Esame di Fondamenti di informatica II – appello gennaio 2020

parte Modelli – tempo a disposizione: due ore

17-01-2020

- 1. Con riferimento al linguaggio R descritto dall'espressione regolare bb((aa)*+b)*a
 - 1.1. definire un ASF (deterministico o non) che riconosce il linguaggio R
 - 1.2. definire una grammatica regolare che genera R
- 2. Si consideri la grammatica G: S \rightarrow T\$, T \rightarrow (T)T | ϵ , con terminali {\$, (,)}, non terminali {\$, T} e assioma S, che genera il linguaggio L
 - 2.1. Stabilire se G è LL(1) oppure no; nel caso non lo sia, modificare G in una grammatica G' che sia LL(1) ed equivalente a G
 - 2.2. Descrivere un algoritmo che effettua il parsing predittivo delle stringhe di L
- 3. Descrivere la tecnica di progettazione algoritmica denominata "programmazione dinamica", chiarendo in cosa si distingue dal divide et impera, e illustrare un algoritmo (a piacere) basato sulla programmazione dinamica.
- 4. Illustrare l'algoritmo DPLL, spiegando quale problema risolve. Determinarne il costo computazionale e mostrare come l'algoritmo, durante i suoi passi, modifica la formula in input $(a \lor b \lor \neg c) \land (\neg b \lor d) \land (\neg a \lor c \lor d \lor \neg e) \land (\neg a \lor b \lor \neg d \lor e) \land (c \lor d \lor \neg e) \land (c \lor \neg d \lor \neg e) \land (a \lor c \lor d \lor \neg e) \land (a \lor c \lor d \lor \neg e)$
- 5. Con riferimento alle classi P ed NP:
 - 5.1. Definire la classe P
 - 5.2. Definire la classe NP attraverso macchine di Turing non deterministiche
 - 5.3. Definire la classe NP senza impiegare il concetto di non determinismo
 - 5.4. Confrontare le due definizioni di NP, giustificandone l'equivalenza
 - 5.5. Se per un problema della classe NP viene individuato un lower bound polinomiale, cosa possiamo dedurre in merito alla questione P vs NP?
 - 5.6. Se per un problema della classe NP viene individuato un lower bound esponenziale, cosa possiamo dedurre in merito alla questione P vs NP?