Examenul de bacalaureat național 2017 Proba E. c)

Matematică *M_tehnologic*

BAREM DE EVALUARE ŞI DE NOTARE

Varianta 9

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$2 - \frac{1}{2} = \frac{3}{2}$	2p
	$\frac{3}{2}:\frac{1}{2}=\frac{3}{2}\cdot\frac{2}{1}=3$	3p
2.	J(-1) =	2p
	$f(1) = 2 \Rightarrow f(-1) \cdot f(1) = 4$	3 p
3.	2x+2=2	3 p
	x = 0	2p
4.	Mulțimea A are 9 elemente, deci sunt 9 cazuri posibile	2p
	Multiplii de 2 din mulțimea A sunt 22, 44, 66 și 88, deci sunt 4 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{cazuri favorabile}} = \frac{4}{100}$	1 _n
	nr. cazuri posibile 9	1p
5.	$AO = \sqrt{5}$	2p
	$BO = \sqrt{5} \Rightarrow AO = BO$	3 p
6.	$\sin 45^\circ = \frac{\sqrt{2}}{2}, \cos 60^\circ = \frac{1}{2}$	2p
	$\sin^2 45^\circ - \cos^2 60^\circ = \left(\frac{\sqrt{2}}{2}\right)^2 - \left(\frac{1}{2}\right)^2 = \frac{2}{4} - \frac{1}{4} = \frac{1}{4}$	3p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 1 & 3 \\ 3 & 1 \end{vmatrix} = 1 \cdot 1 - 3 \cdot 3 =$	3p
	=1-9=-8	2p
b)	$A \cdot A = \begin{pmatrix} 10 & 6 \\ 6 & 10 \end{pmatrix}, \ 2A = \begin{pmatrix} 2 & 6 \\ 6 & 2 \end{pmatrix}$	3p
	$A \cdot A - 2A = \begin{pmatrix} 10 & 6 \\ 6 & 10 \end{pmatrix} - \begin{pmatrix} 2 & 6 \\ 6 & 2 \end{pmatrix} = \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} = 8 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 8I_2$	2p
c)	$A \cdot B = \begin{pmatrix} 6 & 2+3x \\ 2 & 6+x \end{pmatrix}, B \cdot A = \begin{pmatrix} 6 & 2 \\ 2+3x & 6+x \end{pmatrix}$	2p
	$A \cdot B - B \cdot A = \begin{pmatrix} 0 & 3x \\ -3x & 0 \end{pmatrix} \Rightarrow \det(A \cdot B - B \cdot A) = \begin{vmatrix} 0 & 3x \\ -3x & 0 \end{vmatrix} = 9x^2 \ge 0$, pentru orice număr real x	3p

2.a)	$f(1) = 2 \cdot 1^3 + 3 \cdot 1^2 - 1 - 2 =$	3p
	=2+3-1-2=2	2p
b)	Câtul este $2X^2 + X - 2$	3 p
	Restul este 0	2p
c)	$f = (X+1)(2X^2 + X - 2)$	2p
	$x_1 = -1$, $x_2 = \frac{-1 - \sqrt{17}}{4}$ și $x_3 = \frac{-1 + \sqrt{17}}{4}$ sunt rădăcinile polinomului f	3 p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = 4x^3 - 4x =$	3 p
	$=4x(x^{2}-1)=4x(x-1)(x+1), x \in \mathbb{R}$	2p
b)	$\lim_{x \to +\infty} \frac{x^2 + 1}{f(x) - x^4} = \lim_{x \to +\infty} \frac{x^2 + 1}{-2x^2 + 12} =$	2p
	$= \lim_{x \to +\infty} \frac{1 + \frac{1}{x^2}}{-2 + \frac{12}{x^2}} = -\frac{1}{2}$	3p
c)	f(1)=11, f'(1)=0	2p
	Ecuația tangentei este $y - f(1) = f'(1)(x-1)$, adică $y = 11$	3 p
2.a)	$\int_{1}^{2} (f(x) - 2x + 4) dx = \int_{1}^{2} (3x^{2} + 2x - 4 - 2x + 4) dx = \int_{1}^{2} 3x^{2} dx =$	2p
	$= x^3 \begin{vmatrix} 2 \\ 1 \end{vmatrix} = 8 - 1 = 7$	3р
b)	$F: \mathbb{R} \to \mathbb{R}$, $F(x) = x^3 + x^2 - 4x + c$, unde $c \in \mathbb{R}$	3p
	$F(1) = 2017 \Rightarrow c = 2019$, deci $F(x) = x^3 + x^2 - 4x + 2019$	2p
c)	$\int_{1}^{a} f(x)dx = \left(x^{3} + x^{2} - 4x\right) \Big _{1}^{a} = a^{3} + a^{2} - 4a + 2$	3р
	$a^{3} + a^{2} - 4a + 2 = a^{3} - 2 \Leftrightarrow (a-2)^{2} = 0$, deci $a = 2$	2p