Learning from Networks

Graph Neural Networks

Fabio Vandin

November 21st, 2024

Shallow Embeddings

Node embedding task: given graph G = (V, E), represent each $v \in V$ as $ENC(v) = \mathbf{z}_v \in \mathbb{R}^d$ such that similarities S(u, v) in G are approximated by (decoded) similarities $DEC(\mathbf{z}_u, \mathbf{z}_v)$ for all $u, v \in V$:

$$S(u,v) \approx DEC(\mathbf{z}_u,\mathbf{z}_v)$$

Shallow Embeddings: Limitations

Large number of parameters: high complexity of the model

Inherently *transductive*: cannot generate embeddings for nodes that are not present during the *training* phase

We would like *inductive* embedding methods: can generate the embeddings for new nodes

Do not incorporate node features: many networks have node features that can/should be used to produce the embedding

They are *unsupervised* methods: learned embeddings are independent of the (downstream) ML task

Graph Neural Network Embeddings: Main Idea

Instead of learning $\mathbf{z}_{\mathbf{v}}$ for each $\mathbf{v} \in \mathbf{V}$, learn a function $\mathbf{f}: \mathbf{V} \to \mathbb{R}^d$

f is computed by a *neural network* that depends on the structure of the graph \Rightarrow graph neural network (GNN)

Given the graph G and features of the nodes $v \in V$, the GNN can compute the embedding of any node $u \in V$

Encoder-decoder framework:

- the encoder *ENC()* is a neural network
- other components (similarity, decoder, loss function): as for shallow embeddings
- \Rightarrow the parameters to be learned from the data are in the neural network

GNN: Setup

We have node features:

- social networks: user profile info, activity info, . . .
- biological networks: gene expression profiles, functional information. . . .
- what if no (external) features available?
 - compute node features: clustering coefficient, centrality scores,

GNN: Setup

We have node features:

- social networks: user profile info, activity info, . . .
- biological networks: gene expression profiles, functional information, . . .
- what if no (external) features available?
 - compute node features: clustering coefficient, centrality scores, etc.
 - one-hot encoding of a node
 - vector of all 1's

Given

- graph G = (V, E), with |V| = n
- A is the adjacency matrix of G
- each node $v \in V$ has vector $\mathbf{x}_v \in \mathbb{R}^r$ of r features
- $X \in \mathbb{R}^{r \times n}$ is the matrix of nodes features

Goal: we want to combine the features x_V of a node and the structural (topological) information from G to obtain encodings for each node $v \in V$

Ideas?

Naïve Approach

Idea:

- for each node $v \in V$, build an input vector that contains both the node features \mathbf{x}_v and the adjacency matrix vector for v
- ENC(v) is the output of a (deep) neural network whose input are the vectors above

Naïve Approach: Issues

Number of parameters?
$$\Omega(n) \rightarrow \text{because}$$
 the input layer has $\Omega(n)$ wodes

Not applicable to graphs of different sizes they have input lossers of different sizes

Depends on the node ordering - if I charge the order of nodes in the adjacency natrix, the embeddings of the nodes and hype

Permutation Invariance and Permutation Equivariance

We would like the embedding to be *independent* of the node ordering.

Let f be the function that given the adjacency matrix A of G and the feature matrix X of the nodes of G produces in output the embedding matrix Z:

$$Z = f(A, X)$$

We would like **f** to be permutation invariant or permutation equivariant

Permutation Invariance and Permutation Equivariance (continue)

We would like it to be *permutation invariant* or *permutation* equivariant

Permutation matrix P: each row/column has exactly one 1, all other entries are 0.

Definition

f is permutation invariant if $f(PAP^T, XP^T) = f(A, X)$ where P is a permutation matrix.

Definition

f is permutation equivariant if $f(PAP^T, XP^T) = f(A, X)P^T$ where P is a permutation matrix.

