

## IEE352 - Procesamiento Digital de Señales

# Clase 11: Filtro Wiener

Dr. Marco A. Milla Sección Electricidad y Electrónica (SEE) Pontificia Universidad Católica del Perú (PUCP)

email: milla.ma@pucp.edu.pe

# Filtro Wiener

## Definición

Diseñar un filtro W(z) que permita recuperar una señal d[n] a partir de una señal observada x[n] = d[n] + v[n]. d[n]



• Error cuadrático medio:

$$\xi = E\{ |e[n]|^2 \},$$

donde la señal de error es la diferencia entre el valor real y el estimado

$$e[n] = d[n] - \hat{d}[n].$$

# Filtro Wiener

## Forma geométrica de los errores medios.

Error cuadrático medio  $\epsilon = E\{ |e[n]|^2 \}$ 

Error absoluto medio  $\epsilon = E\{ |e[n]| \}$ 

Error umbral medio  $\epsilon = E\{u[|e[n]| - k]\}$ 



## Filtro Wiener

## **Aplicaciones**

Los filtros Wiener pueden ser utilizados para las siguientes aplicaciones.

- **Filtrado:** Dada una señal observada x[n] = d[n] + v[n], el objetivo es estimar d[n] usando un filtro causal (estimar d[n] a partir de valores actuales y pasados de x[n]).
- Suavizado: Similar al filtrado, excepto que el filtro Wiener puede ser no causal y puede ser diseñado para estimar d[n] a partir de todos los datos disponibles de x[n].
- **Predicción:** Si d[n] = x[n+1] y W(z) es un filtro causal, entonces el filtro Wiener se convierte en un predictor lineal, el cual produce una estimación de x[n+1] (predicción) considerando valores pasados de x[n].
- **Deconvolución:** Dado x[n] = h[n] \* d[n] + v[n], donde h[n] es la respuesta impulsiva de un filtro LTI, el filtro Wiener se convierte en un filtro de deconvolución.

## Planteamiento teórico

Dado el esquema general de Filtros Wiener, consideramos que W(z) es de tipo FIR.



- Se asume que x[n] (señal observada) y d[n] (señal deseada) son procesos aleatorios estacionarios en sentido amplio (WSS).
- . Señal estimada:  $\hat{d}[n] = w[n] * x[n] = \sum_{k=0}^{M-1} w[k]x[n-k]$
- Señal de error:  $e[n] = d[n] \hat{d}[n]$

## Planteamiento teórico

El problema de diseño del filtro Wiener consiste en encontrar los coeficientes del filtro, w[k], que minimizan el error cuadrático medio

$$\xi = E\{ |e[n]|^2 \} = E\{ |d[n] - \hat{d}[n]|^2 \}.$$

Para encontrar el conjunto de coeficientes del filtro W(z) que minimice  $\xi$ , es necesario y suficiente igualar a cero la primera derivada de  $\xi$  con respecto a cada uno de los coeficientes w[k], es decir,

$$\frac{\partial \xi}{\partial w[k]} = 0, \qquad k = 0, 1, \dots, M - 1.$$

## Planteamiento teórico

Dado que el error cuadrático medio es una función convexa, minimizar  $\xi = E\{ |e[n]|^2 \}$  equivale a igualar a cero la gradiente de  $\xi$  con respecto a los coeficientes del filtro W(z).

$$\min\{E\{e[n]^{2}\}\} \iff \begin{bmatrix} \frac{\partial \xi}{\partial w[0]} \\ \frac{\partial \xi}{\partial w[1]} \\ \vdots \\ \frac{\partial \xi}{\partial w[M-1]} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$



