YOUR MONEY MENTOR

Siva Sakthi Balan Sudhakar Sundarambal

sivasakthibalanss@gmail.com

Mentor: Dr. Junaid Qazi

Table of Contents

- 1. Introduction
 - 1.1 Overview of Smart Financial Systems
- 2. Mission & Objectives
 - 2.1 Mission Statement
 - 2.2 Objectives
- 3. Design and Discovery Phase
 - 3.1 Understanding Financial Sector Requirements
 - 3.2 Identifying Key Challenges and Opportunities
- 4. Data Sources
 - 4.1 Financial Market APIs
 - 4.2 Internal Financial Systems
 - 4.3 SQL Databases
 - 4.4 Market & Financial Data Providers
- 5. Key Deliverables (Financial Sector)
 - 5.1 Real-Time Fraud Alerts via Mobile App
 - **5.2 Credit Risk and Financial Health Reports**
 - 5.3 Forecasting Models for Investments and Lending
 - 5.4 Real-Time Financial Reports (Cash Flow, Transactions)
 - 5.5 Account and Asset Management Dashboard
- **6. Cloud Architecture Phases**
 - **6.1 Data Ingestion (Streaming and Batch Data)**
 - **6.2 Data Processing (Data Cleansing and Transformation)**
 - 6.3 Data Storage (Gold Layer)
 - 6.4 Data Analysis and Insights (Analytics and Machine Learning)
 - 6.5 Output Visualization and Reporting
- 7. Process of Creating Pipeline
 - 7.1 Bronze Layer (Ingest Data)
 - 7.2 Silver Layer (Curate Data)
 - 7.3 Gold Layer (Aggregate Data)
 - 7.4 Pipeline Approach
 - 7.5 Pipeline Failure
- 8. Conclusion
 - **8.1 Summary of Project Outcomes**

Cloud Architecture for Smart Financial Services

1. Introduction

1.1 Overview of Smart Financial Systems

The financial sector is undergoing a digital shift with cloud computing, AI, and big data playing central roles. Cloud-based financial systems enable faster decision-making, real-time fraud detection, customer personalization, and scalable infrastructure. Leveraging Azure services, this architecture addresses modern financial challenges with a secure and intelligent platform.

2. Mission & Objectives

2.1 Mission Statement

To develop a cloud-native, intelligent financial system on Microsoft Azure that offers secure, scalable, and real-time services including payments, analytics, and fraud detection.

2.2 Objectives

- Deliver real-time data processing and financial analytics
- Enable intelligent automation for customer services and fraud detection
- Ensure high availability, scalability, and regulatory compliance
- Provide a unified and secure digital financial platform

3. Design and Discovery Phase

3.1 Understanding Financial Sector Requirements

3.2 Identifying Key Challenges and Opportunities

- Threat of cyber-attacks and data breaches
- Demand for digital financial services
- Need for regulatory compliance
- Integration with legacy systems
- Opportunity in Al-based financial forecasting

4. Data Sources

Streaming Data Sources

1. Financial Market APIs (e.g., IEX Cloud, Alpha Vantage, Polygon.io)

What it provides:

Real-time access to stock prices, forex rates, crypto values, indices, and more.

Outputs:

- Live Market Dashboards Display current prices and market movements.
- Trading Signals Auto-trigger buy/sell actions based on live price rules.
- Market Alerts Notifications for price thresholds, volatility, or trends.
- **Portfolio Updates** Real-time valuation of investment portfolios.

Batch Data Sources

2. Internal Financial Systems (e.g., SAP, Oracle, Dynamics 365)

What it provides:

Manages internal operations like invoicing, payroll, GL, and tax.

Outputs:

- **P&L Reports** Analyse profit across departments or regions.
- Cash Flow Statements Monitor liquidity and operating cash.
- **Budget Forecasts** Project upcoming expenses or revenue.
- Audit-Ready Reports Provide compliance documentation.

3. SQL Databases

What it provides:

Stores structured, historical transactional and customer data.

Outputs:

- **Trend Analysis** Spot financial patterns across time.
- **Customer Financial Behaviour** Credit history, spending, etc.
- Credit Risk Profiles Identify high-risk customers.
- **Custom Reports** Dynamic queries for any financial scenario.

4. Market & Financial Data Providers (e.g., Bloomberg, Morningstar, Refinitiv)

What it provides:

Curated economic, company, and market data — not real-time, but updated regularly.

Outputs:

- Economic Outlook Reports GDP, inflation, interest rate trends.
- Valuation Models DCF, P/E ratios, etc.
- **Benchmarking** Compare company performance against sector.
- Market Trends Monthly or quarterly insights.

