Hoo-Doo Solver

Daniel Mendona and José Pedro Moreira FEUP-PLOG, Turma 3MIEIC9, Grupo 123

Abstract. Este projecto consiste na implementao de um *solver* para o jogo de tabuleiro *Hoo-Doo*. O solver funciona para uma dimenso arbitrria do tabuleiro. A implementao foi feita usando Prolog, mas concretamente a plataforma *Sicstus Prolog* tendo sido usados para tal os mdulos desta mesma ferramente para Pragramao em Lgica com Restries sobre domnios finitos.

1 Introdução

With this chapter, the preliminaries are over, and we begin the search for periodic solutions \dots

2 Visualização

Existem seis predicados utilizados para a construo visual do tabuleiro em modo de texto. O primerio predicado a ser executado o $print_tab(+board)$ que recebe como argumento um tabuleiro representado por uma lista de listas. Este predicado calcula o comprimento da lista, que determina o nmero de linhas, colunas e respectivos ndices a serem imprimidos, e de seguida passa-os como argumentos para as funes auxiliares que controlam a impresso, descritas em baixo.

- print_tab_aux(+Board,?LineI,?ColumnI): coordena a utilizao dos seguintes predicados para a construo visual do tabuleiro.
- tab_map(+Symb): Imprime o nmero ou correspondente no tabuleiro.
- print_line(+Line): imprime uma linha do tabuleiro, fazendo uso do tab_map(+Symb) para a impresso numrica.
- print_empty_line(+Length): imprime uma linha horizontal.
- print_column_index(+ASCIICode,+Index): imprime o ndice das colunas.

2.1 Autonomous Systems

In this section we will consider the case when the Hamiltonian H(x) ...

The General Case: Nontriviality. We assume that H is (A_{∞}, B_{∞}) -subquadratic at infinity, for some constant . . .

Notes and Comments. The first results on subharmonics were ...

Proposition 1. Assume H'(0) = 0 and H(0) = 0. Set ...

Proof (of proposition). Condition (8) means that, for every $\delta' > \delta$, there is some $\varepsilon > 0$ such that . . . \Box

Example 1 ((External forcing)). Consider the system ...

Corollary 1. Assume H is C^2 and (a_{∞}, b_{∞}) -subquadratic at infinity. Let ...

Lemma 1. Assume that H is C^2 on $\mathbb{R}^{2n}\setminus\{0\}$ and that H''(x) is ...

Theorem 1 ((Ghoussoub-Preiss)). Let X be a Banach Space and $\Phi: X \to \mathbb{R}$...

Definition 1. We shall say that a C^1 function $\Phi: X \to \mathbb{R}$ satisfies ...