```
1999:96277 CAPLUS
 AN
 DN
      130:154085
      Initiator systems for cationic polymerization and/or crosslinking
 TI
      comprising an onium borate and a benzophenone, and coatings prepared by
      David, Marie-Anne; Frances, Jean-Marc
 IN
      Rhodia Chimie, Fr.
 PA
 SO
      PCT Int. Appl., 38 pp.
      CODEN: PIXXD2
 DT
      Patent
 LΑ
      French
 IC
      ICM C08F004-52
      35-3 (Chemistry of Synthetic High Polymers)
      Section cross-reference(s): 37, 42
 FAN.CNT 1
      PATENT NO.
                       KIND DATE
                                             APPLICATION NO. DATE
                                             -----
√ PI
                              19990204
      WO 9905181
                        A1
                                             WO 1998-FR1620
                                                              19980722
          W: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE,
              DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG,
               KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX,
               NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT,
              UA, UG, US, UZ, VN, YU, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM
          RW: GH, GM, KE, LS, MW, SD, SZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES,
               FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI,
               CM, GA, GN, GW, ML, MR, NE, SN, TD, TG
      FR 2766491
                        A1
                              19990129
                                             FR 1997-9379
                                                              19970723
      FR 2766491
                        B1
                              19991008
      FR 2766490
                              19990129
                                             FR 1998-1251
                        Α1
                                                              19980129
      FR 2766490
                        В1
                              19991008
      AU 9888666
                        A1
                              19990216
                                             AU 1998-88666
                                                              19980722
      AU 741905
                        B2
                              20011213
      EP 998499
                              20000510
                        A1
                                             EP 1998-940312
                                                              19980722
          R: BE, CH, DE, ES, FR, GB, IT, LI, LU, NL, SE, FI
      JP 2001510861
                        T2
                              20010807
                                             JP 2000-504172
                                                              19980722
 PRAI FR 1997-9379
                        Α
                              19970723
      FR 1998-1251
                        Α
                              19980129
                              19980722
      WO 1998-FR1620
                        W
 OS
      MARPAT 130:154085
      Initiator systems comprising .gtoreq.1 iodonium borate and .gtoreq.1 aryl
      ketone, activated thermally or photochem., are useful for prepg. epoxy
      resins and/or silicones for use as coatings. Thus, an initiator soln.
      prepd. contg. (4-isopropylphenyl)(4-methylphenyl)iodonium.
      tetrakis(pentafluorophenyl)borate 9.6, PhCOCMe2OH 9.6,
      1-chloro-4-propoxythioxanthone photosensitizer 9.6, iso-PrOH 4.8, and
      (3,4-epoxycyclohexyl)methyl 3,4-epoxycyclohexanecarboxylate (I) 66.4
      parts. A white ink formulation comprising the initiator soln. 6.3, I
 6.5,
      a pigment conc. (60% rutile TiO2, 40% I) 81.7, Tone 301 4, and Byk 361
      1.5% dried rapidly and with good adhesion to substrates.
 ST
      cationic initiator polymn crosslinking; diaryliodonium borate cationic
      initiator; epoxy coating curing initiator; silicone coating curing
      initiator; aryl ketone coinitiator cationic polymn
 IT
      Epoxy resins, preparation
      RL: IMF (Industrial manufacture); TEM (Technical or engineered material
      use); PREP (Preparation); USES (Uses)
          (binder; initiator systems for cationic polymn. and/or crosslinking of
         coatings)
```

```
IT
     Crosslinking catalysts
     Polymerization catalysts
        (cationic; initiator systems for cationic polymn, and/or crosslinking
        of coatings)
TΤ
     Epoxy resins, reactions
     Epoxy resins, reactions
     RL: RCT (Reactant); RACT (Reactant or reagent)
        (epoxy-contg. polysiloxane-; initiator systems for cationic
        crosslinking of)
IT
     Polysiloxanes, reactions
     Polysiloxanes, reactions
     RL: RCT (Reactant); RACT (Reactant or reagent)
        (epoxy-contg.; initiator systems for cationic crosslinking of)
IT
     Coating materials
        (initiator systems for cationic polymn. and/or crosslinking of
        coatings)
IT
     Inks
        (printing, white; initiator systems for cationic polymn. and/or
        crosslinking of coatings)
TT
     25068-38-6P, Bisphenol A-epichlorohydrin copolymer
                                                          25085-98-7P,
     Poly[(3,4-epoxycyclohexyl)methyl 3,4-epoxycyclohexanecarboxylate]
     RL: IMF (Industrial manufacture); TEM (Technical or engineered material
     use); PREP (Preparation); USES (Uses)
        (binder; initiator systems for cationic polymn. and/or crosslinking of
        coatings)
IT
     204277-94-1, Kraton Liquid EKP 207
     RL: TEM (Technical or engineered material use); USES (Uses)
        (binder; initiator systems for cationic polymn. and/or crosslinking of
        coatings)
     158521-03-0D
Dimethylsilanediol-[2-(3,4-epoxycyclohexyl)ethyl]methylsilan
     ediol copolymer, trimethylsilyl-terminated
     RL: RCT (Reactant); RACT (Reactant or reagent)
        (initiator systems for cationic crosslinking of)
IT
     84-11-7, Phenanthrenequinone
                                   84-51-5, 2-Ethylanthraquinone
                                                                    84-54-8,
     2-Methylanthraquinone
                            93-91-4, Benzoylacetone
                                                      94-02-0, Ethyl
                    94-36-0, Dibenzoyl peroxide, uses
     benzoylacetate
                                                          100-52-7,
                        117-10-2, 1,8-Dihydroxyanthraquinone
     Benzaldehyde, uses
                            119-53-9, Benzoin 134-81-6, Benzil
     4,4'-Dimethoxybenzoin
     2-Hydroxy-2-methyl-1-phenyl-1-propanone
                                              24650-42-8, 2,2-Dimethoxy-2-
     phenylacetophenone 178233-72-2, (4-Isopropylphenyl)(4-
     methylphenyl)iodonium tetrakis(pentafluorophenyl)borate
                                                               220183-76-6,
     (4-Isopropylphenyl)(4-methylphenyl)iodonium tetrakis[3,5-
    bis(trifluoromethyl)phenyl]borate
                                         220183-80-2
     RL: CAT (Catalyst use); USES (Uses)
        (initiator systems for cationic polymn, and/or crosslinking of
        coatings)
     142770-42-1, 1-Chloro-4-propoxythioxanthone
TТ
    RL: CAT (Catalyst use); USES (Uses)
        (photosensitizer; initiator systems for cationic polymn. and/or
        crosslinking of coatings)
RE.CNT
              THERE ARE 1 CITED REFERENCES AVAILABLE FOR THIS RECORD
RE
```

(1) Rhone-Poulenc; EP 0562897 A 1993 CAPLUS

PCT

ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE Bureau international

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets ⁶:

C08F 4/52

A1

(11) Numéro de publication internationale: WO 99/05181

(43) Date de publication internationale: 4 février 1999 (04.02.99)

(21) Numéro de la demande internationale: PCT/FR98/01620

(22) Date de dépôt international: 22 juillet 1998 (22.07.98)

(30) Données relatives à la priorité:

97/09379 23 juillet 1997 (23.07.97) FR 98/01251 29 janvier 1998 (29.01.98) FR

(71) Déposant (pour tous les Etats désignés sauf US): RHO-DIA CHIMIE [FR/FR]; 25, quai Paul Doumer, F-92408 Courbevoie Cedex (FR).

(72) Inventeurs; et

(75) Inventeurs/Déposants (US seulement): DAVID, Marie-Anne [FR/FR]; 6, rue Louis Aulagne, F-69200 Vénissieux (FR). FRANCES, Jean-Marc [FR/FR]; 1, rue des Flandres, F-69330 Meyzieu (FR).

(74) Mandataire: TROLLIET, Maurice; Direction de la Propriété Industrielle, CRIT-Carrières, Boîte postale 62, F-69192 Saint-Fons Cedex (FR). (81) Etats désignés: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, brevet ARIPO (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Publiée

Avec rapport de recherche internationale. Avant l'expiration du délai prévu pour la modification des revendications, sera republiée si des modifications sont reçues.

(54) Title: NOVEL POLYMERISATION AND/OR CROSS-LINKING INITIATOR SYSTEMS COMPRISING AN ONIUM BORATE AND A BENZOPHENONE

(54) Titre: NOUVEAUX SYSTEMES AMORCEURS DE POLYMERISATION ET/OU DE RETICULATION COMPRENANT UN BORATE D'ONIUM ET UNE BENZOPHENONE

(57) Abstract

The invention concerns the field of polymerisation and/or cross-linking reaction catalysis by cationic process of monomers, oligomers and/or polymers, in particular novel polymerisation and/or cross-linking initiator systems comprising at least one onium borate and at least one benzophenone have been elaborated to satisfy the ever greater exigencies of productivity and manufacture; said polarisation initiators are used in particular for preparing resins and/or composite materials based on an organic and/or silicon matrix or optionally a matrix of acrylic monomers, oligomers, polymers.

(57) Abrégé

Le domaine de l'invention est celui de la catalyse des réactions de polymérisation et/ou de réticulation par voie cationique de monomères, oligomères et/ou polymères. De nouveaux systèmes amorceurs de polymérisation et/ou de réticulation comprenant au moins un borate d'onium et au moins une benzophénone ont été mis au point pour satisfaire aux exigences de productivité et de fabrication de plus en plus élevées; ces amorceurs sont notamment utilisés pour la préparation de résines et/ou de matériaux composites à base d'une matrice de nature organique et/ou de nature silicone et éventuellement de monomères, oligomères, polymères de nature acrylique.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AL	Albanie	ES	Espagne	LS	Lesotho	SI	Slovénie
AM	Arménie	FI	Finlande	LT	Lituanie	SK	Slovaquie
AT	Autriche	FR	Prance	LU	Luxembourg	SN	Sénégal
ΑU	Australie	GA	Gabon	LV	Lettonie	SZ	Swaziland
AZ	Azerbaidjan	GB	Royaume-Uni	MC	Monaco	TD	Tchad
BA	Bosnie-Herzégovine	GE .	Géorgie	MD	République de Moldova	TG	Togo
BB	Barbade	GH .	Ghana	MG	Madagascar	TJ	Tadjikistan
BE	Belgique	GN	Guinée	MK	Ex-République yougoslave	TM	Turkménistan
BF	Burkina Faso	GR	Grèce		de Macédoine	TR	Turquie .
BG	Bulgarie	HU	Hongrie	ML	Mali	TT	Trinité-et-Tobago
BJ	Bénin	(B	Irlande	MN	Mongolie	UA	Ukraine
BR	Brésil	肛	Israël	MR	Mauritanie	UG	Ouganda
BY	Bélarus	IS	Islande	MW	Malawi	US	Etats-Unis d'Amérique
CA	Canada	IT	Italie	MX	Mexique	UZ.	Ouzbékistan
CF	République centrafricaine	JP	Japon	NE	Niger	VN	Vict Nam
CG	Congo	KE	Kenya	NL	Pays-Bas	YU	Yougoslavie
CH	Suisse	KG	Kirghizistan	NO	Norvège	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	République populaire	NZ	Nouvelle-Zélande		
CM	Cameroun		démocratique de Corée	PL	Pologne		
CN	Chine	KR	République de Corée	PT	Portugal		
Cη	Cuba	KZ	Kazakstan	RO	Roumanie		
CZ	République tchèque	LC	Sainte-Lucie	RU	Fédération de Russie		
DE	Allemagne	LI	Liechtenstein	SD	Soudan		
DK	Danemark	LK	Sri Lanka	SE	Soède		
EE	Estonie	LR	Libéria	SG	Singapour		

10

15

25

30

35

NOUVEAUX SYSTEMES AMORCEURS DE POLYMERISATION ET/OU DE RETICULATION COMPRENANT UN BORATE D'ONIUM ET UNE BENZOPHENONE

Le domaine de l'invention est celui de la catalyse des réactions de polymérisation(s) et/ou de réticulation(s) par voie cationique, de monomères, oligomères et/ou polymères, comprenant des radicaux fonctionnels réactifs aptes à former des pontages intra et inter caténaires, de manière à obtenir un revêtement ou un matériau composite polymérisé et/ou réticulé ayant une certaine dureté et une certaine tenue mécanique.

