(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 12. August 2004 (12.08.2004)

PCT

(10) Internationale Veröffentlichungsnummer WO 2004/068157 A1

(51) Internationale Patentklassifikation7: H02J 7/00

G01R 31/36.

(21) Internationales Aktenzeichen: PCT/DE2004/000144

(22) Internationales Anmeldedatum: 30. Januar 2004 (30.01.2004)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

103 03 506.0 103 28 055.3 30. Januar 2003 (30.01.2003) DE DE

23. Juni 2003 (23.06.2003)

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): ROBERT BOSCH GMBH [DE/DE]; Postfach 30 02 20, 70442 Stuttgart (DE).

(72) Erfinder; und

- (75) Erfinder/Anmelder (nur für US): SCHOCH, Eberhard [DE/DE]; Weilimdorfer Strasse 85, 70469 Stuttgart (DE).
- (74) Gemeinsamer Vertreter: ROBERT BOSCH GMBH; Postfach 30 02 20, 70442 Stuttgart (DE).
- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,

[Fortsetzung auf der nächsten Seite]

(54) Title: STATE VARIABLE AND PARAMETER ESTIMATOR COMPRISING SEVERAL PARTIAL MODELS FOR AN ELECTRICAL ENERGY STORAGE DEVICE

(54) Bezeichnung: ZUSTANDSGRÖSSEN- UND PARAMETERSCHÄTZER MIT MEHREREN TEILMODELLEN FÜR EINEN ELEKTRISCHEN ENERGIESPEICHER

- (57) Abstract: The invention relates to a state variable and parameter estimator (1) for determining state variables and parameters of a mathematical energy storage model, especially a battery model. Said estimator (1) calculates the state variables (Z) and parameters (P) of the mathematical energy storage model from operating parameters (U_{Batt} , I_{Batt} , T_{Batt}) of an energy storage device (3). The state variables and parameters can be estimated in a particularly simple manner if the state variable and parameter estimator (1) comprises several partial mathematical models (4, 5) that are valid for different operating ranges and/or frequency ranges of the energy storage device (3).
- (57) Zusammenfassung: Die Erfindung betrifft einen Zustandsgrössen- und Parameterschätzer (1) zum Bestimmen von Zustandsgrössen und Parametern eines mathematischen Energiespeichermodells, insbesondere eines Batteriemodells, der aus Betriebsgrössen (UBatt, I_{Batt}, T_{Batt}) eines Energiespeichers (3) die Zustandsgrössen (Z) und Parameter (P) des mathematischen Energiespeichermodells berechnet. Eine besonders einfache Abschätzung der Zustandsgrössen und Parameter kann durchgeführt werden, wenn der Zustandsgrössen- und Parameterschätzer (1) mehrere mathematische Teilmodelle (4, 5) umfasst, die für unterschiedliche Arbeits- und/oder Frequenzbereiche des Energiespeichers (3) gelten.

WO 2004/068157 A1

<u> 1900), sinkudi kedina nun sukh bukh bukh bidi kukh bidi bukh lini kubh bih bidi bili kata nun bidi bidi bidi bi</u>

KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT,

RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- mit internationalem Recherchenbericht
- vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen. WO 2004/068157 PCT/DE2004/000144

5 Beschreibung

Zustandsgrößen- und Parameterschätzer mit mehreren Teilmodellen für einen elektrischen Energiespeicher

Die Erfindung betrifft ein Verfahren zum Bestimmen von Zustandsgrößen und Parametern eines mathematischen Energiespeichermodells, insbesondere eines Batteriemodells, gemäß dem Oberbegriff des Patentanspruchs 1, sowie einen Zustandsgrößen- und Parameterschätzer gemäß dem Oberbegriff des Patentanspruchs 9.

In elektrischen Netzen, wie beispielsweise Kfz-Bordnetzen, werden i.d.R. mehrere elektrische Verbraucher von einem elektrischen Energiespeicher, wie z.B. einer Batterie mit 20 Leistung versorgt. Zur Durchführung eines Energie- und Verbrauchermanagements, bei dem Verbraucher je nach Bedarf automatisch zu- und abgeschaltet werden können, ist die Kenntnis der Leistungsfähigkeit des Energiespeichers von wesentlicher Bedeutung. Bei Kenntnis der Leistungsfähigkeit 25 des Energiespeichers, insbesondere der noch entnehmbaren Ladung bis zur Unterschreitung einer geforderten Mindestleistungsfähigkeit z.B. für einen Motorstart, können noch vor Eintritt einer Unterversorgung verbrauchsmindernde oder leistungserhöhende Maßnahmen, wie z.B. das Abschalten 30 bestimmter Verbraucher, eingeleitet und somit ein Ausfall der elektrischen Versorgung verhindert werden.

Zur Abschätzung der Leistungsfähigkeit des Energiespeichers, ist es bekannt, mathematische Modelle zu verwenden, welche die elektrischen Eigenschaften des Energiespeichers beschreiben. Mit Hilfe der mathematischen Modelle kann unter Berücksichtigung aktueller Betriebsgrößen des

Energiespeichers, wie z.B. einer aktuellen Batteriespannung U_{Batt} , dem aktuellen Batteriestrom I_{Batt} und der aktuellen Batterietemperatur T_{Batt} , die Leistungsfähigkeit des Energiespeichers abgeschätzt werden. Eine aus dem Stand der Technik bekannte Vorrichtung zur Bestimmung der aus einem Energiespeicher entnehmbaren Ladung ist in Fig. 1 dargestellt.

