

Ejercicios de Operaciones

Nota: los ejercicios marcados con (*) al principio están sacados del libro de la cátedra los ejercicios marcados con (°) al principio están basados en uno tomado en un final

1. (°) Dados los AFD1 y AFD2 mediante sus tablas de transición, aplique los algoritmos correspondientes para obtener la ER del complemento de la intersección de ellos, sin la utilización de ε innecesarios.

TT1	a	b
0±	2	1
1	2	2
2+	2	2

TT2	a	b
3±	5	4
4+	4	4
5	4	4

TT1	a	b
$(0,3)\pm$	(2,5)	(1,4)
(2,5)	(2,4)	(2,4)
(1,4)	(2,4)	(2,4)
(2,4)+	(2,4)	(2,4)

Las Filas (2,5) y (1,4) son equivalentes, las elimino al renombrar estados

TT2	a	b
0±	1	1
1	2	2
2+	2	2

Esta es la tabla a complementar

TT2	a	b
0-	1	1
1+	2	2
2	2	2

El estado 2 es erróneo y lo puedo eliminar

TT2	a	b
0-	1	1
1+	-	-

Esta es la tabla a convertir a ER

Las ecuaciones para hallar la ER:

$$0 = a1 + b1$$

$$1 = \varepsilon$$

$$0 = a\varepsilon + b\varepsilon = \mathbf{a} + \mathbf{b}$$

2. Obtenga el complemento de la intersección de los siguientes AFD

TT1	a	b	c
0-	1	-	1
1+	-	1	1

TT2	a	b	c
2-	2	2	3
3+	-	-	-

Solución

TT	a	b	c
(0,2)-	(1,2)	-	-
(1,2)	-	(1,2)	(1,3)
(1,3)+	-	-	-

Aplicando algoritmo de intersección

TT	a	b	c
0-	1	-	-
1	-	1	2
2+	-	-	-

Renombrando

TT	a	b	c
0-	1	3	3
1	3	1	2
2+	3	3	3
3	3	3	3

Universidad Tecnológica Nacional

Completando estados

TT	a	b	c
0±	1	3	3
1+	3	1	2
2	3	3	3
3+	3	3	3

Complementado

3. Obtenga el complemento de la intersección de los siguientes AFD

TT1	a	b
0-	1	0
1+	-	1

TT2	a	b
2-	3	3
3+	4	3
4+	4	-

Solución

TT∩	a	b
(0,2)-	(1,3)	(0,3)
(1,3)+	-	(1,3)
(0,3)	(1,4)	(0,3)
(1,4)+	-	-

Aplicando algoritmo de intersección

TT∩	a	b
0-	1	2
1+	-	1
2	3	2
3+	-	-

Renombrando estados

TT∩	a	b
0-	1	2
1+	4	1
2	3	2
3+	4	4
4	4	4

Completando estados

TT∩	a	b
0±	1	2
1	4	1
2+	3	2
3	4	4
4+	4	4

Complementado

4. Obtenga el complemento de la intersección de los siguientes AFD

TT1	a	b
0-	-	1
1+	0	1

TT2	a	b
2-	3	4
3+	4	3
4+	3	-

Solución

TT∩	a	b
(0,2)-	-	(1,4)
(1,4)+	(0,3)	-
(0,3)	-	(1,3)
(1,3)+	(0,4)	(1,3)
(0,4)	-	_

Aplicando algoritmo de intersección

TT∩	a	b
0-	4	1
1+	2	4
2	4	3
3+	4	3
4	4	4

$TT\cap$	a	b
0-	-	1
1+	2	-
2	-	3
3+	4	3
4	-	-

Renombrando estados

TT∩	a	b
0±	4	1
1	2	4
2+	4	3
3	4	3
4+	4	4

Completando estados: Podría haber agregando un estado 5, pero noten que el estado 4 ya era en si mismo un estado de error y lo aprovechamos

Complementado

5. Obtenga la tabla de transición del AFD mínimo equivalente al AFD de la siguiente tabla

Solución

TT	a	b
0-	1	0
1+	2	3
2+	1	4
3	4	5
4	3	5
5	1	5

Tabla Inicial. No hay estados equivalentes inmediatos

TT	a	b	
0-	1	0	
3	4	5	CO
4	3	5	C0
5	1	5	
1+	2	3	C1
2+	1	4	C1

Separamos por finales y no finales para armar las clases

TT	a	b	
0-	C1	C0	
3	C0	C0	C0
4	C0	C0	Cu
5	C1	C0	
1+	C1	C0	C1
2+	C1	C0	C1

Los estados 0 y 5 forman una nueva clase

TT	a	b	
0-	C1	C2	C2
5	C1	C2	C2
3	C0	C2	C0
4	C0	C2	CU
1+	C1	C0	C1
2+	C1	C0	C1

TT	a	b
0-	1	0
1+	1	3
3	3	0

Dejamos solo un estado por clase

No se puede dividir más

6. Obtenga la tabla de transición del AFD mínimo equivalente al AFD de la siguiente tabla

Solución

TT	a	b
0-	1	6
1	2	3
2	4	5
3+	5	4
4	1	3
5+	3	2
6	1	3

Tabla Inicial. 4 y 6 son equivalentes inmediatos.

TT	a	b	
0-	1	4	C0
1	2	3	
2	4	5	
4	1	3	
3+	5	4	C1
5+	3	2	

Separamos por finales y no finales para armar las clases

TT	a	b	
0-	C0	C0	C0
1	C0	C1	
2	C0	C1	
4	C0	C1	
3+	C1	C0	C1
5+	C1	C0	

El estados 0 se divide en una nueva clase

TT	a	b	
0-	C0	C0	C2
1	C0	C1	
2	C0	C1	C0
4	C0	C1	
3+	C1	C0	C1
5+	C1	C0	CI

No se puede dividir más

TT	a	b
0-	1	1
1	1	3
3+	3	1

Dejamos solo un estado por clase

7. Obtenga la tabla de transición del AFD mínimo equivalente al AFD de la siguiente tabla

Solución

TT	a	b
0-	1	3
1	4	2
2+	2	1
3	4	3
4	4	5
5+	5	4
6	3	4

Tabla Inicial. Estado 6 inalcanzable.

TT	a	b	
0-	1	3	
1	4	2	CO
3	4	3	C0
4	4	5	
2+	2	1	C1
5+	5	4	C1

Separamos por finales y no finales para armar las clases

TT	a	b	
0-	C0	C0	
1	C0	C1	C0
3	C0	C0	Cu
4	C0	C1	
2+	C1	C0	C1
5+	C1	C0	C1

Los estados 1 y 4 forman una nueva clase

TT	a	b	
0-	C2	C0	C0
3	C2	C0	
1	C2	C1	C2
4	C2	C1	
2+	C1	C2	C1
5+	C1	C2	

No se puede dividir más

TT	a	b
0-	1	0
1	1	2
2+	2	1

Dejamos solo un estado por clase