Example

Exercise. If $h: \mathbb{R}^n \to \mathbb{R}$ is convex, and if $\theta: \mathbb{R} \to \mathbb{R}$ is convex and increasing, then $f(x) = \theta(h(x))$ is convex. That is, for any $x, y \in \mathbb{R}^n$ and $\lambda \in [0, 1]$,

$$(\theta \circ h)(\lambda x + (1 - \lambda)y) \le \lambda(\theta \circ h)(x) + (1 - \lambda)(\theta \circ h)(y).$$

Proof. Let $h: \mathbb{R}^n \to \mathbb{R}$ be convex and $\theta: \mathbb{R} \to \mathbb{R}$ be convex and increasing. Take $x,y \in \mathbb{R}^n, \lambda \in [0,1]$. By convexity of h, we have

$$h(\lambda x + (1 - \lambda)y) \le \lambda h(x) + (1 - \lambda)h(y),$$

and therefore:

$$\begin{split} \theta[h(\lambda x + (1-\lambda)y)] &\leq \theta[\lambda h(x) + (1-\lambda)h(y)] & \text{by monotonicity of } \theta \\ &\leq \lambda \theta(h(x)) + (1-\lambda)\theta(h(y)). & \text{by convexity of } \theta \end{split}$$