

(19) RU (11) 2 161 637 (13) C2

(51) MПK⁷ C 09 K 5/04

РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

- (21), (22) Заявка: 99104064/04, 26.02.1999
- (24) Дата начала действия патента: 26.02.1999
- (46) Дата публикации: 10.01.2001
- (56) Ссылки: US 5792383 A, 11.08.1998. RU 2013431 C1, 15.06.1990. RU 2098445 C1, 10.12.1997. EP 0784090 A1, 16.07.1997. WO 91/09921 A1, 11.07.1991. WO 93/24587 A1, 09.12.1993. WO 95/33801 A1, 14.12.1995.
- (98) Адрес для переписки: 125299, Москва, ул. Клары Цеткин, д.5, кв.129, Беляеву А.Ю.

- (71) Заявитель: Беляев Андрей Юрьевич
- (72) Изобретатель: Андрюшин В.М., Беляев А.Ю., Зотиков В.С., Науменко С.Н.
- (73) Патентообладатель: Беляев Андрей Юрьевич

(54) КОМПОЗИЦИЯ ХЛАДАГЕНТА (ВАРИАНТЫ)

(57)

Предложена композиция хладагента, содержащая хладагент поверхностно-активный агент. В качестве поверхностно-активного агента композиция производное изобутана галогенсодержащими органическими заместителями общей формулы Hal C $[C(R_1)_n(R_2)_m(OR_3)_p]_2$ СF $(R_1)_i(OR_3)_q$, где Hal = F, Cl, Br, I, H; R_1 = - OCH₂(CF₂CF₂)_kH, R_2 -OCH2(CF2CF2)kH, -OC _kH_{2k+1}; -OC kH2k+1 O(CH₂)_nC_kF_{2k+1}; -CH (CF CF2)kH,

 $-C_kH_{2k+1}$, $-(CH_2)_nC_kF_{2k+1}$; n=0-3; m=0-3; l=0-2; q=0-2; k=1-8, p=0-3, или нонаэфир метантрикарбоновой кислоты несимметричной структуры общей формулы: Hal C [C ($R'_1R'_2R'_3$)][C ($R'_1R'_2R'_3$)][C ($R'_1R'_2R'_3$)]], где Hal = F, Cl, Br, I, H; $R'_1=R'_2=R'_3$ -OC $_nH_{2n+1}$, OCH $_2$ (CF $_2$ CF $_2$) $_nH$, -O(CH $_2$) $_nC_nF_{2n+1}$, n=1-3

8, при условии, что хотя бы один R' отличается от остальных, или производное галоидированных эфиров фторолефинов и спиртов общей формулы: $R_fC(H_{2-n}Hal_k)OR$ ", где $R_f = (C_m H_{2m-p} Hal_p) H$, где $R^* = (CH_2)_i H$, $C(CH_3)_kH_{3-k}$; Hal = F, Cl; n = 2; m = 1 - 3; p = 1 - 2m; I = 1 - 4; k = 2, или смесь этих соединений в эффективном количестве. В качестве хладагента композиция содержит по меньшей мере одно соединение, выбранное из группы, включающей дихлордифторметан, 1,1,1,2-тетрафторэтан, монохлордифторметан, дихлормонофторметан, 1-хлор -1,1-дифторэтан, 1,1-дифторэтан, 1,1,1,2-тетрафторхлорэтан, пентафторэтан, трифторметан, октафторциклобутан, октафторпропан, пропан, изобутан или их смесь. Технический результат - уменьшение энергопотребления холодильного агрегата. повышение износостойкости поршневой пары холодильного агрегата и повышение эффективности в работе компрессора. 4 с. и 20 з.п. ф-лы, 4 табл.

v

တ

ത

w

RU 2161637

C N

(19) RU (11) 2 161 637 (13) C2

(51) Int. Cl. 7 C 09 K 5/04

RUSSIAN AGENCY FOR PATENTS AND TRADEMARKS

(12) ABSTRACT OF INVENTION

- (21), (22) Application: 99104064/04, 26.02.1999
- (24) Effective date for property rights: 26.02.1999
- (46) Date of publication: 10.01.2001
- (98) Mail address: 125299, Moskva, ul. Klary Tsetkin, d.5, kv.129, Beljaevu A.Ju.
- (71) Applicant: Beljaev Andrej Jur'evich
- (72) Inventor: Andrjushin V.M., Beljaev A.Ju., Zotikov V.S., Naumenko S.N.

2

9

(73) Proprietor: Beljaev Andrej Jur'evich

(54) COOLANT COMPOSITION (VARIANTS)

(57) Abstract:

$$\begin{aligned} &\text{Hax} &= \text{F,cl,} &\text{Er,J,H,R}_1 &= \\ &-\text{OCH}_2(\text{CF}_2\text{CF}_2)_k^{\text{H}}, &-\text{OC}_k^{\text{H}}_{2k+1}, &\text{R}_2 &= -\text{OCH}_2(\text{CF}_2\text{CF}_2)_k^{\text{H}}, \\ &-\text{OC}_k^{\text{H}}_{2k+1}, &-\text{O(CH}_2)_n^{\text{C}}_{k}^{\text{F}}_{2k+1}, &\text{R}_3 &= -\text{CH}_2(\text{CF}_2\text{CF}_2)_k^{\text{H}}, \\ &-\text{C}_k^{\text{H}}_{2k+1}, &-\text{(CH}_2)_n^{\text{C}}_{k}^{\text{F}}_{2k+1}, &\text{n} &= 0+3; &\text{n} &= 0+2; \\ &\text{Q} &= 0+2; &\text{k} &= 1+8; &\text{p} &= 0+3; \end{aligned}$$

or methane tricarboxylic acid nonaester of unsymmetrical structure of general formula: Hall crock_1 R_2 R_3 > 11 cc(R_1 R_3 R

defined above, or derivative of halogenated ethers of fluorolefins and alcohols of general formula:

R₁C(H_{2-n}HaI_k)OR, where in R₁ = (C_mH_{2m-p}HaI_p)H,

where in R = (CH₂)₁H,C(CH₃)_kH_{3-k}, HaI = F,CI,

n = Z; m = 1+3; p = 1+2; I = 1+4; k = 2

or mixture of said compounds in effective amount. Coolant includes at least one compound selected from group consisting of dichlorodifluoromethane, 1,1,1,2-tetrafluoroethane, monochlorodifluoromethane,

dichloromonofluoromethane, 1-chlorine-1,1-difluoroethane, 1,1-difluoroethane, 1,1,1,2tetrafluorochloroethane, pentafluoroethane, trifluoromethane, octafluorocyclobutane, isobutane, propane, octafluoropropane, power lower mixture thereof. EFFECT: consumption or refrigerating plant, higher раіг of piston wear resistance refrigerating plant and greater efficiency of compressor operation. 25 cl, 31 ex, 4 tbl

Изобретение относится к составу хладагента, предназначенного для применения в холодильном оборудовании (бытовые и торговые холодильники, рефрижераторы кондиционеры и транспортных средств, промышленное холодильное оборудование и т.п.)

Конференция ООН по окружающей среде в Рио-де-Жанейро в июне 1992 г. выделила глобальное потепление как наиболее опасный источник экологического воздействия.

Поэтому одной из важнейших проблем сохранения экологии Земли является уменьшение потребления энергии (повышение КПД) различными агрегатами и машинами и, соответственно, уменьшение вредных выбросов от продуктов сгорания двигателей, тепловых электростанций и т.д.

В связи с этим стоит задача уменьшения потребления энергии холодильными агрегатами как уже находящимися в эксплуатации, так и серийно выпускаемыми и разрабатываемыми.

Большая часть холодильной техники (бытовые холодильники, торговое холодильное оборудование, промышленный холод и т.п.) напрямую связана с потреблением электроэнергии.

Другая часть холодильной техники (рефрижераторы и кондиционеры транспортных средств) может потреблять энергию непосредственно от двигателей внутреннего сгорания, работа которых связана с выбросом веществ, влияющих на глобальное потепление и, в первую очередь, - CO₂.

Холодильный агрегат содержит компрессор с поршневой парой, где происходит компрессия паров хладагента.

Уменьшить потребление энергии холодильным агрегатом можно разными путями, например путем повышения эффективности работы компрессора.

Известна композиция хладагента (патент ЕПВ N 784090, C 09 K 5/04), предложенная для замены небезопасного в отношении озона хладагента R-12 (CF₂Cl₂ дифтордихлорметан), содержащая собственно R-134a хладагент (CH₂FCF₃ 1,1,1,2-тетрафторэтан), также поливалентный спирт, например этиленгликоль, смазку (лабрикант), например толуол, и поверхностно-активный агент фосфорорганический эфир, выпускаемый под товарным знаком "NIKKOL".

Z

N

ത

റ

Однако влияние этой композиции хладагента на потребление энергии холодильным агрегатом авторами изобретения по патенту ЕПВ N 784090 не отмечено.

Наиболее близкой по технической сущности к предлагаемой является взятая нами за прототип известная композиция хладагента (патент US N 5792383, 252-068), которая содержит хладагент в виде галоидированного углеводорода, смазку, например нафтеновое или алкилбензойное масло, и поверхностно-активный агент, например фторорганический эфир (F-430, 431).

Эта композиция обеспечивает уменьшение поверхностного натяжения между маслом и хладагентом, что облегчает возврат масла в комплессор

Таким образом, эффективность работы холодильника в этом случае достигается за

счет удаления с поверхности теплообменников компрессорного масла, уносимого из компрессора с потоком циркулирующего в агрегате хладагента и осаждающегося на теплообменных поверхностях (испарителя, конденсатора).

Однако влияние этой композиции хладагента на потребление энергии холодильным агрегатом не известно.

Основная техническая задача, на решение которой направлено настоящее изобретение, заключается в создании композиции хладагента, позволяющей уменьшить энергопотребление холодильным агрегатом за счет обеспечения модификации внутренней конструкционных материалов поверхности компрессора путем образования высокомолекулярных фторорганических пленок, особенно на участках поверхности, отличающихся электронной неоднородностью, например, в зонах дефектной кристаллической структуры, концентраторов напряжений и т.п.

Другая задача состоит в расширении арсенала композиций хладагента, пригодных для использования в эксплуатируемой холодильной технике без конструкционных изменений.

Основным техническим результатом применения предлагаемой композиции является уменьшение энергопотребления холодильного агрегата.

Другим результатом является повышение износостойкости поршневой пары холодильного агрегата и повышение эффективности работы компрессора.

Для решения поставленных задач предложена композиция хладагента, собственно включающая хладагент и поверхностно-активный агент, которая согласно изобретению В качестве поверхностно-активного агента содержит по меньшей мере одно производное изобутана с галогенсодержащими органическими заместителями общей формулы

Hal C [C (R₁)_n)(R₂)_m(OR₃)_p]₂ CF(R₁)_i, (OR₃)_q, rge Hal = F, Cl, Br, I, H, R₁ = -OCH₂(CF₂CF₂)_kH, -OC_kH_{2k+1}, R₂ = -OCH₂(CF₂CF₂)_kH, -OC_kH_{2k+1}, -O(CH₂)_{nC_kF_{2k+1},}

 $R_3 = -CH_2(CF_2CF_2)_kH$, $-C_kH_{2k+1}$, $-(CH_2)_nC_kF_{2k+1}$,

n = 0 - 3; m = 0 - 3; p = 0 - 3; l = 0 -2; q = 0 - 2; k = 1 - 8,

или нонаэфир метантрикарбоновой кислоты несимметричной структуры общей формулы:

