توازن جسم صلب خاضع لثلاث قوى غير متوازية جنع مشترك علم الفناساء

I - توازن جسم صلب خاضع لثلاث قوى غير متوازية:

1- تجرية

على سبورة خاصة لدراسة السكونيات نربط صفيحة S ذات كتلة مهملة بثلاثة خيوط 1 و 2 و 3 غير مدودة. لقياس شدة القوة المطبقة من

طرف كل خيط نشد طرفه الآخر بدينامومتر، ونحقق توازن الصفيحة S.

2- نتائج التجربة

اعتمادا على نتائج التجربة نلاحظ أن:

- خطوط تأثير القوى الثلاث توجد في نفس المستوى، نقول إنها مستوائية.
 - خطوط تأثير القوى الثلاث تتقاطع في نفس النقطة ، نقول إنها متلاقية.

لتمثيل القوى المطبقة على الصفيحة ومجموع متجهاتها نعتمد سلما مناسبا، ونأخذ بعين الاعتبار مميزات كل قوة.

نمثل المجموع المتجهي لمتجهات القوى $\overrightarrow{F_1}$ و $\overrightarrow{F_2}$ و ميث يكون أصل

المتجهة $\overrightarrow{F_1}$ هو نقطة ما من المستوى الذي يضم خطوط التأثير ،

ومن نهاية $\overrightarrow{F_1}$ نرسم $\overrightarrow{F_2}$ ثم من نهاية $\overrightarrow{F_2}$ نرسم $\overrightarrow{F_1}$ فنحصل على الخط المضلعي، تسمى هذه الطريقة الطريقة الهندسية أو المبيانية.

- الخط المضلعي المحصل عليه مغلق، ويعبر عنه رياضيا بالعلاقة المتجهية:

$$\overrightarrow{F_1} + \overrightarrow{F_2} + \overrightarrow{F_3} = \overrightarrow{0}$$

3- شرطا التوازن

عندما يكون جسم صلب في توازن و هو خاضع لثلاث قوى غير متوازية، فإن:

. $\overrightarrow{F_1} + \overrightarrow{F_2} + \overrightarrow{F_3} = \overrightarrow{0}$ المجموع المتجهي لهذه القوى منعدم:

أى أن الخط المضلعي للقوى الثلاث مغلق، وهذا شرط أول لازم لسكون G مركز قصور الجسم.

- خطوط تأثير القوى الثلاث مستوائية ومتلاقية، وهذا شرط ثان لازم لغياب الدوران في حالة تحقيق الشرط الأول.

٨ ملحوظة:

هذان الشرطان لازمان لتوازن جسم صلب تحت تأثير ثلاث قوى لكنهماغير كافيين.

4- تطبيق

نضع جسما ذا كتلة m=1 على مستوى مائل بزاوية $\alpha=30$ بالنسبة للمستوى الأفقي دون احتكاك. نحقق التوازن بواسطة ربط نابض بالجسم بحيث يكون محور النابض موازي للمستوى المائل.

نريد أن نجد مميزتي تأثيري النابض والمستوى المائل على الجسم بطريقتين.

- * المجموعة المدروسة: الجسم (S):
 - * جرد القوى:
 - وزن الجسم. \overrightarrow{P}
 - تأثیر النابض. \overrightarrow{T}
- تأثير المستوى المائل على (S).
 - * (S) في حالة توازن:
- الخط المضلعي للقوى الثلاث مغلق.
 - خطوط التأثير متلاقية ومستوائية.
- $2N \longrightarrow 1cm$: نختار سلما مناسبا للتمثيل
 - P = m.g = 10N أي: طولها 5cm
- من الخط المضلعي نستنتج المتجهتين المتجهتين \overrightarrow{T} و \overrightarrow{R} .
 - R = 9N و T = 4.8N
 - ب) الطريقة التحليلية:

$$\vec{R} \begin{cases} R_x = 0 \\ R_y = R \end{cases} \quad \vec{T} \begin{cases} T_x = T \\ T_y = 0 \end{cases} \quad \vec{P} \begin{cases} P_x = -mg \sin \alpha \\ P_y = -mg \cos \alpha \end{cases}$$

$$\begin{cases} R_x + T_x + P_x = 0 \\ R_y + T_y + P_y = 0 \end{cases}$$

بالاسقاط على المحور Ox و Oy نجد:

 $T = m.g.sin\alpha = 5N$ وبالتالي:

 $R = m.g.\cos\alpha = 8.7N$

نجر جسما صلبا (S) من خشب كتلته m = 300 موضوعا فوق حامل خشبي،

مستو وأفقى، بواسطة دينامومتر.

نلاحظ أن الجسم يبقى في توازن مادامت شدة القوة المطبقة عليه من طرف الدينامومتر لا تتعدى قيمة قصوية Fm.

2- نتائج:

5,2	5,1	5,0	3,0	2,0	F(N)
حركة		توازن			الحالة الميكانيكية

α