Plus précisément, la présente invention a pour objet de nouveaux systèmes amorceurs de polymérisation et/ou de réticulation par voie cationique. Ces amorceurs comprennent au moins un borate d'onium et au moins une benzophénone permettant l'initiation et le déroulement de réactions de formations de polymères et/ou de résines, à partir de substrats formés de monomères, oligomères et/ou de polymères à groupements organofonctionnels réactifs.

Les réactions plus particulièrement concernées sont celles dans lesquelles des agents cationiques agissent comme promoteurs directs des liaisons inter et/ou intra caténaires.

En général, ces réactions se produisent par activation photochimique et/ou thermique et/ou par faisceau d'électrons. A titre d'exemple pratique, l'énergie lumineuse d'un rayonnement U.V. permet la formation de protagonistes actifs, par exemple par coupure de liaisons, et ainsi le déclenchement des réactions de polymérisation et/ou réticulation est effectué.

Dans la présente description, les polymères et/ou résines obtenus sont préparés à partir de monomères, oligomères et/ou polymères qui sont soit (1) de nature organique, notamment uniquement hydrocarbonée, soit (2) de nature poly-organosiloxane, et comprennent dans leur structure des groupements organo-fonctionnels, par exemple du type époxyde, oxétannes, et/ou alkényl-éther, qui réagissent par voie cationique et à l'aide des nouveaux systèmes amorceurs selon l'invention décrits ci-après. On peut également en plus utiliser (3) des monomères, oligomères et/ou polymères avec des groupements acryliques, par exemple acryliques purs ou méthacryliques, qui peuvent être ajoutés dans le milieu de polymérisation cationique.

La prés nte invention a d nc 'galement pour obj t des compositions comprenant les matériaux de base (monomères, oligomères et/ou polymères) polym risables t/ou réticulables par voie cationique, les syst mes am rœurs décrits ci-après, et

10

15

20

25

30

35

éventuellement un ou plusi urs additifs choisis parmi ceux généralement connus dans I s applications auxquelles sont destinées ces compositions.

Par exemple, ces compositions peuvent être utilisées pour la réalisation de revêtements sur objets tels que des articles ou des supports solides, notamment support papier, film polymère de type polyester ou polyoléfine, support aluminium, et/ou support fer blanc.

Des amorceurs de polymérisation et/ou réticulation, par exemple photochimique, des monomères, oligomères et/ou polymères comprenant dans leur structure des groupements organofonctionnels réactifs sont décrits dans EP-0 562 897 au nom de la Demanderesse. Les sels amorceurs de ce brevet représentent un progrès technique notable par rapport aux amorceurs antérieurement connus de type sels d'onium ou de complexes organométalliques, et en particulier par rapport à ceux dont l'anion du sel amorceur est SbF6⁻ qui est l'un des seuls qui soient corrects sur le plan des performances catalytiques, mais qui pose de graves problèmes d'utilisation en raison de la présence de métaux lourds.

Les sels amorceurs selon EP-A-0 562 897 sont employés, par exemple, pour la réalisation de revêtements sur papier à partir de monomères époxydés polymérisés et réticulés par irradiation sous U.V.. Pour apprécier les performances d'amorceur, on évalue la réactivité du couple substrat/amorceur et la vitesse de polymérisation/réticulation, au travers de la vitesse de défilement nécessaire au durcissement de la couche enduite sur le papier ainsi qu'au travers du nombre de passages. Les résultats mesurés sont acceptables, mais il n'en demeure pas moins que, pour satisfaire aux exigences de productivité des applicateurs, les systèmes amorceurs se doivent d'être de plus en plus performants. Ils doivent donc permettre d'atteindre des réactivités et des vitesses de polymérisation/réticulation aussi élevées que possible, de manière à pouvoir augmenter les cadences d'enduction.

De ce fait, l'un des objectifs essentiels de la présente invention est de satisfaire aux exigences de productivité énoncées ci-avant.

Un autre objectif essentiel de l'invention est de fournir de nouveaux systèmes amorceurs, performants comme amorceurs vis-à-vis du plus grand nombre de monomères, oligomères et/ou polymères organofonctionnels polymérisables et/ou réticulables par voie cationique; les monomères, oligomères et/ou polymères étant notamment (1) de nature organique, de préférence uniquement hydrocarboné, ou (2) de nature polyorganosiloxane, éventuellem nt n m'lange (3) avec d'autres monomères, oligomères t/ou polymères cont nant des group s acryliques.

10

15

20

25

30

35

Un autre objectif ssentiel de l'invention est de fournir des systèmes amorceurs cationiqu s efficaces, en faible quantité, mais aussi faciles à manipuler et peu toxiques, et qui de ce fait, permettent d'obtenir des revêtements et/ou matériaux composites qui ne jaunissent pas au cours du temps et/ou après cuisson.

Un autre objectif de l'invention est de fournir des compositions de monomères, oligomères et/ou polymères organofonctionnels réticulables par voie cationique et, sous activation photonique et/ou thermique et/ou par faisceau d'électrons.

Un autre objectif de l'invention est de fournir des compositions de ce type utilisables aussi bien en couche mince, dont l'épaisseur se situe par exemple dans l'intervalle allant de 0,1 à 1 µm, qu'en couche plus épaisse, dont l'épaisseur se situe par exemple dans l'intervalle allant d'une valeur supérieure à un micromètre à plusieurs centimètres.

Un autre objectif de l'invention est de fournir des compositions de ce type pour la préparation de matériau composite.

Ces divers objectifs sont atteints par l'invention qui concerne tout d'abord, dans son premier objet, de nouveaux systèmes amorceurs comprenant au moins un borate d'onium judicieusement sélectionné et au moins une benzophénone judicieusement sélectionnée. Ainsi, le système amorceur de polymérisation et/ou de réticulation comprend :

(1) au moins un borate d'onium dont :

(i) l'entité cationique est choisie parmi les sels d'onium de formule (I)

$$[(R^1)_{n-1}-(R^2)_{m}]^+$$
 (I)

formule dans laquelle:

 les radicaux R¹, identiques ou différents, représentent un radical aryle carbocyclique ou hétérocyclique en C₆-C₂₀, ledit radical hétérocyclique pouvant contenir comme hétéroéléments de l'azote et/ou du soufre.

 les radicaux R², identiques ou différents, représentent R¹, un radical alkyle linéaire ou ramifié en C₁-C₃₀, ou un radical alkényle linéaire ou ramifié en C₁-C₃₀,

- lesdits radicaux R1 et R2 étant éventuellement substitués par :

- · un groupement alkyle linéaire ou ramifié en C1-C25,
- · un groupement alcoxy OR13,
- · un groupement cétonique -(C=O)-R¹³.
- · un groupement ester ou carboxylique -(C=O)-O- R13,
- · un groupem nt m rcapto SR13,
- · un group ment mercapto SOR13,

 \cdot R¹³ étant un radical choisi parmi le groupe constitué d'un atome d'hydrogène, un radical linéaire ou ramifié en C₁-C₂₅, un radical aryl en C₆-C₃₀, ou un radical alkylaryl dont la partie alkyle est linéaire ou ramifiée en C₁-C₂₅ et la partie aryle est en C₆-C₃₀,

5

- · un groupement nitro,
- · un atome de chlore,
- · un atome de brome.
- · et/ou un groupement cyano,
- n est un nombre entier allant de 1 à v+1, v étant la valence de l'iode,

10

15

- m est un nombre entier allant de 0 à v-1, avec n + m = v+1 ;
- (ii) et en ce que l'entité anionique borate a pour formule (II) : $[B \times_a R^3_b]^{-} (II)$

dans laquelle:

- a et b sont des nombres entiers tels que 0 ≤ a ≤ 4, 0 ≤ b ≤ 4, et a + b = 4,
- les symboles X, identiques ou différents, représentent :
 un atome d'halogène choisi parmi le chlore et/ou le fluor avec
 0 ≤ a ≤ 3,
 - une fonction OH avec $0 \le a \le 2$,

20

- et les radicaux R3, identiques ou différents, représentent :
 - · un radical phényle substitué par au moins un groupement électroattracteur tel que -CF $_3$, -OCF $_3$, -NO $_2$, CN, -SO $_2$ R 14 , -O(C=O)-R 14 , -O-C $_n$ F $_{2n+1}$, -C $_n$ F $_{2n+1}$, n étant un nombre entier compris entre 1 et 20 ou substitué par au moins 2 atomes d'halogène, en particulier le fluor,

25

· un radical aryle contenant au moins deux noyaux aromatiques tel que biphényle, naphtyle, éventuellement substitué par au moins un atome d'halogène, notamment un atome de fluor ou un groupement électroattracteur tel que -CF₃, -OCF₃, -NO₂, -CN, -SO₂R¹⁴, -O(C=O)-R¹⁴, R¹⁴ étant -O-C_nF_{2n+1}, -C_nF_{2n+1}, n étant un nombre

- entier compris entre 1 et 20 ;
- (2) et au moins une benzophénone répondant à l'une des formules (III) à (VI) suivantes :

10

15

20

25

30

dans laquelle:

- lorsque n = 1, Ar¹ représente un radical aryle contenant de 6 à 18 atomes de carbone, un radical tétrahydronaphtyle, thiényle, pyridyle ou furyle ou un radical phényle porteur d'un ou plusieurs substituants choisis dans le groupe constitué de F, Cl, Br, CN, OH, les alkyles linéaires ou ramifiés en C₁-C₁₂, CF³, -OR⁶, -OPhényle, -SR⁶, -SPhényle, -SO₂Phényle, -COOR⁶, -O-(CH₂-CH=CH₂), -O(CH₂H₄-O)_m-H, -O(C₃H₆O)_m-H, m étant compris entre 1 et 100,
- lorsque n = 2, Ar₁ représente un radical arylène en C₆-C₁₂ ou un radical phénylène-T-phénylène, où T représente -O-, -S-, -SO₂- ou -CH₂-,
- X représente un groupe -OR 7 ou -OSiR 8 (R 9) $_2$ ou forme, avec R 4 , un groupe O-CH(R 10)-,
- R_4 représente un radical alkyle linéaire ou ramifié en C_1 - C_8 non substitué ou porteur d'un groupe -OH, -OR⁶, acyloxy en C_2 - C_8 , -COOR⁶, -CF³, ou -CN, un radical alcényle en C_3 ou C_4 , un radical aryle en C_6 à C_{18} , un radical phénylalkyle en C_7 à C_9 ,
- R⁵ a l'une des significations données pour R⁴ ou représente un radical
 -CH₂CH₂R¹¹, ou encore forme avec R⁴, un radical alkylène en C₂-C₈ ou un radical oxa-alkylène ou aza-alkylène en C₃-C₉,
- R⁶ représente un radical alkyle inférieur contenant de 1 à 12 atomes de carbone,
- R⁷ représente un atome d'hydrogène, un radical alkyle en C₁-C₁₂, un radical alkyle en C₂-C₆ porteur d'un groupe -OH, -OR⁶ ou -CN, un radical alcényle en C₃-C₆, un radical cyclohexyle ou benzyle, un radical phényle éventuellement substitué par un atome de chlore ou un radical alkyle linéaire ou ramifié en C₁-C₁₂, ou un radical tétrahydropyrannyle-2,
- R⁸ et R⁹ sont identiques ou différents et représentent chacun un radical alkyle en C₁-C₄ ou un radical phényle,
- ${\bf R^{10}}$ représente un atome d'hydrogène, un radical alkyle en ${\bf C_1}$ - ${\bf C_8}$ ou un radical phényle,

10

15

20

25

- R¹¹ représent un radical -CONH₂, -CONHR⁶, -CON(R⁶)₂, -P(O)(OR⁶)₂ ou pyridyle-2;

dans laquelle :

- Ar² a la même signification que Ar¹ de la formule (III) dans le cas où n = 1.
- R¹⁵ représente un radical choisi parmi le groupe constitué d'un radica Ar², un radical -(C=O)-Ar², un radical alkyle linéaire ou ramifié en C₁-C₁₂, un radical cycloalkyle en C₆-C₁₂, et un radical cycloalkyle formant un cycle en C₆-C₁₂ avec le carbone de la cétone ou un carbone du radical Ar², ces radicaux pouvant être substitués par un ou plusieurs substituants choisis dans le groupe constitué de -F, -Cl, -Br, -CN, -OH, -CF₃, -OR⁶, -SR⁶, -COOR⁶, les radicaux alkyles linéaires ou ramifiés en C₁-C₁₂ porteur éventuellement d'un groupe -OH, -OR⁶ et/ou -CN, et les radicaux alcényles linéaires ou ramifiés en C₁-C₈;

dans laquelle:

- Ar3 a la même signification que Ar1 de la formule (III) dans le cas où n=1.
- R¹⁶, identiques ou différents, représentent un radical choisi parmi le groupe constitué d'un radical Ar³, un radical -(C=O)-Ar³, un radical alkyle linéaire ou ramifié en C₁-C₁₂, un radical cycloalkyle en C₆-C₁₂, ces radicaux pouvant être substitués par un ou plusieurs substituants choisis dans le groupe constitué de -F, -CI, -Br, -CN, -OH, -CF₃, -OR⁶, -SR⁶, -COOR⁶, les radicaux alkyles linéaires ou ramifiés en C₁-C₁₂ porteurs éventuellement d'un groupe -OH, -OR⁶ et/ou -CN, et les radicaux alcényles linéaires ou ramifiés en C₁-C₈;

dans laquelle:

- R5, identiques ou différents, nt les m^mes significations quo dans la formule (III),
- Y, identiques ou différents, représentent X et/ou R⁴.
- Z représente :

5 une liaison directe.

10

20

30

· un radical divalent alkylène en C₁-C₆, ou un radical phénylène, diphénylène ou phénylène-T-phénylène, ou encore forme, avec les deux substituants R5 et les deux atomes de carbone porteurs de ces substituants, un noyau de cyclopentane ou de cyclohexane.

· un groupe divalent -O-R12-O-, -O-SiR8R9-O-SiR8R9-O-, ou -O-SiR8R9-O-,

- $m R^{12}$ représente un radical alkylène en $m C_2$ - $m C_8$, alcénylène en $m C_4$ - $m C_6$ ou xylylène.
- et Ar4 a la même signification que Ar1 de la formule (III) dans le cas où n=1.

Avantageusement, l'entité anionique du sel d'onium est choisie parmi les espèces 15 suivantes, seul ou en mélange, de formule : [B (C₆F₅)₄]⁻,

[B (C₆H₃(CF₃)₂)₄]⁻, [B (C₆H₄OCF₃)₄]⁻, [B (C₆H₄CF₃)₄]⁻, [(C₆F₅)₂ B F₂]⁻, [C₆F₅ B F_3 , [B (C₆H₃F₂)₄].

Plus particulièrement, l'entité anionique du sel d'onium est choisie parmi les espèces suivantes, seul ou en mélange, de formules : [B(C₆F₅)₄]-, [B (C₆H₃(CF₃)₂)₄]- $[B (C_6H_4OCF_3)_4]^-$.

Pour l'entité cationique du borate d'onium, celle-ci sera avantageusement choisie parmi le groupe constitué de :

 $[(C_6H_5)_2 I]^+$ $[C_8H_{17} - O - C_6H_5 - I - C_6H_5]^+$ [C₁₂H₂₅ - C₆H₅ - I - C₆H₅]+, [(C8H₁₇ O - C₆H₅)₂ I]+, 25 $[(C_8H_{17}) - O - C_8H_5 - I - C_8H_5)]^{+}$ $[(C_{12}H_{25} - C_6H_5)_2 I]^+$ [(CH(CH₃)₂-C₆H₅-)-I-C₆H₅-CH₃]⁺, $[C_6H_4-O-C_6H_4-I-C_6H_4]+$ $[C_6H_4-(C=0)-C_6H_4-1-C_6H_4]^+$ $[C_6H_4-O-C_6H_4-I-C_6H_4-O-C_6H_4]$ + $[C_6H_4-(C=0)-C_6H_4-I-C_6H_4-(C=0)-C_6H_4]+$ $[C_6H_4-I-C_6H_4-O-CH_2-O-C(OH)-C_{12}H_{25}]^+$ et leur mélange.

Les borates d'onium faisant l'objet de la présente invention peuvent être préparés par réaction d'échange entre un sel de l'entité cationique (halogénure tel que par exemple chlorure, iodure) avec un sel de métal alcalin de l'entité anionique (sodium. lithium, potassium).

Les conditions opératoires (quantités respectives de réactifs, choix des solvants. 35 durée, température, agitation) sont à la portée d l'homme d l'art; celles-ci doivent

10

15

25

30

permettre de récupérer le borate d'onium recherché sous forme solide par filtration du précipit formé u sous f rme huileuse par extraction à l'aide d'un solvant approprié.

Les modes opératoires de synthèse des halogénures des entités cationiques de formule (I) sont connus en soi. A ce sujet, on se reportera notamment au brevet EP-0 562 897 au nom de la Demanderesse.

Les modes opératoires de synthèse des sels de métal alcalin de l'entité anionique (II) sont également connu en soi ; notamment par exemple, dans le brevet EP-0 562 897 au nom de la Demanderesse.

Dans le cadre de l'invention, de nombreux types de benzophénones peuvent être utilisés en combinaison avec le borate d'onium. A ce sujet, le type de benzophénone, employé et préféré sera fonction de l'utilisation envisagée, c'est-à-dire que, par exemple, dans le cas d'activation sous U.V., son ou ses maximum d'absorption de lumière U.V. sont adaptés avec le type d'application envisagé.

Par exemple, dans le cas où la composition à réticuler et/ou polymériser contient des pigments blancs absorbants dans le domaine des U.V., on sélectionnera une benzophénone ayant un maximum d'absorption de la lumière dans le domaine du visible.

Dans le cas d'une utilisation pour la fabrication de vernis silicone et/ou organique transparent sous activation U.V., on choisira une benzophénone dont le maximum d'absorption est superposable avec les raies d'émission de la lampe U.V..

A titre d'exemples de benzophénones, on citera notamment les produits suivants, seuls ou en mélange :

9-xanthénone; 1-4 dihydroxyanthraquinone; anthraquinone;

2-méthylanthraquinone; 2,2'-bi (3-hydroxy-1,4-naphtoquinone);

2-6 dihydroxyanthraquinone; 1-hydroxycyclohexylphénylcétone;

1,5 dihydroxyanthraquinone; 1,3-diphényl-1,3-propanedione;

5,7-dihydroxyflavone; dibenzoylperoxyde; acide 2-benzoylbenzoigue:

2-hydroxy-2méthylpropiophénone; 2-phénylacétophénone;

2,4,6-triméthylbenzoyldiphénylphosphine oxyde; anthrone;

bi(2,6 diméthylbenzoyl)-2,4,4-triméthylpentylphosphine oxyde;

poly [,1,4-benzènedicarbonyl- alt-bis (4-phénoxyphényl)méthanone];

10

15

20

25

30

De préférence, le ou les benzophénones sont choisis parmi le groupe constitué de :

4,4'diméthoxybenzoïne;

phénanthrènequinone :

2-éthylanthraquinone;

2-méthylanthraquinone;

1,8-dihydroxyanthraguinone;

dibenzoylperoxyde;

2,2-diméthoxy-2-phénylacétophénone :

benzoine;

2-hydroxy-2méthylpropiophénone;

benzaldéhyde ;

4-(2-hydroxyéthoxy)phényl-(2-hydroxy-2-méthylpropyl) cétone :

benzoylacétone;

et leur mélange.

A titre d'exemples de produits commerciaux de benzophénones, on peut citer les produits commercialisés par la société CIBA-GEIGY : Irgacure 369, Irgacure 651, Irgacure 907, Darocure 1173, etc..

