Winter 2025 Instructor: Will Pazner

Preconditioning Saddle-Point Systems

1 MINRES

Consider the saddle-point problem

$$\underbrace{\begin{pmatrix} A & B^T \\ B & 0 \end{pmatrix}}_{\mathcal{A}} \underbrace{\begin{pmatrix} u \\ p \end{pmatrix}}_{x} = \underbrace{\begin{pmatrix} f \\ g \end{pmatrix}}_{b}.$$

We assume that

- 1. A is a symmetric, positive-definite $n \times n$ matrix
- 2. B is a full-rank $m \times n$ matrix $(n \ge m, B \text{ has independent rows})$

These two conditions are sufficient to ensure that the matrix \mathcal{A} is invertible. We saw previously that \mathcal{A} has n positive eigenvalues and m negative eigenvalues. Since \mathcal{A} is not SPD, we cannot use conjugate gradient. Instead, we use the "minimal residual method". This method generates the same iterates as GMRES (up to round-off differences), but uses a **short-term recurrence**. This is because the Arnoldi algorithm simplifies to the following Lanczos algorithm.

Algorithm 1 Lanczos Algorithm (simplification of Arnoldi for symmetric A)

```
1: \mathbf{q}_0 \leftarrow 0
2: \boldsymbol{z} \leftarrow \boldsymbol{b}
                                                                                                                                             ▶ First Krylov vector
3: for k = 1, 2, ..., m do
            \beta \leftarrow \|\boldsymbol{z}\|
            q_k \leftarrow z/\beta
                                                                                                                                                                ▶ Normalize
            z \leftarrow Aq_k
                                                                                                                          ▶ Next vector to orthogonalize
6:
            \boldsymbol{z} \leftarrow \boldsymbol{z} - \beta \boldsymbol{q}_{k-1}
7:
                                                                                                                             \triangleright Orthogonalize against q_{k-1}
            oldsymbol{z} \leftarrow oldsymbol{z} - (oldsymbol{z}^T oldsymbol{q}_k) oldsymbol{q}_k
                                                                                                                                  \triangleright Orthogonalize against q_k
9: end for
```

The convergence behavior of MINRES for indefinite problems is more complicated than for definite problems. Since at step k the residual ||b - Ax|| is minimized among all $x \in \mathcal{K}_k(A, \mathbf{b})$, it follows that

$$||b - Ax|| = \min_{p \in \mathcal{P}_k} ||p(A)b||.$$

In the above, \mathcal{P}_k is the set of all polynomials of degree at most k (taking the value 1 at the origin). The right-hand side includes the quantity $p(\mathcal{A})$, which is the polynomial evaluated

using the matrix \mathcal{A} as the variable. Since \mathcal{A} is symmetric (hence diagonalizable), we can write

$$\mathcal{A} = V\Lambda V^{-1}, \quad \Lambda \text{ diagonal.}$$

From this, we can derive

$$\begin{split} \|b - \mathcal{A}\boldsymbol{x}\| &= \min_{p \in \mathcal{P}_k} \|p(\mathcal{A})\boldsymbol{b}\| \\ &\leq \min_{p \in \mathcal{P}_k} \|p(\mathcal{A})\| \|\boldsymbol{b}\| \\ &= \min_{p \in \mathcal{P}_k} \|p(V\Lambda V^{-1})\| \|\boldsymbol{b}\| \\ &= \min_{p \in \mathcal{P}_k} \|Vp(\Lambda)V^{-1}\| \|\boldsymbol{b}\| \\ &\leq \|V\| \|V^{-1}\| \|\boldsymbol{b}\| \min_{p \in \mathcal{P}_k} \|p(\Lambda)\| \\ &= \kappa(V) \|\boldsymbol{b}\| \min_{p \in \mathcal{P}_k} \max_{\lambda_j} \|p(\lambda_j)\| \\ &= \|\boldsymbol{b}\| \min_{p \in \mathcal{P}_k} \max_{\lambda_j} \|p(\lambda_j)\|, \end{split}$$

since \mathcal{A} has orthonormal eigenvectors, so $||V|| = ||V^{-1}|| = 1$. In the above, λ_j is the jth eigenvalue of \mathcal{A} .