Neural Message Passing Framework

Idea

- the computation proceeds in iterations
- in iteration k, the (hidden) embedding $\mathbf{h}_{v}^{(k)}$ for node v is updated/computed according to the (hidden) embeddings of nodes $u \in \mathcal{N}(v)$
- the output embedding for node v is the embedding $\mathbf{h}_{v}^{(K)}$ after K iterations
- initialization: $\mathbf{h}_{v}^{(0)} = \mathbf{x}_{v}$ for all $v \in V$

Formally:

- AGGREGATE^(k) $\left(\{ \mathbf{h}_{V}^{(k)}, \forall v \in \mathcal{N}(u) \} \right) = \mathbf{m}_{\mathcal{N}(u)}^{(k)}$: function that given the (hidden) embeddings of neighbours of u at iteration k produces the message $\mathbf{m}_{\mathcal{N}(u)}^{(k)}$.
- UPDATE $^{(k)}\left(\mathbf{h}_{u}^{(k)},\mathbf{m}_{\mathcal{N}(u)}^{(k)}\right)$

 $AGGREGATE^{(k)}(...)$ and $UPDATE^{(k)}(...)$ are arbitrarily differentiable functions \Rightarrow neural networks

Neural Message Passing Framework

Then for each $u \in V$:

$$\begin{aligned} \mathbf{h}_{u}^{(k+1)} &= \mathtt{UPDATE}^{(k)} \left(\mathbf{h}_{u}^{(k)}, \mathtt{AGGREGATE}^{(k)} (\{\mathbf{h}_{v}^{(k)}, \forall v \in \mathcal{N}(u)\}) \right) \\ &= \mathtt{UPDATE}^{(k)} \left(\mathbf{h}_{u}^{(k)}, \mathbf{m}_{\mathcal{N}(u)}^{(k)} \right) \end{aligned}$$

The embedding \mathbf{z}_u of a node $u \in V$ is the embedding after K iterations:

$$\mathbf{z}_u = \mathbf{h}_u^{(K)}$$

Note: the iterations of message passing are also called $\it layers$ of the GNN

Neural Message Passing Framework

Question: are GNNs (as generally defined in the previous slide) sensible to permutations of the nodes?

Neural Message Passing: Motivation

Intuition: the local feature-aggregation behaviour of GNNs is analogous to the behavior of the convolutional filters in CNNs

Basic GNNs

The most basic version of a GNN is given by:

$$\operatorname{AGGREGATE}^{(k)}\left(\{\mathbf{h}_{v}^{(k)}, \forall v \in \mathcal{N}(u)\}\right) = \mathbf{m}_{\mathcal{N}(u)}^{(k)} = \sum_{v \in \mathcal{N}(u)} \mathbf{h}_{v}^{(k)}$$

Therefore:

$$\begin{split} \mathbf{h}_{u}^{(k+1)} &= \mathtt{UPDATE}^{(k)} \left(\mathbf{h}_{u}^{(k)}, \mathbf{m}_{\mathcal{N}(u)}^{(k)} \right) \\ &= \sigma \left(\mathbf{W}_{\mathsf{self}}^{(k+1)} \mathbf{h}_{u}^{(k)} + \mathbf{W}_{\mathsf{neigh}}^{(k+1)} \mathbf{m}_{\mathcal{N}(u)}^{(k)} + \mathbf{b}^{(k+1)} \right) \end{split}$$

Notes

- $\mathbf{W}_{\text{self}}^{(k+1)}$ and $\mathbf{W}_{\text{neigh}}^{(k+1)}$ are trainable parameters, with $\mathbf{W}_{\text{self}}^{(k+1)}, \mathbf{W}_{\text{neigh}}^{(k+1)} \in \mathbb{R}^{d^{(k+1)} \times d^{(k)}}$
- $b^{(k+1)}$ is the bias; often omitted in the notation
- $\sigma()$ is an *elementwise* non-linear function (e.g., ReLU)

Basic GNNs (continue)

Putting all together, for each node u, in each iteration:

$$\mathbf{h}_{u}^{(k+1)} = \sigma \left(\mathbf{W}_{\text{self}}^{(k+1)} \mathbf{h}_{u}^{(k)} + \mathbf{W}_{\text{neigh}}^{(k+1)} \sum_{v \in \mathcal{N}(u)} \mathbf{h}_{v}^{(k)} + \mathbf{b}^{(k+1)} \right)$$

GNNs: a Theoretical Motivation

We will now see a theoretical motivation for GNNs, by comparing them with an algorithm for the *graph isomorphism problem*.

