iMath Phần mềm Tao đề ngẫu nhiên

ĐỀ ÔN TẬP Môn thi: Toán Thời gian: phút Mã đề: 002

Ho tên HS:Số báo danh

PHÂN I. Câu trắc nghiệm nhiều phương án lưa chon.

Câu 1. Đổi số đo của góc 720° sang radian ta được kết quả bằng

A.
$$4\pi$$
.

B.
$$\frac{25\pi}{6}$$
.

C.
$$\frac{73\pi}{18}$$
.

D.
$$\frac{35\pi}{9}$$
.

Áp dụng công thức chuyển đổi: $720^{\circ} = \frac{720.\pi}{180} = 4\pi$. Chọn đáp án A.

Câu 2. Tính $\cos \frac{2\pi}{3}$.

A.
$$-\sqrt{3}$$
.

B.
$$-\frac{1}{2}$$
.

C.
$$-\frac{\sqrt{3}}{3}$$
. D. $\frac{\sqrt{3}}{2}$.

D.
$$\frac{\sqrt{3}}{2}$$

Chọn đáp án B.

Câu 3. Cho x là góc lượng giác. Tìm khẳng định đúng trong các khẳng định sau.

A. $\tan(\pi - x) = \cot x$. **B.** $\cos(\pi - x) = \cos x$. **C.** $\sin(\pi - x) = \sin x$. **D.** $\sin(\pi - x) = \cos x$. Lời giải.

 $\sin(\pi - x) = \sin x$ là khẳng định đúng.

Chọn đáp án C.

Câu 4. Cho x là góc lượng giác. Tìm khẳng định đúng trong các khẳng định sau.

A.
$$\cos 2x = 2\cos^2 x - 1$$
.

B.
$$\cos 2x = \sin^2 x - \cos^2 x$$
.

$$\mathbf{C.} \, \sin 2x = \sin x \cos x \,.$$

D.
$$\tan 2x = \frac{\tan x}{1 - \tan^2 x}$$
.

Lời giải.

 $\cos 2x = 2\cos^2 x - 1$ là khẳng đinh đúng.

Chọn đáp án A.

Câu 5. Cho u, v là các góc lượng giác. Tìm khẳng định đúng trong các khẳng định sau.

A.
$$\cos u \cos v = -\frac{1}{2}[\cos(u+v) + \cos(u-v)]$$
.
B. $\sin u \sin v = \frac{1}{2}[\cos(u+v) - \cos(u-v)]$.
C. $\sin u \cos v = \frac{1}{2}[\sin(u+v) - \sin(u-v)]$.
D. $\sin u \sin v = \frac{1}{2}[\cos(u-v) - \cos(u+v)]$.

B.
$$\sin u \sin v = \frac{1}{2} [\cos(u+v) - \cos(u-v)]$$

C.
$$\sin u \cos v = \frac{1}{2} [\sin(u+v) - \sin(u-v)]$$

D.
$$\sin u \sin v = \frac{1}{2} [\cos(u - v) - \cos(u + v)]$$

 $\sin u \sin v = \frac{1}{2} [\cos(u - v) - \cos(u + v)]$ là khẳng định đúng.

Câu 6. Cho $\sin \alpha = \frac{4}{7} \text{ với } \alpha \in (0; \frac{\pi}{2}).$ Tính $\sin \left(\alpha - \frac{\pi}{4}\right).$

A.
$$\frac{4}{7} + \frac{\sqrt{33}}{7}$$

A.
$$\frac{4}{7} + \frac{\sqrt{33}}{7}$$
. **B.** $-\frac{\sqrt{66}}{14} + \frac{2\sqrt{2}}{7}$. **C.** $-\frac{2\sqrt{2}}{7} + \frac{\sqrt{66}}{14}$. **D.** $\frac{2\sqrt{2}}{7} + \frac{\sqrt{66}}{14}$. **Lòi giải.**

$$\frac{66}{4}$$
. **D.** $\frac{2}{4}$

Vì $\alpha \in \left(0; \frac{\pi}{2}\right)$ nên $\cos \alpha > 0$.

