(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2004 年10 月28 日 (28.10.2004)

PCT

(10) 国際公開番号 WO 2004/092246 A1

(51) 国際特許分類⁷: 11/06, H05B 33/14, 33/22 C08G 61/12, C09K

(21) 国際出願番号:

PCT/JP2004/005485

(22) 国際出願日:

2004 年4 月16 日 (16.04.2004)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願2003-114840

10 2003 年4 月18 日 (18.04.2003) JP

- (71) 出願人(米国を除く全ての指定国について): 日立化成工業株式会社(HITACHI CHEMICAL CO., LTD.) [JP/JP]; 〒1630449 東京都新宿区西新宿二丁目1番1号 Tokyo (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 森下 芳伊 (MORISHITA, Yoshii) [JP/JP]. 野村 理行 (NOMURA, Satoyuki) [JP/JP]. 津田 義博 (TSUDA, Yoshihiro) [JP/JP]. 田井誠司 (TAI, Seiji) [JP/JP].
- (74) 代理人: 三好 秀和 (MIYOSHI, Hidekazu); 〒1050001 東京都港区虎ノ門一丁目 2 番 3 号虎ノ門第一ビル 9 階 Tokyo (JP).

- (81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

一 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

A

(54) Title: POLYQUINOLINE COPOLYMER AND ORGANIC ELECTROLUMINESCENT DEVICE USING SAME

- (54) 発明の名称: ポリキノリン共重合体およびこれを用いた有機エレクトロルミネセンス素子
- (57) Abstract: A polyquinoline copolymer is characterized by having quinoline monomer units which may have substituents and benzotriazole monomer units which may have substituents. Such a polyquinoline copolymer makes a light-emitting polymer material which is excellent in stability.
- (57) 要約: 本発明は、置換基を有していてもよいキノリンモノマー単位、及び置換基を有していてもよいベンゾトリアゾールモノマー単位を含むことを特徴とするポリキノリン共重合体に関する。本発明は、安定性に優れた発光ポリマー材料を提供することを目的とする。

1

明細書

ポリキノリン共重合体およびこれを用いた有機エレクトロルミネセンス素子

5 技術分野

本発明は、ポリキノリン共重合体およびそれを用いた有機エレクトロルミネセンス(EL)素子に関する。

背景技術

- 10 エレクトロルミネセンス素子は、例えば、白熱ランプ、ガス充填ランプの代替えとして、大面積ソリッドステート光源用途に注目されている。一方で、フラットパネルディスプレイ(FPD)分野における液晶ディスプレイを置き換えることのできる最有力の自発光ディスプレイとしても注目されている。特に、素子材料が有機材料によって構成されている有機エレクトロルミネセンス(EL)素子は、低消費電力型のフルカラーFPDとして製品化が進んでいる。中でも、有機材料が高分子材料により構成されている高分子型の有機EL素子は、真空系での成膜が必要な低分子型の有機EL素子と比較して、印刷やインクジェットなどの簡易成膜が可能なため、今後の大画面有機ELディスプレイには、不可欠な素子である。
- 20 これまで、高分子型有機EL素子には、共役ポリマー、例えば、ポリ(p-フェニレンービニレン)(例えば、国際公開第90/13148号パンフレット参照。)および非一共役ポリマー(例えば、I. Sokolikら. , J. Appl. Phys. 1993.74,3584参照。)のいずれかのポリマー材料が使用されてきた。しかしながら、素子としての発光寿命が低く、フルカラーディスプレイを構築する上で、25 障害となっていた。

これらの問題点を解決する目的で、近年、種々のポリフルオレン型およびポリ (p-フェニレン)型の共役ポリマーを用いる高分子型有機EL素子が提案されているが、これらも安定性の面では、満足いくものは見出されていない。

本発明は、上記した従来の問題に鑑み、安定性に優れた発光ポリマー材料を 提供することを目的とする。本発明は、さらに、優れた発光寿命を満足できる 有機EL素子を提供することを目的とする。

発明の開示

5

本発明者らは鋭意検討した結果、キノリン誘導体およびベンゾトリアゾール 10 誘導体を含む共重合体が、安定性に優れた発光ポリマーとして優れた材料であ ることを見出し、本発明を完成するに至った。

すなわち、本発明によれば、キノリンモノマー単位及びベンゾトリアゾール モノマー単位を含むポリキノリン共重合体が提供される。キノリンモノマー単 位及びベンゾトリアゾールモノマー単位は置換基を有していてもよい。

15 また、本発明によれば、式(I):

$$-A \xrightarrow{Xa} Xa$$

$$N A \xrightarrow{X} A$$

または (I)

$$-A \xrightarrow{Xa} B \xrightarrow{Xa} A -$$

(式中、Xは、それぞれ独立に $-R^1$ 、 $-OR^2$ 、 $-SR^3$ 、 $-OCOR^4$ 、-C 20 OOR^5 および $-SiR^6R^7R^8$ (ただし、 R^1 ~ R^8 は、それぞれ独立に炭素数 1~2 2 個の直鎖、環状もしくは分岐アルキル基、または、炭素数 2~2 0

3

個のアリール基もしくはヘテロアリール基を表す。) からなる群から選択され る置換基であって、それぞれは同一であっても異なっていてもよい、キノリン 残基中の置換可能な位置に結合した置換基であり、aはそれぞれ独立に0~3 の整数である。Aは、単結合およびアリーレンからなる群から選ばれる基であ り、Bは、単結合、-O-、-S-、-C(O)-、-S(O)-、-S(O2 5) -、-W-、-(-O-W-)m-O-(mは1 \sim 3 の整数)、及び-Q-か らなる群から選ばれる2価の結合基(Wは-Ra-、-Ar'-、-Ra-A $r' - \sqrt{-Ra' - O - Ra' - \sqrt{-Ra' - C}}$ (O) $O - Ra' - \sqrt{-Ra}$ '-NHCO-Ra'-, -Ra-C (O) -Ra-, -Ar'-C (O) -Ar' -, -Het' -, -Ar' -S-Ar' -, -Ar' -S (O) -A10 r'-、 $-Ar'-S(O_2)-Ar'-$ 、及び-Ar'-Q-Ar'-からな る群から選ばれる2価の基であり、Raはアルキレンであり、Ar'はアリー レンであり、Ra′は各々独立にアルキレン、アリーレン及びアルキレン/ア リーレン混合基からなる群から選ばれる基であり、Het'はヘテロアリーレ ンであり、Qは4級炭素を含有する2価の基である。) である。) で表される 15 キノリンモノマー単位と、置換基を有していてもよいベンゾトリアゾールモノ マー単位と、を含む共重合体であって、前記各モノマー単位を結合する基が、 式(II):

20 - (D) b - (II)

25

(式中、Dは-O-、-S-、-NR-、-CR $_2$ -、-Si R $_2$ -、-Si R $_2$ -、-Si R $_2$ -O-Si R $_2$

ル基を表す)からなる群から選択される2価の基であり、bは $0\sim1$ の整数を表す。)で表される上記ポリキノリン共重合体が提供される。

また、本発明によれば、置換基を有していてもよいベンゾトリアゾールモノマー単位が、式(III):

5

10

15

20

(式中、Yは、それぞれ独立にハロゲン原子、 $-R^1$ 、 $-OR^2$ 、 $-SR^3$ 、 $-OCOR^4$ 、 $-COOR^5$ および $-SiR^6R^7R^8$ (ただし、 R^1 ~ R^8 は、それぞれ独立に炭素数 1~22個の直鎖、環状もしくは分岐アルキル基、または、炭素数 2~20個のアリール基もしくはヘテロアリール基を表す。)からなる群から選択される置換基であって、それぞれは同一であっても異なっていてもよく、ベンゾトリアゾール骨格のベンゼン環の置換可能な位置に結合した置換基であり、pは 0~2の整数を表す。式中、Zは、置換基を有してもよいアルキル基、アリール基およびヘテロアリール基からなる群から選ばれる基である。)で表される上記ポリキノリン共重合体が提供される。

また、本発明によれば、前記式(I)のXが $-R^1$ (ただし、 R^1 は、それぞれ独立に炭素数 $1\sim22$ 個の直鎖、環状もしくは分岐アルキル基、または、炭素数 $2\sim20$ 個のアリール基もしくはヘテロアリール基を表す。)であって、aがそれぞれ独立に $0\sim3$ の整数である上記ポリキノリン共重合体が提供される。

また、本発明によれば、前記式(III)のYが $-R^1$ (ただし、 R^1 は、それぞれ独立に炭素数 $1\sim22$ 個の直鎖、環状もしくは分岐アルキル基、または、

5

炭素数 2~20個のアリール基もしくはヘテロアリール基を表す。) であって、pが0~2の整数であり、Zが置換基を有していてもよいフェニル基である上記ポリキノリン共重合体が提供される。

そして、さらに本発明によれば、上記のポリキノリン共重合体を用いたエレクトロルミネセンス素子が提供され、このエレクトロルミネセンス素子は、好ましくは一対の電極と、前記電極間に形成された一層以上の有機層を含むものであって、該有機層のうち少なくとも1層が、本発明に係るポリキノリン共重合体を含む層であるエレクトロルミネセンス素子である。

本願の開示は、2003年4月18日に出願された特願2003-1148 40に記載の主題と関連しており、それらの開示内容は引用によりここに援用 される。

発明を実施するための最良の形態

5

10

15

20

25

本発明のポリキノリン共重合体は、置換基を有していてもよいキノリンモノ マー単位、及び置換基を有していてもよいベンゾトリアゾールモノマー単位を 含むことを特徴とする共重合体である。

キノリンモノマー単位及びベンゾトリアゾールモノマー単位は、それぞれの モノマー単位の置換可能な位置が1価の有機残基により置換されていてもよい

有機残基の例としては、脂肪族炭化水素残基、芳香族炭化水素基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、アシルオキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、アルキルシリル基、アリールシリル基、アシル基、アミノ基、ニトロ基、シアノ基、ハロゲン基、水酸基、メルカプト基、ホルミルオキシ基、カルボキシル基、シリル基、ホルミル基、スルフィノ基、スルホ基等を挙げることができる。

6

脂肪族炭化水素残基としては、直鎖、環状もしくは分岐アルキル基、アルケニル基、アルキニル基等を挙げることができ、炭素数は1~22であることが好ましい。具体的には、メチル基、エチル基、プロピル基、イソプロピル基、シクロプロピル基、ブチル基、イソブチル基、シクロブチル基、ペンチル基、イソペンチル基、ネオペンチル基、シクロペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、シクロヘプチル基、オクチル基、ノニル基、デシル基、ビニル基、プロペニル基、アリル基、プロピニル基、イソプロペニル基、ブテニル基、ペンテニル基等を挙げることができる。

