# The Effect of the Affordable Care Act on the Labor Supply and Savings of Older Americans

Eric French Hans-Martin von Gaudecker John Jones
Cambridge, IFS Universität Bonn, IZA Richmond Fed
August 2021

**Disclaimer**: The opinions and conclusions are solely those of the authors, and do not necessarily reflect the views of the Federal Reserve Bank of Richmond or the Federal Reserve System.

- ▶ Most U.S. households received health insurance through their employers
  - ► Low-cost, high-quality group insurance
  - For many, only available when working

- ▶ Most U.S. households received health insurance through their employers
  - Low-cost, high-quality group insurance
  - For many, only available when working
  - ⇒ Many may have worked partly for health insurance

- ▶ Most U.S. households received health insurance through their employers
  - Low-cost, high-quality group insurance
  - For many, only available when working
  - ⇒ Many may have worked partly for health insurance
- Previous evidence
  - ► Employer provided insurance affects retirement
  - ▶ Rust and Phelan (1997), French and Jones (2011), many others

- ▶ Most U.S. households received health insurance through their employers
  - Low-cost, high-quality group insurance
  - For many, only available when working
  - ⇒ Many may have worked partly for health insurance
- Previous evidence
  - Employer provided insurance affects retirement
  - ▶ Rust and Phelan (1997), French and Jones (2011), many others
- ► Many of those without employer insurance are uninsured, potentially they must work to pay for health care

- ► Some key provisions
  - 1. Community-rated, subsidized private non-group insurance

- Some key provisions
  - 1. Community-rated, subsidized private non-group insurance
  - 2. Medicaid expansion

- Some key provisions
  - 1. Community-rated, subsidized private non-group insurance
  - 2. Medicaid expansion
- ltems 1., 2. are the most important aspects for labor supply
  - Empirically, little change in employer-provided coverage

- Some key provisions
  - 1. Community-rated, subsidized private non-group insurance
  - 2. Medicaid expansion
- ltems 1., 2. are the most important aspects for labor supply
  - Empirically, little change in employer-provided coverage
- Effects
  - Severed job-insurance link

- Some key provisions
  - 1. Community-rated, subsidized private non-group insurance
  - 2. Medicaid expansion
- ltems 1., 2. are the most important aspects for labor supply
  - Empirically, little change in employer-provided coverage
- Effects
  - Severed job-insurance link
  - Work disincentives through income-based subsidies

# DiD-Evidence: ACA had substantial effects on insurance choice, but modest effects on employment

#### Insurance

- ► Rates of uninsured dropped substantially (Duggan, Goda, and Jackson, 2019; Levy, Buchmueller, and Nikpay, 2017)
- ▶ Differential responses across Medicaid expansion / non-expansion states suggest substitution between subsidized private insurance and Medicaid
- ► Our data: Drop of 5 percentage points.

# DiD-Evidence: ACA had substantial effects on insurance choice, but modest effects on employment

### Insurance

- ▶ Rates of uninsured dropped substantially (Duggan, Goda, and Jackson, 2019; Levy, Buchmueller, and Nikpay, 2017)
- ▶ Differential responses across Medicaid expansion / non-expansion states suggest substitution between subsidized private insurance and Medicaid
- ► Our data: Drop of 5 percentage points.

## **Employment**

- Not much change in employment rates (Duggan, Goda, and Jackson, 2019; Levy, Buchmueller, and Nikpay, 2017)
- ► Our data: Increase of 0.1 percentage points.

# DiD-Evidence: ACA had substantial effects on insurance choice, but modest effects on employment

### Insurance

- ► Rates of uninsured dropped substantially (Duggan, Goda, and Jackson, 2019; Levy, Buchmueller, and Nikpay, 2017)
- ▶ Differential responses across Medicaid expansion / non-expansion states suggest substitution between subsidized private insurance and Medicaid
- ► Our data: Drop of 5 percentage points.

## **Employment**

- Not much change in employment rates (Duggan, Goda, and Jackson, 2019; Levy, Buchmueller, and Nikpay, 2017)
- ► Our data: Increase of 0.1 percentage points.

