#### **Data Mining**

The Textbook

#### About the Book

This textbook explores the different aspects of data mining from the fundamentals to the complex data types and their applications, capturing the wide diversity of problem domains for data mining issues. It goes beyond the traditional focus on data mining problems to introduce advanced data types such as text, time series, discrete sequences, spatial data, graph data, and social networks. Until now, no single book has addressed all these topics in a comprehensive and integrated way. The chapters of this book fall into one of three categories:

- Fundamental chapters: Data mining has four main problems, which correspond to clustering, classification, association pattern mining, and outlier analysis. These chapters comprehensively discuss a wide variety of methods for these problems.
- **Domain chapters:** These chapters discuss the specific methods used for different domains of data such as text data, time-series data, sequence data, graph data, and spatial data.
- Application chapters: These chapters study important applications such as stream mining, Web mining, ranking, recommendations, social networks, and privacy preservation. The domain chapters also have an applied flavor.

Appropriate for both introductory and advanced data mining courses, *Data Mining: The Text-book* balances mathematical details and intuition. It contains the necessary mathematical details for professors and researchers, but it is presented in a simple and intuitive style to improve accessibility for students and industrial practitioners (including those with a limited mathematical background). Numerous illustrations, examples, and exercises are included, with an emphasis on semantically interpretable examples.

#### About the Author

**Charu C. Aggarwal** is a Distinguished Research Staff Member (DRSM) at the IBM T.J. Watson Research Center in Yorktown Heights, New York. He completed his B.S. from IIT Kanpur in 1993 and his Ph.D. from the Massachusetts Institute of Technology in 1996. He has published more than 250 papers in refereed conferences and journals and authored over 80 patents. He is the author or editor of 14 books, including the first comprehensive book on outlier analysis, which



is written from a computer science point of view. Because of the commercial value of his patents, he has thrice been designated a Master Inventor at IBM. He has won multiple awards, chaired conferences, and currently serves on several journal editorial boards. He is a fellow of the ACM and the IEEE, for "contributions to knowledge discovery and data mining algorithms."

#### **Computer Science**



**▶** springer.com

Ayyai wa

Charu C. Aggarwal

# Data Mining

The Textbook





Data Mining: The Textbook

Charu C. Aggarwal IBM T. J. Watson Research Center Yorktown Heights, New York

March 8, 2015

To my wife Lata, and my daughter Sayani

iv

#### Contents

| 1 | $\mathbf{A}\mathbf{n}$ |         | action to Data Mining 1                                                                                                    |
|---|------------------------|---------|----------------------------------------------------------------------------------------------------------------------------|
|   | 1.1                    |         | $action \dots \dots$ |
|   | 1.2                    | The Da  | ata Mining Process                                                                                                         |
|   |                        | 1.2.1   | The Data Preprocessing Phase                                                                                               |
|   |                        | 1.2.2   | The Analytical Phase                                                                                                       |
|   | 1.3                    | The Ba  | sic Data Types                                                                                                             |
|   |                        | 1.3.1   | Non-dependency Oriented Data                                                                                               |
|   |                        |         | 1.3.1.1 Quantitative Multidimensional Data                                                                                 |
|   |                        |         | 1.3.1.2 Categorical and Mixed Attribute Data                                                                               |
|   |                        |         | 1.3.1.3 Binary and Set Data                                                                                                |
|   |                        |         | 1.3.1.4 Text Data                                                                                                          |
|   |                        | 1.3.2   | Dependency Oriented Data                                                                                                   |
|   |                        |         | 1.3.2.1 Time-Series Data                                                                                                   |
|   |                        |         | 1.3.2.2 Discrete Sequences and Strings                                                                                     |
|   |                        |         | 1.3.2.3 Spatial Data                                                                                                       |
|   |                        |         | 1.3.2.4 Network and Graph Data                                                                                             |
|   | 1.4                    | The Ma  | ajor Building Blocks: A Bird's Eye View                                                                                    |
|   |                        |         | Association Pattern Mining                                                                                                 |
|   |                        |         | Data Clustering                                                                                                            |
|   |                        |         | Outlier Detection                                                                                                          |
|   |                        |         | Data Classification                                                                                                        |
|   |                        |         | Impact of Complex Data Types on Problem Definitions 18                                                                     |
|   |                        |         | 1.4.5.1 Pattern Mining with Complex Data Types 18                                                                          |
|   |                        |         | 1.4.5.2 Clustering with Complex Data Types                                                                                 |
|   |                        |         | 1.4.5.3 Outlier Detection with Complex Data Types 19                                                                       |
|   |                        |         | 1.4.5.4 Classification with Complex Data Types                                                                             |
|   | 1.5                    | Scalabi | lity Issues and the Streaming Scenario                                                                                     |
|   | 1.6                    |         | through some Application Scenarios                                                                                         |
|   |                        |         | Store Product Placement                                                                                                    |
|   |                        |         | Customer Recommendations                                                                                                   |
|   |                        |         | Medical Diagnosis                                                                                                          |
|   |                        |         | Web Log Anomalies                                                                                                          |
|   | 1.7                    |         | rry                                                                                                                        |
|   | 1.8                    |         | raphic Notes                                                                                                               |
|   | 1.0                    | Evercis | 1                                                                                                                          |