### Planteamiento teórico

Calculando 
$$\frac{\partial \xi}{\partial w[k]} = 0$$
, para  $k = 0, 1, ..., M-1$ , tenemos que,

$$\frac{\partial \xi}{\partial w[k]} = \frac{\partial}{\partial w[k]} E\left\{ \left( d[n] - \sum_{l=0}^{M-1} w[l] x[n-l] \right)^2 \right\} = E\left\{ \frac{\partial}{\partial w[k]} \left( d[n] - \sum_{l=0}^{M-1} w[l] x[n-l] \right)^2 \right\}$$
$$= -2E\left\{ \left( d[n] - \sum_{l=0}^{M-1} w[l] x[n-l] \right) x[n-k] \right\} = 0,$$

Luego, agrupando los valores esperados, podemos encontrar que,

$$\underbrace{E\{d[n]x[n-k]\}}_{r_{dx}[k]} - \sum_{l=0}^{M-1} w[l]E\{x[n-k]x[n-l]\} = 0.$$

## **Ecuaciones Wiener-Hopf**



Ecuaciones Wiener-Hopf

$$\sum_{l=0}^{M-1} w[l] r_x[k-l] = r_{dx}[k], \qquad k = 0, 1, ..., M-1.$$

Matricialmente tenemos

$$\begin{bmatrix}
r_{x}[0] & r_{x}[1] & \cdots & r_{x}[M-1] \\
r_{x}[1] & r_{x}[0] & \cdots & r_{x}[M-2] \\
\vdots & \vdots & \ddots & \vdots \\
r_{x}[M-1] & r_{x}[M-2] & \cdots & r_{x}[0]
\end{bmatrix}
\begin{bmatrix}
w[0] \\
w[1] \\
\vdots \\
w[M-1]
\end{bmatrix} = \begin{bmatrix}
r_{dx}[0] \\
r_{dx}[1] \\
\vdots \\
r_{dx}[M-1]
\end{bmatrix}$$

en consecuencia,

$$\mathbf{R}_{x}\bar{\mathbf{w}}=\bar{\mathbf{r}}_{dx} \implies \bar{\mathbf{w}}_{\mathrm{opt}}=\mathbf{R}_{x}^{-1}\bar{\mathbf{r}}_{dx}$$
.

## Error cuadrático medio mínimo

• El error medio cuadrático se puede expresar de la siguiente forma

$$\xi = E\{ |e[n]|^2 \} = E\left\{ e[n] \left( d[n] - \sum_{l=0}^{M-1} w[l] x[n-l] \right) \right\}$$
$$= E\{ e[n] d[n] \} - \sum_{l=0}^{M-1} w[l] E\{ e[n] x[n-l] \}.$$

• Evaluando  $\xi$  para el filtro óptimo Wienner  $\bar{\mathbf{w}}_{\mathrm{opt}} = \mathbf{R}_{\mathbf{x}}^{-1} \bar{\mathbf{r}}_{\mathbf{dx}}$  tenemos que  $E\{e[n]x[n-l]\} = 0$ , lo cual viene a partir de tomar la derivada con respecto a los coeficientes del filtro. Luego el error mínimo está dado por

$$\xi_{\min} = E\{e[n]d[n]\} = E\left\{ \left( d[n] - \sum_{l=0}^{M-1} w_{\text{opt}}[l] x[n-l] \right) d[n] \right\}$$

$$\implies \xi_{\min} = r_d[0] - \sum_{l=0}^{M-1} w_{\text{opt}}[l] r_{dx}[l] = r_d[0] - \bar{\mathbf{r}}_{dx}^T \mathbf{R}_x^{-1} \bar{\mathbf{r}}_{dx}.$$

## Algoritmo

Objetivo: Implementar un filtro FIR basado en las ecuaciones de Wiener-Hopf.

#### **Problema frecuente:**

- En la mayoría de aplicaciones de procesamiento de señales, no se dispone de todo el conjunto de señales (posibles ensayos) que definen un proceso aleatorio.
- El cálculo estadístico de la autocorrelación  $r_x[k]$  y de la correlación cruzada  $r_{dx}[k]$  no puede ser realizado directamente.