Lots of heterogeneity across wealth distribution and initial health insurance state (retiree, tied, non-group)

# Effect of ACA on Labor Supply by Health Insurance Type and Asset Tertile, HRS Data

| Health Insurance | Non-Group |        |      |     | Tied   |      |  |
|------------------|-----------|--------|------|-----|--------|------|--|
| Asset Tertile    | Low       | Middle | High | Low | Middle | High |  |
| Estimates        | .03       | 01     | 02   | 02  | 003    | .01  |  |

$$\begin{aligned} \mathsf{Empl}_{it} &= x_{it}b + \sum_{k \in K} \gamma_{k,\mathsf{Non\text{-}Group}} \mathbf{1} \{ year \geq 2014 \} \times \mathsf{Non\text{-}Group}_i \times \mathbf{1} \{ \text{asset tertile}_{it-1} = k \} \\ &+ \sum_{k \in K} \gamma_{k,\mathsf{Tied}} \mathbf{1} \{ year \geq 2014 \} \times \mathsf{Tied}_i \times \mathbf{1} \{ \text{asset tertile}_{it-1} = k \} + u_{it} \end{aligned}$$

- Non-Group, Tied : indicators for initial insurance type
- Estimates are relative to Retiree insurance.
- ► *K* = {Low, Middle, High}
- x<sub>t</sub> includes age polynomial, year dummies, lagged asset tertile dummies, health insurance type dummies.

## Our explanation for the small, heterogeneous retirement effects

- ▶ Before the ACA, many low-income people had access to implicit forms of insurance (Mahoney 2015, Finkelstein et al. 2017)
- ▶ We will model these implicit forms of insurance as a consumption floor (Hubbard et al. 1995, French and Jones 2011)

# Medical spending, by insurance type and payor, pre-2014, MEPS Data (HRS for Assets)

|                            | Uninsured | Privately Insured |
|----------------------------|-----------|-------------------|
| Total expenses             | 7,930     | 9,570             |
| Out of pocket              | 1,590     | 2,660             |
| Private insurance          | 990       | 5,720             |
| Medicare + Medicaid        | 1,540     | 629               |
| Other*                     | 1,940     | 580               |
| Uncompensated care**       | 1,880     | 0                 |
| Share with assets < 50,000 | .53       | .35               |

<sup>\*</sup> Other payors = the sum of payments by Tricare, VA care, workers compensation, other Federal or state/local plans, charity, and unclassified sources (including automobile, homeowner's, and liability insurance)

<sup>\*\*</sup> Uncompensated care is constructed using data on charges and payments.

## Decline in Uncompensated Care



## Decline in Uncompensated Care



## Our Contribution

- ▶ We estimate a retirement model that accounts for:
  - medical expense uncertainty
  - the saving decision
  - multiple insurance possibilities (uninsured, private non-group, employer-provided, Medicaid, Medicare, combinations)
  - default on medical bills (i.e., uncompensated care)
  - savings + default is key novelty relative to other papers (Aizawa and Fang 2019, Aizawa and Fu 2020)

# Budget Set of Uninsured Person, No Assets, and \$5,000 of Medical Expenses



## Our Contribution

- ▶ We estimate a retirement model that accounts for:
  - medical expense uncertainty
  - the saving decision
  - multiple insurance possibilities (uninsured, private non-group, employer-provided, Medicaid, Medicare, combinations)
  - default on medical bills (i.e., uncompensated care)
  - savings + default is key novelty relative to other papers (Aizawa and Fang 2019, Aizawa and Fu 2020)

## Our Contribution

- ▶ We estimate a retirement model that accounts for:
  - medical expense uncertainty
  - the saving decision
  - multiple insurance possibilities (uninsured, private non-group, employer-provided, Medicaid, Medicare, combinations)
  - default on medical bills (i.e., uncompensated care)
  - savings + default is key novelty relative to other papers (Aizawa and Fang 2019, Aizawa and Fu 2020)
- ► Then use the model to predict the effects of the ACA

