$$L_{pal} = \{w \in \{0,1\}^* | w \ es \ palíndromo\}$$

No es un LR por el lema del bombeo

Definición recursiva:

Base: ε , 0 y 1 son palindromos

Inductivo: si w es un palíndromo, entonces 0w0 y 1w1 también lo son

Base: $P \rightarrow \varepsilon$

 $P \rightarrow 0$

 $P \rightarrow 1$

Inductivo: $P \rightarrow 0P0$

 $P \rightarrow 1P1$

Gramática

1)
$$P \rightarrow \varepsilon$$

2)
$$P \rightarrow 0$$

$$3) P \rightarrow 1$$

4)
$$P \rightarrow 0P0$$

5)
$$P \rightarrow 1P1$$

$$P \rightarrow \varepsilon \mid 0 \mid 1 \mid 0P0 \mid 1P1$$

$$P \stackrel{4)}{\Rightarrow} 0P0 \stackrel{5)}{\Rightarrow} 01P10 \stackrel{2)}{\Rightarrow} 01010$$
 derivación

$$P \stackrel{4)}{\Rightarrow} 0P0 \stackrel{4)}{\Rightarrow} 00P00 \stackrel{5)}{\Rightarrow} 001P100 \stackrel{4)}{\Rightarrow} 0010P0100 \stackrel{1)}{\Rightarrow} 0010\varepsilon0100 \Rightarrow 00100100$$

$$P \stackrel{5)}{\Rightarrow} 1P1 \stackrel{5)}{\Rightarrow} 11P11 \stackrel{1)}{\Rightarrow} 11\varepsilon11 \Rightarrow 1111$$

$$P \stackrel{1)}{\Rightarrow} \varepsilon$$

Gramáticas Libres de Contexto (GLC) Gramáticas Independientes de Contexto (GIC)

Definición:

Una GLC es una 4-tupla G = (V, T, P, S) donde:

- i) *V* es un conjunto finito de variables comúnmente llamado conjunto de <u>símbolos no</u> terminales.
- ii) T es un conjunto finito ($T \neq V$) de símbolos que forman las cadenas del lenguaje que se esta definiendo. Cada símbolo es llamado terminal. T es llamado <u>alfabeto terminal</u> o <u>alfabeto de símbolos terminales</u>.
- iii) P es un conjunto finito de <u>producciones</u> o reglas que representan la definición recursiva del lenguaje.
- iv) $S \in V$ es la variable inicial

$$G_{pal} = (\{P\}, \{0,1\}, A, P)$$

donde A es el conjunto de producciones:

•
$$P \rightarrow \varepsilon \mid 0 \mid 1 \mid 0P0 \mid 1P1$$

Ejemplo 1:

Expresión de un lenguaje de programación con los operadores + y * Identificadores son cadenas formadas de a's, b's, 0's y 1's que comienzan con a o b.

$$(a01b + bba * b1) * a1$$

$$(ab + a) * bb1 + a3$$

$$b + a0 + b * ba2$$

$$G = (\{E,I\},T,P,E)$$

E: Expresiones

con
$$T = \{+,*,(,),a,b,0,1\}$$

P:
$$E \longrightarrow I \mid E + E \mid E * E \mid (E)$$
$$I \longrightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$$

$$E \stackrel{2)}{\Rightarrow} E + E \stackrel{4)}{\Rightarrow} (E) + E \stackrel{3)}{\Rightarrow} (E * E) + E \stackrel{1)}{\Rightarrow} (I * E) + E \stackrel{5)}{\Rightarrow} (a * E) + E \stackrel{1)}{\Rightarrow} (a * I) + E$$

$$\stackrel{6)}{\Rightarrow} (a * b) + E \stackrel{1)}{\Rightarrow} (a * b) + I \stackrel{9)}{\Rightarrow} (a * b) + I \stackrel{10)}{\Rightarrow} (a * b) + I \stackrel{5)}{\Rightarrow} (a * b) + a \stackrel{10}{\Rightarrow} (a$$

Derivaciones

Sea $\alpha A\beta$ una cadena de terminales y variables con A una variable. Si $A \to \omega$ es una regla de la gramática, decimos que $\alpha A\beta$ infiere a $\alpha \omega \beta$ y escribimos

$$\alpha A\beta \Rightarrow \alpha \omega \beta$$

Definición.