#### Solución:

Se puede considerar como métrica alternativa para un proceso WSS las correlaciones temporales

$$\hat{r}_{x}[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n]x[n-k],$$

$$\hat{r}_{dx}[k] = \frac{1}{N} \sum_{n=0}^{N-1} d[n]x[n-k].$$

# Aplicaciones de Filtros Wiener FIR

Algunos casos particulares de Filtros Wiener FIR son los siguientes,

- Filtrado de ruido descorrelacionado
- Predictor lineal
- Cancelación de ruido
- Identificación de sistemas

En este caso una señal d[n] puede ser recuperada a partir de una observación con ruido d[n]

Asumiendo que el ruido v[n] tiene media cero y que no está correlacionado con respecto a d[n], en base a los resultados anteriores para el filtro Wiener FIR, vamos a calcular las siguientes correlaciones

$$r_x[k] = E\{x[n]x[n-k]\},$$
  
 $r_{dx}[k] = E\{d[n]x[n-k]\}.$ 

- Calculando  $r_x[k] = E\{x[n]x[n-k]\},$   $r_x[k] = E\{(d[n] + v[n])(d[n-k] + v[n-k])\}$   $= E\{d[n]d[n-k]\} + E\{v[n]d[n-k]\} + E\{d[n]v[n-k]\} + E\{v[n]v[n-k])\}$   $= E\{d[n]d[n-k]\} + E\{v[n]v[n-k])\}$  entonces  $r_x[k] = r_d[k] + r_v[k]$ .
- Calculando  $r_{dx}[k]=E\{d[n]x[n-k]\},$   $r_{dx}[k]=E\{d[n](d[n-k]+v[n-k])\}$   $=E\{d[n]d[n-k]\}+\underline{E\{d[n]v[n-k])}\}=r_d[k]$  entonces  $r_{dx}[k]=r_d[k]$  .

Entonces tenemos que  $\mathbf{R}_x = \mathbf{R}_d + \mathbf{R}_v$  y además  $\bar{\mathbf{r}}_{dx} = \bar{\mathbf{r}}_d$ 

Luego la nueva expresión para los filtros óptimos sería

$$\left[\mathbf{R}_d + \mathbf{R}_v\right] \bar{\mathbf{w}} = \bar{\mathbf{r}}_d \,,$$

entonces

$$\bar{\mathbf{w}}_{\text{opt}} = (\mathbf{R}_d + \mathbf{R}_v)^{-1} \,\bar{\mathbf{r}}_d \,.$$

Ejemplo: Sea un proceso AR d[n] cuya autocorrelación está dada por

$$r_d[k] = \alpha^{|k|} .$$

Suponiendo que la señal observada presenta un ruido blanco v[n] el cual está descorrelacionado de d[n] y tiene una varianza  $\sigma_v^2$  ,

$$x[n] = d[n] + v[n],$$

diseñar un filtro Wiener FIR de primer orden que reduzca el ruido en x[n] tal que  $W(z) = w[0] + w[1]z^{-1}$ .

Solución: Utilizando las ecuaciones Wiener-Hopf, tenemos que

$$\begin{bmatrix} r_x[0] & r_x[1] \\ r_x[1] & r_x[0] \end{bmatrix} \begin{bmatrix} w[0] \\ w[1] \end{bmatrix} = \begin{bmatrix} r_{dx}[0] \\ r_{dx}[1] \end{bmatrix}$$

• En este caso particular esta ecuación se puede expresar de al siguiente forma

$$\begin{pmatrix} \begin{bmatrix} r_d[0] & r_d[1] \\ r_d[1] & r_d[0] \end{bmatrix} + \begin{bmatrix} r_v[0] & r_v[1] \\ r_v[1] & r_v[0] \end{bmatrix} \end{pmatrix} \begin{bmatrix} w[0] \\ w[1] \end{bmatrix} = \begin{bmatrix} r_d[0] \\ r_d[1] \end{bmatrix}$$

$$\begin{pmatrix} \begin{bmatrix} 1 & \alpha \\ \alpha & 1 \end{bmatrix} + \begin{bmatrix} \sigma_v^2 & 0 \\ 0 & \sigma_v^2 \end{bmatrix} \end{pmatrix} \begin{bmatrix} w[0] \\ w[1] \end{bmatrix} = \begin{bmatrix} 1 \\ \alpha \end{bmatrix} \implies \begin{bmatrix} 1 + \sigma_v^2 & \alpha \\ \alpha & 1 + \sigma_v^2 \end{bmatrix} \begin{bmatrix} w[0] \\ w[1] \end{bmatrix} = \begin{bmatrix} 1 \\ \alpha \end{bmatrix}$$

