BAZY DANYCH WYKŁAD NR 2

Uniwersytet Gdański

Agenda

Wprowadzenie do normalizacji

Rodzaje postaci normalnych

Przykłady zależności

Aspekty teoretyczne baz danych

Normalizacja danych

Założenia, rodzaje, przykłady

Modelowanie danych

Podejście zstępujące (ang. top down) – diagramy związków encji

Podejście wstępujące (ang. bottom up) – normalizacja danych

Czym jest normalizacja?

- Normalizacja to proces organizowania danych w bazie danych. Polega na:
 - identyfikacji logicznych związków pomiędzy elementami. Mogą to być związki:
 - funkcyjne
 - niefunkcyjne
 - eliminacji niespójnych zależności i nadmiarowości

Brak normalizacji

Nr indeksu Imię i nazwisko	Adres	Numer książki	Tytuł i autor książki	Data wypożyczenia i zwrotu	
----------------------------	-------	---------------	--------------------------	----------------------------------	--

- □ Problemy:
 - aktualizacja
 - usuwanie
 - wstawianie
 - redundancja (powtórzenia, nadmiarowość)

Postać normalna

Twórcą pierwszej, drugiej i trzeciej postaci normalnej jest E. F. "Ted" Codd.

Form normalnych czwartej, piątej i szóstej nie używa się w praktyce.

Normalizacja prowadzi do zwiększania się liczby tabel co może znacząco zmniejszyć wydajność bazy danych.

Cel normalizowania danych

Eliminacja wielokrotnie powtarzanych informacji

Zmniejszenie rozmiarów tabel

Poprawienie wydajności podczas wyszukiwania danych

Umożliwienie wyszukiwania danych według szczegółowych kryteriów (np. poprzez rozbicie pola adres na miejscowość, ulica, nr domu)

Proces normalizacji

<u>Dane niez</u>normalizowane – ciąg danych

1NF – atrybuty mają być w postaci elementarnej, nierozkładalnej – np. liczba, data, a nie ciąg liczbowy, ciąg dat i liczb)

2NF – każdy atrybut zależy funkcyjnie od klucza

3NF – nie istnieją żadne zależności przechodnie

4NF, 5NF oraz 6NF są często jedynie poddawane teoretycznym rozważaniom i tematyka ta nie będzie podejmowana na wykładzie

Warunki przeprowadzania normalizacji

- Podczas normalizacji nie może dojść do sytuacji w której:
 - poszczególne atrybuty (kolumny) są usuwane
 - □ informacje są tracone
 - zależności pozostają niezidentyfikowane

Rodzaje kluczy

Klucze potencjalne (ang. candidate keys)

• mogą, ale nie muszę zostać wybrane jako klucze główne

Klucze główne (ang. primary keys)

 identyfikują jednoznacznie wiersz, są unikalne, mogą być zbiorem wielu kolumn

Klucze obce (ang. foreign keys)

• odwołują się do kluczy głównych innych tabel

Rodzaje zależności

Zależność funkcyjna

Atrybut Y jest funkcyjnie zależny od atrybutu X, jeżeli dowolnej wartości atrybutu X odpowiada nie więcej niż jedna wartość atrybutu Y. Wówczas X identyfikuje Y.

Pełna zależność funkcyjna

Atrybut Y jest w pełni funkcyjnie zależny od zbioru atrybutów X, jeżeli jest zależny funkcyjnie i nie jest zależny od żadnego podzbioru właściwego dla zbioru X.

Przechodnia zależność funkcyjna (1/2)

- □ Jeżeli X, Y i Z to rozłączne podzbiory atrybutów danej encji, to podzbiór atrybutów Z jest **przechodnio funkcyjnie zależny** od podzbioru atrybutów X, jeżeli Z funkcyjnie zależy od podzbioru Y, Y jest zależny od X, a X nie jest funkcjonalnie zależny od Z.
- Zależność przechodnia występuje, gdy dany atrybut zależy nie tylko od klucza głównego, ale również innego atrybutu.

Przechodnia zależność funkcyjna (2/2)

Jak rozpoznać postać normalną?

Normalizacja	Opis
Brak	Dane w jednym polu tabeli. Dane niejednoznaczne, różne wartości i typy danych.
1NF	Wartości atrybutów muszą być niepodzielne – jedna wartość w każdym polu tabeli.
2NF	Każdy atrybut tej tabeli, który nie należy do klucza potencjalnego, jest w pełni funkcyjnie zależny od wszystkich kluczy potencjalnych.
3NF	Każdy atrybut, który nie wchodzi w skład klucza potencjalnego, nie jest przechodnio funkcyjnie zależny od klucza potencjalnego tej tabeli.

