Process Algebra to Model Smart Distributed Mobile Real-Time IoT

Implementation Perspective for Cyber-Physical Systems

20 Sept 2019

Prof. Moonkun Lee, Ph.D.

Division of Computer Science and Engineering Chonbuk National University Republic of Korea

OMILAB KOREA

MEMO SUMMER SCHOOL

ADOxx Meta-Modeling Platform

Modeling Hierarchy

Model Tranformation/Translation

Meta-Modeling Tools

Aspects	AToM3	MetaEdit+	DOME	ADOxx
Platforms	Windows, Unix	Windows, Unix, Sun Solaris, HP	Windows, Linux, Sun Solaris	Windows
Meta-modeling language	ER	GOPRR	The DOME Tool Specification language	ADOxx Meta-modeling Language
Graphical specification?	Yes	No	Partly, the graphical appearance can't be edited in a graphical way	Yes
Hierarchy	Partly, not implement complete yet	Yes, decomposition	Yes, sub-diagram	Yes
Inheritance	No	Yes, (make dependant)	Yes	Yes
Constraint	Python function or OCL	No specific constraint language	Alter language	ADOxx Definition Language, AdoScript
Simulation	Yes	Yes	Yes	Yes
Simulation method and implementation workload	Graph Grammar, an intuitive way, less code by hand	Report definition language, all code by hand	Alter function, all code by hand	Supported by ADOxx or all code by hand
Code generation and workload	Python source code Little code by hand	Can be any language Most code by hand	Can be any language Most code by hand	No
Report generation	No	Yes	No	Yes

Generic Modelling Method Framework

$$Method = (T+MA) \cdot (L+P)$$

Karagiannis, D., Kühn, H.: "Metamodelling Platforms". In Bauknecht, K., Min Tjoa, A., Quirchmayer, G. (Eds.): Proceedings of the Third International Conference EC-Web 2002 – Dexa 2002, Aix-en-Provence, France, September 2002, LNCS 2455, Springer, Berlin/Heidelberg, p. 182.

ADOxx Library

A Tool on the Platform

DEMO: PBC

SW Engineering

SW Engineering (1991~1996)

- R&D, CCCC, USA (~1996)
 - · SRE(SW Re/Reverse-engineering Environment) Tool
 - · DECDesign,
 - · 5 years (11 yrs x 5 men)
 - · USA, Navy, 100,000 ~ 1,000,000 LOC (Scalability)
 - · OS: ATES, SDEX-20 → Unix, VMS
 - · PL: Fortran, C, Ada83 → C, C++, Ada83, Ada95

SW Re/reverse Engineering

Implementation

SRE (SW Re/reverse-Engineering Env.)

Theory

Practice

SW Engineering

SW Engineering

Re/reverse 1 m x 1 yr Engineering Behavior PRISM 1.0 2 m x 1 yr Ontology GTS-Logic 3 men x 2 years SAVE 2.0 dT-Calculus **Practice Theory ADOXX Meta-Modeling Platform**

Contents

- 1. Motivation
- 2. Modeling
 - 1) Specification: δ -Calculus
 - 2) Verification: GTS Logic
- 3. SAVE Tool
- 4. Cyber-Physical Systems Application
- 5. Summary
- 6. Discussion

1. Motivation

- 2. Modeling
 - 1) Specification: δ -Calculus
 - 2) Verification: GTS Logic
 - 3) EMS Example
- 3. SAVE Tool
- 4. Cyber-Physical Systems Application
- 5. Summary
- 6. Discussion

1. MOTIVATIONS

Mission –Critical Systems

- Properties
 - Distributedness
 - Mobility
 - Communication
 - Process Control
 - Temporality
- Characteristics
 - Complex
 - Large
 - Timeliness
- Examples
 - Telecommunication networks
 - Telemedicine
 - Process automation
 - Multimedia streaming
 - Avionics systems
 - Defense applications
- Requirements
 - Specification
 - Verification

Smart Systems

- Properties
 - Distributedness
 - Mobility
 - Communication
 - Process Control
 - Temporality
- Characteristics
 - IoT
 - Big Data
 - AI
- Examples
 - Smart Home
 - Smart Car
 - Smart Office
 - Smart Building
 - Smart City
 - Smart Factory
 - Smart Society
- Requirements
 - Safety
 - Security
 - Reliability

Accident Rates: USA

Driving

- The National HighwayTraffic Safety Admin
- Traffic Safety Facts Data
 - Year 2008
 - 1.27 fatalities per 100 million vehicle miles traveled
 - Year 1998
 - 1.58 fatalities per 100 million miles

Flying

- The National Transportation Safety Board
- Preliminary statistics
 - Year 2008
 - 20 accidents for U.S. air carriers operating scheduled service
 - nearly zero accidents per million flying miles
 - No one died, and only 5 people were seriously injured.

https://traveltips.usatoday.com/air-travel-safer-car-travel-1581.html

Safety/Security Requirements for SW

Mission-Critical Systems

Smart Systems

Motivation: Secure Requirements

Year 1996, ESA Ariane Flight 5 Failure

• Description:

 1996, ESA Ariane 5 Flight Exploded, at 40 seconds after launch.

