

Radioterapie

- lokální léčebná metoda, méně pokročilé nádory; paliativní léčba
- maximalizovat pravděpodobnost odstranění nádoru, minimalizovat pravděpodobnost vzniku komplikací
- dopravit do nádorového ložiska letální dávku, nepřekročit toleranční dávku okolních tkání
- přizpůsobit oblast předávané dávky podle tvaru ložiska
- frakcionace

Princip radioterapie

- Částice s velkou energií narazí na atom v buňce a předá mu svou energii, což většinou vede na vyražení atomu z molekuly
- Poškozené buňky umírají a jsou sami odstraněny tělem

Druhy radioterapie

Využití účinků ionizujícího záření na živou tkáň:

- záření Alfa (protony a lehké ionty) Hadronová terapie
- záření Beta (elektrony) radikální radioterapie
- záření Gama, X (fotony)

Druhy radioterapie

Klasické techniky radioterapie

- Brachyterapie
- Terapie externími či fotonovými svazky

Speciální techniky radioterapie

- Stereotaktická teleradioterapie a radiochirurgie
- Radioterapie pomocí hadronů
- Neutronová záchytová terapie na bóru (NBCT)

Brachyterapie (ozařování zblízka)

- brachy = řecky "malá vzdálenost"
- LDR malý dávkový příkon, dlouhá doba ozařování (10^{tky} hod.)
- > HDR velký dávkový příkon, krátká doba ozařování; afterloading
- je používáno u relativně malých a dobře přístupných nádorových ložisek
- zdroj záření se zavádí do bezprostřední blízkosti nádoru (např. do pochvy nebo do průdušek)
 nebo ve formě jehel či drátů přímo

do nádorového ložiska (např. do nádoru prsu nebo konečníku)

Brachyterapie

- zdokonalení představuje tzv. afterloading: do cílové oblasti či tělesné dutiny se nejprve přesně zavede kanyla; do ní se pak na stanovenou dobu zavádí vlastní zářič
- používají se zářiče: ⁶⁰Co, ¹³⁷Cs, ¹⁹²Ir (dříve i ²²⁶Ra - nevýhoda - vzniká Rn)
- zářiče mají tvar kuliček, jehel, nebo tub

Terapie externími fotonovými či elektronovými svazky

- Ozařuje se povrch pacienta.
- Přístroje:
 - Radionuklidové ozařovače (⁶⁰Co, ¹³⁷Cs)
 - Lineární urychlovač
- Využívá se radiosenzitivity tkání (míry pravděpodobnosti poškození po ozáření určitou dávkou).
- V praxi je obtížné najít přijatelnou dávku záření a radiosenzitivitu tkání, tak aby jsme dosáhli přijatelného poměru poškození zdravé a nemocné tkáně.
- Použití více svazků záření, které do pacienta vstupují z různých směrů a protínají se v jednom bodě (izocentru).

- Urychluje elektrony na jednotky až desítky MeV.
- e produkované LU interagují s terčíkem z těžkého kovu a produkují RTG (brzdné) záření, které je kolimováno a ozařuje lézi
- svazek e⁻ lze pomocí EM pole různě vychylovat ⇒ ozáření RTG zářením úzkým svazkem z mnoha stran ⇒ dovoluje ozáření nádoru větší dávkou

Lineární urychlovač

- K tvarování svazku se používá
 - stínění z kovu s nízkou teplotou tání
 - vícelistý kolimátor (MLC) je částí klinického lineárního urychlovače, která zastiňuje paprsky a tím umožní vytvoření různých tvarů radiačního pole.
- Filtr vytváří stejnou intenzitu (fluenci) záření v definované oblasti
- používá se typicky 6-10 svazků

Radioterapie svazky s modulovanou fluencí (IMRT)

- Vychází z předchozí technologie MLC.
- Umožňuje navíc vytvářet série nepravidelných subpolí s různou relativní vahou.

Stereotaktická radioterapie a radiochirurgie

- Extrémně vysoká terapeutická dávka záření
- Nutná vysoká přesnost ozáření
- Pacient musí být dobře fixován k přístroji
- Přístroje:
 - Leksellův gama nůž
 - Lineární urychlovač se speciálními kolimátory s válcovou aperturou či tzv. mikro-MLC (MLC s proměnnou a velmi malou šířkou lamel).

Laksellův gama nůž

Laksellův gama nůž

- **■** radionuklidový ozařovač
- **■** zdrojem gama záření je 201 URZ ⁶⁰Co
- technologie nahrazující klasickou operaci při odstraňování nitrolebních lézí (nádorů, cévních malformací)

Technologie

Leksellův gamma nůž se skládá ze tří hlavních komponent:

- 1) Radiační jednotka (ukrývající 201 zdrojů gama záření sbíhajících se do jednoho ohniska), se čtyřmi vyměnitelnými kolimačními helmicemi s kolimátory 4, 8, 14 a 18 mm a léčebným lůžkem.
- 2) Leksellův stereotaktický rám (Leksellův koordinátový rám)
- 3) Plánovací systém.

