## министерство высшего и среднего специального образования ссср

ЧЕЛЯБИНСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ им. ЛЕНИНСКОГО КОМСОМОЛА

N 1472-1387

УДК 517.43

И.Г.Корепанов

СКРЫТЫЕ СИММЕТРИИ ШЕСТИВЕРШИННОЙ МОДЕЛИ

І. Рассмотрим уравнение Янга - Бакстера

$$R(\lambda-\mu)L(\lambda)L(\mu)=L(\mu)L(\lambda)R(\lambda-\mu), \qquad (I)$$

где  $\mathcal{R}(\lambda_{-\mathcal{M}})$  –  $\mathcal{R}$  -матрица шестивершинной модели двумерной статистической физики [I]. Решением уравнения (I) служит, в первую очередь,  $\mathcal{L}$  -оператор вида

$$\mathcal{L}(\lambda) = \begin{pmatrix} \sin(\lambda + \eta) & \sin(\lambda - \eta) & \sin(2\eta) \\ & \sin(2\eta) & \sin(\lambda - \eta) \end{pmatrix}. \quad (2)$$

$$\sin(\lambda + \eta)$$

Серию других решений (I) позволяет построить операция размножения [2, 3]. Имеются также "тривиальные"решения (I) - постоянные  $\mathcal L$  -операторы с одномерным квантовым пространством

$$\mathcal{L}(\lambda) = \begin{pmatrix} a_o & 0 \\ 0 & d_o \end{pmatrix} \qquad \qquad \mathcal{L}(\lambda) = \begin{pmatrix} 0 & \ell_o \\ c_o & 0 \end{pmatrix}. \tag{3}$$

В случае произвольного  $\eta$  все известные конечномерные решения (I) получаются из перечисленных с помощью двух операций: построения неоднородных матриц монодромии

$$\mathcal{L}(\lambda) = \prod_{i=1}^{\widehat{M}} \mathcal{L}^{(i)}(\lambda_i + \lambda), \tag{4}$$

где  $\mathcal{L}^{(i)}(\lambda)$  - произвольные решения (I),  $\lambda_i$  - постоянные числа, а также взятием прямой суммы по квантовым пространст-



вам (при общем вспомогательном)

$$\mathcal{I}(\lambda) = \bigoplus_{i=1}^{K} \mathcal{I}^{(i)}(\lambda_i + \lambda). \tag{5}$$

Гораздо интереснее ситуация, если параметр  $\chi$  в (2) со-измерим с  $\chi$  . Пусть

$$\frac{2}{\pi} = \frac{m}{n}$$
,

m и n - взаимно произвольные числа. Тогда к решениям уравнения (I) следует добавить  $\mathcal{I}$  -матрицы

$$\mathcal{L}(\lambda) = \begin{pmatrix} \mathcal{A}(\lambda) & \mathcal{B}(\lambda) \\ \mathcal{C}(\lambda) & \mathcal{D}(\lambda) \end{pmatrix}, \tag{6}$$

где  $\mathcal{A}(\lambda)$  , ... ,  $\mathcal{D}(\lambda)$  размера  $h \times n$  имеют вид



Здесь a , d ,  $\rho$  ,  $\delta$  и все элементы матриц  $\mathcal{B}(\lambda)$  и  $\mathcal{C}(\lambda)$  – постоянные, причем выполнены соотношения (вычитание в индексах понимается mod n)

$$\delta_{k,k-1} c_{k,k-1} = \Delta + \frac{ad}{2} \cos(\rho - \delta + 2\eta(n-2k)),$$
 (II)

k=1 , ... , n ;  $\Delta$  - также постоянная.

 $\mathcal{L}$  -матрицы вида (6 - II) интересны тем (см. [4]), что не имеют в квантовом пространстве "порождающего вектора", аннулируемого операторами  $\mathcal{C}(\lambda)$  при каждом  $\lambda$  . Аналогом такого вектора оказывается для них "вакуумные векторы" в смысле работы [5]. В связи с этим важную роль при изучении оператора  $\mathcal{L}(\lambda)$  начинает играть его вакуумная кривая [5]  $\mathcal{L}(\lambda)$  - алгебраическая кривая в  $\mathcal{C}^2$ , заданная уравнением

 $\det \left( u \mathcal{A}(\lambda) + \mathcal{B}(\lambda) - u v \mathcal{C}(\lambda) - v \mathcal{D}(\lambda) \right) = 0.$ 

Явный вид  $\int_{\mathcal{I}} (\lambda)$  для всех интересующих нас случаев вычислен в работе [6]. (Все интересующие нас результаты работы [6] легко переносятся на общий случай, несмотря на имеющееся в [6] дополнительное ограничение  $\mathcal{C}(\lambda) = \mathcal{J}(\lambda)^{\mathsf{T}}$  на операторы (6 - II) ). Наиболее простым оказывается случай нечетного  $\mathcal{N}$ , которым мы вплоть до п. 5 и ограничимся.

