CS419M

Lecture 18: Mean and Variance

02/04/23

Lecturer: Abir De Scribe: Groups 11 & 12

This is some warmup discussion before the first section.

1 Recap

Consider the following equation:

$$y = w^{\top} \phi(x) + \epsilon$$

This is our standard regression model, with $\phi(x)$ being the $d \times 1$ feature vector.

$$\epsilon \sim \mathcal{N}(0, \sigma^2)$$

is the noise in the model, modelled as a Gaussian with 0 mean and variance σ^2 .

$$w \sim \mathcal{N}(0, \sum_{n})$$

is the $d \times 1$ weight vector, drawn from a Gaussian distribution.

A Gaussian process is a collection of random variables which have a joint Gaussian distribution.

Given N observations $(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)$, for a new observation (x^*, y^*) , we have:

$$y * /x*, D \sim \mathcal{N}(\mu, \Sigma)$$

$$D = \{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}\$$

We want to find out μ and Σ in the above equation.

We have seen that

$$\mathbf{E}(y * /x*, D) = \Phi(x*)^{\mathsf{T}} \Sigma_n \Phi(\Phi^{\mathsf{T}} \Sigma_n \Phi + \sigma^2 \mathbf{I})^{-1} y \tag{1}$$

Here $\Phi^{\top}\Sigma_p\Phi$ may be invertible only if $d\to\infty$.

2 Analysing the mean further

Suppose $x^* \in D$. Without loss of generality, let $x^* = x_1$. If $\epsilon = 0$ (which implies $\sigma = 0$), we expect y^* to be exactly equal to y_1 . If the noise was present even for an $x_i \in D$, the measured y can be different from y_i . Let us try to verify this.

Putting $x* = x_1$ and $\sigma = 0$ in (1), we have:

$$\mathbf{E}(y_1/x_1, D, \sigma = 0) = \Phi(x_1)^{\mathsf{T}} \Sigma_p \Phi(\Phi^{\mathsf{T}} \Sigma_p \Phi)^{-1} y \tag{2}$$

Now $\Phi(x_1)^{\top} \Sigma_p \Phi$ is the first row of $\Phi^{\top} \Sigma_p \Phi$. If B is an invertible matrix and $B_{1...}$ is its first row, then

$$(AB)_{1..} = A_{1..}B$$

We can write:

$$BB^{-1} = \mathbf{I} \implies B_{1..}B = \mathbf{I}_{1..} = [1, 0, ..., 0]_{1 \times n}$$

So if we take the matrix $\Phi^{\top}\Sigma_p\Phi$ as B above we obtain the same row vector as above.(Note that we have assumed $\Phi^{\top}\Sigma_p\Phi$ to be invertible, which may not always be the case). Finally, multiplying with y which is a $n \times 1$ column vector, we obtain y_1 on the RHS of (2).

Now lets investigate what happens if $\sigma \neq 0$.

Again, taking $B = \Phi^{\top} \Sigma_p \Phi$ and B_1 as its first row, we have the RHS of (2) as

$$B_1(B + \sigma^2 I)^{-1}y = B_1(B + \sigma^2 B B^{-1})y = B_1(I + \sigma^2 B^{-1})^{-1}B^{-1}y = y_1 - \sigma^2 B_1 1 B^{-2}y$$

Here $(I + \sigma^2 B^{-1})^{-1}$ was expanded as $I - \sigma^2 B^{-1}$ using Taylor's theorem, under the assumption that σ is small enough for the expension to be valid.

3 Variance

$$y = w^T \cdot \phi(x) + \epsilon \sim \mathcal{N}(0, \sigma^2)$$

$$w \sim \mathcal{N}(0, \epsilon_P)$$

What would the value of var(y|D) be? Where $D = (x_i, y_i)_{i=1}^N P(y^*|x^*, D)$

$$var(y|D) = var(w^{T}\phi(x)) + \sigma^{2}$$
$$= \mathbb{E}(\phi(x^{*})^{T}(w - \overline{w})(w - \overline{w})^{T}\phi(x^{*})|D) + \sigma^{2}$$

Here w is kind of stochastic.

$$= \phi(x^*)^T \mathbb{E}((w - \overline{w})(w - \overline{w})^T | D)\phi(x^*) + \sigma^2$$

For now, we rather focus on P(w|D). The problem of finding the variance of y^* reduces to finding the covariance matrix of w.

If we know w, we can easily find the distribution of D.

$$P(w|D) = \frac{P(D|w).P(w)}{P(D)}$$

$$\implies P(w|D) \propto P(D|w).P(w)$$

Now,

$$P(D|w).P(w) = exp\left[-\frac{(\overrightarrow{y} - \phi^T w)^T(\overrightarrow{y} - \phi^T w)}{2\sigma^2}\right].exp\left[-w^T \epsilon_p^{-1} w/2\right]$$

$$z^{-1} = \phi \phi^T / \sigma^2 + \epsilon_P^{-1}$$

Confirming \overline{w} is the same that we found earlier.

$$\overline{w} = \frac{z \sum_{i=1}^{N} \phi(x_i)(y_i)}{\sigma^2} = \frac{Z\phi.y}{\sigma^2}$$

$$\mathcal{E}(x^*, y^*|D) = \phi(x^*)^T [\phi \phi^T / \sigma^2 + \epsilon_P^{-1}] \frac{\phi \cdot y}{\sigma^2}$$