5

10

15

20

25

芳香族炭化水素残基としては、アリール基、ヘテロアリール基等を挙げることができ、炭素数は2~20であることが好ましい。具体的には、フェニル基、トリル基、キシリル基、メシチル基、クメニル基、ベンジル基、フェネチル基、メチルベンジル基、ジフェニルメチル基、スチリル基、シンナミル基、ビフェニル残基、ターフェニル残基、ナフチル基、アントリル基、フルオレニル基、フラン残基、チオフェン残基、ピロール残基、オキサゾール残基、チアゾール残基、イミダゾール残基、ピリジン残基、ピリミジン残基、ピラジン残基、トリアジン残基、キノリン残基、キノキサリン残基等を挙げることができる。なお、本発明において、アリール基とは芳香族化合物が含まれ、さらに多環式芳香族化合物には、二つ以上の環構造が結合した化合物、二つ以上の環構造が縮合した化合物が含まれる。また、本発明において、ヘテロアリールとは、複素環化合物をいい、複素環化合物には、複素単環化合物および縮合複素環化合物が含まれる。

アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ 基、tertーブトキシ基、オクチルオキシ基、tertーオクチルオキシ基 等を、アリールオキシ基としては、フェノキシ基、4-tertーブチルフェ

7

ノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、9-アンスリルオ キシ基等を挙げることができる。アルキルチオ基としては、メチルチオ基、エ チルチオ基、tertーブチルチオ基、ヘキシルチオ基、オクチルチオ基等を 、アリールチオ基としては、フェニルチオ基、2-メチルフェニルチオ基、4 - tert-ブチルフェニルチオ基等を挙げることができる。アシルオキシ基 としては、アセトキシ基、ベンゾイルオキシ基等を挙げることができる。アル キルオキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニ ル基、tertーブトキシカルボニル基等を、アリールオキシカルボニル基と しては、フェノキシカルボニル基、ナフチルオキシカルボニル基等を挙げるこ とができる。アルキルシリル基としては、トリメチルシリル基、トリエチルシ リル基等を、アリールシリル基としては、トリフェニルシリル基等を挙げるこ とができる。アシル基としては、アセチル基、プロピオニル基、ベンゾイル基 、トルオイル基等を挙げることができる。アミノ基としては、アミノ基、N-メチルアミノ基、Nーエチルアミノ基、N、Nージエチルアミノ基、N、Nー ジイソプロピルアミノ基、N、N-ジブチルアミノ基、N-ベンジルアミノ基 、N、Nージベンジルアミノ基、N-フェニルアミノ基、N、N-ジフェニル アミノ基等を挙げることができる。ハロゲン原子としては、フッ素原子、塩素 原子、臭素原子、ヨウ素原子等を挙げることができる。

5

10

15

20

25

本発明においては、キノリンモノマー単位が置換基を有する場合、芳香族炭化水素残基であることが好ましく、アリール基であることが好ましく、フェニル基であることがより好ましい。また、ベンゾトリアゾールモノマー単位が置換基を有する場合、ベンゾトリアゾール構造のベンゼン環が有する置換基は、脂肪族炭化水素残基であることが好ましく、アルキル基であることがより好ましく、トリアゾール環が有する置換基は、芳香族炭化水素残基であることが好ましく、アリール基であることが好ま

8

LV1.

5

10

15

20

また、キノリンモノマー単位またはベンゾトリアゾールモノマー単位が有する置換基は、さらに置換基を有していてもよく、置換基の例としては、上述のキノリンモノマー単位またはベンゾトリアゾールモノマー単位が有していてもよい置換基を挙げることができる。

本発明において、キノリンモノマー単位は、モノマー単位を構成する主鎖に、キノリン構造の他にさらに2価の有機残基を含んでいてもよい。本発明において、2価の有機残基の例としては、上述の1価の有機残基から水素原子等が1つ失われて生じる、1価の有機残基に対応する2価の有機残基を挙げることができる。このような有機残基は、芳香族炭化水素残基が好ましく、アリーレン基がより好ましく、オルトーフェニレン、メターフェニレン、パラーフェニレンがさらに好ましい。

また、キノリンモノマー単位とは、主鎖として1つのキノリン構造からモノマー単位を構成している場合のみならず、主鎖として2つ以上のキノリン構造が結合して1つのモノマー単位を構成している場合も含む。この場合、2つ以上のキノリン構造を結合する基は、単結合または2価の有機残基であり、2つ以上の有機残基が連結していてもよい。有機残基としては、芳香族炭化水素残基またはオキシ基を有する2価の基であることが好ましく、フェニル残基、フェナントレン残基、フルオレン残基、カルバゾール残基、ビフェニル残基またはジフェニルエーテル残基であることが好ましい。

それぞれのモノマー単位を結合する結合基は、特に限定されないが、単結合 または2価の有機残基であり、有機残基としてはオキシ基であることが好まし い。

本発明のポリキノリン共重合体は、上記の各モノマー成分を少なくとも含ん 25 でいればよく、各モノマー単位は、いわゆるランダムコポリマーのように共重

合体中にランダムに含まれていてもよいし、あるいはブロックコポリマーやグラフトコポリマーのように一部の特定のモノマー単位が局在して存在するような共重合体であってもよい。なお、上記の共重合体を構成する2種の各モノマー単位は、それぞれ1種類のモノマーであっても、2種類以上のモノマーが組み合わされたものであってもよい。

本発明で用いられる、キノリンモノマー単位は、式(I):

$$-A \xrightarrow{Xa} A \xrightarrow{Xa} A$$

または (1)

10 で表されることが好ましい。キノリンモノマー単位は、単独で、または2種類 以上を組み合わせて用いることができる。

式(I)中、Xはそれぞれ独立に1価の有機残基を、AおよびBはそれぞれ 独立に単結合または2価の有機残基を表す。

本発明の式(I)のキノリンモノマー単位中、単数又は複数個のXは $-R^1$ 、 $-OR^2$ 、 $-SR^3$ 、 $-OCOR^4$ 、 $-COOR^5$ または $-SiR^6R^7R^8$ で表されることが好ましく、置換基Xが複数個置換している場合、これらのXはそれぞれ同一の置換基であっても異なる種類の置換基であってもよい。 a は各々独立に $0\sim3$ の整数である。

一方、置換基Xにおける $R^1 \sim R^8$ としては、それぞれ独立に、炭素数 $1 \sim 2$ 2 個の直鎖アルキル基、環状アルキル基もしくは分岐アルキル基、または、炭素数 $2 \sim 2$ 0 個のアリール基もしくはヘテロアリール基であることが好ましい

10

。このような基としては、たとえば、メチル基、エチル基、プロピル基、シクロプロピル基、ブチル基、イソブチル基、シクロブチル基、ペンチル基、イソペンチル基、ネオペンチル基、シクロペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、シクロヘプチル基、オクチル基、ノニル基、デシル基などの炭素数1~22個の直鎖アルキル基、環状アルキル基もしくは分岐アルキル基、また、フェニル基、ナフチル基、アントリル基、フルオレニル基、ビフェニル残基、ターフェニル残基、フラン残基、チオフェン残基、ピロール残基、オキサゾール残基、チアゾール残基、イミダゾール残基、ピリジン残基、ピリジン残基、ピリジン残基、トリアジン残基、キノキサリン残基などの炭素数2~20個のアリール基もしくはヘテロアリール基があげられる。

5

10

15

置換基Xはさらに、置換基を有していてもよい。Xが有する置換基としては、上記 $-R^1$ 、 $-OR^2$ 、 $-SR^3$ 、 $-OCOR^4$ 、 $-COOR^5$ または $-SiR^6$ R^7R^8 で表される置換基、さらに $-NR^9R^{10}$ (ただし、 R^9 、 R^{10} は、それぞれ独立に炭素数 $1\sim 2$ 2個の直鎖、環状もしくは分岐アルキル基、または、炭素数 $2\sim 2$ 0個のアリール基もしくはヘテロアリール基を表す。)で表される置換基が挙げられる。置換基が複数存在する場合、複数の置換基はそれぞれ同一であっても異なっていてもよい。

本発明の式(I)のキノリンモノマー単位中、Xaとしては、それぞれ独立して、aが0、すなわち未置換のものであるか、あるいはXが-R¹で表されるアルキル基、アリール基が直接置換したものが、溶解性および耐熱性の点から好ましいものである。また、置換基数は、未置換の場合、すなわちaが0であるものを含めて、aが1または2であるものが、重合反応性の点で好ましいものである。さらに、-R¹としては、アリール基が好ましく、フェニル基が特に好ましいものである。

WO 2004/092246

また、式(I)のキノリンモノマー単位中、Aは、それぞれ独立に単結合またはアリーレンであることが好ましく、Aとしては、アリーレンであることがより好ましく、オルトーフェニレン、メターフェニレン、パラーフェニレンが重合反応性の点で特に好ましいものである。

- 5 また、式(I)のキノリンモノマー単位中、Bは、好ましくは、単結合、-O-, -S-, -C (O) -, -S (O) -, -S $(O_3) -, -W-, -$ (-O-W-)m-O-(mは $1\sim3$ の整数)、及び-Q-からなる群から選ばれる 2価の結合基である。上記Wは、-Ra-、-Ar'-、-Ra-Ar'-、 -Ra'-O-Ra'-, -Ra'-C (O) O-Ra'-, -Ra'-NH10 CO-Ra'-, -Ra-C(O)-Ra-, -Ar'-C(O)-Ar'- \cdot -Het' - \cdot -Ar' - S - Ar' - \cdot -S (O) - Ar' - \cdot $-Ar'-S(O_2)-Ar'-$ 、及び-Ar'-Q-Ar'-からなる群から 選ばれる2価の基であり、Raはアルキレンであり、Ar^はアリーレンであ り、Ra´は各々独立にアルキレン、アリーレン及びアルキレン/アリーレン 混合基からなる群から選ばれる基であり、Het′はヘテロアリーレンであり 15 、Qは4級炭素を含有する2価の基である。Bとしては、単結合、-O-、-Ar'ーまたは-Ra'-O-Ra'-であることがより好ましく、フェニル 残基、フェナントレン残基、フルオレン残基、カルバゾール残基、ビフェニル 残基、ジフェニルエーテル残基であることが重合反応性の点で特に好ましい。
- 式(I)中、A又はBで表される2価の基は、置換基を有していてもよい。 A又はBが有する置換基としては、上記 $-R^1$ 、 $-OR^2$ 、 $-SR^3$ 、 $-OCOR^4$ 、 $-COOR^5$ 、 $-SiR^6R^7R^8$ または $-NR^9R^{10}$ で表される置換基が挙げられる。置換基が複数存在する場合、複数の置換基はそれぞれ同一であっても異なっていてもよい。
- 25 式(I)のキノリンモノマー単位の具体例として、下記に例示化合物を示す

が、これらに限定されるものではない。

 OR^2 、 $-SR^3$ 、 $-OCOR^4$ 、 $-COOR^5$ 、 $-SiR^6R^7R^8$ または $-NR^9R^{10}$ で表される置換基が挙げられる。また、Rは水素原子であってもよい。置換基Rはそれぞれ同一であっても異なっていてもよい。

また、本発明で使用するベンゾトリアゾールモノマー単位としては、式 (II 5 I):

