

Vellore Institute of Technology

(Deemed to be University under section 3 of UGC Act, 1956)

ABHINAV VIJAYAKUMAR 19BCE1311

CSE3506 – ESSENTIALS OF DATA ANALYTICS LAB-3

DR. LAKSHMI PATHI JAKKAMPUTI (L21 + L22)

Tasks for Week-3: Regression and Forecasting on Weather Data

Perform multi-regression and forecasting on weather related dataset "weatherHistory2016.csv"

Aim: To forecast the dependent variable temperature, based multiple independent variables.

Algorithm:

- **1.** Attach library forecast, dplyr, corrplot, tseries.
- **2.** Set working directory and read data.
- **3.** Check correlation of variable.
- **4.** Make multiple linear regression models.
- **5.** Choose the best fit model.
- **6.** Make a new dataset using the correlated variables only.
- 7. Formulate time series data.
- 8. Plot the time series data.
- **9.** Plot the acf and pacf graph.
- **10.** Perform the adf test, to determine the p value.
- **11.** Check for stationary values.
- **12.** Use auto ARIMA function to get the best fit model.
- **13.** Perform forecasting with 95% level confidence.
- 14. Plot the forecasted data.

Statistics:

Multivariate Regression:

Correlation Test:

a. Apparent Temperature

b. Humidity

```
> cor.test(a$Temperature..C.,a$Humidity)
```

Pearson's product-moment correlation

c. Wind Speed

Coefficients:

(Intercept)

a\$Humidity

a\$Visibility..km.

a\$Apparent.Temperature..C. 0.86288

```
d. Wind Bearing
     > cor.test(a$Temperature..C.,a$Wind.Bearing..degrees.)
             Pearson's product-moment correlation
     data: a$Temperature..C. and a$Wind.Bearing..degrees.
     t = 0.29656, df = 198, p-value = 0.7671
     alternative hypothesis: true correlation is not equal to 0
     95 percent confidence interval:
      -0.1180149 0.1593463
     sample estimates:
            cor
     0.02107109
e. Visibility
        > cor.test(a$Temperature..C.,a$Visibility..km.)
                Pearson's product-moment correlation
        data: a$Temperature..C. and a$Visibility..km.
        t = 7.2632, df = 198, p-value = 8.473e-12
        alternative hypothesis: true correlation is not equal to 0
        95 percent confidence interval:
         0.3416761 0.5616718
        sample estimates:
        0.4586739
Model Statistics:
    Call:
     lm(formula = a$Temperature..C. ~ a$Apparent.Temperature..C. +
        a$Humidity + a$Visibility..km.)
    Residuals:
                 1Q Median
                                 3Q
        Min
     -3.7773 -0.4679 0.1833 0.4463 2.8864
```

4.48121

-2.16871

-0.01307

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8756 on 196 degrees of freedom Multiple R-squared: 0.992, Adjusted R-squared: 0.9919 F-statistic: 8094 on 3 and 196 DF, p-value: < 2.2e-16

Estimate Std. Error t value Pr(>|t|)

0.01541 -0.848

0.45802 9.784 < 2e-16 ***

0.00846 101.993 < 2e-16 ***

0.46174 -4.697 4.96e-06 ***

❖ Forecasting:

Augmented Dickey-Fuller Test

data: data

Dickey-Fuller = -6.287, Lag order = 12, p-value = 0.01

alternative hypothesis: stationary

Best ARIMA Model:

Fitting models using approximations to speed things up...

