CENTRAL LIBRARY Indian Institute of Technology KANPUR
Thesis
Class No. 531: 38.....

Accession No. 1930...

SOME TWO_DIMENSIONAL ELASTIC INCLUSION PROBLEMS

A thesis submitted

In Partial Fulfilment of the requirements

for the Degree of

DOCTOR OF PHILOSOPHY

CHANDRA BHAL SHARMA, M. Sc.

MATH-1967-D-SHA-SOM

to the

Department of Mathematics

Indian Institute of Technology, Kanpur

September, 1967

ACKNO WLELGENENT

I gratefully acknowledge the valuable advice and guidance of my supervisor, Professor H.D. Bhargava, who introduced me to the subject and suggested the problem.

CB. Sharma

(C. B. Sharsa)

CHAM PICATE

This is to certify that the thesis entitled 'SOME THO-DIMENTONAL BLASTIC INCLUSION PROFESAS' that is being submitted by Shri C. B. Sharma, M. Sc., for the award of the Degree of Doctor of Philosophy to the Indian Institute of Technology, Kampur is a record of bonsfide research work carried but by him under my supervision and guidance. The thesis has reached the standard fulfilling the requirements of the regulations to the Degree. The results embodied in this thesis have not been submitted to any other University or Institute for the award of any degree or diploma.

(R. D. Bhargava)
Professor of Mathematics
Indian Institute of Technology,
Kanpur.

NOPSIS

CHANDRA BRAL SBARMA
Ph. D.
Indian Institute of Technology, Kampur
September 1967
SOME TRO-DIMENSIONAL BLAUTIC INCLUSION PROBLEMS

This thesis is concerned with a class of inclusion problems in two-dimensional elasticity. 'Inclusion' has been defined as a region, having the same elastic properties as that of the surrounding material, the 'matrix'. Inclusion tends to undergo spontaneous deformation. This tendency would result in prescribed strains in the inclusion, in the absence of the matrix. However, because of the constraints of the matrix, a system of elastic field develops both in the matrix and in the inclusion. Such problems have been studied in this thesis.

The complex-variable method has been applied to solve these problems. The results depend upon the knowledge of the effect of point-ferce. When the point-ferce acts upon an infinite medium, the results are well known and can be found practically in all important works on elasticity. These results have been used to find the solution when the circular inclusion tends to undergo any general type of spontaneous deformation. (Previous workers had considered only a uniform strain). This generalization gives results,

which have important physical interpretations. Such generalisation is possible even for the elliptic inclusion problem, but only a particular example has been solved to illustrate the basic ideas. As will be obvious, these results can be applied for inclusions of various shapes. A converse problem can also be tackled, namely what happens if the matrix, in place of inclusion, undergoes spontaneous deformation. One such problem is solved in this thesis but the results can be generalised.

For a semi-infinite region or an infinite strip when the leading edges are free from stresses or displacements, the results of the effect of a point-force in the interior are not readily available. Moreover, seme known results for a half plane can be applied only after considerable manipulations. In this thesis, however, the results are given which enable to find exact analytical solution to the circular inclusion problem when it is embedded in a semi-infinite region or is symmetrically as an infinite strip situated in an infinite strip. In the latter case the results are obtained in terms of an infinite integral which have been solved numerically and results are gives in tabulated form. In both the cases the problem has been solved for the two cases namely when the leading edges are free from tractions and displacements.

TABLE OF CONTENTS

					Page
Latro	iuction	***		***	v11
List o	of Symbols	***		* * *	VX
Chapte	er -				
1	Complex Var	iable Appr	roach.		1
11	Inclusion F	Problem and	Point-F	ores.	13
111	Circular II Temperature			Harmonic	,1
IA	Elliptie la Temperature			Harmoni e	38
٧	Harmonie fo Infinite Hi			tion in	49
AI	Half Plane	Problem.		***	66
AII		nolusion in raction fro		Half Pluse-I.	66
AIII		n clusi on in Esplacement		Half Plane-II.	85
IX	A Point Pos Strip.	ree in an l	Infinite	Elastic	101
x	Circular II Elastic St		n en I <i>n</i> fi	ni te	117
XI	Circular II Elastic St		n an Infi	ni te	138
Appendix A		***		***	161
m4 h) 4.	a a wa a bur				1.50

IN ACCUCATION

This thesis concerns itself with a class of inclusion problems in the infinitesimal theory of elusticity. The problem may be stated briefly as follows:

A limited region in an isotropic clustic medium tends to undergo spontaneous dimension changes. If the elastic properties of limited region are the same as those of surrounding material, the 'matrix', it will be termed as 'inclusion' etherwise it would be called 'inhomogeneity'. This spontaneous deformation would be a prescribed strain in the absence of elastic constraints of the matrix. The mutual constraints of the inclusion and the satrix generate a system of looked up accommodation stresses in both the regions. The problem is to find the elastic field and consider related problems in the inclusion and matrix.

The problem is not only a mathematical one but has important applications. For example, such problems do arise in various investigations of physics and technology, e.g. in brittle fracture, precipitation hardening, alley cobesion, restricted plastic flow.

For an important application, reference may be made to the physical observation made by Hale and Mclean ((46))*. It was subsequently explained on the basis of above mathematical model in ((46)) by Bhargava and Mclean.

They are of great theoretical interest also, as we shall see that on the equilibrium interface the elastic displacements of inclusion and matrix are not continuous whilst the net displacement, made up of elastic and non-elastic contribution, is everywhere continuous. Expressed in a different language one is concerned with states of elastic strain which do not satisfy the compatibility relations of Smint-Venant and which are, nevertheless, realized without material being ruptured.

The simple problem of spherical inclusion in an infinite isetropic elastic continuum was examined by Frenkel ((31)) in connection with his kinetic theory of liquids, and by Nett and Mabarro ((9)) and Mabarro ((32)) in connection with their theory of precipitation hardening im alleys. A systematic investigation of the ellipsoidal inclusion was undertaken in 1957

The state of the s

^{*}Figures enclosed in such double parenthesis refer to the numbers in the bibliography on page 152 .

by Eshelby ((10)), where he made use of what may be described as point-force technique.

are more realistic, they involve analytically intractable integrals of formidable nature. But the problem is comparatively simpler in two-dimensional situations as in the cases of plane strain or plane stress problems. It is because the complex-variable method can be applied. This method was formulated by Jaswon and Bhargava ((18)). They illustrated the method by salving the elliptic inclusion problem.

Another method of solving such problems was given by Bhargava ((44)). This was the application of classical minimum energy principle to solve such problems. It was applied by Bhargava and Radhakrishna ((17, 18)) to solve the problem of an elliptic inhomogeneity in an isotropic medium. This method was subsequently applied by them to solve a more general problem, when the inhomogeneity and matrix were of different orthotropic material. Millis ((83)) gave the solution of a simpley problem of an elliptic inclusion in a cubic material, by point-force technique.

substantial contributions, to two-dimensional elastic inclusion problems, were made by Kapour ((27)). He not only dealt with the problem of inclusion of various shapes e.g. rectangular and tringular but also solved the problems where the inclusion interacted with an inclusion or an inhomogeneity or a cavity in an etherwise infinite medium.

Recently R. J. Knops ((34)) derived an equation for the strains of an arbitrary elastic field in an infinite matrix perturbed by several inclusions and solved it exactly when the shear moduli of inhomogeneities and matrix are identical and when only a single ellipsoidal inclusion perturbs a field uniform at infinity. Some other recent contributions in this field of study have been concerned with using variational methods to derive bounds for the aggregate moduli of multiphased materials having arbitrary phase geometry. In this connection, reference may be made to the work of Hashin and Shrikman ((35)) and Hill ((36, 37, 36)) where, in particular, bounds are presented for the bulk and shear meduli. Mill ((39)) also estimated the everall moduli of an arbitrary fibre composite with transversely isotropic phases and also the macroscopic elastic moduli of two phase composites ((40)). Budiansky ((41)) gave

an analysis for the determination of the elastic moduli of a composite material. The bounds for elastic moduli of solid composite materials were given by Walpele ((42, 43)) by employing extremum-principles.

The present work is concerned with the extension of such problems. It appears necessary to remark at this stage, that the previous works confined to the case when the spontaneous deformation is characterised by a simple relation i.e. when the strain components are constants. Now if we take the spontaneous deformation characterised by more general relations, this certainly makes the analysis involved but in turn the solution is more general. This thesis deals with a class of such problems.

In passing we have dealt with another aspect of the problem when the matrix tries to undergo spontaneous deformation. This has been discussed in chapter V. Although more general problems can be solved, but technique used in this chapter can be directly applied.

An important aspect in the solution of inclusion problems is the extent of the matrix. In most of the previous works on this subject, the matrix was supposed to be infinite in all directions. A first step im reducing the size of the matrix is to consider it

semi-infinite. It seems to have important applications in engineering and technology. Dynage to the structural frames resulting from swelling of clay soils used as foundations has been well documented over years. In most of the cases the damage has been attributed to vertical component of swelling and also to the horizontal component. The simple model of homogeneous isotropic elastic material which has been assumed in the present work may be a simplification of the soil mass which is an inelastic continuum, but it may be a first step towards solution of above problems.

Another step is to consider the matrix as a medium consisting of an infinite elastic strip. Solution of inclusion problems in infinite and semi-infinite media becomes particular cases of such a solution. Problem of an inclusion in an infinite strip has also been considered in this thesis.

In the first two chapters, we have given relevant theory of complex variable approach and the point-force technique, which has all through been used. In chapter III the problem of circular inclusion is considered when the spontaneous deformation is characterized by a deformation of the type given by $\tau^n \omega_{SRR} = -10$

chapter IV we deal with the elliptic inclusion when the deformation is of the type $T^2\cos 2\theta$. This is to indicate that this method may be used for spontaneous deformation of a general nature.

Chapter V deals with the problem when the matrix is undergoing spontaneous deformation and the inclusion is initially unstressed. This state may be created for example by taking a certain plane harmonic temperature distribution within the matrix with an insulation on the interface of the inclusion. This type of problems form a new class under such problems.

In chapter VI, to provide a coherent approach to two subsequent chapters (VII and VIII), necessary theory, first formulated by Tiffen ((21)) is given. In chapter VII the circular inclusion is considered in semi-infinite medium with its straight edge stress-free. Chapter VIII deals with the problem of circular inclusion in half plane when the leading edge is free from displacements.

In chapter IX the relevant theory of a point-force acting in the interior of am infinite elastic strip is given. This theory has been used in subsequent chapters. The theory is based on the work of Tiffen ((21, 22, 23, 24)). Chapter X and XI provide the solution of inclusion

problems in infinite elastic strip. In first case, the straight boundaries of the strip are traction-free whilst in the second case they are displacement free. It is found that the edge effect is confined to a small region around the inclusions and when the width of the strip is ten times the radius of circular inclusion the solutions differ slightly from those for the infinite case, the error being of the order of about six in handred.

The work presented in the chapters III, IV and V is based on the following papers which have been published.

- Circular Region under Plane Harmonic Temperature Distribution in an Insulated Infinite Elastic Medium. (Bulletin de l'Asademie Polonaise de Sciences, Vol. XII, No. 7 1964).
- 2. An Elliptic Region under Plane Harmonic Temperature Distribution with Insulated Boundary (Bulletin de l' Academic Polonaise des Sciences, Vel. XII No. 12 1964).
- 3. An Infinite Elastic Medium under Plane Harmonie Temperature Distribution with a circular Insert. (Jour. Phys. Soc. of Japan, Vol. 19, No. 5, 1964).

Light of Symbols

ж , у	two-dimensional Cartesian coordinates
Υ, θ	two-dimensional polar coordinates
\$, η	two-dimensional elliptic coordinates
ux, uy	dis lacement components in Cartesian coordin
ur, u _e	displacement components in polar coordinates
exx, exy, eyy	strain components in Cartesian coordinates
Pxx , Pxy , Pyy	stress components in Cartesian coordinates
Prr , Pre , Pee	stress components in polar coordinates
Pff , Pfn , Pnn	stress components in elliptic coordinates
V	Poisson's ratio
λ,μ	Lame' constants
K= (3-4)/(1+4)	for plane stress case
K= 3-4V	for plane strain case
i.	square root of -1
×	seefficient of linear expansion
Т	temperature distribution
Subscript 1	denotes that subscripted quantity pertains to inclusion
Subscript m	denotes that subscripted quantity pertains to matrix
Bar (-)	denotes the complex conjugate
Prime (*)	demotes differentiation with respect to the argument

CHAPI-H I

COMPL A-VARIABLE APPENACH

This chapter summarises the complex-variable method of solving two-dimensional problems in infinitesimal theory of elasticity. This method of solution was first indicated by Kolosov ((1)) in 1908, and was developed in Russia extensively. Metable mention may be made of the classical book by Huskhelishvili ((2)). However the literature remained unknown for a long time (till the publication of I.S. Sokolnikoff's book ((4)) to the workers in west, and was independently discovered by stevenson ((5)). The theory has also been discussed by sokolonikoff ((4)) Green and Zerna ((7)) and Timoshenko and Goodier ((8)) et. al.

The solution of this class of problems depends upon two analytic functions of complex-variable All the formulas which will be needed in this thesis are included in what follows, for ready reference.

The attention shall be restricted to those plane strain problems for which the body forces are zero. In plane strain problems the axes canbe chosen in such a way that the displacement component in Z direction is zero and other two displacement components are functions of X and Y only. Thus the strain components e_{yz} , e_{xx} , e_{xx} are identically equal to zero and therefore by Hooke's law the stress component e_{yz} , e_{xx} are also zero. From $e_{zz}=0$, it may be noted that $e_{zz}=v(e_{xx}+e_{yy})$ where v is the Poisson's ratio. All the remaining components of stress and strain are functions of v and v only.

The equilibrium equations in the absence of body forces are

$$\frac{\partial x}{\partial y^{x}} + \frac{\partial y}{\partial y^{y}} = 0 , \qquad \frac{\partial x}{\partial y^{x}} + \frac{\partial y}{\partial y} = 0 , \qquad (1)$$

and it can be shown with the help of compatibility equation

$$\frac{3h_{x}}{3e^{xx}} + \frac{3x_{y}}{3e^{xx}} = \frac{3x_{3}h}{3g_{x}h} \tag{3}$$

and (1), that Part Pyy is harmonic function. It may

be remarked, that in plane strain case, other compatibility relations are identically satisfied.

Noting that,

$$\frac{\partial}{\partial x} = \left(\frac{\partial}{\partial z} + \frac{\partial}{\partial \overline{z}}\right) \quad , \quad \frac{\partial}{\partial y} = \left(\frac{\partial}{\partial z} - \frac{\partial}{\partial \overline{z}}\right) \qquad ,$$

and bux+by satisfies Laplace's equation

$$\nabla^2(k_{xx}+k_{yy}) = 4\frac{\partial^2}{\partial z \partial \bar{z}}(k_{xx}+k_{yy}) = 0.$$
 (3)

We at once obtain

$$\beta_{xx} + \beta_{yy} = 2\left(\underline{\Phi}(z) + \overline{\underline{\Phi}(z)}\right), \tag{4}$$

where the factor 2 has been inserted for the sake of convenience and $\Phi^{(2)}$ and $\overline{\Phi}^{(\overline{z})}$ are complex conjugate functions.

Another relation involving p_{xx} , p_{xy} and p_{yy} may be obtained as follows:

Multiplying second of equations (1) by $\hat{\iota}$ subtracting it from the first equation and using (4), we obtain

$$\frac{\partial}{\partial \overline{z}} \left(P_{yy} - P_{xx} + 2 \iota P_{xy} \right) = \frac{\partial}{\partial z} \left(P_{xx} + P_{yy} \right) = 2 \overline{P}(z), \tag{5}$$

where dash denotes differentiation w.r.t. the argument inside the bracket.

Integration of (5) with respect to \overline{z} gives immediately

$$p_{yy} - p_{xx} + 2 p_{xy} = 2 \left[\bar{z} \, \underline{\Phi}'(z) + \Psi(z) \right] \tag{6}$$

where $\Psi^{(z)}$ is second function of z. It is thus obvious that the stresses, $p_{x,x}$, p_{xy} and p_{xy} and also $p_{zz} = V(p_{xx} + p_{yy})$ may be represented in terms of two analytic functions $\varphi^{(z)}$ and $\varphi^{(z)}$ and of \overline{z} .

In order to obtain the corresponding expressions for displacements, Hooks's law connecting the strain to stress is used:

$$e_{xx} = \frac{1}{E} \left\{ p_{xx} - V(p_{yy} + p_{zz}) \right\}$$

$$e_{yy} = \frac{1}{E} \left\{ p_{yy} - V(p_{zz} + p_{xx}) \right\}$$

$$e_{xx} = \frac{p_{xy}}{2N}$$
(7)

where E is Young's modulus, and

$$\mu = \frac{E}{2(1+0)},$$

Equation (7) combined with (4) and (6) would give

$$4\mu \frac{\partial}{\partial z} \left(u_{x} - i u_{y} \right) = -\left(p_{yy} - p_{xx} + 2\iota p_{xy} \right) = -2 \left[\overline{z} \ \underline{\Phi}(z) + \underline{\Psi}(z) \right]$$

and hence, after integrating with respect to Z and taking the complex conjugate expression throughout,

$$2\mu(u_{x+1}u_y) = -2\bar{x}(\bar{z}) - \int \bar{y}(\bar{z}) d\bar{z} + \chi(z)$$
 (8)

where $\chi(z)$ is at present is still undetermined. It may be shown with the help of (2) and (7) that

$$\chi(z) = \kappa \int \Phi(z) dz$$
 (9)

where K=3-4V

Introducing two functions +(z) and +(z), defined by

$$\bar{\Phi}(z) = \Phi'(z) \qquad \Psi(z) = \Psi'(z)$$
(10)

the basic formulaes (4), (6) and (8) giving the complex representations of the stresses and displacements may be written in various equivalent forms

$$P_{xx} + P_{yy} = 2 \left[\Phi(z) + \overline{\Phi}(\overline{z}) \right] = 2 \left[\Phi'(z) + \overline{\Phi}'(\overline{z}) \right]$$
 (114)

$$\beta_{yy} - \beta_{xx} + 2(\beta_{xy} = 2[\bar{z}\bar{F}'(z) + \Psi(z)] = 2[\bar{z}\bar{\Phi}''(z) + \Psi'(z)]$$
 (11b)

$$2\mu(u_x+cu_y)=k\Phi(z)-z\bar{\Phi}'(\bar{z})-\bar{\Psi}(\bar{z})$$
 (110)

Finally, we obtain from first two of these equations by subtraction

If the axes x_1y_1 are rotated through an angle θ in the anticlockwise direction and the new axes denoted by axes x'_1, y'_2 , the stresses $P_{xx'_1}, P_{x'y'_1}, P_{y'y'_2}$ and $u_{x'_1}, u_{y'_2}$ referred to x'_1, y'_2 axes are related to $P_{xx_1}, P_{xy_2}, P_{yy_3}$

uk, uy referred to x, y, in the following manner

$$\begin{aligned} p_{xx} + p_{y'y'} &= p_{xx} + p_{yy} \\ (p_{yy'} - p_{xx} + 2ip_{xy'}) &= (p_{yy} - p_{xx} + 2ip_{xy}) e^{2i\theta} \end{aligned}$$

and

$$(u_{x'}+iu_{y'})=(u_{x'}+iu_{y})e^{i\theta}$$
 (13)

So that if P_{nn} and P_{n+} are normal and tangential components of stress acting on a boundary at a point where outward normal makes an angle θ with the x-axis, then

$$2(P_{nn}-iP_{nt}) = P_{xx}+P_{yy}-(P_{yy}-P_{xx}+2iP_{xy})e^{2i\theta}$$
 (14)

Substituting the values of $p_{xx} + p_{yy}$ and $p_{yy} - p_{xx} + 2^{\dagger} p_{xy}$ from (11a) and (11b) in (14) gives

$$P_{nn} - i b_{n+} = \Phi(z) + \overline{\Phi}(\overline{z}) - [\overline{z} \overline{\Phi}'(z) + \Psi(z)] e^{z/\theta}$$
 (16)

If the stresses p_{nn} , p_{nt} are prescribed on the boundary L, then z will be a point on L.

Now, we shall briefly discuss below the consequences of the changes of origin and of the rotation of axes on the functions $\phi(z)$ and $\psi(z)$, corresponding to a given state of stress of a body.

First investigate the effect of translation of the origin to a new point (x_0, y_0) . Let (x_0, y) and (x_0, y_0) be the coordinates of the same point in the old and new systems.

Let

$$z_0 = X_0^2 + \epsilon Y_0$$
, $z = x_0 + \epsilon Y_0$, $z_1 = x_1 + \epsilon Y_0$,

It is obvious that

$$z = z_1 + z_0 \tag{16}$$

Now we start with the formulas (11a) and (11b), denote by $\Phi_1(z_1)$ and $\Psi_1(z_2)$ the functions playing in the new system the same role as $\Phi_1(z_2)$ and $\Phi_2(z_2)$ in the old one. Since the stress components are invariant to translation, one has by (11a)

$$Re \{\Phi(z)\} = Re \{\Phi_1(z_1)\} = Re \Phi_1(z_2)$$

whence

$$\Phi^{(2)} = \Phi_1(z-z_0) \tag{17}$$

It may be remarked that the addition of a purely imaginary constant on the right hand side would have no influence on the stress distribution.

The formula (11b) gives

$$\begin{split} \vec{z} \ \vec{\Phi}'(z) + \Psi(z) &= \ \vec{z}_1 \, \vec{\Phi}'_1(z_1) + \Psi_1(z_1) \\ &= (\vec{z} - \vec{z}_0) \, \vec{\Phi}'_1(z_1 - z_0) + \Psi_1(z_1 - z_0) \\ &= \ \vec{z} \, \vec{\Phi}'_1(z_1 - z_0) + \Psi_1(z_1 - z_0) - \vec{z}_0 \, \vec{\Phi}'_1(z_1 - z_0) \end{split}$$

hence, by (17)

Integrating (17) and (18) with respect to z one obtains

Arbitrary constants which do not affect the stress-distribution have been omitted.

Hext, consider the effect of rotation of axes, keeping the origin fixed. If the new axis $0 \times 0 \times 0$ makes an angle ∞ with the axis $0 \times 0 \times 0 \times 0$, then the point (\times, y) in the (\times, y) coordinate system is related to the point (\times, y) in the (\times, y) coordinates by the relation

$$x = x_1 \cos \alpha - y_1 \sin \alpha$$
,
 $y = x_1 \sin \alpha + y_1 \cos \alpha$,

Therefore

$$x+iy=(x_1+iy_1)e^{ix}$$

or

$$z=z_1e^{i\alpha}$$
, $z_1=z_1e^{-i\alpha}$ (20)

Owing to the invariance of Pert Pyy , one has, on the basis of (11a)

whence, omitting a purely imaginary constant term.

$$\underline{\Phi}(z) = \underline{\Phi}_{4}(ze^{i\alpha}) \tag{31}$$

Now using formula analogous to second of (12)

$$\overline{z}_i \Phi'_i(z_i) + \Psi_i(z_i) = \left(\overline{z} \Phi'_i(z) + \Psi(z)\right) e^{2ix}$$

Thus

$$\bar{Z} = \bar{Z}(z) + \Psi(z) = \left[\bar{Z} e^{i \lambda} \bar{Z}'_{1}(z = \bar{z}^{i \lambda}) + \bar{Y}_{1}(z = \bar{z}^{i \lambda})\right] \bar{e}^{2i \lambda}$$

Further, noting that by (21) that

$$\bar{\Phi}'(z) = e^{ik} \bar{\Phi}'(z\bar{e}^{id})$$

one gets

$$\Psi(z) = \Psi_{i}(ze^{i\alpha})e^{2i\alpha}. \qquad (22)$$

Integrating (21) and (22) with respect to z and omitting unnecessary arbitrary constants which do not influence the stress distribution, one obtains

$$\phi(z) = \phi_1(ze^{iA}) e^{iA},$$

$$\psi(z) = \psi_1(ze^{iA}) e^{iA}.$$
(23)

CHAPPER II

INCLUSION PROBLEM AND POINT-FUNGE

As this thesis deals with a class of inclusion problems in elasticity theory, a brief description of the problem is given. The method is explained with the help of the well known circular inclusion problem. The inclusion problem states that:

A region (the inclusion) of an elastic material tends to undergo a spontaneous change, which in the absence of the surrounding material (the matrix), of the elastic material, would be a prescribed homogeneous deformation. Stresses develop because of the constraints. The problem is to find the elastic field. Precise meanings to the terms used in this thesis are given below:

'Inclusion' is the region, which is deforming and is of the same material, as that of surrounding material, the matrix. Now as the inclusion undergoes a spontaneous

change in shape and size, the elastic constraints of the matrix will generate locked-up accommodation stresses everywhere within the inclusion and matrix. The determination of the resultant stress field and the equilibrium configuration form the subject matter of the inclusion problem.

The term "free inclusion" is used here after for the free state configuration which the inclusion would attain in the absence of the matrix.

On physical grounds, for a uniform expansion or contraction of sphere or a circle the equilibrium boundary is a similarity situated sphere or a circle and the problem can be easily solved e.g. Mott and Habarre ((9)). The result is also true for ellipsoid ((10)) and elliptic boundaries ((13)). But the generalization is not possible. For instance, when the inclusion and free-inclusion are similarly situated rectangles, the equilibrium boundary is not a similar rectangle, in fact it is not a rectangle at all (Bhargava and Kapoor ((14)). Thus the equilibrium interface is unknown of the problem. However, a very powerful and ingenious method to solve such problems was given by Kahelby ((10)). It uses the results due to a point-force in an infinite medium. We briefly go ever

the arguments which invokes a sequence of following hypothetical operations, and which solves the problem.

First cut out the inclusion from the medium and allow it to achieve free state configuration. Now, as it is, inclusion can no longer be fitted without straining into the cavity from which it was taken out. Next impress upon it the surface tractions, that restore its original dimensions. At this stage there will be a stress-field present in the inclusion. We shall call this streas-field as **the constrained stress-field ** for future reference. Insert the stressed inclusion into the cavity left behind and rejoin the material across the cut. At this stage no stresses appear in the matrix. Finally, a distribution of point forces equal and opposite to the impressed surface tractions, is introduced on the boundary. If the matrix were absent, these forces would obviously mullify the surface tractions and would generate an elastic deformation which will exactly take the inclusion to its free state configuration. However, owing to the elastic constraints of the matrix, an elastic field would be produced in the matrix and an additional field in the inclusion.

Thus, if the stress field in a system, due to a concentrated force at a point, is known, the cumulative effect due to the distribution of point-forces can be found by integrating along the boundary. The stress-field in the matrix, due to the deforming inclusion, will be same as due to the distribution of point forces. In the inclusion, however, the stress field is obtained by superposing the stress-field due to the layer of point-forces, on that originally present due to the impressed surface tractions.

The problem of a concentrated force acting at a point in an infinite elastic medium was first discussed by Lord Kelvin ((16)). A force (X,Y,Z) acting at a point (x,y,z) , produces a displacement (x,y,z) at (x,y,z) given by the formulas

$$U = \frac{\lambda + H}{8\pi\mu(2\mu + \lambda)} \left[\frac{\lambda + 3H}{\lambda + \mu} \frac{\chi}{d} + (\chi - \chi_1) \left\{ \frac{\chi(\chi - \chi_1) + \chi(\chi - \chi_1) + \chi(\chi - \chi_1)}{d^3} \right\} \right]$$

where

$$d^2 = (x-x_1)^2 + (y-y_1)^2 + (z-z_1)^2$$

with similar expression for v and w .

V a i f

The state of the s

For two-dimensional problems the expression for displacement at a point (x, y) due to a concentrated force acting at a point (x, y) is

$$2 \mu u = -\frac{k X}{\pi(1+k)} log \left\{ (x-x_1)^2 + (y-y_1)^2 \right\}^{1/2} + \frac{1}{2\pi(k+1)} \left[\frac{X \left\{ (x-x_1)^2 - (y-y_1)^2 \right\} + 2(x-x_1)(y-y_1)}{(x-x_1)^2 + (y-y_1)^2} \right]$$

$$2\mu v = -\frac{\kappa \gamma}{\pi(1+\kappa)} \log_2 \{ (x-x_1)^2 + (y-y_1)^2 \}^{1/2} + \frac{1}{2\pi(\kappa+1)} \left[\frac{\gamma \{ (y-y_1)^2 - (x-x_1)^2 \} + 2(x-x_1)(y-y_1)}{(x-x_1)^2 + (y-y_1)^2} \right]$$

where K=3-4V, for plane strain and $K=\frac{3-V}{1+V}$ for the plane stress case.

A complex-variable formulation for such problem can be easily found out. As already stated in the last chapter, the elastic field is completely known, if two functions $\phi(z)$ and $\phi(z)$ are known. In the case of a concentrated force P = X + i Y acting at point S of an unbounded elastic body the complex potential functions $\phi(z)$ and $\phi(z)$ are given in Green and Zerma ((7)) as

$$\phi'(z) = -\frac{P}{2\pi(1+k)}\frac{1}{(z-\xi)}$$

$$\psi'(z) = \frac{K \overline{P}}{2\pi(1+K)} \frac{1}{(z-\xi)} - \frac{\overline{\xi} P}{2\pi(1+K)} \frac{1}{(z-\xi)^2},$$
 (24)

where \overline{P} is conjugate of P . The success of complex variable approach hinges on these key results.

