Stochastic Optimal Control Matching

Carles Domingo-Enrich, Jiequn Han, Brandon Amos, Joan Bruna, Ricky T. Q. Chen

Thomas Mousseau

August 18, 2025

Overview

- 1. Setup and Preliminaries
- 2. Stochastic Optimal Control Matching
- 3. Experiments and results
- 4. Conclusion

Neural ODE: Continuous Normalizing Flows

Continuous Normalizing Flows (CNF)

CNFs model complex distributions by transforming a simple distribution (e.g., Gaussian) through a continuous-time ODE. The transformation is defined by a neural network that learns the dynamics of the flow.

PAS COMPLETE

Key Idea

Instead of discrete steps, CNFs use a continuous-time approach to model the evolution of the distribution, allowing for more flexible and expressive transformations.

Evolution of Generative Models

- **2020 DDPM:** Denoising Diffusion Probabilistic Models interpret generation as reversing a discrete noise-adding process, learning to denoise at each step. They produced high-quality samples but required thousands of slow sampling steps.
- **Score-based Models:** Score-based generative models extended diffusion to continuous-time SDEs, learning the score function $(\nabla_x \log p_t(x))$ to reverse a stochastic diffusion process. This unified diffusion with stochastic control, allowed probability flow ODEs, and sped up sampling.
- **Flow Matching:** Flow matching views generation as learning a deterministic ODE vector field that directly transports a simple distribution (e.g., Gaussian) to data. This removed stochasticity and significantly improved efficiency compared to diffusion/score methods.

What is a Stochastic Control Problem?

A stochastic control problem involves finding an optimal control policy to steer a dynamical system under uncertainty.

Key Components

- State Process: $X_t \in \mathbb{R}^d$ (position in state space at time t)
- Control Process: $u_t \in \mathbb{R}^d$ (action/decision at time t)
- Noise Process: W_t (random disturbances, typically Brownian motion)

Dynamics (SDE)

$$dX_t = f(X_t, u_t, t)dt + g(X_t, t)dW_t$$
(1)

Cost Function

$$J(u) = \mathbb{E}\left[\int_0^T L(X_t, u_t, t)dt + \Phi(X_T)\right] \quad (2)$$

The Goal: Finding Optimal Control

Optimal Control u*

Find the control policy u^* that minimizes the expected cost: $u^* = \arg\min_u J(u)$

Classical Approaches

- Hamilton-Jacobi-Bellman (HJB) equation: Partial differential equation approach
- Dynamic Programming: Discrete-time recursive approach

Challenge

These classical methods become computationally intractable in high dimensions due to the *curse of dimensionality*.

Reasons behind SOCM (1/2)

Many fundamental tasks in machine learning can be naturally cast as stochastic optimal control problems, highlighting the importance of efficient SOC methods.

Key ML Applications of SOC

- Reward fine-tuning of diffusion and flow models: Optimizing generation quality using reward signals
- Conditional sampling on diffusion and flow models: Steering generation towards specific conditions or constraints
- Sampling from unnormalized densities: Efficiently drawing samples from complex, intractable distributions
- Importance sampling of rare events in SDEs: Computing probabilities of low-probability but critical events

Reasons behind SOCM (2/2)

Current SOC methods suffer from optimization challenges that limit their effectiveness.

Current SOC Methods

- Use adjoint methods (like CNFs)
- Yield non-convex function landscapes
- Difficult optimization with local minima
- Unstable training dynamics

Diffusion Models Success

- Use least-squares loss
- Create convex functional landscapes
- Stable and reliable optimization
- Excellent empirical performance

SOCM's Innovation

Goal: Develop least-squares loss formulations for SOC problems, combining the expressiveness of stochastic control with the optimization stability of diffusion models.

SOCM in Context: Optimization Landscapes

Task	Non-convex	Least Squares
Generative Modeling	Maximum Likelihood CNFs	Diffusion models and Flow
Stochastic Optimal Control	Adjoint Methods	Matching Stochastic Optimal Control Matching

Introducing Stochastic Optimal Control Matching

SOCM offers a more principled, stable, and accurate way to learn generative dynamics by blending stochastic control theory with modern matching-based generative modeling.