vi CONTENTS

| <b>2</b> | Dat               | a Prep  | paration                                                     | 25              |
|----------|-------------------|---------|--------------------------------------------------------------|-----------------|
|          | 2.1               | Introd  | uction                                                       | 25              |
|          | 2.2               |         | e Extraction and Portability                                 | 26              |
|          |                   | 2.2.1   | Feature Extraction                                           | 26              |
|          |                   | 2.2.2   | Data Type Portability                                        | 27              |
|          |                   |         | 2.2.2.1 Numeric to Categorical Data: Discretization          | 28              |
|          |                   |         | 2.2.2.2 Categorical to Numeric Data: Binarization            | 29              |
|          |                   |         | 2.2.2.3 Text to Numeric Data                                 | 29              |
|          |                   |         | 2.2.2.4 Time Series to Discrete Sequence Data                | 30              |
|          |                   |         | 2.2.2.5 Time Series to Numeric Data                          | 30              |
|          |                   |         | 2.2.2.6 Discrete Sequence to Numeric Data                    | 30              |
|          |                   |         | 2.2.2.7 Spatial to Numeric Data                              | 31              |
|          |                   |         | 2.2.2.8 Graphs to Numeric Data                               | 31              |
|          |                   |         | 2.2.2.9 Any Type to Graphs for Similarity-based Applications | 31              |
|          | 2.3               | Data (  | Cleaning                                                     | 32              |
|          | 2.0               | 2.3.1   | Handling Missing Entries                                     | 33              |
|          |                   | 2.3.2   | Handling Incorrect and Inconsistent Entries                  | 33              |
|          |                   | 2.3.3   | Scaling and Normalization                                    | 34              |
|          | 2.4               |         | Reduction and Transformation                                 | 35              |
|          | 2.1               | 2.4.1   | Sampling                                                     | 35              |
|          |                   | 2.1.1   | 2.4.1.1 Sampling for Static Data                             | 36              |
|          |                   |         | 2.4.1.2 Reservoir Sampling for Data Streams                  | 36              |
|          |                   | 2.4.2   | Feature Subset Selection                                     | 38              |
|          |                   | 2.4.3   | Dimensionality Reduction with Axis Rotation                  | 38              |
|          |                   | 2.4.0   | 2.4.3.1 Principal Component Analysis                         | 39              |
|          |                   |         | 2.4.3.2 Singular Value Decomposition                         | 41              |
|          |                   |         | 2.4.3.3 Latent Semantic Analysis                             | 45              |
|          |                   |         | 2.4.3.4 Applications of PCA and SVD                          | 45              |
|          |                   | 2.4.4   | Dimensionality Reduction with Type Transformation            | 46              |
|          |                   | 2.4.4   | 2.4.4.1 Haar Wavelet Transform                               | 47              |
|          |                   |         | 2.4.4.2 Multidimensional Scaling                             | 52              |
|          |                   |         | 2.4.4.3 Spectral Transformation and Embedding of Graphs      | $\frac{52}{54}$ |
|          | 2.5               | Summ    | ary                                                          | 56              |
|          | $\frac{2.5}{2.6}$ |         | graphic Notes                                                | 57              |
|          | $\frac{2.0}{2.7}$ | ,       | ses                                                          | 57              |
|          | 4.1               | Exerci  |                                                              | 91              |
| 3        | $\mathbf{Sim}$    | ilarity | and Distances                                                | <b>59</b>       |
|          | 3.1               | Introd  | uction                                                       | 59              |
|          | 3.2               | Multic  | limensional Data                                             | 60              |
|          |                   | 3.2.1   | Quantitative Data                                            | 60              |
|          |                   |         | 3.2.1.1 Impact of Domain-specific Relevance                  | 61              |
|          |                   |         | 3.2.1.2 Impact of High Dimensionality                        | 61              |
|          |                   |         | 3.2.1.3 Impact of Locally Irrelevant Features                | 62              |
|          |                   |         | 3.2.1.4 Impact of Different $L_p$ -norms                     | 63              |
|          |                   |         | 3.2.1.5 Match-based Similarity Computation                   | 64              |
|          |                   |         | 3.2.1.6 Impact of Data Distribution                          | 65              |
|          |                   |         | 3.2.1.7 Nonlinear Distributions: ISOMAP                      | 66              |
|          |                   |         | 3.2.1.8 Impact of Local Data Distribution                    | 67              |
|          |                   |         | 3.2.1.9 Computational Considerations                         | 69              |
|          |                   | 3.2.2   | Categorical Data                                             | 69              |
|          |                   | 3.2.3   | Mixed Quantitative and Categorical Data                      | 70              |

vii

|   | 3.3            | Text S   | imilarity Measures                                          | 71  |
|---|----------------|----------|-------------------------------------------------------------|-----|
|   |                | 3.3.1    | Binary and Set Data                                         | 72  |
|   | 3.4            | Tempo    | ral Similarity Measures                                     | 72  |
|   |                | 3.4.1    | Time-Series Similarity Measures                             | 73  |
|   |                |          | 3.4.1.1 Impact of Behavioral Attribute Normalization        | 74  |
|   |                |          | 3.4.1.2 $L_p$ -norm                                         | 74  |
|   |                |          | 3.4.1.3 Dynamic Time Warping Distance                       | 74  |
|   |                |          | 3.4.1.4 Window-based Methods                                | 77  |
|   |                | 3.4.2    | Discrete Sequence Similarity Measures                       | 77  |
|   |                |          | 3.4.2.1 Edit Distance                                       | 77  |
|   |                |          | 3.4.2.2 Longest Common Subsequence                          | 79  |
|   | 3.5            | Graph    | Similarity Measures                                         | 80  |
|   |                | 3.5.1    | Similarity between Two Nodes in a Single Graph              | 80  |
|   |                |          | 3.5.1.1 Structural Distance-based Measure                   | 80  |
|   |                |          | 3.5.1.2 Random Walk-based Similarity                        | 81  |
|   |                | 3.5.2    | Similarity between Two Graphs                               | 81  |
|   | 3.6            | Superv   | rised Similarity Functions                                  | 82  |
|   | 3.7            |          | ary                                                         | 83  |
|   | 3.8            |          | graphic Notes                                               | 84  |
|   | 3.9            | ~        | Ses                                                         | 85  |
|   |                |          |                                                             |     |
| 4 | $\mathbf{Ass}$ | ociatio: | n Pattern Mining                                            | 87  |
|   | 4.1            | Introdu  | uction                                                      | 87  |
|   | 4.2            | The Fr   | requent Pattern Mining Model                                | 88  |
|   | 4.3            | Associa  | ation Rule Generation Framework                             | 91  |
|   | 4.4            | Freque   | nt Itemset Mining Algorithms                                | 92  |
|   |                | 4.4.1    | Brute Force Algorithms                                      | 93  |
|   |                | 4.4.2    | The Apriori Algorithm                                       | 94  |
|   |                |          | 4.4.2.1 Efficient Support Counting                          | 95  |
|   |                | 4.4.3    | Enumeration-Tree Algorithms                                 | 96  |
|   |                |          | 4.4.3.1 Enumeration-Tree-based Interpretation of Apriori    | 96  |
|   |                |          | 4.4.3.2 TreeProjection and DepthProject                     | 96  |
|   |                |          | 4.4.3.3 Vertical Counting Methods                           | 104 |
|   |                | 4.4.4    | Recursive Suffix-based Pattern Growth Methods               | 106 |
|   |                |          | 4.4.4.1 Implementation with Arrays but no Pointers          | 107 |
|   |                |          | 4.4.4.2 Implementation with Pointers but no FP-Tree         | 108 |
|   |                |          | 4.4.4.3 Implementation with Pointers and FP-Tree            | 109 |
|   |                |          | 4.4.4.4 Trade-offs with Different Data Structures           | 112 |
|   |                |          | 4.4.4.5 Relationship between FP-growth and Enumeration-Tree |     |
|   |                |          | Methods                                                     | 113 |
|   | 4.5            | Alterna  | ative Models: Interesting Patterns                          | 115 |
|   |                | 4.5.1    | Statistical Coefficient of Correlation                      | 116 |
|   |                | 4.5.2    | $\chi^2$ Measure                                            | 116 |
|   |                | 4.5.3    | Interest Ratio                                              | 117 |
|   |                | 4.5.4    | Symmetric Confidence Measures                               | 117 |
|   |                | 4.5.5    | Cosine Coefficient on Columns                               | 118 |
|   |                | 4.5.6    | Jaccard Coefficient and the Min-hash Trick                  | 118 |
|   |                | 4.5.7    | Collective Strength                                         | 119 |
|   |                | 4.5.8    |                                                             | 120 |
|   | 4.6            | Useful   | Meta-Algorithms                                             | 120 |
|   |                |          | · ·                                                         | 120 |