Hal C[C(R'₁R'₂R'₃)] [C(R'₁R'₂R'₃)][C(R'₁R'₂R'₃)], rge Hal = F, Cl, Br, I, H,

R'₁, R'₂, R'₃ являются радикалами,

выбранными из группы, включающей -OC_nH_{2n+1}, -OCH₂(CF₂CF₂)_nH, -O(CH₂)_n C_nF_{2n+1},

n = 1-8, при условии, что хотя бы один R' отличается от остальных,

или производное галоидированных эфиров фторолефинов и спиртов общей формулы: $R_tC(H_{2-n}Hal_k)OR$ ",

где $R_f = (C_m H_{2m-p} Hal_p) H_i$

R" = $(CH_2)_1H$, $C(CH_3)_kH_{3-k}$; Hal = F, Cl; n = 2; m = 1 - 3; p = 1 - 2m; l = 1 - 4; k = 2,

или смесь этих соединений в эффективном количестве.

റ

N

Композиция хладагента может быть приготовлена при следующем соотношении компонентов, мас.%:

Поверхностно-активный агент - 0,001 - 10,0 Хладагент - Остальное

Композиция хладагента может дополнительно содержать соединение общей формулы

H(CF₂)_{2n}CH₂OH,

где n = 1 - 8, в эффективном количестве. Композиция хладагента может быть приготовлена при следующем соотношении компонентов, мас.%:

Поверхностно-активный агент - 0,001 - 10,0 Дополнительный компонент - 0,001 - 10,0 Хладагент - Остальное

качестве собственно композиция содержит по меньшей мере одно выбранное из группы, соединение, включающей дихлордифторметан (CF₂ Cl₂ -R-12), 1,1,1,2-тетрафторэтан (СН₂FCF₃ -R-134a), монохлордифторметан (CCIF₂H -R-22), дихлормонофторметан (CCI₂FH R-21), 1-хлор - 1,1-дифторэтан (C₂CIF₂H₃ -R-142b), 1,1-дифторэтан (CF₂ HCH₃ -R-152a), 1,1,1,2-тетрафторхлорэтан (CF 3CFCIH - R-124), пентафторэтан (CHF 2CF3 - R-125), трифторметан (CF₃H -R-23), октафторциклобутан (C_4F_8 - R-318c), (CF₃CF₂CF₃ - R-218), октафторпропан R-290), изобутан пропан (C_3H_8) (2-метилпропан -(CH₃)₃CH -R-600a), или их смесь.

Композиция хладагента может дополнительно содержать антикоррозионную присадку и/или смазывающий агент (лабрикант).

Сущность изобретения заключается в том, что экспериментальным путем были подобраны вышеуказанные фторорганические соединения в качестве поверхностно-активного агента и их эффективное содержание в предлагаемой композиции хладагента, которые образуют на трущихся поверхностях компрессора скользкое и прочное покрытие.

Изменение характеристик поверхности конструкционных материалов, применяемых в составе холодильного оборудования, связано с образованием фторорганических высокомолекулярных пленок, особенно на участках поверхности, отличающихся электронной неоднородностью, например в зонах дефектной кристаллической структуры, концентраторов напряжений и т.п.

Технический результат, реализуемый настоящим изобретением, заключается в придании поверхностям поршневой пары компрессора антифрикционных свойств и повышенной износостойкости, что приводит к повышению эффективности работы холодильного агрегата и уменьшению энергопотребления.

Фторорганические производные изобутана общей формулы

Hal C [C $(R_1)_n(R_2)_m(OR_3)_p]_2$ CF $(R_1)_i$, $(OR_3)_q$, rge Hal = F, Cl, Br, I, H,

 $R_1 = -OCH_2(CF_2CF_2)_kH$, $-OC_kH_{2k+1}$,

 $R_2 = -OCH_2(CF_2CF_2)_kH$, $-OC_kH_{2k+1}$, $-O(CH_2)_{nC_kF_{2k+1}}$,

 $R_3 = -CH_2(CF_2CF_2)_kH$, $-C_kH_{2k+1}$, $-(CH_2)_nC_kF_{2k+1}$,

n = 0 - 3; m = 0 - 3; p = 0 - 3; l = 0 -2; q = 0 - 2; k = 1 - 8,

получают путем взаимодействия перфторбутилена с соответствующими спиртами-теломерами при 10 - 180°С в присутствии катализатора щелочного типа при соотношении реагентов 1:0,8 - 9:0,1 - 5 соответственно с последующим галоидированием по центральному атому углерода, выделением и очисткой целевого продукта.

Спирты - теломеры для осуществления этой реакции получают обычным методом путем теломеризации метанола с тетрафторэтиленом в автоклаве. Образующуюся при этом смесь спиртов - теломеров разделяют разгонкой.

Синтез нонаэфиров метантрикарбоновой кислоты несимметричной структуры общей формулы

Hal C [C (R'₁R'₂R'₃)][C (R'₁R'₂R'₃)][C (R'₁R'₂R'₃)][C

где Hal = F, Cl, Br, I, H, R'1, R'2, R'3 являются радикалами, выбранными из группы, включающей $-OC_nH_{2n+1}$, $-OCH_2(CF_2CF_2)_nH$,

2

O

-O(CH 2)n CnF2n+1,

20

n = 1 - 8, при условии, что хотя бы один R' отличается от остальных, осуществляют путем взаимодействия перфторизобутилена со смесью соответствующих спиртов различного строения при соотношении реагентов 1:9:(2 - 5) и 90 - 150°С с последующим выделением целевого продукта, причем количество и характер заместителей в молекуле нонаэфира определяются соотношением спиртов различного строения.

