Calculating Monte Carlo Confidence Intervals from Mplus Output

http://quantpsy.org/medmc/medmc.htm

Here's a model

Here's the code

Path Analysis All Continuous Variables FILE IS ex3.11.dat; TITLE: DATA: **VARIABLE:** NAMES ARE depression HoB anxiety Host rumination Sub; USEVARIABLES AREdepression host rumination sub; MODEL: depression on host (c1); depression on sub (c2); rumination on host (a1); rumination on sub (a2); depression on rumination (b); model constraint: new (ind1 ind2); ind1 = a1*b; ind2 = a2*b; Output: tech1 tech3;

Selected Results

MODEL RESULTS

	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
DEPRESSI ON				
HOST	0.992	0.043	22.978	0.000
SUB	3.052	0.045	68.271	0.000
RUMINATION	2.001	0.045	44.616	0.000
RUMINATI ON				
HOST	0.039	0.043	0.905	0.366
SUB	0.091	0.044	2.054	0.040
T-+				
Intercepts				
DEPRESSION	-1.064	0.046	-23.058	0.000
RUMINATION	-0.028	0.046	-0.600	0.549
Residual Varian				
		0 067	15 010	0 000
DEPRESSION	1.062	0.067	15.810	0.000
RUMINATION	1.055	0.067	15.811	0.000
New/Additional P	arameters			
IND1	0.078	0.086	0.904	0.366
IND2	0.182	0.089	2.051	0.040
at the second	V V -	0.003	2.001	0.010

How many parameters did we estimate?

Right at the top of the output above the fit indices is the following statement:

MODEL FIT INFORMATION

Number of Free Parameters

<

Tech1 Matrices

TAU

The tau vector contains information regarding thresholds of categorical observed variables. The elements are in the order of thresholds within variables.

NU

The nu vector contains information regarding means or intercepts of continuous observed variables.

LAMBDA

The lambda matrix contains information regarding factor loadings. The rows of lambda represent the observed dependent variables in the model. The columns of lambda represent the continuous latent variables in the model.

THETA

The theta matrix contains the residual variances and covariances of the observed dependent variables or the latent response variables. The rows and columns both represent the observed dependent variables.

ALPHA

The alpha vector contains the means and/or intercepts of the continuous latent variables.

BETA

The beta matrix contains the regression coefficients for the regressions of continuous latent variables on continuous latent variables. Both the rows and columns represent continuous latent variables.

GAMMA

OUTPUT, SAVEDATA, And PLOT Commands

The gamma matrix contains the regression coefficients for the regressions of continuous latent variables on observed independent variables. The rows represent the continuous latent variables in the model. The columns represent the observed independent variables in the model.

PSI

The psi matrix contains the variances and covariances of the continuous latent variables. Both the rows and columns represent the continuous latent variables in the model.

DELTA

Delta is a vector that contains scaling information for the observed dependent variables.

Tech1 Matrices – when all variables are observed

TAU

The tau vector contains information regarding thresholds of categorical observed variables. The elements are in the order of thresholds within variables.

NU

The nu vector contains information regarding means or intercepts of continuous observed variables.

LAMBDA

The lambda matrix contains information regarding factor loadings. The rows of lambda represent the observed dependent variables in the model. The columns of lambda represent the continuous latent variables in the model.

THETA

The theta matrix contains the residual variances and covariances of the observed dependent variables or the latent response variables. The rows and columns both represent the observed dependent variables.

ALPHA

The alpha vector contains the means and/or intercepts of the continuous latent variables.

BETA

The beta matrix contains the regression coefficients for the regressions of continuous latent variables on continuous latent variables. Both the rows and columns represent continuous latent variables.

GAMMA

OUTPUT, SAVEDATA, And PLOT Commands

The gamma matrix contains the regression coefficients for the regressions of continuous latent variables on observed independent variables. The rows represent the continuous latent variables in the model. The columns represent the observed independent variables in the model.

PSI

The psi matrix contains the variances and covariances of the continuous latent variables. Both the rows and columns represent the continuous latent variables in the model.

DELTA

Delta is a vector that contains scaling information for the observed dependent variables.

