

533 Rec'd POT/PTO 11 SEP 2001 - 09/936356

ATTORNEY'S DOCKET NUMBER 49828

DESIGNATED/ELECTED OFFICE (DO/EO/US) CONCERNING A F!LING UNDER 35 U.S.C. 371

U.S. APPLICATION NO. (If known, see 37 CFR 1.5)

INTERNATIONAL APPLICATION NO. INTERNATIONAL FILING DATE PRIORITY DATE CLAIMED PCT/EP00/02010 8 March 2000 12 March 1999

TITLE OF INVENTION: TRICYCLIC BENZOYLPYRAZOLE DERIVATIVES

APPLICANT(S) FOR DO/EO/US Matthias WITSCHEL, Steffen KUDIS, Klaus LANGEMANN, Ernst BAUMANN, Wolfgang von DEYN, Guido MAYER, Ulf MISSLITZ, Ulf NEIDLEIN, Martina OTTEN,

Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:

- 1. /X/ This is a FIRST submission of items concerning a filing under 35 U.S.C. 371.
- This is a SECOND or SUBSEQUENT submission of items concerning a filing under 35 U.S.C. 371.

Karl-Otto WESTPHALEN, Helmut WALTER

- 3. /X/ This express request to begin national examination procedures (35 U.S.C.371(f)) at any time rather than delay examination until the expiration of the applicable time limit set in 35 U.S.C. 371(b) and PCT Articles 22 and 39(1).
- 4. /x / A proper Demand for International Preliminary Examination was made by the 19th month from the earliest claimed priority date.
- 5. /X/ A copy of the International Application as filed (35 U.S.C. 371(c)(2)).
 - a./X/ is transmitted herewith (required only if not transmitted by the International Bureau).
 - b.// has been transmitted by the International Bureau.
 - c.// is not required, as the application was filed in the United States Receiving Office (RO/US0).
- 6. /X/ A translation of the International Application into English (35 U.S.C. 371(c)(2)).
- 7. /X / Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371(c)(3)).
 - a./X / are transmitted herewith (required only if not transmitted by the International Bureau).
 - b.// have been transmitted by the International Bureau.
 - c.// have not been made; however, the time limit for making such amendments has NOT expired.
 - d.// have not been made and will not be made.
- 8. /X / A translation of the amendments to the claims under PCT Article 19(35 U.S.C. 371(c)(3)).
- 9. /X / An oath or declaration of the inventor(s)(35 U.S.C. 171(c)(4)).
- 10.// A translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371(c)(5)).
- Items 11. to 16. below concern other document(s) or information included:
- 11./X / An Information Disclosure Statement under 37 CFR 1.97 and 1.98.
- 12./ X / An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included.
- 13./X / A FIRST preliminary amendment.
- // A SECOND or SUBSEQUENT preliminary amendment.
- 14.// A substitute specification.
- 15.// A change of power of attorney and/or address letter.
- 16./x / Other items or information.
 International Search Report
 International Preliminary Examination Report

09/936356 518 Rec'd PCT/PTO 1 1 SEP 2001

					`	~		OCKET NO.
/181/	nown)	INTER	NATION	AL APPLN. NO) .		49828	PTO USE ONLY
J.S. Appln. No. (If K	HOWITY	PCT/E	P00/0201	<u> </u>	CALC	JLATIONS		F10 000
a Warring S	are are	a History	N		UALU			
7. IXI The following for ASIC NATIONAL FI	EE (37 (CFR 1.49	92(a)(1)-(⁽	5)):				
ASIC NATIONAL FI	(0.	by	the	_		860.00	1	
earch Report has be	,C(1 pp.		\$860.0	Ю				
PO or JPO				OTCOTO			1	
nternational prelimin	arv exan	nination '	fee paid to	000			1	
nternational prelimina (37 CFR 1.482)			\$/50.	.00				
37 CFR 1.402/				id to				
No international preli	minary 6	examinal	tion ree pa	ch fee paid			ł	
No international preli USPTO (37 CFR 1.	482) but	tinternat	(lonal seal	\$700.00			•	
USPTO (37 CFR 1. to USPTO (37 CFR	1.445(a	1)(2))	•••••					
10 001 1 = 1			mination f	ee				
Neither internationa	prelimi	uary exa	arch fee				1	
Neither internationa (37 CFR 1.482) noi (37 CFR 1.445(a)(2	interna	LISPT	Ω	\$ 970.00				
(37 CFR 1.445(a)(4	בון פעום							
		lmatia	n fee nalo	1 (0			t	
International prelim	iiiaiy ∈∧ i	nd all cla	aims satis	fied pro			1	
USPTO (37 CFR - visions of PCT Ar	ticle 33((2)-(4)		\$96.00				
-visions of PC i Ai				EEE AMOUN	T = \$ _	860.00		
FNTER	APPRO	OPRIAT	E BASIC	FEE AMOUN	1			
Surcharge of \$130 later than // 20/	/30 mon	ths from	the earlie	;5t				
later than //20/ claimed priority da	ate (37 (CFR 1.4	• • •			Dete		
Claimed priority				Number Extra		Rate		
Claims	Nur	nber File	<u> 20</u>	114411		X\$18.	18.00	
			-20			X\$80.	١	
Total Claims	2		-20 -3			74400.		
Indep.Claims		1	-I:blo\	+2	0		878.00	
Multiple depend	ent clain	n(s)(11 a)	ABOVE	CALCULATIO	<u> </u>		0, 9	
		7175	-II optity					
Reduction of 1/2	2 for filin	ng by sin	must also	be filed				
					TOTAL		878.00	
(Note 37 CFR	1.9, 1.4	1 1 1 1		51	JBTOTAL			
Processing fee	-66130	o for fur	nishing th	e English				
Processing feet translation late	- than /	120 / 130) months f	rom the				
translation late earliest claime	r (Hallir) d priorit	v date (3	7 CFR 1.4	492(f)). +		=	878.00	
earliest claime	<u>u pilotis</u>	OTAL	NATIONA	L FEE	24 (b))			
Fee for record	ing the	enclosed	d assignm	ent (37 CFK 1	.41(II))·		10.00	
Fee for record	ant must	be acco	ompanied	by an appropr	are 2012.		40.00	
The assignment sheet (37 CF	R 3 28.	3.31) \$4	0.00 per p	property		=	918.00	1
sneet (37 CF		TOTAL	FEES EN	CLOSED				
						Amount to be	•	
						refunded:	\$	
						Charged	\$	
							ed.	
			- aunt of ©	918. to cove	the above	tees is enclos		A duplicate copy of this she
a./X/ A	check i	n the arr	HOULIL OF T			- amount of &	to cove	r the above rees. A duplicate
					10.11	le alliouir		<u>-</u>
b.// F	lease c	narge m	y Dopook				-	or the above fees. A duplicate copy of this she
	s encius	gu.				additional fe	es which may t	be required, or or our and
	Th	nmiceinr	ner is here	by authorized t	o charge al	etis enclosed	•	be required, or credit any overpayment to Depo
c.IXI	I ne Con	ininaaloi No 11.	0345. A	by authorized t duplicate copy	of this sile	50110 0.10.2		a petition to revive (37 CFR 1.137(a) or (b) mi
	Account	. 140.			CED 1 404	4 or 1.495 has	not been met,	Labert B Kail
	lhere an	appropi	riate time l	limit under 37	ork i	us.		11 V. L. R. Kail
NOTE: V	d grante	ed to res	tore the a	pplication to pe	HUILING STOR	–		1/2000/ /- 1000
be filed an	u yranc						816	NATURE
				TO:			510	2131
CEND A!	L COR	RESPO	NDENCE	<u>10</u> :			Н	erbert B. Keil
0 \A	JEINKA	UF					- 114	NA A C
1101 Col Washing	anecticu	IT AVE I	V.VV.				Re	gistration No. 18,967
		C 2003(b					=

1101 Connecticut Ave., N.W. Washington, D. C. 20036

est a

IN THE UNITED STATES PATENT AND TRADE	EMARK	OFFICE
---------------------------------------	--------------	---------------

In re the Application of WITSCHEL et al.)) BOX PCT
International Application PCT/EP 00/02010)))
Filed: March 8, 2000)))

For: TRICYCLIC BENZOYLPYRAZOLE DERIVATIVES

PRELIMINARY AMENDMENT

Honorable Commissioner of Patents and Trademarks Washington, D.C. 20231

Sir:

Prior to examination, kindly amend the above-identified application as follows:

IN THE CLAIMS

Amend the claims 3, 4, 5, 6, 14, 15, 16 and 17 as shown in the attached sheets.

REMARKS

The claims were amended in the preliminary examination. The claims have been amended further to eliminate multiple dependency and to place them in better form for U.S. filing. No new matter is included.

Favorable action is solicited.

Respectfully submitted,

KEIL & WEINKAUF

Herbert B. Keil Reg. No. 18,967

1101 Connecticut Ave., N.W. Washington, D.C. 20036

(202)659-0100

CLEAN VERSION OF AMENDED CLAIMS - OZ 49828

- 3. A tricyclic benzoylpyrazole derivative of the formula I as claimed in claim 1 where R⁹ is IIa.
- 4. A tricyclic benzoylpyrazole derivative of the formula I as claimed in claim 1 where
- Y together with the two carbons to which it is attached forms a heterocycle selected from the following group: dihydropyrazolediyl, dihydroisoxazolediyl, pyrazolediyl, isoxazolediyl or pyrimidinediyl.
- 5. A tricyclic benzoylpyrazole derivative of the formula I as claimed in claim 1 where
- R¹, R² are hydrogen
- R^3 is C_1 - C_6 -alkyl;
- R⁴ is nitro, halogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkylsulfonyl;
- R⁵ is hydrogen;
- 1 is 0 or 1.
 - A tricyclic benzoylpyrazole derivative of the formula I as claimed in claim
 where
- R¹⁰ is hyroxyl;
- R^{11} is C_1 - C_6 -alkyl or C_3 - C_6 -cycloalkyl;
- R¹² is hydrogen or C₁-C₆-alkyl.

CLEAN VERSION OF AMENDED CLAIMS - OZ 49828

- 14. A composition, comprising a herbicidally effective amount of at least one tricyclic benzoylpyrazole derivative of the formula I or an agriculturally useful salt of I as claimed in claim 1 and auxiliaries which are customary for formulating crop protection agents.
- 15. A process for preparing compositions as claimed in claim 14, which comprises mixing a herbicidally effective amount of at least one tricyclic benzoylpyrazole derivative of the formula I or an agriculturally useful salt of I and auxiliaries which are customary for formulating crop protection agents.
- 16. A method for controlling undesirable vegetation, which comprises allowing a herbicidally effective amount of at least one tricyclic benzoylpyrazole derivative of the formula I or an agriculturally useful salt of I as claimed in claim 1 to act on plants, their habitat and/or on seed.
- 17. The use of tricyclic benzoylpyrazole derivatives of the formula I or their agriculturally useful salts as claimed in claim 1 as herbicides.

MARKED UP VERSION OF AMENDED CLAIMS - OZ 49828

- 3. A tricyclic benzoylpyrazole derivative of the formula I as claimed in claim 1 [or 2] where R⁹ is IIa.
- 4. A tricyclic benzoylpyrazole derivative of the formula I as claimed in <u>claim 1</u> [any of claims 1 to 3] where
- Y together with the two carbons to which it is attached forms a heterocycle selected from the following group: dihydropyrazolediyl, dihydroisoxazolediyl, pyrazolediyl, isoxazolediyl or pyrimidinediyl.
- 5. A tricyclic benzoylpyrazole derivative of the formula I as claimed in <u>claim 1</u> [any of claims 1 to 4] where

R¹, R² are hydrogen

 R^3 is C_1 - C_6 -alkyl;

 R^4 is nitro, halogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkylsulfonyl;

R⁵ is hydrogen;

1 is 0 or 1.

A tricyclic benzoylpyrazole derivative of the formula I as claimed in <u>claim</u>
 1 [any of claims 1 to 5] where

R¹⁰ is hyroxyl;

 R^{11} is C_1 - C_6 -alkyl or C_3 - C_6 -cycloalkyl;

 R^{12} is hydrogen or C_1 - C_6 -alkyl.

MARKED UP VERSION OF AMENDED CLAIMS - OZ 49828

- 14. A composition, comprising a herbicidally effective amount of at least one tricyclic benzoylpyrazole derivative of the formula I or an agriculturally useful salt of I as claimed in claim 1 [claims 1 to 6] and auxiliaries which are customary for formulating crop protection agents.
- 15. A process for preparing compositions as claimed in claim 14, which comprises mixing a herbicidally effective amount of at least one tricyclic benzoylpyrazole derivative of the formula I or an agriculturally useful salt of I [as claimed in claims 1 to 6] and auxiliaries which are customary for formulating crop protection agents.
- 16. A method for controlling undesirable vegetation, which comprises allowing a herbicidally effective amount of at least one tricyclic benzoylpyrazole derivative of the formula I or an agriculturally useful salt of I as claimed in claim 1 [claims 1 to 6] to act on plants, their habitat and/or on seed.
- 17. The use of tricyclic benzoylpyrazole derivatives of the formula I or their agriculturally useful salts as claimed in claims1 [claims 1 to 6] as herbicides.

Tricyclic benzoylpyrazole derivatives

The present invention relates to novel tricyclic benzoylpyrazole **5** derivatives of the formula I

15 where:

40

is oxygen, sulfur, S=0, $S(=0)_2$, CR^6R^7 , NR^8 or a bond;

20 y together with the two carbons to which it is attached forms a saturated, partially saturated or unsaturated 5- or 6-membered heterocycle which contains one to three identical or different heteroatoms selected from the following group: oxygen, sulfur or nitrogen;

 R^1, R^2, R^6, R^7 are hydrogen, C_1-C_6 -alkyl, C_1-C_6 -haloalkyl, C_1-C_6 -alkoxy or C_1-C_6 -haloalkoxy;

30 R^3 is halogen, C_1-C_6 -alkyl, C_1-C_6 -haloalkyl, C_1-C_6 -alkoxy or C_1-C_6 -haloalkoxy;

is hydrogen, nitro, halogen, cyano, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, C₁-C₆-alkylthio, C₁-C₆-haloalkylthio, C₁-C₆-alkylsulfinyl, C₁-C₆-haloalkylsulfinyl, C₁-C₆-alkylsulfonyl, C₁-C₆-haloalkylsulfonyl, aminosulfonyl, N-(C₁-C₆-alkyl) aminosulfonyl,

 $N, N-di(C_1-C_6-alkyl)$ aminosulfonyl,

 $N-(C_1-C_6-alkylsulfonyl)$ amino, $N-(C_1-C_6-haloalkylsulfonyl)$ amino,

 $\begin{array}{lll} N-\left(C_1-C_6-alkyl\right)-N-\left(C_1-C_6-alkylsulfonyl\right) amino & or \\ N-\left(C_1-C_6-alkyl\right)-N-\left(C_1-C_6-haloalkylsulfonyl\right) amino; \end{array}$

45 R^5 is hydrogen, C_1 - C_6 -alkyl or halogen;

 R^8 is hydrogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkylcarbonyl, formyl, C_1 - C_6 -alkoxycarbonyl, C_1 - C_6 -haloalkoxycarbonyl, C_1 - C_6 -alkylsulfonyl or C₁-C₆-haloalkylsulfonyl; 5 1 is 0, 1 or 2; \mathbb{R}^9 is a radical IIa or IIb 10 15 IIb ila where R^{10} is hydroxyl, mercapto, halogen, OR^{13} , SR^{13} , SO_2R^{14} , 20 NR¹⁵R¹⁶ or N-bonded heterocyclyl, where the heterocyclyl radical may be partially or fully halogenated and/or may carry one to three of the following radicals: 25 nitro, cyano, C_1-C_4 -alkyl, C_1-C_4 -haloalkyl, C_1-C_4 -alkoxy or C_1-C_4 -haloalkoxy; R^{11} is hydrogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C₃-C₆-cycloalkyl, hydroxyl, C₁-C₆-alkoxy or 30 C_1-C_6 -haloalkoxy; R^{12} is hydrogen, halogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, hydroxyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, C₁-C₆-alkylthio or C₁-C₆-haloalkylthio; 35 R¹³ is C₁-C₆-alkyl, C₃-C₆-alkenyl, C₃-C₆-haloalkenyl, C₃-C₆-alkynyl, C₃-C₆-haloalkynyl, C₃-C₆-cycloalkyl, C_1-C_{20} -alkylcarbonyl, C_2-C_{20} -alkenylcarbonyl, C_2-C_6 -alkynylcarbonyl, C_3-C_6 -cycloalkylcarbonyl, 40 $C_1-C_6-alkoxycarbonyl, C_3-C_6-alkenyloxycarbonyl,$ $C_3-C_6-alkynyloxycarbonyl, C_1-C_6-alkylthiocarbonyl,$ C_1-C_6 -alkylaminocarbonyl, C3-C6-alkenylaminocarbonyl, C3-C6-alkynylaminocarbonyl, 45 $N, N-di(C_1-C_6-alkyl)$ aminocarbonyl, $N-(C_3-C_6-alkenyl)-N-(C_1-C_6-alkyl)$ aminocarbonyl, $N-(C_3-C_6-alkynyl)-N-(C_1-C_6-alkyl)$ aminocarbonyl,

 $N-(C_1-C_6-alkoxy)-N-(C_1-C_6-alkyl)$ aminocarbonyl, $N-(C_3-C_6-alkenyl)-N-(C_1-C_6-alkoxy)$ aminocarbonyl, $N-(C_3-C_6-alkynyl)-N-(C_1-C_6-alkoxy)$ aminocarbonyl, $di(C_1-C_6-alkyl)$ aminothiocarbonyl, C_1-C_6 -alkylcarbonyl- C_1-C_6 -alkyl, 5 $C_1-C_6-alkoxyimino-C_1-C_6-alkyl$, $N-(C_1-C_6-alkylamino)imino-C_1-C_6-alkyl$ or $N, N-di(C_1-C_6-alkylamino)imino-C_1-C_6-alkyl,$ where the abovementioned alkyl, cycloalkyl and alkoxy radicals may be partially or fully halogenated 10 and/or may carry one to three of the following groups: cyano, C_1-C_4 -alkoxy, C_1-C_4 -alkylthio, $di(C_1-C_4-alkyl)$ amino, $C_1-C_4-alkylcarbonyl$, C_1-C_4 -akoxycarbonyl, 15 C_1-C_4 -alkoxy- C_1-C_4 -alkoxycarbonyl, hydroxycarbonyl, C_1-C_4 -alkylaminocarbonyl, $di(C_1-C_4-alkyl)$ aminocarbonyl, aminocarbonyl, C_1-C_4 -alkylcarbonyloxy or C_3-C_6 -cycloalkyl; 20 is phenyl, heterocyclyl, phenyl- C_1 - C_6 -alkyl, heterocyclyl- C_1 - C_6 -alkyl, phenylcarbonyl- C_1 - C_6 -alkyl, $\label{lem:convergence} \mbox{heterocyclylcarbonyl-C_1-C_6-alkyl, phenylcarbonyl,}$ 25 heterocyclylcarbonyl, phenoxycarbonyl, phenyloxythiocarbonyl, heterocyclyloxycarbonyl, heterocyclyloxythiocarbonyl, phenylaminocarbonyl, $N-(C_1-C_6-alkyl)-N-(phenyl)aminocarbonyl,$ heterocyclylaminocarbonyl, 30 $N-(C_1-C_6-alkyl)-N-(heterocyclyl)aminocarbonyl,$ $phenyl-C_2-C_6-alkenylcarbonyl$ or heterocyclyl- C_2 - C_6 -alkenylcarbonyl, where the phenyl and the heterocyclyl radical of the 18 lastmentioned substituents may be partially or 35 fully halogenated and/or may carry one to three of the following radicals: nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1-C_4 -alkoxy, C_1-C_4 -haloalkoxy, heterocyclyl or N-bonded heterocyclyl, where the two lastmentioned 40 substituents for their part may be partially or fully halogenated and/or may carry one to three of the following radicals: nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1-C_4 -alkoxy or C_1-C_4 -haloalkoxy; 45

4					
	R ¹⁴	is C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -haloalkenyl, C_3 - C_6 -alkynyl, C_3 - C_6 -haloalkynyl, C_3 - C_6 -cycloalkyl,			
_		C_1 - C_6 -alkoxy, di(C_1 - C_6 -alkyl)amino or di(C_1 - C_6 -haloalkyl)amino, where the abovementioned alkyl, cycloalkyl and alkoxy radicals may be			
5		partially or fully halogenated and/or may carry one to three of the following groups:			
4.0		cyano, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, di(C_1 - C_4 -alkyl)amino, C_1 - C_4 -alkylcarbonyl, C_1 - C_4 -alkoxycarbonyl,			
10		C_1 - C_4 -alkoxy- C_1 - C_4 -alkoxycarbonyl, di(C_1 - C_4 -alkyl)amino- C_1 - C_4 -alkoxycarbonyl, hydroxycarbonyl, C_1 - C_4 -alkylaminocarbonyl,			
15		$\operatorname{di}(C_1-C_4-\operatorname{alkyl})$ aminocarbonyl, aminocarbonyl, $C_1-C_4-\operatorname{alkyl}$ carbonyloxy or $C_3-C_6-\operatorname{cycloalkyl}$;			
		is phenyl, heterocyclyl, phenyl- C_1 - C_6 -alkyl, heterocyclyl- C_1 - C_6 -alkyl, phenoxy, heterocyclyloxy, where the phenyl and the heterocyclyl radical of			
20		the lastmentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals: nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl,			
25		C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;			
23	R ¹⁵ .	is C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -haloalkenyl, C_3 - C_6 -alkynyl, C_3 - C_6 -haloalkynyl, C_3 - C_6 -cycloalkyl, C_1 - C_6 -alkoxy, C_3 - C_6 -alkenyloxy, C_3 - C_6 -alkynyloxy, di(C_1 - C_6 -alkyl)amino or C_1 - C_6 -alkylcarbonylamino,			
30		where the abovementioned alkyl, cycloalkyl and alkoxy radicals may be partially or fully halogenated and/or may carry one to three radicals of the following group: cyano, C_1-C_4 -alkoxy, C_1-C_4 -alkylthio,			
35		di $(C_1-C_4-alkyl)$ amino, $C_1-C_4-alkyl$ carbonyl, C_1-C_4-alk oxycarbonyl, C_1-C_4-alk oxycarbonyl, C_1-C_4-alk oxycarbonyl, di $(C_1-C_4-alkyl)$ amino- C_1-C_4-alk oxycarbonyl,			
40		hydroxycarbonyl, C_1 - C_4 -alkylaminocarbonyl, di(C_1 - C_4 -alkyl)aminocarbonyl, aminocarbonyl, C_1 - C_4 -alkylcarbonyloxy or C_3 - C_6 -cycloalkyl;			
45		is phenyl, heterocyclyl, phenyl- C_1 - C_6 -alkyl or heterocyclyl- C_1 - C_6 -alkyl, where the phenyl or heterocyclyl radical of the four lastmentioned			

substituents may be partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

 R^{16} is C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl or C_1 - C_6 -alkylcarbonyl;

10 and their agriculturally useful salts.

Moreover, the invention relates to processes and intermediates for preparing compounds of the formula I, to compositions comprising them, and to the use of these derivatives or of the compositions comprising them for controlling harmful plants.

WO 97/19087 and EP-A 860 441 disclose tricyclic compounds which are characterized in that the respective benzoyl unit that they contain is fused via positions 3 and 4 with a bicycle. However,

- 20 the herbicidal properties of the prior-art compounds and their compatibility with crop plants are not entirely satisfactory. It is an object of the present invention to provide novel, biologically, in particular herbicidally, active compounds having improved properties.
- We have found that this object is achieved by the tricyclic benzoylpyrazole derivatives of the formula I and their herbicidal action.
- 30 Furthermore, we have found processes and intermediates for synthesizing the compounds of the formula I. Likewise, we have found herbicidal compositions which comprise the compounds I and have very good herbicidal action. Moreover, we have found processes for preparing these compositions and methods for controlling undesirable vegetation using the compounds I.

Depending on the substitution pattern, the compounds of the formula I can contain one or more chiral centers, in which case they are present as enantiomers or diastereomer mixtures. The invention provides both the pure continuous or diastereomers are

40 invention provides both the pure enantiomers or diastereomers and their mixtures.

The compounds of the formula I can also be present in the form of their agriculturally useful salts, the type of salt generally

45 being immaterial. Generally suitable are the salts of those cations or the acid addition salts of those acids whose cations

and anions, respectively, do not negatively affect the herbicidal action of the compounds I.

Suitable cations are, in particular, ions of the alkali metals, $\mathbf{5}$ preferably lithium, sodium and potassium, of the alkaline earth metals, preferably calcium and magnesium, and of the transition metals, preferably manganese, copper, zinc and iron, and also ammonium, where, if desired, one to four hydrogen atoms may be replaced by C_1-C_4 -alkyl, hydroxy- C_1-C_4 -alkyl,

10 C₁-C₄-alkoxy-C₁-C₄-alkyl, hydroxy-C₁-C₄-alkoxy-C₁-C₄-alkyl, phenyl
 or benzyl, preferably ammonium, dimethylammonium,
 diisopropylammonium, tetramethylammonium, tetrabutylammonium,
 2-(2-hydroxyeth-1-oxy)eth-1-ylammonium,
 di(2-hydroxyeth-1-yl)ammonium, trimethylbenzylammonium,

15 furthermore phosphonium ions, sulfonium ions, preferably $\text{tri}(C_1-C_4-\text{alkyl})\,\text{sulfonium}$, and sulfoxonium ions, preferably $\text{tri}(C_1-C_4-\text{alkyl})\,\text{sulfoxonium}$.

Anions of useful acid addition salts are primarily chloride,
20 bromide, fluoride, hydrogen sulfate, sulfate, dihydrogen
phosphate, hydrogen phosphate, nitrate, hydrogen carbonate,
carbonate, hexafluorosilicate, hexafluorophosphate, benzoate and
the anions of C₁-C₄-alkanoic acids, preferably formate, acetate,
propionate and butyrate.

25

In the case of $R^{10}=$ hydroxyl or mercapto, IIa also represents the tautomeric forms IIa' and IIa''

Likewise, in the case of R^{10} = hydroxyl or mercapto, IIb also represents the tautomeric forms IIb' and IIb''

The organic molecular moieties mentioned for the substituents R^1-R^{17} or as radicals on phenyl and heterocyclyl radicals are collective terms for individual enumerations of the individual group members. All hydrocarbon chains, i.e. all alkyl, haloalkyl,

- 15 hydroxyalkyl, alkoxy, haloalkoxy, alkylthio, haloalkylthio,
 alkylsulfinyl, haloalkylsulfinyl, alkylsulfonyl,
 haloalkylsulfonyl, N-alkylaminosulfonyl,
 N,N-dialkylaminosulfonyl, N-alkylamino, N,N-dialkylamino,
 N-haloalkylamino, N,N-dihaloalkylamino, N-alkylsulfonylamino,
- 20 N-haloalkylsulfonylamino, N-alkyl-N-alkylsulfonylamino, N-alkyl-N-haloalkylsulfonylamino, alkylcarbonyl, alkoxycarbonyl, haloalkoxycarbonyl, alkylthiocarbonyl, alkylcarbonyloxy, alkylaminocarbonyl, dialkylaminocarbonyl, dialkylaminothiocarbonyl, alkoxyalkyl, hydroxyalkoxyalkyl,
- 25 alkylcarbonylalkyl, alkoxyiminoalkyl, N-(alkylamino)iminoalkyl,
 N-(dialkylamino)iminoalkyl, phenylalkenylcarbonyl,
 heterocyclylalkenylcarbonyl, N-alkoxy-N-alkylaminocarbonyl,
 N-alkyl-N-phenylaminocarbonyl,
- N-alkyl-N-heterocyclylaminocarbonyl, phenylalkyl,
 30 heterocyclylalkyl, phenylcarbonylalkyl,

heterocyclylcarbonylalkyl, dialkylaminoalkoxycarbonyl, alkoxyalkoxycarbonyl, alkenylcarbonyl, alkenyloxycarbonyl, alkenylaminocarbonyl, N-alkenyl-N-alkylaminocarbonyl,

N-alkenyl-N-alkoxyaminocarbonyl, alkynylcarbonyl, **35** alkynyloxycarbonyl, alkynylaminocarbonyl,

N-alkynyl-N-alkylaminocarbonyl, N-alkynyl-N-alkoxyaminocarbonyl, alkenyl, alkynyl, haloalkenyl, haloalkynyl, alkenyloxy and alkynyloxy moieties, may be straight-chain or branched. Unless indicated otherwise, halogenated substituents preferably carry

40 one to five identical or different halogen atoms. The term halogen denotes in each case fluorine, chlorine, bromine or iodine.

Examples of other meanings are:

- C_1 - C_4 -alkyl and the alkyl moieties of hydroxy- C_1 - C_4 -alkyl: for example methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl or 1,1-dimethylethyl;
- $\begin{array}{lll} \textbf{5} & & \text{C_1-C_6-alkyl, and the alkyl moieties of} \\ & & \text{C_1-C_6-alkylcarbonyl-C_1-C_6-alkyl, C_1-C_6-alkoxyimino-C_1-C_6-alkyl, N-(C_1-C_6-alkylamino)imino-C_1-C_6-alkyl, N-(di-C_1-C_6-alkylamino)imino-C_1-C_6-alkyl, N-(C_1-C_6-alkoxy)-N-(C_1-C_6-alkyl)aminocarbonyl, N-(C_1-C_6-alkoxy)-N-(C_1-C_6-alkyl)aminocarbonyl, N-(C_1-C_6-alkyl)aminocarbonyl, N-(C_1-C_1-C_2-C_2-C_2-C_2-C_2-C_2-C_2-C_2-C_2-C_2-C_2-$C_$
- $\begin{aligned} &N-\left(C_3-C_6-alkenyl\right)-N-\left(C_1-C_6-alkyl\right)\text{ aminocarbonyl}\,,\\ &N-\left(C_3-C_6-alkynyl\right)-N-\left(C_1-C_6-alkyl\right)\text{ aminocarbonyl}\,,\\ &N-\left(C_1-C_6-alkyl\right)-N-phenylaminocarbonyl\,,\\ &N-\left(C_1-C_6-alkyl\right)-N-heterocyclylaminocarbonyl\,,\\ &phenyl-C_1-C_6-alkyl\,, \end{aligned}$
- 2-methylbutyl, 3-methylbutyl, 2,2-dimethylpropyl,
 1-ethylpropyl, hexyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl,
 1-methylpentyl, 2-methylpentyl, 3-methylpentyl,
 4-methylpentyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl,
 1,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl,
- 3,3-dimethylbutyl, 1-ethylbutyl, 2-ethylbutyl,
 1,1,2-trimethylpropyl, 1-ethyl-1-methylpropyl or
 1-ethyl-3-methylpropyl;
- C₁-C₄-haloalkyl: a C₁-C₄-alkyl radical as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, i.e., for example, chloromethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl,
- 2-chloroethyl, 2-bromoethyl, 2-iodoethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro-2,2-difluoroethyl, 2,2-dichloro-2-fluoroethyl, 2,2-trichloroethyl, pentafluoroethyl, 2-fluoropropyl, 3-fluoropropyl, 2,2-difluoropropyl, 2,3-difluoropropyl,
- 2-chloropropyl, 3-chloropropyl, 2,3-dichloropropyl, 2-bromopropyl, 3-bromopropyl, 3,3,3-trifluoropropyl, 3,3,3-trichloropropyl, 2,2,3,3,3-pentafluoropropyl, heptafluoropropyl, 1-(fluoromethyl)-2-fluoroethyl, 1-(chloromethyl)-2-chloroethyl, 1-(bromomethyl)-2-bromoethyl,
- 4-fluorobutyl, 4-chlorobutyl, 4-bromobutyl or nonafluorobutyl;

- C₁-C₆-haloalkyl, and the haloalkyl moieties of N-C₁-C₆-haloalkylamino and N,N-(di-C₁-C₆-haloalkyl)amino: C₁-C₄-haloalkyl as mentioned above, and also, for example, 5-fluoropentyl, 5-chloropentyl, 5-bromopentyl, 5-iodopentyl, undecafluoropentyl, 6-fluorohexyl, 6-chlorohexyl, 6-bromohexyl, 6-iodohexyl or dodecafluorohexyl;
- C₁-C₄-alkoxy: for example methoxy, ethoxy, propoxy,
 1-methylethoxy, butoxy, 1-methylpropoxy, 2-methylpropoxy or
 1,1-dimethylethoxy;
 - C_1 - C_6 -alkoxy, and the alkoxy moieties of C_1 - C_6 -alkoxyimino- C_1 - C_6 -alkyl, N- $(C_1$ - C_6 -alkoxy)-N- $(C_1$ - C_6 -alkyl)aminocarbonyl,
- N- $(C_3-C_6-alkenyl)-N-(C_1-C_6-alkoxy)$ aminocarbonyl and N- $(C_3-C_6-alkynyl)-N-(C_1-C_6-alkoxy)$ aminocarbonyl: $C_1-C_4-alkoxy$ as mentioned above, and also, for example, pentoxy, 1-methylbutoxy, 2-methylbutoxy, 3-methylbutoxy, 1,1-dimethylpropoxy, 1,2-dimethylpropoxy,
- 2.2-dimethylpropoxy, 1-ethylpropoxy, hexoxy, 1-methylpentoxy, 2-methylpentoxy, 3-methylpentoxy, 4-methylpentoxy, 1,1-dimethylbutoxy, 1,2-dimethylbutoxy, 1,3-dimethylbutoxy, 2,2-dimethylbutoxy, 2,3-dimethylbutoxy, 3,3-dimethylbutoxy, 1-ethylbutoxy, 2-ethylbutoxy, 1,1,2-trimethylpropoxy,
- 1,2,2-trimethylpropoxy, 1-ethyl-1-methylpropoxy or 1-ethyl-2-methylpropoxy;
 - C_1 - C_4 -haloalkoxy: a C_1 - C_4 -alkoxy radical as mentioned above which is partially or fully substituted by fluorine,
- chlorine, bromine and/or iodine, i.e., for example, fluoromethoxy, difluoromethoxy, trifluoromethoxy, chlorodifluoromethoxy, bromodifluoromethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2-bromoethoxy, 2-iodoethoxy, 2,2-difluoroethoxy, 2,2,2-trifluoroethoxy,
- 2-chloro-2-fluoroethoxy, 2-chloro-2,2-difluoroethoxy, 2,2-dichloro-2-fluoroethoxy, 2,2,2-trichloroethoxy, pentafluoroethoxy, 2-fluoropropoxy, 3-fluoropropoxy, 2-chloropropoxy, 3-chloropropoxy, 2-bromopropoxy, 3-bromopropoxy, 2,2-difluoropropoxy, 2,3-difluoropropoxy,
- 2,3-dichloropropoxy, 3,3,3-trifluoropropoxy,
 3,3,3-trichloropropoxy, 2,2,3,3,3-pentafluoropropoxy,
 heptafluoropropoxy, 1-(fluoromethyl)-2-fluoroethoxy,
 1-(chloromethyl)-2-chloroethoxy,
 1-(bromomethyl)-2-bromoethoxy, 4-fluorobutoxy,
- 45 4-chlorobutoxy, 4-bromobutoxy or nonafluorobutoxy;

- C₁-C₆-haloalkoxy: C₁-C₄-haloalkoxy as mentioned above, and also, for example, 5-fluoropentoxy, 5-chloropentoxy, 5-bromopentoxy, 5-iodopentoxy, undecafluoropentoxy, 6-fluorohexoxy, 6-chlorohexoxy, 6-bromohexoxy, 6-iodohexoxy or dodecafluorohexoxy;
 - C_1 - C_4 -alkylthio: for example methylthio, ethylthio, propylthio, 1-methylethylthio, butylthio, 1-methylpropylthio, 2-methylpropylthio or 1,1-dimethylethylthio;

- C_1 - C_6 -alkylthio, and the alkylthio moieties of C_1 - C_6 -alkylthiocarbonyl: C_1 - C_4 -alkylthio as mentioned above and also, for example, pentylthio, 1-methylbutylthio, 2-methylbutylthio, 3-methylbutylthio, 2,2-dimethylpropylthio,
- 1-ethylpropylthio, hexylthio, 1,1-dimethylpropylthio, 1,2-dimethylpropylthio, 1-methylpentylthio, 2-methylpentylthio, 3-methylpentylthio, 4-methylpentylthio, 1,1-dimethylbutylthio, 1,2-dimethylbutylthio, 1,3-dimethylbutylthio, 2,2-dimethylbutylthio,
- 20 2,3-dimethylbutylthio, 3,3-dimethylbutylthio,
 1-ethylbutylthio, 2-ethylbutylthio,
 1,1,2-trimethylpropylthio, 1,2,2-trimethylpropylthio,
 1-ethyl-1-methylpropylthio or 1-ethyl-2-methylpropylthio;
- 25 C_1 - C_6 -haloalkylthio: a C_1 - C_6 -alkylthio radical as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, i.e., for example, fluoromethylthio, difluoromethylthio, trifluoromethylthio, chlorodifluoromethylthio, bromodifluoromethylthio,
- 2-fluoroethylthio, 2-chloroethylthio, 2-bromoethylthio, 2-iodoethylthio, 2,2-difluoroethylthio, 2,2,2-trifluoroethylthio, 2,2,2-trichloroethylthio, 2-chloro-2-fluoroethylthio, 2-chloro-2,2-difluoroethylthio, 2,2-dichloro-2-fluoroethylthio, pentafluoroethylthio,
- 2-fluoropropylthio, 3-fluoropropylthio, 2-chloropropylthio, 3-chloropropylthio, 2-bromopropylthio, 3-bromopropylthio, 2,2-difluoropropylthio, 2,3-difluoropropylthio, 2,3-dichloropropylthio, 3,3,3-trifluoropropylthio, 3,3,3-trichloropropylthio, 2,2,3,3,3-pentafluoropropylthio,
- heptafluoropropylthio, 1-(fluoromethyl)-2-fluoroethylthio, 1-(chloromethyl)-2-chloroethylthio, 1-(bromomethyl)-2-bromoethylthio, 4-fluorobutylthio, 4-chlorobutylthio, 4-bromobutylthio, nonafluorobutylthio, 5-fluoropentylthio, 5-chloropentylthio, 5-bromopentylthio,
- 5-iodopentylthio, undecafluoropentylthio, 6-fluorohexylthio,

6-chlorohexylthio, 6-bromohexylthio, 6-iodohexylthio or dodecafluorohexylthio;

```
C_1-C_6-alkylsulfinyl (C_1-C_6-alkyl-S(=0)-): for example
5
       methylsulfinyl, ethylsulfinyl, propylsulfinyl,
       1-methylethylsulfinyl, butylsulfinyl, 1-methylpropylsulfinyl,
       2-methylpropylsulfinyl, 1,1-dimethylethylsulfinyl,
       pentylsulfinyl, 1-methylbutylsulfinyl, 2-methylbutylsulfinyl,
       3-methylbutylsulfinyl, 2,2-dimethylpropylsulfinyl,
10
       1-ethylpropylsulfinyl, 1,1-dimethylpropylsulfinyl,
       1,2-dimethylpropylsulfinyl, hexylsulfinyl,
       1-methylpentylsulfinyl, 2-methylpentylsulfinyl,
       3-methylpentylsulfinyl, 4-methylpentylsulfinyl,
       1,1-dimethylbutylsulfinyl, 1,2-dimethylbutylsulfinyl,
       1,3-dimethylbutylsulfinyl, 2,2-dimethylbutylsulfinyl,
15
       2,3-dimethylbutylsulfinyl, 3,3-dimethylbutylsulfinyl,
       1-ethylbutylsulfinyl, 2-ethylbutylsulfinyl,
       1,1,2-trimethylpropylsulfinyl, 1,2,2-trimethylpropylsulfinyl,
       1-ethyl-1-methylpropylsulfinyl or
20
       1-ethyl-2-methylpropylsulfinyl;
       C<sub>1</sub>-C<sub>6</sub>-haloalkylsulfinyl: a C<sub>1</sub>-C<sub>6</sub>-alkylsulfinyl radical as
       mentioned above which is partially or fully substituted by
       fluorine, chlorine, bromine and/or iodine, i.e., for example,
25
       fluoromethylsulfinyl, difluoromethylsulfinyl,
       trifluoromethylsulfinyl, chlorodifluoromethylsulfinyl,
       bromodifluoromethylsulfinyl, 2-fluoroethylsulfinyl,
       2-chloroethylsulfinyl, 2-bromoethylsulfinyl,
       2-iodoethylsulfinyl, 2,2-difluoroethylsulfinyl,
       2,2,2-trifluoroethylsulfinyl, 2,2,2-trichloroethylsulfinyl,
30
       2-chloro-2-fluoroethylsulfinyl,
       2-chloro-2,2-difluoroethylsulfinyl,
       2,2-dichloro-2-fluoroethylsulfinyl, pentafluoroethylsulfinyl,
       2-fluoropropylsulfinyl, 3-fluoropropylsulfinyl,
       2-chloropropylsulfinyl, 3-chloropropylsulfinyl,
35
       2-bromopropylsulfinyl, 3-bromopropylsulfinyl,
       2,2-difluoropropylsulfinyl, 2,3-difluoropropylsulfinyl,
       2,3-dichloropropylsulfinyl, 3,3,3-trifluoropropylsulfinyl,
       3,3,3-trichloropropylsulfinyl,
40
       2,2,3,3,3-pentafluoropropylsulfinyl,
       heptafluoropropylsulfinyl,
       1-(fluoromethyl)-2-fluoroethylsulfinyl,
       1-(chloromethyl)-2-chloroethylsulfinyl,
       1-(bromomethy1)-2-bromoethylsulfiny1, 4-fluorobutylsulfiny1,
45
       4-chlorobutylsulfinyl, 4-bromobutylsulfinyl,
```

nonafluorobutylsulfinyl, 5-fluoropentylsulfinyl, 5-chloropentylsulfinyl, 5-bromopentylsulfinyl,

5-iodopentylsulfinyl, undecafluoropentylsulfinyl, 6-fluorohexylsulfinyl, 6-chlorohexylsulfinyl, 6-bromohexylsulfinyl, 6-iodohexylsulfinyl or dodecafluorohexylsulfinyl;

- C_1 - C_6 -alkylsulfonyl (C_1 - C_6 -alkyl-S(=0) $_2$ -), and the alkylsulfonyl radicals of N-(C_1 - C_6 -alkylsulfonyl)amino and N-(C_1 - C_6 -alkyl)-N-(C_1 - C_6 -alkylsulfonyl)amino: for example methylsulfonyl, ethylsulfonyl, propylsulfonyl,
- 1-ethylpropylsulfonyl, hexylsulfonyl, 1-methylpentylsulfonyl, 2-methylpentylsulfonyl, 3-methylpentylsulfonyl, 4-methylpentylsulfonyl, 1,1-dimethylbutylsulfonyl, 1,2-dimethylbutylsulfonyl, 1,3-dimethylbutylsulfonyl, 2,2-dimethylbutylsulfonyl, 2,3-dimethylbutylsulfonyl,
- 3,3-dimethylbutylsulfonyl, 1-ethylbutylsulfonyl,
 2-ethylbutylsulfonyl, 1,1,2-trimethylpropylsulfonyl,
 1,2,2-trimethylpropylsulfonyl, 1-ethyl-1-methylpropylsulfonyl
 or 1-ethyl-2-methylpropylsulfonyl;
- 25 C_1 - C_6 -haloalkylsulfonyl, and the haloalkylsulfonyl radicals of N- $(C_1$ - C_6 -haloalkylsulfonyl)amino and N- $(C_1$ - C_6 -alkyl)-N- $(C_1$ - C_6 -haloalkylsulfonyl)amino: a C_1 - C_6 -alkylsulfonyl radical as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine
- and/or iodine, i.e., for example, fluoromethylsulfonyl, difluoromethylsulfonyl, trifluoromethylsulfonyl, chlorodifluoromethylsulfonyl, bromodifluoromethylsulfonyl, 2-fluoroethylsulfonyl, 2-chloroethylsulfonyl, 2-bromoethylsulfonyl, 2-iodoethylsulfonyl,
- 2,2-difluoroethylsulfonyl, 2,2,2-trifluoroethylsulfonyl,
 2-chloro-2-fluoroethylsulfonyl,
 - 2-chloro-2,2-difluoroethylsulfonyl,
 - 2,2-dichloro-2-fluoroethylsulfonyl,
 - 2,2,2-trichloroethylsulfonyl, pentafluoroethylsulfonyl,
- 2-fluoropropylsulfonyl, 3-fluoropropylsulfonyl, 2-chloropropylsulfonyl, 3-chloropropylsulfonyl,
 - 2-bromopropylsulfonyl, 3-bromopropylsulfonyl,
 - ${\tt 2,2-difluoropropylsulfonyl,\ 2,3-difluoropropylsulfonyl,}\\$
- 2,3-dichloropropylsulfonyl, 3,3,3-trifluoropropylsulfonyl,
- 3,3,3-trichloropropylsulfonyl,
 - 2,2,3,3,3-pentafluoropropylsulfonyl, heptafluoropropylsulfonyl,

```
1-(fluoromethyl)-2-fluoroethylsulfonyl,
       1-(chloromethyl)-2-chloroethylsulfonyl,
       1-(bromomethyl)-2-bromoethylsulfonyl, 4-fluorobutylsulfonyl,
       4-chlorobutylsulfonyl, 4-bromobutylsulfonyl,
       nonafluorobutylsulfonyl, 5-fluoropentylsulfonyl,
5
       5-chloropentylsulfonyl, 5-bromopentylsulfonyl,
       5-iodopentylsulfonyl, 6-fluorohexylsulfonyl,
       6-bromohexylsulfonyl, 6-iodohexylsulfonyl or
       dodecafluorohexylsulfonyl;
10
       C_1-C_6-alkylamino, and the alkylamino radicals of
       N-(C_1-C_6-alkylamino)imino-C_1-C_6-alkyl: for example
       methylamino, ethylamino, propylamino, 1-methylethylamino,
       butylamino, 1-methylpropylamino, 2-methylpropylamino,
       1,1-dimethylethylamino, pentylamino, 1-methylbutylamino,
15
       2-methylbutylamino, 3-methylbutylamino,
       2,2-dimethylpropylamino, 1-ethylpropylamino, hexylamino,
       1,1-dimethylpropylamino, 1,2-dimethylpropylamino,
       1-methylpentylamino, 2-methylpentylamino,
       3-methylpentylamino, 4-methylpentylamino,
20
       1,1-dimethylbutylamino, 1,2-dimethylbutylamino,
       1,3-dimethylbutylamino, 2,2-dimethylbutylamino,
       2,3-dimethylbutylamino, 3,3-dimethylbutylamino,
       1-ethylbutylamino, 2-ethylbutylamino,
       1,1,2-trimethylpropylamino, 1,2,2-trimethylpropylamino,
25
       1-ethyl-1-methylpropylamino or 1-ethyl-2-methylpropylamino;
        (C_1-C_6-alkylamino) sulfonyl: for example methylaminosulfonyl,
       ethylaminosulfonyl, propylaminosulfonyl,
        1-methylethylaminosulfonyl, butylaminosulfonyl,
30
        1-methylpropylaminosulfonyl, 2-methylpropylaminosulfonyl,
        1,1-dimethylethylaminosulfonyl, pentylaminosulfonyl,
        1-methylbutylaminosulfonyl, 2-methylbutylaminosulfonyl,
        3-methylbutylaminosulfonyl, 2,2-dimethylpropylaminosulfonyl,
        1-ethylpropylaminosulfonyl, hexylaminosulfonyl,
35
        1,1-dimethylpropylaminosulfonyl,
        1,2-dimethylpropylaminosulfonyl, 1-methylpentylaminosulfonyl,
        2-methylpentylaminosulfonyl, 3-methylpentylaminosulfonyl,
        4-methylpentylaminosulfonyl, 1,1-dimethylbutylaminosulfonyl,
        1,2-dimethylbutylaminosulfonyl,
40
        1,3-dimethylbutylaminosulfonyl,
        2,2-dimethylbutylaminosulfonyl,
        2,3-dimethylbutylaminosulfonyl,
        3,3-dimethylbutylaminosulfonyl, 1-ethylbutylaminosulfonyl,
        2-ethylbutylaminosulfonyl,
45
        1,1,2-trimethylpropylaminosulfonyl,
        1,2,2-trimethylpropylaminosulfonyl,
```

```
1-ethyl-1-methylpropylaminosulfonyl or
       1-ethyl-2-methylpropylaminosulfonyl;
       di(C<sub>1</sub>-C<sub>6</sub>-alkyl)aminosulfonyl: for example
       N, N-dimethylaminosulfonyl, N, N-diethylaminosulfonyl,
5
       N, N-di(1-methylethyl)aminosulfonyl,
       N, N-dipropylaminosulfonyl, N, N-dibutylaminosulfonyl,
       N, N-di(1-methylpropyl)aminosulfonyl,
       N, N-di (2-methylpropyl) aminosulfonyl,
       N, N-di(1, 1-dimethylethyl) aminosulfonyl,
10
       N-ethyl-N-methylaminosulfonyl,
       N-methyl-N-propylaminosulfonyl,
       N-methyl-N-(1-methylethyl)aminosulfonyl,
       N-butyl-N-methylaminosulfonyl,
       N-methyl-N-(1-methylpropyl)aminosulfonyl,
15
       N-methyl-N-(2-methylpropyl)aminosulfonyl,
       N-(1,1-dimethylethyl)-N-methylaminosulfonyl,
       N-ethyl-N-propylaminosulfonyl,
       N-ethyl-N-(1-methylethyl)aminosulfonyl,
       N-butyl-N-ethylaminosulfonyl,
20
       N-ethyl-N-(1-methylpropyl)aminosulfonyl,
       N-ethyl-N-(2-methylpropyl)aminosulfonyl,
       N-ethyl-N-(1,1-dimethylethyl) aminosulfonyl,
       N-(1-methylethyl)-N-propylaminosulfonyl,
       N-butyl-N-propylaminosulfonyl,
25
       N-(1-methylpropyl)-N-propylaminosulfonyl,
       N-(2-methylpropyl)-N-propylaminosulfonyl,
       N-(1,1-dimethylethyl)-N-propylaminosulfonyl,
       N-butyl-N-(1-methylethyl)aminosulfonyl,
       N-(1-methylethyl)-N-(1-methylpropyl) aminosulfonyl,
30
       N-(1-methylethyl)-N-(2-methylpropyl)aminosulfonyl,
       N-(1,1-dimethylethyl)-N-(1-methylethyl) aminosulfonyl,
       N-butyl-N-(1-methylpropyl)aminosulfonyl,
       N-butyl-N-(2-methylpropyl)aminosulfonyl,
       N-butyl-N-(1,1-dimethylethyl) aminosulfonyl,
35
       N-(1-methylpropyl)-N-(2-methylpropyl)aminosulfonyl,
       N-(1,1-dimethylethyl)-N-(1-methylpropyl) aminosulfonyl,
       N-(1,1-dimethylethyl)-N-(2-methylpropyl) aminosulfonyl,
        N-methyl-N-pentylaminosulfonyl,
        N-methyl-N-(1-methylbutyl)aminosulfonyl,
40
        N-methyl-N-(2-methylbutyl)aminosulfonyl,
        N-methyl-N-(3-methylbutyl)aminosulfonyl,
        N-methyl-N-(2,2-dimethylpropyl) aminosulfonyl,
        N-methyl-N-(1-ethylpropyl) aminosulfonyl,
        N-methyl-N-hexylaminosulfonyl,
45
        N-methyl-N-(1,1-dimethylpropyl) aminosulfonyl,
        N-methyl-N-(1,2-dimethylpropyl)aminosulfonyl,
```

```
N-methyl-N-(1-methylpentyl) aminosulfonyl,
       N-methyl-N-(2-methylpentyl) aminosulfonyl,
       N-methyl-N-(3-methylpentyl) aminosulfonyl,
       N-methyl-N-(4-methylpentyl) aminosulfonyl,
       N-methyl-N-(1,1-dimethylbutyl) aminosulfonyl,
5
       N-methyl-N-(1,2-dimethylbutyl) aminosulfonyl,
       N-methyl-N-(1,3-dimethylbutyl) aminosulfonyl,
       N-methyl-N-(2,2-dimethylbutyl) aminosulfonyl,
       N-methyl-N-(2,3-dimethylbutyl) aminosulfonyl,
       N-methyl-N-(3,3-dimethylbutyl)aminosulfonyl,
10
       	ext{N-methyl-N-(1-ethylbutyl)aminosulfonyl},
       N-methyl-N-(2-ethylbutyl)aminosulfonyl,
       N-methyl-N-(1,1,2-trimethylpropyl) aminosulfonyl,
       N-methyl-N-(1,2,2-trimethylpropyl) aminosulfonyl,
       N-methyl-N-(1-ethyl-1-methylpropyl)aminosulfonyl,
15
       N-methyl-N-(1-ethyl-2-methylpropyl)aminosulfonyl,
       N-ethyl-N-pentylaminosulfonyl,
       N-ethyl-N-(1-methylbutyl) aminosulfonyl,
       N-ethyl-N-(2-methylbutyl)aminosulfonyl,
       N-ethyl-N-(3-methylbutyl)aminosulfonyl,
20
       N-ethyl-N-(2,2-dimethylpropyl)aminosulfonyl,
       N-ethyl-N-(1-ethylpropyl) aminosulfonyl,
       N-ethyl-N-hexylaminosulfonyl,
       N-ethyl-N-(1,1-dimethylpropyl)aminosulfonyl,
       N-ethyl-N-(1,2-dimethylpropyl) aminosulfonyl,
25
       N-ethyl-N-(1-methylpentyl)aminosulfonyl,
       N-ethyl-N-(2-methylpentyl)aminosulfonyl,
       N-ethyl-N-(3-methylpentyl)aminosulfonyl,
       N-ethyl-N-(4-methylpentyl) aminosulfonyl,
       N-ethyl-N-(1,1-dimethylbutyl) aminosulfonyl,
30
        N-ethyl-N-(1,2-dimethylbutyl) aminosulfonyl,
        N-ethyl-N-(1,3-dimethylbutyl)aminosulfonyl,
        N-ethyl-N-(2,2-dimethylbutyl) aminosulfonyl,
        N-ethyl-N-(2,3-dimethylbutyl) aminosulfonyl,
        N-ethyl-N-(3,3-dimethylbutyl) aminosulfonyl,
35
        N-ethyl-N-(1-ethylbutyl)aminosulfonyl,
        N-ethyl-N-(2-ethylbutyl) aminosulfonyl,
        N-ethyl-N-(1,1,2-trimethylpropyl) aminosulfonyl,
        N-ethyl-N-(1,2,2-trimethylpropyl) aminosulfonyl,
        N-ethyl-N-(1-ethyl-1-methylpropyl) aminosulfonyl,
40
        N-ethyl-N-(1-ethyl-2-methylpropyl) aminosulfonyl,
        N-propyl-N-pentylaminosulfonyl,
        N-butyl-N-pentylaminosulfonyl, N,N-dipentylaminosulfonyl,
        N-propyl-N-hexylaminosulfonyl, N-butyl-N-hexylaminosulfonyl,
        N-pentyl-N-hexylaminosulfonyl or N,N-dihexylaminosulfonyl;
45
```

 $di(C_1-C_4-alkyl)$ amino, and the dialkylamino radicals of $di(C_1-C_4-alkyl)$ amino- $C_1-C_4-alkoxycarbonyl$ and $N-(di-C_1-C_4-alkylamino)imino-C_1-C_6-alkyl:$ for example N, N-dimethylamino, N, N-diethylamino, N, N-dipropylamino, 5 N, N-di(1-methylethyl)amino, N, N-dibutylamino, N, N-di(1-methylpropyl)amino, N, N-di(2-methylpropyl)amino, N, N-di(1, 1-dimethylethyl) amino, N-ethyl-N-methylamino, N-methyl-N-propylamino, N-methyl-N-(1-methylethyl)amino, N-butyl-N-methylamino, N-methyl-N-(1-methylpropyl)amino, 10 N-methyl-N-(2-methylpropyl)amino, N-(1,1-dimethylethyl)-N-methylamino, N-ethyl-N-propylamino, N-ethyl-N-(1-methylethyl)amino, N-butyl-N-ethylamino, N-ethyl-N-(1-methylpropyl)amino, N-ethyl-N-(2-methylpropyl)amino, 15 N-ethyl-N-(1,1-dimethylethyl)amino, N-(1-methylethyl)-N-propylamino, N-butyl-N-propylamino, N-(1-methylpropyl)-N-propylamino, N-(2-methylpropyl)-N-propylamino, N-(1,1-dimethylethyl)-N-propylamino, 20 N-butyl-N-(1-methylethyl)amino, N-(1-methylethyl)-N-(1-methylpropyl)amino, N-(1-methylethyl)-N-(2-methylpropyl)amino, N-(1,1-dimethylethyl)-N-(1-methylethyl)amino, N-butyl-N-(1-methylpropyl)amino, 25 N-butyl-N-(2-methylpropyl)amino, N-butyl-N-(1,1-dimethylethyl)amino, N-(1-methylpropyl)-N-(2-methylpropyl)amino, N-(1,1-dimethylethyl)-N-(1-methylpropyl)amino or N-(1,1-dimethylethyl)-N-(2-methylpropyl)amino; 30 di(C1-C6-alkyl)amino, and the dialkylamino radicals of $di(C_1-C_6-alkyl)$ aminoimino- $C_1-C_6-alkyl$: $di(C_1-C_4-alkyl)$ amino as mentioned above, and also N,N-dipentylamino, N, N-dihexylamino, N-methyl-N-pentylamino, 35 N-ethyl-N-pentylamino, N-methyl-N-hexylamino or N-ethyl-N-hexylamino; C_1-C_4 -alkylcarbonyl: for example methylcarbonyl, ethylcarbonyl, propylcarbonyl, 1-methylethylcarbonyl, 40 butylcarbonyl, 1-methylpropylcarbonyl, 2-methylpropylcarbonyl or 1,1-dimethylethylcarbonyl; C_1-C_6 -alkylcarbonyl, and the alkylcarbonyl radicals of $C_1-C_6-alkylcarbonyl-C_1-C_6-alkyl: C_1-C_4-alkylcarbonyl$ as 45 mentioned above, and also, for example, pentylcarbonyl, 1-methylbutylcarbonyl, 2-methylbutylcarbonyl, 3-methylbutylcarbonyl, 2,2-dimethylpropylcarbonyl,

