# From COMSOL to NGSolve: a very personal voyage

#### Philipp W. Schroeder



Background

Institute for Numerical and Applied Mathematics Georg-August-University Göttingen, Germany

2nd NGSolve User Meeting 2018

Georg-August-University Göttingen, Germany

4-6 July 2018



Background

- Background
- Pinite element method
- 4 Time-stepping
- Conclusion

## Some brief COMSOL background

#### **COMSOL Multiphysics**

- commercial finite element package
- has a GUI from which everything can be controlled
- different packages (modules) available:
  - electromagnetics
  - structural mechanics & acoustics
  - fluid flow & heat transfer
  - chemical engineering
- but: basic package (no specific modules) has all core functionality
- there exists a MATLAB interface



### How did I come to COMSOL?



#### University

- used in (some) FEM lectures at University of Göttingen
  - students can compute FE solutions with only knowledge of PDE
  - everything else (weak formulation etc.) can be ignored

### Industry

- internship and master's thesis in automotive industry
  - optimise thickness of thermal insulation for pressure tanks
  - use phase change material to improve performance of adsorber



### Why do I use NGSolve now?



Conclusion

### Christoph Lehrenfeld

Background

- came to Göttingen in September 2016
- convinced me to come to 1st NGSolve user meeting

I am using NGSolve ever since!

#### General factors which are essential for me

- Python interface!!!
- forum on ngsolve.org
- (Christoph, of course;))



Background



### **Incompressible Computational Fluid Dynamics**

- time-dependent incompressible Navier-Stokes equations
- exactly divergence-free methods
- pressure-robustness
- treatment of dominant convection via upwinding

#### Kelvin-Helmholtz instability



#### Decaying homogeneous turbulence



## **Geometry and meshing**



Background



- 1D / 2D / 3D domains supported
- segm / trigs / quad / tet / hex / prism / pyramid

Linear/nonlinear solvers

- hybrid meshes possible
- curved boundaries possible
- no hanging nodes allowed
- GUI very convenient to use
- periodicity complicated
- complicated meshes: relatively easy
- **x** manual meshes: only after export
- h-adaptivity: works pretty well

- Python: sometimes complicated
- ✓ periodicity more natural
- manual meshes: complicated
- h-adaptivity: coarsening?

## FE spaces





- $H^1$ ,  $L^2$ , H(div), H(curl)
- cannot add more spaces manually
- $\times H^1$ :  $k \leq 7$
- $L^2$ :  $k \le 10$  (2D);  $\le 7$  (3D)
- **X**  $H(\text{div}): k \leq 3 \text{ (2D)}; \leq 2 \text{ (3D)}$
- **X** H(curl):  $k \le 3$  (2D);  $\le 2$  (3D)
- no facet spaces, no hybrid methods

- ✓ can add whatever you like
- ✓ arbitrary high-order

This flexibility was my main reason to switch to NGSolve!

### Weak form → discrete system







- variational formulation works pretty much the same way
- accuracy of numerical integration can be chosen
- ✗ only scalar-valued input possible
- ✓ simply add nonlinear expressions
- **x** static condensation???

- ✓ InnerProduct()
- ✔ Assemble() / Apply()

#### RAM in COMSOL

possible not very economical...

### **Linear systems**

Background





- pardiso, mumps available
- ✓ pardiso and mumps are integrated
- automatically performs reiteration
- ✓ (F)GMRES, BiCGStab, CG
- $\checkmark$  (h/p) multigrid, algebraic multigrid
- ✓ all kinds of smoothers

- ✓ sparsecholesky
- ✓ BDDC works great for me

#### Iterative solvers in COMSOL

Work good for  $H^1$  methods. But: I was not able to obtain good results for  $H(\operatorname{div})$ ...

### **Nonlinear systems**







Time-stepping

- ✓ Newton solver integrated
- detects nonlinearity and acts accordingly
- ✓ works very robustly

• basically no personal experience

### Implicit and explicit methods





Background



- ✔ BDF: adaptive order, adaptive time-step
- ✓ generalised- $\alpha$ : adaptive time-step
- (explicit) Dormand-Prince: adaptive time-step

- ✓ whatever you can imagine
- possible solution of nonlinear systems necessary

#### IMEX in COMSOL

BDF variant: possible, but not efficient. Runge–Kutta variant: not clear if possible.

### Conclusion





### convenience / usability

- ✓ easy to get started
- ✓ very 'foolproof'
- (possibly) not optimal for research
- performance not competitive
- good and convenient if nothing 'fancy' is desired
- transparent (for commercial tool)
- ✓ huge reference manual

### flexibility / performance

- ✓ great for research
- ✓ fast
- extensive knowledge of FEM necessary

Background





Thank you for your attention



Questions