Linear Programming

(5531)

Lecture 07 Steepest Edge Rule / Sensitivity Analysis

Prof. Sheng-I Chen

http://www.iem-omglab.nctu.edu.tw/OMG_LAB/

November 5, 2020

Agenda

- Steepest edge rule (Ch8.8)
- Sensitivity analysis (Ch7.1)

Steepest Edge Rule

- Motivations:
 - When selecting an entering variable, the largest-coefficient rule only considers the objective coefficient but *doesn't consider the step size*
 - Remembering the issue of using the largest-coefficient rule for solving the *Klee-Minty* problem
 - How to consider both the objective coefficient and step size for selecting the entering variable?
 - To answer the question, we may measure the increasing rate
 - The idea of the *steepest edge rule* is to select an entering variable with the largest increasing rate of the objective function among both basic and nonbasic variables
 - This rate increase is measured for in the space of nonbasic variables

Procedure

• Fix a nonbasic index $j \in N$. If x_i enters the basis, the step direction is:

$$\Delta x = \begin{bmatrix} \Delta x_B \\ \Delta x_N \end{bmatrix} = \begin{bmatrix} -B^{-1}Ne_j \\ e_j \end{bmatrix}$$

As we know, the objective function is:

$$f(x) = c^T x = c_B^T x_B + c_N^T x_N$$

• The derivative of f(x) in the direction of Δx is:

$$\frac{\partial f}{\partial \Delta x} = c^T \frac{\Delta x}{\|\Delta x\|} = \frac{c_B^T \Delta x_B + c_N^T \Delta x_N}{\|\Delta x\|}$$

• ,where

$$c_B^T \Delta x_B + c_N^T \Delta x_N = c_j - c_B^T B^{-1} N e_j$$
$$= \left(c_N - \left(B^{-1} N \right)^T c_B \right)_j$$
$$= -z_j^*$$

• and:

$$\|\Delta x\|^2 = \|\Delta x_B\|^2 + 1 = \|B^{-1}Ne_j\|^2 + 1$$

- What is the problem here?
 - To compute $B^{-1}Ne_i$ for every $j \in N$ is time consuming
- To avoid the computational expense, we will compute $B^{-1}Ne_j$ for every $j \in N$ once at the start and then update the norms of these vectors at each iteration

• Let

$$v_k = \|B^{-1}Ne_k\|^2, \ k \in N$$

• Let B = BE is a new basis matrix, and we knew that:

$$E^{-1} = I - \frac{(\Delta x_B - e_i)e_i^T}{\Delta x_i}$$

• Then new value can be computed as:

$$\tilde{v}_{k} = a_{k}^{T} \tilde{B}^{-T} \tilde{B}^{-1} a_{k}$$

$$= a_{k}^{T} B^{-T} E^{-T} E^{-1} B^{-1} a_{k}$$

$$= a_{k}^{T} B^{-T} \left(I - \frac{e_{i} (\Delta x_{B} - e_{i})^{T}}{\Delta x_{i}} \right) \left(I - \frac{(\Delta x_{B} - e_{i}) e_{i}^{T}}{\Delta x_{i}} \right) B^{-1} a_{k}$$

• (Continue) In the old iteration, we had:

$$v = B^{-T} e_i$$

,and

$$w = B^{-T} \Delta x_B$$

• The new value for v can be obtained by:

$$\tilde{v}_{k} = a_{k}^{T} B^{-T} \left(I - \frac{e_{i} (\Delta x_{B} - e_{i})^{T}}{\Delta x_{i}} \right) \left(I - \frac{(\Delta x_{B} - e_{i}) e_{i}^{T}}{\Delta x_{i}} \right) B^{-1} a_{k}$$

$$\tilde{v}_{k} = v_{k} - 2 \frac{a_{k}^{T} v(w - v)^{T} a_{k}}{\Delta x_{i}} + \left(a_{k}^{T} v\right)^{2} \frac{\left\|\Delta x_{B} - e_{i}\right\|^{2}}{\left(\Delta x_{i}\right)^{2}}$$

Homework. Steepest Edge Rule

- (Continuous the previous homework) Implement the steepest edge rule
- (Optional) Solve Klee-Minty problem instances (n >> 10) using CPLEX callable library:
 - (a) How many iterations are performed if using the largest coefficient rule to select the entering variable?
 - (b) How many iterations are performed if using the steepest edge rule?

