



Dataset integration for community, outdoor, indoor, and personal source evaluations (Solutions of Exam 2)
SC Candice Lung & WC Vincent Wang

Advanced Institute on Hi-ASAP (2021) Academia Sinica, Taiwan

# Exam 2 (1/3)

- 1. Input data: Hi-ASAP exam2.csv
- 2. Ten street-level sites monitor air pollution sources as the table.
- 3. Some pollution sources have specific business hours as follows:
  - Market: 10 am 8 pm (including 8 pm)
  - ➤ Vendor: 1 pm 9 pm (including 9 pm)
  - ➤ Gas station: 8 am 7 pm (including 7 pm)

| *C-10<br>*C-9<br>*C-8  |
|------------------------|
| *C-2<br>*C-3           |
| *C-4 *C-7              |
| *C-5<br>*C-6           |
| 0 100 200 400 600<br>M |

| Site | Pollution sources              |
|------|--------------------------------|
| C-1  | School, traffic type 1         |
| C-2  | Traffic type 1                 |
| C-3  | Market, traffic type 1         |
| C-4  | Gas station, traffic<br>type 1 |
| C-5  | Vendor, traffic type 1         |
| C-6  | Temple, traffic type 2         |
| C-7  | Street background              |
| C-8  | Traffic type 2                 |
| C-9  | Temple, traffic type 2         |
| C-10 | Temple, traffic type 2         |

Traffic type 1: Traffic with passing-by vehicles

Traffic type 2: Stop-and-go traffic (stop near the traffic light)

### Exam 2 (2/3): Hi-ASAP\_exam2.csv



7 columns in the input file:

- 1. time
- site: 10 stations;
   C 1~C 10
- 3. site\_pm2.5
- 4. high\_level\_pm2.5
- 5. ws: wind speed
- 6. temperature
- 7. rh: relative humidity

# Exam 2 (3/3)

- 1. List the p-value of the overall regression model.
- 2. List the adjusted R<sup>2</sup> of the overall regression model.
- 3. List the contribution of the market.
- 4. List the contribution of the gas station.
- 5. Deliver three result files, which are the answers to exam 2, the regression result, and input data including the established dummy variables.
- 6. Pleas follow the file naming rules:
  - exam2\_answers\_[team name].xlsx
  - exam2\_inputdata\_[team name].csv
  - exam2\_mlr\_result\_[team name].txt

exam2\_answers\_taiwan.xlsx
exam2\_inputdata\_taiwan.csv
exam2\_mlr\_result\_taiwan.txt

### Source code of R (1/13): Read the data file

The pound sign, #, is used for annotations or comments in R. You may write down some notes for your own reference. After this sign, the text will not be run.

| Line | Script                                                   |  |
|------|----------------------------------------------------------|--|
| 1    | #read data from the "input" folder                       |  |
| 2    | data_array <- read.csv(file='./input/Hi-ASAP_exam2.csv') |  |

The variable, data\_array, is used for the storage of data, which are read from the data file in the directory indicated in the right side.

The arrow sign, <-, is used to assign data to the variable. Data is in the right side; the variable is in the left side.

The function, read.csv(), is used to read data from the 'csv' file. The parameter, 'file=', is used to assign the path of the data file. The path of the data file, './input/Hi-ASAP\_exam2.csv', has to be put in middle of the quote signs.

## Source code of R (2/13): Conversion of data time



| Line | Script                                                         |                                                                               |                                                                                |
|------|----------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 4    | # convert a character string type t                            | to "Date Time" type                                                           |                                                                                |
| 5    | data_time <- strptime(data_array                               | /\$time, "%Y/%m/%d %H:%M")                                                    |                                                                                |
| 6    | data_array\$month <- as.integer(s                              | strftime(data_time,"%m"))                                                     |                                                                                |
| 7    | data_array\$hour <- as.integer str                             | ftime(data_time,"%H"))                                                        |                                                                                |
| ä    | as.integer: convert<br>a string type of time<br>to an integer. | strftime(data_time, "%H"): extract the "hour" component from the date object. | strftime(data_time,<br>m"): extract<br>"month" compone<br>from the date object |