5

30

Fig. 1 zeigt eine Vorrichtung zur Bestimmung der aus einem Energiespeicher, insbesondere aus einer Fahrzeugbatterie, bis 10 zu einem vorgegebenen Entladeschlusskriterium entnehmbaren Ladung. Die Vorrichtung umfasst einen Zustandsgrößen- und Parameterschätzer 1, sowie einen Ladungsprädiktor 2, in dem das mathematische Energiespeichermodell hinterlegt ist. Der Zustandsgrößen- und Parameterschätzer 1 dient dazu, aus den 15 aktuellen Betriebsgrößen der Batterie, nämlich der Batteriespannung U_{Batt} , dem Batteriestrom I_{Batt} und der Batterietemperatur T_{Batt}, Zustandsgrößen Z und/oder Parameter P zu berechnen, auf deren Grundlage der Ladungsprädiktor 2 die gewünschte Information, wie z.B. die aus der Batterie 20 entnehmbare Ladung Qe, oder andere Größen, wie beispielsweise die Zeit $t_{\rm e}$ bis zum Erreichen eines Entladeschlusskriteriums oder den Ladezustand SOC berechnet. Dem Ladungsprädiktor 2 kann ferner ein Entladestromverlauf IBatt, Entl, sowie ein Temperaturverlauf TBatt, Entl zugeführt werden. 25

Als Zustandsgrößen Z gelten in dieser Beschreibung insbesondere interne Spannungen U, die sich aus dem jeweiligen Ersatzschaltbild des Energiespeichers bzw. dem zugrundeliegenden mathematischen Modell ergeben. Bei den genannten Parametern handelt es sich um konstante Werte, wie z.B. Widerstände R und Kapazitäten C im Ersatzschaltbild bzw. mathematischen Energiespeichermodell.

Die vom Ladungsprädiktor 2 durchgeführte Ladungsberechnung erfolgt ausgehend vom aktuellen Zustand des Energiespeichers. Die im Ladungsprädiktor 2 hinterlegten mathematischen Modelle

werden daher zunächst auf den aktuellen Betriebszustand des Energiespeichers initialisiert. Hierzu liefert der Zustandsgrößen- und Parameterschätzer 1 die entsprechenden Anfangswerte. Als Zustandsgrößen- und Parameterschätzer kann beispielsweise ein bekanntes Kalman-Filter verwendet werden. 5 Ausgehend vom Initialisierungszustand kann der Ladungsprädiktor 2 z.B. die aus dem Energiespeicher entnehmbare Ladung Qe für einen vorgegebenen Entladestrom und ein aktuelle Batterietemperatur berechnen.

10

Fig. 2 zeigt ein Beispiel eines Ersatzschaltbildes für den Entladebetrieb eines Bleiakkumulators (I_{Batt} < OA, U_{Dp} < OV, U_{Dn} < 0V). Die einzelnen Ersatzschaltbildgrößen sind dabei wie folgt, von links nach rechts:

15

Ohmscher Innenwiderstand, abhängig von der R(U_{C0}, U_e, T_{Batt}) Ruhespannung Uco, der Elektrolytspannung Ue und der Säuretemperatur TBatt

 U_{Ri}

ohmscher Spannungsabfall

20 C_0

Säurekapazität

 U_{C0}

Ruhespannung

 $R_k(U_{CO}, T_{Batt})$

Säurediffusionswiderstand, abhängig von der Ruhespannung U_{c0} (Entladegrad) und der Säuretemperatur T_{Batt}

25 tauk $= R_k * C_k$ (Zeitkonstante der Säurediffusion) wird als konstant in der Größenordnung von 10min angenommen

Uk

Konzentrationspolarisation

Ue

= $U_{c0} + U_k$ (Elektrolytspannung)

30

 $\mathbf{U}_{\mathtt{D}}$ ($\mathbf{I}_{\mathtt{Batt}}$, $\mathbf{T}_{\mathtt{Batt}}$) Stationäre Durchtrittspolarisation an der positiven Elektrode der Batterie (U_{Dp}) und der negativen Elektrode (UDn), abhängig vom Batteriestrom I_{Batt} und der Säuretemperatur

TBatt

35 UBatt Klemmenspannung der Batterie

Die einzelnen Ersatzschaltbildgrößen sind zurückzuführen auf verschiedene physikalische Effekte der Batterie, die dem Fachmann aus der einschlägigen Literatur bekannt sind.

Für den ohmschen Innenwiderstand $R_{\rm i}$ kann beispielsweise folgende Beziehung angesetzt werden:

$$R_{i}(U_{CO}, U_{e}, T_{Batt}) = R_{i0}(T_{Batt}) * (1 + R_{I,fakt} * (U_{COmax} - U_{CO})/(U_{e} - U_{e,grenz})),$$

 $R_{i0}(T_{Batt}) = R_{i025}/(1+TK_{Lfakt}) * (T_{Batt} - 25°C))$

dabei sind:

10

25

15 R_{i025} ohmscher Innenwiderstand bei Vollladung und $T_{Batt} = 25$ °C

TK_{Lfakt} Temperaturkoeffizient des Batterieleitwerts

 R_{Ifakt} Kennfeldparameter

U_{COmax} maximale Ruhespannung der vollgeladenen Batterie

20 U_{e,grenz} Elektrolytspannung bei Entladeschluss (alterungsabhängig)

Für andere Ersatzschaltbildgrößen (z.B. U_D , U_k) umfasst der Ladungsprädiktor 2 entsprechend andere geeignete mathematische Ansätze. Das mathematische Modell des Energiespeichers umfasst wenigstens für den Innenwiderstand R_i , den Säurediffusionswiderstand R_k und eine Durchtrittspolarisation U_D mathematische Ansätze.

Die Zustandsgrößen liefern die Information über den Energieinhalt der Energiespeicher eines Systems. Sie entsprechen im Ersatzschaltbild den Spannungen an den Kapazitäten, also Uco und Uk. Zur modellbasierten Bestimmung der Leistungsfähigkeit des Energiespeichers müssen außer den Zustandsgrößen auch die Modell-Parameter bekannt sein. Insbesondere müssen stark alterungsveränderliche Parameter

WO 2004/068157 PCT/DE2004/000144

wie die Parameter $R_{\rm i025}$ und $U_{\rm e,grenz}$ der Kennlinie des ohmschen Innenwiderstands adaptiert werden.

Die vom Zustandsgrößen- und Parameterschätzer 1 ermittelten

Zustandsgrößen Z und Parameter P können beispielsweise zur
Bestimmung des Ladungszustands der Batterie, einer aktuellen
oder zukünftigen Leistungsfähigkeit, sowie z.B. der aus dem
Energiespeicher entnehmbaren Ladung genutzt werden.

