

Fizyka 3.1 Badanie efektu Halla (ćwiczenie 57c)

Sprawozdanie z Labolatorium

13 listopada 2023

Wydział i kierunek studiów
W12N, Automatyka i Robotyka
Termin zajęć
każdy wtorek, 15:15 - 16:55
Prowadzący
dr Krzysztof Gałkowski
Numer i temat ćwiczenia
57c Badanie efektu Halla
Data ćwiczenia, termin oddania sprawozdania
7.11.2023, 14.11.2023
Wykonawca
Adam Prystupa

1 Wstęp

1.1 Cel ćwiczenia

- Zmierzenie charakterystyk statycznych hallotronu: 1. $U_H = f(\alpha)$ i 2. $U_H = f(B_n)$
- Wyznaczenie koncentracji n swobodnych nośników ładunku
- Wyznaczenie maksymalnej czułości kątowej S_{α} hallotronu
- Wyznaczenie czułości polowej γ_B hallotronu

1.2 Użyte przyrządy

- Hallotron umieszczony w polu magnetycznym wytworzony przez magnesy trwałe
- Zasilacz hallotronu
- Przewody elektryczne

- Zakres: 200mV; 2V; 20V; 200V

– Dokładność: $\pm (0,05\%rdg + 3dgt)$

- Rozdzielczość: $10\mu V$; $100\mu V$; 1mV; 10mV

1.3 Schemat układu pomiarowego

2 Użyte wzory

2.1 Niepewność pomiaru napięcia

•
$$u(U) = \frac{U_x \cdot 0.05\% + 3dgt}{\sqrt{3}}$$
 [V]

2.2 Niepewność pomiaru prądu sterującego

•
$$u(I) = \frac{klasa \cdot zakres}{100 \cdot \sqrt{3}}$$
 [A]
gdzie:
 $klasa = 3$;
 $zakres = 15mA$

2.3 Wyznaczenie α_0

•
$$\alpha_0 = 185^{\circ}$$

•
$$\alpha_0 = 3,2289 rad$$

2.4 Niepewność pomiaru kąta α

•
$$u(\alpha) = 2,5$$
 [°]

•
$$u(\alpha) = 0,044$$
 [rad]

2.5 Składowa normalna indukcji magnetycznej i jej niepewność

•
$$B_n = B_0 \cdot sin(\alpha - \alpha_0)$$
 gdzie
 $B_0 = (0,500 \pm 0,05)T$

•
$$u(B_n) = \sqrt{(\sin(\alpha - \alpha_0))^2 \cdot u(B_0)^2 + (B_0 \cdot \cos(\alpha - \alpha_0))^2 \cdot u(\alpha)^2 + (-B_0 \cdot \cos(\alpha - \alpha_0))^2 \cdot u(\alpha_0)^2}$$
 [T]

2.6 Maksymalna czułość kątowa i jej niepewność

•
$$S_{\alpha} = \frac{\Delta U_H}{\Delta \alpha}$$
 $\left[\frac{V}{\circ}\right]$

$$\bullet \ \ u(S_{\alpha}) = \sqrt{(\frac{\Delta U_H \cdot u(\Delta \alpha)}{(\Delta \alpha)^2})^2 + (\frac{u(\Delta U_H)}{\Delta \alpha})^2} \qquad \qquad [\frac{V}{\circ}]$$

2.7 Czułość polowa dla wybranego punktu i jej niepewność

$$\bullet \ \gamma_i = \frac{U_H}{I_S \cdot B_n} \qquad \left[\frac{V}{A \cdot T}\right]$$

•
$$u(\gamma_i) = \sqrt{(\frac{u(U_H)}{I_S \cdot B_n})^2 + (-\frac{U_H \cdot u(I_S)}{B_n \cdot I_S})^2 + (-\frac{U_H \cdot u(B_n)}{B_n^2 \cdot I_S})^2}$$
 $\left[\frac{V}{A \cdot T}\right]$

