International Rectifier

IRF540NS IRF540NL

PD - 91342B

HEXFET® Power MOSFET

- Advanced Process Technology
- Ultra Low On-Resistance
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated

Description

Advanced HEXFET® Power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The D²Pak is a surface mount power package capable of accommodating die sizes up to HEX-4. It provides the highest power capability and the lowest possible onresistance in any existing surface mount package. The D²Pak is suitable for high current applications because of its low internal connection resistance and can dissipate up to 2.0W in a typical surface mount application.

The through-hole version (IRF540NL) is available for low-profile applications.

Absolute Maximum Ratings

	Parameter	Max.	Units	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V ⑦	33		
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V ⑦	23	Α	
I _{DM}	Pulsed Drain Current ①⑦	110		
P _D @T _C = 25°C	Power Dissipation	130	W	
	Linear Derating Factor	0.87	W/°C	
V_{GS}	Gate-to-Source Voltage	± 20	V	
I _{AR}	Avalanche Current①	16	Α	
E _{AR}	Repetitive Avalanche Energy①	13	mJ	
dv/dt	Peak Diode Recovery dv/dt ③⑦	7.0	V/ns	
T _J	Operating Junction and	-55 to + 175		
T _{STG}	Storage Temperature Range		°C	
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)		
	Mounting torque, 6-32 or M3 srew	10 lbf•in (1.1N•m)		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		1.15	°C/W
$R_{\theta JA}$	Junction-to-Ambient (PCB mount)**		40	O/ VV

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	100			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.12		V/°C	Reference to 25°C, I _D = 1mA ⑦
R _{DS(on)}	Static Drain-to-Source On-Resistance			44	mΩ	V _{GS} = 10V, I _D = 16A ④
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
9fs	Forward Transconductance	21			S	V _{DS} = 50V, I _D = 16A⊕⑦
I _{DSS}	Drain-to-Source Leakage Current			25	μA	V _{DS} = 100V, V _{GS} = 0V
צפטי	Brain to Godice Leakage Guiterit			250	μΛ	$V_{DS} = 80V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
1	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	''^	V _{GS} = -20V
Qg	Total Gate Charge			71		I _D = 16A
Q _{gs}	Gate-to-Source Charge			14	nC	$V_{DS} = 80V$
Q _{gd}	Gate-to-Drain ("Miller") Charge			21		V _{GS} = 10V, See Fig. 6 and 13 ④⑦
t _{d(on)}	Turn-On Delay Time		11			$V_{DD} = 50V$
t _r	Rise Time		35		no	$I_D = 16A$
t _{d(off)}	Turn-Off Delay Time		39		ns	$R_G = 5.1\Omega$
t _f	Fall Time		35			V _{GS} = 10V, See Fig. 10 ⊕⑦
1	Internal Drain Inductance		4.5			Between lead,
L _D	Internal Dialit inductance		4.5		nH	6mm (0.25in.)
	Internal Course Industrance		7.5	7.5 —		from package
L _S	Internal Source Inductance		7.5			and center of die contact
C _{iss}	Input Capacitance		1960			V _{GS} = 0V
Coss	Output Capacitance		250			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		40		pF	$f = 1.0 \text{MHz}$, See Fig. 5 \bigcirc
E _{AS}	Single Pulse Avalanche Energy 2 7		700⑤	185⑥	mJ	I _{AS} = 16A, L = 1.5mH

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions			
Is	Continuous Source Current			20		MOSFET symbol			
	(Body Diode)			33	Α	showing the			
I _{SM}	Pulsed Source Current						110		integral reverse
	(Body Diode)①		- 110		p-n junction diode.				
V _{SD}	Diode Forward Voltage			1.2	V	$T_J = 25^{\circ}C$, $I_S = 16A$, $V_{GS} = 0V$ ④			
t _{rr}	Reverse Recovery Time		115	170	ns	$T_J = 25^{\circ}C, I_F = 16A$			
Q _{rr}	Reverse Recovery Charge		505	760	nC	di/dt = 100A/µs ④⑦			
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)							

