Отчёт по выполнению КПЗ №2

Есиков С.Д, Иванова А. Я. 29 сентября 2025 г.

Условия

Был выбран вариант \mathbb{N} 16, который соответствует следующим параметрам контура

- Ёмкость катушки (L) 470 мк Γ н
- ullet Сопротвление катушки (R_L) 4 Ом
- Частота резонанса контура (f_o) 32 к Γ ц

Таблица расчётов

Вариант № 16 Параметры элементов								const 2π: 6,2832	ункции ячеек		формула	
									помечены		←ссылка	
		Катушка				Конденсатор		Част.резон.(Гц)	цветом		←ввод данных	
		Индуктивность			Сопротивл	Емкость	Сопрот	Вариант:		Для параллельн, контура:		
1,0 2		4 E	.7	вариант	вариант	53	вариант	32000	Характерист. сопротивл.	Добротн. собств.:	Эквив. сопр.:	
1.1		5		мкГн	OM	нФ	Om	Расчёт:	Ом		OM	
1.2	3.0	-4-5	-	470	4	56	4	31 023	91,6	11,45	1 049	
1.5	3,3	4	.8									
1.6	3,6	7	.5		Co	противл.(Ом):	20			3,3		
1.8	3.9	8	2		Учёт актив	н.сопротивл.	полосового	фильтра (RG)		Нагруж.		
2.0	4.3	9	.1			Оцен	ка (RO*8):	Bi	ыбор RG (E24):	добротн.:	Учёт RG (Ом)	
interior	1	- E			Сопроти	вл. RG (кОм):	8,39		9.1	10,27	94	

В результате для исходного фильтра:

- 1. Ёмкость (C) 56 nF
- 2. Частота резонанса (f_0) 31.023 kHz
- 3. Хар. сопротивление (ρ) 91.6 Ohm
- 4. Добротность (Q) 11.45
- 5. Экв. сопротивление (R_0) 1.049 kOhm
- 6. Нагружающее сопротивление (R_G) $9.1 \, kOhm$
- 7. Добротность с нагрузкой (Q_G) 10.27

Модель LC-фильтра

АЧХ и ФЧХ тока LC-фильтра

По графикам наблюдаем

• Центральная частота: $31.008 \, kHz$

• Коэффициент передачи: $-19.699 \ dB$

• Полоса пропускания: 32.5 - 29.5 = 3 kHz

• Добротность: $\frac{31.008}{3} = 10.336$

• Сдвиг фаз: 75.623°

Различие с теоретическими расчётами пренибрежимо мало

Модель эквивалентного LC-фильтра

АЧХ тока эквивалентного LC-фильтра

Новые значения

• Центральная частота: $31.048 \, kHz$

• Коэффициент передачи: $-19.716 \ dB$

• Полоса пропускания: $3 \, kHz$

• Добротность: $\frac{31.048}{3} = 10.349$

Результаты примерно сходятся с прошлыми, что подтверждает эквивалентность схем

Анализ фильтрации последовательных прямоугольных импульсов

Часота выбрана 5.84 kHz

Осцилограмма для 20% скважности

Видно, что из-за того, что обратный скачок сигнала происходит чуть позднее полного периода собственного колебания фильтра (что ожидаемо, учитывая что период скачка составляет примерно 1/5 * 5 периода колебания с учетом выбора частоты импульса как 1/5 частоты колебания), дальнейшие его колебания обладают почти нулевой запасённой энергией, что приводит к очень низкой амплитуде

Спектр

Анализ фурье для 20% скважности

Отсутствие запасённой после скачка энергии не позволяет фильтру проявить свои свойства, потому результат анализа фурье выглядит как обычное почти нулевое колебание, где все гармоники вносят примерно один незначительный вклад

Осцилограмма для 10% скважности

Здесь уже контур переходит в свободные колебания, с почти максимальной энергией внутри, что приводит к одной очень ярко выраженной гармонике, это также логично, ведь здесь уже период скачка составляет $1/10\ *\ 5=1/2$ периода колебания

Спектр

Анализ фурье для 10% скважности

Тут видно насколько сильно больший вклад в форму выходного сигнала даёт гармоника на частоте близкой к центральной. Также заметно, что амплитуды остальнх гармоник почти не изменились при уменьшении скважности, но теперь из значения пренибрижимо малы по сравнению с главной гармоникой

Выводы

- 1. Эксперементально полученные параметры фильтра сошлись с расчётным, что свидетельствует о корректности проведенных расчётов и построенной модели
- 2. Вынос сопротивления реактивных элементов фильтра в отдельную паралельную нагрузку не привел к изменению параметров фильтра, что подтверждает эквивалетность схем
- 3. Энергия запасаемая в контуре от прямоугольных импульсов зависит меньше от энергии самого импульса, сколько от сочетаемости скважности импульса и частоты колебаний контура (четность отношения периода скачка к полупериоды колебания)
- 4. Полосовой LC-фильтр наглядно функционирует как частотный фильтр, чего и следовало ожидать