Effective algorithms for constructing two-level Q_B -optimal designs for screening experiments

Alan R. Vazquez University of California, Los Angeles

alanrvazquez@stat.ucla.edu

5th International Conference on Econometrics and Statistics (EcoSta 2022)
June 5, 2022

Outline

1. Introduction: The Q_B criterion

2. Mixed integer programming for finding optimal designs

3. A heuristic algorithm for constructing efficient designs

4. Results and conclusions

An introductory example

Suppose that we wish to conduct the following experiment:

- Seven factors under study at two levels.
- Budget allows for 24 test combinations or runs.
- One continuous response.
- Goal: Identify the active main effects and two-factor interactions.

Design problem:

Propose an efficient experimental design

Relevant problem for calibrating medical devices (Schoen and Eendebak, 2016) and hyperparameter tuning in machine learning (Lujan-Moreno et al., 2018).

Alternative designs with 7 factors and 24 runs

Design 1.

Folded-over Plackett-Burman design (Miller & Sitter, 2001)

X1	X2	Х3	X4	X5	Х6	X7
1	-1	1	1	1	-1	-1
1	-1	-1	-1	1	-1	1
1	-1	1	1	-1	1	1
1	1	1	-1	-1	-1	1
-1	1	-1	1	1	-1	1
-1	1	1	-1	1	1	1
-1	1	1	1	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1
-1	-1	1	-1	1	1	-1
1	1	-1	-1	-1	1	-1
1	1	-1	1	1	1	-1
-1	-1	-1	1	-1	1	1
-1	1	-1	-1	-1	1	1
-1	1	1	1	-1	1	-1
-1	1	-1	-1	1	-1	-1
-1	-1	-1	1	1	1	-1
1	-1	1	-1	-1	1	-1
1	-1	-1	1	-1	-1	-1
1	-1	-1	-1	1	1	1
1	1	1	1	1	1	1
1	1	-1	1	-1	-1	1
-1	-1	1	1	1	-1	1
-1	-1	1	-1	-1	-1	1
1	1	1	-1	1	-1	-1

Design 2.

Obtained from

http://neilsloane.com/
hadamard/

X1	X2	Х3	X4	X5	Х6	X7
-1	-1	1	1	1	1	1
1	-1	1	-1	-1	-1	-1
-1	1	1	1	1	1	-1
-1	-1	-1	-1	-1	-1	-1
1	1	1	1	-1	1	-1
1	1	-1	1	-1	1	1
1	1	1	1	1	-1	1
1	-1	-1	-1	-1	1	1
-1	1	-1	1	-1	-1	-1
1	-1	-1	1	-1	1	-1
1	-1	-1	1	1	-1	-1
-1	1	-1	-1	-1	-1	1
-1	-1	-1	-1	1	1	1
-1	1	1	-1	-1	1	-1
-1	-1	1	-1	1	-1	-1
1	-1	1	-1	1	1	-1
-1	-1	-1	1	1	1	1
-1	-1	1	1	-1	-1	1
1	1	-1	-1	1	-1	1
1	1	1	-1	1	-1	1
1	-1	1	1	-1	-1	1
-1	1	1	-1	-1	1	1
1	1	-1	-1	1	1	-1
-1	1	-1	1	1	-1	-1

How can we compare these experimental designs?

Criteria to evaluate two-level designs

Criteria Favors designs that:

A unifying criterion

Criteria

 G_2 -aberration (Tang & Deng, 1999)

D- and A-optimality ← (Atkinson et al., 2007)

Estimation and Information Capacities (Sun, 1999; Li & Nachtsheim, 2000)

Projection Estimation and Information Capacities (Loeppky et al., 2007)

Among others

 Q_B criterion

(Tsai, Gilmour & Mead 2007; Tsai & Gilmour, 2010)

Measures the efficiency to estimate many potential models.

- 1. Maximal model including the intercept, all main effects and all two-factor interactions.
- 2. Sub-models of interest satisfy functional marginality.

$$y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_{12} X_1 X_2 + \beta_{13} X_1 X_3 + \beta_{23} X_2 X_3 + \varepsilon$$

Measures the efficiency to estimate many potential models.

- 1. Maximal model including the intercept, all main effects and all two-factor interactions.
- 2. Sub-models of interest satisfy functional marginality.
- 3. A_s criterion to measure the estimation efficiency of sub-models.

$$A_{S} = \sum_{i=1}^{p_{S}} Var(\hat{\beta}_{i})$$

Measures the efficiency to estimate many potential models.

4. Prior probabilities:

- π_1 : Active main effect.
- π_2 : Active interaction given that <u>both</u> of the main effects of the factors involved are active too.
- π_3 : Active interaction given that <u>one</u> of the main effects of the factors involved is active.

