

These notes were originally prepared for my CS course at University Erlangen-Nuremberg (FAU) given with Michael Kohlhase in Summer 2020. They are directed at 3rd semester CS undergraduates and master students but should be intelligible even for earlier students and could be interesting also for PhD students and for students from adjacent majors. The course is recommended both as a first course in the specialization area Artificial Intelligence as well as a one-off overview on on knowledge representation.

The course was developed in Summer 2020 from scratch and materials were built along the way. It integrated current directions and recent results in research on knowledge representation pulling together materials in an entirely new and original way.

# Contents

| 1 Meta-Remarks 2 Fundamental Concepts 2.1 Abbreviations 2.2 Motivation 2.2.1 Knowledge 2.2.2 Representation and Processing 2.3 Components of Knowledge 2.3.2 Semantics as Syntax Transformation 2.3.3 Heterogeneity of Semantics and Knowledge 2.3.2 Semantics as Syntax Transformation 2.3.3 Heterogeneity of Semantics and Knowledge 2.4.1 Five Aspects of Knowledge 2.4.2 Relations between the Aspects 3 Overview of This Course 3.1 Structure 3.2 Exercises and Running Example 4 Representing Syntax and Semantics 4.1 Context-Free Syntax 4.1.1 Context-Free Grammars 4.1.2 Inductive Data Types 4.1.3 Merged Definition 4.2 Implementation 4.2.1 Functional Programming Languages 4.2.3 Combining Paradigms 4.3 Semantics as a Recursive Function 5 Encoding Data 5.1 Data Representation Languages 5.2 Typed Data 5.3 Encoding Typed Data in Untyped Representation Languages 1.1 Ontological Knowledge | Ι | Introduction                                                                                                                                                                                                                                                                                                                | 5                                                    |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--|--|--|--|
| 2.1 Abbreviations 2.2 Motivation 2.2.1 Knowledge 2.2.2 Representation and Processing 2.3 Components of Knowledge 2.3.1 Syntax and Semantics, Data and Knowledge 2.3.2 Semantics as Syntax Transformation 2.3.3 Heterogeneity of Semantics and Knowledge 2.4.1 Five Aspects of Knowledge 2.4.1 Five Aspects of Knowledge 2.4.2 Relations between the Aspects  3 Overview of This Course 3.1 Structure 3.2 Exercises and Running Example  4 Representing Syntax and Semantics 4.1 Context-Free Syntax 4.1.1 Context-Free Grammars 4.1.2 Inductive Data Types 4.1.3 Merged Definition 4.2 Implementation 4.2.1 Functional Programming Languages 4.2.2 Object-Oriented Programming Languages 4.2.3 Combining Paradigms 4.3 Semantics as a Recursive Function  5 Encoding Data 5.1 Data Representation Languages 5.2 Typed Data 5.3 Encoding Typed Data in Untyped Representation Languages                           | 1 | Meta-Remarks                                                                                                                                                                                                                                                                                                                |                                                      |  |  |  |  |
| 3.1 Structure 3.2 Exercises and Running Example  4 Representing Syntax and Semantics 4.1 Context-Free Syntax 4.1.1 Context-Free Grammars 4.1.2 Inductive Data Types 4.1.3 Merged Definition 4.2 Implementation 4.2.1 Functional Programming Languages 4.2.2 Object-Oriented Programming Languages 4.2.3 Combining Paradigms 4.3 Semantics as a Recursive Function  5 Encoding Data 5.1 Data Representation Languages 5.2 Typed Data 5.3 Encoding Typed Data in Untyped Representation Languages                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 | 2.1 Abbreviations 2.2 Motivation 2.2.1 Knowledge 2.2.2 Representation and Processing 2.3 Components of Knowledge 2.3.1 Syntax and Semantics, Data and Knowledge 2.3.2 Semantics as Syntax Transformation 2.3.3 Heterogeneity of Semantics and Knowledge 2.4 The Tetrapod Model of Knowledge 2.4.1 Five Aspects of Knowledge | 9<br>9<br>9<br>9<br>10<br>10<br>11<br>11<br>12<br>12 |  |  |  |  |
| 4.1.1 Context-Free Grammars 4.1.2 Inductive Data Types 4.1.3 Merged Definition 4.2 Implementation 4.2.1 Functional Programming Languages 4.2.2 Object-Oriented Programming Languages 4.2.3 Combining Paradigms 4.3 Semantics as a Recursive Function  5 Encoding Data 5.1 Data Representation Languages 5.2 Typed Data 5.3 Encoding Typed Data in Untyped Representation Languages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3 | 3.1 Structure                                                                                                                                                                                                                                                                                                               | 15<br>15<br>15                                       |  |  |  |  |
| 5.1 Data Representation Languages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 | 4.1 Context-Free Syntax 4.1.1 Context-Free Grammars 4.1.2 Inductive Data Types 4.1.3 Merged Definition 4.2 Implementation 4.2.1 Functional Programming Languages 4.2.2 Object-Oriented Programming Languages 4.2.3 Combining Paradigms                                                                                      | 17<br>17<br>18<br>19<br>20<br>20<br>21<br>22<br>23   |  |  |  |  |
| II Ontological Knowledge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 | 5.1 Data Representation Languages                                                                                                                                                                                                                                                                                           | 25<br>25<br>25<br>25                                 |  |  |  |  |
| 6 Ontologies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |                                                                                                                                                                                                                                                                                                                             | 27<br>29                                             |  |  |  |  |

| $\Gamma$ |
|----------|
|----------|

|              | 6.1 | General Principles                 | 29 |
|--------------|-----|------------------------------------|----|
|              | 6.2 | A Basic Ontology Language          | 30 |
|              |     | 6.2.1 Syntax                       | 32 |
|              |     | 6.2.2 Deductive Semantics          | 32 |
|              |     | 6.2.3 Concretized Semantics        | 32 |
|              |     | 6.2.4 Narrative Semantics          | 35 |
|              |     | 6.2.5 Compositionality             | 37 |
|              | 6.3 | Representing Ontologies as Triples | 38 |
|              | 6.4 | Type Systems for Ontologies        | 40 |
|              |     | 6.4.1 Concepts as Types            | 40 |
|              |     | 6.4.2 Record Types                 | 40 |
| 7            | Wri | iting Ontologies                   | 41 |
|              | 7.1 | The OWL Language                   | 41 |
|              | 7.2 | The Protege Tool                   | 41 |
|              | 7.3 | Exercise                           | 42 |
| Ш            |     | Concretized Knowledge              | 43 |
| IV           | (   | Computational Knowledge            | 45 |
| $\mathbf{V}$ | D   | Deductive Knowledge                | 49 |
| VI           | ľ   | Narrative Knowledge                | 53 |
| VI           | Ι   | Conclusion                         | 55 |

# $\begin{array}{c} {\rm Part\ I} \\ {\bf Introduction} \end{array}$

# Meta-Remarks

#### Important stuff that you should read carefully!

State of these notes I constantly work on my lecture notes. Therefore, keep in mind that:

- I am developing these notes in parallel with the lecture they can grow or change throughout the semester.
- These notes are neither a subset nor a superset of the material discussed in the lecture. On the one handle, they may contain more details than mentioned in the lectures. On the other hand, important material such as background, diagrams, and examples may be part of the lecture but not mentioned in these notes.
- Unless mentioned otherwise, all material in these notes is exam-relevant (in addition to all material discussed in the lectures).

Collaboration on these notes I am writing these notes using LaTeX and storing them in a git repository on GitHub at https://github.com/florian-rabe/Teaching. As an experiment in teaching, I am inviting all of you to collaborate on these lecture notes with me. This would require familiarity with LaTeX as well as Git and GitHub—that is not part of this lecture, but it is an essential skill for you. Ask in the lecture if you have difficulty figuring it out on your own.

By forking and by submitting pull requests for this repository, you can suggest changes to these notes. For example, you are encouraged to:

- Fix typos and other errors.
- Add examples and diagrams that I develop on the board during lectures.
- Add solutions for the homeworks if I did not provide any (of course, I will only integrate solutions after the deadline).
- Add additional examples, exercises, or explanations that you came up or found in other sources. If you use material from other sources (e.g., by copying an diagram from some website), make sure that you have the license to use it and that you acknowledge sources appropriately!

I will review and approve or reject the changes. If you make substantial contributions, I will list you as a contributor (i.e., something you can put in your CV).

Any improvement you make will not only help your fellow students, it will also increase your own understanding of the material. Make sure your git commits carry a user name that I can connect to you.)

Other Advice I maintain a list of useful advice for students at https://github.com/florian-rabe/Teaching/blob/master/general/advice\_for\_students.pdf. It is mostly targeted at older students who work in individual projects with me (e.g., students who work on their BSc thesis). But much of it is useful for you already now or will become useful soon. So have a look.

# Fundamental Concepts

## 2.1 Abbreviations

knowledge representation and processing  $\quad$  KRP  $\quad$  the general area of this course knowledge representation language  $\quad$  KRL  $\quad$  a languages used in KRP

knowledge representation tool KRT a tool implementing a KPL and processing algorithms for it

## 2.2 Motivation

## 2.2.1 Knowledge

Human knowledge pervades all sciences including computer science, mathematics, natural sciences and engineering. That is not surprising: "science" is derived from the Latin word "scire" meaning "to know". Similarly, philosophy, from which all sciences derive, is named after the Greek words "philo" meaning loving and "sophia" meaning wisdom, and the for common ending "-logy" is derived from Greek "logos" meaning word (i.e., a representation of knowledge).

In regards to knowledge, computer science is special in two ways: Firstly, many branches of computer science need to understand KRP as a prerequisite for teaching computers to do knowledge-based tasks. In some sense, KRP is the foundation and ultimate goal of all artificial intelligence. Secondly, modern information technology enables all sciences to apply computer-based KRP in order to vastly expand on the domain-specific tasks that can be automated. Currently all sciences are becoming more and more computerized, but most non-CS scientists (and many computer scientists for that matter) lack a systematic education and understanding of IT-KRP. That often leads to bad solutions when domain experts cannot see which KRP solutions are applicable or how to apply them.

