Predict Sea Level Project

```
In [1]:
         import pandas as pd
         import matplotlib.pyplot as plt
         from scipy.stats import linregress
         df = pd.read csv("epa-sea-level.csv")
In [2]:
In [3]:
         df.head()
                 CSIRO Adjusted Sea Level Lower Error Bound Upper Error Bound NOAA Adjusted Sea Level
Out[3]:
         0 1880
                                0.000000
                                                 -0.952756
                                                                   0.952756
                                                                                              NaN
           1881
                                0.220472
                                                 -0.732283
                                                                   1.173228
                                                                                              NaN
         2
           1882
                               -0.440945
                                                 -1.346457
                                                                   0.464567
                                                                                              NaN
           1883
                                                                                              NaN
                               -0.232283
                                                 -1.129921
                                                                   0.665354
         4 1884
                                0.590551
                                                 -0.283465
                                                                   1.464567
                                                                                              NaN
         df.info()
In [ ]:
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 134 entries, 0 to 133
         Data columns (total 5 columns):
              Column
                                         Non-Null Count Dtype
          0
              Year
                                         134 non-null
                                                          int64
              CSIRO Adjusted Sea Level 134 non-null
                                                          float64
          2
              Lower Error Bound
                                         134 non-null
                                                          float64
          3
              Upper Error Bound
                                         134 non-null
                                                          float64
                                                          float64
              NOAA Adjusted Sea Level
                                         21 non-null
         dtypes: float64(4), int64(1)
         memory usage: 5.4 KB
```

Creating a Scatter plot to describe The Original Data

```
In [ ]: x, y= df['Year'], df["CSIRO Adjusted Sea Level"]
plt.scatter(x,y,label="Original Data")
plt.legend()
```

<matplotlib.legend.Legend at 0x1add0766fa0>

<Figure size 640x480 with 1 Axes>


```
In [ ]: #Creating our first line that fits the original data
first_line = linregress(x,y)
first_line
```

LinregressResult(slope=0.0630445840121348, intercept=-119.06594196773978, rvalue=0.9847 57131182585, pvalue=3.7886969791131554e-102, stderr=0.000969211871328715, intercept_std err=1.8869433812425225)

```
In [ ]: last_year = x.max()
   df = df.append([{"Year": y} for y in range(last_year + 1, 2051)])
   df
```

C:\Users\SharQ\AppData\Local\Temp\ipykernel_6292\1956425223.py:2: FutureWarning: The fr ame.append method is deprecated and will be removed from pandas in a future version. Us e pandas.concat instead.

```
df = df.append([{"Year": y} for y in range(last_year + 1, 2051)])
```

```
CSIRO Adjusted Sea Level Lower Error Bound Upper Error Bound \
0
    1880
                           0.000000
                                             -0.952756
                                                                  0.952756
    1881
1
                           0.220472
                                             -0.732283
                                                                  1.173228
2
    1882
                          -0.440945
                                             -1.346457
                                                                  0.464567
3
    1883
                          -0.232283
                                              -1.129921
                                                                  0.665354
    1884
                           0.590551
                                              -0.283465
                                                                  1,464567
     . . .
32
    2046
                                NaN
                                                    NaN
                                                                        NaN
33
    2047
                                NaN
                                                    NaN
                                                                        NaN
34 2048
                                NaN
                                                    NaN
                                                                        NaN
35
    2049
                                NaN
                                                    NaN
                                                                        NaN
36
    2050
                                NaN
                                                    NaN
                                                                        NaN
```

	NOAA	Adjusted	Sea	Level
0				. NaN
1				. NaN
2				. NaN
3				. NaN
4				NaN
33				NaN
34				NaN
35				NaN
36				NaN

[171 rows x 5 columns]

	Year	CSIRO Adjusted Sea Level	Lower Error Bound	Upper Error Bound	NOAA Adjusted Sea Level
0	1880	0.000000	-0.952756	0.952756	NaN
1	1881	0.220472	-0.732283	1.173228	NaN
2	1882	-0.440945	-1.346457	0.464567	NaN
3	1883	-0.232283	-1.129921	0.665354	NaN
4	1884	0.590551	-0.283465	1.464567	NaN
•••					
32	2046	NaN	NaN	NaN	NaN
33	2047	NaN	NaN	NaN	NaN
34	2048	NaN	NaN	NaN	NaN
35	2049	NaN	NaN	NaN	NaN
36	2050	NaN	NaN	NaN	NaN

171 rows × 5 columns

Plotting the line that fits the data

```
In [ ]: plt.plot(x, first_line.intercept + first_line.slope*x, 'r', label='First line')
   plt.legend()
```

<matplotlib.legend.Legend at 0x1add04e5f70>
<Figure size 640x480 with 1 Axes>


```
In [ ]: df_recent = df.loc[(df["Year"] >= 2000) & (df["Year"] <= x.max())]
    bestfit = linregress(df_recent["Year"], df_recent["CSIRO Adjusted Sea Level"])
    df_recent = df_recent.append([{"Year": y} for y in range(last_year + 1, 2051)])

C:\Users\SharQ\AppData\Local\Temp\ipykernel_6292\1020971322.py:3: FutureWarning: The fr
    ame.append method is deprecated and will be removed from pandas in a future version. Us
    e pandas.concat instead.
    df_recent = df_recent.append([{"Year": y} for y in range(last_year + 1, 2051)])</pre>
```

Creating a second line to predict the sea level from year 2000 ---> 2050

<matplotlib.legend.Legend at 0x1adcee9cac0>
<Figure size 640x480 with 1 Axes>

Rise in Sea Level