Escribimos $u \stackrel{*}{\Rightarrow} v$ si u = v o si existe una secuencia u_1, u_2, \dots, u_k con $k \ge 0$ y $u \Rightarrow u_1 \Rightarrow u_2 \Rightarrow \dots \Rightarrow u_k \Rightarrow v$

En el ejemplo 1:

$$E \stackrel{\star}{\Longrightarrow} (a * b) + a10$$

Derivaciones a la izquierda y derecha

$$E \underset{\text{md}}{\overset{2)}{\Longrightarrow}} E + E \underset{\text{md}}{\overset{3)}{\Longrightarrow}} E + E * E \underset{\text{md}}{\overset{1)}{\Longrightarrow}} E + E * I \underset{\text{md}}{\overset{5)}{\Longrightarrow}} E + E * a \underset{\text{md}}{\overset{1)}{\Longrightarrow}} E + I * a \underset{\text{md}}{\overset{6)}{\Longrightarrow}} E + b * a$$

$$\stackrel{1)}{\Longrightarrow} I + b * a \stackrel{5)}{\Longrightarrow} a + b * a$$

$$E \stackrel{\star}{\underset{\mathrm{md}}{\Longrightarrow}} a + b * a$$

$$E \xrightarrow[\text{mi}]{3} E * E \xrightarrow[\text{mi}]{1} I * E \xrightarrow[\text{mi}]{5} a * E \xrightarrow[\text{mi}]{4} a * (E) \xrightarrow[\text{mi}]{2} a * (E + E) \xrightarrow[\text{mi}]{1} a * (I + E) \xrightarrow[\text{mi}]{6} a * (b + E)$$

$$\stackrel{1)}{\Rightarrow} a * (b+1) \stackrel{5)}{\Rightarrow} a * (b+a)$$

$$E \underset{\text{mi}}{\overset{*}{\Longrightarrow}} a * (b + a)$$

Proposición:

Si w es una cadena terminal y A una variable, entonces $A \stackrel{*}{\Rightarrow} w$ sii $A \stackrel{*}{\Rightarrow} w$ y $A \stackrel{*}{\Rightarrow} w$ sii $A \stackrel{*}{\Rightarrow} w$

Definición:

Si G = (V, T, P, S) es una GLC y si $\alpha \in (V \cup T)^*$ tal que $S \stackrel{\star}{\Longrightarrow} \alpha$, entonces α es llamada forma sentencial.

Si $S \stackrel{*}{\Longrightarrow} \alpha$, entonces α es llamada forma sentencial izquierda, y si $S \stackrel{*}{\Longrightarrow} \alpha$, entonces es α es llamada forma sentencial derecha.

Lenguaje de una Gramática

Si G = (V, T, P, S) es una GLC. El lenguaje de G denotado como L(G) es el conjunto de las cadenas terminales que tienen derivaciones desde el símbolo inicial, es decir:

$$L(G) = \{ w \in T^* | S \stackrel{\star}{\Longrightarrow} w \}$$

Definición:

Si un lenguaje L es el lenguaje de una GLC, entonces L es llamado Lenguaje Independiente de Contexto (LIC).

Ejemplo 2:

Diseñar una GLC que acepte el lenguaje $L_{01} = \{0^n 1^n | n \ge 0\}$

Ejemplos de cadenas que acepta: ε , 01,0011,000111, etc.