ARIMA(2,0,2)(1,1,1)[24] with drift : Inf

ARIMA(0,0,0)(0,1,0)[24] with drift : 11466.33

ARIMA(1,0,0)(1,1,0)[24] with drift : 5676.337

ARIMA(0,0,1)(0,1,1)[24] with drift : 8977.075

ARIMA(0,0,0)(0,1,0)[24] : 11473.89

ARIMA(1,0,0)(0,1,0)[24] with drift : 6252.305

ARIMA(1,0,0)(2,1,0)[24] with drift : 5438.054

ARIMA(1,0,0)(2,1,1)[24] with drift : Inf

ARIMA(1,0,0)(1,1,1)[24] with drift : Inf

ARIMA(0,0,0)(2,1,0)[24] with drift : 11281.55

ARIMA(2,0,0)(2,1,0)[24] with drift : 5374.887

ARIMA(2,0,0)(1,1,0)[24] with drift : 5600.859

ARIMA(2,0,0)(2,1,1)[24] with drift : Inf

ARIMA(2,0,0)(1,1,1)[24] with drift : Inf

ARIMA(3,0,0)(2,1,0)[24] with drift : 5331.394

ARIMA(3,0,0)(1,1,0)[24] with drift : 5559.53

ARIMA(3,0,0)(2,1,1)[24] with drift : Inf

ARIMA(3,0,0)(1,1,1)[24] with drift : Inf

ARIMA(4,0,0)(2,1,0)[24] with drift : 5332.032

ARIMA(3,0,1)(2,1,0)[24] with drift : 5331.313

ARIMA(3,0,1)(1,1,0)[24] with drift : 5558.243

ARIMA(3,0,1)(2,1,1)[24] with drift : Inf

ARIMA(3,0,1)(1,1,1)[24] with drift : Inf

ARIMA(2,0,1)(2,1,0)[24] with drift : 5340.401

ARIMA(4,0,1)(2,1,0)[24] with drift : 5334.033

ARIMA(3,0,2)(2,1,0)[24] with drift : 5332.077

ARIMA(2,0,2)(2,1,0)[24] with drift : 5330.361

ARIMA(2,0,2)(1,1,0)[24] with drift : 5556.545

ARIMA(2,0,2)(2,1,1)[24] with drift : Inf

ARIMA(1,0,2)(2,1,0)[24] with drift : 5343.612

ARIMA(2,0,3)(2,1,0)[24] with drift : 5331.938

ARIMA(1,0,1)(2,1,0)[24] with drift : 5390.12

ARIMA(1,0,3)(2,1,0)[24] with drift : 5332.634

ARIMA(3,0,3)(2,1,0)[24] with drift : 5334.228

ARIMA(2,0,2)(2,1,0)[24] : 5329.467

ARIMA(2,0,2)(1,1,0)[24] : 5555.177

ARIMA(2,0,2)(2,1,1)[24] : Inf

ARIMA(2,0,2)(1,1,1)[24] : Inf

ARIMA(1,0,2)(2,1,0)[24] : 5342.563

ARIMA(2,0,1)(2,1,0)[24] : 5339.546

ARIMA(3,0,2)(2,1,0)[24] : 5331.22

ARIMA(2,0,3)(2,1,0)[24] : 5331.029

ARIMA(1,0,1)(2,1,0)[24] : 5388.923

ARIMA(1,0,3)(2,1,0)[24] : 5331.69

ARIMA(3,0,1)(2,1,0)[24] : 5330.489

ARIMA(3,0,3)(2,1,0)[24] : Inf

Now re-fitting the best model(s) without approximations...

ARIMA(2,0,2)(2,1,0)[24] : 5384.374

Best model: ARIMA(2,0,2)(2,1,0)[24]

Inference:

Multivariate Regression:

The best model was made after considering 3 variable which were highly correlated to the dependent variable and those variables were Apparent. Temperature (0.9955), Humidity (-0.733) and Visibility (0.458).


```
lm(formula = a$Temperature..C. ~ a$Apparent.Temperature..C. +
    a$Humidity + a$Visibility..km.)
Residuals:
            1Q Median
   Min
                            3Q
                                   Max
-3.7773 -0.4679 0.1833 0.4463 2.8864
Coefficients:
                          Estimate Std. Error t value Pr(>|t|)
                                                9.784 < 2e-16 ***
(Intercept)
                           4.48121
                                     0.45802
                                      0.00846 101.993 < 2e-16 ***
a$Apparent.Temperature..C. 0.86288
                                      0.46174 -4.697 4.96e-06 ***
a$Humidity
                          -2.16871
                                      0.01541 -0.848
                          -0.01307
a$Visibility..km.
                                                         0.397
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.8756 on 196 degrees of freedom
Multiple R-squared: 0.992,
                             Adjusted R-squared: 0.9919
F-statistic: 8094 on 3 and 196 DF, p-value: < 2.2e-16
```

