Zero-One Laws of Graph Neural Networks

Benjamín Álvarez Stevenson

November 2024

Zero-One Laws of Graph Neural Networks

Sam Adam-Day*

Department of Mathematics University of Oxford Oxford, UK sam.adam-day@cs.ox.ac.uk

Theodor-Mihai Iliant

Department of Computer Science University of Oxford Oxford, UK theodor-mihai,iliant@lmh.ox.ac.uk

İsmail İlkan Ceylan

Department of Computer Science University of Oxford Oxford, UK ismail.ceylan@cs.ox.ac.uk ¿Cómo se comportan las GNN cuando el número de nodos de los grafos que clasifican crece arbitrariamente?

Contexto

Contexto: Teoría de Modelos Finitos

Leyes 0-1 para lógicas definidas sobre vocabularios

Contexto: Teoría de Modelos Finitos

- Leyes 0-1 para lógicas definidas sobre vocabularios
 - ▶ LPO tiene la ley 0-1 sobre $\mathcal{L} = \{R(\cdot, \cdot)\}$

Contexto: Teoría de Modelos Finitos

- ► Leyes 0-1 para lógicas definidas sobre vocabularios
 - ▶ LPO tiene la ley 0-1 sobre $\mathcal{L} = \{R(\cdot, \cdot)\}$

¿Por qué nos interesan las leyes 0-1?

Contexto: Teoría de Modelos Finitos

- Leyes 0-1 para lógicas definidas sobre vocabularios
 - ▶ LPO tiene la ley 0-1 sobre $\mathcal{L} = \{R(\cdot, \cdot)\}$

¿Por qué nos interesan las leyes 0-1?

Estudiar el comportamiento de GNNs sobre grafos grandes

Contexto: Teoría de Modelos Finitos

- Leyes 0-1 para lógicas definidas sobre vocabularios
 - ▶ LPO tiene la ley 0-1 sobre $\mathcal{L} = \{R(\cdot, \cdot)\}$

¿Por qué nos interesan las leyes 0-1?

- Estudiar el comportamiento de GNNs sobre grafos grandes
- Establecer límites sobre la expresividad de GNNs

Contexto: Teoría de Modelos Finitos

- Leyes 0-1 para lógicas definidas sobre vocabularios
 - ▶ LPO tiene la ley 0-1 sobre $\mathcal{L} = \{R(\cdot, \cdot)\}$

¿Por qué nos interesan las leyes 0-1?

- Estudiar el comportamiento de GNNs sobre grafos grandes
- Establecer límites sobre la expresividad de GNNs
- Estudiar los límites de extrapolación de las GNNs

Algunos trabajos previos se han concentrado en:

Convergencia a redes límite teóricas (Keriven et. al)

- ► Convergencia a redes límite teóricas (Keriven et. al)
- Estabilidad bajo perturbaciones en grafos (Gama et. al)

- Convergencia a redes límite teóricas (Keriven et. al)
- Estabilidad bajo perturbaciones en grafos (Gama et. al)
- Arquitecturas que alcanzan límites de expresibilidad o distintas caracterizaciones para sus expresibilidades
 - ► SumGNN⁺ alcanza el límite superior para MPNNs dado por el test 1-WL (Morris et. al)
 - ► **SumGNN**⁺ captura cualquier función que puede ser expresada en la lógica C² (Barceló et. al)

- Convergencia a redes límite teóricas (Keriven et. al)
- Estabilidad bajo perturbaciones en grafos (Gama et. al)
- Arquitecturas que alcanzan límites de expresibilidad o distintas caracterizaciones para sus expresibilidades
 - SumGNN⁺ alcanza el límite superior para MPNNs dado por el test 1-WL (Morris et. al)
 - ► **SumGNN**⁺ captura cualquier función que puede ser expresada en la lógica C² (Barceló et. al)
- Resultados no uniformes (Abboud et. al; Grohe)

- Convergencia a redes límite teóricas (Keriven et. al)
- Estabilidad bajo perturbaciones en grafos (Gama et. al)
- Arquitecturas que alcanzan límites de expresibilidad o distintas caracterizaciones para sus expresibilidades
 - SumGNN⁺ alcanza el límite superior para MPNNs dado por el test 1-WL (Morris et. al)
 - ► **SumGNN**⁺ captura cualquier función que puede ser expresada en la lógica C² (Barceló et. al)
- Resultados no uniformes (Abboud et. al; Grohe)
- Otras limitaciones relacionadas a la cantidad de layers
 - Over-smoothing y over-squashing (Li et. al; Alon et. al)

Conceptos Preliminares

Preliminares: Message Passing Neural Networks (MPNNs)

Trabajamos con MPNNs, las cuales encapsulan la mayoría de las GNNs. Para cada nodo $v \in V$, actualizamos el valor de su vector de features inicial $\mathbf{x}_{v}^{(0)} = \mathbf{x}_{v}$ por $T \in \mathbb{N}$ iteraciones (layers), basado en su propio estado y el de sus vecinos $\mathcal{N}(v)$:

$$\mathbf{x}_{v}^{(t+1)} = \phi^{(t)} \left(\mathbf{x}_{v}^{(t)}, \psi^{(t)}(\mathbf{x}_{v}^{(t)}, \{\{\mathbf{x}_{u}^{(t)} \mid u \in \mathcal{N}(v)\}\}) \right)$$

- $ightharpoonup \phi^{(t)}$ es una función de **combinación**
- $lackbox \psi^{(t)}$ es una función de **agregación**

Preliminares: Message Passing Neural Networks (MPNNs)

Trabajamos con MPNNs, las cuales encapsulan la mayoría de las GNNs. Para cada nodo $v \in V$, actualizamos el valor de su vector de features inicial $\mathbf{x}_v^{(0)} = \mathbf{x}_v$ por $T \in \mathbb{N}$ iteraciones (layers), basado en su propio estado y el de sus vecinos $\mathcal{N}(v)$:

$$\mathbf{x}_{v}^{(t+1)} = \phi^{(t)} \left(\mathbf{x}_{v}^{(t)}, \psi^{(t)}(\mathbf{x}_{v}^{(t)}, \{\{\mathbf{x}_{u}^{(t)} \mid u \in \mathcal{N}(v)\}\}) \right)$$

