

Young Cho
Department of Electrical Engineering
University of Southern California

Address Distribution

Route Aggregation

Longest Prefix Match

- Allow more specific entries to supersede more general ones
 - 128.42.8/24
 - Route this traffic to Italy
 - 128.42/16
 - Route this traffic to Houston
 - Except for addresses that match a route with a longer prefix (i.e., 128.42.8/24)
- Allows significantly more route aggregation
- Simplifies things if companies move (physically or to another ISP) their block of IP addresses

Longest Prefix Match

- Software Methods
 - Hashing
 - Predictive
 - Mostly not used
 - May make a come back for IPv6
- Ternary CAM
 - Use "don't care" for bits outside the prefix
 - All matching prefixes will yield a hit
 - Pick the one with the longest prefix
- Simple Improvement
 - Sort CAM entries based on decreasing prefix length (use lowest matching entry)
- Also does not scale for larger tables

IP Routers

- IP routers determine next hop using LPM
 - Given a destination IP address, what is the IP address of the router to which the datagram should be forwarded next?
- Why do they need the next hop IP address?
 - Destination IP address remains unchanged in the datagram
 - Actually need the next hop Ethernet address

Review

- Ethernet address
 - Unique identifier for a piece of hardware
- IP address
 - Unique identifier for a system performing a function
- Address Resolution Protocol

Address Resolution Protocol

- Find link layer using network layer
 - i.e., what is the Ethernet address for a given IP address?
- Every IP hosts/routers has an ARP table
 - Map IP to Ethernet addresses on their LAN
 - May be incomplete
 - Can include both static and dynamic entries

Static ARP Entries

- Example
 - IP address 74.23.121.45 has Ethernet address 00:E0:81:A4:23:EF
- Must be managed by the sysadmin
 - Actively managing IP to Ethernet address mappings for all nodes in a LAN would be difficult
 - What if that NIC fails and is replaced?
 - What if that system's IP address is changed?

Dynamic ARP Entries

- Systems "discover" IP Ethernet address mappings, as needed
- Each entry has an IP address, an Ethernet address, and a timeout (typically around 20 minutes)
- ARP packets are broadcast on the LAN to discover mappings
 - ARP packets are encapsulated in Ethernet frames

ARP Request

Destination MAC Address (ff:ff:ff:ff:ff)				
Destination MAC Address	Source MAC Address			
Source MAC Address				
Type (0x0806)	HW Type (Ethernet: 0x0001)			
Protocol Type (IP: 0x0800)	HW AddrLen (6) Prot AddrLen (4			
Opcode (Request: 1)	Source HW Address			
Source HW Address				
Source IP Address				
Destination HW Address				
Destination HW Address	Destination IP Address			
Destination IP Address	Padding			
Ethernet CRC				

Sending a Packet from a Host

- Host setup
 - IP address
 - Subnet what IP addresses are on the same LAN
 - Gateway where to send traffic outside the LAN
- Destination on LAN
 - Create ARP request for destination IP
 - Broadcast to everyone on the LAN
 - Destination should reply with its MAC address
- Destination not on LAN
 - Create ARP request for gateway IP
 - Broadcast to everyone on the LAN
 - Gateway should reply with its MAC address

Learning MAC Addresses

- Hosts learn IP to Ethernet address map
 - ARP responses are stored in ARP tables
 - ARP requests are stored in ARP tables (whether the host is the target or not!)
- ARP entries time out
 - Allow machines to change IP and/or MAC addresses transparently
 - Eliminate stale entries (machines turn off, move, crash, etc.)

Forwarding a Packet in a Router

- Lookup dest IP address in forwarding table
 - Yields a next hop port and IP address
 - If not found, drop packet
- Lookup packet DA in forwarding table.
 - If known, forward to correct port.
 - If not found (in particular: no default router), drop packet
- Decrement TTL, update heade Checksum.
- Forward packet to outgoing interface
- Transmit packet onto link

Forwarding Decision

- I. Determine the network prefix of the destination
- 2. Use own address and subnet mask if on the same network
- 3. If found, immediate destination = final destination
- 4. Else, use routing table to find immediate destination
- 5. Use ARP to find datalink (MAC) address
- 6. Send packet over to datalink immediate destination

Routing Table

e.g. 128.9.16.14 => Port 2

Prefix	Next-hop	Port
65/8	128.17.16.1	3
128.9/16	128.17.14.1	2
128.9.16/20	128.17.14.1	2
128.9.19/24	128.17.10.1	7
128.9.25/24	128.17.14.1	2
128.9.176/20	128.17.20.1	1
142.12/19	128.17.16.1	3