Herkömmliche Prädiktoren (Schätzvorrichtungen), wie z.B. der in Fig. 1 gezeigte Ladungsprädiktor 2, umfassen meist sehr aufwändige Modelle mit vielen Zustandsgrößen und Parametern, die das Verhalten des Energiespeichers über einen großen Arbeitsbereich abdecken. Die Berechnung der Zustandsgrößen und Parameter ist dementsprechend aufwändig und kompliziert. Andere Prädiktoren umfassen dagegen einfache Modelle mit wenigen Zustandsgrößen und Parametern, die das Verhalten des Energiespeichers jedoch nur in bestimmten Arbeitspunkten oder bei bestimmten Frequenzen beschreiben.

Es ist daher die Aufgabe der vorliegenden Erfindung, ein einfaches und schnelles Verfahren zur Abschätzung von Zustandsgrößen und/oder Parametern für ein mathematisches Energiespeichermodell zu schaffen, das im wesentlichen über den gesamten Arbeitsbereich und Frequenzbereich des

den gesamten Arbeitsbereich und Frequenzbereich des Energiespeichers gültig ist.

20

30

35

Gelöst wird diese Aufgabe gemäß der Erfindung durch die in den Patentansprüchen 1 und 9 angegebenen Merkmale. Weitere Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen.

Der wesentliche Gedanke der Erfindung besteht darin, im Zustandsgrößen- und Parameterschätzer mehrere mathematische Teilmodelle zur Abschätzung von Zustandsgrößen und/oder Parametern vorzusehen, die für unterschiedliche Arbeitsund/oder Frequenzbereiche des Energiespeichers gelten. Die WO 2004/068157 PCT/DE2004/000144

Arbeits- und/oder Frequenzbereiche der einzelnen Teilmodelle können sich dabei überlappen. Insgesamt decken die Teilmodelle im wesentlichen den gesamten Frequenz- und Arbeitsbereich des Energiespeichers ab.

5

10

15

35

Somit ist eine kontinuierliche Schätzung von Zustandsgrößenund Parametern im gesamten Arbeits- und Frequenzbereich des
Energiespeichers möglich. Durch die Nutzung der
erfindungsgemäßen Teilmodelle kann die Anzahl der zu
schätzenden Zustandsgrößen und Parameter klein gehalten und
damit die Gefahr einer mehrdeutigen Schätzung minimiert
werden. Ferner ist durch die Aufteilung in Teilmodelle eine
effektivere Nutzung der Prozessorleistung möglich: "Langsame"
Teilmodelle mit großen Zeitkonstanten können unabhängig von
"schnellen" Teilmodellen mit kleiner Abtastrate abgearbeitet
werden.

Den Teilmodellen wird vorzugsweise ein Strom (I_{Batt}) oder eine Spannung (U_{Batt}) des Energiespeichers zugeführt, wobei der Strom (I_{Batt}) oder die Spannung (U_{Batt}) durch ein Filter auf den für das jeweilige Teilmodell gültigen Frequenzbereich eingeschränkt wird. Den Teilmodellen können somit Hochpass-, Tiefpass- oder Bandpassfilter vorgeschaltet sein.

Gemäß einer bevorzugten Ausführungsform der Erfindung wird ein Fehler zwischen einer Betriebsgröße (UBatt, IBatt) des Energiespeichers und einer von einem Teilmodell berechneten Betriebsgröße (UBatt, IBatt) ermittelt und in das jeweilige Teilmodell zurückgekoppelt (Selbstrückkopplung). Durch die Selbstrückkopplung können die zu berechnenden Zustandsgrößen und Parameter an den Ist-Zustand des Energiespeichers angepasst werden.

Wahlweise kann der Fehler auch in ein anderes Teilmodell rückgekoppelt werden (Fremdrückkopplung). Durch die Fremdrückkopplung können die Zustandsgrößen und Parameter, die von mehreren Teilmodellen gleichzeitig berechnet werden, gegeneinander abgeglichen werden.

- Die Fehler, die einem Teilmodell durch Selbstrückkopplung oder Fremdrückkopplung zugeführt werden, werden vorzugsweise mit einem Gewichtungsfaktor gewichtet. Auf diese Weise kann die Empfindlichkeit eines Teilmodells gegenüber unterschiedlichen Fehlern eingestellt werden.
- Zustandsgrößen und/oder Parameter, die von einem Teilmodell geschätzt wurden und auch in einem anderen Teilmodell enthalten sind, werden vorzugsweise auch dem anderen Teilmodell zugeführt. Dort können sie als Startwert, als Fixwert oder als Korrekturwert für die Schätzung dienen.

15

- Gemäß einer bevorzugten Ausführungsform der Erfindung ist eine Stimulationsvorrichtung vorgesehen, mit der eine den Teilmodellen zugeführte Betriebsgröße (Strom oder Spannung) in einen für das Teilmodell gültigen Arbeits- oder Frequenzbereich gebracht werden kann.
 - Die Erfindung wird nachstehend anhand der beigefügten Zeichnungen beispielhaft näher erläutert. Es zeigen:
- 25 Fig. 1 eine aus dem Stand der Technik bekannte Vorrichtung zur Berechnung der aus einem Energiespeicher entnehmbaren Ladung.
- Fig. 2a ein Ersatzschaltbild für einen Bleiakkumulator 30 während eines Entladevorgangs bei niedrigen Frequenzen;
 - Fig. 2b ein Ersatzschaltbild für einen Bleiakkumulator bei hohen Frequenzen;
- 35 Fig. 3a den Aufbau eines Zustandsgrößen- und Parameterschätzers mit mehreren Teilmodellen gemäß einer

10

ersten Ausführungsform der Erfindung und Figur 3b gemäß einer zweiten Ausführungsform der Erfindung;

- Fig. 4 ein Flussdiagramm zur Darstellung der Funktion 5 eines Stimulators; und
 - Fig. 5 den Aufbau eines Zustandsgrößen- und Parameterschätzers zur Berechnung des Innenwiderstands einer Batterie.

Bezüglich der Erläuterung der Fig. 1 und 2a wird auf die Beschreibungseinleitung verwiesen.

Fig. 3a zeigt den prinzipiellen Aufbau eines Zustandsgrößenund Parameterschätzers 1 gemäß einer ersten Ausführungsform
der Erfindung. Wie zu erkennen ist, umfasst der
Zustandsgrößen- und Parameterschätzer 1 mehrere Teilmodelle
4, 5, die jeweils nur in einem bestimmten Frequenz- und/oder
Arbeitsbereich (f1,A1 bzw. f2,A2) gelten und die dadurch sehr
einfach gehalten werden können. Die Teilmodelle 4, 5 decken
in ihrer Gesamtheit aber den gesamten Frequenz- und
Arbeitsbereich des Energiespeichers 3 ab.

