

Fundamentos Computacionais

Fundamentos Computacionais

Plano de Ensino

Caracterização da Unidade Curricular

Estudo de conceitos teóricos de lógica e matemática que são aplicados em áreas fundamentais do curso tecnólogo Análise e Desenvolvimento de Sistemas, como Banco de Dados, Linguagens de Programação, assim como, na Análise Quantitativa e Qualitativa de Processos.

Competência Essencial

Usar os conhecimentos básicos da lógica e da matemática como base e fundamentação para as outras unidades curriculares do curso Análise e Desenvolvimento de Sistemas.

Elementos de Competência - Competências Relacionadas

Diferenciar na Linguagem Natural quais são as Proposições entre todos os tipos de sentenças abertas e fechadas.

Conhecer a lógica de cada conectivo, assim como, e suas diversificações na Linguagem Natural.

Elementos de Competência - Competências Relacionadas

Transformar uma Fórmula Proposicional no formato de Linguagem Natural e vice-versa.

Interpretar os conetivos lógicos para a construção de uma Tabela Verdade.

Interpretar uma Tabela Verdade: Tautologia, Contradição e Indeterminação.

Elementos de Competência - Competências Relacionadas

- Simplificar Fórmulas Proposicionais compostas usando as Regras de Equivalências Lógicas assim como saber aplicar as Regras em Linguagem Natural.
- Compreender os conceitos da teoria dos conjuntos, notação e representação de conjuntos.
- Aplicar operações de união, intersecção, inclusão e exclusão.

Bases Tecnológicas

- Lógica Proposicional: Sentenças, Proposições, Linguagem Natural, Conectivos Lógicos
- Tabela-Verdade
- Regras de Equivalências Lógicas
- Teoria dos conjuntos: conceitos, relação de pertinência, relação de inclusão, operações, notação e representação de conjuntos.

Bibliografia Básica

BRUNI, Adriano Leal. **Estatística aplicada à gestão empresarial**. 4 ed. São Paulo: Atlas, 2013.

GERSTING, Judith L **Fundamentos matemáticos para ciência da computação**. 4. ed. Rio de Janeiro. LTC. 2001.

SCHEINERMAN, Edward R. **Matemática discreta: uma introdução**. São Paulo: Cengage Learning, 2011.

Bibliografia Complementar

- BARBETTA, Pedro Alberto. **Estatística para cursos de engenharia e informática**. 3. São Paulo Atlas 2010.
- BARBIERI FILHO, Plínio. Fundamentos de informática lógica para computação. Rio de Janeiro: LTC, 2012.
- BUSSAB, Wilton de O.; MORETTIN, Pedro Alberto. **Estatística básica**. 6. ed. rev. e atual. São Paulo: Saraiva, 2010.
- MENEZES, Paulo Blauth. **Matemática discreta para computação e informática**. 3. ed. Porto Alegre: Bookman, 2011.
- ROSEN, Kenneth H. **Matemática discreta e suas aplicações**. 6. ed. São Paulo. Mc Graw-Hill. 2009.
- SENAC. Departamento Nacional. **Estatística básica**. Rio de Janeiro: Editora Senac Nacional, 1998.

Cronograma

FC		
09/03 (qui)	Aula01	
16/03 (qui)	Aula02	
23/03 (qui)	Aula03	
30/03 (qui)	Aula04	
06/04 (qui)	Aula05	
13/04 (qui)	Aula06	
20/04 (qui)	Aula07	
27/04 (qui)	Aula08	
04/05 (qui)	Aula09	
11/05 (qui)	1ª Avaliação	
18/05 (qui)	Aula11	
25/05 (qui)	Aula12	
01/06 (qui)	Aula13	
08/06 (qui)	Aula14	
15/06 (qui)	Aula15	
22/06 (qui)	Aula16	
29/06 (qui)	Aula17	
06/07 (qui)	2ª Avaliação	
13/07 (qui)	Recuperativa	
20/07 (qui)	Bancas de TCC	

Fundamentos Computacionais

Introdução

Dicas

Artigo: Em paz com os números

Documentário: A era dos dados

"Aquele que deseja construir torres altas deverá permanecer longo tempo nas fundações."

Anton Bruckner

Se Angelo mentiu, então ele é culpado. Logo:

- a) Se Angelo não é culpado, então ele não mentiu.
- b) Angelo é culpado;
- c) Se Angelo não mentiu, então ele não é culpado;
- d) Angelo mentiu;
- e) Se Angelo é culpado, então ele mentiu.

Surfo ou estudo. Fumo ou não surfo. Velejo ou não estudo. Ora, não velejo. Assim:

- a) estudo e fumo;
- b) não fumo e surfo
- c) não velejo e não fumo;
- d) estudo e não fumo;
- e) fumo e surfo.

Considere verdadeira a declaração: "Toda criança gosta de brincar". Com relação a essa declaração, assinale a opção que corresponde a uma argumentação correta.

- a) Como Marcelo não é criança, não gosta de brincar.
- b) Como Marcelo não é criança, gosta de brincar.
- c) Como João não gosta de brincar, então não é criança.
- d) Como João gosta de brincar, então é criança.

Lógica Formal (Lógica Matemática)

A lógica matemática trata do estudo das sentenças declarativas também conhecidas como proposições e tem por objetivo elaborar procedimentos que permitam obter um raciocínio correto na investigação da verdade, distinguindo os argumentos válidos daqueles que não o são.

Lógica Formal (Lógica Matemática)

Objetivos:

- Usar símbolos formais da lógica proposicional;
- Encontrar o valor lógico de uma expressão em lógica proposicional;
- Construir demonstrações formais em lógica proposicional e utilizá-las para determinar a validade de argumentos em língua portuguesa;
- Interpretar expressões através da lógica formal.

