Homework 1

Aleck Zhao

September 16, 2016

Section 0.1: Proofs

2. (a) Prove by cases or provide a counterexample: If n is any integer, then $n^2 = 4k + 1$ for some integer k.

Proof. This is a false statement. Let n=2m for $m\in\mathbb{Z}$. Then $n^2=4m^2\neq 4k+1$ for any $k\in\mathbb{Z}$.

3. (c) Prove by contradiction and prove the converse or provide a counterexample: If a and b are positive numbers and $a \le b$, then $\sqrt{a} \le \sqrt{b}$.

Proof. Assume the opposite, that $\sqrt{a} > \sqrt{b}$. Since square roots are non-negative, we may square both sides to get a > b, but we know $a \le b$, which is a contradiction. Thus $\sqrt{a} \le \sqrt{b}$, as desired.

For the converse, we aim to show that if $\sqrt{a} \leq \sqrt{b}$, then $a \leq b$. Since square roots are non-negative, square both sides to get $a \leq b$, as desired.

6. If p is a statement, let $\sim p$ denote the statement "not p," called the negation of p. Thus, $\sim p$ is true when p is false, and false when p is true. Show that if $\sim q \implies \sim p$, then $p \implies q$.

Proof. For two statements a and b we have $a \implies b$ is always a true statement except in the case where a is true and b is false. If $\sim q \implies \sim p$ is true then there are three distinct possibilities:

- 1. $\sim q$ is true and $\sim p$ is true.
- 2. $\sim q$ is false and $\sim p$ is true.
- 3. $\sim q$ is false and $\sim p$ is false.

We tackle these by cases.

Case 1: If $\sim q$ and $\sim p$ are both true, then q and p are both false, so $p \implies q$ is a true statement.

Case 2: If $\sim q$ is false and $\sim p$ is true, then q is true and p is false, so $p \implies q$ is a true statement.

Case 3: If $\sim q$ and $\sim p$ are both false, then q and p are both true, so $p \implies q$ is a true statement.

Thus $\sim q \implies \sim p$ implies that $p \implies q$, as desired.

Section 0.3: Mappings

5. (a) For $A \xrightarrow{\alpha} A$, show that $\alpha^2 = \alpha$ if and only if $\alpha(x) = x$ for all $x \in \alpha(A)$.

Proof. If $\alpha(x) = x$ for all $x \in \alpha(A)$, then $(\alpha \circ \alpha)(x) = x = \alpha(x)$, so $\alpha^2 = \alpha$, as desired.

For the other direction, if $\alpha^2 = \alpha$, then $(\alpha \circ \alpha)(x) = \alpha(\alpha(x)) = \alpha(x)$. Let $y = \alpha(x) \in \alpha(A)$, thus $\alpha(y) = y$ for all $y \in \alpha(A)$, as desired.

(b) If $A \xrightarrow{\alpha} A$ satisfies $\alpha^2 = \alpha$, show that α is surjective if and only if α is injective. Describe α in this case.

Proof. If α is surjective, then for all $a' \in A$, there exists $a \in A$ such that $\alpha(a) = a'$. We know that $\alpha(\alpha(a)) = \alpha(a)$ for all $a \in A$, so we can rewrite this as $\alpha(a') = a'$ for all $a' \in A$. Then if we have $\alpha(a') = \alpha(a^*)$, that means $a' = a^*$, so α is injective, as desired.

If α is injective, then whenever $\alpha(a') = \alpha(a^*)$, it must be true that $a' = a^*$. Assume that $\alpha''(A)$ the image of A under α is not all of A. Since not all elements are mapped to, there must exist some element $a \in A$ that is the image of more than a single element in A. This is a contradiction since we know α is injective, that distinct elements of A map to distinct elements of A. Thus $\alpha''(A)$ is in fact all of A. We know that $\alpha(\alpha(a)) = \alpha(a)$ for all $a \in A$. Let $y = \alpha(a) \in \alpha''(A)$, then we $\alpha(y) = y$. Since $\alpha''(A) = A$, it follows that α is surjective since for any $y \in A$, we know $\alpha(y) = y$, as desired.

