Calcul différentiel et intégral II

R. Petit

année académique 2016 - 2017

Table des matières

Sui	tes et séries de fonctions		
1.1	Rappe	els	
		1.1.1.1 Espaces métriques	
		1.1.1.2 Espaces vectoriels	
		1.1.1.3 Ouverts, fermés, compacts	
		1.1.1.4 Suites de Cauchy	
		1.1.1.5 Continuité	
1.2	Conve	ergence de suites de fonctions	
		Convergence simple	
	1.2.2	Convergence uniforme	
	1.2.3	L'espace $B(X, E)$	
	1.2.4	Convergence uniforme sur tout compact	
1.3		de fonctions et opérations d'intégration et de dérivation	
		Passage à la limite dans une intégrale de Riemann	

Chapitre 1

Suites et séries de fonctions

1.1 Rappels

1.1.1 Topologie métrique

1.1.1.1 Espaces métriques

Définition 1.1. Soit X un ensemble. Une *distance* sur X est une application $d: X \times X \to \mathbb{R}^+$ telle que :

- 1. $\forall x, y \in X : d(x, y) = d(y, x)$ (symétrie);
- 2. $\forall x, y, z \in X : d(x, z) \leq d(x, y) + d(y, z)$ (inégalité triangulaire);
- 3. $\forall x, y \in X : (d(x,y) = 0 \iff x = y)$ (séparation ¹).

Définition 1.2. On appelle *espace métrique* (X, d) un espace X muni d'une distance d sur X.

Définition 1.3. Soient (X, d) un espace métrique, $(x_n)_{n \in \mathbb{N}}$ et $x \in X$ La suite (x_n) converge vers x dans (X, d) lorsque :

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} \text{ t.q. } \forall n \geqslant \mathbb{N} : d(x_n, x) < \varepsilon.$$

Cela se note:

$$x_n \xrightarrow[n \to +\infty]{d} x$$
.

Proposition 1.4. Soit $(x_n)_{n\in\mathbb{N}}$ une suite dans (X,d), un espace métrique. Soient $x,y\in X$. Si :

$$x_n \xrightarrow[n \to +\infty]{d} x$$
 et $x_n \xrightarrow[n \to +\infty]{d} y$,

alors x = y.

 $\textit{D\'{e}monstration}. \ \ \text{Soit} \ \epsilon>0. \ \ Puisque \ x_n \to x \ \text{et} \ x_n \to y, \ \text{on sait qu'il existe} \ \ N_1, N_2 \in \mathbb{N} \ \text{tels que}:$

$$\forall n\geqslant N_1: d(x_n,x)<\frac{\epsilon}{2} \qquad \qquad \text{et} \qquad \qquad \forall n\geqslant N_2: d(x_n,y)<\frac{\epsilon}{2}.$$

Dès lors, soit $N := \max\{N_1, N_2\}$. On peut dire :

$$\forall n\geqslant N: d(x,y)\leqslant d(x,x_n)+d(x_n,y)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon.$$

^{1.} Également appelé principe d'identité des indiscernables.

On en déduit d(x, y) = 0 et donc x = y par séparation.

1.1.1.2 Espaces vectoriels

Définition 1.5. Soit \mathbb{K} , un sous-corps de \mathbb{C} . On appelle *norme* sur le \mathbb{K} -e.v. \mathbb{E} toute application $\mathfrak{n}: \mathbb{E} \to \mathbb{R}^+$ telle que :

П

- 1. $\forall x \in E : (n(x) = 02 \iff x = 0);$
- 2. $\forall x \in E : \forall \lambda \in \mathbb{K} : n(\lambda x) = |\lambda| n(x)$;
- 3. $\forall x, y \in E : n(x + y) \leq n(x) + n(y)$.

Proposition 1.6. Soit (E, n) un K-espace vectoriel normé. L'application d suivante est une distance sur E (on l'appelle la distance associée à la norme n):

$$d: E \times E \rightarrow \mathbb{R}^+ : (x, y) \mapsto n(y - x).$$

Démonstration. EXERCICE.

Remarque. Si (E,n) est un espace vectoriel normé, $(x_n)_{n\in\mathbb{N}}$ est une suite de E, et si $x\in E$, alors on dit :

$$x_n\xrightarrow[n\to+\infty]{n} x$$

lorsque:

$$x_n \xrightarrow[n \to +\infty]{} x$$

au sens de la distance associée à la norme n.