Cause of explosion:

- A part of the flight SW, reused from Ariane 4.
- One of the sensors in the flight 5 was designed to return a float point value.
- But it used the code for the sensor from the Ariane 4 that was to return an integer value, which did not have an exception handler for overflow due to the inappropriate type of the return value.
- As a result, the exception triggered a signal to the self-explosion of the flight.

Total cost of the failure:

- Hardware Cost: 0.37 Billion \$
- Development Cost: 7 Billion \$.
- Cluster II⁻ 4 identical satellites to study the Earth's magnetosphere over the course of an entire solar cycle.

Cause: Reused Ada Source Code

Reused Ariane 4 Code for Ariane 5

```
procedure LIRE_DERIVE (...) is
    begin
       L_MBV_32:=TBD.T_ENTIER_32S ((1.0/C_M_LSB_BV)*
                                     G_M_INFO_DERIVE(T_ALG.E_BV));
       if L M BV 32 > 32767 then
         P_M_DERIVE(T_ALG.E_BV) := 16#7FFF#;
       elsif L M BV 32 < -32768 then
          P M DERIVE(T ALG. E BV) := 16#8000#;
11
       else
12
          P M DERIVE(T ALG.E BV) := UC 16S EN 16NS(TBD.T ENTER 16S(L M BV 32));
13
14
15
16
       P_M_DERIVE_T_ALG.E_BH) := UC_16S_EN_16NS(TBD.T_ENTER_16S
                                           ((1.0/C M LSB BH)*
17
                                              G_M_INFO_DERIVE(T_ALG.E_BV)));
    end LIRE DERI
```

The internal SRI* software exception was caused during execution of a data conversion from 64-bit floating point to 16-bit signed integer value. The floating point number which was converted had a value greater than what could be represented by a 16-bit signed integer.

```
procedure LIRE DERIVE (...) is
2
3
    begin
       L MBV 32:=TBD.T ENTIER 32S ((1.0/C M LSB BV)*
                                     G M INFO DERIVE(T ALG.E BV));
       if L M BV 32 > 32767 then
         P_M_DERIVE(T_ALG.E_BV) := 16#7FFF#;
       elsif L M BV 32 < -32768 then
10
         P M DERIVE(T ALG.E BV) := 16#8000#;
11
12
         P_M_DERIVE(T_ALG.E_BV) := UC_16S_EN_16NS(TBD.T_ENTER_16S(L_M_BV_32));
13
       end if:
14
15
       L_MBH_32 := TBD.T_ENTIER_32S ((1.0/C_M_LSB_BH)*
16
                                     G M INFO DERIVE(T ALG.E BH));
17
       if L M BH 32 > 32767 then
18
         P_M_DERIVE(T_ALG.E_BH) := 16#7FFF#;
19
       elsif L M BH 32 < -32768 then
20
21
22
23
         P_M_DERIVE(T_ALG.E_BH) := 16#8000#;
         P_M_DERIVE(T_ALG.E_BH) := UC_16S_EN_16NS(TBD.T_ENTER_16S(L_M_BH_32));
       end if;
    end LIRE DERIVE;
```

http://moscova.inria.fr/~levy/talks/10enslongo/enslongo.pdf http://www-users.math.umn.edu/~arnold/disasters/ariane.html

Standards

- ESA:
 - 1975
 - Paris, France
 - 22 member states
 - Budget: 5.250 Billion Euro in 2016.
- ECSS
 - Organization: 1993
- Standardization

Management: ECSS-M-00Assurance: ECSS-Q-00Engineering: ECSS-E-00

- SW:
 - ECSS-E-40: SW Engineering (Version A: 1999)
 - Derived from ISO 12207
 - ECSS-Q-80: SW Product Assurance (Version A: 1996)
- ECSS-E-40
 - SW Engineering
 - SW Engineering Process
 - Model-Based SW Engineering
 - Formal Methods
 - Tool-Based SW Engineering
 - SW life Cycle Process
- Results:
 - ~ 2013년
 - Total 67 launches; 4 failures.

ECSS-E-40C

 (~ 2009)

Year 2018/19 Boeing 737 Max MCAS

- Boeing 737 Max, MCAS SW
 - Boeing's newest family of single-aisle airplanes
 - The fastest-selling airplane in Boeing history
 - About 5,000 orders
 - from more than 100 customers worldwide.