- $ightharpoonup \phi^{(t)}$ es una función de **combinación**
- $lackbox{}\psi^{(t)}$ es una función de **agregación**

Nota: las representaciones de los nodos en cada iteración t pueden tener distintas dimensiones, las cuales denotamos por d(t). Usamos d(0) = d

Preliminares: Clasificación

Después de la última iteración (t = T):

- ightharpoonup x_v se puede usar para realizar predicciones a nivel del nodo v
- Si queremos realizar predicciones a nivel de grafo, realizamos pooling con los embeddings finales de los nodos
 - Por lo general una suma, promedio o máximo por componentes

Preliminares: Clasificación

Después de la última iteración (t = T):

- $ightharpoonup \mathbf{x}_{v}$ se puede usar para realizar predicciones a nivel del nodo v
- Si queremos realizar predicciones a nivel de grafo, realizamos pooling con los embeddings finales de los nodos
 - Por lo general una suma, promedio o máximo por componentes

Para clasificación booleana, utilizamos un clasificador booleano

$$\mathfrak{C}: \mathbb{R}^{d(T)} \to \mathbb{B}$$

Nos concentramos en las siguientes arquitecturas, las cuales difieren principalmente en la forma en la que realizan la agregación al actualizar cada capa:

Nos concentramos en las siguientes arquitecturas, las cuales difieren principalmente en la forma en la que realizan la agregación al actualizar cada capa:

► GCN (Graph Convolutional Networks)

Nos concentramos en las siguientes arquitecturas, las cuales difieren principalmente en la forma en la que realizan la agregación al actualizar cada capa:

- ► GCN (Graph Convolutional Networks)
- ▶ MeanGNN⁺

Nos concentramos en las siguientes arquitecturas, las cuales difieren principalmente en la forma en la que realizan la agregación al actualizar cada capa:

- ► GCN (Graph Convolutional Networks)
- ▶ MeanGNN⁺
- SumGNN⁺

Nos concentramos en las siguientes arquitecturas, las cuales difieren principalmente en la forma en la que realizan la agregación al actualizar cada capa:

- ► GCN (Graph Convolutional Networks)
- ▶ MeanGNN⁺
- SumGNN⁺

Cada una de ellas realiza una actualización en los nodos $v \in V$ de la forma $\mathbf{x}_v^{(t)} = \sigma(\mathbf{y}_v^{(t)})$, donde $\mathbf{y}_v^{(t)}$ varía según la arquitectura.

 $lackbox{\sigma}:\mathbb{R} \to \mathbb{R}$ es una función de combinación o *update*, también referida a veces como *non-linearity*

Arquitecturas: GCN

Las actualizaciones se realizan de la forma $\mathbf{x}_{v}^{(t)} = \sigma(\mathbf{y}_{v}^{(t)})$, con:

$$\mathbf{y}_{v}^{(t)} = \mathbf{W}_{n}^{(t)} \sum_{u \in \mathcal{N}^{+}(v)} \frac{1}{\sqrt{|\mathcal{N}(u)||\mathcal{N}(v)|}} \mathbf{x}_{u}^{(t-1)} + \mathbf{b}^{(t)}$$

donde $\mathbf{W}_n^{(t)} \in \mathbb{R}^{d(t) \times d(t-1)}$ representa una transformación lineal, $\mathbf{b}^{(t)} \in \mathbb{R}^{d(t)}$ es un término de *bias* y $\mathcal{N}^+(v)$ corresponde al vecindario extendido del nodo v:

$$\mathcal{N}^+(v) := \mathcal{N}(v) \cup \{v\}$$

Arquitecturas: **MeanGNN**⁺

Las actualizaciones se realizan de la forma $\mathbf{x}_{v}^{(t)} = \sigma(\mathbf{y}_{v}^{(t)})$, con:

$$\mathbf{y}_{v}^{(t)} = \frac{1}{|\mathcal{N}^{+}(v)|} \mathbf{W}_{n}^{(t)} \sum_{u \in \mathcal{N}^{+}(v)} \mathbf{x}_{u}^{(t-1)} + \frac{1}{n} \mathbf{W}_{r}^{(t)} \sum_{u \in \mathcal{N}} \mathbf{x}_{u}^{(t-1)} + \mathbf{b}^{(t)}$$

En este caso, la transformación lineal $\mathbf{W}_r^{(t)}$ se aplica a la media de las representaciones de todos los nodos. A este componente se le llama **global readout**, y arquitecturas con este tipo de agregación son más expresivas. Sin este término, tenemos una **MeanGNN**

Arquitecturas: **SumGNN**⁺

Las actualizaciones se realizan de la forma $\mathbf{x}_{v}^{(t)} = \sigma(\mathbf{y}_{v}^{(t)})$, con:

$$\begin{aligned} \mathbf{y}_{v}^{(t)} &= \ \mathbf{W}_{s}^{(t)} \mathbf{x}_{v}^{(t-1)} \ + \ \mathbf{W}_{n}^{(t)} \sum_{u \in \mathcal{N}(v)} \mathbf{x}_{u}^{(t-1)} \\ &+ \mathbf{W}_{r}^{(t)} \sum_{u \in V} \mathbf{x}_{v}^{(t-1)} \ + \ \mathbf{b}^{(t)} \end{aligned}$$

Esta vez **separamos** la contribución del nodo mismo para su preactivación, por lo que la arquitectura se dice que no tiene *self-loops*. Sin el *global readout*, tenemos una **SumGNN**

Preliminares: Grafos y Matrices aleatorias

Definimos un grafo de Erdős–Rényi equipado con *features* aleatorias en sus nodos como un par $\mathcal{G} = (\mathbf{A}, \mathbf{X})$ donde:

- **A** $\sim \mathbb{G}(n,r)$ es la matriz de adyacencia del grafo G=(V,E)
 - $ightharpoonup \mathbb{G}(n,r)$ es la distribución de Erdős–Rényi
- $lackbrack X \in \mathbb{R}^{d imes n}$ es una matriz de *features* tal que

$$X = [x_{v_1} x_{v_2} \dots x_{v_n}] \text{ con } V = \{v_1, v_2, \dots, v_n\}$$

y para todo $v \in V$ se tiene que $\mathbf{x}_v \sim \mathbb{D}(d)$

 $ightharpoonup \mathbb{D}(d)$ es una distribución de vectores de *features* sobre \mathbb{R}^d

Definición del problema

Definición: invariante de grafos

Un **invariante de grafos** ξ es una función sobre grafos tal que, para todo par de grafos G_1 y G_2 , y para todo isomorfismo f entre G_1 y G_2 , se tiene que:

$$\xi(G_1) = \xi(f(G_2))$$

Los invariantes para grafos con *features* en sus nodos se definen de manera análoga.

