

New York City Traffic Violation Data Analysis and Prediction

310712009 楊家碩 GMBA12 109550162 郭子頡 資工13 310551001 林奕宏 資科12 0716302 黃靖雅 資工11

Table of Contents

- Target problem 目標問題
- Data introduction 資料介紹
- Project goals 專案目標
- Analysis process 分析流程
- Platform and tools used 使用平台及工具
- Data preprocessing 資料前處理
- Prediction model / Model results, Discussion of results 預測模型/模型結果、結果探討
- Further Research 進一步研究
- References 參考文獻

目標問題 / Target Problem

Motivation

鑒於台灣道路交通普遍混亂與違規情形(e.g.路邊違停)氾濫,期望藉由分析公開且齊全的紐約交通違規資料與相應的天氣資料,來評估預測未來的違規情形的可行性,以提供有關政府/民間單位進一步的應用參考(e.g.警力人力分配、即時導航的指引參考/提醒、.....等)

Problem statement

分析各城區時間性(每小時)的違規資料與當日天氣資料的統計數據,以預測未來的違規 數量/罰款金額

Target performance metrics

預測結果達到77%R squared

Datasets

- Data sources and characteristics
- 5Vs (Volume, Variety, Velocity, Value, Veracity) of Big Data?

天氣資料的來源與蒐集

National Oceanic and Atmospheric Administration

 National Centers for Environmental Information

Collected Data

- TAVG(Avg temp)
- AWND(Avg wind speed)
- SNWD(Snow depth)
- o WT01 (Fog)

Link

https://www.ncdc.noaa.gov/cdo-web/

天氣-資料特性 Data characteristics / 4V

Velocity

Update the data daily

Variety

- Data: Row 960k Rows and 72 Columns (67 features)
- 3種不同種類的資料
- 資料型態包含地理資訊,數值型態,文字等資料

天氣-資料特性 Data characteristics / 4V

Value

• 這份資料可以用來判斷當日大致的天氣類型 (e.g.是否有降雨/下雪、霧氣影響能見度...)

Veracity

Our data is from NCDC (government's administration).
 It can be defined as the accuracy or truthfulness of a data set.

紐約交通違規資料的來源與蒐集

NYC Open Data

- Department of Finance (DOF)
- Open Parking and Camera Violations

Collected Data

- Issue Date
- Violation Type
- Fine Amount
- County
-(15 other features)

• Link

https://data.cityofnewyork.us/...

交通-資料特性 Data characteristics / 5V

Volume

Time Period: 2019/1/1 ~ Now 2022/4/22

Total Data Volume: around 20 GB

Velocity

Update the data daily

Variety

- Data: Row 77.3Million and Columns 19
- 3種不同種類的資料
- 資料型態包含地理資訊,數值型態,文字等資料

交通-資料特性 Data characteristics / 5V

Value

• 這份資料可以用來判斷交通罰單

Veracity

 Our data is from NYC Open Data. It can be defined as the accuracy or truthfulness of a data set.

Project Objectives

- Input/Output
- Group Division

專案目標 f(X) = Y Y1 Case Count

- 以每日每小時為單位計算違規案件 總數
- Real-life application: 警力分派

Output

Y2 Average fine amount

- 以每日每小時為單位計算平均的罰款金額
- Real-life application: 了解哪個時間段容易發生重大交通違規

X (V1) Without Weather Data

County, Month, Day, Weekday, Hour

專案目標 f(X) = Y

Input

X (V2) With Weather Data X (V1) + Weather Data (Average temperature, average wind speed, snow depth, fog)

Experimental Group vs. Control Group

Control Group

Data 1

- Traffic Violations Data
 - One hot encoding for different counties
- No Weather Data

Experimental Group

Approach 1 → Data 2

- Traffic Violations Data
 - One hot encoding for different counties
- Add NOAA Weather Data

Approach 2 → Data 3

- Traffic Violations Data
 - Use one county at the time
- Add NOAA Weather Data

Basic Work Plan

- Platform, Tools, and Analysis Workflow
- Schedule

分析流程

Data Access

Data Preprocessing

Modeling

Application & Result

- 取得歷年交通違規 資料
- 取得歷年天氣資料
- · 處理缺失值(drop)
- One hot encoding on counties
- 資料轉換
- 合併違規、天氣資料

