S-(LOWERE	A PROPAGID INSUES SUPERIES ED LE SAMBIO DE LA COMPAGNICIONE DEL LA COMPAGNICIONE			
Patent Number:	<u> EP0480071, A4, B1</u>			
Publication date: Inventor(s):	1992-04-15			
Applicant(s): Requested Patent:	OGATA KAZUMI (JP); SAKAUE TAKAHIRO (JP); OHMORI SHINJIO (JP) SENJU PHARMA CO (JP)			
	EP19910908790 19910426 JP19900112260 19900426; WO1991JP00581 19910426 A61K37/02; C07K1/02; C07K5/02			
IPC Classification: EC Classification:	A61K37/02; C07K1/02; C07K5/02 C07K5/02F			
Equivalents:	CA2060209, CA2060210, DE69122466D, DE69122466T, DE69122831D, DE69122831T, DE69123428D, DE69123428T, <u>EP0480060</u> , <u>A4</u> , <u>B1</u> , ES2092565T, ES2093098T, ES2095317T, KR9702904, KR9702905, KR9708108, <u>US5232913</u> , <u>US5274177</u> , <u>WO9116065</u> , <u>WO9116337</u> , <u>WO9116338</u>			
Cited Documents:	EP0469156			
Abstract				
Data supplied from the esp@cenet database - I2				

⁽¹⁹⁾ RU ⁽¹¹⁾ 2 046 798 ⁽¹³⁾ C1

 $^{(61)}$ MR 6 C 07 K 5/093//A 61 K 38/06

принимает значения, указанные выше для R_3 , продукт взаимодействия, в случае

амидируют. 2 с. и 9 з. п. ф-лы, 1 табл.

этерифицируют

необходимости,

 α

РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

низший алкил; R₄- аминогруппа, низшая

замещенная фенилом, гидроксигруппой, п 0

незамещенная

алкоксигруппа,

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ (21), (22) Заявка: 5011089/04, 25.04.1991 (71) Заявитель: Сендзю Фармасьютикал Ко., Лтд. (JP) (30) Приоритет: 26.04.1990 ЈР 112260/90 (72) Изобретатель: Синдзи Охмори[JP], (46) Дата публикации: 27.10.1995 Казуми Огата[JP], Такахиро Сакауе[JP] (56) Ссылки: 1. Патент США N 4940713, кл. C 07D (73) Патентообладатель: 239/49, опубл. 1987.2. J. Holmgren и др. J. Сендзю Фармасьютикал Ко., Лтд. (JP) Biolog Chemistry, 254, c.3664 - 3678, 1979, N 93. Патент WO 91/12262, кл. С 07К 5/02, опубл. 15.02.1991. (86) Заявка РСТ: ∞ PCT/JP 91/00570 (25.04.91) တ (54) ПРОИЗВОДНЫЕ ГЛЮТАТИОН-S-НИЗШЕЙ ЖИРНОЙ КИСЛОТЫ И СПОСОБ ИХ ПОЛУЧЕНИЯ ဖ (57) Реферат: или 1 и способ их получения. Реагент І: Использование: в медицине. Сущность глютатион, реагент ІІ: органическая 4 изобретения: производные монокарбоновая кислота или ее сложный глютатион-S-низшей жирной кислоты общей эфир или амид: R2-A-COOH, A COOH, где A формулы: двухвалентная группа, выбранная из: HOOC-CH(NH 2)-(CH2)2 CO-NH-CH(CONHVH2 -CH=CR $_3$ или (CH $_2$ X) $_n$ -CHX, где $_1$ 0 или 1, COOR₁) CH₂-S-(CHR₂)_n-CHR₃-COR₄, где причем если n 0, X галоид; если n 1, из R ₁-H; R₂-H, низший алкил; фенил; R₃-H, радикалов X является галогеном, а другой

(19) RU (11) 2 046 798 (13) C1 (51) Int. Cl. 6 C 07 K 5/093//A 61 K 38/06

RUSSIAN AGENCY FOR PATENTS AND TRADEMARKS

(12) ABSTRACT OF INVENTION

- (21), (22) Application: 5011089/04, 25.04.1991
- (30) Priority: 26.04.1990 JP 112260/90
- (46) Date of publication: 27.10.1995
- (86) PCT application: JP 91/00570 (25.04.91)