- 1-ethylpropylcarbonyl, hexylcarbonyl,
- 1,1-dimethylpropylcarbonyl, 1,2-dimethylpropylcarbonyl,
- 1-methylpentylcarbonyl, 2-methylpentylcarbonyl,
- 3-methylpentylcarbonyl, 4-methylpentylcarbonyl,
- 5 1,1-dimethylbutylcarbonyl, 1,2-dimethylbutylcarbonyl,
 - 1,3-dimethylbutylcarbonyl, 2,2-dimethylbutylcarbonyl,
 - 2,3-dimethylbutylcarbonyl, 3,3-dimethylbutylcarbonyl,
 - 1-ethylbutylcarbonyl, 2-ethylbutylcarbonyl,
 - 1,1,2-trimethylpropylcarbonyl, 1,2,2-trimethylpropylcarbonyl,
- 10 1-ethyl-1-methylpropylcarbonyl or
 - 1-ethyl-2-methylpropylcarbonyl;
- C₁-C₂₀-alkylcarbonyl: C₁-C₆-alkylcarbonyl as mentioned above, and also heptylcarbonyl, octylcarbonyl, pentadecylcarbonyl or heptadecylcarbonyl;
 - C_1-C_4 -alkoxycarbonyl, and the alkoxycarbonyl moieties of $di(C_1-C_4$ -alkyl)amino- C_1-C_4 -alkoxycarbonyl: for example methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl,
- 1-methylethoxycarbonyl, butoxycarbonyl,
 1-methylpropoxycarbonyl, 2-methylpropoxycarbonyl or
 1,1-dimethylethoxycarbonyl;
- $(C_1-C_6-alkoxy)$ carbonyl: $(C_1-C_4-alkoxy)$ carbonyl as mentioned
- above, and also, for example, pentoxycarbonyl,
 - 1-methylbutoxycarbonyl, 2-methylbutoxycarbonyl,
 - 3-methylbutoxycarbonyl, 2,2-dimethylpropoxycarbonyl,
 - 1-ethylpropoxycarbonyl, hexoxycarbonyl,
 - 1,1-dimethylpropoxycarbonyl, 1,2-dimethylpropoxycarbonyl,
- 30 1-methylpentoxycarbonyl, 2-methylpentoxycarbonyl,
 - 3-methylpentoxycarbonyl, 4-methylpentoxycarbonyl,
 - 1,1-dimethylbutoxycarbonyl, 1,2-dimethylbutoxycarbonyl,
 - 1,3-dimethylbutoxycarbonyl, 2,2-dimethylbutoxycarbonyl,
 - 2,3-dimethylbutoxycarbonyl, 3,3-dimethylbutoxycarbonyl,
- 35 1-ethylbutoxycarbonyl, 2-ethylbutoxycarbonyl,
 - 1,1,2-trimethylpropoxycarbonyl,
 - 1,2,2-trimethylpropoxycarbonyl,
 - 1-ethyl-1-methyl-propoxycarbonyl or
 - 1-ethyl-2-methyl-propoxycarbonyl;
- 40
 - C₁-C₆-haloalkoxycarbonyl: a C₁-C₆-alkoxycarbonyl radical as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, i.e., for example, fluoromethoxycarbonyl, difluoromethoxycarbonyl,
- trifluoromethoxycarbonyl, chlorodifluoromethoxycarbonyl, bromodifluoromethoxycarbonyl, 2-fluoroethoxycarbonyl, 2-chloroethoxycarbonyl, 2-bromoethoxycarbonyl,

```
2-iodoethoxycarbonyl, 2,2-difluoroethoxycarbonyl,
       2,2,2-trifluoroethoxycarbonyl,
       2-chloro-2-fluoroethoxycarbonyl,
       2-chloro-2, 2-difluoroethoxycarbonyl,
       2,2-dichloro-2-fluoroethoxycarbonyl,
5
       2,2,2-trichloroethoxycarbonyl, pentafluoroethoxycarbonyl,
       2-fluoropropoxycarbonyl, 3-fluoropropoxycarbonyl,
       2-chloropropoxycarbonyl, 3-chloropropoxycarbonyl,
       2-bromopropoxycarbonyl, 3-bromopropoxycarbonyl,
       2,2-difluoropropoxycarbonyl, 2,3-difluoropropoxycarbonyl,
10
       2,3-dichloropropoxycarbonyl, 3,3,3-trifluoropropoxycarbonyl,
       3,3,3-trichloropropoxycarbonyl,
       2,2,3,3,3-pentafluoropropoxycarbonyl,
       heptafluoropropoxycarbonyl,
       1-(fluoromethyl)-2-fluoroethoxycarbonyl,
15
       1-(chloromethyl)-2-chloroethoxycarbonyl,
       1-(bromomethyl)-2-bromoethoxycarbonyl,
       4-fluorobutoxycarbonyl, 4-chlorobutoxycarbonyl,
       4-bromobutoxycarbonyl, nonafluorobutoxycarbonyl,
       5-fluoropentoxycarbonyl, 5-chloropentoxycarbonyl,
20
       5-bromopentoxycarbonyl, 5-iodopentoxycarbonyl,
       6-fluorohexoxycarbonyl, 6-bromohexoxycarbonyl,
       6-iodohexoxycarbonyl or dodecafluorohexoxycarbonyl;
       (C_1-C_4-alkyl) carbonyloxy: acetyloxy, ethylcarbonyloxy,
25 -
       propylcarbonyloxy, 1-methylethylcarbonyloxy,
       butylcarbonyloxy, 1-methylpropylcarbonyloxy,
       2-methylpropylcarbonyloxy or 1,1-dimethylethylcarbonyloxy;
       (C_1-C_4-alkylamino) carbonyl: for example methylaminocarbonyl,
30 -
       ethylaminocarbonyl, propylaminocarbonyl,
       1-methylethylaminocarbonyl, butylaminocarbonyl,
       1-methylpropylaminocarbonyl, 2-methylpropylaminocarbonyl or
       1,1-dimethylethylaminocarbonyl;
35
        (C_1-C_6-alkylamino) carbonyl: (C_1-C_4-alkylamino) carbonyl as
       mentioned above, and also, for example, pentylaminocarbonyl,
       1-methylbutylaminocarbonyl, 2-methylbutylaminocarbonyl,
       3-methylbutylaminocarbonyl, 2,2-dimethylpropylaminocarbonyl,
       1-ethylpropylaminocarbonyl, hexylaminocarbonyl,
40
        1,1-dimethylpropylaminocarbonyl,
        1,2-dimethylpropylaminocarbonyl, 1-methylpentylaminocarbonyl,
        2-methylpentylaminocarbonyl, 3-methylpentylaminocarbonyl,
        4-methylpentylaminocarbonyl, 1,1-dimethylbutylaminocarbonyl,
        1,2-dimethylbutylaminocarbonyl,
45
        1,3-dimethylbutylaminocarbonyl,
        2,2-dimethylbutylaminocarbonyl,
```

```
2,3-dimethylbutylaminocarbonyl,
       3,3-dimethylbutylaminocarbonyl, 1-ethylbutylaminocarbonyl,
       2-ethylbutylaminocarbonyl,
       1,1,2-trimethylpropylaminocarbonyl,
       1,2,2-trimethylpropylaminocarbonyl,
5
       1-ethyl-1-methylpropylaminocarbonyl or
       1-ethyl-2-methylpropylaminocarbonyl;
       di(C_1-C_4-alkyl) aminocarbonyl: for example
       N, N-dimethylaminocarbonyl, N, N-diethylaminocarbonyl,
10
       N, N-di(1-methylethyl)aminocarbonyl,
       N, N-dipropylaminocarbonyl, N, N-dibutylaminocarbonyl,
       N, N-di(1-methylpropyl)aminocarbonyl,
       N, N-di (2-methylpropyl) aminocarbonyl,
       N, N-di(1, 1-dimethylethyl) aminocarbonyl,
15
       N-ethyl-N-methylaminocarbonyl,
       N-methyl-N-propylaminocarbonyl,
       N-methyl-N-(1-methylethyl)aminocarbonyl,
       N-butyl-N-methylaminocarbonyl,
20
       N-methyl-N-(1-methylpropyl)aminocarbonyl,
       N-methyl-N-(2-methylpropyl)aminocarbonyl,
       N-(1,1-dimethylethyl)-N-methylaminocarbonyl,
       N-ethyl-N-propylaminocarbonyl,
       N-ethyl-N-(1-methylethyl)aminocarbonyl,
       N-butyl-N-ethylaminocarbonyl,
25
       N-ethyl-N-(1-methylpropyl)aminocarbonyl,
       N-ethyl-N-(2-methylpropyl)aminocarbonyl,
       N-ethyl-N-(1,1-dimethylethyl)aminocarbonyl,
       N-(1-methylethyl)-N-propylaminocarbonyl,
       N-butyl-N-propylaminocarbonyl,
30
       N-(1-methylpropyl)-N-propylaminocarbonyl,
       N-(2-methylpropyl)-N-propylaminocarbonyl,
       N-(1,1-dimethylethyl)-N-propylaminocarbonyl,
        N-butyl-N-(1-methylethyl)aminocarbonyl,
        N-(1-methylethyl)-N-(1-methylpropyl)aminocarbonyl,
35
        N-(1-methylethyl)-N-(2-methylpropyl) aminocarbonyl,
        N-(1,1-dimethylethyl)-N-(1-methylethyl)aminocarbonyl,
        N-butyl-N-(1-methylpropyl)aminocarbonyl,
        N-butyl-N-(2-methylpropyl)aminocarbonyl,
        N-butyl-N-(1,1-dimethylethyl)aminocarbonyl,
40
        N-(1-methylpropyl)-N-(2-methylpropyl) aminocarbonyl,
        N-(1,1-dimethylethyl)-N-(1-methylpropyl) aminocarbonyl or
        N-(1,1-dimethylethyl)-N-(2-methylpropyl)aminocarbonyl;
        \label{eq:condition} \mbox{di}(\mbox{$C_1$-$C_6$-alkyl)$aminocarbonyl: $\mbox{di}(\mbox{$C_1$-$C_4$-alkyl)$aminocarbonyl as}$}
45 -
        mentioned above, and also, for example,
        N-methyl-N-pentylaminocarbonyl,
```

```
N-methyl-N-(1-methylbutyl)aminocarbonyl,
       N-Methyl-N-(2-methylbutyl)aminocarbonyl,
       N-methyl-N-(3-methylbutyl)aminocarbonyl,
       N-methyl-N-(2,2-dimethylpropyl)aminocarbonyl,
       N-methyl-N-(1-ethylpropyl)aminocarbonyl,
 5
       N-methyl-N-hexylaminocarbonyl,
       N-methyl-N-(1,1-dimethylpropyl)aminocarbonyl,
       N-methyl-N-(1,2-dimethylpropyl)aminocarbonyl,
       N-methyl-N-(1-methylpentyl)aminocarbonyl,
10
       N-methyl-N-(2-methylpentyl)aminocarbonyl,
       N-methyl-N-(3-methylpentyl)aminocarbonyl,
       N-methyl-N-(4-methylpentyl)aminocarbonyl,
       N-methyl-N-(1,1-dimethylbutyl)aminocarbonyl,
       N-methyl-N-(1,2-dimethylbutyl)aminocarbonyl,
       N-methyl-N-(1,3-dimethylbutyl)aminocarbonyl,
15
       N-methyl-N-(2,2-dimethylbutyl)aminocarbonyl,
       N-methyl-N-(2,3-dimethylbutyl)aminocarbonyl,
       N-methyl-N-(3,3-dimethylbutyl)aminocarbonyl,
       N-methyl-N-(1-ethylbutyl)aminocarbonyl,
20
       N-methyl-N-(2-ethylbutyl)aminocarbonyl,
       N-methyl-N-(1,1,2-trimethylpropyl)aminocarbonyl,
       N-methyl-N-(1,2,2-trimethylpropyl)aminocarbonyl,
       N-methyl-N-(1-ethyl-1-methylpropyl)aminocarbonyl,
       N-methyl-N-(1-ethyl-2-methylpropyl)aminocarbonyl,
       N-ethyl-N-pentylaminocarbonyl,
25
       N-ethyl-N-(1-methylbutyl)aminocarbonyl,
       N-ethyl-N-(2-methylbutyl)aminocarbonyl,
       N-ethyl-N-(3-methylbutyl)aminocarbonyl,
       N-ethyl-N-(2,2-dimethylpropyl)aminocarbonyl,
       N-ethyl-N-(1-ethylpropyl)aminocarbonyl,
30
       N-ethyl-N-hexylaminocarbonyl,
       N-ethyl-N-(1,1-dimethylpropyl)aminocarbonyl,
       N-ethyl-N-(1,2-dimethylpropyl)aminocarbonyl,
       N-ethyl-N-(1-methylpentyl)aminocarbonyl,
35
       N-ethyl-N-(2-methylpentyl)aminocarbonyl,
       N-ethyl-N-(3-methylpentyl)aminocarbonyl,
       N-ethyl-N-(4-methylpentyl)aminocarbonyl,
       N-ethyl-N-(1,1-dimethylbutyl)aminocarbonyl,
       N-ethyl-N-(1,2-dimethylbutyl) aminocarbonyl,
       N-ethyl-N-(1,3-dimethylbutyl)aminocarbonyl,
40
       N-ethyl-N-(2,2-dimethylbutyl)aminocarbonyl,
       N-ethyl-N-(2,3-dimethylbutyl)aminocarbonyl,
       N-ethyl-N-(3,3-dimethylbutyl)aminocarbonyl,
       N-ethyl-N-(1-ethylbutyl)aminocarbonyl,
       N-ethyl-N-(2-ethylbutyl)aminocarbonyl,
45
       N-ethyl-N-(1,1,2-trimethylpropyl)aminocarbonyl,
       N-ethyl-N-(1,2,2-trimethylpropyl)aminocarbonyl,
```

```
N-ethyl-N-(1-ethyl-1-methylpropyl) aminocarbonyl,
       N-ethyl-N-(1-ethyl-2-methylpropyl) aminocarbonyl,
       N-propyl-N-pentylaminocarbonyl,
       N-butyl-N-pentylaminocarbonyl, N,N-dipentylaminocarbonyl,
5
       N-propyl-N-hexylaminocarbonyl, N-butyl-N-hexylaminocarbonyl,
       N-pentyl-N-hexylaminocarbonyl or N,N-dihexylaminocarbonyl;
       di(C_1-C_6-alkyl) aminothiocarbonyl: for example
       N, N-dimethylaminothiocarbonyl, N, N-diethylaminothiocarbonyl,
10
       N, N-di (1-methylethyl) aminothiocarbonyl,
       N, N-dipropylaminothiocarbonyl, N, N-dibutylaminothiocarbonyl,
       N, N-di (1-methylpropyl) aminothiocarbonyl,
       N, N-di (2-methylpropyl) aminothiocarbonyl,
       N, N-di(1,1-dimethylethyl)aminothiocarbonyl,
15
       N-ethyl-N-methylaminothiocarbonyl,
       N-methyl-N-propylaminothiocarbonyl,
       N-methyl-N-(1-methylethyl)aminothiocarbonyl,
       N-butyl-N-methylaminothiocarbonyl,
       N-methyl-N-(1-methylpropyl)aminothiocarbonyl,
20
       N-methyl-N-(2-methylpropyl)aminothiocarbonyl,
       N-(1,1-dimethylethyl)-N-methylaminothiocarbonyl,
       N-ethyl-N-propylaminothiocarbonyl,
       N-ethyl-N-(1-methylethyl)aminothiocarbonyl,
       N-butyl-N-ethylaminothiocarbonyl,
25
       N-ethyl-N-(1-methylpropyl)aminothiocarbonyl,
       N-ethyl-N-(2-methylpropyl)aminothiocarbonyl,
       N-ethyl-N-(1,1-dimethylethyl)aminothiocarbonyl,
       N-(1-methylethyl)-N-propylaminothiocarbonyl,
       N-butyl-N-propylaminothiocarbonyl,
30
       N-(1-methylpropyl)-N-propylaminothiocarbonyl,
       N-(2-methylpropyl)-N-propylaminothiocarbonyl,
       N-(1,1-dimethylethyl)-N-propylaminothiocarbonyl,
       N-butyl-N-(1-methylethyl)aminothiocarbonyl,
       N-(1-methylethyl)-N-(1-methylpropyl)aminothiocarbonyl,
35
       N-(1-methylethyl)-N-(2-methylpropyl)aminothiocarbonyl,
       N-(1,1-dimethylethyl)-N-(1-methylethyl)aminothiocarbonyl,
       N-butyl-N-(1-methylpropyl)aminothiocarbonyl,
       N-butyl-N-(2-methylpropyl)aminothiocarbonyl,
       N-butyl-N-(1,1-dimethylethyl)aminothiocarbonyl,
40
       N-(1-methylpropy1)-N-(2-methylpropy1) aminothiocarbony1,
       N-(1,1-dimethylethyl)-N-(1-methylpropyl)aminothiocarbonyl,
       N-(1,1-dimethylethyl)-N-(2-methylpropyl)aminothiocarbonyl,
       N-methyl-N-pentylaminothiocarbonyl,
       N-methyl-N-(1-methylbutyl)aminothiocarbonyl,
45
       N-methyl-N-(2-methylbutyl)aminothiocarbonyl,
       N-methyl-N-(3-methylbutyl)aminothiocarbonyl,
       N-methyl-N-(2,2-dimethylpropyl)aminothiocarbonyl,
```

```
N-methyl-N-(1-ethylpropyl)aminothiocarbonyl,
       N-methyl-N-hexylaminothiocarbonyl,
       N-methyl-N-(1,1-dimethylpropyl)aminothiocarbonyl,
       N-methyl-N-(1,2-dimethylpropyl)aminothiocarbonyl,
       N-methyl-N-(1-methylpentyl)aminothiocarbonyl,
5
       N-methyl-N-(2-methylpentyl)aminothiocarbonyl,
       N-methyl-N-(3-methylpentyl)aminothiocarbonyl,
       N-methyl-N-(4-methylpentyl)aminothiocarbonyl,
       N-methyl-N-(1,1-dimethylbutyl)aminothiocarbonyl,
       N-methyl-N-(1,2-dimethylbutyl)aminothiocarbonyl,
10
       N-methyl-N-(1,3-dimethylbutyl)aminothiocarbonyl,
       N-methyl-N-(2,2-dimethylbutyl)aminothiocarbonyl,
       N-methyl-N-(2,3-dimethylbutyl) aminothiocarbonyl,
       N-methyl-N-(3,3-dimethylbutyl)aminothiocarbonyl,
       N-methyl-N-(1-ethylbutyl)aminothiocarbonyl,
15
       N-methyl-N-(2-ethylbutyl)aminothiocarbonyl,
       N-methyl-N-ethyl-N-(1,1,2-trimethylpropyl) aminothiocarbonyl,
       N-methyl-N-(1,2,2-trimethylpropyl) aminothiocarbonyl,
       N-methyl-N-(1-ethyl-1-methylpropyl) aminothiocarbonyl,
       N-methyl-N-(1-ethyl-2-methylpropyl) aminothiocarbonyl,
20
       N-ethyl-N-pentylaminothiocarbonyl,
       N-ethyl-N-(1-methylbutyl)aminothiocarbonyl,
       N-ethyl-N-(2-methylbutyl)aminothiocarbonyl,
       N-ethyl-N-(3-methylbutyl)aminothiocarbonyl,
       N-ethyl-N-(2,2-dimethylpropyl)aminothiocarbonyl,
25
       N-ethyl-N-(1-ethylpropyl)aminothiocarbonyl,
       N-ethyl-N-hexylaminothiocarbonyl,
       N-ethyl-N-(1,1-dimethylpropyl)aminothiocarbonyl,
       N-ethyl-N-(1,2-dimethylpropyl)aminothiocarbonyl,
       N-ethyl-N-(1-methylpentyl)aminothiocarbonyl,
30
       N-ethyl-N-(2-methylpentyl)aminothiocarbonyl,
       N-ethyl-N-(3-methylpentyl)aminothiocarbonyl,
       N-ethyl-N-(4-methylpentyl)aminothiocarbonyl,
       N-ethyl-N-(1,1-dimethylbutyl)aminothiocarbonyl,
       N-ethyl-N-(1,2-dimethylbutyl) aminothiocarbonyl,
35
       N-ethyl-N-(1,3-dimethylbutyl)aminothiocarbonyl,
       N-ethyl-N-(2,2-dimethylbutyl) aminothiocarbonyl,
       N-ethyl-N-(2,3-dimethylbutyl)aminothiocarbonyl,
       N-ethyl-N-(3,3-dimethylbutyl)aminothiocarbonyl,
       N-ethyl-N-(1-ethylbutyl)aminothiocarbonyl,
40
       N-ethyl-N-(2-ethylbutyl)aminothiocarbonyl,
       N-ethyl-N-(1,1,2-trimethylpropyl) aminothiocarbonyl,
       N-ethyl-N-(1,2,2-trimethylpropyl) aminothiocarbonyl,
       N-ethyl-N-(1-ethyl-1-methylpropyl) aminothiocarbonyl,
       N-ethyl-N-(1-ethyl-2-methylpropyl) aminothiocarbonyl,
45
       N-propyl-N-pentylaminothiocarbonyl,
       N-butyl-N-pentylaminothiocarbonyl,
```

```
N, N-dipentylaminothiocarbonyl,
       N-propyl-N-hexylaminothiocarbonyl,
       N-butyl-N-hexylaminothiocarbonyl,
       N-pentyl-N-hexylaminothiocarbonyl or
5
       N, N-dihexylaminothiocarbonyl;
       C_1-C_4-alkoxy-C_1-C_4-alkyl and the alkoxyalkyl moieties of
       hydroxy-C_1-C_4-alkoxy-C_1-C_4-alkyl: C_1-C_4-alkyl which is
       substituted by C_1-C_4-alkoxy as mentioned above, i.e., for
10
       example, methoxymethyl, ethoxymethyl, propoxymethyl,
       (1-methylethoxy) methyl, butoxymethyl,
       (1-methylpropoxy) methyl, (2-methylpropoxy) methyl,
       (1,1-dimethylethoxy) methyl, 2-(methoxy) ethyl,
       2-(ethoxy)ethy1, 2-(propoxy)ethy1, 2-(1-methylethoxy)ethy1,
       2-(butoxy)ethyl, 2-(1-methylpropoxy)ethyl,
15
       2-(2-methylpropoxy)ethyl, 2-(1,1-dimethylethoxy)ethyl,
       2-(methoxy)propyl, 2-(ethoxy)propyl, 2-(propoxy)propyl,
       2-(1-methylethoxy)propyl, 2-(butoxy)propyl,
       2-(1-methylpropoxy)propyl, 2-(2-methylpropoxy)propyl,
20
       2-(1,1-dimethylethoxy)propyl, 3-(methoxy)propyl,
       3-(ethoxy)propyl, 3-(propoxy)propyl,
       3-(1-methylethoxy)propyl, 3-(butoxy)propyl,
       3-(1-methylpropoxy)propyl, 3-(2-methylpropoxy)propyl,
       3-(1,1-dimethylethoxy)propyl, 2-(methoxy)butyl,
       2-(ethoxy)butyl, 2-(propoxy)butyl, 2-(1-methylethoxy)butyl,
25
       2-(butoxy)butyl, 2-(1-methylpropoxy)butyl,
       2-(2-methylpropoxy)butyl, 2-(1,1-dimethylethoxy)butyl,
       3-(methoxy)butyl, 3-(ethoxy)butyl, 3-(propoxy)butyl,
       3-(1-methylethoxy)butyl, 3-(butoxy)butyl,
       3-(1-methylpropoxy) butyl, 3-(2-methylpropoxy) butyl,
30
       3-(1,1-dimethylethoxy)butyl, 4-(methoxy)butyl,
       4-(ethoxy)butyl, 4-(propoxy)butyl, 4-(1-methylethoxy)butyl,
       4-(butoxy)butyl, 4-(1-methylpropoxy)butyl,
       4-(2-methylpropoxy) butyl or 4-(1,1-dimethylethoxy) butyl;
35
       C_1-C_4-alkoxy-C_1-C_4-alkoxy as alkoxyalkoxy moieties of
       C_1-C_4-alkoxy-C_1-C_4-alkoxycarbonyl: C_1-C_4-alkoxy which is
       substituted by C_1-C_4-alkoxy as mentioned above, i.e., for
       example, methoxymethoxy, ethoxymethoxy, propoxymethoxy,
40
        (1-methylethoxy) methoxy, butoxymethoxy,
        (1-methylpropoxy) methoxy, (2-methylpropoxy) methoxy,
        (1,1-dimethylethoxy) methoxy, 2-(methoxy) ethoxy,
        2-(ethoxy)ethoxy, 2-(propoxy)ethoxy,
       2-(1-methylethoxy)ethoxy, 2-(butoxy)ethoxy,
        2-(1-methylpropoxy) ethoxy, 2-(2-methylpropoxy) ethoxy,
45
        2-(1,1-dimethylethoxy)ethoxy, 2-(methoxy)propoxy,
        2-(ethoxy)propoxy, 2-(propoxy)propoxy,
```

```
2-(1-methylethoxy) propoxy, 2-(butoxy) propoxy,
       2-(1-methylpropoxy)propoxy, 2-(2-methylpropoxy)propoxy,
       2-(1,1-dimethylethoxy)propoxy, 3-(methoxy)propoxy,
       3-(ethoxy)propoxy, 3-(propoxy)propoxy,
       3-(1-methylethoxy) propoxy, 3-(butoxy) propoxy,
5
       3-(1-methylpropoxy)propoxy, 3-(2-methylpropoxy)propoxy,
       3-(1,1-dimethylethoxy) propoxy, 2-(methoxy) butoxy,
       2-(ethoxy) butoxy, 2-(propoxy) butoxy,
       2-(1-methylethoxy) butoxy, 2-(butoxy) butoxy,
       2-(1-methylpropoxy)butoxy, 2-(2-methylpropoxy)butoxy,
10
       2-(1,1-dimethylethoxy) butoxy, 3-(methoxy) butoxy,
       3-(ethoxy) butoxy, 3-(propoxy) butoxy,
       3-(1-methylethoxy) butoxy, 3-(butoxy) butoxy,
       3-(1-methylpropoxy) butoxy, 3-(2-methylpropoxy) butoxy,
       3-(1,1-dimethylethoxy) butoxy, 4-(methoxy) butoxy,
15
       4-(ethoxy)butoxy, 4-(propoxy)butoxy,
       4-(1-methylethoxy) butoxy, 4-(butoxy) butoxy,
       4-(1-methylpropoxy)butoxy, 4-(2-methylpropoxy)butoxy or
       4-(1,1-dimethylethoxy)butoxy;
20
       C_3-C_6-alkenyl, and the alkenyl moieties of
       C_3-C_6-alkenylcarbonyl, C_3-C_6-alkenyloxy,
       C<sub>3</sub>-C<sub>6</sub>-alkenyloxycarbonyl, C<sub>3</sub>-C<sub>6</sub>-alkenylaminocarbonyl,
       N-(C_3-C_6-alkenyl)-N-(C_1-C_6-alkyl) aminocarbonyl,
       N-(C_3-C_6-alkeny1)-N-(C_1-C_6-alkoxy) aminocarbony1: for example
25
       prop-2-en-1-yl, but-1-en-4-yl, 1-methylprop-2-en-1-yl,
        2-methylprop-2-en-1-yl, 2-buten-1-yl, 1-penten-3-yl,
        1-penten-4-yl, 2-penten-4-yl, 1-methylbut-2-en-1-yl,
        2-methylbut-2-en-1-yl, 3-methylbut-2-en-1-yl,
        1-methylbut-3-en-1-yl, 2-methylbut-3-en-1-yl,
30
        3-methylbut-3-en-1-yl, 1,1-dimethylprop-2-en-1-yl,
        1,2-dimethylprop-2-en-1-yl, 1-ethylprop-2-en-1-yl,
       hex-3-en-1-yl, hex-4-en-1-yl, hex-5-en-1-yl,
        1-methylpent-3-en-1-yl, 2-methylpent-3-en-1-yl,
        3-methylpent-3-en-1-yl, 4-methylpent-3-en-1-yl,
35
        1-methylpent-4-en-1-yl, 2-methylpent-4-en-1-yl,
        3-methylpent-4-en-1-yl, 4-methylpent-4-en-1-yl,
        1,1-dimethylbut-2-en-1-yl, 1,1-dimethylbut-3-en-1-yl,
        1,2-dimethylbut-2-en-1-yl, 1,2-dimethylbut-3-en-1-yl,
        1,3-dimethylbut-2-en-1-yl, 1,3-dimethylbut-3-en-1-yl,
40
        2,2-dimethylbut-3-en-1-yl, 2,3-dimethylbut-2-en-1-yl,
        2,3-dimethylbut-3-en-1-yl, 3,3-dimethylbut-2-en-1-yl,
        1-ethylbut-2-en-1-yl, 1-ethylbut-3-en-1-yl,
        2-ethylbut-2-en-1-yl, 2-ethylbut-3-en-1-yl,
        1,1,2-trimethylprop-2-en-1-yl, 1-ethyl-1-methylprop-2-en-1-yl
45
        or 1-ethyl-2-methylprop-2-en-1-yl;
```

- C_2 - C_6 -alkenyl, and the alkenyl moieties of C_2 - C_6 -alkenylcarbonyl, phenyl- C_2 - C_6 -alkenylcarbonyl and heterocyclyl- C_2 - C_6 -alkenylcarbonyl: C_3 - C_6 -alkenyl as mentioned above, and also ethenyl;

- C_2 - C_{20} -alkenyl as alkenyl moiety of C_2 - C_{20} -alkenylcarbonyl: C_2 - C_6 -alkenyl as mentioned above, and also pentadecenyl or heptadecenyl;
- 10 C₃-C₆-haloalkenyl: a C₃-C₆-alkenyl radical as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, i.e., for example, 2-chloroallyl, 3-chloroallyl, 2,3-dichloroallyl, 3,3-dichloroallyl, 2,3,3-trichloroallyl,
- 2,3-dichlorobut-2-enyl, 2-bromoallyl, 3-bromoallyl,
 2,3-dibromoallyl, 3,3-dibromoallyl, 2,3,3-tribromoallyl or
 2,3-dibromobut-2-enyl;
 - C₃-C₆-alkynyl, and the alkynyl moieties of
- $\begin{array}{lll} \textbf{20} & \textbf{C}_3-\textbf{C}_6-\textbf{alkynylcarbonyl}, \ \textbf{C}_3-\textbf{C}_6-\textbf{alkynyloxy}, \\ \textbf{C}_3-\textbf{C}_6-\textbf{alkynyloxycarbonyl}, \ \textbf{C}_3-\textbf{C}_6-\textbf{alkynylaminocarbonyl}, \\ \textbf{N}-(\textbf{C}_3-\textbf{C}_6-\textbf{alkynyl})-\textbf{N}-(\textbf{C}_1-\textbf{C}_6-\textbf{alkyl})\, \textbf{aminocarbonyl}, \\ \textbf{N}-(\textbf{C}_3-\textbf{C}_6-\textbf{alkynyl})-\textbf{N}-(\textbf{C}_1-\textbf{C}_6-\textbf{alkoxyamino})\, \textbf{carbonyl} \colon \, \textbf{for example} \\ \textbf{propargyl}, \ \textbf{but-1-yn-3-yl}, \ \textbf{but-1-yn-4-yl}, \ \textbf{but-2-yn-1-yl}, \end{array}$
- pent-1-yn-3-yl, pent-1-yn-4-yl, pent-1-yn-5-yl,
 pent-2-yn-1-yl, pent-2-yn-4-yl, pent-2-yn-5-yl,
 3-methylbut-1-yn-3-yl, 3-methylbut-1-yn-4-yl, hex-1-yn-3-yl,
 hex-1-yn-4-yl, hex-1-yn-5-yl, hex-1-yn-6-yl, hex-2-yn-1-yl,
 hex-2-yn-4-yl, hex-2-yn-5-yl, hex-2-yn-6-yl, hex-3-yn-1-yl,
- hex-3-yn-2-y1, 3-methylpent-1-yn-3-y1, 3-methylpent-1-yn-4-y1, 3-methylpent-1-yn-5-y1, 4-methylpent-2-yn-4-y1 or 4-methylpent-2-yn-5-y1;
 - C_2 - C_6 -alkynyl, and the alkynyl moieties of
- 35 C_2 - C_6 -alkynylcarbonyl: C_3 - C_6 -alkynyl as mentioned above, and also ethynyl;
 - C_3 - C_6 -haloalkynyl: a C_3 - C_6 -alkynyl radical as mentioned above which is partially or fully substituted by fluorine,
- chlorine, bromine and/or iodine, i.e., for example, 1,1-difluoroprop-2-yn-1-yl, 3-iodoprop-2-yn-1-yl, 4-fluorobut-2-yn-1-yl, 4-chlorobut-2-yn-1-yl, 1,1-difluorobut-2-yn-1-yl, 4-iodobut-3-yn-1-yl, 5-fluoropent-3-yn-1-yl, 5-iodopent-4-yn-1-yl,
- 6-fluorohex-4-yn-1-yl or 6-iodohex-5-yn-1-yl;

- C₃-C₆-cycloalkyl, and the cycloalkyl moieties of C₃-C₆-cycloalkylcarbonyl: for example cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl;
- $\begin{array}{lll} \textbf{5} & & \text{heterocyclyl, and the heterocyclyl moieties of} \\ & \text{heterocyclyloxy, heterocyclylcarbonyl,} \\ & \text{heterocyclyl-}C_1-C_6-\text{alkyl, heterocyclyloxycarbonyl,} \\ & \text{heterocyclyloxythiocarbonyl, heterocyclyl-}C_2-C_6-\\ & \text{alkenylcarbonyl, heterocyclylcarbonyl-}C_1-C_6-\text{alkyl,} \\ \end{array}$
- N- $(C_1-C_6-alkyl)$ -N-(heterocyclyl)aminocarbonyl, heterocyclylaminocarbonyl: a saturated, partially saturated or unsaturated 5- or 6-membered heterocyclic ring which is attached via carbon and contains one to four identical or different heteroatoms selected from the following group:
- oxygen, sulfur and nitrogen, i.e., for example, 5-membered rings having, for example, one heteroatom, having two heteroatoms, having three heteroatoms or having four heteroatoms or, for example, 6-membered rings having, for example, one heteroatom, having two heteroatoms, having three
- heteroatoms or having four heteroatoms, i.e. 5-membered rings having one heteroatom, such as:

tetrahydrofuran-2-yl, tetrahydrofuran-3-yl, tetrahydrothien-2-yl, tetrahydrothien-3-yl,

- 25 tetrahydropyrrol-2-yl, tetrahydropyrrol-3-yl,
 - 2,3-dihydrofuran-2-yl, 2,3-dihydrofuran-3-yl,
 - 2,5-dihydrofuran-2-yl, 2,5-dihydrofuran-3-yl,
 - 4,5-dihydrofuran-2-yl, 4,5-dihydrofuran-3-yl,
 - 2,3-dihydrothien-2-yl, 2,3-dihydrothien-3-yl,
- 2,5-dihydrothien-2-yl, 2,5-dihydrothien-3-yl,
 - 4,5-dihydrothien-2-yl, 4,5-dihydrothien-3-yl,
 - 2,3-dihydro-1H-pyrrol-2-yl, 2,3-dihydro-1H-pyrrol-3-yl,
 - 2,5-dihydro-1H-pyrrol-2-yl, 2,5-dihydro-1H-pyrrol-3-yl,
 - 4,5-dihydro-1H-pyrrol-2-yl, 4,5-dihydro-1H-pyrrol-3-yl,
- 3,4-dihydro-2H-pyrrol-2-yl, 3,4-dihydro-2H-pyrrol-3-yl, 3,4-dihydro-5H-pyrrol-2-yl, 3,4-dihydro-5H-pyrrol-3-yl,
 - 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, pyrrol-2-yl or pyrrol-3-yl;
- 40 5-membered rings having two heteroatoms such as:

tetrahydropyrazol-3-yl, tetrahydropyrazol-4-yl, tetrahydroisoxazol-3-yl, tetrahydroisoxazol-4-yl, tetrahydroisoxazol-5-yl, 1,2-oxathiolan-3-yl,

1,2-oxathiolan-4-yl, 1,2-oxathiolan-5-yl, tetrahydroisothiazol-3-yl, tetrahydroisothiazol-4-yl, tetrahydroisothiazol-5-yl, 1,2-dithiolan-3-yl,

```
1,2-dithiolan-4-yl, tetrahydroimidazol-2-yl,
       tetrahydroimidazol-4-yl, tetrahydrooxazol-2-yl,
       tetrahydrooxazol-4-yl, tetrahydrooxazol-5-yl,
       tetrahydrothiazol-2-yl, tetrahydrothiazol-4-yl,
       tetrahydrothiazol-5-yl, 1,3-dioxolan-2-yl, 1,3-dioxolan-4-yl,
5
       1,3-oxathiolan-2-yl, 1,3-oxathiolan-4-yl,
       1,3-oxathiolan-5-yl, 1,3-dithiolan-2-yl, 1,3-dithiolan-4-yl,
       4,5-dihydro-1H-pyrazol-3-yl, 4,5-dihydro-1H-pyrazol-4-yl,
       4,5-dihydro-1H-pyrazol-5-yl, 2,5-dihydro-1H-pyrazol-3-yl,
       2,5-dihydro-1H-pyrazol-4-yl, 2,5-dihydro-1H-pyrazol-5-yl,
10
       4,5-dihydroisoxazol-3-yl, 4,5-dihydroisoxazol-4-yl,
       4,5-dihydroisoxazol-5-yl, 2,5-dihydroisoxazol-3-yl,
       2,5-dihydroisoxazol-4-yl, 2,5-dihydroisoxazol-5-yl,
       2,3-dihydroisoxazol-3-yl, 2,3-dihydroisoxazol-4-yl,
       2,3-dihydroisoxazol-5-yl, 4,5-dihydroisothiazol-3-yl,
15
       4,5-dihydroisothiazol-4-yl, 4,5-dihydroisothiazol-5-yl,
       2,5-dihydroisothiazol-3-yl, 2,5-dihydroisothiazol-4-yl,
       2,5-dihydroisothiazol-5-yl, 2,3-dihydroisothiazol-3-yl,
       2,3-dihydroisothiazol-4-yl, 2,3-dihydroisothiazol-5-yl,
       \Delta^3-1,2-dithiol-3-yl, \Delta^3-1,2-dithiol-4-yl, \Delta^3-1,2-dithiol-5-yl,
20
       4,5-dihydro-1H-imidazol-2-yl, 4,5-dihydro-1H-imidazol-4-yl,
       4,5-dihydro-1H-imidazol-5-yl, 2,5-dihydro-1H-imidazol-2-yl,
       2,5-dihydro-1H-imidazol-4-yl, 2,5-dihydro-1H-imidazol-5-yl,
       2,3-dihydro-1H-imidazol-2-yl, 2,3-dihydro-1H-imidazol-4-yl,
       4,5-dihydrooxazol-2-yl, 4,5-dihydrooxazol-4-yl,
25
       4,5-dihydrooxazol-5-yl, 2,5-dihydrooxazol-2-yl,
       2,5-dihydrooxazol-4-yl, 2,5-dihydrooxazol-5-yl,
       2,3-dihydrooxazol-2-yl, 2,3-dihydrooxazol-4-yl,
       2.3-dihydrooxazol-5-yl, 4,5-dihydrothiazol-2-yl,
        4,5-dihydrothiazol-4-yl, 4,5-dihydrothiazol-5-yl,
30
        2,5-dihydrothiazol-2-yl, 2,5-dihydrothiazol-4-yl,
        2,5-dihydrothiazol-5-yl, 2,3-dihydrothiazol-2-yl,
        2,3-dihydrothiazol-4-yl, 2,3-dihydrothiazol-5-yl,
        1,3-dioxol-2-yl, 1,3-dioxol-4-yl, 1,3-dithiol-2-yl,
        1,3-dithiol-4-yl, 1,3-oxathiol-2-yl, 1,3-oxathiol-4-yl,
35
        1,3-oxathiol-5-yl, pyrazol-3-yl, pyrazol-4-yl, isoxazol-3-yl,
        isoxazol-4-yl, isoxazol-5-yl, isothiazol-3-yl,
        isothiazol-4-yl, isothiazol-5-yl, imidazol-2-yl,
        imidazol-4-yl, oxazol-2-yl, oxazol-4-yl, oxazol-5-yl,
        thiazol-2-yl, thiazol-4-yl or thiazol-5-yl;
40
        5-membered rings having three heteroatoms such as:
        1,2,3-\Delta^2-oxadiazolin-4-yl, 1,2,3-\Delta^2-oxadiazolin-5-yl,
        1,2,4-\Delta^4-oxadiazolin-3-yl, 1,2,4-\Delta^4-oxadiazolin-5-yl,
45
        1,2,4-\Delta^2-oxadiazolin-3-yl, 1,2,4-\Delta^2-oxadiazolin-5-yl,
        1,2,4-\Delta^3-oxadiazolin-3-yl, 1,2,4-\Delta^3-oxadiazolin-5-yl,
```

```
1,3,4-\Delta^2-oxadiazolin-2-yl, 1,3,4-\Delta^2-oxadiazolin-5-yl,
       1,3,4-\Delta^3-oxadiazolin-2-yl, 1,3,4-oxadiazolin-2-yl,
       1,2,3-\Delta^2-thiadiazolin-4-yl, 1,2,3-\Delta^2-thiadiazolin-5-yl,
       1,2,4-\Delta^4-thiadiazolin-3-yl, 1,2,4-\Delta^4-thiadiazolin-5-yl,
5
       1,2,4-\Delta^3-thiadiazolin-3-yl, 1,2,4-\Delta^3-thiadiazolin-5-yl,
       1,2,4-\Delta^2-thiadiazolin-3-yl, 1,2,4-\Delta^2-thiadiazolin-5-yl,
       1,3,4-\Delta^2-thiadiazolin-2-yl, 1,3,4-\Delta^2-thiadiazolin-5-yl,
       1,3,4-\Delta^3-thiadiazolin-2-yl, 1,3,4-thiadiazolin-2-yl,
       1,3,2-dioxathiolan-4-yl, 1,2,3-\Delta^2-triazolin-4-yl,
       1,2,3-\Delta^2-triazolin-5-yl, 1,2,4-\Delta^2-triazolin-3-yl,
10
       1,2,4-\Delta^2-triazolin-5-yl, 1,2,4-\Delta^3-triazolin-3-yl,
       1,2,4-\Delta^3-triazolin-5-yl, 1,2,4-\Delta^1-triazolin-2-yl,
       1,2,4-triazolin-3-yl, 3H-1,2,4-dithiazol-5-yl,
       2H-1,3,4-dithiazol-5-yl, 2H-1,3,4-oxathiazol-5-yl,
15
       1,2,3-oxadiazol-4-yl, 1,2,3-oxadiazol-5-yl,
       1,2,4-oxadiazol-3-yl, 1,2,4,-oxadiazol-5-yl,
       1,3,4-oxadiazol-2-yl, 1,2,3-thiadiazol-4-yl,
       1,2,3-thiadiazol-5-yl, 1,2,4-thiadiazol-3-yl,
       1,2,4-thiadiazol-5-yl, 1,3,4-thiadiazolyl-2-yl,
20
       1,2,3-triazol-4-yl or 1,2,4-triazol-3-yl;
       5-membered rings having four heteroatoms such as:
       tetrazol-5-yl;
25
       6-membered rings having one heteroatom such as:
       tetrahydropyran-2-yl, tetrahydropyran-3-yl,
       tetrahydropyran-4-yl, piperidin-2-yl, piperidin-3-yl,
30
       piperidin-4-yl, tetrahydrothiopyran-2-yl,
       tetrahydrothiopyran-3-yl, tetrahydrothiopyran-4-yl,
       2H-3,4-dihydropyran-6-yl, 2H-3,4-dihydropyran-5-yl,
       2H-3,4-dihydropyran-4-yl, 2H-3,4-dihydropyran-3-yl,
       2H-3,4-dihydropyran-2-yl, 2H-3,4-dihydropyran-6-yl,
35
       2H-3,4-dihydrothiopyran-5-yl, 2H-3,4-dihydrothiopyran-4-yl,
       2H-3,4-dihydropyran-3-yl, 2H-3,4-dihydropyran-2-yl,
       1,2,3,4-tetrahydropyridin-6-yl,
       1,2,3,4-tetrahydropyridin-5-yl,
       1,2,3,4-tetrahydropyridin-4-yl,
40
       1,2,3,4-tetrahydropyridin-3-yl,
       1,2,3,4-tetrahydropyridin-2-yl, 2H-5,6-dihydropyran-2-yl,
       2H-5,6-dihydropyran-3-yl, 2H-5,6-dihydropyran-4-yl,
       2H-5,6-dihydropyran-5-yl, 2H-5,6-dihydropyran-6-yl,
       2H-5,6-dihydrothiopyran-2-yl, 2H-5,6-dihydrothiopyran-3-yl,
       2H-5,6-dihydrothiopyran-4-yl, 2H-5,6-dihydrothiopyran-5-yl,
45
       2H-5,6-dihydrothiopyran-6-yl, 1,2,5,6-tetrahydropyridin-2-yl,
       1,2,5,6-tetrahydropyridin-3-yl,
```

```
1,2,5,6-tetrahydropyridin-4-yl,
       1,2,5,6-tetrahydropyridin-5-yl,
       1,2,5,6-tetrahydropyridin-6-yl,
       2,3,4,5-tetrahydropyridin-2-yl,
       2,3,4,5-tetrahydropyridin-3-yl,
5
       2,3,4,5-tetrahydropyridin-4-yl,
       2,3,4,5-tetrahydropyridin-5-yl,
       2,3,4,5-tetrahydropyridin-6-yl, 4H-pyran-2-yl, 4H-pyran-3-yl,
       4H-pyran-4-yl, 4H-thiopyran-2-yl, 4H-thiopyran-3-yl,
       4H-thiopyran-4-yl, 1,4-dihydropyridin-2-yl,
10
       1,4-dihydropyridin-3-yl, 1,4-dihydropyridin-4-yl,
       2H-pyran-2-yl, 2H-pyran-3-yl, 2H-pyran-4-yl, 2H-pyran-5-yl,
       2H-pyran-6-yl, 2H-thiopyran-2-yl, 2H-thiopyran-3-yl,
       2H-thiopyran-4-yl, 2H-thiopyran-5-yl, 2H-thiopyran-6-yl,
       1,2-dihydropyridin-2-yl, 1,2-dihydropyridin-3-yl,
15
       1,2-dihydropyridin-4-yl, 1,2-dihydropyridin-5-yl,
       1,2-dihydropyridin-6-yl, 3,4-dihydropyridin-2-yl,
       3,4-dihydropyridin-3-yl, 3,4-dihydropyridin-4-yl,
       3,4-dihydropyridin-5-yl, 3,4-dihydropyridin-6-yl,
       2,5-dihydropyridin-2-yl, 2,5-dihydropyridin-3-yl,
20
       2,5-dihydropyridin-4-yl, 2,5-dihydropyridin-5-yl,
       2,5-dihydropyridin-6-yl, 2,3-dihydropyridin-2-yl,
       2,3-dihydropyridin-3-yl, 2,3-dihydropyridin-4-yl,
       2,3-dihydropyridin-5-yl, 2,3-dihydropyridin-6-yl,
       pyridin-2-yl, pyridin-3-yl or pyridin-4-yl;
25
       6-membered rings having two heteroatoms such as:
       1,3-dioxan-2-yl, 1,3-dioxan-4-yl, 1,3-dioxan-5-yl,
       1,4-dioxan-2-yl, 1,3-dithian-2-yl, 1,3-dithian-4-yl,
30
       1,3-dithian-5-yl, 1,4-dithian-2-yl, 1,3-oxathian-2-yl,
       1,3-oxathian-4-yl, 1,3-oxathian-5-yl, 1,3-oxathian-6-yl,
       1,4-oxathian-2-yl, 1,4-oxathian-3-yl, 1,2-dithian-3-yl,
       1,2-dithian-4-yl, hexahydropyrimidin-2-yl,
       hexahydropyrimidin-4-yl, hexahydropyrimidin-5-yl,
35
       hexahydropyrazin-2-yl, hexahydropyridazin-3-yl,
       hexahydropyridazin-4-yl, tetrahydro-1,3-oxazin-2-yl,
       tetrahydro-1,3-oxazin-4-yl, tetrahydro-1,3-oxazin-5-yl,
       tetrahydro-1,3-oxazin-6-yl, tetrahydro-1,3-thiazin-2-yl,
       tetrahydro-1,3-thiazin-4-yl, tetrahydro-1,3-thiazin-5-yl,
40
       tetrahydro-1,3-thiazin-6-yl, tetrahydro-1,4-thiazin-2-yl,
       tetrahydro-1,4-thiazin-3-yl, tetrahydro-1,4-oxazin-2-yl,
       tetrahydro-1,4-oxazin-3-yl, tetrahydro-1,2-oxazin-3-yl,
       tetrahydro-1,2-oxazin-4-yl, tetrahydro-1,2-oxazin-5-yl,
       tetrahydro-1,2-oxazin-6-yl, 2H-5,6-dihydro-1,2-oxazin-3-yl,
45
       2H-5, 6-dihydro-1, 2-oxazin-4-yl,
        2H-5,6-dihydro-1,2-oxazin-5-yl,
```

```
2H-5, 6-dihydro-1, 2-oxazin-6-y1,
       2H-5,6-dihydro-1,2-thiazin-3-yl,
       2H-5,6-dihydro-1,2-thiazin-4-y1,
       2H-5,6-dihydro-1,2-thiazin-5-y1,
       2H-5,6-dihydro-1,2-thiazin-6-yl,
5
       4H-5, 6-dihydro-1, 2-oxazin-3-y1,
       4H-5,6-dihydro-1,2-oxazin-4-yl,
       4H-5,6-dihydro-1,2-oxazin-5-yl,
       4H-5, 6-dihydro-1, 2-oxazin-6-y1,
10
       4H-5,6-dihydro-1,2-thiazin-3-yl,
       4H-5,6-dihydro-1,2-thiazin-4-yl,
       4H-5,6-dihydro-1,2-thiazin-5-yl,
       4H-5,6-dihydro-1,2-thiazin-6-yl,
       2H-3, 6-dihydro-1, 2-oxazin-3-yl,
       2H-3, 6-dihydro-1, 2-oxazin-4-yl
15
       2H-3,6-dihydro-1,2-oxazin-5-yl,
       2H-3, 6-dihydro-1, 2-oxazin-6-yl
       2H-3,6-dihydro-1,2-thiazin-3-yl,
       2H-3,6-dihydro-1,2-thiazin-4-yl,
20
       2H-3,6-dihydro-1,2-thiazin-5-yl,
       2H-3,6-dihydro-1,2-thiazin-6-yl,
       2H-3,4-dihydro-1,2-oxazin-3-yl,
       2H-3, 4-dihydro-1, 2-oxazin-4-yl,
       2H-3, 4-dihydro-1, 2-oxazin-5-yl,
       2H-3, 4-dihydro-1, 2-oxazin-6-yl,
25
       2H-3, 4-dihydro-1, 2-thiazin-3-yl,
       2H-3,4-dihydro-1,2-thiazin-4-yl,
       2H-3, 4-dihydro-1, 2-thiazin-5-yl,
       2H-3,4-dihydro-1,2-thiazin-6-yl,
30
       2,3,4,5-tetrahydropyridazin-3-yl,
       2,3,4,5-tetrahydropyridazin-4-yl,
       2,3,4,5-tetrahydropyridazin-5-yl,
       2,3,4,5-tetrahydropyridazin-6-yl,
       3,4,5,6-tetrahydropyridazin-3-yl,
       3,4,5,6-tetrahydropyridazin-4-yl,
35
       1,2,5,6-tetrahydropyridazin-3-yl,
       1,2,5,6-tetrahydropyridazin-4-yl,
       1,2,5,6-tetrahydropyridazin-5-yl,
       1,2,5,6-tetrahydropyridazin-6-yl,
40
       1,2,3,6-tetrahydropyridazin-3-yl,
       1,2,3,6-tetrahydropyridazin-4-yl,
       4H-5,6-dihydro-1,3-oxazin-2-yl,
       4H-5,6-dihydro-1,3-oxazin-4-yl,
       4H-5, 6-dihydro-1, 3-oxazin-5-yl,
        4H-5,6-dihydro-1,3-oxazin-6-yl,
45
        4H-5,6-dihydro-1,3-thiazin-2-yl,
        4H-5,6-dihydro-1,3-thiazin-4-yl,
```

```
4H-5,6-dihydro-1,3-thiazin-5-yl,
       4H-5,6-dihydro-1,3-thiazin-6-yl,
       3,4,5,6-tetrahydropyrimidin-2-yl,
       3,4,5,6-tetrahydropyrimidin-4-yl,
       3,4,5,6-tetrahydropyrimidin-5-yl,
5
       3,4,5,6-tetrahydropyrimidin-6-yl,
       1,2,3,4-tetrahydropyrazin-2-yl,
       1,2,3,4-tetrahydropyrazin-5-yl,
       1,2,3,4-tetrahydropyrimidin-2-yl,
       1,2,3,4-tetrahydropyrimidin-4-yl,
10
       1,2,3,4-tetrahydropyrimidin-5-yl,
       1,2,3,4-tetrahydropyrimidin-6-yl,
       2,3-dihydro-1,4-thiazin-2-yl, 2,3-dihydro-1,4-thiazin-3-yl,
       2,3-dihydro-1,4-thiazin-5-yl, 2,3-dihydro-1,4-thiazin-6-yl,
       2H-1,2-oxazin-3-y1, 2H-1,2-oxazin-4-y1, 2H-1,2-oxazin-5-y1,
15
       2H-1,2-oxazin-6-yl, 2H-1,2-thiazin-3-yl, 2H-1,2-thiazin-4-yl,
       2H-1, 2-thiazin-5-yl, 2H-1, 2-thiazin-6-yl, 4H-1, 2-oxazin-3-yl,
       4H-1,2-oxazin-4-yl, 4H-1,2-oxazin-5-yl, 4H-1,2-oxazin-6-yl,
       4H-1,2-thiazin-3-yl, 4H-1,2-thiazin-4-yl,
       4H-1,2-thiazin-5-y1, 4H-1,2-thiazin-6-y1, 6H-1,2-oxazin-3-y1,
20
       6H-1,2-oxazin-4-yl, 6H-1,2-oxazin-5-yl, 6H-1,2-oxazin-6-yl,
       6H-1,2-thiazin-3-yl, 6H-1,2-thiazin-4-yl,
       6H-1,2-thiazin-5-yl, 6H-1,2-thiazin-6-yl, 2H-1,3-oxazin-2-yl,
       2H-1,3-oxazin-4-yl, 2H-1,3-oxazin-5-yl, 2H-1,3-oxazin-6-yl,
       2H-1,3-thiazin-2-yl, 2H-1,3-thiazin-4-yl,
25
       2H-1,3-thiazin-5-yl, 2H-1,3-thiazin-6-yl, 4H-1,3-oxazin-2-yl,
       4H-1,3-oxazin-4-yl, 4H-1,3-oxazin-5-yl, 4H-1,3-oxazin-6-yl,
       4H-1,3-thiazin-2-yl, 4H-1,3-thiazin-4-yl,
       4H-1,3-thiazin-5-yl, 4H-1,3-thiazin-6-yl, 6H-1,3-oxazin-2-yl,
       6H-1,3-oxazin-4-yl, 6H-1,3-oxazin-5-yl, 6H-1,3-oxazin-6-yl,
30
       6H-1,3-thiazin-2-yl, 6H-1,3-oxazin-4-yl, 6H-1,3-oxazin-5-yl,
       6H-1,3-thiazin-6-yl, 2H-1,4-oxazin-2-yl, 2H-1,4-oxazin-3-yl,
       2H-1,4-oxazin-5-yl, 2H-1,4-oxazin-6-yl, 2H-1,4-thiazin-2-yl,
       2H-1,4-thiazin-3-yl, 2H-1,4-thiazin-5-yl,
       2H-1,4-thiazin-6-yl, 4H-1,4-oxazin-2-yl, 4H-1,4-oxazin-3-yl,
35
       4H-1,4-thiazin-2-yl, 4H-1,4-thiazin-3-yl,
       1,4-dihydropyridazin-3-yl, 1,4-dihydropyridazin-4-yl,
       1,4-dihydropyridazin-5-yl, 1,4-dihydropyridazin-6-yl,
       1,4-dihydropyrazin-2-yl, 1,2-dihydropyrazin-2-yl,
       1,2-dihydropyrazin-3-yl, 1,2-dihydropyrazin-5-yl,
40
       1,2-dihydropyrazin-6-yl, 1,4-dihydropyrimidin-2-yl,
       1,4-dihydropyrimidin-4-yl, 1,4-dihydropyrimidin-5-yl,
       1,4-dihydropyrimidin-6-yl, 3,4-dihydropyrimidin-2-yl,
       3,4-dihydropyrimidin-4-yl, 3,4-dihydropyrimidin-5-yl or
       3,4-dihydropyrimidin-6-yl, pyridazin-3-yl, pyridazin-4-yl,
45
```

pyrimidin-2-yl, pyrimidin-4-yl, pyrimidin-5-yl or pyrazin-2-yl;

6-membered rings having three heteroatoms such as:

5

1,3,5-triazin-2-yl, 1,2,4-triazin-3-yl, 1,2,4-triazin-5-yl, 1,2,4-triazin-6-yl;

6-membered rings having four heteroatoms such as:

10

1,2,4,5-tetrazin-3-y1;

where, if appropriate, the sulfur of the abovementioned heterocycles may be oxidized to S=0 or $S(=0)_2$

15

and where a bicyclic ring system may be formed with a fused-on phenyl ring or with a C_3 - C_6 -carbocycle or with a further 5- to 6-membered heterocycle.