In this case, we have $\alpha(a) = a$ for all $a \in A$.

(c) Let $A \xrightarrow{\beta} B \xrightarrow{\gamma} A$ satisfy $\gamma \beta = 1_A$. If $\alpha = \beta \gamma$, show that $\alpha^2 = \alpha$.

Proof. We have

$$\alpha^{2} = (\beta \gamma)(\beta \gamma) = \beta(\gamma \beta)\gamma$$
$$= \beta \circ 1_{A} \circ \gamma = \beta \gamma = \alpha,$$

as desired. \Box

8. Let $A \xrightarrow{\alpha} B \xrightarrow{\beta} A$ satisfy $\beta \alpha = 1_A$. If either α is surjective or β is injective, show that each of them is invertible and that each of them is the inverse of the other.

Proof. We wish to show that $\alpha\beta = 1_B$, which combined with the fact that $\beta\alpha = 1_A$ will show that α and β are inverses of each other.

If α is surjective, then for any $b \in B$ there exists $a \in A$ such that $\alpha(a) = b$. Since $\beta(\alpha(a)) = a$, that means $\alpha(\beta(\alpha(a))) = \alpha(a), \forall a \in A$ since α is well-defined. Then we let $\alpha(a) = b^* \in B$, so that $\alpha(\beta(b^*)) = b^*$. Because α is surjective, any value of b^* must have at least a single $a \in A$ such that $\alpha(a) = b^*$, thus $\alpha(\beta(b^*)) = b^*$ holds for all $b^* \in B$, so $\alpha\beta = 1_B$, as desired.

We know that $\beta(\alpha(a)) = a$ for all $a \in A$, which means that the image $\beta''(B)$ is actually all of A, so then β is surjective as well, and therefore bijective if β is also injective. It is a theorem that a bijective mapping always has an inverse, so denote β^{-1} to be the inverse of β . Then we have $\beta^{-1}(\beta(\alpha(a))) = (\beta^{-1} \circ \beta)(\alpha(a)) = \alpha(a) = \beta^{-1}(a)$ for all $a \in A$, thus $a = \beta^{-1}$, so $a\beta = 1_B$, as desired.

Section 0.4: Equivalences

1. In each case, decide whether the relation \equiv is an equivalence on A. If it is, describe the equivalence classes.

(e) $A = \mathbb{N}$; $a \equiv b$ means that b = ka for some integer k.

Solution. \equiv is not an equivalence because it is not symmetric:

$$a \equiv b \implies b = ka$$

but then $a = \frac{1}{k}b$, so $b \not\equiv a$, since $\frac{1}{k} \notin \mathbb{N}$.

(h) $A = \mathbb{R} \times \mathbb{R}$; $(x, y) \equiv (x_1, y_1)$ means that $x^2 + y^2 = x_1^2 + y_1^2$.

Solution. \equiv is an equivalence relation because it satisfies:

- 1. Reflexivity: $(x, y) \equiv (x, y)$ since $x^2 + y^2 = x^2 + y^2$.
- 2. Symmetry: $(x,y) \equiv (x_1,y_1)$ means $x^2 + y^2 = x_1^2 + y_1^2$, so then $(x_1,y_1) \equiv (x,y)$ since $x_1^2 + y_1^2 = x^2 + y^2$.
- 3. Transitivity: If $(x, y) \equiv (a, b)$, and $(a, b) \equiv (p, q)$, then $x^2 + y^2 = a^2 + b^2$ and $a^2 + b^2 = p^2 + q^2$, so then $x^2 + y^2 = p^2 + p^2$, so $(x, y) \equiv (p, q)$.

The equivalence classes are concentric circles around the origin.

3. (d) $A = \mathbb{R}^+ \times \mathbb{R}^+$; $(x, y) \equiv (x_1, y_1)$ means that $y/x = y_1/x_1$; $B = \{x \in \mathbb{R} \mid x > 0\}$. Show that \equiv is an equivalence on A and find a (well-defined) bijection $\sigma : A_{\equiv} \to B$.

