Physics Informed Neural Networks for Fluid Dynamics NAPDE Project

Giulia Mescolini, Luca Sosta

Politecnico di Milano

10/11/2021

1 Unsteady problem in the Cavity

What is the strenght of the PINN?

In the unsteady case with noise on the boundary data, we analyzed the performances of:

- a Neural Network trained for interpolation
- a Physics Informed Neural Network

The noise is gaussian, with $\mu=0$ and $\sigma=0.05$ (5% of the measurement). We found that this value for the width is reasonable and suitable for the comparison; indeed, a stronger noise makes the interpolation unreliable.

3 / 15

Interpolation

The number of collocation points is:

```
| num_BC = 1000
| num_IC = 1000
| num_col_velocity = 500
| num_col_pres = 10
```


We noted that there is **overfitting** for u and p_1

Interpolation - Solution at the final instant

PINN

We noticed that the more we increased the weight of the physical losses, the better the result was, even with few points for pressure. The partition of points is the following:

```
1 | PDE_losses = [LMS('PDE_MASS', lambda: PDE_MASS(), weight = 1e-2),
2 | LMS('PDE_MOMU', lambda: PDE_MOM(0), weight = 1e-3),
3 | LMS('PDE_MOMV', lambda: PDE_MOM(1), weight = 1e-3)]
```



```
1 | PDE_losses = [LMS('PDE_MASS', lambda: PDE_MASS(), weight = 1e-1), | LMS('PDE_MOMU', lambda: PDE_MOM(0), weight = 1e-2), | LMS('PDE_MOMV', lambda: PDE_MOM(1), weight = 1e-2)]
```



```
1 | PDE_losses = [LMS('PDE_MASS', lambda: PDE_MASS(), weight = 1e0),
2 | LMS('PDE_MOMU', lambda: PDE_MOM(0), weight = 1e-1),
3 | LMS('PDE_MOMV', lambda: PDE_MOM(1), weight = 1e-1)]
```


11 / 15


```
1 | PDE_losses = [LMS('PDE_MASS', lambda: PDE_MASS(), weight = 1e1),
2 | LMS('PDE_MOMU', lambda: PDE_MOM(0), weight = 1e0),
3 | LMS('PDE_MOMV', lambda: PDE_MOM(1), weight = 1e0)]
```


In this case, even if boundary losses are stuck due to the presence of noise, the test loss keep going down and there is no overfitting.

