Esercizi Esame ALAN

1 Esercizio 1: Errori

1.1 Condizionamento

Calcolare il condizionamento usando l'algoritmo più semplice usando la formula:

$$C_f = \frac{x(f'(x))}{f(x)}$$

Poi calcolarne il limite:

- "Per piccoli valori di x" $\rightarrow \lim_{x\rightarrow 0} C_f$
- "Per piccoli valori positivi di x" $\rightarrow \lim_{x \rightarrow 0^+} C_f$
- "Per grandi valori di x" $\to \lim_{x \to +\infty} C_f$

Se il limite intorno a ± 1 è ben condizionato, altrimenti è mal condizionato.

Il risultato del limite serve per calcolare l'errore inerente:

$$Err.Inerente = C_f \cdot Err.Input$$

1.2 Errori negli algoritmi

Si disegnano i grafi degli algoritmi e l'etichetta degli archi è:

$a \pm b$	$\varepsilon_{a\pm b} = \frac{a}{a\pm b}\varepsilon_a \pm \frac{b}{a\pm b}\varepsilon_b$
$a \cdot b$	$\varepsilon_{a \cdot b} = \varepsilon_b + \varepsilon_a$
$\frac{a}{b}$	$\varepsilon_{\frac{a}{b}} = \varepsilon_b - \varepsilon_a$
g(x)	$\varepsilon_{g(x)} = C_{g(x)} \cdot \varepsilon_x$

Per ogni nodo (a partire dal fondo) si apre una parentesi e dentro si moltiplicano tutti gli archi a partire da quel nodo fino alla fine, se ci sono percorsi alternativi si fa la somma dei percorsi.

$$\varepsilon\{(I \cdot II \cdot \ldots) + (\ldots) + \ldots\}$$

Per verificare la stabilità dell'algoritmo bisogna fare il limite tendente a 0^+ di tutti gli archi e se viene finito (per tutti gli archi) è stabile, altrimenti è instabile (ne basta uno per verificarlo).

Esempio

2 Esercizio 2: Rotazioni/Riflessioni

2.1 Rotazioni di Givens

Si indica una rotazione di Givens con:

$$G(i, j, \theta)$$

dove i rappresenta la posizione del perno all'interno della matrice, j la posizione dell'elemento da azzerare e θ l'angolo di rotazione (che ignoreremo per l'esercizio). Ogni rotazione azzera un elemento (j) e cambia il valore del perno i (0 non può essere perno). Si calcola il valore di c e s ad ogni passaggio:

$$c = \cos(\theta) = \frac{x_i}{\sqrt{x_i^2 + x_j^2}}$$

$$s = \sin(\theta) = \frac{-x_j}{\sqrt{x_i^2 + x_j^2}}$$

Si costruisce la matrice quadrata (della stessa dimensione dei vettori) inserendo c e s:

- $c \in -s$ nella riga i
- $\bullet \ c \in s$ nella rigaj

c va nella diagonale, s e -s bisogna posizionarli nella colonna dove c'è l'altro c.

Si moltiplica la matrice per il vettore iniziale per ottenere il vettore finale/intermedio γ . Usiamo γ per fare un'altra rotazione fino a quando non è uguale al vettore finale.

Esempio

$$\mathcal{L} = \text{ROND} = \frac{x_{12}}{\sqrt{x_{11}^{2} + x_{13}^{2}}} = 0$$

$$\lambda = \lambda_{11} \wedge 0 = \frac{-x_{11}}{\sqrt{x_{11}^{2} + x_{13}^{2}}} = 1$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 0$$

2.1.1 Interpretazione geometrica

Per ogni rotazione, scrivere su che piano è stata fatta, ad esempio con la rotazione $G(2,1,\theta)$ si può dire: "si tratta di una rotazione nel piano $< e_2, e_1 >$ ". Visto che sono tutte isometrie:

||vettore iniziale|| = ||vettore finale||

Si può usare come prova.

2.2 Riflessioni di Householder

NB: abbiamo visto solo come ottenere una riflessione di Householder nel caso in cui α sia il primo elemento del vettore risultante.

