20. Caches: Set Associative

Assignment Project Exam Help

EECS 370 – Introduction to Computer Organization – Fall 2020

Add We Chat powcoder

EECS Department
University of Michigan in Ann Arbor, USA

© Narayanasamy 2020

The material in this presentation cannot be copied in any form without written permission

Announcements

Upcoming deadlines:

Assignment Project Exam Help

HW4 due Nov 10th

Project 3 due Nobittps://powcoder.com

Add WeChat powcoder

Grading policy: **Best of two**

Fully-associative caches

Memory

Fully-associative cache: Placement & Access

Direct-mapped caches

Direct-mapped cache: Placement & Access

This lecture

Set Associative Caches

Assignment Project Exam Help Idea
Illustratiths://powcoder.com
3C problem WeChat powcoder

The middle ground...

Set associative caches

Partition memory into regions, like direct mapped but fewer partitions

Associate a region to Associate a region a reg

Check tags for all lines in a set to determine a HIT https://powcoder.com. Treat each line in a set like a small fully associative cache

LRU (or LRU-like) policy generally excellat powcoder

Set-associative cache

Memory

Set-associative cache: Placement & Access

Cache Organization Comparison

Cache size = 8 bytes (for all caches)

Block size = 2 bytes

#blocks

Fully associative

blocks per set = all blocks = 4 in this example;

so, also correct to view this cache as 4-way associative

Add WeChat powcoder

Direct mapped: (#blocks per set = 1) 2-way associative (#blocks per set = 2)

Cache Organization: Equations

```
Block
```

```
#blocks = cache size / block_size #cache lines = #blocks
block_offset_size = log2(#block_size)
```

Assignment Project Exam Help

#sets = ##ines/:#wayswcod#lines per set)

Direct-mapped: #sets = #lines/1

2-way associative: #sets = Aides/WeChat powcoder

n-way associative: #sets = #lines/n

fully-associative: #sets = 1 (all lines are in 1 set)

set_index_size = log2(#sets)

Tag size = address size - set_index_size - block_offset_size

Class Problem 1

For a 32-bit address and 16KB cache with 64-byte blocks, show the breakdown of the address for the following cache configuration:

Assignment Project Exam Help

A) fully associative cache https://powcoder.com

B) 4-way set associative cache

Add WeChat powcoder

C) Direct-mapped cache

Class Problem 1 (Solution)

For a 32-bit address and 16KB cache with 64-byte blocks, show the breakdown of the address for the following cache configuration:

#sets = #lines / ways = #lines / 4 = 64

A) fully associative https://powcoder, 40may set associative cache

Set Index size = log(64) = 6 bits

C) Direct-mapped cache

```
#sets = #lines / ways = #lines/1 = 256

Set_index_size = log(#sets) = log(256) = 8 bits

Tag = 32 - 6 - 8 = 18 bits
```

```
Tag = address_size - set_index_size - block_offset_size
= 32 - 6 - 6
= 20 bits
```

Assignment Project Exam Help

Set Associative Caches: Illustration https://powcoder.com

Add WeChat powcoder

Set-associative cache example (Write-back, Write allocate)

Set-associative cache (REF 1)

Set-associative cache (REF 1)

Set-associative cache (REF 2)

Set-associative cache (REF 2)

Set-associative cache (REF 3)

Set-associative cache (REF 3)

Set-associative cache (REF 4)

Set-associative cache (REF 4)

Set-associative cache (REF 5)

Set-associative cache (REF 5)

Set-associative cache (REF 6)

Set-associative cache (REF 6)

Set-associative cache (REF 6)

Reasons for cache misses a.k.a. The 3C's of Cache Misses

Compulsory miss

First reference to any block will always miss

Also sometimes called a "cold start" miss

Assignment Project Exam Help

Capacity miss

https://powcoder.com

Cache is too small to hold all the data

Would have had a hit with an infinite cache

Conflict miss

Would have had a hit with a fully associative cache

Classifying Cache Misses

Can we classify a cache miss into one of the following?