Exemple 1.1. \mathbb{R} est un \mathbb{R} -e.v. normé avec pour norme $n : x \mapsto |x|$.

Exemple 1.2. Soient $d \in \mathbb{N}^*$, $p \in [1, +\infty)$. Pour $x = (x_i)_{1 \le i \le d} \in \mathbb{C}^d$, on définit :

$$n(x) = \|x\|_p := \left(\sum_{k=0}^d |x_i|^p\right)^{\frac{1}{p}}.$$

On a alors $(\mathbb{C}^d, \mathfrak{n})$ est un \mathbb{C} -espace vectoriel normé. Également $(\mathbb{C}^d, \mathfrak{n})$ et $(\mathbb{R}^d, \mathfrak{n})$ sont des \mathbb{R} -espaces vectoriels normés.

Définition 1.7. Soit $x \in \mathbb{C}^d$. On définit la *norme infinie* de x dans \mathbb{C}^d par :

$$\|\mathbf{x}\|_{\infty} \coloneqq \max_{1 \leqslant i \leqslant d} |\mathbf{x}_i|.$$

 $\textit{Exemple 1.3. Soit } d \in \mathbb{N}^*. (\mathbb{C}^d, \|\cdot\|_{\infty}) \text{ est un } \mathbb{C}\text{-espace vectoriel norm\'e}. \text{\'E} \\ \textit{galement, } (\mathbb{R}^d, \|\cdot\|_{\infty}) \text{ et } (\mathbb{C}^d, \|\cdot\|_{\infty}) \text{ sont des } \mathbb{R}\text{-espaces vectoriels norm\'es}.$

Démonstration. EXERCICE. □

Définition 1.8. Soit $(x_n)_{n\in\mathbb{N}}$ une suite. On dit que la suite (x_n) est *presque nulle* s'il existe $N\in\mathbb{N}$ tel que $\forall n\geqslant N: x_n=0$.

Exemple 1.4. Soient $P \in \mathbb{C}[x]$ et $(a_k)_{k \in \mathbb{N}}$ la suite presque nulle des coefficients de P. On pose :

$$\left\|P\right\|_{\infty} \coloneqq \sup_{k \in \mathbb{N}} \lvert \alpha_k \rvert = \max_{k \in \mathbb{N}} \lvert \alpha_k \rvert \,.$$

Alors $\|\cdot\|_{\infty}$ est une norme sur $\mathbb{C}[x]$.

Démonstration. EXERCICE.

1.1.1.3 Ouverts, fermés, compacts

Définition 1.9. Soit (X, d) un espace métrique. On appelle *boule ouverte* de centre $x \in X$ et de rayon $r \ngeq 0$ l'ensemble :

$$B(x, r := \{y \in X \text{ t.q. } d(x, y) \leq r\}.$$

On définit également la boule fermée de centre x et de rayon r l'ensemble :

$$B(x, r] := \{y \in X \text{ t.q. } d(x, y) \leq r\}.$$

Définition 1.10. Soit (X, d) un espace métrique et soit $O \subset X$. On dit que O est une partie *ouvert* dans X lorsque :

$$\forall x \in O : \exists r \geq 0 \text{ t.q. } B(x, r) \subset O.$$

Remarque. Pour tout X, les ensembles Ø et X sont tous deux des ouverts de X.

Définition 1.11. Soit (X, d) un espace métrique. Une partie $F \subset X$ de X est dite *fermée* dans X lorsque $X \setminus F$ est ouvert.

Proposition 1.12. Dans un espace métrique (X, d), soit $(O_i)_{i \in I}$ une famille d'ouverts de X indicés par un ensemble $I \neq \emptyset$. Alors $(\bigcup_{i \in I} O_i)$ est un ouvert de X. Si de plus I est fini, alors $(\bigcap_{i \in I})$ est un ouvert de X.

Exemple 1.5. Prenons $X = \mathbb{R}$ et $O_i = (-1 - \frac{1}{i}, 1 + \frac{1}{i})$. Alors $\left(\bigcap_{i \in \mathbb{N}^*} O_i\right) = [-1, 1]$ qui n'est pas un ouvert de X.

Démonstration. EXERCICE. □

Définition 1.13 (Compacts par Borel-Lebesgue). Soit (X, d) un espace métrique. Une partie $K \subset X$ est dite *compacte* si $K \neq \emptyset$ et si, de tout recouvrement de K par des ouverts de X, on peut extraire un sous-recouvrement fini.

