AlphaGo

Ha основе статьи Mastering the game of Go with deep neural networks and tree search

Краткий план

- Описание игры
- Описание алгоритма
 - SL policy
 - Rollout policy
 - RL policy
 - o MCTS
- Итоги

*Бонус

Игра Go

Цель игры - захват территории

Основные правила:

- Первыми ходят чёрные
- Игрок выставляет один свой камень на доску в любую не занятую точку пересечения линий
- По завершении игры подсчитываются очки, набранные игроками. Игрок получает по одному очку за каждый из пунктов доски, окружённых камнями только его цвета, и по одному очку за каждый захваченный камень противника

Возможная расстановка фигур во время игры

Policy networks

Учимся предсказывать ходы людей, поэтому обучение происходит на 160000 доступных в онлайне игр игроках довольно высокого уровня

SL policy network

Архитектура сети — 13 уровней сверток с нелинейностью и softmax на каждую клетку в конце, для предсказания хода по текущему состоянию. Используем для выбора хода.

Rollout policy

Быстрая логистическая регрессия на большом количестве признаков. Используется для игры с самой собой.

Policy network

 $p_{\sigma/\rho}$ (a|s)

SL policy network

Input Layer: 19x19x48 image stack

1 hidden layer:

- zero padding to 23x23
- convolving 192 filters of size 5x5 with stride equal to 1
- applying rectifier unit

2-12 hidden layer:

- zero padding to 21x21
- convolving 192 filters of size 3x3 with stride equal to 1
- applying rectifier unit

Output layer:

- convolving 1 filter of size 1x1 with stride equal to 1
- applying softmax to get probability distribution over all possible moves

SL policy network

Feature	# of planes	Description
Stone colour	3	Player stone / opponent stone / empty
Ones	1	A constant plane filled with 1
Turns since	8	How many turns since a move was played
Liberties	8	Number of liberties (empty adjacent points)
Capture size	8	How many opponent stones would be captured
Self-atari size	8	How many of own stones would be captured
Liberties after move	8	Number of liberties after this move is played
Ladder capture	1	Whether a move at this point is a successful ladder capture
Ladder escape	1	Whether a move at this point is a successful ladder escape
Sensibleness	1	Whether a move is legal and does not fill its own eyes
Zeros	1	A constant plane filled with 0
Player color	1	Whether current player is black

Extended Data Table 2: **Input features for neural networks.** Feature planes used by the policy network (all but last feature) and value network (all features).

Rollout policy

Feature	# of patterns	Description
Response	1	Whether move matches one or more response features
Save atari	1	Move saves stone(s) from capture
Neighbour	8	Move is 8-connected to previous move
Nakade	8192	Move matches a nakade pattern at captured stone
Response pattern	32207	Move matches 12-point diamond pattern near previous move
Non-response pattern	69338	Move matches 3×3 pattern around move
Self-atari	1	Move allows stones to be captured
Last move distance	34	Manhattan distance to previous two moves
Non-response pattern	32207	Move matches 12-point diamond pattern centred around move

Extended Data Table 4: Input features for rollout and tree policy. Features used by the rollout policy (first set) and tree policy (first and second set). Patterns are based on stone colour (black/white/empy) and liberties $(1, 2, \ge 3)$ at each intersection of the pattern.

Reinforcement learning of policy networks

Каждая итерация состоит из n матчей, играемых параллельно между policy network и противником, который выбирается из пула прошлых версий сети.

Пул обновляется каждый 500 итераций.

р_о - обучаемая сеть

 ${\sf p}_{_{{\it o}^{'}}}$ - случайный противник

Веса ϱ и ϱ' инициализируются с весами σ SL policy network

RL policy

Играем i-ю игру до её завершения - Ti

Результат игры $z_t^i = \pm r(s_{Ti})$

v - оценка вероятности выигрыша от value network

Обновляем веса:

$$\Delta p = \frac{\alpha}{n} \sum_{i=1}^{n} \sum_{t=1}^{T^{i}} \frac{\partial log p_{\rho}(a_{t}^{i} \mid s_{t}^{i})}{\partial \rho} (z_{t}^{i} - v(s_{t}^{i}))$$

10.000 итераций 128 игр занимает 1 день

MCTS

Каждый узел (s, a) отвечает за состояние доски, ход и хранит внутри себя информацию:

- action value(s, a)
- количество посещений N(s, a)
- априорная вероятность P(s, a)

Имея эти данные в каждом узле выбираем ход:

$$a_t = \underset{a}{\operatorname{argmax}}(Q(s_t, a) + u(s_t, a))$$
$$u(s, a) \propto \frac{P(s, a)}{1 + N(s, a)}$$

MCTS

- Q средняя оценка выигрыша
- u(P) то, насколько ходим расширять наше исследование
- V значения value network

Подведение итогов

- + 2015 год AlphaGo выиграла матч у четырехкратного чемпиона Европы Фань Хуэя.
- + 2016 год AlphaGo выиграла матч у Ли Седоля.
- + Хороший скор

- Сложность реализации
- Большой объем данных
- Трудозатратно по ресурсам

Бонус

Список литературы:

Mastering the game of Go with deep neural networks and tree search

(https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNature-paper.pdf)