Compiler Constructions Deterministic Parsing Chapter 16: LL(k)Grammars

Agenda:

- First
- Follow
- Lookahead
- Strong LL(k) grammar
- LL(k) grammar

- First

Definition 16.2.1

Let G be a context-free grammar. For every string $u \in (V \cup \Sigma)^*$ and k > 0, the set FIRST_k(u) is defined by

$$FIRST_k(u) = trunc_k(\{x \mid u \stackrel{*}{\Rightarrow} x, x \in \Sigma^*\}).$$

- 1. FIRST_k(λ) = { λ }
- 2. FIRST_k(a) = {a}
- 3. $FIRST_k(au) = \{av \mid v \in FIRST_{k-1}(u)\}$
- 4. $FIRST_k(uv) = trunc_k(FIRST_k(u)FIRST_k(v))$
- 5. if $A \to w$ is a rule in G, then $FIRST_k(w) \subseteq FIRST_k(A)$.

First
$$_1(A) = \{a, \lambda\}$$

First
$$_1(B) = \{b, \lambda\}$$

First
$$_1(C) = \{c, \lambda\}$$

First
$$_2(A) = \{a, \lambda\}$$

First
$$_2(B) = \{b, \lambda\}$$

First
$$_2(C) = \{c, \lambda\}$$

 $G_2: S \rightarrow ABCabcd$

$$A \rightarrow a \mid \lambda$$

$$B \rightarrow b \mid \lambda$$

$$C \rightarrow c \mid \lambda$$

G₂:
$$S \rightarrow ABCabcd$$

$$A \rightarrow a \mid \lambda$$

$$B \rightarrow b \mid \lambda$$

$$C \rightarrow c \mid \lambda$$

$First_k(S) = trunc_k(First(A). First(B).First(C). First(abcd))$

FIRST sets are constructed for the strings S and ABC using the grammar G₂

FIRST₁(
$$ABC$$
) = { a,b,c,λ }
FIRST₂(ABC) = { ab,ac,bc,a,b,c,λ }
FIRST₃(S) = { abc,aba,aca,bca,bab,cab }

- Follow:

Let G be a context-free grammar. For every $A \in V$ and k > 0, the set $FOLLOW_k(A)$ is defined by

$$FOLLOW_k(A) = \{x \mid S \stackrel{*}{\Rightarrow} uAv \text{ and } x \in FIRST_k(v)\}.$$

The set $FOLLOW_k(A)$ consists of prefixes of terminal strings that can follow the variable A in derivations in G. Since the null string follows every derivation from the sentential form consisting solely of the start symbol, $\lambda \in FOLLOW_k(S)$.

- Example:
- a) Give the FIRST₂ and FOLLOW₂ sets for each of the variables of the following grammar

G:
$$S \rightarrow AB$$

$$A \rightarrow aC / bB$$

$$B \rightarrow AD / CA$$

$$C \rightarrow a$$

$$D \rightarrow b$$

b) Is grammar strong LL(2)?

Answer:

First:

$$F(S) = F_2(A).F_2(B)$$

$$F_2(S) = \{ aa, ba, bb \}$$

$$F_2(A) = \{ aa, ba, bb \}$$

$$F_2(B) = \{ aa, ba, bb, ab \}$$

$$F_2(C) = \{ a \}$$

$$F_2(D) = \{ b \}$$

$$G: S \rightarrow AB$$

$$A \rightarrow aC/bB$$

$$B \rightarrow AD/CA$$

$$C \rightarrow a$$

$$D \rightarrow b$$

$$F_2(A) = a.F_2(C), b.F_2(B)$$

= {aa, b.{ $F_2(B)$ } }
{ aa, ba, bb}

$$F_2(B) = F_2(A). F_2(D), F_2(C).F_2(A)$$