Теорема I ([6]). Вакуумная кривая  $\Gamma_{\mathcal{L}}(\lambda)$   $\mathcal{L}$  -оператора вида (6 - II) задается уравнением

$$\sigma^{n} = \frac{\lambda(\lambda)u^{n} + \beta(\lambda)}{\gamma(\lambda)u^{n} + \delta(\lambda)},$$
где  $\lambda(\lambda) = \det A(\lambda), \ldots, \delta(\lambda) = \det D(\lambda).$ 
(12)

Сопоставим Z -матрице вида (6 - II) матрицу

$$M_{\mathcal{Z}}(\lambda) = \begin{pmatrix} \alpha(\lambda) & \beta(\lambda) \\ \gamma(\lambda) & \delta(\lambda) \end{pmatrix}. \tag{13}$$

Естественно считать  $M_{\chi}(\lambda)$  определенной с точностью до мероморфного скалярного множителя  $g(\lambda)$ . Далее в этой статье мы считаем всегда выполненным условие  $\det M_{\chi}(\lambda) \not\equiv 0$ .

Теорема 2. Вакуумная кривая  $f_{\mathcal{L}}(\lambda)$  матрицы монодромии (4), составленной из  $\mathcal{L}$ -матриц вида (6 - II), имеет вид

$$\left( v^n - \frac{\lambda(\lambda)u^n + \beta(\lambda)}{\gamma(\lambda)u^n + \delta(\lambda)} \right)^K = 0,$$

где К - натуральное число, а

$$\begin{pmatrix} \chi(\lambda) & \beta(\lambda) \\ \gamma(\lambda) & S(\lambda) \end{pmatrix} = \prod_{i=1}^{\widehat{M}} M_{\mathcal{L}^{(i)}} (\lambda_i + \lambda).$$
 (I4)

Доказательство легко следует из результатов работ [5,6]. Теорема 2 подсказывает сопоставить и матрице монодромии  $\mathcal{L}(\lambda)$  матрицу коэффициентов (I4) ее вакуумной кривой. При этом выполнено условие

$$(u,v) \in \Gamma_{\mathcal{L}}(\lambda) \Rightarrow v^n = \frac{\mathcal{L}(\lambda)u^n + \mathcal{S}(\lambda)}{\gamma(\lambda)u^n + \mathcal{S}(\lambda)},$$
 (15)

а тем, что  $f_{\mathcal{L}}$  может состоять из нескольких одинаковых компонент, мы пренебрегаем. Поставим, далее, в соответствие  $\mathcal{L}$  - матрице шестивершинной модели (2) и ее размноженным вариантам единичную матрицу  $\mathcal{M}_{\mathcal{L}}(\lambda)$ , а левой и правой матрицам (3) - соответственно

$$M_{\mathcal{Z}}(\lambda) = \begin{pmatrix} a_{o} & 0 \\ 0 & d_{o} \end{pmatrix} \qquad \blacksquare \qquad M_{\mathcal{Z}}(\lambda) = \begin{pmatrix} 0 & \ell_{o} \\ c_{o} & 0 \end{pmatrix}.$$

Разрешим включать теперь в матрицу монодромии (4) наряду с  $\mathcal{L}$  -матрицами вида (6 - II) и перечисленные в этом абзаце  $\mathcal{L}$  -матрицы. Используя результаты работы [6], находим, что такой матрице монодромии по-прежнему соответствует в смысле соотношения (I5) матрица  $\begin{pmatrix} \mathcal{L}(\lambda) & \mathcal{L}(\lambda) \\ \mathcal{L}(\lambda) & \mathcal{L}(\lambda) \end{pmatrix}^2$ 

получаемая из соотношения (14).

