India Inflation Forecast Model

Sections

Section 1: Introduction

Section 2: Data Preparation and Visualization

Section 3: Seasonality Tests

Section 3.1. Data Preparation

Section 3.2. Preliminary Seasonality Tests Using STL and ACF

Section 3.3. Final Seasonality Test - CH Test

Section 4: 10-year Forecast

Section 4.1. 10-year Forecast: Pre-COVID Regime

Section 4.2. 10-year Forecast: Post-COVID Regime

Section 1: Introduction

This notebook develops a monthly time-series forecasting model for consumer inflation in India over a 10-year horizon. The analysis uses the official All-India Consumer Price Index (CPI – Combined) year-on-year (YoY) inflation series published by the Ministry of Statistics & Programme Implementation (MoSPI), Government of India. MoSPI's CPI (Base Year 2012 = 100) is the standard measure of retail price inflation and is released monthly through the National Statistical Office (NSO) press-release annexures.

The dataset employed here spans January 2014 through August 2025 and provides the monthly percentage change in the General CPI over the corresponding month of the previous year. Two calendar years—2020 and 2021—have been deliberately excluded from the modelling data set. These years coincide with the peak of the COVID-19 pandemic, when India experienced:

- 1. Unprecedented supply-chain disruptions and demand shocks,
- 2. Nation-wide lockdowns and abrupt changes in consumption patterns, and
- 3. Gaps in official data collection, with MoSPI itself noting that CPI for April–May 2020 could not be compiled.

These events constitute a structural break that would bias the estimation of long-run seasonal and trend dynamics if left unadjusted. By excluding these observations, the forecasting model aims to capture the underlying "normal-regime" inflation behaviour of the Indian economy, producing a baseline projection that reflects typical macroeconomic and seasonal drivers rather than the one-off pandemic shock.

Subsequent sections of this notebook outline the data-preparation steps, stationarity diagnostics, and the implementation of classical time-series models—specifically ARIMA/SARIMA variants—to generate monthly forecasts of India's headline inflation for the next 120 months (10 years). The resulting projections can serve as a policy-oriented baseline and a starting point for scenario analysis or stress testing with alternative macroeconomic assumptions.

```
# Importing necessary packages for the model
import os
from dotenv import load_dotenv
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from datetime import datetime as dt
from statsmodels.tsa.seasonal import seasonal_decompose
from statsmodels.graphics.tsaplots import plot_acf
from statsmodels.tsa.seasonal import STL
import matplotlib.dates as mdates
from pmdarima.arima import CHTest
import warnings
```

```
warnings.simplefilter("ignore", category=FutureWarning)
from statsmodels.tsa.arima.model import ARIMA
```

Section 2: Data Preparation and Visualization

This section shows a visual representation of the inflation data - as sourced from MoSPI.

```
# Initialize environment and set conditions
load dotenv()
inflation_dataset = os.getenv('inflation_dataset')
forecast_pre_dataset = os.getenv('forecast_pre_dataset')
forecast_post_dataset = os.getenv('forecast_post_dataset')
pd.set option('display.max rows', None)
pd.set_option('display.max_columns', None)
# Load data
df_inflation = pd.read_csv(inflation_dataset)
X_values = [dt.strptime(d, '%m/%d/%Y') for d in df_inflation['Date']]
Y_values = df_inflation['CPI_Inflation_YoY_Percent'].to_list()
Y_ticks = [round(i) for i in range(int(max(Y_values)+2))]
X_ticks = [dt.strftime(d, '%Y') for d in X_values]
# Visualize data
fig, ax = plt.subplots(figsize=(25, 6), dpi=100)
ax.plot(X_values, Y_values, '--', color='red', marker='o')
ax.set_title('India Inflation Rates - Month-wise Jan-2014 till Aug-2025')
ax.set_xlabel('Year')
ax.set_ylabel('Inflation Rates (in %age)')
ax.set_xticks(X_ticks)
ax.set yticks(Y ticks)
ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y'))
fig.tight_layout()
# Generate dataset for next stage
df_seasonality_test_data = pd.DataFrame()
df_seasonality_test_data['Period'] = X_values
df_seasonality_test_data['Inflation_rates'] = Y_values
```


Section 3: Seasonality Tests

This section uses decomposition and autocorrelation diagnostics to determine if the series has a recurring seasonal pattern and whether seasonal differencing is required before modeling.

Typical workflow for seasonality tests to gauge presence/ strength of seasonality is as follows: 1. Conduct STL (Seasonal Trend Decomposition with LOESS), and determine Hyndman score, for initial view of seasonality strength on the dataset. While this statistic gives an explanation on how much of the variance is explained by the seasonal component, it does not prescribe model differencing. 2. Perform ACF (Autocorrelation Function) analysis with a sensible maximum lag (e.g. 48 for monthly data). By performing a visual inspection of the output, we can identify significant spikes at multiples of the seasonal period (e.g., 12, 24, etc.). ACF at lag (k) is the Pearson Correlation between X_t and X_{t-k} across all t. Regular spikes at multiples of seasonal period (s) indicate seasonal dependence. 3. Perform CH (Canova-Hansen) test to conclusively determine the need and value of seasonal differencing.

Since our dataset is devoid of the 2020-21FY data, we have split the raw dataset into two regimes: 1. Regime 1: Pre-COVID dataset - for performing seasonality tests on the pre-COVID regime. Here, we have considered lag=48 (4 years) since we have data from Jan-2014 till Dec-2019. 2. Regime 2: Post-COVID dataset - for performing seasonality tests on the post-COVID regime. Here, we have considered lag=24 (2 years) since we have data from Jan-2022 till Aug-2025.