Importante

Todo modelo GNN ${\mathcal M}$ que es usado para clasificación binaria es un invariante de grafos.

Importante

Todo modelo GNN ${\mathcal M}$ que es usado para clasificación binaria es un invariante de grafos.

¿Por qué?

Importante

Todo modelo GNN ${\mathcal M}$ que es usado para clasificación binaria es un invariante de grafos.

¿Por qué?

 $lackbox{}{\cal M}$ es una función de un espacio de grafos a $\mathbb{B}=\{0,1\}$

Definición: leyes 0-1 para invariantes de grafos

Sea G = (A, X) un grafo con *features* en sus nodos, donde:

- ▶ $\mathbf{A} \sim \mathbb{G}(n,r)$ es la matriz de adyacencia de un grafo
- ▶ X es una matriz de node embeddings
 - $ightharpoonup \mathbf{x}_{
 u} \sim \mathbb{D}(d)$ para cada nodo $v \in V$

Un invariante para grafos ξ con *features* en sus nodos **satisface una ley 0-1** con respecto a $\mathbb{G}(n,r)$ y $\mathbb{D}(d)$ si, cuando n tiende a infinito, la probabilidad de que $\xi(\mathcal{G})=1$ **tiende a 0 o 1**

Primer resultado: GCNs satisfacen leyes 0-1

Sea \mathcal{M} una GCN usada para clasificación binaria y sea $r \in [0,1]$. Entonces, \mathcal{M} satisface una ley 0-1 con respecto a la distribución de grafos $\mathbb{G}(n,r)$ y la distribución de features $\mathbb{D}(d)$

Sea \mathcal{M} una GCN usada para clasificación binaria y sea $r \in [0,1]$. Entonces, \mathcal{M} satisface una ley 0-1 con respecto a la distribución de grafos $\mathbb{G}(n,r)$ y la distribución de features $\mathbb{D}(d)$, si las siguientes condiciones se cumplen:

- (i) la distribución $\mathbb{D}(d)$ es sub-Gaussiana
- (ii) la función no-lineal σ es Lipschitz-continua
- (iii) la representación a nivel de grafo usa average pooling
- (iv) el clasificador ${\mathfrak C}$ usado por ${\mathcal M}$ es non-splitting

Sea \mathcal{M} una GCN usada para clasificación binaria y sea $r \in [0,1]$. Entonces, \mathcal{M} satisface una ley 0-1 con respecto a la distribución de grafos $\mathbb{G}(n,r)$ y la distribución de features $\mathbb{D}(d)$, si las siguientes condiciones se cumplen:

- (i) la distribución $\mathbb{D}(d)$ es sub-Gaussiana
- (ii) la función no-lineal σ es Lipschitz-continua
- (iii) la representación a nivel de grafo usa average pooling
- (iv) el clasificador ${\mathfrak C}$ usado por ${\mathcal M}$ es non-splitting

¿Demasiadas condiciones?

Un vector aleatorio $\mathbf{x} \in \mathbb{R}^d$ se dice **sub-Gaussiano** si existe C > 0 tal que para cada vector unitario $\mathbf{y} \in \mathbb{R}^d$, la variable aleatoria $\mathbf{x} \cdot \mathbf{y}$ satisface la *propiedad sub-Gaussiana*, es decir, para todo t > 0:

$$\mathbb{P}(|\mathbf{x}\cdot\mathbf{y}| \geq t) \leq 2 \exp\left(-rac{t^2}{C^2}
ight)$$

Un vector aleatorio $\mathbf{x} \in \mathbb{R}^d$ se dice **sub-Gaussiano** si existe C > 0 tal que para cada vector unitario $\mathbf{y} \in \mathbb{R}^d$, la variable aleatoria $\mathbf{x} \cdot \mathbf{y}$ satisface la *propiedad sub-Gaussiana*, es decir, para todo t > 0:

$$\mathbb{P}(|\mathbf{x}\cdot\mathbf{y}| \geq t) \leq 2 \mathrm{exp}igg(-rac{t^2}{C^2}igg)$$

¿Entonces?

Un vector aleatorio $\mathbf{x} \in \mathbb{R}^d$ se dice **sub-Gaussiano** si existe C > 0 tal que para cada vector unitario $\mathbf{y} \in \mathbb{R}^d$, la variable aleatoria $\mathbf{x} \cdot \mathbf{y}$ satisface la *propiedad sub-Gaussiana*, es decir, para todo t > 0:

$$\mathbb{P}(|\mathbf{x}\cdot\mathbf{y}| \geq t) \leq 2 \mathrm{exp}igg(-rac{t^2}{C^2}igg)$$

¿Entonces?

Un vector aleatorio $\mathbf{x} \in \mathbb{R}^d$ se dice **sub-Gaussiano** si existe C > 0 tal que para cada vector unitario $\mathbf{y} \in \mathbb{R}^d$, la variable aleatoria $\mathbf{x} \cdot \mathbf{y}$ satisface la *propiedad sub-Gaussiana*, es decir, para todo t > 0:

$$\mathbb{P}(|\mathbf{x}\cdot\mathbf{y}| \geq t) \leq 2 \mathrm{exp}igg(-rac{t^2}{C^2}igg)$$

¿Entonces?

▶ Todos los vectores aleatorios acotados son sub-Gaussianos

Un vector aleatorio $\mathbf{x} \in \mathbb{R}^d$ se dice **sub-Gaussiano** si existe C > 0 tal que para cada vector unitario $\mathbf{y} \in \mathbb{R}^d$, la variable aleatoria $\mathbf{x} \cdot \mathbf{y}$ satisface la *propiedad sub-Gaussiana*, es decir, para todo t > 0:

$$\mathbb{P}(|\mathbf{x}\cdot\mathbf{y}| \geq t) \leq 2 \exp\left(-rac{t^2}{C^2}
ight)$$

¿Entonces?

