lec3

参数更新公式

$$heta^{(t+1)} = heta^{(t)} - lpha
abla_{ heta^{(t)}} J$$

说明:

在第 t+1 步更新参数时,我们沿损失函数 J 的负梯度方向(下降最快方向)移动一小步(由学习率 α 控制),逐步降低损失函数值.

简单神经网络前向传播

$$m{x}:$$
输入向量 $m{h} = f(m{W}m{x} + m{b})$ (激活函数 f) $s = m{u}^Tm{h}$ (输出得分) $J_t(heta) = -\log\sigma(s)$ (交叉熵损失) 其中 $\sigma(s) = rac{1}{1 + \exp(-s)} \in (0,1]$

注:

- 最终输出通过 sigmoid 将得分映射为概率
- 损失函数应为负对数似然(修正原始公式)
- 完整训练需结合反向传播算法优化参数

🧠 常见 Non-linearities(激活函数)

名称	公式	图像特点	优点	缺点
Sigmoid	$\sigma(x) = rac{1}{1+e^{-x}}$	S 型曲线,输出在 (0,1)	可解释为概率	梯度消失、不以零为中心
Tanh	$ anh(x) = rac{e^x - e^{-x}}{e^x + e^{-x}}$	S 型曲线,输出在 (-1,1)	输出均值接近 0	仍有梯度消失问题
ReLU(Rectified Linear Unit)	$\operatorname{ReLU}(x) = \max(0, x)$	左侧为 0,右侧为直线	计算高效, 缓解梯度消失	负数部分无响应, 神经元可能死亡
Leaky ReLU	$egin{aligned} ext{Leaky ReLU}(x) = \ x > 0 \ lpha x & x \leq 0 \end{aligned}$	类似 ReLU,但负值有小斜率	解决 ReLU 死区问题	参数 α 需要调参
ELU	$egin{aligned} ext{ELU}(x) = \ x > 0 \ lpha(e^x - 1) & x \leq 0 \end{aligned}$	左侧指数下降,右侧为直线	输出均值接近 0,收敛快	计算稍复杂

名称	公式	图像特点	优点	缺点
Swish	$\mathrm{Swish}(x) = x \cdot \ \sigma(x)$	自门控结构,平滑连续	性能优于 ReLU	计算成本高
GELU	$\operatorname{GELU}(x) = x \cdot \Phi(x)$	类似 Swish,基于正态分布	表现优秀, 广泛用于 Transformer	计算较复杂
Softmax	$rac{e^{x_i}}{\sum_j e^{x_j}}$	多分类输出归一化为概率分布	常用于最后一层	不适合作为隐藏层激活函数

logistic ("sigmoid")

$$f(z) = \frac{1}{1 + \exp(-z)}$$

tanh

$$\tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

hard tanh

(Rectified Linear Unit)
ReLU

Leaky ReLU / Parametric ReLU

tanh is just a rescaled and shifted sigmoid (2 × as steep, [-1,1]): $\tanh(z) = 2 \log \operatorname{stic}(2z) - 1$

Logistic and tanh are still used (e.g., logistic to get a probability)

However, now, for deep networks, the first thing to try is ReLU: it trains quickly and performs well due to good gradient backflow.

ReLU has a negative "dead zone" that recent proposals mitigate GELU is frequently used with Transformers (BERT, RoBERTa, etc.)

Swish arXiv:1710.05941swish(x) = $x \cdot logistic(x)$

GELU <u>arXiv:1606.08415</u> GELU(x)

 $= x \cdot P(X \le x), X \sim N(0,1)$ $\approx x \cdot \text{logistic}(1.702x)$

中文翻译

使用"交叉熵损失"进行训练 —— 你在 PyTorch 中经常用到它!

- 到目前为止,我们的目标被表述为:最大化正确类别 y 的概率, 或者等价地,最小化该类别的负对数概率.
- 现在我们从信息论中的一个概念——**交叉熵(Cross Entropy)**的角度重新表述这个目标.
- 设真实概率分布为 p;模型输出的概率分布为 q.
- 交叉熵定义为:

$$H(p,q) = -\sum_i p_i \log q_i$$

- 假设真实标签(或称为目标、黄金标准)是一个 one-hot 分布,即在正确类别处为 1,其余为 0, 即 p=[0,...,0,1,0,...,0].
- 因为 p 是 one-hot 向量,所以只剩下对应正确类别的那一项,即:

负对数似然(Negative Log-Likelihood):

2.计算

梯度与雅可比矩阵

对于标量函数 $f(\mathbf{x}) = f(x_1, ..., x_n)$,其梯度为:

$$f(oldsymbol{x}) = f(x_1, x_2, ..., x_n) \
abla_{oldsymbol{x}} f = rac{\partial f}{\partial oldsymbol{x}} = \left[rac{\partial f}{\partial x_1}, \, ...\,, rac{\partial f}{\partial x_n}
ight]$$

对于向量值函数 $\boldsymbol{f}(\boldsymbol{x}) = [f_1(\boldsymbol{x}), \ldots, f_m(\boldsymbol{x})]^T$,其雅可比矩阵为:

$$\mathbf{J}_{m{f}} = rac{\partial m{f}}{\partial m{x}} = egin{bmatrix} rac{\partial f_1}{\partial x_1} & \cdots & rac{\partial f_1}{\partial x_n} \ dots & \ddots & dots \ rac{\partial f_m}{\partial x_1} & \cdots & rac{\partial f_m}{\partial x_n} \end{bmatrix}$$
其中 $\left(rac{\partial m{f}}{\partial m{x}}
ight)_{ij} = rac{\partial f_i}{\partial x_j}$

反向传播的链式法则示例

设 h = f(z),其中每个 $h_i = f(z_i)$,则导数为:

$$\frac{\partial h_i}{\partial z_j} = \begin{cases} f'(z_i) & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

对于复合函数 $h = f(\mathbf{W}\mathbf{x} + \mathbf{b})$,链式法则展开为:

$$rac{\partial m{h}}{\partial m{x}} = rac{\partial m{h}}{\partial m{z}} \cdot rac{\partial m{z}}{\partial m{x}}$$
对角矩阵 权重矩阵 $m{w}$

其中:

- z = Wx + b
- $\frac{\partial h}{\partial z}$ 是对角矩阵,对角线元素为 $f'(z_i)$ $\frac{\partial z}{\partial x} = W$

反向传播的具体计算见 pdf 文件