Les systèmes amorceurs selon l'invention peuvent être mis en oeuvre, tels qu'ils sont obtenus à l'issue de leur procédé de préparation, par exemple sous forme solide ou liquide ou en solution dans un solvant approprié, dans des compositions de monomères, oligomères et/ou polymères qui sont destinées à être polymérisées et/ou réticulées par voie cationique et sous activation, par exemple U.V..

Aussi selon un autre de ces aspects, la présente invention concerne, dans son second objet, des compositions comprenant au moins une matrice à base d'un monomère, d'un oligomère et/ou d'un polymère polymérisable et/ou réticulable par voie cationique, une quantité catalytiquement efficace d'au moins un système amorceur du type de ceux conformes à l'invention et décrits ci-avant, éventuellement un accélérateur de polymérisation et/ou réticulation, et éventuellement encore un ou plusieurs additifs choisis parmi ceux généralement connus dans les applications auxquelles sont destinées ces compositions.

Par quantité catalytique efficace d'amorceur, on entend selon l'invention la quantité suffisante pour amorcer la polymérisation et/ou la réticulation. Cette quantité est général m nt comprise entre 0,01 et 20 parti s en poids, I plus souvent ntre 0,05 et 8 parties en poids pour polym´ris r et/ou réticul r 100 parties en poids de la matrice. Au sein du système amorceur selon l'invention, I rapport en poids borate d' nium/benzoph´non est compris ntre 0,1 et 10.

10

15

20

25

30

35

Selon une première disposition intéressante de l'invention prise dans son s cond objet, la composition polym´risabl et/ou réticulabl st à base de monomère(s) et/ou oligomère(s) et/ou polymère(s), de nature organique, appartenant à au moins l'une des espèces organiques suivantes :

- α1.1 époxydes cycloaliphatiques, pris à eux seuls ou en mélange entre eux :
 - les époxydes du type 3,4-époxycyclohexylméthyl-3',4'-époxycyclo-hexane carboxylate :

- ou Bis(3,4-époxycyclohéxyl)adipate, étant particulièrement préférés ;
- α1.2 époxydes non cycloaliphatiques, pris à eux seuls ou en mélange entre eux ;
 - les époxydes du type de ceux résultant de la condensation de Bisphénol A et d'épichlorhydrine et du type :
 - di et triglycidyléthers de Bisphénol A alcoxylé de 1,6 hexanediol, de glycérol, de néopentylglycol et de propane triméthylol,
 - ou diglycidyléthers de Bisphénol A,
 - les époxydes d'alpha-oléfines, époxyde NOVOLAC, huile de soja et de lin époxydée, polybutadiène époxydé, et plus généralement un polymère diénique époxydé et monohydroxylé, saturé ou insaturé, décrit dans la demande de brevet WO-A-96/11215 (dont le contenu est incorporé en totalité par référence), obtenu par époxydation d'un polymère diénique de base de formule :

$$(HO)_{X}$$
-J-L_Z-K- $(OH)_{y}$ ou $(HO)_{X}$ -J-K-L- $(OH)_{y}$ dans laquelle :

+ les symboles J et K représentent des séquences ou blocs consistant dans des : homopolymères obtenus par polymérisation d'un monomère diène conjugué ayant de 4 à 24 atomes de carbone (comme par exemple : le butadiène-1,3, l'isoprène ou méthyl-2 butadiène-1,3, le phényl-2 butadiène-1,3, le pentadiène-1,3, le diméthyl-3,4 hexadiène-1,3, le diéthyl-4,5 octadiène-1,3) ; copolymères obtenus par copolymérisaiton d'au moins deux des diènes conjugués précités entre eux ; ou des copolymères obtenus par copolymérisation d'au moins un des diènes conjugués précités avec au moins un mon mère insaturé éthyléniqu ment choisi parmi les monomères vinyl s aromatiques ayant de 8 à 20 atom s d carbone (comm par exemple : l styrène, l'ortho-, méta- ou paraméthylstyrène, l vinyl mésitylèn , le vinyle naphtalène) ;

10

15

20

- + le symbole L représente une séquence ou un bloc polymère obtenu à partir des monomères vinyles aromatiqu s précités ;
- + x et y sont des nombres égaux à zéro ou 1, x étant égal à zéro quand y = 1 et x étant égal à 1 quand y = 0 ; et z est un nombre égal à zéro ou 1 : ledit polymère diénique de base, d'une part avant époxydation, pouvant être partiellement saturé par hydrogénation, et d'autre part après époxydation, contenant de 0,1 à 7 milliéquivalents de fonction époxy par gramme de polymère diénique époxydé et monohydroxylé [comme exemple de polymères diéniques époxydés et monohydroxylés on citera les espèces obtenues par époxydation des polymères diéniques de base suivants : Is-Bu-OH. Is-St/Bu-OH, is-EtBu-OH ou Is-St/EtBu-OH, où : le sybmole Is est un bloc polyisoprène, le symbole Bu est un bloc polybutadiène, le symbole EtBu est un bloc poly(éthylène-butylène) (issu de l'hydrogénation sélective d'un bloc polybutadiène), le symbole St est un bloc polystyrène (l'ensemble St/Bu représentant un bloc à base d'un copolymère statistique obtenu par copolymérisation de butadiène-1,3 et de styrène), et OH est un groupe hydroxyle (l'ensemble -EtBu-OH signifiant, par exemple, que le donneur de groupe hydroxyle est attaché au bloc polybutadiène hydrogéné)], étant particulièrement préférés :
- alcényl-éthers, linéaires ou cycliques, pris à eux seuls ou en mélange entre eux :
 - les vinyl-éthers, en particulier l'éther de triéthylène glycol divinylique, les éthers vinyliques cycliques ou les tétramères et/ou dimères d'acroléines, et le vinyl-éther de formule suivante :

- · les propényl-éthers.
- et les butényl-éthers étant, plus spécialement préférés,
- 30 α3 les polyols : pris à eux seuls ou en mélange entre eux, et de préférence le composé de formule ci dessous, I étant supérieur à 1 et inférieur à 100 :

WO 99/05181 PCT/FR98/01620

dans laquelle R16 est un radical alkyl linéaire ou ramifié en C1-C30.

Selon une deuxième disposition intéressante de l'invention prise dans son second objet, la composition polymérisable et/ou réticulable est à base de monomère(s) et/ou oligomère(s) et/ou polymère(s), de nature polyorganosiloxane, constitués de motifs de formule (VII) et terminés par des motifs de formule (VIII) ou cycliques constitués de motifs de formule (VIII) représentées ci-dessous :

dans lesquelles:

5

15

20

25

10 - les symboles R¹⁷ sont semblables ou différents et représentent :

 un radical alkyle linéaire ou ramifié contenant 1 à 8 atomes de carbone, éventuellement substitué par au moins un halogène, de préférence le fluor, les radicaux alkyle étant de préférence méthyle, éthyle, propyle, octyle et 3.3.3-trifluoropropyle.

 un radical cycloalkyle contenant entre 5 et 8 atomes de carbone cycliques, éventuellement substitué.

- un radical aryle contenant entre 6 et 12 atomes de carbone pouvant être substitué, de préférence phényle ou dichlorophényle,
- une partie aralkyle ayant une partie alkyle contenant entre 5 et 14 atomes de carbone et une partie aryle contenant entre 6 et 12 atomes de carbone, substituée éventuellement sur la partie aryle par des halogènes, des alkyles et/ou des alkoxyles contenant 1 à 3 atomes de carbone,

- les symboles Y sont semblables ou différents et représentent :

- le groupement R¹⁷.
- · un radical hydrogène,

et/ou un groupement organofonctionnel réticulable par voie cationique, de préférence un groupement époxyfonctionnel t/ou vinyloxyfonctionnel, relié au silicium du polyorganosiloxane par l'intermédiaire d'un radical divalent

10

15

20

30

contenant de 2 à 20 atomes d carbone et pouvant contenir au moins un hétéroatome, de préférence de l'oxygène,

et l'un au moins des symboles Y' représentant un groupement organique fonctionnel réticulable par voie cationique.

Selon une variante avantageuse de l'invention, au moins un des symboles R¹⁷ des polyorganosiloxanes utilisés dans le cadre de l'invention en tant que monomère(s), oligomère(s) ou polymère(s) représente un radical phényle, tolyle ou dichlorophényle.

Selon une autre variante avantageuse de l'invention, les polyorganosiloxanes utilisés comportent de 1 à 10 groupements organofonctionnels par mole. Pour un groupement époxyfonctionnel cela correspond à des taux d'époxyde variant de 20 à 2000 meq. molaire/100 g de polyorganosiloxane.

Les polyorganosiloxanes linéaires peuvent être des huiles de viscosité dynamique à 25°C, de l'ordre de 10 à 10 000 mPa.s à 25°C, généralement de l'ordre de 50 à 5 000 mPa.s à 25°C et, plus préférentiellement encore, de 100 à 600 mPa.s à 25°C, ou des gommes présentant une masse moléculaire de l'ordre de 1 000 000.

Lorsqu'il s'agit de polyorganosiloxanes cycliques, ceux-ci sont constitués de motifs (VII) qui peuvent être, par exemple, du type dialkylsiloxy ou alkylarylsiloxy. Ces polyorganosiloxanes cycliques présentent une viscosité de l'ordre de 1 à 5 000 mPa.s.

Comme exemples de radicaux divalents reliant un groupement organofonctionnel du type époxy, on peut citer ceux inclus dans les formules suivantes :

$$-CH_{2}-CH_{2}$$

$$-CH_$$

S'agissant des groupements organofonctionnels du type alkényléther, on peut mentionner ceux contenus dans les formules suivantes :

$$-(CH_2)_3-O-CH=CH_2$$
; $-(CH_2)_3-O-R^{18}O-CH=CH_2$; $-(CH_2)_3-O-CH=CH-R^{19}$

25 dans lesquelles :

- R¹⁸ représente :
 - un radical alkylène linéaire ou ramifié en C₁-C₁₂, éventuellement substitué,
 - ou un radical arylèn en C₅-C₁₂, d préférence ph'nylèn , éventuellem nt substitué, de préférence par un à trois groupements alkyles en C₁-C₆,
- R¹⁹ r présente un radical alkyle linéaire ou ramifié en C₁-C₆.

10

15

20

25

30

35

Selon une troisièm autre disposition intéressante de l'invention prise dans son second objet, la composition polymérisable et/ou réticulable est à base de monomère(s) et/ou oligomère(s) et/ou polymère(s), de nature polyorganosiloxane et de nature organique, notamment hydrocarbonée.