•
$$S \rightarrow \varepsilon \mid 0S1$$

Ejemplo 3:

Diseñar una GLC que acepte el conjunto de paréntesis balanceados

Ejemplos de cadenas que acepta: ε , (), (()())(), ((()))(()()) Ejemplos de cadenas que no acepta: (,()), (()))(),))

•
$$S \rightarrow SS \mid (S) \mid \varepsilon$$

Ejemplo 4:

Diseñar una GLC que acepte el lenguaje $L_1 = \{0^n 1^m 0^n \mid n, m \ge 1\}$

Ejemplos de cadenas que acepta: 010, 00100, 0110, 00111100, 00011000

•
$$S \rightarrow 0A0$$

$$A \rightarrow 0A0 \mid 1B$$

$$B \rightarrow 1B \mid \varepsilon$$

Ejemplo 5:

Diseñar una GLC que acepte el lenguaje $L_2 = \{a^nb^n \; c^md^m | n, m \geq 1\}$

 $Ejemplos \ de \ cadenas \ que \ acepta: \ abcd, aabbcd, abcccddd, aaabbbcccccddddd$

$$\bullet S \longrightarrow AB$$

$$A \rightarrow aAb \mid ab$$

$$B \rightarrow cBd \mid cd$$

Árboles de Derivación

Sea G = (V, T, P, S) una GLC. Los árboles de derivación para G son árboles con las siguientes características:

- i) Cada nodo interior está etiquetado con una variable.
- ii) Cada hoja está etiquetada con una variable, un terminal o ε . Si se encuentra etiquetado con ε , entonces tiene que ser hijo único de su padre.
- iii) Si un nodo interior está etiquetado con A, y sus hijos están etiquetados con $X_1, X_2, ..., X_k$ respectivamente enumerados de izquierda a derecha, entonces $A \longrightarrow X_1 X_2 \cdots X_k$ es una producción de P.

Definición:

Sea G = (V, T, P, S) una GLC. Se dice que G es ambigua, si existe $w \in T^*$ para la que existen dos árboles de derivación distintos con la raíz etiquetada con S cuyo resultado es w.

Si cada cadena $w \in T^*$ tiene como máximo un único árbol de derivación en la gramática, entonces la gramática no es ambigua.

observación:

No existe algoritmo alguno que decida si una gramática es ambigua o no.

Teorema:

Para toda gramática G = (V, T, P, S) y toda cadena $w \in T^*$, w tiene dos árboles de derivación distintos si y solo si w tiene dos derivaciones más a la izquierda distintas desde S, si y solo si w tiene dos derivaciones más a la derecha distintas desde S.

•
$$E \rightarrow I \mid E + E \mid E * E \mid (E)$$
 $I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$
 $E \Rightarrow_{mi} E * E \Rightarrow_{mi} E + E * E \Rightarrow_{mi} I + E * E \Rightarrow_{mi} a + E * E \Rightarrow_{mi} a + I * E \Rightarrow_{mi} a + b * E$
 $\Rightarrow_{mi} a + b * I \Rightarrow_{mi} a + b * a$
 $E \Rightarrow_{mi} E + E \Rightarrow_{mi} I + E \Rightarrow_{mi} a + E \Rightarrow_{mi} a + E * E \Rightarrow_{mi} a + B * E \Rightarrow_{mi} a + b$

Definición:

Un lenguaje L es inherentemente ambiguo si todas las gramáticas que aceptan a L son ambiguas.

Forma Normal de Chomsky (FNC)

Todo LIC $L \neq \emptyset$ con $\varepsilon \notin L$ tiene una GLC G (que no tiene símbolos inútiles) en la que todas las producciones tienen una de las siguientes formas:

i) $A \rightarrow BC$, donde $A, B, C \in V$

ii) $A \rightarrow a$, con $A \in V$ y $a \in T$

- 1) Eliminar producciones ε
- 2) Eliminar producciones unitarias
- 3) Eliminar símbolos inútiles

1) Producciones ε

Definición 1.

Una variable A es anulable si $A \stackrel{*}{\Rightarrow} \varepsilon$.

Encontrando los símbolos anulables.

Base: Si $A \to \varepsilon$ es una producción de G, A es anulable.

Inductivo: Si $B \to C_1C_2 \cdots C_k$ es una producción de G en la que todas las C_i son anulables, entonces B es anulable.

Anulables= $\{B,A\}$ Ejemplo 2: • $S \rightarrow bDD|Ca|bc$ • $S \rightarrow bDD|Ca|bc$ $A \rightarrow B|aCC|baD$ $A \rightarrow B|aCC|baD$ $B \to cBD |\varepsilon|AC$ $B \rightarrow cBD|CD|AC|C$ $C \longrightarrow bD|aBA$ $C \rightarrow bD|aBA|aB|aA|a$ $D \rightarrow CD|a|EF$ $D \rightarrow CD|a|EF$ $E \rightarrow Eb$ $E \longrightarrow Eb$ $F \rightarrow a$ $F \rightarrow a$

2) Producciones Unitarias

Definición 2.

