

CITED REFERENCE (c)

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 2001-043394

(43)Date of publication of application : 16.02.2001

(51)Int.Cl.

G06T 15/00

G06T 17/00

(21)Application number : 11-220235

(71)Applicant : DAINIPPON PRINTING CO LTD

(22)Date of filing : 03.08.1999

(72)Inventor : NODA TOMOTAKA

(54) IMAGE DISPLAY METHOD AND DEVICE**(57)Abstract:**

PROBLEM TO BE SOLVED: To provide an image display method/device which can project the information set in a three-dimensional space on a two-dimensional plane in consideration of a distance set between an object and the depth of field of a background and with an expression of more depth feeling.

SOLUTION: In this image display method, the parameters concerning an object polygon to be inputted, the background texture, etc., are inputted (S1) and the object polygon is inputted into a three-dimensional space according to the inputted parameters (S2). Then a background polygon is generated at a set background position (S3), and the background texture that is separately prepared is stuck to the background polygon (S4). The object polygon set in the three-dimensional space and the background polygon are projected on a two-dimensional plane for producing a display image (S5). Then the display image is displayed (S6).

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開2001-43394

(P2001-43394A)

(43)公開日 平成13年2月16日 (2001.2.16)

(51) Int.Cl.⁷
 G 0 6 T 15/00
 17/00

識別記号

F I
 G 0 6 F 15/72
 15/62

テ-コード^{*} (参考)
 4 5 0 A 5 B 0 5 0
 3 5 0 A 5 B 0 8 0

審査請求 未請求 求求項の数 4 ○ L (全 6 頁)

(21)出願番号 特願平11-220235
 (22)出願日 平成11年8月3日 (1999.8.3)

(71) 出願人 000002897
 大日本印刷株式会社
 東京都新宿区市谷加賀町一丁目1番1号
 (72) 発明者 野田 智季
 東京都新宿区市谷加賀町一丁目1番1号
 大日本印刷株式会社内
 (74) 代理人 10011859
 弁理士 金山 駿
 F ターム (参考) 5B050 BA09 EA19 EA27 FA02
 5B080 AA13 BA04 FA08 GA22

(54)【発明の名称】 画像表示方法および装置

(57)【要約】

【課題】 物体と背景の被写界深度からの距離を考慮して、三次元空間に設定された情報を、より実行き感を表現して二次元平面に投影することが可能な画像表示方法および装置を提供する。

【解決手段】 入力すべきオブジェクトポリゴン、背景テクスチャ等に関するパラメータを入力すると(ステップS 1)、入力されたパラメータに基づいて三次元空間内にオブジェクトポリゴンが入力される(ステップS 2)。次に、設定された背景位置に背景ポリゴンを発生する(ステップS 3)。続いて、別途用意した背景テクスチャを背景ポリゴンに貼り付ける(ステップS 4)。次に、三次元空間内に設定されたオブジェクトポリゴンと背景ポリゴンを二次元平面に投影することにより表示用画像を作成し(ステップS 5)、表示を行う(ステップS 6)。

【特許請求の範囲】

【請求項1】必要なパラメータを入力する段階と、入力されたパラメータに基づいて三次元空間にオブジェクトポリゴンを入力する段階と、設定された背景位置に背景ポリゴンを生成する段階と、前記背景ポリゴンに別途用意された背景テクスチャを貼り付ける段階と、前記オブジェクトポリゴンおよび前記背景ポリゴンを二次元平面に投影して表示用画像を準備する段階と、準備された表示用画像を表示する段階と、を有することを特徴とする画像表示方法。

【請求項2】オブジェクトポリゴンおよび背景ポリゴンを二次元平面に投影して表示用画像を準備する前記段階における各画素値の決定は、設定されたスクリーン上の各画素において透視投影を行い、透視投影される範囲内の前記オブジェクトポリゴンまたは前記背景ポリゴン上の画素を、前記スクリーン上の画面と前記ポリゴン上の画素との距離を考慮して投影することにより透視投影画像中の各画素の値を決定し、透視投影画像中の全画素の値に基づいて前記スクリーン上の画素の値を決定することにより行うものであることを特徴とする請求項1に記載の画像表示方法。

