Tutorial – Mathematics for Social Scientists

Winter semester 2024/25

Continuous distributions

To do

- Weekly recap
- Real world applications
- Hands on practice
- Questions

• Upcoming Deadline: 14.01.2024 – Assignment 3 | Probability

Chapter 11 | Continuous distributions

Continuous distributions — PDF and CDF

PDF

- 'function describing the smooth curve that connects the various probabilities of a specific values of a sample' ← Moore and Siegel, 2013
- density of the probability within range instead of the 'mass' of probability at a particular value

CDF

• the CDF of a real-valued RV X accumulates the probabilities of X being smaller than x when evaluated at x

Continuous distributions PDF and CDF

PDF

- consider an integral continuous analogue to 'sums'
- no area in a line so no probability assigned to RV taking on a specific value

$$f(x) \ge 0$$
, for all $x \in \mathbb{R}$
f is piecewise continuous
 $\int_{-\infty}^{\infty} f(x) dx = 1$
 $P(a \le X \le b) = \int_{a}^{b} f(x) dx$

CDF

- CDF is found by integrating the PDF
- PDF is found by differentiating the CDF
- the CDF is always non-decreasing

$$F(x) = \int_{-\infty}^{x} f(y) dy$$
 for $-\infty < x < \infty$

Why do we use y instead of x?

PDF and PMF – what's the difference?

PMF – Probability Mass Function

 individual spikes/peaks for countable # of events

PDF – Probability Density Function

one smooth function for pot. ∞
 # of events

Standard Normal Distribution $\mu = 1 \& sd = 3$

Some continuous distributions

We will not cover every distribution listed in the book in the tutorial. Therefore, you are required to read up on the leftovers in the book yourself.

Uniform distribution

The uniform distribution is a special case of the beta distribution, where $\alpha=1$ and $\beta=1$

 suited for scenarios where there's equal probability for all events in sample space

• PDF:
$$f(x|\alpha,\beta) = \begin{cases} \frac{1}{\beta-\alpha} & if \ x \in [\alpha,\beta] \\ 0 & otherwise \end{cases}$$

• mean =
$$\frac{a+b}{2}$$

• variance =
$$\frac{(b-a)^2}{12}$$

Uniform distribution

The uniform distribution is a special case of the beta distribution,

where $\alpha = 1$ and $\beta = 1$

• CDF:
$$F(x) = \begin{cases} 0 & \text{if } x < \alpha, \\ \frac{x-\alpha}{\beta-\alpha} & \text{if } x \in [\alpha, \beta], \\ 1 & \text{if } x > \beta. \end{cases}$$

Hands on – Uniform distribution

Task: Let X = [0, 60] be a random variable denoting minutes per hour. It is polling day and a person is travelling by bus to the polling station. Busses leave once every hour at the same time. Make a sketch!

- 1) find the probability that the person will have to wait fewer than 24 minutes!
- 2) find the probability that the person will have to wait between 20 and 40 minutes!
- 3) how long does the person have to wait on average?

Hints:

mean
$$=$$
 $\frac{a+b}{2}$ and $f(x|\alpha,\beta) = \begin{cases} \frac{1}{\beta-\alpha} & if \ x \in [\alpha,\beta] \\ 0 & otherwise \end{cases}$

Hands on – Uniform distribution

Solution: *X*= [0, 60]

1) find the probability that the person will have to wait fewer than 24 minutes!

$$P(X \le x) = \frac{1}{\beta - \alpha} \cdot x \rightarrow P(X \le 24) = \frac{1}{60 - 0} \cdot 24 = \frac{24}{60} \rightarrow \frac{24}{60} \cdot 100\% = 40\%$$

2) find the probability that the person will have to wait between 20 and 40 minutes!

$$P(20 \le x \le 40) = \frac{1}{60-0} \cdot 40 - \frac{1}{60-0} \cdot 20 = \frac{20}{60} \to \frac{20}{60} \cdot 100\% = 33,\overline{33}\%$$

3) how long does the person have to wait on average?

$$E[X] = \frac{\alpha + \beta}{2} \rightarrow E[X] = \frac{0 + 60}{2} = 30$$

→ the person will have to wait 30 minutes on average

The Normal distribution

One of the most used distributions among the Gaussian distribution family

 normality is a crucial assumption for most of our hypotheses tests!