# Budget Set of Previously Uninsured Person, No Assets, and \$5,000 of Medical Expenses



# Budget Set of Previously Uninsured Person, No Assets, and \$5,000 of Medical Expenses



# Budget Set of Previously Uninsured Person, No Assets, and \$5,000 of Medical Expenses



## Our Contribution

- We estimate a retirement model that accounts for:
  - medical expense uncertainty
  - the saving decision
  - multiple insurance possibilities (uninsured, private non-group, employer-provided, Medicaid, Medicare, combinations)
  - default on medical bills (i.e., uncompensated care)
  - savings + default is key novelty relative to other papers (Aizawa and Fang, Fu and Aizawa)
- Then use the model to predict the effects of the ACA
- Findings
  - Small aggregate disemployment effects, but very heterogeneous
  - Default on medical bills key for finding small effects

## Roadmap

Life-Cycle Model: Overview and Estimation

Data, Medical Spending and Health Insurance

Estimated parameters and model fit

Modeling the ACA and predicting its effects

# Roadmap

Life-Cycle Model: Overview and Estimation

Data, Medical Spending and Health Insurance

Estimated parameters and model fit

Modeling the ACA and predicting its effects

## Households get utility from:

- Consumption
- Leisure
- Bequests

## Households get utility from:

- Consumption
- Leisure
- Bequests

### They choose:

- Consumption
- ► Labour Supply
- Social Security application
- ► Health insurance

### Households get utility from:

- Consumption
- Leisure
- Bequests

### They face risk over:

- Wages
- Marital status, spousal income
- Longevity
- ► Health status
- Medical spending

## They choose:

- Consumption
- Labour Supply
- Social Security application
- ► Health insurance

## Households get utility from:

- Consumption
- Leisure
- Bequests

### They face risk over:

- Wages
- Marital status, spousal income
- Longevity
- Health status
- Medical spending

### They choose:

- Consumption
- ► Labour Supply
- Social Security application
- Health insurance

# Government partially insures this risk with:

- 1. Progressive taxation
- 2. Public health insurance
- 3. Social Security / disability benefits
- 4. "Consumption floor"

$$A_{t+1} = A_t + \text{income}_t - \text{expenditures}_t + \text{transfers}_t$$

 $ightharpoonup A_{t+1}$  must be non-negative

$$A_{t+1} = A_t + \text{income}_t - \text{expenditures}_t + \text{transfers}_t$$

- $ightharpoonup A_{t+1}$  must be non-negative
- income<sub>t</sub> includes: labor income; asset income; pension benefits; Social Security benefits, Disability benefits.

Tax structure modeled in detail.

$$A_{t+1} = A_t + \text{income}_t - \text{expenditures}_t + \text{transfers}_t$$

- $ightharpoonup A_{t+1}$  must be non-negative
- income<sub>t</sub> includes: labor income; asset income; pension benefits; Social Security benefits, Disability benefits.
   Tax structure modeled in detail.
- expenditures<sub>t</sub> includes: consumption; insurance premia; out-of-pocket medical expenses (realized after decisions)

$$A_{t+1} = A_t + \text{income}_t - \text{expenditures}_t + \text{transfers}_t$$

- $ightharpoonup A_{t+1}$  must be non-negative
- income<sub>t</sub> includes: labor income; asset income; pension benefits; Social Security benefits, Disability benefits.
   Tax structure modeled in detail.
- expenditures<sub>t</sub> includes: consumption; insurance premia; out-of-pocket medical expenses (realized after decisions)
- ▶ Government/hospital transfers<sub>t</sub> =  $\max\{0, C_{min} resources_t\}$ 
  - C<sub>min</sub>: consumption floor (Hubbard et al. 1995)
  - Captures insurance provided via non-payment of medical expenses "default", or "uncompensated care"

### Solution and Estimation

- ▶ Method of Simulated Moments, two steps
  - ▶ Step 1: estimate parameters of total medical spending, health, mortality, coinsurance rates, etc.
  - ► Step 2: use first-step parameters and choose preference parameters etc. to match asset, labor supply, insurance data

