

On Predicting the Outcomes of Chemotherapy Treatment in Breast Cancer

Agastya Silvina, Juliana Bowles, and Peter Hall

- Introduction
- Related Work
- Data Analysis
- Models Creation
- Result
- Conclusion

Introduction

- Cancer
 - o is a mutation caused by an abnormal reproduction of cells.
 - o can occur in different organs (e.g., **breast**, lungs, bone, etc.)
- Treatments vary from surgery with **chemotherapy** and/or radiotherapy (i.e. usually take a long time and in sequence)
 - However some treatments are toxic and expensive
- We compared several different techniques (Markov Model, HMM, RF, RNN) applied to the same data set to predict the toxicity outcome of different treatment options

Related Work

- Many ongoing research looks at prediction of cancer treatment outcomes
 - Bayesian Logistic Regression (Subramani et al.)
 - Random Forest (Hui-Ling Chen et al.)
 - SVM (Nguyen et al.)
- We have added HMM and RNN
 (common in different fields like NLP) to
 explore what their benefits might be

- Introduction
- Related Work
- Data Analysis
- Models Creation
- Result
- Conclusion

Data Analysis

- We use a data extraction from an oncology department in Scotland
 - o 3 years (2014 2016)
 - Includes various observations concerning breast cancer treatments (e.g. intention, regime, cycles), recorded side effects (here, toxicity level), and patient characteristics (e.g. age, BMI, performance status).

Intention	Number of Treatments	Number of Patients
Adjuvant	1209	205
Neo-adjuvant	1855	382
Palliative	2752	213

Toxicity proportion

Age - BMI

Features correlation

- Introduction
- Related Work
- Data Analysis
- Models Creation
- Result
- Conclusion

Markov Model (MM)

- A stochastic model with the assumption that a future state only depends on the current state.
- 0, 1, 2, 3 denote the toxicity state(i.e. No toxicity, Low, Medium, High)

The Adjuvant therapy Markov Chain

Hidden Markov Model (HMM)

- Based on augmenting a Markov chain to observe the hidden states of events
- Our HMM components:
 - States: **T0**, **T1**, **T2**, **T3**
 - Transitions: from **T0 to T1**, from **T1 to T3**, etc
 - Observations: **cycle, age, BMI, regime** (categorised and coded). For example, 1-2-3-1 denotes the observation for an overweight patient who gets the FEC-D (D) in their first cycle and is aged less than 50 years
 - Emissions: the probability of the observations generated from the toxicity state

Random Forest

- An ensemble of decision trees for solving classification problems.
- We created three RF models for each treatment intention (i.e., adjuvant, neoadjuvant, palliative)
 - Predictors: age, BMI, Regime,
 cycle, previous toxicity, and
 previous performance status.
 - Outcome: Patients' toxicity

Recurrent Neural Network (RNN)

- A class of NN where connections between nodes form a directed graph along a temporal sequence.
- Implemented using **tensorflow LSTM** module.
- Used similar features as for our RF model. However, we do not use the previous performance status and previous toxicity fields.

many to one

Model Comparison

Markov Model

- A Stochastic model
- Has no state memory

Random Forest

- Ensemble learning
- Has one state memory with previous toxicity field

Hidden Markov model (HMM)

- Statistical Markov Model
- Has one state memory
- Based on POS Tagging

Recurrent Neural Network

- Sequential ANN
- Memorises all states

- Introduction
- Related Work
- Data Analysis
- Models Creation
- Result
- Conclusion

Markov Model

Palliative treatments distribution

Classifier

- RNN: Recurrent Neural Network
- **RF**: Random Forest
- *HMM-1: Hidden Markov Model-mid treatments
- **HMM-2: Hidden Markov Model-init & end cycle (i.e., cycle = 0 or cycle = end of treatment)

F1-Score

- Introduction
- Related Work
- Data Analysis
- Models Creation
- Result
- Conclusion

Conclusion

- Our classifiers can predict the toxicity outcome of the chemotherapy outcomes with around **0.8 0.85** accuracy.
- The RNN model performed better than all other models because it considers all the history of patients' treatments
- In contrast to the MM, the classifiers are more tailored for an individual patient.
 - Both the MM and the classifiers are a complement to each other.

Future Work

- Improve the accuracy further by integrating more data regarding the cancer characteristics and patients' comorbidity usually ignored.
- Create a dashboard and/or reporting system which can be helpful to the clinical oncologist as a second opinion to decide which regimen is more suitable for an individual patient.

Future Work

Our aim is to use a synthetic data to further develop the application.

Dashboard

https://breast.predict.nhs. uk/tool

Open Issues and further work

- Missing Values
 - Solution: regression, removing some instances
- Class imbalance
 - Solution: duplication for some classes
- Overfitting
 - Solution: Cross Validation, using more data (will be provided by IBM SERUM project)

Thank you

Q/A