- (71) Applicant: Sendzju Farmas'jutikal Ko., Ltd. (JP)
- (72) Inventor: Sindzi Okhmori[JP],
 Kazumi Ogata[JP], Takakhiro Sakaue[JP]
- (73) Proprietor: Sendzju Farmas'jutikal Ko., Ltd. (JP)

(54) DERIVATIVES OF GLUTATHIONE-S-LOWER SATURATED ACID AND A METHOD OF THEIR SYNTHESIS

(57) Abstract:
FIELD: organic chemistry. SUBSTANCE:
product: derivatives of glutathione-S-lower
saturated acid of the general formula

co-NH-ch(conHvH $_2$ coor $_1$)ch $_2$ -s-(chr $_2$) $_n$ -chr $_3$ -cor $_4$ where R $_1$ H; R $_2$ H, lower alkyl, phenyl; R $_3$ H, lower alkyl; R $_4$ amino-group, lower alkoxy-group which can be substituted with phenyl, hydroxy-group; n 0 or 1. Reagent 1:

glutathione. Reagent 2: organic monocarboxylic acid or its ester or amide: R_2 A COOH where A divalent group taken from: -CH=CR $_3$ or -(CH $_2$ X) $_n$ -CHX where n 0 or 1; if n 0 then X halogen; if n 1 then one of radicals X is halogen and other has meanings indicated above for R_3 . Interaction product if necessary is esterified or amidated. Synthesized compounds were used in medicine. EFFECT: improved method of synthesis. 12 cl,

Изобретение относится к новому и полезному производному глютатион-S-низшей жирной кислоты и способу его получения.

Известно несколько производных глютатион-S-низшей жирной кислоты. Среди них из лука и чеснока выделен S-(2-карбоксипропил)-глютатион (Virtanen и Matikkala, 1960, Сузуки и др. 1961), однако имеется немного информации о его фармакологическом действии.

Производные глутатион-S-янтарной кислоты обладают способностью ингибировать агрегацию кровяных пластинок, противовоспалительным, антиаллергенным, противоопухолевым действиями и защитным для печени действием (японская патентная заявка Кокаі N 63-8337 и японская патентная заявка N 1-79956, N 1-183484, N 1-251534, N 1-256370 и N 2-36745).

В поиске еще более фармакологически активных соединений синтезировали самые различные новые глютатионовые производные и подвергли испытаниям как эти соединения, так и упомянутый S-(2-карбоксипропил)-глютатион для определения их фармакологической активности. В результате S-(2-карбоксипропил)-глютатион и ряд соединений, которые могут быть синтезированы реакцией глютатиона с альфа-, бета-ненасыщенной жирной кислотой, в частности с акриловой, метакриловой, кротоновой и коричной кислотами и тому или с альфа-(или бета)-галоидированной органической монокарбоновой кислотой, в частности с монохлоруксусной кислотой, или ее сложным эфиром или амидом, обладают превосходным антигепатопатическим действием.

Изобретение относится к соединению формулы

$${}^{\text{CH-CO-NHCH}}_{2}{}^{\text{COOR}}_{1}$$
 где ${\mathsf{R}}^{1}$ водородный ${}^{\text{CH}}_{2}{}^{-{\mathsf{S-CCH}}}_{1}{}^{-{\mathsf{CH-COR}}}_{1}$ ${}^{\mathsf{R}}_{2}{}^{\mathsf{R}}_{3}$

атом; R^3 водородный атом или низшая алкильная группа; R^4 низшая алкоксигруппа, которая может быть замещенной, фенилом, гидроксигруппой, или аминогруппа; п обозначает 0 или 1; R^2 обозначает водородный атом, низшую алкильную группу или фенильную группу

В том случае, когда R³ в формуле /// служит для обозначения низшей алкильной группы, то такая алкильная группа должна содержать от 1 до 6 углеродных атомов. В качестве примера можно упомянуть метил, этил, н-пропил, изопропил, циклопропил, н-бутил, трет, бутил, вторбутил, н-пентил, 1-этилпропил, изопентил.