$$\cos \alpha = \sqrt{1 - \frac{16}{49}} = \frac{\sqrt{33}}{7}.$$

$$\sin\left(\alpha - \frac{\pi}{4}\right) = \sin\alpha\cos(-\frac{\pi}{4}) + \cos\alpha\sin(-\frac{\pi}{4}) = \frac{4}{7}.(\frac{\sqrt{2}}{2}) + \frac{\sqrt{33}}{7}.(-\frac{\sqrt{2}}{2}) = -\frac{\sqrt{66}}{14} + \frac{2\sqrt{2}}{7}.$$
 Chọn đáp án B.

Câu 7. Tìm tập xác định của hàm số $y = \tan(7x - 5\pi)$.

A.
$$D = \mathbb{R} \setminus \{ \frac{6}{7}\pi + k \frac{1}{7}\pi \}$$
.
B. $D = \mathbb{R} \setminus \{ \frac{11}{14}\pi + k \frac{1}{7}\pi \}$.
C. $D = \mathbb{R} \setminus \{ \frac{11}{7}\pi + k \frac{1}{7}\pi \}$.
D. $D = \mathbb{R} \setminus \{ \frac{3}{7}\pi + k \frac{1}{7}\pi \}$.
Lòi giải.

Chọn đáp án B.

Câu 8. Nghiệm của phương trình
$$\cos\left(6x - \frac{\pi}{2}\right) = \sin\left(-3x + \frac{5\pi}{4}\right)$$
 là

A. $x = -\frac{7\pi}{36} + k\frac{2\pi}{3}, x = \frac{\pi}{12} + k\frac{2\pi}{9}(k \in \mathbb{Z})$.

B. $x = -\frac{7\pi}{36} + k2\pi, x = \frac{\pi}{12} + k2\pi(k \in \mathbb{Z})$.

C. $x = -\frac{\pi}{12} + k\frac{2\pi}{3}, x = \frac{5\pi}{36} + k\frac{2\pi}{9}(k \in \mathbb{Z})$.

D. $x = -\frac{\pi}{12} + k\frac{\pi}{9}, x = \frac{5\pi}{36} + k\frac{\pi}{3}(k \in \mathbb{Z})$.

$$\cos\left(6x - \frac{\pi}{2}\right) = \sin\left(-3x + \frac{5\pi}{4}\right) \Leftrightarrow \cos\left(6x - \frac{\pi}{2}\right) = \cos\left(3x - \frac{3\pi}{4}\right)$$

$$\Leftrightarrow \begin{bmatrix} 6x - \frac{\pi}{2} = 3x - \frac{3\pi}{4} + k2\pi \\ 6x - \frac{\pi}{2} = -3x + \frac{3\pi}{4} + k2\pi \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} 3x = -\frac{\pi}{4} + k2\pi \\ 9x = \frac{5\pi}{4} + k2\pi \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} x = -\frac{\pi}{12} + k\frac{2\pi}{3} \\ x = \frac{5\pi}{36} + k\frac{2\pi}{9} \end{bmatrix}, k \in \mathbb{Z}$$

Chọn đáp án C.

PHẨN II. Câu trắc nghiệm đúng sai.

Câu 1. Cho $\sin x = \frac{\sqrt{6}}{7}, x \in \left(\frac{5\pi}{2}; 3\pi\right)$. Xét tính đúng-sai của các khẳng định sau.

Phát biểu	Ð	S
a) $\cos x = \frac{\sqrt{43}}{7}$.		X
b) $\sin 2x = -\frac{2\sqrt{258}}{49}$.	X	
c) $\cos 2x = -\frac{37}{49}$.		X
d) $\sin\left(x - \frac{3\pi}{4}\right) = -\frac{\sqrt{3}}{7} + \frac{\sqrt{86}}{14}$.	X	

Lời giải.

a) Khẳng định đã cho là khẳng định sai.

