Seminar 10

Введение в классическую физику Термодинамика

Victor Ivanov Yu.*

Аннотация

Physics and Mathematics

Содержание

1 Основные формулы

1

2 Упражнения

3

1 Основные формулы

• Количество вещества системы

$$\nu = \frac{N}{N_A},$$

где N - число элементов в системе, а N_A - постоянная Авогадро: $N_A \approx 6.02 \cdot 10^{23}$ моль $^{-1}$.

• Молярная масса вещества

$$\mu = \frac{m}{\nu}$$

где m - масса вещества, $\nu-$ количество вещества этого тела.

• Массовая доля i-го компонента смеси газов

$$\omega_i = \frac{m_i}{m},$$

где m_i - масса i-го компонента смеси, m - масса смеси.

• Закон Дальтона для давления смеси газов

$$p = \sum_{i=1}^{N} p_i,$$

где p_i - парциальные давления составляющих смеси.

• Средняя кинетическая энергия поступательного движения молекулы (i=3)

$$\overline{\epsilon} = \frac{3}{2}kT$$

• Средняя кинетическая энергия вращательного движения молекулы

$$\overline{\epsilon} = \frac{i}{2}kT$$

где i - число вращательных степеней свободы (i=2 для двухатомной молекулы, i=3 для трех и более атомной молекулы).

• Средняя кинетическая энергия колебательного движения молекулы (i=3)

$$\overline{\epsilon} = kT$$

• Средняя квадратичная скорость молекулы

$$\overline{v} = \sqrt{\frac{3kT}{m_1}}$$

• Средняя арифметическая скорость молекулы

$$\overline{v} = \sqrt{\frac{8kT}{\pi m_1}} = \sqrt{\frac{8RT}{\pi \mu}}$$

• Наиболее вероятная скорость молекулы

$$v = \sqrt{\frac{2kT}{m_1}} = \sqrt{\frac{2RT}{\mu}}$$

 m_1 - масса одной молекулы.

• Эффективное сечение столкновения молекулы

$$\sigma = \pi d^2$$
.

где d - эффективный диаметр молекулы.

• Среднее число соударений, испытываемых одной молекулой газа в единицу времени

$$\overline{z} = \sqrt{2\pi} d^2 n \overline{v} = \sqrt{2\sigma} n \overline{v},$$

где \overline{v} - средняя арифметическая скорость молекул, n - концентрация молекул.

• Средняя длина свободного пробега молекул газа

$$\bar{l} = \frac{1}{\sqrt{2}\pi d^2 n} = \frac{1}{\sqrt{2}\sigma n}$$

• Распределение Максвелла или распределение молекул по скоростям выражается двумя соотношениями:

1. число молекул, скорости которых заключены в пределах от v до v+dv,

$$dN(v) = Nf(v)dv = \frac{4}{\sqrt{\pi}}N\left(\frac{m}{2kT}\right)^{3/2}\exp\left(-\frac{mv^2}{2kT}\right)v^2dv$$

где f(v) - функция распределения молекул по модулям скоростей, выражающая отношение вероятности того, что скорость молекулы лежит в интервале от v до v+dv, к величине этого интервала, а также долю числа молекул, скорости которых лежат в указанном интервале; N - общее число молекул; m - масса молекулы.

2. число молекул, относительные скорости которых заключены в пределах от u до u+du

$$dN(u) = Nf(u)du = \frac{4}{\sqrt{\pi}}Nexp(-u^2)u^2du$$

где $u=v/v_p$ - относительная скорость, равная отношению скорости v к наивероятнейшей скорости v_p ; f(u) - функция распределения по относительным скоростям.

• Распределение молекул по импульсам. Число молекул, импульсы которых заключены в пределах от p до p+dp,

$$dN(p) = Nf(p)dp = \frac{4}{\sqrt{\pi}}N\left(\frac{1}{kT}\right)^{3/2}exp\left(-\frac{\epsilon}{kT}\right)\epsilon^{1/2}d\epsilon$$

где f(p) - функция распределения по импульсам (кинетическим энергиям).

• Распределение Больцмана или распределение частиц в силовом поле

$$n = n_0 exp(-\frac{U}{kT}),$$

где n - концентрация частиц; U - их потенциальная энергия; n_0 - концентрация частиц в точках поля, где U=0; k - постоянная Больцмана; T - термодинамическая температура.

• Барометрическая формула или распределение давления в однородном поле силы тяжести

$$p = p_0 exp\left(-\frac{mgz}{kT}\right) = p_0 exp\left(-\frac{Mgz}{RT}\right),$$

где p - давление газа; m - масса частицы; M - молярная масса; z - координата (высота) точки по отношению к уровню, принятому за нулевой; p_0 - давление на этом уровне; g - ускорение свободного падения; R - молярная газовая постоянная.