Selon une quatrième autre disposition intéressante de l'invention prise dans son second objet, la composition polymérisable et/ou réticulable est à base de monomère(s) et/ou oligomère(s) et/ou polymère(s), de nature polyorganosiloxane et/ou de nature organique, notamment hydrocarbonée, et comprend en outre des monomères, oligomères et/ou polymères à groupements organofonctionnels d'espèce acrylate; et notamment acrylates époxydés, acrylo-glycéro-polyester, acrylates multifonctionnels, acrylo-uréthanes, acrylo-polyéthers, acrylo-polyesters, polyesters insaturés, acrylo-acryliques.

Ces espèces acryliques, éventuellement en mélange, utilisables avec des monomère(s) et/ou oligomère(s) et/ou polymère(s) de nature polyorganosiloxane et/ou de nature organique, sont choisies de préférence parmi les espèces suivantes : triacrylate de triméthylolpropane, diacrylate de tripropylèneglycol, glycidylpropyl triacrylate, pentaérythritol triacrylate, triméthylolpropane éthoxylatetriacrylate, Bisphénol-A éthoxylate diacrylate, tripropylèneglycol diacrylate, triéthylèneglycol diacrylate, tetraéthylèneglycoldiacrylate, polyethers acrylates, polyesters acrylates (par exemple le produit Ebecryl 810 de la société UCB-Radcure), et époxy acrylates (par exemple le produit Ebecryl 600 de la société UCB-Radcure).

Il est rappelé que, dans le présent mémoire, l'expression "acrylique" englobe des composés comprenant la fonction de type CH₂=CH-COO- ou de type CH₂=C(CH₃)-COO-.

Classiquement les compositions selon l'invention, prises dans son second objet, peuvent comprendre, en outre, un ou plusieurs additifs choisis en fonction de l'application finale visée.

Quand la composition polymérisable et/ou réticulable est à base d'au moins l'une des espèces organiques $\alpha_{1.1}$ à α_3 , en mélange éventuellement avec des monomères, oligomères et/ou polymères de nature acrylique, les additifs peuvent être notamment des composés éventuellement sous forme de polymères, à hydrogènes mobiles comme des alcools, des glycols et des polyols, utiles pour améliorer la flexibilité du matériau durci après polymérisation et/ou réticulation ; on peut citer par exemple les polycaprolactones-polyols, en particulier le polymère obtenu au départ d 2-éthyl-2-(hydroxyméthyl)-1,3-propane-di I et de 2-oxépanone tel que le produit TON POLYOL-301 commercialis par la Société UNION CARBIDE, ou les autres polymères commerciaux TONE POLYOL 201 et TONE POLYOL 12703 de la sociét UNION CARBIDE. En outre, dans ce cas, on peut

10

15

25

citer comme additifs, les diacides à longue chaîne alkyle, les esters gras d'acides insaturés époxydés ou non, par exemple l'huile d soja époxydée ou l'huil de lin p xydée, l 2-éthylhexylester époxydí, l 2-éthylhexyl époxy stéarate, l'époxystéarate d'octyle, les esters acryliques époxydés, les acrylates d'huile de soja époxydés, les acrylates d'huile de lin époxydés, l'éther diglycidique de glycolpolypropylène, les époxydes aliphatiques à longue chaîne, etc..

Il peut s'agir encore, quelle que soit la nature de la matrice polymérisable, par exemple : de charges minérales telles que notamment des fibres synthétiques (polymères) ou naturelles broyées, du carbonate de calcium, du talc, de l'argile, du dioxyde de titane, de la silice de précipitation ou de combustion ; de photosensibilisateurs, notamment à base de thioxanthone (par exemple : isopropylthioxanthone, diéthyl thioxanthone, et chloro-1 propoxy-4 thioxanthone) ; de colorants solubles ; d'inhibiteurs d'oxydation et de corrosion ; de modulateur d'adhérence organosiliciques ou non ; d'agents fongicides, bactéricides, anti-microbiens ; et/ou de tout autre matériau n'interférant pas avec l'activité catalytique de l'amorceur et n'absorbant pas dans la gamme de longueur d'onde choisie pour la photoactivation.

Les Exemples et Tests suivants sont donnés à titre illustratif. Ils permettront notamment de mieux comprendre l'invention et de faire ressortir tous ses avantages et entrevoir quelques unes de ses variantes de réalisation.

20 **EXEMPLES et TESTS**

Les produits utilisés dans les exemples sont les suivants :

10

15

20

M1 est un produit commercialisés sous la référence UVR6105 ou UVR6110 par la société UNION CARBIDE.

P1 est l'amorceur de type borate d'onium, et P2 est l'amorceur de type benzophénone. Le chloro-1 propoxy-4 thioxanthone est utilisé comme photosensibilisateur PS1.

L'alcool utilisée T1, est le produit TONE POLYOL 301 de la société UNION CARBIDE.

Exemple 1 : préparation d'encres blanches

Une base pigmentaire concentrée ("B.P.C") est obtenue par dispersion de 600 parties d'oxyde de titane de type rutile commercialisé sous la référence R960 par la société DUPONT DE NEMOURS, et 400 parties de résine époxyde cycloaliphatique M1 dans un réacteur de 2 litres muni d'une agitation centrale tripale.

La base pigmentaire concentrée est obtenue par mélange pendant 30 mn avec la poudre d'oxyde de titane coulée auparavant sur la résine M1 préchauffée à 40°C.

La base pigmentaire est ensuite broyée sur un broyeur tricylindre de façon à obtenir une dispersion dont la granulométrie est inférieure à 10 μ m.

Cette base pigmentaire est stable au stockage. A une température pouvant être comprise entre -20°C et 100°C, ses propriétés ne sont pas affectées pendant plusieurs mois.

Quatre solutions d'amorceurs sont préparées :

Réactifs	Solution 1	Solution 2	Solution 3	Solution 4
P1	9,4	9,6	8	7,5
P2	0	9,6	9,5	7,5
PS1	9,4	9,6	9,5	9
Isopropanol	15,6	4,8		0
M1	65,6	66,4	68,2	76

A partir d ces quatre solutions d'amorceurs, quatre formulations d'encres blanches sont préparées :

Réactifs	Formulation 1	Formulation 2	Formulation 3	Formulation 4
Solution 1	6,4	0	0	0
Solution 2	0	6,3	0	. 0
Solution 3	0	0	6,3	0
Solution 4	0	0	0	6,6
M1	6,4	6,5	6,5	6,2
B.P.C	81,7	81,7	81,7	81,7
T1	4	4	4	4
BYK361*	1,5	1,5	1,5	1,5
Total	100	100	100	. 100
P1%	0,6	0,6	0,5	0,5

(*Agent de surface commercialisé par la société BYK)

Le séchage des encres est évalué sur un banc U.V. de la société IST muni de deux lampes de puissance 200 W/cm : une lampe au mercure dopée gallium et une lampe au mercure non dopée travaillant à puissance maximale.

Test 1 : résistance aux solvants des encres blanches formulées à l'exemple 1

On mesure la résistance aux solvants des encres obtenues après séchage de films de 12 µm sur une barre d'enduction manuelle de référence n°2 de la société ERICHSEN en notant le nombre d'aller-retours nécessaires effectués à l'aide d'un chiffon imbibé de solvant pour désagréger la couche d'encre après 24 heures de séchage.

Le solvant utilisé est la méthyléthylcétone (MEK).

5 '

10

15

20

25

L'adhésion des couches d'encre est mesurée selon le test normalisé d'errosshatch NFT30-038".

Réactifs (%)	Formulation 1	Formulation 2	Formulation 3	Formulation 4
vitesse limite(m/mn)	7	40	25	30
V(m/mn)	3	15	10	15
MEK	>100	>100	>100	>100
Adhésion*	0	0	0	0

La formulation 1 ne renfermant pas d'amorceur radicalaire P2 sèche très difficilement.

Les formulations 2, 3 et 4 comprenant le système amorceur P1 et P2 sèchent à des vitesses beaucoup plus élevées, ce qui les rend notamment convenables par exemple pour être utilisées sur une chaîne de fabrication de boîtiers aérosols.

A titre de comparaison, les formulations 1 et 4 ont été préparées en remplaçant l'amorceur P1 par le photoamorceur P3.

Pour les formulations 1 et 4 avec l'amorceur P3, on n'observe aucun séchage pour des concentrations identiques à celle de P1.

Pour obtenir un séchage correct, il faut une concentration en photoamorceur P3 au moins supérieure à 1.5% en poids, avec ou sans amorceur radicalaire P2.

En outre, les revêtements obtenus avec une concentration en photoamorceur P3 supérieure à 1,5% en poids sont colorés (couleur rose).

Le photoamorceur P3 est donc bien moins performant que le photoamorceur P1, l'acide libéré sous rayonnement à partir du sel d'antimoine étant bien moins performant que dans le cas de l'anion borate. En outre, l'ajout de benzophénone P2 n'améliore pas les performances de l'amorceur P3, contrairement aux performances optimisées du couple P1 et P2.

Exemple 2 : préparations de résines époxydes

Des formulations de résines époxydes pour matériaux composites sont obtenues en mélangeant une solution d'amorceur P1, P2 et le photosensibilisateur PS1 avec une résine M2.

La résin 'poxyde **M2** est à base d Bisphénol-A diglycidyléther et de s s homologues supérieurs obt nus par cond nsation du Bisphénol-A- sur l''pichlorhydrin .

15

25

La résine **M2** de viscosité 20 000 mPa.s est diluée avec 13% d'isopropanol ou 13% de méthyléthylcétone afin d'abaisser sa viscosité à environ 300 mPa.s.

On rajoute à 100 parties de résine M2, 5,51 parties d'une solution d'amorceur contenant 9,07% de P1; 9,07% de PS1; 9,07% de P2 et 72,8% de résine M1.

On mélange le tout afin d'obtenir un mélange homogène.

On imprègne ensuite six pièces de tissu de verre de 300 g /m² avec la résine contenant la solution d'amorceur de façon à obtenir après évaporation du solvant, pendant 30 mn, sous vide de 100 mm Hg et à 80°C, un taux d'imprégnation compris entre 30 et 50%.

A ce stade, les pièces de tissus préimprégnées obtenues sont stables à température ambiante et à l'abri de la lumière pendant plusieurs jours, c'est-à-dire, on n'observe pas de polymérisation.

Le séchage des pièces de tissus préimprégnées est ensuite effectué sous U.V. sans traitement thermique ultérieur ou avec un traitement thermique ultérieur.

A. Séchage avec traitement thermique

On applique à chaque face des 6 tissus préimprégnés une dose U.V. telle que décrite à l'exemple 1 pour une vitesse de défilement du banc U.V. de 30 m/mn.

On empile ensuite les 6 tissus et on presse le tout 10 minutes à 90°C sous 5 10⁵ 20 Pascals.

On obtient après démoulage un matériau composite d'environ 2 mm d'épaisseur dont la température de transition vitreuse mesurée par analyse différentielle calorimétrique est de 120°C.

