

Physikalisches Experimentieren 1 (PE-1)

Elektronikpraktikum

Dozent: Dr. Michael Krieger

Lehrstuhl für Angewandte Physik Universität Erlangen-Nürnberg

Beispiele:

Beispiele:

Beispiele:

Elektronik steckt in jedem Physiklabor

Verständnis der Messelektronik wichtig bei

- Planung
- Durchführung
- Verständnis empfindlicher (elektrischer) Messungen

häufig "Selbstbauapparaturen"

Überblick

- Grundlagen: Spannung, Strom, Widerstand, IV-Kennlinien
- Elektronische Messgeräte im Elektronikpraktikum
- Passive Filter
- Signaltransport im Kabel
- Transistor
- Operationsverstärker
- Sensorik
- PID-Regler
- Lock-In-Verstärker
- Digitalelektronik
- Digital-Analog- / Analog-Digital-Wandlung
- Mikrocontroller
- Labview und Virtual Instruments

Überblick

- Grundlagen: Spannung, Strom, Widerstand, IV-Kennlinien
- Elektronische Messgeräte im Elektronikpraktikum
- Passive Filter
- Signaltransport im Kabel
- Transistor
- Operationsverstärker
- Sensorik
- PID-Regler
- Lock-In-Verstärker
- Digitalelektronik
- Digital-Analog- / Analog-Digital-Wandlung
- Mikrocontroller
- Labview und Virtual Instruments

Spannung, Strom und Widerstand

Stromkreis: Zusammenschaltung von Strom- und Spannungsquellen sowie von elektrischen Bauelementen

$$U_{AB} = \Phi_A - \Phi_B = \frac{W_{AB}}{Q} = \int_A^B \vec{E} \cdot d\vec{s}_{AB}$$

Spannung = Potentialdifferenz

Wassermodell (nur für Ihre Intuition)

Spannung:

Symbol: U oder V (international)

Einheit: Volt (abgekürzt V)

Alessandro Volta (1745 – 1827)

Potential:

Symbol: Φ

Einheit: Volt (abgekürzt V)

Schaltzeichen einer Spannungsquelle:

Elektrische Spannung wird immer zwischen 2 Punkten gemessen (Potentialdifferenz)!

Besondere Potentiale:

Masse oder Bezugspotential (0 V)

Erde oder Erdpotential

Kleine Farbenlehre:

schwarz: Masse oder Bezugspotential

rot: positives Potential blau: negatives Potential

Farben in der Hausinstallation:

braun oder schwarz: Phase, Lichtleiter, live wire, 230V~

blau: Neutralleiter, "Nullleiter" (i.d.R. Erdpotential)

Schutzleiter, Erdkontakt

Elektrischer Strom

Strom = Ladung pro Zeit:

$$I = \frac{dQ}{dt}$$

Symbol: |

Einheit: Ampere (abgekürzt A)

Schaltzeichen von Stromquellen:

André-Marie Ampère (1775 – 1836)

Elektrischer Strom

In welche Richtung fließt der elektrische Strom?

Technische Stromrichtung: plus nach minus

Gefahren durch Strom und Spannung

Körperdurchströmung

Gefährlichkeit hängt ab von

- Höhe des Stroms
- Dauer des Stromflusses
- dem Strompfad (Herz?)

Kurzschluss

- akustische Auswirkungen
- thermische Auswirkungen
- Blenden / Verblitzen der Augen
- elektrodynamische Kräfte

Sekundärunfälle

- Sturz oder Absturz
- Verletzungen (Schnitte, Stiche, Quetschungen)
- herabfallende Teile

Gefahren durch Strom und Spannung

ab 5µA Wahrnehmbarkeitsgrenze mit der Zungenspitze

ab 1mA Nervenerschütterungen in den Fingerspitzen, aber

noch kein Einfluss auf den Herzschlag

ab 10mA Verkrampfungen, die aus eigener Kraft gerade noch

lösbar sind.

