Math 170A, Fall 2023 HOMEWORK #3 due Friday, Oct. 27

Homework problems that will be graded (Q1 - Q5, 30pts in total):

- Q1. Let $A = \alpha I$ be a multiple of the $n \times n$ identity matrix, with $\alpha \in \mathbb{R}$, $\alpha \neq 0$, and consider $||\cdot||$ to be an induced matrix norm. Calculate ||A||, $||A^{-1}||$, $\det(A)$, and $\kappa_{||\cdot||}(A)$.
- **Q2.** Let A be a non-singular $n \times n$ matrix.
 - a) Show that, in any norm, $\kappa(A) = \kappa(A^{-1})$.
 - b) By rewriting Ax = b as $A^{-1}b = x$, use the proof template we did in class to show the so-called **companion inequality**:

$$\frac{||\delta b||}{||b||} \le \kappa(A) \frac{||\delta x||}{||x||} .$$

Q3. Let

$$A = \left[\begin{array}{ccc} 3 & 0 & 2 \\ 2 & 0 & -2 \\ 0 & 1 & 1 \end{array} \right],$$

and let
$$b = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$
.

- a) Calculate the norms $||A||_1$, $||A||_{\infty}$, $||A||_F$.
- b) Compute the condition numbers $\kappa_1(A)$, $\kappa_{\infty}(A)$, $\kappa_F(A)$ with respect to the 1-norm, ∞ -norm, Frobenius-norm respectively.
- c) Let $\delta b = \begin{bmatrix} \epsilon \\ 0 \\ 0 \end{bmatrix}$. Consider the linear systems Ax = b, $A\hat{x} = b + \delta b$ and let $\delta x = \hat{x} x$. Estimate the relative error from above and below through condition numbers, for norms $1, \infty$, and Frobenius. (see Q2 for the lower bound).

Q4. (Exercise 3, Page 94 in the textbook) What is wrong with the following reasoning?

Changing b by 1% means multiplying it by 1.01 . If Ax = b, then A(1.01x) = 1.01b, by linearity. So a 1% change of b, from b to 1.01b, causes a 1% change in x, from x to 1.01x. So forget the whole story about condition numbers—-a 1% change in b always causes a 1% change in b.

- Q5. (similar to Exercise 4, Page 94 in the textbook) This is a MATLAB exercise. Write a code that does the following.
 - Pick a random 500 by 500 matrix A with the command A = randn(500). Note the use of randn, not rand; this produces normally distributed, rather than uniformly distributed, variables. (If you don't know what that means, it won't matter for this problem.)
 - Pick a random right-hand side b = randn(500, 1).
 - Solve Ax = b using the backslash command $x = A \setminus b$.
 - Then create a small perturbation, δb , of b using this command:

$$delta_b = 10^{\land}(-3) * randn(500, 1)$$

- Solve $A\tilde{x} = b + delta_b$ using the backslash. You can name your new variable \tilde{x} , x_tilde .
- Compute rel_error_sol = $||x_tilde x||_1/||x||_1$; you can compute the 1 norm of a vector z by using the MATLAB command norm(z, 1).
- Compute rel_error_b = $||\text{delta_b}||_1/||b||_1$.
- Finally, let $q = \frac{\text{rel_error_sol}}{\text{cond}(A,1)*\text{rel_error_b}}$; here cond(A,1) is using the command to compute the condition number of A in norm 1, in MATLAB.
- Now, repeat this 50 times, so you get $q(1), q(2), \ldots, q(50)$. Plot the vector $y = \log_{10}(q)$ by using the commands $y = \log_{10}(q)$ and plot(y).
- Explain how the picture agrees with the theory we learned in class (which predicts q(i) will be less than 1.)

Please turn in a screenshot of the code, the picture, and your explanation.