Facultad de Ingeniería en Tecnologías de la Información y la Comunicación Matemáticas Discretas Jorge M. Londoño P.

Cálculo de proposiciones

Álgebra declarativa

- 1. Simplifique utilizando el álgebra declarativa
 - a) $\neg (P \land \neg (Q \lor \neg R))$
 - b) $(Pv \neg Q) \wedge (\neg PvQ) \vee \neg (\neg (Pv \neg R) \wedge Q)$
 - c) $\neg Q \Lambda (P \vee Q) \Lambda R \vee \neg R \Lambda (P \vee Q) \Lambda \neg Q$
- 2. Determinar si cada una de las expresiones son tautologías, contradicciones o indeterminadas utilizando el álgebra declarativa
 - a) $Pv \neg ((P \land \neg Q) \lor \neg (\neg P \lor \neg Q))$
 - b) $(P \rightarrow Q) \wedge (Q \rightarrow P) \wedge \neg (P \leftrightarrow Q)$
- 3. Para cada una de las siguientes expresiones, obtener la expresión equivalente en FND y en FNC
 - a) ¬(¬Pv(¬Q∧R))
 - b) $P \rightarrow Q \Lambda \neg (R \vee P)$
- 4. Se tiene una función lógica descrita por la siguiente tabla de verdad

P Q R f(P, V V V V F V	
V V F	Q,R)
	V
V F V	F
	V
V F F	V
F V V	F
F V F	F
F F V	F
F F F	V

a). Obtener la expresión lógica correspondiente en FND. Simplificarla. Illustar el

circuito digital correspondiente.

b). Obtener la expresión lógica correspondiente en FNC. Simplificarla. Illustrar el circuito digital correspondiente.

Reglas de inferencia

1. Verificar las siguientes reglas de inferencia usando el álgebra declarativa:

Ley de inferencia	Expresión
Silogismo hipotético	$P\rightarrow Q$, $Q\rightarrow R$ \vdash $P\rightarrow R$
Silogismo disyuntivo	PvQ, ¬Q ⊢ P
Modus ponens	$P\rightarrow Q$, $P \vdash Q$
Modus tollens	P→Q, ¬Q ⊢ ¬P
Ley de casos	$P\rightarrow Q$, $\neg P\rightarrow Q$ \vdash Q

- a) Indicar la expresión lógica correspondiente a cada regla de inferencia
- b) Demostrar que son implicaciones lógicas.
- 2. Son válidas las siguientes inferencias lógicas? En caso afirmativo indicar que regla de inferencia se está usando. En caso negativo, porque no?

a

Fumar es saludable.

Si fumar es saludable, los médicos recetarían fumar.

Los médicos recetan fumar.

b.

Todo el que hace los ejercicios aprende.

No aprendí

No hice los ejercicios

С.

O tomo un taxi ó llego tarde Llegue tarde No tomé un taxi

- 3. Qué regla de inferencia se usa en los siguientes argumentos lógicos:
 - a. Si está húmedo y caluroso, entonces esta húmero.
 - b. Si Juan estudia, entonces Juan estudia o trabaja.
 - c. Si la bateria esta descargada el carro no prende. Si el carro no prende no vamos

a la fista. Como la bateria está descargada, no vamos a la fiesta.

d. Maria está viendo televisión o estudiando. Maria no estudia, por lo que está viendo televisión.

Derivaciones lógicas

1. Demostrar utilizando derivaciones lógicas:

a. P,
$$P \rightarrow (Q \vee R)$$
, $(Q \vee R) \rightarrow S \vdash S$

b.
$$P\rightarrow Q$$
, $Q\rightarrow R$, $R\rightarrow P \vdash P\leftrightarrow Q$

c.
$$P \rightarrow Q$$
, $P \rightarrow \neg Q \vdash \neg P$

2. Quién fue el asesino?

Interrogan 3 testigos y se sabe que solo uno de ellos dice la verdad.

Testigo X: El asesino fue Y

Testigo Y: El asesino fue Z

Testigo Z: Ni X, ni Y fueron los asesinos.

3. Qué dia es hoy?

John decidio decir la verdad los lunes, jueves y sábados y mentir los otros dias.

John dijo hoy: "Mañana voy a decir la verdad"

4. Una persona casada mira a una persona no casada?

Jack esta mirando a Ann y Ann esta mirando a George. Jack esta casado, pero George no.

- a) Si
- b) No
- c) No es posible saber

Soluciones a problemas seleccionados

Álgebra declarativa

Reglas de inferencia

2a. La conclusión es falsa. El error es partir de una premisa falsa.

Derivaciones lógicas

- 2. El asesino fue Y
- 3. Hoy es martes
- 4. Si

 $\Rightarrow \Rightarrow \Leftrightarrow \equiv \rightarrow \Leftrightarrow \Rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \vdash \vdash \vdash \land \lor \forall \exists$