PARTE A

1. Se esiste il massimo di $f(x)=x-x^2$ sull'insieme $A=\{x\in]0,2\pi[:\cos(x)\leq 0\}$ vale A: N.A. B: $\frac{\pi}{2}-\frac{\pi^2}{4}$ C: $\frac{1}{4}$ D: $\frac{1}{2}$ E: N.E.

2. Le soluzioni di $z^2=\frac{1}{i}$ hanno come argomento

A: N.A. B:
$$(-\pi/4, -\pi/2)$$
 C: $(\pi, \pi/2)$ D: $(-\pi/4, 3\pi/4)$ E: $(\pi/4, -3\pi/4)$

3. L'insieme dove converge la serie

$$\sum_{n=8}^{+\infty} n^8 x^n$$

è

A:
$$0 < x < 1$$
 B: $|x| < 8$ C: $|x| < 1$ D: N.A. E: $|x| \le 1$

4. Inf, min, sup e max dell'insieme

$$A = \{ y = \frac{1}{|\cos(x)|}, \ x \neq k \frac{\pi}{2} \ \text{con } k \in \mathbb{Z} \}$$

valgono

$$A: \{0,0,1,N.E.\} \quad B: \{1,1,+\infty,N.E.\} \quad C: \{-1,-1,1,1\} \quad D: N.A. \quad E: \{1,N.E.,+\infty,N.E.\}$$

5. La retta tangente al grafico di $y(x) = \cos(\sin(x))$ nel punto $x_0 = 0$ vale

A:
$$1 - \cos(x)\sin(\sin(x))x$$
 B: N.A. C: $1 + x$ D: $1 - x^2/2$ E: $1 - x$

6. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = |x|^{20} \sin(x)$ è

A: monotona decrescente B: surgettiva C: N.A. D: iniettiva E: monotona crescente

7. L'integrale

$$\int_{-1}^{5} |x| \, dx$$

vale

A: N.A. B:
$$\sqrt{2}$$
 C: 3/2 D: 0 E: 7/2

8. Il limite

$$\lim_{x \to 0^{-}} e^{\frac{|\sin(x)|}{x^2}}$$

vale

A: 1 B:
$$+\infty$$
 C: N.A. D: 0 E: N.E.

9. Data $f(x) = x^2 3^{|\sin(x)|}$. Allora f'(0) è uguale a

A: 1 B: N.E. C:
$$\pi/2$$
 D: 0 E: N.A.

10. Una soluzione dell'equazione $y'(t) = t + \sin(t)$ è

A:
$$(t^2 + 9)/2 - \cos(t)$$
 B: $t^3/2 - \cos(t)$ C: N.E. D: N.A. E: $(t^2 + \pi)/2 + \cos(t)$

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

18 gennaio 2016

(Cognome)										(Nome)										(Numero di matricola)										

ABCDE

1	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
2	
3	
4	
5	
6	
7	
8	
9	
10	

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

18 gennaio 2016

PARTE B

1. Studiare il grafico della funzione

$$f(x) = |\log(x)|^{\log(x)}.$$

Soluzione: Per poter definire il logaritmo serve che sia x > 0. Inoltre dato che il valore assoluto del logaritmo entra come base di un esponenziale, serve anche che $x \neq 1$ e si può scrivere

$$|\log(x)|^{\log(x)} = e^{\log(x)\log|\log(x)|}$$
 $x \in (0,1) \cup (1,+\infty).$

I limiti agli estremi del dominio sono pertanto

$$\lim_{x \to 0^+} |\log(x)|^{\log(x)} = \lim_{x \to 0^+} e^{\log(x)\log|\log(x)|} = 0,$$

dato che non è una forma indeterminata, visto che l'argomento dell'esponenziale tende a $-\infty$. Allo stesso modo si vede che

$$\lim_{x \to +\infty} |\log(x)|^{\log(x)} = \lim_{x \to +\infty} e^{\log(x)\log|\log(x)|} = +\infty.$$

