1. Théorème d'Urysohn

Soit E un espace euclidien de dimension n. On note $\|\cdot\|$ la norme définie par

$$||x||^2 = \langle x, x \rangle$$
.

Montrer que cette norme est de classe \mathcal{C}^{∞} hors de 0.

Pour tout couple de réels a < b on note $\varphi_{a,b}$ la fonction définie par

$$\varphi_{a,b}(x) = \begin{cases} 0 & \text{si } x \notin]a,b[\\ \exp\left(\frac{-1}{(x-a)(b-x)}\right) & \text{si } x \in]a,b[\end{cases}$$

Soit

$$\psi_{a,b}: x \mapsto k \int_{x}^{b} \varphi_{a,b}(t)dt$$

où $k^{-1} = \int_{\mathbb{R}} \varphi_{a,b}(t) dt$.

Montrer que $\psi_{a,b}$ est \mathcal{C}^{∞} , vaut 1 pour tout $x \leq a$, 0 pour $x \geq b$ et $f(x) \in [0,1]$ pour tout réel x.

On pose

$$\forall u \in E \quad f_{\delta}(u) = \lambda \psi_{0\delta}(\|u\|) \quad \text{avec} \quad \lambda^{-1} = \int_{E} \psi_{0\delta}(\|u\|) du$$

Montrer que cette fonction est \mathcal{C}^{∞} et déterminer son support.

Soient K un compact de E et Ω un ouvert contenant K. On cherche à construire une application définie sur E, à valeurs dans [0,1], qui vaut 1 sur K, 0 sur Ω^c et infiniment différentiable.

Pour tout point $x \in K$ on note d(x) la distance de x au complémentaire de Ω . Montrer qu'il existe $\delta > 0$ tell que pour tout $x \in K$ on ait $d(x) \geq 2\delta$.

On pose

$$V = \{x \in K; \ d(x, K) < \delta\}$$

et on note χ_V la fonction caractéristique de V.

Soit g la fonction définie par

$$\forall x \in E \quad g(x) = (f_{\delta} * \chi_V)(x) = \int_E f_{\delta}(x - t) \cdot \chi_V(t) dt$$

Montrer que pour tout $g(x) \in [0,1]$, g est de classe \mathcal{C}^{∞} à support compact et vérifie :

$$\forall x \in E \quad \chi_{\Omega}(x) > q(x) > \chi_{K}(x).$$

2. Partitions de l'unité

Les partitions de l'unité permettent le « passage du local au global »et sont particulièrement importantes en géométrie différentielle.

Le but de cette partie est de démontrer le résultat suivant : Soit $X \subset \mathbb{R}^n$. Alors pour tout recouvrement ouvert $\{U_\alpha\}$, il existe une suite de fonctions différentiables $\varphi_i i \in N$ définies sur X (appelée partition de l'unité subordonnée aux ouverts U_α) qui vérifient les propriétés suivantes :

$$0 \le \varphi_i(x) \le 1$$
 pour tout $x \in X$ et $i \in N$

Tout $x \in X$ admet un voisinage où toutes les φ_i sont identiquement nulles, sauf un nombre fini d'entre elles.

Pour tout $x \in X$, $\sum_{i} \varphi_i(x) = 1$.

Soit S un sous ensemble dénombrable dense de X et soit $\mathcal{B} = \{B_i\}$ l'ensemble des boules fermées de rayon rationnel r_i de centre p_i appartenant à S contenues dans l'un au moins des U_{α} . On note V_i la boule ouverte de rayon $r_i/2$ de centre p_i .

Montrer que $X = \bigcup V_i$

En utilisant la première partie, construire des fonctions ψ_i de classe \mathcal{C}^{∞} à support compact positives ou nulles telles que $\sum_1^n \psi_k(x) = 1$ pour tout $x \in V_1 \cup V_2 \cup \cdots \cup V_n$. Conclure. Bonnes vacances :)