

#### TECNOLOGIA EM SISTEMAS PARA INTERNET

Daniel Evangelista Pereira Leonardo Campos Muniz

# RELATÓRIO DE PRÁTICA INTEGRADA DE CIÊNCIA DE DADOS E APRENDIZADO DE MÁQUINA

Brasília - DF

21/03/2021

## Sumário

| 1. Objetivos                                                         | 3        |
|----------------------------------------------------------------------|----------|
| 2. Descrição do problema                                             | 4        |
| <ul><li>3. Desenvolvimento</li><li>3.1 Código implementado</li></ul> | <b>5</b> |
| 4. Considerações Finais                                              | 6        |
| Referências                                                          | 7        |

#### 1. Objetivos

Este é o documento é o relatório referente à terceira e penúltima sprint de atividades da PRÁTICA INTEGRADA DE CIÊNCIA DE DADOS E APRENDIZADO DE MÁQUINA, sendo o trabalho apresentado aqui relativo ao primeiro dos dois desafios presentes na semana.

A equipe é composta pelos alunos Daniel Evangelista Pereira e Leonardo Campos Muniz, com a mentoria de Thiago Marinha e utilizará a metodologia de desenvolvimento ágil SCRUM, com um total de 4 sprints de uma semana, estando atualmente na terceira semana.

O presente relatório trata do desafio de **Limpeza dos dados**, coletando uma base de dados que tem como o foco relato de ocorrências de OVNIs no território estadunidense. O intuito desta atividade é fazer o processo de ETL na mesma e no final entregar uma tabela onde serão apenas mostradas as ocorrências que aconteceram em determinados estados dos EUA e as que têm os formatos de OVNI mais populares que possuem mais de mil ocorrências.

## 2. Descrição do problema

O problema do desafio da semana se dá por alguns fatores, coletar a lista de ocorrência dos OVNIs nos EUA, após conseguir a lista de ocorrências coletar a lista de estados para a filtragem da tabela e por fim descobrir quais são os formatos de OVNIs mais populares, depois que todas essas informações foram obtidas basta apenas construir a nova tabela limpa.

#### 3. Desenvolvimento

Para facilitar o desenvolvimento do código e da criação dos gráficos, foram utilizadas as seguintes bibliotecas:

- Pandas: Biblioteca utilizada para fazer a carga de dados e a transformação da mesma em forma de tabela;
- Numpy: Biblioteca utilizada para realização e elaboração de operações matemáticas complexas e manipulação de array;

#### 3.1 Código implementado

Segue abaixo o código utilizado para realizar o desafio 5.7

```
import pandas as pd
import numpy as np
tabela ovni = pd.DataFrame(dados ovni)
shape filtrado = shape filtrado['row'].sort values(ascending=False)
shape filtrado = shape filtrado.to frame()
lista shapes = shape filtrado.index.tolist()
```

```
#transformação da tabela de estados
    transformação dos dados coletados e inserção das novas colunas no
data frame
    estado = transformação dos dados cabela_estados.str.get(0)
    abreviação = transformação das estados.str.get(1)
    estados_permitidos["Estado"] = estado
    estados_permitidos["Abreviação"] = abreviação']]
    lista_estados = estados['Abreviação'].tolist()

#transformação das tabelas tratadas em csv
    data_frame =
tabela_filtrada[(tabela_filtrada.State.isin(lista_estados)) &
(tabela_filtrada.Shape.isin(lista_shapes))]
    data_frame.to_csv('df_OVNI_limpo.csv', mode='w', header=True)
```

Com a execução do código após ser implementado os filtros é gerado em um arquivo csv a tabela que segue abaixo.

|       | row | Date / Time   | State | Shape     | City             |
|-------|-----|---------------|-------|-----------|------------------|
| 1     | 1   | 9/22/97 20:00 | MD    | Disk      | Solomons Island  |
| 2     | 2   | 9/19/97       | CA    | Rectangle | Garden Grove     |
| 3     | 3   | 9/18/97 20:15 | FL    | Unknown   | Panama City      |
| 4     | 4   | 9/15/97 00:00 | TX    | Disk      | Houston          |
| 5     | 5   | 9/15/97 20:00 | NM    | Light     | Santa Fe         |
|       |     |               |       |           |                  |
| 71969 | 412 | 8/1/17 06:15  | GA    | Fireball  | Columbus (North) |
| 71970 | 413 | 8/1/17 02:45  | MN    | Light     | Corcoran         |
| 71971 | 414 | 8/1/17 02:00  | CA    | Other     | Moreno Valley    |
| 71972 | 415 | 8/1/17 01:00  | FL    | Other     | Bradenton        |
| 71974 | 417 | 8/1/17        | MD    | Other     | Laurel           |
|       |     |               |       |           |                  |

61672 rows x 5 columns

#### 4. Considerações Finais

Em relação ao trabalho proposto e o que foi feito a ideia é realmente muitíssimo boa pois trabalha toda a ideia do etl de extração, transformação e carga dos dados, fazendo a coleta de dados de dois bancos e depois fazer toda a parte de transformação dos dados coletados, para aí sim criar todos os filtros que iriam resultar numa tabela limpa.

As considerações a se dar é que o pandas é uma biblioteca extremamente completa e faz juz a sua popularidade, basicamente não foi preciso nenhuma outra biblioteca para realizar o serviço. Da primeira versão do código até a última as mudanças foram gigantescas, refatoramento do código, mudança de linhas para utilizar uma única que realizava todo o trabalho sozinha, realmente muito boa, perdendo somente para ferramentas como power bi.

## Referências

PANDAS DOCUMENTATION. Pandas, 2021. Disponível em: < <a href="https://pandas.pydata.org/docs/">https://pandas.pydata.org/docs/</a> >. Acesso em 21/03/2021.