Seasonality tests will be performed on each dataset separately and final conclusions on scenario development shall be determined based on these conclusions.

3.1. Data Preparation:

This section focuses on preparing the necessary datasets for running seasonal decomposition analysis and seasonality strength tests.

```
# Data preparation adjusting for pre and post-COVID missing data

df_seasonality_test_data_pre = df_seasonality_test_data[df_seasonality_test_data['Period']<':

df_seasonality_test_data_post = df_seasonality_test_data[df_seasonality_test_data['Period']>

df_seasonality_test_data_pre.set_index('Period', inplace=True)

df_seasonality_test_data_post.set_index('Period', inplace=True)

df_seasonality_test_data_pre = df_seasonality_test_data_pre.asfreq('MS')

df_seasonality_test_data_post = df_seasonality_test_data_post.asfreq('MS')
```

3.2. Preliminary Seasonality Tests Using STL and ACF

This section performs seasonal decomposition and seasonality strength tests on the pre-COVID and post-COVID datasets. STL (with the additive model) and the subsequent Hyndman score (along with ACF) have been used to establish the resence of seasonality in the two regimes and measure its strength in each.

About STL:

STL: Seasonal-Trend decomposition using Loess

STL stands for Seasonal—Trend decomposition using Loess (a.k.a. LOWESS: LOcally WEighted Scatterplot Smoothing). LOESS is a non-parametric smoothing technique that fits many small local regressions around each data point to generate a smooth curve without assuming a global formula and hence, in the context of this analysis, is a better alternative to exponential smoothing or weighted moving average, due to its ability to offer more flexible trend extraction.

Model Explanations (selected model: additive) For an additive decomposition:

$$y_t = T_t + S_t + R_t,$$

where

$$T_t = trend, S_t = seasonal component, R_t = remainder(noise).$$

For multiplicative behavior, use a log transform and decompose additively:

$$\log y_t = T_t + S_t + R_t \quad \iff \quad y_t = e^{T_t} \cdot e^{S_t} \cdot e^{R_t}.$$

How STL works

In simple terms, STL splits the raw dataset into 3 components: 1. **Trend** - this component outlines ONLY the underlying trend demonstrated by the raw data (sans the impact of seasonality and residuals). 2. **Seasonal** - this component outlines ONLY the seasonality that is

baked into the raw data (sans the trend and residuals). 3. **Residuals** - this component outlines what is left in the raw data - after extracting the trend and seasonality from the same.

Below is a more detailed overview of STL: 1. Seasonal extraction (cycle-subseries smoothing)

For lag (k) (e.g., 12, 24, etc.), split the series into k subseries by season (all Januaries, all Februaries, ...) and smooth each subseries with LOESS to get a preliminary \tilde{S}_t . 2. Low-pass filtering of seasonal

Smooth \tilde{S}_t again (moving averages + LOESS) so seasonality changes **slowly** over time. 3. **Trend extraction**

Detrend input via $y_t - S_t$, then smooth with LOESS to obtain T_t . 4. Robust reweighting (optional but standard)

Compute residuals $r_t = y_t - T_t - S_t$. Form robustness weights using a bisquare function on scaled residuals (MAD scale):

$$u_t = \frac{r_t}{6\,\mathrm{MAD}(r)}, \qquad b_t = \begin{cases} (1-u_t^2)^2, & |u_t| < 1\\ 0, & \mathrm{otherwise} \end{cases}$$

Re-run seasonal & trend smoothing with weights multiplied by b_t to down-weight outliers. 5. Iterate

STL alternates seasonal trend updates (inner loop) and robustness updates (outer loop) until changes are small.

Pros vs. Cons Pros - Works for any seasonal period (m) (not just 12/4). - Allows seasonality to evolve over time. - Robust to outliers (with robust=True). - Transparent smoothness controls: s.window (seasonal), t.window (trend). Cons - Requires a regular, gap-free series (hence the raw data set has been split into pre and post-COVID data and separate STL tests have been performed on each). - Window choices affect results (not a single "correct" setting). - Descriptive method—no built-in forecasting (forecast components or the remainder with a model).

Additive vs. multiplicative? - If seasonal amplitude is roughly constant - which is typically the case for inflation rates, use additive. - If amplitude scales with the level - typically seen in revenue, sales data, decompose log(y) additively (equivalently multiplicative on (y)).

Quantifying seasonal strength (Hyndman score) A handy indicator (0 = none, \rightarrow 1 = strong):

$$\text{Strength} = \max\left(0, \ 1 - \frac{\text{Var}(R)}{\text{Var}(R+S)}\right).$$

Higher values mean stronger seasonality.