The cumulative effect of distribution of point-forces acting along a simple arc Γ of an infinite elastic medium may be obtained by integrating the effects of the concentrated forces given as a function of $\mathcal E$ on Γ . Thus for concentrated forces acting along Γ , the functions $\Phi^{(2)}$ and $\Psi^{(2)}$ are given by

$$\phi'(z) = -\frac{1}{2\pi(k+1)} \int_{\Gamma} \frac{Pds}{z-g} ,$$

$$4'(z) = \frac{\kappa}{2\pi(\kappa+1)} \int_{\Pi} \frac{\overline{P}ds}{z-g} - \frac{1}{2\pi(\kappa+1)} \int_{\Pi} \frac{\overline{g}Pds}{(z-g)^2}$$
(36)

where ds denotes the arc differential along Γ . It may be emphasized that S lies on Γ . To evaluate integrals in equation (25) as functions of Z, we write Pds and \overline{P} ds as follows: Let $S=S+i\eta$ and therefore,

$$d\xi = \left(\frac{d\xi}{ds} + i\frac{d\eta}{ds}\right)ds, \ d\xi = \left(\frac{d\xi}{ds} - i\frac{d\eta}{ds}\right)ds$$

so that

$$\frac{d\xi}{ds} = \frac{1}{2} \left(\frac{d\xi}{ds} + \frac{d\overline{\xi}}{ds} \right) , \quad \frac{d\eta}{ds} = -\frac{i}{2} \left(\frac{d\xi}{ds} - \frac{d\overline{\xi}}{ds} \right)$$
 (26)

Now $d\overline{S}$ may be removed by writing the equation of Γ in the form $\overline{S} = f(S)$

At the point (ξ,η) of an inclusion boundary Γ , the outward normal to Γ has direction cosines $\frac{d\eta}{ds}$, $-\frac{d\xi}{ds}$. Hence, if Eshelby's hypothetical stress-field is P_{xx} , P_{xy} , P_{xy} , P_{xy} , the point-force components per unit length are

$$X = p_{xx}^{\circ} \left(\frac{d\eta}{ds} \right) + p_{xy}^{\circ} \left(-\frac{d\xi}{ds} \right)$$

$$Y = p_{xy}^{\circ} \left(\frac{d\eta}{ds} \right) + p_{yy}^{\circ} \left(-\frac{d\xi}{ds} \right)$$

Now, making use of equation (26) one can arrive at the expressions

$$Pds = -\frac{i}{2} \left[(p_{xx} + p_{yy}) dS - (p_{xx} - p_{yy}) dS \right] + p_{xy} dS$$

$$Pds = -\frac{i}{2} \left[(p_{xx} - p_{yy}) dS - (p_{xx} + p_{yy}) dS \right] + p_{xy} dS$$
(17)

Hence the expressions for Pds and Pds in (25) are known.

As an illustration let us take a circular inclusion

of unit radius in an infinite elastic medium. This tends

to expand to a size of radius 1+S, in the absence of matrix, (where S is small so that the linear theory of elasticity is applicable.) This is what has been termed as 'free inclusion'. At this stage, we reduce the inclusion to the size of the hole by applying surface tractions. The displacement field is given by

$$u_{x} = -\delta x$$
 , $u_y = -\delta y$

and therefore the strains $e_{xx} = -\delta$, $e_{yy} = -\delta$, $e_{xy} = 0$ and hence by Hooke's law

$$p_{xx} = -2(\lambda + \mu)\delta$$
, $p_{yy} = -2(\lambda + \mu)\delta$, $p_{xy} = 0$.

We leave this inclusion in the hole and apply surface tractions (which would have taken the inclusion to its free state in the absence of the matrix). This in effect generates a layer of point forces and are obtained from (27), by substituting the values of P_{xx} , P_{xy} and P_{yy} as given by above relation with negative sign, whence

Substituting these values of Pas and \overline{P}^{AS} in (86), evaluating the integral and noting that Γ is a circle of

unit radius, we get, for a point z in the inclusion

$$\phi'(z) = \frac{2(\lambda+\mu)\delta}{k+1}, \quad \psi'(z) = 0,$$

and for a point z in the satrix

$$\phi'_{m}(z) = 0$$
 , $\psi'_{m}(z) = \frac{k-1}{k+1} (\lambda^{+} \mu) \frac{2\delta}{z^{2}}$

where the potential functions $\phi_{i}^{'}(z)$ and $\psi_{i}^{'}(z)$; and $\psi_{m}^{'}(z)$ and $\psi_{m}^{'}(z)$ and $\psi_{m}^{'}(z)$ refer to the inclusion and matrix respectively.

The stresses and displacements in the matrix can be directly found from the corresponding expressions for complex potential functions with the aid of relations (11). But in case of the inclusion, the complex potential functions $\phi'_{\epsilon}(x)$ and $\psi'_{\epsilon}(x)$ give only a part of the stress-field. The constrained stress-field given by

must be superposed to it to obtain the net stresses in the inclusion. Continuity of tangential and normal stresses across the boundary Γ is a check on the fore-going analysis. Similarly the net displacement in the inclusion is found by superposing the displacements obtained by the use of $\phi'_{\epsilon}(z)$, $\psi'_{\epsilon}(z)$ in (11e) ever initial displacement field.

CHAPTER III

CINCULAR INCLUSION WITH PLANE HARMONIC TEMPERATURE DISTRIBUTION

Previous works of Mott and Mabarro ((9)),
Eshelby ((10, 11)) Jaswon and Bhargava ((13)), Bhargava
and Radhakrishna ((17, 18)) and Bhargava and Kapoor ((14))
and of others have mainly been confined to the case of
homogeneous spontaneous deformation. This was
characterised by taking the spontaneous deformation
as given by

$$u_x = \delta_1 x + \gamma_1 y$$
, $u_y = \delta_2 y + \gamma_1 x$

In this chapter we shall consider a more general problem, where such a displacement is given by

STATE OF STA

(25)

where w is a positive integer.

A physical meaning to such a spontaneous deformation can be given as follows: Consider the following problem:

A prism, of circular cross-section of radius a and centre at the origin is embedded into an infinite medium, and is insulated at the common interface. The prism is subjected to the temperature distribution of the form

$$T(r,\theta) = b_n r^n cosn\theta \text{ or } T(r,\theta) = b_n r^n sim n\theta$$
 (39)

It is obvious that such a temperature distribution is satisfying two-dimensional Laplace equation (Boley and Miener ((19)).

$$\nabla^2 T(r,\theta) = \frac{1}{r^2} \frac{\partial^2 T}{\partial \rho^2} + \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) = 0.$$
 (30)

Due to this temperature distribution, there would be a free expansion in the inclusion, but for the constraints of matrix. Hence the stresses would develop both in inclusion and in matrix. The problem is to find this elastic field.

It may be remarked that such a temperature distribution

can cater for the following still more general problem.

Consider an arbitrary temperature distribution. Suppose that temperature distribution is expressed in Fourier series as

$$T(r,\theta) = \sum_{n=0}^{\infty} A_n r^n \cos n\theta + \sum_{n=1}^{\infty} B_n r^n \sin n\theta$$
 (31)

This obviously satisfies Laplace equation. If the results are derived for (29), the results for the problem (31) can be derived by superposition.

This problem may be solved directly by the following hypothetical considerations:

The inclusion is cut out from the matrix and is allowed to undergo the temperature distribution. This would change its dimensions. Surface tractions are applied to bring the inclusion back to its initial shape and size. We put it back into the hole of the matrix, and the operations similar to those indicated in chapter II page 14 are applied.

The stress-strain relations of thermoelasticity were first given by Dubamel ((20)). The stresses in the absence of matrix can easily be seen to be

$$= KT , \beta_{xy} = 0$$
 (32)

where $K = 2\alpha(\lambda + \mu)$ and A is the coefficient of linear expansion of the material under consideration. Substitution of these values of stresses p_{xx} , p_{xy} , p_{yy} in equations (27) the following equation is obtained

$$Pas = -i KTag$$
 $Pas = i KTag$ (38)

It may be noted that at any point $S = Ye^{i\theta}$ where Y is the radius vector and θ is the vectorial angle.

We shall first consider the case when the temperature distribution is

$$T(r,\theta) = b_n r^n cosn\theta = \frac{b_n}{2} \left\{ \xi^n + \bar{\xi}^n \right\}$$
 (34)

If the point is taken on the boundary, g will be written as σ thus the equation of circular boundary. Γ is $\sigma = a^2$, hence $\sigma = a^2/\sigma$ on the boundary where σ is the complex conjugate of σ . Putting the value of Γ

from (34) in (33) and then substituting the value of Pas in (25), and integrating the resultant contour integrals around the circle Γ , two values of each $\psi'(z)$ and $\psi'(z)$ are obtained depending upon whether z lies inside or outside the circle Γ . After some simple calculation, the following values are obtained

For evaluation of stresses, the values of complex potential functions are substituted from (35) - (36). It may, however, be noted that the inclusion had an initial stress-field termed previously as 'constrained stress-field.' Hence for finding out the actual stresses the constrained field has to be superposed upon that obtained with the help of functions $\Phi_i^{(2)}$ and $\Psi_i^{(2)}$. Following the procedure outlined above, we shall get after

some simplification that stresses in the inclusion are

$$\dot{p}_{rr} = \frac{K b_n r^{n-2} cos n\theta}{2(1+K)} \left\{ -nr^2 2Kr^2 + a^2(K+n-1) \right\}$$
 (37)

and

$$\dot{p}_{r\theta} = \frac{K b_{r} r^{n-2} inn\theta}{2(1+K)} \left\{ a^{2} (1-K) - n(a^{2} - r^{2}) \right\}$$
 (38)

Here we use small letters p_{rr} , $p_{r\theta}$, $p_{\theta\theta}$ to denote the stresses in the inclusion. The capital letter would be used for corresponding quantities in the matrix. Thus p_{rr} , $p_{r\theta}$, $p_{\theta\theta}$ will refer to the stresses in the matrix. For denoting the boundary values of these quantities we shall use the superscript $p_{r\theta}$. The boundary stresses are

$$\frac{b_{rr}}{b_{r\theta}} = -\frac{K b_n a^n cos n\theta}{2}$$

$$\frac{b_{\theta\theta}}{b} = \frac{K b_n a^n cos n\theta}{2} \left(\frac{1-3K}{1+K}\right)$$

$$\frac{b_{r\theta}}{b_{r\theta}} = \frac{K b_n a^n sin n\theta}{2} \left(\frac{1-K}{1+K}\right)$$
(39)

The complex potential function (36) with (12), give the stress-field in the matrix, to be

$$P_{rr} = -\frac{K b_n a^{2n} cos n \theta}{2 c(1+K) r^{n+2}} \left(2r^2 + Ka^2 - R^2 \right),$$

$$P_{\theta\theta} = -\frac{K b_n a^{2n} cos n \theta}{2 (1+K) r^{n+2}} \left(2r^2 - Ka^2 + a^2 \right),$$
(40)

and

$$P_{r\theta} = \frac{K b_n a^{2n+2}}{2 r^{n+2}} \left(\frac{1-K}{1+K} \right). \tag{41}$$

Boundary values of these stresses are

$$P_{rr}^{b} = -\frac{K b_{n} a^{n} cos n\theta}{2},$$

$$P_{\theta\theta}^{b} = \frac{-K b_{n} a^{n} cos n\theta}{2} \left(\frac{3-K}{1+K}\right),$$

$$P_{r\theta}^{b} = \frac{K b_{n} a^{n} sm n\theta}{2} \left(\frac{1-K}{1+K}\right).$$
(42)

From the expressions (39) and (42) we observe that the normal and tangential components of stress are continuous on the equilibrium interface, which it should be. The hoop-stresses have a jump-discontinuity over the boundary.

The jump is

$$P_{\theta\theta}^{b} - p_{\theta\theta}^{b} = K b_{n} a^{n} \cos n\theta$$
 (43)

The displacement field is worked out with the help of equations (110) and (35) - (36). Thus the net displacement field of the inclusion (made up for elastic and non-elastic displacements) is obtained as

$$2\mu(u_x+iu_y) = \frac{Kb_n \kappa z^{n+1}}{2(\kappa+1)(n+1)} - \frac{Kb_n z \bar{z}^n}{2(\kappa+1)} + \frac{Kb_n(\kappa+n-1) a^2 \bar{z}^{n+1}}{2(\kappa+1)(n-1)}$$
(44)

The displacement components may be transformed from Cartesian to polar coordinates with the help of relations (13). The boundary-value of urtiue for inclusion is given by

$$2\mu(u_r^b + \iota u_\theta) = \frac{Kb_n \kappa a^{n+1}}{2(\kappa+1)} \left[\frac{e^{ni\theta}}{n+1} + \frac{e^{-ni\theta}}{n-1} \right]$$
 (46)

where we have again used small letters u_r , u_θ for the displacement in the inclusion and similarly for matrix we shall use capital letters.

The displacement in the matrix, is given by the relation (11s) and equation (26), as

$$2\mu(U_x+iU_y) = \frac{Kb_n ka^{2n}}{2(K+1)(n-1)z^{n+1}} + \frac{Kb_n za^{2n}}{2(K+1)\bar{z}^n}$$

$$-\frac{K b_{n} a^{2n+2} (K-n-1)}{2(K+1)(n+1) Z^{n+1}}$$
 (46)

The components of displacements in polar coordinates at the boundary are

$$2\mu\left(U_r^{b+i}U_0^{b}\right) = \frac{Kb_n \kappa a^{n+i}}{2(\kappa+i)} \left[\frac{e^{ni\theta}}{n+i} + \frac{e^{ni\theta}}{n-i}\right] \tag{47}$$

Prom (45) and (47), the continuity of displacement field over the interface is established.

The strain energy density of a two-dimensional elastic system per unit height in plane strain case is given by

$$W = \frac{1}{2} p_{ij} e_{ij} = \frac{1}{2} (p_{xx} e_{xx} + p_{yy} e_{yy} + 2p_{xy} e_{xy})$$

which may be put in terms of stresses only by using Booke's law (7). The strain energies in the inclusion and the matrix are

$$W_{l} = \frac{1}{4} \left[\left(p_{rr} + p_{\theta\theta} \right)^{2} \frac{(1+2)(1-2)}{E} + 2 \Delta T \left(p_{rr} + p_{\theta\theta} \right) + \left(p_{\theta\theta} - p_{rr} \right)^{2} \frac{1+2}{E} + \frac{2}{\mu} p_{r\theta}^{2} \right]$$
(48)

$$W_{m} = \frac{1}{4} \left[\left(P_{rr} + P_{\theta\theta} \right)^{2} \frac{(1+v)(1-2v)}{E} + \left(P_{\theta\theta} - P_{rr} \right)^{2} \frac{(+v)}{E} + \frac{2}{\mu} P_{r\theta}^{2} \right] ,$$

By integrating across the area, the expressions for strain energy in the inclusion and the matrix are

$$W_{l} = \frac{\pi \left(K \ b_{n} a^{N} \right)^{2}}{16 (\lambda + 2\mu)^{2} \times 2 \mu n (n^{2} - 1)} \left((\lambda + 3\mu) \left\{ \lambda n (n + 1) + \mu (n + 5) \right\} + (\lambda + \mu)^{2} \left\{ -2 n^{4} + n^{2} - n - 2 \right\} + 2 (\lambda + \mu) (\lambda + 3\mu) (n^{3} + 1) \right]$$

$$W_{m} = \frac{\pi \left(K \ b_{n} a^{N} \right)^{2}}{16 (\lambda + 2\mu)^{2} (n^{2} - 1)} \left[(\lambda + \mu) (n + 1) + \mu (n - 1) \right]$$
(49)

Thus

$$\frac{W_{i}}{W_{m}} = \frac{\left[(\lambda + 3\mu) \left\{ \lambda n(n+1) + \mu(n+5) \right\} + (\lambda + \mu)^{2} \left\{ -2n^{4} + n^{2} - n - 2 \right\} + 2(\lambda + \mu)(\lambda + 3\mu) (n^{3} + 1) \right]}{2n\mu \left\{ (\lambda + \mu)(n+1) + \mu(n-1) \right\}}$$
(50)

for given value of n, the values of ML/Mm can be easily computed from the above formulae.

A similar procedure is adopted to solve the problem, when the temperature distribution is of the type,

$$T(r,\theta) = b_n r^n \sin n\theta , \qquad (61)$$

The following results are derived

$$\psi'_{i}(z) = \frac{i \left(\frac{k b_{n} z^{n}}{2(k+1)} \right)}{2(k+1)},$$

$$\psi'_{i}(z) = \frac{i \left(\frac{a^{2}(k+n-1) b_{n} z^{n-2}}{2(k+1)} \right)}{2(k+1)}$$
(68)

$$\psi_{m}^{l}(z) = -\frac{i K b_{n} \alpha^{2n}}{2(K+1)} \frac{1}{z^{n}}$$

$$\psi_{m}^{l}(z) = \frac{i K b_{n} (K-n-1) \alpha^{2n+2}}{2(K+1) z^{n+2}}$$
(63)

The stress-field in the inclusion is given by

$$b_{\theta\theta} = \frac{Kb_n r^{N-2} sin n\theta}{2(k+1)} \left\{ -2Kr^2 + nr^2 - q^2 (n+k-1) \right\},$$
 (34)

$$P_{Y\theta} = \frac{K b_n x^{n-2} a_{SN\theta}}{2(K+1)} \left\{ nr^2 - a^2 (K+n-1) \right\}$$

and in the matrix, it is given by

$$P_{rr} = \frac{-Kb_{n} \, q^{2n} r \bar{m} \, H\theta \left\{ 2r^{2} + a^{2} \in I + K \right\}}{2(K+1) \, r^{n+2}},$$

$$P_{\theta\theta} = -\frac{Kb_{n} \, a^{2n} \, s \, \bar{m} \, H\theta}{2(I+K) \, r^{n+2}} \left\{ 2r^{2} + a^{2} (I-K) \right\}$$

$$P_{r\theta} = \frac{Kb_{n} \, q^{2n+2}}{2(I+K) \, r^{n+2}} \left(\frac{I-K}{I+K} \right).$$
(55)

The common displacement field over the common interface is

$$2\mu(u_{1}^{h}+\iota u_{0}^{h})=\frac{\iota K k_{n} \kappa a^{n+1}}{2(K+1)}\left[\frac{e^{n\iota\theta}}{n+1}-\frac{e^{-n\iota\theta}}{n-1}\right] \tag{36}$$

CHAP I'FR IV

MILIPPIC INCLUSION OF THE PLANT HAMMONIC TEMP: HAFURS-DIAPRIBUTION

This chapter deals with the problem of an elliptic region within a homogeneous elastic medium. The region is subjected to a particular type of temperature-distribution with common interface. The temperature distribution is of the form

 $T(Y,8) = b_2 Y^2 \cos 2\theta$ (57)

where be is constant and < and o are polar coordinates. This type of temperature-distribution obviously satisfies steady state heat conduction equation in polar form given in equation (30).

It may be remarked that the previous work ((10)) - ((18)) on such problems related mainly to the cases when the temperature was constant throughout the inclusion.

It was characterised by the fact that the spontaneous displacement in the inclusion was of the form $U_{x} = \delta_{1} x + \delta_{3} y \ , \ u_{y} = \delta_{1} y + \delta_{3} x \ .$ Although it would be more desirable to consider the case when $T = b_{n} r^{n} cos n\theta \text{ or for } T(r_{1}\theta) = b_{n} r^{n} sin n\theta, \text{but because of mathematical complexities}$ involved, the temperature distribution has been taken of the form given by the equation (67). Following a similar procedure it is possible to solve the problem for the general case $T = b_{n} r^{n} cos n\theta$, numerically. The solution of the problem may be obtained by

The solution of the problem may be obtained by the method explained in the beginning of the previous chapter.

The boundary conditions of the problem are that the normal and tangential components of the stress on the boundary shall be continuous. The stresses at infinity tend to zero at least as $O(\sqrt[4]{r^2})$. The displacement field, made up of elastic and non-elastic contributions, should everywhere be continuous.

The formulae for $\phi'(z)$ and $\psi'(z)$ for a concentrated force P acting at a point z are given by equations (84). The cumulative effect of point forces is found out by integrating the effect of point-force at z over the

boundary Γ . Here Γ is the elliptic boundary $x^2/a^2 + y^2/b^2 = 1$. Now for convenience in mathematical formulation the equation Γ is written in the form $\overline{Z} = f(z)$. For the elliptic case this equation is

$$\overline{Z} = \frac{a^2 + b^2}{c^2} Z - \frac{2ab}{C^2} \sqrt{Z^2 - c^2}$$
, $(c^2 = a^2 - b^2)$

with the help of thermoelastic stress-strain relationship the stresses in the absence of matrix are given by

$$P_{xx} = P_{yy} = KT, \quad P_{xy} = 0, \tag{69}$$

where $K=2K(\lambda+\mu)$; L being coefficient of linear expansion and λ and μ are well known Lamé constants. Substitution of these values of P_{xx} , P_{xy} and P_{yy} in equations (27), would furnish the expressions for forces acting on arc d_2 . Thus

It may be noted that

$$T = \frac{b_2(z^2 + \overline{z}^2)}{2} \quad ,$$

where \overline{z} is complex conjugate of z, defined by equation (58). These values of Pas and \overline{P} ds are substituted in equations (25). It may be noted that Γ is the elliptic boundary. Two values of each $\phi'(z)$ and $\psi'(z)$ are obtained, depending upon whether the point z is interior to the ellipse i.e. a point in the inclusion or exterior to the ellipse i.e. a point in the matrix.

After some calculation, it is seen that

$$\phi_1'(z) = \frac{Kb_2}{2(k+1)} \left[\frac{2(a^2+b^2)}{(a+b)^2} z^2 + \frac{2ab(a-b)}{(a+b)} \right]$$

$$\Psi'_{1}(z) = \frac{Kb_{2}}{2(K+1)} \left[\frac{2(K-3)(a^{2}+b^{2})(a-b)}{(a+b)^{3}} z^{2} - \right]$$

$$-\frac{4ab}{c^4}\left(a^4+b^4+4a^2b^2-3a^3b-3ab^3\right)-\frac{4a^2b^2k}{(a+b)^2}$$

for the inclusion; and

(63)

$$\varphi_{m}'(z) = \frac{Kb_{2}}{2(K+1)} \left[\frac{2ab(a^{2}+b^{2})}{c^{4}} \left\{ 2z\sqrt{z^{2}-c^{2}} - (2z^{2}-c^{2}) \right\} \right]$$

$$\psi_{m}^{\prime}(z) = \frac{K b_{2}}{2(K+1)} \left[\frac{1}{c^{6}} \left\{ 8ab(a^{2}+b^{2})^{2}(3-K)z^{2} + 4ab(a^{2}+b^{2})^{2}(2z\sqrt{z^{2}-c^{2}}+z^{2}/\sqrt{z^{2}-c^{2}})(K-2) \right\} \right]$$

$$+\frac{1}{c^4}\left\{8a^3b^3(1-k)\left(z/\sqrt{z^2-c^2}-1\right)-4ab(a^2+b^2)^2\right\}$$

for the matrix.

For the evaluation of stresses values of $\Phi^{(z)}$ and $\Psi^{(z)}$ in (61) and (62) are substituted in (11a) and (11b). It may, however be noted here that the inclusion has got 'constrained stress-field' given by

$$P_{xx} = -KT , P_{yy} = -KT , P_{xy} = 0$$
 (63)

Hence for finding out actual stresses, the 'constrained stress-field' has to be superposed upon that obtained by complex-potential (61).

At this stage it is more convenient to work with confocal elliptic coordinates ξ , η defined by the transformation

$$Z = c \cosh (\xi + i\eta)$$
 (64)

The stress and displacements components $P_{\frac{1}{2}\frac{1}{2}}$, $P_{\frac{3}{3}\eta}$, $P_{\eta\eta}$; $u_{\frac{1}{2}}$, u_{η} referred to $\frac{1}{2}$, η , the axes oriented at an angle θ -to x-axis are related to Cartesian component, $P_{\chi\chi}$, $P_{\chi\chi$

$$P_{\xi\xi} + P_{\eta\eta} = P_{xx} + P_{yy}$$

$$P_{\eta\eta} - P_{\xi\xi} + 2 C P_{\xi\eta} = (P_{yy} - P_{xx} + 2 C P_{xy}) e^{2i\Theta}$$

$$U_{\xi} + (U_{\eta} = (U_{x} + C U_{y}) \bar{e}^{C\Theta}$$
(65)

In the present case Θ denotes the angle between the x-axis and the normal at (ξ,η) (in the direction of increasing ξ). It may be seen that $e^{2i\theta} = \sin^{2}(\xi+i\eta)/\sin^{2}(\xi-i\eta)$. After some simplification, we get the actual stress components as :

$$\begin{split} h_{g} &= \frac{K b_{2} c^{2}}{2(K+1)} \left[-(1+K) \cos h 2 \frac{1}{8} \cos 2 \frac{1}{4} (\cosh 2 \frac{1}{8} - \cos 2 \frac{1}{4}) \right. \\ &- K(\cosh 2 \frac{1}{8} - \cos 2 \frac{1}{4}) + \frac{2(a^{2} + b^{2})}{(a+b)^{2}} \left\{ \cosh 2 \frac{1}{8} + \cos 2 \frac{1}{4} - 2 \cos^{2} 2 \frac{1}{4} \cos 2 \frac{1}{4} - \cos 2 \frac{1}{4} \right. \\ &+ \frac{(K-b)(a^{2} + b^{2})(a-b)}{(a+b)^{2}} \left\{ \sinh^{2} 2 \frac{1}{8} \cos^{2} 2 \frac{1}{4} - \cos 2 \frac{1}{4} - \cos 2 \frac{1}{4} \right. \\ &+ \frac{1}{4} \frac{ab}{a^{6}} \left\{ a^{4} + b^{4} + 4a^{2}b^{2} - 3a^{3}b - 3ab^{3} + (ab)(a-b)^{2} \right\} \left. \left. \left. \left(\cosh 2 \frac{1}{8} - \cos 2 \frac{1}{4} \right) \right. \right. \\ &+ \left. \left. \left(\cosh 2 \frac{1}{8} - \cos 2 \frac{1}{4} - i \right) \right\} \left. \left(\cosh 2 \frac{1}{8} \cos 2 \frac{1}{4} - \cos 2 \frac{1}{4} \right) \right. \\ &- \left. \left(\cosh 2 \frac{1}{8} - \cos 2 \frac{1}{4} \right) + \frac{2(a^{2} + b^{2})}{(a+b)^{2}} \left\{ 2 \cosh^{2} 2 \frac{1}{8} \cos 2 \frac{1}{4} - \cos 2 \frac{1}{4} \frac{1}{8} \sin^{2} 2 \frac{1}{4} \right. \\ &+ \left. \left(\cosh 2 \frac{1}{8} - \cos 2 \frac{1}{4} \right) \right\} \left\{ \sinh^{2} 2 \frac{1}{8} \cos^{2} 2 \frac{1}{4} - \cos 2 \frac{1}{4} \frac{1}{8} \sin^{2} 2 \frac{1}{4} \right. \\ &+ \left. \left(\cosh 2 \frac{1}{8} - \cos 2 \frac{1}{4} \right) \right\} \left\{ (\cosh 2 \frac{1}{8} - \cos 2 \frac{1}{4}) \right\} \left\{ (\cosh 2 \frac{1}{8} - \cos 2 \frac{1}{4}) \right\} \\ &+ \left. \left(\cosh 2 \frac{1}{8} - \cos 2 \frac{1}{4} \right) \right\} \left\{ (\cosh 2 \frac{1}{8} - \cos 2 \frac{1}{4}) \right\} \left\{ (\cosh 2 \frac{1}{8} - \cos 2 \frac{1}{4}) \right\} \end{aligned}$$

and

$$\begin{split} & p_{\xi\eta} = \frac{Kb_{2}c^{2}}{2(K+1)} \left[\frac{2(a^{2}+b^{2})}{(a+b)^{2}} \left\{ \cosh 2\xi \sinh 2\xi \sin 2\eta + \sinh 2\xi \cos 2\eta \sin 2\eta \right\} \right. \\ & + \frac{2(K-3)(a^{2}+b^{2})(a-b)}{(a+b)^{3}} \cosh 2\xi \sin 2\xi \cos 2\eta \sin 2\eta \right. \\ & - \frac{4ab}{c^{6}} \left\{ a^{4} + b^{4} + 4a^{2}b^{2} - 3a^{3}b - 3ab^{3} + Kab(a-b)^{2} \right\} \times \\ & \times \left\{ \left\{ \sinh 2\xi \sin 2\eta \right\} / \left(\cosh 2\xi - \cos 2\eta \right) \right. \end{split}$$

(67)

Along the boundary & has the value &. and,

$$\cosh 2\xi_{o} = \frac{a^{2} + b^{2}}{c^{2}}, \quad \sinh 2\xi_{o} = \frac{2ab}{c^{2}}$$

and the boundary stresses recognized by superscript b , after some simplification are

$$\frac{b_{ff}^{b}}{a(k+1)} = \frac{Kb_{2}c^{2}}{a(k+1)} \left[\cos^{2}a\eta \left\{ \cosh^{5}a\xi_{s} - 4\cosh^{4}a\xi_{s}\sinh^{2}\xi_{s} + 5\cosh^{3}a\xi_{s}\sinh^{2}a\xi_{s} - 2\cosh^{2}a\xi_{s}\sinh^{3}a\xi_{s} + 5\cosh^{3}a\xi_{s}\sinh^{3}a\xi_{s} + 4\cosh^{4}a\xi_{s}\sinh^{3}a\xi_{s} + 4\cosh^{4}a\xi_{s}\sinh^{4}a\xi_{s} + 4\cosh^{4}a\xi_{s} + 4\cosh^{4}a\xi_{s$$

(68)

+ 2 cosh 2 %, smh 2 %, + cosh 2 %, + k (- cosh 2 %, + 2 cosh 4 2 %, smh 2 %,

- cosh32 & smh22 & + wsh250)} + sin227 {- 3 cosh32 & sinb2 &

+6cosh22 & smh32 & -3 osh2 & sinh42 & + K(cosh32 & smh2 &

-2 cosh22 g. smh32 g, + osh2 g, smh 2 g.)} + cosan { 2 cosh42 g, -

-5 cosh2 z smh2 z z - cosh2 z z + 3 cosh z z smh3 z z -1

 $+\kappa \left(\cosh^{2}2\xi_{0}\sinh^{2}2\xi_{0}-\cosh2\xi_{0}\sinh^{3}2\xi_{0}-\cosh^{2}2\xi_{0}+1\right)\right\}$

+ K { soch 325, - 2 cosh 25, sinh 25, - cosh 25, + sinh 325, } - cosh 25.

