We say that random variables X and Y are **jointly continuous** if there exists a function f(x, y) defined for all $x, y \in \mathbb{R}$, such that

$$P((X,Y) \in A) = \iint_{(x,y)\in A} f(x,y) \, dx \, dy$$

for any region A in the xy-plane.

The function f(x, y) is called the **joint probability density function of** X and Y.

A bivariate function f is a **joint probability density function** of a pair of continuous random variables X and Y if its values satisfy

1.
$$f(x,y) \ge 0$$
 for all $x,y \in \mathbb{R}$.

$$2. \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \ dx \ dy = 1.$$

Example 3.5.6 Let

$$f(x,y) = \begin{cases} \frac{3}{5}x(y+x) & \text{for } 0 < x < 1, 0 < y < 2\\ 0 & \text{elsewhere} \end{cases}$$

- 1. Verify that f can serve as a probability density function for two jointly continuous random variables X and Y.
- 2. For $A = \{(x,y)|0 < X < \frac{1}{2}, 1 < Y < 2\}$ find $P((X,Y) \in A)$.
- 1) We see that $f(x, y) \ge 0$ for all 0 < x < 1, 0 < y < 2.

Next we integrate over the entire plane.

We see that

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \ dx \ dy = \int_{0}^{2} \int_{0}^{1} \frac{3}{5} x(y + x) \ dx \ dy$$

since f(x,y) = 0 for all other regions.

We proceed by integrating first with respect to x, treating y as constant:

$$\int_0^2 \left(\int_0^1 \frac{3}{5} (yx + x^2) \ dx \right) \ dy =$$

Finally integrate with respect to y.

$$\frac{3}{5} \int_0^2 \frac{y}{2} + \frac{1}{3} \, dy =$$

Therefore $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1$ as required.

2) For $A = \{(x,y)|0 < X < \frac{1}{2}, 1 < Y < 2\}$, therefore we have

$$P((X,Y) \in A) = \int_{1}^{2} \int_{0}^{\frac{1}{2}} \frac{3}{5} x(y+x) \, dx \, dy$$

_

If X and Y are jointly continuous random variables, with joint probability density f, the function given by

$$F(x,y) = P(X \le x, Y \le y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(s,t) \, ds \, dt$$

for $x, y \in \mathbb{R}$, is called the **joint cumulative distribution function** of X and Y (or simply the **joint distribution function**).

As with the discrete case we have that

1.
$$\lim_{x,y\to-\infty} F(x,y) = 0$$
,

2.
$$\lim_{x,y\to\infty} F(x,y) = 1$$
, and

3. If
$$a \le c$$
 and $b \le d$ then $F(a, b) \le F(c, d)$.

It also follows that $f(x,y) = \frac{\partial^2}{\partial x \partial y} F(x,y)$ is the joint probability density function.

Example 3.5.7 The joint probability density function of X and Y is given by

$$f(x,y) = \begin{cases} 4xy & \text{for } 0 < x < 3, 0 < y < \frac{1}{3} \\ 0 & \text{elsewhere} \end{cases}.$$

Find F(x,y).

To find $F(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(s,t) ds dt$ we must consider different regions in the plane where f(x,y) is defined.

If either x < 0 or y < 0 then f(x, y) = 0 and so F(x, y) = 0.

If 0 < x < 3 and $0 < y < \frac{1}{3}$ then

$$F(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(s,t) \, ds \, dt = \int_{0}^{y} \int_{0}^{x} 4st \, ds \, dt = x^{2}y^{2}.$$

If $x \ge 3$ and $0 < y < \frac{1}{3}$ then

$$F(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(s,t) \, ds \, dt = \int_{0}^{y} \int_{0}^{3} 4st \, ds \, dt = 9y^{2}.$$

If 0 < x < 3 and $y \ge \frac{1}{3}$ then

$$F(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(s,t) \, ds \, dt = \int_{0}^{\frac{1}{3}} \int_{0}^{x} 4st \, ds \, dt = \frac{x^{2}}{9}.$$

