

Capturing Change Data From Delta Lake

Paul Roome and Denny Lee

Who are we?

- Senior Solution Architect Databricks
- Previously:
 - ML driven data unification @ Tamr
 - Fighting fraud & organized crime with graph analytics @ NetReveal
- Masters in Pure Mathematics Edinburgh

Who are we?

- Developer Advocate Databricks
- Working with Apache Spark[™] since v0.6
- Former Senior Director Data Science Engineering at Concur
- Former Microsoftie: Cosmos DB, HDInsight (Isotope)
- Masters Biomedical Informatics OHSU
- BS in Physiology McGill

Outline

- Motivation
- Pattern 1: Bronze-silver-gold propagation
- Pattern 2: What about updates?
- Pattern 3: Can we do better?
- Summary
- Questions

Motivation

Evolution of the Data Lake

The 'S Curve of Innovation'

Evolution of the Data Lake

The 'S Curve of Innovation'

Evolution of the Data Lake The 'S Curve of Innovation'

Downstream Propagation

Upstream Downstream

Pattern 1:

Bronze-Silver-Gold propagation

The ADELTA LAKE Architecture

Delta Lake allows you to *incrementally* improve the quality of your data until it is ready for consumption.

Pattern 1a

Example: Propagation from Bronze to Silver Layer of your Delta Lake

Key Assumption: Bronze table is append only

Reading Delta table as a Stream

- >> Can read Delta table as a stream!
- >> This is a scalable and commonly used pattern!

Writing Delta table as a Stream

>> Use of checkpoint ensures we are reading only new data in each batch

Pattern 1b

Example: Propagation from Bronze to Silver Layer of your Delta Lake, with deduplication against the sink

Key Assumption: Bronze table is append only

Writing and Deduplicating

>> Can call a function within **foreachBatch** to perform dedupe

Deduplicating within foreachbatch

```
def deduplicateInsert(microBatch: DataFrame,
batchId: Long) {
  silverDelta
  .as("silver")
    .merge(
    microBatch.as("newBronzeData"),
    "silver.last = newBronzeData.last")
  .whenNotMatched()
  .insertAll()
  .execute()
```


Pattern 2: What about updates?

Pattern 2

Example: Propagating data from a Delta table that **has updates** applied to it

Key Assumption: Deletes don't need to be propagated

Pattern 2 - Feature Store Example

Reading change stream from Delta table

- >> Setting ignoreChanges to true will emit all rewritten files in
 the Delta table to the stream
 - >> This will be a superset of actually changed records
 - >> Deletes will not be captured

Reading change stream from Delta table

UPDATE feature store SET name="xxxx" WHERE customer id=101

Pattern 3: Can we do better?

Pattern 3a

Example: Achieving a record-level change stream

>> The simple case: Re-purpose pattern 1!

Example: Achieving a record-level change stream

Example: Achieving a record-level change stream

For simplicity in this example, we are going to assume only updates. Can easily be extended.

Assemble change stream

```
val changeStream = spark.readStream.
                       format("delta").
                       option("ignoreChanges", "true")
                        .load("/mnt/databricks-paul/change-log/")
val changeStreamFullRecords = changeStream.join(mainTable, Seq("id"), "inner")
                         to date data
```



```
def upsertToDeltaCaptureCDC(microBatchOutputDF: DataFrame, batchId: Long) {
    val batchDF = microBatchOutputDF.withColumn("batchId", lit(batchId))
                                      .dropDuplicates(Seq("id","batchId"))
    ...to be continued
```



```
def upsertToDeltaCaptureCDC(microBatchOutputDF: DataFrame, batchId: Long) {
    ...continued
    // Write 1: Merge into the main table and perform update
    mainDelta.as("m")
     .merge(
       batchDF.as("b"),
       "m.id = b.id")
     .whenMatched().updateExpr(Map(
       "some string" -> "b.some string"))
     .execute()
    ...tbc
```



```
def upsertToDeltaCaptureCDC(microBatchOutputDF: DataFrame, batchId: Long) {
...continued
  // Write 2: Insert records into the change log table
  changeLog.as("c")
    .merge(
     batchDF.as("b"),
      "c.id = b.id AND c.batchId = b.batchId")
    .whenNotMatched().insertExpr(Map(
     "id" -> "b.id",
     "batchId" -> "b.batchId"))
    .execute()
```


Example: Achieving a record-level change stream

Assemble change stream

```
val changeStream = spark.readStream.
                       format("delta").
                       option("ignoreChanges", "true")
                        .load("/mnt/databricks-paul/change-log/")
val changeStreamFullRecords = changeStream.join(mainTable, Seq("id"), "inner")
                         to date data
```


main-delta 📣

Join

Apply updates, inserts, deletes **Source**

Write as inserts

Ia	some_string	type
0	oranges	update
2	oranges	update
10		delete

Can use this pattern to deal with **deletes**...

	CDC		
	Con	Consumer	
id	some_	some_	

id	some_ string	some_ other_s tring	change_ type
0	oranges	cake	update
2	oranges	cake	update
10			delete

id	batch_id	change_ type
0	0	update
2	0	update
10	0	delete

Summary

Summary

We've looked at 3 patterns of reading change streams from Delta Tables:

- Append only pipelines commonly used for bronze silver gold propagation
- 2. **Update pipelines** <u>ignoreChanges</u> == 'the easy button' when file level changes are acceptable
- 3. Change log tables for capturing record level change streams

Thank You

"Do you have any questions for my prepared answers?" – Henry Kissinger