Sensitivity Analysis

Sensitivity Analysis

- Why need sensitivity (or postoptimality) analysis?
 - Most real-world problems are uncertain. Various possible data scenarios need to consider when making decisions. Also, data can fluctuate and changing from day to day, such as stock prices
 - The robustness of optimal solution needs to be verified via answering the following questions:
 - What if an objective coefficient is changed?
 - What if a right-hand-side value is changed?
 - What if a constraint coefficient is changed?
 - What if a new constraint is added?
 - What if a new variable is added?

Primal Feasibility and Dual Feasibility

- The answer to these post-optimality questions always concerns with primal feasibility and dual feasibility
- That is, will data changes impact the feasibility of the optimal dictionary?

$$\zeta = \zeta^* - z_N^* x_N$$

$$x_B = x_B^* - B^{-1} N x_N$$

, and its solutions are computed by:

$$\zeta^* = c_B^T B^{-1} b$$
 $x^*_B = B^{-1} b$
 $z^*_N = (B^{-1} N)^T c_B - c_N$

Chart of Possibilities

• For each cell, indicate whether it is "always" true, "sometimes" true, or "never" true:

If changing	Primal feasible	Dual feasible	Both	Neither
Objective coefficient	Always	Sometimes		
RHS	Sometimes	Always		
Constraint coefficient			Sometimes	
Add constraints			Sometimes	
Add non-negative variables			Sometimes	

$$x_B^* = B^{-1}b$$
 $z_N^* = (B^{-1}N)^T c_B - c_N$

Changing the Objective Coefficients

- What if we change the objective coefficients from c to \widehat{c} ?
- Recall,

$$\zeta^* = c_B^T B^{-1} b$$

$$x^*_B = B^{-1} b$$

$$z^*_N = (B^{-1} N)^T c_B - c_N$$

- Changing from c to \tilde{c} requires us to recompute ζ^* and z^*
- We don't need to recompute x^*_B . Why?
- Since the basis remains the same, the primal dictionary is still feasible

Changing the Right Hand Side Values

- What if we change the right hand side values from b to \tilde{b} ?
- Recall,

$$\zeta^* = c_B^T B^{-1} b$$

$$x^*_B = B^{-1} b$$

$$z^*_N = (B^{-1} N)^T c_B - c_N$$

- Changing the RHS values requires to recompute ζ^* and x^*
- The z^*_N remains the same
- Since the dual dictionary is feasible, we can start from dual simplex method

Changing Others

- What if changing both objective coefficient and RHS values?
- What if the entries in B and N change?
- In both cases, ζ^*, x^*_B, z^*_N all need to be recalculated
- As long as the new basis matrix *B* is nonsingular, we can make a new dictionary that preserves the old classification into basic and nonbasic variables

Primal Feasibility and Dual Feasibility

- If the change does not affect primal and dual feasibilities, then the current basis is still optimal
- If the change does not affect primal feasibility, then we can use primal simplex to solve the problem
- If the change does not affect dual feasibility, then can use dual simplex to solve the problem

Maintaining the Current Optimal Basis throughout Changes

- For the change on objective coefficients or RHS values, we often consider the range of changes to maintain the current basis optimal
- In such a case, we don't need to resolve the problem
- The range is only valid when one objective value or RHS value is changed