ab 20mA Verkrampfungen, die aus eigner Kraft nicht mehr

lösbar sind

ab 50mA reversibler Herzstillstand, eventuell Bewusstlosigkeit

ab 80mA Herzkammerflimmern bei Einwirkung >0,2s,

Benommenheit/Bewusstlosigkeit

ab 300mA Herzkammerflimmern, Bewusstlosigkeit, Herztod,

wenn nicht sofortige medizinische Versorgung

stattfindet.

aus EAM 6/89 S. 23

Gefahren durch Strom und Spannung

Höchstzulässige Berührspannung (VDE 0100)

50 V~ Wechselspannung

120 V= Gleichspannung

Übliche Spannungen:

1,5 V= ... 12 V= Batterie, Akku

8 V~ Klingeltrafo

60 V=, 60 V~ Analogtelefon

230 V~ Netzspannung

ca. 9 kV gepulst Weidezaun

IV-Kennlinien

Zusammenhang zwischen Spannung und Strom durch ein elektronisches Bauelement (2-Pol): IV-Kennlinie

Beispiel: Solarzelle

Ohmsches Gesetz

Bauelement mit einfachster IV-Kennlinie: (ohmscher) Widerstand

Ohmsches Gesetz gültig für metallische Leiter (z.B. Drähte, Kohleschichten)

Symbol: R (engl. resistor)

Einheit: Ohm (abgekürzt Ω)

 $1 \Omega = 1 \text{ V/A}$

Georg Simon Ohm (1789 – 1854) geboren in Erlangen Studium und Promotion an der FAU

Schaltzeichen von Widerständen:

Beispiele von Widerständen:

Symbol: R (engl. resistor)

Einheit: Ohm (abgekürzt Ω)

 $1 \Omega = 1 \text{ V/A}$

Schaltzeichen von Widerständen:

Leitwert: G (engl. conductance)

Einheit: Siemens (S)

psw. who (\O)

$$G = \frac{1}{R}$$

$$[G] = 1 S = 1 \Omega^{-1} = 1 \frac{A}{V}$$

Werner von Siemens (1816 – 1892)

Georg Sir (1789 -

geboren in Erlangen Studium und Promotion an der FAU

Aufbau von Widerständen:

 ρ = spezifischer Widerstand (Materialkonstante)

Kommerzielle Widerstände:

- Kohleschichten
- Metallschichten
- Draht
- Halbleiter

Bereich: 0.01 Ω ... 10^{12} Ω

 $R = \rho \frac{L}{A}$

Leistung: 1/8 W ... 250 W

Immer beachten:

$$P = U \cdot I = \frac{U^2}{R} = I^2 R$$

Farbe		V	Toleranz		
		_	2. Ring 3. Ring (2. Ziffer) (Multiplikator)		4. Ring
"keine"	×	_	_	_	±20 %
silber		_	_	10 ⁻² = 0,01	±10 %
gold		_	_	10 ⁻¹ = 0,1	±5 %
schwarz		_	0	100 = 1	_
braun		1	1	10 ¹ = 10	±1 %
rot		2	2	10 ² = 100	±2 %
orange		3	3	10 ³ = 1.000	_
gelb		4	4	104 = 10.000	_
grün		5	5	10 ⁵ = 100.000	±0,5 %
blau		6	6	10 ⁶ = 1.000.000	±0,25 %
violett		7	7	10 ⁷ = 10.000.000	±0,1 %
grau		8	8	108 = 100.000.000	_
weiß		9	9	109 = 1.000.000.000	_