Postup aplikace LGN- mapování

V souladu s polohou stereotaktického rámu je pomocí metod CT, MRI, případně digitální subtrakční angiografie přesně stanovena lokalizace poranění (nádoru) a označeno místo a úhel průniku záření

Postup aplikace LGN-plánování

- Tvorba radiačního plánu na základě výsledků vyšetření pomocí zobrazovacích metod.
- Počítačová simulace

Postup aplikace LGN-léčba

Umístění pacienta do komory s kobaltovým zářičem, který emituje gama záření o vysoké energii přes kolimátorovou helmici s 201 zářiči ⁶⁰Co

Indikace LGN

Při rozhodování o "indikaci" LGN jsou brána tato hlediska:

- hloubka a nepřístupnost poranění (nádoru)
- v mozku (LGN umožňuje zásah v hloubce mozkové tkáně)
- přilehlost artérií a nervů a dalších struktur (LGN je přesný)
- citlivost tkáně k radioaktivnímu záření (okolní tkáň je vystavena minimální radiační zátěži)
- vyloučení rizika krvácení, infekcí a dalších post operativních komplikací
- krátká délka hospitalizace
- 70% ceny klasických neurochirurgických výkonů

Výkony k indikaci LGN

Cévní onemocnění:

Arterio-Venózní malformace

Nezhoubné nádory:

Akustický Neurom

Meningiom

Hypofýza

Šišinka mozková

Craniopharyngiom

Hemangioblastom

Nádory hlasivek

Zhoubné nádory:

Metastázy

Zhoubný chrupavkový nádor

Nádory oční

Hemangiopericytom

Funkční poruchy:

Úporné bolesti

Bolest trojklaného nervu

Parkinsonova nemoc

Psychoneurózy

Epilepsie

Radioterapie pomocí hadronů

- protony, lehké ionty
- U těžkých nabitých částic se dosahuje maxim deponované energie až hluboko v tkáni blízko max. dosahu částic.
- Proto lze dosáhnout podstatně vyšší konformity dávkové distribuce (šetření zdravé tkáně) s velmi malým počtem svazků
- Další výhoda těžkých nabitých částic je v radiobiologii díky vysokému LET (lineární přenos energie) mají výrazně vyšší radiobiologickou účinnost v oblasti maxima depozice energie – tzv. Braggova píku.
- Menší okysličení nádoru než u fotonů.

Technické požadavky HT

- dosah ve tkáni
 - nádory očí
 oblast hlavy a krku
 uvnitř těla
 2-3,5 cm
 2-10 cm
 2-25 cm
- potřebná maximální energie
 - protony 220-250 MeV ■ ionty až 400 MeV
- ozáření celého objemu
 - posun Braggova maxima (1-3 mm) filtry → kroky změny E (0,5-1 MeV)
 - aktivní scaning meandrovitý paprsek
- dávková rychlost → tok částic
- urychlovače
 - cyklotron (IBA, Accel)
 - synchrotron (PIMMS, PRAMES, Optivus)

Neutronová záchytová terapie na bóru (BNCT)

- Zdroj neutronů: reaktor nebo urychlovač nabitých částic.
- Používá se pro léčbu mozkových lézí.
- Substance s izotopem ¹⁰B pro vychytávání postižených tkání.
- Ozáření svazkem neutronů, dochází k (neutronovému záchytu) s jádrem bóru.
- Rozpad na ⁴He a jádro ⁷Li
- Energie je deponována přímo v postižené tkáni.
- Vysoká cenová a technická náročnost a problémy se selektivitou substance.

Plánování léčby

- Plánování léčby se provádí pomocí moderních výpočetních systémů.
- Plánovací systémy využívají radiodiagnostické metody.
- Tyto metody řídí počet použitých svazků ozařování, fluenci v bixelech, geometrii aktuálního svazku (úhel ramene urychlovače a úhel rotace stolu s pacientem)
- Simulace (ověření)
 - pomocí simulátoru (RTG, CT)
 - shodný stůl s ozařovacím, fixační pomůcky pacienta

Radioterapie – hledisko pacienta

- Ozařování po dobu 1 7 týdnů
- Jednou, ale vícekrát denně
- Mnoho vedlejších příznaků
 - nechutenství, zvýšená únava a nesoustředěnost
 - na kůži se objevuje zarudnutí nebo svědivá vyrážka a po větší dávce puchýře nebo lehké mokvání kůže
 - v ozářené oblasti mizí ochlupení a vlasy

Radioterapie - přístroje Klinický urychlovač