On visualise également le taux d'époxydes résiduels n'ayant pas réagi en mesurant une éventuelle chaleur de réaction.

Après plusieurs essais de reproductibilité on enregistre un taux d' poxy résiduels inférieur à 10% et le plus souvent inféri ur à 5%.

10

B. Séchage sous U.V. seul

Les 6 carrés de tissu de verre imprégnés sont maintenus plaqués sur une plaque inox entre deux feuilles d_ polyester en appliquant un vide aux carrés de 100 mm Hg.

On irradie ensuite l'ensemble maintenu sous vide à travers la feuille polyester pendant cinq secondes avec deux lampes. La première lampe est une lampe Hg/Ga de 200 W/cm utilisée à pleine puissance et la seconde lampe est une lampe Hg de 200 W/cm fonctionnant à 80 W/cm pour ne pas trop sécher en surface.

Après refroidissement à température ambiante, on obtient un matériau composite dont la température de transition vitreuse se situe autour de 120°C et renfermant moins de 10% de fonctions époxydes résiduelles.

Exemple 3 : préparation de compositions pour vernis organique et. évaluation sur banc U.V.

On étudie la réticulation des formulations 5 et 6 suivantes :

Réactifs	Formulations 5	Formulations 6	
Résine M1	84 parties	84 parties	
Alcool T1	15 parties	15 parties	
Agent de surface BYK361	1 partie	1 partie	
P1	0.25 partie	0.25 partie	
P2	1 partie	0 partie	
isopropanol	0 partie	1 partie	

A. La réticulation est effectuée en couche épaisse de 2 mm en utilisant une lampe à arc haute pression Hg reliée à une fibre optique de 8 mm de diamètre commercialisée par la société EFOS (Ultracure 100SS).

La fibre optique est reliée à la cuve de mesure d'un appareillage RAPRA "Vibrating Needle Curemeter" (V.N.C.). L'aiguille vibrante plonge dans la matrice époxy (1 cm³) et on mesure une différence de potentiel selon le degré de réticulation à une fréquence donnée de vibration qui est de 40 Hz.

Lorsqu'on irradie le milieu atteint le point de gel très rapidement. Cela se traduit par une variation du potentiel mesuré. On enregistre la courbe de variation de potentiel tout au long de l'exposition U.V. et on reporte la valeur du temps qui correspond à 95% de la variation totale (= T95).

Dans le cadre de nos essais, la figure 1, ci-dessous, indique les résultats enregistrés au RAPRA en couche épaisse pour les formulations 5 et 6. Selon cette figure T95 de la formulation 5 avec la benzophénone P2 est très inférieur à celui de la formulation 6 sans benzophénone P2, ce qui signifie que le système amorceur P2 et P1 active fortement la réticulation.

15

20

Figure 1

m i

10

15

25

5

P1:0,25% 600 mW/cm²

B. Des films de 12 μm ont été préparés avec un support polyester sur une barre d'enduction manuelle de référence n°2 de la société ERICHSEN. Les résultats conduisent aux mêmes conclusions que précédemment, c'est-à-dire le système benzophénone P2 et borate d'onium P1 accélère fortement la réticulation; en effet, en accord avec la figure 2, la vitesse de séchage de la formulation 5 est deux fois plus élevée que celle de la formulation 6.

20 Exemple 4 : préparation de composition pour vernis silicone et évaluation sur banc U.V.

Une formulation 7 de silicone photoréticulable est préparée en mélangeant 100 parties d'une huile silicone H1 avec deux parties d'une solution à 20% d'amorceur P1 dans l'amorceur P2.

Cette formulation 7 est homogénéisée pendant cinq minutes par agitation magnétique.

On 'valu alors I potentiel de séchage de cette formulation 7 sous la forme d'un rev^tement de 1 micromètre sur un papier de type glassine (SIBILLE) avec une vitesse de défilement de 100 m/mn en présence d'une source U.V. mercure à arc avec une puissance de 120 W/cm. On a alors :

- une dose de 0.05 J/cm²; U.V.-A (320-390 nm)
- une dose de 0.04 J/cm² U.V.-B (280-320 nm)
- et une dose de 0.005 J/cm², U.V.-C (250-260 nm).

La formulation silicone 7 sèche parfaitement et on n'observe aucune trace au doigt. Le revêtement obtenu ne présente aucune tendance au gommage lorsqu'on le soumet à un test de friction avec l'index sur plus de dix aller-retours.

A titre comparatif, on prépare une formulation silicone 7 sans amorceur P2, en mélangeant 100 parties d'une huile silicone H1 avec deux parties d'une solution à 20% d'amorceur P2 dans l'isopropanol. Le séchage obtenu est bon, toutefois, on observe une nette tendance au gommage lorsqu'on soumet le support siliconé au test de friction avec l'index.

Exemple 5 : composition pour vernis silicone et évaluation de son degré de réticulation

La composition à base de silicone est identique à celle de la formulation 7. A titre de comparaison, une formulation 7" sans amorceur P2 est préparée en mélangeant 100 parties d'une huile silicone H1 avec 2 parties d'une solution à 20% d'amorceur P2 dans le diacétone alcool.

Les tests ont été réalisés à l'aide d'un appareil d'enduction sur papier équipée d'une lampe FUSION H travaillant à 120W/ cm.

- i) Après enduction sur papier de type glassine (SIBILLE) à une vitesse de 100 m/mn, on mesure les matières extractibles dans l'hexane. Pour la formulation 7, on obtient seulement 4% de matières extractibles tandis que pour la formulation 7", on obtient 11.3% de matières extractibles ; ce qui signifie que la réticulation du revêtement est plus importante à partir de la formulation 7.
- ii) les papiers enduits obtenus respectivement à partir de la formulation 7 et de la formulation 7" sont ensuite mis en contact avec un papier adhésif TESA 4970. Les forces de pelage ont été mesurées après 20 heures et 6 jours à une température de 70°C.

Pour le papier enduit à partir de la formulation 7, la force de pelage est de 30 g/m après 20 heures, et de 40 g/m après 6 jours.

Pour I papier enduit à partir de la formulation 7", la force de pelage est de 30 g/m après 20 h ures, et de 80 g/m après 6 jours.

5

10

15

20

25

Exemple 6: composition pour vernis silicone et évaluation sur banc U.V.

1) Préparation des solutions d'amorceur(s) suivantes :

Ingrédients (1)	Solution A	Solution B	Solution C	Solution D
P1 (2)	20	-	10,45	
P4 (3)		20		20
P2 (4)			20,90	40
Solvant	méthyléthylcétone 80	méthyléthylcétone 80	diisopropyl- naphtalène 68,65	méthyléthylcétone 40

- (1) Les diverses proportions sont exprimées en parties en poids.
- 5 (2) Amorceur de type borate d'onium dont la formule est indiquée ci-avant
 - (3) Amorceur de type borate d'onium dont la formule est :

(4) Amorceur possédant reste benzoyle dont la formule est indiquée ci-avant.

10

2) A partir de ces quatre solutions d'amorceur(s), quatre formulations (numérotées 8, 9, 10 et 11) de vernis organique sont préparées :

Ingrédients (5)	Formulation 8 (témoin)	Formulation 9 (témoin)	Formulation 10	Formulation 11
Résine époxyde M3 (6)	80	80	80	. 84
Diisopropylnaphtalène	20	20	20	16
Solution (A, B, C ou D)	Solution A 2	Solution B 2	Solution C 4	Solution D
P1 (7)	0,5 %	_	0,52 %	· _
P4 (7)	-	0,5 %	_	0,48 %
P2 (7)	-	_	1,05 %	0,95 %

- (5) Les diverses proportions sont xprimées en parties en poids.
- (6) Polymère diéniqu linéaire, époxydé et monohydroxylé, obtenu par époxydation du polymère diénique de base de structure Is-EtBu-OH, possédant 1,49 milliéquivalents de fonction époxyde et 0,17 milliéquivalent de fonction OH par gramme ; ce polymère diénique époxydé et hydroxylé est commercialisé par la société SHELL sous la dénomination KRATON® EKP 207.
- (7) On indique ici le pourcentage en poids d'amorceur exprimé par rapport à la matrice M3 à photopolymériser.

Des essais de réticulation en couche épaisse de 2 mm sont réalisés sur un appareil RAPRA en reproduisant le mode opératoire décrit ci-avant dans l'exemple 3, partie A.

Les résultats obtenus, exprimés en terme de T95, sont rassemblés dans le tableau suivant :

Formulation	8	9	10	11
T 95 en minutes	1,5	1,6	0,5	1

15

20

25

5

On peut observer que l'emploi du co-amorceur à reste benzoyle P2 active fortement les amorceurs P1 (formulation 10) et P4 (formulation 11).

3) Test de réactivité en couche mince :

La solution C décrite ci-avant au §1) est utilisée à raison de 1 partie en poids pour 100 parties en poids de matrice époxyde M3. On mélange avec le système photoamorceur de façon à obtenir un mélange limpide.

On sèche un film de 12 µm appliqué sur une feuille d'aluminium d'épaisseur 0,1 mm à l'aide d'un convoyeur équipé d'une lampe au mercure à arc fonctionnant à 80 W/cm à une vitesse de 100 m/min. Le produit est non collant en surface ("tack-free") en sortie de machine.

Un essai comparatif est réalisé en l'absence d'amorceur P2 à reste benzoyle, au départ de la solution A. Le produit est collant en surface ("tacky") en sortie de machine.

