OBJEKTUM ELVŰ ALKALMAZÁSOK FEJLESZTÉSE Dokumentáció - 1. Beadandó feladat

Név: Lombosi BalázsCsoport: 6.Neptun kód: D3BA80Feladatszám: 2.Elérhetőség:2015. szeptember 28.

lombosi.balazs@gmail.com

Feladatleírás

Valósítsa meg az egész számokat tartalmazó felsőháromszög mátrixtípust (a mátrixok a főátlójuk alatt csak nullát tartalmaznak)! Ilyenkor elegendő csak a főátló és afeletti elemeket reprezentálni egy sorozatban, amelyet egy dinamikus helyfoglalású tömbben helyezzünk el. Implementálja önálló metódusként a mátrix iedik sorának j-edik elemét visszaadó műveletet, valamint hatékony összeadás és szorzás műveleteket, továbbá a mátrix (négyzetes alakú) kiírását, és végül a másoló konstruktort és az értékadás operátort!

Típusérték-halmaz

$$Matrix(m) = \{a \in \mathbb{Z}^{m*m} \mid m \in \mathbb{N} \land \forall i, j \in [1..m] : i > j \rightarrow a[i][j] = 0 \}$$

Típus műveletek

1.Lekérdezés

$$A = Matrix(_meret) \times \mathbb{Z}_i \times \mathbb{Z}_j \times \mathbb{Z}_e$$

$$Q = (m = m' \land i = i' \land j = j' \land i, j \in [0.._meret])$$

$$R = (Q \land e = a[i][j])$$

2.Felülírás

$$A = Matrix(_meret) \times \mathbb{Z}_i \times \mathbb{Z}_j \times \mathbb{Z}_{szam}$$

$$Q = (m = m' \land i = i' \land j = j' \land i, j \in [1.._meret] \land szam = szam' \land i \leq j)$$

$$R = (i = i' \land j = j' \land a[i][j] = szam \land \forall k, l \in [1.._meret] : (k \neq i \lor l \neq j) \rightarrow a[k, l] = a'[k, l])$$

3.Összeadás

$$A = Matrix(_meret) \times Matrix(_meret) \times Matrix(_meret)$$

$$Q = (a = a' \land b = b')$$

$$R = (Q \land \forall i, j \in [1...meret] : c[i][j] = a[i][j] + b[i][j])$$

4.Szorzás

$$A = Matrix(_meret) \times Matrix(_meret) \times Matrix(_meret)$$

$$Q = (a = a' \land b = b')$$

$$R = (Q \land \forall i, j \in [1.._meret] : c[i][j] = a[i][j] * b[i][j])$$

Reprezentáció

Az n*n-es felsőháromszög mátrixot (csak a főátló és felett tartalmaz nem nulla elemeket), az egész mátrixot ábrázolva valósítjuk meg a programba, ügyelve arra, hogy a főátló alatti elemek mind nulla.

Implementáció

1.Lekérdezés

Az m mátrix i-edik sorának j-edik elemét visszaadó e:=m[i][j] értékadás programmal implementálható feltéve, hogy i $\leq j$ és i,j \in [1..n],ahol n a mátrix mérete.

$$\begin{array}{c|c}
i \leq j & / \\
e := m[i][j] & -
\end{array}$$

2. Felülírás Az m mátrix i-edik sorának j-edik elemét felülíró m[i][j]:=szam értékadás programmal implementálható feltéve, hogy i $\leq j$ és i,j \in [1..n], ahol n a mátrix mérete.

$$\begin{array}{|c|c|c|c|c|} \hline & & & & \\ \hline m[i][j] = szam & & - & \\ \hline \end{array}$$

3.Összeadás

$$\forall i,j \in [1.._meret] : c[i][j] = a[i][j] + b[i][j]$$

4.Szorzás

$$\forall i,j \in [1.._meret] : c[i][j] = a[i][j] * b[i][j]$$

Osztály

Matrix	Exceptions
meret: int	
matrix: int**	
+Matrix(int)	
+Berak(int,int int): void	
+Kiolvas(int, int): int	
+Size(int): void	+OVERINDEXED
+operator+(Matrix,Matrix): Matrix	+NULLPART
+operator=(Matrix,Matrix): Matrix	+DIFFERENT
+operator*(Matrix,Matrix): Matrix	
+operator«(Matrix): Matrix	
+operator»(Matrix): Matrix	

Az osztály-definíciót a matrix.h fejállományban helyezzük el.

Tesztelési terv:

- 1) Különféle méretű mátrixok létrehozása, feltöltése és kiírása
 - a) 0,1,2,5 dimenziójú mátrix
 - b) Az a+b illetve a*b kifejezés kiíratása
- 2) Mátrix adott pozíciójú értékének lekérdezése és megváltoztatása.
 - a) Hibás pozíció megadása.
 - b) Felső-háromszög mátrixba eső elem lekérdezése
 - c) Felső-háromszög mátrixba eső elem megváltoztatása.
 - d) Felső-háromszög mátrixon kívül eső elem lekérdezése
 - e) Felső-háromszög mátrixon kívül eső elem megváltoztatása
- 3) A c:=a+b mátrixösszeadás kipróbálása
 - a) Eltérő mérető mátrixokkal (az a és b mérete különbözik, a c és a mérete különbözik)
 - b) Kommutatívitás ellenőrzése (a + b == b + a)
 - c) Asszociatívitás ellenőrzése (a + b + c == (a + b) + c == a + (b + c))
 - d) Null elem vizsgálata (a + 0 == a, ahol 0 a null mátrix)
- 4) A c:=a*b mátrixszorzás kipróbálása
 - a) Eltérő mérető mátrixokkal. (az a és b mérete különbözik, a c és a mérete különbözik)
 - b) Kommutatívitás ellenőrzése (a * b == b * a)
 - c) Asszociatívitás ellenőrzése (a * b * c == (a * b) * c == a * (b * c))
 - d) Null elem vizsgálata (a * 0 == 0, ahol 0 a null mátrix)
 - e) Egység elem vizsgálata (a * 1 == a, ahol 1 az egység mátrix)