Numerical Analysis MATH50003 (2023–24) Problem Sheet 5

Problem 1(a) Suppose $|\epsilon_k| \leq \epsilon$ and $n\epsilon < 1$. Use induction to show that

$$\prod_{k=1}^{n} (1 + \epsilon_k) = 1 + \theta_n$$

for some constant θ_n satisfying

$$|\theta_n| \le \underbrace{\frac{n\epsilon}{1 - n\epsilon}}_{E_{-}}$$

Problem 1(b) Show for an idealised floating point vector $\boldsymbol{x} \in F_{\infty,S}^n$ that

$$x_1 \oplus \cdots \oplus x_n = x_1 + \cdots + x_n + \sigma_n$$

where

$$|\sigma_n| \leq ||\boldsymbol{x}||_1 E_{n-1,\epsilon_{\mathbf{m}}/2},$$

assuming $n\epsilon_{\rm m} < 2$ and where

$$\|\boldsymbol{x}\|_1 := \sum_{k=1}^n |x_k|.$$

Hint: use the previous part to first write

$$x_1 \oplus \cdots \oplus x_n = x_1(1 + \theta_{n-1}) + \sum_{j=2}^n x_j(1 + \theta_{n-j+1}).$$

Problem 1(c) For $A \in F_{\infty,S}^{n \times n}$ and $\boldsymbol{x} \in F_{\infty,S}^{n}$ consider the error in approximating matrix multiplication with idealised floating point: for

$$A\boldsymbol{x} = \begin{pmatrix} \bigoplus_{j=1}^{n} A_{1,j} \otimes x_{j} \\ \vdots \\ \bigoplus_{j=1}^{n} A_{1,j} \otimes x_{j} \end{pmatrix} + \delta$$

show that

$$\|\delta\|_{\infty} \le 2\|A\|_{\infty} \|\boldsymbol{x}\|_{\infty} E_{n,\epsilon_{\mathrm{m}}/2}$$

where $n\epsilon_{\rm m} < 2$ and the matrix norm is $||A||_{\infty} := \max_k \sum_{j=1}^n |a_{kj}|$.

Problem 2 Derive Backward Euler: use the left-sided divided difference approximation

$$u'(x) \approx \frac{u(x) - u(x - h)}{h}$$

to reduce the first order ODE

$$u(a) = c,$$
 $u'(x) + \omega(x)u(x) = f(x)$

to a lower triangular system by discretising on the grid $x_j = a + jh$ for h = (b - a)/n. Hint: only impose the ODE on the gridpoints x_1, \ldots, x_n so that the divided difference does not depend on behaviour at x_{-1} .

Problem 3 Reduce a Schrödinger equation to a tridiagonal linear system by discretising on the grid $x_j = a + jh$ for h = (b - a)/n:

$$u(a) = c,$$
 $u''(x) + V(x)u(x) = f(x),$ $u(b) = d.$