

Supervised Learning

Aug 04 2022/ 김예진

0. 목차

1. Basic Model

- Simple Linear Regression
- MSE Loss

4. Classification

- Logistic Regression
- Sigmoid/Softmax
- CE Loss

2. Generalization

- Underfit & Overfit
- Bias-Variance Trade-off

5. SVM

- Overview
- Soft margin
- Hard margin

3. Advanced Model

- Lasso(L1)
- Ridge(L2)

6. Summary

0. 개괄

지도 학습이란?

입력값 INPUT

특징(feature) 독립 변수(independent variable)

학습

신경망 모델 통계 모형 확률 모형

출력값 OUTPUT

레이블(label) 종속 변수(dependent variable) 타겟(target)

사전에 입력데이터와 출력 데이터가 이미 존재하는 환경에서, 주어진 입력값을 가지고 일종의 변환(혹은 모델)을 거쳐 최종 출력값을 추정하도록 학습(fitting!)

0. 개괄

지도 학습이란?

예측

입력값 INPUT

특징(feature) 독립 변수(independent variable)

신경망 모델 통계 모형 확률 모형 ?

새로운 입력 데이터만 가지고 있는 환경에서,

새로운 입력값에 일종의 변환(혹은 모델)을 거쳐

최종 출력값을 예측(predicting!)

Linear Regression

Model equation form

$$y_i = \beta_0 + \beta_1 x_{1,i} + \epsilon_i$$
$$\epsilon_i : iid$$

Linear Regression

$$\hat{y} = \beta_0 + \beta_1 x_1$$

입력 데이터가 1개인 경우, Y절편이 β_0 , 기울기가 β_1 인 1차 함수로 출력 데이터를 선형 관계로 표현할 수 있습니다.

이를 시각화한다면, X축에 입력 데이터가, Y축에 출력 데이터일 때 데이터의 산점도와 모델을 확인할 수 있습니다.

Linear Regression

초평면(hyperplane) 예시

$$\hat{y} = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k = \boldsymbol{\beta}^T \boldsymbol{X}$$

입력 데이터가 k개인 경우,

출력 데이터를 초평면(hyperplane)으로 표현할 수 있습니다.

즉,

입력데이터가 많을 수록 그 데이터를 표현할 수 있는 값들(β)가 많아지기에, 적절히 예측하는 모델을 만들 수 있습니다.

Linear Regression

입력데이터가 많을 수록 그 데이터를 표현할 수 있는 값들 = β Parameter!

어떻게 beta를 구할 수 있을까Ω?

최소 자승법 / 특이값 분해 / 경사 하강법

Simple Linear Regression

최소자승법(Ordinary Least Squares Method, OLS)

$$Q(\boldsymbol{\beta}) = \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_{i1} - \dots - \beta_{p-1} X_{i,p-1})^2$$
$$= (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$$

$$\mathbf{b} = \hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$$
$$= (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

Simple Linear Regression

최소자승법(Ordinary Least Squares Method, OLS)

$$Q(\boldsymbol{\beta}) = \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_{i1} - \dots - \beta_{p-1} X_{i,p-1})^2$$
$$= (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$$

$$\mathbf{b} = \hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$$
$$= (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

Simple Linear Regression

특이값 분해(Singular Value Decomposition, SVD)

$$X = U\Sigma V^T$$
 라고 할 때

$$X^+ = V \Sigma^{-1} \mathbf{U}^{\mathrm{T}}$$
 OII EHOHA

$$b = \widehat{\beta} = X^+ Y$$

역행렬을 구할 수 없을 때 근사적으로 구할 수 있는 방식으로, 여러 패키지(scikit-learn 등)에서 쉽게 구할 수 있다!

MSE Loss

Mean Squared Error

$$MSE = \frac{1}{N} \sum_{i}^{N} (y_i - \hat{y}_i)^2$$

실제 레이블 값 (y_i) 와 추정(예측) 값 $(\hat{y_i})$ 가 얼마다 다른 지 알려주는 수치

Underfit & Overfit

어떻게 **일반적**으로 좋은 모델을 만들 수 있을까요?

1. 많은 데이터를 확보하자!

어떻게 일반적으로 좋은 모델을 만들 수 있을까요?

3. TEST 데이터와 TRAIN 데이터는 구분하자!

✓ 우리가 가지고 있는 데이터 중에서 학습에 사용하지 않고 테스트 해보는 용도로 사용해보자!

어떻게 일반적으로 좋은 모델을 만들 수 있을까요?

Bias-Variance Trade-off

Bias와 Variance는 무엇에 대한 것일까?

