

SMALL SIGNAL PNP TRANSISTORS

DESCRIPTION

The 2N2905A and 2N2907A are silicon Planar Epitaxial PNP transistors in Jedec TO-39 (for 2N2905A) and in Jedec TO-18 (for 2N2907A) metal case. They are designed for high speed saturated switching and general purpose applications.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CBO}	Collector-Base Voltage (I _E = 0)	-60	V
VCEO	Collector-Emitter Voltage (I _B = 0)	-60	V
V_{EBO}	Emitter-Base Voltage (I _C = 0)	-5	V
Ic	Collector Current	-0.6	А
I _{CM}	Collector Peak Current (t _p < 5 ms)	-0.8	А
P _{tot}	Total Dissipation at $T_{amb} \le 25$ °C for 2N2905A for 2N2907A at $T_C \le 25$ °C for 2N2905A for 2N2905A	0.6 0.4 3 1.8	W W W
T _{stg}	Storage Temperature	-65 to 175	°C
Tj	Max. Operating Junction Temperature	175	°C

February 2003 1/7

THERMAL DATA

			TO-39	TO-18	
R _{thj-case}	Thermal Resistance Junction-Case	Max	50	83.3	°C/W
R _{thj-amb}	Thermal Resistance Junction-Ambient	Max	250	375	°C/W

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{CBO}	Collector Cut-off Current (I _E = 0)	$V_{CB} = -50 \text{ V}$ $V_{CB} = -50 \text{ V}$ $T_j = 150 \text{ °C}$			-10 -10	nΑ μΑ
I _{CEX}	Collector Cut-off Current (V _{BE} = 0.5V)	V _{CE} = -30 V			-50	nA
I _{BEX}	Base Cut-off Current (V _{BE} = 0.5V)	V _{CE} = -30 V			-50	nA
V _(BR) CBO	Collector-Base Breakdown Voltage (I _E = 0)	I _C = -10 μA	-60	OQ_{I}		V
V _{(BR)CEO*}	Collector-Emitter Breakdown Voltage (I _B = 0)	I _C = -10 mA	-60			V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage (I _C = 0)	ΙΕ = -10 μΑ	-5			V
V _{CE(sat)*}	Collector-Emitter Saturation Voltage	$I_{C} = -150 \text{ mA}$ $I_{B} = -15 \text{ mA}$ $I_{C} = -500 \text{ mA}$ $I_{B} = -50 \text{ mA}$			-0.4 -1.6	V V
V _{BE(sat)} *	Base-Emitter Saturation Voltage	$I_C = -150 \text{ mA}$ $I_B = -15 \text{ mA}$ $I_C = -500 \text{ mA}$ $I_B = -50 \text{ mA}$			-1.3 -2.6	V V
h _{FE} *	DC Current Gain	$\begin{array}{llllllllllllllllllllllllllllllllllll$	75 100 100 100 50		300	
f⊤	Transition Frequency	V _{CE} = -20 V f = 100 MHz I _C = -50 mA	200			MHz
Сево	Emitter-Base Capacitance	$I_C = 0$ $V_{EB} = -2 V$ $f = 1MHz$			30	pF
Ссво	Collector-Base Capacitance	I _E = 0 V _{CB} = -10 V f = 1MHz			8	pF
t _d **	Delay Time	V _{CC} = -30 V I _C = -150 mA I _{B1} = -15 mA			10	ns
t _r **	Rise Time	$V_{CC} = -30 \text{ V}$ $I_{C} = -150 \text{ mA}$ $I_{B1} = -15 \text{ mA}$			40	ns
t _s **	Storage Time	$V_{CC} = -6 \text{ V}$ $I_{C} = -150 \text{ mA}$ $I_{B1} = -I_{B2} = -15 \text{ mA}$			80	ns
t _f **	Fall Time	$V_{CC} = -6 \text{ V}$ $I_{C} = -150 \text{ mA}$ $I_{B1} = -I_{B2} = -15 \text{ mA}$			30	ns
t _{on} **	Turn-on Time	$V_{CC} = -30 \text{ V}$ $I_{C} = -150 \text{ mA}$ $I_{B1} = -15 \text{ mA}$			45	ns
t _{off} **	Turn-off Time	$V_{CC} = -6 \text{ V}$ $I_{C} = -150 \text{ mA}$ $I_{B1} = -I_{B2} = -15 \text{ mA}$			100	ns

^{*} Pulsed: Pulse duration = 300 μs, duty cycle ≤ 1 %

** See test circuit

Normalized DC Current Gain.

Collector Base and Emitter-base capacitances.

Collector Emitter Saturation Voltage.

Switching Characteristics.

Test Circuit for ton, tr, td.

Test Circuit for toff, to, tf.

TO-18 MECHANICAL DATA

DIM.	mm			inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А		12.7			0.500		
В			0.49			0.019	
D			5.3			0.208	
E			4.9		AU	0.193	
F			5.8		2100	0.228	
G	2.54			0.100			
Н			1.2	0/8		0.047	
I			1.16			0.045	
L	45°			45°			

TO-39 MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	12.7			0.500		
В			0.49			0.019
D			6.6			0.260
Е			8.5		AU	0.334
F			9.4		2100	0.370
G	5.08			0.200		
Н			1.2	Ole		0.047
I			0.9			0.035
L			45° ((typ.)		

Obsolete Product(s). Obsolete Product(s)

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 2003 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics:

2N2907A 2N2905A 2N2905 2N2907