HOCHSCHULE LUZERN

Technik & Architektur

Grundlagen der Elektrotechnik - Resultate der Übungsserien Für ET+V sind die fett und unterstrichenen (Teil-) Aufgaben relevant!

Elektrostatik

E1

Aufg. 1:

a)
$$F = 8 \mu N$$

b) $r = 1,68 cm$

c) Skizze

Aufg. 2:

 $U_5 = 4.3 \text{ V}$

Aufg. 3:

 $U_1 = 30 \text{ V}$
 $U_2 = -30 \text{ V}$
 $U_3 = -10 \text{ V}$

Aufg. 4:

Fig. 1 = 351 V/cm

 $E_B = 10386 \text{ V/m}$

b) Skizze

Aufg. 2:

a) $E_1 = 351 \text{ V/cm}$
 $E_D = 702 \text{ V/cm}$

b) $s_2 = 7,93 \text{ mm}$

Aufg. 3:

a) $U_q = 340 \text{ V}$

b) $U_{C5} = -75 \text{ V}$
 $Q = 401,47 \mu \text{As}$
 $W = 60,2 \text{ mWs}$

Aufg. 4:

Aufg. 2:

a) Skizze

b) $E_x = Q \cdot x (4\pi \cdot \epsilon_0)^{-1} ((a^2 + x^2)^{-3/2} - (4a^2 + x^2)^{-3/2})$

Aufg. 3:

 $U_{\text{max}} = 45,3 \text{ kV}$

Aufg. 4:

 $V_{\text{max}} = 45,3 \text{ kV}$

E4 Aufg. 1: in el. leitendem Material $E_{\rm A}$ = 0 $E_{\rm B}$ = 1820 V/cm $E_{\rm C}$ = 0 in el. leitendem Material $E_{\rm D}$ = 0 Anw. des Satzes von Gauss Aufg. 2: = 9 mm a) s_2 Cb) = 133 pF Aufg. 3: U_1 = 12,727 V U_3 = 7,273 V U_4 5,455 V

Gleichstromlehre

G1**Aufg. 1**: 0 I_4 I_5 -880 mA I_6 -120 mA I_7 2,12 A = = 880 mA **<u>Aufg. 2</u>**: R_{iE} 29,012 Ω $U_{\mathfrak{q}\mathrm{E}}$ 24,347 V **Aufg. 3**: $R_{
m L}$ $1,857 \text{ k}\Omega$ <u>a</u>) <u>b</u>) $P_{\text{max}} =$ 8,3 mW Ι Aufg. 4: -840 mA G2 $8,299 \Omega$ **Aufg. 1**: R_{iE} U_{qE} 4,35 V (Referenzrichtung beachten) 523,9 mA (Referenzrichtung beachten) I_{qE} Ι Aufg. 2: -3,533 A Aufg. 3: $R_{\rm L}$ $73,33 \Omega$ a) b) $P_{\text{max}} =$ 34,091 W **G3** 225,3 °C **Aufg. 1**: = <u>a</u>) υ 132,6 °C <u>b</u>) υ = R_{iE} 755Ω Aufg. 2: a) = $U_{\mathfrak{q} \mathrm{E}}$ 30 V = P_{q1} 523 mW (Energieabgabe, Quelle) b) Aufg. 3: I_4 214,6 mA a) = R_4 = $21,5 \Omega$ b)

G4	<u>Aufg. 1</u> :	U	=	2 V
	<u>Aufg. 2</u> :	U	=	8,587 V
	<u>Aufg. 3</u> :	I	=	-13 mA
	<u>Aufg. 4</u> :	$R_{ m L}$	=	$2,631~\mathrm{k}\Omega$
		P_{max}	=	1 mW