viii CONTENTS

|   |              | 4.6.2         | Data Partitioned Ensembles            | 121          |
|---|--------------|---------------|---------------------------------------|--------------|
|   |              | 4.6.3         |                                       | 121          |
|   |              | 1.0.0         |                                       | 122          |
|   |              |               |                                       | 122          |
|   | 4.7          | Summ          | 8                                     | 122          |
|   | 4.8          |               | V                                     | 123          |
|   | 4.9          | ,             |                                       | 124          |
| 5 | <b>A</b> aa  | a aiatia      | n Dettem Mining Advanced Concents     | 127          |
| Э | 5.1          |               | 8                                     | 127<br>127   |
|   | $5.1 \\ 5.2$ |               |                                       | 128          |
|   | 0.2          | 5.2.1         |                                       | 128          |
|   |              | 5.2.1 $5.2.2$ |                                       | $120 \\ 129$ |
|   |              | 5.2.2         |                                       | 131          |
|   |              | 0.2.5         |                                       | 131          |
|   |              |               |                                       | $131 \\ 132$ |
|   | 5.3          | Patter        |                                       | 132 $133$    |
|   | 0.0          | 5.3.1         | • • •                                 | 133          |
|   |              | 9.9.1         |                                       | 133          |
|   |              |               | 8 8                                   | 134          |
|   |              | 5.3.2         | - , , ,                               | 138          |
|   | 5.4          |               | · · · · · · · · · · · · · · · · · · · | 139          |
|   | 0.4          | 5.4.1         |                                       | 139          |
|   |              | 0.4.1         | -                                     | 139          |
|   |              |               | • •                                   | 139          |
|   |              |               |                                       | 139          |
|   |              | 5.4.2         |                                       | 140          |
|   |              | 5.4.3         | v                                     | 140          |
|   |              | 5.4.4         |                                       | 140          |
|   |              | 5.4.5         |                                       | 140          |
|   |              | 5.4.6         | ŭ i                                   | 141          |
|   |              | 5.4.7         |                                       | 141          |
|   | 5.5          |               |                                       | 141          |
|   | 5.6          |               | V                                     | 142          |
|   | 5.7          |               | ~ <del>-</del>                        | 143          |
| c | Cl           | atan A.       | nalysis                               | 145          |
| 6 | 6.1          |               | ·                                     | 145<br>145   |
|   | 6.2          |               | uction                                | 146          |
|   | 0.2          | 6.2.1         | S .                                   | $140 \\ 147$ |
|   |              | 0.2.1         |                                       | 147          |
|   |              |               |                                       | 147          |
|   |              |               | -                                     | 148          |
|   |              |               | 10                                    | 149          |
|   |              | 6.2.2         |                                       | $149 \\ 150$ |
|   | 6.3          |               | • •                                   | $150 \\ 151$ |
|   | 0.0          | 6.3.1         | <u> </u>                              |              |
|   |              | 6.3.1         |                                       | 154 $155$    |
|   |              | 6.3.2         | ŭ                                     | $155 \\ 155$ |
|   |              | 6.3.4         |                                       | 155<br>155   |
|   | 6.4          |               | ŭ                                     | 158          |
|   | 0.4          | THELTAL       | CHICAL CHARGETHE AIRCHTHING           | TOO          |

|   |      | 6.4.1   | Bottom-up Agglomerative Methods                                     | 159               |
|---|------|---------|---------------------------------------------------------------------|-------------------|
|   |      |         | 6.4.1.1 Group-based Statistics                                      | 160               |
|   |      | 6.4.2   | Top-down Divisive Methods                                           | 163               |
|   |      |         | 6.4.2.1 Bisecting $k$ -Means                                        | 164               |
|   | 6.5  | Probab  | bilistic Model-based Algorithms                                     | 164               |
|   |      | 6.5.1   | Relationship of EM to $k$ -means and other Representative Methods . | 167               |
|   | 6.6  | Grid-b  | based and Density-based Algorithms                                  | 169               |
|   |      | 6.6.1   | Grid-based Methods                                                  | 170               |
|   |      | 6.6.2   | DBSCAN                                                              | 172               |
|   |      | 6.6.3   | DENCLUE                                                             | 174               |
|   | 6.7  | Graph-  | -based Algorithms                                                   | 177               |
|   |      | 6.7.1   | Properties of Graph-based Algorithms                                | 180               |
|   | 6.8  | Nonne   | gative Matrix Factorization                                         | 181               |
|   |      | 6.8.1   | Comparison with Singular Value Decomposition                        | 185               |
|   | 6.9  | Cluste  | r Validation                                                        | 186               |
|   |      | 6.9.1   | Internal Validation Criteria                                        | 186               |
|   |      | 0.0.1   | 6.9.1.1 Parameter Tuning with Internal Measures                     | 188               |
|   |      | 6.9.2   | External Validation Criteria                                        | 189               |
|   |      | 6.9.3   | General Comments                                                    | 191               |
|   | 6.10 |         | ary                                                                 | 191               |
|   |      |         | graphic Notes                                                       | 191               |
|   |      |         | ses                                                                 | 192               |
|   | 0.12 | Exercis | Ses                                                                 | 192               |
| 7 | Clus |         | nalysis: Advanced Concepts                                          | 195               |
|   | 7.1  |         | uction                                                              | 195               |
|   | 7.2  | Cluste  | ring Categorical Data                                               | 196               |
|   |      | 7.2.1   | Representative-based Algorithms                                     | 197               |
|   |      |         | 7.2.1.1 $k$ -Modes Clustering                                       | 198               |
|   |      |         | 7.2.1.2 $k$ -Medoids Clustering                                     | 198               |
|   |      | 7.2.2   | Hierarchical Algorithms                                             | 199               |
|   |      |         | 7.2.2.1 ROCK                                                        | 199               |
|   |      | 7.2.3   | Probabilistic Algorithms                                            | 200               |
|   |      | 7.2.4   | Graph-based Algorithms                                              | 202               |
|   | 7.3  | Scalab  | le Data Clustering                                                  | 202               |
|   |      | 7.3.1   | CLARANS                                                             | 202               |
|   |      | 7.3.2   | BIRCH                                                               | 203               |
|   |      | 7.3.3   | CURE                                                                | 205               |
|   | 7.4  |         | Dimensional Clustering                                              | 207               |
|   | •••  | 7.4.1   | CLIQUE                                                              | 208               |
|   |      | 7.4.2   | PROCLUS                                                             | 209               |
|   |      | 7.4.3   | ORCLUS                                                              | $\frac{203}{212}$ |
|   | 7.5  |         | pervised Clustering                                                 | 214               |
|   | 1.0  | 7.5.1   | Pointwise Supervision                                               | 214               |
|   |      |         | •                                                                   |                   |
|   | 7.6  | 7.5.2   | Pairwise Supervision                                                | 215               |
|   | 7.6  |         | n and Visually Supervised Clustering                                | 216               |
|   |      | 7.6.1   | Modifications of Existing Clustering Algorithms                     | 217               |
|   |      | 7.6.2   | Visual Clustering                                                   | 217               |
|   | 7.7  |         | r Ensembles                                                         | 220               |
|   |      | 7.7.1   | Selecting Different Ensemble Components                             | 221               |
|   |      | 7.7.2   | Combining Different Ensemble Components                             | 221               |
|   |      |         | 7.7.2.1 Hypergraph Partitioning Algorithm                           | 221               |

