

Team IVA – John Stephen, Jeremiah Lewis, Akbar Khader, Andreas Bruenner

Driver Assistance System using Intelligent Video Analytics on the Edge

Agenda

- Roles & Responsibilities
- Project Background and Context
- Project Goal
- Intelligent Video Analytics Pipeline
- System Platform and Development
- Results
- Outlook

Roles & Responsibilities

	John Stephen	Jeremiah Lewis	Akbar Khader	Andreas Bruenner
Project Management	X			X
Ideation / Concept				X
Technical Writing	X	X	X	X
Data Analysis	Х	Х	Х	Х
System Development (HW / SW)				X
Data Acquisition		Х		Х
Testing				x

Why this project?

Project Background and Context

Global Context

According to the WHO

*(World Health Organization, 2021 and 2022)

- around 1.3 Mio people die and
- around 50 Mio people

are injured every year from traffic accidents.

- 93% of the world's fatalities are happening in lowand middle-income countries.
- Those countries, however, only account for around 60% of the world's vehicles.
- Road traffic crashes are estimated to cost most countries 3% of their GDP.

Distracted Driving

Distracted driving is caused by

- Attending children in the backseat.
- Interacting with the car's onboard system.
- Cell phone use.
- Etc.

Results often in traffic accidents due to

- Reduced reaction times.
- Overlooking other traffic participants .
- Inability to keep sufficient distance from. proceeding cars.
- Inability to keep the correct lane.

US Context

According to the Department of Transportation

*(Department of Transportation, Washington, DC: NHTSA, 2021)

Distracted driving in 2019 accounted for

- 9% of all fatal and
- 15% of all injury crashes of all police-reported motor vehicle accidents.
- Economic damages of around \$129 billion.
- 43,000 people being killed.
- Trend is worsening.

Project Goal

Project Goal

- Contribute to the WHO's target of halving the global number of deaths and injuries caused by traffic accidents by 2030.
- Provide an Advanced Driver Assistance System (ADAS), which is
 - Affordable (to also tackle the problem in lowand middle-income countries)
 - Vehicle vendor- and model-agnostic
 - Supported in cars, vans, and light trucks.
- The system's purpose in its first version is the realtime detection of prolonged distracted driving and raising an alarm to refocus driver.

Scenarios to consider (1/3)

The driver looks away from the road (down) for a prolonged period.

Scenarios to consider (2/3)

The driver has his eyes closed for a prolonged period.

Scenarios to consider (3/3)

Passengers in the backseat need to be ignored to avoid false detections.

Video Pipeline and Needed Components

Intelligent Video Analytics

Generic Video Pipeline and Components

Required Al Inference Components

- The pipeline and especially the Al Inference to track gaze can be configured in many ways.
- We needed at the very least:
 - Face detection
 - Facial landmark detection
 - Left and right eye detection
 - Head pose estimation
 - Gaze estimation

SW and HW Choices

System Platform

OpenVINO and Edge AI Development

Detector Initialization

NVIDIA Jetson Orin NX Developer Board

IMX219-77 Camera

- Sensor:
 - Sony IMX219
- Resolution:
 - 8 Megapixels
- Supported resolutions:
 - 1280 x 720 to 3280 x 2464
- min 30 FPS
- Angle of View (diagonal):
 - ~80 degrees
- Dimension
 - 25mm x 24 mm

Power Supply

Li-Ion Battery and backplate to provide 12V to the NVIDIA Jetson Orin.

Fully Assembled System

Car installation

Performance on the Edge and Accuracy

Results

Performance (1/3)

Benchmark results to the right consider only the pure Al component inference performance.

The benchmark used **random data** as input.

Results show the average frame rate in FPS over a duration of 60 seconds.

Performance (2/3)

Benchmark results to the right consider only the pure Al component inference performance.

The benchmark used **sample images captured by the ADAS** as input.

Results show the average frame rate in FPS over a duration of 60 seconds.

Performance (3/3)

Benchmark of the entire video pipeline, i.e., all AI and non-AI components.

This benchmark shows the actual video pipeline / system performance using a **video stream** as input.

Results to the right show the average frame rate in FPS over 60 seconds.

Accuracy

- In addition to an accuracy evaluation common to neural networks we used visual debugging to evaluate accuracy on video streams.
- Those visual annotations are disabled before system roll-out to further increase system performance, since they require non-negligible compute resources.
- The following slides show the used annotations
 - Face bounding box
 - Facial landmarks annotations
 - Eyes bounding boxes
 - Estimated head pose angles
 - **Estimated Gaze angles**

Face Detector Annotation

Captured Image

Face Annotated with Bounding Box of Detected Face

Facial Landmarks Detector Annotation (1/2)

Captured Image

Face Annotated with Detected Landmarks

Facial Landmarks Detector Annotation (2/2)

Captured Image

Eyes Annotated with Bounding Boxes based on Landmarks

Head Pose Estimator Annotation

Captured Image

Face Annotated with Estimated Head Pose Angles

Gaze Estimator Annotation

Captured Image

Face Annotated with Estimated Gaze Angles

Non-Distracted Driving Scenes

Non-Distracted Driving (1/3)

- Sample shows the system's accurate gaze estimation
- With changing illuminations (bright sunlight and shadows)

Non-Distracted Driving (2/3)

- Sample shows the system's accurate gaze estimation
- While taking a right turn
- Looking to the right
- Looking down (below distracted driving threshold of 2 seconds)
- Looking straight ahead

Non-Distracted Driving (3/3)

- Sample shows the system's accurate gaze estimation
- While taking a **left turn**
- Looking to the left
- Looking down (very briefly)
- Looking straight ahead

Distracted
Driving Scenes

Distracted Driving (1/4)

- Sample shows a distracted driver exceeding the allowed distraction period <u>once</u> with a gaze.
- To the bottom right

Distracted Driving (2/4)

- Sample shows a distracted driver exceeding the allowed distraction period <u>twice</u> with a gaze
- First down then
- To the bottom right

Distracted Driving (3/4)

- Sample shows a distracted driver exceeding the allowed distraction period slightly <u>twice</u> with a gaze
- To the left

Distracted Driving (4/4)

- Sample shows a distracted driver exceeding the allowed distraction
- In a different illumination setting (bright)

Closed Eyes Driving Scenes

Closed Eyes (1/2)

Sample shows a distracted driver exceeding the allowed distraction period <u>twice</u>.

Closed Eyes (2/2)

Sample shows a distracted driver exceeding the allowed distraction period $\underline{\mathsf{twice}}$. Once for

- A prolonged period
- A brief period

The third times the eyes are closed is slightly below the allowed distracted period.

Possible Extensions to the System

Outlook

Optional Project Extension (1)

- Integrate a second video feed and a car object tracking model to determine whether a car is in front and if so what the distance to it is.
- Use the estimated distance to dynamically adjust the time of distraction needed to raise the alarm.

Optional Project Extension (2)

Cloud interoperability to

- Upload driver statistics e.g.; to insurance companies or
- Inform police / rescue in case of prolonged closed eyes (possible unconsciousness).

Thank you for your attention

