第一章

- 1.1 Semiconductor Materials
- 1.2 Types of Solids
- 1.3 Space Lattices
- 1.4 The Diamond Structure
- 1.5 Atomic Bonding

原子結構

中子

- ●不帶電
- ●質量為 1.675×10⁻²⁷ kg 約和質子相同
- 決定同位素之存在

質子

- 帶 1.602 × 10⁻¹⁹ 庫侖的**正電**
- 平均質量約 1.673×10⁻²⁷ kg, 約電子的 1836 倍
- **決定元素之種類**與在週期表 的位置

氫原子模型

△圖 1-32 原子中同心球切面,電子在不同能階間的躍遷示意圖

△圖 1-31 電子能階示意圖

電子排列示意圖

半導體材料

半導體,也就是導電性質介於金屬與絕緣體中間

- 元素半導體 elemental semiconductor,如 Si, Ge
- 化合物半導體 compound semiconductor,如 GaAs, InP

Table 1.1 A portion of the periodic table

III	IV	V
5	6	
В	C	
Boron	Carbon	
13	14	15
Al	Si	P
Aluminum	Silicon	Phosphorus
31	32	33
Ga	Ge	As
Gallium	Germanium	Arsenic
49		51
In		Sb
Indium		Antimony

Table 1.2 | A list of some semiconductor materials

Elemental semiconductors						
Si	Silicon					
Ge	Germanium					
Compound semiconductors						
AlP	Aluminum phosphide					
AlAs	Aluminum arsenide					
GaP	Gallium phosphide					
GaAs	Gallium arsenide					
InP	Indium phosphide					

週期表

IA																	VIIIA
1 1.008																	2 4.0026
H Hydrogen	IIA											IIIA	IVA	VA	VIA	VIIA	He Helium
3 6.939	4 9.012											5 10.811	6 12.011	7 14.007	8 15.999	9 18.998	10 20.183
Li	Ве											В	С	N	0	F	Ne
Lithium	Beryllium	Transition Metals										Boron	Carbon	Nitrogen	Oxygen	Florine	Neon
1122.989	12 24.312	J.312									13 26.981	14 28.086	15 30.974	16 32.064	17 35.453	18 39.948	
Na	Mg		I) (D	VD	VID	VIID		/IIID		ID.	u.b	AI	Si	P	S	CI	Ar
Sodium	Magnesium	IIIB	IVB	VB	VIB	VIIB		VIIIB -		IB		Aluminum	Silicon	Phosphorus	Sulfur	Chlorine	Argon
19 39.102	20 40.08	21 44.956	22 47.90	23 50.942	24 51.996	25 54.938	26 55.847	27 58.933	28 58.71	29 63.54	30 65.37	31 69.72	32 72.59	33 74.922	34 78.96	35 79.909	36 83.80
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potassium		Scandium		Vanadium		Manganese	Iron	Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
37 85.47	38 87.62	39 88.905	40 91.22	41 92.906	42 95.94	43 99	44 101.07	45 102.91	46 106.4	47 107.87	48 112.40	49 114.82	50 118.69	51 121.75	52 127.60	53 126.904	54 131.30
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	ı	Xe
Rubidium	Strontium	Yttrium	Zirconium	Niobium	Molybde- num	Technitium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	Iodine	Xenon
55 132.90	56 1137.34	57 138.91	72 178.49	73 180.95	74 183.85	75 186.2	76 190.2	77 192.2	78 195.09	79 196.96	80 200.59	81 204.37	82 207.19	83 208.98	84 210	85 210	86 222
Cs	Ва	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Cesium	Barium	Lanthanum	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
87 223	88 226	89 227	104	105	106	107	108	109	110						\triangle	Namm	. e to lo
Fr	Ra	Ac	Rf	На	Sg	Uns	Uno	Une	Uun							Nonn	netals
Francium	Radium	Actinium												M	etalloid	s	
	(semimetals)																
58 140.12 59 140.91 60 144.24 61 147 62 150.35 63 151.96 64 157.25 65 158.92 66 162.50 67 164.93 68 167.26 69 168.93 70 173.04 71 174.97																	
Lanth	nanides	;	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
			Cerium	Praseodym- ium	Neodym- ium	Prome- thium	Samarium	Europium	Gadolin- ium	Terbium	Dyspro- sium	Holmium	Erbium	Thulium	Ytterbium	Lutetium	
	4::-		90 232.04	91 231	92 238.03	93 237	94 242	95 243	96 247	97 247	98 249	99 254	100 253	101 256	102 253	103 257	