Resolviendo el sistema ecuaciones tenemos que

$$w[0] = \frac{1 + \sigma_v^2 - \alpha^2}{(1 + \sigma_v^2)^2 - \alpha^2} \quad \text{y} \quad w[1] = \frac{\alpha \sigma_v^2}{(1 + \sigma_v^2)^2 - \alpha^2}.$$



Dada la señal observada x[n] (un proceso aleatorio), la predicción lineal consiste en la estimación de x[n+1] a partir de una combinación lineal de valores pasados y presentes de x[n], un predictor lineal tiene la siguiente forma

$$\hat{d}[n] = \hat{x}[n+1] = \sum_{k=0}^{M-1} w[k]x[n-k].$$

Si definimos d[n] = x[n+1], entonces, el problema de predictor lineal se convierte en un problema de filtrado. Para reconfigurar las ecuaciones básicas solo es necesario evaluar la correlación cruzada entre d[n] y x[n] tal que

$$r_{dx}[k] = E\{d[n]x[n-k]\} = E\{x[n+1]x[n-k]\} = r_x[k+1].$$

Expresión matricial correspondiente al predictor lineal, donde  $r_{dx}[k] = r_x[k+1]$ 

$$\begin{bmatrix}
r_{x}[0] & r_{x}[1] & \cdots & r_{x}[M-1] \\
r_{x}[1] & r_{x}[0] & \cdots & r_{x}[M-2] \\
\vdots & \vdots & \ddots & \vdots \\
r_{x}[M-1] & r_{x}[M-2] & \cdots & r_{x}[0]
\end{bmatrix}
\begin{bmatrix}
w[0] \\
w[1] \\
\vdots \\
w[M-1]
\end{bmatrix} = \begin{bmatrix}
r_{x}[1] \\
r_{x}[2] \\
\vdots \\
r_{x}[M]
\end{bmatrix}$$

$$\bar{\mathbf{r}}_{dx}$$

## **Ejemplo**

Dado un proceso autorregresivo de segundo orden AR(2), cuya ecuación de diferencia está dada por

$$x[n] = 1.2728 x[n-1] - 0.81 x[n-2] + v[n],$$

donde v[n] es ruido blanco gaussiano con varianza igual a uno. Queremos encontrar el predictor lineal

$$\hat{d}[n] = \hat{x}[n+1] = w_0 x[n] + w_1 x[n-1].$$

Para encontrar los coeficientes del filtro, debemos resolver el siguiente sistema de ecuaciones.

$$\begin{bmatrix} r_{x}[0] & r_{x}[1] \\ r_{x}[1] & r_{x}[0] \end{bmatrix} \begin{bmatrix} w[0] \\ w[1] \end{bmatrix} = \begin{bmatrix} r_{x}[1] \\ r_{x}[2] \end{bmatrix}.$$

## **Ejemplo**

Para resolver el sistema de ecuaciones anterior debemos primer encontrar las correlaciones  $r_x[0]$ ,  $r_x[1]$  y  $r_x[2]$ . Para encontrar estos valores podemos utilizar las ecuaciones Yule-Walker,

$$\begin{bmatrix} 1 & -1.2728 & +0.81 \\ -1.2728 & 1.81 & 0 \\ +0.81 & -1.2728 & 1 \end{bmatrix} \begin{bmatrix} r_x[0] \\ r_x[1] \\ r_x[2] \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \Longrightarrow \begin{bmatrix} r_x[0] \\ r_x[1] \\ r_x[2] \end{bmatrix} = \begin{bmatrix} 5.7523 \\ 4.0450 \\ 0.4891 \end{bmatrix}.$$