Proof. \equiv is an equivalence relation because it satisfies:

- 1. Reflexivity: $(x, y) \equiv (x, y)$ since y/x = y/x.
- 2. Symmetry: $(x, y) \equiv (x_1, y_1)$ means $y/x = y_1/x^1$, so then $(x_1, y_1) \equiv (x, y)$ since $y_1/x_1 = y/x$.
- 3. Transitivity: If $(x, y) \equiv (a, b)$, and $(a, b) \equiv (p, q)$, then y/x = b/a and b/a = q/p, so then y/x = q/p so $(x, y) \equiv (p, q)$.

The equivalence classes are the lines y = kx for $k \in \mathbb{R}^+$, so σ can map these lines to the value k of their slope. This is well-defined and bijective because each line only gets mapped to a single value corresponding to its slope, and the slope uniquely determines the line. Specifically, $\sigma([x,y]) = y/x$ is the mapping.

6. Let \equiv and \sim be two equivalences on the same set A.

(a) If $a \equiv a_1$ implies that $a \sim a_1$, show that each \sim equivalence class is partitioned by the \equiv equivalence classes it contains.

Proof. Since \equiv equivalence classes already partition A, it suffices to prove that any equivalence class [a] under \equiv cannot be part of more than equivalence class under \sim . Let $[a]_{\equiv}$ represent an equivalence class generated by a under \equiv , and similarly for $[a]_{\sim}$.

If $[a]_{\equiv}$ only has a single element a, then it can only be part of a single equivalence class under \sim . Otherwise, consider two elements $x,y\in[a]_{\equiv}$. That means $x\equiv a\Longrightarrow x\sim a$, and $y\equiv a\Longrightarrow y\sim a$. That means $x\in[a]_{\sim}$ and $y\in[a]_{\sim}$, so any two elements in an equivalence class under \equiv are always in the same equivalence class under \sim . Thus any $[a]_{\equiv}$ is fully contained within $[a]_{\sim}$, so \equiv equivalence classes partition the \sim equivalence classes, as desired.

(b) Define \cong on A by writing $a \cong a_1$ if an only if both $a \equiv a_1$ and $a \sim a_1$. Show that \cong is an equivalence and describe the \cong equivalence classes in terms of the \equiv and \sim equivalence classes.

Proof. We show that \cong is an equivalence relation because it satisfies:

- 1. Reflexivity: $a \cong a$ because $a \equiv a$ and $a \sim a$ since \equiv and \sim are equivalence relations and therefore reflexive.
- 2. Symmetry: If $a \cong b$, that means $a \equiv b$ and $a \sim b$, so then since \equiv and \sim are equivalence relations and therefore symmetric, we have $b \equiv a$ and $b \sim a$, thus $b \cong a$.
- 3. Transitivity: If $a \cong b$ and $b \cong c$, that means $a \equiv b, a \sim b$, and $b \equiv c, b \sim c$, so since \equiv and \sim are equivalence relations and therefore transitive, we have $a \equiv c, a \sim b$, thus $a \cong c$.

A \cong equivalence class is the set of elements such that all elements in the set are equivalent under both \equiv and \sim .

 \equiv and \sim .

7. In each case, determine whether $\alpha: \mathbb{Q}^+ \to \mathbb{Q}$ is well defined.

(a)
$$\alpha\left(\frac{n}{m}\right) = n$$

Solution. This is not well defined since $\alpha(1/2) = 1$ and $\alpha(2/4) = 2$, but 1/2 = 2/4.

(b)
$$\alpha\left(\frac{n}{m}\right) = \frac{n-m}{n+m}$$

Solution. This is well defined. We wish to show that if n/m = a/b then $\alpha\left(\frac{n}{m}\right) = \frac{n-m}{n+m} = \frac{a-b}{a+b} = \alpha\left(\frac{a}{b}\right)$. Cross multiplying, this is equivalent to

$$(n-m)(a+b) = (n+m)(a-b)$$

$$an - am + bn - bm = an + am - bn - bm$$

$$2bn = 2am$$

$$\frac{n}{m} = \frac{a}{b},$$

which is true, as desired.

