

MAHENDRAPURI, MALLASAMUDRAM(W), THIRUCHENGODE,
NAMAKKAL, TAMIL NADU 637503

ESTIMATE THE CROP YIELD USING DATA ANALYTICS

TEAM ID – PNT2022TMID17541

TEAM LEADER - SINDHU S (319UEC087)

TEAM MEMBER - SARANYA A (319UEC080)

SUBASRI S (319UEC095)

MATHESWARI G (319UEC052)

ABSTRACT

Agriculture is important for human survival because it serves the basic need. A well-known fact that the majority of population (≥55%) in India is into agriculture. Due to variations in climatic conditions, there exist bottlenecks for increasing the crop production in India. It has become challenging task to achieve desired targets in Agri based crop yield. Various factors are to be considered which have direct impact on the production, productivity of the crops. Crop yield prediction is one of the important factors in agriculture practices. Farmers need information regarding crop yield before sowing seeds in their fields to achieve enhanced crop yield. The use of technology in agriculture has increased in recent year and data analytics is one such trend that has penetrated into the agriculture field. The main challenge in using big data in agriculture is identification of effectiveness of big data analytics. Efforts are going on to understand how big data analytics can agriculture productivity. The present study gives insights on various data analytics methods applied to crop yield prediction and also signifies the important lacunae points in the proposed area of research.

1.INTRODUCTION

1.1 PROJECT OVERVIEW:

In India crop yield is season dependent and majorly influenced by the biological and economic causes of an individual crop. Reporting of progressive agricultural yield in all the seasons is an ample task and an advantageous task for every nation with respect to assesses the overall crop yield prediction and estimation. At present a common issue worldwide is, farmers are stressed in producing higher crop yield due to the influence of unpredictable climatic changes and significant reduction of water resource worldwide. A study was carried out to collect the data on world climatic changes and the available water resources which can be used to encourage advanced and novel approaches such as big data analytics to retrieve the information of the previous results to the crop yield prediction and estimation. Study imported that the selection and usage of the most desirable crop according to the existing conditions, support to achieve the higher and enhanced crop yield [11]. The accurate prediction of crop yield certainly benefits the farmers in choosing the right method to reduce the crop damage and gets best prices for their crops

1.2 PURPOSE:

Agriculture is the widest economic sector and has an important role regarding the framework of socio-economic fabric of India. Farming depends on various factors like climate and economic factors like temperature, irrigation, cultivation, soil, rain fall, pesticide and fertilizers. Historical information regarding crop yield provides major input for companies engaged in this domain. The estimation of production of crop helps these companies in planning supply chain decision like production scheduling. The industries such as fertilizers, seed, agrochemicals and agricultural machinery plan production and activities like marketing based on the estimates of crop yield. Farmers experience was the only way for prediction of Crop yield in the past days. Technology penetration into agriculture field has led to automation of the activities like yield estimation, crop health monitoring etc.

2.LITERATURE SURVEY:

2.1 EXISTING PROBLEM:

a) B M Sagar Agriculture Data Analytics in Crop Yield Estimation May 2, 2018

Agriculture is important for human survival because it serves the basic need. A well-known fact that the majority of population (≥55%) in India is into agriculture. Due to variations in climatic conditions, there exist bottlenecks for increasing the crop production in India. It has become challenging task to achieve desired targets in Agri based crop yield. Various factors are to be considered which have direct impact on the production, productivity of the crops. Crop yield prediction is one of the important factors in agriculture practices. Farmers need information regarding crop yield before sowing seeds in their fields to achieve enhanced crop yield. The use of technology in agriculture has increased in recent year and data analytics is one such trend that has penetrated into the agriculture field. The main challenge in using big data in agriculture is identification of effectiveness of big data analytics. Efforts are going on to understand how big data analytics can agriculture productivity. The present study gives insights on various data analytics methods applied to crop yield prediction and also signifies the important lacunae points in the proposed area of research.