Magnetismus

M1	<u>Aufg. 1</u> :	<u>a</u>)	H_{P}	=	4,66 A/m			
		<u>b</u>)	senk	senkrecht aus der Blattebene heraus				
	<u>Aufg. 2</u> :	<u>a</u>)	I B I		126 μΤ	für $H = 100 \text{ A/m}$ für $B = 200 \text{ mT}$		
		<u>b</u>)	I B I		400 mT	für $H = 100 \text{ A/m}$ für $B = 200 \text{ mT}$		
	Aufg. 3:	a)	Ersatzschaltbild					
		b)	I	=	505 mA			
	<u>Aufg. 4</u> :	<u>a</u>)	I	=	1,838 A	für Sättigung		
		<u>b</u>)	I	=	900 mA	für Remanenz		
M2	<u>Aufg. 1</u> :	<u>a</u>)	B_{A}	=	900 A/m 1,13 mT t aus der Bl	attebene heraus		
		<u>b</u>)	$B_{ m B}$	=	23,57 A/m 30 μT in die Blattebene hinein			
	Aufg. 2:		+23 %					
	<u>Aufg. 3</u> :	<u>a</u>)	I	=	2,35 A	für Sättigung		
		<u>b</u>)	$B_{ m L}$	=	0,12 T	schwierige Ablesung		
М3	<u>Aufg. 1</u> :	<u>a</u>) <u>b</u>)			7,12 A/m t in die Blat	ttebene hinein		

- Aufg. 2: a) Ersatzschaltbild
 - b) $B_{\rm L} = 960 \, \rm mT$
 - c) I = 3 A
- <u>Aufg. 3</u>: <u>a</u>) $B_L = 672 \text{ mT}$ I = 1,77 A
 - **b**) $B_L = 92 \text{ mT}$ schwierige Ablesung

Wechselstromlehre

- W1 Aufg. 1: a) Ersatzschaltbild
 - b) $L_1 = 68,24 \text{ mH}$ $L_2 = 272,96 \text{ mH}$
 - c) $L_{12} = 131,6 \text{ mH}$ $L_{21} = L_{12}$
 - **<u>Aufg. 2:</u>** \underline{a}) $I_{\text{eff}} = 3,055 \text{ A}$
 - b) P = 594.2 W
 - **<u>Aufg. 3</u>**: Zeigerdiagramm
 - Aufg. 4: $R_3 = 58,4 \Omega$
- W2 Aufg. 1: a) $L_1 = 107 \text{ mH}$ $L_2 = 643 \text{ mH}$
 - $L_3 = L_1$
 - b) $L_{12} = 161 \text{ mH}$
 - $L_{21} = L_{12}$
 - $L_{23} = L_{12}$
 - $L_{32} = L_{23}$
 - $L_{13} = 26.8 \text{ mH}$
 - $L_{31} = L_{13}$
 - c) $k_{12} = 0.61$
 - $k_{21} = k_{12}$
 - $k_{23} = k_{12}$
 - $k_{32} = k_{23}$
 - $k_{13} = 0.2$
 - $k_{31} = k_{13}$
 - Aufg. 2: $\underline{\mathbf{a}}$) $I_{\text{Glw}} = i_{\text{Dach}} / 2$
 - $\underline{\mathbf{b}}) \qquad I_{\text{Glrw}} = (3 \cdot i_{\text{Dach}}) / 4$
 - $\underline{\mathbf{c}}$) $I_{\text{eff}} = i_{\text{Dach}} \cdot \text{Wurzel} (2/3)$

```
Zeigerdiagramm
                   Aufg. 3:
                                     <u>a</u>)
                                               C
                                                             276 nF
                                     b)
                                               P
                   Aufg. 4:
                                     a)
                                                              169 mW
                                               Z
                                                             (34,4+j\cdot47,5) \Omega
                                     b)
                                               P_{\text{max}} =
                                                              250 mW
                                     c)
                                                             346 mvar
W3
                   Aufg. 1:
                                               L_1
                                                              120,6 mH
                                                                             nicht exakt, wegen Streuung
                                     a)
                                                                             nicht exakt, wegen Streuung
                                               L_2
                                                       =
                                                             30,2 mH
                                               L_{12}
                                                             48 mH
                                                                             nicht exakt, wegen Streuung
                                     b)
                                                       =
                                               L_{21}
                                                       =
                                                             L_{12}
                                               grafische Darstellung der Spannungen u_1 und u_2
                                     c)
                                               U_{\text{Glw}} =
                                                             U_1/2
                   Aufg. 2:
                                     <u>a</u>)
                                     <u>b</u>)
                                               U_{\rm Glrw} =
                                                             U_1
                                               U_{\rm eff} =
                                                             2 \cdot U_1 (Wurzel 3)
                                     <u>c</u>)
                   Aufg. 3:
                                               \omega
                                                       =
                                                              1/(R \cdot C)
                                               C
                   Aufg. 4:
                                                             47,75 \mu F
                                                       =
                                               L
                                                       =
                                                             47,74 mH
                                                             4 + 6 \cdot \cos(\omega \cdot t) V mit \omega = 314,159 \text{ s}^{-1}
W4
                                               u(t) =
                   Aufg. 1:
                                     <u>a</u>)
                                     <u>b</u>)
                                               U_{Glrw} =
                                                             4,7 V
                                               U_{\rm eff} =
                                     <u>c</u>)
                                                             5,83 V
                                     \underline{\mathbf{d}})
                                               R
                                                       =
                                                              17 \Omega
                                                              1,55 ∠-43,2° A vertikale Achse
                   Aufg. 2:
                                     a)
                                               <u>I</u>
                                                       =
                                               <u>I</u>
                                                              1,55 ∠-133,2° A horizontale Achse
                                                                                     vertikale Achse
                                     b)
                                               i_5(t) =
                                                             6 · \sin(\omega t) A
                                               i_5(t) =
                                                             6 · cos(\omega t) A
                                                                                     horizontale Achse
                                               \underline{I}_{\mathrm{Rp}}
                                                             8,957 \angle 20,1^{\circ} A
                   Aufg. 3:
                                                       =
                                     <u>a</u>)
                                                             3,377 ∠110,1° A
                                               <u>I</u>C
                                                       =
                                                             6,828 \angle -66,2^{\circ} A
                                               \underline{I}_{\mathrm{RL}}
                                                       =
                                               P
                                                              11,093 kW
                                     <u>b</u>)
                                               \frac{Q}{S}
                                                             3,695 kvar
                                                                                     induktiv
                                                       =
                                                             11,692 kVA
                   Aufg. 4:
                                               C_2
                                                             21,16 \mu F
```