We can therefore bound the relative residual $||r_k||/||b||$ by estimating the min-max problem for polynomials. For indefinite matrices, the min-max problem becomes complicated. Suppose the eigenvalues λ_i lie in the intervals

$$\lambda_j \in [\mu_1, \mu_2] \cup [\nu_1, \nu_2], \qquad \mu_1, \mu_2 < 0, quad\nu_1, \nu_2 > 0.$$

If $\mu_2 - \mu_1 = \nu_2 - \nu_1$, then it is possible to prove the following bound

$$\min_{p \in \mathcal{P}_k} \max_{\lambda_j} \|p(\lambda_j)\| \le 2 \left(\frac{\sqrt{|\mu_1 \nu_2|} - \sqrt{|\mu_2 \nu_1|}}{\sqrt{|\mu_1 \nu_2|} + \sqrt{|\mu_2 \nu_1|}} \right)^{\lceil k/2 \rceil}$$
(1)

For example, suppose $\mu_1 = -1$, $\nu_2 = 1$ and $-\mu_2 = \nu_1 = \kappa^{-1}$. Then, (1) reduces to

$$\min_{p \in \mathcal{P}_k} \max_{\lambda_j} \|p(\lambda_j)\| \le 2 \left(\frac{\kappa - 1}{\kappa + 1}\right)^{\lceil k/2 \rceil}.$$

Compare this to the bound for CG applied to a positive-definite matrix:

(CG bound)
$$2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^k$$
.

This means that the bound for MINRES on a matrix with condition number κ at step 2k corresponds to the bound for CG on a matrix with condition number κ^2 at step k; we could expect that MINRES with condition number κ will take twice the number of steps as CG with condition number κ^2 . This bound is not sharp, and in practice we may do better. For indefinite matrices where the intervals are of different lengths, the bounds are much more complicated.

2 Preconditioning

Since convergence bounds depend on the eigenvalue distribution of the matrix \mathcal{A} , it makes sense to look for a **preconditioner** \mathcal{M} such that $\mathcal{M}\mathcal{A}$ has a more favorable distribution of eigenvalues. Although MINRES works for any symmetric matrix, even if \mathcal{M} is symmetric, $\mathcal{M}\mathcal{A}$ will generally not be symmetric, and so we cannot apply MINRES to $\mathcal{M}\mathcal{A}$. (We could apply GMRES; this may increase computational cost and memory requirements). Instead, we look for **SPD** preconditioners \mathcal{M} that admit factorization $\mathcal{M} = EE^T$. Then, we apply MINRES to $E\mathcal{A}E^T$; this matrix has the same eigenvalues as $\mathcal{M}\mathcal{A}$. This is equivalent to minimizing the residual in the norm induced by \mathcal{M} (rather than minimizing in the Euclidean norm). It is important to note: the factorization E is never needed in the actual algorithm. Instead, only the action of the matrix \mathcal{M} is needed.

As before, define the **Schur complement** S by

$$S = -BA^{-1}B^{T}.$$

Since A is SPD and B is full row rank, the Schur complement is negative definite. Consider the **block-diagonal** preconditioner

$$\mathcal{D} = \begin{pmatrix} A^{-1} & 0 \\ 0 & -S^{-1} \end{pmatrix}.$$

It is immediate that \mathcal{D} is symmetric and positive-definite. We consider the spectrum of \mathcal{DA} .

Theorem 1. Let \mathcal{D} be the block-diagonal preconditioner defined above. Then the only distinct eigenvalues of \mathcal{DA} are

$$1, \frac{1}{2}(1+\sqrt{5}), \frac{1}{2}(1-\sqrt{5}).$$

Proof. Let λ be an eigenvalue of \mathcal{DA} , i.e.

$$A\boldsymbol{x} + B^T \boldsymbol{y} = \lambda A \boldsymbol{x},$$
$$B\boldsymbol{x} = \lambda S \boldsymbol{y},$$

for some $(\boldsymbol{x},\boldsymbol{y})\neq 0$. Multiplying the first equation by BA^{-1} and eliminating \boldsymbol{x} , we obtain

$$(\lambda^2 - \lambda - 1)S\mathbf{y} = 0. (2)$$

For $y \neq 0$, this implies that

$$\lambda^2 - \lambda - 1 = 0,$$

from which we obtain the second two eigenvalues. If y = 0, then the first equation implies $\lambda = 1$.

From this, we can conclude that MINRES with \mathcal{D} as a preconditioner will converge in at most three iterations. (Why?)

This preconditioner can also be applied to the slightly more general saddle-point system

$$\mathcal{A} = \begin{pmatrix} A & B^T \\ B & -C \end{pmatrix},$$

where C is symmetric and positive-semidefinite.