Definition

Given two graphs G_1 and G_2 , the graph isomorphism problem requires to determine whether G_1 is isomorphic to G_2 : $G_1 \simeq G_2$

Is it a hard problem? It is not known to be solvable in polynomial time nor to be NP-complete.

Note: ideally we would like a graph embedding technique to *solve* the graph isomorphism problem, that is: $\mathbf{z}_{G_1} = \mathbf{z}_{G_2}$ if and only if $G_1 \simeq G_2$

Weisfieler-Leman (WL) Algorithm

Algorithm for the graph isomorphism problem.

Note: does not always produce the correct answer!

- if WL outputs that $G_1 \not\simeq G_2$ then $G_1 \not\simeq G_2$
- if WL outputs that $G_1 \simeq G_2$, then it may be that $G_1 \not\simeq G_2$

It is known that WL produces the correct answer for a large class of graphs.

WL Algorithm

Builds on a *color* refinement algorithm for the vertices of a graph *G*.

Given a coloring C_V of the vertices V of G = (V, E), let $P(C_V)$ the partition of the vertices V defined by the coloring C_V : two vertices U, V are in the same set of the partition if and only if U and V have the same color.

WL Algorithm (continue)

```
Algorithm ColorRefinement(G)
Input: graph G = (V, E)
Output: coloring of V
C_{curr} \leftarrow assign the same color u to all nodes u \in V;
repeat
    C_{prev} \leftarrow C_{curr};
   C_{curr} \leftarrow for each pair u and v where u and v have the
     same color in C_{prev}: assign different colors to u and v if
     and only if there is some color c such that u and v have
     different number of neighbours of color c in C_{prev};
until P(C_{prev}) = P(C_{curr});
return C_{curr};
```

Analysis:

- ColorRefinement(G) stops after at most |V| iterations;
- each iteration requires $O(|V|^2)$ operations
- the complexity of ColorRefinement(G) is $O(|V|^3)$

WL Algorithm (continue)

```
Algorithm \operatorname{WL}(G_1, G_2)

Input: graphs G_1 = (V_1, E_1), G_2 = (V_2, E_2)

Output: yes/no

C_{G_1} \leftarrow \operatorname{ColorRefinement}(G_1);

C_{G_2} \leftarrow \operatorname{ColorRefinement}(G_2);

return \operatorname{histogram}(P(C_{G_1})) = \operatorname{histogram}(P(C_{G_2}));
```

Analysis: the complexity of $WL(G_1, G_2)$ is $O(|V_1|^3 + |V_2|^3)$

WL algorithm and GNNs

Theorem

Consider a GNN with K message passing layers of the following form:

$$\mathbf{h}_{u}^{(k+1)} = \textit{UPDATE}^{(k)}\left(\mathbf{h}_{u}^{(k)}, \textit{AGGREGATE}^{(k)}(\{\mathbf{h}_{v}^{(k)}, \forall v \in \mathcal{N}(u)\})\right)$$

where AGGREGATE is differentiable and permutation invariant and UPDATE is differentiable. Assume that the input is made of discrete features: $\mathbf{h}_{u}^{(0)} = \mathbf{x}_{u} \in \mathbb{Z}^{d}, \forall u \in V$.

Then $\mathbf{h}_{u}^{(K)} \neq \mathbf{h}_{v}^{(K)}$ only if u and v have different labels after K

Then $\mathbf{h}_{u}^{(K)} \neq \mathbf{h}_{v}^{(K)}$ only if u and v have different labels after K iterations of the WL algorithm.

Informally: GNNs are *no more powerful than* the WL algorithm when we have discrete information as node features.

The result generalizes to graphs: if the WL algorithm does not distinguish (non-isomorphic) graphs G_1 and G_2 , then any GNN (with the form as above) is incapable of distinguishing G_1 and G_2 .

WL algorithm and GNNs (continue)

Theorem

There exists a GNN with the form defined in the previous theorem such that $\mathbf{h}_{u}^{(K)} = \mathbf{h}_{v}^{(K)}$ only if u and v have the same labels after K iterations of the WL algorithm.

Informally: there are GNNs that are as powerful as the WL algorithm.

Which GNNs are as powerful as the WL algorithm?

- the basic GNN? YES!
- basic GNN with neighborhood normalization? NO!
- GCN? NO!
- GraphSAGE? depends on the AGGREGATION operator

GNNs for Node Embeddings

In general: GNNs can be used to obtain node embeddings.

In terms of the encoder-decoder framework:

- encoder: GNN
- similarity function: see the ones for shallow embeddings
- decoder: see the ones for shallow embeddings
- loss: see the ones for shallow embeddings

However: GNNs can also be used for *supervised* tasks.

GNNs for Supervised-Tasks

Common supervised tasks for graphs:

- node classification
- graph classification

GNNs: Node Classification

Input: some nodes have a label and can be used to train the GNN.

Each node u in the training set has a label, encode by a 0-1 vector \mathbf{y}_u of dimension c.

Loss function: negative log-likelihood loss of softmax classification function

Given the embedding \mathbf{z}_u of node u and the corresponding vector \mathbf{y}_u , the softmax classification function is

$$\operatorname{softmax}(\mathbf{z}_u, \mathbf{y}_u) = \sum_{i=1}^{c} \mathbf{y}_u[i] \frac{e^{\mathbf{z}_u^T \mathbf{w}_i}}{\sum_{j=1}^{c} e^{\mathbf{z}_u^T \mathbf{w}_j}}$$

with \mathbf{w}_i for $i = 1, \dots, c$ trainable parameters.

GNNs: Node Classification (continue)

Then the loss function is:

$$\mathcal{L} = \sum_{u \in V_{\mathsf{train}}} - \log \left(\mathsf{softmax}(\mathbf{z}_u, \mathbf{y}_u) \right)$$

where V_{train} is the set of training nodes.

Note: there are different types of nodes for node classification

- the set V_{train} of training nodes: both the nodes and the labels are used during training (i.e., to learn the GNN parameters)
- the set V_{trans} of transductive test nodes: the nodes, but not their labels, are used during training. These nodes do not (directly) contribute to \mathcal{L}
- the set V_{ind} of inductive test nodes: the nodes are completely unobserved during training

GNNs: Graph Classification

Input: set of graphs, where each graph G has a label represented by a 0-1 vector \mathbf{y}_G of dimension c

Loss: same as for node classification, where the embedding \mathbf{z}_{G} is computed for a graph G.

$$\operatorname{softmax}(\mathbf{z}_G, \mathbf{y}_G) = \sum_{i=1}^{c} \mathbf{y}_G[i] \frac{e^{\mathbf{z}_G^T \mathbf{w}_i}}{\sum_{j=1}^{c} e^{\mathbf{z}_G^T \mathbf{w}_j}}$$

$$\mathcal{L} = \sum_{G \in \mathcal{G}_{\mathsf{train}}} - \log \left(\mathsf{softmax}(\mathbf{z}_G, \mathbf{y}_G) \right)$$

where \mathcal{G}_{train} is the set of graphs used for training.

GNNs: other tasks

GNNs can be used for several other tasks

- edge prediction: predict missing edges
- regression task for nodes
- regression task for graphs

GNNs: Additional Notes

What algorithm is used to learn GNN parameters? SGD

Training all nodes of a GNN simultaneously can require a lot of resources (time, memory) \Rightarrow **Mini-batching:** obtain the final representation z_u for a small set of nodes at the time

Problem: how do we make sure that the computation graph is connected but not all nodes are used? ⇒ Start from the target nodes and use **subsampling**: sample a fixed number of neighbours for each node.

The loss function can be combined with *regularization* (e.g., ℓ_2 regularization)

GNNs: Frameworks

If you are starting to use GNNs, here are some pointers to GNN Python libraries:

PyTorch Geometric

https://pytorch-geometric.readthedocs.io/en/latest/

Deep Graph Library https://www.dgl.ai/

Graph Nets https://github.com/deepmind/graph_nets

Spektral https://graphneural.network/