В дальнейшем при ссылке на вышеприведенную формулу /// имеются в виду соединения, у которых n=1, а R ² водородный атом, низшая алкильная группа или фенильная группа.

Далее в формуле R⁴ низшая алкоксигруппа или аминогруппа. Помимо прочих к низшим алкоксигруппам относятся метокси-, этокси-, пропокси-, изопропокси-, н-бутокси-, изобутокси-, втор бутокси-, трет бутокси, н-пентилокси-, изопентилокси-.

трет. пентилокси-, неопентилокси-, 2-метилбутокси-1,2-диметилпропокси-, 1-этилпропокси-группы и тому подобное. Низшая алкоксигруппа может содержать гидроксильную группу или циклическую группу, в частности фенил.

Среди соединений формулы (I) соединение, у которого n=1, каждый из R^{-1} и R^{-2} водородный атом R^{-3} метил, а R^{-4} гидроксил, является известным, его можно экстрагировать из лука или чеснока или синтезировать химическим путем в соответствии с методом (Journal of Agricultural and Food Chemisth, 37, 611, 1989).

Соединение предлагаемого изобретения может быть химически синтезировано следующим образом. Предлагаемое соединение может быть получено реакцией глютатиона с органической монокарбоновой кислотой, отвечающей нижеследующей формуле, или ее эфиром или амидом: R²-A СООН /III/, где R² водородный атом, низшая алкильная группа; символом А обозначена двухвалентная группа, отвечающая формуле -CH=C -, где R³ водородный атом или низшая

алкильная группа, или формуле $-(c H)_n - c H_-$

где п обозначает 0 или 1, причем в том случае, когда n-0, один из двух символов X обозначает атом галогена, а другим Х обозначена та же сама группа, что и R3, и последующей, если необходимо, этерификацией амилированием или полученного соединения. Примерами соединений, отвечающих формуле /Ⅱ/, могут служить альфа-, бета-ненасыщенная жирная кислота, в частности акриловая, метакриловая, кротоновая, коричная и альфа-(или бета) -галоидированная органическая кислоты, в частности монохлоруксусная кислота. Более конкретно проводят реакцию глютатиона в воде или водной среде с альфа-, бета-ненасыщенной кислотой, например с акриловой, метакриловой. кротоновой, коричной кислотами и тому подобным, или С альфа-(или бета)-галоидированной органической монокарбоновой кислотой, в частности с

монохлоруксусной кислотой, или ее сложным эфиром или амидом, предпочтительнее при величине рН приблизительно от 4 до 8 и комнатной температуре или при умеренном нагревании с перемешиванием. Эта реакция без затруднений протекает до завершения. Реакционную смесь очищают хроматографической обработкой в колонке или перекристаллизацией из растворителя се такие соединения можно очистить посредством медной соли.

Поскольку большинство соединений, синтезированных в соответствии с вышеизложенным, содержат внутри молекулы асимметричный углеродный атом, могут встречаться также оптические изомеры, но могут быть использованы все такие оптически активные изомеры, а также их смеси.

Предлагаемая композиция эффективно ингибирует приступы острых и хронических заболеваний печени, подавляет повышение показателей глютаминовой

щавелевоуксусной трансаминазы (ГЩТ) и глютаминовой пировиноградной трансаминазы (ГПТ), поэтому она не только полезна для профилактики и лечения острых хронических гепатитов, но также эффективна при профилактике и лечении циррозов печени. Ее можно также с успехом использовать в случае расстройства функций печени, вызванной приемом лекарств, в частности ацетаминофена.

Предлагаемую антигепатоматическую композицию можно вводить в организм перорально или парентерально. Что касается дозированных препаратов, то ее можно готовить, например, в форме дозированных твердых препаратов, в частности таблеток. гранул, порошков, капсул и тому подобного, или в форме дозированных жидких препаратов, в частности лекарств для инъекций. Такие препараты могут быть приготовлены согласно традиционным фармацевтическим процедурам с учетом типа заболевания, которое необходимо вылечить. В состав таких препаратов можно вводить обычные добавки, в частности наполнитель, рассыпчатость, агент, придающий загуститель, диспергатор, ускоритель реабсорбции, корригент, буфер, поверхностно-активное вещество, сорастворитель, консервант, эмульгатор, изотонирующий агент, стабилизатор, агент, регулирующий величину рН, и тому подобное.