(c)
$$\alpha\left(\frac{n}{m}\right) = m + n$$

Solution. This is not well defined since $\alpha(1/2) = 1 + 2 = 3$ but $\alpha(2/4) = 2 + 4 = 6$.

(d)
$$\alpha\left(\frac{n}{m}\right) = \frac{5m+7n}{3n+m}$$

Solution. This is well defined. Similarly to part (b), we wish to show that if n/m = a/b, then $\alpha\left(\frac{n}{m}\right) = \frac{5m+7n}{3n+m} = \frac{5b+7a}{3a+b} = \alpha\left(\frac{a}{b}\right)$. Cross multiplying, this is equivalent to

$$(5m + 7n)(3a + b) = (5b + 7a)(3n + m)$$

$$15am + 5bm + 21an + 7bn = 15bn + 5bm + 21an + 7am$$

$$8am = 8bn$$

$$\frac{a}{b} = \frac{n}{m}$$

which is true, as desired.

9. For a mapping $\alpha: A \to B$, let \equiv denote the kernel equivalence of α and let $\varphi: A \to A_{\equiv}$ denote the natural mapping. Define $\sigma: A_{\equiv} \to B$ by $\sigma([a]) = \alpha(a)$ for all equivalence classes [a] in A_{\equiv} .

(a) Show that σ is well defined and injective, surjective if α is surjective.

Proof. σ is well defined if and only if $\sigma([a]) = \sigma([b])$ whenever [a] = [b]; this just means an element in the pre-image only gets mapped to a single unique element in the image.

If [a] = [b], then for any $x \in [a]$ we have $x \in [b]$ as well, so $x \equiv a$ and $x \equiv b$, which means $a \equiv b$. Thus, $\alpha(a) = \alpha(b)$ since \equiv is the kernel equivalence. Therefore $\sigma([a]) = \alpha(a) = \alpha(b) = \sigma([b])$, so σ is well defined, as desired.

 σ is injective if and only if [a] = [b] whenever $\sigma([a]) = \sigma([b])$. If $\sigma([a]) = \sigma([b])$, that means $\sigma([a]) = \alpha(a) = \alpha(b) = \sigma([b])$. Since \equiv is the kernel equivalence, that means $a \equiv b$. Given some $x \in [a] \implies x \equiv a$, that means $x \equiv b$, so $x \in [b]$, thus $[a] \subset [b]$ and similarly $[b] \subset [a]$, so in fact [a] = [b], thus σ is injective, as desired.

 σ is surjective if and only if for all $b \in B$, there exists an equivalence class $[a] \in A_{\equiv}$ such that $\sigma([a]) = b$. We have $\sigma([a]) = \alpha(a)$ for all $[a] \in A_{\equiv}$. If α is surjective, then for all $b \in B$, there exists an $a \in A$ such that $\alpha(a) = b$. Since φ is surjective, for any [a] there exists $a \in A$ such that $\varphi(a) = [a]$, so it follows that for any b, there exists an a and therefore an [a] such that $\sigma([a]) = b$, thus σ is surjective, as desired.

(b) Show that $\alpha = \sigma \varphi$, so that α is the composite of a surjective mapping followed by an injective mapping.

Proof. We wish to show that $\alpha(a) = \sigma(\varphi(a))$ for all $a \in A$. We have $\varphi(a) = [a]$ for all $a \in A$ by the natural mapping, then $\sigma([a]) = \alpha(a)$ so $\sigma(\varphi(a)) = \alpha(a)$, thus $\sigma \varphi = \alpha$, as desired.

(c) If $\alpha(A)$ is a finite set, show that the set A_{\equiv} of equivalence classes is also finite and that $|A_{\equiv}| = |\alpha(A)|$.