5. Key Deliverables (Financial Sector)

5.1 Real-Time Fraud Alerts via Mobile App

- Delivery Method: Mobile App (Push Notifications/SMS/Email)
- What We Deliver: Instant fraud detection alerts, Suspicious transaction notifications,
 Login anomaly alerts

5.2 Credit Risk and Financial Health Reports

- **Delivery Method:** Power BI dashboards, downloadable PDF reports
- What We Deliver: Credit risk scores, Debt-to-income ratio, Loan eligibility analysis, financial behaviour summaries

5.3 Forecasting Models for Investments and Lending

- **Delivery Method:** Power BI dashboards, Automated forecast reports
- What We Deliver: Loan repayment probability, Investment return predictions, Riskadjusted lending models

5.4 Real-Time Financial Reports (Cash Flow, Transactions)

- Delivery Method: Live dashboards in Power BI, Weekly/monthly email reports
- What We Deliver: Transaction volumes, Revenue & expenses summary, Cash inflow/outflow analytics, Budget vs. actuals

5.5 Account and Asset Management Dashboard

- **Delivery Method:** Web-based dashboards, Mobile app views
- What We Deliver: Asset performance overview, Account balances, Portfolio value, Investment diversification charts

6. Cloud Architecture Phases

1. Data Ingestion (Streaming and Batch Data)

This stage involves collecting raw data from different sources, such as transaction systems, external APIs, and internal databases.

Streaming Data Ingestion:

- Azure Event Hubs:
 - Purpose: Real-time ingestion of transactional data, payment system data, and financial application logs.
 - How: Event Hubs allows high-throughput, real-time data streaming from mobile apps, websites, or financial transaction systems.

Batch Data Ingestion:

Azure Data Factory:

 Purpose: Scheduled data ingestion from various sources like financial databases, third-party financial APIs, and external data sources.

 How: Batch processing allows for the loading of data in bulk at regular intervals (e.g., daily batch jobs for historical transactions, credit scores, or user profiles).

Data Sources:

- Financial Market APIs
- Internal Financial Systems
- SQL Databases
- Market & Financial Data Providers

2. Data Processing (Data Cleansing and Transformation)

In this stage, raw data is cleaned, transformed, and standardized before storage and analysis.

Real-Time Data Processing:

- Azure Stream Analytics:
 - Purpose: Process real-time data streams and perform actions like filtering, aggregating, or analysing data as it arrives.
 - How: For example, fraud detection could be performed in real-time, where suspicious transactions are flagged immediately.

Batch Data Processing:

- Azure Databricks:
 - Purpose: Process and clean large volumes of historical data in batch mode, such as transforming raw financial data into structured formats.
 - How: Data pipelines in Databricks or HDInsight clean and transform raw transactional data for further analysis, including dealing with missing values, handling duplicates, and standardizing formats.

Data Transformation:

- Azure Data Factory:
 - Purpose: Orchestrate ETL (Extract, Transform, Load) pipelines for large-scale data processing and transformations.
 - How: Data can be transformed from various raw sources (JSON, XML, CSV) into structured data, such as relational tables for easy querying.

3. Data Storage (Gold Layer)

Once the data is cleansed and transformed, it's stored in appropriate data storage systems for easy access and future analysis.

Structured Data Storage:

Azure SQL Database:

- Purpose: Store structured, transactional data such as account balances, transaction logs, and user profiles.
- How: Relational storage for consistent, fast querying of real-time transactional data.

Data Lake (For Big Data Analytics):

Azure Data Lake Storage:

- Purpose: Store raw and processed data at scale, enabling analytics on big data (e.g., transaction history, market trends).
- How: It provides storage for both structured and unstructured data, and supports advanced analytics tools like Azure Synapse and Databricks.

4. Data Analysis and Insights (Analytics and Machine Learning)

In this stage, advanced analytics and machine learning models are applied to the stored data to derive meaningful insights.

Real-Time Analytics:

Azure Synapse Analytics:

- Purpose: Analyse and aggregate large volumes of financial data from different sources to derive real-time insights (e.g., identifying financial trends, analysing customer behaviour).
- How: Performs SQL-based analysis on large datasets to generate KPIs, trend analysis, and financial reports.

Data Aggregation:

Azure Data Factory:

- Purpose: Aggregate data from different sources and transform it into business insights.
- How: Uses data pipelines to aggregate and process data in stages, making it ready for reporting and predictive models.

5. Output Visualization and Reporting

Finally, insights from the data analysis are presented visually in dashboards and reports for business users and decision-makers.

Visualization and Reporting:

Power BI:

- Purpose: Visualize key metrics, KPIs, and insights to allow business decisionmakers to understand real-time data such as transaction volumes, revenue, fraud detection results, and customer performance.
- How: Power BI can be used to create interactive dashboards and reports based on data stored in Azure SQL, Azure Synapse, or Azure Data Lake.

Initial Phase

Second Phase

Final Phase

7. Process of Creating Pipeline

7.1 Bronze Layer (Ingest Data)

Data ingested from APIs, apps, and transactions using Azure Event Hubs and Data
 Factory

7.2 Silver Layer (Curate Data)

Clean and structure data using Azure Databricks

7.3 Gold Layer (Aggregate Data)

• Aggregated KPIs, reports, and training sets for ML using Synapse Analytics

7.4 Pipeline Approach

- Orchestrated with Azure Data Factory, logs monitored via Azure Monitor
- Automated retries and alerts for pipeline steps

7.5 Pipeline Failure

- Alerting through Azure Monitor Alerts
- Auto-healing pipelines with retry policies
- Logging and root cause analysis in Log Analytics

8. Conclusion

8.1 Summary of Project Outcomes

This Azure-based cloud architecture empowers financial organizations with:

- Real-time fraud prevention
- Intelligent data insights and reporting
- Scalable cloud infrastructure
- End-to-end security and compliance
- Automation of routine tasks via AI and Logic Apps