- 1. Si calcola $\alpha = ||x||_2$
- 2. Si calcola $u = x \begin{pmatrix} \alpha \\ 0 \\ \vdots \\ 0 \end{pmatrix}$
- 3. Si calcola $u^T \bigotimes u \to \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \bigotimes \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} x_1 \cdot y_1 & x_1 \cdot y_2 \\ x_2 \cdot y_1 & x_2 \cdot y_2 \end{pmatrix}$
- 4. Si crea la matrice (quadrata) identità I con dimensione del vettore x
- 5. Si calcola P:

$$P = I - \frac{2}{\|u\|^2} \cdot uu^T$$

6. Infine si calcola Px trovando così il vettore risultante

2.2.1 Verifiche

- P è ortogonale: colonne perpendicolari, prodotto scalare = 0, colonne normalizzate ($\|$ colonna $\|_2 = 1$)
- $P \cdot x = \alpha e_1$

2.2.2 Interpretazione geometrica

Si scrive: P = (...) riflette x = (:) rispetto al piano perpendicolare (al vettore w)

2. Determinare una riflessione di Householder che porti il vettore $x=\begin{pmatrix} -3\\4 \end{pmatrix}$ nella forma $\begin{pmatrix} \eta\\0 \end{pmatrix}$, con η opportuno (esplicitare la matrice). Dare inoltre un'interpretazione geometrica dell'esercizio svolto.

$$\begin{aligned}
\alpha &= || \times || = \sqrt{9 + 46} = \sqrt{25 = 5} \\
u &= {\binom{-3}{4}} - {\binom{5}{6}} = {\binom{-8}{4}} \\
|| u || &= \sqrt{64 + 46} = \sqrt{80} \\
u u^{T} &= u \otimes u^{T} = {\binom{-9}{4}} (-8 \text{ u}) = {\binom{64}{4}} - 32 \\
& = \sqrt{\frac{8}{100}} \left({\binom{40}{64}} - {\binom{54}{4}} - {\frac{25}{36}} {\binom{64}{4}} - {\frac{32}{46}} \right) = \frac{1}{40} \left({\binom{40}{64}} - {\binom{54}{32}} - {\binom{34}{4}} \right) = {\binom{-345}{5}} {\binom{45}{5}} \\
& = \sqrt{-345} {\binom{45}{5}} {\binom{-3}{5}} {\binom{-3}{4}} = {\binom{\frac{9}{4}}{46}} {\binom{46}{5}} - {\binom{5}{4}} - {\binom{54}{4}} - {\binom{32}{4}} + {\binom{45}{5}} - {\binom{5}{4}} - {\binom{45}{5}} - {\binom{5}{4}} - {\binom{45}{5}} - {\binom{5}{4}} - {\binom{45}{5}} - {\binom{5}{4}} -$$

Esercizio 3: Minimi quadrati

$$f(x) = \alpha g(x) \pm \beta h(x) \pm \ldots \pm \gamma k(x)$$

$$A = \begin{pmatrix} g(x_1) & h(x_1) & \dots & \gamma k(x_1) \\ g(x_2) & h(x_2) & \dots & \gamma k(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ g(x_n) & h(x_n) & \dots & \gamma k(x_n) \end{pmatrix}$$

- Se c'è solo la costante senza funzione associata, la sua colonna corrispondente sarà composta solo da 1
- Matrice incognite: $A^T A$
- Matrice soluzioni: $A^T \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$
- Usiamo la matrice delle incognite per costruire il sistema (ad esempio α è associata alla prima colonna, β alla seconda e così via moltiplicando le incognite con i valori della colonna e sommandoli tra loro) e poniamo ogni riga uguale alla corrispondente riga della matrice soluzioni. Isolo le incognite e poi le sostituisco nella funzione di partenza.

2.3 Interpretazione geometrica

Disegnare il grafico con i punti e la funzione ricavata, evidenziando le distanze tra i punti dati e il grafico. In più si può scrivere: "la retta di regressione minimizza la somma degli scarti tra i valori di y dei punti ed i valori (equazione del grafico) dell* (nome funzione) calcolat* nelle ascisse x dei punti dati".

2.4 Esempio

3. Data la funzione

$$g(x) = a\frac{6}{x} + b x + c$$

calcolare i coefficienti $a,\,b$ e c per approssimare ai minimi quadrati i seguenti dati:

Dare inoltre un'interpretazione geometrica dell'esercizio svolto.