10

15

20

25

30

35

REVENDICATIONS

- 1. Système amorceur de polymérisation et/ou de réticulation comprenant :
 - (1) au moins un borate d'onium dont :

(i) l'entité cationique est choisie parmi les sels d'onium de formule (I) $[(R^1)_{n^-} I_{-}(R^2)_{m}]^+ \qquad (I)$

formule dans laquelle :

- les radicaux R¹, identiques ou différents, représentent un radical aryle carbocyclique ou hétérocyclique en C₆-C₂₀, ledit radical hétérocyclique pouvant contenir comme hétéroéléments de l'azote et/ou du soufre,
- les radicaux R², identiques ou différents, représentent R¹, un radical alkyle linéaire ou ramifié en C₁-C₃₀, ou un radical alkényle linéaire ou ramifié en C₁-C₃₀;
- lesdits radicaux R¹ et R² étant éventuellement substitués par :
 - · un groupement alkyle linéaire ou ramifié en C₁-C₂₅,
 - · un groupement alcoxy OR13,
 - · un groupement cétonique -(C=O)-R13
 - · un groupement ester ou carboxylique -(C=O)-O- R13,
 - · un groupement mercapto SR13,
- · un groupement mercapto SOR13,
 - \cdot R¹³ étant un radical choisi parmi le groupe constitué d'un atome d'hydrogène, un radical linéaire ou ramifié en C₁-C₂₅, un radical aryl en C₆-C₃₀, ou un radical alkylaryl dont la partie alkyle est linéaire ou ramifiée en C₁-C₂₅ et la partie aryle est en C₆-C₃₀,
 - · un groupement nitro,
 - · un atome de chlore.
 - · un atome de brome,
 - · et/ou un groupement cyano,
 - n est un nombre entier allant de 1 à v+1, v étant la valence de l'iode,
 - m est un nombre entier allant de 0 à v-1, avec n + m = v+1;
 - (ii) et en ce que l'entité anionique borate a pour formule (II) :

$$[B X_a R^3 h]^- (II)$$

'dans laquelle:

- a et b sont des nombres entiers tels que 0 ≤ a ≤ 4, 0 ≤ b ≤ 4, et
 a + b = 4.
- les symboles X, identiques ou différents, représentent :

10

15

- un atome d'halogène choisi parmi le chlore et/ou l fluor avec $0 \le a \le 3$,
- une fonction OH avec $0 \le a \le 2$,
- et les radicaux R3, identiques ou différents, représentent :
 - · un radical phényle substitué par au moins un groupement électroattracteur tel que -CF₃, -OCF₃, -NO₂, CN, -SO₂R¹⁴, -O(C=O)-R¹⁴, -O-C_nF_{2n+1}, -C_nF_{2n+1}, n étant un nombre entier compris entre 1 et 20 ou substitué par au moins 2 atomes d'halogène,

en particulier le fluor,

· un radical aryle contenant au moins deux noyaux aromatiques tel que biphényle, naphtyle, éventuellement substitué par au moins un atome d'halogène, notamment un atome de fluor ou un groupement électroattracteur tel que -CF₃, -OCF₃, -NO₂, -CN, -SO₂R¹⁴, -O(C=O)-R¹⁴, R¹⁴ étant -O-C_nF_{2n+1}, -C_nF_{2n+1}, n étant un nombre entier compris entre 1 et 20 ;

(2) et au moins une benzophénone répondant à l'une des formules (III) à (VI) suivantes :

dans laquelle:

20

- lorsque n = 1, Ar¹ représente un radical aryle contenant de 6 à 18 atomes de carbone, un radical tétrahydronaphtyle, thiényle, pyridyle ou furyle ou un radical phényle porteur d'un ou plusieurs substituants choisis dans le groupe constitué de F, Cl, Br, CN, OH, les alkyles linéaires ou ramifiés en C₁-C₁₂, - CF³, -OR⁶, -OPhényle, -SR⁶, -SPhényle, -SO₂Phényle, -COOR⁶, -O-(CH₂-CH=CH₂), -O(CH₂H₄-O)_m-H, -O(C₃H₆O)_m-H, m étant compris entre 1 et 100.

25

- lorsque n = 2, Ar₁ représente un radical arylène en C₆-C₁₂ ou un radical phénylène-T-phénylène, où T représente -O-, -S-, -SO₂- ou -CH₂-,
- X représ nte un groupe -OR 7 ou -OSiR 8 (R 9) $_2$ ou forme, avec R 4 , un groupe O-CH(R 10)-,

- R₄ représent un radical alkyl linéaire ou ramifié en C₁-C₈ non substitué u porteur d'un groupe -OH, -OR⁶, acyloxy en C₂-C₈, -COOR⁶, -CF³, ou -CN, un radical alcényle en C₃ ou C₄, un radical aryle en C₆ à C₁₈, un radical phénylalkyle en C₇ à C₉,

5

- R⁵ a l'une des significations données pour R⁴ ou représente un radical
 -CH₂CH₂R¹¹, ou encore forme avec R⁴, un radical alkylène en C₂-C₈ ou un radical oxa-alkylène ou aza-alkylène en C₃-C₉.
- R⁶ représente un radical alkyle inférieur contenant de 1 à 12 atomes de carbone,

10

- R⁷ représente un atome d'hydrogène, un radical alkyle en C₁-C₁₂, un radical alkyle en C₂-C₆ porteur d'un groupe -OH, -OR⁶ ou -CN, un radical alcényle en C₃-C₆, un radical cyclohexyle ou benzyle, un radical phényle éventuellement substitué par un atome de chlore ou un radical alkyle linéaire ou ramifié en C₁-C₁₂, ou un radical tétrahydropyrannyle-2,

15

20

- R⁸ et R⁹ sont identiques ou différents et représentent chacun un radical alkyle en C₁-C₄ ou un radical phényle,
- R¹⁰ représente un atome d'hydrogène, un radical alkyle en C₁-C₈ ou un radical phényle,
- R¹¹ représente un radical -CONH₂, -CONHR⁶, -CON(R⁶)₂, -P(O)(OR⁶)₂ ou pyridyle-2;

Ar² R¹⁵

dans laquelle:

 - Ar² a la même signification que Ar¹ de la formule (III) dans le cas où n = 1,

25

30

- R¹5 représente un radical choisi parmi le groupe constitué d'un radical Ar², un radical -(C=O)-Ar², un radical alkyle linéaire ou ramifié en C₁-C₁₂, un radical cycloalkyle en C₆-C₁₂, et un radical cycloalkyle formant un cycle en C₆-C₁₂ avec le carbone de la cétone ou un carbone du radical Ar², ces radicaux pouvant être substitués par un ou plusieurs substituants choisis dans le groupe constitué de -F, -Cl, -Br, -CN, -OH, -CF₃,, -OR⁶, -SR⁶, -COOR⁶, les radicaux alkyles linéaires ou ramifiés en C₁-C₁₂ porteur éventuellement d'un groupe -OH, -OR⁶ et/ou -CN, et l's radicaux alcényl s linéaires ou ramifiés en C₁-C₃;

10

15

20

25

dans laquelle:

- Ar³ a la même signification que Ar¹ de la formule (III) dans le cas où n=1.
- R¹⁶, identiques ou différents, représentent un radical choisi parmi le groupe constitué d'un radical Ar³, un radical -(C=O)-Ar³, un radical alkyle linéaire ou ramifié en C₁-C₁₂, un radical cycloalkyle en C₆-C₁₂, ces radicaux pouvant être substitués par un ou plusieurs substituants choisis dans le groupe constitué de -F, -Cl, -Br, -CN, -OH, -CF₃,, -OR⁶, -SR⁶, -COOR⁶, les radicaux alkyles linéaires ou ramifiés en C₁-C₁₂ porteur éventuellement d'un groupe -OH, -OR⁶ et/ou -CN, et les radicaux alcényles linéaires ou ramifiés en C₁-C₈;

dans laquelle:

- R⁵, identiques ou différents, ont les même significations que dans la formule (III),
- Y, identiques ou différents, représentent X et/ou R4.
- Z représente :
 - · une liaison directe,
- \cdot un radical divalent alkylène en C₁-C₆, ou un radical phénylène, diphénylène ou phénylène-T-phénylène, ou encore forme, avec les deux substituants $\mathbf{R^5}$ et les deux atomes de carbone porteurs de ces substituants, un noyau de cyclopentane ou de cyclohexane,
- · un groupe divalent -O-R12-O-, -O-SiR8R9-O-SiR8R9-O-, ou -O-SiR8R9-O-
- R¹² représente un radical alkylène en C₂-C₈, alcénylène en C₄-C₆ ou xylylène.
- et Ar4 a la même signification que Ar1 de la formule (III) dans le cas où n=1.

2. Système amorceur selon la revendication 1, caractérisé en ce que l'entité anionique du borate d'onium est choisie parmi le groupe constitué d [B $(C_6F_5)_4$], $[B(C_6H_3(CF_3)_2)_4$, $[B(C_6H_4OCF_3)_4]$, $[B(C_6H_4CF_3)_4]$ $[(C_6F_5)_2 B F_2]^-$, $[C_6F_5 B F_3]^-$, $[B (C_6H_3F_2)_4]^-$, et leur mélange.

5

3. Système amorceur selon l'une des revendications précédentes, caractérisé en ce que l'entité anionique du sel d'onium est choisie parmi B(C₆F₅)₄-, $[B (C_6H_3(CF_3)_2)_4]^-$, $[B (C_6H_4OCF_3)_4]^-$ et leur mélange.

10

Système amorceur selon l'une quelconque des revendications précédentes. caractérisé en ce que l'entité cationique du borate d'onium est choisie parmi le groupe constitué de :

 $[(C_6H_5)_2 I]^+$ [C8H17 - O - C6H5 - I -C6H5]+, $[C_{12}H_{25} - C_6H_5 - I - C_6H_5]^+$ $[(C_8H_{17}O-C_6H_5)_2I]^+$ 15 $[(C_8H_{17}) - O - C_8H_5 - I - C_8H_5)]^{+1}$ $[(C_{12}H_{25} - C_{6}H_{5})_{2}]^{+}$ [(CH(CH₃)₂-C₆H₅-)- I -C₆H₅- CH₃]+, [C₆H₄-O-C₆H₄- I -C₆H₄]+, $[C_6H_4-(C=0)-C_6H_4-I-C_6H_4]^+$, $[C_6H_4-O-C_6H_4-I-C_6H_4-O-C_6H_4]^+$ $[C_6H_4-(C=0)-C_6H_4-I-C_6H_4-(C=0)-C_6H_4]^+$

 $[C_6H_4-I-C_6H_4-O-CH_2-O-C(OH)-C_{12}H_{25}]^+$ et leur mélange.