2.8 Czułość polowa

$$\bullet \ \ \gamma = \frac{\alpha}{I_S} \qquad \quad \left[\frac{V}{A \cdot T}\right]$$

•
$$u(\gamma) = \sqrt{(\frac{u(\alpha)}{I_S})^2 + (\frac{-\alpha \cdot u(I_S)}{{I_S}^2})^2}$$
 $\left[\frac{V}{A \cdot T}\right]$

2.9 Koncentracja swobodnych nośników

•
$$n = \frac{1}{e \cdot \gamma \cdot d}$$
 $\left[\frac{1}{m^3}\right]$ gdzie:

d - grubość płytki hallotronu = $2\mu m$; u(d) = 5%e - ładunek elementarny = $1,602 \cdot 10^{-19} C$

$$\bullet \ \ u(n) = \sqrt{(\frac{-u(\gamma)}{e \cdot d \cdot \gamma^2})^2 + (\frac{-u(d)}{e \cdot d^2 \cdot \gamma})^2} \qquad \qquad \left[\frac{1}{m^3}\right]$$

3 Wykres charakterystyki kątowej hallotronu $U_H = f(\alpha)$

Wykres charakterystyki hallotronu $U_H = f(B_n)$

Regresja liniowa:
$$a = 0,2060$$
 $b = -0,00493$ $u(a) = 0,0017$ $u(b) = 0,00060$ $R^2 = 0,9976$

Tabele zbiorcze

$\textbf{5.1} \quad U_H = f(\alpha)$

Bn	u(Bn)	Is	u(Is)	Uh	u(Uh)	α	α	u(α)	u(α)	Sα	u(Sα)
[T]	[T]	[A]	[A]	[V]	[V]	[°]	[rad]	[°]	[rad]	[V/º]	[V/º]
0,0436	0,0313			-0,00013	0,000017	0,0	0,000				
-0,0436	0,0313			-0,018830	-0,000037	10,0	0,175				
-0,129	0,0327			-0,036020	-0,000087	20,0	0,349				
-0,211	0,0352			-0,05352	-0,00014	30,0	0,524				
-0,287	0,0384			-0,06864	-0,00019	40,0	0,698				
-0,354	0,0416			-0,08130	-0,00022	50,0	0,873				
-0,410	0,0447			-0,09205	-0,00025	60,0	1,047				
-0,453	0,0472			-0,10012	-0,00028	70,0	1,222				
-0,483	0,0490			-0,10512	-0,00029	80,0	1,396				
-0,498	0,0499			-0,10736	-0,00030	90,0	1,571				
-0,498	0,0499			-0,10655	-0,00030	100,0	1,745				
-0,483	0,0490			-0,10297	-0,00028	110,0	1,920				
-0,453	0,0472			-0,09653	-0,00027	120,0	2,094				
-0,410	0,0447			-0,08718	-0,00024	130,0	2,269				
-0,354	0,0416			-0,07508	-0,00020	140,0	2,443				
-0,287	0,0384			-0,06080	-0,00016	150,0	2,618				
-0,211	0,0352			-0,04445	-0,00012	160,0	2,793				
-0,129	0,0327			-0,027060	-0,000061	170,0	2,967				
-0,0436	0,0313	0,01000	0,00026	-0,0084900	-0,0000072	180,0	3,142	2,5	0,044	0,001698	0,000043
0,0436	0,0313			0,009750	0,000046	190,0	3,316				
0,129	0,0327			0,027320	0,000097	200,0	3,491				
0,211	0,0352			0,04405	0,00014	210,0	3,665				
0,287	0,0384			0,05932	0,00019	220,0	3,840				
0,354	0,0416			0,07231	0,00023	230,0	4,014				
0,410	0,0447			0,08260	0,00026	240,0	4,189				
0,453	0,0472			0,09005	0,00028	250,0	4,363				
0,483	0,0490			0,09499	0,00029	260,0	4,538				
0,498	0,0499			0,09693	0,00030	270,0	4,712				
0,498	0,0499			0,09603	0,00029	280,0	4,887				
0,483	0,0490			0,09245	0,00028	290,0	5,061				
0,453	0,0472			0,08703	0,00027	300,0	5,236				
0,410	0,0447			0,07665	0,00024	310,0	5,411				
0,354	0,0416			0,06477	0,00020	320,0	5,585				
0,287	0,0384			0,05136	0,00017	330,0	5,760				
0,211	0,0352			0,03521	0,00012	340,0	5,934				
0,129	0,0327			0,017570	0,000069	350,0	6,109				
0,0436	0,0313			0,000040	0,000018	360,0	6,283				