- ▶ Todos los vectores aleatorios acotados son sub-Gaussianos
- Todos los vectores multivariables aleatorios normales son sub-Gaussianos

Un vector aleatorio $\mathbf{x} \in \mathbb{R}^d$ se dice **sub-Gaussiano** si existe C > 0 tal que para cada vector unitario $\mathbf{y} \in \mathbb{R}^d$, la variable aleatoria $\mathbf{x} \cdot \mathbf{y}$ satisface la *propiedad sub-Gaussiana*, es decir, para todo t > 0:

$$\mathbb{P}(|\mathbf{x}\cdot\mathbf{y}| \geq t) \leq 2\mathsf{exp}igg(-rac{t^2}{C^2}igg)$$

¿Entonces?

- ▶ Todos los vectores aleatorios acotados son sub-Gaussianos
- Todos los vectores multivariables aleatorios normales son sub-Gaussianos
- Cota dada por la cantidad de bits del sistema de almacenamiento en escenarios prácticos

Una función $f: \mathbb{R} \to \mathbb{R}$ se dice **Lipschitz-continua** si existe un C > 0 tal que para todo $x, y \in \mathbb{R}$ se cumple que:

$$|f(x)-f(y)|\leq C|x-y|$$

Una función $f: \mathbb{R} \to \mathbb{R}$ se dice **Lipschitz-continua** si existe un C > 0 tal que para todo $x, y \in \mathbb{R}$ se cumple que:

$$|f(x)-f(y)|\leq C|x-y|$$

¿Entonces?

Una función $f: \mathbb{R} \to \mathbb{R}$ se dice **Lipschitz-continua** si existe un C > 0 tal que para todo $x, y \in \mathbb{R}$ se cumple que:

$$|f(x)-f(y)|\leq C|x-y|$$

¿Entonces?

Lipschitz-continuidad implica continuidad

Una función $f: \mathbb{R} \to \mathbb{R}$ se dice **Lipschitz-continua** si existe un C > 0 tal que para todo $x, y \in \mathbb{R}$ se cumple que:

$$|f(x)-f(y)|\leq C|x-y|$$

¿Entonces?

- Lipschitz-continuidad implica continuidad
- ▶ Todas las funciones de activación usadas en la práctica son Lipschitz-continuas: ReLU, clipped ReLU, sigmoide, sigmoide linearizada y tanh

Definición: clasificador non-splitting

Sea $\mathbb{D}(d)$ una distribución con media μ y sea \mathcal{M} una GCN usada para clasificación binaria de grafos. Definimos la secuencia de vectores μ_0, \ldots, μ_T inductivamente como:

- ho $\mu_0 := \mu$

El clasificador $\mathfrak{C}: \mathbb{R}^{d(T)} \to \mathbb{B}$ se dice **non-splitting** para \mathcal{M} si el vector μ_T **no** yace en una frontera de decisión de \mathfrak{C}

Definición: clasificador non-splitting

Sea $\mathbb{D}(d)$ una distribución con media μ y sea \mathcal{M} una GCN usada para clasificación binaria de grafos. Definimos la secuencia de vectores μ_0, \ldots, μ_T inductivamente como:

- $\blacktriangleright \mu_0 := \mu$

El clasificador $\mathfrak{C}: \mathbb{R}^{d(T)} \to \mathbb{B}$ se dice **non-splitting** para \mathcal{M} si el vector μ_T **no** yace en una frontera de decisión de \mathfrak{C}

¿Entonces?

Definición: clasificador non-splitting

Sea $\mathbb{D}(d)$ una distribución con media μ y sea \mathcal{M} una GCN usada para clasificación binaria de grafos. Definimos la secuencia de vectores μ_0, \ldots, μ_T inductivamente como:

- ho $\mu_0 := \mu$

El clasificador $\mathfrak{C}: \mathbb{R}^{d(T)} \to \mathbb{B}$ se dice **non-splitting** para \mathcal{M} si el vector μ_T **no** yace en una frontera de decisión de \mathfrak{C}

¿Entonces?

Para todas las decisiones "razonables" de \mathfrak{C} , la frontera de decisión tiene dimensión menor a d(T), por lo que es un conjunto de medida $0 \rightarrow$ "insignificante"

Sea \mathcal{M} una GCN usada para clasificación binaria y sea $r \in [0,1]$. Entonces, \mathcal{M} satisface una ley 0-1 con respecto a la distribución de grafos $\mathbb{G}(n,r)$ y la distribución de features $\mathbb{D}(d)$, si las siguientes **condiciones** se cumplen:

- (i) la distribución $\mathbb{D}(d)$ es sub-Gaussiana
- (ii) la función no-lineal σ es Lipschitz-continua
- (iii) la representación a nivel de grafo usa average pooling
- (iv) el clasificador $\mathfrak C$ usado por $\mathcal M$ es non-splitting

¿Cómo se demuestra el Teorema?

Lema 4.7

Sean \mathcal{M} y $\mathbb{D}(d)$ tal que satisfacen las condiciones del Teorema 4.6. Luego, para cada *layer t* existe un $\mathbf{z}_t \in \mathbb{R}^{d(t)}$ tal que al muestrear aleatoriamente un grafo con *features* en sus nodos desde $\mathbb{G}(n,r)$ y $\mathbb{D}(d)$, para cada $i \in \{1,\ldots,d(t)\}$ y para cada $\epsilon > 0$ se tiene que:

$$\mathbb{P}\bigg(\forall v: \left| \left[\mathbf{x}_{v}^{(t)} - \mathbf{z}_{t} \right]_{i} \right| < \epsilon \bigg) \xrightarrow[n \to \infty]{} 1$$

Analizamos probabilísticamente las preactivaciones en cada layer:

Analizamos probabilísticamente las preactivaciones en cada *layer*:

▶ Usamos la **propiedad sub-Gaussiana** para mostrar que la desviación de cada una de las preactivaciones de la primera iteración $\mathbf{y}_{v}^{(1)}$ de su valor esperado disminuye a medida que el número de nodos n tiende a infinito