20 - N-bonded heterocyclyl: a saturated, partially saturated or unsaturated 5- or 6-membered heterocyclic ring which is attached via nitrogen and contains at least one nitrogen and, if appropriate, one to three identical or different heteroatoms selected from the following group: oxygen, sulfur and nitrogen, i.e., for example,

N-bonded 5-membered rings such as:

tetrahydropyrrol-1-yl, 2,3-dihydro-1H-pyrrol-1-yl,

- 2,5-dihydro-1H-pyrrol-1-yl, pyrrol-1-yl, tetrahydropyrazol-1-yl, tetrahydroisoxazol-2-yl, tetrahydroisothiazol-2-yl, tetrahydroimidazol-1-yl, tetrahydrooxazol-3-yl, tetrahydrothiazol-3-yl,
- 4,5-dihydro-1H-pyrazol-1-yl, 2,5-dihydro-1H-pyrazol-1-yl,
- 35 2,3-dihydro-1H-pyrazol-1-yl, 2,5-dihydroisoxazol-2-yl,
 - ${\tt 2,3-dihydroisoxazol-2-yl,\ 2,5-dihydroisothiazol-2-yl,}\\$
 - 2,3-dihydroisoxazol-2-yl, 4,5-dihydro-1H-imidazol-1-yl, 2,5-dihydro-1H-imidazol-1-yl, 2,3-dihydro-1H-imidazol-1-yl,
 - 2,3-dihydrooxazol-3-yl, 2,3-dihydrothiazol-3-yl,
- 40 pyrazol-1-yl, imidazol-1-yl, 1,2,4- Δ^4 -oxadiazolin-2-yl,
 - 1,2,4- Δ^2 -oxadiazolin-4-yl, 1,2,4- Δ^3 -oxadiazolin-2-yl,
 - 1,3,4- Δ^2 -oxadiazolin-4-yl, 1,2,4- Δ^5 -thiadiazolin-2-yl,
 - 1,2,4- Δ^3 -thiadiazolin-2-yl, 1,2,4- Δ^2 -thiadiazolin-4-yl,
 - 1,3,4- Δ^2 -thiadiazolin-4-yl, 1,2,3- Δ^2 -triazolin-1-yl,
- 45 1,2,4- Δ^2 -triazolin-1-yl, 1,2,4- Δ^2 -triazolin-4-yl,

```
1,2,4-\Delta^3-triazolin-1-yl, 1,2,4-\Delta^1-triazolin-4-yl,
       1,2,3-triazol-1-yl, 1,2,4-triazol-1-yl, tetrazol-1-yl;
       and also N-bonded 6-membered rings such as:
5
       piperidin-1-yl, 1,2,3,4-tetrahydropyridin-1-yl,
       1,2,5,6-tetrahydropyridin-1-yl, 1,4-dihydropyridin-1-yl,
       1,2-dihydropyridin-1-yl, hexahydropyrimidin-1-yl,
       hexahydropyrazin-1-yl, hexahydropyridazin-1-yl,
       tetrahydro-1,3-oxazin-3-yl, tetrahydro-1,3-thiazin-3-yl,
10
       tetrahydro-1,4-thiazin-4-yl, tetrahydro-1,4-oxazin-4-yl,
       tetrahydro-1,2-oxazin-2-yl, 2H-5,6-dihydro-1,2-oxazin-2-yl,
       2H-5,6-dihydro-1,2-thiazin-2-yl,
       2H-3,6-dihydro-1,2-oxazin-2-yl,
       2H-3,6-dihydro-1,2-thiazin-2-yl,
15
       2H-3, 4-dihydro-1, 2-oxazin-2-yl,
       2H-3,4-dihydro-1,2-thiazin-2-yl,
       2,3,4,5-tetrahydropyridazin-2-yl,
       1,2,5,6-tetrahydropyridazin-1-yl,
20
       1,2,5,6-tetrahydropyridazin-2-yl,
       1,2,3,6-tetrahydropyridazin-1-yl,
       3,4,5,6-tetrahydropyrimidin-3-yl,
       1,2,3,4-tetrahydropyrazin-1-yl,
       1,2,3,4-tetrahydropyrimidin-1-yl,
       1,2,3,4-tetrahydropyrimidin-3-yl,
25
       2,3-dihydro-1,4-thiazin-4-yl, 2H-1,2-oxazin-2-yl,
       2H-1,2-thiazin-2-yl, 4H-1,4-oxazin-4-yl, 4H-1,4-thiazin-4-yl,
       1,4-dihydropyridazin-1-yl, 1,4-dihydropyrazin-1-yl,
       1,2-dihydropyrazin-1-yl, 1,4-dihydropyrimidin-1-yl or
30
       3,4-dihydropyrimidin-3-yl;
       and also N-bonded cyclic imides such as:
       phthalimide, tetrahydrophthalimide, succinimide, maleimide,
       glutarimide, 5-oxotriazolin-1-yl, 5-oxo-1,3,4-
35
       oxadiazolin-4-yl or 2,4-dioxo-(1H,3H)-pyrimidin-3-yl;
       where a bicyclic ring system may be formed with a fused-on
       phenyl ring or with a C_3-C_6-carbocycle or a further 5- to
        6-membered heterocycle.
40
   All phenyl rings, heterocyclyl or N-heterocyclyl radicals and all
```

All phenyl rings, heterocyclyl or N-heterocyclyl radicals and all phenyl components in phenoxy, phenyl- C_1 - C_6 -alkyl, phenylcarbonyl- C_1 - C_6 -alkyl, phenylcarbonyl, phenylalkenylcarbonyl, phenoxycarbonyl, phenyloxythiocarbonyl, phenylaminocarbonyl and N-(C_1 - C_6 -alkyl)-N-phenylaminocarbonyl or heterocyclyl components in heterocyclyloxy, heterocyclyl- C_1 - C_6 -alkyl,

heterocyclylcarbonyl- C_1 - C_6 -alkyl, heterocyclylcarbonyl, heterocyclyloxythiocarbonyl, heterocyclylalkenylcarbonyl, heterocyclyloxycarbonyl, heterocyclylaminocarbonyl and N- $(C_1$ - C_6 -alkyl)-N-heterocyclylaminocarbonyl are, unless stated otherwise, preferably unsubstituted, or they carry one to three halogen atoms and/or one nitro group, one cyano radical and/or one or two methyl, trifluoromethyl, methoxy or trifluoromethoxy substituents.

- 10 Furthermore, the expression "Y together with the two carbons to which it is attached forms a saturated, partially saturated or unsaturated heterocycle which contains one to three identical or different heteroatoms selected from the following group: oxygen, sulfur and nitrogen" denotes, for example, 5-membered rings
- 15 having one heteroatom such as:

tetrahydrofurandiyl, tetrahydrothienediyl, tetrahydropyrrolediyl, dihydrofurandiyl, dihydrothienediyl, dihydropyrrolediyl, furandiyl, thienediyl or pyrrolediyl;

20

or 5-membered rings having two heteroatoms such as:

tetrahydropyrazolediyl, tetrahydroisoxazolediyl, 1,2-oxathiolanediyl, tetrahydroisothiazolediyl,

- 25 1,2-dithiolanediyl, tetrahydroimidazolediyl, tetrahydrooxazolediyl, tetrahydrothiazolediyl, 1,3-dioxolanediyl, 1,3-oxathiolanediyl, dihydropyrazolediyl, dihydroisoxazolediyl, dihydroisothiazolediyl, 1,2-dithiolediyl, dihydroimidazolediyl, dihydrooxazolediyl, dihydrothiazolediyl, dioxolediyl,
- 30 oxathiolediyl, pyrazolediyl, isoxazolediyl, isothiazolediyl, imidazolediyl, oxazolediyl or thiazolediyl;
 - or 5-membered rings having three heteroatoms such as:
- 35 1,2,3-oxadiazolinediyl, 1,2,3-thiadiazolinediyl,
 1,2,3-triazolinediyl, 1,2,3-oxadiazolediyl, 1,2,3-thiadiazolediyl
 or 1,2,3-triazolediyl;
 - or 6-membered rings having one heteroatom such as:

tetrahydropyrandiyl, piperidinediyl, tetrahydrothiopyrandiyl,
dihydropyrandiyl, dihydrothiopyrandiyl, tetrahydropyridinediyl,
pyrandiyl, thiopyrandiyl, dihydropyrinediyl or pyridinediyl;

45 or 6-membered rings having two heteroatoms such as:

- 1,3-dioxanediyl, 1,4-dioxanediyl, 1,3-dithianediyl,
- 1,4-dithianediy1, 1,3-oxathianediy1, 1,4-oxathianediy1,
- 1,2-dithianediyl, hexahydropyrimidinediyl, hexahydropyrazinediyl,

hexahydropyridazinediyl, tetrahydro-1,3-oxazinediyl,

- 5 tetrahydro-1,3-thiazinediyl, tetrahydro-1,4-oxazinediyl, tetrahydro-1,2-oxazinediyl, dihydro-1,2-oxazinediyl,
 - dihydro-1,2-thiazinediyl, tetrahydropyridazinediyl,
 - dihydro-1,3-oxazinediyl, dihydro-1,3-oxazinediyl,
 - dihydro-1,3-thiazinediyl, tetrahydropyrimidinediyl,
- 10 tetrahydropyrazinediyl, dihydro-1,4-thiazinediyl,
 dihydro-1,4-oxazinediyl, dihydro-1,4-dioxinediyl,
 dihydro-1,4-dithiinediyl, 1,2-oxazinediyl, 1,2-thiazinediyl,
 - 1,3-oxazinediyl, 1,3-thiazinediyl, 1,4-oxazinediyl,
 - 1,4-thiazinediyl, dihydropyridazinediyl, dihydropyrazinediyl,
- 15 dihydropyrimidinediyl, pyridazinediyl, pyrimidinediyl or pyrazinediyl;

or 6-membered rings having 3 heteroatoms such as:

20 1,2,4-triazinediyl;

where, if appropriate, the sulfur of the abovementioned heterocycles may be oxidized to S=0 or $S(=0)_2$;

25 and where the moiety is fused to the skeleton via two adjacent carbon atoms.

The compounds of the formula I according to the invention where R^9 = IIa are referred to as compounds of the formula Ia, and 30 compounds of the formula I where R^9 = IIb are referred to as Ib.

Preference is given to the compounds of the formula I, where

 R^{11} is hydrogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, hydroxyl, C_1 - C_6 -alkoxy or C_1 - C_6 -haloalkoxy;

Preference is likewise given to the compounds of the formula Ia.

With respect to the use of the compounds of the formula I

40 according to the invention as herbicides, the variables
preferably have the following meanings, in each case alone or in
combination:

X is oxygen, sulfur, S=0, $S(=0)_2$, CR^6R^7 , NR^8 or a bond;

5	Y	together with the two carbons to which it is attached forms a saturated, partially saturated or unsaturated 5- or 6-membered heterocycle which contains one or two identical or different heteroatoms selected from the following group: oxygen, sulfur or nitrogen;
	R^1 , R^2	are hydrogen or C_1 - C_6 -alkyl;
10	R ³	is halogen, C_1 - C_6 -alkyl or C_1 - C_6 -alkoxy;
	R ⁴	is nitro, halogen, cyano, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, C_1 - C_6 -alkylthio, C_1 - C_6 -haloalkylthio, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -haloalkylsulfinyl, C_1 - C_6 -alkylsulfonyl,
15		C ₁ -C ₆ -haloalkylsulfonyl, aminosulfonyl, N-(C ₁ -C ₆ -alkyl)aminosulfonyl, N,N-di(C ₁ -C ₆ -alkyl)aminosulfonyl, N-(C ₁ -C ₆ -alkylsulfonyl)amino, N-(C ₁ -C ₆ -haloalkylsulfonyl)amino,
20		$\begin{array}{llllllllllllllllllllllllllllllllllll$
25	R ⁵	C_1 - C_6 -alkylsulfonyl or C_1 - C_6 -haloalkylsulfonyl;
	R ⁶ , R ⁷	is hydrogen; are hydrogen or $C_1-C_6-alkyl$;
30	R ⁸	is C_1-C_6 -alkyl, C_1-C_6 -alkylcarbonyl or C_1-C_6 -alkylsulfonyl;
25	1	is 0, 1 or 2;
35	R ⁹	is a radical IIa
40		R ¹² O N N N R ¹⁰

lla

45 where

R ¹⁰	is hydroxyl, mercapto, halogen, OR^{13} , SR^{13} , SO_2R^{14} or N-bonded heterocyclyl, where the heterocyclyl radical may be partially or fully halogenated and/or may carry one to three of the following radicals: nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;
R ¹¹	is hydrogen, $C_1-C_6-alkyl$, $C_1-C_6-ha^4oalkyl$ or $C_3-C_6-cycloalkyl$;
R ¹²	is hydrogen, C_1 - C_6 -alkyl or C_1 - C_6 -haloalkyl;
R ¹³	is C ₁ -C ₆ -alkyl, C ₃ -C ₆ -alkenyl, C ₃ -C ₆ -haloalkenyl, C ₃ -C ₆ -alkynyl, C ₁ -C ₆ -alkylcarbonyl, C ₂ -C ₆ -alkenylcarbonyl, C ₃ -C ₆ -cycloalkylcarbonyl, C ₁ -C ₆ -alkoxycarbonyl, C ₃ -C ₆ -alkenyloxycarbonyl, C ₃ -C ₆ -alkynyloxycarbonyl, C ₁ -C ₆ -alkylthiocarbonyl,
20	$\label{eq:continuous} C_1-C_6-alkylaminocarbonyl, C_3-C_6-alkynylaminocarbonyl, \\ C_3-C_6-alkynylaminocarbonyl, \\ N,N-di\left(C_1-C_6-alkyl\right)aminocarbonyl, \\ N-\left(C_3-C_6-alkenyl\right)-N-\left(C_1-C_6-alkyl\right)aminocarbonyl, \\ N-\left(C_3-C_6-alkynyl\right)-N-\left(C_1-C_6-alkyl\right)aminocarbonyl, \\ N-\left(C_1-C_6-alkoxy\right)-N-\left(C_1-C_6-alkyl\right)aminocarbonyl, \\ \end{array}$
25	$ \begin{aligned} &N-\left(C_3-C_6-\text{alkenyl}\right)-N-\left(C_1-C_6-\text{alkoxy}\right) \text{aminocarbonyl} \\ &N-\left(C_3-C_6-\text{alkynyl}\right)-N-\left(C_1-C_6-\text{alkoxy}\right) \text{aminocarbonyl}, \\ &\text{di}\left(C_1-C_6-\text{alkyl}\right) \text{aminothiocarbonyl}, \\ &C_1-C_6-\text{alkylcarbonyl}-C_1-C_6-\text{alkyl}, \\ &C_1-C_6-\text{alkoxyimino}-C_1-C_6-\text{alkyl}, \end{aligned} $
30	N- $(C_1-C_6-alkylamino)$ imino- $C_1-C_6-alkyl$ or N,N-di($C_1-C_6-alkylamino$)imino- $C_1-C_6-alkyl$, where the abovementioned alkyl, cycloalkyl and alkoxy radicals may be partially or fully halogenated and/or may carry one to three of the following groups:
35	cyano, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 -alkylcarbonyl, C_1 - C_4 -alkoxycarbonyl, hydroxycarbonyl, di(C_1 - C_4 -alkyl)aminocarbonyl, C_1 - C_4 -alkylcarbonyloxy or C_3 - C_6 -cycloalkyl;
40	is phenyl, heterocyclyl, phenyl- C_1 - C_6 -alkyl, heterocyclyl- C_1 - C_6 -alkyl, phenylcarbonyl- C_1 - C_6 -alkyl, heterocyclylcarbonyl- C_1 - C_6 -alkyl, phenylcarbonyl, heterocyclylcarbonyl, phenoxycarbonyl, phenyloxythiocarbonyl, heterocyclyloxycarbonyl,
45	heterocyclyloxythiocarbonyl, phenyl- C_2 - C_6 -alkenylcarbonyl or heterocyclyl- C_2 - C_6 -alkenylcarbonyl, where the phenyl and the heterocyclyl radical of the 14 lastmentioned

substituents may be partially or fully halogenated and/or may carry one to three of the following radicals: nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy, heterocyclyl or 5 N-bonded heterocyclyl, where the two lastmentioned substituents for their part may be partially or fully halogenated and/or may carry one to three of the following radicals: nitro, cyano, C1-C4-alkyl, C_1-C_4 -haloalkyl, C_1-C_4 -alkoxy or C_1-C_4 -haloalkoxy; 10 R^{14} is C₁-C₆-alkyl, C₃-C₆-alkenyl, C₃-C₆-haloalkenyl, C_3-C_6 -cycloalkyl, C_1-C_6 -alkoxy or $di(C_1-C_6-haloalkyl)$ amino, where the abovementioned alkyl, cycloalkyl and alkoxy radicals may be partially 15 or fully halogenated and/or may carry one to three of the following groups: cyano, C_1-C_4 -alkoxy, C_1-C_4 -alkylthio, C_1-C_4 -alkylcarbonyl, C_1-C_4 -alkoxycarbonyl, hydroxycarbonyl, $di(C_1-C_4-alkyl)$ aminocarbonyl, 20 C_1-C_4 -alkylcarbonyloxy or C_3-C_6 -cycloalkyl; is phenyl, heterocyclyl, phenyl-C₁-C₆-alkyl, heterocyclyl-C₁-C₆-alkyl, phenoxy, heterocyclyloxy,

is phenyl, heterocyclyl, phenyl- C_1 - C_6 -alkyl, heterocyclyl- C_1 - C_6 -alkyl, phenoxy, heterocyclyloxy, where the phenyl and the heterocyclyl radical of the lastmentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals: nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy.

Particular preference is given to compounds of the formula I where the variables have the following meanings, either alone or

35

in combination:

30

25

is oxygen, sulfur, S=0, $S(=0)_2$, CR^6R^7 or a bond;

y together with the two carbons to which it is attached forms the following heterocycles:

(in the embodiments of the heterocycles below, the upper undulating line represents in each case the link to the hydrocarbon which carries the radicals R^1 and R^2 , and the lower undulating line represents the link to the meta-carbon of the benzoyl moiety).

	40
	my , my , mw , , my ,
5	my o , mu o , mu o , mu
10	mys, mys, mys,
15	my ,
20	my , my o , my o , , , my o , , , my o , , , , my o , , , , , , , , , , , , , , , , , ,
25	mys, mys, mys,
30	MIN
35	
40	
45	m_{s} m_{o} m_{o}

where the sulfur of the abovementioned heterocycles may be oxidized to S=0 or $S(=0)_2$;

in particular, Y together with the two carbons to which it is 45 attached forms the following heterocycles:

	mo, mo, mo, , mo, ,
5	my s , my s , my s ,
10	mm N , mm N , mm N , mm N ,
15	
20	mm_o, mm_o, ,
25	mus, mus, ,
30	$\frac{1}{2}$ $\frac{1}$
35	me m
40	m_{N} , m
45	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

R⁹ is a radical IIa

5 R12 O

10 where

R¹⁰ is hydroxyl;

is C₁-C₆-alkyl, such as methyl, ethyl, n-propyl,

1-methylethyl, n-butyl, 2-methylpropyl or

1,1-dimethylethyl or cyclopropyl;

in particular methyl or ethyl;

likewise particularly preferred cyclopropyl;

20 R^{12} is hydrogen or C_1-C_6 -alkyl, such as methyl, ethyl, n-propyl or 1-methylethyl; in particular hydrogen or methyl.

Very particular preference is given to the compounds Ia where 25

X is oxygen, sulfur, $S(=0)_2$, CH_2 or a bond;

together with the two carbons to which it is attached forms the following heterocycles:

30

Y

35

40

Very particular preference is also given to the compounds Ia 45 where X is oxygen, sulfur or a bond.

Very particular preference is also given to the compounds Ia where

together with the two carbons to which it is attached forms a heterocycle selected from the following group: dihydropyrazolediyl, dihydroisoxazolediyl, pyrazolediyl, isoxazolediyl or pyrimidinediyl.

Most preferably, Y together with the two carbons to which it is 10 attached forms the following heterocycles:

Very particular preference is also given to the compounds of the formula I where

20 R^1 , R^2 are hydrogen;

 R^3 is C_1-C_6 -alkyl;

is nitro, halogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₁-C₆-alkylthio or C₁-C₆-akylsulfonyl;

in particular halogen, $C_1\text{-}C_6\text{-}alkoxy$, $C_1\text{-}C_6\text{-}alkylthio}$ or

 C_1-C_6 -alkylsulfonyl;

R⁵ is hydrogen;

30

1 is 0 oder 1.

Very particular preference is also given to the compounds of the formula I where

35

R¹⁰ is hydroxyl or phenylcarbonyloxy which may be

unsubstituted or partially or fully halogenated and/or

may carry one to three of the following radicals:

nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy

40 or C_1-C_4 -haloalkoxy;

in particular hydroxyl;

 R^{11} is C_1-C_6 -alkyl or C_3-C_6 -cycloalkyl;

in particular C₁-C₆-alkyl or

also in particular cyclopropyl;

 R^{12}

is hydrogen or C_1 - C_6 -alkyl; in particular hydrogen.

Very particular preference is also given to the compounds of the **5** formula Ial (\equiv Ia where R¹, R², R⁵ and R¹² = H, 1 = 0, meaning of the heterocycle according to structural formula), most particularly to compounds Ial.n where the variables X, R⁴, R¹⁰ and R¹¹ are as defined in Table 1.

The radical definitions of R¹ to R¹², X, Y and I given above and 10 the meaning of the fused heterocycle are of particular importance for the compounds according to the invention, not only in combination with one another, but also taken on their own. (For reasons of clarity, in the formulae Ial, Ia2 ..., the meaning of the fused heterocycle is in each case as given in the

15 corresponding structural formula.)

$$\begin{array}{c|c}
N & X & N \\
N & R^{10} & R^4
\end{array}$$
Ia1

25

20

30

35

40

Table 1:

Г	n	х	R4	R ¹⁰	R ¹¹
<u> </u>		bond	F	ОН	CH ₃
∟ د		bond	Cl	ОН	CH ₃
<u> </u>		bond	Br	ОН	CH ₃
		bond	NO ₂	ОН	CH ₃
L.		bond	SCH ₃	ОН	CH ₃
10 ⊢		bond	SO ₂ CH ₃	ОН	CH ₃
<u></u>		bond	SO ₂ CH ₂ CH ₃	ОН	CH ₃
<u> </u>		bond	CH ₃	ОН	CH ₃
L		bond	CF ₃	ОН	CH ₃
_ ⊢		bond	OCHF ₂	ОН	CH ₃
L		CH ₂	F	ОН	CH ₃
⊢	12	CH ₂	Cl	ОН	CH ₃
ļ	13	CH ₂	Br	ОН	CH ₃
1-	14	CH ₂	NO ₂	ОН	CH ₃
	15	CH ₂	SCH ₃	ОН	CH ₃
	16	CH ₂	SO ₂ CH ₃	ОН	CH ₃
L	17	CH ₂	SO ₂ CH ₂ CH ₃	OH	CH ₃
-	18	CH ₂	CH ₃	ОН	CH ₃
23 L	19	CH ₂	CF ₃	ОН	CH ₃
_ ∟	20	CH ₂	OCHF ₂	OH	СН3
L	21	0	F	ОН	CH ₃
L	22	0	Cl	ОН	CH ₃
30	23	0	Br	ОН	CH ₃
-	24	0	NO ₂	ОН	CH ₃
	25	0	SCH ₃	ОН	CH ₃
ŀ	26	0	SO ₂ CH ₃	ОН	CH ₃
35	27	0	SO ₂ CH ₂ CH ₃	ОН	CH ₃
-	28	0	CH ₃	ОН	CH ₃
ŀ	29	0	CF ₃	ОН	CH ₃
ŀ	30	0	OCHF ₂	ОН	CH ₃
40	31	S	F	ОН	CH ₃
	32	S	Cl	ОН	CH ₃
Ì	33	S	Br	ОН	CH ₃
ľ	34	S	NO ₂	ОН	CH ₃
	35	S	SCH ₃	ОН	CH ₃
45	36	S	SO ₂ CH ₃	ОН	CH ₃
ŀ	37	S	SO ₂ CH ₂ CH ₃	ОН	CH ₃

	43						
	n	X	R4	R ¹⁰	R ¹¹		
	38	S	CH ₃	ОН	CH ₃		
5	39	S	CF ₃	ОН	CH ₃		
	40	S	OCHF ₂	ОН	CH ₃		
	41	SO ₂	F	ОН	CH ₃		
	42	SO ₂	Cl	ОН	CH ₃		
	43	SO ₂	Br	ОН	CH ₃		
10	44	SO ₂	NO ₂	ОН	CH ₃		
	45	SO ₂	SCH ₃	ОН	CH ₃		
	46	SO ₂	SO ₂ CH ₃	ОН	CH ₃		
	47	SO ₂	SO ₂ CH ₂ CH ₃	ОН	CH ₃		
15	48	SO ₂	СН3	ОН	CH ₃		
	49	SO ₂	CF ₃	ОН	СН3		
	50	SO ₂	OCHF ₂	ОН	CH ₃		
	51	bond	F	ОН	CH ₂ CH ₃		
20	52	bond	C1	ОН	CH ₂ CH ₃		
	53	bond	Br	ОН	CH ₂ CH ₃		
	54	bond	NO ₂	ОН	CH ₂ CH ₃		
	55	bond	SCH₃	ОН	CH ₂ CH ₃		
25	56	bond	SO ₂ CH ₃	OH	CH ₂ CH ₃		
	57	bond	SO ₂ CH ₂ CH ₃	ОН	CH ₂ CH ₃		
	58	bond	CH₃	ОН	CH ₂ CH ₃		
	59	bond	CF ₃	ОН	CH ₂ CH ₃		
	60	bond	OCHF ₂	ОН	CH ₂ CH ₃		
	61	CH ₂	F	ОН	CH ₂ CH ₃		
30	62	CH ₂	C1	ОН	CH ₂ CH ₃		
	63	CH ₂	Br	ОН	CH ₂ CH ₃		
	64	CH ₂	NO ₂	ОН	CH ₂ CH ₃		
	65	CH ₂	SCH ₃	ОН	CH ₂ CH ₃		
35	66	CH ₂	SO ₂ CH ₃	ОН	CH ₂ CH ₃		
	67	CH ₂	SO ₂ CH ₂ CH ₃	ОН	CH ₂ CH ₃		
	68	CH ₂	CH ₃	OH	CH ₂ CH ₃		
	69	CH ₂	CF ₃	ОН	CH ₂ CH ₃		
40	70	CH ₂	OCHF ₂	ОН	CH ₂ CH ₃		
	71	0	F	ОН	CH ₂ CH ₃		
	72	0	Cl	ОН	CH ₂ CH ₃		
	73	0	Br	ОН	CH ₂ CH ₃		
4=	74	0	NO ₂	ОН	CH ₂ CH ₃		
45	75	0	SCH ₃	ОН	CH ₂ CH ₃		
	76	0	SO ₂ CH ₃	ОН	CH ₂ CH ₃		

			30		
	n	Х	R ⁴	R ¹⁰	R ¹¹
	77	0	SO ₂ CH ₂ CH ₃	ОН	CH ₂ CH ₃
	78	0	CH ₃	ОН	CH ₂ CH ₃
5	79	0	CF ₃	ОН	CH ₂ CH ₃
	80	0	OCHF ₂	ОН	CH ₂ CH ₃
	81	S	F	ОН	CH ₂ CH ₃
	82	S	C1	ОН	CH ₂ CH ₃
10	83	S	Br	ОН	CH ₂ CH ₃
10	84	S	NO_2	ОН	CH ₂ CH ₃
10	85	S	SCH ₃	ОН	CH ₂ CH ₃
	86	S	SO ₂ CH ₃	ОН	CH ₂ CH ₃
15	87	S	SO ₂ CH ₂ CH ₃	ОН	CH ₂ CH ₃
	88	S	CH ₃	ОН	CH ₂ CH ₃
	89	S	CF ₃	ОН	CH ₂ CH ₃
	90	S	OCHF ₂	ОН	CH ₂ CH ₃
20	91	SO ₂	F	ОН	CH ₂ CH ₃
	92	SO ₂	Cl	ОН	CH ₂ CH ₃
	93	SO ₂	Br	ОН	CH ₂ CH ₃
	94	SO ₂	NO ₂	ОН	CH ₂ CH ₃
	95	SO ₂	SCH ₃	ОН	CH ₂ CH ₃
25	96	SO ₂	SO ₂ CH ₃	ОН	CH ₂ CH ₃
	97	SO ₂	SO ₂ CH ₂ CH ₃	ОН	CH ₂ CH ₃
	98	SO ₂	СН3	ОН	CH ₂ CH ₃
	99	SO ₂	CF ₃	ОН	CH ₂ CH ₃
	100	SO ₂	OCHF ₂	ОН	CH ₂ CH ₃
30	101	bond	F	OCOC ₆ H ₅	CH ₃
30	102	bond	Cl	OCOC ₆ H ₅	CH ₃
	103	bond	Br	OCOC ₆ H ₅	CH ₃
	104	bond	NO ₂	OCOC ₆ H ₅	CH ₃
35	105	bond	SCH ₃	OCOC ₆ H ₅	CH ₃
	106	bond	SO ₂ CH ₃	OCOC ₆ H ₅	CH ₃
	107	bond	SO ₂ CH ₂ CH ₃	OCOC ₆ H ₅	CH ₃
	108	bond	CH ₃	OCOC ₆ H ₅	CH ₃
40	109	bond	CF ₃	OCOC ₆ H ₅	CH ₃
	110	bond	OCHF ₂	OCOC ₆ H ₅	CH ₃
	111	CH ₂	F	OCOC ₆ H ₅	CH ₃
	112	CH ₂	C1	OCOC ₆ H ₅	CH ₃
4-	113	CH ₂	Br	OCOC ₆ H ₅	CH ₃
45	114	CH ₂	NO ₂	OCOC ₆ H ₅	CH ₃
	115	CH ₂	SCH ₃	OCOC ₆ H ₅	CH ₃

	n	Х	R ⁴	R ¹⁰	R ¹¹
	116	CH ₂	SO ₂ CH ₃	OCOC ₆ H ₅	CH ₃
	117	CH ₂	SO ₂ CH ₂ CH ₃	OCOC ₆ H ₅	CH ₃
5	118	CH ₂	CH ₃	OCOC ₆ H ₅	CH ₃
	119	CH ₂	CF ₃	OCOC ₆ H ₅	CH ₃
	120	CH ₂	OCHF ₂	OCOC ₆ H ₅	CH ₃
	121	0	F	OCOC ₆ H ₅	CH ₃
	122	0	Cl	OCOC ₆ H ₅	CH ₃
10	123	0	Br	OCOC ₆ H ₅	CH ₃
	124	0	NO ₂	OCOC ₆ H ₅	CH ₃
	125	0	SCH ₃	OCOC ₆ H ₅	CH ₃
	126	0	SO ₂ CH ₃	OCOC ₆ H ₅	CH ₃
15	127	0	SO ₂ CH ₂ CH ₃	OCOC ₆ H ₅	CH ₃
	128	0	CH ₃	OCOC ₆ H ₅	CH ₃
	129	0	CF ₃	OCOC ₆ H ₅	CH ₃
	130	0	OCHF ₂	OCOC ₆ H ₅	CH ₃
20	131	S	F	OCOC ₆ H ₅	CH ₃
	132	S	Cl	OCOC ₆ H ₅	CH ₃
25	133	S	Br	OCOC ₆ H ₅	CH ₃
	134	S	NO ₂	OCOC ₆ H ₅	CH ₃
	135	S	SCH ₃	OCOC ₆ H ₅	CH ₃
	136	S	SO ₂ CH ₃	OCOC ₆ H ₅	CH ₃
	137	S	SO ₂ CH ₂ CH ₃	OCOC ₆ H ₅	CH ₃
	138	S	CH ₃	OCOC ₆ H ₅	CH ₃
	139	S	CF ₃	OCOC ₆ H ₅	CH ₃
30	140	S	OCHF ₂	OCOC ₆ H ₅	CH ₃
	141	SO ₂	F	OCOC ₆ H ₅	CH ₃
	142	SO ₂	Cl	OCOC ₆ H ₅	CH ₃
	143	SO ₂	Br	OCOC ₆ H ₅	CH ₃
35	144	SO ₂	NO ₂	OCOC ₆ H ₅	CH ₃
	145	SO ₂	SCH ₃	OCOC ₆ H ₅	CH ₃
	146	SO ₂	SO ₂ CH ₃	OCOC ₆ H ₅	CH ₃
	147	SO ₂	SO ₂ CH ₂ CH ₃	OCOC ₆ H ₅	CH ₃
40	148	SO ₂	CH ₃	OCOC ₆ H ₅	CH ₃
	149	SO ₂	CF ₃	OCOC ₆ H ₅	CH ₃
	150	SO ₂	OCHF ₂	OCOC ₆ H ₅	CH ₃
	151	bond	F	OCOC ₆ H ₅	CH ₂ CH ₃
4 -	152	bond	Cl	OCOC ₆ H ₅	CH ₂ CH ₃
45	153	bond	Br	OCOC ₆ H ₅	CH ₂ CH ₃
	154	bond	NO ₂	OCOC ₆ H ₅	CH ₂ CH ₃

N		52						
156		n	Х	R ⁴	R ¹⁰	R ¹¹		
157 bond SO2CH2CH3 OCOC6H5 CH2CH3 158 bond CH3 OCOC6H5 CH2CH3 159 bond OCF3 OCOC6H5 CH2CH3 160 bond OCF9 OCOC6H5 CH2CH3 161 CH2 F OCOC6H5 CH2CH3 162 CH2 C1 OCOC6H5 CH2CH3 163 CH2 Br OCOC6H5 CH2CH3 164 CH2 NO2 OCOC6H5 CH2CH3 165 CH2 SCH3 OCOC6H5 CH2CH3 166 CH2 SO2CH3 OCOC6H5 CH2CH3 167 CH2 SO2CH3 OCOC6H5 CH2CH3 168 CH2 CH3 OCOC6H5 CH2CH3 169 CH2 CF3 OCOC6H5 CH2CH3 169 CH2 CF3 OCOC6H5 CH2CH3 170 CH2 OCHF2 OCOC6H5 CH2CH3 171 O F OCOC6H5 CH2CH3 173 O Br OCOC6H5 CH2CH3 174 O NO2 OCOC6H5 CH2CH3 175 O SCH3 OCOC6H5 CH2CH3 176 O SO2CH3 OCOC6H5 CH2CH3 177 O SO2CH3 OCOC6H5 CH2CH3 178 O CH3 OCOC6H5 CH2CH3 179 O CH3 OCOC6H5 CH2CH3 179 O CF3 OCOC6H5 CH2CH3 180 O OCHF2 OCOC6H5 CH2CH3 181 S F OCOC6H5 CH2CH3 184 S NO2 OCOC6H5 CH2CH3 185 S CH3 OCOC6H5 CH2CH3 186 S SCH3 OCOC6H5 CH2CH3 187 S SO2CH3 OCOC6H5 CH2CH3 188 S CH3 OCOC6H5 CH2CH3 188 S CH3 OCOC6H5 CH2CH3 189 S CF3 OCOC6H5 CH2CH3 189 S CH3CH3 OCOC6H5 CH3CH3 199 S OCH		155	bond	SCH ₃	OCOC ₆ H ₅	CH ₂ CH ₃		
158 bond	5	156	bond	SO ₂ CH ₃	OCOC ₆ H ₅	CH ₂ CH ₃		
159 bond CF3 OCOC6H5 CH2CH3 160 bond OCHF2 OCOC6H5 CH2CH3 161 CH2 F OCOC6H5 CH2CH3 162 CH2 C1 OCOC6H5 CH2CH3 164 CH2 Br OCOC6H5 CH2CH3 165 CH2 SCH3 OCOC6H5 CH2CH3 166 CH2 SO2CH3 OCOC6H5 CH2CH3 166 CH2 SO2CH3 OCOC6H5 CH2CH3 167 CH2 SO2CH3 OCOC6H5 CH2CH3 168 CH2 CH3 OCOC6H5 CH2CH3 169 CH2 CF3 OCOC6H5 CH2CH3 170 CH2 OCHF2 OCOC6H5 CH2CH3 171 O F OCOC6H5 CH2CH3 172 O C1 OCOC6H5 CH2CH3 173 O Br OCOC6H5 CH2CH3 174 O NO2 OCOC6H5 CH2CH3 175 O SCH3 OCOC6H5 CH2CH3 176 O SO2CH3 OCOC6H5 CH2CH3 177 O SO2CH3 OCOC6H5 CH2CH3 177 O SO2CH3 OCOC6H5 CH2CH3 178 O CH3 OCOC6H5 CH2CH3 179 O CF3 OCOC6H5 CH2CH3 179 O CF3 OCOC6H5 CH2CH3 179 O CF3 OCOC6H5 CH2CH3 180 O OCHF2 OCOC6H5 CH2CH3 181 S F OCOC6H5 CH2CH3 182 S C1 OCOC6H5 CH2CH3 184 S NO2 OCOC6H5 CH2CH3 185 S SCH3 OCOC6H5 CH2CH3 186 S SO2CH3 OCOC6H5 CH2CH3 187 S SO2CH3 OCOC6H5 CH2CH3 188 S CH3 OCOC6H5 CH2CH3 189 S CF3 OCOC6H5 CH2CH3 189 S CF3 OCOC6H5 CH2CH3 190 S OCHF2 OCOC6H5 CH2CH3 191 SO2 F OCOC6H5 CH2CH3 191 SO2 C1 OCOC6H5 CH2CH3 191 SO2 C1 OCOC6H5 CH2CH3 192 SO2 C1 OCOC6H5 CH2CH3 192 SO2 C1 OCOC6H5 CH2CH3 192 C1 OCOC6H5 CH2CH3 192 SO2 C1 OCOC6H5 CH2CH3 193 SC2 C1 OCOC6H5 CH2CH3 193 CH2CH3 CH2CH3 193 CH2CH3 CH2CH3 193 CH2CH3		157	bond	SO ₂ CH ₂ CH ₃	OCOC ₆ H ₅	CH ₂ CH ₃		
160 bond OCHF2 OCOC6H5 CH2CH3 161 CH2 F OCOC6H5 CH2CH3 162 CH2 C1 OCOC6H5 CH2CH3 163 CH2 Br OCOC6H5 CH2CH3 164 CH2 NO2 OCOC6H5 CH2CH3 165 CH2 SCH3 OCOC6H5 CH2CH3 166 CH2 SO2CH3 OCOC6H5 CH2CH3 167 CH2 SO2CH3 OCOC6H5 CH2CH3 168 CH2 CH3 OCOC6H5 CH2CH3 169 CH2 CF3 OCOC6H5 CH2CH3 170 CH2 OCHF2 OCOC6H5 CH2CH3 171 O F OCOC6H5 CH2CH3 172 O C1 OCOC6H5 CH2CH3 173 O Br OCOC6H5 CH2CH3 174 O NO2 OCOC6H5 CH2CH3 175 O SCH3 OCOC6H5 CH2CH3 176 O SO2CH3 OCOC6H5 CH2CH3 177 O SO2CH2CH3 OCOC6H5 CH2CH3 178 O CH3 OCOC6H5 CH2CH3 179 O CF3 OCOC6H5 CH2CH3 180 O OCHF2 OCOC6H5 CH2CH3 181 S F OCOC6H5 CH2CH3 182 S C1 OCOC6H5 CH2CH3 184 S NO2 OCOC6H5 CH2CH3 185 S SCH3 OCOC6H5 CH2CH3 186 S SO2CH3 OCOC6H5 CH2CH3 187 S SO2CH2CH3 OCOC6H5 CH2CH3 188 S C1 OCOC6H5 CH2CH3 189 S CF3 OCOC6H5 CH2CH3 189 S CF3 OCOC6H5 CH2CH3 189 S CF3 OCOC6H5 CH2CH3 190 S OCHF2 OCOC6H5 CH2CH3 191 SO2 F OCOC6H5 CH2CH3 191 SO2 C1 OCOC6H5		158	bond	CH ₃	OCOC ₆ H ₅	CH ₂ CH ₃		
10 10 11 11 11 11 11 11 11 11 11 11 11 1		159	bond	CF ₃	OCOC ₆ H ₅	CH ₂ CH ₃		
10 162		160	bond	OCHF ₂	OCOC ₆ H ₅	CH ₂ CH ₃		
162	10	161	CH ₂	F	OCOC ₆ H ₅	CH ₂ CH ₃		
164		162	CH ₂	Cl	OCOC ₆ H ₅	CH ₂ CH ₃		
165		163	CH ₂	Br	OCOC ₆ H ₅	CH ₂ CH ₃		
15 166 CH2 SO2CH3 OCOC6H5 CH2CH3 167 CH2 SO2CH2CH3 OCOC6H5 CH2CH3 168 CH2 CH3 OCOC6H5 CH2CH3 169 CH2 CF3 OCOC6H5 CH2CH3 170 CH2 OCHF2 OCOC6H5 CH2CH3 171 O F OCOC6H5 CH2CH3 172 O C1 OCOC6H5 CH2CH3 173 O Br OCOC6H5 CH2CH3 174 O NO2 OCOC6H5 CH2CH3 175 O SCH3 OCOC6H5 CH2CH3 176 O SCH3 OCOC6H5 CH2CH3 177 O SO2CH3 OCOC6H5 CH2CH3 178 O CH3 OCOC6H5 CH2CH3 179 O CF3 OCOC6H5 CH2CH3 180 O OCHF2 OCOC6H5 CH2CH3 181 S F <th></th> <th>164</th> <th>CH₂</th> <th>NO₂</th> <th>OCOC₆H₅</th> <th>CH₂CH₃</th>		164	CH ₂	NO ₂	OCOC ₆ H ₅	CH ₂ CH ₃		
167		165	CH ₂	SCH ₃	OCOC ₆ H ₅	CH ₂ CH ₃		
168	15	166	CH ₂	SO ₂ CH ₃	OCOC ₆ H ₅	CH ₂ CH ₃		
169		167	CH ₂	SO ₂ CH ₂ CH ₃	OCOC ₆ H ₅	CH ₂ CH ₃		
170		168	CH ₂	CH ₃	OCOC ₆ H ₅	CH ₂ CH ₃		
171		169	CH ₂	CF ₃	OCOC ₆ H ₅	CH ₂ CH ₃		
172	20	170	CH ₂	OCHF ₂	OCOC ₆ H ₅	CH ₂ CH ₃		
173		171	0	F	OCOC ₆ H ₅	CH ₂ CH ₃		
174		172	0	Cl	OCOC ₆ H ₅	CH ₂ CH ₃		
175		173	0	Br	OCOC ₆ H ₅	CH ₂ CH ₃		
175	25	174	0	NO ₂	OCOC ₆ H ₅	CH ₂ CH ₃		
177 O SO ₂ CH ₂ CH ₃ OCOC ₆ H ₅ CH ₂ CH ₃ 178 O CH ₃ OCOC ₆ H ₅ CH ₂ CH ₃ 179 O CF ₃ OCOC ₆ H ₅ CH ₂ CH ₃ 180 O OCHF ₂ OCOC ₆ H ₅ CH ₂ CH ₃ 181 S F OCOC ₆ H ₅ CH ₂ CH ₃ 182 S C1 OCOC ₆ H ₅ CH ₂ CH ₃ 183 S Br OCOC ₆ H ₅ CH ₂ CH ₃ 184 S NO ₂ OCOC ₆ H ₅ CH ₂ CH ₃ 185 S SCH ₃ OCOC ₆ H ₅ CH ₂ CH ₃ 186 S SO ₂ CH ₃ OCOC ₆ H ₅ CH ₂ CH ₃ 187 S SO ₂ CH ₃ OCOC ₆ H ₅ CH ₂ CH ₃ 188 S CH ₃ OCOC ₆ H ₅ CH ₂ CH ₃ 189 S CF ₃ OCOC ₆ H ₅ CH ₂ CH ₃ 190 S OCHF ₂ OCOC ₆ H ₅ CH ₂ CH ₃ 191 SO ₂ F OCOC ₆ H ₅ CH ₂ CH ₃ 192 SO ₂ C1 OCOC ₆ H ₅ CH ₂ CH ₃		175	0	SCH ₃	OCOC ₆ H ₅	CH ₂ CH ₃		
178		176	0	SO ₂ CH ₃	OCOC ₆ H ₅	CH ₂ CH ₃		
179		177	0	SO ₂ CH ₂ CH ₃	OCOC ₆ H ₅	CH ₂ CH ₃		
179	20	178	0	CH ₃	OCOC ₆ H ₅	CH ₂ CH ₃		
181 S F OCOC6H5 CH2CH3 182 S C1 OCOC6H5 CH2CH3 183 S Br OCOC6H5 CH2CH3 184 S NO2 OCOC6H5 CH2CH3 185 S SCH3 OCOC6H5 CH2CH3 186 S SO2CH3 OCOC6H5 CH2CH3 187 S SO2CH2CH3 OCOC6H5 CH2CH3 188 S CH3 OCOC6H5 CH2CH3 189 S CF3 OCOC6H5 CH2CH3 190 S OCHF2 OCOC6H5 CH2CH3 191 SO2 F OCOC6H5 CH2CH3 192 SO2 C1 OCOC6H5 CH2CH3 192 SO2 C1 OCOC6H5 CH2CH3 194 CH2CH3 CH2CH3 195 CH2CH3 CH2CH3 196 CH2CH3 CH2CH3 197 CH2CH3 CH2CH3 198 SO2 C1 OCOC6H5 CH2CH3 199 SO2 C1 OCOC6H5 CH2CH3 190 CH2CH3 CH2CH3 191 SO2 C1 OCOC6H5 CH2CH3 191 CH2CH3 CH2CH3 191 CH2CH3 CH2CH3 192 CH2CH3 CH2CH3 193 CH2CH3 CH2CH3 194 CH2CH3 CH2CH3 195 CH2	30	179	0	CF ₃	OCOC ₆ H ₅	CH ₂ CH ₃		
182 S		180	0	OCHF ₂	OCOC ₆ H ₅	CH ₂ CH ₃		
35 183 S Br OCOC6H5 CH2CH3 184 S NO2 OCOC6H5 CH2CH3 185 S SCH3 OCOC6H5 CH2CH3 186 S SO2CH3 OCOC6H5 CH2CH3 187 S SO2CH2CH3 OCOC6H5 CH2CH3 188 S CH3 OCOC6H5 CH2CH3 189 S CF3 OCOC6H5 CH2CH3 190 S OCHF2 OCOC6H5 CH2CH3 191 SO2 F OCOC6H5 CH2CH3 192 SO2 C1 OCOC6H5 CH2CH3		181	S	F	OCOC ₆ H ₅	CH ₂ CH ₃		
184 S NO ₂ OCOC ₆ H ₅ CH ₂ CH ₃ 185 S SCH ₃ OCOC ₆ H ₅ CH ₂ CH ₃ 186 S SO ₂ CH ₃ OCOC ₆ H ₅ CH ₂ CH ₃ 187 S SO ₂ CH ₂ CH ₃ OCOC ₆ H ₅ CH ₂ CH ₃ 188 S CH ₃ OCOC ₆ H ₅ CH ₂ CH ₃ 189 S CF ₃ OCOC ₆ H ₅ CH ₂ CH ₃ 190 S OCHF ₂ OCOC ₆ H ₅ CH ₂ CH ₃ 191 SO ₂ F OCOC ₆ H ₅ CH ₂ CH ₃ 192 SO ₂ C1 OCOC ₆ H ₅ CH ₂ CH ₃		182	S	Cl	OCOC ₆ H ₅	CH ₂ CH ₃		
185 S SCH ₃ OCOC ₆ H ₅ CH ₂ CH ₃ 186 S SO ₂ CH ₃ OCOC ₆ H ₅ CH ₂ CH ₃ 187 S SO ₂ CH ₂ CH ₃ OCOC ₆ H ₅ CH ₂ CH ₃ 188 S CH ₃ OCOC ₆ H ₅ CH ₂ CH ₃ 189 S CF ₃ OCOC ₆ H ₅ CH ₂ CH ₃ 190 S OCHF ₂ OCOC ₆ H ₅ CH ₂ CH ₃ 191 SO ₂ F OCOC ₆ H ₅ CH ₂ CH ₃ 192 SO ₂ C1 OCOC ₆ H ₅ CH ₂ CH ₃	35	183	S	Br		CH ₂ CH ₃		
186 S SO ₂ CH ₃ OCOC ₆ H ₅ CH ₂ CH ₃ 187 S SO ₂ CH ₂ CH ₃ OCOC ₆ H ₅ CH ₂ CH ₃ 188 S CH ₃ OCOC ₆ H ₅ CH ₂ CH ₃ 189 S CF ₃ OCOC ₆ H ₅ CH ₂ CH ₃ 190 S OCHF ₂ OCOC ₆ H ₅ CH ₂ CH ₃ 191 SO ₂ F OCOC ₆ H ₅ CH ₂ CH ₃ 192 SO ₂ C1 OCOC ₆ H ₅ CH ₂ CH ₃		184	S	NO ₂	OCOC ₆ H ₅	CH ₂ CH ₃		
40 187 S SO ₂ CH ₂ CH ₃ OCOC ₆ H ₅ CH ₂ CH ₃ 188 S CH ₃ OCOC ₆ H ₅ CH ₂ CH ₃ 189 S CF ₃ OCOC ₆ H ₅ CH ₂ CH ₃ 190 S OCHF ₂ OCOC ₆ H ₅ CH ₂ CH ₃ 191 SO ₂ F OCOC ₆ H ₅ CH ₂ CH ₃ 192 SO ₂ C1 OCOC ₆ H ₅ CH ₂ CH ₃		185	S	SCH ₃	OCOC ₆ H ₅	CH ₂ CH ₃		
188 S CH ₃ OCOC ₆ H ₅ CH ₂ CH ₃ 189 S CF ₃ OCOC ₆ H ₅ CH ₂ CH ₃ 190 S OCHF ₂ OCOC ₆ H ₅ CH ₂ CH ₃ 191 SO ₂ F OCOC ₆ H ₅ CH ₂ CH ₃ 192 SO ₂ C1 OCOC ₆ H ₅ CH ₂ CH ₃		186	S	SO ₂ CH ₃	OCOC ₆ H ₅	CH ₂ CH ₃		
	40	187	S	SO ₂ CH ₂ CH ₃	OCOC ₆ H ₅	CH ₂ CH ₃		
		188	S	CH ₃	OCOC ₆ H ₅	CH ₂ CH ₃		
45 191 SO2 F OCOC6H5 CH_2CH_3 192 SO2 C1 OCOC6H5 CH_2CH_3		189	S	CF ₃	OCOC ₆ H ₅	CH ₂ CH ₃		
192 SO ₂ C1 OCOC ₆ H ₅ CH ₂ CH ₃		190	S	OCHF ₂	OCOC ₆ H ₅			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	45	191	SO ₂					
$ 193 $ $ SO_2 $ $ Br $ $ OCOC_6H_5 $ $ CH_2CH_3 $	4 3	192		Cl				
- William		193	SO ₂	Br	OCOC ₆ H ₅	CH ₂ CH ₃		

	33					
	n	X	R ⁴	R ¹⁰	R ¹¹	
	194	SO ₂	NO ₂	OCOC ₆ H ₅	CH ₂ CH ₃	
	195	SO ₂	SCH ₃	OCOC ₆ H ₅	CH ₂ CH ₃	
5	196	SO ₂	SO ₂ CH ₃	OCOC ₆ H ₅	CH ₂ CH ₃	
	197	SO ₂	SO ₂ CH ₂ CH ₃	OCOC ₆ H ₅	CH ₂ CH ₃	
	198	SO ₂	CH ₃	OCOC ₆ H ₅	CH ₂ CH ₃	
	199	SO ₂	CF ₃	OCOC ₆ H ₅	CH ₂ CH ₃	
10	200	SO ₂	OCHF ₂	OCOC ₆ H ₅	CH ₂ CH ₃	
	201	bond	F	OCOC(CH ₃) ₃	CH ₃	
	202	bond	Cl	OCOC (CH ₃) ₃	CH ₃	
15	203	bond	Br	OCOC(CH ₃) ₃	CH ₃	
	204	bond	NO ₂	OCOC(CH ₃) ₃	CH ₃	
	205	bond	SCH ₃	OCOC(CH ₃) ₃	CH ₃	
	206	bond	SO ₂ CH ₃	OCOC(CH ₃) ₃	CH ₃	
	207	bond	SO ₂ CH ₂ CH ₃	OCOC(CH ₃) ₃	CH ₃	
20	208	bond	CH ₃	OCOC (CH ₃) ₃	CH ₃	
	209	bond	CF ₃	OCOC (CH ₃) ₃	CH ₃	
	210	bond	OCHF ₂	OCOC(CH ₃) ₃	CH ₃	
25	211	CH ₂	F	OCOC (CH ₃) ₃	CH ₃	
	212	CH ₂	Cl	OCOC(CH ₃) ₃	CH ₃	
	213	CH ₂	Br	OCOC (CH ₃) ₃	CH ₃	
	214	CH ₂	NO ₂	OCOC (CH ₃) ₃	CH ₃	
	215	CH ₂	SCH ₃	OCOC (CH ₃) ₃	CH ₃	
	216	CH ₂	SO ₂ CH ₃	OCOC (CH ₃) ₃	CH ₃	
	217	CH ₂	SO ₂ CH ₂ CH ₃	OCOC (CH ₃) ₃	CH ₃	
30	218	CH ₂	CH ₃	OCOC(CH ₃) ₃	CH ₃	
	219	CH ₂	CF ₃	OCOC (CH ₃) ₃	CH ₃	
	220	CH ₂	OCHF ₂	OCOC (CH ₃) ₃	CH ₃	
	221	0	F	OCOC (CH ₃) ₃	CH ₃	
35	222	0	Cl	OCOC (CH ₃) ₃	CH ₃	
	223	0	Br	OCOC (CH ₃) ₃	CH ₃	
	224	0	NO ₂	OCOC (CH ₃) ₃	CH ₃	
	225	0	SCH ₃	OCOC (CH ₃) ₃	CH ₃	
40	226	0	SO ₂ CH ₃	OCOC (CH ₃) ₃	CH ₃	
	227	0	SO ₂ CH ₂ CH ₃	OCOC (CH ₃) ₃	CH ₃	
	228	0	CH ₃	OCOC (CH ₃) ₃	CH ₃	
	229	0	CF ₃	OCOC (CH ₃) ₃	CH ₃	
4 =	230	0	OCHF ₂	OCOC (CH ₃) ₃	CH ₃	
45	231	S	F	OCOC (CH ₃) ₃	CH ₃	
	232	S	Cl	OCOC (CH ₃) ₃	CH ₃	

	54					
	n	Х	R4	R ¹⁰	R ¹¹	
5	233	S	Br	OCOC (CH ₃) ₃	CH ₃	
	234	S	NO ₂	OCOC (CH ₃) ₃	CH ₃	
	235	S	SCH ₃	OCOC (CH ₃) ₃	CH ₃	
	236	S	SO ₂ CH ₃	OCOC (CH ₃) ₃	CH ₃	
	237	S	SO ₂ CH ₂ CH ₃	OCOC (CH ₃) ₃	CH ₃	
10	238	S	СН3	OCOC (CH ₃) ₃	СН3	
	239	S	CF ₃	OCOC (CH ₃) ₃	CH ₃	
	240	S	OCHF ₂	OCOC (CH ₃) ₃	CH ₃	
	241	SO ₂	F	OCOC (CH ₃) ₃	CH ₃	
	242	SO ₂	Cl	OCOC (CH ₃) ₃	СН3	
15	243	SO ₂	Br	OCOC (CH ₃) ₃	CH ₃	
	244	SO ₂	NO ₂	OCOC (CH ₃) ₃	СН3	
	245	SO ₂	SCH ₃	OCOC (CH ₃) ₃	СН3	
	246	SO ₂	SO ₂ CH ₃	OCOC (CH ₃) ₃	CH₃	
20	247	SO ₂	SO ₂ CH ₂ CH ₃	OCOC(CH ₃) ₃	CH ₃	
	248	SO ₂	CH ₃	OCOC(CH ₃) ₃	CH ₃	
	249	SO ₂	CF ₃	OCOC (CH ₃) ₃	CH ₃	
25	250	SO ₂	OCHF ₂	OCOC (CH ₃) ₃	CH ₃	
	251	bond	F	OCOC (CH ₃) ₃	CH ₂ CH ₃	
	252	bond	Cl	OCOC(CH ₃) ₃	CH ₂ CH ₃	
	253	bond	Br	OCOC (CH ₃) ₃	CH ₂ CH ₃	
	254	bond	NO ₂	OCOC (CH ₃) ₃	CH ₂ CH ₃	
	255	bond	SCH ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃	
3.0	256	bond	SO ₂ CH ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃	
30	257	bond	SO ₂ CH ₂ CH ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃	
	258	bond	CH ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃	
	259	bond	CF ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃	
	260	bond	OCHF ₂	OCOC (CH ₃) ₃	CH ₂ CH ₃	
35	261	CH ₂	F	OCOC (CH ₃) ₃	CH ₂ CH ₃	
	262	CH ₂	Cl	OCOC (CH ₃) ₃	CH ₂ CH ₃	
	263	CH ₂	Br	OCOC (CH ₃) ₃	CH ₂ CH ₃	
	264	CH ₂	NO ₂	OCOC (CH ₃) ₃	CH ₂ CH ₃	
40	265	CH ₂	SCH ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃	
	266	CH ₂	SO ₂ CH ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃	
	267	CH ₂	SO ₂ CH ₂ CH ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃	
	268	CH ₂	CH ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃	
45	269	CH ₂	CF ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃	
	270	CH ₂	OCHF ₂	OCOC (CH ₃) ₃	CH ₂ CH ₃	
	271	0	F	OCOC (CH ₃) ₃	CH ₂ CH ₃	

	55					
	n	X	R ⁴	R ¹⁰	R ¹¹	
	272	0	Cl	OCOC(CH ₃) ₃	CH ₂ CH ₃	
	273	0	Br	OCOC (CH ₃) ₃	CH ₂ CH ₃	
5	274	0	NO ₂	OCOC(CH ₃) ₃	CH ₂ CH ₃	
	275	0	SCH ₃	OCOC(CH ₃) ₃	CH ₂ CH ₃	
	276	0	SO ₂ CH ₃	OCOC(CH ₃) ₃	CH ₂ CH ₃	
10	277	0	SO ₂ CH ₂ CH ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃	
	278	0	CH ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃	
	279	0	CF ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃	
	280	0	OCHF ₂	OCOC(CH ₃) ₃	CH ₂ CH ₃	
	281	S	F	OCOC(CH ₃) ₃	CH ₂ CH ₃	
15	282	S	C1	OCOC(CH ₃) ₃	CH ₂ CH ₃	
	283	S	Br	OCOC (CH ₃) ₃	CH ₂ CH ₃	
	284	S	NO ₂	OCOC (CH ₃) ₃	CH ₂ CH ₃	
	285	S	SCH ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃	
	286	S	SO ₂ CH ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃	
20	287	S	SO ₂ CH ₂ CH ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃	
	288	S	CH ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃	
25	289	S	CF ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃	
	290	S	OCHF ₂	OCOC (CH ₃) ₃	CH ₂ CH ₃	
	291	SO ₂	F	OCOC (CH ₃) ₃	CH ₂ CH ₃	
	292	SO ₂	Cl	OCOC(CH ₃) ₃	CH ₂ CH ₃	
	293	SO ₂	Br	OCOC(CH ₃) ₃	CH ₂ CH ₃	
	294	SO ₂	NO ₂	OCOC (CH ₃) ₃	CH ₂ CH ₃	
20	295	SO ₂	SCH ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃	
30	296	SO ₂	SO ₂ CH ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃	
	297	SO ₂	SO ₂ CH ₂ CH ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃	
	298	SO ₂	CH ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃	
	299	SO ₂	CF ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃	
35	300	SO ₂	OCHF ₂	OCOC (CH ₃) ₃	CH ₂ CH ₃	
	301	bond	F	OCOSCH ₃	CH ₃	
	302	bond	C1	OCOSCH ₃	CH ₃	
	303	bond	Br	OCOSCH ₃	CH ₃	
40	304	bond	NO ₂	OCOSCH ₃	CH ₃	
	305	bond	SCH ₃	OCOSCH ₃	CH ₃	
	306	bond	SO ₂ CH ₃	OCOSCH ₃	CH ₃	
	307	bond	SO ₂ CH ₂ CH ₃	OCOSCH ₃	CH ₃	
45	308	bond	CH ₃	OCOSCH ₃	CH ₃	
	309	bond	CF ₃	OCOSCH ₃	CH ₃	
	310	bond	OCHF ₂	OCOSCH ₃	CH ₃	

