Name:	Umair Nadeem	EE-272L Digital Systems Design
Reg. No.:	<u>2023-EE-115</u>	Marks Obtained:

Lab Manual

Experiment 4

Combinational Circuit Design: RGB LED using K-Maps

DSD Lab Manual Evaluation Rubrics

Assessment	Total Marks	Marks Obtained	0-30%	30-60%	70-100%
Code Organization	3		No Proper Indentation and descriptive naming, no code organization.	Proper Indentation or descriptive naming or code organization.	Proper Indentation and descriptive naming, code organization.
(CLO1)			Zero to Some understanding but not working	Mild to Complete understanding but not working	Complete understanding, and proper working
Simulation (CLO2)	5		Simulation not done or incorrect, without any understanding of waveforms	Working simulation with errors, don't cares's(x) and high impedance(z), partial understanding of waveforms	Working simulation without any errors, etc and complete understanding of waveforms
FPGA (CLO2)	2	Not implemented on FPGA and questions related to synthesis and implementation not answered.		Correctly Implemented on FPGA or questions related to synthesis and implementation answered.	Correctly Implemented on FPGA and questions related to synthesis and implementation answered.

TASKS:

a. Truth Table of the Circuit:

a[1]	a[0]	<i>b</i> [1]	<i>b[0]</i>	a > b	a = b	a < b	Red	Green	Blue
				Purple	Yellow	Cyan			
0	0	0	0	0	1	0	1	1	0
0	0	0	1	0	0	1	0	1	1
0	0	1	0	0	0	1	0	1	1
0	0	1	1	0	0	1	0	1	1
0	1	0	0	1	0	0	1	0	1
0	1	0	1	0	1	0	1	1	0
0	1	1	0	0	0	1	0	1	1
0	1	1	1	0	0	1	0	1	1
1	0	0	0	1	0	0	1	0	1
1	0	0	1	1	0	0	1	0	1
1	0	1	0	0	1	0	1	1	0
1	0	1	1	0	0	1	0	1	1
1	1	0	0	1	0	0	1	0	1
1	1	0	1	1	0	0	1	0	1
1	1	1	0	1	0	0	1	0	1
1	1	1	1	0	1	0	1	1	0

b. K-map:

1. RED

a[1] a[0] \ b[1] b[0]	00	01	11	10
00	1	0	0	0
01	1	1	0	0
11	1	1	1	1
10	1	1	0	1

Equation using essential prime implicants:

$$red = (\sim b1 \& \sim bo) | (ao \& \sim b1) | (a1 \& \sim b1) | (a1 \& ao) | (a1 \& \sim bo)$$

2. GREEN

a[1] a[0] \ b[1] b[0]	00	01	11	10	
00	1	1	1	1	
01	0	1	1	1	
11	0	0	1	0	
10	0	0	1	1	

Equation using essential prime implicants:

3. BLUE

a[1] a[0] \ b[1] b[0]	00	01	11	10	
00	0	1	1	1	
01	1	0	1	1	
11	1	1	0	1	
10	1	1	1	0	

Equation using essential prime implicants:

blue =
$$(a1 \wedge b1) | (ao \wedge bo)$$

c.

d. Circuit diagram:

e. Combinational Delay:

Q Combinational Delays									
From Port	To Port	Max Delay	Max Process Corner	Min Delay	Min Process Corner				
a[0]	√ blue	9.175	SLOW	2.819	FAST				
a[0]	green	8.819	SLOW	2.624	FAST				
a[0]	√ red	8.981	SLOW	2.707	FAST				
a[1]	√ blue	8.451	SLOW	2.551	FAST				
a[1]	green	8.059	SLOW	2.363	FAST				
a[1]	√ red	8.255	SLOW	2.442	FAST				
▶ b[0]	√ blue	9.001	SLOW	2.746	FAST				
▶ b[0]	green	8.653	SLOW	2.564	FAST				
b[0]	√ red	8.817	SLOW	2.649	FAST				
b[1]	√ blue	9.311	SLOW	2.911	FAST				
b[1]	green	9.052	SLOW	2.751	FAST				
b[1]	✓ red	9.216	SLOW	2.831	FAST				

Maximum Combinational delay is from b[1] to blue which is 9.311 ns.

f. Resource Utilization:

The number of LUTs utilized is 2, and the number of IO ports utilized is 7

1. Slice Logic

+-	Site Type	-+ 	Used	•		-+ 	Available	-+- 	Util%	-+
1	Slice LUTs*	1	2	1	0	i	63400	1	<0.01	ı
1	LUT as Logic		2	I	0	I	63400	1	<0.01	I
I	LUT as Memory	1	0	I	0	I	19000	1	0.00	1
1	Slice Registers	1	0	1	0	I	126800	1	0.00	I
I	Register as Flip Flop	I	0	I	0	1	126800	1	0.00	1
I	Register as Latch	I	0	I	0	1	126800	1	0.00	1
1	F7 Muxes	1	0	I	0	1	31700	1	0.00	1
1	F8 Muxes	1	0	1	0	1	15850	1	0.00	1
+-		+		+		+		+-		-+

4. IO and GT Specific

+-		+-		+		+		+	+
I	Site Type	I	Used	1	Fixed	I	Available	1	Util%
+-	Bonded IOB	-+-	7	1	0	+	210	-+	3.33
Ī	Bonded IPADs	Ī	0	Ī	0	i	2	Ī	0.00
I	PHY_CONTROL	1	0	I	0	I	6	I	0.00
ľ	PHASER_REF	1	0	I	0	1	6	1	0.00
1	OUT_FIFO	1	0	1	0	1	24	1	0.00
1	IN_FIFO	1	0	I	0	I	24	I	0.00
1	IDELAYCTRL	1	0	I	0	I	6	I	0.00
1	IBUFDS	1	0	I	0	1	202	1	0.00
1	PHASER_OUT/PHASER_OUT_PHY	1	0	1	0	1	24	1	0.00
1	PHASER_IN/PHASER_IN_PHY	1	0	I	0	I	24	I	0.00
1	IDELAYE2/IDELAYE2_FINEDELAY	I	0	I	0	1	300	I	0.00
1	ILOGIC	1	0	I	0	1	210	I	0.00
I	OLOGIC	1	0	I	0	I	210	I	0.00
+-		+-		+		+		+	+