Seasonal Decomposition of pre-COVID regime:

```
# Seasonal decomposition for pre-COVID data (Aug-2014 till Dec-2019)
series_pre = df_seasonality_test_data_pre['Inflation_rates']
seasonal_decomp_pre = seasonal_decompose(series_pre, model='additive',
                                         period=12)
fig_pre = seasonal_decomp_pre.plot()
fig_pre.set_size_inches(8, 6)
fig_pre.suptitle('Pre-COVID Data: Seasonal Decomposition - Period = 12',
                 fontsize=12, y=1.02)
fig_pre.tight_layout()
plt.show()
# STL for seasonality strength
stl_pre = STL(series_pre, period=12, robust=True).fit()
T_pre, S_pre, R_pre = stl_pre.trend, stl_pre.seasonal, stl_pre.resid
# Hyndman seasonality strength score
strength_pre = max(0, (1 - (R_pre.var() / (R_pre.var() + S_pre.var()
                                           + 2 * R_pre.cov(S_pre)))))
print(f'Pre-COVID data seasonality strength: {strength_pre:.2f}')
print('Pre-COVID data assessment based on Hyndman score:')
if strength_pre > 0 and strength_pre <= 0.3:</pre>
    print('Low seasonality strength')
else:
    print('High seasonality strength')
```


Pre-COVID data seasonality strength: 0.10 Pre-COVID data assessment based on Hyndman score: Low seasonality strength

Interpretation of STL analysis on pre-COVID regime:

As evidenced from the STL decomposition, while the pre-COVID regime dataset does depict presence of seasonality, its strength is quite low (as evidenced based on the corresponding Hyndman Score). This means that while seasonal differencing can be factored into the dataset, based on interpretation of just the STL analysis, the same is not warranted. Additional ACF analysis and subsequent CH test results (as presented in the subsequent sections of this document) will provide better insights on the same.

Seasonal Decomposition of post-COVID regime:

```
# Seasonal decomposition for post-COVID data (Jan-2022 till Aug-2025)
series_post = df_seasonality_test_data_post['Inflation_rates']
seasonal_decomp_post = seasonal_decompose(series_post, model='additive',
                                          period=12)
fig_post = seasonal_decomp_post.plot()
fig_post.set_size_inches(8, 6)
fig_post.suptitle('Post-COVID Data: Seasonal Decomposition - Period = 12',
                  fontsize=12, y=1.05)
fig_post.tight_layout()
plt.show()
# STL for seasonality strength
stl_post = STL(series_post, period=12, robust=True).fit()
R_post, S_post, T_post = stl_post.resid, stl_post.seasonal, stl_post.trend
# Hyndman seasonality strength score
strength_post = max(0, (1 - (R_post.var() / (R_post.var() + S_post.var())
                                             + 2 * R_post.cov(S_post)))))
print(f'Post-COVID data seasonality strength: {strength_post:.2f}')
print('Assessment based on Hyndman score:')
if strength_post > 0 and strength_post <= 0.3:</pre>
    print('Low seasonality strength - select ARIMA.')
else:
    print('High seasonality strength - select SARIMA.')
```


Post-COVID data seasonality strength: 0.32 Assessment based on Hyndman score: High seasonality strength - select SARIMA.

Interpretation of STL analysis on post-COVID regime:

As evidenced from the STL decomposition, the post-COVID regime depicts a moderate presence of seasonality (as evidenced based on the corresponding Hyndman Score). This means seasonal differencing of the data is warranted. However, additional ACF analysis, and subsequent CH test results (as presented in the subsequent sections of this document), shall still be performed to conclusively establish the exact seasonal difference value.

About ACF

ACF: Autocorrelation Function

ACF measures linear correlation between a time series and **lagged** versions of itself. I.e., for lag k, it asks "how similar is y_t to y_{t-k} ?"

How ACF works (high-level)

In simple terms, ACF plots the correlation between the value of a series (y_i) at time t and its value at time t-k or k periods earlier. The result (when applied across all data points in a series Y), gives us a graph that plots the correlations (vertical bars) between value of the series at time t and value of the same series at time t-k and the $\pm 1.96/\sqrt{n}$ bands (shaded area). If this graph displays an oscillating pattern that shows significant spikes - repeating periodically (i.e. beyond the $\pm 1.96/\sqrt{n}$ bands) - then we can conclude (with 95% confidence, if alpha = 5%) that seasonality is present in the raw data.

Below is a more detailed overview of ACF:

1. **Determine autocovariance**: For a weakly stationary series (i.e., a series of data whose mean μ and variance σ^2 do not change over time) Y, with mean μ and variance σ^2 , determine the **autocovariance** at lag k, given as:

$$\gamma(k) \; = \; \mathrm{Cov}(y_t, \; y_{t-k}) \; = \; \mathbb{E} \big[(y_t - \mu)(y_{t-k} - \mu) \big].$$

which measures the covariance between today's value y_t and the value k time steps earlier (y_{t-k}) .

2. **Determine autocorrelation**: The **autocorrelation** at lag k for the series Y is then determined using:

$$\rho(k) = \frac{\gamma(k)}{\gamma(0)} = \frac{\gamma(k)}{\sigma^2}.$$

which normalizes the covariance (by the variance) so the result is a pure correlation coefficient (i.e., values lie between -1 and 1).

ACF application in real data: Since, in the case of real data, we do not know the true mean or true expected values, we typically use the **sample ACF** method; given using the equation:

$$\hat{\rho}(k) \; = \; \frac{\sum_{t=k+1}^{n} (y_t - \bar{y})(y_{t-k} - \bar{y})}{\sum_{t=1}^{n} (y_t - \bar{y})^2},$$

where \bar{y} is the sample mean (which replaces the true mean) and \sum is summation of the data (which replaces the expected values \mathbb{E})

Interpretation of ACF: - Seasonality: Significant spikes at seasonal lags (e.g., 12, 24, 36, ... for monthly data). - Trend / non-stationarity: ACF that decays slowly (stays high for many lags) \rightarrow likely non-stationary \rightarrow difference first. - If the ACF shows spikes at 12, 24, ... \rightarrow seasonal dynamics present (consider SARIMA). - If ACF decays slowly \rightarrow difference (and possibly seasonal difference).