	30						
	n	х	R ⁴	R ¹⁰	R ¹¹		
	311	CH ₂	F	OCOSCH3	CH ₃		
	312	CH ₂	Cl	OCOSCH3	CH ₃		
5	313	CH ₂	Br	OCOSCH3	CH ₃		
	314	CH ₂	NO ₂	OCOSCH3	CH ₃		
	315	CH ₂	SCH ₃	OCOSCH3	CH ₃		
	316	CH ₂	SO ₂ CH ₃	OCOSCH3	CH ₃		
10	317	СН2	SO ₂ CH ₂ CH ₃	OCOSCH3	СН3		
10	318	CH ₂	CH ₃	OCOSCH3	CH ₃		
	319	СН2	CF ₃	OCOSCH ₃	CH ₃		
	320	СН2	OCHF ₂	OCOSCH ₃	CH ₃		
	321	0	F	OCOSCH ₃	СН3		
15	322	0	Cl	OCOSCH ₃	CH ₃		
	323	0	Br	OCOSCH ₃	CH ₃		
	324	0	NO ₂	OCOSCH3	CH ₃		
	325	0	SCH ₃	OCOSCH3	CH ₃		
20	326	0	SO ₂ CH ₃	OCOSCH3	CH ₃		
	327	0	SO ₂ CH ₂ CH ₃	OCOSCH3	CH ₃		
	328	0	CH ₃	OCOSCH3	CH ₃		
	329	0	CF ₃	OCOSCH3	CH ₃		
25	330	0	OCHF ₂	OCOSCH3	CH ₃		
	331	S	F	OCOSCH ₃	CH ₃		
	332	S	C1	OCOSCH ₃	CH ₃		
	333	S	Br	OCOSCH ₃	CH ₃		
20	334	S	NO ₂	OCOSCH ₃	CH ₃		
30	335	S	SCH ₃	OCOSCH ₃	CH ₃		
	336	S	SO ₂ CH ₃	OCOSCH ₃	CH ₃		
	337	S	SO ₂ CH ₂ CH ₃	OCOSCH ₃	CH ₃		
	338	S	CH ₃	OCOSCH ₃	CH ₃		
35	339	S	CF ₃	OCOSCH ₃	CH ₃		
	340	S	OCHF ₂	OCOSCH3	CH ₃		
	341	SO ₂	F	OCOSCH ₃	CH ₃		
	342	SO ₂	C1	OCOSCH ₃	CH ₃		
40	343	SO ₂	Br	OCOSCH ₃	CH ₃		
	344	SO ₂	NO ₂	OCOSCH ₃	CH ₃		
	345	SO ₂	SCH ₃	OCOSCH ₃	CH ₃		
	346	SO ₂	SO ₂ CH ₃	OCOSCH ₃	CH ₃		
45	347	SO ₂	SO ₂ CH ₂ CH ₃	OCOSCH3	CH ₃		
	348	SO ₂	CH ₃	OCOSCH3	CH ₃		
	349	SO ₂	CF ₃	OCOSCH ₃	CH ₃		

	5/						
	n	х	R ⁴	R ¹⁰	R ¹¹		
	350	SO ₂	OCHF ₂	OCOSCH ₃	CH ₃		
	351	bond	F	OCOSCH ₃	CH ₂ CH ₃		
5	352	bond	Cl	OCOSCH ₃	CH ₂ CH ₃		
	353	bond	Br	OCOSCH3	CH ₂ CH ₃		
	354	bond	NO ₂	OCOSCH3	CH ₂ CH ₃		
	355	bond	SCH ₃	OCOSCH3	CH ₂ CH ₃		
	356	bond	SO ₂ CH ₃	OCOSCH ₃	CH ₂ CH ₃		
10	357	bond	SO ₂ CH ₂ CH ₃	OCOSCH ₃	CH ₂ CH ₃		
	358	bond	CH ₃	OCOSCH ₃	CH ₂ CH ₃		
	359	bond	CF ₃	OCOSCH ₃	CH ₂ CH ₃		
	360	bond	OCHF ₂	OCOSCH ₃	CH ₂ CH ₃		
15	361	CH ₂	F	OCOSCH ₃	CH ₂ CH ₃		
	362	CH ₂	Cl	OCOSCH3	CH ₂ CH ₃		
	363	CH ₂	Br	OCOSCH ₃	CH ₂ CH ₃		
	364	CH ₂	NO ₂	OCOSCH ₃	CH ₂ CH ₃		
20	365	CH ₂	SCH ₃	OCOSCH3	CH ₂ CH ₃		
	366	CH ₂	SO ₂ CH ₃	OCOSCH ₃	CH ₂ CH ₃		
	367	CH ₂	SO ₂ CH ₂ CH ₃	OCOSCH ₃	CH ₂ CH ₃		
25	368	CH ₂	CH ₃	OCOSCH3	CH ₂ CH ₃		
	369	CH ₂	CF ₃	OCOSCH ₃	CH ₂ CH ₃		
	370	CH ₂	OCHF ₂	OCOSCH ₃	CH ₂ CH ₃		
	371	0	F	OCOSCH ₃	CH ₂ CH ₃		
	372	0	C1	OCOSCH ₃	CH ₂ CH ₃		
	373	0	Br	OCOSCH ₃	CH ₂ CH ₃		
30	374	0	NO ₂	OCOSCH ₃	CH ₂ CH ₃		
	375	0	SCH ₃	OCOSCH ₃	CH ₂ CH ₃		
	376	0	SO ₂ CH ₃	OCOSCH ₃	CH ₂ CH ₃		
	377	0	SO ₂ CH ₂ CH ₃	OCOSCH ₃	CH ₂ CH ₃		
35	378	0	CH ₃	OCOSCH ₃	CH ₂ CH ₃		
	379	0	CF ₃	OCOSCH ₃	CH ₂ CH ₃		
	380	0	OCHF ₂	OCOSCH ₃	CH ₂ CH ₃		
	381	S	F	OCOSCH ₃	CH ₂ CH ₃		
40	382	S	Cl	OCOSCH ₃	CH ₂ CH ₃		
	383	S	Br	OCOSCH ₃	CH ₂ CH ₃		
	384	S	NO ₂	OCOSCH ₃	CH ₂ CH ₃		
	385	S	SCH ₃	OCOSCH ₃	CH ₂ CH ₃		
	386	S	SO ₂ CH ₃	OCOSCH ₃	CH ₂ CH ₃		
45	387	S	SO ₂ CH ₂ CH ₃	OCOSCH ₃	CH ₂ CH ₃		
	388	S	CH ₃	OCOSCH ₃	CH ₂ CH ₃		

	n	Х	R ⁴	R ¹⁰	R ¹¹		
	389	S	CF ₃	OCOSCH3	CH ₂ CH ₃		
	390	S	OCHF ₂	OCOSCH3	CH ₂ CH ₃		
5	391	SO ₂	F	OCOSCH3	CH ₂ CH ₃		
	392	SO ₂	Cl	OCOSCH3	CH ₂ CH ₃		
	393	SO ₂	Br	OCOSCH3	CH ₂ CH ₃		
	394	SO ₂	NO ₂	OCOSCH3	CH ₂ CH ₃		
10	395	SO ₂	SCH ₃	OCOSCH3	CH ₂ CH ₃		
	396	SO ₂	SO ₂ CH ₃	OCOSCH3	CH ₂ CH ₃		
	397	SO ₂	SO ₂ CH ₂ CH ₃	OCOSCH3	CH ₂ CH ₃		
	398	SO ₂	СН3	OCOSCH3	CH ₂ CH ₃		
	399	SO ₂	CF ₃	OCOSCH3	CH ₂ CH ₃		
15	400	SO ₂	OCHF ₂	OCOSCH3	CH ₂ CH ₃		
	401	bond	F	OCH ₃	CH ₃		
	402	bond	C1	OCH ₃	CH ₃		
	403	bond	Br	OCH ₃	CH ₃		
20	404	bond	NO ₂	OCH ₃	СН3		
	405	bond	SCH ₃	OCH ₃	СН3		
25	406	bond	SO ₂ CH ₃	OCH ₃	CH ₃		
	407	bond	SO ₂ CH ₂ CH ₃	OCH ₃	СН3		
	408	bond	CH ₃	OCH ₃	CH ₃		
	409	bond	CF ₃	OCH ₃	CH ₃		
	410	bond	OCHF ₂	OCH ₃	CH ₃		
	411	CH ₂	F	OCH ₃	CH ₃		
	412	CH ₂	Cl	OCH ₃	CH ₃		
30	413	CH ₂	Br	OCH ₃	CH ₃		
	414	CH ₂	NO ₂	OCH ₃	CH ₃		
	415	CH ₂	SCH ₃	OCH ₃	CH ₃		
	416	CH ₂	SO ₂ CH ₃	OCH ₃	CH ₃		
35	417	CH ₂	SO ₂ CH ₂ CH ₃	OCH ₃	CH ₃		
	418	CH ₂	CH ₃	OCH ₃	CH ₃		
	419	CH ₂	CF ₃	OCH ₃	CH ₃		
	420	CH ₂	OCHF ₂	OCH ₃	CH ₃		
40	421	0	F	OCH ₃	CH ₃		
	422	0	Cl	OCH ₃	CH ₃		
	423	0	Br	OCH ₃	CH ₃		
	424	0	NO ₂	OCH ₃	CH ₃		
45	425	0	SCH ₃	OCH ₃	CH ₃		
- J	426	0	SO ₂ CH ₃	OCH ₃	CH ₃		
	427	0	SO ₂ CH ₂ CH ₃	OCH ₃	CH ₃		

	33						
	n	Х	R ⁴	R ¹⁰	R ¹¹		
	428	0	CH ₃	OCH ₃	CH ₃		
	429	0	CF ₃	OCH ₃	CH ₃		
5	430	0	OCHF ₂	OCH ₃	СН3		
	431	S	F	OCH ₃	СН3		
	432	S	Cl	OCH ₃	СН3		
	433	S	Br	OCH ₃	СН3		
10	434	S	NO ₂	OCH ₃	СН3		
10	435	S	SCH ₃	OCH ₃	CH ₃		
	436	S	SO ₂ CH ₃	OCH ₃	CH ₃		
	437	S	SO ₂ CH ₂ CH ₃	OCH ₃	СН3		
	438	S	СН3	OCH ₃	CH ₃		
15	439	S	CF ₃	OCH ₃	CH ₃		
	440	S	OCHF ₂	OCH ₃	CH ₃		
	441	SO ₂	F	OCH ₃	CH ₃		
	442	SO ₂	C1	OCH ₃	CH ₃		
20	443	SO ₂	Br	OCH ₃	CH ₃		
	444	SO ₂	NO ₂	OCH ₃	CH ₃		
	445	SO ₂	SCH ₃	OCH ₃	CH ₃		
	446	SO ₂	SO ₂ CH ₃	OCH ₃	CH ₃		
25	447	SO ₂	SO ₂ CH ₂ CH ₃	OCH ₃	CH ₃		
	448	SO ₂	CH ₃	OCH ₃	CH ₃		
	449	SO ₂	CF ₃	OCH ₃	CH ₃		
	450	SO ₂	OCHF ₂	OCH ₃	CH ₃		
_	451	bond	F	OCH ₃	CH ₂ CH ₃		
30	452	bond	C1	OCH ₃	CH ₂ CH ₃		
	453	bond	Br	OCH ₃	CH ₂ CH ₃		
	454	bond	NO ₂	OCH ₃	CH ₂ CH ₃		
	455	bond	SCH ₃	OCH ₃	CH ₂ CH ₃		
35	456	bond	SO ₂ CH ₃	OCH ₃	CH ₂ CH ₃		
	457	bond	SO ₂ CH ₂ CH ₃	OCH ₃	CH ₂ CH ₃		
	458	bond	CH ₃	OCH ₃	CH ₂ CH ₃		
	459	bond	CF ₃	OCH ₃	CH ₂ CH ₃		
40	460	bond	OCHF ₂	OCH ₃	CH ₂ CH ₃		
	461	CH ₂	F	OCH ₃	CH ₂ CH ₃		
	462	CH ₂	Cl	OCH ₃	CH ₂ CH ₃		
	463	CH ₂	Br	OCH ₃	CH ₂ CH ₃		
45	464	CH ₂	NO ₂	OCH ₃	CH ₂ CH ₃		
-3	465	CH ₂	SCH ₃	OCH ₃	CH ₂ CH ₃		
	466	CH ₂	SO ₂ CH ₃	OCH ₃	CH ₂ CH ₃		

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	OCH ₃ CH ₂ CH ₃
	OCH ₃ CH ₂ CH ₃
	OCH ₃ CH ₂ CH ₃
	OCH ₃ CH ₂ CH ₃
471 O F 472 O C1 473 O Br 474 O NO2 475 O SCH3 476 O SO ₂ CH ₂ CH	OCH ₃ CH ₂ CH ₃
473 O Br 474 O NO2 475 O SCH3 476 O SO2CH3 477 O SO2CH2CH	OCH ₃ CH ₂ CH ₃
474 O NO2 475 O SCH3 476 O SO2CH3 477 O SO2CH2CH	OCH ₃ CH ₂ CH ₃ OCH ₃ CH ₂ CH ₃ OCH ₃ CH ₂ CH ₃ H ₃ OCH ₃ CH ₂ CH ₃ OCH ₃ CH ₂ CH ₃
474 O NO2 475 O SCH3 476 O SO2CH3 477 O SO2CH2CH	OCH ₃ CH ₂ CH ₃ OCH ₃ CH ₂ CH ₃ H ₃ OCH ₃ CH ₂ CH ₃ OCH ₃ CH ₂ CH ₃
476 O SO ₂ CH ₃ 477 O SO ₂ CH ₂ CH	OCH ₃ CH ₂ CH ₃ H ₃ OCH ₃ CH ₂ CH ₃ OCH ₃ CH ₂ CH ₃
477 O SO ₂ CH ₂ CH	OCH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃
	OCH ₃ CH ₂ CH ₃
15 478 O CH ₃	OCH ₃ CH ₂ CH ₃
479 O CF ₃	
480 O OCHF ₂	OCH ₃ CH ₂ CH ₃
481 S F	OCH ₃ CH ₂ CH ₃
20 482 S C1	OCH ₃ CH ₂ CH ₃
483 S Br	OCH ₃ CH ₂ CH ₃
484 S NO ₂	OCH ₃ CH ₂ CH ₃
485 S SCH ₃	OCH ₃ CH ₂ CH ₃
25 486 S SO ₂ CH ₃	OCH ₃ CH ₂ CH ₃
487 S SO ₂ CH ₂ CI	H ₃ OCH ₃ CH ₂ CH ₃
488 S CH ₃	OCH ₃ CH ₂ CH ₃
489 S CF ₃	OCH ₃ CH ₂ CH ₃
490 S OCHF ₂	OCH ₃ CH ₂ CH ₃
30 491 SO ₂ F	OCH ₃ CH ₂ CH ₃
492 SO ₂ Cl	OCH ₃ CH ₂ CH ₃
493 SO ₂ Br	OCH ₃ CH ₂ CH ₃
494 SO ₂ NO ₂	OCH ₃ CH ₂ CH ₃
35 495 SO ₂ SCH ₃	OCH ₃ CH ₂ CH ₃
496 SO ₂ SO ₂ CH ₃	OCH ₃ CH ₂ CH ₃
497 SO ₂ SO ₂ CH ₂ C	
498 SO ₂ CH ₃	OCH ₃ CH ₂ CH ₃
40 499 SO ₂ CF ₃	OCH ₃ CH ₂ CH ₃
500 SO ₂ OCHF ₂	OCH ₃ CH ₂ CH ₃
501 bond F	OCH(CH ₃) ₂ CH ₃
502 bond C1	OCH(CH ₃) ₂ CH ₃
503 bond Br	OCH(CH ₃) ₂ CH ₃
504 bond NO ₂	OCH (CH ₃) ₂ CH ₃
505 bond SCH ₃	OCH(CH ₃) ₂ CH ₃

	61						
	n	X	R ⁴	R ¹⁰	R ¹¹		
	506	bond	SO ₂ CH ₃	OCH (CH ₃) ₂	CH ₃		
	507	bond	SO ₂ CH ₂ CH ₃	OCH (CH ₃) ₂	CH ₃		
5	508	bond	СН3	OCH (CH ₃) ₂	CH ₃		
	509	bond	CF ₃	OCH (CH ₃) ₂	СН3		
	510	bond	OCHF ₂	OCH (CH ₃) ₂	CH ₃		
	511	CH ₂	F	OCH (CH ₃) ₂	CH ₃		
10	512	CH ₂	C1	OCH (CH ₃) ₂	СН3		
TO	513	CH ₂	Br	ОСН (СН ₃) ₂	СН3		
	514	CH ₂	NO ₂	OCH (CH ₃) ₂	CH ₃		
	515	CH ₂	SCH ₃	OCH(CH ₃) ₂	CH ₃		
	516	CH ₂	SO ₂ CH ₃	OCH(CH ₃) ₂	CH ₃		
15	517	CH ₂	SO ₂ CH ₂ CH ₃	OCH(CH ₃) ₂	CH ₃		
	518	CH ₂	CH ₃	OCH(CH ₃) ₂	СН3		
	519	CH ₂	CF ₃	OCH (CH ₃) ₂	CH ₃		
	520	CH ₂	OCHF ₂	ОСН (СН ₃) ₂	CH ₃		
20	521	0	F	OCH (CH ₃) ₂	CH ₃		
	522	0	C1	OCH (CH ₃) ₂	CH ₃		
25	523	0	Br	OCH (CH ₃) ₂	CH ₃		
	524	0	NO ₂	OCH (CH ₃) ₂	CH ₃		
	525	0	SCH ₃	OCH (CH ₃) ₂	CH ₃		
	526	0	SO ₂ CH ₃	OCH (CH ₃) ₂	CH ₃		
	527	0	SO ₂ CH ₂ CH ₃	OCH (CH ₃) ₂	CH ₃		
	528	0	CH ₃	OCH(CH ₃) ₂	CH ₃		
	529	0	CF ₃	OCH (CH ₃) ₂	CH ₃		
30	530	0	OCHF ₂	OCH(CH ₃) ₂	CH ₃		
	531	S	F	OCH (CH ₃) ₂	CH ₃		
	532	S	C1	OCH (CH ₃) ₂	CH ₃		
	533	S	Br	OCH (CH ₃) ₂	CH ₃		
35	534	S	NO ₂	OCH (CH ₃) ₂	CH ₃		
	535	S	SCH ₃	OCH (CH ₃) ₂	CH ₃		
	536	S	SO ₂ CH ₃	OCH(CH ₃) ₂	CH ₃		
	537	S	SO ₂ CH ₂ CH ₃	OCH (CH ₃) ₂	CH ₃		
40	538	S	CH ₃	OCH(CH ₃) ₂	CH ₃		
	539	S	CF ₃	OCH(CH ₃) ₂	CH ₃		
	540	S	OCHF ₂	OCH(CH ₃) ₂	CH ₃		
	541	SO ₂	F	OCH(CH ₃) ₂	CH ₃		
45	542	SO ₂	Cl	OCH (CH ₃) ₂	CH ₃		
43	543	SO ₂	Br	OCH(CH ₃) ₂	CH ₃		
	544	SO ₂	NO ₂	OCH (CH ₃) ₂	CH ₃		

	62						
	n	X	R ⁴	R ¹⁰	R ¹¹		
	545	SO ₂	SCH ₃	OCH (CH ₃) ₂	CH ₃		
	546	SO ₂	SO ₂ CH ₃	OCH(CH ₃) ₂	CH ₃		
5	547	SO ₂	SO ₂ CH ₂ CH ₃	OCH (CH ₃) ₂	CH ₃		
	548	SO ₂	CH ₃	OCH (CH ₃) ₂	CH ₃		
	549	SO ₂	CF ₃	OCH (CH ₃) ₂	CH ₃		
	550	SO ₂	OCHF ₂	OCH(CH ₃) ₂	CH ₃		
10	551	bond	F	OCH(CH ₃) ₂	CH ₂ CH ₃		
10	552	bond	C1	OCH (CH ₃) ₂	CH ₂ CH ₃		
	553	bond	Br	OCH(CH ₃) ₂	CH ₂ CH ₃		
	554	bond	NO ₂	OCH (CH ₃) ₂	CH ₂ CH ₃		
	555	bond	SCH ₃	OCH(CH ₃) ₂	CH ₂ CH ₃		
15	556	bond	SO ₂ CH ₃	OCH(CH ₃) ₂	CH ₂ CH ₃		
	557	bond	SO ₂ CH ₂ CH ₃	OCH(CH ₃) ₂	CH ₂ CH ₃		
	558	bond	CH ₃	OCH (CH ₃) ₂	CH ₂ CH ₃		
	559	bond	CF ₃	OCH (CH ₃) ₂	CH ₂ CH ₃		
20	560	bond	OCHF ₂	OCH (CH ₃) ₂	CH ₂ CH ₃		
	561	CH ₂	F	OCH (CH ₃) ₂	CH ₂ CH ₃		
25	562	CH ₂	Cl	OCH (CH ₃) ₂	CH ₂ CH ₃		
	563	CH ₂	Br	OCH (CH ₃) ₂	CH ₂ CH ₃		
	564	CH ₂	NO ₂	OCH (CH ₃) ₂	CH ₂ CH ₃		
	565	CH ₂	SCH ₃	OCH(CH ₃) ₂	CH ₂ CH ₃		
	566	CH ₂	SO ₂ CH ₃	OCH (CH ₃) ₂	CH ₂ CH ₃		
	567	CH ₂	SO ₂ CH ₂ CH ₃	OCH(CH ₃) ₂	CH ₂ CH ₃		
	568	CH ₂	CH ₃	OCH (CH ₃) ₂	CH ₂ CH ₃		
30	569	CH ₂	CF ₃	OCH (CH ₃) ₂	CH ₂ CH ₃		
	570	CH ₂	OCHF ₂	OCH (CH ₃) ₂	CH ₂ CH ₃		
	571	0	F	OCH(CH ₃) ₂	CH ₂ CH ₃		
	572	0	Cl	OCH (CH ₃) ₂	CH ₂ CH ₃		
35	573	0	Br	OCH(CH ₃) ₂	CH ₂ CH ₃		
	574	0	NO ₂	OCH (CH ₃) ₂	CH ₂ CH ₃		
	575	0	SCH ₃	OCH (CH ₃) ₂	CH ₂ CH ₃		
	576	0	SO ₂ CH ₃	OCH (CH ₃) ₂	CH ₂ CH ₃		
40	577	0	SO ₂ CH ₂ CH ₃	OCH (CH ₃) ₂	CH ₂ CH ₃		
	578	0	CH ₃	OCH (CH ₃) ₂	CH ₂ CH ₃		
	579	0	CF ₃	OCH(CH ₃) ₂	CH ₂ CH ₃		
	580	0	OCHF ₂	OCH(CH ₃) ₂	CH ₂ CH ₃		
AF	581	S	F	OCH(CH ₃) ₂	CH ₂ CH ₃		
45	582	S	Cl	OCH(CH ₃) ₂	CH ₂ CH ₃		
	583	S	Br	OCH (CH ₃) ₂	CH ₂ CH ₃		

	63						
	n	Х	R ⁴	R ¹⁰	R ¹¹		
Ī	584	S	NO ₂	OCH (CH ₃) ₂	CH ₂ CH ₃		
	585	S	SCH ₃	OCH (CH ₃) ₂	CH ₂ CH ₃		
5	586	S	SO ₂ CH ₃	OCH (CH ₃) ₂	CH ₂ CH ₃		
	587	S	SO ₂ CH ₂ CH ₃	OCH (CH ₃) ₂	CH ₂ CH ₃		
	588	S	CH ₃	OCH (CH ₃) ₂	CH ₂ CH ₃		
	589	S	CF ₃	OCH (CH ₃) ₂	CH ₂ CH ₃		
10	590	S	OCHF ₂	OCH (CH ₃) ₂	CH ₂ CH ₃		
10	591	SO ₂	F	OCH (CH ₃) ₂	CH ₂ CH ₃		
	592	SO ₂	Cl	OCH(CH ₃) ₂	CH ₂ CH ₃		
	593	SO ₂	Br	OCH (CH ₃) ₂	CH ₂ CH ₃		
	594	SO ₂	NO ₂	OCH(CH ₃) ₂	CH ₂ CH ₃		
15	595	SO ₂	SCH ₃	OCH (CH ₃) ₂	CH ₂ CH ₃		
	596	SO ₂	SO ₂ CH ₃	OCH (CH ₃) ₂	CH ₂ CH ₃		
	597	SO ₂	SO ₂ CH ₂ CH ₃	OCH (CH ₃) ₂	CH ₂ CH ₃		
	598	SO ₂	CH ₃	OCH (CH ₃) ₂	CH ₂ CH ₃		
20	599	SO ₂	CF ₃	OCH(CH ₃) ₂	CH ₂ CH ₃		
ļ	600	SO ₂	OCHF ₂	OCH (CH ₃) ₂	CH ₂ CH ₃		
	601	bond	F	OCH ₂ C ₆ H ₅	CH ₃		
25	602	bond	C1	OCH ₂ C ₆ H ₅	CH ₃		
	603	bond	Br	OCH ₂ C ₆ H ₅	CH ₃		
2,5	604	bond	NO ₂	OCH ₂ C ₆ H ₅	CH ₃		
	605	bond	SCH ₃	OCH ₂ C ₆ H ₅	CH ₃		
	606	bond	SO ₂ CH ₃	OCH ₂ C ₆ H ₅	CH ₃		
	607	bond	SO ₂ CH ₂ CH ₃	OCH ₂ C ₆ H ₅	CH ₃		
30	608	bond	CH ₃	OCH ₂ C ₆ H ₅	CH ₃		
	609	bond	CF ₃	OCH ₂ C ₆ H ₅	CH ₃		
	610	bond	OCHF ₂	OCH ₂ C ₆ H ₅	CH ₃		
	611	CH ₂	F	OCH ₂ C ₆ H ₅	CH ₃		
35	612	CH ₂	C1	OCH ₂ C ₆ H ₅	CH ₃		
	613	CH ₂	Br	OCH ₂ C ₆ H ₅	CH ₃		
	614	CH ₂	NO ₂	OCH ₂ C ₆ H ₅	CH ₃		
	615	CH ₂	SCH ₃	OCH ₂ C ₆ H ₅	CH ₃		
40	616	CH ₂	SO ₂ CH ₃	OCH ₂ C ₆ H ₅	CH ₃		
	617	CH ₂	SO ₂ CH ₂ CH ₃	OCH ₂ C ₆ H ₅	CH ₃		
	618	CH ₂	CH ₃	OCH ₂ C ₆ H ₅	CH ₃		
	619	CH ₂	CF ₃	OCH ₂ C ₆ H ₅	CH ₃		
4-	620	CH ₂	OCHF ₂	OCH ₂ C ₆ H ₅	CH ₃		
45	621	0	F	OCH ₂ C ₆ H ₅	CH ₃		
	622	0	Cl	OCH ₂ C ₆ H ₅	CH ₃		

	64						
	n	Х	R ⁴	R ¹⁰	R ¹¹		
	623	0	Br	OCH ₂ C ₆ H ₅	CH ₃		
	624	0	NO_2	OCH ₂ C ₆ H ₅	CH ₃		
5	625	0	SCH ₃	OCH ₂ C ₆ H ₅	CH ₃		
-	626	0	SO ₂ CH ₃	OCH ₂ C ₆ H ₅	CH ₃		
	627	0	SO ₂ CH ₂ CH ₃	OCH ₂ C ₆ H ₅	CH ₃		
	628	0	СН3	OCH ₂ C ₆ H ₅	CH ₃		
10	629	0	CF ₃	OCH ₂ C ₆ H ₅	CH ₃		
	630	0	OCHF ₂	OCH ₂ C ₆ H ₅	CH ₃		
	631	S	F	OCH ₂ C ₆ H ₅	CH ₃		
	632	S	Cl	OCH ₂ C ₆ H ₅	CH ₃		
	633	S	Br	OCH ₂ C ₆ H ₅	CH ₃		
15	634	S	NO ₂	OCH ₂ C ₆ H ₅	CH ₃		
	635	S	SCH ₃	OCH ₂ C ₆ H ₅	CH ₃		
	636	S	SO ₂ CH ₃	OCH ₂ C ₆ H ₅	CH ₃		
	637	S	SO ₂ CH ₂ CH ₃	OCH ₂ C ₆ H ₅	CH ₃		
20	638	S	CH ₃	OCH ₂ C ₆ H ₅	CH ₃		
	639	S	CF ₃	OCH ₂ C ₆ H ₅	CH ₃		
25	640	S	OCHF ₂	OCH ₂ C ₆ H ₅	СН3		
	641	SO ₂	F	OCH ₂ C ₆ H ₅	CH ₃		
	642	SO ₂	Cl	OCH ₂ C ₆ H ₅	CH ₃		
	643	SO ₂	Br	OCH ₂ C ₆ H ₅	CH ₃		
	644	SO ₂	NO ₂	OCH ₂ C ₆ H ₅	CH ₃		
	645	SO ₂	SCH ₃	OCH ₂ C ₆ H ₅	СН3		
	646	SO ₂	SO ₂ CH ₃	OCH ₂ C ₆ H ₅	CH ₃		
30	647	SO ₂	SO ₂ CH ₂ CH ₃	OCH ₂ C ₆ H ₅	CH ₃		
	648	SO ₂	CH ₃	OCH ₂ C ₆ H ₅	CH ₃		
	649	SO ₂	CF ₃	OCH ₂ C ₆ H ₅	CH ₃		
	650	SO ₂	OCHF ₂	OCH ₂ C ₆ H ₅	CH ₃		
35	651	bond	F	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
	652	bond	Cl	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
	653	bond	Br	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
	654	bond	NO ₂	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
40	655	bond	SCH ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
	656	bond	SO ₂ CH ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
	657	bond	SO ₂ CH ₂ CH ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
	658	bond	CH ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
45	659	bond	CF ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
~J	660	bond	OCHF ₂	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
	661	CH ₂	F	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		

	65						
	n	х	R ⁴	R ¹⁰	R ¹¹		
	662	CH ₂	Cl	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
	663	СН2	Br	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
5	664	CH ₂	NO ₂	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
	665	СН2	SCH ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
	666	CH ₂	SO ₂ CH ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
	667	CH ₂	SO ₂ CH ₂ CH ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
	668	CH ₂	CH ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
10	669	CH ₂	CF ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
	670	CH ₂	OCHF ₂	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
	671	0	F	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
	672	0	Cl	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
15	673	0	Br	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
	674	0	NO ₂	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
	675	0	SCH ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
	676	0	SO ₂ CH ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
20	677	0	SO ₂ CH ₂ CH ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
	678	0	CH ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
	679	0	CF ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
	680	0	OCHF ₂	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
25	681	S	F	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
23	682	S	Cl	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
	683	S	Br	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
	684	S	NO ₂	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
	685	S	SCH ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
30	686	S	SO ₂ CH ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
	687	S	SO ₂ CH ₂ CH ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
	688	S	CH ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
	689	S	CF ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
35	690	S	OCHF ₂	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
	691	SO ₂	F	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
	692	SO ₂	Cl	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
	693	SO ₂	Br	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
40	694	SO ₂	NO ₂	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
	695	SO ₂	SCH ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
	696	SO ₂	SO ₂ CH ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
	697	SO ₂	SO ₂ CH ₂ CH ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
4 =	698	SO ₂	CH ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
45	699	SO ₂	CF ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
	700	SO ₂	OCHF ₂	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		

	66						
	n	X	R ⁴	R ¹⁰	R ¹¹		
	701	bond	F	$OSO_2(4-CH_3-C_6H_4)$	CH ₃		
	702	bond	Cl	$OSO_2(4-CH_3-C_6H_4)$	CH ₃		
5	703	bond	Br	$OSO_2(4-CH_3-C_6H_4)$	CH ₃		
	704	bond	NO ₂	$OSO_2(4-CH_3-C_6H_4)$	CH ₃		
	705	bond	SCH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH ₃		
	706	bond	SO ₂ CH ₃	$OSO_2 (4-CH_3-C_6H_4)$	СН3		
10	707	bond	SO ₂ CH ₂ CH ₃	$OSO_2 (4-CH_3-C_6H_4)$	CH ₃		
10	708	bond	CH ₃	OSO ₂ (4-CH ₃ -C ₆ H ₄)	CH ₃		
	709	bond	CF ₃	$OSO_2 (4-CH_3-C_6H_4)$	CH ₃		
	710	bond	OCHF ₂	$OSO_2 (4-CH_3-C_6H_4)$	CH ₃		
	711	CH ₂	F	$OSO_2(4-CH_3-C_6H_4)$	CH ₃		
15	712	CH ₂	Cl	OSO ₂ (4-CH ₃ -C ₆ H ₄)	CH ₃		
	713	CH ₂	Br	$OSO_2 (4-CH_3-C_6H_4)$	CH ₃		
	714	CH ₂	NO ₂	$OSO_2 (4-CH_3-C_6H_4)$	CH ₃		
	715	CH ₂	SCH ₃	$OSO_2 (4-CH_3-C_6H_4)$	CH ₃		
20	716	CH ₂	SO ₂ CH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH ₃		
	717	CH ₂	SO ₂ CH ₂ CH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH ₃		
	718	CH ₂	CH ₃	$OSO_2 (4-CH_3-C_6H_4)$	CH ₃		
	719	CH ₂	CF ₃	$OSO_2 (4-CH_3-C_6H_4)$	СН3		
25	720	CH ₂	OCHF ₂	$OSO_2 (4-CH_3-C_6H_4)$	CH ₃		
	721	0	F	$OSO_2(4-CH_3-C_6H_4)$	CH ₃		
	722	0	Cl	$OSO_2 (4-CH_3-C_6H_4)$	CH ₃		
	723	0	Br	$OSO_2(4-CH_3-C_6H_4)$	CH ₃		
	724	0	NO ₂	$OSO_2 (4-CH_3-C_6H_4)$	CH ₃		
30	725	0	SCH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH ₃		
	726	0	SO ₂ CH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH ₃		
	727	0	SO ₂ CH ₂ CH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH ₃		
	728	0	CH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH ₃		
35	729	0	CF ₃	$OSO_2(4-CH_3-C_6H_4)$	CH ₃		
	730	0	OCHF ₂	$OSO_2(4-CH_3-C_6H_4)$	CH ₃		
	731	S	F	$OSO_2(4-CH_3-C_6H_4)$	СН3		
	732	S	Cl	$OSO_2(4-CH_3-C_6H_4)$	СН3		
40	733	S	Br	$OSO_2(4-CH_3-C_6H_4)$	CH ₃		
	734	S	NO ₂	$OSO_2 (4-CH_3-C_6H_4)$	CH ₃		
	735	S	SCH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH ₃		
	736	S	SO ₂ CH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH ₃		
45	737	S	SO ₂ CH ₂ CH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH ₃		
40	738	S	CH ₃	$OSO_2 (4-CH_3-C_6H_4)$	СН3		
	739	S	CF ₃	$OSO_2 (4-CH_3-C_6H_4)$	CH ₃		

	n	Х	R ⁴	R ¹⁰	R ¹¹
	740	S	OCHF ₂	$OSO_2(4-CH_3-C_6H_4)$	CH ₃
	741	SO ₂	F	$OSO_2(4-CH_3-C_6H_4)$	CH ₃
5	742	SO ₂	Cl	$OSO_2 (4-CH_3-C_6H_4)$	CH ₃
	743	SO ₂	Br	$OSO_2 (4-CH_3-C_6H_4)$	CH ₃
	744	SO ₂	NO ₂	$OSO_2(4-CH_3-C_6H_4)$	CH ₃
	745	SO ₂	SCH ₃	$OSO_2(4-CH_3-C_6H_4)$	СН3
	746	SO ₂	SO ₂ CH ₃	$OSO_2 (4-CH_3-C_6H_4)$	CH ₃
10	747	SO ₂	SO ₂ CH ₂ CH ₃	OSO ₂ (4-CH ₃ -C ₆ H ₄)	CH ₃
	748	SO ₂	CH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH ₃
	749	SO ₂	CF ₃	OSO ₂ (4-CH ₃ -C ₆ H ₄)	CH ₃
	750	SO ₂	OCHF ₂	OSO ₂ (4-CH ₃ -C ₆ H ₄)	CH ₃
15	751	bond	F	OSO ₂ (4-CH ₃ -C ₆ H ₄)	CH ₂ CH ₃
	752	bond	C1	OSO ₂ (4-CH ₃ -C ₆ H ₄)	CH ₂ CH ₃
	753	bond	Br	OSO ₂ (4-CH ₃ -C ₆ H ₄)	CH ₂ CH ₃
	754	bond	NO ₂	OSO ₂ (4-CH ₃ -C ₆ H ₄)	CH ₂ CH ₃
20	755	bond	SCH ₃	OSO ₂ (4-CH ₃ -C ₆ H ₄)	CH ₂ CH ₃
	756	bond	SO ₂ CH ₃	OSO ₂ (4-CH ₃ -C ₆ H ₄)	CH ₂ CH ₃
	757	bond	SO ₂ CH ₂ CH ₃	OSO ₂ (4-CH ₃ -C ₆ H ₄)	CH ₂ CH ₃
	758	bond	CH ₃	OSO ₂ (4-CH ₃ -C ₆ H ₄)	СН2СН3
25	759	bond	CF ₃	$OSO_2(4-CH_3-C_6H_4)$	CH ₂ CH ₃
23	760	bond	OCHF ₂	$OSO_2(4-CH_3-C_6H_4)$	CH ₂ CH ₃
	761	CH ₂	F	$OSO_2(4-CH_3-C_6H_4)$	CH ₂ CH ₃
	762	CH ₂	Cl	$OSO_2 (4-CH_3-C_6H_4)$	CH ₂ CH ₃
	763	CH ₂	Br	$OSO_2 (4-CH_3-C_6H_4)$	CH ₂ CH ₃
30	764	CH ₂	NO ₂	$OSO_2 (4-CH_3-C_6H_4)$	CH ₂ CH ₃
	765	CH ₂	SCH ₃	$OSO_2 (4-CH_3-C_6H_4)$	CH ₂ CH ₃
	766	CH ₂	SO ₂ CH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH ₂ CH ₃
	767	CH ₂	SO ₂ CH ₂ CH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH ₂ CH ₃
35	768	CH ₂	CH ₃	$OSO_2 (4-CH_3-C_6H_4)$	CH ₂ CH ₃
	769	CH ₂	CF ₃	$OSO_2 (4-CH_3-C_6H_4)$	CH ₂ CH ₃
	770	CH ₂	OCHF ₂	$OSO_2 (4-CH_3-C_6H_4)$	CH ₂ CH ₃
	771	0	F	$OSO_2 (4-CH_3-C_6H_4)$	CH ₂ CH ₃
40	772	0	Cl	$OSO_2 (4-CH_3-C_6H_4)$	CH ₂ CH ₃
	773	0	Br	$OSO_2 (4-CH_3-C_6H_4)$	CH ₂ CH ₃
	774	0	NO ₂	$OSO_2 (4-CH_3-C_6H_4)$	CH ₂ CH ₃
	775	0	SCH ₃	$OSO_2 (4-CH_3-C_6H_4)$	CH ₂ CH ₃
45	776	0	SO ₂ CH ₃	$OSO_2 (4-CH_3-C_6H_4)$	CH ₂ CH ₃
40	777	0	SO ₂ CH ₂ CH ₃	$OSO_2 (4-CH_3-C_6H_4)$	
	778	0	CH ₃	$OSO_2 (4-CH_3-C_6H_4)$	CH ₂ CH ₃

1						
780	[:	n	X	R ⁴	R ¹⁰	R ¹¹
Test		779	0	CF ₃	$OSO_2(4-CH_3-C_6H_4)$	CH ₂ CH ₃
Test	Ī	780	0	OCHF ₂	$OSO_2(4-CH_3-C_6H_4)$	CH ₂ CH ₃
TR3	5	781	S	F	$OSO_2(4-CH_3-C_6H_4)$	CH ₂ CH ₃
T84		782	S	Cl	$OSO_2(4-CH_3-C_6H_4)$	CH ₂ CH ₃
T85	Ī	783	S	Br	$OSO_2(4-CH_3-C_6H_4)$	CH ₂ CH ₃
10 786 S SO2CH3 OSO2 (4-CH3-C6H4) CH2CH3 787 S SO2CH2CH3 OSO2 (4-CH3-C6H4) CH2CH3 788 S CH3 OSO2 (4-CH3-C6H4) CH2CH3 789 S CF3 OSO2 (4-CH3-C6H4) CH2CH3 790 S OCHF2 OSO2 (4-CH3-C6H4) CH2CH3 791 SO2 F OSO2 (4-CH3-C6H4) CH2CH3 792 SO2 C1 OSO2 (4-CH3-C6H4) CH2CH3 793 SO2 Br OSO2 (4-CH3-C6H4) CH2CH3 794 SO2 NO2 OSO2 (4-CH3-C6H4) CH2CH3 795 SO2 SCH3 OSO2 (4-CH3-C6H4) CH2CH3 796 SO2 SO2CH3 OSO2 (4-CH3-C6H4) CH2CH3 797 SO2 SO2CH2CH3 OSO2 (4-CH3-C6H4) CH2CH3 799 SO2 CF3 OSO2 (4-CH3-C6H4) CH2CH3 800 SO2 OCHF2 OSO2 (4-CH3-C6H4) CH2CH3 800 <td< th=""><th></th><th>784</th><th>S</th><th>NO₂</th><th>$OSO_2(4-CH_3-C_6H_4)$</th><th>CH₂CH₃</th></td<>		784	S	NO ₂	$OSO_2(4-CH_3-C_6H_4)$	CH ₂ CH ₃
786 S		785	S	SCH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH ₂ CH ₃
Table Tabl	10	786	S	SO ₂ CH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH ₂ CH ₃
789 S CF3 OSO2(4-CH3-C6H4) CH2CH3 790 S OCHF2 OSO2(4-CH3-C6H4) CH2CH3 791 SO2 F OSO2(4-CH3-C6H4) CH2CH3 791 SO2 Br OSO2(4-CH3-C6H4) CH2CH3 792 SO2 Br OSO2(4-CH3-C6H4) CH2CH3 793 SO2 Br OSO2(4-CH3-C6H4) CH2CH3 794 SO2 NO2 OSO2(4-CH3-C6H4) CH2CH3 795 SO2 SCH3 OSO2(4-CH3-C6H4) CH2CH3 796 SO2 SCH3 OSO2(4-CH3-C6H4) CH2CH3 797 SO2 SO2CH3 OSO2(4-CH3-C6H4) CH2CH3 798 SO2 CH3 OSO2(4-CH3-C6H4) CH2CH3 799 SO2 CH3 OSO2(4-CH3-C6H4) CH2CH3 799 SO2 CH3 OSO2(4-CH3-C6H4) CH2CH3 800 SO2 CH3 OSO2(4-CH3-C6H4) CH2CH3 801 bond F SCH3 OSO2(4-CH3-C6H4) CH2CH3 802 bond C1 SCH3 OSO2(4-CH3-C6H4) CH2CH3 803 bond Br SCH3 CH3 804 bond RO2 SCH3 CH3 805 bond SCH3 SCH3 CH3 806 bond SCH3 SCH3 CH3 807 bond SCH3 SCH3 CH3 808 bond CH3 SCH3 CH3 809 bond CH3 SCH3 CH3 809 bond CH3 SCH3 CH3 809 bond CH3 SCH3 CH3 810 bond CH3 SCH3 CH3 811 CH2 F SCH3 CH3 812 CH2 Br SCH3 CH3 813 CH3 CH3 814 CH2 Br SCH3 CH3		787	S	SO ₂ CH ₂ CH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH ₂ CH ₃
15		788	S	CH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH ₂ CH ₃
Part		789	S	CF ₃	$OSO_2(4-CH_3-C_6H_4)$	CH ₂ CH ₃
792 SO ₂ C1 OSO ₂ (4-CH ₃ -C ₆ H ₄) CH ₂ CH ₃ 793 SO ₂ Br OSO ₂ (4-CH ₃ -C ₆ H ₄) CH ₂ CH ₃ 794 SO ₂ NO ₂ OSO ₂ (4-CH ₃ -C ₆ H ₄) CH ₂ CH ₃ 795 SO ₂ SCH ₃ OSO ₂ (4-CH ₃ -C ₆ H ₄) CH ₂ CH ₃ 796 SO ₂ SO ₂ CH ₃ OSO ₂ (4-CH ₃ -C ₆ H ₄) CH ₂ CH ₃ 797 SO ₂ SO ₂ CH ₃ OSO ₂ (4-CH ₃ -C ₆ H ₄) CH ₂ CH ₃ 798 SO ₂ CH ₃ OSO ₂ (4-CH ₃ -C ₆ H ₄) CH ₂ CH ₃ 799 SO ₂ CH ₃ OSO ₂ (4-CH ₃ -C ₆ H ₄) CH ₂ CH ₃ 800 SO ₂ OCHF ₂ OSO ₂ (4-CH ₃ -C ₆ H ₄) CH ₂ CH ₃ 801 bond F SCH ₃ OSO ₂ (4-CH ₃ -C ₆ H ₄) CH ₂ CH ₃ 802 bond C1 SCH ₃ CH ₃ 803 bond Br SCH ₃ CH ₃ 804 bond Br SCH ₃ CH ₃ 805 bond SCH ₃ SCH ₃ CH ₃ 806 bond SO ₂ CH ₂ CH ₃ SCH ₃ CH ₃ 807 bond SO ₂ CH ₃ SCH ₃ CH ₃ 808 bond CH ₃ SCH ₃ SCH ₃ CH ₃ 809 bond CH ₃ SCH ₃ CH ₃ 809 bond CH ₃ SCH ₃ CH ₃ 810 bond OCHF ₂ SCH ₃ CH ₃ 811 CH ₂ F SCH ₃ CH ₃ 812 CH ₂ C1 SCH ₃ CH ₃ CH ₃ 815 CH ₃ CH ₃ 816 CH ₃ CH ₃ 817 CH ₂ CH ₂ C1 SCH ₃ CH ₃ CH ₃ 818 CH ₃ CH ₃ CH ₃ 819 CH ₂ CH ₂ CH ₃ SCH ₃ CH ₃ 810 CH ₃ CH ₃ CH ₃ 811 CH ₂ F SCH ₃ CH ₃ CH ₃ 812 CH ₂ C1 SCH ₃ CH ₃ CH ₃ 812 CH ₂ C1 SCH ₃ CH ₃ CH ₃ 812 CH ₂ CH ₂ C1 CH ₂ CH ₃ CH ₃ 812 CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CH ₃	15	790	S	OCHF ₂	$OSO_2 (4-CH_3-C_6H_4)$	CH ₂ CH ₃
793 SO ₂ Br OSO ₂ (4-CH ₃ -C ₆ H ₄) CH ₂ CH ₃ 794 SO ₂ NO ₂ OSO ₂ (4-CH ₃ -C ₆ H ₄) CH ₂ CH ₃ 795 SO ₂ SCH ₃ OSO ₂ (4-CH ₃ -C ₆ H ₄) CH ₂ CH ₃ 796 SO ₂ SO ₂ CH ₃ OSO ₂ (4-CH ₃ -C ₆ H ₄) CH ₂ CH ₃ 797 SO ₂ SO ₂ CH ₃ OSO ₂ (4-CH ₃ -C ₆ H ₄) CH ₂ CH ₃ 798 SO ₂ CH ₃ OSO ₂ (4-CH ₃ -C ₆ H ₄) CH ₂ CH ₃ 799 SO ₂ CF ₃ OSO ₂ (4-CH ₃ -C ₆ H ₄) CH ₂ CH ₃ 800 SO ₂ OCHF ₂ OSO ₂ (4-CH ₃ -C ₆ H ₄) CH ₂ CH ₃ 801 bond F SCH ₃ CH ₃ 802 bond C1 SCH ₃ CH ₃ 803 bond Br SCH ₃ CH ₃ 804 bond NO ₂ SCH ₃ CH ₃ 805 bond SCH ₃ SCH ₃ CH ₃ 806 bond SO ₂ CH ₂ CH ₃ SCH ₃ CH ₃ 807 bond SO ₂ CH ₂ CH ₃ SCH ₃ CH ₃ 808 bond CH ₃ SCH ₃ CH ₃ 809 bond CH ₃ SCH ₃ CH ₃ 810 bond CH ₃ SCH ₃ CH ₃ 811 CH ₂ F SCH ₃ CH ₃ 812 CH ₂ C1 SCH ₃ CH ₃ CH ₃ 811 CH ₂ Br SCH ₃ CH ₃ 811 CH ₂ CH ₂ C1 SCH ₃ CH ₃ CH ₃ 811 CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CH ₃ 811 CH ₂ CH ₂ CH ₃ CH ₃ CH ₃ 811 CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CH ₃ 812 CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CH ₃ 812 CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CH ₃ 812 CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CH ₃ 812 CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CH ₃ 812 CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CH ₃ 812 CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CH ₃ 814 CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CH ₃	Ī	791	SO ₂	F	$OSO_2(4-CH_3-C_6H_4)$	CH ₂ CH ₃
794 SO2	Ī	792	SO ₂	Cl	$OSO_2(4-CH_3-C_6H_4)$	CH ₂ CH ₃
795 SO ₂ SCH ₃ OSO ₂ (4-CH ₃ -C ₆ H ₄) CH ₂ CH ₃ 796 SO ₂ SO ₂ CH ₃ OSO ₂ (4-CH ₃ -C ₆ H ₄) CH ₂ CH ₃ 797 SO ₂ SO ₂ CH ₂ CH ₃ OSO ₂ (4-CH ₃ -C ₆ H ₄) CH ₂ CH ₃ 798 SO ₂ CH ₃ OSO ₂ (4-CH ₃ -C ₆ H ₄) CH ₂ CH ₃ 799 SO ₂ CF ₃ OSO ₂ (4-CH ₃ -C ₆ H ₄) CH ₂ CH ₃ 800 SO ₂ OCHF ₂ OSO ₂ (4-CH ₃ -C ₆ H ₄) CH ₂ CH ₃ 801 bond F SCH ₃ CH ₃ 802 bond C1 SCH ₃ CH ₃ 803 bond Br SCH ₃ CH ₃ 804 bond NO ₂ SCH ₃ CH ₃ 805 bond SCH ₃ SCH ₃ CH ₃ 806 bond SO ₂ CH ₃ SCH ₃ CH ₃ 807 bond SO ₂ CH ₂ CH ₃ SCH ₃ CH ₃ 808 bond CH ₃ SCH ₃ CH ₃ 809 bond CH ₃ SCH ₃ CH ₃ 810 bond CH ₂ SCH ₃ CH ₃ 811 CH ₂ F SCH ₃ CH ₃ 812 CH ₂ C1 SCH ₃ CH ₃ 813 CH ₂ Br SCH ₃ CH ₃ 800 CH ₂ CH ₃ CH ₃ 810 CH ₃ 810 CH ₃ CH ₃ 811 CH ₂ C1 SCH ₃ CH ₃ 811 CH ₂ C1 SCH ₃ CH ₃ 812 CH ₂ C1 SCH ₃ CH ₃ 812 CH ₂ C1 SCH ₃ CH ₃ 813 CH ₂ SCH ₃ CH ₃ 814 CH ₂ CH ₃ CH ₃ 815 CH ₂ CH ₃ CH ₃ CH ₃ 816 CH ₃ CH ₃ 817 CH ₃ CH ₃ 818 CH ₂ CH ₂ C1 SCH ₃ CH ₃ 819 CH ₃ CH ₃ 810 CH ₃ CH ₃ 810 CH ₃ CH ₃ 810 CH ₃ CH ₃ 811 CH ₂ C1 SCH ₃ CH ₃ 811 CH ₂ CH ₃ CH ₃ 812 CH ₂ C1 SCH ₃ CH ₃	Ì	793	SO ₂	Br	$OSO_2 (4-CH_3-C_6H_4)$	CH ₂ CH ₃
796 SO ₂ SO ₂ CH ₃ OSO ₂ (4-CH ₃ -C ₆ H ₄) CH ₂ CH ₃ 797 SO ₂ SO ₂ CH ₂ CH ₃ OSO ₂ (4-CH ₃ -C ₆ H ₄) CH ₂ CH ₃ 798 SO ₂ CH ₃ OSO ₂ (4-CH ₃ -C ₆ H ₄) CH ₂ CH ₃ 799 SO ₂ CF ₃ OSO ₂ (4-CH ₃ -C ₆ H ₄) CH ₂ CH ₃ 800 SO ₂ OCHF ₂ OSO ₂ (4-CH ₃ -C ₆ H ₄) CH ₂ CH ₃ 801 bond F SCH ₃ CH ₃ 802 bond Cl SCH ₃ CH ₃ 803 bond Br SCH ₃ CH ₃ 804 bond NO ₂ SCH ₃ CH ₃ 805 bond SCH ₃ SCH ₃ CH ₃ 806 bond SO ₂ CH ₂ CH ₃ SCH ₃ CH ₃ 807 bond SO ₂ CH ₂ CH ₃ SCH ₃ CH ₃ 808 bond CH ₃ SCH ₃ CH ₃ 809 bond CF ₃ SCH ₃ CH ₃ 810 bond OCHF ₂ SCH ₃ CH ₃ 811 CH ₂ F SCH ₃ CH ₃ 812 CH ₂ Cl SCH ₃ CH ₃ 813 CH ₂ Br SCH ₃ CH ₃	20	794	SO ₂	NO ₂	$OSO_2(4-CH_3-C_6H_4)$	CH ₂ CH ₃
797 SO ₂ SO ₂ CH ₂ CH ₃ OSO ₂ (4-CH ₃ -C ₆ H ₄) CH ₂ CH ₃ 798 SO ₂ CH ₃ OSO ₂ (4-CH ₃ -C ₆ H ₄) CH ₂ CH ₃ 799 SO ₂ CF ₃ OSO ₂ (4-CH ₃ -C ₆ H ₄) CH ₂ CH ₃ 800 SO ₂ OCHF ₂ OSO ₂ (4-CH ₃ -C ₆ H ₄) CH ₂ CH ₃ 801 bond F SCH ₃ CH ₃ 802 bond C1 SCH ₃ CH ₃ 803 bond Br SCH ₃ CH ₃ 804 bond NO ₂ SCH ₃ CH ₃ 805 bond SCH ₃ SCH ₃ CH ₃ 806 bond SO ₂ CH ₂ CH ₃ SCH ₃ CH ₃ 807 bond SO ₂ CH ₂ CH ₃ SCH ₃ CH ₃ 808 bond CH ₃ SCH ₃ CH ₃ 809 bond CF ₃ SCH ₃ CH ₃ 810 bond OCHF ₂ SCH ₃ CH ₃ 811 CH ₂ F SCH ₃ CH ₃ 812 CH ₂ Br SCH ₃ CH ₃ 811 CH ₂ Br SCH ₃ CH ₃ 812 CH ₂ CH ₂ CH 813 CH ₂ CH ₃ SCH ₃ CH ₃ 814 CH ₂ CH ₂ CH 815 CH ₂ CH ₃ CH ₃ CH ₃ 816 CH ₃ CH ₃ 817 CH ₃ CH ₃ 818 CH ₂ CH ₂ CH 818 CH ₂ CH 819 CH ₂ CH ₃ CH ₃ CH ₃ 819 CH ₃ CH ₃ CH ₃	Ì	795	SO ₂	SCH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH ₂ CH ₃
798 SO ₂ CH ₃ OSO ₂ (4-CH ₃ -C ₆ H ₄) CH ₂ CH ₃ 799 SO ₂ CF ₃ OSO ₂ (4-CH ₃ -C ₆ H ₄) CH ₂ CH ₃ 800 SO ₂ OCHF ₂ OSO ₂ (4-CH ₃ -C ₆ H ₄) CH ₂ CH ₃ 801 bond F SCH ₃ CH ₃ 802 bond C1 SCH ₃ CH ₃ 804 bond Br SCH ₃ CH ₃ 805 bond SCH ₃ SCH ₃ CH ₃ 806 bond SCH ₃ SCH ₃ CH ₃ 807 bond SO ₂ CH ₂ CH ₃ SCH ₃ CH ₃ 808 bond CH ₃ SO ₂ CH ₃ SCH ₃ CH ₃ 809 bond CF ₃ SCH ₃ CH ₃ 810 CH ₂ F SCH ₃ CH ₃ 811 CH ₂ F SCH ₃ CH ₃ 812 CH ₂ Br SCH ₃ CH ₃ 800 CH ₂ CH ₃ 800 CH ₃ 800 CH ₃ CH ₃	Ì	796	SO ₂	SO ₂ CH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH ₂ CH ₃
799 SO ₂ CF ₃ OSO ₂ (4-CH ₃ -C ₆ H ₄) CH ₂ CH ₃ 800 SO ₂ OCHF ₂ OSO ₂ (4-CH ₃ -C ₆ H ₄) CH ₂ CH ₃ 801 bond F SCH ₃ CH ₃ 802 bond C1 SCH ₃ CH ₃ 803 bond Br SCH ₃ CH ₃ 804 bond NO ₂ SCH ₃ CH ₃ 805 bond SCH ₃ SCH ₃ CH ₃ 806 bond SO ₂ CH ₃ SCH ₃ CH ₃ 807 bond SO ₂ CH ₂ CH ₃ SCH ₃ CH ₃ 808 bond CH ₃ SCH ₃ CH ₃ 809 bond CF ₃ SCH ₃ CH ₃ 810 bond OCHF ₂ SCH ₃ CH ₃ 811 CH ₂ F SCH ₃ CH ₃ 812 CH ₂ C1 SCH ₃ CH ₃ 813 CH ₂ Br SCH ₃ CH ₃	İ	797	SO ₂	SO ₂ CH ₂ CH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH ₂ CH ₃
799 SO ₂ CF ₃ OSO ₂ (4-CH ₃ -C ₆ H ₄) CH ₂ CH ₃ 800 SO ₂ OCHF ₂ OSO ₂ (4-CH ₃ -C ₆ H ₄) CH ₂ CH ₃ 801 bond F SCH ₃ CH ₃ 802 bond C1 SCH ₃ CH ₃ 803 bond Br SCH ₃ CH ₃ 804 bond NO ₂ SCH ₃ CH ₃ 805 bond SCH ₃ SCH ₃ CH ₃ 806 bond SO ₂ CH ₃ SCH ₃ CH ₃ 807 bond SO ₂ CH ₃ SCH ₃ CH ₃ 808 bond CH ₃ SCH ₃ CH ₃ 809 bond CH ₃ SCH ₃ CH ₃ 809 bond CH ₃ SCH ₃ CH ₃ 810 CH ₂ F SCH ₃ CH ₃ 811 CH ₂ F SCH ₃ CH ₃ 812 CH ₂ C1 SCH ₃ CH ₃ 814 CH ₂ Br SCH ₃ CH ₃	25	798	SO ₂	CH ₃	$OSO_2 (4-CH_3-C_6H_4)$	CH ₂ CH ₃
801 bond F SCH ₃ CH ₃ 802 bond C1 SCH ₃ CH ₃ 803 bond Br SCH ₃ CH ₃ 804 bond NO ₂ SCH ₃ CH ₃ 805 bond SCH ₃ SCH ₃ CH ₃ 806 bond SO ₂ CH ₃ SCH ₃ CH ₃ 807 bond SO ₂ CH ₂ CH ₃ SCH ₃ CH ₃ 808 bond CH ₃ SCH ₃ CH ₃ 809 bond CF ₃ SCH ₃ CH ₃ 809 bond CF ₃ SCH ₃ CH ₃ 810 bond OCHF ₂ SCH ₃ CH ₃ 811 CH ₂ F SCH ₃ CH ₃ 812 CH ₂ C1 SCH ₃ CH ₃ 813 CH ₂ Br SCH ₃ CH ₃ 814 CH ₂ CH ₃ CH ₃ 815 CH ₂ CH ₃ CH ₃ CH ₃ 816 CH ₂ CH ₃ CH ₃ CH ₃ 817 CH ₃ CH ₃ CH ₃ 818 CH ₂ CH ₂ CH ₃ CH ₃ CH ₃ 819 CH ₃ CH ₃ CH ₃ 810 CH ₂ CH ₂ CH ₃ CH ₃ 811 CH ₂ CH ₂ CH ₃ CH ₃ 812 CH ₂ CH ₃ CH ₃ CH ₃ 813 CH ₂ CH ₃ CH ₃ CH ₃ 814 CH ₂ CH ₂ CH ₃ CH ₃ 815 CH ₃ CH ₃ CH ₃ 816 CH ₂ CH ₃ CH ₃ 817 CH ₃ CH ₃ CH ₃ 818 CH ₂ CH ₂ CH ₃ CH ₃ 819 CH ₃ CH ₃ CH ₃ 810 CH ₂ CH ₃ CH ₃ 811 CH ₂ CH ₂ CH ₃ CH ₃ 812 CH ₂ CH ₂ CH ₃ CH ₃ 813 CH ₂ CH ₃ CH ₃ 814 CH ₂ CH ₃ CH ₃ 815 CH ₃ CH ₃ CH ₃ 816 CH ₂ CH ₃ CH ₃ 817 CH ₃ CH ₃ CH ₃ 818 CH ₂ CH ₃ CH ₃ 819 CH ₃ CH ₃ 810 CH ₃ CH ₃ 811 CH ₂ CH ₃ CH ₃ 812 CH ₃ CH ₃ CH ₃ 813 CH ₃ CH ₃ CH ₃ 814 CH ₃ CH ₃ 815 CH ₃ CH ₃ 816 CH ₃ CH ₃ 817 CH ₃ CH ₃ 818 CH ₃ CH ₃ 819 CH ₃ CH ₃ 810 CH ₃	-	799	SO ₂	CF ₃	$OSO_2(4-CH_3-C_6H_4)$	CH ₂ CH ₃
802 bond C1 SCH3 CH3 803 bond Br SCH3 CH3 804 bond NO2 SCH3 CH3 805 bond SCH3 SCH3 CH3 806 bond SO2CH3 SCH3 CH3 807 bond SO2CH2CH3 SCH3 CH3 808 bond CH3 SCH3 CH3 809 bond CF3 SCH3 CH3 810 bond OCHF2 SCH3 CH3 811 CH2 F SCH3 CH3 812 CH2 C1 SCH3 CH3 813 CH2 Br SCH3 CH3		800	SO ₂	OCHF ₂	$OSO_2 (4-CH_3-C_6H_4)$	CH ₂ CH ₃
803 Bond Br SCH3 CH3 804 Bond NO2 SCH3 CH3 805 Bond SCH3 SCH3 CH3 806 Bond SO2CH3 SCH3 CH3 807 Bond SO2CH2CH3 SCH3 CH3 808 Bond CH3 SCH3 CH3 809 Bond CF3 SCH3 CH3 810 Bond OCHF2 SCH3 CH3 811 CH2 F SCH3 CH3 812 CH2 C1 SCH3 CH3 813 CH3 CH3 814 CH3 CH3 815 CH4 CH3 CH3 816 CH3 CH3 817 CH3 CH3 818 CH4 CH4 CH4 819 CH4 CH4 CH4 810 CH4 CH4 811 CH2 CH4 CH4 811 CH2 CH4 CH4 812 CH4 CH4 813 CH4 CH4 814 CH5 CH5 815 CH5 CH5 816 CH5 CH5 817 CH5 CH5 818 CH5 CH5 819 CH5 CH5 819 CH5 CH5 810 CH5 811 CH5 CH5 812 CH5 CH5 813 CH5 CH5 814 CH5 CH5 815 CH5 CH5 816 CH5 817 CH5 817 CH5 818 CH5 819 CH5 819 CH5 819 CH5 810 CH5 811 CH5 811 CH5 812 CH5 813 CH5 814 CH5 815 CH5 815 CH5 816 CH5 817 CH5 817 CH5 818 CH5 819 CH5 819 CH5 810 CH5 810 CH5 811 CH5 811 CH5 811 CH5 811 CH5 812 CH5 813 CH5 814 CH5 815 CH5 815 CH5 816 CH5 817 CH5 817 CH5 818 CH5 819 CH5 819 CH5 810 CH5 810 CH5 811 CH5 811 CH5 811 CH5 812 CH5 813 CH5 814 CH5 815 CH5 815 CH3 816 CH3 817 CH3 817 CH5 818 CH5 819 CH5 810 CH5		801	bond	F	SCH ₃	CH ₃
804 bond NO2 SCH3 CH3 805 bond SCH3 SCH3 CH3 806 bond SO2CH3 SCH3 CH3 807 bond SO2CH2CH3 SCH3 CH3 808 bond CH3 SCH3 CH3 809 bond CF3 SCH3 CH3 810 CH2 F SCH3 CH3 811 CH2 Br SCH3 CH3 812 CH2 C1 SCH3 CH3 813 CH3		802	bond	Cl	SCH ₃	CH ₃
805 bond SCH ₃ SCH ₃ CH ₃ 806 bond SO ₂ CH ₃ SCH ₃ CH ₃ 807 bond SO ₂ CH ₂ CH ₃ SCH ₃ CH ₃ 808 bond CH ₃ SCH ₃ CH ₃ 809 bond CF ₃ SCH ₃ CH ₃ 810 bond OCHF ₂ SCH ₃ CH ₃ 811 CH ₂ F SCH ₃ CH ₃ 812 CH ₂ C1 SCH ₃ CH ₃	30	803	bond	Br	SCH ₃	CH ₃
806 bond SO ₂ CH ₃ SCH ₃ CH ₃ 807 bond SO ₂ CH ₂ CH ₃ SCH ₃ CH ₃ 808 bond CH ₃ SCH ₃ CH ₃ 809 bond CF ₃ SCH ₃ CH ₃ 810 bond OCHF ₂ SCH ₃ CH ₃ 811 CH ₂ F SCH ₃ CH ₃ 812 CH ₂ C1 SCH ₃ CH ₃		804	bond	NO ₂	SCH ₃	СН3
35 807 bond SO2CH2CH3 SCH3 CH3 808 bond CH3 SCH3 CH3 809 bond CF3 SCH3 CH3 810 bond OCHF2 SCH3 CH3 811 CH2 F SCH3 CH3 812 CH2 Cl SCH3 CH3 813 CH2 Br SCH3 CH3		805	bond	SCH ₃	SCH ₃	
808 bond CH ₃ SCH ₃ CH ₃ 809 bond CF ₃ SCH ₃ CH ₃ 810 bond OCHF ₂ SCH ₃ CH ₃ 811 CH ₂ F SCH ₃ CH ₃ 812 CH ₂ C1 SCH ₃ CH ₃ 813 CH ₂ Br SCH ₃		806	bond	SO ₂ CH ₃	SCH ₃	CH ₃
809 bond CF ₃ SCH ₃ CH ₃ 810 bond OCHF ₂ SCH ₃ CH ₃ 811 CH ₂ F SCH ₃ CH ₃ 812 CH ₂ C1 SCH ₃ CH ₃ 813 CH ₂ Br SCH ₃ CH ₃	35	807	bond	SO ₂ CH ₂ CH ₃	SCH ₃	
810 bond OCHF2 SCH3 CH3 811 CH2 F SCH3 CH3 812 CH2 Cl SCH3 CH3 813 CH2 Br SCH3 CH3 CH3 CH3 CH3		808	bond	CH ₃	SCH ₃	CH ₃
40 811 CH2 F SCH3 CH3 812 CH2 Cl SCH3 CH3 813 CH2 Br SCH3 CH3		809	bond	CF ₃	SCH ₃	CH ₃
812 CH ₂ C1 SCH ₃ CH ₃ 813 CH ₂ Br SCH ₃ CH ₃		810	bond	OCHF ₂	SCH ₃	CH ₃
813 CH ₂ Br SCH ₃ CH ₃	40	811	CH ₂	F	SCH ₃	<u> </u>
		812	CH ₂	Cl	SCH ₃	
agy:		813	CH ₂	Br	SCH ₃	CH ₃
R_{14} R_{12} R_{10} R_{10} R_{10} R_{10} R_{10} R_{10} R_{10} R_{10} R_{10}		814	CH ₂	NO ₂	SCH ₃	СН3
815 CH ₂ SCH ₃ SCH ₃ CH ₃	4 F	815	CH ₂	SCH ₃	SCH ₃	CH ₃
816 CH ₂ SO ₂ CH ₃ SCH ₃ CH ₃	45	816	CH ₂	SO ₂ CH ₃	SCH ₃	CH ₃
817 CH ₂ SO ₂ CH ₂ CH ₃ SCH ₃ CH ₃		817	CH ₂	SO ₂ CH ₂ CH ₃	SCH ₃	CH ₃