Доза предлагаемого активнодействующего вещества зависит от конкретного типа используемого соединения, заболевания возраста и веса пациента. дозированной формы препарата, показаний и тому подобного. В случае, например, препарата для инъекций в организм взрослых вводят по одной дозе приблизительно от 1 до 500 мг в день, а в случае препарата для перорального потребления предусмотрено введение в организм взрослых по несколько раз в день дозы приблизительно от 10 до

В зависимости от конкретных назначений и необходимости в лечении предлагаемая антигелатопатическая композиция может содержать такие активнодействующие соединения двух или более видов в соответствующих количествах, может дополнительно содержать другие активнодействующие компоненты, обладающие аналогичной эффективностью другой эффективностью соответствующих количествах.

Примерсинтеза 1. S-(2-метил-2-карбетоксиртил)-глютатион [каждый из R^1 и R^2 водородный атом. R 3-CH₃ R_4 OC₂H₅, [S-(2-карбетоксипропил)-глутатион]

 α

В 100 мл воды растворяют 6,2 г глютатиона и величину pH раствора добавлением 2 н. раствора гидрата окиси натрия доводят до 7. В этот раствор добавляют 4 мл этилметакрилата, и смесь перемешивают при комнатной температуре в течение 48 ч. После этого добавляют 4,4 г. ацетата меди и растворяют, а выпавшую в медную соль собирают фильтрованием и промывают водой. Эту медную соль суспендируют в 150 мл воды и через такую суспензию пропускают с перемешиванием пузырьки сероводорода, в результате чего в осадок выпадает сульфид меди. Этот сульфид меди отфильтровывают, и фильтрат концентрируют. Полученные белые кристаллы собирают фильтрованием и перекристаллизовывают из воды получением 4,5 г игловидных кристаллов с температурой плавления 193-194 °C (с разложением).

После тонкослойной хроматографической обработки на силикагеле R_f=0,28 [смесь н-бутанола с уксусной кислотой и водой в соотношении 4:1:1]

Данные элементарного анализа для C 16H27O8N3S:

Вычислено, С 45,60; Н 6,46; N 9,97 Найдено, С 45,33; Н 6,65; N 9,97.

Примерсинтеза 2. S-[(2-метил-2-карбетоксиэтил)]-глютатион $[{\mathsf R}^1$ и ${\mathsf R}^2$ водородные атомы; ${\mathsf R}^3$ - ${\mathsf C}{\mathsf H}_3$. R 4 OCH₂H₄OH, n=1]

С использованием 6,2 г глютатиона и 3,3 г 2-оксиэтилметакрилата повторяют процедуру примера синтеза 1, а полученную массу кристаллов перекристаллизовывают из смеси воды с этанолом, в результате чего получают 4,5 г белого кристаллического порошка с температурой плавления 173-175 °C (с разложением).

После тонкослойной хроматографической обработки на силикагеле R_f=0,19 [смесь н-бутанола с уксусной кислотой и водой в

соотношении 4:1:1]

Данные элементарного анализа для C 16H27O9N3S:

Вычислено, С 43,93; Н 6,22; N 9,60 Найдено, С 43,64; Н 6,09; N 9,72.

Примерсинтеза 3. S-(2-метил-2-карбамоилэтил)-глютатион [R 1 и R 2 водородные атомы, R 3 -CH $_3$, R 4 NH₂, n=1]

С использованием 6,2 г глютатиона и 4,0 г метакриламида повторяют процедуру примера синтеза 1, а полученную кристаллическую массу

перекристаллизовывают из смеси воды с этанолом, в результате чего получают 5.6 г белых кристаллов, температура плавления которых составляет 165-167 °C разложением). После тонкослойной хроматографической обработки силикагеле R_f=0,1 [смесь н-бутанола с уксусной кислотой и водой в соотношении 4:1:11

Данные элементарного анализа для C 14H24 O7N4S-1/ 2H2O:

Вычислено, С 41,89; Н 6,28; N 13,96 Найдено, С 41,65; Н 6,11; N 13,84.

