TD9: Transformation chimique - corrigé

Exercice 1 : ÉQUILIBRER UNE RÉACTION CHIMIQUE

1.
$$2 \text{ NH}_3 + \frac{5}{2} \text{O}_2 \longrightarrow 2 \text{ NO} + 3 \text{ H}_2 \text{O}$$

2.
$$4 \text{CO} + \text{Fe}_3 \text{O}_4 \longrightarrow 4 \text{CO}_2 + 3 \text{Fe}$$

3.
$$Cu_2S + 2 Cu_2O \longrightarrow 6 Cu + SO_2$$

4.
$$CH_4 + 2H_2O \longrightarrow CO_2 + 4H_2$$

5.
$$2 \text{ NaCl} + \text{H}_2 \text{SO}_4 \longrightarrow 2 \text{ HCl} + \text{Na}_2 \text{SO}_4$$

Exercice 2 : ÉQUILIBRER UNE AUTRE RÉACTION CHIMIQUE

1.
$$H_2SO_4 + 2H_2O \longrightarrow 2H_3O^+ + SO_4^{2-}$$

2.
$$Fe + 2 H_3 O^+ \longrightarrow Fe^{2+} + H_2 + 2 H_2 O$$

3.
$$Cu^{2+} + 2HO^{-} \longrightarrow Cu(OH)_{2}$$

4.
$$3 \operatorname{Ag}^+ + \operatorname{PO}_4^{3-} \longrightarrow \operatorname{Ag}_3 \operatorname{PO}_4$$

Exercice 3 : Constante d'équilibre

1.
$$K = \frac{p(\text{NH}_3)^2 p_0^2}{p(\text{N}_2)p(\text{H}_2)^3}$$

2.
$$K = \frac{p(C_2H_6)p_0^2}{p(H_2)^3}$$

3.
$$K = \frac{[Cu^{2+}]c_0}{[Ag^+]^2}$$

4.
$$K = \frac{p(\text{CO}_2)p_0^2}{p(\text{CH}_4)p(\text{O}_2)^2}$$

5.
$$K = \frac{[H_3O^+][HO^-]}{c_0^2}$$

Exercice 4 : La constante d'équilibre est-elle constante ?

La constante d'équilibre est donnée par : $K = \frac{p(\text{PCl}_5)p_0}{p(\text{Cl}_2)p(\text{PCl}_3)}$

Pour les 4 expériences, on trouve $K \simeq 4,5$. Et on vérifie donc que la constante d'équilibre est bien une *constante* indépendante de l'expérience considérée.

Exercice 5 : Détermination de l'équilibre

1. Tableau d'avancement :

	H_2	+	I_2	=	2HI
état initial	0.200		0.200		0.0
état final	$0.200 - \xi_f$		$0.200 - \xi_f$		$2\xi_f$

La constante d'équilibre s'écrit : $K = \frac{p_{HI}^2}{p_{H_2}p_{I_2}} = 49 \ .5$

D'après la relation des gaz parfaits, on a : $n_i = \frac{p_i V}{RT}$, la constante d'équilibre s'écrit donc :

$$K = \frac{n_{HI}^2}{n_{H_2}n_{I_2}} = \frac{4\xi_f^2}{(0,200 - \xi_f)^2} = 49,5.$$

On a une équation du second degré :

 $45.5\xi_f^2 - 19.8\xi_f + 1.98 = 0$, dont la résolution donne : $\xi_f = \frac{19.8 - \sqrt{\Delta}}{91} = 0.156$ mol (on garde la solution inférieure à 0,200 mol). D'où : $n(\text{HI}) = 2\xi = 0.312$ mol et $n(\text{H}_2) = n(\text{I}_2) = 0.200 - \xi_f = 0.044$ mol 2. À la fin de la réaction, il y a $n(N_2O_4)_f = 0.075 \times 5 = 0.375$ mol. On a donc le tableau d'avancement suivant :

	N_2O_4	=	$2NO_2$
état initial	0,625		0,0
état final	0,375		0,500

La constante d'équilibre est donnée par : $K=\frac{p(\mathrm{NO_2})^2}{p(\mathrm{N_2O_4})p_0}=\frac{n(\mathrm{NO_2})^2}{n(\mathrm{N_2O_4})}\frac{RT}{p_0V}\simeq 3,3.$

3. Tableau d'avancement :

	CO_2	+	H_2	=	CO	+	H_2O
état initial	1,00		1,00		0.0		0.0
état final	$1,00-\xi_f$		$1,00-\xi_f$		ξ_f		ξ_f

On calcule la constante d'équilibre :

$$K = \frac{p(\text{CO})p(\text{H}_2\text{O})}{p(\text{CO}_2)p(\text{H}_2)} = \frac{\xi_f^2}{(1,00 - \xi_f)^2}$$