2. В работе [6] была введена инволютивная операция  $\mathcal{L}(\lambda) \mapsto \hat{\mathcal{L}}(\lambda)$  , сопоставляющая  $\mathcal{L}$  -матрице вида (6 - II) матрицу  $\hat{\mathcal{L}}(\lambda)$  такую, что вакуумная кривая матрицы монодромии  $\mathcal{L}(\lambda)\hat{\mathcal{L}}(\lambda)$  имела единичную матрицу коэффициентов  $\mathcal{M}_{\mathcal{L}\hat{\mathcal{L}}}(\lambda)$  . Распространим эту операцию на другие  $\mathcal{L}(\lambda)$  ,

положив

если 
$$\mathcal{L}(\lambda) = \begin{pmatrix} a_o & O \\ O & d_o \end{pmatrix}$$
 , то  $\hat{\mathcal{L}}(\lambda) = \begin{pmatrix} d_o & O \\ O & a_o \end{pmatrix}$ ,

если 
$$\mathcal{L}(\lambda) = \begin{pmatrix} 0 & \delta_{\circ} \\ c_{\circ} & 0 \end{pmatrix}$$
 , то  $\hat{\mathcal{L}}(\lambda) = \begin{pmatrix} 0 & \delta_{\circ} \\ c_{\circ} & 0 \end{pmatrix}$ ,

если  $\mathcal{L}(\lambda)$  –  $\mathcal{L}$ -матрица шестивершинной модели (2) или размноженная такая матрица, то  $\hat{\mathcal{L}}(\lambda) = \mathcal{L}(\lambda)$ , если  $\mathcal{L}(\lambda)$  – матрица монодромии вида (4), то

$$\widehat{\mathcal{I}}(\lambda) = \prod_{i=1}^{M} \widehat{\mathcal{I}}^{(i)}(\lambda_i + \lambda)$$

(произведение в противоположном порядке!).

3. Поменяем теперь местами квантовое и вспомогательное пространства у введенных в конце п. І матриц монодромии  $\mathcal{L}(\lambda)$  и рассмотрим для данной  $\mathcal{L}(\lambda)$  неоднородную трансферматрицу

$$T(\lambda) = Tr \prod_{i=1}^{N} I(\mu_i + \lambda),$$
 (16)

 $\mathcal{M}_{i}$  - фиксированные числа, действующую в пространстве  $\mathcal{H}$  размерности  $\mathcal{L}^{N}$  - тензорном произведении вспомогательных, с точки зрения соотношения (I ), пространств. В работе [6] показано, что если матрице  $\mathcal{L}(\lambda)$  соответствует в смысле (I5) единичная матрица  $\mathcal{M}_{\mathcal{L}}(\lambda)$  , то  $\mathcal{T}(\lambda)$  коммутирует с аналогичной трансфер-матрицей для любой другой матрицы  $\mathcal{L}(\lambda)$ .

Исходя из этого, изучим действие трансфер-матриц вида (16) в подпространстве  $H_{\mathbf{w}} \subset H$  , собственном одновременно для всех трансфер-матриц, построенных по  $\mathcal{L}(\lambda)$  с единичной матрицей  $\mathcal{M}_{\mathcal{F}}(\lambda) \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ .

Теорема 3. Пусть матрицы монодромии  $L_1(\lambda)$  и  $L_2(\lambda)$  имеют одну и ту же вакуумную кривую  $\Gamma(\lambda)$ . Пусть ограничения соответствующих им по формуле (16) трансфер-матриц на  $\mathcal{H}_{w}$  невырождены при  $\lambda=0$  :

$$\det T_1(0)\Big|_{H_w} \neq 0$$
,  $\det T_2(0)\Big|_{H_w} \neq 0$ .

Пусть, наконец, существует матрица монодромии  $\mathcal{L}_3(\lambda)$  такая что  $\mathcal{L}_1(\lambda)\mathcal{L}_3(\lambda)$  имеет единичную матрицу коэффициентов вакуумной кривой, причем для трансфер-матрицы, построенной по  $\mathcal{L}_3(\lambda)$ , также

$$\det T_3(0)\Big|_{H_w} \neq 0.$$

Тогда выполнено равенство

$$T_{1}(0)|_{H_{w}} = h T_{2}(0)|_{H_{w}}, \qquad (17)$$

h - числовой множитель.

Доказательство. В соответствии с определением  $\mathcal{H}_{\mathbf{w}}$  и

$$T_{1}(\lambda)T_{3}(\lambda)\Big|_{\mathcal{H}_{w}}=h_{1}(\lambda),\ T_{2}(\lambda)T_{3}(\lambda)\Big|_{\mathcal{H}_{w}}=h_{2}(\lambda),$$
 где  $h_{1}(\lambda),\ h_{2}(\lambda)$  - ненулевые скалярные функции,  $h_{1}(0)\neq 0$ ,  $h_{2}(0)\neq 0$ . Полагая  $h=\frac{h_{2}(0)}{h_{1}(0)}$ , приходим к (17). Теорема доказана.

