WHAT IS CLAIMED IS:

10

1. A method of forming a multi-layer dielectric structure, the method comprising:

forming a first dielectric layer on a substrate according to a CVD process; and forming a second dielectric layer directly on the first dielectric layer according to an ALD process.

- 2. The method according to Claim 1, wherein the first dielectric layer comprises one selected from the group consisting of SiO₂, Si₃N₃, Ta₂O₅, HfO₂, ZrO₂, TiO₂, Y₂O₃, Pr₂O₃, La₂O₃, Nb₂O₅, SrTiO₃ (STO), BaSrTiO₃ (BST) and PbZrTiO₃ (PZT).
- The method according to Claim 1, wherein the second dielectric layer comprises one selected from the group consisting of SiO₂, Si₃N₃, Al₂O₃, Ta₂O₅, HfO₂, ZrO₂, TiO₂, Y₂O₃, Pr₂O₃, La₂O₃, Nb₂O₅, SrTiO₃ (STO), BaSrTiO₃ (BST) and PbZrTiO₃
 (PZT).
 - 4. The method according to Claim 1, wherein the first dielectric layer includes HfO₂ and the second dielectric layer includes Al₂O₃.
- 5. The method according to Claim 1, wherein forming a first dielectric layer comprises forming the first dielectric layer at a temperature in a range from about 25°C to about 700°C and a pressure in a range from about 1 x 10⁻⁶ Torr to about 760 Torr during the CVD process, and wherein forming a second dielectric layer comprises forming the second dielectric layer at a temperature in a range from about 25°C to about 700°C and a pressure in a range from about 1 x 10⁻⁶ Torr to about 760 Torr during the ALD process.
 - 6. A method of forming a multi-layer dielectric structure, the method comprising:
- forming a first dielectric layer on a substrate according to an ALD process; and

forming a second dielectric layer directly on the first dielectric layer according to a CVD process.

- 7. The method according to Claim 6, wherein the first dielectric layer comprises one selected from the group consisting of SiO₂, Si₃N₃, Ta₂O₅, HfO₂, ZrO₂, TiO₂, Y₂O₃, Pr₂O₃, La₂O₃, Nb₂O₅, SrTiO₃ (STO), BaSrTiO₃ (BST) and PbZrTiO₃ (PZT).
- The method according to Claim 6, wherein the second dielectric layer comprises one selected from the group consisting of SiO₂, Si₃N₃, Al₂O₃, Ta₂O₅, HfO₂,
 ZrO₂, TiO₂, Y₂O₃, Pr₂O₃, La₂O₃, Nb₂O₅, SrTiO₃ (STO), BaSrTiO₃ (BST) and PbZrTiO₃ (PZT).
 - 9. The method according to Claim 6, wherein the first dielectric layer includes HfO₂ and the second dielectric layer includes Al₂O₃.

10. A method of forming an integrated circuit capacitor, the method comprising:

forming a first electrode on a substrate;

15

20

forming a first dielectric layer on the first electrode using a first one of an ALD process and a CVD process;

forming a second dielectric layer on the first dielectric layer using a second one of the ALD process and the CVD process; and

forming a second electrode on the second dielectric layer.

- 25 11. The method according to Claim 10, wherein forming a first dielectric layer comprises forming the first dielectric layer in a first chamber, and wherein forming a second dielectric layer comprises forming the second dielectric layer in a second chamber.
- 30 12. The method according to Claim 11, further comprising transferring the substrate after forming the first dielectric layer while maintaining a vacuum on the substrate.

13. The method according to Claim 12, wherein transferring the substrate after forming the first dielectric layer while maintaining a vacuum on the substrate comprises transferring the substrate via a transfer chamber configured to be selectively coupled to the first and second chambers.

5

10

15

20

25

30

14. The method according to Claim 10:

wherein the first dielectric layer comprises one selected from the group consisting of SiO₂, Si₃N₃, Ta₂O₅, HfO₂, ZrO₂, TiO₂, Y₂O₃, Pr₂O₃, La₂O₃, Nb₂O₅, SrTiO₃ (STO), BaSrTiO₃ (BST) and PbZrTiO₃ (PZT); and

wherein the second dielectric layer comprises one selected from the group consisting of SiO₂, Si₃N₃, Al₂O₃, Ta₂O₅, HfO₂, ZrO₂, TiO₂, Y₂O₃, Pr₂O₃, La₂O₃, Nb₂O₅, SrTiO₃ (STO), BaSrTiO₃ (BST) and PbZrTiO₃ (PZT).

15. The method according to Claim 10:

wherein the first dielectric layer comprises one selected from the group consisting of SiO₂, Si₃N₃, Al₂O₃, Ta₂O₅, HfO₂, ZrO₂, TiO₂, Y₂O₃, Pr₂O₃, La₂O₃, Nb₂O₅, SrTiO₃ (STO), BaSrTiO₃ (BST) and PbZrTiO₃ (PZT); and

wherein the second dielectric layer comprises one selected from the group consisting of SiO₂, Si₃N₃, Ta₂O₅, HfO₂, ZrO₂, TiO₂, Y₂O₃, Pr₂O₃, La₂O₃, Nb₂O₅, SrTiO₃ (STO), BaSrTiO₃ (BST) and PbZrTiO₃ (PZT).

- 16. An apparatus for forming multi-layer dielectric structures on a semiconductor substrate, the apparatus comprising:
- a first chamber configured to form dielectric layers according to a chemical vapor deposition (CVD) process;

a second chamber configured to form dielectric layers according to an atomic layer deposition (ALD) process; and

means for providing a substrate to one of the first and second chambers for formation of a first dielectric layer on the substrate and for automatically transferring the substrate to a second one of the first and second chambers for formation of a second dielectric layer directly on the first dielectric layer.

17. The apparatus according to Claim 16, wherein the means for providing the substrate to a first one of the first and second chambers for formation of a first

dielectric layer on the substrate and for automatically transferring the substrate to the second one of the first and second chambers for formation of a second dielectric layer on the first dielectric layer comprises means for transferring the substrate between the first and second chambers while maintaining a vacuum on the substrate.

5

18. The apparatus according to Claim 17, wherein the means for transferring the substrate between the first and second chambers while maintaining a vacuum on the substrate comprises a transfer chamber configured to be selectively coupled to the first and second chambers.

10

19. The apparatus according to Claim 18, further comprising: a loadlock chamber configured to vacuumize the transfer chamber; and a cooling chamber configured to maintain a temperature of the transfer chamber.

15

20. The apparatus according to Claim 16:

wherein the first chamber is configured to form dielectric layers of a material selected from the group consisting of SiO₂, Si₃N₃, Al₂O₃, Ta₂O₅, HfO₂, ZrO₂, TiO₂, Y₂O₃, Pr₂O₃, La₂O₃, Nb₂O₅, SrTiO₃ (STO), BaSrTiO₃ (BST) and PbZrTiO₃ (PZT); and

20

wherein the second chamber is configured to form dielectric layers of a material selected from the group consisting of SiO₂, Si₃N₃, Al₂O₃, Ta₂O₅, HfO₂, ZrO₂, TiO₂, Y₂O₃, Pr₂O₃, La₂O₃, Nb₂O₅, SrTiO₃ (STO), BaSrTiO₃ (BST) and PbZrTiO₃ (PZT).