Elliptische-Kurven-Kryptographie

Kevin Kappelmann, Lukas Stevens 20. April 2016

Inhaltsverzeichnis

1	Einleitung und Motivation		
2	Gru 2.1 2.2	Affine Ebenen	
3	Elli; 3.1 3.2 3.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 4 4 4
4	Eine 4.1 4.2 4.3 4.4	Tangenten elliptischer Kurven	5
5	Anv 5.1 5.2	wendung elliptischer Kurven in der Kryptologie ElGamal	
A	bbi	ildungsverzeichnis	
	1 2 3	Minimalmodell einer affinen Ebene	2
\mathbf{T}	abe	ellenverzeichnis	
	1	Vergleich Schlüssellängen	1

1 Einleitung und Motivation

Kryptosysteme wie RSA, Diffie-Hellman¹ und ElGamal¹, die sich auf die Schwere der Primafaktorzerlegung bzw. dem diskreten Logarithmenproblem über Ganzzahlen stützen, benötigen sehr große Schlüssellängen, um eine ausreichend hohe Sicherheit zu garantieren. Daraus ergibt sich sowohl eine hoher Energie- als auch Speicherbedarf für die Berechnung der Algorithmen, was vor allem für Microchips und eingebettete Systeme ein Problem darstellt. Eine Lösung für dieses Problem sind elliptische Kurven. Diese algebraischen Kurven tragen eine Gruppenstruktur, über die das diskrete Logarithmenproblem deutlich schwerer lösbar ist, als über Gruppen mit Ganzzahlen. Kryptosysteme, die auf elliptische Kurven beruhen, kommen dadurch mit erheblich kürzeren Schlüsseln bei vergleichbarer Sicherheit aus. [2, Seite 53]

Nachfolgende Tabelle verdeutlicht diesen Sachverhalt. Spalte 1 kennzeichnet die maximale Sicherheit (in Bits) für den jeweiligen Algorithmus und der angegebenen Schlüssellänge (in Bits). Rot markierte Felder gelten als kryptographisch unsicher, grüne als aktuell sicher.

Sicherheitsniveau	RSA/Diffie-Hellman ¹	Elliptische-Kurven
≤ 80	1024	160-223
112	2048	224-255
128	3072	256-383
192	7680	384-511
256	15360	512+

Tabelle 1: Vergleich Schlüssellängen

Die Verwendung elliptischer Kurven in der Kryptographie wurde Mitte der 1980er Jahre von Neal Koblitz [4] und Victor S. Miller [5] unabhängig voneinander vorgeschlagen. Aufgrund der vorteilhaften Eigenschaften gewinnt die Elliptische-Kurven-Kryptographie (kurz ECC für Elliptic Curves Cryptography) stets mehr an Bedeutung und löst ältere Verfahren wie RSA in den verschiedensten Bereichen ab. Vor allem in Umgebungen mit begrenzten Kapazitäten, wie z.B. Smartcards, ist ECC bereits weit verbreitet.

So verwendet beispielsweise Österreich seit 2004 als Vorreiter für alle gängigen Bürgerkarten ECC [1]. Aber auch die Reisepässe der meisten Europäischen Staaten nutzen inzwischen meist in einer Form ECC. [6]

2 Grundbegriffe

Um elliptische Kurven einführen zu können, müssen wir uns zunächst mit affiner und projektiver Geometrie und ihrer Verwandtheit auseinander setzen. Wir führen hierfür zunächst allgemein die Begriffe der affinen und projektiven Ebene ein und konstruieren uns eine projektive Ebene $PG(2, \mathbb{F})$ über einen beliebigen Körper \mathbb{F} .