$$A = \begin{pmatrix} -4 & -6 & 1 \\ 6 & 1 & 1 \\ 2 & 2 & 1 \end{pmatrix} \qquad b = \begin{pmatrix} 5 \\ 5 \\ 4 \end{pmatrix}$$

$$A^{T}A = \begin{pmatrix} -1 & 6 & 3 & 2 \\ -6 & 1 & 2 & 3 \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} -1 & -6 & 1 \\ 6 & 1 & 1 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 50 & 24 & 10 \\ 24 & 50 & 0 \\ 10 & 0 & 4 \end{pmatrix}$$

$$A^{T}A = \begin{pmatrix} -1 & 6 & 3 & 2 \\ -6 & 1 & 2 & 3 \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 5 \\ 5 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 26 \\ -26 \\ 10 \end{pmatrix}$$

$$A^{T}B = \begin{pmatrix} -1 & 6 & 3 & 2 \\ -6 & 1 & 2 & 3 \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 5 \\ 5 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 26 \\ -26 \\ 10 \end{pmatrix}$$

$$\begin{cases} 50 & x + 24b & 40 & x = 76 \\ 24a & 4 & 50b = -26 \\ 10 & x + 4a & x = 40 \end{cases} \begin{cases} A = 1 \\ A = -1 \\ x = \emptyset \end{cases} \qquad \Re(x) = \frac{6}{x} - x$$

Esercizio 4: Diagonalizzazione

- 1. Controllare se A è simmetrica, se lo è, allora è diagonalizzabile
- 2. Trovare gli autovalori risolvendo

$$\det(A - \lambda I) = 0$$

e ordinarli in ordine decrescente

- 3. Verificare che la quantità di autovalori sia uguale all'ordine della matrice (es. una 2×2 ha ordine 2), altrimenti non è diagonalizzabile
- 4. Per ogni autovalore trovare gli autovettori usando la matrice $A \lambda I$ (sostituendo a λ l'autovalore) e risolvendo il sistema

$$(A - \lambda I) \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

- 5. Normalizzare gli autovettori usando: $\frac{x_i}{\|v\|}$ dove v è l'autovettore e x_i è l'elemento i-esimo dell'autovettore, controllare se sono indipendenti tra di loro altrimenti non è diagonalizzabile
- 6. Creare la matrice V composta dagli autovettori, e la sua inversa
- 7. Creare la matrice D usando gli autovalori in ordine decrescente sulla diagonale. $\begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$
- 8. Si otterrà la diagonalizzazione della matrice di partenza composta nel seguente modo:

$$A = VDV^{-1}$$

Esempio

$$det \begin{pmatrix} 2-\lambda & A \\ 0 & -2-\lambda \end{pmatrix} = -4+\lambda^{2} \qquad \lambda = \pm 2 \qquad \lambda = \left\{2, -2\right\}$$

$$\lambda = 2 \qquad \begin{pmatrix} 0 & A \\ 0 & -4 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} = 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ 0 & \lambda \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} = 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ 0 & \lambda \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} = 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ 0 & \lambda \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} = 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} = 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} = 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{1} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} = 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{1} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} = 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{1} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} = 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{1} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} = 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{1} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} = 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{1} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} = 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{1} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} = 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{1} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} = 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} = 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{1} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} = 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{1} \\ x_{2} = 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{1} \\ x_{2} = 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{1} \\ x_{2} = 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{1} \\ x_{2} = 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{1} \\ x_{2} = 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{1} \\ x_{2} = 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{1} \\ x_{2} = 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{1} \\ x_{2} = 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{1} \\ x_{2} = 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{$$

2.5 Convergenza: Metodo delle potenze

Converge all'autovalore di massimo modulo

- 1. Si riordinano gli autovalori in base al massimo modulo, ottenendo $\lambda_1, \lambda_2, \dots, \lambda_n$ dove λ_1 è l'autovalore di massimo modulo
- 2. Converge se $\lambda_1 > \lambda_2$
- 3. k il numero di volte in cui si esegue la moltiplicazione $v_i = A \cdot v_{i-1}, v_n = A \cdot v_{n-1} = A^2 \cdot v_{n-2} = \ldots = A^n \cdot v_0$
- 4. Si trova la velocità di convergenza con:

$$V = \left(\frac{\lambda_2}{\lambda_1}\right)^k$$

2.6 Convergenza: Metodo delle potenze inverse

- 1. Dato uno shift p, bisogna trovare l'autovalore più vicino a $p(\lambda_1)$ ed il secondo più vicino a $p(\lambda_2)$
- 2. Si calcola

$$\mu_1 = \frac{1}{\lambda_1 - p}$$

- 3. μ_1 sarà quello di massimo modulo tra tutti i μ calcolati, mentre μ_2 sarà il secondo di massimo modulo
- 4. La velocità di convergenza si calcola:

$$V = \left(\frac{\mu_2}{\mu_1}\right)^k$$

Se si hanno due autovalori con lo stesso modulo massimo, allora non converge.