+2 6ch 250 smh 250 + cosh 250 - smh 3250 / (cosh 250 - cos21)

Pηη = Kb2c2 (cos22η { - cosh52 go + 4 cosh42 go sinh 2 go - 5 cosh32 go sinh2 a go

- 2605h32 & + 2605h22 & simh32 & + 2005h22 & simh2 & + cosh1 & +

+ K(cosh 2 2 , - 2 wsh 2 3 , swh 2 3 , + cosh 2 3 , swh 2 3 , + cosh 2 3 ,)} + sin221/3cosh328, sinh28, -6 cosh38, simh328, + 3cosh 28, smh428, + +K(- &sh32 & sinh2 & + 2 cosh2 & sinh32 & - wsh2 & sinh42 &)} + cosan{ 2 cosh42 \$ - 4 cosh32 \$ sinh2 \$ + 5 cosh2 \$ sunh2 \$ - osh2 \$ - 2 cosh2 \$ sinh32 } -1 +K(-Osh250 smb250-Osh250+Osh250smb250+1)}+K{-Osh3250+20sh250smb250 -65425. - simh3250} + cosh325. - 205h325. sunh25. + cosh25. + simh325.]/(cosh25. - cos27) bb = Kb2c² [cos2ηsin2η {-8 cosh42ξ, smb2ξ, +20 cosh32ξ, smb2ξ, -16 cosh32ξ, smb32ξ, + 4 wsh== smh == + K (40sh = = smh=== 80sh == snh=== + 40sh == smh=== smh==== + sin 2 1 { 4 cosh 3 2 8 , sinh 2 8 . - 8 cosh 2 2 8 , sinh 2 2 8 + 6 cosh 2 8 , sinh 3 2 8 ,

- 2 sach 42 \$0 + K (2 cosh 2 \$0 sinh 32 \$0 + 2 cosh 2 \$0)}]/(cosh 2 \$0 - cos 27)

As regards the matrix, the use of corresponding complex potentials $\phi_m'(z)$ and $\Psi_m'(z)$ gives the expressions of stress components.

$$\begin{split} & \hat{P}_{\frac{3}{3}\frac{5}{3}} = \frac{K^{\frac{1}{3}}c^{\frac{1}{4}}}{2(K+1)} \left\{ \frac{2ab(a^{2}+b^{2})}{c^{4}} \left\{ u\cos h\lambda_{\frac{5}{3}}\cos^{2}2\eta - 3smb 2\xi\cos^{2}2\eta - \omega sh\lambda_{\frac{5}{3}}\cos^{2}2\eta - \omega sh\lambda_{\frac{5}{3}}\sin^{2}2\eta + \omega sh\lambda_{$$

and

$$P_{\xi\eta} = \frac{Kb_{2}c^{2}}{2(K+1)} \left[\frac{2ab(a^{2}+b^{2})}{c^{4}} \left\{ smb_{2}\xi + sin_{2}\eta - 2\cos h_{2}\xi - 2\cos 2\eta \right\} sin_{2}\xi sin_{2}\eta + \frac{(csh_{2}\xi sin_{2}\eta)}{c^{4}} \left\{ smb_{2}\xi + \cos 2\eta \right\} \right\} + \frac{8ab(a^{2}+b^{2})^{2}}{c^{6}} (3-K)\cosh_{2}\xi sin_{2}\xi \cos 2\eta sin_{2}\eta + \frac{2ab(a^{2}+b^{2})^{2}}{c^{6}} (K-2) \left\{ 3\cosh_{2}\xi sin_{2}\xi sin_{2}\xi \cos 2\eta sin_{2}\eta - \cosh_{2}\xi sin_{2}\eta \right\} + \frac{8a^{3}b^{3}(1-K)}{c^{6}} \right\}$$

$$\times sin_{2}\eta(\cosh_{2}\xi - \sinh_{2}\xi) - \frac{4ab(a^{2}+b^{2})^{2}}{c^{6}} sin_{2}\xi sin_{2}\eta - \cosh_{2}\xi \sin_{2}\eta \right] / (cosh_{2}\xi - \omega s_{2}\eta)$$

$$\times sin_{2}\eta(\cosh_{2}\xi - \sinh_{2}\xi) - \frac{4ab(a^{2}+b^{2})^{2}}{c^{6}} sin_{2}\xi sin_{2}\eta - \cos_{2}\eta + \frac{8a^{3}b^{3}(1-K)}{c^{6}} \right]$$

The boundary value of these may be obtained by putting $\xi = \xi$, and using relations (70); it may be seen that

$$P_{\xi\xi}^{b} = P_{\xi\xi}^{b}$$
; $P_{\xi\eta}^{b} = P_{\xi\eta}^{b}$

The hoop stress $P_{\eta\eta}^b$ is given by

$$P_{\eta\eta}^{b} = \frac{Kb_{2}c^{2}}{2(K+1)} \left[\cos^{2}2\eta\right\} \left(4\cosh^{4}2\xi_{0}\sinh^{2}2\xi_{0} - 6\cosh^{3}2\xi_{0}\sinh^{2}2\xi_{0} + 2\cosh^{2}2\xi_{0}\sinh^{3}2\xi_{0}\right]$$

$$+ 2 \cosh_2 \xi_0 \sinh_2 \xi_0 + K (-2 \cosh^3 2 \xi_0 \sinh^3 2 \xi_0 + 2 \cosh^2 2 \xi_0 \sinh^3 2 \xi_0)$$

$$+ \cos_2 \eta \left\{ - 4 \cosh^3 2 \xi_0 \sinh_2 \xi_0 + 6 \cosh^2 2 \xi_0 \cosh^3 2 \xi_0 - 3 \cosh_2 \xi_0 \sinh^3 2 \xi_0$$

$$+ \sinh^4 2 \xi_0 + K (6 \sinh_2 \xi_0 \sinh_3 2 \xi_0 - \sinh^4 2 \xi_0) \right\} - 2 \cosh^2 2 \xi_0 \sinh^3 2 \xi_0$$

$$+ \sinh^3 2 \xi_0 + K (2 \cosh^3 2 \xi_0 \sinh_3 2 \xi_0 - \sinh^3 2 \xi_0) \right] / (\cosh_2 \xi_0 - \cosh_2 \xi_0 - \cosh_3 \xi_0)$$

$$+ \sinh^3 2 \xi_0 + K (2 \cosh^3 2 \xi_0 \sinh_3 2 \xi_0 - \sinh^3 2 \xi_0) \right] / (\cosh_3 2 \xi_0 - \cosh_3 2 \xi_0 - \cosh_3 2 \xi_0)$$

This value of $P_{\eta\eta}^b$ for the matrix may be compared with the value of $P_{\eta\eta}^b$ for the inclusion. It is obvious that

$$P_{\eta\eta}^b \neq P_{\eta\eta}^b$$

The displacement field may be obtained by substituting from (61) and (62) in the last relation of (65). The actual displacement in the inclusion is sum of non-elastic displacements due to temperature-field $b_2 r^2 \cos 2\theta$, and elastic displacements, due to the constraints of the matrix. The displacement in the inclusion is thus:

(72)

$$2\mu(u_{\xi}+iu_{\eta}) = \frac{Kb_{2}c^{3}}{2(\kappa+1)} \left\{ \frac{\kappa(a^{2}+b^{2})}{6(a+b)^{2}} \right\} (\cosh 3\xi \cos 3\eta + i\sinh 3\xi \sin 3\eta + 3\cosh \xi \cos \eta + 3i \sinh \xi \sin \eta)$$

$$- \frac{(a^{2}+b^{2})}{(a+b)^{2}} \left(\cosh \xi \cos \eta + i\sinh \xi \sin \eta \right) \left\{ \cosh 2\xi \otimes 2\eta + 1 - (a+b)^{2} \left(\cosh 2\xi \otimes 2\eta + 1 - (a+b)^{2} \right) \left(a+b \right)^{3} \right\} \left\{ \cosh 3\xi \cos 3\eta + (a+b)^{3} \right\} \left\{ \cosh 3\xi \cos 3\eta + (a$$

The boundary value of this displacement is

$$2\mu \left(u_{\xi}^{b} + \iota u_{\eta}^{b} \right) = \frac{Kb_{2}c^{3}}{2(K+1)} \left(\cos 3\eta \left\{ \frac{1}{6} \left(\frac{a}{e} \cosh 2\xi_{o} + \frac{b}{e} \sinh 2\xi_{o} \right) \right\} \right.$$

$$\times \left(+ \frac{(a^{2} + b^{2})(a-b)(3-k)}{(a+b)^{3}} + \frac{k(a^{2} + b^{2})}{(a+b)^{2}} \right)$$

$$-\frac{a}{2c} \cosh 2\xi_{0} + i \sin 3\eta \left\{ \frac{1}{6} \left(\frac{b}{c} \cosh 2\xi_{0} + \frac{a}{c} \sinh 2\xi_{0} \right) \times \left(\frac{(K-3)(a^{2}+b^{2})(a-b)}{(a+b)^{3}} + \frac{k(a^{2}+b^{2})}{(a+b)^{2}} \right) - \frac{b}{2c} \cosh 2\xi_{0} \right\} + \frac{a}{c} \cosh \left\{ -1 - \frac{1}{2} \left(\frac{(K-3)(a^{2}+b^{2})(a-b)}{(a+b)^{3}} \right) + \frac{k(a^{2}+b^{2})}{(a+b)^{2}} + \frac{2(a^{2}+b^{2})}{(a+b)^{2}} + \frac{2(a^{2}+b^{2})}{(a+b)^{2}} + \frac{2(a^{2}+b^{2})}{(a+b)^{2}} + \frac{2(a^{2}+b^{2})}{(a+b)^{2}} + \frac{1}{2} \cosh 2\xi_{0} \right\} + \frac{ib}{c} i \sin \left\{ -1 - \frac{1}{2} \left(\frac{(K-3)(a^{2}+b^{2})(a-b)}{(a+b)^{2}} \right) - \frac{4ab}{c^{6}} \left(a^{4} + b^{4} + 4a^{2}b^{2} - 3a^{3}b - 3ab^{3} + kab(a-b)^{2} \right) + \frac{k(a^{2}+b^{2})}{2(a+b)^{2}} + \frac{2(a+b)^{2}}{2(a+b)^{2}} + \frac{2(a+b)^{2}}{2(a+b)^{2}} + \frac{2(a+b)^{2}}{2(a+b)^{2}} + \frac{2(a+b)^{2}}{2(a+b)^{2}} + \frac{2(a+b)^{2}}{2(a+b)^{2}} \left(\frac{a}{c} \cosh + i \frac{b}{c} \sin \eta \right) \left(\cosh 2\eta + i \sin 2\eta \right) \right]$$

The displacement field in the matrix is given by substituting in the last relation of (65) the values of $\phi'_m(z)$ and $\psi'_m(z)$ from (62):

$$\begin{split} 2\mu(U_{\S}+iU_{\eta}) &= \frac{K\,b_{3}c^{3}}{2(\kappa+i)} \left\{ \frac{\kappa\,a\,b(a^{2}+b^{2})}{3\,c^{4}} \left\{ -\cos h\,3\,\S\,\cos s\,\eta - i\,\sin h\,3\,\S\,\sin 3\eta \right. \right. \\ &+ \left. \sinh 3\,\S\,\cos s\,\eta + i\,\cosh 3\,\S\,\sin 3\eta - 3\cos h\,\S\,\cos \eta \right. \\ &- 3i\,\sinh \S\,\sin \eta - 3\,\sin h\,\S\,\sin \eta - 3\,i\,\cosh \S\,\sin \eta \right\} + \frac{2\,\kappa\,a\,b(a^{2}+b^{2})}{c^{4}} \left\{ \sin h\,\S\,\S\,\sin \eta \right\} + \frac{2\,\kappa\,a\,b(a^{2}+b^{2})}{c^{4}} \times \\ &\left. \left(\cosh \S\,\cos \eta + i\,\sinh \S\, \sin \eta \right) - \frac{2\,a\,b(a^{2}+b^{2})}{c^{4}} \left\{ \sinh 2\,\S\,\cos 2\,\eta - i\,\cosh 2\,\S\,\sin 2\eta \right. \right. \\ &- \left. \cosh a\,\S\,\cos \eta + i\,\sinh a\,\S\,\sin \eta \right\} - \frac{2\,a\,b(a^{2}+b^{2})}{c^{4}} \left\{ \sinh 3\,\S\,\sin 3\eta - \sinh 3\,\S\,\cos 3\eta \right. \\ &+ \frac{2\,a\,b(a^{2}+b^{2})^{2}}{3\,c^{6}} \left(\kappa-3 \right) \right\} \left(\cos s\,\S\,\Im\,\eta - i\,\sinh 3\,\S\,\sin 3\eta - s\,\sinh 3\,\S\,\cos 3\eta \right. \\ &+ i\,\cosh 3\,\S\,\sin 3\eta + 3\,\cosh\,\S\,\cos \eta - 3\,i\,\sinh \,\S\,\sin \eta + 3\,\sinh \,\S\,\cos \eta \right. \\ &- 3\,i\,\cosh\,\S\,\sin 3\eta + 3\,\cosh\,\S\,\cos \eta - 3\,i\,\sinh \,\S\,\sin \eta + 3\,\sinh \,\S\,\cos \eta - i\,\sinh \,\S\,\sin \eta \right) + \frac{4\,a\,b}{c^{6}} \left\{ \left. \left(a^{2}+b^{2}\right)^{2} - 2\,a^{2}b^{2}\left(\kappa-1 \right) \right\} \left(\cosh\,\S\,\cos \eta - i\,\sinh \,\S\,\sin \eta \right) + \frac{4\,a\,b}{c^{6}} \left\{ \left. 2\left(a^{2}+b^{2}\right)^{2} - 2\,a^{2}b^{2}\left(\kappa-1 \right) \right\} \left(\cosh\,\S\,\cos \eta - i\,\sinh \,\S\,\sin \eta \right) \right\} \right\} \\ &+ i\,\sinh \,\S\,\sin \eta \right) + \frac{4\,a\,b}{c^{6}} \left\{ \left. 2\left(a^{2}+b^{2}\right)^{2} - 2\,a^{2}b^{2}\left(\kappa-1 \right) \right\} \left(\cosh\,\S\,\cos \eta - i\,\sinh \,\S\,\sin \eta \right) \right\} \right\} \\ &+ i\,\sinh \,\S\,\sin \eta \right\} + \frac{4\,a\,b}{c^{6}} \left\{ \left. 2\left(a^{2}+b^{2}\right)^{2} - 2\,a^{2}b^{2}\left(\kappa-1 \right) \right\} \left(\cosh\,\S\,\cos \eta - i\,\sinh \,\S\,\sin \eta \right) \right\} \right\} \\ &+ i\,\sinh \,\S\,\sin \eta \right\} + \frac{4\,a\,b}{c^{6}} \left\{ \left. 2\left(a^{2}+b^{2}\right)^{2} - 2\,a^{2}b^{2}\left(\kappa-1 \right) \right\} \left(\cosh\,\S\,\cos \eta - i\,\sinh \,\S\,\sin \eta \right) \right\} \right\} \\ &+ i\,\sinh \,\S\,\sin \eta \right\} + \frac{4\,a\,b}{c^{6}} \left\{ \left. 2\left(a^{2}+b^{2}\right)^{2} - 2\,a^{2}b^{2}\left(\kappa-1 \right) \right\} \left(\cosh\,\S\,\cos \eta - i\,\sinh \,\S\,\sin \eta \right) \right\} \right\} \\ &+ i\,\sinh \,\S\,\sin \eta \right\} + \frac{4\,a\,b}{c^{6}} \left\{ \left. 2\left(a^{2}+b^{2}\right)^{2} - 2\,a^{2}b^{2}\left(\kappa-1 \right) \right\} \left(\cosh\,\S\,\cos \eta - i\,\sinh \,\S\,\sin \eta \right) \right\} \right\} \\ &+ i\,\sinh \,\S\,\sin \eta \right\} + \frac{4\,a\,b\,b}{c^{6}} \left\{ \left. 2\left(a^{2}+b^{2}\right)^{2} - 2\,a^{2}b^{2}\left(\kappa-1 \right) \right\} \right\} \right\} \\ &+ i\,\sinh \,\S\,\sin \eta \right\} + \frac{4\,a\,b\,b}{c^{6}} \left\{ \left. 2\left(a^{2}+b^{2}\right)^{2} - 2\,a^{2}b^{2}\left(\kappa-1 \right) \right\} \right\} \right\} \\ &+ i\,\sinh \,\S\,\sin \eta \right\} + \frac{4\,a\,b\,b}{c^{6}} \left\{ \left. 2\left(a^{2}+b^{2}\right)^{2} - 2\,a^{2}b^{2}\left(\kappa-1 \right) \right\} \right\} \right\}$$

(smh &cosn-1cosh & sinn)

It may be seen that the boundary values of net displacements for inclusion and the displacement of the matrix are continuous.

CHAPIER V

HARMONIC TEMPERATURE DISTRIBUTION IN INTINITE ELASTIC MEDIUM.

previous work on inclusion problems has been confined to the case where inclusions and inhomogeneities undergo spontaneous homogeneous deformation and the matrix had no such deformation. The matrix simply acted as a constraint to the inclusion which tried to attain its free-state configuration. Here, in this chapter; the problem, when the matrix undergoes spontaneous deformation is considered. But the presence of the inclusion develops stress-field both in the matrix and itself. The explicit solution of a problem forms the subject matter of this chapter.

Consider an infinite elastic medium, with a circular tube, under temperature distribution of the form

$$T(r,\theta) = \frac{b_0 \cos \theta}{r} , \qquad (74)$$

with insulated inner bound.ry, so as not to change the temperature of the inclusion. This type of temperature distribution obviously satisfies steady state heat conduction equation (30).

The problem may be solved directly by the following bypothetical considerations:

Cut out the inclusion. Allow the matrix to undergo the temperature distribution in question. This would attain a prescribed deformation and reduce the size of the cavity from which the inclusion was taken out. Apply surface tractions to the boundary of the cavity to bring it back to the initial shape and size. Fit the inclusion into the cavity and then apply the operations similar to those given in chapter II page 14.

The final solution must be of the form that it should transmit a perfect bond on the inclusion boundary and the net displacement field is continuous on the boundary.

According to thermo-elastic stress-strain relationship the constrained stress-field in the matrix is

$$P_{xx}^{\circ} = -2\alpha(\lambda + \mu)T, P_{yy}^{\circ} = -2\alpha(\lambda + \mu)T, P_{xy}^{\circ} = 0$$
 (76)

where & is the coefficient of linear expansion of the

materials and λ and μ are Lame' constants. Substitution of these values of stresses in (27) provides us with

$$Pds = -2i(4\lambda + 4\mu) Td\xi,$$

$$\overline{P}ds = 2i(4\lambda + 4\mu) Td\overline{\xi}.$$
(76)

It may be noted that at the boundary Y= a

$$T = \frac{b_0 \cos \theta}{r} = \frac{b_0}{2} \left(\frac{1}{\sigma} + \frac{\sigma}{a^2} \right), \tag{77}$$

because $\sigma \bar{\sigma} = a^2$ is the boundary of the circle Π .

The value of T from (77) is substituted in (76) and the values of Pds and \overline{P} ds thus obtained are substituted in (25). The contour integrals are then evaluated. It may be seen that two values of each of $\Phi'(z)$ and $\Psi'(z)$ are obtained depending upon whether z is out-side or inside the contour Γ . Distinguishing these by subscripts i and m for inclusion and matrix respectively, we get after some calculation

$$\Phi'_{L}(z) = \frac{\lambda(\lambda + \mu)b_{o}Z}{ec^{2}(K+1)}, \quad \Psi'_{L}(z) = 0,$$
 (78)

for inclusion; and

$$\phi_m'(z) = -\frac{\zeta(\lambda + \mu)}{(1 \zeta + 1)} \frac{1}{Z}$$

$$\Psi_{m}(z) = \frac{\lambda(\lambda + \mu)}{(\kappa + 1)} \left[\frac{\kappa}{z} + \frac{\kappa a^{2}}{z^{3}} - \frac{2a^{2}}{z^{3}} \right]$$
 (79)

for the matrix.

For evaluation of stresses the values of complexpotential functions are substituted from (78) and (79)
in (11a) and (11b). Following the procedure outlined
above, after some calculations the radial, transverse
and tangential stresses in the inclusion would be

$$\begin{aligned}
P_{rr} &= \frac{d(\lambda + \mu)}{(\kappa + 1)} b_0 \cos \theta \left[\frac{r}{a^2} \right] \\
P_{\theta\theta} &= \frac{d(\lambda + \mu)}{(\kappa + 1)} b_0 \cos \theta \left[\frac{3r}{a^2} \right] \\
P_{r\theta} &= \frac{d(\lambda + \mu)}{(\kappa + 1)} b_0 \sin \theta \left[\frac{r}{a^2} \right]
\end{aligned}$$
(80)

As already stated, at the boundary these components are distinguished by superscript b and have the values

$$b_{xt}^{b} = \frac{d(\lambda + \mu) b_{s} \cos \theta}{d(\kappa + 1)}$$

Now we proceed to find the stress-field P_{rr} , $P_{\theta\theta}$, $P_{r\theta}$ of the matrix. It may be noted that originally the matrix had a stress-field. This is given by constrained stress-field (75). Hence for finding out actual stress-field the constrained stress field is to be superposed upon that obtained by the complex-potentials $\Phi_{rr}(z)$ and $\Psi_{rr}(z)$ given by (79). Thus the radial, transverse and tangential components are

$$P_{rr} = \frac{\lambda(\lambda + \mu) b_o \cos \theta}{\gamma(\kappa + 1)} \left[\kappa - \frac{q^2}{r^2} (\kappa - 1) \right],$$

$$P_{\theta\theta} = \frac{\lambda(\lambda + \mu) b_o \cos \theta}{\gamma(\kappa + 1)} \left[3\kappa + \frac{q^2}{r^2} (\kappa - 1) \right],$$

$$P_{r\theta} = \frac{\lambda(\lambda + \mu) b_o \sin \theta}{\gamma(\kappa + 1)} \left[\kappa - \frac{q^2}{r^2} (\kappa - 1) \right],$$
(32)

Boundary values of these stresses are

$$\rho_{rr}^{b} = \frac{\alpha(\lambda + \mu) b_{o} \cos \theta}{\alpha(\kappa + i)}$$

$$P_{\theta\theta}^{b} = \frac{\lambda(\lambda+\mu)b_{0}\cos\theta}{\alpha(\kappa+1)} (4\kappa-1)$$

$$P_{r\theta}^{b} = \frac{\lambda(\lambda+\mu)b_{0}\sin\theta}{\alpha(\kappa+1)}$$
(83)

From the expressions (81) and (83) it is observed that the normal and tangential components of stresses are continuous on the equilibrium interface.

The hoop-stresses are discontinuous as expected. The jump in these quantities is

$$P_{\theta\theta}^{b} - P_{\theta\theta}^{b} = -\frac{4\lambda(\lambda + \mu) b_{\theta} \cos \theta}{a} \cdot \frac{\kappa - 1}{\kappa + 1}$$
 (84)

Substituting from the equation (78) in (11e), the displacement field in the inclusion can be directly found out. Thus the displacement at any point of the inclusion is given by

$$2\mu(u_{x}+iu_{y}) = \frac{\lambda(\lambda+\mu)b_{0}}{2a^{2}(k+1)} \left[kz^{2}-2r^{2}\right]$$
 (86)

The components of displacements may be transformed to u_r and u_θ in polar coordinates by the identity (13). The boundary value of $u_r + \iota u_\theta$ (apart from rigid body

motions) is given by

$$2\mu(u_r+(u_\theta)=\frac{\lambda(\lambda+\mu)b_0e^{i\theta}k}{2(K+1)}$$
(86)

The displacement field in the matrix is found by substituting from equation (79), in (11c). To this the initial displacement field is added. This is done by Hooke's law when the stresses are given by (75). Then the total displacement in the matrix is found to be

$$2\mu \left(U_{\chi} + i U_{y} \right) = \frac{\chi(\lambda + \mu)}{(\kappa + i)} \left[\frac{a^{2}(\kappa - 2)z^{2}}{2r^{4}} + \frac{z^{2}}{r^{2}} \right]$$
 (87)

It can be seen that the net displacement of matrix and of inclusion is continuous at the equilibrium boundary.

CHAPTIR VI

HALP-PLANE PROBLEM

In this chapter a method to solve the boundary value problems of half-plane has been discussed. This is based on the work of Tiffen ((21)). In this paper, the complex variable method has been combined with Fourier integral approach to find the explicit solutions of some half-plane problems. This technique is simpler and more informative than the other approaches to such problems. For example, Smeddom ((25)) has applied the integral transform technique but the method involves inversion of functions leading to improper integrals, which except in some simpler cases are difficult to evaluate analytically. However, the complex variable approach gives the solutions directly as soom as the potential functions are known.

A STATE OF THE STA

In the following we shall use $\Phi^{(z)}$ and $\Psi^{(z)}$ for complex-potential functions, which we have used throughout this thesis instead of the notations $\Omega^{(z)}$ and $\omega^{(z)}$ used by Tiffen ((21)), who used the notations of Stevenson ((5)). However the relation between them is quite simple

$$\phi(z) = \frac{1}{4} \Omega(z) , \ \psi(z) = \frac{1}{4} \omega'(z)$$

It is shown in that paper, that $\Psi(z)$ may be expressed in terms of function $\varphi(z)$. Thus the boundary value problems of an elastic half-plane are reduced to the determination of one single function $\varphi(z)$.

The stresses and displacement are connected with the complex potential functions by the formulae (11). By addition it can be seen that

$$k_{yy} + \iota p_{xy} = \varphi'(z) + \overline{\varphi}'(\overline{z}) + \overline{z} \varphi''(z) + \Psi'(z)$$
 (88)

Now, we begin to solve the problem of the half plane. We choose the straight boundary to be real axis, and write for brevity

- (A) Suppose the boundary conditions refer to the tractions on the straight edge. This problem may be solved by solving two simpler problems, namely (1) when the boundary traction consists of the p_{yy} along with $p_{xy} = 0$, and (11) when the boundary traction is $p_{xy} = 0$, with $p_{yy} = 0$. If on the otherhand the boundary traction consists of both $p_{yy} = 0$, then the result may be obtained by simple superposition. We shall therefore discuss the two simpler problems one by one.
- (1) Consider the case when $b_{xy}^{\circ} = 0$ and $b_{yy}^{\circ} \neq 0$ Let us choose

$$\Psi(z) = -z \phi'(z) + \phi(z) \tag{89}$$

Substituting this value in (88), we get

$$\hat{P}_{yy} + i \hat{P}_{xy} = \phi'(z) + \bar{\phi}'(\bar{z}) - 2(y) \phi''(z)$$
 (90)

and, therefore, on the leading edge,

It being assumed, in general, that $\lim_{y\to 0} y \phi''(z)=0$ at all points of the real axis. It may be proved that the condition may be relaxed to include those cases, in which this limit exists, but is not zero at a finite number of points of the real axis (though not relevant for the work in this thesis). From (91) it is evident that this combination gives zero shear over the real axis and if we want

$$b_{\alpha}^{AA} = f'(x) \tag{38}$$

We must choose \$(2) so that

$$2 \operatorname{Re} \{ \phi'(x) \} = f_{x}(x)$$
 (93)

(2) Let us take the next case, when $k_{xy}^{\circ} \neq 0$, $k_{yy}^{\circ} = 0$ and let us choose

$$\Psi(z) = -z \,\phi'(z) - \phi(z) \tag{94}$$

Equation (88) yields

$$P_{yy} + \iota P_{xy} = \bar{\Phi}'(\bar{z}) - \bar{\Phi}(z) - 2iy \Phi''(z)$$
 (05)

Hence on the real axis

$$P_{yy}^{o} = 0$$
, $P_{xy}^{o} = -2 \text{ Im } \{ \phi'(x) \}$

Thus, if

$$\beta_{xy}^{xy} = f_x(x) \tag{96}$$

on the leading edge, one must choose \$4(z), so that

$$-2 \operatorname{Im} \left\{ \phi'(x) \right\} = f_2(x) \tag{97}$$

(B) Next, we consider what is called the second fundamental problem of elasticity theory. Suppose the displacement U_x^0 is prescribed on the boundary and $U_y^0=0$, we choose the function $\psi(z)$ such that

$$\psi(z) = -z \, \phi'(z) - K \phi(z)$$
 (28)

Equation (11e) at once gives

$$2\mu(U_{x}+iU_{y})=\kappa[\varphi(z)+\overline{\varphi}(\overline{z})]-2iy\overline{\varphi}(\overline{z}) \tag{99}$$

Thus

It being assumed that $\lim_{y\to 0} y \, \phi'(z) = 0$ at all points of the real axis. This condition may also be relaxed to include those cases where this limit exists but is non-zero or unique at finite number of points of y=0. From (100) it is evident that in this case u_y is zero over the real axis where as u_x is a prescribed function.

If we require

$$U_{\kappa}^{\sigma} = f_3(\kappa) \tag{101}$$

We must choose $\phi(z)$, so that

$$\operatorname{Re}\left\{\phi(x)\right\} = \frac{H}{K} f_3(x). \tag{108}$$

Pinally let $u_y^0 +, u_x^0 = 0$ and choose,

$$\psi(z) = -z + (cz) + K + (z)$$
 (103)

From (11e)

$$2\mu(u_x + \iota u_y) = \kappa[\varphi(z) - \overline{\varphi}(\overline{z})] - 2\iota y \overline{\varphi}'(\overline{z})$$
 (104)

Time

$$u_{x}^{o} = 0$$
 , $\mu u_{y}^{o} = \kappa \operatorname{Im} \{ \phi(x) \}$ (106)

Hence to require,

$$u_y^0 = f_{4}(x)$$
 (104)

one must choose \(\phi(z) \) so that

$$I_{m}\left\{\phi'(x)\right\} = \frac{\mu}{\kappa}f_{4}(x) \tag{107}$$

The equations (93), (97), (107), (107) reduce the problem of semi-infinite elastic plane \$\gamma>0\$ with specified tractions or displacement along the real axis, to the determination of complex potential functions which are analytic in the upper half plane, and are of suitable orders of magnitude at infinity and have specified real or imaginary part on real axis. In the problems under consideration, the complex potentials at infinity are to be of orders, such that

$$\phi'(z) = O(z^{-1})$$
, $\psi'(z) = O(z^{-1})$.

