

Examen de rattrapage d'électronique numérique

Filière SMI/S3 Samedi 22 Février 2020 (Durée 1h30, documents non autorisés)

Exercice 1:

- 1. Effectuez les conversions suivantes :
 - (a) $(1F.C)_{16} = (?)_2$
 - (b) $(10010)_{Gray} = (?)_2$
 - (c) (11011)₂ = (?)_{Gray}

Exercice 2:

La figure 1-1 présente l'évolution temporelle de l'entrée d'une bascule JK ainsi que de l'horloge H. Représenter la sortie Q pour les deux cas suivant : bascule sensible sur front montant et sensible sur front descendant.

FIGURE 1 - 1

Exercice 3:

Dans le circuit ci-dessous, H est un signal d'horloge périodique et les sorties Q_0 et Q_1 sont initialement à l'état bas.

- Tracer les chronogrammes de H, Q₀ et Q₁
- 2. Exprimer les fréquences f_{Q_0} et f_{Q_1} en fonction de f_H

FIGURE 2-1

Exercice 4:

1. Compléter les chronogrammes de la figure 4, en supposant qu'au début Q=1.

Exercice 5:

On considère un afficheur sept segments :

FIGURE 5 - 1

Un chiffre décimal est fourni à l'afficheur sous son code DCB (quatre bits ABCD). On désigne par a,b,c,d,e,f,g les sept fonctions logiques valant 1 lorsque le segment correspondant est allumé, 0 sinon.

- 1. Dresser la table de vérite du décodeur DCB-7 segment commandant le segment e
- 2. A l'aide du tableau de Karnaugh déterminer l'expression simplifiée de la sortie e .
- 3. Représenter le schéma logique du segment e en n'utilisant que des portes NOR.