X CONTENTS

|   |            | 7.7.2.2 Meta-clustering Algorithm                            |
|---|------------|--------------------------------------------------------------|
|   | 7.8        | Putting Clustering to Work: Applications                     |
|   |            | 7.8.1 Applications to Other Data Mining Problems             |
|   |            | 7.8.1.1 Data Summarization                                   |
|   |            | 7.8.1.2 Outlier Analysis                                     |
|   |            | 7.8.1.3 Classification                                       |
|   |            | 7.8.1.4 Dimensionality Reduction                             |
|   |            | 7.8.1.5 Similarity Search and Indexing                       |
|   |            | 7.8.2 Customer Segmentation and Collaborative Filtering      |
|   |            | 7.8.3 Text Applications                                      |
|   |            | 7.8.4 Multimedia Applications                                |
|   |            | 7.8.5 Temporal and Sequence Applications                     |
|   |            | 7.8.6 Social Network Analysis                                |
|   | 7.9        | Summary                                                      |
|   |            | Bibliographic Notes                                          |
|   | 7.11       | Exercises                                                    |
| 8 | Out        | lier Analysis 22                                             |
|   | 8.1        | Introduction                                                 |
|   | 8.2        | Extreme Value Analysis                                       |
|   |            | 8.2.1 Univariate Extreme Value Analysis                      |
|   |            | 8.2.2 Multivariate Extreme Values                            |
|   |            | 8.2.3 Depth-based Methods                                    |
|   | 8.3        | Probabilistic Models                                         |
|   | 8.4        | Clustering for Outlier Detection                             |
|   | 8.5        | Distance-based Outlier Detection                             |
|   |            | 8.5.1 Pruning Methods                                        |
|   |            | 8.5.1.1 Sampling Methods                                     |
|   |            | 8.5.1.2 Early Termination Trick with Nested Loops            |
|   |            | 8.5.2 Local Distance Correction Methods                      |
|   |            | 8.5.2.1 Local Outlier Factor (LOF)                           |
|   |            | 8.5.2.2 Instance-specific Mahalanobis Distance               |
|   | 8.6        | Density-based Methods                                        |
|   |            | 8.6.1 Histogram- and Grid-based Techniques                   |
|   | ~ <b>-</b> | 8.6.2 Kernel Density Estimation                              |
|   | 8.7        | Information-Theoretic Models                                 |
|   | 8.8        | Outlier Validity                                             |
|   |            | 8.8.1 Methodological Challenges                              |
|   |            | 8.8.2 Receiver Operating Characteristic                      |
|   | 0.0        | 8.8.3 Common Mistakes                                        |
|   | 8.9        | Summary         250           Bibliographic Notes         25 |
|   |            | Bibliographic Notes       25         Exercises       25      |
|   | 0.11       | 13.01.01.000                                                 |
| 9 |            | lier Analysis: Advanced Concepts 253                         |
|   | 9.1        | Introduction                                                 |
|   | 9.2        | Outlier Detection with Categorical Data                      |
|   |            | 9.2.1 Probabilistic Models                                   |
|   |            | 9.2.2 Clustering and Distance-based Methods                  |
|   | 0.0        | 9.2.3 Binary and Set-Valued Data                             |
|   | 9.3        | High-Dimensional Outlier Detection                           |

CONTENTS xi

|      |      | 9.3.1   | Grid-based Rare Subspace Exploration                    | <br>258     |
|------|------|---------|---------------------------------------------------------|-------------|
|      |      |         | 9.3.1.1 Modeling Abnormal Lower Dimensional Projections | 258         |
|      |      |         | 9.3.1.2 Grid Search for Subspace Outliers               | 259         |
|      |      | 9.3.2   | Random Subspace Sampling                                | 261         |
| 9    | .4   | Outlier | r Ensembles                                             | 262         |
|      |      | 9.4.1   | Categorization by Component Independence                | 263         |
|      |      |         | 9.4.1.1 Sequential Ensembles                            | 263         |
|      |      |         | 9.4.1.2 Independent Ensembles                           | 264         |
|      |      | 9.4.2   | Categorization by Constituent Components                | 264         |
|      |      |         | 9.4.2.1 Model-centered Ensembles                        | 265         |
|      |      |         | 9.4.2.2 Data-centered Ensembles                         | 265         |
|      |      | 9.4.3   | Normalization and Combination                           | 265         |
| 9    | .5   | -       | g Outliers to Work: Applications                        | 267         |
|      |      | 9.5.1   | Quality Control and Fault Detection                     | 267         |
|      |      | 9.5.2   | Financial Fraud and Anomalous Events                    | 267         |
|      |      | 9.5.3   | Web Log Analytics                                       | 268         |
|      |      | 9.5.4   | Intrusion Detection Applications                        | 268         |
|      |      | 9.5.5   | Biological and Medical Applications                     | 268         |
|      |      | 9.5.6   | Earth Science Applications                              | 268         |
| Q    | .6   |         | ary                                                     | 269         |
|      |      |         | graphic Notes                                           | 269         |
| _    | .8   | ,       | ses                                                     | 270         |
| 3    | .0   | LACICI  |                                                         | <br>210     |
| 10 I | Data | a Class | sification                                              | <b>27</b> 1 |
|      |      |         | uction                                                  | 271         |
| 1    | 0.2  |         | re Selection for Classification                         | 273         |
|      |      | 10.2.1  | Filter Models                                           | <br>274     |
|      |      |         | 10.2.1.1 Gini Index                                     | <br>274     |
|      |      |         | 10.2.1.2 Entropy                                        | <br>275     |
|      |      |         | 10.2.1.3 Fisher Score                                   | 275         |
|      |      |         | 10.2.1.4 Fisher's Linear Discriminant                   | <br>276     |
|      |      | 10.2.2  | Wrapper Models                                          | <br>277     |
|      |      | 10.2.3  | Embedded Models                                         | <br>278     |
| 1    | 0.3  | Decisio | on Trees                                                | <br>278     |
|      |      | 10.3.1  | Split Criteria                                          | <br>281     |
|      |      | 10.3.2  | Stopping Criterion and Pruning                          | <br>283     |
|      |      | 10.3.3  | Practical Issues                                        | <br>284     |
| 1    | 0.4  | Rule-b  | pased Classifiers                                       | <br>284     |
|      |      | 10.4.1  | Rule Generation from Decision Trees                     | <br>286     |
|      |      | 10.4.2  | Sequential Covering Algorithms                          | <br>287     |
|      |      |         | 10.4.2.1 Learn-One-Rule                                 | 287         |
|      |      | 10.4.3  | Rule Pruning                                            | <br>290     |
|      |      |         | Associative Classifiers                                 | 290         |
| 1    | 0.5  |         | bilistic Classifiers                                    | 291         |
|      |      | 10.5.1  | Naive Bayes Classifier                                  | 291         |
|      |      |         | 10.5.1.1 The Ranking Model for Classification           | 294         |
|      |      |         | 10.5.1.2 Discussion of the Naive Assumption             | 295         |
|      |      | 10.5.2  | Logistic Regression                                     | 295         |
|      |      | _0.0.2  | 10.5.2.1 Training a Logistic Regression Classifier      | 297         |
|      |      |         | 10.5.2.2 Relationship with Other Linear Models          | 298         |
| 1    | 0.6  | Suppor  | rt Vector Machines                                      | <br>208     |