15

で表されるベンゾトリアゾールが好ましく、これらのベンゾトリアゾールモノマー単位は、単独であるいは2種以上を組み合わせて使用することができる。

式(III)中、YおよびZはそれぞれ独立に水素原子または1価の有機残基を10 を表す。

これらのベンゾトリアゾールモノマー単位の式(III)における、置換基Yは、好ましくは各々独立にハロゲン原子、 $-R^1$ 、 $-OR^2$ 、 $-SR^3$ 、 $-OCOR^4$ 、 $-COOR^5$ または $-SiR^6R^7R^8$ (ただし、 $R^1\sim R^8$ は、炭素数 $1\sim 22$ 個の直鎖、環状もしくは分岐アルキル基、または、炭素数 $2\sim 20$ 個のアリール基もしくはヘテロアリール基を表す。)からなる群から選択される置換基であって、それぞれは同一であっても異なっていてもよく、ベンゾトリアゾール骨格のベンゼン環の置換可能な位置に結合した置換基であり、 $Pk0\sim 20$ の整数を表す。

置換基Yはさらに置換基を有していてもよく、置換基の例として上記 $-R^1$ 20 、 $-OR^2$ 、 $-SR^3$ 、 $-OCOR^4$ 、 $-COOR^5$ 、 $-SiR^6R^7R^8$ または $-NR^9R^{10}$ で表される置換基が挙げられる。置換基が複数存在する場合、複数

の置換基はそれぞれ同一であっても異なっていてもよい。

これらの置換基のうち、Ypとしては、それぞれ独立して、pが 0、すなわち未置換のものであるか、あるいはYが-R1で表される基であることが好ましく、アルキル基が直接置換したものが、重合反応性および耐熱性の点から特に好ましいものである。

また、式(III)のベンゾトリアゾール単位中、Zは、置換基を有してもよい アルキル基、アリール基およびヘテロアリール基からなる群から選ばれる基で あることが好ましい。Zとしては、置換または非置換のアリール基がより好ま しく、フェニル基が特性の点で特に好ましいものである。

Zが有する置換基の例としては、上記 $-R^1$ 、 $-OR^2$ 、 $-SR^3$ 、 $-OCOR^4$ 、 $-COOR^5$ 、 $-SiR^6R^7R^3$ または $-NR^9R^{10}$ で表される置換基、さらにハロゲン原子または炭素数 $1\sim 22$ 個の直鎖、環状もしくは分岐アルケニル基が挙げられる。置換基が複数存在する場合、複数の置換基はそれぞれ同一であっても異なっていてもよい。

15 本発明のベンゾトリアゾールモノマー単位の具体例として、下記に例示化合物を示すが、これらに限定されるものではない。

$$\begin{array}{c|c} Y_1 & Y_2 \\ \hline \\ N, N \\ Z \end{array}$$

表1

ベンゾトリアゾール モノマーNo.	Y ₁	Y ₂	Z
(1)	Н	Н	H ₃ C CH ₃ H ₃ C CH ₃ CH ₃ CH ₃
(2)	Н	Н	H ₃ C CH ₃ CH ₃ CH ₃ CH ₃
(3)	Н	Н	H ₃ C C ₂ H ₆ CH ₃ CH ₃ CH ₃ H ₃ C C ₂ H ₆
(4)	Н	Н	H ₃ CO CH ₃

表1続き

- 1 - 17		T	
モノマーNo.	Y ₁	Y ₂	Z
(5)	Н	Н	H ₃ C C ₂ H ₅ C ₄ H ₉ O CH ₃ CH ₃ H ₃ C C ₂ H ₅
(6)	Н	Н	H ₃ CO N—
(7)	Н	Н	——————————————————————————————————————
(8)	Н	Н	—⟨¯}—CH₃
(9)	Н	Н	H ₃ CO CH ₃
(10)	Н	Н	——F
(11)	Н	Н	————OCH₃
(12)	Н	Н	
(13)	Н	Н	-CI
(14)	Н	Н	CI
(15)	Н	Н	
(16)	Н	Н	CH ₃ CH ₃
(17)	Н	Н	CH ₃ C ₄ H ₉ C ₄ H ₉
(18)	Н	Н	H ₃ CO CH ₃

表1続き

(2 0) H H H (2 1) (2 1) (2 1) (2 1) (3 1) (4 1) (5 1) (6 1) (6 1) (7 1) (8 1) (9 1) (1 1) (1 1) (2 1) (2 1) (2 1) (3 1) (4 1) (5 1) (6 1) (6 1) (7 1) (8 1) (9 1) (1 1) (1 1) (2 1) (2 1) (3 1) (4 1) (5 1) (6 1) (6 1) (7 1) (8 1) (9 1) (1 1) (1 1) (2 1) (2 1) (3 1) (4 1) (5 1) (6 1) (6 1) (7 1) (8 1) (9 1) (1 1) (1 1) (1 1) (2 1) (2 1) (3 1) (4 1) (5 1) (6 1) (6 1) (7 1) (8 1) (9 1) (9 1) (1 1) (1 1) (1 1) (2 1) (2 1) (3 1) (4 1) (5 1) (6 1) (7 1) (8 1) (9 1) (9 1) (1 1) (1 1) (1 1) (2 1) (3 1) (4 1) (5 1) (6 1) (6 1) (7 1) (8 1) (9 1)	X 1 /// C	7-	77	
(19) H H (20) H H (21) OCH ₃ OCH ₃ (21) OCH ₃ (22) H (23) H (24) C ₄ H ₆ C ₄ H ₆ C ₄ H ₆ H (26) CH ₃ H (26) CH ₃ H (27) H (27) H (26) CH ₃ H (27) H (27) H (28) H (29) H (20) H	モノマーNo.	Y ₁	Y ₂	7
(2 0) H H H C ₁ H ₉ C ₂ H ₉ C ₄ H ₉ (2 1) (2 2) H C ₂ H ₉ C ₄ H ₉ H C ₄ H ₉ C ₄ H ₉ C ₄ H ₉ H (2 3) H (2 4) H C ₄ H ₉ C ₄ H ₉ C ₄ H ₉ H C ₄ H ₉ H C ₄ H ₉ C	(19)	Н	H	CH ₃
(2 1) 0CH ₃ 0CH ₃ H ₆ C ₄	(20)	Н	Н	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(21)		$0\mathrm{CH}_3$	
$(2 3) \qquad \qquad \qquad H \qquad $	(22)		Н	———CH₃
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(23)		Н	
(25) C1 H — H ₃ C CH ₃ H ₃ CO CH ₃	(24)		Н	
(26) CH ₃ H	(25)		Н	
	(26)	CH ₃	Н	CH ₃
	(27)	CH ₃	CH ₃	

表1続き

7) 1	T T	1 77	
モノマーNo.	Y ₁	Y ₂	Z
(28)	C_4H_9 C_4H_9	H	H ₃ C CH ₃ H ₃ C CH ₃ CH ₃ CH ₃
(29)	C_4H_9 C_4H_9	Н	C_4H_9
(30)	Н	Н	C_6H_{13} CH_2 — CH_3
(31)	Н	Н	— с́н
(32)	Н	Н	CH ₃ CH ₂ —CH ₃ CH ₃
(33)	Н	Н	C ₄ H ₉ C ₄ H ₉
(34)	Н	Н	C ₈ H ₁₇ C ₈ H ₁₇
(35)	Н	Н	
(36)	Н	Н	H ₃ C CH ₃ CH ₃ CH ₃ CH ₃
(37)	Н	H	N-N CH ₃
(38)	Н	Н	S CH ₃
(39)	Н	Н	
(40)	Н	Н	
(41)	Н	Н	~N

表1続き

モノマーNo.	Y ₁	Y ₂	Z
(42)	Н	Н	———N
(43)	Н	Н	————CH₃
(44)	H	Н	—⟨¬, och₃
(45)	Н	Н	Ç ₂ H ₅
(46)	Н	Н	H ₃ C CH ₃ H ₃ C
(47)	Н	Н	-S
(48)	SCH_3	Н	H ₃ CO CH ₃ CH ₃ CH ₃
(49)	OCOCH3	H	−⟨¯>−CH₃
(50)	COOC ₄ H ₉	- Н	—————OC₂H₅
(51)	Si(CH ₃) ₃	Н	
(52)	Н	Н	C ₄ H ₉ O CH ₃ CH ₃ CH ₃

本発明のポリキノリン共重合体は、上記の2成分のモノマー単位を少なくとも含むものであるが、必要に応じて、これら以外のモノマー単位を「共重合モノマー単位」として含有させることができる。「共重合モノマー単位」としては、例えば、置換または非置換の芳香族性のモノマー単位、置換または非置換の複素環モノマー単位、置換または非置換の方で表して、

モノマー単位を挙げることができる。このような芳香族性のモノマー単位または複素環モノマー単位としては、ベンゼン、ビフェニル、ターフェニル、ナフタレン、アントラセン、テトラセン、フェナントレン、スチルベン、クリセン、ピリジン、ピラジン、イソキノリン、アクリジン、フェナントロリン、フラン、ピロール、チオフェン、ジフェニルオキサジアゾール、ベンゾチアジアゾール、ジフェニルジアゾール、ジフェニルチアジアゾールなどが、トリフェニルアミン骨格を有するモノマー単位としては、トリフェニルアミン、N-(4ーブチルフェニル)-N,N'-ビス(3-メチルフェニル)-[1,1'-ビフェニル]-4,4'-ジアミン、N,N'-ビス(2-ナフチル)-[1,1'-ビフェニル)-N,N'-ビス(2-ナフチル)-[1,1'-ビフェニル]-4,4'-ジアミンなどが、さらには、枝分れ構造モノマー、アルキニレンなどがあげられる。

5

10

15

共重合モノマー単位は、上述の有機残基により置換されていてもよい。共重合モノマー単位が有していてもよい置換基の例としては、 $-R^1$ 、 $-OR^2$ 、 $-SR^3$ 、 $-OCOR^4$ 、 $-COOR^5$ 、 $-SiR^6R^7R^8$ または $-NR^9R^{10}$ で表される置換基が挙げられる。置換基が複数存在する場合、複数の置換基はそれぞれ同一であっても異なっていてもよい。

本発明の共重合モノマー単位の具体例として、さらに下記に例示化合物を示すが、これらに限定されるものではない。

上記共重合モノマー単位中、置換基Rとしては、上記 $-R^1$ 、 $-OR^2$ 、 $-SR^3$ 、 $-OCOR^4$ 、 $-COOR^5$ 、 $-SiR^6R^7R^8$ または $-NR^9R^{10}$ で表される置換基が挙げられる。また、Rは水素原子であってもよい。置換基Rはそれぞれ同一であっても異なっていてもよい。

