专题 2-1 一元函数微分学

第一部分 典型例题

1. 利用导数定义解题

例 1. 已知函数 f(x) 在 x = 0 的某个邻域内有连续导数,且 $\lim_{x \to 0} \left(\frac{\sin x}{x^2} + \frac{f(x)}{x} \right) = 2$,求 f(0) 及 f'(0).

$$f(0) = -1, f'(0) = 2$$

例 2. 设函数 $f(x) = \lim_{n \to \infty} \frac{x^2 e^{n(x-1)} + ax + b}{1 + e^{n(x-1)}}$, 求 f(x), 并讨论 f(x) 的连续性与可导性.

【
$$f(x) = \begin{cases} x^2, & x > 1 \\ \frac{1}{2}(a+b+1), x = 1, & \exists a+b=1$$
时, $f(x)$ 在 $x = 1$ 处连续; $ax+b, x < 1$

当且仅当
$$a = 2, b = -1$$
时, $f(x)$ 在 $x = 1$ 处可导】

例 3. 设函数 f(x) 在 x=2 处可微,且满足 2f(2+x)+f(2-x)=3+2x+o(x),这里 o(x) 表示比 x 高阶的无穷小(当 $x\to 0$ 时),试求微分 $\mathrm{d}f(x)\big|_{x=2}$,并求曲线 y=f(x) 在点 $\left(2,f(2)\right)$ 处的切线方程.

$$\left[\left(df(x) \right)_{x=2} = 2dx, \quad 2x - y - 3 = 0 \right]$$

2. 求高阶导数

例 4. 求 $y = \arctan x$ 在 x = 0 处的 n 阶导数.

【
$$y^{(n)}(0) = \begin{cases} 0, & n$$
为偶数 】
$$(-1)^{\frac{n-1}{2}} \cdot (n-1)!, & n$$
为奇数

例 5. 己知 $f(x) = x^2 \ln(1-x)$,则当 n > 2 时, $f^{(n)}(0) = \underline{\hspace{1cm}}$

$$f^{(n)}(0) = -\frac{n!}{n-2} J$$

例 6. 设 $f(x) = \frac{x^n}{x^2 - 1} (n = 1, 2, 3, \dots)$, 求 $f^{(n)}(x)$.

$$\mathbf{I} f^{(n)}(x) = \frac{n!}{2} \left[\frac{(-1)^n}{(x-1)^{n+1}} - \frac{1}{(x+1)^{n+1}} \right], n = 1, 2, 3, \dots \mathbf{I}$$

3. 与微分中值定理有关的证明题

例 7. 设函数 f(x) 在 [a,b] 上连续,在 (a,b) 内可导,且有 f(a) = a , $\int_a^b f(x) dx = \frac{1}{2} (b^2 - a^2)$,求证:在 (a,b) 内至少有一点 ξ ,使得 $f'(\xi) = f(\xi) - \xi + 1$.

例 8. 设函数 f(x) 在 $\left[0,1\right]$ 上连续,在 $\left(0,1\right)$ 内可导,且有 f(0)=0,f(1)=1,若 a>0,b>0,求证:

$$\exists \xi \in (0,1), \eta \in (0,1), \xi \neq \eta, \quad \text{if } \#(1) \frac{a}{f'(\xi)} + \frac{b}{f'(\eta)} = a + b; \quad (2) \ af'(\xi) + bf'(\eta) = a + b.$$

例 9. 设函数 f(x) 在 [-2,2] 上二阶可导,且 $|f(x)| \le 1$,又 $[f(0)]^2 + [f'(0)]^2 = 4$,试证: 在 (-2,2) 内至少存在一点 ξ , 使得 $f(\xi) + f''(\xi) = 0$.

例 10. 设函数 f(x) 在 $[0,+\infty)$ 上连续可导, f(0)=1,且对一切 $x \ge 0$ 有 $\Big|f(x)\Big| \le e^{-x}$,求证: $\exists \xi \in (0,+\infty)$, 使得 $f'(\xi) = -e^{-\xi}$.

例 11. 设函数
$$f(x)$$
 在 $[1,+\infty)$ 上连续可导,且 $f'(x) = \frac{1}{1+f^2(x)} \left[\sqrt{\frac{1}{x}} - \sqrt{\ln\left(1+\frac{1}{x}\right)} \right]$,证明: $\lim_{x\to +\infty} f(x)$ 存在.