C'est-à-dire lorsque:

- 1. $K \neq \emptyset$;
- 2. $\forall I \neq \emptyset : \forall (O_i)_{i \in I}$ ouverts de X t.q. $K \subset \left(\bigcup_{i \in I} O_i\right) : \exists J \subset I$ fini t.q. $K \subset \left(\bigcup_{j \in J} O_j\right)$.

Proposition 1.14 (Compacts par Bolzano-Weierstrass). *Soit* (X, d) un espace métrique. Une partie K de X est compacte si et seulement si :

- 1. $K \neq \emptyset$;
- 2. de toute suite de points de K, on peut extraire une sous-suite convergente dans K.

Démonstration. Admis.

Exemple 1.6. L'ensemble [0,1] est un compact de \mathbb{R} .

Proposition 1.15. *Soit* (X, d), *un espace métrique et* $K \subset X$, *une partie compacte. Alors* K *est fermé et borné.*

Démonstration. EXERCICE. (Absurde) □

Proposition 1.16. Soit (E,n) un \mathbb{K} -e.v. normé de dimension finie. Alors les parties compactes de E sont les parties fermées bornées non nulles.

Démonstration. Admis. □

1.1.1.4 Suites de Cauchy

Définition 1.17. Soit (X, d), un espace métrique. On dit que $(x_n)_{n \in \mathbb{N}}$ est *de Cauchy* dans X lorsque :

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} \text{ t.q. } \forall m, n \geqslant N : d(x_n, x_m) < \varepsilon.$$

Proposition 1.18. $Si(x_n)_{n\in\mathbb{N}}$ est convergente dans l'espace métrique (X, d), alors elle est de Cauchy.

Démonstration. Si x est la limite de la suite (x_n) , on pose $\epsilon > 0$. Il existe $N \in \mathbb{N}$ tel que :

$$\forall n \geqslant \mathbb{N} : d(x, x_n) < \frac{\varepsilon}{2}.$$

Donc $\forall m, n \geqslant N : d(x_m, x_n) \leqslant d(x_m, x) + d(x, x_n) < \varepsilon$.

Définition 1.19. Un espace métrique (M, d) est dit *complet* quand toute suite de Cauchy de points de X converge dans X.

Définition 1.20. Un espace vectoriel E est dit *de Banach* lorsque toute suite de Cauchy de vecteurs de E converge dans E.

Remarque. On remarque que dans un espace métrique complet, une suite converge si et seulement si elle est de Cauchy (ce qui est entre autres le cas de \mathbb{R}).

De plus, les suites de Cauchy permettent, dans des espaces complets, de montrer que des suites convergent sans connaître leur limite.

Exemple 1.7. Les espaces métriques $(\mathbb{R},|\cdot|)$ et $(\mathbb{C},|\cdot|)$ sont des espaces de Banach. Et pour tout $\mathfrak{p} \in [1,+\infty)$ et $\mathfrak{q} \in \mathbb{N}$, les espaces métriques $(\mathbb{R}^q,\|\cdot\|_{\mathfrak{p}})$ et $(\mathbb{C}^q,\|\cdot\|_{\mathfrak{p}})$ sont des espaces de Banach.

1.1.1.5 Continuité

Définition 1.21. Soient (X, d_X) et (Y, d_Y) deux espaces métriques. Une application $f: X \to Y$ est dite continue en $x_0 \in X$ lorsque :

$$\forall \varepsilon > 0 : \exists \delta \geq 0 \text{ t.q. } \forall x \in X : (d_X(x, x_0) < \delta \Rightarrow d_X(f(x), f(x_0)) < \varepsilon).$$

On dit que f est continue sur $A \subset X$ lorsque f est continue en tout $a \in A$.

Proposition 1.22. *Une fonction* $f:(X,d) \to (Y,d)$ *est continue sur* X *lorsque l'image réciproque par* f *de* (Y,d) *est un ouvert de* (X,d).

Démonstration. Admis. □

Proposition 1.23. *Une fonction* $f:(X,d) \to (Y,d)$ *est continue en* $x_0 \in X$ *si et seulement si l'image par* f *de toute suite de points de* X *convergente en* x_0 *est une suite convergente en* $f(x_0)$.

