

Guía 2. Conjuntos

Carlos Domingo, Jacinto Dávila

Unviersidad de Los Andes, Venezuela

Copyright 2011.

L	Una noción más básica que la del número es la de conjunto, pero es necesario discutirla y aclararla porque es a base de toda Matemática. Trate de explicar que es un conjunto.

2.- Para indicar un conjunto se escriben sus elementos entre {}, así el conjunto A de los números enteros entre -3 y 4 ambos incluidos es:

El conjunto P de los planetas del sistema solar es:

El orden no interesa $\{a,b\} = \{ , \}$

¿Puede esta ma	siempre definirse así? Indique dos conjuntos que no pueden definirse
esta IIIa	ncia.
Indique	otra manera de definir conjuntos:
Indique	otra manera de definir conjuntos:
Indique	otra manera de definir conjuntos:
Indique	otra manera de definir conjuntos:
Indique	otra manera de definir conjuntos:

5.- La manera usual de definir un conjunto es dar una regla tal que para todo objeto pueda decirse si pertenece o no al conjunto. Ejemplo:

pertenece" se indica \notin o \in '. \longrightarrow \notin A

☐ ____ A. La idea de pertenecer, como la de conjunto es una idea intuitiva básica. "No

6	La forma anterior de definir se expresa así formalmente: Sea $P(x)$ una función proposi-
	cional con sentido (puede ser sólo V ó F) para todo objeto x. Queda definido entonces
	el conjunto A de todas las x que hacen verdadera $P(x)$. Así si $P(x)$ es $x>10$ esto
	define al conjunto de los números mayores que 10.

Se indica así: $A = \{x | x > 10\}$ donde: = significa "es" $\{$ significa "el conjunto de todos los" | significa "tales que".

Veremos que esra manera simple de definir conjuntos lleva a ciertas paradojas.

- 7.- Definir con una expresión formal los siguientes conjuntos:
- a. Números enteros entre -6 y +50 (incluidos ambos):

- b. Números enteros divisibles por 3:
- c. Números fraccionarios entre 2/3 y 1:
- d. Puntos del plano cartesiano que están a distancia 5 del origen:

Alumnos de la ULA que aprobaron más de 10 materias:

Proposiciones que considera la lógica formal (son verdaderas o falsas):

8.- Se dice que B es un subconjunto de A si todo elemento de B lo es de A. Se indica $B \subset A$.Es decir,

$$8.a)B \subset A \leftrightarrow (x \in B \rightarrow x \in A)$$

¿Es cierto que $A\subset A$? ____ ¿Es cierto que $B\subset A\leftrightarrow x\notin A\to x\notin B$?____ Haga las tablas de verdad de la implicación anterior y de esta.

Suponga que B no contiene ningún elemento (conjunto vacío). ¿Es cierto que $B \subset A$?......Decir que sí es decir que el conjunto vacío es subconjunto de todo conjunto. La suposición de que hay un conjunto vacío permite dar generalidad a muchas definiciones y resultados.

9.- Dos conjuntos se dicen iguales si tienen los mismos elementos.

9.a) Si
$$A \subset B$$
 y $B \subset A$ resulta: $A ___B$

¿Porqué?			
			 J

En lo que sigue se introducen reglas que permiten formar nuevos conjuntos a partir de conjuntos dados.

- 10.- Se pueden considerar como axiomas que afirman la existencia de los nuevos conjuntos. Si A y B son conjuntos se puede formar un nuevo conjunto Z que los contiene como elementos $Z = \{ __, __\}$ ¿Se puede decir que los elementos de A también son elementos de Z? $__$.
- 11. Unión. Sea A y B dos conjuntos. Se llama unión de A y B y se indica $A \cup B =$ al conjunto que tiene los elementos que están en A o en B o en ambos y soló dichos elementos. Así si $A = \{s, b, m, n, p\}$ $B = \{a, b, s, t, p\}$ entonces $A \cup B = \{$

2.- Intersección. Dsdos A y B. Se llama intersección al conjunto que tiene sólo los elementos que pertenecen a A y B. Se indica $A \cap B$. Para los conjuntos A y B del caso anterior se tiene: $A \cap B = \{$

13.- Ambas definiciones pueden ponerse formalmente así:

13.a)
$$A \cup B = \{x | x \in ___\}$$

13.b) $A \cap B = \{x | x \in ___\}$

14.- El Conjunto Universal E. En general cuando se define un conjunto se tiene presente un universo o conjunto mayor para el cual la proposición P(x) que define el conjunto es significativa (sea V o F). Tal conjunto que comprende al definido se llama conjunto universal.