xii CONTENTS

|    |       | 10.6.1   | Support Vector Machines for Linearly Separable Data              | 298               |
|----|-------|----------|------------------------------------------------------------------|-------------------|
|    |       |          | 10.6.1.1 Solving the Lagrangian Dual                             | 303               |
|    |       | 10.6.2   | Support Vector Machines with Soft Margin for Nonseparable Data . | 304               |
|    |       |          | 10.6.2.1 Comparison with other Linear Models                     | 306               |
|    |       | 10.6.3   | Nonlinear Support Vector Machines                                | 306               |
|    |       |          | The Kernel Trick                                                 | 307               |
|    |       |          | 10.6.4.1 Other Applications of Kernel Methods                    | 309               |
|    | 10.7  | Neural   | Networks                                                         | 311               |
|    |       |          | Single-Layer Neural Network: The Perceptron                      | 311               |
|    |       |          | Multilayer Neural Networks                                       | 313               |
|    |       |          | Comparing Various Linear Models                                  | 315               |
|    | 10.8  |          | ce-based Learning                                                | 316               |
|    | 10.0  |          | Design Variations of Nearest Neighbor Classifiers                | 316               |
|    |       | 10.0.1   | 10.8.1.1 Unsupervised Mahalanobis Metric                         | 317               |
|    |       |          | 10.8.1.2 Nearest Neighbors with Linear Discriminant Analysis     | 317               |
|    | 10.0  | Classif  | ier Evaluation                                                   | 319               |
|    | 10.9  |          | Methodological Issues                                            | 319               |
|    |       | 10.9.1   |                                                                  | 320               |
|    |       |          | 10.9.1.1 Holdout                                                 | 320               |
|    |       |          | 10.9.1.2 Cross-Validation                                        |                   |
|    |       | 1000     | 10.9.1.3 Bootstrap                                               | 321               |
|    |       | 10.9.2   | Quantification Issues                                            | 322               |
|    |       |          | 10.9.2.1 Output as Class Labels                                  | 322               |
|    | 40.4  |          | 10.9.2.2 Output as Numerical Score                               | 323               |
|    |       |          | ary                                                              | 326               |
|    |       |          | graphic Notes                                                    | 326               |
|    | 10.12 | 2Exerci: | ses                                                              | 327               |
| 11 | Dot   | o Clos   | sification: Advanced Concepts                                    | 331               |
| 11 |       |          | uction                                                           | 331               |
|    |       |          | lass Learning                                                    | $\frac{331}{332}$ |
|    |       |          | Class Learning                                                   | $\frac{332}{333}$ |
|    | 11.3  |          |                                                                  | 334               |
|    |       |          | Example Re-weighting                                             | 335               |
|    |       | 11.5.2   |                                                                  |                   |
|    |       |          | 11.3.2.1 Relationship between Weighting and Sampling             | 336               |
|    | 11 /  | G 11     | 11.3.2.2 Synthetic Over-sampling: SMOTE                          | 336               |
|    | 11.4  |          | le Classification                                                |                   |
|    |       |          | Scalable Decision Trees                                          |                   |
|    |       |          | 11.4.1.1 RainForest                                              | 337               |
|    |       | 44.40    | 11.4.1.2 BOAT                                                    | 337               |
|    |       |          | Scalable Support Vector Machines                                 | 337               |
|    | 11.5  |          | ssion Modeling with Numeric Classes                              | 339               |
|    |       | 11.5.1   | Linear Regression                                                | 339               |
|    |       |          | 11.5.1.1 Relationship with Fisher's Linear Discriminant          | 341               |
|    |       |          | Principal Component Regression                                   | 342               |
|    |       |          | Generalized Linear Models                                        | 343               |
|    |       |          | Nonlinear and Polynomial Regression                              | 344               |
|    |       |          | From Decision Trees to Regression Trees                          | 345               |
|    |       |          | Assessing Model Effectiveness                                    | 346               |
|    | 11.6  | Semisu   | pervised Learning                                                | 346               |
|    |       | 11.6.1   | Generic Meta-Algorithms                                          | 348               |
|    |       |          | 11.6.1.1 Self-Training                                           | 348               |

xiii

|        |        | 11.6.1.2 Co-Training                                                  |
|--------|--------|-----------------------------------------------------------------------|
|        | 11.6.2 | Specific Variations of Classification Algorithms                      |
|        |        | 11.6.2.1 Semisupervised Bayes Classification with EM                  |
|        |        | 11.6.2.2 Transductive Support Vector Machines                         |
|        | 11.6.3 | Graph-based Semisupervised Learning                                   |
|        | 11.6.4 | Discussion of Semisupervised Learning                                 |
| 11.7   | Active | Learning                                                              |
|        | 11.7.1 | Heterogeneity-based Models                                            |
|        |        | 11.7.1.1 Uncertainty Sampling                                         |
|        |        | 11.7.1.2 Query-by-Committee                                           |
|        |        | 11.7.1.3 Expected Model Change                                        |
|        | 11.7.2 | Performance-based Models                                              |
|        |        | 11.7.2.1 Expected Error Reduction                                     |
|        |        | 11.7.2.2 Expected Variance Reduction                                  |
|        | 11.7.3 | Representativeness-based Models                                       |
| 11.8   |        | ble Methods                                                           |
|        |        | Why does Ensemble Analysis Work?                                      |
|        |        | Formal Statement of Bias-Variance Trade-off                           |
|        |        | Specific Instantiations of Ensemble Learning                          |
|        |        | 11.8.3.1 Bagging                                                      |
|        |        | 11.8.3.2 Random Forests                                               |
|        |        | 11.8.3.3 Boosting                                                     |
|        |        | 11.8.3.4 Bucket of Models                                             |
|        |        | 11.8.3.5 Stacking                                                     |
| 11.9   | Summ   | ary                                                                   |
|        |        | graphic Notes                                                         |
|        |        | ses                                                                   |
| 10 N/: | : D    | ata Streams 3                                                         |
|        |        | ${f ata~Streams} \ {f uction} \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $ |
|        |        | sis Data Structures for Streams                                       |
| 12.2   |        | Reservoir Sampling                                                    |
|        | 12.2.1 | 12.2.1.1 Handling Concept Drift                                       |
|        |        | ÿ <u>.</u>                                                            |
|        | 1999   | - · · · · · · · · · · · · · · · · · · ·                               |
|        | 12.2.2 | Synopsis Structures for the Massive-Domain Scenario                   |
|        |        | 12.2.2.1 Bloom Filter                                                 |
|        |        | 12.2.2.2 Count-Min Sketch                                             |
|        |        | 12.2.2.3 AMS Sketch                                                   |
| 400    | Б      | 12.2.2.4 Flajolet-Martin Algorithm for Distinct Element Counting .    |
| 12.3   |        | ent Pattern Mining in Data Streams                                    |
|        | 12.3.1 | Leveraging Synopsis Structures                                        |
|        |        | 12.3.1.1 Reservoir Sampling                                           |
|        |        | 12.3.1.2 Sketches                                                     |
|        |        | Lossy Counting Algorithm                                              |
| 12.4   |        | ring Data Streams                                                     |
|        |        | STREAM Algorithm                                                      |
|        | 12.4.2 | CluStream Algorithm                                                   |
|        |        | 12.4.2.1 Micro-cluster Definition                                     |
|        |        | 12.4.2.2 Micro-clustering Algorithm                                   |
|        |        | 12.4.2.3 Pyramidal Time Frame                                         |
|        | 12.4.3 | Massive-Domain Stream Clustering                                      |