Theorem 2. Let \mathcal{D} be the block-diagonal preconditioner, with $S = C + BA - 1B^T$ is the (negative) Schur complement of \mathcal{A} with respect to the (1,1)-block. This preconditioner is optimal in the sense that

$$\sigma(\mathcal{DA}) \subseteq \left[-1, (1-\sqrt{5})/2\right) \cup \left[1, (1+\sqrt{5})/2\right) \text{ and } \kappa(\mathcal{DA}) \le \frac{\sqrt{5}+1}{\sqrt{5}-1} \approx 2.618\dots$$

Proof. Let λ be an eigenvalue of $\mathcal{D}^{-1}\mathcal{A}$, i.e.

$$A\boldsymbol{x} + B^T \boldsymbol{y} = \lambda A \boldsymbol{x},$$

$$B\boldsymbol{x} - C \boldsymbol{y} = \lambda S \boldsymbol{y},$$

for some $(x, y) \neq 0$. Multiplying the first equation by BA-1 and eliminating x, we obtain

$$\left(\lambda C + (\lambda^2 - \lambda - 1)S\right) \mathbf{y} = 0. \tag{3}$$

Considering the case $\lambda \neq 1$, we have $\mathbf{y} \neq 0$ and so $(S\mathbf{y}, \mathbf{y}) \geq (C\mathbf{y}, \mathbf{y}) > 0$. Equation (3) then implies that

$$\lambda(C\boldsymbol{y},\boldsymbol{y}) + (\lambda^2 - \lambda - 1)(S\boldsymbol{y},\boldsymbol{y}) = 0,$$

and so λ and $(\lambda^2 - \lambda - 1)$ must have opposite signs. We consider the two cases:

- If $\lambda > 0$ then this implies $\lambda^2 \lambda 1 < 0$ and so $\lambda < (\sqrt{5} + 1)/2$. On the other hand, $(C\boldsymbol{y}, \boldsymbol{y}) \leq (S\boldsymbol{y}, \boldsymbol{y})$ implies $\lambda(S\boldsymbol{y}, \boldsymbol{y}) + (\lambda^2 \lambda 1)(S\boldsymbol{y}, \boldsymbol{y}) \geq 0$, and so $\lambda^2 \geq 1$, and $\lambda \in [1, (\sqrt{5} + 1)/2)$.
- If $\lambda < 0$ then $\lambda^2 \lambda 1 > 0$ and so $\lambda < (1 \sqrt{5})/2$. By the same reasoning as above, $\lambda^2 \le 1$, so $\lambda \ge -1$, and $\lambda \in [-1, (1 \sqrt{5})/2)$.

In general, we say a preconditioner \mathcal{M} is **optimal** if there exist constants c and C such that

$$c\mathbf{x}^{T}\mathcal{M}\mathbf{x} \leq \mathbf{x}^{T}\mathcal{A}^{-1}\mathbf{x} \leq C\mathbf{x}^{T}\mathcal{M}\mathbf{x}.$$
 (4)

The above results show that \mathcal{D} is an optimal preconditioner for \mathcal{A} .

Using block-diagonal preconditioning, we can reduce the problem of finding an optimal preconditioner for the indefinite saddle-point system to two positive-definite problems, one for A and one for -S. However, each of these problems may be very large, and we cannot practically compute either A^{-1} or $-S^{-1}$. It suffices to find spectrally equivalent approximations $B_A \sim A^{-1}$ and $B_S \sim -S^{-1}$, and then to use the preconditioner

$$\mathcal{B} = \begin{pmatrix} B_A & 0 \\ 0 & B_S \end{pmatrix}.$$

This can be seen as follows. We say B_A is spectrally equivalent to A^{-1} if there exist constants c and C such that

$$c\boldsymbol{x}^T B_A \boldsymbol{x} \leq \boldsymbol{x}^T A^{-1} \boldsymbol{x} \leq C \boldsymbol{x}^T B_A \boldsymbol{x}.$$

This is equivalent to saying that the spectrum of B_AA lies in the interval [c, C]. Spectral equivalence for the individual blocks B_A and B_S implies that there exist constants c and C such that

$$c\mathbf{x}^T \mathcal{B} \mathbf{x} \le \mathbf{x}^T \mathcal{D} \mathbf{x} \le C \mathbf{x} \mathcal{B} \mathbf{x}. \tag{5}$$

Combining (4) and (5), we see that \mathcal{B} is also an optimal preconditioner for \mathcal{A} . This means that we can replace the blocks in \mathcal{D} with spectrally equivalent blocks and we pay only a constant factor.