Reemplazando estos valores en las ecuaciones de Wiener-Hopf, tenemos que

$$\begin{bmatrix} 5.7523 & 4.0450 \\ 4.0450 & 5.7523 \end{bmatrix} \begin{bmatrix} w[0] \\ w[1] \end{bmatrix} = \begin{bmatrix} 4.0450 \\ 0.4891 \end{bmatrix},$$

luego, resolviendo el sistema de ecuaciones encontramos que

$$w[0] = 1.2728$$
 y  $w[1] = -0.81$ 

finalmente, el filtro predictor se puede expresar de la siguiente forma

$$\hat{x}[n+1] = 1.2728 x[n] - 0.81 x[n-1].$$

El objetivo de un cancelador de ruido es estimar d[n] a partir de una señal observada con ruido (obtenida a partir de un sensor  $S_1$ ),

$$x[n] = d[n] + v_1[n]$$
.



En el problema de filtrado se requiere conocer la autocorrelación del ruido en x[n]. En el caso del cancelador de ruido, la información estadística se obtiene a partir de un segundo sensor.



Las ecuaciones Wiener-Hopf correspondientes serían

$$\mathbf{R}_{v_2}\bar{\mathbf{w}} = \bar{\mathbf{r}}_{xv_2} \implies \bar{\mathbf{w}} = \mathbf{R}_{v_2}^{-1}\,\bar{\mathbf{r}}_{xv_2}$$

La expresión matricial correspondiente es la siguiente,

$$\begin{bmatrix}
r_{v_2}[0] & r_{v_2}[1] & \cdots & r_{v_2}[M-1] \\
r_{v_2}[1] & r_{v_2}[0] & \cdots & r_{v_2}[M-2] \\
\vdots & \vdots & \ddots & \vdots \\
r_{v_2}[M-1] & r_{v_2}[M-2] & \cdots & r_{v_2}[0]
\end{bmatrix}
\underbrace{\begin{bmatrix}
w[0] \\
w[1] \\
\vdots \\
w[M-1]
\end{bmatrix}}_{\bar{\mathbf{w}}} = \underbrace{\begin{bmatrix}
r_{xv_2}[0] \\
r_{xv_2}[1] \\
\vdots \\
r_{xv_2}[M-1]
\end{bmatrix}}_{\bar{\mathbf{r}}}$$

## Ejemplo

Consideremos que la señal deseada d[n] es una sinusoidal de la forma

$$d[n] = \sin(\omega_o n + \phi)$$

y que la secuencia de ruido  $v_1[n]$  y  $v_2[n]$  son procesos autoregresivos AR(1) cuyas ecuaciones de diferencias son

$$v_1[n] = 0.8 v_1[n-1] + g[n] \implies H_1(z) = \frac{1}{1 - 0.8 z^{-1}}$$

$$v_2[n] = -0.6 v_2[n-1] + g[n] \implies H_2(z) = \frac{1}{1 + 0.6 z^{-1}}$$

donde g[n] es ruido blanco gaussiano con varianza igual a uno.



$$V_{1}(z) = H_{1}(z)G(z) = \frac{G(z)}{1 - 0.8 z^{-1}}$$

$$\hat{V}_{1}(z) = W(z)V_{2}(z)$$

$$\hat{V}_{1}(z) = [H_{1}(z)H_{2}^{-1}(z)]V_{2}(z)$$

$$\hat{V}_{1}(z) = [H_{1}(z)H_{2}^{-1}(z)]H_{2}(z)G(z)$$

$$\hat{V}_{1}(z) = [H_{1}(z)H_{2}^{-1}(z)]H_{2}(z)G(z)$$

# Identificador de Sistemas

## Esquema



# Muchas gracias!