Analizamos probabilísticamente las preactivaciones en cada *layer*:

- ▶ Usamos la **propiedad sub-Gaussiana** para mostrar que la desviación de cada una de las preactivaciones de la primera iteración $\mathbf{y}_{v}^{(1)}$ de su valor esperado disminuye a medida que el número de nodos n tiende a infinito
- Usando esto y el hecho de que σ es **Lipschitz-continua**, mostramos que cada activación $\mathbf{x}_{v}^{(1)}$ tiende a un valor fijo

Analizamos probabilísticamente las preactivaciones en cada *layer*:

- ▶ Usamos la **propiedad sub-Gaussiana** para mostrar que la desviación de cada una de las preactivaciones de la primera iteración $\mathbf{y}_{v}^{(1)}$ de su valor esperado disminuye a medida que el número de nodos n tiende a infinito
- Usando esto y el hecho de que σ es **Lipschitz-continua**, mostramos que cada activación $\mathbf{x}_{v}^{(1)}$ tiende a un valor fijo
- Usamos un argumento de inducción para extender este argumento a todos los layers de la GCN

Por el Lema 4.7, los node embeddings \mathbf{x}_{v}^{T} disminuyen su desviación de \mathbf{z}_{T} a medida que el número de nodos n incrementa.

Por el Lema 4.7, los node embeddings \mathbf{x}_{v}^{T} disminuyen su desviación de \mathbf{z}_{T} a medida que el número de nodos n incrementa.

Luego, la representación por **average pooling** a nivel de grafo también se desvía cada vez menos de **z**_T

Por el Lema 4.7, los node embeddings \mathbf{x}_{v}^{T} disminuyen su desviación de \mathbf{z}_{T} a medida que el número de nodos n incrementa.

- Luego, la representación por **average pooling** a nivel de grafo también se desvía cada vez menos de **z**_T
- ▶ De la demostración del Lema, este vector \mathbf{z}_T es exactamente el vector $\boldsymbol{\mu}_T$ de la definición de un clasificador **non-splitting**

Por el Lema 4.7, los node embeddings \mathbf{x}_{v}^{T} disminuyen su desviación de \mathbf{z}_{T} a medida que el número de nodos n incrementa.

- ▶ Luego, la representación por average pooling a nivel de grafo también se desvía cada vez menos de z_T
- De la demostración del Lema, este vector \mathbf{z}_T es exactamente el vector $\boldsymbol{\mu}_T$ de la definición de un clasificador **non-splitting**
- Por lo tanto, \mathbf{z}_T no yace sobre una frontera de decisión del clasificador \mathfrak{C} , y existe un $\epsilon > 0$ tal que \mathfrak{C} es constante en:

$$\{ \boldsymbol{x} \in \mathbb{R}^{d(T)} \mid \forall i \in \{1, \dots, d(T)\} : |[\boldsymbol{z}_T - \boldsymbol{x}]_i| < \epsilon \}$$

Por el Lema 4.7, los node embeddings \mathbf{x}_{v}^{T} disminuyen su desviación de \mathbf{z}_{T} a medida que el número de nodos n incrementa.

- ▶ Luego, la representación por average pooling a nivel de grafo también se desvía cada vez menos de z_T
- De la demostración del Lema, este vector \mathbf{z}_T es exactamente el vector $\boldsymbol{\mu}_T$ de la definición de un clasificador **non-splitting**
- Por lo tanto, \mathbf{z}_T no yace sobre una frontera de decisión del clasificador \mathfrak{C} , y existe un $\epsilon > 0$ tal que \mathfrak{C} es constante en:

$$\{ \boldsymbol{x} \in \mathbb{R}^{d(T)} \mid \forall i \in \{1, \dots, d(T)\} : |[\boldsymbol{z}_T - \boldsymbol{x}]_i| < \epsilon \}$$

Finalmente, la probabilidad de que la salida de \mathcal{M} sea $\mathfrak{C}(z_T)$ tiende a 1 cuando n tiende a infinito.

Algunos comentarios:

Se espera que la rapidez de esta convergencia dependa del número de layers, dimensionalidad de los embeddings y la elección de función de activación

- Se espera que la rapidez de esta convergencia dependa del número de layers, dimensionalidad de los embeddings y la elección de función de activación
- ▶ Dada la manera en la que se demuestra el Lema 4.7, se esperaría que la rapidez de convergencia disminuya a medida la dimensionalidad de los *embeddings* crece.

- Se espera que la rapidez de esta convergencia dependa del número de layers, dimensionalidad de los embeddings y la elección de función de activación
- ▶ Dada la manera en la que se demuestra el Lema 4.7, se esperaría que la rapidez de convergencia disminuya a medida la dimensionalidad de los *embeddings* crece.
 - ► ¿Por qué?

- Se espera que la rapidez de esta convergencia dependa del número de layers, dimensionalidad de los embeddings y la elección de función de activación
- Dada la manera en la que se demuestra el Lema 4.7, se esperaría que la rapidez de convergencia disminuya a medida la dimensionalidad de los embeddings crece.
 - ► ¿Por qué?
- Se puede demostrar de manera muy similar una ley 0-1 para el caso de MeanGNN⁺, pero tomando en cuenta el término adicional de global readout

Tercer resultado: SumGNN⁺ satisfacen leyes 0-1

Sea \mathcal{M} una SumGNN⁺ usada para clasificación binaria y sea $r \in [0,1]$. Entonces, \mathcal{M} satisface una ley 0-1 con respecto a la distribución de grafos $\mathbb{G}(n,r)$ y la distribución de features $\mathbb{D}(d)$

Sea \mathcal{M} una SumGNN⁺ usada para clasificación binaria y sea $r \in [0,1]$. Entonces, \mathcal{M} satisface una ley 0-1 con respecto a la distribución de grafos $\mathbb{G}(n,r)$ y la distribución de features $\mathbb{D}(d)$, si las siguientes condiciones se cumplen:

- (i) la distribución $\mathbb{D}(d)$ es sub-Gaussiana
- (ii) la función no-lineal es eventualmente constante en ambas direcciones
- (iii) la representación a nivel de grafo usa average pooling o component-wise maximum pooling
- (iv) $\mathcal M$ es sincrónicamente saturante para $\mathbb G(n,r)$ y $\mathbb D(d)$

Sea \mathcal{M} una SumGNN⁺ usada para clasificación binaria y sea $r \in [0,1]$. Entonces, \mathcal{M} satisface una ley 0-1 con respecto a la distribución de grafos $\mathbb{G}(n,r)$ y la distribución de features $\mathbb{D}(d)$, si las siguientes condiciones se cumplen:

- (i) la distribución $\mathbb{D}(d)$ es sub-Gaussiana
- (ii) la función no-lineal es eventualmente constante en ambas direcciones
- (iii) la representación a nivel de grafo usa average pooling o component-wise maximum pooling
- (iv) \mathcal{M} es sincrónicamente saturante para $\mathbb{G}(n,r)$ y $\mathbb{D}(d)$

¿Demasiadas condiciones?

