LECTURE 5: ADVANCED PANEL DATA

CHRIS CONLON

NYU STERN

MARCH 8, 2019

CAUSAL FE

RECALL THE FE ASSUMPTIONS

$$y_{it} = x_{it}'\beta + \eta_i + \varepsilon_{it}$$

- \blacksquare η_i is a fixed effect.
- To estimate everything consistently, we need $E[\varepsilon_{it}|x_{it},\eta_i] = 0$
- Mostly this is not true. Instead usually treat η_i as a control variable or nuisance parameter.
 - ► A nuisance parameter is one that we estimate but don't care about interpreting.
 - If we only care about β then η_i is a nuisance parameter.
- With a control or nuisance parameter we only require that $E[\varepsilon_{it}|\eta_i] = E[\varepsilon_{it}|x_{it},\eta_i]$ conditional mean independence.

RECALL THE FE ASSUMPTIONS

$$y_{it} = x_{it}'\beta + \eta_i + \varepsilon_{it}$$

- \blacksquare η_i is a fixed effect.
- To estimate everything consistently, we need $E[\varepsilon_{it}|x_{it},\eta_i] = 0$
- Mostly this is not true. Instead usually treat η_i as a control variable or nuisance parameter.
 - ► A nuisance parameter is one that we estimate but don't care about interpreting.
 - If we only care about β then η_i is a nuisance parameter.
- With a control or nuisance parameter we only require that $E[\varepsilon_{it}|\eta_i] = E[\varepsilon_{it}|x_{it},\eta_i]$ conditional mean independence.
- Once we condition on η_i it is as if ε_{it} and x_{it} are uncorrelated.

Causal FE

- We can get away with conditional mean independence if we don't care about η_i .
- But suppose that we care about $\widehat{\eta}_i$?
 - Teacher FE
 - Physician/Hospital FE
 - ► Location/County FE
 - Suppose we take someone from the 10th percentile and move them to the 90th percentile

Causal FE

- Now we have to really believe $E[\varepsilon_{it}|x_{it}, \eta_i] = 0$
- We should worry about the conventional omitted variable bias problem.
- Suppose there exists a variable w_{it} so that:

$$y_{it} = x_{it}'\beta + w_{it}'\gamma + \eta_i + \varepsilon_{it}$$

- Recall the conditions for OVB
 - w_{it} is correlated with x_{it}
 - w_{it} is a determinant of y_{it}
- New one: w_{it} is correlated with η_i
 - This is easy to satisfy!
 - w_{it} needs to be uncorrelated with anything about the individual i.

EXAMPLE: TEST SCORES

- Students s, Teachers t
- Want to measure effect of Teachers on Test Scores

$$TestScore_{st} = \beta x_s + \gamma w_t + \eta_t + \varepsilon_{st}$$

- We observe some features of students but not all of them (parent's education, household income, language spoken at home).
- We also observe some school specific variables w_t but not all of them (district spending per pupil, % free lunch, etc.).
- But we don't observe other things (jackhammering outside the classroom, which students have disruptive home lives,etc.).
 - ► If the mean of those things varies across teachers → we are screwed!
 - Can't get an accurate estimate of η_i .

EXAMPLE: TEST SCORES

We need a better design:

- We probably need random assignment of students to teachers.
- Ideally we would be able to control for student and school unobservables.
- Might want to see many students match with many teachers.

DYNAMIC PANEL DATA

DYNAMIC PANEL

■ Suppose that we also want to include a lagged $y_{i,t-1}$

$$y_{it} = \rho y_{i,t-1} + x'_{it}\beta + \eta_i + \varepsilon_{it}$$

■ We can treat η_i as a random effect or a fixed effect.

