Discrete Maths : 1 Workshop Unit 1 : Sets Sample Solutions

SCC120 Fundamentals of Computer Science

Exercise/Answer 1

- a) {1, 3, 5} and {5,3,1} are equal. Remember, sets are unordered. Both sets contain the same number of elements, and the same elements.
- b) {1,3,5} and {5,1,6} are not equal. Both sets do have the same number of elements, but not the same elements.

Exercise 2

Let $A = \{1, 2, 3, 4, 5\}$ and $B = \{0, 3, 6\}$. Find

- a) A ∩ B
- b) A ∪ B
- c) A B
- d) B A

Answer 2 (a)

• a) $A \cap B = \{3\}$

Answer 2(b)

• b) $A \cup B = \{0, 1, 2, 3, 4, 5, 6\}$

Answer 2 (c)

• c) $A - B = \{1, 2, 4, 5\}$

Answer 2 (d)

• d) $B - A = \{0, 6\}$

Exercise 3 Let $A = \{0, 2, 4, 6, 8, 10\}, B = \{0, 1, 2, 3, 4, 10\}$ 5, 6} and $C = \{4, 5, 6, 7, 8, 9, 10\}$. Find a)A \cap B \cap C b)A \cup B \cup C c)(A \cup B) \cap C $d)(A \cap B) \cup C$ $U = \{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 \}$ $A=\{\quad 0,$ 8. 10 2, 4, 6, $B = \{ 0, 1, 2, 3, 4, 5, 6,$ C = { 4, 5, 6, 7, 8, 9, 10 }

Answer 3 (a)

• a) $A \cap B \cap C = \{4, 6\}$

Answer 3 (b)

10

12

• b) $A \cup B \cup C = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

Answer 3 (c)

• c) $(A \cup B) \cap C = \{4, 5, 6, 8, 10\}$

```
U = \{ \quad 0, \quad 1, \quad 2, \quad 3, \quad 4, \quad 5, \quad 6, \quad 7, \quad 8, \quad 9, \quad 10 \quad \}
          A = { 0,
                                          4,
                              2,
                                                     6,
                                                               8,
          B = \{ \quad 0, \quad 1, \quad 2, \quad 3, \quad 4, \quad 5, \quad 6, \quad
  (A \cup B) = \{ 0, 1, 2, 3, 4, 5, 6, 
                                                          8,
                                                                         10 }
          C = {
                                         4, 5, 6, 7, 8, 9, 10 }
(A \cup B) \cap C = \{
                                                          8,
                                                                        10 }
                                          4, 5, 6,
```

Answer 3 (d)

• d) $(A \cap B) \cup C = \{0, 2, 4, 5, 6, 7, 8, 9, 10\}$

```
U = \{ \quad 0, \quad 1, \quad 2, \quad 3, \quad 4, \quad 5, \quad 6, \quad 7, \quad 8, \quad 9, \quad 10 \quad \}
                             2,
                                        4,
                                                   6,
                                                             8,
                                                                       10 }
          A = \{ 0,
         B = \{ \quad 0, \quad 1, \quad 2, \quad 3, \quad 4, \quad 5, \quad 6, \quad
                                                                           }
(A \cap B) = \{ 0,
                             2,
                                       4, 6
                                                                           }
         C = {
                                        4, 5, 6, 7, 8, 9, 10 }
(A \cap B) \cup C = \{ 0,
                             2,
                                        4, 5, 6, 7, 8, 9, 10 }
```

Exercise 4

if $A = \{a, b, c, y\}$, $B = \{a, b, c, d, e\}$, $C = \{x, y\}$ evaluate:

- a) $A \cup (B \cap C)$
- b) $(A \cup B) \cap C$
- c) C-A
- d) (A-B)-C
- e) A (B C)
- f) $(A \cap C) \cup B$
- g) $A \cap (C \cup B)$

Answer 4(a)

- (a) $A \cup (B \cap C) = A$
- (B \cap C) is the empty set.