2 Упражнения

Задача 2.1. Сухой воздух состоит в основном из кислорода и азота. Если пренебречь остальными составными частями воздуха, то можно считать, что массовые доли кислорода и азота соответственно $\omega_1 = 0.232$, $\omega_2 = 0.768$. Определить относительную молекулярную массу M_{τ} воздуха.

Решение. Elementary

Задача 2.2. Газовая смесь, состоящая из кислорода и азота, находится в баллоне под давлением p=1 МПа. Определить парциальные давления p_1 кислорода и p_2 азота, если массовая доля ω_1 кислорода в смеси равна 0.2.

Peшeниe. Elementary

Задача 2.3. На какой высоте давление воздуха составляет 75 % от давления на уровне моря? Температуру считать постоянной и равной $0^{\circ}C$.

Peшeние. Elementary

Задача 2.4. Одно и то же значение функции распределения Максвелла соответствует двум скоростям молекул кислорода: $v_1=300~\text{м/c}$ и $v_2=500~\text{м/c}$. Определить температуру T газа.

Peшение. Elementary

Задача 2.5. Найти, какая часть общего числа молекул кислорода имеет при температуре 27 градусов C: 1) скорости, отличающиеся от наиболее вероятной на 1 %; 2) скорости в интервале 562 - 572 м/с.

Рис. 1:

Peшение. Elementary

Задача 2.6. Криптон массой $m=200\ г$ находится в равновесном состоянии.

1. Начертить (приблизительно) график функции распределения f(v) молекул по скоростям.

- 2. Указать (приблизительно) на графике (штриховкой) долю $\Delta N/N$ молекул, скорости которых отличаются от средней арифметической скорости не более, чем на $\nu=1.00\%$
- 3. Найти долю $\Delta N/N$ этих молекул, а также их число ΔN .

Peшeние. Elementary

Задача 2.7. Кислород и гелий находятся в равновесном состояниях при одинаковой температуре. Массы газов $m_1 = 16.0$ г, $m_2 = 4.00$ г соответственно.

- 1. Начертить (приблизительно) графики функции распределения $f_1(v)$ и $f_2(v)$ молекул газов по скоростям.
- 2. Во сколько раз число молекул dN_1 кислорода, скорости которых заключены в интервале от v_{p_1} до $v_{p_1} + dv$, большие числа молекул dN_2 гелия, скорости которых заключены в интервале от v_{p_2} до $v_{p_2} + dv$, где v_{p_1} и v_{p_2} наиболее вероятные скорости молекул кислорода и гелия соответственно? Величина интервала скоростей dv одинакова и очень мала.
- 3. Записать в виде интеграла выражение, определяющее число молекул число молекул ΔN_1 кислорода скорости, которых заключены в интервале от v_{p_1} до v_{p_2} . Указать (приблизительно) на графике (штриховкой) долю $\Delta N_1/N_1$ этих молекул

Peшение. Elementary

Задача 2.8. Газ находится в равновесном состоянии.

- 1. Начертить (приблизительно) графики функции распределения $f_1(v)$ и $f_2(v)$ молекул газа по скоростям при температуре $T_1=300~K~u~T_2=600~K.$
- 2. Указать (приблизительно) на первом графике (штриховкой) долю $\Delta N/N$ молекул, скорости которых заключены в и интервале от наиболее вероятной скорости v_p до средней квадратичной скорости v_{av} . Записать в виде интеграла выражение определяющие число ΔN этих молекул.
- 3. Найти молярную массу μ газа, если скорости молекул v=760 м/с соответствуют равные значения функции распределения Максвелла $f_1(v)$ и $f_2(v)$ при заданных температурах T_1 и T_2 . Какой это газ?
- 4. Указать на графике f(v) упомянутые выше значения скоростей.

Peшение. Elementary

Задача 2.9. Кислород находится в равновесном состоянии. Средняя квадратичная скорость v_{av} молекул газа в этом состоянии равна 480 м/с.

- 1. Начертить (приблизительно) график функции распределения f(v) молекул газа по скоростям.
- 2. Указать (приблизительно) на графике (штриховкой)долю $\Delta N/N$ молекул, скорости которых заключены в и интервале от наиболее вероятной скорости v_p до средней квадратичной скорости v_{av} . Записать в виде интеграла выражение определяющие число ΔN этих молекул.

- 3. Найти скорости молекул v_1 и v_2 которым соответствуют одинаковые значения распределения Максвелла, если известно, что $v_2 = nv_1$ где n = 2.00.
- 4. Показать (приблизительно) на графике значения всех указанных выше скоростей.

Решение. Elementary