Приведенные примеры синтеза фторорганических поверхностно-активных соединений (агентов) никоим образом не ограничивают всех остальных возможных вариантов их получения, как прямых и промежуточных, так и косвенных, а иллюстрируют только некоторые из возможных путей их получения.

Сущность изобретения поясняется примерами конкретного выполнения.

Перечень использованных поверхностно-активных агентов на основе производных изобутана приведен в таблице 1.

В таблице 2 приведен перечень использованных поверхностно-активных агентов нонаэфиров метантрикарбоновой кислоты несимметричной структуры.

В таблице 3 приведен перечень использованных поверхностно - активных агентов на основе производных галоидированных эфиров фторолефинов и спиртов.

В качестве дополнительных компонентов (дополнительных поверхностно - активных агентов) на основе фторированных спиртов были взяты соединения, зашифрованные как M18 - M20, где M18 - это $H(CF_2)_{2n}CH_2OH$ при n = 1; M19 - то же при n = 5; M20 - то же при n = 8.

Вышеперечисленные в таблицах 1-3 химические соединения получали обычными приемами химического синтеза.

Приведенные в примерах конкретные композиции получали простым смешиванием исходных компонентов.

Пример 1 Были проведены испытания

-4

железнодорожной холодильно-нагревательной BP-1M использованием **установки** С композиции, содержащей 95,5% (65% R18 + + 5% 30% R142b R21) поверхностно-активного агента, шифр - М5. Температура окружающего воздуха 26°C. соответствовала **Установка** испытывалась на режиме охлаждения воздуха внутри грузового помещения вагона до +5°C.

При использовании композиции хладагента (65% R18 + 30% R142b + 5% R21) без поверхностно-активного агента потребляемая мощность установки ВР-1М соответствовала 23,4 кВт. При использовании композиции хладагента с добавкой М5 потребляемая мощность уменьшилась на соответствовала 21,0 кВт.

Примеры 2-31 приведены в таблице 4.

Как видно из этой таблицы, предлагаемые композиции позволяют существенно снизить расход электроэнергии без изменения конструкции холодильников.

Формула изобретения:

1. Композиция, содержащая хладагент и поверхностно-активный агент, отличающаяся тем, что в качестве поверхностно-активного агента она содержит по меньшей мере одно изобутана производное галогенсодержащими органическими заместителями общей формулы

 $HalC[C(R_1)_n(R_2)_m(OR_3)_p]_2CF(R_1)_l(OR_3)_q$

где Hal = F, Cl, Br, I, H;

 $R_1 = -OCH_2(CF_2CF_2)_kH$, $-OC_kH_{2k+1}$;

 R_2 -OCH2(CF2CF2)kH, -OC_kH_{2k+1}, -O(CH₂)_{nCk}F_{2k+1};

-CH₂(CF₂CF₂)_kH, R_3 -C_kH_{2k+1}, -(CH₂)_nC_kF_{2k+1};

n = 0 - 3;

m = 0 - 3:

1 = 0 - 2;

q = 0 - 2;

k = 1 - 8;

p = 0 - 3,

в эффективном количестве.

2. Композиция по п.1, отличающаяся тем. что она содержит следующее соотношение компонентов, мас.%:

Поверхностно-активный агент - 0,001 - 10,0 Хладагент - Остальное

3. Композиция по п.1, отличающаяся тем, что она дополнительно содержит соединение общей формулы

H(CF₂)_{2n}CH₂OH,

где n = 1 - 8,

в эффективном количестве,

4. Композиция по п.3, отличающаяся тем, что она содержит следующее соотношение компонентов, мас.%:

Поверхностно-активный агент - 0,001 - 10,0 Дополнительный компонент - 0,001 - 10,0 Хладагент - Остальное

5. Композиция по п.1, отличающаяся тем, что в качестве хладагента она содержит по меньшей мере одно соединение, выбранное из группы, включающей дихлордифторметан, 1,1,1,2-тетрафторэтан,

монохлордифторметан, дихлормонофторметан,

1-хлор-1,1-дифторэтан, 1,1-дифторэтан, 1,1,1,2-тетрафторхлорэтан, пентафторэтан, трифторметан, октафторциклобутан,

октафторпропан, пропан, изобутан или их смесь.

```
6. Композиция по п.5, отличающаяся тем,
что в качестве хладагента она содержит смесь
дихлормонофторметана,
```

монохлордифторметана и

1-хлор-1,1-дифторэтана при соотношении компонентов, мас.%:

Дихлормонофторметан - 0 - 6 Монохлордифторметан - 60 - 75

1-Хлор-1,1-дифторэтан - Остальное

7. Композиция, содержащая хладагент и поверхностно-активный агент, отличающаяся тем, что в качестве поверхностно-активного агента она содержит по меньшей мере одно соединение нонаэфира метантрикарбоновой кислоты несимметричной структуры общей формулы

HalC[C(R'1R'2R'3)]

[C(R' 1R'2R'3)][C(R'1R'2R'3)].

где Hal = F, Cl, Br, I, H,

R'₁, R'₂, R'₃ являются радикалами, выбранными из группы, включающей -OC nH2n+1, -OCH2(CF2CF2)nH, $-O(CH_2)_nC_nF_{2n+1}$, где n = 1 - 8, при

условии, что хотя бы один R' отличается от остальных.

в эффективном количестве.

8. Композиция по п.7, отличающаяся тем, 25 что она содержит следующее соотношение компонентов, мас.%:

Поверхностно-активный агент - 0,001 - 10,0 Хладагент - Остальное

9. Композиция по п.8, отличающаяся тем, что она дополнительно содержит соединение общей формулы

H(CF₂)_{2n}CH₂OH,

rде n = 1 - 8,

в эффективном количестве.