Die Frequenzbereiche f1,f2,... als auch die Arbeitsbereiche A1,A2,... können sich teilweise überlappen. Die Gesamtheit der Teilmodelle 4, 5 sollte im günstigsten Fall den gesamten, zumindest jedoch einen möglichst großen Arbeits- A und Frequenzbereich f des Energiespeichers abdecken.

- Der Arbeitsbereich eines Teilmodells 4,5 wird durch vorgegebene Bedingungen für den Batteriestrom I_{Batt}, die Batteriespannung U_{Batt}, die Batterietemperatur T_{Batt}, Zustandgrößen Z und Batterieparameter P definiert.
- 35 Einzelne Zustandsgrößen Z und Parameter P können gleichzeitig in mehreren Teilmodellen 4, 5 auftreten und geschätzt werden.

Der in Fig. 1 dargestellte Zustandsgrößen- und Parameterschätzer 1 erhält an seinem Eingang kontinuierlich gemessene Batteriewerte, im vorliegenden Fall den Batteriestrom I_{Batt} (wahlweise kann auch die Batteriespannung U_{Batt} zugeführt werden) und die Batterietemperatur T_{Batt} . Der 5 Batteriestrom I_{Batt} wird durch geeignete Tiefpass-, Hochpassoder Bandpassfilter 6, 7, 8, 9 jeweils auf den Frequenzbereich f1, f2 eingeschränkt, in dem das jeweilige Teilmodell 4, 5 gültig ist. Ein Teilmodell 4, 5 (z.B. das Teilmodell 4), das z.B. in einem Frequenzbereich f1 von mehr 10 als 1 kHz gültig ist, hat im vorliegenden Fall einen vorgeschalteten Hochpassfilter 6. Dem Teilmodell 5 kann z.B. ein Tiefpassfilter 7, 9 vorgeschaltet sein. Deckt ein Teilmodell 4, 5 den gesamten Frequenzbereich f ab, können die Eingangsfilter 6, 9 für Strom und Spannung entfallen. 15

Die Teilmodelle 4, 5 berechnen aus den zugeführten Größen jeweils eine Batterie-Zustandsgröße (IBatt^ oder UBatt^). Der entsprechende Istwert (IBatt oder UBatt) wird dem

20 Zustandsgrößen- und Parameterschätzer 1 als Messwert von außen zugeführt. Die Schätzwerte UBatt,1^, UBatt,2^ bzw. daraus abgeleitete Größen (Fehlersignale) werden in das jeweilige Teilmodell 4, 5 rückgekoppelt.

Der Zustandsgrößen- und Parameterschätzer 1 umfasst Differenzknoten 17, 18, an denen ein Fehler (Differenzsignal) aus der geschätzten Batterie-Zustandsgröße UBatt,1, UBatt,2 und der jeweils gemessenen Batterie-Zustandsgröße UBatt,1, UBatt,2 gebildet wird. Die ermittelten Fehler (UBatt,1 - UBatt,1, UBatt,2 - UBatt,2,...) werden dann jeweils einer Gewichtungseinheit 10, 12 zugeführt und an Addierknoten 14, 15 geleitet.

Bei der Fehlerrückkopplung kann zwischen Selbstrückkopplung und Fremdrückkopplung unterschieden werden. Im ersteren Fall wird der Schätzfehler eines Teilmodells (4) dem selben Teilmodell (4) zugeführt, im anderen Fall wird der Schätzfehler eines Teilmodells (4) einem anderen Teilmodell

- (5) zugeführt. An den Addierknoten 14, 15 wird aus den einzelnen (gewichteten) Schätzfehlern ein Gesamtfehler erzeugt und dem jeweiligen Teilmodell 4,5 zugeführt.
- 5 Eine Fremdrückkopplung wird vorzugsweise nur dann realisiert, wenn bestimmte Zustandsgrößen Z oder Parameter P parallel in mehreren Teilmodellen auftreten. In diesem Fall können die Zustandsgrößen Z und Parameter P mit den anderen Teilmodellen abgeglichen werden.

Für eine Zustandsgröße $Z_{1,j}$ im j-ten Teilmodell, die außerdem in den Teilmodellen i = j+1, ..., j+n vorkommt, ergibt sich folgende Differenzengleichung:

15
$$Z_{1,j,k+1} = f(Z_{j,k}, P_{j,k}, I_{Batt,j,k}, T_{Batt,k}) + \sum_{l=j...n} k_{z_{1,i,j}} * (U_{Batt,i,k} - U_{Batt,i,k^{\wedge}})$$

10

20

Dabei ist $f(Z_{j,k}, P_{j,k}, I_{Batt,j,k}, T_{Batt,k})$ die rechte Seite einer Zustandsdifferenzengleichung für die Zustandsgröße $Z_{1,j}$ des jeten Teilmodells mit den Eingangsgrößen: Gefilterter Batteriestrom $I_{Batt,j,k}$ und Batterietemperatur $T_{Batt,k}$ sowie dem Parametervektor $P_{j,k}$ im k-ten Zeitschritt.

Für einen konstanten Parameter $P_{1,j}$ im j-ten Teilmodell, der außerdem in den Teilmodellen i = j+1, ..., j+n vorkommt, ergibt sich:

$$P_{1,j,k}+1 = P_{1,j,k} + \sum_{i=j...n} k_{P_{1,i,j}} * (U_{Batt,i,k} - U_{Batt,i,k^{\wedge}})$$

Die Verstärkungen k_{i,j} der Gewichtungseinheiten 10-13 können bei einem Teilmodell 4, 5 entsprechend einem Luneberger-Beobachter durch Polvorgabe und bei Verwendung eines Kalman-Filters für die Teilmodelle 4, 5 durch Minimierung eines Gütekriteriums, wie z.B. der minimalen Schätzfehlervarianz, ermittelt werden.

