



## INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

|                                                                                                                                                                                                                                                                                                              |    |                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (51) International Patent Classification <sup>5</sup> :<br>C07D 403/10, 223/16, 401/10<br>C07D 417/10, 227/10<br>C07K 5/06, C07D 281/10<br>A61K 31/33                                                                                                                                                        | A1 | (11) International Publication Number: WO 92/16524<br><br>(43) International Publication Date: 1 October 1992 (01.10.92)                                                                   |
| (21) International Application Number: PCT/US92/02271                                                                                                                                                                                                                                                        |    | (74) Agent: ROSE, David, L.; 126 E. Lincoln Avenue, Rahway, NJ 07065 (US).                                                                                                                 |
| (22) International Filing Date: 19 March 1992 (19.03.92)                                                                                                                                                                                                                                                     |    | (81) Designated States: BB, BG, BR, LK, MG, MN, MW, PL, RO, RU, SD.                                                                                                                        |
| (30) Priority data:<br>673,695 20 March 1991 (20.03.91) US<br>839,742 28 February 1992 (28.02.92) US                                                                                                                                                                                                         |    | Published<br><i>With international search report.<br/>Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i> |
| (71) Applicant: MERCK & CO., INC. [US/US]; 126 E. Lincoln Avenue, Rahway, NJ 07065 (US).                                                                                                                                                                                                                     |    |                                                                                                                                                                                            |
| (72) Inventors: FISHER, Michael, H.; RD. 1, Old York Road, Box 302, Ringoes, NJ 08551 (US). WYVRATT, Matthew, J.; 1130 Paddingstone Road, Mountainside, NJ 07092 (US). SCHOEN, William, R.; 6 Maryellen Drive, Edison, NJ 08820 (US). DeVITA, Robert, J.; 1490 Lamberts Mill Road, Westfield, NJ 07090 (US). |    |                                                                                                                                                                                            |

(54) Title: BENZO-FUSED LACTAMS PROMOTE RELEASE OF GROWTH HORMONE

## (57) Abstract

There are disclosed certain novel compounds identified as benzo-fused lactams which promote the release of growth hormone in humans and animals. This property can be utilized to promote the growth of food animals to render the production of edible meat products more efficient, and in humans, to increase the stature of those afflicted with a lack of a normal secretion of natural growth hormone. Growth promoting compositions containing such benzo-fused lactams as the active ingredient thereof are also disclosed.

**FOR THE PURPOSES OF INFORMATION ONLY**

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

|    |                          |    |                                          |    |                          |
|----|--------------------------|----|------------------------------------------|----|--------------------------|
| AT | Austria                  | FI | Finland                                  | ML | Mali                     |
| AU | Australia                | FR | France                                   | MN | Mongolia                 |
| BB | Barbados                 | GA | Gabon                                    | MR | Mauritania               |
| BE | Belgium                  | GB | United Kingdom                           | MW | Malawi                   |
| BF | Burkina Faso             | GN | Guinea                                   | NL | Netherlands              |
| BG | Bulgaria                 | GR | Greece                                   | NO | Norway                   |
| BJ | Benin                    | HU | Hungary                                  | PL | Poland                   |
| BR | Brazil                   | IE | Ireland                                  | RO | Romania                  |
| CA | Canada                   | IT | Italy                                    | RU | Russian Federation       |
| CF | Central African Republic | JP | Japan                                    | SD | Sudan                    |
| CG | Congo                    | KP | Democratic People's Republic<br>of Korea | SE | Sweden                   |
| CH | Switzerland              | KR | Republic of Korea                        | SN | Senegal                  |
| CI | Côte d'Ivoire            | LI | Liechtenstein                            | SU | Soviet Union             |
| CM | Cameroon                 | LK | Sri Lanka                                | TD | Chad                     |
| CS | Czechoslovakia           | LU | Luxembourg                               | TG | Togo                     |
| DE | Germany                  | MC | Monaco                                   | US | United States of America |
| DK | Denmark                  | MG | Madagascar                               |    |                          |

Rw.

5

- 1 -

TITLE OF THE INVENTION

BENZO-FUSED LACTAMS PROMOTE RELEASE OF GROWTH HORMONE

10

CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of our copending application serial number 673695, filed 20 March 1991.

15

BACKGROUND OF THE INVENTION

20

Growth hormone, which is secreted from the pituitary, stimulates growth of all tissues of the body that are capable of growing. In addition, growth hormone is known to have the following basic effects on the metabolic process of the body:

1. Increased rate of protein synthesis in all cells of the body;
2. Decreased rate of carbohydrate utilization in cells of the body;
3. Increased mobilization of free fatty acids and use of fatty acids for energy.

25

A deficiency in growth hormone secretion can result in various medical disorders, such as dwarfism.

30

- 2 -

Various ways are known to release growth hormone. For example, chemicals such as arginine, L-3,4-dihydroxyphenylalanine (L-DOPA), glucagon, vasopressin, and insulin induced hypoglycemia, as well as activities such as sleep and exercise, indirectly cause growth hormone to be released from the pituitary by acting in some fashion on the hypothalamus perhaps either to decrease somatostatin secretion or to increase the secretion of the known secretagogue growth hormone releasing factor (GRF) or an unknown endogenous growth hormone-releasing hormone or all of these.

In cases where increased levels of growth hormone were desired, the problem was generally solved by providing exogenous growth hormone or by administering an agent which stimulated growth hormone production and/or release. In either case the peptidyl nature of the compound necessitated that it be administered by injection. Initially the source of growth hormone was the extraction of the pituitary glands of cadavers. This resulted in a very expensive product and carried with it the risk that a disease associated with the source of the pituitary gland could be transmitted to the recipient of the growth hormone. Recently, recombinant growth hormone has become available which, while no longer carrying any risk of disease transmission, is still a very expensive product which must be given by injection or by a nasal spray.

Other compounds have been developed which stimulate the release of endogenous growth hormone

- 3 -

such as analogous peptidyl compounds related to GRF or the peptides of U.S. Patent 4,411,890. These peptides, while considerably smaller than growth hormones are still susceptible to various proteases.

5 As with most peptides, their potential for oral bioavailability is low. The instant compounds are non-peptidyl agents for promoting the release of growth hormone which may be administered

10 parenterally, nasally or by the oral route.

SUMMARY OF THE INVENTION

The instant invention covers certain benzo-fused lactam compounds which have the ability to stimulate the release of natural or endogenous growth hormone. The compounds thus have the ability to be used to treat conditions which require the stimulation of growth hormone production or secretion such as in humans with a deficiency of natural growth hormone or in animals used for food production where the stimulation of growth hormone will result in a larger, more productive animal. Thus, it is an object of the instant invention to describe the benzo-fused lactam compounds. It is a further object of this invention to describe procedures for the preparation of such compounds. A still further object is to describe the use of such compounds to increase the secretion of growth hormone in humans and animals. A still further object of this invention is to describe compositions containing the benzo-fused lactam compounds for the use of treating humans and animals so as to increase the level of growth hormone secretions. Further objects will become apparent from a reading of the following description.

- 4 -

DESCRIPTION OF THE INVENTION

The novel benzo-fused lactams of the instant invention are best described in the following structural formula I:



where L is



30

- n is 0 or 1;
- p is 0 to 3;
- q is 0 to 4;
- w is 0 or 1;

- 5 -



X is C=O, O, S(O)<sub>m</sub>, -CH-, -N-, -CH=CH-;

5 m is 0 to 2;

R<sup>1</sup>, R<sup>2</sup>, R<sup>1a</sup>, R<sup>2a</sup>, R<sup>1b</sup>, and R<sup>2b</sup> are independently hydrogen, halogen, C<sub>1</sub>-C<sub>7</sub> alkyl, C<sub>1</sub>-C<sub>3</sub> perfluoroalkyl, C<sub>1</sub>-C<sub>3</sub> perfluoroalkoxy, -S(O)<sub>m</sub>R<sup>7a</sup>, cyano, nitro, R<sup>7b</sup>O(CH<sub>2</sub>)<sub>v</sub>-, R<sup>7b</sup>COO(CH<sub>2</sub>)<sub>v</sub>-, R<sup>7b</sup>OCO(CH<sub>2</sub>)<sub>v</sub>, phenyl or substituted phenyl where the substituents are from 1 to 3 of halogen, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> alkoxy, or hydroxy;

10 R<sup>7a</sup> and R<sup>7b</sup> are independently hydrogen, C<sub>1</sub>-C<sub>3</sub> perfluoroalkyl, C<sub>1</sub>-C<sub>6</sub> alkyl, substituted C<sub>1</sub>-C<sub>6</sub> alkyl, where the substituents are phenyl or substituted phenyl; phenyl or substituted phenyl where the phenyl substituents are from 1 to 3 of halogen, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> alkoxy, or hydroxy and v is 0 to 3;

15 R<sup>3a</sup> and R<sup>3b</sup> are independently hydrogen, R<sup>9</sup>, C<sub>1</sub>-C<sub>6</sub> alkyl substituted with R<sup>9</sup>, phenyl substituted with R<sup>9</sup> or phenoxy substituted with R<sup>9</sup>;

20 R<sup>9</sup> is

25



30

R<sup>7b</sup>O(CH<sub>2</sub>)<sub>v</sub>-, R<sup>7b</sup>COO(CH<sub>2</sub>)<sub>v</sub>-, R<sup>7b</sup>OCO(CH<sub>2</sub>)<sub>v</sub>-, R<sup>7b</sup>CO(CH<sub>2</sub>)<sub>v</sub>-, R<sup>7b</sup>O(CH<sub>2</sub>)<sub>v</sub>CO-, R<sup>4</sup>R<sup>5</sup>N(CH<sub>2</sub>)<sub>v</sub>-, R<sup>7b</sup>CON(R<sup>4</sup>)(CH<sub>2</sub>)<sub>v</sub>-, R<sup>4</sup>R<sup>5</sup>NCO(CH<sub>2</sub>)<sub>v</sub>-, R<sup>4</sup>R<sup>5</sup>NCS(CH<sub>2</sub>)<sub>v</sub>-, R<sup>4</sup>R<sup>5</sup>NN(R<sup>5</sup>)CO(CH<sub>2</sub>)<sub>v</sub>-, R<sup>4</sup>R<sup>5</sup>NN(R<sup>5</sup>)CS(CH<sub>2</sub>)<sub>v</sub>-, R<sup>7b</sup>CON(R<sup>4</sup>)N(R<sup>5</sup>)CO(CH<sub>2</sub>)<sub>v</sub>-, R<sup>7b</sup>CON(R<sup>4</sup>)N(R<sup>5</sup>)CS(CH<sub>2</sub>)<sub>v</sub>-, R<sup>4</sup>N(OR<sup>7b</sup>)CO(CH<sub>2</sub>)<sub>v</sub>- or R<sup>7a</sup>CON(OR<sup>7b</sup>)CO(CH<sub>2</sub>)<sub>v</sub>-;

- 6 -

and v is as defined above;

R<sup>4</sup>, R<sup>4a</sup>, R<sup>5</sup> are independently hydrogen, phenyl,  
 5 substituted phenyl, C<sub>1</sub>-C<sub>10</sub> alkyl, substituted C<sub>1</sub>-C<sub>10</sub>  
 alkyl, C<sub>3</sub>-C<sub>10</sub> alkenyl, substituted C<sub>3</sub>-C<sub>10</sub> alkenyl,  
 C<sub>3</sub>-C<sub>10</sub> alkynyl, or substituted C<sub>3</sub>-C<sub>10</sub> alkynyl where  
 the substituents on the phenyl, alkyl, alkenyl or  
 alkynyl are from 1 to 5 of hydroxy, C<sub>1</sub>-C<sub>6</sub> alkoxy,  
 10 C<sub>3</sub>-C<sub>7</sub> cycloalkyl, phenyl C<sub>1</sub>-C<sub>3</sub> alkoxy, fluoro, R<sup>1</sup>  
 substituted or R<sup>1</sup>, R<sup>2</sup> independently disubstituted  
 phenyl C<sub>1</sub>-C<sub>3</sub> alkoxy, phenyl, R<sup>1</sup> substituted or R<sup>1</sup>, R<sup>2</sup>  
 independently disubstituted phenyl, where the  
 substituents on the phenyl are as defined above,  
 15 C<sub>1</sub>-C<sub>5</sub>-alkanoyloxy, C<sub>1</sub>-C<sub>5</sub> alkoxycarbonyl, carboxy,  
 formyl, or -NR<sup>10</sup>R<sup>11</sup> where R<sup>10</sup> and R<sup>11</sup> are  
 independently hydrogen, C<sub>1</sub>-C<sub>6</sub> alkyl, phenyl, phenyl  
 C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>5</sub>-alkoxycarbonyl, or C<sub>1</sub>-C<sub>5</sub>-alkanoyl-  
 C<sub>1</sub>-C<sub>6</sub> alkyl; or R<sup>4</sup> and R<sup>5</sup> can be taken together to  
 20 form -(CH<sub>2</sub>)<sub>r</sub>B(CH<sub>2</sub>)<sub>s</sub>- where B is CH<sub>2</sub>, O or S(O)<sub>m</sub> or  
 N-R<sup>10</sup>, r and s are independently 1 to 3 and R<sup>10</sup> is as  
 defined above;

R<sup>6</sup> is hydrogen, C<sub>1</sub>-C<sub>10</sub> alkyl, phenyl or phenyl C<sub>1</sub>-C<sub>10</sub>  
 25 alkyl;

A is



- 7 -

where x and y are independently 0-3;  
R<sup>8</sup> and R<sup>8a</sup> are independently hydrogen, C<sub>1</sub>-C<sub>10</sub> alkyl,  
trifluoromethyl, phenyl, substituted C<sub>1</sub>-C<sub>10</sub> alkyl  
5 where the substituents are from 1 to 3 of imidazolyl,  
indolyl, hydroxy, fluoro, S(O)<sub>m</sub>R<sup>7a</sup>, C<sub>1</sub>-C<sub>6</sub> alkoxy,  
C<sub>3</sub>-C<sub>7</sub> cycloalkyl, phenyl C<sub>1</sub>-C<sub>3</sub> alkoxy, R<sup>1</sup> substituted  
or R<sup>1</sup>, R<sup>2</sup> independently disubstituted phenyl C<sub>1</sub>-C<sub>3</sub>  
10 alkoxy, phenyl, R<sup>1</sup> substituted or R<sup>1</sup>, R<sup>2</sup>  
independently disubstituted phenyl,  
C<sub>1</sub>-C<sub>5</sub>-alkanoyloxy, C<sub>1</sub>-C<sub>5</sub> alkoxycarbonyl, carboxy,  
formyl, or -NR<sup>10</sup>R<sup>11</sup> where R<sup>10</sup> and R<sup>11</sup> are as defined  
above; or R<sup>8</sup> and R<sup>8a</sup> can be taken together to form  
- (CH<sub>2</sub>)<sub>t</sub> - where t is 2 to 6; and R<sup>8</sup> and R<sup>8a</sup> can  
15 independently be joined to one or both of R<sup>4</sup> and R<sup>5</sup>  
to form alkyl bridges between the terminal nitrogen  
and the alkyl portion of the A group wherein the  
bridge contains from 1 to 5 carbon atoms;  
and pharmaceutically acceptable salts thereof.

20 In the above structural formula and  
throughout the instant specification, the following  
terms have the indicated meanings:

25 The alkyl groups specified above are  
intended to include those alkyl groups of the  
designated length in either a straight or branched  
configuration. Exemplary of such alkyl groups are  
methyl, ethyl, propyl, isopropyl, butyl, sec-butyl,  
tertiary butyl, pentyl, isopentyl, hexyl, isoheptyl,  
and the like.

30 The alkoxy groups specified above are  
intended to include those alkoxy groups of the  
designated length in either a straight or branched  
configuration. Exemplary of such alkoxy groups are  
methoxy, ethoxy, propoxy, isopropoxy, butoxy,

- 8 -

isobutoxy, tertiary butoxy, pentoxy, isopentoxy, hexoxy, isohexoxy and the like.

5       The term "halogen" is intended to include the halogen atom fluorine, chlorine, bromine and iodine.

10      Certain of the above defined terms may occur more than once in the above formula and upon such occurrence each term shall be defined independently of the other.

15      Preferred compounds of the instant invention are realized when in the above structural formula:

n is 0 or 1;  
15     p is 0 to 3;  
q is 0 to 2;  
w is 0 or 1;

R<sup>10</sup>

|

20     X is O, S(O)<sub>m</sub>, -N-, -CH=CH-;  
m is 0 to 2;  
R<sup>1</sup>, R<sup>2</sup>, R<sup>1a</sup>, R<sup>2a</sup>, R<sup>1b</sup>, and R<sup>2b</sup> are independently hydrogen, halogen, C<sub>1</sub>-C<sub>7</sub> alkyl, C<sub>1</sub>-C<sub>3</sub> perfluoroalkyl, -S(O)<sub>m</sub>R<sup>7a</sup>, R<sup>7b</sup>O(CH<sub>2</sub>)<sub>v</sub>-, R<sup>7b</sup>COO(CH<sub>2</sub>)<sub>v</sub>-, R<sup>7b</sup>OCO(CH<sub>2</sub>)<sub>v</sub>, phenyl or substituted phenyl where the substituents  
25     are from 1 to 3 of halogen, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> alkoxy, or hydroxy;  
R<sup>7a</sup> and R<sup>7b</sup> are independently hydrogen, C<sub>1</sub>-C<sub>3</sub> perfluoroalkyl, C<sub>1</sub>-C<sub>6</sub> alkyl, substituted C<sub>1</sub>-C<sub>6</sub> alkyl, where the substituents are phenyl; phenyl and v is 0  
30     to 2;  
R<sup>3a</sup> and R<sup>3b</sup> are independently hydrogen, R<sup>9</sup>, C<sub>1</sub>-C<sub>6</sub> alkyl substituted with R<sup>9</sup>, phenyl substituted with R<sup>9</sup> or phenoxy substituted with R<sup>9</sup>;

- 9 -

R<sup>9</sup> is

5



10

R<sup>7b</sup>O(CH<sub>2</sub>)<sub>v</sub>-, R<sup>7b</sup>COO(CH<sub>2</sub>)<sub>v</sub>-, R<sup>7b</sup>OCO(CH<sub>2</sub>)<sub>v</sub>-, R<sup>7b</sup>CO(CH<sub>2</sub>)<sub>v</sub>-, R<sup>4</sup>R<sup>5</sup>N(CH<sub>2</sub>)<sub>v</sub>-, R<sup>7b</sup>CON(R<sup>4</sup>)(CH<sub>2</sub>)<sub>v</sub>-, R<sup>4</sup>R<sup>5</sup>NCO(CH<sub>2</sub>)<sub>v</sub>-, R<sup>4</sup>R<sup>5</sup>NCS(CH<sub>2</sub>)<sub>v</sub>-, R<sup>4</sup>R<sup>5</sup>NN(R<sup>5</sup>)CO(CH<sub>2</sub>)<sub>v</sub>-, R<sup>7b</sup>CON(R<sup>4</sup>)N(R<sup>5</sup>)CO(CH<sub>2</sub>)<sub>v</sub>-, R<sup>4</sup>N(OR<sup>7b</sup>)CO(CH<sub>2</sub>)<sub>v</sub>- or

15

R<sup>7a</sup>CON(OR<sup>7b</sup>)CO(CH<sub>2</sub>)<sub>v</sub>-; where v is as defined above; R<sup>4</sup>, R<sup>4a</sup>, R<sup>5</sup> are independently hydrogen, C<sub>1</sub>-C<sub>10</sub> alkyl, substituted C<sub>1</sub>-C<sub>10</sub> alkyl, where the substituents on the alkyl are from 1 to 5 of hydroxy, C<sub>1</sub>-C<sub>6</sub> alkoxy, C<sub>3</sub>-C<sub>7</sub> cycloalkyl, phenyl C<sub>1</sub>-C<sub>3</sub> alkoxy, fluoro, R<sup>1</sup> substituted or R<sup>1</sup>, R<sup>2</sup> independently disubstituted phenyl C<sub>1</sub>-C<sub>3</sub> alkoxy, phenyl, R<sup>1</sup> substituted or R<sup>1</sup>, R<sup>2</sup> independently disubstituted phenyl, where the substituents on the phenyl are as defined above, C<sub>1</sub>-C<sub>5</sub>-alkanoyloxy, C<sub>1</sub>-C<sub>5</sub> alkoxy carbonyl, carboxy or formyl;

20

R<sup>4</sup> and R<sup>5</sup> can be taken together to form -(CH<sub>2</sub>)<sub>r</sub>B(CH<sub>2</sub>)<sub>s</sub>- where B is CH<sub>2</sub>, O or S(O)<sub>m</sub> or N-R<sup>10</sup> r and s are independently 1 to 3 and R<sup>10</sup> is as defined above;

25

30 R<sup>6</sup> is hydrogen, C<sub>1</sub>-C<sub>10</sub> alkyl or phenyl C<sub>1</sub>-C<sub>10</sub> alkyl;

A is

- 10 -



10

where x and y are independently 0-2

15 R<sup>8</sup> and R<sup>8a</sup> are independently hydrogen, C<sub>1</sub>-C<sub>10</sub> alkyl, substituted C<sub>1</sub>-C<sub>10</sub> alkyl where the substituents are from 1 to 3 of imidazolyl, indolyl, hydroxy, fluoro, S(O)<sub>m</sub>R<sup>7a</sup>, C<sub>1</sub>-C<sub>6</sub> alkoxy, phenyl, R<sup>1</sup> substituted or R<sup>1</sup>, R<sup>2</sup> independently disubstituted phenyl,

20        C<sub>1</sub>-C<sub>5</sub>-alkanoyloxy, C<sub>1</sub>-C<sub>5</sub> alkoxy carbonyl, carboxy, formyl, -NR<sup>10</sup>R<sup>11</sup> where R<sup>10</sup> and R<sup>11</sup> are independently hydrogen, C<sub>1</sub>-C<sub>6</sub> alkyl, or C<sub>1</sub>-C<sub>5</sub> alkanoyl-C<sub>1</sub>-C<sub>6</sub> alkyl; or R<sup>8</sup> and R<sup>8a</sup> can be taken together to form -(CH<sub>2</sub>)<sub>t</sub>-where t is 2 to 4; and R<sup>8</sup> and R<sup>8a</sup> can independently be joined to one or both of R<sup>4</sup> and R<sup>5</sup> to form alkyl bridges between the terminal nitrogen and the alkyl portion of the A group wherein the bridge contains from 1 to 5 carbon atoms;  
25        and pharmaceutically acceptable salts thereof.

Additional preferred compounds are realized in the above structural formula when:  
n is 0 or 1;  
p is 0 to 2;  
q is 0 to 2;  
w is 0 or 1;

## **SUBSTITUTE SHEET**

- 11 -

X is S(0)<sub>m</sub>, -CH=CH-;

m is 0 or 1;

5 R<sup>1</sup>, R<sup>2</sup>, R<sup>1a</sup>, R<sup>2a</sup>, R<sup>1b</sup>, and R<sup>2b</sup> are independently hydrogen, halogen, C<sub>1</sub>-C<sub>7</sub> alkyl, C<sub>1</sub>-C<sub>3</sub> perfluoroalkyl, -S(0)<sub>m</sub>R<sup>7a</sup>, R<sup>7b</sup>O(CH<sub>2</sub>)<sub>v</sub>-, R<sup>7b</sup>COO(CH<sub>2</sub>)<sub>v</sub>-, R<sup>7b</sup>OCO(CH<sub>2</sub>)<sub>v</sub>, phenyl or substituted phenyl where the substituents are from 1 to 3 of halogen, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> alkoxy, or hydroxy;

10 R<sup>7a</sup> and R<sup>7b</sup> are independently hydrogen, C<sub>1</sub>-C<sub>6</sub> alkyl, substituted C<sub>1</sub>-C<sub>6</sub> alkyl, where the substituents are phenyl and v is 0 to 2;

R<sup>3a</sup> and R<sup>3b</sup> are independently hydrogen, R<sup>9</sup>, C<sub>1</sub>-C<sub>6</sub> alkyl substituted with R<sup>9</sup>, phenyl substituted with R<sup>9</sup>

15 or phenoxy substituted with R<sup>9</sup>;

R<sup>9</sup> is



25

R<sup>7b</sup>O(CH<sub>2</sub>)<sub>v</sub>-, R<sup>7b</sup>COO(CH<sub>2</sub>)<sub>v</sub>-, R<sup>7b</sup>OCO(CH<sub>2</sub>)<sub>v</sub>-,  
R<sup>7b</sup>CO(CH<sub>2</sub>)<sub>v</sub>-, R<sup>4</sup>R<sup>5</sup>N(CH<sub>2</sub>)<sub>v</sub>-, R<sup>7b</sup>CON(R<sup>4</sup>)(CH<sub>2</sub>)<sub>v</sub>-,  
R<sup>4</sup>R<sup>5</sup>NCO(CH<sub>2</sub>)<sub>v</sub>-, R<sup>4</sup>R<sup>5</sup>NCS(CH<sub>2</sub>)<sub>v</sub>-, R<sup>4</sup>N(OR<sup>7b</sup>)CO(CH<sub>2</sub>)<sub>v</sub>- or  
R<sup>7a</sup>CON(OR<sup>7b</sup>)CO(CH<sub>2</sub>)<sub>v</sub>-; where v is as defined above;

30 R<sup>4</sup>, R<sup>4a</sup>, R<sup>5</sup> are independently hydrogen, C<sub>1</sub>-C<sub>10</sub> alkyl, substituted C<sub>1</sub>-C<sub>10</sub> alkyl, where the substituents on the alkyl are from 1 to 5 of hydroxy, C<sub>1</sub>-C<sub>6</sub> alkoxy, fluoro, phenyl, R<sup>1</sup> substituted or R<sup>1</sup>, R<sup>2</sup> independently disubstituted phenyl, where

- 12 -

the substituents on the phenyl are as defined above,  
 $C_1-C_5$ -alkanoyloxy,  $C_1-C_5$  alkoxycarbonyl, carboxy;

5       $R^6$  is hydrogen,  $C_1-C_{10}$  alkyl;

A is



15      where x and y are independently 0-2;  
 $R^8$  and  $R^{8a}$  are independently hydrogen,  $C_1-C_{10}$  alkyl,  
 substituted  $C_1-C_{10}$  alkyl where the substituents are  
 from 1 to 3 of imidazolyl, indolyl, hydroxy, fluoro,  
 $S(O)_{m}R^{7a}$ ,  $C_1-C_6$  alkoxy, phenyl,  $R^1$  substituted or  $R^1$ ,  
 $R^2$  independently disubstituted phenyl,  
 20       $C_1-C_5$ -alkanoyloxy,  $C_1-C_5$  alkoxycarbonyl, carboxy; or  
 $R^8$  and  $R^{8a}$  can be taken together to form  $-(CH_2)_t-$   
 where t is 2; and  $R^8$  and  $R^{8a}$  can independently be  
 joined to one or both of  $R^4$  and  $R^5$  to form alkyl  
 bridges between the terminal nitrogen and the alkyl  
 25      portion of the A group wherein the bridge contains  
 from 1 to 5 carbon atoms;  
 and pharmaceutically acceptable salts thereof.

30      Still further preferred compounds of the  
 instant invention are realized in the above  
 structural formula when;  
 $n$  is 0 or 1;  
 $p$  is 0 to 2;

- 13 -

q is 1;

w is 1;

X is S(0)<sub>m</sub>, -CH=CH-;

5 m is 0 or 1;

R<sup>1</sup>, R<sup>2</sup>, R<sup>1a</sup>, R<sup>2a</sup>, R<sup>1b</sup>, and R<sup>2b</sup> are independently hydrogen, halogen, C<sub>1</sub>-C<sub>7</sub> alkyl, C<sub>1</sub>-C<sub>3</sub> perfluoroalkyl, -S(0)<sub>m</sub>R<sup>7a</sup>, R<sup>7b</sup>O(CH<sub>2</sub>)<sub>v</sub>-, R<sup>7b</sup>COO(CH<sub>2</sub>)<sub>v</sub>-, phenyl or substituted phenyl where the substituents are from 1 to 3 of halogen, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> alkoxy, or hydroxy;

10 R<sup>7a</sup> and R<sup>7b</sup> are independently hydrogen, C<sub>1</sub>-C<sub>6</sub> alkyl, substituted C<sub>1</sub>-C<sub>6</sub> alkyl, where the substituents are phenyl, phenyl and v is 0 or 1;

15 R<sup>3a</sup> and R<sup>3b</sup> are independently hydrogen or R<sup>9</sup>;

R<sup>9</sup> is

20



25

R<sup>7b</sup>O(CH<sub>2</sub>)<sub>v</sub>-, R<sup>7b</sup>COO(CH<sub>2</sub>)<sub>v</sub>-, R<sup>7b</sup>OCO(CH<sub>2</sub>)<sub>v</sub>-, R<sup>7b</sup>CO(CH<sub>2</sub>)<sub>v</sub>-, R<sup>4</sup>R<sup>5</sup>N(CH<sub>2</sub>)<sub>v</sub>-, R<sup>7b</sup>CON(R<sup>4</sup>)(CH<sub>2</sub>)<sub>v</sub>-, R<sup>4</sup>R<sup>5</sup>NCO(CH<sub>2</sub>)<sub>v</sub>- or R<sup>4</sup>N(OR<sup>7b</sup>)CO(CH<sub>2</sub>)<sub>v</sub>-; where v is as defined above;

30

R<sup>4</sup>, R<sup>5</sup> are independently hydrogen, C<sub>1</sub>-C<sub>10</sub> alkyl, substituted C<sub>1</sub>-C<sub>10</sub> alkyl, where the substituents on the alkyl are from 1 to 3 of hydroxy, C<sub>1</sub>-C<sub>3</sub> alkoxy, fluoro, phenyl, R<sup>1</sup> substituted or R<sup>1</sup>, R<sup>2</sup> independently disubstituted phenyl, where the substituents on the phenyl are as defined above;

- 14 -

R<sup>4a</sup> is hydrogen, C<sub>1</sub>-C<sub>10</sub> alkyl, substituted C<sub>1</sub>-C<sub>10</sub> alkyl where the substituents on the alkyl are from 1 to 3 of hydroxy;

5

R<sup>6</sup> is hydrogen;

A is

10



15

where x and y are independently 0-1;

R<sup>8</sup> and R<sup>8a</sup> are independently hydrogen, C<sub>1</sub>-C<sub>10</sub> alkyl, substituted C<sub>1</sub>-C<sub>10</sub> alkyl where the substituents are from 1 to 3 of imidazolyl, indolyl, hydroxy, fluoro, S(O)<sub>m</sub>R<sup>7a</sup>, C<sub>1</sub>-C<sub>6</sub> alkoxy, phenyl, R<sup>1</sup> substituted or R<sup>1</sup>, R<sup>2</sup> independently disubstituted phenyl, C<sub>1</sub>-C<sub>5</sub>-alkanoyloxy, C<sub>1</sub>-C<sub>5</sub> alkoxycarbonyl, carboxy; or R<sup>8</sup> and R<sup>8a</sup> can be taken together to form -(CH<sub>2</sub>)<sub>t</sub>- where t is 2; and R<sup>8</sup> and R<sup>8a</sup> can independently be joined to one or both of R<sup>4</sup> and R<sup>5</sup> to form alkyl bridges between the terminal nitrogen and the alkyl portion of the A group wherein the bridge contains from 1 to 5 carbon atoms; and pharmaceutically acceptable salts thereof.

- 15 -

Representative preferred growth hormone releasing compounds of the present invention include the following:

5

1. 3-amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-  
[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]-  
methyl]-1H-1-benzazepin-3(R)-yl]-butanamide

10

2. 2(R)-amino-3-hydroxy-N-[2,3,4,5-tetrahydro-2-oxo-  
1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]-  
methyl]-1H-1-benzazepin-3(R)-yl]-propanamide

15

3. 2(R)-amino-3-phenyl-N-[2,3,4,5-tetrahydro-2-oxo-  
1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]-  
methyl]-1H-1-benzazepin-3(R)-yl]-propanamide

20

4. 2(R)-amino-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-  
(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-  
1-benzazepin-3(R)-yl]-propanamide

25

5. 3-(2-hydroxyethyl)amino-3-methyl-N-[2,3,4,5-  
tetrahydro-2-oxo-1-[[2'-(1-(2-hydroxyethyl)-tetra-  
zol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benz-  
azepin-3(R)-yl]-butanamide

30

6. 3-(2-hydroxypropyl)amino-3-methyl-N-[2,3,4,5-  
tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-  
biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-  
butanamide

- 16 -

7. 2-amino-2-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-  
[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]-  
methyl]-1H-1-benzazepin-3(R)-y1]-propanamide  
5
8. 3-amino-3-methyl-N-[7-fluoro-2,3,4,5-tetrahydro-  
2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-  
y1]methyl]-1H-1-benzazepin-3(R)-y1]-butanamide  
10
9. 3-amino-3-methyl-N-[7-trifluoromethyl-2,3,4,5-  
tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-  
biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-y1]-  
butanamide  
15
10. 3-amino-3-methyl-N-[6-fluoro-2,3,4,5-tetrahydro-  
2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-  
y1]methyl]-1H-1-benzazepin-3(R)-y1]-butanamide  
11. 3-benzylamino-3-methyl-N-[2,3,4,5-tetrahydro-2-  
oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-  
y1]methyl]-1H-1-benzazepin-3(R)-y1]-butanamide  
20
12. 3-amino-3-methyl-N-[3,4-dihydro-4-oxo-5-[[2'-(  
1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-  
1,5-benzothiazepin-3(S)-y1]-butanamide  
25
13. 3-(2(R)-hydroxypropyl)amino-3-methyl-N-[2,3,4,5-  
tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-  
biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-y1]-  
butanamide  
30

- 17 -

14. 3-(2(S)-hydroxypropyl)amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide  
5
15. 3-(2(R),3-dihydroxypropyl)amino-3-methyl-N-[2,3,-4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)-[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide  
10
16. 3-(2(S),3-dihydroxypropyl)amino-3-methyl-N-[2,3,-4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)-[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-y1]-butanamide  
15
17. 3-(3(S)-hydroxybutyl)amino-3-methyl-N-[7-fluoro-2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide  
20
18. 3-(3(S)-hydroxybutyl)amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide  
25
19. 3-amino-3-methyl-N-[7-hydroxy-2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide  
30

- 18 -

20. 3-(2(R)-hydroxypropyl)amino-3-methyl-N-[7-hydroxy-  
2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-  
y1)[1,1'-biphenyl]-4-y1]methyl]-1H-1-benzazepin-  
5 3(R)-y1]-butanamide
21. 3-(2(R)-hydroxypropyl)amino-3-methyl-N-[7-fluoro-  
2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-  
y1)[1,1'-biphenyl]-4-y1]methyl]-1H-1-benzazepin-  
10 3(R)-y1]-butanamide
22. 2-(3(R)-hydroxybutyl)amino-2-methyl-N-[2,3,4,5-  
tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-y1)[1,1'-  
biphenyl]-4-y1]methyl]-1H-1-benzazepin-3(R)-y1]-  
15 propanamide
23. 2-(3(S)-hydroxybutyl)amino-2-methyl-N-[2,3,4,5-  
tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-y1)[1,1'-  
biphenyl]-4-y1]methyl]-1H-1-benzazepin-3(R)-y1]-  
20 propanamide
24. 3-Amino-3-methyl-N-[7-methoxy-2,3,4,5-tetrahydro-  
2-oxo-1-[[2'-(1H-tetrazol-5-y1)[1,1'-biphenyl]-4-  
y1]methyl]-1H-1-benzazepin-3(R)-y1]-butanamide  
25
25. 3-(2(R)-hydroxypropyl)amino-3-methyl-N-[7-methoxy-  
2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-  
y1)[1,1'-biphenyl]-4-y1]methyl]-1H-1-benzazepin-  
3(R)-y1]-butanamide
- 30

- 19 -

26. 3-(3(S)-hydroxybutyl)amino-3-methyl-N-[7-methoxy-  
2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)  
[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-  
yl]butanamide  
5
27. Quinuclidine-N'-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-3-carboxamide  
10
28. 3-(2-fluoropropyl)amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide  
15
29. 3-(2-methoxypropyl)amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide  
20
30. 3-(2-hydroxy-2-methylpropyl)amino-3-methyl-N-[2,-  
3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)-  
[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-  
yl]butanamide  
25
31. 4'-[[3(R)-[(3-amino-3-methyl-1-oxobutyl)amino]-2,-  
3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]-  
methyl]-[1,1'-biphenyl]-2-carboxamide  
30
32. 4'-[[3(R)-[[3-[(2(R)-hydroxypropyl)amino]-3-  
methyl-1-oxobutyl]amino]-2,3,4,5-tetrahydro-2-oxo-  
1H-1-benzazepin-1-yl]methyl]-[1,1'-biphenyl]-2-  
carboxamide

- 20 -

33. 4'-[3(R)-[(3-[(2(S),3-dihydroxypropyl)amino]-3-methyl-1-oxobutyl]amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl]-[1,1'-biphenyl]-2-carboxamide  
5
34. N-ethyl-4'-[3(R)-[(3-amino-3-methyl-1-oxobutyl)amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl]-[1,1'-biphenyl]-2-carboxamide  
10
35. N-ethyl-4'-[3(R)-[(3-[(2(S),3-dihydroxypropyl)amino]-3-methyl-1-oxobutyl]amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl]-[1,1'-biphenyl]-2-carboxamide  
15
36. N-methyl-4'-[3(R)-[(3-[(2(S),3-dihydroxypropyl)amino]-3-methyl-1-oxobutyl]amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl]-[1,1'-biphenyl]-2-carboxamide  
20
37. 3-amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-hydroxymethyl[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]butanamide  
25
38. 3-(2(R)-hydroxypropyl)amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-hydroxymethyl[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]butanamide  
30
39. 3-Amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-aminomethyl[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]butanamide

- 21 -

40. 3-(2(R)-hydroxypropyl)amino-3-methyl-N-[2,3,4,-  
5-tetrahydro-2-oxo-1-[[2'-aminomethyl[1,1'-  
biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-  
butanamide  
5
41. 4'-[[3(R)-[[3-[(2(S),3(S),4-trihydroxybutyl)-  
amino]-3-methyl-1-oxobutyl]amino]-2,3,4,5-tetra-  
hydro-2-oxo-1H-1-benzazepin-1-yl]methyl]-[1,1'-  
biphenyl]-2-carboxamide  
10
42. 4'-[[3(R)-[[3-[(3-hydroxybutyl)amino]-3-methyl-1-  
oxobutyl]amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-ben-  
zazepin-1-yl]methyl]-[1,1'-biphenyl]-2-carboxamide  
15
43. 3-Amino-3-methyl-N-[2,3-dihydro-2-oxo-1-[[2'-(1H-  
tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-  
benzazepin-3(R)-yl]butanamide
44. 3-(2(R)-hydroxypropyl)amino-3-methyl-N-[2,3-di-  
hydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-  
biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-  
butanamide  
20
45. N-ethyl-4'-[[3(R)-[[3-[(2(S),3-dihydroxypropyl)-  
amino]-3-methyl-1-oxobutyl]amino]-2,3-dihydro-2-  
oxo-1H-1-benzazepin-1-yl]methyl]-[1,1'-biphenyl]-  
2-carboxamide  
25
46. 3-(2(R)-hydroxypropyl)amino-3-methyl-N-[3,4-di-  
hydro-4-oxo-5-[[2'-(1H-tetrazol-5-yl)[1,1'-  
biphenyl]-4-yl]methyl]-1,5-benzothiazepin-3(S)-  
y1]-butanamide  
30

- 22 -

47. 3-(2(S)-hydroxypropyl)amino-3-methyl-N-[3,4-di-  
hydro-4-oxo-5-[[2'-(1H-tetrazol-5-yl)[1,1'-  
biphenyl]-4-yl]methyl]-1,5-benzothiazepin-3(S)-  
5 yl]-butanamide
48. N-ethyl-4'-[[3(S)-[3-[(2(S),3-dihydroxypropyl)-  
amino]-3-methyl-1-oxobutyl]amino]-3,4-dihydro-4-  
10 oxo-1,5-benzothiazepin-5(2H)-yl]methyl]-[1,1'-bi-  
phenyl]-2-carboxamide
49. 4'-[[3(S)-[(3-amino-3-methyl-1-oxobutyl)amino]-  
3,4-dihydro-4-oxo-1,5-benzothiazepin-5(2H)-yl]-  
15 methyl]-[1,1'-biphenyl]-2-carboxamide
50. 4'-[[3(R)-[(3-amino-3-methyl-1-oxobutyl)amino]-  
2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]-  
methyl]-[1,1'-biphenyl]-2-thioamide
51. N-hydroxy-4'-[[3(R)-[(3-amino-3-methyl-1-oxo-  
butyl)amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-  
benzazepin-1-yl]methyl]-[1,1'-biphenyl]-2-  
20 carboxamide
52. N-hydroxy-4'-[[3(R)-[3-[(2(S),3-dihydroxypropyl)-  
amino]-3-methyl-1-oxobutyl]amino]-2,3,4,5-tetra-  
25 hydro-2-oxo-1H-1-benzazepin-1-yl]methyl]-[1,1'-  
biphenyl]-2-carboxamide
53. N-hydroxy-4'-[[3(R)-[3-[(2(R)-hydroxypropyl)-  
amino]-3-methyl-1-oxobutyl]amino]-2,3,4,5-tetra-  
30 hydro-2-oxo-1H-1-benzazepin-1-yl]methyl]-[1,1'-  
biphenyl]-2-carboxamide

- 23 -

54. 3-(2(R)-hydroxypropyl)amino-3-methyl-N-[3,4-dihydro-1,4-dioxo-5-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1,5-benzothiazepin-3(S)-yl]-butanamide
- 5
55. 3-amino-3-methyl-N-[3,4-dihydro-1,4-dioxo-5-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1,5-benzothiazepin-3(S)-yl]-butanamide
- 10
56. 3-amino-3-methyl-N-[7-methylthio-2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]butanamide
- 15
57. 3-(2(R)-hydroxypropyl)amino-3-methyl-N-[7-methylthio-2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide
- 20
58. 3-(2(R)-hydroxypropyl)amino-3-methyl-N-[7-methylsulfinyl-2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide
- 25
59. 3-amino-3-methyl-N-[7-methylsulfinyl-2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide
- 30
60. 3-amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(acetylaminomethyl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]butanamide

- 24 -

61. 3-(2(R)-hydroxypropyl)amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(acetylaminomethyl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]butanamide  
5
62. 3-amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(benzoylaminomethyl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]butanamide  
10
63. 3-(2(R)-hydroxypropyl)amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(benzoylaminomethyl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]butanamide  
15
64. 3-amino-3-methyl-4-hydroxy-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]butanamide  
20
65. 2-amino-2-methyl-3-hydroxy-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]propanamide  
25
66. 3-(2(R)-hydroxypropyl)amino-3-methyl-4-hydroxy-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]butanamide  
30
67. 2-(3-hydroxybutyl)amino-2-methyl-3-hydroxy-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]propanamide

- 25 -

Representative examples of the nomenclature employed are given below:

5      3-amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl-1H-1-benzazepin-3(R)-yl]butanamide

10



15

20      3-(2(R)-hydroxypropyl)amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl-1H-1-benzazepin-3(R)-yl]butanamide

25



30

- 26 -

4'-[[(3(R)-[(3-amino-3-methyl-1-oxobutyl)amino]-2,3,-  
4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl)methyl]-  
[1,1'-biphenyl]-2-carboxamide

5



10

3-amino-3-methyl-N-[3,4-dihydro-4-oxo-5-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1,5-benzothiazepin-3(S)-yl]butanamide

20



25

The compounds of the instant invention all have at least one asymmetric center as noted by the asterisk in the structural Formula I above.  
Additional asymmetric centers may be present on the molecule depending upon the nature of the various substituents on the molecule. Each such asymmetric center will produce two optical isomers and it is

- 27 -

intended that all such optical isomers, as separated, pure optical isomers or racemic mixtures thereof, be included within the ambit of the instant invention.

In the case of the asymmetric center represented by the asterisk in Formula I, it has been found that the compound in which the 3-amino substituent is above the plane of the structure, as seen in Formula Ia, is more active and thus more preferred over the compound in which the 3-amino substituent is below the plane of the structure. In the substituent  $(X)_n$ , when  $n = 0$ , the asymmetric center is designated as the R-isomer. When  $n = 1$ , this center will be designated according to the R/S rules as either R or S depending upon the value of X.



30

The instant compounds are generally isolated in the form of their pharmaceutically acceptable acid addition salts, such as the salts derived from using inorganic and organic acids. Examples of such acids

- 28 -

are hydrochloric, nitric, sulfuric, phosphoric, formic, acetic, trifluoroacetic, propionic, maleic, succinic, malonic and the like. In addition, certain compounds containing an acidic function such as a carboxy or tetrazole, can be isolated in the form of their inorganic salt in which the counterion can be selected from sodium, potassium, lithium, calcium, magnesium and the like, as well as from organic bases.

10

The compounds (I) of the present invention are prepared from aminolactam intermediates such as those of formula II. The preparation of these intermediates is described in the following reaction Schemes.

15

20



II

25

30

Benzo-fused lactams 3 wherein the lactam is a seven-membered ring are conveniently prepared from substituted tetralones 2 using known procedures. The substituted tetralones are, in some cases, commercially available or are prepared from a suitably substituted derivative of 4-phenylbutyric acid 1. Cyclization of 1 can be achieved by a number of methods well known in the literature including treatment with polyphosphoric acid at elevated temperatures as shown in Scheme 1.

- 29 -

Scheme 1



Conversion of substituted tetralones 2 to benzolactams 3 can be achieved by a number of methods familiar to those skilled in the art. A suitable method involves the use of hydrazoic acid (Schmidt reaction) to form the substituted benzolactam 3.

30 Benzo-fused lactams wherein the lactam is an  
eight-membered ring (6) are prepared as described by  
D. H. Jones, et al, J. Chem. Soc. C, 2176-2181 (1969)  
by an analogous series of transformations starting  
from a substituted derivative of 5-phenylpentanoic  
acid 4 as shown in Scheme 2.

## **SUBSTITUTE SHEET**

- 30 -

Scheme 2



As shown in Scheme 3, 3-aminobenzolactam  
analog 30 wherein the lactam is a six-membered ring  
(11) are prepared from a substituted derivative of  
2-nitrobenzyl chloride (or bromide) 7 by the method  
of A. L. Davis, et al, Arch. Biochem. Biophys., 102,  
48-51 (1963) and references cited therein.

- 31 -

### Scheme 3



## **SUBSTITUTE SHEET**

- 32 -

Conversion of substituted benzo-fused lactams to the requisite 3-amino derivatives can be achieved by a number of methods familiar to those skilled in the art, including those described by Watthey, et al, J. Med. Chem., 28, 1511-1516 (1985) and references cited therein. One common route proceeds via the intermediacy of a 3-halo (chloro, bromo or iodo) intermediate which is subsequently displaced by a nitrogen nucleophile, typically azide. A useful method of forming the 3-iodobenzolactam intermediates 12 involves treating the benzolactam with two equivalents each of iodotrimethylsilane and iodine at low temperature, as illustrated in Scheme 4 for the seven-membered ring analogs 3.

20

25

30

- 33 -

Scheme 4

5



10

15



20

25

13

30

14

- 34 -

Elaboration of the iodo-benzolactams to the desired aminolactam intermediates II is achieved by a two-step procedure illustrated in Scheme 4.

5        Typically, iodo-benzolactams 12 are treated with sodium azide in N,N-dimethylformamide at 50-100°C to give the 3-azido derivatives 13. Alternatively, tetramethylguanidinium azide in a solvent such as methylene chloride can be employed to achieve similar 10      results. Hydrogenation with a metal catalyst, such as platinum on carbon, or alternatively, treatment with triphenylphosphine in wet toluene, results in formation of the amine derivative 14. Formation of the analogous derivatives of the eight-membered 15      benzolactams is also achieved by the routes shown in Scheme 4.

Chiral aminobenzolactams are obtained by resolution of the racemates by classical methods familiar to those skilled in the art. For example, 20      resolution can be achieved by formation of diastereomeric salts of the racemic amines with optically active acids such as D- and L-tartaric acid. Determination of absolute stereochemistry can be achieved in a number of ways including X-ray 25      analysis of a suitable crystalline derivative.

Intermediates of Formula II wherein X is a sulfur atom are prepared by methods described in the literature and known to those skilled in the art. As 30      illustrated in Scheme 5, the seven-membered ring analog 22 is prepared from a protected derivative of cysteine 16 by the method of Slade, et al, J. Med. Chem., 28, 1517-1521 (1985) and references cited therein (Cbz = benzyloxycarbonyl).

- 35 -

Scheme 5



## **SUBSTITUTE SHEET**

- 36 -

Scheme 5 (Con't)

5



10

19 r = 0, 20 r = 1, 21 r = 2

15



20

22 r = 0, 23 r = 1, 24 r = 2

25

Sulfoxide and sulfone intermediates 23 and 24 are prepared by oxidation of 19 with various oxidants such as sodium periodate or meta-chloroperbenzoic acid. Eight-membered ring intermediates of Formula II wherein X is sulfur can be prepared by an analogous route starting from derivatives of homo-cysteine.

30

Intermediates of Formula II wherein X is an oxygen atom are prepared by methods described in the literature and known to those skilled in the art.

- 36/1 -

For example, the seven-membered ring analog 26 can be prepared from a substituted derivative of 3-(2-nitro-phenoxy)butyric acid 25 by the method of J. Ott,  
5 Arch. Pharm. (Weinheim, Ger.), 323(9), 601-603 (1990).

10

15

20

25

30

- 37 -

Scheme 6



20

Six-membered ring analogs wherein X is oxygen (28) may be prepared by reaction of a substituted derivative of 2-aminophenol 27 with chloroacetyl chloride by the method of Huang and Chan, *Synthesis*, 10, 851 (1984) and references cited therein. Subsequent incorporation of an amino group at the 3 position of either 26 or 28 is achieved by the methods described in Scheme 4.

30

- 38 -

Scheme 7

5

10

15

20

25

30



Seven-membered ring analogs of Formula II wherein X is C=O can be prepared from derivatives of tryptophan as described in the Australian Journal of Chemistry, 33, 633-640 (1980). Seven-membered ring analogs of Formula II wherein X is CH=CH can be prepared from the aforementioned analogs wherein X is C=O. Treatment of 37 with chemical reducing agents such as sodium borohydride in a polar solvent such as methanol or ethanol results in reduction to give the secondary alcohol derivative 38 (X=CHOH).

- 39 -



15      Dehydration of 38 can be achieved by several methods described in the literature and familiar to those skilled in the art. For example, treatment of 38 in an inert solvent, such as benzene, with a strong acid such as p-toluenesulfonic acid, will result in dehydration to the unsaturated analog 39.

20



- 39/1 -

Intermediates of formula II can be further elaborated to new intermediates (formula III) which are substituted on the amino group (Scheme 8).

5 Reductive alkylation of II with an aldehyde is carried out under conditions known in the art; for example, by catalytic hydrogenation with hydrogen in

10

15

20

25

30

- 40 -

the presence of platinum, palladium or nickel catalysts or with chemical reducing agents such as sodium cyanoborohydride in an inert solvent such as methanol or ethanol.



Attachment of the amino acid sidechain to intermediates of formula III is accomplished by the route shown in Scheme 9. Coupling is conveniently carried out by the use of an appropriately protected amino acid derivative, such as that illustrated by formula IV, and a coupling reagent such as

- 40/1 -

benzotriazol-1-yloxytris(dimethylamino)phosphonium  
hexafluorophosphate ("BOP") in an inert solvent such  
as methylene chloride. Separation of unwanted side  
products, and purification of intermediates is  
achieved by chromatography on silica gel, employing  
flash chromatography (W.C. Still, M. Kahn and A.

10

15

20

25

30

- 41 -

Mitra, J. Org. Chem., 43, 2923 (1978)) or by medium pressure liquid chromatography.

5

Scheme 9



The protected amino acid derivatives IV are, in many cases, commercially available in t-butoxycarbonyl (BOC) or benzyloxycarbonyl (CBz) forms. A useful method to prepare the preferred sidechain 31 is shown in Scheme 10.

- 42 -

Scheme 10

5



10



15



20

Formation of the monomethyl ester 29 of 2,2-dimethylsuccinic acid is achieved by treatment of a methanolic solution with a catalytic amount of a strong acid, such as sulfuric acid. Treatment of 29 with diphenylphosphoryl azide (DPPA) followed by benzyl alcohol results in formation of the benzyloxycarbonyl (CBz) compound 30. Alkaline hydrolysis with sodium hydroxide in methanol affords the product 31.

25

30

Intermediates of formula VII can be prepared as shown in Scheme 11 by treatment of the desired lactam intermediate V with an alkylating agent VI, wherein L is a good leaving group such as Cl, Br, I, O-methanesulfonyl or O-(p-toluenesulfonyl). Alkylation of intermediates of formula V is

- 43 -

conveniently carried out in anhydrous dimethyl formamide (DMF) in the presence of bases such as sodium hydride or potassium t-butoxide for a period of 0.5 to 24 hours at temperatures of 20-100°C.

5 Substituents on the alkylating agent VI may need to be protected during alkylation. A description of such protecting groups may be found in: Protective Groups in Organic Synthesis, T.W. Greene, John Wiley  
10 and Sons, New York, 1981.

Scheme 11



- 43/1 -

Scheme 11 (Cont'd)

5

10



15

20

25

30

**SUBSTITUTE SHEET**

- 44 -

Alkylation agents VI are, in some cases  
commercially available compounds or may be prepared  
as described in EPO publications 253,310; 291,969;  
5 324,377 and the references cited therein. A useful  
method to prepare the preferred alkylating agent 36  
is shown in reaction Scheme 12, and in U.S. Patent  
5,039,814.

10

15

20

25

30

- 45 -

Scheme 12



- 45/1 -

Scheme 12 (Cont'd)

5

10



15

N-bromosuccinimide

AIBN

20

25

36



30

- 46 -

As outlined in Scheme 12, benzonitrile is treated with sodium azide and zinc chloride to give 5-phenyltetrazole 32 which is converted to the 5 N-trityl derivative 33 by treatment with triphenylmethyl chloride and triethylamine. The zinc reagent 34 was prepared by treatment with n-butyl lithium followed by zinc chloride. Coupling with 10 4-iodotoluene using the catalyst bis(triphenylphosphine)-nickel(II) dichloride gives the biphenyl product 35 in high yield. Reaction with N-bromosuccinimide and AIBN gives bromide 36.

Conversion to the final products of formula I wherein R<sup>4</sup> is hydrogen, is carried out by 15 simultaneous or sequential removal of all protecting groups from intermediate VII as illustrated in Scheme 13. Removal of benzyloxycarbonyl groups can be achieved by a number of methods known in the art; for example, catalytic hydrogenation with hydrogen in 20 the presence of a platinum or palladium catalyst in a protic solvent such as methanol. In cases where catalytic hydrogenation is contraindicated by the presence of other potentially reactive functionality, removal of benzyloxycarbonyl groups can also be 25 achieved by treatment with a solution of hydrogen bromide in acetic acid. Catalytic hydrogenation is also employed in the removal of N-triphenylmethyl (trityl) protecting groups. Removal of t-butoxycarbonyl (BOC) protecting groups is carried 30 out by treatment of a solution in a solvent such as methylene chloride or methanol, with a strong acid, such as hydrochloric acid or trifluoroacetic acid. Conditions required to remove other protecting groups which may be present can be found in Protective Groups in Organic Synthesis.

SUBSTITUTE SHEET

- 47 -

Scheme 13



30 Compounds of formula I wherein R<sup>4</sup> and R<sup>5</sup> are each hydrogen can be further elaborated by reductive alkylation with an aldehyde by the aforementioned procedures or by alkylations such as by reaction with various epoxides. The products, obtained as

## **SUBSTITUTE SHEET**

- 47/1 -

hydrochloride or trifluoroacetate salts, are  
conveniently purified by reverse phase high  
performance liquid chromatography (HPLC) or by  
5 recrystallization.

10

15

20

25

30

- 48 -

Compounds of Formula I wherein R<sup>3a</sup> or R<sup>3b</sup> are taken as R<sup>4</sup>R<sup>5</sup>NCO(CH<sub>2</sub>)<sub>v</sub> and v is 0 can be prepared by several methods. For example, as shown in Scheme 14, compound 41 wherein R<sup>4</sup> and R<sup>5</sup> are both hydrogen is conveniently prepared by hydrolysis of a nitrile precursor 40.

Scheme 14

10



## **SUBSTITUTE SHEET**

- 48/1 -

Thus, treatment of the nitrile 40 with  
hydrogen peroxide and a strong base, such as  
potassium carbonate, in a polar solvent, such as  
5 dimethylsulfoxide at temperatures of 25°C to 150°C

10

15

20

25

30

- 49 -

results in formation of the amide derivative 41. The precursor 40 can be prepared from an appropriate alkylating agent VI, where R<sup>3a</sup> is cyano, as described in Scheme 11.

A useful method of preparing the alkylating agent 44 is outlined in Scheme 15.

Scheme 15

10



- 49/1 -

Thus, treatment of 4-(methylphenyl)trimethyl  
stannane 42 with 2-bromobenzonitrile in  
dimethylformamide at 100°C in the presence of  
5 bis-triphenylphosphine palladium (II) chloride  
results in coupling to form the biphenyl nitrile 43  
in high yield. Conversion to bromide 44 is achieved  
by treatment with N-bromosuccinimide and a radical

10

15

20

25

30

- 50 -

initiator, such as azobisisobutyronitrile (AIBN), in refluxing carbon tetrachloride.

Compounds of Formula I wherein R<sup>3a</sup> or R<sup>3b</sup> are taken as R<sup>4</sup>R<sup>5</sup>NCO(CH<sub>2</sub>)<sub>v</sub> and v is 0 and R<sup>4</sup> and/or R<sup>5</sup> are not hydrogen are prepared from the corresponding carboxylic acid derivatives 45 as shown in Scheme 16.

10

Scheme 16

15

20

25

30



- 50/1 -

SCHEME 16 (Cont'd)

5

10

15

20

25

30



46

Coupling of the carboxylic acid derivative 45 with R<sup>4</sup>R<sup>5</sup>NH is conveniently carried out by the use of a coupling reagent such as benzotriazol-1-yloxy-tris(dimethylamino)phosphonium hexafluorophosphate ("BOP") in an inert solvent such as methylene chloride. The requisite carboxylic acid precursors can be prepared as illustrated in Scheme 17 for the biphenyl compound 49.

- 51 -

Scheme 17

5



15



25

SUBSTITUTE SHEET

- 51/1 -

Scheme 17 (Cont'd)

5

10



15

20

25

30

**SUBSTITUTE SHEET**

- 52 -

Alkylation of V with t-butyl 4'-bromomethyl-biphenyl-2-carboxylate 47 (prepared as described in EPO Publication 324,377) in the presence of sodium hydride as previously described in Scheme 11 gives  
5 the adduct 48 in high yield. Hydrolysis of the t-butyl ester is conveniently achieved by treatment with a strong acid, such as trifluoroacetic, in an inert solvent such as methylene chloride. It is  
10 noted that the protecting group G in this instance must be inert to strongly acidic conditions, for example G is benzyloxycarbonyl (CBz). A useful preparation of the chiral intermediate 54 is shown in Scheme 18.

15

20

25

30

- 53 -

Scheme 18

5



10

50

15

5152

20



25

53

30

53

**SUBSTITUTE SHEET**

- 54 -

Conversion of 1-tetralone to the seven-membered benzolactam 51 is achieved by Beckman rearrangement of the intermediate oxime 50.

5 Treatment of 51 with iodine and hexamethyldisilazane gives the 3-iodo derivative 52 which is sequentially treated with ammonia and D-tartaric acid to give the diastereomeric D-tartrate salt 53 after recrystallization. Liberation of the free amine 54 is achieved by neutralization of the D-tartrate salt 10 with potassium carbonate followed by extractive isolation.

15 An improved route to compounds containing the 3-amino-3-methylbutanamide sidechain is presented in Scheme 19.

20

25

30

- 55 -

Scheme 19

5



10



15



- 56 -

Reaction of isobutylene with N-chlorosulfonylisocyanate 55 in ether gives the azetidinone derivative 56. Intermediates of Formula III can then be reacted with 56 to give the 3-methyl-3-amino-  
5 butanamide intermediates 57 directly. Removal of the methoxysulfonyl auxilliary is conveniently achieved by treatment with aqueous acid, for example, 6N hydrochloric acid. The methoxysulfonyl group also  
10 functions as a protection group G which is inert to the basic conditions employed in the subsequent alkylation step as illustrated in Scheme 11.

An alternate route to the sub-class of compounds of Formula I that can be described by  
15 Formula IX is shown in Scheme 20.

20

25

30

- 57 -

Scheme 20

SUBSTITUTE SHEET

- 58 -

Thus, reaction of intermediates of Formula VIII with HNR<sup>4</sup>R<sup>5</sup> neat or in a polar solvent such as dimethylsulfoxide at temperatures of 50°C to 200°C, results in a Michael addition to give compounds of Formula IX. Compounds of Formula VIII may themselves be prepared by the transformations illustrated in Schemes 9 and 11.

It is noted that the order of carrying out the foregoing reaction schemes is not significant and it is within the skill of one skilled in the art to vary the order of reactions to facilitate the reaction or to avoid unwanted reaction products.

15

20

25

30

- 59 -

The growth hormone releasing compounds of Formula I are useful *in vitro* as unique tools for understanding how growth hormone secretion is regulated at the pituitary level. This includes use in the evaluation of many factors thought or known to influence growth hormone secretion such as age, sex, nutritional factors, glucose, amino acids, fatty acids, as well as fasting and non-fasting states. In addition, the compounds of this invention can be used in the evaluation of how other hormones modify growth hormone releasing activity. For example, it has already been established that somatostatin inhibits growth hormone release. Other hormones that are important and in need of study as to their effect on growth hormone release include the gonadal hormones, e.g., testosterone, estradiol, and progesterone; the adrenal hormones, e.g., cortisol and other corticoids, epinephrine and norepinephrine; the pancreatic and gastrointestinal hormones, e.g., insulin, glucagon, gastrin, secretin; the vasoactive intestinal peptides, e.g., bombesin; and the thyroid hormones, e.g., thyroxine and triiodothyronine. The compounds of Formula I can also be employed to investigate the possible negative or positive feedback effects of some of the pituitary hormones, e.g., growth hormone and endorphin peptides, on the pituitary to modify growth hormone release. Of particular scientific importance is the use of these compounds to elucidate the subcellular mechanisms mediating the release of growth hormone.

- 60 -

The compounds of Formula I can be administered to animals, including man, to release growth hormone in vivo. For example, the compounds can be administered to commercially important animals such as swine, cattle, sheep and the like to accelerate and increase their rate and extent of growth, and to increase milk production in such animals. In addition, these compounds can be administered to humans in vivo as a diagnostic tool to directly determine whether the pituitary is capable of releasing growth hormone. For example, the compounds of Formula I can be administered in vivo to children. Serum samples taken before and after such administration can be assayed for growth hormone. Comparison of the amounts of growth hormone in each of these samples would be a means for directly determining the ability of the patient's pituitary to release growth hormone.

Accordingly, the present invention includes within its scope pharmaceutical compositions comprising, as an active ingredient, at least one of the compounds of Formula I in association with a pharmaceutical carrier or diluent. Optionally, the active ingredient of the pharmaceutical compositions can comprise a growth promoting agent in addition to at least one of the compounds of Formula I or another composition which exhibits a different activity, e.g., an antibiotic or other pharmaceutically active material.

- 61 -

Growth promoting agents include, but are not limited to, TRH, diethylstilbesterol, theophylline, enkephalins, E series prostaglandins, compounds disclosed in U.S. Patent No. 3,239,345, e.g., zeronol, and compounds disclosed in U.S. Patent No. 4,036,979, e.g., sulbenox or peptides disclosed in U.S. Patent No. 4,411,890.

A still further use of the disclosed novel benzo-fused lactam growth hormone secretagogues is in combination with other growth hormone secretagogues such as GHRP-6, GHRP-1 as described in U.S. Patent Nos. 4,411,890; and publications WO 89/07110 and WO 89/07111 and B-HT920 or growth hormone releasing factor and its analogs or growth hormone and its analogs or somatomedins including IGF-1 and IGF-2.

As is well known to those skilled in the art, the known and potential uses of growth hormone are varied and multitudinous. Thus, the administration of the compounds of this invention for purposes of stimulating the release of endogenous growth hormone can have the same effects or uses as growth hormone itself. These varied uses of growth hormone may be summarized as follows: stimulating growth hormone release in elderly humans; Prevention of catabolic side effects of glucocorticoids, treatment of osteoporosis, stimulation of the immune system, treatment of retardation, acceleration of wound healing, accelerating bone fracture repair, treatment of growth retardation, treating renal failure or insufficiency resulting in growth retardation, treatment of physiological short

- 62 -

stature, including growth hormone deficient children,  
treating short stature associated with chronic  
illness, treatment of obesity and growth retardation  
associated with obesity, treating growth retardation  
associated with Prader-Willi syndrome and Turner's  
syndrome; Accelerating the recovery and reducing  
hospitalization of burn patients; Treatment of  
intrauterine growth retardation, skeletal dysplasia,  
hypercortisolism and Cushings syndrome; Induction of  
pulsatile growth hormone release; Replacement of  
growth hormone in stressed patients; Treatment of  
osteochondrodysplasias, Noonans syndrome,  
schizophrenia, depression, Alzheimer's disease,  
delayed wound healing, and psychosocial deprivation;  
treatment of pulmonary dysfunction and ventilator  
dependency; Attenuation of protein catabolic response  
after a major operation; reducing cachexia and  
protein loss due to chronic illness such as cancer or  
AIDS. Treatment of hyperinsulinemia including  
nesidioblastosis; Adjuvant treatment for ovulation  
induction; To stimulate thymic development and  
prevent the age-related decline of thymic function;  
Treatment of immunosuppressed patients; Improvement  
in muscle strength, mobility, maintenance of skin  
thickness, metabolic homeostasis, renal hemeostasis  
in the frail elderly; Stimulation of osteoblasts,  
bone remodelling, and cartilage growth; Stimulation  
of the immune system in companion animals and  
treatment of disorders of aging in companion animals;  
Growth promotant in livestock; and stimulation of  
wool growth in sheep.

- 63 -

The compounds of this invention can be administered by oral, parenteral (e.g., intramuscular, intraperitoneal, intravenous or subcutaneous injection, or implant), nasal, vaginal, rectal, 5 sublingual, or topical routes of administration and can be formulated in dosage forms appropriate for each route of administration.

Solid dosage forms for oral administration 10 include capsules, tablets, pills, powders and granules. In such solid dosage forms, the active compound is admixed with at least one inert pharmaceutically acceptable carrier such as sucrose, lactose, or starch. Such dosage forms can also 15 comprise, as is normal practice, additional substances other than inert diluents, e.g., lubricating agents such as magnesium stearate. In the case of capsules, tablets and pills, the dosage forms may also comprise buffering agents. Tablets 20 and pills can additionally be prepared with enteric coatings.

Liquid dosage forms for oral administration 25 include pharmaceutically acceptable emulsions, solutions, suspensions, syrups, the elixirs containing inert diluents commonly used in the art, such as water. Besides such inert diluents, compositions can also include adjuvants, such as wetting agents, emulsifying and suspending agents, and sweetening, flavoring, and perfuming agents.

Preparations according to this invention for 30 parenteral administration include sterile aqueous or non-aqueous solutions, suspensions, or emulsions.

- 64 -

Examples of non-aqueous solvents or vehicles are propylene glycol, polyethylene glycol, vegetable oils, such as olive oil and corn oil, gelatin, and injectable organic esters such as ethyl oleate. Such dosage forms may also contain adjuvants such as preserving, wetting, emulsifying, and dispersing agents. They may be sterilized by, for example, filtration through a bacteria-retaining filter, by incorporating sterilizing agents into the compositions, by irradiating the compositions, or by heating the compositions. They can also be manufactured in the form of sterile solid compositions which can be dissolved in sterile water, or some other sterile injectable medium immediately before use.

Compositions for rectal or vaginal administration are preferably suppositories which may contain, in addition to the active substance, excipients such as cocoa butter or a suppository wax.

Compositions for nasal or sublingual administration are also prepared with standard excipients well known in the art.

The dosage of active ingredient in the compositions of this invention may be varied; however, it is necessary that the amount of the active ingredient be such that a suitable dosage form is obtained. The selected dosage depends upon the desired therapeutic effect, on the route of administration, and on the duration of the treatment. Generally, dosage levels of between 0.0001 to 100 mg/kg. of body weight daily are administered to patients and animals, e.g., mammals, to obtain effective release of growth hormone.

- 65 -

The following examples are provided for the purpose of further illustration only and are not intended to be limitations on the disclosed invention.

5

### Example 1

10 3-Amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yll-butanamide, trifluoroacetate

Step A: 3-Amino-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one

15 A solution of 9.22 g (45.6 mmol) of 3-azido-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one (prepared by the method of Watthey, et al., J. Med. Chem., 28, 1511-1516 (1985)) in 30mL methanol was hydrogenated at 40psi in the presence of 1.0g of 5% Pt/C for 4.5 hours. Celite was added and the mixture 20 filtered through a pad of Celite. The filtrate was concentrated and allowed to stand for 16 hours at room temperature which resulted in formation of crystals. The material was isolated by filtration and dried under vacuum to afford 4.18g (23.7mmol, 52%) of the product. The mother liquors were diluted to 100mL with methanol, treated with 2g of charcoal, filtered through Celite and the filtrate concentrated under vacuum to approximately 15 mL. A second crop formed yielding 2.02 g of product (11.5mmol, 25%). 25 Another recycling of the mother liquors afforded a third crop of 0.88g (5.0, 11%). A total of 7.08g (40.2mmol, 88%) of the product was thus obtained.  
30  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.6 (br s, 2H), 1.80 (m, 1H),

- 66 -

2.55 (m, 2H), 2.88 (m, 1H), 3.42 (dd; 7Hz, 11Hz; 1H), 6.98 (d, 8Hz, 1H), 7.2 (m, 3H), 8.3 (br s, 1H). FAB-MS:  
calculated for C<sub>10</sub>H<sub>12</sub>N<sub>2</sub>O 176; found 177 (M+H, 100%).