【請求項3】必要なパラメータを入力するパラメータ入力手段と、入力されたパラメータに基づいて三次元空間にオブジェクトポリゴンを入力するオブジェクトポリゴン入力手段と、指定された背景テクスチャを入力する背景テクスチャ入力手段と、背景位置に背景ポリゴンを生成し、生成された背景ポリゴンに入力された背景テクスチャを貼り付ける背景テクスチャ貼り付け手段と、前記オブジェクトポリゴンおよび前記背景ポリゴンを二次元平面に投影して表示用画像を準備する透視投影手段と、準備された表示用画像を表示する表示手段と、を有することを特徴とする画像表示装置。

【請求項4】前記透視投影手段は、設定されたスクリーン上の各画素において透視投影を行い、透視投影される範囲内の前記オブジェクトポリゴンまたは前記背景ポリゴン上の画素を、前記スクリーン上の画面と前記ポリゴン上の画素との距離を考慮して投影することにより透視投影画像中の各画素の値を決定する機能と、透視投影画像中の各画素の値に基づいて前記スクリーン上の画素の値を決定する機能と有することであることを特徴とする請求項3に記載の画像表示装置。

【発明の詳細な説明】

【0001】

【産業上の利用分野】本発明は、三次元空間に表現された物体を二次元平面に投影した画像を表示する方法および装置に関する。

【0002】

【従来の技術】従来、三次元CG（コンピュータグラフィックス）の表現技術においては、より立体感を表現するために、三次元空間内に存在する物体の被写界深度を

考慮した手法が用いられている。被写界深度とは、三次元空間内において、視点のピントが合う平面のことと意味する。この被写界深度を投影面に設定することにより、投影面に近い物体は精細に表現され、投影面から遠い物体はぼかして表現されるため、奥行き感が表現されることになる。また、三次元空間内における被写界深度を考慮した物体は、二次元平面に投影されることになるが、二次元平面における物体が投影されていない部分については、あらかじめ設定された背景が割り当てられることになる。

【0003】

【発明が解決しようとする課題】しかしながら、上記従来の手段では、背景は均一色として割り当てられたため、背景の距離感が上手く表現できず、物体と背景との位置関係があいまいになる。上記のような点に鑑み、本発明は、物体と背景の被写界深度からの距離を考慮して、三次元空間に設定された情報を、より奥行き感を表現して二次元平面に投影することが可能な画像表示方法および装置を提供することを課題とする。

【0004】

【課題を解決するための手段】上記課題を解決するため、請求項1、3に記載の発明では、必要なパラメータを入力し、入力されたパラメータに基づいて三次元空間にオブジェクトポリゴンを入力し、設定された背景位置に背景ポリゴンを生成し、前記背景ポリゴンに用意された背景テクスチャを貼り付け、前記オブジェクトポリゴンおよび前記背景ポリゴンを二次元平面に投影して表示用画像を準備し、準備された表示用画像を表示するようにしたことを特徴とする。請求項1、3に記載の発明では、設定された内容に従って、三次元空間内にオブジェクトポリゴンを配置するとの別に、設定された背景位置に背景ポリゴンを生成し、その背景ポリゴンに背景テクスチャを貼り付け、投影を行う際にも、オブジェクトポリゴンと共に背景ポリゴンを二次元平面に投影して表示するようにしたので、三次元空間内におけるオブジェクトと背景を区別して表現することが可能になる。

【0005】請求項2、4に記載の発明では、請求項1、3に記載の発明におけるオブジェクトポリゴンおよび背景ポリゴンを二次元平面に投影して表示用画像を準備する段階において、各画素値の決定を、設定されたスクリーン上の各画素において透視投影を行い、透視投影される範囲内のオブジェクトポリゴンまたは背景ポリゴン上の画素を、スクリーン上の画面とポリゴン上の画素との距離を考慮して投影することにより透視投影画像中の各画素の値を決定し、透視投影画像中の全画素の値に基づいてスクリーン上の画素の値を決定することにより行うようにしたことを特徴とする。請求項2、4に記載の発明では、オブジェクトポリゴン、背景ポリゴンを投影して表示用画像を準備する際、スクリーン上の各画素から透視投影画像上に透視投影を行って当該画素の値を