• PDF:
$$f(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

• **CDF**: ... cannot be compared sensibly – we must standardize it!

Normal transformations

Standard normal distribution

- mean = 0
- variance = 1

• PDF:
$$f(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

• z-scores =
$$\frac{x-\mu}{\sigma}$$

- positive $\rightarrow x > \mu$
- negative $\rightarrow x < \mu$
- $z = \mu \rightarrow x = \mu$

log-normal distribution

- mean = $e^{(\mu + \frac{1}{2}\sigma^2)}$
- variance = $(e^{\sigma^2}-1) e^{2\mu+\sigma^2}$
- **PDF**: $f(x \mid \mu, \sigma^2) = \frac{1}{x\sqrt{2\pi\sigma^2}} e^{\frac{-(\ln(x) \mu)^2}{2\sigma^2}}$

- NOTE: $0 \le x \le \infty$
- useful for right-skewed and asymmetric data, e.g., income

Standard normal distribution — Z-tables

Example:
$$\frac{5.5-2}{5} = 0.7$$

- note: z is positive $\rightarrow x > \mu$
- we check the z-score for z = 0.7 and 0 df
- 75.8% of the distribution lie below X = 5.5
- → the blue-shaded area

TABLE	G.1 (C	ontinued)	
Z	0	1	2
-0.4	0.3446	0.3409	0.3372
-0.3	0.3821	0.3783	0.3745
-0.2	0.4207	0.4168	0.4129
-0.1	0.4602	0.4562	0.4522
-0.0	0.5000	0.4960	0.4920
0.0	0.5000	0.5040	0.5080
0.1	0.5398	0.5438	0.5478
0.2	0.5793	0.5832	0.5871
0.3	0.6179	0.6217	0.6255
0.4	0.6554	0.6591	0.6628
0.5	0.6915	0.6950	0.6985
0.6	0.7257	0.7291	0.7324
0.7	0.7580	0.7611	0.7642
0.8	0.7881	0.7910	0.7939
0.9	0.8159	0.8186	0.8212
1.0	0.8413	0.8438	0.8461
1.1	0.8643	0.8665	0.8686

Wooldridge, 2019 p. 832

Hands on – (Standard) normal distribution

Task: z-scores =
$$\frac{x-\mu}{\sigma}$$

- positive $\rightarrow x > \mu$
- negative $\rightarrow x < \mu$
- $z = \mu \rightarrow x = \mu$
- 1) Suppose, $\mu = 20$ and $\sigma = 5$, what is the percentage of the distribution that is above X = 30?
- 2) Find $P(Z \le 1.27)$, $P(0.82 \le X \le 1.27)$, $P(Z \ge 1.27)$

TABLE	G.1 (C	ontinued)								
Z	0	1	2	3	4	5	6	7	8	9
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
-0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

Wooldridge, 2019 p. 832

Hands on – (Standard) normal distribution

Solution: z-scores =
$$\frac{x-\mu}{\sigma}$$

1) Suppose, $\mu = 20$ and $\sigma = 5$, what is the percentage of the distribution that is above X = 30?

$$z = \frac{30-20}{5} = 2.00 \Rightarrow$$
 refer to Z-table to find $P(X \le 30) = 0.9772$
 $P(X \ge 30) = 1 - P(X \le 30) = 1 - 0.9772 = 0.0228 \Rightarrow 0.0228 \cdot 100\%$
 $= 2.28\%$

 \rightarrow 2.28% of the distribution are above X = 30

Hands on – (Standard) normal distribution

Solution: z-scores =
$$\frac{x-\mu}{\sigma}$$

$$P(Z \le 1.27) = 0.8980$$

$$P(0.82 \le X \le 1.27) = 0.8980 - 0.7939 = 0.1041$$

$$P(Z \le 0.82) = 0.7939$$

$$P(Z \ge 1.27) = 1 - 0.8980 = 0.1020$$

Central limit theorem — CLT

Regardless of the shape of a population's distribution, if the sample size n is large enough ($n \ge 30$) and there is finite variance, then...

- the distribution of the sample means will be approx. normal
- →shape of distribution of X becomes more bell-shaped and symmetric
- centre of the distribution of \bar{X} remains μ
- the spread of the distribution increases and it becomes more 'peaked'

Law of large numbers – LLN

The law of large numbers states that for an increasing number of trials, the sample average should approach the population average

- guarantee for long-term and stable results of random events
- necessary for statistical modelling
 remember asymptotic normality, efficiency and consistency from Statistics / RD II!