Wenn sich der aktuelle Arbeitsbereich und/oder Frequenzbereich außerhalb des gültigen Arbeits- und/oder Frequenzbereichs eines Teilmodells 4, 5 befindet, darf keine Fehlerrückkopplung von einem solchen Teilmodell (z.B.

5 Teilmodell 5) zu einem anderen Teilmodell erfolgen. Daher werden in einem solchen Fall vorzugsweise die Gewichtungsfaktoren k_{i,j} der entsprechenden Gewichtungseinheiten (z.B. Gewichtungseinheit 11) auf Null gesetzt. Das heißt, k_{i,j} = 0, falls der Arbeitsbereich des iten Teilmodells verlassen wird.

Bei der in Fig. 3a dargestellten Anordnung wird dem Zustandsgrößen- und Parameterschätzer 1 der Batteriestrom IBatt zugeführt. Gemäß einer anderen Ausführungsform nach Fig.

- 3b kann den Teilmodellen 4, 5 auch eine (gefilterte)
 Batteriespannung UBatt als Eingangsgröße zugeführt werden. Die
 Teilmodelle 4, 5 würden in diesem Fall einen Batteriestrom
 IBatt abschätzen. Der Abgleich der Teilmodelle erfolgt über
 die Batteriespannung UBatt,1, UBatt,2,..., über die
- Batterieströme I_{Batt} , I_{Batt} , I_{Batt} , wenn die Batteriespannung als Eingangsgröße und der Batteriestrom als Ausgangsgröße der Teilmodelle definiert wird.

Zustandsgrößen und/oder Parameter, die von einem Teilmodell

(4) geschätzt wurden und auch in einem anderen Teilmodell (5) enthalten sind, werden vorzugsweise auch dem anderen Teilmodell (5) zugeführt. Hierzu sind Verbindungsleitungen 30,31 vorgesehen. Im anderen Teilmodell (5) können die Werte als Startwert, als Fixwert oder als Korrekturwert für die 30 Schätzung dienen.

Die Teilmodelle 4, 5 liefern neben den Zustandsgrößen Z und Parametern P auch die Fehlervarianzen (var, var, ...) der Größen. Damit kann z.B. beurteilt werden, ob die Genauigkeit der Schätzgrößen Z, P für nachfolgende Berechnungen des Ladezustands, der Leistungsfähigkeit und/oder der aus der Batterie entnehmbaren Ladung ausreicht.

In einer weiteren Variante findet der Abgleich der Teilmodelle zusätzlich über die Batteriespannungen UBatt,1, UBatt,2,..., statt, d.h. die Stuktur nach Figur 3a oder 3b wird gleichzeitig zweimal benutzt, einmal mit nach der Batteriespannung und einmal mit nach dem Batteriestrom aufgelösten Teilmodellen. Die gleichzeitig geschätzten Zustandsgrößen und Parameter aus den einzelnen Teilmodellen der beiden Strukturen können dann z.B. gewichtet mit ihrer Fehlervarianz zu einer Schätzgröße verknüpft werden, entsprechend der bereits beschriebenen Weise zur Verknüpfung der in verschiedenen Teilmodellen parallel geschätzten Größen.

Zur optimalen Ausnutzung sämtlicher Teilmodelle 4, 5 sollten
die Betriebsgrößen der Batterie 3 im Laufe der Berechnung
sämtliche Arbeits- und Frequenzbereiche der Teilmodelle 4, 5
durchlaufen. Liefert das elektrische Netz, an dem die
Batterie 3 angeschlossen ist, zu wenig Anregungen (z.B.
Lastschwankungen), können die Größen nicht genau genug
geschätzt werden. Sind die Anregungen im Netz gering, kann
z.B. der Innenwiderstand Ri der Batterie 3 nur sehr ungenau
geschätzt werden. Bei geringer Anregung über einen längeren
Zeitraum können insbesondere bei sicherheitskritischen
Anwendungen Probleme auftreten, da keine genaue Aussage über
die Leistungsfähigkeit der Batterie getroffen werden kann.

Der Zustandsgrößen- und Parameterschätzer 1 umfasst daher einen Stimulator 16, der in der Lage ist, aktiv in das elektrische Netz einzugreifen und den Arbeits- und/oder Frequenzbereich der Batterie 3 bzw. des Netzes in gewünschter Weise einzustellen. Der Stimulator 16 greift aktiv in das elektrische Netz ein, wenn die Fehlervarianz var vorgegebener Zustandsgrößen Z oder Parameter P für eine vorgegebene Zeitdauer zu groß ist. Dem Stimulator 16 werden die von den einzelnen Teilmodellen 4, 5 berechneten Varianzen var als Eingangsgrößen zugeführt.

30

Der Eingriff in das elektrische Netz durch den Stimulator 16 erfolgt z.B. durch Vorgabe einer neuen Generator-Sollspannung U_{Gen, soll} (bei einem Fahrzeuggenerator), einer Load-Response-Zeitkonstanten taugen eines Generatorreglers und/oder durch geeignete Verbraucher-Zu- oder Abschaltung. Hierdurch kann ein für die Schätzung der jeweiligen Zustandsgröße Z oder des jeweiligen Parameters P geeigneter Batteriestromverlauf I_{Batt} , Spannungsverlauf UBatt und/oder Frequenzverlauf eingeprägt werden. Idealerweise wird der gewünschte Batteriestromverlauf I_{Batt} (oder ein Spannungsverlauf U_{Batt}) so vorgegeben, dass er die Batterie 3 in einen Arbeitsbereich A überführt und in einem Frequenzbereich f anregt, in dem eines der Teilmodelle (z.B. Teilmodell 5) das die Schätzgröße enthält, besonders genau ist und somit die Schätzgröße sehr genau bestimmt werden kann. Dabei müssen natürlich der Abstand dieses neuen Arbeitsbereichs zum aktuellen Arbeitsbereich A der Batterie 3 und die maximal zulässigen Amplituden der Steuergrößen $U_{\text{Gen,soll}}$, tau_{Gen}, I_{Last} sowie die maximal erlaubte Dauer des Steuereingriffs berücksichtigt werden.

20

25

30

35

15

5

10

Die Arbeitsweise des Stimulators 16 von Fig. 1 ist beispielhaft in Fig. 4 dargestellt. Das Verfahren beginnt in Schritt 20 mit der Initialisierung der Zeiten t_p und t_{stim} auf die Werte $t_p = 0$, $t_{\text{stim}} = 0$. Dabei bezeichnet t_p eine Zeit, in der ein Parameter P überwacht wird, und t_{stim} eine Stimulationszeit.