決定するが、このとき、透視投影画像上の各画素の値をスクリーン上の画素からボリゴン上の画素の距離を考慮して決定し、この透視投影画像上の全画素の値に基づいて決定するようにしたので、スクリーンから離れている背景ボリゴンはぼやけた感じで表現され、背景ボリゴン以外のオブジェクトボリゴンは、スクリーンに近いものほど比較的はっきりと明確に表現されることになる。

【0006】

【発明の実施の形態】以下、図面を参照して本発明の実施形態について詳細に説明する。図1は本発明による画像表示方法のフローチャートである。最初に、各種パラメータの入力をを行う（ステップS1）。パラメータとしては、作成する画像サイズ、透視投影を行う際の面角、透視投影画像のスクリーンからの距離、背景の配置位置を設定する。ここでは作成画像サイズは、w画素（x方向）×h画素（y方向）とする。また、背景は作成画像と平行に配置されるため、背景の配置位置は、作成画像からの距離で設定される。ステップS1では入力する背景テクスチャの指定も行う。背景テクスチャの指定は、例えば、背景テクスチャを画像として記憶したファイルのID等を指定すれば良い。

【0007】次に、三次元空間に多数のオブジェクトボリゴンを入力すると共に、その三次元空間の適宜な位置にスクリーンを設定する（ステップS2）。その様子の例を図2に示す。図2において、1はスクリーンを示し、スクリーン1はx-y平面に対して平行に設定されている。そのスクリーン1のサイズは、ステップS1で設定された作成画像サイズw×hである。また、図2ではボリゴンは三角形となされているが、任意の形状でも良いものである。そして各ボリゴンには所望の色が付されている。ボリゴンの入力についてはコンピュータグラフィックスの分野において広く行われている事項であるので詳細については省略するが、一つ一つのボリゴンの形状、色および位置を定めて入力しても良く、あるいは、作成済みのボリゴンデータがあるのであれば、それを取り込んで良い。

【0008】次に、設定された背景位置に背景ボリゴンを生成する（ステップS3）。背景ボリゴンは通常、スクリーン1に平行であって、スクリーンから見てオブジェクトボリゴンが発生される方向と同方向に生成される。例えば、図2では、z=0のx-y平面に生成される。背景ボリゴンのサイズはスクリーン1と同サイズであるため、w×hとなる。また、背景は長方形であるため、背景ボリゴンは三角形のボリゴン2つで構成されるものになる。

【0009】次に、背景テクスチャを入力し、生成した背景ボリゴンに貼り付ける（ステップS4）。背景テクスチャとは背景をすき画像であり、ステップS1において指定されたものが入力される。入力された背景テクスチャは、背景ボリゴンに貼り付けられる。背景テク

チャの背景ボリゴンへの貼り付けには、周知のテクスチャマッピングの手法が用いられる。

【0010】次に、スクリーン上の各画素位置に視点を置いて透視投影を行い、当該スクリーン上の各画素の色を決定する（ステップS5）。このとき、透視投影画像のサイズは、ステップS1において設定した透視投影を行う際の面角、透視投影画像のスクリーンからの距離に基づいて算出される。ここでは、この透視投影画像のサイズを P_x 画素（x方向）× P_y 画素（y方向）とする。また、透視投影画像は、スクリーンと平行とする。

【0011】いま、スクリーン上のある画素Qから透視投影を行ったとすると、 P_x 画素× P_y 画素のサイズの透視投影画像が得られるが、その透視投影画像にはオブジェクトボリゴンが見えるところもあり、背景ボリゴンが見えるところもある。図3（a）は、その一例を示す図であり、図3（a）において斜線を施した部分は透視投影画像に見えるオブジェクトボリゴンの部分を示している。また、あるオブジェクトボリゴンAがスクリーンに非常に近い位置にある場合には、図3（b）に示すように、スクリーン上の画素Qから透視投影したときに当該オブジェクトボリゴンAだけしか見えない場合もある。

【0012】そして、例えば、透視投影画像のある画素位置に背景ボリゴンが見えたとすると、当該画素の色は背景ボリゴン上の画素の色となる。また、透視投影画像のある画素位置に、あるオブジェクトボリゴンが見えたとすると、当該画素の色は当該オブジェクトボリゴンの色となる。

