Московский государственный технический университет им. Н. Э. Баумана Факультет «Радиоэлектроника и лазерная техника (РЛ)» Кафедра «Технологии приборостроения (РЛ6)»

Домашнее задание №2 по дисциплине «Радиотехнические цепи и сигналы»

Выполнил ст. группы РЛ6-59 Лобанов Д.Д.

Преподаватель Дмитриев Д. Д.

Задание:

- 1. Рассчитать по программе линейчатый спектр периодической последовательности косинусоидальных импульсов при $\Theta = UG = 30^\circ, 90^\circ, 120$ или других значениях $\Theta = UG$.
- 2. По результатам расчета построить линейчатые спектры.

Решение:

1) Рассчитаем в программе Mathcad линейчатый спектр периодической последовательности косинусоидальных импульсов при $\Theta = UG = 30^{\circ}$:

Рисунок 1 — Расчет в программе Mathcad при $\Theta = UG = 30^{\circ}$.

Построим в программе Mathcad линейчатый спектр периодической последовательности косинусоидальных импульсов при $\Theta = UG = 30^{\circ}$:

Рисунок 2 — Линейчатый спектр для косинусоидальных импульсов при $\Theta = UG = 30^{\circ}$.

2) Рассчитаем в программе Mathcad линейчатый спектр периодической последовательности косинусоидальных импульсов при $\Theta = UG = 90^{\circ}$:

$$\begin{array}{lll} UG \coloneqq 90 & U \coloneqq UG \cdot \frac{\pi}{180} & AM \coloneqq 1 & N \coloneqq 20 \\ \hline \varPhi(x) \coloneqq \left\| \begin{array}{lll} \text{if } |x| \le U \\ & |AM \cdot \left(\frac{\cos(x) - \cos(U)}{1 - \cos(U)} \right) \\ & | \text{if } U < |x| \le \pi \\ & | & | \end{array} \right\| \\ A_k \coloneqq \frac{2}{\pi} \cdot \int_0^{\pi} \varPhi(x) \cdot \cos(k \cdot x) \, \mathrm{d}x & A_0 \coloneqq \frac{1}{\pi} \cdot \int_0^{\pi} \varPhi(x) \, \mathrm{d}x & AD_k \coloneqq \text{if } k \ne 5 \\ & + & & & & & \\ & 20 \cdot \log \left(\frac{|A_k|}{A_1} \right) \\ \hline 0.318 & & & & & \\ 0.5 & & & & & \\ 0.212 & 2.776 \cdot 10^{-17} \\ & -0.042 & & & & \\ 0 & & & & & \\ -7.444 \\ & -325.112 \\ & -21.424 \\ & 0 \\ & & & \\ -28.783 \\ & -318.565 \\ & -33.889 \\ & -325.112 \\ & -0.001 \\ & & & \\ 6.939 \cdot 10^{-17} & & & \\ -0.004 & & & & \\ 6.939 \cdot 10^{-17} & & & & \\ -37.815 \\ & -337.154 \\ & & & \\ -41.009 \\ & & & \\ -315.501 \\ & & & \\ -46.033 \\ & & & \\ -313.117 \\ & & \\ -0.002 \\ & & & \\ 1.104 \cdot 10^{-16} & & \\ & & & \\ -313.117 \\ & & \\ -49.921 \end{array} \right]$$

Рисунок 3 — Расчет в программе Mathcad при $\Theta = UG = 90^{\circ}$.

Так как $A_5=0$, то необходимо принудительно заменить AD_5 на значение 0, чтобы не было неопределенности при вычислении логарифма.

Построим в программе Mathcad линейчатый спектр периодической последовательности косинусоидальных импульсов при $\Theta = UG = 90^{\circ}$:

Рисунок 4 — Линейчатый спектр для косинусоидальных импульсов при $\Theta = UG = 90^{\circ}$.

3) Рассчитаем в программе Mathcad линейчатый спектр периодической последовательности косинусоидальных импульсов при $\Theta = UG = 120^{\circ}$:

$$\begin{array}{lll} UG \coloneqq 120 & U \coloneqq UG \cdot \frac{\pi}{180} & AM \coloneqq 1 & N \coloneqq 20 \\ & \varPhi(x) \coloneqq \left\| \begin{array}{lll} \text{if } |x| \le U \\ & AM \cdot \left(\frac{\cos\left(x\right) - \cos\left(U\right)}{1 - \cos\left(U\right)} \right) \\ & \text{if } U < |x| \le \pi \\ & \left\| \begin{array}{lll} 0 \end{array} \right\| \end{array} & k \coloneqq 0 \dots N \\ & A_k \coloneqq \frac{2}{\pi} \cdot \int_0^{\pi} \varPhi(x) \cdot \cos\left(k \cdot x\right) \, \mathrm{d}x & AD_k \coloneqq 20 \cdot \log\left(\frac{\left|A_k\right|}{A_1}\right) \\ & A_k \coloneqq \frac{2}{\pi} \cdot \int_0^{\pi} \varPhi(x) \cdot \cos\left(k \cdot x\right) \, \mathrm{d}x & AD_k \coloneqq 20 \cdot \log\left(\frac{\left|A_k\right|}{A_1}\right) \\ & A_k \coloneqq \frac{2}{\pi} \cdot \int_0^{\pi} \varPhi(x) \cdot \cos\left(k \cdot x\right) \, \mathrm{d}x & AD_k \coloneqq 20 \cdot \log\left(\frac{\left|A_k\right|}{A_1}\right) \\ & A_k \coloneqq \frac{2}{\pi} \cdot \int_0^{\pi} \varPhi(x) \cdot \cos\left(k \cdot x\right) \, \mathrm{d}x & AD_k \coloneqq 20 \cdot \log\left(\frac{\left|A_k\right|}{A_1}\right) \\ & A_k \coloneqq \frac{2}{\pi} \cdot \int_0^{\pi} \varPhi(x) \cdot \cos\left(k \cdot x\right) \, \mathrm{d}x & AD_k \coloneqq 20 \cdot \log\left(\frac{\left|A_k\right|}{A_1}\right) \\ & A_k \coloneqq \frac{2}{\pi} \cdot \int_0^{\pi} \varPhi(x) \cdot \cos\left(k \cdot x\right) \, \mathrm{d}x & AD_k \coloneqq 20 \cdot \log\left(\frac{\left|A_k\right|}{A_1}\right) \\ & A_k \coloneqq \frac{2}{\pi} \cdot \int_0^{\pi} \varPhi(x) \cdot \cos\left(k \cdot x\right) \, \mathrm{d}x & AD_k \coloneqq 20 \cdot \log\left(\frac{\left|A_k\right|}{A_1}\right) \\ & -15 \cdot 324 \\ & -21 \cdot 344 \\ & -35 \cdot 324 \\ & -35 \cdot 324 \\ & -35 \cdot 324 \\ & -34 \cdot 164 \\ & -44 \cdot 267 \\ & -50 \cdot 132 \\ & -60 \cdot 32 \\$$

Рисунок 5 - Расчет в программе Mathcad при $\Theta = UG = 120^\circ$.

Построим в программе Mathcad линейчатый спектр периодической последовательности косинусоидальных импульсов при $\Theta = UG = 120^{\circ}$:

Рисунок 6 — Линейчатый спектр для косинусоидальных импульсов при $\Theta = UG = 120^{\circ}$.

Вывод: В данной работе был проведен гармонический анализ периодической последовательности косинусоидальных импульсов. В программе Mathcad был рассчитан линейчатый спектр периодической последовательности косинусоидальных импульсов и построен соответствующий график для различных $\Theta = UG$.