## 2.2.2 Representation and Processing

It is no coincidence that this course uses the phrase "Representation and Processing". In fact, this is an instance of a universal duality. Consider the following table of analogous concept pairs, which could be extended with many more examples:

| Representation  | Processing |
|-----------------|------------|
| Static          | Dynamic    |
| Situation       | Change     |
| Be              | Become     |
| Data Structures | Algorithms |
| Set             | Function   |
| State           | Transition |
| Space           | Time       |

<sup>&</sup>lt;sup>1</sup>Indeed, a major problem with the currently very successful machine learning-based AI technology is that it remains unclear when and how it does KRP. That can be dangerous because it leads to AI systems recommending decisions without being able to explain why that decision should be trusted.

Again and again, we distinguish a static concept that describes/represents what is a situation/state is and a dynamic concept that describes how it changes. If that change is a computer doing something with or acting on that representation, we speak of "processing".

It is particular illuminating to contrast KRP to the standard CS course on Data Structures and Algorithms (DA).<sup>2</sup> Generally speaking, DA teaches the methods, and KRP teaches how to apply them. Data structures are a critical prerequisite for representing knowledge. But data structures alone do not capture what the data means (i.e., the knowledge) or if a particular representation makes any sense. Similarly, algorithms are the critical prerequisite for processing knowledge. But while algorithms can be systematically analyzed for efficiency, it is much harder to analyze if an algorithm processes knowledge correctly. The latter requires understanding what the input and output data means.

Capturing knowledge in computers is much harder than developing data structures and algorithms. It is ultimately the same challenge as figuring out if a computer system is working correctly — a problem that is well-known to be undecidable in general and very difficult in each individual case.

# 2.3 Components of Knowledge

### 2.3.1 Syntax and Semantics, Data and Knowledge

Four concepts are of particular relevance to understanding knowledge. They form a  $2 \times 2$ -quadruple of concepts:

All four concepts are primitive, i.e., they cannot be defined in simpler terms. All sciences have few carefully-chosen primitive on which everything builds. This is done most systematically in mathematics (where primitives include set or function). While mathematical primitives as well as some primitives in physics or CS are specified formally, the above four concepts can only be described informally, ultimately appealing to pre-existing human understanding. Moreover, this description is not standardized — different courses may use very different descriptions even they ultimately try to capture the same elusive ideas.

**Data** (in the narrow sense of computer science) is any object that can be stored in a computer, typically combined with the ability to input/output, transfer, and change the object. This includes bits, strings, numbers, files, etc.

Data by itself is useless because we would have no idea what to do with it. For example, the object O = ((49.5739143, 11.0264941), "2020 - 04 - 21T16 : 15 : 00CEST") is useless data without additional information about its syntax and semantics. Similarly, a file is useless data unless we know which file format it uses.

**Syntax** is a system of rules that describes which data is **well-formed**. For *O* above the syntax could be "a pair of (a pair of two IEEE double precision floating point numbers) and a string encoding of an time stamp". For a file, the syntax is often indicated by the file name extension, e.g., the syntax of an html file is given in Section 12 of the current HTML standard<sup>3</sup>.

Syntax alone is useless unless we know what the semantics, i.e., what the data means and thus how to correctly interpret and process the data. For example, the syntax of O allows to check that O is well-formed, i.e., indeed contains two numbers and a timestamp string. That allows rejecting ill-formed data such as ((49.5739143, 11.0264941), "foo"). The HTML syntax allows us to check that a file conforms to the standard.

Semantics is a system of rules that determines the meaning of well-formed data. For example, ISO 8601 specifies that timestamp string refer to a particular date and time in a particular time zone. Further semantics for O might be implicit in the algorithms that produce and consume it: such as "the first component of the pair contains two numbers between 0 and 180 resp. 0 and 360 indicating latitude resp. longitude of a location on earth". Semantics might be multi-staged, and further semantics about O might be that O indicates the location and time of the first lecture of this course. Similarly, Section 14 of the HTML standard specifies the semantics of well-formed HTML files by describing how they are to be rendered in a web browser.

**Knowledge** is the combining of some data with its syntax and semantics. That allows applying the semantics to obtain the meaning of the data (if syntactically well-formed and signaling an error otherwise). In computer systems,

<sup>&</sup>lt;sup>2</sup>The course is typically called "Algorithms and Data Structures", but that is arguably awkward because algorithms can exist if there are data structure to work with. Compare my notes on that course in this repository, where I emphasize data structures much more than is commonly done in that course.

<sup>3</sup>https://html.spec.whatwg.org/multipage/

- data is represented using primitive data (ultimately the bits provided by the hardware) and encodings of more complex data (bytes, arrays, strings, etc.) in terms of simpler ones,
- syntax is theoretically specified using grammars and practically implemented in programming languages using data structures,
- semantics is represented using algorithms that process syntactically well-formed data,
- knowledge is elusive and often emerges from executing the semantics, e.g., rendering of an HTML file.

## 2.3.2 Semantics as Syntax Transformation

In order to capture knowledge better in computer systems, we often use two syntax levels: one to represent the data itself and another to represent the knowledge. These can be seen as input and output data. In that case, semantics is a function that translates from the data syntax to the knowledge syntax, and knowledge is the pair of the data and the result of applying the semantics. The following table gives some examples.

| Data syntax        | Semantics function        | Knowledge syntax         |
|--------------------|---------------------------|--------------------------|
| SPARQL query       | evaluation                | result set               |
| SQL query          | evaluation                | result table             |
| program            | compiler                  | binary code              |
| program expression | interpreter               | result value             |
| logical formula    | interpretation in a model | mathematical object      |
| HTML document      | rendering                 | graphical representation |

Thus, the role of syntax vs. semantics may depend on the context: just like one function's output can be another function's input, one interpretation's knowledge can be another one's syntax. For example, we can first compile a program into binary and then execute it to returns its value.

Such hierarchies of evaluation levels are very common in computer systems. In fact, most state-of-the-art compilers are subdivided into multiple phases each further interpreting the output of the previous one. Thus, if knowledge is represented in computers, it is invariably data itself but relative to a different syntax.

## 2.3.3 Heterogeneity of Semantics and Knowledge

While it is easy to design languages to represent data in general, it is very difficult to designing KRLs that capture the human-level quality of knowledge. Over the last few decades, the KRP area in computer science has diversified into different subareas that approach this research problem in fundamentally different ways. In fact, KRP in the very general sense of this course is usually not even studied by itself — instead the subareas are so different, specialized, and large that they all sustain their respective university courses and research conferences.

This is related to the fact the data naturally comes in fundamentally different forms such as graphs, arrays, tables in the sense of relational databases, programs in a programming language, logical formulas, or natural language texts. We speak of **heterogeneous** data. These different forms of data are supported by highly specialized KPTs: graph databases, array databases, relational databases, package databases for programming languages, theorem databases for logics (e.g., the Isabelle Archive of Formal Proofs), databases of research papers (such as the arXiv), and so on. All of these are very successful for their respective kind of data. And all of them include specifications of semantics and KP algorithms that implement this semantics. But it can very massively how the semantics is specified and implemented. This has cause major practical problems for tool interoperability: many projects require data in multiple formats and algorithms from multiple tools. But the respective tools are often islands that assume that all data is represented in the tool's language and users do not use outside tools. Therefore, the import/export capabilities of the tools are often limited.

Moreover, transporting data across systems is usually ignorant of the semantics: while each tool takes relatively good care to implement the semantics correctly, there is much less certainty that the semantics is preserved when exchanging data across tools. For a trivial example, consider a tool that measure length in inches vs. a tool that uses centimeters, both using floating point numbers for the data: if they exchange the data, i.e., just the numbers, they may mis-communicate the semantics.<sup>4</sup>

This problem is not easy to fix though. The heterogeneity of data and semantics is so extreme that it is, in some cases, an open theoretical problem how knowledge can be shared at all across tools. The basic idea — exchange the

<sup>&</sup>lt;sup>4</sup>Problems like this have been involved in major disasters such as the Mars Climate Orbiter.

data in a way that preserves semantics — can be difficult to implement if both tools use entirely different paradigms to specify semantics.

# 2.4 The Tetrapod Model of Knowledge

The Tetrapod model of knowledge is an ongoing research project by the instructors of this course. A first publication was made in [CFKR20]. The structure of this course will draw heavily on the Tetrapod model to get an overview of the different approaches to KPR and their interoperability problems.

## 2.4.1 Five Aspects of Knowledge

The Tetrapod model distinguishes five basic **aspects** of knowledge and KPR as described below. For each aspect, there is a variety dedicated KRLs supported by highly optimized KPTs as indicated in the following table:

| Aspect         | KRLs (examples)                                    | KPTs (examples)                      |
|----------------|----------------------------------------------------|--------------------------------------|
| ontologization | ontology languages (OWL), description logics (ALC) | reasoners, SPARQL engines (Virtuoso) |
| concretization | relational databases (SQL, JSON)                   | databases (MySQL, MongoDb)           |
| computation    | programming languages (C)                          | interpreters, compilers (gcc)        |
| deduction      | logics (HOL)                                       | theorem provers (Isabelle)           |
| narration      | document languages (HTML, LaTeX)                   | editors, viewers                     |

Ontologization focuses on developing and curating a coherent and comprehensive ontology of concepts. This focuses on identifying the central concepts in a domain and their relations. For example, a medical ontology would define concepts for every symptom, disease, and medication and then define relations for which symptoms and medications are related to which disease.

Ontologies typically abstract from the knowledge: they standardize identifiers for the concepts and spell out some properties and relations but do not try to capture all details of the knowledge. Well-designed ontologies can capture exactly that different KPTs must share and can thus serve as interoperability layers between them.

While organization can use ontology languages such as OWL or RDF, the inherent complexity of formal objects in computer science and mathematics usually requires going beyond general purpose ontology languages (similar to how the programming languages underlying computer algebra systems usually go beyond general purpose programming languages).

Concretization uses languages based on numbers, strings, lists, and records to obtain concrete representations of datasets in order to store and query their properties efficiently. Because concrete objects are so simple and widely used, it is possible and common to build concrete datasets on top of general purpose data representation languages and tools such as JSON or SQL.

Computation uses specification and programming languages to represent algorithmic knowledge.

**Deduction** uses logics and theorem provers to obtain verifiable correctness.

Narration uses natural language to obtain texts are easy to understand for humans. Because narrative languages are not well-standardized (apart from general purpose languages such as free text or  $L^{A}T_{E}X$ ), it is common to develop narrative libraries on top of ad-hoc languages that impose some formal structure on top of informal text, such as a fixed tree structure whose leafs are free text or a particular set of  $L^{A}T_{E}X$  macros that must be used. Narrative libraries can be classified based on whether entries are derived from publications (e.g., one abstract per paper in zbMATH) or mathematical concepts (e.g., one page per concept in nLab).