Bias-Variance Trade-off

$$\underbrace{E_{\mathbf{x},y,D}\left[\left(h_D(\mathbf{x})-y\right)^2\right]}_{\text{Expected Test Error}} = \underbrace{E_{\mathbf{x},D}\left[\left(h_D(\mathbf{x})-\bar{h}(\mathbf{x})\right)^2\right]}_{\text{Variance}} + \underbrace{E_{\mathbf{x},y}\left[\left(\bar{y}(\mathbf{x})-y\right)^2\right]}_{\text{Noise}} + \underbrace{E_{\mathbf{x}}\left[\left(\bar{h}(\mathbf{x})-\bar{y}(\mathbf{x})\right)^2\right]}_{\text{Noise}}$$

데이터 셋에 따라 달라지는 모델 $h_D(X)$

데이터 셋에 대해 평균적인 모델의 예측값 $\bar{h}_D(X)$

인풋 데이터에 대해 평균적인 라벨값 $: \bar{y}$

Bias: 평균적인 모델 예측값과 평균적인 라벨들 간의 차이

Variance: 어떤 데이터 셋 구성하는지에 따라 달라지는 모델들의 예측값의 변동성

3. Advanced Model

Lasso & Ridge

q=1: Lasso Regression

q=2: Ridge Regression

$$\sum_{i}^{N} (y_i - \hat{y_i})^2 + \lambda \sum_{j}^{k} ||\beta_j||^q$$

핵심은 Parameter의 크기를 적절한 수준으로 조절하는 항이 추가가 되며, 이러한 방식을 Regularization이라고 합니다!

3. Advanced Model

Lasso & Ridge

Lasso & Ridge

Lasso
"L1 regularization"

Quadratic "L2 regularization"

Logistic Regression

Sigmoid

$$: \sigma(x) = \frac{1}{1 + e^{-x}}$$

Logistic Regression

$$y \sim B(n, p)$$

$$p = \frac{\exp(\boldsymbol{\beta} \boldsymbol{X})}{1 + \exp(\boldsymbol{\beta} \boldsymbol{X})}$$

Logistic Regression

Sigmoid

$$: \sigma(x) = \frac{1}{1 + e^{-x}}$$

Logistic Regression

$$y \sim B(n, p)$$

$$p = \frac{\exp(\boldsymbol{\beta}^T \boldsymbol{X})}{1 + \exp(\boldsymbol{\beta}^T \boldsymbol{X})}$$

$$\ln(\frac{p}{1-p}) = \boldsymbol{\beta}^T \boldsymbol{X}$$

: Probability distribution form

✓ 오차항이 존재하지 않는다!

Softmax → Multiclass!

$$p_i = \frac{\exp(\beta_i^T X)}{\sum_j \exp(\beta_j^T X)}$$

사실 softmax는

k개의 class에 대한 sigmoid로 생각할 수 있다!

Cf) multi-label과 multi-class는 다른 것입니다!

추가 설명판:

Softmax -

Binary Classification

- Spam
- Not spam

Multiclass Classification

- Dog
- Cat
- Horse
- Fish
- Bird
- ..

Multi-label Classification

- Dog
- Cat
- Horse
- Fish
- · Bird
- ...

수 있다!

Cf) multi-label과 multi-class는 다른 것입니다

CE Loss

Cross Entropy?!

$$H(p,q) = -E_p[\log q]$$
 분포 p 에 대해서 $\log q$ 에 대한 기댓값!
$$= -\sum_x p(x)[\log q(x)]$$
 분포 p 를 따르는 sample에 대해 $\log q$ 에 대의 평균값!

→ p와 q가 비슷하다면 CE Loss는 매우 작아진다!

Overview

어떤 선(model)이 잘 분류하고 있는 것일까요?

Overview

Decision boundary: $w^T x + b = 0$

$$\hat{y} = \begin{cases} 0 & (\boldsymbol{w}^T \boldsymbol{x} + \boldsymbol{b} < 0) \\ 1 & (\boldsymbol{w}^T \boldsymbol{x} + \boldsymbol{b} \ge 0) \end{cases}$$

Decision boundary와 가장 가까운 벡터: support vector Support vector와 decision boundary 사이 거리: margin

→ SVM(Support Vector Machine)은 margin을 최대화!

Overview

Decision boundary: $w^T x + b = 0$

수식 주인
$$\hat{V} = \begin{pmatrix} 0 & (w^Tx + b < 0) \\ 1 & (w^Tx + b \ge 0) \end{pmatrix}$$

Decision boundary와 가장 가까운 벡터 : support vector Support vector와 decision boundary 사이 거리: margin

→ SVM(Support Vector Machine)은 margin을 최대화!