DYNAMIC PANEL: NICKELL (1981) BIAS

Consider the within transform

$$(y_{it} - \overline{y}_i) = \rho(y_{i,t-1} - \overline{y}_i) + (x_{it} - \overline{x}_i)'\beta + (\varepsilon_{it} - \overline{\varepsilon}_i)$$

- This eliminates the fixed effect.
- But $Cov(y_{i,t-1} \overline{y}_i, \varepsilon_{it} \overline{\varepsilon}_i) \neq o$. Why?
 - Both contain past and future values
 - ightharpoonup There is a direct relationship between y and arepsilon
 - ▶ Bias does not disappear as $N \to \infty$ (it does as $T \to \infty$).
 - ► For small *T*, dynamic panel model is inconsistent.

DYNAMIC PANEL: BIAS ALTERNATIVE

$$y_{it} = \rho y_{i,t-1} + x'_{it}\beta + \eta_i + \varepsilon_{it}$$

■ We require the following assumption (strict exogeneity):

$$E\left(\varepsilon_{it}|\mathbf{x}_{i1},\ldots,\mathbf{x}_{iT},\eta_{i}\right)=0,\quad t=1,\ldots,T$$

- But what about y_{it-1} ?
 - ▶ It is correlated with $\varepsilon_{i,t-1}$ and η_i (by construction).
 - With serial correlation it is correlated with ε_{it}
 - ► This is the usual endogeneity concern.

DYNAMIC PANEL: DIFFERENCED MODEL (ANDERSON-HSIAO)

How do we deal with endogeneity? With instruments!

$$y_{it} = \rho y_{i,t-1} + x'_{it}\beta + \eta_i + \varepsilon_{it}$$

Consider the first differences (s is a dummy time index):

$$E\left[x_{is}\left(\Delta y_{it} - \rho \Delta y_{i(t-1)} - \Delta x'_{it}\beta\right)\right] = 0$$

Idea:

- Under strict exogeneity of x_{it} we can use both lags and leads as instruments for $y_{i,t-1}$
- **Excluded Instruments** $x_{i,s}$ do not have a direct effect on $\Delta y_{i,t-1}$.
- These moments work even in presence of serially correlated errors.

MINIMAL EXAMPLE: ANDERSON-HSIAO

Imagine we have only T = 3 periods:

$$y_3 - y_2 = \alpha (y_2 - y_1) + \beta_0 (x_3 - x_2) + \beta_1 (x_2 - x_1) + (\varepsilon_3 - \varepsilon_2)$$

- $E(x_{is}\Delta\varepsilon_{i3})$ = 0 has three instruments (x_{i1},x_{i2},x_{i3}) .
- The model is just identified with 3 parameters $(\alpha, \beta_0, \beta_1)$.
- The challenge with this approach is often that it suffers from weak instruments.

BECKER, GROSSMAN, MURPHY (1994)

Study annual cigarette consumption with state-level data:

$$c_{it} = \theta c_{i,t-1} + \beta \theta c_{i,t-1} + \gamma p_{it} + \eta_i + \delta_t + v_{it}$$

A model of (forward looking) rational addiction:

- $c_{it} = Annual per capita cigarette consumption in packs by state.$
- $p_{it} = Average cigarette price per pack.$
- \blacksquare θ = Measure of the extent of addiction (for θ > 0).
- \blacksquare β = Discount factor.
- Derived from forward looking model of habit formation FOC's.

BECKER, GROSSMAN, MURPHY (1994)

$$c_{it} = \theta c_{i,t-1} + \beta \theta c_{i,t-1} + \gamma p_{it} + \eta_i + \delta_t + V_{it}$$

- Marginal utility of wealth can show up in γ or η_i .
- The errors v_{it} are unobserved life-cycle utility shifters, can be autocorrelated.
- Absent addiction θ = 0 and serial correlation in prices, we would expect to find dependence over time in c_{it} .
- Conditional on $c_{i,t}|(c_{i,t-1},c_{i,t+1})$ does not depend on $p_{i,t+1}$ or $p_{i,t+1}$.

BECKER, GROSSMAN, MURPHY (1994)

$$c_{it} = \theta c_{i,t-1} + \beta \theta c_{i,t-1} + \gamma p_{it} + \eta_i + \delta_t + v_{it}$$

- Identify (θ, β, γ) from the assumption that prices are strictly exogenous
- Use lagged and future $p_{i,t+s}$ and $p_{i,t-s}$ as IV.
- Use the change in cigarette taxes.
- Consumers need to fully anticipate future price changes for this to work.

BECKER, GROSSMAN, MURPHY (1994):TABLE

BECKER, GROSSMAN, MURPHY (1994):TABLE

DYNAMIC PANEL: ARELLANO BOND

The main idea is that the instruments come from within the model!

$$y_{it} = \rho y_{i,t-1} + x'_{it}\beta + \eta_i + \varepsilon_{it}$$

Consider the first differences (s is a dummy time index):

$$E\left[x_{is}\left(\Delta y_{it} - \rho \Delta y_{i(t-1)} - \Delta x'_{it}\beta\right)\right] = 0$$

Idea:

- Now relax strict exogeneity.
- \blacksquare Can still use x_{is} as contemporaneous exogenous instrument.
- What is an excluded instrument for $\Delta y_{i,t-1}$?
 - ► Needs to be relevant
 - Still needs to be exogenous: not a direct determinant

DYNAMIC PANEL: ARELLANO BOND

$$E\left[x_{is}\left(\Delta y_{it} - \rho \Delta y_{i(t-1)} - \Delta x'_{it}\beta\right)\right] = O$$

Idea: Use higher lags of y_{it} :

- \blacksquare [t = 2] or [t = 1]: no instruments,
- [t=3]: valid instrument for $\Delta y_{i2} = (y_{i2} y_{i1})$ is y_{i1} .
- \blacksquare [t = 4]: valid instruments for $\Delta y_{i3} = (y_{i3} y_{i2})$ is (y_{i2}, y_{i1})
- [t=5]: valid instruments for $\Delta y_{i_5} = (y_{i_5} y_{i_4})$ is $(y_{i_1}, \dots, y_{i_4})$.
- [t = T]: valid instruments for $\Delta y_{iT} = (y_{iT} y_{i,T-1})$ is $(y_{i1}, \dots, y_{i,T-1})$.

Thus there are T/(T-1)/2 instruments

DYNAMIC PANEL: ARELLANO BOND

$$\begin{split} &E\left[\boldsymbol{y}_{is}\left(\Delta y_{it}-\rho\Delta y_{i(t-1)}-\Delta x_{it}'\beta\right)\right]=o\\ &E\left[\Delta x_{it}\left(\Delta y_{it}-\rho\Delta y_{i(t-1)}-\Delta x_{it}'\beta\right)\right]=o \end{split}$$

- **v**_{is} = $[y_{i1}, \dots, y_{i,t-2}]$ for t > 2.
- Levels instrument Differences
- Thus there are T/(T-1)/2 instruments
- We can estimate with linear IV GMM: pgmm or dynpanel.
- The common complain is that instruments are still weak.

More Moments: Blundell and Bond

$$E\left[\mathbf{y}_{is}\left(\Delta y_{it} - \rho \Delta y_{i(t-1)} - \Delta x'_{it}\beta\right)\right] = 0$$

$$E\left[\Delta y_{i,t-1}\left(y_{it} - \rho y_{i(t-1)} - x'_{it}\beta\eta_{i}\right)\right] = 0$$

$$E\left[\Delta x_{it}\left(\Delta y_{it} - \rho \Delta y_{i(t-1)} - \Delta x'_{it}\beta\right)\right] = 0$$

- Differences also instrument Levels!
- Important when $\rho \rightarrow$ 1 or when σ_u/σ_ϵ becomes large.
- These can also pin down y_{io} , etc.
- This is known as GMM-SYS.