Una producción unitaria es una producción de la forma $A \rightarrow B$ con $A, B \in V$.

Definición 3.

Si $A \stackrel{*}{\Longrightarrow} B$, entonces (A, B) es llamado un par unitario.

Encontrando pares unitarios.

Base: (A, A) es un par unitario para cada $A \in V$.

Inductivo: Si (A, B) es un par unitario y $B \to C$ es una producción con $C \in V$, entonces (A, C) es un par unitario.

Ejemplo 3:	Pares unitarios	producciones
G_2 : $S \rightarrow bDD Ca bc$	(S,S)	G_3 :
$A \rightarrow B aCC baD$	(A,A)(A,B) (A,C)	
$B \rightarrow cBD CD AC C$	(A,C)	Para cada par unitario (A,B), añadimos
$C \longrightarrow bD aBA aB aA a$	(B,B)(B,C)	a G_3 todas las producciones $A \to \alpha$, donde $B \to \alpha$ es una producción no
$D \to CD a EF$	(C,C)	unitaria de G_2
$E \longrightarrow Eb$	(D,D)	(62)
$F \rightarrow a$	(E,E)	L(G ₂) = L(G ₂)
200	(F,F)	

Ejemplo 3:	Pares unitarios	producciones
G_2 : • $S \rightarrow bDD Ca bc$	(S,S)	• $S \rightarrow bDD Ca bc$
$A \longrightarrow B aCC baD$ $B \longrightarrow cBD CD AC C$	(A,A)(A,B) (A,C)	$A \longrightarrow aCC baD \ cBD CD AC \ bD aBA aB aA a$
$C \rightarrow bD aBA aB aA a$	(B,B)(B,C)	$B \longrightarrow cBD CD AC \ bD aBA aB aA a$
$D \to CD a EF$	(C,C)	$C \rightarrow bD aBA aB aA a$
$E \longrightarrow Eb$	(D,D)	$D \to CD a EF$
$F \rightarrow a$	(E,E)	$E \to Eb$ $L(G_3) = L(G_2)$
	(F,F)	$F \rightarrow a$

3) Símbolos inútiles

Definición 4:

Decimos que un símbolo X es útil para una gramática G = (V, T, P, S) si existe alguna derivación de la forma $S \stackrel{*}{\Rightarrow} \alpha X \beta \stackrel{*}{\Rightarrow} w$ con $w \in T^*$.

Si un símbolo no es útil, diremos que es inútil

Observación:

 $X \in (V \cup T)$ y $\alpha X \beta$ puede ser la primera o última derivación.

Definición 5: X es generador si $X \stackrel{*}{\Rightarrow} w$ para alguna cadena $w \in T^*$.

Observación: Todo símbolo terminal es un generador.

Definición 6: X es alcanzable si existe una derivación $S \stackrel{*}{\Longrightarrow} \alpha X \beta$ para algunos $\alpha, \beta \in (V \cup T)^*$.

Observación: Un símbolo útil es generador y alcanzable.

Símbolos inútiles

Paso 1 - Eliminar símbolos que no son generadores Paso 2 - Eliminar símbolos que no son alcanzables

Encontrando símbolos generadores.

Base: Todo símbolo de T es generador.

Inductivo: Si $A \rightarrow \alpha$ es una producción tal que todo símbolo de α es generador, entonces A es generador.

Encontrando símbolos alcanzables.

Base: $S \in V$ es alcanzable (S es el símbolo inicial).

Inductivo: Si A es alcanzable, entonces para todas las producciones cuya cabeza es A, todos los símbolos de los cuerpos de dichas producciones son alcanzables.

Si un lenguaje L es LR, entonces existe un autómata finito F que lo acepta (L=L(F)), luego como en los ejemplos mostrados, a este autómata le podemos construir una Gramática G que acepte el mismo lenguaje, esto es, L(G)=L(F)=L, por lo tanto, L es un LIC \therefore el conjunto de Lenguajes Regulares está contenido en el conjunto de Lenguajes Independientes de Contexto.

