VisMatchmaker: Cooperation of the User and the Computer in Centralized Matching Adjustment

Po-Ming Law

Wenchao Wu Yixian Zheng Huamin Qu

A puzzled advisor at Georgia Tech

Mentors Mentees

Peter David

Ken Ben

Betty Jack

Jane Mary

John May

A puzzled advisor at Georgia Tech

Mentees' Preference Lists

David	Ben	Jack	Mary	May
1. Jane	1. Ken			
2. Betty	2. Jane		2 3	
3. Peter	3. John	4		
4. John	4. Betty			

A puzzled advisor at Georgia Tech

Mentors' Preference Lists

Peter	Ken	Betty	Jane	John
1. David	1. May			
2. May	2. Mary	2 3	2	2
3. Jack	3. Jack	4	4	4
4. Ben	4. Ben			

Mentors' Preference Lists

Peter	Ken	Betty	Jane	John
1. David	1. May	1	1	1
2. May	2. Mary	2 3	3	3
3. Jack	3. Jack	4	4	4
4. Ben	4. Ben			

Mentor with

Algorithm Algorithm

Matching

Mentors

Mentees

Mentees' Preference Lists

David	Ben	Jack	Mary	Ma
1. Jane	1. Ken	1		
2. Betty	2. Jane	2 3	2 3	2 3
	3. John			
4. John	4. Betty			

Mentee with

two mentors

What if...

David's Preference

- 1. Jane
- 2. Betty
- 3. Peter
- 4. John

Mentors Mentee

Possible to improve?

David's Preference

1. Jane

2. Betty

3. Peter4. John

Betty can have at most two partners

- Jack: one less mentor
- John: one less mentee
- Pair Jack with John?

Jack may not like John!

 Assign a different mentor to Jack and a different mentee to John?

The cascading nightmare continues!!

- When you change a pairing, some people become unmatched
- Match them to the others, the pairing is changed again

The cascading effect can go on and on!!!

Have an algorithm-generated matching
Want to adjust it and explore matching alternatives

HARD to adjust it manually!!

Cooperation of user and computer

Users — What to adjust

System — How to adjust

Cooperation of User and Computer

Cooperation of User and Computer

Cooperation of User and Computer

Problem Detection

Questions about allocation result	Questions about allocation mechanism
Who are those who get poor matches?	There is a popular person. Why pair A not B with him?
Improve their matches	Try to pair the popular person with the others

Many matchings... How to compare them?

- Agent-level comparison
- Comparison between two matchings
- Comparison among multiple matchings

Agent-level comparison

- Want to improve David's match
- Prefer matchings which give David a better match

Need to compare the quality of match of each person in multiple matchings

Comparison between two matchings

- Number of people who get better matches in matching 1 (in 2)
- Who are the people who get better matches in matching 1 (in 2)?
- By how much do they get better?

May prefer matching 1 if...

Most people get better matches in matching 1

Comparison among multiple matchings

- 1. Choose original matching as a baseline
- 2. Compute the differences between the other matchings and the baseline
- 3. Compare across many matchings

David's Position on quality of match David's number line

"Find matchings in which David's quality of match falls within this range"

System finds 100 matchings

Ranked by a performance metric

Matchings with lower rankings

Light gray background which shows data distribution

David

Not chosen by that person

Matched

Consider the algorithmic result and the best matching recommendation

In the algorithmic result

Consider the algorithmic result and the best matching recommendation

In the best matching recommendation

Consider the algorithmic result and the best matching recommendation

Consider the algorithmic result and the best matching recommendation

Mentor

Mentee

- Mentor
- Mentee

Other Views

Glyphs for summary statistics

A scatterplot for filtering the number lines

Expert Interview

Better than spreadsheet for assignment

More confident in assignment

Learning curve may be steep

Conclusion and Future Work

- Developed a way for users and the system to co-create a matching
- Designed visualizations for matching comparison

- Steep learning curve Improve the usability of the system
- Slow and non-optimal matching recommendation algorithm More efficient algorithm to prune the huge matching search space

Thank You!

Po-Ming Law

pmlaw@gatech.edu

Georgia Visualization Tech Lab

Wenchao Wu Yixian Zheng Huamin Qu

