Breast Cancer: Wisconsin

Jose Tamez

2023-04-26

Contents

151 47

```
0.1 Modeling . . . . . . . . . . . .
  library(survival)
library(FRESA.CAD)
## Loading required package: Rcpp
## Loading required package: stringr
## Loading required package: miscTools
## Loading required package: Hmisc
##
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
##
      format.pval, units
##
## Loading required package: pROC
## Type 'citation("pROC")' for a citation.
##
## Attaching package: 'pROC'
## The following objects are masked from 'package:stats':
##
##
      cov, smooth, var
source("~/GitHub/FRESA.CAD/R/RRPlot.R")
source("~/GitHub/FRESA.CAD/R/PoissonEventRiskCalibration.R")
op <- par(no.readonly = TRUE)
pander::panderOptions('digits', 3)
pander::panderOptions('table.split.table', 400)
pander::panderOptions('keep.trailing.zeros',TRUE)
layout(matrix(1:1, nrow=1))
dataBreast <- read.csv("~/GitHub/RISKPLOTS/DATA/wpbc.data", header=FALSE)</pre>
table(dataBreast$V2)
##
##
```

```
rownames(dataBreast) <- dataBreast$V1
dataBreast$V1 <- NULL
dataBreast$status <- 1*(dataBreast$V2=="R")
dataBreast$V2 <- NULL
dataBreast$time <- dataBreast$V3
dataBreast$V3 <- NULL
dataBreast <- sapply(dataBreast,as.numeric)

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion
dataBreast <- as.data.frame(dataBreast[complete.cases(dataBreast),])
table(dataBreast$status)

##
## 0 1
## 148 46</pre>
```

0.1 Modeling

```
ml <- BSWiMS.model(Surv(time, status)~1, data=dataBreast)

[++++++]
sm <- summary(ml)
pander::pander(sm$coefficients)</pre>
```

	Estimal	@ wer	HR	uppe	ru.Accı	ır ac yccu	r au yl.Acc	ura <i>t</i> yUC.AU	Gull.A	U ID I NRI	z.IDI	z.NR	IDelta.	AÆf€quenc
$\overline{ ext{V24}}$	4.69e- 1 02	1.01	1.05	1.08	0.598	0.237	0.598	0.609 0.5	0.609	0.06190.437	2.87	2.67	0.1091	1
V26	4.72e- 1	1.00	1.00	1.01	0.593	0.237	0.593	0.598 0.5	0.598	0.06260.393	3 2.77	2.38	0.0983	1
V27	2.42e- 1 04	1.00	1.00	1.00	0.608	0.237	0.608	0.608 0.5	0.608	0.05630.434	1 2.76	2.63	0.1084	: 1
V34	1.19e- 1 02	1.00	1.01	1.02	0.634	0.237	0.634	0.618 0.5	0.618	0.03200.471	2.42	2.85	0.1178	1
V7	6.05e- 1 08	1.00	1.00	1.00	0.588	0.237	0.588	0.595 0.5	0.595	0.04870.380	2.30	2.30	0.0949	1
V35	5.06e- 1 06	1.00	1.00	1.00	0.727	0.237	0.727	0.641 0.5	0.641	0.02890.565	5 2.28	3.50	0.1412	1

0.2 Cox Model Performance

Here we evaluate the model using the RRPlot() function.

0.2.1 The evaluation of the raw Cox model with RRPlot()

Here we will use the predicted event probability assuming a baseline hazard for events withing 5 years

```
index <- predict(ml,dataBreast)
timeinterval <- 2*mean(subset(dataBreast,status==1)$time)

h0 <- sum(dataBreast$status & dataBreast$time <= timeinterval)
h0 <- h0/sum((dataBreast$time > timeinterval) | (dataBreast$status==1))
pander::pander(t(c(h0=h0,timeinterval=timeinterval)),caption="Initial Parameters")
```

Table 2: Initial Parameters

h0	timeinterval
0.323	51.1

Cumulative vs. Observed: Raw Train: Breast Cancer

Decision Curve Analysis: Raw Train: Breast Cancer

Relative Risk: Raw Train: Breast Cancer

Time vs. Events: Raw Train: Breast Cancer

Kaplan-Meier: Raw Train: Breast Cancer

As we can see the Observed probability as well as the Time vs. Events are not calibrated.

0.2.2 Uncalibrated Performance Report

pander::pander(t(rrAnalysisTrain\$0ERatio), caption="0/E Ratio")

Table 3: O/E Ratio

est	lower	upper
0.844	0.618	1.13

pander::pander(t(rrAnalysisTrain\$0E95ci),caption="0/E Ratio")

Table 4: O/E Ratio

mean	50%	2.5%	97.5%
1.02	1.02	0.967	1.07

pander::pander(t(rrAnalysisTrain\$OAcum95ci),caption="0/Acum Ratio")

Table 5: O/Acum Ratio

mean	50%	2.5%	97.5%
0.797	0.797	0.789	0.806

pander::pander(rrAnalysisTrain\$c.index\$cstatCI,caption="C. Index")

mean.C Index	median	lower	upper
0.68	0.681	0.599	0.759

pander::pander(t(rrAnalysisTrain\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 7: ROC AUC

est	lower	upper
0.637	0.546	0.728

pander::pander((rrAnalysisTrain\$ROCAnalysis\$sensitivity),caption="Sensitivity")

Table 8: Sensitivity

est	lower	upper
0.261	0.143	0.411

pander::pander((rrAnalysisTrain\$ROCAnalysis\$specificity), caption="Specificity")

Table 9: Specificity

est	lower	upper
0.899	0.838	0.942

pander::pander(t(rrAnalysisTrain\$thr_atP),caption="Probability Thresholds")

Table 10: Probability Thresholds

90%	
0.418	

pander::pander(t(rrAnalysisTrain\$RR_atP),caption="Risk Ratio")

Table 11: Risk Ratio

est	lower	upper
1.81	1.06	3.09

pander::pander(rrAnalysisTrain\$sufdif,caption="Logrank test")

Table 12: Logrank test Chisq = 11.608565 on 1 degrees of freedom, p = 0.000656

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	167	34	41.1	1.23	11.6
class=1	27	12	4.9	10.27	11.6