Una función $\sigma: \mathbb{R} \to \mathbb{R}$ es **eventualmente constante en ambas direcciones** si existen $x_{-\infty}, x_{\infty} \in \mathbb{R}$ tales que $\sigma(z)$ es constante para $z < x_{-\infty}$ y $\sigma(z)$ es constante para $z > x_{\infty}$. Denotamos por $\sigma_{-\infty}$ y σ_{∞} el mínimo y máximo respectivamente de una función eventualmente constante.

Una función $\sigma:\mathbb{R}\to\mathbb{R}$ es **eventualmente constante en ambas direcciones** si existen $x_{-\infty},x_{\infty}\in\mathbb{R}$ tales que $\sigma(z)$ es constante para $z< x_{-\infty}$ y $\sigma(z)$ es constante para $z> x_{\infty}$. Denotamos por $\sigma_{-\infty}$ y σ_{∞} el mínimo y máximo respectivamente de una función eventualmente constante.

¿Entonces?

Una función $\sigma:\mathbb{R}\to\mathbb{R}$ es **eventualmente constante en ambas direcciones** si existen $x_{-\infty},x_{\infty}\in\mathbb{R}$ tales que $\sigma(z)$ es constante para $z< x_{-\infty}$ y $\sigma(z)$ es constante para $z> x_{\infty}$. Denotamos por $\sigma_{-\infty}$ y σ_{∞} el mínimo y máximo respectivamente de una función eventualmente constante.

¿Entonces?

Una función $\sigma:\mathbb{R}\to\mathbb{R}$ es **eventualmente constante en ambas direcciones** si existen $x_{-\infty},x_{\infty}\in\mathbb{R}$ tales que $\sigma(z)$ es constante para $z< x_{-\infty}$ y $\sigma(z)$ es constante para $z> x_{\infty}$. Denotamos por $\sigma_{-\infty}$ y σ_{∞} el mínimo y máximo respectivamente de una función eventualmente constante.

¿Entonces?

ightharpoonup Existe un threshold para ambos lados más allá de los cuales σ es constante

Una función $\sigma:\mathbb{R}\to\mathbb{R}$ es **eventualmente constante en ambas direcciones** si existen $x_{-\infty}, x_{\infty}\in\mathbb{R}$ tales que $\sigma(z)$ es constante para $z< x_{-\infty}$ y $\sigma(z)$ es constante para $z> x_{\infty}$. Denotamos por $\sigma_{-\infty}$ y σ_{∞} el mínimo y máximo respectivamente de una función eventualmente constante.

¿Entonces?

- ightharpoonup Existe un threshold para ambos lados más allá de los cuales σ es constante
- ► La función sigmoide linearizada y clipped ReLU son eventualmente constantes en ambas direcciones

Una función $\sigma:\mathbb{R}\to\mathbb{R}$ es **eventualmente constante en ambas direcciones** si existen $x_{-\infty},x_{\infty}\in\mathbb{R}$ tales que $\sigma(z)$ es constante para $z< x_{-\infty}$ y $\sigma(z)$ es constante para $z> x_{\infty}$. Denotamos por $\sigma_{-\infty}$ y σ_{∞} el mínimo y máximo respectivamente de una función eventualmente constante.

¿Entonces?

- ightharpoonup Existe un threshold para ambos lados más allá de los cuales σ es constante
- ► La función sigmoide linearizada y clipped ReLU son eventualmente constantes en ambas direcciones
- Más aún, cuando se trabaja con precisión finita, cualquier función con gradiente vanishing (como la sigmoide) puede tratarse como eventualmente constante en ambas direcciones

Sea $\mathcal M$ una SumGNN $^+$ para clasificación binaria de grafos con una función no lineal σ que es eventualmente constante en ambas direcciones. Sean $\mathbb D(d)$ una distribución con media μ y $r\in[0,1]$. Luego, el modelo $\mathcal M$ es **sincrónicamente saturante** para $\mathbb G(n,r)$ y $\mathbb D(d)$ si las siguientes condiciones se cumplen:

(i) Para cada $1 \le i \le d(1)$:

$$\left[(r\mathbf{W}_n^{(1)}+\mathbf{W}_g^{(1)})\boldsymbol{\mu}\right]_i\neq 0$$

(ii) Para cada *layer* $1 < t \le T$, cada $1 \le i \le d(t)$ y cada $\mathbf{z} \in \{\sigma_{-\infty}, \sigma_{\infty}\}^{d(t-1)}$

$$\left[(r\mathbf{W}_n^{(t)} + \mathbf{W}_g^{(t)}) \mathbf{z} \right]_i \neq 0$$

El comportamiento asintótico de modelos SumGNN⁺ está determinado por matrices $\mathbf{Q}_t := r\mathbf{W}_n^{(t)} + \mathbf{W}_g^{(t)}$

El comportamiento asintótico de modelos SumGNN⁺ está determinado por matrices $\mathbf{Q}_t := r\mathbf{W}_n^{(t)} + \mathbf{W}_g^{(t)}$

Los embeddings asintóticos en el último layer están dados por:

$$\sigma(\mathbf{Q}_T(\sigma(\mathbf{Q}_{T-1}\cdots\sigma(\mathbf{Q}_0\mu)\cdot)))$$

El comportamiento asintótico de modelos SumGNN⁺ está determinado por matrices $\mathbf{Q}_t := r\mathbf{W}_n^{(t)} + \mathbf{W}_g^{(t)}$

Los embeddings asintóticos en el último layer están dados por:

$$\sigma(\mathbf{Q}_{\mathcal{T}}(\sigma(\mathbf{Q}_{\mathcal{T}-1}\cdots\sigma(\mathbf{Q}_{\mathbf{0}}\boldsymbol{\mu})\cdot)))$$

Ser sincrónicamente saturante significa evitar el caso borde donde alguno de estos pasos tiene una componente que es cero.