#### Solution and Estimation

- Method of Simulated Moments, two steps
  - ▶ Step 1: estimate parameters of total medical spending, health, mortality, coinsurance rates, etc.
  - ➤ Step 2: use first-step parameters and choose preference parameters etc. to match asset, labor supply, insurance data
- Estimation is computationally intensive
  - State variables: assets, Social Security Claiming Status, health, AIME, age, insurance type, last period's employment, wage, medical spending shock, marital status, spousal income
  - Choices: Consumption, employment/hours, Social Security claiming, health insurance

#### Solution and Estimation

- Method of Simulated Moments, two steps
  - ▶ Step 1: estimate parameters of total medical spending, health, mortality, coinsurance rates, etc.
  - ► Step 2: use first-step parameters and choose preference parameters etc. to match asset, labor supply, insurance data
- Estimation is computationally intensive
  - State variables: assets, Social Security Claiming Status, health, AIME, age, insurance type, last period's employment, wage, medical spending shock, marital status, spousal income
  - Choices: Consumption, employment/hours, Social Security claiming, health insurance
  - ▶ We solve the model on GPUs (using Python and Numba)
  - Implementation is an order of magnitude faster than on a 100-node cluster

## Computing on GPUs

- Many very small computing units (think of each deciding on the colors of a portion of the screen) → Massive parallelization
- ► Each unit is rather "dumb": Can do floating point operations, but weak at control flow (if/then, loops)
- ▶ Very efficient, very scalable for arithmetic calculations



## Roadmap

Life-Cycle Model: Overview and Estimation

Data, Medical Spending and Health Insurance

Estimated parameters and model fit

Modeling the ACA and predicting its effects

## Data: Households with a Man Aged 50+

- ► HRS (from 1992-2016)
  - Detailed information on labor supply, wages, health, and assets
  - Pensions
  - Social Security

## Data: Households with a Man Aged 50+

- ► HRS (from 1992-2016)
  - Detailed information on labor supply, wages, health, and assets
  - Pensions
  - Social Security
- ► MEPS (from 2000-2016).
  - ► Total chargeable medical spending
  - Detailed information on who paid for the care
  - ▶ Allows us to create measures of uncompensated care, measure budget sets

### Data: Households with a Man Aged 50+

- ► HRS (from 1992-2016)
  - Detailed information on labor supply, wages, health, and assets
  - Pensions
  - Social Security
- ► MEPS (from 2000-2016).
  - ► Total chargeable medical spending
  - Detailed information on who paid for the care
  - Allows us to create measures of uncompensated care, measure budget sets
- Use HRS and MEPS data
  - ▶ 1940s cohort, until 2012 to estimate the model
  - ▶ 1945-1963 cohort, after 2014 for model predicted effects

# Household Total and Out-of-pocket Medical Spending

|                             | Younger than 65 |       | 65 and Older |       |
|-----------------------------|-----------------|-------|--------------|-------|
|                             | Total           | ООР   | Total        | ООР   |
| Mean                        | 8,910           | 1,190 | 14,690       | 2,200 |
| Median                      | 3,540           | 580   | 7,630        | 1,300 |
| 90 <sup>th</sup> percentile | 22,210          | 2,800 | 35,540       | 5,080 |
| 95 <sup>th</sup> percentile | 36,620          | 4,180 | 52,420       | 7,110 |

MEPS data. OOP includes co-pays and deductibles, excludes premia.

