2

expression in roots.

polypeptide.

11.

A method of modulating transcription in a plant, the method comprising introducing into the plant a recombinant expression cassette comprising a promoter sequence operably linked to a heterologous polynucleotide sequence encoding a MYB polypeptide. The method of claim 1. wherein the polynucleotide is at least about 2. 30 nucleotides in length. 2 The method of claim 1, wherein the polynucleotide is as shown in 3. 1 SEQ ID NO:1. 2 of claim 1, wherein the polynucleotide is a shown in 1 2 SEQ ID NO: 3. The method of claim 1, wherein the polynucleotide encodes a 5. 1 2 MYB polypeptide as shown in SEQ ID NO: 2. The method of claim 1, wherein the polynucleotide encodes a 6. 1 MYB polypeptide as shown in SEQ ID NO: 4. 2 d of claim 1, wherein the plant is a cotton plant. 1 7. The method of claim 7, wherein the promoter directs expression of 1 the polynucleotide sequence in cotton fibers. 2 The method of claim 1, wherein the modulation of transcription 1 9. results in alteration of root hairs. 2 The method of claim 9, wherein the promoter sequence directs 10. 1

WHAT IS CLAIMED IS:

1

37

sequence operably linked to a heterologous polynucleotide sequence encoding a MYB

A recombinant expression cassette comprising a promoter

1	The expression easiette of claim 9, wherein the polynucleotide is at
2	least about 30 nucleotides in length.
1	13. The expression cassette of claim 11, wherein the polynucleotide is
2	as shown in SEQ ID NO:1.
	·
1	14. The expression cassette of claim 11, wherein the polynucleotide is
2	a shown in SEQ ID NO. 3.
1	15. The expression cassette of claim 11, wherein the polynucleotide
2	encodes a MYB polypeptide as shown in SEQ ID NO: 2.
1	16. The expression cassette of claim 11, wherein the polynucleotide
2	encodes a MYB polypeptide as shown in SEQ ID NO: 4
1	17. The expression cassette of claim 11, wherein the promoter directs
2	expression of the polynucleotide sequence in cotton fibers.
1	18. The expression cassette of claim 11, wherein the promoter
	sequence directs expression in roots.
2	sequence directs expression in roots.
1	19. A plant comprising the expression cassette of claim 11.
1	20. The plant P claim 19, which is a cotton plant.
1	21. An isolated nucleic acid molecule comprising a sequence at least
2	about 70% identical to SEQ ID NO: 5.
1	22. The isolated nucleic acid molecule of claim 21, which comprises a
2	sequence as shown in SEQ ID NO: 5.
1	23. An isolated nucleic acid molecule which encodes a polypeptide as
2	shown in SEQ ID NO: 6.
1	24. An isolated nucleic acid molecule comprising a sequence at least
2	about 70% identical to SEQAD NO: 7.

1	25. The isolated nucleic acid molecule of claim 24, which comprises
2	sequence as shown in SEQ ID NO: 7.
1	26. An isolated nucleic acid molecule which encodes a polypeptide a
2	shown in SEQ ID NO: 8.
1	