Exceptions:

- samples from Cauchy and some Pareto distributions (α <1) may not converge as n becomes increases!
- → often due to is heavy tails [Skewness... ©]

Real world applications – LLN & Diffusion

- diffusion is a process, in which different solutes get 'mixed'
- the solutes consist of singular molecules, which move through a container
 - at first the two solutes will not appear very mixed
 - → the molecules move through the container in random
 - but with more time, the solutes will become visibly more difficult to distinguish from each other fluctuations
 - →movement becomes more uniformly until the solutes have 'mixed'
- in reality, chemists can actually make predictions about diffusion behaviour

numbers,

https://en.wikipedia.org/wiki/Law

χ^2 distribution

The χ^2 distribution is another special case of the gamma distribution, where $\alpha = \frac{n}{2}$ and $\beta = 2$. It is used to test if categorical data are independent/significantly different from expectation

• PDF:
$$f(x|n) = \begin{cases} \frac{x^{\frac{n}{2-1}}e^{-\frac{x}{2}}}{\frac{\pi}{2^{\frac{n}{2}}}\Gamma(\frac{n}{2})} & for \ x \ge 0, \\ 0 & for \ x < 0 \end{cases}$$

- test statistic $\chi^2 = \sum_{i=1}^k \frac{(O_i E_i)^2}{E_i}$ mean of individual cells: $E_i = \frac{row \ r \ total \cdot column \ c \ total}{N}$

TABL	E G.4	Critical Values of	the Chi-Square Di	stribution
			Significance Leve	el
		.10	.05	.01
	1	2.71	3.84	6.63
	2	4.61	5.99	9.21
	3	6.25	7.81	11.34
	4	7.78	9.49	13.28
	5	9.24	11.07	15.09
	6	10.64	12.59	16.81
	7	12.02	14.07	18.48
	8	13.36	15.51	20.09
D	9	14.68	16.92	21.67
e	10	15.99	18.31	23.21
g	11	17.28	19.68	24.72
r e	12	18.55	21.03	26.22
e	13	19.81	22.36	27.69
S	14	21.06	23.68	29.14
0	15	22.31	25.00	30.58
f	16	23.54	26.30	32.00
F	17	24.77	27.59	33.41
r e	18	25.99	28.87	34.81
e	19	27.20	30.14	36.19
d	20	28.41	31.41	37.57
o m	21	29.62	32.67	38.93
	22	30.81	33.92	40.29
	23	32.01	35.17	41.64
	24	33.20	36.42	42.98
	25	34.38	37.65	44.31
	26	35.56	38.89	45.64
	27	36.74	40.11	46.96
	28	37.92	41.34	48.28
	29	39.09	42.56	49.59
	30	40.26	43.77	50.89

Wooldridge, 2019, p.837

Task: You hypothesize that participation in reafforestation projects depends on the Land (Bundesland) one lives in. Carry out a χ^2 -test for independence at the 95% significance level to test, if participation is independent from residence!

Land	Bavaria	Lower Saxony	Bremen	Ba-Wü	Hessen	Total
Participates	30	55	22	42	37	186
Does NOT participate	40	48	26	30	38	182
Total	70	103	48	72	75	368

Hints:	Land	Bavaria	Lower Saxony	Bremen	Ba-Wü	Hessen	Total
	Participates	30	55	22	42	37	186
	Does NOT participate	40	48	26	30	38	182
	Total	70	103	48	72	75	368

- find k and degrees of freedom = (r-1)(c-1) = df
- \rightarrow find critical value $\chi^2_{0.05}(df)$ for 95% significance level
- compute test-statistic TS χ^2 by computing the cell's means $E_i = \frac{row \ r \ total \cdot column \ c \ total}{N}$
- compare TS with $\chi^2_{0.05}(df)$
- $\Rightarrow \text{ if TS} > \chi_{0.05}^2 (df) \text{ we can reject the } H_0 \text{ and assume significant changes!} \qquad \chi^2 = \sum_{i=1}^k \frac{(O_i E_i)^2}{E_i}$

Solution:

- $(5-1)(2-1) = 4 \cdot 1 = 4 df$
- critical value: $\chi^2_{0.05}(4) = 9.49$
- compute E_i using $E_i = \frac{row \, r \, total \cdot column \, c \, total}{N}$