- Feature Score
- 機器學習
 - 1. 模型建立
 - 2. 模型訓練及調整
 - 3. Metric: R² score

- 呈現出預測及分析 結果
- Graphs, tables

R² score

$$R^2$$
 score = 1 - u/v

$$u = \sum_{i=1}^{n} (y_{true_i} - y_{pred_i})^2$$

$$y_{\text{mean}} = \frac{1}{n} \sum_{i=1}^{n} y_{true_i}$$

$$V = \sum_{i=1}^{n} (y_{true_i} - y_{mean})^2$$

使用平台及工具

開發環境

Python程式語言、Google Colab

大數據平台

Pyspark

分析工具

Pandas · scikit-learn · PySpark MLlib · Matplotlib

Data Preprocessing

- Challenges in PreProcessing Weather
- Challenges in Preprocessing Violations

Challenges in PreProcessing - Weather,

Station attribute mapping

- Enormous amount of features
- Enormous amount of missing value

Longitude/Latitude >> County

- Not exactly 1-1
- Station may be near the boundary of multiple counties
- Some county may not have any station at all

Q: How to handle missing data

- May result in different models
- Leads to different results and accuracy
- Be discussed later

Challenges in Preprocessing - Violations

- "County" Column is very arbitrary

- e.g. "Manhattan" / "Brooklyn" should actually be "New York"
- e.g. "Qns" / "Q" >> Queens
- e.g. "B" >> "Bronx" or "Broom"?
- e.g. "14" / "16" makes little sense

Manhattan · Brooklyn · NY	New York
Qns · Q	Queens
B · Bronx	Broom
KINGS · K	Kings
RICHM · Rich	Richmond

Solution

- Referencing related authorities' County Code list
- Matching manually

Models & Results

- Data Visualization
- Feature Score
- Result

Data Visualization Prediction: Y1 (Count)

Input: Data 1 (No weather) Prediction: Y1 (Count)

Input: Data 1 (No weather) Prediction: Y1 (Count)

Input: Data 2 (Add NOAA Weather Data) Prediction: Y1 (Count)

prediction

Input: Data 2 (Add NOAA Weather Data) Prediction: Y1 (Count)

Input: Data 3 (Add NOAA Weather Data) Prediction: Y1 (Count)

Input: Data 3 (Add NOAA Weather Data) Prediction: Y1 (Count)

Data Visualization Prediction: Y2 (Average Fine Amount)

Input: Data 1 (No weather) Prediction: Y2 (Average Fine Amount)

Input: Data 2 (Add NOAA Weather Data) Prediction: Y2 (Average Fine Amount)

Input: Data 3 (Add NOAA Weather Data) Prediction: Y2 (Average Fine Amount)

Feature Importance Analysis

Feature Importance Y1 (Count)

Data 1 (No weather)

F score

Data 3

Feature Importance Y2 (Average Fine Amount)

Data 1 (No weather)

Data 2

Model Prediction

Prediction Model - Machine Learning using Pyspark Y1 - Count

	W/O	W/	
Y1	NOAA Weather Data	NOAA Wea	ather Data
Test data 1 (2020+2022)	Data1	Data2	Data3
Linear Regression	0.1846	0.1832	0.1086
Gradient-Boosted Trees	0.6915	0.7085	0.7509
Decision Tree	0.6851	0.6881	0.7534
Random Forest	0.6935	0.6971	0.7712
Test data 2 (2022)	Data1	Data2	Data3
Linear Regression	0.1696	0.2040	0.1091
Gradient-Boosted Trees	0.5828	0.7274	0.7300
Decision Tree	0.6180	0.7207	0.7418
Random Forest	0.6434	0.7422	0.7328

Prediction Model - Machine Learning using Pyspark Y2 - Average Fine Amount

	W/O	W/		
Y2	NOAA Weather Data	NOAA Weather Data		
Test data 1 (2020+2022)	Data1	Data2 (Approach 1)	Data3 (Approach 2)	
Linear Regression	0.4996	0.5102	0.1791	
Gradient-Boosted Trees	0.6165	0.6355	0.3864	
Decision Tree	0.6089	0.6426	0.4150	
Random Forest	0.6254	0.6311	0.4880	
Test data 2 (2022)	Data1	Data2 (Approach 1)	Data3 (Approach 2)	
Linear Regression	0.4417	0.4976	0.1762	
Gradient-Boosted Trees	0.5580	0.6314	0.3672	
Decision Tree	0.5637	0.6657	0.3754	
Random Forest	0.5723	0.6452	0.5298	