Примерсинтеза 4. S-(2-карбетоксиэтил)-глютатион $[R^1=R^3=R^2]$ водородные атомы, R^4 OC₂HS,

n=1]

С использование 6,2 г глютатиона и 5 мл этакрилата повторяют процедуру примера синтеза 1, a образовавшуюся кристаллическую массу

перекристаллизовывают из воды получением 6,0 г белых кристаллов, которые плавятся при 194-195 °C (с разложением). После тонкослойной хроматографической обработки на силикагеле R_f=0,24 (смесь н-бутанола с уксусной кислотой и водой в соотношении 4:1:1).

 $[\alpha]^{20D}$ =22,8 (c=1, вода).

Данные элементарного анализа для C $_{15}\text{H}_{25}\text{O}_8\text{N}_3\text{S}$:

Вычислено, С 44,22; Н 6,18; N 10,31 Найдено, С 44,08; Н 6,36; N 10,46.

П р и м е р с и н т е з а 5. S-(-2-метил-2-карбобензоксиэтид)-глютатион [R^1 и R^2 водородные атомы, R^3 CH_3 , R^4 $OCH_2C_6H_5$, n=1]

Смесь 6,2 г глютатиона с 3,8 г бензилметакрилата перемешивают в водном растворителе (80 мл воды, 80 мл этанола) при комнатной температуре, 48 ч, а затем реакционную смесь концентрируют до объема приблизительно 40 мл. Остаток подкисляют уксусной кислотой, а образовавшийся белый кристаллический осадок выделили фильтрованием. Кристаллы растворяют в 2%-ном растворе бикарбоната натрия, подкисляют добавлением уксусной кислоты, после чего полученную кристаллическую белую массу собирают фильтрованием, промывают водой и этанолом и сущат.

Выход 4.5 г, температура плавления 191-192°С (с разложением).

После тонкослойной хроматографической обработки на силикагеле R_f =0,34 [смесь н-бутанола с уксусной кислотой и водой в соотношении 4:1:1]

Данные элементарного анализа для $C_{21}H_{29}O_8N_3S$:

Вычислено: С 52,16% Н 6,04% N 8,69% Найдено: С 51,98% Н 6,02% N 8,72%

П р и м е р с и н т е з а 6. S-(2-метил-2-карбоизобутоксиэтил)-глютатион [R^1 и R^2 водородные атомы, R^3 CH_{3^+} , R^4 OC_4H_5 , n=1]

С использованием 6,2 г глютатиона, 3,0 г изобутилметакрилата и 100 мл воды в смеси с 50 мл этанола в качестве растворителя повторяют процедуру примера синтеза 1, а образовавшуюся массу кристаллов перекристаллизовывают из воды с получение 4,0 г белых кристаллов, которые плавятся при 195-196°C (C разложением). тонкослойноной хроматографической обработки из силикагеля R _f=0,34 [смесь н-бутанола с уксусной кислотой и водой в соотношении 4: 1:1]

Данные элементарного анализа для $C_{18}H_{31}O_8N_3S$:

Вычислено, С 48,10; Н 6,9; N 9,35 Найдено, С 47,96; Н 6,82; N 9,37.

П р и м е р с и н т е з а 7. S-(1-метил-2-карбоизопропоксиэтил)-глютатио н [R^1 и R^3 водородный атом, R^2 CH₃, R^4 OC₃H₇, n=1]

С использованием 6,2 г глютатиона и 3,7 г изопропилкротоната повторяют процедуру примера синтеза 6, а образовавшуюся массу кристаллов перекристаллизовывают из воды с получением 3,2 г белых кристаллов, которые плавятся при 189-190 °С (с разложением). После тонкослойной хроматографической обработки на силикагеле R_f=0,27 [смесь н-бутанола с уксусной кислотой и водой в соотношении 4:1:11

Данные элементарного анализа для $C_{17}H_{29}O_8N_3S$:

Вычислено, С 46,89; Н 6,71; N 9,65. Найдено, С 46,66; Н 6,53; N 9,68. Примерсинтеза8. S-(1-фенил-2-карбетоксиэтил)-глютатион [R 1 и R 3 водородные атомы, R 2 C $_6{\rm H}_5,$ R 4 OC $_2{\rm H}_5,$ n=1]

