Práctica 2

Temas de clase:

- Elemento viga 1D (Ejemplos 1 y 2 y Ejercicio 3)
- Elemento viga para problemas 2D (Ejercicios 4 y 5)
- Primer ADINA
- Redacción de informe

EJEMPLO 1

$$\mathbf{k}^{(1)} = \frac{EI}{L^3} \begin{bmatrix} 12 & 6L & -12 & 6L \\ 6L & 4L^2 & -6L & 2L^2 \\ -12 & -6L & 12 & -6L \\ 6L & 2L^2 & -6L & 4L^2 \end{bmatrix}$$

$$v_2 \qquad v_3 \qquad v_3$$

Matriz global

$$\begin{cases}
F_{1y} \\
M_{1} \\
F_{2y} \\
M_{2} \\
F_{3y} \\
M_{3}
\end{cases} = \frac{EI}{L^{3}} \begin{bmatrix}
12 & 6L & -12 & 6L & 0 & 0 \\
6L & 4L^{2} & -6L & 2L^{2} & 0 & 0 \\
-12 & -6L & 12 + 12 & -6L + 6L & -12 & 6L \\
6L & 2L^{2} & -6L + 6L & 4L^{2} + 4L^{2} & -6L & 2L^{2} \\
0 & 0 & -12 & -6L & 12 & -6L \\
0 & 0 & 6L & 2L^{2} & -6L & 4L^{2}
\end{bmatrix}$$

Element 1 Element 2

Imposición de condiciones de vínculo

$$V_{1} = \phi_{1} = V_{3} = 0$$

$$\begin{bmatrix} F_{1y} \\ M_{1} \\ F_{2y} \\ M_{2} \\ F_{3y} \\ M_{3} \end{bmatrix} = E \begin{bmatrix} 12 & 6L & -12 & 6L & 0 & 0 \\ 6L & 4L^{2} & -6L & 2L^{2} & 0 & 0 \\ -12 & -6L & 12 + 12 & -6L + 6L & -12 & 6L \\ 6L & 2L^{2} & -6L + 6L & 4L^{2} + 4L^{2} & -6L & 2L^{2} \\ 0 & 0 & -12 & -6L & 12 & -6L \\ 0 & 0 & 6L & 2L^{2} & -6L & 4L^{2} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ v_{2} \\ \phi_{2} \\ 0 \\ \phi_{3} \end{bmatrix}$$

Sistema final

A partir de los valores en los grados de libertad y las funciones interpolantes podemos reconstruir la solución de Elementos Finitos del problema.

Con ella podemos obtener: Momentos, corte, tensiones y deformaciones.

EJEMPLO 2

Objetivo: Calcular deflexión del punto extremo

Datos y geometría

$$E = 210 \text{ GPa}, I = 2x10^{-4} \text{ m}^4$$

Discretización

V3 = -17.4419mm

Matrices locales y global

$$[K_{e}]^{(1)} = (EIL^{3})$$

$$\begin{bmatrix} 12 & 6L & -12 & 6L \\ 6L & 4L^{2} & -6L & 2L^{2} \\ -12 & -6L & 12 & -6L \\ 6L & 2L^{2} & -6L & 4L^{2} \end{bmatrix} \theta_{2}$$

