

Lecture 16: Tracking
Iterative KLT tracker

Juan Carlos Niebles and Jiajun Wu
CS131 Computer Vision: Foundations and Applications

What will we learn today?

Iterative KLT tracker

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005]

http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf

Problem setting

- Given a video sequence, find all the features and track them across the video.
- First, use Harris corner detection to find features and their location x.
- For each feature at location $x = [x \ y]^T$:
 - Create an initial template for that feature: T(x).
 - -T(x) is usually an image patch around x.
- Goal: find new location of feature x at the next frame.
- We will assume x undergoes a transformation (translation, affine, ...) parametrized by p to reach its new location W(x; p).

KLT objective

• Our aim is to find the p that minimizes the difference between the template T(x) and the image region around the new location of x after undergoing the transformation.

$$\sum_{x} [I(W(x; \boldsymbol{p})) - T(x)]^{2}$$

- W(x; p) is the new location of feature x.
- I(W(x; p)) is image intensity at the new location.
- Recall that p is our vector of parameters that define the transformation that took x to its new location W(x; p).
- Sum is over an image patch around x.

KLT objective

• Since p may be large, minimizing this function may be difficult:

$$\sum_{\mathbf{x}} [I(W(\mathbf{x}; \mathbf{p})) - T(\mathbf{x})]^2$$

- We will instead break down $m{p} = m{p_0} + \Delta m{p}$
 - Large + small/residual motion
 - Where p_0 is going to be fixed and we will solve for Δp , which is a small value.
 - We can initialize p_0 with our best guess of what the motion is; we can then calculate Δp .
- We can substitute p to get:

$$\sum_{x} [I(W(x; \boldsymbol{p_0} + \Delta \boldsymbol{p})) - T(x)]^2$$

A little bit of math: Taylor series

Taylor series is defined as:

$$f(x + \Delta x) = f(x) + \Delta x \frac{\partial f}{\partial x} + \Delta x^2 \frac{\partial^2 f}{\partial x^2} + \dots$$

- Assuming that Δx is small.
- We can apply this expansion to the KLT tracker and only use the first two terms:

Expanded KLT objective

$$\sum_{x} [I(W(x; \boldsymbol{p_0} + \Delta \boldsymbol{p})) - T(x)]^2$$

$$\approx \sum_{x} \left[I(W(x; \boldsymbol{p_0})) + \nabla I \frac{\partial W}{\partial \boldsymbol{p}} \Delta \boldsymbol{p} - T(x) \right]^2$$

It's a good thing we have already calculated what $\frac{\partial W}{\partial p}$ would look like for affine, translations and other transformations!

Expanded KLT objective

• So our aim is to find the Δp that minimizes the following:

$$\underset{\Delta p}{\operatorname{argmin}} \sum_{x} \left[I(W(x; \boldsymbol{p_0})) + \nabla I \frac{\partial W}{\partial \boldsymbol{p}} \Delta \boldsymbol{p} - T(x) \right]^2$$

- Where $\nabla I = \begin{bmatrix} I_x & I_y \end{bmatrix}$
- Differentiate wrt Δp and setting it to zero:

$$\sum_{x} \left[\nabla I \frac{\partial W}{\partial \boldsymbol{p}} \right]^{T} \left[I(W(\boldsymbol{x}; \boldsymbol{p}_{0})) + \nabla I \frac{\partial W}{\partial \boldsymbol{p}} \Delta \boldsymbol{p} - T(\boldsymbol{x}) \right] = 0$$

Solving for $\Delta oldsymbol{p}$

• Solving for Δp in:

$$\sum_{\mathbf{x}} \left[\nabla I \frac{\partial W}{\partial \mathbf{p}} \right]^{T} \left[I(W(\mathbf{x}; \mathbf{p_0})) + \nabla I \frac{\partial W}{\partial \mathbf{p}} \Delta \mathbf{p} - T(\mathbf{x}) \right] = 0$$

• we get:

$$\Delta \boldsymbol{p} = H^{-1} \sum_{x} \left[\nabla I \frac{\partial W}{\partial \boldsymbol{p}} \right]^{T} \left[T(x) - I(W(\boldsymbol{x}; \boldsymbol{p_0})) \right]$$

where
$$H = \sum_{x} \left[\nabla I \frac{\partial W}{\partial p} \right]^{T} \left[\nabla I \frac{\partial W}{\partial p} \right]$$

H must be invertible!