Farbe	1. Ring (1. Ziffer)	2. Ring (2. Ziffer)	3. Ring (3. Ziffer)	4. Ring (Multiplikator)	5. Ring (Toleranz)	6. Ring (Temp. Koeffizient)
silber				10 ⁻²		
gold				10 ⁻¹		
schwarz		0	0	10 ⁰		200 10 ⁻⁸ K ⁻¹
braun	1	1	1	10 ¹	±1%	100 10 ⁻⁸ K ⁻¹
rot	2	2	2	10 ²	±2%	50 10 ⁻⁸ K ⁻¹
orange	3	3	3	10 ³		15 10 ⁻⁸ K ⁻¹
gelb	4	4	4	10 ⁴		25 10 ⁻⁸ K ⁻¹
grün	5	5	5	10 ⁵	±0,5%	
blau	6	6	6	10 ⁸	±0,25%	10 10 ⁻⁸ K ⁻¹
violett	7	7	7		±0,1%	5 10 ⁻⁸ K ⁻¹
grau	8	8	8		±0,05%	
weiß	9	9	9			

Wikipedia: Widerstand (Bauelement)

Differentieller Widerstand

absoluter Widerstand:

$$R = \frac{U_0}{I_0}$$

differentieller Widerstand:

$$r = \frac{dU}{dI}\bigg|_{U=U_0}$$

Differentieller Widerstand

Beispiel: Tunneldiode

Datenblatt 1N3716

$$u_{out} = \frac{R}{R + r_t} u_{in}$$

$$mit r_t < 0$$

$$\Rightarrow u_{out} > u_{in}$$

Kirchhoffsche Regeln

1. Kirchhoff'sche Regel (Knotenregel)

"Die Summe aller Ströme in einen und aus einem Knoten von elektrischen Verbindungen ist 0." (Ladungserhaltung)

Kirchhoffsche Regeln

2. Kirchhoff'sche Regel (Maschenregel)

"Die Summe aller Spannungen entlang eines geschlossenen Stromkreises (Masche) ist 0."

$$\sum_{i} U_{i} = 0$$

Schaltungen mit Widerständen

Reihenschaltung (Serienschaltung)

$$R_{ges} = \frac{U_{ges}}{I} = \sum_{i=1}^{n} \frac{U_i}{I} = \sum_{i=1}^{n} R_i$$

(folgt aus Kirchhoffschen Regeln)

Schaltungen mit Widerständen

Häufige Anwendung von Serienschaltungen: Spannungsteiler

$$I = \frac{U_{in}}{R_1 + R_2}$$
 und $U_{out} = R_2 \cdot I$

$$U_{out} = \frac{R_2}{R_1 + R_2} \cdot U_{in}$$

Schaltungen mit Widerständen

$$\frac{1}{R_{ges}} = \frac{I_{ges}}{U} = \frac{1}{U} \sum_{i=1}^{n} I_{i} = \frac{1}{U} \sum_{i=1}^{n} \frac{U}{R_{i}} = \sum_{i=1}^{n} \frac{1}{R_{i}}$$

(folgt aus Kirchhoffschen Regeln)

Helmholtz-Thévenin-Theorem

Jedes Netzwerk mit 2 Anschlüssen bestehend aus Widerständen und Spannungsquellen ist equivalent zu einem Widerstand R_{th} in Reihe mit einer Spannungsquelle U_{th}.

Helmholtz-Thévenin-Theorem

Wie findet man R_{th} und U_{th}?

U_{th}: Leerlaufspannung des Netzwerkes, d.h. bei offenen Anschlüssen

R_{th}:

- Theoretisch: alle Spannungs- und Stromquellen "abschalten" (Spannungsquellen durch "Drahtbrücken" ersetzen; Stromquellen "entfernen"), dann ist R_{th}der Ersatzwiderstand des verbleibenden Widerstandsnetzwerkes
- 2. Bestimmung des Kurzschlussstromes I_{sc} , dann $R_{th} = U_{th} / I_{sc}$
- 3. Halb-Spannungs-Methode: veränderbaren Widerstand R_{var} (Potentiometer) anschließen und Spannung U_{out} messen, dann ist $R_{th} = R_{var} \Leftrightarrow U_{out} = U_{th} / 2$