次に、本発明のポリキノリン共重合体は、上記モノマー単位を結合する基として、式(II):

$$10 - (D) b - (II)$$

5

28

で表される結合基を有することが好ましい。

5

10

15

20

25

式(II)中、Dは2価の有機残基であり、-O-、-S-、-NR-、-C R_2- 、-S i R_2- 、-S i R_2- 0 -S i R_2-

上記の式(II)において、bが0の場合は単結合を意味している。これらのうち結合基としては、単結合または-O-が合成の簡便性の点で好ましい。また、Rとしては、炭素数 $1\sim22$ の直鎖、環状または分岐アルキル基が溶解性付与の観点から好ましく、炭素数 $1\sim6$ の直鎖アルキル基が重合反応性の点で特に好ましいものである。

本発明において、ポリキノリン共重合体は、好ましくは、式(I)で表されるキノリンモノマー単位と、式(III)で表されるベンゾトリアゾール単位とを少なくとも含有する共重合体であり、各モノマー単位を結合する基が、式(II)で表される共重合体である。

本発明のポリキノリン共重合体中の全モノマー単位総数中のキノリンモノマー単位の占めるモル分率は、1から99%が好ましく、3から97%がより好ましく、5から95%が最も好ましい。キノリンモノマー単位が、1%未満であると発光色度が劣化しやすい傾向にあり、99%を超えると発光輝度が低くなる傾向にある。

本発明のポリキノリン共重合体中の全モノマー単位総数中のベンゾトリアゾールモノマー単位の占めるモル分率は、1から99%が好ましく、3から97%がより好ましく、5から95%が最も好ましい。ベンゾトリアゾールモノマー単位が、1%未満であると発光輝度が低くなる傾向にあり、99%を超える

と発光色度が劣化しやすい傾向にある。

5

25

なお、本発明のポリキノリン共重合体に共重合させることのできる芳香族性のモノマー単位、置換または非置換の複素環モノマー単位、置換または非置換のトリフェニルアミン骨格を有するモノマー単位等の共重合モノマー単位は、ポリマーの全モノマー単位総数中のモル分率で、0から80%であることが好ましく、0から50%であることがより好ましく、0から30%であることがさらに好ましい。共重合モノマー単位を用いた場合、重合性の点で好ましい。また、共重合モノマー単位の含有量が80%を超えると特性が低下する傾向がある。

本発明のポリキノリン共重合体は、種々の当業者公知の合成法により製造できる。例えば、各モノマー単位を結合する基が無い場合、つまり、式(II)においてりが0の場合には、ヤマモト(T. Yamamoto)らのBull. Chem. Soc. Jap.、51巻、7号、2091頁(1978)、およびゼンバヤシ(M. Zembayashi)らのTet. Lett.,47巻4089頁(1977)に記載されている方法を用いることができる。特に、スズキ(Suzuki)によりSynthetic Communications,Vol.11,No.7,p.513(1981)において報告されている方法が共重合体の製造には、一般的である。この反応は、芳香族ボロン酸(boronic acid)誘導体と芳香族ハロゲン化物の間でPd触媒化クロスカップリング反応(通常、「鈴木反応」と呼ばれる)を起こさしめるものであり、対応する芳香族環同士を結合する反応に用いることにより、本発明のポリキノリン共重合体を製造することができる。

また、この反応は通常 Pd (II) 塩もしくは Pd (0) 錯体の形態の可溶性 Pd 化合物を用いる。芳香族反応体を基準として $0.01\sim5$ モルパーセントの Pd (PPh_3) $_4$ 、3級ホスフィンリガンドとの Pd (OAc) $_2$ 錯体および $PdC1_2$ (dppf) 錯体が一般に好ましい Pd 源である。この反応には塩基も用いられ、水性アルカリカーボネートもしくはバイカーボネートが最も

好ましい。また、相間移動触媒を用いて、非極性溶媒中で反応を促進すること もできる。溶媒としては、N, N-ジメチルホルムアミド、トルエン、ジメト キシエタン、テトラヒドロフラン等が用いられる。

本発明のポリマーの場合には、例えば、具体的に、次式

$$(R'O)_2B-A$$
 Xa
 $A-B(OR')_2$

または

5

10

15

(式中、R´はメチル基、エチル基、プロピル基などの低級アルキル基、あるいは2個のR´が互いに結合して環を形成するエチレン基、プロピレン基などの低級アルキレン基であり、XおよびA、B、aは前述のとおりのものである。)で表されるキノリン誘導体のジボロン酸エステルと、ジブロモベンゾトリアゾール誘導体と、必要に応じ共重合可能な共重合モノマーのボロン酸エステルまたは共重合モノマーの臭素化物を、パラジウム(0)触媒存在下、水溶性塩基により共重合させて製造することができる。また、共重合可能な共重合モノマーのボロン酸エステルと、ジブロモキノリン誘導体、ジブロモベンゾトリアゾール誘導体とを、パラジウム(0)触媒存在下、水溶性塩基により共重合させて製造することもできる。

本発明のポリキノリン共重合ポリマーの具体例として、下記に例示化合物を 示すが、これらに限定されるものではない。

表2

12 4		
す。 リマー	ジボロン酸エステルモノマー	ジブロモモノマー
(1)	50mol%	Br Br OCH ₃ H ₃ C CH ₃ CH ₃ CH ₃ S0mo 1%
(2)	50mo1%	Br DCH ₃ H ₃ C H ₃ C CH ₃ CH
(3)	50mo1%	Br ————————————————————————————————————
(4)	50mo1%	Br Br N, N N OCH ₃ H ₃ C CH ₃ CH ₃ C ₄ H ₉ C ₄ H ₉ C ₄ H ₉ C ₄ H ₉ CH ₃ Br CH ₃

表2続き

す。 引ム-	ジボロン酸エステルモノマー	ジブロモモノマー
(5)	C ₈ H ₁₇ C ₈ H ₁₇ O S S O mo 1%	Br H ₃ C CH ₃ Br H ₃ C CH ₃ 25mo 1% Br OCH ₃ CH ₅
(6)	\$\frac{\cappa_4 \text{H}_9}{\cappa_0 \text{F-Q}}\$ \$50 \text{mo } 1\%	Br H ₃ C CH ₃ H ₃ C CH ₃ Br 25mo1% Br OCH ₃ H ₃ C CH ₃
(7)	C_eH_{13} C_eH_{13} C_eH_{13} C_eH_{13} C_eH_{13} C_eH_{13}	H ₃ C CH ₃ H ₃ C CH ₃ Br NNN Br NNN OCH ₃ CH ₃ CCH ₃ CH ₃ CCH ₃ CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

表2続き

水。 リマー	コンピロン・勝ケフニリエン・	```````````
₩ 1/4-	ジボロン酸エステルモノマー	ジブロモモノマー
(8)	50mo 1%	$C_{6}H_{13}$ O $C_{6}H_{13}$
(9)	C ₄ H ₉ C ₄ H ₉ H ₉ C CH ₃	Br H ₃ C CH ₃ Br H ₃ C CH ₃ 25mol% H ₃ C CH ₃ CH ₃ 25mol%
(10)	50mo1%	Br Br OH CH ₃ CH ₃ CH ₃ S0mo 1%
(11)	H ₉ C CH ₃ H ₉ C CH ₃ H ₉ C CH ₃ S 0 mo 1%	Br 25mo1% Br OCH ₃ H ₃ C CH ₃ CH

表2続き

す。 リマー	ジボロン酸エステルモノマー	ジブロモモノマー
(12)	H ₃ C CH ₃ S 0 mo 1%	H ₃ C CH ₃ N Br Br Br Br Br CH ₃ CH ₃ CH ₃ CH ₃ 15mol% 35mol%
(13)	±0,8-√5,0-€, 50mol%	Br H ₃ C CH ₃ Br 20mo 1% Br CH ₃ CCH ₃
(14)	50mo1%	Br — Br — Br — C(CH ₃)C ₂ H ₅ — N, N, N — OCH ₃ — C(CH ₃)C ₂ H ₅ — OCH ₃ — CH ₃
(15)	50mo1%	$\begin{array}{c} C_4H_5\\ C_8H_{17}\\ C_8H_{1$

表2続き

4C 27 /0L C		
ポ゚リマ-	ジボロン酸エステルモノマー	ジブロモモノマー
(16)	C _a H ₁₇ C _a H	Br — Br — C ₄ H ₉ N N N OCH ₃ H ₃ C — CH ₃ H ₃ C — CH ₃ H ₃ C — CH ₃ Br 15mol% 35mol%
(17)	C ₄ H ₉ C ₄ H ₉ H ₃ C CH ₃ 25mo1% H ₃ C CH ₃ H ₃ C CH ₃ C ₄ H ₉ C ₄ H ₉ C ₅ H ₉ C ₆ H ₉ C ₇ CH ₉ C ₈ C ₈ C ₈ C ₉ C ₈ C ₉	Br — Br N N N OCH ₃ CH ₃ CH ₃ CH ₃ CH ₃ 25mol% Br 25mol%
(18)	C ₄ H ₆ C ₄ H ₆ N Somo 1%	Br C ₄ H ₉ Br 25mol% Br OCH ₃ H ₃ C CH ₃ CH ₃ CH ₃ 25mol%
(19)	H ₃ C CH ₃ O B N CH ₃ CH ₃ S 0 mo 1%	Br ————————————————————————————————————

表2続き

2000		
す。 リム-	ジボロン酸エステルモノマー	ジブロモモノマー
(20)	H ₉ C CH ₉ OB N N CH ₃ 50mo 1%	H ₃ C CH ₃ Br Br Br Br CH ₃ N N N N N N N N N N N N N N N N N N N
(21)	H₃C N E 50mo1%	C_4H_9 B_r C_4H_9 C_4H_9 C_4H_9 C_4H_9 C_4H_9 C_4H_9 C_4H_9 C_4H_9 C_7 C_8 C
(22)	50mo1%	C _a H ₃ C _a H ₁₇ C _a H ₁₇ C _a H ₁₇ C _a H ₁₇ C _a H ₁₈ 5mo1% Br C _a H _a C _a H _a Smo1% 15mo1%
(23)	H ₃ C CH ₃ H ₃ C CH ₃ OB N 50mo1%	Br — Br — OCH ₃ — CH ₃ — CH ₃ — Br — B

表2続き

		T
ポ゚リマ-	ジボロン酸エステルモノマー	ジブロモモノマー
(24)	H ₃ C CH ₃	Br — Br — OCH ₃ — CH ₃ — CH ₃ — 40mol% — CH ₃ — CH ₃ — 40mol% — CH ₃ — 10mol%
(25)	C ₆ H ₁₃ C ₆ H ₁₃ C ₆ H ₁₃ 50mo1%	Br H ₃ C CH ₃ Br H ₃ C CH ₃ 10mol% Br CH ₃ 10mol% Br CH ₃ CCH ₃ Br C ₆ H ₁₃ CCH ₁₃ CC
(26)	H ₃ C CH ₃ H ₃ C CH ₃ H ₃ C CH ₃ 50mo 1%	Br — Br 40mo 1% CH ₃ 40mo 1% CH ₃ 10mo 1%

