Lighting Every Darkness in Two Pairs:

A Calibration-Free Pipeline for RAW Denoising

Xin Jin*, Jia-Wen Xiao*, Ling-Hao Han, Chunle Guo#, Runxun Zhang, Xialei Liu, Chongyi Li

Background

- Task: Low-light RAW Image Denoising
- Previous work: SID^[1]

The difference between sensors should be considered!^[2] Dataset re-collection for each sensor is required!

^[1] Chen, Chen, et al. "Learning to see in the dark." CVPR. 2018.

^[2] Wei, Kaixuan, et al. "Physics-based noise modeling for extreme low-light photography." IEEE TPAMI. 2021.

Background: Training with Synthesis Noise

- Simulating real noise pairs with noise model.
- Existing SOTA methods^{[2][3][4][5]} are all based on calibration.

[2] Wei, Kaixuan, et al. "Physics-based noise modeling for extreme low-light photography." IEEE TPAMI. 2021.

^[3] Zhang, Yi, et al. "Rethinking noise synthesis and modeling in raw denoising." IČCV. 2021. [4] Feng, Hansen, et al. "Learnability enhancement for low-light raw denoising: Where paired real data meets noise modeling." ACMMM. 2022 [5] Cao. Yue. et al. "Physics-Guided ISO-Dependent Sensor Noise Modeling for Extreme Low-Light Photography." CVPR. 2023.

Background: Calibration

1. Preparation:

pre-define noise model + data collection.

$$N = N_{shot} + N_{read} + N_{row} + N_{quant}^{[2]}$$

2. Calibration: parameter estimation.

Training: train the network with synthesis data.

Is Calibration Strategy Really Perfect?

- Time-consuming and laborintensive calibration and noise parameter estimation.
- Neural networks are tightly coupled with the target camera sensor, requiring retraining for each camera type.
- During training, only synthetic noise is involved, and it cannot generalize to noise outside the noise model.

What Do We Want?

- Simplify calibration^{[6][7]}, even eliminate calibration procedure.
- The ability to rapidly deploy on new cameras.
- Generalization capability:
 Excellent generalization to real-world scenarios, bridging the domain gap between synthetic and real.

[7] Monakhova, Kristina, et al. "Dancing under the stars: video denoising in starlight." CVPR . 2022.

^[6] Zou, Yunhao, and Ying Fu. "Estimating fine-grained noise model via contrastive learning." CVPR. 2022.

What can LEDs achieve?

Table 1. Quantitative results on the SID [7] Sony subset. The best result is in **bold** whereas the second best one is in <u>underlined</u>. The extra data requirentraining noise generation and the same as their paper with almost twice the number of parameters compared to the UNet.

Categories	Methods	Extra Data Requirements	Iterations (K)	×100		$\times 250$		×300	
				PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
DNN Model Based	Kristina et al. [37]	~1800 noisy-clean pairs	327.6	38.7799	0.9120	34.4924	0.7900	31.2971	0.6990
	NoiseFlow [1]	\sim 1800 noisy-clean pairs	777.6	37.0200	0.8820	32.9457	0.7699	29.8068	0.6700
Calibration-Based	Calibrated P-G	\sim 300 calibration data	257.6	39.1576	0.8963	33.8929	0.7630	31.0035	0.6522
	ELD [46]	\sim 300 calibration data	257.6	41.8271	0.9538	38.8492	0.9278	35.9402	0.8982
	Zhang <i>et al.</i> [55]	\sim 150/ \sim 150 for calib./database	257.6	40.9232	0.9488	38.4397	0.9255	35.5439	0.8975
Real Data Based	SID [7]	~1800 noisy-clean pairs	257.6	41.7273	0.9531	39.1353	0.9304	37.3627	0.9341
	Noise2Noise [34]	\sim 12000 noisy pairs	257.6	39.2769	0.8993	34.1660	0.7824	31.0991	0.7080
	AINDNet [30]	\sim 300 noisy-clean pairs	1.5	40.5636	0.9194	36.2538	0.8509	32.2291	0.7397
	AINDNet*	\sim 300 noisy-clean pairs	1.5	39.8052	0.9350	37.2210	0.9101	34.5615	0.8856
	LED (Ours)	6 noisy-clean pairs	1.5	41.9842	0.9539	39.3419	0.9317	<u>36.6728</u>	0.9147

What can LEDs achieve?