## Household Total Medical Spending

- ▶ The mean and variance of total medical spending (Z) are functions of health (H), marital status (SP), and age.
- ► Households face transitory and persistent medical expense shocks:

$$\begin{aligned} \ln Z_t &= \mu_z(H_t, SP_t, t) + \Psi_t, \\ \Psi_t &= \sigma_z(H_t, SP_t, t) \times \psi_t. \\ \psi_t &\sim \mathcal{N}(0, 1). \end{aligned}$$

 $\psi_t$  is the sum of a persistent (AR1,  $\rho = 0.925$ ) and a transitory component

### Health Insurance States

- 3 types of (employer-provided) health insurance
  - ▶ Retiree = insurance you can hold onto after you leave your job
  - ► Tied = insurance that ends shortly after you leave your job
  - ▶ None = no employer provided insurance

## Health Insurance States and Possibilities, Pre-ACA

| State     | Choice Set $\mid$ not disabled, age $< 65$ |
|-----------|--------------------------------------------|
| Retiree   | Retiree                                    |
| Tied      | Tied                                       |
| Non-Group | Uninsured, Private Non-Group               |

## Health Insurance States and Possibilities, Pre-ACA

| State     | Possibilities $\mid$ DI recipient or age $>$ 65, high income and assets |
|-----------|-------------------------------------------------------------------------|
| Retiree   | Retiree,<br>Retiree + Medicare                                          |
| Tied      | Tied,<br>Tied + Medicare                                                |
| Non-Group | Medicare                                                                |

## Health Insurance States and Possibilities, Pre-ACA

| State     | Possibilities $\mid$ DI recipient or age $>$ 65, low income and assets |
|-----------|------------------------------------------------------------------------|
| Retiree   |                                                                        |
|           | Medicare + Medicaid                                                    |
| Tied      |                                                                        |
|           | Medicare + Medicaid                                                    |
| Non-Group |                                                                        |
|           | Medicare + Medicaid                                                    |

## Four parameters describe a health insurance policy

- Deductible
- Co-pay rate
- Stop-loss (out-of-pocket maximum)
- Premium

## Four parameters describe a health insurance policy

- Deductible
- Co-pay rate
- ► Stop-loss (out-of-pocket maximum)
- Premium
  - Private Non-Group: function of permanent shock to expenses, health, marital status, age
  - Employer-provided: function of employment, marital status

# Budget Sets by Health Insurance Type, Age < 65 Average Predicted Medical Spending



# Budget Sets by Health Insurance Type, Age < 65 Average Predicted Medical Spending



# Budget Sets by Health Insurance Type, Age < 65 Average Predicted Medical Spending



# Budget Sets by Health Insurance Type, Age < 65 Low Predicted Medical Spending



# Budget Sets by Health Insurance Type, Age < 65 High Predicted Medical Spending



## Roadmap

Life-Cycle Model: Overview and Estimation

Data, Medical Spending and Health Insurance

Estimated parameters and model fit

Modeling the ACA and predicting its effects

$$\begin{split} U(C_t, L_t) &= \frac{1}{1-\nu} \bigg( C_t^{\gamma} L_t^{1-\gamma} \bigg)^{1-\nu} \\ L_t &= L - N_t - \phi_{Pt} P_t - \phi_{RE} R E_t - \phi_H H_t \\ C_t &= \text{equivalized consumption}, \ N_t = \text{work hours}, \\ P_t &= 1 \text{ if working}, \ R E_t = 1 \text{ if working this period, not last period.} \end{split}$$

| Parameter                                       | Symbol   | Type 0   | Type 1    | Type 2   |
|-------------------------------------------------|----------|----------|-----------|----------|
| Time discount factor                            | β        | 0.839    | 0.912     | 1.06     |
|                                                 |          | (0.020)  | (0.008)   | (0.01)   |
| Consumption weight                              | $\gamma$ | 0.678    | 0.881     | 0.0718   |
|                                                 |          | (0.012)  | (0.006)   | (0.0855) |
| Coefficient of relative risk aversion           | u        | 3.84     | 0.999     | 3.83     |
|                                                 |          | (0.35)   | (0.079)   | (1.82)   |
| Population share                                |          | 0.35     | 0.47      | 0.18     |
| Bequest shifter                                 | $\kappa$ | 334000.0 |           |          |
|                                                 |          |          | (31862.1) |          |
| Bequest weight (MPC out of final-period wealth) |          |          | 0.0286    |          |
|                                                 |          |          | (0.0015)  |          |