B. j Majumdar estimated the crop yield using data analytics may 2008

Agricultural data is being produced constantly and enormously. As a result, agricultural data has come in the era of bigdata. Smart technologies contribute in data collection using electronic devices. In our project we are going to Analyse and mine this agricultural data to get useful results using technologies like data analytics and machine learning and this result will be given to farmers for better crop yield in terms of efficiency and productivity.

2.2 REFERENCE

- •https://www.researchgate.net/publication/329467349_Agriculture_Data_Analytics_in_Crop_Yield_Estimation_A_Critical_Review
- https://www.sciencedirect.com/science/article/pii/S2666285X21000364

2.3 PROBLEM STATEMENT DEFINTI

To create a dashboard and perform analysis of crop production in India using IBM Cognos analytic platform. Crop production in India is one of the most important sources of income and India is one of the top countries to produce crops. As per this project we will be analyzing some important visualization, creating a dashboard and by going through these we will get most of the insights of Crop production in India.

3.IDEATION & PROPOED SYSTEM:

3.1 EMPATHY MAP CANVAS:

3.2 IDEATION & BRAINSTORMING:

A) BRAINSTORMING:

3.3 PROPOSED SOLUTION:

SNO	PARAMETER	DESCRIPTION
1.	Problem statement (problem to be solved)	 Crop production in India is one of the most important sources of income and India is one of the top countries to produce crops. Big data provides farmers granular data on rainfall patterns, water cycles, fertilizer requirements, and more. This enables them to make smart decisions, such as what crops to plant for better profitability and when to harvest. The right decisions ultimately improve farm yields.
2.	Idea/solution description	Data analytics can help farmers monitor the health of crops in real-time, create predictive analytics related to future yields and help farmers make resource management decisions based on proven trends. Reducing waste and improving profits

3.	Novelty/Uniqueness	● To increase quality and yields, it is crucial to understand the current nutrient levels of the soil to be able to ascertain which areas require improvement.
4.	Social Impact / Customer Satisfaction	 Farmers are always looking for innovations and information to help them boost production and maximize returns on them products The rise of digital technology has offered access to a wide range of opportunities for more informed and accurate actions in the field. As a result, big data analytics are proving to be a real game-changer in the industry. With the increased availability of data, farmers have more tools than ever at their disposal, offering numerous benefits. Knowledge is not only powerful, but it can make or break an agricultural producer's success.

5.	Business Model (Revenue Model)	• the agricultural entrepreneur to make easier and better decisions based on information. This work aims to sensitize farmers to the importance of adopting data-driven solutions to address the needs of this sector.
6.	6. Scalability of the Solution	• Increases in agricultural productivity lead also to agricultural growth and can help to alleviate poverty in poor and developing countries, where agriculture often employs the greatest portion of the population. As farms become more productive, the wages earned by those who work in agriculture

3.4 PROBLEM SOLUTION FIT:

The Problem-Solution Fit simply means that you have found a problem with your customer and that the solution you have realized for it actually solves the customer's problem. It helps entrepreneurs, marketers and corporate innovators identify behavioral patterns and recognize what would work and why.

4.REQUIREMENT ANALYSIS:

4.1 FUNCTIONAL REQUIREMENT:

FR NO.	FUNCTIONAL	SUB REQUIREMENT(STORY/SUB-TASK)		
	REQUIREMENT(EPIC)			
FR-1	Uploading the dataset	Display the Manage Uploads page for the Data Set that		
		will receive the data. Click the Upload file		
		button.		
		Select the file(s) you want to upload then click Upload.		
FR-2	Preparation of dataset	Data collection. Relevant data is gathered		
		from operational		
		systems, data warehouses, data lakes and		
		other data sources.		
		Data discovery and profiling.		
		Data cleansing.		
		Data structuring.		
		Data transformation and enrichment.		
		Data validation and publishing.		
FR-3	Exploratory Data Analysis	Exploratory Data Analysis (EDA) is an		
		approach to analyze		
		the data using visual techniques. It is used		
		to discover trends,		
		patterns, or to check assumptions with the help of statistical		
		summary and graphical representations.		
FR-4	Building a ML model	□ Contextualize machine learning in your		
		organization.		
		Explore the data and choose the type of		
		algorithm.		
		Prepare and clean the dataset.		
		☑ Split the prepared dataset and perform		
		cross		
		validation.		
		Perform machine learning optimization.		