In Schritt 22 wird überprüft, ob die Fehlervarianz var_p größer ist als eine maximale Fehlervarianz var_{p,max}. Falls Nein (N) bleibt der Stimulator 16 deaktiviert. Bleibt die Fehlervarianz var_p für eine Zeitdauer t_p größer t_{p,max} (Schritt 23) dagegen größer als var_{p,max}, wird ein dem Parameter P zugeordneter Stromverlauf I_{Batt,soll,p} eingeprägt (Schritt 24 und 26). Dies erfolgt so lange, bis die Varianz var_p des Parameters P kleiner oder gleich der maximalen Varianz var_{p,max} dieses Parameters P ist oder die Stimulationsdauer t_{stim} größer ist als eine vorgegebene maximale Dauer t_{stim,max}

(Überprüfung in Schritt 27). Die Variable t_{stim} für die Stimulationsdauer wird in Schritt 25 iterativ um jeweils eine Abtastperiode T_{Ab} erhöht.

5 Fig. 5 zeigt eine spezielle Ausgestaltung eines Zustandsgrößen- und Parameterschätzers 1 zur Bestimmung des ohmschen Innenwiderstandes Ri eines Bleiakkumulators 3. Der Innenwiderstand Ri der Batterie 3 ist eine entscheidende Größe bei der Bestimmung eines Batteriezustands, wie z.B. der Leistungsfähigkeit der Batterie 3 oder der noch entnehmbaren Ladung.

Der Zustandsgrößen- und Parameterschätzer 1 umfasst zwei mathematische Teilmodelle 4, 5, von denen das erste

15 Gültigkeit im gesamten Frequenzbereich hat und das zweite Teilmodell 5 nur bei Frequenzen größer gleich 1 kHz gültig ist. Entsprechend ist dem ersten Teilmodell 4 kein Filter und dem zweiten Teilmodell 5 ein Hochpassfilter 7 vorgeschaltet.

Das erste Teilmodell 4 umfasst eine mathematische Modellbeschreibung des Ersatzschaltbildes von Fig. 2a.

Dagegen umfasst das zweite Teilmodell 5 eine mathematische Beschreibung des Ersatzschaltbildes von Fig. 2b, das im wesentlichen nur aus dem Innenwiderstand Ri der Batterie 3

25 besteht. Beschränkt man sich nämlich auf einen Frequenzbereich in der Größenordnung von 1 kHz und betrachtet nur hochfrequente Wechselanteile von Strom IBatt und Spannung UBatt, so können die Kapazitäten des Ersatzschaltbildes von Fig. 2a als kurzgeschlossen betrachtet werden. Die einzig verbleibende Komponente ist in diesem Fall der Innenwiderstand Ri der Batterie.

Das erste Teilmodell 4 hat im folgenden Fall nur Gültigkeit für den Entladebetrieb, da sich der Innenwiderstand R_i der Batterie 3 im Ladebetrieb nur schwer aus den wenigen Messgrößen Strom I_{Batt} , Spannung U_{Batt} und Temperatur T_{Batt} abschätzen lässt.

Für das erste Teilmodell 4, dem die Schätzfehler U_{Batt} – $U_{Batt^{\circ}}$ bzw. U_{Batts} – $U_{Batts^{\circ}}$ zugeführt werden, gilt:

5 $R_{i,k+1} = R_{i,k} + k_{1i}$ ($U_{Batt} - U_{Batt^{*}}$) + k_{21} ($U_{Batt^{*}} - U_{Batt^{*}}$)

Für das zweite Teilmodell 5 gilt:

 $R_{i,k+1} = R_{i,k}$

10

Der vom ersten Teilmodell 4 berechnete Wert für den Innenwiderstand R_i der Batterie 3 wird dem zweiten Teilmodell 5 zugeführt und kann dort z.B. als Startwert verwendet werden. Die Gewichtungseinheiten für das zweite Teilmodell 5 mit den Gewichtungsfaktoren k₂₂ und k₁₂ können in diesem Fall entfallen. Die Gewichtungseinheiten 10,11 für die Fehlerrückkopplung in das Teilmodell 4 bleiben dagegen bestehen.

20 Es ist zu beachten, dass im Ladebetrieb der Gewichtungsfaktor k_{11} auf Null zu setzen ist, da das erste Teilmodell 4 im Ladebetrieb nicht gültig ist. Die Gewichtungsfaktoren k_{11} und k_{21} können z.B. über einen Beobachterentwurf nach Luenberger oder Kalman bestimmt werden.

PCT/DE2004/000144 WO 2004/068157

5 Bezugszeichenliste

	1	Zustandsgrößen- und Parameterschätzer				
	2	Ladungsprädiktor				
	3	Batterie				
10	4	erstes Teilmodell				
	5	zweites Teilmodell				
	6-9	Filter				
	10-13	Gewichtungseinheiten				
	14,15	Addierknoten				
-15	16	Stimulator				
	17,18	Addierknoten				
	20-27	Verfahrensschritte				
	30,31	Verbindungsleitungen				

5 Patentansprüche

- Verfahren zum Bestimmen von Zustandsgrößen und Parametern eines mathematischen Energiespeichermodells, insbesondere eines Batteriemodells, mit Hilfe eines Zustandsgrößen- und
 Parameterschätzers (1), der aus Betriebsgrößen (UBatt, IBatt, TBatt) eines Energiespeichers (3) die Zustandsgrößen (Z) und Parameter (P) des mathematischen Energiespeichermodells berechnet, dadurch gekennzeichnet, dass der Zustandsgrößenund Parameterschätzer (1) mehrere mathematische Teilmodelle
 (4, 5) umfasst, die für unterschiedliche Arbeits- und/oder Frequenzbereiche des Energiespeichers (3) gelten.
- Verfahren nach Anspruch 1,
 dadurch gekennzeichnet, dass den Teilmodellen (4, 5) ein
 Strom (I_{Batt}) oder eine Spannung (U_{Batt}) des Energiespeichers
 (3) zugeführt wird, wobei der Strom (I_{Batt}) oder die Spannung
 (U_{Batt}) durch ein Filter (6, 7) auf den für ein Teilmodell (4,
 5) gültigen Frequenzbereich eingeschränkt wird.
- 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein Fehler zwischen einer Betriebsgröße (U_{Batt}, I_{Batt}) des Energiespeichers und einer von einem Teilmodell (4, 5) berechneten Betriebsgröße (U_{Batt^}, I_{Batt^}) ermittelt und in das jeweilige Teilmodell (4, 5)
 30 zurückgekoppelt wird.
 - 4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Fehler zwischen einer Betriebsgröße (UBatt, IBatt) des Energiespeichers (3) und der von einem Teilmodell (4, 5) berechneten Betriebsgröße (UBatt^, IBatt^) in ein anderes Teilmodell (5) zurückgekoppelt wird.