例 12. 当 $x \ge 0$ 时,求证: $\exists \theta(x) \in (0,1)$,使得 $\sqrt{x+1} - \sqrt{x} = \frac{1}{2\sqrt{x+\theta(x)}}$,并求 $\lim_{x \to 0^+} \theta(x)$ 和 $\lim_{x \to +\infty} \theta(x)$.

4. 利用泰勒公式证明

例 13. 设函数 f(x) 在 [a,b] 上二阶可导, f'(a)=0, f'(b)=0 , 求证: $\exists \xi \in (a,b)$, 使得 $|f''(\xi)| \ge 4 \frac{|f(b)-f(a)|}{(b-a)^2}.$

例 14. 设函数 f(x) 的二阶导数 f''(x) 在 [2,4] 上连续,且 f(3)=0 ,试证:在 (2,4) 上至少存在一点 ξ ,使得 $f''(\xi)=3\int_2^4 f(t)\mathrm{d}t$.

例 15. 设函数 f(x) 在 [0,1] 上二阶可导,且 f(0)=f(1)=0 , f(x) 在 [0,1] 上的最小值等于 -1 , 试证至少存在一点 $\xi \in (0,1)$, 使得 $f''(\xi) \geq 8$.

例 16. 设函数 f(x) 三阶可导,且 $f'''(a) \neq 0$,

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''[a+\theta(x-a)]}{2}(x-a)^2 (0 < \theta < 1),$$

证明: $\lim_{x\to a}\theta=\frac{1}{3}$.

$$\lim_{x \to 0^+} \theta(x) = \frac{1}{4}, \quad \lim_{x \to +\infty} \theta(x) = \frac{1}{2}$$

5. 证明等式或不等式

例 17. 设
$$0 < x < \frac{\pi}{2}$$
, 证明: $\frac{4}{\pi^2} < \frac{1}{x^2} - \frac{1}{\tan^2 x} < \frac{2}{3}$.

例 18. 证明: 当 $0 < x < \pi$ 时,有 $\sin \frac{x}{2} > \frac{x}{\pi}$.

例 19. 设函数 f(x) 在 $[0,+\infty)$ 上二阶可导, $f(0)=1,f'(0)\leq 1,f''(x)< f(x)$, 求证: x>0 时, $f(x)<\mathrm{e}^x.$

例 20. 设 f(x) 在 $[0,+\infty)$ 上可微, f(0)=0,且存在常数 A>0,使得 $|f'(x)| \le A|f(x)|$ 在 $[0,+\infty)$ 上成立,试证明在 $(0,+\infty)$ 上有 $f(x)\equiv 0$.

6. 导数的几何应用(求极值、单调性、凹凸性、拐点与渐近线)

例 21. 设函数 f(x) 满足关系式 $f''(x) + [f'(x)]^2 = x$,且 f'(0) = 0,则(

A. f(0) 是 f(x) 的极大值

B. f(0)是 f(x) 的极小值

C. 点(0, f(0)) 是曲线 y = f(x) 的拐点

D. f(0) 不是 f(x) 的极值,点(0,f(0)) 也不是曲线 y = f(x) 的拐点.

[C]

例 22. 设常数
$$k>0$$
, 函数 $f(x)=\ln x-\frac{x}{e}+k$ 在 $(0,+\infty)$ 内零点的个数为 () A. 3 B. 2 C. 1 D. 0 .

(B**)**

例 23. 设函数 $f(x) = e^x - \frac{x^3}{6}$,问 f(x) = 0 有几个实根? 并说明理由.

【无实根】

例 24. 设函数 f(x) 在 x_0 的某一邻域内具有直到 n 阶的连续导数,且 $f'(x_0)=f''(x_0)=\cdots=$ $f^{(n-1)}(x_0)=0$,而 $f^{(n)}(x_0)\neq 0$,试证:

(1) 当n 为偶数,且 $f^{(n)}(x_0) > 0$,则 $f(x_0)$ 为极小值;当n 为偶数,且 $f^{(n)}(x_0) < 0$,则 $f(x_0)$ 为极大值; (2) 当n 为奇数时, $f(x_0)$ 不是极值.

