Bias and Variance

- Given an estimator $\hat{\theta}$ for population parameter θ , we define the bias of $\hat{\theta}$ as $\text{Bias}(\hat{\theta}) = \mathbb{E}[\hat{\theta}] \theta$
- $\operatorname{Var}(\hat{\theta}) = \mathbb{E}[(\hat{\theta} \mathbb{E}[\hat{\theta}])^2]$

Bias-Variance Decomposition (expectation of the error) $\mathbb{E}[(y - \hat{f}(x))^2] = \left(\text{Bias}(\hat{f}(x))\right)^2 + \text{Var}(\hat{f}(x)) + \sigma^2$,

Linear Smoother (weighted KNN) For real valued targets, $\hat{y}(x) = \frac{\sum_{i=1}^{n} w_i y_i}{\sum_{i=1}^{n} w_i}$

For categorical valued targets,
$$\hat{y}(x) = argmax_{v \in V} \sum_{i=1}^{n} w_i \delta(v, y_i)$$

where w_i = inverse-distance. (e.g. $1/Dist(x, x_i)$) and v = target values.

p-norm of 2-dimension vector
$$\|x\|_p = (|x_1|^p + |x_2|^p)^{1/p}, p \ge 1.$$
 Note: $\|x\|_p \ge \|x\|_q$ whenever $p < q.$

Min-max Normalisation $x'_{jr} = \frac{x_{jr} - min(x_{jr})}{max(x_{jr}) - min(x_{jr})}, \quad x'_{jr} \in [0, 1]$

Logistic Regression (Sigmoid function) Discriminative classification

$$P(y = 1 \mid x) = \frac{1}{1 + e^{-x^{\top}\beta}}$$

```
Decision rule: If P(y=1\mid x)\geq 0.5 (same as saying x^{\top}\beta\geq 0), then predict class 1 If P(y=1\mid x)<0.5 (same as saying x^{\top}\beta<0), then predict class 0 Loss function: Let \hat{P}(y=1\mid x)=h_{\beta}(x), then J(\beta)=-\frac{1}{m}\sum_{i=1}^{m}\left[y^{(i)}\log\left(h_{\beta}(x^{(i)})\right)+(1-y^{(i)})\log\left(1-h_{\beta}(x^{(i)})\right)\right]
```

Bayesian Expected Loss $\mathbb{E}[L(\alpha_i)] = R(\alpha_i|x) = \sum_{h \in H} \lambda(\alpha_i|h) P(h|x)$ where $\alpha_i = \text{action}, h = \text{hypothesis}$ and $\lambda = \text{cost}$

Bernoulli Naive Bayes Classification Here, a is the feature

$$P(a|+) = \frac{\text{number of email that are } + \text{ and have a}}{\text{number of email that are } +}$$

If test data = aabb, then e = (1, 1, 0) and P(x|+) = P(a|+)P(b|+)(1 - P(c|+)), and $P(+|x|) \propto P(x|+)P(+)$

Multinomial Naive Bayes Classification $P(a|+) = \frac{\text{total number of } a \text{ that are } +}{\text{total number of words that are } +}$ If test data = aabbc, then e = (2, 2, 1) and $P(x|+) = \frac{n!}{x_1!x_2!x_3!}P(a|+)^{x_1}P(b|+)^{x_2}(1-P(c|+))^{x_3}$ where x_1 =number of 'a' in test data $P(+|x|) \propto P(x|+)P(+)$

```
 \begin{split} \textbf{Tree Learning} \quad &Gain(S,A) = Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v) \\ &GainRatio(S,A) = \frac{Gain(S,A)}{SplitEntropy(S,A)} \\ &SplitEntropy(S,A) = - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} \log_2 \frac{|S_v|}{|S|} \\ \end{split}
```

Perceptron Training Unsupervised **linear classifier** (unlike basic linear classification by finding centroids of each class and using vector methods to find weight 'w') $w = \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}$ Here, need to learn α_{i} (number of misclassification on instance i. On dual view, $\hat{y} = \operatorname{sgn}\left(\sum_{i=1}^{n} \alpha_{i} y_{i} \langle x_{i}, x \rangle\right)$

Perceptron learning algorithm

```
Initialize \alpha_i \leftarrow 0 for all i converged \leftarrow false while not converged do converged \leftarrow true for i=1 to |D| do if y_i\left(\sum_{j=1}^{|D|}\alpha_jy_j\langle x_j,x_i\rangle\right)\leq 0 then \alpha_i\leftarrow\alpha_i+1 converged \leftarrow false end if end for end while
```