- 5. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass der Fehler mittels eines Faktors (k) gewichtet wird.
- 6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine von einem Teilmodell (4, 5) berechnete Zustandsgröße (Z) und/oder ein berechneter Parameter (P) einem anderen Teilmodell (5) zugeführt wird.
- 7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Zustandsgrößen (Z) oder Parameter (P) gewichtet rückgekoppelt werden.
- Verfahren nach einem der vorhergehenden Ansprüche,
 dadurch gekennzeichnet, dass ein Stimulator (16) vorgesehen ist, um den Strom (I_{Batt}) oder die Spannung (U_{Batt}), der bzw. die den Teilmodellen (4, 5) zugeführt wird, in einen gewünschten Arbeitsbereich oder Frequenzbereich zu bringen.
- 9. Zustandsgrößen- und Parameterschätzer (1) zum Bestimmen von Zustandsgrößen (Z) und Parametern (P) eines mathematischen Energiespeichermodells, insbesondere eines Batteriemodells, der aus Betriebsgrößen (UBatt, IBatt, TBatt) eines Energiespeichers (3) die Zustandsgrößen (Z) und
- Parameter (P) des mathematischen Energiespeichermodells berechnet, dadurch gekennzeichnet, dass der Zustandsgrößenund Parameterschätzer (1) mehrere Teilmodelle (4, 5) umfasst, die für unterschiedliche Arbeits- und/oder Frequenzbereiche des Energiespeichers (3) gelten.
 - 10. Zustandsgrößen- und Parameterschätzer (1) nach Anspruch 9, dadurch gekennzeichnet, dass wenigstens einem der Teilmodelle (4, 5) ein Filter (6, 7) vorgeschaltet ist, um die dem Teilmodell (4, 5) zugeführte Betriebsgröße (UBatt,
- 35 I_{Batt}) des Energiespeichers (3) auf den für das Teilmodell (4, 5) gültigen Frequenzbereich einzuschränken.

- 11. Zustandsgrößen- und Parameterschätzer (1) nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass der Betriebsgrößen- und Parameterschätzer (1) derart gestaltet ist, dass ein Fehler zwischen einer Betriebsgröße (U_{Batt} , I_{Batt}) des
- 5 Energiespeichers (3) und einer von einem Teilmodell (4, 5) berechneten Betriebsgröße (UBatt, IBatt, ermittelt und in das jeweilige Teilmodell (4, 5) zurückgekoppelt wird.
- 12. Zustandsgrößen- und Parameterschätzer (1) nach einem der
 10 Ansprüche 9 bis 11, dadurch gekennzeichnet, dass der
 Betriebsgrößen- und Parameterschätzer (1) derart gestaltet
 ist, dass ein Fehler zwischen einer Betriebsgröße (UBatt,
 IBatt) des Energiespeichers (3) und einer von einem Teilmodell
 (4, 5) berechneten Betriebsgröße (UBatt, IBatt) in ein anderes
 15 Teilmodell (5) zurückgekoppelt wird.
 - 13. Zustandsgrößen- und Parameterschätzer nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, dass eine Einrichtung (10 13) zum Gewichten des rückgekoppelten Fehlers vorgesehen ist.

20

14. Zustandsgrößen- und Parameterschätzer (1) nach einem der Ansprüche 9 bis 13, dadurch gekennzeichnet, dass ein Stimulator (16) vorgesehen ist, um den Strom- oder
25 Spannungsverlauf (I_{Batt}, U_{Batt}), der den Teilmodellen (4, 5) zugeführt wird, in einen gewünschten Arbeits- oder Frequenzbereich zu bringen.

Fig. 2a

Fig. 2b

Fig. 3a

Fig. 36

Fig. 4

Fig. 5

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 G01R31/36 H020 H02J7/00 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) G01R H02J Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category ° Citation of document, with indication, where appropriate, of the relevant passages Relevant to dalm No. WO 02/41014 A (BOSCH GMBH ROBERT; SCHOCH 1.3 - 9.X EBERHARD (DE)) 23 May 2002 (2002-05-23) 11-14 page 3, column 23 - page 7, column 27; claims 1-7; figures 1,2 Y 2,10 WO 03/005052 A (BOSCH GMBH ROBERT; SCHOCH X 1,3-9, EBERHARD (DE)) 11-14 16 January 2003 (2003-01-16) Seite 5, dritter Absatz bis Seite 13, letzter Absatz, Ansprüche 1 bis 12 Υ WO 01/42799 A (BOSCH GMBH ROBERT 2,10 SCHOETTLE RICHARD (DE); SCHOCH EBERHARD (DE); SARF) 14 June 2001 (2001-06-14) abstract; claim 1 Further documents are listed in the continuation of box C. Patent family members are listed in annex. o Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention 'E' earlier document but published on or after the International "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the cialmed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-'O' document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled in the art. other means *P" document published prior to the international filing date but later than the priority date claimed *8° document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 25/06/2004 14 June 2004 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Bronold, H