Problem Formulation

$$x - x_{\perp} = \delta \frac{w}{|w|}$$

$$w^{T}(x - x_{\perp}) = w^{T} \delta \frac{w}{|w|} = \delta w$$

$$w^{T}(x + b) - w^{T}(x_{\perp} + b) = w^{T} \delta \frac{w}{|w|} = \delta w$$

$$\delta = \frac{w^{T} x + b}{w} = y \frac{w^{T} x + b}{w}$$

Overview

$$\underset{w,b}{\operatorname{argmax}} \frac{1}{\|w\|} \min_{n} [y^{(n)} w^{T} x^{(n)} + b]$$

Support vector는

$$\min_{n} y^{(n)} [w^{T} x^{(n)} + b] = 1$$

을 만족하는 점으로 정의!

$$\rightarrow w^T x^+ + b = 1$$
, $w^T x^- + b = -1$

$$\underset{w,b}{\operatorname{argmax}} \frac{1}{\|w\|} = \underset{w,b}{\operatorname{argmin}} \frac{1}{2} \|w\|^2$$

Overview

$$\underset{w,b}{\operatorname{argmin}} \frac{1}{2} ||w||^2$$

$$y^{(n)}(w^T x^{(n)} + b) \ge 1$$

Constrained optimization problem

→ Lagrange multipliers(Convex Optimization)

Soft & Hard margin

어느정도의 오차를 용인한다면?

오차 : slack variable $\xi^{(n)}$

$$\underset{w,b,\xi}{\operatorname{argmin}} [C \sum_{n}^{N} \xi^{(n)} + \frac{1}{2} ||w||^{2}]$$

$$y^{(n)}(w^T x^{(n)} + b) \ge 1 - \xi^{(n)}$$

Soft & Hard margin

C가 큰 경우

- → 큰 패널티의 효과
- → 오차가 적어지게
- → 좁은 margin을 가지기!

$$\underset{w,b,\xi}{\operatorname{argmin}} [C \sum_{n}^{N} \xi^{(n)} + \frac{1}{2} ||w||^{2}]$$

$$y^{(n)}(w^Tx^{(n)} + b) \ge 1 - \xi^{(n)}$$

Soft & Hard margin

C가 작은 경우

- → 작은 패널티의 효과
- → 오차가 커도 괜찮아
- → 넓은 margin을 가지기!

$$\underset{w,b,\xi}{\operatorname{argmin}} [C \sum_{n}^{N} \xi^{(n)} + \frac{1}{2} ||w||^{2}]$$

$$y^{(n)}(w^T x^{(n)} + b) \ge 1 - \xi^{(n)}$$

Nonlinearity

어떻게 구분할 수 있을까요?

Nonlinearity

어떻게 구분할 수 있을까요?

이렇게?

Nonlinearity

어떻게 구분할 수 있을까요?

이렇게?

Nonlinearity

어떻게 구분할 수 있을까요?

이렇게!

$$(x_1, x_2) \to (x_1^2, x_2^2)$$

Nonlinearity

$$(1, x_1) \to (1, x_1, x_1^2, x_1^3)$$

$$(x_1, x_2) \to (x_1^2, x_2^2)$$

$$(x_1, x_2) \to (x_1^2 + 2x_1x_2 + x_2^2)$$

- - -

그런데 데이터와 변수가 매우 많다면 언제 다 계산할까?

Nonlinearity

$$\mathbf{x} = (x_1, x_2), \qquad \mathbf{z} = (z_1, z_2)$$

$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^T \mathbf{z})^2 = (x_1 z_1 + x_2 z_2)^2 = (x_1^2 z_1^2 + 2x_1 x_2 z_1 z_2 + x_2^2 z_2^2)$$

$$= (x_1^2, \sqrt{2}x_1 x_2, x_2^2) \cdot (z_1^2, \sqrt{2}z_1 z_2, z_2^2)^T$$

Polynomial kernel

$$\mathbf{x} = (x_1, x_2), \quad \mathbf{z} = (z_1, z_2)$$

$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^T \mathbf{z})^2 = (\mathbf{x}_1 \mathbf{z}_1 + \mathbf{x}_2 \mathbf{z}_2)^2 = (\mathbf{x}_1^2 \mathbf{z}_1^2 + 2\mathbf{x}_1 \mathbf{x}_2 \mathbf{z}_1 \mathbf{z}_2 + \mathbf{x}_2^2 \mathbf{z}_2^2)$$

$$= (x_1^2, \sqrt{2}x_1 x_2, x_2^2) \cdot (z_1^2, \sqrt{2}z_1 z_2, z_2^2)^T$$

 $k(x,z) = (x^Tz)^p$: 다항 커널

Radial Basis Function kernel

$$k(x,z) = \exp\left(-\frac{|x-z|^2}{2\sigma^2}\right)$$
: 가우시안 커널(a.k.a. RBF 커널)

→ 무한 차원의 특징을 사용하는 것과 같은 효과!