Norton-Theorem:

$$R_{no} = R_{th}$$

$$I_{no} = U_{th} / R_{th}$$

R_th

Helmholtz-Thévenin-Theorem

Beispiel: Spannungsteiler

Welche Spannung liegt am Verbraucher an? → Spannungsteiler !!!

z. B. Taschenlampe $R_{bulb} \approx 15 \Omega$

$$\Rightarrow U_{bulb} = 1.5 \text{ V} \cdot \frac{15 \Omega}{833 \Omega + 15 \Omega} = 0.027 \text{ V}$$

Spannungs- und Stromquellen

Ideale Spannungsquelle

Ideale Stromquelle

$$I_{load} = I_0 = const$$

Reale Spannungsquelle

$$U_{kl} = U_0 - R_i \cdot I_{load}$$

$$I_{\text{max}} = U_0 / R_i$$

Nicht-lineare Spannungsquelle (oder Stromquelle)

I٥

z.B. Solarzelle, Ausgang eines OpAmp

Reale Stromquelle

l_{load}

max

$$U_{\max} = R_i \cdot I_0$$

Spannungs- und Stromquellen

Wie bestimmt man R_i , U_0 bzw. I_0 ? \rightarrow Thévenin

 U_0 bzw. U_{max} : Leerlaufspannung, d.h. bei offenen Anschlüssen ($R_{load} = \infty$)

 I_0 bzw. I_{max} :

Kurzschlussstrom, d.h. bei gebrückten Anschlüssen $(R_{load} = 0)$

R_i:

1.
$$R_i = U_0 / I_{max}$$
 bzw. $R_i = U_{max} / I_0$

2. Halb-Spannungs-Methode: veränderbaren Widerstand R_{var} (Potentiometer) anschließen und Klemmenspannung U_{kl} bzw. Laststrom I_{load} messen, dann ist $R_i = R_{var} \Leftrightarrow U_{kl} = U_0 / 2$ bzw. $I_{load} = I_0 / 2$

Vorsicht! P

Spannungs- und Stromquellen

Für welchen Lastwiderstand R_{load} erhält man maximale Leistung?

an den Verbraucher abgegebene Leistung:

$$P_{load} = U_{kl} \cdot I_{load} = \frac{U_{kl}^2}{R_{load}} = U_0^2 \frac{R_{load}}{(R_{load} + R_i)^2} \text{ bzw. } I_0^2 R_i^2 \frac{R_{load}}{(R_{load} + R_i)^2}$$

Leistungsanpassung:

$$R_{load} = R_{i}$$

$$P_{load, max} = \frac{1}{4} \cdot \frac{{U_0}^2}{R_{load}} = \frac{1}{4} \cdot {I_0}^2 R_{load}$$

allerdings ist i.d.R.

R_{load} » R_i (Spannungsquelle) R_{load} « R_i (Stromquelle)

Voltmeter:

Amperemeter:

Multimeter:

Reales Voltmeter:

Innenwiderstand: R_i

$$U_{\rm kl} = U_{\it th} - I \cdot R_{\it th}$$

Reales Voltmeter:

Innenwiderstand: R_i

$$U_{\rm kl} = U_{\it th} - I \cdot R_{\it th}$$

$$U_{\text{gemessen}} = U_{th} \frac{R_i}{R_{th} + R_i}$$

Relativer Fehler:

$$\frac{\Delta U}{U_{\text{th}}} = \frac{1}{1 + R_i / R_{th}}$$

Spannungsmessung: R_i >> R_{th}

Ideales Voltmeter: $R_i \rightarrow \infty$

Reales Amperemeter:

$$I_{\text{ungest\"ort}} = \frac{U}{R_I}$$

Reales Amperemeter:

Innenwiderstand: R_i

$$I_{\mathsf{ungest\"{o}rt}} = \frac{U}{R_L}$$

$$I_{\text{gemessen}} = \frac{U - U_i}{R_L} = \frac{U}{R_L + R_i}$$

Relativer Fehler:

$$\frac{\Delta I}{I_{\rm ungest\"{o}rt}} = \frac{1}{1 + R_L / R_i}$$

Strommessung: R_i << R_L

Ideales Amperemeter: $R_i = 0$

Überblick

- Grundlagen: Spannung, Strom, Widerstand, IV-Kennlinien
- Elektronische Messgeräte im Elektronikpraktikum
- Passive Filter
- Signaltransport im Kabel
- Transistor
- Operationsverstärker
- Sensorik
- PID-Regler
- Lock-In-Verstärker
- Phase-Locked Loop
- Digitalelektronik
- Digital-Analog- / Analog-Digital-Wandlung
- Mikrocontroller
- Labview und Virtual Instruments
- Physik in der Elektronik: Ausblick zur Festkörperphysik

Arbeitsplatz

Steckbrett

Kabel und Bauelemente

Spannungs- / Stromquelle (Power Supply)

Agilent E3631A

3-faches programmierbares Labornetzteil:

- (0 25) V, 1 A (2x)
- (0 6) V, 5 A (1x)
- GPIB-Schnittstelle

Grundsätzlich Strombegrenzung verwenden:

 $I_{max} = 100 \text{ mA}$

DMM (Digital-Multimeter)

Agilent 34410A

Labor-Digitalmultimeter

- 6½ Stellen
- **USB-Schnittstelle**
- Messen von Spannur

Zu berücksichtigende Eigenschaften bzw. Parameter eines Labor-Digital-Multimeters (\rightarrow 1. Versuchstag):

- Innenwiderstand
- Integrationszeit (NPLC = Number of Power Line Cycles)
- Spezifikationen (→ Betriebstemperatur)

Funktionsgenerator

Agilent 33220A

Funktions-/Arbiträrsignalgenerator

- 20 MHz, 14 bit
- Sinus, Rechteck, Dreieck, Rauschen, ...
- programmierbare Signale

Agilent MSO6014A

Digitales (mixed signal) Speicheroszilloskop

4 analoge + 16 digitale Kanäle

100 MHz, 2 GSa/s

großer Speicher mit Zoom-F

USB-Anschluss (auch f
ür S)

Masse-Anschlüsse aller BNC-Buchsen liegen gemeinsam auf Erdpotential

⇒ Kurzschluss-Gefahr

Exkurs: Fouriertransformation und FFT einer zeitabhängigen Funktion f(t):

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{-i\omega t} d\omega$$

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{i\omega t}dt$$

6. Unendliche cosinus-Funktion $f(t) = \cos(2\pi t/\tau)$ $<\Longrightarrow>$ symmetrische δ -Funktion $F(\omega) = \pi \{\delta(\omega - 2\pi/\tau) + \delta(\omega + 2\pi/\tau)\}$

Exkurs: Fouriertransformation und FFT einer zeitabhängigen Funktion f(t):

Einschränkung für real gemessene Signale:

- 1. Messung nur in beschränktem Zeitintervall t = 0 ... T möglich
- 2. Abtastung des Messsignals nur an diskreten Punkten möglich $f_n = f(n \cdot \Delta t)$
- 3. Periodische Fortsetzung des Messintervalls

$$\Delta\omega \sim \frac{1}{T}$$

$$\omega_{\text{max}} \sim \frac{1}{\Delta t}$$

Exkurs: Fouriertransformation und FFT einer zeitabhängigen Funktion f(t):

Folgen für die Fouriertransformierte:

$$\Delta\omega \sim \frac{1}{T}$$

$$\omega_{\text{max}} \sim \frac{1}{\Lambda t}$$

FFT (Fast Fourier Transform): schneller mathematischer Algorithmus zur Berechnung der diskreten Fouriertransformation (nach Cooley und Tukey)

Präsentationsmöglichkeiten

StarBoard:

Präsentation PDF / Powerpoint (wie gewohnt)

StarBoard-Software: Tafelfunktion

Übertragung von den Arbeitsplätzen:

PC-Bildschirm → VNC USB-Kamera mit Schwanenhals