INTERNATIONAL SEARCH REPORT

In ational Application No
PCT/DE2004/000144

		PC1/DE2004/000144		
	etion) DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.		
Category °	Citation of document, with Indication, where appropriate, of the relevant passages	Pleibydilt to diesin 140.		
Α	EP 1 271 170 A (BOSCH GMBH ROBERT) 2 January 2003 (2003-01-02) abstract; claims 16,17	1-14		
A	US 2001/009370 A1 (MEISSNER EBERHARD ET AL) 26 July 2001 (2001-07-26) abstract; claims 1-3	1-14		
A	BAERT D ET AL: "Lead-acid battery model for the derivation of Peukert's law" ELECTROCHIMICA ACTA, ELSEVIER SCIENCE PUBLISHERS, BARKING, GB, vol. 44, no. 20, 1 June 1999 (1999-06-01), pages 3491-3504, XP004168624 ISSN: 0013-4686 the whole document	1-14		
A	SHEN W X ET AL: "Estimation of battery available capacity under variable discharge currents" JOURNAL OF POWER SOURCES, ELSEVIER SEQUOIA S.A. LAUSANNE, CH, vol. 103, no. 2, 1 January 2002 (2002-01-01), pages 180-187, XP004312742 ISSN: 0378-7753 the whole document	1-14		

INTERNATIONAL SEARCH REPORT

Information on patent family members

Internal Application No PCT/DE2004/000144

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
WO 0241014 A	23-05-2002	DE WO EP US	10056969 A1 0241014 A2 1266237 A2 2003052690 A1	23-05-2002 23-05-2002 18-12-2002 20-03-2003
WO 03005052 A	16-01-2003	DE WO EP US	10203810 A1 03005052 A1 1417503 A1 2004032264 A1	16-01-2003 16-01-2003 12-05-2004 19-02-2004
WO 0142799 A	14-06-2001	DE WO EP JP US	19959019 A1 0142799 A1 1163532 A1 2003516618 T 6668233 B1	13-06-2001 14-06-2001 19-12-2001 13-05-2003 23-12-2003
EP 1271170 A	02-01-2003	DE EP	10131765 A1 1271170 A2	09-01-2003 02-01-2003
US 2001009370 A:	26-07-2001	DE EP	10002473 A1 1120663 A2	26-07-2001 01-08-2001

INTERNATIONALER RECHERCHENBERICHT

Internales Aktenzeichen
PCT/DE2004/000144

a. Klassifizierung des anmeldungsgegenstandes IPK 7 G01R31/36 H02J7/00

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchlerter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) $IPK \ 7 \ G01R \ H02J$

Recherchterte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchlerten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendele Suchbegriffe)

Kategorie®	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.	
Х	WO 02/41014 A (BOSCH GMBH ROBERT; SCHOCH EBERHARD (DE)) 23. Mai 2002 (2002-05-23) Seite 3, Spalte 23 - Seite 7, Spalte 27;	1,3-9, 11-14	
Y	Ansprüche 1-7; Abbildungen 1,2	2,10	
X	WO 03/005052 A (BOSCH GMBH ROBERT; SCHOCH EBERHARD (DE)) 16. Januar 2003 (2003-01-16) Seite 5, dritter Absatz bis Seite 13, letzter Absatz, Ansprüche 1 bis 12	1,3-9, 11-14	
Υ	WO 01/42799 A (BOSCH GMBH ROBERT; SCHOETTLE RICHARD (DE); SCHOCH EBERHARD (DE); SARF) 14. Juni 2001 (2001-06-14) Zusammenfassung; Anspruch 1	2,10	

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen	X Siehe Anhang Patentfamilie
Besondere Kategorien von angegebenen Veröffentlichungen: A' Veröffentlichung, die den aligemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist E' älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeidedatum veröffentlicht worden ist	*T* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondem nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der Ihr zugrundeliegenden Theorie angegeben ist *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf
 "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erschelnen zu lassen, oder durch die des Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung beiegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem Internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist 	erfinderischer Tätigkeit beruhend betrachtet werden
Datum des Abschlusses der Internationalen Recherche 14. Juni 2004	Absendedatum des internationalen Recherchenberichts 25/06/2004
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentiaan 2 NL ~ 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Bevoltmächtigter Bedlensteter Bronold, H

INTERNATIONALER RECHERCHENBERICHT

		PC1/DE2004/000144
C.(Fortsetz	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN	
Kategorie°	Bezelchnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komm	enden Teile Betr. Anspruch Nr.
A	EP 1 271 170 A (BOSCH GMBH ROBERT) 2. Januar 2003 (2003-01-02) Zusammenfassung; Ansprüche 16,17	1-14
A	US 2001/009370 A1 (MEISSNER EBERHARD ET AL) 26. Juli 2001 (2001-07-26) Zusammenfassung; Ansprüche 1-3	1–14
Α	BAERT D ET AL: "Lead-acid battery model for the derivation of Peukert's law" ELECTROCHIMICA ACTA, ELSEVIER SCIENCE PUBLISHERS, BARKING, GB, Bd. 44, Nr. 20, 1. Juni 1999 (1999-06-01), Seiten 3491-3504, XP004168624 ISSN: 0013-4686 das ganze Dokument	1-14
A	SHEN W X ET AL: "Estimation of battery available capacity under variable discharge currents" JOURNAL OF POWER SOURCES, ELSEVIER SEQUOIA S.A. LAUSANNE, CH, Bd. 103, Nr. 2, 1. Januar 2002 (2002-01-01), Seiten 180-187, XP004312742 ISSN: 0378-7753 das ganze Dokument	1-14

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichengen, die zur selben Patentfamilie gehören

In atlantales Aktenzeichen
PCT/DE2004/000144

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung	Mitglied(er) der . Patentfamilie		Datum der Veröffentlichung
WO 0241014	A	23-05-2002	DE WO EP US	10056969 A1 0241014 A2 1266237 A2 2003052690 A1	23-05-2002 23-05-2002 18-12-2002 20-03-2003
WO 03005052	A	16-01-2003	DE WO EP US	10203810 A1 03005052 A1 1417503 A1 2004032264 A1	16-01-2003 16-01-2003 12-05-2004 19-02-2004
WO 0142799	A	14-06-2001	DE WO EP JP US	19959019 A1 0142799 A1 1163532 A1 2003516618 T 6668233 B1	13-06-2001 14-06-2001 19-12-2001 13-05-2003 23-12-2003
EP 1271170	Α	02-01-2003	DE EP	10131765 A1 1271170 A2	09-01-2003 02-01-2003
US 2001009370	A1	26-07-2001	DE EP	10002473 A1 1120663 A2	26-07-2001 01-08-2001