5

Step B: 3(R)-Amino-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one

2.37g (13.5mmol) of 3-amino-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one (Step A) and 2.02g (13.5mmol) of L-tartaric acid were suspended in 40mL of ethanol. The mixture was gently heated and complete dissolution achieved by dropwise addition of 5mL of distilled water. The solution was cooled to room temperature and aged overnight. The solid that formed was removed by filtration, washed with ethanol/diethyl ether (1:1) and dried under vacuum to afford 1.75g of crude L-tartrate salt. The mother liquors were evaporated to dryness under vacuum, redissolved in 40mL of water and the pH adjusted to 10-11 by the addition of solid potassium carbonate. The mixture was extracted with chloroform (6x20mL) and the combined extracts washed with water (1x) and brine (1x), dried over potassium carbonate, filtered and solvents removed under vacuum to afford 1.29g (7.33mmol) of partially enriched 3(R) amine.

25 The original 1.75g batch of L-tartrate salt was recrystallized twice from aqueous ethanol to afford 1.03g (3.17mmol, 24%) of purified L-tartrate salt with [a]<sub>D</sub>=-212° (c=1, H<sub>2</sub>O). The purified L-tartrate salt was dissolved in 20mL of water and the pH adjusted to 10-11 by the addition of solid potassium carbonate. The mixture was extracted with chloroform (5x10mL); combined extracts were washed

- 67 -

with water and brine then dried over potassium carbonate, filtered and solvents removed under vacuum to afford 522mg (2.96mmol, 22% overall) of the 3(S) amine,  $[a]_D^{-}446^{\circ}$  (c=1, CH<sub>3</sub>OH).

The remaining 1.29g (7.33mmol) of partially enriched 3(R) amine was treated with 1.10g (7.33mmol) of D-tartaric acid as described above and the resulting salt recrystallized twice from aqueous ethanol to afford 1.20g of purified D-tartrate salt,  $[a]_D^{-}214^{\circ}$  (c=1, H<sub>2</sub>O). The purified D-tartrate salt was dissolved in 20mL of water and the free base isolated as described above to give 629mg (3.57mmol, 26% overall) of the 3(R) amine,  $[a]_D^{+}455^{\circ}$  (c=1, CH<sub>3</sub>OH).

Step C: 2,2-Dimethylbutanedioic acid, 4-methyl ester  
2,2-dimethylsuccinic acid (20g, 137mmol) dissolved in 200mL absolute methanol at 0° was treated dropwise with 2mL concentrated sulfuric acid. After the addition was complete, the mixture was allowed to warm to room temperature and stirred for 16 hours.

The mixture was concentrated in vacuo to 50mL and slowly treated with 200mL of saturated aqueous sodium bicarbonate. The mixture was washed with hexane (3x) and the aqueous layer removed and cooled in an ice bath. The mixture was acidified to pH 2 by slow addition of 6N HCl then extracted with ether (8x). The combined extracts were washed with brine, dried over magnesium sulfate, filtered and solvents removed in vacuo. The residue was dried at room temperature under vacuum to afford 14.7g

- 68 -

(91.8mmol, 67%) of a viscous oil that slowly solidified upon standing.  $^1\text{H}$  NMR analysis indicates the product is a mixture of the title compound and 15% of the isomeric 2,2-dimethylbutanedioic acid, 1-methyl ester. NMR (200MHz,  $\text{CDCl}_3$ ) of title compound: 1.29 (s,6H), 2.60 (s,2H), 3.66 (s,3H). NMR (200MHz,  $\text{CDCl}_3$ ) of isomer: 1.28 (s,6H), 2.63 (s,2H), 3.68 (s,3H).

10           Step D: 3-[Benzylloxycarbonylamino]-3-methylbutanoic acid, methyl ester

To 14.7g (91.8mmol) of 2,2-dimethylbutanedioic acid-4-methyl ester (Step C), containing 15% of the isomeric 1-methyl ester compound, in 150mL benzene was added 13mL of triethylamine (9.4g, 93mmol, 1.01eq) followed by 21.8mL diphenylphosphoryl azide (27.8g, 101mmol, 1.1eq). The mixture was heated under nitrogen at reflux for 45 minutes then 19mL (19.9g, 184mmol, 2eq) of benzyl alcohol was added and refluxing continued for 16 hours.

The mixture was cooled, filtered and the filtrate concentrated to a minimum volume under vacuum. The residue was redissolved in 250mL ethyl acetate, washed with water (1x), saturated aqueous sodium bicarbonate (2x) and brine (1x). The organic layer was removed, dried over magnesium sulfate, filtered and the filtrate concentrated to a minimum volume in vacuo. The crude product was purified by medium pressure liquid chromatography on silica, eluting with hexane/ethyl acetate (4:1), to afford 18.27g (68.9mmol, 75%) of the title compound as a pale yellow liquid in addition to a small amount of

- 69 -

pure 3-[benzyloxycarbonylamino]-2,2-dimethylpropanoic acid, methyl ester.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ) of title compound: 1.40 (s,6H), 2.69 (s,2H), 3.63 (s,3H), 5.05 (s,2H), 5.22 (br s,1H), 7.32 (s,5H).  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ) of 3-[benzyloxycarbonylamino]-2,2-dimethylpropanoic acid, methyl ester (200MHz,  $\text{CDCl}_3$ ): 1.19 (s,6H), 3.30 (d,7Hz,2H; resonance collapses to singlet in  $\text{CD}_3\text{OD}$ ), 3.67 (s,3H), 5.09 (s,2H), 5.22 (br s,1H; resonance not observed in  $\text{CD}_3\text{OD}$ ), 7.3 (br s,5H).

Step E: 3-Benzylloxycarbonylamino-3-methylbutanoic acid

A solution of 18.27g (68.9mmol) of methyl 3-benzylloxycarbonylamino-3-methylbutanoate (Step D) in 20mL of methanol at room temperature was treated dropwise with 51mL of 2N NaOH (102mmol, 1.5eq). The mixture was stirred at room temperature for 16 hours then transferred to a separatory funnel and washed with hexane (3x). The aqueous layer was removed, cooled to 0° and slowly acidified to pH 2 (paper) by dropwise addition of 6N HCl. This mixture was extracted with ether (6x); combined extracts were washed with 1N HCl and brine, then dried over magnesium sulfate, filtered and solvent removed under vacuum to afford 17.26g (68.7mmol, 99%) of the product.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.42 (s,6H), 2.77 (s,2H), 5.06 (s,2H), 5.2 (br s,1H), 7.3 (s,5H).

Step F: 3-Benzylloxycarbonylamino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-3(R)-yl]-butanamide

- 70 -

To a solution of 252mg (1.43mmol) of  
3(R)-amino-2,3,4,5-tetrahydro-1H-[1]benzazepin-2-one  
(Step B) in 4mL of methylene chloride at room  
temperature was added 400mg (1.60mmol, 1.1eq) of  
5 3-benzyloxycarbonylamino-3-methylbutanoic acid (Step  
E) followed by 760mg (1.7mmol, 1.2eq) benzotriazol-1-  
yloxytris(dimethylamino)phosphonium hexafluoro-  
phosphate and 0.50mL of diisopropylethylamine (380mg,  
10 2.9mmol, 2eq). After 3 hours at room temperature,  
the mixture was diluted into 30mL of ethyl acetate  
and washed with 5% aqueous citric acid, saturated  
aqueous sodium bicarbonate (2x) and brine. The  
organic layer was removed, dried over magnesium  
15 sulfate, filtered and solvents removed under vacuum.  
The residue was purified by medium pressure liquid  
chromatography on silica, eluting with ethyl acetate  
to afford 586mg (1.43mmol, 100%) of the product. <sup>1</sup>H  
NMR (200MHz, CDCl<sub>3</sub>): 1.38 (s, 3H), 1.39 (s, 3H), 1.82  
20 (m, 1H), 2.52 (s, 2H), 2.5-3.0 (m, 3H), 4.51 (m, 1H),  
5.07 (br s, 2H), 5.57 (br s, 1H), 6.68 (d, 7Hz, 1H), 6.97  
(d, 8Hz, 1H), 7.1-7.4 (m, 8H), 7.61 (br s, 1H). FAB-MS:  
calculated for C<sub>23</sub>H<sub>27</sub>N<sub>3</sub>O<sub>4</sub> 409; found 410  
(M+H, 100%); [a]<sub>D</sub>=<sup>+137°</sup> (c=1, CHCl<sub>3</sub>).

25

Step G: 5-Phenyltetrazole

Zinc chloride (3.3g, 24.3mmol, 0.5eq) was  
added to 15mL of N,N-dimethylformamide in small  
30 portions while maintaining the temperature below  
60°C. The suspension of zinc chloride was cooled to  
room temperature and treated with 5.0g of  
benzonitrile (48.5mmol, 1.0eq) followed by 3.2g of  
sodium azide (48.5mmol, 1.0eq). The heterogeneous  
mixture was heated at 115°C with agitation for 18

- 71 -

hours. The mixture was cooled to room temperature, water (30mL) was added and the mixture acidified by the addition of 5.1mL of concentrated hydrochloric acid. The mixture was cooled to 0°C and aged for one hour, then filtered and the filter cake washed with 15mL of cold 0.1N HCl then dried at 60°C under vacuum to afford 6.38g (43.7mmol, 90%) of the product.

10      Step H: 5-Phenyl-2-trityltetrazole

To a suspension of 5.0g (34.2mmol) of 5-phenyltetrazole in 55mL of acetone was added 5.0mL of triethylamine (3.6g, 35.6mmol, 1.04eq). After 15 minutes, a solution of 10.0g of triphenylmethyl chloride (35.9mmol, 1.05eq) in 20mL of tetrahydrofuran was added and the mixture stirred at room temperature for one hour. Water (75mL) was slowly added and the mixture stirred for one hour at room temperature. The product was collected by filtration, washed with 75mL of water and dried at 60°C under vacuum to give 13.3g (34.2mmol, 100%) of the product.

25      Step I: N-Triphenylmethyl-5-[2-(4'-methylbiphen-4-yl)] tetrazole

A solution of zinc chloride (6.3g, 46.2mmol, 0.6eq) in 35mL of tetrahydrofuran was dried over molecular sieves. 5-Phenyl-2-trityltetrazole (30.0g, 77.3mmol, 1.0eq) was dissolved in 300mL of dry tetrahydrofuran and the solution gently stirred while being degassed three times by alternating vacuum and nitrogen purges. The stirred solution was cooled to

- 72 -

5        -15°C and treated slowly with 50.5mL of 1.6M  
n-butyllithium in hexane (80.0mmol, 1.05eq) so as to  
maintain the temperature below -5°C. The solution  
was maintained at -5 to -15°C for 1.5 hours then  
treated with the dried zinc chloride solution and  
allowed to warm to room temperature.

10      In a separate flask, 4-iodotoluene (20.17g,  
92.5mmol, 1.2eq) and bis-(triphenylphosphine)nickel-  
(II) dichloride (1.5g, 2.3mmol, 0.03eq) were  
dissolved in 60mL of tetrahydrofuran, then degassed  
and left under an atmosphere of nitrogen. The  
mixture was cooled to 5°C and treated with 1.5mL of  
3.0M solution of methylmagnesium chloride in  
15      tetrahydrofuran (4.5mmol, 0.06eq) so as to keep the  
temperature below 10°C. The solution was warmed to  
room temperature and added, under nitrogen purge, to  
the arylzinc solution. The reaction mixture was  
stirred vigorously for 8 hours at room temperature  
20      then quenched by the slow addition of a solution of  
10mL of glacial acetic acid (1.6mmol, 0.02eq) in 60mL  
of tetrahydrofuran at a rate so that the temperature  
was maintained below 40°C. The mixture was stirred  
for 30 minutes and 150mL of 80% saturated aqueous  
25      sodium chloride was added; the reaction mixture was  
extracted for 30 minutes and the layers allowed to  
separate. The organic layer was removed and washed  
with 150mL of 80% saturated aqueous sodium chloride  
buffered to pH>10 by the addition of ammonium  
30      hydroxide. The organic phase was removed and  
concentrated under vacuum to approximately 50mL then  
250mL of acetonitrile was added. The mixture was

- 73 -

again concentrated under vacuum to 50mL and acetonitrile added to make the final volume 150mL. The resulting slurry was cooled at 5°C for 1 hour  
5 then filtered and washed with 50mL of cold acetonitrile followed by 150mL of distilled water. The filter cake was air dried to a free flowing solid then further dried under vacuum at 50°C for 12 hours to afford 30.0g (62.8mmol, 81%) of the product. <sup>1</sup>H  
10 NMR (200MHz, CDCl<sub>3</sub>): 2.28 (s,3H), 6.9-7.05 (m,10H), 7.2-7.5 (m,12H), 7.9 (m,1H).

Step J: N-Triphenylmethyl-5-[2-(4'-bromomethylbiphen-4-yl) tetrazole

15 A solution of 3.15g (6.6mmol) of N-triphenylmethyl-5-[2-(4'-methylbiphen-4-yl)]  
tetrazole (Step I) in 25mL of methylene chloride was treated with 1.29g (7.25mmol, 1.1eq) of N-bromosuccinimide, 80mg (0.5mmol, 0.07eq) of AIBN,  
20 200mg of sodium acetate and 200mg of acetic acid. The mixture was heated at reflux for 2 to 16 hours then cooled and washed with saturated aqueous sodium bicarbonate. The organic layer was removed, dried over sodium sulfate, filtered and concentrated to a minimum volume by atmospheric distillation. Methyl t-butyl ether was added and distillation continued until almost all the methylene chloride was removed the the total volume reduce to approximately 12mL and 12mL of hexanes was then added. The mixture was kept  
25 at room temperature for 2 hours and the product isolated by filtration, washed with hexanes then dried under vacuum at 50°C to give 2.81g (5.04mmol,

- 74 -

76%) of the product.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 4.38 (s,2H), 6.9-8.0 (m,23H). NMR indicates presence of approximately 1% of the starting material and 7% of the dibromo derivative.

5

10

15

20

25

30

Step K: 3-Benzylloxycarbonylamino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(N-triphenylmethyl)-tetrazol-5-yl][1,1'-biphenyl]-4-yl]methyl-1H-1-benzazepin-3(R)-yl]-butanamide

To a solution of 437mg (1.07mmol) of the intermediate obtained in Step F in 2mL of dry dimethylformamide at room temperature under nitrogen was added 55mg of 60% sodium hydride oil dispersion (33mg NaH, 1.38mmol, 1.3eq). After 15 minutes, a solution of 715mg (1.28mmol, 1.2eq) N-triphenylmethyl-5-[2-(4'-bromomethylbiphen-4-yl)] tetrazole (Step J) in 1.5mL of dry dimethylformamide was added and the mixture stirred for 90 minutes.

The reaction mixture was added to 100mL of ethyl acetate and washed with water (2x) and brine. The organic layer was removed, dried over magnesium sulfate, filtered and solvents removed under vacuum. Purification by medium pressure liquid chromatography on silica, eluting with ethyl acetate/hexane (1:1), afforded 902mg (1.02mmol, 95%) of the product.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.38 (s,3H), 1.39 (s,3H), 1.68 (m,1H), 2.2-2.5 (m,5H), 4.44 (m,1H), 4.67 (d,14Hz,1H), 5.06 (s,2H), 5.12 (d,14Hz,1H), 5.63 (br 1,1H), 6.65 (d,8Hz,1H), 6.9-7.5 (m,31H), 7.85 (m,1H).

- 75 -

Step L: 3-Amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, trifluoroacetate

5 A solution of 902mg (1.02mmol) of the intermediate obtained in Step H in 5mL methanol was hydrogenated at room temperature and one atmosphere over 160mg of 20% Pd(OH)<sub>2</sub>/C for 14 hours. The mixture was filtered through Celite and concentrated under vacuum. The residue was purified by reverse phase HPLC on C-18, eluting with methanol/0.1% aqueous trifluoroacetic acid (linear gradient: 60% methanol increased to 80% methanol over 10 minutes) to afford 568mg (0.91mmol, 89%) of the title compound.

10 <sup>1</sup>H NMR (200MHz, CD<sub>3</sub>OD): 1.33 (s,3H), 1.37 (s,3H), 2.0-2.6 (m,6H), 4.35 (dd;7,11Hz;1H), 4.86 (d,15Hz,1H), 5.20 (d,15Hz,1H), 7.00 (d,8Hz,2H), 7.15-7.35 (m,6H), 7.45-7.70 (m,4H). FAB-MS: calculated for C<sub>29</sub>H<sub>31</sub>N<sub>7</sub>O<sub>2</sub> 509; found 510 (M+H,100%).

15

20

### Example 2

25 3-Amino-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3-yl]-propanamide, mono(hydrochloride)

30 Step A 3-t-Butoxycarbonylamino-N-[2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-3-yl]-propanamide To a solution of 50mg (0.28mmol) 3-amino-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one (Example 1;

- 76 -

Step A) in 2mL methylene chloride at room temperature was added 56mg (0.30mmol, 1.05eq) 3-(t-butoxycarbonyl-amino)propanoic acid followed by 0.1mL diisopropyl-ethylamine (74mg, 0.57mmol, 2eq) and 190mg (0.43mmol, 1.5eq) benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate. After 1 hour at room temperature, the mixture was added to 20mL ethyl acetate and washed with 1M aqueous citric acid, saturated aqueous sodium bicarbonate and brine. The organic layer was removed, dried over magnesium sulfate, filtered and solvents removed in vacuo. The residue was purified by medium pressure liquid chromatography on silica, eluting with ethyl acetate/hexane (2:1) to afford 76mg (0.22mmol, 77%) of product as a white solid.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.40 (s, 9H), 1.95 (m, 1H), 2.40 (t, 6Hz, 2H), 2.6-3.0 (m, 3H), 3.36 (q, 6Hz, 2H), 4.52 (m, 1H), 5.15 (br t, 1H), 6.58 (br d, 1H), 7.0-7.3 (m, 4H), 7.6 (br s, 1H). FAB-MS: calc. for  $\text{C}_{18}\text{H}_{25}\text{N}_3\text{O}_4$  347; found 348 ( $\text{M}+\text{H}$ , 35%).

Step B 3-t-Butoxycarbonylamino-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-[N-(triphenylmethyl)-1H-tetrazol-5-yl][1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-propanamide  
To a solution of 68mg (0.20mmol) of the intermediate obtained in Step A in 0.5mL dry dimethylformamide under nitrogen was added 10mg of 60% sodium hydride oil dispersion (6mg NaH, 0.25mmol, 1.3eq). After 15min., a solution of 142mg (0.26mmol, 1.3eq) N-triphenylmethyl-5-(4'-bromomethylbiphen-2-

- 77 -

yl)tetrazole (Example 1, Step J) in 0.5mL  
dimethylformamide was added and the mixture stirred  
at room temperature for 4 hours. The mixture was  
5 added to 30mL ethyl acetate and washed twice with pH  
7.0 phosphate buffer and once with brine. The  
organic layer was removed, dried over magnesium  
sulfate filtered and solvents removed in vacuo. The  
residue was purified by medium pressure liquid  
10 chromatography on silica, eluting with ethyl acetate  
to afford 152mg (0.18mmol, 94%) of the product as a  
white foam.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.40 (s, 9H),  
1.77 (m, 1H), 2.3-2.6 (m, 5H), 3.35 (q, 6Hz, 2H), 4.45  
15 (m, 1H), 4.70 (d, 15Hz, 1H), 5.12 (d, 15Hz, 1H), 6.53  
(d, 7Hz, 1H), 6.9-7.5 (m, approx. 25H), 7.85 (m, 1H).

Step C 3-t-Butoxycarbonylamino-N-[2,3,4,5-tetra-  
hydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-  
biphenyl]-4-yl]methyl]-1H-1-benzazepin-3-yl]-  
20 propanamide

The intermediate obtained in Step B (150mg,  
0.18mmol) dissolved in 5mL methanol was hydrogenated  
over 30mg of  $\text{Pd}(\text{OH})_2$  on carbon at one atmosphere for  
2 hours. The mixture was filtered through Celite and  
25 the filtrate concentrated under vacuum. The residue  
was purified by medium pressure liquid chromatography  
on silica, eluting with ethyl acetate/acetonitrile/  
methanol (9:1:1) to afford 62mg (0.11mmol, 59%) of  
the product as a colorless glass.  $^1\text{H}$  NMR (200MHz,  
30  $\text{CD}_3\text{OD}$ ): 1.39 (s, 9H), 2.0-2.5 (m, 6H), 3.26  
(t, 7Hz, 2H), 4.31 (dd; 7, 12Hz; 1H), 4.83 (d, 16Hz, 1H),

- 78 -

5.20 (d, 16Hz, 1H), 6.98 (d, 8Hz, 2H), 7.1-7.6 (m, 10H).

FAB-MS: calc. for  $C_{32}H_{35}N_7O_4$  581; found 582  
(M+H, 19%).

5

Step D 3-Amino-N-[2,3,4,5-tetrahydro-2-oxo-1-  
[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-  
y1]methyl]-1H-1-benzazepin-3-yl]-propanamide,  
mono(hydrochloride)

10

To a solution of 40mg (0.07mmol) of the intermediate obtained in Step C in 2mL methanol at room temperature was added 0.5mL of concentrated hydrochloric acid and the mixture stirred for 16 hours. All volatiles were removed under vacuum and the residue further dried under high vacuum to afford 35mg (0.07mmol, 100%) of the title compound as a pale yellow glass.  $^1H$  NMR (200MHz, CD<sub>3</sub>OD): 2.0-2.8 (m, 6H), 3.22 (t, 6Hz, 2H), 4.30 (dd; 7, 10Hz; 1H), 4.83 (d, 16Hz, 1H), 5.17 (d, 16Hz, 1H), 6.97 (d, 8Hz, 2H), 7.1-7.6 (m, 10H). FAB-MS: calc. for  $C_{27}H_{27}N_7O_2$  481; found 482 (M+H, 100%).

15

20

### Example 3

25

3-Amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-(phenylmethyl)-1H-1-benzazepin-3(R)-yl]-butanamide,  
trifluoroacetate

30

Step A: 3-Benzylloxycarbonylamino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-(phenylmethyl)-1H-1-benzazepin-3(R)-yl]-butanamide

To a solution of 40mg (0.098mmol) of

3-benzylloxycarbonylamino-3-methyl-N-[2,3,4,5-tetra-

- 79 -

hydro-2-oxo-1H-1-benzazepin-3(R)-yl]-butanamide  
(Example 1, Step F) in 0.5mL of dry dimethylformamide  
at room temperature under nitrogen was added 5mg of  
5 60% sodium hydride oil dispersion (3mg NaH, 0.13mmol,  
1.3eq). After 5 minutes, 0.013mL of benzyl bromide  
(19mg, 0.11mmol, 1.1eq) was added and the mixture  
stirred for 1 hour at room temperature, then added to  
20mL of ethyl acetate and washed with water (2x) and  
10 brine. The organic layer was removed, dried over  
magnesium sulfate, filtered and solvents removed  
under vacuum. The residue was purified by medium  
pressure liquid chromatography on silica, eluting  
with ethyl acetate/hexane (1:1) to afford 44mg  
15 (0.88mmol, 90%) of product.  $^1\text{H}$  NMR (200MHz,  
 $\text{CDCl}_3$ ): 1.37 (s,3H), 1.38 (s,3H), 1.73 (m,1H),  
2.3-2.6 (m,5H), 4.48 (m,1H), 4.80 (d,15Hz,1H), 5.07  
(br s,2H), 5.23 (d,15Hz,1H), 5.62 (br s,1H), 6.67 (br  
d,7Hz,1H), 7.1-7.4 (m,14H). FAB-MS: calculated for  
20  $\text{C}_{30}\text{H}_{33}\text{N}_3\text{O}_4$  499; found 500 ( $\text{M}+\text{H}$ ,100%).

Step B: 3-Amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-  
1-(phenylmethyl)-1H-1-benzazepin-3(R)-yl]-  
butanamide. trifluoroacetate

25 The intermediate obtained in Step A (17mg,  
0.034mmol) dissolved in 2mL of methanol was  
hydrogenated for 6 hours at room temperature and one  
atmosphere over 5mg of  $\text{Pd}(\text{OH})_2$  on carbon. The  
mixture was filtered through Celite and the filtrate  
30 concentrated under vacuum. The residue was purified  
by reverse phase HPLC on C-18, eluting with  
methanol/0.1% aqueous trifluoroacetic acid (linear

- 80 -

gradient: 60% methanol to 80% methanol over 10 minutes) to afford 13mg (0.027mmol, 80%) of the title compound.  $^1\text{H}$  NMR (200MHz,  $\text{CD}_3\text{OD}$ ): 1.32 (s,3H), 1.35 (s,3H), 2.0-2.6 (m,6H), 4.35 (dd;7,11Hz;1H), 4.82 (d,15Hz,1H), 5.13 (d,15Hz,1H), 7.1-7.4 (m,9H). FAB-MS: calculated for  $\text{C}_{22}\text{H}_{27}\text{N}_3\text{O}_2$  365; found 366 ( $\text{M}+\text{H}$ ,100%).

10

#### Example 4

15

2(R)-Amino-3-hydroxy-N-[2,3,4,5-tetrahydro-2-oxo-1-  
[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-  
1H-1-benzazepin-3(R)-yl]-propanamide, mono(trifluoro-  
acetate)

20

Step A 3(R)-t-Butoxycarbonylamino-2,3,4,5-tetra-  
hydro-1H-1-benzazepin-2-one

25

To a solution of 400mg (2.27mmol) 3(R)-amino-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one (Example 1, Step B) in 5mL methylene chloride at room temperature was added 0.57mL (540mg, 2.48mmol, 1.1eq) of di-t-butyl dicarbonate. The mixture was stirred for 3 hours at room temperature then all volatiles were removed under vacuum to give 625mg (2.26mmol, 100%) of an oil that slowly solidified upon standing.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.40 (s,9H), 2.00 (m,1H), 2.65 (m,2H), 2.95 (m,1H), 4.29 (m,1H), 5.42 (br d,8Hz,1H), 6.97 (d,7Hz,1H), 7.2 (m,3H), 7.50 (br s,1H).

30

- 81 -

Step B 3(R)-t-Butoxycarbonylamino-2,3,4,5-tetra-  
hydro-1-[2'-(N-(triphenylmethyl)-1H-tetra-  
zol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-  
benzazepin-2-one

To a solution of 310mg (1.12mmol) of the intermediate obtained in Step A in 2mL dry dimethylformamide at room temperature under nitrogen was added 54mg of 60% sodium hydride oil dispersion (32mg NaH, 1.3mmol, 1.2eq). After 15 minutes, a solution of 750mg (1.34mmol, 1.2eq) N-triphenylmethyl-5-[2-(4'-bromomethylbiphen-4-yl)] tetrazole in 2mL dry dimethylformamide was added and the mixture stirred for 2 hours. The reaction mixture was added to 50mL of ethyl acetate and washed with pH 7.0 phosphate buffer (2x) and brine. The organic layer was removed, dried over magnesium sulfate, filtered and solvents removed under vacuum. Purification by medium pressure liquid chromatography on silica, eluting with hexane/ethyl acetate (2:1), afforded 815mg (1.08mmol, 96%) of product.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.40 (s, 9H), 1.80 (m, 1H), 2.40 (m, 3H), 4.24 (m, 1H), 4.65 (d, 15Hz, 1H), 5.08 (d, 15Hz, 1H), 5.45 (br d, 7Hz, 1H), 6.9-7.5 (m, 26H), 7.8 (m, 1H).

Step C 3(R)-Amino-1,3,4,5-tetrahydro-1-[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-2H-1-benzazepin-2-one, mono(hydrochloride)

A solution of 407mg (0.54mmol) of the intermediate obtained in Step B in 5mL methanol was hydrogenated at room temperature and 1 atmosphere over 40mg of 20%  $\text{Pd}(\text{OH})_2$  on carbon for 3 hours. The

- 82 -

5 mixture was filtered through Celite and concentrated under vacuum to give a residue that was purified by medium pressure liquid chromatography on silica eluting with 2% methanol/ethyl acetate. The intermediate thus obtained (260mg) was dissolved in 5mL of methanol and treated with 1mL concentrated hydrochloric acid. After 16 hours, all volatiles were removed under vacuum to afford 226mg (0.51mmol, 10 94%) of product.

15 Step D 2(R)-(t-Butoxycarbonyl)amino-3-(t-butoxy)-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-propanamide

20 To a suspension of 60mg (0.13mmol) of the intermediate obtained in Step C in 2mL of methylene chloride at room temperature was added 65mg (0.15mmol, 1.1eq) of BOC-D-serine t-butyl ether dicyclohexylamine salt, followed by 0.037mL of triethylamine (27mg, 0.26mmol, 2eq) and 89mg of benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate (0.20mmol, 1.5eq). After 1 hour at room temperature, all volatiles were removed under vacuum. The residue was purified by medium pressure liquid chromatography on silica, eluting with 2% methanol/ethyl acetate to afford 68mg (0.10mmol, 77%) of product.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.15 (s, 9H), 1.32 (s, 9H), 1.88 (m, 1H), 2.54 (m, 3H), 3.36 (dd; 6, 9Hz; 1H), 3.72 (m, 1H), 4.10 (m, 1H), 4.45 (m, 1H), 4.89 (d, 15Hz, 1H), 5.05 (d, 15Hz, 1H), 5.38 (br

- 83 -

d, 7Hz, 1H), 7.00 (d, 8Hz, 2H), 7.1-7.6 (m, 9H), 7.90 (m, 1H). FAB-MS: calc. for C<sub>36</sub>H<sub>43</sub>N<sub>7</sub>O<sub>5</sub> 653; found 654 (M+H, 8%).

5

Step E 2(R)-Amino-3-hydroxy-N-[2,3,4,5-tetrahydro-2-oxo-1-[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-propanamide, mono(trifluoroacetate)

10

A solution of 65mg (0.099mmol) of the intermediate obtained in Step D in 2mL methylene chloride at room temperature was treated with 0.1mL of anisole followed by 1mL anhydrous trifluoroacetic acid. After 2 hours, all volatiles were removed under vacuum and the residue purified by reverse phase HPLC on C-18 eluting with methanol/0.1% aqueous trifluoroacetic acid (linear gradient: 55% methanol to 75% methanol over 10 minutes). to afford 54mg (0.088mmol, 89%) of the title compound. <sup>1</sup>H NMR (200MHz, CD<sub>3</sub>OD): 2.10 (m, 1H), 2.2-2.7 (m, 3H), 3.93 (m, 2H), 4.38 (dd; 8, 12Hz; 1H), 4.85 (d, 14Hz, 1H), 5.29 (d, 14Hz, 1H), 7.01 (d, 8Hz, 2H), 7.1-7.4 (m, 6H), 7.5-7.7 (m, 4H). FAB-MS: calc. for C<sub>27</sub>H<sub>27</sub>N<sub>7</sub>O<sub>3</sub> 497; found 498 (M+H, 100%).

25

Example 5

2(R)-Amino-N-[2,3,4,5-tetrahydro-2-oxo-1-[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-pentanamide, mono(trifluoroacetate)

- 84 -

Step A N-(t-butoxycarbonyl)-D-norvaline

D-Norvaline (2.0g, 17.0mmol) suspended in  
5mL methylene chloride was treated with 4.3mL of  
di-t-butyl-dicarbonate (4.1g, 18.7mmol, 1.1eq)  
followed by 4.8mL of triethylamine (3.5g, 34mmol,  
2eq). The mixture was stirred at room temperature  
for 20 hours then added to 100mL ethyl acetate and  
washed with 5% citric acid (2x) and brine. The  
10 organic layer was removed, dried over magnesium  
sulfate, filtered and solvent removed under vacuum to  
afford 3.55g of the product as a clear, viscous  
gum.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.00 (t, 7Hz, 3H), 1.51  
(s, 9H), 1.5-2.0 (m, 4H), 4.35 (m, 1H), 5.08 (m, 1H).

15

Step B 2(R)-Amino-N-[2,3,4,5-tetrahydro-2-oxo-1-  
[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-  
y1]methyl]-1H-1-benzazepin-3(R)-yl]-pentan-  
amide, mono(trifluoroacetate)

20

The title compound was prepared from  
N-(t-butoxycarbonyl)-D-norvaline and 3(R)-amino-  
1,3,4,5-tetrahydro-1-[[2'-(1H-tetrazol-5-yl)[1,1'-  
biphenyl]-4-yl]methyl]-2H-1-benzazepin-2-one  
hydrochloride (Example 4, Step C), using the  
procedures described in Example 4, Steps D and E.  
25  $^1\text{H}$  NMR (200MHz,  $\text{CD}_3\text{OD}$ ): 0.96 (t, 7Hz, 3H), 1.45  
(m, 2H), 1.80 (m, 2H), 2.0-2.6 (m, 4H), 3.81 (t, 7Hz, 1H),  
4.36 (dd; 7, 11Hz; 1H), 4.8 (d, 15Hz, 1H), 5.22  
(d, 15Hz, 1H), 6.96 (d, 8Hz, 2H), 7.1-7.3 (m, 6H), 7.4-7.7  
(m, 4H). FAB-MS: calc. for  $\text{C}_{29}\text{H}_{31}\text{N}_7\text{O}_2$  509; found  
30 510 ( $\text{M}+\text{H}$ , 100%).

- 85 -

**Example 6**

2(R)-Amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-  
5 [[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-  
1H-1-benzazepin-3(R)-yl]-butanamide, mono(trifluoro-  
acetate)

---

The title compound was prepared from  
10 N-(t-butoxycarbonyl)-D-valine and 3(R)-amino-1,3,4,5-  
tetrahydro-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-  
y1]methyl]-2H-1-benzazepin-2-one hydrochloride  
(Example 4, Step C), using the procedures described  
in Example 4, Steps D and E. <sup>1</sup>H NMR (200MHz,  
15 CD<sub>3</sub>OD): 1.05 (d,7Hz,3H), 1.09 (d,7Hz,3H), 2.0-2.6  
(m,5H), 3.68 (d,5Hz,1H), 4.40 (dd;7,11Hz;1H), 4.8  
(d,15Hz,1H), 5.23 (d,15Hz,1H), 6.98 (d,8Hz,2H),  
7.1-7.3 (m,6H), 7.4-7.7 (m,4H). FAB-MS: calc. for  
C<sub>29</sub>H<sub>31</sub>N<sub>7</sub>O<sub>2</sub> 509; found 510 (M+H,100%).

20

**Example 7**

2(R)-Amino-3-phenyl-N-[2,3,4,5-tetrahydro-2-oxo-1-  
[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-  
25 1H-1-benzazepin-3(R)-yl]-propanamide, mono(trifluoro-  
acetate)

---

Step A 2(R)-t-Butoxycarbonylamino-3-phenyl-N-  
[2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-  
30 3(R)-yl]-propanamide  
To a solution of 30mg (0.17mmol) 3(R)-amino-  
2,3,4,5-tetrahydro-1H-1-benzazepin-2-one (Example 1;

- 86 -

Step B) in 2mL methylene chloride at room temperature was added 50mg (0.19mmol, 1.1eq) N-(t-butoxycarbonyl)-D-phenylalanine followed by 0.047mL (34mg, 0.34mmol, 2eq) of triethylamine and 113mg (0.26mmol, 1.5eq) benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate. After 2 hours at room temperature, the mixture was added to 30mL of ethyl acetate and washed with 5% citric acid (2x), saturated aqueous sodium bicarbonate and brine. The organic layer was removed, dried over magnesium sulfate, filtered and solvents removed under vacuum. The residue was purified by medium pressure liquid chromatography on silica, eluting with ethyl acetate to afford 71mg (0.17mmol, 100%) of the product. <sup>1</sup>H NMR (200MHz, CDCl<sub>3</sub>): 1.38 (s, 9H), 1.9 (m, 1H), 2.6-3.1 (m, 5H), 4.44 (m, 2H), 5.10 (br d, 7Hz, 1H), 6.95 (d, 8Hz, 1H), 7.1-7.3 (m, 8H), 8.33 (br s, 1H). FAB-MS: calc. for C<sub>24</sub>H<sub>29</sub>N<sub>3</sub>O<sub>4</sub> 423; found 424 (M+H, 65%).

Step B 2(R)-t-Butoxycarbonylamino-3-phenyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-[N-(triphenylmethyl)-1H-tetrazol-5-yl][1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yll-propanamide

To a solution of 70mg (0.17mmol) of the intermediate obtained in Step A in 0.5mL dry dimethylformamide at room temperature under nitrogen was added 8mg of 60% sodium hydride oil dispersion (5mg NaH, 0.2mmol, 1.2eq). After 10min., a solution of 120mg (0.21mmol, 1.3eq) N-triphenylmethyl-5-(4'-bromomethylbiphen-2-yl)tetrazole in 0.5mL

- 87 -

dimethylformamide was added and the mixture stirred at room temperature for 1 hour. The reaction mixture was added to 30mL of ethyl acetate/hexane (1:1) and washed with pH 7.0 phosphate buffer and once with brine. The organic layer was removed, dried over magnesium sulfate filtered and solvents removed under vacuum. The residue was purified by medium pressure liquid chromatography on silica, eluting with ethyl acetate/hexane (2:1) to afford 139mg (0.15mmol, 93%) of the product.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.40 (s, 9H), 1.67 (m, 1H), 2.3-2.7 (m, 3H), 3.02 (d, 6Hz, 2H), 4.37 (m, 2H), 4.72 (d, 15Hz, 1H), 4.90 (br d, 1H), 5.05 (d, 15Hz, 1H), 6.9-7.5 (m, approx. 30H), 7.86 (m, 1H).

Step C 2(R)-Amino-3-phenyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-y1)[1,1'-biphenyl]-4-y1]methyl]-1H-1-benzazepin-3(R)-y1]-propanamide. mono(trifluoroacetate)

A solution of 139mg (0.15mmol) of the intermediate obtained in Step B in 5mL methanol was hydrogenated over 30mg of 20%  $\text{Pd}(\text{OH})_2$  on carbon at one atmosphere for 3 hours. The mixture was filtered through Celite and the filtrate concentrated under vacuum. The residue was redissolved in 2mL methylene chloride and the solution treated with 0.1mL of anisole followed by 1mL trifluoroacetic acid. After 2 hours at room temperature, all volatiles were removed under vacuum and the residue purified by reverse phase HPLC on C-18, eluting with methanol/0.1% aqueous trifluoroacetic acid (linear gradient: 60% methanol increased to 80% methanol over

- 88 -

10 minutes) affording 82mg (0.12mmol, 79%) of the title compound.  $^1\text{H}$  NMR (200MHz, CD<sub>3</sub>OD): 2.1 (m, 1H), 2.3-2.6 (m, 3H), 3.00 (dd; 9, 14Hz; 1H), 3.33 (dd; 5, 14Hz; 1H), 4.13 (dd; 5, 9Hz; 1H), 4.38 (dd; 7, 11Hz; 1H), 4.89 (d, 15Hz, 1H), 5.18 (d, 15Hz, 1H), 7.00 (d, 8Hz, 2H), 7.1-7.4 (m, 11H), 7.45-7.70 (m, 4H). FAB-MS: calc. for C<sub>33</sub>H<sub>31</sub>N<sub>7</sub>O<sub>2</sub> 557; found 558 (M+H, 100%).

10

#### Example 8

15 2(R)-Amino-4-phenyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, mono(trifluoroacetate)

20 The title compound was prepared from 3(R)-amino-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one (Example 1; Step B) and N-(t-butoxycarbonyl)-D-homophenylalanine by the procedures described in Example 7.  $^1\text{H}$  NMR (200MHz, CD<sub>3</sub>OD): 2.1 (m, 3H), 2.2-2.6 (m, 3H), 2.75 (m, 2H), 3.94 (t, 7Hz, 1H), 4.30 (dd; 7, 11Hz; 1H), 4.84 (d, 15Hz, 1H), 5.22 (d, 15Hz, 1H), 6.97 (d, 8Hz, 2H), 7.1-7.7 (m, 15H). FAB-MS: calc. for C<sub>34</sub>H<sub>33</sub>N<sub>7</sub>O<sub>2</sub> 571; found 572 (M+H, 100%).

25

#### Example 9

30 2(R)-Amino-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-propanamide, mono(trifluoroacetate)

- 89 -

The title compound was prepared from  
3(R)-amino-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one  
(Example 1; Step B) and N-(t-butoxycarbonyl)-D-  
5 alanine by the procedures described in Example 7.  
<sup>1</sup>H NMR (200MHz, CD<sub>3</sub>OD): 1.51 (d,7Hz,3H), 2.0-2.6  
(m,4H), 3.90 (q,7Hz,1H), 4.36 (dd;7,12Hz;1H), 4.82  
(d,15Hz,1H), 5.23 (d,15Hz,1H), 6.98 (d,8Hz,2H),  
7.10-7.35 (m,6H), 7.45-7.70 (m,4H). FAB-MS: calc.  
10 for C<sub>27</sub>H<sub>27</sub>N<sub>7</sub>O<sub>2</sub> 481; found 482 (M+H,100%).

#### Example 10

2(S)-Amino-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-  
15 tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benz-  
azepin-3(R)-yl]-propanamide, mono(trifluoroacetate)

The title compound was prepared from  
3(R)-amino-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one  
(Example 1; Step B) and N-(t-butoxycarbonyl)-L-  
20 alanine by the procedures described in Example 7.  
<sup>1</sup>H NMR (200MHz, CD<sub>3</sub>OD): 1.42 (d,7Hz,3H), 2.0-2.6  
(m,4H), 3.92 (q,7Hz,1H), 4.31 (dd;7,12Hz;1H), 4.88  
(d,15Hz,1H), 5.19 (d,15Hz,1H), 7.00 (d,8Hz,2H),  
7.10-7.35 (m,6H), 7.45-7.70 (m,4H). FAB-MS: calc.  
25 for C<sub>27</sub>H<sub>27</sub>N<sub>7</sub>O<sub>2</sub> 481; found 482 (M+H,100%).

#### Example 11

2(R)-Methylamino-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-propanamide, mono(trifluoroacetate)

The title compound was prepared from  
3(R)-amino-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one

- 90 -

(Example 1; Step B) and N-methyl-N-(t-butoxycarbonyl)-D-alanine by the procedures described in Example 7.

5       <sup>1</sup>H NMR (200MHz, CD<sub>3</sub>OD): 1.52 (d, 7Hz, 3H), 2.0-2.6 (m, 4H), 2.60 (s, 3H), 3.81 (q, 7Hz, 1H), 4.36 (dd, 8, 12Hz, 1H), 4.85 (d, 15Hz, 1H), 5.22 (d, 15Hz, 1H), 6.98 (d, 8Hz, 2H), 7.10-7.35 (m, 6H), 7.45-7.70 (m, 4H). FAB-MS: calc. for C<sub>28</sub>H<sub>29</sub>N<sub>7</sub>O<sub>2</sub> 495; found 496 (M+H, 100%).

10

Example 12

15       2(R)-Amino-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, mono(trifluoroacetate)

Step A: 2(R)-(t-Butoxycarbonylamino)butanoic acid  
20       (R)-2-Aminobutanoic acid (1.03g, 10.0mmol) suspended in 5mL methylene chloride was treated with 2.3mL of di-t-butyl-dicarbonate (2.18g, 10.0mmol, 1eq) and 4mL of diisopropylethylamine (2.83g, 23mmol, 2.3eq). The mixture was stirred at room temperature for 16 hours then extracted with 30mL saturated aqueous sodium bicarbonate. The aqueous layer was washed with 20mL of methylene chloride then removed and acidified to pH 2 by dropwise addition of saturated aqueous potassium hydrogen sulfate. The mixture was extracted with ethyl acetate (2x20mL); the combined extracts were dried over magnesium sulfate, filtered and solvents removed under vacuum to afford 451mg (2.2mmol, 22%) of product. <sup>1</sup>H NMR (200MHz, CDCl<sub>3</sub>): 0.93 (t, 8Hz, 3H), 1.40 (s, 9H),

- 91 -

1.6-2.0 (m, 2H), 4.25 (m, 1H), 5.10 (br d, 7Hz, 1H), 6.45  
(br s, 1H).

5       Step B: The title compound was prepared from the intermediate obtained in Step A and 3(R)-amino-  
2,3,4,5-tetrahydro-1H-1-benzazepin-2-one (Example 1;  
Step B) by the procedures described in Example 7.  
10      <sup>1</sup>H NMR (200MHz, CD<sub>3</sub>OD): 1.05 (t, 7Hz, 3H), 1.8-2.6  
(m, 6H), 3.78 (t, 6Hz, 1H), 4.38 (m, 1H), 4.82  
(d, 15Hz, 1H), 5.23 (d, 15Hz, 1H), 6.98 (d, 8Hz, 2H),  
7.10-7.35 (m, 6H), 7.45-7.70 (m, 4H). FAB-MS: calc.  
for C<sub>28</sub>H<sub>29</sub>N<sub>7</sub>O<sub>2</sub> 495; found 496 (M+H, 77%).

15

### Example 13

20      2(R)-Amino-3-[indol-3-yl]-N-[2,3,4,5-tetrahydro-2-oxo-  
1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-  
1H-1-benzazepin-3(R)-yl]-propanamide, mono(trifluoro  
acetate)

25      Step A    2(R)-t-Butoxycarbonylamino-3-[N-formyl-  
(indol-3-yl)]-N-[2,3,4,5-tetrahydro-2-oxo-1-  
[[2'-(N-(triphenylmethyl)-1H-tetrazol-5-yl)-  
[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-  
3(R)-yl]-propanamide

30      This intermediate was prepared from  
N<sub>a</sub>-t-butoxycarbonyl-N'-formyl-D-tryptophan and  
3(R)-amino-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one  
(Example 1; Step B) by the procedures described in  
Example 7, Steps A and B. <sup>1</sup>H NMR (200MHz, CDCl<sub>3</sub>):  
1.43 (s, 9H), 2.3-2.5 (m, 4H), 3.09 (dd; 8, 13Hz; 1H),  
3.28 (m, 1H), 4.4 (m, 2H), 4.73 (d, 15Hz, 1H), 4.94

- 92 -

(d,15Hz,1H), 5.2 (br s,1H), 6.65 (d,7Hz,1H), 6.9-7.5  
(m, approx. 30H), 7.56 (d,8Hz,1H), 7.84 (m,1H), 8.18  
(br s,1H).

5

Step B: 2(R)-Amino-3-[indol-3-yl]-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]propanamide, mono(trifluoroacetate)

10

A solution of 125mg (0.13mmol) of the intermediate obtained in Step A in 2mL of methanol was hydrogenated at room temperature and one atmosphere over 30mg of 20% Pd(OH)<sub>2</sub> on carbon for 3 hours. The mixture was filtered through Celite and solvent removed under vacuum. The residue was redissolved in 2mL of methylene chloride and treated with 0.1mL of anisole followed by 1mL of trifluoroacetic acid. After 1 hour at room temperature, all volatiles were removed under vacuum and the residue redissolved in 2mL of methanol and treated with 0.5mL of concentrated hydrochloric acid. The mixture was heated at 60°C for 2 hours then all volatiles were removed under vacuum. The residue was purified by reverse-phase HPLC on C-18, eluting with methanol/0.1% aqueous trifluoroacetic acid (linear gradient: 55% methanol increased to 75% methanol over 10 minutes) to afford 68mg (0.096mmol, 74%) of the title compound. <sup>1</sup>H NMR (200MHz, CD<sub>3</sub>OD): 2.0 (m,1H), 2.2-2.6 (m,3H), 3.20 (dd;8,13Hz;1H), 3.44 (dd;6,13Hz;1H), 4.14 (dd;6,8Hz;1H), 4.29 (dd;6,11Hz;1H), 4.76 (d,15Hz,1H), 5.22 (d,15Hz,1H), 6.9-7.7 (m,17H). FAB-MS: calc. for C<sub>35</sub>H<sub>32</sub>N<sub>8</sub>O<sub>2</sub> 596; found 597 (M+H,100%).

- 93 -

**Example 14**

5           2(R)-Amino-3-[imidazol-4-yl]-N-[2,3,4,5-tetrahydro-2-  
oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]-  
methyl]-1H-1-benzazepin-3(R)-yl]-propanamide, mono-  
(trifluoroacetate)

10          Step A    2(R)-t-Butoxycarbonylamino-3-[N-tosyl-  
              (imidazol-4-yl)]-N-[2,3,4,5-tetrahydro-  
              2-oxo-1H-1-benzazepin-3(R)-yl]-propanamide  
              Prepared from N<sub>a</sub>-t-butoxycarbonyl-Nim-  
              tosyl-D-histidine and 3(R)-amino-2,3,4,5-tetrahydro-  
              1H-1-benzazepin-2-one (Example 1; Step B) by the  
15          procedure described in Example 7, Step A.   <sup>1</sup>H NMR  
              (200MHz, CDCl<sub>3</sub>): 1.38 (s,9H), 1.70 (m,1H), 2.42  
              (s,3H), 2.5-2.9 (m,5H), 4.42 (m,2H), 5.77 (br s,1H),  
              6.95 (d,7Hz,1H), 7.05 (s,1H), 7.1-7.3 (m,3H), 7.33  
              (d,8Hz,2H), 7.58 (br d,7Hz,1H), 7.79 (d,8Hz,2H), 7.90  
20          (s,1H), 8.40 (br s,1H).   FAB-MS: calc. for  
              C<sub>28</sub>H<sub>33</sub>N<sub>5</sub>O<sub>6</sub>S 567; found 568 (M+H,100%).

25          Step B    2(R)-t-Butoxycarbonylamino-3-[N-tosyl-  
              (imidazol-4-yl)]-N-[2,3,4,5-tetrahydro-2-oxo-  
              1-[[2'-[N-(triphenylmethyl)-1H-tetrazol-5-  
              y1][1,1'-biphenyl]-4-yl]methyl]-1H-1-benz-  
              azepin-3(R)-yl]-propanamide  
              Prepared from the product obtained in Step A  
              and N-triphenylmethyl-5-[2-(4'-bromomethylbiphen-4-  
              yl)] tetrazole by the procedure described in Example  
30          7, Step B.   <sup>1</sup>H NMR (200MHz,CDCl<sub>3</sub>): 1.43 (s,9H),  
              2.2-2.4 (m,4H), 2.40 (s,3H), 2.83 (dd;5,14Hz;1H),  
              3.05 (dd;6,14Hz;1H), 4.35 (m,2H), 4.63 (d,14Hz,1H),

- 94 -

5.12 (d,14Hz,1H), 5.88 (br s,1H), 6.9-7.5 (m,approx.  
28H), 7.75-7.95 (m,4H).

5       Step C: 2(R)-Amino-3-[imidazol-4-yl]-N-[2,3,4,5-  
tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-  
y1)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benz-  
azepin-3(R)-yl]-propanamide, mono(trifluoro-  
acetate)

10      A solution of 104mg (0.10mmol) of the  
intermediate obtained in Step B in 2mL of chloroform  
at room temperature was treated with 27mg (0.20mmol,  
2eq) of 1-hydroxybenzotriazole hydrate. After 14  
hours, the solvent was removed under vacuum and the  
residue redissolved in 2mL of methanol and  
15      hydrogenated at one atmosphere over 20mg of 20%  
 $Pd(OH)_2/C$  for 3 hours. The mixture was filtered  
through Celite and solvent removed under vacuum. The  
residue was redissolved in 2mL of methylene chloride  
and treated with 0.1mL of anisole followed by 1mL of  
20      trifluoroacetic acid. After 2 hours at room  
temperature, all volatiles were removed under vacuum  
and the residue purified by reverse-phase HPLC on  
C-18, eluting with methanol/0.1% aqueous  
trifluoroacetic acid (linear gradient: 45% methanol  
25      increased to 65% methanol over 10 minutes) to afford  
56mg (0.085mmol, 85%) of the title compound.  $^1H$  NMR  
(200MHz,  $CD_3OD$ ): 2.15-2.50 (m,4H), 3.38  
(dd;6,12Hz;1H), 3.51 (dd;4,12Hz;1H), 4.24  
(dd;4,6Hz;1H), 4.38 (dd;8,12Hz;1H), 5.12 (s,2H), 7.03  
30      (d,8Hz,2H), 7.2-7.4 (m,6H), 7.4-7.7 (m,5H), 8.61  
(s,1H). FAB-MS: calc. for  $C_{30}H_{29}N_9O_2$  547; found  
548 ( $M+H$ ,77%).

- 95 -

**Example 15**

5       2(S)-Amino-3-[imidazol-4-yl]-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]-methyl]-1H-1-benzazepin-3(R)-yl]-propanamide, mono-(trifluoroacetate)

The title compound was prepared from N<sub>a</sub>-t-butoxycarbonyl-N<sub>im</sub>-tosyl-L-histidine, dicyclohexylamine salt and 3(R)-amino-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one (Example 1; Step B) by the procedures described in Example 14. <sup>1</sup>H NMR (200MHz, CD<sub>3</sub>OD): 1.9-2.6 (m,4H), 3.25 (m,2H), 4.16 (t,7Hz,1H), 4.31 (dd;7,11Hz;1H), 4.88 (d,15Hz,1H), 5.17 (d,15Hz,1H), 6.99 (d,8Hz,2H), 7.1-7.6 (m,11H), 8.82 (s,1H). FAB-MS: calc. for C<sub>30</sub>H<sub>29</sub>N<sub>9</sub>O<sub>2</sub> 547; found 548 (M+H,81%).

**Example 16**

20       3-Amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1-methyltetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, mono(trifluoroacetate)

25       Step A: 3-(t-Butoxycarbonylamino)-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide

30       A solution of 50mg (0.080mmol) of 3-amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide trifluoroacetate (Example 1) in

- 96 -

2mL of methylene chloride at room temperature was treated with 0.017mL of triethylamine (12mg, 0.12mmol, 1.5eq) followed by 0.021mL of di-t-butyl-dicarbonate (20mg, 0.091mmol, 1.1eq). The mixture was stirred for 14 hours then all volatiles were removed under vacuum. The residue was purified by medium pressure liquid chromatography on silica, eluting with ethyl acetate/acetonitrile/methanol (9:1:.5) to afford 42mg of product (0.069mmol, 86%).  $^1\text{H}$  NMR (200MHz,  $\text{CD}_3\text{OD}$ ): 1.25 (s, 6H), 1.45 (s, 9H), 2.0 (m, 1H), 2.2-2.6 (m, 5H), 4.32 (m, 1H), 4.78 (d, 14Hz, 1H), 5.26 (d, 14Hz, 1H), 6.97 (d, 8Hz, 2H), 7.10-7.35 (m, 6H), 7.40-7.60 (m, 4H). FAB-MS: calculated for  $\text{C}_{34}\text{H}_{39}\text{N}_7\text{O}_4$  609; found 610 ( $\text{M}+\text{H}$ , 22%).

Step B: 3-Amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1-methyltetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, mono(trifluoroacetate)

A solution of 42mg (0.070mmol) of the intermediate obtained in Step A in 2mL of methylene chloride at room temperature was treated with a diethyl ether solution of diazomethane until a yellow color persisted. Glacial acetic acid (0.2mL) was added and all volatiles removed under vacuum. The residue was redissolved in 2mL of methylene chloride and treated with 0.1mL of anisole followed by 0.5mL of trifluoroacetic acid. After two hours at room temperature, all volatiles were removed under vacuum and the residue purified by reverse phase HPLC on C-18, eluting with methanol/0.1% aqueous trifluoroacetic acid (linear gradient; 75% methanol

- 97 -

increased to 85% methanol over ten minutes). Two components were isolated: the title compound elutes first and 26mg (0.041mmol, 59%) was thus obtained.

5 This was followed by the N<sub>2</sub> isomer (8mg, 0.013mmol, 18%) described in Example 17. <sup>1</sup>H NMR (200MHz, CD<sub>3</sub>OD): 1.33 (s,3H), 1.37 (s,3H), 2.0-2.6 (m,6H), 3.13 (s,3H), 4.34 (dd;7,11Hz;1H), 4.77 (d,14Hz,1H), 5.37 (d,14Hz,1H), 6.98 (d,8Hz,2H), 7.1-7.4 (m,6H), 10 7.5-7.8 (m,4H). FAB-MS: calc. for C<sub>30</sub>H<sub>33</sub>N<sub>7</sub>O<sub>2</sub> 523; found 524 (M+H,100%).

#### Example 17

15 3-Amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(2-methyltetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, mono(trifluoroacetate)

The title compound was obtained from 3-amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide trifluoroacetate (Example 1) by the procedures described in Example 16. <sup>1</sup>H NMR (200MHz, CD<sub>3</sub>OD): 1.32 (s,3H), 1.36 (s,3H), 2.0-2.6 (m,6H), 4.21 (s,3H), 4.37 (dd;8,12Hz;1H), 4.87 (d,15Hz,1H), 5.22 (d,15Hz,1H), 7.00 (d,8Hz,2H), 7.1-7.6 (m,9H), 7.69 (d,8Hz,1H). FAB-MS: calc. for C<sub>30</sub>H<sub>33</sub>N<sub>7</sub>O<sub>2</sub> 523; found 524 (M+H,100%).

- 98 -

**Example 18**

5           3-(2-Benzylxyethyl)amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, mono-(trifluoroacetate)

To a stirred solution of 50mg (0.080mmol)  
10         3-amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide trifluoroacetate  
15         (Example 1) in 3mL of absolute methanol was added 0.022mL (16mg, 0.16mmol, 2eq) of triethylamine followed by 120mg of powdered 3A molecular sieves.  
20         To this stirred mixture was added a solution of 0.012mL (12mg, 0.08mmol, 1eq) of benzyloxyacetaldehyde (prepared from 2,3-O-isopropylideneglycerol by the method of Shiao, et al, Synth. Comm., 18, 359 (1988)) in 2mL dry methanol. The pH of the reaction mixture was adjusted to 7.5 (paper) by the addition of triethylamine and trifluoroacetic acid and was stirred for two hours. To this was added 0.48mL of a 1M solution of sodium cyanoborohydride in tetrahydrofuran (0.48mmol, 6eq). The reaction mixture was stirred at room temperature for 24 hours then filtered and the filtrate treated with 2mL of glacial acetic acid. After concentration under vacuum, the residue was purified by reverse phase HPLC on C-18, eluting with methanol/0.1% aqueous trifluoroacetic acid (linear gradient: 60% methanol increased to 80% methanol in 10 minutes) to afford 35mg (0.046mmol, 58%) of the title compound. <sup>1</sup>H NMR (200MHz, CD<sub>3</sub>OD): 1.34 (s,3H), 1.36 (s,3H), 2.0-2.6

- 99 -

(m,6H), 3.20 (t,5Hz,2H), 3.70 (t,5Hz,2H), 4.38  
(dd;7,11Hz;1H), 4.52 (s,2H), 4.93 (d,15Hz,1H), 5.11  
(d,15Hz,1H), 6.98 (d,8Hz,2H), 7.1-7.3 (m,11H),  
5 7.4-7.6 (m,4H). FAB-MS: calc. for C<sub>38</sub>H<sub>41</sub>N<sub>7</sub>O<sub>3</sub> 643;  
found 644 (M+H,100%).

**Example 19**

10 3-(2-hydroxyethyl)amino-3-methyl-N-[2,3,4,5-tetra-  
hydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-  
4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide,  
trifluoroacetate

A solution of 12mg (0.016mmol) of 3-(2-  
15 benzyloxyethyl)amino-3-methyl-N-[2,3,4,5-tetrahydro-  
2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]-  
methyl]-1H-1-benzazepin-3(R)-yl]-butanamide  
trifluoroacetate (Example 18) in 12mL of absolute  
methanol was hydrogenated at room temperature and  
20 40psi over 30% Pd/C for 24 hours. The mixture was  
filtered through Celite and the filtrate concentrated  
under vacuum. The residue was purified by reverse  
phase HPLC on C-18, eluting with methanol/0.1%  
aqueous trifluoroacetic acid (linear gradient: 60%  
25 methanol increased to 80% methanol in 10 minutes) to  
afford 6.3mg (0.0094mmol, 59%) of the title  
compound. <sup>1</sup>H NMR (200MHz, CD<sub>3</sub>OD): 1.35 (s,3H),  
1.38 (s,3H), 2.0-2.6 (m,6H), 3.09 (t,5Hz,2H), 3.73  
(t,5Hz,2H), 4.33 (dd;7,11Hz;1H), 4.90 (d,15Hz,1H),  
30 5.13 (d,15Hz,1H), 7.00 (d,8Hz,2H), 7.1-7.4 (m,6H),  
7.5-7.7 (m,4H). FAB-MS: calculated for C<sub>31</sub>H<sub>35</sub>N<sub>7</sub>O<sub>3</sub>  
553; found 554 (M+H,100%).

- 100 -

**Example 20**

5           3-(2-Hydroxyethyl)amino-3-methyl-N-[2,3,4,5-tetra-  
hydro-2-oxo-1-[[2'-(1-(2-hydroxyethyl)-tetrazol-5-  
y1)[1,1'-biphenyl]-4-y1]methyl]-1H-1-benzazepin-3(R)-  
y1]-butanamide, mono(trifluoroacetate)

10          Step A: 3-(2-Benzylloxyethyl)amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1-(2-hydroxyethyl)-tetrazol-5-y1)[1,1'-biphenyl]-4-y1]methyl]-1H-1-benzazepin-3(R)-y1]-butanamide, mono(trifluoroacetate) and  
15          3-(2-Benzylloxyethyl)amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(2-(2-hydroxyethyl)-tetrazol-5-y1)[1,1'-biphenyl]-4-y1]methyl]-1H-1-benzazepin-3(R)-y1]-butanamide, mono(trifluoroacetate)

20          To a solution of 40mg (0.053mmol) of 3-(2-benzylloxyethyl)amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-y1)[1,1'-biphenyl]-4-y1]-methyl]-1H-1-benzazepin-3(R)-y1]-butanamide mono(trifluoroacetate) (Example 18) in 3mL of methanol was added a catalytic amount of pyridinium p-toluenesulfonate. Ethylene oxide was bubbled through the solution for five minutes; the flask was capped tightly and the solution stirred at room temperature for 24 hours. All volatiles were removed under vacuum and the residue purified by reverse phase HPLC on C-18, eluting with methanol/0.1% aqueous trifluoroacetic acid (linear gradient: 60% methanol increased to 85% methanol in 10 minutes) to afford 18mg (0.022mmol, 42%) of the N<sub>1</sub> product followed by 6mg (0.0075mmol, 14%) of the N<sub>2</sub>

- 101 -

product.  $^1\text{H}$  NMR (200MHz,  $\text{CD}_3\text{OD}$ ): 1.35 (s, 3H), 1.38 (s, 3H), 2.0-2.6 (m, 6H), 3.22 (t, 5Hz, 2H), 3.54 (m, 4H), 3.71 (t, 5Hz, 2H), 4.37 (dd; 7, 11Hz; 1H), 4.55 (s, 2H), 4.86 (d, 15Hz, 1H), 5.22 (d, 15Hz, 1H), 6.95 (d, 8Hz, 2H), 7.1-7.4 (m, 11H), 7.5-7.8 (m, 4H). FAB-MS: calc. for  $\text{C}_{40}\text{H}_{45}\text{N}_7\text{O}_4$  687; found 688 ( $\text{M}+\text{H}$ , 100%).

Step B: 3-(2-Hydroxyethyl)amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[(2'-(1-(2-hydroxyethyl)-tetrazol-5-yl)[1,1'-biphenyl]-4-yl)methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, mono-(trifluoroacetate)

A solution of 18mg (0.022mmol) of the N1 intermediate obtained in Step A in methanol was hydrogenated at room temperature and 40psi over 30% Pd/C for 24 hours. The mixture was filtered and concentrated under vacuum. The residue was purified by reverse phase HPLC on C-18, eluting with methanol/0.1% aqueous trifluoroacetic acid (linear gradient: 55% methanol increased to 85% methanol in 10 minutes) to afford 12mg (0.017mmol, 75%) of the title compound.  $^1\text{H}$  NMR (200MHz,  $\text{CD}_3\text{OD}$ ): 1.35 (s, 3H), 1.38 (s, 3H), 2.0-2.6 (m, 6H), 3.09 (t, 5Hz, 2H), 3.56 (br s, 4H), 3.73 (t, 5Hz, 2H), 4.32 (dd; 8, 12Hz; 1H), 4.81 (d, 15Hz, 1H), 5.28 (d, 15Hz, 1H), 7.00 (d, 8Hz, 2H), 7.1-7.3 (m, 6H), 7.-7.7 (m, 4H). FAB-MS: calc. for  $\text{C}_{33}\text{H}_{39}\text{N}_7\text{O}_4$  597; found 598 ( $\text{M}+\text{H}$ , 100%).

30

- 102 -

**Example 21**

5       3-(2-Hydroxyethyl)amino-3-methyl-N-[2,3,4,5-tetra-  
      hydro-2-oxo-1-[[2'-[2-(2-hydroxyethyl)-tetrazol-5-  
      y1][1,1'-biphenyl]-4-y1]methyl]-1H-1-benzazepin-  
3(R)-y1]-butanamide, mono(trifluoroacetate)

10      Step A: 3-(2-Benzylxyethyl)amino-3-methyl-N-  
          [2,3,4,5-tetrahydro-2-oxo-1-[[2'-[2-(2-  
          hydroxyethyl)-tetrazol-5-y1][1,1'-biphenyl]-  
          4-y1]methyl]-1H-1-benzazepin-3(R)-y1]-butan-  
amide, mono(trifluoroacetate)

15      Prepared from 3-(2- benzyloxyethyl)amino-3-  
          methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-[1H-tetra-  
          zol-5-y1][1,1'-biphenyl]-4-y1]methyl]-1H-1-benzazepin-  
          3(R)-y1]-butanamide, mono(trifluoroacetate) (Example  
          18) by the procedures described in Example 20, Step  
          A.     <sup>1</sup>H NMR (200MHz, CD<sub>3</sub>OD): 1.32 (s,3H), 1.36  
20      (s,3H), 2.0-2.7 (m,6H), 3.19 (t,5Hz,2H), 3.66  
          (t,5Hz,2H), 3.88 (t,5Hz,2H), 4.40 (dd;8,12Hz;1H),  
          4.50 (s,2H), 4.56 (t,5Hz,2H), 5.02 (br s,2H), 6.99  
          (d,8Hz,2H), 7.1-7.6 (m,15H).   FAB-MS: calc. for  
          C<sub>40</sub>H<sub>45</sub>N<sub>7</sub>O<sub>4</sub> 687; found 688 (M+H,100%).

25      Step B: 3-(2-Hydroxyethyl)amino-3-methyl-N-[2,3,4,5-  
          tetrahydro-2-oxo-1-[[2'-[2-(2-hydroxyethyl)-  
          tetrazol-5-y1][1,1'-biphenyl]-4-y1]methyl]-  
          1H-1-benzazepin-3(R)-y1]-butanamide, mono-  
          (trifluoroacetate)

30      The title compound was prepared from the  
          intermediate obtained in Step A by the procedure  
          described in Example 20, Step B.   <sup>1</sup>H NMR (200MHz,

- 103 -

CD<sub>3</sub>OD): 1.34 (s,3H), 1.37 (s,3H), 2.0-2.7 (m,6H),  
3.08 (t,5Hz,2H), 3.72 (t,5Hz,2H), 3.90 (t,5Hz,2H),  
4.35 (dd;8,12Hz;1H), 4.59 (t,5Hz,2H), 4.96  
5 (d,15Hz,1H), 5.10 (d,15Hz,1H), 7.02 (d,8Hz,2H),  
7.1-7.7 (m,10H). FAB-MS: calc. for C<sub>33</sub>H<sub>39</sub>N<sub>7</sub>O<sub>4</sub>  
597; found 598 (M+H, 67%).

**Example 22**

10

3-(2-Hydroxypropyl)amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[(2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl)methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, mono-(trifluoroacetate)

15

Step A: 3-(2-Benzylloxypropyl)amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[(2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl)methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, mono-(trifluoroacetate)

20

This intermediate was prepared as a mixture of diastereomers (at the carbinol carbon) from 3-amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[(2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl)methyl]-1H-1-benzazepin-3(R)-yl]-butanamide trifluoroacetate (Example 1) and (+/-) 2-benzylloxypropionaldehyde [prepared from 3-buten-2-ol by the method of Shiao, et al., Synth. Comm., 18, 359 (1988)] by the procedure described in Example 18, Step A.

25

<sup>1</sup>H NMR (200MHz, CD<sub>3</sub>OD): 1.24 (m,3H), 1.34 (m,6H), 2.0-2.6 (m,6H), 2.93 (dd;9,12Hz;1H), 3.16 (dd;3,12Hz;1H), 3.80 (m,1H), 4.40 (m,2H), 4.62 (m,2H), 4.8-5.2 (m,2H), 6.9-7.6 (m,17H). FAB-MS: calc. for C<sub>39</sub>H<sub>43</sub>N<sub>7</sub>O<sub>3</sub> 657; found 658 (M+H,100%).

- 104 -

Step B: 3-(2-Hydroxypropyl)amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)-[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, mono(trifluoroacetate)

5

The title compound was prepared from the intermediate obtained in Step A by the procedure described in Example 19.  $^1\text{H}$  NMR (200MHz, CD<sub>3</sub>OD): 1.20 (d, 7Hz, 3H), 1.35 (m, 6H), 2.0-2.7 (m, 6H), 2.75 (m, 1H), 3.07 (dd; 3, 12Hz; 1H), 3.91 (m, 1H), 4.33 (dd; 8, 12Hz; 1H), 4.9 (m, 1H), 5.2 (m, 1H), 7.02 (d, 8Hz, 2H), 6.9-7.6 (m, 12H). FAB-MS: calc. for C<sub>32</sub>H<sub>37</sub>N<sub>7</sub>O<sub>3</sub> 567; found 568 (M+H, 100%).

10

15

### Example 23

3-Amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1-(2-hydroxyethyl)-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, mono(trifluoroacetate)

20

Step A: 3-Amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1-(2-hydroxyethyl)-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, mono(trifluoroacetate)

25

To a solution of 54mg (0.099mmol) of 3-amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide mono(trifluoroacetate) (Example 1) in 2mL of methylene chloride was added a catalytic amount of pyridinium p-toluenesulfonate. Ethylene oxide was bubbled through the solution for five minutes; the flask was capped tightly and the

30

- 105 -

solution stirred at room temperature for 24 hours. All volatiles were removed under vacuum and the residue purified by reverse phase HPLC on C-18, eluting with methanol/0.1% aqueous trifluoroacetic acid (linear gradient: 60% methanol increased to 80% methanol in 10 minutes) to afford 37mg (0.055mmol, 56%) of the title compound followed by 15mg (0.022mmol, 22%) of the N2 product.  $^1\text{H}$  NMR (200MHz, CD<sub>3</sub>OD): 1.32 (s,3H), 1.36 (s,3H), 2.0-2.6 (m,6H), 3.55 (m,4H), 4.33 (dd;7,11Hz;1H), 4.79 (d,14Hz,1H), 5.31 (d,14Hz,1H), 6.99 (d,8Hz,2H), 7.1-7.3 (m,6H), 7.5-7.8 (m,4H). FAB-MS: calc. for C<sub>31</sub>H<sub>35</sub>N<sub>7</sub>O<sub>3</sub> 553; found 554 (M+H,100%).