Answer 4(b)

• b) $(A \cup B) \cap C = \{y\}$

$$U = \{ a, b, c, d, e, x, y \}$$

$$A = \{ a, b, c, y \}$$

$$B = \{ a, b, c, d, e \}$$

$$(A \cup B) = \{ a, b, c, d, e, y \}$$

Answer 4 (c)

• c) $C - A = \{x\}$

Answer 4 (d)

• d) $(A - B) - C = \emptyset$

$$(A - B) = \{$$
 y }
 $C = \{$ x, y }
 $(A - B) - C = \{$

Answer 4 (e)

• e) $A - (B - C) = \{y\}$

• Note that (B - C) = B.

$$A = \{ a, b, c, y \}$$

$$(B-C) = \{ a, b, c, d, e \}$$

$$A-(B-C) = \{ y \}$$

Answer 4(f)

• f) $(A \cap C) \cup B = \{a, b, c, d, e, y\}$

$$U = \{ a, b, c, d, e, x, y \}$$

$$A = \{ a, b, c, y \}$$

$$C = \{ x, y \}$$

$$(A \cap C) = \{ y \}$$

$$(A \cap C) = \{$$
 y }
B = { a, b, c, d, e }
 $(A \cap C) \cup B = \{$ a, b, c, d, e, y }

Answer 4 (g)

• g) $A \cap (C \cup B) = A$

$$U = \{ a, b, c, d, e, x, y \}$$

$$B = \{ a, b, c, d, e \}$$

$$C = \{ x, y \}$$

$$(C \cup B) = \{ a, b, c, d, e, x, y \}$$

$$A = \{ a, b, c, y \}$$

$$(C \cup B) = \{ a, b, c, d, e, x, y \}$$

 $A \cap (C \cup B) = \{ a, b, c, \}$

Exercise 5

21

23

Let A be the set of students who live within one mile of school and B the set of students who walk to classes. Describe the students in each of the following sets, in English.

- a) $A \cap B$
- b) $A \cup B$
- c) A B
- d) B A

Answer 5 (a)

Let A be the set of students who live within one mile of school and B the set of students who walk to classes. Describe the students in each of the following sets.

a)Answer: $A \cap B = ?$ (intersection)

The set of students who live within one mile of school and who walk to classes.

Answer 5 (b)

Let A be the set of students who live within one mile of school and B the set of students who walk to classes. Describe the students in each of the following sets.

b) Answer: A ∪ B = ? (union)
The set of students who live within one mile of school or who walk to classes (or who do both).

Answer 5(c)

Let A be the set of students who live within one mile of school and B the set of students who walk to classes. Describe the students in each of the following sets.

c) A - B = ? (difference : who appears in set A and not in set B)

The set of students who live within one mile of school but do not walk to classes.

22

24

Answer 5 (d)

25

Let A be the set of students who live within one mile of school and B the set of students who walk to classes. Describe the students in each of the following sets.

d) B - A = ?

The set of students who walk to classes but live more than one mile away from school.

Answer 6(a)

Let $A = \{a, b, c\}$ and $B = \{y, z\}$. Find a) $A \times B$

Answer: A x B = $\{ <a, y>, <a, z>, <b, y>, <b, z>, <c, y>, <c, z> \}$

	у	Z	
а	<a, y=""></a,>	<a, z=""></a,>	
b	<b, y=""></b,>	<b, z=""></b,>	
С	<c, y=""></c,>	<c, z=""></c,>	

35

Answer 6(b)

Let $A = \{a, b, c\}$ and $B = \{y, z\}$. Find b) B x A

Answer: B $x A = \{ \langle y, a \rangle, \langle y, b \rangle, \langle y, c \rangle, \langle z, a \rangle, \langle z, b \rangle, \langle z, c \rangle \}$

	а	b	С
у	<y, a=""></y,>	<y, b=""></y,>	<y, c=""></y,>
Z	<z, a=""></z,>	<z, b=""></z,>	<z, c=""></z,>

Exercise/Answer 7

How many different elements does A x B have if A has m elements and B has n elements?