Prom this it is obvious that the stresses at infinity are $O(z^{-1})$. These are the lowest possible orders, if the stresses applied along the real axis have non-zero resultant.

All these cases can be discussed as particular cases if we solve the following problem. Find a function

F(z) which is analytic in the upper half plane and has prescribed real or imaginary part along the real axis.

Let the function F(z) be related to a real function f(x) as follows

$$F(z) = G(x,y) + \iota H(x,y) = \frac{1}{\pi} \int_{-\infty}^{\infty} Tf(u) e^{\iota z u} du$$

where G(x,y) and H(x,y) are real and imaginary parts of F(z) and,

We also assume that the function f(x), is expressible as a Fourier integral, is of bounded variation and at each point

$$f(x) = \left[\frac{1}{2}\left\{f(x+0) + f(x-0)\right\}\right]$$

and

$$\int_{-\infty}^{\infty} |f(x)| dx < \infty$$
 (108)

Subject to (108), $F_i^{(z)}$ has the properties listed below, (Nuskhelishvili ((8))),

(11)
$$F(z) = \frac{i}{\pi} \int_{-\infty}^{\infty} \frac{f(t)dt}{z-t}$$
 in y70,

(v) If in addition to the second condition of (108) it is further assumed that

$$\int_{-\infty}^{\infty} |xf(x)| dx < \infty$$

 $F(z) = O(z^{-1})$ at infinity in upper half plane.

An example is given in appendix A, k 154 to show the method of evaluation of the function F(2) when f(2) is prescribed.

This example is chosen, because many such integrals will be encountered in the subsequent chapters. Thus the equations (93), (97), (102), (107) are satisfied respectively by choosing

$$\phi'(z) = \frac{1}{2\pi} \int_{0}^{\infty} Tf_{i}(u) e^{izu} du \qquad (110)$$

$$\Phi'(z) = -\frac{L}{2\pi} \int_0^\infty T f_2(u) e^{LZ} u du \qquad (111)$$

$$\Phi(z) = \frac{H}{K\pi} \int_{0}^{\infty} T f_{3}(u) e^{izu} du , \qquad (112)$$

$$\Phi(z) = \frac{i \mu}{\kappa \pi} \int_{a}^{\infty} T f_4(u) e^{iz} du, \qquad (113)$$

and we have solved all the four problems listed above, namely when

$$p_{yy}^{\circ} = 0$$
 , $p_{xy}^{\circ} = 0$, p_{xy}°

Having known the values of $\phi(z)$ the corresponding values of $\psi(z)$ can be found from equations (89), (96), (96) and (103). As already remarked the knowledge of $\phi(z)$ and $\psi(z)$ gives the knowledge of elastic field everywhere.

The application of the above theory will be made in two subsequent chapters.

The application of this method enables to solve some problems related to the infinite elastic strip, which are dealt with in chapter X and XI.

CHAPTER VII

CIRCULAR INCLUSION IN ELASTIC HALF-PLANE-I (Traction free edge)

In this chapter, we consider the case of a deforming inclusion in an elastic half-plane, when the leading edge is free from tractions.

Consider a circular region of radius α and centre at a distance ℓ from the leading edge of the half plane. The x-axis is taken along the leading edge, and β -axis is a line perpendicular to the leading edge passing through the centre of the inclusion. The boundary of the inclusion (see fig. page) is given by $(z-i\ell)(\overline{z}+i\ell)=\alpha^2$

In the absence of matrix the inclusion tends to undergo the displacement characterized by

$$u_x = \delta_1 x + \delta_3 (y-\ell)$$
, $u_y = \delta_2 (y-\ell) + \delta_3 x$ (114)

whomee the strains are

Figure 1, Circular inclusion in semi-infinite medium coordinate system.

Figure 2, A schematic view of normal and shear stress components in inclusion and matrix.

14 m

$$e_{xx} = \delta_1$$
, $e_{yy} = \delta_2$, $e_{xy} = \delta_3$ (115)

It may be remarked that Bhargava and Kapoor ((15)) solved a similar but simpler problem by using the point-force technique. We use the theory given by Tiffen ((21)) and described in previous chapter. Also the problem is more general in the sense that we take shear strains also into account.

The expression for complex potentials owing to a circular inclusion of radius α , undergoing spontaneous dimensional changes, resulting in the deformation (115) in an infinite elastic medium are given by the complex potentials $\phi'_{1}(z)$, $\psi'_{1}(z)$; $\phi'_{m}(z)$, $\psi'_{m}(z)$. Then the values are known ((27)) and are given below for ready reference

$$\phi'_{c}(z) = \frac{-(K-1)}{2(K+1)} (\lambda + \mu) (\delta_{1} + \delta_{2}),$$

$$\psi'_{1}(z) = \frac{\mu}{K+1} (\delta_{1} - \delta_{2} - 2i\delta_{3}),$$

$$\psi'_{m}(z) = -\frac{\mu}{K+1} (\delta_{1} - \delta_{2} + 2i\delta_{3}) \frac{\alpha^{2}}{Z^{2}},$$

$$\psi'_{m}(z) = \frac{K-1}{K+1} (\lambda + \mu) (\delta_{1} + \delta_{2}) \frac{\alpha^{2}}{Z^{2}} - \frac{\mu}{K+1} (\delta_{1} - \delta_{2} + 2i\delta_{3}) \frac{3\alpha^{4}}{Z^{4}}$$
(117)

The origin is shifted to (0,1). The consequent changes in the complex potentials when the origin is transferred to another point are given by equations (19). In the present case the new complex potentials shall be as follows:

where we have retained the same symbols as there is no likelihood of confusion. It may, however, he emphasized again that in these functions, the new origin is the centre of the inclusion.

The stress distribution due to complex potentials (119) is found at the edge y=0. Next the stresses P_{yy}^{a} and P_{xy}^{a} are evaluated at the leading edge. These are mullified by taking additional tractions

 k_{yy} and k_{xy} opposite to those found by using (119). Additional complex potentials are now sought for, which superposed on (118), (119) will give the solution of problem under investigation.

Substituting from (119) in (11a) and (11b) and setting y=0, we have

$$\beta_{yy} = -\frac{2\mu(\delta_{1}-\delta_{2})}{k+1} \frac{a^{2}(x^{2}-k^{2})}{(x^{2}+k^{2})^{2}} + \frac{8\mu\delta_{3}}{k+1} \frac{a^{2}kx}{(x^{2}+k^{2})^{2}} + \frac{(k-1)}{k+1} \frac{(\lambda+\mu)(\delta_{1}+\delta_{2})a^{2}(x^{2}-k^{2})}{(x^{2}+k^{2})^{2}} + \frac{\mu(\delta_{1}-\delta_{2})}{(k+1)} a^{2} \left\{ \frac{\left[2(x^{2}+k^{2})-3a^{2}\right]\left[(x^{2}-k^{2})^{2}-4k^{2}x^{2}\right]}{(x^{2}+k^{2})^{4}} \right\} \\
+ \frac{\mu(\delta_{1}-\delta_{2})}{(k+1)} a^{2} \left\{ \frac{\left[2(x^{2}+k^{2})-3a^{2}\right]\left[(x^{2}-k^{2})^{2}-4k^{2}x^{2}\right]}{(x^{2}+k^{2})^{4}} \right\} \\
+ \frac{\mu(\delta_{1}-\delta_{2})}{(k+1)} a^{2} \left\{ \frac{\left[2(x^{2}+k^{2})-3a^{2}\right]\left[(x^{2}-k^{2})^{2}-4k^{2}x^{2}\right]}{(x^{2}+k^{2})^{4}} \right\}$$
(130)

$$P_{xy}^{\circ} = \frac{2(\kappa-1)(\lambda+\mu)(\delta_1+\delta_2)a^2kx}{(\kappa+1)(x^2+k^2)^2} + \frac{4\mu(\delta_1-\delta_2)a^2kx(x^2-k^2)\{2(x^2+k^2)-3a^2\}}{(\kappa+1)(x^2+k^2)^4}$$

$$-\frac{2H\delta_{3}a^{2}}{K+1}\left\{\frac{\left[2(x^{2}+l^{2})-3a^{2}\right]\left[(x^{2}-l^{2})^{2}-4l^{2}x^{2}\right]}{(x^{2}+l^{2})^{4}}\right\} = f(x) \text{ eay.}$$
 (122)

We require to annul these stresses by introduction of complex potentials which have no singularities in upper half plane. For this purpose use is made of the method discussed in the preceding chapter.

From the procedure outlined in previous chapter, the complex potential functions for the two cases

(a)
$$[p_{yy}]_{y=0} = -p_{yy}^{o}, [p_{xy}]_{y=0} = 0$$

(b)
$$[p_{yy}]_{y=0} = 0$$
, $[p_{xy}]_{y=0} = -p_{xy}^{\circ}$

will be evaluated seperately and then the resulting complex potential functions will be found by superposition.

These additional complex potentials are found by substituting the values of $f_1(\infty)$ and $f_2(x)$ from (130) and (131) in equation (110) and (111) respectively. The integral involved therein are solved by the method given in appendix A page 152. These are

$$\phi_{1}^{\prime}(z) = \frac{d^{2}(K+1)(k+\mu)(\delta_{1}+\delta_{2})}{(K+1)Z_{1}^{2}} - \frac{\mu(\delta_{1}-\delta_{2}-21\delta_{3})a^{2}}{K+1} \left[\frac{1}{Z_{1}^{2}} - \frac{41L}{Z_{1}^{3}} - \frac{3a^{2}}{Z_{1}^{4}} \right]$$

(122)

$$\psi'(z) = \frac{(\kappa-1)(\lambda+\mu)(\delta_1+\delta_2)a^2}{(\kappa+1)z_1^2} + \frac{\mu(\delta_1-\delta_2-2(\delta_3)a^2)}{(\kappa+1)} \left[\frac{z}{z_1^2} - \frac{\mui\ell}{z_1^3} - \frac{3a^2}{z_1^4}\right]$$

$$+ z \left[-\frac{2(K+1)(\lambda+\mu)(\delta_1+\delta_2)\alpha^2}{(K+1)Z_1^3} \frac{2M(\delta_1-\delta_2-21\delta_3)\alpha^2}{(K+1)} \right]$$

(195)

$$\times \left\{ \frac{1}{z_0^3} - \frac{6i\ell}{z_1^4} - \frac{6a^4}{z_0^5} \right\}$$

These are now superposed on (118) and (119) and give the required complex potentials to the problem as follows:

$$\Phi'_{1}(2) = \frac{(\kappa-1)(\lambda+\mu)(\delta_{1}+\delta_{2})}{2(\kappa+1)} - \frac{(\kappa-1)(\lambda+\mu)(\delta_{1}+\delta_{2})}{(\kappa+1)} \frac{a^{2}}{z_{1}^{2}} - \frac{\mu(\delta_{1}-\delta_{2}-2i\delta_{3})}{(\kappa+1)} \left[\frac{a^{2}}{z_{1}^{2}} - \frac{4ila^{2}}{z_{1}^{3}} - \frac{3a^{4}}{z_{1}^{4}}\right],$$

$$\Phi'_{1}(z) = \frac{-(\kappa-1)(\lambda+\mu)(\delta_{1}+\delta_{2})}{(\kappa+1)} \frac{a^{2}}{z_{1}^{2}} + \frac{\mu(\delta_{1}-\delta_{2}-2i\delta_{3})}{(\kappa+1)} \left[1 + \frac{2a^{2}}{z_{1}^{2}} - \frac{4ila^{2}}{z_{1}^{3}} - \frac{3a^{4}}{z_{1}^{4}}\right]$$

$$+z\left[-\frac{2(\kappa-1)(\lambda+\mu)(\delta_{1}+\delta_{2})}{(\kappa+1)} \frac{a^{2}}{z_{1}^{3}} - \frac{2\mu(\delta_{1}-\delta_{2}-2i\delta_{3})}{(\kappa+1)} \left\{\frac{a^{2}}{z_{1}^{3}} - \frac{6ila^{2}}{z_{1}^{4}} - \frac{6a^{4}}{z_{1}^{5}}\right\}\right].$$
(134)

$$+z\left[-\frac{2(\kappa-i)(\lambda+\mu)(\delta_{i}+\delta_{2})}{\kappa+i}\frac{\alpha^{2}}{Z_{i}^{2}}-\frac{2\mu(\delta_{i}-\delta_{2}-2i\delta_{3})}{(\kappa+i)}\left\{\frac{\alpha^{2}}{Z_{i}^{3}}-\frac{6i\ell\alpha^{2}}{2^{k}}-\frac{6\alpha^{k}}{2^{k}}\right\}\right]$$

The stress-field may then be found by substituting these functions in (11a) and (11b).

The stresses in inclusion are given below t

$$\begin{split} & p_{xx} = -\frac{(\lambda + \mu)(\delta_1 + \delta_2)(\kappa - 1)}{\kappa + 1} \left\{ 1 + \frac{(\lambda^2 - \lambda^2_1)^2}{\gamma_1^4} - \frac{1}{4} \frac{(\lambda^2 - \lambda^2_1)^2}{\lambda^2} \frac{d^2}{\lambda^2} + \frac{1}{4} \frac{\lambda^2 \lambda^2}{\lambda^2} \frac{d^2}{\lambda^2} \frac{d^2}{\lambda^2}$$

$$\begin{split} \beta_{xy} &= -\frac{(\lambda + \mu)(\delta_{1} + \delta_{2})(\kappa - 1)}{\kappa + 1} \left[\frac{2 \times y_{1} a^{2}}{r_{1}^{4}} + \frac{4 \times x a^{2}(x^{2} - 3y_{1}^{2})}{r_{1}^{6}} \right] \\ &+ \frac{\mu(\delta_{1} - \delta_{2})}{\kappa + 1} \left[-\frac{4 \times y_{1} a^{2}}{r_{1}^{4}} - \frac{\mu(4 \times a^{2}(x^{2} - 3y_{1}^{2})}{r_{1}^{6}} - \frac{4 \times x a^{2}(x^{2} - 3y_{1}^{2})}{r_{1}^{6}} + \frac{12 a^{4} \times y_{1}(x^{2} - y_{1}^{2})}{r_{1}^{8}} \right] \\ &+ \frac{36 \times y_{1} (4 \times a^{2}(x^{2} - y_{1}^{2})}{r_{1}^{6}} + \frac{24 a^{4} y \left\{ x(x^{2} - y_{1}^{2})^{2} - 4 \times^{3} y_{1}^{2} - 4 \times y_{1}^{2}(x^{2} - y_{1}^{2}) \right\}}{r_{1}^{10}} \right] \\ &- \frac{2 \mu \delta_{3}}{\kappa + 1} \left\{ 1 + \frac{2(x^{2} - y_{1}^{2}) a^{2}}{r_{1}^{4}} - \frac{4 (4 y_{1} (3 \times^{2} - y_{1}^{2}) a^{2}}{r_{1}^{6}} - \frac{4 (4 y_{1} (3 \times^{2} - y_{1}^{2}))^{2} - 4 (4 x^{2} y_{1}^{2})^{2} - 4 (4 x^{2} y_{1}^{2})^{2}}{r_{1}^{6}} \right] \\ &+ \frac{2 4 a^{4} y \left\{ y_{1}(x^{2} - y_{1}^{2})^{2} - 4 (x^{2} - y_{1}^{2})^{2} + 4 (x^{2} y_{1}(x^{2} - y_{1}^{2}))^{2} - 4 (x^{2} y_{1}^{2})^{2}}{r_{1}^{6}} \right] \\ &+ \frac{2 4 a^{4} y \left\{ y_{1}(x^{2} - y_{1}^{2})^{2} - 4 (x^{2} - y_{1}^{2})^{2} + 4 (x^{2} - y_{1}^{2})^{2} - 4 (x^{2} - y_{1}^{2})^{2} - 4 (x^{2} - y_{1}^{2})^{2} - 4 (x^{2} - y_{1}^{2})^{2} \right\} \\ &+ \frac{2 4 a^{4} y \left\{ y_{1}(x^{2} - y_{1}^{2})^{2} - 4 (x^{2} - y_{1}^{2})^{2} \right\} \\ &+ \frac{2 4 a^{4} y \left\{ y_{1}(x^{2} - y_{1}^{2})^{2} - 4 (x^{2} - y_{1}^{2})^{2} \right\} \\ &+ \frac{2 4 a^{4} y \left\{ y_{1}(x^{2} - y_{1}^{2})^{2} - 4 (x^{2} - y_{1}^{2})^{2} + 4 (x^{2} - y_{1}^{2})^{2} - 4 (x^{2} - y_{1}^{2})^{2} - 4 (x^{2} - y_{1}^{2})^{2} \right\} \\ &+ \frac{2 4 a^{4} y \left\{ y_{1}(x^{2} - y_{1}^{2})^{2} - 4 (x^{2} - y_{1}^{2})^{2} - 4 (x^{2} - y_{1}^{2})^{2} + 4 (x^{2} - y_{1}^{2})^{2} + 4 (x^{2} - y_{1}^{2})^{2} \right\} \\ &+ \frac{2 4 a^{4} y \left\{ y_{1}(x^{2} - y_{1}^{2})^{2} - 4 (x^{2} - y_{1}^{2})^{2} + 4 (x$$

where we have used the following motations for brevity

 $y_1 = y + l$, $y_2 = y - l$; $Y_-^2 = x^2 + y^2$, $Y_1^2 = x^2 + y^2$, $Y_2^2 = x^2 + y^2$

The stress-field in the matrix P_{xx} , P_{yy} , P_{xy} is also directly obtained by the complex potentials $\phi_m'(z)$ and $\psi_m'(z)$.

$$\begin{split} & \frac{1}{24a_{1}h^{2}\left\{x\left(x_{3}^{2}-\lambda_{1}^{2}\right)^{2}-4x_{3}^{2}\lambda_{1}^{2}}{\lambda_{1}^{2}} + \frac{1}{24a_{1}h^{2}\left\{x\left(x_{3}^{2}-\lambda_{1}^{2}\right)^{2}-4x_{3}^{2}\lambda_{1}^{2}}{\lambda_{1}^{2}} - \frac{3}{24a_{1}^{2}\left\{x\left(x_{3}^{2}-\lambda_{1}^{2}\right)^{2}-4x_{3}^{2}\lambda_{1}^{2}}{\lambda_{1}^{2}} + \frac{1}{24a_{1}h^{2}\left\{x\left(x_{3}^{2}-\lambda_{1}^{2}\right)^{2}-4x_{3}^{2}\lambda_{1}^{2}}{\lambda_{1}^{2}} + \frac{1}{24a_{1}h^{2}\left\{x\left(x_{3}^{2}-\lambda_{1}^{2}\right)^{2}-4x_{3}^{2}\lambda_{1}^{2}}{\lambda_{1}^{2}} - \frac{3}{24a_{1}^{2}\left\{x\left(x_{3}^{2}-\lambda_{1}^{2}\right)^{2}-4x_{3}^{2}\lambda_{1}^{2}}{\lambda_{1}^{2}} + \frac{3}{24a_{1}^{2}\left\{x\left(x_{3}^{2}-\lambda_{1}^{2}\right)^{2}-4x_{3}^{2}\lambda_{1}^{2}}{\lambda_{1}^{2}} + \frac{3}{24a_{1}^{2}\left\{x\left(x_{3}^{2}-\lambda_{1}^{2}\right)^{2}-4x_{3}^{2}\lambda_{1}^{2}}{\lambda_{1}^{2}} \frac{3}{24a_{1}^{2}\left\{x\left(x_{3}^{2}-\lambda_{1}^{2}\right)^{2}}{\lambda_{1}^{2}} + \frac{3}{24a_{1}^{2}\left\{x\left(x_{3}^{2}-\lambda_{1}^{2}\right)^{2}}{\lambda_{1}^{2}} + \frac{3}{24a_{1}^{2}\left\{x\left(x_{3}^{2}-\lambda_{1}^{2}\right)^{2}}{\lambda_{1}^{2}} + \frac{3}{24a_{1}^{2}\left\{x\left(x_{3}^{2}-\lambda_{1}^{2}\right)^{2}}{\lambda_{1}^{2}} + \frac{3}{24a_{1}^{2}\left\{x\left(x_{3}^{2}-\lambda_{1}^{2}\right)^{2}}{\lambda_{1}^{2}} + \frac{3}{24a_{1}^{2}\left\{x\left(x_{3}^{2}$$

$$\begin{split} & \left[\sum_{k \neq 1} \frac{(\lambda_{1} + \mu) (\delta_{1} + \delta_{2}) (\kappa - 1)}{K + 1} \left[-\frac{2 \kappa y_{2} \alpha^{2}}{r_{2}^{4}} - \frac{2 \kappa y_{1}}{r_{1}^{4}} - \frac{4 y_{1} \alpha^{2} (\kappa^{2} + 3 y_{1}^{2})}{r_{1}^{6}} \right] \right] \\ & + \frac{\mu(\delta_{1} - \delta_{2})}{K + 1} \left[-\frac{8 \kappa y_{2} \alpha^{2} (\kappa^{2} - y_{2}^{2})}{r_{2}^{6}} + \frac{12 \alpha^{4} \kappa y_{2} (\kappa^{2} - y_{2}^{2})}{r_{2}^{8}} - \frac{4 \kappa y_{1} \alpha^{2}}{r_{1}^{14}} \right] \\ & - \frac{4 \kappa y_{1} \alpha^{2} (\kappa^{2} - 3 y_{1}^{2})}{r_{1}^{6}} - \frac{4 k \kappa \alpha^{2} (\kappa^{2} - 3 y_{1}^{2})}{r_{1}^{6}} + \frac{2 k \alpha^{4} y_{1} \left(\kappa^{2} - y_{1}^{2}\right)^{2} - 4 \kappa^{3} y_{1}^{2} - 4 \kappa y_{1}^{2} (\kappa^{2} - y_{1}^{2})^{2}}{r_{1}^{6}} \\ & + \frac{12 \alpha^{4} \kappa y_{1} (\kappa^{2} - y_{1}^{2})}{r_{1}^{8}} + \frac{2 k \alpha^{4} y_{1} \left(\kappa^{2} - y_{1}^{2}\right)^{2} - 4 \kappa^{3} y_{1}^{2} - 4 \kappa y_{1}^{2} (\kappa^{2} - y_{1}^{2})^{2}}{r_{1}^{6}} \\ & - \frac{2 \mu \delta_{3}}{K + 1} \left[-\frac{2 \left((\kappa^{2} - y_{1}^{2})^{2} - 4 \kappa^{2} y_{1}^{2}\right)^{2} - 4 \kappa^{2} y_{1}^{2}}{r_{1}^{6}} + \frac{3 \alpha^{4} \left((\kappa^{2} - y_{1}^{2})^{2} - 4 \kappa^{2} y_{1}^{2}\right)^{2}}{r_{1}^{6}} + \frac{2 (\kappa^{2} - y_{1}^{2})^{2} - 4 \kappa^{2} y_{1}^{2}}{r_{1}^{6}} \right] \\ & - \frac{4 (y_{1} (3 \kappa^{2} - y_{1}^{2}) \alpha^{2}}{r_{1}^{6}} - \frac{4 k y_{1} \alpha^{2} (3 \kappa^{2} - y_{1}^{2})}{r_{1}^{6}} - \frac{2 k \alpha^{2} y_{1}^{2} \left((\kappa^{2} - y_{1}^{2})^{2} - 4 \kappa^{2} y_{1}^{2}\right)^{2}}{r_{1}^{6}} - \frac{2 k \alpha^{2} y_{1}^{2} \left((\kappa^{2} - y_{1}^{2})^{2} - 4 \kappa^{2} y_{1}^{2}\right)^{2}}{r_{1}^{6}} \\ & - \frac{3 \alpha^{4} \left((\kappa^{2} - y_{1}^{2})^{2} - 4 \kappa^{2} y_{1}^{2}\right)^{2}}{r_{1}^{6}} + \frac{2 k \alpha^{4} y_{1}^{2} \left((\kappa^{2} - y_{1}^{2})^{2} - 4 \kappa^{2} y_{1}^{2}\right)^{2}}{r_{1}^{6}} + \frac{2 k \alpha^{4} y_{1}^{2} \left((\kappa^{2} - y_{1}^{2})^{2} - 4 \kappa^{2} y_{1}^{2}\right)^{2}}{r_{1}^{6}} - \frac{2 k \alpha^{4} y_{1}^{2} \left((\kappa^{2} - y_{1}^{2})^{2} - 4 \kappa^{2} y_{1}^{2}\right)^{2}}{r_{1}^{6}} + \frac{2 k \alpha^{4} y_{1}^{2} \left((\kappa^{2} - y_{1}^{2})^{2} - 4 \kappa^{2} y_{1}^{2}\right)^{2}}{r_{1}^{6}} - \frac{2 k \alpha^{4} y_{1}^{2} \left((\kappa^{2} - y_{1}^{2})^{2} - 4 \kappa^{2} y_{1}^{2}\right)^{2}}{r_{1}^{6}} + \frac{2 k \alpha^{4} y_{1}^{2} \left((\kappa^{2} - y_{1}^{2})^{2} - 4 \kappa^{2} y_{1}^{2}\right)^{2}}{r_{1}^{6}} + \frac{2 k \alpha^{4} y_{1}^{2} \left((\kappa^{2} - y_{1}^{2})^{2} - 4 \kappa^{2} y_{1}^{2}\right)^{2}}{r_{1}^{6}} + \frac{2 k \alpha^{4} y_{1}^{2} \left((\kappa^{2} - y_{1}^{2}$$

The hoop stress on the leading edge y=0 can be found from the expression $\left[P_{xx} \right]_{y=0} = P_{xx}^{o}$

The normal and tangential atress transmitted across the bond on the equilibrium boundary are given below: The stress $P_{r_1}r_2$, $P_{\theta_1\theta_2}$, $P_{r_2\theta_2}$ is marked in fig. 2 page 67; θ_1 , θ_2 are the angles as shown in this figure.

$$\begin{split} P_{r,T_{k}}^{b} &= P_{r,T_{k}}^{b} = \frac{(\lambda + \lambda t)(E_{1} + E_{k})(\kappa + t)}{\kappa + t} \left[-1 - \frac{2a^{2}\cos_{2}2B_{1}}{r_{1}^{2}} - \frac{a^{2}\cos_{3}(2B_{1} - 2B_{2})}{r_{1}^{2}} + \frac{4a^{2}r\sin\theta\sin(3B_{1} - B_{2})}{r_{1}^{3}} \right] \\ &+ \frac{\mu(E_{1} - E_{k})}{\kappa + t} \left[-\cos_{3}2B_{k} - \frac{2a^{2}\cos_{3}2B_{1}}{r_{1}^{2}} - \frac{2a^{2}\cos_{3}(2B_{1} - 2B_{2})}{r_{1}^{2}} + \frac{81a^{2}\sin_{3}B_{1}}{r_{1}^{3}} \right] \\ &+ \frac{\mu(A^{2}\sin(3B_{1} - 2B_{2})}{r_{1}^{3}} + \frac{4a^{2}r\sin\theta\sin\sin((3B_{1} - 2B_{2})}{r_{1}^{3}} + \frac{6a^{4}\cos_{3}4B_{1}}{r_{1}^{4}} + \frac{3a^{4}\cos(4B_{1} - 2B_{2})}{r_{1}^{4}} \\ &+ \frac{24a^{2}kr\sin\theta\cos\cos(4B_{1} - 2B_{2})}{r_{1}^{4}} - \frac{24a^{4}r\sin\theta\sin((5B_{1} - 2B_{2})}{r_{1}^{2}} - \frac{8ka^{2}\cos_{3}4B_{1}}{r_{1}^{3}} - \frac{4ka^{2}\cos_{3}4B_{1}}{r_{1}^{3}} \\ &- \frac{2a^{2}\sin(2B_{1} - 2B_{2})}{r_{1}^{3}} + \frac{6a^{4}\sin_{4}B_{1}}{r_{1}^{4}} + \frac{3a^{4}\sin(4B_{1} - 2B_{2})}{r_{1}^{3}} - \frac{4ka^{2}\cos_{3}(3B_{1} - 2B_{2})}{r_{1}^{3}} \\ &+ \frac{24a^{2}kr\sin\theta\cos(3B_{1} - 2B_{2})}{r_{1}^{4}} + \frac{24a^{4}r\sin\theta\cos(6(S_{1} - 2B_{2})}{r_{1}^{3}} - \frac{4a^{2}r\sin\theta\cos(3B_{1} - 2B_{2})}{r_{1}^{3}} \\ &+ \frac{24a^{2}kr\sin(4B_{1} - 2B_{2})}{\kappa + 1} - \frac{4a^{2}r\sin\theta\cos(4B_{1} - 2B_{2})}{r_{1}^{3}} - \frac{4a^{2}r\sin\theta\cos(3B_{1} - 2B_{2})}{r_{1}^{3}} - \frac{4a^{2}r\sin\theta\cos(3B_{1} - 2B_{2})}{r_{1}^{3}} \\ &- \frac{2a^{4}\cos(4B_{1} - 2B_{2})}{r_{1}^{4}} - \frac{24a^{2}kr\sin\theta\sin(4B_{1} - 2B_{2})}{r_{1}^{3}} - \frac{4a^{2}r\sin\theta\cos(3B_{1} - 2B_{2})}{r_{1}^{3}} - \frac{4a^{2}r\sin\theta\sin\sin(3B_{1} - 2B_{2})}{r_{1}^{3}} \\ &- \frac{2a^{4}\cos(4B_{1} - 2B_{2})}{r_{1}^{4}} - \frac{24a^{2}kr\sin\theta\cos(4B_{1} - 2B_{2})}{r_{1}^{3}} - \frac{4a^{2}kr\sin\theta\sin(3B_{1} - 2B_{2})}{r_{1}^{3}} - \frac{4a^{2}r\sin\theta\sin\sin(3B_{1} - 2B_{2})}{r_{1}^{3}} \\ &- \frac{2a^{4}\cos(4B_{1} - 2B_{2})}{r_{1}^{4}} - \frac{24a^{4}kr\sin\theta\cos(4B_{1} - 2B_{2})}{r_{1}^{3}} - \frac{4a^{4}r\sin\theta\sin\sin(3B_{1} - 2B_{2})}{r_{1}^{3}} \\ &- \frac{2a^{4}\cos(4B_{1} - 2B_{2})}{r_{1}^{4}} - \frac{24a^{4}kr\sin\theta\cos(4B_{1} - 2B_{2})}{r_{1}^{3}} - \frac{4a^{4}r\sin\theta\sin\sin(3B_{1} - 2B_{2})}{r_{1}^{3}} \\ &- \frac{2a^{4}\cos(4B_{1} - 2B_{2})}{r_{1}^{4}} - \frac{24a^{4}kr\sin\theta\cos(4B_{1} - 2B_{2})}{r_{1}^{3}} - \frac{4a^{4}r\sin\theta\sin(6B_{1} - 2B_{2})}{r_{1}^{3}} \\ &- \frac{2a^{4}\cos(4B_{1} - 2B_{2})}{r_{1}^{4}} - \frac{2a^{4}kr\sin\theta\cos(4B_{1} - 2B_{2})}{r_{1}^{3}} - \frac{4a^$$

The hoop stress is discontinuous across the boundary.