xiv CONTENTS

|    | 12.5 | Streaming Outlier Detection                                               |
|----|------|---------------------------------------------------------------------------|
|    |      | 12.5.1 Individual Data Points as Outliers                                 |
|    |      | 12.5.2 Aggregate Change Points as Outliers                                |
|    | 12.6 | Streaming Classification                                                  |
|    |      | 12.6.1 VFDT Family                                                        |
|    |      | 12.6.2 Supervised Micro-cluster Approach                                  |
|    |      | 12.6.3 Ensemble Method                                                    |
|    |      | 12.6.4 Massive-Domain Streaming Classification                            |
|    | 12.7 | Summary                                                                   |
|    | 12.8 | Bibliographic Notes                                                       |
|    | 12.9 | Exercises                                                                 |
| 10 | 3.51 |                                                                           |
| 13 |      | ing Text Data 411                                                         |
|    |      | Introduction                                                              |
|    | 13.2 | Document Preparation and Similarity Computation                           |
|    |      | 13.2.1 Document Normalization and Similarity Computation                  |
|    | 400  | 13.2.2 Specialized Preprocessing for Web Documents                        |
|    | 13.3 | Specialized Clustering Methods for Text                                   |
|    |      | 13.3.1 Representative-based Algorithms                                    |
|    |      | 13.3.1.1 Scatter/Gather Approach                                          |
|    |      | 13.3.2 Probabilistic Algorithms                                           |
|    |      | 13.3.3 Simultaneous Document and Word Cluster Discovery 419               |
|    | 10.4 | 13.3.3.1 Co-clustering                                                    |
|    | 13.4 | Topic Modeling                                                            |
|    |      | 13.4.1 Use in Dimensionality Reduction and Comparison with Latent Se-     |
|    |      | mantic Analysis                                                           |
|    |      | 13.4.2 Use in Clustering and Comparison with Probabilistic Clustering 427 |
|    | 19 5 | 13.4.3 Limitations of PLSA                                                |
|    | 13.5 | Specialized Classification Methods for Text                               |
|    |      | 13.5.1 Instance-based Classifiers                                         |
|    |      | 13.5.1.1 Leveraging Latent Semantic Analysis                              |
|    |      | 13.5.1.2 Centroid-based Classification                                    |
|    |      |                                                                           |
|    |      | v                                                                         |
|    |      | v                                                                         |
|    | 196  | 13.5.3 SVM Classifiers for High-dimensional and Sparse Data               |
|    | 13.0 | 13.6.1 Micro-clustering Method                                            |
|    | 127  | Summary                                                                   |
|    |      | Bibliographic Notes                                                       |
|    |      | Exercises                                                                 |
|    | 13.9 | Exercises                                                                 |
| 14 | Min  | ing Time-Series Data 439                                                  |
|    | 14.1 | Introduction                                                              |
|    |      | Time-Series Preparation and Similarity                                    |
|    |      | 14.2.1 Handling Missing Values                                            |
|    |      | 14.2.2 Noise Removal                                                      |
|    |      | 14.2.3 Normalization                                                      |
|    |      | 14.2.4 Data Transformation and Reduction                                  |
|    |      | 14.2.4.1 Discrete Wavelet Transform                                       |
|    |      | 14.2.4.2 Discrete Fourier Transform                                       |

|    |       |          | (0.17)                                   |            |
|----|-------|----------|------------------------------------------|------------|
|    |       |          | v 00 0 11 ( )                            | 145        |
|    |       |          |                                          | 146        |
|    | 14.3  | Time-S   |                                          | 146        |
|    |       |          | 30 100 100 100 100 100 100 100 100 100 1 | 148        |
|    |       |          |                                          | 150        |
|    |       |          |                                          | 151        |
|    | 14.4  | Time-S   |                                          | 153        |
|    |       | 14.4.1   | Distance-based Motifs                    | 154        |
|    |       |          |                                          | 156        |
|    |       | 14.4.3   | Periodic Patterns                        | 157        |
|    | 14.5  | Time-S   | Series Clustering                        | 158        |
|    |       | 14.5.1   | Online Clustering of Co-evolving Series  | 158        |
|    |       | 14.5.2   | Shape-based Clustering                   | 160        |
|    |       |          | -                                        | 161        |
|    |       |          |                                          | 162        |
|    |       |          |                                          | 162        |
|    |       |          |                                          | 162        |
|    | 14 6  | Time-S   |                                          | 162        |
|    | 11.0  |          |                                          | 163        |
|    |       |          |                                          | 164        |
|    | 147   |          |                                          | 165        |
|    | 14.7  |          |                                          | 166        |
|    |       |          |                                          | 168        |
|    |       | 14.7.2   |                                          |            |
|    |       |          |                                          | 169        |
|    |       |          | 9                                        | 169        |
|    | 110   | C        | · · · · · · · · · · · · · · · · · · ·    | 170        |
|    |       |          | · · ·                                    | 170        |
|    |       | ~        | , 1                                      | 170        |
|    | 14.10 | )Exercis | ses                                      | 171        |
| 15 | Min   | ing Di   | screte Sequences 4                       | 73         |
| 13 |       |          | *                                        | 173<br>173 |
|    |       |          |                                          |            |
|    | 15.2  |          | 8                                        | 174        |
|    |       |          | 1 1                                      | 177        |
|    | 1 = 0 |          | 1                                        | 180        |
|    | 15.3  |          |                                          | 181        |
|    |       |          |                                          | 182        |
|    |       |          | •                                        | 182        |
|    |       |          | 1                                        | 182        |
|    |       | 15.3.4   |                                          | 183        |
|    |       |          | v e                                      | 183        |
|    |       |          |                                          | 186        |
|    | 15.4  |          | 1                                        | 187        |
|    |       | 15.4.1   |                                          | 187        |
|    |       |          | v                                        | 190        |
|    |       | 15.4.2   | Combination Outliers                     | 191        |
|    |       |          | 15.4.2.1 Distance-based Models           | 192        |
|    |       |          | 15.4.2.2 Frequency-based Models          | 193        |
|    | 15.5  | Hidder   |                                          | 194        |
|    |       |          |                                          | 196        |
|    |       |          |                                          | 197        |

