

ΑΡΙΣΤΟΤΕΛΕΙΟ

ΠΑΝΕΠΙΣΤΗΜΙΟ

ΘΕΣΣΑΛΟΝΙΚΗΣ

CBGL: Fast Monte Carlo Passive Global Localisation of 2D LIDAR Sensor

Setup & Motivation

Unknown estimate $\hat{\boldsymbol{p}}(\hat{x},\hat{y},\theta).$ $\hat{\boldsymbol{p}}-\hat{\boldsymbol{p}}=(\Delta\hat{\boldsymbol{l}},\Delta\hat{\theta})$

+2.0and virtual $\mathcal{S}_V(\hat{\boldsymbol{p}})$ scans, in the local co-

ordinate frame of each sensor

Definition 1. The Cumulative Absolute Error per Ray (CAER) metric

scan rays-1

 $CAER(S_R, S_V) \triangleq \sum |S_R[n] - S_V[n]|$ (1)

The gist

The method estimates the pose of a 2D LIDAR given only a single measurement and the map of the environment, while

- being robust against
- -environment repetitions
- -map distortions
- -sensor noise

+1.0

0.0

-1.0

- -sensor FOV (radial & angular)
- executing at ≈ 1 sec per 100 m² of environment area
- requiring no parameters to be tuned
- making no assumptions about the environment

because CAER (eq. (1))

- scales with position and orientation error
- computationally cheap at • 1S O(sensor rays)

Experiments with real and synthetic data

In > 6000 attempts	Mean Position Error [m]	Mean Orientation Error [rad]	Mean Execution Time [sec]
ALS [1]	0.500	1.956	6.15
CBGL	0.041	0.011	1.61

[1] Naoki Akai, "Reliable Monte Carlo Localization for Mobile Robots", Journal of Field Robotics, 2023