【0013】そこで、透視投影画像の全ての画素の色を赤色成分、緑色成分、青色成分ごとに統合をとり、それらの各色成分の総和をそれぞれ透視投影画像の画素数 $P_x \times P_y$ で割った値を、透視投影を行ったスクリーン上の画素の各色成分とするのである。各色成分は独立して演算されるので、透視投影を行ったスクリーン上の画素Qの値を V_Q で代表すると、以下の（式1）で表現される。

【0014】（式1）

$$V_Q = (\text{透視投影画像の全画素値の総和}) / (\text{透視投影画像の画素数})$$

【0015】（式1）において、透視投影画像の全画素の総和を算出しているが、全画素の総和を単純にとるのではなく、ガウス分布を用いて透視投影画像上の画素の位置に応じて重みづけを行い、その総和を算出する方がより好ましい結果が得られる。ガウス分布による重みづけについては周知なので詳細な説明は省略する。

【0016】スクリーン上のある画素位置Qから透視投影を行ったとすると、上述したように画素Qの値が決定する。しかし、上述の例では、スクリーンからオブジェクトボリゴン、背景ボリゴンまでの距離による光の減衰を考慮していないため、次に、さらに好ましい例について図4を用いて説明する。いま、図4（a）に示す透視

投影画像中の一つの画素 S に着目する。

【0017】ここで、図4 (b) に示すように、透視投影画像中の当該画素 S の位置には、あるオブジェクトポリゴンの画素 T が投影され、画素 T の値が V_T であるとする。オブジェクトポリゴンの画素 T からの光は、スクリーン上の画素位置 Q に達するまでに光りの散乱により減衰されることになる。このとき、スクリーン中の画素 Q とオブジェクトポリゴンの画素 T との距離を L、距離 L との比較のための基準距離を D とすると、画素位置 S に投影される画素 S の値 V_S は以下の (式2) で表現される。

【0018】(式2)

$$V_S = (1 - L/D) \times V_T$$

【0019】ここで、基準距離 D は、点 Q から透視投影画像上の量も違い画素までの距離よりも十分に大きいものとする。(式2) は、オブジェクトポリゴンが画素位置 Q に近いほど、透視投影画像中の画素 S の値 V_S が大きくなることを示している。このことは、オブジェクトポリゴンが画素位置 S から遠くなるほど画素 S の値 V_S が大きくなるため、一見、逆のように見えるが、透視投影装置はスクリーンにおける画素値を算出するための投影範囲を定めるために利用されるものであり、透視投影画像上の各画素値は最終的にスクリーン上の画素 Q の値に反映されるため、問題は生じない。

【0020】以上は、透視投影画像中の画素 S の位置にオブジェクトポリゴンが投影された場合であるが、背景ポリゴン上の画素を T としたときにも同様に適用できるものである。

【0021】上記の (式2) の演算を透視投影画像の全ての画素について行う。これにより、スクリーン上のある画素 Q の位置から透視投影を行った場合の透視投影画像の全ての画素の値を求めることができる。

【0022】そして、透視投影画像の全ての画素の総和をとり、その総和を透視投影画像の画素数 $P_x \times P_y$ で割った値を、透視投影を行ったスクリーン上の画素の値とするのである。すなわち、透視投影を行ったスクリーン上の画素 Q の値を V_Q とすると、以下の (式3) で表現される。

【0023】(式3)

$$V_Q = (\Sigma V_S) / (\text{透視投影画像の画素数})$$

ここで、Σ は、透視投影画像の全画素について総和をとることを意味している。

【0024】(式3)においても上述の (式1) と同様に、透視投影画像の全画素の総和を算出しているが、全画素の総和を単純にとるのではなく、ガウス分布を用いて透視投影画像上の画素の位置に応じて重みづけを行い、その総和を算出する方がより好ましい結果が得られる。

【0025】以上の処理をスクリーン上の全ての画素について行う。これによって、スクリーン上に定められた

全画素の色を決定することができ、目的とする画像の画像データを得ることができる。すなわち、透視投影においては、スクリーンから離れているポリゴンは小さく見え、スクリーンに近いポリゴンは大きく見えるので、透視投影を行ったスクリーン上の画素の色を決定するに際して、スクリーンから離れているポリゴンの色が寄与する割合は小さく、スクリーンに近いポリゴンの色は寄与する割合が大きくなる。その結果、スクリーンから離れているポリゴンはぼやけた感じで表現され、スクリーンに近いポリゴンは比較的はっきりと明確に表現されることがあるのである。