Démonstration. Admis. □

Définition 1.24. Soit $f:(X,d) \to (Y,d)$. f est dite *lipschitzienne* de constante $K \ge 0$ lorsque

$$\forall (x,y) \in X^2 : d(f(x),f(y)) \leq d(x,y).$$

Proposition 1.25. Si $f: (X, d) \rightarrow (Y, d)$ est lipschitzienne, alors elle est continue sur X.

Démonstration. EXERCICE. □

Définition 1.26. Soit $(a_k)_{k \in \mathbb{N}}$, une suite dans un espace métrique (X, d). On dit que (a_k) est *presque nulle* lorsqu'il existe $N \in \mathbb{N}$ tel que $\forall n \geqslant N : a_n = 0$.

Exemple 1.8.

$$\left|c_{\mathfrak{i}}(P)-c_{\mathfrak{i}}(Q)\right|=\left|a_{\mathfrak{i}}-b_{\mathfrak{i}}\right|\leqslant \|P-Q\|_{\infty}=\max_{k\in\mathbb{N}}\left|a_{k}-b_{k}\right|.$$

On en déduit que c_i est lipschitzienne sur $\mathbb{C}[x]$ et donc continue sur $\mathbb{C}[x]$.

— Soit $n \in \mathbb{N}$. Posons :

$$P_n = \sum_{k=0}^n \frac{1}{k!} x^k \in \mathbb{C}[x].$$

On observe que $(P_n)_{n\in\mathbb{N}}$ est de Cauchy dans $(\mathbb{C}[x],\|\cdot\|_{\infty})$ car :

$$\|P_n - P_m\|_{\infty} = \left\| \sum_{k=0}^n \frac{1}{k!} x^k - \sum_{k=0}^m \frac{1}{k!} x^k \right\|_{\infty}.$$

On a alors:

$$\|P_n - P_m\|_{\infty} = \left\| \sum_{k=\min\{m,n\}+1}^{\max\{m,n\}} \frac{1}{k!} x^k \right\|_{\infty} = \max_{\min\{m,n\}+1 \leqslant k \leqslant \max\{m,n\}} \frac{1}{k!} = \frac{1}{(\min\{m,n\}+1)!}.$$

Montrons que $(P_n)_{n\in\mathbb{N}}$ est de Cauchy. Supposons (par l'absurde) que $(P_n)_{n\in\mathbb{N}}$ converge vers $P\in (\mathbb{C}[x],\|\cdot\|_{\infty})$. Notons $(\alpha_k)\subset\mathbb{C}$, la suite presque nulle des coefficients de P. Pour $i\in\mathbb{N}$, on a $c_i(P)=\frac{1}{i!}$ quand $n\geqslant i$. Or par la propriété de Lipschitz, on sait que $c_i(P_n)\xrightarrow[n\to+\infty]{}c_i(P)=a_i$. Or (a_k) est presque nulle et $a_i=\frac{1}{i!}$. Il y a donc contradiction. Donc (P_n) ne converge pas dans $(\mathbb{C}[x],\|\cdot\|_{\infty})$. Dès lors, $(\mathbb{C}[x],\|\cdot\|_{\infty})$ n'est pas complet.

1.2 Convergence de suites de fonctions

1.2.1 Convergence simple ²

Définition 1.27. Soit X un ensemble et (Y, d) un espace métrique. On dit que la suite $(f_n(x))_{n \in \mathbb{N}}$ où $f_n: X \to (Y, d)$ converge simplement sur X lorsque :

$$\forall x \in X : \big(f_n\left(x\right)\big)_{n \in \mathbb{N}} \text{ converge dans } (Y,d).$$

Définition 1.28. Dans ce cas, la suite a pour limite simple la fonction :

$$f:X\to (Y,d):x\mapsto \lim_{n\to +\infty}f_n(x)$$

et est bien définie. Cela se note :

$$f_n \xrightarrow[n \to +\infty]{\text{CVS}} f \qquad \qquad \text{ou} \qquad \qquad f_n \xrightarrow[n \to +\infty]{\text{CVS}} \xrightarrow[n \to +\infty]{\text{CVS}} f.$$

Exemple 1.9. Soient X = [0,1] et $Y = \mathbb{R}$. On pose $f_n(x) = x^n$ pour tout $n \in \mathbb{N}$.