第二部分 强化训练

1. 设命题: 若函数 f(x) 在 x = 0 处连续,且 $\lim_{x \to 0} \frac{f(2x) - f(x)}{x} = a \left(a \in \mathbb{R} \right)$,则 f(x) 在 x = 0 处可导,且 f'(0) = a.

判断该命题是否成立. 若成立,给出证明;若不成立,举一反例并作出说明.(2016年江苏省赛)

2. 已知函数 $\varphi(x)$ 在 $(-\infty, +\infty)$ 内具有二阶连续导数,且 $\varphi(0) = 0$. 问: 当常数 a,b 为何值时,函数

$$f(x) = \begin{cases} \frac{\varphi(x)}{x}, x > 0 \\ ax + b, x \le 0 \end{cases}$$
 在 $(-\infty, +\infty)$ 内可导?并讨论 $f'(x)$ 的连续性.

4. 设函数 $f(x) = (1+x)^{\frac{1}{x}}(x>0)$,证明 $f(x) = e + Ax + Bx^2 + o(x^2)(x \to 0^+)$,并求 f'(0), f''(0).

5. 设函数
$$f(x) = e^{-x} \int_0^x \frac{t^{2023}}{1+t^2} dt$$
,正整数 $t \le 2023$,求导数 $f^{(n)}(0)$. (第 14 届国赛预赛补赛)

- 6. 设f(x)在 $(-\infty, +\infty)$ 内二阶可导,且 $f''(x) \neq 0$.
- (1) 证明对 $\forall x \neq 0$,存在唯一 $\theta(x)(0 < \theta(x) < 1)$, 使得 $f(x) = f(0) + xf'(x\theta(x))$;
- $(2) \, \bar{\mathbb{X}} \, \lim_{x \to 0} \theta(x) \, .$
- 7. 设f(x)在[0,1]上连续,在(0,1)内可导,且f(0) = 0, f(1) = 1,

证明: (1) 存在 $x_0 \in (0,1)$ 使得 $f(x_0) = 2 - 3x_0$;

(2) 存在
$$\xi, \eta \in (0,1)$$
, 且 $\xi \neq \eta$, 使得 $[1+f'(\xi)][1+f'(\eta)]=4$. (第 12 届国赛预赛)

8. 已知函数 f(x) 在区间[0,1]上连续,且 $\int_0^1 f(x) dx \neq 0$,证明:在区间[0,1]上存在三个不同的点

$$x_1, x_2, x_3$$
, $\notin \frac{\pi}{8} \int_0^1 f(x) dx = \left[\frac{1}{1 + x_1^2} \int_0^{x_1} f(x) dx + f(x_1) \arctan x_1 \right] x_3$

$$= \left[\frac{1}{1 + x_2^2} \int_0^{x_2} f(x) dx + f(x_2) \arctan x_2 \right] (1 - x_3). \quad (\text{\hat{g} 9 \mathbb{R}} \mathbb{B})$$

9. 设 $\alpha > 0$,函数f(x)在 $\left[0,1\right]$ 上有二阶导数,f(0) = 0,若f(x)在 $\left[0,1\right]$ 上非负且不恒为零, 证明:存在 $\xi \in (0,1)$,使得 $\xi f''(\xi) + (\alpha+1)f'(\xi) > \alpha f(\xi)$.

10. 设
$$0 < x_k < \frac{\pi}{2} (k = 1, 2, \dots, n)$$
, $\Leftrightarrow x = \frac{x_1 + x_2 + \dots + x_n}{n}$,证明: $\prod_{k=1}^n \frac{\sin x_k}{x_k} \le \left(\frac{\sin x}{x}\right)^n$.

【参考答案】

2.
$$a = \frac{\varphi''(0)}{2}, b = \varphi'(0), f'(x) 在 (-\infty, +\infty)$$
 内连续

3.
$$x-2y-5=0$$

3.
$$x-2y-5=0$$
 4. $f'(0)=-\frac{e}{2}$, $f''(0)=\frac{11e}{12}$ 5. 0

$$6. \quad \lim_{x \to 0} \theta(x) = \frac{1}{2}$$