$5.2 \quad U_H = f(B_n)$

Bn	u(Bn)	ls	u(ls)	Uh	u(Uh)	α	α	u(α)	u(α)	Υb	uc(Yb)	n	uc(n)	
[T]	[T]	[A]	[A]	[V]	[V]	[°]	[rad]	[°]	[rad]	$[V/(A \cdot T)]$	$[V/(A \cdot T)]$	[1/m^3]	[1/m^3]	
0,0436	0,0313	-		-0,000130	0,000017	0,0	0,000							
-0,0436	0,0313			-0,018830	-0,000037	10,0	0,175							
-0,129	0,0327			-0,036020	-0,000087	20,0	0,349							
-0,211	0,0352			-0,05352	-0,00014	30,0	0,524							
-0,287	0,0384	1		-0,06864	-0,00019	40,0	0,698							
-0,354	0,0416			-0,08130	-0,00022	50,0	0,873							
-0,410	0,0447			-0,09205	-0,00025	60,0	1,047							
-0,453	0,0472	1		-0,10012	-0,00028	70,0	1,222							
-0,483	0,0490			-0,10512	-0,00029	80,0	1,396							
-0,498	0,0499			-0,10736	-0,00030	90,0	1,571							
-0,498	0,0499			-0,10655	-0,00030	100,0	1,745							
-0,483	0,0490			-0,10297	-0,00028	110,0	1,920							
-0,453	0,0472			-0,09653	-0,00027	120,0	2,094							
-0,410	0,0447			-0,08718	-0,00024	130,0	2,269							
-0,354	0,0416			-0,07508	-0,00020	140,0	2,443							
-0,287	0,0384			-0,06080	-0,00016	150,0	2,618							
-0,211	0,0352			-0,04445	-0,00012	160,0	2,793							
-0,129	0,0327			-0,027060	-0,000061	170,0	2,967							
-0,0436	0,0313	0,01000	0,00026	-0,0084900	-0,0000072	180,0	3,142	2,5	0,044	20,60	0,57	1,515*10 ²³	0,087*10 ²³	
0,0436	0,0313			0,009750	0,000046	190,0	3,316							
0,129	0,0327			0,027320	0,000097	200,0	3,491							
0,211	0,0352			0,04405	0,00014	210,0	3,665							
0,287	0,0384			0,05932	0,00019	220,0	3,840							
0,354	0,0416			0,07231	0,00023	230,0	4,014							
0,410	0,0447			0,08260	0,00026	240,0	4,189							
0,453	0,0472			0,09005	0,00028	250,0	4,363							
0,483	0,0490			0,09499	0,00029	260,0	4,538							
0,498	0,0499			0,09693	0,00030	270,0	4,712							
0,498	0,0499				0,09603	0,00029	280,0	4,887						
0,483	0,0490			0,09245	0,00028	290,0	5,061							
0,453	0,0472			0,08703	0,00027	300,0	5,236							
0,410	0,0447			0,07665	0,00024	310,0	5,411							
0,354	0,0416			0,06477	0,00020	320,0	5,585							
0,287	0,0384			0,05136	0,00017	330,0	5,760							
0,211	0,0352			0,03521	0,00012	340,0	5,934							
0,129	0,0327			0,017570	0,000069	350,0	6,109							
0,0436	0,0313			0,000040	0,000018	360,0	6,283							