The expressions for hoop-stresses in inclusion and the matrix at the interface are as follows:

$$\begin{split} P_{0,0_2}^b &= \frac{(\lambda + \mu)(\delta_1 + \delta_2)(\kappa + 1)}{\kappa + 1} \left[-1 - \frac{2\alpha^2\cos 2\theta_1}{r_1^2} - \frac{u\alpha^2r\sin \theta \sin (2\theta_1 - 2\theta_2)}{r_1^3} + \frac{\alpha^2\cos (2\theta_1 - 2\theta_2)}{r_1^3} \right] \\ &+ \frac{\mu(\delta_1 - \delta_2)}{\kappa + 1} \left[\cos 2\theta_2 - \frac{2\alpha^2\cos 2\theta_1}{r_1^2} + \frac{2\alpha^2\cos (2\theta_1 - 2\theta_2)}{r_1^3} + \frac{8k\alpha^2\sin 3\theta_1}{r_1^3} \right] \\ &- \frac{u\alpha^2r\sin \theta \sin (2\theta_1 - 2\theta_2)}{r_1^3} + \frac{6\alpha^4\cos 4\theta_1}{r_1^4} - \frac{3\alpha^4\cos (4\theta_1 - 2\theta_2)}{r_1^4} - \frac{2u4r^2\sin \theta\cos (4\theta_1 - 2\theta_2)}{r_1^4} \right] \\ &+ \frac{2u\alpha^4r\sin \theta\sin (5\theta_1 - 2\theta_2)}{r_1^5} - \frac{2\mu\delta_2}{\kappa + 1} \left[-\sin 2\theta_2 - \frac{2\alpha^2\sin 2\theta_1}{r_1^2} + \frac{2\alpha^2\sin (2\theta_1 - 2\theta_2)}{r_1^2} \right] \\ &- \frac{8\alpha^2l\cos 3\theta_1}{r_1^3} + \frac{4\alpha^2l\cos (3\theta_1 - 2\theta_2)}{r_1^3} + \frac{4\alpha^2r\sin \theta\cos (3\theta_1 - 2\theta_2)}{r_1^3} + \frac{6\alpha^4\sin 4\theta_1}{r_1^4} \right] \\ &- \frac{3\alpha^4sm(4\theta_1 - 2\theta_2)}{r_1^4} - \frac{2u\alpha^2kr\sin \theta\sin (4\theta_1 - 2\theta_2)}{r_1^4} - \frac{2u\alpha^2r\sin \theta\cos (5\theta_1 - 2\theta_2)}{r_1^2} \right] \\ &+ \frac{\mu(\delta_1 - \delta_2)}{\kappa + 1} \left[-\frac{2\alpha^2\cos 2\theta_1}{r_1^2} + \frac{\alpha^2\cos (2\theta_1 - 2\theta_2)}{r_1^2} - \frac{4\alpha^2r\sin \theta\sin (3\theta_1 - 2\theta_2)}{r_1^3} \right] \\ &+ \frac{\mu(\delta_1 - \delta_2)}{\kappa + 1} \left[-\frac{3\cos 2\theta_2}{r_1^2} - \frac{3\alpha^2\cos (2\theta_1 - 2\theta_2)}{r_1^2} + \frac{8l\alpha^2\sin 3\theta_1}{r_1^3} \right] \\ &- \frac{4\alpha^2l\sin (3\theta_1 - 2\theta_2)}{r_1^3} - \frac{4\alpha^2r\sin \theta\sin (3\theta_1 - 2\theta_2)}{r_1^3} + \frac{6\alpha^4\cos 4\theta_1}{r_1^4} - \frac{3\alpha^4\cos (4\theta_1 - 2\theta_2)}{r_1^4} \right] \\ &- \frac{24\alpha^2l\cos (3\theta_1 - 2\theta_2)}{r_1^3} - \frac{4\alpha^2r\sin \theta\sin (3\theta_1 - 2\theta_2)}{r_1^3} + \frac{24\alpha^4r\sin \theta\sin (5\theta_1 - 2\theta_2)}{r_1^4} - \frac{3\alpha^4\cos (4\theta_1 - 2\theta_2)}{r_1^4} \right] \\ &- \frac{24\alpha^2l\cos (3\theta_1 - 2\theta_2)}{r_1^3} - \frac{4\alpha^2r\sin \theta\sin (3\theta_1 - 2\theta_2)}{r_1^3} + \frac{24\alpha^4r\sin \theta\sin (5\theta_1 - 2\theta_2)}{r_1^4} - \frac{3\alpha^4\cos (4\theta_1 - 2\theta_2)}{r_1^4} \right] \\ &- \frac{24\alpha^2l\cos \theta\cos (4\theta_1 - 2\theta_2)}{r_1^3} + \frac{24\alpha^4r\sin \theta\sin (5\theta_1 - 2\theta_2)}{r_1^3} - \frac{3\alpha^4\cos (4\theta_1 - 2\theta_2)}{r_1^4} -$$

$$-\frac{2\mu\delta_{3}}{K+1} \left[3\sin 2\theta_{2} - \frac{2a^{2}\sin 2\theta_{1}}{r_{1}^{2}} + \frac{2a^{2}\sin(2\theta_{1}-2\theta_{2})}{r_{1}^{2}} - \frac{8a^{2}l\cos 3\theta_{1}}{r_{1}^{3}} + \frac{4a^{2}l\cos(3\theta_{1}-2\theta_{2})}{r_{1}^{3}} + \frac{4a^{2}r\sin\theta\cos(3\theta_{1}-2\theta_{2})}{r_{1}^{3}} + \frac{4a^{2}r\sin\theta\cos(3\theta_{1}-2\theta_{2})}{r_{1}^{3}} + \frac{6a^{4}\sin 4\theta_{1}}{r_{1}^{4}} - \frac{3a^{4}\sin(4\theta_{1}-2\theta_{2})}{r_{1}^{4}} - \frac{24a^{2}lr\sin\theta\sin(4\theta_{1}-2\theta_{2})}{r_{1}^{4}} - \frac{24a^{4}r\sin\theta\cos(5\theta_{1}-2\theta_{2})}{r_{1}^{4}} \right]$$

To find the displacement, one needs the expressions for $\phi_i(z)$, $\psi_i(z)$; $\psi_m(z)$ and $\psi_m(z)$ which may be obtained by integrating (134) and (135) where suitable constants signifying rigid body displacements are added. Expressions for them are

$$+z\left[\frac{(x+\mu)(\delta_{1}+\delta_{2})(K-1)}{K+1}\frac{a^{2}}{z_{1}^{2}}+\frac{\mu(\delta_{1}-\delta_{2}-2i\delta_{3})}{K+1}\left\{\frac{a^{2}}{z_{1}^{2}}-\frac{4i\ell a^{2}}{z_{1}^{3}}-\frac{3a^{4}}{z_{1}^{4}}\right\}\right]$$
(126)

$$\frac{4}{2} \left(z \right) = \frac{\mu \left(\delta_{1} - \delta_{2} + 2i\delta_{3} \right)}{\kappa + 1} \frac{a^{2}}{z_{2}} + \frac{(\lambda + \mu)(\delta_{1} + \delta_{2})(\kappa - 1)}{\kappa + 1} \frac{a^{2}}{z_{1}} + \frac{\mu(\delta_{1} - \delta_{2} - 2i\delta_{3})}{\kappa + 1} \left\{ \frac{a^{2}}{z_{1}} - \frac{2i a^{2}}{z_{1}^{2}} \frac{a^{4}}{z_{1}^{3}} \right\}$$

$$\begin{split} \Psi_{m}(z) &= -\frac{(\lambda + \mu)(\delta_{1} + \delta_{2})(k - 1)}{k + 1} \frac{\alpha^{2}}{z_{2}^{2}} + \frac{\mu(\delta_{1} - \delta_{2} + 2i\delta_{3})}{k + 1} \frac{\alpha^{4}}{z_{2}^{3}} - \\ &- \frac{i(\mu)(\delta_{1} - \delta_{2} + 2i\delta_{3})}{k + 1} \frac{\alpha^{2}}{z_{2}^{2}} - \frac{\mu(\delta_{1} - \delta_{2} - 2i\delta_{3})}{(k + 1)} \frac{\alpha^{2}}{z_{1}^{2}} \\ &+ z \left[\frac{(\lambda + \mu)(\delta_{1} + \delta_{2})(k - 1)}{k + 1} \frac{\alpha^{2}}{z_{1}^{2}} + \frac{\mu(\delta_{1} - \delta_{2} - 2i\delta_{3})}{(k + 1)} \left\{ \frac{\alpha^{2}}{z_{1}^{2}} - \frac{4i(\alpha^{2} - 3\alpha^{4})}{z_{1}^{2}} \right\} \right] \end{split}$$

We give in the appendix following this empter
the tables containing the values of boundary stress.
Table 1 gives normal (radial) stress for the immusion
and the matrix. It may be remarked that they are the
same for both inclusion and the matrix, due to
continuity property. Table 2 gives tangential
stresses for the inclusion and the matrix, they are
again continuous. Table 3 gives hoop stress in the matrix.

Varying from -90° to 90° with an interval of 30° . The second column corresponds to the case (i) $\delta_{12}\delta_{12}\delta_{1}\delta_{1}\delta_{2}=0$ whereas third column corresponds to the case (ii) $\delta_{12}\delta_{22}\delta_{1}$ $\delta_{32}\delta_{23}\delta_{34}\delta$

It is obvious from the tables that the edge effect is confined to a small region around the inclusion and when the distance of inclusion is five to six times the radius of inclusion, the solutions differ alightly from those for the infinite case, the error being of the order of one percent. In the table for L=11 , the change in the values can be marked as we pass from lowest point to some other point. The change is promisent as we approach mear and near to the straight edge.

The state of the s

Appendix to Chapter VII

Table 1

PERSON NEWS AND AND AND AND ADDRESS OF STREET AND ASSESSED.	$g_{i}=g^{y}=g$	and notes what were ago any world of him a fine the pick part hand when	the time about their states were super-required to the state of the st			
$\theta_{\mathbf{a}}$		$\delta_1 = -\delta_2 = \delta$	$\Sigma_{i} = \delta_{\lambda} = 0$			
the spice both with min, shin man o	δ_3 \simeq 0	$\delta_3=\delta$ and the same that the	53=8			
		(≠ ń.				
*** [†] **,	** } * * * * * * * *	was de la martin d	• 100n			
* !	and the second	1 3 2 3				
***	-1.		*****			

کہ		***	* 1335			
'u.	-1	* * 147 *	- • 9151			
	- 1 × 7 1 1 - 7	₩ 1 3	- * 704%			
1	-1 - 473 4 4	* 1 3 3 1 E.	* 0.700			
_ •		1 * 6 *				
j	■ 【● 使がわかり	· King a i	. 0000			
wife of	-1. 1. 1 t	• 114 # 7 4	* 5 19 525			
→ 3.	-1. 12° 7° 4	* ******	2 × 0983			
	-1.9 5152	4.5 18 . 4.7	2000			
*	-1. DAZ 15	● 黄鹭的有点等	- 4 3424			
4	4 937174	* 14.74	~ '. ' 6219			
44	-1-03 542	*				
,	A A STANKE	A A A TOA	~			
n- of	bedase	\$ 18 A				
• 6	-1-1-8:16	• 182614	. 3000			
	-1.9 66 2	· 243 1 6 3 4	. 5 . 2017			
)	-1.944341	₩ /¥ 7 3 14 7 3 10	· * 4 1922			
	-1.945927	- LA49711	0. 3919			
. *	-1.95.5741	- 34111	-11. 54 7304			
5 /	-1.9119 1	.246941	- 5 5 6875			
Ø 2	-1 BO5 74 9	.627711	-0. 000			
- · ·	-1-2-0000	.26374	* · **			
-6 :	-1.677169	2 40%	J. 1 0001			
m 3	-1.994272	- 24429	0.3 0122			
*	-1.942601	- 628223	0.471907			
38	-1.79765		0-145616			
ds)	-	- 1. 7816471	-0.9 1636R			
lie k Kaling	-1.50 151	.234778	-0.5 P4881			
****	-1.648000	^.55296O	-0.00000			
		L= 1.5				
- Q r	-0.500000	-0.041667	-0.00000			
- K1 "	-1.42132	* 复孤酶药后用	0 880 12			
and E	- 1 - WI LUNA	1717	7.4354 9			
	-3 a 144000	₩ 1 ★表記で終り間	0.0719			
3.	-1.618842		-0.48971s			
6 1	-1.67.539	V.203111	-0.9547.10			
1 0	-1-437500	.92 833	- "			
• •		L= 1.1	-0.00000			
* 9 .*	1.240741	-'-11779A	ستعدد المعاددة			
- 6 3	-1.443187		0.000000			
-37		0.041817	-0.132605			
	-1.896127	-0.092627	0.991811			
,	-1.597723	591637	0.103656			
30	-1.292218	-0.410252	-0.474402			
6 f	-1.127554	r.196445	-0.525196			
90	-1-096680	9.516778	-0.000000			
			- Improperate (F			

TANGE TIME PROFES

right diffs. Appropriate data forth desp.	and a productive with the effective time of	er enem enem enem enem enem enem enem en	yen aya, aga sana yaga ang aga kata ng
θ ₂	8, = 82=8	8, =-62 = 8	$d_1 = d_2 = 0$
Allen agget sills agains a la myre con mun .	53 = 0	63-0	£3=€
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	The same residence and the same residence and the same section with the same section and the same section and	ي يولون قطانه بهوين پيرون بولون جوي بولون بولون بولون ميش خديل مياول مديد پرون طايق هواي هواي خواند خواند .	and the safe wife with the same of the sam
		* ~ /·	
		€ * * •	
3000 ⁷ 3	- 1. 3(1)599	** ***	0.658 (2
Toda - Prij	* * 17/16	- AK676V	0.378960
	-(12 17	569343	-0.325936
	J+1 3443	- * 172519	696747
\ '	· 342*4	*****	-0.390355
*	1.941	. 16991	·. 9278U3
٠,	-12 0 04 7	• * • •	* 657565
		L= 6.	
• 9		60 € 77 5	* the 7/1
~ 6	-0. 27999	- ******	* " YF 27K
- A	-5.020119	-1.56477	- 37C 19K
	7896	m * * * * * * * * * * * * * * * * * * *	(47720
?	0.12544	1,561293	4:72:1
6	0.120276	565123	6. 173467
ş.	-7.: 091	,	651259
7	- 14 · 11 7 4		/ 秦 47 / 秦 敬 · · · ·
*	r. v 20.00.00	(m 4 .)	418036
- 9-	-0.3 5831	man the second second	.615974
-6n	-0.06(391	-0.530103	0.37140
-30	-0.036483	-7.352809	-0.296936
2	0.025810	-1.010256	-0.632334
10	0.057037	7.543720	-0.379127
67	0.040959	4.553793	0.311544
40	-0.072743	0.000000	0.635404
		L= 2.°	
-9^	-0.074074	-7-030300	1.461905
-6	-0.286536	-0.388113	n.343155
-30	-0.039904	-1.555909	-0.179459
ð	0.174292	-0.099255	-0.592240
∌ŏ	0.206627	0.476337	-0.153874
6)	0.11946)	0.521439	0.260676
	-0.016000	0.00000	9.37856
90	-0.40 VOAA	L= 1.5	११ आहु का कसा∤र लग
et. 20	******	-7.000000	0.37500 4
-9C	-0-320000	-0.307724	0.394772
-60	-0.443463		-0.107919
-30	0.087673	-0.401809	
0	0-348060	-0.160960	-0.594720
347	0.385621	0.443548	-0.363430
60	0.169609	0.309160	0.228295
90	-0.051250	0.00000	0.346875
		to lat	
-00	-1.197407	-0.000000	0+422323
-68	-(-188284	-0.25044	0.376529
-56	0.316430	~~	-0-042431
- C	0.637786	-0-219463	心理。最少各名书章
26	8.46.709	G.422952	-0.431549
17	0.273276	0.503702	0.284297
b 0	-0.061073	0-000000	0.929454
90	本山文章 表接着 小小 克	The state of the s	

The second of th

-0.476108

-0.440011

-0.15200

0.446306

0.507997

0.00000

-0.00000

-0.530377

-0. TOBEST

-0.234340

0.48914

4

Table 3

	HOUP	STRESS INSIDE	
02	23 = 0 23 = 0	δ, = - δ ₂ = δ δ ₃ = 0	$q_1 = q_2 = 0$
		L= 8.c	
-9 €	-1.998315	-0.661639	-0.000000
-0 ,	-1.956933	-0.335311	-0.547591
· 🍇 ,	-1.974873	3.320256	-0.570617
1,1	-1.969365	J.051758	-0.003786
ا . د	-1.466443	6.325924	0.567232
6.	-1.994804	-0.331945	0.569445
93	-2-000814	-0-661566	0.0.000
y ,		L# 6.0	
9 0	-1.996995	-0.696011	-6
-e. J	-1.977642	-0.338235	-0.559813
- Jan 1	-1. 149774	V.3U863U	-0.567176
	-1-946457	(-6412 J	-0.03760
30	-1.967515	0.321911	3.559154
Łü	-1.492060	-0.340239	0.564027
9 C	-2-001821	-0.637795	0.00000
		L= 4.0	
-40	-1.988336	-0-649253	-0.000000
-60	-1.938504	-0.351161	-0.538228
ند-	-1-879002	3.274161	-0.363647
20	-1.884483	0.615361	-0.027972
ن ن ق	-1.936922		0.536748
6 0	-1.987292	-0.324147	0.950715
90	-2.005487		0.00000
¥ U		L= 2.0	
@ A	-1.851652		-0.00000
~90			

-0.484370

0.113635

0.356257

0.326107

-0.286574

-0.604160

-0.791667

-0-428962

0.043097

0.568587

0.340086

-0.253480

-0.572917

-0.942449

-0-715290

Le 1.5

Le lel

-1.571966

-1.471350

-1.642174

-1.853607

-1.992502

-2.332000

-1.500000

-0.986682

-1-114484

-1.516000

-1-236747

-2.014333

-2-062900

0.314619

-60

-30

Ò

30

60

90

-90

0

34

60

90

V 10 40

Table 4

HOOP STRESS OUTSIDE

ggin hatiri , niputa - Andri Andri Antri Aggin anga M	HOOP STREE	SS OUTSIDE	
0 2	$\delta_1 = \delta_2 = \delta$ $\delta_3 = 0$	δ ₁ = -δ ₂ = δ δ ₃ = ο	$\delta_1 = \delta_2 = 0$ $\delta_3 = \delta$
an A		8.	1.00000
-9^	2.001185	2.005028	1.741817
-6 ⁽¹	2.011162	0.998022	1.738784
3	2. 27127	-1.^13/77 -2.^14879	-0-003786
	2.030615	-1.007411	-1.742169
3)	2.019557	1.001408	-1-719956
67 90	2.03194 1.979186	2.004079	-0.000000
7.6	- ·	# 6.	
~9 ()	2.003005	2.008656	0.0,000.
-6 0	2.022158	0.995098	1.749588
-3^	2.050216	-1-024504	1.742225
	2.053563	-2.025458	-0.008760
3 0	2.032485	-1.311422	-1.750247
60	2.007994	1.003124	-1.745374
90	1.998179	2.008872	-0.00000
		. 4.0	
-6 0	1:-011662	2.017413	0.000000
- 6 0	2.161496	0.982172	1.771173
-3 0	2.120998	-1.059172	1.745714
-72	2.115117	-2.091306	-0.027992
J o	2.063078	-1-018262	-1.772653
60	2.012708	1.009186	-1.758686
9:)	1.994513	2.019069	-0.0000m
***		L= 2.5	
and 🗱 😭	2.149148	2.008237	0.000000
-62	2.426034	0.848963	1.833293
-70	2.528650	-1.219698	1-669390
*** *** *** * *	2.357026	-2-110410	-0.152894
3 (*)	2.146393	-1.007226	-1.863095
60	2.007498	1.046759	-1.801404
9 n ·	1.968000	Z.06290T	-0.000000
•		L= 1.5	
~9 0	2.906000	1.875000	0.000000
-60	3,013318	0.704372	1.779024
-10	2.085510	-1.290236	1.541192
Ö	2.484000	-2.098080	-0.250560
30	2.101220	-7.973245	-1.912023
50	1.001647	1.079853	-1-830531
90	1.997500	2.009750	-0.00000
. * #	A CANAL LAND	Lo. Let	0.000000
-93	4.314813	1.70+210	1.638787
-40	4,419914	0.618103	1,415828
-30	3.188241	-1.961099	-0.323670
ڒۜ	2.49345}	-2-044986	-2.037###
3 6	1.101604	-0.920487	-1.027153
60	1.013576	1,121179	-0-000096
•	1.577930	2.110124	A STATE OF THE PARTY OF THE PAR

CHAPIER VIII

CIRCULAR INCLUSION IN MLASTIC HALF PLANE-II (Displacement free edge)

In the last chapter, we considered the case of a circular inclusion in a half-plane, when the leading edge is free from stresses. In this chapter, we consider the case when the edge is constrained so that there is no displacement.

To consider this, we have to consider the effect of an isolated force P=X+iY meting at a point S, when we have used the same frame of reference as in the last chapter, namely, the leading edge is the \times maxis, and Y maxis is a line perpendicular to it in the m-max. The clastic medium occupies the upper half of the m-max plane.

while developing the theory discussed in chapter VI, Ziffen ((21)) has given the error == potential functions $\phi(z)$ and $\psi(z)$ arising due to a point force

The case of a circular inclusion will now be considered. Inclusion is of radius unity and its centre is at a distance ℓ from the leading edge. Let inclusion be represented by $(z-\ell\ell)(\overline{z}+\ell\ell) \leq 1$.

The inclusion in the absence of matrix tends to undergo the displacement characterized by

$$u_{x} = \delta_{1}x + \delta_{3}(y-\ell)$$
, $u_{y} = \delta_{2}(y-\ell) + \delta_{3}x$

The strain components, therefore, are given by

$$e_{xx} = \delta_1$$
, $e_{yy} = \delta_2$ and $e_{xy} = \delta_3$

Firstly the case of principal strains $(\delta_3=0)$ will be considered. The case of pure shear $(\delta_1=\delta_2=0)$ would be dealt with the latter part of this chapter. If the above deformations are opposed, the stress field generated into the ima major will be,

$$P_{xx} = -\left\{ \lambda(\delta_1 + \delta_2) + \lambda \mu \delta_1 \right\}, \quad P_{xy} = 0$$

$$P_{yy} = -\left\{ \lambda(\delta_1 + \delta_2) + \lambda \mu \delta_2 \right\}$$

The point force which --- into play on the

from (129) and (27) and is

$$Pds = -\iota (\lambda + \mu)(\delta_1 + \delta_2)d\zeta + \iota \mu(\delta_1 - \delta_2)d\overline{\zeta}$$

$$\overline{D}ds = -i II(\delta_1 - \delta_2)d\zeta + \iota (\delta_1 + \delta_2)(\lambda + \mu)d\overline{\zeta}$$
(131)

These expressions are substituted in (139) and the contour integrals are evaluated. It may be noted that on the inclusion boundary Γ , $\bar{S} = \frac{1}{5-i\ell} - i\ell$... and therefore, $d\bar{S} = -dS/(S-i\ell)^2$.

The expressions will look simpler, if the substitutions $z_1 = z_1 e^{i\theta_1}$ and $z_2 = z_1 e^{i\theta_2}$ are

$$\frac{\Phi_{l}'(z) = \frac{(\lambda + \mu)(\delta_{l} + \delta_{2})}{K + 1} \left[1 + \frac{k - l}{K z_{l}^{2}} \right] \\
- \frac{\mu(\delta_{l} - \delta_{2})}{K + 1} \left[\frac{4 l l}{K z_{l}^{3}} + \frac{3}{K z_{l}^{4}} - \frac{1}{K z_{l}^{2}} \right] \\
+ \frac{(\lambda + \mu)(\delta_{l} + \delta_{2})}{K + 1} \left[\frac{k - l}{K z_{l}^{2}} - \frac{2 l l (K - l)}{K z_{l}^{3}} \right] \\
- \frac{\mu(\delta_{l} - \delta_{2})}{K + 1} \left[K + \frac{k}{Z_{l}^{2}} - \frac{1}{K Z_{l}^{2}} + \frac{10 i l}{K z_{l}^{3}} + \frac{9}{K z_{l}^{4}} + \frac{12 l^{2}}{K z_{l}^{4}} - \frac{12 i l}{K z_{l}^{5}} \right]$$

$$\frac{\Phi'_{m}(z)}{k+1} = \frac{(\lambda+\mu)(\delta_{1}+\delta_{2})}{k+1} \left[\frac{k-1}{kz_{1}^{2}} \right]$$

$$- \frac{\mu(\delta_{1}-\delta_{2})}{k+1} \left[\frac{\mu_{1}\ell}{kz_{1}^{3}} + \frac{3}{kz_{1}^{4}} - \frac{1}{kz_{1}^{2}} + \frac{1}{z_{2}^{2}} \right]$$

$$\Phi'_{m}(z) = \frac{(\lambda+\mu)(\delta_{1}+\delta_{2})}{k+1} \left[\frac{k-1}{kz_{1}^{2}} - \frac{2(\ell(k-1))}{kz_{1}^{3}} + \frac{k-1}{z_{2}^{2}} \right]$$

$$- \frac{\mu(\delta_{1}-\delta_{2})}{k+1} \left[\frac{k}{z_{1}^{2}} - \frac{1}{kz_{2}^{2}} + \frac{10(\ell+1)}{kz_{1}^{3}} + \frac{9}{kz_{1}^{4}} + \frac{12\ell^{2}}{kz_{1}^{4}} - \frac{12(\ell+3)}{kz_{1}^{4}} + \frac{3}{z_{2}^{4}} \right]$$
(133)

The stress field may be found by substituting above complex potential functions in relations (11a) and (11b). But it must be seen that the inclusion has an initial stress field given by (130) and this must be added to the one get from the functions $\Phi'_{c}(x)$ and $\Psi'_{c}(x)$. Before proceeding further we can varify that the normal and tangential stresses are continuous across the inclusion boundary. On the leading edge y=0, of course the displacement vanishes, as it should.

where $P_{Y_2Y_2}, P_{Y_2\Theta_2}, P_{\Theta_2\Theta_2}$ are radial, transverse and hoop stresses with respect to the centre of circle Γ , (shown in figure 2 page 67). They may be used to evaluate the stress field at any point of the inclusion or the matrix, after superposing the initial stressfield in case of the inclusion, we observe that

$$\frac{P_{r_{2}Y_{2}} + P_{\theta_{2}\theta_{2}}}{4(K+1)} = \frac{8(\lambda+\mu)(\delta_{1}+\delta_{2})}{4(K+1)} \left[2 + \frac{K-1}{K} \left(\frac{1}{z_{1}^{2}} + \frac{1}{\overline{z}_{1}^{2}} \right) \right] \\
- \frac{8\mu(\delta_{1}-\delta_{2})}{4(K+1)} \left[\frac{4\iota\ell}{K} \left(\frac{1}{z_{2}^{2}} - \frac{1}{\overline{z}_{1}^{3}} \right) + \frac{3}{K} \left(\frac{1}{z_{1}^{4}} + \frac{1}{\overline{z}_{1}^{4}} \right) - \frac{1}{K} \left(\frac{1}{Z_{1}^{2}} + \frac{1}{\overline{z}_{1}^{2}} \right) \right] \\
+ \frac{8\mu(\delta_{1}-\delta_{2})}{4(K+1)} \left[\frac{K-1}{K} \left(-\frac{2Z_{2}}{Z_{1}^{3}} + \frac{Z_{2}}{\overline{Z_{2}}Z_{1}^{2}} \right) \right] \\
+ \frac{8\mu(\delta_{1}-\delta_{2})}{4(K+1)} \left[\frac{12\iota(Z_{2}}{KZ_{1}^{4}} + \frac{12Z_{2}}{KZ_{1}^{5}} - \frac{2Z_{2}}{KZ_{1}^{3}} - \frac{KZ_{2}}{\overline{Z_{2}}Z_{1}^{2}} \right] \\
+ \frac{2L}{KZ_{1}^{2}} - \frac{9\iota\ell Z_{2}}{KZ_{2}Z_{1}^{3}} - \frac{9Z_{2}}{KZ_{2}Z_{1}^{4}} \right]$$

$$\frac{P_{r_{2}Y_{2}} + P_{\theta_{2}\theta_{2}}}{I_{1}(K+1)} = \frac{8(\lambda+\mu)(\delta_{1}+\delta_{2})}{I_{1}(K+1)} \left[\frac{K-1}{K} \left(\frac{1}{Z_{1}^{2}} + \frac{1}{Z_{2}^{2}} \right) \right] \\
- \frac{8\mu(\delta_{1}-\delta_{2})}{I_{1}(K+1)} \left[\frac{12LLZ_{2}}{KZ_{1}^{4}} + \frac{12Z_{2}}{KZ_{2}^{5}} - \frac{2Z_{2}}{KZ_{1}^{3}} + \frac{2}{Z_{2}^{2}} - \frac{KZ_{2}}{Z_{2}Z_{1}^{2}} \right] \\
+ \frac{Z_{2}}{KZ_{2}Z_{1}^{2}} - \frac{8LLZ_{2}}{KZ_{2}Z_{1}^{3}} - \frac{9Z_{2}}{KZ_{2}Z_{1}^{3}} - \frac{3}{Z_{2}Z_{2}^{3}} \right]$$

