Integrating Ontologies with Three-Dimensional Models of Anatomy

Daniel L. Rubin Yasser Bashir David Grossman Parvati Dev Mark A. Musen

Stanford Medical Informatics
Stanford University

Projectile Injury

- Penetrating trauma responsible for many civilian deaths; major cause of battlefield fatalities
- Survivability after projectile injury depends on rapid acquisition & interpretation of knowledge
 - Need to know anatomic structures injured and extent of organ damage
 - Need to know physiological consequences
 - Need to make triage decision (immediate surgery, medi-vac, observe, etc.)

Objectives

- Build computable model of human anatomy
 - Predict direct anatomic injuries
 - Predict propagation of injuries
- Develop intelligent applications
 - On-scene diagnosis
 - Assist triage decisions
- Provide graphical display of anatomy, bullet trajectory, and tissue damage

3-D Geometric Models

- Many prior applications
 - Surgical simulation, planning
 - Medical visualization
 - Teaching
- Encode spatial geometric information

- Contain no knowledge about contents of these models
 - Identity of anatomic structures
 - Tissue properties
 - Physiological status of organs

Requirements

- Intelligent applications for injury:
 - 3-D geometric data
 - Knowledge pertinent to injuries
 - Reasoning services
 Use geometric data and knowledge to predict consequences of injuries

Need Variety of Knowledge

- Anatomic knowledge
 - Where do organs lie in the body?
 - What organs are fed by different arteries?
 - What are the subparts of an organ?
- Biomechanical knowledge
 - What are the tissue material properties of an organ?
- Tissue injury knowledge
 - How do different organs respond to injury?

Need Variety of Reasoning Services

- Which organs were directly injured?
- What additional tissue damage will occur as the primary injury propagates?
- How will physiological parameters be altered by the injury?
- How should the subject be treated?

The Virtual Soldier Project

Approaches

- Make knowledge explicit and computable
 - 1. Use ontologies for knowledge representation
 - Useful in rich and complex domains
 - Can reuse existing knowledge sources
- Integrate patient data and canonical knowledge
 - 2. Create patient-specific models
 - 3. Develop reasoning services

1. Ontologies for knowledge representation

Knowledge Sources

- Geometric Knowledge
 - Geometry ontology constructed to describe computer graphics principles
 - Specifies data structures used to represent geometric models
- Anatomic Knowledge
 - Foundational Model of Anatomy (FMA) ontology
 - Specifies anatomical entities and relationships (e.g., partonomies, continuities, adjacencies)
 - Logical as opposed to spatial model

Ontology of Geometric Modeling

Foundational Model of Anatomy

Slots Ontology 🗣 😊 Anatomical entity **Template Slots** C Physical anatomical entity Name © Material physical anatomical entity. S continuous with 🔍 🗅 Anatomical structure Ѕ contained in 🍳 🗓 C Body S member of 😊 Organi S arterial supply 💁 📵 Solid organ S venous drainage 🗣 🕒 Cavitated organi S lymphatic drainage 🗣 📵 Organ with organ cavity S nerve supply 🕒 Esophagus **S** has boundary Stomach ${f S}$ bounded by ${f O}$ ${f I}$ 😊 Small intestine **S** inherent 3-D shape 🕒 Large intestine S Has inherent 3-D shape 🕒 Appendix . S attributed part 🕒 Anal canal (viewed and S adjacency 🍳 🕒 Gallbladder S orientation 🕒 Vagina S has mass 🕒 Uterus S physical state 🕒 Urinary bladder S dimension 🝳 🖭 😊 Duct (organ) S has dimension

📭 🎧 Hallow tree argen

Ontology Views

Copyright © Daniel L. Rubin 2004

Ontology Views for Reasoning

- Catalog of organs; controlled vocabulary of names
- Organ parts and compositionality
- Adjacencies for organs and organ parts
- Connectivity
- Containment
- Arterial supply & regional organ perfusion

Organ Sub-Parts: Artery Segments

Subdivision of Myocardial Regions Based on FMA Knowledge

Regions of Left Ventricle

Other Knowledge Sources

- Biomechanics ontology
 - Tissue material properties
 - Useful for predicting trajectory of projectiles
- Tissue injury ontology
 - Taxonomy of types of injuries
- Physiology ontology
 - Knowledge of how injuries affects circulatory dynamics

