Practicals – 7

-BS19B032

-R. Vasantha Kumar

1) I created a python code to compute the amino acid composition, the molecular weight, and find to which group it belongs. I attached the code in submission.

Amino acid composition:

Sequence 1:

Alanine	17.91044776119403
Cysteine	1.4925373134328357
Aspartic acid	2.9850746268656714
Glutamic acid	2.9850746268656714
Phenylalanine	1.4925373134328357
Glycine	5.970149253731343
Histidine	4.477611940298507
Isoleucine	1.4925373134328357
Lysine	7.462686567164178
Leucine	8.955223880597014
Methionine	0.0
Asparagine	1.4925373134328357
Proline	7.462686567164178
Glutamine	1.4925373134328357
Arginine	5.970149253731343
Serine	5.970149253731343
Threonine	10.44776119402985
Valine	1.4925373134328357
Tryptophan	5.970149253731343
Tyrosine	4.477611940298507

Sequence 2:

Alanine	19.11764705882353
Cysteine	0.0
Aspartic acid	2.941176470588235
Glutamic acid	1.4705882352941175
Phenylalanine	5.88235294117647
Glycine	14.705882352941178
Histidine	0.0
Isoleucine	11.76470588235294
Lysine	1.4705882352941175
Leucine	13.23529411764706
Methionine	7.352941176470589
Asparagine	0.0
Proline	4.411764705882353
Glutamine	2.941176470588235
Arginine	2.941176470588235
Serine	0.0
Threonine	1.4705882352941175
Valine	8.823529411764707
Tryptophan	0.0
Tyrosine	1.4705882352941175

Sequence 3:

Alanine	10.596026490066226
Cysteine	0.0
Aspartic acid	5.960264900662252
Glutamic acid	3.9735099337748347
Phenylalanine	5.298013245033113
Glycine	15.2317880794702
Histidine	1.3245033112582782
Isoleucine	5.298013245033113
Lysine	3.9735099337748347
Leucine	5.960264900662252
Methionine	0.6622516556291391
Asparagine	3.3112582781456954

Proline	2.6490066225165565
Glutamine	3.3112582781456954
Arginine	3.3112582781456954
Serine	9.933774834437086
Threonine	4.635761589403973
Valine	5.298013245033113
Tryptophan	3.9735099337748347
Tyrosine	5.298013245033113

From the results, it is clear that, cysteine is a rare amino acid, with very minimum compositions. Methionine composition is also very low in these sequences.

Also, the amino acids leucine and glycine has high compositions. Alanine also has high composition in these sequences.

2) Using the given values of molecular weights of amino acid residue and the below formula, I calculated molecular weight:

Mol. Weight =
$$\sum f(i)^*w(i) - w(w)^*(n-1)$$

Where,

f(i) = frequency of residue

w(i) = weight of residue

w(w) = weight of water = 18

n = length of sequence

Molecular weight:

Sequence 1:

The molecular weight is: 7127

Sequence 2:

The molecular weight is: 6529

Sequence 3:

The molecular weight is: 15453

3) Using the given values and the below formula for deviation, I calculated the deviations of query sequence with group A and group B.

Then, the protein belongs to group with low deviation.

std =
$$\sum |f_A(i) - f(i)|$$

where,

fA(i) = amino acid composition of residue in group A/B

f(i) = amino acid composition of residue in query sequence

Group A/B:

Sequence 1:

std with Group A: 55.84402985074627

std with Group B: 58.523731343283586

The protein sequence belongs to: GROUP A

Sequence 2:

std with Group A: 74.51470588235294

std with Group B: 76.83823529411765

The protein sequence belongs to: GROUP A

Sequence 3:

std with Group A: 38.332251655629136

std with Group B: 32.59781456953643

The protein sequence belongs to: GROUP B

- 4) I created a python code to compute the residue pair preference for the three query sequences, with given three normalisations.
 - (a) Nij*100/(Ni+Nj)
 - (b) Nij*100/(N-1)
 - (c) Nij*/(Ni*N)

I have submitted a total of 9 excel files, containing 9 tables, 3 for each sequence.

The top 10 preferred residues from each of the three pairpreferences are:

Sequence 1:

1.	Alanine
2.	Lysine
3.	Glycine
4.	Threonine
5.	Serine
6.	Tryptophan
7.	Proline
8.	Tyrosine
9.	Histidine
10.	Arginine

Sequence 2:

1.	Alanine
2.	Leucine
3.	Glycine
4.	Isoleucine
5.	Valine

6.	Phenylalanine
7.	Methionine
8.	Glutamine
9.	Proline
10.	Arginine

Sequence 3:

1.	Serine
2.	Glycine
3.	Alanine
4.	Phenylalanine
5.	Isoleucine
6.	Threonine
7.	Valine
8.	Tyrosine
9.	Aspartic acid
10.	Glutamic acid

5) I created a python code to calculate average hydrophobicity, helical contact area and total non-bond energy, using given values in website. I attached the code in submission.

Avg. hydrophobicity =
$$(\sum f(i)*Hgm(i))/N$$

Where,

f(i) = frequency of residue

Hgm(i) = hydrophobicity values of residues N = number of residues

Helical contact area = $\sum f(i)*Ca(i)$

Where,

f(i) = frequency of residue

Ca(i) = helical contact area values of residues

Total non-bonded energy = $\sum f(i)*Et(i)$

Where,

f(i) = frequency of residue

Et(i) = total non-bounded energy values of residues

Sequence 1:

Average hydrophobicity: 13.352537313432833

Helical contact area: 2156.0

Total non-bonded energy: 117.7400000000001

Sequence 2:

Average hydrophobicity: 13.771617647058823

Helical contact area: 2067.0

Total non-bonded energy: 126.6599999999998

Sequence 3:

Average hydrophobicity: 13.418675496688744

Helical contact area: 4616.0

Total non-bonded energy: 267.75

From the results, we could find that as the number of residues in a sequence increases, the non-bound energy and helical surface area of the sequence, also increases.

But, when we consider the average hydrophobicity, it remains fairly similar to all the three sequences.