С использованием 6,2 г глютатиона и 4,0 г этилциннамата повторяют процедуру примера синтеза 6 (с перемешиванием при комнатной температуре в течение приблизительно 7 дней), а образовавшуюся кристаллическую массу перекристаллизовывают из воды, получая 2,7 г белых игловидных кристаллов с температурой плавления 185-186 °C (с разложением). После тонкослойной хроматографической обработки силикагеле R_f=0,29 [смесь н-бутанола с уксусной кислотой и водой в соотношении 4:1:1]

Данные элементарного анализа для $C_{21}H_{29}O_8N_3S_1/2_{20}$

Вычислено, С 51,21; Н 6,14; N 8,53 Найдено, С 51,14; Н 5,89; N 8,42.

П р и м е р с и н т е з а 9. S-(-карбоизопропоксиметил)-глютатион [R^1 и R^3 водородные атомы, R^4 ОС $_3$ Н $_7$, n=0]

В 80 мл воды растворяют 6,2 г глютатиона и величину рН добавлением 2 н. раствора гидрата окиси натрия доводят до 6.5. После добавления 5 г изопропилмонохлороацетата смесь перемешивают при комнатной температуре. По мере протекания реакции величина рН смеси уменьшается. По этой причине добавлением 2 н. раствора гидрата окиси натрия величину рН смеси вновь доводят до 6, 5. Эту процедуру повторяют, а после того, как величина рН почти прекращает уменьшается, добавляют 2 мл уксусной кислоты и воду в количестве, достаточном для доведения общего объема до 200 мл. Затем добавляют 4,4 г ацетата меди и растворяют, а выпавшую в осадок медную соль выделяют фильтрованием, промывают водой и метанолом, после чего суспендируют в 200 мл воды. Далее через суспензию пропускают пузырьки сероводорода перемешиванием, С образовавшийся сульфид меди отфильтровывают, фильтрат концентрируют и полученную массу белых кристаллов выделяют фильтрованием с последующей перекристаллизацией из воды, в результате чего получают 5,2 г белых кристаплов, которые плавятся при 194-195 °C (c

разложением).
После тонкослойных хроматографической обработки на силикагеле Rf=0,21 [смесь н-бутанола с уксусной кислотой и водой в соотношении 4:1:1]

[a]^{20D}=29,0 (c=1,0 воды)

Данные элементарного анализа для $C_{15}H_{25}O_8N_3S$:

Вычислено, С 44,22; Н 6,18; N 10,31. Найдено, С 44,10; Н 6,24; N 10,26.

Примериспытания 1. Эффект на расстройство деятельности печени, вызванное ацетаминофеном.

Методика: использовали самок крысы SD (вес тела примерно 180 г), закупленных в японском S2C. Испытуемое вещество перорально вводили в организм животного в дозе 0,5 ммол/кг, а по истечении 1 ч внутрибрюшинно вводили 300 мг/кг ацетаминофена. По истечение 24 ч из брюшной аорты сливали кровь и отделяли сыворотку. С использованием этой сыворотки

определяли ГЩТ и ГПТ сыворотки.

Результаты: испытаниям на эффект ингибирования повреждения печени, вызванного ацетаминофеном, подвергли шесть различных глютатионовых производных. Как показано в таблице, соединения NN 1, 2, 3 и 6 [которые соответствуют структурам, приведенным в таблице] проявили значительные антигепатопатические эффекты.

Примерприготовления. Препарат для инъекций.

S-(1-метил-2-карбоизопропоксиэтил)-глютатио н 1,0 г; хлористый натрий 0,6 г; дистиллированная вода для инъекций 100 мл.

Вышеуказанные исходные материалы смешивают добавлением 2 н. раствора гидрата окиси натрия доводят величину рН до 6,5 и стерилизуют раствор фильтрованием. Фильтрат в асептических условиях делят на 2-миллилитровые порции и распределяют их по стеклянными ампулам, а затем герметизируют оплавлением стеклянных концов, приготовив препарат для инъекций.