Answer: m x n

Exercise 8

List the members of the following sets
a) {x | x is a positive integer less than 12}
b) {x | x is the square of an integer and x <

100}

39

Answer 8 (a)

List the members of the following sets a) {x | x is a positive integer less than 12}

Answer: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

Answer 8 (b)

List the members of the following sets b) $\{x \mid x \text{ is the square of an integer and } x < 100\}$

The set consist of all squares less than 100

 $0^2 = 0$ $1^2 = 1$ $2^2 = 4$ $3^2 = 9$ $4^2 = 16$ $5^2 = 25$ $6^2 = 36$ $7^2 = 49$ $8^2 = 64$ $9^2 = 81$

Answer: {0, 1, 4, 9, 16, 25, 36, 49, 64, 81}

Exercise 9

For each of the following sets, determine if 2 is an element of that set

a) $\{x \in R \mid x \text{ is an integer greater than 1}\}$

b) $\{x \in R \mid x \text{ is the square of an integer}\}$

Answer 9(a)

For each of the following sets, determine if 2 is an element of that set

a) $\{x \in R \mid x \text{ is an integer greater than 1}\}$

Answer: This set contains the element 2 (2 is an integer and 2 > 1)

38

40

42

Answer 9(b)

For each of the following sets, determine if 2 is an element of that set

b) $\{x \in R \mid x \text{ is the square of an integer}\}$

Answer: This set does not contains the element 2 as 2 is not a square

Discrete Maths: 1 Workshop Unit 2: Relations and Functions

SCC120 Fundamentals of Computer Science

PART 1. RELATIONS

Exercise 1

1

• Draw diagraphs of the 3 relations, using this as your starting point.

2. . 3

* L

Exercise 1 : R1

R1 = {<1, 1>, <1, 2>, <2, 1>, <2, 2>, <3, 4>, <4,1>, <4,4>}

Exercise 1: R3

Exercise 1: R4

Rules

- Reflexive
- <a, a> ∈ R
- Symmetric
- If <a,b> ∈ R,

then <b,a> must be ∈ R

- Transitive
- If <a,b> and <b,c> ∈ R then <a,c> must be ∈ R

Exercise 2

Consider the following relations on

{ 1, 2, 3, 4 }:

• R1 = {<1, 1>, <1, 2>, <2, 1>, <2, 2>, <3, 4>, <4,1>, <4,4>}

• R3 = {<1, 1>, <1, 2>, <1, 4>, <2, 1>, <2, 2>, <3, 3>, <4,1>, <4, 4>}

• R4 = {<2, 1>, <3, 1>, <3, 2>, <4,1>, <4, 2>, <4, 3 >}

• Which of these relations are reflexive?

Answer 2

- R3 since it contains all pairs of the form <a, a>, namely <1, 1>, <2, 2>, <3, 3>, <4, 4>
- Consider the following relations on {1, 2, 3, 4}:
- R3 = { <1, 1>, <1, 2>, <1, 4>, <2, 1>, <2, 2>, <3, 3>, <4,1>, <4, 4> }
- · Which of these relations are reflexive?

Answer 2

• R1 does not contain <3, 3>

• R4 does not contain <1,1>, <2,2>, <3,3> or <4,4>

• Consider the following relations on {1, 2, 3, 4}:

• R1 = { <1, 1>, <1, 2>, <2, 1>, <2, 2>, <3, 4>, <4,1>, <4,4> }

• R4 = {<2, 1>, <3, 1>, <3, 2>, <4,1>, <4, 2>, <4, 3 >}

• Why are the other relations R1 and R4 not reflexive?

Exercise 3

Consider the following relations on

{ 1, 2, 3, 4}:

11

• R1 = {<1, 1>, <1, 2>, <2, 1>, <2, 2>, <3, 4>, <4,1>, <4,4>}

• R3 = {<1, 1>, <1, 2>, <1, 4>, <2, 1>, <2, 2>, <3, 3>, <4,1>, <4, 4>}

• R4 = {<2, 1>, <3, 1>, <3, 2>, <4,1>, <4, 2>, <4, 3>}

· Which of these relations are symmetric?

Answer 3

- R3, because in each case <b, a> belongs to the relation whenever <a, b> does.
- Consider the following relations on {1, 2, 3, 4}:
- R3 = { <1, 1>, <1, 2>, <1, 4>, <2, 1>, <2, 2>, <3, 3>, <4,1>, <4, 4> }
- Which of these relations are symmetric?