"VSKB" = all pertinent ontologies in VS Project

2. Creating patient-specific models

A "Patient-Specific Model (PSM)"

- Contains data specific to the patient at a point in time
 - Patient-specific geometry
 - Description of projectile path of damage
 - Vital signs
- Links to canonical ontologies
- Provides API for queries, reasoning services, and visualization routines

Building Geometric/Knowledge Models

User Queries

Visible Human Raw Data

Visible Human Segmented Data

3. Developing reasoning services

Reasoning Tasks

- Predict organ injury
- Predict physiological consequences of organ injury
- Classify injuries (trauma score; ICD-10)
- Predict survival
- Decision support
 - Diagnosis and triage
 - Recommend additional tests

Predicting Organ Injury

- Direct organ injury
 - 1. Organs <u>visible</u> on CT: injury predicted by intersection with "cone of damage"
 - 2. Organs <u>not visible</u> on CT: inferred from adjacency knowledge in FMA
- Propagation of organ injury
 - 3. Use knowledge of arterial anatomy to infer downstream consequences of arterial damage

Injury Caused by "Cone of Damage"

We infer injured tissues using FMA:

names of injured tissues

 knowledge of organ adjacencies

Reasoning using Classification

- Some reasoning tasks are classification tasks
 - Diagnosis
 - Extent of injury
 - Consequences of injury (e.g., vascular damage)
 - Triage and associated actions
- Representation of VSKB in Description Logic enables efficient classification
 - Represent knowledge conducive to classification
 - Infer non-obvious relationships among concepts (e.g., ischemia)
- This approach builds on current standards for knowledge interoperability (OWL)

OWL model relates anatomic structures to vascular supply

Anatomy Ontology

Concept Definitions

OWL automatically infers where distal blood flow is lost

If we assert that the RCA is occluded between conus a. and and diagonal a., we can infer the ischemic consequences

OWL automatically infers what structures are damaged

Types of ischemical of heart that will be ischemic

Implementation

- VSKB ontolgies in Protégé
- PSM
 - Geometric data objects in ITK (C++)
 - API to read patient data; visualize output
 - C++/Java interface to link PSM to ontologies
- OWL-based reasoning deployed as a Web service
- Outputs of reasoning updates PSM

C++/Protégé Interface

- Geometric modeling code in C++;
 Protégé API in Java
- C++/Protégé interface developed using JACE
- Proxy C++ classes created for core Java classes (KnowledgeBase, etc.)
- JVM invoked in C++; direct Protégé API calls via JACE interface

DEMO

Conclusions

- Benefits of integrating <u>geometric models</u> with <u>ontologies</u>
 - Makes anatomic knowledge and relationships explicit and computer-accessible
 - Useful for reasoning (e.g., propagation of vascular injury)
- Benefits of integrating <u>additional information</u> in Patient Specific Model
 - Biomechanical and other data for simulation
 - Extensibility to accommodate future data

Acknowledgements

- Defense Advanced Research Projects Agency (DARPA)
- Protégé Resource (LM007885)

Thank you.

Contact info: rubin@smi.stanford.edu

Pre-processing of link

Between {geometry (image+mesh), biomechanics, etc} and FMA.

How? Spatial objects (abstract geometry objects)

Working with the PSM: Reasoning and Visualization

Patient-Specific Model (PSM)

Reasoning

Visualization

Physiological effects

Tissue damage

Architecture for Integrating Image Data and Knowledge

- Provide reasoning services for current and anticipated requirements
- Use blackboard architecture where all reasoners relate to data available in a Patient-Specific Model (PSM)
- Enable all modules in VSP to read and write to PSM at runtime

Ontologic approach to geometric models of anatomy

- Input: segmented CT data (pre-injury)
- Build an integrated 3-d model of anatomy:
 - Represent 3-d geometry of anatomic structures

- Integrate tissue physical properties, biomechanics, physiology, and clinical parameters (vital signs)
- Simulate geometric effects of penetrating injury
- Geometric model *links* to knowledge sources (e.g., anatomy in FMA ontology)
- (Use physiologic models to predict consequence of the injury)
- Display predicted organ injury

Geometric Model Building

- Organ parts derived from segmented CT data
- Construct mesh models from segmented organ parts using VTK and ITK (added to PSM)
- Biomechanical and other information added to PSM
 - Tissue physical properties; density
- Knowledge in VSKB is cached in PSM for efficient computation
 - E.g., Heart → pericardium; LA; LV; RA; RV
- This model is *extensible*; can include other info

VSKB Knowledge Cached in PSM

Geometry
Tissue Density
Elasticity
Surface area

• • •

Cached knowledge

Rendering of geometric data associated with cached geometric knowledge

What Is An Ontology?