(144

$$\begin{split} P_{\theta_{2}\theta_{2}} - P_{r_{2}r_{3}} + 2\iota P_{r_{2}\theta_{2}} &= \frac{8(\lambda + \mu)(\delta_{1} + \delta_{2})}{4(\kappa + \iota)} \left[\frac{\kappa - \iota}{\kappa} \left(-\frac{2Z_{2}}{Z_{1}^{3}} + \frac{Z_{2}}{\overline{Z}_{2}Z_{1}^{2}} + \frac{k}{Z_{2}\overline{Z}_{2}} \right) \right] \\ &+ \frac{8\mu(\delta_{1} - \delta_{2})}{4(\kappa + \iota)} \left[\frac{12\iota \ell Z_{2}}{\kappa Z_{1}^{4}} + \frac{12Z_{2}}{\kappa Z_{1}^{5}} - \frac{2Z_{2}}{\kappa Z_{1}^{3}} + \frac{2}{Z_{2}^{2}} - \frac{kZ_{2}}{\overline{Z}_{2}Z_{1}^{2}} \right] \\ &+ \frac{Z_{2}}{\kappa \overline{Z}_{2}Z_{1}^{2}} - \frac{8\iota \ell Z_{2}}{\kappa \overline{Z}_{2}Z_{1}^{3}} - \frac{9Z_{2}}{\kappa \overline{Z}_{2}Z_{1}^{4}} - \frac{3}{\overline{Z}_{2}Z_{2}^{3}} \right] \end{split}$$

The normal and tangential stress at the equilibrium interface are given below

$$P_{r_{2}r_{3}}^{b} = P_{r_{3}r_{3}}^{b} = \frac{(\mu + \lambda)(\delta_{1} + \delta_{2})}{k + 1} \left[\frac{k - 1}{k} \left\{ \frac{2\cos 2\theta_{1}}{r_{1}^{2}} + \frac{2\cos(3\theta_{1} - \theta_{2})}{r_{1}^{3}} - \frac{\cos(2\theta_{1} - 2\theta_{3})}{r_{1}^{2}} - k \right\} \right]$$

$$- \frac{\mu(\delta_{1} - \delta_{2})}{k + 1} \left[- \frac{2\cos 2\theta_{1}}{k r_{1}^{2}} - \frac{\cos(2\theta_{1} - 2\theta_{2})}{k r_{1}^{2}} - \frac{k\cos(2\theta_{1} - 2\theta_{2})}{r_{1}^{2}} \right]$$

$$+ \frac{8 \left(\sin 3\theta_{1}}{k r_{1}^{3}} - \frac{2\cos(3\theta_{1} - \theta_{2})}{k r_{1}^{3}} - \frac{8 \left(\sin(3\theta_{1} - 2\theta_{2})}{k r_{1}^{3}} \right)}{k r_{1}^{3}}$$

$$+ \frac{6 \cos 4\theta_{1}}{k r_{1}^{4}} + \frac{12 \left(\sin(4\theta_{1} - \theta_{2})}{k r_{1}^{4}} - \frac{9\cos(4\theta_{1} - 2\theta_{2})}{k r_{1}^{4}} \right)}{k r_{1}^{4}}$$

$$+ \frac{12 \cos(5\theta_{1} - \theta_{2})}{k r_{1}^{5}} + \cos 2\theta_{2}$$

$$P_{r_{x}\theta_{x}}^{b} = P_{r_{x}\theta_{x}}^{b} = \frac{(\lambda + \mu)(\delta_{t} + \delta_{x})}{\kappa + \epsilon} \left[\frac{\kappa - \epsilon}{\kappa} \left\{ -\frac{\epsilon \ln(2\theta_{t} - 2\theta_{x})}{r_{t}^{2}} + \frac{2 \sin(3\theta_{t} - \theta_{x})}{r_{t}^{3}} \right\} \right],$$

$$-\frac{\mu(\delta_{1}-\delta_{2})}{(c+1)} \left[\frac{\sin(2\theta_{1}-2\theta_{2})}{\kappa\kappa^{2}} - \frac{\kappa\sin(2\theta_{1}-2\theta_{2})}{\kappa\kappa^{2}} - \frac{2\sin(3\theta_{1}-\theta_{2})}{\kappa\kappa^{2}} + \frac{8L\cos(3\theta_{1}-2\theta_{2})}{\kappa\kappa^{2}} \right]$$

The hoop stresses are discontinuous across the inclusion boundary and the respective expression for the inclusion and the matrix are ;

$$\begin{split} \beta_{\theta_{2}\theta_{2}}^{\beta} &= \frac{(\lambda + \mu)(\delta_{1} + \delta_{2})}{\kappa + 1} \left\{ \frac{1}{\kappa} \left\{ \frac{2\cos 2\theta_{1}}{r_{1}^{2}} + \frac{\cos(2\theta_{1} - 2\theta_{2})}{r_{1}^{2}} - \frac{2\cos(3\theta_{1} - \theta_{2})}{r_{1}^{2}} \right\} + 2 \right] \\ &+ \frac{\mu(\delta_{1} - \delta_{2})}{\kappa + 1} \left[\frac{\cos(2\theta_{1} - 2\theta_{2})}{\kappa r_{1}^{2}} - \frac{\kappa \cos(2\theta_{1} - 2\theta_{2})}{r_{1}^{2}} + \frac{2\cos 2\theta_{1}}{\kappa r_{1}^{2}} - \frac{8l \sin 2\theta_{1}}{k r_{1}^{3}} \right] \\ &- \frac{8l \sin(3\theta_{1} - 2\theta_{2})}{\kappa r_{1}^{3}} - \frac{\alpha \cos(2\theta_{1} - \theta_{2})}{\kappa r_{1}^{3}} - \frac{6\cos 4\theta_{1}}{\kappa r_{1}^{4}} + \frac{12 l \sin(4\theta_{1} - \theta_{2})}{\kappa r_{1}^{4}} \\ &- \frac{9\cos(4\theta_{1} - 2\theta_{2})}{\kappa r_{1}^{4}} + \frac{12\cos(5\theta_{1} - \theta_{2})}{\kappa r_{1}^{5}} + \cos 2\theta_{2} \right] \\ \beta_{0}\theta_{2}\theta_{2} &= \frac{(\lambda + \mu)(\delta_{1} + \delta_{2})}{\kappa + 1} \left[\frac{\kappa - 1}{\kappa} \left\{ \frac{2\cos 2\theta_{1}}{r_{1}^{2}} + \frac{\cos(2\theta_{1} - 2\theta_{2})}{r_{1}^{2}} - \frac{2\cos(3\theta_{1} - \theta_{2})}{r_{1}^{3}} \right\} + \kappa - 1 \right] \\ &+ \frac{\mu(\delta_{1} - \delta_{2})}{\kappa + 1} \left[\frac{\cos(2\theta_{1} - 2\theta_{2})}{\kappa r_{1}^{2}} - \frac{\kappa \cos(2\theta_{1} - 2\theta_{2})}{r_{1}^{2}} + \frac{2\cos 2\theta_{1}}{\kappa r_{1}^{3}} - \frac{8l \sin 3\theta_{1}}{\kappa r_{1}^{3}} \right] \\ &- \frac{8l \sin(3\theta_{1} - 2\theta_{2})}{\kappa r_{1}^{3}} - \frac{2\cos(3\theta_{1} - \theta_{2})}{\kappa r_{1}^{3}} - \frac{6\cos 4\theta_{1}}{\kappa r_{1}^{4}} + \frac{12 l \sin(4\theta_{1} - \theta_{2})}{\kappa r_{1}^{4}} \right] \\ &- \frac{9\cos(4\theta_{1} - 2\theta_{2})}{\kappa r_{1}^{3}} + \frac{12\cos(5\theta_{1} - \theta_{2})}{\kappa r_{1}^{3}} - \frac{3\cos 2\theta_{2}}{\kappa r_{1}^{4}} + \frac{12\cos(5\theta_{1} - \theta_{2})}{\kappa r_{1}^{4}} - \frac{3\cos 2\theta_{2}}{\kappa r_{1}^{4}} \right] \end{split}$$

If once the distance to the equilibrium

may be found.

Integrating the expressions (132) and (133), we get the following expression to be used in evaluating displacement.

$$\begin{split} & \phi_{L}(z) = \frac{(\lambda + \mu)(\delta_{1} + \delta_{2})}{K + l} \left[z_{2} - \frac{\kappa - l}{k z_{1}} \right] + \frac{\mu(\delta_{1} - \delta_{2})}{K + l} \left[\frac{2 l \ell}{k z_{1}^{2}} + \frac{1}{k z_{1}^{3}} - \frac{1}{k z_{1}} \right] \\ & \psi_{l}(z) = -\frac{(\lambda + \mu)(\delta_{1} + \delta_{2})}{K + l} \left[\frac{\kappa - l}{k z_{1}} - \frac{l \ell(\kappa - l)}{K z_{1}^{2}} \right] + \\ & + \frac{\mu(\delta_{1} - \delta_{2})}{K + l} \left[- \kappa z_{2} + \frac{\kappa}{z_{1}} - \frac{1}{k z_{1}} + \frac{5 l \ell}{K z_{1}^{2}} + \frac{3}{k z_{1}^{3}} + \frac{4 l \ell^{2}}{k z_{1}^{3}} - \frac{3 l \ell}{k z_{1}^{4}} \right] \\ & \phi_{m}(z) = -\frac{(\lambda + \mu)(\delta_{1} + \delta_{2})}{k + l} \left[\frac{\kappa - l}{k z_{1}} \right] + \frac{\mu(\delta_{1} - \delta_{2})}{k + l} \left[\frac{2 l \ell}{l k z_{1}^{2}} + \frac{1}{k z_{1}^{3}} - \frac{l}{k z_{1}} + \frac{1}{z_{2}} \right] \\ & \psi_{m}(z) = -\frac{(\lambda + \mu)(\delta_{1} + \delta_{2})}{K + l} \left[\frac{\kappa - l}{l k z_{1}} - \frac{i \ell(\kappa - l)}{k z_{1}^{2}} + \frac{\kappa - l}{z_{2}} \right] + \\ & + \frac{\mu(\delta_{1} - \delta_{2})}{K + l} \left[\frac{\kappa}{z_{1}} - \frac{1}{k z_{1}} + \frac{5 l \ell}{k z_{1}^{2}} + \frac{3}{k z_{1}^{3}} + \frac{4 \ell^{2}}{k z_{1}^{3}} - \frac{3 l \ell}{k z_{1}^{4}} - \frac{i \ell}{z_{2}^{2}} + \frac{1}{z_{2}^{3}} \right] \end{split}$$

By making use of above expression, the displacement fields in the inclusion and the matrix are given by

$$2\mu(u_{2}+u_{3}) = \frac{(\lambda+\mu)(\delta_{1}+\delta_{2})}{k+1} \left[(\kappa-1)z_{2} - \frac{\kappa-1}{z_{1}} - i\ell - \frac{(\kappa-1)z_{2}}{k\overline{z}_{1}^{2}} + \frac{\kappa-1}{k\overline{z}_{1}} \right] + \frac{\mu(\delta_{1}-\delta_{2})}{k+1} \left[k\overline{z}_{2} - \frac{1}{z_{1}} + \frac{2i\ell}{z_{1}^{2}} + \frac{1}{z_{1}^{2}} - \frac{\kappa}{\overline{z}_{1}} + \frac{1}{k\overline{z}_{1}} - \frac{z_{2}}{k\overline{z}_{1}^{2}} + \frac{1}{k\overline{z}_{1}} - \frac{z_{2}}{k\overline{z}_{1}^{2}} + \frac{1}{k\overline{z}_{1}} - \frac{z_{2}}{k\overline{z}_{1}^{2}} + \frac{1}{k\overline{z}_{1}} - \frac{z_{2}}{k\overline{z}_{1}^{2}} + \frac{1}{k\overline{z}_{1}^{2}} + \frac{1}{k\overline{z}_{1}^{2}}$$

And

$$2\mu(U_{x}+iU_{y}) = \frac{(\lambda+\mu)(S_{1}+S_{2})}{k+1} \left[(\kappa-i)\left\{ -\frac{1}{z_{1}} - \frac{1}{k\overline{z}_{1}} - \frac{z_{2}}{k\overline{z}_{1}^{2}} + \frac{1}{\overline{z}_{2}} \right\} \right] + \frac{\mu(S_{1}-S_{2})}{k+1} \left[-\frac{1}{z} + \frac{K}{z_{2}} - \frac{K}{\overline{z}_{1}} + \frac{1}{k\overline{z}_{1}} + \frac{2i\ell}{z_{1}^{2}} - \frac{z_{2}}{k\overline{z}_{1}^{2}} + \frac{4i\ell}{k\overline{z}_{1}^{2}} \right] + \frac{1}{z_{3}^{3}} - \frac{4i\ell z_{2}}{k\overline{z}_{1}^{3}} - \frac{3}{k\overline{z}_{1}^{3}} + \frac{1}{\overline{z}_{2}^{3}} + \frac{3z_{2}}{k\overline{z}_{1}^{4}} \right]$$

The case of pure shear can be dealt with in a similar faction. In this case we have $\delta_1=\delta_2=0$ and $\delta_3\neq 0$. The relevant complex potentials in this case are :

$$\phi_{i}^{'}(z) = \frac{8 \iota \mu \delta_{3}}{4(k+1)} \left[-\frac{1}{kz_{i}^{2}} + \frac{u \iota \ell}{kz_{i}^{3}} + \frac{3}{kz_{i}^{4}} \right]$$

$$\psi_{i}^{'}(z) = \frac{8 \iota \mu \delta_{3}}{4(k+1)} \left[k + \frac{k}{Z_{i}^{2}} - \frac{1}{kZ_{i}^{2}} + \frac{10 \iota \ell}{kz_{i}^{3}} + \frac{12 \ell^{2} + 9}{kz_{i}^{4}} - \frac{12 \iota \ell}{kz_{i}^{5}} \right]$$
(130)

$$\phi'_{m(z)} = \frac{8 \iota \mu \delta_{3}}{\iota(k+1)} \left[-\frac{1}{k z_{1}^{2}} + \frac{u \iota \ell}{k z_{1}^{3}} + \frac{3}{k z_{1}^{4}} - \frac{1}{z_{2}^{2}} \right]$$

(140)

$$\psi_{m}(z) = \frac{8i \mu \delta_{3}}{4(\kappa+1)} \left[\frac{\kappa}{z_{1}^{2}} - \frac{1}{\kappa z_{1}^{2}} + \frac{10il}{\kappa z_{3}^{3}} + \frac{12l^{2}+9}{\kappa z_{1}^{3}} - \frac{12il}{\kappa z_{3}^{5}} + \frac{3il}{z_{3}^{2}} - \frac{3}{z_{4}^{2}} \right]$$

Now the stresses can be found by substituting these expressions in (11a) and (11b) and noting that the initial stress-field is also to be superposed in case of the inclusion. As regards displacement, the expressions (189) and (140) will have to be integrated. The results of integration are as follows

$$\begin{split} & \Phi_{l}(z) = -\frac{8i\mu\delta_{3}}{4(k+1)} \left[-\frac{1}{kz_{1}} + \frac{2l\ell}{kz_{1}^{2}} + \frac{1}{kz_{1}^{3}} \right] \\ & \Psi_{l}(z) = -\frac{8i\mu\delta_{3}}{4(k+1)} \left[-kz_{2} + \frac{k}{z_{1}} - \frac{1}{kz_{1}} + \frac{5i\ell}{kz_{1}^{2}} + \frac{4\ell^{2}+3}{kz_{1}^{3}} - \frac{3l\ell}{kz_{1}^{4}} \right] \\ & \Phi_{m}(z) = -\frac{8i\mu\delta_{3}}{4(k+1)} \left[-\frac{1}{z_{2}} - \frac{1}{kz_{1}} + \frac{2i\ell}{kz_{1}^{2}} + \frac{1}{kz_{1}^{3}} \right] \\ & \Psi_{m}(z) = -\frac{8\mu\mu\delta_{3}}{4(k+1)} \left[\frac{k}{z_{1}} - \frac{1}{kz_{1}} + \frac{5i\ell}{kz_{1}^{2}} + \frac{4\ell^{2}+3}{kz_{1}^{3}} - \frac{3i\ell}{kz_{1}^{4}} + \frac{i\ell}{z_{2}^{2}} - \frac{1}{z_{3}^{3}} \right] \end{split}$$

The displacements in inclusion and matrix are found by substituting expressions for $\phi_i(z), \psi_i(z), \phi_i'(z), \psi_i'(z)$,

\$\phi_m(z), \forall_m(z), \phi_m(z), \psi_m(z), \psi_m(z).

In the appendix following this chapter the values of the resultant boundary stresses are given in form of tables in the manner shown in preceding chapter, i.e. first table gives normal (radial) stress for inclusion and matrix, second table gives tangential stress for the inclusion and the matrix. They are the same for inclusion and matrix due to continuity property. Third table gives hoop stress in the inclusion and fourth table gives hoop stress for the matrix.

The first column gives θ_2 , second column gives the stresses for the case (1) $\delta_1 = \delta_2 = \delta$, $\delta_3 = 0$, and the last column corresponds to the case (11) $\delta_1 = -\delta_2 = \delta$, $\delta_3 = 0$. As in the preceding chapter, φ has been taken equal to 1/8 and $\kappa = 2$ (the plane stress case), and ℓ (denoted as ℓ in the tables) takes the values δ_1 δ_2 , δ_3 , δ_4 , δ_5 , δ_6

Appendix to Chapter VIII

Table 1

	NOR	AL	STRF55
--	-----	----	--------

θ ₂	$\delta_1 = \delta_2 = \delta$	δ ₁ =-ξ ₂ == d
~2	dir sep nan am dilinumdir ann am thiramidir am an sabusir indi eastain dilinus.	ما المراجع الم
	1 - 0	
-9 0	L= 8.	0.63026206
-6 3	-2.01274070 -2.01014339	3.34762188
	-2.1016229 -2.00559861	-4.33665457
	-2.039511	67209818
3 ^		-1. 334 0570
	-2.00607547	1.34€ 9286
9	-2,009323 9	.67668927
'y'	-2.01078767	#610609£7
Ph. N	L= 6.	0.69200853
~ \$ ^	-2.62329072	0.34622599
-6	-2. ·182775	-0.34007065
-3:	-2.00979284	-0.67768539
,	-2.00778416	
3	-2.0109)232	-0.33408784
6.	-2.0163o) 5	0.34503495
9 ?	-2.01866177	0.68355539
	<u>t= 4.''</u>	~ ~~~
-9 7	-2.05539355	0.72910096
-6 ^	-2.04198015	0.36149989
-3,,	-2.02133447	-(.35214866
₩,	-2.01630223	-0.69003579
3 1	-2.02488062	-0.33273011
60	-2.03541532	0.35806446
90	-2.03978050	0.70074006
	. t = 2.	
-9 ¹	-2.25925922	0.97942385
-6 0	-2.17523953	0.41745408
-91	-2.079654·14	-0.44244707
Ø.	-2.07103601	-0.73779166
30	-2.10009715	-0.31598276
60	-2.12634450	0.41043044
97	-2.13599998	0.76351999
	L= 1.5	
-90	-2.50000000	1.27083331
-A11	-2.31983086	0.43087535
-90	-2.14139938	-0.54668689
0	-2.13199997	-0.76957332
30	-2.17364582	-0.29957248
60	-2.20704320	0.44476422
90	-2.21675000	0-60206333
* *	L= l-1	
9 1)	-2.92592591	1.75334358
-60	-2.66768003	0.98428008
-37	-2.27858067	-0.74690222
0	-2.24835032	-0.816TT276
	-3-301552-7	-0.26250734
#0 40	-2-34080470	0.47940523
6 0	-1.25400351	G_#40267AB
90 ;	· · · · · · · · · · · · · · · · · · ·	

Table 2

TANGENTIAL STRESS			
θ _λ	$\delta_1 = \delta_2 = \delta$	δ ₁ = -δ ₂ = δ	
	O 3		
-q^		-0.0000000	
(÷ ^)	0.00357676	-0.58655342	
~ <u>'</u>	5.co283898	-0.58469128	
<u></u>	-0-20296144	0.00174410	
31	-0.00369118	0.58527613	
6~	-^.0031^76B	0.58308245	
90	-0.00000000	0.0000000	
,	L= 6.		
~ 0.7	0.00000000	-3-401 20402	
-60	0.00642096	-0.59447057	
-37	0.09462861	-0.58986074	
	-0.00225151	0.00405142	
٥٥	-0.00665942	0.59128277	
60	-0.00534492	0.58843791	
90	-0.0000000	0.0000000	
31)	±= 4.^		
-90	0.0000000	-0.0000000	
+60	0.01447047	-0.61909048	
-33	0.00822102	-0.60241757	
	-0.00734092	0.01291474	
30	-0.01516926	0.60751326	
30 40	-0.01119144	0.59932765	
60	-0.0000000	0.0000000	
90	L= 2.7	(* C O O O	
-9 0	0.00007000	-0.0000000	
-6 ₁	0.04457270	-0.76913150	
-30	-0.00078836	-0.62902120	
-30	-0.04884999	0.07730919	
	-0.05666899	0.67498754	
30	-0.03485612	0.63649290	
60 60	-0.0000000	0.0000000	
\$0	L= 1.5	and the same of the same	
-90	0.0000000	-0.0000000	
-6 0	0.02975597	-0.9199128	
-	-0.04292253	-0.6181429	
-30	-0.09600000	0.14047999	
0	-0.09024848	0.7211175	
30	-0-05137970	0.65818940	
60	-0.0000000	0.00000000	
# 0	1* 1.1		
de	-0.0000000	-0.0000000	
-60 -60	-0.20794070	-1.2201904	
-60 -30	-0.15253137	-0.5734389	
	-0.16765840	0.2358424	
0	-0.19394940	0.7783406	
30	-0.07120956	0.66280304	
60	-0.0000000	0.0000000	

er e . To take entreste em sententation de servente estamente e . 180 to the traite with the best to 180 to

HOOP STRESS INSIDE

92	δ ₁ = δ ₂ = δ	61=-62 = 6
	h Ć	
-9,	t = 8. 7.99696.9	-)-67363504
-6 '	3.00275434	-1 -3 34, 70 49
- 3	3 4 4 2 3 4 3 3	242374
-,	3.9865 8.2	1.47794579
3	\$ 900 1 C 5 5 5	1 100 7 2 4 3 1
*	3.997.2985	- 32577 47
*. ****	3.99694681	-7.67256611
*	t * 6.	
- /	3.45 .3286	-2.67925894
	3.4862 499	-7.3342664"
-3	3.98 >679	0.30027770
· **	3.97987843	.6 519713
3 7	3.9856681	0.34143805
ě.	3.99224511	-3.3783076
ù^	3.99499312	-3.67751967
•	L= 4.	
- ·	3.97376387	-9.695781'1
-6 *	3.96453360	-0.33173824
-3 `	3.9530.573	0.37492919
	3.95665723	9.70723778
3	3.971212 0	0.34678723
6^	3,98571182	-0.34546152
90	3.99039776	-0.68854679
• ′	L= 2.	
-90	3.01481478	-3.78189299
-67	3.79785685	-0.27829858
4. 3 M	3.80746469	7.50827109
*	3.86342353	0.77377462
3 ♦	3.92322639	0.34374896
60	3.96267083	-0.38453207
90	3.9759999	-9.73791999
	L= 1.5	
-93	3.50000000	-0.89416665
-60	3.57363150	-0.19866597
-30	9.69241977	0.6111044
C	3.81199995	0.79970665
30	3.90145645	0.32271434
60	3.95247954	-0.41957890
90	9.96875000	-9.77604166
4- 4-	L= 1+1	
~9 0	2,14814879	-1,21922010
* 6 0	9.18231541	-0-0475785
+30	3.62792342	0.7570993
3	9,74748476	0.00175091
5 4	7.096\$3\$50	0.3615104
	3.94779349	-0.4715479:
• • •	5,94337644	-0.8249446

Table 4

HOOP	STRESS	OUTSIDE
4 M 2" mP 3. m.	2017733	4 / 1 4 F N T 1 1 99

θ_2	$\delta_1 = \delta_2 = \delta$	$\delta_1 = -\delta_2 = \delta$
	t. # 8±7	
793	1,99496293	1.9930416
A63	1.99279497	0.9990623
/-35	1.98910441	-0.9909993
	1,98857845	-1.98869996
3 7	1.99150396	-0.9948050t
67	1.99529852	0,99736279
₽ 0	1.99694684	1.494~003
. .	1. * 6. · ·	
-90	1.99023288	1.9874077
-60 -30	1.98620900	0.99906681
	1.98005682	-0.9830560
0 In	1,97987846	-1.98046951
6 0	1.98566803	-0.9918952
90	1.99224514	0.99502565
***	1.99499319	1.98964697
-40	L= 4.0 1.97376090	1.9708851
-67	1.96453361	1.0013930
**30	1.95300575	+0.9584101
7	1.95665725	-1.9594358
80	1.97121201	-0.98653904
60	1.98501183	0.98787174
or 5	1.99039780	1.9781198
	L= 2.0	****
-90	1.81481479	1.8847734
-60	1.79740461	1.05509475
~B0	1.80746469	-0.82506225
0	1.86342354	-1.89289201
30	1,92322642	-0.98958434
# 0	1.96267085	0.94880114
\$0	1.97579448	1.92874664
	L= 1.5	
-60	1.50000000	1.81249999
***	1,57363151	1.13464735
-30	1.69201900	-0.7222388
9	1.01199998	-1.87095947
30	1.90149448	-1.01041896
60	1.95247954	0.41373421
90	1.94873000	1.69063494
	L= 1.1	<u>த் ததுகொ</u> த்தைக்க
9 0	0-14614610	1,4534444)
-60	1-18231542	1.7557594)
10	1,4279245	-6.5742349
0	1.77774441	+1.84491564
30		-1-03182261
60	1.04337889	0.04174541 1.63798041

CHAPTER IX

A POINT-FORCE IN AN INFINITE MLASTIC SCAIP.

In this section a brief review of the work done by Tiffen ((22)) is given. This relates to finding the complex potentials for the case of an isolated force in the interior of infinite strip, when

- (1) both the straight boundaries are free from stranges :
- (11) both the straight boundaries are free from displacements.

technique of using the complex variables for solving such problems.

The electic material occupies the region defined by

where co is constant. The boundary stresses and displacements are denoted by

$$[P_{yy}]_{y=0} = P_{yy}^{\circ}$$
, $[P_{yy}]_{y=0} = P_{yy}^{\prime}$
 $[u_x]_{y=0} = u_x^{\prime}$, $[u_x]_{y=0} = u_x^{\prime}$

Firstly consider the problem of a strip subjected to the following boundary tractions :

$$p_{yy} + i p_{xy} = f(x) + i f(x)$$

$$p_{yy} + i p_{xy} = g(x) + i G(x)$$
(268)

$$f_T(u) = d_1(u) + i d_2(u) = \int_{-\infty}^{\infty} f(x) e^{-iux} dx$$

$$G_{\tau}(u) = \tau_{1}(u) + \tau_{2}(u) = \int_{-\infty}^{\infty} G(x) e^{-\iota u x} dx,$$
 (163)

for all real values of U , A, (U), A, (U), E, (U), E, (U), O, (U),

O, (U), T, (U), T, (U), T, (U), E, (U), E, (U), O, (U),

O, (U), T, (U), T, (U), E, (U), E

The real integrable functions $\beta_1(u)$, $\beta_2(u)$, $\beta_3(u)$, $\beta_4(u)$, $\beta_4(u)$, $\beta_4(u)$, $\beta_4(u)$ are known from the following relations :

$$\beta_{2} = \frac{1}{s^{2}-t^{2}} \left[d_{1} \left(s^{2}-t^{2}-t-cs \right) + \sigma_{1} \left(tc+s \right) - t \left(tc+s \right) \right] ,$$

$$\gamma_1 = \frac{1}{s^2 + 2} \left[\epsilon_2 (t^2 - s^2 + cs - t) + q_2(tc - s) + t (td_1 - s\sigma_1) \right]$$

Then I(2), J(2), H(2) and K(2) are found as follows:

$$I(z) = \frac{1}{2\pi} \int_{0}^{\infty} \{d_{1}(u) + id_{2}(u)\} e^{izu} du$$

$$J(z) = -\frac{i}{2\pi} \int_{0}^{\infty} (\epsilon_{1}(u) + i\epsilon_{2}(u)) e^{izu} du$$

$$H(z) = \frac{1}{4\pi} \int_{0}^{\infty} [(\beta_{1} + i\beta_{2}) e^{izu} + (\beta_{1} - i\beta_{2}) e^{-izu}] du$$

$$K(z) = \frac{1}{4\pi} \int_{0}^{\infty} [(\gamma_{1} + i\beta_{2}) e^{izu} + (\gamma_{1} - i\beta_{2}) e^{-izu}] du$$

$$K(z) = \frac{1}{4\pi} \int_{0}^{\infty} [(\gamma_{1} + i\beta_{2}) e^{izu} + (\gamma_{1} - i\beta_{2}) e^{-izu}] du$$

from which $\Phi_r(z)$ and $\Psi_r(z)$ r=0,2,3 are found as

$$\begin{aligned} & \phi_0(z) = \int I(z) dz &, & \psi_0(z) = -2 \phi_0'(z) + \phi_0(z) \\ & \phi_1(z) = \int J(z) dz &, & \psi_1(z) = -2 \phi_1'(z) - \phi_1(z) \end{aligned}$$

$$\begin{aligned} \phi_{2}(z) &= \int H(z)dz &, & \psi_{2}(z) &= -Z \, \phi_{2}'(z) + \, \phi_{2}(z) \,, \\ \phi_{3}(z) &= \int K(z)dz &, & \psi_{3}(z) &= -Z \, \phi_{3}'(z) - \, \phi_{3}(z) \,, \end{aligned}$$

and bence

follows :

(144)

As shown by Tiffen these potential functions solve the problem of an infinite elastic strip subjected to the specified tractions on the straight edges.