#### 2.4.2 Relations between the Aspects

The aspects can be visualized as the corners of tetrahedron with ontologization in the center and edges and faces representing solutions that mix two or three aspects as seen in Figure 2.1.

Most approaches try to incorporate all or multiple aspects. But all languages and tools tend to be heavily biased towards and optimized for a single one of the four corner aspects. This is not due to ignorance but because each aspect provides characteristic advantages that are extremely hard to capture at once. In fact, every combination of aspects shares characteristic advantages and disadvantages as sketched in Figure 2.2. For example, deductive and narrative definitions of a function involved well-definedness arguments, and a function defined by a concrete table



Figure 2.1: Tetrapod model of knowledge

|                |                  |            |                        | C                      | haracteris | tic      |                     |
|----------------|------------------|------------|------------------------|------------------------|------------|----------|---------------------|
| Aspect         | object           | s          | ad                     | vantage                | joint ad   | vantage  | application         |
|                |                  |            |                        |                        | of the o   | ther as- |                     |
|                |                  |            |                        |                        | pects      |          |                     |
| deduction      | formal           | proofs     | correctness            |                        | ease of u  | ıse      | verification        |
| computation    | progra           | $_{ m ms}$ | efficiency             |                        | well-defi  | nedness  | execution           |
| concretization | concrete objects |            | taı                    | ngibility              | abstract   | ion      | storage/retrieval   |
| narration      | texts            | texts      |                        | flexibility formal sem |            | seman-   | human understanding |
|                |                  |            |                        | tics                   |            |          |                     |
|                |                  | Aspect pa  | Aspect pair   characte |                        | ristic adv | antage   |                     |
|                |                  | ded./com   | comp. rich met         |                        | eta-theory |          |                     |
|                |                  | narr./con  | conc. simple l         |                        | languages  |          |                     |
| ded.           |                  | ded./narr  |                        | theorems and proofs    |            |          |                     |
| comp./co       |                  | comp./com  | ıc.                    | normalization          |            |          |                     |
|                |                  | ded./conc  | c. decidab             |                        | e well-def | inedness |                     |
|                |                  | comp./na   | rr.                    | Turing of              | completen  | ess      |                     |

Figure 2.2: Shared properties and advantages of aspects

is trivially well-defined, but a computational definition of a function may throw exceptions when running; but only the latter can store and compute functions efficiently. Consequently, dedicated and mostly disjoint communities have evolved that have produced large aspect-specific datasets.

# Overview of This Course

## 3.1 Structure

The subsequent *parts* of this course follow the Tetrapod model with one part per aspect. Each of these will describe the concepts, languages, and tools of the respective aspect as well as their relation to other aspects.

The aspects of the Tetrapod are typically handled in individual courses, which describe highly specialized languages and tools in depth. On the contrary, the overall goal of this course will be seeing all of them as different approaches to semantics and knowledge representation. The course will focus on universal principles and their commonalities and differences as well as their advantages and disadvantages.

The subsequent *chapters* of this first part will be dedicated to aspect-independent material. These will not necessarily be taught in the order in which they appear in these notes. Instead, some of them will be discussed in connection to how they are relevant in individual aspects.

# 3.2 Exercises and Running Example

Typical practical projects, e.g., the ones that a strong CS graduate might be put in charge of, involve heterogeneous data and knowledge that must be managed using a variety of optimized aspect-specific languages and tools. Interoperability between these is often a major source of inefficiency and bugs.

The exercises accompanying the course will mimic this situation: they will be designed around a single large project that requires choosing and integrating methods, languages, and tools from all aspects.

Concretely, this project will be the development of a univis-like system for a university. It will involve heterogeneous data such as course and program descriptions, legal texts, websites, grade tables, and transcript generation code.

Over the course of the semester students will implement a completely functional system applying the lessons of the course. This is very unusual and often impossible for other courses: as any university course must teach many different things from a wide area, it is rarely possible to find a project that requires many and only lessons from a single course. Here KRP is special because its material pervades all aspects of system development.

# Representing Syntax and Semantics

# 4.1 Context-Free Syntax

Abstractly, context-free syntax is specified using grammars. Concretely, it is implemented using inductive types. In the sequel, we will start with the standard definitions and then make a series of variation to each of these definitions until they become equivalent. The intended equivalence is as follows:

| CFG                                  | IDT                            |
|--------------------------------------|--------------------------------|
| non-terminal                         | type                           |
| production                           | constructor                    |
| non-terminal on left of production   | return type of constructor     |
| non-terminals on right of production | arguments types of constructor |
| terminals on right of production     | notation of constructor        |

#### 4.1.1 Context-Free Grammars

We start with the usual definition:

**Definition 4.1** (Context-Free Grammar). Given a set  $\Sigma$  of characters (containing the terminal symbols), a context-free grammar consists of

- ullet a set N of names called **non-terminal symbols**
- a set of **productions** each consisting of
  - an element of N, called the **left-hand side**
  - a word over  $\Sigma \cup N$ , called the **right-hand side**

Example 4.2. Let  $\Sigma = \{0, 1, +, \cdot, =, \leq\}$ . We give a grammar for arithmetic expressions and formulas about them:

$$\begin{split} E &::= 0 \\ E &::= 1 \\ & \mid E + E \\ & \mid E \cdot E \end{split}$$
 
$$F &::= E \doteq E$$
 
$$\mid E \leq E$$

Here we use the BNF style of writing grammars, where the productions are grouped by their left-hand side and written with ::= and |. We have  $N = \{E, F\}$ .

First, we give a name to each production of a CFG:

**Definition 4.3** (Context-Free Grammar with Named Productions). Given a set  $\Sigma$  of characters (containing the terminal symbols), a **context-free grammar** consists of

- $\bullet$  a set N of names called non-terminal symbols
- a set of *productions* each consisting of
  - a name
  - an element of N, called the **left-hand side**
  - a word over  $\Sigma \cup N$ , called the **right-hand side**

Example 4.4. The grammar from above with names written to the right of each production

```
\begin{array}{ll} E ::= 0 & \text{zero} \\ E ::= 1 & \text{one} \\ \mid E + E & \text{sum} \\ \mid E \cdot E & \text{product} \\ F ::= E \doteq E & \text{equality} \\ \mid E \leq E & \text{lessOrEqual} \end{array}
```

This is not common BNF anymore.

Then we add base types to the productions:

**Definition 4.5** (Context-Free Grammar with Named Productions and Base Types). Given a set  $\Sigma$  of characters (containing the terminal symbols) and a set T of names (containing the base types allowed in productions), a **context-free grammar** consists of

- ullet a set N of names called non-terminal symbols
- $\bullet\,$  a set of productions each consisting of
  - a name
  - an element of N, called the **left-hand side**
  - a word over  $\Sigma \cup T \cup N$ , called the **right-hand side**

The intuition behind base types is that we commonly like to delegate some primitive parts of the grammar to be defined elsewhere. A typical example are literals such as numbers  $0, 1, 2, \ldots$ : We could give regular expression syntax for digit-strings. Instead, it is nicer to just assume we have a set of base types that we can use to insert an infinite set of literals into the grammar.

Example 4.6. Let Nat be the type of natural numbers and let  $T = \{Nat\}$ . Then we can improve the grammar from above as follows:

```
\begin{array}{ll} E ::= Nat & \text{literal} \\ \mid E + E & \text{sum} \\ \mid E * E & \text{product} \\ F ::= E \doteq E & \text{equality} \\ \mid E \leq E & \text{lessOrEqual} \end{array}
```

## 4.1.2 Inductive Data Types

We start with the usual definition:

**Definition 4.7** (Inductive Data Type). Given a set of names T (containing the types known in the current context), An *inductive data type* consists of

- a name, called the **type**,
- a set of **constructors** each consisting of
  - a name
  - a list of elements of T, called the **argument** types

Example 4.8. Let Nat be the type of natural numbers and  $T = \{Nat\}$ . We give an inductive type for arithmetic expressions:

```
E = \mathtt{literal} \, \mathbf{of} \, Nat \quad | \quad \mathtt{sum} \, \mathbf{of} \, E * E \quad | \quad \mathtt{product} \, \mathbf{of} \, E * E
```

Here we use ML-style notation for inductive data types, which separates constructors by | and writes them as name of argument-type-product.

First we generalize to mutually inductive types:

**Definition 4.9** (Mutually Inductive Data Types). Given a set T of names (containing the types known in the current context), a family of **mutually inductive data type** consists of

- a set N of names, called the **types**,
- a set of *constructors* each consisting of
  - a name
  - an element of I, called the **return type**
  - a list of elements of  $N \cup I$ , called the **argument** types

Example 4.10. We extend the type definition from above by adding a second type for formulas. Thus,  $N = \{E, F\}$ .

```
\begin{array}{c|cccc} E = \mathtt{literal}\,\mathbf{of}\,Nat & | & \mathtt{sum}\,\mathbf{of}\,E*E & | & \mathtt{product}\,\mathbf{of}\,E*E \\ F = \mathtt{equality}\,\mathbf{of}\,E*E & | & \mathtt{lessOrEqual}\,\mathbf{of}\,E*E \end{array}
```

Then we add notations to the constructors:

**Definition 4.11** (Mutually Inductive Data Types with Notations). Given a set  $\Sigma$  of characters (containing the terminal symbols) and a set T of names (containing the types known in the current context), a family of **mutually inductive data type with notations** consists of

- $\bullet$  a set N of names, called the **types**,
- a set of constructors each consisting of
  - a name
  - an element of N, called the **return type**
  - a list of elements of  $T \cup N$ , called the **argument** types
  - a word over the alphabet  $\Sigma \cup T \cup N$  containing the argument types in order and only elements from  $\Sigma$  otherwise, called the **notation** of the constructor

The intuition behind notations is that it can get cumbersome to write all constructor applications as Name(arguments). It is more convenient to attach a notation to such as

Example 4.12. We extend the type definitions from above by adding notations to each constructor. We use the set  $\Sigma = \{+, \cdot, =, \leq\}$  as terminals in the notations.

```
E = \texttt{literal} \ \textbf{of} \ Nat \ \# \ Nat \qquad | \qquad \texttt{sum} \ \textbf{of} \ E*E \ \# E + E \qquad | \qquad \texttt{product} \ \textbf{of} \ E*E \ \# E \cdot E F = \texttt{equality} \ \textbf{of} \ E*E \ \# E \ \dot{=} \ E \qquad | \qquad \texttt{lessOrEqual} \ \textbf{of} \ E*E \ \# E \leq E
```

Here we write the constructors as name of argument-type-product # notation. It is easy to see that this has introduced redundancy: we can infer the argument types from the notation. So we can just drop the argument types:

```
\begin{array}{c|cccc} E = \mathtt{literal} \ \# \ Nat & | & \mathtt{sum} \ \# \ E + E & | & \mathtt{product} \ \# \ E \cdot E \\ F = \mathtt{equality} \ \# \ E \doteq E & | & \mathtt{lessOrEqual} \ \# \ E \leq E \end{array}
```

## 4.1.3 Merged Definition

With the variation from above we have arrived at the following equivalence:

**Theorem 4.13.** Given a set  $\Sigma$  of characters and a set T of names, the following notions are equivalent:

- a family of mutually inductive data types in the context of types T with notations using characters from  $\Sigma$ ,
- a context-free grammar with named productions, terminal symbols from  $\Sigma$ , and base types T.

