

Nombre: Fanny Gutama

Docente: Ing. Diego Quisi

Generacion de Numeros Aleatorios.

In [14]: M

#Importamos las librerias import cpuinfo as cpu

from collections import Counter

from collections import defaultdict

import random import psutil import numpy as np

import pandas as pd

import math

In [16]:

```
numero = int(input("Ingrese Xo: "))
print("Semilla:",numero)
digito=int(input("Ingrese # digitos: "))
print("digito: ",digito)
iteraciones = int(input("Ingrese # de iteraciones: "))
print("iteraciones:",iteraciones)
xn=[]
ui=[]
multiplicacion=[]
rn=[]
def centros(mul):
    cortarI=int(digito/2)
    cortarD=digito-cortarI
    mitad=math.floor(len(mul)/2)
    unir=''
    for i in range(mitad-cortarI, mitad+cortarD, 1):
        unir=unir+mul[i]
    ui.append(unir)
    return unir
def cuadrado(num):
    multi=(num*num)
    m=str(multi)
    lon=len(m)
    if(len(m)%2!=0):
        if (lon < len(m)+1):
            m=str(m).zfill(len(m)+1)
    multiplicacion.append(m)
    return m
def dividido(n):
    ceros=[int(str(num).ljust(digito+1, "0")) for num in [1]]
    res=n/ceros[0]
    rn.append(res)
    return res
for i in range(iteraciones):
    m=str(cuadrado(int(numero)))
    if(len(m)-1>digito and int(numero)>0):
        xn.append(numero)
        dividido(int(centros(m)))
        numero=ui[-1]
    else:
        print('-Datos Erroneos')
        break
df=pd.DataFrame({"Semilla Xn":xn, "Xn x Xn":multiplicacion ,"UI ":ui, "RN":rn})
pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)
pd.set_option('display.width', None)
pd.set_option('display.max_colwidth', None)
print(df)
```

Ingrese Xo: 890 Semilla: 890

Ingrese # digitos: 3

digito:

Ingrese # de iteraciones: 50

CON EL NUMERO DE INTERACIONES 137625

In [13]:

```
numero = int(input("Ingrese X1: "))
print("Semilla:", numero)
digito=int(input("Ingrese numero digitos: "))
print("digito: ",digito)
iteraciones = int(input("Ingrese numero de iteraciones: "))
print("iteraciones:",iteraciones)
xn=[]
ui=[]
multiplicacion=[]
rn=[]
def centros(mul):
    cortarI=int(digito/2)
    cortarD=digito-cortarI
    mitad=math.floor(len(mul)/2)
    unir=''
    for i in range(mitad-cortarI, mitad+cortarD, 1):
        unir=unir+mul[i]
    ui.append(unir)
    return unir
def cuadrado(num):
    multi=(num*num)
    m=str(multi)
    lon=len(m)
    if(len(m)%2!=0):
        if (lon < len(m)+1):
            m=str(m).zfill(len(m)+1)
    multiplicacion.append(m)
    return m
def dividido(n):
    ceros=[int(str(num).ljust(digito+1, "0")) for num in [1]]
    res=n/ceros[0]
    rn.append(res)
    return res
for i in range(iteraciones):
    m=str(cuadrado(int(numero)))
    if(len(m)-1>digito and int(numero)>0):
        xn.append(numero)
        dividido(int(centros(m)))
        numero=ui[-1]
    else:
        print('-Datos Erroneos')
        break
df=pd.DataFrame({"Semilla Xn":xn, "Xn x Xn":multiplicacion ,"UI ":ui, "RN":rn})
pd.set_option('display.max_rows', None)
pd.set option('display.max columns', None)
pd.set_option('display.width', None)
pd.set_option('display.max_colwidth', None)
print(df)
46
         5892
                   34715664
                              7156
                                    0.7156
```

4/	/156	51208336	2083	0.2083	
48	2083	04338889	3388	0.3388	
49	3388	11478544	4785	0.4785	
50	4785	22896225	8962	0.8962	
51	8962	80317444	3174	0.3174	
52	3174	10074276	0742	0.0742	
53	0742	550564	5056	0.5056	
54	5056	25563136	5631	0.5631	
55	5631	31708161	7081	0.7081	
56	7081	50140561	1405	0.1405	
57	1405	01974025	9740	0.9740	
58	9740	94867600	8676	0.8676	
59	8676	75272976	2729	0.2729	
60	2729	07447441	4474	0.4474	
61	4474	20016676	0166	0.0166	
62	0166	027556	2755	0.2755	
63	2755	07590025	5900	0.5900	
64	5900	34810000	8100	0.8100	