Así si definimos $A = \{x | x \text{ entero y } x > 100\}$ el conjunto universal es el de los enteros.

15.- Complementación. Dado un conjunto A, los elementos del conjunto universal E que no pertenecen a A forman otro conjunto que llamaremos A', complemento de A. Así para el ejemplo anterior:

15.a)
$$A' = \{x | \underline{\hspace{1cm}} \}$$

Formalmente se define:

15.b) Si
$$Y = \{x | P(x)\}$$
 entonces $Y' = \{x | \underline{\hspace{1cm}}$

o bien si E es el universal de Y, $Y' = \{x | \notin Y \land x \in E\}$

16.- Si ϕ es el vacío y E el universal se tiene:

$$\begin{array}{lll} A \cup A' = & & & & \\ A \cap A' = & & & & \\ A \cup \phi = & & & \\ A \cap \phi = & & & \\ A \cap E = & & & \\ A \cup E = & & & \\ \phi = & & & \\ E' = & & & \end{array}$$

17.- Diferencia entre dos conjunitos. Dados los conjuntos A y B se denomina diferencia AB al conjunto formado por los elementos de A que no pertenecen a B.

17.a)
$$AB = \{x | x \in A \land x \notin B\}$$

Se tiene:
$$E - A = \underline{\hspace{1cm}}$$
 y $A - \phi = \underline{\hspace{1cm}}$

18.- Para demostrar las siguientes igualdades usar las definiciones 8.a) y 9.a, entre otras que necesite.

$(A \cup B)' = A' \cap B'$ (De Morgan)
$(A \cap B)' = A' \cup B'$ (De Morgan)
$A \cup (B \cup C) = (A \cup B) \cup C \text{ (Asociativa)}$

$A \cap (B \cap C) = (A \cap B) \cap C$ (Asociativa)
7111(2112) (7112)11 0 (713311111)
$(A \cup B) \cap C = (A \cap B) \cup (B \cap C)$ (Distributiva)
$(A \cup B) \cap C = (A \cap B) \cup (B \cap C)$ (Distributiva)
$(A \cap B) \cup C = (A \cup B) \cap (B \cup C)$ (Distributiva)
-

Demostrar que $A \subset B \leftrightarrow B' \subset A'$

- 19.- Diagramas de Venn. Una manera de vizualizar las propiedades de los conjuntos es representar cada conjunto mediante una figura cerrada. Los elementos son los puntos (indicados o no) dentro de la figura.
- 20.- Pares Ordenados. La idea de par ordenado (a, b) puede considerarse también una idea intuitiva primitiva. a se llama primer elemento. b se llama segundo elemento. Como se ve la idea implica los conceptos de primero y segundo. En la teoría axiomática, de la que hablaremos más adelante se puede introducir el par ordenado como definición sin acudir a las ideas de "primero" y "segundo".

Véase la diferencia entre (a,b) y $\{a,b\}$ ¿Cuál es?	
	—
	_
	_

21.- Producto Cartesiano. Dados dos conjuntos A y B se puede formar el conjunto de los pares (a,b) tales que a es un elemento de A y b uno de B. Tal conjunto de pares se llama producto cartesiano de A y B y se indica $A \times B$. $C = A \times B = \{x | x = (a,b) \text{ siendo } a \in A \text{ y } b \in B\}$

¿Cómo se representa gráficamente?

22.- Sean
$$A = \{3, a, 5, x\}$$
 $B = \{a, b\}$, $AxB = \{a, b\}$

23.- ¿Es en general AxB = BxA?

24	Demostar las relaciones siguientes $(A \cup B)xZ = (AxZ) \cup (BxZ)$	

 $(A \cap B)xZ = (AxZ) \cap (BxZ)$

25.- Relaciones. La relación entre dos objetos es una idea intuitiva básica. Se puede expresar indicando los dos objetos y entre ellos el nombre que describe la relación. Así:

- a. 4 es _____ que 5.
- b. 3 3.
- c. La luna _____ la Tierra.
- d. Juan _____ Pedro.