表2続き

4X 乙形(C			
水。 リィ-	ジボロン酸エステルモノマー	ジブロモモノマー	
(27)	H ₃ C CH ₃ H ₃ C CH ₃ H ₃ C CH ₃ F C CH ₃ H ₃ C CH ₃ F C C CH ₃ F C C CH ₃ F C C C C C C C C C C C C C C C C C C C	H ₃ C CH ₃ H ₃ C CH ₃ Br Br Br N N N N N N N N N N N N N N N N	
(28)	C ₄ H ₉ C ₄ H ₉ H ₉ C CH ₃	Br H ₃ C CH ₃ H ₃ C CH ₃ H ₃ C CH ₃ Br H ₃ C CH ₃ 15mol% C ₄ H ₅ 35mol%	
(29)	$ \begin{array}{c} C_6H_{13} \\ C_6H_{13} \end{array} $ $ \begin{array}{c} C_6H_{13} \end{array} $ $ \begin{array}{c} 0 \end{array} $ $ \begin{array}{c} 0 \end{array} $ $ \begin{array}{c} 0 \end{array} $	Br H ₃ C CH ₃ CH ₃ 15mol% 25mol% CH ₃ CH ₃ CH ₃ 10mol%	

表2続き

ポリマ-	ジボロン酸エステルモノマー	ジブロモモノマー
(30)	C ₈ H ₁₇ C ₈ H ₁₇ O S S O M O 1%	Br H ₃ C CH ₃ H ₃ C CH ₃ Br 25mo 1% C ₃ H ₃ C ₄ H ₆ 25mo 1%

表2続き

す。 リマー	ジボロン酸エステルモノマー	ジブロモモノマー
(31)	50mo1%	Br H ₃ C CH ₃ Br 25mol% Br OCH ₃ CH ₃ 25mol%
(32)	ǰβ→(Ç)−E° 50mo1%	Br H ₃ C CH ₃ Br 10mo 1% Br C ₄ H ₃ C CH ₃ 10mo 1% Br C ₄ H ₅ C CH ₃ Br C ₄ H ₅ Br C ₄ H ₅ Br 15mo 1%
(33)		Br — Br — C4H ₃ H ₃ C CH ₃ Br — Br C4H ₃ 10mol% Br — CH ₃ H ₃ C CH ₃ H ₃

表2続き

10

ホ。 リム-	ジボロン酸エステルモノマー	ジブロモモノマー
(34)	50mo1%	Br H ₃ C CH ₃ Br H ₃ C CH ₃ 25mo1% H ₃ C CH ₃ 25mo1% H ₃ C CH ₃ 25mo1%
(35)	dzB-√Ç}-ʰÇ) 50mol%	Br H ₃ C CH ₃ H ₃ C CH ₃ Br H ₃ C CH ₃ 10mol% H ₃ C CH ₃ 10mol% H ₃ C CH ₃ 10mol% H ₃ C CH ₃ CH ₃ 15mol%

各モノマー単位を結合する基が一〇一、つまり、式(II)においてDが一〇一、 bが1の場合には、特開平9-136954号公報に記載されているようなジフルオロキノリンモノマーとジヒドロキシベンゾトリアゾール誘導体モノマー、ジブロモベンゾトリアゾール誘導体モノマーとジヒドロキシキノリンモノマー、またはジブロモキノリンモノマーとジヒドロキシベンゾトリアゾール誘導体モノマーを塩基存在下、極性溶媒中で反応させることによって本発明のポリキノリン共重合体を製造できる。この反応は、本発明のポリキノリン共重合体を製造できる。この反応は、本発明のポリキノリン共重合体を製造するための反応を、ジヒドロキシ化合物を脱プロトン化しうる塩基

の存在下で行う。このような塩基としては、アルカリ及びアルカリ土類金属炭酸塩及び水酸化物、例えば、炭酸カリウム、水酸化カリウム、炭酸ナトリウム、水酸化ナトリウム等が挙げられる。ジヒドロキシ化合物の酸性度が低くて水酸化ナトリウムでは十分に脱プロトン化されない場合には、より強い塩基、例えば、水素化ナトリウム等の金属水素化物、ブチルリチウム、ナトリウムアミド等の金属アミドなどを用いてもよい。この塩基とジヒドロキシ化合物との反応時には、水が生成する。この水は、共沸蒸留により除去することができる。溶媒としては、上述のものを用いることができる。

例えば、具体的に、次式

または

5

10

15

20

(式中、XおよびA、B、aは前述のとおりのものである。)

で表されるジフルオロキノリン誘導体と、ジヒドロキシベンゾトリアゾール誘 導体とを、塩基存在下、極性溶媒中で反応させることによってポリキノリン共 重合体を製造できる。

なお、本発明のポリキノリン共重合体が、他の共重合可能な共重合モノマーを含む場合、前述の共重合モノマーをヒドロキシ単量体としてキノリン誘導体およびベンゾトリアゾール誘導体と共重合させればよい。本発明において共重合させることのできるその他のジヒドロキシ単量体の例としては、例えば、レゾルシン、ヒドロキノン、4,4′-ジヒドロキシビフェニル、1,3-ジヒ

43

ドロキシナフタレン、2, 6 - ジヒドロキシナフタレン、2, 7 - ジヒドロキシナフタレン、3, 4 ' - ジヒドロキシビフェニル、3, 3 ' - ジヒドロキシビフェニル、2, 4 - ジヒドロキシ安息香酸メチル、イソプロピリデンジフェノール(ビスフェノールA)、フェノールフタレイン、フェノール・レッド、

5 1, $2-\Im$ (4-ヒドロキシフェニル) エタン、 \Im (4-ヒドロキシフェニル) メタン、4, 4 ' $-\Im$ ヒドロキシベンゾフェノン、N, N-ビス(4-ヒドロキシフェニル) -N-フェニルアミン、N, N ' -ビス(4-ヒドロキシフェニル) -N, N ' -ビス(3-メチルフェニル) - [1, 1 ' -ビフェニル]-4, 4 ' $-\Im$ アミン等が挙げられる。

10 ヒドロキシ単量体は置換基を有していてもよく、置換基の例としては、上記 $-R^1$ 、 $-OR^2$ 、 $-SR^3$ 、 $-OCOR^4$ 、 $-COOR^5$ 、 $-SiR^6R^7R^8$ または $-NR^9R^{10}$ で表される置換基が挙げられる。置換基が複数存在する場合、複数の置換基はそれぞれ同一であっても異なっていてもよい。

本発明のヒドロキシ単量体の具体例として、さらに下記に例示化合物を示す 15 が、これらに限定されるものではない。

10

上記ヒドロキシ単量体中、置換基Rとしては、上記 $-R^1$ 、 $-OR^2$ 、 $-SR^3$ 、 $-OCOR^4$ 、 $-COOR^5$ 、 $-SiR^6R^7R^8$ または $-NR^9R^{10}$ で表される置換基が挙げられる。また、Rは水素原子であってもよい。置換基Rはそれぞれ同一であっても異なっていてもよい。

上記方法により得られたポリキノリン共重合体の分子量は、10,000~1,000,000であることが好ましく、30,000~800,000であることが好ましい。10,000未満であるとフィルム形成能が低下する傾向があり、1,000,000を超えると溶解性が低下する傾向がある。

本発明のポリキノリン共重合体は、エレクトロルミネセンス素子の活性層材料として使用できる。活性層とは、層が電界の適用時に発光し得るもの(発光層)、または、電荷の注入もしくは電荷の移動を改良するもの(電荷注入層または電荷移動層)を意味する。ここで、電荷とは負または正の電荷をいう。

48

300nmを超えると特性が低下する傾向がある。

5

25

電子注入および/または電子移動層には、オキサジアゾール誘導体、ベンゾ オキサゾール誘導体、ベンゾキノン誘導体、キノリン誘導体、キノキサリン誘 導体、チアジアゾール誘導体、ベンゾジアゾール誘導体、トリアゾール誘導体 、金属キレート錯体化合物、などの材料を含む層が挙げられる。

正孔注入および/または正孔移動層には、銅フタロシアニン、トリフェニルアミン誘導体、トリフェニルメタン誘導体、スチルベン系化合物、ヒドラゾン系化合物、カルバゾール系化合物、高分子量アリールアミン、ポリアニリン、ポリチオフェン、などの材料を含む層が挙げられる。

本発明のポリマーをエレクトロルミネセンス素子の活性層材料として使用するためには、ポリマー溶液を基体上に塗布し、基体上に活性層をフィルムの形状で設ければよい。当業者に公知の方法、例えば、インクジェット、キャスト、浸漬、印刷またはスピンコーティングなどを用いて積層することにより達成することができる。印刷法には、凸版印刷、凹版印刷、オフセット印刷、平板印刷、凸版反転オフセット印刷、スクリーン印刷、グラビア印刷等がある。このような積層方法は、通常、-20~+300℃の温度範囲、好ましくは10~100℃、特に好ましくは15~50℃で実施することができる。また、積層されたポリマー溶液の乾燥は、通常、常温乾燥、ホットプレートによる加熱乾燥などで実施することができる。

20 ポリマー溶液に用いられる溶媒として、クロロホルム、塩化メチレン、ジクロロエタン、テトラヒドロフラン、トルエン、キシレン、メシチレン、アニソール、アセトン、メチルエチルケトン、酢酸エチル、酢酸ブチル、エチルセロソルブアセテート等を用いることができる。

本発明のポリマー溶液は、それ以外の材料と混合して使用してもよい。また 、本発明のポリマーを用いたエレクトロルミネセンス素子は、上記ポリマー以

外の材料を含む層が本発明のポリマーを含む活性層と積層されていてもよい。 本発明のポリマーと混合して用いてもよい材料としては、正孔注入および/または正孔移動材料、電子注入および/または電子移動材料、発光材料、バインダーポリマーなどの公知のものが使用できる。混合する材料としては、高分子材料でも、低分子材料でもかまわない。

5

25

正孔注入および/または正孔移動材料に使用可能なものとしては、アリールアミン誘導体、トリフェニルメタン誘導体、スチルベン系化合物、ヒドラゾン系化合物、カルバゾール系化合物、高分子量アリールアミン、ポリアニリン、ポリチオフェン、などの材料およびそれらを高分子化した材料が例示される。

10 電子注入および/または電子移動材料に使用可能なものとしては、オキサジア ゾール誘導体、ベンゾオキサゾール誘導体、ベンゾキノン誘導体、キノリン誘 導体、キノキサリン誘導体、チアジアゾール誘導体、ベンゾジアゾール誘導体 、トリアゾール誘導体、金属キレート錯体化合物、などの材料およびそれらを 高分子化した材料が例示される。

発光材料に使用可能なものとしては、アリールアミン誘導体、オキサジアゾール誘導体、ペリレン誘導体、キナクリドン誘導体、ピラゾリン誘導体、アントラセン誘導体、ルブレン誘導体、スチルベン誘導体、クマリン誘導体、ナフタレン誘導体、金属キレート錯体、IrやPtなどの中心金属を含む金属錯体、などの材料およびそれらを高分子化した材料、ポリフルオレン誘導体、ポリフェニレン誘導体、ポリフェニレン誘導体、ポリフェニレン誘導体、ポリテオフェン誘導体、ポリフェニレンが導体、ポリテオフェン誘導体、などのポリマー材料が例示される。