10. Композиция по п.9, отличающаяся тем. что она содержит следующее соотношение 35 компонентов, мас.%:

Поверхностно-активный агент - 0,001 - 10,0 Дополнительный компонент - 0,001 - 10,0 Хладагент - Остальное

11. Композиция по п.7, отличающаяся тем, что в качестве хладагента она содержит по меньшей мере одно соединение, выбранное из группы, включающей дихлордифторметан, 1,1,1,2-тетрафторэтан, монохлордифторметан,

дихлормонофторметан, 1-хлор-1,1-дифторэтан, 1,1-дифторэтан, 1,1,1,2-тетрафторхлорэтан, пентафторэтан, трифторметан, октафторциклобутан, октафторпропан, пропан, изобутан или их смесь.

12. Композиция по п.11, отличающаяся тем, что в качестве хладагента она содержит смесь дихлормонофторметана, монохлор дифторметана и 1-хлор-1,1-дифторэтана при следующем соотношении компонентов, мас.%:

Дихлормонофторметан - 0 - 6

Монохлордифторметан - 60 - 75

1-Хлор-1,1-дифторэтан - Остальное

13. Композиция, содержащая хладагент и поверхностно-активный агент, отличающаяся тем, что в качестве поверхностно-активного агента она содержит по меньшей мере одно производное галоидированных фторолефинов и спиртов общей формулы

R_fC(H_{2-n}Hal_k)OR",

где $R_f = (C_m H_{2m-p} Hal_p) H;$

 $R'' = (CH_2)_iH_i C(CH_3)_kH_{3-k};$

Hal = F, Cl;

n = 2;

55

тем, что она дополнительно содержит следующее на 1-8, в эффективном количестве. 14. Композиция по п. 13, отличающаяся тем, что она содержит следующее соотношение компонентов, мас.%: Поверхностно-активный агент - 0,001 - 10,0 хладагент - Остальное 15. Композиция по п.13, отличающаяся тем, что она дополнительно содержит соединение общей формулы $H(CF_2)_{2n}CH_2OH$, где $n = 1 - 8$, в эффективном количестве. 16. Композиция по п. 15, отличающаяся тем, что она содержит следующее соотношение компонентов, мас.%: Поверхностно-активный агент - 0,001 - 10,0 Дополнительный компонент - 0,001 - 10,0 хладагент - Остальное 17. Композиция по п.13, отличающаяся тем, что в качестве хладагента она содержит по меньшей мере одно соединение, выбранное из группы, включающей	5 10 15	р = 0 - 3, нонаэфира метантрикарбоновой кислоты несимметричной структуры общей формулы $HalC[C(R'_1R'_2R'_3)]$ [$C(R'_1R'_2R'_3)$][$C(R'_1R'_2R'_3)$], где $Hal = F$, Cl , Br , l , H , R'_1 , R'_2 , R'_3 являются радикалами, выбранными из группы, включающей $-OC_nH_{2n+1}$, $-OCH_2(CF_2CF_2)_nH$, $-O(CH_2)_nC_nF_{2n+1}$, где $n=1-8$, при условии, что хотя бы один R' отличается от остальных, и производного галоидированных эфиров фторлефинов и спиртов общей формулы $R_iC(H_{2\cdot n}Hal_k)OR''$, где $R_i = (C_mH_{2m-p}Hal_p)H$; $R'' = (CH_2)_iH$, $C(CH_3)_kH_{3\cdot k}$; $Hal = F$, Cl ; $n=2$; $m=1-3$; $p=1-2$; $l=1-4$; $l=$	
дихлордифторметан, 1,1,1,2-тетрафторэтан, монохлордифторметан, дихлормонофторметан, 1-хлор-1,1-дифторэтан, 1,1-дифторэтан, 1,1,2-тетрафторхлорэтан, пентафторэтан, трифторметан, октафтордиклобутан, октафторпропан, пропан, изобутан или их	25	соотношение компонентов, мас.%: Поверхностно-активный агент - 0,001 - 10,0 Хладагент - Остальное 21. Композиция по п.19, отличающаяся тем, что она дополнительно содержит соединение общей формулы H(CF ₂) _{2n} CH ₂ OH,	7 C 2
смесь. 18. Композиция по п.17, отличающаяся тем, что в качестве хладагента она содержит смесь дихлормонофторметана,	<i>30</i>	где n = 1 - 8, в эффективном количестве. 22. Композиция по п. 21, отличающаяся тем, что она содержит следующее	დ
монохлордифторметана и 1-хлор-1,1-дифторэтана при следующем соотношении компонентов, мас.%: Дихлормонофторметан - 0 - 6 Монохлордифторметан - 60 - 75 1-хлор-1,1-дифторэтан - Остальное 19. Композиция, содержащая хладагент и	35	соотношение компонентов, мас.%: Поверхностно-активный агент - 0,001 - 10,0 Дополнительный компонент - 0,001 - 10,0 Хладагент - Остальное 23. Композиция по п.19, отличающаяся тем, что в качестве хладагента она содержит по меньшей мере одно соединение,	, 6
поверхностно-активный агент, отличающаяся тем, что в качестве поверхностно-активного агента она содержит смесь производного изобутана с галогенсодержащими органическими заместителями общей	40	выбранное из группы, включающей дихлорфторметан, 1,1,1,2-тетрафторэтан, монохлордифторметан, дихлормонофторметан, 1,1-дифторэтан,	=
формулы $HalC[C(R_1)_n(R_2)_m(OR_3)_p]_2CF(R_1)_n(OR_3)_q$, где $Hal = F$, Cl , Br , l , H ; $R_1 = -OCH_2(CF_2CF_2)_kH$, $-OC_kH_{2k+1}$; $R_2 = -OCH_2(CF_2CF_2)_kH$, $-OC_kH_{2k+1}$,	45	1,1,1,2-тетрафторхлорэтан, пентафторэтан, трифторметан, октафторциклобутан, октафторпропан, пропан, изобутан или их смесь. 24. Композиция по п.23, отличающаяся тем, что в качестве хладагента она содержит	
$-O(CH_{2})_{n}C_{k}F_{2k+1};$ $R_{3} = -CH_{2}(CF_{2}CF_{2})_{k}H, -C_{k}H_{2k+1},$ $-(CH_{2})_{n}C_{k}F_{2k+1};$ $n = 0 - 3;$ $m = 0 - 3;$ $l = 0 - 2;$ $q = 0 - 2;$ $k = 1 - 8;$	50	смесь дихлормонофторметана, монохлордифторметана и	
k = 1 - 8;	55	5	

