

lot (x,y) be the first arc in P that traverses X and let P be the sub-path from s to x

len (P) > len (P') + w(x,y)b w is non negative

> >, len (x) + w (x, y) 4 ind. hypothesis

Dijkstra with heops

Dijkstna (G,s)

 $\times = \emptyset$

H = empty heap

Key(s) = 0

for each V ≠ 5 dó

 $\text{Key}(v) = + \infty$

for each $v \in V$ dor insert v into H

(almost identical to Prim's implementation with heaps)

while H is non-empty do w* = extract nin (H) add W* to X $len(w^*) = Key(w^*)$ // Update heap for every edge (w*, y) s.t. y \(\) do Jelete y from H $key(y) = min \{key(y), len(w*) + w(w*, y)\}$ insert y into H Complexity: O((m+n) logn) Here are O(m+n) operations on hops The (general) SSSP problem

that is, graphs can have edge with neg-tive weights who cares about negative weights?

- 1) in road retworks traversing one edge comes with a reward/bonus weights represent more general costs than just distance
- 2) compute a profitable sequence of financial transactions

With negative weights we must be careful about what we even mean by "shortest paths":

there is no startest S-V path! -> dist(s,v) undefined

So, how about forbidding negative cycles
(that is, compute shartest cycle-fue/simple paths)
Problem now is well-defined, but is
NP-hard -> no polynomial-time
algorithm (unless P=NP)
Then:
Single-Some Shatest Paths (revised Version)
imput: a directed, weighted graph $G = (V, E)$ on a source vetex $S \in V$
output: one of the following:
a) dist (S,V) & vetex VEV b) a declaration that G contains a
b) a declaration that G contains a negative cycle

Observation: can a shortest path contain a cycle? not negative—weight cycles, but not positive—weight either:

what about 0-weight cycles? We can remove all of them, and therefore who we can assume to compute cycle-free shortest paths, which have $\leq N-1$ edges

what needs to be changed in Dijkstra's olg. to deal with negative-weights edges?

intuition:

Bellman-Ford (G, S) (1955) imput: directed graph G with edge weight, w: E-SIR
and a some vertex sel output: either dist (s,v) VveV or a declaration that G contains a negative cycle len (s) = 0len $(v) = +\infty$ $\forall v \neq s$) initial estimated distances for n-1 ituations do for each edge (U,V) EE da \\update the estimated distance (a.k.a. "relax" edge (u,v)) len (V) = min $\left\{ len (V), len (U) + W(U,V) \right\}$ for each edge (U,V) E E der if len (v) > len (v) + w(v,v) then Il some distance changed in the n-th iteration return "G contains a regative cycle"

Complexity: O(m.n)

Example:

