Übungen zur Einführung in die

Astronomie und Astrophysik I, 6

- 1. Sirius (α CMa) ist der hellste Stern am Nachthimmel und besteht aus den beiden Komponenten A und B. Aufgrund der geringen Entfernung ($\pi=0.379''$) lassen sich die Zustandsgrößen des Doppelsternsystems zuverlässig bestimmen. Für die Massen hat man $M_{\rm A}=2.12\,M_{\odot}$ und $M_{\rm B}=0.98\,M_{\odot}$ ermitteln können.
 - a) Die scheinbaren bolometrischen Helligkeiten sind $m_{\rm A}=-1,65^{\rm m}$ und $m_{\rm B}=5,78^{\rm m}$. Bestimmen Sie die Leuchtkräfte beider Komponenten. $(M_{\rm bol\odot}=4,75^{\rm m})$
 - b) Sirius B hat eine Effektivtemperatur von $T_{\rm eff\,B}=25\,200\,{\rm K}$. Schätzen Sie den Radius und die Dichte der Sekundärkomponente ab.

(2 Punkte)

2. Für die Sterne α Cen A, Beteigeuze und Wolf 28 sind folgende Werte bekannt:

	$T_{ m eff}$	$m_{ m V}$	BC	π
$\alpha \operatorname{Cen} A$	$5800\mathrm{K}$	$0.02^{\rm m}$	0.0^{m}	0,752''
Beteigeuze	$3500\mathrm{K}$	$0,42^{\rm m}$	$1,4^{\mathrm{m}}$	$0,\!0051''$
Wolf 28	$6750 { m K}$	$12.40^{\rm m}$	$0.1^{\rm m}$	0.234''

Bestimmen Sie (jeweils in Einheiten der Sonne) die Leuchtkräfte und die Radien der Sterne. In welchen Bereichen des Hertzsprung-Russell-Diagramms liegen diese Objekte?

(3 Punkte)

3. Das Hauptminimum der Lichtkurve eines photometrischen Doppelsterns (Bedeckungsveränderlicher) mit einer Umlaufperiode von 1,461 d hat folgendes Aussehen:

Man hat die entsprechenden Zeitdifferenzen messen können: $t_4 - t_1 = 0.25\,\mathrm{d}$ und $t_3 - t_2 = 0.128\,\mathrm{d}$. Aus den Spektren lassen sich die Geschwindigkeiten der beiden Komponenten relativ zum Schwerpunkt des Systems bestimmen: $v_1 = 71.6\,\mathrm{km\,s^{-1}}$ und $v_2 = 358.0\,\mathrm{km\,s^{-1}}$. Unter der Annahme, dass die Bahn kreisförmig ist und die Inklination 90° beträgt, bestimme man die Radien und Massen der Komponenten in Einheiten der Sonne.

(2 Punkte)

- 4. Betrachten Sie ein spektroskopisches Doppelsternsystem mit zwei sichtbaren Liniensystemen. Die RV-Variationen verlaufen sinusförmig mit einer Periode von $T=11\,\mathrm{d}$. Für die Geschwindigkeitsamplituden der Sterne wurden $K_1=50\,\mathrm{km\,s^{-1}}$ und $K_2=75\,\mathrm{km\,s^{-1}}$ gemessen.
 - a) Wie groß ist die Exzentrizität e?
 - b) Wie hängt die Winkelgeschwindigkeit Ω vom Radius der Relativbahn $a = a_1 + a_2$ ab?
 - c) Leiten Sie Beziehungen zwischen den beobachteten Größen Ω , K_1 und K_2 sowie den Massen m_1 , m_2 und der Inklination i her.
 - d) Wie groß ist die Minimalmasse des betrachteten Systems?

(3 Punkte)