Lógica Formal (Lógica Matemática)

A lógica formal fornece os métodos para pensar organizado e cuidadoso, o que caracteriza qualquer atividade racional. Para isso, através da lógica formal, podemos remover tudo que não é necessário de uma sentença, a fim de captar apenas os pontos de interesse.

Conceitos importantes:

- Proposição
- Conectivos
- Tabela-verdade
- Tautologia
- Contradição

Proposição

É uma oração declarativa que pode ser classificada como verdadeira ou falsa, mas não as duas.

Quais são proposições?

- Dez é maior que sete.
- Como está você?
- Buenos Aires é a capital do Chile.
- 1 + 2 = 3 ou 2 + 3 = 5
- Compre 2 aspirinas.

Proposição

É uma oração declarativa que pode ser classificada como verdadeira ou falsa, mas não as duas.

Quais são proposições?

- Dez é maior que sete.
- Como está você?
- Buenos Aires é a capital do Chile.
- \Box 1 + 2 = 3 ou 2 + 3 = 5
- Compre 2 aspirinas.

Proposição

- Pode ser afirmativa ou negativa
- Deve ser possível classificar a frase como verdadeira ou falsa

Não são proposições:

- Frases interrogativas
- Frases exclamativas

Conectivos e Valores Lógicos

- Ao falar, escrever ou programar utilizamos conectivos (operadores lógicos) para combinar proposições.
- O valor lógico de uma proposição composta depende dos valores lógicos de seus componentes.
- ☐ Geralmente, são utilizados letras minúsculas para representar as sentenças (p, q, r, ...)

Conectivos

Negação	Não	~
Conjunção	E	Λ
Disjunção	Ou	V
Condicional	Se Então	->
Bicondicional	Se, Somente se, Então	<->

Tabela-Verdade

- Uma tabela-verdade é uma tabela que descreve os valores lógicos de uma proposição em termos das possíveis combinações dos valores lógicos das proposições componentes e dos conectivos usados.
- Para cada combinação de valores-verdade e de conectivos, a tabela-verdade fornece o valor-verdade da expressão resultante.

Negação (não)

- ☐ Reflete uma negação da proposição
- □ Representada por: ¬p, ~p, p' (lê-se "não p")

р	¬р
V	F
F	V

Porta NOT (NÃO) - Inversor

A saída de um inversor é o complemento (oposto) da entrada.

Quando a entrada para um inversor é alta (1), a saída é baixa (0); e quando a entrada é baixa, a saída é alta.

р	~ p
V	F
F	V

Conjunção (e)

- Reflete uma noção de simultaneidade para ser verdadeira
- □ Representada por: p ^ q (lê-se p e q)

р	q	p ^ q
V	V	V
V	F	F
F	V	F
F	F	F

- □ **Verdadeira**, apenas quando p e q são simultaneamente verdadeiras
- □ Falsa, em qualquer outro caso

Porta AND (E)

A saída de uma porta AND é verdadeira se e somente se todas as entradas da porta forem verdadeiras.

р	q	p ^ q
V	V	V
V	F	F
F	V	F
F	F	F

Disjunção (ou)

- Reflete uma noção de que pelo menos uma das proposições deve ocorrer para a resultante ser verdadeira
- □ Representada por: p ∨ q (lê-se p ou q)

p	q	p V q
V	V	V
V	F	V
F	V	V
F	F	F

- Verdadeira, quando pelo menos uma das proposições é verdadeira
- Falsa, somente quando as proposições são simultaneamente falsas

Portas OR (OU)

A saída de uma porta OR é verdadeira se alguma ou todas as entradas da porta forem verdadeiras.

р	q	рVq
V	V	V
V	F	V
F	V	V
F	F	F

Exemplos de questões (solução)

Se Angelo mentiu, então ele é culpado. Logo:

- a) Se Angelo não é culpado, então ele não mentiu.
- b) Angelo é culpado;
- c) Se Angelo não mentiu, então ele não é culpado;
- d) Angelo mentiu;
- e) Se Angelo é culpado, então ele mentiu.

Se Angelo mentiu, então ele é culpado. Logo:

- a) Se Angelo não é culpado, então ele não mentiu.
- b) Angelo é culpado;
- c) Se Angelo não mentiu, então ele não é culpado;
- d) Angelo mentiu;
- e) Se Angelo é culpado, então ele mentiu.

Surfo ou estudo. Fumo ou não surfo. Velejo ou não estudo. Ora, não velejo. Assim:

- a) estudo e fumo;
- b) não fumo e surfo
- c) não velejo e não fumo;
- d) estudo e não fumo;
- e) fumo e surfo.

Surfo ou estudo. Fumo ou não surfo. Velejo ou não estudo. Ora, não velejo. Assim:

- a) estudo e fumo;
- b) não fumo e surfo
- c) não velejo e não fumo;
- d) estudo e não fumo;
- e) fumo e surfo.

Considere verdadeira a declaração: "Toda criança gosta de brincar". Com relação a essa declaração, assinale a opção que corresponde a uma argumentação correta.

- a) Como Marcelo não é criança, não gosta de brincar.
- b) Como Marcelo não é criança, gosta de brincar.
- c) Como João não gosta de brincar, então não é criança.
- d) Como João gosta de brincar, então é criança.

Considere verdadeira a declaração: "Toda criança gosta de brincar". Com relação a essa declaração, assinale a opção que corresponde a uma argumentação correta.

- a) Como Marcelo não é criança, não gosta de brincar.
- b) Como Marcelo não é criança, gosta de brincar.
- c) Como João não gosta de brincar, então não é criança.
- d) Como João gosta de brincar, então é criança.