Il limite $\lim_{x\to 1^-} |\log(x)|^{\log(x)} = \lim_{x\to 1^-} \mathrm{e}^{\log(x)\log|\log(x)|}$ risulta invece una forma indeterminata. Effettuando il cambio di variabile $y=-\log(x)$ il limite diventa

$$\lim_{x \to 1^{-}} e^{\log(x) \log |\log(x)|} = \lim_{y \to 0^{+}} e^{-y \log(y)} = 1,$$

e con calcoli simili si ha anche

$$\lim_{x \to 1^+} e^{\log(x) \log |\log(x)|} = 1.$$

Possiamo anche scrivere che

$$f(x) = \begin{cases} e^{\log(x)\log(-\log(x))} & 0 < x < 1 \\ e^{\log(x)\log(\log(x))} & x > 1 \end{cases}$$

e pertanto

$$f'(x) = \begin{cases} (-\log(x))^{\log(x)} \frac{1}{x} \left(1 + \log(-\log(x)) \right) & 0 < x < 1, \\ (\log(x))^{\log(x)} \frac{1}{x} \left(1 + \log(\log(x)) \right) & x > 1. \end{cases}$$

PARTE A

1. Data $f(x) = x^2 2^{|\sin(x)|}$. Allora f'(0) è uguale a A: N.A. B: 0 C: N.E. D: $\pi/2$ E: 1

2. L'insieme dove converge la serie

$$\sum_{n=7}^{+\infty} n^7 x^n$$

è

A: N.A. B: 0 < x < 1 C: $|x| \le 1$ D: |x| < 7 E: |x| < 1

3. L'integrale

$$\int_{-1}^{2} |x| \, dx$$

vale

A: 7/2 B: 3/2 C: 0 D: $\sqrt{2}$ E: N.A.

4. La retta tangente al grafico di $y(x)=\cos(\sin(x))$ nel punto $x_0=0$ vale A: $1-\cos(x)\sin(\sin(x))$ x B: $1-x^2/2$ C: 1-x D: N.A. E: 1

5. Le soluzioni di $z^2 = \frac{1}{i}$ hanno come argomento

A: N.A. B: $(-\pi/4, 3\pi/4)$ C: $(\pi/4, -3\pi/4)$ D: $(\pi, \pi/2)$ E: $(-\pi/4, -\pi/2)$

6. Il limite

$$\lim_{x \to 0^{-}} e^{\frac{|\sin(x)|}{x^2}}$$

vale

 $A: +\infty$ B: N.E. C: 1 D: N.A. E: 0

7. Inf, min, sup e max dell'insieme

$$A = \{ y = \frac{1}{|\sin(x)|}, \ x \neq k \frac{\pi}{2} \ \operatorname{con} \ k \in \mathbb{Z} \}$$

valgono

A: $\{1, 1, +\infty, N.E.\}$ B: $\{0, 0, 1, N.E.\}$ C: $\{1, N.E., +\infty, N.E.\}$ D: N.A. E: $\{-1, -1, 1, 1\}$

- 8. Se esiste il massimo di $f(x)=x-x^2$ sull'insieme $A=\{x\in]0,2\pi[:\cos(x)\leq 0\}$ vale A: N.A. B: $\frac{1}{4}$ C: 1 D: N.E. E: $\frac{1}{2}$
- 9. Una soluzione dell'equazione $y'(t) = t + \sin(t)$ è

A: N.E. B: $(t^2 + \pi)/2 + \cos(t)$ C: $t^3/2 - \cos(t)$ D: $(t^2 + 7)/2 - \cos(t)$ E: N.A.

10. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = |x|^{20} \sin(x)$ è

A: monotona crescente B: invertibile C: monotona decrescente D: iniettiva E: N.A.

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

18 gennaio 2016

															L															
(Cognome)										(Nome)										(Numero di matricola)										

ABCDE

$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
$\bullet \circ \circ \circ \circ$

Nell'intervallo (0,1) si ha

$$f'(x) > 0 \iff 1 + \log(-\log(x)) > 0 \iff 0 < x < e^{-1/e}.$$

Quindi f è crescente in $(0, e^{-1/e})$, decrescente in $(e^{-1/e}, 1)$ e ha un punto di massimo relativo per $x = e^{-1/e}$.

