esvazieLista(S[i]);
fim
```

```
algoritmo OrdenaçãoPorCaixas (EA, n, a, b)
{dados: grafo G representado na EA, ordem do
grafo (n), graus mínimo (a) e máximo (b) dos
vértices}
início
   para i = a,a+1,...,b faça
      S[i] := nulo;
   para i = 1, 2, \ldots, n faça
     início
       calculaGrau (EA (vi), grau);
                                      O(n+m)
       insereLista(S[grau], vi);
     fim
   para i = a,a+1,...,b faça
      esvazieLista(S[i]);
fim
```

Referências

Seções 1.2 do Grafos: conceitos, algoritmos e aplicações. Goldbarg, E. e Goldbarg M. Elsevier, 2012

Seções 3.4 do Szwarcfiter, J. L., Grafos e Algoritmos Computacionais, Ed. Campus, 1983.

Adaptado do material de aula da Profa. Leila Silva