バインダーポリマーに使用可能なものとしては、特性を著しく低下させない ものであれば使用できる。当該バインダーポリマーとしては、ポリスチレン、 ポリカーボネート、ポリアリールエーテル、ポリアクリレート、ポリメタクリ レート、ポリシロキサン、などの材料が例示される。

また、ポリマー溶液の全重量に対し、ポリキノリン共重合体は0.1~5重量%含まれることが好ましく、0.2~3重量%含まれることがさらに好ましい。0.1重量%未満であると薄膜欠陥としてピンホールなどが生じる傾向があり、5重量%を超えると膜厚ムラが生じる傾向がある。

本発明のポリマーからなる本発明のエレクトロルミネセンス素子の一般構造は、米国特許第4,539,507号および米国特許第5,151,629号に記載されている。また、ポリマー含有のエレクトロルミネセンス素子については、例えば、国際公開WO第90/13148号または欧州特許公開第043861号に記載されている。

10 これらは通常、電極の少なくとも1つが透明であるカソードとアノードとの間に、エレクトロルミネセント層(発光層)を含むものである。さらに、1つ以上の電子注入層および/または電子移動層が、エレクトロルミネセント層(発光層)とカソードとの間に挿入され得るもので、さらに、1つ以上の正孔注入層および/または正孔移動相が、エレクトロルミネセント層(発光層)とアノードとの間に挿入され得るものである。

カソード材料としては、例えば、Li、Ca、Mg、AL、In、Cs、Mg/Ag、LiFなどの金属または金属合金であるのが好ましい。アノード材料としては、透明基体(例えば、ガラスまたは透明ポリマー)上に、金属(例えば、Au)または金属導電率を有する他の材料、例えば、酸化物(例えば、ITO:酸化インジウム/酸化錫)を使用することもできる。

20

25

本発明のポリキノリン共重合体は、例えば、有機EL素子用材料として好適である。これらは、中でも、高い発光効率、良好な発光の色純度および安定性、さらに製膜が容易であること等から良好なフィルム形成能を示す。従って、これを用いた本発明の有機EL素子は良好な発光の色純度および安定性を示すものであり、また、生産性に優れている。

実施例

10

15

25

本発明を以下の実施例により説明するが、これらに限定されるものではない

5 実施例1 キノリン誘導体 ジボロン酸エステルの合成

マグネシウム(1.9g、80mmo1)のTHF混合物中に、6,6'ービス[2-(4-プロモフェニル)-3,4-ジフェニルキノリン](30mmo1)のTHF溶液を、アルゴン気流下に、よく攪拌しながら徐々に加え、グリニヤール試薬を調製した。得られたグリニヤール試薬を、トリメチルホウ酸エステル(300mmo1)のTHF溶液に-78℃でよく攪拌しながら、2時間かけて徐々に滴下した後、2日間室温で攪拌した。反応混合物を粉砕した氷を含有する5%希硫酸中に注ぎ、攪拌した。得られた水溶液をトルエンで抽出し、抽出物を濃縮したところ、無色の固体が得られた。得られた固体をトルエン/アセトン(1/2)から再結晶することにより、無色結晶としてキノリン誘導体ジボロン酸が得られた(40%)。得られたキノリン誘導体ジボロン酸(12mmo1)と1,2-エタンジオール(30mmo1)をトルエン中で10時間還流した後、トルエン/アセトン(1/4)から再結晶したところ、キノリン誘導体ジボロン酸エステルが無色結晶として得られた(83%)。

20 実施例 2 キノリン誘導体とベンゾトリアゾール誘導体との共重合体の合成(1)

下記構造式で示されるジブロモベンゾトリアゾール化合物($10\,\mathrm{mmo}\,1$)、実施例1で合成したキノリン誘導体 ジボロン酸エステル($10\,\mathrm{mmo}\,1$)、 $\mathrm{Pd}\,(0)$ (PPh_3) $_4$ ($0.2\,\mathrm{mmo}\,1$)のトルエン溶液に、アルゴン気流下、 $2\,\mathrm{MoK}_2\,\mathrm{CO}_3$ 水溶液を加え、激しく攪拌しながら、 $4\,8\,\mathrm{時間還流した}$

10

20

反応混合物を室温まで冷却した後、大量のメタノール中に注ぎ、固体を沈殿させた。析出した固体を吸引濾過し、メタノールで洗浄することにより、固体を得た。濾取した固体をトルエンに溶解した後、大量のアセトン中に注ぎ、固体を沈殿させた。析出した固体を吸引濾過し、アセトンで洗浄することにより、固体を得た。さらに、上記アセトンによる再沈処理を2回繰り返した。次に、得られた個体をトルエンに溶解した後、陽イオン・陰イオン交換樹脂(オルガノ社製イオン交換樹脂)を加え、1時間攪拌した後、吸引濾過してポリマー溶液を回収した。さらに、上記イオン交換樹脂による処理を2回繰り返した。回収したポリマー溶液を大量のメタノール中に注ぎ、固体を沈殿させた。さらに、得られた固体をソックスレー抽出器中でアセトンにより、24時間抽出・洗浄してキノリン誘導体とベンゾトリアゾール誘導体との共重合体(1)を得た。

15 実施例3 キノリン誘導体とベンゾトリアゾール誘導体との共重合体の合成(2)

6, 6'-ビス [2-(4-7)ルオロフェニル)-3, 4-9フェニルキノリン] $(10 \, \text{mmo } 1)$ 、下記構造式で示されるビスフェノールベンゾトリアゾール化合物($10 \, \text{mmo } 1$)、炭酸カリウム($15 \, \text{mmo } 1$)、無水NMP($40 \, \text{ml}$)および無水トルエン($20 \, \text{ml}$)を窒素気流下、激しく攪拌しな

10

15

がら、30時間加熱・還流した。反応混合物にNMP(60m1)を加えた後、室温まで冷却した。

得られた溶液を、大量の蒸留水中に注ぎ、固体を沈殿させた。析出した固体を吸引濾過し、蒸留水、メタノール、アセトンで洗浄することにより、個体を得た。濾取した固体をトルエンに溶解した後、大量のアセトン中に注ぎ、固体を沈殿させた。析出した固体を吸引濾過し、アセトンで洗浄することにより、固体を得た。さらに、上記アセトンによる再沈処理を2回繰り返した。次に、得られた個体をトルエンに溶解した後、陽イオン・陰イオン交換樹脂(オルガノ社製イオン交換樹脂アンバーリストEG-290-HG)を加え、1時間攪拌した後、吸引濾過してポリマー溶液を回収した。さらに、上記イオン交換樹脂による処理を2回繰り返した。回収したポリマー溶液を大量のメタノール中に注ぎ、固体を沈殿させた。さらに、得られた固体をソックスレー抽出器中でアセトンにより、24時間抽出・洗浄してキノリン誘導体とベンゾトリアゾール誘導体との共重合体(2)を得た。

実施例4 キノリン誘導体とベンゾトリアゾール誘導体との共重合体の合成(3)

下記構造式で示されるジブロモベンゾトリアゾール化合物(10mmo1)

- 、実施例1で合成したキノリン誘導体 ジボロン酸エステル(10mmo1)
- 20 、Pd(0)(PPh₃)₄(0.2mmo1)のトルエン溶液に、アルゴン気

10

15

20

流下、2MのK₂CO₃水溶液を加え、激しく攪拌しながら、48時間還流した

反応混合物を室温まで冷却した後、大量のメタノール中に注ぎ、固体を沈殿させた。析出した固体を吸引濾過し、メタノールで洗浄することにより、固体を得た。濾取した固体をトルエンに溶解した後、大量のアセトン中に注ぎ、固体を沈殿させた。析出した固体を吸引濾過し、アセトンで洗浄することにより、固体を得た。さらに、上記アセトンによる再沈処理を2回繰り返した。次に、得られた個体をトルエンに溶解した後、陽イオン・陰イオン交換樹脂(オルガノ社製イオン交換樹脂)を加え、1時間攪拌した後、吸引濾過してポリマー溶液を回収した。さらに、上記イオン交換樹脂による処理を2回繰り返した。回収したポリマー溶液を大量のメタノール中に注ぎ、固体を沈殿させた。さらに、得られた固体をソックスレー抽出器中でアセトンにより、24時間抽出・洗浄してキノリン誘導体とベンゾトリアゾール誘導体との共重合体(3)を得た。

実施例5 有機EL素子の作製(1)

実施例2で得たキノリン誘導体とベンゾトリアゾール誘導体との共重合体(1)のトルエン溶液(1.0wt%)を、ITO(酸化インジウム錫)を2mm幅にパターンニングしたガラス基板上に、乾燥窒素環境下でスピン塗布してポリマ発光層(膜厚70nm)を形成した。次いで、乾燥窒素環境下でホット

プレート上で80C/5分間加熱乾燥した。得られたガラス基板を真空蒸着機中に移し、上記発光層上にLiF(膜厚0.5nm)、AL(膜厚100nm)の順に電極を形成した。得られたITO/ポリマー発光層/LiF/AL素子を電源に接続し、ITOを正極、LiF/ALを陰極にして電圧を印加したところ、約5Vで緑色発光($\lambda=520nm$)が観測された。この緑色発光における色調の変化は、25Cで、500時間経過後も認められなかった。

実施例6 有機EL素子の作製(2)

15 実施例7 有機EL素子の作製(3)

キノリン誘導体とベンゾトリアゾール誘導体との共重合体(1)の代わりにキノリン誘導体とベンゾトリアゾール誘導体との共重合体(3)を用いた以外は、実施例5と同様にしてITO/ポリマー発光層/LiF/AL素子を作製した。得られたITO/ポリマー発光層/LiF/AL素子を電源に接続し、

比較例1

5

20

25

キノリン誘導体とベンゾトリアゾール誘導体との共重合体(1)の代わりに 下記構造式で示されるポリキノリンを用いた以外は、実施例5と同様にして I

PCT/JP2004/005485

TO/ポリマー発光層/Ca/AL素子を作製した。得られたITO/ポリマー発光層/Ca/AL素子を電源に接続し、ITOを正極、Ca を陰極にして電圧を印加したところ、約10 Vで青色発光(λ = 430 n m)が観測されたが、時間と共に発光色が青色から水色に変化した。

比較例 2

5

10

15

キノリン誘導体とベンゾトリアゾール誘導体との共重合体(1)の代わりに下記構造式で表される(ジオクチルフルオレン/ベンゾチアゾール)共重合体を用いた以外は、実施例 5 と同様にしてI TO/ポリマー発光層/L i F/A L 素子を作製した。得られたI TO/ポリマー発光層/L i F/A L 素子を電源に接続し、I TOを正極、L i F/A L を陰極にして電圧を印加したところ、約8 V で黄色発光($\lambda = 5$ 48 nm)が観測されたが、時間と共に発光色が黄色から黄白色に変化した。