6 Przykładowe obliczenia

6.1 Niepewność pomiaru napięcia

•
$$u(U) = \frac{U_x \cdot 0.05\% + 3dgt}{\sqrt{3}} = \frac{-0.10655 \cdot 0.005 + 3 \cdot 0.00001}{\sqrt{3}} = -0.00030V$$

6.2 Niepewność pomiaru prądu sterującego

•
$$u(I) = \frac{klasa \cdot zakres}{100 \cdot \sqrt{3}} = \frac{3 \cdot 0.015}{100 \cdot \sqrt{3}} = 0,00026A$$

6.3 Składowa normalna indukcji magnetycznej i jej niepewność

•
$$B_n = B_0 \cdot sin(\alpha - \alpha_0) = 0, 5 \cdot sin(80 - 185) = -0,483T$$

•
$$u(B_n) = \sqrt{(sin(\alpha - \alpha_0))^2 \cdot u(B_0)^2 + (B_0 \cdot cos(\alpha - \alpha_0))^2 \cdot u(\alpha)^2 + (-B_0 \cdot cos(\alpha - \alpha_0))^2 \cdot u(\alpha_0)^2} = \sqrt{(sin(80 - 185))^2 \cdot 0,05^2 + (-B_0 \cdot cos(\alpha - \alpha_0))^2 \cdot u(\alpha_0)^2} = \sqrt{(sin(80 - 185))^2 \cdot 0,05^2 + (-B_0 \cdot cos(\alpha - \alpha_0))^2 \cdot u(\alpha_0)^2} = \sqrt{(sin(80 - 185))^2 \cdot 0,05^2 + (-B_0 \cdot cos(\alpha - \alpha_0))^2 \cdot u(\alpha_0)^2} = \sqrt{(sin(80 - 185))^2 \cdot 0,05^2 + (-B_0 \cdot cos(\alpha - \alpha_0))^2 \cdot u(\alpha_0)^2} = \sqrt{(sin(80 - 185))^2 \cdot 0,05^2 + (-B_0 \cdot cos(\alpha - \alpha_0))^2 \cdot u(\alpha_0)^2} = \sqrt{(sin(80 - 185))^2 \cdot 0,05^2 + (-B_0 \cdot cos(\alpha - \alpha_0))^2 \cdot u(\alpha_0)^2} = \sqrt{(sin(80 - 185))^2 \cdot 0,05^2 + (-B_0 \cdot cos(\alpha - \alpha_0))^2 \cdot u(\alpha_0)^2} = \sqrt{(sin(80 - 185))^2 \cdot 0,05^2 + (-B_0 \cdot cos(\alpha - \alpha_0))^2 \cdot u(\alpha_0)^2} = \sqrt{(sin(80 - 185))^2 \cdot 0,05^2 + (-B_0 \cdot cos(\alpha - \alpha_0))^2 \cdot u(\alpha_0)^2} = \sqrt{(sin(80 - 185))^2 \cdot 0,05^2 + (-B_0 \cdot cos(\alpha - \alpha_0))^2 \cdot u(\alpha_0)^2} = \sqrt{(sin(80 - 185))^2 \cdot 0,05^2 + (-B_0 \cdot cos(\alpha - \alpha_0))^2 \cdot u(\alpha_0)^2} = \sqrt{(sin(80 - 185))^2 \cdot 0,05^2 + (-B_0 \cdot cos(\alpha - \alpha_0))^2 \cdot u(\alpha_0)^2} = \sqrt{(sin(80 - 185))^2 \cdot 0,05^2 + (-B_0 \cdot cos(\alpha - \alpha_0))^2 \cdot u(\alpha_0)^2} = \sqrt{(sin(80 - 185))^2 \cdot 0,05^2 + (-B_0 \cdot cos(\alpha - \alpha_0))^2 \cdot u(\alpha_0)^2} = \sqrt{(sin(80 - 185))^2 \cdot 0,05^2 + (-B_0 \cdot cos(\alpha - \alpha_0))^2 \cdot u(\alpha_0)^2} = \sqrt{(sin(80 - 185))^2 \cdot 0,05^2 + (-B_0 \cdot cos(\alpha - \alpha_0))^2 \cdot u(\alpha_0)^2} = \sqrt{(sin(80 - 185))^2 \cdot 0,05^2 + (-B_0 \cdot cos(\alpha - \alpha_0))^2 \cdot u(\alpha_0)^2} = \sqrt{(sin(80 - 185))^2 \cdot 0,05^2 + (-B_0 \cdot cos(\alpha - \alpha_0))^2 \cdot u(\alpha_0)^2} = \sqrt{(sin(80 - 185))^2 \cdot 0,05^2 + (-B_0 \cdot cos(\alpha - \alpha_0))^2 \cdot u(\alpha_0)^2} = \sqrt{(sin(80 - 185))^2 \cdot 0,05^2 + (-B_0 \cdot cos(\alpha - \alpha_0))^2} = \sqrt{(sin(80 - 185))^2 \cdot 0,05^2 + (-B_0 \cdot cos(\alpha - \alpha_0))^2} = \sqrt{(sin(80 - 185))^2 \cdot 0,05^2 + (-B_0 \cdot cos(\alpha - \alpha_0))^2} = \sqrt{(sin(80 - 185))^2 \cdot 0,05^2 + (-B_0 \cdot cos(\alpha - \alpha_0))^2} = \sqrt{(sin(80 - 185))^2 \cdot 0,05^2 + (-B_0 \cdot cos(\alpha - \alpha_0))^2} = \sqrt{(sin(80 - 185))^2 \cdot 0,05^2 + (-B_0 \cdot cos(\alpha - \alpha_0))^2} = \sqrt{(sin(80 - 185))^2 \cdot 0,05^2 + (-B_0 \cdot cos(\alpha - \alpha_0))^2} = \sqrt{(sin(80 - 185))^2} = \sqrt{(sin(80 - 185))^2 \cdot 0,05^2 + (-B_0 \cdot cos(\alpha - \alpha_0))^2} = \sqrt{(sin(80 - 185))^2 \cdot 0,05^2 + (-B_0 \cdot cos(\alpha - \alpha_0))^2} = \sqrt{(sin(80 - 185))^2} = \sqrt{(sin(80 - 185))^2 \cdot 0,05^2} = \sqrt{(sin(80 - 185))^$$