- Enumerates concepts, attributes of concepts, and relationships among concepts
 - Defines a structure ("model") for the application area
 - Encodes knowledge
 - A "knowledge source"
- Can be comprehended by people and processed by machines
- Right atrium
 Wall of right atrium
 Cavity of right atrium
 Interatrial septum
 Inflow part of right atrium
 Outflow part of right atrium

Wall of heart

 Provides a "domain of discourse" for characterizing some application area; a common vocabulary (shared understanding)

Protégé-2000

- Ontology editor
 - Model concepts, attributes, and relationships
- Tools
 - Visualize ontologies and knowledge bases
- Storage
 - Archive ontologies and knowledge bases in a variety of formats
- Java API
 - Link knowledge bases to other applications
- A world-wide community of active users

Challenges

- Making knowledge explicit and computable
 - Geometric knowledge: implicitly represented in 3-d models
 - Anatomic/physiologic knowledge: usually in head of observer
 - This separation makes automated reasoning difficult
- Integrating and computing with patient data and canonical knowledge
 - Data: geometry, biomechanics, vital signs
 - Knowledge: anatomy, tissue strain ↔ injury
 - Combining and using these in reasoning tasks

The Foundational Model of Anatomy (FMA) Ontology

Integrating Knowledge and Data

Right

PSM Links VSKB to Runtime Data

Cached knowledge in PSM derived from anatomy ontology

Each node above is an object containing *patient-specific knowledge*: anatomy, geometry, biomechanics, tissue damage, physiology

Knowledge about Vascular Supply

- -Right coronary artery
 - Trunk of right coronary artery
 - Right conus artery
 - ♣Atrial branch of right coroxary artery
 - Ventricular branch of right coronary artery
 - Posterior interventricular branch of right coronary artery
 - Atrioventricular node branch of right coronary artery
 - Recurrent atrioventricular branch of right coronary artery
 - Intermediate atrial branch of right coronary artery
 - Right posterolateral branch of right coronary artery
 - Variant branch of right coronary arterial tree
 - Unnamed branch of right coronary artery
 - Proximal portion of right coronary artery
 - Distal portion of right coronary artery
 - Wall of right coronary artery
 - Lumen of right coronary artery
- Left coronary artery

Right branch of atrioventricular bundle

Left branch of atrioventricular bundle

Atrioventricular bundle

Knowledge for Injury Reasoning

- Heart
 - ♣Wall of heart
 - -Right atrium
 - → Wall of right atrium
 - ♣ Cavity of right atrium
 - Interatrial septum
 - Inflow part of right atrium
 - Outflow part of right atrium
 - ♣Right auricle
 - Right side of interatrial septum
 - Left atrium
 - ♣ Right ventricle
 - ♣ Left ventricle
 - ♣Right side of heart
 - Left side of heart
 - Fibrous skeleton of heart
 - Papillary muscle
 - Cardiac valve
 - Tricuspid valve
 - → Mitral valve
 - ♣ Aortic valve
 - Pulmonary valve
 - Interatrial septum
 - Interventricular septum
 - Cavity of right atrium
 - Cavity of left atrium
 - Cavity of left ventricle
 - ♣Right coronary artery
 - ♣Left coronary artery
 - Coronary sinus
 - Great cardiac vein
 - Right marginal vein

Part-of knowledge

Other useful knowledge

ADJACENCY: •

related object	coordinate	laterality
Right lung		Right
Left lung		Left
Esophagus	Posterior	
Right main bronchus	Superior	Right
Left main bronchus	Superior	Left
Diaphragm	Inferior	

ORIENTATION: 0

related object	coordinate	laterality
Apex of heart	Inferior	Left
Base of heart (anatomical)	Posterior	Right

CONTAINED IN: 0

Middle mediastinum

ARTERIAL SUPPLY: •

Right coronary artery Left coronary artery

VENOUS DRAINAGE: •

Coronary sinus

Great cardiac vein

