4C15/NE02: MEMS Design Lecture 6

Ashwin Seshia

aas41@cam.ac.uk

Gyroscope Performance

Vibratory rate gyroscope

- Two orthogonal vibratory modes
 - -One driven at large amplitude
 - The other senses the rotation

$$\mathbf{\omega}_{x} = \sqrt{\frac{2k_{x}}{m}}$$
 $\mathbf{\omega}_{y} = \sqrt{\frac{2k_{y}}{m}}$

Assume sinusoidal motion in x

and assume some damping in each direction

$$x = x_o \sin \mathbf{\omega}_d t$$

$$m\ddot{y} + b_y \dot{y} + m(\mathbf{\omega}_y^2 - \Omega^2) y = -2m\Omega \dot{x} - m\dot{\Omega} x$$

Can typically Ω^2 ignore term

Vibratory Gyroscope ... How Does It Work?

Interdigitaged comb finger deflection sense capacitors

Ref. W. Clark et al., '96

$$m\ddot{x} = -k \cdot x$$

$$m\ddot{y} = -k \cdot y - ma_c$$

Drive mode: $x = X_0 \cdot \sin(\omega \cdot t)$

Sense mode: $a_c = 2 \cdot \Omega_z X_0 \cdot \cos(\omega \cdot t)$

Early Z-axis gyroscope prototype

Interdigitaged comb finger deflection sense capacitors

Ref. W. Clark et al., '96

Vibratory MEMS Rate Gyros

Drive mode
$$x = A \sin(\omega t)$$

Sense mode
$$F_c = 2m\Omega \times v$$

= $2mA\Omega_z \omega \cos(\omega t)$

Vibratory Rate Gyroscopes

$$x = A\sin(\omega t)$$

$$F_c = 2m\Omega \times v$$
$$= 2mA\Omega_z \omega \cos(\omega t)$$

$$\left| \frac{y}{\Omega_z} \right| \propto \frac{2A\omega_x}{\sqrt{\left(\omega_y^2 - \omega_x^2\right)^2 + \left(\frac{\omega_x \omega_y}{Q_y}\right)^2}}$$

Bode Plot (Sense Output)

Coupled oscillator model

Vibratory Rate Gyroscopes

$$\begin{bmatrix} m & 0 \\ 0 & m \end{bmatrix} \begin{bmatrix} \ddot{x} \\ \ddot{y} \end{bmatrix} + \begin{bmatrix} b_{xx} & b_{xy} \\ b_{yx} & b_{yy} \end{bmatrix} \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} k_{xx} & k_{xy} \\ k_{yx} & k_{yy} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} F_x^c \\ F_y^c \end{bmatrix} + \begin{bmatrix} 0 & -2m\Omega_z \\ 2m\Omega_z & 0 \end{bmatrix} \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} E_x \\ E_y \end{bmatrix}$$

4C15: MEMS Design

Mode-mismatched operation

Mode-matched and modemismatched operation

Bandwidth/Sensitivity Analysis

- Assume sinusoidal motion in drive mode
- Sense mode excitation has two terms:
 - A term proportional to angular rotation rate
 - A term proportional to angular acceleration
- Sinusoidal-steady-state analysis reveals a bandwidth issue
 - Matching drive and sense frequencies may lead to insensitivity to changes in rate
 - Offsetting them a little gives a controlled bandwidth to the dynamic response

Analysis Details

Assume a sinusoidally varying rotation rate, so that there is angular acceleration to deal with

$$\Omega = \Omega_{o} \cos \omega_{a} t \implies RHS = x_{o} \Omega_{o} \left\{ \left(\omega_{d} + \frac{\omega_{a}}{2} \right) \sin \left[\left(\omega_{d} + \omega_{a} \right) t \right] + \left(\omega_{d} - \frac{\omega_{a}}{2} \right) \sin \left[\left(\omega_{d} - \omega_{a} \right) t \right] \right\}$$

The angular acceleration produces SIDEBANDS, meaning the signal has finite bandwidth

We can do sinusoidal-steady-state analysis by assuming $RHS = e^{j\omega_t t}$

The complex amplitude of the y-motion is

$$\hat{\mathbf{Y}} = \frac{1}{\boldsymbol{\omega}_{v}^{2} - \boldsymbol{\omega}_{t}^{2} + j\boldsymbol{\delta}_{v}\boldsymbol{\omega}_{t}} \quad \text{where} \quad \boldsymbol{\delta}_{v} = \boldsymbol{\omega}_{v} / Q_{v}$$