Significance & confidence bands Under the null hypothesis of white noise (i.e., zero mean, constant variance, and no predictable pattern), approximate 95 % confidence bands are: (Bartlett's formula provides a more exact variance):

$$\pm \frac{1.96}{\sqrt{n}}$$

for each individual lag. Bartlett's formula provides an exact variance for these bands. For statistical significance, we can use **Ljung–Box** to jointly test "no autocorrelation up to lag k" where if p-value < chosen significance level (e.g. 0.05), we reject $H_o \rightarrow$ to conclude that there is significant autocorrelation somewhere among the first k lags.

ACF Analysis of pre-COVID regime:

```
# ACF for pre-COVID data
fig, ax = plt.subplots(figsize=(8, 6), dpi=100)
plot_acf(series_pre, lags=48, ax=ax)
ax.set_title(f'ACF analysis on pre-COVID data for lag = 48')
ax.set_xlabel('Lag')
ax.set_ylabel('Pearson Correlation')
plt.show()
```


Interpretaion of ACF analysis on pre-COVID regime

An ACF plot of the pre-COVID regime dataset corroborates our findings from the STL analysis - i.e., while seasonality is present, its overall strength on the dataset is low - as evidenced from majority of the correlation peaks (vertical bars) falling within the confidence band (shaded region).

ACF Analysis of post-COVID regime:

```
# ACF for post-COVID data
fig_post, ax_post = plt.subplots(figsize=(8, 6), dpi=100)
plot_acf(series_post, lags=24, ax=ax_post)
ax_post.set_title('ACF analysis on post-COVID data for lag = 24')
ax_post.set_xlabel('Lag')
```

ax_post.set_ylabel('Pearson Correlation')
plt.show()

Interpretaion of ACF analysis on post-COVID regime

Contrary to our STL analysis results (which presented a moderate seasonality strength on the post-COVID regime), our ACF analysis shows only a short-term autocorrelation (lags 0 to 6) and no seasonal spikes beyond the confidence band - thereby, indicating a low (rather than moderate) seasonality strength.

Joint Interpretation of STL and ACF analysis on pre and post-COVID regimes:

1. pre-COVID:

A joint interpretation of STL and ACF analysis on the pre-COVID regime indicates low presence of seasonality in the dataset. The subsequent CH test will conclusively

determine the presence of a seasonal unit root - thereby allowing us to identify whether seasonal differencing (e.g., SARIMA) is required for forecasting in this regime.

2. post-COVID:

Contrary to pre-COVID, STL and ACF analysis on the post-COVID regime has presented slightly contradicting results (with STL suggesting a moderate seasonality strength - countered by the ACF results). The subsequent CH test will conclusively determine the presence of a seasonal unit root - thereby allowing us to identify whether seasonal differencing (e.g., SARIMA) is required for forecasting in this regime.

Key Point of Note: While STL presented low seasonality strength on pre-COVID and moderate strength on post-COVID regimes, a collective look at the ACF plots suggests slightly higher spikes (albeit still within the confidence band) in the case of pre-COVID regime - compared to post-COVID regime - thereby, conclusively establishing the need to perform the CH test to determine the final way-forward.

3.3. Final Seasonality Test - CH test

This section uses the Cannova-Hansen (CH) test to conclusively determine the presence of a seasonal unit root in both pre and post-COVID regimes. Based on the outcomes of this test, we will conclusively determine whether either, or both, regimes warrant seasonal differencing during forecasting - thereby allowing us to choose between ARIMA and SARIMA models.

About CH:

CH: Cannova-Hansen Test

The Canova–Hansen (CH) test checks whether a time series contains a seasonal unit root—that is, whether a seasonal difference (e.g. a 12-month difference for monthly data) is needed to make the series stationary.

Null (H_0) and Alternate (H_1) Hypothesis in CH Test - Null (H_0) Hypothesis: the series has a seasonal unit root \rightarrow seasonal differencing needed - select SARIMA. - Alternate (H_1) Hypothesis: the series does not contain a seasonal unit root \rightarrow seasonal differencing not needed - proceed with ARIMA.

Definition of Seasonal Root

Presence of a seasonal unit root in a series means that seasonality in the dataset does not follow a repeating (osciallting) pattern. E.g., A monthly series whose January values have a mean that drifts over time rather than repeating around a constant seasonal mean.

Practical Interpretation of Seasonal Root

Presence of a seasonal unit root means that the data must be differenced at the seasonal lag to remove the stochastic seasonal component. After removing the seasonal component, the remaining series should be stationary and suitable for forecast modelling.

How CH Test works

In simple terms, a CH test performs a discrete Fourier Transform on seasonal regressons (sine, cosine pairs built on only the stochastic part of the dataset) called **Periodogram Ordinates** and takes a variance-weighted sum of these ordinates to determine the **Test Statistic**. The test statistic is then compared to critical values ($p_v alue < 0.05$ or $p_v alue > 0.05$) to determine the final decision on whether to accept or reject the **null hypothesis**.