10

R3: symmetric
• R3 = {<1, 1>, <1, 2>, <1, 4>, <2, 1>, <2, 2>, <3, 3>, <4,1 >, <4, 4>}

	<a,b></a,b>	<b,a></b,a>	
а	<1,1>	<1,1>	(a)
b	<1,2>	<2,1>	(d)
С	<1,4>	<4,1>	(g)
d	<2,1>	<1,2>	(b)
е	<2,2>	<2,2>	(e)
f	<3,3>	<3,3>	(f)
g	<4,1>	<1,4>	(c)
h	<4,4>	<4,4>	(h)

Answer 3

• The rest of relations are not symmetric: find a pair <a, b> so that it is in the relation but <b, a> is not.

• Consider the following relations on {1, 2, 3, 4}:

• R1 = {<1, 1>, <1, 2>, <2, 1>, <2, 2>, <3, 4>, <4,1>, <4,4>}

• R4 = {<2, 1>, <3, 1>, <3, 2>, <4,1>, <4, 2>, <4, 3 > }

· Which of these relations are symmetric?

Exercise 4

15

• Consider the following relations on { 1, 2, 3,

• R1 = {<1, 1>, <1, 2>, <2, 1>, <2, 2>, <3, 4>, <4,1>, <4,4>}

• R3 = {<1, 1>, <1, 2>, <1, 4>, <2, 1>, <2, 2>, <3, 3>, <4,1>, <4, 4>}

• R4 = {<2, 1>, <3, 1>, <3, 2>, <4,1>, <4, 2>, <4, 3>}

Which of these relations are transitive?

Answer 4

• R4 since if <a, b> and <b, c> is in relation, then <a, c> is.

• R4: <4,2> and <2, 1> then <4,1>

· Consider the following relations on {1, 2, 3, 4}:

• R4 = {<2, 1>, <3, 1>, <3, 2>, <4,1>, <4, 2>, <4, 3 >}

· Which of these relations are transitive?

R4: transitive

 $R4 = \{<2, 1>, <3, 1>, <3, 2>, <4,1>, <4, 2>,$ <4, 3 >}

Match?

а	<2,1>	no		
b	<3,1>	no		
С	<3,2>	<2,1>	:	<3,1> (b)
d	<4,1>	no		
е	<4,2>	<2,1>	••	<4,1> (d)
f	<4,3>	<3,1>	:	<4,1> (d)
		<3,2>	:	<4,2> (e)

Answer 4

• R1: <3, 4> and <4, 1> belong to it, while <3, 1> does not

• R3: <4, 1> and <1, 2> belong to it, while <4, 2> does not

• Consider the following relations on {1, 2, 3, 4}:

• R1 = {<1, 1>, <1, 2>, <2, 1>, <2, 2>, <3, 4>, <4,1>, <4,4>}

• R3 = {<1, 1>, <1, 2>, <1, 4>, <2, 1>, <2, 2>, <3, 3>, <4,1>, <4, 4>}

· Why the other relations R1 and R3 are not transitive?

16

18

R1: non - transitive

а	<1,1>	<1,2>		<1,2> (b)	
b	<1,2>	<2,1>	:-	<1,1> (a)	
		<2,2>	ı.	<1,2> (b)	
С	<2,1>	<1,1>	:-	<2,1> (c)	
		<1,2>	٠	<2,2> (d)	
d	<2,2>	<2,1>	ı.	<2,1> (c)	
е	<3,4>	<4,1>		<3,1> NO!	
f	<4,1>	<1,1>	ı.	<4,1> (f)	
		<1,2>	:.	<4,2> NO!	
g	<4,4>	<4,1>	:	<4,1> (f)	

:

PART 2. FUNCTIONS

Exercise 1

21

23

Let A = {a, b, c, d, e} and B = {1, 2, 3, 4}
 with

• f(a) = 2, f(b) = 1, f(c) = 4, f(d) = 1 and f(e) = 1.

• (a) What is the domain of this function?

• (b) What is the co-domain?

• (c) What is the range of this function?