xvi CONTENTS

|      | 15.5.3  | Explanation: Determining the Most Likely State Sequence for Ob- |
|------|---------|-----------------------------------------------------------------|
|      |         | served Sequence                                                 |
|      |         | Training: Baum-Welch Algorithm                                  |
|      |         | Applications                                                    |
| 15.6 |         | ace Classification                                              |
|      |         | Nearest Neighbor Classifier                                     |
|      |         | Graph-based Methods                                             |
|      |         | Rule-based Methods                                              |
|      | 15.6.4  | Kernel Support Vector Machines                                  |
|      |         | 15.6.4.1 Bag-of-Words Kernel                                    |
|      |         | 15.6.4.2 Spectrum Kernel                                        |
|      |         | 15.6.4.3 Weighted Degree Kernel                                 |
|      | 15.6.5  | Probabilistic Methods: Hidden Markov Models                     |
|      |         | ary                                                             |
| 15.8 | Bibliog | graphic Notes                                                   |
| 15.9 | Exercis | ses                                                             |
|      | • ~     |                                                                 |
|      |         | atial Data                                                      |
|      |         | uction                                                          |
| 16.2 |         | g with Contextual Spatial Attributes                            |
|      |         | Shape to Time-Series Transformation                             |
|      |         | Spatial to Multidimensional Transformation with Wavelets        |
|      |         | Spatial Co-location Patterns                                    |
|      |         | Clustering Shapes                                               |
|      | 16.2.5  | Outlier Detection                                               |
|      |         | 16.2.5.1 Point Outliers                                         |
|      |         | 16.2.5.2 Shape Outliers                                         |
|      |         | Classification of Shapes                                        |
| 16.3 |         | tory Mining                                                     |
|      |         | Equivalence of Trajectories and Multivariate Time Series        |
|      |         | Converting Trajectories to Multidimensional Data                |
|      | 16.3.3  | Trajectory Pattern Mining                                       |
|      |         | 16.3.3.1 Frequent Trajectory Paths                              |
|      |         | 16.3.3.2 Co-location Patterns                                   |
|      | 16.3.4  | Trajectory Clustering                                           |
|      |         | 16.3.4.1 Computing Similarity between Trajectories              |
|      |         | 16.3.4.2 Similarity-based Clustering Methods                    |
|      |         | 16.3.4.3 Trajectory Clustering as a Sequence Clustering Problem |
|      | 16.3.5  | Trajectory Outlier Detection                                    |
|      |         | 16.3.5.1 Distance-based Methods                                 |
|      |         | 16.3.5.2 Sequence-based Methods                                 |
|      | 16.3.6  | Trajectory Classification                                       |
|      |         | 16.3.6.1 Distance-based Methods                                 |
|      |         | 16.3.6.2 Sequence-based Methods                                 |
| 16.4 | Summ    | ary                                                             |
| 16.5 | Bibliog | graphic Notes                                                   |
| 166  | Erronoi |                                                                 |

CONTENTS xvii

| 17 | Min  | ing Graph Data                                                        | 533  |
|----|------|-----------------------------------------------------------------------|------|
|    | 17.1 | Introduction                                                          | 533  |
|    |      |                                                                       | 535  |
|    |      |                                                                       | 537  |
|    |      | ~ ~ ~ ~ · · · · · · · · · · · · · · · ·                               | 539  |
|    |      |                                                                       | 540  |
|    |      |                                                                       | 541  |
|    |      |                                                                       | 541  |
|    |      | <u> </u>                                                              | 542  |
|    | 17.3 |                                                                       | 546  |
|    | 11.0 | 17.3.1 Frequent Substructure-based Transformation and Distance Compu- | 0 10 |
|    |      |                                                                       | 546  |
|    |      |                                                                       | 547  |
|    |      |                                                                       | 549  |
|    |      | <del>-</del>                                                          | 549  |
|    |      |                                                                       | 550  |
|    | 17 / |                                                                       | 550  |
|    | 11.4 |                                                                       | 552  |
|    |      |                                                                       | 554  |
|    |      |                                                                       | 554  |
|    | 175  |                                                                       | 554  |
|    | 11.0 | -                                                                     | 555  |
|    |      |                                                                       | 555  |
|    |      |                                                                       | 556  |
|    |      |                                                                       | 556  |
|    | 17.6 |                                                                       | 558  |
|    | 17.0 | •                                                                     | 558  |
|    |      |                                                                       | 558  |
|    |      |                                                                       | 559  |
|    |      |                                                                       | 559  |
|    |      |                                                                       | 560  |
|    | 177  |                                                                       | 560  |
|    |      |                                                                       | 560  |
|    |      | <u> </u>                                                              | 562  |
|    | 17.9 | Exercises                                                             | JU2  |
| 18 | Min  | ing Web Data                                                          | 565  |
|    |      | ~                                                                     | 565  |
|    |      |                                                                       | 567  |
|    |      |                                                                       | 567  |
|    |      |                                                                       | 569  |
|    |      |                                                                       | 569  |
|    |      |                                                                       | 569  |
|    |      |                                                                       | 570  |
|    | 18.3 |                                                                       | 570  |
|    |      |                                                                       | 573  |
|    |      |                                                                       | 573  |
|    |      | 8                                                                     | 576  |
|    |      | - "                                                                   | 577  |
|    |      |                                                                       | 578  |
|    | 18.5 |                                                                       | 579  |
|    | -0.0 |                                                                       | 581  |

xviii CONTENTS

|      | 18.5.2 Neighborhood-based Methods for Collaborative Filtering  | 582                |
|------|----------------------------------------------------------------|--------------------|
|      |                                                                | 582                |
|      | v e                                                            | 583                |
|      |                                                                | 583                |
|      |                                                                | 585                |
|      |                                                                | 585                |
|      |                                                                | 585                |
|      |                                                                | 586                |
|      | 18.5.5.1 Singular Value Decomposition                          | 587                |
|      | 18.5.5.2 Matrix Factorization                                  | 587                |
| 18.6 | Web Usage Mining                                               | 588                |
|      | 18.6.1 Data Preprocessing                                      | 589                |
|      | 18.6.2 Applications                                            | 589                |
| 18.7 | Summary                                                        | 590                |
| 18.8 | Bibliographic Notes                                            | 591                |
| 18.9 | Exercises                                                      | 591                |
|      |                                                                |                    |
|      | · ·                                                            | 93                 |
|      |                                                                | 593                |
| 19.2 | *                                                              | 594                |
|      | 1 0                                                            | 595                |
|      | 9                                                              | 595                |
|      | v                                                              | 595                |
|      |                                                                | 597                |
|      |                                                                | 597                |
|      | v e                                                            | 597                |
|      | į į                                                            | 598                |
|      | · ·                                                            | 600<br>coc         |
| 10.9 | v e                                                            | 600<br>601         |
| 19.5 | v                                                              | 501                |
|      |                                                                | 302<br>304         |
|      | 1 0 1 0                                                        | 504<br>604         |
|      |                                                                | 507<br>507         |
|      |                                                                | 50 <i>1</i><br>51( |
|      |                                                                | 513                |
| 19.4 | •                                                              | 514                |
| 10.1 |                                                                | 615                |
|      |                                                                | 616                |
|      |                                                                | 619                |
|      |                                                                | 619                |
|      |                                                                | 520                |
|      |                                                                | 620                |
|      |                                                                | 622                |
| 19.5 |                                                                | 623                |
|      |                                                                | 623                |
|      |                                                                | 624                |
|      |                                                                | 625                |
|      |                                                                | 626                |
|      | 19.5.5 Link Prediction as a Missing Value Estimation Problem 6 | 627                |
|      | 10.5.6 Discussion                                              | 327                |