【0026】上記のようにしてスクリーン上の全画素の値を決定し、得られた画像を表示する (ステップ S 6)。

【0027】次に、上述した画像表示方法を実現するための画像表示装置について図を参照して説明する。図5 に示すように、画像表示装置はパラメータ入力手段 2、オブジェクトポリゴン入力手段 3、背景テクスチャ入力手段 4、背景テクスチャ貼り付け手段 5、透視投影手段 6、表示手段 7 により構成される。

【0028】パラメータ入力手段 2 は、図1のステップ S 1 を実行するためのものであり、マウスやキーボード等で実現できる。パラメータ入力手段 2 は、オブジェクトポリゴンと背景テクスチャに関する指示を行うことも可能になっている。

【0029】オブジェクトポリゴン入力手段 3 は、図1のステップ S 2 を実行するためのものであり、パラメータ入力手段 2 より入力されたパラメータに従って、設定された三次元空間内にポリゴンを配置する機能を有する。背景テクスチャ入力手段 4 は、ハードディスク等の記憶手段から背景テクスチャを入力する機能を有する。この背景テクスチャは画像ファイルとしてファイルの ID を付して記憶手段にあらかじめ記憶しておき、パラメータ入力手段 2 により指定された背景テクスチャの ID に一致するものを入力することになる。

【0030】背景テクスチャ貼り付け手段 5 は、図1のステップ S 3、ステップ S 4 を実行するためのものであり、まず、設定された位置に背景ポリゴンを発生し、次に、いわゆるテクスチャマッピングの手法を用いることにより、背景テクスチャの貼り付けを行う機能を有する。透視投影手段 6 は、図1のステップ S 5 を実行するためのものである。オブジェクトポリゴン入力手段 3、背景テクスチャ入力手段 4、背景テクスチャ貼り付け手段 5、透視投影手段 6 の各手段は現実にはコンピュータと、コンピュータに搭載された専用プログラムにより実現される。

【0031】表示手段 7 は、図1のステップ S 6 を実行するためのものであり、具体的には、CRTディスプレイ等で実現される。

【0032】

【発明の効果】以上、説明したように本発明によれば、設定された内容に従って、三次元空間内にオブジェクトポリゴンを配置するのとは別に、設定された背景位置に背景ポリゴンを生成し、その背景ポリゴンに背景テクスチャを貼り付け、投影を行う際にも、オブジェクトポリゴンと共に背景ポリゴンを二次元平面に投影して表示するようにしたので、三次元空間内におけるオブジェクトと背景を区別して表現することが可能になる。また、オブジェクトポリゴン、背景ポリゴンを投影して表示用画像を準備する際、スクリーン上の各画素から透視投影画像上に透視投影を行って当該画素の値を決定するが、このとき、透視投影画像上の各画素の値をスクリーン上の画素からポリゴン上の画素の距離を考慮して決定し、この透視投影画像上の全画素の値に基づいて決定するようにしたので、スクリーンから離れている背景ポリゴンはぼやけた感じで表現され、背景ポリゴン以外のオブジェクトポリゴンは、スクリーンに近いものほど比較的はっきりと明確に表現されることになる。

【図面の簡単な説明】

【図 1】

【図 2】

【図 3】

【図 4】

【図 1】本発明による画像表示方法を示すフローチャートである。

【図 2】三次元空間内に設定されるスクリーンと配置されるオブジェクトポリゴンの様子を示す図である。

【図 3】図1のステップS5における透視投影処理を説明するための図である。

【図4】図1のステップS5の透視投影において画素Qとポリゴン上の画素との距離を考慮した場合を説明するための図である。

【図5】本発明による画像表示装置の構成を示すプロック図である。

【符号の説明】

- 1 . . . スクリーン
- 2 . . . パラメータ入力手段
- 3 . . . オブジェクトポリゴン入力手段
- 4 . . . 背景テクスチャ入力手段
- 5 . . . 背景テクスチャ貼り付け手段
- 6 . . . 透視投影手段
- 7 . . . 表示手段

【図5】