LIC

LR

Diagrama de Venn de la relación entre el conjunto de Lenguajes Regulares y el conjunto de Lenguajes Independientes de Contexto

$$\Sigma=\{0,1\}$$

$$\Gamma=\{X,Y,Z_0\}$$

$$0,X/XX$$

$$0,Z_0/XZ_0$$

$$1,X/\mathcal{E}$$

$$P:$$

$$A$$

$$1,X/\mathcal{E}$$

$$B$$

$$\mathcal{E},Z_0/Z_0$$

$$C$$

 $L(P)={0^{n}1^{n} \mid n>0}$

$$\begin{array}{c} W = 0011 \\ (A,0011,Z_0) \hspace{0.2cm} \vdash (A,0011,XZ_0) \hspace{0.2cm} \vdash (A,0011,XXZ_0) \hspace{0.2cm} \vdash (B,0011,XZ_0) \hspace{0.2cm} \vdash (B,0011,XZ_0) \hspace{0.2cm} \vdash (C,\varepsilon,Z_0) \\ W' = 0111 \\ (A,0011,Z_0) \hspace{0.2cm} \vdash (A,0111,XZ_0) \hspace{0.2cm} \vdash (B,0111,XZ_0) \hspace{0.2cm} \vdash (C,11,Z_0) \\ (A,0111,Z_0) \hspace{0.2cm} \vdash (C,11,Z_0) \end{array}$$
 Descripciones instantáneas
$$\begin{array}{c} (A,0111,Z_0) \hspace{0.2cm} \vdash (C,11,Z_0) \end{array}$$

Definición (autómata a Pila).

Un AP es una 7 tupla $P=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ donde:

Q: Es un conjunto finito de estados

 δ : Función de transición Σ_{ε}

 $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$

Σ: Alfabeto de entrada

 $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow P(Q \times \Gamma^{*})$

Γ: Alfabeto de Pila

 $\delta(q, a, X) = (p, \gamma)$

 q_0 : Estado inicial

 Z_0 : Símbolo del fondo de la pila

F: Conjunto de estados de aceptación

Ejemplo 4: Diseñar un AP que acepte el lenguaje $L = \{a^n b^{2n} | n \ge 0\}$

Lenguaje de una Pila por estado de aceptación

Definición.

Sea $P=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ un AP. El lenguaje definido por P por estado final o de aceptación es:

$$L(P) = \{ w | (q_0, w, Z_0) \stackrel{*}{\vdash} (q, \epsilon, \alpha) \}$$

para algún $q \in F$ y $\alpha \in \Gamma^*$

Lenguaje de una Pila

Sea $P=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ un AP. Entonces el lenguaje de P definido por

estado de aceptación o estado final

$$L(P) = \{ w | (q_0, w, Z_0) \stackrel{*}{\vdash} (q, \epsilon, \alpha) \}$$

$$q \in F$$
 y $\alpha \in \Gamma^*$

pila vacía

$$N(P) = \{ w | (q_0, w, Z_0) \stackrel{*}{\vdash} (q, \epsilon, \epsilon) \}$$

 $q \in Q$

final

AP - pila vacía

AP - estado

Equivalencia entre AP por pila vacía y AP por estado final

AP – pila vacía

AP - estado final

Teorema 1:

Si $L=N(P_N)$ para algún AP $P_N=(Q,\Sigma,\Gamma,\delta_N,q_0,Z_0)$, entonces existe un AP P_F tal que $L = L(P_F)$.

Equivalencia entre GLC y AP por pila vacía parte 1

AP – pila vacía

Teorema:

Dada una GLC G = (V, T, P, S), existe un AP P_N que acepta por pila vacía tal que $L(G) = L(P_N)$.