$$\begin{split} U(C_t, L_t) &= \frac{1}{1-\nu} \bigg( C_t^{\gamma} L_t^{1-\gamma} \bigg)^{1-\nu} \\ L_t &= L - N_t - \phi_{Pt} P_t - \phi_{RE} R E_t - \phi_H H_t \\ C_t &= \text{equivalized consumption}, \ N_t = \text{work hours}, \\ P_t &= 1 \text{ if working}, \ R E_t = 1 \text{ if working this period, not last period.} \end{split}$$

| Parameter                                 | Symbol             | All types        |
|-------------------------------------------|--------------------|------------------|
| Time endowment                            | L                  | 3930.0<br>(31.7) |
| Fixed cost of work (intercept)            | $\phi_{P_{f 50}}$  | 338.0<br>(19.6)  |
| Fixed cost of work (age trend)            | $\phi_{P_{trend}}$ | 84.1<br>(2.4)    |
| Fixed cost of reentering the labor market | $RE_t$             | 120.0<br>(147.6) |
| Leisure cost of bad health                | $\phi$ н           | 409.0<br>(30.7)  |

$$\begin{split} U(C_t, L_t) &= \frac{1}{1 - \nu} \bigg( C_t^{\gamma} L_t^{1 - \gamma} \bigg)^{1 - \nu} \\ L_t &= L - N_t - \phi_{Pt} P_t - \phi_{RE} R E_t - \phi_H H_t \\ C_t &= \text{equivalized consumption}, \ N_t = \text{work hours}, \\ P_t &= 1 \text{ if working}, \ R E_t = 1 \text{ if working this period, not last period.} \end{split}$$

| Parameter                                              | Symbol    | All types         |
|--------------------------------------------------------|-----------|-------------------|
| Consumption floor                                      | $C_{min}$ | 1600.0<br>(127.2) |
| Private premium, additional markup on insurer fraction | Ь         | 1.16<br>(0.01)    |

$$\begin{split} U(C_t, L_t) &= \frac{1}{1-\nu} \bigg( C_t^{\gamma} L_t^{1-\gamma} \bigg)^{1-\nu} \\ L_t &= L - N_t - \phi_{Pt} P_t - \phi_{RE} R E_t - \phi_H H_t \\ C_t &= \text{equivalized consumption}, \ N_t = \text{work hours}, \\ P_t &= 1 \text{ if working}, \ R E_t = 1 \text{ if working this period, not last period.} \end{split}$$

| Parameter                                                        | value |
|------------------------------------------------------------------|-------|
| Average Frisch labor supply elasticity, intensive margin, age 55 | 0.46  |
| Average coeffficient of relative risk aversion, consumption      | 2.08  |





### Job Exit Rate



#### Employment Rates, Bottom Assets Tercile, No Group Health Insurance



### Employment Rates, Middle Assets Tercile, No Group Health Insurance



### Employment Rates, Top Assets Tercile, No Group Health Insurance



#### Fraction Uninsured, Bottom Assets Tercile



#### Fraction Uninsured, Middle Assets Tercile



#### Fraction Uninsured, Top Assets Tercile



## Roadmap

Life-Cycle Model: Overview and Estimation

Data, Medical Spending and Health Insurance

Estimated parameters and model fit

Modeling the ACA and predicting its effects

## Reforms We Model: Privately-Purchased Insurance

► Individual mandate

## Reforms We Model: Privately-Purchased Insurance

- ► Individual mandate
- Private insurance policy restrictions: community-rated "Silver plan"

## Reforms We Model: Privately-Purchased Insurance

- ► Individual mandate
- Private insurance policy restrictions: community-rated "Silver plan"
- ▶ Premium set to \$6,000 (HHS & Kaiser)

## Reforms We Model: Privately-Purchased Insurance

- Individual mandate
- Private insurance policy restrictions: community-rated "Silver plan"
- ▶ Premium set to \$6,000 (HHS & Kaiser)
- ▶ Premium subsidy, deductible & co-pay subsidies

