

Devoir surveillé nº 1

Correction

Exercice 1.

- **1.** A est un ouvert ssi $\forall a \in A, \exists r > 0, \mathscr{B}(a, r) \subset A$.
- **2.** x est adhérent à A ssi $\forall \varepsilon > 0$, $\mathscr{B}(x, \varepsilon) \cap A \neq \emptyset$.

Exercice 2.

- **1.** $\mathring{A} =]0,1[$ et $\overline{A} = \{-\frac{1}{n} : n \in \mathbb{N}^*\} \cup [0,1].$
- 2. On écrit $B = U \cup V$ avec $U := \{(x, y) \in \mathbb{R}^2 \mid xy > 1\}$ et $V := \{(x, y) \in \mathbb{R}^2 \mid \sin(x y) < 0\}$. Posons f et g les fonctions définies sur \mathbb{R}^2 par f(x, y) := xy et $g(x, y) := \sin(x y)$. Alors f et g sont continues sur \mathbb{R}^2 , et $U = f^{-1}(]1, +\infty[)$ et $V = g^{-1}(]-\infty, 0[)$, donc U et V sont ouverts comme images réciproques d'ouverts par des applications continues. Par conséquent, leur réunion B est un ouvert.

Exercice 3.

1. Soit $x_0 \in E$, montrons que f est continue en x_0 . Soit $\varepsilon > 0$, posons $\delta := \varepsilon / K$. Alors pour tout $x \in E$ tel que $||x - x_0||_E \le \delta$, on a :

$$||f(x) - f(x_0)||_F \le K||x - x_0||_E \le K\delta \le \varepsilon.$$

Ainsi, on a montré que f est continue en x_0 .

- **2. a.** f est continue en 0_E ssi $\forall \varepsilon > 0$, $\exists \delta > 0$, $\forall x \in E$, $\|x 0_E\|_E \le \delta \implies \|f(x) f(0_E)\|_F \le \varepsilon$.
 - **b.** On applique la définition précédente avec $\varepsilon = 1$, en utilisant le fait que $f(0_E) = 0_F$.
 - **c.** Soit $x \in E$. Si $x = 0_E$, alors $\|f(x)\|_F = 0 = \frac{1}{\delta} \|x\|_E$ et il n'y a rien à montrer. Supposons que $x \neq 0_E$. Alors le vecteur $u = \delta \frac{x}{\|x\|_E}$ a pour norme $\|u\| = \delta \frac{\|x\|_E}{\|x\|_E} = \delta$, donc d'après la question précédente, on a $\|f(u)\|_F \leq 1$.

Par linéarité de f, on a $f(u) = \frac{\delta}{\|x\|_E} f(x)$, donc $\|f(u)\| = \frac{\delta}{\|x\|_E} \|f(x)\|_F$. L'inégalité $\|f(u)\|_F \le 1$ se réécrit alors $\|f(x)\|_F \le \frac{1}{\delta} \|x\|_E$.

d. Montrons que f est Lipschitzienne avec pour constante de Lipschitz $K = \frac{1}{\delta}$. Soient $x, y \in E$, par linéarité de f et d'après la question précédente, on a :

$$||f(x) - f(y)||_F = ||f(x - y)||_F \le \frac{1}{\delta} ||x - y||_E.$$

Exercice 4.

1. Si A est ouvert et fermé, alors A^c est fermé, donc $\partial A = \overline{A} \cap \overline{A^c} = A \cap A^c = \emptyset$. Ou encore : si A est ouvert et fermé, alors $\mathring{A} = A = \overline{A}$, donc $\partial A = \overline{A} \setminus \mathring{A} = A \setminus A = \emptyset$.

- **2. a.** Puisque $s = \sup(A \cap [a, b])$, il existe une suite d'éléments de $A \cap [a, b]$ qui converge vers s. Ainsi, s est la limite d'une suite d'éléments de A, donc $s \in \overline{A}$.
 - **b.** Si $s = b \in A^c$, il n'y a rien à montrer. Si s < b, alors]s, b] est un intervalle non vide inclus dans A^c (par définition du sup, tout élément supérieur à s n'appartient pas à A). Soit $(x_n)_{n \in \mathbb{N}}$ une suite d'éléments de]s, b] qui converge vers s (par exemple : $x_n = (1 \frac{1}{2^n})s + \frac{1}{2^n}b$). Alors s est la limite d'une suite d'éléments de A^c , donc $s \in \overline{A^c}$.
 - **c.** D'après les deux questions précédentes, $s \in \overline{A} \cap \overline{A^c} = \partial A$, donc ∂A est non vide.
- **3.** Soit $A \subset \mathbb{R}$. Si $A \neq \mathbb{R}$ et $A \neq \emptyset$, alors A et A^c sont non vides, donc $\partial A \neq \emptyset$ d'après la question 2. Par conséquent, A n'est pas à la fois ouvert et fermé (question 1). Par contraposée, on a montré que si A est ouvert et fermé, alors $A = \mathbb{R}$ ou $A = \emptyset$.