_				Γ - 2 2	_11
	n	Х	R ⁴	R ¹⁰	R ¹¹
Ī	818	CH ₂	CH ₃	SCH ₃	CH ₃
5	819	CH ₂	CF ₃	SCH ₃	CH ₃
	820	CH ₂	OCHF ₂	SCH ₃	CH ₃
	821	0	F	SCH ₃	CH ₃
	822	0	Cl	SCH ₃	CH ₃
1	823	0	Br	SCH ₃	CH ₃
	824	0	NO ₂	SCH ₃	CH ₃
10	825	0	SCH ₃	SCH ₃	CH ₃
	826	0	SO ₂ CH ₃	SCH ₃	CH ₃
	827	0	SO ₂ CH ₂ CH ₃	SCH ₃	CH ₃
	828	0	CH ₃	SCH ₃	CH ₃
15	829	0	CF ₃	SCH ₃	CH ₃
!	830	0	OCHF ₂	SCH ₃	CH ₃
	831	S	F	SCH ₃	CH ₃
	832	S	Cl	SCH ₃	CH ₃
20	833	S	Br	SCH ₃	CH ₃
	834	S	NO ₂	SCH ₃	CH ₃
	835	S	SCH ₃	SCH ₃	CH ₃
	836	S	SO ₂ CH ₃	SCH ₃	CH ₃
25	837	S	SO ₂ CH ₂ CH ₃	SCH ₃	CH ₃
25	838	S	CH ₃	SCH ₃	CH ₃
	839	S	CF ₃	SCH ₃	CH ₃
	840	S	OCHF ₂	SCH ₃	CH ₃
	841	SO ₂	F	SCH ₃	CH ₃
30	842	SO ₂	Cl	SCH ₃	CH ₃
	843	SO ₂	Br	SCH ₃	CH ₃
	844	SO ₂	NO ₂	SCH ₃	CH ₃
	845	SO ₂	SCH ₃	SCH ₃	CH ₃
35	846	SO ₂	SO ₂ CH ₃	SCH ₃	CH ₃
	847	SO ₂	SO ₂ CH ₂ CH ₃	SCH ₃	CH ₃
	848	SO ₂	СН3	SCH ₃	CH ₃
	849	SO ₂	CF ₃	SCH ₃	CH ₃
40	850	SO ₂	OCHF ₂	SCH ₃	CH ₃
40	851	bond	F	SCH ₃	CH ₂ CH ₃
	852	bond	Cl	SCH ₃	CH ₂ CH ₃
	853	bond	Br	SCH ₃	CH ₂ CH ₃
	854	bond	NO ₂	SCH ₃	CH ₂ CH ₃
45	855	bond	SCH ₃	SCH ₃	CH ₂ CH ₃
	856	bond	SO ₂ CH ₃	SCH ₃	CH ₂ CH ₃
			•		_

	70						
ſ	n	Х	R ⁴	R ¹⁰	R ¹¹		
ļ	857	bond	SO ₂ CH ₂ CH ₃	SCH ₃	CH ₂ CH ₃		
	858	bond	CH ₃	SCH ₃	CH ₂ CH ₃		
5	859	bond	CF ₃	SCH ₃	CH ₂ CH ₃		
	860	bond	OCHF ₂	SCH ₃	CH ₂ CH ₃		
1	861	CH ₂	F	SCH ₃	CH ₂ CH ₃		
	862	CH ₂	C1	SCH ₃	CH ₂ CH ₃		
	863	CH ₂	Br	SCH ₃	CH ₂ CH ₃		
10	864	CH ₂	NO_2	SCH ₃	CH ₂ CH ₃		
	865	CH ₂	SCH ₃	SCH ₃	CH ₂ CH ₃		
	866	CH ₂	SO ₂ CH ₃	SCH ₃	CH ₂ CH ₃		
	867	CH ₂	SO ₂ CH ₂ CH ₃	SCH ₃	CH ₂ CH ₃		
15	868	CH ₂	CH ₃	SCH ₃	CH ₂ CH ₃		
	869	CH ₂	CF ₃	SCH ₃	CH ₂ CH ₃		
	870	CH ₂	OCHF ₂	SCH ₃	CH ₂ CH ₃		
	871	0	F	SCH ₃	CH ₂ CH ₃		
20	872	0	Cl	SCH ₃	CH ₂ CH ₃		
	873	0	Br	SCH ₃	CH ₂ CH ₃		
i	874	0	NO ₂	SCH ₃	CH ₂ CH ₃		
	875	0	SCH ₃	SCH ₃	CH ₂ CH ₃		
25	876	0	SO ₂ CH ₃	SCH ₃	CH ₂ CH ₃		
2,5	877	0	SO ₂ CH ₂ CH ₃	SCH ₃	CH ₂ CH ₃		
	878	0	CH ₃	SCH ₃	CH ₂ CH ₃		
	879	0	CF ₃	SCH ₃	CH ₂ CH ₃		
	880	0	OCHF ₂	SCH ₃	CH ₂ CH ₃		
30	881	S	F	SCH ₃	CH ₂ CH ₃		
	882	S	Cl	SCH ₃	CH ₂ CH ₃		
	883	S	Br	SCH ₃	CH ₂ CH ₃		
	884	S	NO ₂	SCH ₃	CH ₂ CH ₃		
35	885	S	SCH ₃	SCH ₃	CH ₂ CH ₃		
	886	S	SO ₂ CH ₃	SCH ₃	CH ₂ CH ₃		
	887	S	SO ₂ CH ₂ CH ₃	SCH ₃	CH ₂ CH ₃		
	888	S	CH ₃	SCH ₃	CH ₂ CH ₃		
40	889	S	CF ₃	SCH ₃	CH ₂ CH ₃		
	890	S	OCHF ₂	SCH ₃	CH ₂ CH ₃		
	891	SO ₂	F	SCH ₃	CH ₂ CH ₃		
	892	SO ₂	Cl	SCH ₃	CH ₂ CH ₃		
45	893	SO ₂	Br	SCH ₃	CH ₂ CH ₃		
40	894	SO ₂	NO ₂	SCH ₃	CH ₂ CH ₃		
	895	SO ₂	SCH ₃	SCH ₃	CH ₂ CH ₃		

	71						
	n	Х	R ⁴	R ¹⁰	R ¹¹		
	896	SO ₂	SO ₂ CH ₃	SCH ₃	CH ₂ CH ₃		
	897	SO ₂	SO ₂ CH ₂ CH ₃	SCH ₃	CH ₂ CH ₃		
5	898	SO ₂	CH ₃	SCH ₃	CH ₂ CH ₃		
,	899	SO ₂	CF ₃	SCH ₃	CH ₂ CH ₃		
	900	SO ₂	OCHF ₂	SCH ₃	CH ₂ CH ₃		
	901	bond	F	Cl	CH ₃		
	902	bond	Cl	Cl	CH ₃		
10	903	bond	Br	Cl	CH ₃		
	904	bond	NO ₂	Cl	CH ₃		
	905	bond	SCH ₃	Cl	CH ₃		
	906	bond	SO ₂ CH ₃	Cl	CH ₃		
15	907	bond	SO ₂ CH ₂ CH ₃	Cl	CH ₃		
	908	bond	CH ₃	Cl	CH ₃		
	909	bond	CF ₃	Cl	CH ₃		
	910	bond	OCHF ₂	Cl	CH ₃		
20	911	СН2	F	Cl	CH ₃		
	912	СН2	Cl	Cl	CH ₃		
	913	CH ₂	Br	Cl	CH ₃		
	914	CH ₂	NO ₂	Cl	CH ₃		
	915	СН2	SCH ₃	C1	CH ₃		
25	916	CH ₂	SO ₂ CH ₃	Cl	CH ₃		
	917	CH ₂	SO ₂ CH ₂ CH ₃	C1	CH ₃		
	918	CH ₂	CH ₃	C1	CH ₃		
	919	CH ₂	CF ₃	Cl	CH ₃		
30	920	CH ₂	OCHF ₂	Cl	CH ₃		
	921	0	F	Cl	CH ₃		
	922	0	C1	Cl	CH ₃		
	923	0	Br	C1	CH ₃		
35	924	0	NO ₂	Cl	CH ₃		
	925	0	SCH ₃	Cl	CH ₃		
	926	0	SO ₂ CH ₃	Cl	CH ₃		
	927	0	SO ₂ CH ₂ CH ₃	Cl	CH ₃		
40	928	0	СН3	C1	CH ₃		
30	929	0	CF ₃	Cl	CH ₃		
	930	0	OCHF ₂	Cl	CH ₃		
	931	S	F	C1	CH ₃		
	932	S	Cl	Cl	CH ₃		
45	933	S	Br	Cl	CH ₃		
	934	S	NO ₂	Cl	CH ₃		

			14		
	n	Х	R ⁴	R ¹⁰	R ¹¹
ļ	935	S	SCH ₃	Cl	CH ₃
	936	S	SO ₂ CH ₃	C1	CH ₃
5	937	S	SO ₂ CH ₂ CH ₃	Cl	CH ₃
	938	S	CH ₃	Cl	CH ₃
	939	S	CF ₃	Cl	CH ₃
	940	S	OCHF ₂	Cl	CH ₃
	941	SO ₂	F	Cl	CH ₃
10	942	SO ₂	Cl	Cl	CH ₃
į	943	SO ₂	Br	Cl	CH ₃
	944	SO ₂	NO ₂	C1	CH ₃
	945	SO ₂	SCH ₃	C1	CH ₃
15	946	SO ₂	SO ₂ CH ₃	Cl	CH ₃
	947	SO ₂	SO ₂ CH ₂ CH ₃	Cl	CH ₃
	948	SO ₂	CH ₃	Cl	CH ₃
	949	SO ₂	CF ₃	Cl	CH ₃
20	950	SO ₂	OCHF ₂	Cl	CH ₃
	951	bond	F	Cl	CH ₂ CH ₃
	952	bond	Cl	Cl	CH ₂ CH ₃
	953	bond	Br	Cl	CH ₂ CH ₃
25	954	bond	NO ₂	Cl	CH ₂ CH ₃
25	955	bond	SCH ₃	C1	CH ₂ CH ₃
	956	bond	SO ₂ CH ₃	C1	CH ₂ CH ₃
	957	bond	SO ₂ CH ₂ CH ₃	C1	CH ₂ CH ₃
	958	bond	CH ₃	Cl	CH ₂ CH ₃
30	959	bond	CF ₃	Cl	CH ₂ CH ₃
	960	bond	OCHF ₂	Cl	CH ₂ CH ₃
	961	CH ₂	F	Cl	CH ₂ CH ₃
	962	CH ₂	Cl	Cl	CH ₂ CH ₃
35	963	CH ₂	Br	Cl	CH ₂ CH ₃
	964	CH ₂	NO ₂	C1	CH ₂ CH ₃
	965	CH ₂	SCH ₃	Cl	CH ₂ CH ₃
	966	CH ₂	SO ₂ CH ₃	Cl	CH ₂ CH ₃
40	967	CH ₂	SO ₂ CH ₂ CH ₃	C1	CH ₂ CH ₃
	968	CH ₂	CH ₃	C1	CH ₂ CH ₃
	969	CH ₂	CF ₃	Cl	CH ₂ CH ₃
	970	CH ₂	OCHF ₂	C1	CH ₂ CH ₃
	971	0	F	Cl	CH ₂ CH ₃
45	972	0	C1	Cl	CH ₂ CH ₃
	973	0	Br	Cl	CH ₂ CH ₃
			_		

			/ 3		
ſ	n	Х	R ⁴	R ¹⁰	R ¹¹
ļ	974	0	NO ₂	Cl	CH ₂ CH ₃
	975	0	SCH ₃	Cl	CH ₂ CH ₃
5	976	0	SO ₂ CH ₃	Cl	CH ₂ CH ₃
	977	0	SO ₂ CH ₂ CH ₃	Cl	CH ₂ CH ₃
	978	0	CH ₃	Cl	CH ₂ CH ₃
	979	0	CF ₃	Cl	CH ₂ CH ₃
	980	0	OCHF ₂	Cl	CH ₂ CH ₃
10	981	S	F	Cl	CH ₂ CH ₃
	982	S	Cl	Cl	CH ₂ CH ₃
	983	S	Br	C1	CH ₂ CH ₃
	984	S	NO ₂	Cl	CH ₂ CH ₃
15	985	S	SCH ₃	Cl	CH ₂ CH ₃
	986	S	SO ₂ CH ₃	Cl	CH ₂ CH ₃
	987	S	SO ₂ CH ₂ CH ₃	C1	CH ₂ CH ₃
	988	S	CH ₃	Cl	CH ₂ CH ₃
20	989	S	CF ₃	C1	CH ₂ CH ₃
	990	S	OCHF ₂	C1	CH ₂ CH ₃
	991	SO ₂	F	C1	CH ₂ CH ₃
	992	SO ₂	Cl	Cl	CH ₂ CH ₃
25	993	SO ₂	Br	Cl	CH ₂ CH ₃
25	994	SO ₂	NO ₂	Cl	CH ₂ CH ₃
	995	SO ₂	SCH ₃	Cl	CH ₂ CH ₃
	996	SO ₂	SO ₂ CH ₃	Cl	CH ₂ CH ₃
	997	SO ₂	SO ₂ CH ₂ CH ₃	Cl	CH ₂ CH ₃
30	998	SO ₂	CH ₃	Cl	CH ₂ CH ₃
	999	SO ₂	CF ₃	Cl	CH ₂ CH ₃
	1000	SO ₂	OCHF ₂	Cl	CH ₂ CH ₃
	1001	bond	F	ОН	CH(CH ₃) ₂
35	1002	bond	Cl	ОН	CH (CH ₃) ₂
	1003	bond	Br	ОН	CH(CH ₃) ₂
	1004	bond	NO ₂	ОН	CH (CH ₃) ₂
	1005	bond	SCH ₃	ОН	CH (CH ₃) ₂
40	1006	bond	SO ₂ CH ₃	ОН	CH (CH ₃) ₂
	1007	bond	SO ₂ CH ₂ CH ₃	ОН	CH(CH ₃) ₂
	1008	bond	CH ₃	ОН	CH (CH ₃) ₂
	1009	bond	CF ₃	ОН	CH (CH ₃) ₂
4 -	1010	bond	OCHF ₂	OH	CH (CH ₃) ₂
45	1011	CH ₂	F	ОН	CH (CH ₃) ₂
	1012	CH ₂	Cl	ОН	CH (CH ₃) ₂

[n	Х	R ⁴	R ¹⁰	R ¹¹
	2025	CH ₂	Br	ОН	CH(CH ₃) ₂
5	2026	CH ₂	NO ₂	ОН	CH (CH ₃) ₂
	2027	CH ₂	SCH ₃	ОН	CH(CH ₃) ₂
	2028	CH ₂	SO ₂ CH ₃	ОН	CH(CH ₃) ₂
	2029	CH ₂	SO ₂ CH ₂ CH ₃	ОН	CH(CH ₃) ₂
	2030	CH ₂	CH ₃	ОН	CH(CH ₃) ₂
10	2031	CH ₂	CF ₃	ОН	CH(CH ₃) ₂
	2032	CH ₂	OCHF ₂	ОН	CH(CH ₃) ₂
	2033	0	F	ОН	CH (CH ₃) ₂
	2034	0	Cl	ОН	CH(CH ₃) ₂
15	2035	0	Br	ОН	CH(CH ₃) ₂
	2036	0	NO ₂	ОН	CH (CH ₃) ₂
	2037	0	SCH ₃	ОН	CH(CH ₃) ₂
	2038	0	SO ₂ CH ₃	ОН	CH(CH ₃) ₂
20	2039	0	SO ₂ CH ₂ CH ₃	ОН	CH(CH ₃) ₂
	2040	0	CH ₃	ОН	CH(CH ₃) ₂
	2041	0	CF ₃	ОН	CH(CH ₃) ₂
	2042	0	OCHF ₂	ОН	CH(CH ₃) ₂
25	2043	S	F	ОН	CH(CH ₃) ₂
	2044	S	Cl	ОН	CH(CH ₃) ₂
	2045	S	Br	ОН	CH(CH ₃) ₂
	2046	S	NO ₂	ОН	CH(CH ₃) ₂
20	2047	S	SCH ₃	ОН	CH(CH ₃) ₂
30	2048	S	SO ₂ CH ₃	ОН	CH(CH ₃) ₂
	2049	S	SO ₂ CH ₂ CH ₃	ОН	CH (CH ₃) ₂
	2050	S	CH ₃	ОН	CH (CH ₃) ₂
	2051	S	CF ₃	ОН	CH(CH ₃) ₂
35	2052	S	OCHF ₂	ОН	CH(CH ₃) ₂
	2053	SO ₂	F	ОН	CH (CH ₃) ₂
	2054	SO ₂	Cl	ОН	CH (CH ₃) ₂
	2055	SO ₂	Br	ОН	CH (CH ₃) ₂
40	2056	SO ₂	NO ₂	ОН	CH (CH ₃) ₂
	2057	SO ₂	SCH ₃	OH	CH (CH ₃) ₂
	2058	SO ₂	SO ₂ CH ₃	ОН	CH (CH ₃) ₂
	2059	SO ₂	SO ₂ CH ₂ CH ₃	ОН	CH (CH ₃) ₂
45	2060	SO ₂	СН3	ОН	CH (CH ₃) ₂
	2061	SO ₂	CF ₃	ОН	CH (CH ₃) ₂
	2062	SO ₂	OCHF ₂	ОН	CH (CH ₃) ₂

	63 64 65	bond	F	R ¹⁰ OH	R ¹¹ C (CH ₃) ₃
5 20 20 20 20	64 65			ОН	$C(CH_3)_3$
5 20 20 20	65	bond			
20			C1	ОН	C(CH ₃) ₃
20 20	166	bond	Br	ОН	C(CH ₃) ₃
		bond	NO ₂	ОН	C(CH ₃) ₃
20	167	bond	SCH ₃	ОН	C(CH ₃) ₃
	168	bond	SO ₂ CH ₃	ОН	C(CH ₃) ₃
)69	bond	SO ₂ CH ₂ CH ₃	ОН	C(CH ₃) ₃
20	70	bond	CH ₃	ОН	C(CH ₃) ₃
20)71	bond	CF ₃	ОН	C(CH ₃) ₃
20)72	bond	OCHF ₂	ОН	C(CH ₃) ₃
20)73	CH ₂	F	ОН	C(CH ₃) ₃
15 20)74	CH ₂	Cl	ОН	C(CH ₃) ₃
20	75	CH ₂	Br	ОН	C(CH ₃) ₃
20)76	CH ₂	NO ₂	ОН	C(CH ₃) ₃
20)77	CH ₂	SCH ₃	ОН	C(CH ₃) ₃
20 20	78	CH ₂	SO ₂ CH ₃	ОН	C(CH ₃) ₃
20	079	CH ₂	SO ₂ CH ₂ CH ₃	ОН	C(CH ₃) ₃
20	080	CH ₂	CH ₃	ОН	C(CH ₃) ₃
20	081	CH ₂	CF ₃	ОН	C(CH ₃) ₃
25	082	CH ₂	OCHF ₂	ОН	C(CH ₃) ₃
	083	0	F	ОН	C(CH ₃) ₃
20	084	0	C1	ОН	C(CH ₃) ₃
20	085	0	Br	ОН	C(CH ₃) ₃
	086	0	NO ₂	ОН	C(CH ₃) ₃
30 20	087	0	SCH ₃	ОН	C(CH ₃) ₃
20	088	0	SO ₂ CH ₃	OH	C(CH ₃) ₃
20	089	0	SO ₂ CH ₂ CH ₃	ОН	C(CH ₃) ₃
20	090	0	CH ₃	ОН	C(CH ₃) ₃
35 20	091	0	CF ₃	ОН	C(CH ₃) ₃
20	092	0	OCHF ₂	ОН	C(CH ₃) ₃
20	093	S	F	ОН	C(CH ₃) ₃
20	094	S	Cl	ОН	C(CH ₃) ₃
40 20	095	S	Br	ОН	C(CH ₃) ₃
<u> </u>	096	S	NO ₂	ОН	C(CH ₃) ₃
2	097	S	SCH ₃	OH	C(CH ₃) ₃
2	098	S	SO ₂ CH ₃	ОН	C(CH ₃) ₃
2	099	S	SO ₂ CH ₂ CH ₃	ОН	C(CH ₃) ₃
45 2	100	S	CH ₃	ОН	C(CH ₃) ₃
2	101	S	CF ₃	ОН	C(CH ₃) ₃

			76		
ſ	n	Х	R ⁴	R ¹⁰	R ¹¹
Ī	2102	S	OCHF ₂	ОН	C(CH ₃) ₃
	2103	SO ₂	F	ОН	C(CH ₃) ₃
5	2104	SO ₂	Cl	ОН	C(CH ₃) ₃
	2105	SO ₂	Br	ОН	C(CH ₃) ₃
	2106	SO ₂	NO ₂	ОН	C(CH ₃) ₃
	2107	SO ₂	SCH ₃	ОН	C(CH ₃) ₃
	2108	SO ₂	SO ₂ CH ₃	ОН	C(CH ₃) ₃
10	2109	SO ₂	SO ₂ CH ₂ CH ₃	ОН	C(CH ₃) ₃
	2110	SO ₂	CH₃	ОН	C(CH ₃) ₃
	2111	SO ₂	CF ₃	ОН	C(CH ₃) ₃
	2112	SO ₂	OCHF ₂	ОН	C(CH ₃) ₃
15	2113	bond	F	OCOC ₆ H ₅	CH(CH ₃) ₂
	2114	bond	Cl	OCOC ₆ H ₅	CH(CH ₃) ₂
	2115	bond	Br	OCOC ₆ H ₅	CH(CH ₃) ₂
	2116	bond	NO ₂	OCOC ₆ H ₅	CH(CH ₃) ₂
20	2117	bond	SCH ₃	OCOC ₆ H ₅	CH(CH ₃) ₂
	2118	bond	SO ₂ CH ₃	OCOC ₆ H ₅	CH(CH ₃) ₂
	2119	bond	SO ₂ CH ₂ CH ₃	OCOC ₆ H ₅	CH(CH ₃) ₂
	2120	bond	CH ₃	OCOC ₆ H ₅	CH(CH ₃) ₂
25	2121	bond	CF ₃	OCOC ₆ H ₅	CH(CH ₃) ₂
23	2122	bond	OCHF ₂	OCOC ₆ H ₅	CH(CH ₃) ₂
	2123	CH ₂	F	OCOC ₆ H ₅	CH(CH ₃) ₂
	2124	CH ₂	Cl	OCOC ₆ H ₅	CH(CH ₃) ₂
	2125	CH ₂	Br	OCOC ₆ H ₅	CH(CH ₃) ₂
30	2126	CH ₂	NO ₂	OCOC ₆ H ₅	CH(CH ₃) ₂
	2127	CH ₂	SCH ₃	OCOC ₆ H ₅	CH (CH ₃) ₂
	2128	CH ₂	SO ₂ CH ₃	OCOC ₆ H ₅	CH (CH ₃) ₂
	2129	CH ₂	SO ₂ CH ₂ CH ₃	OCOC ₆ H ₅	CH (CH ₃) ₂
35	2130	CH ₂	CH ₃	OCOC ₆ H ₅	CH (CH ₃) ₂
	2131	CH ₂	CF ₃	OCOC ₆ H ₅	CH(CH ₃) ₂
	2132	CH ₂	OCHF ₂	OCOC ₆ H ₅	CH (CH ₃) ₂
	2133	0	F	OCOC ₆ H ₅	CH(CH ₃) ₂
40	2134	0	Cl	OCOC ₆ H ₅	CH(CH ₃) ₂
	2135	0	Br	OCOC ₆ H ₅	CH(CH ₃) ₂
	2136	0	NO ₂	OCOC ₆ H ₅	CH(CH ₃) ₂
	2137	0	SCH ₃	OCOC ₆ H ₅	CH(CH ₃) ₂
AF	2138	0	SO ₂ CH ₃	OCOC ₆ H ₅	CH(CH ₃) ₂
45	2139	0	SO ₂ CH ₂ CH ₃	OCOC ₆ H ₅	CH (CH ₃) ₂
	2140	0	CH ₃	OCOC ₆ H ₅	CH (CH ₃) ₂

			77		
[n	Х	R ⁴	R ¹⁰	R ¹¹
	2141	0	CF ₃	OCOC ₆ H ₅	CH (CH ₃) ₂
	2142	0	OCHF ₂	OCOC ₆ H ₅	CH (CH ₃) ₂
5	2143	S	F	OCOC ₆ H ₅	CH (CH ₃) ₂
,	2144	S	Cl	OCOC ₆ H ₅	CH(CH ₃) ₂
	2145	S	Br	OCOC ₆ H ₅	CH (CH ₃) ₂
	2146	S	NO ₂	OCOC ₆ H ₅	CH(CH ₃) ₂
	2147	S	SCH ₃	OCOC ₆ H ₅	CH(CH ₃) ₂
10	2148	S	SO ₂ CH ₃	OCOC ₆ H ₅	CH(CH ₃) ₂
	2149	S	SO ₂ CH ₂ CH ₃	OCOC ₆ H ₅	CH(CH ₃) ₂
	2150	S	CH ₃	OCOC ₆ H ₅	CH(CH ₃) ₂
	2151	S	CF ₃	OCOC ₆ H ₅	CH(CH ₃) ₂
15	2152	S	OCHF ₂	OCOC ₆ H ₅	CH(CH ₃) ₂
	2153	SO ₂	F	OCOC ₆ H ₅	CH(CH ₃) ₂
	2154	SO ₂	Cl	OCOC ₆ H ₅	CH(CH ₃) ₂
	2155	SO ₂	Br	OCOC ₆ H ₅	CH(CH ₃) ₂
20	2156	SO ₂	NO ₂	OCOC ₆ H ₅	CH(CH ₃) ₂
	2157	SO ₂	SCH ₃	OCOC ₆ H ₅	CH(CH ₃) ₂
	2158	SO ₂	SO ₂ CH ₃	OCOC ₆ H ₅	CH(CH ₃) ₂
	2159	SO ₂	SO ₂ CH ₂ CH ₃	OCOC ₆ H ₅	CH(CH ₃) ₂
	2160	SO ₂	CH ₃	OCOC ₆ H ₅	CH(CH ₃) ₂
25	2161	SO ₂	CF ₃	OCOC ₆ H ₅	CH(CH ₃) ₂
	2162	SO ₂	OCHF ₂	OCOC ₆ H ₅	CH(CH ₃) ₂
	2163	bond	F	OCOC ₆ H ₅	C(CH ₃) ₃
	2164	bond	Cl	OCOC ₆ H ₅	C(CH ₃) ₃
30	2165	bond	Br	OCOC ₆ H ₅	C(CH ₃) ₃
	2166	bond	NO ₂	OCOC ₆ H ₅	C(CH ₃) ₃
	2167	bond	SCH ₃	OCOC ₆ H ₅	C(CH ₃) ₃
	2168	bond	SO ₂ CH ₃	OCOC ₆ H ₅	C(CH ₃) ₃
35	2169	bond	SO ₂ CH ₂ CH ₃	OCOC ₆ H ₅	C(CH ₃) ₃
	2170	bond	CH ₃	OCOC ₆ H ₅	C(CH ₃) ₃
	2171	bond	CF ₃	OCOC ₆ H ₅	C(CH ₃) ₃
	2172	bond	OCHF ₂	OCOC ₆ H ₅	C(CH ₃) ₃
40	2173	CH ₂	F	OCOC ₆ H ₅	C(CH ₃) ₃
	2174	CH ₂	Cl	OCOC ₆ H ₅	C(CH ₃) ₃
	2175	CH ₂	Br	OCOC ₆ H ₅	C(CH ₃) ₃
	2176	CH ₂	NO ₂	OCOC ₆ H ₅	C(CH ₃) ₃
	2177	CH ₂	SCH ₃	OCOC ₆ H ₅	C(CH ₃) ₃
45	2178	CH ₂	SO ₂ CH ₃	OCOC ₆ H ₅	C(CH ₃) ₃
	2179	CH ₂	SO ₂ CH ₂ CH ₃	OCOC ₆ H ₅	C(CH ₃) ₃

F	n	Х	R ⁴	R ¹⁰	R ¹¹
ŀ	2180	CH ₂	CH ₃	OCOC ₆ H ₅	C(CH ₃) ₃
}	2181	CH ₂	CF ₃	OCOC ₆ H ₅	C(CH ₃) ₃
	2182	CH ₂	OCHF ₂	OCOC ₆ H ₅	C(CH ₃) ₃
5	2183	0	F	OCOC ₆ H ₅	C(CH ₃) ₃
	2184	0	Cl	OCOC ₆ H ₅	C(CH ₃) ₃
	2185	0	Br	OCOC ₆ H ₅	C(CH ₃) ₃
	2186	0	NO ₂	OCOC ₆ H ₅	C(CH ₃) ₃
10	2187	0	SCH ₃	OCOC ₆ H ₅	C(CH ₃) ₃
	2188	0	SO ₂ CH ₃	OCOC ₆ H ₅	C(CH ₃) ₃
	2189	0	SO ₂ CH ₂ CH ₃	OCOC ₆ H ₅	C(CH ₃) ₃
	2190	0	CH ₃	OCOC ₆ H ₅	C(CH ₃) ₃
15	2191	0	CF ₃	OCOC ₆ H ₅	C(CH ₃) ₃
	2192	0	OCHF ₂	OCOC ₆ H ₅	C(CH ₃) ₃
	2193	S	F	OCOC ₆ H ₅	C(CH ₃) ₃
	2194	S	Cl	OCOC ₆ H ₅	C(CH ₃) ₃
20	2195	S	Br	OCOC ₆ H ₅	C(CH ₃) ₃
20	2196	S	NO ₂	OCOC ₆ H ₅	C(CH ₃) ₃
	2197	S	SCH ₃	OCOC ₆ H ₅	C(CH ₃) ₃
	2198	S	SO ₂ CH ₃	OCOC ₆ H ₅	C (CH ₃) ₃
	2199	S	SO ₂ CH ₂ CH ₃	OCOC ₆ H ₅	C(CH ₃) ₃
25	2200	S	CH ₃	OCOC ₆ H ₅	C(CH ₃) ₃
	2201	S	CF ₃	OCOC ₆ H ₅	C(CH ₃) ₃
	2202	S	OCHF ₂	OCOC ₆ H ₅	C(CH ₃) ₃
	2203	SO ₂	F	OCOC ₆ H ₅	C(CH ₃) ₃
30	2204	SO ₂	Cl	OCOC ₆ H ₅	C(CH ₃) ₃
	2205	SO ₂	Br	OCOC ₆ H ₅	C(CH ₃) ₃
	2206	SO ₂	NO ₂	OCOC ₆ H ₅	C (CH ₃) ₃
	2207	SO ₂	SCH ₃	OCOC ₆ H ₅	C (CH ₃) ₃
35	2208	SO ₂	SO ₂ CH ₃	OCOC ₆ H ₅	C (CH ₃) ₃
	2209	SO ₂	SO ₂ CH ₂ CH ₃	OCOC ₆ H ₅	C(CH ₃) ₃
	2210	SO ₂	СН3	OCOC ₆ H ₅	C(CH ₃) ₃
	2211	SO ₂	CF ₃	OCOC ₆ H ₅	C (CH ₃) ₃
40	2212	SO ₂	OCHF ₂	OCOC ₆ H ₅	C(CH ₃) ₃
	2213	bond	F	OCOC (CH ₃) ₃	CH (CH ₃) ₂
	2214	bond	Cl	OCOC (CH ₃) ₃	CH (CH ₃) ₂
	2215	bond	Br	OCOC (CH ₃) ₃	CH (CH ₃) ₂
	2216	bond	NO ₂	OCOC (CH ₃) ₃	CH (CH ₃) ₂
45	2217	bond	SCH ₃	OCOC (CH ₃) ₃	CH (CH ₃) ₂
	2218	bond	SO ₂ CH ₃	OCOC (CH ₃) ₃	CH (CH ₃) ₂

Γ	n	Х	R ⁴	R ¹⁰	R ¹¹
ļ	2219	bond	SO ₂ CH ₂ CH ₃	OCOC (CH ₃) ₃	CH(CH ₃) ₂
f	2220	bond	CH ₃	OCOC (CH ₃) ₃	CH (CH ₃) ₂
5	2221	bond	CF ₃	OCOC (CH ₃) ₃	CH(CH ₃) ₂
_	2222	bond	OCHF ₂	OCOC (CH ₃) ₃	CH(CH ₃) ₂
ŀ	2223	CH ₂	F	OCOC (CH ₃) ₃	CH(CH ₃) ₂
ı	2224	CH ₂	Cl	OCOC (CH ₃) ₃	CH(CH ₃) ₂
	2225	CH ₂	Br	OCOC (CH ₃) ₃	CH(CH ₃) ₂
.0	2226	CH ₂	NO ₂	OCOC (CH ₃) ₃	CH(CH ₃) ₂
ŀ	2227	CH ₂	SCH ₃	OCOC (CH ₃) ₃	CH(CH ₃) ₂
İ	2228	CH ₂	SO ₂ CH ₃	OCOC (CH ₃) ₃	CH(CH ₃) ₂
Ì	2229	CH ₂	SO ₂ CH ₂ CH ₃	OCOC (CH ₃) ₃	CH(CH ₃) ₂
.5	2230	CH ₂	CH ₃	OCOC (CH ₃) ₃	CH(CH ₃) ₂
	2231	CH ₂	CF ₃	OCOC (CH ₃) ₃	CH(CH ₃) ₂
	2232	СН2	OCHF ₂	OCOC (CH ₃) ₃	CH(CH ₃) ₂
	2233	0	F	OCOC (CH ₃) ₃	CH(CH ₃) ₂
0	2234	0	Cl	OCOC (CH ₃) ₃	CH(CH ₃) ₂
	2235	0	Br	OCOC (CH ₃) ₃	CH(CH ₃) ₂
	2236	0	NO ₂	OCOC (CH ₃) ₃	CH(CH ₃) ₂
	2237	0	SCH ₃	OCOC (CH ₃) ₃	CH(CH ₃) ₂
:5	2238	0	SO ₂ CH ₃	OCOC (CH ₃) ₃	CH (CH ₃) ₂
ر.	2239	0	SO ₂ CH ₂ CH ₃	OCOC (CH ₃) ₃	CH(CH ₃) ₂
	2240	0	CH ₃	OCOC (CH ₃) ₃	CH (CH ₃) ₂
	2241	0	CF ₃	OCOC (CH ₃) ₃	CH (CH ₃) ₂
	2242	0	OCHF ₂	OCOC (CH ₃) ₃	CH(CH ₃) ₂
0 0	2243	S	F	OCOC (CH ₃) ₃	CH (CH ₃) ₂
	2244	S	Cl	OCOC (CH ₃) ₃	CH (CH ₃) ₂
	2245	S	Br	OCOC (CH ₃) ₃	CH(CH ₃) ₂
	2246	S	NO ₂	OCOC (CH ₃) ₃	CH (CH ₃) ₂
35	2247	S	SCH ₃	OCOC (CH ₃) ₃	CH(CH ₃) ₂
	2248	S	SO ₂ CH ₃	OCOC (CH ₃) ₃	CH (CH ₃) ₂
	2249	S	SO ₂ CH ₂ CH ₃	OCOC (CH ₃) ₃	CH(CH ₃) ₂
	2250	S	CH ₃	OCOC (CH ₃) ₃	CH (CH ₃) ₂
10	2251	S	CF ₃	OCOC (CH ₃) ₃	CH(CH ₃) ₂
	2252	S	OCHF ₂	OCOC (CH ₃) ₃	CH (CH ₃) ₂
	2253	SO ₂	F	OCOC (CH ₃) ₃	CH(CH ₃) ₂
	2254	SO ₂	Cl	OCOC (CH ₃) ₃	CH (CH ₃) ₂
4 =	2255	SO ₂	Br	OCOC (CH ₃) ₃	CH(CH ₃) ₂
45	2256	SO ₂	NO ₂	OCOC (CH ₃) ₃	CH(CH ₃) ₂
	2257	SO ₂	SCH ₃	OCOC (CH ₃) ₃	CH(CH ₃) ₂

			80		
Γ	n	X	R ⁴	R ¹⁰	R ¹¹
ŀ	2258	SO ₂	SO ₂ CH ₃	OCOC (CH ₃) ₃	CH(CH ₃) ₂
ŀ	2259	SO ₂	SO ₂ CH ₂ CH ₃	OCOC (CH ₃) ₃	CH(CH ₃) ₂
5	2260	SO ₂	CH ₃	OCOC (CH ₃) ₃	CH(CH ₃) ₂
	2261	SO ₂	CF ₃	OCOC (CH ₃) ₃	CH(CH ₃) ₂
ı	2262	SO ₂	OCHF ₂	OCOC (CH ₃) ₃	CH (CH ₃) ₂
	2263	bond	F	OCOC (CH ₃) ₃	C(CH ₃) ₃
	2264	bond	Cl	OCOC (CH ₃) ₃	C(CH ₃) ₃
10	2265	bond	Br	OCOC (CH ₃) ₃	C(CH ₃) ₃
	2266	bond	NO ₂	OCOC (CH ₃) ₃	C(CH ₃) ₃
	2267	bond	SCH ₃	OCOC (CH ₃) ₃	C(CH ₃) ₃
	2268	bond	SO ₂ CH ₃	OCOC (CH ₃) ₃	C(CH ₃) ₃
15	2269	bond	SO ₂ CH ₂ CH ₃	OCOC (CH ₃) ₃	C(CH ₃) ₃
	2270	bond	CH ₃	OCOC(CH ₃) ₃	C(CH ₃) ₃
	2271	bond	CF ₃	OCOC (CH ₃) ₃	C(CH ₃) ₃
	2272	bond	OCHF ₂	OCOC(CH ₃) ₃	C(CH ₃) ₃
20	2273	CH ₂	F	OCOC (CH ₃) ₃	C(CH ₃) ₃
	2274	CH ₂	Cl	OCOC (CH ₃) ₃	C(CH ₃) ₃
	2275	CH ₂	Br	OCOC (CH ₃) ₃	C(CH ₃) ₃
	2276	CH ₂	NO ₂	OCOC (CH ₃) ₃	C(CH ₃) ₃
25	2277	CH ₂	SCH ₃	OCOC (CH ₃) ₃	C(CH ₃) ₃
25	2278	CH ₂	SO ₂ CH ₃	OCOC(CH ₃) ₃	C(CH ₃) ₃
	2279	CH ₂	SO ₂ CH ₂ CH ₃	OCOC (CH ₃) ₃	C(CH ₃) ₃
	2280	CH ₂	CH ₃	OCOC (CH ₃) ₃	C(CH ₃) ₃
	2281	CH ₂	CF ₃	OCOC (CH ₃) ₃	C(CH ₃) ₃
30	2282	CH ₂	OCHF ₂	OCOC (CH ₃) ₃	C(CH ₃) ₃
	2283	0	F	OCOC (CH ₃) ₃	C(CH ₃) ₃
	2284	0	Cl	OCOC (CH ₃) ₃	C(CH ₃) ₃
	2285	0	Br	OCOC (CH ₃) ₃	C(CH ₃) ₃
35	2286	0	NO ₂	OCOC (CH ₃) ₃	C (CH ₃) ₃
	2287	0	SCH ₃	OCOC (CH ₃) ₃	C(CH ₃) ₃
	2288	0	SO ₂ CH ₃	OCOC (CH ₃) ₃	C(CH ₃) ₃
	2289	0	SO ₂ CH ₂ CH ₃	OCOC (CH ₃) ₃	C(CH ₃) ₃
40	2290	0	CH ₃	OCOC (CH ₃) ₃	C(CH ₃) ₃
	2291	0	CF ₃	OCOC (CH ₃) ₃	C(CH ₃) ₃
	2292	0	OCHF ₂	OCOC (CH ₃) ₃	C(CH ₃) ₃
	2293	S	F	OCOC (CH ₃) ₃	C(CH ₃) ₃
4 =	2294	S	Cl	OCOC (CH ₃) ₃	C(CH ₃) ₃
45	2295	S	Br	OCOC (CH ₃) ₃	C (CH ₃) ₃
	2296	S	NO_2	OCOC (CH ₃) ₃	$C(CH_3)_3$

2:		S	CCII		
13.	298		SCH ₃	OCOC (CH ₃) ₃	C(CH ₃) ₃
5 2		S	SO ₂ CH ₃	OCOC (CH ₃) ₃	C(CH ₃) ₃
о	299	S	SO ₂ CH ₂ CH ₃	OCOC (CH ₃) ₃	C(CH ₃) ₃
2	300	S	CH ₃	OCOC (CH ₃) ₃	C(CH ₃) ₃
2	301	S	CF ₃	OCOC (CH ₃) ₃	C(CH ₃) ₃
2	302	S	OCHF ₂	OCOC (CH ₃) ₃	C(CH ₃) ₃
	303	SO ₂	F	OCOC (CH ₃) ₃	C(CH ₃) ₃
10 2	304	SO ₂	Cl	OCOC (CH ₃) ₃	C(CH ₃) ₃
2	305	SO ₂	Br	OCOC (CH ₃) ₃	C(CH ₃) ₃
2	306	SO ₂	NO ₂	OCOC (CH ₃) ₃	C(CH ₃) ₃
2	307	SO ₂	SCH ₃	OCOC(CH ₃) ₃	C(CH ₃) ₃
15 2	308	SO ₂	SO ₂ CH ₃	OCOC (CH ₃) ₃	C(CH ₃) ₃
2	309	SO ₂	SO ₂ CH ₂ CH ₃	OCOC (CH ₃) ₃	C(CH ₃) ₃
2	310	SO ₂	CH ₃	OCOC(CH ₃) ₃	C(CH ₃) ₃
2	311	SO ₂	CF ₃	OCOC(CH ₃) ₃	C(CH ₃) ₃
20 2	2312	SO_2	OCHF ₂	OCOC(CH ₃) ₃	C(CH ₃) ₃
2	2313	bond	F	OCOSCH3	CH (CH ₃) ₂
2	2314	bond	Cl	OCOSCH ₃	CH (CH ₃) ₂
2	2315	bond	Br	OCOSCH ₃	CH(CH ₃) ₂
25 2	2316	bond	NO ₂	OCOSCH ₃	CH (CH ₃) ₂
	2317	bond	SCH ₃	OCOSCH ₃	CH (CH ₃) ₂
2	2318	bond	SO ₂ CH ₃	OCOSCH ₃	CH (CH ₃) ₂
2	2319	bond	SO ₂ CH ₂ CH ₃	OCOSCH ₃	CH (CH ₃) ₂
	2320	bond	CH ₃	OCOSCH ₃	CH (CH ₃) ₂
30 2	2321	bond	CF ₃	OCOSCH ₃	CH(CH ₃) ₂
2	2322	bond	OCHF ₂	OCOSCH ₃	CH (CH ₃) ₂
2	2323	CH ₂	F	OCOSCH ₃	CH (CH ₃) ₂
2	2324	CH ₂	Cl	OCOSCH ₃	CH (CH ₃) ₂
35 2	2325	CH ₂	Br	OCOSCH ₃	CH(CH ₃) ₂
2	2326	CH ₂	NO ₂	OCOSCH ₃	CH(CH ₃) ₂
2	2327	CH ₂	SCH ₃	OCOSCH ₃	CH(CH ₃) ₂
2	2328	CH ₂	SO ₂ CH ₃	OCOSCH ₃	CH (CH ₃) ₂
40	2329	CH ₂	SO ₂ CH ₂ CH ₃	OCOSCH ₃	CH(CH ₃) ₂
	2330	CH ₂	CH ₃	OCOSCH ₃	CH(CH ₃) ₂
[2	2331	CH ₂	CF ₃	OCOSCH ₃	CH (CH ₃) ₂
	2332	CH ₂	OCHF ₂	OCOSCH ₃	CH (CH ₃) ₂
,	2333	0	F	OCOSCH ₃	CH (CH ₃) ₂
45	2334	0	Cl	OCOSCH ₃	CH(CH ₃) ₂
	2335	0	Br	OCOSCH ₃	CH (CH ₃) ₂

					
ſ	n	X	R ⁴	R ¹⁰	R ¹¹
ŀ	2336	0	NO ₂	OCOSCH ₃	CH (CH ₃) ₂
Ì	2337	0	SCH ₃	OCOSCH ₃	CH (CH ₃) ₂
5	2338	0	SO ₂ CH ₃	OCOSCH ₃	CH(CH ₃) ₂
	2339	0	SO ₂ CH ₂ CH ₃	OCOSCH ₃	CH (CH ₃) ₂
	2340	0	CH ₃	OCOSCH ₃	CH (CH ₃) ₂
	2341	0	CF ₃	OCOSCH ₃	CH (CH ₃) ₂
	2342	0	OCHF ₂	OCOSCH ₃	CH (CH ₃) ₂
10	2343	S	F	OCOSCH ₃	CH (CH ₃) ₂
:	2344	S	C1	OCOSCH ₃	CH (CH ₃) ₂
	2345	S	Br	OCOSCH ₃	CH (CH ₃) ₂
	2346	S	NO ₂	OCOSCH ₃	CH (CH ₃) ₂
15	2347	S	SCH ₃	OCOSCH ₃	CH(CH ₃) ₂
	2348	S	SO ₂ CH ₃	OCOSCH ₃	CH (CH ₃) ₂
	2349	S	SO ₂ CH ₂ CH ₃	OCOSCH ₃	CH(CH ₃) ₂
	2350	S	CH ₃	OCOSCH ₃	CH(CH ₃) ₂
20	2351	S	CF ₃	OCOSCH ₃	CH(CH ₃) ₂
	2352	S	OCHF ₂	OCOSCH ₃	CH (CH ₃) ₂
	2353	SO ₂	F	OCOSCH ₃	CH (CH ₃) ₂
	2354	SO ₂	Cl	OCOSCH ₃	CH (CH ₃) ₂
25	2355	SO ₂	Br	OCOSCH ₃	CH (CH ₃) ₂
25	2356	SO ₂	NO ₂	OCOSCH ₃	CH (CH ₃) ₂
	2357	SO ₂	SCH ₃	OCOSCH ₃	CH (CH ₃) ₂
	2358	SO ₂	SO ₂ CH ₃	OCOSCH ₃	CH (CH ₃) ₂
	2359	SO ₂	SO ₂ CH ₂ CH ₃	OCOSCH ₃	CH (CH ₃) ₂
30	2360	SO ₂	CH ₃	OCOSCH ₃	CH (CH ₃) ₂
	2361	SO ₂	CF ₃	OCOSCH ₃	CH (CH ₃) ₂
	2362	SO ₂	OCHF ₂	OCOSCH ₃	CH (CH ₃) ₂
	2363	bond	F	OCOSCH ₃	C(CH ₃) ₃
35	2364	bond	Cl	OCOSCH ₃	C(CH ₃) ₃
	2365	bond	Br	OCOSCH ₃	C(CH ₃) ₃
	2366	bond	NO ₂	OCOSCH ₃	C(CH ₃) ₃
	2367	bond	SCH ₃	OCOSCH ₃	C(CH ₃) ₃
40	2368	bond	SO ₂ CH ₃	OCOSCH ₃	C(CH ₃) ₃
	2369	bond	SO ₂ CH ₂ CH ₃	OCOSCH ₃	C(CH ₃) ₃
	2370	bond	CH ₃	OCOSCH ₃	C(CH ₃) ₃
	2371	bond	CF ₃	OCOSCH ₃	C (CH ₃) ₃
	2372	bond	OCHF ₂	OCOSCH ₃	C (CH ₃) ₃
45	2373	CH ₂	F	OCOSCH ₃	C(CH ₃) ₃
	2374	CH ₂	Cl	OCOSCH ₃	C(CH ₃) ₃

			0.5		
ſ	n	Х	R ⁴	R ¹⁰	R ¹¹
İ	2375	CH ₂	Br	OCOSCH ₃	C(CH ₃) ₃
İ	2376	CH ₂	NO ₂	OCOSCH ₃	C(CH ₃) ₃
5	2377	CH ₂	SCH ₃	OCOSCH ₃	C(CH ₃) ₃
	2378	CH ₂	SO ₂ CH ₃	OCOSCH ₃	C(CH ₃) ₃
	2379	CH ₂	SO ₂ CH ₂ CH ₃	OCOSCH ₃	C(CH ₃) ₃
	2380	CH ₂	CH ₃	OCOSCH ₃	C(CH ₃) ₃
	2381	CH ₂	CF ₃	OCOSCH ₃	C(CH ₃) ₃
10	2382	CH ₂	OCHF ₂	OCOSCH ₃	C(CH ₃) ₃
	2383	0	F	OCOSCH ₃	C (CH ₃) ₃
	2384	0	Cl	OCOSCH ₃	C(CH ₃) ₃
	2385	0	Br	OCOSCH ₃	C(CH ₃) ₃
15	2386	0	NO ₂	OCOSCH ₃	C(CH ₃) ₃
	2387	0	SCH ₃	OCOSCH ₃	C(CH ₃) ₃
	2388	0	SO ₂ CH ₃	OCOSCH ₃	C(CH ₃) ₃
	2389	0	SO ₂ CH ₂ CH ₃	OCOSCH ₃	C(CH ₃) ₃
20	2390	0	CH ₃	OCOSCH ₃	C (CH ₃) ₃
	2391	0	CF ₃	OCOSCH ₃	C (CH ₃) ₃
	2392	0	OCHF ₂	OCOSCH ₃	C(CH ₃) ₃
	2393	S	F	OCOSCH ₃	C(CH ₃) ₃
25	2394	S	Cl	OCOSCH ₃	C (CH ₃) ₃
25	2395	S	Br	OCOSCH ₃	C (CH ₃) ₃
	2396	S	NO ₂	OCOSCH ₃	C (CH ₃) ₃
	2397	S	SCH ₃	OCOSCH ₃	C(CH ₃) ₃
	2398	S	SO ₂ CH ₃	OCOSCH ₃	C (CH ₃) ₃
30	2399	S	SO ₂ CH ₂ CH ₃	OCOSCH ₃	C(CH ₃) ₃
	2400	S	CH ₃	OCOSCH ₃	C(CH ₃) ₃
	2401	S	CF ₃	OCOSCH3	C(CH ₃) ₃
	2402	S	OCHF ₂	OCOSCH ₃	C(CH ₃) ₃
35	2403	SO ₂	F	OCOSCH ₃	C(CH ₃) ₃
	2404	SO ₂	Cl	OCOSCH ₃	C(CH ₃) ₃
	2405	SO ₂	Br	OCOSCH ₃	C(CH ₃) ₃
	2406	SO ₂	NO ₂	OCOSCH ₃	C(CH ₃) ₃
40	2407	SO ₂	SCH ₃	OCOSCH ₃	C (CH ₃) ₃
	2408	SO ₂	SO ₂ CH ₃	OCOSCH ₃	C(CH ₃) ₃
	2409	SO ₂	SO ₂ CH ₂ CH ₃	OCOSCH ₃	C(CH ₃) ₃
	2410	SO ₂	CH ₃	OCOSCH ₃	C(CH ₃) ₃
	2411	SO ₂	CF ₃	OCOSCH ₃	C(CH ₃) ₃
45	2412	SO ₂	OCHF ₂	OCOSCH ₃	C(CH ₃) ₃
	2413	bond	F	OCH ₃	CH(CH ₃) ₂