Vì
$$x \in \left(\frac{5\pi}{2}; 3\pi\right)$$
 nên $\cos x < 0$.
 $\cos x = -\sqrt{1 - \frac{6}{49}} = -\frac{\sqrt{43}}{7}$.

b) Khẳng định đã cho là khẳng định đúng.

$$\sin 2x = 2\sin x \cos x = 2.\frac{\sqrt{6}}{7}.(-\frac{\sqrt{43}}{7}) = -\frac{2\sqrt{258}}{49}.$$

c) Khẳng định đã cho là khẳng định sai.

$$\cos 2x = 1 - 2\sin^2 x = 1 - 2.\frac{6}{49} = \frac{37}{49}$$

d) Khẳng định đã cho là khẳng định đúng.

$$\sin\left(x - \frac{3\pi}{4}\right) = \sin x \cos(-\frac{3\pi}{4}) + \cos x \sin(-\frac{3\pi}{4}) = \frac{\sqrt{6}}{7} \cdot (-\frac{\sqrt{2}}{2}) + (-\frac{\sqrt{43}}{7}) \cdot (-\frac{\sqrt{2}}{2}) = -\frac{\sqrt{3}}{7} + \frac{\sqrt{86}}{14}.$$

Chọn đáp án a sai | b đúng | c sai | d đúng.

Câu 2. Cho hàm số $y = 6\cos(4x) - 2$. Xét tính đúng-sai của các khẳng định sau.

Phát biểu	Ð	S
a) Tập xác định của hàm số là $D = [-6; 6]$.		X
b) Hàm số đã cho là hàm số lẻ.		X
c) Tập giá trị của hàm số đã cho là $T = [-8; -8]$.	X	
d) Đồ thị cắt trục tung tại điểm có tung độ bằng 6.		X

Lời giải.

a) Khẳng định đã cho là khẳng định sai.

Tập xác đinh của hàm số là $D = \mathbb{R}$.

b) Khẳng đinh đã cho là khẳng đinh sai.

Ta có: Với mọi $x \in \mathbb{R}$ thì $-x \in \mathbb{R}$.

 $f(-x) = 6\cos(4x) - 2 = 6\cos(4x) - 2$. Vậy hàm số $y = 6\cos(4x) - 2$ là hàm số chẵn.

c) Khẳng đinh đã cho là khẳng đinh đúng.

Ta có: $-8 \le 6 \cos(4x) - 2 \le -8$ nên tập giá tri là [-8, -8]

d) Khẳng định đã cho là khẳng định sai.

Cho $x = 0 \Rightarrow y = 4$. Suy ra đồ thị cắt trực tung tại điểm có tung độ bằng 4.

Chọn đáp án a sai | b sai | c đúng | d sai.

PHẨN III. Câu trắc nghiêm trả lời ngắn.

Câu 1. Một bánh xe của một loại xe có bán kính 44 cm và quay được 8 vòng trong 6 giây. Tính đô dài quãng đường (theo đơn vị mét) xe đi được trong 5 giây (kết quả làm tròn đến hàng phần mười).

Một giây bánh xe quay được số vòng là: $\frac{4}{3}$. Một vòng quay ứng với quãng đường là $2\pi.0, 4 = 0, 8\pi$.

Sau 5 giây quãng đường đi được là: $\frac{4}{3}$.5.0, $8\pi = 16$, 8:

Câu 2. Số nghiệm thuộc khoảng $(-\pi; \pi)$ của phương trình $\tan\left(4x - \frac{\pi}{2}\right) = 0$ là

$$\tan\left(4x - \frac{\pi}{2}\right) = 0 \Leftrightarrow 4x - \frac{\pi}{2} = 0 + k\pi \Leftrightarrow x = \frac{\pi}{8} + k\frac{\pi}{4}, k \in \mathbb{Z}.$$

$$\operatorname{Do} x \in (-\pi; \pi) \operatorname{nen} -\pi < \frac{\pi}{8} + k\frac{\pi}{4} < \pi \Rightarrow -\frac{9}{2} < k < \frac{7}{2}.$$

Có 8 số k thỏa mãn nên phương trình có 8 nghiệm.