15

#### Example 24

3-Amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-[2-(2-hydroxyethyl)-tetrazol-5-yl][1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, mono-(trifluoroacetate)

The title compound was prepared from 3-amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide mono(trifluoroacetate) (Example 1) by the procedure described in Example 23.  $^1\text{H}$  NMR (200MHz, CD<sub>3</sub>OD): 1.33 (s,3H), 1.36 (s,3H), 2.0-2.6 (m,6H), 3.90 (t,5Hz,2H), 4.37 (dd;8,12Hz;1H), 4.60 (d,5Hz,2H), 4.91 (d,15Hz,1H), 5.17 (d,15Hz,1H), 7.01 (d,8Hz,2H), 7.1-7.6 (m,9H), 7.75 (d,7Hz,1H). FAB-MS: calc. for C<sub>31</sub>H<sub>35</sub>N<sub>7</sub>O<sub>3</sub> 553; found 554 (M+H,100%).

- 106 -

**Example 25**

5           2-Amino-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetra-  
zol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-  
3-yl]-acetamide, hydrochloride

10          Step A: 3-t-Butoxycarbonylamino-N-[2,3,4,5-tetra-  
hydro-2-oxo-1H-1-benzazepin-3-yl]-acetamide

15          To a solution of 169mg (0.965 mmol) of  
N-(t-butoxycarbonyl) glycine in 2mL of methylene  
chloride at room temperature was added 222mg (1.158  
mmol, 1.2eq) of 1-(3-dimethylaminopropyl)-3-ethyl-  
carbodiimide hydrochloride, 11mg (0.09mmol, 0.1eq) of  
20         4-dimethylaminopyridine and 170mg (0.97 mmol, 1eq) of  
3-amino-2,3,4,5-tetrahydro-1H-[1]benzazepin-2-one  
(Example 1, Step A). The reaction was stirred at  
room temperature for 3 hours. The reaction was then  
quenched by the addition of 5mL of 1M aqueous  
hydrochloric acid, and the aqueous phase extracted  
with methylene chloride (2x5mL). The combined  
organic phases were dried over magnesium sulfate,  
filtered and the solvent removed under vacuum. The  
residue was purified by flash chromatography on  
silica gel, eluting with ethyl acetate, to afford  
25         218mg (0.65mmol, 68%) of the product. <sup>1</sup>H NMR  
(200MHz, CDCl<sub>3</sub>): 1.43 (s, 9H), 1.96 (m, 1H), 2.83  
(m, 3H), 3.81(dq; 2, 8Hz; 2H), 4.54 (m, 1H), 5.21  
(t, 3Hz, 1H), 7.15 (m, 4H), 7.84 (br s, 1H). FAB-MS:  
30         calculated for C<sub>17</sub>H<sub>23</sub>N<sub>3</sub>O<sub>4</sub> 333; found 334 (M+H, 43%).

- 107 -

5           Step B: 2-t-Butoxycarbonylamino-N-[2,3,4,5-tetra-  
hydro-2-oxo-1-[[2'-(N-(triphenylmethyl)-  
tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-  
1H-1-benzazepin-3-yl]-acetamide

10          Prepared from the intermediate obtained in  
Step A and N-triphenylmethyl-5-[2-(4'-bromomethyl-  
biphen-4-yl)] tetrazole by the procedure described in  
Example 1, Step K.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.26  
15         (s, 9H), 1.81 (m, 1H), 2.48 (m, 3H), 3.80 (dq; 3, 9Hz; 2H),  
4.50 (m, 1H), 4.72 (d, 7Hz, 1H), 5.10 (d, 7Hz, 1H),  
6.9-7.6 (m, 26H), 7.96 (m, 1H).

15          Step C: 2-t-Butoxycarbonylamino-N-[2,3,4,5-tetra-  
hydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-  
biphenyl]-4-yl]methyl]-1H-1-benzazepin-3-yl]-  
acetamide

20          323mg (0.43mmol) of the intermediate  
obtained in Step B was dissolved in 1mL of glacial  
acetic acid and 1mL of water was added dropwise with  
stirring. The reaction mixture was stirred at room  
temperature for 16 hours then solvents were removed  
under vacuum and the residue purified by flash  
chromatography on a silica gel column, eluting with  
25         ethyl acetate to afford 109mg (0.196mmol, 46%) of the  
product.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.38 (s, 9H), 1.97  
(m, 1H), 2.55 (m, 3H), 3.65 (m, 2H), 4.50 (m, 1H), 4.85  
(d, 15Hz, 1H), 5.05 (d, 16Hz, 1H), 5.51 (br s, 1H)  
6.95-7.95 (m, 11H), 7.83 (d, 3Hz, 1H).

30          Step D: 2-Amino-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(  
1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]-  
methyl]-1H-1-benzazepin-3-yl]-acetamide,  
hydrochloride

- 108 -

The intermediate obtained in Step C (109mg, 0.196mmol) was dissolved in 2mL of methanol and treated with 0.1mL of concentrated hydrochloric acid. The reaction mixture was stirred at room temperature for 16 hours then solvents were removed under vacuum and the residue redissolved in water and washed with ethyl acetate. The aqueous layer was separated and the solvent removed under vacuum to yield 87mg (0.17mmol, 88%) of the title compound.

<sup>1</sup>H NMR (200MHz, CD<sub>3</sub>OD): 2.10 (m, 1H), 2.48 (m, 3H), 3.68 (s, 2H), 4.37 (m, 1H), 4.84 (d, 14Hz, 1H), 5.22 (d, 14Hz, 1H), 6.9-7.7 (m, 12H). FAB-MS: calculated for C<sub>26</sub>H<sub>25</sub>N<sub>7</sub>O<sub>2</sub> 467; found 468 (M+H, 100%).

15

#### EXAMPLE 26

4-Amino-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetra-  
zol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-  
3-yl]butanamide, hydrochloride

20

25

30

Step A: 4-t-Butoxycarbonylamino-N-[2,3,4,5-tetra-  
hydro-2-oxo-1H-1-benzazepin-3-yl]butanamide

Prepared from 3-amino-2,3,4,5-tetrahydro-1H-

[1]benzazepin-2-one (Example 1, Step A) and 4-(t-

butoxycarbonylamino)butyric acid by the procedure

described in Example 25, Step A. <sup>1</sup>H NMR (200MHz,

CDCl<sub>3</sub>): 1.42 (s, 9H), 1.7-2.1 (m, 3H), 2.24

(t, 5Hz, 2H), 2.58-3.29 (m, 5H), 4.57 (m, 1H), 4.86 (br

s, 1H), 7.0-7.3 (m, 4H), 8.32 (s, 1H). FAB-MS:

calculated for C<sub>19</sub>H<sub>27</sub>N<sub>3</sub>O<sub>4</sub> 361; found 362 (M+H, 60%).

- 109 -

5           Step B: 4-t-Butoxycarbonylamino-N-[2,3,4,5-tetra-  
          hydro-2-oxo-1-[[2'-(N-(triphenylmethyl)-  
          tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-  
1H-1-benzazepin-3-yl]-butanamide

10          Prepared from the intermediate obtained in  
Step A and N-triphenylmethyl-5-[2-(4'-bromomethyl-  
biphen-4-yl)] tetrazole by the procedure described in  
Example 1, Step K.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.42  
(s, 9H), 1.78 (m, 3H), 2.20 (t, 5Hz, 2H), 2.2-2.7 (m, 2H),  
3.13 (m, 2H), 4.46 (m, 1H), 4.70 (d, 14Hz, 1H), 5.10  
(d, 14Hz, 1H), 6.64 (d, 7Hz, 1H), 6.8-7.5 (m, 26H), 7.85  
(m, 1H).

15          Step C: 4-t-Butoxycarbonylamino-N-[2,3,4,5-tetra-  
          hydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-  
          biphenyl]-4-yl]methyl]-1H-1-benzazepin-3-yl]-  
butanamide

20          The intermediate obtained in Step B (349mg,  
0.40mmol) was dissolved in 5mL of methanol and  
hydrogenated at room temperature and one atmosphere  
over 70mg of 20%  $\text{Pd}(\text{OH})_2/\text{C}$  for 16 hours. The  
reaction mixture was filtered through Celite and  
solvent removed under vacuum. The crude product was  
25          purified by flash chromatography on silica, eluting  
with 10% methanol/ethyl acetate to afford 168mg  
(0.28mmol, 71%) of product.  $^1\text{H}$  NMR (200MHz,  
 $\text{CD}_3\text{OD}$ ): 1.41 (s, 9H), 1.72 (m, 2H), 2.0-2.6 (m, 6H),  
3.24 (t, 7Hz, 2H), 4.32 (m, 1H), 4.85 (d, 14Hz, 1H), 5.20  
30          (d, 14Hz, 1H), 6.9-7.7 (m, 12H).

- 110 -

Step D: 4-Amino-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]-methyl]-1H-1-benzazepin-3-yl]-butanamide, hydrochloride

5

The title compound was prepared from the intermediate obtained in Step C by the procedure described in Example 25, Step D.  $^1\text{H}$  NMR (200MHz, CD<sub>3</sub>OD): 1.8-2.6 (m, H), 2.96 (t, 6Hz, 2H), 4.30 (m, 1H), 4.88 (d, 15Hz, 1H), 5.25 (d, 15Hz, 1H), 6.9-7.4 (m, 8H), 7.5-7.7 (m, 4H). FAB-MS: calculated for C<sub>28</sub>H<sub>29</sub>N<sub>7</sub>O<sub>2</sub> 495; found 496 (M+H, 100%).

10

#### Example 27

15

2-Amino-2-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3-yl]-propanamide, hydrochloride

20

Step A: 2-(t-Butoxycarbonylamino)-2-methyl-N-[2,3,4,-5-tetrahydro-2-oxo-1H-1-benzazepin-3-yl]-propanamide

25

Prepared from 2-(t-butoxycarbonylamino)-2-methylpropanoic acid and 3-amino-2,3,4,5-tetrahydro-1H-[1]benzazepin-2-one (Example 1, Step A) by the procedure described in Example 25, Step A.  $^1\text{H}$  NMR (200MHz, CDCl<sub>3</sub>): 1.38 (s, 12H), 1.44 (s, 3H), 1.90 (m, 1H), 2.5-3.0 (m, 3H), 4.45 (m, 1H), 5.10 (s, 1H), 6.97 (m, 1H), 7.20 (m, 3H), 8.45 (s, 1H).

30

- 111 -

Step B: 2-(t-Butoxycarbonylamino)-2-methyl-N-[2,3,4,-  
5-tetrahydro-2-oxo-1-[[2'-(N-(triphenyl-  
methyl)-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]-  
methyl]-1H-1-benzazepin-3-yl]-propanamide

5

Prepared from the intermediate obtained in  
Step A and N-triphenylmethyl-5-[2-(4'-bromomethyl-  
biphen-4-yl)] tetrazole by the procedure described in  
Example 1, Step K.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.42  
10 (s, 9H), 1.43 (s, 3H), 1.47 (s, 3H), 1.75 (m, 1H),  
2.2-2.7 (m, 3H), 4.45 (m, 1H), 4.71 (d, 14Hz, 1H), 5.10  
(d, 14Hz, 1H), 6.9-7.5 (m, 26H), 7.87 (m, 1H).

15

Step C: 2-(t-butoxycarbonylamino)-2-methyl-N-[2,3,4,-  
5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)-  
[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-  
3-yl]-propanamide

Prepared from the intermediate obtained in  
Step B by the procedure described in Example 26, Step  
20 C.  $^1\text{H}$  NMR (200MHz,  $\text{CD}_3\text{OD}$ ): 1.34 (s, 6H), 1.40  
(s, 9H), 1.95 (m, 1H), 2.44 (m, 3H), 4.30 (m, 1H), 4.77  
(d, 14Hz, 1H), 5.26 (d, 14Hz, 1H), 6.9-7.7 (m, 12H).  
FAB-MS: calculated for  $\text{C}_{33}\text{H}_{37}\text{N}_7\text{O}_4$  595; found 596  
(M+H, 40%).

25

Step D: 2-Amino-2-methyl-N-[2,3,4,5-tetrahydro-2-oxo-  
1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-  
y1]methyl]-1H-1-benzazepin-3-yl]-propanamide,  
hydrochloride

30

The title compound was prepared from the  
intermediate obtained in Step C by the procedure  
described in Example 25, Step D.  $^1\text{H-NMR}$  (200MHz,  
 $\text{CD}_3\text{OD}$ ): 1.50 (s, 3H), 1.62 (s, 3H), 2.2-2.7 (m, 4H),

- 112 -

4.32 (m, 1H), 4.85 (d, 14Hz, 1H), 5.17 (d, 14Hz, 1H),  
6.9-7.7 (m, 12H). FAB-MS: calculated for C<sub>28</sub>H<sub>29</sub>N<sub>7</sub>O<sub>2</sub>  
495; found 496 (M+H, 100%).

5

**Example 28**

10

6-Amino-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetra-  
zol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-  
3-yl]-hexanamide, hydrochloride

15

Step A: 6-t-Butoxycarbonylamino-N-[2,3,4,5-tetra-  
hydro-2-oxo-1H-1-benzazepin-3-yl]-hexanamide  
Prepared from 6-(t-butoxycarbonylamino)-  
hexanoic acid and 3-amino-2,3,4,5-tetrahydro-1H-  
[1]benzazepin-2-one (Example 1, Step A) by the  
procedure described in Example 25, Step A. <sup>1</sup>H NMR  
(200 MHz, CDCl<sub>3</sub>): 1.2-1.7 (m, 14H), 1.92 (m, 2H), 2.16  
(t, 5Hz, 2H), 2.5-3.1 (m, 6H), 4.53 (m, 2H), 6.54  
(d, 7Hz, 1H), 6.96 (m, 1H), 7.18 (m, 3H), 8.00 (s, 1H).  
FAB-MS: calculated for C<sub>21</sub>H<sub>31</sub>N<sub>3</sub>O<sub>4</sub> 389; found 390  
(M+H, 18%).

20

25

Step B: 2-t-Butoxycarbonylamino-N-[2,3,4,5-tetra-  
hydro-2-oxo-1-[[2'-(N-(triphenylmethyl)-  
tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-  
1H-1-benzazepin-3-yl]-hexanamide

30

Prepared from the intermediate obtained in  
Step A and N-triphenylmethyl-5-[2-(4'-bromomethyl-  
biphen-4-yl)] tetrazole by the procedure described in  
Example 1, Step K. <sup>1</sup>H NMR (200MHz, CDCl<sub>3</sub>): 1.1-1.9

- 113 -

(m, 16H), 2.15 (t, 5Hz, 2H), 2.2-2.7 (m, 3H), 3.07  
5 (q, 6Hz, 2H), 4.49 (m, 2H), 4.70 (d, 14Hz, 1H), 5.11  
(d, 14Hz, 1H), 6.49 (d, 8Hz, 1H), 6.8-7.5 (m, 26H), 7.86  
(m, 1H).

Step C: 2-t-Butoxycarbonylamino-N-[2,3,4,5-tetra-  
10 hydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-  
biphenyl]-4-yl]methyl]-1H-1-benzazepin-3-yl]-  
hexanamide

Prepared from the intermediate obtained in  
Step B by the procedure described in Example 26, Step  
C.  $^1\text{H}$  NMR (200MHz, CD<sub>3</sub>OD): 1.1-1.7 (m, 16H),  
2.0-2.6 (m, 5H), 2.98 (t, 2H), 4.32 (m, 1H), 4.81  
15 (d, 16Hz, 1H), 5.22 (d, 16Hz, 1H), 6.95 (m, 2H), 7.23  
(m, 6H), 7.52 (m, 4H). FAB-MS: calculated for  
C<sub>35</sub>H<sub>41</sub>N<sub>7</sub>O<sub>4</sub> 623; found 646 (M+Na, 45%).

Step D: 2-Amino-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(  
1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]-  
20 methyl]-1H-1-benzazepin-3-yl]-hexanamide,  
hydrochloride

The title compound was prepared from the  
intermediate obtained in Step C by the procedure  
described in Example 25, Step D.  $^1\text{H}$  NMR (200MHz,  
25 CD<sub>3</sub>OD): 1.88 (m, 2H), 1.63 (m, 4H) 2.0-2.7 (m, 6H),  
2.90 (br s, 2H), 4.31 (m, 1H), 4.86 (d, 14Hz, 1H), 5.17  
(d, 14Hz, 1H), 6.98 (d, 8Hz, 2H), 7.22 (m, 6H), 7.56  
(m, 4H). FAB-MS: calculated for C<sub>30</sub>H<sub>33</sub>N<sub>7</sub>O<sub>2</sub> 523;  
found 524 (M+H, 100%).

30

- 114 -

**Example 29**

5       1-Amino-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetra-  
zol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-  
3-yl]-cyclohexanecarboxamide, hydrochloride

10      Step A: 1-t-Butoxycarbonylamino-N-[2,3,4,5-tetra-  
hydro-2-oxo-1H-1-benzazepin-3-yl]-cyclo-  
hexanecarboxamide

15      Prepared from 1-(t-butoxycarbonylamino)-  
cyclohexanecarboxylic acid and 3-amino-2,3,4,5-  
tetrahydro-1H-[1]benzazepin-2-one (Example 1, Step A)  
by the procedure described in Example 25, Step A. <sup>1</sup>H  
NMR (200MHz, CDCl<sub>3</sub>): 1.1-2.2 (m,19H), 2.00 (m,2H),  
2.50 (m,2H), 4.55 (m,1H), 6.9-7.2 (m,4H). FAB-MS:  
calculated for C<sub>22</sub>H<sub>31</sub>N<sub>3</sub>O<sub>4</sub> 401; found 402 (M+H,40%).

20      Step B: 1-t-Butoxycarbonylamino-N-[2,3,4,5-tetra-  
hydro-2-oxo-1-[[2'-(N-(triphenylmethyl)-  
tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-  
1H-1-benzazepin-3-yl]-cyclohexanecarboxamide

25      Prepared from the intermediate obtained in  
Step A and N-triphenylmethyl-5-[2-(4'-bromomethyl-  
biphen-4-yl)] tetrazole by the procedure described in  
Example 1, Step K. <sup>1</sup>H NMR (200MHz, CDCl<sub>3</sub>): 1.1-2.1  
(m,19H), 2.20 (m,4H), 4.45 (m,1H), 4.67 (s,1H), 4.72  
(d,13Hz,1H), 5.06 (d,13Hz,1H), 6.8-7.5 (m,26H), 7.86  
(m,1H).

30      Step C: 1-t-Butoxycarbonylamino-N-[2,3,4,5-tetra-  
hydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-  
biphenyl]-4-yl]methyl]-1H-1-benzazepin-3-yl]-  
cyclohexanecarboxamide

- 115 -

Prepared from the intermediate obtained in Step B by the procedure described in Example 26, Step C.  $^1\text{H}$  NMR (200MHz,  $\text{CD}_3\text{OD}$ ): 1.2-1.9 (m, 19H), 2.00 (br s, 2H), 2.53 (m, 3H), 4.40 (m, 1H), 4.86 (d, 14Hz, 1H), 5.34 (d, 14Hz, 1H), 6.81 (br s, 1H), 7.0-7.5 (m, 8H), 7.60 (m, 4H). FAB-MS: calculated for  $\text{C}_{36}\text{H}_{41}\text{N}_7\text{O}_4$  635; found 636 ( $\text{M}+\text{H}$ , 20%).

10     Step D: 1-Amino-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]-methyl]-1H-1-benzazepin-3-yl]-cyclohexane-carboxamide, hydrochloride

15     The title compound was prepared from the intermediate obtained in Step C by the procedure described in Example 25, Step D.  $^1\text{H}$  NMR (200MHz,  $\text{CD}_3\text{OD}$ ): 1.6-2.4 (m, 8H), 2.28 (m, 4H), 2.62 (m, 2H), 4.42 (m, 1H), 4.96 (d, 15Hz, 1H), 5.26 (d, 15Hz, 1H), 7.0-7.5 (m, 8H), 7.64 (m, 4H). FAB-MS: calculated for  $\text{C}_{31}\text{H}_{33}\text{N}_7\text{O}_2$  535; found 536 ( $\text{M}+\text{H}$ , 100%).

### Example 30

25     2(S),6-Diamino-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3-yl]-hexanamide, dihydrochloride

30     Step A: 2(S),6-Di-(t-butoxycarbonylamino)-N-[2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-3-yl]-hexanamide

Prepared from  $\text{N}_a,\text{N}_e$ -di(t-butoxycarbonyl)-L-lysine and 3-amino-2,3,4,5-tetrahydro-1H-[1]benzazepin-2-one (Example 1, Step A) by the procedure

- 116 -

described in Example 25, Step A.  $^1\text{H}$  NMR (200MHz, CDCl<sub>3</sub>): 1.2-2.1 (m, 24H), 2.6-3.3 (m, 6H), 4.20 (m, 1H), 4.62 (m, 2H), 5.26 (m, 1H), 7.0-7.4 (m, 4H).  
5 FAB-MS: calculated for C<sub>26</sub>H<sub>40</sub>N<sub>4</sub>O<sub>6</sub> 504; found 505 (M+H, 20%).

10 Step B: 2(S),6-Di-(t-butoxycarbonylamino)-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-[N-(triphenylmethyl)-tetrazol-5-yl][1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3-yl]-hexanamide  
Prepared from the intermediate obtained in Step A and N-triphenylmethyl-5-[2-(4'-bromomethyl-biphen-4-yl)] tetrazole by the procedure described in Example 1, Step K.  $^1\text{H}$  NMR (200MHz, CDCl<sub>3</sub>): 1.42 (s, 18H), 1.60 (m, 2H), 1.79 (m, 2H), 2.42 (m, 4H), 3.10 (m, 4H), 4.09 (m, 1H), 4.42 (m, 1H), 4.60 (d, 13Hz, 1H), 5.17 (d, 13Hz, 1H), 6.8-7.5 (m, 26H), 7.85 (m, 1H).

20 Step C: 2(S),6-Di-(t-butoxycarbonylamino)-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)-[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3-yl]-hexanamide  
Prepared from the intermediate obtained in Step B by the procedure described in Example 26, Step C.  $^1\text{H}$  NMR (200MHz, CD<sub>3</sub>OD): 1.0-1.8 (m, 20H), 2.00 (m, 2H), 3.00 (m, 2H), 3.95 (m, 1H), 4.32 (m, 1H), 4.76 (d, 13Hz, 1H), 5.26 (d, 13Hz, 1H), 6.9-7.4 (m, 8H), 7.4-7.6 (m, 4H). FAB-MS: calculated for C<sub>40</sub>H<sub>50</sub>N<sub>8</sub>O<sub>6</sub> 738; found 739 (M+H, 10%).

- 117 -

Step D: 2(S),6-diamino-N-[2,3,4,5-tetrahydro-2-oxo-1-  
[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]-  
methyl]-1H-1-benzazepin-3-yl]-hexanamide,  
dihydrochloride

5

The title compound was prepared from the intermediate obtained in Step C by the procedure described in Example 25, Step D. <sup>1</sup>H NMR (200MHz, CD<sub>3</sub>OD): 1.3-2.0 (m,6H), 2.0-2.7 (m,4H), 2.95 (m,2H), 10 3.95 (m,1H), 4.37 (m,1H), 4.89 (d,15Hz,1H), 5.19 (dd;4,15Hz,1H), 6.9-7.4 (m,8H), 7.5-7.7 (m,4H). FAB-MS: calculated for C<sub>30</sub>H<sub>34</sub>N<sub>8</sub>O<sub>2</sub> 538; found 539 (M+H,100%).

15

### Example 31

3-amino-3-methyl-N-[7-fluoro-2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3-yl]-butanamide, trifluoroacetate

20

Step A: 7-fluoro-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one

Sodium azide 1.1g (16.92mmol) was added to a mixture of 6.0mL of chloroform and 1.1mL of water at 25 0°C. Concentrated sulfuric acid (0.44mL) was added dropwise and the mixture stirred at 0°C for two hours then filtered. The chloroform layer containing hydrazoic acid was added to a solution of 1.3g (7.92mmol) of 6-fluoro-1-tetralone (prepared by the method of Allinger and Jones, J. Org. Chem., 27, 30 70-76 (1962)) in 4.8mL of chloroform. Additional sulfuric acid (2.16mL) was added dropwise with stirring while maintaining the temperature below

- 118 -

40°C. The mixture was stirred at 40°C for two hours then at room temperature for 16 hours. The mixture was transferred to a separatory funnel and the layers were separated. The aqueous layer was added to ice; the resulting precipitate was extracted with methylene chloride (5x). The combined extracts were washed with brine, dried over magnesium sulfate and filtered through a silica plug. Solvents were removed under vacuum to afford 162mg (0.92mmol, 11%) of the product.  $^1\text{H}$  NMR (300MHz,  $\text{CDCl}_3$ ): 2.21 (m, 2H), 2.32 (t, 7Hz, 2H), 2.77 (t, 7Hz, 2H), 6.93 (m, 3H), 7.8 (br s, 1H). FAB-MS: calculated for  $\text{C}_{10}\text{H}_{10}\text{FNO}$  179; found 180 ( $\text{M}+\text{H}$ , 100%).

Step B: 3-iodo-7-fluoro-2,3,4,5-tetrahydro-1*H*-1-benzazepin-2-one  
7-fluoro-2,3,4,5-tetrahydro-1*H*-1-benzazepin-2-one (411mg, 2.3mmol) (Step A) dissolved in a mixture of 7.9mL of dry methylene chloride and 1.0mL of dry tetrahydrofuran was treated with 1.62mL (1.18g, 11.6mmol, 5eq) of triethylamine and the resulting solution cooled to -15°C. Iodotrimethylsilane (0.66mL, 932mg, 4.7mmol, 2eq) was added followed by 1.183g of iodine (4.7mmol, 2eq) added in small portions over 5 minutes. The mixture was warmed to room temperature over 5 minutes at which time 15mL of methylene chloride was added followed by 20mL of 10% aqueous sodium sulfite. The layers were separated and the organic layer washed with 10% sodium sulfite (3x20mL). The aqueous layer was further extracted with 20mL of methylene chloride. The combined extracts were washed with

- 119 -

brine, dried over magnesium sulfate, filtered and concentrated to dryness under vacuum. The crude product was chromatographed on silica gel, eluting with methylene chloride/methanol (99:1) to afford 511mg (1.68mmol, 73%) of the product.  $^1\text{H}$  NMR (300MHz,  $\text{CDCl}_3$ ): 2.70 (m, 3H), 2.93 (m, 1H), 4.62 (t, 9Hz, 1H), 6.95 (m, 3H), 7.86 (br s, 1H). FAB-MS: calculated for  $\text{C}_{10}\text{H}_9\text{FINO}$  305; found 306 ( $\text{M}+\text{H}$ , 100%).

10

Step C: 3-Azido-7-fluoro-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one

101mg (0.33mmol) of 3-iodo-7-fluoro-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one (Step B) was dissolved in 8.3mL of methylene chloride and 105mg (0.66mmol, 2eq) of tetramethylguanidinium azide was added. The mixture was stirred at room temperature for 16 hours then water was added and the layers allowed to separate. The organic layer was removed, washed with water and brine, then dried over magnesium sulfate, filtered and solvents removed under vacuum to afford 66mg (0.30mmol, 90%) of the product.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 2.28 (m, 1H), 2.45 (m, 1H), 2.73 (m, 1H), 2.93 (m, 1H), 3.86 (dd, 8, 11Hz; 1H), 7.0 (m, 3H), 8.15 (br s, 1H). FAB-MS: calculated for  $\text{C}_{10}\text{H}_9\text{FN}_4\text{O}$  220; found 221 ( $\text{M}+\text{H}$ , 100%).

30

Step D: 3-Amino-7-fluoro-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one

3-Azido-7-fluoro-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one (3.36g, 15.3mmol) (Step C) dissolved in dry tetrahydrofuran was treated with 4.00g

- 120 -

(15.3mmol, 1eq) of triphenylphosphine and the resulting solution stirred at room temperature under nitrogen for 2 hours. Water (0.48mL, 2eq) was added and the mixture stirred at room temperature for 16 hours. Solvents were removed under vacuum and the residue purified by preparative HPLC on silica, eluting with methylene chloride/methanol (9:1) to afford 2.39g (12.3mmol, 81%) of product.  $^1\text{H}$  NMR (200MHz,  $\text{CD}_3\text{OD}$ ): 1.87 (m, 1H), 2.41 (m, 1H), 2.6-2.9 (m, 2H), 3.30 (dd; 8, 12Hz; 1H), 7.0 (m, 3H). FAB-MS: calculated for  $\text{C}_{10}\text{H}_{11}\text{FN}_2\text{O}$  194; found 195 ( $\text{M}+\text{H}$ , 100%).

15      Step E: 3-t-Butoxycarbonylamino-3-methylbutanoic acid  
A solution of 4.65g (17.5mmol) of methyl 3-benzyloxycarbonylamino-3-methylbutanoate (Example 1, Step D) in 100mL absolute methanol at room temperature was treated with 3mL concentrated hydrochloric acid and hydrogenated at one atmosphere over 0.92g of 20%  $\text{Pd}(\text{OH})_2/\text{C}$ . After 16 hours, an additional 0.4g of catalyst was added and hydrogenation continued for 8 hours. The catalyst was removed by filtration through Celite and the filtrate concentrated under vacuum. The residue was redissolved in 50mL methylene chloride and treated with 6.0mL (5.7g, 26mol, 1.5eq) di-t-butyl-dicarbonate followed by 7.3mL triethylamine (5.3g, 52mmol, 3eq). The mixture was stirred at room temperature for 14 hours then diluted into 300mL of hexane/ethyl acetate (1:1) and washed with water (2x), saturated aqueous sodium bicarbonate and brine. The organic layer was removed, dried over

- 121 -

magnesium sulfate, filtered and the solvents removed under vacuum. Purification by preparative HPLC on silica, eluting with hexane/ethyl acetate (6:1),  
5 afforded 3.40g (14.7mmol, 84%) of the intermediate BOC-methyl ester as a colorless liquid.

This intermediate (3.40g, 14.7mmol) in 5mL methanol at room temperature was treated with 11mL of 2.0N NaOH (22mmol, 1.5eq) and the resulting mixture  
10 stirred at room temperature for 24 hours. The mixture was diluted with 15mL water and washed with hexane. The aqueous layer was removed, cooled to 0°, and acidified by dropwise addition of saturated aqueous potassium hydrogen sulfate to a pH of 2-3.  
15 The mixture was extracted with ethet (6x25mL); the combined extracts washed with brine, dried over magnesium sulfate, filtered and solvents removed under vacuum. The residue solidified upon standing to afford 3.11g (14.3mmol, 97%) of the product. <sup>1</sup>H NMR (200MHz, CDCl<sub>3</sub>): 1.39 (s,6H), 1.44 (s,9H), 2.72 (s,2H). FAB-MS: calculated for C<sub>10</sub>H<sub>19</sub>NO<sub>4</sub> 217; found 218 (M+H, 54%).

Step F: 3-t-Butoxycarbonylamino-3-methyl-N-[7-fluoro-  
25 2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-3-  
y1l-butanamide

Prepared from 3-t-butoxycarbonylamino-3-methylbutanoic acid (Step E) and the amine obtained in Step D by the procedure described in Example 1, Step F. <sup>1</sup>H NMR (200MHz, CDCl<sub>3</sub>): 1.33 (s,6H), 1.40 (s,9H), 1.90 (m,1H), 2.45 (d,15Hz,1H), 2.56 (d,15Hz,1H), 2.60 (m,1H), 2.73 (m,1H), 2.91 (m,1H), 4.50 (m,1H), 5.16 (br s,1H), 6.66 (d,7Hz,1H), 6.94

- 122 -

(m,3H), 7.51 (br s,1H). FAB-MS: calculated for  
 $C_{20}H_{28}FN_3O_4$  393; found 394 ( $M+H$ , 42%).

5       Step G: 3-t-Butoxycarbonylamino-3-methyl-N-[7-fluoro-  
2,3,4,5-tetrahydro-2-oxo-1-[[2'-(N-triphenyl-  
methyl)-tetrazol-5-yl][1,1'-biphenyl]-4-yl]-  
methyl-1H-1-benzazepin-3-yl]butanamide

10      Prepared from the intermediate obtained in  
Step F and N-triphenylmethyl-5-[2-(4'-bromomethyl-  
biphen-4-yl)] tetrazole by the procedure described in  
Example 1, Step K.  $^1H$  NMR (200MHz,  $CDCl_3$ ): 1.34  
(s,6H), 1.40 (s,9H), 1.74 (m,1H), 2.2-2.6 (m,3H),  
2.43 (d,15Hz,1H), 2.53 (d,15Hz,1H), 4.43 (m,1H), 4.61  
(d,14Hz,1H), 5.12 (d,14Hz,1H), 5.28 (br s,1H),  
15      6.6-6.9 (m,3H), 6.9-7.5 (m,22H), 7.84 (m,1H).

20      Step H: 3-Amino-3-methyl-N-[7-fluoro-2,3,4,5-tetra-  
hydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-  
biphenyl]-4-yl]methyl]-1H-1-benzazepin-3-yl]-  
butanamide, trifluoroacetate

25      The intermediate obtained in Step G (360mg,  
0.41mmol) was dissolved in 1mL of methanol and  
treated dropwise with 1mL of 9N HCl. The mixture was  
stirred at room temperature for 16 hours then all  
volatiles were removed under vacuum and the residue  
purified by reverse phase HPLC on C-18, eluting with  
methanol/0.1% aqueous trifluoroacetic acid (linear  
gradient; 60% methanol increased to 80% over 10  
minutes) to afford 222mg (0.35mmol, 84%) of the title  
compound.  $^1H$  NMR (300MHz,  $CD_3OD$ ): 1.39 (s,3H), 1.42  
(s,3H), 2.12 (m,1H), 2.3-2.7 (m,5H), 4.40  
(dd,7,12Hz;1H), 4.85 (d,15Hz,1H), 5.30 (d,15Hz,1H),

- 123 -

7.0-7.3 (m, 6H), 7.40 (m, 1H), 7.60 (m, 2H), 7.70 (m, 2H). FAB-MS: calculated for C<sub>29</sub>H<sub>30</sub>FN<sub>7</sub>O<sub>2</sub> 527; found 528 (M+H, 100%).

5

**EXAMPLE 32**

10 3-Amino-3-methyl-N-[8-iodo-2,3,4,5-tetrahydro-2-oxo-1-  
[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-  
1H-1-benzazepin-3-yl]-butanamide, trifluoroacetate

Step A: 7-iodo-1-tetralone

15 4-(p-Iodophenyl)butyric acid (5.00g, 17.2mmol) was added to 48g of polyphosphoric acid and  
the mixture heated at 95°-105°C for 1 hour, then  
stirred at room temperature for 16 hours. The  
reaction mixture was added to 500mL of ice/water and  
extracted with ether (3x200mL). The combined  
extracts were dried over magnesium sulfate and the  
solvent removed under vacuum. The residue was  
20 purified by medium pressure liquid chromatography on  
silica, eluting with chloroform to yield 3.63g  
(13.4mmol, 77%) of the product. <sup>1</sup>H NMR (200MHz,  
CDCl<sub>3</sub>): 2.11 (m, 2H), 2.62 (t, 5Hz, 2H), 2.90  
25 (t, 5Hz, 2H), 6.99 (d, 8Hz, 1H), 7.74 (dd; 2, 8Hz; 1H), 8.30  
(d, 2Hz, 1H). FAB-MS: calculated for C<sub>10</sub>H<sub>9</sub>I<sub>2</sub>O 272;  
found 273 (M+H, 100%).

30 Step B: 8-iodo-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one

Prepared from 7-iodo-1-tetralone by the  
procedure described in Example 31, Step A. <sup>1</sup>H NMR  
(200MHz, CDCl<sub>3</sub>): 2.32 (m, 2H), 2.42 (m, 2H), 2.85

- 124 -

(t, 6Hz, 2H), 7.05 (d, 8Hz, 1H), 7.44 (d, 2Hz, 1H), 7.56  
(dd; 2, 8Hz; 1H). FAB-MS: calculated for  $C_{10}H_{10}INO$   
287; found 288 (M+H, 100%).

5

Step C: 3,8-diido-2,3,4,5-tetrahydro-1H-1-benzo-  
zepin-2-one

10

Prepared from 8-iodo-2,3,4,5-tetrahydro-1H-1-  
benzazepin-2-one by the procedure described in  
Example 31, Step B.  $^1H$  NMR (200MHz,  $CDCl_3$ ): 2.56  
(m, 4H), 4.48 (t, 6Hz, 1H), 6.80 (d, 8Hz, 1H), 7.22  
(d, 2Hz, 1H), 7.32 (dd; 2, 8Hz; 1H). FAB-MS: calculated  
for  $C_{10}H_9I_2NO$  413; found 414 (M+H, 58%).

15

Step D: 3-Azido-8-iodo-2,3,4,5-tetrahydro-1H-1-benzo-  
zepin-2-one

20

Prepared from 3,8-diido-2,3,4,5-tetrahydro-  
1H-1-benzazepin-2-one by the procedure described in  
Example 31, Step C.  $^1H$  NMR (200MHz,  $CDCl_3$ ): 2.3-3.2  
(m, 4H), 3.99 (m, 1H), 7.10 (d, 8Hz, 1H), 7.58 (m, 2H).  
FAB-MS: calculated for  $C_{10}H_9IN_4O$  328; found 329  
(M+H, 100%).

25

Step E: 3-Amino-8-iodo-2,3,4,5-tetrahydro-1H-1-benzo-  
zepin-2-one

30

Prepared from 3-azido-8-iodo-2,3,4,5-tetra-  
hydro-1H-1-benzazepin-2-one by the procedure  
described in Example 31, Step D.  $^1H$  NMR (200MHz,  
 $CDCl_3$ ): 1.92 (m, 1H), 2.56 (m, 2H), 2.82 (m, 1H), 3.40  
(m, 1H), 6.98 (d, 8Hz, 1H), 7.32 (d, 2Hz, 1H), 7.45  
(dd; 2, 8Hz; 1H), 7.60 (br s, 1H). FAB-MS: calculated  
for  $C_{10}H_{11}IN_2O$  302; found 303 (M+H, 62%).

- 125 -

Step F: 3-t-Butoxycarbonylamino-3-methyl-N-[8-iodo-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-3-yl]-butanamide

5 Prepared from 3-t-butoxycarbonylamino-3-methylbutanoic acid (Example 31, Step E) and the amine obtained in Step E by the procedure described in Example 1, Step F.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.33 (s,6H), 1.42 (s,9H), 1.80(m,1H), 2.24 (m,2H), 2.50 (m,3H), 4.45 (m,1H), 6.98 (d,8Hz,1H), 7.35 (d,2Hz,1H), 7.43 (dd;2,8Hz;1H). FAB-MS: calculated for  $\text{C}_{20}\text{H}_{28}\text{IN}_3\text{O}_4$  501; found 502 ( $\text{M}+\text{H}$ ,20%).

10 15 Step G: 3-t-Butoxycarbonylamino-3-methyl-N-[8-iodo-2,3,4,5-tetrahydro-2-oxo-1-[[2'-(N-triphenylmethyl)-tetrazol-5-yl][1,1'-biphenyl]-4-yl]-methyl-1H-1-benzazepin-3-yl]-butanamide

20 Prepared from the intermediate obtained in Step F and N-triphenylmethyl-5-[2-(4'-bromomethylbiphen-4-yl)] tetrazole by the procedure described in Example 1, Step K.  $^1\text{H}$  NMR (200MHz,  $\text{CD}_3\text{OD}$ ): 1.35 (s,6H), 1.42 (s,9H), 1.70 (m,1H), 2.22 (m,2H), 2.48 (m,3H), 4.40 (m,1H), 4.39 (d,14Hz,1H), 5.28 (d,14Hz,1H), 6.74 (m,2H), 6.8-7.6 (m,23H), 7.88 (m,1H).

25 30 Step H: 3-Amino-3-methyl-N-[8-iodo-2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3-yl]-butanamide, trifluoroacetate

The title compound was prepared from the intermediate obtained in Step G by the procedure described in Example 31, Step H.  $^1\text{H}$  NMR (200MHz,

- 126 -

CD<sub>3</sub>OD): 1.32 (s, 3H), 1.37 (s, 3H), 2.04 (m, 1H),  
2.1-2.6 (m, 3H), 2.50 (d, 4Hz, 2H), 4.30 (m, 1H), 4.76  
5 (d, 14Hz, 1H), 5.24 (d, 14Hz, 1H), 6.96 (m, 3H), 7.15  
(m, 2H), 7.60 (m, 6H). FAB-MS: calculated for  
 $C_{29}H_{30}IN_7O_2$  635; found 636 (M+H, 100%).

**Example 33**

10 3-Amino-3-methyl-N-[8-methoxy-2,3,4,5-tetrahydro-2-  
oxo-1-[[2'-(1H-tetrazol-5-y1)[1,1'-biphenyl]-4-y1]-  
methyl]-1H-1-benzazepin-3-y1]-butanamide, trifluoro-  
acetate

15 Step A: 8-Methoxy-2,3,4,5-tetrahydro-1H-1-benza-  
zepin-2-one

Prepared from 7-methoxy-1-tetralone by the  
procedure described in Example 31, Step A. <sup>1</sup>H NMR  
(200MHz, CDCl<sub>3</sub>): 2.19 (m, 2H), 2.32 (m, 2H), 2.70  
20 (t, 6Hz, 2H), 3.76 (s, 3H), 6.57 (d, 2Hz, 1H), 6.66  
(dd; 2, 8Hz; 1H), 7.09 (d, 8Hz, 1H). FAB-MS: calculated  
for C<sub>11</sub>H<sub>13</sub>NO<sub>2</sub> 191; found 192 (M+H, 100%).

25 Step B: 3-Iodo-8-methoxy-2,3,4,5-tetrahydro-1H-1-  
benzazepin-2-one

Prepared from 8-methoxy-2,3,4,5-tetrahydro-  
1H-1-benzazepin-2-one by the procedure described in  
Example 31, Step B. <sup>1</sup>H NMR (200MHz, CDCl<sub>3</sub>): 2.6-3.1  
(m, 4H), 3.88 (s, 3H), 4.76 (t, 6Hz, 1H), 6.68  
30 (d, 2Hz, 1H), 6.81 (dd; 2, 8Hz; 1H), 7.20 (d, 2Hz, 1H).  
FAB-MS: calculated for C<sub>11</sub>H<sub>12</sub>INO<sub>2</sub> 317; found 318  
(M+H, 44%).

- 127 -

Step C: 3-Azido-8-methoxy-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one

Prepared from 3-iodo-8-methoxy-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one by the procedure described in Example 31, Step C.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 2.3-3.2 (m, 4H), 3.90 (s, 3H), 4.01 (m, 1H), 6.74 (d, 2Hz, 1H), 6.82 (dd; 2, 8Hz; 1H), 7.22 (d, 8Hz, 1H). FAB-MS: calculated for  $\text{C}_{11}\text{H}_{12}\text{N}_4\text{O}_2$  232; found 233 ( $\text{M}+\text{H}$ , 100%).

Step D: 3-Amino-8-methoxy-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one

Prepared from 3-azido-8-methoxy-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one by the procedure described in Example 31, Step D.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 2.02 (m, 1H), 2.68 (m, 2H), 2.90 (m, 1H), 3.59 (m, 1H), 3.92 (s, 3H), 6.74 (d, 2Hz, 1H), 6.82 (dd; 2, 8Hz; 1H), 7.22 (d, 8Hz, 1H), 8.25 (br s, 1H). FAB-MS: calculated for  $\text{C}_{11}\text{H}_{14}\text{N}_2\text{O}_2$  206; found 207 ( $\text{M}+\text{H}$ , 40%).

Step E: 3-t-Butoxycarbonylamino-3-methyl-N-[8-methoxy-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-3-yl]butanamide

Prepared from 3-t-butoxycarbonylamino-3-methylbutanoic acid (Example 31, Step E) and the amine obtained in Step D by the procedure described in Example 1, Step F.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.44 (s, 6H), 1.50 (s, 9H), 1.80 (m, 1H), 2.80 (m, 5H), 3.86 (s, 3H), 4.62 (m, 1H), 6.62 (d, 2Hz, 1H), 6.76 (dd; 2, 8Hz; 1H), 7.20 (d, 8Hz, 1H). FAB-MS: calculated for  $\text{C}_{21}\text{H}_{31}\text{N}_3\text{O}_5$  405; found 406 ( $\text{M}+\text{H}$ , 42%).

- 128 -

5           Step F: 3-t-Butoxycarbonylamino-3-methyl-N-[8-methoxy-2,3,4,5-tetrahydro-2-oxo-1-[[2'-(N-triphenylmethyl)-tetrazol-5-yl][1,1'-biphenyl]-4-yl]methyl-1H-1-benzazepin-3-yl]-butanamide

10           Prepared from the intermediate obtained in Step E and N-triphenylmethyl-5-[2-(4'-bromomethyl-biphen-4-yl)] tetrazole by the procedure described in Example 1, Step K.  $^1\text{H}$  NMR (200MHz, CD<sub>3</sub>OD): 1.47 (s, 6H), 1.55 (s, 9H), 1.80 (m, 1H), 2.42 (m, 2H), 2.60 (m, 3H), 3.84 (s, 3H), 4.62 (m, 1H), 4.78 (d, 14Hz, 1H), 5.30 (d, 14Hz, 1H), 6.79 (m, 2H), 7.08 (m, 12H), 7.42 (m, 11H), 7.98 (m, 1H).

15           Step G: 3-t-Butoxycarbonylamino-3-methyl-N-[8-methoxy-2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]-methyl]-1H-1-benzazepin-3-yl]-butanamide

20           Prepared from the intermediate obtained in Step F by the procedure described in Example 2, Step C.  $^1\text{H}$  NMR (200MHz, CD<sub>3</sub>OD): 1.42 (s, 6H), 1.50 (s, 9H), 2.10 (m, 1H), 2.56 (m, 5H), 3.82 (s, 3H), 4.43 (m, 1H), 4.92 (d, 15Hz, 1H), 5.31 (d, 15Hz, 1H), 6.86 (m, 1H), 6.97 (m, 2H), 7.0-7.3 (m, 4H), 7.64 (m, 3H), 8.05 (m, 1H). FAB-MS: calculated for C<sub>35</sub>H<sub>41</sub>N<sub>7</sub>O<sub>5</sub> 639; found 640 (M+H, 20%).

25           Step H: 3-Amino-3-methyl-N-[8-methoxy-2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3-yl]-butanamide, mono(trifluoroacetate)

- 129 -

The title compound was prepared from the intermediate obtained in Step G by the procedure described in Example 31, Step H.  $^1\text{H}$  NMR (200MHz, CD<sub>3</sub>OD): 1.43 (s,3H), 1.49 (s,3H), 2.15 (m,1H), 2.2-2.7 (m,5H), 3.85 (s,3H), 4.48 (m,1H), 5.04 (d,14Hz,1H), 5.28 (d,14Hz,1H), 6.92 (m,2H), 7.1-7.4 (m,4H), 7.65 (m,5H). FAB-MS: calculated for C<sub>30</sub>H<sub>33</sub>N<sub>7</sub>O<sub>3</sub> 539; found 540 (M+H,100%).

10

#### Example 34

3-Amino-3-methyl-N-[7-trifluoromethyl-2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3-yl]-butanamide,  
15 hydrochloride

Step A: 3-(Trifluoromethyl)phenethyl tosylate

A solution of 10.0g (52.6mmol) of 3-(trifluoromethyl)phenethyl alcohol in 75mL of ether under nitrogen was treated with 10.53g (55.2mmol, 1.05eq) p-toluenesulfonyl chloride. The solution was cooled to 0° and treated with 7.67mL (5.57g, 55.0mmol, 1.05eq) of triethylamine. The mixture was stirred at 0° for 30 minutes then warmed to room temperature and stirred for 16 hours. The precipitate was removed by filtration and washed with ether. The combined filtrate and ether wash were evaporated under vacuum. The residue was redissolved in ethyl acetate and washed with 0.5N HCl and brine; the organic layer was removed, dried over sodium sulfate, filtered and concentrated under vacuum. Purification by flash chromatography on silica,

- 130 -

eluting with 30% ethyl acetate/hexane, afforded  
15.14g (44.0mmol, 84%) of the product.  $^1\text{H}$  NMR  
(200MHz,  $\text{CDCl}_3$ ): 2.44 (s,3H), 3.03 (t,7Hz,2H), 4.26  
(t,7Hz,2H), 7.2-7.5 (m,6H), 7.66 (d,8Hz,2H).  
5 FAB-MS: calculated for  $\text{C}_{16}\text{H}_{15}\text{F}_3\text{SO}_3$  344; found 345  
(M+H,8%).

10 Step B: 2-[2-(3-Trifluoromethylphenyl)-ethyl]propane-1,3-dioic acid, dimethyl ester  
A suspension of 1.4g of 60% sodium hydride  
oil dispersion (0.84g, 35mmol, 1.1eq) in 30mL of  
tetrahydrofuran at room temperature under nitrogen  
was treated dropwise over 15 minutes with a solution  
15 of 4.0mL of dimethyl malonate (4.62g, 35mmol, 1.1eq)  
in 30mL of tetrahydrofuran. After evolution of  
hydrogen ceased, a solution of 11.03g (32.0mmol,  
1.0eq) of 3-(trifluoromethyl)phenethyl tosylate (Step  
A) in 30mL of tetrahydrofuran was added over 15  
minutes. The mixture was heated at reflux for a  
20 total of 21 hours. The mixture was filtered; the  
filtrate was dried over magnesium sulfate, filtered  
and concentrated under vacuum to afford 10.89g of  
product which contained approximately 5% of unreacted  
tosylate and was used without purification.  $^1\text{H}$  NMR  
25 (200MHz,  $\text{CDCl}_3$ ): 2.24 (m,2H), 2.70 (t,8Hz,2H), 3.37  
(t,8Hz,1H), 3.74 (s,6H), 7.3-7.5 (m,4H).

30 Step C: 4-(3-Trifluoromethylphenyl)-butanoic acid  
The intermediate obtained in Step B (2.15g,  
7.07mmol) was treated with 3.5mL of a 4.53M solution  
of methanolic potassium hydroxide (15.9mmol, 2.2eq)  
and the resulting mixture stirred at room temperature

- 131 -

for 72 hours. The mixture was concentrated under vacuum and the solid residue redissolved in 4mL of concentrated hydrochloric acid and heated at reflux for 3 hours. The mixture was cooled, then extracted with methylene chloride (3x6mL); the combined extracts were washed with brine, dried over magnesium sulfate, filtered and concentrated under vacuum. The residue was suspended in 20mL of water and treated with 700mg (8.3mmol) of sodium bicarbonate. The solution was washed with ether (2x20mL); the aqueous phase was removed and acidified (pH 1-2) with 2N HCl. The mixture was extracted with methylene chloride and the combined extracts dried over sodium sulfate, filtered and concentrated under vacuum. The residue was treated with 30mL of concentrated hydrochloric acid and the mixture heated at reflux for 20 hours. All volatiles were removed under vacuum to afford 1.12g (4.82mmol, 68%) of product.

<sup>1</sup>H NMR (200MHz, CDCl<sub>3</sub>): 1.98 (m, 2H), 2.40 (t, 8Hz, 2H), 2.74 (t, 8Hz, 2H), 7.3-7.5 (m, 4H).

Step D: 7-Trifluoromethyl-1-tetralone

Prepared from 4-(3-trifluoromethylphenyl)-butanoic acid by the procedure described in Example 32, Step A. <sup>1</sup>H NMR (200MHz, CDCl<sub>3</sub>): 2.16 (m, 2H), 2.69 (t, 6Hz, 2H), 3.01 (t, 6Hz, 2H), 7.5 (m, 2H), 8.12 (d, 8Hz, 1H). EI-MS: calculated for C<sub>11</sub>H<sub>9</sub>F<sub>3</sub>O 214; found 214 (M<sup>+</sup>, 40%).

30

- 132 -

Step E: 7-Trifluoromethyl-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one

Prepared from 7-trifluoromethyl-1-tetralone  
by the procedure described in Example 31, Step A.  
 $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 2.3 (m, 4H), 2.86 (t, 7Hz, 2H),  
7.08 (d, 8Hz, 1H), 7.48 (m, 2H), 8.3 (br s, 1H).  
FAB-MS: calculated for  $\text{C}_{11}\text{H}_{10}\text{F}_3\text{NO}$  229; found 230  
(M+H, 100%).

Step F: 3-Iodo-7-trifluoromethyl-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one

Prepared from 7-trifluoromethyl-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one by the procedure described in Example 31, Step B.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 2.8 (m, 4H), 4.68 (t, 8Hz, 1H), 7.11 (d, 8Hz, 1H), 7.52 (m, 2H), 7.95 (br s, 1H). FAB-MS: calculated for  $\text{C}_{11}\text{H}_9\text{F}_3\text{INO}$  355; found 356 (M+H, 100%).

Step G: 3-Azido-7-trifluoromethyl-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one

Prepared from 3-iodo-7-trifluoromethyl-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one by the procedure described in Example 31, Step C.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 2.32 (m, 1H), 2.55 (m, 1H), 2.81 (m, 1H), 3.00 (m, 1H), 3.88 (dd; 8, 12Hz; 1H), 7.14 (d, 7Hz, 1H), 7.52 (m, 2H), 8.34 (br s, 1H). FAB-MS: calculated for  $\text{C}_{11}\text{H}_9\text{F}_3\text{N}_4\text{O}$  270; found 271 (M+H, 100%).

Step H: 3-Amino-7-trifluoromethyl-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one

Prepared from 3-azido-7-trifluoromethyl-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one by the

- 133 -

procedure described in Example 31, Step D.  $^1\text{H}$  NMR (200MHz,  $\text{CD}_3\text{OD}$ ): 1.95 (m,1H), 2.46 (m,1H), 2.80 (m,2H), 3.35 (dd;8,12Hz;1H), 7.15 (d,8Hz,1H), 7.63 (m,2H). FAB-MS: calculated for  $\text{C}_{11}\text{H}_{11}\text{F}_3\text{N}_2\text{O}$  244; found 245 ( $\text{M}+\text{H}$ ,100%).

Step I: 3-t-Butoxycarbonylamino-3-methyl-N-[7-trifluoromethyl-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-3-yl]-butanamide

Prepared from 3-t-butoxycarbonylamino-3-methylbutanoic acid (Example 31, Step E) and the amine obtained in Step H by the procedure described in Example 1, Step F.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.34 (s,6H), 1.42 (s,9H), 1.98 (m,1H), 2.50 (d,14Hz,1H), 2.63 (d,14Hz,1H), 2.7-3.0 (m,3H), 4.50 (m,1H), 6.75 (d,7Hz,1H), 7.10 (d,8Hz,1H), 7.51 (br s,2H), 7.94 (br s,1H). FAB-MS: calculated for  $\text{C}_{21}\text{H}_{28}\text{F}_3\text{N}_3\text{O}_4$  443; found 444 ( $\text{M}+\text{H}$ ,74%).

Step J: 3-t-Butoxycarbonylamino-3-methyl-N-[7-trifluoromethyl-2,3,4,5-tetrahydro-2-oxo-1-[[2'-(N-triphenylmethyl)-tetrazol-5-yl][1,1'-biphenyl]-4-yl]methyl-1H-1-benzazepin-3-yl]-butanamide

Prepared from the intermediate obtained in Step I and N-triphenylmethyl-5-[2-(4'-bromomethyl-biphen-4-yl)] tetrazole by the procedure described in Example 1, Step K.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.36 (s,6H), 1.42 (s,9H), 1.71 (m,1H), 2.4-2.6 (m,5H), 4.44 (m,1H), 4.75 (d,15Hz,1H), 5.11 (d,15Hz,1H), 5.19 (br s,1H), 6.64 (d,7Hz,1H), 6.9-7.1 (m,10H), 7.2-7.5 (m,15H), 7.88 (m,1H).

- 134 -

Step K: 3-amino-3-methyl-N-[7-trifluoromethyl-2,3,4,-  
5 5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)-  
[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-  
3-yl]butanamide, hydrochloride

The intermediate prepared in Step J (436mg, 0.47mmol) was dissolved in 4mL of methanol and treated dropwise with 4mL of 9N HCl. The mixture was stirred at room temperature for 16 hours then evaporated to dryness under vacuum. The dry solid was triturated with benzene (5x5mL) then with warm benzene (2x5mL) then dried to constant weight. Thus, 10 304mg (0.47mmol, 100%) of the title compound was obtained. <sup>1</sup>H NMR (200MHz, CD<sub>3</sub>OD): 1.33 (s,3H), 1.36 (s,3H), 2.1-2.8 (m,6H), 4.30 (dd;8,12Hz;1H), 4.96 (d,15Hz,1H), 5.33 (d,15Hz,1H), 7.06 (d,8Hz,2H), 15 7.2-7.5 (m,3H), 7.5-7.7 (m,6H). FAB-MS: calculated for C<sub>30</sub>H<sub>30</sub>F<sub>3</sub>N<sub>7</sub>O<sub>2</sub> 577; found 578 (M+H,100%).

20 Example 35

3-amino-3-methyl-N-[8-chloro-2,3,4,5-tetrahydro-2-oxo-  
1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-  
1H-1-benzazepin-3-yl]butanamide, trifluoroacetate

25 Step A: 7-Amino-1-tetralone  
7-Nitrotetralone (2.5g, 13mmol) was suspended in 50mL of methanol and complete dissolution achieved by the addition of 10mL of tetrahydrofuran. The solution was hydrogenated at room temperature and 30 20-30psi over 100mg of 10% Pd/C for 2 hours. The mixture was filtered through Celite, washed with methanol and evaporated to dryness under vacuum to

- 135 -

afford 2.1g (13mmol, 100%) of the product.  $^1\text{H}$  NMR (300MHz,  $\text{CDCl}_3$ ): 2.09 (m, 2H), 2.60 (t, 6Hz, 2H), 2.84 (t, 6Hz, 2H), 6.83 (m, 1H), 7.06 (d, 8Hz, 1H), 7.32 (d, 2Hz, 1H). FAB-MS: calculated for  $\text{C}_{10}\text{H}_{11}\text{NO}$  161; found 162 ( $\text{M}+\text{H}$ , 100%).

5 Step B: 7-chloro-1-tetralone

10 7-Amino-1-tetralone (500mg, 3.1mmol) was suspended in 3mL of water and treated with 3mL of concentrated hydrochloric acid with stirring. The mixture was cooled in an ice bath and treated dropwise with vigorous stirring with a solution of 241mg of sodium nitrite in 1.5mL of water (3.5mmol, 1.1eq). The mixture was stirred at 0-5° for 15 minutes then added dropwise to a cold solution of 366mg of  $\text{CuCl}$  (3.7mmol, 1.2eq) in 6mL of concentrated hydrochloric acid. The mixture was stirred for 5 minutes at 0° and 1 hour at room temperature. The 15 mixture was extracted with methylene chloride (3x15mL); the combined extracts were washed with brine, dried over magnesium sulfate, filtered and evaporated to dryness under vacuum at room 20 temperature to give 550mg (3.05mmol, 98%) of the product.  $^1\text{H}$  NMR (300MHz,  $\text{CDCl}_3$ ): 2.16 (m, 2H), 2.67 (t, 6Hz, 2H), 2.95 (t, 6Hz, 2H), 7.22 (d, 8Hz, 1H), 7.44 (dd, 2,8Hz; 1H), 8.01 (d, 2Hz, 1H). FAB-MS: calculated for  $\text{C}_{10}\text{H}_9\text{ClO}$  180; found 181 ( $\text{M}+\text{H}$ , 10%).

25 30 Step C: 8-Chloro-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one

Prepared from 7-chloro-1-tetralone by the procedure described in Example 31, Step A.  $^1\text{H}$  NMR

- 136 -

(300MHz, CDCl<sub>3</sub>): 2.23 (m, 2H), 2.37 (t, 6Hz, 2H), 2.80 (t, 6Hz, 2H), 7.1 (m, 3H), 9.08 (br s, 1H). FAB-MS: calculated for C<sub>10</sub>H<sub>10</sub>ClNO 195; found 195 (M<sup>+</sup>, 30%).

5

Step D: 3-Iodo-8-chloro-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one

Prepared from the intermediate obtained in Step C by the procedure described in Example 31, Step B. <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>): 2.72 (m, 3H), 2.90 (m, 1H), 4.67 (t, 8Hz, 1H), 7.05 (s, 1H), 7.18 (s, 2H), 7.71 (br s, 1H). FAB-MS: calculated for C<sub>10</sub>H<sub>9</sub>ClINO 320; found 321 (M+H, 100%).

15

Step E: 3-Azido-8-chloro-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one

Prepared from the intermediate obtained in Step D by the procedure described in Example 31, Step C. <sup>1</sup>H NMR (300MHz, DMF-d<sub>7</sub>): 2.10 (m, 1H), 2.40 (m, 1H), 2.76 (m, 2H), 4.01 (dd; 8, 12Hz; 1H), 7.10 (d, 2Hz, 1H), 7.16 (dd; 2, 8Hz; 1H), 7.30 (d, 8Hz, 1H), 7.95 (br s, 1H). FAB-MS: calculated for C<sub>10</sub>H<sub>9</sub>ClN<sub>4</sub>O 236; found 237 (M+H, 100%).

25

Step F: 3-Amino-8-chloro-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one

Prepared from the intermediate obtained in Step E by the procedure described in Example 31, Step D. <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>): 1.94 (m, 1H), 2.52 (m, 1H), 2.67 (m, 1H), 2.89 (m, 1H), 3.44 (m, 1H), 7.02 (d, 2Hz, 1H), 7.18 (m, 2), 7.70 (br s, 2H). FAB-MS: calculated for C<sub>10</sub>H<sub>11</sub>ClN<sub>2</sub>O 210; found 211 (M+H, 84%).

- 137 -

Step G: 3-t-Butoxycarbonylamino-3-methyl-N-[8-chloro-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-3-yl]-butanamide

5           Prepared from 3-t-butoxycarbonylamino-3-methylbutanoic acid (Example 31, Step E) and the amine obtained in Step F by the procedure described in Example 1, Step F.  $^1\text{H}$  NMR (300MHz,  $\text{CDCl}_3$ ): 1.35 (s,6H), 1.42 (s,9H), 1.95 (m,1H), 2.4-2.8 (m,5H),  
10          4.51 (m,1H), 5.22 (br s,1H), 6.73 (d,7Hz,1H), 7.02 (s,1H), 7.14 (br s,2H), 8.21 (br s,1H). FAB-MS:  
calculated for  $\text{C}_{20}\text{H}_{28}\text{ClN}_3\text{O}_4$  409; found 410 (M+H,55%).

15          Step H: 3-t-Butoxycarbonylamino-3-methyl-N-[8-chloro-2,3,4,5-tetrahydro-2-oxo-1-[[2'-(N-triphenylmethyl)-tetrazol-5-yl][1,1'-biphenyl]-4-yl]-methyl-1H-1-benzazepin-3-yl]-butanamide

20          Prepared from the intermediate obtained in Step G and N-triphenylmethyl-5-[2-(4'-bromomethyl-biphen-4-yl)] tetrazole by the procedure described in Example 1, Step K.

25          Step I: 3-Amino-3-methyl-N-[8-chloro-2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3-yl]-butanamide, trifluoroacetate

30          Prepared from the intermediate obtained in Step H by the procedure described in Example 31, Step H.  $^1\text{H}$  NMR (300MHz,  $\text{CD}_3\text{OD}$ ): 1.40 (s,3H), 1.43 (s,3H), 2.12 (m,1H), 2.3-2.7 (m,5H), 4.30 (dd;8,12Hz;1H), 4.87 (d,15Hz,1H), 5.34 (d,15Hz,1H), 7.08 (d,8Hz,2H), 7.23 (d,8Hz,2H), 7.28 (s,2H), 7.45

- 138 -

(s,1H), 7.59 (t,8Hz,2H), 7.70 (m,2H). FAB-MS:  
calculated for C<sub>29</sub>H<sub>30</sub>ClN<sub>7</sub>O<sub>2</sub> 543; found 544  
(M+H, 43%).

5

### Example 36

10 3-Amino-3-methyl-N-[8-fluoro-2,3,4,5-tetrahydro-2-oxo-  
1-[[(2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl)methyl]-  
1H-1-benzazepin-3-yl]butanamide, trifluoroacetate

Step A: 7-Fluoro-1-tetralone  
In a specially designed Kel-F reactor  
(cylindrical shape 1.25"od x 3" h equipped with a  
15 screw cap and N<sub>2</sub> inlet-outlet) was placed hydrogen  
fluoride-pyridine 6:4 solution (10mL, prepared by  
diluting commercially available hydrogen  
fluoride-pyridine 7:3 solution with dry pyridine).  
7-amino-tetralone (644mg, 4.0mmol), (Example 35, Step  
20 A) was added under N<sub>2</sub> and the solution was cooled to  
0°. Sodium nitrite (304mg, 4.4mol, 1.1eq) was added  
in portions and the mixture was stirred for 30  
minutes. The mixture was then heated at 90°C for 1  
hour with stirring. The reaction mixture was  
25 quenched with approx. 60mL of ice/water and the solid  
that separated extracted with methylene chloride  
(3x30mL). The combined extracts were washed with  
water and brine, dried over magnesium sulfate,  
filtered and evaporated to dryness under vacuum at  
room temperature. Purification by flash chromato-  
30 graphy on silica, eluting with ethyl acetate/hexane  
(5:95), afforded pure 7-fluoro-1-tetralone (367mg,  
2.2mmol, 56%). <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>): 2.13 (m,2H),

- 139 -

2.65 (t, 7Hz, 2H), 2.94 (t, 7Hz, 2H), 7.1-7.3 (m, 2H),  
7.69 (dd; 2, 8Hz; 1H). EI-MS: calculated for C<sub>10</sub>H<sub>9</sub>FO  
164; found 164 (M<sup>+</sup>, 71%).

5

Step B: 8-fluoro-2,3,4,5-tetrahydro-1*H*-1-benzazepin-2-one

Prepared from 7-fluoro-1-tetralone by the procedure described in Example 31, Step A. <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>): 2.22 (m, 2H), 2.38 (t, 6Hz, 2H), 2.78 (t, 6Hz, 2H), 6.75 (dd; 2, 8Hz; 1H), 6.84 (dt; 2, 8Hz; 1H), 7.16 (t, 8Hz, 1H), 8.35 (br s, 1H).

15

Step C: 3-Iodo-8-fluoro-2,3,4,5-tetrahydro-1*H*-1-benzazepin-2-one

Prepared from the intermediate obtained in Step B by the procedure described in Example 31, Step B. <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>): 2.73 (m, 3H), 2.92 (m, 1H), 4.68 (t, 8Hz, 1H), 6.79 (dd; 2, 8Hz; 1H), 6.90 (dt; 2, 8Hz; 1H), 7.18 (t, 8Hz, 1H), 8.14 (br s, 1H).

20

Step D: 3-Azido-8-fluoro-2,3,4,5-tetrahydro-1*H*-1-benzazepin-2-one

Prepared from the intermediate obtained in Step C by the procedure described in Example 31, Step C. <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>): 2.30 (m, 1H), 2.51 (m, 1H), 2.74 (m, 1H), 2.93 (m, 1H), 3.88 (dd; 8, 12Hz; 1H), 6.80 (dd; 2, 8Hz; 1H), 6.89 (dt; 2, 8Hz; 1H), 7.21 (t, 8Hz, 1H), 8.10 (br s, 1H).

30

Step E: 3-Amino-8-fluoro-2,3,4,5-tetrahydro-1*H*-1-benzazepin-2-one

Prepared from the intermediate obtained in

- 140 -

Step D by the procedure described in Example 31, Step D.  $^1\text{H}$  NMR (300MHz,  $\text{CDCl}_3$ ): 1.92 (m,1H), 2.52 (m,1H), 2.65 (m,1H), 2.86 (m,1H), 3.45 (m,1H), 6.78 (dd;2,8Hz;1H), 6.87 (dt;2,8Hz;1H), 7.20 (t,8Hz,1H), 8.56 (br s,1H). FAB-MS: calculated for  $\text{C}_{10}\text{H}_{11}\text{FN}_2\text{O}^{+}$  194; found 195 ( $\text{M}+\text{H}, 100\%$ ).

Step E: 3-t-Butoxycarbonylamino-3-methyl-N-[8-fluoro-  
2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-3-  
y1l-butanamide

Prepared from 3-t-butoxycarbonylamino-3-methylbutanoic acid (Example 31, Step E) and the amine obtained in Step E by the procedure described in Example 1, Step F.  $^1\text{H}$  NMR (300MHz,  $\text{CDCl}_3$ ): 1.35 (s,6H), 1.41 (s,9H), 1.93 (m,1H), 2.4-2.9 (m,5H), 4.54 (m,1H), 5.19 (br s,1H), 6.73 (m,2H), 6.88 (dt;2,8Hz;1H), 7.19 (dd;6,8Hz;1H), 8.07 (m,1H). FAB-MS: calculated for  $\text{C}_{20}\text{H}_{28}\text{FN}_3\text{O}_4^{+}$  393; found 394 ( $\text{M}+\text{H}, 56\%$ ).

Step G: 3-t-Butoxycarbonylamino-3-methyl-N-[8-fluoro-  
2,3,4,5-tetrahydro-2-oxo-1-[[2'-(N-triphenyl-  
methyl)-tetrazol-5-y1][1,1'-biphenyl]-4-y1]-  
methyl-1H-1-benzazepin-3-y1]-butanamide

Prepared from the intermediate obtained in Step F and N-triphenylmethyl-5-[2-(4'-bromomethyl-biphen-4-y1)] tetrazole by the procedure described in Example 1, Step K.  $^1\text{H}$  NMR (300MHz,  $\text{CDCl}_3$ ): 1.36 (s,3H), 1.37 (s,3H), 1.42 (s,9H), 1.75 (m,1H), 2.3-2.6 (m,5H), 4.5 (m,2H), 5.25 (m,2H), 6.64 (d,7Hz,1H), 6.8-7.1 (m,11H), 7.2-7.5 (m,13H), 7.85 (m,1H).

- 141 -

Step H: 3-Amino-3-methyl-N-[8-fluoro-2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-y1)[1,1'-biphenyl]-4-y1]methyl]-1H-1-benzazepin-3-y1]-butanamide, trifluoroacetate

5

Prepared from the intermediate obtained in Step G by the procedure described in Example 31, Step H.  $^1\text{H}$  NMR (300MHz, CD<sub>3</sub>OD): 1.40 (s,3H), 1.43 (s,3H), 2.12 (m,1H), 2.3-2.7 (m,5H), 4.41 (dd;8,12Hz;1H), 4.88 (d,15Hz,1H), 5.34 (d,15Hz,1H), 7.0-7.2 (m,3H), 7.2-7.4 (m,5H), 7.5-7.8 (m,3H). FAB-MS: calculated for C<sub>29</sub>H<sub>30</sub>FN<sub>7</sub>O<sub>2</sub> 527; found 528 (M+H,100%).