#### Source code of R (3/13): create the dummy variable array

| Site | Pollution sources              |
|------|--------------------------------|
| C-1  | School, traffic type 1         |
| C-2  | Traffic type 1                 |
| C-3  | Market, traffic type 1         |
| C-4  | Gas station, traffic<br>type 1 |
| C-5  | Vendor, traffic type 1         |
| C-6  | Temple, traffic type 2         |
| C-7  | Street background              |
| C-8  | Traffic type 2                 |
| C-9  | Temple, traffic type 2         |
| C-10 | Temple, traffic type 2         |

Traffic type 1: Traffic with passing-by vehicles

Traffic type 2: Stop-and-go traffic (stop near the traffic light)

Create a dummy variable column which was named "traffic with passing-by vehicles" and set to be zero first.

Pollution source: traffic type 1

| Li | ine | Script                                                                                        |  |
|----|-----|-----------------------------------------------------------------------------------------------|--|
| 1  | 0   | ## for traffic type 1_traffic_passing_by                                                      |  |
| 1  | .1  | data_array\$traffic_passing_by <- 0                                                           |  |
| 1  | 2   | data_array\$traffic_passing_by[(data_array\$site %in% c('C_1','C_2','C_3','C_4','C_5'))] <- 1 |  |

Then, set the sites with the emission source "traffic with passing-by vehicles" to be 1

# Source code of R (4/13): create the dummy variable array

| Site | Pollution sources              |
|------|--------------------------------|
| C-1  | School, traffic type 1         |
| C-2  | Traffic type 1                 |
| C-3  | Market, traffic type 1         |
| C-4  | Gas station, traffic<br>type 1 |
| C-5  | Vendor, traffic type 1         |
| C-6  | Temple, traffic type 2         |
| C-7  | Street background              |
| C-8  | Traffic type 2                 |
| C-9  | Temple, traffic type 2         |
| C-10 | Temple, traffic type 2         |

Traffic type 1: Traffic with passing-by vehicles

Traffic type 2: Stop-and-go traffic (stop near the traffic light)

Create a dummy variable column which was named "stop-and-go traffic" and set to be zero first.

Pollution source: traffic type 2

| Line | <b>!</b> | Script                                                                                   |  |
|------|----------|------------------------------------------------------------------------------------------|--|
| 14   |          | ## for traffic type 2_traffic_stop_n_go                                                  |  |
| 15   |          | data_array\$traffic_stop_n_go <- 0                                                       |  |
| 16   |          | data_array\$traffic_stop_n_go [(data_array\$site %in% c('C_6','C_8','C_9','C_10'))] <- 1 |  |

Then, set the sites with the emission source "stop-and-go traffic" to be 1

#### Source code of R (5/13): create the dummy variable array

| Site | Pollution sources              |
|------|--------------------------------|
| C-1  | School, traffic type 1         |
| C-2  | Traffic type 1                 |
| C-3  | Market, traffic type 1         |
| C-4  | Gas station, traffic<br>type 1 |
| C-5  | Vendor, traffic type 1         |
| C-6  | Temple, traffic type 2         |
| C-7  | Street background              |
| C-8  | Traffic type 2                 |
| C-9  | Temple, traffic type 2         |
| C-10 | Temple, traffic type 2         |

Traffic type 1: Traffic with passing-by vehicles

Traffic type 2: Stop-and-go traffic (stop near the traffic light)

Pollution source: temple

Create a dummy variable column which was named "temple" and set to be zero first.

| Line | <b>!</b> | Script                                                                  |  |
|------|----------|-------------------------------------------------------------------------|--|
| 18   |          | ## for temple                                                           |  |
| 19   |          | data_array\$temple <- 0                                                 |  |
| 20   |          | data_array\$temple [(data_array\$site %in% c('C_6','C_9','C_10'))] <- 1 |  |

Then, set the sites with the emission source "temple" to be 1

#### Source code of R (6/13): create the dummy variable array

| Site | Pollution sources              |
|------|--------------------------------|
| C-1  | School, traffic type 1         |
| C-2  | Traffic type 1                 |
| C-3  | Market, traffic type 1         |
| C-4  | Gas station, traffic<br>type 1 |
| C-5  | Vendor, traffic type 1         |
| C-6  | Temple, traffic type 2         |
| C-7  | Street background              |
| C-8  | Traffic type 2                 |
| C-9  | Temple, traffic type 2         |
| C-10 | Temple, traffic type 2         |

Traffic type 1: Traffic with passing-by vehicles

Traffic type 2: Stop-and-go traffic (stop near the traffic light)

Create a dummy variable column which was named "market" and set to be zero first.

