Marine :	• • • • • • •	******************	*********	*****			
Roll No	. :	••••••••	*********	•••••••			
Invigila	tor's	Signature :	******	•			
		CS/B.Tech (E	ie)/se	M-4/CS-404 (EI)/20	10		
		20	and the second of the		_		
	C	OMPUTER ORG ARCHIT					
Time A	llott e d	: 3 Hours		Full Marks : 7	' 0		
	T	he figures in the marg	jin indic	ate full marks.			
Candi	dates	are required to give t as far as		wers in their own word able.	5		
		GROU	P-A				
		(Multiple Choice	Type (uestions)			
1. Ch	100se	the correct alternativ	es for th	ne following: $10 \times 1 =$	10		
i)	Ho He:	w many bits are rexadecimal notation?	r e eded	to represent a digit	in		
	a)	8	b)	16			
	c)		d)	2.			
ii)	Ho pro	w many RAM chips ovide a memory capac	(each	128*4) are required 048 bytes?	to		
	a)	32	'b)	16			
	c)	8	d)	64.			
iii)	Pri	Principle of locality is justified in the use of					
	a)	Daisy chaining	b)	DMA			
	c)	Interrupts	d)	Cache memory.			
iv)	Rar usi	nge of values on a daing 2's complement re	tabus of present	an 8-bit microprocesse ation will be	ЭГ		
	a)	- 128 to + 128	b)	- 128 to + 127			
	c)	- 127 to + 128	d)	- 127 to + 127.			
1156				[Turn ov	er		
100							

CS/B.Tech (EIE)/SEM-4/CS-404 (EI)/2010

Bidirectional buses use

			(4) はいました しょうかん					
	b)	two tristate buffers	in casca	de				
	c)	tri-state buffers						
	d)	parallel		to back connected in				
vi)		many memory lo	cations	can be accessed by a				
	a)	64 kB	b)	32 kB				
	c)	4 GB	d)	None of these.				
vii)	Hig	hest speed Logic gat	e among	the following is				
ģ.	a)	TTL	b)	DTL				
	c)	RTL	d)	ECL.				
viii)	A, '1	A 'hit' is considered when						
	a)	word is found in c	ache					
	b)	b) word is not found in cache						
	c)	c) word is found in virtual memory						
	d)	word is not found	in virtua	l memory.				
ix)	Which one of the following is volatile in nature?							
	a)	ROM	b)	DVD-ROM				
· · ·	c)	CD-ROM	d)	RAM.				
x)	Using binary arithmetic, the unique representation of zero is							
	a)	Sign magnitude	b)	2's complement				
. 47	c)	. 1's complement	d)	none of these.				

CS/B.Tech (EIE)/SEM-4/CS-404 (EI)/2010

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. Explain an interrupt cycle with a flowchart.
- 3. What is the difference between hardwired control and microprogrammed control?
- 4. What is a multiprocessor? Write briefly about Harvard architecture.
- 5. With the help of a diagram explain clearly the structure and working of a typical arithmetic pipeline to perform: X * Y + Z.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

 $3\times15=45$

- 6. a) Show the bus connection with a CPU to connect four RAM chips of size 256 x 8 bits each and a ROM chip of 512 x 8 bit size. Assume the CPU has 8-bit data bus & 16-bit address bus. Clearly specify generation of chip select signals.
 - b) What is an instruction cycle? Describe the steps of instruction cycle with suitable diagram.
 - c) What are the advantages of interrupt-initiated I/O over programmed I/O. 6+6+3
- 7. a) What are the different types of DMA controllers and how do they function?
 - b) Briefly describe pipeline hazards.
 - c) What is the difference between a carry-look ahead adder and a ripple carry adder ?
 - d) What are the bottlenecks of von Neumaun concept?

5 + 5 + 3 + 2

[Turn over

CS/B.Tech (EIE)/SEM-4/CS-404 (EI)/2010

- 8. a) A hierarchical cache-main memory sub-system has the following specifications cache access time:
 - 50 ns, main memory access time 500 ns, 80% of memory request for read, hit ratio 0.9 for read access and write-through scheme is used.
 - i) Calculate the average access time of the memory system considering only memory read cycle.
 - ii) Calculate the average access time of the memory system both for read & write.
 - b) Explain clearly the procedure of virtual address translation into real address in a paged virtual memory system.
 - c) What is the difference between associative and setassociative mappings? 6+6+3
- 9. a) Using Booth's algorithm multiply (-3) and f (-5) upto five digits. Show every step.
 - b) Evaluate the following statement using zero address and two-address machines: $Z = (M + N)^*(P + Q)$.
 - c) Explain Flynn's classification with respect to computer architecture. 6+5+4
- 10. a) Design and describe the function of a control unit with block diagram for a typical computer having 16-bit instruction register.
 - b) Describe briefly the different addressing modes. 9+6