10

15

### Example 37

3-Amino-3-methyl-N-[6-fluoro-2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-y1)[1,1'-biphenyl]-4-y1]methyl]-1H-1-benzazepin-3-y1]-butanamide, trifluoroacetate

20

25

Step A: 4-(2-Fluorophenyl)butyric acid

Prepared from 4-(2-aminophenyl)butyric acid by the procedure described in Example 36, Step A.  $^1\text{H}$  NMR (300MHz, CDCl<sub>3</sub>): 1.95 (m,2H), 2.39 (t,7Hz,2H), 2.70 (t,7Hz,2H), 6.9-7.3 (m,4H). FAB-MS: calculated for C<sub>10</sub>H<sub>11</sub>FO<sub>2</sub> 182; found 182 (M<sup>+</sup>,75%).

30

Step B: 5-Fluoro-1-tetralone

Prepared from 4-(2-fluorophenyl)butyric acid by the procedure described in Example 32, Step A.  $^1\text{H}$  NMR (300MHz, CDCl<sub>3</sub>): 2.10 (m,2H), 2.60 (t,7Hz,2H), 2.88 (t,7Hz,2H), 7.1-7.3 (m,2H), 7.78 (d,8Hz,1H). EI-MS: calculated for C<sub>10</sub>H<sub>9</sub>FO 164; found 164 (M<sup>+</sup>,44%).

- 142 -

Step C: 6-Fluoro-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one

Prepared from 5-fluoro-1-tetralone by the procedure described in Example 31, Step A.  $^1\text{H}$  NMR (300MHz,  $\text{CDCl}_3$ ): 2.26 (m, 2H), 2.40 (t, 6Hz, 2H), 2.88 (t, 6Hz, 2H), 6.83 (d, 8Hz, 1H), 6.94 (t, 8Hz, 1H), 7.20 (m, 1H), 7.75 (br s, 1H). FAB-MS: calculated for  $\text{C}_{10}\text{H}_{10}\text{FNO}$  179; found 180 ( $\text{M}+\text{H}$ , 100%).

Step D: 3-Iodo-6-fluoro-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one

Prepared from the intermediate obtained in Step C by the procedure described in Example 31, Step B.  $^1\text{H}$  NMR (300MHz,  $\text{CDCl}_3$ ): 2.7-2.9 (m, 3H), 2.97 (m, 1H), 4.68 (t, 8Hz, 1H), 6.81 (d, 8Hz, 1H), 6.94 (t, 8Hz, 1H), 7.20 (m, 1H), 7.83 (br s, 1H).

Step E: 3-Azido-6-fluoro-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one

Prepared from the intermediate obtained in Step D by the procedure described in Example 31, Step C.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 2.2-2.8 (m, 4H), 3.88 (dd; 8, 12Hz; 1H), 6.85 (d, 8Hz, 1H), 6.95 (t, 8Hz, 1H), 7.22 (m, 1H), 7.27 (br s, 1H).

Step F: 3-Amino-6-fluoro-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one

Prepared from the intermediate obtained in Step E by the procedure described in Example 31, Step D.  $^1\text{H}$  NMR (300MHz,  $\text{CD}_3\text{OD}$ ): 2.22 (m, 1H), 2.60 (m, 2H), 3.21 (m, 1H), 3.85 (dd; 8, 12Hz; 1H), 6.91 (d, 8Hz, 1H), 7.02 (t, 8Hz, 1H), 7.30 (m, 1H). FAB-MS:

- 143 -

calculated for  $C_{10}H_{11}FN_2O$  194; found 195  
(M+H, 100%).

5       Step G: 3-t-Butoxycarbonylamino-3-methyl-N-[6-fluoro-  
2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-3-  
yll-butanimide

Prepared from 3-t-butoxycarbonylamino-3-  
methylbutanoic acid (Example 31, Step E) and the  
10 amine obtained in Step F by the procedure described  
in Example 1, Step F.  $^1H$  NMR (300MHz,  $CDCl_3$ ): 1.36  
(s, 6H), 1.43 (s, 9H), 1.91 (m, 1H), 2.4-2.8 (m, 3H),  
3.18 (m, 2H), 4.54 (m, 1H), 5.18 (br s, 1H), 6.66  
(d, 7Hz, 1H), 6.81 (d, 8Hz, 1H), 6.94 (t, 8Hz, 1H), 7.18  
15 (m, 1H), 7.71 (br s, 1H). FAB-MS: calculated for  
 $C_{20}H_{28}FN_3O_4$  393; found 394 (M+H, 26%).

20       Step H: 3-t-Butoxycarbonylamino-3-methyl-N-[6-fluoro-  
2,3,4,5-tetrahydro-2-oxo-1-[2'-(N-triphenyl-  
methyl)-tetrazol-5-yl][1,1'-biphenyl]-4-yl]-  
methyl-1H-1-benzazepin-3-yll-butanimide

Prepared from the intermediate obtained in  
Step G and N-triphenylmethyl-5-[2-(4'-bromomethyl-  
biphen-4-yl)] tetrazole by the procedure described in  
25 Example 1, Step K.  $^1H$  NMR (300MHz,  $CDCl_3$ ): 1.38  
(s, 6H), 1.45 (s, 9H), 1.81 (m, 1H), 2.18 (m, 1H),  
2.4-2.7 (m, 3H), 2.89 (dd, 7, 14Hz; 1H), 4.52 (m, 1H),  
4.77 (d, 15Hz, 1H), 5.09 (d, 15Hz, 1H), 5.29 (br s, 1H),  
6.67 (d, 7Hz, 1H), 6.9-7.2 (m, 12H), 7.2-7.5 (m, 13H),  
30 7.85 (m, 1H).

- 144 -

Step I: 3-Amino-3-methyl-N-[6-fluoro-2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3-yl]-butanamide, trifluoroacetate

5

Prepared from the intermediate obtained in Step H by the procedure described in Example 31, Step H.  $^1\text{H}$  NMR (300MHz,  $\text{CD}_3\text{OD}$ ): 1.32 (s, 3H), 1.36 (s, 3H), 2.0-2.3 (m, 3H), 2.40 (br s, 2H), 3.00 (m, 1H), 4.35 (m, 1H), 4.87 (d, 15Hz, 1H), 5.20 (d, 15Hz, 1H), 7.00 (m, 3H), 7.1-7.4 (m, 4H), 7.5-7.7 (m, 4H). FAB-MS: calculated for  $\text{C}_{29}\text{H}_{30}\text{FN}_7\text{O}_2$  527; found 528 ( $\text{M}+\text{H}, 100\%$ ).

15

#### EXAMPLE 38

3-Amino-3-methyl-N-[1,2,3,4,5,6-hexahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazocin-3-yl]-butanamide, trifluoroacetate

20

Step A: 3-benzyloxycarbonylamino-3-methyl-N-[1,2,3,-4,5,6-hexahydro-2-oxo-1H-1-benzazocin-3-yl]-butanamide

25

3-Azido-3,4,5,6-tetrahydro-1-benzazocin-2(1H)-one prepared by the method of Watthey, et al., J. Med. Chem., 28, 1511-1516 (1985) was reduced to 3-amino-3,4,5,6-tetrahydro-1-benzazocin-2(1H)-one by the procedure described in Example 1, Step A, then coupled with 3-benzyloxycarbonylamino-3-methylbutanoic acid (Example 1, Step E) by the procedure described in Example 1, Step F.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.36 (s, 6H), 1.75 (m, 3H), 2.08 (m, 1H), 2.47 (m, 3H), 2.80(m, 1H), 4.13 (m, 1H), 5.12 (s, 2H), 5.79

30

- 145 -

(s,1H), 6.86 (d,7Hz,1H), 7.0-7.4 (m,8H), 7.90  
(s,1H). FAB-MS: calculated for C<sub>24</sub>H<sub>29</sub>N<sub>3</sub>O<sub>4</sub> 423;  
found 424 (M+H,100%).

5

Step B: 3-Benzylloxycarbonylamino-3-methyl-N-[1,2,3,-  
4,5,6-hexahydro-2-oxo-1-[[2'-(N-triphenyl-  
methyl)-tetrazol-5-yl][1,1'-biphenyl]-4-yl]-  
methyl-1H-1-benzazocin-3-yl]butanamide

10

Prepared from the intermediate obtained in  
Step A and N-triphenylmethyl-5-[2-(4'-bromomethyl-  
biphen-4-yl)] tetrazole by the procedure described in  
Example 1, Step K. <sup>1</sup>H NMR (200MHz, CDCl<sub>3</sub>): 1.42  
(s,6H), 1.72 (m,4H), 2.42 (m,4H), 4.16 (m,1H), 4.49  
15 (d,13Hz,1H), 5.10 (s,2H), 5.30 (d,13Hz,1H), 5.79  
(s,1H), 6.80 (d,6Hz,2H), 6.9-7.6 (m,32H), 7.86 (m,1H).

15

20

Step C: 3-Amino-3-methyl-N-[1,2,3,4,5,6-hexahydro-2-  
oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-  
4-yl]methyl]-1H-1-benzazocin-3-yl]butan-  
amide. trifluoroacetate

25

The title compound was prepared from the  
intermediate obtained in Step B by the procedure  
described in Example 1, Step L. <sup>1</sup>H NMR (200MHz,  
CD<sub>3</sub>OD): 1.28 (s,3H), 1.32 (s,3H), 1.44 (m,1H), 1.75  
(m,3H), 2.05 (m,1H), 2.48 (m,3H), 4.00 (m,1H), 4.64  
(d,13Hz,1H), 5.19 (d,13Hz,1H), 6.9-7.4 (m,8H),  
7.4-7.7 (m,4H). FAB-MS: calculated for C<sub>30</sub>H<sub>33</sub>N<sub>7</sub>O<sub>2</sub>  
523; found 524 (M+H,100%).

30

- 146 -

**Example 39**

5       3-Amino-3-methyl-N-[1,2,3,4-tetrahydro-2-oxo-1-[2'-(1H-tetrazol-5-y1)[1,1'-biphenyl]-4-y1]methyl]-1H-1-  
quinolin-3-y1]-butanamide, trifluoroacetate

10      Step A: 3-Benzylloxycarbonylamino-3-methyl-N-[1,2,3,4-tetrahydro-2-oxo-1H-1-quinolin-3-y1]-butanamide

15      Prepared as in Example 1, Step F from  
3-amino-1,2,3,4-tetrahydroquinolin-2-one (prepared by  
the method of Davis, et al; Arch. Biochem. Biophys.,  
102, 48 (1963)) and 3-benzylloxycarbonylamino-3-  
methylbutanoic acid (Example 1, Step E).  $^1\text{H}$  NMR  
(200MHz,  $\text{CDCl}_3$ ): 1.42 (s, 6H), 2.68 (s, 2H), 2.86  
(t, 13Hz, 1H), 3.00 (m, 1H), 4.67 (m, 1H), 5.00 (s, 2H),  
6.9-7.3 (m, 9H). FAB-MS: calculated for  $\text{C}_{22}\text{H}_{25}\text{N}_3\text{O}_4$   
395; found 396 (M+1, 100%).

20      Step B: 3-Benzylloxycarbonylamino-3-methyl-N-[1,2,3,4-tetrahydro-2-oxo-1-[2'-(N-triphenylmethyl)-  
tetrazol-5-y1][1,1'-biphenyl]-4-y1]methyl-1H-  
1-quinolin-3-y1]-butanamide

25      Prepared from 3-benzylloxycarbonylamino-3-  
methyl-N-[1,2,3,4-tetrahydro-2-oxo-1H-1-quinolin-3-  
y1]-butanamide and N-triphenylmethyl-5-[2-(4'-bromo-  
methylbiphen-4-y1)] tetrazole by the procedure  
described in Example 1, Step K.  $^1\text{H}$  NMR (200MHz,  
 $\text{CD}_3\text{OD}$ ): 1.41 (s, 6H), 2.66 (s, 2H), 2.85 (t, 11Hz, 1H),  
3.11 (m, 1H), 4.15 (m, 1H), 4.97 (d, 15Hz, 1H), 5.30  
(d, 15Hz, 1H), 6.7-7.6, (m, 26H), 7.80 (m, 1H).

- 147 -

Step C: 3-Amino-3-methyl-N-[1,2,3,4-tetrahydro-2-oxo-  
1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-  
yl]methyl]-1H-1-quinolin-3-yl]-butanamide,  
trifluoroacetate

5

The title compound was prepared from the  
intermediate obtained in Step B by the procedure  
described in Example 1, Step L.  $^1\text{H}$  NMR (200MHz,  
CD<sub>3</sub>OD): 1.50 (s,3H), 1.52 (s,3H), 2.66 (m,2H), 3.16  
10 (m,2H), 4.84 (m,1H), 5.17 (d,11Hz,1H), 5.39  
(d,11Hz,1H), 7.0-7.4 (m,8H), 7.57 (m,4H). FAB-MS:  
calculated for C<sub>28</sub>H<sub>29</sub>N<sub>7</sub>O<sub>2</sub> 495; found 496  
(M+H,100%).

15

#### Example 40

3-Benzylamino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-  
[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-  
1H-1-benzazepin-3(R)-yl]-butanamide, trifluoroacetate

20

The title compound was prepared from  
3-amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(  
1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-  
benzazepin-3(R)-yl]-butanamide trifluoroacetate  
(Example 1) and benzaldehyde by the procedure  
described in Example 18.  $^1\text{H}$  NMR (200MHz, CD<sub>3</sub>OD):  
1.42 (s,3H), 1.46 (s,3H), 2.0-2.6 (m,4H), 2.69 (br  
s,2H), 4.12 (s,2H), 4.37 (dd;8,12Hz;1H), 4.90  
(d,15Hz,1H), 5.18 (d,15Hz,1H), 6.97 (d,8Hz,2H),  
7.1-7.7 (m,15H). FAB-MS: calculated for C<sub>36</sub>H<sub>37</sub>N<sub>7</sub>O<sub>2</sub>  
30 599; found 600 (M+H,100%).

- 148 -

**Example 41**

3-Isobutylamino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-  
5 1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-  
1H-1-benzazepin-3(R)-yl]-butanamide, trifluoroacetate

The title compound was prepared from  
3-amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-  
10 (1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-  
benzazepin-3(R)-yl]-butanamide trifluoroacetate  
(Example 1) and isobutyraldehyde by the procedure  
described in Example 18.  $^1\text{H}$  NMR (200MHz, CD<sub>3</sub>OD):  
0.99 (d, 8Hz, 3H), 1.00 (d, 8Hz, 3H), 1.35 (s, 3H), 1.39  
15 (s, 3H), 1.8-2.6 (m, 7H), 2.81 (d, 7Hz, 2H), 4.32  
(dd; 8, 12Hz; 1H), 4.92 (d, 15Hz, 1H), 5.14 (d, 15Hz, 1H),  
7.00 (d, 8Hz, 2H), 7.1-7.4 (m, 6H), 7.5-7.7 (m, 4H).  
FAB-MS: calculated for C<sub>33</sub>H<sub>39</sub>N<sub>7</sub>O<sub>2</sub> 565; found 566  
(M+H, 100%).

**Example 42**

20

3-Propylamino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-  
15 [[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-  
1H-1-benzazepin-3(R)-yl]-butanamide, trifluoroacetate

The title compound was prepared from  
3-amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-  
25 (1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-  
benzazepin-3(R)-yl]-butanamide trifluoroacetate  
(Example 1) and propionaldehyde by the procedure  
described in Example 18.  $^1\text{H}$  NMR (200MHz, CD<sub>3</sub>OD):  
0.97 (t, 8Hz, 3H), 1.32 (s, 3H), 1.36 (s, 3H), 1.65  
30 (m, 2H), 2.0-2.6 (m, 8H), 2.93 (t, 7Hz, 2H), 4.33  
(dd; 7, 11Hz; 1H), 4.89 (d, 15Hz, 1H), 5.18 (d, 15Hz, 1H),

- 149 -

6.99 (d, 8Hz, 2H), 7.10-7.35 (m, 6H), 7.45-7.65 (m, 4H).  
FAB-MS: calculated for  $C_{32}H_{37}N_7O_2$  551; found 552  
(M+H, 73%).

5

**Example 43**

10 3-(Cyclopropylmethyl)amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide,  
trifluoroacetate

15 The title compound was prepared from  
3-amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide trifluoroacetate  
(Example 1) and cyclopropanecarboxaldehyde by the  
procedure described in Example 18.  $^1H$  NMR (200MHz,  
CD<sub>3</sub>OD): 0.37 (m, 2H), 0.65 (m, 2H), 1.00 (m, 1H), 1.34  
(s, 3H), 1.36 (s, 3H), 2.0-2.6 (m, 6H), 2.88 (d, 7Hz, 2H),  
20 4.33 (dd, 7, 11Hz, 1H), 4.89 (d, 15Hz, 1H), 5.18  
(d, 15Hz, 1H), 7.01 (d, 8Hz, 2H), 7.15-7.35 (m, 6H),  
7.45-7.70 (m, 4H). FAB-MS: calculated for  
 $C_{33}H_{37}N_7O_2$  563; found 564 (M+H, 100%).

25

**Example 44**

30 3-(Cyclohexylmethyl)amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide,  
trifluoroacetate

The title compound was prepared from  
3-amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-

- 150 -

benzazepin-3(R)-yl]-butanamide trifluoroacetate (Example 1) and cyclohexanecarboxaldehyde by the procedure described in Example 18.  $^1\text{H}$  NMR (200MHz, CD<sub>3</sub>OD): 0.8-1.4 (m, 6H), 1.33 (s, 3H), 1.37 (s, 3H), 1.5-1.9 (m, 5H), 2.0-2.6 (m, 6H), 2.80 (d, 7Hz, 2H), 4.32 (dd; 8, 12Hz; 1H), 4.92 (d, 15Hz, 1H), 5.14 (d, 15Hz, 1H), 7.00 (d, 8Hz, 2H), 7.10-7.35 (m, 6H), 7.45-7.70 (m, 4H). FAB-MS: calculated for C<sub>36</sub>H<sub>43</sub>N<sub>7</sub>O<sub>2</sub> 605; found 606 (M+H, 100%).

#### Example 45

15 3-(4-hydroxybenzyl)amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, trifluoroacetate

Step A: 3-(4-benzyloxybenzyl)amino-3-methyl-N-[2,3,-  
20 4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-  
y1)-[1,1'-biphenyl]-4-yl]methyl]-1H-1-benz-  
azepin-3(R)-yl]-butanamide, trifluoroacetate  
Prepared from 3-amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-bi-  
25 phenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butan-  
amide trifluoroacetate (Example 1) and 4-benzyloxy-  
benzaldehyde by the procedure described in Example  
18.  $^1\text{H}$  NMR (200MHz, CD<sub>3</sub>OD): 1.32 (s, 3H), 1.35  
(s, 3H), 2.0-2.7 (m, 6H), 4.10 (s, 2H), 4.36  
(dd; 8, 12Hz; 1H), 4.91 (d, 15Hz, 1H), 5.02 (s, 2H), 5.09  
(d, 15Hz, 1H), 6.98 (d, 8Hz, 6H), 7.1-7.6 (m, 15H).  
30 FAB-MS: calculated for C<sub>43</sub>H<sub>43</sub>N<sub>7</sub>O<sub>3</sub> 705; found 706 (M+H, 100%).

- 151 -

Step B: 3-(4-Hydroxybenzyl)amino-3-methyl-N-[2,3,4,-  
5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)-  
[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-  
3(R)-yl]butanamide, trifluoroacetate

The intermediate obtained in Step A (14.6mg,  
0.018mmol) dissolved in 1.5mL of methanol was  
hydrogenated at room temperature and one atmosphere  
over 10mg of 10% Pd/C for 2 hours. The reaction  
mixture was filtered through Celite and the filtrate  
concentrated under vacuum. The residue was purified  
by reverse phase HPLC on C-18 eluting with  
methanol/0.1% aqueous trifluoroacetic acid (linear  
gradient: 60% methanol increased to 75% methanol  
over 10 minutes) to afford 8.1mg (0.011mmol, 62%) of  
the title compound. <sup>1</sup>H NMR (200MHz, CD<sub>3</sub>OD): 1.40  
(s,3H), 1.44 (s,3H), 2.0-2.7 (m,6H), 4.08 (s,2H),  
4.36 (m,1H), 4.87 (d,15Hz,1H), 5.20 (d,15Hz,1H), 6.78  
(d,8Hz,2H), 6.96 (d,8Hz,2H), 7.1-7.7 (m,12H).  
FAB-MS: calculated for C<sub>36</sub>H<sub>37</sub>N<sub>7</sub>O<sub>3</sub> 615; found 616  
(M+H, 46%).

**Example 46**

3-Amino-3-methyl-N-[3,4-dihydro-4-oxo-5-[[2'-(1H-  
tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1,5-benzo-  
thiazepin-3(S)-yl]butanamide, trifluoroacetate

Step A: 3-t-Butoxycarbonylamino-3-methyl-N-[3,4-di-  
hydro-4-oxo-1,5-benzothiazepin-3(S)-yl]-  
butanamide

Prepared from 3(S)-amino-3,4-dihydro-1,5-  
benzothiazepin-4(5H)-one (prepared from D-cysteine)

- 152 -

(S-cysteine) by the method of Slade, et al, J. Med. Chem., 28, 1517-1521 (1985)) and 3-t-butoxycarbonyl-amino-3-methylbutanoic acid (Example 31, Step E) by the procedure described in Example 1, Step F.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.38 (s,6H), 1.45 (s,9H), 2.32 (d,10Hz,1H), 2.50 (d,14Hz,1H), 2.70 (d,14Hz,1H), 2.92 (t,11Hz,1H), 3.93 (dd;7,11Hz;1H), 4.76 (m,1H), 7.02 (d,8Hz,1H), 7.1-7.3 (m,2H), 7.40 (t,8Hz,1H), 7.66 (d,7Hz,1H), 8.23 (br s,1H). FAB-MS: calculated for  $\text{C}_{19}\text{H}_{27}\text{N}_3\text{O}_4\text{S}$  393; found 394 ( $\text{M}+\text{H}$ ,36%).

Step B: 3-t-Butoxycarbonylamino-3-methyl-N-[3,4-dihydro-4-oxo-5-[[2'-(N-triphenylmethyl)-tetrazol-5-yl][1,1'-biphenyl]-4-yl]methyl]-1,5-benzothiazepin-3(S)-yl]-butanamide

Prepared from the intermediate obtained in Step A and N-triphenylmethyl-5-[2-(4'-bromomethyl-biphen-4-yl)] tetrazole by the procedure described in Example 1, Step K.  $^1\text{H}$  NMR (200MHz,  $\text{CD}_3\text{OD}$ ): 1.32 (s,6H), 1.39 (s,9H), 2.26 (d,7Hz,1H), 2.47 (d,14Hz,1H), 2.63 (d,14Hz,1H), 3.01 (t,11Hz,1H), 3.60 (dd;7,11Hz;1H), 4.76 (dd;7,11Hz;1H), 5.05 (br s,2H), 6.9-7.6 (m,26H), 7.80 (m,1H). FAB-MS ( $\text{Li}^+$  spike): calculated for  $\text{C}_{52}\text{H}_{51}\text{N}_7\text{O}_4\text{S}$  870; found 876 ( $\text{M}+\text{Li}$ ,100%).

Step C: 3-Amino-3-methyl-N-[3,4-dihydro-4-oxo-5-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]-methyl]-1,5-benzothiazepin-3(S)-yl]-butanamide, trifluoroacetate

The title compound was prepared from the intermediate obtained in Step B by the procedure

- 153 -

described in Example 31, Step H.  $^1\text{H}$  NMR (200MHz, CD<sub>3</sub>OD): 1.38 (s,3H), 1.40 (s,3H), 2.55 (br s,2H), 3.09 (t,11Hz,1H), 3.64 (dd;7,11Hz;1H), 4.65 (dd;7,11Hz;1H), 5.07 (d,15Hz,1H), 5.24 (d,15Hz,1H), 7.06 (d,8Hz,2H), 7.3-7.7 (m,10H). FAB-MS: calculated for C<sub>28</sub>H<sub>29</sub>N<sub>7</sub>O<sub>2</sub>S 527; found 528 (M+H,100%).

10

**Example 47**

3-Amino-3-methyl-N-[3,4-dihydro-1,1,4-trioxo-5-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1,5-benzothiazepin-3(S)-yl]-butanamide, trifluoroacetate

15

Step A: 3-t-Butoxycarbonylamino-3-methyl-N-[3,4-dihydro-1,1,4-trioxo-1,5-benzothiazepin-3(S)-yl]-butanamide

20

To a solution of 88mg (0.22mmol) of

3-t-butoxycarbonylamino-3-methyl-N-[3,4-dihydro-4-oxo-1,5-benzothiazepin-3(S)-yl]-butanamide (Example 46, Step A) in 2mL of dry methylene chloride under nitrogen was added 38mg of solid sodium bicarbonate (0.44mmol, 2eq) followed by 106mg of 80% m-chloroperbenzoic acid (85mg mCPBA, 0.49mmol, 2.2eq).

25

for 3 hours then concentrated under vacuum. The residue was chromatographed on silica, eluting with ethyl acetate/hexane (7:3). The chromatographed material was redissolved in 50mL of ethyl acetate,

washed with 1:1 saturated aqueous sodium chloride/saturated aqueous potassium carbonate, then brine, dried over magnesium sulfate, filtered and

- 154 -

evaporated under vacuum to afford 86mg (0.20mmol,  
91%) of the product.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.36  
(s,3H), 1.38 (s,3H), 1.45 (s,9H), 2.51 (d,13Hz,1H),  
2.83 (d,13Hz,1H), 3.58 (dd;12,14Hz;1H), 4.33  
(dd;8,14Hz;1H), 4.90 (m,2H), 7.30 (m,2H), 7.46  
(t,8Hz,1H), 7.70 (t,8Hz,1H), 8.07 (d,8Hz,1H), 8.70  
(br s,1H). FAB-MS: calculated for  $\text{C}_{19}\text{H}_{27}\text{N}_3\text{O}_6\text{S}$   
425; found 426 ( $\text{M}+\text{H}$ ,32%).

Step B: 3-t-Butoxycarbonylamino-3-methyl-N-[3,4-di-hydro-1,1,4-trioxo-5-[[2'-(N-triphenyl-methyl)-tetrazol-5-yl][1,1'-biphenyl]-4-yl]-methyl]-1,5-benzothiazepin-3(S)-yl]-butanamide

Prepared from the intermediate obtained in Step A and N-triphenylmethyl-5-[2-(4'-bromomethyl-biphen-4-yl)] tetrazole by the procedure described in Example 1, Step K.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.35 (s,3H), 1.37 (s,3H), 1.47 (s,9H), 2.45 (d,13Hz,1H), 2.81 (d,13Hz,1H), 3.40 (dd;11,14Hz,1H), 4.18 (m,3H), 4.80 (m,2H), 5.65 (d,15Hz,1H), 6.9-7.6 (m,25H), 7.95 (m,2H). FAB-MS ( $\text{Li}^+$  spike): calculated for  $\text{C}_{52}\text{H}_{51}\text{N}_7\text{O}_6\text{S}$  902; found 909 ( $\text{M}+\text{Li}$ ,100%).

Step C: 3-Amino-3-methyl-N-[3,4-dihydro-1,1,4-trioxo-5-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1,5-benzothiazepin-3(S)-yl]-butanamide, trifluoroacetate

Prepared from the intermediate obtained in Step B by the procedure described in Example 31, Step H.  $^1\text{H}$  NMR (200MHz,  $\text{CD}_3\text{OD}$ ): 1.32 (br s,6H), 2.51 (br s,2H), 3.64 (dd;12,14Hz,1H), 3.98 (dd;8,14;1H), 4.54

- 155 -

(d,16Hz,1H), 4.78 (m,1H), 5.43 (d,16Hz,1H), 7.08  
(d,8Hz,2H), 7.30 (m,3H), 7.5-7.8 (m,6H), 8.00  
(d,8Hz,1H). FAB-MS: calculated for C<sub>28</sub>H<sub>29</sub>N<sub>7</sub>O<sub>4</sub>S  
5 559; found 560 (M+H,100%).

**Example 48**

10 3-Amino-3-methyl-N-[3,4-dihydro-1,4-dioxo-5-[(2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl)methyl]-1,5-benzothiazepin-3(S)-yl]-butanamide, trifluoroacetate  
[diastereomer A]

15 Step A: 3-t-Butoxycarbonylamino-3-methyl-N-[3,4-dihydro-1,4-dioxo-1,5-benzothiazepin-3(S)-yl]-butanamide, diastereomers A and B

20 A solution of 179mg (0.46mmol) of 3-t-butoxycarbonylamino-3-methyl-N-[3,4-dihydro-4-oxo-1,5-benzothiazepin-3(S)-yl]-butanamide (Example 46, Step A) in 4.5mL of methanol/water (5:1) was treated with 102mg (0.48mmol, 1.05eq) of sodium periodate and stirred at room temperature for 48 hours. The reaction mixture was filtered and the filtrate concentrated under vacuum. The residue was redissolved in chloroform, dried over potassium carbonate, filtered and concentrated under vacuum. Purification by flash chromatography on silica, eluting with ethyl acetate, afforded 47mg (0.12mmol, 25%) of the less polar, minor diastereomer A in addition to 105mg (0.26mmol, 56%) of the more polar, major diastereomer B.

30 <sup>1</sup>H NMR (diastereomer A; 200MHz, CDCl<sub>3</sub>):  
1.37 (s,3H), 1.38 (s,3H), 1.45 (s,9H), 2.51  
(d,13Hz,1H), 2.79 (d,13Hz,1H), 3.80 (m,2H), 4.78

- 156 -

(m,1H), 4.95 (br s,1H), 7.14 (m,2H), 7.59 (m,2H), 7.93 (m,1H), 8.18 (br s,1H). FAB-MS: calculated for C<sub>19</sub>H<sub>27</sub>N<sub>3</sub>O<sub>5</sub>S 409; found 410 (M+H,29%).

5

Step B: 3-t-Butoxycarbonylamino-3-methyl-N-[3,4-dihydro-1,4-dioxo-5-[[2'-(N-triphenylmethyl)-tetrazol-5-yl][1,1'-biphenyl]-4-yl]methyl]-1,5-benzothiazepin-3(S)-yl]butanamide,  
diastereomer A

10

Prepared from diastereomer A obtained in Step A and N-triphenylmethyl-5-[2-(4'-bromomethyl-biphen-4-yl)] tetrazole by the procedure described in Example 1, Step K. <sup>1</sup>H NMR (200MHz, CDCl<sub>3</sub>): 1.35 (s,3H), 1.36 (s,3H), 1.44 (s,9H), 2.45 (d,13Hz,1H), 2.72 (d,13Hz,1H), 3.61 (m,2H), 4.63 (m,1H), 4.86 (m,2H), 6.9-7.6 (m,25H), 7.81 (m,1H), 7.90 (m,1H). FAB-MS (Li<sup>+</sup> spike): calculated for C<sub>52</sub>H<sub>51</sub>N<sub>7</sub>O<sub>5</sub>S 886; found 893 (M+Li,95%).

20

Step C: 3-Amino-3-methyl-N-[3,4-dihydro-1,4-dioxo-5-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1,5-benzothiazepin-3(S)-yl]butanamide, trifluoroacetate, diastereomer A

25

The title compound was prepared from the intermediate obtained in Step B by the procedure described in Example 31, Step H. <sup>1</sup>H NMR (200MHz, CD<sub>3</sub>OD): 1.32 (br s,6H), 2.51 (br s,2H), 3.32 (dd;8,11Hz;1H), 3.95 (t,11Hz,1H), 4.55 (dd;8,11Hz;1H), 4.85 (d,15Hz,1H), 5.22 (d,15Hz,1H), 7.01 (d,8Hz,2H), 7.17 (d,8Hz,2H), 7.4-7.8 (m,8H). FAB-MS: calculated for C<sub>28</sub>H<sub>29</sub>N<sub>7</sub>O<sub>3</sub>S 543; found 544 (M+H,100%).

- 157 -

**Example 49**

5           3-Amino-3-methyl-N-[3,4-dihydro-1,4-dioxo-5-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1,5-benzothiazepin-3(S)-yl]-butanamide, trifluoroacetate  
[diastereomer B]

10          Step A: 3-t-Butoxycarbonylamino-3-methyl-N-[3,4-dihydro-1,4-dioxo-1,5-benzothiazepin-3(S)-yl]-butanamide, diastereomer B

15          Prepared from 3-t-butoxycarbonylamino-3-methyl-N-[3,4-dihydro-4-oxo-1,5-benzothiazepin-3(S)-yl]-butanamide (Example 46, Step A) by the procedure described in Example 48, Step A.  $^1\text{H}$  NMR (diastereomer B; 200MHz,  $\text{CDCl}_3$ ): 1.37 (s,3H), 1.38 (s,3H), 1.44 (s,9H), 2.48 (d,14Hz,1H), 2.68 (d,14Hz,1H), 3.30 (dd;11,15Hz;1H), 4.14 (dd;8,15Hz;1H), 4.86 (m,1H), 7.1 (d,8Hz,1H), 7.25 (m,1H), 7.41 (m,1H), 7.55 (m,1H), 8.81 (br s,1H).  
20          FAB-MS: calculated for  $\text{C}_{19}\text{H}_{27}\text{N}_3\text{O}_5\text{S}$  409; found 410 ( $\text{M}+\text{H}$ , 38%).

25          Step B: 3-t-Butoxycarbonylamino-3-methyl-N-[3,4-dihydro-1,4-dioxo-5-[[2'-(N-triphenylmethyl)-tetrazol-5-yl][1,1'-biphenyl]-4-yl]methyl]-1,5-benzothiazepin-3(S)-yl]-butanamide, diastereomer B

30          Prepared from the intermediate obtained in Step A and N-triphenylmethyl-5-[2-(4'-bromomethyl-biphen-4-yl)] tetrazole by the procedure described in Example 1, Step K.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.38 (s,6H), 1.45 (s,9H), 2.50 (d,14Hz,1H), 2.72

- 158 -

(d,14Hz,1H), 3.10 (dd;10,15Hz;1H), 4.05 (m,2H), 4.85  
(m,1H), 5.08 (br s,1H), 5.68 (d,15Hz,1H), 6.9-7.5  
(m,26H), 7.92 (m,1H). FAB-MS (Li<sup>+</sup> spike):  
calculated for C<sub>52</sub>H<sub>51</sub>N<sub>7</sub>O<sub>5</sub>S 886; found 893  
(M+Li,64%).

Step C: 3-Amino-3-methyl-N-[3,4-dihydro-1,4-dioxo-5-  
[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]-  
10 methyl]-1,5-benzothiazepin-3(S)-yl]butan-  
amide, trifluoroacetate, [diastereomer B]  
The title compound was prepared from the  
intermediate obtained in Step B by the procedure  
described in Example 31, Step H. <sup>1</sup>H NMR (200MHz,  
15 CD<sub>3</sub>OD): 1.33 (br s,6H), 2.53 (br s,2H), 3.29  
(dd;11,14Hz;1H), 3.89 (dd;7,14;1H), 4.48 (d,16Hz,1H),  
4.82 (m,1H), 5.33 (d,16Hz,1H), 7.0-7.7 (m,12H).  
FAB-MS: calculated for C<sub>28</sub>H<sub>29</sub>N<sub>7</sub>O<sub>3</sub>S 543; found 544  
(M+H,100%).

20

#### Example 50

3-Amino-3-methyl-N-[3,4-dihydro-3-oxo-4-[[2'-(1H-  
tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-2H-1,4-  
25 benzothiazin-2-yl]butanamide, mono(trifluoroacetate)

Step A: 2-Amino-3,4-dihydro-3-oxo-2H-1,4-benzo-  
thiazine

Anhydrous ammonia gas was bubbled for one  
hour through a suspension of 500mg (2.5mmol) of  
30 2-chloro-3,4-dihydro-3-oxo-2H-1,4-benzothiazine  
(prepared by the method of Worley, et al; J. Org.  
Chem., 40, 1731-1734 (1975)) in 5mL of methylene

- 159 -

chloride. The mixture was filtered through Celite and the filtrate evaporated under vacuum. The residue was triturated with 20mL of chloroform, 5 filtered and the filtrate evaporated under vacuum. Purification by flash chromatography on silica, eluting with ethyl acetate, afforded 185mg (1.0mmol, 41%) of the product.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 2.00 (br s, 2H), 4.68 (br s, 1H), 6.9-7.4 (m, 4H), 9.05 (br s, 1H). FAB-MS: calculated for  $\text{C}_8\text{H}_8\text{N}_2\text{OS}$  180; found 181 ( $\text{M}+\text{H}$ , 54%).

10 Step B: 3-t-Butoxycarbonylamino-3-methyl-N-[3,4-dihydro-3-oxo-2H-1,4-benzothiazin-2-yl]-butanamide

15 Prepared from 2-amino-3,4-dihydro-3-oxo-2H-1,4-benzothiazine (Step A) and 3-t-butoxycarbonyl-amino-3-methylbutanoic acid (Example 31, Step E) by the procedure described in Example 1, Step F.

20  $^1\text{H}$  NMR (200MHz,  $\text{CD}_3\text{OD}$ ): 1.26 (s, 6H), 1.36 (s, 9H), 2.47 (d, 13Hz, 1H), 2.57 (d, 13Hz, 1H), 5.52 (br s, 1H), 6.31 (br s, 1H), 7.00 (m, 2H), 7.22 (m, 2H). FAB-MS: calculated for  $\text{C}_{18}\text{H}_{25}\text{N}_3\text{O}_4\text{S}$  379; found 380 ( $\text{M}+\text{H}$ , 26%).

25 Step C: 3-t-Butoxycarbonylamino-3-methyl-N-[3,4-dihydro-3-oxo-4-[[2'-(N-triphenylmethyl)-tetrazol-5-yl][1,1'-biphenyl]-4-yl]methyl]-2H-1,4-benzothiazin-2-yl]-butanamide

30 Prepared from the intermediate obtained in Step B and N-triphenylmethyl-5-[2-(4'-bromomethyl-biphen-4-yl)] tetrazole by the procedure described in Example 1, Step K.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.40

- 160 -

(s, 6H), 1.42 (s, 9H), 2.53 (d, 14Hz, 1H), 2.92  
5 (d, 14Hz, 1H), 4.86 (d, 16Hz, 1H), 4.92 (d, 8Hz, 1H), 5.29  
(d, 16Hz, 1H), 5.49 (d, 8Hz, 1H), 6.85-7.50 (m, 26H), 7.92  
(m, 1H).

Step D: 3-Amino-3-methyl-N-[3,4-dihydro-3-oxo-4-[[2'-  
10 (1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]-  
methyl]-2H-1,4-benzothiazin-2-yl]-butanamide,  
trifluoroacetate  
The title compound was prepared from the  
intermediate obtained in Step C by the procedure  
described in Example 31, Step H.  $^1\text{H}$  NMR (200MHz,  
CD<sub>3</sub>OD): 1.40 (s, 6H), 2.62 (s, 2H), 5.34 (s, 2H), 5.73  
15 (s, 1H), 7.0-7.7 (m, 12H). FAB-MS: calculated for  
C<sub>27</sub>H<sub>27</sub>N<sub>7</sub>O<sub>2</sub>S 513; found 514 (M+H, 100%).

#### Example 51

20 3-Amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[2-  
phenylethyl]-1H-1-benzazepin-3-yl]-butanamide,  
trifluoroacetate

Step A 3-Benzylloxycarbonylamino-3-methyl-N-[2,3,4,5-  
25 tetrahydro-2-oxo-1H-1-benzazepin-3-yl]-butan-  
amide

Prepared from 3-amino-2,3,4,5-tetrahydro-1H-[1]benzazepin-2-one (Example 1, Step A) and 3-benzyl-  
oxycarbonylamino-3-methylbutanoic acid (Example 1,  
Step E) by the procedure described in Example 1, Step  
30 F.  $^1\text{H}$  NMR (200MHz, CDCl<sub>3</sub>): 1.38 (s, 3H), 1.39  
(s, 3H), 1.82 (m, 1H), 2.52 (s, 2H), 2.5-3.0 (m, 3H),  
4.51 (m, 1H), 5.07 (br s, 2H), 5.58 (br s, 1H), 6.68

- 161 -

(d, 7Hz, 1H), 6.96 (d, 8Hz, 1H), 7.1-7.4 (m, 8H), 7.62 (br s, 1H). FAB-MS: calculated for C<sub>23</sub>H<sub>27</sub>N<sub>3</sub>O<sub>4</sub> 409; found 410 (M+H, 100%).

5

Step B 3-Benzylloxycarbonylamino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[2-phenylethyl]-1H-1-benzazepin-3-yl]-butanamide

Prepared from the intermediate obtained in  
10 Step A and 2-phenethyl bromide by the procedure described in Example 3, Step A. <sup>1</sup>H NMR (200MHz, CDCl<sub>3</sub>): 1.37 (s, 6H), 1.68 (m, 2H), 2.50 (m, 4H), 2.7-3.0 (m, 2H), 3.70 (m, 1H), 4.48 (m, 2H), 5.05 (s, 2H), 5.66 (s, 1H), 6.99 (m, 1H), 7.0-7.4 (m, 14H).  
15 FAB-MS: calculated for C<sub>31</sub>H<sub>35</sub>N<sub>3</sub>O<sub>4</sub> 513; found 514 (M+H, 100%).

20 Step C 3-amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[2-phenylethyl]-1H-1-benzazepin-3-yl]-butanamide, trifluoroacetate

The title compound was prepared from the intermediate obtained in Step B by the procedure described in Example 3, Step B. <sup>1</sup>H NMR (200MHz, CD<sub>3</sub>OD): 1.34 (s, 3H), 1.42 (s, 3H), 2.0-2.4 (m, 1H), 2.58 (m, 3H), 2.85 (m, 2H), 3.90 (m, 1H), 4.58 (m, 1H), 4.90 (d, 15Hz, 1H), 5.0 (m, 1H), 5.15 (d, 15Hz, 1H), 7.0-7.5 (m, 9H). FAB-MS: calculated for C<sub>23</sub>H<sub>29</sub>N<sub>3</sub>O<sub>2</sub> 379; found 380 (M+1, 100%).

30

**Example 52**

3-Amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[3-phenylpropyl]-1H-1-benzazepin-3-yl]-butanamide, trifluoroacetate

- 162 -

Step A 3-Benzylloxycarbonylamino-3-methyl-N-[2,3,4,-  
5-tetrahydro-2-oxo-1-[3-phenylpropyl]-1H-1-  
benzazepin-3-yl]-butanamide

5           Prepared from 3-benzylloxycarbonylamino-3-  
methyl-N-[2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-3-  
y1]-butanamide (Example 51, Step A) and 3-phenylpropyl  
bromide by the procedure described in Example 3, Step  
A.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.38 (s,6H), 1.82  
10          (m,4H), 2.4-2.9 (m,7H), 3.45 (m,1H), 4.36 (m,1H),  
5.02 (s,2H), 5.64 (s,1H), 6.69 (d,8Hz,1H), 6.9-7.4  
(m,14H). FAB-MS: calculated for  $\text{C}_{32}\text{H}_{37}\text{N}_3\text{O}_4$  527;  
found 528 ( $\text{M}+\text{H}$ ,100%).

15          Step B 3-Amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-  
1-[3-phenylpropyl]-1H-1-benzazepin-3-yl]-  
butanamide, trifluoroacetate

20          The title compound was prepared from the  
intermediate obtained in Step A by the procedure  
described in Example 3, Step B.  $^1\text{H}$  NMR (200MHz,  
 $\text{CD}_3\text{OD}$ ): 1.21 (s,6H), 1.7-2.1 (m,2H), 2.1-2.4 (m,2H),  
2.5-2.9 (m,6H), 3.46 (m,1H), 4.37 (m,2H), 6.9-7.3  
(m,9H). FAB-MS: calculated for  $\text{C}_{24}\text{H}_{31}\text{N}_3\text{O}_2$  393;  
found 394 ( $\text{M}+1$ ,100%).

25          Example 53

30          4-Amino-4-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-  
(1H-tetrazol-5-y1)[1,1'-biphenyl]-4-y1]methyl]-1H-1-  
benzazepin-3-yl]-pentanamide, trifluoroacetate

Step A: 3-Amino-2,3,4,5-tetrahydro-1-[[2'-(1H-tetra-  
zol-5-y1)[1,1'-biphenyl]-4-y1]methyl]-2H-1-  
benzazepin-2-one, hydrochloride

- 163 -

Prepared from 3-amino-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one (Example 1, Step A) by the procedures described in Example 4, Steps A, B and C.

5       $^1\text{H}$  NMR (200MHz,  $\text{CD}_3\text{OD}$ ): 2.17 (m,1H), 2.3-2.6 (m,3H), 3.80 (dd;8,12Hz;1H), 4.78 (d,15Hz,1H), 5.38 (d,15Hz,1H), 6.95 (d,8Hz,2H), 7.17 (d,8Hz,2H), 7.28 (m,2H), 7.38 (m,2H), 7.5-7.7 (m,4H). FAB-MS: calc. for  $\text{C}_{24}\text{H}_{22}\text{N}_6\text{O}$  410; found 411 ( $\text{M}+\text{H}$ ,100%).

10      Step B: 4-Benzylloxycarbonylamino-4-methylpentanoic acid

Prepared from 2,2-dimethylglutaric acid by the procedures described in Example 1, Steps C, D and E. 15       $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.29 (s,6H), 2.02 (t,6Hz,2H), 2.34 (t,6Hz,2H), 5.06 (s,2H), 7.34 (s,5H), 10.5 (br s,1H).

20      Step C: 4-Benzylloxycarbonylamino-4-methyl-N-[2,3,4,-5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)-[1,1'-biphenyl]-4-yl]methyl-1H-benzazepin-3-yl]-pentanamide

25      Prepared from the intermediates obtained in Steps A and B by the procedure described in Example 4, Step D. 1 $\text{H}$  NMR (200MHz,  $\text{CD}_3\text{OD}$ ): 1.30 (s,6H), 1.9-2.6 (m,8H), 4.38 (m,1H), 4.86 (d,13Hz,1H), 4.98 (s,2H), 5.16 (d,13Hz,1H), 6.97 (d,8Hz,2H), 7.1-7.3 (m,11H), 7.4-7.7 (m,4H). FAB-MS: calculated for  $\text{C}_{38}\text{H}_{39}\text{N}_7\text{O}_4$  657; found 658 ( $\text{M}+\text{H}$ ,20%).

30      Step D: 4-Amino-4-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl-1H-benzazepin-3-yl]-pentanamide, trifluoroacetate

- 164 -

The title compound was prepared from the intermediate obtained in Step C by the procedure described in Example 1, Step H.  $^1\text{H}$  NMR (200MHz, CD<sub>3</sub>OD): 1.29 (s,3H), 1.31 (s,3H), 1.8-2.6 (m,8H), 4.29 (dd;8,12Hz;1H), 4.94 (d,13Hz,1H), 5.16 (d,13Hz,1H), 6.99 (d,8Hz,2H), 7.1-7.3 (m,6H), 7.4-7.7 (m,4H). FAB-MS: calculated for C<sub>30</sub>H<sub>33</sub>N<sub>7</sub>O<sub>2</sub> 523; found 524 (M+H,100%)

10

Example 54

Piperidine-N'-(2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3-yl)-4-carboxamide, trifluoroacetate

15

Step A: N-(t-Butoxycarbonyl)piperidine-4-carboxylic acid

To a suspension of 1.0g (7.74mmol) of piperidine-4-carboxylic acid in 20mL of methylene chloride at room temperature was added 1.13mL of triethylamine (0.82g, 8.1mmol, 1.05eq) followed by 1.87mL of di-t-butyl-dicarbonate (1.77g, 8.1mmol, 1.05eq). The mixture was stirred at room temperature for 48 hours then concentrated under vacuum. The residue was redissolved in ethyl acetate and the solution washed with 5% citric acid and brine, then dried over magnesium sulfate, filtered and evaporated under vacuum to afford 1.75g (7.63mmol, 98%) of the product.  $^1\text{H}$  NMR (200MHz, CD<sub>3</sub>OD): 1.42 (s,9H), 1.50 (m,2H), 1.84 (m,2H), 2.46 (m,1H), 2.86 (t,9Hz,2H), 3.91 (t,3Hz,1H), 3.98 (t,3Hz,1H). FAB-MS: calculated for C<sub>11</sub>H<sub>19</sub>NO<sub>4</sub> 229; found 230 (M+H,17%).

- 165 -

Step B: N-(t-butoxycarbonyl)piperidine-N'-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)-[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3-yl]-piperidine-4-carboxamide

Prepared from N-(t-butoxycarbonyl)piperidine-4-carboxylic acid and 3-amino-1,3,4,5-tetrahydro-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-2H-1-benzazepin-2-one hydrochloride (Example 53, Step A) by the procedure described in Example 4, Step D.

$^1\text{H}$  NMR (200MHz, CD<sub>3</sub>OD): 1.42 (s, 9H), 1.4-2.9 (m, 11H), 4.05 (m, 3H), 4.30 (m, 1H), 4.81 (d, 15Hz, 1H), 5.22 (d, 15Hz, 1H), 6.98 (d, 8Hz, 2H), 7.1-7.3 (m, 6H), 7.4-7.7 (m, 4H). FAB-MS: calculated for C<sub>35</sub>H<sub>39</sub>N<sub>7</sub>O<sub>4</sub> 621; found 622 (M+H, 7%).

Step C: Piperidine-N'-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3-yl]-4-carboxamide, trifluoroacetate

The title compound was prepared from the intermediate obtained in Step B by the procedure described in Example 31, Step H.  $^1\text{H}$  NMR (200MHz, CD<sub>3</sub>OD): 1.7-2.7 (m, 8H), 3.00 (m, 3H), 3.38 (m, 2H), 4.31 (dd, 8, 12Hz; 1H), 4.86 (d, 15Hz, 1H), 5.20 (d, 15Hz, 1H), 6.99 (d, 8Hz, 2H), 7.1-7.4 (m, 6H), 7.4-7.7 (m, 4H). FAB-MS: calculated for C<sub>30</sub>H<sub>31</sub>N<sub>7</sub>O<sub>2</sub> 521; found 522 (M+H, 100%).

30

### Example 55

Piperidine-N'-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3-yl]-3-carboxamide, trifluoroacetate

- 166 -

The title compound was prepared from piperidine-3-carboxylic acid and 3-amino-1,3,4,5-tetrahydro-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-2H-1-benzazepin-2-one hydrochloride (Example 53, Step A) by the procedures described in Example 54.  $^1\text{H}$  NMR (200MHz, CD<sub>3</sub>OD): 1.6-2.2 (m, 5H), 2.28 (m, 1H), 2.50 (m, 2H), 2.79 (m, 1H), 3.19 (m, 4H), 4.30 (m, 1H), 4.86 (d, 14Hz, 1H), 5.17 (d, 14Hz, 1H), 6.99 (m, 4H), 7.20 (m, 4H), 7.55 (m, 3H), 8.38 (m, 1H). FAB-MS: calculated for C<sub>30</sub>H<sub>31</sub>N<sub>7</sub>O<sub>2</sub> 521; found 522 (M+H, 100%).

#### Example 56

Quinuclidine-N'-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3-yl]-3-carboxamide, trifluoroacetate

The title compound, as a mixture of four diastereomers, was prepared from racemic quinuclidine-3-carboxylic acid and 3-amino-1,3,4,5-tetrahydro-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-2H-1-benzazepin-2-one hydrochloride (Example 53, Step A) by the procedures described in Example 4, Step D.  $^1\text{H}$  NMR (200MHz, CD<sub>3</sub>OD): 1.7-2.7 (m, 8H), 3.0-3.7 (m, 8H), 4.32 (m, 1H), 4.8-5.2 (m, 2H), 7.00 (d, 8Hz, 2H) 7.1-7.4 (m, 6H), 7.4-7.7 (m, 4H). FAB-MS: calculated for C<sub>32</sub>H<sub>33</sub>N<sub>7</sub>O<sub>2</sub> 547; found 531 (22%).

30

- 167 -

**Example 57**

3-Amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-  
5 [[[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-  
y1]-butanamide, trifluoroacetate

Step A: 3-t-Butoxycarbonylamino-3-methyl-N-[2,3,4,5-  
10 tetrahydro-2-oxo-1H-1-benzazepin-3(R)-y1]-  
butanamide

Prepared from 3-t-butoxycarbonylamino-3-  
methylbutanoic acid (Example 31, Step E) and 3(R)-  
amino-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one  
(Example 1, Step B) by the procedure described in  
15 Example 1, Step F.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.37  
(s,6H), 1.44 (s,9H), 1.95 (m,1H), 2.46 (d,15Hz,1H),  
2.59 (d,15Hz,1H), 2.6-3.0, (m,3H), 4.53 (m,1H), 5.30  
(br s,1H), 6.72 (d,7Hz,1H), 6.98 (d,8Hz,1H), 7.1-7.3  
(m,3H), 7.82 (br s,1H). FAB-MS: calculated for  
20  $\text{C}_{20}\text{H}_{29}\text{N}_3\text{O}_4$  375; found 376 ( $\text{M}+\text{H}$ , 70%).

Step B: 3-t-Butoxycarbonylamino-3-methyl-N-[2,3,4,5-  
tetrahydro-2-oxo-1-[[[1,1'-biphenyl]-4-yl]-  
25 methyl]-1H-1-benzazepin-3(R)-y1]-butanamide

Prepared from the intermediate obtained in  
Step A and 4-chloromethylbiphenyl by the procedure  
described in Example 1, Step K. FAB-MS: calculated  
for  $\text{C}_{33}\text{H}_{39}\text{N}_3\text{O}_4$  541; found 542 ( $\text{M}+\text{H}$ , 31%).

30 Step C: 3-amino-3-methyl-N-[2,3,4,5-tetrahydro-2-  
oxo-1-[[[1,1'-biphenyl]-4-yl]methyl]-1H-1-  
benzazepin-3(R)-y1]-butanamide, trifluoro-  
acetate

- 168 -

The title compound was prepared from the intermediate obtained in Step B by the procedure described in Example 31, Step H.  $^1\text{H}$  NMR (200MHz, CD<sub>3</sub>OD): 1.33 (s,3H), 1.36 (s,3H), 2.0-2.6 (m,6H), 4.38 (dd;8,12Hz,1H), 4.89 (d,15Hz,1H); 5.24 (d,15Hz,1H), 7.1-7.6 (m,13H). FAB-MS: calculated for C<sub>28</sub>H<sub>31</sub>N<sub>3</sub>O<sub>2</sub> 441; found 442 (M+H,100%).

**Example 58**

10

3-amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-carboxy][1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3-yl]-butanamide

15

Step A: 3-t-butoxycarbonylamino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-3-yl]-butanamide

20

Prepared from 3-t-butoxycarbonylamino-3-methylbutanoic acid (Example 31, Step E) and 3-amino-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one (Example 1, Step A) by the procedure described in Example 1, Step F.  $^1\text{H}$  NMR (300MHz,  $\text{CDCl}_3$ ): 1.34 (s, 6H), 1.41 (s, 9H), 1.90 (m, 1H), 2.45 (d, 15Hz, 1H), 2.56 (d, 15Hz, 1H), 2.65 (m, 1H), 2.76 (m, 1H), 2.92 (m, 1H), 4.53 (m, 1H), 5.20 (br s, 1H), 6.62 (d, 7Hz, 1H), 6.97 (d, 8Hz, 1H), 7.10-7.25 (m, 3H), 7.35 (br s, 1H). FAB-MS: calculated for  $\text{C}_{20}\text{H}_{29}\text{N}_3\text{O}_4$  375; found 376 ( $\text{M}+\text{H}$ , 45%).

30

Step B: 3-t-butoxycarbonylamino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[(2'-t-butoxycarbonyl)-[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3-yl]-butanamide

- 169 -

Prepared from the intermediate obtained in Step A and t-butyl 4'-bromomethylbiphenyl-2-carboxylate (prepared by the method of D. J. Carini, et al, EP0 publication 324,377) by the procedure described in Example 1, Step K.  $^1\text{H}$  NMR (300MHz,  $\text{CDCl}_3$ ): 1.17 (s, 9H), 1.34 (s, 6H), 1.40 (s, 9H), 1.86 (m, 1H), 2.40-2.65 (m, 5H), 4.51 (m, 1H), 4.81 (d, 14Hz, 1H), 5.31 (s, 1H), 5.35 (d, 14Hz, 1H), 6.68 (d, 7Hz, 1H), 7.1-7.5 (m, 11H), 7.71 (m, 1H). FAB-MS: calculated for  $\text{C}_{38}\text{H}_{47}\text{N}_3\text{O}_6$  641; found 642 ( $\text{M}+\text{H}$ , 15%).

Step C: 3-amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-carboxy][1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3-yl]-butanamide

The intermediate obtained in Step B (500mg, 0.78mmol) dissolved in 2mL of glacial acetic acid was treated with 2mL of 6N HCl and the mixture heated at 50°C for 3 hours. The mixture was concentrated under vacuum to a minimum volume, redissolved in 3mL of distilled water and lyophilized. The crusty solid was redissolved in 2mL of methanol and treated dropwise with stirring with 5mL of propylene oxide. The mixture was stirred at room temperature for 5 hours then filtered; the filter cake was washed with ether, air dried, then dried under vacuum to give 278mg (0.57mmol, 73%) of the title compound.  $^1\text{H}$  NMR (300MHz,  $\text{D}_2\text{O}$ ): 1.43 (s, 3H), 1.47 (s, 3H), 2.0-2.5 (m, 4H), 2.66 (m, 2H), 4.28 (dd; 7, 11Hz; 1H), 4.70 (d, 15Hz, 1H), 5.29 (d, 15Hz, 1H), 6.92 (m, 1H), 7.0-7.4 (m, 10H), 7.70 (m, 1H). FAB-MS: calculated for  $\text{C}_{29}\text{H}_{31}\text{N}_3\text{O}_4$  485; found 486 ( $\text{M}+\text{H}$ , 100%).

- 170 -

Example 59

5           3-Amino-3-methyl-N-[7-methoxy-2,3,4,5-tetrahydro-2-  
oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]-  
methyl]-1H-1-benzazepin-3-yl]-butanamide,  
trifluoroacetate

10          Step A: 7-Methoxy-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one

15          Prepared from 6-methoxy-1-tetralone by the  
procedure described in Example 31, Step A.  $^1\text{H}$  NMR  
(200MHz,  $\text{CDCl}_3$ ): 2.1-2.4 (m, 4H), 2.72 (t, 7Hz, 2H),  
3.77 (s, 3H), 6.71 (d, 8Hz, 2H), 6.73 (s, 1H), 6.89  
(d, 8Hz, 1H), 7.80 (br s, 1H). FAB-MS: calculated  
for  $\text{C}_{11}\text{H}_{13}\text{NO}_2$  191; found 191 ( $\text{M}^+$ , 60%).

20          Step B: 3-Iodo-7-methoxy-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one

25          Prepared from 7-methoxy-2,3,4,5-tetrahydro-  
1H-1-benzazepin-2-one by the procedure described in  
Example 31, Step B.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ):  
2.5-3.0 (m, 4H), 3.89 (s, 3H), 4.64 (t, 8Hz, 1H), 6.75  
(s, 1H), 6.77 (d, 8Hz, 1H), 6.94 (d, 8Hz, 1H), 7.70 (br s,  
1H). FAB-MS: calculated for  $\text{C}_{11}\text{H}_{12}\text{INO}_2$  317;  
found 317 ( $\text{M}^+$ , 100%).

30          Step C: 3-Azido-7-methoxy-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one

35          3-Iodo-7-methoxy-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one (4.074g, 12.85mmol) and sodium azide  
(4.178g, 64.3mmol, 5eq.) were dissolved in 50mL of

- 171 -

dimethylformamide and heated with stirring at 60° for 2 hours. The solvent was evaporated under vacuum at room temperature and the residue redissolved in 150mL of ethyl acetate and washed with water (3x50mL) and brine (1x50mL). The organic layer was separated, dried over MgSO<sub>4</sub>, filtered and evaporated to dryness under vacuum to yield 2.538g (10.94mmol, 85%) of product. <sup>1</sup>H NMR (200MHz, CDCl<sub>3</sub>): 2.2-2.7 (m, 3H), 2.90 (m, 1H), 3.75 (s, 3H), 3.80 (m, 1H), 6.75 (m, 2H), 6.95 (d, 8Hz, 2H), 8.22 (br s, 1H). FAB-MS: calculated for C<sub>11</sub>H<sub>12</sub>N<sub>4</sub>O<sub>2</sub> 232; found 233 (M+H, 30%).

Step D: 3-Amino-7-methoxy-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one

Prepared from 3-azido-7-methoxy-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one by the procedure described in Example 31, Step D. <sup>1</sup>H NMR (200MHz, CDCl<sub>3</sub>): 1.86 (m, 1H), 2.4-2.6 (m, 2H), 2.86 (m, 1H), 3.39 (m, 1H), 3.76 (s, 3H), 6.72 (d, 8Hz, 1H), 6.74 (s, 1H), 6.88 (d, 8Hz, 1H), 7.62 (br s, 1H). FAB-MS: calculated for C<sub>11</sub>H<sub>14</sub>N<sub>2</sub>O<sub>2</sub> 206; found 208 (100%).

Step E: 3-t-Butoxycarbonylamino-3-methyl-N-[7-methoxy-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-3-yl]-butanamide

Prepared from 3-t-butoxycarbonylamino-3-methylbutanoic acid (Example 31, Step E) and the amine obtained in Step D by the procedure described in Example 1, Step F. <sup>1</sup>H NMR (200MHz, CDCl<sub>3</sub>): 1.32 (s, 6H), 1.38 (s, 9H), 1.86 (m, 1H), 2.4-3.0 (m, 5H), 3.77 (s, 3H), 4.49 (m, 1H), 5.25 (br s, 1H), 6.68

- 172 -

(d, 8Hz, 1H), 6.70 (s, 1H), 6.89 (d, 8Hz, 1H), 7.55 (br s, 1H). FAB-MS: calculated for  $C_{21}H_{31}N_3O_5$  405; found 428 ( $M+Na$ , 100%), 406 ( $M+H$ , 23%).

5

Step F: 3-t-Butoxycarbonylamino-3-methyl-N-[7-methoxy-2,3,4,5-tetrahydro-2-oxo-1-[[2'-(N-triphenylmethyl)-tetrazol-5-yl][1,1'-biphenyl]-4-yl]methyl-1H-1-benzazepin-3-yl]-butanamide

10

Prepared from the intermediate obtained in Step E and N-triphenylmethyl-5-[2-(4'-bromomethyl-biphen-4-yl)] tetrazole by the procedure described in Example 1, Step G.  $^1H$  NMR (200MHz,  $CDCl_3$ ): 1.31 (s, 3H), 1.32 (s, 3H), 1.37 (s, 9H), 1.70 (m, 1H), 2.2-2.6 (m, 5H), 3.72 (s, 3H), 4.43 (m, 1H), 4.61 (d, 15Hz, 1H), 5.06 (d, 15Hz, 1H), 5.35 (br s, 1H), 6.62 (m, 3H), 6.9 (m, 10H), 7.25 (m, 12H), 7.83 (m, 1H).

20

Step G: 3-Amino-3-methyl-N-[7-methoxy-2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3-yl]-butanamide, mono(trifluoroacetate)

25

The title compound was prepared from the intermediate obtained in Step F by the procedure described in Example 31, Step H.  $^1H$  NMR (200MHz,  $CD_3OD$ ): 1.35 (s, 3H), 1.39 (s, 3H), 2.05 (m, 1H), 2.3-2.6 (m, 5H), 3.81 (s, 3H), 4.37 (dd; 7, 11Hz; 1H), 4.76 (d, 15Hz, 1H), 5.22 (d, 15Hz, 1H), 6.80 (d, 3Hz, 1H), 6.88 (dd; 3, 8Hz; 1H), 7.01 (d, 8Hz, 2H), 7.17 (d, 8Hz, 2H), 7.22 (d, 8Hz, 1H), 7.5-7.7 (m, 4H). FAB-MS: calculated for  $C_{30}H_{33}N_7O_3$  539; found 540 ( $M+H$ , 100%).

- 173 -

Example 60

5           3-Amino-3-methyl-N-[7-hydroxy-2,3,4,5-tetrahydro-2-  
oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]-  
methyl]-1H-1-benzazepin-3-yl]-butanamide,  
trifluoroacetate

10          240mg (0.27mmol) of 3-t-butoxycarbonylamino-  
3-methyl-N-[7-methoxy-2,3,4,5-tetrahydro-2-oxo-1-[[2'-  
15         (N-triphenylmethyl)-tetrazol-5-yl][1,1'-biphenyl]-4-  
y1]methyl-1H-1-benzazepin-3-yl]-butanamide (Example  
59, Step F) was dissolved in 4mL of methylene  
chloride and the solution treated with 1.35mL of 1.0M  
boron tribromide in methylene chloride (1.35mmol,  
20         5eq.) and the mixture stirred at room temperature for  
4 hours then quenched by the addition of 15mL of ice  
water. The mixture was extracted with ethyl acetate  
(2x20mL) and the combined organic phases were washed  
with brine, dried over magnesium sulfate, filtered  
and solvents removed in vacuo. The residue was  
purified by reverse phase medium pressure liquid  
chromatography on C8, eluting with methanol/0.1%  
aqueous trifluoroacetic acid (55:45). In this  
25         manner, 56mg (0.087mmol, 32%) of the title compound  
was obtained as a colorless glass.  $^1\text{H}$  NMR (200MHz,  
CD<sub>3</sub>OD): 1.39 (s,3H), 1.43 (s,3H), 2.07 (m,1H),  
2.3-2.6 (m,5H), 4.42 (dd;5,8Hz;1H), 4.79 (d,11Hz,1H),  
5.24 (d,11Hz,1H), 6.68 (d,2Hz,1H), 6.78  
(dd;2,7Hz;1H), 7.06 (d,7Hz,2H), 7.18 (d,7Hz,1H), 7.21  
30         (d,7Hz,2H), 7.5-7.7 (m,4H). FAB-MS: calculated for  
C<sub>29</sub>H<sub>31</sub>N<sub>7</sub>O<sub>3</sub> 525; found 526 (M+H,87%).

- 174 -

Example 61

5           3-Amino-3-methyl-N-benzyl-N-[2,3,4,5-tetrahydro-2-  
oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]-  
methyl]-1H-1-benzazepin-3(R)-yl]-butanamide,  
trifluoroacetate

10          Step A: 3(R)-(Benzylamino)-2,3,4,5-tetrahydro-1H-1-  
benzazepin-2-one

15          A solution of 528mg (3.0mmol) of 3(R)-amino-  
2,3,4,5-tetrahydro-1H-1-benzazepin-2-one (Example 1,  
Step B) in 45mL of absolute methanol at room  
temperature was treated with 4.5g of powdered 3A  
molecular sieves followed by dropwise addition of a  
solution of 954mg (9.0mmol, 3eq.) of benzaldehyde in  
15mL of methanol. The pH of the mixture was adjusted  
to 7 by addition of trifluoroacetic acid then stirred  
at room temperature for 2 hours. Sodium cyanoboro-  
hydride (18mL of 1.0M THF solution; 18mmol, 6eq.) was  
added and the mixture stirred at room temperature for  
18 hours. The mixture was filtered and the filtrate  
treated with 3mL of trifluoroacetic acid with stirring  
for 3 hours, then all volatiles removed under vacuum  
and the residue dissolved in 50mL of ethyl acetate.  
The ethyl acetate solution was washed with water  
(3x15mL), saturated aqueous sodium bicarbonate  
(2x15mL) and 15mL of brine then dried over magnesium  
sulfate, filtered and solvents removed under vacuum.  
The residue was purified by chromatography on silica,  
eluting with ethyl acetate/hexane (70:30), to afford  
410mg (1.54mmol, 51%) of the product. <sup>1</sup>H NMR

- 175 -

(200MHz, CDCl<sub>3</sub>): 2.05 (m, 1H), 2.5-3.0 (m, 3H), 3.37 (dd; 7, 11Hz, 1H), 3.57 (d, 12Hz, 1H), 3.90 (d, 12Hz, 1H), 7.05 (d, 8Hz, 1H), 7.1-7.4 (m, 8H), 7.75 (br s, 1H).  
5 FAB-MS: calculated for C<sub>17</sub>H<sub>18</sub>N<sub>2</sub>O 266; found 267 (M+H, 75%).

10 Step B: 3-t-Butoxycarbonylamino-3-methyl-N-benzyl-N-[2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-3-(R)-y1l-butanimide]

15 A solution of 90mg (0.34mmol) of 3(R)-  
(benzylamino)-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one in 1.5mL of tetrahydrofuran under nitrogen at room temperature was treated with 73mg (0.34mmol, 1.1eq.) of 3-t-butoxycarbonylamino-3-methylbutanoic acid (Example 31, Step E) followed by 94mg (0.38mmol, 1.1eq.) of 2-ethoxy-1-ethoxycarbonyl-1,2-dihydro-quinoline (EEDQ). Most of the solvent was evaporated under a stream of nitrogen and the resulting reaction mixture (thick syrup approx. 0.3mL) was stirred for 3 days. The mixture was evaporated to dryness under vacuum and the residue purified by medium pressure liquid chromatography on silica, eluting with ethyl acetate/hexane (1:1) to afford 45mg (mmol, 33%) of product.  
20 <sup>1</sup>H NMR (200MHz, CDCl<sub>3</sub>): 1.28 (s, 3H), 1.32 (s, 3H), 1.35 (s, 9H), 2.16 (m, 2H), 2.35 (d, 14Hz, 1H), 2.58 (d, 14Hz, 1H), 2.60 (m, 1H), 2.81 (m, 1H), 4.70 (d, 18Hz, 1H), 4.99 (d, 18Hz, 1H), 5.37 (t, 10Hz, 1H), 5.83 (br s, 1H), 6.98 (d, 7Hz, 1H), 7.05-7.45 (m, 5H), 25 7.50-7.85 (m, 3H), 8.13 (t, 8Hz, 1H), 8.90 (m, 1H).  
30 FAB-MS: calculated for C<sub>27</sub>H<sub>35</sub>N<sub>3</sub>O<sub>4</sub> 465; found 466 (M+H, 48%).