Land	Bavaria	Lower Saxony	Bremen	Ba-Wü	Hessen	Total
Participates	70 · 186	103 · 186	48 · 186	72 · 186	75 · 186	186
	368	368	368	368	368	
Does NOT	70 · 182	103 · 182	48 · 182	72 · 182	75 · 182	182
participate	368	368	368	368	368	
Total	70	103	48	72	75	368

Solution:

• TS
$$\chi^2 = \frac{(30-35.38)^2}{35.38} + \frac{(55-52.06)^2}{52.06} + \frac{(22-24.26)^2}{24.26} + \frac{(42-36.39)^2}{36.39} + \frac{(37-37.91)^2}{37.91} + \frac{(40-34.62)^2}{34.62} + \frac{(48-50.94)^2}{50.94} + \frac{(26-23.74)^2}{23.74} + \frac{(30-35.61)^2}{35.61} + \frac{(38-37.09)^2}{37.09} = 4.208383 \approx 4.21$$

•
$$\chi^2_{0.05}(4) = 9.49 > 4.21 = TS \chi^2$$

→ since our TS < 9.49 we fail to reject the null hypothesis – participation in reafforestation projects appears to be independent from one's Bundesland of residence.

t-Distribution

The t-distribution looks similar to the normal distribution but has thicker tails! This is useful for hypothesis testing under small sample sizes

• PDF:
$$f(x|n) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{n\pi}\Gamma(\frac{n}{2})} \left(1 + \frac{x^2}{n}\right)^{-\frac{n+1}{2}}$$

- test statistic:
 - one-sample t-test $t=\frac{X-\Delta}{SE(\widehat{\beta})} \text{ with } df=n-k-1 \text{ with k \# of variables}$
 - where Δ is the mean-difference postulated by Null-Hypothesis

Hands on - t-distribution

Task: Perform a two-tailed t-test to check, if the elasticity of nox is different from -1 at 95% significance level (Wooldridge, 2019, pp. 133)

Model:

$$\widehat{\log(price)} = 11.08 - .954 \log(nox) - .134 \log(dist) + .255 rooms - .052 stratio$$
(0.32) (.117) (.043) (.019) (.006)

 $n = 506, R^2 = .581.$

Hints:

- find *df*
- find t_{df}
- compute t and compare to t_{df}

•
$$t = \frac{X - \Delta}{SE(\widehat{\beta})}$$

				Significance Level		
1-Taile	ed:	.10	.05	.025	.01	.005
2-Taile	ed:	.20	.10	.05	.02	.01
	1	3.078	6.314	12.706	31.821	63.657
	2	1.886	2.920	4.303	6.965	9.925
	3	1.638	2.353	3.182	4.541	5.841
	4	1.533	2.132	2.776	3.747	4.604
	5	1.476	2.015	2.571	3.365	4.032
	6	1.440	1.943	2.447	3.143	3.707
	7	1.415	1.895	2.365	2.998	3.499
	8	1.397	1.860	2.306	2.896	3.355
	9	1.383	1.833	2.262	2.821	3.250
D	10	1.372	1.812	2.228	2.764	3.169
e	11	1.363	1.796	2.201	2.718	3.106
g	12	1.356	1.782	2.179	2.681	3.055
r	13	1.350	1.771	2.160	2.650	3.012
e	14	1.345	1.761	2.145	2.624	2.977
e	15	1.341	1.753	2.131	2.602	2.947
S	16	1.337	1.746	2.120	2.583	2.921
0	17	1.333	1.740	2.110	2.567	2.898
f	18	1.330	1.734	2.101	2.552	2.878
	19	1.328	1.729	2.093	2.539	2.861
F	20	1.325	1.725	2.086	2.528	2.845
r	21	1.323	1.721	2.080	2.518	2.831
e	22	1.321	1.717	2.074	2.508	2.819
e d	23	1.319	1.714	2.069	2.500	2.807
0	24	1.318	1.711	2.064	2.492	2.797
m	25	1.316	1.708	2.060	2.485	2.787
	26	1.315	1.706	2.056	2.479	2.779
	27	1.314	1.703	2.052	2.473	2.771
	28	1.313	1.701	2.048	2.467	2.763
	29	1.311	1.699	2.045	2.462	2.756
	30	1.310	1.697	2.042	2.457	2.750
	40	1.303	1.684	2.021	2.423	2.704
	60	1.296	1.671	2.000	2.390	2.660
	90	1.291	1.662	1.987	2.368	2.632
	120	1.289	1.658	1.980	2.358	2.617
		1.282	1.645	1.960	2.326	2.576