❖ Forecasting:

Best ARIMA Model:

ARIMA(2,0,2)(2,1,0)[24] : 5384.374

Best model: ARIMA(2,0,2)(2,1,0)[24]

Accuracy of the Model:

> accuracy(model)

ME RMSE MAE MPE MAPE MASE ACF1
Training set 0.01742321 0.8309363 0.6157592 NaN Inf 0.2180051 0.0008098431

Forecast for 1 day:

Point	Forecast	Lo 95	Hi 95
17166.04	11.248803 9.	.60890098	3 12.88871
17166.08	10.731641 8.	.28507274	13.17821
17166.12	10.136301 6.	.97240528	3 13.30020
17166.17	9.559795 5.8	80095929	13.31863
17166.21	8.281384 4.0	03549680	12.52727
17166.25	8.287412 3.6	64185058	12.93297
17166.29	10.885030 5.	.90918055	5 15.86088
17166.33	13.721924 8.	.47093588	3 18.97291
17166.38	15.721102 10).2391777	9 21.20303
17166.42	17.608383 11	93132980	0 23.28544
17166.46	19.327787 13	3.4849233 [°]	7 25.17065
17166.50	19.884300 13	3.89986870	0 25.86873
17166.54	20.491771 14	1.3859932	2 26.59755
17166.58	20.578257 14	1.3681242	2 26.78839
17166.62	19.558943 13	3.2588205	5 25.85906
17166.67	19.521777 13	3.1438778	0 25.89968
17166.71	18.510491 12	2.0652414	0 24.95574
17166.75	15.073873 8.	.57020882	2 21.57754
17166.79	13.978204 7.	.42380488	3 20.53260
17166.83	13.325428 6.	.72691417	19.92394

17166.88	13.118927 6.48201677 19.75584
17166.92	12.649515 5.97915833 19.31987
17166.96	11.722233 5.02272037 18.42175
17167.00	11.328230 4.60328548 18.05318

Plotting the data time series

Autocorrelation(acf)

Partial acf

Plotting the forecast

Program:

i) Multivariate Regression:

```
setwd("C:/Users/Abhinav Vijayakumar/Desktop/VIT Academics/Sem 6/Essentials of
Data Analytics/LAB/LAB 3")
dff=read.csv("weatherHistory2016.csv")
head(dff)
library(dplyr)
library(GGally)
a=sample n(dff,200)
head(a)
cor.test(a$Temperature..C.,a$Apparent.Temperature..C.)
cor.test(a$Temperature..C.,a$Humidity)
cor.test(a$Temperature..C.,a$Wind.Speed..km.h.)
cor.test(a$Temperature..C.,a$Wind.Bearing..degrees.)
cor.test(a$Temperature..C.,a$Pressure..millibars.)
cor.test(a$Temperature..C.,a$Visibility..km.)
cor.test(a$Temperature..C.,a$Loud.Cover)
ggcorr(a %>% mutate if(is.factor, as.numeric), label = TRUE)
lmodel=lm(a$Temperature..C.~a$Apparent.Temperature..C.+a$Humidity+a$Visibility.
.km.)
summary(lmodel)
plot(lmodel)
```

ii) Forecast:

```
plot(data)
acf(data)
pacf(data)
adf.test(data)
model=auto.arima(data,ic="aic",trace=TRUE)
f=forecast(model,level=c(95),h=720)
f
plot(f)
accuracy(model)
```