20

25

Système amorceur selon l'une quelconque des revendications précédentes. 5. caractérisé en ce que la benzophénone est choisie parmi le groupe constitué de :

4,4'diméthoxybenzoïne;

phénanthrènequinone;

2-éthylanthraquinone:

2-méthylanthraquinone;

1,8-dihydroxyanthraquinone;

dibenzoylperoxyde:

2.2-diméthoxy-2-phénylacétophénone; benzoïne;

2-hydroxy-2méthylpropiophénone;

benzaldéhyde :

4-(2-hydroxyéthoxy)phényl-(2-hydroxy-2-méthylpropyl) cétone ;

benzovlacétone:

$$\begin{array}{c|c}
\hline
 & CH_2 & OC_2H_5 \\
\hline
 & OC_2H_5
\end{array}$$

10

15

20

25

30

- 6. Composition polymérisable et/ou réticulabl par voie cationique sous activation thermique, photochimique ou de faisceau d'électrons, comprenant au moins une matrice à base de monomères, d'oligomères et/ou de polymères à groupements organofonctionnels et au moins un système amorceur selon l'une quelconque des revendications 1 à 5.
- 7. Composition selon la revendication 6, caractérisée en ce que les monomères, oligomères et/ou polymères sont de nature organique et/ou de nature polyorganosiloxanique; les groupements organofonctionnels étant des groupements époxydes, oxétannes, alkényléthers et/ou acryliques.
- 8. Composition selon l'une quelconque des revendications 6 et 7, caractérisée en ce que les monomères, oligomères et polymères à groupements organofonctionnels sont de nature polyorganosiloxanique, et constitués de motifs de formule (VI) et terminés par des motifs de formule (VII) ou cycliques constitués de motifs de formule (VI) représentées ci-dessous :

dans lesquelles :

- les symboles R¹⁷ sont semblables ou différents et représentent :
 - un radical alkyle linéaire ou ramifié contenant 1 à 8 atomes de carbone, éventuellement substitué par au moins un halogène, de préférence le fluor, les radicaux alkyle étant de préférence méthyle, éthyle, propyle, octyle et 3,3,3-trifluoropropyle,
 - · un radical cycloalkyle contenant entre 5 et 8 atomes de carbone cycliques, éventuellement substitué.
 - un radical aryle contenant entre 6 et 12 atomes de carbone pouvant être substitué, de préférence phényle ou dichlorophényle,
 - une partie aralkyle ayant une partie alkyle contenant entre 5 et 14 atomes de carbone et une partie aryle contenant entre 6 et 12 atomes de carbone, substituée éventuellement sur la partie aryle par des halogènes, des alkyles et/ou des alkoxyles contenant 1 à 3 atomes de carbone,
- les symboles Y' sont semblabl s ou différents t représentent :
 - le groupement R¹⁷,
 - · un radical hydrogène,

15

20

30

- et/ou un groupement organofonctionnel réticulabl par voie cationique, de préférence un groupement époxyfonctionnel et/ou vinyloxyfonctionnel, relié au silicium du polyorganosiloxane par l'intermédiaire d'un radical divalent contenant de 2 à 20 atomes de carbone et pouvant contenir au moins un hétéroatome, de préférence de l'oxygène,
- et l'un au moins des symboles Y' représentant un groupement organique fonctionnel réticulable par voie cationique.
- Composition selon la revendication 8, caractérisée en ce que au moins un des symboles R¹⁷ des polyorganosiloxanes utilisés représente un radical phényle, tolyle ou dichlorophényle.
 - 10. Composition selon l'une quelconque des revendications 6 et 7, caractérisée en ce que les monomères, oligomères et/ou polymères, de nature organique, à groupements organofonctionnels appartiennent à au moins l'une des espèces suivantes :
 - α_{1.1} les époxydes cycloaliphatiques, pris à eux seuls ou en mélange entre eux,
 - α1.2 les époxydes non cycloaliphatiques, pris à eux seuls ou en mélange entre eux,
 - α3 les polyols : pris à eux seuls ou en mélange entre eux,
 - α₂ les alcényl-éthers, linéaires ou cycliques, pris à eux seuls ou en mélange entre eux.
- 25 11. Composition selon la revendications 10, caractérisée en ce que les monomères, oligomères et/ou polymères de nature organique sont choisis dans le groupe formé par :
 - les espèces α_{1.1} consistant dans le 3,4-époxycyclohexylméthyl-3',4'époxycyclohexane carboxylate et le bis(3,4-époxycyclohexyl)adipate;
 - les espèces α_{1,2} consistant dans :
 - les époxydes du type de ceux résultant de la condensation de bis-phénol A éventuellement alkoxylé et d'épichlorhydrine et éventuellement de 1,6hexanediol, de glycérol, de néopentylglycol ou de propane triméthylol,
 - les époxydes NOVOLAC,
 - les polymères diéniques époxydés et monohydroxylé, saturés ou insaturés ;
 - les espèces α_2 de consistant dans les vinyl-éthers, l s propényl-éthers et les butényl-éth rs.

12. Composition selon l'une quelconque des revendications 8 et 9, caractérisée en ce que la compositi n polymérisable et/ou réticulable comprend en outre d s monomères, oligomères et/ou polymères à groupements organofonctionnels définis en accord avec la revendication 10 ou 11.

5

13. Composition selon l'une quelconque des revendications 6 à 12, caractérisée en ce que la composition réticulable comprend de plus, des monomères, oligomères et/ou polymères à groupements organofonctionnels d'espèce acrylate; et notamment acrylates époxydés, acrylo-glycéro-polyesters, acrylates multifonctionnels, acrylo-uréthanes, acrylo-polyéthers, acrylo-polyesters, polyesters insaturés, acrylo-acryliques,

10

14. Résine susceptible d'être obtenue à partir d'une composition selon l'une quelconque des revendications 6 à 13.

15

15. Revêtement à base de résine selon la revendication 14.

20

- 16. Revêtement selon la revendication 15, caractérisé en ce que le revêtement est un vernis, un revêtement adhésif, un revêtement anti-adhérent et/ou une encre.
- Matériau composite susceptible d'être obtenu à partir d'une composition selon l'une quelconque des revendications 6 à 13.

- 18. Objet dont une surface au moins est revêtue de résine selon la revendication 14 ou d'un matériau composite selon la revendication 17.
- 19. Utilisation de résine selon la revendication 14 pour la fabrication de revêtements ou de matériaux composites.

INTERNATIONAL SEARCH REPORT

ir ational Application No PCT/FR 98/01620

A. CLASS	FICATION OF SUBJECT MATTER C08F4/52				
	, 				
	to International Patent Classification (IPC) or to both national classification	tion and IPC			
	S SEARCHED Ocumentation searched (classification system followed by classification	D. granhola)			
IPC 6 C08F Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched					
Documente	ation searched other than minimum documentation to the extent that su	ch documents are included in the fields sea	urched		
Electronic	data base consulted during the international search (name of data bas	e and, where practical, search terms used)			
C DOCUM	MENTS CONSIDERED TO BE RELEVANT				
	<u> </u>				
Category *	Citation of document, with indication, where appropriate, of the rele	vant passages	Relevant to claim No.		
A	EP 0 562 897 A (RHONE-POULENC) 29 September 1993	• ,			
	cited in the application				
		•			
		•			
П	or ther documents are listed in the continuation of box C.				
<u> </u>		X Patent family members are listed	in annex.		
"A" docum	categories of cited documents : ment defining the general state of the art which is not sidered to be of particular relevance	"T" later document published after the inte or priority date and not in conflict with cited to understand the principle or tr invention	the application but		
filing "L" docum	r document but published on or after the international pdate nent which may throw doubts on priority claim(s) or	"X" document of particular relevance; the cannot be considered novel or canno involve an inventive step when the de	t be considered to		
citati	th is cited to establish the publication date of another ion or other special reason (as specified) ment referring to an oral disclosure, use, exhibition or If means	"Y" document of particular relevance; the carnot be considered to involve an in document is combined with one or ments, such combination being obvic	ventive step when the ore other such docu-		
"P" docur	ment published prior to the international filing date but than the priority date claimed	in the art. "8." document member of the same patent			
	e actual completion of theinternational search	Date of mailing of the international sea			
	16 November 1998	25/11/1998			
Name and	d mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Filjswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Authorized officer Cauwenberg, C			
	, =: :=/ = := ==:=		•		

INTERNATIONAL SEARCH REPORT

Information on patent family members

Ind ational Application No
PCT/FR 98/01620 _ _

Patent document cited in search report		Publication date		atent family member(s)	Publication date
EP 562897	Α	29-09-1993	FR	2688783 A	24-09-1993
-			AU	3517093 A	30-09-1993
			CA	2092135 A	24-09-1993
			FI	931253 A	24-09-1993
			JP	2557782 B	27-11-1996
			JP	6184170 A	05-07-1994
			US	5468902 A	21-11-1995
			US	5550265 A	27-08-1996
			US	5668192 A	16-09-1997

RAPPORT DE RECHERCHE INTERNATIONALE

D nde Internationale No PCT/FR 98/01620

A. CLASSE CIB 6	MENT DE L'OBJET DE LA DEMANDE CO8F4/52		
Selon la cla	ssification internationale des brevets (CIB) ou à la fois selon la classificat	ion nationale et la CIB	
	NES SUR LESQUELS LA RECHERCHE A PORTE		
CIB 6	tion minimale consultée (système de classification suivi des symboles de COSF	classement)	
Documentat	tion consultée autre que la documentationminimale dans la mesure ou ci	se documents relèvent des	domaines sur lesquels a porté la recherche
Base de dor utilleés)	nnées électronique consultée au cours de la recherche internationale (no	em de la base de données,	et si ceta est réalisable, termes de recherche
C. DOCUM	ENTS CONSIDERES COMME PERTINENTS		
Catégorie °	Identification des documents cités, avec, le cas échéant, l'indication de	s passages pertinents	no. des revendications visées
Α	EP 0 562 897 A (RHONE-POULENC) 29 septembre 1993 cité dans la demande		
-			
Voir	r la suite du cadre C pour la finde la liste des documents	X Les documents de fa	amilles de brevets sont indiqués en annexe
"A" docum consi "E" docum ou ap "L" docum priorit autre "O" docum une e	ent définissant l'état général de latechnique, non déré comme particulièrement pertinent sent antérieur, mais publié à la date dedépôt international rès cette date ent pouvant jeter un doute sur une revendcation de lé ou cité pour déterminer la date depublication d'une citation ou pour une raison spéciale (telle qu'incliquée) nent se référant à une divulgation orale, à un usage, à exposition ou tous autres moyens sent publié ayant la date de dépôtinternational, mais	date de priorité et n'app- technique pertinent, ma ou la théorie constituant document particulièreme étre considérée comme inventive par rapport au document particulièreme ne peut être considérée lorsque le document es documents de même na pour une personne du n	nt pertinent; l'invention revendiquée ne peut nouvelle ou comme impliquant une activité document considéré isolément nt pertinent; l'invention revendiquée comme impliquant une activité inventive tassocié à un ou plusieurs autres dure, cette combinaison étant évidente
	uelle la recherche internationale a étéeffectivement achevée	Date d'expédition du pré	sent rapport de recherche internationale
	l6 novembre 1998	25/11/1998	
Nom et adr	esse postale de l'administrationchargée de la recherche internationale Office Européen des Brevets, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tet. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Fonctionnaire autorisé Cauwenberg	J , C

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

D nde Internationale No
PCT/FR 98/01620 ____

Document brevet cité au rapport de recherche			mbre(s) de la le de brevet(s)	Date de publication	
EP 562897	Α	29-09-1993	FR	2688783 A	24-09-1993
			AU	3517093 A	30-09-1993
			CA	2092135 A	24-09-1993
			FI	931253 A	24-09-1993
			JP	2557782 B	27-11-1996
			JP	6184170 A	05-07-1994
			US	5468902 A	21-11-1995
			US	5550265 A	27-08-1996
			US	5668192 A	16-09-1997

Formulaire PCT/ISA/210 (annexe familles de brevets) (juillet 1992)