Wooldridge, 2019, p.833

Hands on - t-distribution

Solution: (Wooldridge, 2019, pp. 133)

$$\widehat{\log(price)} = 11.08 - .954 \log(nox) - .134 \log(dist) + .255 rooms - .052 stratio$$
(0.32) (.117) (.043) (.019) (.006)
$$n = 506, R^2 = .581.$$

- 1) find df = 506 4 1 = 501
- 2) find $t_{df} = 1.96$
- 3) compute and compare t with t_{df}

•
$$t = \frac{X - \Delta}{\sqrt{\sigma_X}} = \frac{-0.954 - (-1)}{0.117} = 0.393$$

•
$$t_{df} = 1.96 > t = 0.393$$

→ we fail to reject the Null-Hypothesis, the elasticity of nox is unlikely different from -1

TAB	LE G.2	Critical Values of the	ne <i>t</i> Distributio	n
				Significance Level
1-Taile		.10	.05	.025
2-Taile	ed:	.20	.10	.05
	1	3.078	6.314	12.706
	2	1.886	2.920	4.303
	3	1.638	2.353	3.182
	4	1.533	2.132	2.776
	5	1.476	2.015	2.571
	6	1.440	1.943	2.447
	7	1.415	1.895	2.365
	8	1.397	1.860	2.306
	9	1.383	1.833	2.262
D	10	1.372	1.812	2.228
e	11	1.363	1.796	2.201
g	12	1.356	1.782	2.179
r	13	1.350	1.771	2.160
e	14	1.345	1.761	2.145
e	15	1.341	1.753	2.131
S	16	1.337	1.746	2.120
0	17	1.333	1.740	2.110
f	18	1.330	1.734	2.101
	19	1.328	1.729	2.093
F	20	1.325	1.725	2.086
r	21	1.323	1.721	2.080
e e	22	1.321	1.717	2.074
d	23	1.319	1.714	2.069
0	24	1.318	1.711	2.064
m	25	1.316	1.708	2.060
	26	1.315	1.706	2.056
	27	1.314	1.703	2.052
	28	1.313	1.701	2.048
	29	1.311	1.699	2.045
	30	1.310	1.697	2.042
	40	1.303	1.684	2.021
	60	1.296	1.671	2.000
	90	1.291	1.662	1.987
	120	1.289	1.658	1.980
	00	1.282	1.645	1.960

F-Distribution

The ratio of two RV, each distributed according to a chi-squared distribution and scaled to respective degrees of freedom

→ used for hypothesis testing to test, if several variables are not jointly zero/insignificant

• **PDF**:
$$f(x|n_1,n_2) = \frac{\sqrt{\frac{(n_1 X)^{n_1} n_2^{n_2}}{(n_1 x + n_2)^{n_1 + n_2}}}}{x B\left(\frac{n_1}{2},\frac{n_2}{2}\right)}$$
 where $B(x|y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$ is the beta function

• test statistic:
$$F = \frac{\frac{SSR_r - SSR_{ur}}{q}}{\frac{SSR_{ur}}{(n-k-1)}}$$
 where

- $q = \text{numerator df} = df_r df_{ur}$ and
- $n-k-1 = \text{denominator df} = df_{ur}$

Hands on – F distribution

Task: Perform an F-test using these two models (Wooldridge, 2019, pp. 144)

unrestricted:
$$\widehat{\log(salary)} = 11.19 + .0689 \ years + .0126 \ gamesyr$$
 $(0.29) \ (.0121) \ (.0026)$ $+ .00098 \ bavg + .0144 \ hrunsyr + .0108 \ rbisyr$ $(.00110) \ (.0161) \ (.0072)$ $n = 353, \ SSR = 183.186, \ R^2 = .6278,$

restricted:
$$log(salary) = 11.22 + .0713 \ years + .0202 \ gamesyr$$

(.11) (.0125) (.0013)
 $n = 353, SSR = 198.311, R^2 = .5971.$

• test statistic:
$$F = \frac{\frac{SSR_r - SSR_{ur}}{q}}{\frac{SSR_{ur}}{(n-k-1)}}$$
 where