The effect of point force in an infinite strip may now be easily found as follows :

Consider an infinite plate in the (x, y) plane where a force 0 = X + iY acts at point $Z = b + i\alpha$ ($0 < \alpha < 6$). This gives rise to stresses everywhere in infinite plate. Suppose we consider the tractions transmitted on an infinite clastic strip (141) cut off from the infinite plate. We may lift: these tractions by applying tractions opposite to those transmitted by the infinite plate. We superpose these on the stresses already present in the strip. This gives us stress-field in the infinite strip.

The complex potentials, due to an isolated force P=X+iY at any point $Z=\frac{b+iQ}{a}$, in an infinite medium are given with the use of (34) as

$$\phi(2) = -\frac{\rho Log(2-b-La)}{2\pi(K+1)}$$

(140)

$$\psi(z) = \frac{k P \log (z-b-ia)}{2\pi (k+1)} + \frac{(b-ia)P}{2\pi (k+1)} \frac{1}{(z-b-ia)}$$

CAR PROPERTY SAFETY OF THE PARTY OF THE SAFETY

The stresses at any point (x, y) on the infinite medium are given by

$$2\pi(K+1) p_{xy} = \frac{(K-1) \left[\chi(x-b) - \gamma(y-a) \right]}{(x-b)^2 + (y-a)^2} - \frac{4(y-a)^2 \left[\chi(x-b) + \gamma(y-a) \right]}{\left\{ (x-b)^2 + (y-a)^2 \right\}^2},$$

$$2\pi(K+1) p_{xy} = -\frac{(K-1)\gamma(x-b) + (K+3)\lambda(y-a)}{(x-b)^2 + (y-a)^2} - \frac{4(y-a)^2 \left[\gamma(x-b) - \chi(y-a) \right]}{\left\{ (x-b)^2 + (y-a)^2 \right\}^2}$$

$$2\pi(k+1)b_{yy}^{0} = -\frac{(k-1)[X(x-b)+Y(+a)]}{(x-b)^{2}+a^{2}} + \frac{4a^{2}[X(x-b)-Ya]}{\{(x-b)^{2}+a^{2}\}^{2}}$$

$$(k-1)Y(x-b)-(k+3)Xa = 4a^{2}[Y(x-b)+X.a]$$

$$2\pi(\kappa+1)p_{XY}^{0} = \frac{(\kappa-1)Y(x-b)-(\kappa+3)X\alpha}{(x-b)^{2}+\alpha^{2}} + \frac{4\alpha^{2}[Y(x-b)+X\cdot\alpha]}{\{(x-b)^{2}+\alpha^{2}\}^{2}}$$

$$2\pi(K+1)p_{yy}^{1} = \frac{-(K+1)[X(x-b)-Y(c_0-a)]}{(x-b)^2+(c_0-a)^2} + \frac{4(6-a)^2[X(x-b)+Y(c_0-a)]}{\{(x-b)^2+(c_0-a)^2\}^2}$$

$$2\pi (k+1) k_{xy}^{4} = \frac{(k-1) Y(x-b) + (k+3) X(c_{0}-a)}{(x-b)^{2} + (c_{0}-a)^{2}} + \frac{4(c_{0}-a)^{2} Y(x-b) - X(c_{0}-a)}{[(x-b)^{2} + (c_{0}-a)^{2}]^{2}}$$

note that there have been obtained by publing y=0

of the terms.

Hence we have to solve another problem, when on the edges of the strip, tractions given by equations (160) are applied. This is done with the help of the results given earlier in this chapter. With these values of β_{yy}^0 , β_{xy}^0 , β_{yy}^0 , and β_{xy}^1 the functional values of f(x), f(x), g(x), are determined from equation (143). These are then substituted in (143) and $\lambda_1(x) + i\lambda_2(x)$, $\xi_1(x) + i\xi_2(x)$

evaluated. These values are as follows

$$d_{1}(\mathbf{k}) + i d_{2}(\mathbf{u}) = \frac{1 e^{-i\mathbf{u}(b-i\mathbf{a})}}{2(\mathbf{k}+1)} \left[KP - (1+2a\mathbf{u})\overline{P} \right],$$

$$\epsilon_{1}(\mathbf{u}) + i \epsilon_{2}(\mathbf{u}) = \frac{-e^{-i\mathbf{u}(b-i\mathbf{a})}}{2(\mathbf{k}+1)} \left[KP + (1+2a\mathbf{u})\overline{P} \right],$$

$$\frac{1}{2(k+1)} \left[k \overline{P} - \left\{ 1 + 2u(6-a) \right\} \overline{P} \right] \\
\frac{1}{2(k+1)} \left[k \overline{P} - \left\{ 1 + 2u(6-a) \right\} \overline{P} \right] \\
\frac{1}{2(k+1)} \left[k \overline{P} + \left\{ 1 - 2u(6-a) \right\} \overline{P} \right]$$

These values smalls us to find I(z), J(z), H(z), K(z)from equations (146). We are interested in finding $\varphi_a(z)$ It may be directly soon from (167) that

$$\phi_4'(z) = \phi_1'(z) + \phi_1'(z) + \phi_2'(z) + \phi_3'(z)$$
= I (z) + J(z) + H(4) + K(2)

whence \\ \phi_{i}^{'}(z) may be written as

$$\phi_{a}'(z) = \frac{1}{2\pi} \int_{0}^{\infty} \left[e^{i2u} \left\{ d_{1} + \epsilon_{2} - \frac{\beta_{2}}{2} + \frac{y_{1}}{2} + i \left(d_{2} - \epsilon_{1} + \frac{\beta_{1}}{2} + \frac{y_{2}}{2} \right) \right\} + \frac{1}{2} \left[\frac{\beta_{1} + i\beta_{1}}{2} + \frac{y_{1} - iy_{2}}{2} \right] du$$

Substituting for β_1 , β_2 , σ_1 , γ_2 from (144), we get

$$\begin{aligned} \varphi_{a}^{'}(z) &= \frac{1}{2\pi} \int_{0}^{d_{0}} \left[\frac{e^{izu}}{s^{2} + t^{2}} \left\{ (s^{2} + cs + t) (d_{1} + id_{2}) - (tc + ts + s) (d_{1} + id_{2}) \right\} \right] \\ &+ i \left[(s^{2} + cs - t) (d_{1} + id_{2}) + (tc + ts - s) (d_{1} + id_{2}) \right] \\ &+ \frac{e^{izu}}{s^{2} + t^{2}} \left\{ (s^{2} - cs - t) (d_{1} - id_{2}) + (tc - ts + s) (d_{1} - id_{2}) \right] \\ &- i \left[(s^{2} - cs + t) (d_{1} - id_{2}) - (tc - ts - s) (d_{1} - id_{2}) \right] \right] du \end{aligned}$$

Substituting above from (181) for d_1+id_2 , e_1+ie_2 , e_1+ie_2 and e_1+e_2 , we get after some simplification

$$\Phi_{a}(z) = \frac{c}{4\pi(\kappa+1)} \int_{0}^{\infty} \left\{ \frac{e^{izu-ibu}}{s^{2}-t^{2}} \right\} P\left[\kappa e^{-au}(s^{2}+cs) + 2u(s-a)e^{-u(s-a)} + ct+st \right]$$

$$+ Se^{-u(s-a)} \int_{0}^{\infty} P\left[zaue^{-au}(s^{2}+ct) + te^{-au} + \epsilon e^{-u(s-a)} + ct+st \right]$$

Next we find $\psi_{\alpha}^{\prime}(z)$. This is obtained as follows : From (146) and (147)

$$\psi_{a}(z) = -z \, \phi_{a}'(z) + \phi_{a}(z) + \phi_{z}(z) - \phi_{i}(z) - \phi_{3}(z)$$

Now $\phi_{\alpha}^{l}(z)$ is known from (163), and $\phi_{\alpha}(z)$, $\phi_{\alpha}(z)$, $\phi_{\beta}(z)$, and $\phi_{\alpha}(z)$, $\phi_{\alpha}(z)$, $\phi_{\beta}(z)$, whence $\phi_{\alpha}(z)$ can be found. Applying these complex potential functions for $\phi_{\alpha}^{l}(z)$ and $\phi_{\alpha}^{l}(z)$ the stresses in the infinite strip are found by using the formula (11a) and (11b) i.e.

$$p_{xx} + p_{yy} = 4 \operatorname{Re} \left\{ \phi_a'(z) \right\}$$

$$p_{yy} - p_{xx} + 2 \iota p_{xy} = 2 \left\{ \overline{z} \phi_a''(z) + \psi_a'(z) \right\}$$

whence p_{xx} , p_{xy} , p_{yy} are found. These are now superposed on the existing stress-field given in (109). Hence the problem of a strip under the action of a point force, and free from external tractions at its straight edges, in solved.

strip — the action of a point force, when the attraction are free from Cisplacements.

To do this we solve an auxiliary problem.

Let the displacement on the boundary be prescribed as follows:

$$u_{x}^{0} + i u_{y}^{0} = f(x) + i F(x)$$

$$u_{x}^{1} + i u_{y}^{1} = g(x) + i G(x)$$
(163)

Here we use the same symbols f(x), f(x), g(x), g(x), g(x), as in previous case since the treatment is similar. We again define $A_1(x) + iA_2(x)$, $e_1(x) + ie_2(x)$, $g(x) + ig_2(x)$, $g(x) + ig_2(x$

$$\beta_{1} = \frac{1}{k^{2}s^{2} - k^{2}} \left[(tc - Ks) \left[\tilde{e}^{t} \left\{ (t - K) \alpha_{1} + t \epsilon_{1} \right\} + K \sigma_{2} \right] \right]$$

$$+ St \left[\tilde{e}^{t} \left\{ (t + K) \epsilon_{1} + t \alpha_{2} \right\} - K \sigma_{1} \right] \right]$$

$$+ St \left[\tilde{e}^{t} \left\{ (k - t) \alpha_{1} + t \epsilon_{2} \right\} - K \sigma_{1} \right]$$

$$+ St \left[\tilde{e}^{t} \left\{ -(k + t) \epsilon_{2} + t \alpha_{1} \right\} + K \sigma_{2} \right] \right]$$

$$+ T \left[\frac{1}{K^{2}s^{2} - k^{2}} \left[(tc + Ks) \left[\tilde{e}^{t} \left\{ -(k + t) \epsilon_{2} + t \alpha_{1} \right\} + K \sigma_{2} \right] \right]$$

$$- ts \left[\tilde{e}^{t} \left\{ (k - t) \alpha_{1} + t \epsilon_{2} \right\} - K \sigma_{1} \right] \right]$$

$$T_{2} = \frac{1}{K^{2}s^{2} - k^{2}} \left[(tc + Ks) \left[\tilde{e}^{t} \left\{ (k + t) \epsilon_{1} + t \alpha_{2} \right\} - K \sigma_{1} \right] \right]$$

-beletfierkightegthal

and symbols I(z), J(z), H(z), K(z) have the same fundamental value as has been defined in the previous case by equation (145).

In this case the functions $\phi_r(z)$, (r=11,2,3) and $\psi_r(z)$, (r=01,2,3) are evaluated as follows:

$$\phi_2(z) = \frac{2H}{K} H(z)$$
 $\psi_2(z) = -Z \phi_2'(z) - K \phi_2(z)$

$$\phi_3(z) = \frac{2H}{k} K(z)$$
 $\psi_3(z) = -2 \phi_3'(z) + k \phi_3(z)$

whence we obtain $\phi_{\alpha}(z)$ and $\psi_{\alpha}(z)$ by the same formulas given in equations (147).

4114(KH)14 = 27(4-0)+2X(x-3)(4-5) -(1+K)Y-KY log [cx-5)+6x-0]

If the boundary is to be displacement free, we must nullify the displacements $u_{x_1}^2 u_{y_2}^2 u_{x_3}^2 u_{y_4}^4 = given$ by (156) by putting y=0 and $y=c_0$.

It is seen from (166) that the displacements to be nullified contain terms which are infinite at infinity. However, Tiffen has shown ((22)) that the potentials,

$$f(z) = \frac{p}{2\pi(k+1)} \log (z-b+ia)$$

$$\Psi(z) = -24(z) + \frac{P_{-} k \overline{P}}{2\pi (k+1)} + \frac{-k \overline{P}}{2\pi (k+1)} \log (2-b+ia)$$

called 'image potentials' remove infinite terms in the displacement along $\gamma=0$ and contribute zero displacement along $\gamma=0$. These potentials also remove the non-evanascent displacement along $\gamma=c_0$. These give rise to the following displacements:

$$4\pi\mu(K+1)u_{x=}\frac{2y[X(y+a)-Y(x-b)]}{(x-b)^{2}+(y+a)^{2}}-(1-K)X+KX\log\{(x-b)^{2}+(y+a)^{2}\}$$

(207)

(166) to got the distance of the state from

we require the complex potentials which satisfy the boundary conditions (given by taking equal and opposite displacements to that given by (166) and (167) on y=0 and y=0).

$$2\pi(k+1) u_{x}^{o} = \frac{a Y(x-b) + a^{2} X}{(x-b)^{2} + a^{2}}$$

$$2\pi (k+1) u_y^2 = \frac{\alpha \chi (x-b) - \alpha^2 \gamma}{(x-b)^2 + \alpha^2}$$

$$2\pi(\kappa+1) u_{x}^{1} = \frac{\chi(G-\alpha)^{2} - \chi(G-\alpha)(\chi-b)}{(\chi-b)^{2} + (G-\alpha)^{2}} + \frac{-G\chi(G+\alpha) + G\chi(\chi-b)}{(\chi-b)^{2} + (G+\alpha)^{2}} + \frac{\kappa \chi}{2} \log \frac{(\chi-b)^{2} + (G+\alpha)^{2}}{(\chi-b)^{2} + (G-\alpha)^{2}},$$

$$2\pi(\kappa+1) u_{y}^{1} = \frac{-\chi(G-\alpha)(\chi-b) - \chi(G-\alpha)^{2}}{(\chi-b)^{2} + (G-\alpha)^{2}} + \frac{G\chi(\chi-b) + G\chi(G+\alpha)}{(\chi-b)^{2} + (G+\alpha)^{2}} + \frac{\kappa \chi}{2} \log \frac{(\chi-b)^{2} + (G+\alpha)^{2}}{(\chi-b)^{2} + (G+\alpha)^{2}}$$

$$+ \frac{\kappa \chi}{2} \log \frac{(\chi-b)^{2} + (G+\alpha)^{2}}{(\chi-b)^{2} + (G+\alpha)^{2}}$$

House we solve the problem of an infinite strip
with the boundary displacements given by equations (168).
These give us the values of fox1, f(x); g(x), G(x) from
the equations (188) ——— &(u)+cd,(u), e(u)+cd,(u), o(u)+cd,(u), o(u)+cd,(u)+cd,(u), o(u)+cd,(u)+cd,(u), o(u)+cd,(u)+

Totales upo as fallows :

$$d_1 + Ld_2 = \frac{q}{2\mu(\kappa+1)} \overline{p} e^{-i\mu(b-i\alpha)}$$

$$\sigma_{1} + \iota \sigma_{2} = \frac{e^{t}}{2\mu(\kappa+1)} \left[P e^{ibu} (26 \text{smhau} - a e^{au}) - \frac{2\kappa}{u} \sin hau \times e^{ibu} \right]$$
 (180)

By the process indicated earlier we obtain $\phi_{\bf q}(z)$ and $\phi_{\bf q}(z)$. The function $\phi_{\bf q}(z)$ is obtained as follows :

It is derived from (186) that additional complex potential function, distinguished by subscript α , is given by

$$\Phi_{e}(z) = \frac{\mu}{\kappa\pi} \int_{a}^{\infty} \left\{ e^{izu} \left\{ (\alpha_{1} + i\alpha_{2}) + \frac{\alpha_{1} + i\alpha_{2}}{2} + \frac{i(\beta_{1} + i\alpha_{2})}{2} + i(\epsilon_{1} + i\epsilon_{2}) \right\} \right\} du$$

$$+ e^{izu} \left\{ \frac{i(\beta_{1} - i\beta_{2})}{2} + \frac{\alpha_{1} - i\sigma_{2}}{2} \right\} du$$

Substituting in this expression from (184) for

βι, β2, τ, τ2

$$e^{(z)} = \frac{u}{2 κπ} \int_{0}^{\infty} \frac{e^{i2u}}{(κ^2 s^2 - t^2)} \left[(u_1 + i d_2) \left\{ κ^2 (c+s) - κt \right\} + i (e_1 + i e_2) \left\{ κ^2 s (c+s) + kt \right\} \right]$$

$$+\frac{e^{izu}}{k^{2}\varsigma^{2}+2}\left((\alpha_{1}-i\alpha_{2})\left\{-k^{2}\varsigma(c-s)+\kappa+\right\}-\iota(\epsilon_{1}-i\epsilon_{2})\left\{k^{2}\varsigma(c-s)+\kappa+\right\}$$

$$-(\sigma_{1}-i\sigma_{2})\left\{\kappa+(c+s)-\kappa^{2}\varsigma\right\}+\iota(\sigma_{1}-i\sigma_{2})\left\{\kappa+(c-s)+k^{2}\varsigma\right\}\right]du$$
(100)

Nov substituting (168) into (160) for $x_1 + i x_2$, $x_1 + i x_2$

9,+172 WE EST

$$\frac{d_{a}(z)}{\pi k(k+1)} \int_{0}^{\infty} \frac{e^{izu}}{k^{2}s^{2}-t^{2}} \left[2a k^{2}s(c+s) \overline{p} e^{-iu(b-ia)} + 2kt P \left\{ c_{0} e^{-iu(b+ia)} - c_{0} e^{-iu(b-ia)} - a e^{-iu(b+ia)} \right\} \right]$$

$$- k^{2}c_{0} \overline{P} \left\{ e^{iu(b+ia)} e^{-iu(b-ia)} \right\} + \frac{k^{2}s(c-s)}{u} P \left\{ e^{-iu(b+ia)} e^{-iu(b-ia)} \right\}$$

$$+ \frac{e^{-izu}}{k^{2}s^{2}-t^{2}} \left[2akt P e^{iu(b+ia)} + 2k^{2}s(c-s) \overline{P} \left\{ c_{0} e^{-iu(b-ia)} e^{-iu(b+ia)} + 2k^{2}s(c-s) \overline{P} \left\{ e^{-iu(b-ia)} e^{-iu(b-ia)} \right\} \right]$$

$$+ k^{2}c_{0}(c-s)^{2} \overline{P} \left\{ e^{iu(b-ia)} e^{-iu(b+ia)} \right\}$$

$$-\frac{\kappa^3s(c-s)}{u}$$
 P $\left\{e^{iu(b-ia)}-e^{iu(b+ia)}\right\}$ du

The function 4(2) is obtained from (155)

= -z
$$\phi_{q}^{\prime}(z)$$
 + $K \left\{ \phi_{1}(z) + \phi_{3}(z) - \phi_{0}(z) - \phi_{1}(z) \right\}$

Since, $\phi_{\alpha}^{\prime}(z)$ is known from (161) and $\phi_{\alpha}(z), \phi_{\alpha}(z), \phi_{\alpha}(z), \phi_{\alpha}(z), \phi_{\alpha}(z)$ are given by (186), the function $\psi_{\alpha}(z)$ can be easily found.

We now evaluate the stress-field given by

and superpose on already existing stress (149), thereby obtaining complete stress field due to a point force in the strip when its boundary is free from displacements.

CHAPTER I

CIRCULAR INCLUSION IN AN INVINITE MLASTIC STRIP-I

We consider the following problem :

In an infinite elastic strip a symmetrically situated circular inclusion tends to undergo a spontaneous deformation. Due to the presence of outside region (called matrix) the stresses develop both in the inclusion and the matrix. The problem is to find the stress and displacement fields.

Figure 3, Circular Inclusion in infinite elastic strip coordinate . system.

Figure 4. A schematic view of normal and shear stress distribution in inclusion and strip.

Choosing 2 and 3 reference systems in accordance with the figure 3 page 118, it is seen that the boundary of the circle of radius R is given by $8\overline{S}=R^2$. The centre of the circle is symmetrically situated within the strip. One edge of the strip has been taken as real axis and a perpendicular line to it in the plane of the strip passing through the centre of the circle has been taken as imaginary axis. The strip is bound by the lines N=0 and N=0 and extends from $-\infty$ to $+\infty$ in \times -direction.

The inclusion in absence of the sorrounding strip tends to undergo uniform prescribed deformation

where & lies within the limits of the classical theory of elasticity. The free inclusion state is not achieved due to the constraints of the strip. Thus locked up-acrimitation ————— arise both in the inclusion and the matrix. The strees and displacement fields inside the inclusion and the strip have been evaluated in this paper. Results are given in the tables given in the appendix, following this chapter.

First we solve the problem when the circular inclusion is present in the infinite medium. It has its centre at $z=\sqrt{c}/2$ and radius R. At this stage if we consider the strip $0 \le y \le c_0$ and $-\infty < x < +\infty$ in the infinite region, the tractions would be present at the edges y=0 and $y=c_0$. These tractions we mullify by superposing, equal and opposite tractions, thus obtaining the solution of a circular inclusion in an elastic strip with the traction-free edges.

The solution of the problem in the infinite region is well-known. The solution is given in chapter II, page 18 ,

$$\Phi_{L}^{\prime}(z) = \frac{2(\lambda + \mu)}{k + 1} \delta , \quad \Psi_{L}^{\prime}(z) = 0 ,$$

$$\phi'_{14}(z) = 0$$
, $\psi'_{94}(z) = \frac{2(\kappa-1)(\lambda+\mu)\delta}{\kappa+1} \frac{R^2}{z_1^2}$ (182)

Z, = Z-100/2.

The state of the s

PRR, PRS, at the equilibrium interface at this stage

where we have used the obvious notations p_{RR}^{b} , $p_{R\theta}^{b}$, for normal and shearing stresses on the inclusion boundary |S|=R. Also on the boundary the hoop stress in the inclusion and the matrix are given by

$$P_{\theta,\theta_i}^b = -\frac{2(\lambda + \mu) \delta(\kappa - i)}{\kappa + i}$$

$$P_{\theta,\theta_i}^b = \frac{2(\lambda + \mu) \delta(\kappa - i)}{\kappa + i}$$
(184)

As indicated in the previous chapter, the effect of a point force $P=X+\iota Y$ setting at $b+\iota a$, giving traction free boundary or the leading edges, can be expressed in terms of complex potential (168), because the other function $\Psi_{\alpha}(z)$ is related to $\Phi_{\alpha}(z)$ by the following relation

$$\psi_{a}(z) = -z \phi_{a}(z) + \{\phi_{a}(z) + \phi_{a}(z) - \phi_{a}(z) - \phi_{a}(z)\}$$

whom 4,(z), {r=4,23} are given in (146).

$$\phi'(z) = \frac{(K-1)(\lambda+\mu) \delta R^2}{K+1} \int_0^\infty \frac{u}{s+t} \left[e^{izu + u G/2} - izu - u G/2 \right] du$$
 (166)

Differentiating (165), we get

$$\Psi_{\alpha}'(z) = -z \, \phi_{\alpha}'(z) - 2 \left\{ \, \phi_{\alpha}'(z) + \phi_{3}'(z) \right\}$$
 (167)

To find $\psi'(z)$ when the layer of point force is present, we substitute the values of $\psi'(z)$ and $\psi'(z)$, $\psi'_3(z)$ from (167) and integrate round the contour Γ .

After some calculation we obtain

$$\psi'(z) = -\frac{(\kappa-1)(\lambda+\mu) \int R^2}{\kappa+1} \int_0^{\infty} \frac{u}{s+t} \left[e^{(zu-u\omega/2)} - (zu-u\omega/2) + e^{(c-s-2t+1)} \right]$$

To got the stress-field in the inclusion, we add the following three stress fields (1) $P_{ex} = -2(\lambda + \mu) S$, $P_{xy} = 0$ $P_{yy} = -2(\lambda + \mu) S$ which is obtained by reducing it to the size of hole (11) ———field due to infinite matrix which shall be ———— by using (162) and the equations (11a, b) (111) additional stress field given by complete potentials (166) and (166) and (166) due to the infinite strips

because its leading edges are to be stress-free.

The stress-field for the remaining part of the strip may be obtained by superposing the stresses due to complex potentials $\psi'_{m}(z)$, $\psi'_{m}(z)$ in (162) and (166), (168).

Explicitly speaking the stresses which generate everywhere from (166), (168), are the following

$$P_{xx} + P_{yy} = P_{xx} + P_{yy} = 4 \operatorname{Re} \{ \phi'(z) \}$$

$$= \frac{8(\kappa-1)(\lambda+\mu)\delta R^{2}}{\kappa+1}\int_{0}^{\infty} u\cos(ux\cos\theta)\cosh u(r\sin\theta-\cos(2)) du$$
(100)

$$= -\frac{4(\lambda+\mu)(k-1)\delta R^2}{k+1} \int_0^\infty \frac{u}{s+t} \left[(1-u\omega+\bar{e}^{u\omega}) \left\{ \cos(ur\cos\theta) x \right\} \right]$$

(170)

constants of the materials, there is perfect bond on the common interface. The Cartesian stress components given by these additional complex potentials (166), (168), are

$$\frac{(\kappa+1)p_{yy}}{2(\kappa-1)(\lambda+\mu)\delta} = R^2 \int_0^\infty \frac{u\cos(ur\cos\theta)}{\sinh u\cos+u\cos} \left[(e^{u\cos}u\cos-1)\cosh u(r\sin\theta-\cos\theta) \right] du$$

$$+ 2u(r\sin\theta-\cos\theta) \sin u(r\sin\theta-\cos\theta) du$$

$$\frac{(k+1)R_{KY}}{2(k+1)(k+1)\delta} = R^{2} \int_{0}^{\infty} \frac{u\sin(u\cos\theta)}{\sinh u\cos\theta} \left[\left(e^{-u\cos\theta} \cos\theta \right) \sin u\cos\theta \cos\theta \right]$$

(171)

These give the additional stress field to that given by the complex potentials (188).

Using relations (19), the resultant normal, tangential and heep stresses have been evaluated. The values of these stress =====te nso given by

$$P_{RR} = P_{RR}^b = \frac{2(K-1)(\lambda+\mu)\delta R^2}{K+1} \int_0^M \frac{u}{sinhu\omega+u\omega} \left[(e^{-u\omega}u\omega+1)x \right]$$

x {cos(Rucoso)cos 20, cosh (Rusmo,) + sin 20, sin (Rucoso,) sinb(Rusmo,)}

+ 24 smb, { cos 20, cos (Rucoso,) smb (Rusino,) + sm20, sin (Rucoo,) cosh (Rusino,)}

+ 2 cos (Ru cos Oi) cosh (Rusmoi)] du - 2(K-1)(X+H)& K+1

x { sm20, os (Ruos 0,) cosh (Rusin 0,) - cos 20, sm (Ruesso,) smh(Rusin 0,)}(170)

+ 2/ sur ((sm 2 B, cos. (Rucos B,) sinh (Rusun B,) - cos 20, sin (Rucos B) cosh (Ruma B,) } du

$$P_{\theta,\theta_1}^b = P_{\theta,\theta_1}^b - \frac{y(\kappa-1)(\lambda+\mu)\delta}{\kappa+1}$$

=
$$-\frac{2(K-1)(\lambda+H)\delta R^2}{K+1} \int_0^{\infty} \frac{u}{\sinh u_0 + u_0} \left[\left(e^{-u_0} - u_0 + 1 \right) \left\{ \cos 2\theta_1 \cos \left(Ru \cos \theta_1 \right) \cos k \left(Ru \sin \theta_1 \right) \right] \right]$$

+ sm 20; sin (Ruco 01) sinh (Rusino1) }

+ 2 u sind, {cos20, cos(Ru cose,)sinb(Rusind)) +sin 20, su(Rucose,) cosh(Rusine)}

(**3**74)

We give in the appendix the tables containing the values of the boundary stresses. First column gives the angle θ_1 ranging from 0 to 90° with an interval of 10° . The second and third columns give the corresponding values of normal and shearing stresses over the inclusion, which are the same as for matrix, because of their continuity property. The hoop stresses have separately been tabulated. First column gives θ_1 as above. The second and third columns give hoop stresses inside and outside respectively. The Poisson's ratio has been taken to be equal to 1/3.

The values of collars been taken to be equal to 3, 4, 5, 6, 7, 8, 9, 10, which in effect means that the leading edges are at a distance of 3/2, 2, 2, 3, 3, 3, 4, 4, 5 times the redius of the inclusion.

In the next chapter the case of a deferming inclusion in an infinite strip is considered, but the strip in this ease, is constrained so that the diministrated is save along the straight edges.

