ML Assignment - 3

Solution C:

1. ReLU is the best activation function out of all activation functions because the model gave the highest accuracy when on it.

```
analysis:

accuracy = 0.76 (activation func = sigmoid)

accuracy = 0.86 (activation func = relu)

accuracy = 0.75 (activation func = tanh)

accuracy = 0.80 (activation func = linear)

(on validation set)

accuracy = 0.81 (activation func = sigmoid)

accuracy = 0.84 (activation func = relu)

accuracy = 0.74 (activation func = tanh)

accuracy = 0.81 (activation func = linear)
```

2. Learning rates = [0.1, 0.01, 0.001]
 accuracy = 0.81, at alpha = 0.1 (its fast, can miss the optimum points)
 accuracy = 0.84, at alpha = 0.01 (it's pretty much faster than)
 previous)
 accuracy = 0.56, at alpha = 0.001 (it is too slow)

So, the 0.01 is the best learning rate

3. When we decrease the number of neurons in each layer it leads to decrease the time taken of the model to train it.

As we see in the all three plots at different hidden layers (252,30), (244,30), (228,18) when hidden layers decrease, train loss decreases sharply as the number of epochs increases.

4. This algorithm is used to find out the best parameters for the model in order to get better predictions.

accuracy = 0.72 accuracy = 0.73 (on validation set)

Solution A:

					MOS ()
Salution 1 5	Class	yel	22	THE PARTY	
	A	0	0	And the second	OF BUILD
	B	1	0		
and the Principle	A	0	1	-	241
Alberta State of the last	B	1	1	200	STREET,
	B	2	2		14
port1)	1 8	2	10	and lan	such a
Observed school	Xo	- DO		0 0 9 8	15
(Ho)	н. 1				Class A
100	- stor				ClassB
Slope	9,1)	(110)	(2,0)	1	×ı
408 No. (6	Maseryly	ally In this	elbora	greeph.	the points.
parts) Mid-p	bount of bi	ts (1,0	8 (2)	200	2,0+0)
ungen - The				= (3/2	,0)
wig -be	and of br	2 (0,1)	4 (012	$= \left(0, \frac{1}{2}\right)$	3/01
				(0)	3(2)

=	RANKA C
- parts,	the either by support westers (1,0 or (1,1) & out or support suctors que support suppo
- Part 4)	In general, it is competted to that the Tempore will receive when we remove support vertors tropped ever we offer import the plot por the drunger. (The problem).