Il est possible de résoudre l'équation du second degré, ou bien de procéder de la façon suivante :

$$K = \frac{\xi_f^2}{(1,00 - \xi_f)^2} \Leftrightarrow K(1,00 - \xi_f)^2 = \xi_f^2 \Leftrightarrow \sqrt{K}(1,00 - \xi_f) = \pm \xi_f$$

et donc on a : $\xi_f = \frac{1,00\sqrt{K}}{\sqrt{K}\pm 1}$. \sqrt{K} étant plus petit que 1 nous gardons la valeur positive de ξ_f

On obtient :
$$\xi_f = \frac{1,00\sqrt{K}}{\sqrt{K}+1} = 4,68 \times 10^{-1} \, \text{mol}$$

4. Le tableau d'avancement est :

	$2\mathrm{H_2O}$	=	$2\mathrm{H}_2$	+	O_2
état initial	2		0,0		0,0
état final	$2-2\xi_f$		$2\xi_f$		ξ_f

où la constante d'équilibre est $K = 6,00 \times 10^{-28}$.

La valeur de la constante d'équilibre nous permet de dire que la réaction est très limitée, nous pouvons considérer que l'eau ne se décomposera quasiment pas, soit : $2-2\xi_f\simeq 2$. On a donc :

$$K = \frac{p(\mathrm{H}_2)^2 p(\mathrm{O}_2)}{p(\mathrm{H}_2\mathrm{O})^2 p_0} = \frac{n(\mathrm{H}_2)^2 n(\mathrm{O}_2)}{n(\mathrm{H}_2\mathrm{O})^2} \frac{RT}{V p_0} = \frac{4\xi_f^3}{(2 - 2\xi_f)^2} \frac{RT}{V p_0} \simeq \frac{4\xi_f^3}{2^2} \frac{8.31 \times 773}{5 \times 10^{-3} \times 10^5}$$

Soit :
$$\xi_f = \left(\frac{5 \times 10^{-3} \times 2^2 K}{4 \times 8.31 \times 773}\right)^{1/3} = 3,60 \times 10^{-10} \,\text{mol}$$

Donc: $n(O_2) = 3,60 \times 10^{-10} \,\text{mol}$; $n(H_2) = 7,20 \times 10^{-10} \,\text{mol}$ et $n(H_2O) = 2,00 \,\text{mol}$

La résolution numérique de l'équation donne $\xi_f = 3,601\,197\,269\,939\,443\,6\times 10^{-10}\,\mathrm{mol}$ contre $\xi_f = 3,601\,197\,270\,804\,8\times 10^{-10}\,\mathrm{mol}$ lorsque l'on considère la réaction comme très limitée, ce qui montre que l'approximation faite est tout à fait justifiée.

Exercice 6: Fluoration du dioxyde d'uranium

1. Tableau d'avancement

	UO ₂ (s)	+	4 HF(g)	=	UF ₄ (s)	+	2 H ₂ O(g)
état initial	n_0		n_0		0,0		0,0
état final	$n_0 - \xi_f$		$n_0 - 4\xi_f$		ξ_f		$2\xi_f$

où ξ est l'avancement et ξ_f l'avancement à l'état final.

La constante d'équilibre s'écrit : $K = \frac{(p_{H_2O}^{eq})^2 p_0^2}{(p_{HF}^{eq})^4}$, avec p_i la pression partielle qui s'exprime comme : $p_i = \frac{n_i}{n_{tot}^g} p_0$ (car la pression totale est maintenue à p_0)

À l'équilibre on a : $n_{tot}^g = (n_0 - 4\xi_f) + 2\xi_f = n_0 - 2\xi_f$.

Soit
$$:p_{H_2O}^{eq} = \frac{2\xi_f}{n_0 - 2\xi_f} p_0$$
 et $p_{HF}^{eq} = \frac{n_0 - 4\xi_f}{n_0 - 2\xi_f} p_0$.

$$\text{La constante d'équilibre s'écrit alors}: K = \frac{(2\xi_f)^2(n_0 - 2\xi_f)^4}{(n_0 - 2\xi_f)^2(n_0 - 4\xi_f)^4} = \frac{(2\xi_f)^2(n_0 - 2\xi_f)^2}{(n_0 - 4\xi_f)^4} = 6.8 \times 10^4$$

La constante d'équilibre étant élevée, on peut supposer que la réaction est presque totale. Le fluorure d'hydrogène étant ici le réactif limitant, on peut approximer la valeur de ξ_f à 0,25 mol (on considère alors que HF est totalement consommé). De même, on peut supposer que la quantité de gaz total est d'environ $n_0/2$ car pour deux moles de HF consommées on a une mole de H_2O créée.