Pollution source: market

| Line | Script                                                                                                       |
|------|--------------------------------------------------------------------------------------------------------------|
| 22   | ## for market, time for 10-20                                                                                |
| 23   | data_array\$market <- 0                                                                                      |
| 24   | data_array\$market [(data_array\$site %in% c('C_3')) & (data_array\$hour>=10) & (data_array\$hour<=20)] <- 1 |

# Some pollution sources have specific business hours as follows:

➤ Market: 10 am - 8 pm (including 8 pm)

➤ Vendor: 1 pm – 9 pm (including 9 pm)

➤ Gas station: 8 am – 7 pm (including 7 pm)

Then, set the sites with the emission source "market" and specific business hours to be 1

#### Source code of R (7/13): create the dummy variable array

| Site | Pollution sources              |  |
|------|--------------------------------|--|
| C-1  | School, traffic type 1         |  |
| C-2  | Traffic type 1                 |  |
| C-3  | Market, traffic type 1         |  |
| C-4  | Gas station, traffic<br>type 1 |  |
| C-5  | Vendor, traffic type 1         |  |
| C-6  | Temple, traffic type 2         |  |
| C-7  | Street background              |  |
| C-8  | Traffic type 2                 |  |
| C-9  | Temple, traffic type 2         |  |
| C-10 | Temple, traffic type 2         |  |

Traffic type 1: Traffic with passing-by vehicles

Traffic type 2: Stop-and-go traffic (stop near the traffic light)

Create a dummy variable column which was named "vendor" and set to be zero first.

Pollution source: vendor

|                                                                                                     | Line Script |                                                                                                            |  |
|-----------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------|--|
|                                                                                                     | 26          | ## for vendor, time for 13-21                                                                              |  |
|                                                                                                     | 27          | data_array\$vendor <- 0                                                                                    |  |
| data_array\$vendor [(data_array\$site %in% c('C_5')) & (data_array\$hour>=13) & (data_array\$hour<= |             | data_array\$vendor [(data_array\$site %in% c('C_5')) & (data_array\$hour>=13) & (data_array\$hour<=21)<- 1 |  |

# Some pollution sources have specific business hours as follows:

➤ Market: 10 am - 8 pm (including 8 pm)

➤ Vendor: 1 pm – 9 pm (including 9 pm)

➤ Gas station: 8 am – 7 pm (including 7 pm)

Then, set the sites with the emission source "vendor" and specific business hours to be 1

#### Source code of R (8/13): create the dummy variable array

| Site | Pollution sources              |  |
|------|--------------------------------|--|
| C-1  | School, traffic type 1         |  |
| C-2  | Traffic type 1                 |  |
| C-3  | Market, traffic type 1         |  |
| C-4  | Gas station, traffic<br>type 1 |  |
| C-5  | Vendor, traffic type 1         |  |
| C-6  | Temple, traffic type 2         |  |
| C-7  | Street background              |  |
| C-8  | Traffic type 2                 |  |
| C-9  | Temple, traffic type 2         |  |
| C-10 | Temple, traffic type 2         |  |

Traffic type 1: Traffic with passing-by vehicles

Traffic type 2: Stop-and-go traffic (stop near the traffic light)

Create a dummy variable column which was named "gas station" and set to be zero first.