— Si $x \in [0,1)$, alors la suite $(f_n(x))_{n \in \mathbb{N}}$ est une suite géométrique de raison x avec|x| < 1 donc la suite converge vers 0;

^{2.} La convergence simple est la notion de convergence « minimale » que l'on va exiger. Il existe des convergences encore plus élémentaires (voir théorie de l'intégration de Lebesgue), mais qui se trouvent en dehors des objectifs du cours.

— si x = 1,a lors $f_n(x) = 1$ pour tout $n \in \mathbb{N}$. Donc la suite $(f_n(x))_{n \in \mathbb{N}}$ converge simplement sur [0,1]vers la fonction:

$$f: [0,1] \to \mathbb{R}: x \mapsto \begin{cases} 0 & \text{si } x < 1 \\ 1 & \text{si } x = 1 \end{cases}.$$

Remarque.

- On a « perdu » la continuité des fonctions f_n par passage à la limite;
- ici, la convergence simple peut s'écrire ainsi, à l'aide de quantificateurs :

$$\forall \varepsilon > 0 : \forall x \in X : \exists N \in \mathbb{N} \text{ t.q. } \forall n \geqslant N : d(f_n(x), f(x)) < \varepsilon.$$

On remarque donc que N dépend de x (ordre des quantificateurs).

Convergence uniforme

Définition 1.29. Soient X un ensemble, (Y, d) un espace métrique, et $f_n : X \to (Y, d)$. On dit que (f_n) *converge uniformément* sur X vers $f: X \rightarrow (Y, d)$ lorsque :

$$\forall \epsilon > 0: \exists N \in \mathbb{N} \text{ t.q.} \forall n \geqslant N: \forall x \in X: d(f_n(x), f(x)) < \epsilon.$$

Cela se note:

$$f_n \xrightarrow[n \to +\infty]{\text{CVU sur } X} f.$$

Remarque. La définition est très proche de la convergence simple. La différence étant que pour une convergence uniforme, il faut que $N \in \mathbb{N}$ ne dépende pas de la valeur de x.

Proposition 1.30. Soient X un ensemble, (Y, d) un espace métrique, $(f_n(x))_{n \in \mathbb{N}}$ une suite de fonctions de X dans (Y, d) et $f: X \to (Y, d)$. Si (f_n) converge uniformément sur X vers f, alors (f_n) converge simplement sur X vers f.

Démonstration. EXERCICE.

 $\textit{Exemple 1.10. Prenons } X = \mathbb{R} = Y \text{ et pour tout } n \geqslant 1, \text{ définissons } f_n(x) = \sqrt{x^2 + \frac{1}{n}}. \text{ Fixons } x \in \mathbb{R}. \text{ On trouve tout } n \geqslant 1, \text{ definissons } f_n(x) = \sqrt{x^2 + \frac{1}{n}}.$ alors:

$$(f_n(x))_{n\in\mathbb{N}} = \left(\sqrt{x^2 + \frac{1}{n}}_n\right)_{n\in\mathbb{N}} \to \sqrt{x^2} = |x|.$$

Donc:

$$f_n \xrightarrow[n \to +\infty]{\text{CVS sur } X} |\cdot|$$
.

Théorème 1.31. Soient (X, d), (Y, d) deux espaces métriques. Soient $f_n : X \to Y$, $\alpha \in X$. On suppose : $- \exists f \text{ t.q. } f_n \xrightarrow{CVU \text{ sur } X} f; \\ - \forall n \in \mathbb{N} : f_n \text{ est continue en } \alpha.$

Alors f est continue en a.

Démonstration. Soit ε > 0. Par convergence uniforme des f_n , on sait :

$$\exists N \in \mathbb{N} \, t.q. \, \forall n \geqslant N : \forall x \in X : d(f_n(x), f(x)) < \frac{\epsilon}{3}.$$

De plus, la fonction f_N est continue en α par hypothèse. Dès lors, on sait qu'il existe δ tel que :

$$\forall x \in X : d(x, \alpha) < \delta \Rightarrow d(f_N(x), f_N(\alpha)) < \frac{\varepsilon}{3}.$$

Ainsi, prenons $x \in X$ tel que $d(x, a) < \delta$. On a alors :

$$d(f(x),f(\alpha))\leqslant d(f(x),f_N(x))+d(f_N(x),f(\alpha))\leqslant d(f(x),f_N(x))+d(f_N(x),f_N(\alpha))+d(f_N(\alpha),f(\alpha))\leqslant 3\frac{\epsilon}{3}=\epsilon.$$

Corollaire 1.32. Si $f_n \in C^0(X,Y)$ et $f_n \xrightarrow[n \to +\infty]{} alors f \in C^0(X,Y)$.