El comportamiento asintótico de modelos SumGNN⁺ está determinado por matrices $\mathbf{Q}_t := r\mathbf{W}_n^{(t)} + \mathbf{W}_g^{(t)}$

Los embeddings asintóticos en el último layer están dados por:

$$\sigma(\mathbf{Q}_{\mathcal{T}}(\sigma(\mathbf{Q}_{\mathcal{T}-1}\cdots\sigma(\mathbf{Q}_{\mathbf{0}}\boldsymbol{\mu})\cdot)))$$

Ser sincrónicamente saturante significa evitar el caso borde donde alguno de estos pasos tiene una componente que es cero.

► El espacio de modelos que no son sincrónicamente saturantes tiene menor dimensión que el espacio de todos los modelos, por lo que tiene medida 0.

Sea \mathcal{M} una SumGNN⁺ usada para clasificación binaria y sea $r \in [0,1]$. Entonces, \mathcal{M} satisface una ley 0-1 con respecto a la distribución de grafos $\mathbb{G}(n,r)$ y la distribución de features $\mathbb{D}(d)$, si las siguientes condiciones se cumplen:

- (i) la distribución $\mathbb{D}(d)$ es sub-Gaussiana
- (ii) la función no-lineal es eventualmente constante en ambas direcciones
- (iii) la representación a nivel de grafo usa average pooling o component-wise maximum pooling
- (iv) $\mathcal M$ es sincrónicamente saturante para $\mathbb G(n,r)$ y $\mathbb D(d)$

¿Cómo se demuestra el Teorema?

Sean \mathcal{M} , $\mathbb{D}(d)$ y r como en el Teorema 4.10 y sean $\sigma_{-\infty}$ y σ_{∞} los valores extremos de la función de activación. Luego, para cada layer t existe un $\mathbf{z}_t \in \{\sigma_{-\infty}, \sigma_{\infty}\}^{d(t)}$ tal que al muestrear grafos con features en sus nodos aleatoriamente desde $\mathbb{G}(n,r)$ y $\mathbb{D}(d)$, la probabilidad de que $\mathbf{x}_v^{(t)} = \mathbf{z}_t$ para cada nodo v tiende a 1 cuando n tiende a infinito.

Sean \mathcal{M} , $\mathbb{D}(d)$ y r como en el Teorema 4.10 y sean $\sigma_{-\infty}$ y σ_{∞} los valores extremos de la función de activación. Luego, para cada layer t existe un $\mathbf{z}_t \in \{\sigma_{-\infty}, \sigma_{\infty}\}^{d(t)}$ tal que al muestrear grafos con features en sus nodos aleatoriamente desde $\mathbb{G}(n,r)$ y $\mathbb{D}(d)$, la probabilidad de que $\mathbf{x}_v^{(t)} = \mathbf{z}_t$ para cada nodo v tiende a 1 cuando n tiende a infinito.

► La demostración es similar al lema anterior, mostrando que el valor de cada preactivación tiende a infinito a medida que incrementa el número de nodos

Sean \mathcal{M} , $\mathbb{D}(d)$ y r como en el Teorema 4.10 y sean $\sigma_{-\infty}$ y σ_{∞} los valores extremos de la función de activación. Luego, para cada layer t existe un $\mathbf{z}_t \in \{\sigma_{-\infty}, \sigma_{\infty}\}^{d(t)}$ tal que al muestrear grafos con features en sus nodos aleatoriamente desde $\mathbb{G}(n,r)$ y $\mathbb{D}(d)$, la probabilidad de que $\mathbf{x}_v^{(t)} = \mathbf{z}_t$ para cada nodo v tiende a 1 cuando n tiende a infinito.

- La demostración es similar al lema anterior, mostrando que el valor de cada preactivación tiende a infinito a medida que incrementa el número de nodos
 - ▶ De hecho, la probabilidad de que este valor caiga bajo cualquier valor fijo tiende exponencialmente a 0

Sean \mathcal{M} , $\mathbb{D}(d)$ y r como en el Teorema 4.10 y sean $\sigma_{-\infty}$ y σ_{∞} los valores extremos de la función de activación. Luego, para cada layer t existe un $\mathbf{z}_t \in \{\sigma_{-\infty}, \sigma_{\infty}\}^{d(t)}$ tal que al muestrear grafos con features en sus nodos aleatoriamente desde $\mathbb{G}(n,r)$ y $\mathbb{D}(d)$, la probabilidad de que $\mathbf{x}_v^{(t)} = \mathbf{z}_t$ para cada nodo v tiende a 1 cuando n tiende a infinito.

- La demostración es similar al lema anterior, mostrando que el valor de cada preactivación tiende a infinito a medida que incrementa el número de nodos
 - ▶ De hecho, la probabilidad de que este valor caiga bajo cualquier valor fijo tiende exponencialmente a 0
- ► El **paso inductivo** utiliza el hecho de que M es sincrónicamente saturante

GNNs con features aleatorios en sus nodos

Hasta ahora hemos considerado un grafo junto con los *features* de sus nodos como el input (aleatorio) para las GNNs

Hasta ahora hemos considerado un grafo junto con los *features* de sus nodos como el input (aleatorio) para las GNNs

 Cambiamos la perspectiva y ahora consideramos los features iniciales de los nodos como parte del modelo

Hasta ahora hemos considerado un grafo junto con los *features* de sus nodos como el input (aleatorio) para las GNNs

- Cambiamos la perspectiva y ahora consideramos los features iniciales de los nodos como parte del modelo
- ► Nos concentramos en modelos SumGNN⁺

Hasta ahora hemos considerado un grafo junto con los *features* de sus nodos como el input (aleatorio) para las GNNs

- Cambiamos la perspectiva y ahora consideramos los features iniciales de los nodos como parte del modelo
- ▶ Nos concentramos en modelos SumGNN⁺
- Buscamos la clase de funciones que se pueden aproximar por estos modelos