- 6.4 Maksymalna czułość kątowa i jej niepewność
 - $S_{\alpha} = \frac{\Delta U_H}{\Delta \alpha} = \frac{0.16978}{100} = 0,001698 \frac{V}{\circ}$
 - $u(S_{\alpha}) = \sqrt{(\frac{\Delta U_H \cdot u(\Delta \alpha)}{(\Delta \alpha)^2})^2 + (\frac{u(\Delta U_H)}{\Delta \alpha})^2} = \sqrt{(\frac{0.16978 \cdot 0.00049}{0.16978^2})^2 + (\frac{0.00049}{0.16978})^2} = 0,000043 \frac{V}{\circ}$
- 6.5 Czułość polowa dla wybranego punktu i jej niepewność
 - $\gamma_i = \frac{U_H}{I_S \cdot B_n} = \frac{0.05932}{0.01 \cdot 0.187} = 20.7 \frac{V}{A \cdot T}$
 - $u(\gamma_i) = \sqrt{(\frac{u(U_H)}{I_S \cdot B_n})^2 + (-\frac{U_H \cdot u(I_S)}{B_n \cdot I_S})^2 + (-\frac{U_H \cdot u(B_n)}{B_n^2 \cdot I_S})^2} = \sqrt{(\frac{0,00019}{0,01 \cdot 0,287})^2 + (-\frac{0,05932 \cdot 0,00026}{0,287 \cdot 0,01^2})^2 + (-\frac{0,05932 \cdot 0,0026}{0,287 \cdot 0,01^2})^2} = 2, 1\frac{V}{A \cdot T}$
- 6.6 Czułość polowa
 - $\gamma = \frac{\alpha}{I_S} = \frac{0,2060}{0,01} = 20,60 \frac{V}{A \cdot T}$
 - $u(\gamma) = \sqrt{(\frac{u(\alpha)}{I_S})^2 + (\frac{-\alpha \cdot u(I_S)}{{I_S}^2})^2} = \sqrt{(\frac{0.0017}{0.01})^2 + (\frac{-0.2060 \cdot 0.00026}{0.01^2})^2} = 0.57 \frac{V}{A \cdot T}$
- 6.7 Koncentracja swobodnych nośników
 - $n = \frac{1}{e \cdot \gamma \cdot d} = \frac{1}{1,602 \cdot 10^{-19} \cdot 20,60 \cdot 2 \cdot 10^{-6}} = 1,515 \cdot 10^{23} \frac{1}{m^3}$
 - $u(n) = \sqrt{(\frac{-u(\gamma)}{e \cdot d \cdot \gamma^2})^2 + (\frac{-u(d)}{e \cdot d^2 \cdot \gamma})^2} = \sqrt{(\frac{-0.57}{1.602 * 10^{-19} \cdot 2 * 10^{-6} \cdot 20.60^2})^2 + (\frac{-0.05 * 2 * 10^{-6}}{1.602 * 10^{-19} \cdot (2 * 10^{-6})^2 \cdot 20.60})^2} = 0.087 * 10^{23} \frac{1}{m^3}$
- 7 Maksymalna czułość kątowa $S_{\boldsymbol{\alpha}}$ odczytana na podstawie przebiegu wykresu $U_H = f(\boldsymbol{\alpha})$