#### Effect of the ACA on Non-group Premia, Co-pays & Deductibles



Results for a 60-year-old single with good health and an average value of  $\psi.$ 

### Effect of the ACA on Non-group Premia, Co-pays & Deductibles



Results for a 60-year-old single with good health and a low value of  $\psi.$ 

### Effect of the ACA on Non-group Premia, Co-pays & Deductibles



Results for a 60-year-old single with good health and a high value of  $\psi.$ 

#### Reforms We Model: Medicaid

- ► Pre-ACA
  - ▶ Households without dependents qualify for Medicaid only via disability
  - ► Income and (financial) wealth tests
- Post-ACA
  - ightharpoonup Any household with income  $\leq 138\%$  of FPL qualifies
  - ► No wealth test

## Reforms we model: Financing

- ▶ 3.8% tax on unearned income in excess of \$200k
- ► Additional 0.9% payroll tax on earnings in excess of \$200k
- ► Revenue from mandate penalties

# Budget Set of Previously Uninsured Person, No Assets, and \$5,000 of Medical Expenses



#### Effects of Obamacare

- We present statistics for
  - Insurance coverage
  - Employment
  - Uncompensated Care
- ▶ Predict behavior of 1945-1963 cohorts using our model
  - ► Reforms come unanticipated in 2014 ("MIT shock")
  - Compare effects of ACA (data: before-after and DiD; model: with or without reform 2014-2016)
  - ► ACA reform is an average across scenarios with and without Medicaid expansion (non-group market reforms and tax changes same in both)

## Main Outcomes, 55-64, Model and Data

|                           | Uninsured | Uncomp.<br>Care |  |
|---------------------------|-----------|-----------------|--|
| Pre-ACA, Model            | 21.8      | 8.4             |  |
| Post-ACA - Pre ACA, Model | -9.6      | -3.4            |  |
| Post-ACA - Pre ACA, HRS   | -1.7      |                 |  |
| Post-ACA - Pre ACA, MEPS  | -5.1      | -3.2            |  |

## Main Outcomes, 55-64, Model and Data

|                           | Uninsured | Uncomp.<br>Care | Empl. |
|---------------------------|-----------|-----------------|-------|
| Pre-ACA, Model            | 21.8      | 8.4             | 65.9  |
| Post-ACA - Pre ACA, Model | -9.6      | -3.4            | -1.1  |
| Post-ACA - Pre ACA, HRS   | -1.7      |                 | 0.1   |
| Post-ACA - Pre ACA, MEPS  | -5.1      | -3.2            | 0.1   |

# Effect of ACA on Labor Supply, HRS Data vs. Model, by Health Insurance Type and Asset Tertile

| Health Insurance        | Non-Group |        |      | Tied |        |      |
|-------------------------|-----------|--------|------|------|--------|------|
| Asset Tertile           | Low       | Middle | High | Low  | Middle | High |
| Estimates               | .03       | 01     | 02   | 02   | 003    | .01  |
| <b>Model Prediction</b> | 003       | 01     | 03   | 07   | 03     | .01  |

$$\begin{split} \mathsf{Empl}_{it} = & \quad x_{it}b + \sum_{k \in K} \gamma_{k, \mathsf{Non\text{-}Group}} 1\{\mathit{year} \geq 2014\} \times \mathsf{Non\text{-}Group}_i \times 1\{\mathit{asset}\; \mathit{tertile}_{it-1} = k\} \\ & \quad + \sum_{k \in K} \gamma_{k, \mathsf{Tied}} 1\{\mathit{year} \geq 2014\} \times \mathsf{Tied}_i \times 1\{\mathit{asset}\; \mathit{tertile}_{it-1} = k\} + u_{it} \end{split}$$

- Non-Group<sub>i</sub>, Tied<sub>i</sub>: indicators for initial insurance type
- Estimates are relative to Retiree insurance.
- ▶ K = {Low, Middle, High}
- x<sub>it</sub> includes age polynomial, year dummies, lagged asset tertile dummies, health insurance type dummies.

