Section 2.7—Rates of Change

1—Instantaneous Rates of Change

If x changes from x_1 to x_2 , then the change in x is: $\Delta x = x_2 - x_1$.

And the corresponding change in y is: $\Delta y = f(x_2) - f(x_1)$.

We have already learned that the difference quotient of a function given by:

$$\frac{\Delta y}{\Delta x} = \frac{f(x_2) - f(x_1)}{X_2 - X_1} = \frac{f(x_1) - f(x_2)}{h}$$

is the average rate of change of y with respect to x over the interval $[x_1, x_2]$, and can be interpreted as the slope of the secant line through the points $(x_1, f(x_1))$ and $(x_2, f(x_2))$.

When we take the limit as $\Delta x = h \to 0$, then we get the derivative, $f'(x_1)$, which we have interpreted as the **instantaneous rate of change of** \hat{y} **with respect to** x**, or the slope of the tangent line at** $(x_1, f(x_1))$ **.**

In Leibniz notation, this is written:

$$\frac{dy}{dx} = \lim_{A \to 0} \frac{Ay}{Ax} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

*We frequently just refer to the <u>rate of change</u>. By this we mean the <u>instantaneous rate of change</u>. We will specify when we mean <u>average</u> rate of change.

Example 1: The volume V of a spherical balloon is related to its radius by the equation $V = \frac{4}{3}\pi r^3$. How fast does the volume change with respect to the radius when the radius is 5 m? $V(r) = \frac{4}{3}\pi r^3$

The rate of change of the Volume with respect to the radius is:

$$V' = 8.4 \pi r^2 = 4\pi r^2$$

 $V(5) = 4\pi 5^2 = 100 \pi m^3 / vn T + vog time$

2—Motion Along a Line: Displacement, Velocity, Speed, Acceleration & Jerk

Whenever the function y = f(x) has a specific interpretation, then the derivative will have a specific interpretation as a rate of change. We already know at least two of these. What are they?

Definitions

Velocity is the rate of change of displacement with respect to time. (Change of position w.r.t. time)

If s = f(t) is the position function of a body at time t, then the body's average velocity over a time period Δt is:

$$v = \frac{\Delta s}{\Delta t} - \frac{\$(t_2) - \$(t_1)}{t_2 - t_1}$$

And the instantaneous velocity or just simply velocity is the derivative of the position function and is given by:

$$v(t) = s'(t) = \frac{ds}{dt}$$

Speed is the absolute value of velocity.

$$Speed = |v(t)| = \left| \frac{ds}{dt} \right|$$

Acceleration is the derivative of velocity with respect to time:

$$a(t) = \frac{dv}{dt} = \frac{d^2s}{dt^2}$$

Jerk is the derivative of acceleration with respect to time:

$$j(t) = \frac{da}{dt} = \frac{d^2v}{dt^2} = \frac{d^3s}{dt^3}$$

Distance given by a function	8= f(t)
Velocity	V(t) = s'(t)
Acceleration	a(t) = s"(t)
Jerk	i(t) = S"(t)

Example 2: Suppose that the position of a particle is given by the function $s = t^3 - 9t^2 + 24t$ for $0 \le t \le 5$ where t is measured in seconds and distance is measured in feet.

a) Find the velocity at time
$$t$$
.

a) Find the velocity at time
$$t$$
.

$$V(t) = S'(t) = 3t^2 - 18t + 24$$

b) What is the velocity after 3 seconds?

c) When is the particle at rest? When velocity =
$$0!$$

 $V(t) = 3t^2 - 18t + 24 \stackrel{\text{set}}{=} 0$

$$V(t) = 3t - 18t + 21 = 0$$

$$3(t^2 - 4t + 8) = 0$$

$$(t - 2)(t - 4) = 0$$

$$(t-2)(t-4)=0$$

a) When does the ball hit the ground?
$$h(t) = -16t^2 + 50t = 0$$

$$t = 50 = \begin{pmatrix} 25 \\ 8 \end{pmatrix}$$

b) What is the velocity of the ball when it hits the ground?
$$\sqrt{(t)} = -32t + 50$$

c) What is the acceleration of the ball when it hits the ground?

$$a(t) = -32 ft / sec^2$$

Example 3: The figure below shows the velocity $v = \frac{ds}{dt}$ of a body moving along a coordinate line (in meters per second).

υ (m/sec)

a) When does the body reverse direction?

and
$$t = 7$$

b) When (approximately) is the body moving at a constant speed?

c) Graph the body's speed for $0 \le t \le 10$.

d) Graph the acceleration, where defined.

a)	If $C(x)$ is a cost function which describes the total cost incurred by a company to produce x units of a commodity, how would we interpret $C'(x)$?						
The	Rade of change of the	Cost Margin	w.r.t. al Cost	the	number		

b) A current exists whenever electric charges move. If a function y = Q(t) models the charge Q(t)through a surface at a time t, how could we interpret Q'(t)?

Change of charge with time current

c) If a population of rabbits is governed by a function P(t), where t is time, what is P'(t)?

rate of charge population wiret.

Example 4: Interpret the derivatives of the following functions.

Growth Rate

See pg. 177 in text

Homework: 1-13, 30