Answer 1 a)

• Answer: set A = {a, b, c, d, e}

Let A = {a, b, c, d, e} and B = {1, 2, 3, 4}
 with

• f(a) = 2, f(b) = 1, f(c) = 4, f(d) = 1 and f(e) = 1.

• What is the domain of this function?

Answer 1 b)

• Answer: set $B = \{1, 2, 3, 4\}$

Let A = {a, b, c, d, e} and B = {1, 2, 3, 4}
 with

• f(a) = 2, f(b) = 1, f(c) = 4, f(d) = 1 and f(e) = 1.

• What is the co-domain?

Answer 1 c)

• Answer: set {1, 2, 4}

• Let A = {a, b, c, d, e} and B = {1, 2, 3, 4}

• f(a) = 2, f(b) = 1, f(c) = 4, f(d) = 1 and f(e) = 1.

• What is the range of this function?

22

24

Exercise 2

 Let f₁ and f₂ be two functions from A to B such that

$$f_1(x) = x^2$$
 and $f_2(x) = x - x^2$.

- What is the function f₁+ f₂?
- What is the function f₁x f₂?

25

Answer 2 a)

- Answer: x
- $f_1(x) = x^2$ and $f_2(x) = x x^2$.
- What is the function f₁+ f₂?
- $(f_1 + f_2)(x)$ = $f_1(x) + f_2(x)$ = $x^2 + x - x^2 = x^2 - x^2 + x$

Answer 2b)

- Answer = $x^3 x^4$
- $f_1(x) = x^2$ and $f_2(x) = x x^2$.
- b) What is the function $f_1x f_2$?
- $(f_1 f_2) (x)$ = $f_1(x) f_2(x)$ = $x^2 (x - x^2) = (x^2 * x) - (x^2 * x^2)$ = $x^3 - x^4$

27

Exercise 3

- Let f and g be two functions from the set of integers to the set of integers defined by
- f(x) = 2x + 3 and g(x)=3x + 2
- a) What is the composition of f and g?
- b) What is the composition of g and f?

Answer 3a)

- Answer: 6x + 7
- f(x) = 2x + 3 and g(x)=3x + 2
- a) What is the composition of f and g?

29

Answer 3b)

• Answer 6x + 11

- f(x) = 2x + 3 and g(x)=3x + 2
- b) What is the composition of g and f?
- (g ° f)(x) = g(f(x)) = g(2x+3) = 3(2x+3)+2 = 6x + 9 + 2 = 6x + 11

Exercise 4

- Let $f(x) = x^2 + 1$ and g(x) = x + 2 be two functions from A to B.
- Find the following functions
- a) f + g
- b) fg (or f x g)
- c) f ° g
- d) g ° f

Answer 4 a) f + g

- Answer x² + x + 3
- $f(x) = x^2 + 1$ and g(x) = x + 2
- (f + g)(x)
 - = f(x) + g(x)
 - $= x^2 + 1 + x + 2$
 - $= x^2 + x + 1 + 2$
 - $= x^2 + x + 3$

Answer 4 b) fg

- Answer $x^3 + 2x^2 + x + 2$
- $f(x) = x^2 + 1$ and g(x) = x + 2
- (f g)(x)
 - = f(x) g(x)
 - $= (x^2 + 1) (x + 2)$
 - $= x^{2} (x + 2) + 1 (x + 2)$
 - $= x^3 + 2 x^2 + x + 2$

Answer 4 c) f ° g

34

- Answer $x^2 + 4x + 5$
- $f(x) = x^2 + 1$ and g(x) = x + 2
- (f ° g) (x)

33

- = f(g(x))
- = f(x+2)
- $= (x + 2)^2 + 1$
- =(x + 2)(x + 2) + 1
- $= \dot{x}(x + 2) + 2(x + 2) + 1$
- $= x^2 + 2x + 2x + 4 + 1$
- $= x^2 + 4x + 5$

Answer 4 d) g ° f

- Answer $x^2 + 3$
- $f(x) = x^2 + 1$ and g(x) = x + 2
- (g ° f) (x)
- = g(f(x))
- $= g(x^2+1)$
- $= (x^2 + 1) + 2$