*Proof.* The key idea is that

- the types and constructors of the former correspond to the non-terminals and productions of the latter
- for each constructor-production pair
  - the right-hand side of the latter corresponds to the notation of the former,
  - the argument types of the former correspond to the non-terminals occurring on the right-hand side of the latter.

In implementations in programming languages, we often drop the notations. Instead, those are handled, if needed, by special parsing and serialization functions.

However, in an implementation, it is often helpful to additionally give names to each argument of a production/constructor. That yields the following definition:

**Definition 4.14** (Context-Free Syntax). Given a set  $\Sigma$  of characters and a set T of names, a context-free syntax consists of

- a set N of names, called the **non-terminals/types**,
- a set of productions/constructors each consisting of
  - a name
  - an element of N, called the **left-hand side/return type**
  - a sequence of objects, called the **right-hand side/arguments** which are one of the following
    - \* an element of  $\Sigma$
    - \* a pair written (n:t) of a name n, called the **argument name**, and an element  $t \in T \cup N$  called the **argument type**.

Example 4.15. Using ad hoc language to write the constructors, our example from above as a context-free syntax could look as follows:

```
E = \mathtt{literal} \, \# \, (value : Nat) \quad | \quad \mathsf{sum} \, \# \, (left : E) + (right : E) \quad | \quad \mathsf{product} \, \# \, (left : E) \cdot (right : E) \\ F = \mathsf{equality} \, \# \, (left : E) \doteq (right : E) \quad | \quad \mathsf{lessOrEqual} \, \# \, (left : E) \leq (right : E)
```

This uses an ad hoc

# 4.2 Implementation

Context-free syntax can be implemented systematically in all programming languages. But, depending on the style of the language, they make drastically different. We give the two most important paradigms as examples.

## 4.2.1 Functional Programming Languages

In a function programming language, inductive data types are a primitive feature. However, notations and named arguments are not available. So helper functions must be used.

The basic recipe is as follows:

- The types and constructors (without the notations and named arguments) are implemented as family of mutually inductive data types.
- For each argument of each constructor, a partial projective function is defined.
- A set of mutually recursive string rendering functions are define, one for each constructor, that implement the notations.

Example 4.16. We define our example syntax in ML.

First the inductive types (assuming a type *Nat* already exists in the context):

```
\begin{array}{lll} \mathbf{data}\,E \,=\, \mathbf{literal}\,\mathbf{of}\,Nat & | & \mathsf{sum}\,\mathbf{of}\,E*E & | & \mathsf{product}\,\mathbf{of}\,E*E \\ \mathbf{and}\,F \,=\, \mathsf{equality}\,\mathbf{of}\,E*E & | & \mathsf{less0rEqual}\,\mathbf{of}\,E*E \end{array}
```

4.2. IMPLEMENTATION 21

Now the projection functions:

```
\begin{array}{ll} \mathbf{fun} \ \mathbf{literal\_value}(\mathbf{literal}(v)) = SOME \ v \\ | \ \ \mathbf{literal\_value}(\_) = NONE \\ \mathbf{fun} \ \mathbf{sum\_left}(\mathbf{sum}(x,\_)) = SOME \ x \\ | \ \ \mathbf{sum\_left}(\_) = NONE \\ \mathbf{fun} \ \mathbf{sum\_right}(\mathbf{sum}(\_,x)) = SOME \ x \\ | \ \ \mathbf{sum\_right}(\_) = NONE \end{array}
```

and so on for each constructor argument.

Finally, the string rendering functions (assuming a function natToString already exists in the context):

```
\begin{aligned} & \textbf{fun} \ \texttt{E\_toString}(\texttt{literal}(v)) = natToString} \ v \\ & | \quad \texttt{E\_toString}(\texttt{sum}(x,y)) = \texttt{E\_toString}(x) + " + " + \texttt{E\_toString}(y) \\ & | \quad \texttt{E\_toString}(\texttt{product}(x,y)) = \texttt{E\_toString}(x) + " \cdot " + \texttt{E\_toString}(y) \\ & \textbf{and} \ \texttt{F\_toString}(\texttt{equality}(x,y)) = \texttt{E\_toString}(x) + " \doteq " + \texttt{E\_toString}(y) \\ & | \quad \texttt{F\_toString}(\texttt{lessOrEqual}(x,y)) = \texttt{E\_toString}(x) + " \leq " + \texttt{E\_toString}(y) \end{aligned}
```

Because ML has inductive data types as primitives, pattern-matching on our syntax comes for free. We will get back to that when defining the semantics.

### 4.2.2 Object-Oriented Programming Languages

In a object-oriented programming language, inductive data types are not available. Therefore, they must be mimicked using classes. On the positive side, this supports arguments names, and notations are a bit easier.

The basic recipe is as follows:

class product extends E {

- Each types is implemented as an abstract class.
- Each constructor of type t is implemented as a concrete class that extends the abstract class t.
- The arguments names and type of each constructor c are exactly the argument names and types of the class c. The constructor arguments are stored as fields in the class.
- The abstract classes require a toString method, which is implemented in every concrete class according to its notation.

```
Example 4.17. We define our example syntax in a generic OO-language somewhat similar to Scala.<sup>1</sup>
In particular, we assume that the sy
abstract class E {
  def toString: String
class literal extends E {
  field value: Nat
  constructor (value: Nat) {
    this.value = value
  def toString = value.toString
class sum extends E {
  field left: Nat
  field right: Nat
  constructor (left: E, right: E) {
    this.left = left
    this.right = right
  def toString = left.toString + "+" + right.toString
```

```
field left: Nat
  field right: Nat
  constructor (left: E, right: E) {
    this.left = left
    this.right = right
  def toString = left.toString + "\cdot" + right.toString
abstract class F {
  def toString: String
class equality extends E {
  field left: Nat
  field right: Nat
  constructor (left: E, right: E) {
    this.left = left
    this.right = right
  def toString = left.toString + "\doteq" + right.toString
class product extends E {
  field left: Nat
  field right: Nat
  constructor (left: E, right: E) {
    this.left = left
    this.right = right
  def toString = left.toString + "\leq" + right.toString
```

Because OO-languages do not have inductive data types as primitives, pattern-matching on our syntax requires awkward switch statements. We will get back to that when defining the semantics.

## 4.2.3 Combining Paradigms

The Scala language combines ideas from functional and OO-programming. That makes its representation of context-free syntax particularly elegant.

In Scala, the constructor arguments are listed right after the class name. These are automatically fields of the class, and a default constructor always exists that defines those fields. That gets rid of a lot of boilerplate.

If we want to make those fields public (and we do because those are the projection functions, we add the keyword val in front of them. But even if that is too much boilerplate. So Scala defines a convenience modifier: if we put case in front of the classes corresponding to constructors of our syntax, Scala puts in the val automatically. It also generates a default implementation of toString, which we have to override if we want to implement notations, too. Finally, Scala also generates pattern-matching functions so that we can pattern-match in the same way as in ML.

Then our example becomes (as usual, assuming a class Nat already exists):

```
abstract class E {
  def toString: String
}
case class literal(value: Nat) extends E {
  override def toString = value.toString
}
case class sum(left: Nat, right: Nat) extends E {
  override def toString = left.toString + "+" + right.toString
}
```

```
case class product(left: Nat, right: Nat) extends E {
  override def toString = left.toString + "." + right.toString
}

abstract class F {
  def toString: String
}

case class equality(left: Nat, right: Nat) extends E {
  override def toString = left.toString + "=" + right.toString
}

case class lessOrEqual(left: Nat, right: Nat) extends E {
  override def toString = left.toString + "=" + right.toString
}
```

# 4.3 Semantics as a Recursive Function

# **Encoding Data**

- 5.1 Data Representation Languages
- 5.2 Typed Data
- 5.3 Encoding Typed Data in Untyped Representation Languages

# Part II Ontological Knowledge

# **Ontologies**

# 6.1 General Principles

**Motivation** An ontology is an abstract representation of the main concepts in some domain. Here *domain* refers to any area of the real world such as mathematics, biology, diseases and medications, human relationships, etc. Many examples can be found at <a href="https://bioportal.bioontology.org/">https://bioportal.bioontology.org/</a>, including the Gene ontology one of the biggest.

Contrary to the other four aspects, ontological knowledge representations do not aim at capturing the entire semantics of the domain objects. Instead, they focus on defining unique identifiers for the those objects and describing some of their properties and relations to each other.

We use the word **ontologization** to refer to the process of organizing the knowledge of a domain in ontologies.

Ontologies are most valuable when they are *standardized* (either sanctioned through a formal body or a quasi-standard because everyone uses it). A standard ontology allows everybody in the domain to use the identifiers defined by the ontology in a way that avoids misunderstandings. Thus, in the simplest form, an ontology can be seen as a dictionary defining the technical terms of a domain. For example, the Gene ontology defines identifier GO:000001 to have the formal name "mitochondrion inheritance" and the informal definition "The distribution of mitochondria, including the mitochondrial genome, into daughter cells after mitosis or meiosis, mediated by interactions between mitochondria and the cytoskeleton.".