_			n/	R ¹⁰	R ¹¹
<u> </u>		Х	R ⁴		CH (CH ₃) ₂
⊢	2414	bond	Cl	OCH ₃	
	2415	bond	Br	OCH ₃	CH (CH ₃) ₂
5 [2416	bond	NO ₂	OCH ₃	CH (CH ₃) ₂
[:	2417	bond	SCH ₃	OCH ₃	CH (CH ₃) ₂
[:	2418	bond	SO ₂ CH ₃	OCH ₃	CH (CH ₃) ₂
[:	2419	bond	SO ₂ CH ₂ CH ₃	OCH ₃	CH (CH ₃) ₂
10	2420	bond	CH ₃	OCH ₃	CH (CH ₃) ₂
10	2421	bond	CF ₃	OCH ₃	CH(CH ₃) ₂
	2422	bond	OCHF ₂	OCH ₃	CH (CH ₃) ₂
	2423	CH ₂	F	OCH ₃	CH (CH ₃) ₂
Ī	2424	CH ₂	Cl	OCH ₃	CH(CH ₃) ₂
15	2425	CH ₂	Br	OCH ₃	CH(CH ₃) ₂
F	2426	CH ₂	NO ₂	OCH ₃	CH(CH ₃) ₂
-	2427	CH ₂	SCH ₃	OCH ₃	CH (CH ₃) ₂
	2428	CH ₂	SO ₂ CH ₃	OCH ₃	CH(CH ₃) ₂
20	2429	CH ₂	SO ₂ CH ₂ CH ₃	OCH ₃	CH (CH ₃) ₂
	2430	CH ₂	CH ₃	OCH ₃	CH (CH ₃) ₂
ŀ	2431	CH ₂	CF ₃	OCH ₃	CH(CH ₃) ₂
	2432	CH ₂	OCHF ₂	OCH ₃	CH(CH ₃) ₂
	2433	0	F	OCH ₃	CH(CH ₃) ₂
25 L	2434	0	Cl	ОСН3	CH (CH ₃) ₂
-	2435	0	Br	OCH ₃	CH (CH ₃) ₂
L	2436	0	NO ₂	OCH ₃	CH(CH ₃) ₂
L	2437	0	SCH ₃	OCH ₃	CH (CH ₃) ₂
20	2438	0	SO ₂ CH ₃	OCH ₃	CH (CH ₃) ₂
ŀ	2439	0	SO ₂ CH ₂ CH ₃	OCH ₃	CH (CH ₃) ₂
}	2440	0	CH ₃	OCH ₃	CH (CH ₃) ₂
ŀ	2441	0	CF ₃	OCH ₃	CH (CH ₃) ₂
35	2442	0	OCHF ₂	OCH ₃	CH (CH ₃) ₂
	2443	S	F	OCH ₃	CH (CH ₃) ₂
	2444	S	Cl	OCH ₃	CH (CH ₃) ₂
ŀ	2445	s	Br	OCH ₃	CH (CH ₃) ₂
ļ	2446	s	NO ₂	OCH ₃	CH (CH ₃) ₂
40	2447	s	SCH ₃	OCH ₃	CH (CH ₃) ₂
		S	SO ₂ CH ₃	OCH ₃	CH (CH ₃) ₂
	2448	S	SO ₂ CH ₂ CH ₃	OCH ₃	CH (CH ₃) ₂
	2449		.	OCH ₃	CH (CH ₃) ₂
45	2450	S	CH ₃	OCH ₃	CH (CH ₃) ₂
	2451	S	CF ₃	00113	C11 (C113 / 2
	2452	S	OCHF ₂	OCH ₃	CH (CH ₃) ₂

	85						
[n	Х	R4	R ¹⁰	R ¹¹		
:	2453	SO ₂	F	OCH ₃	CH (CH ₃) ₂		
	2454	SO ₂	Cl	OCH ₃	CH (CH ₃) ₂		
5	2455	SO ₂	Br	OCH ₃	CH (CH ₃) ₂		
	2456	SO ₂	NO ₂	OCH ₃	CH (CH ₃) ₂		
	2457	SO ₂	SCH ₃	OCH ₃	CH (CH ₃) ₂		
	2458	SO ₂	SO ₂ CH ₃	OCH ₃	CH (CH ₃) ₂		
	2459	SO ₂	SO ₂ CH ₂ CH ₃	OCH ₃	CH(CH ₃) ₂		
10	2460	SO ₂	CH ₃	OCH ₃	CH(CH ₃) ₂		
	2461	SO ₂	CF ₃	OCH ₃	CH (CH ₃) ₂		
	2462	SO ₂	OCHF ₂	OCH ₃	CH(CH ₃) ₂		
	2463	bond	F	OCH ₃	C(CH ₃) ₃		
15	2464	bond	Cl	OCH ₃	C(CH ₃) ₃		
	2465	bond	Br	OCH ₃	C(CH ₃) ₃		
	2466	bond	NO ₂	OCH ₃	C(CH ₃) ₃		
	2467	bond	SCH ₃	OCH ₃	C(CH ₃) ₃		
20	2468	bond	SO ₂ CH ₃	OCH ₃	C(CH ₃) ₃		
	2469	bond	SO ₂ CH ₂ CH ₃	OCH ₃	C(CH ₃) ₃		
	2470	bond	CH ₃	OCH ₃	C(CH ₃) ₃		
	2471	bond	CF ₃	OCH ₃	C(CH ₃) ₃		
25	2472	bond	OCHF ₂	OCH ₃	C(CH ₃) ₃		
23	2473	CH ₂	F	OCH ₃	C(CH ₃) ₃		
	2474	CH ₂	Cl	OCH ₃	C(CH ₃) ₃		
	2475	CH ₂	Br	OCH ₃	C(CH ₃) ₃		
	2476	CH ₂	NO ₂	OCH ₃	C(CH ₃) ₃		
30	2477	CH ₂	SCH ₃	OCH ₃	C(CH ₃) ₃		
	2478	CH ₂	SO ₂ CH ₃	OCH ₃	C(CH ₃) ₃		
	2479	CH ₂	SO ₂ CH ₂ CH ₃	OCH ₃	C(CH ₃) ₃		
	2480	CH ₂	CH ₃	OCH ₃	C(CH ₃) ₃		
35	2481	CH ₂	CF ₃	OCH ₃	C(CH ₃) ₃		
	2482	CH ₂	OCHF ₂	OCH ₃	C(CH ₃) ₃		
	2483	0	F	OCH ₃	C(CH ₃) ₃		
	2484	0	C1	OCH ₃	C(CH ₃) ₃		
40	2485	0	Br	OCH ₃	C(CH ₃) ₃		
	2486	0	NO ₂	OCH ₃	C(CH ₃) ₃		
	2487	0	SCH ₃	OCH ₃	C(CH ₃) ₃		
	2488	0	SO ₂ CH ₃	OCH ₃	C(CH ₃) ₃		
, -	2489	0	SO ₂ CH ₂ CH ₃	OCH ₃	C(CH ₃) ₃		
45	2490	0	CH ₃	OCH ₃	C(CH ₃) ₃		
	2491	0	CF ₃	OCH ₃	C(CH ₃) ₃		

ſ	n	Х	R ⁴	R ¹⁰	R ¹¹
Ì	2492	0	OCHF ₂	OCH ₃	C(CH ₃) ₃
	2493	S	F	осн ₃	C(CH ₃) ₃
5	2494	S	C1	OCH ₃	C(CH ₃) ₃
	2495	S	Br	OCH ₃	C(CH ₃) ₃
	2496	S	NO ₂	OCH ₃	C(CH ₃) ₃
	2497	S	SCH ₃	OCH ₃	C(CH ₃) ₃
	2498	S	SO ₂ CH ₃	OCH ₃	C (CH ₃) ₃
10	2499	S	SO ₂ CH ₂ CH ₃	OCH ₃	C (CH ₃) ₃
	2500	S	CH ₃	OCH ₃	C (CH ₃) ₃
	2501	S	CF ₃	OCH ₃	C (CH ₃) ₃
	2502	S	OCHF ₂	OCH ₃	C(CH ₃) ₃
15	2503	SO ₂	F	OCH ₃	C (CH ₃) ₃
	2504	SO ₂	Cl	OCH ₃	C(CH ₃) ₃
	2505	SO ₂	Br	OCH ₃	C(CH ₃) ₃
	2506	SO ₂	NO ₂	OCH ₃	C(CH ₃) ₃
20	2507	SO ₂	SCH ₃	OCH ₃	C(CH ₃) ₃
	2508	SO ₂	SO ₂ CH ₃	OCH ₃	C(CH ₃) ₃
	2509	SO ₂	SO ₂ CH ₂ CH ₃	OCH ₃	C(CH ₃) ₃
	2510	SO ₂	СН3	OCH ₃	C(CH ₃) ₃
25	2511	SO ₂	CF ₃	OCH ₃	C (CH ₃) ₃
25	2512	SO ₂	OCHF ₂	OCH ₃	C (CH ₃) ₃
	2513	bond	F	OCH (CH ₃) ₂	CH (CH ₃) ₂
	2514	bond	Cl	OCH (CH ₃) ₂	CH (CH ₃) ₂
	2515	bond	Br	OCH (CH ₃) ₂	CH (CH ₃) ₂
30	2516	bond	NO ₂	OCH (CH ₃) ₂	CH (CH ₃) ₂
	2517	bond	SCH ₃	OCH (CH ₃) ₂	CH (CH ₃) ₂
	2518	bond	SO ₂ CH ₃	OCH (CH ₃) ₂	CH(CH ₃) ₂
	2519	bond	SO ₂ CH ₂ CH ₃	OCH (CH ₃) ₂	CH(CH ₃) ₂
35	2520	bond	CH ₃	OCH (CH ₃) ₂	CH (CH ₃) ₂
	2521	bond	CF ₃	OCH (CH ₃) ₂	CH (CH ₃) ₂
	2522	bond	OCHF ₂	OCH(CH ₃) ₂	CH (CH ₃) ₂
	2523	CH ₂	F	OCH (CH ₃) ₂	CH(CH ₃) ₂
40	2524	CH ₂	C1	OCH (CH ₃) ₂	CH (CH ₃) ₂
-	2525	CH ₂	Br	OCH (CH ₃) ₂	CH (CH ₃) ₂
	2526	CH ₂	NO ₂	OCH(CH ₃) ₂	CH (CH ₃) ₂
	2527	CH ₂	SCH ₃	OCH(CH ₃) ₂	CH (CH ₃) ₂
	2528	CH ₂	SO ₂ CH ₃	OCH (CH ₃) ₂	CH (CH ₃) ₂
45	2529	CH ₂	SO ₂ CH ₂ CH ₃	OCH (CH ₃) ₂	CH (CH ₃) ₂
	2530	CH ₂	CH ₃	OCH (CH ₃) ₂	CH (CH ₃) ₂

			<u> </u>		
	n	Х	R4	R ¹⁰	R ¹¹
	2531	CH ₂	CF ₃	OCH (CH ₃) ₂	CH(CH ₃) ₂
	2532	CH ₂	OCHF ₂	OCH(CH ₃) ₂	CH (CH ₃) ₂
5	2533	0	F	OCH(CH ₃) ₂	CH(CH ₃) ₂
	2534	0	Cl	OCH(CH ₃) ₂	CH(CH ₃) ₂
	2535	0	Br	OCH (CH ₃) ₂	CH(CH ₃) ₂
	2536	0	NO ₂	OCH(CH ₃) ₂	CH(CH ₃) ₂
	2537	0	SCH ₃	OCH (CH ₃) ₂	CH(CH ₃) ₂
10	2538	0	SO ₂ CH ₃	OCH(CH ₃) ₂	CH(CH ₃) ₂
	2539	0	SO ₂ CH ₂ CH ₃	OCH(CH ₃) ₂	CH(CH ₃) ₂
	2540	0	CH ₃	OCH(CH ₃) ₂	CH(CH ₃) ₂
	2541	0	CF ₃	OCH (CH ₃) ₂	CH(CH ₃) ₂
15	2542	0	OCHF ₂	OCH(CH ₃) ₂	CH (CH ₃) ₂
	2543	S	F	OCH(CH ₃) ₂	CH (CH ₃) ₂
	2544	S	C1	OCH(CH ₃) ₂	CH(CH ₃) ₂
	2545	S	Br	OCH (CH ₃) ₂	CH (CH ₃) ₂
20	2546	S	NO ₂	OCH(CH ₃) ₂	CH(CH ₃) ₂
	2547	S	SCH ₃	OCH(CH ₃) ₂	CH (CH ₃) ₂
	2548	S	SO ₂ CH ₃	OCH (CH ₃) ₂	CH(CH ₃) ₂
	2549	S	SO ₂ CH ₂ CH ₃	OCH (CH ₃) ₂	CH (CH ₃) ₂
25	2550	S	CH ₃	OCH(CH ₃) ₂	CH(CH ₃) ₂
25	2551	S	CF ₃	OCH(CH ₃) ₂	CH (CH ₃) ₂
	2552	S	OCHF ₂	OCH(CH ₃) ₂	CH (CH ₃) ₂
	2553	SO ₂	F	OCH(CH ₃) ₂	CH(CH ₃) ₂
	2554	SO ₂	Cl	OCH(CH ₃) ₂	CH(CH ₃) ₂
30	2555	SO ₂	Br	OCH(CH ₃) ₂	CH(CH ₃) ₂
	2556	SO ₂	NO ₂	OCH(CH ₃) ₂	CH(CH ₃) ₂
	2557	SO ₂	SCH ₃	OCH(CH ₃) ₂	CH(CH ₃) ₂
	2558	SO ₂	SO ₂ CH ₃	OCH(CH ₃) ₂	CH(CH ₃) ₂
35	2559	SO ₂	SO ₂ CH ₂ CH ₃	OCH(CH ₃) ₂	CH (CH ₃) ₂
	2560	SO ₂	CH ₃	OCH(CH ₃) ₂	CH(CH ₃) ₂
	2561	SO ₂	CF ₃	OCH(CH ₃) ₂	CH(CH ₃) ₂
	2562	SO ₂	OCHF ₂	OCH(CH ₃) ₂	CH(CH ₃) ₂
40	2563	bond	F	OCH(CH ₃) ₂	C(CH ₃) ₃
	2564	bond	Cl	OCH(CH ₃) ₂	C(CH ₃) ₃
	2565	bond	Br	OCH (CH ₃) ₂	C(CH ₃) ₃
	2566	bond	NO ₂	OCH (CH ₃) ₂	C(CH ₃) ₃
	2567	bond	SCH ₃	OCH (CH ₃) ₂	C(CH ₃) ₃
45	2568	bond	SO ₂ CH ₃	OCH (CH ₃) ₂	C(CH ₃) ₃
	2569	bond	SO ₂ CH ₂ CH ₃	OCH (CH ₃) ₂	C (CH ₃) ₃
	23 0 3				

ſ	n	Х	R ⁴	R ¹⁰	R ¹¹
	2570	bond	CH ₃	OCH(CH ₃) ₂	C(CH ₃) ₃
	2571	bond	CF ₃	OCH(CH ₃) ₂	C(CH ₃) ₃
5	2572	bond	OCHF ₂	OCH(CH ₃) ₂	C(CH ₃) ₃
	2573	CH ₂	F	OCH(CH ₃) ₂	C(CH ₃) ₃
	2574	CH ₂	Cl	OCH(CH ₃) ₂	C(CH ₃) ₃
	2575	CH ₂	Br	OCH(CH ₃) ₂	C(CH ₃) ₃
	2576	CH ₂	NO ₂	OCH(CH ₃) ₂	C(CH ₃) ₃
10	2577	CH ₂	SCH ₃	OCH (CH ₃) ₂	C(CH ₃) ₃
	2578	CH ₂	SO ₂ CH ₃	OCH(CH ₃) ₂	C(CH ₃) ₃
	2579	CH ₂	SO ₂ CH ₂ CH ₃	OCH (CH ₃) ₂	C(CH ₃) ₃
	2580	CH ₂	СН3	OCH(CH ₃) ₂	C(CH ₃) ₃
15	2581	CH ₂	CF ₃	OCH (CH ₃) ₂	C(CH ₃) ₃
	2582	CH ₂	OCHF ₂	OCH(CH ₃) ₂	C(CH ₃) ₃
	2583	0	F	OCH (CH ₃) ₂	C(CH ₃) ₃
	2584	0	Cl	OCH (CH ₃) ₂	C(CH ₃) ₃
20	2585	0	Br	OCH (CH ₃) ₂	C(CH ₃) ₃
	2586	0	NO ₂	OCH(CH ₃) ₂	C(CH ₃) ₃
	2587	0	SCH ₃	OCH(CH ₃) ₂	C(CH ₃) ₃
	2588	0	SO ₂ CH ₃	OCH (CH ₃) ₂	C(CH ₃) ₃
25	2589	0	SO ₂ CH ₂ CH ₃	OCH(CH ₃) ₂	C(CH ₃) ₃
	2590	0	CH ₃	OCH(CH ₃) ₂	C(CH ₃) ₃
	2591	0	CF ₃	OCH(CH ₃) ₂	C(CH ₃) ₃
	2592	0	OCHF ₂	OCH(CH ₃) ₂	C(CH ₃) ₃
	2593	S	F	OCH(CH ₃) ₂	C(CH ₃) ₃
30	2594	S	Cl	OCH(CH ₃) ₂	C(CH ₃) ₃
	2595	S	Br	OCH(CH ₃) ₂	C(CH ₃) ₃
	2596	S	NO ₂	OCH(CH ₃) ₂	C(CH ₃) ₃
	2597	S	SCH ₃	OCH(CH ₃) ₂	C (CH ₃) ₃
35	2598	S	SO ₂ CH ₃	OCH (CH ₃) ₂	C (CH ₃) ₃
	2599	S	SO ₂ CH ₂ CH ₃	OCH (CH ₃) ₂	C (CH ₃) ₃
	2600	S	CH ₃	OCH(CH ₃) ₂	C (CH ₃) ₃
	2601	S	CF ₃	OCH(CH ₃) ₂	C (CH ₃) ₃
40	2602	S	OCHF ₂	OCH (CH ₃) ₂	C (CH ₃) ₃
	2603	SO ₂	F	OCH (CH ₃) ₂	C (CH ₃) ₃
	2604	SO ₂	C1	OCH (CH ₃) ₂	C (CH ₃) ₃
	2605	SO ₂	Br	OCH (CH ₃) ₂	C (CH ₃) ₃
45	2606	SO ₂	NO ₂	OCH (CH ₃) ₂	C (CH ₃) ₃
	2607	SO ₂	SCH ₃	OCH (CH ₃) ₂	C (CH ₃) ₃
	2608	SO ₂	SO ₂ CH ₃	OCH (CH ₃) ₂	C (CH ₃) ₃

n X 2609 SO ₂ 2610 SO ₂	R ⁴ SO ₂ CH ₂ CH ₃	R ¹⁰ OCH(CH ₃) ₂	R ¹¹
2610 SO ₂	SO ₂ CH ₂ CH ₃	OCH (CH.) -	
		OCH (CH3/2	C(CH ₃) ₃
	CH ₃	OCH (CH ₃) ₂	C(CH ₃) ₃
5 2611 SO ₂	CF ₃	OCH(CH ₃) ₂	C(CH ₃) ₃
2612 SO ₂	OCHF ₂	OCH (CH ₃) ₂	C(CH ₃) ₃
2613 bond	F	OCH ₂ C ₆ H ₅	CH(CH ₃) ₂
2614 bond	Cl	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
2615 bond	Br	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
2616 bond	NO ₂	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
2617 bond	SCH ₃	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
2618 bond	SO ₂ CH ₃	OCH ₂ C ₆ H ₅	CH(CH ₃) ₂
2619 bond	SO ₂ CH ₂ CH ₃	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
15 2620 bond	CH ₃	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
2621 bond	CF ₃	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
2622 bond	OCHF ₂	OCH ₂ C ₆ H ₅	CH(CH ₃) ₂
2623 CH ₂	F	OCH ₂ C ₆ H ₅	CH(CH ₃) ₂
20 2624 CH ₂	Cl	OCH ₂ C ₆ H ₅	CH(CH ₃) ₂
2625 CH ₂	Br	OCH ₂ C ₆ H ₅	CH(CH ₃) ₂
2626 CH ₂	NO ₂	OCH ₂ C ₆ H ₅	CH(CH ₃) ₂
2627 CH ₂	SCH ₃	OCH ₂ C ₆ H ₅	CH(CH ₃) ₂
2628 CH ₂	SO ₂ CH ₃	OCH ₂ C ₆ H ₅	CH(CH ₃) ₂
2629 CH ₂	SO ₂ CH ₂ CH ₃	OCH ₂ C ₆ H ₅	CH(CH ₃) ₂
2630 CH ₂	CH ₃	OCH ₂ C ₆ H ₅	CH(CH ₃) ₂
2631 CH ₂	CF ₃	OCH ₂ C ₆ H ₅	CH(CH ₃) ₂
2632 CH ₂	OCHF ₂	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
2633 0	F	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
2634 O	Cl	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
2635 O	Br	OCH ₂ C ₆ H ₅	CH(CH ₃) ₂
2636 O	NO ₂	OCH ₂ C ₆ H ₅	CH(CH ₃) ₂
35 2637 O	SCH ₃	OCH ₂ C ₆ H ₅	CH(CH ₃) ₂
2638 0	SO ₂ CH ₃	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
2639 0	SO ₂ CH ₂ CH ₃	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
2640 O	СН3	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
40 2641 O	CF ₃	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
2642 0	OCHF ₂	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
2643 S	F	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
2644 S	Cl	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
2645 S	Br	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
2646 S	NO ₂	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
2647 S	SCH ₃	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂

90							
[r	n	Х	R ⁴	R ¹⁰	R ¹¹		
<u> </u>	2648	S	SO ₂ CH ₃	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂		
<u> </u>	2649	S	SO ₂ CH ₂ CH ₃	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂		
5 2	2650	s	CH ₃	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂		
	2651	s	CF ₃	OCH ₂ C ₆ H ₅	CH(CH ₃) ₂		
<u> </u>	2652	S	OCHF ₂	OCH ₂ C ₆ H ₅	CH(CH ₃) ₂		
<u> </u>	2653	SO ₂	F	OCH ₂ C ₆ H ₅	CH(CH ₃) ₂		
L	2654	SO ₂	Cl	OCH ₂ C ₆ H ₅	CH(CH ₃) ₂		
o F	2655	SO ₂	Br	OCH ₂ C ₆ H ₅	CH(CH ₃) ₂		
<u>_</u>	2656	SO ₂	NO ₂	OCH ₂ C ₆ H ₅	CH(CH ₃) ₂		
L	2657	SO ₂	SCH ₃	OCH ₂ C ₆ H ₅	CH(CH ₃) ₂		
_ 1 -	2658	SO ₂	SO ₂ CH ₃	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂		
L	2659	SO ₂	SO ₂ CH ₂ CH ₃	OCH ₂ C ₆ H ₅	CH(CH ₃) ₂		
·		SO ₂	CH ₃	OCH ₂ C ₆ H ₅	CH(CH ₃) ₂		
}	2660	SO ₂	CF ₃	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂		
	2661		OCHF ₂	OCH ₂ C ₆ H ₅	CH(CH ₃) ₂		
	2662	SO ₂	F	OCH ₂ C ₆ H ₅	C(CH ₃) ₃		
20	2663		Cl	OCH ₂ C ₆ H ₅	C(CH ₃) ₃		
	2664	bond	Br	OCH ₂ C ₆ H ₅	C(CH ₃) ₃		
	2665	bond		OCH ₂ C ₆ H ₅	C (CH ₃) ₃		
	2666	bond	NO ₂	OCH ₂ C ₆ H ₅	C(CH ₃) ₃		
25	2667	bond	SCH ₃	OCH ₂ C ₆ H ₅	C (CH ₃) ₃		
	2668	bond	SO ₂ CH ₃	OCH ₂ C ₆ H ₅	C (CH ₃) ₃		
	2669	bond	SO ₂ CH ₂ CH ₃		C (CH ₃) ₃		
	2670	bond	CH ₃	OCH ₂ C ₆ H ₅	C (CH ₃) ₃		
	2671	bond	CF ₃	OCH ₂ C ₆ H ₅	C (CH ₃) ₃		
30	2672	bond	OCHF ₂	OCH ₂ C ₆ H ₅	C (CH ₃) ₃		
	2673	CH ₂	F	OCH ₂ C ₆ H ₅	C (CH ₃) ₃		
	2674	CH ₂	Cl	OCH ₂ C ₆ H ₅	C (CH ₃) ₃		
	2675	CH ₂	Br	OCH ₂ C ₆ H ₅	C(CH ₃) ₃		
35	2676	CH ₂	NO ₂	OCH ₂ C ₆ H ₅			
	2677	CH ₂	SCH ₃	OCH ₂ C ₆ H ₅	C (CH ₃) ₃		
	2678	CH ₂	SO ₂ CH ₃	OCH ₂ C ₆ H ₅	C (CH ₃) ₃		
40	2679	CH ₂	SO ₂ CH ₂ CH ₃	OCH ₂ C ₆ H ₅	C (CH ₃) ₃		
	2680	CH ₂	CH ₃	OCH ₂ C ₆ H ₅	C (CH ₃) ₃		
	2681	CH ₂	CF ₃	OCH ₂ C ₆ H ₅	C (CH ₃) ₃		
	2682	CH ₂	OCHF ₂	OCH ₂ C ₆ H ₅	C (CH ₃) ₃		
	2683	0	F	OCH ₂ C ₆ H ₅	C (CH ₃) ₃		
	2684	0	Cl	OCH ₂ C ₆ H ₅	C (CH ₃) ₃		
45	2685	0	Br	OCH ₂ C ₆ H ₅	C(CH ₃) ₃		
	2686	0	NO ₂	OCH ₂ C ₆ H ₅	C (CH ₃) ₃		

			91		
r	1	х	R ⁴	R ¹⁰	R ¹¹
2	2687	0	SCH ₃	OCH ₂ C ₆ H ₅	C(CH ₃) ₃
<u> </u>	2688	0	SO ₂ CH ₃	OCH ₂ C ₆ H ₅	C(CH ₃) ₃
-	2689	0	SO ₂ CH ₂ CH ₃	OCH ₂ C ₆ H ₅	C(CH ₃) ₃
າ	2690	0	CH ₃	OCH ₂ C ₆ H ₅	C(CH ₃) ₃
-	2691	0	CF ₃	OCH ₂ C ₆ H ₅	C(CH ₃) ₃
 	2692	0	OCHF ₂	OCH ₂ C ₆ H ₅	C(CH ₃) ₃
- ↓-	2693	S	F	OCH ₂ C ₆ H ₅	C(CH ₃) ₃
n L	2694	S	Cl	OCH ₂ C ₆ H ₅	C(CH ₃) ₃
<u> </u>	2695	S	Br	OCH ₂ C ₆ H ₅	C(CH ₃) ₃
L	2696	S	NO ₂	OCH ₂ C ₆ H ₅	C(CH ₃) ₃
L	2697	S	SCH ₃	OCH ₂ C ₆ H ₅	C(CH ₃) ₃
_ ⊦	2698	S	SO ₂ CH ₃	OCH ₂ C ₆ H ₅	C(CH ₃) ₃
L	2699	s	SO ₂ CH ₂ CH ₃	OCH ₂ C ₆ H ₅	C(CH ₃) ₃
L	2700	S	CH ₃	OCH ₂ C ₆ H ₅	C(CH ₃) ₃
L.	2700	S	CF ₃	OCH ₂ C ₆ H ₅	C(CH ₃) ₃
ŀ	2702	S	OCHF ₂	OCH ₂ C ₆ H ₅	C(CH ₃) ₃
o	2702	SO ₂	F	OCH ₂ C ₆ H ₅	C(CH ₃) ₃
ļ	2704	SO ₂	Cl	OCH ₂ C ₆ H ₅	C(CH ₃) ₃
}	2704	SO ₂	Br	OCH ₂ C ₆ H ₅	C(CH ₃) ₃
	2706	SO ₂	NO ₂	OCH ₂ C ₆ H ₅	C(CH ₃) ₃
5	2706	SO ₂	SCH ₃	OCH ₂ C ₆ H ₅	C(CH ₃) ₃
		SO ₂	SO ₂ CH ₃	OCH ₂ C ₆ H ₅	C(CH ₃) ₃
	2708		SO ₂ CH ₂ CH ₃	OCH ₂ C ₆ H ₅	C(CH ₃) ₃
	2709	SO ₂	CH ₃	OCH ₂ C ₆ H ₅	C(CH ₃) ₃
30	2710	SO ₂	CF ₃	OCH ₂ C ₆ H ₅	C (CH ₃) ₃
-	2711	SO ₂	OCHF ₂	OCH ₂ C ₆ H ₅	C(CH ₃) ₃
	2712	SO ₂	F	OSO ₂ (4-CH ₃ -C ₆ H ₄)	
	2713	bond	Cl	OSO ₂ (4-CH ₃ -C ₆ H ₄)	
	2714	bond		$OSO_2 (4-CH_3-C_6H_4)$	
35	2715	bond	Br	OSO ₂ (4-CH ₃ -C ₆ H ₄)	
	2716	bond	NO ₂	OSO ₂ (4-CH ₃ -C ₆ H ₄)	
	2717	bond	SCH ₃	OSO ₂ (4-CH ₃ -C ₆ H ₄)	
	2718	bond	SO ₂ CH ₃	OSO ₂ (4-CH ₃ -C ₆ H ₄)	
40	2719	bond	SO ₂ CH ₂ CH ₃	$OSO_2(4-CH_3-C_6H_4)$	
	2720	bond	CH ₃	OSO ₂ (4-CH ₃ -C ₆ H ₄	
	2721	bond	CF ₃	OSO ₂ (4-CH ₃ -C ₆ H ₄	
	2722	bond	OCHF ₂	OSO ₂ (4-CH ₃ -C ₆ H ₄	
45	2723	CH ₂	F	OSO ₂ (4-CH ₃ -C ₆ H ₄	
	2724	CH ₂	C1		
	2725	CH ₂	Br	OSO ₂ (4-CH ₃ -C ₆ H ₄	/ [Cir(Cir3/2

92							
In		Х	R ⁴	R ¹⁰	R ¹¹		
⊢	726	CH ₂	NO ₂	$OSO_2(4-CH_3-C_6H_4)$	CH(CH ₃) ₂		
	2727	CH ₂	SCH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH(CH ₃) ₂		
-	2728	CH ₂	SO ₂ CH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH(CH ₃) ₂		
າ	2729	CH ₂	SO ₂ CH ₂ CH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH(CH ₃) ₂		
-	2730	CH ₂	CH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH(CH ₃) ₂		
<u> </u>	2731	CH ₂	CF ₃	$OSO_2(4-CH_3-C_6H_4)$	CH(CH ₃) ₂		
<u>.</u> .	2732	CH ₂	OCHF ₂	OSO ₂ (4-CH ₃ -C ₆ H ₄)	CH(CH ₃) ₂		
o H	2733	0	F	$OSO_2 (4-CH_3-C_6H_4)$	CH(CH ₃) ₂		
_ ⊢	2734	0	C1	OSO ₂ (4-CH ₃ -C ₆ H ₄)	CH(CH ₃) ₂		
⊢	2735	0	Br	OSO ₂ (4-CH ₃ -C ₆ H ₄)	CH(CH ₃) ₂		
_ ∟	2736	0	NO ₂	OSO ₂ (4-CH ₃ -C ₆ H ₄)	CH(CH ₃) ₂		
_	2737	0	SCH ₃	OSO ₂ (4-CH ₃ -C ₆ H ₄)	CH(CH ₃) ₂		
L	2738	0	SO ₂ CH ₃	OSO ₂ (4-CH ₃ -C ₆ H ₄)	CH (CH ₃) ₂		
-	2738 2739	0	SO ₂ CH ₂ CH ₃	OSO ₂ (4-CH ₃ -C ₆ H ₄)	CH(CH ₃) ₂		
	2740	0	CH ₃	OSO ₂ (4-CH ₃ -C ₆ H ₄)	CH(CH ₃) ₂		
-		0	CF ₃	OSO ₂ (4-CH ₃ -C ₆ H ₄)	CH(CH ₃) ₂		
0	2741	 0	OCHF ₂	OSO ₂ (4-CH ₃ -C ₆ H ₄)	CH(CH ₃) ₂		
}	2742	s	F	OSO ₂ (4-CH ₃ -C ₆ H ₄)) CH(CH ₃) ₂		
}	2743	S	C1	OSO ₂ (4-CH ₃ -C ₆ H ₄			
}	2744		Br	OSO ₂ (4-CH ₃ -C ₆ H ₄			
25	2745	S	NO ₂	OSO ₂ (4-CH ₃ -C ₆ H ₄			
	2746		SCH ₃	OSO ₂ (4-CH ₃ -C ₆ H ₄			
	2747	S	SO ₂ CH ₃	OSO ₂ (4-CH ₃ -C ₆ H ₄			
	2748	S	SO ₂ CH ₂ CH ₃	OSO ₂ (4-CH ₃ -C ₆ H ₄			
30	2749	S	CH ₃	OSO ₂ (4-CH ₃ -C ₆ H ₄			
	2750	S	CF ₃	OSO ₂ (4-CH ₃ -C ₆ H ₄			
	2751	S	OCHF ₂	OSO ₂ (4-CH ₃ -C ₆ H ₄			
	2752	S	F F	OSO ₂ (4-CH ₃ -C ₆ H ₄			
	2753	SO ₂	Cl	OSO ₂ (4-CH ₃ -C ₆ H ₄			
35	2754	SO ₂		OSO ₂ (4-CH ₃ -C ₆ H ₄			
	2755	SO ₂	Br	OSO ₂ (4-CH ₃ -C ₆ H ₄			
	2756	SO ₂	NO ₂	OSO ₂ (4-CH ₃ -C ₆ H ₄			
	2757	SO ₂	SCH ₃	OSO ₂ (4-CH ₃ -C ₆ H ₄			
40	2758	SO ₂	SO ₂ CH ₃	OSO ₂ (4-CH ₃ -C ₆ H ₄			
	2759	SO ₂	SO ₂ CH ₂ CH ₃	OSO ₂ (4-CH ₃ -C ₆ H ₂			
	2760	SO ₂	CH ₃	OSO ₂ (4-CH ₃ -C ₆ H			
	2761	SO ₂	CF ₃	OSO ₂ (4-CH ₃ -C ₆ H			
45	2762	SO ₂	OCHF ₂	OSO ₂ (4-CH ₃ -C ₆ H			
	2763	bond	F				
	2764	bond	C1	OSO ₂ (4-CH ₃ -C ₆ H	4/ 0 (0113/3		

Γ,	<u> </u>	X	\mathbb{R}^4	R ¹⁰	R ¹¹
L	2765	bond	Br	OSO ₂ (4-CH ₃ -C ₆ H ₄)	C(CH ₃) ₃
⊢	2766	bond	NO ₂	$OSO_2(4-CH_3-C_6H_4)$	C(CH ₃) ₃
-	2767	bond	SCH ₃	OSO ₂ (4-CH ₃ -C ₆ H ₄)	C(CH ₃) ₃
⊃	2768	bond	SO ₂ CH ₃	OSO ₂ (4-CH ₃ -C ₆ H ₄)	C(CH ₃) ₃
_	2769	bond	SO ₂ CH ₂ CH ₃	OSO ₂ (4-CH ₃ -C ₆ H ₄)	C(CH ₃) ₃
	2770	bond	CH ₃	$OSO_2(4-CH_3-C_6H_4)$	C(CH ₃) ₃
	2771	bond	CF ₃	$OSO_2 (4-CH_3-C_6H_4)$	C(CH ₃) ₃
10 F	2772	bond	OCHF ₂	$OSO_2(4-CH_3-C_6H_4)$	C(CH ₃) ₃
	2773	CH ₂	F	$OSO_2(4-CH_3-C_6H_4)$	C(CH ₃) ₃
ŀ	2774	CH ₂	Cl	$OSO_2(4-CH_3-C_6H_4)$	C(CH ₃) ₃
}	2775	CH ₂	Br	$OSO_2(4-CH_3-C_6H_4)$	C(CH ₃) ₃
15	2776	CH ₂	NO ₂	$OSO_2 (4-CH_3-C_6H_4)$	C(CH ₃) ₃
	2777	CH ₂	SCH ₃	$OSO_2 (4-CH_3-C_6H_4)$	C (CH ₃) ₃
	2778	CH ₂	SO ₂ CH ₃	$OSO_2 (4-CH_3-C_6H_4)$	C(CH ₃) ₃
	2779	CH ₂	SO ₂ CH ₂ CH ₃	$OSO_2 (4-CH_3-C_6H_4)$	C(CH ₃) ₃
20	2780	CH ₂	CH ₃	$OSO_2 (4-CH_3-C_6H_4)$	C(CH ₃) ₃
20	2781	CH ₂	CF ₃	$OSO_2 (4-CH_3-C_6H_4)$	C(CH ₃) ₃
	2782	CH ₂	OCHF ₂	$OSO_2 (4-CH_3-C_6H_4)$	C(CH ₃) ₃
	2783	0	F	OSO ₂ (4-CH ₃ -C ₆ H ₄)	C(CH ₃) ₃
	2784	0	Cl	OSO ₂ (4-CH ₃ -C ₆ H ₄)	C(CH ₃) ₃
25	2785	0	Br	OSO ₂ (4-CH ₃ -C ₆ H ₄)	C(CH ₃) ₃
	2786	0	NO ₂	$OSO_2 (4-CH_3-C_6H_4)$	
	2787	0	SCH ₃	$OSO_2 (4-CH_3-C_6H_4)$	
	2788	0	SO ₂ CH ₃	$OSO_2 (4-CH_3-C_6H_4)$	
30	2789	0	SO ₂ CH ₂ CH ₃	$OSO_2 (4-CH_3-C_6H_4)$	
	2790	0	СН3	$OSO_2 (4-CH_3-C_6H_4)$	
	2791	0	CF ₃	$OSO_2 (4-CH_3-C_6H_4)$	C (CH ₃) ₃
	2792	0	OCHF ₂	$OSO_2 (4-CH_3-C_6H_4)$	
35	2793	S	F	$OSO_2 (4-CH_3-C_6H_4)$	
	2794	S	Cl	OSO ₂ (4-CH ₃ -C ₆ H ₄	
	2795	S	Br	OSO ₂ (4-CH ₃ -C ₆ H ₄	
	2796	S	NO ₂	OSO ₂ (4-CH ₃ -C ₆ H ₄	
40	2797	S	SCH ₃	$OSO_2 (4-CH_3-C_6H_4)$	
40	2798	S	SO ₂ CH ₃	$OSO_2 (4-CH_3-C_6H_4)$	
	2799	S	SO ₂ CH ₂ CH ₃	$OSO_2 (4-CH_3-C_6H_4)$	
	2800	S	CH ₃	$OSO_2 (4-CH_3-C_6H_4)$	
	2801	S	CF ₃	OSO ₂ (4-CH ₃ -C ₆ H ₄	
45	2802	S	OCHF ₂	OSO ₂ (4-CH ₃ -C ₆ H ₄	
	2803	SO ₂	F	OSO ₂ (4-CH ₃ -C ₆ H ₄	$C(CH_3)_3$

	94						
ſ	n	Х	R ⁴	R ¹⁰	R ¹¹		
	2804	SO ₂	C1	$OSO_2 (4-CH_3-C_6H_4)$	C(CH ₃) ₃		
	2805	SO ₂	Br	OSO ₂ (4-CH ₃ -C ₆ H ₄)	C(CH ₃) ₃		
5	2806	SO ₂	NO ₂	OSO ₂ (4-CH ₃ -C ₆ H ₄)	C(CH ₃) ₃		
5	2807	SO ₂	SCH ₃	$OSO_2(4-CH_3-C_6H_4)$	C(CH ₃) ₃		
	2808	SO ₂	SO ₂ CH ₃	$OSO_2 (4-CH_3-C_6H_4)$	C(CH ₃) ₃		
	2809	SO ₂	SO ₂ CH ₂ CH ₃	$OSO_2 (4-CH_3-C_6H_4)$	C(CH ₃) ₃		
	2810	SO ₂	CH ₃	$OSO_2 (4-CH_3-C_6H_4)$	C(CH ₃) ₃		
10	2811	SO ₂	CF ₃	$OSO_2 (4-CH_3-C_6H_4)$	C(CH ₃) ₃		
10	2812	SO ₂	OCHF ₂	$OSO_2 (4-CH_3-C_6H_4)$	C(CH ₃) ₃		
	2813	bond	F	SCH ₃	CH (CH ₃) ₂		
	2814	bond	Cl	SCH ₃	CH (CH ₃) ₂		
15	2815	bond	Br	SCH ₃	CH(CH ₃) ₂		
15	2816	bond	NO ₂	SCH ₃	CH(CH ₃) ₂		
	2817	bond	SCH ₃	SCH ₃	CH(CH ₃) ₂		
	2818	bond	SO ₂ CH ₃	SCH ₃	CH(CH ₃) ₂		
20	2819	bond	SO ₂ CH ₂ CH ₃	SCH ₃	CH(CH ₃) ₂		
	2820	bond	CH ₃	SCH ₃	CH(CH ₃) ₂		
	2821	bond	CF ₃	SCH ₃	CH(CH ₃) ₂		
	2822	bond	OCHF ₂	SCH ₃	CH(CH ₃) ₂		
25	2823	CH ₂	F	SCH ₃	CH(CH ₃) ₂		
25	2824	CH ₂	Cl	SCH ₃	CH (CH ₃) ₂		
	2825	CH ₂	Br	SCH ₃	CH (CH ₃) ₂		
	2826	CH ₂	NO ₂	SCH ₃	CH (CH ₃) ₂		
	2827	CH ₂	SCH ₃	SCH ₃	CH (CH ₃) ₂		
30	2828	CH ₂	SO ₂ CH ₃	SCH ₃	CH (CH ₃) ₂		
30	2829	CH ₂	SO ₂ CH ₂ CH ₃	SCH ₃	CH (CH ₃) ₂		
	2830	CH ₂	CH ₃	SCH ₃	CH (CH ₃) ₂		
	2831	CH ₂	CF ₃	SCH ₃	CH (CH ₃) ₂		
35	2832	CH ₂	OCHF ₂	SCH ₃	CH (CH ₃) ₂		
35	2833	0	F	SCH ₃	CH(CH ₃) ₂		
	2834	0	Cl	SCH ₃	CH(CH ₃) ₂		
	2835	0	Br	SCH ₃	CH(CH ₃) ₂		
40	2836	0	NO ₂	SCH ₃	CH(CH ₃) ₂		
	2837	0	SCH ₃	SCH ₃	CH(CH ₃) ₂		
	2838	0	SO ₂ CH ₃	SCH ₃	CH(CH ₃) ₂		
	2839	0	SO ₂ CH ₂ CH ₃	SCH ₃	CH(CH ₃) ₂		
	2840	0	CH ₃	SCH ₃	CH(CH ₃) ₂		
45	2841	0	CF ₃	SCH ₃	CH(CH ₃) ₂		
	2842	0	OCHF ₂	SCH ₃	CH (CH ₃) ₂		

	95						
F	n	X	R ⁴	R ¹⁰	R ¹¹		
<u> </u>	2843	S	F	SCH ₃	CH (CH ₃) ₂		
l	2844	S	C1	SCH ₃	CH(CH ₃) ₂		
5	2845	S	Br	SCH ₃	CH (CH ₃) ₂		
	2846	S	NO ₂	SCH ₃	CH (CH ₃) ₂		
	2847	S	SCH ₃	SCH ₃	CH(CH ₃) ₂		
Ì	2848	S	SO ₂ CH ₃	SCH ₃	CH(CH ₃) ₂		
	2849	S	SO ₂ CH ₂ CH ₃	SCH ₃	CH(CH ₃) ₂		
10	2850	S	CH ₃	SCH ₃	CH (CH ₃) ₂		
	2851	S	CF ₃	SCH ₃	CH(CH ₃) ₂		
	2852	S	OCHF ₂	SCH ₃	CH (CH ₃) ₂		
	2853	SO ₂	F	SCH ₃	CH (CH ₃) ₂		
15	2854	SO ₂	Cl	SCH ₃	CH (CH ₃) ₂		
	2855	SO ₂	Br	SCH ₃	CH (CH ₃) ₂		
	2856	SO ₂	NO ₂	SCH ₃	CH (CH ₃) ₂		
	2857	SO ₂	SCH ₃	SCH ₃	CH (CH ₃) ₂		
20	2858	SO ₂	SO ₂ CH ₃	SCH ₃	CH(CH ₃) ₂		
	2859	SO ₂	SO ₂ CH ₂ CH ₃	SCH ₃	CH(CH ₃) ₂		
	2860	SO ₂	CH ₃	SCH ₃	CH(CH ₃) ₂		
	2861	SO ₂	CF ₃	SCH ₃	CH (CH ₃) ₂		
25	2862	SO ₂	OCHF ₂	SCH ₃	CH(CH ₃) ₂		
23	2863	bond	F	SCH ₃	C(CH ₃) ₃		
	2864	bond	Cl	SCH ₃	C(CH ₃) ₃		
	2865	bond	Br	SCH ₃	C(CH ₃) ₃		
	2866	bond	NO ₂	SCH ₃	C(CH ₃) ₃		
30	2867	bond	SCH ₃	SCH ₃	C(CH ₃) ₃		
	2868	bond	SO ₂ CH ₃	SCH ₃	C(CH ₃) ₃		
	2869	bond	SO ₂ CH ₂ CH ₃	SCH ₃	C(CH ₃) ₃		
	2870	bond	CH ₃	SCH ₃	C(CH ₃) ₃		
35	2871	bond	CF ₃	SCH ₃	C(CH ₃) ₃		
33	2872	bond	OCHF ₂	SCH ₃	C(CH ₃) ₃		
	2873	CH ₂	F	SCH ₃	C(CH ₃) ₃		
40	2874	CH ₂	Cl	SCH ₃	C(CH ₃) ₃		
	2875	CH ₂	Br	SCH ₃	C(CH ₃) ₃		
	2876	CH ₂	NO ₂	SCH ₃	C(CH ₃) ₃		
	2877	CH ₂	SCH ₃	SCH ₃	C(CH ₃) ₃		
	2878	CH ₂	SO ₂ CH ₃	SCH ₃	C (CH ₃) ₃		
ΛE	2879	CH ₂	SO ₂ CH ₂ CH ₃	SCH ₃	C (CH ₃) ₃		
45	2880	CH ₂	CH ₃	SCH ₃	C (CH ₃) ₃		
	2881	CH ₂	CF ₃	SCH ₃	C (CH ₃) ₃		

	96						
[n	Х	R ⁴	R ¹⁰	R ¹¹		
- 1	2882	CH ₂	OCHF ₂	SCH ₃	C(CH ₃) ₃		
5	2883	0	F	SCH ₃	C(CH ₃) ₃		
	2884	0	Cl	SCH ₃	C(CH ₃) ₃		
	2885	0	Br	SCH ₃	C(CH ₃) ₃		
	2886	0	NO ₂	SCH ₃	C(CH ₃) ₃		
	2887	0	SCH ₃	SCH ₃	C (CH ₃) ₃		
	2888	0	SO ₂ CH ₃	SCH ₃	C(CH ₃) ₃		
10	2889	0	SO ₂ CH ₂ CH ₃	SCH ₃	C(CH ₃) ₃		
	2890	0	CH ₃	SCH ₃	C (CH ₃) ₃		
	2891	0	CF ₃	SCH ₃	C(CH ₃) ₃		
	2892	0	OCHF ₂	SCH ₃	C(CH ₃) ₃		
15	2893	S	F	SCH ₃	C(CH ₃) ₃		
	2894	S	Cl	SCH ₃	C(CH ₃) ₃		
	2895	S	Br	SCH ₃	C(CH ₃) ₃		
	2896	S	NO ₂	SCH ₃	C (CH ₃) ₃		
20	2897	S	SCH ₃	SCH ₃	C(CH ₃) ₃		
	2898	S	SO ₂ CH ₃	SCH ₃	C(CH ₃) ₃		
	2899	S	SO ₂ CH ₂ CH ₃	SCH ₃	C(CH ₃) ₃		
	2900	S	CH ₃	SCH ₃	C (CH ₃) ₃		
25	2901	S	CF ₃	SCH ₃	C (CH ₃) ₃		
25	2902	S	OCHF ₂	SCH ₃	C (CH ₃) ₃		
	2903	SO ₂	F	SCH ₃	C (CH ₃) ₃		
	2904	SO ₂	Cl	SCH ₃	C(CH ₃) ₃		
	2905	SO ₂	Br	SCH ₃	C (CH ₃) ₃		
30	2906	SO ₂	NO ₂	SCH ₃	C(CH ₃) ₃		
	2907	SO ₂	SCH ₃	SCH ₃	C(CH ₃) ₃		
	2908	SO ₂	SO ₂ CH ₃	SCH ₃	C(CH ₃) ₃		
	2909	SO ₂	SO ₂ CH ₂ CH ₃	SCH ₃	C(CH ₃) ₃		
35	2910	SO ₂	CH ₃	SCH ₃	C(CH ₃) ₃		
33	2911	SO ₂	CF ₃	SCH ₃	C(CH ₃) ₃		
	2912	SO ₂	OCHF ₂	SCH ₃	C(CH ₃) ₃		
40	2913	bond	F	Cl	CH(CH ₃) ₂		
	2914	bond	Cl	C1	CH(CH ₃) ₂		
	2915	bond	Br	Cl	CH(CH ₃) ₂		
	2916	bond	NO ₂	Cl	CH(CH ₃) ₂		
	2917	bond	SCH ₃	Cl	CH (CH ₃) ₂		
4 =	2918	bond	SO ₂ CH ₃	Cl	CH (CH ₃) ₂		
45	2919	bond	SO ₂ CH ₂ CH ₃	Cl	CH (CH ₃) ₂		
	2920	bond	CH ₃	C1	CH (CH ₃) ₂		

	n	Х	R ⁴	R ¹⁰	R ¹¹
Ì	2921	bond	CF ₃	C1	CH (CH ₃) ₂
Ì	2922	bond	OCHF ₂	Cl	CH(CH ₃) ₂
5	2923	CH ₂	F	Cl	CH(CH ₃) ₂
	2924	CH ₂	C1	Cl	CH(CH ₃) ₂
	2925	CH ₂	Br	C1	CH(CH ₃) ₂
10	2926	CH ₂	NO ₂	Cl	CH(CH ₃) ₂
	2927	CH ₂	SCH ₃	Cl	CH(CH ₃) ₂
10	2928	CH ₂	SO ₂ CH ₃	Cl	CH(CH ₃) ₂
	2929	CH ₂	SO ₂ CH ₂ CH ₃	Cl	CH(CH ₃) ₂
·	2930	CH ₂	CH ₃	C1	CH(CH ₃) ₂
	2931	CH ₂	CF ₃	Cl	CH(CH ₃) ₂
15	2932	CH ₂	OCHF ₂	C1	CH(CH ₃) ₂
	2933	0	F	C1	CH(CH ₃) ₂
	2934	0	Cl	C1	CH(CH ₃) ₂
	2935	0	Br	Cl	CH(CH ₃) ₂
20	2936	0	NO ₂	Cl	CH(CH ₃) ₂
	2937	0	SCH ₃	Cl	CH(CH ₃) ₂
	2938	0	SO ₂ CH ₃	Cl	CH (CH ₃) ₂
	2939	0	SO ₂ CH ₂ CH ₃	Cl	CH(CH ₃) ₂
25	2940	0	CH ₃	C1	CH(CH ₃) ₂
25	2941	0	CF ₃	C1	CH (CH ₃) ₂
	2942	0	OCHF ₂	Cl	CH (CH ₃) ₂
	2943	S	F	Cl	CH(CH ₃) ₂
	2944	S	Cl	C1	CH(CH ₃) ₂
30	2945	S	Br	C1	CH(CH ₃) ₂
	2946	S	NO ₂	Cl	CH(CH ₃) ₂
	2947	S	SCH ₃	Cl	CH (CH ₃) ₂
	2948	S	SO ₂ CH ₃	Cl	CH(CH ₃) ₂
35	2949	S	SO ₂ CH ₂ CH ₃	Cl	CH(CH ₃) ₂
	2950	S	CH ₃	Cl	CH (CH ₃) ₂
	2951	S	CF ₃	C1	CH(CH ₃) ₂
40	2952	S	OCHF ₂	C1	CH (CH ₃) ₂
	2953	SO ₂	F	C1	CH(CH ₃) ₂
	2954	SO ₂	Cl	Cl	CH(CH ₃) ₂
	2955	SO ₂	Br	Cl	CH (CH ₃) ₂
	2956	SO ₂	NO ₂	Cl	CH(CH ₃) ₂
4-	2957	SO ₂	SCH ₃	Cl	CH (CH ₃) ₂
45	2958	SO ₂	SO ₂ CH ₃	Cl	CH (CH ₃) ₂
	2959	SO ₂	SO ₂ CH ₂ CH ₃	Cl	CH (CH ₃) ₂

Page		98						
2961 SO2 CF3 C1 CH (CH3)2	ſ	n	Х	R ⁴	R ¹⁰	R ¹¹		
The state of the	İ	2960	SO ₂	CH ₃	Cl	CH (CH ₃) ₂		
2963 bond F	Ì	2961	SO ₂	CF ₃	Cl	CH (CH ₃) ₂		
2963 bond F C1	5	2962	SO ₂	OCHF ₂	Cl	CH (CH ₃) ₂		
Page		2963	bond	F	Cl	C(CH ₃) ₃		
10 2966 bond NO2 C1 C(CH3)3		2964	bond	Cl	Cl			
10 2967 bond SCH ₃ C1 C(CH ₃) ₃ 2968 bond SO ₂ CH ₃ C1 C(CH ₃) ₃ 2969 bond SO ₂ CH ₂ CH ₃ C1 C(CH ₃) ₃ 2970 bond CH ₃ C1 C(CH ₃) ₃ 2971 bond CF ₃ C1 C(CH ₃) ₃ 2972 bond OCHF ₂ C1 C(CH ₃) ₃ 2973 CH ₂ F C1 C(CH ₃) ₃ 2974 CH ₂ C1 C1 C(CH ₃) ₃ 2975 CH ₂ Br C1 C(CH ₃) ₃ 2976 CH ₂ NO ₂ C1 C(CH ₃) ₃ 2977 CH ₂ SCH ₃ C1 C(CH ₃) ₃ 2978 CH ₂ SO ₂ CH ₃ C1 C(CH ₃) ₃ 2979 CH ₂ SO ₂ CH ₃ C1 C(CH ₃) ₃ 2979 CH ₂ SO ₂ CH ₃ C1 C(CH ₃) ₃ 2979 CH ₂ SO ₂ CH ₃ C1 C(CH ₃) ₃ 2979 CH ₂ SO ₂ CH ₃ C1 C(CH ₃) ₃ 2979 CH ₂ CH ₃ C1 C(CH ₃) ₃ 2980 CH ₂ CH ₃ C1 C(CH ₃) ₃ 2981 CH ₂ CF ₃ C1 C(CH ₃) ₃ 2982 CH ₂ OCHF ₂ C1 C(CH ₃) ₃ 2984 O C1 C1 C1 C(CH ₃) ₃ 2985 O Br C1 C(CH ₃) ₃ 2986 O NO ₂ C1 C(CH ₃) ₃ 2987 O SCH ₃ C1 C(CH ₃) ₃ 2988 O SO ₂ CH ₃ C1 C(CH ₃) ₃ 2989 O SO ₂ CH ₃ C1 C(CH ₃) ₃ 2997 O SCH ₃ C1 C(CH ₃) ₃ 2998 O CH ₂ C1 C(CH ₃) ₃ 2998 O CH ₂ C1 C1 C1 C1 C1 C1 C1 2000 C1 2000 C1 C1 C1 C1 C1 C1 2000 C1 200		2965	bond	Br	Cl	C(CH ₃) ₃		
2967		2966	bond	NO ₂	C1	C(CH ₃) ₃		
2969 bond SO ₂ CH ₂ CH ₃ C1 C(CH ₃) ₃	10	2967	bond	SCH ₃	Cl			
15 2970 bond CH3 C1 C(CH3)3		2968	bond	SO ₂ CH ₃	Cl	C(CH ₃) ₃		
15 2971 bond CF3 C1 C(CH3)3 2972 bond OCHF2 C1 C(CH3)3 2973 CH2 F C1 C(CH3)3 2974 CH2 C1 C1 C(CH3)3 2975 CH2 Br C1 C(CH3)3 2976 CH2 NO2 C1 C(CH3)3 2977 CH2 SCH3 C1 C(CH3)3 2978 CH2 SO2CH3 C1 C(CH3)3 2979 CH2 SO2CH2CH3 C1 C(CH3)3 2979 CH2 CH3 C1 C(CH3)3 2980 CH2 CH3 C1 C(CH3)3 2981 CH2 CF3 C1 C(CH3)3 2982 CH2 OCHF2 C1 C(CH3)3 2983 O F C1 C(CH3)3 2984 O C1 C1 C(CH3)3 2985 O Br C1 C(CH3)3 2986 O NO2 C1 C(CH3)3 2987 O SCH3 C1 C(CH3)3 2988 O SO2CH2CH3 C1 C(CH3)3 2989 O SO2CH3 C1 C(CH3)3 2990 O CH3 C1 C(CH3)3 2991 O CF3 C1 C(CH3)3 2991 O CF3 C1 C(CH3)3 2993 S F C1 C(CH3)3 2994 S C1 C(CH3)3 2094 S C1 C(CH3)3 2094 S C1 C(CH3)3 2095 C1 C(CH3)3 2096 C1 C(CH3)3 2097 C1 C1 C(CH3)3 2097 C1 C1 C(CH3)3 2097 C1 C1 C1 C1 2007 C1 C1 C1 2007 C1 C1		2969	bond	SO ₂ CH ₂ CH ₃	Cl	C(CH ₃) ₃		
2972 bond OCHF ₂ C1 C(CH ₃) ₃ 2973 CH ₂ F C1 C(CH ₃) ₃ 2974 CH ₂ C1 C1 C1 C(CH ₃) ₃ 2974 CH ₂ C1 C1 C1 C(CH ₃) ₃ 2975 CH ₂ Br C1 C(CH ₃) ₃ 2976 CH ₂ NO ₂ C1 C(CH ₃) ₃ 2977 CH ₂ SCH ₃ C1 C(CH ₃) ₃ 2978 CH ₂ SO ₂ CH ₃ C1 C(CH ₃) ₃ 2979 CH ₂ SO ₂ CH ₂ CH ₃ C1 C(CH ₃) ₃ 2980 CH ₂ CH ₃ C1 C(CH ₃) ₃ 2981 CH ₂ CF ₃ C1 C(CH ₃) ₃ 2982 CH ₂ OCHF ₂ C1 C(CH ₃) ₃ 2983 O F C1 C(CH ₃) ₃ 2984 O C1 C1 C1 C(CH ₃) ₃ 2985 O Br C1 C(CH ₃) ₃ 2986 O NO ₂ C1 C(CH ₃) ₃ 2987 O SCH ₃ C1 C(CH ₃) ₃ 2988 O SO ₂ CH ₃ C1 C(CH ₃) ₃ 2989 O SO ₂ CH ₃ C1 C(CH ₃) ₃ 2990 O CH ₃ C1 C(CH ₃) ₃ 2990 O CH ₃ C1 C(CH ₃) ₃ 2991 O CF ₃ C1 C(CH ₃) ₃ 2992 O CCH ₂ C1 C(CH ₃) ₃ 2993 S F C1 C(CH ₃) ₃ 2994 S C1 C(CH ₃) ₃		2970	bond	CH ₃	Cl			
2973	15	2971	bond	CF ₃	Cl	C(CH ₃) ₃		
2974		2972	bond	OCHF ₂	Cl			
20 2975		2973	CH ₂	F	Cl	C(CH ₃) ₃		
2976		2974	CH ₂	C1	Cl	C(CH ₃) ₃		
2977	20	2975	CH ₂	Br	Cl			
2978		2976	CH ₂	NO ₂	Cl	C(CH ₃) ₃		
2979		2977	CH ₂	SCH ₃	Cl	C(CH ₃) ₃		
2980		2978	CH ₂	SO ₂ CH ₃	Cl			
2980	25	2979	CH ₂	SO ₂ CH ₂ CH ₃	Cl	C(CH ₃) ₃		
2982	2.5	2980	CH ₂	CH ₃	Cl	C(CH ₃) ₃		
2983 O F C1 C(CH ₃) ₃ 2984 O C1 C1 C1 C(CH ₃) ₃ 2985 O Br C1 C(CH ₃) ₃ 2986 O NO ₂ C1 C(CH ₃) ₃ 2987 O SCH ₃ C1 C(CH ₃) ₃ 2988 O SO ₂ CH ₃ C1 C(CH ₃) ₃ 2989 O CH ₃ C1 C(CH ₃) ₃ 2990 O CH ₃ C1 C(CH ₃) ₃ 2991 O CF ₃ C1 C(CH ₃) ₃ 2992 O OCHF ₂ C1 C(CH ₃) ₃ 2993 S F C1 C(CH ₃) ₃ 2994 S C1 C1 C(CH ₃) ₃		2981	CH ₂	CF ₃	Cl	C(CH ₃) ₃		
2984 O C1 C1 C1 C(CH ₃) ₃ 2985 O Br C1 C(CH ₃) ₃ 2986 O NO ₂ C1 C(CH ₃) ₃ 2987 O SCH ₃ C1 C(CH ₃) ₃ 2988 O SO ₂ CH ₃ C1 C(CH ₃) ₃ 2989 O SO ₂ CH ₂ CH ₃ C1 C(CH ₃) ₃ 2990 O CH ₃ C1 C(CH ₃) ₃ 2991 O CF ₃ C1 C(CH ₃) ₃ 2992 O OCHF ₂ C1 C(CH ₃) ₃ 2993 S F C1 C(CH ₃) ₃ 2994 S C1 C1 C(CH ₃) ₃		2982	CH ₂	OCHF ₂	Cl			
2985		2983	0	F	Cl	<u> </u>		
2986 O NO ₂ C1 C(CH ₃) ₃ 2987 O SCH ₃ C1 C(CH ₃) ₃ 2988 O SO ₂ CH ₃ C1 C(CH ₃) ₃ 2989 O SO ₂ CH ₂ CH ₃ C1 C(CH ₃) ₃ 2990 O CH ₃ C1 C(CH ₃) ₃ 2991 O CF ₃ C1 C(CH ₃) ₃ 2992 O OCHF ₂ C1 C(CH ₃) ₃ 2993 S F C1 C(CH ₃) ₃ 2994 S C1 C1 C(CH ₃) ₃	30	2984	0	Cl	Cl			
2987 O SCH ₃ Cl C(CH ₃) ₃ 2988 O SO ₂ CH ₃ Cl C(CH ₃) ₃ 2989 O SO ₂ CH ₂ CH ₃ Cl C(CH ₃) ₃ 2990 O CH ₃ Cl C(CH ₃) ₃ 2991 O CF ₃ Cl C(CH ₃) ₃ 2992 O OCHF ₂ Cl C(CH ₃) ₃ 2993 S F Cl C(CH ₃) ₃ 2994 S Cl Cl C(CH ₃) ₃		2985	0	Br	C1	C(CH ₃) ₃		
35 2988 O SO ₂ CH ₃ C1 C(CH ₃) ₃ 2989 O SO ₂ CH ₂ CH ₃ C1 C(CH ₃) ₃ 2990 O CH ₃ C1 C(CH ₃) ₃ 2991 O CF ₃ C1 C(CH ₃) ₃ 2992 O OCHF ₂ C1 C(CH ₃) ₃ 2993 S F C1 C(CH ₃) ₃ 2994 S C1 C1 C(CH ₃) ₃		2986	0	NO ₂	C1			
2989 O SO ₂ CH ₂ CH ₃ Cl C(CH ₃) ₃ 2990 O CH ₃ Cl C(CH ₃) ₃ 2991 O CF ₃ Cl C(CH ₃) ₃ 2992 O OCHF ₂ Cl C(CH ₃) ₃ 2993 S F Cl C(CH ₃) ₃ 2994 S Cl Cl C(CH ₃) ₃		2987	0	SCH ₃	C1			
2990 O CH ₃ C1 C(CH ₃) ₃ 2991 O CF ₃ C1 C(CH ₃) ₃ 2992 O OCHF ₂ C1 C(CH ₃) ₃ 2993 S F C1 C(CH ₃) ₃ 2994 S C1 C1 C(CH ₃) ₃	35	2988	0	SO ₂ CH ₃	C1	C(CH ₃) ₃		
2991 O CF ₃ Cl C(CH ₃) ₃ 2992 O OCHF ₂ Cl C(CH ₃) ₃ 2993 S F Cl C(CH ₃) ₃ 2994 S Cl Cl C(CH ₃) ₃	33	2989	0	SO ₂ CH ₂ CH ₃	Cl	C(CH ₃) ₃		
40 2992 O OCHF2 C1 C(CH3)3 2993 S F C1 C(CH3)3 2994 S C1 C1 C(CH3)3		2990	0	CH ₃	Cl			
2993 S F C1 C(CH ₃) ₃ 2994 S C1 C1 C(CH ₃) ₃	40	2991	0	CF ₃	Cl	C(CH ₃) ₃		
2993 S F C1 C(CH ₃) ₃ 2994 S C1 C1 C(CH ₃) ₃		2992	0	OCHF ₂	C1	C(CH ₃) ₃		
		2993	S	F	Cl	C(CH ₃) ₃		
2005 S Br C1 C(CH ₃) ₃		2994	S	Cl	Cl	C(CH ₃) ₃		
2995		2995	S	Br	C1	C(CH ₃) ₃		
2996 S NO ₂ Cl C(CH ₃) ₃		2996	S	NO ₂	Cl			
2997 S SCH ₃ Cl C(CH ₃) ₃	45	2997	S	SCH ₃	C1	C(CH ₃) ₃		
2998 S SO ₂ CH ₃ Cl C(CH ₃) ₃		2998	S	SO ₂ CH ₃	Cl	C(CH ₃) ₃		

	n	х	R ⁴	R ¹⁰	R ¹¹
	2999	S	SO ₂ CH ₂ CH ₃	C1	C(CH ₃) ₃
	3000	S	CH ₃	C1	C(CH ₃) ₃
5	3001	S	CF ₃	Cl	C(CH ₃) ₃
5	3002	S	OCHF ₂	Cl	C(CH ₃) ₃
	3003	SO ₂	F	Cl	C(CH ₃) ₃
	3004	SO ₂	Cl	Cl	C(CH ₃) ₃
	3005	SO ₂	Br	Cl	°C (CH ₃) ₃
10	3006	SO ₂	NO ₂	Cl	C(CH ₃) ₃
	3007	SO ₂	SCH ₃	Cl	C(CH ₃) ₃
	3008	SO ₂	SO ₂ CH ₃	C1	C(CH ₃) ₃
15	3009	SO ₂	SO ₂ CH ₂ CH ₃	C1	C(CH ₃) ₃
	3010	SO ₂	CH ₃	Cl	C(CH ₃) ₃
	3011	SO ₂	CF ₃	C1	C(CH ₃) ₃
	3012	SO ₂	OCHF ₂	Cl	C(CH ₃) ₃

20

Very particular preference is also given to the compounds of the formula Ia2 (\equiv Ia where R¹, R², R⁵ and R¹² = H, R³ = CH₃, l = 1), in particular to the compounds Ia2.n, where the variables X, R⁴, 5 R¹⁰ and R¹¹ are as defined in Table 1.