Proof. Suppose the image α "(A) has $k \in \mathbb{N}$ elements b_1, b_2, \dots, b_k that are all distinct. Assume there are infinitely many equivalence classes, $[a_i]$. Consider the equivalence class $[a_1]$. Then for any $a_1 \in [a_1]$, without loss of generality (WLOG) assume that $\alpha(a_1) = b_1$, where all elements in the equivalence class map to the same image by the definition of the equivalence class. Then without loss of generality assume that $\alpha(a_i) = b_i$ for $a_i \in [a_i]$, with $i = 1, 2, \dots, k$. All of these equivalence classes are disjoint, and actually equivalence classes since b_i are all distinct.

Next consider $a_{k+1} \in [a_{k+1}]$. We know that $\alpha(a_{k+1})$ must map to one of b_1, b_2, \dots, b_k , WLOG let $\alpha(a_{k+1}) = b_1$. But then $a_{k+1} \in [a_1]$ from earlier, but equivalence classes are disjoint, so this is a contradiction. By induction, any $[a_j]$ where j > k cannot exist disjoint from all $[a_i], i = 1, 2, \dots, k$, so A_{\equiv} is finite, as desired.

In fact, there are exactly as many equivalence classes as elements of α "(A) by the construction above, so $|A_{\equiv}| = |\alpha$ "(A)|, as desired.

(d) In each case, find $|A_{\equiv}|$ for the given mapping α .

(i) $A = U \times U$ with $U = \{1, 2, 3, 4, 6, 12\}$, $\alpha : A \to \mathbb{Q}$ defined by $\alpha(n, m) = n/m$.

Solution. The set A_{\equiv} is the set of distinct rational numbers we may form with any two elements in U. These are

$$\left\{1, 2, 3, 4, 6, 12, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{6}, \frac{1}{12}, \frac{3}{2}, \frac{4}{3}, \frac{2}{3}, \frac{3}{4}\right\}$$

so
$$|A_{\equiv}| = \boxed{15}$$
.

(ii) $A = \{n \in \mathbb{Z} \mid 1 \le n \le 99\}, \quad \alpha : A \to \mathbb{N} \text{ defined by } \alpha(n) = \text{the sum of the digits of } n.$

Solution. The equivalence classes are the distinct values of $\alpha(n)$. The minimum value of $\alpha(n)$ is 1, achieved at n=1 or n=10, and the maximum is 18, achieved when n=99. Since every value in between can be achieved (we won't show this explicitly), $|A_{\pm}| = 18$.

10. Let $A = \{ \alpha \mid \alpha : P \to Q \text{ is a mapping} \}$. Given $p \in P$, define \equiv on A by $\alpha \equiv \beta$ if $\alpha(p) = \beta(p)$.

(a) Show that \equiv is an equivalence on A.

Proof. \equiv is an equivalence relation because it satisfies:

- 1. Reflexivity: $\alpha \equiv \alpha$ because $\alpha(p) = \alpha(p)$.
- 2. Symmetry: If $\alpha \equiv \beta$, then $\alpha(p) = \beta(p)$ so $\beta(p) = \alpha(p)$ and thus $\beta \equiv \alpha$.
- 3. Transitivity: If $\alpha \equiv \beta$ and $\beta \equiv \gamma$, then $\alpha(p) = \beta(p)$ and $\beta(p) = \gamma(p)$, so then $\alpha(p) = \gamma(p)$ and thus $\alpha \equiv \gamma$.

(b) Find a mapping $\lambda: A \to Q$ such that \equiv is the kernel equivalence of λ .

Solution. Fix some $p^* \in P$, then let $\lambda(\alpha) = \alpha(p^*) \in Q$ for all $\alpha \in A$. If $\alpha_1 \equiv \alpha_2$, then $\alpha_1(p) = \alpha_2(p)$ for any $p \in P$, so $\lambda(\alpha_1) = \alpha_1(p^*) = \alpha_2(p^*) = \lambda(\alpha_2)$. Thus, \equiv is the kernel equivalence of λ as desired.

(c) If |Q| = n, how many equivalence classes does \equiv have?

Solution. There are at most n equivalence classes, one for each distinct element of Q. If α is not surjective, then there are fewer than n.