		2 Deploy the model.
FR-5	Model Evaluation	Model evaluation is the process of using
INS	Wiodel Evaluation	different evaluation
		metrics to understand a machine learning
		model's
		performance, as well as its strengths and
		weaknesses. Model
		evaluation is important to assess the
		efficacy of a model
		during initial research phases, and it also
		plays a role in
		model monitoring
FR-6	Data Pre-Processing	Model evaluation is the process of using
		different evaluation
		metrics to understand a machine learning
		model's
		performance, as well as its strengths and
		weaknesses. Model
		evaluation is important to assess the
		efficacy of a model
		during initial research phases, and it also
		plays a role in
		model monitoring
FR-7	Prediction Output	Predictive analytics is the process of using
		data analytics to
		make predictions based on data. This
		process uses data along
		with analysis, statistics, and machine
		learning techniques to
		create a predictive model for forecasting
		future events.

4.2 NON-FUNCTIONAL REQUIREMENT:

Following are the non-functional requirements of the proposed solution.

FR NO.	NON-FUNCTIONAL REQUIREMENT	DESCRIPTION
NFR-1	Usability	It helps the farmers to monitor the health of the crops in real time, create predictive analysis related to future yield.
NFR-2	Security	Data security functions to prevent data breaches, reduce risk of data exposure and ensure the ongoing safe and secure use of private data by minimizing exposure risk.
NFR-3	Reliability	The reliability of the data determines whether or not businesses can make good decisions with it. If the data is unreliable, It cannot be trusted, which makes it useless to the organizations

NFR-4	Performance	Regularly evaluating the performance of our organization can help us understand how much progress we're making toward our goals. A performance analysis is a tool you can use to check important metrics of crop yield for very month or year and make plans for adjustment and improvement.
NFR-5	Availability	Data availability in crop yield prediction is a term used by computer storage, manufacturers and storage service providers to describe how data should be available at the required level of performance in situations of predicting data used for crop yield ranching from normal through disastrous.

The use of technology in agriculture has increased in recent year and data analytics is one such trend that has penetrated into the agriculture field being used for management of crop yield and monitoring crop health. The recent trends in the domain of agriculture have made the people to understand the significance of big data

5. PROJECT DESIGN:

5.1 DATA FLOW DIAGRAM:

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

5.2 SOLUTION AND TECHNOLOGY ARCHITECTURE:

Technical Architecture for Handwritten Digit Recognition System:

TABLE-1: COMPONENTS & TECHNOLOGIES:

User Interfac e	Component	Description	Technology
1.	User Interface	User interacts with the application using a web app	python
2.	Database	Data Type, Configurations etc.	MySQL, NoSQL, Excel etc.
3.	Cloud Database	Database Service on Cloud	IBM Cognos analytics.
4.	File Storage	Storage of user files in cloud account	IBM Block Storage or Other Storage Service or Local File system
5.	Machine Learning Model	Machine learning model is used to identify the estimation of crop yield using datasets	prediction Model.
6.	Infrastructure (Server / Cloud)	Application Deployment on Local System / AI Local Server Configuration AI Server Configuration	Local, Cloud Foundry, Kubernetes, etc.