10
$$\begin{array}{c} CH_3 \\ N \\ N \\ R^{10} \end{array}$$
 Ia2

Very particular preference is also given to the compounds of the formula Ia3 (\equiv Ia where R¹, R², R⁵ and R¹² = H, R³ = CH₃, l = 1), in particular to the compounds Ia3.n, where the variables X, R⁴, R¹⁰ and R¹¹ are as defined in Table 1.

Very particular preference is also given to the compounds of the 30 formula Ia4 (\equiv Ia where R¹, R², R⁵ and R¹² = H, R³ = CH₃, l = 2), in particular to the compounds Ia4.n, where the variables X, R⁴, R¹⁰ and R¹¹ are as defined in Table 1.

Very particular preference is also given to the compounds of the formula Ia5 (\equiv Ia where R¹, R², R⁵ and R¹² = H, R³ = CH₃, l = 1), 45 in particular to the compounds Ia5.n, where the variables X, R⁴, R¹⁰ and R¹¹ are as defined in Table 1.

101

$$\begin{array}{c|c}
 & X & N \\
 & N & N \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\
 & N & 1 \\$$

Very particular preference is also given to the compounds of the 10 formula Ia6 (\equiv Ia where R¹, R², R⁵ and R¹² = H, R³ = CH₃, l = 2), in particular to the compounds Ia6.n, where the variables X, R⁴, R¹⁰ and R¹¹ are as defined in Table 1.

Very particular preference is also given to the compounds of the formula Ia7 (\equiv Ia where R¹, R², R⁵ and R¹² = H, l = 0), in 25 particular to the compounds Ia7.n, where the variables X, R⁴, R¹⁰ and R¹¹ are as defined in Table 1.

30
$$\begin{array}{c|c} O & X & O \\ \hline N & R^{10} & R^4 \end{array}$$
 Ia7

Very particular preference is also given to the compounds of the formula Ia8 (\equiv Ia where R¹, R², R⁵ and R¹² = H, R³ = CH³, 1 = 1), in particular to the compounds Ia8.n, where the variables X, R⁴, R¹⁰ and R¹¹ are as defined in Table 1.

$$\begin{array}{c|c}
 & CH_3 \\
 & X \\
 & N \\
 & N \\
 & R^{11}
\end{array}$$
Ia8

10 Very particular preference is also given to the compounds of the formula Ia9 (\equiv Ia where R¹, R², R⁵ and R¹² = H, 1 = 0), in particular to the compounds Ia9.n, where the variables X, R⁴, R¹⁰ and R¹¹ are as defined in Table 1.

Very particular preference is also given to the compounds of the formula Ia10 (\equiv Ia where R¹, R², R⁵ and R¹² = H, 1 = 0), in 25 particular to the compounds Ia10.n, where the variables X, R⁴, R¹⁰ and R¹¹ are as defined in Table 1.

30
$$\begin{array}{c|c}
 & X & S \\
 & X & S \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N \\
 & X & N$$

Very particular preference is also given to the compounds of the formula Iall (\equiv Ia where R¹, R², R⁵ and R¹² = H, l = 0), in particular to the compounds Iall.n, where the variables X, R⁴, R¹⁰ and R¹¹ are as defined in Table 1.

35

$$\begin{array}{c|c}
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\
 & X \\$$

Very particular preference is also given to the compounds of the 10 formula Ia12 (\equiv Ia where R¹, R², R⁵ and R¹² = H, l = 0), in particular to the compounds Ia12.n, where the variables X, R⁴, R¹⁰ and R¹¹ are as defined in Table 1.

5

$$\begin{array}{c|c}
N & X & O \\
N & R^{10} & R^4
\end{array}$$
Ia12

20

Very particular preference is also given to the compounds of the formula Ia13 (\equiv Ia where R^1 , R^2 , R^5 and R^{12} = H, 1 = 0), in particular to the compounds Ia13.n, where the variables X, R^4 , R^{10} and R^{11} are as defined in Table 1.

$$\begin{array}{c|c}
 & X & N \\
 & N & R^{10} & R^4
\end{array}$$
Ia13

35 Very particular preference is also given to the compounds of the formula Ia14 (\equiv Ia where R¹, R², R⁵ and R¹² = H, R³ = CH₃, l = 1), in particular to the compounds Ia14.n, where the variables X, R⁴, R¹⁰ and R¹¹ are as defined in Table 1.

$$\begin{array}{c|c}
 & CH_3 \\
 & N \\
 & N \\
 & R^{10}
\end{array}$$
Ia14

10 Very particular preference is also given to the compounds of the formula Ia15 (\equiv Ia where R¹, R², R⁵ and R¹² = H, R³ = CH₃, l = 1), in particular to the compounds Ia15.n, where the variables X, R⁴, R¹⁰ and R¹¹ are as defined in Table 1.

Very particular preference is also given to the compounds of the formula Ia16 (\equiv Ia where R¹, R², R⁵ and R¹² = H, l = 0), in 25 particular to the compounds Ia16.n, where the variables X, R⁴, R¹⁰ and R¹¹ are as defined in Table 1.

30
$$\begin{array}{c} O & X \\ N & R^{10} \\ R^{11} \end{array}$$
 Ia16

Very particular preference is also given to the compounds of the formula Ia17 (\equiv Ia where R¹, R², R⁵ and R¹² = H, 1 = 0), in particular to the compounds Ia17.n, where the variables X, R⁴, R¹⁰ and R¹¹ are as defined in Table 1.

40

20

105

$$\begin{array}{c|c}
 & O & X & N \\
 & N & N & N \\
 & N & N & N \\
 & N & N & N \\
 & N & N & N & N \\
 & N & N & N & N \\
 & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N \\
 & N & N & N & N \\
 & N & N & N & N \\
 & N & N & N & N \\
 & N & N & N & N \\
 & N & N & N & N \\
 & N & N & N & N \\
 & N & N & N & N \\
 & N & N & N & N \\
 & N & N & N & N \\
 & N & N & N & N \\
 & N & N & N & N \\
 & N & N & N & N \\
 & N & N & N & N \\
 & N & N & N & N \\
 & N & N & N & N \\
 & N & N & N & N \\
 & N & N & N & N \\
 & N & N & N & N \\
 & N & N & N & N \\
 & N & N & N & N \\
 & N & N & N & N \\
 & N & N & N & N \\
 & N & N & N & N \\
 & N & N & N &$$

Very particular preference is also given to the compounds of the **10** formula Ia18 (\equiv Ia where R¹, R², R⁵ and R¹² = H, R¹³ = CH₃, l = 1), in particular to the compounds Ia18.n, where the variables X, R⁴, R¹⁰ and R¹¹ are as defined in Table 1.

Very particular preference is also given to the compounds of the formula Ia19 (\equiv Ia where R¹, R², R⁵ and R¹² = H, l = 0), in particular to the compounds Ia19.n, where the variables X, R⁴, R¹⁰ and R¹¹ are as defined in Table 1.

35 Very particular preference is also given to the compounds of the formula Ia20 (\equiv Ia where R¹, R², R⁵ and R¹² = H, l = 0), in particular to the compounds Ia20.n, where the variables X, R⁴, R¹⁰ and R¹¹ are as defined in Table 1.

40
$$\begin{array}{c}
0 & X & S \\
N & R^{10} & R^4
\end{array}$$
Ia20

Very particular preference is also given to the compounds of the formula Ia21 (\equiv Ia where R^1 , R^2 , R^5 and R^{12} = H, l = 0), in particular to the compounds Ia21.n, where the variables X, R^4 , R^{10} and R^{11} are as defined in Table 1.

5

10

$$N$$
 N
 R^{10}
 R^{11}
 R^{11}
 SO_2
 R^4
 R^4

Very particular preference is also given to the compounds of the **15** formula Ia22 (\equiv Ia where R¹, R², R⁵ and R¹² = H, R³ = CH₃, l = 1), in particular to the compounds Ia22.n, where the variables X, R⁴, R¹⁰ and R¹¹ are as defined in Table 1.

20
$$N = R^{10}$$

$$R^{11}$$

$$N = CH_3$$

$$R^4$$

$$R^4$$

25

The tricyclic benzoylpyrazole derivatives of the formula I can be obtained by various routes, for example by one of the following processes:

30

A. Preparation of compounds of the formula I where R^{10} = halogen by reacting a tricyclic benzoylpyrazole derivative of the formula I α (\equiv I where R^{10} = hydroxyl) with a halogenating agent:

35

Suitable halogenating agents are, for example, phosgene, diphosgene, triphosgene, thionyl chloride, oxalyl chloride, phosphorus oxychloride, phosphorus pentachloride, mesyl

15

25

107

chloride, chloromethylene-N,N-dimethylammonium chloride, oxalyl bromide, phosphorus oxybromide, etc.

The starting materials are generally employed in equimolar amounts. However, it may also be advantageous to employ an excess of one or the other component.

Suitable solvents are, for example, chlorinated hydrocarbons, such as methylene chloride or 1,2-dichloroethane, aromatic hydrocarbons, for example toluene, xylene or chlorobenzene, polar aprotic solvents, such as acetonitrile, dimethylformamide or dimethyl sulfoxide, or mixtures of these. However, it is also possible to carry out the reaction in the absence of solvent.

The reaction temperature is generally in the range from 0° C to the boiling point of the reaction mixture.

Work-up can be carried out in a manner known per se to afford the product.

B. Preparation of compounds of the formula I where $R^{10} = OR^{13}$, by reacting a tricyclic benzoylpyrazole derivative of the formula I α (\equiv I where R^{10} = hydroxyl) with an alkylating agent III.

30
$$R^{12}$$
 R^{12}
 R^{12}
 R^{12}
 R^{12}
 R^{12}
 R^{12}
 R^{13}
 R^{14}
 R^{15}
 R^{10}
 L¹ is a nucleophilically replaceable leaving group, such as halogen, for example chlorine or bromine, hetaryl, for example imidazolyl, carboxylate, for example acetate, or sulfonate, for example mesylate or triflate, etc.

The compounds of the formula III can be employed directly, such as, for example, in the case of the carbonyl halides, or be generated in situ, for example activated carboxylic acids (using carboxylic acid and dicyclohexylcarbodiimide etc.).

The starting materials are generally employed in equimolar amounts. However, it may also be advantageous to employ an excess of one or the other component.

- If appropriate, it may also be advantageous to carry out the reaction in the presence of a base. Here, the reactants and the base are advantageously employed in equimolar amounts. In certain cases, an excess of base, for example from 1.5 to 3 molar equivalents, may be advantageous.
- Suitable bases are tertiary alkylamines, such as triethylamine, aromatic amines, such as pyridine, alkali metal carbonates, for example sodium carbonate or potassium carbonate, alkali metal bicarbonates, for example sodium
- bicarbonate and potassium bicarbonate, alkali metal alkoxides, such as sodium methoxide, sodium ethoxide, potassium tert-butoxide, or alkali metal hydrides, for example sodium hydride. Preference is given to using triethylamine or pyridine.
- Suitable solvents are, for example, chlorinated hydrocarbons, such as methylene chloride or 1,2-dichloroethane, aromatic hydrocarbons, for example toluene, xylene or chlorobenzene, ethers, such as diethyl ether, methyl tert-butyl ether, tetrahydrofuran or dioxane, polar aprotic solvents, such as acetonitrile, dimethylformamide or dimethyl sulfoxide, or esters, such as ethyl acetate, or mixtures of these.
- The reaction temperature is generally in the range from 0° C to the boiling point of the reaction mixture.
 - Work-up can be carried out in a manner known per se to afford the product.
- 35 C. Preparation of compounds of the formula I where $R^{10}=OR^{13},$ $SR^{13},\ NR^{15}R^{16}$ or N-bonded heterocyclyl by reacting compounds of the formula I β (\equiv I where $R^{10}=$ halogen) with a compound of the formula IV α , IV β , IV γ or IV δ , if appropriate in the presence of a base or with prior formation of salt.

40

15

20

25

30

35

40

45

109 HOR^{13} $IV\alpha$ orI (where $R^{10} =$ OR^{13} , SR^{13} , $NR^{15}R^{16}$ or HSR¹³ IVβ Iβ N-bonded heterocyclyl) 5 orHNR¹⁵R¹⁶ ΙVγ orΙνδ H(N-bonded heterocyclyl)

The starting materials are generally employed in equimolar amounts. However, it may also be advantageous to employ an excess of one or the other component.

If appropriate, it may also be advantageous to carry out the reaction in the presence of a base. Here, the reactants and the base are advantageously employed in equimolar amounts. An excess of base, for example from 1.5 to 3 molar equivalents, based on I β (where R¹⁰ = halogen), may be advantageous in certain cases.

Suitable bases are tertiary alkylamines, such as triethylamine, aromatic amines, such as pyridine, alkali metal carbonates, for example sodium carbonate or potassium carbonate, alkali metal bicarbonates, for example sodium bicarbonate and potassium bicarbonate, alkali metal alkoxides, such as sodium methoxide, sodium ethoxide, potassium tert-butoxide, or alkali metal hydrides, for example sodium hydride. Preference is given to using sodium hydride or potassium tert-butoxide.

Suitable solvents are, for example, chlorinated hydrocarbons, such as methylene chloride or 1,2-dichloroethane, aromatic hydrocarbons, for example toluene, xylene or chlorobenzene, ethers, such as diethyl ether, methyl tert-butyl ether, tetrahydrofuran or dioxane, polar aprotic solvents, such as acetonitrile, dimethylformamide or dimethyl sulfoxide, or mixtures of these.

The reaction temperature is generally in the range from 0°C to the boiling point of the reaction mixture.

Work-up can be carried out in a manner known per se to afford the product.

D. Preparation of compounds of the formula I where $R^{10}=SO_2R^{14}$ by reacting compounds of the formula I where $R^{10}=SR^{10}$ (I γ) with an oxidizing agent.

oxidizing agent

IY

I (where
$$R^{10} = SO_2R^{14}$$
)

Suitable oxidizing agents are, for example,

m-chloroperbenzoic acid, peroxyacetic acid,

trifluoroperoxyacetic acid, hydrogen peroxide, if appropriate
in the presence of a catalyst, such as tungstate.

The starting materials are generally employed in equimolar amounts. However, it may also be advantageous to employ an excess of one or the other component.

Suitable solvents are, for example, chlorinated hydrocarbons, such as methylene chloride or 1,2-dichloroethane, aromatic hydrocarbons, for example, toluene, xylene or chlorobenzene, ethers, such as diethyl ether, methyltert-butyl ether, tetrahydrofuran or dioxane, polar aprotic solvents, such as acetonitrile or dimethylformamide, or esters, such as ethyl acetate, or mixtures of these.

The reaction temperature is generally in the range from 0° C to the boiling point of the reaction mixture.

Work-up can be carried out in a manner known per se to afford the product.

E. Preparation of compounds of the formula I where R⁹ = IIa (where R¹⁰ + hydroxyl or mercapto) by reacting a metalated pyrazole derivative of the formula V with a tricyclic benzoic acid derivative of the formula VIα:

45 V VI α Ia (where R¹⁰ + OH, SH)

20

25

30

111

Here, M is a metal, in particular an alkali metal, such as lithium or sodium, an alkaline earth metal, such as, for example, magnesium, or a transition metal, such as palladium, nickel, etc. and $\rm L^2$ is a nucleophilically replaceable leaving group, such as halogen, for example chlorine or bromine, alkylsulfonate, such as mesylate, haloalkylsulfonate, such as triflate, or cyanide.

The reaction is generally carried out at temperatures of from -100°C to the reflux temperature of the reaction mixture. Suitable solvents are inert aprotic solvents, such as ethers, for example diethyl ether, tetrahydrofuran. The compounds of the formula $VI\alpha$ are generally employed in excess, but it may also be advantageous to employ them in equimolar amounts or in substoichiometric amounts. Work-up is carried out to afford the product.

The metalated pyrazole derivatives of the formula V can be formed in a manner known per se by reacting pyrazoles which are halogenated in the 4-position with metals, such as lithium, sodium, magnesium, etc., or with organometallic compounds, such as, for example, butyllithium. However, it is also possible to metalate pyrazoles which are linked in the 4 position to hydrogen directly, for example with the abovementioned metals or organometallic compounds. The reactions are generally carried out in an inert aprotic solvent, preferably in ether, such as diethyl ether, tetrahydrofuran, etc. The reaction temperature is in the range from -100°C to the boiling point of the reaction mixture. The compounds of the formula V are generally directly reacted further or generated in situ.

F. Preparation of compounds of the formula $I\alpha$ (\equiv I where R^{10} = hydroxyl) by reacting an activated tricyclic benzoic acid of the formula VI β or a tricyclic benzoic acid VI γ , preferably activated in situ, with a pyrazole of the formula VII to give the acylation product, followed by rearrangement.

5

$$R^{1}$$
 R^{2}
 R^{3}
 R^{1}
 R^{1}
 R^{2}
 R^{3}
 R^{1}
 R^{1}
 R^{2}
 R^{3}
 R^{1}
 R^{1}
 R^{2}
 R^{3}
 R^{1}
 R^{2}
 R^{3}
 R^{1}
 R^{2}
 R^{3}
 R^{1}
 R^{2}
 R^{3}
 R^{3}
 R^{1}
 R^{2}
 R^{3}
 R^{3}
 R^{4}
 R^{2}
 R^{3}
 R^{4}
 R^{4}
 R^{5}
 R^{1}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{4}
 R^{5}
 R^{1}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{4}
 R^{5}
 R^{1}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 L³ is a nucleophilically replaceable leaving group, such as halogen, for example bromine or chlorine, hetaryl, for example 30 imidazolyl or pyridyl, carboxylate, for example acetate or trifluoroacetate, etc.

The activated tricyclic benzoic acid VI β can be employed directly, such as in the case of the tricyclic benzoyl halides, or be generated in situ, for example using dicyclohexylcarbodiimide, triphenylphosphine/azodicarboxylic ester, 2-pyridine disulfide/triphenylphosphine, carbonyldiimidazole, etc.

If appropriate, it may be advantageous to carry out the acylation reaction in the presence of a base. Here, the reactants and the auxiliary base are advantageously employed in equimolar amounts. A slight excess of auxiliary base, for example from 1.2 to 1.5 molar equivalents, based on VI, may be advantageous in certain cases.

Suitable auxiliary bases are tertiary alkylamines, pyridine, or alkali metal carbonates. Suitable solvents are, for example, chlorinated hydrocarbons, such as methylene chloride or 1,2-dichloroethane, aromatic hydrocarbons, such as toluene, sylene or chlorobenzene, ethers, such as diethyl ether, methyl tert-butyl ether, tetrahydrofuran or dioxane, polar aprotic solvents, such as acetonitrile, dimethylformamide or dimethyl sulfoxide, or esters, such as ethyl acetate, or mixtures of these.

10

If tricyclic benzoyl halides are employed as activated carboxylic acid components, it may be advantageous to cool the reaction mixture to 0-10°C when adding this reaction partner. The mixture is subsequently stirred at 20 - 100°C, preferably at 25 - 50°C, until the reaction has gone to completion. Work-up is carried out

in a customary manner, for example by pouring the reaction mixture into water and extracting the product of value. Solvents which are suitable for this purpose are, in particular, methylene chloride, diethyl ether and ethyl acetate. The organic phase is

20 dried and the solvent removed, and the crude ester can then be employed for the rearrangement without further purification.

The rearrangement of the esters VIII to give the compounds of the formula $I\alpha$ is advantageously carried out at from 20 to 100°C in a solvent and in the presence of a base and, if appropriate, using a cyano compound as catalyst.

Solvents which may be used are, for example, acetonitrile, methylene chloride, 1,2-dichloroethane, dioxane, ethyl acetate, 30 toluene or mixtures of these. Preferred solvents are acetonitrile and dioxane.

Suitable bases are tertiary amines, such as triethylamine, aromatic amines, such as pyridine, or alkali metal carbonates, such as sodium carbonate or potassium carbonate, which are preferably employed in equimolar amounts or in an up to four-fold excess, based on the ester. Preference is given to using triethylamine or alkali metal carbonate, preferably in double the equimolar ratio, based on the ester.

40

Suitable cyano compounds are inorganic cyanides, such as sodium cyanide or potassium cyanide, and organic cyano compounds, such as acetone cyanohydrin or trimethylsilyl cyanide. They are employed in an amount of from 1 to 50 mol percent, based on the ester. Preference is given to using acetone cyanohydrin or

trimethylsilyl cyanide, for example in an amount of from 5 to 15, preferably 10, mol percent, based on the ester.

Work-up may be carried out in a manner known per se. The reaction 5 mixture is, for example, acidified using dilute mineral acid, such as 5% strength hydrochloric acid or sulfuric acid, and extracted with an organic solvent, for example methylene chloride or ethyl acetate. The organic extract can be extracted with 5-10% strength alkali metal carbonate solution, for example sodium carbonate or potassium carbonate solution. The aqueous phase is acidified and the resulting precipitate is filtered off with

15 However, it is also possible to generate the ester VIII in situ by reacting a pyrazole of the formula VII, or an alkali metal salt thereof, with a tricyclic benzene derivative of the formula IX in the presence of carbon monoxide, a catalyst and a base.

suction and/or extracted with methylene chloride or ethyl

acetate, the extract being dried and concentrated.

L⁴ is a leaving group, such as halogen, for example chlorine, **40** bromine or iodine, or sulfonate such as mesylate or triflate; preference is given to bromine or triflate.

If appropriate, the ester VIII reacts directly to give the tricyclic benzoylpyrazole derivative of the formula $I\alpha$.

Suitable catalysts are palladium ligand complexes in which the palladium is present in oxidation state 0, metallic palladium, if appropriate applied to a support, and preferably palladium(II) salts. The reaction with palladium(II) salts and metallic palladium is preferably carried out in the presence of complex ligands.

A suitable palladium(0) ligand complex is, for example, tetrakis(triphenylphosphane)palladium.

10

Metallic palladium is preferably applied to an inert carrier, such as, for example, activated carbon, silica, alumina, barium sulfate or calcium carbonate. The reaction is preferably carried out in the presence of complex ligands, such as, for example, triphenylphosphane.

Suitable palladium(II) salts are, for example, palladium acetate and palladium chloride. Preference is given to carrying out the reaction in the presence of complex ligands such as, for example, triphenylphosphane.

Suitable complex ligands for the palladium ligand complexes, or complex ligands in whose presence the reaction with metallic palladium or palladium(II) salts is preferably carried out are tertiary phosphanes whose structure is represented by the following formulae:

where n is a number from 1 to 4 and the radicals R^a to R^g are C_1-C_6 -alkyl, aryl- C_1-C_2 -alkyl or preferably aryl. Aryl is, for example, naphthyl and unsubstituted or substituted phenyl such as, for example, 2-tolyl and in particular unsubstituted phenyl.

The complex palladium salts can be prepared in a manner known per se starting from commercially available palladium salts, such as palladium chloride or palladium acetate, and the corresponding phosphanes, such as, for example, triphenylphosphane or 1,2-bis(diphenylphosphano)ethane. A large number of complexed palladium salts is also commercially available. Preferred palladium salts are

[(R)-(+)-2,2'-bis(diphenylphosphano)-1,1'-binaphthyl]palladium (II) chloride, bis(triphenylphosphane)palladium(II) acetate and in particular bis(triphenylphosphane)palladium(II) chloride.

30

116

The palladium catalyst is generally employed in a concentration of from 0.05 to 5 mol%, and preferably of 1-3 mol%.

Suitable bases are tertiary amines, such as, for example,

5 N-methylpiperidine, ethyldiisopropylamine,
1,8-bisdimethylaminonaphthalene and in particular triethylamine.
Also suitable are alkali metal carbonates, such as sodium
carbonate or potassium carbonate. However, mixtures of potassium
carbonate and triethylamine are also suitable.

In general, from 2 to 4 molar equivalents, in particular 2 molar equivalents, of the alkali metal carbonate, and from 1 to 4 molar equivalents, in particular 2 molar equivalents, of the tertiary amine are employed, based on the tricyclic benzene derivative of 15 the formula IX.

Suitable solvents are nitriles, such as benzonitrile and acetonitrile, amides, such as dimethylformamide, dimethylacetamide, tetra- C_1 - C_4 -alkylureas or N-methylpyrrolidone, 20 and preferably ethers, such as tetrahydrofuran, methyl tert-butyl ether. Particular preference is given to using, as solvents, ethers such as 1,4-dioxane and dimethoxyethane.

The tricyclic benzoyl halides of the formula VI β where L³ = C1, Br 25 can be prepared in a manner known per se by reacting the tricyclic benzoic acids of the formula VI γ (\equiv VIb) with halogenating agents such as thionyl chloride, thionyl bromide, phosgene, diphosgene, triphosgene, oxalyl chloride and oxalyl bromide.

In a known manner, the tricyclic benzoic acids of the formula VI γ (\equiv VIb) can be prepared by acidic or basic hydrolysis from the corresponding esters VIc.

35 Tricyclic benzoic acid derivatives of the formula VI

45 where:

		117
	X	is oxygen, sulfur, S=0, $S(=0)_2$, CR^6R^7 , NR^8 or a bond;
5	Y	together with the two carbons to which it is attached forms a saturated, partially saturated or unsaturated 5- or 6-membered heterocycle which contains one to three identical or different heteroatoms selected from the following group: oxygen, sulfur or nitrogen;
10	R^1, R^2, R^6, R^7	are hydrogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy or C_1 - C_6 -haloalkoxy;
15	R ³	is halogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy or C_1 - C_6 -haloalkoxy;
20	R ⁴	is nitro, halogen, cyano, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkylthio, C_1 - C_6 -haloalkylthio, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -haloalkylsulfinyl, C_1 - C_6 -haloalkylsulfonyl, C_1 - C_6 -haloalkylsulfonyl,
25		aminosulfonyl, $N-(C_1-C_6-alkyl)$ -aminosulfonyl, $N,N-di(C_1-C_6-alkyl)$ aminosulfonyl, $N-(C_1-C_6-alkyl)$ aminosulfonyl, $N-(C_1-C_6-alkyl)$ amino, $N-(C_1-C_6-alkyl)$ amino, $N-(C_1-C_6-alkyl)$ - $N-(C_1-C_6-alkyl)$ amino or $N-(C_1-C_6-alkyl)$ - $N-(C_1-C_6-alkyl)$ amino;
20	R ⁵	is hydrogen, $C_1-C_6-alkyl$ or halogen;
30	R ⁸	is hydrogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkylcarbonyl, formyl, C_1 - C_6 -alkoxycarbonyl, C_1 - C_6 -haloalkoxycarbonyl, C_1 - C_6 -alkylsulfonyl or C_1 - C_6 -haloalkylsulfonyl;
35	1	is 0, 1 or 2;
	R ¹⁷	is hydroxyl or a radical which can be removed by hydrolysis;
40	are novel.	

Examples of radicals which can be removed by hydrolysis are alkoxy, phenoxy, alkylthio and phenylthio radicals which can be unsubstituted or substituted, halides, heteroaryl radicals which

are attached via nitrogen, amino and imino radicals which may be unsubstituted or substituted, etc.

Preference is given to tricyclic benzoyl halides VIa (VI where R^{17} 5 = halogen)

10
$$\begin{array}{c} R^1 \\ X \\ \end{array}$$

$$\begin{array}{c} R^2 \\ Y \\ \end{array}$$

$$\begin{array}{c} R^3 \\ 1 \\ \end{array}$$

$$\begin{array}{c} VIa \\ \end{array}$$

15 where the variables X, Y, \mathbb{R}^1 to \mathbb{R}^5 and 1 are as defined under formula VI and

Hal is halogen, in particular chloride or bromide.

20 Preference is also given to tricyclic benzoic acids of the formula VIb (VI where R^{17} = hydroxyl; \equiv VI γ),

25
$$R^1$$
 R^2
 R^3
 Y
VIb

30

where the variables X, Y, \mathbf{R}^1 to \mathbf{R}^5 and 1 are as defined under formula VI.

Preference is also given to tricyclic benzoic esters of the 35 formula VIc (VI where R^{17} = T = C_1 - C_6 -alkoxy),

$$\mathbf{40} \qquad \qquad \mathbf{T} \qquad \mathbf{X} \qquad \mathbf{R}^{1} \qquad \mathbf{R}^{2} \qquad \mathbf{R}^{3} \qquad \qquad \mathbf{VIc}$$

 ${\bf 45}$ where the variables X, Y, ${\bf R}^1$ to ${\bf R}^5$ and 1 are as defined under formula VI and

T is C_1-C_6 -alkoxy.

With respect to the variables X, Y, R¹ to R⁵ and l, the particularly preferred embodiments of the tricyclic benzoic acid derivatives of the formulae VI, VIa, VIb and VIc correspond to those of the tricyclic benzoylpyrazole derivatives of the formula I.

Particular preference is given to the compounds VI, VIa, VIb and 10 VIc where Y together with the two carbons to which it is attached forms the following heterocycles:

Here, extraordinary preference is given to the compounds VI, VIa, VIb and VIc where

20

R4 is nitro, halogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkylthio or C_1 - C_6 -alkylsulfonyl; in particular C_1 - C_6 -alkylsulfonyl.

25

The tricyclic benzoic esters VIc can be obtained in different ways.

For example, benzoic esters of the formula X, which are prepared in a manner known per se (cf., for example, Chem. Pharm. Bull. 1985, 33 (8), 3336; Helv. Chim. Acta 1987, 70, 1326; J. Chem. Soc. Perkin Trans. 1972, 2019; J. Chem. Soc. Perkin Trans. 1991, 2763; Tetrahydron Asymmetry 1998, 9, 1137), can be cyclized to cyclic ketones of the formula XI (cf., for example, Chem. Ber. 1923, 56, 1819; J. Chem. Soc. Perkin I 1991, 2763; J. Med. Chem. 1988, 31, 230; Tetrahedron 1987, 43, 4549; Synlett 1991, 6, 443; Chem. Pharm. Bull. 1985, 33 (8), 3336). Analogously to known processes (cf., for example, J. Heterocyclic Chem. 1976, 13, 545; J. Heterocyclic Chem. 1972, 9, 1341; J. Org. Chem. 1978, 43, 3015; J. Chem. Soc. Perkin Trans. I 1978, 86; J. Org. Chem. 1986, 51, 2021), these can be converted into the tricyclic benzoic esters of the formula VIc.

- 10 Furthermore, it may be suitable to cyclize the cyclic ketone of the formula XI in a manner known per se (XII), for example using an anhydride or acid anhydride, if appropriate in the presence of catalytic amounts of a Lewis acid, such as boron trifluoride (cf., for example, Can. J. Chem. 1979, 57, 3292; J. Am. Chem.
- 15 Soc. 1953, 75, 626), followed by reaction with a hydrazine (cf. A.R. Katritzky et al., Comprehensive Heterocyclic Chemistry, Vol. 5, p. 121, 277 280 (1984), Pergamon Press; J. Org. Chem. 1961, 26, 451; Org. Synth. 1949, 29, 54), where the resulting pyrazole radical can be modified further by customary processes.

Furthermore, the diketone XII can be reacted with hydroxylamine or equivalents thereof (cf. A.R. Katritzky et al., Comprehensive Heterocyclic Chemistry, Vol. 6, p. 61 - 64, 118 (1984), Pergamon Press; Chem. Ber. 1967, 100, 3326). This gives the corresponding isoxazole derivatives which can be modified further by customary processes.

It is also possible to react the diketone XII with amidines (cf., for example, A.R. Katritzky et al., Comprehensive Heterocyclic 30 Chemistry, Vol. 3, p. 112 - 114 (1924), Pergamon Press; J. Chem. Soc. C 1967, 1922; Org. Synth. 1963, IV, 182). If required, the resulting pyrimidine derivatives can be modified further by customary processes.

35

In the reactions mentioned above, it is also possible to employ, instead of the diketone XII, equivalents thereof, such as enol ethers or enamines, which can be prepared analogously to known processes.

It may also be possible to react the cyclic ketone of the formula XI analogously to known processes with an aldehyde or ketone to give (XIII) (cf., for example, Tetrahedron Lett. 1978, 2111;

- 10 Tetrahedron Lett. 1981, 5251; Chem. Ber. 1960, 2294; J. Chem. Soc. Perkin Trans. 1, 1991, 1467; Tetrahedron Lett. 1992, 8091). The resulting unsaturated cyclic ketone of the formula XIII can be reacted with a hydrazine in a manner known per se (cf., for example, A.R. Katritzky et al. Comprehensive Heterocyclic
- 15 Chemistry, Vol. 2, 6 (1984), Pergamon Press; J. Heterocyclic Chem. 1969, 533; J. Heterocyclic Chem. 1968, 853), where the resulting pyrazoline can be modified further by customary processes.
- 20 It is furthermore possible to react the unsaturated cyclic ketone of the formula XIII with hydroxylamine or equivalents thereof (Z. Chem. 1980, 20, 19). This gives the corresponding isoxazoline derivatives, which can be modified further by customary processes.

25

30

35

Furthermore, it is possible to convert aldehydes of the formula XIV, which can be prepared in a manner known per se, analogously to processes known from the literature by reaction with a

- 5 hydrazine or hydroxylamine (or equivalents of these) into the corresponding hydrazones or oximes (cf., for example, Synth. Commun. 1990, 20, 1373; J. Org. Chem. 1980, 45, 3756). These in turn can be converted in a manner known per se into the corresponding 1,3-dipoles, which then react in a
- 10 [3 + 2]-cycloaddition to give the compounds VIc (cf., for example, Synth. Commun. 1990, 20, 1373; EP-A 386 892; J. Org. Chem. 1980, 45, 3756; Tetrahedron Lett. 1981, 22, 1333.)

The resulting pyrazoles or pyrazolines and isoxazoles or 15 isoxazolines can be modified further by customary processes.

40 It is also possible to react the cyclic ketone of the formula XI with a dithiol or a "mixed alcohol" analogously to processes known from the literature (cf., for example, T.W. Greene et al., Protective Groups in Organic Synthesis, John Wiley & Sons, 133-140), and to subject it subsequently to a rearrangement in the presence of bromine or a suitable Lewis acid, such as, for

example, tellurium tetrachloride (cf. Tetrahedron 1991, 47, 4187; Synthesis 1991, 223; J. Chem. Soc. Chem. Commun. 1985, 1645).

5
$$R^{3a}$$
 R^{3a}

25

The resulting heterocycles can, if desired, be modified further by processes known per se.

The abovementioned substituents R^{3a} are hydrogen, C_1 - C_6 -alkyl, 30 C_1 - C_6 -haloalkyl, hydroxyl, C_1 - C_6 -alkoxy or C_1 - C_6 -haloalkoxy; furthermore, the abovementioned radicals R^{3b} are hydrogen, C_1 - C_6 -alkyl or C_1 - C_6 -haloalkyl.

The tricyclic benzoic esters of the formula VIc or the tricyclic 35 benzoic acids of the formula VIb can be obtained by reacting a tricyclic benzene derivative of the formula IX with a C_1 - C_6 -alcohol or water in the presence of carbon monoxide, a catalyst and a base. In general, the conditions mentioned under process F apply.

5
$$\begin{bmatrix} \text{co} \\ \text{catalyst} \end{bmatrix} \\ \text{base} \\ \text{C}_1\text{-C}_6\text{-alcohol} \end{bmatrix} \\ \text{T}$$

$$\begin{bmatrix} \text{co} \\ \text{R}^1 \\ \text{R}^2 \end{bmatrix} \\ \text{NIC}$$

$$\begin{bmatrix} \text{co} \\ \text{R}^1 \\ \text{NIC} \end{bmatrix} \\ \text{NIC}$$

$$\begin{bmatrix} \text{co} \\ \text{co} \\ \text{co} \\ \text{co} \\ \text{H2O} \end{bmatrix} \\ \text{HO}$$

$$\begin{bmatrix} \text{co} \\ \text{R}^1 \\ \text{R}^2 \end{bmatrix} \\ \text{NIC}$$

$$\begin{bmatrix} \text{co} \\ \text{R}^1 \\ \text{R}^2 \end{bmatrix} \\ \text{NIC}$$

$$\begin{bmatrix} \text{co} \\ \text{catalyst} \end{bmatrix} \\ \text{base} \\ \text{H2O} \end{bmatrix} \\ \text{NID}$$

 ${\rm L}^4$ is a leaving group, such as halogen, for example chlorine, bromine or iodine, or sulfate, such as mesylate or triflate; preference is given to bromine or triflate.

Furthermore, the tricyclic benzoic acids of the formula VIb can be obtained by converting a tricyclic benzene derivative of the formula IX where L⁴ is halogen, such as chlorine or bromine, in particular bromine, by reaction with, for example, n-butyllithium or magnesium into the metalated derivative, followed by quenching with carbon dioxide (cf., for example, J. Org. Chem. 1990, 55, 773; Angew. Chem. Int. Ed. 1969, 8, 68).

35
$$L^{4} \qquad X \qquad X \qquad 1. \quad \text{n-BuLi or Mg}$$

$$R^{1} \qquad X \qquad Y \qquad 1. \quad \text{n-BuLi or Mg}$$

$$R^{2} \qquad X \qquad Y \qquad 1. \quad \text{n-BuLi or Mg}$$

$$R^{4} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{4} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{5} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{6} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

$$R^{7} \qquad 1. \quad \text{N-BuLi or Mg}$$

45 It is also possible to obtain the tricyclic benzoic acids VIb by hydrolyzing the corresponding nitriles, analogously to processes known from the literature. The nitriles for their part can be

127

obtained by halogen/nitrile exchange or by Sandmeyer reaction from the corresponding anilines XV.

5
$$R^1$$
 R^2 R^3 R^4 R^4 R^4 R^4 R^5 R^4 R^4 R^5 R^4 R^4 R^5 R^4 R^5 R^4 R^5 R^4 R^5 R^4 R^5 R^4 R^5 R^4 R^5 R^4 R^5 R^4 R^5 R^4 R^5 R^4 R^5 R^4 R^5 R^4 R^5 R^4 R^5 R^4 R^5 R^4 R^5 R^4 R^5 R^6 $R^$

The compounds of the formula IX,

25

40

where:

x is oxygen, sulfur, S=0, $S(=0)_2$, CR^6R^7 , NR^8 or a bond;

y together with the two carbons to which it is attached forms a saturated, partially saturated or unsaturated 5- or 6-membered heterocycle which contains one to three identical or different heteroatoms selected from the following group: oxygen, sulfur or nitrogen;

 R^1, R^2, R^6, R^7 are hydrogen, C_1-C_6 -alkyl, C_1-C_6 -haloalkyl, C_1-C_6 -alkoxy or C_1-C_6 -haloalkoxy;

is halogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy or C_1 - C_6 -haloalkoxy;

is nitro, halogen, cyano, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, C_1 - C_6 -alkylthio, C_1 - C_6 -haloalkylthio, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -haloalkylsulfinyl,

 $C_1-C_6-alkylsulfonyl, C_1-C_6-haloalkylsulfonyl,$ aminosulfonyl, $N-(C_1-C_6-alkyl)$ aminosulfonyl, $N, N-di(C_1-C_6-alkyl)$ aminosulfonyl, $N-(C_1-C_6-alkylsulfonyl)$ amino, $N-(C_1-C_6-haloalkylsulfonyl)$ amino, $N-(C_1-C_6-alkyl)-N-(C_1-C_6-alkylsulfonyl)$ amino or $N-(C_1-C_6-alkyl)-N-(C_1-C_6-haloalkylsulfonyl)$ amino; R^5 is hydrogen, C₁-C₆-alkyl or halogen; R^8 is hydrogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C_1 - C_6 -alkylcarbonyl, formyl, C_1 - C_6 -alkoxycarbonyl, C_1-C_6 -haloalkoxycarbonyl, C_1-C_6 -alkylsulfonyl or C₁-C₆-haloalkylsulfonyl; 1 is 0, 1 or 2; L^4 is halogen, C₁-C₆-alkylsulfonyloxy, C₁-C₆-haloalkylsulfonyloxy or phenylsulfonyloxy, where the phenyl ring of the lastmentioned radical

 C_1 - C_6 -haloalkylsulfonyloxy or phenylsulfonyloxy, where the phenyl ring of the lastmentioned radical may be unsubstituted or partially or fully halogenated and/or may carry one to three of the following radicals: nitro, cyano, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

25

5

10

15

20

are novel.

Preference is given to compounds of the formula IX where L^4 is halogen, in particular bromine.

30

The particularly preferred embodiments of the compounds of the formula IX with respect to the variables X, Y, R^1 to R^5 and 1 correspond to those of the tricyclic benzoylpyrazole derivatives of the formula I.

35

45

Particular preference is given to the compounds of the formula IX where

Y together with the two carbons to which it is attached forms the following heterocycles:

Here, extraordinary preference is given to the compounds IX where

is nitro, halogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkylthio or C_1 - C_6 -alkylsulfonyl; in particular C_1 - C_6 -alkylsulfonyl.

The compounds of the formula IX can be obtained in different ways, the fused system, for example, can be constructed

10 analogously to the processes described for the compounds of the formula VIc.

However, it is also possible to construct the fused system from a suitable parent compound (analogously to the processes described 15 for compounds of the formula VIc) and to introduce L^4 = halogen subsequently by customary halogenating reactions.

The anilines of the formula XV and the nitriles of the formula $\ensuremath{\text{XVI}}$

20

where:

45

is oxygen, sulfur, S=0, $S(=0)_2$, CR^6R^7 , NR^8 or a bond;

y together with the two carbons to which it is attached forms a saturated, partially saturated or unsaturated 5- or 6-membered heterocycle which contains one to three identical or different heteroatoms selected from the following group: oxygen, sulfur or nitrogen;

 R^1, R^2, R^6, R^7 are hydrogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy or C_1 - C_6 -haloalkoxy;

	-2	
	R ³	is halogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl,
		C_1-C_6 -alkoxy or C_1-C_6 -haloalkoxy;
	R4	is nitro, halogen, cyano, C ₁ -C ₆ -alkyl,
5		C_1-C_6 -haloalkyl, C_1-C_6 -alkoxy, C_1-C_6 -haloalkoxy,
		C_1-C_6 -alkylthio, C_1-C_6 -haloalkylthio,
		C_1-C_6 -alkylsulfinyl, C_1-C_6 -haloalkylsulfinyl,
		C_1-C_6 -alkylsulfonyl, C_1-C_6 -haloalkylsulfonyl,
		aminosulfonyl, $N-(C_1-C_6-alkyl)$ aminosulfonyl,
10		$N, N-di(C_1-C_6-alkyl)$ aminosulfonyl,
		$N-(C_1-C_6-alkylsulfonyl)$ amino,
		N-(C ₁ -C ₆ -haloalkylsulfonyl)amino,
		$N-(C_1-C_6-natoalkylsulfonyl)$ amino or $N-(C_1-C_6-alkyl)-N-(C_1-C_6-alkylsulfonyl)$ amino or
		$N-(C_1-C_6-alkyl)-N-(C_1-C_6-haloalkylsulfonyl)amino;$
15	_	
	R ⁵	is hydrogen, C ₁ -C ₆ -alkyl or halogen;
	R ⁸	is hydrogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl,
	10	C_1-C_6 -alkylcarbonyl, formyl, C_1-C_6 -alkoxycarbonyl,
20		
20		C_1 - C_6 -haloalkoxycarbonyl, C_1 - C_6 -alkylsulfonyl or
		C ₁ -C ₆ -haloalkylsulfonyl;
	1	is 0, 1 or 2;
		~~ 0, + 0+ 0,

25 are also novel.

The particularly preferred embodiments of the compounds of the formulae XV and XVI with respect to the variables X, Y, R¹ to R⁵ and l correspond to those of the tricyclic benzoylpyrazole **30** derivatives of the formula I.

Particular preference is given to the compounds of the formula XV or XVI where

35 Y together with the two carbons to which it is attached forms the following heterocycles:

Here, extraordinary preference is given to the compounds XV or XVI where

45 $R^4 \qquad \text{is nitro, halogen, C_1-C_6-alkyl, C_1-C_6-haloalkyl, C_1-C_6-alkoxy, C_1-C_6-alkylthio or }$

131

 C_1-C_6 -alkylsulfonyl; in particular C_1-C_6 -alkylsulfonyl.

The compounds of the formula XV can be obtained in different 5 ways; for example, the fused system can be constructed analogously to the processes described for the compounds of the formula VIc.

However, it is also possible to construct the fused system from a suitable parent compound (analogously to the processes described for the compounds of the formula VIc) and to introduce a nitro group subsequently by nitration para to R⁴, analogously to processes known from the literature, and to convert this group in a manner known per se by reduction into the amino group.

If appropriate, it may be advantageous in the synthesis variants described above to introduce protective groups for certain functionalities if the functionalities are not compatible with the reaction conditions required.

The selection of the protective groups depends both on the reaction conditions and on the structure of the molecule. The protective groups, their introduction and their removal are generally known from the literature (cf., for example,

25 T.W. Greene et al., "Protective Groups in Organic Synthesis", 2nd edition, Wiley, New York, 1991), and they can be employed analogously to processes known from the literature.

Furthermore, it may be necessary to carry out a combination of 30 the synthesis variants described above.

It is also possible to introduce further substituents or to modify the substituents present by electrophilic, nucleophilic, free-radical or organometallic reactions and by oxidation or reduction reactions.

Preparation Examples:

(5-Phenylcarbonyloxy-1-methyl-1H-pyrazol-4-yl)-(8-methyl-sulfonyl-3a,4-dihydro-3H-indeno[1,2-c]isoxazol-5-yl)methanone (compound 2.2)

2-Allyl-6-chlorobenzaldehyde

Under an atmosphere of protective gas, a solution of 10.89 g (0.107 mol) of trimethylethylenediamine in 50 ml of anhydrous tetrahydrofuran was cooled to -10°C and admixed dropwise with

25

30

35

40

45

66.6 ml of a 1.6 molar solution of n-butyllithium in hexane (0.107 mol). After 10 minutes, 15 g (0.107 mol) of 6-chlorobenzaldehyde in 70 ml of tetrahydrofuran were added dropwise, and the mixture was admixed with a further 0.214 mol of n-butyllithium in hexane (146.8 ml) and stirred at 0° C 5 for 2.5 hours. The mixture was cooled to -20°C, 12.42 g (0.139 mol) of copper(I) cyanide were added, the mixture was stirred at -10°C for 30 minutes, and 28.42 g of allyl bromide in 100 ml of tetrahydrofuran were then added dropwise. The mixture was stirred at 0°C for another 2.5 hours, and 230 ml 10 of saturated ammonium chloride solution were then added dropwise. The resulting solid was separated off and the aqueous phase was extracted with diethyl ether. The combined organic phases were then washed with saturated ammonium chloride solution and dried, and the solvent was removed 15 under reduced pressure. This gave 17.0 g of 2-allyl-6-chlorobenzaldehyde (89%) in the form of a dark oil. 1H NMR (CDCl₃, δ in ppm): 3.73 (d, 2H); 5.05 (dd, 2H); 5.96 (m, 1H); 7.05-7.48 (m, 3H); 10.58 (s, 1H).

2-Ally1-6-chlorobenzaldehyde oxime

5.58 g of sodium bicarbonate were added to a solution of 4.62 g of hydroxylamine hydrochloride in 50 ml of water, and the mixture was cooled to 0°C. A solution of 9.7 g (44.32 mmol) of 2-allyl-6-chlorobenzaldehyde in 50 ml of methanol was then added dropwise, and the mixture was stirred at room temperature overnight. The methanol was subsequently removed under reduced pressure and the residue was stirred into 300 ml of water. The aqueous phase was extracted with diethyl ether and the combined organic phases were washed with saturated ammonium chloride solution and dried, and the solvent was removed. This gave 8.7 g (quantitative) of 2-allyl-6-chlorobenzaldehyde oxime in the form of a viscous oil.

¹H NMR (CDCl₃, δ in ppm): 3.58 (d, 2H); 5.02 (2d, 2H); 5.95 (m, 1H); 7.08-7.36 (m, 3H); 8.49 (s, 1H).

8-Chloro-3a, 4-dihydro-3H-indeno[1,2-c]isoxazole

At room temperature, 37.0 ml of a sodium hypochlorite solution (12.5% of active chlorine) were added dropwise to a solution of 8.4 g (42.9 mmol) of 2-allyl-6-chlorobenzaldehyde oxime in 100 ml of methylene chloride, and a spatula tip of sodium acetate was added. The mixture was stirred at room temperature for 2 hours, the organic phase was separated off, the aqueous phase was extracted with methylene chloride and

the combined organic phases were washed with saturated ammonium chloride solution. The organic phase was dried and the solvent was removed. This gave 7.0 g (94%) of 8-chloro-3a,4-dihydro-3H-indeno-[1,2-c]isoxazole in the form of a viscous oil.

¹H NMR (CDCl₃, δ in ppm): 2.81 (dd, 1H); 3.24 (dd, 1H); 3.78-4.03 (s, 2H); 4.78 (t, 1H); 7.23-7.41 (m, 3H).

8-Methylthio-3a, 4-dihydro-3H-indeno[1,2c]isoxazole

10

40

5

At room temperature, 3.6 g (52.0 mmol) of sodium thiomethoxide were added to a solution of 5.0 g (25.8 mmol) of 8-chloro-3a,4-dihydro-3H-indeno-[1,2-c]isoxazole in 60 ml of N-methylpyrrolidone, and the mixture was stirred

- overnight. The mixture was subsequently stirred into 800 ml of water, the aqueous phase was extracted with diethyl ether, the combined organic phases were washed with saturated ammonium chloride solution and dried, and the solvent was removed. This gave 4.6 g (87%) of
- 8-methylthio-3a,4-dihydro-3H-indeno[1,2-c]isoxazole in the form of a dark brown solid.
 ¹H NMR (CDCl₃, δ in ppm): 2.54 (s, 3H); 2.78 (dd, 1H); 3.21 (dd, 1H); 3.72-3.93 (s, 2H); 4.64 (t, 1H); 7.09-7.38 (m, 3H).
- 5-Bromo-8-methylthio-3a,4-dihydro-3H-indeno[1,2-c]isoxazole

120 ml of sulfuric acid (98 percent strength) were cooled to 0°C, and 11.2 g (54.8 mmol) of

8-methylthio-3a,4-dihydro-3H-indeno[1,2-c]isoxazole were
added a little at a time. 9.2 g (57.5 mmol) of bromine were
then added dropwise, and stirring was continued at 0°C for
another 2 hours. The resulting solution was poured into 2 l
of a mixture of water and ice, this mixture was stirred for
1.5 hours and the precipitated solid was filtered off with

suction and then washed and dried. This gave 11.4 g (73%) of 5-bromo-8-methylthio-3a,4-dihydro-3H-indeno[1,2-c]isoxazole of a brown solid having a m.p. of 127-135°C.

1H NMR (CDCl₃, δ in ppm): 2.53 (s, 3H); 2.71 (dd, 1H); 3.24

(dd, 1H); 3.81-4.02 (s, 2H); 4.71 (t, 1H); 7.01 (d, 1H); 7.47 (d, 1H).

5-Bromo-8-methylsulfonyl-3a,4-dihydro-3H-indeno[1,2-c]-isoxazole

A solution of 11.2 g (39.4 mmol) of 5-bromo-8-methylthio-3a,4-dihydro-3H-indeno[1,2-c]isoxazole and 1.55 g of sodium tungstate in 250 ml of toluene and 50 ml

10

15

of glacial acetic acid was heated to 70°C and mixed dropwise with 10.73 g (39 percent strength, 86.8 mmol) of hydrogen peroxide. Stirring was continued at 70°C for another 3 hours, and a solid precipitated out. The mixture was allowed to cool to room temperature and stirred into 1 l of water, and the white solid was filtered off with suction. The organic phase of the filtrate was separated off and the aqueous phase was extracted with ethyl acetate. The combined organic phases were washed with water and dried, and the solvent was removed. This gave a viscous brown oil which was stirred with hexane/ethyl acetate (4:1). The resulting precipitate was filtered off with suction and combined with the solid obtained above. This gave 7.3 g (59%) of 5-bromo-8-methylsulfonyl-3a,4-dihydro-3H-indeno[1,2-c]-isoxazole.