Appendix to Chapter X

TABLE 1

/ AUC			
θ,	HORMAL STRESS	TANGENTIAL STRESS	
	L·	3	
0	-7.31491229	-0.0000000	
10	-2.31890586	-0.C4244913	
20	-2.32513708	-0.76909192	
30	-2.31675568	-0.06795858	
40	-7.26865265	-0.03601937	
50	-2.15680179	0.01573502	
40	-1-97636294	0.06266207	
70	-1.76068430	0.07830304	
80	-1.98046487	0.09281081	
90	-1.50985317	-0.00000002	
	į,	• 6	
0	-2.69811967	-0.00000000	
10	-2.09643998	0.00389790	
20	-2.68957841	0.01834628	
30	-2.66986299	0+04164321	
40	-2.62848978	0.07221345	
50	-2.55956998	0.10317392	
60	~Z.46644799	0.11986761	
70	-2.54423920	0.10873587	
80	-2.26T22620	0.06533014	
90	-2.29702444	-r_con sces 1	
	t.	**	
0	-2.86773968	-0.0000000	
10	-2.56485059	0.01644796	
20	-2-45715153	0.03497626	
30	-2-83963501	0.03401134	
40	-1.00124009	0.07710020	
80	-2.75725451	0.09270040	
40	-2.70144930	0.07942427	
70	-1.64627767	0.00021692	
àô	-2,46474416	*****	
•0	-2.50928940	-0.0000000	
* W	· · ·		

θ,	NORMAL STRESS	TANGENTIAL STRESS
	L+	5
0	-2.95597911	-0.000000000
10	-2.95306134	0.01708183
50	-2,94382092	0.03440716
30	-2.92713064	0.03131265
40	-2,90215585	0.06566108
50	-2.84962783	0.07395599
60	-2.83291870	0.07234174
70	-2,79818358	0.03837457
80	-2.77300611	0.03275451
9 0	-2.76377989	->•00000000
	L.+	7
0	-3.00746551	-0.00000000
10	-3.00484583	0.01590193
20	-2.99680629	0.03012591
30	-2.90300833	0.04396015
40	-2.94349973	0.05370105
90	-2.93940003	0.05842734
60	-2.91338772	0.03347718
70	-2.88760460	0.04376294
80	-2.87276372	0.02421278
90	-2.8666271	-0.0000000
	L.	*
0	-3.04008TT3	-0.00000000
10	-3.03782403	0.01316343
20	-3.63099695	0.02997122
30	-3.01962298	0.03428024
40	~3.00409541	0.04365143
50	~2.96554464	0.04471659
60	-2.76616113	0.04353467
70	-2.94864124	0.03345147
\$0	~2.93677770	0.01859894
90	-2.93344443	-0.49060090

B ₁	NORMAL STRESS	TANGENTIAL STRESS
	ì. **	9
O	-3.06206068	-0.0000000
10	-3.06012410	0.01121512
20	-3.05434686	0.3163194
30	-3-04490408	0.03031 099
40	-3-03231019	0.73613763
50	-3-01743424	0.03794677
\$ 0	-3.00259335	0.03494397
70	-2.98939911	0.02696293
90	-2.98031977	0.01465676
90	-2.97707892	-0.00000000
	i.	10
o	-3.07757074	-0.00000000
10	-3.07391292	0.00936857
20	-3.07100947	0.01835764
30	-3.06308359	0.02551849
40	-3.05269232	0.03013714
90	-3.040T884T	0.03135613
60	-3.02817933	0.02840540
70	-3.01897942	0.02186952
80	-3.01126776	0.01146143
90	-1.00874774	-0.0000000
		-11
O	-3,08893099	-0.0000000
10	-2.02750474	0.08820971
20	->+04330315	0.01369067
30	-3.07458876	0.02168667
40	~>.067883V1	0.02543707
50	-3.05403770	0.03417921
60	-3.04622135	0.02341937
70	-3.03980386	0.01611042
80	-3,03410307	0.00479391
40	~9~0320576*	-0.0000000

θι	NORMAL STRESS	TANGENTIAL STRES
	L#	13
٥	-3.09750378	-0.00000000
10	-3.09626868	0.00709405
20	-3.09264427	0.01352013
30	-3.08689278	0.01860721
40	-3.07950315	0.02171361
50	-9.07122511	0.02231334
40	-3.06304744	0.02012593
70	-3.05608833	0.01524742
80	-3.09140162	0.00822162
9 0	-3.04974640	-0.000000
	L.	13
O	-3.10413420	-0.00000000
10	-3.10305712	0.00617976
20	-3.09990567	0.01174463
30	~\$*O\$493257	0.01611101
40	-3.06876508	0.01872683
90	-3,08152405	0.01916913
49	-3-07460853	0.01722091
70	~3.06 <i>6</i> 794 <i>6</i> 3	0.01300692
80	-3.0442471	0.00699974
*0	-3.06344703	-0.00000000
	£.	*16
o	-3.10936913	-0.00000000
10	-9.10842929	0.00541549
20	-3.10546223	0.01020145
30	-9-10132271	0.01406779
40	-3.07951620	0.01430136
50	-3-00973060	0.01542642
60	~3.06379629	0.01409736
10	+5 ₄ 87486113	0.41122476
#0	~9.079443 4 1	0.00663124
90	-3-07429963	-0.00000

TABLE 2

			ABLY 4			
θ,	ноор	STRESS	INSIDE	ноор	STRESS	OUTSID
			٤	# §		
o		-2.43	968916		3.827	49611
10		-2.45	212974		3.851	03553
21)		-2.36	436740		*** *** ***	81788
30		-2.26	117676		4.022	
40		-2.13	644394		4.146	
50			601834			16690
60			274227			44302
70		-	544977			73549
80		-1.49	667727			50804
90		-1.66	659355		4,616	59175
			•	. * 4		
0		-2.51	******			759304
10			766631			31897
20			703013		3.710	115517
30		-2.51	1965845			352488
40		-2.51	497901			20946
50		-2.50	102092			36435
60		-2-50	344786 0			170070
70		-2-51	1792143			366362
80		-2-51	3451473			144055
90		-2-51	1386848		3.73	931679
			1	L**		
0		-2 × 7	3941612			756714
10			299305			919222
20			3057 9 07			240410
30			2811667			506640
40		-2.7	3136774			161754
20			4213119			001408
60			4312909			005419
70			8671998			647719
80			0400470			717661
90		-2.5	1948282		3.46	970245

θ,	HOOP	STRESS	INSTOE	НООР	STRESS	OUTSIDE
			Ļ	* §		
٥		-2.83	639988		3,446	78539
10		-2.83	694875		3.446	23652
20		-2.83	920610		3,443	
30			471214		3.438	
40			\$11363		3.428	07144
90			101984		9.412	
60			097339		3.392	
70			116905		3,372	
80			639983		3.356	
9 C		-2.93	208665		3,351	09863
			L	.+7		
0		-2.90	654072		3.376	64435
10		-2.90	780997			37930
20			189271			29236
30			942426			75901
40		# · · · · · ·	1040044			28461
50			400293			18234
60			311301			07146
70		10.0	7930133			85394
80			131257			17270
*0		-2.91	1529925		3.267	198602
				_ P &		
0		-2.91	1408172			710356
10			752543			145984
20		-2.91	195960			22570
30			6957368			161169
40		-2.9	1032863			185448
50			7997805			000723
40			0761948			*****
78		-1.0	24 T42 2 0		3.20	140307
80		-5.0	2972437			125668
70		-3.0	##Z###9#		3.24	995324

θι	HOOP	STRESS	INSTOE	HOOP	STRESS	CUTSIO
			Ļ	* 9		
c		-2.99	194777		3.291	23750
10		-	335998		3.289	
20			761119		3.265	
30		-3.00	466880		3.270	
40			425660		3.268	92871
50			563301		3.257	
60			747532		3.245	70996
70			798979		3.235	19549
8.3		_	528373		3.227	90155
90		-3.05	789825		3.225	28699
			L	•10		
0		-1.01	857689		3.264	60838
10			968462		3.243	
20			377766		3.259	
30			011471		3.253	
40			652123		3.244	
50			825741		3.234	
60			819161		9.225	
70			684202		3.216	
\$ 0			277990 48 948 5		3.210	
40		-3*VI	****		3 * # 7 \$	E TOTE
			i.	.=11		
ø			681244		3.244	
10		-3.03	999657		3.243	
20			349410		9.239	
90		77 77	a1503#		9.224	
40		. 45	046330		7.226	
50			482 9 05		3+210	
60			322640		7+209	
TO			744733		9-202	the second second
80		_	\$\$8\$71 ****		34197	
80		一名中台書	719100		3,196	

Θ,	HCOP	STRESS	INSTOE	НООР	STRESS	OUTSIC
			L	~12		
ŋ		-3.05	451101		3.228	
10		-9.05	557352		3.227	
20		-3.05	869800		3.224	
90			367484		3.219	
40		-9.07	009959		3.213	
50			733279		3.205	
60		-3.00	451134			67393
70			064332			54196
80		. +	478393			40134
90		-3.09	624782		3.186	93745
			L	.=13		
ø		-3.04	691414			27113
10		-3.00	786498			32029
20			1069108			53419
30			7509999			12332
40			1070403			48134
90			1410014			118386
60		***	117633			798694
70			1845434			13092
80			198557			119970
90		-3.1	*****		3.4.5	995453
			!	Lula		
٥		-3.0	7667238			691289
10		~5.0	7772360			\$46167
20	,		8021179		3-20	297344
30			8412448		3.19	905570
40			6911267			407260
50		٥٠٤٠	9463412		F. L.	855114
60		-3.1	0003194		3.4.5	91 5367
70		-3.1	0458410		3417	866118
80		~P+ 1	0745043		3 A A F	355484 448388
90		-1-1	9479239		P+ 4 F	小小 白发金数

CHAPTER XI

TO THE PERSON OF THE PERSON OF

CIRCULAR INCLUSION IN AN INFIBITE BLASTIC STRIP-II

Consider the problem of a circular inclusion in an infinite clastic strip. The straight boundary of the strip is free from displacements. The treatment is similar to the case of a strip free from tractions, discussed in the preceding chapter.

to present in an infinite medium, and calculate the displacements ever ——re and specially on the —— — of the strip. We —— equal and opposite displacements edges. This mullifles the displacement when the boundary and gives the solution for the case when the inclusion is ——— in an infinite strip and the edges of the strip are free free displacement.

Uning the name notation and coordinate ayelon as in the proceding chapter, it is easy to dee that the resulting complex potentials for the inclusion and infinite medium are given by (162).

Pollowing the analysis given in chapter IX it is seen that the additional complex potentials are given, in this case, by equation (161). These, when superposed on the complex potentials given by (162) will give the effect of point-force in an infinite strip with the boundaries free from displacements.

When there is an inclusion, the cumulative effect of a layer of point-forces acting along | in the strip is to be evaluated. This is given by

$$\Phi(z) = \int_{\Gamma} \Phi_{a}(z) ds$$
 (276)

where A_5 denotes are differential along $A_2(2)$ is given by (161). It may be stated that in this chapter the additional example potential due to a single point force is distinguished by subscript A_1 , where as resultant additional example potential, due to samulative effect, has been denoted by the function $A_1(2)$.

after or --- of the details of integration slong

the second at the party and the same transfer and the same

$$\phi(z) = \frac{\iota(\lambda + \mu)}{\kappa + 1} \delta \int_{0}^{\infty} \frac{e^{\iota z u}}{\kappa^{2} s^{2} - t^{2}} \left\{ -(\kappa s + t) e^{-\iota s / 2} + 2 t^{2} e^{-\iota u / 2} + \kappa t e^{-\iota s / 2} + \kappa^{2} s e^{-3u / 2} \right\}$$

$$+ \frac{e^{\iota z u}}{\kappa^{2} s^{2} - t^{2}} \left\{ (\kappa s + t) e^{-\iota u / 2} - 3u / 2 e^{-2\iota u / 2} - 2u / 2 e^{-2\iota u / 2} - 2u / 2 e^{-2\iota u / 2} \right\} du$$
(178)

As is evident from analysis described in chapter IX, it is enough to find the complex potential $\phi_{\alpha}^{\prime}(z)$ only and the second one, $\psi_{\alpha}^{\prime}(z)$ is related to the latter as given in relations (188) for a single point force. The value of $\psi(z)$ due to continuous distribution of point-forces is given by

Squations (276) and (276) give the _____decade for middless proceeding which are super_____
on those given by (260) to get the ______

potentials.

Now the additional stress-field is computed by substituting the values of $\phi(z)$ and $\psi(z)$ from (175) and (176) in equations (11 α) and (11b). After simplification, the process yields the following equations from where the Cartesian components of additional stress can be easily computed :

The resulting stress-field is obtained by superposing additional stress-field upon that obtained by complex potentials (162). Since the additional stress field and the elastic properties of the inclusion and the strip are the same, there will be perfect bond on the interface. The problem thus theoretically be deemed to be solved. However, the results are still quite complicated and for a given case, the results are to be evaluated numerically. The normal shearing an hoop-stresses are of some interest and are formulated below:

$$P_{RR} = \frac{(\lambda + \mu) \delta}{k + 1} \int_{0}^{20} \frac{u}{k^{2} s^{2} - t^{2}} \left[e^{-uR s m \theta_{1}} \left\{ (2uR s m \theta_{1} + u s + k) \cos (uR s m \theta_{1} + 2 \theta_{1}) \right\} \right]$$

$$= 2 \cos \left[uR s m \theta_{1} \right] \left\{ -(k s + t) + k t + 2 t^{2} e^{-u s} + k^{2} s e^{-2u s} \right\}$$

$$= u R s m \theta_{1} \left\{ \omega_{1} \left\{ u R \cos \theta_{1} - 2 \theta_{1} \right\} \left(2 u R \sin \theta_{1} + u \cos \theta_{1} - 2 \cos (R u \cos \theta_{1}) \right\} \right\} \times$$

$$= u R s m \theta_{1} \left\{ \omega_{1} \left\{ u R \cos \theta_{1} - 2 \theta_{1} \right\} \left(2 u R \sin \theta_{1} + u \cos \theta_{1} - 2 \cos (R u \cos \theta_{1}) \right\} \right\}$$

$$= u R s m \theta_{1} \left\{ \omega_{2} \left\{ u R \cos \theta_{1} - 2 \theta_{1} \right\} \left(2 u R \sin \theta_{1} + u \cos \theta_{1} - 2 \cos (R u \cos \theta_{1}) \right\} \right\}$$

$$= u R s m \theta_{1} \left\{ \omega_{2} \left\{ u R \cos \theta_{1} - 2 \theta_{1} \right\} \left(2 u R \sin \theta_{1} + u \cos \theta_{1} - 2 \cos (R u \cos \theta_{1}) \right\} \right\}$$

$$x \left\{ ks+t-k^{2}s-2kse^{-uc}-kte^{-uc} \right\} du$$
 (180)

and

Thus the additional, normal, hoop and shearing streams on the boundary of the inclusion are evaluated by (179) - (181). These may be superposed on the normal, hoop, and shearing stream, on the interface, given by (168) and (164) to give the expressions for resultant inclusion of radius unity):

$$=\frac{(\lambda + \mu)}{k+1} \int_{0}^{\infty} \frac{u}{k^{2}s^{2}} e^{2} \left\{ e^{-usm\theta_{1}} \left\{ (2usm\theta_{1} + us + \kappa) w(u\omega_{1}\theta_{1} + 2\theta_{1}) - 2\omega_{1} (u\omega_{2}\theta_{1}) \right\}_{k}$$

$$P_{00}^{p} = P_{00}^{p} - \frac{4(\kappa-1)(\gamma+\gamma)\delta}{(\kappa+1)}$$

$$= -\frac{(\lambda + \mu)\delta}{(\kappa + 1)} \int_{0}^{M} \frac{u}{k^{2}s^{2}} t^{2} \left\{ e^{-usm\theta_{1}} \left\{ (2usn'\theta_{1} + uc' + \kappa) \cos(ua_{1}\theta_{1} + 2\theta_{1}) \right\} \right\}$$

$$= -\frac{(\lambda + \mu) \delta}{k + \mu} \int_{0}^{M} \frac{u}{k^{2} s^{2} - t^{2}} \left\{ e^{-u \sin \theta_{1}} \left\{ (2u \sin \theta_{1} + 4c + kc) \sin (u \cos \theta_{1} + 2\theta_{1}) \right\} \right\}$$

$$\times \left\{ -1cs - t + k t + 2t^{2} e^{-u \cos \theta_{1}} + k^{2} s e^{-2u \cos \theta_{2}} \right\} + e^{u \sin \theta_{1}} \left\{ (2u \sin \theta_{1} + u \cos \theta_{1} + u \cos \theta_{1} + u \cos \theta_{2} + u \cos \theta_{2}) \right\}$$

sm(um0,+20,1) { Ks+t-125-2Ks e - Kt e - kt e }] du

Appendix to Chapter XI

TABLE 3

~				
θ,	NORMAL STRESS	TANGENTIAL STRES		
	L*	3		
0	-2.51709664	-0.27235769		
10	-2.41438577	-0.28472007		
20	-2.30205205	-0.24831872		
30	-2-19405517	-0.14122189		
40	-2.13841659	0.06011975		
50	-2.20704469	7.35298521		
60	-2.49279934	0.65699499		
70	-3.00741500	0.79010303		
80	-3.56129649	0.56063021		
\$ 0	-3.80840260	-0.0000000		
	i.*	4		
0	-2.30968314	-0.13722238		
10	-2.25504520	-0.14236925		
50	-2.19775248	-0.11548700		
30	-2.19605286	-0.05367574		
40	-2.15374249	0.03946157		
80	-2.20621962	0-14621804		
60	-2.32301432	0.22967911		
70	-2,48874494	0.24283577		
80	-2.4372 4 169	0.15813890		
90	-2.69796425	-0.0000000		
	i.*	\$		
0	-2.2044545	-0.07694768		
10	-2-17150092	-0.08612809		
20	-2-14079297	-0.04427551		
9 0	-2.12134240	-0.02977700		
40	-2-12271464	0.01704008		
50	-2-15178487	0.06690729		
60	-2.20779426	0.10026476		
70	-2.27734444	0.10130690		
80	-2.33622432	0.04391224		
90	~2 <u>~259</u> 41976	-0.0000000		

θ,	MORMAL STRESS	TANGENTIAL STRES
	L.	4
0	-2.14447212	-0.04623730
10	-2.12394950	-0.04947228
20	-2.10510761	-9.04020778
30	-2.09370488	-0.01991735
40	-2.09484839	0.00706803
30	-2.11121780	0.03344479
60	-2.14087120	0.05024317
70	-2.17604923	0.05005712
80	-2,20480293	0.03119282
9 0	-2.21592557	-0.0000000
	į.e	*
0	-2.10726547	-0.02992969
10	-2.09371890	-0.03276104
20	-2,08125854	-0.02723910
30	-2.07572758	-0.01464098
40	-2.07416698	0.00190903
50	-2.06378240	0.01769696
60	-2.10090849	0.02750964
70	-2.12077844	0.02747393
\$ 0	-2-13673082	0.01707072
\$ 0	-2.14244185	-0.00000000
	L.	4
6	-2.06272001	-0.01041786
10	-2.07330486	-0.92284373
20	~2.06458315	-0,01954217
30	-2.05920923	-0.01135396
40	-2-03-13-12-5	-0.000FT62T
50	-2-0649249	0.00442730
40	-2.07852043	0,01594379
70	-2,08743919	0.01616961
80	-3,09727454	0.01007467
**	-1-10644493	-0.0000006

θ,	HORMAL STRESS	TANGENTIAL STRES
	L*	9
0	-2.06567734	-0.01451395
10	-2.05887982	-0.01668884
20	-2.05249971	-0.01463680
30	-2.04844651	-0.00911364
40	-2-04807311	-0.00173691
50	-2-05173430	0.00522083
60	-2-05851114	0.00961309
70	-2.06631643	0.00997474
80	-2.07250953	0.00626392
90	-2.07485766	-0.0000000
	į.e	10
ø	-2.05338461	-0.01067427
10	-2.04631511	-0.01258527
20	-2.04348177	-0.01133365
30	-2.04030591	-0.00749721
4 0	-2.039T6557	-0.00228541
30	-2.04204056	0.00269923
60	-2.04660929	0.00990671
70	+2.05164549	0.00633532
80	-5-02400534	0.00403909
90	-2.09758107	-0.0000000
	Le	11
0	-2.04423431	-0.00007221
10	-2.04034969	-0.00975759
20	-2,03458284	-0.00901666
30	-2.03402061	-0.00624396
40	-2-03319675	-0.00247928
50	-2.03468103	0.00120496
60	-2.03794633	0.00364400
70	-2+04239707	0.00413699
80		0.00267026
* 0	-2.04838474	-0.0000000

θ,	NORMAL STRESS	TANGENTIAL STRES		
	£.	12		
O	-2.03724274	-0.00624860		
10	-2.03419775	-0.00774169		
20	-2.03119263	-0.00733011		
30	-2.02907836	-0.00534660		
40	-2.02842540	-0.00249970		
5 0	-2.02936077	0.00030406		
60	-2.03150910	0.00221404		
70	-2.03408614	0.00270992		
8 C	-2.03614932	0.00179299		
9 0	-2.09693479	-0.00000000		
	i*	13		
٥	-2.03178251	-0.00493373		
10	-2.02934894	-0.00626284		
20	-2.02690414	-0.00606794		
30	-2.02512753	-0.00460624		
40	-2.02447922	-0.00243127		
20	-2.02504951	-0.000Z4654		
80	-2-02456028	0.00128609		
70	-2.02042411	0.00177381		
80	-2.02992571	0.00121222		
9 0	-2.03050309	-0.0000000		
	L.	14		
0	-2.02743796	-0.00396236		
10	-2.02546039	-0.00715126		
20	-2.02343807	-0.00910045		
30	-2.02192249	-0.00401019		
40	-2.02128413	-0.00231943		
36	-2-02163101	-0.00054459		
60	~# <u>~022404</u> %1	0.00047184		
70	-1-02409343	0.00114201		
\$ 0	-2.02516947	0.00081764		

TABLE 4

-	-	-	-	-		
θ,	HOOP	STRESS	INSIDE	ноор	STRESS	CUTSIDE
			i.	* \$		
0		-2.42	150569		1.578	49428
10		-2.57	524851		1.424	75149
20		-	791873		1.252	38126
30			854929		1.071	15068
40			954004		0.920	
30			500039		0.874	
60			962932		1.030	
70			538574		1.414	
\$ 0			219276		1.867	
90		-1.92	354387		2.076	15601
			L	**		
0		-2.22	798487		1.772	41519
10		-2.31	328416		1.686	71583
10		-2.40	040278		1.599	59719
0		· ·	948977		1.524	
10			999425		1.480	
50		7 1	978270		1.490	
0			976121		1.964	
70			791569		1.692	
60			575502		1.814	
90		-2.13	489121		1.865	10876
			L.	* \$		
0			222437		1.857	
10			213704	•	1.607	
ZC			074796		1.759	
90			91,5302		1.720	
40			763472		1.702	
20			832907		1.711	
49		Albania and a series	132751		AND A CONTRACTOR	47247
TA.			778984		1.402	•
88			****		1.050	TIST
40		-I.I.	955193		1 - 2 - 4	

₿,	ноор	STRESS	INSIDE	HOOP	STRESS	OUTSIDE
			و	. .		
O		-2.09	734568		1.9024	55431
14		-2.12	839565		1.871	
20		-2.15	910809		1.841	
30		-2-18	267601		1.819	32396
40		-2-19	376896		1.809	23103
50		-2.18	526548		1.814	73449
60		-2-16	543359		1.834	
70		-2.13	119179		1.861	80418
80			6637 02		1.885	6277
90		-2.10	532737		1.894	67262
			L .	. 7		
0		-2.07	085574		1.929	14425
10			193176		1.908	56822
20			082906		1.889	17011
10			*****		1.874	\$\$618
40			195962		1.868	14037
50			590247		1.871	
40		-2.11			1.662/	
70			24142		1.097	73856
80		-2.081			1*810.	
\$ 0		-2.084	116803		1.919	19197
			L	**		
٥		-2.05			1.946	
10		-2.94			1.001	
20			199500		1.718	
30		-2.09			1,900	
40		4117	640217		1.903	
50			LOCATA		1.995	
40			197047		1.012	
70		-2.07			1.021	
80	_		****		1,909	
70		~2.0b	767237		1.492	Ly Fal

θ,	HOOP	STRESS	INSIDE	ноор	STRESS	OUTSIDE
			L.	* 9		
0		-2.04	240572		1.957	59425
10		-2.05	260187		1.947	39813
2 C		-2-06	238964		1.937	61033
0		-2.06	979215		1.930	
40		-2.07	336292		1.926	
5 0		-2.07	262498		1.927	
60		-2.06	835240		1.931	
70		-2.06	247985		1.937	
80		-2.05	791491		1.942	
90		-2.05	558217		1.944	41782
			·	-13		
0		-2.03	423783			76215
10		-2-04	181689			18308
20		-2.04	915398			#4599
30		-2.09	477291			22707
40		-2.09	762506			37491
50		-2.05	739400			60997
60			465716			34282
70			077866			22131
80			747957			32040
90		-2-04	619396		1.93	180403
			4	L=11		
٥		-2.0	2622721			177276
10			\$40148 \$			598510
20			9967334		1.76	032660
30			1407105			992894
40			+641849			398150
50			4648790			351207
40			4471087			520911
70			4207683		1.77	792314
40			3487530			919767
90		-2.0	1842134		1.070	161213
₹ च ि		And 25, 25,	一		'A (4. 15 miles 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

θι	НООР	STRESS	INSIDE	ноор	STRESS	OUTSIDE
			i .	=12		
0		-2.021	367458		1.976	32541
10			319580		1.971	
20		-	266397		1.967	33603
30		-2.03	619176		1.963	80822
40		-2.03	816649		1.961	83349
50		-2.03	841320		1.961	58677
60		-2.03	725642		1.962	74355
70		-2.03	543106		1.964	56891
80		-2.03	383777		1.966	16220
90		-2.03	321227		1.966	78771
			Ĺ	=13		
0		-2.02	014294		1.979	85709
10			374396			25603
20		-2.02	794306		1.972	
30			023100			76897
40			192016		1.968	
50			226933			73067
60		-	152424			47573
70			024173			75826
80			909958			90040
90		-Z.0Z	86484]		1.971	35156
			L	.414		
0		-2,01	734790 .			6520T
10			026421			73576
20			721291			78708
30			561748			38250
40			708161		7	91834
50			740701			51294
60			702108			97690
70			611274			188725
*0			578767			71.79
90		-2.01	***** ****		1.97	104786

Appendix A

In chapters VII and VIII a few integrals are encountered which may be solved by the method given here.

$$f(x) = \frac{x I x}{(x^2 + \ell^2)^2},$$

THE PARTY OF THE P

then substituting in (iv) of (109) we get

$$F(\omega) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{2\ell_X dx}{(x^2 + \ell^2)^2 (\omega - x)}$$

 ω is affix of the point in 470 . To evaluate this we consider

$$\oint_C \frac{2\ell z dz}{(z^2 + \ell^2)^2 (\omega - z)}$$

along a contour c consisting of real line from -R to R and a semi-circle Γ below real axis. Then we let $R\to\infty$ and noting that the integral around the semi-circle Γ vanishes and ω is a pole exterior to C, the contour integral becomes equivalent to $F(\omega)$. The value of this integral after some transferration is given by

$$F(z) = \frac{i}{(z+i\ell)^2}.$$

BI HLIOGHAPHY

1.	Kolosev, G. V.	'Sur les problemes d'elasticite a deux dimensions'. C.r. Acad. Sci., 146,(1908) 523.
2.	Muskheli shvili, H.l.	'Some Basis Problems of Mathematical Theory of Elasticity' P. Hoordhoff Ltd., Groningen, The Hetherlands (1963).
3.		Bull. Acad. Sci. Georgian 8.8.8. 2 (1941) 873.
4.	sekelnikoff, 1.8.	'Mathematical Theory of Elasticity' McGraw Hill Book Co., New York, (1966).
6.	Stevenson, A. C.	Proc. Roy. Soc., A, 184 (1945)
6.		Phil. Mag., 24 (1948) 766.
7.	Green, A.S. and Zerna, W.	'Theoretical Blasticity'd, London, (1960).
8.	Timoshenko, S. and Goodier, J.M.	'Theory of Elasticity' McGrav Hill Book Co. (1961).
9.	Mott, H. P. and Maharro, F.R.H.	Proc. Phys. Soc., 52 (1940) 86.
70.	Rebelby, J. D.	Proq. Roy. 200., A, 251 (1957)
11.		From. Roy. Soc., A. 168 (1960)
18.		T- July model Monkening
18.	N.A. and	Proc. Ceab. Phil. Spa., EL (1861)
W		The second secon

24.	Bhargava, R.D. and Kapoor, O.P.	Proc. Mat. Inst. Sci. India, A,32 (1966) 46.
15.		Proc. Mat. Inst. Sci. India, A, 32 (1966) 418.
16.	Lord Kelvin	Cambridge and Dubline Math. J., (1848).
17.	Bhargava, R.D. and Radhakrishna, H.C.	Proc. Camb. Phil. Soc., 52 (1963) 811.
18.		Proc. Camb. Phil. Soc., 59 (1963) 821.
19.	Boley, B.A. and Wiener, J.H.	'Theory of Thermal Stresses' John Wiley and Soms, Inc., New York (1960).
80.	Duhamel, J.H.C.	Journal de l' Meole Polytechnique 16 (1837) 1.
31.	Tiffen, Ronald	Quart. J. Nech and Appl. Math. 5 (1982) 344.
22.		Quart. J. Nech. and Appl. Math. 4 (1963) 344.
23.		Quart. J. Mech. and Appl. Mathe., § (1956) 237.
24,		Mathematics, 12 (1966) 199.
26.	dundam I.W.	'Pourier Transforme' Neurew Hill Book Co., (1961).
26.		Proc. Camb. Phil. Soc., 40 (1964) 239.
87.	Kapeor, O. P.	Ph.D. Thusis (I.I. T
994	Files, L.S.G.	FM1- France, & SEL (1998) 40.
	Mouland, R.C.J.	Proc. Roy. Soc., A. 188 (2000) 10.
50.	Entres B.G.	[M. Cart. Phil. Dec., 46 (1940)

81.	Frenkel, J.	'Kinetic Theory of Liquide' Oxford (1946).
38.	Mabarro, F.R.M.	Proc. Phys. Soc., 52 (1940) 90.
33.	Willie, J.R.	Quart. J. Mech and Appl. Math., 16 (1966) 157.
34.	Knops., R. J.	Proc. Edinburgh Nath. Soc. 14 (1964) 61.
36.	Mashin, Z. and Shrikman, S.	J. Mech. Phys. Solids, 11 (1963) 127.
36,	M111, R.	J. Mech. Phys. Solids, 11 (1963) 357.
37.	The state of the s	J. Nech. Phys. Solids, 12 (1964)
38.		J. Mech. Phys. Solids, 12 (1964)
39.		J. Hech. Phys. Solids, <u>13</u> (1966) 189.
40.		J. Mech. Phys. Solids, 12 (1965)
41.	Budiansky, B.	J. Mech. Phys. Solids, 12 (1966) 283.
49.	Walpole, L. J.	J. Noch. Phys. Solids, 14 (1966) 151.
48.		J. Noch. Phys. solids, 14 (1966)
44.	Bhargava, R. D.	Apple 201. 200., A. 11 (2001) 40.

45. Hale, K. 7. and J.1.8.1., 201 (1963) 337. Melean, D.

46. Bhargava, R.D. and J.I.S.I., 202 (1965) 699. Melean, D.

Date Due

MATH- 1967-D-SHA-SOM