Cálculo II Lista 2 - Funções de Várias Variáveis

Erickson G. Müller

Lista 1.4 (pg. 26)

 $\begin{array}{l} \bullet \ 2 \\ D_A = 1300 - 50x + 20y \\ D_B = 1700 + 12x - 20y \\ R_x = x.D_A \\ R_y = y.D_B \\ R_T = x.D_A + y.D_B \end{array}$

$$R_T = 1300x - 50x^2 + 20xy + 1700y + 12xy - 20y^2$$
$$R_T = 32xy - 50x^2 - 20y^2 + 1300x + 1700y$$

 $Im(z) = \mathbb{R}$

- 3.a z = 3 x y $D(z) = \mathbb{R}^2$
- 3.b $f(x,y)=1+x^2+y^2$ $D(f(x,y))=\mathbb{R}^2$ $Im(f(x,y))=[1,\infty)$
- 3.c $z = \sqrt{9 (x^2 + y^2)}$ $x^2 + y^2 \le 3^2$ $x^2 + y^2 9 \le 0$

$$D(z) = \{(x, y) \in \mathbb{R}^2 / x^2 + y^2 \le 9\}$$

$$\sqrt{9 - (x^2 + y^2)} \rightarrow \sqrt{9 - 9} = 0$$
$$x^2 + y^2 \ge 0 \rightarrow \sqrt{9 - 0} = 3$$

$$Im(z)=[0,3]$$

$$\bullet \quad 3.\mathbf{d}$$

$$w = e^{x^2 + y^2 + z^2}$$

$$D(w) = \mathbb{R}^3$$
$$Im(w) = [1, \infty)$$

• 3.j
$$f(x,y) = 4 - x^2 - y^2$$

$$D(f(x,y)) = \mathbb{R}^2$$

$$Im(f(x,y)) = (-\infty, 4]$$

• 4.b

$$w = \frac{1}{x^2 + y^2 + z^2}$$

$$x^2 + y^2 + z^2 \ge 0$$

$$D(w) = \{(x, y, z) \in \mathbb{R}^3 / (x, y, z) \neq (0, 0, 0)\}$$
$$Im(w) = (0, \infty)$$

• 4.c
$$z = \frac{1}{\sqrt{x^2 - y^2}}$$
 $x^2 - y^2 > 0$

$$D(z) = \{(x, y) \in \mathbb{R}^2 / |x| > |y|\}$$

 $Im(z) = (0, \infty)$

• 4.e
$$z = \sqrt{x^2 + y^2 - 1}$$

 $x^2 + y^2 - 1 \ge 0$

$$D(z) = \{(x, y) \in \mathbb{R}^2 / x^2 + y^1 \ge 1\}$$
$$Im(z) = [0, \infty)$$

• 4.i
$$y = \sqrt{\frac{1+x}{1+z}}$$

$$1 + z \neq 0 \& \frac{1+x}{1+z} \geq 0$$

$$z \neq -1$$

$$x \geq -1 \text{ se } z > -1$$

$$x \leq -1 \text{ se } z < -1$$

$$D(y) = \{(x,z) \in \mathbb{R}^2/x \ge -1sez > -1$$

$$x \le -1sez < -1\}$$

• 4.j

$$w = \frac{1}{9 - x^2 - y^2 - z^2}$$

$$9 - x^2 - y^2 - z^2 \neq 0$$

$$x^2 + y^2 + z^2 \neq 9$$

$$D(w) = \{(x, y, z) \in \mathbb{R}^3 / x^2 + y^2 + z^2 \neq 9\}$$

• 4.n
$$z = \ln(x + y - 3)$$

$$D(z) = \{(x, y) \in \mathbb{R}^2 / x + y > 3\}$$

$$\begin{array}{l} \bullet \ \ 4.\mathrm{p} \\ f(x,y,z) = \sqrt{1-x^2} + \sqrt{1-y^2} - \sqrt{1-z^2} \\ 1-x^2 \geq 0 \ \mathrm{logo} \ |x|^2 \leq 1 \\ 1-y^2 \geq 0 \ \mathrm{logo} \ |y|^2 \leq 1 \\ 1-z^2 \geq 0 \ \mathrm{logo} \ |z|^2 \leq 1 \end{array}$$

$$D(f) = \{(x, y, z) \in \mathbb{R}^3 / -1 \le x, y, z \le 1\}$$

• 5.b

$$x^{2} + (y-3)^{2} + z^{2} = 9$$
1.
$$z_{1} = +\sqrt{x^{2} + y^{2} - 6y}$$
2.
$$z_{2} = -\sqrt{x^{2} + y^{2} - 6y}$$

$$x^{2} + y^{2} - 6y \ge 0$$

$$D(z) = \{(x, y) \in \mathbb{R}^{2}, x^{2} + y^{2} \ge 6y\}$$

Lista 3.7 (pg. 99)