Table-2: Application Characteristics:

S .No	Characteristics	Description	Technology
1.	Open-Source Frameworks	Machine learning frameworks is used to train a predictive model	Py Torch, Open-cv, Google Collab.
2.	Scalable Architecture	The website traffic limit must be scalable enough to support 2 lakhs users at a time	3-tier
3.	Availability	Minimizing errors and maximizing accuracy	distributed servers
4.	Performance	Program should be less time consuming	number of requests per second

5.3 USER STORIES:

USER STORY NUMBER	USER STORY/ TASK
USN-1	Understanding the data set.
USN-2	Loading the data set.
USN-3	Convert the data into required format
USN-4	Explore the data's which is uploaded in the IBM Cognos
USN-5	Creating the data visualization chart
USN-6	Creating a dashboard
USN-7	Estimation of accuracy using random forest algorithm
USN-8	Export the analytics

6.PROJECT PLANNING AND SHEDULING:

6.1 SPRINT PLANNING AND ESTIMATION:

SPRI NT	FUNCTIONAL REQUIREMEN T (EPIC)	USER STORY NUMB ER	USER STORY/ TASK	STORY POINTS	PRIORITY	TEAM MEMBER S
Spri nt-1	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	2	High	Sindhu Maheswa ri
Spri nt-1		USN-2	As a user, I will receive confirmation email once I have registered for the application	1	High	Subasri ,Mathes wari
Spri nt-2		USN-3	As a user, I can register for the application through Google	2	Low	Saranya, Subasri
Spri nt-1		USN-4	As a user, I can register for the application through Gmail	2	low	Saranya, Sindhu

Spri nt-1	Login	USN-5	As a user, I can log into the application by entering email & password	1	High	Saranya, Mathesw ari
Spri nt-3	Dashboard	USN-6	As a user, I can freely use my dashboard and explore the features	2	High	Sindhu, Subasri
Spri nt-2		USN-7	Assauer, Assauer Akanistha credentials to access the resources of my application	2	High	Mathesw ari, Sindhu
Spri nt-3		USN-8	Performance of Data manipulation s on the application	1	High	Sindhu, Subasri
Spri nt-3	Visualizations	USN-9	I can create dashboards with particular datasets	2	High	Mathesw ari Sindhu
Spri nt-4		USN- 10	Predictive analysis can be done	1	High	Mathesw ari Subasri

Spri	USN-	I can create	2	High	Subasri,
nt-3	11	stories with			Saranya
		particular			
		datasets			
Spri	USN-	I can deliver	2	High	Mathesw
nt-4	12	and export			ari,
		reports			Saranya
		according to			
		the			
		dashboards			
		and stories			
		created			

6.2 SPRINT DELIVERY SCHEDULE:

SPRINT	TOTAL STORY POINT S	DURATIO N	SPRINT START DAATE	SPRINT END DATA(PL ANNED)	STORY POINTS COMPLE TED (AS PLANNED END DATE)	SPRINT RELEASE DATE(AC TUAL)
SPRINT-1	20	6 Days	24 Oct	29 Oct	20	29 Nov
			2022	2022		2022
SPRINT-2	20	6 Days	31 Oct	05 Nov	20	05 Nov
			2022	2022		2022
SPRINT-3	20	6 Days	07 Nov	12 Nov	20	12 Nov
			2022	2022		2022
SPRINT-4	20	6 Days	14 Nov	19 Nov	20	19 Nov
			2022	2022		2022

6.3 REPORT FROM JIRA:

A) SPRINT 1:

B) SPRINT 2:

C) SPRINT 3:

D) SPRINT 4:

7. CODING AND SOLUTIONING:

7.1 FEARTURE 1:

A) DATA EXPLORATION:

SEASONS WITH AVERAGE PRODUCTION:

2)WITH YEARS USAGE OF AREA AND PRODUCTION:

3) TOP 10 STATES WITH THE MOST AREA

TOP 10 STATES WITH MOST AREA:

4) STATES WITH CROP PRODUTION WITH SEASONS:

STATES WITH CROP PRODUCTION WITH SEASONS:

Production		Autumn	Kharif	Rabi	Summer	Whole Year	Winter	Summary
Andaman and Ni	Urad	(no value)	(no value)	475	(no value)	(no value)	(no value)	471
	other oilseeds	(no value)	(no value)	(no value)	(no value)	248.31	(no value)	248.31
	Summary	25,248.95	214,239.06	11,598.92	(no value)	717,972,153.06	(no value)	718,223,239.99
	Arecanut	(no value)	620	(no value)	(no value)	3,164	(no value)	3,784
	Arhar/Tur	(no value)	1,527,520	22,435	(no value)	(no value)	(no value)	1,549,955
	Bajra	(no value)	1,192,328	73,381	(no value)	(no value)	(no value)	1,265,709
	Banana	(no value)	(no value)	(no value)	(no value)	15,041,631	(no value)	15,041,631
	Beans & Mutter((no value)	(no value)	(no value)	(no value)	70,041	(no value)	70,041
	Bhindi	(no value)	(no value)	(no value)	(no value)	199,605	(no value)	199,603
	Bottle Gourd	(no value)	(no value)	(no value)	(no value)	0	(no value)	(
	Brinjal	(no value)	303,726	248,154	(no value)	463,200	(no value)	1,015,080
	Cabbage	(no value)	34,615	37,504	(no value)	0	(no value)	72,119
Andhra Pradesh	Cashewnut	(no value)	110,702	(no value)	(no value)	408,463	(no value)	519,165
	Castor seed	(no value)	362,476	6,934	(no value)	25,783	(no value)	395,193
	Citrus Fruit	(no value)	(no value)	(no value)	(no value)	456,274	(no value)	456,274
	Coconut	(no value)	(no value)	(no value)	(no value)	16,806,002,260	(no value)	16,806,002,260
	Coriander	(no value)	1,135	29,915	(no value)	135,326	(no value)	166,370

Production		Autumn	Kharif	Rabi	Summer	Whole Year	Winter	Summary
	Peas & beans (P	(no value)	(no value)	220,368	(no value)	(no value)	(no value)	220,36
	Pineapple	Rabi Assam	Rabi Assam Peas & beans (Pulse		(no value)	433,460	(no value)	1,461,32
	Potato	Production:	220,3	(no value)	(no value)	11,021,521	(no value)	11,021,52
	Rapeseed &Must	(no value)	(no value)	2,495,723	(no value)	(no value)	(no value)	2,495,72
	Rice	7,008,303	(no value)	(no value)	13,677,048	(no value)	51,115,739	71,801,09
	Sesamum	(no value)	131,973	(no value)	(no value)	8,257	(no value)	140,23
	Small millets	(no value)	69,650	(no value)	(no value)	(no value)	(no value)	69,650
Assam	Sugarcane	(no value)	1,287,451	(no value)	(no value)	17,558,543	(no value)	18,845,99
	Sweet potato	(no value)	(no value)	115,095	(no value)	386,214	(no value)	501,309
	Tapioca	(no value)	117,319	(no value)	(no value)	180,478	(no value)	297,79
	Tobacco	(no value)	612	(no value)	(no value)	5,743	(no value)	6,35
	Turmerio	(no value)	(no value)	(no value)	(no value)	180,527	(no value)	180,521
	Urad	(no value)	(no value)	338,637	(no value)	(no value)	(no value)	338,631
	Wheat	(no value)	(no value)	1,218,370	(no value)	(no value)	(no value)	1,218,370
	other misc, pulses	(no value)	(no value)	6,672	(no value)	(no value)	(no value)	6,672
	Summary	8,230,196	15,782,850	8,404,649	17,171,024	1,996,667,293	65,495,747	2,111,751,759
	Arhar/Tur	(no value)	817,139	(no value)	(no value)	(no value)	(no value)	817,139
	Bajra	(no value)	51,189	(no value)	(no value)	(no value)	(no value)	51,189