Wzięty zakres pod uwagę to od 130° do 230° czyli największy przyrost wartości napięcia U_H do przyrostu wartości kąta α .

- $S_{\alpha} = 0,001698 \pm 0,000043 \frac{V}{\circ}$
- 8 Przykładowa wartość czułości polowej dla wybranego punktu gdzie $U_H = 0,05932V$

8

- $\gamma_i = 20, 7 \pm 2, 1 \frac{V}{A \cdot T}$
- 9 Finalna wartość czułości polowej na podstawie regresji liniowej
 - $\gamma = 20,60 \pm 0,57 \frac{V}{A \cdot T}$
- 10 Koncentracja swobodnych nośników
 - $n = (1,515 \pm 0,087) \cdot 10^{23} \frac{1}{m^3}$

11 Wnioski

- Hallotron jest urządzeniem bardzo wrażliwym na zmiany kąta dlatego ustawienie kąta w ćwiczeniu jest niezwykle
 trudne ponieważ napięcie zmienia się już dla bardzo małych zmian kąta, aby to naprawić należałoby przemyśleć
 sprawę jak korzystniej ustawiać kąt a nie wykorzystywać w tym przypadku człowieka
- Eksperyment byłby ciekawszy oraz dałoby się z niego wytypować więcej wniosków jeżeli przeprowadzono by kilka prób dla różnych prądów sterujących
- Czułość polowa wyliczona dla pojedynczego punktu $\gamma_i=20,7\pm2,1\frac{V}{A\cdot T}$ ma podobną wartość do wartości czułości polowej liczonej z regresji liniowej $\gamma=20,60\pm0,57\frac{V}{A\cdot T}$ co jest bardzo pozytywnym zjawiskiem i świadczy o dobrze wykonanych pomiarach

12 Źródła

• https://lpf.wppt.pwr.edu.pl/index.php