R □

1

C 2

Поверхн.		-							
Активный		R1	R2	R3	n	m	p	1	q
агент									
(шифр)									
M1	F	OCH ₂ (CF ₂	OCH ₂ (CF ₂	CH ₂ (CF ₂	1	1	1	1	1
		CF ₂) ₁ H	CF ₂) ₁ H	CF ₂) ₁ H					
M2	F	OCH ₂ (CF ₂	-	CH ₂ (CF ₂	0	0	3	2	0
		CF ₂) ₂ H		CF₂)₂H					į
M3	F	OC ₄ H ₉	OCH ₂ (CF ₂	C ₄ H ₉	2	1	0	0	2
•			CF ₂) ₄ H						
M4	F	OC ₆ H ₁₃	•	(CH ₂)C ₆ F ₁₃	1	0	2	2	0
M5	Н	OC ₆ H ₁₃	-	C ₆ H ₁₃	3	0	0	1	1
M6	Н	OCH ₂ (CF ₂	OC ₈ F ₁₇	CH ₂ (CF ₂	0	2	1	2	0
		CF ₂) ₈ H		CF ₂) ₈ H		•			
M7	·H	OC ₈ H ₁₇	O(CH ₂)C ₈ F ₁₇	CH ₂ (CF ₂	1	1	1	0	2
·				CF ₂) ₈ H					

				510
Поверхн.	Hal	R'1	R'2	R'3
Активный				
агент (шифр)				
M8	F	OC ₁ H ₃	OCH ₂ (CF ₂ CF ₂) ₁ H	O(CH ₂) ₁ C ₁ F ₃
			an an an	O(CH) C F
M9	F	OC ₄ H ₉	OCH ₂ (CF ₂ CF ₂) ₄ H	O(CH ₂) ₄ C ₄ F ₉
•				0/011 \ 0.5
M10	F	OC ₈ H ₁₇	OC ₈ H ₁₇	O(CH ₂) ₈ C ₈ F ₁₇
M11	F	OCH ₂ (CF ₂ CF ₂) ₄ H	OCH ₂ (CF ₂ CF ₂) ₄ H	O(CH ₂) ₄ C ₄ F ₉
M12	Н	OCH ₂ (CF ₂ CF ₂) ₈ H	OCH ₂ (CF ₂ CF ₂) ₈ H	O(CH ₂) ₈ C ₈ F ₁₇
			•	
M13	Н	OCH ₂ (CF ₂ CF ₂) ₄ H	O(CH ₂) ₄ C ₄ F ₉	O(CH ₂) ₄ C ₄ F ₉
M14	H	OCH ₂ (CF ₂ CF ₂) ₈ H	O(CH ₂) ₈ C ₈ F ₁₇	O(CH ₂) ₈ C ₈ F ₁₇

Таблица 3

Поверхн.	Hal	R"	n	m	р	k
Активный						
агент (шифр)						
M15	F	C(CH ₃) ₂ H	2	2	4	2
M16	Cl	(CH ₂)H	2	3	3	2
M17	Cl	C(CH ₃) ₂ H	2	3	6	2

R □

2

C 2

Таблица 4 Результаты сравнительных испытаний холодильников, заправленных композициями хладагента различного состава. (температура экружающей среды 18+20 °C)

Æ			Марка	Темпе	Температура			Уменьше-
при-	Марка	Композиция хладагента	масла	(осредне	(осредненная), °C	К-т	Расход эл.	
мсра	холо- дильника			Мороз.	Холод.	рабочего времени	Энергии, кВт•ч/сут.	Энергии, да электр. кВт•ч/сут. энергии, %
				камера	камера			
-		3	4	5	9	7	∞	6
2	Мир 101-2	R12	Минер.	-18,2	7,1	0,40	1,70	
		99,5R12 + 0,5%M1	ХФ 12-16	-18,3	6,2	0,38	1,52	9,01
3	Мир 101-2	R12	Минер.	-18,2	7,1	0,40	1,70	
	_	99,7R12 + 0,3%M2	ХФ 12-16	-18,4	6,5	0,36	1,56	8,2
4	ЗИЛ - 64	R12	Минер.	-18,3	5,8	0,47	1,33	
		99,7R12 + 0,3%M3	ХФ 12-16	-18,0	6,17	0,46	1,18	11,3
5	ЗИЛ - 64	65% R22 + 30% R142b + 5% R21	Минер.	-18,2	4,8	0,45	1,31	
		99,5%(65% R22 + 30% R142b + 5% R21) + 0,5%M4	ХФ 12-16	-18,1	5,1	0,45	1,18	6,6