Interpreting the H matrix for translation transformations

$$H = \sum_{x} \left[\nabla I \frac{\partial W}{\partial \boldsymbol{p}} \right]^{T} \left[\nabla I \frac{\partial W}{\partial \boldsymbol{p}} \right]$$

Recall that

1.
$$\nabla I = \begin{bmatrix} I_x & I_y \end{bmatrix}$$
 and

2. for translation motion, $\frac{\partial W}{\partial \mathbf{p}}(\mathbf{x}; \mathbf{p}) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Therefore,

$$H = \sum_{x} \left[\begin{bmatrix} I_{x} & I_{y} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right]^{T} \left[\begin{bmatrix} I_{x} & I_{y} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right]$$

$$= \sum_{x} \begin{bmatrix} I_{x}^{2} & I_{x}I_{y} \\ I_{x}I_{y} & I_{y}^{2} \end{bmatrix}$$
That's the matrix from the Harris corner detector we learnt in class!

$$I_y$$
 $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

learnt in class!

Interpreting the H matrix for affine transformations

	I_x^2	$I_x I_y$	xI_x^2	yI_xI_y	xI_xI_y	yI_xI_y
$H = \sum_{\mathbf{x}}$	I_xI_v	I_v^2	xI_xI_y	yI_{v}^{2}	xI_{v}^{2}	yI_v^2
	xI_x^2	yI_xI_y	$x^2I_x^2$	$y^2I_xI_y$	xyI_xI_y	$y^2I_xI_y$
	yI_xI_y	yI_y^2	xyI_xI_y	$y^2I_y^2$	xyI_y^2	$y^2I_y^2$
	xI_xI_y	xI_y^2	$x^2I_xI_y$	xyI_y^2	$x^2I_y^2$	xyI_y^2
	yI_xI_y	yI_y^2	xyI_xI_y	$y^2I_y^2$	xyI_y^2	$y^2I_y^2$

Overall KLT tracker algorithm

$$\Delta \boldsymbol{p} = H^{-1} \sum_{x} \left[\nabla I \frac{\partial W}{\partial \boldsymbol{p}} \right]^{T} \left[T(x) - I(W(\boldsymbol{x}; \boldsymbol{p_0})) \right]$$

Given the features from Harris detector:

- 1. Initialize p_0 .
- 2. Compute the initial templates T(x) for each feature.
- 3. Transform the features in the image I with $W(x; p_0)$.
- 4. Measure the error: $I(W(x; p_0)) T(x)$.
- 5. Compute the image gradients $\nabla I = \begin{bmatrix} I_x & I_y \end{bmatrix}$.
- 6. Evaluate the Jacobian $\frac{\partial W}{\partial \boldsymbol{p}}$.
- 7. Compute steepest descent $\nabla I \frac{\partial W}{\partial p}$.
- 8. Compute Inverse Hessian H^{-1}
- 9. Calculate the change in parameters Δp
- 10. Update parameters $m{p_0} = m{p_0} + \Delta m{p}$
- 11. Repeat 3 to 10 until Δp is small.

KLT over multiple frames

- Once you find a transformation for two frames, you will repeat this process for every couple of frames.
- Run Harris detector every 15-20 frames to find new features.

Challenges to consider

Implementation issues

- Window size (size of neighborhood/template around x)
 - Small window more sensitive to noise and may miss larger motions (without pyramid)
 - Large window more likely to cross an occlusion boundary (and it's slower)
 - 15x15 to 31x31 seems typical
- Weighting the window
 - Common to apply weights so that center matters more (e.g., with Gaussian)

Summary

• Iterative KLT tracker