Cm

Curium

Bk

Berkelium

Cf

Californium Es

Einsteinium Fm

Fermium

Md

Mendelevium No

Nobelium

Lr

Lawrencium

Actinides

Th

Thorium

Pa

Procatinium Np

Uranium Neptunium Plutonium Americium

固態物質種類

非晶 Amorphous

有序程度非常低 (degree of order),原子排列雜亂無章 (<10 nm)

多晶 Poly-crystalline

有序程度中等 (100 nm - 10 μm),每個有序排列的區域稱為晶粒 (grains),每個晶粒之間的大小與排列方向不盡相同。

單晶 Single-crystalline

材料內原子的排序程度非常高,方向一致,幾乎呈現完美狀態

單晶矽

Space Lattices

晶格 (Lattice):一個區域或空間中,具有規則幾何排列的點或物體單位晶胞 (Unit cell):具對稱性的原子排列,可在空間上重複構建整個晶格晶格常數 (Lattice constant):單位晶胞的物理尺寸,通常以向量描述原胞 (Primitive cell):無法再被切割的單位晶格

$$\vec{r} = p\vec{a} + q\vec{b} + s\vec{c}$$

Primitive vector *p*, *q*, *s*: integer

Crystal System

Bravais lattice	Parameters	Simple (P)	Volume centered (I)	Base centered (C)	Face centered (F)
三斜晶系 Triclinic	$a_1 \neq a_2 \neq a_3$ $\alpha_{12} \neq \alpha_{23} \neq \alpha_{31}$		centered (1)	centered (C)	centered (F)
單斜晶系 Monoclinic	$a_1 \neq a_2 \neq a_3$ $\alpha_{23} = \alpha_{31} = 90^{\circ}$ $\alpha_{12} \neq 90^{\circ}$				
正交晶系 Orthorhombic	$a_1 \neq a_2 \neq a_3$ $\alpha_{12} = \alpha_{23} = \alpha_{31} = 90^{\circ}$				
四方晶系 Tetragonal	$a_1 = a_2 \neq a_3$ $\alpha_{12} = \alpha_{23} = \alpha_{31} = 90^{\circ}$				
菱方晶系 Trigonal	$a_1 = a_2 = a_3$ $\alpha_{12} = \alpha_{23} = \alpha_{31} < 120^{\circ}$				
立方晶系 Cubic	$a_1 = a_2 = a_3$ $\alpha_{12} = \alpha_{23} = \alpha_{31} = 90^{\circ}$				
六方晶系 Hexagonal	$a_1 = a_2 \neq a_3$ $\alpha_{12} = 120^{\circ}$ $\alpha_{23} = \alpha_{31} = 90^{\circ}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

Cubic crystal system

Simple cubic (SC) 簡單立方

Body-centered cubic (BCC) 體心立方

Face-centered cubic (FCC) 面心立方

Example 1.1 Find the Volume Density

Objective: Find the volume density of atoms in a crystal.

Consider a single-crystal material that is a body-centered cubic, as shown in Figure 1.5b, with a lattice constant $a = 5 \text{ Å} = 5 \times 10^{-8} \text{ cm}$. A corner atom is shared by eight unit cells that meet at each corner so that each corner atom effectively contributes one-eighth of its volume to each unit cell. The eight corner atoms then contribute an equivalent of one atom to the unit cell. If we add the body-centered atom to the corner atoms, each unit cell contains an equivalent of two atoms.

Volume Density =
$$\frac{\text{\# atoms per unit cell}}{\text{volume of unit cell}}$$

Example 1.1 Find the Volume Density

Objective: Find the volume density of atoms in a crystal.

