

PROYECTO ROBÓTICA BLANDA (TENAZA)

BENJAMÍN PARDO, JAVIER AGUILERA, JOAQUÍN ORELLANA ME5150 2025-1

INTRODUCCIÓN Y OBJETIVOS

Objetivo Principal:

1. Diseñar, construir y probar un gripper blando capaz de tomar y sostener múltiples objetos definidos.

• Pasos a seguir:

- 1. Realizar investigación sobre bibliografía relacionada.
- 2. Fabricar a partir de silicona y moldes impresos en PLA.
- 3. Realizar pruebas de manipulación en robot KUKA.

METODOLOGÍA

Para la fabricación del gripper, se utilizó silicona *Ecoflex 00-30* como materia prima, junto a moldes los cuales le dieron la forma buscada según el diseño creado.

Fabricación del gripper

Moldes utilizados

RESULTADOS

• Primera Iteración:

- El gripper funcionó correctamente en un inicio, a presiones pequeñas de aire, manipulando objetos de forma efectiva.
- Sin embargo, se destruyó por el aumento de presión del aire.

Segunda Iteración:

- Se aumentó el tamaño del gripper para mejorar su resistencia estructural en la parte superior.
- La unión inferior presentó fugas de aire debido al aumento de presión interna necesaria para la deformación.

Gripper fabricado

Prueba de manipulación

Prueba de presión

CONCLUSIÓN

La evolución del gripper mostró que el diseño responde bien a bajas presiones, pero requiere mejoras en resistencia y sellado para operar de forma segura a presiones más altas. Además un menor tamaño del actuador asegura una mejor manipulación de los objetos.

REFERENCIAS

- Zaidi, S., Maselli, M., Laschi, C., & Cianchetti, M. (2021).
 Actuation technologies for soft robot grippers and manipulators: A review. Biomedical Engineering Reviews, 3, 1–22. https://doi.org/10.1007/s43154-021-00054-5
- Georgopoulou, A., Vanderborght, B., & Clemens, F. (2021). Fabrication of a soft robotic gripper with integrated strain sensing elements using multi-material additive manufacturing. Frontiers in Robotics and AI, 8, Article 615991. https://doi.org/10.3389/frobt.2021.615991