 $= x^2 + 3$

Answer 5

- Answer $f^{-1}(x) = (x-5)/a$
- Let the function f(x) = ax + 5.
- · Find its inverse
- f(x) = y means ax + 5 = y
- ax + 5 5 = y 5
- ax = y 5
- ax/a = (y-5)/a
- So x = (y 5)/a
- So $f^{-1}(y) = (y 5)/a$
- So the inverse function is $f^{-1}(x) = (x-5)/a$

Answer 6

• Answer $f^{-1}(x) = \sqrt[3]{(x-1)}$

- Find the inverse function of $f(x)=x^3+1$, where $x \in N$.
- $f(x)= x^3 + 1$ means $y = x^3 + 1$, so $x^3 = y - 1$
- So $x = \sqrt[3]{(y-1)}$
- So $f^{-1}(x) = \sqrt[3]{(x-1)}$

3

39

Exercise 7

• For each of the following relations defined on the positive integers:

- justify whether the relation is:
 - reflexive
 - symmetric
 - transitive

Hint

40

- Build the 5 sets required where R ⊆ A X A and A = {1, 2, 3, 4, 5}.
- E for equal, L for less than, G for greater than, LE for less than or equal, GE for greater than or equal.
- Then test each set for the 3 qualities.

41

- $A = \{ 1, 2, 3, 4, 5 \}$
- A x A =

	1	2	3	4	5
1	<1, 1>	<1, 2>	<1, 3>	<1, 4>	<1, 5>
2	<2, 1>	<2, 2>	<2, 3>	<2, 4>	<2, 5>
3	<3, 1>	<3, 2>	<3, 3>	<3, 4>	<3, 5>
4	<4, 1>	<4, 2>	<4, 3>	<4, 4>	<4, 5>
5	<5, 1>	<5, 2>	<5, 3>	<5, 4>	<5, 5>

42 • E = { <1,1> , <2,2> , <3,3> , <4,4>, <5,5> } 4 3 5 <1, 1> <1, 2> <1, 3> <1, 4> <1, 5> <2, 1> <2, 2> <2, 3> <2, 4> <2, 5> <3, 1> <3. 2> 3 **<3, 3> <3, 4> <3, 5>** <4, 1> <4, 2> <4, 3> **<4, 4>** <4, 5> <5, 1> <5, 2> <5, 3> <5, 4> <**5, 5>**

45

47

- LE = { <1,2>, <1,3>, <1,4>, <1,5>, <2,3>, <2,4>, <2,5>, <3,4>, <3,5>,<4,5>, <1,1>, <2,2>, <3,3>, <4,4>, <5,5> }
- GE = {<2,1>, <3,1>, <3,2>, <4,1>, <4, 2>, <4,3>, <5,1>, <5,2>, <5,3>, <5,4>, <1,1>, <2,2>, <3,3>, <4,4>, <5,5>}

Reflexive

46

R ⊆ A x A is reflexive if and only if < a, a > ∈ R for every element a of A - every element of A is in relation with itself

• So for A = { 1, 2, 3, 4, 5} R *must* contain <1,1>, <2,2>, <3,3>, <4,4> and <5, 5>.

Reflexive?