If we define $\delta_{\omega} = \omega_{y} - \omega_{t}$

$$\hat{\mathbf{Y}} \cong \left(\frac{1}{2\delta_{\omega} + j\delta_{y}}\right) \frac{A}{\omega_{t}}$$

We further define $\Delta_{\omega} = \omega_x - \omega_y$

$$\hat{\mathbf{Y}} \cong \left(\frac{1}{2(\Delta_{\mathbf{\omega}} \pm \mathbf{\omega}_a) + j\delta_{y}}\right) \frac{A}{\mathbf{\omega}_{t}}$$

Steady Rotation

Assume
$$RHS = -2j\omega_d x_o \Omega_o e^{j\omega_d t}$$

If drive and sense frequencies very closely matched,

so that
$$\Delta_{\omega} << \delta_{y}$$

$$\Rightarrow \hat{Y} \cong -\left(\frac{2}{j\delta_{y}}\right)\left(\frac{j\omega_{d}x_{o}\Omega_{o}}{\omega_{d}}\right) = -\frac{2}{\delta_{y}}x_{o}\Omega_{o}$$

If, instead,
$$\Delta_{\omega} >> \delta_{y}$$

$$\hat{Y} \cong -\frac{j}{\Delta_o} x_o \Omega_o$$

Mode matching

Drive and Sense Mode Response

Quadrature Error

Calculations on Drive forces

$$\begin{split} V_1 &= v_{ac} + V_{DC} \\ V_2 &= -v_{ac} + V_{DC} \\ F_x &= \frac{d}{dx} \left(\frac{1}{2} C V^2 \right) = \frac{4 N \mathcal{E}_0 z_0}{v_0} V_{DC} v_{ac} \end{split}$$

$$Q = 1000; X_0 = 5\mu m; k_x = 1N / m \Rightarrow F_x = 5nN$$

$$\bullet \ \ \text{For:} \ \begin{array}{l} Q=1000\,; X_0=5\mu m; k_\chi=1N\ /\ m\Rightarrow F_\chi=5nN \\ N=100\,; V_{DC}=1V\,; v_{ac}=100\,mV \end{array}$$

Capacitive position sensing

$$\frac{y}{\Omega_z} = \frac{2X_0 \omega_x}{\omega_y^2 - \omega_x^2}$$

$$\Delta C_s = \frac{y}{y_0} \cdot C_s$$

Charge sensing implemented

Some calculations

$$m = 1\mu g$$
; $\omega_x = 2\pi (10kHz)$; $\frac{\omega_y}{\omega_x} = 1.1$; $X_0 = 5\mu m$; $\Omega_z = 1 \text{deg/min}$

$$\frac{y}{\Omega_z} = \frac{2X_0 \omega_x}{\omega_y^2 - \omega_x^2}$$

$$y = 0.22 \, pm$$

$$\Delta C_s = 0.03 aF$$

$$V_{out} = 1\mu V!$$

Analog Devices ADXRS150

- Number of comb fingers: 4500
- Proof mass displacement: 10μm
- •Full scale Coriolis-induced displacement = 20 Å
- Sense capacitance ~ 1000 fF
- Minimum detectable capacitance change
 12 zF = 0.012 aF
- Nominal sense gap = 1.6 μm
- Minimum displacement: 16 fm!

Gyro Sensor Configuration

Operation of the ADXRS150

J. Geen, Analog Devices Inc.

Planar Vibratory Gyros Electronics Block Diagram

Complementary phase of differential drive and feedback omitted for clarity

J. Geen, Analog Devices Inc. 4C15: MEMS Design

Air Damping – Couette Flow

- Steady viscous flow
- The two plates move parallel to each other.
- Linear velocity profile of fluid between the plate
- Comb fingers moving parallel to one another or lateral motion of a mass moving parallel to a substrate.

$$b = \frac{\eta A}{h}$$

Squeezed-Film Air Damping

- The result of motion against a fluid boundary
 - If the fluid is incompressible, there can be a large pressure rise, so large back forces result
 - If the fluid is compressible, it takes finite motion to create a pressure rise
- In either case, the dissipation due to viscous flow provides a damping mechanism for the motion
- At high frequencies or for highly viscous fluids, this can also provide a spring

Sensitivity / Robustness trade-off

Multi-DOF Gyroscope

- Additional degrees of freedom allows the construction of a band-pass filter response for the sense mode.
- By selecting the drive frequency within the pass-band, an improved trade-off between sensitivity, bandwidth and robustness is possible.

Comparison between 1-DOF and 2-DOF sense mode

Fabricated MDOF gyroscope

Generalized gyroscopic modes

Any two orthogonal modes will work

Bosch rotating-disk gyro

Commercial Microgyroscopes