10

15

実施例8 ジブロモキノリン誘導体(3)の合成

$$\begin{array}{c} H_3C \\ H_3C \\ H_3C \\ \end{array}$$

$$\begin{array}{c} H_3C \\ H_3C \\ \end{array}$$

$$\begin{array}{c} H_3C \\ \\ H_3C \\ \end{array}$$

$$\begin{array}{c} CH_3 \\ \\ NH_2 \\ \end{array}$$

$$\begin{array}{c} CH_3 \\ \\ NH_2 \\ \end{array}$$

$$\begin{array}{c} CH_3 \\ \\ CH_3 \\ \end{array}$$

$$\begin{array}{c} CH_3 \\ \\ CH_3 \\ \end{array}$$

$$\begin{array}{c} CH_3 \\ \\ H_3C \\ \end{array}$$

$$\begin{array}{c} CH_3 \\ \\ \end{array}$$

反応容器に上記化合物($\underline{1}$)(0.3 mol)、乾燥N, N-ジメチルホルムアミド2500mLを仕込み、アルゴンガスを吹き込んで脱気操作を行なった(1時間)。アルゴン雰囲気下にてNi(COD) $_2$ (0.3 mol、1.0 eq.)を添加し、50℃にて3時間加熱攪拌を行なった。反応溶液を室温まで放冷後、冷水10Lに投入し、酢酸エチル1.5Lで2回抽出した。水洗後、硫酸マグネシウムで脱水し、溶媒を減圧留去して化合物($\underline{2}$)の粗生成物を得た。この粗生成物にヘキサン580mLを加えて15分加熱還流し、溶液を放冷して析出している結晶をろ取、乾燥して化合物($\underline{2}$)(0.11mol)を得た。収率37%。

反応容器に化合物 (2) (0.10mol)、4ーブロモアセトフェノン (0.3mol、3.0eq.)、キシレン400mL、pートルエンスルホン酸一水和物 (3mmol、0.03eq.)を仕込み、2日間加熱還流を行な

った。反応溶液を室温まで放冷後、析出した結晶をろ取した。得られた粗結晶にクロロホルム 500 mLを加えて 30 分間加熱還流し、この溶液を放冷し、析出した結晶をろ取・乾燥して目的のキノリン誘導体 (3) (0.07mol) を得た。収率 70%。NMRスペクトル、IRスペクトル等によりキノリン誘導体 (3) の構造を確認した。

実施例9 キノリン誘導体(5)の合成

5

反応容器に上記化合物(<u>1</u>)(20mmo1)、ジメチルジブチルフェナントレンジボロン酸エステル化合物(10mmo1)、Pd(0)(PPh₃)₄(0.12mmo1)を仕込み、アルゴンガスを吹き込んで脱気操作を行なった(1時間)。アルゴン雰囲気下にて、トルエン80mL、60%のA1iquat(R)336トルエン溶液(8mL)、2MのNa₂CO₃水溶液60mLを加え、激しく攪拌しながら、95℃で4時間還流した。反応終了後、反応溶液を大量の冷却したメタノール/蒸留水=1/1中に注ぎ、固体を沈殿させた。析出した固体を吸引濾過し、冷却メタノールで洗浄して粗生成物を得た。

10

この粗生成物にヘキサンを加えて15分加熱還流し、溶液を放冷して析出している結晶をろ取、乾燥して化合物(4)(8.3mmo1)を得た。収率83%。

反応容器に化合物($\underline{4}$)(8 mm o 1)、4 ー プロモアセトフェノン(2 4 mm o 1、3.0 e q.)、キシレン40 mL、p ートルエンスルホン酸ー水和物(0.24 mm o 1、0.03 e q.)を仕込み、2日間加熱還流を行なった。反応溶液を室温まで放冷後、析出した結晶をろ取した。得られた粗結晶にクロロホルム50 mLを加えて30分間加熱還流し、この溶液を放冷し、析出した結晶をろ取・乾燥して目的化合物($\underline{5}$)(5.2 mm o 1)を得た。収率65%。NMRスペクトル、IRスペクトル等によりキノリン誘導体($\underline{5}$)の構造を確認した。

実施例10 ジブロモベンゾトリアゾール化合物(3)の合成:表1(3)

反応容器にチバ・スペシャリティーケミカルズのTINUVIN(R)328(0.2mol)、炭酸カルシウム(0.3mol)、脱水N,Nージメチルホルムアミド2000mLを仕込み、窒素ガスを吹き込んで脱気操作を行なった(1時間)。窒素ガス雰囲気下にて、65℃にてヨウ化メチル(0.4mol)を加えて、さらに3時間加熱攪拌を行なった。反応溶液を室温まで放冷後、蒸留水300mLを加えた。得られた溶液にクロロホルム300mLを加えて抽出し、得られた抽出溶液を蒸留水で洗浄した後、濃縮して無色の粗結晶を得た。得られた粗結晶をクロロホルム/ヘキサンから再結晶して、中間体で

あるメチル化ベンゾトリアゾール化合物(0.1mol)を得た。収率50%

反応容器にメチル化ベンゾトリアゾール化合物(0.1 mo1)、45%臭化水素の酢酸溶液(300 mL)を仕込み、窒素ガスを吹き込んで脱気操作を行なった(1時間)。窒素ガス雰囲気下にて、110℃にて1時間加熱攪拌を行なった。その後、臭素(0.4 mo1、4 e q.)を1時間かけて滴下した。滴下終了後、110℃にて3時間加熱攪拌を行なった。反応溶液を室温まで放冷後、蒸留水300 mLを加えて、析出した固体をろ取した。得られた固体をクロロホルム500 mLに溶解し、水酸化ナトリウム溶液、炭酸水素ナトリウム溶液で中和した。得られた溶液を濃縮したところ、無色の粗結晶が得られた。得られた粗結晶をアセトンから再結晶して、目的のジブロモベンゾトリアゾール化合物(3)(0.06 mo1)を得た。収率60%。NMRスペクトル、IRスペクトル等によりジブロモベンゾトリアゾール化合物(3)の構造を確認した。

15 実施例11 キノリン誘導体とベンゾトリアゾール誘導体との共重合体の合成(4):表2共重合ポリマー(31)の合成

5

10

反応容器に上記ジオクチルフルオレンジボロン酸エステル(5 mm o 1)、 20 前記実施例 8 で合成したジブロモキノリン誘導体(<u>3</u>)(2.5 mm o 1)、 前記実施例 1 0 で合成したジブロモベンゾトリアゾール化合物(3)(2.5 mm o 1)、Pd(0)(P Ph₃)₄(0.06 mm o 1)を仕込み、アルゴンガスを吹き込んで脱気操作を行なった(1 時間)。アルゴン雰囲気下にて、 トルエン40mL、60%のA1iquat(R)336トルエン溶液(4mL)、2MのK2CO3水溶液30mLを加え、激しく攪拌しながら、95℃で48時間還流した。反応終了後、反応溶液を大量のメタノール/蒸留水=9/1中に注ぎ、固体を沈殿させた。析出した固体を吸引濾過し、メタノールで洗浄することにより、固体を得た。濾取した固体をトルエンに溶解した後、大量のメタノール/アセトン=8/2中に注ぎ、固体を沈殿させた。析出した固体を吸引濾過し、メタノール、アセトンで洗浄することにより、固体を得た。さらに、上記メタノール/アセトン=8/2による再沈処理を2回繰り返した。次に、得られた個体をトルエンに溶解した後、陽イオン・陰イオン交換樹脂(オルガノ社製イオン交換樹脂)を加え、1時間攪拌した後、吸引濾過してポリマー溶液を回収した。さらに、上記イオン交換樹脂による処理を2回繰り返した。回収したポリマー溶液を大量のメタノール/アセトン=8/2中に注ぎ、固体を沈殿させた。さらに、得られた固体をソックスレー抽出器中でアセトンにより、24時間抽出・洗浄してキノリン誘導体とベンゾトリアゾール誘導体との共重合体(4)を得た。

実施例12 キノリン誘導体とベンゾトリアゾール誘導体との共重合体の合成(5):表2共重合ポリマー(32)の合成

$$\begin{bmatrix} O \\ O \end{bmatrix} B - \begin{bmatrix} O \\ O \end{bmatrix}$$

:ベンゼンジボロン酸エステル

`Br:ジブロモトリフェニルアミン化合物

5

10

15

反応容器に上記ベンゼンジボロン酸エステル(5mmol)、前記実施例8 で合成したジブロモキノリン誘導体(3)(1mmo1)、前記実施例10で 合成したジブロモベンゾトリアゾール化合物(3)(2.5mmol)、上記 ジブロモトリフェニルアミン化合物(1.5mmol)、Pd(0)(PPh $_{3}$) $_{4}$ (0.06 mm o 1) を仕込み、アルゴンガスを吹き込んで脱気操作を行 5 なった(1時間)。アルゴン雰囲気下にて、トルエン40mL、60%のA1 iquat (R) 336トルエン溶液(4mL)、2MのK,CO,水溶液30 mLを加え、激しく攪拌しながら、95℃で48時間還流した。反応終了後、 反応溶液を大量のメタノール/蒸留水=9/1中に注ぎ、固体を沈殿させた。 析出した固体を吸引濾過し、メタノールで洗浄することにより、固体を得た。 10 瀘取した固体をトルエンに溶解した後、大量のメタノール/アセトン=8/2 中に注ぎ、固体を沈殿させた。析出した固体を吸引濾過し、メタノール、アセ トンで洗浄することにより、固体を得た。さらに、上記メタノール/アセトン =8/2による再沈処理を2回繰り返した。次に、得られた個体をトルエンに 溶解した後、陽イオン・陰イオン交換樹脂(オルガノ社製イオン交換樹脂)を 15 加え、1時間攪拌した後、吸引濾過してポリマー溶液を回収した。さらに、上 記イオン交換樹脂による処理を2回繰り返した。回収したポリマー溶液を大量 のメタノール/アセトン=8/2中に注ぎ、固体を沈殿させた。さらに、得ら れた固体をソックスレー抽出器中でアセトンにより、24時間抽出・洗浄して キノリン誘導体とベンゾトリアゾール誘導体との共重合体(5)を得た。 20