Notes:

- Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ② Starting $T_J = 25^{\circ}C$, L = 1.5mH $R_G = 25\Omega$, $I_{AS} = 16A$. (See Figure 12)
- $\label{eq:loss} \begin{array}{l} \text{ } \exists \text{ } I_{SD} \leq 16\text{A, di/dt} \leq 340\text{A/}\mu\text{s, } V_{DD} \leq V_{(BR)DSS}, \\ T_{J} \leq 175^{\circ}\text{C} \end{array}$
- 4 Pulse width \leq 400 μ s; duty cycle \leq 2%.
- ⑤ This is a typical value at device destruction and represents operation outside rated limits.
- $\mbox{\ensuremath{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath}\ensuremat$
- ② Uses IRF540N data and test conditions.
- **When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994

International Rectifier

IRF540NS/IRF540NL

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

International Rectifier

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area www.irf.com

International TOR Rectifier

IRF540NS/IRF540NL

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

International TOR Rectifier

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

* Reverse Polarity of D.U.T for P-Channel

*** V_{GS} = 5.0V for Logic Level and 3V Drive Devices

Fig 14. For N-channel HEXFET® power MOSFETs

International TOR Rectifier

D²Pak Package Outline

Dimensions are shown in millimeters (inches)

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14,5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 3. DIMENSION D & E DO NOT INCLUDE MOLD FLASH, MOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.
- A.DIMENSION 61 AND 61 APPLY TO BASE METAL ONLY.
- 5. CONTROLLING DIMENSION: INCH.

S Y M		Ŋ				
B	MILLIM	ETERS	INC	N O T		
L	MIN. MAX.		MAX. MIN.		E S	
Α	4.06	4.83	.160	.190		
A1	0,00	0.254	.000	.010		
ь	0,51	0,99	.020	.039		
ь1	0,51	0.89	.020	,035	4	
b2	1,14	1.78	.045	.070		
c	0.38	0.74	.015	.029		
c1	0.38	0.58	.015	.023	4	
c2	1,14	1.65	.045	.065		
D	8.51	9.65	.335	.380	3	
D1	6.86		.270			
Ε	9.65	10,67	.380	.420	3	
E1	6.22		.245			
e	2.54	BSC	.100			
н	14.61	15.88	.575	.625		
L	1.78	2.79	.070	.110		
L1		1.65		.065		
L2	1.27	1.78	.050	.070		
L3	0.25	BSC	.010	.010 BSC		
L4	4,78	5.28	.188	.208		
m	17,78		.700			
m1	8,89		.350			
n	11,43		.450			
۰	2,08		.082			
Р	3.81		.150			
R	0.51	0.71	.020	.028		
θ	90*	93*	90,	93,		

LEAD ASSIGNMENTS

HEXFET 1,- GATE 2, 4,- DRAIN 3,- SOURCE

1.- GATE 2, 4.- COLLECTOR 3.- EMITTER

DIODES

1.- ANODE *
2, 4.- CATHODE
3.- ANODE

* PART DEPENDENT.

D²Pak Part Marking Information

EXAMPLE: THIS IS AN IRF530S WITH LOT CODE 8024

ASSEMBLED ON WW 02, 2000 IN THE ASSEMBLY LINE 'L'

Note: "P" in assembly line position indicates "Lead — Free"

PART NUMBER INTERNATIONAL RECTIFIER F 530S LOGO **IOR** 002L DATE CODE 80 24 YEAR 0 = 2000 A A ASSEMBLY WEEK 02 LOT CODE LINE L

International TOR Rectifier

IRF540NS/IRF540NL

TO-262 Package Outline

Dimensions are shown in millimeters (inches)

TO-262 Part Marking Information

D²Pak Tape & Reel Information

Data and specifications subject to change without notice.

This product has been designed and qualified for the industrial market.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/