The Curse of Dimensionality

Factorized Transitions

Guillaume Lozenguez

@imt-nord-europe.fr

IMT Nord Europe École Mines-Télécom

IMT-Université de Lille

- 1. Bayesian Network
- 2. Factorized Transition Function

Before to go...

Q-Learning over reduced state-space (and actions...) nessearly generate averaged decisions...

Need a model to refine decision making from simulations

- 1. Bayesian Network
- 2. Factorized Transition Function

Bayesian Network: General idea

Variables are not necessarly correlated over all the others.

Example:

- ▶ The probability of *Rain* does not depend from *Car Velocity*.
- ► The *Car Velocity* does not depend from *Rain*.
- ▶ Owever, the probability of *Accident* depends from both *Rain* and *Car Velocity*.

Bayesian Network:

A probabilistic graphical model that represents a set of variables and their conditional dependencies

Bayesian Network: Car accident Example

Graphical model: *Node*: variable, *Orriented Edge*, dependancy

ATTENTION: *Correlation* is not *Conditional Dependancy*

Bayesian Network: Node's Probability Table

Propbality dependencies are defined node by node.

Rain	C.Vel.	Yes	No
Yes	50	0.1	0.9
	70	0.2	8.0
	90	0.2	8.0
	110	0.3	0.7
	130	0.8	0.2
No	50	0.05	0.95
	70	0.1	0.9
	90	0.1	0.9
	110	0.1	0.9
	130	0.3	0.7

Bayesian Network: Inference

Resulting propbality is computed recursivelly

Bayesian Network: Level-up

Growing the graph \rightarrow no consequencies over existing nodes

ATTENTION: *Correlation* is not *Conditional Dependancy* → **Directed Acyclic Graph**

Bayesian Network: Toolbox

- Bayesian Network on Wikipedia
- ► In python numerous implementations
 - <u>pomegranate</u> define compute inferences and more.
 - <u>bnlearn</u> Learning the bayesian structure (ie. detect the dependencies)

- 1. Bayesian Network
- 2. Factorized Transition Function

Factorized Transition Function: Problem

Classically a multi-varibles probabilistic evolution problem

Factorized Transition Function: As Bayesian Network

Each variable evolution is dependant from few parents Potentially with intermediate variables.

Factorized Transition Function: Dynamic Bayesian Network

Bayesian Network with duplicated varaibles regarding their evolution in time.

Considering a distribution of probability at time t, it is possible to infers over the distribution of probabilities at time t+N

Factorized Transition Function: Dynamic Bayesian Network

Extended definition over 3 times step.

Factorized Transition Function: 421 example

- ▶ Roll step: 2 entrances Small tables
- ► Sort step: 3 entrances but deterministic

Factorized Transition Function: 421 example

Let consider cheat dice: Learning transitions \rightarrow computing 3×12 probabilities vs ($168^2 \times 8$)

Factorized Transition Function: Zombie Dice Exemple

Naturrally the complexity of the networks grow linearly with the complexity of the game

A stop and go game:

2 players or more (2 Zombies)

- The first one to cumulate 13 brains win.
- Player need to pass, before to get 3 damages

Factorized Transition Function: Zombie Dice Exemple

A 4 steps' game engine:

3 brains, 2 footprints, 1 shotgun

2 brains, 2 footprints, 2 shotguns

1 brain, 2 footprints, 3 shotguns

Complete Dice Set:

- 6 1 1 1 10 10 10

- 1. player decides to continue or not
- 2. new dice are picked randomly (to complete the hand)
- 3. dice a rolled
- 4. the player cumulates brains and damages

State Space? Branching?

Zombie Dice: Brut Transition Function (action: go)

Zombie Dice: Factorized Transition Function (action: go)

- 1. Bayesian Network
- 2. Factorized Transition Function