DATABASE MANAGEMENT SYSTEM

Course code: 22AI33 Credits: 04

L: P: T: S 3:0:0:0 CIE Marks: 50

Exam Hours: 03 SEE Marks: 50

Total Hours: 40

Course Objectives:

1. Understand the basic concepts and the applications of database systems.

2. Master the basics of SQL and construct queries using SQL.

3. Understand the relational database design principles.

4. To understand the concepts of normalization.

5. Design and build simple database applications.

6. Familiar with the basic issues of transaction processing and concurrency control.

Course Outcomes: At the end of the course, student will be able to:

CO1	Understand the basics of databases and database management systems		
CO2	Apply DBMS concepts to design and create databases that address specific real-		
	world scenerios		
CO3	Analyse a given scenario and use suitable database technique		
CO4	Demonstrate the various SQL & Relational algebra query processing		
CO5	Ability to conduct experiments as individual or team to using modern tools like Mysql and MongoDB		
CO6	Write clear and concise experiment reports that detail the methods, results, and conclusions of DBMS experiment		

Module	Contents of the Module	Hours	COs
	Introduction to Databases: Introduction, An Example,		
	Characteristics of Database approach, Advantages of using DBMS		
	approach, Wen not to use a DBMS Database System Concepts and		
1	Architecture: Data models, Schemas and instances, Three schema	08	CO1
	architecture and data independence Database languages and		
	interfaces, The database system environment.		
	SQL: SQL Data Definition and Data Types specifying basic		
	constraints in SQL, Basic retrieval queries in SQL, Insert, Delete		
	and Update statements in SQL, Additional features of SQL, More		
	complex SQL Queries, Specifying Constraints as Assertions and		
	Triggers, Views (Virtual Tables) in SQL, Schema Change		
	Statement in SQL.		
	Data Modelling using the Entity-Relationship(ER) model: Using		C02
	High-Level Conceptual Data Models for Database Design, A sample	08	&
	Database Application, Entity types, Entity Sets, Attributes, and Keys,		CO4
2	Relationship Types, Relationship Sets, Roles and Structural		
	Constraints, Weak Entity types, Refining the ER Design, ER		
	Diagrams, Naming Conventions and Design Issues, Relationship		
	Types of Degree Higher than two, Relational Database Design using		
	ER-to-Relational Mapping		
	Relational Data Model and Relational Database Constraints:		
	Relational Model Concepts, Relational Model Constraints and		
	Relational Database Schemas, Update Operations, Transactions and		CO3&
3	Dealing with Constraint Violations. Relational Algebra: Unary	08	CO4
	Relational Operations, SELECT, and PROJECT, Relational Algebra		
	Operations from Set Theory Binary Relational Operations: JOIN		
	and DIVISION, Additional Relational Operations, Examples of		
	Queries in Relational Algebra.		

	Database Design Theory and Normalization: Informal Design		
	Guidelines for Relation Schemas, Functional Dependencies, Normal		
	Forms Based on Primary Keys, General Definitions of Second and		CO2&
4	Third Normal Forms, Boyce-Codd Normal Form, Fourth Normal	08	CO2&
	Form, Fifth Normal Form.		
	Transaction Processing, Concurrency Control, and Recovery:		
	Introduction to Transaction Processing, Transaction and System		
	Concepts, Desirable Properties of Transactions, Two-Phase Locking		
	Techniques for Concurrency Control, Recovery Concepts, NO-		
5	UNDO/REDO Recovery Techniques based on Deferred Update,	08	
	Recovery Techniques Based on Immediate Update, Shadow Paging,		
	The ARIES Recovery Algorithm. Mongo DB: CRUD & nesting,		
	Indexing, Aggregation, Map reduce, Replica set, Sharding,		
	Geospatial and GridFS		

Text Books:

- "Fundamental of Database Systems", Ramez Elmasri and Shamkant B Navathe ,Sixth Edition, Pearson, 2019
- 2. "Database Management Systems", Ramakrishnan and Gehrke , Third Edition, McGraw Hill, 2016
- 3. "Seven Databases in Seven Weeks ",Luc Perkins with Eric Redmond and Jim R. Wilson, Second edition, 2018

Reference Books:

- 1. "An Introduction to Database Systems", C.J.Date, A.Kannan, S.Swamynathan,8th Edition ,Pearson Education,2017
- 2. "Database Systems: The Complete Book ", Hector Garcia Molina, Jeffrey D. Ullman, Jennifer Widom ,Second Edition, Pearson Education, 2018
- 3. "Database System Concepts". Abraham Silberschatz, Henry F. Korth, S. Sudarsha, Sixth Edition, Tata McGraw-Hill, 2017.