

What to Wear When You're Out There

Lindsay Aitchison
Space Suit Engineer
NASA Johnson Space Center

So you want to build a suit?

- First two things you need to know are:
 - Where are you going?
 - What will you be doing?

The Astronaut "Office"

International Space Station: Low Earth Orbit (249 miles away from Earth)

Hazards Outside of ISS

- Vacuum
- Extreme Temperatures
- Radiation
- Micrometeoroids

Protection from Vacuum

- “Vacuum” means no air to breathe
 - Humans lose consciousness in seconds and die from hypoxia in minutes without oxygen
 - Lungs cannot function without pressure differential across diaphragm that
- Direct relationship between boiling point of water and atmospheric pressure
 - In a vacuum, boiling point of water is 98°F...
- Space suits provide a stable pressure environment with the balloon like bladder layer containing oxygen supplied from the portable life support system

Protection from Extreme Temperatures

- Objects outside ISS range from -50F to +150F
- Two ways to transfer heat in space:
 - Conduction (two objects touching)
 - Radiative (heat waves from the sun get absorbed)
- Keep outside temperatures from reaching the astronaut
 - Multi-layer insulation creates gaps between fabrics to limit conduction
 - White color reflects heat

Protection from Extreme Temperatures

Liquid Cooling and Ventilation Garment (LCVG)

- LCVG conditions interior of space suit
- Cools through conductive heat transfer
 - Conformal to body
 - Over 300 ft of tubing to transfer heat away from the body via conduction
- Water supplied by the life support system
- Removes moisture through vent tubes

Protection from Radiation

- Earth's atmosphere protects us from most radiation
- In space, must limit exposure
 - Keep alpha and beta particles from reaching the astronaut
 - Helmet Visor
 - Reflective properties of MLI and orthofabric
 - Limit lifetime exposures
 - Astronauts wear dosimeters to track total radiation doses

Protection from Micrometeoroids

- How big is a micrometeorite?
- Problem is Kinetic Energy (KE)

$$\text{KE} = \frac{1}{2} mv^2$$

- Energy from particle transferred to suit upon impact
- Even a tiny mass moving at 17,000 mph is going to hurt

- Space suits rely on Thermal Micrometeoroid Garment (TMG) to reduce particle velocity and size

Working Outside ISS

What kind of jobs do astronauts do on a spacewalk?

Working in Space

■ Highly mobile upper body

- Angled shoulder bearings
- Upper arm bearing
- Patterned convolute elbows
- Patterned wrist joints and bearings

Working in Space

■ Stable lower body

- Lower torso is anchor from which to perform work
- Waist bearing
- Patterned convolute knees

Boot and Sizing
Insert

Working in Space

Life Support Systems

Display and Controls Module:
temperature, pressure, ventilation
and communication controls

Portable Life Support System

Working in Space

■ Foot Restraint Interface

- Boots lock into portable foot restraints for a stable work platform

■ Tether Interfaces

- D-rings located on waist to attach safety tethers
- Body Restraint Tether (rigidizable tether)

■ Mini Work Station

- Personal tool belt
- All tools designed to attach with bayonet fittings or tether hooks
- Mounts directly to suit torso

■ Air-lock mounting

- PLSS attaches directly to inside of ISS airlock for easier donning and doffing

What's next?

What's next?

- Astronauts will explore further from Earth meaning:
 - New environments
 - Autonomous operations
 - More mobility
 - New tools and vehicles

Mars Surface

Mars Surface

- Minimal Atmosphere
- 0.33g Gravity
- Partial Radiation Shielding
- Chemically Reactive Soil
- Extreme communications delay

EVA Tasks

- Deploy, monitor, and retrieve science experiments
- Habitat assembly and maintenance
- Rover repair and routine maintenance
- Interact with robotic assistants
- Drive rovers to/from worksites

Dust Hazards

- Relatively high percentage of perchlorates in soil (toxic to humans)
- Small particles can jam mechanisms and potentially create FOD in oxygen systems
- Particles wedged in textile fibers will accelerate space suit wear over time and potentially affect thermal properties of the suit

Dust Mitigation

- Phased approach minimizes amount of debris brought into habitable areas
 - Incorporate dust repellent technologies into suit outer layers
 - Provide “mudroom” for coarse cleaning after each use with specialized tools or air shower
 - Suit maintenance area isolated from living quarters

Dust Mitigation

- Short excursions with pressurized rovers can keep the suits outside for duration of trip

Thermal Considerations

- Walking and full body mobility will recruit larger muscle groups resulting in greater human generated heat loads
 - Must provide more effective body cooling
- Presence of an atmosphere means conduction is an ever present means of heat transfer
 - Need new materials lay-ups that are effective insulators without vacuum separation

Planetary Exploration - New Tasks

Planetary Exploration - New Vehicles

Planetary Exploration - More Mobility

Mars Suit Prototypes

Next up...

Build – Test – Refine - Repeat

#SuitUp With NASA

#JourneyToMars

Visit:

www.nasa.gov/suitup

For More on Z-2 Visit:

<http://jscfeatures.jsc.nasa.gov/Z2>

