Dernière mise à jour	MECA 2	Denis DEFAUCHY]
21/03/2023	Révisions	TD5 - Sujet	

Réducteur

Question 1: Déterminer l'expression littérale et la valeur numérique de ${\it k}$

Roue et vis sans fin à deux filets	$k_{21} = \frac{\omega_{20}}{\omega_{10}} = -\frac{n}{Z_{21}}$	$k_{21} = -\frac{2}{30} = -\frac{1}{15}$
Train épicycloïdal	$\frac{\omega_{04}}{\omega_{24}} = \lambda = -\frac{Z_{22}}{Z_0}$ $\frac{\omega_{04}}{\omega_{24}} = \frac{-\omega_{40}}{\omega_{20} - \omega_{40}} = \lambda \Leftrightarrow -\omega_{40} = \lambda \omega_{20} - \lambda \omega_{40}$ $\Leftrightarrow (\lambda - 1)\omega_{40} = \lambda \omega_{20}$ $k_{42} = \frac{\omega_{40}}{\omega_{20}} = \frac{\lambda}{\lambda - 1}$	$\lambda = -\frac{40}{100} = -0.4$ $k_{42} = \frac{-4}{-14} = \frac{2}{7}$
Renvoi d'angle	$k_{54} = \frac{\omega_{50}}{\omega_{40}} = -\frac{Z_4}{Z_5}$	$k_{54} = -\frac{20}{30} = -\frac{2}{3}$
Poulie Courroie	$k_{65} = \frac{\omega_{60}}{\omega_{50}} = \frac{R_5}{R_6}$	$k_{65} = \frac{10}{15} = \frac{2}{3}$
Vis écrou	$\frac{V_{76}}{\omega_{76}} = \frac{p}{2\pi}$ $\begin{cases} V_{76} + V_{60} + V_{07} = V_{76} + V_{07} = 0\\ \omega_{76} + \omega_{60} + \omega_{07} = \omega_{76} + \omega_{60} = 0\\ \Rightarrow \begin{cases} V_{76} = V_{70}\\ \omega_{76} = -\omega_{60} \end{cases}$ $k_{76} = \frac{V_{70}}{\omega_{60}} = -\frac{V_{76}}{\omega_{76}} = -\frac{p}{2\pi}$	$k_{76} = -\frac{0,001}{2\pi}$
Rapport <i>k</i>	$k = \frac{V_{70}}{\omega_{10}} = k_{21}k_{42}k_{54}k_{65}k_{76}$ $= -\frac{p}{2\pi}\frac{R_5}{R_6}\frac{Z_4}{Z_5}\frac{\lambda}{\lambda - 1}\frac{n}{Z_{21}}$	$k = -\frac{0,001}{2\pi} \frac{2}{3} \frac{2}{3} \frac{1}{715}$ $k = -\frac{8}{1890000\pi}$ $k = -\frac{1}{236250\pi}$ $k \approx -1,35.10^{-6}$

Question 2: En déduire le rapport entre \emph{C}_{e1} et \emph{F}_{e7}

On peut utiliser le TEC pour démontrer le résultat, en statique sans frottements :

$$\begin{split} P_{e1} + P_{e7} &= 0 \\ C_{e1} \omega_{10} + F_{e7} V_{70} &= 0 \\ F_{e7} &= -C_{e1} \frac{\omega_{10}}{V_{70}} &= -\frac{1}{k} C_{e1} \approx 742201 C_{e1} \end{split}$$