El AP $P_N = (\{q\}, T, V \cup T, \delta, q, S)$ esta dado por:

- i) Para cada $X \in V$: $\delta(q, \varepsilon, X) = \{(q, \beta) | X \rightarrow \beta \text{ es una producción de } P_N \}$.
- ii) Para cada $a \in T$: $\delta(q, a, a) = \{(q, \varepsilon)\}.$

Ejemplo:
$$\begin{array}{c} 1,1/\varepsilon \\ 0,0/\varepsilon \\ \varepsilon,B/\varepsilon \\ \varepsilon,B/B \end{array}$$

$$\begin{array}{c} A \to 0A0 \mid 1B \\ B \to 1B \mid \varepsilon \end{array}$$

$$\begin{array}{c} \delta(q,\varepsilon,S) = \{(q,0A0)\} \\ \delta(q,\varepsilon,A) = \{(q,0A0),(q,1B)\} \\ \delta(q,\varepsilon,B) = \{(q,1B),(q,\varepsilon)\} \end{array}$$

$$\begin{array}{c} \delta(q,0,0) = \{(q,\varepsilon)\} \\ \delta(q,1,1) = \{(q,\varepsilon)\} \end{array}$$

Teorema:

Sea $P=(Q,\Sigma,\Gamma,\delta,q_0,Z_0)$ un AP que acepta por pila vacía. Entonces existe una GLC G tal que L(G)=N(P).

La GLC $G = (V, \Sigma, R, S)$ está dada por:

V se forma de los siguientes elementos.

- i) S es el símbolo inicial.
- ii) Todos los símbolos de la forma [pXq] donde p y q son estados de Q y X es símbolo de pila, $X \in \Gamma$.

i) y ii)
$$\Rightarrow V = \{[pXq]|p,q \in Q, X \in \Gamma\} \cup \{S\}$$

Las producciones son como sigue:

1.- para cada estado x, G contiene la producción

$$S \rightarrow [q_0 Z_0 x]$$

- 2.- suponga que $(r, Y_1Y_2 \cdots Y_k) \in \delta(q, a, X)$ donde
 - a) $a \in \Sigma$. a puede ser ε

b)
$$k \ge 0$$
. Si $k = 0$, entonces $(r, Y_1 Y_2, ..., Y_k) = (r, \varepsilon)$.

entonces, para todas las listas de estados $r_1, r_2, ..., r_k$. G contiene la producción:

$$[qXr_k] \to a[rY_1r_1][r_1Y_2r_2] \cdots [r_{k-1}Y_kr_k]$$

Ejemplo 1: Determinar la GLC equivalente al siguiente AP

$$Q = 0, Z_0/Z_0$$

$$Q = 0, X/X$$

$$P = (\{ c \in X | C = 1) \}$$

$$1, Z_0/XZ_0$$

$$1, X/XX$$

$$\varepsilon, X/\varepsilon$$

$$\varepsilon, Z_0/\varepsilon$$

$$\varepsilon, Z_0/\varepsilon$$

$$P = (\{p, q\}, \Sigma = \{0, 1\}, \Gamma = \{X, Z_0\}, \delta, q, Z_0)$$

(1)
$$\delta(q, 1, Z_0) = (q, XZ_0)$$
 (5) $\delta(q, 0, Z_0) = (p, Z_0)$

$$Z_0) = (q, XZ_0)$$

(5)
$$\delta(q, 0, Z_0) = (p, Z_0)$$

(2)
$$\delta(q,1,X) = (q,XX)$$

$$(6) \delta(q,0,X) = (p,X)$$

(3)
$$\delta(q, \varepsilon, X) = (q, \varepsilon)$$

(4)
$$\delta(q, \varepsilon, Z_0) = (q, \varepsilon)$$

(7)
$$\delta(p, 1, X) = (p, \varepsilon)$$

1.- para cada estado p, G contiene la producción

$$S \rightarrow [q_0 Z_0 x]$$

$$\begin{array}{c}
\bullet \cdot S \longrightarrow [qZ_0q] \\
\bullet \cdot S \longrightarrow [qZ_0p]
\end{array}$$