Tech1 provides the parameter numbers for each parameter in the model

TECHNICAL 1 OUTPUT

	NU DEPRESSI	RUMINATI	HOST	SUB
1	0	0	0	О
DEPRESSI RUMINATI HOST SUB	LAMBDA DEPRESSI 0 0 0 0 0	RUMINATI 0 0 0 0 0	0 0 0 0 0	SUB 0 0 0 0
DEPRESSI	THETA DEPRESSI	RUMINATI	HOST	SUB
RUMINATI HOST SUB	0	o o o	0	o
	ALPHA DEPRESSI	RUMINATI	HOST	SUB
1	1	2	0	0
	BETA DEPRESSI	RUMINATI	HOST	SUB
DEPRESSI RUMINATI HOST SUB	0 0	3 0 0	4 6 0	5 7 0 0
	PSI DEPRESSI	RUMINATI	HOST	SUB
DEPRESSI RUMINATI HOST SUB	8 0 0 0	9 0 0	0	o

Here in the red boxes are the parameter numbers for The means of depression (1) And rumination (2)

TECHNICAL 1 OUTPUT

	NU DEPRESSI	RUMINATI	HOST	SUB
1		0	0	0
DEPRESSI RUMINATI HOST SUB	LAMBDA DEPRESSI 0 0 0 0	RUMINATI 0 0 0 0	HOST 0 0 0 0	SUB 0 0 0 0
	THETA DEPRESSI	RUMINATI	HOST	SUB
DEPRESSI RUMINATI HOST SUB		0 0	0	0
1	ALPHA DEPRESSI 1	RUMINATI 2	ноѕт	SUB 0
DEPRESSI RUMINATI HOST SUB	BETA DEPRESSI 0 0 0 0	RUMINATI 3 0 0 0	HOST 4 6 0 0	SUB 5 7 0 0
DEPRESSI RUMINATI HOST SUB	PSI DEPRESSI 8 0 0 0	RUMINATI 	но эт 0 0	SUB

Here in the red box are the parameter numbers for The regression coefficients With depression as the DV i.e., 3, 4,5 And with rumination as the DV i.e., 6, 7

TECHNICAL 1 OUTPUT

NU	DIDITION	ност	SUB
o	o	0	o
LAMBDA DEPRESSI 0 0 0 0	RUMINATI 0 0 0 0	HOST 0 0 0 0	SUB 0 0 0 0
THETA			
DEPRESSI	RUMINATI	HOST	SUB
0	0		
		0	0
ALPHA DEPRESSI 1	RUMINATI 2	HOST	SUB 0
BETA DEPRESSI	RUMINATI	HOST	SUB
0 0	3 0 0	4 6 0	5 7 0
0	0	0	0
PSI DEPRESSI	RUMINATI	HOST	SUB
	DEPRESSI O LAMBDA DEPRESSI O 0 0 0 0 THETA DEPRESSI O 0 0 0 0 THETA DEPRESSI O 0 0 0 0 0 0 THETA DEPRESSI O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DEPRESSI	DEPRESSI

Here in the red box are the parameter numbers for Variance of depression (8) And the variance of Rumination (9)

TECHNICAL 1 OUTPUT

	NU DEPRESSI	RUMINATI	HOST	SUB
1	0	o	О	
DEPRESSI RUMINATI HOST SUB	LAMBDA DEPRESSI 0 0 0 0	RUMINATI 0 0 0 0	HOST 0 0 0 0	SUB 0 0 0 0
DEPRESSI	THETA DEPRESSI	RUMINATI	HOST	SUB
RUMINATI HOST SUB	0	0 0 0	0	0
	ALPHA DEPRESSI	RUMINATI	HOST	SUB
1	1	2	0	О
	BETA DEPRESSI	RUMINATI	ноѕт	SUB
DEPRESSI RUMINATI HOST SUB	0 0	3 0 0	4 6 0	5 7 0 0
	PSI DEPRESSI	RUMINATI	HOST	SUB
RUMINATI HOST	8	9	٥	
SUB	0	О	0	О

Tech3 – Covariance Parameter Matrix

- Diagonals are the variances
- The body contains the covariances

FECHNICAL 3 OUTPUT

Tech3 ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES 0.212856D-02 0.359461D-19 0.211487D-02 0.555058D-04 -0.373083D-18 0.201151D-02 Tech3 uses fortran notation -0.857395D-04 -0.455727D-18 -0.782207D-04 0.186539D-02 Which is a form of scientific 0.107902D-03 0.131834D-04 0.229941D-17 -0.183416D-03 0.199847D-02 -0.142984D-18 -0.831032D-04 0.448604D-16 0.307598D-16 0.200692D-17 **Notation** 0.266430D-17 0.181403D-04 0.144795D-15 0.795148D-16 0.207426D-15 -0.208205D-07 -0.372951D-19 0.378087D-07 -0.519753D-07 0.599421D-07 0.275922D-17 0.473785D-07 0.108034D-15 -0.542752D-17 -0.339555D-16 Examples: 0.783034D-04 -0.304495D-05 -0.713995D-05 10 0.216071D-05 -0.166293D-03 11 0.505997D-05 0.362994D-04 0.183371D-03 -0.713069D-05 -0.167204D-04 0.212856D-02 = .002(D-02 means add 2 leading 0s) ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES 10 6 0.212856D+02 = 21.290.185170D-02 (D+02 means move the decimal 0.100194D-03 0.197042D-02 0.413683D-17 0.186612D-17 0.450792D-02 Over 2 spots) 0.173375D-06 -0.933541D-07 -0.228236D-17 0.445586D-02 0.200491D-03 0.147180D-08 0.346929D-06 0.370531D-02 0.741751D-02 0.394288D-02 0.344668D-08 -0.186805D-06 0.200491D-03 0.408329D-03 ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES 11