RU ~ 161637 C2

RU ~161637 C2

(

Продолжение табл. 4 10,7 4,4 6,6 5,2 8,2 8,1 1,35 1,29 1,59 1,18 1,16 1,53 1,45 1,73 1,31 1,31 1,3 0,46 0,45 0,46 69,0 69,0 0,44 0,47 0,71 0,45 0,49 0,71 6,8 3,2 5,5 4,6 **4**,8 4,2 6,2 5,1 4,8 5,2 9 -17,5 -17,6 -18,6 -18,7 -18,4 -18,0-18,2 -18,7 -18,2-18,1 -18,1 -18,1 S Минер. ХФ 12-16 Минер. ХФ 12-16 XΦ 12-16 XΦ 12-16 XΦ 12-16 эфирное Минер. Поли-Минер. Минер. 4 99,5%(65% R22 + 15% R142b + 20% R134a) + 0,5%M6 99,5%(65% R22 + 30% R142b + 5% R21) + 0,5%M5 99,7%(70%R152a + 30%R600a) + 0,3%M7 65% R22 + 15% R142b + 20% R134a 65% R22 + 30% R142b + 5% R21 99,5%R134a + 0,5%M10 70%R152a + 30%R600a 99,9%R600a + 0,1%M8 99,9%R290 + 0,1%M9 R134a R600a R290 ᠬ Минск 16 3ИЛ - 64 3ИЛ-64 3ИЛ - 64 3ИЛ - 64 3ИЛ - 64 2

꼬

N

6163

C 2

00

9

7

10

6

]

RU 2161637 C2

Продолжение табл. 4 11,02 10,3 9,6 9,6 7,3 9,1 9 1,36 1,36 1,18 1,49 1,21 1,31 1,64 1,65 1,49 1,63 1,51 ∞ 0,52 0,49 0,47 0,49 0,72 99,0 0,59 0,55 0,41 5,3 4 8, 4,5 5,5 6,2 7,5 8,2 7,8 7,2 9,3 8,3 7,6 9 -18,5 -18,0 -18,3 -17,9 -18,7 -17,9 -17,6 -16,9 -16,7 -17,1 -17,7 -16, 9 Минер. ХФ 12-16 Минер. ХФ 12-16 XΦ 12-16 эфирное эфирное эфирное Минер. Поли-Поли-Поли-4 99,8%(65% R22 + 15% R134a + 20% R21) + 0,2%M12 99,7%(65% R22 + 15% R134a + 20% R21) + 0,3%M13 99,8%(65% R22 + 30% R142b + 5% R21) + 65% R22 + 30% R142b + 5% R21 65% R22 + 30% R142b + 5% R21 65% R22 + 30% R142b + 5% R21 99,7%R134a + 0,3%M14 99,5%R134a + 0,5%M16 99,7%R134a + 0,3%M15 0,2%M11 R134a R134a R134a Минск 16 Минск 16 Минск 16 ЗИЛ - 64 3NJI - 64 ЗИЛ - 64 2 12 13 14 15 16 17

