V407

Fresnelsche Formeln

Fritz Agildere fritz.agildere@udo.edu Amelie Strathmann amelie.strathmann@udo.edu

Durchführung: 2. Mai 2023 Abgabe:

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Zielsetzung	2
2	Theorie	2
3	Durchführung	3
4	Auswertung	3
5	Diskussion	4
Ar	Anhang	

1 Zielsetzung

Ziel des Versuches ist es, die Intensität von einfallender Strahlung und an der SI-Oberfläche reflektierter Strahlung in Abhängigkeit des Einfallswinkels zu messen. Anschließend werden die experimentel bestimmten Werte mit den theorethischen Werten verglichen.

2 Theorie

Als Grundlage des Versuches dient die elektromagnetische Wellentheorie, wobei die Ausbreitung von Licht mit Hilfe der Maxwellschen Gleichungen

$$\nabla \times \vec{H} = \vec{j} + \varepsilon \varepsilon_0 \partial_t \vec{E} \quad \text{und} \tag{1}$$

$$\nabla \times \vec{E} = -\mu \mu_0 \partial_t \vec{H} \tag{2}$$

beschrieben wird. Im folgenden werden nicht-ferromagnetische und nicht elektrisch leitende Materialien betrachtet, somit gilt $\mu \approx 1$ und $\vec{j} = 0$. Die elektrische und magnetische Arbeit

$$\begin{split} W_{\text{elektrisch}} &\coloneqq \frac{1}{2}\varepsilon\varepsilon_0 \vec{E}^2 \quad \text{und} \\ W_{\text{magnetisch}} &\coloneqq \frac{1}{2}\mu_0 \vec{H}^2 \end{split}$$

stellen den Zusammenhang zwischen Energie pro Volumeneinheit eines elektrischen beziehungsweise magnetischen Feldes dar. Der Poynting Vektor

$$\vec{S} = \vec{E} \times \vec{H} \quad \text{und} \tag{3}$$

$$|\vec{S}| = v\varepsilon\varepsilon_0 \vec{E}^2 \tag{4}$$

besitzt die Dimension Leistung/Fläche und stellt die Strahlungsleistung pro Flächeneinheit eines elektromagnetischen Feldes dar. Beim Einfallen einer Welle aus dem Vakuum auf eine Grenzfläche unter einem Winkel α , wird ein Bruchteil dieser refelktiert und der andere dringt in das Medium ein. Der Lichtstrahl, welcher in das Medium eindringt erfährt eine Richtungsänderung und wird so gebrochen, dass der Beugungswinkel $\beta < \alpha$ ist. Es werden nur nicht absorbierende Medien verwendet und es gilt somit

$$S_e F_e = S_r F_e + S_d F_d \quad \text{oder}$$
$$S_e \cos \alpha = S_r \cos \alpha + S_d \cos \beta.$$

Für den Brechnungsindex ergibt sich das Verhältnis

$$n = \frac{c}{v}. (5)$$

Aus den Maxwellschen Gelichungen (2) ergibt sich die Maxwellsche Relation

$$n = \varepsilon^2. (6)$$

3 Durchführung

4 Auswertung

Abbildung 1

Abbildung 2

5 Diskussion

Anhang