0.790656D-02

11

Now what did we want to do again?

- To make MCCIs we need:
- a and b come from the model results section
- Var(a), Var(b), and Cov(a,b)
 come from tech3
- *Note: in the current model there are two indirect effects, so we have to do this twice

a1, a2, b

MODEL RESULTS

	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
DEPRESSI ON				
HOST	0.992	0.043	22.978	0.000
SUB	3.052	0.045	68.271	0.000
RUMINATION	2.001	0.045	44.616	0.000
RUMINATI ON		1		
HOST	0.039	0.043	0.905	0.366
SUB	0.091	0.044	2.054	0.040
Intercepts				
DEPRESSION	-1.064	0.046	-23.058	0.000
RUMINATION	-0.028	0.046	-0.600	0.549
Residual Variances				
DEPRESSION	1.062	0.067	15.810	0.000
RUMINATION	1.055	0.067	15.811	0.000
New/Additional Parameters				
IND1	0.078	0.086	0.904	0.366
IND2	0.182	0.089	2.051	0.040

Steps

- Determine which parameter numbers go with the a-paths and bpaths
- Enter the estimates into the quantpsy calculator
- Look at the MCCI and see if it contains 0
 - If yes, then not significant
 - If no, then significant

What parameters do we need?

- a1 is the regression slope of rumination on hostility
- a2 is the regression slope of rumination on substance use
- b is the regression slope of depression on rumination
- *note only 1 b-path because rumination is the only mediator
- a1, a2, and b will come from the BETA matrix
- a1 is parameter 6, a2 is parameter 7, and b is parameter 3

	BETA DEPRESSI	RUMINATI	HOST	SUB
DEPRESSI RUMINATI	0	3	6	5 7
HOST SUB	0	0	0	0

Ok, back to tech3

- Var(a1) =
 - Parameter 6 with 6
 - .0019
- Var(a2) =
 - Parameter 7 with 7
 - .00197
- Var(b) =
 - Parameter 3 with 3
 - .002
- Cov(a1,b) =
 - Parameter 6 with 3
 - .00000000000000004
- Cov(a2, b) =
 - Parameter 7 with 3
 - .0000000000000001

TECHNICAL 3 OUTPUT

```
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
0.212856D-02
0.359461D-19
               0.211487D-02
                             0.201151D-02
0.555058D-04 -0.373083D-18
                            -0.782207D-04
-0.857395D-04 -0.455727D-18
                                           0.186539D-02
                            -0.183416D-03
              0.229941D-17
                                           0.107902D-03
                                                          0.199847D-02
                             0.448604D-16
-0.142984D-18 -0.831032D-04
                                           0.307598D-16
                                                          0.200692D-17
               0.181403D-04
                                           0.795148D-16
                                                          0.207426D-15
                             0.144795D-15
                             0.378087D-07 -0.519753D-07
-0.208205D-07 -0.372951D-19
               0.473785D-07
                                          -0.542752D-17 -0.339555D-16
 0.275922D-17
0.216071D-05 -0.166293D-03
                             0.783034D-04 -0.304495D-05 -0.713995D-05
 0.505997D-05
               0.362994D-04
                             0.183371D-03 -0.713069D-05 -0.167204D-04
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
                                                               10
0.185170D-02
0.100194D-03
               0.197042D-02
               0.413683D-17
                             0.450792D-02
             -0.933541D-07
                            -0.228236D-17
                                           0.445586D-02
                             0.147180D-08
 0.370531D-02
               0.200491D-03
                                           0.346929D-06
                                                          0.741751D-02
 0.200491D-03
               0.394288D-02
                             0.344668D-08 -0.186805D-06
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
      11
 0.790656D-02
```

Time to calculate our first MCCI

- Hostility→Rumination→Depression
- a1*b
- MCCI = [-.09, .24] not sig.

Distribution of Indirect Effect

Time to calculate our second MCCI

- Substance Use → Rumination → Depression
- a2*b
- MCCI = [.005, .36] significant

