

Carlos III de Madrid MATEMATICA DISCRETA

Examen final mayo 2012

Apellidos	Hora	
Nombre	Grupo	

Normas generales:

- No se pueden usar calculadoras, móviles ni cualquier otro dispositivo electrónico.
- Hay que justificar todas las respuestas.
- No se puede abandonar el aula en los 15 primeros minutos del examen.
- Este examen corresponde a TRES puntos.

Pregunta 1 (1 punto) Sea un lenguaje formando por seis símbolos $A = \{1, 2, 3, 4, 5, 6\}$.

- ¿Cuántas palabras hay de longitud N?
- Si definimos la probabilidad de un evento como

$$\mathbb{P} = \frac{\text{Número de casos favorables}}{\text{Número de casos posibles}},$$

calcular la probabilidad p_n de que una palabra de N símbolos contenga exactamente n veces al símbolo 6.

• Demostrar que

$$\sum_{n=0}^{N} p_n = 1.$$

Pregunta 2 (1 punto) Sea el conjunto $X = \{1, 2, 3, 12, 18, 36\}$. Sobre él definimos la siguiente relación de orden $n \leq m \Leftrightarrow n \mid m$.

- Representa (X, \preceq) a través de un diagrama de Hasse.
- Encontrar los elementos maximales, minimales, máximo y mínimo de (X, \preceq) .
- ¿Es (X, \preceq) un retículo?

Pregunta 3 (1 punto) Sea P(G;q) el número de coloraciones propias con q colores que admite el grafo G.

- Encontrar $P(C_2;q)$ dónde C_2 es el ciclo de dos vértices.
- Encontrar $P(P_n;q)$ dónde P_n es el camino de n vértices.
- Sea $a_n = P(C_n; q)$ dónde C_n es el ciclo de n vértices. Calcular a_n sabiendo que satisface la relación de recurrencia:

$$P(C_n; q) = P(P_n; q) - P(C_{n-1}; q) \quad n \ge 3.$$

Soluciones:

1.

 6^N

•

$$p_n = \frac{5^{N-n} \binom{N}{n}}{6^N}$$

•

$$\sum_{n=0}^{N} p_n = \frac{1}{6^N} \sum_{n=0}^{N} 5^{N-n} {N \choose n} = \frac{1}{6^N} (1+5)^N = 1,$$

donde en la penúltima igualdad se ha utilizado el binomio de Newton.

2. •

- Elementos maximales = $\{36\} = \max(X, \preceq)$. Elementos minimales = $\{1\} = \min(X, \preceq)$.
- No existe ni **inf** ({12,18}) ni **sup** ({2,3}), ya que ni la mayor de las cotas inferiores del par de elementos 12 y 18 ni la menor de las cotas superiores del par de elementos 2 y 3 son únicas. Por lo tanto, no es retículo.

3. •

$$P(C_2;q) = q(q-1)$$

•

$$P(P_n;q) = q(q-1)^{n-1}$$

• La relación de recurrencia que hay que resolver es la siguiente:

$$a_n = q(q-1)^{n-1} - a_{n-1}, \quad n \ge 3, \quad \text{con} \quad a_2 = q(q-1).$$

Dicha relación de recurrencia es de tipo no homogénea. Su solución es:

$$a_n = (q-1)(-1)^n + (q-1)^n$$
.