1. Learning Archetecture

a) Algorithm

Input: batch size k, learning rate η , number of episodes N, initial epsilon for epsilon-greedy policy ϵ_0 , epsilon decay rate r_ϵ , discount factor γ , soft update factor τ

Initialize replay memory buffer $\mathrm{\,H}=\emptyset\,$, $\,\epsilon=\epsilon_0\,$, $\,t=0\,$

for i = 1 to
$$N$$
 do

Observe $S_t = S_0$

while True do

Choose action $A_t \sim \pi_{\theta,\epsilon}$

Observe S_{t+1}, R_{t+1}

Store transition $(S_t, A_t, R_{t+1}, S_{t+1})$ in H

If $t \equiv 0 \bmod K$ and len(H) > k then

Sample batch H_s from H

Compute TD-error for $(S_j, A_j, R_{j+1}, S_{j+1})$ in H_s

$$\delta = R_{j+1} + \gamma \; Q_{target}(S_{j+1}, arg \; max_aQ(S_{j+1}, a)) - Q(S_j, A_j)$$

Update weights $\ \theta \leftarrow \theta + \eta \cdot \delta \cdot riangledown_{ heta} Q(S_j, A_j)$

Update target network $heta_{target} = au * heta + (1 - au) * heta_{target}$

Update epsilon $\epsilon = \epsilon \cdot r_{\epsilon}$

$$t = t + 1$$

if done then

break

end for

b) Model Structure

- i. Input size = state size = 37
- ii. Hidden layers(2)
 - 1. Fully connected with 8*37 rectifiers
 - 2. Fully connected with 8*37 rectifiers
- iii. Output layer of size 4(=action size)

c) Hyperparameters

i.	Batch size	64
ii.	Memory buffer size	1e5
iii.	Number of episodes	2000
iv.	Epsilon decay rate	0.995
٧.	Target score	13.0
vi.	Discount factor gamma	1e-3
vii.	Learning rate	5e-4
viii.	Update Period	4
ix.	Sampling priority buffer	0.1
х.	SamplingWeightOrderIncreaseSpeed	1.0/1500.0
xi.	SamplingPriorityOrderIncreaseSpeed	1.0/1500.0

2. Results

- a) Original DQN
 - i. Folder: dqn_result_2022_04_02_14_24_08
 - ii. Result:

Double DQN b)

- Folder: dqn_result_2022_04_02_16_29_25 i.
- ii. Result:

- c)
- Double DQN + Prioritized Experience Replay i. Folder: dqn_result_2022_04_11_12_18_33
 - ii. Result:

3. Conclusion

- a) Both original DQN and Double DQN can converge fast enough(within 1000 episodes)
- b) Comparing to original DQN, Double DQN reached a highier final score(14.92 vs 13.56)
- c) Prioritized Experience Learning can converge, but the final score is much lower than others(4.35), the reason maybe implementation error or inappropriate hyperparameters

4. Future Improvements

- a) Will try differrent hyperparameters by using google's ML hypertun subsystem Vizier
- b) Will try to correct implementation of Prioritized Experience Replay
- c) Will try to implement Dueling DQN
- d) Will try learning from pixels
- e) Will try Adaptively Parametric ReLU