CH Test on pre-COVID regime:

```
Estimated D for pre-COVID regime: 0
| Seasonal differencing not needed -->
Proceed with ARIMA for forecasting.
```

CH Test on post-COVID regime:

```
Estimated D for post-COVID regime: 0.0000 | Seasonal differencing not needed --> Proceed with ARIMA for forecasting.
```

Interpretation of CH Test on pre and post-COVID regimes:

As evident from the outputs of the CH test (conducted per pmdarima) on both pre and post-COVID regimes, no seasonal roots were detected in either regimes. Hence, ARIMA model shall be the way-forward for forecasting the following scenarios: 1. **Scenario A:** Forecasting 10-year inflation rates based on pre-COVID regime (model = ARIMA) 2. **Scenario B:** Forecasting 10-year inflation rates based on post-COVID regime (model = ARIMA)

Section 4: 10-year Forecast

To recap, our inflation dataset was divided into two regimes: 1. Pre-COVID - showcasing the inflation during the preiod: Jan-2014 till Dec-2019. 2. Post-COVID - showcasing the inflation during the period: Jan-2022 till Aug-2025.

Our original dataset was segregated into the above regimes due to the lack of credible data during the COVID period (2020-21).

On each dataset we performed separate seasonality tests to determine whether seasonal differencing is needed or not and STL, ACF and finally CH Test were used to determine

seasonal differencing. From our seasonality tests we have come to the conclusion that seasonal differencing on the data is not needed for forecasting and hence, our choice for forecasting inflation is **ARIMA** (AutoRegressive Integrated Moving Average).

About ARIMA:

ARIMA is a time-series forecasting model. A model is called a time-series model when it satisfies the following three conditions:

- The model explicitly depends on time ordering i.e., the model uses past values to predict future outcomes.
- The model captures temporal dependence i.e., patterns such as persistence, autocorrelation and seasonality are central to how the model learns.
- The model forecasts future values by extrapolating time-based relationships.

ARIMA does not directly forecast the level of a variable. It first makes the data stationary (i.e., stabilizes the mean and variance of the data) by differencing the value in the current period from the value in the past period (e.g. if inflation in Jan-15 is 4.5% and inflation in Dec-14 is 4.2%, ARIMA will first capture the rate of change for the period (a.k.a discrete differencing) i.e. 0.3%. This is done by the "Integrated (I)" component of the model). Making the data stationary essentially removes the trend from the data and the reason why this is done is because the math behind AutoRegressive (AR) and Moving Average (MA) components assume that the data they are applied on is stationary. If not, AR and MA will generate error-prone results. Once the data has been made stationary, the AR and MA components apply the linear stochastic equation ("stochastic" since the error and intercept parameters are random variables determined using Maximum Likelihood Estimation) to forecast the change (not the actual inflation value but only the change). The forecasted change is then added to the last known value of inflation to determine the predicted inflation values (thereby incorporating the trend that was originally removed during the integrated stage).

Additional Note: In the above explanation of the ARIMA model we subtracted Dec-14 from Jan-15 to get the rate of change. Had our data demonstrated a seasonal root, and we would have used the SARIMA model - instead of ARIMA, this differencing would be Jan-14 from Jan-15 - to account for seasonality in the data. Thus, the fundamental difference between ARIMA and SARIMA is how seasonality is accounted for. Where in ARIMA the differencing is month-on-month (i.e., $Y_t - Y_{t-1}$), in SARIMA the differencing is done on a year-on-year basis (i.e., $Y_t - Y_{t-12}$).

The ARIMA model comprises of three components:

1. **AR (AutoRegressive):** This component of the model uses linear stochastic regression to model the predicted value as a linear combination of its past values. This component is determined using **p** in the ARIMA model input.

• Equation:

$$Y_t = c + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \dots + \phi_p Y_{t-p} + \varepsilon_t$$

where:

 $Y_t = \text{current value (e.g., inflation at time t)}$

c = constant (intercept) - determined using MLE (Maximum Likelihood Estimation)

 ϕ_i = autoregressive coefficient - determined using MLE.

 ε_t = white noise (random error)

2. I (Integrated): This component of the model stabilizes the mean and variance of the differences - thereby making the data stationary for AR and MA components to be applied for forecasting. This component is determined using d in the ARIMA model input.

• Equation:

If d = 1 - used when the data demonstrates a linear trend

$$\nabla Y_t = Y_t - Y_{t-1}$$

where:

 $Y_t = \text{current value (e.g., inflation at time t)}$

 Y_{t-1} = previous month value (e.g., inflation at time t-1)

If d = 2 - used when the data demonstrates a quadratic (or exponential-like) trend

$$\nabla^2 Y_t = (Y_t - Y_{t-1}) - (Y_{t-1} - Y_{t-2}) = Y_t - 2Y_{t-1} + Y_{t-2}$$

where:

 $Y_t = \text{current value (e.g., inflation at time t)}$

 Y_{t-1} = previous month value (e.g., inflation at time t-1)

3. MA (Moving Average): This component of the model also uses linear stochastic regression but for modelling the error of the predicted value as a linear combination of its past errors. This component is determined using **q** in the ARIMA model input.