Radial Basis Function kernel

$$k(x,z) = \exp\left(-\frac{|x-z|^2}{2\sigma^2}\right)$$
: 가우시안 커널(a.k.a. RBF 커널)

→ 무한 차원의 특징을 사용하는 것과 같은 효과!

참고) 두 feature 간 거리도 kernel로 생각할 수 있다!

$$||\phi(\mathbf{x}) - \phi(\mathbf{z})||^2 = \langle \phi(\mathbf{x}) - \phi(\mathbf{z}), \phi(\mathbf{x}) - \phi(\mathbf{z}) \rangle$$
$$= \langle \phi(\mathbf{x}), \phi(\mathbf{x}) \rangle - 2\langle \phi(\mathbf{x}), \phi(\mathbf{z}) \rangle + \langle \phi(\mathbf{z}), \phi(\mathbf{z}) \rangle$$
$$= \kappa(\mathbf{x}, \mathbf{x}) - 2\kappa(\mathbf{x}, \mathbf{z}) + \kappa(\mathbf{z}, \mathbf{z})$$

→ Kernel에 몇가지 변환을 취한 것은 또 kernel이다!

Radial I

$$e^{-\gamma(a-b)^2} = e^{-\gamma(a^2+b^2-2ab)} = e^{-\gamma(a^2+b^2)}e^{ab}$$

$$k(x,z) =$$

$$k(x,z) = e^{ab} = 1 + \frac{1}{1!}ab + \frac{1}{2!}(ab)^2 + \frac{1}{3!}(ab)^3 + \dots + \frac{1}{\infty!}(ab)^\infty$$

→ 무한 차원

$$=\left(1,\sqrt{\frac{1}{1!}}a,\sqrt{\frac{1}{2!}}a^2,\ldots,\sqrt{\frac{1}{\infty!}}a^\infty\right)\cdot\left(1,\sqrt{\frac{1}{1!}}b,\sqrt{\frac{1}{2!}}b^2,\ldots,\sqrt{\frac{1}{\infty!}}b^\infty\right)$$

$$s = \sqrt{e^{-\gamma(a^2+b^2)}}$$
 라 하면

$$e^{-\gamma(a-b)^2} = \left(s, s\sqrt{\frac{1}{1!}}a, s\sqrt{\frac{1}{2!}}a^2, \dots, s\sqrt{\frac{1}{\infty!}}a^{\infty}\right) \cdot \left(s, s\sqrt{\frac{1}{1!}}b, s\sqrt{\frac{1}{2!}}b^2, \dots, s\sqrt{\frac{1}{\infty!}}b^{\infty}\right)$$

마무리하기 전에…

Summary

- 지도 학습은 입력데이터에 상응하는 출력데이터가 있을 때 학습하는 방식입니다.
- +) Convex Optimization
 - ear Regression에서 사용할 수 있는 방법은 OLS/SVM/GD가 있습니다
 - 그 이후가 궁금하다면? 어떤 모델의 error는 ::?의 variance와 ???와 ??? 간 편향과 데이터 자체의 noise로 생각할 수 Dual Optimization & KKT condition
 - Logistic Regression은 Linear regression과 달리 확률 모형으로 모델링이 되고, 확률적 해
- +) Kernel(커널)의 확장를 이용하여 나타낸다.
 - SVM이나 기존의 Linear Regression을 kernel로 서술해보기!upport vector이때 이것들로만 w와 b를 계산하게 된다.

6. Summary

Summary

- 지도 학습은 입력데이터에 상응하는 출력데이터가 있을 때 학습하는 방식입니다.
- Linear Regression에서 사용할 수 있는 방법은 OLS/SVM/GD가 있습니다
- 어떤 모델의 error는 ???의 variance와 ???와 ??? 간 편향과 데이터 자체의 noise로 생각할 수 있다.
- Logistic Regression은 Linear regression과 달리 확률 모형으로 모델링이 된다.
- SVM은 ???을 최대화 하는 분류기이며 분류할 때에 사용되는 점들은 ???이며 이것들로만 w와 b를 계산하게 된다.

Reference

Lecture Notes

- 6기 박준우님 세션 자료
- 이기복 교수님 통계적 머신러닝 강의안
- · 강승호 교수님 이론 통계학(1) 강의안
- 회귀분석 수업 강의안
- https://www.quora.com/Support-Vector-Machines-What-is-an-intuitive-explanation-of-hyperplane
- https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote12.html
- https://medium.com/technovators/machine-learning-based-multi-label-text-classification-9a0e17f88bb4