Démonstration. Les fonctions f_n sont continues en tout point et $f_n \xrightarrow[n \to +\infty]{\text{CVU sur } X}$ par hypothèse. Dès lors, pour tout point $a \in X$, par le théorème précédent, on peut dire f continue en a. Dès lors $f \in C^0(X, Y)$. □

1.2.3 L'espace B(X, E)

Définition 1.33. Soient $X \neq \emptyset$ et $(E, \|\cdot\|_E)$ un espace vectoriel normé. On note :

$$B(X, E) := \{f : X \to E \text{ t.q. } f \text{ est born\'ee sur } X\}.$$

Pour $f \in B(X, E)$, on définit :

$$\|f\|_{\infty} := \sup_{x \in X} \|f(x)\|_{E}.$$

Proposition 1.34. $(B(X, E), ||\cdot||_{\infty})$ *est un espace vectoriel normé.*

Démonstration. EXERCICE. □

Théorème 1.35. $(B(X, E), ||\cdot||_{\infty})$ est complet si et seulement si $(E, ||\cdot||_{E})$ est complet.

Démonstration. Supposons d'abord $(B(X, E), \|\cdot\|_{\infty})$ complet et montrons que $(E, \|\cdot\|_{E})$ est complet.

Soit $(x_n)_n$ une suite de Cauchy d'éléments de E. Soit (f_n) une suite de fonctions de B(X, E) telle que :

$$\forall n \in \mathbb{N} : \forall x \in X : f_n(x) = x_n$$
.

Puisque (x_n) est de Cauchy, on sait que :

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} \text{ t.q. } \forall m, n \geqslant N : d(x_m, x_n) < \varepsilon.$$

Or, avec $\alpha \in X$ fixé, on peut alors dire $\forall m, n \geqslant N : d(f_m(\alpha), f_n(\alpha)) < \epsilon$, et ce peu importe le α choisi (car les f_n sont constantes). On a donc (f_n) une suite de Cauchy dans B(X, E) car $d(f_m(\alpha), f_n(\alpha)) = \|f_m - f_n\|_{\infty}$. Or, par complétude de B(X, E), on sait qu'il existe $f \in B(X, E)$ telle que $f_n \to f$. La fonction f est également constante. Posons L la seule image de f. Soit f on sait qu'il existe f existence f existe f existence f

Or:

$$\varepsilon > \|f_n - f\|_{\infty} = \sup_{x \in X} \|f_n(x) - f(x)\|_{E} = \|f_n(a) - f(a)\|_{E} = \|x_n - L\|.$$

Dès lors, on sait que (x_n) converge dans E.

Montrons maintenant que si $(E, ||\cdot||_F)$ est complet, alors $(B(X, E), ||\cdot||_{\infty})$ est complet également.

Soit $(f_n)_n$ une suite de Cauchy de fonctions de $(B(X, E), \|\cdot\|_{\infty})$. Fixons $\varepsilon > 0$. Il existe alors $N \in \mathbb{N}$ tel que :

$$\forall m, n \geqslant N : ||f_m - f_n||_{\infty} < \varepsilon.$$

Soit $x \in X$. On observe que :

$$\forall m, n \geqslant N : ||f_n(x) - f_m(x)||_F \leqslant ||f_n - f_m||_{\infty} < \varepsilon.$$

La suite $(f_n(x))_n$ est donc une suite de Cauchy dans $(E, \|\cdot\|_E)$. Par complétude de E, on sait qu'il existe $f(x) \in E$ tel que $f_n(x) \to f(x)$. Montrons maintenant que $f \in B(X, E)$.

La suite $(f_n)_n$ est de Cauchy et donc bornée. Soit $M \ngeq 0$ tel que $\forall n \in \mathbb{N} : \|f_n\|_{\infty} < M$. Passons à la limite dans (B(X, E). On a alors :

$$\forall n \in \mathbb{N} : \forall x \in X : ||f(x)||_{F} < M.$$

Ainsi, $f \in B(X, E)$ par définition.