xix

|    | 19.6 | Social Influence Analysis                                       | 627 |
|----|------|-----------------------------------------------------------------|-----|
|    |      | 19.6.1 Linear Threshold Model                                   | 629 |
|    |      | 19.6.2 Independent Cascade Model                                | 629 |
|    |      | 19.6.3 Influence Function Evaluation                            | 630 |
|    | 19.7 | Summary                                                         | 630 |
|    |      | Bibliographic Notes                                             | 631 |
|    |      | Exercises                                                       | 632 |
| 20 | Priv | vacy-Preserving Data Mining                                     | 635 |
|    |      | Introduction                                                    | 635 |
|    | 20.2 | Privacy during Data Collection                                  | 636 |
|    |      | 20.2.1 Reconstructing Aggregate Distributions                   | 637 |
|    |      | 20.2.2 Leveraging Aggregate Distributions for Data Mining       | 639 |
|    | 20.3 | Privacy-Preserving Data Publishing                              | 639 |
|    |      | 20.3.1 The <i>k</i> -anonymity Model                            | 641 |
|    |      | 20.3.1.1 Samarati's Algorithm                                   | 645 |
|    |      | 20.3.1.2 Incognito                                              | 646 |
|    |      | 20.3.1.3 Mondrian Multidimensional $k$ -Anonymity               | 649 |
|    |      | 20.3.1.4 Synthetic Data Generation: Condensation-based Approach | 651 |
|    |      | 20.3.2 The $\ell$ -diversity Model                              | 653 |
|    |      | 20.3.3 The t-closeness Model                                    | 655 |
|    |      | 20.3.4 The Curse of Dimensionality                              | 658 |
|    | 20.4 | Output Privacy                                                  | 658 |
|    |      | Distributed Privacy                                             | 659 |
|    |      | Summary                                                         | 661 |
|    |      | Bibliographic Notes                                             | 661 |
|    |      | Exercises                                                       | 663 |

XX CONTENTS

#### **Preface**

"Data is the new oil." - Clive Humby

The field of data mining has seen rapid strides over the past two decades, especially from the perspective of the computer science community. While data analysis has been studied extensively in the conventional field of probability and statistics, *data mining* is a term coined by the computer science-oriented community. For computer scientists, issues such as scalability, usability, and computational implementation are extremely important.

The emergence of data science as a discipline requires the development of a book that goes beyond the traditional focus of books on only the fundamental data mining courses. Recent years have seen the emergence of the job description of "data scientists," who try to glean knowledge from vast amounts of data. In typical applications, the data types are so heterogeneous and diverse that the fundamental methods discussed for a multidimensional data type may not be effective. Therefore, more emphasis needs to be placed on the different data types and the applications which arise in the context of these different data types. A comprehensive data mining book must explore the different aspects of data mining, starting from the fundamentals, and then explore the complex data types, and their relationships with the fundamental techniques. While fundamental techniques form an excellent basis for the further study of data mining, they do not provide a complete picture of the true complexity of data analysis. This book studies these advanced topics without compromising the presentation of fundamental methods. Therefore, this book may be used for both introductory and advanced data mining courses. Until now, no single book has addressed all these topics in a comprehensive and integrated way.

The textbook assumes a basic knowledge of probability, statistics, and linear algebra, which is taught in most undergraduate curricula of science and engineering disciplines. Therefore, the book can also be used by industrial practitioners, who have a working knowledge of these basic skills. While stronger mathematical background is helpful for the more advanced chapters, it is not a pre-requisite. Special chapters are also devoted to different aspects of data mining, such as the text data, time-series data, discrete sequences, and graphs. This kind of specialized treatment is intended to capture the wide diversity of problem domains in which a data mining problem might arise.

The chapters of this book fall into one of three categories:

• The fundamental chapters: Data mining has four main "super-problems," which correspond to clustering, classification, association pattern mining, and outlier analysis. These problems are so important because they are used repeatedly as building blocks in the context of a wide variety of data mining applications. As a result, a large

xxii CONTENTS

amount of emphasis has been placed by data mining researchers and practitioners to design effective and efficient methods for these problems. These chapters comprehensively discuss the vast diversity of methods used by the data mining community in the context of these super-problems.

- **Domain chapters:** These chapters discuss the specific methods used for different domains of data such as text data, time-series data, sequence data, graph data, and spatial data. Many of these chapters can also be considered application chapters, because they explore the specific characteristics of the problem in a particular domain.
- Application chapters: Advancements in hardware technology and software platforms, have lead to a number of data-intensive applications such as streaming systems, Web mining, social networks, and privacy-preservation. These topics are studied in detail in these chapters. The domain chapters are also focused on many different kinds of applications that arise in the context of those data types.

#### Suggestions for the Instructor

The book was specifically written to enable the teaching of both the basic data mining and advanced data mining courses from a single book. It can be used to offer various types of data mining courses with different emphases. Specifically, the courses that could be offered with various chapters are as follows:

- Basic data mining course and fundamentals: The basic data mining course should focus on the fundamentals of data mining. Chapters 1, 2, 3, 4, 6, 8, and 10 can be covered. In fact, the material in these chapters is more than what is possible to teach in a single course. Therefore, instructors may need to select topics of their interest from these chapters. Some portions of Chapters 5, 7, 9, and 11 can also be covered, although these chapters are really meant for an advanced course.
- Advanced course (fundamentals): Such a course would cover advanced topics on the fundamentals of data mining and assume that the student is already familiar with Chapters 1 through 3, and parts of Chapters 4, 6, 8, and 10. The course can then focus on Chapters 5, 7, 9, and 11. Topics such as ensemble analysis are useful for the advanced course. Furthermore, some topics from Chapters 4, 6, 8, and 10, which were not covered in the basic course, can be used. In addition, Chapter 20 on privacy can be offered.
- Advanced course (data types): Advanced topics such as text mining, time series, sequences, graphs, and spatial data may be covered. The material should focus on Chapters 13, 14, 15, 16, and 17. Some parts of Chapter 19 (e.g., graph clustering) and Chapter 12 (data streaming) can also be used.
- Advanced course (applications): An application course overlaps with a data type course but has a different focus. For example, the focus in an application-centered course would be more on the modeling aspect than the algorithmic aspect. Therefore, the same materials in Chapters 13, 14, 15, 16, and 17 can be used while skipping specific details of algorithms. With less focus on specific algorithms, these chapters can be covered fairly quickly. The remaining time should be allocated to three very important chapters on data streams (Chapter 12), Web mining (Chapter 18), and social network analysis (Chapter 19).

The book is written in a simple style to make it accessible to undergraduate students and industrial practitioners with a limited mathematical background. Thus, the book will serve

CONTENTS xxiii

both as an introductory text and as an advanced text for students, industrial practitioners, and researchers.

Throughout this book, a vector or a multidimensional data point (including categorical attributes), is annotated with a bar, such as  $\overline{X}$  or  $\overline{y}$ . A vector or multidimensional point may be denoted by either small letters or capital letters, as long as it has a bar. Vector dot products are denoted by centered dots, such as  $\overline{X} \cdot \overline{Y}$ . A matrix is denoted in capital letters without a bar, such as R. Throughout the book, the  $n \times d$  data matrix is denoted by D, with n points and d dimensions. The individual data points in D are therefore d-dimensional row vectors. On the other hand, vectors with one component for each data point are usually n-dimensional column vectors. An example is the n-dimensional column vector  $\overline{y}$  of class variables of n data points.