0.0.1 Results: ΔK_S^0 and ΔK^{\pm} : 10 Residual Correlations Included in Fit

Figures 1, 2, and 3 (Section ??) show experimental data with fits for all studied centralities for ΛK_S^0 with $\bar{\Lambda} K_S^0$, ΛK^+ with $\bar{\Lambda} K^-$, and ΛK^- with $\bar{\Lambda} K^+$, respectively. The parameter sets extracted from the fits can be found in Tables 1 and 2. All correlation functions were normalized in the range $0.32 < k^* < 0.40$ GeV/c, and fit in the range $0.0 < k^* < 0.30$ GeV/c. For the ΛK^- and $\bar{\Lambda} K^+$ analyses, the region 0.19 $< k^* < 0.23$ GeV/c was excluded from the fit to exclude the bump caused by the Ω^- resonance. The non-flat background was fit with a linear form from $0.6 < k^* < 0.9$ GeV/c. The theoretical fit function was then multiplied by this background during the fitting process.

In the figures (1, 2, and 3), the black solid line represents the "raw" fit, i.e. not corrected for momentum resolution effects nor non-flat background. The green line shows the fit to the non-flat background. The purple points show the fit after momentum resolution and non-flat background corrections have been applied. The initial values of the parameters is listed, as well as the final fit values with uncertainties.

For the ΛK_S^0 fits without residuals, λ was restricted to [0.4, 0.6].

Fig. 1: Fits, with 10 residual correlations included, to the ΛK_S^0 (left) and $\bar{\Lambda} K_S^0$ (right) data for the centralities 0-10% (top), 10-30% (middle), and 30-50% (bottom). The lines represent the statistical errors, while the boxes represent the systematic errors. Each has unique λ and normalization parameters. The radii are shared amongst like centralities; the scattering parameters ($\mathbb{R}f_0$, $\mathbb{I}f_0$, d_0) are shared amongst all. The black solid line represents the "raw" fit, i.e. not corrected for momentum resolution effects nor non-flat background. The green line shows the fit to the non-flat background. The purple points show the fit after momentum resolution and non-flat background corrections have been applied. The initial values of the parameters is listed, as well as the final fit values with uncertainties. Here, R was restricted to [2.,10.] and Λ was restricted to [0.1,0.8].

Fig. 2: Fits, with 10 residual correlations included, to the ΛK^+ (left) and $\bar{\Lambda} K^-$ (right) data for the centralities 0-10% (top), 10-30% (middle), and 30-50% (bottom). The lines represent the statistical errors, while the boxes represent the systematic errors. Each has unique λ and normalization parameters. The radii are shared amongst like centralities; the scattering parameters ($\mathbb{R}f_0$, $\mathbb{I}f_0$, d_0) are shared amongst all. The black solid line represents the "raw" fit, i.e. not corrected for momentum resolution effects nor non-flat background. The green line shows the fit to the non-flat background. The purple points show the fit after momentum resolution and non-flat background corrections have been applied. The initial values of the parameters is listed, as well as the final fit values with uncertainties.

Fig. 3: Fits, with 10 residual correlations included, to the ΛK^- (left) with $\bar{\Lambda} K^+$ (right) data for the centralities 0-10% (top), 10-30% (middle), and 30-50% (bottom). The lines represent the statistical errors, while the boxes represent the systematic errors. Each has unique λ and normalization parameters. The radii are shared amongst like centralities; the scattering parameters ($\mathbb{R}f_0$, $\mathbb{I}f_0$, d_0) are shared amongst all. The black solid line represents the "raw" fit, i.e. not corrected for momentum resolution effects nor non-flat background. The green line shows the fit to the non-flat background. The purple points show the fit after momentum resolution and non-flat background corrections have been applied. The initial values of the parameters is listed, as well as the final fit values with uncertainties.

(a) $\Lambda K^+(\bar{\Lambda}K^-)$ fits with residual contributions shown for the centralities 0-10% (top), 10-30% (middle), and 30-50% (bottom)

(b) $\Lambda K^-(\bar{\Lambda}K^+)$ fits with residual contributions shown for the centralities 0-10% (top), 10-30% (middle), and 30-50% (bottom)

Fig. 5: Fits, with 10 residual correlations included and shown, to the ΛK^+ & $\bar{\Lambda} K^-$ (left) and ΛK^- & $\bar{\Lambda} K^+$ (right) data for the centralities 0-10% (top), 10-30% (middle), and 30-50% (bottom). The ten parent pairs used for the residual correction to the ΛK^+ ($\bar{\Lambda} K^-$) fit are $\Sigma^0 K^+$, $\Xi^0 K^+$, $\Xi^0 K^+$, $\Sigma^{*(+,-,0)} K^+$, ΛK^{*0} , $\Sigma^0 K^{*0}$, $\Xi^0 K^{*0}$, and $\Xi^- K^{*0}$ ($\bar{\Sigma}^0 K^-$, $\bar{\Xi}^0 K^-$, $\bar{\Xi}^+ K^-$, $\bar{\Sigma}^* (+,-,0) K^-$, $\bar{\Lambda} \bar{K}^{*0}$, $\bar{\Sigma}^0 \bar{K}^{*0}$, $\bar{\Xi}^0 \bar{K}^{*0}$, and $\bar{\Xi}^+ \bar{K}^{*0}$).