Key Novel Contributions

- 1. **Controlled Stochastic Process:** Views the generation process as a controlled stochastic process bridging a simple distribution to data.
- 2. **Least-Squares Matching:** Learning the control via least-squares matching, a stable and convex regression objective.
- 3. **Joint Optimization:** Optimizing control and variance-reducing reparameterization matrices simultaneously, for efficient learning.
- 4. **Path-wise Reparameterization:** Introducing a path-wise reparameterization trick, boosting gradient estimation quality.

The SOCM Framework

SOCM Loss Function

The Stochastic Optimal Control Matching objective is defined as:

$$\mathcal{L}_{SOCM}(u, M) := \mathbb{E}\left[\frac{1}{T} \int_0^T \|u(X_t^{\nu}, t) - w(t, \nu, X^{\nu}, B, M_t)\|^2 dt \times \alpha(\nu, X^{\nu}, B)\right]$$
(3)

Where:

• X^{v} is the process controlled by v:

$$dX_t^{\nu} = (b(X_t^{\nu}, t) + \sigma(t)\nu(X_t^{\nu}, t))dt + \sqrt{\lambda}\sigma(t)dB_t$$
(4)

with $X_0^{\nu} \sim p_0$

- $u(X_t^v, t)$ is the control policy being learned
- $w(t, v, X^v, B, M_t)$ is the target matching function
- $\alpha(v, X^v, B)$ is a weighting function

SOCM Algorithm

2

3

4

6

```
Algorithm 2 Stochastic Optimal Control Matching (SOCM)
   Input: State cost f(x,t), terminal cost g(x), diffusion coeff. \sigma(t), base drift b(x,t), noise level \lambda, number of iterations
           N, batch size m, number of time steps K, initial control parameters \theta_0, initial matrix parameters \omega_0, loss
           \mathcal{L}_{\text{SOCM}} in (125)
1 for n \in \{0, ..., N-1\} do
       Simulate m trajectories of the process X^v controlled by v=u_{\theta_n}, e.g., using Euler-Maruyama updates
       Detach the m trajectories from the computational graph, so that gradients do not backpropagate
       Using the m trajectories, compute an m-sample Monte-Carlo approximation \hat{\mathcal{L}}_{SOCM}(u_{\theta_n}, M_{\omega_n}) of the loss
         \mathcal{L}_{SOCM}(u_{\theta_n}, M_{\omega_n}) in (125)
       Compute the gradients \nabla_{(\theta,\omega)}\hat{\mathcal{L}}_{SOCM}(u_{\theta_n},M_{\omega_n}) of \hat{\mathcal{L}}_{SOCM}(u_{\theta_n},M_{\omega_n}) at (\theta_n,\omega_n)
       Obtain \theta_{n+1}, \omega_{n+1} with via an Adam update on \theta_n, \omega_n, resp.
7 end
  Output: Learned control u_{\theta}.
```

Figure: Stochastic Optimal Control Matching (SOCM) Algorithm

Experimental Results (1/2)

Experimental Results (2/2)

Figure 3 Plots of the L^2 error incurred by the learned control (top), and the norm squared of the gradient with respect to the parameters θ of the control (bottom), for the QUADRATIC ORNSTEIN UHLENBECK (HARD) setting and for each IDO loss. All the algorithms use a warm-started control (see Appendix D).

Blocks of Highlighted Text

In this slide, some important text will be highlighted because it's important. Please, don't abuse it.

Block

Sample text

Alertblock

Sample text in red box

Examples

Sample text in green box. The title of the block is "Examples".

Multiple Columns

Heading

- 1. Statement
- 2. Explanation
- 3. Example

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer lectus nisl, ultricies in feugiat rutrum, porttitor sit amet augue. Aliquam ut tortor mauris. Sed volutpat ante purus, quis accumsan dolor.

Table

Treatments	Response 1	Response 2
Treatment 1	0.0003262	0.562
Treatment 2	0.0015681	0.910
Treatment 3	0.0009271	0.296

Table: Table caption

Theorem

Theorem (Mass-energy equivalence)

$$E = mc^2$$

Figure

Uncomment the code on this slide to include your own image from the same directory as the template .TeX file.

Citation

An example of the \cite command to cite within the presentation:

This statement requires citation [?].

References