Consider a single-crystal material that is a body-centered cubic, as shown in Figure 1.5b, with a lattice constant $a = 5 \text{ Å} = 5 \times 10^{-8} \text{ cm}$. A corner atom is shared by eight unit cells that meet at each corner so that each corner atom effectively contributes one-eighth of its volume to each unit cell. The eight corner atoms then contribute an equivalent of one atom to the unit cell. If we add the body-centered atom to the corner atoms, each unit cell contains an equivalent of two atoms.

$$\frac{\left(8 \times \frac{1}{8} + 1\right)}{\left(5 \times 10^{-8}\right)^3} = 1.6 \times 10^{22}$$
 Atoms/cm³

Crystal Planes and Miller Indices

如何描述一個晶面 → Miller indices

$$\vec{g} = p\vec{a} + q\vec{b} + s\vec{c} = 3\vec{a} + 2\vec{b} + 1\vec{c}$$

$$\left(\frac{1}{p}, \frac{1}{q}, \frac{1}{s}\right) = \left(\frac{1}{3}, \frac{1}{2}, \frac{1}{1}\right) = (2, 3, 6) = (236)$$

乘上三個分母的最小公倍數 6

Crystal Planes and Miller Indices

Crystal Planes and Miller Indices

Example 1.3 Calculate the Surface Density

Objective: Calculate the surface density of atoms on a particular plane in a crystal.

Consider the body-centered cubic structure and the (110) plane shown in Figure 1.9a. Assume the atoms can be represented as hard spheres with the closest atoms touching each other. Assume the lattice constant is $a_1 = 5$ Å. Figure 1.9b shows how the atoms are cut by the (110) plane.

Surface Density = $\frac{\text{\# of atoms per lattice plane}}{\text{area of lattice plane}}$

Example 1.3 Calculate the Surface Density

Objective: Calculate the surface density of atoms on a particular plane in a crystal.

Consider the body-centered cubic structure and the (110) plane shown in Figure 1.9a. Assume the atoms can be represented as hard spheres with the closest atoms touching each other. Assume the lattice constant is $a_1 = 5$ Å. Figure 1.9b shows how the atoms are cut by the (110) plane.

鑽石結構 The Diamond Structure

- · 四面體 (tetrahedral structure)是一個體心立方去掉四個角落的原子組成。
- 鑽石結構基本上是由多個四面體 (tetrahedral structure) 組成的。

Tetrahedral structure

The Diamond Structure

閃鋅結構 Zincblende structure

- 閃鋅礦結構與金剛石結構的不同之處僅在於晶格中有兩種不同類型的原子
- 每個 Ga 原子有四個最近的 As 原子,每個 As 有四個最近的 Ga 原子。

Test Your Understanding

- TYU 1.4 Consider the diamond unit cell shown in Figure 1.11. Determine the (a) number of corner atoms, (b) number of face-centered atoms, and (c) number of atoms totally enclosed in the unit cell. [†(5):9(q):8(e) suy]
- **TYU 1.5** The lattice constant of silicon is 5.43 Å. Calculate the volume density of silicon atoms. ($_{\varepsilon}$ -uio $_{77}$ 01 \times ς 'su $_{\psi}$)

Test Your Understanding

- TYU 1.4 Consider the diamond unit cell shown in Figure 1.11. Determine the (a) number of corner atoms, (b) number of face-centered atoms, and (c) number of atoms totally enclosed in the unit cell. [†(5):9(q):8(v) suy]
- **TYU 1.5** The lattice constant of silicon is 5.43 Å. Calculate the volume density of silicon atoms. ($_{\varepsilon}$ -uio $_{77}$ 01 \times ς 'su $_{\psi}$)

$$\frac{\left(8 \times \frac{1}{8} + 6 \times \frac{1}{2} + 4\right)}{\left(5.43 \times 10^{-8}\right)^{3}} = 5 \times 10^{22}$$
 Atoms/cm³

離子鍵 Ionic Bond

- 離子鍵通過兩個或多個原子失去或獲得電子而成為離子後形成。帶相反電荷的離子之間存在靜電吸引力,是離子化合物中主要交互作用。
- 此類經常是金屬與非金屬間形成,金屬元素失去電子,而非金屬元素得到電子。

共價鍵 Covalent Bond

- 兩顆或以上非金屬原子共同使用它們的外層電子,在理想情況下達到電子 飽和的狀態,由此組成比較穩定和堅固的化學結構。
- 與離子鍵不同,它們並沒有獲得或損失電子。同一種元素的原子或不同元素的原子都可以通過共價鍵結合,一般共價鍵結合的產物是分子,在少數情況下也可以形成晶體。

共價鍵 Covalent Bond

鄰近矽原子之間共享價電子,剛好滿足八隅體法則

金屬鍵 Metallic bond

- 游離電子與金屬離子之間的靜電吸引力組合而成。
- 由於電子是自由運動,金屬鍵沒有固定的方向,因而是非極性鍵。