Ontology Languages An ontology is written in ontology language. Common ontology languages are

- description logics such as ALC,
- the W3C ontology language OWL, which is the standard ontology languages of the semantic web,
- the entity-relationship model, which focuses on modeling rather than formal syntax,
- modeling languages like UML, which is the main ontology language used in software engineering.

Ontology languages are not committed to a particular domain — in the Tetrapod model, they correspond to programming languages and logics, which are similarly uncommitted. Instead, an ontology language is a formal language that standardizes the syntax of how ontologies can be written as well as their semantics.

Ontologies The details of the syntax vary between ontology languages. But as a general rule, every ontology declares

- individual concrete objects that exist in the real world, e.g., "Florian Rabe" or "WuV"
- concept abstract groups of individuals, e.g., "instructor" or "course"
- relation binary relations between two individuals, e.g., "teaches"
- **properties** binary relations between an individuals and a concrete value (a number, a date, etc.), e.g., "has-credits"
- concept assertions the statement that a particular individual is an instance of a particular concept
- relation assertions the statement that a particular relation holds about two individuals
- **property assertions** the statement that a particular individual has a particular value for a particular property
- axioms statements about relations between concepts, typically in the form subconcept of statements like

"instructor"  $\sqsubseteq$  "person"

All assertions can be understood and spoken as subject-predicate-object triples as follows:

| Assertion          | Triple         |               |              |  |
|--------------------|----------------|---------------|--------------|--|
|                    | Subject        | Predicate     | Object       |  |
| concept assertion  | "Florian Rabe" | is-a          | "instructor" |  |
| relation assertion | "Florian Rabe" | "teaches"     | "WuV"        |  |
| property assertion | "WuV"          | "has credits" | 7.5          |  |

This uses a special relation is-a between individuals and concepts. Some languages group is-a with the other binary relations between individuals for simplicity although it is technically a little different.

The possible values of properties must be fixed by the ontology language. Typically, it includes at least standard types such as integers, floating point numbers, and strings. But arbitrary extensions are possible such as dates, RGB-colors, lists, etc. In advanced languages, it is possible that the ontology even introduces its own basic types and values.

Ontologies are often divided into two parts:

- The abstract part contains everything that holds in general independent of which individuals: concepts, relations, properties, and axioms. It describes the general rules how the worlds works without committing to a particular set of inhabitants of the world. This part is commonly called the **TBox** (T for terminological).
- The **concrete** part contains everything that depends on the choice of individuals: individuals and assertions. It populates the world with inhabitants. This part is commonly called the **ABox** (A for assertional).

A separate division into two parts is the following:

- The **signature** part contains everything that introduces a **named entity**: individuals, concepts, relations, and properties.
- The **theory** part contains everything that describes which statements about the named entities are true: assertions and axioms.

**Synonyms** Because these principles pervade all formal languages, many competing synonyms are used in different domains. Common synonyms are:

| Here       | OWL             | Description logics | ER model    | UML                | semantics via logics |
|------------|-----------------|--------------------|-------------|--------------------|----------------------|
| individual | instance        | individual         | entity      | object, instance   | constant             |
| concept    | class           | concept            | entity-type | class              | unary predicate      |
| relation   | object property | role               | role        | association        | binary predicate     |
| property   | data property   | (not common)       | attribute   | field of base type | binary predicate     |

In particular, the individual-concept relation occurs everywhere and is known under many names:

| domain             | individual     | concept     |
|--------------------|----------------|-------------|
| type theory, logic | constant, term | type        |
| set theory         | element        | set         |
| database           | row            | table       |
| $philosophy^1$     | object         | property    |
| grammar            | proper noun    | common noun |

# 6.2 A Basic Ontology Language

```
Ontologies
O ::= D^*
Declarations
D ::= individual ID
                                       atomic individual
      concept ID
                                       atomic concept
      relation ID
                                       atomic relation
      property ID:T
                                       atomic property
      I\;\mathtt{is}\mathtt{-a}\;C
                                       concept assertion
      IRI
                                       relation assertion
      IPV
                                       property assertion
      F
                                       other axioms
Formulas
F ::= C \equiv C
                                       concept equality
    C \sqsubseteq C
                                       concept subsumption
Individual expressions
I ::= ID
                                       atomic individuals
Concept expressions
C ::= ID
                                       atomic concepts
      C \sqcup C
                                       union of concepts
      C \sqcap C
                                       intersection of concepts
      \forall R.C
                                       universal relativization
      \exists R.C
                                       existential relativization
      dom R
                                       domain of a relation
      rngR
                                       range of a relation
Relation expressions
R ::= ID
                                       atomic relations
      R \cup R
                                       union of relations
      R \cap R
                                       intersection of relations
      R;R
                                       composition of relations
      R^*
                                       transitive closure of a relation
      R^{-1}
                                       dual relation
      \Delta_C
                                       identity relation of a concept
Property expressions
P ::= ID
                                       atomic properties
Identifiers
ID ::= alphanumeric string
Basic types and values
T ::= int \mid float \mid bool \mid string
                                       types
T ::= (omitted)
                                       values
```

Figure 6.1: Grammar of BOL

We could study practical ontology languages like ALC or OWL now. But those feature a lot of other details that can block the view onto the essential parts. Therefore, we first define a basic ontology language ourselves in order to have full control over the details.

### **6.2.1** Syntax

Definition 6.1 (Syntax of BOL). A BOL-ontology is given by the grammar in Fig. 6.1. It is well-formed if

- no identifier is declared twice.
- every property assertion assigns a value of the type required by the property declaration,
- every reference to an atomic individual/concept/relation/property is declared as such.

The above grammar exhibits some general structure that we find throughout formal KR languages. In particular, an ontology consists of **named declarations** of four different kinds of entities as well as some assertions and axioms about them. Each entity declaration clarifies which kind it is (in our case by starting with a keyword) and introduces a new entity identifier. For each kind, there are complex expressions. These are anonymous and built inductively; their base cases are references to the corresponding identifiers. Sometimes (in our case: individuals and properties), the references are the only expressions of the kind. Sometimes (in our case: concepts and relations), there can be many productions for complex expressions. The complex expressions are used to build axioms; in our case, these are the three kinds of assertions and other formulas.

#### 6.2.2 Deductive Semantics

We give a semantics of BOL as an example of a semantics by translation. We fix one language that we have already understood and define an interpretation function that maps all complex expression of the syntax into the semantic language. Specifically, we give a deductive/logical semantics, i.e., the semantic language is a logic.

For simple ontology languages like BOL, ALC, OWL, etc., it is common to use first-order logic (FOL) as the semantic language. More specifically, we use SFOL, the typed variant of FOL with

**Definition 6.2** (Logical Semantics of BOL). The semantic prefix P is the FOL-theory containing

- a type  $\iota$  (for individuals),
- additional types and constants corresponding to base types and values of BOL.

Then every BOL-ontology O is interpreted as the FOL-theory P, [O], where [O] is defined in Fig. 6.2.

Like with the syntax, we can observe some general principles. Every BOL-declaration is translated to a FOL declaration for the same name, and ontologies are translated declaration-wise. For every kind of complex expression, there is one inductive function mapping BOL-expressions to FOL-expressions. The base cases of references to declared identifiers are translated to themselves, i.e., to the identifiers of the same name declared in the FOL theory. The other cases are compositional: every case for a complex expression recurses only into the semantics of the direct subexpressions.

The role of the semantic prefix P is to define once and for all the FOL material that we need in general to interpret ontologies. It occurs at the beginning of all interpretations of ontologies. In particular, it is equal to the interpretation of empty ontology.

#### 6.2.3 Concretized Semantics

We give an alternative semantics using a semantic language for concrete data. Specifically we focus on the SQL database language.

Even though this is a very different knowledge aspect, the general principles of the semantics are the same: Every BOL-declaration is translated to an SQL declaration, and ontologies are translated declaration-wise. For every kind of complex expression, there is one inductive function mapping BOL-expressions to SQL-expressions.

In SQL, we can nicely see the difference between declarations and expressions: the former are translated to side effect-ful statements, the latter to side effect-free queries.

| BOL Syntax $X$         | Semantics $[\![X]\!]$ in FOL                                                                   |
|------------------------|------------------------------------------------------------------------------------------------|
| ontology               | FOL theory                                                                                     |
| $D_1,\ldots,D_n$       | $\llbracket D_1  rbracket, \ldots, \llbracket D_n  rbracket$                                   |
| BOL declaration        | FOL declaration                                                                                |
| $\mathbf{individual}i$ | nullary function symbol $i:\iota$                                                              |
| $\mathbf{concept}i$    | unary predicate symbol $i \subseteq \iota$                                                     |
| ${\bf relation}i$      | binary predicate symbol $i \subseteq \iota \times \iota$                                       |
| property i: T          | binary predicate symbol $i \subseteq \iota \times T$                                           |
| I is-a $C$             | axiom $\llbracket C \rrbracket (\llbracket I \rrbracket)$                                      |
| $I_1 R I_2$            | $\text{axiom } \llbracket R \rrbracket (\llbracket I_1 \rrbracket, \llbracket I_2 \rrbracket)$ |
| I P V                  |                                                                                                |
| F                      | axiom $\llbracket F \rrbracket$                                                                |
| Formula                | Formula without free variables                                                                 |
| $C_1 \equiv C_2$       | $\forall x : \iota. \llbracket C_1 \rrbracket(x) \Leftrightarrow \llbracket C_2 \rrbracket(x)$ |
| $C_1 \sqsubseteq C_2$  | $\forall x : \iota. \llbracket C_1 \rrbracket(x) \Rightarrow \llbracket C_2 \rrbracket(x)$     |
| Individual             | Terms of type $\iota$                                                                          |
| i                      | $\mid i \mid$                                                                                  |
| Concept                | Formula with free variable $x:\iota$                                                           |
| i                      | i(x)                                                                                           |
| $C_1 \sqcup C_2$       | $ [C_1](x) \vee [C_2](x) $                                                                     |
| $C_1 \sqcap C_2$       | $ [C_1](x) \wedge [C_2](x) $                                                                   |
| $\forall R.C$          | $\forall y : \iota. \llbracket R \rrbracket(x, y) \Rightarrow \llbracket C \rrbracket(y)$      |
| $\exists R.C$          | $\exists y : \iota. \llbracket R \rrbracket(x, y) \land \llbracket C \rrbracket(y)$            |
| $\operatorname{dom} R$ | $\exists y : \iota. \llbracket R \rrbracket (x, y)$                                            |
| $\operatorname{rng} R$ | $\exists y : \iota. \llbracket R \rrbracket (y, x)$                                            |
| Relation               | Formula with free variables $x : \iota, y : \iota$                                             |
| i                      | i(x,y)                                                                                         |
| $R_1 \cup R_2$         | $[R_1](x,y) \vee [R_2](x,y)$                                                                   |
| $R_1 \cap R_2$         | $[R_1](x,y) \wedge [R_2](x,y)$                                                                 |
| $R_1; R_2$             | $\exists m : \iota. \llbracket R_1 \rrbracket (x, m) \wedge \llbracket R_2 \rrbracket (m, y)$  |
| $R^{-1}$               | $[\![R]\!](y,x)$                                                                               |
| $R^*$                  | (tricky, omitted)                                                                              |
| $\Delta_C$             | $x \doteq y \land \llbracket C \rrbracket(x)$                                                  |
| Property of type $T$   | Formula with free variables $x: \iota, y: T$                                                   |
| i                      | i(x,y)                                                                                         |