SVM algorithm A linear classifier

•
$$\arg\max_{\boldsymbol{\alpha}} \left(-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} G'[i,j] + \sum_{i=1}^{n} \alpha_{i} \right)$$
 subject to: $\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$, $\alpha_{i} \geq 0$ for $i = 1, \ldots, n$ where $G' \equiv X'(X')^{T}$ and $X' = \begin{bmatrix} x_{1}^{T} y_{1} \\ x_{2}^{T} y_{2} \\ \vdots \\ x_{n}^{T} y_{n} \end{bmatrix} \in \mathbb{R}^{n \times p}$ (feature vector x_{i} is aligned horizontally), $n = \text{number of samples}$

- reduce one α term using $\sum_{i=1}^{n} \alpha_i y_i = 0$, $\alpha_i \geq 0$
- Compute partial derivative on the above equation w.r.t each α and set them to zero to solve for all α . (for support vectors, $\alpha_i \neq 0$
- find **w** by $w = \sum_{i=1}^{n} \alpha_i y_i x_i$ where $x_i \in \text{support vectors}$
- find t by $y_i(\langle w, x_i \rangle t) = 1$ where x_i is one support vector
- find margin $m = \frac{1}{\|w\|}$

Prediction $\hat{y} = \operatorname{sgn}(w \cdot x - t)$

Prediction is fast coz of spare support vectors (i.e. not all $\alpha_i > 0$) For **non-linear** SVM, can use Kernel trick $\hat{y} = \operatorname{sgn}\left(\sum_{\alpha_i>0} \alpha_i y_i K(x_i,x) - t\right)$

AdaBoost Input: data D = (X, y), ensemble size T, learning algorithm A (decision stump) Output: weighted ensemble of models

- 1. Initialise weights: $w_{1i} \leftarrow 1/|D|$ for all $x_i \in D$
- 2. for t = 1, ..., T:
 - run A on D with weights w_{ti} to produce a model M_t
 - calculate weighted error ϵ_t where $\epsilon_t = \sum_{i=1}^n w_{t,i} \mathbb{I}\{y_i \neq \hat{y}_i\}$ ($\mathbb{I}\{y_i \neq \hat{y}_i\}$ is equal to 1 if $y_i \neq \hat{y}_i$ and zero otherwise.)
 - $\alpha_t \leftarrow \frac{1}{2} \log \frac{1-\epsilon_t}{\epsilon_t}$

 - $w_{(t+1)i} \leftarrow \frac{w_{ti}}{2\epsilon_t}$ for misclassified instances $x_i \in D$ $w_{(t+1)j} \leftarrow \frac{w_{ti}}{2(1-\epsilon_t)}$ for correctly classified instances $x_j \in D$
- 3. return $M(x) = \text{sign}\left(\sum_{t=1}^{T} \alpha_t M_t(x)\right)$ (i.e. $M(x) \ge 0 \implies (+)$ class and $M(x) < 0 \implies (-)$ class)

Neural Learning

Cross-Entropy Loss For binary classification with $y_i \in \{0,1\}$, $L(w) = -\sum_{i=1}^{N} [y_i \log(p_i) + (1-y_i) \log(1-p_i)]$, where p_i is probability function which contains w

Gradient Descent at j-th layer i-th perceptron (node in NN): $w_{ji}^{(t+1)} = w_{ji}^{(t)} - \eta \left[\frac{\partial L(w)}{\partial w_{i}^{(t)}} \right]$

PAC Learnable $P(error_D(h) \le \epsilon) > 1 - \delta$

Probability that Version Space is not ϵ exhausted $P(error_D(h) > \epsilon) < |H|e^{-\epsilon m} < \delta$ where m is the number of samples.

For probability to be below δ , need to fulfill $m \ge \frac{1}{\epsilon} \left(\ln(|H|) + \ln\left(\frac{1}{\delta}\right) \right)$ (for finite Hypothesis space) $m \ge \frac{\epsilon}{\epsilon} \left(4\log_2(2/\delta) + 8VC(H)\log_2(13/\epsilon)\right)$ (for infinite Hypothesis space with finite VC dimension) where $m \propto H$, $m \propto \frac{1}{\epsilon}$ and $m \propto \frac{1}{\delta}$

For hypotheses that are not consistent (i.e. not part of Version Space) $P(testError_D(h_{best}) > trainError_D(h_{best}))$ $|\epsilon| \le |H| e^{-2m\epsilon^2} < \delta$ $m \geq \frac{1}{2\epsilon^2} \left(\ln(|H|) + \ln\left(\frac{1}{\delta}\right) \right)$ Need to fulfill

For linear classifiers For d dimensions (features), number of parameters for classifier is d+1, and VC dimension is also d+1.

For finite Hypothesis space For d data points where VC(H) = d, $|H| \ge 2^d \implies d \le \log_2 |H|$

Theorem H is PAC-learnable if and only if VC dimension is finite