Under this framework, we can calculate the prior probability that sub-model is the best.

Li et al. (2006):
$$\pi_1 = 0.41$$
, $\pi_2 = 0.33$ and $\pi_3 = 0.045$

Weighted average of the A_s criterion over all sub-models of interest.

Weights: prior probability of a sub-model being the best.

Example (cont.): 24-run 7-factor designs.

Consider $\pi_1 = 0.41$, $\pi_2 = 0.33$ and $\pi_3 = 0.045$.

Design 1

 $Q_R = 0.246$

Design 2

 $Q_B = 0.255$

Minimizing Q_B is equivalent to maximizing the estimation efficiency for the sub-models of the maximal model.

Research question

- + The Q_B criterion unifies several statistical criteria for screening designs.
- + The Q_B criterion seeks for designs that are model-robust.

- The only available algorithm for generating Q_B -optimal designs is the columnwise search algorithm (Tsai et al., 2000), which is computationally-inefficient for moderate and large designs.

In this talk, we introduce two effective algorithms for finding two-level Q_B -optimal designs from scratch.

Outline

1. Introduction: The Q_B criterion

2. Mixed integer programming for finding optimal designs

3. A heuristic algorithm for constructing efficient designs

4. Results and conclusions

Mixed Integer Programming

To construct two-level Q_B -optimal designs, we introduce a Mixed Integer Programming (MIP) algorithm.

The MIP algorithm consists of

- A problem formulation for finding two-level Q_B -optimal designs.
- The use of state-of-the-art optimization software to solve this problem formulation.

Encoding of two-level designs

X_1	X_2	X_3	•••	X_m
-1	-1	-1	•••	-1
-1	-1	-1	•••	1
-1	-1	-1	•••	-1
-1	-1	-1	•••	1
-1	-1	-1	•••	-1
-1	-1	-1	•••	1
-1	-1	-1	•••	-1
•	•	•	•	:
1	1	1	1	-1
1	1	1	1	1

The variables z_u are binary:

- $z_u = 1$ if the test combination is included in the design.
- $z_{y} = 0$ otherwise.

Let n be the desired run size of the design. We have that

$$\sum_{u=1}^{2^m} z_u = n$$

 2^m

Calculation of the Q_B criterion

Consider an *n*-run *m*-factor design given by $\mathbf{z} = (z_1, z_2, ..., z_{2^m})^T$.

Let X_k be the matrix including all k-th factor interaction contrast vectors of the *two-level full factorial design*.

Consider the vector
$$\mathbf{y}_k = \frac{1}{2^m} \mathbf{X}_k^T \mathbf{z}$$
.

Contains the sum of the elements of each *k*-factor interaction contrast vector of the *n*-run design

For a maximal model including the intercept, all main effects and all two-factor interactions, minimizing the Q_B criterion is equivalent to minimizing

$$w_1\mathbf{y}_1^T\mathbf{y}_1 + w_2\mathbf{y}_2^T\mathbf{y}_2 + w_3\mathbf{y}_3^T\mathbf{y}_3 + w_4\mathbf{y}_4^T\mathbf{y}_4$$
, where w_k 's depend on π_1 , π_2 and π_3 .

(Vazquez et al., 2022; Tsai & Gilmour, 2010)

The problem formulation

$$\min_{\mathbf{y}_{k},\mathbf{z}} w_{1}\mathbf{y}_{1}^{T}\mathbf{y}_{1} + w_{2}\mathbf{y}_{2}^{T}\mathbf{y}_{2} + w_{3}\mathbf{y}_{3}^{T}\mathbf{y}_{3} + w_{4}\mathbf{y}_{4}^{T}\mathbf{y}_{4}$$

Subject to:

$$\mathbf{y}_k = \frac{1}{2^m} \mathbf{X}_k^T \mathbf{z}$$

(2).
$$\sum_{u=1}^{2^m} z_u = n$$

(3).
$$-\mathbf{1}_{2}^{m} \le \mathbf{y}_{k} \le \mathbf{1}_{2}^{m}$$

(4). $z_{u} \in \{0, 1\}$

$$(4). \quad z_u \in \{0, 1\}$$

Solved by optimization solvers: Gurobi, CPLEX or SCIP.

Attractive features:

- Find high-quality designs.
- Provide certificates of optimality.

Outline

1. Introduction: The Q_B criterion

2. Mixed integer programming for finding optimal designs

3. A heuristic algorithm for constructing efficient designs

4. Results and conclusions

Perturbation-Based Coordinate Exchange (PBCE) algorithm

The algorithm is based on the metaheuristic called **Iterated Local Search** (Luorenço et al., 2019).