$$\begin{split} E &= \{\,\, <\mathbf{1,1>}\,\,,\,\, <\mathbf{2,2>}\,\,,\,\, <\mathbf{3,3>}\,\,,\,\, <\mathbf{4,4>},\,\, <\mathbf{5,5>}\,\, \} & \text{yes} \\ L &= \{\,\, <\mathbf{1,2>}\,\,,\,\, <\mathbf{1,3>}\,\,,\,\, <\mathbf{1,4>}\,\,,\,\, <\mathbf{1,5>}\,\,,\,\, <\mathbf{2,3>}\,\,,\,\, <\mathbf{2,4>}\,\,, \\ &<\mathbf{2,5>}\,\,,\,\, <\mathbf{3,4>}\,\,,\,\, <\mathbf{3,5>}\,\,,\,\, <\mathbf{4,5>}\,\, \} & \mathbf{6} &= \{\,\, <\mathbf{2,1>}\,\,,\,\, <\mathbf{3,1>}\,\,,\,\, <\mathbf{3,2>}\,\,,\,\, <\mathbf{4,1>}\,\,,\,\, <\mathbf{4,3>}\,\,,\,\, <\mathbf{5,1>}\,\,, \\ &<\mathbf{5,2>}\,\,,\,\, <\mathbf{5,3>}\,\,,\,\, <\mathbf{5,4>} \} & \mathbf{1E} &= \{\,\, <\mathbf{1,2>}\,\,,\,\, <\mathbf{1,3>}\,\,,\,\, <\mathbf{1,4>}\,\,,\,\, <\mathbf{1,5>}\,\,,\,\, <\mathbf{2,3>}\,\,,\,\, <\mathbf{2,4>}\,\,, \\ &<\mathbf{2,5>}\,\,,\,\, <\mathbf{3,4>}\,\,,\,\, <\mathbf{3,5>}\,\,,\,\, <\mathbf{4,4>}\,\,,\,\, <\mathbf{1,1>}\,\,,\,\, <\mathbf{2,2>}\,\,,\,\, <\mathbf{3,3>}\,\,, \\ &<\mathbf{4,4>}\,\,,\,\, <\mathbf{5,5>}\,\, \} & \mathbf{4,4>}\,\,,\,\,\, <\mathbf{5,5>}\,\, \} & \mathbf{4,4>}\,\,,\,\,\, <\mathbf{5,5>}\,\, \\ \end{split}$$

GE = {<2,1>, <3,1>, <3,2>, <4,1>, <4,3>, <5,1>, yes <5,2>, <5,3>, <5,4>, <1,1>, <2,2>, <3,3>, <4,4>, <5,5>}

Symmetric

48

 $R \subseteq A \times A$ is symmetric if and only if for any a, and b in A, whenever $\langle a, b \rangle \in R$ then $\langle b, a \rangle \in R$.

Symmetric?

$$\begin{split} E &= \{\, <\mathbf{1,1}\!>\,,\, <\mathbf{2,2}\!>\,,\, <\mathbf{3,3}\!>\,,\, <\mathbf{4,4}\!>\,,\, <\mathbf{5,5}\!>\, \} \quad \text{yes} \\ L &= \{\, <\mathbf{1,2}\!>\,,\, <\mathbf{1,3}\!>\,,\, <\mathbf{1,4}\!>\,,\, <\mathbf{1,5}\!>\,,\, <\mathbf{2,3}\!>\,,\, <\mathbf{2,4}\!>\,, \quad \text{no} \\ <\mathbf{2,5}\!>\,,\, <\mathbf{3,4}\!>\,,\, <\mathbf{3,5}\!>\,,\, <\mathbf{4,5}\!>\, \} \text{ i.e.} <\mathbf{5,4}\!> \text{ absent} \\ G &= \{<\mathbf{2,1}\!>\,,\, <\mathbf{3,1}\!>\,,\, <\mathbf{3,2}\!>\,,\, <\mathbf{4,1}\!>\,,\, <\mathbf{4,3}\!>\,,\, <\mathbf{5,1}\!>\,, \quad \text{no} \\ <\mathbf{5,2}\!>\,,\, <\mathbf{5,3}\!>\,,\, <\mathbf{5,4}\!>\, \} \text{ i.e.} <\mathbf{4,5}\!> \text{ absent} \\ LE &= \{\, <\mathbf{1,2}\!>\,,\, <\mathbf{1,3}\!>\,,\, <\mathbf{1,4}\!>\,,\, <\mathbf{1,5}\!>\,,\, <\mathbf{2,3}\!>\,,\, <\mathbf{2,4}\!>\,, \quad \text{no} \\ <\mathbf{2,5}\!>\,,\, <\mathbf{3,4}\!>\,,\, <\mathbf{3,5}\!>\,,\, <\mathbf{4,5}\!>\,,\, <\mathbf{1,1}\!>\,,\, <\mathbf{2,2}\!>\,,\, <\mathbf{3,3}\!>\,, \\ <\mathbf{4,4}\!>\,,\, <\mathbf{5,5}\!>\, \} \text{ i.e.} <\mathbf{5,4}\!> \text{ absent} \\ GE &= \{<\mathbf{2,1}\!>\,,\, <\mathbf{3,1}\!>\,,\, <\mathbf{3,2}\!>\,,\, <\mathbf{4,1}\!>\,,\, <\mathbf{4,3}\!>\,,\, <\mathbf{5,1}\!>\,, \quad \text{no} \\ <\mathbf{5,2}\!>\,,\, <\mathbf{5,3}\!>\,,\, <\mathbf{5,4}\!>\,,\, <\mathbf{1,1}\!>\,,\, <\mathbf{2,2}\!>\,,\, <\mathbf{3,3}\!>\,,\, <\mathbf{4,4}\!>\,, \\ <\mathbf{5,5}\!>\, \} \text{ i.e.} <\mathbf{4,5}\!> \text{ absent} \\ \end{split}$$

