Evaluation de tâches d'estimation sans gold standard

Irène Buvat
Imagerie et Modélisation en Neurobiologie et Cancérologie
UMR 8165 CNRS - Universités Paris 7 et Paris 11

buvat@imnc.in2p3.fr

5 mars 2009

Introduction

En présence de gold standard :

- biais
- variabilité
- combinaison des 2 critères (RMSE, etc...)
- corrélation

En l'absence de gold standard ?

Plan

- Approche Bland-Altman
- Régression dans gold standard
- Evaluation simultanée du gold standard et des performances de méthodes de segmentation d'images (STAPLE)

Approche de Bland-Altman (1)

Évaluation de l'accord entre deux méthodes

La plupart des différences sont comprises dans l'intervalle [moyenne - 2 sd ; moyenne + 2 sd]

L'étendue de cet intervalle doit permettre de conclure à l'interchangeabilité des méthodes ou non, mais PAS au fait que l'une est moins biaisée que l'autre!

Bland and Altman. Lancet: 307-10, 1986.

Approche de Bland-Altman (2)

Permet de détecter des différences systématiques entre les méthodes

EWAGS (1)

Hypothèses:

1) Au moins 2 méthodes m d'estimation du même paramètre x_i

2)
$$y_{im} = a_m x_i + b_m + \varepsilon_{mi}$$
 pour $m = 1, 2, ...$ et $\varepsilon_{mi} \sim \mathcal{N}(0, \sigma_m)$

Hoppin, Kupinski, Kastis, Clarkson, Barrett. IEEE Trans Med Imaging 21: 441-449, 2002 Kupinski, Hoppin, Clarkson, Barrett, Kastis. Acad Radiol 9: 290-297, 2002

EWAGS (2)

Hypothèses:

3) x_i suit une loi beta ou une distribution normale tronquée θ définie par 2 paramètres inconnus π_1 et π_2 . Les valeurs min et max de la distribution sont approximativement connues

EWAGS (3)

Méthodes:

1) Maximisation de la log-vraisemblance des paramètres du modèle

$$\mathcal{L}(\{a_m, b_m, \sigma_m\}_{pour\ tt\ m} \mid \{y_{im}\})$$

2) Calcul de σ_m/a_m comme figure de mérite

Estimée idéale :

- pas de dispersion : $\sigma_{\rm m}$ ~ 0
- pente = $a_m = 1$
- σ_m/a_m tend vers 0

Estimée sans intérêt :

- grande dispersion : $\sigma_m >> 1$
- pente = $a_m \sim 0$
- $\sigma_{\rm m}/a_{\rm m}$ tend vers ∞

Généralisation de EWAGS : GEWAGS (1)

Hypothèses:

1) Au moins 2 méthodes m d'estimation du même paramètre x_i

2)
$$y_{im} = a_m x_i^2 + b_m x_i + c_m + \varepsilon_{mi}$$
 pour m = 1, 2, ... et $\varepsilon_{mi} \sim \mathcal{N}(0, \sigma_m)$

Buvat et al, J Nucl Med 48: 44P, 2007

Généralisation de EWAGS : GEWAGS (2)

Hypothèses:

3) x_i suit une distribution beta θ définie par 2 paramètres inconnus π_1 et π_2

Les valeurs min et max de la distribution sont approximativement connues

Pas de choix à faire entre loi beta et loi gaussienne Rend compte des distributions asymétriques

Généralisation de EWAGS : GEWAGS (3)

Méthode:

1) Maximisation de la log-vraisemblance des paramètres du modèle

$$\mathcal{L}(\{a_m, b_m, c_m, \sigma_m\} \mid \{y_{im}\})$$

2) Calcul de sMSE_m = $\sum_{i=1,X} (y_{im} - x_i)^2 / X$ comme figure de mérite

3) Calcul d'intervalles de confiance autour de sMSE_m au moyen d'une approche bootstrap non paramétrique

Discussion

- Plus on dispose de méthodes d'estimation répondant au modèle, meilleur sera l'ajustement, mais 2 méthodes sont suffisantes
- Au moins 25 cas sont nécessaires
- La méthode est robuste même lorsque l'hypothèse sur la distribution des x_i est approximative

Hoppin, Kupinski, Kastis, Clarkson, Barrett. IEEE Trans Med Imaging 21: 441-449, 2002 Kupinski, Hoppin, Clarkson, Barrett, Kastis. Acad Radiol 9: 290-297, 2002

Exemple d'application 1 - Données

Images 123I-FP-CIT SPECT corrigées de l'atténuation et de la diffusion

*Soret, Koulibaly, Darcourt, Buvat. Eur J Nucl Med Mol Imaging 33:1062-1072, 2006