実施例13 キノリン誘導体とベンゾトリアゾール誘導体との共重合体の合成(6):表2共重合ポリマー(33)の合成

ベンゼンジボロン酸エステル

63

5

10

15

20

反応容器に上記ベンゼンジボロン酸エステル(5mmol)、前記実施例9 で合成したジブロモキノリン誘導体(5)(1mmo1)、前記実施例10で 合成したジブロモベンゾトリアゾール化合物(3)(2.5mmol)、上記 ジブロモトリフェニルアミン化合物 (1.5mmol)、Pd(0)(PPh $_{3}$) $_{4}$ (0.06 mm o 1) を仕込み、アルゴンガスを吹き込んで脱気操作を行 なった(1時間)。アルゴン雰囲気下にて、トルエン40mL、60%のA1 iquat (R) 336トルエン溶液 (4mL)、2MのK₂CO₃水溶液30 mLを加え、激しく攪拌しながら、95℃で48時間還流した。反応終了後、 反応溶液を大量のメタノール/蒸留水=9/1中に注ぎ、固体を沈殿させた。 析出した固体を吸引濾過し、メタノールで洗浄することにより、固体を得た。 濾取した固体をトルエンに溶解した後、大量のメタノール/アセトン=8/2 中に注ぎ、固体を沈殿させた。析出した固体を吸引濾過し、メタノール、アセ トンで洗浄することにより、固体を得た。さらに、上記メタノール/アセトン =8/2による再沈処理を2回繰り返した。次に、得られた個体をトルエンに 溶解した後、陽イオン・陰イオン交換樹脂(オルガノ社製イオン交換樹脂)を 加え、1時間攪拌した後、吸引濾過してポリマー溶液を回収した。さらに、上 記イオン交換樹脂による処理を2回繰り返した。回収したポリマー溶液を大量 のメタノール/アセトン=8/2中に注ぎ、固体を沈殿させた。さらに、得ら れた固体をソックスレー抽出器中でアセトンにより、24時間抽出・洗浄して

64

キノリン誘導体とベンゾトリアゾール誘導体との共重合体(6)を得た。 実施例14~16 有機EL素子の作製(4)~(6)

5

10

15

20

ITO (酸化インジウム錫)を2mm幅にパターンニングしたガラス基板をUV/O3洗浄をした後、ポリチオフェン/ポリスチレンスルホン酸水分散溶液(Bayer製BAYTRON P CH8000)をスピンナーで塗布し、ホットプレート上で200℃で15分間加熱乾燥してホール注入層を形成した(膜厚40nm)。その後、乾燥窒素ガス環境下で実施例11~実施例13で得たキノリン誘導体とベンゾトリアゾール誘導体との共重合体(4)~(6)のトルエン溶液(1.5wt%)を、スピン塗布してポリマー発光層(膜厚80nm)を形成した。次いで、乾燥窒素ガス環境下でホットプレート上で80℃/5分間加熱乾燥した。得られたガラス基板を真空蒸着機中に移し、上記発光層上にLiF(膜厚0.5nm)、Ca(膜厚20nm)、AL(膜厚150nm)の順に電極を形成した。得られたITO/ポリマー発光層/LiF/Ca/ALを陰極にして電圧を印加したところ、下記表に示す特性が得られた。さらに、有機EL素子寿命を評価したところ、下記表に示す特性が得られた。さらに、有機EL素子寿命を評価したところ、25℃で、500時間経過後も発光色の色調の変化は認められなかった。

また、上記実施例に示した例の他、上述の本発明における種々のモノマー単位を用いた場合にも、同様に安定性、発光効率等の優れた特性を有するポリキノリン共重合体を得ることができる。

表3

実施例	ポリマー	発光開始電圧	発光効率	発光ピーク 波長
実施例14	共重合体(4)	2. 5 V	5. 2 c d/A	5 3 0 n m
実施例15	共重合体(5)	3. 0 V	5. 4 c d/A	5 2 5 n m
実施例16	共重合体(6)	2. 5 V	6. 2 c d/A	5 3 0 n m

66

請 求 の 範 囲

1. キノリンモノマー単位及びベンゾトリアゾールモノマー単位を含むことを特徴とするポリキノリン共重合体。

5

2. 式(I):

$$-A \xrightarrow{Xa} Xa$$

$$N$$

$$A$$

または (I)

$$-A \xrightarrow{|X|} Xa \xrightarrow{X} A \xrightarrow{X} A$$

(式中、Xは、それぞれ独立に-R¹、-OR²、-SR³、-OCOR⁴、-COOR⁵および-SiR⁶R⁻R³ (ただし、R¹~Rঙは、それぞれ独立に炭素数1~22個の直鎖、環状もしくは分岐アルキル基、または、炭素数2~20個のアリール基もしくはヘテロアリール基を表す。)からなる群から選択される置換基であって、それぞれは同一であっても異なっていてもよい、キノリン残基中の置換可能な位置に結合した置換基であり、aはそれぞれ独立に0~3の整数である。Aは、単結合およびアリーレンからなる群から選ばれる基であり、Bは、単結合、-O-、-S-、-C(O)-、-S(O)-、-S(O)-、-S(O))-、-W-、-(-O-W-)m-O-(mは1~3の整数)、及び-Q-からなる群から選ばれる2価の結合基(Wは-Ra-、-Ar´-、-Ra-Ar´-、-Ra-Ar´-、-Ra-Ar´-、-Ra-Ar´-、-Ra-Ar´-、-Ra-C(O)-Ra-、-Ar´-C(O)-

置換基を有していてもよいベンゾトリアゾールモノマー単位と、 を含む共重合体であって、

10 前記各モノマー単位を結合する基が、式(II):

- (D) p- (II)

(式中、Dは-O-、-S-、-NR-、 $-CR_2$ -、 $-SiR_2$ -、 $-SiR_2$ -、 $-SiR_2$ 15 2-O- SiR_2 -、および $-SiR_2$ -O- SiR_2 -O- SiR_2 -(ここで、Rは、それぞれ独立に炭素数1~22個の直鎖、環状もしくは分岐アルキル基、または、炭素数2~20個のアリール基もしくはヘテロアリール基を表す)からなる群から選択される2価の基であり、Bは0~1の整数を表す。)で表される請求項1記載のポリキノリン共重合体。

20

5

3. 置換基を有していてもよいベンゾトリアゾールモノマー単位が、式(II):

68

5

10

15

20

(式中、Yは、それぞれ独立にハロゲン原子、 $-R^1$ 、 $-OR^2$ 、 $-SR^3$ 、 $-OCOR^4$ 、 $-COOR^5$ および $-SiR^6R^7R^8$ (ただし、 $R^1\sim R^8$ は、それぞれ独立に炭素数 $1\sim 22$ 個の直鎖、環状もしくは分岐アルキル基、または、炭素数 $2\sim 20$ 個のアリール基もしくはヘテロアリール基を表す。)からなる群から選択される置換基であって、それぞれは同一であっても異なっていてもよく、ベンゾトリアゾール骨格のベンゼン環の置換可能な位置に結合した置換基であり、pは $0\sim 2$ の整数を表す。式中、Zは、置換基を有してもよいアルキル基、アリール基およびヘテロアリール基からなる群から選ばれる基である。)

で表される請求項2記載のポリキノリン共重合体。

- 4. 前記式(I)のXが $-R^1$ (ただし、 R^1 は、それぞれ独立に炭素数1~22個の直鎖、環状もしくは分岐アルキル基、または、炭素数2~20個のアリール基もしくはヘテロアリール基を表す。)であって、aがそれぞれ独立に0~3の整数である請求項2または3に記載のポリキノリン共車合体。
- 5. 前記式 (III) のYが $-R^1$ (ただし、 R^1 は、それぞれ独立に炭素数 $1\sim22$ 個の直鎖、環状もしくは分岐アルキル基、または、炭素数 $2\sim20$ 個のアリール基もしくはヘテロアリール基を表す。)であって、pが $0\sim2$ の整数であり、Zが置換基を有していてもよいフェニル基である請求項 $2\sim4$ に記

69

載のポリキノリン共重合体。

6. 請求項 $1 \sim 5$ のいずれかに記載のポリキノリン共重合体を用いて作製された有機エレクトロルミネセンス素子。

5

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/005485

		101/012	2004/003403
A. CLASSIFICINT.Cl	CATION OF SUBJECT MATTER 7 C08G61/12, C09K11/06, H05B33	/14, H05B33/22	
According to In	ternational Patent Classification (IPC) or to both nation	al classification and IPC	
B. FIELDS SI			
Minimum docur Int.Cl	mentation searched (classification system followed by c C08G61/12, C09K11/06, H05B33	lassification symbols) /14, H05B33/22	
·			
Documentation	searched other than minimum documentation to the ext	ent that such documents are included in the	e fields searched
Electronic data I WPI (L)	pase consulted during the international search (name of	data base and, where practicable, search te	erms used)
C. DOCUME	NTS CONSIDERED TO BE RELEVANT	•	
Category*	Citation of document, with indication, where ap		Relevant to claim No.
X	JP 9-183846 A (Siemens AG.), 15 July, 1997 (15.07.97), Claims & US 5807969 A & EP	761718 A2	1
A .	JP 9-73009 A (Hitachi Chemic 18 March, 1997 (18.03.97), Claims; Par. No. [0031] (Family: none)	cal Co., Ltd.),	1-6
A .	JP 3-177422 A (Exxon Researc 01 August, 1991 (01.08.91), Claims; examples 1 to 18 (Family: none)	ch & Engineering Co.),	16
<u>.</u>			
	cuments are listed in the continuation of Box C.	See patent family annex.	
"A" document d to be of part	gories of cited documents: efining the general state of the art which is not considered icular relevance	"T" later document published after the inte date and not in conflict with the applica- the principle or theory underlying the in	ation but cited to understand
filing date "L" document w	cation or patent but published on or after the international which may throw doubts on priority claim(s) or which is	"X" document of particular relevance; the c considered novel or cannot be considered step when the document is taken alone	dered to involve an inventive
special reaso	ablish the publication date of another citation or other on (as specified) ferring to an oral disclosure, use, exhibition or other means	"Y" document of particular relevance; the c considered to involve an inventive combined with one or more other such	step when the document is
"P" document p	ublished prior to the international filing date but later than date claimed	being obvious to a person skilled in the "&" document member of the same patent f	art
	I completion of the international search 7, 2004 (20.07.04)	Date of mailing of the international search 10 August, 2004 (10	
	g address of the ISA/ se Patent Office	Authorized officer	· · · · · · · · · · · · · · · · · · ·
Facsimile No.	0 (second sheet) (January 2004)	Telephone No.	
1 Jun 1 C1/13/N/21	o (occome shoot) (January 2004)		

A. 発明の属する分野の分類 (国際特許分類 (IPC))

Int. C17 C08G61/12, C09K11/06, H05B33/14, H05B33/22

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl7 C08G61/12、C09K11/06、H05B33/14、H05B33/22

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

WPI (L)

C. 関連すると認められる文献

し	C pick y O 4 V S 文 ff X		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号・	
X	JP 9-183846 A (シーメンス アクチエンゲゼルジャフト) 1997.07.15、特許請求の範囲	1	
•	& US 5807969 A & EP 761718 A2		
A	JP 9-73009 A (日立化成工業株式会社) 1997.03.18、特許請求の範囲、【0031】 (ファミリーなし)	1 — 6	
A	JP 3-177422 A (エクソン リサーチ アンド エン	1-6	

区欄の続きにも文献が列挙されている。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「〇」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 20.07.2004 国際調査報告の発送日 10.8.2004 国際調査機関の名称及びあて先 日本国特許庁(ISA/JP) 佐藤 邦彦 東京都千代田区霞が関三丁目4番3号 電話番号 03-3581-1101 内線 6825

C (続き).	関連すると認められる文献	BRISE L. W.
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
	ジニアリング コムパニー) 1991.08.01、特許請求の範囲、実施例1-18 (ファミリーなし)	χ.
		т.
		-