4. Введенные в п.І матрицы  $\mathcal{M}_{\mathcal{L}}(\lambda)$  коэффициентов вакуумных кривых матриц монодромии  $\mathcal{L}(\lambda)$ , определенные с точностью до эквивалентности

$$M_{\mathcal{Z}}(\lambda) \sim g(\lambda) M_{\mathcal{Z}}(\lambda), \quad g(\lambda) \neq 0,$$

образуют группу, которую мы обозначим  $\mathcal{L}$ . Закон композиции в этой группе согласован с композицией  $\mathcal{L}$  -матриц ( в смысле построения матриц монодромии, см. (4) ), а обратным элементом для  $\mathcal{M}_{\mathcal{L}}(\lambda)$  может служить  $\mathcal{M}_{\mathcal{L}}(\lambda)$  (п. 2).

Определим теперь для введенного в п. 3 подпространства  $H_{w} \subset H$  подгруппу  $\mathcal{Y}_{w} \subset \mathcal{Y}$  , которая естественным образом проективно действует в  $H_{w}$  . Именно,  $\mathcal{Y}_{w}$  состоит из матриц  $M_{\mathcal{I}}(\lambda)$  для таких  $\mathcal{I}(\lambda)$ , для которых  $\det T(0)|_{H_{w}} \neq 0$  и, как в теореме 3, существует  $\mathcal{I}_{3}(\lambda)$  такое, что  $M_{\mathcal{I}\mathcal{I}_{3}}(\lambda) \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$  и  $\det T_{3}(0) \neq 0$ .

Действие подгруппы У определяется тогда формулой

$$M_{\mathcal{Z}}(\lambda) \mapsto T(0)|_{\mathcal{H}_{w}},$$
 (18)

корректной в силу теоремы 3.

- 5. Перенос изложенных в статье конструкций на случай четного n=2p может быть осуществлен с использований идей работы [6]. В частности, при построении "матриц монодромии" (4) вместо  $\mathcal{L}$ -матриц вида (6 II) следует использовать введенные в [6] матрицы  $\mathcal{L}_+(\lambda)$ .
- 6. По аналогии с частным случаем n=4 (модель "свободных фермионов") естественно предположить, что кратности вырождения собственных значений трансфер-матрицы шестивершинной модели при  $\eta = \frac{m}{n} \pi$  принимают значения

$$\dim H_{w}=2^{K_{w}}$$
 ,  $K_{w}$  - целые числа

Это предположение оказывается верным. Точную формулировку и доказательство автор намерен привести в дальнейших работах.

## СПИСОК ЛИТЕРАТУРЫ

- Тахтаджян Л.А., Фаддеев Л.Д. Квантовый метод обратной задачи и XYZ модель Гейзенберга// УМН. 1979. Т.34, вып. 5 (209). С. I3 63.
- 2. Kulish P.P., Sklyanin E.K. Quantum spectral transform method. Recent developments. // Lect. Notes in Phys. 1982.—V. 151.—P. 61—119.
- 3. Kulish P.P., Reshetikhin N. Yu., Sklyanin E. K. Yang-Baxter equation and representation theory. //Lett. Math. Phys. - 1981. - V. 5. - N° 5. - P. 393-403.
- 4. Izergin A.G., Korepin V.E. Lattice versions of quantum field theory models in two dimensions. / Nucl. Phys. B. 1982.—V. B205 [FS5].—N°3.—P. 401—413.
- 5. Кричевер И.М. Уравнения Бакстера и алгебраическая геометрия // Функц. анализ. I98I. Т. I5, вып. 2. С. 22 35.
- 6. Корепанов И.Г. Вакуумные кривые *L*-операторов, связанных с шестивершинной моделью, и построение *R*-операторов / Челяб. политехн. ин-т. Челябинск, 1986. 40 с.: илл. Виблиогр.: 17 назв. Деп. в ВИНИТИ 2.04.86, № 2271 В 86.

Печатается в соответствии с решением Ученого Совета Челябинского политехнического института имени Ленинского комсомола от 29 декабря 1986 года.

В печать 11. 02.84.

Цена 1-95

3ak. 32792

Производственно-издательский комбинат ВИНИТИ Люберцы, Октябрьский пр., 403