Eigen vector eigenvetors

Ax parallel to X $A \times = \sum \times$ eigen value if A is singular, $\lambda = 0$ is eigen value Let's look at projection m. What Cere X'S and A'S for projection matrix Ph Ph is not eigen vector Any X in the plane would be eight vector $\lambda = L$

Any X I plane: PX = 0 \ \ =0 Let's consider prementation m

 $A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad \qquad X = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

 $X = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

Fact: Sum of No = Q11 + Q22 + - Qnn

Kau so solve:

 $\mathbb{A}\times = \mathbb{A}\times$

 $\frac{(A - \lambda T) \times = 0}{\text{stugular}} \times \det (A - \lambda T) = 0$ Fing $n = \lambda S$

$$\det(A-\lambda I) = \begin{vmatrix} 3-\lambda 1 \\ 1 & 3-\lambda \end{vmatrix} = (3-\lambda)^2 - 1 =$$

$$= \lambda^2 - G\lambda + 8$$
Frace det

$$A - 4T = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$$

A - 2T = []

Observation if i add 3T to matrix its evalues inchea but evertors constant

 $\frac{1}{2} \times \frac{1}{2} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$

$$(A+3I)x = Ax + 3x = (A+3)x$$

$$A \times A = A \times$$

Example:
votation matrix
$$Q = \begin{bmatrix} 0 & -1 \\ 0 & -1 \end{bmatrix} \quad \text{rotates} \quad 30^{\circ}$$

$$Q = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \quad \text{trace} = 0 + 0 = \lambda_{1} + \lambda_{2}$$

$$\det (Q - \lambda I) = \begin{vmatrix} -\lambda -1 \\ -\lambda \end{vmatrix} = \lambda^{2} + 1 = 0$$

$$\lambda_{1} = \hat{i} \quad \lambda_{2} = -\hat{i} \quad \lambda_{2} = -\hat{i}$$

$$\det (A - \lambda I) = \begin{vmatrix} 3 \cdot \lambda \\ 0 \cdot 3 - \lambda \end{vmatrix} = (3 - \lambda)^{2}$$

$$\lambda_{1} = 3 \quad \lambda_{2} = 3$$

$$(A - \lambda I) \times = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \times = 0 \quad X_{1} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
no second independent eigenvector x_{2}

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & -2 \\ 0 & 1 & 4 \end{bmatrix}$$

Find eigenvalues and evectors of
$$A^2$$
 and $A^{-1}-I$

$$A^2 = \begin{bmatrix} 1 & y & y \\ 0 & 1 & y \\ 0 & 1 & 16 \end{bmatrix}$$

$$\left[\begin{array}{cccc} O & 1 & 16 \end{array}\right]$$

$$\left(A^2 - \lambda \right) \times = 0$$

 $\left(A^2 - \lambda I\right) X = 0$

$$det(A^2 - \lambda \overline{1}) = \begin{vmatrix} 1-\lambda & 4 & 9 \\ 0 & 1-\lambda & 4 \\ 0 & 1 & 16-\lambda \end{vmatrix}$$

$$= (1-\lambda)((1-\lambda))((6-\lambda)-4) = 0$$

$$= (1-1)((1-1)(16-1)-9) = (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-1)(16-1)-9$$

$$= (1-$$

$$D = 12^2 - 4.12 = 241$$

$$\lambda_1 = \frac{+17 + \sqrt{2 \times 1}}{2} \approx 16,262$$

$$\frac{1}{\sqrt{2}}$$

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array}$$

$$\begin{cases} 0 & 4 & 9 \\ 0 & 0 & 4 \\ 0 & 15 \\ 0$$

$$\frac{9}{0}$$
 $\frac{9}{4}$ $\frac{1}{2}$ $\frac{1}$

1 4	' ι	$\overline{}$	′ I								١								_
0		И	\	7	` .	=	\bigcirc				۱ <i>–</i> د						·		
C) 1 A^-		5		٠				٠	٠	-15,	262	U	۱ [.]	· C	1			
L:			~ 7.								j. c)-1	5,7	262		1		٠ >	٠ ٢٠
.((A)	·).	$\left(\int_{L}^{\infty} \right)$				٠				[:C)		l .	.O	. ટહ	2	•	
										•	Ŀ			•			7		
Ö	14	3																	
	.0																		
U.		1	<i>)</i> .	\mathcal{L}_{i}	٠					•	•				•				٠

10°								-15,20	2.0	1	
$\left(A^{2} - \lambda I \right)$. O	15,	262	
$\left(\bigwedge_{\mathcal{O}} - \lambda \right)$. ()		١.	
(/ /								<u>.</u> .		٠.	
		•	•	٠	•	•	٠		•	•	
[0 [y : 9:	7						٠		•		
							٠				
									•		
	/ Z										
0 0 0											
$X = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$											
(7)											

 $\begin{array}{c|c}
\times & -1 \\
\times & -2 \\
\end{array}$

X = 0

Case when A? $\mathbb{A}\times \mathbb{A}\times \mathbb{A}$ $AA \times = A(A \times) = AA \times = A^{2} \times$ hence for A? evectors are same and evalues are squared. 3 = 9 Case A-1-T · · · A· × - · · × · 1 T X - A-1 A X $A \times = \frac{1}{\lambda} \times$ 1 assume for inverse evalues have power-1. if we shift At by I * evalues of invertuble matrix ore allways non zero N= N1 -1 - 0 1/2-1-2 73= 7 -1 = -1