Building blocks:

- 1. Computationally-cheap version of the Q_B criterion.
- 2. Local search algorithm to construct locally-optimal designs.
- 3. Perturbation operator to escape from local optimality.

1. An alternative calculation of Q_B

Let **D** be an *n*-run *m*-factor two-level design matrix. Consider the row-coincidence $\mathbf{T} = \mathbf{D}\mathbf{D}^T$ with elements T_{ij} . We define $M_k = \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n T_{ij}^k$ (Butler, 2003).

Theorem: For a maximal model including the intercept, all main effects and all two-factor interactions, minimizing the Q_B criterion is equivalent to minimizing

$$w_1 M_1 + w_2 M_2 + w_3 M_3 + w_4 M_4, \tag{1}$$

where the w_k 's depend on π_1 , π_2 and π_3 .

Computing the Q_B criterion using (1) is cheap!

(Vazquez et al., 2022)

- Local Search.
- One move: Sign switch a coordinate in the design *D*.

Example:

$$\pi_1 = 0.41, \pi_2 = 0.11, \pi_3 = 0.0$$

$$Q_B = 0.071$$

12 runs and 6 factors

1	-1	1	1	1	-1
1	-1	-1	1	-1	1
1	-1	1	1	-1	1
1	-1	-1	1	1	-1
1	1	1	-1	1	1
-1	1	1	-1	1	-1
-1	1	1	-1	-1	1
1	1	-1	1	-1	1
1	-1	-1	-1	1	1
-1	1	-1	-1	-1	1
1	1	1	-1	1	-1
1	1	-1	-1	-1	1

- Local Search.
- One move: Sign switch a coordinate in the design *D*.

$$\pi_1 = 0.41, \pi_2 = 0.11, \pi_3 = 0.0$$

$$Q_B = 0.064$$

- Local Search.
- One move: Sign switch a coordinate in the design *D*.

$$\pi_1 = 0.41, \pi_2 = 0.11, \pi_3 = 0.0$$

$$Q_B = 0.053$$

- Local Search.
- One move: Sign switch a coordinate in the design *D*.

$$\pi_1 = 0.41, \pi_2 = 0.11, \pi_3 = 0.0$$

$$Q_B = 0.051$$

- Local Search.
- One move: Sign switch a coordinate in the design *D*.

$$\pi_1 = 0.41, \pi_2 = 0.11, \pi_3 = 0.0$$

$$Q_B = 0.051$$

- Local Search.
- One move: Sign switch a coordinate in the design *D*.

$$\pi_1 = 0.41, \pi_2 = 0.11, \pi_3 = 0.0$$

$$Q_B = 0.051$$

- Local Search.
- One move: Sign switch a coordinate in the design *D*.

$$\pi_1 = 0.41, \pi_2 = 0.11, \pi_3 = 0.0$$

$$Q_B = 0.023$$

- Local Search.
- One move: Sign switch a coordinate in the design *D*.

$$\pi_1 = 0.41, \pi_2 = 0.11, \pi_3 = 0.0$$

$$Q_B = 0.023$$

3. Perturbation Operator

n = 12 runs and m = 6 factors

Set the value of the tunning parameter $\alpha = 0.1$.

1. Compute the "contribution" of each row to the Q_B criterion value.

$$D^* =$$

2. Select the $\lceil n\alpha \rceil = 2$ rows with the largest contribution.

-1	-1	-1	1	-1	-1	
-1	-1	1	1	1	-1	
1	-1	1	1	-1	1	
1	1	-1	1	1	-1	
1	-1	1	1	1	1	
-1	1	1	-1	1	-1	
-1	1	1	-1	-1	1	
1	1	-1	1	1	1	
-1	-1	-1	-1	1	1	
-1	-1	-1	-1	-1	-1	
1	-1	1	-1	-1	-1	
1	1	-1	-1	-1	1	

3. Perturbation Operator

n = 12 runs and m = 6 factors

Set the value of the tunning parameter $\alpha = 0.1$.

1. Compute the "contribution" of each row to the Q_B criterion value.

$$D' =$$

- 2. Select the $\lceil n\alpha \rceil = 2$ rows with the largest contribution.
- 3. Switch the sings of $\lceil m\alpha \rceil = 1$ randomly chosen coordinates in these rows.

-1	-1	-1	1	-1	-1	0.153
-1	-1	1	1	1	-1	0.169
1	-1	1	1	-1	1	0.168
1	1	-1	1	1	-1	0.140
1	-1	1	1	1	1	0.188
-1	1	1	-1	1	-1	0.115
-1	1	1	-1	-1	1	0.115
-1	1	-1	1	1	1	0.195
-1	-1	-1	-1	1	1	0.088
-1	-1	1	-1	-1	-1	0.203
1	-1	1	-1	-1	-1	0.123
1	1	-1	-1	-1	1	0.141

PBCE algorithm in full

<u>Parameters</u>:

Max_Iter: maximum number of perturbations without improvement.