$$(1) \qquad \delta(q,1,Z_0)=(q,XZ_0)$$

(5)
$$\delta(q, 0, Z_0) = (p, Z_0)$$

(2)
$$\delta(q, 1, X) = (q, XX)$$

(6)
$$\delta(q,0,X) = (p,X)$$

(3)
$$\delta(q, \varepsilon, X) = (q, \varepsilon)$$

(4) $\delta(q, \varepsilon, Z_0) = (q, \varepsilon)$

(7)
$$\delta(p, 1, X) = (p, \varepsilon)$$

2.- suponga que $(r, Y_1Y_2 \cdots Y_k) \in \delta(q, a, X)$

para todas las listas de estados $r_1, r_2, ..., r_k$. G contiene la producción:

$$[qXr_k] \rightarrow a[rY_1r_1][r_1Y_2r_2] \cdots [r_{k-1}Y_kr_k]$$

$$\delta(q, 1, Z_0) = (q, XZ_0)$$

$$(r,Y_1Y_2\cdots Y_k)\in \delta(q,a,X)\\ \downarrow \qquad \qquad /\downarrow \qquad \downarrow\\ (q,XZ_0)\in \delta(q,1,Z_0)$$

$$[qXr_k] \longrightarrow a[rY_1r_1][r_1Y_2r_2] \cdots [r_{k-1}Y_kr_k]$$

$$[qZ_0x] \to 1[qXy][yZ_0x]$$

$$\forall x, y \in Q$$

(1)
$$\delta(q, 1, Z_0) = (q, XZ_0)$$

$$[qZ_0x] \rightarrow 1[qXy][yZ_0x]$$

$$\forall x, y \in Q$$

•
$$[qZ_0q] \rightarrow 1[qXq][qZ_0q]$$

•
$$[qZ_0q] \rightarrow 1[qXp][pZ_0q]$$

•
$$[qZ_0p] \rightarrow 1[qXq][qZ_0p]$$

•
$$[qZ_0p] \rightarrow 1[qXp][pZ_0p]$$

(6)
$$\delta(q,0,X) = (p,X)$$

$$(p,X) \in \delta(q,a,X)$$

$$[qXr_k] \to a[rY_1r_1][r_1Y_2r_2] \cdots [r_{k-1}Y_kr_k]$$

$$[qXx] \to 0[pXx] \qquad \forall x \in Q$$
(7)
$$[qXq] \to 0[pXq]$$

$$[qXx] \to 0[pXx]$$
(8) $\delta(q,\varepsilon,X) = (q,\varepsilon)$
$$(r,Y_1Y_2 \cdots Y_k) \in \delta(q,a,X)$$

$$(q,\varepsilon) \in \delta(q,\varepsilon,X)$$

$$[qXr_k] \to a[rY_1r_1][r_1Y_2r_2] \cdots [r_{k-1}Y_kr_k]$$

$$[qXx] \to \varepsilon[q\varepsilon x] \qquad \forall x \in Q$$

$$[qXq] \to \varepsilon [q\varepsilon q] = \varepsilon$$

$$[qXq] \to \varepsilon [q\varepsilon q] = \varepsilon$$

$$[qXq] \to \varepsilon [q\varepsilon q] = \varepsilon$$

$$\begin{array}{c} \bullet \bullet S \rightarrow [pZ_0q] \\ \bullet \bullet S \rightarrow [pZ_0p] \end{array}$$

$$\begin{array}{c} (2) \quad \delta(p,1,X) = (q,\varepsilon) \\ [pXx] \rightarrow 1[q\varepsilon x] \quad \forall x \in Q \end{array}$$

$$\begin{array}{c} (1) \quad \delta(p,0,Z_0) = (p,XZ_0) \\ [pZ_0x] \rightarrow 0[pXy][yZ_0x] \quad \forall x,y \in Q \end{array}$$

$$\begin{array}{c} \bullet \quad [pZ_0q] \rightarrow 0[pXq][qZ_0q] \\ \bullet \quad [pZ_0q] \rightarrow 0[pXq][pZ_0q] \\ \bullet \quad [pZ_0p] \rightarrow 0[pXp][pZ_0q] \\ \bullet \quad [pZ_0p] \rightarrow 0[pXq][qZ_0p] \\ \bullet \quad [pZ_0p] \rightarrow 0[pXq][pZ_0p] \end{array}$$