Fit Results $\Lambda(\bar{\Lambda})K_s^0$

System	Centrality	Fit Parameters					
		λ	R	$\mathbb{R}f_0$	$\mathbb{I} f_0$	d_0	
$\Lambda K_S^0 \& \bar{\Lambda} K_S^0$	0-10%	$0.60 \pm 0.86 \text{ (stat.)} \pm 0.16 \text{ (sys.)}$	$2.89 \pm 0.48 \text{ (stat.)} \pm 0.33 \text{ (sys.)}$	$-0.39 \pm 0.12 \text{ (stat.)} \pm 0.16 \text{ (sys.)}$	$0.13 \pm 0.08 \text{ (stat.)} \pm 0.13 \text{ (sys.)}$	1.38 ± 1.06 (stat.) ± 0.62 (sys.)	
	10-30%		$2.59 \pm 0.46 \text{ (stat.)} \pm 0.23 \text{ (sys.)}$				
	30-50%		$1.93 \pm 0.33 \text{ (stat.)} \pm 0.11 \text{ (sys.)}$				

Table 1: Fit Results $\Lambda(\bar{\Lambda})K_S^0$, with 10 residual correlations included. Each pair is fit simultaneously with its conjugate (ie. ΛK_S^0 with $\bar{\Lambda}K_S^0$) across all centralities (0-10%, 10-30%, 30-50%), for a total of 6 simultaneous analyses in the fit. A single λ parameter is shared amongst all. Each analysis has a unique normalization parameter. The radii are shared between analyses of like centrality, as these should have similar source sizes. The scattering parameters ($\mathbb{R}f_0$, $\mathbb{I}f_0$, d_0) are shared amongst all. The background is modeled by a (6th-)degree polynomial fit to THERMINATOR simulation. The fit is done on the data with only statistical error bars. The errors marked as "stat." are those returned by MINUIT. The errors marked as "sys." are those which result from my systematic analysis (as outlined in Section ??).

Fit Results $\Lambda(\bar{\Lambda})K^{\pm}$

System	Centrality	Fit Parameters						
		λ	R	$\mathbb{R}f_0$	$\mathbb{I} f_0$	d_0		
$\Lambda K^+ \& \bar{\Lambda} K^-$	0-10%	$1.70 \pm 0.32 \text{ (stat.)} \pm 0.28 \text{ (sys.)}$	$6.18 \pm 0.63 \text{ (stat.)} \pm 0.54 \text{ (sys.)}$	$-1.34 \pm 0.17 \text{ (stat.)} \pm 0.36 \text{ (sys.)}$	$0.58 \pm 0.17 \text{ (stat.)} \pm 0.23 \text{ (sys.)}$	$0.86~\pm~0.42~{ m (stat.)}\pm~0.53~{ m (sys.)}$		
	10-30%	$1.19 \pm 0.22 \text{ (stat.)} \pm 0.36 \text{ (sys.)}$	$4.72 \pm 0.45 \text{ (stat.)} \pm 0.42 \text{ (sys.)}$					
$\Lambda K^+ \& \bar{\Lambda} K^-$	30-50%	$0.97 \pm 0.19 \text{ (stat.)} \pm 0.31 \text{ (sys.)}$	$3.25 \pm 0.30 \text{ (stat.)} \pm 0.32 \text{ (sys.)}$	$0.50 \pm 0.14 \text{ (stat.)} \pm 0.14 \text{ (sys.)}$	$0.53 \pm 0.11 \text{ (stat.)} \pm 0.11 \text{ (sys.)}$	$-3.72 \pm 1.28 \text{ (stat.)} \pm 1.33 \text{ (sys.)}$		

Table 2: Fit Results $\Lambda(\bar{\Lambda})K^{\pm}$, with 10 residual correlations included. All ΛK^{\pm} analyses are fit simultaneously across all centralities (0-10%, 10-30%, 30-50%). Scattering parameters ($\mathbb{R}f_0$, $\mathbb{I}f_0$, d_0) are shared between pair-conjugate systems (i.e. a parameter set describing the ΛK^+ & $\bar{\Lambda}K^-$ system, and a separate set describing the ΛK^- & $\bar{\Lambda}K^+$ system). For each centrality, a radius and λ parameters are shared between all pairs (ΛK^+ , $\bar{\Lambda}K^-$, ΛK^- , $\bar{\Lambda}K^+$). Each analysis has a unique normalization parameter. The background is modeled by a (6th-)degree polynomial fit to THERMINATOR simulation. The fit is done on the data with only statistical error bars. The errors marked as "stat." are those returned by MINUIT. The errors marked as "sys." are those which result from my systematic analysis (as outlined in Section ??).

Fig. 6: Extracted scattering parameters for the case of 10 residual contributors for all of our ΛK systems. [Top Left]: $\mathbb{I}f_0$ vs. $\mathbb{R}f_0$, together with d_0 to the right. [Top Right (Bottom Left, Bottom Right)]: λ vs. Radius for the 0-10% (10-30%, 30-50%) bin. The green [?] and yellow [?] points show theoretical predictions made using chiral perturbation theory.

Fig. 7: 10 residual correlations in ΛK fits. Extracted fit $R_{\rm inv}$ parameters as a function of pair transverse mass $(m_{\rm T})$ for various pair systems over several centralities. The ALICE published data [?] is shown with transparent, open symbols. The new ΛK results are shown with opaque, filled symbols. In the left, the ΛK^+ (with it's conjugate pair) results are shown separately from the ΛK^- (with it's conjugate pair) results. In the right, all ΛK^{\pm} results are averaged.