5) STATES WITH CROP PRODUCTION:

7.2 FEATURE 2:

B) CREATING THE DASHBOARD:

7.3 CODING:

https://github.com/IBM-EPBL/IBM-Project-20106-1659712640/blob/main/project%20development%20phase/Sprint%203/Esimat e_crop_yield_prediction.ipynb

8.RESULTS:

A) DATA EXPLORATION:

DATA VISUALIZATION CHARTS

WITH YEARS USAGE OF AREA AND PRODUCTION:

	Area	Production
1997	231,715,046	851,232,90
1998	166,988,082	5,825,320,640.4
1999	158,666,106	6,434,665,985.
2000	165,297,477	7,449,709,127.
2001	165,295,604.67	**********
2002	157,769,017.21	
2003	172,088,098.54	*********
2004	167,878,424.73	
2005	163,136,376.32	**********
2006	170,699,101.65	
2007	152,724,165.3	
2008	171,232,070	
2009	165,694,709	*********
2010	176,619,202.02	**********
2011	153,629,160.88	
2012	152,469,799	
2013	141.524.909.29	
2013		
Production	12,903,588,632	.88
2013	141,524,909.29	*********
2014	115,757,541.56	*********
2015	4,601,298	6,935,064.
Summary	************	*********

TOP 10 STATES WITH MOST AREA:

STATES WITH CROP PRODUCTION WITH SEASONS:

Production		Autumn	Kharif	Rabi	Summer	Whole Year	Winter	Summary
Andaman and Ni	Urad	(no value)	(no value)	475	(no value)	(no value)	(no value)	47:
	other oilseeds	(no value)	(no value)	(no value)	(no value)	248.31	(no value)	248.31
	Summary	25,248.95	214,239.06	11,598.92	(no value)	717,972,153.06	(no value)	718,223,239.9
	Arecenut	(no value)	620	(no value)	(no value)	3,164	(no value)	3,78
	Arhar/Tur	(no value)	1,527,520	22,435	(no value)	(no value)	(no value)	1,549,95
	Bajra	(no value)	1,192,328	73,381	(no value)	(no value)	(no value)	1,265,70
	Banana	(no value)	(no value)	(no value)	(no value)	15,041,631	(no value)	15,041,63
	Beans & Mutter((no value)	(no value)	(no value)	(no value)	70,041	(no value)	70,04
	Bhindi	(no value)	(no value)	(no value)	(no value)	199,605	(no value)	199,60
	Bottle Gourd	(no value)	(no value)	(no value)	(no value)	0	(no value)	
	Brinjal	(no value)	303,726	248,154	(no value)	463,200	(no value)	1,015,08
	Cabbage	(no value)	34,615	37,504	(no value)	0	(no value)	72,11
Andhra Pradesh	Cashewnut	(no value)	110,702	(no value)	(no value)	408,463	(no value)	519,16
	Castor seed	(no value)	362,476	6,934	(no value)	25,783	(no value)	395,19
	Citrus Fruit	(no value)	(no value)	(no value)	(no value)	456,274	(no value)	456,27
	Coconut	(no value)	(no value)	(no value)	(no value)	16,806,002,260	(no value)	16,806,002,26
	Coriander	(no value)	1,135	29,915	(no value)	135,326	(no value)	166,37