3 Esercizio 5: Spline

$$S(x) = \begin{cases} f(x) & \text{se } x \in [a, b] \\ g(x) & \text{se } x \in [b, c] \end{cases}$$

- 1. Controllare:
 - $\lim_{x\to b^-} f(x) = \lim_{x\to b^+} g(x)$
 - $\lim_{x \to b^{-}} f'(x) = \lim_{x \to b^{+}} g'(x)$
 - $\lim_{x \to b^{-}} f''(x) = \lim_{x \to b^{+}} g''(x)$
 - Fare lo stesso fino ad arrivare a n-1-esima derivata

Se tutte le condizioni sono verificate, allora è una spline.

- 2. Calcolare i momenti: $S''(x_i)$, per tutti i nodi richiesti
- 3. Periodicità:
 - S(a) = S(c)
 - S'(a) = S'(c)
 - S''(a) = S''(c)
 - $\bullet\,$ Fare lo stesso fino ad arrivare a n-1-esima derivata
- 4. Interpolazione: controllare se $S(x_i) = h(x_i)$ per tutti i nodi richiesti, con h(x) funzione interpolante
- 5. S' è naturale se S''(a) = S''(c) = 0

4 Esercizio 5: Condizionamento matrice e di una norma

Per verificare se la matrice A^{-1} è l'inversa bisogna vedere se $\det(A) \neq 0$ e se $A^{-1}A = I$. Per calcolare il condizionamento relativo ad una norma, bisogna fare:

$$||A||_{nm}$$
$$||A^{-1}||_{nm}$$

dove nm indica la norma in questione. Poi $M(A) = ||A||_{nm} \cdot ||A^{-1}||_{nm}$ per calcolare la maggiorazione dell'errore:

$$\varepsilon_x = \frac{\|\bar{x} - x\|_{nm}}{\|x\|_{nm}}$$
$$\varepsilon_b = \frac{\|\delta b\|_{nm}}{\|b\|_{nm}}$$
$$\varepsilon_x \le u(A)\varepsilon_b$$

Quindi se l'esercizio chiede di calcolare una maggiorazione, basta calcolarsi u(A) e ε_b

4.1 Norme

4.1.1 Vettori

$$||x||_1 = \sum_{i=1}^n |x_i|$$

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2} = \sqrt{x^T x}$$

$$||x||_{\infty} = \max_{1 \le i \le n} |x_i|$$

4.1.2 Matrici

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|$$

(Somma di tutti gli elementi in modulo di una colonna e prendo il massimo)

$$||A||_2$$

Esiste ma non calcolabile esplicitamente

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$$

(Somma di tutti gli elementi in modulo di una riga e prendo il massimo)

5 Esercizio 5: SVD

Una SVD viene utilizzata per trovare una diagonalizzazione di una matrice non simmetrica scritta nella forma

$$A = U\Sigma V^T$$

- U è una matrice ortogonale (ovvero $U^TU = I$ oppure $UU^T = I$)
- $\bullet~\Sigma$ è una matrice diagonale con i valori singolari sulla diagonale in ordine decrescente
- V è una matrice ortogonale (ovvero $V^TV = I$ oppure $VV^T = I$)

Esempio di sistema cubico

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 \\ x_7 & x_8 & x_9 \end{pmatrix} = \begin{pmatrix} 9 & 8 & 7 \\ 6 & 5 & 4 \\ 3 & 2 & 1 \end{pmatrix} \rightarrow v_1 = \begin{cases} 1x_1 + 2x_4 + 3x_7 = 9 \\ 4x_1 + 5x_4 + 6x_7 = 6 \\ 7x_1 + 8x_4 + 9x_7 = 3 \end{cases}$$
Use the selection of all a incorpite and the incorpite and a selection of the columns of the colu

Uso le colonne delle incognite x e la soluzione associata è sempre nella colonna delle soluzioni

5.1 Proprietà

Data una matrice $A \in \mathbb{R}^{m \times n}$

Immagine: trovare il valore singolare r-esimo, ovvero il più piccolo elemento strrettamente maggiore di 0. Per trovare l'immagine scriveremo tutti i vettori u da 1 a r:

$$R(A) = \langle u_1, u_2, \dots, u_r \rangle$$

Nucleo: indichiamo con v i vettori che lo compongono, partiranno da r+1 fino a n:

$$N(A) = \langle v_{r+1}, v_{r+2}, \dots, v_n \rangle$$

Certi esercizi potrebbero chiedere di determinare i valori singolari delle matrici A^TA, AA^T, A^T : esistono proprietà specifiche per questi casi.

5.2 Pseudoinversa

Dimensione: $\forall A \in \mathbb{R}^{m \times n} : \exists A^T \in \mathbb{R}^{m \times n}$