Report

以下为 $test_gmem_cu$ 中 STRIDE 分别取 1,2,4,8 时的运行结果:

stride: 1

bandwidth: 530.123

stride: 2

bandwidth: 182.482

stride: 4

bandwidth: **91.9953**

stride: 8

bandwidth: 46.2862

总结为表格:

stride	1	2	4	8
bandwidth	530.123	182.482	91.9953	46.2862

对应的图表为:

改变 STRIDE 值会改变GPU内存的访问。

由于内存合并,Warp访问的都是一段连续的内存,因此当 STRIDE 大时,内存访问更不连续,从而降低了性能。

除此之外,还有GPU中的各级Cache参与执行过程,用于加速程序的效率。

以下为 $test_smem_cu$ 中 BITWIDTH 分别取 2,4,8, STRIDE 取 1,2,4,8,16,32 时的运行结果:

bitwidth: 2
stride: 1

bandwidth: 4238.66

bitwidth: 4
stride: 1

bandwidth: 7998.21

bitwidth: 8
stride: 1

bandwidth: 8646.66

bitwidth: 2
stride: 2

bandwidth: 4302.97

bitwidth: 4
stride: 2

bandwidth: 4321.4

bitwidth: 8
stride: 2

bandwidth: 4339.23

bitwidth: 2
stride: 4

bandwidth: 2152.1

bitwidth: 4
stride: 4

bandwidth: 2034.46

bitwidth: 8
stride: 4

bandwidth: 2173.54

bitwidth: 2
stride: 8

bandwidth: 828.292

bitwidth: 4
stride: 8

bandwidth: 1017.2

bitwidth: 8
stride: 8

bandwidth: 1087.67

bitwidth: 2
stride: 16

bandwidth: 427.428

bitwidth: 4
stride: 16

bandwidth: 505.057

bitwidth: 8
stride: 16

bandwidth: 544.068

bitwidth: 2
stride: 32

bandwidth: 215.19

bitwidth: 4
stride: 32

bandwidth: 251.606

bitwidth: 8
stride: 32

bandwidth: 544.069

可制作成表格如下:

STRIDE\BITWIDTH	2	4	8
1	4238.66	7998.21	8646.66
2	4302.97	4321.4	4339.23
4	2152.1	2034.46	2173.54
8	828.292	1017.2	1087.67
16	427.428	505.057	544.068
32	215.19	251.606	544.069

对应的图表如下:

当 BITWIDTH 固定时,程序的性能变化来源于Bank机制。

当 STRIDE 固定, BITWIDTH 变化时,可以发现大体上 BITWIDTH 从 2 变为 4 时效率的提升幅度要高于 4 到 8 的提升。由于每一个bank的宽度为4Byte=32bit,因此从 2 变为 4 时可以更好利用硬件来得到性能的提升。而当 BITWIDTH 变为 8 时,一个数据需要存放在两个bank里,因此效率提升幅度会有所降低。