- $q = \text{numerator df} = df_r df_{ur}$ and
- $n-k-1 = \text{denominator df} = df_{ur}$

Numerator Degrees of Freedom											
		1	2	3	4	5	6	7	8	9	10
	10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98
	11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85
D	12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75
e n	13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67
0	14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60
m i	15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54
n	16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49
a t	17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45
0	18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41
Г	19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38
D	20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35
e	21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32
g r	22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30
e e	23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27
S	24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25
	25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24
o f	26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22
	27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25	2.20
F	28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19
e	29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	2.18
e d	30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16
0	40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08
m	60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99
	90	3.95	3.10	2.71	2.47	2.32	2.20	2.11	2.04	1.99	1.94
	120	3.92	3.07	2.68	2.45	2.29	2.17	2.09	2.02	1.96	1.91
	00	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83

Wooldridge, 2019, p.835

Hands on – F distribution

Solution: (Wooldridge, 2019, pp. 144)

1) compute numerator/denominator df!

$$n - k - 1 = 353 - 5 - 1 = 347$$

 $q = \# variables excluded = 3$

2) compute F statistic

$$F = \frac{\frac{198.311 - 183.186}{3}}{\frac{183.186}{347}} = \frac{198.311 - 183.186}{183.186} \cdot \frac{347}{3} \approx 9.55$$

3) find/compare to critical value

$$F_{0.05} = 2.60 < F = 9.55$$

→ we can reject the Null-Hypothesis, the set of variables appears to be jointly significant

					Num
		1	2	3	4
	10	4.96	4.10	3.71	3.48
	11	4.84	3.98	3.59	3.36
D	12	4.75	3.89	3.49	3.26
e n	13	4.67	3.81	3.41	3.18
0	14	4.60	3.74	3.34	3.11
m i	15	4.54	3.68	3.29	3.06
n	16	4.49	3.63	3.24	3.01
a t	17	4.45	3.59	3.20	2.96
0	18	4.41	3.55	3.16	2.93
r	19	4.38	3.52	3.13	2.90
D	20	4.35	3.49	3.10	2.87
e	21	4.32	3.47	3.07	2.84
g r	22	4.30	3.44	3.05	2.82
e e	23	4.28	3.42	3.03	2.80
S	24	4.26	3.40	3.01	2.78
	25	4.24	3.39	2.99	2.76
o f	26	4.23	3.37	2.98	2.74
	27	4.21	3.35	2.96	2.73
F	28	4.20	3.34	2.95	2.71
e	29	4.18	3.33	2.93	2.70
e d	30	4.17	3.32	2.92	2.69
0	40	4.08	3.23	2.84	2.61
m	60	4.00	3.15	2.76	2.53
	90	3.95	3.10	2.71	2.47
	120	3.92	3.07	2.68	2.45
	00	3.84	3.00	2.60	2.37

Wooldridge, 2019, p.835

Exponential distribution

The exponential distribution is a special case of the gamma distribution, where

$$\alpha = 1$$
 and $\beta = \frac{1}{\lambda}$
• PDF: $f(x|\lambda) = \lambda e^{-\lambda x}$

- CDF: $F(x|\lambda) = 1 e^{-\lambda x}$
- Moore & Siegel 2013: $f(x, \mu) = \frac{1}{\Pi} e^{-\frac{x}{\mu}}$
- →appropriate to model the time for a single outcome to occur if events occur independently and at a constant rate
 - e.g., storms, catastrophes, accidents... particle movement
- mean = $\frac{1}{\lambda}$
- $sd = \frac{1}{4}$

Hands on – exponential distribution

Task: If particles arrive independently at a counter at a rate of 1 per second, find the probability that a particle will arrive in 2 seconds?

$$f(x) = \lambda e^{-\lambda x}$$
 and $F(X) = 1 - e^{-\lambda x}$

Hints:

- find λ or μ
- find x!
- will you need to use the PDF or CDF?

Hands on – exponential distribution

Task: If particles arrive independently at a counter at a rate of 1 per second, find the probability that a particle will arrive in 2 seconds?

$$f(x) = \lambda e^{-\lambda x}$$
 and $F(X) = 1 - e^{-\lambda x}$

Hints:

- λ or μ = 1
- x = 2
- we are interested in the CDF!

