Production de code intermédiaire : Documentation partielle

Ce document a pour but de définir précisément le code C++ approprié à chaque élément du langage WHILE. Tous les exemples décrits ci-après se baseront sur des objets de type Arbre Binaire (BinTree). Toutes les variables nouvellement déclarées en CPP se voient attribuer la valeur *nullptr*.

Traduction d'une fonction

Contenu	WHILE	СРР
Définition	function name :	List< BinTree > name(List< BinTree > args) {}
Paramètre(s)	read VAR (, VAR2,, VARn)	BinTree VAR = args.at http://args.at(x)
Retour(s)	write VAR (, VAR2,, VARn)	La fonction retourne une List< BinTree > contenant les variables retournées.

Exemple de traduction d'une fonction While en CPP :

function foo:	
read X	
%	
nop;	
%	

```
write Y
```

```
List<BinTree> foo(List<BinTree> args)
{
BinTree X = args.at(0);
List<BinTree> ret;
//NOP
BinTree Y;
ret.add(Y);
return ret;
}
```

Traduction des instructions

Contenu	WHILE	СРР
Lecture(s)	read VAR (, VAR2, , VARn)	variable(s) locale(s) à déclarer
Affectation(s)	VAR(, VAR2,, VARn) := something	variable locale à déclarer (si inexistante) ET à affecter à la valeur something
Ne rien faire	nop	//NOP //NOP

Traduction du something

WHILE	СРР
-------	-----

WHILE	СРР
nil	BinTree::NIL
VAR	VAR en la déclarant si pas déjà fait
(cons a b)	BinTree::cons({a,b})
(cons a b c d)	BinTree::cons({a,b,c,d})
(hd a)	BinTree::hd(a)
(tl a)	BinTree::tl(a)
(func a, b, c, etc.)	func({a,b,c,etc})

Exemple de traduction d'instructions \mbox{While} en \mbox{CPP} :

```
read X,Y
X:=cons(1 nil);
Y:=tl(X);
W:=hd(cons(1,cons(nil,nil)));
Z:=X;
nop;
```

```
BinTree X = args.at(0), Y = args.at(1);

X=BinTree::cons(1,BinTree::nil);

Y=BinTree::tl(X);

BinTree W = BinTree::hd(BinTree::cons(1,BinTree::cons(BinTree::nil,BinTree::nil)));

BinTree Z = X;

//NOP
```

Traduction en code 3 adresses

Tableau de correspondance

While	Code 3 adresses
X = nil	< nil, X, _, _ >
nop	< nop, _, _, _>
X = (cons Y Z)	< cons, X, Y Z, _ >
X = (cons A B C D)	< cons, X, A B C D, _ >
X = (hd Y)	< hd, X, Y, _ >
X = (t Y)	< tl, X, Y,_ >
X = Y ?= Z	< ?=, X, Y, Z >
X := Y	< :=, X, Y, _ >
if cond then codeThen else codeElse	< if codeThen codeElse, cond, _, _ >
while cond then code od	< while code, cond, _, _ >
for cond then code od	< for code, cond, _, _ >
foreach elem in ensemb do cmds od	< foreach, elem, ensemb, cmds >

Une variable créée par le compilateur aura la notation %vXX avec XX le numéro de variable.

Exemples WHILE->3@

Exemple 1

```
function foo:
read X, Z
%
nop;
%
write Y

<nop, _, _, _, >
+ Table des symboles
```

```
function foo:
read X,Y
%
X:=cons(nil nil);
Z:=X;
nop;
%
write Z
```

```
<:=, %v1, nil, _>
<:=, %v2, nil, _>
```

```
<cons, %v3, %v1 %v2, _>
<:=,X,%v3,_>
<:=,Z,X,_>
<nop, _, _, _, >
```

```
function foo:
read X,Y
%

X:=(cons nil nil);
Y:=(tl X);
W:=(hd (cons nil (cons nil nil)));
Z:=X;
nop;
%
write Z
```

```
<:=, %v1, nil, _>
<:=, %v2, nil, _>
<cons, %v3, %v1 %v2, _>
<:=, X, %v3, _>
<tl, %v4, X, _>
<:=, Y, %v4, _>
<:=, %v5, nil, _>
<:=, %v6, nil, _>
<cons, %v7, %v5 %v6, _>
<:=, %v8, nil, _>
<cons, %v9, %v8 %v7, _>
<hd, %v10, %v9, _>
```

```
<:=, W, %v10>
<:=, Z, X, _>
<nop, _, _, _>
```

Exemples 3@->CPP

Exemple 1

```
<nop, _, _, _>

List<BinTree> foo(List<BinTree> args)
{
    BinTree X = args.at(0), Z = args.at(1);

//NOP

List<BinTree> retour;
    retour.add(Y);
    return retour;
}
```

```
<:=, %v1, nil, _>
<:=, %v2, nil, _>
<cons, %v3, %v1 %v2, _>
<:=,X,%v3,_>
<:=,Z,X,_>
```

```
<nop, _, _, _ >
```

```
List<BinTree> foo(List<BinTree> args)
{
    BinTree X = args.at(0), Y = args.at(1);
    List<BinTree> retour;

X=BinTree::cons(BinTree::NIL,BinTree::NIL);
    Z=X;
    //NOP

retour.add(Z);
    return retour;
}
```

```
<:=, %v1, nil, _>
<:=, %v2, nil, _>
<cons, %v3, %v1 %v2, _>
<:=, X, %v3, _>
<tl, %v4, X, _>
<:=, Y, %v4, _>
<:=, %v5, nil, _>
<:=, %v6, nil, _>
<cons, %v7, %v5 %v6, _>
<:=, %v8, nil, _>
<cons, %v9, %v8 %v7, _>
<hd, %v10, %v9, _>
<:=, W, %v10>
```

```
<:=, Z, X, _>
<nop, _, _, _>
```

```
List<BinTree> foo(List<BinTree> args)
{
    BinTree X = args.at(0), Y = args.at(1);

    X=BinTree::cons(1,BinTree::nil);
    Y = BinTree::tl(X);
    BinTree W = BinTree::hd(BinTree::cons(BinTree::NIL, BinTree::NIL)));
    Z := X;

//NOP

List<BinTree> retour;
    retour.add(Z);
    return retour;
}
```