2.1 Affine Ebenen

Definition 2.1. Es sei \mathcal{A} eine Menge und \mathcal{G} eine Teilmenge der Potenzmenge von \mathcal{A} , d.h. $\mathcal{G} \subseteq Pot(\mathcal{A})$. Die Menge \mathcal{A} nennt man die **Punktmenge** und die Menge \mathcal{G} die **Geradenmenge** der affinen Ebene $(\mathcal{A}, \mathcal{G})$, falls folgende drei Bedingungen erfüllt sind:

¹In der jeweiligen Implementierung als Gruppe über ganze Zahlen

- (A1) Zu je zwei Elementen $a, b \in \mathcal{A}$ mit $a \neq b$ existiert genau ein $G \in \mathcal{G}$ mit $a, b \in G$ (durch zwei verschiedene Punkte geht genau eine Gerade). Wir schreiben $\overline{a, b}$ für dieses G.
- (A2) Zu $G \in \mathcal{G}$ und $a \in \mathcal{A} \setminus G$ existiert genau ein $G' \in \mathcal{G}$ mit $a \in G'$ und $G \cap G' = \emptyset$ (durch jeden Punkt geht genau eine Gerade, die zu einer gegebenen Gerade parallel ist). Das sogenannte **Parallelenaxiom**.
- (A3) Es existieren drei Elemente $a,b,c\in\mathcal{A}$ mit $c\notin\overline{a,b}$ (es gibt drei Punkte, die nicht alle auf einer Gerade liegen).

Beispiel 2.2. Das Minimalmodell einer affinen Ebene umfasst genau 4 Punkte. [3, Seite 16]

Abbildung 1: Minimalmodell einer affinen Ebene

Beispiel 2.3. Die euklidische Ebene ("Der zweidimensionale Raum unserer Anschauung") ist eine affine Ebene, in der zusätzich Längen- und Winkelmaß definiert sind.

Abbildung 2: Parallelen in der euklidischen Ebene

2.2 Projektive Ebenen

Definition 2.4. Es sei \mathcal{P} eine Menge und \mathcal{G} eine Teilmenge der Potenzmenge von \mathcal{P} , d.h. $\mathcal{G} \subseteq Pot(\mathcal{P})$. Die Menge \mathcal{P} nennt man die **Punktmenge** und die Menge \mathcal{G} die **Geradenmenge** der projektiven Ebene $(\mathcal{P}, \mathcal{G})$, falls folgende drei Bedingungen erfüllt sind:

- (P1) Zu je zwei Elementen $P, Q \in \mathcal{A}$ mit $P \neq Q$ existiert genau ein $G \in \mathcal{G}$ mit $P, Q \in G$ (durch zwei verschiedene Punkte geht genau eine Gerade). Wir schreiben $\overline{P, Q}$ für dieses G.
- (P2) Für je zwei $G, H \in \mathcal{G}$ mit $G \neq H$ gilt $|G \cap H| = 1$ (zwei verschiedene Geraden schneiden sich in genau einem Punkt).
- (P3) Es existieren vier verschiedene Elemente in \mathcal{P} , sodass immer höchstens zwei davon in jedem beliebigen $G \in \mathcal{G}$ liegen (es gibt vier Punkte, sodass nie drei davon auf derselben Gerade liegen).

Im wesentlichen Unterschied zu affinen Ebenen existieren in einer projektiven Ebene keine Parallelen.

Beispiel 2.5. Die Fano-Ebene ist das Minimalmodell einer projektiven Ebene und umfasst genau 7 Punkte. TODO Quelle fuer minimalitaet

Bemerkenswert ist die Tatsache, dass durch Entfernen einer beliebigen Gerade und den daraufliegenden Punkten eine affine Ebene entsteht. Dies ist kein Spezialfall sondern funktioniert immer, was wir auch im Abschnitt 2.2.2 zeigen werden.

Abbildung 3: Fano-Ebene

2.2.1 Die projektive Ebene $PG(2, \mathbb{F})$

Konstruktion, Beispiel

2.2.2 Konstruktion affiner Ebenen aus projektiven Ebenen

Beweis, Beispiel

3 Elliptische Kurven E

Macht Lukas

3.1 Definition elliptischer Kurven

Wir haben bereits die projektive Ebene $PG(2, \mathbb{F})$ über beliebige Körper \mathbb{F} eingeführt. Diese hat die folgende Punktemenge:

$$P = \{(u:v:w) \mid (u,v,w) \in \mathbb{F}^3 \setminus (0,0,0)\}$$

Nun wollen wir die Punktemenge E der elliptischen Kurve einführen, welche eine Teilmenge der Punktemenge \mathcal{P} ist, d.h. $E \subseteq \mathcal{P}$. Dazu benötigen wir Polynome in drei Unbekannten. Der Polynomring mit drei Unbekannten über \mathbb{F} ist mit

$$\mathbb{F}[X,Y,Z] = \left\{ \sum_{k,l,m \ge 0} a_{k,l,m} X^k Y^l Z^m \mid a_{k,l,m} \in \mathbb{F} \right\}$$

definiert. $F(X,Y,Z)=\sum_{k,l,m\geq 0}a_{k,l,m}\,X^kY^lZ^m\in\mathbb{F}[X,Y,Z]$ wird Polynom genannt.