Exemple d'application 1 - Méthodes comparées

Mesure du potentiel de liaison (PL) = (activité striata - activité fond)/ activité fond

ds les 2 noyaux caudé et les 2 putamens

2 méthodes à comparer :

mesure sans correction de volume partiel (no CVP) mesure avec correction de volume partiel * (CVP)

Mise en œuvre de EWAGS et GEWAGS pour comparer les 2 méthodes

*Soret, Koulibaly, Darcourt, Hapdey, Buvat. J Nucl Med 44: 1184-1193, 2003

Exemple d'application 1 - Résultats de GEWAGS (1)

Patients simulés

Soret, Alaoui, Koulibaly, Darcourt, Buvat. Nucl Instrum Meth Phys Res A 571: 173-176, 2007

Exemple d'application 1 - Résultats de GEWAGS (2)

Exemple d'application 1 - Limites de EWAGS

Patients simulés

Exemple d'application 1 - Limites de EWAGS

Robustesse de GEWAGS

	GEWAGS sMSE		EWAGS σ/a		
	no CVP	CVP	no CVP	CVP	
MA simulés	66.6	2.6*	0.22	2.80	
DCL simulés	11.4	2.2*	0.17	0.08	
MA+DCL simulés	27.3	0.9*	0.25	2.03	
MA réels	35.4	2.9*	0.16	0.06	
DCL réels	8.46	1.6*	0.17	0.07	
MA+DCL réels	50.8	3.5*	0.21	1.80	
* p<0.01					

Exemple d'application 2 - Données

Images TEP au FDG

Fantôme :

- Acquis sur le TEP/TDM Gemini GXL (HEGP)
- 6 réplicats d'une acquisition de 6 sphères de volume 0,5 à 16mL
- 1 SUV par sphère, variant de 4,3 à 6,07 (mesuré à l'activimètre)

Patients:

- Acquis sur le TEP/TDM Discovery LS (Institut J. Bordet, Bruxelles)
- 14 examens PET/CT
- 32 tumeurs pulmonaires + métastases

^{*}Tylski, Dusart, Garcia, Vanderlinden, Buvat SNM 2009 (soumis)

Exemple d'application 2 - Méthodes comparées

6 méthodes d'estimation de SUV :

- SUV maximum : SUV_{max}
- SUV moyen dans une région fixe (cylindre de 15 mm de diamètre et de 15mm de hauteur) : SUV_f
- SUV moyen dans une région définie par un seuil d'intensité : SUV_m
- SUV moyen dans une région définie par un seuil d'intensité avec prise en compte de l'activité environnante : SUV_{mb}
- SUV moyen corrigé de l'effet de volume partiel par une méthode d'ajustement SUV_{meanfit}
- SUV moyen corrigé de l'effet de volume partiel par un coefficient de recouvrement SUV_{mRCt}

Mise en œuvre de GEWAGS pour comparer les 6 méthodes

Exemple d'application 2 - Résultats

Action IMPEIC - Irène Buvat - mars 2009 - 22

STAPLE

Simultaneous Truth and Performance Level Estimation

Idée un peu similaire, mais dédiée à la problématique de segmentation de structure(s)

Warfield, Zou, Wells, IEEE Trans Med Imaging 23: 903-921, 2004

STAPLE: hypothèses

Hypothèses:

1) Au moins 2 résultats de segmentation indépendants disponibles (m) : m décisions de segmentation dans chacun des N voxels : D (N,m)

IRM prostate

- 2) Segmentation vraie = variable binaire dans chaque voxel : T(N)
- 3) Chaque méthode de segmentation peut être complètement caractérisée par sa sensibilité p(m) et spécificité q(m)

STAPLE: méthode

Méthodes:

- 1) Initialisation des p_m et q_m à la même valeur qqsoit m OU initialisation de la segmentation vraie
- 2) Maximisation itérative (EM) de la log-vraisemblance :

$$\mathcal{L}(\{D, T\} | \{p_m, q_m\}_{pour tt m})$$

T

3) Caractérisation des performances de chaque méthode par p_m et q_m

Expert	\hat{p}	\hat{q}	PV
1	0.8951	0.9999	0.998
2	0.9993	0.9857	0.977
3	0.9986	0.9982	0.954

STAPLE: courte discussion

- Possibilité d'évaluer la segmentation de plusieurs structures
- Possibilité d'introduire des a priori (approche MAP)
- Possibilité d'introduire des contraintes spatiales
- Utilisé en IRM

Warfield, Zou, Wells, IEEE Trans Med Imaging 23: 903-921, 2004

Conclusion

• Une évaluation rigoureuse est possible même en l'absence de gold standard

Exemple de distribution beta

Patients simulés de l'étude MA / DCL

nombre de valeurs

PL normalisé

Cohérence des données réelles et simulées (étude MA - DCL)