Transitive

• R \subseteq A x A is transitive if and only if for any a, b, and c \in A, if <a, b> \in R , and <b, c> \in R then <a, c> \in R

- '=' is transitive, for if a = b and b = c then a = c. (1 = 1 and 1 = 1 then 1 = 1)
- '>' is transitive, for if a > b and b > c then a > c. (5 > 4 and 4 > 3 then 5 > 3)
- '<' is transitive, for if a < b and b < c then a < c. (3 < 4 and 4 < 5 then 3 < 5)
- '>=' and '<=' are also transitive.

51

THE END

1

Discrete Maths: 1 Workshop Unit 3: Recursion

SCC120 Fundamentals of Computer Science

Exercise 1

Suppose that f is defined recursively by

$$f(0) = 3$$

$$f(n) = 2 f(n-1) + 3$$

Find f(1), f(2), f(3), and f(4).

Answer 1

f(0) = 3

f(n) = 2 f(n-1) + 3

f(1) = 2 f(0) + 3 = 2 * 3 + 3 = 6 + 3 = 9

f(2) = 2 f(1) + 3 = 2 * 9 + 3 = 18 + 3 = 21

f(3) = 2 f(2) + 3 = 2 * 21 + 3 = 42 + 3 = 45

f(4) = 2 f(3) + 3 = 2 * 45 + 3 = 90 + 3 = 93

Exercise 2

define the following function recursively, using the formula f(n) = f(n-1) + B: f(n) = 3n - 4.

Solve using algebra rather than numerically. Also, work out the value of the base clause, f(0).

Answer 2

Base Clause

Firstly, work out the value of the Base Clause

f(0) = 3 * 0 - 4 = 0 - 4 = -4

Answer 2

Recursive Clause

- f(n) = 3n 4
- To work out what f(n-1) is, we "plug in" n-1 in the above formula.
- We replace "n" by "n-1" throughout.

•
$$f(n-1) = 3(n-1) - 4$$

$$= 3n - 3 - 4$$

$$= 3n - 7$$

4

6

,

Answer 2

Recursive Clause

- We wish to express f(n) in terms of f(n-1).
- f(n) = f(n-1) + B.
- "B" is some unknown quantity that we need to find.
- On the previous slide, we defined f(n-1) as
- f(n-1) = 3n 7
- So we substitute "3n -7" for "f(n-1)" in the first equation above, giving
 f(n) = 3n 7 + B

Answer 2

Recursive Clause

- f(n) = 3n 7 + B
- We know from the original specification that f(n) = 3n - 4
- So we substitute "3n 4" for "f(n)" in the first equation on this slide, giving
- 3n 4 = 3n 7 + B
- Which is the same as
- \bullet 3n 7 + B = 3n 4

Answer 2

Recursive Clause

- \bullet 3n 7 + B = 3n 4
- We are trying to find out what B is, so we want an equation with B on its own on the LHS.

•
$$3n - 7 + B - 3n = 3n - 4 - 3n$$

$$-7 + B = -4$$

$$-7 + B + 7 = -4 + 7$$

- f(n) = f(n-1) + B
- f(n) = f(n-1) + 3
- This is our recursive definition for f(n)

THE END