- 176 -

Step C: 3-Amino-3-methyl-N-benzyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]butanamide, trifluoroacetate

5           The title compound was prepared from the intermediate obtained in Step B and N-triphenylmethyl-5-[2-(4'-bromomethylbiphen-4-yl)] tetrazole by the methods described in Example 1, Step K and Example 31, Step H.  $^1\text{H}$  NMR (400MHz,  $\text{CD}_3\text{CN}$ ): 1.35 (s,3H),  
10          1.36 (s,3H), 2.19 (m,1H), 2.38 (m,1H), 2.47  
             (d,17Hz,1H), 2.7-2.9 (m,2H), 2.90 (d,17Hz,1H), 4.75  
             (d,16Hz,1H), 4.93 (d,19Hz,1H), 5.03 (d,19Hz,1H), 5.22  
             (dd;8,12Hz;1H), 5.48 (d,16Hz,1H), 7.2-7.5 (m,10H),  
             7.6-7.8 (m,6H), 7.85 (br s,1H). FAB-MS: calculated  
15          for  $\text{C}_{36}\text{H}_{37}\text{N}_7\text{O}_2$  599; found 600 ( $\text{M}+\text{H}, 30\%$ ).

Example 62

20          3-Amino-3-methyl-N-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]-methyl]-1H-1-benzazepin-3(R)-yl]-butanamide,  
             trifluoroacetate

25          Step A: 3(R)-N-Methyl-N-benzylamino-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one

             A solution of 150mg (0.56mmol) of 3(R)-  
             (benzylamino)-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one (Example 61, Step A) in 0.6mL of formic acid was treated with 0.047mL (0.56mmol, 1eq.) of 36% aqueous formaldehyde and the mixture heated at 80° with stirring for 24 hours. The mixture was cooled,

- 177 -

treated with 0.8mL of 6N HCl, and all volatiles removed under vacuum. The residue was partitioned between 10mL of water and 10mL of methylene chloride; 1mL of 10% aqueous sodium carbonate was then added and the mixture shaken. The organic layer was separated and the aqueous layer extracted with an additional 20mL of methylene chloride. The combined extracts were dried over magnesium sulfate, filtered and solvents removed under vacuum. The residue was purified by medium pressure liquid chromatography on silica, eluting with 2.5% methanol in ethyl acetate, to give 98mg (0.35mmol, 63%) of product.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 2.35 (s,3H), 2.35 (m,2H), 2.69 (m,1H), 2.88 (m,1H), 3.37 (dd;8,11Hz;1H), 3.80 (d,14Hz,1H), 3.90 (d,14Hz,1H), 6.90 (d,8Hz,1H), 7.05-7.35 (m,8H). FAB-MS: calculated for  $\text{C}_{18}\text{H}_{20}\text{N}_2\text{O}$  280; found 281 ( $\text{M}+\text{H}$ ,100%).

Step B: 3(R)-(Methylamino)-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one

A solution of 98mg (0.35mmol) of 3(R)-(N-methyl-N-benzyl)amino-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one (Step A) in 10mL of methanol was treated with one drop of concentrated sulfuric acid and the resulting solution hydrogenated at room temperature and 30-40psi over 20mg of 10% Pd/C for 20 hours. The mixture was filtered and the filtrate evaporated under vacuum. The residue was treated with 15mL of ethyl acetate, 4mL of water and 2mL of 10% aqueous sodium carbonate then shaken. The organic layer was separated, and the aqueous phase

- 178 -

re-extracted with an additional 10mL of ethyl acetate. The combined extracts were washed with brine, dried over magnesium sulfate, filtered and the filtrate evaporated under vacuum to give 68mg (0.35mmol, 100%) of product.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.85 (m, 1H), 2.30 (s, 3H), 2.35-2.65 (m, 2H), 2.73 (m, 1H), 3.10 (dd; 8, 12Hz; 1H), 6.97 (d, 8Hz, 1H), 7.1-7.3 (m, 3H), 7.5 (br s, 1H).

10 Step C: 3-t-Butoxycarbonylamino-3-methyl-N-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-3-(R)-y1]-butanamide

Prepared from 3-t-butoxycarbonylamino-3-methylbutanoic acid (Example 31, Step E) and the amine obtained in Step B by the procedure described in Example 1, Step F.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.30 (br s, 15H), 2.19 (m, 1H), 2.42 (m, 1H), 2.5-2.8 (m, 3H), 2.91 (m, 1H), 3.15 (s, 3H), 5.32 (dd; 6, 8Hz; 1H), 5.52 (br s, 1H), 6.97 (d, 5Hz, 1H), 7.1-7.3 (m, 3H), 7.35 (br s, 1H).

25 Step D: 3-Amino-3-methyl-N-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-y1)[1,1'-biphenyl]-4-y1]methyl]-1H-1-benzazepin-3(R)-y1]-butanamide, trifluoroacetate

Prepared from the intermediate obtained in Step C and N-triphenylmethyl-5-[2-(4'-bromomethyl-biphen-4-y1)] tetrazole by the procedures described in Example 1, Step K and Example 31 Step H.  $^1\text{H}$  NMR (200MHz,  $\text{CD}_3\text{OD}$ ): 1.34 (s, 3H), 1.38 (s, 3H), 2.10 (m, 1H), 2.3-2.8 (m, 5H), 3.16 (s, 3H), 4.90 (d, 15Hz, 1H), 5.01

- 179 -

(dd; 7, 11Hz; 1H), 5.13 (d, 15Hz, 1H), 7.02 (d, 8Hz, 2H),  
7.19 (d, 8Hz, 2H), 7.2-7.4 (m, 4H), 7.5-7.7 (m, 4H).

FAB-MS: calculated for C<sub>30</sub>H<sub>33</sub>N<sub>7</sub>O<sub>2</sub> 523; found 524  
(M+H, 22%).

5

### Example 63

10 2-Amino-2-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-  
(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-  
benzazepin-3(R)-yl]-propanamide, trifluoroacetate

15 Step A: 2-(t-Butoxycarbonylamino)-2-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-3(R)-yl]-propanamide

15 Prepared from 2-(t-butoxycarbonylamino)-2-methylpropanoic acid and 3(R)-amino-2,3,4,5-tetrahydro-1H-[1]benzazepin-2-one (Example 1, Step B) by the procedure described in Example 1, Step F. <sup>1</sup>H NMR (200MHz, CDCl<sub>3</sub>): 1.42 (s, 12H), 1.46 (s, 3H), 1.90 (m, 1H), 2.5-3.0 (m, 3H), 4.48 (m, 1H), 5.01 (br s, 1H), 6.97 (d, 8Hz, 1H), 7.1-7.3 (m, 3H), 7.9 (br s, 1H).  
20 FAB-MS: calculated for C<sub>19</sub>H<sub>27</sub>N<sub>3</sub>O<sub>4</sub> 361; found 362 (M+H, 30%).

25 Step B: 2-(t-Butoxycarbonylamino)-2-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-[N-(triphenylmethyl)-tetrazol-5-yl][1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-propanamide

30 Prepared from the intermediate obtained in Step A and N-triphenylmethyl-5-[2-(4'-bromomethyl-

- 180 -

biphen-4-yl)] tetrazole by the procedure described in Example 1, Step K.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.42 (s, 9H), 1.43 (s, 3H), 1.46 (s, 3H), 1.77 (m, 1H), 2.2-2.7 (m, 3H), 4.43 (m, 1H), 4.72 (d, 15Hz, 1H), 4.93 (br s, 1H), 5.09 (d, 15Hz, 1H), 6.9-7.5 (m, 26H), 7.86 (m, 1H).

Step C: 2-Amino-2-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-propanamide, mono(trifluoroacetate)

The title compound was prepared from the intermediate obtained in Step B by the procedure described in Example 31, Step H with final purification performed by reverse phase medium pressure liquid chromatography on C-8, eluting with methanol/0.1% aqueous trifluoroacetic acid (55:45).  $^1\text{H}$ -NMR (200MHz,  $\text{CD}_3\text{OD}$ ): 1.52 (s, 3H), 1.61 (s, 3H), 2.1-2.6 (m, 4H), 4.33 (dd; 8, 11Hz; 1H), 4.85 (d, 15Hz, 1H), 5.18 (d, 15Hz, 1H), 6.99 (d, 8Hz, 2H), 7.15 (d, 8Hz, 2H), 7.2-7.4 (m, 4H), 7.5-7.7 (m, 4H). FAB-MS: calculated for  $\text{C}_{28}\text{H}_{29}\text{N}_7\text{O}_2$  495; found 496 ( $\text{M}+\text{H}$ , 32%).

#### Example 64

Quinuclidine-N'-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-3-carboxamide, trifluoroacetate

The title compound, as a mixture of two diastereomers, was prepared from racemic quinuclidine-3-carboxylic acid and 3(R)-amino-1,3,4,5-tetrahydro-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-

- 181 -

2H-1-benzazepin-2-one hydrochloride (Example 4, Step C) by the procedure described in Example 4, Step D, with final purification by reverse phase medium pressure liquid chromatography on C-8, eluting with acetonitrile/0.1% aqueous trifluoroacetic acid (35:65).  $^1\text{H}$  NMR (200MHz,  $\text{CD}_3\text{OD}$ ): 1.7-2.6 (m, 8H), 3.00 (m, 1H), 3.1-3.3 (m, 6H), 3.65 (m, 1H), 4.32 (m, 1H), 4.8-5.2 (m, 2H), 7.00 (d, 8Hz, 2H), 7.1-7.3 (m, 6H), 7.5-7.7 (m, 4H). FAB-MS: calculated for  $\text{C}_{32}\text{H}_{33}\text{N}_7\text{O}_2$  547; found 548 ( $\text{M}+\text{H}, 100\%$ ).

Example 65

15 3-Amino-2,2-dimethyl-N-[2,3,4,5-tetrahydro-2-oxo-1-  
[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-  
1H-1-benzazepin-3(R)-yl]-propanamide, trifluoroacetate

Step A: 3-(Benzylloxycarbonylamino)-2,2-dimethyl-  
propanoic acid

20 Prepared from 3-[benzylloxycarbonylamino]-  
2,2-dimethylpropanoic acid, methyl ester (Example 1,  
Step D) by the procedure described in Example 1, Step  
E.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.25 (s, 6H), 3.30  
(d, 7Hz, 2H), 5.10 (s, 2H), 7.34 (s, 5H).

25 Step B: 3-(Benzylloxycarbonylamino)-2,2-dimethyl-N-  
[2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-  
3(R)-yl]-propanamide

Prepared from 3-(benzylloxycarbonylamino)-2,2-  
dimethylpropanoic acid and 3(R)-amino-2,3,4,5-tetra-  
hydro-1H-[1]benzazepin-2-one (Example 1, Step B) by  
the procedure described in Example 1, Step F.  $^1\text{H}$   
NMR (200MHz,  $\text{CDCl}_3$ ): 1.19 (s, 6H), 1.90 (m, 1H),

- 182 -

2.6-3.0 (m,3H), 3.26 (d,6Hz,2H), 4.46 (m,1H), 5.07  
(s,2H), 5.7 (br t,1H), 6.62 (d,7Hz,1H), 6.97  
(d,8Hz,1H), 7.1-7.3 (m,3H), 7.3 (s,5H), 8.14 (br  
s,1H). FAB-MS: calculated for C<sub>23</sub>H<sub>27</sub>N<sub>3</sub>O<sub>4</sub> 409;  
5 found 410 (M+H,100%).

Step C: 3-(t-Butoxycarbonylamino)-2,2-dimethyl-N-[2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-3(R)-yll-propanamide

10 A solution of 170mg (0.42mmol) of the intermediate obtained in Step B in 5mL of absolute methanol and one drop of trifluoroacetic acid was hydrogenated at room temperature and 1 atmosphere over 35mg of 20% palladium hydroxide on carbon for 4 hours. The mixture was filtered through Celite and solvent removed under vacuum to afford 165mg (0.42mmol, 100%) of the amine trifluoroacetate salt as a pale yellow solid.

15 The above intermediate was dissolved in 2mL of methylene chloride and treated with 108mg (0.49mmol, 1.2eq.) of di-t-butyl-dicarbonate followed by 0.12mL of triethylamine (87mg, 0.86mmol, 2eq.). After two hours at room temperature, the mixture was added to 20mL of ethyl acetate and washed with 5% aqueous citric acid, saturated aqueous sodium bicarbonate and brine. The organic layer was separated, dried over magnesium sulfate, filtered and solvents removed under vacuum. The residue was purified by medium pressure liquid chromatography on 20 silica, eluting with ethyl acetate/hexane (3:2) to afford 156mg (0.41mmol, 98%) of the product as a white solid. <sup>1</sup>H NMR (200MHz, CDCl<sub>3</sub>): 1.18 (s,6H),

- 183 -

1.39 (s,9H), 1.92 (m,1H), 2.6-3.0 (m,3H), 3.17  
5 (d,6Hz,2H), 4.46 (m,1H), 5.25 (br s,1H), 6.69  
(d,7Hz,1H), 6.98 (d,8Hz,1H), 7.1-7.3 (m,3H), 8.22 (br  
(M+H,10%).

Step D: 3-(t-Butoxycarbonylamino)-2,2-dimethyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(N-(tri-

10 phenylmethyl)-tetrazol-5-yl][1,1'-biphenyl]-

4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-

propanamide

Prepared from the intermediate obtained in Step C and N-triphenylmethyl-5-[2-(4'-bromomethyl-biphen-4-yl)] tetrazole by the procedure described in Example 1, Step K.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.16 (s,3H), 1.17 (s,3H), 1.40 (s,9H), 1.74 (m,1H), 2.3-2.5 (m,3H), 3.16 (d,7Hz,2H), 4.40 (m,1H), 4.62 (d,15Hz,1H), 5.22 (d,15Hz,1H), 5.28 (br s,1H), 6.68 (d,7Hz,1H), 6.9-7.5 (m,26H), 7.85 (m,1H).

20

Step E: 3-Amino-2,2-dimethyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-y1]-propanamide, trifluoroacetate

25 The title compound was prepared from the intermediate obtained in Step D by the procedure described in Example 31, Step H with final purification performed by reverse phase medium pressure liquid chromatography on C-8, eluting with 30 methanol/0.1% aqueous trifluoroacetic acid (55:45).  $^1\text{H}$  NMR (200MHz,  $\text{CD}_3\text{OD}$ ): 1.24 (s,3H), 1.33 (s,3H), 2.1-2.6 (m,4H), 2.99 (br s,2H), 4.30 (dd;8,11Hz;1H),

- 184 -

4.85 (d, 15Hz, 1H), 5.21 (d, 15Hz, 1H), 7.00 (d, 8Hz, 2H),  
7.1-7.4 (m, 6H), 7.4-7.7 (m, 4H). FAB-MS: calculated  
for  $C_{29}H_{31}N_7O_2$  509; found 510 ( $M+H$ , 100%).

5

### Example 66

3-Amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[(2'-  
(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl)methyl]-1H-1-  
benzazepin-3(S)-yl]butanamide, trifluoroacetate

10

Step A: 3-Benzylloxycarbonylamino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-3(S)-yl]butanamide

Prepared from 3(S)-amino-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one (Example 1, Step B) and 3-benzylloxycarbonylamino-3-methylbutanoic acid (Example 1, Step E) by the procedure described in Example 1, Step F. FAB-MS: calculated for  $C_{23}H_{27}N_3O_4$  409; found 410 ( $M+H$ , 100%).  $[a]_D = -160^\circ$  (c=1,  $CHCl_3$ ).

25

Step B: 3-Benzylloxycarbonylamino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[(2'-(N-triphenylmethyl)-tetrazol-5-yl)[1,1'-biphenyl]-4-yl)methyl]-1H-1-benzazepin-3(S)-yl]butanamide

30

Prepared from the intermediate obtained in Step A and N-triphenylmethyl-5-(4'-bromomethylbiphen-2-yl)tetrazole by the procedure described in Example 1, Step K.  $^1H$  NMR (200MHz,  $CDCl_3$ ): 1.38 (s, 3H), 1.40 (s, 3H), 1.67 (m, 1H), 2.2-2.5 (m, 5H), 4.44 (m, 1H),

- 185 -

4.67 (d,14Hz,1H), 5.06 (s,2H), 5.12 (d,14Hz,1H), 5.63  
(br s,1H), 6.64 (d,7Hz,1H), 6.9-7.5 (m,31H), 7.85  
(m,1H).

5       Step C: 3-Amino-3-methyl-N-[2,3,4,5-tetrahydro-2-  
oxo-1-[[2'-(1H-tetrazol-5-y1)[1,1'-  
biphenyl]-4-y1]methyl]-1H-1-benzazepin-3(S)-  
y1]-butanamide, trifluoroacetate

10      The title compound was prepared from the  
intermediate obtained in Step B by the procedure  
described in Example 1, Step L. <sup>1</sup>H NMR  
(200MHz,CD<sub>3</sub>OD): 1.34 (s,3H), 1.38 (s,3H), 2.0-2.6  
(m,6H), 4.34 (dd;7,11Hz;1H), 4.86 (d,15Hz,1H), 5.20  
(d,15Hz,1H), 6.99 (d,8Hz,2H), 7.1-7.3 (m,6H),  
15      7.45-7.70 (m,4H). FAB-MS: calculated for C<sub>29</sub>H<sub>31</sub>N<sub>7</sub>O<sub>2</sub>  
509; found 510 (M+H,100%). [a]<sub>D</sub>= -98° (c=.5,CH<sub>3</sub>OH).

#### Example 67

20      3-(2-Fluoropropyl)amino-3-methyl-N-[2,3,4,5-tetra-  
hydro-2-oxo-1-[[2'-(1H-tetrazol-5-y1)[1,1'-biphenyl]-  
4-y1]methyl]-1H-1-benzazepin-3(R)-y1]butanamide,  
trifluoroacetate

25      To a cold (-78°C) solution of 3-(2-hydroxy-  
propyl)amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-  
[[2'-(1H-tetrazol-5-y1)[1,1'-biphenyl]-4-y1]methyl-  
1H-1-benzazepin-3(R)-y1]butanamide (Example 22, 20mg,  
0.029mmol) in 1.5mL of hydrogen fluoride-pyridine  
under a nitrogen atmosphere, 0.2mL of DAST (diethyl-  
aminosulfur trifluoride) was slowly added. The  
reaction mixture was brought to room temperature and  
stirred for 48 hours. Additional DAST (0.2mL) was  
added at 24 hour intervals until no further reaction

- 186 -

was detected by HPLC. The reaction mixture was repeatedly purified by reverse phase HPLC to afford 4mg of product. FAB-MS: calculated for C<sub>32</sub>H<sub>36</sub>N<sub>7</sub>O<sub>2</sub>F 569; found 570 (M+H, 100%). The product was converted into its hydrochloride salt by repeated evaporation of an aqueous 6N HCl/methanol solution. <sup>19</sup>F NMR (CD<sub>3</sub>OD): -75.4.

Example 68

10

3-Amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[(2-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl)methyl]-1H-1-benzazepin-3(R)-yl]butanamide, trifluoroacetate

15

Step A: 3-Nitro-4-phenyltoluene

20

To a cold (0°C) solution of 4-methyl-2-nitroaniline (3.8g) in 11mL of HBF<sub>4</sub>, an aqueous solution of sodium nitrite (1.7g in 3.4mL) was added dropwise. The reaction mixture was stirred for 10 minutes. The precipitate was collected and washed with cold aqueous HBF<sub>4</sub> (3mL), ethanol and ether to yield 1.72g of diazonium salt. The diazonium salt was suspended in benzene (76mL) and acetonitrile (7.6mL). Potassium acetate (1.53g) was added and the resulting mixture stirred under nitrogen in the dark at room temperature for 1.5 hr. The solid was removed by filtration and the filtrate washed with water (2x) and brine. The solution was dried with anhydrous sodium sulfate and then concentrated to afford 1.49g of crude product which could be chromatographed on silica gel (2:1 hexanes:CH<sub>2</sub>Cl<sub>2</sub>).

- 187 -

Step B: 3-Amino-4-phenyltoluene

A solution of 2.4g of 3-nitro-4-phenyltoluene in 25mL of methanol was hydrogenated at room temperature and 40psi over 0.30g of 5% Pd/C catalyst.

5 The solution was filtered and the filtrate concentrated to give 1.98g of product. EI-MS: calculated for C<sub>13</sub>H<sub>13</sub>N: 183; found 183.

Step C: 3-Cyano-4-phenyltoluene

10 To a cold (0°C) suspension of 3-amino-4-phenyltoluene (1.97g) in 2.65mL of water and 2.65mL of 12N HCl was slowly added a solution of sodium nitrite (738mg) in 2mL of water. To this yellowish slurry, 10mL of fluoroboric acid was added with stirring. The cold mixture was filtered and the solid (2.02g) washed with cold fluoroboric acid, ethanol and ether. A solution of this diazonium salt (2.02g) in 5mL of DMSO was added dropwise with cooling to a mixture of CuCN and NaCN in DMSO (13.3mL). The reaction mixture was then diluted with water (20mL) and extracted repeatedly with benzene. The combined organic layers were washed with water (2x) and brine and then dried over anhydrous MgSO<sub>4</sub>. Concentration under vacuum gave a reddish oil which was chromatographed on silica gel to give 0.788g of product.

Step D: N-Triphenylmethyl-5-[2'-(4'-methylbiphenyl-4-yl)]tetrazole

30 A solution of 3-cyano-4-phenyltoluene (390mg) and trimethyltin azide (525mg) in 2.5mL of toluene was heated at reflux for 24hr under

- 188 -

nitrogen. The reaction mixture was concentrated and the residue suspended in 3.5mL of toluene. Tetrahydrofuran (0.25mL) was added followed by HCl gas until the solution became homogenous. The 5 mixture was concentrated and the residue (307mg) dissolved in 5mL of CH<sub>2</sub>Cl<sub>2</sub> and treated with 504mg of triphenylmethyl chloride and 233mg of triethylamine under nitrogen. The mixture was stirred overnight and then diluted with CH<sub>2</sub>Cl<sub>2</sub> and water. The layers 10 were separated and the aqueous layer further extracted with CH<sub>2</sub>Cl<sub>2</sub>. The combined organic layers were washed with water and brine, then dried over anhydrous magnesium sulfate. Concentration under vacuum afforded 935mg which was chromatographed on 15 silica gel eluting with hexanes:ethyl acetate (9:1) to give 615mg of product.

Step E: N-Triphenylmethyl-5-[2'-(4'-bromomethyl-biphenyl-4-yl)]tetrazole

20 A solution of N-triphenylmethyl-5-[2'-(methylbiphenyl-4-yl)]tetrazole (95.7mg), N-bromo-succinimide (35.5mg) and AIBN (2mg) in 4mL of CC<sub>14</sub> was heated at reflux for 4hr. The reaction mixture was filtered and the filtrate concentrated to give 25 129mg of product.

Step F: 3-t-Butoxycarbonylamino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2-(N-triphenylmethyl)-tetrazol-5-yl][1,1'-biphenyl]-4-yl]methyl-1H-benzazepin-3(R)-yl]butanamide

30 To a solution of 33.7mg of 3-t-butoxycarbonylamino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-3(R)-yl]butanamide (Example 57, Step

- 189 -

A) in 0.5mL of dry dimethylformamide at room temperature was added 3.6mg of 60% sodium hydride oil dispersion under nitrogen. After 30 minutes, N-triphenylmethyl-5-[2'-(4'-bromomethylbiphenyl-4-yl)]-tetrazole (129mg) in 0.2mL of dry dimethyl-formamide was added and the resulting mixture stirred for 8hr at room temperature. The mixture was diluted with ethyl acetate and washed with water (2x) and brine. The organic layer was dried over magnesium sulfate, filtered and concentrated unde vacuum. The crude product was chromatographed on silica gel eluting with ethyl acetate:hexanes (2:1) to give 16mg of pure product. FAB-MS: calculated for C<sub>53</sub>H<sub>53</sub>N<sub>7</sub>O<sub>2</sub> 851; found 858 (M+Li).

15

Step G: 3-Amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl-1H-1-benzazepin-3(R)-yl]butanamide

20

A solution of 3-t-butoxycarbonylamino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2-(N-triphenylmethyl)-tetrazol-5-yl][1,1'-biphenyl]-4-yl]methyl-1H-benzazepin-3(R)-yl]butanamide (14mg) in 0.3mL of methanol and 0.3mL of 9N HCl was stirred overnight at room temperature and under nitrogen. The reaction mixture was diluted with benzene and freeze-dried to give 12mg of crude product which was purified by RP-HPLC on a Dynamax C18 column, eluting with methanol/0.1% aqueous trifluoroacetic acid (linear gradient: 60% methanol to 20% methanol in ten minutes) to give 9.0mg of the title compound. FAB-MS: calculated for C<sub>29</sub>H<sub>31</sub>N<sub>7</sub>O<sub>2</sub> 510; found 511

- 190 -

(M+1).  $^1\text{H}$  NMR (400MHz, CD<sub>3</sub>OD): 1.35 (s, 3H), 1.38 (s, 3H), 2.1-2.85 (m, 6H), 4.39 (dd; 8, 13Hz; 1H), 4.95 (d, 16Hz, 1H), 5.39 (d, 16Hz, 1H), 7.1 (m, 2H), 7.2-7.32 (m, 7H), 7.55-7.70 (m, 3H).

5

Example 69

10        4'-[ [3(R)-[(3-Amino-3-methyl-1-oxobutyl)amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl]-[1,1'-biphenyl]-2-carboxamide, trifluoroacetate

Step A: 4-Methylphenyltrimethylstannane

15        41.4L of 1.0 M p-tolylmagnesium bromide in diethyl ether (41.4mol) was added dropwise, maintaining the temperature below -5°C, over 4 hours to a solution of 546g (2.79mol) of trimethyltin chloride in tetrahydrofuran (4L) under nitrogen at -10°C. The suspension was allowed to warm slowly to room temperature over 12h then saturated ammonium chloride solution (1L) was added followed by sufficient water (approximately 1L) to dissolve the precipitate. The solution was extracted with ether-hexane (1:1) (1x4L, 3x2L). The combined organic phases were washed with brine, dried over magnesium sulfate and the solvents removed under vacuum. Purification by flash chromatography on silica gel eluting with hexane/ethyl acetate (95:5) gave a pale yellow oil containing white crystals of 4,4'-dimethylbiphenyl which were removed by filtration to leave 711.3g (100%) of product.  $^1\text{H}$  NMR (300MHz, CDCl<sub>3</sub>): 0.30 (s, 9H), 2.34 (s, 3H), 7.19 (d, 7.7Hz, 2H), 7.40 (d, 7.7Hz, 2H).

- 191 -

Step B: 4'-Methyl-1,1'-biphenyl-2-nitrile

A solution of 2.0g (10.98mmol) of 2-bromo-benzonitrile, 2.93g (11.54mmol) of 4-methylphenyl-trimethylstannane (Step A) and 0.385g (0.55mmol) of bis-triphenylphosphine palladium (II) chloride in 50mL of dry dimethylformamide under nitrogen was heated at 100°C for 5.5 hours. The reaction was cooled to room temperature. The reaction was poured into 150mL of water and extracted with ether (3x150mL). The combined ether extracts were washed with water (4x100mL) and brine (100mL), dried over magnesium sulfate, filtered and the solvents removed under vacuum. Purification by flash chromatography on silica gel, eluting with hexane/ether (85:15), afforded 1.69g (80%) of the product contaminated with about 10% of 2-methylbenzonitrile.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 2.40 (s, 3H), 7.27 (d, 7Hz, 2H), 7.30-7.65 (m, 5H), 7.72 (d, 6Hz, 1H). FAB-MS: calculated for  $\text{C}_{14}\text{H}_{11}\text{N}$  193; found 193 ( $\text{M}^+$ , 100%).

20

Step C: 4'-Bromomethyl-1,1'-biphenyl-2-nitrile

To a solution of 699mg (3.62mmol) of the intermediate obtained in Step B in 15mL of carbon tetrachloride under nitrogen was added 708.3mg (3.98mmol, 1.1 eq) of N-bromosuccinimide and 59mg (0.36mmol, 0.1eq) of azobisisobutyronitrile (AIBN). The resulting mixture was heated in the dark for 4 hours. The mixture was cooled to room temperature and filtered. The filtrate was concentrated under vacuum to afford 948mg (96%) of the product as a yellow solid.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 4.51 (s, 2H),

- 192 -

7.25-7.80 (m, 8H). FAB-MS: calculated for C<sub>14</sub>H<sub>10</sub>BrN 272; found 272, 274 (M<sup>+</sup>). <sup>1</sup>H NMR indicates the presence of minor amounts of starting material and dibromo derivative.

5

Step D: 3-[[1-[[2'-Cyano-[1,1'-biphenyl]-4-yl]-methyl]-2,3,4,5-tetrahydro-2-oxo-1H-benzazepin-3(R)-yl]amino]-1,1-dimethyl-3-oxopropylcarbamic acid, 1,1-dimethylethyl ester

10

To a solution of 0.83g (2.21mmol) of 3-t-butoxycarbonylamino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-3(R)-yl]-butanamide (Example 57, Step A) in 6mL of dry dimethylformamide at room temperature under nitrogen was added 97mg of 60% sodium hydride dispersion in oil (58mg NaH, 2.43mmol, 1.1 eq). After stirring for 1 hour, a solution of 780mg (2.88mmol, 1.3 eq) of 4'-bromo-methyl-1,1'-biphenyl-2-nitrile (Step C) in 2.0mL of dimethylformamide was added via cannula. The flask which originally contained the bromide was washed with 1mL of dry dimethylformamide which was then added to the reaction mixture via cannula. After stirring at room temperature for 3 hours, the reaction was diluted with 200mL of ethyl acetate, washed with 50mL of water and 50mL of brine. The organic layer was separated, dried over magnesium sulfate, filtered and the solvent removed under vacuum. The residue was purified by flash chromatography on silica gel, eluting with ethyl acetate/hexane (6:4), to afford 1.13g (90%) of the product as a white foam. <sup>1</sup>H NMR (200MHz, CDCl<sub>3</sub>):

- 193 -

1.32 (s,3H), 1.40 (s,12H), 1.85 (m,1H), 2.35-2.70  
(m,5H), 4.52 (m,1H), 4.90 (d,12Hz,1H), 5.21  
(d,12Hz,1H), 6.70 (d,5Hz,1H), 7.10-7.65 (m,12H), 7.72  
(d,6Hz,1H). FAB-MS: calculated for C<sub>34</sub>H<sub>38</sub>N<sub>4</sub>O<sub>4</sub>  
5 566; found 567 (M+H).

Step E: 4'-[3(R)-[(3-t-Butoxycarbonylamino-3-methyl-

10 1-oxobutyl)amino]-2,3,4,5-tetrahydro-2-oxo-

1H-1-benzazepin-1-yl]methyl][1,1'-biphenyl]-

2-carboxamide

To a solution of 600mg (1.06mmol) of intermediate from Step D in 3.0mL of dimethylsulfoxide was added 15mg (0.106mmol) of anhydrous potassium carbonate followed by 0.88mL of 30% aqueous hydrogen peroxide. The resulting mixture was stirred at room temperature for 24 hours. The reaction was diluted with 100mL of chloroform and washed with water (30mL), 50% saturated aqueous sodium bisulfite (30mL) and brine (30mL). The organic layer was dried over sodium sulfate, filtered and the solvent removed under vacuum. The residue was purified by flash chromatography on silica gel, eluting with ethyl acetate, to afford 551.4mg (90%) of the product as a white solid. <sup>1</sup>H NMR (200MHz,CDCl<sub>3</sub>): 1.30 (s,3H), 1.37 (s,12H), 1.85 (m,1H), 2.45-2.70 (m,5H), 4.50 (m,1H), 4.85 (d,12Hz,1H), 5.18 (s,1H), 5.25 (d,12Hz,1H), 5.65 (s,1H), 6.78 (d,5Hz,1H), 7.2-7.5 (m,12H), 7.70 (dd;5,1Hz;1H). FAB-MS: calculated for C<sub>34</sub>H<sub>40</sub>N<sub>4</sub>O<sub>5</sub> 584; found 586.

30

- 194 -

Step F: 4'-[[(3(R)-[(3-Amino-3-methyl-1-oxobutyl)-amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl)methyl][1,1'-biphenyl]-2-carboxamide, trifluoroacetate]

5 To a slurry of 551mg (0.942mmol) of intermediate from Step E in 2mL of dry methylene chloride was added 5 drops of anisole followed by 2mL of trifluoroacetic acid. After stirring for 2 hours at room temperature all volatiles were removed under 10 vacuum. The resulting material was purified by reverse phase medium pressure liquid chromatography on C-8 eluting with methanol/0.1% aqueous trifluoroacetic acid (55:45) to afford 535mg (95%) of the title compound as a white solid.  $^1\text{H}$  NMR (200MHz,  $\text{CD}_3\text{OD}$ ): 1.42 (s, 3H), 1.48 (s, 3H), 2.00-2.65 (m, 6H), 4.42 (dd; 7, 10Hz; 1H), 4.95 (d, 14Hz, 1H), 5.25 (d, 14Hz, 1H), 7.2-7.6 (m, 12H). FAB-MS: calculated for  $\text{C}_{29}\text{H}_{32}\text{N}_4\text{O}_3$  484; found 485 ( $\text{M}+\text{H}$ , 100%).

20

#### Example 70

4'-[[(2,3,4,5-Tetrahydro-3(R)-[[3-[(2(R)-hydroxy-propyl)amino]-3-methyl-1-oxobutyl]amino-2-oxo-1H-1-benzazepin-1-yl)methyl][1,1'-biphenyl]-2-carboxamide, trifluoroacetate]

25 To a solution of 0.75g (1.25mmol) of 4'-[[(3(R)-[(3-amino-3-methyl-1-oxobutyl)amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl)methyl][1,1'-biphenyl]-2-carboxamide, trifluoroacetate (Example 69) in 15mL dry methanol was added 0.35mL (2.50mmol) of triethylamine, 4.0g of dry 4A powdered molecular sieves followed by a solution of 1.3g

- 195 -

(7.5mmol) of 2(R)-benzyloxypropanal (prepared according to the procedure of Hanessian and Kloss, Tetrahedron Lett. 1985, 26, 1261-1264.) in 5mL of dry methanol. The pH of the mixture was carefully  
5 adjusted to 6.5 with glacial acetic acid. The reaction was stirred for 5 hours at which time 7.5mL (7.5mmol) of a 1.0 M solution of sodium cyanoborohydride in tetrahydrofuran was added by syringe. The reaction was stirred for 3 days then  
10 filtered through a pad of Celite. To the filtrate was added 5.0mL of trifluoroacetic acid (CAUTION! evolution of hydrogen cyanide) and the resulting mixture stirred for three hours. The solvent was removed under vacuum to afford 5.0g of a clear oil.  
15 The crude intermediate was dissolved in 30mL of methanol and placed in a shaker bottle. To the solution was added 1mL of trifluoroacetic acid followed by 1.2g of 30% palladium on carbon. The mixture was hydrogenated at room temperature and 40psi for 36 hours. The mixture was filtered through Celite and the solvent removed under vacuum. The resulting material was purified by reverse phase medium pressure liquid chromatography on C-8 eluting with methanol/0.1% aqueous trifluoroacetic acid  
20 (60:40) to afford 640mg (78%) of the title compound as a white solid.  $^1\text{H}$  NMR (200MHz,  $\text{CD}_3\text{OD}$ ): 1.22 (d, 8Hz, 3H), 1.35 (s, 3H), 1.39 (s, 3H), 2.12 (m, 2H), 2.32 (m, 2H), 2.62 (m, 4H), 2.80 (dd; 8, 11Hz; 1H), 3.08 (dd; 3, 11Hz; 1H), 3.92 (m, 1H), 4.39 (dd; 7, 12Hz; 1H),  
25 5.02 (d, 14Hz, 1H), 5.18 (d, 14Hz, 1H), 7.20-7.55 (m, 12H). FAB-MS: calculated for  $\text{C}_{32}\text{H}_{38}\text{N}_4\text{O}_4$  542; found 544 ( $\text{M}+\text{H}$ , 100%).

- 196 -

Example 71

5       4'-[[3(R)-[[3-[(2(S),3-Dihydroxypropyl)amino]-3-methyl-1-oxobutyl]amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl][1,1'-biphenyl]-2-carboxamide, trifluoroacetate

To a solution of 0.585g (0.98mmol) of  
10      4'-[[3(R)-[(3-amino-3-methyl-1-oxobutyl)amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl][1,1'-biphenyl]-2-carboxamide, trifluoroacetate  
(Example 69) in 15mL dry methanol was added 0.27mL  
(1.95mmol) of triethylamine, 2.5g of dry 4A powdered  
15      molecular sieves followed by a solution of 1.3g  
(10mmol) of D-glyceraldehyde acetonide (used crude as  
prepared according to the procedure of Hertel, L.W.;  
Grossman, C. S.; Kroin, J.S. Synth. Comm. 1991, 21,  
151-154.) in 5mL of dry methanol. The pH of the  
mixture was carefully adjusted to 6.5 with glacial  
acetic acid ( 7 drops). The reaction was stirred for  
20      3 hours at which time 4.9mL (4.9mmol) of a 1.0M  
solution of sodium cyanoborohydride in tetrahydro-  
furan was added via syringe. The reaction was  
stirred for 20 hours then filtered through a pad of  
Celite. To the filtrate was added 5.0mL of  
25      trifluoroacetic acid (CAUTION! hydrogen cyanide  
evolved), 5.0ml of water and 5 drops of concentrated  
hydrochloric acid. The resulting mixture was stirred  
for 24 hours. The solvent was removed under vacuum  
30      to afford a clear oil which was purified by reverse  
phase medium pressure liquid chromatography on C-8  
eluting with methanol/ 0.1% aqueous trifluoroacetic  
acid (60:40) to afford 590mg (90%) of the title

- 197 -

compound as a white solid.  $^1\text{H}$  NMR (200MHz, CD<sub>3</sub>OD): 1.35 (s, 3H), 1.39 (s, 3H), 2.12 (m, 1H), 2.31 (m, 1H), 2.60 (m, 4H), 2.98 (dd; 8, 12Hz; 1H), 3.19 (dd; 3, 12Hz; 1H), 3.55 (dd; 3, 6Hz; 2H), 3.83 (m, 1H), 4.40 (dd; 8, 11Hz; 1H), 5.02 (d, 15Hz, 1H), 5.15 (d, 15Hz, 1H), 7.20-7.55 (m, 12H). FAB-MS: calculated for C<sub>32</sub>H<sub>38</sub>N<sub>4</sub>O<sub>5</sub> 558; found 560 (100%).

Example 72

10

N-Ethyl-4'--[[3(R)-[(3-amino-3-methyl-1-oxobutyl)-amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]-methyl][1,1'-biphenyl]-2-carboxamide, trifluoroacetate

15

Step A: 4'--[[2,3,4,5-Tetrahydro-3(R)-[[3-methyl-1-oxo-3-[(benzyloxy)carbonyl]amino]butyl]-amino]-2-oxo-1H-1-benzazepin-1-yl]methyl]-[1,1'-biphenyl]-2-carboxylic acid  
1,1-dimethylethyl ester

20

To a solution of 1.22g (3.0mmol) of 3-benzyl-oxycarbonylamino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-3(R)-yl]-butanamide (Example 1, Step F) in 10mL of dry dimethylformamide under nitrogen was added 131.6mg (3.29mmol) of 60% sodium hydride in oil. After stirring for 20 minutes, a solution of 1.14g (3.29mmol) of t-butyl 4'-bromo-methyl-1,1'-biphenyl-2-carboxylate (prepared according to the procedure of D.J. Carini, et. al. EPO publication 324,377) in 2.5mL of dimethylformamide

25

30

was added by cannula. The flask which originally contained the bromide was rinsed with 2.5mL dimethylformamide which was added to the reaction

- 198 -

mixture. After stirring at room temperature for 2 hours, the reaction was diluted with 400mL of ethyl acetate, washed with 100mL of water and 100mL of brine. The organic layer was dried over magnesium sulfate, filtered and the solvent removed under vacuum. The residue was purified by flash chromatography on silica gel eluting with ethyl acetate/hexane (55:45) to afford 1.74g (96%) of the product as a white foam.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.15 (s, 9H), 1.45 (s, 3H), 1.48 (s, 3H), 1.76 (m, 1H), 2.35-2.62 (m, 5H), 4.48 (m, 1H), 4.79 (d, 14Hz, 1H), 5.04 (t, 12Hz, 2H), 5.35 (d, 14Hz, 1H), 6.70 (d, 6Hz, 1H), 7.10-7.45 (m, 17H), 7.72 (m, 1H). FAB-MS: calculated for  $\text{C}_{41}\text{H}_{45}\text{N}_3\text{O}_6$  675; found 683 (M+Li).

Step B: 4'-[ [2,3,4,5-Tetrahydro-3(R)-[[3-methyl-1-oxo-3-[(benzyloxy)carbonyl]amino]buty1]-amino]-2-oxo-1H-1-benzazepin-1-yl]methyl]-[1,1'-biphenyl]-2-carboxylic acid

To a solution of 150mg (0.22mmol) of the intermediate from Step A in 1mL of dry methylene chloride was added 2 drops of anisole followed by 1mL of trifluoroacetic acid. The solution was stirred for 4 hours at room temperature. The solvent was removed under vacuum and the resulting oil was azeotroped with carbon tetrachloride (3x20mL) to afford 140mg (100%) of product as a white foam.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.38 (s, 6H), 1.65 (m, 1H), 2.10-2.40 (m, 3H), 2.61 (s, 2H), 4.45 (m, 1H), 4.62 (d, 14Hz, 1H), 5.06 (s, 2H), 5.27 (d, 14Hz, 1H), 7.00-7.36 (m, 15H), 7.42 (m, 1H), 7.55 (m, 1H), 7.68 (d, 7Hz, 1H), 7.95 (dd, 2,8Hz; 1H), 8.18 (br s, 1H). FAB-MS: calculated for  $\text{C}_{37}\text{H}_{37}\text{N}_3\text{O}_6$  619; found 642 (M+Na).

- 199 -

Step C: N-Ethyl-4'--[ [3(R)-[[3-(benzyloxycarbonyl)-amino-3-methyl-1-oxobutyl]amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]-methyl][1,1'-biphenyl-2-carboxamide]

To a slurry of 14mg (0.169mmol) of ethylamine hydrochloride in 1mL of dry methylene chloride under nitrogen at 0°C was added 0.047mL (0.339mmol) of triethylamine followed by a solution of 70mg (0.113mmol) of the intermediate from Step B in 1mL of methylene chloride. To this mixture was added 75mg (0.169mmol) of benzotriazol-1-yloxy-tris(dimethylamino)phosphonium hexafluorophosphate. The reaction mixture was slowly warmed to room temperature. After 2 hours the reaction was diluted with 75mL of ethyl acetate, washed with 25mL of 5% aqueous citric acid, 25mL of saturated aqueous sodium bicarbonate and 25mL of brine. The organic layer was dried over magnesium sulfate, filtered and the solvent removed under vacuum. The residue was purified by flash chromatography on silica gel eluting with ethyl acetate/hexane (9:1) to afford 74mg (100%) of the product as a white foam.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 0.75 (t, 6Hz, 3H), 1.35 (s, 3H), 1.38 (s, 3H), 1.76 (m, 2H), 2.35-2.62 (m, 5H), 3.10 (m, 2H), 4.48 (m, 1H), 4.82 (d, 14Hz, 1H), 5.04 (m, 3H), 5.30 (d, 14Hz, 1H), 5.57 (s, 1H), 6.65 (d, 6Hz, 1H), 7.10-7.45 (m, 15H), 7.62 (m, 1H). FAB-MS: calculated for  $\text{C}_{39}\text{H}_{42}\text{N}_4\text{O}_5$  646; found 669 ( $\text{M}+\text{Na}$ ).

30

- 200 -

Step D: N-Ethyl-4'-[[3(R)-[(3-amino-3-methyl-1-oxobutyl)amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl][1,1'-biphenyl]-2-carboxamide, trifluoroacetate

5 To a solution of 74mg (0.114mmol) of the intermediate obtained in Step C in 5mL of dry methanol was added 3 drops of trifluoroacetic acid and 15mg of 20% palladium hydroxide on carbon. The mixture was hydrogenated at room temperature and 10 40psi for 3 hours. The catalyst was removed by filtration through Celite and the solvent removed under vacuum. The resulting material was purified by reverse phase medium pressure liquid chromatography on C-8 eluting with methanol/0.1% aqueous trifluoroacetic acid (60:40) to afford 64mg (90%) of the title 15 compound as a white solid.  $^1\text{H}$  NMR (200MHz,  $\text{CD}_3\text{OD}$ ): 0.85 (t, 7Hz, 3H), 1.35 (s, 3H), 1.39 (s, 3H), 2.1 (m, 1H), 2.3 (m, 1H), 2.50-2.65 (m, 4H), 3.09 (q, 7Hz, 2H), 4.40 (dd; 6, 13Hz; 1H), 4.92 (d, 15Hz, 1H), 20 5.30 (d, 15Hz, 1H), 7.20-7.52 (m, 12H). FAB-MS: calculated for  $\text{C}_{31}\text{H}_{36}\text{N}_4\text{O}_3$  512; found 514 (100%).

Example 73

25 N-Ethyl-4'-[[3(R)-[[3-[(2(S),3-dihydroxypropyl)-amino]-3-methyl-1-oxobutyl]amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl][1,1'-biphenyl]-2-carboxamide, trifluoroacetate

30 The title compound was prepared from N-ethyl-4'-[[3(R)-[(3-amino-3-methyl-1-oxobutyl)amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl][1,1'-biphenyl]-2-carboxamide, trifluoroacetate

- 201 -

(Example 72) and D-glyceraldehyde acetonide (used crude as prepared according to the procedure of Hertel, L.W.; Grossman, C. S.; Kroin, J.S., Synth. Comm. 1991, 21, 151-154.) by the procedure described in Example 71.  $^1\text{H}$  NMR (200MHz, CD<sub>3</sub>OD): 0.87 (t, 7Hz, 3H), 1.35 (s, 3H), 1.39 (s, 3H), 2.10 (m, 1H), 2.35 (m, 1H), 2.50-2.65 (m, 4H), 2.85-3.25 (m, 4H), 3.55 (m, 2H), 3.83 (m, 1H), 4.40 (dd; 8, 12Hz; 1H), 5.00 (d, 15Hz, 1H), 5.25 (d, 15Hz, 1H), 7.20-7.52 (m, 12H). FAB-MS: calculated for C<sub>34</sub>H<sub>42</sub>N<sub>4</sub>O<sub>5</sub> 586; found 588 (100%).

Example 74

15 N-(2-Hydroxyethyl)-4'--[3(R)-[(3-amino-3-methyl-1-oxobutyl)amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl][1,1'-biphenyl]-2-carboxamide, trifluoroacetate

20 Step A: N-(2-Hydroxyethyl)-4'--[3(R)-[3-(benzyloxy-carbonyl)amino-3-methyl-1-oxobutyl]amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl][1,1'-biphenyl]-2-carboxamide To a solution of 70mg (0.11mmol) of

25 4'-[[2,3,4,5-tetrahydro-3(R)-[3-methyl-1-oxo-3-[(benzyloxycarbonyl)amino]butyl]amino]-2-oxo-1H-1-benzazepin-1-yl]methyl][1,1'-biphenyl]-2-carboxylic acid (Example 72, Step B) in 2mL of dry methylene chloride under nitrogen at 0°C was added 0.023mL (0.17mmol) of triethylamine followed by 55mg (0.12mmol) of benzotriazol-1-yloxy-tris(dimethylamino)phosphonium hexafluorophosphate. After 5

- 202 -

minutes, 0.010mL (0.12mmol) of ethanolamine was added to the reaction by syringe. The reaction mixture was slowly warmed to room temperature. After 2 hours, the reaction was diluted with 75mL of ethyl acetate, 5 washed with 25mL of 5% aqueous citric acid, 25mL of saturated sodium bicarbonate and 25mL of brine. The organic layer was dried over magnesium sulfate, filtered and the solvent removed under vacuum. The residue was purified by flash chromatography on 10 silica gel eluting with ethyl acetate/methanol (97:3) to afford 58mg (78%) of the product as a white foam.  
 $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.30 (s, 3H), 1.35 (s, 3H), 1.80 (m, 1H), 2.20-2.75 (m, 7H), 3.10-3.40 (m, 4H), 4.51 (m, 1H), 4.92 (d, 14Hz, 1H), 5.00 (s, 2H), 5.10 (d, 14Hz, 1H), 5.68 (s, 1H), 6.53 (d, 6Hz, 1H), 7.12-7.48 (m, 16H), 7.65 (d; 1, 6Hz; 1H). FAB-MS: calculated for  $\text{C}_{39}\text{H}_{42}\text{N}_4\text{O}_6$  662; found 686 ( $\text{M}+\text{Na}$ ).

Step B:  $\text{N}-(2\text{-Hydroxyethyl})-4'-(3(\text{R})-[3\text{-amino}-3-$   
20 methyl-1-oxobutyl]amino]-2,3,4,5-tetrahydro-  
2-oxo-1H-1-benzazepin-1-yl]methyl][1,1'-  
biphenyl]-2-carboxamide, trifluoroacetate  
The title compound was prepared from the  
intermediate obtained in Step A by the procedure  
described in Example 72, Step D.  $^1\text{H}$  NMR  
25 (200MHz,  $\text{CD}_3\text{OD}$ ): 1.35 (s, 3H), 1.39 (s, 3H), 2.00-2.40 (m, 2H), 2.41-2.68 (m, 4H), 3.21 (t, 5Hz, 2H), 3.41 (t, 5Hz, 2H), 4.40 (dd; 6, 10Hz; 1H), 4.95 (d, 15Hz, 1H), 5.26 (d, 15Hz, 1H), 7.20-7.52 (m, 12H). FAB-MS:  
30 calculated for  $\text{C}_{31}\text{H}_{36}\text{N}_4\text{O}_4$  528; found 530 (100%).

- 203 -

Example 75

5           N-(Phenylmethyl)-4'--[ [3(R)-[(3-amino-3-methyl-1-oxobutyl)amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl][1,1'-biphenyl]-2-carboxamide,  
trifluoroacetate

10           Step A: N-(Phenylmethyl)-4'--[ [3(R)-[ [3-(benzyloxy-carbonyl)amino-3-methyl-1-oxobutyl)amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl][1,1'-biphenyl]-2-carboxamide

15           The title compound was prepared from  
4'-[[2,3,4,5-tetrahydro-3(R)-[[3-methyl-1-oxo-3-[(benzyloxycarbonyl)amino]butyl]amino]-2-oxo-1H-1-benzazepin-1-yl]methyl][1,1'-biphenyl]-2-carboxylic acid (Example 72, Step B) and benzylamine according to the procedure described in Example 74, Step A. <sup>1</sup>H NMR (200MHz, CDCl<sub>3</sub>): 1.31 (s, 3H), 1.35 (s, 3H), 1.75 (m, 1H), 2.30-2.65 (m, 5H), 4.23 (d, 5Hz, 2H), 4.47 (m, 1H), 4.83 (d, 14Hz, 1H), 5.02 (s, 2H), 5.45 (m, 1H), 5.60 (s, 1H), 6.68 (d, 6Hz, 1H), 6.90 (m, 2H), 7.10-7.50 (m, 20H), 7.65 (m, 1H). FAB-MS: calculated for C<sub>44</sub>H<sub>44</sub>N<sub>4</sub>O<sub>5</sub> 708; found 709 (M+H), 731 (M+Na, 100%).

25           Step B: N-(Phenylmethyl)-4'--[ [3(R)-[(3-amino-3-methyl-1-oxobutyl)amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl][1,1'-biphenyl]-2-carboxamide, trifluoroacetate

30           The title compound was prepared from the intermediate obtained in Step A according to the procedure described in Example 72, Step D. <sup>1</sup>H NMR (200MHz, CD<sub>3</sub>OD): 1.35 (s, 3H), 1.39 (s, 3H), 2.00-2.45

- 204 -

(m, 2H), 2.48-2.68 (m, 4H), 4.28 (m, 2H), 4.40  
(dd; 8, 12Hz; 1H), 4.95 (d, 15Hz, 1H), 5.26 (d, 15Hz, 1H),  
7.05 (m, 2H), 7.15-7.55 (m, 15H), 8.47 (t, 6Hz, 1H).  
FAB-MS: calculated for C<sub>36</sub>H<sub>38</sub>N<sub>4</sub>O<sub>3</sub> 574; found 576  
5 (100%).

Example 76

10 N-[ (4-Methoxyphenyl)methyl]-4'--[ [3(R)-[(3-amino-3-  
methyl-1-oxobutyl)amino]-2,3,4,5-tetrahydro-2-oxo-1H-  
1-benzazepin-1-yl]methyl][1,1'-biphenyl]-2-carbox-  
amide, trifluoroacetate

15 Step A: N-[ (4-Methoxyphenyl)methyl]-4'--[ [3(R)-[(3-  
(benzyloxycarbonyl)amino-3-methyl-1-oxo-  
butyl)amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-  
benzazepin-1-yl]methyl][1,1'-biphenyl]-2-  
carboxamide

The title compound was prepared from  
20 4'--[ [2,3,4,5-tetrahydro-3(R)-[[3-methyl-1-oxo-3-  
[(benzyloxyoxy)carbonyl]amino]butyl]amino]-2-oxo-1H-  
1-benzazepin-1-yl]methyl][1,1'-biphenyl]-2-carboxylic  
acid (Example 72, Step B) and 4-methoxybenzylamine by  
the procedure described in Example 74, Step A. <sup>1</sup>H  
25 NMR (200MHz, CD<sub>3</sub>OD): 1.40 (s, 6H), 2.00 (m, 1H), 2.31  
(m, 1H), 2.50-2.75 (m, 4H), 3.82 (s, 3H), 4.27 (s, 2H),  
4.43 (dd; 7, 11Hz; 1H), 4.95 (d, 15Hz, 1H), 5.05  
(d, 12Hz, 1H), 5.15 (d, 12Hz, 1H), 5.37 (d, 15Hz, 1H), 6.87  
(m, 3H), 7.03 (d, 8Hz, 2H), 7.20-7.57 (m, 19H). FAB-MS:  
30 calculated for C<sub>45</sub>H<sub>46</sub>N<sub>4</sub>O<sub>6</sub> 738; found 740.

- 205 -

Step B: N-[(4-Methoxyphenyl)methyl]-4'--[[3(R)-[(3-amino-3-methyl-1-oxobutyl)amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl][1,1'-biphenyl]-2-carboxamide, trifluoroacetate

5

10

15

20

25

30

The title compound was prepared from the intermediate obtained in Step A by the procedure described in Example 72, Step D.  $^1\text{H}$  NMR (200MHz, CD<sub>3</sub>OD): 1.32 (s, 3H), 1.37 (s, 3H), 2.00-2.45 (m, 2H), 2.48-2.68 (m, 4H), 3.75 (s, 3H), 4.20 (s, 2H), 4.40 (dd; 8, 12Hz, 1H), 4.95 (d, 14Hz, 1H), 5.25 (d, 14Hz, 1H), 6.80 (d, 8Hz, 2H), 6.97 (d, 8Hz, 2H), 7.19-7.52 (m, 12H). FAB-MS: calculated for C<sub>37</sub>H<sub>40</sub>N<sub>4</sub>O<sub>4</sub> 604; found 606 (100%).

#### Example 77

N-[(4-Hydroxyphenyl)methyl]-4'--[[3(R)-[(3-amino-3-methyl-1-oxobutyl)amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl][1,1'-biphenyl]-2-carboxamide, trifluoroacetate

To a solution of 60.5mg (0.084mmol) of N-[(4-methoxyphenyl)methyl]-4'--[[3(R)-[(3-amino-3-methyl-1-oxobutyl)amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl][1,1'-biphenyl]-2-carboxamide, trifluoroacetate (Example 76) in 3mL of dry methylene chloride under nitrogen was added 0.42mL (0.42mmol) of 1.0 M solution of boron tribromide in methylene chloride. The reaction mixture was stirred for 2 hours then 2mL of water was added followed by sufficient methanol to dissolve any remaining precipitate. The solvent was removed under vacuum.

- 206 -

The resulting material was purified by reverse phase medium pressure liquid chromatography on C-8 eluting with methanol/ 0.1% aqueous trifluoroacetic acid (60:40) to afford 53mg (89%) of the title compound as a white solid.  $^1\text{H}$  NMR (200MHz, CD<sub>3</sub>OD): 1.39 (s, 3H), 1.45 (s, 3H), 2.10-2.50 (m, 2H), 2.52-2.72 (m, 4H), 4.23 (s, 2H), 4.48 (dd; 8, 12Hz; 1H), 5.02 (d, 14Hz, 1H), 5.30 (d, 14Hz, 1H), 6.72 (d, 8Hz, 2H), 6.94 (d, 8Hz, 2H), 7.20-7.57 (m, 12H). FAB-MS: calculated for C<sub>36</sub>H<sub>38</sub>N<sub>4</sub>O<sub>4</sub> 590; found 592 (100%).

Example 78

15 N,N-Diethyl-4'-[[3(R)-[(3-amino-3-methyl-1-oxobutyl)-amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-y1]-methyl][1,1'-biphenyl]-2-carboxamide. trifluoroacetate

Step A: N,N-Diethyl-4'-[[3(R)-[[3-(benzyloxycarbonyl)amino-3-methyl-1-oxobutyl)amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-y1]methyl][1,1'-biphenyl]-2-carboxamide  
20 Prepared from 4'-[[2,3,4,5-tetrahydro-3(R)-[[3-methyl-1-oxo-3-[(benzyloxy)carbonyl]amino]butyl]-amino]-2-oxo-1H-1-benzazepin-1-y1]methyl][1,1'-biphenyl]-2-carboxylic acid (Example 72, Step B) and diethylamine according to the procedure described in Example 74, Step A.  $^1\text{H}$  NMR (200MHz, CDCl<sub>3</sub>): 0.65 (t, 6Hz, 3H), 0.72-1.00 (m, 3H), 1.35 (s, 6H), 1.96 (m, 1H), 2.27 (m, 1H), 2.40-2.68 (m, 6H), 2.80-3.12 (m, 2H), 3.55 (m, 1H), 4.35 (dd; 6, 10Hz; 1H), 4.82 (dd, 6, 15Hz; 1H), 5.04 (dd; 9, 16Hz; 2H), 5.40 (dd; 8, 14Hz; 1H), 7.15-7.55 (m, 17H). FAB-MS: calculated for C<sub>41</sub>H<sub>46</sub>N<sub>4</sub>O<sub>5</sub> 674; found 676, 698 (M+Na).

- 207 -

Step B: N,N-Diethyl-4'-[[3(R)-[(3-amino-3-methyl-1-oxobutyl)amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl][1,1'-biphenyl]-2-carboxamide, trifluoroacetate

5                The title compound was prepared from the intermediate obtained in Step A by the procedure described in Example 72, Step D.  $^1\text{H}$  NMR (200MHz,  $\text{CD}_3\text{OD}$ ): 0.67 (t, 7Hz, 3H), 0.75-1.00 (m, 3H), 1.34 (s, 3H), 1.39 (s, 3H), 2.00-2.80 (m, 7H), 2.80-3.15 (m, 2H), 3.55 (m, 1H), 4.40 (dd; 7, 12Hz; 1H), 4.87 (d, 15Hz, 1H), 5.36 (d, 15Hz, 1H), 7.20-7.55 (m, 12H).  
10              FAB-MS: calculated for  $\text{C}_{33}\text{H}_{40}\text{N}_4\text{O}_3$  540; found 542 (100%).

15 Example 79

3-Amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-carboxy[1,1'-biphenyl]-4-yl]methyl]-1H-benzazepin-3(R)-yl]butanamide. trifluoroacetate

To a slurry of 54 mg (0.086mmol) of  
4' - [[2,3,4,5-tetrahydro-3(R)-[[3-methyl-1-oxo-3-  
[(benzyloxycarbonyl)amino]butyl]amino]-2-oxo-1H-1-  
benzazepin-1-yl)methyl][1,1'-biphenyl]-2-carboxylic  
acid (Example 72, Step B) in 2mL of dry methylene  
chloride under nitrogen was added 0.5mL (0.5mmol) of  
1.0M solution of boron tribromide in methylene  
chloride. The reaction mixture was stirred at room  
temperature for 30 minutes then quenched by the  
addition of 2mL of water. The remaining solids were  
dissolved by the addition of 2mL of methanol and the  
solvent were removed under vacuum. The resulting

## **SUBSTITUTE SHEET**

- 208 -

material was purified by reverse phase medium pressure liquid chromatography on C-8 eluting with methanol/0.1% aqueous trifluoroacetic acid (60:40) to afford 38mg (74%) of the title compound as an off-white solid.  $^1\text{H}$  NMR (200MHz, CD<sub>3</sub>OD): 1.34 (s, 3H), 1.39 (s, 3H), 2.00-2.46 (m, 2H), 2.50-2.70 (m, 4H), 4.42 (dd; 7, 11Hz; 1H), 4.99 (d, 14Hz, 1H), 5.23 (d, 14Hz, 1H), 7.2-7.6 (m, 11H), 7.76 (dd; 1, 7Hz; 1H). FAB-MS: calculated for C<sub>29</sub>H<sub>31</sub>N<sub>3</sub>O<sub>4</sub> 485; found 486 (M+H, 100%).

Example 80

15       3-Amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-hydroxymethyl[1,1'-biphenyl]-4-yl]methyl]-1H-benzazepin-3(R)-yl]butanamide, trifluoroacetate

Step A: 3-[(Benzylloxycarbonyl)amino]-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-hydroxymethyl[1,1'-biphenyl]-4-yl]methyl]-1H-benzazepin-3(R)-yl]butanamide

To a solution of 124mg (0.20mmol) of 4'-[[2,3,4,5-tetrahydro-3(R)-[[3-methyl-1-oxo-3-[(benzylloxycarbonyl)amino]butyl]amino]-2-oxo-1H-1-benzazepin-1-yl]methyl][1,1'-biphenyl]-2-carboxylic acid (Example 72, Step B) in 1.5mL of dry 1,2-dimethoxyethane at 0°C was added 0.046mL (0.421mmol) of N-methylmorpholine followed by 0.055mL (0.42mmol) of isobutyl chloroformate. The reaction mixture was stirred at 0°C for 1 hour then filtered. Solids were rinsed with 1,2-dimethoxyethane (2x1mL)

- 209 -

and the filtrates combined. To the filtrate at 0°C was added by syringe a solution of 30.3mg (0.801mmol) of sodium borohydride in 0.3mL of water. The reaction mixture was stirred at 0°C for 15 minutes then diluted with ethyl acetate (75mL). The organic layer was washed with saturated aqueous ammonium chloride (25mL) and brine (25mL), then dried over magnesium sulfate, filtered and the solvent was removed under vacuum. The residue was purified by flash chromatography on silica gel eluting with ethyl acetate/hexane (75:25) to afford 86mg (71%) of the product as a white solid.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.35 (s, 3H), 1.37 (s, 3H), 2.80 (m, 2H), 2.50 (m, 4H), 4.50 (m, 3H), 4.90 (d, 15Hz, 1H), 5.03 (dd; 10, 12Hz; 2H), 5.18 (d, 15Hz, 1H), 5.77 (s, 1H), 6.70 (d, 8Hz, 1H), 7.10-7.40 (m, 16H), 7.53 (m, 1H). FAB-MS: calculated for  $\text{C}_{37}\text{H}_{39}\text{N}_3\text{O}_5$  605; found 607 (30%).

Step B: 3-Amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-hydroxymethyl[1,1'-biphenyl]-4-yl]methyl]-1H-benzazepin-3(R)-yl]butanamide, trifluoroacetate

To a solution of 40mg (0.066mmol) of the intermediate obtained in Step A in 2mL of methanol was added 5mg of 20% palladium hydroxide on carbon catalyst. The resulting mixture was hydrogenated at room temperature and 1 atmosphere for 30 minutes. The catalyst was removed by filtration through Celite and the solvent removed under vacuum. The residue was purified by reverse phase medium pressure liquid chromatography on C-8 eluting with methanol/ 0.1%

- 210 -

aqueous trifluoroacetic acid (60:40) to afford 36mg (95%) of the title compound as a white solid.  $^1\text{H}$  NMR (200MHz, CD<sub>3</sub>OD): 1.34 (s, 3H), 1.37 (s, 3H), 2.0-2.7 (m, 6H), 4.44 (m, 3H), 4.95 (d, 15Hz, 1H), 5.25 (d, 15Hz, 1H), 7.1-7.5 (m, 11H), 7.55 (d, 6Hz, 1H).  
5 FAB-MS: calculated for C<sub>29</sub>H<sub>33</sub>N<sub>3</sub>O<sub>3</sub> 471; found 472 (M+H, 100%).

Example 81

10

3-Amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[(2'-methyl[1,1'-biphenyl]-4-yl)methyl]-1H-benzazepin-3(R)-yl]butanamide, trifluoroacetate

To a solution of 30mg (0.066mmol) of  
15 3-[(benzyloxycarbonyl)amino]-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-hydroxymethyl[1,1'-biphenyl]-4-yl)methyl]-1H-benzazepin-3(R)-yl]butanamide (Example 80, Step A) in 2mL of methanol was added 5mg of 20% palladium hydroxide on carbon catalyst and 1 drop of trifluoroacetic acid. The resulting mixture was hydrogenated at room temperature and 1 atmosphere for 4 hours. The catalyst was removed by filtration through Celite and the solvent removed under vacuum. The residue was purified by reverse phase medium pressure liquid chromatography on C-8 eluting with methanol/ 0.1% aqueous trifluoroacetic acid (65:35) to afford 30mg (100%) of the title compound as a white solid.  $^1\text{H}$  NMR (200MHz, CD<sub>3</sub>OD): 1.35 (s, 3H), 1.40 (s, 3H), 2.0-2.7 (m, 6H), 2.10 (s, 3H), 4.42 (dd, 8, 12Hz; 1H), 4.95 (d, 14Hz, 1H), 5.27 (d, 14Hz, 1H), 7.1-7.4 (m, 12H). FAB-MS: calculated for C<sub>29</sub>H<sub>33</sub>N<sub>3</sub>O<sub>2</sub> 455; found 456 (M+H, 100%).

- 211 -

Example 82

5       4'-[[3(R)-[[3-[(2(S),3(S),4-Trihydroxybutylamino]-3-methyl-1-oxobutyl]amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl)methyl][1,1'-biphenyl]-2-carboxamide, trifluoroacetate

Step A: 1-t-Butyldimethylsilyl-2,3-isopropylidene-D-threitol

10       To a solution of 1.0g (6.2mmol) of 2,3-isopropylidene-D-threitol in 6.0mL of dry dimethylformamide at 0°C was added 0.44g (6.5mmol) of imidazole followed by dropwise addition of a solution of 0.93g (6.2mmol) of t-butyldimethylsilyl chloride in 6.0mL of dimethylformamide. The reaction mixture was stirred at 0°C for 30 minutes then at room temperature for 1 hour. The reaction mixture was poured into 75mL water and extracted with ether (3x75mL). The combined ether extracts were washed with saturated aqueous sodium bicarbonate and with brine. The organic layer was dried over magnesium sulfate, filtered and the solvent removed under vacuum. The resulting oil was purified by flash chromatography on silica gel, eluting with hexanes/ethyl acetate (75:25) to afford 0.70g (41%) of product as a clear oil.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 0.07 (s, 6H), 0.90 (s, 9H), 1.39 (s, 3H), 1.41 (s, 3H), 3.60-4.00 (m, 7H). FAB-MS: calculated for  $\text{C}_{13}\text{H}_{28}\text{O}_4\text{Si}$  276; found 261 (M-15, 10%).

30

- 212 -

Step B: 5(S)-t-Butyldimethylsilyloxyethyl-2,2-dimethyl-1,3-dioxolan-4(R)-carboxaldehyde

To a solution of 0.676g (2.44mmol) of the intermediate obtained in Step A in 35mL of dry methylene chloride was added 3mL of dry dimethylsulfoxide followed by 2.8mL (20.2mmol) of triethylamine. To this solution was added 1.61g (10.1mmol) of pyridine sulfur trioxide complex in three portions over a 5 minute period. The reaction mixture was stirred at room temperature for 2 hours at which time it was diluted with 250mL of ethyl acetate. The mixture was transferred to a separatory funnel and washed with 1N HCl (2x50mL), saturated aqueous sodium bicarbonate (50mL) and brine (50mL). The organic layer was dried over magnesium sulfate, filtered, and the solvent removed under vacuum to afford 672mg (100%) of product which was used in the next reaction without further purification.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 0.09 (s, 6H), 0.87 (s, 9H), 1.40 (s, 3H), 1.45 (s, 3H), 3.78 (d, 4Hz, 2H), 4.10 (m, 1H), 4.30 (dd; 2, 6Hz; 1H), 9.85 (d, 2Hz, 1H).

Step C: 4'-[ [3(R)-[ [3-[ (2(S),3(S),4-Trihydroxybutyl-amino]-3-methyl-1-oxobutyl]amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]-methyl][1,1'-biphenyl]-2-carboxamide, trifluoroacetate

The title compound was prepared from 4'-[ [3(R)-[ (3-amino-3-methyl-1-oxobutyl)amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl][1,1'-biphenyl]-2-carboxamide, trifluoroacetate

- 213 -

(Example 69) and the intermediate obtained in Step B by the procedure described in Example 71.  $^1\text{H}$  NMR (200MHz, CD<sub>3</sub>OD): 1.37 (s, 3H), 1.41 (s, 3H), 2.12-2.40 (m, 2H), 2.55-2.71 (m, 4H), 3.05-3.25 (m, 2H), 3.59 (m, 3H), 3.92 (m, 1H), 4.40 (dd; 7, 12Hz; 1H), 5.02 (d, 15Hz, 1H), 5.15 (d, 15Hz, 1H), 7.20-7.58 (m, 12H). FAB-MS: calculated for C<sub>33</sub>H<sub>40</sub>N<sub>4</sub>O<sub>6</sub> 588; found 589 (M+H, 70%).