Forwarding/routing table

Internet Control Message Protocol

- ICMP is a helper protocol for IP
 - Error reporting
 - Simple queries
 - Encapsulated as IP datagrams
- Header
 - Type (1 byte): type of ICMP message
 - Code (1 byte): subtype of ICMP message
 - Checksum (2 bytes): checksum is calculated over entire ICMP message
- If there is no additional data, 4 bytes are set to zero.
 - Each ICMP messages is at least 8 bytes long

ICMP Query message

ICMP query:

- Request sent by host to a router or host
- Reply sent back to querying host

Example of a Query: Echo Request and Reply

- Ping's are handled directly by the kernel
- Each Ping is translated into an ICMP Echo Request
- The Ping'ed host responds with an ICMP Echo Reply

ICMP Error message

- ICMP error messages report error conditions
 - ICMP error messages include the complete IP header and the first 8 bytes of the payload (typically: UDP, TCP)
- Typically sent when a datagram is discarded
- Error is often passed from ICMP to the apps

Frequent ICMP Error message

Type	Code	Description	
3	0–15	Destination unreachable	Notification that an IP datagram could not be forwarded and was dropped. The code field contains an explanation.
5	0–3	Redirect	Informs about an alternative route for the datagram and should result in a routing table update. The code field explains the reason for the route change.
11	0, 1	Time exceeded	Sent when the TTL field has reached zero (Code 0) or when there is a timeout for the reassembly of segments (Code 1)
12	0, 1	Parameter problem	Sent when the IP header is invalid (Code 0) or when an IP header option is missing (Code 1)

Can HTTP be Faster?

User-perceived latency

\$BROWSER

HTTP/1.1

TLS 1.2

TCP

IP

Physical Network

google.com

QUIC Features

- 0-RTT connection handshake
- 0-RTT encryption handshake
- Connections survive IP address change
- Enhanced packet loss recovery
- Always encrypted
- Mostly fixes head of line blocking
- FEC (Forward Error Correction) data recovery

HTTP/2 Features in QUIC

- Multiplexed streams
- Sharing connection across domains
- HPACK header compression
- Stream prioritization
- Flow Control
- Serverinitiated streams

QUIC

 Congestion control, encryption, and some HTTP/2 move to QUIC

Streams

- One stream per request
- Stream are broken up into frames
- Stream I crypto handshake
- Stream 3 is for headers to serialize headers (HPACK)

Multiplexed Streams

- HTTP/I.I
 - 4-8 outstanding requests on 4-8 connections
 - Resource intensive on the server
- HTTP/2 and QUIC
 - One connection, many concurrent requests
 - Normally limited to 100

Establishing a QUIC Connection

- HTTP response header
 - Alternate-Protocol: 443:quic
- Client establishes QUIC connection in the background
- Client's can cache if server supports QUIC

TCP+TLS vs. QUIC

Initial Connection

TCP+TLS vs. QUIC

Reconnection

QUIC Success Rate

- QUIC connection success rate
 - 92% works
 - 7% doesn't work
 - 1% is rate limited
- Google disables QUIC to specific ASNs

QUIC Performance

- 5% latency reduction on average
- 30% reduction in rebuffers (video pauses) on YouTube
- I second faster at the 99th percentile for Google web search
- Helps more for higher latency networks

Protocol Usage on the Internet

QUIC Support

- Google QUIC
 - Chrome (Desktop/Mobiles)
- IETF QUIC
 - Chrome Canary
 - Firefox Nightly
 - Safari 14
- Early Trials
 - https://quic.nginx.org
 - https://ietf.akaquic.com

QUIC Lineage

Differences

- HTTP/I and HTTP/2 on TCP
 - Until Now
 - TLS used for Security
 - Share a Single TCP Connection (HTTP/2)
- HTTP/3 on UDP
 - Debut 2020
 - QUIC to Replace TCP+TLS
 - Low Latency (Reduced Overhead)
 - Higher Throughput (Multiple Connections)

Thoughts on QUIC

- Challenges
 - UDP blocking by Service Providers
 - Complexity Associated with Multiple Threadedness/Connections/Streams
 - Higher CPU Utilization
- Possible Solutions
 - OS Bypassing Drivers
 - Hardware Offload Engines
- Why Not Replace Other TCP packets
 - Likely will follow after HTTP/3
 - What would it take?