Définition: Un type A est contractible, s'il existe un a:A, nommé la centre de contraction, tel que pour tous les x:A, a=x.

Définition: Une application $f:A\to B$ est une équivalence, si pour tous les y:B, sa fibre, $\{x:A\mid fx=y\}$, est contractible. Nous écrivons $A\simeq B$, s'il existe une équivalence $A\to B$.

Lemme: Pour tout type A, l'identité, $1_A := \lambda_{x:A}x: A \to A$, est une équivalence.

Démonstration: Pour tout y:A, soit $\{y\}_A:=\{x:A\mid x=y\}$ sa fibre par rapport de 1_A et soit $\bar{y}:=(y,r_Ay):\{y\}_A$. Comme pour tous les y:A, $(y,r_Ay)=y$, nous pouvons appliquer Id-induction sur y, x:A et z:(x=y) pour obtenir que

$$(x,z) = y$$

. Donc, pour les y:A, nous pouvons appliquer Σ -élimination sur $u:\{y\}_A$ pour obtenir que u=y, de façon que $\{y\}_A$ soit contractible. Alors, $1_A:A\to A$ est une équivalence. \square

Corollaire: Si U est un univers, alors, pour les X,Y:U,

$$(*)X = Y \to X \simeq Y$$

Démonstration: Nous pouvons appliquer le lemme pour obtenir que pour les $X:U,\,X\simeq X$. Donc, nous pouvons appliquer Id-induction sur X,Y:U pour obtenir que (*). \square

Définition: Un univers U est univalent, si pour les X,Y:U, l'application $E_{X,Y}:X=Y\to X\simeq Y$ dans (*) est une équivalence.

1