 α : perturbation size.

Repetitions: number of repetitions of the whole algorithm.

Outline

1. Introduction: The Q_B criterion

2. Mixed integer programming for finding optimal designs

- 3. A heuristic algorithm for constructing efficient designs
- 4. Results and conclusions

Numerical comparisons

We obtained design problems with 7 and 11 factors from Mee et al. (2017). We also propose larger problems with 16 factors.

Algorithms:

- MIP algorithm with Gurobi and a maximum search time of 20 min.
- Our PBCE algorithm involves an $\alpha=0.1$, Max_Iter = 100, and 5 repetitions.
- Coordinate-exchange algorithm with 1000 iterations (Meyer & Nachtsheim, 1995).
- Restricted columnwise-pairwise algorithm with 1000 iterations (Li, W. 2006).
- Point-exchange algorithm with 10 iterations (Cook and Nachtsheim, 1980)

Results I

Facto	rs Runs	Coordinate- Exchange Algorithm	Restricted Columnwise- Pairwise Algorithm	PBCE Algorithm	Point-Exchange Algorithm	Mixed Integer Programming
			$\pi_1 = 0.5$, $\pi_2 =$	0.8 and $\pi_3=0.0$		
7	16	0.1050	0.1050	0.1050	0.1050	0.1050
	20	0.0652	0.0652	0.0652	0.0652	0.0652
	24	0.0333	0.0351	0.0333	0.0333	0.0333
	28	0.0203	0.0203	0.0203	0.0203	0.0203
	32	0.0075	0.0075	0.0075	0.0075	0.0075

Results II

Factor	rs Runs	Coordinate- Exchange Algorithm	Restricted Columnwise- Pairwise Algorithm	PBCE Algorithm	Point-Exchange Algorithm	Mixed Integer Programming
			$\pi_1 = 0.41, \pi_2 = 0$	$.33$ and $\pi_3=0.0$	45	
16	32	0.0808	0.1374	0.0808	-	-
	40	0.0607	0.0794	0.0548	-	-
	48	0.0417	0.0519	0.0369	-	-
	56	0.0323	0.0356	0.0266	-	-
	64	0.0230	0.0256	0.0213	-	

Conclusions

- We recommend our PBCE algorithm because it is computationally efficient and outperforms the benchmark algorithms.
- For up to 6 factors, our MIP algorithm obtains two-level Q_B -optimal designs.
- We have used the MIP and PBCE algorithms to construct two-level Q_B -optimal designs under the main effects model (Tsai & Gilmour, 2016). We have reached similar conclusions.
- As a future research, we plan to explore the class of two-level Q_B -optimal designs obtained by our algorithms.

Appendix: Computing times of heuristic algorithms

7-factor designs

11-factor designs

Average of 10 complete executions of the algorithms

Selected references

- Lujan-Moreno, G. A., Howard, P. R., Rojas, O. G., and Montgomery, D. C. (2018). Design of experiments and response surface methodology to tune machine learning hyperparameters with a random forest case-study. *Expert Systems with Applications*, 109:195-205
- Miller, A., and Sitter, R. R. (2001). Using the folded-over Plackett-Burman designs to consider interactions. Technometrics, 43, 44-55.
- Tsai, P.-W., Gilmour, S. G., and Mead, R. (2007). Three-level main-effects designs ex-ploiting prior information about model uncertainty. *Journal of Statistical Planning and Inference*, 137:619–627.
- Butler, N. A. (2003). Minimum aberration construction results for nonregular two-level fractional factorial designs. *Biometrika*, 90:891–898.
- Sörensen, K. and Glover, F. (2013). *Metaheuristics*. Encyclopedia of Operations Research and Management Science, pages 960-970. Springer.
- Li, X., Sudarsanam, N., and Frey, D. D. (2006). Regularities in data from factorial experiments. Complexity, 11:32–45.
- Lourenço, H. R., Martin, O. C., and Stützle, T. (2019). Iterated local search: Framework and applications. Handbook of Metaheuristics, pages 129–168. Springer.
- Meyer, R. K. and Nachtsheim, C. J. (1995). The coordinate-exchange algorithm for con-structing exact optimal experimental designs. Technometrics, 37:60–69.
- Li, W. (2006). Screening designs for model selection. In A., D. and S., L., editors, Screening, pages 207–234. Springer, New York, NY.