$$\theta_{2}$$

$$\theta_{3}$$

$$\theta_{2}$$

$$\theta_{2}$$

$$\theta_{3}$$

$$\theta_{3}$$

$$\theta_{3}$$

$$\theta_{3}$$

$$\theta_{3}$$

$$\theta_{3}$$

$$\theta_{4}$$

$$\theta_{1}$$

$$\theta_{2}$$

$$\theta_{2}$$

$$\theta_{3}$$

$$\theta_{3}$$

$$\theta_{3}$$

$$\theta_{4}$$

$$\theta_{2}$$

$$\theta_{3}$$

$$\theta_{3}$$

$$\theta_{4}$$

$$\theta_{4}$$

$$\theta_{5}$$

$$\theta_{7}$$

$$\theta_{1}$$

$$\theta_{2}$$

$$\theta_{2}$$

$$\theta_{2}$$

$$\theta_{3}$$

$$\theta_{3}$$

$$\theta_{4}$$

$$\theta_{4}$$

$$\theta_{5}$$

$$\theta_{5}$$

$$\theta_{7}$$

$$\theta_{1}$$

$$\theta_{2}$$

$$\theta_{2}$$

$$\theta_{3}$$

$$\theta_{3}$$

$$\theta_{4}$$

$$\theta_{5}$$

$$\theta_{5}$$

$$\theta_{7}$$

$$\theta_{8}$$

$$\theta_{9}$$

$$\theta_{1}$$

$$\theta_{2}$$

$$\theta_{3}$$

$$\theta_{4}$$

$$\theta_{5}$$

$$\theta_{8}$$

Eliminación de reacciones de vínculo

$$v_1 = \theta_1 = 0$$

$$v_2 = 0$$

$$K_G = EI / (L^3) \begin{pmatrix} 8L^2 & -6L & 2L^2 \\ -6L & 12+K' & -6L \\ 2L^2 & -6L & 4L^2 \end{pmatrix}$$

$$V_4 = 0$$

Sistema final
$$\begin{bmatrix} 0 \\ -100 \\ 0 \end{bmatrix} = 15.55 \times 10^5 \begin{bmatrix} 72 & -18 & 18 \\ -18 & 12.1 & -18 \\ 18 & -18 & 36 \end{bmatrix} \begin{bmatrix} \theta_2 \\ v_3 \\ \theta_3 \end{bmatrix}$$

EJERCICIO 3

Objetivo:

- Calcular la pendiente en el punto B
- La deflexión y pendiente en el punto C con diferente número de elementos
- El desplazamiento en el punto medio entre B y C (sin colocar un nodo en el punto).

$$E = 210 \, \text{GPa}$$

$$c = 0.30 \text{ m}, I = 700 \cdot 10^{-6} \text{ m}^4$$

θB ≈ -0.0098

 $V((B+C)/2) \approx -37.0408$ mm

VC ≈ -83.2653 mm

EJERCICIO 4: Pórtico 2D

Resolver mediante elementos viga y obtener los siguientes resultados para los desplazamientos y el giro en el punto 2.

Determinar las solicitaciones en el punto medio entre 2 y 4.

Cargas nodales equivalentes para vigas

Table D-1 Single element equivalent joint forces f_0 for different types of loads

Positive	madal	faran		tiana
Positive	nogai	TOICE	conven	uons

	f_{1y}	m_1	Loading case	f_{2y}	m_2
1.	$\frac{-P}{2}$	$\frac{-PL}{8}$	L/2 P L/2	$\frac{-P}{2}$	<u>PL</u> 8
2.	$\frac{-Pb^2(L+2a)}{L^3}$	$\frac{-Pab^2}{L^2}$	$a \downarrow P$ b	$\frac{-Pa^2(L+2b)}{L^3}$	$\frac{Pa^2b}{L^2}$
3.	-P	$-\alpha(1-\alpha)PL$	$\begin{array}{c c} \alpha L & P & P \\ \hline & \alpha L & A \\ \hline & L & \end{array}$	-P	$\alpha(1-\alpha)PL$
4.	$\frac{-wL}{2}$	$\frac{-wL^2}{12}$	W L	$\frac{-wL}{2}$	$\frac{wL^2}{12}$
5.	$\frac{-7wL}{20}$	$\frac{-wL^2}{20}$	W L	$\frac{-3wL}{20}$	$\frac{wL^2}{30}$
6.	$\frac{-wL}{4}$	$\frac{-5wL^2}{96}$		$\frac{-wL}{4}$	$\frac{5wL^2}{96}$
7.	$\frac{-13wL}{32}$	$\frac{-11wL^2}{192}$		$\frac{-3wL}{32}$	$\frac{5wL^2}{192}$
8.	$\frac{-wL}{3}$	$\frac{-wL^2}{15}$	w (parabolic loading)	$\frac{-wL}{3}$	$\frac{wL^2}{15}$
9.	$\frac{-M(a^2 + b^2 - 4ab - L^2)}{L^3}$	$\frac{Mb(2a-b)}{L^2}$	a) ^M b	$\frac{M(a^2 + b^2 - 4ab - L^2)}{L^3}$	$\frac{Ma(2b-a)}{L^2}$

EJERCICIO 5: Pórtico 2D

Obtener cargas equivalentes aplicadas en D y B al remover la plataforma del modelo. Modelar la unión entre D y B con un elemento barra. Determinar la fuerza ejercida por el pistón y el desplazamiento vertical del punto E.

Considerar una sección rectangular de 10cm X 10cm de acero 1020 para las vigas y sección circular de 5cm de diámetro para el pistón y la barra. Medidas en cm.