Con calcoli simili nella semiretta $(1, +\infty)$ si ha che f è decrescente in $(1, e^{1/e})$, crescente in $(e^{-1/e}, +\infty)$ e ha un punto di minimo relativo per $x = e^{1/e}$.

Osserviamo inoltre che nonostante la funzione non sia definita per x=1 potrebbe essere prolungata con continuità ponendo f(1)=1 in tale punto la funzione prolungata non risulterebbe derivabile dato che

$$\lim_{x \to 1^+} f'(x) = \lim_{x \to 1^-} f'(x) = -\infty.$$

Figura 1: grafico approssimativo di $|\log(x)|^{\log(x)}$

2. Risolvere, al variare del parametro $\alpha \in \mathbb{R}$ il problema di Cauchy

$$\begin{cases} y'(t) = x^2 y \\ y(0) = \alpha, \end{cases}$$

Determinare poi per quali α la soluzione è limitata superiormente.

Determinare poi per quali α la soluzione è limitata sia superiormente che inferiormente.

Soluzione: Per $\alpha=0$ la soluzione è $y\equiv 0$ costante. In generale la soluzione si ottiene integrando per separazione di variabili:

$$\int_{\alpha}^{Y} \frac{dy}{y} = \int_{0}^{x} s^{2} ds \ \Rightarrow \ \log \frac{y}{\alpha} = \frac{x^{3}}{3} \text{ ovvero } y(x) = \alpha e^{\frac{x^{3}}{3}}.$$

Dunque la soluzione è limitata superiormente (da 0) quando $\alpha \leq 0$ ed è limitata sia superiormente che inferiormente quando $\alpha = 0$.

3. Sia $f(x) = \frac{1+x\sqrt{x}}{x\sqrt{x}}$ per x > 0. Dire se esiste

$$\int_0^1 f(x) \, dx.$$

Dire se esiste

$$\int_{1}^{+\infty} f(x) \, dx.$$

Sia F(x) tale che F'(x) = f(x) e F(1) = 0 Dire se esistono

$$\int_0^1 F(x) dx \qquad e \qquad \int_1^{+\infty} F(x) dx.$$

Soluzione: $f(x) = \frac{1+x\sqrt{x}}{x\sqrt{x}} = \frac{1}{x\sqrt{x}} + 1$. Quindi f(x) > 1 che non è integrabile su $[1, +\infty)$ e $f(x) > \frac{1}{x\sqrt{x}} = \frac{1}{x^{3/2}}$ che non è integrabile su (0,1] perché 3/2 > 1. Quindi f(x) non è integrabile né su (0,1] né su $[1, +\infty)$.

La primitiva è

$$F(x) = \int_{1}^{x} f(s)ds = \int_{1}^{x} (s^{-3/2} + 1)ds = \left[-2s^{-1/2} + s \right]_{1}^{x} = -\frac{2}{\sqrt{x}} + x + 1.$$

Abbiamo che $F(x) \to +\infty$ per $x \to \infty$ quindi F(x) non è integrabile su $[1, +\infty)$.

Invece F(x) è integrabile su (0,1] perché somma di tre funzioni integrabili (si ricordi che $1/\sqrt{x}$ è integrabile su (0,1]).

4. Dimostrare che l'equazione

$$x^2 + x = 1 + \lambda e^x$$

con $\lambda \leq 0$ non può avere più di 2 soluzioni.

Soluzione: Se portiamo tutto al primo membro otteniamo

$$f(x) = x^2 + x - 1 - \lambda e^x.$$

Abbiamo quindi $f''(x) = 2 - \lambda e^x > 0$ perché $\lambda \leq 0$. Questo implica che f' sia monotona crescente, quindi f' si può annullare al più una volta. Per assurdo, supponiamo che esistano $x_1 < x_2 < x_3$ tali che $f(x_1) = f(x_2) = f(x_3)$. Applicando il teorema di Lagrange una volta all'intervallo (x_1, x_2) e una volta all'intervallo (x_2, x_3) troviamo due punti distinti in cui f' si annulla, che contraddice quanto dimostrato precedentemente. Allora f(x) si può annullare al più in 2 punti.