En general se indica a \Re b y se dice que a tiene la relación R con b.

- 26.- Relación entre elementos de dos conjuntos. En general, si $a \Re b$, a pertenece a un conjunto A y b a un conjunto B (puede ser eventualmente A = B). Identifique en los ejemplos anteriores los conjuntos A y B e indique casos en los que se cumple la relación y casos en que no se cumple.
- a. A = ______B = _____
- b.
- d.

27	Definición de la relación usando el concepto de producto cartesiano.

- 28.- Dominio y recorrido de una relación. Sea a \Re b con $a \in A$ y $b \in B$. Se llama dominio de la relación al subconjunto de las a \in A para los cuales vale la relación. Se llama recorrido o rango de la relación al conjunto de los b para los cuales la relación es válida. Sea $A = \{2,4,6\}$ $B = \{2,3,4,9\}$ Sea la relación a > b con $a \in A$ y $b \in B$.
- a. Hallar el dominio y el recorrido de R

dominio de
$$R = \{$$
 ______ $\}$ recorrido de $R = \{$ ______

b. Representar la relación como producto cartesiano y ver que subconjunto del producto representa la relación.

29	Relacion de equivalencia. Una relación R definida entre los elementos de A
	se denomina relación de equivalencia si tiene las propiedades siguientes (x, y, z
	pertenecen a A)
	a os reflexiva os decir. Para todo x x P x

a. es reflexiva, es decir, Para todo x, x R x.

b. es simétrica, es decir, Para todo x y todo y, x R $y \rightarrow y$ R x.

c. es transitiva, es decir, Para ______, $x R y \land y R z \rightarrow x R z$.

Averigüe que es una relación anti-simétrica y una relación asimétrica.

Dar elemplos de relaciones:

а.	de equivalencia.
_	
_	
_	
_	
b.	reflexiva y transitiva; no simétrica.
_	

c. simétrica; no reflexiva ni transitiva.

d. transitiva; no reflexiva ni simétrica.
e. relflexiva y simétrica; no transitiva.
30 Division en clase de equivalencia. Si entre todos los elementos de un conjunto A está definida una relación de equivalencia; podemos juntar todos los elementos a uno dado (es decir que tienen la relación R de equivalencia con él) en un subconjunto de A. Tal subconjunto es una clase de equivalencia de A. Supongamos que seguimos ente proceso de reunión para todos los x ∈ A. -¿Puede quedar algún elemento que no pertenezca a ninguna clase de equivalencia? -¿Puede un elemento pertenecer a dos clases de equivalencia diferentes?
Se tiene pues la partición en clases de equivalencia es una subdivisión completa de A en conjuntos disjuntos. Dar ejemplos de relaciones de equivalencia y de las subdivisiones en clases que originan.

31	Funciones. Una función del conjunto X en el Y es una $\emph{relación}$ tal que \emph{para} \emph{cada}
	elemento $x \in X$ le corresponde un <i>único</i> $y \in Y$. Se indica $f(x) \to Y$ ó $X \to Y$ ó
	y = f(x). Indicar los gráficos las relaciones entre elementos mediante flechas. Relación
	que no es Función.

Dar ejemplos de Funciones numéricas y no numéricas	

- 32.- *Tipos de Funciones*. Son usuales las siguientes denominaciones de casos especiales de funciones (*X* se refiere al dominio y *Y* al rango o recorrido):
 - a. Función Inyectiva: a diferentes elementos de X le corresponden diferentes elementos de Y.
 - b. Función Sobreyectiva: todo elemento de Y es correspondiente de alguno de X. c. a. Función Biyectiva: es inyectiva y sobreyectiva.

Distinguir en las siguientes relaciones cuáles son funciones y que tipo son o no son:

- x es subordinado de y

- y es satélite de x

-
$$y = x2$$
 (x, y reales)

-
$$n \leftarrow n + 1$$
 (n entero)

$$(a,b) o (a+b)/2$$

- lanzamientos de un dado ightarrow número que salió

- proposición lógica ightarrow su valor de verdad

- persona ightarrow nombre propio

Fin del documento de Conjuntos. Licencia pendiente.