• $F(2) = 1 - e^{(-1.2)} = 0.8646647 \approx 0.8647 \rightarrow 86.47\%$

Continuous and discrete distributions – A computational comparison

	Discrete distribution	Continuous distribution
Expected Value/ mean μ $E(X)$	$E[X] = \sum_{i} x_{i} \Pr(X = x_{i})$	$E[X] = \int_{-\infty}^{\infty} x f(x) dx$
Variance σ^2 $Var(X)$	$E[(X - \mu)^{2}] = \sum_{i} (x_{i} - \mu)^{2} \Pr(X = x_{i})$	$E[(X - \mu)^2] = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$
Example	A die is rolled twice	X has the following exponential distribution: $f(x) = \begin{cases} e^{-x} & x \geq 0 \\ 0, & x < 0 \end{cases}$ Another example: $f(x) = \begin{cases} 0.5x & 0 \leq x \leq 2 \\ 0 & elsewhere \end{cases}$

Hands on — 'Continuous' variance

Task: Let X have the PDF
$$f(x) = \begin{cases} 0.5x & 0 \le x \le 2 \\ 0 & elsewhere \end{cases}$$

- 1) What is E(X)?
- 2) What is Var[X]?

Hints:

- $E[X] = \int_{-\infty}^{\infty} x f(x) dx$
- $E[(X \mu)^2] = \int_{-\infty}^{\infty} (x \mu)^2 f(x) dx$

Hands on — 'Continuous' variance

Solution: What is E[X]?

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx$$

$$E[X] = \int_0^2 x f(x) dx$$
 \leftarrow start by plugging in the bounds

$$E[X] = \int_0^2 x 0.5x \, dx \qquad \leftarrow \text{plug in } f(x)$$

$$E[X] = \int_0^2 0.5x^2 dx$$
 \leftarrow simplify and integrate

$$E[X] = \frac{x^3}{6} \Big|_0^2 = \frac{2^3}{6} - \frac{0^3}{6} = \frac{8}{6} = \frac{4}{3} \quad \leftarrow \text{ evaluate antiderivative at bounds}$$

Hands on – 'Continuous' variance

Solution: What is Var[X]?

$$E[(X - \mu)^2] = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$$

$$Var[X] = \int_{0}^{2} (x - \mu)^2 f(x) dx \qquad \leftarrow \text{plug in bounds}$$

$$Var[X] = \int_{0}^{2} (x^2 - 2x\mu + \mu^2) 0.5x dx \qquad \leftarrow \text{plug in } f(x)$$

$$Var[X] = \int_{0}^{2} 0.5x^3 dx - \int_{0}^{2} x^2 \mu dx + \int_{0}^{2} 0.5x\mu^2 dx \qquad \leftarrow \text{FToC, simplify and solve}$$

$$Var[X] = \left[\frac{x^4}{8} - \frac{x^3}{3} \mu + \frac{x^2}{4} \mu^2 \right]_{0}^{2} = \left[0.125x^4 - 0.\overline{33}x^3 \mu + 0.25x^2 \mu^2 \right]_{0}^{2}$$

$$Var[X] = \frac{16}{8} - \frac{8}{3} \mu + \frac{4}{4} \mu^2 = \frac{16}{8} - \frac{8}{3} \cdot \frac{4}{3} + 1 \cdot \left(\frac{4}{3} \right)^2 = \frac{16}{8} - \frac{32}{9} + \frac{16}{9}$$

$$Var[X] = \frac{18}{9} - \frac{32}{9} + \frac{16}{9} = \frac{2}{9}$$

Hands on – 'Continuous' variance

Alternative solution: What is Var[X]? $\rightarrow E[X^2] - E[X]^2$

$$E[X^{2}] = \int_{0}^{2} x^{2} f(x) dx$$

$$E[X^{2}] = \int_{0}^{2} x^{2} 0.5x dx$$

$$E[X^{2}] = \int_{0}^{2} 0.5x^{3} dx$$

$$E[X^{2}] = \frac{x^{4}}{8}$$

$$E[X^{2}] = \frac{2^{4}}{8} - \frac{0^{4}}{8} = \frac{16}{8} = 2$$

$$E[X]^{2} = \left(\frac{4}{3}\right)^{2}$$

$$E[X^{2}] - E[X]^{2} = \frac{18}{9} - \frac{16}{9} = \frac{2}{9}$$

Time for your questions

- Any questions during the week?
 - joerdis.strack@uni-konstanz.de

