Lecture 26

Simple Linear Regression: ANOVA Approach to Regression

Text: Chapter 11

STAT 8010 Statistical Methods I December 1, 2020

> Whitney Huang Clemson University

Whitney Huang

Understanding Confidence Intervals

- Suppose $Y=\beta_0+\beta_1X+\varepsilon,$ where $\beta_0=3,$ $\beta_1=1.5$ and $\sigma^2\sim N(0,1)$
- We take 100 random sample each with sample size 20
- \bullet We then construct the 95% CI for each random sample (\Rightarrow 100 CIs)

Notes

Notes

Confidence Intervals vs. Prediction Intervals

Simple Linear Regression: ANOVA Approach to Regression
CLEMS#N
Review of Last Class

Notes			

Analysis of Variance (ANOVA) Approach to Regression

Partitioning Sums of Squares

• Total sums of squares in response

$$\mathsf{SST} = \sum_{i=1}^n (Y_i - \bar{Y})^2$$

We can rewrite SST as

$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} (Y_i - \hat{Y}_i + \hat{Y}_i - \bar{Y})^2$$

$$= \underbrace{\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}_{\text{Error}} + \underbrace{\sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2}_{\text{Model}}$$

Simple Linear Regression: ANOVA Approach to Regression
Analysis of Variance (ANOVA) Approach to Regression

Notes			

Partitioning Total Sums of Squares

Simple Linear Regression: ANOVA Approach to Regression
Analysis of Variance (ANOVA) Approach to Regression

Notes				

Total Sum of Squares: SST

• If we ignored the predictor X, the \bar{Y} would be the best (linear unbiased) predictor

$$Y_i = \beta_0 + \varepsilon_i \tag{1}$$

- SST is the sum of squared deviations for this predictor (i.e., \bar{Y})
- The total mean square is ${\rm SST}/(n-1)$ and represents an unbiased estimate of σ^2 under the model (1).

Notes			

Regression Sum of Squares: SSR

- SSR: $\sum_{i=1}^{n} (\hat{Y}_i \bar{Y})^2$
- Degrees of freedom is 1 due to the inclusion of the slope, i.e.,

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i \tag{2}$$

 "Large" MSR = SSR/1 suggests a linear trend, because

$$E[MSE] = \sigma^2 + \beta_1^2 \sum_{i=1}^{n} (X_i - \bar{X})^2$$

Simple Linear Regression: ANOVA Approach to Regression
CLEMS N
Analysis of Variance (ANOVA)

Notes

26.7

Error Sum of Squares: SSE

• SSE is simply the sum of squared residuals

$$SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

- Degrees of freedom is n-2 (Why?)
- ullet SSE large when |residuals| are "large" $\Rightarrow Y_i$'s vary substantially around fitted regression line
- MSE = SSE/(n-2) and represents an unbiased estimate of σ^2 when taking X into account

Class
Analysis of
Variance (ANOVA)
Approach to

20.0

Notes

ANOVA Table and F test

- Goal: To test $H_0: \beta_1 = 0$
- Test statistics $F^* = \frac{MSR}{MSE}$
- If $\beta_1=0$ then F^* should be near one \Rightarrow reject H_0 when F^* "large"
- We need sampling distribution of F^* under $H_0 \Rightarrow F_{1,n-2}$, where $F(d_1,d_2)$ denotes a F distribution with degrees of freedom d_1 and d_2

F Test: $H_0: \beta_1 = 0$ vs. $H_a: \beta_1 \neq 0$

fit <- lm(MaxHeartRate ~ Age) anova(fit)

Analysis of Variance Table

Response: MaxHeartRate

Df Sum Sq Mean Sq F value 1 2724.50 2724.50 130.01 Residuals 13 272.43 20.96

Pr(>F) 3.848e-08 *** Age

Notes

SLR: F-Test vs. T-test

ANOVA Table and F-Test

Analysis of Variance Table

Response: MaxHeartRate

Df Sum Sq Mean Sq 1 2724.50 2724.50 Age Residuals 13 272.43 20.96

F value Pr(>F) 130.01 3.848e-08

Parameter Estimation and T-Test

${\tt Coefficients:}$

Estimate Std. Error t value Pr(>|t|) (Intercept) 210.04846 2.86694 73.27 < 2e-16 -0.79773 0.06996 -11.40 3.85e-08 Age

Notes

Correlation and Simple Linear Regression

- Pearson Correlation: $r=rac{\sum_{i=1}^n(X_i-ar{X})(Y_i-ar{Y})}{\sqrt{\sum_{i=1}^n(X_i-ar{X})^2\sum_{i=1}^n(Y_i-ar{Y})^2}}$
- $-1 \le r \le 1$ measures the strength of the **linear relationship** between Y and X
- We can show

$$r = \hat{\beta}_1 \sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}},$$

this implies

 $\beta_1 = 0$ in SLR $\Leftrightarrow \rho = 0$

Regression: ANOVA Approach to Regression					
CLEMS N					

Notes			

Coefficient of Determination R^2

 Defined as the proportion of total variation explained by SLR

$$\mathit{R}^{2} = \frac{\sum_{i=1}^{n} (\hat{Y}_{i} - \bar{Y})^{2}}{\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}} = \frac{\mathsf{SSR}}{\mathsf{SST}} = 1 - \frac{\mathsf{SSE}}{\mathsf{SST}}$$

• We can show $r^2 = R^2$:

$$\begin{split} r^2 &= \left(\hat{\beta}_{1,\text{LS}} \sqrt{\frac{\sum_{i=1}^n (X_i - \bar{X})^2}{\sum_{i=1}^n (Y_i - \bar{Y})^2}}\right)^2 \\ &= \frac{\hat{\beta}_{1,\text{LS}}^2 \sum_{i=1}^n (X_i - \bar{X})^2}{\sum_{i=1}^n (Y_i - \bar{Y})^2} \\ &= \frac{\text{SSR}}{\text{SST}} \\ &= R^2 \end{split}$$

Simple Linear
Regression:
ANOVA Approach
to Regression
CLEMS#N

Maximum Heart Rate vs. Age: r and R^2

> summary(fit)\$r.squared

[1] 0.9090967

> cor(Age, MaxHeartRate)

[1] -0.9534656

Interpretation:

There is a strong negative linear relationship between MaxHeartRate and Age. Furthermore, \sim 91% of the variation in ${\tt MaxHeartRate}$ can be explained by Age.

Notes

Notes

Residual Plot Revisited

⇒ Nonlinear relationship

- Transform X
- Nonlinear regression
- \Rightarrow Non-constant variance

Weighted least squares

Transform Y

Notes

Extrapolation in SLR

Extrapolation beyond the range of the given data can lead to seriously biased estimates if the assumed relationship does not hold the region of extrapolation

Simple Linear Regression: ANOVA Approach to Regression
CLEMS N
Analysis of Variance (ANOVA) Approach to Regression
26.16

Notes			

Summary of SLR

- $\bullet \; \mathsf{Model:} \; Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$
- Estimation: Use the method of least squares to estimate the parameters
- Inference
 - Hypothesis Testing
 - Confidence/prediction Intervals
 - ANOVA
- Model Diagnostics and Remedies

Notes			

Notes			