RU ~161637 C2

RU 2161637 C2

18 33%RZ18+62%R124+ Минер. -17,2 6,8 0,53 1,49 18 3ИЛ - 64 33%RZ18+62%R124+ Минер. -17,2 6,8 0,53 1,49 19 3ИЛ - 64 99,8%(33%RZ18+62%R124)+ XO 12-16 -17,4 6,9 0,52 1,35 19 3ИЛ - 64 90%RZ2+10%RZ90) + 0,5%(M1+M18) XO 12-16 -20,2 3,8 0,46 1,41 20 3ИЛ - 64 90%RZ2+10%RZ90) + 0,5%(M1+M18) XO 12-16 -20,5 2,2 0,37 1,37 20 3ИЛ - 64 90,7%(90%RZ2+10%RZ90) + 0,3%(M6+M19) XO 12-16 -18,3 5,1 0,49 1,32 21 3ИЛ - 64 90,7%(90%RZ2+10%RZ90) + 0,3%(M6+M19) XO 12-16 -18,3 5,1 0,49 1,32 22 3ИЛ - 64 90,7%(90%RZ2+10%RZ90) + 0,3%(M6+M19) XO 12-16 -18,3 5,1 0,49 1,32 23 3ИЛ - 64 90,7%(30%RISZa + 30%R600a) + (30%R60a) XO 12-16 -18,3 5,8 0,47 1,20 24 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>11</th><th>Продолжение табл. 4</th><th>е табл. 4</th></t<>							11	Продолжение табл. 4	е табл. 4
3HJI - 64 33%RZ18+62%R134a+5%R124 (App. 10.20, Mintep. 17.4 (App. 10.20, Mintep. 17.4 (App.	1	2	3	4	5	9	7	8	6
3HJI - 64 90%R22+10%R290 Muhep. -20,2 3,8 0,46 1 3HJI - 64 99,1%(90%R22+10%R290) + 0,9%(M1+M18) XФ 12-16 -21,0 3,2 0,47 1 3HJI - 64 99,7%(90%R22+10%R290) + 0,3%(M6+M19) Muhep. -20,5 2,2 0,37 1 3HJI - 64 70%R152a + 30%R600a Muhep. -18,3 5,1 0,49 3HJI - 64 99,7%(70%R152a + 30%R600a) + XФ 12-16 -17,9 6,1 0,41 3HJI - 64 99,7%(70%R152a + 30%R600a) + XФ 12-16 -18,3 5,8 0,47 3HJI - 64 99,7%(70%R152a + 30%R600a) + XФ 12-16 -18,3 5,8 0,47 3HJI - 64 99,7%(70%R152a + 30%R600a) + XФ 12-16 -18,3 5,8 0,47 3HJI - 64 97,7%(R12 + 2,3%(M4+M20) XФ 12-16 -18,3 5,8 0,47 3HJI - 64 92,6%R12 + 8,4%(M20 + M1) XФ 12-16 -18,3 5,8 0,47	82	ЗИЛ - 64	33%R218+62%R134a+5%R124 99,8%(33%R218+62%R134a+5%R124) + 0.2%M17	Минер. ХФ 12-16	-17,2	6,9	0,53	1,49	9,3
3HJI - 64 90%R22+10%R290 99,7%(90%R22+10%R290) + 0,3%(M6+M19) Manhep. -20,5 -21,0 3,5 3,5 0,37 0,41 1 3HJI - 64 99,7%(70%R152a + 30%R600a) + 0,3%(M3+M20) Manhep. -18,3 -17,9 5,1 6,1 0,49 0,41 0,49 -17,9 0,41 0,41 3HJI - 64 812 Manhep. -18,3 -18,1 5,8 4,9 0,47 0,51 3HJI - 64 97,7%R12 + 2,3%(M4+M20) XФ 12-16 XФ 12-16 -18,3 -18,1 5,8 4,9 0,47 0,51 3HJI - 64 82,6%R12 + 8,4%(M20 +M1) XФ 12-16 XФ 12-16 -18,3 -18,1 5,8 4,9 0,47 0,51	61	ЗИЛ - 64	90%R22+10%R290 99,1%(90%R22+10%R290) + 0,9%(M1+M18)	Минер. ХФ 12-16	-20,2	3,8	0,46	1,41	8,5
3HJI - 64 70%R152a + 30%R600a Muhep. -18,3 5,1 0,49 3HJI - 64 99,7%(70%R152a + 30%R600a) + 0,3%(M3+M20) XФ 12-16 -17,9 6,1 0,41 3HJI - 64 R12 Muhep. -18,3 5,8 0,47 3HJI - 64 P7,7%R12 + 2,3%(M4+M20) XФ 12-16 -18,1 4,9 0,51 3HJI - 64 R12 Muhep. -18,3 5,8 0,47 3HJI - 64 P2,6%R12 + 8,4%(M20 + M1) XФ 12-16 -18,3 5,8 0,47	20	ЗИЛ - 64	90%R22+10%R290 99,7%(90%R22+10%R290) + 0,3%(M6+M19)	Минер. ХФ 12-16	-20,5	2,2	0,37	1,37	6,01
3MJI - 64 R12 MnHep. -18,3 5,8 0,47 3MJI - 64 97,7%R12 + 2,3%(M4+M20) XФ 12-16 -18,1 4,9 0,51 3MJI - 64 R12 MnHep. -18,3 5,8 0,47 3MJI - 64 92,6%R12 + 8,4%(M20 +M1) XФ 12-16 -18,2 5, 0,42	21	3КЛ - 64	70%R152a + 30%R600a 99,7%(70%R152a + 30%R600a) + 0,3%(M3+M20)	Минер. ХФ 12-16	-18,3	5,1	0,49	1,32	9,1
3IJJI - 64 R12 Anhep18,3 5,8 0,47 XФ 12-16 -18,2 5, 0,42	22	ЗИЛ - 64	R12 97,7%R12 + 2,3%(M4+M20)	Минер. ХФ 12-16	-18,3	5,8	0,47	1,33	7,6
	23		R12 92,6%R12 + 8,4%(M20 +M1)	Минер. ХФ 12-16	-18,3	5,8	0,47	1,19	10,5

RU 7.161637

C 5

RU 2161637 C2

4		1		T		·		1		7		Т	
ние табл.	6		7,5		8,8		9,3		7,6		8,3	9.3	
Продолжение табл. 4	8	1,33	1,23	1,37	1,25	1,29	1,17	1,57	1,45	1,45	1,33	1.44	1,32
	7	0,47	0,59	0,49	0,51	0,45	0,54	0,61	0,62	0,59	0,61	0.55	99,0
	9	5,8	7,6	5,8	5,2	4,2	5,5	8,2	8,8	2,2	3,2	4.2	4,5
	5	-18,3	-17,4	-18,2	-17,3	-18,4	-18,0	-17,2	-17,6	-19,6	-18,7	-19.3	-18,8
	4	Минер.	ХФ 12-16	Минер.	ХФ 12-16	Минер.	ХФ 12-16	Минер.	XΦ 12-16	Минер.	ХФ 12-16	Минер. ХФ 12-16	
	3	R12	90,0%R12 + 10,0%(M15+M18)	65% R22 + 15% R142b + 20% R134a	94,5%(65% R22 + 15% R142b + 20% R134a) + 5,5%(M20+M9)	70%R152a + 30%R600a	96,0%(70%R152a + 30%R600a) + 4,0%(M18+M1)	33%R218+62%R134a+5%R124	98,7%(33%R218+62%R134a+5%R124) + . 1,3%(M13+M19)	50%R290+50%R600a	97,5%(50%R290+50%R600a) + 2,5%(M18+M12)	50% R22 + 30% R142b + 19% R21+1%R134a	99,5%(50% R22 + 30% R142b + 19% R21+1%R134a) + 0,2%M15+0,3%M20
	2	ЗИЛ - 64		3ИЛ - 64		ЗИЛ - 64		ЗИЛ - 64	,	ЗИЛ - 64		Минск 16	
	-	24		25		56		27		28		53	

RU ~161637 C2

RU 2161637 C2

8,5 7,7 6 1,48 1,33 1,52 1,41 00 0,58 0,63 0,44 0,61 3,2 4,7 4,6 9 -19,5 -19,3 -18,4 -18,3 Минер. ХФ 12-16 Минер. ХФ 12-16 4 50% R22 + 30% R142b + 17% R21+3%R134a 50%R290+50%R600a 97,5%(50%R290+50%R600a) + 0,5%M15+ 2%(M8+M1) 99,5%(50% R22 + 30% R142b + 17% R21+3%R134a) + 0,1%M15+0,1%M19+0,1%M1+0,2%M9 3 Минск 16 ЗИЛ - 64 7 30 31

Продолжение табл. 4

RU 1161637 C2

• . • . .