Ranging

- The range of changing a objective coefficient is computed as follows:
- Suppose *c* is changed to $c + t\Delta c$
- z^*_N is increased by $t\Delta z_N$,where $\Delta z_N = (B^{-1}N)^T \Delta c_B - \Delta c_N$
- The current basis will remain dual feasible as long as: $z^*_N + t\Delta z_N \ge 0$
- For t > 0, the $z^*_N + t\Delta z_N \ge 0$ is valid if:

$$t \le \left(\max_{j \in N} -\frac{\Delta z_j}{z_j^*} \right)^{-1}$$

• For t < 0, the $z^*_N + t\Delta z_N \ge 0$ is valid if:

$$t \ge \left(\min_{j \in N} - \frac{\Delta z_j}{z_j}\right)^{-1}$$

Example

maximize
$$5x_1 + 4x_2 + 3x_3$$

subject to $2x_1 + 3x_2 + x_3 \le 5$
 $4x_1 + x_2 + 2x_3 \le 11$
 $3x_1 + 4x_2 + 2x_3 \le 8$
 $x_1, x_2, x_3 \ge 0$

• The optimal dictionary is:

$$\frac{\xi = 13 - 3x_2 - x_4 - x_6}{x_3 = 1 + x_2 + 3x_4 - 2x_6}$$
$$x_1 = 2 - 2x_2 - 2x_4 + x_6$$
$$x_5 = 1 + 5x_2 + 2x_4$$

- The original coefficients are: $c = \begin{bmatrix} 5 & 4 & 3 & 0 & 0 \end{bmatrix}^T$
- If we wish to change coefficient for x_1 , then we put: $\Delta c = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix}^T$
- Based on the current solution (optimal dictionary), we have:

$$\Delta c_B = \begin{vmatrix} 0 \\ 1 \\ 0 \end{vmatrix}$$
 and $\Delta c_N = \begin{vmatrix} 0 \\ 0 \\ 0 \end{vmatrix}$

• Next, we need to recompute Δz_N :

$$\Delta z_{N} = (B^{-1}N)^{T} \Delta c_{B} - \Delta c_{N} = \begin{bmatrix} -1 & 2 & -5 \\ -3 & 2 & -2 \\ 2 & -1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$$

• To ensure dual feasible $(z^*_N + t\Delta z_N \ge 0)$, the following conditions must be true:

$$3+2t \ge 0$$
, $1+2t \ge 0$, and $1-t \ge 0$

To hold these three inequalities, the value of t is between:

$$-\frac{1}{2} \le t \le 1$$

Resolve the Problem Starting from Previous Basis

- What if the change exceeds the range?
 - If the change is relatively small, it is reasonable to expect the new optimal solution to be "near" the previous optimal solution
 - Solving the new problem using the previous basis may be easier than solving the problem from the scratch
 - It may only take a few pivots (using the primal simplex method. Why?) to reach the new optimal solution when starting from the previous optimal basis

Dual Variable Solution ≡ Shadow Price

- Dual variable solutions tell us the *change in the objective value per unit change in the corresponding constraint bound* if the current basis remains optimal
- Can be used to identify the most critical constraint
- For this reason, the dual prices are also known as shadow prices or marginal values

- If the shadow price is zero, increasing the corresponding RHS value in primal will not lead to an increase in the objective value
- If the shadow price is great than zero, that means that adding one unit increase of the corresponding RHS value will increase the objective value by the shadow price

Example

```
(Primal) (Dual) \max \quad 300x_1 + 500x_2 \qquad \min \quad 40y_1 + 120y_2 + 180y_3 subject to x_1 \le 40 \qquad y_1 + 3y_3 \ge 300 2x_2 \le 120 \qquad 2y_2 + 2y_3 \ge 500 3x_1 + 2x_2 \le 180 \qquad y_1, y_2, y_3 \ge 0 x_1, x_2 \ge 0
```

- The dual solutions are $y_1^* = 0, y_2^* = 150, y_3^* = 100$
- If we increase RHS value for the first constraint, the objective value won't change. However, if we increase one unit of the second RHS value, the objective values will increase by 150

Homework

- Exercises 7.1 & 7.2 (sensitivity analysis)
- (Optional) Read the following paper

Richard E. Wendell, (2004) Tolerance Sensitivity and Optimality Bounds in Linear

Programming. Management Science 50(6):797-803.

https://doi.org/10.1287/mnsc.1030.0221