• Equation:

$$Y_t = c + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \dots + \theta_q \varepsilon_{t-q}$$

where:

 ε_t = white noise error - residual term - results from c and θ_i

c = constant (intercept) - determined using MLE

 $\theta_i = \text{Moving average coefficients}$ (capturing impact of past shocks) - determined using MLE

How it all comes together:

All three components explained above come together to make up the final ARIMA(p=1, d=1, q=1) equation given as follows:

$$\nabla Y_t = c + \phi_1(\nabla Y_{t-1}) + \varepsilon_t + \theta_1 \varepsilon_{t-1}$$

where:

```
c= constant (intercept) - determined using MLE  \varepsilon_t = \text{white noise error - residual term - results from } c, \, \theta_i \text{ and } \phi_i  \theta_i = \text{Moving average coefficients (capturing impact of past shocks)} - determined using MLE <math display="block"> \phi_i = \text{autoregressive coefficient - determined using MLE}.
```

4.1. 10-year Forecast: Pre-COVID Regime

Having established the mechanisms behind an ARIMA model, this section focuses on performing a 10-year forecast on the pre-COVID regime based on the same.

```
# Fit ARIMA Model
model_pre = ARIMA(series_pre, order= (1, 0, 1), trend='c')
result_pre = model_pre.fit(cov_type='robust') #'robust' due to heteroskedacity
print(f'Summary Results:\n{result_pre.summary()}')
is_stationary = np.all(np.abs(result_pre.arroots) > 1)
is_invertible = np.all(np.abs(result_pre.maroots) > 1)
print(f'Stability Result:\n{is_stationary}')
print(f'Invertability Result:\n{is_invertible}')
# 10-year Forecast (12 months per year hence steps = 120)
forecast_pre = result_pre.get_forecast(steps=120)
forecast_df_pre = forecast_pre.summary_frame(alpha=0.05)
print(f'ARIMA Forecast Data:\n{forecast_df_pre['mean']}')
forecast_df_pre['mean'].to_csv(forecast_pre_dataset)
# Plot Forecast
fig_forecast_pre, ax_forecast_pre = plt.subplots(figsize=(8, 6), dpi=100)
series_pre.plot(ax=ax_forecast_pre, label='Observed Historical',
                lw=1, color='red',
                linestyle='--', marker='o')
forecast_df_pre['mean'].plot(ax=ax_forecast_pre,
                             label='ARIMA Forecast - Pre COVID Regime',
```

Summary Results:

SARIMAX Results

Dep. Variable:]	Inflation_rates	s No.	Observations:		72	
Model:		ARIMA(1, 0, 1)		Likelihood		-	
68.604							
Date:	Τι	ie, 14 Oct 2025	5 AIC			145.208	
Time:		22:54:18	BIC			154.315	
Sample:		01-01-2014	HQIC	;		148.834	
		- 12-01-2019					
Covariance Type: robust							
=======================================			======				
	coef	std err			[0.025	0.975]	
const	5.4159	1.419		0.000	2.635	8.197	
ar.L1		0.073			0.760		
ma.L1	0.4139	0.124	3.327	0.001	0.170	0.658	
sigma2	0.3801	0.072	5.280	0.000	0.239	0.521	
Ljung-Box (L1)	======= (Q):		0.18	Jarque-Bera	(JB):	=======	0.87
Prob(Q):			0.67	Prob(JB):			0.65
Heteroskedasti	city (H):	:	0.43	Skew:		-	_
0.02							
Prob(H) (two-s	ided):		0.04	Kurtosis:			3.54

Warnings:

[1] Quasi-maximum likelihood covariance matrix used for robustness to some misspecifications step) described in Harvey (1989).

Stability Result:

True

Invertability Result:

True

ARIMA Forecast Data:

ARIMA FORECasi	Data:
2020-01-01	7.793364
2020-02-01	7.564064
2020-03-01	7.356879
2020-04-01	7.169677
2020-05-01	7.000529
2020-06-01	6.847696
2020-07-01	6.709602
2020-08-01	6.584828
2020-09-01	6.472087
2020-10-01	6.370220
2020-11-01	6.278178
2020-12-01	6.195013
2021-01-01	6.119869
2021-02-01	6.051973
2021-03-01	5.990625
2021-04-01	5.935193
2021-05-01	5.885108
2021-06-01	5.839854
2021-07-01	5.798964
2021-08-01	5.762018
2021-09-01	5.728635
2021-10-01	5.698472
2021-11-01	5.671218
2021-12-01	5.646593
2022-01-01	5.624342
2022-02-01	5.604238
2022-03-01	5.586072
2022-04-01	5.569659
2022-05-01	5.554829
2022-06-01	5.541429
2022-07-01	5.529321
2022-08-01	5.518381
2022-09-01	5.508496
2022-10-01	5.499565
2022-11-01	5.491495
2022-12-01	5.484203