Production		Autumn	Kharif	Rabi		Summer	Whole Year	Winter	Summary
	Peas & beans (P	(no value)	(no value)		220,368	(no value)	(no value)	(no value)	220,36
	Pineapple	Rabi Assam	Rabi Assam Peas & beans (Pulses)		1,027,864	(no value)	433,460	(no value)	1,461,32
	Potato	Production:	220,3	368	(no value)	(no value)	11,021,521	(no value)	11,021,52
	Rapeseed &Must	(no value)	(no value)	(no value) 2,45		(no value)	(no value)	(no value)	2,495,72
	Rice	7,008,303	(no value)	(no value)		13,677,048	(no value)	51,115,739	71,801,09
	Sesamum	(no value)	131,973	131,973		(no value)	8,257	(no value)	140,23
	Small millets	(no value)	69,650		(no value)	(no value)	(no value)	(no value)	69,65
Assam	Sugarcane	(no value)	1,287,451		(no value)	(no value)	17,558,543	(no value)	18,845,99
	Sweet potato	(no value)	(no value)		115,095	(no value)	386,214	(no value)	501,30
	Tapioca	(no value)	117,319		(no value)	(no value)	180,478	(no value)	297,79
	Tobacco	(no value)	612	612		(no value)	5,743	(no value)	6,35
	Turmerio	(no value)	(no value)		(no value)	(no value)	180,527	(no value)	180,52
	Urad	(no value)	(no value)		338,637	(no value)	(no value)	(no value)	338,63
	Wheat	(no value) (no value)	(no value)		1,218,370	(no value)	(no value)	(no value)	1,218,376
	other misc. pulses	(no value)	(no value)		6,672	(no value)	(no value)	(no value)	
	Summary	8,230,196	15,782,850	8,404,64		17,171,024	1,996,667,293	65,495,747	2,111,751,759
	Arhar/Tur	(no value)	817,139		(no value)	(no value)	(no value)	(no value)	817,13
	Bajra	(no value)	51,189		(no value)	(no value)	(no value)	(no value)	51,18

8. ADVANTAGES:

- Predicting productivity of crop in various climatic conditions can help farmer and other partners in essential basic leadership as far as agronomy and product decision.
- •This model can be used to select the most excellent crops for the region and also its yield thereby improving the values and gain of farming also.
- •This will help the policy makers of the state to determine the budget.
- If the production of a crop observes a declining trend, then, they can plan to implement
- the schemes at an early stage. This in return will save the state from shortage of the product.
- Monitors the growth of healthy crops.
- Helps the government to frame the government policies.
- •Yield data helps the farmer to determine how much they should plant next year
- •Helps the farmer in Seed Selection, Pest Management, Irrigation Scheduling, etc., ...

CHALLENGES:

Challenges are the major basis which imminent the negative impacts on current project. Some of the challenges faced during crop yield prediction are:

- Choosing appropriate dataset, after choosing dataset tuning of the parameters which makes project more efficient to get the desired results.
- Model must be trained by taking consideration of less computational efficiency and power.
 - Increase of error rate due to dynamically changing the environment.

9.CONCLUSION:

Our project will make policy maker of the state to determine the budget. If the production of a crop observes a declining trend, then, they can plan to implement the schemes at an early stage. This in return will save the state from shortage of the product. Monitors the growth of healthy crops. Helps the government to frame the government policies. The productivity of agriculture has slightly increased as a result of technology's introduction. New ideas like digital agriculture, smart farming, precision agriculture, etc. have been made possible by the innovations. The analysis of agricultural productivity and the uncovering of hidden patterns utilizing data sets related to seasons and crop yields have been noted in the literature. Using IBM Cognos, we have observed and conducted analysis regarding various crops grown, areas, and productions in various states and districts. The scope of the project is to determine the crop yield of an area by considering dataset with some features which are important or related to crop production such as temperature, moisture, rainfall, and production of the crop in previous years. To predict a continuous value, regression models are used.

10. FUTURE SCOPE:

Our future scope is to add many more geographical features and predict using those features.

11.APPENDIX:

- https://www.degruyter.com/document/doi/10.1515/jisys-2012-0016/html
- https://ieeexplore.ieee.org/document/8697806
- •https://www.researchgate.net/publication/339102917_Big_data_analytics_in_A griculTure
- https://www.agriculture.com/technology/crop-management/trimble-claas-to-develop-next-gen-precision-system-for-claas-ag-equipment
- https://www.ijert.org/crop-prediction-using-machine-learning-approaches