On a alors:

$$\frac{(2\xi_f)^2(n_0 - 2\xi_f)^2}{(n_0 - 4\xi_f)^4} \simeq \frac{(2 \times 0.25)^2(0.50)^2}{(n_0 - 4\xi_f)^4} \simeq 6.8 \times 10^4 \Leftrightarrow (n_0 - 4\xi_f)^4 = \frac{6.8 \times 10^4}{(0.50)^4}.$$

Soit $\xi_f \simeq 0.242$ mol.

On en déduit les quantités de matières finales :

$$n(\text{UO}_2) = n_0 - \xi_f = 0.76 \, \text{mol}; n(\text{HF}) \simeq 0.03 \, \text{mol}; n(\text{UF}_4) \simeq 0.24 \, \text{mol}; n(\text{H}_2\text{O}) \simeq 0.48 \, \text{mol}$$

2. La différence est qu'ici, le réactif limitant n'est plus HF mais UO_2 . On suppose alors que $\xi_f \simeq 0.10\,\mathrm{mol}$ et on obtient : $n(UO_2) = 0.00\,\mathrm{mol}$; $n(HF) = 0.60\,\mathrm{mol}$; $n(UF_4) = 0.10\,\mathrm{mol}$ et $n(H_2O) = 0.20\,\mathrm{mol}$

Exercice 7 : Acide éthanoïque et ions fluorure

1. L'équilibre (1) étudié est une combinaison des bilans (2) et (3).

On a :
$$K_1 = \frac{[\text{CH}_3\text{COO}^-][\text{HF}]}{[\text{CH}_3\text{COOH}][\text{F}^-]} = \underbrace{\frac{[\text{CH}_3\text{COO}^-][\text{H}_3\text{O}^+]}{[\text{CH}_3\text{COOH}]}}_{K_2} \times \underbrace{\frac{[\text{HF}]}{[\text{H}_3\text{O}^+][\text{F}^-]}}_{1/K_3} = \frac{K_2}{K_3} = 10^{-1.6}$$

2. Tableau d'avancement :

	CH_3COOH	+	F^-	=	CH_3COO^-	+	\overline{HF}
état initial	c_1V		c_2V		0		0
état final	$c_1V - \xi_f$		$c_2V - \xi_f$		ξ_f		ξ_f

On exprime la constante d'équilibre K_1 :

$$K_1 = \frac{[CH_3COO^-][HF]}{[CH_3COOH][F^-]} = \frac{(\xi_f/V)^2}{(c_1 - \xi_f/V)(c_2 - \xi_f/V)}$$

En isolant ξ_f/V , on a une équation du second degré dont on garde la solution positive et on trouve : $\xi/V=9.58\times 10^{-3}\,\mathrm{mol}\,\mathrm{L}^{-1}$

D'où : $[CH_3COO^-] = [HF] \simeq 9.6 \times 10^{-3} \text{ mol L}^{-1}$; $[CH_3COOH] \simeq 9.0 \times 10^{-2} \text{ mol L}^{-1}$ et $[F^-] = 4.0 \times 10^{-2} \text{ mol L}^{-1}$

Exercice 8 : LE BÉTON

1. On établit le tableau d'avancement en considérant l'excès d'hydroxyde de calcium.

et la constante d'équilibre s'écrit : $K_3 = [\operatorname{Ca}^{2+}][\operatorname{HO}^-]^2 = \frac{\xi_f}{V} \times \left(\frac{2\xi_f}{V}\right)^2 = 4\left(\frac{\xi_f}{V}\right)^3$

On en déduit la valeur de l'avancement volumique final : $\xi_f/V = 1.2 \times 10^{-2} \, \text{mol} \, \text{L}^{-1}$. D'où : $[\text{Ca}^{2+}] = 1.2 \times 10^{-2} \, \text{mol} \, \text{L}^{-1}$ et $[\text{HO}^-] = 2.4 \times 10^{-2} \, \text{mol} \, \text{L}^{-1}$

Dans certains cas, la pollution urbaine liée à l'humidité entraîne la dissolution du dioxyde de carbone atmosphérique dans l'eau à l'intérieur du béton (sous forme H_2CO_3), provoquant la carbonatation du béton (formation de carbonate de calcium $CaCO_{3(s)}$ par réaction de l'hydroxyde de calcium $Ca(OH)_{2(s)}$ avec la forme H_2CO_3).

2. L'équation de carbonatation du béton est : $Ca(OH)_{2(s)} + H_2CO_{3(aq)} \rightleftharpoons CaCO_{3(s)} + 2H_2O$

On a donc
$$(5) = (4) + (7) + (8) - (6) - 2 \times (9)$$
, d'où : $K_5 = \frac{K_4 K_7 K_8}{K_6 (K_9)^2} = 10^{14,5}$