10

Example 83

4'-[ [3(R)-[(2(R)-Amino-3-hydroxy-1-oxopropyl)amino]-

2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl]-

[1,1'-biphenyl]-2-carboxamide, trifluoroacetate

15

Step A: 2(R)-t-Butoxycarbonylamino-3-(t-butoxy)-N-[2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-3(R)-yl]propanamide

To a solution of 200mg (1.13mmol) of 3(R)-amino-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one (Example 1, Step B) in 8mL of dry methylene chloride was added 0.206mL (1.48mmol) of triethylamine, 553mg (1.25mmol) of BOC-D-serine t-butyl ether followed by 602mg (1.36mmol) of benzotriazol-1-yloxytris(dimethyl-amino)phosphonium hexafluorophosphate. The reaction mixture was stirred at room temperature for 2 hours then diluted with 100mL of ethyl acetate, washed with 25mL of 5% aqueous citric acid, 25mL of saturated sodium bicarbonate and 25mL of brine. The organic layer was dried over magnesium sulfate, filtered and the solvents removed under vacuum. The residue was

- 214 -

purified by flash chromatography on silica gel,  
eluting with ethyl acetate/hexane (55:45) to afford  
480mg (100%) of the product as a white foam.  $^1\text{H}$  NMR  
(200MHz,  $\text{CDCl}_3$ ): 1.20 (s, 9H), 1.47 (s, 9H), 1.92  
5 (m, 1H), 2.55-3.02 (m, 3H), 3.38 (t, 8Hz, 1H), 3.78  
(m, 1H), 4.15 (m, 1H), 4.52 (m, 1H), 5.45 (s, 1H), 7.00  
(m, 1H), 7.10-7.35 (m, 3H), 7.68 (d, 4Hz, 1H), 8.05  
(s, 1H). FAB-MS: calculated for  $\text{C}_{22}\text{H}_{33}\text{N}_3\text{O}_5$  419;  
found 420 ( $\text{M}+\text{H}$ , 20%), 426 ( $\text{M}+\text{Li}$ , 40%).

10

Step B: 2(R)-t-Butoxycarbonylamino-3-(t-butoxy)-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-cyano[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]propanamide

15

Prepared from the intermediate obtained in Step A and 4'-bromomethyl-1,1'-biphenyl-2-nitrile (Example 69, Step C) by the procedure described in Example 69, Step D.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.20 (s, 9H), 1.47 (s, 9H), 1.88 (m, 1H), 2.45-2.75 (m, 3H), 3.38 (dd, 6,8Hz; 1H), 3.78 (m, 1H), 4.15 (m, 1H), 4.52 (m, 1H), 4.97 (d, 14Hz, 1H), 5.21 (d, 14Hz, 1H), 5.40 (s, 1H), 7.1-7.5 (m, 11H), 7.6-7.8 (m, 2H). FAB-MS: calculated for  $\text{C}_{36}\text{H}_{42}\text{N}_4\text{O}_5$  610; found 618 ( $\text{M}+\text{Li}$ , 30%).

20

Step C: 4'-[[3(R)-[[2(R)-(t-Butoxycarbonyl)amino-3-hydroxy-1-oxopropyl]amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl]-[1,1'-biphenyl]-2-carboxamide

25

Prepared from the intermediate obtained in Step B by the procedure described in Example 69, Step E.  $^1\text{H}$  NMR (400MHz,  $\text{CDCl}_3$ ): 1.18 (s, 9H), 1.45

- 215 -

(s, 9H), 1.85 (m, 1H), 2.45 (m, 1H), 2.62 (m, 2H), 3.38  
5 (dd; 6, 8Hz; 1H), 3.72 (m, 1H), 4.12 (m, 1H), 4.47 (m, 1H),  
4.92 (d, 14Hz, 1H), 5.13 (s, 1H), 5.20 (d, 14Hz, 1H), 5.37  
(s, 2H), 7.17 (m, 3H), 7.2-7.4 (m, 6H), 7.40 (m, 1H),  
10 7.47 (m, 1H), 7.60 (s, 1H), 7.72 (d, 8Hz, 1H). FAB-MS:  
calculated for  $C_{36}H_{44}N_4O_6$  628; found 636 (M+Li, 40%).

Step D: 4'-[3(R)-[(2(R)-Amino-3-hydroxy-1-oxo-propyl)amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl][1,1'-biphenyl]-2-carboxamide, trifluoroacetate

The title compound was prepared from the intermediate obtained in Step C by the procedure described in Example 69, Step F.  $^1H$  NMR (200MHz, CD<sub>3</sub>OD): 2.10 (m, 1H), 2.37 (m, 1H), 2.62 (m, 2H), 3.8-4.1 (m, 3H), 4.42 (dd; 6, 11Hz; 1H), 4.95 (d, 14Hz, 1H), 5.27 (d, 14Hz, 1H), 7.2-7.6 (m, 12H). FAB-MS: calculated for  $C_{27}H_{28}N_4O_4$  472; found 473 (M+H, 100%).

20

#### Example 84

4'-[3(R)-[(2-Amino-2-methyl-1-oxopropyl)amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl][1,1'-biphenyl]-2-carboxamide, trifluoroacetate

30

Step A: 2-t-Butoxycarbonylamino-2-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-cyano[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-propanamide

- 216 -

Prepared from 2-t-butoxycarbonylamino-2-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-3(R)-yl]propanamide (Example 63, Step A) and 4'-bromomethyl-1-1'-biphenyl-2-nitrile (Example 69, Step C) by the procedure described in Example 69, Step D.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.39 (s, 9H), 1.41 (s, 3H), 1.45 (s, 3H), 1.83 (m, 1H), 2.4-2.8 (m, 3H), 4.48 (m, 1H), 4.90 (d, 16Hz, 1H), 4.93 (s, 1H), 5.22 (d, 16Hz, 1H), 7.1-7.5 (m, 10H), 7.60 (m, 1H), 7.72 (d, 6Hz, 1H). FAB-MS: calculated for  $\text{C}_{33}\text{H}_{36}\text{N}_4\text{O}_4$  552; found 554 (20%).

Step B: 4'-[[3(R)-[[2-(t-Butoxycarbonyl)amino-2-methyl-1-oxopropyl]amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl]-[1,1'-biphenyl]-2-carboxamide

Prepared from the intermediate obtained in Step A by the procedure described in Example 69, Step E.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.40 (s, 12H), 1.43 (s, 3H), 1.83 (m, 1H), 2.4-2.8 (m, 3H), 4.48 (m, 1H), 4.85 (d, 14Hz, 1H), 4.97 (s, 1H), 5.20 (s, 1H), 5.22 (d, 14Hz, 1H), 5.57 (s, 1H), 7.1-7.5 (m, 11H), 7.70 (dd, 1, 6Hz; 1H).

Step C: 4'-[[3(R)-[(2-Amino-2-methyl-1-oxopropyl)amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl][1,1'-biphenyl]-2-carboxamide, trifluoroacetate

The title compound was prepared from the intermediate obtained in Step B by the procedure described in Example 69, Step F.  $^1\text{H}$  NMR

- 217 -

(200MHz, CD<sub>3</sub>OD): 1.52 (s, 3H), 1.65 (s, 3H), 2.25  
10 (m, 2H), 2.60 (m, 2H), 4.40 (m, 1H), 5.00 (d, 7Hz, 1H),  
5.20 (d, 7Hz, 1H), 7.2-7.6 (m, 12H). FAB-MS:  
calculated for C<sub>28</sub>H<sub>30</sub>N<sub>4</sub>O<sub>3</sub> 470; found 471 (M+H, 100%).

5

Example 85

10 3-(2-Aminoethyl)amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-carboxy[1,1'-biphenyl]-4-yl]methyl]-1H-benzazepin-3(R)-yl]butanamide, dihydrochloride

15 Step A: 4'-[[2,3,4,5-Tetrahydro-3(R)-[[3-methyl-1-oxo-3-amino]butyl]amino]-2-oxo-1H-1-benzazepin-1-yl]methyl][1,1'-biphenyl]-2-carboxylic acid, 1,1-dimethylethyl ester, acetate

20 To a solution of 400mg (0.592mmol) of  
4'-[[2,3,4,5-tetrahydro-3(R)-[[3-methyl-1-oxo-3-[(benzyloxycarbonyl)amino]butyl]amino]-2-oxo-1H-1-benzazepin-1-yl]methyl][1,1'-biphenyl]-2-carboxylic  
acid 1,1-dimethylethyl ester (Example 72, Step A) in  
10mL of methanol was added 0.034mL (0.59mmol) of  
acetic acid and 80mg of 20% palladium hydroxide on  
carbon catalyst. The resulting mixture was  
25 hydrogenated at room temperature and 1 atmosphere for  
4 hours. The catalyst was removed by filtration  
through Celite and the filtrate concentrated under  
vacuum to afford 345mg (97%) of the product as a  
white solid. <sup>1</sup>H NMR (400MHz, CD<sub>3</sub>OD): 1.17 (s, 9H),  
30 1.35 (s, 3H), 1.42 (s, 3H), 1.95 (s, 3H), 2.15 (m, 1H),  
2.35 (m, 1H), 2.50 (d, 12Hz, 1H), 2.5-2.78 (m, 3H), 4.42

- 218 -

(dd; 8, 11Hz, 1H), 5.02 (d, 15Hz, 1H), 5.37 (d, 15Hz, 1H),  
7.1-7.6 (m, 11H), 7.67 (d, 8Hz, 1H). FAB-MS:  
calculated for C<sub>33</sub>H<sub>39</sub>N<sub>3</sub>O<sub>4</sub> 541; found 542 (M+H, 100%).

5       Step B: 2-(t-Butoxycarbonylamino)acetaldehyde  
To a solution of 700mg (4.34mmol) of  
2-(t-butoxycarbonylamino)ethanol in 35mL of dry  
methylene chloride was added 4.0mL of dimethyl-  
sulfoxide and 4.8mL (35mmol) of triethylamine,  
10      followed by 2.8g (17mmol) of pyridine sulfur trioxide  
complex in three portions over 5 minutes. The  
reaction was stirred at room temperature for 3 hours  
then diluted with 500mL of ether. The mixture was  
transferred to a separatory funnel and washed with 1N  
15      HCl (2x50mL), saturated aqueous sodium bicarbonate  
(100mL), and brine (100mL). The organic layer was  
dried over magnesium sulfate, filtered, and the  
solvent removed under vacuum to afford 550mg (80%) of  
product which was used without further purification.  
20      <sup>1</sup>H NMR (200MHz, CDCl<sub>3</sub>): 1.40 (s, 9H), 4.05 (d, 7Hz, 2H),  
5.17 (s, 1H), 9.62 (s, 1H).

25      Step C: 3-(2-Aminoethyl)amino-3-methyl-N-[2,3,4,5-  
tetrahydro-2-oxo-1-[[2'-carboxy-[1,1'-  
biphenyl]-4-yl]methyl]-1H-benzazepin-3(R)-  
yl]butanamide, dihydrochloride  
To a solution of 345mg (0.573mmol) of the  
intermediate obtained in Step A in 10mL of dry  
methanol was added 0.088mL (0.63mmol) of  
30      triethylamine, 3.4g of dry 4A powdered molecular  
sieves followed by a solution of 540mg (3.4mmol) of

- 219 -

2-(t-butoxycarbonylamino)acetaldehyde (Step B) in 5mL of dry methanol. The pH of the mixture was carefully adjusted to 6.5 with glacial acetic acid ( 7 drops).  
5 The reaction was stirred for 3 hours at which time 3.4mL (3.4mmol) of a 1.0 M solution of sodium cyanoborohydride in tetrahydrofuran was added by syringe. The reaction was stirred for 20 hours then filtered through a pad of Celite. To the filtrate was added 2.0mL of acetic acid (CAUTION! evolution  
10 of hydrogen cyanide). The resulting mixture was stirred for 3 hours. The solvent was removed under vacuum to afford a clear oil which was dissolved in 5mL of methylene chloride. To this solution was added 5 drops of anisole followed by 5mL of  
15 trifluoroacetic acid. The mixture was stirred for 4 hours at room temperature then all volatiles removed under vacuum to give an oil which was purified by reverse phase medium pressure liquid chromatography on C-8 eluting with methanol/0.1% aqueous trifluoroacetic acid (55:45). The product thus  
20 obtained was converted to its dihydrochloride salt by dissolving it in 10mL of 6 N HCl followed by evaporation under vacuum. The cycle was repeated three times to afford 273mg (79%) of the title  
25 compound as an off-white solid.  $^1\text{H}$  NMR (200MHz,CD<sub>3</sub>OD): 1.45 (s,3H), 1.51 (s,3H), 2.1-2.5 (m,2H), 2.5-2.7 (m,4H), 3.2-3.5 (m,4H), 4.42 (dd;8,11Hz;1H), 5.00 (d,15Hz,1H), 5.22 (d,15Hz,1H), 7.2-7.6 (m,11H), 7.78 (d,6Hz,1H). FAB-MS:  
30 calculated for C<sub>31</sub>H<sub>36</sub>N<sub>4</sub>O<sub>4</sub> 528; found 529 (M+H,100%).

- 220 -

Example 86

3-[(2(S)-Hydroxypropyl)amino]-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, trifluoroacetate

Step A: 3-[(2-(S)-Benzyl oxypropyl)amino]-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]butanamide, trifluoroacetate

To a solution of 0.20g (0.34mmol) of 3-amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, trifluoroacetate (Example 1) in 8mL of dry methanol was added 0.096mL (2.50mmol) of triethylamine, 1.0g of dry 4A powdered molecular sieves followed by a solution of 0.296g (1.80mmol) of (S)-2-benzyl oxypropanal (prepared from ethyl-L-lactate according to the procedure of Hanessian and Kloss, Tetrahedron Lett. 1985, 26, 1261-1264.) in 2mL of dry methanol. The pH of the mixture was carefully adjusted to 6.5 with glacial acetic acid. The reaction was stirred for 2 hours at which time 2.06mL (2.06mmol) of a 1.0 M solution of sodium cyanoborohydride in tetrahydrofuran was added by syringe. The reaction was stirred for 24 hours then filtered through a pad of Celite. To the filtrate was added 5.0mL of trifluoroacetic acid (CAUTION! evolution of hydrogen cyanide) and the

- 221 -

resulting mixture was stirred for three hours. The solvent was removed under vacuum to afford 1.6g of a clear oil which was purified by reverse phase medium pressure liquid chromatography on C-8 eluting with methanol/0.1% aqueous trifluoroacetic acid (65:35) to afford 254mg (100%) of the product as a white solid.  
5           <sup>1</sup>H NMR (200MHz,CD<sub>3</sub>OD): 1.28 (d,6Hz,3H), 1.35 (s,3H), 1.40 (s,3H), 2.10 (m,1H), 2.2-2.7 (m,5H), 2.95 (m,1H), 3.20 (m,1H), 3.83 (m,1H), 4.42 (m,1H), 4.50 (d,11Hz,1H), 4.63 (d,11Hz,1H), 5.20 (d,15Hz,1H), 6.95 (d,8Hz,2H), 7.1-7.7 (m,15H). FAB-MS: calculated for C<sub>39</sub>H<sub>43</sub>N<sub>7</sub>O<sub>3</sub> 657; found 658 (M+H,100%).  
10

15           Step B: 3-[(2(S)-Hydroxypropyl)amino]-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, trifluoroacetate

20           A solution of 250mg (0.324mmol) of the intermediate prepared in Step A in 5mL of methanol was placed in a shaker bottle. To the solution was added 3 drops of trifluoroacetic acid and 0.1g of 30% palladium on carbon. The mixture was hydrogenated at room temperature and 40psi for 3 days. The catalyst  
25           was removed by filtration through Celite and the filtrate evaporated under vacuum. The resulting material was purified by reverse phase medium pressure liquid chromatography on C-8 eluting with methanol/0.1% aqueous trifluoroacetic acid (60:40) to afford 149mg (64%, Steps A + B) of the title compound  
30

- 222 -

as a white solid.  $^1\text{H}$  NMR (200MHz, CD<sub>3</sub>OD): 1.20 (d, 6Hz, 3H), 1.35 (s, 3H), 1.40 (s, 3H), 2.10 (m, 1H), 2.2-2.6 (m, 5H), 2.78 (m, 1H), 3.08 (m, 1H), 3.92 (m, 1H), 4.35 (dd; 7, 10Hz; 1H), 4.95 (d, 14Hz, 1H), 5.18 (d, 14Hz, 1H), 7.00 (d, 8Hz, 2H), 7.1-7.4 (m, 6H), 7.5-7.7 (m, 4H). FAB-MS: calculated for C<sub>32</sub>H<sub>37</sub>N<sub>7</sub>O<sub>3</sub> 567; found 568 (M+H, 100%).

Example 87

10

3-[[2-(t-Butoxycarbonylamino)ethyl]amino]-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)-[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-y1]-butanamide, trifluoroacetate

15

To a solution of 485mg (0.833mmol) of 3-amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-y1]-butanamide, trifluoroacetate (Example 1) in 8mL of dry methanol was added 0.232mL

20

(1.67mmol) of triethylamine, 2.5g of dry 4A powdered molecular sieves followed by a solution of 200mg (1.25mmol) of 2-(t-butoxycarbonylamino)acetaldehyde (Example 85, Step B) in 1mL of dry methanol. The pH of the mixture was carefully adjusted to 6.5 with

25

glacial acetic acid. The reaction was stirred for 2 hours at which time 5.0mL (5.0mmol) of a 1.0 M solution of sodium cyanoborohydride in tetrahydrofuran was added by syringe. The reaction was stirred for 20 hours then filtered through a pad of Celite.

30

To the filtrate was added 1.0mL of acetic acid (CAUTION! evolution of hydrogen cyanide). The

- 223 -

resulting mixture was stirred for 30 minutes. The solvent was removed under vacuum to afford a clear oil which was purified by reverse phase high pressure liquid chromatography on C-18 eluting with  
5 methanol/0.1% aqueous trifluoroacetic acid (65:35) to afford 347mg (54%) of the title compound as a white solid.  $^1\text{H}$  NMR (200MHz, CD<sub>3</sub>OD): 1.30 (s, 9H), 1.35 (s, 3H), 1.39 (s, 3H), 2.10 (m, 1H), 2.2-2.6 (m, 5H), 3.10 (m, 2H), 3.35 (m, 2H), 4.39 (dd; 8, 11Hz; 1H), 4.95 (d, 15Hz, 1H), 5.21 (d, 15Hz, 1H), 7.05 (m, 2H), 7.2-7.5 (m, 7H), 7.5-7.7 (m, 3H). FAB-MS: calculated for C<sub>36</sub>H<sub>44</sub>N<sub>8</sub>O<sub>4</sub> 652; found 654 (100%).

Example 88

15

3-[(2-Aminoethyl)amino]-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, di(trifluoroacetate)

20

The title compound was prepared from 3-[(2-t-butoxycarbonylamino)ethyl]amino]-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)-[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, monotrifluoroacetate (Example 87) by the procedure described in Example 69, Step F.  $^1\text{H}$  NMR (200MHz, CD<sub>3</sub>OD): 1.38 (s, 3H), 1.42 (s, 3H), 2.12 (m, 1H), 2.2-2.7 (m, 5H), 3.33 (m, 4H), 4.35 (dd; 6, 11Hz; 1H), 4.85 (d, 15Hz, 1H), 5.21 (d, 15Hz, 1H), 7.00 (d, 8Hz, 2H), 7.1-7.4 (m, 7H), 7.5-7.7 (m, 3H).

25

FAB-MS: calculated for C<sub>31</sub>H<sub>36</sub>N<sub>8</sub>O<sub>2</sub> 552; found 553 (M+H, 100%).

- 224 -

Example 89

5       3-Amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-  
[1-(carboxymethyl)tetrazol-5-yl][1,1'-biphenyl]-4-yl]-  
methyl]-1H-1-benzazepin-3(R)-yl]-butanamide,  
trifluoroacetate

10      Step A: 3-(t-Butoxycarbonylamino)-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1-  
(carboxymethyl)tetrazol-5-yl)[1,1'-  
biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-  
y1]-butanamide, t-butyl ester  
and,

15      3-(t-Butoxycarbonylamino)-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(2-  
(carboxymethyl)tetrazol-5-yl)[1,1'-  
biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-  
y1]-butanamide, t-butyl ester

20      To a solution of 101mg (0.166mmol) of  
3-(t-butoxycarbonylamino)-3-methyl-N-[2,3,4,5-  
tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-  
biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-y1]-  
butanamide (Example 16, Step A) in 1mL of acetone was  
added 0.028mL (0.20mmol) of triethylamine followed by  
25     dropwise addition of 0.029mL (0.18mmol) of t-butyl  
bromoacetate. The reaction mixture was stirred at  
room temperature for 1 hour then the solvent was  
removed under vacuum. The residue was dissolved in  
50mL of methylene chloride, washed with saturated  
30     aqueous sodium bicarbonate, dried over magnesium  
sulfate and filtered. The filtrate was evaporated

- 225 -

under vacuum to afford 139mg (100%) of product as a mixture of N-1 and N-2 tetrazole isomers.  $^1\text{H}$  NMR of mixture (200MHz,  $\text{CDCl}_3$ ): 1.30 (s, 6H), 1.40 (s, 6H), 1.50 (m, 36H), 1.90 (m, 2H), 2.4-2.7 (m, 8H), 3.80 (s, 2H), 4.07 (s, 2H), 4.52 (m, 2H), 4.80 (m, 2H), 5.37 (m, 2H), 6.72 (m, 2H), 7-0-7.4 (m, 16H), 7.4-7.8 (m, 6H). FAB-MS calculated for  $\text{C}_{40}\text{H}_{49}\text{N}_7\text{O}_6$  723; found 724 ( $\text{M}+\text{H}$ , 20%).

- 10      Step B: 3-Amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1-(carboxymethyl)tetrazol-5-yl)-[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, trifluoroacetate  
Prepared from the intermediate obtained in
- 15      Step A by the procedure described in Example 69, Step F. Separation of isomers by reverse phase high pressure liquid chromatography on C-18 eluting with methanol/0.1% aqueous trifluoroacetic acid afforded the title compound in addition to the N-2 isomer.  $^1\text{H}$
- 20      NMR (200MHz,  $\text{CD}_3\text{OD}$ ): 1.39 (s, 3H), 1.42 (s, 3H), 2.0-2.7 (m, 6H), 4.40 (dd, 8, 11Hz; 1H), 4.48 (s, 2H), 4.85 (d, 15Hz, 1H), 5.35 (d, 15Hz, 1H), 7.05 (d, 8Hz, 2H), 7.2-7.4 (m, 7H), 7.5-7.9 (m, 3H). FAB-MS: calculated for  $\text{C}_{31}\text{H}_{33}\text{N}_7\text{O}_4$  567; found 568 ( $\text{M}+\text{H}$ , 100%).
- 25

Example 90

3-Amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1-(carboxymethyl)tetrazol-5-yl)-[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, trifluoroacetate

- 226 -

The title compound was prepared from  
3-(t-butoxycarbonylamino)-3-methyl-N-[2,3,4,5-tetra-  
hydro-2-oxo-1-[[2'-(carboxymethyl)-tetrazol-5-y1]-  
[1,1'-biphenyl]-4-y1]methyl]-1H-1-benzazepin-3(R)-  
5 y1]-butanamide, t-butyl ester (Example 89, Step A) by  
the procedure described in Example 89, Step B. <sup>1</sup>H  
NMR (200MHz, CD<sub>3</sub>OD): 1.35 (s,3H), 1.42 (s,3H),  
2.0-2.6 (m,6H), 4.39 (dd;7,11Hz;1H), 4.90  
(d,14Hz,1H), 5.20 (d,14Hz,1H), 5.42 (s,2H), 7.04  
10 (d,6Hz,2H), 7.15 (d,6Hz,2H), 7.2-7.6 (m,7H), 7.75  
(m,1H). FAB-MS: calculated for C<sub>31</sub>H<sub>33</sub>N<sub>7</sub>O<sub>4</sub> 567;  
found 568 (M+H,100%).

Example 91

15

3-Amino-3-methyl-N-[2,3,4,5-tetrahydro-2,5-dioxo-1-  
[[2'-(1H-tetrazol-5-y1)[1,1'-biphenyl]-4-y1]methyl]-  
1H-1-benzazepin-3-y1]-butanamide, trifluoroacetate

20

Step A: 3-t-Butoxycarbonylamino-3-methyl-N-[2,3,4,5-  
tetrahydro-2,5-dioxo-1H-1-benzazepin-3-y1]-  
butanamide

25

To a solution of 120mg (0.531mmol) of  
3-t-butoxycarbonylamino-2,3,4,5-tetrahydro-1H-1-  
benzazepin-2,5-dione (prepared by the procedure of F.  
Stewart, Australian J. Chem. 1980, 33, 633-640.) in  
2mL of methanol was added 2mL of 9 N hydrochloric  
acid. The mixture was stirred at room temperature  
for 24 hours and solvent was removed under vacuum.

30

To the resulting solid in 3mL of dry  
methylene chloride was added 0.22mL (1.6mmol) of

- 227 -

triethylamine, 115mg (0.531mmol) of 3-t-butoxy-carbonylamino-3-methyl butanoic acid (Example 31, Step E) followed by 235mg (0.531mmol) of benzotriazol-1-yloxy-tris(dimethylamino)phosphonium hexafluorophosphate. The reaction mixture was stirred at room temperature for 2 hours. The reaction was diluted with 75mL of ethyl acetate, washed with 25mL of 5% aqueous citric acid, 25mL of saturated aqueous sodium bicarbonate and 25mL of brine. The organic layer was dried over magnesium sulfate, filtered and the solvent removed under vacuum. The residue was purified by flash chromatography on silica gel eluting with ethyl acetate/hexanes (65:35) to afford 109mg (51%) of the product as a white foam.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.33 (s, 3H), 1.39 (s, 12H), 2.49 (d, 12Hz, 1H), 2.75 (d, 12Hz, 1H), 2.9 (m, 1H), 3.27 (dd; 2, 16Hz; 1H), 5.05 (m, 2H), 7.05 (t, 6Hz, 1H), 7.24 (t, 6Hz, 1H), 7.50 (m, 1H), 7.82 (dd; 2, 8Hz; 1H), 8.85 (s, 1H). FAB-MS: calculated for  $\text{C}_{20}\text{H}_{27}\text{N}_3\text{O}_5$  389; found 390 ( $\text{M}+\text{H}$ , 60%).

Step B: 3-(t-Butoxycarbonylamino)-3-methyl-N-[2,3,-  
4,5-tetrahydro-2,5-dioxo-1-[[2'-(N-triphenyl-  
25 methyl)tetrazol-5-yl][1,1'-biphenyl]-4-yl]-  
methyl]-1H-1-benzazepin-3-yl]butanamide  
Prepared from the intermediate obtained in  
Step A and N-triphenylmethyl-5-[2-(4'-bromomethyl-  
biphen-4-yl)] tetrazole (Example 1, Step J) by the  
procedure described in Example 1, Step K.  $^1\text{H}$  NMR  
30 (200MHz,  $\text{CDCl}_3$ ): 1.35 (s, 3H), 1.40 (s, 12H), 2.49  
(d, 14Hz, 1H), 2.6-2.9 (m, 2H), 3.27 (m, 1H), 4.82

- 228 -

(d,15Hz,1H), 4.92 (d,15Hz,1H), 5.05 (s,1H), 5.15  
(m,1H), 6.8-7.6 (m,26H), 7.90 (m,1H). FAB-MS:  
calculated for C<sub>53</sub>H<sub>51</sub>N<sub>7</sub>O<sub>5</sub> 865; found 873 (M+Li).

5       Step C: 3-Amino-3-methyl-N-[2,3,4,5-tetrahydro-  
2,5-dioxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-  
biphenyl]-4-yl]-methyl]-1H-1-benzazepin-3-  
yl]butanamide, trifluoroacetate

10      To a solution of 68mg (0.078mmol) of the  
intermediate obtained in Step B in 3mL of methanol  
was added 14mg of palladium hydroxide catalyst. The  
mixture was hydrogenated at room temperature and 1  
atmosphere for 20 hours at which time the solids were  
filtered and the solvent removed under vacuum.

15      The resulting solid was dissolved in 3mL of  
methylene chloride. To this solution was added 3  
drops of anisole followed by 2mL of trifluoroacetic  
acid. The reaction mixture was stirred for 2 hours  
at room temperature, then all volatiles removed under  
20     vacuum. The resulting material was purified by  
reverse phase high pressure liquid chromatography on  
C-18, eluting with methanol/0.1% aqueous trifluoro-  
acetic acid (linear gradient; 50% methanol increased  
to 55% methanol over 12 minutes) to afford 16.5mg  
25     (33%) of the title compound as a white solid. <sup>1</sup>H NMR  
(200MHz,CD<sub>3</sub>OD): 1.37 (s,3H), 1.40 (s,3H), 2.59  
(dd;14,16Hz;2H), 2.9-3.2 (m,2H), 4.97 (d,15Hz,1H),  
5.17 (dd;4,12Hz;1H), 5.25 (d,15Hz,1H), 7.00  
(d,8Hz,2H), 7.12 (d,8Hz,2H), 7.37 (m,2H), 7.4-7.7  
30     (m,6H). FAB-MS: calculated for C<sub>29</sub>H<sub>29</sub>N<sub>7</sub>O<sub>3</sub> 523;  
found 524 (M+H,100%).

- 229 -

Example 92

5           3-Amino-3-methyl-N-[5-hydroxy-2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]-methyl]-1H-1-benzazepin-3-yl]-butanamide,  
trifluoroacetate

10          To a solution of 23mg (0.036mmol) of  
3-amino-3-methyl-N-[2,3,4,5-tetrahydro-2,5-dioxo-1-  
[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H  
15         -1-benzazepin-3-yl]-butanamide, trifluoroacetate  
(Example 91) in 1mL of methanol/water (4:1) was added  
14mg (0.36mmol) of sodium borohydride. The reaction  
mixture was stirred for 1 hour then quenched by the  
addition of 5 drops of trifluoroacetic acid. The  
solvent was removed under vacuum and the resulting  
15         material was purified by reverse phase high pressure  
liquid chromatography on C-18 eluting with  
methanol/0.1% aqueous trifluoroacetic acid (55:45) to  
afford 18mg (78%) of the title compound as a white  
20         solid.  $^1\text{H}$  NMR (200MHz,CD<sub>3</sub>OD): 1.37 (s,3H), 1.40  
(s,3H), 2.17 (m,1H), 2.3-2.6 (m,3H), 4.30  
(dd;8,10Hz;1H), 4.67 (dd;6,10Hz;1H), 4.95  
(d,15Hz,1H), 5.23 (d,15Hz,1H), 7.00 (d,8Hz,2H), 7.20  
(d,8Hz,2H), 7.35 (m,3H), 7.5-7.7 (m,5H). FAB-MS:  
25         calculated for C<sub>29</sub>H<sub>31</sub>N<sub>7</sub>O<sub>3</sub> 525; found 526 (M+H,100%).

Example 93

30          4'-[[3(R)-[(3-Amino-3-methyl-1-oxobutyl)amino]-  
2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl]-  
[1,1'-biphenyl]-2-thioamide, trifluoroacetate

- 230 -

Step A: 4'-[3(R)-[(3-t-Butoxycarbonylamino-3-methyl-1-oxobutyl)amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl][1,1'-biphenyl]-2-thioamide

5           A solution of 380mg (0.67mmol) of 3-[[1-  
[[2'-cyano-[1,1'-biphenyl]-4-yl]methyl]-2,3,4,5-  
tetrahydro-2-oxo-1H-benzazepin-3(R)-yl]amino]-1,1-  
dimethyl-3-oxopropylcarbamic acid, 1,1-dimethylethyl  
10          ester (Example 69, Step D), in 5mL of pyridine was  
placed in a bomb and treated with 5mL of  
triethylamine and excess hydrogen sulfide was  
introduced under pressure. The bomb was sealed and  
heated for 12 hours at 90°C. The bomb was vented  
into 5 M sodium hydroxide and the contents poured  
15          into 40mL of water, then extracted with ether (3x).  
The combined extracts were washed with water (3x),  
dried over magnesium sulfate, filtered and evaporated  
under vacuum to afford 330mg (0.53mmol, 82%) of  
product.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.38 (s, 6H), 1.45  
20          (s, 9H), 1.90 (m, 1H), 2.4-2.7 (m, 4H), 2.92 (m, 1H),  
4.55 (m, 1H), 4.94 (d, 15Hz, 1H), 5.22 (d, 15Hz, 1H), 5.31  
(br s, 1H), 6.50 (br s, 1H), 6.70 (m, 1H), 7.1-7.5  
(m, 12H), 7.82 (m, 1H). FAB-MS (Li+ spike): calculated  
for  $\text{C}_{34}\text{H}_{40}\text{N}_4\text{O}_4\text{S}$  600; found 607 ( $\text{M}+\text{Li}$ , 65%).

25          Step B: 4'-[3(R)-[(3-Amino-3-methyl-1-oxobutyl)-  
amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-  
benzazepin-1-yl]methyl][1,1'-biphenyl]-2-  
thioamide, trifluoroacetate

30          A suspension of 80mg (0.13mmol) of the  
intermediate prepared in Step A in 10mL of methylene

- 231 -

chloride at room temperature was treated with 5mL of trifluoroacetic acid. After 45 minutes, all volatiles were removed under vacuum and the residue placed under high vacuum. Purification by preparative thin layer chromatography on a 1mm silica plate eluting with methylene chloride/methanol/acetic acid (9:1:0.1) afforded 43mg of the free amine which was converted to the trifluoroacetate salt by dissolving in 3mL of methanol and adding 0.5mL of trifluoroacetic acid, followed by removal of volatiles under vacuum. In this manner, 30mg (0.05mmol, 37%) of the title compound was obtained.

<sup>1</sup>H NMR (400MHz, CD<sub>3</sub>OD): 1.35 (s,3H), 1.39 (s,3H), 2.11 (m,1H), 2.31 (m,1H), 2.45-2.65 (m,4H), 4.40 (dd;7,11Hz;1H), 4.94 (d,15Hz,1H), 5.24 (d,15Hz,1H), 7.20-7.55 (m,12H). FAB-MS: calculated for C<sub>29</sub>H<sub>32</sub>N<sub>4</sub>O<sub>2</sub>S 500; found 501 (M+H,100%).

Example 94

20

N-Hydroxy-4'-[[[3(R)-[(3-amino-3-methyl-1-oxobutyl)-amino]2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]-methyl]-[1,1'-biphenyl]-2-carboxamide, trifluoroacetate

25

Step A: N-Hydroxy-4'-[[2,3,4,5-Tetrahydro-3(R)-[[3-methyl-1-oxo-3-[(benzyloxy)carbonyl]amino]butyl]-amino]-2-oxo-1H-1-benzazepin-1-yl]-methyl]-[1,1'-biphenyl]-2-carboxamide

30

Prepared from 4'-[[2,3,4,5-Tetrahydro-3(R)-[[3-methyl-1-oxo-3-[(benzyloxy)carbonyl]amino]butyl]-amino]-2-oxo-1H-1-benzazepin-1-yl]methyl][1,1'-

- 232 -

biphenyl]-2-carboxylic acid (Example 72, Step B) and (0-trimethylsilyl)hydroxylamine by the procedure described in Example 72, Step C.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.33 (s, 3H), 1.36 (s, 3H), 1.77 (m, 1H), 2.3-2.5 (m, 4H), 4.46 (m, 1H), 4.68 (d, 15Hz, 1H), 5.02 (s, 2H), 5.14 (d, 15Hz, 1H), 5.73 (br s, 1H), 6.82 (d, 7Hz, 1H), 7.1-7.5 (m, 16H), 7.60 (d, 8Hz, 1H). FAB-MS: calc. for  $\text{C}_{37}\text{H}_{38}\text{N}_4\text{O}_6$  634; found 635 ( $\text{M}+\text{H}, 1\%$ ).

10

Step B: N-Hydroxy-4'--[[3(R)-[(3-amino-3-methyl-1-oxo-butyl)amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl][1,1'-biphenyl]-2-carboxamide. trifluoroacetate

15

The title compound was prepared from the intermediate obtained in Step A by the procedure described in Example 79.  $^1\text{H}$  NMR (200MHz,  $\text{CD}_3\text{OD}$ ): 1.36 (s, 3H), 1.39 (s, 3H), 2.0-2.7 (m, 6H), 4.41 (dd, 7, 11Hz; 1H), 5.03 (d, 15Hz, 1H), 5.18 (d, 15Hz), 7.2-7.6 (m, 12H). FAB-MS: calculated for  $\text{C}_{29}\text{H}_{32}\text{N}_4\text{O}_4$  500; found 502 (100%).

### Example 95

25 4'--[[3(R)-[(3-Amino-3-methyl-1-oxobutyl)amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl]-2-nitro-1,1'-biphenyl. trifluoroacetate

30

Step A: 4'-Methyl-2-nitro-1,1'-biphenyl

Prepared from 4-methylphenyltrimethylstannane (Example 69, Step A) and 2-bromonitrobenzene by the procedure described in Example 69, Step B.

$^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 2.39 (s, 3H), 7.23 (m, 3H), 7.45 (m, 3H), 7.58 (t, 7Hz, 1H), 7.80 (d, 7Hz, 1H).

- 233 -

Step B: 4'-Bromomethyl-2-nitro-1,1'-biphenyl

Prepared from 4'-methyl-2-nitro-1,1'-biphenyl by the procedure described in Example 69,  
5 Step C.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 4.53 (s, 2H), 7.2-7.7 (m, 7H), 7.85 (m, 1H). FAB-MS: calculated for  $\text{C}_{14}\text{H}_{10}\text{BrN}$  272; found 272, 274 ( $M^+$ ).  $^1\text{H}$  NMR indicates the presence of minor amounts of starting material and dibromo derivative.

10

Step C: 3-[[1-[[2'-Nitro-[1,1'-biphenyl]-4-yl]-methyl]-2,3,4,5-tetrahydro-2-oxo-1H-benzazepin-3(R)-yl]amino]-1,1-dimethyl-3-oxopropylcarbamic acid. 1,1-dimethylethyl ester

15 Prepared from 4'-bromomethyl-2-nitro-1,1'-biphenyl and 3-t-butoxycarbonylamino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-3(R)-yl]-butanamide (Example 57, Step A) by the procedure described in Example 69, Step D.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.34 (s, 6H), 1.41 (s, 9H), 1.83 (m, 1H), 2.35-2.70 (m, 5H), 4.50 (m, 1H), 4.84 (d, 15Hz, 1H), 5.23 (d, 15Hz, 1H), 5.27 (s, 1H), 6.64 (d, 7Hz, 1H), 7.1-7.6 (m, 11H), 7.80 (d, 8Hz, 1H).

20 25 Step D: 4'-[[3(R)-[(3-Amino-3-methyl-1-oxobutyl)-amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl]-2-nitro-1,1'-biphenyl, trifluoroacetate

30 Prepared from the intermediate obtained in Step C by the procedure described in Example 69, Step F.  $^1\text{H}$  NMR (400MHz,  $\text{CD}_3\text{OD}$ ): 1.34 (s, 3H), 1.38 (s, 3H), 2.11 (m, 1H), 2.32 (m, 1H), 2.4-2.7 (m, 4H), 4.40

- 234 -

(dd;8,11Hz;1H), 4.99 (d,15Hz,1H), 5.21 (d,15Hz,1H),  
7.1-7.4 (m,8H), 7.45 (d,8Hz,1H), 7.54 (t,8Hz,1H),  
7.67 (t,8Hz,1H), 7.85 (d,8Hz,1H). FAB-MS:  
calculated for C<sub>28</sub>H<sub>30</sub>N<sub>4</sub>O<sub>4</sub> 486; found 487 (M+H, 90%).

5

Example 96

2-Amino-4'-'-[3(R)-[(3-amino-3-methyl-1-oxobutyl)-  
10 amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]-  
methyl]-1,1'-biphenyl trifluoroacetate

A solution of 200mg (0.34mmol) of the intermediate obtained in Example 95 (Step C) in 3mL of methanol was hydrogenated at room temperature and 40psi over 50mg of 5% palladium on carbon for 90 minutes. The catalyst was removed by filtration through Celite and the filtrate evaporated to dryness under vacuum to afford 189mg (0.34mmol, 100%) of product.

The above intermediate (90mg, 0.16mmol) was dissolved in 5mL of methylene chloride and treated with 0.25mL of trifluoroacetic acid. The mixture was stirred at room temperature for 14 hours then all volatiles removed under vacuum to give 46mg (0.10mmol, 62%) of the title compound. <sup>1</sup>H NMR (400MHz, CD<sub>3</sub>OD): 1.38 (s,3H), 1.42 (s,3H), 2.13 (m,1H), 2.32 (m,1H), 2.45-2.70 (m,4H), 4.40 (dd;7,11Hz;1H), 5.00 (d,15Hz,1H), 5.29 (d,15Hz,1H), 7.05-7.45 (m,12H). FAB-MS: calculated for C<sub>28</sub>H<sub>32</sub>N<sub>4</sub>O<sub>2</sub> 456; found 457 (M+H, 100%).

30

- 235 -

Example 97

5           4'-[[3(R)-[(3-Amino-3-methyl-1-oxobutyl)amino]-2,3,4,-  
5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl][1,1'-  
biphenyl]-2-carboxylic acid-N(2)-formylhydrazide,  
trifluoroacetate

10           Step A: 4'-[[3(R)-[(3-t-Butoxycarbonylamino-3-methyl-

15           1-oxobutyl)amino]-2,3,4,5-tetrahydro-2-oxo-

20           1H-1-benzazepin-1-yl]methyl][1,1'-biphenyl]-

25           2-carboxylic acid-N(2)-formylhydrazide

A solution of 100mg (0.17mmol) of 4'-[[3(R)-  
[(3-t-butoxycarbonylamino-3-methyl-1-oxobutyl)amino]-  
2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl]-  
[1,1'-biphenyl]-2-thioamide (Example 93, Step A) in  
6mL of tetrahydrofuran was treated with 0.08mL of  
methyl iodide and the resulting solution stirred at  
room temperature for 14 hours. The mixture was  
evaporated under vacuum to give the product which was  
used in the next step without purification.

20           A solution of 40mg (0.68mmol) of formic  
hydrazide in 2mL of dry dimethylformamide was added  
to the intermediate obtained above and the resulting  
solution stirred at room temperature for 14 hours.

25           An additional 80mg (1.4mmol) of formic hydrazide was  
added and stirring continued for another 5 hours.  
The reaction mixture was added to ethyl acetate and  
washed with water (4x). The organic layer was  
separated, dried over magnesium sulfate, filtered and  
solvents removed under vacuum. Purification by  
30           preparative thin layer chromatography on silica,  
eluting with methylene chloride/methanol (9:1),  
afforded 32mg (0.05mmol, 30%) of product. <sup>1</sup>H NMR

- 236 -

(200MHz, CDCl<sub>3</sub>): 1.30 (s, 6H), 1.37 (s, 9H), 1.84  
(m, 1H), 2.3-2.6 (m, 5H), 4.50 (m, 1H), 4.76  
(d, 15Hz, 1H), 4.98 (br s, 2H), 5.24 (d, 15Hz, 1H), 5.53  
(br s, 1H), 7.1-7.6 (m, 12H), 8.34 (br s, 1H).

5

Step B: 4'-[3(R)-[(3-Amino-3-methyl-1-oxobutyl)-  
amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benz-  
azepin-1-yl]methyl][1,1'-biphenyl]-2-carboxy-  
lic acid-N(2)-formyl hydrazide, trifluoro-  
acetate

10

Prepared from the intermediate obtained in  
Step A by the procedure described in Example 69, Step  
F. <sup>1</sup>H NMR (400MHz, CD<sub>3</sub>OD): 1.35 (s, 3H), 1.39  
(s, 3H), 2.12 (m, 1H), 2.22 (m, 1H), 2.35-2.70 (m, 4H),  
15 4.39 (m, 1H), 4.9 (m, 1H), 5.3 (m, 1H), 7.2-7.8 (m, 12H),  
8.20 (s, 1H). FAB-MS: calculated for C<sub>30</sub>H<sub>33</sub>N<sub>5</sub>O<sub>4</sub>  
527; found 534 (M+Li, 10%).

#### Example 98

20

4'-[3(R)-[(3-Amino-3-methyl-1-oxobutyl)amino]-2,3,4,-  
5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl]-2-  
(hydroxyacetyl)-1,1'-biphenyl, trifluoroacetate

25

Step A: 4'-Methyl-2-acetyl-1,1'-biphenyl

Prepared from 4-methylphenyltrimethyl-  
stannane (Example 69, Step A) and 2'-bromoacetophe-  
none by the procedure described in Example 69, Step  
B. <sup>1</sup>H NMR (200MHz, CDCl<sub>3</sub>): 1.98 (s, 3H), 2.37  
30 (s, 3H), 7.20 (s, 4H), 7.3-7.5 (s, 4H). FAB-MS:  
calculated for C<sub>15</sub>H<sub>14</sub>O 210; found 211 (M+H, 100%).

- 237 -

Step B: 4'-Methyl-2-(bromoacetyl)-1,1'-biphenyl

A solution of 4'-methyl-2-acetyl-1,1'-biphenyl (2.06g, 9.79mmol) in 10mL of glacial acetic acid was treated dropwise with a solution of bromine (1.722g, 1.07mmol) dissolved in 3.0mL of glacial acetic acid. After initiating the reaction with the first few drops of the bromine/acetic acid reagent by heating the reaction mixture at 30°C, the remainder of the bromine solution was added dropwise at 25-30°C. The reaction mixture was stirred at room temperature until the consumption of bromine was complete (approximately 2 hrs). The reaction mixture was diluted with 150mL of hexane then washed with water (3x50mL). The organic layer was removed, dried over magnesium sulfate, filtered and evaporated under vacuum to give 2.92g of an oil that was used in the next step without purification.  $^1\text{H}$  NMR (crude product) (200MHz;  $\text{CDCl}_3$ ): 2.38 (s, 3H), 3.66 (s, 2H), 7.21 (s, 4H), 7.3-7.6 (m, 4H).

20

Step C: 4'-Methyl-2-(acetoxymethyl)-1,1'-biphenyl

A solution of 1.44g (4.98mmol) of 4'-methyl-2-(bromoacetyl)-1,1'-biphenyl in 3.0mL of polyethyleneglycol-400 was added to a solution of 500mg of potassium acetate in 3.0mL of polyethyleneglycol-400. The suspension was heated at 100°C for 30 minutes, then cooled and diluted with 100mL of water. The resultant mixture was extracted with ether; the combined ether extracts were diluted with an equal volume of hexane and washed with water. The organic layer was separated, dried over magnesium sulfate, filtered, and the solvent was removed under

- 238 -

vacuum to yield an oil which was purified by silica chromatography, eluting with hexane/ethyl acetate (8:1) to give 444mg (1.66mmol, 33%) of product as an oil.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 2.06 (s, 3H), 2.39 (s, 3H), 4.46 (s, 2H), 7.23 (s, 4H), 7.3-7.6 (m, 4H).

5

Step D: 4'-Bromomethyl-2-(acetoxyacetyl)-1,1'-biphenyl

Prepared from 4'-methyl-2-(acetoxyacetyl)-1,1'-biphenyl by the procedure described in Example 10 69, Step C.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 2.01 (s, 3H), 4.49 (s, 4H), 7.15-7.55 (m, 8H).

15  
Step E: 3-[[1-[[2'-(acetoxyacetyl)-[1,1'-biphenyl]-4-yl]methyl]-2,3,4,5-tetrahydro-2-oxo-1H-benzazepin-3(R)-yl]amino]-1,1-dimethyl-3-oxo-propylcarbamic acid, 1,1-dimethylethyl ester  
Prepared from 4'-bromomethyl-2-(acetoxyacetyl)-1,1'-biphenyl and 3-t-butoxycarbonylamino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-3(R)-yl]-butanamide (Example 57, Step A) by the 20 procedure described in Example 69, Step D.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.33 (s, 6H), 1.39 (s, 9H), 1.87 (m, 1H), 2.03 (s, 3H), 2.35-2.70 (m, 5H), 4.36 (s, 2H), 4.51 (m, 1H), 4.85 (d, 15Hz, 1H), 5.28 (d, 15Hz, 1H), 6.66 (m, 1H). 25 7.1-7.6 (m, 12H).

- 239 -

Step F: 4'-[3(R)-[(3-Amino-3-methyl-1-oxobutyl)-amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl]-2-(hydroxyacetyl)-1,1'-biphenyl, trifluoroacetate

5

The title compound was prepared from the intermediate obtained in Step E by the procedure described in Example 69, Step F.  $^1\text{H}$  NMR (200MHz, CD<sub>3</sub>OD): 1.30 (s, 3H), 1.34 (s, 3H), 2.08 (m, 1H), 2.28 (m, 1H), 2.4-2.6 (m, 4H), 4.01 (s, 2H), 10 4.36 (dd; 8, 11Hz; 1H), 4.95 (d, 15Hz, 1H), 5.17 (d, 15Hz, 1H), 7.1-7.5 (m, 12H). FAB-MS (Li<sup>+</sup> spike): calculated for C<sub>30</sub>H<sub>33</sub>N<sub>3</sub>O<sub>4</sub> 499; found 500 (M+H, 18%), 506 (M+Li, 100%).

15

#### Example 99

4'-[3(R)-[(3-Amino-3-methyl-1-oxobutyl)amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]-methyl]-2-hydroxy-1,1'-biphenyl, trifluoroacetate

20

Step A: 4'-Methyl-2-hydroxy-1,1'-biphenyl

A solution of 4.2g (20.0mmol) of 4'-methyl-2-acetyl-1,1'-biphenyl (Example 98, Step A) in methylene chloride, under a nitrogen atmosphere, 25 was treated with 8.98g of 85% m-chloroperbenzoic acid. The resultant suspension was cooled to 0 °C and treated dropwise with 1.54mL of trifluoroacetic acid over a 10 minute period. The reaction mixture was stirred at room temperature for 16 hours. The 30 reaction mixture was diluted with 50mL of methylene chloride and the solution was washed successively with 50mL of 10% sodium sulfite, 50mL of saturated aqueous potassium carbonate and water (3x50mL). The organic layer was removed and dried over magnesium

- 240 -

sulfate, then evaporated under vacuum to yield 4.1g of an oil. The oil was dissolved in 20mL of methanol and treated with 2.0mL of 5N aqueous sodium hydroxide. The reaction mixture was stirred at room 5 temperature for 1 hour. The pH of the solution was adjusted to 5-6 with acetic acid. After the methanol was removed under vacuum, the residue was taken up in ether, washed with water, dried over magnesium sulfate, filtered and evaporated under vacuum to yield 3.0g of crude product which was purified by preparative high pressure liquid chromatography on silica, eluting with hexane/ethyl acetate (10:1). In this manner, 1.85g (10.0mmol,50%) of the product was obtained as an oil.  $^1\text{H}$  NMR (200MHz,CDCl<sub>3</sub>): 2.40 (s,3H), 5.22 (br s,1H), 6.96 (m,2H), 7.2-7.4 (m,6H). EI-MS: calculated for C<sub>13</sub>H<sub>12</sub>O 184; found 184 (M<sup>+</sup>,100%).

Step B: 4'-Methyl-2-acetoxy-1,1'-biphenyl

20 A solution of 1.0g (5.4mmol) of 4'-methyl-2-hydroxy-1,1'-biphenyl in 2.0mL of pyridine was treated with 2mL of acetic anhydride. The reaction mixture was stirred at room temperature for 5 hours. The solvent was removed under vacuum to yield 1.11g (4.9mmol,90 %) of the product as an oil.  $^1\text{H}$  NMR (200MHz,CDCl<sub>3</sub>): 2.07 (s,3H), 2.36 (s,3H), 7.07 (dd;3,8Hz;1H), 7.15 (d,8Hz,2H), 7.2-7.4 (m,5H).

Step C: 4'-Bromomethyl-2-acetoxy-1,1'-biphenyl

30 Prepared from 4'-methyl-2-acetoxy-1,1'-biphenyl by the procedure described in Example 69, Step C.  $^1\text{H}$  NMR (200MHz,CDCl<sub>3</sub>): 2.05 (s,3H), 4.50 (s,2H), 7.08 (m,1H), 7.20-7.45 (m,7H).

- 241 -

Step D: 3-[[1-[[2'-acetoxy-[1,1'-biphenyl]-4-y1]-  
methy1]-2,3,4,5-tetrahydro-2-oxo-1H-benz-  
azepin-3(R)-y1]amino]-1,1-dimethyl-3-oxoprop-  
ylcarbamic acid, 1,1-dimethylethyl ester

5           Prepared from 4'-bromomethyl-2-acetoxy-1,1'-  
biphenyl and 3-t-butoxycarbonylamino-3-methyl-N-  
[2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-3(R)-y1]-  
butanamide (Example 57, Step A) by the procedure  
described in Example 69, Step D. <sup>1</sup>H NMR  
10          (200MHz, CDCl<sub>3</sub>): 1.38 (s, 6H), 1.45 (s, 9H), 1.85  
(m, 1H), 2.02 (s, 3H), 2.35-2.65 (m, 5H), 4.52 (m, 1H),  
4.84 (d, 15Hz, 1H), 5.30 (d, 15Hz, 1H), 6.71 (d, 7Hz, 1H),  
7.1-7.4 (m, 12H).

15          Step E: 4'-[[3(R)-[(3-Amino-3-methyl-1-oxobutyl)-  
amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benza-  
zepin-1-y1]methyl]-2-hydroxy-1,1'-biphenyl,  
trifluoroacetate

20          A solution of 468mg (0.78mmol) of the  
intermediate obtained in Step D in 25mL of methanol  
was treated with 4.0mL of 5N aqueous sodium hydroxide  
and the resultant solution stirred at room temperature  
for 1 hour. The solvent was removed under  
vacuum to yield the crude intermediate which was used  
25          without purification.

The intermediate obtained above was treated  
as described in Example 69, Step F to afford the  
title compound. <sup>1</sup>H NMR (400MHz, CD<sub>3</sub>OD): 1.34 (s, 3H),  
1.39 (s, 3H), 2.11 (m, 1H), 2.32 (m, 1H), 2.45-2.70  
30          (m, 4H), 4.41 (dd; 8, 11Hz; 1H), 4.95 (d, 15Hz, 1H), 5.23  
(d, 15Hz, 1H), 6.86 (d, 8Hz, 2H), 7.11 (m, 1H), 7.15-7.25  
(m, 5H), 7.35 (m, 2H), 7.45 (d, 8Hz, 2H).

- 242 -

Example 100

5           4'-[3(R)-[(3-Amino-3-methyl-1-oxobutyl)amino]2,3,-  
4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]- methyl]-  
2-(4-aminophenoxy)-1,1'-biphenyl, di(trifluoroacetate)

Step A: 4'-Methyl-2-(4-nitrophenoxy)-1,1'-biphenyl

10          A solution of 450mg (2.44mmol) of 4'-methyl-  
2-hydroxy-1-1'-biphenyl (Example 99, Step A) in 7.0mL  
of dimethylformamide was treated with 135mg of 60%  
sodium hydride (3.3mmol). The reaction mixture was  
stirred at room temperature for 30 minutes then  
treated with 428mg (3.03mmol) of 1-fluoro-2-nitro-  
benzene. The reaction mixture was heated at 100°C  
15          for 2 hours. The reaction mixture was cooled, poured  
into 100mL of water and the resultant mixture was  
extracted with ethyl ether (3x60mL). The combined  
extracts were washed with water (4x50mL), dried over  
magnesium sulfate, filtered and evaporated under  
vacuum. The residue was chromatographed on silica,  
20          eluting with hexane/ethyl acetate (10:1) to give  
737mg (99%) of the product.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ):  
2.28 (s, 3H), 6.83 (d, 8Hz, 2H), 7.08 (d, 8Hz, 2H),  
7.3-7.5 (m, 6H), 8.05 (d, 8Hz, 2H).

25

Step B: 4'-Bromomethyl-2-(4-nitrophenoxy)-1,1'-  
biphenyl

30          Prepared from 4'-methyl-2-(4-nitrophenoxy)-  
1,1'-biphenyl by the procedure described in Example  
69, Step C.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 4.43 (s, 2H),  
6.83 (d, 8Hz, 2H), 7.09 (d, 8Hz, 1H), 7.3-7.5 (m, 7H),  
8.04 (d, 8Hz, 2H).

- 243 -

Step C: 3-[[1-[2'-(4-nitrophenoxy)-[1,1'-biphenyl]-4-yl]methyl]-2,3,4,5-tetrahydro-2-oxo-1H-benzazepin-3(R)-yl]amino]-1,1-dimethyl-3-oxo-propylcarbamic acid, 1,1-dimethylethyl ester

5           Prepared from 4'-bromomethyl-2-(4-nitro-phenoxy)-1,1'-biphenyl and 3-t-butoxycarbonylamino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-3-(R)-yl]-butanamide (Example 57, Step A) by the procedure described in Example 69, Step D. <sup>1</sup>H NMR (200MHz, CDCl<sub>3</sub>): 1.32 (s, 6H), 1.38 (s, 9H), 1.78 (m, 1H), 2.3-2.7 (m, 5H), 4.47 (m, 1H), 4.75 (d, 15Hz, -1H), 5.13 (d, 15Hz, 1H), 6.63 (d, 7Hz, 1H), 6.75 (d, 8Hz, 2H), 7.05-7.50 (m, /11H), 7.97 (s, 1H), 7.98 (d, 8Hz, 2H).

10           Step D: 4'-[[3(R)-[(3-Amino-3-methyl-1-oxobutyl)-amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl]-2-(4-aminophenoxy)-1,1'-biphenyl, di(trifluoroacetate)

15           The intermediate obtained in Step C (140mg, 0.21mmol) was dissolved in 16mL of methanol and hydrogenated at room temperature and 40psi over 20mg of 10% palladium on carbon for 2 hours. The catalyst was removed by filtration through Celite and the filtrate evaporated under vacuum to yield 140mg of crude product which was used in the next step without purification.

20           The crude intermediate obtained above was converted to the title compound by treatment with trifluoroacetic acid according to the procedure described in Example 69, Step F. <sup>1</sup>H NMR (200MHz, CD<sub>3</sub>OD): 1.38 (s, 3H), 1.42 (s, 3H), 2.11 (m, 1H), 2.32

- 244 -

(m, 1H), 2.45-2.65 (m, 4H), 4.41 (dd, 8, 12Hz; 1H), 4.88 (d, 15Hz, 1H), 5.25 (d, 15Hz, 1H), 6.90 (d, 8Hz, 2H), 7.09 (d, 8Hz, 1H), 7.15-7.50 (m, 13H).

5

**Example 101**

3-[[3(R)-[(3-Amino-3-methyl-1-oxobutyl)amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl]phenyl-acetamide, trifluoroacetate

10

Step A: 3-(Bromomethyl)phenylacetonitrile

Prepared from 3-(methyl)phenylacetonitrile by the procedure described in Example 69, Step C.

15

$^1\text{H}$  NMR (300MHz,  $\text{CDCl}_3$ ): 3.73 (s, 2H), 4.45 (s, 2H), 7.24 (m, 1H), 7.33 (m, 3H).

20

Step B: 3-[[1-[[1-(Cyanomethyl)phenyl-3-yl]methyl]-2,3,4,5-tetrahydro-2-oxo-1H-benzazepin-3(R)-y1]amino]-1,1-dimethyl-3-oxopropylcarbamic acid, 1,1-dimethylethyl ester

25

Prepared from 3-(bromomethyl)phenylacetonitrile and 3-t-butoxycarbonylamino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-3(R)-y1]-butanamide (Example 57, Step A) by the procedure described in Example 69, Step D.

$^1\text{H}$  NMR

30

(400MHz,  $\text{CDCl}_3$ ): 1.33 (s, 3H), 1.34 (s, 3H), 1.40 (s, 9H), 1.83 (m, 1H), 2.4-2.6 (m, 5H), 3.65 (s, 2H), 4.48 (m, 1H), 4.86 (d, 15Hz, 1H), 5.12 (d, 15Hz, 1H), 5.23 (br s, 1H), 6.60 (d, 7Hz, 1H), 7.1-7.3 (m, 8H). FAB-MS: calculated for  $\text{C}_{29}\text{H}_{36}\text{N}_4\text{O}_4$  504; found 505 ( $\text{M}+\text{H}, 10\%$ ).

- 245 -

Step C: 3-[[3(R)-[(3-t-Butoxycarbonylamino-3-methyl-1-oxobutyl)amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl]phenylacetamide

Prepared from the intermediate obtained in

5 Step B by the procedure described in Example 69, Step E.  $^1\text{H}$  NMR (400MHz,  $\text{CDCl}_3$ ): 1.32 (s, 6H), 1.39 (s, 9H),  
1.90 (m, 1H), 2.4-2.6 (m, 5H), 3.46 (d, 15Hz, 1H), 3.50  
(d, 15Hz, 1H), 4.48 (m, 1H), 4.93 (d, 15Hz, 1H), 5.07  
(d, 15Hz, 1H), 5.49 (br s, 1H), 5.93 (br s, 1H), 6.65  
10 (d, 7Hz, 1H), 7.05-7.25 (m, 8H). FAB-MS: calculated  
for  $\text{C}_{29}\text{H}_{38}\text{N}_4\text{O}_4$  506; found 507 ( $\text{M}+\text{H}, 15\%$ ).

15 Step D: 3-[[3(R)-[(3-Amino-3-methyl-1-oxobutyl)-amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl]phenylacetamide, trifluoroacetate

The title compound was prepared from the intermediate obtained in Step C by the procedure described in Example 69, Step F.  $^1\text{H}$  NMR (200MHz,  
20  $\text{CD}_3\text{OD}$ ): 1.30 (s, 3H), 1.33 (s, 3H), 2.07 (m, 1H), 2.26  
(m, 1H), 2.4-2.6 (m, 4H), 3.39 (s, 2H), 4.33  
(dd; 8, 11Hz; 1H), 4.90 (d, 15Hz, 1H), 5.11 (d, 15Hz, 1H),  
7.08 (d, 8Hz, 1H), 7.1-7.2 (m, 5H), 7.25 (d, 2Hz, 2H).  
FAB-MS: calculated for  $\text{C}_{23}\text{H}_{28}\text{N}_4\text{O}_3$  422; found 423  
25 ( $\text{M}+\text{H}, 100\%$ ).

#### Example 102

30 3-[(2(R)-Hydroxypropyl)amino]-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, trifluoroacetate

- 246 -

Step A: 3-[(2-(R)-Benzylxypropyl)amino]-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]butanamide, trifluoroacetate

5

10

15

20

Prepared from 3-amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]butanamide, trifluoroacetate (Example 1) and (R)-2-benzylloxylpropanal (prepared from ethyl-D-lactate according to the procedure of Hanessian and Kloss, Tetrahedron Lett. 1985, 26, 1261-1264.) by the procedure described in Example 86, Step A. <sup>1</sup>H NMR (200MHz, CD<sub>3</sub>OD): 1.25 (d, 6Hz, 3H), 1.35 (s, 6H), 2.11 (m, 1H), 2.32 (m, 1H), 2.5-2.7 (m, 4H), 2.95 (m, 1H), 3.17 (m, 1H), 3.80 (m, 1H), 4.40 (m, 1H), 4.44 (d, 11Hz, 1H), 4.64 (d, 11Hz, 1H), 4.90 (d, 15Hz, 1H), 5.02 (d, 15Hz, 1H), 6.99 (d, 8Hz, 2H), 7.1-7.7 (m, 15H). FAB-MS: calculated for C<sub>39</sub>H<sub>43</sub>N<sub>7</sub>O<sub>3</sub> 657; found 658 (M+H, 100%).

25

Step B: 3-[(2(R)-Hydroxypropyl)amino]-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, trifluoroacetate

30

The title compound was prepared from the intermediate obtained in Step A by the procedure described in Example 86, Step B. <sup>1</sup>H NMR (400MHz, CD<sub>3</sub>OD): 1.22 (d, 6Hz, 3H), 1.37 (s, 3H), 1.39 (s, 3H), 2.10 (m, 1H), 2.31 (m, 1H), 2.45-2.70 (m, 4H), 2.81 (dd; 10, 12Hz; 1H), 3.08 (dd; 4, 12Hz; 1H), 3.92 (m, 1H), 4.36 (dd; 7, 11Hz; 1H), 4.93 (d, 15Hz, 1H), 5.17

- 247 -

(d,15Hz,1H), 7.04 (d,8Hz,2H), 7.19 (d,8Hz,2H),  
7.20-7.35 (m,4H), 7.54 (m,2H), 7.65 (m,2H).

FAB-MS: calculated for  $C_{32}H_{37}N_7O_3$  567; found 568  
(M+H,45%).

5

### Example 103

10 2-[(2(R)-Hydroxypropyl)amino]-2-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-propanamide, trifluoroacetate

15 The title compound was prepared from 2-amino-2-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-propanamide, trifluoroacetate (Example 63) and (R)-2-benzyloxypropanal (prepared from ethyl-D-lactate according to the procedure of Hanessian and Kloss, Tetrahedron Lett. 1985, 26, 1261-1264.) by the procedures described in Example 20 86.  $^1H$  NMR (200MHz, CD<sub>3</sub>OD): 1.16 (d,6Hz,3H), 1.55 (s,3H), 1.64 (s,3H), 2.22 (m,2H), 2.49 (m,2H), 2.74 (dd;9,12Hz; 1H), 2.92 (dd;4,12Hz;1H), 3.94 (m,1H), 4.31 (m,1H), 4.88 (d,15Hz,1H), 5.17 (d,15Hz,1H), 6.98 (d,8Hz,2H), 7.16 (d,8Hz,2H), 7.2-7.4 (m,4H), 25 7.45-7.70 (m,4H). FAB-MS: calculated for  $C_{31}H_{35}N_7O_3$  553; found 554 (M+H,45%).

30

- 248 -

**Example 104**

5       3-[(2(R)-Acetoxypropyl)amino]-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, trifluoroacetate

10      To a stirred solution of 20mg (0.028mmol) of 3-[(2(R)-hydroxypropyl)amino]-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, trifluoroacetate (Example 102) in 2mL of methylene chloride at room temperature was added 8.8mg of acetic anhydride (3eq.) followed by 13mg (4eq.) of 4-dimethylaminopyridine. The mixture was stirred for one hour then concentrated under vacuum and the residue purified by reverse phase high pressure liquid chromatography on C18, eluting with methanol/0.1%aqueous trifluoroacetic acid (70:30) to afford the title compound.

15      20     <sup>1</sup>H NMR (400MHz, CD<sub>3</sub>OD): 1.30 (d, 6Hz, 3H), 1.36 (s, 3H), 1.39 (s, 3H), 2.01 (s, 3H), 2.10 (m, 1H), 2.29 (m, 1H), 2.4-2.7 (m, 4H), 3.15 (dd; 9, 13Hz; 1H), 3.25 (dd; 4, 13Hz; 1H), 4.36 (dd; 8, 12Hz; 1H), 4.9 (d, 15Hz, 1H), 5.07 (m, 1H), 5.19 (d, 15Hz, 1H), 7.04 (d, 8Hz, 2H), 7.19 (d, 8Hz, 2H), 7.20-7.35 (m, 4H), 7.54 (m, 2H), 7.65 (m, 2H). FAB-MS: calculated for C<sub>34</sub>H<sub>39</sub>N<sub>7</sub>O<sub>4</sub> 609; found 610 (M+H, 75%).

- 249 -

**Example 105**

5       3-[(2(R)-Hydroxypropyl)amino]-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1-methyltetrazol-5-yl)-[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3-(R)-yl]butanamide, trifluoroacetate

10      Step A: 3-[(2-(R)-Benzyl oxypropyl)amino]-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1-methyltetrazol-5-yl)[1,1'-biphenyl]-4-yl]-methyl]-1H-1-benzazepin-3(R)-yl]butanamide, trifluoroacetate

15      Prepared from 3-amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1-methyltetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]butanamide, trifluoroacetate (Example 16) by the procedure described in Example 86, Step A. <sup>1</sup>H NMR (200MHz, CD<sub>3</sub>OD): 1.29 (d, 7Hz, 3H), 1.35 (s, 6H), 2.12 (m, 1H), 2.35 (m, 1H), 2.5-2.7 (m, 4H), 3.00 (dd; 9, 13Hz; 1H), 3.14 (s, 3H), 3.20 (m, 1H), 3.85 (m, 1H), 4.44 (m, 1H), 4.48 (d, 11Hz, 1H), 4.67 (d, 11Hz, 1H), 4.90 (d, 15Hz, 1H), 5.25 (d, 15Hz, 1H), 7.00 (d, 8Hz, 2H), 7.1-7.5 (m, 12H), 7.6 (m, 2H), 7.75 (m, 1H). FAB-MS: calculated for C<sub>40</sub>H<sub>45</sub>N<sub>7</sub>O<sub>3</sub> 671; found 672 (M+H, 100%).

30

- 250 -

Step B: 3-[(2(R)-Hydroxypropyl)amino]-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1-methyltetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, trifluoroacetate

5

10

15

The title compound was prepared from the intermediate obtained in Step A by the procedure described in Example 86, Step B.  $^1\text{H}$  NMR (200MHz, CD<sub>3</sub>OD): 1.21 (d, 6Hz, 3H), 1.34 (s, 3H), 1.36 (s, 3H), 2.10 (m, 1H), 2.20-2.70 (m, 5H), 2.78 (dd; 10, 12Hz; 1H), 3.09 (dd; 4, 12Hz; 1H), 3.16 (s, 3H), 3.92 (m, 1H), 4.35 (dd; 8, 12Hz; 1H), 4.85 (d, 15Hz, 1H), 5.32 (d, 15Hz, 1H), 7.00 (d, 8Hz, 2H), 7.15-7.35 (m, 6H), 7.55-7.75 (m, 4H). FAB-MS: calculated for C<sub>33</sub>H<sub>39</sub>N<sub>7</sub>O<sub>3</sub> 581; found 582 (M+H, 100%).

#### Example 106

3-[(2(R)-Methoxypropyl)amino]-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, trifluoroacetate

25

30

Step A: 2(R)-Methoxypropionaldehyde

To a solution of 1.00g (9.6mmol) of (R)-(+) methyl lactate in 2 mL of methyl iodide was added 4.45g (19.2mmol) of silver (I) oxide and the resulting mixture heated at reflux for 2 hours. The mixture was cooled, filtered and the excess methyl iodide removed under vacuum at 0°C to afford 0.5g of crude methyl [2(R)-methoxy]propionate which was used in the next step without purification.

- 251 -

To a stirred solution of 0.5g (4.2mmol) of the intermediate obtained above in 5mL of ether at 0°C was added 5.0mL of 1.0M solution of lithium aluminum hydride in ether over 5 minutes. The resulting mixture was treated with 1mL of 1N sodium hydroxide, filtered, dried over magnesium sulfate and concentrated under vacuum at 0°C to give 0.36g of crude 2(R)-methoxypropanol which was used directly in the next step.

To a stirred suspension of 2.7g (12.6mmol) of pyridinium chlorochromate on Celite (1g) in 8mL of methylene chloride was added 0.36g of crude 2(R)-methoxypropanol and the resulting mixture stirred at room temperature for 3 hours. The reaction mixture was filtered, dried over sodium sulfate, filtered and concentrated under vacuum at 0°C to give approximately 0.3g of crude product which was used in the next step without purification.