Preconditioning A is standard; for the Stokes problem, this is a Laplace operator. We will see approaches including domain decomposition and multigrid to address this problem. The Schur complement $S = -BA^{-1}B^{T}$ is more challenging, because the matrix S is defined in terms of the **inverse** of A, and so approximating $-S^{-1}$ can be difficult. This is usually problem-specific

In the case of Stokes, we have the following result.

Theorem 3. Let S be the Schur complement of the Stokes system, $S = -BA^{-1}B^{T}$, where A is the (Laplacian) stiffness matrix, and B is the divergence matrix. Let M be the mass matrix defined on the pressure space P, i.e.

$$\boldsymbol{q}^T M \boldsymbol{p} = (q, p)_{L^2(\Omega)}.$$

Then,

$$\beta^2 \boldsymbol{x}^T M \boldsymbol{x} \leq \boldsymbol{x}^T (-S) \boldsymbol{x} \leq \boldsymbol{x}^T M \boldsymbol{x}$$

where β is the inf-sup constant for the velocity and pressure spaces.

Proof. The inf–sup condition is

$$\inf_{q \in P} \sup_{v \in V} \frac{b(v, q)}{\|v\|_V \|q\|_P} \ge \beta.$$

In matrix form, this is

$$\inf_{\boldsymbol{q}} \sup_{\boldsymbol{v}} \frac{\boldsymbol{q}^T B \boldsymbol{v}}{(\boldsymbol{v}^T A \boldsymbol{v})^{1/2} (\boldsymbol{q}^T M \boldsymbol{q})^{1/2}} \geq \beta.$$

Setting $\boldsymbol{w} = A^{1/2}\boldsymbol{v}$, this gives

$$\begin{split} \beta & \leq \inf_{\boldsymbol{q}} \sup_{\boldsymbol{w} = A^{1/2}\boldsymbol{v}} \frac{\boldsymbol{q}^T B A^{-1/2} \boldsymbol{w}}{(\boldsymbol{w}^T \boldsymbol{w})^{1/2} (\boldsymbol{q}^T M \boldsymbol{q})^{1/2}} \\ & = \inf_{\boldsymbol{q}} \sup_{\boldsymbol{w} = A^{1/2}\boldsymbol{v}} \frac{(A^{-1/2} B^T \boldsymbol{q})^T \boldsymbol{w}}{(\boldsymbol{w}^T \boldsymbol{w})^{1/2} (\boldsymbol{q}^T M \boldsymbol{q})^{1/2}} \\ & = \inf_{\boldsymbol{q}} \frac{((A^{-1/2} B^T \boldsymbol{q})^T A^{-1/2} B^T \boldsymbol{q})^{1/2}}{(\boldsymbol{q}^T M \boldsymbol{q})^{1/2}} \\ & = \inf_{\boldsymbol{q}} \frac{(\boldsymbol{q}^T B A^{-1} B^T \boldsymbol{q})^{1/2}}{(\boldsymbol{q}^T M \boldsymbol{q})^{1/2}} \end{split}$$

which gives the lower bound.

For the upper bound,

$$(q, \nabla \cdot \boldsymbol{v}) \le \|q\|_{L^2} \|\nabla \cdot \boldsymbol{v}\|_{L^2} \le \|q\|_{L^2} \|\nabla \boldsymbol{v}\|_{L^2}.$$

In matrix form,

$$\boldsymbol{q}^T B \boldsymbol{v} \le (\boldsymbol{q}^T M \boldsymbol{q})^{1/2} (\boldsymbol{v}^T A \boldsymbol{v})^{1/2}.$$

Repeating a similar argument as above, letting $\boldsymbol{w} = A^{1/2}\boldsymbol{v},$ we obtain

$$\frac{\boldsymbol{q}^T B A^{-1} B^T \boldsymbol{q}}{\boldsymbol{q}^T \boldsymbol{q}} \leq \frac{\boldsymbol{q}^T M \boldsymbol{q}}{\boldsymbol{q}^T \boldsymbol{q}}.$$

As a consequence of this result, we can choose $B_S = M^{-1}$, where M is the pressure mass matrix. We showed that $\kappa(M) = \mathcal{O}(1)$ (its maximum and minimum eigenvalues are both on the order of h^2), and so we can further replace M^{-1} with a simple approximation like its diagonal.