Definición: aproximación de funciones

Sean f una función Booleana sobre grafos, ζ una función aleatoria sobre grafos y $\delta > 0$. Luego, decimos que ζ δ -aproxima uniformemente a f si:

$$\forall n \in \mathbb{N} : \mathbb{P}(\zeta(G) = f(G) \mid |G| = n) \ge 1 - \delta$$

cuando muestreamos $G \sim \mathbb{G}(n, 1/2)$

Definición: aproximación de funciones

Sean f una función Booleana sobre grafos, ζ una función aleatoria sobre grafos y $\delta > 0$. Luego, decimos que ζ δ -aproxima uniformemente a f si:

$$\forall n \in \mathbb{N} : \mathbb{P}(\zeta(G) = f(G) \mid |G| = n) \ge 1 - \delta$$

cuando muestreamos $G \sim \mathbb{G}(n, 1/2)$

▶ $\mathbb{G}(n, 1/2)$ es la distribución bajo la cual todos los grafos con n nodos son igual de probables

Teorema 5.2

Sea ξ un invariante de grafos que satisface una ley 0-1 respecto a $\mathbb{G}(n,1/2)$. Entonces, para cada $\delta>0$ existe una SumGNN⁺ con features aleatorios en los nodos que δ -aproxima uniformemente a ξ

Teorema 5.2

Sea ξ un invariante de grafos que satisface una ley 0-1 respecto a $\mathbb{G}(n,1/2)$. Entonces, para cada $\delta>0$ existe una SumGNN⁺ con features aleatorios en los nodos que δ -aproxima uniformemente a ξ

Este es un converso parcial para el Teorema 4.10

Resultados experimentales

Setup experimental

Se realizaron experimentos para GCN, MeanGNN y SumGNN considerando:

- ▶ 10 modelos de cada arquitectura (por cada número de layers) con pesos inicializados aleatoriamente, no-linearidad eventualmente constante en ambas direcciones y pooling por promedio
- Clasificador binario estándar para todos los modelos
- ▶ **Distribuciones** $\mathbb{G}(n,1/2)$ para grafos y U(0,1) para features
- ► Cada arquitectura con 1, 2 y 3 *layers*

Resultados principales

Figure: Resultados principales del paper

Conclusiones

Limitaciones y trabajo futuro

Las principales limitaciones del trabajo son:

Limitaciones y trabajo futuro

Las principales limitaciones del trabajo son:

 Condiciones puestas sobre los modelos en los teoremas principales

Limitaciones y trabajo futuro

Las principales limitaciones del trabajo son:

- Condiciones puestas sobre los modelos en los teoremas principales
- Uso de la distribución de Erdős–Rényi
 - Buena desde la perspectiva de la expresividad
 - Mala desde la perspectiva de la extrapolación

Limitaciones y trabajo futuro

Las principales limitaciones del trabajo son:

- Condiciones puestas sobre los modelos en los teoremas principales
- Uso de la distribución de Erdős–Rényi
 - Buena desde la perspectiva de la expresividad
 - ► Mala desde la perspectiva de la extrapolación
- Falta estudio sobre las tasas de convergencia

Limitaciones y trabajo futuro

Las principales limitaciones del trabajo son:

- Condiciones puestas sobre los modelos en los teoremas principales
- Uso de la distribución de Erdős–Rényi
 - Buena desde la perspectiva de la expresividad
 - ► Mala desde la perspectiva de la extrapolación
- Falta estudio sobre las tasas de convergencia
- ▶ El Teorema 5.2 requiere que la distribución sea $\mathbb{G}(n, 1/2)$
 - De poder relajarse, se tendría una completa caracterización del poder expresivo de estos modelos

► Estudiamos cómo se comportan las GNNs cuando el número de nodos de los grafos de input crece arbitrariamente

- Estudiamos cómo se comportan las GNNs cuando el número de nodos de los grafos de input crece arbitrariamente
- Cota superior para el poder expresivo de las GNNs
 - Cualquier propiedad que puede ser uniformemente expresada por una GNN debe obedecer una ley 0-1

- Estudiamos cómo se comportan las GNNs cuando el número de nodos de los grafos de input crece arbitrariamente
- Cota superior para el poder expresivo de las GNNs
 - Cualquier propiedad que puede ser uniformemente expresada por una GNN debe obedecer una ley 0-1
- Cota inferior para su poder expresivo
 - Converso del Teorema 5.2

- Estudiamos cómo se comportan las GNNs cuando el número de nodos de los grafos de input crece arbitrariamente
- Cota superior para el poder expresivo de las GNNs
 - Cualquier propiedad que puede ser uniformemente expresada por una GNN debe obedecer una ley 0-1
- Cota inferior para su poder expresivo
 - Converso del Teorema 5.2
- Los resultados no dependen de la inicialización aleatoria de los modelos, de su entrenamiento ni de su número de layers

- Estudiamos cómo se comportan las GNNs cuando el número de nodos de los grafos de input crece arbitrariamente
- Cota superior para el poder expresivo de las GNNs
 - Cualquier propiedad que puede ser uniformemente expresada por una GNN debe obedecer una ley 0-1
- Cota inferior para su poder expresivo
 - Converso del Teorema 5.2
- Los resultados no dependen de la inicialización aleatoria de los modelos, de su entrenamiento ni de su número de layers
- Los resultados se comprobaron empíricamente

Key takeaway

"Our result, combined with the manifest success of GNNs in practice, suggests that zero-one laws must be abundant in nature"

Zero-One Laws of Graph Neural Networks

Benjamín Álvarez Stevenson

November 2024

Anexos

Resultados adicionales: features normales

Figure: Features muestreados de una distribución normal

Resultados adicionales: función ReLU

Figure: Función de activación ReLU

Resultados adicionales: función tanh

Figure: Función de activación tanh

Resultados adicionales: función sigmoide

Figure: Función de activación sigmoide

Resultados adicionales: arquitectura GAT

Figure: Arquitectura GAT

Resultados adicionales: grafos sparse

Figure: Grafos sparse

Resultados adicionales: grafos Barabási-Albert

Figure: Grafos Barabási-Albert