Finally if $x \geq 3$ and $y \geq \frac{1}{3}$ then

$$F(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(s,t) \, ds \, dt = \int_{0}^{\frac{1}{3}} \int_{0}^{3} 4st \, ds \, dt = 1.$$

In summary

$$F(x,y) = \begin{cases} 0 & \text{for } x < 0 \text{ or } y < 0 \\ x^2y^2 & \text{for } 0 < x < 3, 0 < y < \frac{1}{3} \\ 9y^2 & \text{for } x \ge 3, 0 < y < \frac{1}{3} \\ \frac{x^2}{9} & \text{for } 0 < x < 3, y \ge \frac{1}{3} \\ 1 & \text{for } x \ge 3, y \ge \frac{1}{3} \end{cases}.$$

Note that joint probability distributions/densities can be defined similarly for three or more random variables, but that is beyond the scope of this course.

3.5.1 Marginal Distributions

Returning to the caplet example, sum the rows and columns of the table of probabilities.

The column sums are the probabilities that X = 0, 1, 2 respectively, and the row sums are probabilities that Y = 0, 1, 2 respectively.

Therefore, the column totals are the probability distribution for X: for x = 0, 1, 2

$$g(x) = P(X = x) = \sum_{y=0}^{2} f(x, y),$$

and the row totals are the probability distribution for Y: for y = 0, 1, 2

$$h(y) = P(Y = y) = \sum_{x=0}^{2} f(x, y).$$

If X and Y are discrete random variables, and f(x, y) is their joint probability distribution, then the function

$$g(x) = \sum_{y} f(x, y)$$

is called the marginal distribution of X and the function

$$h(y) = \sum_{x} f(x, y)$$

is called the **marginal distribution of** Y. The sums are over all values of either y or x respectively.

If X and Y are jointly continuous random variables, and f(x, y) is their joint probability density function, then

$$g(x) = \int_{-\infty}^{\infty} f(x, y) \ dy$$

is called the **marginal density of** X and the function

$$h(y) = \int_{-\infty}^{\infty} f(x, y) \ dx$$

is called the **marginal density of** Y. These functions are defined for all $x \in \mathbb{R}$, $y \in \mathbb{R}$ respectively.

Example 3.5.8 Find the marginal densities of X and Y given their joint probability density

$$f(x,y) = \begin{cases} \frac{2}{3}(x+2y) & \text{for } 0 < x < 1, 0 < y < 1 \\ 0 & \text{elsewhere} \end{cases}$$

Marginal density of X:

$$g(x) = \int_{-\infty}^{\infty} f(x, y) \ dy = \int_{0}^{1} \frac{2}{3} (x + 2y) \ dy = \dots$$

Marginal density of Y:

$$h(y) = \int_{-\infty}^{\infty} f(x, y) \ dx = \int_{0}^{1} \frac{2}{3} (x + 2y) \ dx = \dots$$

Note that joint marginal distributions can be defined in the case of 3 or more random variables, and that is beyond the scope of this course too.

Example 3.5.9 A circular biathlor target for prone position has a diameter of 45mm. Suppose that each point on the target has equally likely probability of being hit by a shot.

Let (0,0) be the centre of the target, and define random variables X and Y, so that (X,Y) denotes the coordinates (in millimetres) of the shot fired.

The joint density function for X and Y is then, for some constant k,

$$f(x,y) = \begin{cases} k & for \ x^2 + y^2 \le (22.5)^2 \\ 0 & elsewhere \end{cases}$$

It follows that $k = \frac{1}{(22.5)^2\pi}$, so the integral of the joint density function equals 1 over the area of the circle.

To find the marginal density for X, integrate over all y values:

$$x^2 + y^2 \le (22.5)^2 \Rightarrow y^2 \le (22.5)^2 - x^2$$

$$\Rightarrow -\sqrt{(22.5)^2 - x^2} \le y \le \sqrt{(22.5)^2 - x^2}$$

Thus

$$g(x) = \int_{-\infty}^{\infty} f(x, y) \ dy = \int_{-\sqrt{(22.5)^2 - x^2}}^{\sqrt{(22.5)^2 - x^2}} \frac{1}{(22.5)^2 \pi} \ dy$$

The marginal density of X can be used to find the probability the shot will land any horizontal distance x from the centre, regardless of its vertical position.

