Technische Universität Darmstadt

TK3: Ubiquitous Computing

Chapter 3: Context-aware Computing

Part 3: Plan Recognition & Prediction

Lecturer: Dr. Immanuel Schweizer

Copyrighted material – for TUD student use only

Context Aware Systems

- Systems that are aware of their own situation in the physical, virtual, and user environment
- Typically adapt their operation or goal based on contextual cues from the environment or the user's actions
 - Implicit behavior, rather than explicitly directed by the user
 - Lessen the (cognitive) load on the user
 - Requires ability to not only sense environment, but to determine what is relevant to the system's task(s)
 - May require additional processing to convert raw sensor data into relevant information
 - May also need a representation of the relevant knowledge model used to comprehend contextual cues and direct behavior

- Humans have a set of intentions I
- Form a set of plans P
- Execute on (parts) of these plans with activities A
- Are able to recognize plans and intentions in other humans
- Are able to predict future actions based on these intentions

■Intention I₁ leads to Plans P₁...P_n leads to activities A₁...A_m

Problem Statement: Observing $A_1...A_m$ can we infer P_x and I_1 ?

 I_1

 $\begin{bmatrix} A_1 \end{bmatrix} \begin{bmatrix} A_2 \end{bmatrix} \begin{bmatrix} A_3 \end{bmatrix} \begin{bmatrix} A_4 \end{bmatrix} \begin{bmatrix} A_5 \end{bmatrix} \begin{bmatrix} A_6 \end{bmatrix} \begin{bmatrix} A_6 \end{bmatrix} \begin{bmatrix} A_7 \end{bmatrix} \begin{bmatrix} A_8 \end{bmatrix} \begin{bmatrix} A_9 \end{bmatrix}$

 I_1

12

I₁

l₂

 A_1 A_2 A_3 A_4 A_5 A_6 A_7 A_8 A_9

 I_1

l₂

 A_1 A_2 A_3 A_4 A'_1 A'_2 A'_3 A'_4 A'_5

 I_1

Research Mindmap

Plan, Activity, and Intent Recognition: Theory and Practice

Edited by: Gita Sukthankar, Christopher Geib, Hung Bui, David Pynadath and Robert P. Goldman

ISBN: 978-0-12-398532-3

- Partial Plans
- Recognized Plans

→ Activity Prediction

- Provide a chain of activities
- → Activity Detection

Data Mining and Prediction

- Prediction attempts to form patterns that permit it to predict the next event(s) given the available input data.
 - Deterministic predictions
 - If Bob leaves the bedroom before 7:00 am on a workday, then he will make coffee in the kitchen.
 - Probabilistic sequence models
 - If Bob turns on the TV in the evening then he will 80% of the time go to the kitchen to make popcorn.

Location Prediction

- Next-slot Place (NSP)
 - Relevant place for the next time slot
- Next-slot Transition (NST)
 - Transition occurrence
- Next Place (NP)
 - Next place regardless of transition time
- Residence Time (RT)
 - How long will the user stay?

Location Prediction

Is it even possible?

■ 93% predictability

Limits of Predictability in Human Mobility, Chaoming Song, Zehui Qu, Nicholas Blumm, and Albert-László Barabási Science 19 February 2010: 327 (5968), 1018-1021

What features?

Paul Baumann: Adaptive Sensor Cooperation for Predicting Human Mobility. In: Adjunct Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 2014.

Relevant places

Places you spend a significant amount of time at

- Mobility traces are clustered and filtered
- Cluster center is mapped to symbolic location
- Ask user feedback

Prediction Techniques

- Classification-Based Approaches
 - Nearest Neighbor
 - Neural Networks
 - Bayesian Classifiers -
 - Decision Trees
- Sequential Behavior Modeling
 - Hidden Markov Models
 - Temporal Belief Networks

Example: Location Prediction

Time	Date	Day	Location _t	Location _{t+1}
6:30	02/25	Monday	Bedroom	Bathroom
7:00	02/25	Monday	Bathroom	Kitchen
7:30	02/25	Monday	Kitchen	Garage
17:30	02/25	Monday	Garage	Kitchen
18:00	02/25	Monday	Kitchen	Bedroom
18:10	02/25	Monday	Bedroom	Living room
22:00	02/25	Monday	Living room	Bathroom
22:10	02/25	Monday	Bathroom	Bedroom
6:30	02/26	Tuesday	Bedroom	Bathroom