Figure 6.2: Interpretation Function for BOL into FOL

| BOL Syntax $X$                             | Semantics $[\![X]\!]$ in SQL                                                                                                          |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| ontology                                   | SQL statements                                                                                                                        |
| $D_1,\ldots,D_n$                           | $\left[ \left[ \left[ D_{1} \right] , \ldots , \left[ \left[ D_{n} \right] \right] \right]$                                           |
| BOL declaration $(I, C, R \text{ atomic})$ | SQL statement                                                                                                                         |
| $\mathbf{individual}i$                     | INSERT INTO individuals (name) VALUES (i)                                                                                             |
| $\mathbf{concept}i$                        | CREATE TABLE $i$ (id ID)                                                                                                              |
| ${\bf relation}i$                          | CREATE TABLE $i$ (subject ID, object ID)                                                                                              |
| $\mathbf{property}i:T$                     | CREATE TABLE $i$ (subject ID, object $T$ )                                                                                            |
| I is-a $C$                                 | INSERT INTO $C$ VALUES ( $\llbracket I \rrbracket$ )                                                                                  |
| $I_1 \mathrel{R} I_2$                      | INSERT INTO $R$ (subject, object) VALUES ( $\llbracket I_1 \rrbracket$ , $\llbracket I_2 \rrbracket$ )                                |
| I P V                                      | INSERT INTO $P$ (subject, object) VALUES ( $\llbracket I \rrbracket, V$ )                                                             |
| F                                          | consistency check, consequence closure (omitted)                                                                                      |
| Formula                                    | Query that returns empty result iff formula is true                                                                                   |
| $C_1 \equiv C_2$                           | $(\llbracket C_1  rbracket \setminus \llbracket C_2  rbracket)$ UNION $(\llbracket C_2  rbracket \setminus \llbracket C_1  rbracket)$ |
| $C_1 \sqsubseteq C_2$                      | $ig  \ \llbracket C_1  rbracket \setminus \llbracket C_2  rbracket$                                                                   |
| Individual                                 | an identifier from the table individuals                                                                                              |
| i                                          | SELECT id FROM individuals WHERE name= $i$                                                                                            |
| Concept                                    | SQL query for one-column table                                                                                                        |
| i                                          | SELECT * FROM $i$                                                                                                                     |
| $C_1 \sqcup C_2$                           | $\llbracket C_1  rbracket$ UNION $\llbracket C_2  rbracket$                                                                           |
| $C_1 \sqcap C_2$                           | $\llbracket C_1  rbracket$ INTERSECT $\llbracket C_2  rbracket$                                                                       |
| $\forall R.C$                              | mini homework                                                                                                                         |
| $\exists R.C$                              | SELECT DISTINCT subject FROM $[\![R]\!]$ , $[\![C]\!]$ WHERE object=id                                                                |
| $\operatorname{dom} R$                     | SELECT DISTINCT subject FROM $[\![R]\!]$                                                                                              |
| $\operatorname{rng} R$                     | SELECT DISTINCT object FROM $[\![R]\!]$                                                                                               |
| Relation                                   | SQL query for two-column table                                                                                                        |
| i                                          | SELECT * FROM $i$                                                                                                                     |
| $R_1 \cup R_2$                             | $\llbracket R_1 \rrbracket$ UNION $\llbracket R_2 \rrbracket$                                                                         |
| $R_1 \cap R_2$                             | $[R_1]$ INTERSECT $[R_2]$                                                                                                             |
| $R_1; R_2$                                 | SELECT DISTINCT l.subject, r.object FROM $[R_1]$ AS l, $[R_2]$ AS r                                                                   |
|                                            | WHERE l.object = $r.subject$                                                                                                          |
| $R^{-1}$                                   | SELECT object, subject FROM $[\![R]\!]$                                                                                               |
| $R^*$                                      | (tricky, omitted)                                                                                                                     |
| $\Delta_C$                                 | SELECT id AS subject, id AS object FROM $[\![C]\!]$                                                                                   |
| Property of type $T$                       | SQL query for two-column table                                                                                                        |
| i                                          | SELECT * FROM $i$                                                                                                                     |

Using the abbreviation:  $S \setminus T = SELECT$  id FROM S WHERE id NOT IN T

Figure 6.3: Interpretation Function for BOL into SQL

Definition 6.3 (Concretized Semantic of BOL). The semantic prefix consists of the following SQL statements

- $\bullet$  a type ID of identifiers (if not already supported anyway by the underlying database)
- declarations of all base types and values of BOL (if not already supported anyway by the underlying database)
- CREATE TABLE individuals (id ID, name string), where the id field is unique and automatically generated when inserting values

Every BOL-ontology O is interpreted as a sequence P, [O] of SQL statements, where [O] is defined in Fig. 6.3.

Complex Expressions in Assertions Our interpretation of BOL in SQL is restricted assertions using only atomic expressions. For example, in the case for I is-a C, we assume that I and C are names. Thus, we have already created an individual for I and a table for C, and we can thus insert the former into the latter.

The general case would be more complicated but is much less important in practice. For example, the concept assertion "Florian Rabe" is-a "instructor"  $\sqcap$  "male" could be handled by adding the individual to both tables. But other expressions very quickly become more difficult.

**Translation of Formulas** The interpretation of formulas into SQL is less obvious because SQL is not a logic. We have to consider two subtleties.

Firstly, a formula may express a consistency condition that must not violated by the ontology. For example, ontologies may contain contradictory assertions or violations of uniqueness constraints such as a person should only have one father or fathers should be male. In FOL, this amounts to  $[\![O]\!]$  being an inconsistent theory, which can be reasoned about as usual. In SQL, we can mimic it by checking the consistency of the database. (Consistency is undecidable for FOL in general but often decidable for ontology languages.)

Secondly, a formula may express a closure operation that must be mimicked by adding implied assertions to the ontology. For example, if there is a subconcept axiom "instructor"  $\sqsubseteq$  "person" and a concept assertion "Florian Rabe" is-a "instructor", we have to add the implied concept assertion "Florian Rabe" is-a "person". In FOL, this happens automatically by the calculus of FOL, which adds all theorems of a theory. In SQL, we have to mimic it manually. (Consequence is undecidable for FOL in general but often decidable for ontology languages.)

#### 6.2.4 Narrative Semantics

We will now look at still another semantics for BOL: the **narrative semantics** is given by translation into a natural language — here English.

Note that we are relatively open of what kind of English we want to use as a target language. The simplest choice would be to use plain English, as you could find in a novel or newspaper article. But for many applications (e.g. STEM ontologies), we would rather use STEM English, i.e. English interspersed with formulas, diagrams, and epistemic cues like "Definition", "Theorem", "Proof", and even □. For this kind of English, L⁴TEX is a good target format. Finally, we can use flexiformal formats like sTeX [Koh08, sTe], where we can capture more of the semantic properties.

In Figure 6.4 we present a translation into plain English in the style of the other aspect semantics translations above. It recursively goes over the BOL expressions and generates strings, using a lexicon function lex (for lexicon) that maps BOL identifiers into (lemmata  $\hat{=}$  base forms of) English words of the appropriate syntactic category for the base cases.

Example 6.4. Consider an ontology with declarations individual P, individual M, relation l, relation h and a lexicon function  $P \mapsto \text{Peter}, M \mapsto \text{Mary}, l \mapsto \text{love}$ , then  $[\![P\ l\ M]\!] = \text{"Peter loves Mary"}.$ 

Example 6.5. If we extend the ontology above with **concept** d and **concept** c and the lexicon with lex(d) = is a dog and lex(c) = is a cat, then M is -a c translates to "Mary is a cat", and P is -a  $c \sqcap d$  translates to "Peter is a cat or is a dog".

But while the target languages in the other translations are formal languages engineered for regularity (see also the discussion in Section 6.2.5) and simplicity (in terms of language primitives), while natural languages have evolved in practical human communication. As a consequence, the translation in Figure 6.4 results in English that is clumsy at best and non-grammatical in general. We can think of the result as **BOL-pidgin** English.

Let us have a look at some of the problems that appear in both translations:

- our lexicon does not have any inflection information and the translation tries to remedy that by appending "s", "ing", or "ed" in various places. This works for the examples above but not for relations that verbalize to "has a" or "has as child".
- there are many linguistic devices that serve an important role in natural language, but which we are not tageting. An example is plural objects for aggregation. Say we have Pis-aC, Pis-aC, this would translate to "Peter is a  $[\![C]\!]$ , Mary is a  $[\![C]\!]$ " in BOL-pidgin, whereas in natural English would aggregate this to "Peter and Mary are  $[\![C]\!]$ s".