## Willingness to pay for ACA in 2014, ages 55-64



- ► Strong effects of ACA on insurance choice
  - ▶ Subsidized Private Non-Group insurance and Medicaid close substitutes

- ► Strong effects of ACA on insurance choice
  - Subsidized Private Non-Group insurance and Medicaid close substitutes
- ► Modest effects of ACA on employment
  - ▶ Very heterogeneous effects across the wealth / prior insurance distribution

- ► Strong effects of ACA on insurance choice
  - Subsidized Private Non-Group insurance and Medicaid close substitutes
- ► Modest effects of ACA on employment
  - Very heterogeneous effects across the wealth / prior insurance distribution
- Default on medical bills as an alternative "insurance" mechanism key to understand effects

- Strong effects of ACA on insurance choice
  - ► Subsidized Private Non-Group insurance and Medicaid close substitutes
- Modest effects of ACA on employment
  - Very heterogeneous effects across the wealth / prior insurance distribution
- ▶ Default on medical bills as an alternative "insurance" mechanism key to understand effects
- lacktriangle Willingness to pay is positive on average; pprox indifference at median

## Elasticity of Labor Supply

▶ Solve for (approximate) Frisch leisure elasticity analytically:

$$\epsilon_I = \frac{\gamma(1-\nu)-1}{\nu}.$$

► The Frisch labor supply elasticity is

$$\epsilon_h = -\frac{leisure_t}{h_t}\epsilon_I = \left(\frac{L - h_t}{h_t}\right) \frac{1 - \gamma(1 - \nu)}{\nu}.$$

## The Medicaid Expansion and Retirement

Sources of coverage, Expansion vs. non-expansion states Individuals ages 55-64, American Community Survey



From Levy, Buchmueller, and Nikpay (2017)

| $l_{t-1}$ | Age (t)     | $P_{t-1}$ | $H_t =$ disabled | Categorically Needy $(Y_t, A_t)$ | I <sub>t</sub> | Payment<br>Sources |
|-----------|-------------|-----------|------------------|----------------------------------|----------------|--------------------|
| retiree   | < 65        | 0 or 1    | no               | NA                               | retiree        | R                  |
|           |             | 0         | yes              | no                               | retiree        | R + MC             |
|           |             | 1         | yes              | no                               | retiree        | R                  |
|           |             | 0         | yes              | yes                              | non-group      | MA (+ MC)          |
|           |             | 1         | yes              | yes                              | non-group      | MA                 |
|           | ≥ <b>65</b> | 0 or 1    | NA               | no                               | retiree        | R + MC             |
|           |             | 0 or 1    | NA               | yes                              | non-group      | MC + MA            |
| tied      | < 65        | 0         | no               | NA                               | non-group      | {U, PNG}           |
|           |             | 1         | no               | NA                               | tied           | Т                  |
|           |             | 0         | yes              | no                               | non-group      | MC                 |
|           |             | 1         | yes              | no                               | tied           | Т                  |
|           |             | 0         | yes              | yes                              | non-group      | MA (+ MC)          |
|           |             | 1         | yes              | yes                              | non-group      | MA                 |
|           | ≥ <b>65</b> | 0         | NA               | no                               | non-group      | MC                 |
|           |             | 1         | NA               | no                               | tied           | T + MC             |
|           |             | 0 or 1    | NA               | yes                              | non-group      | MC + MA            |
| non-group | < 65        | 0 or 1    | no               | NA                               | non-group      | {U, PNG}           |
|           |             | 0         | yes              | no                               | non-group      | MC                 |
| •         |             | 1         | yes              | no                               | non-group      | {U, PNG}           |
|           |             | 0         | yes              | yes                              | non-group      | MA (+ MC)          |
| •         |             | 1         | yes              | yes                              | non-group      | MA                 |
|           | ≥ <b>65</b> | 0 or 1    | NA               | no                               | non-group      | MC                 |
|           |             | 0 or 1    | NA               | yes                              | non-group      | MC + MA            |