- 1.a $x^2 + y^2 2y < 3$ $(x x_0)^2 + (y y_0)^2 = r^2$ $(x 0)^2 + (y 1)^2 = 4 \rightarrow x^2 + y^2 2y = 3$ Bola aberta em centro (0, 1) e raio 2.
- 1.b $x^{2} + y^{2} + z^{2} + 6z < 0$ $(x - x_{0})^{2} + (y - y_{0})^{2} + (z - z_{0})^{2} = x^{2} + y^{2} + z^{2} + 6z$ $x_{0} = 0$ $y_{0} = 0$ $z_{0} = -3$ r = 3 $x^{2} + y^{2} + (z + 3)^{2} = 3^{2}$ But the formula x = 0 and x = 0

Bola aberta em centro (0,0,-3) e raio 3.

- 1.e $x^2+y^2-1>0 \\ x^2+y^2>1$ não é uma bola.
- 1.f $x^2 + 4x + y^2 < 5$ $(x+2)^2 + (y-0)^2 = r^2$ $(x+2)^2 + y^2 = x^2 + 4x + y^2 + 4 = r^2$ $r^2 4 < 5$ $r^2 < 9$ r < 3 Bola aberta centrada em (-2,0) e raio 3.
- 2 $A = \{(x,y) \in \mathbb{R}^2/2 < x < 3 \text{ e} -1 < y < 1\}$ Fronteira: $(2,-1) \to (3,-1) \to (3,1) \to (2,1) \to (2,-1)$
- 3 $B = \{(x,y,z) \int \mathbb{R}^3/-1 < x < 1, \ -1 < y < 1 \text{ e } -1 < z < 1\}$ Fronteira: Cubo formado pelos vértices (-1,-1,-1) até (1,1,1)
- 4 Identificar as afirmações verdadeiras:
 - 1. A união de bolas abertas é uma bola aberta. F
 - 2. A união de bolas abertas é um conjunto aberto. V
 - 3. A união de bolas abertas é um conjunto conexo. F
 - 4. O conjunto $A = \{(x,y)/x^2 + 2x + y^2 4y > 0\}$ é conexo. V (Apenas conexo)
 - 5. O conjunto $B = \{(x, y)/x^2 > y^2\}$ é aberto. V
- 6.a Fronteira de $A=\{(x,y)\in\mathbb{R}^2/x^2+y^2<4\}$ $Fr=x^2+y^2-4$
- 6.d Fronteira de $D=\{(x,y)\in\mathbb{R}^2/y>\frac{1}{x}\}$ $\frac{1}{x}-y<0$ $Fr=\frac{1}{x}-y=0$
- 10 Identificar as afirmações verdadeiras:
 - 1. P(0,0) é ponto de acumulação do conjunto $A=\{(x,y)\in\mathbb{R}^2/y>x\}$. Falso X Verdadeiro pois está na fronteira

- 2. Os pontos P(0,4) e Q(2,2) pertencem à fronteira do conjunto $B=\{(x,y)\in\mathbb{R}^2/y>4-x^2\}$. Falso C pois Q não está na fronteira
- 3. P(0,0) é ponto de acumulação da bola aberta B((0,0),r), qualquer que seja r>0. Verdadeiro C pois está no centro
- 4. O conjunto vazio é um conjunto aberto. Verdadeiro C pois sim
- 5. Toda bola aberta é um conjunto aberto. Verdadeiro C Sim pois bola aberta não tem fronteira
- 6. \mathbb{R}^2 é um conjunto aberto. Verdadeiro C $]-\infty,+\infty[$
- 7. Todo ponto de acumulação de um conjunto A pertence a esse conjunto. Falso C pois ponto de acumulação não está na fronteira. (CONTRADIZ COM 1- ESTUDAR PONTOS DE ACUMULAÇÃO)
- 8. O conjunto $\{(x,y)\in\mathbb{R}^2/x$ e y são racionais $\}$ não tem ponto de acumulação. Verdadeiro X
- 9. Todos os pontos de um conjunto aberto são pontos de acumulação de A. Verdadeiro C pois o conjunto não tem fronteira
- 10. Se A é um conjunto aberto, nenhum ponto da fronteira de A pertence a A. Verdadeiro. C pois a fronteira não faz parte do conjunto aberto.