Step B: 3-[(2(R)-Methoxypropyl)amino]-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, trifluoroacetate

The title compound was prepared from 3-amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, trifluoroacetate (Example 1) and 2(R)-methoxypropionaldehyde (Step A) by the procedure described in Example 86, Step A. <sup>1</sup>H NMR (200MHz, CD<sub>3</sub>OD): 1.17 (d, 6Hz, 3H), 1.36 (br s, 6H), 2.11 (m, 1H), 2.31 (m, 1H), 2.45-2.65 (m, 4H), 2.87

- 252 -

(m,1H), 3.14 (m,1H), 3.31 (s,3H), 3.59 (m,1H), 4.37  
(dd;7,11Hz;1H), 4.95 (d,15Hz,1H), 5.15 (d,15Hz,1H),  
7.03 (d,8Hz,2H), 7.1-7.4 (m,6H), 7.5-7.7 (m,4H).  
FAB-MS: calculated for C<sub>33</sub>H<sub>39</sub>N<sub>7</sub>O<sub>3</sub> 581; found 582.  
5 (M+H,100%).

**Example 107**

10 3-[(2-Hydroxy-2-methylpropyl)amino]-3-methyl-N-[2,-  
3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)-  
[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-  
y1]-butanamide, trifluoroacetate

**Step A: 2-Benzyl-2-methyl-3-butene**

15 To a stirred suspension of 18.6g of 60%  
sodium hydride oil dispersion (0.46mol) in 50mL of  
dry tetrahydrofuran at 0°C was added 40g (0.46mol) of  
2-methyl-3-buten-2-ol over 30 minutes. The resulting  
mixture was warmed to room temperature and stirred  
20 for 3 hours, then heated at reflux for an additional  
30 minutes. The mixture was cooled to 0°C, treated  
with 80g (0.46mol) of benzyl bromide, then heated at  
reflux for 5 hours. The reaction mixture was cooled,  
filtered and concentrated under vacuum. The residue  
25 was purified by distillation under reduced pressure  
to give 42g (0.24mol, 52%) of product, b.p. 88-89°C  
(2mm). <sup>1</sup>H NMR (200MHz, CDCl<sub>3</sub>): 1.38 (s,6H), 4.39  
(s,2H), 5.20 (m,2H), 5.95 (m,1H), 7.2-7.4 (m,5H).

30

- 253 -

Step B: 2-Benzylxy-2-methylpropionaldehyde

A mixture of 100mL of water, 300mL of dioxane, 20g (0.11mol) of 2-benzylxy-2-methyl-3-butene and 1g of osmium tetroxide was stirred at room temperature for 30 minutes then 51g (0.22mol) of finely ground sodium periodate was added in portions over 30 minutes. Stirring was continued for 2 hours then the mixture filtered and the filtrate extracted with several portions of ether. The combined extracts were dried over magnesium sulfate, filtered and the filtrate concentrated under vacuum. Distillation afforded 7.3g (0.041mol, 37%) of product, b.p. 85-88°C (2mm).

15      Step C: 3-Amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-3(R)-yl]-butanamide, trifluoroacetate

To a solution of 150mg (0.40mmol) of 3-t-butoxycarbonylamo-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-3(R)-yl]-butanamide (Example 57, Step A) in 2mL of methylene chloride at 0°C was added 2mL of trifluoroacetic acid and the mixture stirred at room temperature for 1 hour. All volatiles were removed under vacuum to give 130mg (0.33mmol, 84%) of the product.

<sup>1</sup>H NMR (200MHz, CD<sub>3</sub>OD): 1.33 (s, 3H), 1.37 (s, 3H), 2.12 (m, 1H), 2.3-2.6 (m, 3H), 2.6-3.0 (m, 2H), 4.37 (dd; 8, 12Hz; 1H), 7.02 (d, 8Hz, 1H), 7.1-7.3 (m, 3H). FAB-MS: calculated for C<sub>15</sub>H<sub>21</sub>N<sub>3</sub>O<sub>2</sub> 275; found 276 (M+H, 100%).

- 254 -

Step D: 3-(2-Benzylxy-2-methylpropyl)amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-3-(R)-yl]butanamide

Prepared from the intermediate obtained in

5 Step C and 2-benzylxy-2-methylpropionaldehyde by the procedure described in Example 86, Step A.

10  $^1\text{H}$  NMR (200MHz, CD<sub>3</sub>OD): 1.32 (s,3H), 1.38 (s,9H), 2.10 (m,1H), 2.41 (m,1H), 2.65 (s,2H), 2.7-2.9 (m,2H), 3.09 (s,2H), 4.40 (m,1H), 4.48 (s,2H), 7.0-7.2 (m,4H), 7.2-7.4 (m,5H). FAB-MS: calculated for C<sub>26</sub>H<sub>35</sub>N<sub>3</sub>O<sub>3</sub> 437; found 438 (M+H,100%).

Step E: 3-[(2-Benzylxy-2-methylpropyl)amino]-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]-methyl]-1H-1-benzazepin-3(R)-yl]butanamide, trifluoroacetate

15 To a stirred solution of 145mg (0.332mmol) of the intermediate obtained in Step D in 2mL of dry dimethylformamide at room temperature under nitrogen was added 67mg of 60% sodium hydride oil dispersion (1.67mmol,5eq.). After 30 minutes, a solution of 20 277mg (0.41mmol,1.2eq.) of N-triphenylmethyl-5-[2-(4'-bromomethylbiphen-4-yl)] tetrazole in 2mL of dry dimethylformamide was added and the mixture stirred 25 at room temperature for 1 hour. The reaction mixture was added to 100mL of ethyl acetate and washed with water (2x) and brine. The organic layer was separated, dried over magnesium sulfate, filtered and 30 concentrated under vacuum.

- 255 -

The residue was dissolved in 5mL of methanol and treated with 5mL of 9N HCl. The mixture was stirred at room temperature for 2 hours then washed with hexanes (5x) to remove triphenylmethanol. The aqueous layer was removed, filtered and evaporated under vacuum; the residue was purified by reverse phase medium pressure liquid chromatography on C8, eluting with methanol/0.1% aqueous trifluoroacetic acid (65:35) to afford 245mg (0.31mmol, 94%) of product.

<sup>1</sup>H NMR (200MHz, CD<sub>3</sub>OD): 1.32 (s, 3H), 1.38 (s, 9H), 2.10 (m, 1H), 2.31 (m, 1H), 2.4-2.7 (m, 2H), 2.66 (s, H), 4.39 (dd; 7, 11Hz, 1H), 4.50 (s, 2H), 4.94 (d, 15Hz, 1H), 5.16 (d, 15Hz, 1H), 6.99 (d, 8Hz, 2H), 7.05-7.25 (m, 5H), 7.25-7.45 (m, 6H), 7.55-7.70 (m, 4H). FAB-MS: calculated for C<sub>40</sub>H<sub>45</sub>N<sub>7</sub>O<sub>3</sub> 671; found 672 (M+H, 100%).

Step E: 3-[(2-Hydroxy-2-methylpropyl)amino]-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, trifluoroacetate

The title compound was prepared from the intermediate obtained in Step E by the procedure described in Example 86, Step B.

<sup>1</sup>H NMR (200MHz, CD<sub>3</sub>OD): 1.29 (s, 6H), 1.36 (s, 3H), 1.40 (s, 3H), 2.1-2.5 (m, 4H), 2.68 (s, 2H), 2.98 (s, 2H), 4.37 (dd; 7, 11Hz, 1H), 4.94 (d, 15Hz, 1H), 5.17 (d, 15Hz, 1H), 7.04 (d, 8Hz, 2H), 7.20 (d, 8Hz, 2H), 7.20-7.35 (m, 4H), 7.5-7.7 (M, 4H). FAB-MS: calculated for C<sub>33</sub>H<sub>39</sub>N<sub>7</sub>O<sub>3</sub> 581; found 582 (M+H, 70%).

- 256 -

**Example 108**

5       3-[(2(S)-Hydroxy-3-methylbutyl)amino]-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-y1)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-y1]-butanamide, trifluoroacetate

10      Step A: 3-[(2(S)-Benzylxy-3-methylbutyl)amino]-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-y1)[1,1'-biphenyl]-4-yl]-methyl]-1H-1-benzazepin-3(R)-y1]-butanamide, trifluoroacetate

15      Prepared from 2(S)-benzylxy-3-methylbutanal (prepared from L-valine by the method of Li, et al; J. Amer. Chem. Soc., 112, 7659 (1990)) and 3-amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-y1)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-y1]-butanamide, trifluoroacetate (Example 1), by the procedure described in Example 86, Step A.

20      <sup>1</sup>H NMR (200MHz, CD<sub>3</sub>OD): 0.92 (d,7Hz, 3H), 0.98 (d,7Hz, 3H) 1.31 (s,3H), 1.38 (s,3H), 2.0-2.6 (m,5H), 2.62 (s,2H), 2.95 (dd;9,12Hz;1H), 3.15 (dd;3,12Hz;1H), 3.55 (m,1H), 4.40 (dd;7,11Hz;1H), 4.52 (d,12Hz,1H), 4.61 (d,12Hz,1H), 4.89 (d,15Hz,1H), 5.18 (d,15Hz,1H), 6.97 (d,8Hz,2H), 7.1-7.7 (m,15H).

25      FAB-MS: calculated for C<sub>41</sub>H<sub>47</sub>N<sub>7</sub>O<sub>3</sub> 685; found 687 (100%).

- 257 -

5

Step B: 3-[(2(S)-Hydroxy-3-methylbutyl)amino]-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]-methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, trifluoroacetate

Prepared from the intermediate obtained in Step A by the procedure described in Example 86, Step B.

10

$^1\text{H}$  NMR (200MHz, CD<sub>3</sub>OD): 0.86 (d, 7Hz, 3H), 0.92 (d, 7Hz, 3H), 1.35 (s, 3H), 1.40 (s, 3H), 1.67 (m, 1H), 2.0-2.6 (m, 4H), 2.64 (s, 2H), 2.82 (dd; 10, 12Hz, 1H), 3.12 (dd; 3, 12Hz; 1H), 3.48 (m, 1H), 4.37 (dd; 8, 12Hz, 1H), 4.9 (d, 15Hz, 1H), 5.19 (d, 15Hz, 1H), 7.04 (d, 8Hz, 2H), 7.15-7.35 (m, 6H), 7.5-7.7 (m, 4H).

15

FAB-MS: calculated for C<sub>34</sub>H<sub>41</sub>N<sub>7</sub>O<sub>3</sub> 595; found 597 (100%).

#### Example 109

20

3-[(2(R)-Hydroxy-3-methylbutyl)amino]-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, trifluoroacetate

25

The title compound was prepared from D-valine and 3-amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]-methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, trifluoroacetate (Example 1), by the procedures described in Example 108.

30

$^1\text{H}$  NMR (200MHz, CD<sub>3</sub>OD): 0.86 (d, 7Hz, 3H), 0.88 (d, 7Hz, 3H), 1.32 (s, 3H), 1.33 (s, 3H), 1.65 (m, 1H), 2.00-2.66 (m, 6H), 2.78 (dd; 10, 12Hz, 1H), 3.10

- 258 -

(dd;2,12Hz,1H), 3.45 (m,1H), 4.34 (dd;8,12Hz,1H),  
4.90 (d,15Hz,1H), 5.1 (d,15Hz,1H), 7.02 (d,8Hz,2H),  
7.1-7.3 (m,6H), 7.45-7.70 (m,4H). FAB-MS:  
calculated for C<sub>34</sub>H<sub>41</sub>N<sub>7</sub>O<sub>3</sub> 595; found 597 (100%).

5

**Example 110**

10       4'-[3(R)-[(3-Amino-3-methyl-1-oxobutyl)amino]-  
2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]-  
methyl]-2-phenyl-1,1'-biphenyl, trifluoroacetate

**Step A: 2-Bromobiphenyl**

15       A solution of 8.8mL of isoamyl nitrite in  
120mL of benzene at 45°C was treated dropwise over 30  
minutes with a solution of 7.5g of 2-bromoaniline in  
30mL of benzene. After the addition was complete,  
the mixture was heated at reflux for 90 minutes then  
cooled and concentrated under vacuum. The product  
20       was purified by preparative high pressure liquid  
chromatography on silica, eluting with hexanes. <sup>1</sup>H  
NMR (200MHz, CDCl<sub>3</sub>): 7.23 (m,2H), 7.35 (m,1H), 7.44  
(s,5H), 7.70 (d,8Hz,1H).

25       **Step B: 4'-Methyl-2-phenyl-1,1'-biphenyl**

Prepared from 2-bromobiphenyl and 4-methylphenyltrimethylstannane by the procedure described in Example 69, Step B.

<sup>1</sup>H NMR (200MHz, CDCl<sub>3</sub>): 2.30 (s,3H), 7.06 (s,4H),  
30       7.23 (m,5H), 7.44 (s,4H).

- 259 -

Step C: 4'-Bromomethyl-2-phenyl-1,1'-biphenyl  
Prepared from 4'-methyl-2-phenyl-1,1'-biphenyl by the procedure described in Example 69, Step C.

5

Step D: 4'-[[3(R)-[(3-Amino-3-methyl-1-oxobutyl)-amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl]-2-phenyl-1,1'-biphenyl, trifluoroacetate

10 The title compound was prepared from 3-t-butoxycarbonyl amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-3(R)-yl]-butanamide (Example 57, Step A) and 4'-bromomethyl-2-phenyl-1,1'-biphenyl by the procedures described in Example 69, Steps D and F. <sup>1</sup>H NMR (300MHz, CD<sub>3</sub>OD): 1.32 (s,3H), 1.36 (s,3H), 2.0-2.6 (m,6H), 4.37 (dd;8,12Hz;1H), 4.78 (d,15Hz,1H), 5.28 (d,15Hz,1H), 6.95-7.45 (m,17H).

20

### Example 111

25

3-[[2-Hydroxy-3-(4-hydroxyphenyl)-propyl]amino]-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, trifluoroacetate

30

Step A: Ethyl 2-hydroxy-3-(4-hydroxyphenyl)-propionate

To a stirred solution of 0.5g (2.74mmol) of D,L 3-(4-hydroxyphenyl) lactic acid hydrate in 10mL of ethanol was added a catalytic amount of concentrated hydrochloric acid. The mixture was heated at reflux for 2 hours then cooled to room

- 260 -

temperature and concentrated under vacuum. The residue was dissolved in 50mL of ether and washed with saturated aqueous sodium bicarbonate (1x50mL) and brine (1x50mL). The organic layer was removed, dried over magnesium sulfate, filtered and evaporated under vacuum to afford 0.54g (2.57mmol, 94%) of the ethyl ester.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.26 (t, 7Hz, 3H), 2.86 (dd; 7, 14Hz; 1H), 3.03 (dd; 4, 14Hz; 1H), 4.19 (q, 7Hz, 2H), 4.38 (dd; 4, 7Hz; 1H), 5.60 (br s, 1H), 6.66 (d, 8Hz, 2H), 7.03 (d, 8Hz, 2H).

Step B: Ethyl 2-(t-butyldimethylsiloxy)-3-[4-(t-butyldimethylsiloxyphenyl)]propionate

To a stirred solution of 0.57g (7.4mmol) of ethyl 2-hydroxy-3-(4-hydroxyphenyl)propionate in 10mL of methylene chloride at  $-78^\circ\text{C}$  was added 2mL of 2,6-lutidine (4eq.) followed by 2.52mL of t-butyldimethylsilyl trifluoromethanesulfonate (4eq.). The reaction mixture was warmed to room temperature and stirred for 16 hours. The reaction mixture was diluted with 50mL of methylene chloride and washed with 10% hydrochloric acid (2x100mL), saturated aqueous sodium bicarbonate and brine. The organic layer was removed, dried over magnesium sulfate, filtered and concentrated under vacuum to give 1.12g of crude product. A 250mg sample was purified by preparative thin layer chromatography on silica, eluting with hexane/ethyl acetate (90:10) to afford 210mg of pure product.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 0.13 (s, 6H), 0.76 (s, 9H), 0.94 (s, 9H), 2.76 (dd; 10, 14Hz; 1H), 2.97 (dd; 4, 14Hz; 1H), 4.24 (dd; 4, 10Hz; 1H), 6.73 (d, 8Hz, 2H), 7.05 (d, 8Hz, 2H).

- 261 -

Step C: 2-(t-Butyldimethylsiloxy)-3-[4-(t-butyl-dimethylsiloxyphenyl)]propanal

To a stirred solution of 210mg (0.48mmol) of ethyl 2-(t-butyldimethylsiloxy)-3-[4-(t-butyldimethylsiloxyphenyl)]propionate in 10mL of ether at -78°C was added dropwise over 5 minutes 1mL of 1.0M solution of diisobutylaluminum hydride in hexane (2eq.). The reaction mixture was poured, with rapid stirring, into 50mL of 10% hydrochloric acid. After stirring for 5 minutes, the mixture was extracted with ether (2x30mL) and the combined extracts dried over magnesium sulfate, filtered and concentrated under vacuum to give approximately 200mg of the product which was used immediately and without further purification.

<sup>1</sup>H NMR (200MHz, CDCl<sub>3</sub>): 0.14 (s, 6H), 0.80 (s, 9H), 0.95 (s, 9H), 2.76 (dd; 10, 14Hz; 1H), 2.90 (dd; 4, 14Hz; 1H), 4.24 (ddd; 2, 4, 10Hz; 1H), 6.73 (d, 8Hz, 2H), 7.02 (d, 8Hz, 2H), 9.61 (d, 2Hz, 1H).

20

Step D: 3-[{(2-Hydroxy-3-(4-hydroxyphenyl)-propyl)-amino]-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]-methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, trifluoroacetate}

The title compound was prepared as a mixture of two diastereomers from 3-amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, trifluoroacetate (Example 1) and 2-(t-butyldimethylsiloxy)-3-[4-(t-butyldimethylsiloxyphenyl)]propanal (Step C) by the procedure described in Example 86, Step A.

- 262 -

<sup>1</sup>H NMR (200MHz, CD<sub>3</sub>OD): 1.35 (m, 6H), 2.10 (m, 1H), 2.29 (m, 1H), 2.40-2.75 (m, 6H), 2.85 (m, 1H), 3.07 (m, 1H), 3.90 (m, 1H), 4.33 (dd; 8, 12Hz; 1H), 4.9 (m, 1H), 5.1 (m, 1H), 6.67 (d, 8Hz, 2H), 7.02 (m, 4H), 7.15-7.35 (m, 6H), 7.5-7.7 (m, 4H). FAB-MS: calculated for C<sub>38</sub>H<sub>41</sub>N<sub>7</sub>O<sub>4</sub> 659; found 659 (40%).

**Example 112**

10       3-[[2(R)-Hydroxy-2-phenylpropyl]amino]-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-y1)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-y1]-butanamide, trifluoroacetate

15       Step A: 2(R)-Benzylxy-2-phenylacetaldehyde  
Prepared from (R)-(-)-mandelic acid by the procedures described in Example 111 (Steps A, C) and Example 107, Step A.

20       <sup>1</sup>H NMR (200MHz, CDCl<sub>3</sub>): 4.51 (d, 12Hz, 1H), 4.65 (d, 12Hz, 1H), 4.77 (d, 2Hz, 1H), 7.35 (m, 10H), 9.61 (d, 2Hz, 1H).

25       Step B: 3-[(2(R)-Benzylxy-2-phenylethyl)amino]-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-y1)[1,1'-biphenyl]-4-yl]-methyl]-1H-1-benzazepin-3(R)-y1]-butanamide, trifluoroacetate

30       Prepared 2(R)-benzylxy-2-phenyl acetaldehyde and 3-amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-y1)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-y1]-butanamide, trifluoroacetate (Example 1) by the procedure described in Example 86, Step A. <sup>1</sup>H NMR (200MHz, CD<sub>3</sub>OD): 1.35 (s, 6H), 2.12

- 263 -

(m, 1H), 2.32 (m, 1H), 2.5-2.7 (m, 4H), 3.22 (m, 2H),  
4.32 (d, 12Hz, 1H), 4.43 (d, 12Hz, 1H), 4.45 (m, 1H), 4.67  
(t, 7Hz, 1H), 4.99 (d, 14Hz, 1H), 5.13 (d, 14Hz, 1H), 7.02  
(d, 8Hz, 2H), 7.10-7.45 (m, 16H), 7.5-7.7 (m, 4H).

5 FAB-MS: calculated for C<sub>44</sub>H<sub>45</sub>N<sub>7</sub>O<sub>3</sub> 719; found 720  
(M+H, 35%).

Step C: 3-[[2(R)-Hydroxy-2-phenylpropyl]amino]-  
10 3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-  
[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-  
y1]methyl]-1H-1-benzazepin-3(R)-y1]-butan-  
amide, trifluoroacetate

15 The title compound was prepared from the  
intermediate obtained in Step B by the procedure  
described in Example 86, Step B.

1H NMR (400MHz, CD<sub>3</sub>OD): 1.38 (s, 3H), 1.39 (s, 3H),  
2.10 (m, 1H), 2.3 (m, 1H), 2.4-2.7 (m, 4H), 3.05 (m, 1H),  
3.22 (m, 1H), 4.39 (m, 1H), 4.95 (d, 15Hz, 1H), 5.18  
(d, 15Hz, 1H), 7.08 (d, 8Hz, 2H), 7.20-7.45 (m, 11H),  
20 7.5-7.7 (m, 4H). FAB-MS: calculated for C<sub>37</sub>H<sub>39</sub>N<sub>7</sub>O<sub>3</sub>  
629; found 630 (M+H, 85%).

### Example 113

25 3-Amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-  
[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-y1]methyl]-  
1H-1-benzazepin-3(R)-y1]-butanamide, hydrochloride,  
dihydrate

30 Step A: 1-Tetralone oxime  
To 4.6L of water at room temperature in a  
4-neck 50L flask sitting in a steam bath apparatus

- 264 -

equipped with an overhead stirrer, a temperature probe and reflux condenser was added 3.72Kg (27.36mol) of sodium acetate with stirring, followed by 1.9Kg of hydroxylamine hydrochloride (27.36mol).

5 To this slurry at room temperature, 12L of ethanol was added followed by 1.994Kg (13.68mol) of 1-tetralone. Additional ethanol (1.7L) was used to rinse off the funnel and added to the reaction mixture. The resulting light orange slurry was

10 heated to 75°C over 40 minutes and maintained at 75-85°C for another 75 minutes. The reaction mixture was cooled with the aid of ice packed around the flask. When the internal temperature reached 32°C, the reaction mixture was pumped over 15 minutes into

15 60L of ice contained in a 200L vessel. The reaction vessel was washed with an additional 2L of water which was added to the 200L vessel. When the ice melted, the mixture was filtered through a filter pad and the wet cake washed with 4L of water. The wet

20 cake was suction dried for 1 hour then transferred to two trays and dried under vacuum at 40°C for 2 days to give 2.094Kg (13.01mol, 95%) of product.

1H NMR (250MHz, CDCl<sub>3</sub>): 1.90 (m, 2H), 2.80 (t, 6Hz, 2H), 2.88 (t, 6Hz, 2H), 7.15-7.35 (m, 3H), 7.90 (d, 8Hz, 1H),

25 8.9 (br s, 1H).

Step B: 2,3,4,5-Tetrahydro-1H-1-benzazepin-2-one

To 10L of methanesulfonic acid in a 22L 3-neck flask equipped with an overhead stirrer, a temperature probe, nitrogen inlet and reflux condenser was added 2.6Kg (18.61mol) of phosphorus pentoxide. An additional 1.6L of methanesulfonic

- 265 -

acid was used to wash all the phosphorus pentoxide into the vessel. The mixture was heated at 90°C for 2.5 hours then cooled to 50°C using an ice bath and treated with 2.00Kg (12.41mol) of 1-tetralone oxime in several portions over 15 minutes. The mixture was heated at 63°C for 10 minutes then slowly heated to 80°C and kept at 80°C for 3 hours. The reaction mixture was pumped into 70L of ice then treated slowly with 11.25L of 50% aqueous sodium hydroxide over 90 minutes at such a rate so as to maintain the temperature below 28°C. The mixture was filtered and 4L of the filtrate was used to rinse the vessel. The wet cake (pink) was washed with 8L of water then suction dried for 45 minutes then transferred to two trays and dried under vacuum at 40°C for 2 days to give 1.9Kg (11.79mol, 95%) of product.  $^1\text{H}$  NMR (250MHz,  $\text{CDCl}_3$ ): 2.24 (m, 2H), 2.38 (t, 6Hz, 2H), 2.82 (t, 6Hz, 2H), 7.03 (d, 8Hz, 1H), 7.13 (m, 1H), 7.24 (m, 2H), 8.63 (br s, 1H).

20

Step C: 3-Iodo-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one

A suspension of 1.8Kg (11.17mol) of 2,3,4,5-tetrahydro-1H-1-benzazepin-2-one in a mixture of 22.33L of methylene chloride and 11.78L (55.83mol) of hexamethyldisilazane was heated at reflux for 10 minutes then cooled to 30°C and treated with 8.503Kg (33.5mol) of iodine in one portion. The mixture was heated at reflux for 2.5 hours then cooled to room temperature. Aqueous sodium sulfite containing 4.926Kg of sodium sulfite in 44L of water was cooled

- 266 -

to 0°C and into it was poured the reaction mixture in several portions with vigorous stirring while maintaining the temperature below 10°C. The reaction vessel was rinsed with 3L of methylene chloride and the washing transferred to the quenching mixture. Methylene chloride (17L) was added to the quenching mixture and it was stirred vigorously and the layers allowed to separate. The aqueous layer was removed and reextracted with 12L of methylene chloride. The combined organic layers were washed with 11L of water and concentrated under vacuum to a final volume of approximately 5L. The residue was treated with 55L of toluene and concentrated under vacuum to a final volume of 10L. The resulting slurry was removed by filtration and the filter cake washed with an additional 5L of toluene and dried under vacuum at ambient temperature for 24 hours to give 1.842Kg (6.42mol, 57%) of product.

20       $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 2.6-2.8 (m, 3H), 2.93 (m, 1H), 4.64 (t, 8Hz, 1H), 6.97 (d, 8Hz, 1H), 7.10-7.35 (m, 3H), 7.55 (br s, 1H).

Step D: 3(R)-Amino-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one. D-tartrate  
25      3-Iodo-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one (1.79Kg, 6.24mol) was slurried in 6.2L of methanol and the slurry charged into an autoclave. Condensed ammonia (1.55L) was added and the autoclave closed, with stirring, and heated to 100°C over 1 hour. Heating at 100°C was continued for 2 hours then the autoclave was allowed to cool to room

- 267 -

temperature over 1 hour, during which time the internal pressure was 150-155psi. The reaction mixture was transferred to a polyethylene jug and the autoclave rinsed with 2x8L of methanol. The washings were concentrated under vacuum at 30°C then combined with the reaction mixture and concentrated to near dryness under vacuum at 30°C. The resulting residue was dissolved in 4L of ethyl acetate then concentrated to dryness under vacuum at 30°C.

Sodium chloride (712g) was dissolved in 2L of water and 1.0Kg of sodium carbonate was dissolved in 6L of water. Two liters of the sodium carbonate solution was added to the concentrated residue and the resulting slurry transferred to an extraction flask. Another 2L portion of the sodium carbonate solution was added to the residue flask and the solution transferred to the extraction flask. The remaining sodium carbonate solution was used in the same way. The sodium chloride solution was added to the sodium carbonate/aminolactam emulsion and the resulting mixture stirred for 10 minutes then extracted with four 6L portions of methylene chloride. The combined methylene chloride layers were concentrated to dryness; the residue was treated with 2L of 200 proof ethanol and the resulting slurry concentrated to dryness under vacuum to give 1.171Kg of crude product.

The crude product was slurried in 8L of ethanol and treated with 900g of D-tartaric acid in one portion. Water (7L) was added and the mixture heated to 77°C, then additional ethanol (45L) was added and heating continued. The solution was cooled

- 268 -

to 43°C and treated with the seed slurry. (The seed slurry was prepared by the route described above starting with 10.50g of crude product and 9.1g of D-tartaric acid.) The solution was aged at room 5 temperature for 48 hours. The slurry formed was removed by filtration and the wet cake washed with 1.8L of ethanol. The resulting filter cake was suction dried with nitrogen bleeding for 20 hours then transferred into a drying tray and dried under 10 vacuum for 24 hours to give 354g (1.085mol, 17.4%) of the product.  $^1\text{H}$  NMR (250MHz,  $\text{CDCl}_3$ ): 2.13 (m,1H), 2.51 (m,2H), 2.73 (m,2H), 3.68 (t,6Hz,1H), 3.98 (s,2H), 7.05 (d,8Hz,1H), 7.16 (t,8Hz,1H), 7.30 (m,2H), 7.6 (br s,5H), 10.26 (br s,1H).

15

Step E: 3(R)-Amino-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one

A solution of 229.23g (0.700mol) of 3(R)-amino-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one, 20 D-tartrate in 4.1L of water was treated with 194g (1.40mol) of potassium carbonate. Subsequent portions of 100g and 135g of potassium carbonate were added until the pH was 10.5. The mixture was extracted with four 4L portions of methylene chloride which were then combined and dried over magnesium 25 sulfate. The aqueous layer was treated with 1.4Kg of sodium chloride and reextracted with four 4L portions of methylene chloride which were then combined and dried over magnesium sulfate. The two 16L batches of extracts were combined, filtered and concentrated to dryness under vacuum to give 115.5g of product which contained 1.6% of an impurity identified as 30 7-iodo-3(R)-amino-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one.

- 269 -

A solution of 107.02g (0.607mol) of the intermediate obtained above in 1.712L of ethanol was hydrogenated at room temperature and 40psi over 4.00g of 10% palladium on carbon for 4 hours. The catalyst was removed by filtration through solkaflok and the filtrate concentrated to dryness under vacuum to give 101.08g (0.574mol, 94.4%) of product.

Step F: N-Chlorosulfonyl-4,4-dimethylazetidin-2-one

To a 3-neck 12L flask equipped with an overhead stirrer, a 250mL addition funnel topped with a nitrogen inlet and a rubber septum to allow a temperature probe and isobutylene needle was charged 450mL of isobutylene. The flask was cooled in a dry ice-acetone bath. Ethyl ether (450mL) was added and the resulting solution at -60°C was treated with 210mL (2.41mol) of chlorosulfonyl isocyanate over 5 minutes at a rate so as to maintain the internal temperature below -50°C. The mixture was stirred at -50°C to -62°C for 30 minutes then allowed to warm slowly to room temperature and treated with 2250mL of ether. The resulting solution was treated with 750mL of 10% aqueous sodium carbonate slowly in 3 portions. The mixture was transferred into a 4L separatory funnel and the aqueous layer removed. The organic layer was washed with 500mL of water, then removed and treated with 750mL of hexane. As crystallization began, additional hexane (250mL) was added and the mixture concentrated under partial vacuum to a final volume of 3100mL. The solid that formed was removed by filtration with the aid of 200mL of hexane for rinsing. After air drying, the

- 270 -

wet cake was dried under vacuum at 40°C overnight to give 253g (1.28mol, 53%) of product as a pale yellow crystalline solid. Recycling of the mother liquors gave an additional 100g (19%) of product as a white crystalline solid.  $^1\text{H}$  NMR (250MHz,  $\text{CDCl}_3$ ): 1.89 (s, 6H), 3.05 (s, 2H).

Step G: 3-Methoxysulfonylamino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-3(R)-yl]-butanamide

A suspension of 98.31g (0.530mol) of 3(R)-amino-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one in 1600mL of methanol at room temperature was treated with 155mL (1.112mol) of triethylamine. The resulting suspension was cooled to 0°C and treated with a solution of 110.01g (0.557mol) of N-chlorosulfonyl-4,4-dimethylazetidin-2-one in 960mL of methanol over 20 minutes maintaining the internal temperature below 10°C. Additional methanol (100mL) was used to rinse the flask and the rinse was transferred into the reaction vessel. The reaction mixture was warmed to room temperature and stirred for 90 minutes.

The reaction mixture was concentrated under vacuum to a slurry (600mL) which was diluted with 3180mL of ethyl acetate and treated with 1L of saturated aqueous ammonium chloride and 1L of water. The organic layer was separated, washed with 2L of 1:1 saturated aqueous ammonium chloride/water then 2L of brine. The organic layer was removed and concentrated under vacuum to a final volume of 1.6L.

- 271 -

The resulting slurry was treated with 1.6L of hexane and then aged at room temperature for 2.5 hours. The solid was removed by filtration and the cake washed with 1L of hexane. The material was air dried at 5 40°C for 48 hours to give 163.81g (0.444mol, 83.7%) of product as a white solid.

10  $^1\text{H}$  NMR (250MHz,  $\text{CDCl}_3$ ): 1.39 (s, 3H), 1.42 (s, 3H), 2.04 (m, 1H), 2.37 (d, 15Hz, 1H), 2.58 (d, 15Hz, 1H), 2.69 (m, 2H), 2.95 (m, 1H), 3.81 (s, 3H), 4.55 (m, 1H), 6.83 (m, 2H), 7.01 (d, 8Hz, 1H), 7.25 (m, 3H), 8.20 (br s, 1H).

15 Step H: 3-Methoxysulfonylamino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(N-triphenylmethyl)-tetrazol-5-yl][1,1'-biphenyl]-4-yl]methyl-1H-1-benzazepin-3(R)-yl]-butanamide

To a suspension of 155.0g (0.4197mol) of the intermediate obtained in Step G in 800mL of tetrahydrofuran was added 140mL of dimethylformamide 20 and the resulting solution cooled to 0° to -5°C and treated with 19.1g of 95% sodium hydride (0.796mol). Additional tetrahydrofuran (40mL) was used to rinse the addition funnel. The mixture was stirred for 30 minutes at 0°C then treated with a solution of 269.0g (0.4825mol) of N-triphenylmethyl-5-[2-(4'-bromomethyl-biphen-4-yl)] in 800mL of tetrahydrofuran over 20 minutes. After the addition was complete, the reaction mixture was warmed to room temperature and stirred for 5 hours. An additional 1.0g of 95% 25 sodium hydride was added and stirring continued for another 3.5 hours.

- 272 -

The reaction mixture was poured into a mixture of 3L of ethyl acetate and 2.5L of water. Additional water (300mL) and ethyl acetate (500mL) were used for rinsing. The aqueous layer was removed and the organic layer washed with 2L of brine. The 5 organic layer was separated, dried over sodium sulfate, filtered and concentrated under vacuum to a viscous oil. The oil was further concentrated under vacuum to form a pale yellow solid which was purified 10 by chromatography on silica, eluting with ethyl acetate/hexanes (1:1 to 3:1) to afford 330.6g (0.3908mol, 89.3%) of product as a white solid.

Step I: 3-Amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, mono(hydrochloride), di(hydrate)

To 900mL of hot (70°C) ethanol was added, with vigorous stirring, 190.0g (0.2246mol) of the 15 intermediate obtained in Step H by a solid addition funnel. Additional ethanol (50mL) was used to rinse the funnel. To the clear solution at 70°C was added 380mL of 6N hydrochloric acid over 10 minutes. The 20 mixture was stirred at 70°C for 4.5 hours then allowed to cool to room temperature. The reaction 25 mixture was poured into a mixture of 1900mL of water and 3L of ethyl acetate/hexane (2:1). The aqueous layer was removed and washed with 3L of ethyl acetate/hexane (2:1) then 2.5L of hexane. The 30 aqueous layer was separated and filtered, then concentrated under vacuum at 40°C to a final volume of 3500mL and allowed to age overnight at ambient temperature. The white suspension was removed by

- 273 -

filtration and the wet cake washed with 250mL of a solution of 15mL of concentrated hydrochloric acid in 500mL of water. The product was dried under vacuum at 35-40°C overnight then allowed to equilibrate in ambient humidity to give 110.25g (0.1894mol, 90.7%) of the title compound as a white powdery solid.  $^1\text{H}$  NMR (250MHz, CD<sub>3</sub>OD): 1.36 (s,3H), 1.40 (s,3H), 2.12 (m,1H), 2.30 (m,1H), 2.50 (m,2H), 2.55 (m,2H), 4.36 (dd;8,12Hz;1H), 4.87 (d,15Hz,1H), 5.21 (d,15Hz,1H), 7.00 (m,2H), 7.17 (m,2H), 7.22 (m,2H), 7.31 (m,2H), 7.51 (m,1H), 7.53 (m,1H), 7.61 (m,2H).

Example 114

15 3-[(2,2-Dimethyl-1,3-dioxolane-4(S)-yl)methyl]amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide. mono(trifluoroacetate)

To a stirred solution of 116mg (0.20mmol) of 3-amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, hydrochloride, dihydrate (Example 113) in 5mL of dry methanol was added 0.5g of dry 3A powdered molecular sieves followed by a solution of 131mg (1.0mmol) of D-glyceraldehyde acetonide (used crude as prepared according to the procedure of Hertel, L.W.; Grossman, C. S.; Kroin, J.S. Synth. Comm. 1991, 21, 151-154) in 1mL of dry methanol. The pH of the mixture was carefully adjusted to 6.5 with glacial acetic acid and triethylamine. The reaction was stirred at room temperature for 3 hours at which time 1.0mL (1.0mmol)

- 274 -

of a 1.0M solution of sodium cyanoborohydride in tetrahydrofuran was added dropwise by syringe. The reaction was stirred overnight then filtered through a pad of Celite. The filtrate was diluted with 50% aqueous trifluoroacetic acid and stirred for 3 hours at room temperature. The solution was concentrated under vacuum and the residue purified by preparative reverse phase high pressure liquid chromatography on C18, eluting with methanol/0.1% aqueous trifluoroacetic acid (linear gradient; 60% methanol to 85% methanol over 10 minutes). The title compound was thus obtained in addition to the faster eluting major product 3-(2(S),3-dihydroxypropyl)amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide.  $^1\text{H}$  NMR (200MHz, CD<sub>3</sub>OD): 1.35-1.40 (m, 12H), 2.05-2.75 (m, 6H), 3.01 (dd; 8, 12Hz; 1H), 3.26 (dd; 3, 12Hz; 1H), 3.78 (dd; 5, 10Hz; 1H), 4.15 (dd; 6, 8Hz; 1H), 4.36 (m, 2H), 4.85 (d, 15Hz, 1H), 5.15 (d, 15Hz, 1H), 7.03 (d, 8Hz, 2H), 7.2-7.4 (m, 6H), 7.5-7.7 (m, 4H).

Example 115

25 3-(2(S),3-Dihydroxypropyl)amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide. trifluoroacetate

30 The title compound was prepared from 3-amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, hydrochloride, dihydrate (Example 113) and D-glyceraldehyde acetonide by the procedure described in Example 114.

-275-

10           <sup>1</sup>H NMR (200MHz, CD<sub>3</sub>OD): 1.37 (s, 3H), 1.39 (s, 3H),  
2.05-2.75 (m, 6H), 2.95 (dd; 8, 11Hz; 1H), 3.19  
(dd; 3, 11Hz; 1H), 3.56 (m, 2H), 3.84 (m, 1H), 4.35  
5           (dd; 8, 12Hz; 1H), 4.93 (d, 15Hz, 1H), 5.16 (d, 15Hz, 1H),  
7.04 (d, 8Hz, 2H), 7.15-7.35 (m, 6H), 7.5-7.7 (m, 4H).  
FAB-MS: calculated for C<sub>32</sub>H<sub>37</sub>N<sub>7</sub>O<sub>4</sub> 583; found 585  
(100%).

10

Example 116

15           3-(2(S),3(S),4-Trihydroxybutyl)amino-3-methyl-N-[2,3,-  
4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-  
biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butan-  
amide, trifluoroacetate

20           The title compound was prepared from  
3-Amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-  
biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, hydrochloride,  
dihydrate (Example 113) and 5(S)-t-butyldimethylsilyl-  
yloxymethyl-2,2-dimethyl-1,3-dioxolan-4(R)-carboxal-  
dehyde (Example 82) by the procedure described in  
Example 71. <sup>1</sup>H NMR (400MHz, CD<sub>3</sub>OD): 1.36 (s, 3H),  
1.40 (s, 3H), 2.09 (m, 1H), 2.30 (m, 1H), 2.46 (m, 1H),  
25           2.57 (dd; 7, 11Hz; 1H), 2.64 (s, 2H), 3.13 (m, 2H), 3.59  
(br s, 3H), 3.92 (m, 1H), 4.35 (dd; 7, 12Hz; 1H), 4.9  
(d, 15Hz, 1H), 5.18 (d, 15Hz, 1H), 7.02 (d, 8Hz, 2H), 7.18  
(d, 8Hz, 2H), 7.22 (m, 2H), 7.30 (m, 2H), 7.53 (m, 2H),  
7.63 (m, 2H). FAB-MS: calculated for C<sub>33</sub>H<sub>39</sub>N<sub>7</sub>O<sub>5</sub>  
30           613; found 614 (100%).

-276-

Example 117

3-Amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1-benzyltetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-  
5 1H-1-benzazepin-3(R)-yl]butanamide, trifluoroacetate

To a stirred solution of 174mg (0.20mmol) of 3-amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-  
1H-1-benzazepin-3(R)-yl]butanamide, hydrochloride, dihydrate (Example 113) in 3mL of tetrahydrofuran and 1mL of dimethylformamide was added 0.22mL (5eq.) of triethylamine followed by 0.043mL (1.2eq.) of benzyl bromide. The mixture was stirred for 2 hours at room temperature then concentrated under vacuum. Initial purification by reverse phase high pressure liquid chromatography on C18, eluting with methanol/0.1% aqueous trifluoroacetic acid (75:25) afforded a major product (1-benzyl isomer) followed by a minor product (2-benzyl isomer). Repurification of each product by reverse phase high pressure liquid chromatography on C18, eluting with methanol/0.1% aqueous trifluoroacetic acid (70:30) afforded 9mg of the title compound in addition to 8mg of the 2-benzyl isomer.

15  $^1\text{H}$  NMR (200MHz, CD<sub>3</sub>OD): 1.35 (s,3H), 1.39 (s,3H), 2.05-2.65 (m,6H), 4.38 (dd;7,11Hz,1H), 4.82 (d,15Hz,1H), 4.85 (s,2H), 5.35 (d,15Hz,1H), 6.77 (dd;2,8Hz,2H), 6.94 (d,8Hz,2H), 7.1-7.8 (m,13H).

20 FAB-MS: calculated for C<sub>36</sub>H<sub>37</sub>N<sub>7</sub>O<sub>2</sub> 599; found 601 (100%).

25

30

-277-

Example 118

5           3-Amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(2-benzyltetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, trifluoroacetate

10          The title compound was prepared from  
3-amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, hydrochloride,  
15          dihydrate (Example 113) and benzyl bromide by the  
procedure described in Example 117.

20          <sup>1</sup>H NMR (200MHz, CD<sub>3</sub>OD): 1.35 (s, 3H), 1.39 (s, 3H),  
2.00-2.65 (m, 6H), 4.40 (dd; 7, 11Hz; 1H), 4.88  
15          (d, 15Hz, 1H), 5.26 (d, 15Hz, 1H), 5.74 (s, 2H), 6.96  
(d, 8Hz, 2H), 7.10 (d, 8Hz, 2H), 7.25 (m, 3H), 7.30-7.65  
(m, 9H), 7.73 (dd; 2, 7Hz; 1H). FAB-MS: calculated for  
C<sub>36</sub>H<sub>37</sub>N<sub>7</sub>O<sub>2</sub> 599; found 601 (100%).

20          Example 119

25          3-(3(R)-Hydroxybutyl)amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, trifluoroacetate

30          The title compound was prepared from  
3-amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, hydrochloride,  
dihydrate (Example 113) and 3(R)-hydroxybutanal-0-tetrahydropyranyl ether (prepared from methyl  
3(R)-hydroxybutyrate by the method of Sato:  
Heterocycles, 24, 2173 (1986)) by the procedure  
described in Example 71.

-278-

1H NMR (200MHz, CD<sub>3</sub>OD): 1.12 (d, 6Hz, 3H), 1.33 (s, 3H),  
1.36 (s, 3H), 1.70 (m, 3H), 2.00-2.60 (m, 5H), 3.09  
5 (m, 2H), 3.82 (m, 1H), 4.34 (dd; 7, 11Hz; 1H), 4.85  
(d, 15Hz, 1H), 5.18 (d, 15Hz, 1H), 7.00 (d, 8Hz, 2H),  
7.1-7.3 (m, 6H), 7.5-7.7 (m, 4H). FAB-MS: calculated  
for C<sub>33</sub>H<sub>39</sub>N<sub>7</sub>O<sub>3</sub> 581; found 583 (100%).

Example 120

10

3-(3(S)-Hydroxybutyl)amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide,  
trifluoroacetate

15

The title compound was prepared from 3-amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, hydrochloride, dihydrate (Example 113) and 3(S)-hydroxybutanal-0-tetrahydropyranyl ether (prepared from methyl 3(S)-hydroxybutyrate by the method of Sato: Heterocycles, 24, 2173 (1986)) by the procedure described in Example 71.

25

1H NMR (200MHz, CD<sub>3</sub>OD): 1.15 (d, 6Hz, 3H), 1.33 (s, 3H), 1.36 (s, 3H), 1.70 (m, 3H), 1.9-2.6 (m, 5H), 3.10 (m, 2H), 3.84 (m, 1H), 4.33 (dd; 8, 12Hz; 1H), 4.85 (d, 15Hz, 1H), 5.19 (d, 15Hz, 1H), 7.00 (d, 8Hz, 2H), 7.10-7.35 (m, 6H), 7.45-7.70 (m, 4H). FAB-MS:  
calculated for C<sub>33</sub>H<sub>39</sub>N<sub>7</sub>O<sub>3</sub> 581; found 583 (100%).

-279-

Example 121

3-Amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[3-bromo-2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, tri-fluoroacetate

Step A: 2-Bromo-4-iodotoluene

A well stirred solution of 18.6g (0.10mol) of 3-bromo-p-toluidine in 80mL of 6N HCl at 0°C was treated with a solution of 7.35g (0.11mol) of sodium nitrite in 15mL of water at a rate that maintained the temperature <10°C. The mixture was stirred for 45 minutes then cautiously treated with 33.2g (0.20mol) of potassium iodide at 0°C. The mixture was treated with 300mL of ether and washed (3x) with saturated aqueous sodium bisulfite. The organic layer was separated, dried over magnesium sulfate, filtered and concentrated under vacuum. The residue was redissolved in 50mL of hexane, filtered through 30g of silica and concentrated under vacuum to afford 15.6g (0.053mol, 53%) of the product which was determined to be 65% pure by <sup>1</sup>H NMR. <sup>1</sup>H NMR (200MHz, CDCl<sub>3</sub>): 2.33 (s, 3H), 6.97 (d, 8Hz, 1H), 7.51 (dd, 2,8Hz, 1H), 7.86 (d, 2Hz, 1H).

Step B: 2'-(N-Triphenylmethyl)tetrazol-5-yl]-2-bromo-1-methyl-1,1'-biphenyl

A solution of 6.0g (15mmol) of 5-phenyl-2-trityltetrazole (Example 1, Step H) in 60mL of tetrahydrofuran at -15°C to -10°C was treated with 6.5mL of 2.5M n-butyllithium in hexane

-280-

(16.3mmol, 1.05eq) and the resulting mixture stirred for 1.5 hours at -5°C to -10°C then treated with 9.2mL of 1.0M solution of zinc chloride in ether (9.2mmol, 0.6eq). The mixture was warmed to room temperature and treated with: 0.3g of bis(triphenylphosphine) nickel dichloride, 0.3mL of a 3M solution of methylmagnesium chloride in tetrahydrofuran and finally, a solution of 8.5g (29mmol) of 2-bromo-4-iodotoluene in 12mL of tetrahydrofuran. The mixture was stirred overnight at room temperature then treated with an additional 1.5g of 2-bromo-4-iodotoluene and heated briefly to 40°C. The mixture was cooled and partitioned between ether and saturated citric acid. The organic layer was separated, washed with brine (2x), dried over magnesium sulfate, filtered and concentrated under vacuum. The residue was dissolved in methylene chloride, passed through a short plug of silica, and concentrated under vacuum. The gummy residue was dissolved in ether and treated with an equal volume of hexane to precipitate the product. By this method, 4.3g (7.7mmol, 51%) of product was obtained as a white powder.  $^1\text{H}$  NMR (400MHz,  $\text{CDCl}_3$ ): 2.29 (s, 3H), 6.83 (t, 8Hz, 2H), 6.89 (d, 8Hz, 6H), 7.2-7.4 (m, 11H), 7.45 (m, 2H), 7.92 (dd; 2, 8Hz; 1H).

-281-

Step C 2'-(N-Triphenylmethyl)tetrazol-5-yl]-2-bromo-1-bromomethyl-1,1'-biphenyl

Prepared from the intermediate obtained in Step B by the procedure described in Example 69, Step C.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 4.48 (s, 2H), 6.85-7.05 (m, 8H), 7.20-7.55 (m, 13H), 8.03 (m, 1H).  $^1\text{H}$  NMR indicates the product thus obtained contains approximately 20% starting material.

10      Step D: 3-t-Butoxycarbonylamino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[3-bromo-2'-(N-triphenylmethyl)tetrazol-5-yl][1,1'-biphenyl]-4-yl]methyl-1H-1-benzazepin-3(R)-yl]-butanamide

15      Prepared from 3-t-butoxycarbonylamino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-3(R)-yl]-butanamide (Example 57, Step A) and 2'-(N-triphenylmethyl)tetrazol-5-yl]-2-bromo-1-bromomethyl-1,1'-biphenyl by the procedure described in Example 1, Step K.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.34 (s, 3H), 1.35 (s, 3H), 1.40 (s, 9H), 1.90 (m, 1H), 2.43 (d, 14Hz, 1H), 2.55 (d, 14Hz, 1H), 2.5-2.8 (m, 3H), 4.57 (m, 1H), 4.97 (d, 15Hz, 1H), 5.14 (d, 15Hz, 1H), 5.31 (br s, 1H), 6.66 (d, 7Hz, 1H), 6.95-7.15 (m, 13H), 7.20-7.40 (m, 10H), 7.46 (m, 2H), 7.93 (m, 1H).

25      Step E: 3-Amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[3-bromo-2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, trifluoroacetate

30      The title compound was prepared from the intermediate obtained in Step D by the procedure described in Example 31, Step H.

-282-

<sup>1</sup>H NMR (200MHz, CD<sub>3</sub>OD): 1.32 (s, 3H), 1.37 (s, 3H)  
2.0-2.9 (m, 6H), 4.40 (dd; 8, 12Hz; 1H), 4.90  
(d, 15Hz, 1H), 5.26 (d, 15Hz, 1H), 6.96 (dd; 2, 8Hz, 1H),  
5 7.10-7.45 (m, 6H), 7.45-7.70 (m, 4H). FAB-MS:  
calculated for C<sub>29</sub>H<sub>30</sub>BrN<sub>7</sub>O<sub>2</sub> 587,589; found 589  
(98%); 591 (100%).

Example 122

10

3-[(2(R)-Hydroxypropyl)amino]-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[3-bromo-2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, hydrochloride

15

Step A: 3-[2(R)-Benzylxypropyl]amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-3(R)-yl]-butanamide

20

Prepared from 3-amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-3(R)-yl]-butanamide, trifluoroacetate (Example 107, Step C) and (R)-2-benzylxypropanal (prepared from ethyl-D-lactate according to the procedure of Hanessian and Kloss, Tetrahedron Lett. 1985, 26, 1261-1264.) by the

25

procedure described in Example 86, Step A. <sup>1</sup>H NMR (200MHz, CD<sub>3</sub>OD): 1.31 (d, 6Hz, 3H), 1.40 (s, 3H), 1.43 (s, 3H), 2.17 (m, 1H), 2.30 (m, 1H), 2.6-3.1 (m, 5H), 3.22 (dd; 3, 12Hz; 1H), 3.86 (m, 1H), 4.48 (dd; 7, 12Hz; 1H), 4.50 (d, 12Hz, 1H), 4.70 (d, 12Hz, 1H),

30

7.11 (d, 8Hz, 1H), 7.15-7.45 (m, 8H). FAB-MS: calculated for C<sub>25</sub>H<sub>33</sub>N<sub>3</sub>O<sub>3</sub> 423; found 424 (M+H, 100%).

-283-

Step B: 3-[2(R)-Hydroxypropyl]amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-3(R)-yl]-butanamide, trifluoroacetate

A solution of 750mg (1.40mmol) of the  
5 intermediate obtained in Step A in methanol  
containing 2 drops of trifluoroacetic acid was  
hydrogenated at room temperature and 40psi in the  
presence of 300mg of 30% palladium on carbon for 3  
days. The catalyst was removed by filtration through  
10 Celite and the filtrate concentrated under vacuum to  
give 600mg (1.34mmol, 96%) of product.  $^1\text{H}$  NMR  
(200MHz,  $\text{CD}_3\text{OD}$ ): 1.22 (d, 7Hz, 3H), 1.37 (s, 3H), 1.39  
(s, 3H), 2.14 (m, 1H), 2.3-3.0 (m, 6H), 3.09  
(dd; 2, 11Hz; 1H), 3.93 (m, 1H), 4.38 (dd; 8, 12Hz; 1H),  
15 7.05 (d, 8Hz, 1H), 7.10-7.35 (m, 3H).

Step C: 3-[2(R)-Triethylsiloxypropyl]amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-3(R)-yl]-butanamide

20 To a stirred solution of 660mg (1.48mmol) of  
the intermediate obtained in Step B in 3mL of  
methylene chloride at room temperature was added  
1.1mL of N,N-diisopropylethylamine (0.81g, 4.2eq.)  
followed by 0.71mL of triethylsilyl trifluoromethane-  
25 sulfonate (0.83g, 2.1eq.). The resulting mixture was  
stirred at room temperature for 2 hours then  
partitioned between ethyl acetate and saturated  
aqueous sodium chloride (buffered to pH 9 with 2  
drops of ammonium hydroxide). The organic layer was  
30 separated, washed with buffered brine, dried over  
magnesium sulfate, filtered and solvents evaporated  
under vacuum. The residue was purified by

-284-

preparative high pressure liquid chromatography on silica, eluting with ethyl acetate/0.1% ammonium hydroxide in methanol (85:15), to afford 480mg (1.07mmol, 72%) of product.  $^1\text{H}$  NMR (200MHz, CD<sub>3</sub>OD):  
5 0.63 (q, 8Hz, 6H), 0.97 (t, 8Hz, 9H), 1.14 (s, 6H), 1.18 (d, 6Hz, 3H), 2.05 (m, 1H), 2.28 (d, 2Hz, 2H), 2.35-3.00 (m, 5H), 4.01 (m, 1H), 4.44 (dd; 8, 12Hz; 1H), 7.05 (d, 8Hz, 1H), 7.10-7.35 (m, 3H). FAB-MS: calculated for C<sub>24</sub>H<sub>41</sub>N<sub>3</sub>O<sub>3</sub>Si 447; found 448 (M+H, 100%).

10

Step D: 3-[(2(R)-Hydroxypropyl)amino]-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[3-bromo-2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide,  
15 hydrochloride

To a stirred solution of 94mg (0.21mmol) of the intermediate obtained in Step C in 0.5mL of dimethylformamide was added 6mg of 60% sodium hydride oil dispersion (3.6mg NaH, 1.2eq.). The resulting solution was stirred for 15 minutes then treated with a solution of 201mg (0.31mmol, 1.5eq.) of 2'-(N-Triphenylmethyl)tetrazol-5-yl]-2-bromo-1-bromo-methyl-1,1'-biphenyl (Example 121, Step C) in 0.5mL of dimethylformamide. The resulting solution was stirred at room temperature for 2 hours then added to 50mL of ethyl acetate and washed with brine (2x). The organic layer was separated, dried over sodium sulfate, filtered and solvents removed under vacuum.

The residue was dissolved in 2mL of methanol and treated with 10mL of 9N HCl and 10mL of hexane. This mixture was stirred vigorously for 2 hours then the layers allowed to separate. The aqueous layer

-285-

was removed by pipet, washed once with hexane, filtered and evaporated under vacuum. The residue was triturated with methanol to give a white solid that was removed by filtration. Thus, 101mg (0.15mmol, 71%) of the title compound was obtained as a white solid.  $^1\text{H}$  NMR (300MHz, CD<sub>3</sub>OD): 1.23 (d, 6Hz, 3H), 1.40 (s, 3H), 1.41 (s, 3H), 2.24 (m, 1H), 2.40 (m, 1H), 2.61 (d, 15Hz, 1H), 2.69 (d, 15Hz, 1H), 2.7-3.0 (m, 5H), 3.13 (dd; 3, 11Hz; 1H), 3.96 (m, 1H), 4.47 (dd; 7, 12Hz; 1H), 4.9 (d, 15Hz, 1H), 5.38 (d, 15Hz, 1H), 7.17 (d, 8Hz, 2H), 7.25-7.40 (m, 3H), 7.45 (d, 8Hz, 1H), 7.48 (d, 2Hz, 1H), 7.64 (m, 2H), 7.74 (m, 2H). FAB-MS: calculated for C<sub>32</sub>H<sub>36</sub>BrN<sub>7</sub>O<sub>3</sub> 645,647; found 646(50%), 648(55%).

15

### Example 123

3'-Bromo-4'--[[3(R)-[(3-amino-3-methyl-1-oxobutyl) amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl] methyl][1,1'-biphenyl-2-carboxamide, trifluoroacetate

Step A: 3'-Bromo-4'-methyl-1,1'-biphenyl-2-nitrile  
A solution of 5.2g (27mmol) of 4'-methyl-1,1'-biphenyl-2-nitrile (Example 69, Step B) in 60mL of methylene chloride at 0°C was treated with 6.7g of silver trifluoroacetate (30mmol). When all the silver trifluoroacetate was dissolved, 1.6mL of bromine was added dropwise (4.95g, 31mmol) with vigorous stirring. After two hours, the reaction mixture was filtered and the solid washed with methylene chloride. The combined organic layers were washed once with dilute (<1N) aqueous sodium

-286-

hydroxide and once with brine. The organic layer was removed, dried over magnesium sulfate, filtered and concentrated under vacuum. The residue was purified by preparative high pressure liquid chromatography on 5 silica, eluting with 10% ether/hexane to give 3g (41%) of product.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 2.46 (s, 3H), 7.2-7.8 (m, 7H).

10 Step B: 3'-Bromo-4'-bromomethyl-1,1'-biphenyl-2-nitrile

Prepared from the intermediate obtained in Step A by the procedure described in Example 69, Step C. NMR analysis shows product to contain small amounts of starting material and dibromomethyl compound.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 4.64 (s, 2H), 15 7.4-7.8 (m, 7H). FAB-MS: calculated for  $\text{C}_{14}\text{H}_9\text{Br}_2\text{N}$  351; found 352 (100%); 271 (100%)

20 Step C: 3-[[1-[[3-Bromo-2'-cyano-[1,1'-biphenyl]-4-y1]methyl]-2,3,4,5-tetrahydro-2-oxo-1H-benzazepin-3(R)-yl]amino]-1,1-dimethyl-3-oxo-propylcarbamic acid, 1,1-dimethylethyl ester

Prepared from 3-t-butoxycarbonylamino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-3(R)-yl]-butanamide (Example 57, Step A) and 3'-bromo-4'-bromomethyl-1,1'-biphenyl-2-nitrile by the procedure described in Example 69, Step D.  $^1\text{H}$  NMR (200MHz,  $\text{CDCl}_3$ ): 1.33 (s, 3H), 1.34 (s, 3H), 1.40 (s, 9H), 1.91 (m, 1H), 2.43 (d, 14Hz, 1H), 2.55 (d, 14Hz, 1H), 2.55-2.90 (m, 3H), 4.62 (m, 1H), 4.95 (d, 16Hz, 1H), 5.28 (s, 1H), 5.34 (d, 16Hz, 1H), 6.63 (d, 7Hz, 1H), 7.10-7.25 (m, 4H), 7.45 (m, 4H), 7.64

-287-

(m,1H), 7.75 (m,2H). FAB-MS (Li spike): calculated for C<sub>34</sub>H<sub>37</sub>BrN<sub>4</sub>O<sub>4</sub> 644, 646; found 651 (13%); 653 (15%).

- 5       Step D: 3'-Bromo-4'--[[3(R)-[(3-t-butoxycarbonylamino-3-methyl-1-oxobutyl)amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl][1,1'-biphenyl]-2-carboxamide

The title compound was prepared from the intermediate obtained in Step C by the procedure described in Example 69, Step E. <sup>1</sup>H NMR (200MHz,CDCl<sub>3</sub>): 1.34 (br s,6H), 1.40 (s,9H), 1.93 (m,1H), 2.43 (d,13Hz,1H), 2.56 (d,13Hz,1H), 2.55-2.90 (m,3H), 4.62 (m,1H), 4.96 (d,16Hz,1H), 5.30 (d,16Hz,1H), 5.34 (br s,1H), 5.65 (br s,1H), 6.69 (d,7Hz,1H), 7.05-7.55 (m,9H), 7.63 (s,1H), 7.71 (dd;2,8Hz;1H). FAB-MS: calculated for C<sub>34</sub>H<sub>39</sub>BrN<sub>4</sub>O<sub>5</sub> 662, 664; found 663 (2%); 665 (3%).

- 20      Step E: 3'-Bromo-4'--[[3(R)-[(3-amino-3-methyl-1-oxobutyl)amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl][1,1'-biphenyl]-2-carboxamide, trifluoroacetate

The title compound was prepared from the intermediate obtained in Step D by the procedure described in Example 69, Step F. <sup>1</sup>H NMR (200MHz,CD<sub>3</sub>OD): 1.35 (s,3H), 1.37 (s,3H), 2.10-3.00 (m,6H), 4.48 (dd;8,12Hz;1H), 4.93 (d,16Hz,1H), 5.33 (d,16Hz,1H), 7.15-7.60 (m,10H), 7.67 (d,2Hz,1H). FAB-MS: calculated for C<sub>29</sub>H<sub>31</sub>BrN<sub>4</sub>O<sub>3</sub> 562, 564; found 563 (38%); 565 (37%).

-288-

Example 124

5       3'-Bromo-4'--[[3(R)-[[3-[(2(S),3-dihydroxypropyl)amino]-3-methyl-1-oxobutyl]amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl][1,1'-biphenyl]-2-carboxamide. trifluoroacetate

---

The title compound was prepared from  
3'-bromo-4'--[[3(R)-[(3-amino-3-methyl-1-oxo-butyl)-amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl][1,1'-biphenyl]-2-carboxamide, trifluoroacetate (Example 123) and D-glyceraldehyde acetonide by the procedure described in Example 71. <sup>1</sup>H NMR (200MHz, CD<sub>3</sub>OD): 1.36 (s, 6H), 2.1-3.0 (m, 6H), 3.17 (dd; 4, 12Hz; 1H), 3.50 (m, 2H), 3.83 (m, 1H), 4.46 (dd; 8, 12Hz; 1H), 4.82 (d, 16Hz, 1H), 5.40 (d, 16Hz, 1H), 7.10-7.60 (m, 10H), 7.70 (s, 1H). FAB-MS: calculated for C<sub>32</sub>H<sub>37</sub>BrN<sub>4</sub>O<sub>5</sub> 636, 638; found 637 (35%); 639 (35%).

20

Example 125

25       3-Amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-carbomethoxy-[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3-yl]butanamide. trifluoroacetate

---

Step A: 3-Benzylloxycarbonylamino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-carbomethoxy-[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3-yl]butanamide

---

30       Prepared from 3-benzylloxycarbonylamino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-3-yl]-butanamide (Example 51, Step A) and methyl 4'-

-289-

bromomethyl-1,1'-biphenyl-2-carboxylate (prepared by the method of D. J. Carini, et al, EPO publication 324,377) by the procedure described in Example 1, Step K.  $^1\text{H}$  NMR (300MHz,  $\text{CDCl}_3$ ): 1.37 (s,3H), 1.39 (s,3H), 1.75 (m,1H), 2.3-2.6 (m,5H), 3.52 (s,3H), 4.50 (m,1H), 4.80 (d,14Hz,1H), 5.06 (s,2H), 5.34 (d,14Hz,1H), 5.65 (s,1H), 6.72 (d,7Hz,1H), 7.1-7.4 (m,15H), 7.48 (dt;2,8Hz;1H), 7.78 (dd;2,8Hz;1H). FAB-MS: calculated for  $\text{C}_{38}\text{H}_{39}\text{N}_3\text{O}_6$  633; found 634 ( $\text{M}+\text{H}$ , 60%).

Step B: 3-Amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-carbomethoxy-[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3-yl]-butanamide, trifluoroacetate

The title compound was prepared from the intermediate obtained in Step A by the procedure described in Example 1, Step L.  $^1\text{H}$  NMR (300MHz,  $\text{CD}_3\text{OD}$ ): 1.40 (s,3H), 1.44 (s,3H), 2.17 (m,1H), 2.38 (m,1H), 2.5-2.7 (m,4H), 3.56 (s,3H), 4.46 (dd;8,12Hz;1H), 4.98 (d,15Hz,1H), 5.37 (d,15Hz,1H), 7.22 (d,8Hz,2H), 7.25-7.50 (m,8H), 7.59 (dt;2,8Hz;1H), 7.78 (dd;2,8Hz;1H). FAB-MS: calculated for  $\text{C}_{30}\text{H}_{33}\text{N}_3\text{O}_4$  499; found 500 ( $\text{M}+\text{H}$ , 100%).

25

Example 126

3-Amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-cyano-[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3-yl]-butanamide, trifluoroacetate

-290-

Step A: 3-Benzylloxycarbonylamino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-cyano-[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3-yl]-butanamide  
Prepared from 3-benzylloxycarbonylamino-3-

5 methyl-N-[2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-3-yl]-butanamide (Example 51, Step A) and 4'-bromomethyl-1,1'-biphenyl-2-nitrile (Example 69, Step C) by the procedure described in Example 1, Step K. FAB-MS: calculated for  $C_{37}H_{36}N_4O_4$  600; found 601 ( $M+H$ , 100%).

10

Step B: 3-Amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-cyano-[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3-yl]-butanamide, trifluoroacetate

15

The title compound was prepared from the intermediate obtained in Step A by the procedure described in Example 1, Step L.  $^1H$  NMR (300MHz,  $CD_3OD$ ): 1.40 (s, 3H), 1.43 (s, 3H), 2.18 (m, 1H), 2.38 (m, 1H), 2.5-2.7 (m, 4H), 4.47 (dd; 8, 12Hz; 1H), 5.11 (d, 15Hz, 1H), 5.28 (d, 15Hz, 1H), 7.30 (m, 2H), 7.35-7.65 (m, 8H), 7.76 (dt; 2, 8Hz; 1H), 7.86 (dd; 2, 8Hz; 1H). FAB-MS: calculated for  $C_{29}H_{30}N_4O_2$  466; found 467 ( $M+H$ , 100%).

25

#### Example 127

3-Amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-trifluoromethyl-[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3-yl]-butanamide, trifluoroacetate

30

Step A: 2-Trifluoromethyl-4'-methyl-1,1'-biphenyl

A solution of 388mg (1.52mmol, 1.4eq.) of 4-methylphenyltrimethylstannane (Example 69, Step A)

-291-

in 5mL of toluene under a nitrogen atmosphere was treated with 238mg of 2-bromobenzotrifluoride (1.06mmol) and 64mg of tetrakis(triphenylphosphine) palladium(0) and the resulting solution heated at reflux for 14 hours. The mixture was cooled, filtered and concentrated under vacuum to give an amber oil that was chromatographed on silica, eluting with hexane, to give the product.  $^1\text{H}$  NMR (300MHz,  $\text{CDCl}_3$ ): 2.41 (s,3H), 7.2-7.8 (m,8H). EI-MS: calculated for  $\text{C}_{14}\text{H}_{11}\text{F}_3$  236; found 236 ( $\text{M}^+$ , 100%).

Step B: 4'-Bromomethyl-2-trifluoromethyl-1,1'-biphenyl  
Prepared from 2-trifluoromethyl-4'-methyl-1,1'-biphenyl by the procedure described in Example 15 69, Step C. EI-MS: calculated for  $\text{C}_{14}\text{H}_{10}\text{BrF}_3$  314,316; found 314 (5%),316 (5%).

Step C: 3-Benzylloxycarbonylamino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-trifluoromethyl-[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3-yl]-butanamide  
Prepared from 3-benzylloxycarbonylamino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-3-yl]-butanamide (Example 51, Step A) and 4'-bromo-25 methyl-2-trifluoromethyl-1,1'-biphenyl by the procedure described in Example 1, Step K.  $^1\text{H}$  NMR (300MHz,  $\text{CDCl}_3$ ): 1.37 (s,3H), 1.39 (s,3H), 1.73 (m,1H), 2.2-2.6 (m,5H), 4.50 (m,1H), 4.82 (d,15Hz,1H), 5.06 (s,2H), 5.29 (d,15Hz,1H), 5.65 (s,1H), 6.70 (d,7Hz,1H), 7.1-7.4 (m,14H), 7.44 (t,8Hz,1H), 7.52 (t,8Hz,1H), 7.71 (d,8Hz,1H). FAB-MS: calculated for  $\text{C}_{37}\text{H}_{36}\text{F}_3\text{N}_3\text{O}_4$  643; found 644 ( $\text{M}+\text{H}$ , 55%).

-292-

Step D: 3-Amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-trifluoromethyl-[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3-yl]-butanamide, trifluoroacetate

5       The intermediate obtained in Step C (92mg, 0.14mmol) was treated with 1.62mL of 30% hydrogen bromide in acetic acid at room temperature for 2 hours. The mixture was concentrated under vacuum to give a dark yellow residue. Purification by  
10      preparative reverse phase high pressure liquid chromatography on C18, eluting with methanol/0.1% aqueous trifluoroacetic acid (linear gradient: 75% methanol increased to 85% over 10 minutes) afforded 71mg (0.11mmol, 81%) of the title compound as a  
15      colorless glass.

1H NMR (300MHz, CD<sub>3</sub>OD): 1.39 (s,3H), 1.44 (s,3H), 2.16 (m,1H), 2.38 (m,1H), 2.5-2.7 (m,4H), 4.47 (dd;8,12Hz,1H), 5.04 (d,15Hz,1H), 5.34 (d,15Hz,1H), 7.20-7.45 (m,9H), 7.56 (t,8Hz,1H), 7.66 (t,8Hz,1H),  
20      7.79 (d,8Hz,1H). FAB-MS: calculated for C<sub>29</sub>H<sub>31</sub>F<sub>3</sub>N<sub>3</sub>O<sub>2</sub> 509; found 510 (M+H,100%).

Example 128

25      3-Amino-3-methyl-N-[7-methylthio-2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3-yl]-butanamide, hydrochloride

Step A: 6-Methylthio-1-tetralone oxime  
30      Prepared from 6-methylthio-1-tetralone (prepared by the method described in EP0 0 325,963 A1) by the procedure described in Example 113, Step A. <sup>1</sup>H

-293-

NMR (200MHz, CDCl<sub>3</sub>): 1.89 (m, 2H), 2.52 (s, 3H), 2.78 (m, 4H), 7.02 (d, 2Hz, 1H), 7.08 (dd; 2, 8Hz; 1H), 7.81 (d, 8Hz, 1H).

