Versuch 353

Das Relaxationsverhalten eines RC-Kreises

Nico Schaffrath Mira Arndt nico.schaffrath@tu-dortmund.de mira.arndt@tu-dortmund.de

Durchführung: 3.12.2019 Abgabe: 10.12.2019

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Ziel		3
2	Theorie		3
	2.1	Allgemeine Realaxionsgleichung	3
	2.2	Entladevorgang eines RC-Kreises	3
	2.3	Frequenzabhängigkeit der Phasenverschiebung zwischen Kondensator- und	
		Generatorspannung	3
	2.4	Frequenzabhängigkeit der Amplitude der Kondensatorspannung	3
	2.5	Ein RC-Kreis als Integrierglied	3
3	Durchführung		3
	3.1	Entladevorgang des RC-Kreises und Bestimmung der Zeitkonstanten	3
	3.2	Frequenzabhängigkeit der Amplitude der Kondensatorspannung	3
	3.3	Frequenzabhängigkeit der Phasenverschiebung zwischen Kondensator- und	
		Generatorspannung	3
	3.4	Integrierfunktion des RC-Kreises	3
4	· · · · · · · · · · · · · · · · · · ·		3 4
5			
6	Anh	ang	4
Lit	Literatur		4

1 Ziel

Bei diesem Versuch werden die Relaxationserscheinungen einses RC-Kreises untersucht. Es soll die Zeitkonstante des RC-Gliedes bestimmt, die Abhängigkeit der Amplitude der Kondensatorspannung von der Generatorfrequenz untersucht und die Phasenverschiebung zwischen Generator- und Kondensatorspannung in Abhängigkeit der Frequenz gemessen werden. Anschließend soll nachgewiesen werden, dass ein RC-Kreis unter bestimmten Voraussetzungen, die in der Theorie (REFERENZ) hergeleitet werden, als Integrator dienen kann.

2 Theorie

- 2.1 Allgemeine Realaxionsgleichung
- 2.2 Entladevorgang eines RC-Kreises
- 2.3 Frequenzabhängigkeit der Phasenverschiebung zwischen Kondensatorund Generatorspannung
- 2.4 Frequenzabhängigkeit der Amplitude der Kondensatorspannung
- 2.5 Ein RC-Kreis als Integrierglied

3 Durchführung

- 3.1 Entladevorgang des RC-Kreises und Bestimmung der Zeitkonstanten
- 3.2 Frequenzabhängigkeit der Amplitude der Kondensatorspannung
- 3.3 Frequenzabhängigkeit der Phasenverschiebung zwischen Kondensatorund Generatorspannung
- 3.4 Integrierfunktion des RC-Kreises

4 Auswertung

Siehe Abbildung 1!

Abbildung 1: Plot.

5 Diskussion

6 Anhang

Literatur

- [1] TU Dortmund. Versuchsanleitung-Das Relaxationsverhalten eines RC-Kreises.
- [2] John D. Hunter. "Matplotlib: A 2D Graphics Environment". Version 1.4.3. In: Computing in Science & Engineering 9.3 (2007), S. 90–95. URL: http://matplotlib.org/.
- [3] Eric Jones, Travis E. Oliphant, Pearu Peterson u. a. SciPy: Open source scientific tools for Python. Version 0.16.0. URL: http://www.scipy.org/.
- [4] Eric O. Lebigot. *Uncertainties: a Python package for calculations with uncertainties.* Version 2.4.6.1. URL: http://pythonhosted.org/uncertainties/.
- [5] Travis E. Oliphant. "NumPy: Python for Scientific Computing". Version 1.9.2. In: Computing in Science & Engineering 9.3 (2007), S. 10–20. URL: http://www.numpy.org/.