W5 Aufg. 1: $U_{\text{Glw}} =$ 63,21 V <u>a</u>) $U_{\rm eff} =$ 65,75 V <u>b</u>) 220 ∠30° V Aufg. 2: vertikale Achse a) 220 ∠-60° V horizontale Achse 92,479 $\sin(\omega t - \pi/9)$ V vertikale Achse u(t)b) = 92,479 $\cos(\omega t - \pi/9)$ V horizont. Achse u(t) $38,8 \Omega$ **<u>Aufg. 3</u>**: $R_{
m S}$ = a) $C_{\rm S}$ = $3,267 \mu F$ Ι = 177 mA <u>b</u>) U11 V Aufg. 4: R_2 = 18,624 Ω Aufg. 5: a) R_2 = 33Ω 2,53 mH b) $P_{\text{max}} =$ 4 W **W6 <u>Aufg. 1</u>**: Zeigerdiagramm Aufg. 2: P 141,3 W <u>a</u>) b) R_2 = $138,7 \Omega$ 146,6 W $P_{\text{max}} =$ c) Nein! die Last müsste die konjugiert-komplexe Innenimpedanz der Ersatzquelle sein Anschluss der Spannungspfade an L1 **Aufg. 3**: a) P = 2327,25 W <u>b</u>) Q-21,23 var = kapazitiv U_{R} 37,45 ∠-116° V Aufg. 4: **W7** 1500 1/s Aufg. 1: ω = <u>S</u> **Aufg. 2**: = (782 + j.423) VAinduktiv **<u>Aufg. 3</u>**: $\underline{I}_{\mathrm{N}}$ 246 ∠-146° mA = Aufg. 4: P_1 = 676 W P_2 1803 W

```
W8
                                                    Z_{iE}
                                                                    (94,269 + j.86,07) \Omega
                     Aufg. 1:
                                                    \underline{U}_{qE} =
                                                                    228,822 ∠13,85° V
                     Aufg. 2:
                                                    R_{\rm L}
                                                                    38,55 \Omega
                                          a)
                                                    R_{\mathrm{Lp}}
                                          b)
                                                             =
                                                                    44.4 \Omega
                                                     C_{\mathfrak{p}}
                                                                    4,1 \mu F
                     Aufg. 3:
                                                    U_{1K} =
                                                                    907,75 ∠-16,5° V
                     Aufg. 4:
                                                    i_{\rm L}(t) =
                                                                    58,1 exp(-t/\tau_L) mA
                                                                    29 \cdot \exp(-t/\tau_{\rm C}) \, \text{mA}
                                                    i_{\rm C}(t) =
                                                                    (120+5.8 \cdot \exp(-t/\tau_c)-58.1 \cdot \exp(-t/\tau_L)) mA
                                                    i(t)
                                                             =
                                                             =
                                                                    2 ms
                                                     	au_{
m L}
                                                                     4 ms
                                                     	au_{
m C}
                                                             =
W9
                     Aufg. 1:
                                                                     129,5 ∠110,3° mVA Verbr. kapazitiv
                                                    \underline{S}_{\mathrm{U}}
                                                    \underline{S}_{\mathrm{I}}
                                                                    337,8 ∠–12,2° mVA Quelle induktiv
                                                             =
                                                     λ
                                                                    0,707
                     <u>Aufg. 2</u>:
                                          <u>a</u>)
                                                             =
                                                    L
                                          <u>b</u>)
                                                                    5 μΗ
                                                     Р
                                                                     1444 W
                     <u>Aufg. 3</u>:
                                          <u>a</u>)
                                                    P_1
                                          b)
                                                                     1010,1 W
                                                                    987,4 W
                                                    P_3
                                                                    -553,5 \text{ W}
                     Aufg. 4:
                                                    u_1(t) =
                                                                    (12 - 4 \cdot \exp(-t/\tau)) \text{ V}
                                                                     8 \cdot \exp(-t/\tau) V
                                                    u_2(t) =
                                                    u_{\rm s}(t) =
                                                                    (12 - 12 \cdot \exp(-t/\tau)) \text{ V}
                                                     τ
                                                                     1 ms
W10
                     Aufg. 1:
                                                    \underline{Z}_{\mathrm{L}}
                                                                    (33,5-j\cdot13,9) \Omega
                                                    R_{\rm Ls}
                                                                    33,5 \Omega
                                                                                     seriell
                                                     C_{\mathrm{Ls}}
                                                                                    seriell
                                                                    22,88 μF
                                                    R_{\rm Lp}
                                                             =
                                                                    39,3 \Omega
                                                                                     parallel
                                                     C_{\mathsf{Lp}}
                                                                    3,37 \mu F
                                                                                    parallel
                                                             =
                                                     U_{
m L}
                                                             =
                                                                    38,6 V
                                                    P
                     Aufg. 2:
                                                                    -2,09 W
                     Aufg. 3:
                                                             =
                                                                     18,38 mH
                                          a)
                                                    L_2
                                                    L_3
                                                                    36,75 mH
                                                             =
                                                                    32.9 \angle -60^{\circ} A
                                          b)
                                                    \underline{I}_1
                                                             =
                                                                    -32,9 A
                                                             =
                                                    I_2
                                                    \underline{I}_3
                                                                    32,9 \angle 60^{\circ} A
```

Aufg. 4:
$$i_L(t) = (80 - 145,46 \cdot \exp(-t/\tau)) \text{ mA}$$

 $u_L(t) = 10,91 \cdot \exp(-t/\tau) \text{ V}$
 $u_3(t) = (24 - 10,91 \cdot \exp(-t/\tau)) \text{ V}$
 $\tau = 4 \text{ ms}$

Horw, den 21. Dezember 2009 Prof. Dr. D. Salathé