Longitudianl Data Analysis

2. Graphical representation of longitudinal data

- 1. Y against Time
 - Check the time trend for every individual
 - Check the variability change over time (esp. at beginning vs end)

Instead of using Y, use the standardized residuals:

$$y_{iJ}^* = \frac{y_{iJ} - \bar{y}_{\cdot J}}{s_J}$$

$$\bar{y}_{\cdot J} = \frac{1}{n} \sum_{i=1}^{n} y_{iJ}, s_J^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_{iJ} - \bar{y}_{\cdot J})^2$$

- Spaghetti plot
- ZAP plot: using residuals
 - (a) regression y_{ij} on t_{ij} and get the residuals r_{ij}
 - (b) choose on dimensional summary of the residuals, for example $g_i = \text{median}(r_{i1}, \dots, r_{in_i})$
 - (c) plot r_{ij} versus t_{ij} using points (quantiles of g_i)
 - (d) order units by g_i (min., 10th, 25th, 50th, 75th, 90th, max.)
 - (e) add lines for selected quantiles of g_i

2. Y against X

- AV plot
- Graphic methods to separate CS information from LS information The model

$$y_{ij} = \beta_C x_{i1} + \beta_L (x_{ij} - x_{i1}) + \varepsilon_{ij}, i = 1, \cdot, m; j = 1, \cdot, \cdot, n$$

suggests making two scatterplots:

- (a) y_{i1} against x_{i1} for $i = 1, \dots, m$
- (b) $y_{ij} y_{i1}$ against $x_{ij} x_{i1}$ for $i = 1, \dots, m; j = 2, \dots, n$

From the plots, we can then ask:

- (a) are the differences across subjects? (CS effect)
- (b) are there changes across time within subject? (LS effect)

Fitting smotth curves

$$Y_i = \mu(t_i) + \varepsilon_i, i = 1, \cdots, m$$

We want to estimate an unknown mean response curve $\mu(t)$ in the model. Non-parametric regression models that can be used to estimate the mean response profile as a function of time.

Alway, the smaller of the window width the less smothness we get.

Kernel estimation

- selection of window centered at time t;
- $\hat{\mu}(t)$ is the average of Y of all points that are visible in that window
- slide a window from the extreme left to extreme right, calculating $\hat{\mu}(t_i)$ for each.
- a "better" method is to use a weight function that changes smoothly with time and gives weights to the observations closer to t. E.g. Gaussian kernel $K(t_i) = \exp(-0.5t_i^2)$ (i.e.N(0,1))
- at window with $t = t_1$,

$$\hat{\mu}(t_1) = \sum_{i=1}^{m} \omega(t_1, t_i, h) y_i / \sum_{i=1}^{m} \omega(t_1, t_i, h)$$

where h controls the smoothness.

Smoothing Spline

• Smoothing spline (cubic): the function s(t) that minimizes the criterion

$$J(\lambda) = \sum_{i=1}^{m} \{y_i - s(t_i)\}^2 + \lambda \int s''(t)^2 dt$$

- s(t) stissies the criterion if and only if it is a piecewise cubic polynomial
- λ smaller \Rightarrow curve less smooth
- $\int s''(t)^2 dt$: roughness penalty

Loess

- 1. Center a window at time t_i
- 2. fit weighted least squares
- 3. calculate the residuals

- 4. down weight the outliers and repeat 1, 2, 3 many times
- 5. the result is a fitted line that is insensitive to the observations with outlying Y values

Exploring correlation structure

• Let $y_{ij} = \beta_0 + x_{ij}\beta + \varepsilon_{ij}$, we should be clear that

$$cor(y_{ij}, y_{ik}) \neq cor(\varepsilon_{ij}), \varepsilon_{ik} = cor(y_{ij}, y_{ik}|x_{ij}, x_{ik})$$

similarly, $var(y) \neq var(\varepsilon)$.

- We explore the correlation structure based on the **residuals** of the model. And it is used for **equally spanced** data, not for irregular data.
- Weakly stationary: if residuals have constant mean and variance and if $corr(y_{ij}, y_{ik})$ depends only on $|t_{ij} tik|$, then the process Y_{ij} is said to be weakly stationary.
- Autocorrelation function (ACF):

$$\rho(u) = corr(Y_{ij}, Y_{ij-u})$$

for all i, which is pooling observation pairs along the diagonals of the scatterplot matrix.

$$se(\rho(u)) \approx 1/\sqrt{N}$$

where N is the number of independent pairs of observations in the calculation.

- ACF is most effective for studying equally spaced data that are roughly stationary.
- For irreguarly-sapced data, we can use **Variogram**:

$$\gamma(u) = \frac{1}{2}E[\{Y(t) - Y(t-u)\}^2], u \ge 0$$

• If Y(t) is stationary, the Variogram is directly related to the ACF $\rho(u)$ by

$$\gamma(u) = \sigma^2 \{1 - \rho(u)\}\$$

where σ^2 is the variance of Y:

$$E(X - Y)^{2} = [E(X - Y)]^{2} + Var(X - Y)$$

$$= 0 + Var(X) + Var(Y) - 2Cov(X, Y)$$

$$= 2\sigma^{2} - 2\rho\sigma^{2}$$

$$= \sigma^{2}(1 - \rho)$$

- Calculating $\gamma(u)$, the Vriagram:
 - 1. Starting with the residuals r_{ij} and the time t_{ij} , compute all possible

$$v_{ijk} = \frac{1}{2}(r_{ij} - r_{ik})^2$$

and

$$u_{ijk} = t_{ij} - t_{ik}$$
 for $j < k$

- 2. Smooth v_{ijk} against u_{ijk} (using lowess)
- 3. Estimate the total variance as

$$\hat{\sigma}^2 = \frac{1}{N-1} \sum_{ij} (r_{ij} - \hat{r})$$

4. If the time t_{ij} are not total irregular, i.e. there will be more than one observation at each value of u. Then let

$$\hat{\gamma}(u) = \frac{\sum_{i=1}^{n_i} v_{ijk}}{n_i}$$