Формула изобретения:

1. Производные глютатион -S-низшей жирной кислоты общей формулы !

где R_1 -H; R_2 -H, низший алкил, фенил; R_3 H, низший алкил;

R₄ аминогруппа, низшая алкоксигруппа, незамещенная или замещенная фенилом, гидроксигруппой;

n 0 или 1.

2. Производное по п.1, представляющее собой

S-(2-метил-2-карбэтоксиэтил)-глютатион.

- 3. Производное по п.1, представляющее собой
- S-(2-метил-2-карбэтоксиоксиэтил)-глютатион.
- 4. Производное по п. 1, представляющее собой
- S-(2-метил-2-карбамоилэтил)-глютатион
- 5. Производное по п.1, представляющее собой S-(2-карбэтоксиэтил)-глютатион.

6. Производное по п.1, представляющее собой

S-(2-метил-2-карбобензоксиэтил)-глютатион.

7. Производное по п. 1, представляющее собой

S-(2-метил-2-карбоизобутоксиэтил)-глютатион

8. Производное по п.1, представляющее собой S-/1-метил-2-карбоизопродоксиотир) глютотис

85-(1-метил-2-карбоизопропоксиэтил)-глютатио н.

9. Производное по п.1, представляющее собой

S-(1-фенил-2-карбоэтоксиэтил)-глютатион. 10. Производное по п.1, представляющее собой S-(карбоизопропоксиметил)-глютатион.

11. Способ получения производных глютатион -S-низшей жирной кислоты общей формулы I

где R_1 H; R_2 H, низший алкил, фенил; R_3 H, низший алкил;

R₄ аминогруппа, низшая алкоксигруппа, незамещенная или замещенная фенилом или гидроксилом;

п 0 или 1,

отличающийся тем, что глютатион вводят во взаимодействие с органической монокарбоновой кислотой общей формулы II, или ее сложным эфиром, или амидом

 ∞

ത

2

 R_2 A COOH, где A двухвалентная группа: -CH=CR₃-;

R₂ и R₃ имеют указанные значения; А двухвалентная группа формулы

где п 0 или 1, причем, если п 0, X является галоидом, если п 1, один из радикалов X является галогеном, а другой принимает те же значения, как определено выше для R_3 ,

и полученный продукт, в случае необходимости, этерифицируют или амидируют.

60

55

35

45

50

Эффект на повреждение печени, вызванное ацетаминофеном.

N _o	Испытываемое вещество	s-GOT	s-GPT
	Физиологический рас-	5269 ± 835	2060 ± 494
	твор (контрольный экс-		
1	перимент) R ₁ =R ₂ =H.	1259 ± 424 ⁻³ (76.1)	$337 \pm 117^{-1} (83.6)$
•	R=CH ₃ .		
	R4=OH, n=1		
2	R ₁ =R ₂ =H.	841 ± 354 ⁻² (84.0)	195 ± 81 ⁻² (90.5)
	R ₃ =CH ₃ ,		
	R4=OC ₂ H ₅ , n=1		
3	R ₁ =R ₂ =R ₃ =H,	1935 ± 530 ⁻² (63.3)	$598 \pm 226^{-3} (71.0)$
	R4=OC ₂ H ₅ , n=1		
4	R ₁ =R ₂ =H,	2972 ± 803 (43.6)	1384 ± 417 (32.8)
	R ₃ =CH ₃ ,	•	(0)
	R=OHC ₄ H ₉		
-	n=1		
5	R ₁ =R ₂ =H,	2968 ± 824 (43.7)	$1384 \pm 421 (32.8)$
	R3=CH3,		
	R4=OCH ₂ C ₆ H ₅ , n=1		
6	R ₁ =R ₃ =H.	174 + 74 -3(00 0)	
_	R ₂ =CH ₃ ,	171 ± 71 ⁻³ (96.8)	$43 \pm 21^{-3}(97.9)$
	R4=OC3H7,		
	n=1	[

Единица: Е/л: каждая величина содержит среднее значение \pm S.E. n=7-10; величина, которая взята в скобки, соответствует степени ингибирования в процентах. Значительное отличие от физиологического раствора: -1, p<0,05, -2, p<0.01; -3, p<0,001.

Z