Notice that g(x) is largest when x = 0 and gets smaller as x gets near the boundary of the target.

3.5.2 Conditional Distributions

Recall: Conditional probability of event A given event B:

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \qquad (P(B) \neq 0)$$

In terms of random variables: If A is the event X = x and B is the event Y = y then

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}.$$

For discrete random variables with joint probability distribution f(x,y) we have

$$P(X = x, Y = y) = \frac{f(x, y)}{h(y)},$$

where $h(y) \neq 0$ is the marginal distribution of Y.

If X and Y are discrete random variables with joint probability distribution f(x,y), and respective marginal distributions g(x) and h(y), the function

$$f(x|y) = \frac{f(x,y)}{h(y)}$$

is called the **conditional distribution of** X **given** Y = y, provided $h(y) \neq 0$. The function

$$f(y|x) = \frac{f(x,y)}{g(x)}$$

is called the **conditional distribution of** Y **given** X = x, provided $g(x) \neq 0$.

Example 3.5.10
$$y$$
 1 $\frac{x}{36}$ $\frac{12}{36}$ $\frac{3}{36}$ $\frac{21}{36}$ $\frac{14}{36}$ $\frac{1}{36}$ $\frac{1}{$

Caplet example: The conditional distribution of X given Y=1 is, $f(x|1)=\frac{f(x,1)}{h(1)}$.

Its values are:

$$f(0|1) = \frac{f(0,1)}{h(1)} = \dots$$

$$f(1|1) = \frac{f(1,1)}{h(1)} = \dots$$

$$f(2|1) = \dots$$

Conditional distribution for discrete random variables is extended to the idea of conditional density for jointly continuous random variables:

For jointly continuous random variables X and Y with joint density f(x, y), and marginal densities g(x) and h(y):

The function

$$f(x|y) = \frac{f(x,y)}{h(y)}$$

is called the **conditional density of** X **given** Y = y, provided $h(y) \neq 0$.

The function

$$f(y|x) = \frac{f(x,y)}{g(x)}$$

is called the **conditional density of** Y **given** X = x, provided $g(x) \neq 0$.

Example 3.5.11 Let X and Y be jointly continuous random variables with joint probability density given by

$$f(x,y) = \begin{cases} \frac{3}{5}x(y+x) & \text{for } 0 < x < 1, 0 < y < 2\\ 0 & \text{otherwise} \end{cases}$$

- (a) Find the conditional probability of Y given X = x.
- (b) Find P(0 < Y < 1|X = 0.75).

First we need the marginal density function for X:

$$g(x) = \int_{-\infty}^{\infty} f(x, y) \ dy = \int_{0}^{2} \frac{3}{5} x(y + x) \ dy = \dots$$

Thus $g(x) = \frac{6}{5}(x + x^2)$.

The conditional density function for 0 < x < 1, 0 < y < 2 is then

$$f(y|x) = \frac{f(x,y)}{g(x)} = \dots$$

Finally

$$P(0 < Y < 1|X = 0.75) = \int_0^1 f(y|0.75) \ dy =$$

Example 3.5.12 Let X and Y be jointly continuous random variables with joint probability density given by

$$f(x,y) = \begin{cases} 4xy & for \ 0 < x < 1, 0 < y < 1 \\ 0 & otherwise \end{cases}$$

Find
$$P(0 < X < 1 = 0.5 | Y = 0.5)$$
.

Just as we defined the concept of independent events, we may speak of independent random variables.

If random variables X and Y have joint probability distribution (or density) f(x, y) and marginal distributions (resp. densities) g(x) and h(y), then we say X and Y are **independent** if and only if

$$f(x,y) = g(x) \cdot h(y).$$

Example 3.5.13 Let X and Y be jointly continuous random variables with joint probability density function

$$f(x,y) = \begin{cases} 6e^{-2x}e^{-3y} & \text{for } 0 < x < \infty, 0 < y < \infty \\ 0 & \text{otherwise} \end{cases}$$

Show that X and Y are independent random variables.