The Learning Point

Main Page: The Complete Index at	a Glance	Mathematics	Computer Science	Physics		
Electrical Science and Engineering An Introduction to Graphics and Solid Modelling						
Test Preparations Ace the Programming Interviews						
CoursePlex: Online Open Classes from Coursera, Udacity, etc About						

Computer Science >

Algorithms: Dynamic Programming - Longest Common Sub-sequence with C Program Source Code

1/3

Longest Common Subsequence

A subsequence of a given sequence is the given sequence with just some elements left out (order should be from left-to-right, not necessarily consecutive). A common sequence of two sequences X and Y, is a subsequence of both X and Y. A longest common subsequence is the one with maximum length. For example, if $X = \{A,B,C,B,D,A,B\}$ and $Y = \{B,D,C,A,B,A\}$ then the longest common subsequence is of length 4 and they are $\{B,C,B,A\}$ and $\{B,D,A,B\}$.

Finding the longest common subsequence has applications in areas like biology. The longest subsequence (LCS) problem has an optimal substructure property. Thus, dynamic programming method can be used to solve this problem.

Theorem used - Let X = < x1, x2, ..., xm >and Y = < y1, y2, ..., yn >be sequences, and let Z = < z1, z2, ..., zk >be any LCS of X and Y.

```
1. If x_m = y_n, then z_k = x_m = y_n and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}.

2. If x_m = y_n, then z_k = x_m implies that Z is an LCS of X_{m-1} and Y.
```

3. If $x_m=y_n,$ then $z_k=y_n$ implies that Z is an LCS of X and $Y_{n-1}.$

Algorithm

S,T are two strings for which we have to find the longest common sub sequence. Input the two sequences. Now print the longest common subsequence using LongestCommonSubsequence function.

LongestCommonSubsequence function: This function takes the two sequences (S, T) as arguments and returns the longest common subsequence found.

Store the length of both the subsequences. Slength = strlen(S), Tlength = strlen(T).

We will Start with the index from 1 for our convenience (avoids handling special cases for

C Program Source Code for the Longest Common Subsequence problem

```
#include<stdio.h>
#include<string.h>
#define maxn 100100
int max(int a,int b)
        return a>b?a:b;
int LongestCommonSubsequence(char S[],char T[])
        int Slength = strlen(S);
        int Tlength = strlen(T);
        /* Starting the index from 1 for our convinience (avoids handling special cases for negative indices) */
        int iter.iter:
        for(iter=Slength;iter>=1;iter--)
                S[iter] = S[iter-1];
        for(iter=Tlength;iter>=1;iter--)
                T[iter] = T[iter-1];
        int common[Slength+1][Tlength+1];
        /* common[i][j] represents length of the longest common sequence in S[1..i], T[1..j] */
        /* Recurrence: common[i][j] = common[i-1][j-1] + 1 if S[i] == T[j]
                                      = max(common[i-1][j],common[i][j-1]) otherwise
        /*common[0][i]=0, for all i because there are no characters from string S*/
        for(iter=0;iter<=Tlength;iter++)</pre>
                 common[0][iter]=0;
        /*common[i][0]=0, \ for \ all \ i \ because \ there \ are \ no \ characters \ from \ string \ T*/
```

Rough notes about the Algorithm implemented in the code above:

Return common[Slength][Tlength].

Related Tutorials (common examples of Dynamic Programming):

Integer Knapsack problem	An elementary problem, often used to introduce the concept of dynamic programming.
Matrix Chain Multiplication	Given a long chain of matrices of various sizes, how do you parenthesize them for the purpose of multiplication - how do you chose which ones to start multiplying first?
Longest Common Subsequence	Given two strings, find the longest common sub sequence between them.

Some Important Data Structures and Algorithms, at a glance:

Arrays : Popular

Sorting and Searching Algorithms			
Bubble Sort	Insertion Sort	Selection Sort	Shell Sort
Merge Sort	Ouick Sort	Heap Sort	Binary Search Algorithm
Basic Data Structures and Operations on them			
Stacks	<u>Oueues</u>	Single Linked List	Double Linked List
Circular Linked List	1.		

Tree Data			
Structures			
Binary Search	Heaps	Height Balanced	
Trees		Trees	
Graphs and Graph			
Algorithms			
Depth First	Breadth First	<u>Minimum</u>	Minumum
Search	Search	Spanning Trees:	Spanning Trees:
		Kruskal	Prim's
		Algorithm	Algorithm
Dijkstra Algorithm	Floyd Warshall	Bellman Ford	
for Shortest Paths	Algorithm for	Algorithm	
	Shortest Paths	_ 	
Popular Algorithms			
in Dynamic			
Programming			
Dynamic	Integer	Matrix Chain	Longest
Programming	Knapsack	Multiplication	Common
Trogramming	problem	<u>wintiplication</u>	Subsequence
	<u>problem</u>		Subsequence
Greedy			
Algorithms			
Elementary cases :	<u>Data</u>		
<u>Fractional</u>	Compression		
Knapsack Problem,	using Huffman		
Task Scheduling	Trees		

Accedi | Attività recente del sito | Segnala abuso | Stampa pagina | Rimuovi accesso | Powered by Google Sites