Pollution source: gas station

|    | Line | Script                                                                                                      |  |
|----|------|-------------------------------------------------------------------------------------------------------------|--|
|    | 30   | ## for gas station, time for 8-19                                                                           |  |
|    | 31   | data_array\$gas_stat <- 0                                                                                   |  |
| 32 |      | data_array\$gas_stat [(data_array\$site %in% c('C_4')) & (data_array\$hour>=8) & (data_array\$hour<=19)<- 1 |  |

# Some pollution sources have specific business hours as follows:

➤ Market: 10 am - 8 pm (including 8 pm)

➤ Vendor: 1 pm – 9 pm (including 9 pm)

➤ Gas station: 8 am – 7 pm (including 7 pm)

Then, set the sites with the emission source "gas station" and specific business hours to be 1

#### Source code of R (9/13): create the dummy variable array

| Site | Pollution sources              |
|------|--------------------------------|
| C-1  | School, traffic type 1         |
| C-2  | Traffic type 1                 |
| C-3  | Market, traffic type 1         |
| C-4  | Gas station, traffic<br>type 1 |
| C-5  | Vendor, traffic type 1         |
| C-6  | Temple, traffic type 2         |
| C-7  | Street background              |
| C-8  | Traffic type 2                 |
| C-9  | Temple, traffic type 2         |
| C-10 | Temple, traffic type 2         |

Traffic type 1: Traffic with passing-by vehicles

Traffic type 2: Stop-and-go traffic (stop near the traffic light)

Create a dummy variable column which was named "school" and set to be zero first.

Pollution source: school

| Line | Script                                                     |  |
|------|------------------------------------------------------------|--|
| 34   | ## for school                                              |  |
| 35   | data_array\$school <- 0                                    |  |
| 36   | data_array\$school [(data_array\$site %in% c('C_1'))] <- 1 |  |

Then, set the sites with the emission source "school" to be 1

#### Source code of R (10/13): create the dummy variable array

| Site | Pollution sources              |
|------|--------------------------------|
| C-1  | School, traffic type 1         |
| C-2  | Traffic type 1                 |
| C-3  | Market, traffic type 1         |
| C-4  | Gas station, traffic<br>type 1 |
| C-5  | Vendor, traffic type 1         |
| C-6  | Temple, traffic type 2         |
| C-7  | Street background              |
| C-8  | Traffic type 2                 |
| C-9  | Temple, traffic type 2         |
| C-10 | Temple, traffic type 2         |

Traffic type 1: Traffic with passing-by vehicles

Traffic type 2: Stop-and-go traffic (stop near the traffic light)

Create a dummy variable column which was named "season" and set to be zero when the "month" variable is 7.

Dummy variable: season

| Line | Script                                         |  |
|------|------------------------------------------------|--|
| 38   | ## for season                                  |  |
| 39   | data_array\$season[data_array\$month==7] <- 0  |  |
| 40   | data_array\$season[data_array\$month==12] <- 1 |  |

Set the variable of the season to be 1 when the "month" variable is 12.

# Source code of R (11/13): build the multiple regression model

Im(formula=) is the function to establish the multiple regression model.

| Line | Script                                                                       |  |
|------|------------------------------------------------------------------------------|--|
| 42   | ## the multiple regression model                                             |  |
| 43   | mlr<-Im(formula=site_pm2.5 ~ traffic_passing_by + traffic_stop_n_go + temple |  |
| 44   | + market + gas_stat + vendor + school + season + high_level_pm2.5 + ws       |  |
|      | + temperature + rh, data=data_array)                                         |  |

Input the data with the dummy variables which are created by the above steps to the multiple regression model.

# Source code of R (12/13): save the result of the regression model



# Source code of R (13/13): save the input data with dummy variables



## Results: exam2\_mlr\_result\_[team name].txt



### Results: exam2\_answers\_[team name].xlsx

#### Exam 2:

1.List the p-value of the overall regression model.

2.List the adjusted R<sup>2</sup> of the overall regression model.

3.List the contribution of the market.

4.List the contribution of the gas station.

| Exam 2                                                               | Answer   |
|----------------------------------------------------------------------|----------|
| 1. List the p-value of the overall regression model.                 | 2.20E-16 |
| 2. List the adjusted R <sup>2</sup> of the overall regression model. | 0.8305   |
| 3. List the contribution of the market.                              | 3.664039 |
| 4. List the contribution of the gas station.                         | 1.128615 |

# Thank you for your participation!