Mearest Neighbor Example: Inhabitant Location

Training Instances (with concept):

```
((Bedroom, 6:30), Bathroom), ((Bathroom, 7:00), Kitchen), ((Kitchen, 7:30), Garage), ((Garage, 17:30), Kitchen), ...
```

Similarity Metric:

```
d((location_1, time_1), (location_2, time_2)) = 1000*(location_1 \neq location_2) + | time_1 - time_2 |
```

• Query Instance:

```
x_a = (Bedroom, 6:20)
```

Nearest Neighbor:

```
x_k = (Bedroom, 6:30) d(x_k, x_q) = 10
```

• Prediction $f(x_k)$:

Bathroom

Nearest Neighbor

Advantages

- Fast training (just store instances)
- Complex target functions
- No loss of information

Problems

- Slow at query time (have to evaluate all instances)
- Sensitive to correct choice of similarity metric
- Easily fooled by irrelevant attributes

Sequential Behavior Prediction

Problem

- Input: A sequence of states or events
 - States can be represented by their attributes inhabitant location, device status, etc.
 - Events can be raw observations
 Sensor readings, inhabitant input, etc.
- Output: Predicted next event
- Model of behavior has to be built based on past instances and be usable for future predictions.
- String matching algorithms
 - Deterministic best match
 - Probabilistic matching
- Markov Models
 - Markov Chains
 - Hidden Markov Models
- Dynamic Belief Networks

Markov Chain Models

- Markov chain models represent the event generating process probabilistically.
 - Markov models can be described by a tuple <S, T> representing states and transition probabilities.
 - Markov assumption: The current state contains all information about the past that is necessary to predict the probability of the next state.

$$P(x_{t+1}|x_t, x_{t-1}, ..., x_0) = P(x_{t+1}|x_t)$$

- Transitions correspond to events that occurred in the environment (inhabitant actions, etc)
- Prediction of next state (and event)

Markov Chain Example

- Example states:
 - S = {(Room, Time, Day, Previous Room)}
 - Transition probabilities can be calculated from training data by counting occurrences

Markov Models

- Advantages
 - Permits probabilistic predictions
 - Transition probabilities are easy to learn
 - Representation is easy to interpret
- Problems
 - State space has to have Markov property
 - State space selection is not automatic
 - States might have to include previous information
 - State attributes might not be observable

Partially Observable MMs

- Partially Observable Markov Models extend Markov models by permitting states to be only partially observable.
 - Systems can be represented by a tuple <S, T, O, V> where <S, T> is a Markov model and O, V are mapping observations about the state to probabilities of a given state
 - $O = \{o_i\}$ is the set of observations
 - V: V(x, o) = P(o | x)
- To determine a prediction the probability of being in any given state is computed

"HiddenMarkovModel" by Tdunningvectorization: Own work - Own work. Licensed under CC BY 3.0 via Wikimedia Commons

Hidden Markov Models

- Hidden Markov Models (HMM) provide mechanisms to learn the Markov Model <S, T> underlying a POMM from the sequence of observations.
 - Baum-Welch algorithm learns transition and observation probabilities as well as the state space (only the number of states has to be given)
 - Model learned is the one that is most likely to explain the observed training sequences

Partially Observable MMs

Advantages

- Permits optimal predictions
- HMM provide algorithms to learn the model
- In HMM, Markovian state space description has not to be known

Problems

- State space can be enormous
- Learning of HMM is generally very complex
- Computation of belief state is computationally expensive

Activity Recognition

Activity recognition aims to recognize the actions and goals of one or more agents from a series of observations on the agents' actions and the environmental conditions. (Wikipedia)

- Sensor-based
 - Single-user activity recognition
 - Multi-user activity recognition
 - Group activity recognition
- Vision-based activity recognition

Activity Hierarchy

http://de.slideshare.net/danielroggen/wearable-computing-part-iii-the-activity-recognition-chain-arc

- Plan Recognition
 - Challenges and research directions
- Prediction
 - Location Prediction
 - Activity Recognition
 - Vision-based activity recognition
 - Sensor-based activity recognition

CNRC