PMN^[4]'s training strategy

Reducing almost a full day of training time to just 4 minutes!

```
2023-07-16 21:26:03,931 INFO: End of training. Time consumed: 0:03:43
2023-07-16-21:41:09,032 INFO: End of training. Time consumed: 23:42:27
                                                                          2023-07-16 21:26:03,931 INFO: Save the latest model.
2023-07-16 21:41:09,033 INFO: Save the latest model.
                                                                          2023-07-16 21:26:13,230 INFO: Validation SIDSonyPaired100
2023-07-16 21:41:15,461 INFO: Validation SIDSonyPaired100
                                                                             # psnr: 42.3397 \uparrow 0.2568
     # psnr: 42.0811
                                                                             # ssim: 0.9549
     # ssim: 0.9550
                                                                          2023-07-16 21:26:20,423 INFO: Validation SIDSonyPaired250
2023-07-16 21:41:21,843 INFO: Validation SIDSonyPaired250
                                                                             # psnr: 39.6064 \uparrow 0.1451
     # psnr: 39.4613
                                                                             # ssim: 0.9370
     # ssim: 0.9340
                                                                          2023-07-16 21:26:29,060 INFO: Validation SIDSonyPaired300
2023-07-16-21:41:29,654 INFO: Validation SIDSonyPaired300
                                                                             # psnr: 36.9314 \uparrow 0.0613
     # psnr: 36.8701
                                                                             # ssim: 0.9256
     # ssim: 0.9203
```

Previous SOTA^[2]

LED (Ours)

[2] Wei, Kaixuan, et al. "Physics-based noise modeling for extreme low-light photography." *IEEE TPAMI*. 2021. [4] Feng, Hansen, et al. "Learnability enhancement for low-light raw denoising: Where paired real data meets noise modeling." *ACMMM*. 2022

- 1. Pre-define noise model Φ , random sample noise parameters as "Virtual Cameras".
- 2. Pre-train the network with synthesis noise.
- 3. Collect few-shot paired data with target camera.
- 4. Fine-tuning the network with data collected in 3.

Transfer Learning: rapidly deploy on new cameras

Continual Learning: generalize to real scenarios

 Reparameterization: without any additional computational cost while deploying!

12

Visualization

Out-Of-Model Noise

Figure 6. Compared with state-of-the-art calibration-based methods: ELD [8] and Zhang et al. [9], proposed LED is able to remove the out-of-model noise (Zoom-in for best view).

Visualization

Input ELD^[2] LED (Ours)

[2] Wei, Kaixuan, et al. "Physics-based noise modeling for extreme low-light photography." IEEE TPAMI. 2021.

Discussion

• Why with Two Pairs?

Figure 7. Ablation studies on the data amount for fine-tuning. LED achieves better performance with only 2 pairs for each ratio.

Figure 8. Illustration of the feasible solution space (blue area) of the linear relationship between the overall system gain $\log(K)$ and noise variance $\log(\sigma)$ under different sample strategies.

Table 6. Ablation studies on the pairs count for fine-tuning and testing on the synthetic dataset. N denotes fine-tuning with N pairs data of the similar overall system gain for each ratio. N^* denotes pairs data with marginally different overall system gains.

Ratio	1	2	4	2*
×100	41.295/0.9480	41.704/0.9523	41.432/0.9466	43.795/0.9648
$\times 250$	39.239/0.9350	39.410/0.9351	39.327/0.9367	41.311/0.9457
$\times 300$	38.314/0.9229	38.486/0.9216	38.499/0.9240	39.190/0.9278

Thanks!