A way out here is to utilize special systems for dealing with the surface structure of natural language. An example of this is the GF system (Grammatical Framework [Ran11, GF]) which allows to specify a rich formal language abstract syntax trees (ASTs) together with language-specific linearizations, which amount to recursive functions that translate ASTs to language-specific strings. GF comes with a large resource library [BHR] that provides a comprehensive, language-independent AST specification and linearlizations for over 35 languages. We will not pursue this here, there is a special course "Logic-based Natural Language Semantics" at FAU in the Winter Semesters that covers these and related topics.

| BOL Syntax $X$         | Narrative Semantics $[\![X]\!]$ in English                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ontology               | English document                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $D_1,\ldots,D_n$       | $\llbracket D_1  rbracket, \ldots, \llbracket D_n  rbracket$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| BOL declaration        | dictionary entry or true sentence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\mathbf{individual}i$ | lex(i) is a proper noun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\mathbf{concept}i$    | lex(i) is a common noun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ${\bf relation}i$      | lex(i) is a transitive verb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\mathbf{property}i:T$ | lex(i) is a common noun for a property that can take T-values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $I$ is-a ${\cal C}$    | $\llbracket I rbracket{\mathbb{I}} \rrbracket \llbracket C rbracket{\mathbb{I}}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $I_1 R I_2$            | $\llbracket I_1 \rrbracket \ \llbracket R \rrbracket \ \llbracket I_2 \rrbracket.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| I P V                  | $\llbracket I \rrbracket \text{ has } \llbracket P \rrbracket \ \llbracket V \rrbracket.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| F                      | $\llbracket F  rbracket$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Formula                | Sentence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $C_1 \equiv C_2$       | $\llbracket C_1 \rrbracket$ ing is the same as $\llbracket C_2 \rrbracket$ ing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $C_1 \sqsubseteq C_2$  | everything that $[C_1]$ s also $[C_2]$ s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Individual             | noun phrase (to be used as a subject or object)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| i                      | lex(i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Concept                | intransitive verb phrase (to be plugged after a subject)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| i                      | is a $lex(i)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $C_1 \sqcup C_2$       | $oxedsymbol{\llbracket} C_1 oxedbellet$ or $oxedsymbol{\llbracket} C_2 oxedlet$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $C_1 \sqcap C_2$       | $\llbracket C_1  rbracket$ and $\llbracket C_2  rbracket$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\forall R.C$          | $\llbracket R \rrbracket$ s only things that $\llbracket C \rrbracket$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\exists R.C$          | $\llbracket R \rrbracket$ s something that $\llbracket C \rrbracket$ s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\operatorname{dom} R$ | $\llbracket R \rrbracket$ s something                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\operatorname{rng} R$ | is $[R]$ ed by something                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Relation               | transitive verb phrase (to be plugged between subject and object)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| i                      | lex(i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $R_1 \cup R_2$         | $\llbracket R_1  rbracket{ }$ s or $\llbracket R_2  rbracket{ }$ s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $R_1 \cap R_2$         | $\llbracket R_1  rbracket{ sand } \llbracket R_2  rbracket{ sand }  bracket{ sand$ |
| $R_1; R_2$             | $\llbracket R_1 \rrbracket$ s something that $\llbracket R_2 \rrbracket$ s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $R^{-1}$               | is $\llbracket R  rbracket$ ed by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $R^*$                  | $[\![R]\!]$ s something that $[\![R]\!]$ s something and so on that $[\![R]\!]$ s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\Delta_C$             | $\llbracket C \rrbracket$ s and is the same as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Property of type $T$   | property phrase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| i                      | lex(i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Figure 6.4: Interpretation Function for BOL into English (intransitive VP version)

One of the major issues that need to be addressed there and here is the notion of compositionality, which is central to all processing and semantics. We will address it next, and come back to it time and again later.

#### 6.2.5 Compositionality

**Definition** An interpretation function is compositional if the interpretation of any kind of expression  $E(e_1, \ldots, e_n)$  with direct subexpressions  $e_i$  only depends on E and the interpretation of the  $e_i$ , i.e.,

$$[\![E(e_1,\ldots,e_n)]\!] = [\![E]\!]([\![e_1]\!],\ldots,[\![e_n]\!])$$

for some semantic operation  $\llbracket E \rrbracket$ .

The interpretations of BOL in FOL and SQL are compositional, and even the narrative semantics into BOL-pidgin is. For example, consider the case of composition of relations:

$$[R_1; R_2] = \exists m : \iota.[R_1](x, m) \land [R_2](m, y)$$

We have n=2 and E is the ;-operator mapping  $(e_1,e_2) \mapsto e_1$ ;  $e_2$ , i.e.,  $R_1$  and  $R_2$  are the direct subexpressions of  $R_1$ ;  $R_2$ . The semantics is a relatively complicated FOL-formula, but it only depends on  $[\![R_1]\!]$  and  $[\![R_2]\!]$  — everything else is fixed. We have  $[\![\cdot]\!] = (p_1,p_2) \mapsto \exists m : \iota.p_1(x,m) \land p_2(m,y)$ , i.e., the interpretation of the ;-operator is the function that maps two predicates  $p_1, p_2$  to the formula  $\exists m : \iota.p_1(x,m) \land p_2(m,y)$ . Then we have

$$[R_1; R_2] = [:]([R_1], [R_2]).$$

It is highly desirable but not always possible to give a compositional translation. Sometimes a feature of the syntactic language cannot be directly interpreted in the semantic language. In that case, it may still be possible to give a non-compositional translation.

Example 6.6 (Non-Compositional Translation via Sub-Induction). A simple example of non-compositionality is the translation of natural numbers based on zero, one, and addition (i.e.,  $N::=0 \mid 1 \mid N+N$ ) into natural numbers based on zero and successor (i.e.,  $N::=0 \mid succ(N)$ ): It is straightforward to translate zero and one compositionally:

$$[0] = 0$$
  $[1] = \operatorname{succ}(0)$ 

Now we would like to translate

$$[m+n] = [+]([m], [n]),$$

but there is no way to define [+] in terms of zero and successor. Instead, we need subcases:

$$[\![m+n]\!] = \begin{cases} [\![m]\!] & \text{if } n = 0\\ \text{succ}([\![m]\!]) & \text{if } n = 1\\ [\![(m+n_1)+n_2]\!] & \text{if } n = n_1+n_2 \end{cases}$$

This corresponds to the usual definition of addition, i.e., [+], by induction.

Other common examples of non-compositional translations are

- several important logical theorems such as
  - cut elimination, which is he translation from sequent calculus with cut to sequent calculus without cut,
  - the deduction theorem, which is the translation from natural deduction to Hilbert calculus,
- almost anything done by an optimizing compiler, e.g., loop unrolling or function inlining,
- query optimization done by a database, e.g., turning a WHERE of a join into a join of WHEREs,
- almost all translations between natural languages, e.g., when words are ambiguous and a different translation must be chosen for the same word based on the context. The introduction of richer intermediate structures like ASTs and functions as values into the translation can recover some compositionality here.

Typical sources of non-compositionality in formal language translations are:

- A case in the translation function requires subcases which inspect the  $e_i$  and treat them differently.
- A case in the translation function requires subcases which translate an expression differently based on the context in which it occurs.

- The translation function requires nested inductions, i.e., a case in the translation function (which is already inductive) requires a sub-induction on one of the sub-expressions.
- The semantic prefix is not fixed but depends on the translated object, i.e, the top-level case of the translation scans through the entire argument X to collect all occurrences of a particular feature and then custom-builds the semantic prefix of [X].

In Fig. 6.2, we omitted the case for the transitive closure. That was because it is not possible to translate it compositionally into FOL. We can only do it non-compositionally with a custom semantic prefix:

Example 6.7 (Non-Compositional Translation via Custom Semantic Prefix). We define the FOL-interpretation of an ontology O by  $[\![O]\!] = P_O$ ,  $[\![O]\!]$ , where  $P_O$  is a custom semantic prefix.  $P_O$  is different for every ontology O and is defined as follows:

- 1. We scan through O and collect all occurrences of  $R^*$  for any (not necessarily atomic) relation R.
- 2.  $P_O$  contains the following declarations for each R:
  - A binary predicate symbol  $C_R \subseteq i \times i$ . Note that R may be a complex expression; so we have to generate a fresh name  $C_R$  here.
  - The axiom  $\forall x : \iota, y : \iota : R(x, y) \Rightarrow C_R(x, y)$ , i.e.,  $C_R$  extends R.
  - The axiom  $\forall x : \iota, y : \iota, z : \iota.C_R(x, y) \land C_R(y, z) \Rightarrow C_R(x, x)$ , i.e.,  $C_R$  is transitive.
- 3. We add the case  $[\![R^*]\!] = C_R(x,y)$  to the interpretation function.

Intuitively, every occurrence of the \*-operator is removed from the language and replaced with a fresh name that is axiomatized to have the needed properties. All of these axioms are added to the semantic prefix.

Such non-compositional translations are undesirable for multiple reasons:

- The implementation is more complicated and error-prone.
- Reasoning about the translation is more difficult.
- The custom semantic prefix can be large.

But most importantly, non-compositional translations are less robust. Firstly, if we add a production to the syntax, a compositional translation is easy to extend: just add a case to the translation. But a non-compositional translation may additionally require a new subcase wherever subcases/subinductions are used. Moreover, if a custom semantic prefix is used, its definition may have to be amended, at least it must be rechecked.

Secondly, in practice there are two sources of complex expressions: the ones already mentioned in the language, and the ones used later for other reasons. For example, in BOL some complex expressions occur already statically in the definition of an ontology O. But others might be appear dynamically later, e.g., when talking about O, proving properties of O, or running queries on O. Thus, the definition of O and the use of complex expressions are decoupled: O is defined statically once and for all, and complex expressions relative to O can be created and used dynamically. But if a custom semantic prefix is used, only the static occurrences inside O can be considered for building the prefix. Thus, it is not possible to translate the dynamic occurrences of the transitive closure unless the semantic prefix is extended all the time as O is used.

### 6.3 Representing Ontologies as Triples

It is common to represent an entire ontology as a set of subject-predicate-object triples. That makes handling ontologies very simple and efficient. This is the preferred representation of the semantic web.

However, while, e.g., relation assertions are naturally triples, not all declarations are, and some tricks may be necessary.

**Inferring the Entity Declarations** The entity declarations are not naturally triples. But we can usually infer them from the assertions as follows: any identifier that occurs in a position where an entity of a certain kind is expected is assumed to be declared as an entity for that kind.

For example, the individuals are what occurs as the subject of a concept, relation, or property assertion or as the object of a relation assertion. It is conceivable that there are individuals that occur in none of these. But that is unusual because they would be disconnected from everything in the ontology.

If we give TBox and ABox together, this inference approach usually works well. But if we only give a TBox, this would often not allow inferring all entities. The only place where they could occur in the TBox is in the axioms,

and it is quite possible to have concept, relation, and property declarations that are not used in the axioms. In fact, it is not unusual not to have any axioms.

**Special Predicates** To turn declarations into triples, we can use reflection, i.e., the process of talking about our language constructs as if they were data.

