

Noninvasive Assessment of Atrial Fibrillation Complexity Using Tensor Decomposition Techniques

Lucas Abdalah

Advisor: Prof. Walter da Cruz Freitas Jr

Feb 08th, 2022

Introduction

Methods

Second Second

Conclusions

Introduction

Atrial Fibrillation

- Atrial Fibrillation (AF) is the most common sustained cardiac arrhythmia encountered in clinical practice.
 - In the EU, the number of adults with AF will double from 2010 to 2060¹.

 The complex electrophysiological mechanisms underlying AF are not completely understood.

¹Krijthe *et al.*, "Projections on the number of individuals with atrial fibrillation in the European Union, from 2000 to 2060," *Eur Heart J.* 2013.

Step-wise Catheter Ablation (CA)

- Noninvasive techniques to assess AF electrophysiological complexity can help guide step-wise CA in real time.
 - ▶ Impact of pulmonary vein isolation (PVI) and other widely used techniques on atrial activity (AA) complexity.

Figure from Tim Helps © 2017 Johns Hopkins University, AAM

Matrix Approach

The ECG data matrix can be modeled as:

$$\mathbf{Y} = \mathbf{MS} \in \mathbb{R}^{K \times N}$$
 (1)

where $\mathbf{M} \in \mathbb{R}^{K \times R}$ is a mixing matrix and $\mathbf{S} \in \mathbb{R}^{R \times N}$ is the source matrix.

Introduction

2 Methods

Experimental Results

4 Conclusions

Tensor Approach

- ullet The ECG data can be modeled as a 3rd-order tensor ${\cal Y}$ via row-Hankelization.
 - ▶ Tensor decompositions factorize data as a sum of simpler tensors.

 Block Term Tensor Decomposition (BTD) based on Hankel structure².

Feb 08th, 2022

²De Lathauwer, "Blind separation of exponential polynomials and the decomposition of a tensor in rank- $(L_r, L_r, 1)$ terms," SIAM J. Matrix Anal. Apple 2011.

BTD-Hankel Model

Low-rank Hankel structure

- AA signal during AF can be represented by an all-pole model (2)
- ullet The structured Hankel matrix has a rank equal to the number of poles (L_r)

$$s(n) = \sum_{\ell=1}^{L_r} \alpha_\ell z_\ell^n \tag{2}$$

Tensor Approach

• Stack each Hankel matrix in the 3rd-mode of the tensor \mathcal{Y} .

BTD Approach

Challenge

- Parameter estimation
 - ightharpoonup R, L_r
- Factor estimation
 - A, B, X

Constrained Alternating Group Lasso

Classical BTD Approach

• Fixed structure minimizing $f(\mathbf{A}, \mathbf{B}, \mathbf{X})$ with prior knowledge of (R, L_r)

$$f(\mathbf{A}, \mathbf{B}, \mathbf{X}) \triangleq \left\| \mathcal{Y} - \sum_{r=1}^{R} \left(\mathbf{A}_r \mathbf{B}_r^{\top} \right) \circ \mathbf{x}_r \right\|_F^2$$
 (3)

Constrained Alternating Group Lasso (CAGL) Approach

- Non-fixed structure minimizing $F(\mathbf{A}, \mathbf{B}, \mathbf{X})$ ensuring the Hankel structure
- Penalization term (γ) and $g(\mathbf{A}, \mathbf{B}, \mathbf{X})$ limiting the multilinear ranks and number of blocks
- Allows simultaneous estimation of (R, L_r) and model factors

 $F(\mathbf{A},\mathbf{B},\mathbf{X})\triangleq f(\mathbf{A},\mathbf{B},\mathbf{X}) + \gamma\,g(\mathbf{A},\mathbf{B},\mathbf{X})$

AF Complexity Index

Signal Complexity

The more poles the signal contains, the more complex it can be considered

- The complexity index proposed in this work is based on the number of poles L_r contained in a signal.
- The Hankel matrix rank is equal to number of poles L_r .

Atrial Source Classification

Challenge

After performing CAGL, the automated AA source classification is still a problem

• Spectral concentration (SC), dominant frequency (DF), kurtosis and visual inspection to evaluate AA extraction³.

³De Oliveira and Zarzoso, "Source analysis and selection using block term decomposition in atrial fibrillation", in *Proc. LVA/ICA*, 2018. → ② → ③ ≥ → ③ ≥ → ③ ≥ → ③

AA Source Estimation

- SC = 74.3%
- DF = 6.4 Hz
- Kurtosis = 177.0
- AA Hankel Matrix Rank = 33

Introduction

2 Methods

3 Experimental Results

4 Conclusions

Database and Experimental Setup

Database

- 20 patients suffering from persistent AF
- 59 ECG segments from 0.72 to 1.42 seconds

Cardiology Department of Princess Grace Hospital Center, Monaco

Hankel-based BTD was implemented using CAGL.

Impact of CA step on AA complexity

- 20 patients undergoing various CA steps
- ullet 59 ECG segments (1.06 \pm 0.2 s)

Impact of PVI on AA complexity

- 17 patients undergoing PVI
- 34 ECG segments

AF Recurrence vs. Complexity Before CA

Relationship

A significant Pearson correlation between AF recurrence and the proposed index

• 18 patients with complete follow-up information

Conclusions

Conclusions

Contributions

- Jointly extract the AA signal and measure AF complexity via tensor decomposition
- ullet Very short ECG recordings (1.06 \pm 0.20 s)
- Validation in 20 patients undergoing CA
 - Expected decreasing AF complexity throughout CA steps
 - Significant correlation with AF recurrence after CA

Clinical Impact

A potential tool to help guide CA in real time

Future Work

Lucas Abdalah

- Increase number of patients in the database
- Compare the proposed index with other state-of-the-art indices