Environmental Fluid Dynamics

ME EN 7710	Exam #1	In-Class Portion
1.) [10 points] Matching		
isotropic flux divergence specific humidity thermal diffusivity mixing ratio	 ratio of mass of water of the ability of a material of the ability of a material cooling of a layer due to the state of the ability of a material of the ability of t	d reflection aslation ctivity to heat capacity I to conduct heat to change in net radiation with height vapor to mass of moist air
2.) [6 points] Consider a very thin, no rations. Indicate the signs of the following surface are positive)	, .	, , , , , , , , , , , , , , , , , , , ,
a.) Ground heat flux during the night:b.) Sensible heat flux during the day:c.) Latent heat flux during the night:		
3.) [4 points] Again consider the simplif surface, under typical clear sky condition tory for an urban neighborhood?	••	
4.) [6 points] Describe the following dim	nensionless numbers using	words or equations.
a.) Rossby Number		
b.) Bowen Ratio		
c.) Ekman Number		

5.) [8 points] Sketch and label the vertical temperature profiles for an (a) adiabatic, (b) superadiabatic, (c) subadiabatic, and (d) isothermal atmosphere.

6.) [4 points] What phenomena does this figure illustrate? What is its interpretation?.

a.) Sketch the hodograph of the Ekman layer solution above a rigid surface.
b.) Sketch the vertical profiles of the horizontal momentum components for the Ekman layer solution above a rigid surface.
c.) What is Ekman pumping?

7.) [12 points] Ekman Layer

8.) [16 points] Scale Analysis

a.) [5 points] Using characteristic values for the synoptic scale (located on the provided equation sheet), perform scale analysis of the following horizontal equation of motion.

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + fv + \nu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right)$$

- b.) [3 points] Which approximation may be used to describe the horizontal flow based on the dominant terms above? Be sure to describe the relevant balance of forces.
- c.) [5 points] Repeat the scale analysis of the following vertical equation of motion using characteristic values for the synoptic scale.

$$\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} = -\frac{1}{\rho} \frac{\partial p}{\partial z} - g + \nu \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} \right)$$

d.) [3 points] Which approximation may be used to describe the vertical flow based on the dominant terms above? Be sure to describe the relevant balance of forces.

9.) [5 points] Using the provided Coriolis term that we derived for the mechanical energy equation, show the work done by the Coriolis force.
$\vec{U} \cdot \left(-2\rho \vec{\Omega} \times \vec{U} \right) = \epsilon_{ij3} f u_i u_j$
10.) [3 points] What are the three typical approaches to studying turbulence?
a.)
b.)
c.)
<u> </u>
11.) [3 points] Name three characteristics of turbulence.
a.)
b.)
c.)
12.) [3 points] What is meant by the ergodic condition?

13.) [14 points] Taylor-Proudman Theorem

a.) [10 points] Starting with the simplified equations of motion for a rotating, inviscid, homogeneous fluid, derive the Taylor-Proudman outcome of $\partial \overrightarrow{U}/\partial z=0$

$$-2\Omega v = -\frac{1}{\rho} \frac{\partial p}{\partial x} \quad (1) \qquad 2\Omega u = -\frac{1}{\rho} \frac{\partial p}{\partial y} \quad (2) \qquad 0 = -\frac{1}{\rho} \frac{\partial p}{\partial z} - g \quad (3)$$

b.) [4 points] Explain one implication of the theorem.

14.) [6 points] Consider the following equation for the internal energy (I, we also wrote this as e) at a point in the atmosphere. We derived this as part of the thermal energy equation. Provide a physical meaning for each term.

$$\underbrace{\rho \frac{DI}{Dt}}_{1} = \underbrace{-\overrightarrow{\nabla} \cdot \overrightarrow{q}}_{2} - \underbrace{\overrightarrow{\nabla} \cdot (p\overrightarrow{U})}_{3} \underbrace{-\overrightarrow{\nabla} \cdot \overrightarrow{R_{n}}}_{4} + \underbrace{L_{v}\epsilon}_{5} + \underbrace{\mu \Phi_{\nu}}_{6}$$

1	
1.	

Potentially Useful Information

Characteristic Values for the Synoptic Scale

•
$$\nu \sim 10^-5 \,\mathrm{m}^2 \,\mathrm{s}^{-1}$$

$$\bullet \ \, \nu \sim 10^-5 \, \mathrm{m^2 \, s^{-1}} \qquad \qquad \bullet \ \, T \sim L/V \sim 10^5 \, \mathrm{s} \\ \bullet \ \, V \sim 10 \, \mathrm{ms^{-1}} \qquad \qquad \bullet \ \, f \sim 10^{-4} \, \mathrm{s^{-1}}$$

•
$$V \sim 10 \, \text{ms}^{-1}$$

•
$$f \sim 10^{-4} \, \mathrm{s}^{-1}$$

•
$$W \sim 0.1 \, {\rm ms}^{-1}$$

•
$$\rho \sim 1 \; \mathrm{kg} \, \mathrm{m}^{-3}$$

•
$$L \approx 1000 \, \text{km} = 10^6 \, \text{m}$$

•
$$H \sim 10 \text{ km} = 10^4 \text{ m}$$

• $H \sim 10~{\rm km} = 10^4~{\rm m}$ • Δp over vertical length scale $H \sim 1000~{\rm mb} = 10^5~{\rm Pa}$

Tensors

$$\delta_{mn} = \begin{cases} +1, & \text{if } m=n \\ 0 & \text{if } m \neq n \end{cases}$$

$$\epsilon_{mnq} = \begin{cases} +1, & \text{if } mnq=123,231,312 & \text{even permutation} \\ -1 & \text{if } mnq=321,213,132 & \text{odd permutation} \\ 0 & \text{if } m=n,n=q,q=m & \text{any two indices repeated} \end{cases}$$