5      Step B: 7-Methylthio-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one

Prepared from 6-methylthio-1-tetralone oxime by the procedure described in Example 113, Step B. <sup>1</sup>H NMR (200MHz, CDCl<sub>3</sub>): 2.23 (m, 2H), 2.36 (m, 2H), 2.49 (s, 3H), 2.78 (t, 8Hz, 2H), 6.94 (d, 8Hz, 1H), 7.14 (m, 2H), 7.75 (br s, 1H).

10     Step C: 3-Iodo-7-methylthio-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one

15     Prepared from 7-methylthio-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one by the procedure described in Example 31, Step B. <sup>1</sup>H NMR (200MHz, CDCl<sub>3</sub>): 2.51 (s, 3H), 2.6-2.9 (m, 3H), 2.50 (s, 3H), 2.97 (m, 1H), 4.68 (t, 9Hz, 1H), 6.95 (d, 8Hz, 1H), 7.15 (m, 2H), 7.5 (br s, 1H).

20     Step D: 3-Amino-7-methylthio-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one

25     A mixture of 0.5g of 3-iodo-7-methylthio-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one and 15g of ammonia in 20mL of chloroform was shaken in a bomb at 100°C for 3 hours. The bomb was cooled, vented and the contents transferred to a separatory funnel. The mixture was washed with water, dried over magnesium sulfate, filtered and solvents removed under vacuum to give the product.

-294-

<sup>1</sup>H NMR (200MHz, CDCl<sub>3</sub>): 1.90 (m, 1H), 2.3-2.7 (m, 2H),  
2.45 (s, 3H), 2.85 (m, 1H), 3.39 (dd; 8, 11Hz; 1H), 6.89  
(d, 8Hz, 1H), 7.10 (m, 2H), 8.3 (br s, 1H).

5

Step E: 3-t-Butoxycarbonylamino-3-methyl-N-[7-methyl-thio-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-3-yl]-butanamide

Prepared from the intermediate obtained in  
10 Step D and 3-t-butoxycarbonylamino-3-methyl-butanoic acid (Example 31, Step E) by the procedure described in Example 1, Step F. <sup>1</sup>H NMR (200MHz, CDCl<sub>3</sub>): 1.33 (s, 6H), 1.40 (s, 9H), 1.91 (m, 1H), 2.4-3.0 (m, 5H), 2.48 (s, 3H), 4.50 (m, 1H), 5.22 (br s, 1H), 6.68 (d, 7Hz, 1H),  
15 6.90 (d, 8Hz, 1H), 7.11 (m, 2H), 7.66 (br s, 1H).

20 Step F: 3-t-Butoxycarbonylamino-3-methyl-N-[7-methyl-thio-2,3,4,5-tetrahydro-2-oxo-1-[2'-(N-tri phenylmethyl)-tetrazol-5-yl][1,1'-biphenyl]-4-yl]methyl-1H-1-benzazepin-3-yl]-butanamide  
Prepared from the intermediate obtained in Step E by the procedure described in Example 1, Step K. <sup>1</sup>H NMR (200MHz, CDCl<sub>3</sub>): 1.37 (s, 6H), 1.43 (s, 9H),  
1.78 (m, 1H), 2.2-2.7 (m, 5H), 2.44 (s, 3H), 4.49 (m, 1H),  
25 4.69 (d, 15Hz, 1H), 5.12 (d, 15Hz, 1H), 5.34 (br s, 1H),  
6.69 (d, 7Hz, 1H), 6.9-7.1 (m, 12H), 7.2-7.5 (m, 13H),  
7.87 (m, 1H).

30

-295-

Step G: 3-Amino-3-methyl-N-[7-methylthio-2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3-yl]-butanamide, hydrochloride

5       The title compound was prepared from the intermediate obtained in Step F by the procedure described in Example 34, Step K. <sup>1</sup>H NMR (200MHz,DMSO-d<sub>6</sub>): 1.24 (s,3H), 1.25 (s,3H), 2.0-2.6 (m,6H), 2.47 (s,3H), 4.25 (m,1H), 4.78 (d,15Hz,1H),  
10      5.15 (d,15Hz,1H), 6.97 (d,8Hz,2H), 7.05-7.30 (m,5H), 7.45-7.70 (m,4H), 7.92 (br s,2H), 8.68 (d,7Hz,1H).

Example 129

15      3-Amino-3-methyl-N-[7-methylsulfinyl-2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3-yl]-butanamide, hydrochloride

20      Step A: 3-t-Butoxycarbonylamino-3-methyl-N-[7-methylsulfinyl-2,3,4,5-tetrahydro-2-oxo-1-[[2'-(N-triphenylmethyl)-tetrazol-5-yl][1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3-yl]-butanamide

25      Prepared as a mixture of two racemic diastereomers from the intermediate obtained in Example 128, Step F by the procedure described in Example 48, Step A. <sup>1</sup>H NMR (200MHz,CDCl<sub>3</sub>): 1.37 (s,6H), 1.44 (s,9H), 1.90 (m,1H), 2.4-2.9 (m,5H), 2.78 (s,3H), 4.54 (m,1H), 4.76 (two doublets,15Hz,total of 1H), 5.18 (two doublets,15Hz,total of 1H), 5.32 (br s,1H), 6.9-7.1 (m,9H), 7.2-7.6 (m,15H), 7.90 (m,1H), 7.98 (d,8Hz,1H), 8.08 (br s,1H).

-296-

Step B: 3-Amino-3-methyl-N-[7-methylsulfinyl-2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3-yl]butanamide, hydrochloride

5 The title compound was prepared as a mixture of two racemic diastereomers from the intermediate obtained in Step A by the procedure described in Example 34, Step K.

10  $^1\text{H}$  NMR (200MHz, DMSO-d<sub>6</sub>): 1.24 (s, 3H), 1.26 (s, 3H), 2.0-2.8 (m, 6H), 2.78 (s, 3H), 4.25 (m, 1H), 4.94 (d, 15Hz, 1H), 5.19 (d, 15Hz, 1H), 7.01 (d, 8Hz, 2H), 7.16 (d, 8Hz, 2H), 7.5-7.7 (m, 7H), 7.95 (br s, 2H), 8.75 (d, 7Hz, 1H).

15

Example 130

20 3-[(2(R)-Hydroxypropyl)amino]-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide, trifluoroacetate

25 Step A: 3-Methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]but-2-eneamide  
To a suspension of 1.18g (2.64mmol) of 3(R)-amino-1,3,4,5-tetrahydro-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-2H-1-benzazepin-2-one, hydrochloride (Example 4, Step C) in 30mL of methylene chloride under nitrogen at -15°C was added 0.923mL (2.64mmol) of triethylamine followed by 0.294mL (2.64mmol) of 3,3-dimethylacryloyl chloride. The reaction mixture was stirred at -15°C for 2 hours then

-297-

quenched by the addition of 1N hydrochloric acid. The mixture was diluted with 50mL of methylene chloride and washed with 50mL of 1N hydrochloric acid and brine. The organic layer was removed and concentrated to dryness under vacuum. The residue was redissolved in 30mL of methanol and treated with 1.5mL of 9N hydrochloric acid. After stirring for 30 minutes, the mixture was concentrated to dryness under vacuum to give 1.3g (2.63mmol, 99%) of the product as a white solid.

<sup>1</sup>H NMR (400MHz, CD<sub>3</sub>OD): 1.85 (s, 3H), 2.06 (s, 3H), 2.08 (m, 1H), 2.29 (m, 1H), 2.44 (m, 1H), 2.55 (m, 1H), 4.40 (dd; 7, 11Hz; 1H), 4.85 (d, 15Hz, 1H), 5.26 (d, 15Hz, 1H), 5.77 (s, 1H), 7.00 (d, 8Hz, 2H), 7.18 (d, 8Hz, 2H), 7.2-7.4 (m, 4H), 7.54 (m, 2H), 7.64 (m, 2H).

Step B: 3-[(2(R)-Hydroxypropyl)amino]-3-methyl-N-[2, 3, 4, 5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-y1)[1, 1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-y1]-butanamide, trifluoroacetate

The intermediate obtained in Step A (18mg, 0.037mmol) was dissolved in 2mL of (R)-(-)-1-amino-2-propanol and the resulting solution heated under nitrogen at 120°C for 5 hours. The reaction mixture was cooled, concentrated under vacuum at 50°C and the residue purified by medium pressure liquid chromatography on C8, eluting with methanol/0.1% aqueous trifluoroacetic acid (50:50), to give 14mg (0.021mmol, 57%) of the title compound as a colorless glass. The material thus obtained was identical by 400MHz NMR (CD<sub>3</sub>OD), FAB-MS and reverse phase analytical high pressure liquid chromatography to the material obtained in Example 102.

-298-

Example A

Utilizing the general procedures described  
in Example 1 to 130, the following compounds of  
Formula I can be prepared from the appropriately  
5 substituted starting materials and reagents.



|    | <u>R<sub>1</sub></u> | <u>R<sup>3a</sup></u> | <u>R<sup>4</sup></u> | <u>x</u> | <u>m</u> |
|----|----------------------|-----------------------|----------------------|----------|----------|
| 15 | H                    |                       |                      | 1        | 0        |
| 20 | H                    |                       |                      | 1        | 0        |
| 25 | H                    |                       |                      | 1        | 0        |
| 30 | H                    |                       | H                    | 0        | 0        |
|    | H                    |                       |                      | 1        | 1        |

-299-

Example A (Cont'd)

5

|    | $R_1$             | $R^{3a}$ | $R^4$                                                                                 | x | m |
|----|-------------------|----------|---------------------------------------------------------------------------------------|---|---|
| 10 | H                 |          | $\begin{array}{c} \text{OH} \\   \\ -\text{CH}_2\text{CHCH}_3 \end{array}$            | 1 | 1 |
| 15 | H                 |          | $\begin{array}{c} -\text{CH}_2\text{CH}_2\text{CHCH}_3 \\   \\ \text{OH} \end{array}$ | 1 | 1 |
| 20 | H                 |          | $\begin{array}{c} \text{OCH}_3 \\   \\ -\text{CH}_2\text{CHCH}_3 \end{array}$         | 1 | 0 |
| 25 | 8-F               |          | $\begin{array}{c} \text{OH} \\ \equiv \\ -\text{CH}_2\text{CHCH}_3 \end{array}$       | 1 | 0 |
| 30 | 8-CF <sub>3</sub> |          | $\begin{array}{c} \text{OH} \\ \equiv \\ -\text{CH}_2\text{CHCH}_3 \end{array}$       | 1 | 0 |

-300-

Example A (Cont'd)

5

|    | $R_1$              | $R^{3a}$                  | $R^4$                                                                       | x | m |
|----|--------------------|---------------------------|-----------------------------------------------------------------------------|---|---|
| 10 | 9-F                |                           | $-\text{CH}_2\overset{\text{OH}}{\underset{\equiv}{\text{C}}} \text{HCH}_3$ | 1 | 0 |
| 15 | 8-OCH <sub>3</sub> |                           | $-\text{CH}_2\overset{\text{OH}}{\underset{\equiv}{\text{C}}} \text{HCH}_3$ | 1 | 0 |
| 20 | 8-SCH <sub>3</sub> |                           | $-\text{CH}_2\overset{\text{OH}}{\underset{\equiv}{\text{C}}} \text{HCH}_3$ | 1 | 0 |
|    | H                  | $-\text{CO}_2\text{NH}_2$ | H                                                                           | 1 | 0 |
| 25 | H                  | $-\text{CO}_2\text{NH}_2$ | H                                                                           | 1 | 1 |
|    | H                  | $-\text{CO}_2\text{NH}_2$ | $-\text{CH}_2\overset{\text{OH}}{\underset{\equiv}{\text{C}}} \text{HCH}_3$ | 1 | 0 |

30

-301-

Example A (Cont'd)

5

|    | $R_1$ | $R^{3a}$      | $R^4$                                      | $x$ | $m$ |
|----|-------|---------------|--------------------------------------------|-----|-----|
| 10 |       |               | $\begin{matrix} OH \\ \equiv \end{matrix}$ |     |     |
|    | H     | $-CO_2NH_2$   | $-CH_2CHCH_2OH$                            | 1   | 0   |
| 15 |       |               | H                                          | 1   | 0   |
|    | H     | $-CO_2NHET$   | $\begin{matrix} OH \\ \equiv \end{matrix}$ |     |     |
| 20 |       |               | $-CH_2CHCH_3$                              | 1   | 0   |
|    | H     | $-CO_2NHET$   | $-CH_2CHCH_2OH$                            | 1   | 0   |
| 25 |       |               | $\begin{matrix} OH \\ \equiv \end{matrix}$ |     |     |
|    | H     | $-CH_2CONH_2$ | $-CH_2CHCH_3$                              | 1   | 0   |
| 30 |       |               | $\begin{matrix} OH \\ \equiv \end{matrix}$ |     |     |
|    | H     | $-CH_2CONHET$ | $-CH_2CHCH_2OH$                            | 1   | 0   |

-302-

Example A (Cont'd)

|    | R <sub>1</sub> | R <sup>3a</sup> | R <sup>4</sup>                         | x | m |
|----|----------------|-----------------|----------------------------------------|---|---|
| 5  | H              |                 | H                                      | 1 | 0 |
| 10 | H              |                 | -CH <sub>2</sub> CH(OH)CH <sub>3</sub> | 1 | 0 |
| 15 | H              |                 | H                                      | 1 | 0 |
| 20 | H              |                 | H                                      | 1 | 0 |
| 25 | H              |                 | H                                      | 1 | 0 |
| 30 |                |                 |                                        |   |   |

-303-

Example A (Cont'd)

|    | R <sub>1</sub> | R <sup>3a</sup>                      | R <sup>4</sup>                            | x | m |
|----|----------------|--------------------------------------|-------------------------------------------|---|---|
| 5  | H              |                                      | -CH <sub>2</sub> CH(OH)CH <sub>2</sub> OH | 1 | 0 |
| 10 | H              | -CONH <sub>2</sub>                   | H                                         | O | O |
|    | H              | -CONHET                              | H                                         | O | O |
| 15 | H              | -CH <sub>2</sub> OH                  | H                                         | 1 | 0 |
| 20 | H              | -CH <sub>2</sub> OH                  | -CH <sub>2</sub> CH(OH)CH <sub>3</sub>    | 1 | 0 |
|    | H              | -CH <sub>2</sub> OH                  | -CH <sub>2</sub> CH(OH)CH <sub>3</sub>    | 1 | 1 |
| 25 | H              | -CH <sub>2</sub> OH                  | -CH <sub>2</sub> CH(OH)CH <sub>2</sub> OH | 1 | 0 |
|    | H              | -CH <sub>2</sub> NH <sub>2</sub>     | -CH <sub>2</sub> CH(OH)CH <sub>3</sub>    | 1 | 0 |
| 30 | H              | -CH <sub>2</sub> NHCOCH <sub>3</sub> | H                                         | 1 | 0 |

-304-

Example A (Cont'd)

5

|    | $R_1$ | $R^{3a}$                                                                             | $R^4$                           | $x$ | $m$ |
|----|-------|--------------------------------------------------------------------------------------|---------------------------------|-----|-----|
| 10 | H     | $-CH_2NHCOPh$                                                                        | H<br>$\equiv OH$                | 1   | 0   |
|    | H     | $-CH_2NHCOCH_3$                                                                      | $-CH_2CHCH_3$                   | 1   | 0   |
| 15 |       |                                                                                      | $\equiv OH$                     |     |     |
|    | H     | $-CH_2NHCOCH_3$                                                                      | $-CH_2CHCH_2OH$                 | 1   | 0   |
| 20 | H     |  | $-CH_2C(CH_3)_2$<br>$ $<br>$OH$ | 1   | 0   |
|    | H     |  | $-CH_2C(CH_3)_2$<br>$ $<br>$OH$ | 1   | 1   |
| 25 | H     | $-CONHOH$                                                                            | $-CH_2CHCH_3$<br>$\equiv OH$    | 1   | 0   |
|    |       |                                                                                      |                                 |     |     |
| 30 |       |                                                                                      |                                 |     |     |

-305-

Example B

Utilizing the general procedures described  
in Example 1 to 130, the following compounds of  
Formula I can be prepared from the appropriately  
5 substituted starting materials and reagents.

10



15

20

25

30

- 305/1 -

Example B (Cont'd)

|    | $R_1$ | $R^{3a}$ | $R^4$                                                                              | A |
|----|-------|----------|------------------------------------------------------------------------------------|---|
| 5  | H     |          | H                                                                                  |   |
| 10 | H     |          | H                                                                                  |   |
| 15 | H     |          | $\begin{matrix} \text{OH} \\ \parallel \\ -\text{CH}_2\text{CHCH}_3 \end{matrix}$  |   |
| 20 | H     |          | $\begin{matrix} \text{OH} \\ \downarrow \\ -\text{CH}_2\text{CHCH}_3 \end{matrix}$ |   |
| 25 | H     |          | $-\text{CH}_2\text{CH}_2\text{CHCH}_3$<br> <br>OH                                  |   |
| 30 |       |          |                                                                                    |   |

-306-

Example B (Cont'd)

|    | R <sub>1</sub>         | R <sup>3a</sup>    | R <sup>4</sup>                         | A                                      |
|----|------------------------|--------------------|----------------------------------------|----------------------------------------|
| 5  |                        |                    |                                        |                                        |
|    | 7-F                    |                    | -CH <sub>2</sub> CH(OH)CH <sub>3</sub> | -CH <sub>2</sub> -C(Me) <sub>2</sub> - |
| 10 |                        |                    |                                        |                                        |
|    | 7-SCH <sub>3</sub>     |                    | -CH <sub>2</sub> CH(OH)CH <sub>3</sub> | -CH <sub>2</sub> -C(Me) <sub>2</sub> - |
| 15 |                        |                    |                                        |                                        |
|    | 7-S(=O)CH <sub>3</sub> |                    | -CH <sub>2</sub> CH(OH)CH <sub>3</sub> | -CH <sub>2</sub> -C(Me) <sub>2</sub> - |
| 20 |                        |                    |                                        |                                        |
|    | 7-OCH <sub>3</sub>     |                    | -CH <sub>2</sub> CH(OH)CH <sub>3</sub> | -CH <sub>2</sub> -C(Me) <sub>2</sub> - |
| 25 |                        |                    |                                        |                                        |
|    | H                      | -CONH <sub>2</sub> | H                                      | -CH <sub>2</sub> -C(Me) <sub>2</sub> - |
|    |                        |                    |                                        |                                        |
|    | H                      | -CONH <sub>2</sub> | -CH <sub>2</sub> CH(OH)CH <sub>3</sub> | -CH <sub>2</sub> -C(Me) <sub>2</sub> - |
| 30 |                        |                    |                                        |                                        |
|    | H                      | -CONHMe            | -CH <sub>2</sub> CH(OH)CH <sub>3</sub> | -CH <sub>2</sub> -C(Me) <sub>2</sub> - |

-307-

Example B (Cont'd)

5



10



15



20



25



30



-308-

Example C

Utilizing the general procedures described  
in Example 1 to 130, the following compounds of  
5 Formula I can be prepared from the appropriately  
substituted starting materials and reagents.



20

25

30

- 308/1 -

Example C (Cont'd)

5

|     | R <sub>1</sub> | R <sup>3a</sup> | A | R <sup>4</sup> | R <sup>5</sup>  | R <sup>6</sup>  |
|-----|----------------|-----------------|---|----------------|-----------------|-----------------|
| 7-F | H              |                 |   | H              | H               | CH <sub>3</sub> |
| 10  |                |                 |   | H              | CH <sub>3</sub> |                 |
| 15  | H              |                 |   | H              | H               | H               |
| 20  | H              |                 |   | H              | H               | H               |
| 25  | H              |                 |   |                |                 |                 |
| 30  |                |                 |   |                |                 |                 |

-309-

Example C (Cont'd)

5

|    | $R_1$ | $R^{3a}$ | A | $R^4$ | $R^5$ | $R^6$ |
|----|-------|----------|---|-------|-------|-------|
| 10 | H     |          |   | H     | H     | H     |
| 15 | H     |          |   | H     | H     | H     |
| 20 | H     |          |   |       | H     | H     |
| 25 | H     |          |   |       | H     | H     |
|    | H     |          |   |       | H     | H     |
| 30 | H     |          |   |       | H     | H     |

-310-

Example C (Cont'd)

| 5  | $R_1$ | $R^{3a}$                                                                             | A                | $R^4$         | $R^5$ | $R^6$ |
|----|-------|--------------------------------------------------------------------------------------|------------------|---------------|-------|-------|
| 10 | H     |   | $-CH_2-C(Me)_2-$ | $-CH_2CHCH_3$ | H     | H     |
| 15 | 7-F   |  | $-CH_2-C(Me)_2-$ | H             | H     | H     |
| 20 | 7-F   |  | $-CH_2-C(Me)_2-$ | H             | H     | H     |
| 25 | H     |  | $-CH_2-C(Me)_2-$ | $-CH_2CH_2OH$ | H     | H     |
| 30 | H     |  | $-C(Me)CH_2OH$   | H             | H     | H     |

-311-

Example C (Cont'd)

5

|    | $R_1$     | $R^{3a}$  | A              | $R^4$                | $R^5$  | $R^6$ |
|----|-----------|-----------|----------------|----------------------|--------|-------|
| 10 | H         |           | $-CH_2-C-$<br> | H                    | H      | H     |
| 15 | H         |           | $-CH_2-C-$<br> | H                    | $CH_3$ | H     |
| 20 | H         |           | $-CH_2-C-$<br> | $-CH_2C(CH_3)_2$<br> | H      | H     |
| 25 | H         | $-CONH_2$ | $-CH_2-C-$<br> | $-CH_2C(CH_3)_2$<br> | H      | H     |
|    | H         | $-CONHET$ | $-CH_2-C-$<br> | $-CH_2C(CH_3)_2$<br> | H      | H     |
| 30 | $7-OCH_3$ |           | $-CH_2-C-$<br> | H                    | H      | H     |

-312-

Example C (Cont'd)

|    | R <sub>1</sub>     | R <sup>3a</sup> | A                                      | R <sup>4</sup>                                                      | R <sup>5</sup> | R <sup>6</sup> |
|----|--------------------|-----------------|----------------------------------------|---------------------------------------------------------------------|----------------|----------------|
| 5  |                    |                 |                                        |                                                                     |                |                |
| 10 | 7-OH               |                 | -CH <sub>2</sub> -C(Me) <sub>2</sub> - | H                                                                   | H              | H              |
| 15 | 7-OCH <sub>3</sub> |                 | -CH <sub>2</sub> -C(Me) <sub>2</sub> - | -CH <sub>2</sub> C(OH)(CH <sub>3</sub> ) <sub>2</sub>               | H              | H              |
| 20 | 7-OH               |                 | -CH <sub>2</sub> -C(Me) <sub>2</sub> - | -CH <sub>2</sub> C(OH)(CH <sub>3</sub> ) <sub>2</sub>               | H              | H              |
| 25 | H                  |                 | -CH <sub>2</sub> -C(Me) <sub>2</sub> - | -CH <sub>2</sub> C(OH)(CH <sub>3</sub> ) <sub>2</sub>               | H              | H              |
| 30 | H                  |                 | -CH <sub>2</sub> -C(Me) <sub>2</sub> - | -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> CH <sub>2</sub> - | H              |                |

-313-

Example C (Cont'd)

| 5  | R <sub>1</sub> | R <sup>3a</sup>      | A | R <sup>4</sup>                                       | R <sup>5</sup> | R <sup>6</sup> |
|----|----------------|----------------------|---|------------------------------------------------------|----------------|----------------|
| 10 | H              | -CONHCH <sub>3</sub> |   | -CH <sub>2</sub> CH(Me) <sub>2</sub>                 | H              | H              |
| 15 | H              | -CONHET              |   | CH <sub>2</sub> CH <sub>2</sub> CH(Me) <sub>2</sub>  | H              | H              |
| 20 | H              | -CONHOH              |   | CH <sub>2</sub> CH <sub>2</sub> CH(Me) <sub>2</sub>  | H              | H              |
| 25 | H              | -CONHOH              |   | CH <sub>2</sub> CH <sub>2</sub> CH(Me) <sub>2</sub>  | H              | H              |
| 30 | H              | -CONHOH              |   | -CH <sub>2</sub> CH <sub>2</sub> CH(Me) <sub>2</sub> | H              | H              |
|    | 7 - F          | -CONHOH              |   | -CH <sub>2</sub> CH(Me) <sub>2</sub>                 | H              | H              |

-314-

EXAMPLE D

Utilizing the general procedures described in  
Example 1 to 130, the following compounds of Formula  
5 I can be prepared from the appropriately substituted  
starting materials and reagents.

10



15

20

25

30

- 314/1 -

Example D (Cont'd)

5

|    | 10      R <sub>1</sub> | R <sup>1b</sup> | R <sup>2a</sup> | R <sup>3a</sup> | A | R <sup>4</sup> |
|----|------------------------|-----------------|-----------------|-----------------|---|----------------|
|    | H                      | H               |                 | H               |   | H              |
| 15 | H                      | H               |                 | H               |   | H              |
| 20 | H                      | H               |                 | H               |   |                |
| 25 | H                      | H               |                 | H               |   |                |
| 30 |                        |                 |                 |                 |   |                |

-315-

EXAMPLE D (Cont'd)

5

|    | $R_1$ | $R^{1b}$ | $R^{2a}$ | $R^{3a}$ | $A$ | $R^4$ |
|----|-------|----------|----------|----------|-----|-------|
| 10 | H     | Br       | H        |          |     | H     |
| 15 | H     | Br       | H        |          |     |       |
| 20 | H     | H        | H        |          |     | H     |
| 25 | H     | H        | H        |          |     |       |
| 30 | H     | H        | H        |          |     |       |

-316-

EXAMPLE D (Cont'd)

5

10

15

20

25

30

|  | $R_1$ | $R^{1b}$ | $R^{2a}$ | $R^{3a}$                                                                              | A                                                                                     | $R^4$                                                                                 |
|--|-------|----------|----------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|  | H     | H        | H        |  |  |  |
|  | H     | H        | H        |  |  |  |
|  | H     | H        | H        |  |  |  |
|  | H     | Br       | H        | $-CONH_2$                                                                             |  | H                                                                                     |

-317-

EXAMPLE E

Utilizing the general procedures described  
in Example 1 to 130, the following compounds of  
5 Formula I can be prepared from the appropriately  
substituted starting materials and reagents.

10



15

20

25

30

-318-

EXAMPLE E (Cont'd)

5

|    | X | n | p | R <sup>3a</sup>                                                                       | R <sup>4</sup>                                                                 | A                                                                                     |
|----|---|---|---|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 10 | - | 0 | 3 |   | H                                                                              |    |
|    | - | 0 | 3 |  | $\begin{matrix} \text{OH} \\ \equiv \\ -\text{CH}_2\text{CHCH}_3 \end{matrix}$ |  |
| 15 | - | 0 | 1 |  | $\begin{matrix} \text{OH} \\ \equiv \\ -\text{CH}_2\text{CHCH}_3 \end{matrix}$ |  |
|    | - | 0 | 0 |  | $\begin{matrix} \text{OH} \\ \equiv \\ -\text{CH}_2\text{CHCH}_3 \end{matrix}$ |  |
| 20 | - | S | 1 |  | H                                                                              |  |
| 25 | S | 1 | 0 |  | $\begin{matrix} \text{OH} \\ \equiv \\ -\text{CH}_2\text{CHCH}_3 \end{matrix}$ |  |
| 30 | S | 1 | 0 |  | $\begin{matrix} \text{OH} \\ \equiv \\ -\text{CH}_2\text{CHCH}_3 \end{matrix}$ |  |

-319-

EXAMPLE E (Cont'd)

| X  | n    | p | R <sup>3a</sup> | R <sup>4</sup>                                                                        | A                                                                                          |
|----|------|---|-----------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| 5  | SO   | 1 | 0               |    | -CH <sub>2</sub> CH(OH)CH <sub>3</sub> -CH <sub>2</sub> C(CH <sub>3</sub> ) <sub>2</sub> - |
| 10 | S    | 1 | 0               |   | H -C(CH <sub>3</sub> ) <sub>2</sub> -                                                      |
| 15 | SO   | 1 | 0               |  | H -C(CH <sub>3</sub> ) <sub>2</sub> -                                                      |
| 20 | O    | 1 | 1               |  | -CH <sub>2</sub> CH(OH)CH <sub>3</sub> -CH <sub>2</sub> C(CH <sub>3</sub> ) <sub>2</sub> - |
| 25 | O    | 1 | 1               |  | H -C(CH <sub>3</sub> ) <sub>2</sub> -                                                      |
| 30 | C=O  | 1 | 1               |  | -CH <sub>2</sub> CH(OH)CH <sub>3</sub> -CH <sub>2</sub> C(CH <sub>3</sub> ) <sub>2</sub> - |
|    | CHOH | 1 | 1               |  |                                                                                            |

-320-

EXAMPLE E (Cont'd)

5

|    | X  | n | p | R <sup>3a</sup>    | R <sup>4</sup>                                                                           | A                                                                                                           |
|----|----|---|---|--------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| 10 | S  | 1 | 0 | -CONH <sub>2</sub> | $\begin{array}{c} \text{OH} \\ \equiv \\ -\text{CH}_2\text{CHCH}_3 \end{array}$          | $\begin{array}{c} \text{CH}_3 \text{ CH}_3 \\ \diagdown \quad \diagup \\ -\text{CH}_2\text{C}- \end{array}$ |
| 15 | S  | 1 | 0 | -CONHET            | $\begin{array}{c} \text{OH} \\ \equiv \\ -\text{CH}_2\text{CHCH}_3 \end{array}$          | $\begin{array}{c} \text{CH}_3 \text{ CH}_3 \\ \diagdown \quad \diagup \\ -\text{CH}_2\text{C}- \end{array}$ |
|    | S  | 1 | 0 | -CONHET            | $\begin{array}{c} \text{OH} \\ \equiv \\ -\text{CH}_2\text{CHCH}_2\text{OH} \end{array}$ | $\begin{array}{c} \text{CH}_3 \text{ CH}_3 \\ \diagdown \quad \diagup \\ -\text{CH}_2\text{C}- \end{array}$ |
| 20 | SO | 1 | 0 | -CONHET            | $\begin{array}{c} \text{OH} \\ \equiv \\ -\text{CH}_2\text{CHCH}_2\text{OH} \end{array}$ | $\begin{array}{c} \text{CH}_3 \text{ CH}_3 \\ \diagdown \quad \diagup \\ -\text{CH}_2\text{C}- \end{array}$ |
| 25 | S  | 1 | 0 | -CONHOH            | $\begin{array}{c} \text{OH} \\ \equiv \\ -\text{CH}_2\text{CHCH}_3 \end{array}$          | $\begin{array}{c} \text{CH}_3 \text{ CH}_3 \\ \diagdown \quad \diagup \\ -\text{CH}_2\text{C}- \end{array}$ |
|    | O  | 1 | 1 | -CONHET            | $\begin{array}{c} \text{OH} \\ \equiv \\ -\text{CH}_2\text{CHCH}_3 \end{array}$          | $\begin{array}{c} \text{CH}_3 \text{ CH}_3 \\ \diagdown \quad \diagup \\ -\text{CH}_2\text{C}- \end{array}$ |
| 30 |    |   |   |                    |                                                                                          |                                                                                                             |

-321-

WHAT IS CLAIMED IS:

## 1. A compound having the formula:

5

10

15

20

25

30



where L is



n is 0 or 1;

p is 0 to 3;

q is 0 to 4;

w is 0 or 1;

SUBSTITUTE SHEET

-322-

X is C=O, O, S(O)<sub>m</sub>, -CH-, -N-, -CH=CH-;

m is 0 to 2;

5 R<sup>1</sup>, R<sup>2</sup>, R<sup>1a</sup>, R<sup>2a</sup>, R<sup>1b</sup>, and R<sup>2b</sup> are independently hydrogen, halogen, C<sub>1</sub>-C<sub>7</sub> alkyl, C<sub>1</sub>-C<sub>3</sub> perfluoroalkyl, C<sub>1</sub>-C<sub>3</sub> perfluoroalkoxy, -S(O)<sub>m</sub>R<sup>7a</sup>, cyano, nitro, R<sup>7b</sup>O(CH<sub>2</sub>)<sub>v</sub>-, R<sup>7b</sup>COO(CH<sub>2</sub>)<sub>v</sub>-, R<sup>7b</sup>OCO(CH<sub>2</sub>)<sub>v</sub>, phenyl or substituted phenyl where the substituents are from 1 to 3 of halogen, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> alkoxy, or hydroxy;

10 R<sup>7a</sup> and R<sup>7b</sup> are independently hydrogen, C<sub>1</sub>-C<sub>3</sub> perfluoroalkyl, C<sub>1</sub>-C<sub>6</sub> alkyl, substituted C<sub>1</sub>-C<sub>6</sub> alkyl, where the substituents are phenyl or substituted phenyl; phenyl or substituted phenyl where the phenyl substitutents are from 1 to 3 of halogen, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> alkoxy, or hydroxy and v is 0 to 3;

15 R<sup>3a</sup> and R<sup>3b</sup> are independently hydrogen, R<sup>9</sup>, C<sub>1</sub>-C<sub>6</sub> alkyl substituted with R<sup>9</sup>, phenyl substituted with R<sup>9</sup> or phenoxy substituted with R<sup>9</sup>;

20

R<sup>9</sup> is

25



30

R<sup>7b</sup>O(CH<sub>2</sub>)<sub>v</sub>-, R<sup>7b</sup>COO(CH<sub>2</sub>)<sub>v</sub>-, R<sup>7b</sup>OCO(CH<sub>2</sub>)<sub>v</sub>-, R<sup>7b</sup>CO(CH<sub>2</sub>)<sub>v</sub>-, R<sup>7b</sup>O(CH<sub>2</sub>)<sub>v</sub>CO-, R<sup>4</sup>R<sup>5</sup>N(CH<sub>2</sub>)<sub>v</sub>-, R<sup>7b</sup>CON(R<sup>4</sup>)(CH<sub>2</sub>)<sub>v</sub>-, R<sup>4</sup>R<sup>5</sup>NCO(CH<sub>2</sub>)<sub>v</sub>-, R<sup>4</sup>R<sup>5</sup>NCS(CH<sub>2</sub>)<sub>v</sub>-, R<sup>4</sup>R<sup>5</sup>NN(R<sup>5</sup>)CO(CH<sub>2</sub>)<sub>v</sub>-, R<sup>4</sup>R<sup>5</sup>NN(R<sup>5</sup>)CS(CH<sub>2</sub>)<sub>v</sub>-, R<sup>7b</sup>CON(R<sup>4</sup>)N(R<sup>5</sup>)CO(CH<sub>2</sub>)<sub>v</sub>-, R<sup>7b</sup>CON(R<sup>4</sup>)N(R<sup>5</sup>)CS(CH<sub>2</sub>)<sub>v</sub>-, R<sup>4</sup>N(OR<sup>7b</sup>)CO(CH<sub>2</sub>)<sub>v</sub>- or R<sup>7a</sup>CON(OR<sup>7b</sup>)CO(CH<sub>2</sub>)<sub>v</sub>;

and v is as defined above;

-323-

R<sup>4</sup>, R<sup>4a</sup>, R<sup>5</sup> are independently hydrogen, phenyl, substituted phenyl, C<sub>1</sub>-C<sub>10</sub> alkyl, substituted C<sub>1</sub>-C<sub>10</sub> alkyl, C<sub>3</sub>-C<sub>10</sub> alkenyl, substituted C<sub>3</sub>-C<sub>10</sub> alkenyl, C<sub>3</sub>-C<sub>10</sub> alkynyl, or substituted C<sub>3</sub>-C<sub>10</sub> alkynyl where  
5 the substituents on the phenyl, alkyl, alkenyl or alkynyl are from 1 to 5 of hydroxy, C<sub>1</sub>-C<sub>6</sub> alkoxy, C<sub>3</sub>-C<sub>7</sub> cycloalkyl, phenyl C<sub>1</sub>-C<sub>3</sub> alkoxy, fluoro, R<sup>1</sup> substituted or R<sup>1</sup>, R<sup>2</sup> independently disubstituted phenyl C<sub>1</sub>-C<sub>3</sub> alkoxy, phenyl, R<sup>1</sup> substituted or R<sup>1</sup>, R<sup>2</sup>  
10 independently disubstituted phenyl, where the substituents on the phenyl are as defined above, C<sub>1</sub>-C<sub>5</sub>-alkanoyloxy, C<sub>1</sub>-C<sub>5</sub> alkoxycarbonyl, carboxy, formyl, or -NR<sup>10</sup>R<sup>11</sup> where R<sup>10</sup> and R<sup>11</sup> are independently hydrogen, C<sub>1</sub>-C<sub>6</sub> alkyl, phenyl, phenyl  
15 C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>5</sub>-alkoxycarbonyl or C<sub>1</sub>-C<sub>5</sub>-alkanoyl-C<sub>1</sub>-C<sub>6</sub> alkyl; or R<sup>4</sup> and R<sup>5</sup> can be taken together to form -(CH<sub>2</sub>)<sub>r</sub>B(CH<sub>2</sub>)<sub>s</sub>- where B is CH<sub>2</sub>, O or S(O)<sub>m</sub> or N-R<sup>10</sup>, r and s are independently 1 to 3, and R<sup>10</sup> is as  
20 defined above;

R<sup>6</sup> is hydrogen, C<sub>1</sub>-C<sub>10</sub> alkyl, phenyl or phenyl C<sub>1</sub>-C<sub>10</sub> alkyl;

A is

25



30

-324-

where x and y are independently 0-3;  
R<sup>8</sup> and R<sup>8a</sup> are independently hydrogen, C<sub>1</sub>-C<sub>10</sub> alkyl,  
trifluoromethyl, phenyl, substituted C<sub>1</sub>-C<sub>10</sub> alkyl  
where the substituents are from 1 to 3 of imidazolyl,  
5 indolyl, hydroxy, fluoro, S(O)<sub>m</sub>R<sup>7a</sup>, C<sub>1</sub>-C<sub>6</sub> alkoxy,  
C<sub>3</sub>-C<sub>7</sub> cycloalkyl, phenyl C<sub>1</sub>-C<sub>3</sub> alkoxy, R<sup>1</sup> substituted  
or R<sup>1</sup>, R<sup>2</sup> independently disubstituted phenyl C<sub>1</sub>-C<sub>3</sub>  
alkoxy, phenyl, R<sup>1</sup> substituted or R<sup>1</sup>, R<sup>2</sup>  
independently disubstituted phenyl,  
10 C<sub>1</sub>-C<sub>5</sub>-alkanoyloxy, C<sub>1</sub>-C<sub>5</sub> alkoxycarbonyl, carboxy,  
formyl, or -NR<sup>10</sup>R<sup>11</sup> where R<sup>10</sup> and R<sup>11</sup> are as defined  
above; or  
R<sup>8</sup> and R<sup>8a</sup> can be taken together to form -(CH<sub>2</sub>)<sub>t</sub>-  
where t is 2 to 6; and R<sup>8</sup> and R<sup>8a</sup> can independently  
15 be joined to one or both of R<sup>4</sup> and R<sup>5</sup> to form alkyl  
bridges between the terminal nitrogen and the alkyl  
portion of the A group wherein the bridge contains  
from 1 to 5 carbon atoms;  
and pharmaceutically acceptable salts thereof.

20

2. A compound of Claim 1 wherein:

n is 0 or 1;  
p is 0 to 3;  
25 q is 0 to 2;  
w is 0 or 1;

R<sup>10</sup>  
|  
X is O, S(O)<sub>m</sub>, -N-, -CH=CH-;  
30 m is 0 to 2;  
R<sup>1</sup>, R<sup>2</sup>, R<sup>1a</sup>, R<sup>2a</sup>, R<sup>1b</sup>, and R<sup>2b</sup> are independently  
hydrogen, halogen, C<sub>1</sub>-C<sub>7</sub> alkyl, C<sub>1</sub>-C<sub>3</sub> perfluoroalkyl,

-325-

$-S(O)_mR^{7a}$ ,  $R^{7b}O(CH_2)_v-$ ,  $R^{7b}COO(CH_2)_v-$ ,  $R^{7b}OCO(CH_2)_v-$ , phenyl or substituted phenyl where the substituents are from 1 to 3 of halogen,  $C_1-C_6$  alkyl,  $C_1-C_6$  alkoxy, or hydroxy;

5  $R^{7a}$  and  $R^{7b}$  are independently hydrogen,  $C_1-C_3$  perfluoroalkyl,  $C_1-C_6$  alkyl, substituted  $C_1-C_6$  alkyl, where the substituents are phenyl; phenyl and  $v$  is 0 to 2;

10  $R^{3a}$  and  $R^{3b}$  are independently hydrogen,  $R^9$ ,  $C_1-C_6$  alkyl substituted with  $R^9$ , phenyl substituted with  $R^9$  or phenoxy substituted with  $R^9$ ;

$R^9$  is

15



20

$R^{7b}O(CH_2)_v-$ ,  $R^{7b}COO(CH_2)_v-$ ,  $R^{7b}OCO(CH_2)_v-$ ,  $R^{7b}CO(CH_2)_v-$ ,  $R^4R^5N(CH_2)_v-$ ,  $R^{7b}CON(R^4)(CH_2)_v-$ ,  $R^4R^5NCO(CH_2)_v-$ ,  $R^4R^5NCS(CH_2)_v-$ ,  $R^4R^5NN(R^5)CO(CH_2)_v-$ ,  $R^{7b}CON(R^4)N(R^5)CO(CH_2)_v-$ ,  $R^4N(OR^{7b})CO(CH_2)_v-$  or  $R^{7a}CON(OR^{7b})CO(CH_2)_v-$ ; where  $v$  is as defined above;

25

$R^4$ ,  $R^{4a}$ ,  $R^5$  are independently hydrogen,  $C_1-C_{10}$  alkyl, substituted  $C_1-C_{10}$  alkyl, where the substituents on the alkyl are from 1 to 5 of hydroxy,  $C_1-C_6$  alkoxy,  $C_3-C_7$  cycloalkyl, phenyl  $C_1-C_3$  alkoxy, fluoro,  $R^1$  substituted or  $R^1$ ,  $R^2$  independently disubstituted phenyl  $C_1-C_3$  alkoxy, phenyl,  $R^1$  substituted or  $R^1$ ,  $R^2$  independently disubstituted phenyl, where the substituents on the phenyl are as defined above,

-326-

$C_1-C_5$ -alkanoyloxy,  $C_1-C_5$  alkoxycarbonyl, carboxy or formyl;

$R^4$  and  $R^5$  can be taken together to form

$-(CH_2)_rB(CH_2)_s-$  where  $B$  is  $CH_2$ ,  $O$  or  $S(O)_m$  or  $N-R^{10}$

5  $r$  and  $s$  are independently 1 to 3 and  $R^{10}$  is as defined above;

$R^6$  is hydrogen,  $C_1-C_{10}$  alkyl or phenyl  $C_1-C_{10}$  alkyl;

10  $A$  is



where  $x$  and  $y$  are independently 0-2;

$R^8$  and  $R^{8a}$  are independently hydrogen,  $C_1-C_{10}$  alkyl,

20 substituted  $C_1-C_{10}$  alkyl where the substituents are from 1 to 3 of imidazolyl, indolyl, hydroxy, fluoro,  $S(O)_mR^{7a}$ ,  $C_1-C_6$  alkoxy, phenyl,  $R^1$  substituted or  $R^1$ ,  $R^2$  independently disubstituted phenyl,

25  $C_1-C_5$ -alkanoyloxy,  $C_1-C_5$  alkoxycarbonyl, carboxy, formyl,  $-NR^{10}R^{11}$  where  $R^{10}$  and  $R^{11}$  are independently

hydrogen,  $C_1-C_6$  alkyl, or  $C_1-C_5$  alkanoyl- $C_1-C_6$  alkyl; or  $R^8$  and  $R^{8a}$  can be taken together to form  $-(CH_2)_t-$  where  $t$  is 2 to 4; and  $R^8$  and  $R^{8a}$  can independently

30 be joined to one or both of  $R^4$  and  $R^5$  to form alkyl bridges between the terminal nitrogen and the alkyl portion of the  $A$  group wherein the

-327-

bridge contains from 1 to 5 carbon atoms;  
and pharmaceutically acceptable salts thereof.

3. A compound of Claim 2 wherein:

5

n is 0 or 1;

p is 0 to 2;

q is 0 to 2;

w is 0 or 1;

10 X is  $S(O)_m$ ,  $-CH=CH-$ ;

m is 0 or 1;

$R^1$ ,  $R^2$ ,  $R^{1a}$ ,  $R^{2a}$ ,  $R^{1b}$ , and  $R^{2b}$  are independently  
hydrogen, halogen,  $C_1-C_7$  alkyl,  $C_1-C_3$  perfluoroalkyl,  
 $-S(O)_mR^{7a}$ ,  $R^{7b}O(CH_2)_v-$ ,  $R^{7b}COO(CH_2)_v-$ ,  $R^{7b}OCO(CH_2)_v-$ ,

15 phenyl or substituted phenyl where the substituents  
are from 1 to 3 of halogen,  $C_1-C_6$  alkyl,  $C_1-C_6$   
alkoxy, or hydroxy;

$R^{7a}$  and  $R^{7b}$  are independently hydrogen,  $C_1-C_6$  alkyl,  
substituted  $C_1-C_6$  alkyl, where the substituents are

20 phenyl and v is 0 to 2;

$R^{3a}$  and  $R^{3b}$  are independently hydrogen,  $R^9$ ,  $C_1-C_6$   
alkyl substituted with  $R^9$ , phenyl substituted with  $R^9$   
or phenoxy substituted with  $R^9$ ;

25  $R^9$  is



30

-328-

R<sup>7b</sup>O(CH<sub>2</sub>)<sub>v</sub>-, R<sup>7b</sup>COO(CH<sub>2</sub>)<sub>v</sub>-, R<sup>7b</sup>OCO(CH<sub>2</sub>)<sub>v</sub>-,  
 R<sup>7b</sup>CO(CH<sub>2</sub>)<sub>v</sub>-, R<sup>4</sup>R<sup>5</sup>N(CH<sub>2</sub>)<sub>v</sub>-, R<sup>7b</sup>CON(R<sup>4</sup>)(CH<sub>2</sub>)<sub>v</sub>-,  
 R<sup>4</sup>R<sup>5</sup>NCO(CH<sub>2</sub>)<sub>v</sub>-, R<sup>4</sup>R<sup>5</sup>NCS(CH<sub>2</sub>)<sub>v</sub>-, R<sup>4</sup>N(OR<sup>7b</sup>)CO(CH<sub>2</sub>)<sub>v</sub>- or  
 R<sup>7a</sup>CON(OR<sup>7b</sup>)CO(CH<sub>2</sub>)<sub>v</sub>-; where v is as defined above;  
 5 R<sup>4</sup>, R<sup>4a</sup>, R<sup>5</sup> are independently hydrogen, C<sub>1</sub>-C<sub>10</sub> alkyl,  
 substituted C<sub>1</sub>-C<sub>10</sub> alkyl, where the substituents on  
 the alkyl, are from 1 to 5 of hydroxy, C<sub>1</sub>-C<sub>6</sub> alkoxy,  
 fluoro, phenyl, R<sup>1</sup> substituted or R<sup>1</sup>, R<sup>2</sup>  
 independently disubstituted phenyl, where the  
 10 substituents on the phenyl are as defined above,  
 C<sub>1</sub>-C<sub>5</sub>-alkanoyloxy, C<sub>1</sub>-C<sub>5</sub> alkoxy carbonyl, carboxy;  
 R<sup>6</sup> is hydrogen, C<sub>1</sub>-C<sub>10</sub> alkyl;

15 A is



where x and y are independently 0-2;  
 R<sup>8</sup> and R<sup>8a</sup> are independently hydrogen, C<sub>1</sub>-C<sub>10</sub> alkyl,  
 25 substituted C<sub>1</sub>-C<sub>10</sub> alkyl where the substituents are  
 from 1 to 3 of imidazolyl, indolyl, hydroxy, fluoro,  
 S(O)<sub>m</sub>R<sup>7a</sup>, C<sub>1</sub>-C<sub>6</sub> alkoxy, phenyl, R<sup>1</sup> substituted or R<sup>1</sup>,  
 R<sup>2</sup> independently disubstituted phenyl,  
 C<sub>1</sub>-C<sub>5</sub>-alkanoyloxy, C<sub>1</sub>-C<sub>5</sub> alkoxy carbonyl, carboxy; or  
 30 R<sup>8</sup> and R<sup>8a</sup> can be taken together to form -(CH<sub>2</sub>)<sub>t</sub>-  
 where t is 2; and R<sup>8</sup> and R<sup>8a</sup> can

-329-

independently be joined to one or both of R<sup>4</sup> and R<sup>5</sup>  
 to form alkyl bridges between the terminal nitrogen  
 and the alkyl portion of the A group wherein the  
 bridge contains from 1 to 5 carbon atoms;  
 5 and pharmaceutically acceptable salts thereof.

4. A compound of Claim 3 wherein:

n is 0 or 1;

10 p is 0 to 2;

q is 1;

w is 1;

X is S(0)<sub>m</sub> or -CH=CH-;

m is 0 or 1;

15 R<sup>1</sup>, R<sup>2</sup>, R<sup>1a</sup>, R<sup>2a</sup>, R<sup>1b</sup>, and R<sup>2b</sup> are independently  
 hydrogen, halogen, C<sub>1</sub>-C<sub>7</sub> alkyl, C<sub>1</sub>-C<sub>3</sub> perfluoroalkyl,  
 -S(0)<sub>m</sub>R<sup>7a</sup>, R<sup>7b</sup>O(CH<sub>2</sub>)<sub>v</sub>-, R<sup>7b</sup>COO(CH<sub>2</sub>)<sub>v</sub>-, phenyl or  
 substituted phenyl where the substituents are from 1  
 to 3 of halogen, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> alkoxy, or

20 hydroxy;

R<sup>7a</sup> and R<sup>7b</sup> are independently hydrogen, C<sub>1</sub>-C<sub>6</sub> alkyl,  
 substituted C<sub>1</sub>-C<sub>6</sub> alkyl, where the substituents are  
 phenyl, phenyl and v is 0 to 1;

R<sup>3a</sup> and R<sup>3b</sup> are independently hydrogen or R<sup>9</sup>;

25

R<sup>9</sup> is



-330-

$R^{7b}O(CH_2)_v^-$ ,  $R^{7b}COO(CH_2)_v^-$ ,  $R^{7b}OCO(CH_2)_v^-$ ,  
 $R^{7b}CO(CH_2)_v^-$ ,  $R^4R^5N(CH_2)_v^-$ ,  $R^{7b}CON(R^4)(CH_2)_v^-$ ,  
 $R^4R^5NCO(CH_2)_v^-$  or  $R^4N(OR^{7b})CO(CH_2)_v^-$ ; where v is as  
defined above;

5       $R^4$ ,  $R^5$  are independently hydrogen, C<sub>1</sub>-C<sub>10</sub> alkyl,  
substituted C<sub>1</sub>-C<sub>10</sub> alkyl, where the substituents on  
the alkyl are from 1 to 3 of hydroxy, C<sub>1</sub>-C<sub>3</sub> alkoxy,  
fluoro, phenyl, R<sup>1</sup> substituted or R<sup>1</sup>, R<sup>2</sup>  
independently disubstituted phenyl, where the  
10     substituents on the phenyl are as defined above;

15      $R^{4a}$  is hydrogen, C<sub>1</sub>-C<sub>10</sub> alkyl, substituted C<sub>1</sub>-C<sub>10</sub>  
alkyl where the substituents on the alkyl are from 1  
to 3 of hydroxy.

15      $R^6$  is hydrogen;

A is



25     where x and y are independently 0-1;  
 $R^8$  and  $R^{8a}$  are independently hydrogen, C<sub>1</sub>-C<sub>10</sub> alkyl,  
substituted C<sub>1</sub>-C<sub>10</sub> alkyl where the substituents are  
from 1 to 3 of imidazolyl, indolyl, hydroxy, fluoro,  
30     S(O)<sub>m</sub>R<sup>7a</sup>, C<sub>1</sub>-C<sub>6</sub> alkoxy, phenyl, R<sup>1</sup> substituted or R<sup>1</sup>,  
R<sup>2</sup> independently disubstituted phenyl,

-331-

$C_1-C_5$ -alkanoyloxy,  $C_1-C_5$  alkoxy carbonyl, carboxy; or  
 $R^8$  and  $R^{8a}$  can be taken together to form  $-(CH_2)_t-$   
 where  $t$  is 2; and  $R^8$  and  $R^{8a}$  can independently be  
 joined to one or both of  $R^4$  and  $R^5$  to form alkyl  
 5 bridges between the terminal nitrogen and the alkyl  
 portion of the A group wherein the bridge contains  
 from 1 to 5 carbon atoms;  
 and pharmaceutically acceptable salts thereof.

10           5. A stereospecific compound of Claim 1  
 having the following structural formula:



where  $R^1$ ,  $R^2$ ,  $X$ ,  $n$ ,  $p$ ,  $q$ ,  $L$ ,  $w$ ,  $R^{1a}$ ,  $R^{2a}$ ,  $R^{3a}$ ,  $R^4$ ,  
 $R^5$ ,  $A$  and  $R^6$  are as defined in Claim 1

30

-332-

6. A compound of Claim 1 which is:

- 5           3-amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-  
[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]-  
methyl]-1H-1-benzazepin-3(R)-yl]-butanamide;
- 10          2(R)-amino-3-hydroxy-N-[2,3,4,5-tetrahydro-2-oxo-  
1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]-  
methyl]-1H-1-benzazepin-3(R)-yl]-propanamide;
- 15          2(R)-amino-3-phenyl-N-[2,3,4,5-tetrahydro-2-oxo-  
1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]-  
methyl]-1H-1-benzazepin-3(R)-yl]-propanamide;
- 20          2(R)-amino-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-  
(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-  
1-benzazepin-3(R)-yl]-propanamide;
- 25          3-(2-hydroxyethyl)amino-3-methyl-N-[2,3,4,5-  
tetrahydro-2-oxo-1-[[2'-(1-(2-hydroxyethyl)-  
tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-  
1-benzazepin-3(R)-yl]-butanamide;
- 30          3-(2-hydroxypropyl)amino-3-methyl-N-[2,3,4,5-  
tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-  
biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-  
butanamide;
- 2-amino-2-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-  
[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]-  
methyl]-1H-1-benzazepin-3(R)-yl]-propanamide;

-333-

3-amino-3-methyl-N-[7-fluoro-2,3,4,5-tetrahydro-  
2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-  
y1]methyl]-1H-1-benzazepin-3(R)-y1]-butanamide;

5       3-amino-3-methyl-N-[7-trifluoromethyl-2,3,4,5-  
tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-  
biphenyl]-4-y1]methyl]-1H-1-benzazepin-3(R)-y1]-  
butanamide;

10      3-amino-3-methyl-N-[6-fluoro-2,3,4,5-tetrahydro-  
2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-  
y1]methyl]-1H-1-benzazepin-3(R)-y1]-butanamide;

15      3-benzylamino-3-methyl-N-[2,3,4,5-tetrahydro-2-  
oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-  
y1]-methyl]-1H-1-benzazepin-3(R)-y1]-butanamide;  
or

20      3-amino-3-methyl-N-[3,4-dihydro-4-oxo-5-[[2'-(1H-  
tetrazol-5-yl)[1,1'-biphenyl]-4-y1]methyl]-1,5-  
benzothiazepin-3(S)-y1]-butanamide;

25      3-(2(R)-hydroxypropyl)amino-3-methyl-N-[2,3,4,5-  
tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-  
biphenyl]-4-y1]methyl]-1H-1-benzazepin-3(R)-y1]-  
butanamide

30      3-(2(S)-hydroxypropyl)amino-3-methyl-N-[2,3,4,5-  
tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-  
biphenyl]-4-y1]methyl]-1H-1-benzazepin-3(R)-y1]-  
butanamide

-334-

3-(2(R),3-dihydroxypropyl)amino-3-methyl-N-[2,3,-  
4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)-  
[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-  
3(R)-yl]-butanamide

5

3-(2(S),3-dihydroxypropyl)amino-3-methyl-N-[2,3,-  
4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)-  
[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-  
yl]-butanamide

10

3-(3(S)-hydroxybutyl)amino-3-methyl-N-[7-fluoro-  
2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-  
yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-  
3(R)-yl]-butanamide

15

3-(3(S)-hydroxybutyl)amino-3-methyl-N-[2,3,4,5-  
tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-  
biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-  
butanamide

20

3-amino-3-methyl-N-[7-hydroxy-2,3,4,5-tetrahydro-  
2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-  
yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide

25

3-(2(R)-hydroxypropyl)amino-3-methyl-N-[7-hydroxy-  
2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-  
yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-  
3(R)-yl]-butanamide

30

3-(2(R)-hydroxypropyl)amino-3-methyl-N-[7-fluoro-  
2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-  
yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-  
3(R)-yl]-butanamide

-335-

2-(3(R)-hydroxybutyl)amino-2-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-propanamide

5

2-(3(S)-hydroxybutyl)amino-2-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-propanamide

10

3-Amino-3-methyl-N-[7-methoxy-2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide

15

3-(2(R)-hydroxypropyl)amino-3-methyl-N-[7-methoxy-2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide

20

3-(3(S)-hydroxybutyl)amino-3-methyl-N-[7-methoxy-2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]butanamide

25

Quinuclidine-N'-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-3-carboxamide

30

3-(2-fluoropropyl)amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide

-336-

3-(2-methoxypropyl)amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide

5

3-(2-hydroxy-2-methylpropyl)amino-3-methyl-N-[2,-3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)-[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-y1]butanamide

10

4'-[[3(R)-[(3-amino-3-methyl-1-oxobutyl)amino]-2,-3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]-methyl]-[1,1'-biphenyl]-2-carboxamide

15

4'-[[3(R)-[[3-[(2(R)-hydroxypropyl)amino]-3-methyl-1-oxobutyl]amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl]-[1,1'-biphenyl]-2-carboxamide

20

4'-[[3(R)-[[3-[(2(S),3-dihydroxypropyl)amino]-3-methyl-1-oxobutyl]amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl]-[1,1'-biphenyl]-2-carboxamide

25

N-ethyl-4'-[[3(R)-[(3-amino-3-methyl-1-oxobutyl)-amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl]-[1,1'-biphenyl]-2-carboxamide

30

N-ethyl-4'-[[3(R)-[[3-[(2(S),3-dihydroxypropyl)-amino]-3-methyl-1-oxobutyl]amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]methyl]-[1,1'-biphenyl]-2-carboxamide

-337-

N-methyl-4'-[[3(R)-[[3-[(2(S),3-dihydroxypropyl)-  
amino]-3-methyl-1-oxobutyl]amino]-2,3,4,5-tetra-  
hydro-2-oxo-1H-1-benzazepin-1-yl]methyl]-[1,1'-  
biphenyl]-2-carboxamide

5

3-amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-  
[[2'-hydroxymethyl[1,1'-biphenyl]-4-yl]methyl]-1H-  
1-benzazepin-3(R)-yl]butanamide

10

3-(2(R)-hydroxypropyl)amino-3-methyl-N-[2,3,4,5-  
tetrahydro-2-oxo-1-[[2'-hydroxymethyl[1,1'-  
biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-  
butanamide

15

3-Amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-  
[[2'-aminomethyl[1,1'-biphenyl]-4-yl]methyl]-1H-1-  
benzazepin-3(R)-yl]butanamide

20

3-(2(R)-hydroxypropyl)amino-3-methyl-N-[2,3,4,-  
5-tetrahydro-2-oxo-1-[[2'-aminomethyl[1,1'-  
biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-  
butanamide

25

4'-[[3(R)-[[3-[(2(S),3(S),4-trihydroxybutyl)-  
amino]-3-methyl-1-oxobutyl]amino]-2,3,4,5-tetra-  
hydro-2-oxo-1H-1-benzazepin-1-yl]methyl]-[1,1'-  
biphenyl]-2-carboxamide

30

4'-[[3(R)-[[3-[(3-hydroxybutyl)amino]-3-methyl-1-  
oxobutyl]amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-ben-  
zazepin-1-yl]methyl]-[1,1'-biphenyl]-2-carboxamide

-338-

3-Amino-3-methyl-N-[2,3-dihydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]butanamide

- 5       3-(2(R)-hydroxypropyl)amino-3-methyl-N-[2,3-dihydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide
- 10      N-ethyl-4'-[[3(R)-[[3-[(2(S),3-dihydroxypropyl)-amino]-3-methyl-1-oxobutyl]amino]-2,3-dihydro-2-oxo-1H-1-benzazepin-1-yl]methyl]-[1,1'-biphenyl]-2-carboxamide
- 15      3-(2(R)-hydroxypropyl)amino-3-methyl-N-[3,4-dihydro-4-oxo-5-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1,5-benzothiazepin-3(S)-yl]-butanamide
- 20      3-(2(S)-hydroxypropyl)amino-3-methyl-N-[3,4-dihydro-4-oxo-5-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1,5-benzothiazepin-3(S)-yl]-butanamide
- 25      N-ethyl-4'-[[3(S)-[[3-[(2(S),3-dihydroxypropyl)-amino]-3-methyl-1-oxobutyl]amino]-3,4-dihydro-4-oxo-1,5-benzothiazepin-5(2H)-yl]methyl]-[1,1'-biphenyl]-2-carboxamide
- 30      4'-[[3(S)-[(3-amino-3-methyl-1-oxobutyl)amino]-3,4-dihydro-4-oxo-1,5-benzothiazepin-5(2H)-yl]-methyl]-[1,1'-biphenyl]-2-carboxamide

-339-

4'-[[3(R)-[(3-amino-3-methyl-1-oxobutyl)amino]-  
2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-yl]-  
methyl]-[1,1'-biphenyl]-2-thioamide

5 N-hydroxy-4'-[[3(R)-[(3-amino-3-methyl-1-oxobut-  
y1)amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-benz-  
azepin-1-yl]-methyl]-[1,1'-biphenyl]-2-carboxamide

10 N-hydroxy-4'-[[3(R)-[[3-[(2(S),3-dihydroxypropyl)-  
amino]-3-methyl-1-oxobutyl]amino]-2,3,4,5-tetra-  
hydro-2-oxo-1H-1-benzazepin-1-yl]methyl]-[1,1'-bi-  
phenyl]-2-carboxamide

15 N-hydroxy-4'-[[3(R)-[[3-[(2(R)-hydroxypropyl)-  
amino]-3-methyl-1-oxobutyl]amino]-2,3,4,5-tetra-  
hydro-2-oxo-1H-1-benzazepin-1-yl]methyl]-[1,1'-  
biphenyl]-2-carboxamide

20 3-(2(R)-hydroxypropyl)amino-3-methyl-N-[3,4-di-  
hydro-1,4-dioxo-5-[[2'-(1H-tetrazol-5-yl)[1,1'-  
biphenyl]-4-yl]methyl]-1,5-benzothiazepin-3(S)-  
y1]-butanamide

25 3-amino-3-methyl-N-[3,4-dihydro-1,4-dioxo-5-[[2'-(  
1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-  
1,5-benzothiazepin-3(S)-y1]-butanamide

30 3-amino-3-methyl-N-[7-methylthio-2,3,4,5-tetra-  
hydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-bi-  
phenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-y1]buta-  
namide

-340-

3-(2(R)-hydroxypropyl)amino-3-methyl-N-[7-methyl-thio-2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide

5

3-(2(R)-hydroxypropyl)amino-3-methyl-N-[7-methyl-sulfinyl-2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide

10

3-amino-3-methyl-N-[7-methylsulfinyl-2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide

15

3-amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(acetylaminomethyl)[1,1'-biphenyl]-4-yl]-methyl]-1H-1-benzazepin-3(R)-yl]butanamide

20

3-(2(R)-hydroxypropyl)amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(acetylaminomethyl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide

25

3-amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(benzoylaminomethyl)[1,1'-biphenyl]-4-yl]-methyl]-1H-1-benzazepin-3(R)-yl]butanamide

30

3-(2(R)-hydroxypropyl)amino-3-methyl-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(benzoylaminomethyl)[1,1'-biphenyl]-4-yl]methyl]-1H-1-benzazepin-3(R)-yl]-butanamide

-341-

3-amino-3-methyl-4-hydroxy-N-[2,3,4,5-tetrahydro-  
2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-  
y1]-methyl]-1H-1-benzazepin-3(R)-yl]butanamide

5

2-Amino-2-methyl-3-hydroxy-N-[2,3,4,5-tetrahydro-  
2-oxo-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-  
y1]methyl]-1H-1-benzazepin-3(R)-yl]propanamide

10

3-(2(R)-hydroxypropyl)amino-3-methyl-4-hydroxy-N-[2,3,4,5-tetrahydro-2-oxo-1-[[2'-(1H-tetrazol-5-  
y1)[1,1'-biphenyl]-4-y1]methyl]-1H-1-benzazepin-3-  
(R)-yl]-butanamide

15

2-(3-hydroxybutyl)amino-2-methyl-3-hydroxy-N-[2,-  
3,4,5-tetrahydro-2-oxol-[[2'-(1H-tetrazol-5-yl)-  
[1,1'-biphenyl]-4-y1]methyl]1H-1-benzazepin-3(R)-  
y1]propanamide

20

and pharmaceutically acceptable salts of such  
compounds.

25

7. A process for the preparation of a  
compound of Claim 1 which comprises reacting a  
compound having a formula:

30



-342-

where  $R^1$ ,  $R^2$ ,  $R^6$ , X, n and p are as defined in Claim 1 with a compound having the formula:



where R<sup>5</sup> and A are as defined in Claim 1 and G is a protecting group; which step is either followed by or preceded by the treatment of the compound with



20 where  $R^{1a}$ ,  $R^{2a}$ ,  $R^{3a}$ , L, w and q are as defined in  
 Claim 1 and Y is a leaving group, followed by the  
 replacement of the protecting group with  $R^4$ .

25        8. The process of Claim 7 where compound  
III is first reacted with compound IV followed by  
reaction with compound VI.

30               9. A process for the preparation of a compound of Claim 1 which comprises reacting a compound having a formula:

-343-



10 where R¹, R², R⁵, R⁶, X, n and p are as defined in Claim 1 and G is a protecting group, with a compound having the formula:



20

where R¹a, R²a, R³a, L, w and q are as defined in Claim 1 and Y is a leaving group, followed by replacement of the protecting group G with R⁴.

25

10. The process of Claim 9 where the protecting group G is t-butoxycarbonyl or benzyloxycarbonyl and L is chlorine, bromine, iodine, O-methanesulfonyl or O-(p-toluenesulfonyl).

30

11. A method for increasing levels of endogenous growth hormone in a human or an animal which comprises administering to such human or animal an effective amount of a compound of Claim 1.

-344-

12. A composition useful for increasing the  
endogenous production or release of growth hormone in  
a human or an animal which comprises an inert carrier  
5 and an effective amount of a compound of Claim 1.

13. A composition useful for increasing the  
endogenous production/release of growth hormone in a  
human or an animal which comprises an inert carrier  
10 and an effective amount of a compound of Claim I used  
in combination with other growth hormone  
secretagogues such as, GHRP-6 or GHRP-1, growth  
hormone releasing factor (GRF) or one of its analogs,  
IGF-1 or IGF-2, or B-HT920.  
15

20

25

30

## INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 92/02271

I. CLASSIFICATION OF SUBJECT MATTER (If several classification symbols apply, indicate all)<sup>6</sup>

According to International Patent Classification (IPC) or to both National Classification and IPC

|                       |             |             |            |
|-----------------------|-------------|-------------|------------|
| Int.C1. 5 C07D403/10; | C07D223/16; | C07D401/10; | C07D417/10 |
| C07D227/10;           | C07K5/06;   | C07D281/10; | A61K31/33  |

## II. FIELDS SEARCHED

Minimum Documentation Searched<sup>7</sup>

| Classification System | Classification Symbols |
|-----------------------|------------------------|
| Int.C1. 5             | C07D ; C07K            |

Documentation Searched other than Minimum Documentation  
to the Extent that such Documents are Included in the Fields Searched<sup>8</sup>III. DOCUMENTS CONSIDERED TO BE RELEVANT<sup>9</sup>

| Category <sup>10</sup> | Citation of Document, <sup>11</sup> with indication, where appropriate, of the relevant passages <sup>12</sup>                                                                                                                    | Relevant to Claim No. <sup>13</sup> |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| A                      | EP,A,0 349 949 (FUJISAWA) 10.January 1990<br>see page 49 - page 53; claims<br>----                                                                                                                                                | 1-13                                |
| A                      | EP,A,0 166 357 (MERCK) 2 January 1986<br>see page 54 - page 59; claims<br>----                                                                                                                                                    | 1-13                                |
| A                      | JOURNAL OF MEDICINAL CHEMISTRY<br>vol. 32, no. 8, August 1989, WASHINGTON<br>pages 1681 - 1685;<br>PARSONS W. H.: 'Cholecystokinin Antagonists.<br>Synthesis and biological evaluation of<br>3-substituted benzolactams.'<br>---- | 1-13                                |

<sup>10</sup> Special categories of cited documents :<sup>10</sup>

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

<sup>11</sup> T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention<sup>12</sup> X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step<sup>13</sup> Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art<sup>14</sup> A document member of the same patent family

## IV. CERTIFICATION

Date of the Actual Completion of the International Search

2

05 AUGUST 1992

Date of Mailing of this International Search Report

14.08.92

International Searching Authority

EUROPEAN PATENT OFFICE

Signature of Authorized Officer

LUYTEN H.W.



**ANNEX TO THE INTERNATIONAL SEARCH REPORT  
ON INTERNATIONAL PATENT APPLICATION NO. US 9202271  
SA 59195**

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report.  
The members are as contained in the European Patent Office EDP file on  
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information. 05/08/92

| Patent document<br>cited in search report | Publication<br>date | Patent family<br>member(s) |          | Publication<br>date |
|-------------------------------------------|---------------------|----------------------------|----------|---------------------|
| EP-A-0349949                              | 10-01-90            | AU-A-                      | 3785989  | 11-01-90            |
|                                           |                     | CN-A-                      | 1041941  | 09-05-90            |
|                                           |                     | JP-A-                      | 2056481  | 26-02-90            |
| -----                                     | -----               | -----                      | -----    | -----               |
| EP-A-0166357                              | 02-01-86            | JP-A-                      | 61015875 | 23-01-86            |
|                                           |                     | US-A-                      | 4692522  | 08-09-87            |
| -----                                     | -----               | -----                      | -----    | -----               |