Soit alors $\varepsilon > 0$. Pour tout $m, n \in \mathbb{N}$ et pour tout $x \in X$, on a :

$$\|f_n(x) - f_m(x)\|_F \le \|f_n - f_m\|_\infty \le \varepsilon.$$

Passons alors à la limite e m, ce qui donne :

$$\|f_n(x) - f(x)\|_F \le \|f_n - f\|_\infty \le \varepsilon.$$

Dès lors :

$$\forall n\geqslant N: \|f_n-f\|_{\infty}\leqslant \epsilon.$$

Remarque. Quand $X \neq \emptyset$ et Y = E est un espace vectoriel normé, on a :

 $f_n \xrightarrow[n \to +\infty]{CVU \operatorname{sur} X} f \iff \left\{ \begin{array}{c} \exists N \in \mathbb{N} \operatorname{t.q.} \forall n \geqslant N : f_n - f \in B(X, E) \\ f_n - f \xrightarrow[n \to +\infty]{\| \cdot \|_{\infty}} 0 \end{array} \right..$

1.2.4 Convergence uniforme sur tout compact

Définition 1.36. Soit X, une partie non-vide d'un espace vectoriel normé de dimension finie $(E, \|\cdot\|_E)$. Soit (Y, d) un espace métrique. Une suite $f_n : X \to Y$ converge uniformément vers $f : X \to Y$ sur tout compact lorsque :

$$\forall \ compact \ K \subset X \colon f_n \bigg|_K \xrightarrow[n \to +\infty]{CVU \ sur \ K} f \bigg|_K \, .$$

Cela se note:

$$f_n \xrightarrow[n \to +\infty]{\text{CVU sur tout compact de } X} f$$

Proposition 1.37. Si la suite f_n converge uniformément sur tout compact de X et si toutes les fonctions f_n sont continues en $a \in X$, alors f est continue en a.

Démonstration. EXERCICE.

Exemple 1.11. Prenons $X = Y = \mathbb{R}$. On définit $f_n(x) = \sum_{k=0}^n \frac{x^k}{k!}$. On a alors $f_n \xrightarrow[n \to +\infty]{\text{CVS sur } X} \exp$.

De plus:

$$\|f_n - \exp\|_{\infty} = \sup_{x \in \mathbb{R}} \left| \sum_{k=0}^n \frac{x^k}{k!} - \exp(x) \right| = +\infty.$$

Donc f_n ne converge pas uniformément vers exp. Montrons maintenant que f_n converge uniformément vers exp sur tout compact de \mathbb{R} . Soit $K \subset \mathbb{R}$ un compact. On sait qu'il existe $a,b \in \mathbb{R}$, a < b tels que $K \subset [a, b]$. Pour $x \in [a, b]$, par Lagrange, on a :

$$\exp(x) - \sum_{k=0}^{n} \frac{x^k}{k!} = \frac{x^{n+1}}{(n+1)!} \exp(c_x),$$

avec $c_x \in [a, b]$.

Ainsi:

$$\left| exp(x) - \sum_{k=0}^{n} \frac{x^k}{k!} \right| \leqslant \frac{(b-a)^{n+1}}{(n+1)!} \sup_{x \in [a,b]} exp(x) \xrightarrow[n \to +\infty]{} 0.$$

D'où $f_n \xrightarrow[n \to +\infty]{[a,b]} f$ et donc la convergence uniforme sur tout compact de f_n vers f.

Suites de fonctions et opérations d'intégration et de dérivation 1.3

Passage à la limite dans une intégrale de Riemann

Soit X un pavé de \mathbb{R}^d (donc $X=\prod_{i=1}^d [\alpha_i,b_i]$ avec $\alpha_i < b_i \forall i \in \{1,\dots,d\}$).

Théorème 1.38. Soit $f_n: X \to \mathbb{R}$ intégrables au sens de Riemann sur X. Supposons $f_n \xrightarrow{\text{CVU sur } X} f$. Alors:

- $\begin{array}{ll} -- & f \ est \ intégrable \ au \ sens \ de \ Riemann \ ; \\ -- & la \ \left(\int_X f_n(x) \ dx\right)_n \ converge \ vers \ \int_X f(x) \ dx.^3 \end{array}$

Démonstration. On note $\mathcal{E}(X,\mathbb{R}) := \{f : X \to \mathbb{R} \text{ t.q. } f \text{ est élémentaire} \}$.