Dane nieznormalizowane

Ciąg wielu atrybutów		Ciąg wielu atrybutów
PESL	lmię i nazwisko	Adres
89123013234	Jan Kowalski	80-400 Gdańsk, u. Grunwaldzka 729A/3
92011517892	Anna Nowak	81-820 Sopot, al. Niepodległości 981B/8
91081213121	Ewa Malinowska	84-890 Gdynia, ul. Morska 613D/23

1NF – pierwsza postać normalna

Dane elementarne

PESEL	lmię	Nazwisko	Kod	Miast o	Ulica	Nr domu
89123013234	Jan	Kowalski	80-400	Gdańsk	ul. Grunwaldzka	729A/3
92011517892	Anna	Nowak	81-820	Sopot	al. Niepodległości	981B/8
91081213121	Ewa	Malinowska	84-890	Gdynia	ul. Morska	613D/23

Inny przykład – dane nieznormalizowane i 1NF

nieznormalizowane	niezn	orma	lizow	ane
-------------------	-------	------	-------	-----

Numer indeksu	Wykłady
178283	Technologie baz danych, Hurtownie danych
184382	Technologie baz danych, Systemy baz danych

1NF

Numer indeksu	Wykłady
178283	Technologie baz danych
178283	Hurtownie danych
184382	Technologie baz danych
184382	Systemy baz danych

2NF – druga postać normalna

- Mogą występować zależności przechodnie.
- Każdy atrybut zależny funkcyjnie od klucza.
- W poniższym przykładzie prowadzący laboratorium jest zależny przede wszystkim od numeru grupy. Dlatego nie jest to 3NF.

Numer studenta	Nazwisko studenta	Imię studenta	Numer grupy	Laboratorium BD
182382	Kowalski	Jan	351	Adam Nowak
192812	Zielińska	Ewa	341	Jan Woźniak

3NF – trzecia postać normalna

Numer studenta	Nazwisko studenta	Imię studenta	Numer grupy (klucz obcy)
182382	Kowalski	Jan	351
192812	Zielińska	Ewa	341

Numer grupy	Laboratorium BD
351	Adam Nowak
341	Jan Woźniak

Zadanie

Numer faktury	REGON	Nazwa klienta	Adres klienta	Kod produktu	Nazwa produktu	llość	Jednostk a miary	Cena	PKWiU	VAT	Cena łączna
10	0000012 3450000 0	ABC	Gdańsk, Grunwald zka	5	Ołówek	23	sztuka	1 zł	1389	7%	23 zł
23	0000012 3430000 0	BCD	Gdynia, Morska	2	Pióro	54	sztuka	7 zł	1339	22%	378 zł
54	0000012 3540000 0	CDE	Sopot, Niepodle głości	3	Długopis	290	sztuka	4 zł	1339	22%	1160 zł

Teoretyczne aspekty baz danych

Podstawowe pojęcia

Baza danych jest logicznie spójnym zasobem przechowywanych i udostępnianych danych, w aspekcie określonego wycinka rzeczywistości.

System zarządzania bazą danych to system oprogramowania, który umożliwia tworzenie i użytkowanie bazy danych.

System baz danych stanowi powiązanie bazy danych z obsługującym go systemem zarządzania bazą danych.

System baz danych

POZIOM ZEWNĘTRZNY

Interfejs:

schemat zewnętrzny <=> konceptualny

POZIOM KONCEPTUALNY

Interfejs:

schemat konceptualny <=> wewnętrzny

POZIOM WEWNĘTRZNY

Interfejs:

schemat wewnętrzny <=> baza danych

Podstawowe role użytkowników bazy danych

Administrator bazy danych

• Autoryzacja dostępu, koordynacja użytkowania, optymalizacja

Projektant bazy danych

• Opracowuje modele bazodanowe

Programista bazy danych

• Tworzy skrypty i oprogramowanie dla bazy danych

Użytkownicy

- Przypadkowi (niesystematycznie korzystający np. za pomocą SQL)
- Parametryczni (transakcje bazodanowe za pomocą programów przygotowanych przez programistów)
- Zaawansowani (całe spektrum SZBD)

Historia kolejnych generacji baz danych

pierwsza (lata pięćdziesiąte) – pliki o dostępie sekwencyjnym

druga (lata sześćdziesiąte) – pliki o dostępie bezpośrednim na dyskach magnetycznych

trzecia (lata siedemdziesiąte) – prerelacyjna

czwarta (lata osiemdziesiąte) – relacyjna

piąta (lata dziewięćdziesiąte) – postrelacyjna

Cechy baz danych

Rozproszona baza danych

Rozproszona baza danych jest zasobem danych, które logicznie należą do tego samego systemu, natomiast fizycznie są przechowywane w różnych węzłach sieci komputerowej.

Zasada działania

System rozproszonych baz danych rezyduje na wielu komputerach zwanych węzłami oraz jest połączony siecią komunikacyjną w celu przesyłania danych między nimi.

Pewną odmianą rozproszonych baz danych są systemy wielobazowe. Każdy węzeł takiej bazy jest niezależną i autonomiczną bazą danych z własnym SZBD.

Aspekty rozproszonych baz dar

Kopiowanie danych oznacza, że pewne fragmenty danych mogą być przechowywane w więcej niż jednym węźle.

Alokacja to proces przyporządkowywania poszczególnych fragmentów lub ich kopii do przechowywania na określonych węzłach rozproszonej bazy danych.

Pytanie?

- Sytuacja, w której każdy atrybut, który nie wchodzi w skład klucza potencjalnego, nie jest przechodnio funkcyjnie zależny od klucza potencjalnego tej tabeli, opisuję postać normalną:
 - ONF
 - 1NF
 - 2NF
 - 3NF

