The following claims are presented for examination:

1. (previously presented) A device for supplying uninterruptible power, said device comprising:

input connections (90, 91) for connection to a primary DC voltage supply device (230);

connections (190, 191) for connecting a standby power source (60); first output connections (100, 101) for connecting a load (220);

a device (20) for decoupling the input connections (90, 91) from the first output connections (100, 101) in the event of a fault in the primary DC voltage supply device (230);

a first controllable switching device (40) for connecting the standby power source (60) to the first output connections (100, 101) in a controlled manner in the event of a fault in the primary DC voltage supply device; and

a control device (31) which is assigned to the first controllable switching device (40); wherein:

the first controllable switching device (40) has a power transistor (41, 42) which can be rapidly switched,

a monitoring device (30) is provided for the purpose of monitoring the output current flowing through the power transistor (41, 42) which can be rapidly switched, and

the control device (31) is designed to pulse-width-modulate the rapid power transistor (41, 42) on the basis of the current being monitored in order to limit the current which can be provided by the standby power source (60).

- **2.** (original) The device for supplying uninterruptible power as claimed in claim 1, characterized in that the standby power source (60) is rechargeable.
- **3.** (previously presented) The device for supplying uninterruptible power as claimed in claim 2,

characterized in that a device (70) for blocking a current, which is provided by the primary DC voltage supply device (230), to the standby power source (60) is provided in series with the rapid power transistor (41, 42).

4. (previously presented) The device for supplying uninterruptible power as claimed

Serial No. 10/599812 DeMont & Breyer Docket: 9771-015US Blumbach Docket: 04PH 0166USP K/nmo

in claim 2,

characterized by a smoothing capacitor (80) which is connected between the first output connections (100, 101).

5. (previously presented) The device for supplying uninterruptible power as claimed in claim 2,

characterized in that a charging device (50) which can be controlled by the control device (31) is connected between the chargeable standby power source (60) and the input connections (90, 91).

6. (previously presented) The device for supplying uninterruptible power as claimed in claim 1,

characterized in that a parallel circuit comprising a diode (21) and a second controllable switching device (22) forms the decoupling device (20), in that the monitoring device (30) is designed to monitor an input voltage, and in that the control device (31) disconnects the second controllable switching device (22) if the input voltage being monitored signals a fault in the primary DC voltage supply device (230).

7. (previously presented) The device for supplying uninterruptible power as claimed in claim 6,

characterized in that the second controllable switching device (22) is a power transistor.

8. (previously presented) The device for supplying uninterruptible power as claimed in claim 1,

characterized by a current-limited supply output (130) which is connected in parallel with the first output connections (100, 101).

9. (currently amended) The device for supplying uninterruptible power as claimed in claim 8,

characterized by $\frac{at\ least\ one\ \underline{a}}{at\ least\ one\ \underline{a}}$ third controllable switching device (120) for connecting and disconnecting $\frac{at\ least\ one\ \underline{a}}{a}$ state signaling device (200, 210) which can be connected to a $\frac{at\ least\ one\ \underline{a}}{at\ least\ one\ \underline{a}}$ state signaling device (120) which is assigned to the third controllable switching device (120), a third output connection (140) which is assigned

to the third controllable switching device (120) being arranged at a predetermined distance from the current-limited supply output (130).

- **10.** (original) The device for supplying uninterruptible power as claimed in claim 9, characterized by a predefined contact bridge (150) for short-circuiting the current-limited supply output (130) and the third output connection (140).
- **11.** (previously presented) The device for supplying uninterruptible power as claimed in claim 9,

characterized in that the third controllable switching device (120) is a relay.

12. (currently amended) A device for supplying uninterruptible power, said device comprising:

input connections (90, 91) for connection to a primary DC voltage supply device (230);

connections (190, 191) for connecting a standby power source (60); output connections (100, 101) for connecting a load (220);

a device (20) for decoupling the input connections (90, 91) from the output connections (100, 101) in the event of a fault in the primary DC voltage supply device (230);

a first controllable switching device (40) for connecting the standby power source (60) to the output connections (100, 101) in a controlled manner in the event of a fault in the primary DC voltage supply device (230); and

a control device (31) which is assigned to **the first** a **second controllable** switching device [[(40)]] (22);

wherein:

a parallel circuit comprising a diode (21) and **[[a]]** the second controllable switching device (22) forms the decoupling device (20), a monitoring device (30) is provided for the purpose of monitoring an input voltage, and the control device (31) disconnects the second controllable switching device (22) if the input voltage being monitored signals a fault in the primary DC voltage supply device (230).

13. (previously presented) The device for supplying uninterruptible power as claimed in claim 12,

characterized in that the second controllable switching device (22) is a power transistor.

14. (currently amended) A device for supplying uninterruptible power, said device comprising:

input connections (90, 91) for connection to a primary DC voltage supply device (230);

connections (190, 191) for connecting a standby power source (60); first output connections (100, 101) for connecting a load (220);

a device (20) for decoupling the input connections (90, 91) from the output connections (100, 101) in the event of a fault in the primary DC voltage supply device (230);

a first controllable switching device (40) for connecting the standby power source (60) to the output connections (100, 101) in a controlled manner in the event of a fault in the primary DC voltage supply device (230);

a control device (31) which is assigned to the first $\underline{\textbf{controllable}}$ switching device (40); and

a supply output (130) which is connected in parallel with the first output connections (100, 101) and whose current is limited by a current limiter (110).

15. (currently amended) The device for supplying uninterruptible power as claimed in claim 14, characterized by

at least one <u>a</u> second controllable switching device (120) for connecting and disconnecting <u>at least one a</u> state signaling device (200, 210) which can be connected to a **respective** second output connection (160, 170) that is assigned to the second <u>controllable</u> switching device (120, 122), <u>at least one a</u> third output connection (140) which is assigned to the second <u>controllable</u> switching device (120, 122) being arranged at a predetermined distance from the current-limited supply output (130).

16. (currently amended) The device for supplying uninterruptible power as claimed in claim 15,

characterized by a predefined contact bridge (150) for short-circuiting the supply output (130) and the **at least one** third output connection (140).

Serial No. 10/599812

17. (previously presented) The device for supplying uninterruptible power as claimed in claim 15,

characterized in that the second controllable switching device (120) is a relay.

18. (previously presented) The device for supplying uninterruptible power as claimed in claim 17,

characterized in that the second controllable switching device (120) is a changeover relay.