Soit $\varepsilon > 0$. Par la convergence uniforme, on sait qu'il existe $N \in \mathbb{N}$ tel que :

$$\forall n \geqslant N : \|f_n - f\|_{\infty} \leqslant \frac{\varepsilon}{4|X|}$$

 $où |X| = \prod_{i=1}^{d} (b_i - a_i).$

Par intégrabilité de f_N , on sait qu'il existe $\varphi, \psi \in \mathcal{E}(X, \mathbb{R})$ telles que :

$$\psi\leqslant f_N\leqslant \phi \qquad \qquad \text{et} \qquad \qquad \int_X (\phi-\psi)<\frac{\epsilon}{2}.$$

On a alors:

$$\psi - f_N \leqslant f \leqslant \varphi + f_N$$

ou encore:

$$\psi - \frac{\epsilon}{4|X|} \leqslant f \leqslant \phi + \frac{\epsilon}{4|X|}.$$

$$\lim_{n \to +\infty} \int_X f_n(x) dx = \int_X \lim_{n \to +\infty} f_n(x) dx.$$

^{3.} Cela veut dire que:

En posant $\overline{\psi} \coloneqq \psi - \frac{\epsilon}{4X}$ et $\overline{\phi} \coloneqq \phi + \frac{\epsilon}{4X}$, on a $\overline{\psi}$, $\overline{\phi} \in \mathcal{E}(X,\mathbb{R})$. De plus :

$$\int_X (\psi - \phi) = \int_X \left(\psi + \frac{\epsilon}{4|X|} - \left(\phi - \frac{\epsilon}{4|X|} \right) \right) = \frac{\epsilon}{2|X|} |X| + \int_X \psi - \phi < 2\frac{\epsilon}{2} = \epsilon.$$

Dès lors, on en déduit f intégrable au sens de Riemann.

Fixons $\varepsilon > 0$. Par convergence uniforme de f_n vers f sur X, on sait que :

$$\exists N \in \mathbb{N} \text{ t.q.} \forall n \geqslant N : \left\| f_n - f \right\|_{\infty} < \frac{\epsilon}{|X|}$$

Et donc:

$$\left| \int_X f_n(x) \, dx - \int_X f(x) \, dx \right| = \left| \int_X (f_n - f)(x) \, dx \right| \le \left| \int_X \|f_n - f\|_{\infty} \, dx \right| = |X| \|f_n - f\|_{\infty} \le |X| \frac{\varepsilon}{|X|} = \varepsilon.$$

Finalement, la suite $(\int_X f_n(x) dx)_n$ converge dans \mathbb{R} vers $\int_X f(x) dx$.

Remarque.

1. Il est possible d'avoir les résultats sans vérifier les hypothèses. Par exemple, $X=[0,1]\subset \mathbb{R}=Y$, avec $f_n(x)=x^n$. On sait que $f_n\xrightarrow[n\to+\infty]{CVS \sup X} 1_{\{x=1\}}$ et que la convergence n'est pas uniforme sur [0,1]. On remarque alors :

$$\lim_{n \to +\infty} \int_0^1 f_n(x) \, dx = \lim_{n \to +\infty} \frac{1}{n+1} = 0 = \int_0^1 \mathbf{1}_{\{x=1\}}(x) \, dx = \int_0^1 \lim_{n \to +\infty} f_n(x) \, dx \ ;$$

2. si les hypothèses ne sont pas vérifiées, la conclusion peut être fausse. Par exemple, $X = [0, 1] \subset \mathbb{R} = Y$. On définit $(n \ge 1)$:

$$f_n(x) = \begin{cases} 2n\alpha_n x & \text{si } 0 \leqslant x < \frac{1}{2n} \\ 2\alpha_n - 2n\alpha_n x & \text{si } \frac{1}{2n} \leqslant x < \frac{1}{n} \text{,} \\ 0 & \text{sinon} \end{cases}$$

où $\alpha_n \in \mathbb{R}^+_0$ t.q. $\forall n \in \mathbb{N}^* : \int_0^1 f_n(x) \, dx = 1$, donc $\alpha_n = 2n$.

On a alors $f_n \xrightarrow[n \to +\infty]{\text{CVS sur } X} 0 = f$. La fonction nulle 0(x) est intégrable au sens de Riemann sur [0,1].

Finalement, on a:

$$\int_0^1 \lim_{n \to +\infty} f_n(x) \, dx = \int_0^1 f(x) \, dx = 0 \qquad \text{et} \qquad \lim_{n \to +\infty} \int_0^1 f_n(x) \, dx = 1.$$

Dans ce cas précis, on ne peut pas passer à la limite.