Reflection requires introducing some built-in entities that represent the features of the language. In the semantic web area, this is performed using the following entities:

- "rdfs:Resource": a built-in concept of which all individuals are an instance and thus of which every concept is a subconcept
- "rdf:type": a special predicate that relates an entity to its type:
  - an individual to its concept (corresponding to is-a above)
  - other entities to their special type (see below)
- "rdfs:Class": a special class to be used as the type of classes
- "rdf:Property": a special class to be used as the type of properties
- "rdfs:subClassOf": a special relation that relates a subconcept to a superconcept
- "rdfs:domain": a special relation that relates a relation to the concepts of its subjects
- "rdfs:range": a special relation that relates a relation/property to the concept/type of its objects

Here "rdf" and "rdfs" refer to the RDF (Resource Description Framework) and RDFS (RDF Schema) namespaces, which correspond to W3C standards defining those special entities.

Thus, we can represent many and in particular the most important entity declarations as triples:

| Assertion                       | Triple        |                   |                 |  |
|---------------------------------|---------------|-------------------|-----------------|--|
|                                 | Subject       | Predicate         | Object          |  |
| individual                      | individual    | "rdf:type"        | "rdfs:Resource" |  |
| concept                         | concept       | "rdf:type"        | "rdf:Class"     |  |
| relation                        | relation      | "rdf:type"        | "rdf:Property"  |  |
| property                        | property      | "rdf:type"        | "rdf:Property"  |  |
| concept assertion               | individual    | "rdf:type"        | concept         |  |
| relation assertion              | individual    | relation          | individual      |  |
| property assertion              | individual    | property          | value           |  |
| for special forms of            | axioms        |                   |                 |  |
| $c \sqsubseteq d$               | c             | "rdfs:subClassOf" | d               |  |
| $\operatorname{dom} r \equiv c$ | r             | "rdfs:domain"     | c               |  |
| $\operatorname{rng} r \equiv c$ | $\mid r \mid$ | "rdfs:range"      | c               |  |

This is subject to the restriction that only atomic concepts and relations can be handled. For example, only concept assertions can be handled that make an individual an instance of an *atomic* concept. This is particularly severe for axioms, where complex expressions occur most commonly in practice. Here, the special relations allow capturing the most common axioms as triples.

**Problems** Reflection is subtle and can easily lead to inconsistencies. We can see this in how the approach of RDF(S) special entities breaks the semantics via FOL.

For example, it treats classes both as concepts (when they occur as the object of a concept assertion) and as individuals (when they occur as subject or object of a "rdfs:subClassOf" relation assertion). Similarly, "rdfs:Class" is used both as an individual and as a class. In fact, the standard prescribes that "rdfs:Class" is an instance of itself.

In practice, this is handled pragmatically by using ontologies that make sense. A formal way to disentangle this is to assume that there are two variants of "rdfs:Class", one as an individual and one as a class. The translation must then translate "rdfs:Class" differently depending on how it is used.

It would be better if RDFS were described in a way that is consistent under the implicitly intended FOL semantics. But the more pragmatic approach has the advantage of being more flexible. For example, being able to treat every class, relation, or property also as an individual makes it easy to annotate metadata to them. Metadata is a set of properties such as "rdfs:seeAlso" or "owl:versionInfo", whose subjects can be any entity.

**Subject-Centered Representations** When giving a set of triples, there are usually a lot of triples with the same subject. For example, we could use a simple concrete syntax with one triple per line and whitespace separating

subject, predicate, and object:

```
"Florian Rabe" is—a "Instructor"
"Florian Rabe" is—a "male"
"Florian Rabe" "teaches" "WuV"
"Florian Rabe" "teaches" "KRMI"
"Florian Rabe" "age" 40
"Florian Rabe" "office" "11.137"
```

It is more human-friendly to group these triples in such a way that the subject only has to be listed once. For example, we could use a concrete syntax like this, where the subject occurs first and then predicate-object pairs occur on indented lines:

```
"Florian Rabe"
is—a "Instructor"
is—a "male"
"teaches" "WuV"
"teaches" "KRMI"
"age" 40
"office" "11.137"
```

If the same predicate occurs with multiple values, we can group those as well. For example, we could give the objects for the same predicates as a list following the predicate:

```
"Florian Rabe"
is—a "Instructor" "male"
"teaches" "WuV" "KRMI"
"age" 40
"office" "11.137"
```

Concrete syntaxes based on the triple representation of ontologies will usually adopt some kind of structure like this. The details may vary.

### 6.4 Type Systems for Ontologies

### 6.4.1 Concepts as Types

#### 6.4.2 Record Types

## Chapter 7

## Writing Ontologies

### 7.1 The OWL Language

**Abstract Syntax and Semantics** Due to their central in knowledge representation, a number of languages for ontology writing exist. Most importantly, the syntax and semantics of OWL, including several sublanguages, are standardized by the W3C.

OWL includes a number of built-in special entities. Most importantly, "owl:Thing" corresponds to "rdfs:Resource" as the concept of all individuals.

Concrete Syntax Several concrete syntaxes have been defined and are commonly used for OWL. The OWL2 primer<sup>1</sup> systematically describes examples in five different concrete syntaxes.

APIs for OWL implement the abstract syntax along with good support for reading/writing ontologies in any of the concrete syntaxes.

### 7.2 The Protege Tool

A widely used tool for writing ontologies in OWL is Protege<sup>2</sup>.

To get started with Protege without getting confused, we need to continue understand how its key terminology maps to other contexts.

| Here               | Protege         | Edited in WebProtege via                           |
|--------------------|-----------------|----------------------------------------------------|
| individual         | individual      | listed in "Individuals" tab                        |
| concept            | class           | listed in "Classes" tab                            |
| relation           | object property | listed in "Properties" tab                         |
| property           | data property   | listed in "Properties" tab                         |
| concept assertion  | Type            | detail area of the individual in "Individuals" tab |
| relation assertion | Relationship    | detail area of the subject in "Individuals" tab    |
| property assertion | Relationship    | detail area of the subject in "Individuals" tab    |

Protege's interface treats some parts of the ontology specially:

- The "Classes" tab organizes concepts using a tree view based on the subconcept relationship. Superclasses of a class can also be edited directed by listing parents.
- The "Properties" tab organizes properties using a tree view based on the subproperty (i.e., implication, subset) relationship.
- Axioms describing the domain and range of a property can be given directly in its details view.

Note that classes can be in relationships with other classes as well even though that was not considered in the course so far.

<sup>&</sup>lt;sup>1</sup>https://www.w3.org/TR/2012/REC-owl2-primer-20121211/

<sup>&</sup>lt;sup>2</sup>https://protege.stanford.edu/

#### 7.3 Exercise

The topic of Exercise 1 is to use Protege to write an OWL ontology for a university.

Protege is a graphical editor for the abstract syntax of OWL. Familiarize yourself with the various concrete syntaxes of OWL by writing an ontology that uses every feature once, downloading it in all available concrete syntaxes, and comparing those.

The minimal goal of the exercise session is to get a Hello World example going, at which point the task transitions into homework. There will be no homework submission, but you will use your ontology throughout the course.

You should make sure you understand and setup the process in a way that supports you when you revisit and change your ontology many times throughout the semester.

Other than that, the task is deliberately unconstrained to mimic the typical situation at the beginning of a big project, where it is unclear what the ultimate requirements will be.

# Part III Concretized Knowledge

# Part IV Computational Knowledge

# $\begin{array}{c} {\rm Part} \ {\bf V} \\ \\ {\bf Deductive} \ {\bf Knowledge} \end{array}$

Various methods have been developed to represent and perform inferences. We structure our presentation by how each method relates to computation, the aspect most whose integration with inference has drawn the most attention. In general, the ubiquity of underspecified function symbols and quantified variables means that logical expressions usually do not normalize to unique values. At best, computations like y := f(x) can be represented as open-ended conjectures where different options for y are produced, each together with a proof of the respective equality. Therefore, inference systems usually sacrifice computation or at least its efficiency.

*Proof assistants* sit at the extreme end of this spectrum. They employ strong logics and high-level declarations to provide a convenient way to formalize domain knowledge and reason about it. The reasoning is usually interactive in order to represent inferences that are too difficult to be fully automated. Most proof assistants integrate at least some of the other methods to overcome this weakness.

Further along the spectrum, automated theorem provers use simpler logics than interactive proof assistants. They are fully automatic and much faster, but can handle much fewer theorems, and typically do not check their proofs. Satisfiability checkers continue this progression by aiming at decidable automation support, whereas theorem proving is usually an semi-decidable search problem. That limits them to propositional logic or specific theories of more expressive logics (usually of first-order logic) that are complete, i.e., where every formula can be proved or disproved. In the special cases, where satisfiability checkers are applicable, they come close to verified computation systems. Orthogonal to the above triplet, there are several methods for realizing Turing-complete computation naturally inside a logic. Here imperative and object-oriented computation are usually avoided in favor of other programming paradigms that are easier to reason about. Rewriting aims at optimizing the  $f(x) \rightsquigarrow y$  progression, allowing users to mark specific transformations as rewrite steps. Terminating recursion is the method of adding recursive functions to a logic in order to make it a pure functional programming language. Finally, logic programming restricts attention to theorems of a special form, for which proof search is simple and predictable so that users can represent computations by supplying axioms that guide the proof search.

# Part VI Narrative Knowledge

# Part VII Conclusion

## Bibliography

- [BHR] B. Bringert, T. Hallgren, and A. Ranta. Gf resource grammar library: Synopsis. https://www.grammaticalframework.org/lib/doc/synopsis/. accessed 2020-03-11.
- [CFKR20] J. Carette, W. Farmer, M. Kohlhase, and F. Rabe. Big Math and the One-Brain Barrier. *The Mathematical Intelligencer*, 2020. to appear.
- [GF] Gf grammatical framework. http://www.grammaticalframework.org. accessed May 2020.
- [Koh08] Michael Kohlhase. Using LaTeX as a semantic markup format. Mathematics in Computer Science,  $2(2):279-304,\ 2008.$
- [Ran11] Aarne Ranta. Grammatical Framework: Programming with Multilingual Grammars. CSLI Publications, Stanford, 2011. ISBN-10: 1-57586-626-9.
- [sTe] sTeX: A semantic extension of TeX/LaTeX. GitHub repository at https://github.com/sLaTeX/sTeX. accessed 11. 5. 2020.