Groundwater potential zone map of Tirupattur, Tamilnadu

1. Introduction

Groundwater serves as a vital source of fresh water for domestic, agricultural, and industrial needs, especially in semiarid regions like **Tirupattur**, **Tamil Nadu**. Due to increasing water demand and declining water tables, it is essential to identify zones with high groundwater potential to ensure sustainable management.

This study aims to delineate **Groundwater Potential Zones (GWPZ)** using a **multi-criteria spatial analysis approach** in ArcGIS. The thematic layers considered in this analysis include:

- Drainage Density
- Lineament Density
- Slope
- Soil
- Lithology
- Land Use/Land Cover (LULC)
- Geomorphology

Each factor influences groundwater recharge, storage, and movement differently, making them crucial in accurate groundwater assessment.

2. Study Area

Location: Tirupattur district is located in the north-western part of Tamil Nadu, India. **Climate:** Semi-arid with seasonal rainfall during the northeast and southwest monsoons.

Major Water Sources: Tanks, seasonal rivers, and borewells.

3. Data and Methodology

3.1 Data Sources

• Satellite Data: Landsat-8/9 & ESRI landcover for LULC

• Slope Data: SRTM for slope

• Geological Data: Bhukosh

Soil Data: FAO/UNESCO soil map

• Lineament Data: Bhukosh

3.2 Methodology Steps

1. Preparation of Thematic Layers:

- Drainage Density: Derived from DEM using the hydrology tool in ArcGIS; lower drainage density areas favor infiltration.
- Lineament Density: extracted from bhukosh and weighted as potential groundwater conduits.
- o **Slope Map:** Classified from DEM; gentle slopes have higher recharge potential.
- o Soil Map: Categorized based on infiltration capacity.
- o Lithology Map: Identified rock types influencing porosity and permeability.

- o LULC Map: Classified using supervised classification in ArcGIS.
- o Geomorphology Map: Extracted from bhukosh datasets to identify recharge-friendly landforms.

2. Weight Assignment:

Analytical Hierarchy Process (AHP) was applied to assign relative weights to each thematic layer based on its influence on groundwater occurrence.

3. Overlay Analysis:

Weighted overlay of all layers was performed in ArcGIS to generate the Groundwater Potential Zone Map.

4. Results and Discussion

4.1 Groundwater Potential Zones Classification

The final map classified Tirupattur into the following categories:

- Very High Potential Zone Found in low slope, high lineament density, and permeable lithology areas.
- **High Potential Zone** Mostly agricultural plains with favorable soils and moderate drainage density.
- Moderate Potential Zone Transitional areas with mixed geomorphic and lithologic characteristics.
- Low Potential Zone Steep slopes, rocky terrain, and high drainage density areas.
- Very Low Potential Zone Hill regions with impervious lithology and sparse lineaments.

4.2 Key Influencing Factors

- Lineament Density and Slope emerged as primary controls on groundwater occurrence.
- LULC showed that agricultural and vegetation-rich zones corresponded with higher groundwater potential.
- **Lithology** revealed that weathered granite and gneissic terrains stored more groundwater than hard compact rocks.

5. Conclusion

The study successfully identified groundwater potential zones in Tirupattur using a GIS-based weighted overlay method. The findings can assist local authorities, farmers, and water management agencies in:

- Planning borewell drilling in high potential areas
- Designing artificial recharge structures in moderate potential areas
- Avoiding groundwater exploitation in low potential zones

Recommendation: Regular monitoring, coupled with sustainable groundwater management practices, is essential to ensure long-term water security in the district.

6. References

- 1. GSI Geological Maps of Tamil Nadu
- 2. BHUKOSH for geomorphology & lithology data
- 3. SRTM datasets from USGS Earth Explorer
- 4. Landsat data from USGS portals
- 5. FAO/UNESCO