Definition 3.1. Eine elliptische Kurve E ist durch die Lösung der Weierstraβ-Gleichung

$$Y^{2}Z + a_{1}XYZ + a_{3}YZ^{2} = X^{3} + a_{2}X^{2}Z + a_{4}XZ^{2} + a_{6}Z^{3}$$

gegeben, wobei gilt $a_i \in \mathbb{F}$. Da der zugrundeliegende Raum $PG(2, \mathbb{F})$ eine projektive Ebene ist, handelt es sich um eine projektive Kurve. Wenn man die Gleichung als Polynom

$$F(X,Y,Z) = Y^{2}Z + a_{1}XYZ + a_{3}YZ^{2} - X^{3} - a_{2}X^{2}Z - a_{4}XZ^{2} - a_{6}Z^{3}$$

schreibt, dann ist E genau die Nullstellenmenge des Polynoms F.

TODO char etc.

3.2 Die unendliche Gerade über $PG(2, \mathbb{F})$

Um in 3.3 eine affine Darstellung elliptischer Kurven herzuleiten, müssen wir $(\mathcal{P},\mathcal{G})$ = PG(2, \mathbb{F}) nochmal betrachten. Wir wählen dazu eine Gerade $U \in \mathcal{G}$ aus. Prinzipiell kann dazu jede Gerade gewählt werden. Es ist jedoch von Vorteil eine bestimmte Gerade zu wählen um das Rechnen mit der Weierstraßgleichung(3.1) zu vereinfachen.

Dazu wählen wir die Verbindungsgerade $U=\overline{P,Q}$ der Punkte P=(1:0:0) und Q=(0:1:0), d.h. $U=\{(x:y:z)\in\mathcal{P}\mid z=0\}$. Diese Menge U bezeichnen wir im Folgenden als unendlich ferne Gerade. Im dreidimensionalen Raum ist das genau die x,y-Ebene.

3.3 Affine Darstellung elliptischer Kurven

Erklärung, Beispiel(Graphen)

4 Eine Gruppe über E

Macht Kevin bis 4.3

4.1 Tangenten elliptischer Kurven

4.2 Schnittpunkte von Geraden mit elliptischen Kurven

Unendlich ferne Gerade mit Schnittpunkt \mathcal{O} , Affine Geraden, Parallele zur y-Achse

4.3 Die Schnittpunkt-Verknüpfung \oplus über E

Definition, Beweis der Abgeschlossenheit, graphische Interpretation

4.4 Die Gruppe (E, +)

Macht Lukas bis fertig Gruppe ist abelsch mit neutralem Element \mathcal{O} , Beispiel

5 Anwendung elliptischer Kurven in der Kryptologie

5.1 ElGamal

Welche Charakteristiken für elliptische Kurven, Domänenparameter

5.2 Noch einen für Signaturen

Welche Charakteristiken für elliptische Kurven, Domänenparameter

Literaturverzeichnis

- [1] Elliptische Kurven (Elliptic Curve Cryptography ECC). https://www.a-sit.at/de/technologiebeobachtung/ecc_curves/index.php. Abgerufen am 15.04.2016.
- [2] Elaine Barker. Recommendation for Key Management. http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf, 2016. Abgerufen am 15.04.2016.
- [3] Hans-Wolfgang Henn. Elementare Geometrie und Algebra, 2003.
- [4] Neal Koblitz. Elliptic curve cryptosystems, 1987.
- [5] Victor S. Miller. Use of elliptic curves in cryptography, 1985.
- [6] Zdeněk Říha. Electronic passports. https://web.archive.org/web/20100215182600/ http://www.buslab.org/SummerSchool2008/slides/Zdenek_Riha.pdf. Archiviert vom Original, abgerufen am 15.04.2016.