Compulsory miss

Capacity miss

Assignment Project Exam Help **Conflict miss**

Yes! Simulate three different caches https://powcoder.com
Simulate with a cache of unlimited size (cache size = memory size)

- Any misses must be to the total misses must be to the to

Simulate again with a fully associative cache of the intended size

- Any new misses must be capacity misses

Simulate a third time, with the actual intended cache

- Any new misses must be conflict misses

Fixing cache misses

Compulsory misses

First reference to an address

No way to completely avoid these

Reduce by increasing block size (spatial locality) ct Exam Help

This reduces the total number of blocks

Capacity misses

https://powcoder.com

Would have a hit with a large enough cache.

Reduce by building a bigger cache.

Reduce by building a bigger cache.

Conflict misses

Would have had a hit with a fully associative cache

Cache does not have enough associativity

Reduce by increasing associativity

3 C's Sample Problem

Consider a cache with the following configuration:

```
write-allocate
```

Cache size = 64 bytes

Block size = 16 bytes Assignment Project Exam Help

2-way associative.

16-bit byte-addressable IShtladeressable ishtladeressable

LRU replacement policy.

Assume the cache is empty at the state Chat powcoder

For the following memory accesses, indicate whether the reference is a hit or miss, and the type of a miss (compulsory, conflict, capacity)

3 C's Practice Problem – Address sequence

Address	
0x00	
0x14	
0x27	Assignment Project Exam Help
80x0	https://powcoder.com
0x38	
0x4A	Add WeChat powcoder
0x18	
0x27	
0x0F	
0x40	

3 C's Practice Problem – Simulate infinite cache

Address

3 C's Practice Problem – Simulate fully associative cache

Address

3 C's Practice Problem – Simulate given set associative cache

3 C's Practice Problem – 3 C's

Address	Infinite	FA	SA	3Cs
0x00	M	M	M	
0x14	M	M	M	
0x27	Assignm	ent Rr ojec	ct E xa m H	Ielp
0x08	H	H H	der.com	
0x38	M	M	M	
0x4A	MAdd	WeChat	powcoder	
0x18	Н	M	Ι	
0x27	Н	M	M	
0x0F	Н	M	M	
0x40	Н	Н	M	

3 C's Practice Problem – 3 C's

Address	Infinite	FA	SA	3Cs
0x00	M	M	M	Compulsory
0x14	M	M	M	Compulsory
0x27	As si gnm	ent Rr ojec	et E <mark>xa</mark> m F	lelp mpulsory
0x08	H	s://powco	der com	
0x38	M	IVI	IVI	Compulsory
0x4A	MAdd	WeChat :	powcoder	Compulsory
0x18	Н	M	Н	
0x27	Н	M	M	Capacity
0x0F	Н	M	M	Capacity
0x40	Н	Н	M	Conflict

Cache Parameters vs. Miss Rate

Cache Size

Block Size

Assignment Project Exam Help

Associativity

https://powcoder.com

Replacement policy

Add WeChat powcoder

Questions to ask

Can block size be not power of 2?

Can number of sets be not power of 2?

Can number of ways be not power of 2?

Can we have 3-way set a Saignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Cache Size

Cache size in the total data (not including tag) capacity bigger can exploit temporal locality better not ALWAYS better

Too large a cache adversi summents Ritaients Exame Help

smaller is faster => bigger is slower nttps://powcoder.com access time may degrade critical path

Too small a cache Add WeChat powcoder

doesn't exploit temporal locality well useful data replaced often

Working set: the whole set of data executing application references

Within a time interval

Block size (also called Line size)

Block size is the data that is associated with an address tag Sub-blocking: A block divided into multiple pieces (each with V bit) Can improve "write" performance Assignment Project Exam Help Too small blocks hit rate don't exploit spatial locality well have larger tag overhead have larger tag overhead Add WeChat powcoder Too large blocks too few total # of blocks likely-useless data transferred Extra bandwidth/energy consumed Block size

Associativity

How many blocks map to the same set (same set index)? Larger associativity lower miss rate, less variation among programs diminishing returns Assignment Project Exam Help https://powcoder.com

Add WeChat powcode Smaller associativity lower cost faster hit time Especially important for L1 caches Power of 2 associativity? associativity