CTU 2024

Software Development

SUBJECT NAME: Business Programming Semester 2

SUBJECT CODE: PRG522 FA 3

Edward Nhlapo

Student Number – 20220865

20220865@ctucareer.co.za

19th May 2024:

Scenario Question.

Question

Transforming Nicky Motors database

Below is data extracted from the dealership's products table

Question 1.

This task includes preparing the data

1.1 On Oracle, write SQL statements to create a database for Nicky Motors called "dealership"

Dealership data created

1.2 Write SQL statements that will recreate the product table for Nicky Motors, this table should include an additional column called "Supplier ID" which has a foreign key and the data cannot be null. ()

Supplier ID created


```
CREATE TABLE Suppliers (
supplier_id VARCHAR(10) PRIMARY KEY,
supplier_name VARCHAR(100),
country VARCHAR(50),
contact VARCHAR(100),
phone_number VARCHAR(20)
);

INSERT INTO Suppliers (supplier_id, supplier_name, country, contact, phone_number) VALUES
('S1', 'American Autos', 'USA', 'John Smith', '555-1234');
INSERT INTO Suppliers (supplier_id, supplier_name, country, contact, phone_number) VALUES
('S2', 'Asian Car Masters', 'Japan', 'Yuki Tanaka', '555-5678');
INSERT INTO Suppliers (supplier_id, supplier_name, country, contact, phone_number) VALUES
('S3', 'Electric Innovations', 'USA', 'Emily Johnson', '555-9101');
INSERT INTO Suppliers (supplier_id, supplier_name, country, contact, phone_number) VALUES
('S4', 'European Luxury', 'Germany', 'Hans Müller', '555-1122');
```

Products table created

Screen shot of the code on SQL Developer


```
CREATE TABLE Products (

stock_number INT PRIMARY KEY,

make VARCHAR(50),

model VARCHAR(50),

year INT,

color VARCHAR(20),

mileage INT,

transmission VARCHAR(20),

price DECIMAL(10, 2),

supplier_id VARCHAR(10) NOT NULL,

FOREIGN KEY (supplier_id) REFERENCES Suppliers(supplier_id)
);
```

INSERT INTO Products (stock_number, make, model, year, color, mileage, transmission, price, supplier_id) VALUES

(001, 'Ford', 'F-150', 2022, 'Blue', 0, 'Automatic', 500000, 'S1');

INSERT INTO Products (stock_number, make, model, year, color, mileage, transmission, price, supplier id) VALUES

(002, 'Toyota', 'Camry', 2021, 'Black', 12000, 'Manual', 280000, 'S2');

INSERT INTO Products (stock_number, make, model, year, color, mileage, transmission, price, supplier_id) VALUES

(003, 'Tesla', 'Model 3', 2023, 'White', 0, 'Automatic', 450000, 'S3');

INSERT INTO Products (stock_number, make, model, year, color, mileage, transmission, price, supplier_id) VALUES

(004, 'Chevrolet', 'Silverado', 2020, 'Red', 30000, 'Automatic', 350000, 'S1');

INSERT INTO Products (stock_number, make, model, year, color, mileage, transmission, price, supplier_id) VALUES

(005, 'Honda', 'Civic', 2019, 'Silver', 20000, 'Manual', 180000, 'S2');

INSERT INTO Products (stock_number, make, model, year, color, mileage, transmission, price, supplier_id) VALUES

(006, 'BMW', '3 Series', 2022, 'Black', 0, 'Automatic', 550000, 'S4');

INSERT INTO Products (stock_number, make, model, year, color, mileage, transmission, price, supplier_id) VALUES

(007, 'Audi', 'A4', 2021, 'White', 5000, 'Automatic', 400000, 'S4');

INSERT INTO Products (stock_number, make, model, year, color, mileage, transmission, price, supplier_id) VALUES

(008, 'Nissan', 'Altima', 2018, 'Blue', 50000, 'Manual', 150000, 'S2');

INSERT INTO Products (stock_number, make, model, year, color, mileage, transmission, price, supplier_id) VALUES

(009, 'Mercedes', 'C-Class', 2022, 'Grey', 0, 'Automatic', 600000, 'S4');

INSERT INTO Products (stock_number, make, model, year, color, mileage, transmission, price, supplier_id) VALUES

(010, 'Subaru', 'Outback', 2020, 'Green', 25000, 'Manual', 270000, 'S1');

Question 2

This task includes learning unit 9: Using subqueries to solve queries. Write SQL statements to perform the following subqueries:

2.1 Display the price of a product if ANY records on the supplier table are from the USA (7 Marks)

2.2 Display the make of a product if ANY records on the supplier table are supplied by Electric Innovations.

2.3 Display the contact of the supplier if ANY records on the products table have a price greater than 500,000.

Display contact details

2.4 Display the phone number of the supplier if ALL records on the products table have mileage equal to zero (

Question 3

This task includes learning unit 10: Managing Schema Objects. Write SQL statements to perform the following Views:

3.1 Create a simple view that shows all the columns from the Car Dealership Products Table.

View created

CREATE VIEW vw_all_products AS

SELECT *

FROM Products;

CREATE VIEW vw_automatic_cars AS

SELECT *

FROM Products

WHERE transmission = 'Automatic';

3.2 Create a view that shows all cars with automatic transmission and their details.

CREATE VIEW vw_all_products AS

SELECT *

FROM Products;

CREATE VIEW vw_automatic_cars AS

SELECT *

FROM Products

WHERE transmission = 'Automatic';

3.3 Create a view that lists all cars supplied by "American Autos" with their details.

American Autos

oracle SQL Developer

CREATE VIEW vw_american_autos_cars AS

SELECT p.*

FROM Products p

JOIN Suppliers s ON p.supplier_id = s.supplier_id

WHERE s.supplier_name = 'American Autos';

3.4 Create a complex view that joins the Car Dealership Products Table and the Supplier Table to show the Make, Model, Year, and Supplier Name.

oracle SQL Developer

CREATE VIEW vw_products_suppliers AS

SELECT p.make, p.model, p.year, s.supplier_name

FROM Products p

JOIN Suppliers s ON p.supplier_id = s.supplier_id;

3.5 Create a view that lists cars from the year 2022 and their supplier details.

Oracle SQL Developer

Code

REATE VIEW vw_2022_cars AS

SELECT p.*, s.supplier_name, s.country, s.contact, s.phone_number

FROM Products p

JOIN Suppliers s ON p.supplier_id = s.supplier_id

WHERE p.year = 2022;

Question 4

This task includes learning unit 11: Using the Set Operators. Write SQL statements to use Set Operator to Combine Multiple Queries into a Single Query:

4.1 List all unique car makes available in the Car Dealership Products Table and Supplier countries in a single column.

SELECT make AS item

FROM Products

UNION

SELECT country AS item

FROM Suppliers;

4.2 List cars with Automatic transmissions and cars from the year 2022. Eliminate duplicate rows.

Code

SELECT make, model, year

FROM Products

WHERE transmission = 'Automatic'

UNION

SELECT make, model, year

FROM Products

WHERE year = 2022;

4.3 Find car models that are both supplied by "American Autos" and have Automatic transmissions.

Code

SELECT p.model

FROM Products p

JOIN Suppliers s ON p.supplier_id = s.supplier_id

WHERE s.supplier_name = 'American Autos' AND p.transmission = 'Automatic';

4.4 List car models that are supplied by "American Autos" but do not have Automatic transmissions.

Code

SELECT p.model

FROM Products p

JOIN Suppliers s ON p.supplier_id = s.supplier_id

WHERE s.supplier_name = 'American Autos' AND p.transmission != 'Automatic';