MCAS

- The Maneuvering Characteristics Augmentation System
- It activates when the sensed Angle of Attack (AOA) exceeds a threshold based on airspeed and altitude.
- That tilts the 737 Max's horizontal stabilizer upward at a rate of .27 degrees per second for a total travel of 2.5 degrees in just under 10 seconds.

NFMO 2019

- How much the stabilizer moves depends on Mach number.
- At higher Mach the stablizer moves less, at slower speeds it moves more.
- The trim system under MCAS is no stopped by simply moving the control yoke.

Accidents

- Indonesia Lion Jet 610 [Oct 2018]: All 189 passengers dead.
- Ethiopian Airline 302 [March 2019]: All 157 passengers dead.
- Possible cause
 - Malfunction at sensors for angle between the wings and the air current.
 - MCSA engaged to handle the situation, and it causes the nose to down.
 - The pilots tried to hold back the flight control, but failed.
 - The planes crashed

Close Investigation 27

 $\frac{https://theaircurrent.com/aviation-safety/what-is-the-boeing-737-max-maneuvering-c}{haracteristics-augmentation-system-mcas-jt610/}$

DO-178C (USA)

 (~ 2013)

International Standard Organizations and Their Standards

- ANSI: American National Standards Institute
- AIAA: American Institute of Aeronautics and Astronautics
- EIA: Electronic Industries Association
- IEC: International Electrotechnical Commission
- IEEE: Institute of Electrical and Electronics Engineers, Computer Society, SW Engineering Standards Committee
- ISO: International Organization for Standardization
- RTCA: Radio Technical Commission for Aeronautics
- EUROCAE: European Organization for Civil Aviation Equipment
- ECSS: European Cooperation for Space Standardization

Aerospace/ Avionics Systems	Railway Systems	Nuclear Power Plants	Automobile Systems	Embedded Systems	Defense Systems	Quality Business Mgmt
ECSS-E-40 DO-178C IEEE 12207 AIAA G-010- 1993 CMMI	EN-50128	IEC-60880	ISO-26262 IEC 61508	IEC-61508	MIL-STD- 882E	ISO9001

30

SMART SYSTEMS

Industry 4.0 & Smart Systems

- Smart
 - Home/Office/Car
 - City/Factory/Building
- Characteristics
 - Big Data
 - Intelligence
 - Automation
- Requirements
 - Safety
 - Security
 - Reliability

IoT: Internet of Things

IoT Standard

- Smart City, Smart Life, and Smart World
- International standard for IoT applications
- ITU (Internation Telecommunication Union)
 - 15 June '15, Geneva
 - ITU-T SG20: IoT Standardization
- Plan for standardization
 - M2M(machine-to-machine) communication
 - Ubiquitous sensor network
 - Mechanism for IoT app. interoperability
 - E2E(end-to-end) architecture
- Goal: IoT standard p/
- Application area: Int
 - 1) Industrial sector
 - Health care
 - Electronic device
 - Traffic systems
 - 2) Business sector
 - Financial systems
 - Banking systems
 - 3) Administration systems
 - Local government
 - Central government
- Target
 - 2020: To connect 50 Billion things

What kind of Requirements?

Motivation: SW Engieering Requirements from ECSS Standard

Umbrella Activities

SW Project Management
SW Quality Assurance
SW Configuration Management
Risk Management Management

Prescriptive SE Process Model

Waterfall Model

Incremental Model

Rapid Application Development (RAD) Model

Prototyping Model

Spiral Model

Agile SE Process Model

Extreme Programming (XP) Model

Adaptive Software Development (ASD) Model

Dynamic Systems Development Method (DSDM) Model

SCRUM Model

Feature Driven Development (FAA) Model

R1 & R2: FMM: Formal Method Model

Formal Methods

Types	Typical Methods	Characteristics	Cons
Data/Logic- Based	Z Temporal Logic CASL, etc.	FormalText-basedConsistencyValidityCompletenessSoundness	
State Machine- Based	Statechart Modechart Petri Net Timed Petri Net, etc.	 Reachability Graph-based Structured/Hierarchy Reactive System Priority Temporal properties 	AbstractionMobilitySyntax
Process Algebra-Based	CCS CSP ACP ACSR LOTOS Pi-Calculus Mobile Ambient, etc.	 In The Large In The Small Formal/Algebra Abstraction Equivalence: weak/strong Bisimulation Resource Priority Time Mobility 	 Understandability Visualization

51

P3: Formal Methods and Mathematical Structures

R4: SAVE & PRISM

Knowledge Engineering

Tool 1: SAVE(Specification, Analysis, Verification, Evaluation)

ADOXX 53

R5: Object-Oriented Paradigm

