Department of Mathematics & Statistics

Course	Number	Section(s) All Pages	
Mathematics	203		
Examination	Date		
Final	December 2012	3	
Instructors		Course Examiners	

J. Brody, S. Hachem, M. Padamadan, N. Rossokhata, J. Schulz, P. Zorin

A. Atoyan, H. Proppe

Special Instructions

Only Sharp EL 531 or Casio FX 300 MS calculators are allowed.

MARKS

- [10] 1. (a) Suppose $f(x) = \sqrt{1-x}$ and $g(x) = \cos^2 x$. Find $F = f \circ g$ and simplify it. Use F to find $g \circ f \circ g$.
 - (b) Find the inverse of the function $f(x) = e^{x^5} 1$. Determine the domain and range of f and f^{-1} .
- Evaluate the limits (Do not use l'Hôpital's rule.):

(a)
$$\lim_{x \to 2} \frac{\sqrt{7x+2}-4}{2x^3-8x}$$

(a)
$$\lim_{x \to 2} \frac{\sqrt{7x+2}-4}{2x^3-8x}$$
 (b) $\lim_{x \to \infty} \frac{4x^2(\sqrt{x}-1)^3}{(1-2x)^3(\sqrt{x}+1)}$

[10] 3. (a) Consider the function $f(x) = \frac{|x+3|}{x^2+x-6}$.

Calculate both one-sided limits at the point(s) where the function is undefined.

(b) Find numbers a and b such that the function

$$f(x) = \begin{cases} 2x^2, & \text{if } x \le -1\\ (ax+b), & \text{if } -1 < x \le 0\\ x^2 - 2, & \text{if } x > 0 \end{cases}$$

will be continuous at every point.

Sketch the graph of this function.

[16] 4. Find derivatives of the functions (you do not have to simplify the answers):

(a)
$$f(x) = \frac{x^{2/5} - \sqrt[5]{x} + x^{-2/5}}{x^{1/5}}$$
;

(b)
$$f(x) = \left(x + \frac{1}{x}\right)^3 \sin(2x);$$

(c)
$$f(x) = \frac{(\arctan x)^2}{1 + x^2}$$
;

(d)
$$f(x) = \tan(x^2 + \ln(3x))$$
;

(e)
$$f(x) = (\arcsin x)^{\sqrt{x}}$$
 (use logarithmic differentiation).

- (9) 5. Given the function $f(x) = \frac{x+1}{x-1}$,
 - (a) Use the definition of derivative to find f'(x).
 - (b) Use the appropriate differentiation rule(s) to verify your answer in part (a).
 - (c) Find the differential dy and evaluate it when x = 2 and dx = 0.05.
 - (d) Find the linear approximation L(x) to f(x) at a=2 and find L(2.05). Explain the connection between this and your answer in part (c).
- [16] 6. (a) The equation of a curve defined implicitly is $4(x^2 + y^2)^2 = 25 xy^2$. Verify that the point (1,2) belongs to the curve. Find an equation of the tangent line to the curve at this point.
 - The sides of a square decrease in length at a rate of 1 m/sec. At what rate is the area of the square changing when the sides are 5 m long?
 - (c) Use l'Hôpital's rule to evaluate $\lim_{x\to 0} \frac{e^{x^2}-1}{1-\cos 2x}$.
- [12] 7. (a) Find the absolute maximum and minimum values of the function $g(x) = x^{2/3}(2-x)$ on the interval [-1,2].
 - (b) An airline policy states that all baggage must be box-shaped with the sum of the length, width and height not to exceed 192 cm. What are the dimensions of a box with a square base that has the largest volume acceptable by the airline, and what is the largest volume?

- [6] 8. Let $f(x) = \frac{x}{x+2}$.
 - (a) Find the slope m of the secant line joining the points (1, f(1)) and (4, f(4)).
 - (b) Find the point(s) x = c on the interval [1, 4] such that f'(c) = m.
- [13] 9. You are given the following information about the function f:

$$f(x) = \frac{10x^3}{x^2 - 1};$$
 $f'(x) = \frac{10x^2(x^2 - 3)}{(x^2 - 1)^2};$ $f''(x) = \frac{20x(x^2 + 3)}{(x^2 - 1)^3}$

- (a) Find the domain of f and check for symmetry. Find asymptotes (if any).
- (b) Determine interval(s) where f is increasing, interval(s) where f is decreasing, and also find all local extrema (if any).
- (c) Determine interval(s) where f is concave upward, interval(s) where f concave downward and inflection point(s) (if any).
- (d) Sketch the graph of f.
- [5] Bonus Question

Use the Mean Value Theorem to prove that if x > 1 then

- (a) $\ln x < x 1$, and
- (b) $\frac{x-1}{x} < \ln x.$

[Hint: apply the Mean Value Theorem to the function \ln on the interval [1,x] for part (a), and again to the function \ln on the interval [1/x,1] for part (b)].

·		