Prediction Model - Machine Learning Y1 - Count

Y1	W/O NOAA Weather Data		
Test data 1 (2020+2022)	Data1	Data2	Data3
XGBoost	0.6929	0.7091	0.7362
Decision Tree	0.6003	0.6362	0.6229
Random Forest	0.6776	0.7262	0.7680
Test data 2 (2022)	Data1	Data2	Data3
XGBoost	0.5744	0.7274	0.7253
Decision Tree	0.4513	0.6545	0.6355
Random Forest	0.5327	<u>0.7491</u>	0.7680

Prediction Model - Machine Learning Y2 - Average Fine Amount

Y2	W/O NOAA Weather Data	W/ NOAA Weather Data	
Test data 1 (2020+2022)	Data1	Data2 (Approach 1)	Data3 (Approach 2)
XGBoost	0.6342	0.6365	0.5083
Decision Tree	0.4105	0.4095	0.1949
RandomForest	0.6058	<u>0.6371</u>	0.5163
Test data 2 (2022)	Data1	Data2 (Approach 1)	Data3 (Approach 2)
XGBoost	0.5724	0.7274	0.7253
Decision Tree	0.3422	0.6545	0.6355
RandomForest	0.5327	<u>0.7491</u>	<u>0.7680</u>

Prediction Model - Deep Learning (Neural Network)

Case count

Y1	w/o weather	w/ we	ather
Test data 1 (2020+2022)	Data1	Data2	Data3
NN	0.7012	0.6997	-0.0705
Test data 2 (2022)	Data1	Data2	Data3
NN	0.7601	0.7327	0.2004
	0.7601	0.7327	0.20

Overfitting?

Avg fine amount

Trained on different models with several numbers of layers and choose the best scores

Y2	y2 w/o weather w/ we		
Test data 1 (2020+2022)	Data1	Data2	Data3
NN	0.6255	0.6249	0.1290
Test data 2 (2022)	Data1	Data2	Data3
NN	0.6553	0.6332	0.1892

Easiness of NN to overfit on small training dataset

Overfitting?

ref: https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/overfit-v6.pdf

Overfitting?

Overfitting?

XGboost Model

XGboost Introduction

XGBoost (Extreme Gradient Boosting),是一種Gradient Boosted Tree(GBDT),將許多弱學習器(weak learner)集合起來變成一個比較強大的學習器(strong learner),每一次保留原來的模型不變,並且加入一個新的函數至模型中,修正上一棵樹的錯誤,以提升整體的模型。

$$\mathcal{L}(\phi) = \sum_{i} \mathbf{l}(\hat{y}_i, y_i) + \sum_{k} \mathbf{\Omega}(f_k)$$

- 左側L指的是loss function,式子後面加入一個
 項Ω,它可以避免我們的模型overfitting,幫助找到較好的模型。
- 可詳上圖範例圖示說明。

Challenges **Further** Research

Possible future improvements

Implemented with ReLU or exponential

1. Constraints on outputs

(e.g. Non-negativity of case counts and fine amount)

2. Standardize/Normalize numerical data

(Reduce data fluctuation)

3. Customized model size

(With regard to the size of the dataset)

4. Better ways to deal with missing value on weather data

(e.g. Fill with geographically close counties)

1. Hour

08~09:案件數多

22~05:案件數少,平均罰款高

○ 白天:平均罰款低

2. Weather

氣溫、風速以及霧的指標對於預測有 很顯著的幫助

降雪量相對影響較小

3. Week day

○ 平日:案件數多

假日:案件數少,尤其週日

Reference

Open Parking and Camera Violations

https://data.cityofnewyork.us/City-Government/Open-Parking-and-Camera-Violations/nc67-uf89

- Pyspark
 - https://spark.apache.org/docs/latest/api/python/
- Scikit-learn
 - https://scikit-learn.org/stable/
- Pandas
 - https://pandas.pydata.org/
- Weather Source
 - https://www.ncei.noaa.gov/support/access-support-service
 - https://www.weather.gov/wrh/Climate?wfo=okx
- Nyc-parking-tickets
 - https://www.kaggle.com/new-york-city/nyc-parking-tickets
- XGBoost
 - https://medium.com/chung-yi/xgboost%E4%BB%8B%E7%B4%B9-b31f7ec8295e
 - https://xgboost.readthedocs.io/en/stable/

THANK YOU