$$\begin{array}{c} (2) \quad \delta(p,1,X) = (q,\varepsilon) \\ \bullet \quad [pXq] \rightarrow 1 \end{array}$$

$$\begin{array}{c} \bullet \quad [pXq] \rightarrow 1 \\ \bullet \quad [pXq] \rightarrow 1 \end{array}$$

$$\begin{array}{c} \bullet \quad [pXq] \rightarrow 1 \\ \bullet \quad [pZ_0q] \rightarrow 1 \end{array}$$

$$\begin{array}{c} \bullet \quad [pXq] \rightarrow 1 \\ \bullet \quad [qZ_0q] \rightarrow 1 \end{array}$$

Lema del Bombeo

Teorema:

Sea $L \neq \emptyset$ un LIC. Entonces, existe una constante $n \in \mathbb{N}$, tal que si $z \in L$ con $|z| \geq$ z se puede dividir en 5 cadenas z = uvwxy, tal que:

- i) $|vwx| \leq n$
- $ii)vx \neq \varepsilon$
- $iii)uv^iwx^iy \in L \ \forall i \geq 0$

Ejemplo 1. El lenguaje $L_{012} = \{0^m 1^m 2^m | m \ge 1\}$ no es un LIC.

Supongamos que L_{012} es un LIC, entonces por el lema del bombeo existe $n \in \mathbb{N}$, tal que si $z \in L_{012}$ con $|z| \ge n$, z se puede dividir en 5 cadenas z = uvwxy tal que:

$$i)|vwx| \leq n$$

$$ii)vx \neq \varepsilon$$

$$(ii)vx \neq \varepsilon$$
 $(ii)uv^iwx^iy \in L \ \forall i \geq 0$

Sea $z = 0^n 1^n 2^n \in L_{012}$ con $|z| = 3n \ge n$, luego z = uvwxy que cumplen i), ii) y iii) del lema del bombeo.

$$z = 00 \cdots 011 \cdots 122 \cdots 2$$

Casos:

- 1) vwx está conformado únicamente de 0's
- 2) vwx está conformado únicamente de 1's
- 3) vwx está conformado únicamente de 2's
- 4) vwx está conformado únicamente de 0's y 1's
- 5) vwx está conformado únicamente de 1's y 2's
- Para los casos 1,2 y 3.

Supongamos sin pérdida de generalidad que vwx se compone únicamente de 0's. entonces por ii) del L.B. vx se compone únicamente de 0's y tiene al menos un 0. Por otro lado, $uv^0wx^0y \in L_{012}$ por iii) del L.B.

Sin embargo,
$$uv^0wx^0y = 0^k1^n2^n$$
 con $k < n \implies uv^0wx^0y \notin L_{012} \#_{\mathcal{C}}$

II) Para los casos 4 y 5.

Supongamos sin pérdida de generalidad que vwx se compone únicamente de 0's y 1's. entonces por ii) del L.B. vx tiene al menos un 0 o al menos un 1.

Por otro lado, $uv^0wx^0y \in L_{012}$ por iii) del L.B.

Sin embargo, $uv^0wx^0y = 0^k1^r2^n$ con k < n o $r < n \Rightarrow uv^0wx^0y \notin L_{012}$

De I) y II) se concluye que L_{012} no es un LIC.

Algunas propiedades de los LIC

Los Lenguajes Independientes de Contexto son cerrados bajo unión, concatenación y cerradura de Kleene.

$$G_1 = (V_1, T_1, P_1, S_1)$$
 $G_2 = (V_2, T_2, P_2, S_2)$

Unión: $G_3 = (V_1 \cup V_2 \cup \{S_3\}, T_1 \cup T_2, P_3, S_3)$

$$\circ S_3 \longrightarrow S_1 | S_2$$

concatenación: $G_4 = (V_1 \cup V_2 \cup \{S_4\}, T_1 \cup T_2, P_4, S_4)$

$$\circ S_4 \rightarrow S_1 S_2$$

Cerradura de Kleene (de G_1): $G_5 = (V_1 \cup \{S_5\}, T_1, P_5, S_5)$

$$\circ S_5 \longrightarrow S_1 S_5 | \varepsilon$$