2023-01-01	5.477615
2023-02-01	5.471662
2023-03-01	5.466283
2023-04-01	5.461423
2023-05-01	5.457032
2023-06-01	5.453064
2023-07-01	5.449479
2023-08-01	5.446240
2023-09-01	5.443313
2023-10-01	5.440668
2023-11-01	5.438279
2023-12-01	5.436120
2024-01-01	5.434169
2024-02-01	5.432406
2024-03-01	5.430813
2024-04-01	5.429374
2024-05-01	5.428074
2024-06-01	5.426899
2024-07-01	5.425837
2024-08-01	5.424878
2024-09-01	5.424012
2024-10-01	5.423229
2024-11-01	5.422521
2024-12-01	5.421882
2025-01-01	5.421304
2025-02-01	5.420782
2025-03-01	5.420311
2025-04-01	5.419884
2025-05-01	5.419499
2025-06-01	5.419151
2025-07-01	5.418837
2025-08-01	5.418553
2025-09-01	5.418297
2025-10-01	5.418065
2025-11-01	5.417855
2025-12-01	5.417666
2026-01-01	5.417495
2026-02-01	5.417340
2026-03-01	5.417201
2026-04-01	5.417074
2026-05-01	5.416960
2026-06-01	5.416857
2026-07-01	5.416764

```
2026-08-01
              5.416680
2026-09-01
              5.416604
2026-10-01
              5.416536
2026-11-01
              5.416474
2026-12-01
              5.416418
2027-01-01
              5.416367
2027-02-01
              5.416321
2027-03-01
              5.416280
              5.416242
2027-04-01
2027-05-01
              5.416209
2027-06-01
              5.416178
2027-07-01
              5.416151
2027-08-01
              5.416126
2027-09-01
              5.416103
2027-10-01
              5.416083
2027-11-01
              5.416064
2027-12-01
              5.416048
2028-01-01
              5.416033
2028-02-01
              5.416019
2028-03-01
              5.416007
2028-04-01
              5.415996
2028-05-01
              5.415986
2028-06-01
              5.415977
2028-07-01
              5.415969
2028-08-01
              5.415961
2028-09-01
              5.415955
2028-10-01
              5.415949
2028-11-01
              5.415943
2028-12-01
              5.415938
2029-01-01
              5.415934
2029-02-01
              5.415930
2029-03-01
              5.415926
2029-04-01
              5.415923
2029-05-01
              5.415920
2029-06-01
              5.415917
2029-07-01
              5.415915
2029-08-01
              5.415913
2029-09-01
              5.415911
2029-10-01
              5.415909
              5.415907
2029-11-01
2029-12-01
              5.415906
```

Freq: MS, Name: mean, dtype: float64

CONCLUSION

To generate a forecast with minimal variance, the following iterations of the ARIMA model were analyzed: 1. p=2, d=1, q=1: log-likelihood = -67 (highest), but MLE failed to converge. Despite AIC=144, BIC=155, we exclude this model due to non-convergence/identification issues in MLE. 2. p=1, d=1, q=1: log-likelihood = -68, AIC = 143 (lowest), BIC = 152 (lowest). No reported MLE convergence issues. Variance between observed and forecasted values = 52%. 3. p=1, d=0, q=1: log-likelihood = -68, AIC = 145 and BIC = 154 (slightly worse than (1,1,1)). No reported MLE convergence issues. Variance between observed and forecasted values is lowest = 18%.

Decision: We choose ARIMA(1,0,1) because: - it converges and has clean diagnostics, and - it delivers superior out-of-sample forecast accuracy, even though its AIC/BIC are marginally worse.

Key Note: In our selected model we set d = 0 because the level series appears stationary (no evidence of a unit root) and does not require trend differencing. In practice, d is selected using unit-root and stationarity tests—e.g., Augmented Dickey–Fuller (ADF) or Phillips–Perron (PP) with the null of a unit root, and the KPSS test (level or trend) with the null of stationarity.

Formal testing and reporting of these statistics are outside the scope of this paper; however, our visual diagnostics (ACF behavior, stability of mean/variance) are consistent with d = 0.

4.2. 10-year Forecast: Post-COVID Regime

Building on the foundations laid in the previous sections of this paper, this section focuses on performing a 10-year forecast on the post-COVID regime dataset.

```
# Fit ARIMA model
model_post = ARIMA(series_post, order=(1, 0, 1), trend='t')
result_post = model_post.fit(cov_type='robust')
print(f'Summary Results:\n{result_post.summary()}')
is_stationary = np.all((np.abs(result_post.arroots)) > 1)
is_invertible = np.all((np.abs(result_post.maroots)) > 1)
# 10-year Forecast (12 months per year hence steps = 120)
forecast_post = result_post.get_forecast(steps=120)
forecast_df_post = forecast_post.summary_frame(alpha=0.05)
print(f'ARIMA Forecast Data:\n{forecast_df_post['mean']}')
forecast_df_post['mean'].to_csv(forecast_post_dataset)
# Plot forecast
fig forecast post, ax forecast post = plt.subplots(figsize=(8, 6), dpi=100)
series_post.plot(ax=ax_forecast_post, label='Observed Data',
                 lw=1, color='red',
                 linestyle='--',
                 marker='o')
forecast_df_post['mean'].plot(ax=ax_forecast_post,
                              label='ARIMA Forecast - Post COVID Regime',
                              lw=1.
                              color='blue')
ax_forecast_post.fill_between(forecast_df_post.index,
                              forecast_df_post['mean_ci_lower'],
                              forecast_df_post['mean_ci_upper'],
                              alpha=0.2,
                              label='95% CI')
ax_forecast_post.set_xlabel('Year')
ax_forecast_post.set_ylabel('Inflation Rates (in %age)')
ax_forecast_post.set_title('10-year Inflation Forecast: Post-COVID Regime')
ax_forecast_post.legend()
plt.tight_layout()
plt.show()
```

Summary Results:

SARIMAX Results

DARIMAN RESULTS							
Dep. Variable:	I:	nflation_rat	es No.	Observations	;	44	
Model:		ARIMA(1, 0,	1) Log	Likelihood		_	
50.840							
Date:	Tu	e, 14 Oct 20	25 AIC			109.680	
Time:		22:54:	18 BIC			116.816	
Sample:		01-01-20	22 HQIC			112.326	
		- 08-01-20	25				
Covariance Type	e:	robu	st				
===========	=======	=======	======	=========		========	
	coef	std err	Z	P> z	[0.025	0.975]	
x1	0.0232	0.118	0.198	0.843	-0.207	0.254	
ar.L1	0.9729	0.022	45.052	0.000	0.931	1.015	
ma.L1	0.5016	0.188	2.665	0.008	0.133	0.870	
sigma2	0.5389	0.149	3.615	0.000	0.247	0.831	
Ljung-Box (L1) (Q): 0.42 Jarque-Bera (JB): 3.44							
Prob(Q):	(4).		0.52	Prob(JB):	(02):		0.18
Heteroskedasti	citv (H):		1.48	Skew:			0.37
Prob(H) (two-s	ided):		0.46	Kurtosis:			4.16

Warnings:

[1] Quasi-maximum likelihood covariance matrix used for robustness to some misspecifications step) described in Harvey (1989).

ARIMA Forecast Data:

2025-09-01	2.388065
2025-10-01	2.374855
2025-11-01	2.362634
2025-12-01	2.351375
2026-01-01	2.341053
2026-02-01	2.331642
2026-03-01	2.323116
2026-04-01	2.315453
2026-05-01	2.308629
2026-06-01	2.302621
2026-07-01	2.297406
2026-08-01	2.292964
2026-09-01	2.289273
2026-10-01	2.286313

2026-11-01	2.284064
2026-12-01	2.282507
2027-01-01	2.281622
2027-02-01	2.281393
2027-03-01	2.281800
2027-04-01	2.282827
2027-05-01	2.284457
2027-06-01	2.286674
2027-07-01	2.289460
2027-08-01	2.292802
2027-09-01	2.296684
2027-10-01	2.301092
2027-11-01	2.306010
2027-12-01	2.311426
2028-01-01	2.317325
2028-02-01	2.323695
2028-03-01	2.330522
2028-04-01	2.337795
2028-05-01	2.345501
2028-06-01	2.353629
2028-07-01	2.362167
2028-08-01	2.371104
2028-09-01	2.380429
2028-10-01	2.390131
2028-11-01	2.400201
2028-12-01	2.410628
2029-01-01	2.421403
2029-02-01	2.432516
2029-03-01	2.443958
2029-04-01	2.455720
2029-05-01	2.467794
2029-06-01	2.480170
2029-07-01	2.492841
2029-08-01	2.505799
2029-09-01	2.519036
2029-10-01	2.532545
2029-11-01	2.546317
2029-12-01	2.560346
2030-01-01	2.574625
2030-02-01	2.589147
2030-03-01	2.603906
2030-04-01	2.618895
2030-05-01	2.634107

2030-06-01	2.649538
2030-07-01	2.665180
2030-08-01	2.681028
2030-09-01	2.697077
2030-10-01	2.713321
2030-11-01	2.729754
2030-12-01	2.746372
2031-01-01	2.763170
2031-02-01	2.780142
2031-03-01	2.797285
2031-04-01	2.814593
2031-05-01	2.832061
2031-06-01	2.849686
2031-07-01	2.867464
2031-08-01	2.885389
2031-09-01	2.903459
2031-10-01	2.921669
2031-11-01	2.940015
2031-12-01	2.958494
2032-01-01	2.977102
2032-02-01	2.995836
2032-03-01	3.014691
2032-04-01	3.033666
2032-05-01	3.052756
2032-06-01	3.071959
2032-07-01	3.091271
2032-08-01	3.110690
2032-09-01	3.130212
2032-10-01	3.149835
2032-11-01	3.169556
2032-12-01	3.189372
2033-01-01	3.209281
2033-02-01	3.229280
2033-03-01	3.249368
2033-04-01	3.269540
2033-05-01	3.289796
2033-06-01	3.310132
2033-07-01	3.330548
2033-08-01	3.351039
2033-09-01	3.371606
2033-10-01	3.392244
2033-11-01	3.412953
2033-12-01	3.433731
 	

```
2034-01-01
             3.454575
2034-02-01
             3.475484
2034-03-01
             3.496456
2034-04-01
             3.517490
2034-05-01
             3.538583
2034-06-01
             3.559735
2034-07-01
             3.580943
2034-08-01
             3.602206
2034-09-01
             3.623522
2034-10-01
             3.644891
2034-11-01
             3.666310
2034-12-01
             3.687779
2035-01-01
             3.709295
2035-02-01
             3.730858
2035-03-01
             3.752467
2035-04-01
             3.774119
2035-05-01
             3.795815
2035-06-01
             3.817552
2035-07-01
             3.839330
2035-08-01
             3.861147
```

Freq: MS, Name: mean, dtype: float64

CONCLUSION

To generate a forecast with minimal variance, we have leveraged the (1, 0, 1) iteration (finalized during the pre-COVID forecasting stage) and below are the results: 1. p = 1, d = 0, q = 1: log-likelihood = -50 (higher than pre-COVID forecast), AIC = 110 and BIC = 117 (lower than pre-COVID forecast). No reported MLE convergence issues.

Decision: Based on the statistical results of the pre and post-COVID regimes, post-COVID regime significantly outperforms its pre-COVID counterpart. However, our forecasting approach would be to take an average of the pre and post-COVID forecast results. This approach stems from the following facts: - The pre-COVID regime results were compared with actual observed values (not available for the post-COVID regime forecast) to capture variance. - The pre-COVID regime results would capture behavior not seen in the post-COVID dataset - due to lesser number of observations (72 vs 44).

End of Document