Assignment 2

MA3.101: Linear Algebra (Spring 2019)

Submission Deadline: 8th March, 2019

Total Marks: 50

Instructions

- 1. Attempting all questions is mandatory.
- 2. Each question carries 5 marks.

Question 1

Let $F = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$. Thus, F is the standard basis of $\mathbb{R}^{2 \times 2}$. Let $B = \begin{pmatrix} -2 & 1 \\ 3 & 4 \end{pmatrix}$. Define $L : \mathbb{R}^{2 \times 2} \to \mathbb{R}^{2 \times 2}$ by $L(M) = BM, \ \forall M \in \mathbb{R}^{2 \times 2}$. Find the matrix representation of L with respect to the standard basis F of $\mathbb{R}^{2 \times 2}$.

Question 2

Let L be the linear transformation that rotates the plane through an angle of θ degrees. Let A be the matrix representation of L. Then matrix representation of L with respect to the standard basis of \mathbb{R}^2 is

$$A = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

Find the matrix representations of L^2, L^3, \ldots, L^n . (Hint: What is L^2 geometrically?)

Question 3

Let V be an n-dimensional vector space over \mathbb{R} and W be an m-dimensional vector space over \mathbb{R} with n > m. Let $T: V \to W$ and $U: W \to V$ be 2 linear transformations. Prove that $UT: V \to V$ is not invertible.

Question 4

Let $V = \{\sum_{j=1}^{2} (a_j \cos jx + b_j \sin jx) : a_j, b_j \in \mathbb{R} \}$ be a vector space over \mathbb{R} (x is some indeterminate). Define $L: V \to V$ by

$$L\left(\sum_{j=1}^{2} (a_j \cos jx + b_j \sin jx)\right) = \sum_{j=1}^{2} (-ja_j \sin jx + jb_j \cos jx)$$

- 1. Find a basis F for the vector space V (you have to prove that your chosen set is in fact a basis, don't just state).
- 2. Find the matrix representation A of L with respect to your basis.

Question 5

Let $A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ and $B = \begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{pmatrix}$. Prove that matrices A and B are similar over the field of complex numbers.

Question 6

Let V be a finite-dimensional vector space and let T be a linear operator on V. Suppose that $rank(T^2) = rank(T)$. Prove that the range and null space of T intersect trivially, i.e., have only the zero vector in common.

Question 7

Let p, m and n be integers and \mathbb{F} be a field. Let V be the vector space of $m \times n$ matrices over \mathbb{F} and W be the space of $p \times n$ matrices over \mathbb{F} . Let B be a fixed $p \times m$ matrix and let T be the linear transformation from V into W defined by T(A) = BA. Prove that T is invertible if and only if p = m and B is an invertible $m \times m$ matrix.

Question 8

Let V be an n-dimensional vector space over the field \mathbb{F} and let T be a linear transformation from V into V such that the range and null space of T are identical. Prove that n is even. (Can you give an example of such a linear transformation T?)

Question 9

Show that the set $L(V, \mathbb{F})$ of all linear transformations from a vector space V over \mathbb{F} to \mathbb{F} (domain is V, codomain is \mathbb{F}) forms a vector space.

- 1. Show that the dimension of $L(V, \mathbb{F})$ is the same as that of V.
- 2. Consider that $V = \mathbb{F}^n$. Consider the map $T_i : (x_1, ..., x_n) \to x_i$. Show that $\{T_i : i = 1, ..., n\}$ form a basis for $L(\mathbb{F}^n, \mathbb{F})$.

The vector space $L(V, \mathbb{F})$ is called the *dual space* of V.

Question 10

Let T be a linear operator over finite dimensional space V. A subspace W is called an T-invariant subspace if $T\mathbf{v} \in W$ for all $\mathbf{v} \in W$. Suppose W_i , i = 1, ..., r are T-invariant subspaces such that $V = \bigoplus_{i=1}^r W_i$. Let $dim(W_i) = n_i, \forall i$. Show that T has a matrix representation according to some chosen basis B for V, in the form

$$A = \begin{bmatrix} A_1 & 0 & \dots & 0 \\ 0 & A_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & A_r \end{bmatrix},$$

where A_i is a matrix of dimension $n_i \times n_i$.