1H-NMR (d6-DMSO, δ in ppm): 2.93 (dd, 1H); 3.23 (dd, 1H); 3.41

 $^{1}\text{H-NMR}$ (d⁶-DMSO, δ in ppm): 2.93 (dd, 1H); 3.23 (dd, 1H); 3.41 (s, 3H); 3.94 (dd, 1H); 4.16 (m, 1H); 4.81 (t, 1H); 7.82 (d, 1H); 8.03 (d, 1H).

20 (5-Hydroxy-1-methyl-1H-pyrazol-4-yl)-(8-methylsulfonyl-3a,4dihydro-3H-indeno[1,2-c]isoxazol-5-yl)methanone (compound
2.1)

0.62 g (6.33 mmol) of 5-hydroxy-1-methylpyrazole, 1.75 g 25 (12.66 mmol) of dry potassium carbonate, 1.28 g (12.67 mmol) of triethylamine and 0.22 g (0.30 mmol) of bis-(triphenylphosphane)palladium dichloride were added to a suspension of 2.0 g (6.33 mmol) of 5-bromo-8-methylsulfonyl-3a,4-dihydro-3H-indeno[1,2-c]-30 isoxazole in 100 ml of dioxane. In a miniautoclave, a carbon monoxide pressure of 20 bar was applied, the mixture was stirred for 5 minutes and the autoclave was vented. This procedure was repeated 3 times. The autoclave was subsequently heated to 130°C, a carbon monoxide pressure of 35 20 bar was applied once more and the mixture was stirred for 24 hours. After cooling and venting, the solvent was removed, and the residue was taken up in water, adjusted to pH 11 and washed with methylene chloride. The mixture was subsequently acidified to pH 4 using 10 percent strength hydrochloric acid 40 and extracted with methylene chloride. The combined organic phases were washed with saturated ammonium chloride solution and dried, and the solvent was removed. This gave 0.58 g (25%) of (5-hydroxy-1-methyl-1H-pyrazol-4-yl)-(8-methylsulfonyl-3a,4-dihydro-3H-indeno[1,2-c]isoxazole)-45

methanone in the form of a dark oil. ¹H NMR (CDCl₃, δ in ppm): 3.03 (dd, 1H); 3.42 (s, 3H); 3.40 (m, 1H); 3.51 (s, 3H); 4.05 (m, 2H); 4.85 (t, 1H); 7.57 (s, 1H); 7.92 (d, 1H); 8.22 (d, 1H).

(5-Phenylcarbonyloxy-1-methyl-1H-pyrazol-4-yl)-(8-methylsulfonyl-3a,4-dihydro-3H-indeno[1,2-c]isoxazol-5-yl)methanone (compound 2.2)

Under an atmosphere of protective gas, 0.18 g of triethylamine and 0.26 g (1.82 mmol) of benzoyl chloride in 10 ml of tetrahydrofuran were added at 0°C to a suspension of 10 0.55 g (1.52 mmol) of (5-hydroxy-1-methyl-1H-pyrazol-4-yl)-(8-methylsulfonyl-3a,4-dihydro-3H-indeno[1,2-c]isoxazol-5-yl) methanone in 10 ml of tetrahydrofuran. The mixture was stirred overnight at room temperature, the solvent was removed, the residue was taken up in ethyl 15 acetate, washed with water and dried, and the solvent was removed. The crude product was purified by silica gel chromatography (mobile phase: ethyl acetate: hexane = 1:1). This gave 0.22 g (31%) of (5-phenylcarbonyloxy-1-methyl-20 1H-pyrazol-4-yl)~(8-methylsulfonyl-3a,4-dihydro-3Hindeno[1,2-c]isoxazol-5-yl)methanone in the form of a yellow solid having a m.p. of 86-93°C. ¹H NMR (CDCl₃, δ in ppm): 3.22 (s, 3H); 3.34 (m, 2H); 3.81 (s, 3H); 3.98 (m, 2H); 4.81 (t, 1H); 7.20 - 8.21 (m, 8H).

2. 4-(2-Methyl-9-chloro-[1]-thiochromano[4,3-c]pyrazol-6-yl) carbonyl-5-hydroxy-1-methyl-1H-pyrazole (compound 3.1)

Methyl 2-chlorosulfonyl-4-chlorobenzoate

30

35

25

At from 0 to 5° C, a solution of 60.9 g (0.88 mol) of sodium nitrite in 100 ml of water was added dropwise to a solution of 139 g (0.75 mol) of methyl 2-amino-4-chlorobenzoate in 400 ml of concentrated hydrochloric acid and the mixture was stirred at 0°C for another hour.

In a second apparatus, 3 g of copper(II) chloride, 3 g of benzyltriethylammonium chloride, 10 ml of water and 400 ml of 1,2-dichloroethane were combined and 64 g (1 mol) of sulfur dioxide were introduced.

40 The diazonium salt described above was subsequently added at from 10 to 15°C, and the mixture was slowly heated to 50°C. A further 54 g (0.84 mol) of sulfur dioxide were then introduced, and stirring was continued at 50°C for another 30 minutes. After cooling, 7.4 g (0.1 mol) of chlorine gas were then introduced at room temperature, stirring was continued

for 15 minutes and the phases which had formed were then separated. The organic phase was dried and the solvent was

136

removed. This gave 207 g of methyl 2-chlorosulfonyl-4-chlorobenzoate.

¹H NMR (CDCl₃, δ in ppm): 4.00 (s, 3H); 7.75 (m, 2H); 8.18 (m, 1H)

Methyl 2-mercapto-4-chlorobenzoate

Over a period of 1.5 hours, 243.5 g (3.7 mol) of zinc powder were added a little at a time to a suspension of 205 g (0.75 10 mol) of methyl 2-chlorosulfonyl-4-chlorobenzoate in 1 l of concentrated hydrochloric acid and 375 g of ice. The mixture was stirred for another 3 hours and slowly heated to 70°C. After 2 hours at this temperature, the mixture was cooled. The reaction mixture was allowed to stand at room temperature 15 for 12 hours and then extracted with ethyl acetate, the combined organic phases were dried and the solvent was removed. This gave 125.4 g (83%) of methyl 2-mercapto-4chlorobenzoate. ¹H NMR (CDCl₃, δ in ppm): 3.95 (s, 3H); 4.88 (s, 1H); 7.10 (m, 20 1H); 7.30 (m, 1H); 7.96 (d, 1H).

Methyl 2-(2-hydroxycarbonyleth-1-yl)thio-4-chlorobenzoate

179.5 g (1.3 mol) of potassium carbonate and, a little at a time, 94.5 g (0.62 mol) of 3-bromopropionic acid were added to a solution of 125.4 g (0.62 mol) of methyl 2-mercapto-4-chlorobenzoate in 1.5 l of acetone, and the reaction mixture was stirred at room temperature for 12 hours. The solvent was distilled off, the residue was taken up in water and the mixture was extracted with diethyl ether. The aqueous phase was then made acidic using concentrated hydrochloric acid, and the resulting precipitate was filtered off with suction and dried. This gave 150 g (88%) of methyl

2-(2-hydroxycarbonyleth-1-yl)thio-4-chlorobenzoate.

Methyl 5-chloro-4-oxothiochromane-8-carboxylate

M.p.: 133 to 136°C

At 70°C, 50 g (0.18 mol) of methyl
2-(2-hydroxycarbonyleth-1-yl)thio-4-chlorobenzoate were added
to 500 g of polyphosphoric acid, and the mixture was stirred
for a further 30 minutes. The reaction mixture was then
stirred into water and the resulting precipitate was filtered
off with suction and dried. This gave 41.1 g (88%) of methyl
5-chloro-4-oxothiochromane-8-carboxylate.

15

30

pyrazole

137

¹H NMR (CDCl₃, δ in ppm): 3.08 (m, 4H); 3.96 (s, 3H); 7.14 (d, 1H); 7.95 (d, 1H).

Methyl 5-chloro-3-(N,N-dimethylaminomethylidene)-4-oxothiochromane-8-carboxylate

30 g (0.078 mol) of methyl
5-chloro-4-oxothiochromane-8-carboxylate in 300 ml of
N,N-dimethylformamide dimethyl acetal were refluxed for 6
hours. Volatile components were then distilled off, the
residue was taken up in methylene chloride and the organic
phase was washed with water. Drying and removal of the
solvent gave 35.3 g (97%) of methyl

5-chloro-3-(N,N-dimethylaminomethylidene)-4-oxothiochromane-8-carboxylate.

¹H NMR (CDCl₃, δ in ppm): 3.18 (s, 6H); 3.80 (s, 2H); 3.95 (s, 3H); 7.24 (d, 1H); 7.64 (s, 1H); 7.82 (d, 1H).

2-Methyl-6-methoxycarbonyl-9-chloro-[1]-thiochromano[4,3-c]pyrazole

1.3 g (29.2 mmol) of methylhydrazine were added dropwise to a solution of 7.0 g (22.5 mmol) of methyl

5-chloro-3-(N,N-dimethylaminomethylidene)-4-oxothiochromane-8-carboxylate in 700 ml of ethanol, and the mixture was refluxed for 2 hours. The solvent was removed and the residue was chromatographed over silica gel using ethyl acetate/cyclohexane (2:3) as mobile phase. This gave 4.0 g (60%) of 2-methyl-6-methoxycarbonyl-9-chloro-[1]-

thiochromano[4,3-c]pyrazole. ¹H NMR (CDCl₃, δ in ppm): 3.76 (s, 2H); 3.95 (s, 3H); 4.00 (s, 3H); 7.24 (s, 1H); 7.36 (d, 1H); 7.70 (d, 1H).

2-Methyl-6-hydroxycarbonyl-9-chloro-[1]-thiochromano[4,3-c] pyrazole

4.0 g (13.6 mmol) of 2-methyl-6-methoxycarbonyl-9-chloro-[1]thiochromano[4,3-c]pyrazole in 100 ml of methanol/water
(1:1) were refluxed with 0.8 g (20 mmol) of sodium hydroxide
for 1 hour. The organic solvent was removed under reduced
pressure and the residue was extracted with ethyl acetate.
The aqueous phase was acidified using concentrated
hydrochloric acid and the resulting precipitate was filtered
off with suction and dried. This gave 3.5 g (92%) of
2-methyl-6-hydroxycarbonyl-9-chloro-[1]-thiochromano[4,3-c]-

¹H NMR (CDCl₃, δ in ppm): 3.80 (s, 2H); 3.96 (s, 3H); 7.40 (d, 1H); 7.65 (m, 2H).

4-(2-Methyl-9-chloro-[1]-thiochromano[4,3-c]pyrazol-6-yl)carbonyl-5-hydroxy-1-methyl-1H-pyrazole (compound 3.1)

A mixture of 0.60 g (2.1 mmol) of 2-methyl-6-hydroxycarbonyl-9-chloro-[1]-thiochromano[4,3-c]-pyrazole and 0.21 g (2.1 mmol) of

- N,N-dicyclohexylcarbodiimide in 20 ml of acetonitrile was stirred at room temperature overnight. The mixture was admixed with in each case 500 ml of ethyl acetate and 2% strength sodium carbonate solution, the resulting precipitate was filtered off, the organic phase was dried and the solvent
- was removed. The residue was then refluxed with 0.59 g (4.3 mmol) of potassium carbonate in 5 ml of 1,4-dioxane for 3 hours. After cooling, the mixture was extracted with diethyl ether and the aqueous phase was acidified to pH 3. The resulting precipitate was filtered off with suction and
- dried. This gave 0.14 g of
 4-(2-methyl-9-chloro-[1]-thiochromano[4,3-c]pyrazol-6-yl)carbonyl-5-hydroxy-1-methyl-1H-pyrazole.
 M.p.: 168 171°C
- 25 3. (5-Hydroxy-1-methyl-1H-pyrazol-4-yl)-(6-methoxy-3a,4-dihydro-3H-chromeno[4,3-c]isoxazolin-9-yl)methanone (compound 2.3)

Methyl 2-hydroxy-3-formyl-4-methoxybenzoate

- At from 0 to 5°C, a solution of 209.0 g (1.1 mol) of titanium tetrachloride in 150 ml of methylene chloride was added dropwise to a solution of 50.1 g (0.275 mol) of methyl 2-hydroxy-4-methoxybenzoate and 88 g (0.725 mol) of dichloromethoxymethane in 400 ml of methylene chloride, and
- the mixture was stirred at room temperature overnight. The mixture was then stirred into ice-water and extracted with methylene chloride. The combined organic phases were washed with sodium bicarbonate solution, water and sodium chloride solution and dried, and the solvent was then removed. Silica
- gel chromatography using cyclohexane/ethyl acetate = 1:1 gave 24.5 g (42%) of methyl 2-hydroxy-3-formyl-4-methoxybenzoate in the form of a colorless solid of m.p.: 123 124°C.

 ¹H NMR (CDCl₃, δ in ppm): 3.92 (s, 3H); 3.98 (s, 3H); 6.49 (d, 1H); 8.19 (d, 1H); 10.39 (s, 1H).

Methyl 2-allyloxy-3-formyl-4-methoxybenzoate

At room temperature, 23.2 g (0.192 mol) of allyl bromide were added dropwise to a mixture of 21.0 g (0.375 mol) of potassium hydroxide and 20.2 g (0.096 mol) of methyl 5 2-hydroxy-3-formyl-4-methoxybenzoate in 500 ml of dimethyl sulfoxide, and the mixture was stirred at room temperature for 4 hours. The mixture was subsequently stirred into 1.5 l of 3% strength aqueous hydrochloric acid and extracted with ethyl acetate. The combined organic phases were washed with 10 water and dried, and the solvent was removed. Silica gel chromatography using cyclohexane/ethyl acetate = 1:2 gave 7.7 g (36%) of methyl 2-allyloxy-3-formyl-4-methoxybenzoate in the form of a yellowish oil. ¹H NMR (CDCl₃, δ in ppm): 3.86 (s, 3H); 3.93 (s, 3H); 4.58

15 (d, 2H); 5.32 (d, 1H); 5.39 (d, 1H); 6.15 (m, 1H); 6.79 (d, 1H); 8.04 (d, 1H); 10.41 (s, 1H).

6-Methoxy-9-methoxycarbonyl-3a,4-dihydro-3H-chromeno[4,3-c] isoxazoline

Step a)

20

25

30

At room temperature, 4.6 g (18.4 mmol) of methyl 2-allyloxy-3-formyl-4-methoxybenzoate in 70 ml of methanol were added dropwise to a solution of 2.25 g (32.3 mmol) of hydroxylammonium chloride and 2.7 g of pyridine in 70 ml of water. The mixture was stirred at room temperature overnight, 150 ml of water were added, the mixture was extracted with methylene chloride, the combined organic phases were washed with 3% strength aqueous hydrochloric acid and dried, and the solvent was removed. The resulting oxime has a melting point of 126 - 129°C.

Step b)

This oxime was reacted further without any further 35 purification by dissolving it in 40 ml of methylene chloride, followed by dropwise addition of 15.0 ml (25.0 mmol) of sodium hypochlorite solution (12.5% of active chlorine). A spatula tip of sodium acetate was added and the mixture was stirred at room temperature for 12 hours. The organic phase 40 was separated off, the aqueous phase was extracted with methylene chloride, the combined organic phases were washed with water and dried, and the solvent was removed. Silica gel chromatography using cyclohexane/ethyl acetate = 1:1 gave 2.2 g (49%) of 45 6-methoxy-9-methoxycarbonyl-3a,4-dihydro-3H-chromeno[4,3-c]isoxazoline in the form of a colorless solid of m.p: 199 -

203°C.

 1 H NMR (CDCl₃, δ in ppm): 3.84 (s, 3H); 3.98 (s, 3H); 3.8 - 4.0 (m, 2H); 4.16 (dt, 1H); 4.63 (t, 1H); 4.84 (dd, 1H); 6.61 (d, 1H); 7.93 (d, 1H).

6-Methoxy-9-hydroxycarbonyl-3a,4-dihydro-3H-chromeno[4,3-c]
isoxazoline

- At room temperature, a solution of 0.8 g (20.0 mmol) of sodium hydroxide in 7 ml of water was added dropwise to a 10 solution of 2.1 g (8.0 mmol) of 6-methoxy-9methoxycarbonyl-3a,4-dihydro-3H-chromeno[4,3-c]isoxazoline in 40 ml of methanol, and the mixture was refluxed for 6 hours. After cooling, the solvent was removed and the residue was taken up in about 50 ml of water and washed with methylene 15 chloride. The aqueous phase was subsequently acidified using 10% strength hydrochloric acid (pH = 1 - 2), and the precipitate was filtered off with suction, washed with water and dried at 60°C. This gave 1.7 g (86%) of 6-methoxy-9-hydroxycarbonyl-3a,4-dihydro-3H-chromeno[4,3-c]-20 isoxazoline in the form of colorless crystals. ¹H NMR (CDCl₃, δ in ppm): 3.73 (dd, 1H); 3.89 (s, 3H); 3.84 -3.95 (m, 1H); 4.11 (dd, 1H); 4.54 (dd, 1H); 4.79 (dd, 1H); 6.61 (d, 1H); 7.81 (d, 1H).
- 25
 (5-Hydroxy-1-methyl-1H-pyrazol-4-yl)-(6-methoxy-3a,4-dihydro-3H-chromeno[4,3-c]isoxazolin-9-yl)methanone (compound 2.3)

Step a)

- At room temperature, 0.26 g (2.2 mmol) of thionyl chloride and a drop of dimethylformamide were added to a solution of 0.50 g (2.0 mmol) of 6-methoxy-9-hydroxycarbonyl-3a,4-dihydro-3H-chromeno[(4,3-c)]isoxazoline in 30 ml of carbon tetrachloride, and the mixture was stirred at 40 50°C for 3 hours. The solvent was subsequently removed under reduced pressure. This gave, in quantitative yield, 6-methoxy-9-chloroformyl-3a,4-dihydro-3H-chromeno[4,3-c] isoxazoline (0.54 g) as a brownish oil.
- 40 Step b)
 0.54 g (2 mmol) of 6-methoxy-9-chloroformyl-3a,4dihydro-3H-chromeno[4,3-c]isoxazoline was dissolved in 30 ml
 of acetonitrile and, at 0°C, added dropwise to a solution of
 0.2 g (2.0 mmol) of 1-methyl-5-hydroxypyrazole and 0.6 g
 (6.0 mmol) of triethylamine in 20 ml of acetonitrile. The
 mixture was stirred at room temperature overnight, the
 solvent was removed, and the residue was taken up in

45

methylene chloride and washed with water. The solution was dried and the solvent was distilled off. The residue was dissolved in 30 ml of dioxane and admixed with 0.42 g (3.0 mmol) of potassium carbonate, and the mixture was refluxed for 7 hours. After cooling, the solvent was distilled off under reduced pressure, the residue was taken up in water and the solution was adjusted to pH = 1 using 10% strength hydrochloric acid. The solution was extracted with methylene chloride, the combined organic phases were dried and the solvent was subsequently removed. This gave 0.45 g (68%) of (5-hydroxy-1-methyl-1H-pyrazol-4-yl)-(6-methoxy-3a,4-dihydro-3H-chromeno[4,3-c]isoxazolin-9-yl)methanone of m.p. 236 - 238°C.

¹H NMR (CDCl₃, δ in ppm): 3.66 (s, 3H); 3.84 - 4.2 (m, 2H); 4.02 (s, 3H); 4.12 (dd, 1H); 4.63 - 4.77 (m, 2H); 6.68 (d, 1H); 7.24 (s, 1H); 7.61 (d, 1H).

4. [5-Hydroxy-1-(1,1-dimethyleth-1-yl)-1H-pyrazol-4-yl][6-methoxy-3a,4-dihydro-3H-chromeno[4,3-c]isoxazolin-9-yl]

methanone (compound 2.4)

0.54 g (2 mmol) of6-methoxy-9-chloroformyl-3a,4-dihydro-3H-chromeno[4,3-c]isoxazoline was dissolved in 30 ml of acetonitrile and, at 0°C, added dropwise to a solution of 0.28 g (2.0 mmol) of 25 1-(1,1-dimethyleth-1-yl)-5-hydroxy-1H-pyrazole and 0.6 g (6.0 mmol) of triethylamine in 20 ml of acetonitrile. The mixture was stirred at room temperature overnight, the solvent was removed, and the residue was taken up in methylene chloride and washed with water. The solution was 30 dried, and the solvent was distilled off. The residue was dissolved in 30 ml of dioxane and admixed with 0.42 g (3.0 mmol) of potassium carbonate, and the mixture was refluxed for 7 hours. After cooling, the solvent was distilled off under reduced pressure, the residue was taken up in water and 35 the solution was adjusted to pH = 1 using 10% strength hydrochloric acid. The solution was extracted with methylene chloride, the combined organic phases were dried, and the solvent was subsequently removed. This gave 0.3 g (40%) of [5-hydroxy-1-(1,1-dimethyleth-1-yl)-1H-pyrazol-4-yl]-[6-yl]40 methoxy-3a,4-dihydro-3H-chromeno[4,3-c]isoxazolin-9-yl] methanone having a melting point of 223°C - 225°C. ^{1}H NMR (CDCl3, δ in ppm): 1.64 (s, 9H); 3.8 - 4.2 (m, 6H); 4.6 - 4.8 (m, 2H); 6.68 (d, 1H); 7.44 (s, 1H); 7.62 (d, 1H).

In addition to the compounds above, other tricyclic benzoylpyrazole derivatives of the formula I which were prepared or are preparable in a similar manner are listed in Tables 2 to 5:

Table 2:

5

 $\begin{array}{c|c}
 & & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$

Ia where l = O, R⁵ = H,
Y together with the two carbons
to which it is attached forms the
following isoxazoline:

20	No.	X	R ⁴	R ¹⁰	R ¹¹	R ¹²	physical data (m.p.[°C]; ¹ H NMR [ppm])
25	2.1	Bond	SO ₂ CH ₃	ОН	CH₃	Н	3.03 (dd, 1H); 3.42 (s, 3H); 3.51 (s, 3H); 4.05 (m, 2H); 4.85 (t, 1H); 7.57 (s, 1H); 7.92 (d, 1H); 8.22 (d, 1H)
	2.2	Bond	SO ₂ CH ₃	OCOC ₆ H ₅	CH₃	Н	3.22 (s, 3H); 3.34 (m, 2H); 3.81 (s, 3H); 3.98 (m, 2H); 4.81 (t, 1H); 7.20 - 8.21 (m, 8H);
30	2.3	0	OCH ₃	ОН	CH ₃	Н	236 - 238
	2.4	0	OCH ₃	ОН	C(CH ₃) ₃	Н	223 - 225
	2.5	0	OCH ₃	OCO(3-F -C ₆ H ₄)	СН3	Н	oil

35 Table 3:

40
$$\begin{array}{c|c}
R^{12} & O & X \\
N & N - CH_3 \\
R^{10} & R^4
\end{array}$$

Ia where R⁵ = H, Y together with the two carbons to which it is attached forms the following methyl-substituted pyrazole:

$$M = N$$
 $M = CH3$

143

	No.	Х	R ⁴	R ¹⁰	R ¹¹	R ¹²	physical data (m.p.[°C])
	3.1	S	Cl .	ОН	СН3	Н	168 - 171
	3.2	S	C1	ОН	CH ₂ CH ₃	Н	115
5	3.3	S	SCH ₃	ОН	CH ₃	Н	245
	3.4	S	SCH ₃	ОН	CH ₂ CH ₃	Н	222

Table 4:

10

$$\begin{array}{c|c} R^{12} & O & X & N \\ \hline N & R^{10} & R^4 & \\ \hline R^{11} & & R^4 & \\ \end{array}$$

15

Ia where R^5 = H, Y together with the two carbons to which it is attached forms the following methyl-substituted pyrimidine:

MW N CH3

20

No.	X	R ⁴	R ¹⁰	R ¹¹	R ¹²	physical data (m.p.[°C]; ¹ H NMR [ppm])
4.1	S	Cl	ОН	СН3	Н	180°C
4.2	S	Cl	ОН	CH ₂ CH ₃	Н	112°C

25

Table 5:

35

;	Nr.	Х	R ⁴	R ¹⁰	R ¹¹	R ¹²	physical data (m.p.[°C]; ¹ H NMR [ppm])
	5.1	0	SCH ₃	OH	CH ₃	Н	201

The compounds of the formula I and their agriculturally useful salts are suitable, both in the form of isomer mixtures and in the form of the pure isomers, as herbicides. The herbicidal compositions comprising compounds of the formula I control vegetation on non-crop areas very efficiently, especially at high rates of application. They act against broad-leaved weeds and grass weeds in crops such as wheat, rice, maize, soya and cotton

without causing any significant damage to the crop plants. This effect is mainly observed at low rates of application.

Depending on the application method in question, the compounds of the formula I, or herbicidal compositions comprising them, can additionally be employed in a further number of crop plants for eliminating undesirable plants. Examples of suitable crops are the following:

- 10 Allium cepa, Ananas comosus, Arachis hypogaea, Asparagus officinalis, Beta vulgaris spec. altissima, Beta vulgaris spec. rapa, Brassica napus var. napus, Brassica napus var. napobrassica, Brassica rapa var. silvestris, Camellia sinensis, Carthamus tinctorius, Carya illinoinensis, Citrus limon, Citrus
- 15 sinensis, Coffea arabica (Coffea canephora, Coffea liberica), Cucumis sativus, Cynodon dactylon, Daucus carota, Elaeis guineensis, Fragaria vesca, Glycine max, Gossypium hirsutum, (Gossypium arboreum, Gossypium herbaceum, Gossypium vitifolium), Helianthus annuus, Hevea brasiliensis, Hordeum vulgare, Humulus
- 20 lupulus, Ipomoea batatas, Juglans regia, Lens culinaris, Linum usitatissimum, Lycopersicon lycopersicum, Malus spec., Manihot esculenta, Medicago sativa, Musa spec., Nicotiana tabacum (N.rustica), Olea europaea, Oryza sativa, Phaseolus lunatus, Phaseolus vulgaris, Picea abies, Pinus spec., Pisum sativum,
- 25 Prunus avium, Prunus persica, Pyrus communis, Ribes sylvestre, Ricinus communis, Saccharum officinarum, Secale cereale, Solanum tuberosum, Sorghum bicolor (s. vulgare), Theobroma cacao, Trifolium pratense, Triticum aestivum, Triticum durum, Vicia faba, Vitis vinifera and Zea mays.
- In addition, the compounds of the formula I may also be used in crops which tolerate the action of herbicides owing to breeding, including genetic engineering methods.
- 35 The compounds of the formula I, or the herbicidal compositions comprising them, can be used for example in the form of ready-to-spray aqueous solutions, powders, suspensions, also highly-concentrated aqueous, oily or other suspensions or dispersions, emulsions, oil dispersions, pastes, dusts, materials
- 40 for broadcasting, or granules, by means of spraying, atomizing, dusting, spreading or watering. The use forms depend on the intended purpose; in any case, they should guarantee the finest possible distribution of the active compounds according to the invention.

The herbicidal compositions comprise a herbicidally effective amount of at least one compound of the formula I or an agriculturally useful salt of I and auxiliaries which are customarily used for formulating crop protection agents.

5

Suitable for use as inert auxiliaries are essentially the following:

mineral oil fractions of medium to high boiling point, such as

10 kerosene and diesel oil, furthermore coal-tar oils and oils of
vegetable or animal origin, aliphatic, cyclic and aromatic
hydrocarbons, for example paraffin, tetrahydronaphthalene,
alkylated naphthalenes and their derivatives, alkylated benzenes
or their derivatives, alcohols such as methanol, ethanol,

15 propanol, butanol and cyclohexanol, ketones such as cyclohexanone, strongly polar solvents, for example amines such as N-methylpyrrolidone, and water.

Aqueous use forms can be prepared from emulsion concentrates,

20 suspensions, pastes, wettable powders or water-dispersible
granules by adding water. To prepare emulsions, pastes or oil
dispersions, the tricyclic benzoylpyrazole derivatives of the
formula I, either as such or dissolved in an oil or solvent, can
be homogenized in water by means of a wetting agent, tackifier,

- 25 dispersant or emulsifier. Alternatively, it is possible to prepare concentrates comprising active compound, wetting agent, tackifier, dispersant or emulsifier and, if desired, solvent or oil, which are suitable for dilution with water.
- 30 Suitable surfactants are the alkali metal salts, alkaline earth metal salts and ammonium salts of aromatic sulfonic acids, e.g. ligno-, phenol-, naphthalene- and dibutylnaphthalenesulfonic acid, and of fatty acids, alkyl- and alkylarylsulfonates, alkyl sulfates, lauryl ether sulfates and fatty alcohol sulfates, and
- 35 salts of sulfated hexa-, hepta- and octadecanols, and also of fatty alcohol glycol ethers, condensates of sulfonated naphthalene and its derivatives with formaldehyde, condensates of naphthalene or of the naphthalenesulfonic acids with phenol and formaldehyde, polyoxyethylene octylphenol ether, ethoxylated
- 40 isooctyl-, octyl- or nonylphenol, alkylphenyl or tributylphenyl polyglycol ether, alkylaryl polyether alcohols, isotridecyl alcohol, fatty alcohol/ethylene oxide condensates, ethoxylated castor oil, polyoxyethylene alkyl ethers or polyoxypropylene alkyl ethers, lauryl alcohol polyglycol ether acetate, sorbitol
- 45 esters, lignin-sulfite waste liquors or methylcellulose.

Powders, materials for broadcasting and dusts can be prepared by mixing or grinding the active compounds together with a solid carrier.

- 5 Granules, e.g. coated granules, impregnated granules and homogeneous granules, can be prepared by binding the active compounds to solid carriers. Solid carriers are mineral earths such as silicas, silica gels, silicates, talc, kaolin, limestone, lime, chalk, bole, loess, clay, dolomite, diatomaceous earth,
- 10 calcium sulfate, magnesium sulfate and magnesium oxide, ground synthetic materials, fertilizers such as ammonium sulfate, ammonium phosphate, ammonium nitrate and ureas, and products of vegetable origin, such as cereal meal, tree bark meal, wood meal and nutshell meal, cellulose powders, or other solid carriers.

The concentrations of the compounds of the formula I in the ready-to-use preparations can be varied within wide ranges. In general, the formulations comprise approximately from 0.001 to 98% by weight, preferably 0.01 to 95% by weight, of at least one active compound. The active compounds are employed in a purity of from 90% to 100%, preferably 95% to 100% (according to NMR spectrum).

The following formulation examples illustrate the preparation of such formulations:

- 1. 20 parts by weight of the compound No. 2.2 are dissolved in a mixture composed of 80 parts by weight of alkylated benzene, 10 parts by weight of the adduct of from 8 to 10 mol of ethylene oxide to 1 mol of oleic acid N-monoethanolamide, 5 parts by weight of calcium salt of dodecylbenzenesulfonic acid and 5 parts by weight of the adduct of 40 mol of ethylene oxide to 1 mol of castor oil. Pouring the solution into 100,000 parts by weight of water and finely distributing it therein gives an aqueous dispersion which comprises 0.02% by weight of the active compound.
- II. 20 parts by weight of the compound No. 3.1 are dissolved in a mixture composed of 40 parts by weight of cyclohexanone, 30 parts by weight of isobutanol, 20 parts by weight of the adduct of 7 mol of ethylene oxide to 1 mol of isooctylphenol and 10 parts by weight of the adduct of 40 mol of ethylene oxide to 1 mol of castor oil. Pouring the solution into 100,000 parts by weight of water and finely distributing it therein gives an aqueous dispersion

which comprises 0.02% by weight of the active compound.

- III. 20 parts by weight of the compound No. 2.3 are dissolved in a mixture composed of 25 parts by weight of cyclohexanone,
 65 parts by weight of a mineral oil fraction of boiling point 210 to 280°C and 10 parts by weight of the adduct of 40 mol of ethylene oxide to 1 mol of castor oil. Pouring the solution into 100,000 parts by weight of water and finely distributing it therein gives an aqueous dispersion which comprises 0.02% by weight of the active compound.
- IV. 20 parts by weight of the compound No. 2.4 are mixed thoroughly with 3 parts by weight of the sodium salt of diisobutylnaphthalenesulfonic acid, 17 parts by weight of the sodium salt of a lignosulfonic acid from a sulfite waste liquor and 60 parts by weight of pulverulent silica gel, and the mixture is ground in a hammer mill. Finely distributing the mixture in 20,000 parts by weight of water gives a spray mixture which comprises 0.1% by weight of the active compound.
 - V. 3 parts by weight of the compound No. 2.3 are mixed with 97 parts by weight of finely divided kaolin. This gives a dust which comprises 3% by weight of the active compound.
- VI. 20 parts by weight of the compound No. 2.4 are mixed intimately with 2 parts by weight of calcium salt of dodecylbenzenesulfonic acid, 8 parts by weight of fatty alcohol polyglycol ether, 2 parts by weight of sodium salt of a phenol/urea/formaldehyde condensate and 68 parts by weight of a paraffinic mineral oil. This gives a stable oily dispersion.
- VII. 1 part by weight of the compound No. 2.2 is dissolved in a mixture composed of 70 parts by weight of cyclohexanone, 20 parts by weight of ethoxylated isooctylphenol and 10 parts by weight of ethoxylated castor oil. This gives a stable emulsion concentrate.
- 40 VIII. 1 part by weight of the compound No. 3.1 is dissolved in a mixture composed of 80 parts by weight of cyclohexanone and 20 parts by weight of Wettol® EM 31 (= nonionic emulsifier based on ethoxylated castor oil). This gives a stable emulsion concentrate.
- The compounds of the formula I or the herbicidal compositions can be applied pre- or post-emergence. If the active compounds are

less well tolerated by certain crop plants, application techniques may be used in which the herbicidal compositions are sprayed, with the aid of the spraying equipment, in such a way that as far as possible they do not come into contact with the leaves of the sensitive crop plants, while the active compounds reach the leaves of undesirable plants growing underneath, or the bare soil surface (post-directed, lay-by).

The rates of application of the compound of the formula I are 10 from 0.001 to 3.0, preferably 0.01 to 1.0, kg/ha of active substance (a.s.), depending on the control target, the season, the target plants and the growth stage.

To widen the spectrum of action and to achieve synergistic

15 effects, the tricyclic benzylpyrazole derivatives of the formula
I may be mixed with a large number of representatives of other
herbicidal or growth-regulating activ'e compound groups and
applied concomitantly. Suitable components for mixtures are, for
example, 1,2,4-thiadiazoles, 1,3,4-thiadiazoles, amides,

- 20 aminophosphoric acid and its derivatives, aminotriazoles, anilides, aryloxy-/heteroaryloxyalkanoic acids and their derivatives, benzoic acid and its derivatives, benzothiadiazinones, 2-aroyl-1,3-cyclohexanediones, heteroaryl aryl ketones, benzylisoxazolidinones, meta-CF3-phenyl derivatives,
- 25 carbamates, quinoline carboxylic acid and its derivatives, chloroacetanilides, cyclohexenone oxime ether derivatives, diazines, dichloropropionic acid and its derivatives, dihydrobenzofurans, dihydrofuran-3-ones, dinitroanilines, dinitrophenols, diphenyl ethers, dipyridyls, halocarboxylic acids
- 30 and their derivatives, ureas, 3-phenyluracils, imidazoles, imidazolinones, N-phenyl-3,4,5,6-tetrahydrophthalimides, oxadiazoles, oxiranes, phenols, aryloxy- and hetaryloxyphenoxypropionic esters, phenylacetic acid and its derivatives, 2-phenylpropionic acid and its derivatives,
- 35 pyrazoles, phenylpyrazoles, pyridazines, pyridinecarboxylic acid and its derivatives, pyrimidyl ethers, sulfonamides, sulfonylureas, triazines, triazinones, triazolinones, triazolecarboxamides and uracils.
- 40 It may furthermore be advantageous to apply the compounds of the formula I, alone or in combination with other herbicides, in the form of a mixture with other crop protection agents, for example together with agents for controlling pests or phytopathogenic fungi or bacteria. Also of interest is the miscibility with
- **45** mineral salt solutions, which are employed for treating nutritional and trace element deficiencies. Non-phytotoxic oils

and oil concentrates may also be added.

Use Examples

5 The herbicidal activity of the tricyclic benzylpyrazole derivatives of the formula I was demonstrated by the following greenhouse experiments:

The culture containers used were plastic pots containing loamy 10 sand with approximately 3.0% of humus as the substrate. The seeds of the test plants were sown separately for each species.

For the pre-emergence treatment, the active compounds, which had been suspended or emulsified in water, were applied directly

15 after sowing by means of finely distributing nozzles. The containers were irrigated gently to promote germination and growth and subsequently covered with transparent plastic hoods until the plants had rooted. This cover causes uniform germination of the test plants, unless this was adversely

20 affected by the active compounds.

For post-emergence treatment, the test plants were first grown to a plant height of from 3 to 15 cm, depending on the plant habit, and only then treated with the active compounds which had been 25 suspended or emulsified in water. For this purpose, the test plants were either sown directly and grown in the same containers, or they were first grown separately as seedlings and transplanted into the test containers a few days prior to the treatment. The application rate for the post-emergence treatment 30 was 0.5 or 0.25 kg of a.s./ha.

Depending on the species, the plants were kept at 10-25°C or 20-35°C. The test period extended over 2 to 4 weeks. During this time, the plants were tended, and their response to the individual treatments was evaluated.

Evaluation was carried out using a scale from 0 to 100. 100 means no emergence of the plants, or complete destruction of at least the above-ground parts, and 0 means no damage, or normal course 40 of growth.

The plants used in the greenhouse trials were of the following species:

5	Scientific Name	Common Name
	Chenopodium album	lambsquarters (goosefoot)
	Echinochloa crusgalli	barnyardgrass
	Setaria viridis	green foxtail
	Solanum nigrum	black nightshade
10	Veronica ssp.	speadwell

At application rates of 0.5 or 0.25 kg/ha, the compound 2.2 shows very good activity against the abovementioned undesired broad-leaved weeds and weed grasses when applied by the post-emergence method.

35

40

151

We claim:

1. A tricyclic benzoylpyrazole derivative of the formula I

10 $\begin{array}{c}
R^1 \\
R^2 \\
R^3 \\
Y \\
R^4
\end{array}$

where:

is oxygen, sulfur, S=O, $S(=O)_2$, CR^6R^7 , NR^8 or a bond;

y together with the two carbons to which it is attached forms a saturated, partially saturated or unsaturated 5- or 6-membered heterocycle which

contains one to three identical or different heteroatoms selected from the following group:

oxygen, sulfur and nitrogen;

25 $R^1,R^2,R^6,R^7 \mbox{ are hydrogen, $C_1-C_6-alkyl, $C_1-C_6-haloalkyl,$} \\ C_1-C_6-alkoxy \mbox{ or $C_1-C_6-haloalkoxy;}$

 R^3 is halogen, C_1-C_6 -alkyl, C_1-C_6 -haloalkyl, C_1-C_6 -alkoxy or C_1-C_6 -haloalkoxy;

 R^4 is hydrogen, nitro, halogen, cyano, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy,

 C_1-C_6 -naroarkyr, C_1-C_6 -arkoxy, C_1-C_6 -naroarkyr, C_1-C_6 -haloarkyrthio,

 C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -haloalkylsulfinyl,

 C_1-C_6 -alkylsulfonyl, C_1-C_6 -haloalkylsulfonyl, aminosulfonyl, $N-(C_1-C_6$ -alkyl)aminosulfonyl,

 $N, N-di(C_1-C_6-alkyl)$ aminosulfonyl,

 N_1 , N_2 = C_1 = C_6 = alkylsulfonyl) amino,

 $N-(C_1-C_6-haloalkylsulfonyl)$ amino,

 $N-(C_1-C_6-alky1)-N-(C_1-C_6-alkylsulfonyl)$ amino or

 $N-(C_1-C_6-alkyl)-N-(C_1-C_6-haloalkylsulfonyl)$ amino;

R⁵ is hydrogen, C₁-C₆-alkyl or halogen;

45 R^8 is hydrogen, C_1-C_6 -alkyl, C_1-C_6 -haloalkyl,

 $C_1-C_6-alkylcarbonyl$, formyl, $C_1-C_6-alkoxycarbonyl$,

 C_1 - C_6 -haloalkoxycarbonyl, C_1 - C_6 -alkylsulfonyl or C_1 - C_6 -haloalkylsulfonyl;

Ilb

1 is 0, 1 or 2;

lla

5

R9 is a radical IIa or IIb

10 R¹²

15

20

where

is hydroxyl, mercapto, halogen, OR¹³, SR¹³, SO₂R¹⁴, NR¹⁵R¹⁶ or N-bonded heterocyclyl, where the heterocyclyl radical may be partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C_1-C_4 -alkyl, C_1-C_4 -haloalkyl, C_1-C_4 -alkoxy or C_1-C_4 -haloalkoxy;

25

40

45

is hydrogen, $C_1-C_6-alkyl$, $C_1-C_6-haloalkyl$, $C_3-C_6-cycloalkyl$, hydroxyl, $C_1-C_6-alkoxy$ or $C_1-C_6-haloalkoxy$;

30 R^{12} is hydrogen, halogen, C_1-C_6 -alkyl, C_1-C_6 -haloalkyl, hydroxyl, C_1-C_6 -alkoxy, C_1-C_6 -haloalkoxy, C_1-C_6 -alkylthio or C_1-C_6 -haloalkylthio;

is C₁-C₆-alkyl, C₃-C₆-alkenyl, C₃-C₆-haloalkenyl,

C₃-C₆-alkynyl, C₃-C₆-haloalkynyl, C₃-C₆-cycloalkyl,

C₁-C₂₀-alkylcarbonyl, C₂-C₂₀-alkenylcarbonyl,

C₂-C₆-alkynylcarbonyl, C₃-C₆-cycloalkylcarbonyl,

C₁-C₆-alkoxycarbonyl, C₃-C₆-alkenyloxycarbonyl,

 $C_3-C_6-alkynyloxycarbonyl$, $C_1-C_6-alkylthiocarbonyl$, $C_1-C_6-alkylaminocarbonyl$,

C₃-C₆-alkenylaminocarbonyl,

 C_3-C_6 -alkynylaminocarbonyl, N,N-di(C_1-C_6 -alkyl)aminocarbonyl,

 $N-(C_3-C_6-alkenyl)-N-(C_1-C_6-alkyl)$ aminocarbonyl, $N-(C_3-C_6-alkynyl)-N-(C_1-C_6-alkyl)$ aminocarbonyl,

 $N-(C_3-C_6-alkynyl)-N-(C_1-C_6-alkyl)$ aminocarbonyl, $N-(C_1-C_6-alkoxy)-N-(C_1-C_6-alkyl)$ aminocarbonyl, $N-(C_3-C_6-alkenyl)-N-(C_1-C_6-alkoxy)$ aminocarbonyl,

		$N-(C_3-C_6-alkynyl)-N-(C_1-C_6-alkoxy)$ aminocarbonyl, $di(C_1-C_6-alkyl)$ aminothiocarbonyl,
		$C_1-C_6-alkylcarbonyl-C_1-C_6-alkyl$,
		$C_1-C_6-alkoxyimino-C_1-C_6-alkyl$,
5		N-(C ₁ -C ₆ -alkylamino)imino-C ₁ -C ₆ -alkyl or
		$N, N-di(C_1-C_6-alkylamino)imino-C_1-C_6-alkyl,$ where
		the abovementioned alkyl, cycloalkyl and alkoxy
		radicals may be partially or fully halogenated
		and/or may carry one to three of the following
10		groups:
		cyano, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio,
		$di(C_1-C_4-alkyl)$ amino, $C_1-C_4-alkyl$ carbonyl,
		C ₁ -C ₄ -alkoxycarbonyl,
		C_1-C_4 -alkoxy- C_1-C_4 -alkoxycarbonyl,
15		$di(C_1-C_4-alkyl)$ amino- $C_1-C_4-alkoxycarbonyl,$
		hydroxycarbonyl, C ₁ -C ₄ -alkylaminocarbonyl,
•		$di(C_1-C_4-alkyl)$ aminocarbonyl, aminocarbonyl,
		C ₁ -C ₄ -alkylcarbonyloxy or C ₃ -C ₆ -cycloalkyl;
20		is phenyl, heterocyclyl, phenyl-C ₁ -C ₆ -alkyl,
		heterocyclyl-C ₁ -C ₆ -alkyl,
		phenylcarbonyl-C ₁ -C ₆ -alkyl,
		heterocyclylcarbonyl-C ₁ -C ₆ -alkyl, phenylcarbonyl,
		heterocyclylcarbonyl, phenoxycarbonyl,
25		phenyloxythiocarbonyl, heterocyclyloxycarbonyl,
		heterocyclyloxythiocarbonyl, phenylaminocarbonyl,
		$N-(C_1-C_6-alkyl)-N-(phenyl)$ aminocarbonyl,
		heterocyclylaminocarbonyl,
		N-(C ₁ -C ₆ -alkyl)-N-(heterocyclyl)aminocarbonyl,
30		phenyl-C ₂ -C ₆ -alkenylcarbonyl or
		heterocyclyl-C ₂ -C ₆ -alkenylcarbonyl, where the phenyl and the heterocyclyl radical of the 18
		lastmentioned substituents may be partially or
		fully halogenated and/or may carry one to three of
		the following radicals:
35		nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl,
		C_1-C_4 -alkoxy, C_1-C_4 -haloalkoxy, heterocyclyl or
		N-bonded heterocyclyl, where the two lastmentioned
		substituents for their part may be partially or
40		fully halogenated and/or may carry one to three of
40		the following radicals:
		nitro, cyano, C ₁ -C ₄ -alkyl, C ₁ -C ₄ -haloalkyl,
		C_1-C_4 -alkoxy or C_1-C_4 -haloalkoxy;
45	R.14	is C ₁ -C ₆ -alkyl, C ₃ -C ₆ -alkenyl, C ₃ -C ₆ -haloalkenyl,
		C ₃ -C ₆ -alkynyl, C ₃ -C ₆ -haloalkynyl, C ₃ -C ₆ -cycloalkyl,
		C_1-C_6 -alkoxy, $di(C_1-C_6$ -alkyl)amino or

		$di(C_1-C_6-haloalkyl)$ amino, where the abovementioned alkyl, cycloalkyl and alkoxy radicals may be partially or fully halogenated and/or may carry
5		one to three of the following groups: cyano, C_1-C_4 -alkoxy, C_1-C_4 -alkylthio, di(C_1-C_4 -alkyl)amino, C_1-C_4 -alkylcarbonyl, C_1-C_4 -alkoxycarbonyl,
10		C ₁ -C ₄ -alkoxy-C ₁ -C ₄ -alkoxycarbonyl, di(C ₁ -C ₄ -alkyl)amino-C ₁ -C ₄ -alkoxycarbonyl, hydroxycarbonyl, C ₁ -C ₄ -alkylaminocarbonyl, di(C ₁ -C ₄ -alkyl)aminocarbonyl, aminocarbonyl, C ₁ -C ₄ -alkylcarbonyloxy or C ₃ -C ₆ -cycloalkyl;
15		is phenyl, heterocyclyl, phenyl- C_1 - C_6 -alkyl, heterocyclyl- C_1 - C_6 -alkyl, phenoxy, heterocyclyloxy, where the phenyl and the heterocyclyl radical of the lastmentioned substituents may be partially or
20		fully halogenated and/or may carry one to three of the following radicals: nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;
25	R ¹⁵	is C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -haloalkenyl, C_3 - C_6 -alkynyl, C_3 - C_6 -alkynyl, C_3 - C_6 -alkoxy, C_3 - C_6 -alkenyloxy, C_3 - C_6 -alkynyloxy, di(C_1 - C_6 -alkyl)amino or C_1 - C_6 -alkylcarbonylamino, where the abovementioned alkyl, cycloalkyl and
30		alkoxy radicals may be partially or fully halogenated and/or may carry one to three radicals of the following group: cyano, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, di(C_1 - C_4 -alkyl)amino, C_1 - C_4 -alkylcarbonyl, C_1 - C_4 -alkoxycarbonyl,
35		C ₁ -C ₄ -alkoxy-C ₁ -C ₄ -alkoxycarbonyl, di(C ₁ -C ₄ -alkyl)amino-C ₁ -C ₄ -alkoxycarbonyl, hydroxycarbonyl, C ₁ -C ₄ -alkylaminocarbonyl, di(C ₁ -C ₄ -alkyl)aminocarbonyl, aminocarbonyl, C ₁ -C ₄ -alkylcarbonyloxy or C ₃ -C ₆ -cycloalkyl;
40		is phenyl, heterocyclyl, phenyl-C ₁ -C ₆ -alkyl or heterocyclyl-C ₁ -C ₆ -alkyl, where the phenyl or heterocyclyl radical of the four lastmentioned substituents may be partially or fully halogenated and/or may corry one to three of the following
45	v-	<pre>and/or may carry one to three of the following radicals:</pre>

nitro, cyano, C_1-C_4 -alkyl, C_1-C_4 -haloalkyl, C_1-C_4 -alkoxy or C_1-C_4 -haloalkoxy;

is $C_1-C_6-alkyl$, $C_3-C_6-alkenyl$, $C_3-C_6-alkynyl$ or $C_1-C_6-alkylcarbonyl$;

and their agriculturally useful salts.

- A tricyclic benzoylpyrazole derivative of the formula I as
 claimed in claim 1 where R⁹ is IIa.
 - 3. A tricyclic benzoylpyrazole derivative of the formula I as claimed in claim 1 or 2 where X is oxygen, sulfur or a bond.
- 15 4. A tricyclic benzoylpyrazole derivative of the formula I as claimed in any of claims 1 to 3 where
- together with the two carbons to which it is attached forms a heterocycle selected from the following group: dihydropyrazolediyl, dihydroisoxazolediyl, pyrazolediyl, isoxazolediyl or pyrimidinediyl.
- 5. A tricyclic benzoylpyrazole derivative of the formula I as claimed in any of claims 1 to 4 where
 - R¹, R² are hydrogen;
 - R^3 is $C_1-C_6-alkyl$;
 - is nitro, halogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₁-C₆-alkylthio or C₁-C₆-alkylsulfonyl;
- 35 R⁵ is hydrogen;

- 1 is 0 or 1.
- A tricyclic benzoylpyrazole derivative of the formula I as
 claimed in any of claims 1 to 5 where
 - R¹⁰ is hydroxyl;
 - R¹¹ is C_1-C_6 -alkyl or C_3-C_6 -cycloalkyl;
- 45 R^{12} is hydrogen or $C_1-C_6-alkyl$.

7. A process for preparing compounds of the formula I where R^{10} = halogen as claimed in claim 1, which comprises reacting a tricyclic benzoylpyrazole derivative of the formula I α (= I where R^{10} = hydroxyl),

5

$$\begin{array}{c|c}
R^{12} & & & & R^{2} \\
\hline
 & & & & & & \\
R^{12} & & & & & \\
\hline
 & & & & & & \\
N & & & & & & \\
R^{11} & & & & & \\
\hline
 & & & & & \\
I\alpha & & & & & \\
\end{array}$$

15

10

where the variables R^1 to R^5 , R^{11} and R^{12} , X, Y and 1 are as defined in claim 1, with a halogenating agent.

8. A process for preparing compounds of the formula I where $R^{10}=$ 0R¹³ as claimed in claim 1, which comprises reacting a tricyclic benzoylpyrazole derivative of the formula I α (= I where $R^{10}=$ hydroxyl),

25

$$\begin{array}{c|c}
R^{12} & R^{2} \\
R^{12} & R^{3} \\
N & OH \\
R^{11} & R^{5}
\end{array}$$

$$\begin{array}{c|c}
R^{1} & R^{2} \\
R^{3} \\
Y & R^{4}
\end{array}$$

30

where the variables R^1 to R^5 , R^{11} and R^{12} , X, Y and 1 are as defined in claim 1, with a compound of the formula III

L1-R13 III

- where the variable \mathbb{R}^{13} is as defined in claim 1 and \mathbb{L}^1 is a nucleophilically replaceable leaving group.
- A process for preparing compounds of the formula I where R¹⁰ = OR¹³, SR¹³, NR¹⁵R¹⁶ or N-bonded heterocyclyl as claimed in claim 1, which comprises reacting a compound of the formula Iβ (= I where R¹⁰ = halogen),

Ιβ

10

where the variables R^1 to R^5 , R^{11} and R^{12} , X, Y and 1 are as defined in claim 1, with a compound of the formula $IV\alpha$, $IV\beta$, $IV\gamma$ or $IV\delta$

15

where the variables R^{13} to R^{16} are as defined in claim 1, if appropriate in the presence of a base.

10. A process for preparing compounds of the formula I where $R^{10}=SO_2R^{14}$ as claimed in claim 1, which comprises reacting a compound of the formula Iy (= I where $R^{10}=SR^{14}$),

25

30

35

$$\begin{array}{c|c}
R^{12} & R^{1} & R^{2} \\
R^{12} & R^{10} & R^{4}
\end{array}$$

where the variables R^1 to R^5 , R^{11} and R^{12} , X, Y and 1 are as defined in claim 1, with an oxidizing agent.

Ιγ

11. A process for preparing compounds of the formula I where R⁹ = IIa as claimed in claim 1, which comprises reacting a metalated pyrazole derivative of the formula V where M is a metal and R¹⁰ to R¹² are as defined in claim 1, except for R¹⁰ = hydroxyl and mercapto, with a tricyclic benzoic acid derivative of the formula VIα where R¹ to R⁵, X, Y and l are
45 as defined in claim 1 and L² is a nucleophilically replaceable leaving group.

10 12. A process for preparing tricyclic benzoylpyrazole derivatives of the formula I α (= I where R^{10} = hydroxyl) as claimed in claim 1, which comprises acylating a pyrazole of the formula VII in which the variables R^{11} and R^{12} are as defined in claim 1

with an activated tricyclic benzoic acid of the formula $VI\beta$ or with a tricyclic benzoic acid $VI\gamma$,

where the variables R¹ to R⁵, X, Y and 1 are as defined in claim 1 and L³ is a nucleophilically replaceable leaving group, and rearranging the acylation product, if appropriate in the presence of a catalyst.

13. A process for preparing tricyclic benzoylpyrazole derivatives of the formula I α (\equiv I where R¹⁰ = hydroxyl) as claimed in claim 1, which comprises reacting a pyrazole of the formula VII in which the variables R¹¹ and R¹² are as defined in claim 1, or an alkali metal salt thereof,

with a tricyclic benzene derivative of the formula IX where L^4 is a leaving group and the variables X, Y, R^1 to R^5 and 1 are as defined in claim 1

10

15

5

in the presence of carbon monoxide, a catalyst and a base.

20

25

- 14. A composition, comprising a herbicidally effective amount of at least one tricyclic benzoylpyrazole derivative of the formula I or an agriculturally useful salt of I as claimed in claims 1 to 6 and auxiliaries which are customary for formulating crop protection agents.
- 15. A process for preparing compositions as claimed in claim 14, which comprises mixing a herbicidally effective amount of at least one tricyclic benzoylpyrazole derivative of the formula I or an agriculturally useful salt of I as claimed in claims 1 to 6 and auxiliaries which are customary for formulating crop protection agents.
- 16. A method for controlling undesirable vegetation, which
 comprises allowing a herbicidally effective amount of at
 least one tricyclic benzoylpyrazole derivative of the formula
 I or an agriculturally useful salt of I as claimed in claims
 1 to 6 to act on plants, their habitat and/or on seed.
- 40 17. The use of tricyclic benzoylpyrazole derivatives of the formula I or their agriculturally useful salts as claimed in claims 1 to 6 as herbicides.
- 18. A tricyclic benzoic acid derivative of the formula VI

in which the variables X, Y, R^1 to R^3 and R^5 and R^5 and R^5 and R^5 and R^5 are as defined in claim R^5 and R^5 and R^5 are as

is nitro, halogen, cyano, C₁-C₆-alkyl,

C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy,

C₁-C₆-alkylthio, C₁-C₆-haloalkylthio,

C₁-C₆-alkylsulfinyl, C₁-C₆-haloalkylsulfinyl,

C₁-C₆-alkylsulfonyl, C₁-C₆-haloalkylsulfonyl,

aminosulfonyl, N-(C₁-C₆-alkyl)aminosulfonyl,

N,N-di(C₁-C₆-alkyl)aminosulfonyl,

N-(C₁-C₆-alkylsulfonyl)amino,

N-(C₁-C₆-haloalkylsulfonyl)amino,

N-(C₁-C₆-alkyl)-N-(C₁-C₆-alkylsulfonyl)amino or

N-(C₁-C₆-alkyl)-N-(C₁-C₆-haloalkylsulfonyl)amino;

19. A tricyclic benzene derivative of the formula IX

hydrolysis.

25

R¹⁷

in which the variables X, Y, \mathbb{R}^1 to \mathbb{R}^3 and 1 are as defined in claim 1 and

is hydroxyl or a radical which can be removed by

15

25

161

 $\begin{array}{lll} N-(C_1-C_6-haloalkylsulfonyl)\, amino,\\ N-(C_1-C_6-alkyl)-N-(C_1-C_6-alkylsulfonyl)\, amino \ or\\ N-(C_1-C_6-alkyl)-N-(C_1-C_6-haloalkylsulfonyl)\, amino; \end{array}$

5 R5 is hydrogen or C₁-C₆-alkyl;

is halogen, C₁-C₆-alkylsulfonyloxy,

C₁-C₆-haloalkylsulfonyloxy or phenylsulfonyloxy,

where the phenyl ring of the lastmentioned radical

may be unsubstituted or partially or fully

halogenated and/or may carry one to three of the

following radicals:

nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl,

C₁-C₄-alkoxy or C₁-C₄-haloalkoxy.

20. An aniline of the formula XV and a nitrile of the formula XVI

in which the variables X, Y, \mathbb{R}^1 to \mathbb{R}^3 and \mathbb{R}^5 and 1 are in each case as defined in claim 1 and

is nitro, halogen, cyano, C₁-C₆-haloalkyl,

C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, C₁-C₆-alkylthio,

C₁-C₆-haloalkylthio, C₁-C₆-alkylsulfinyl,

C₁-C₆-haloalkylsulfinyl, C₁-C₆-alkylsulfonyl,

C₁-C₆-haloalkylsulfonyl, aminosulfonyl,

N-(C₁-C₆-alkyl)aminosulfonyl,

N,N-di(C₁-C₆-alkyl)aminosulfonyl,

N-(C₁-C₆-alkylsulfonyl)amino,

N-(C₁-C₆-haloalkylsulfonyl)amino,

N-(C₁-C₆-alkyl)-N-(C₁-C₆-alkylsulfonyl)amino or

N-(C₁-C₆-alkyl)-N-(C₁-C₆-haloalkylsulfonyl)amino.

21. A nitrile of the formula XVI

45

NC
$$R^1$$
 R^2 R^3 R^4 R^5 XVI

in which the variables X, Y, R^1 to R^3 and 1 are in each case as defined in claim 1 and

is nitro, halogen, cyano, C₁-C₆-haloalkyl,

C₁-C₆-alkylthio, C₁-C₆-haloalkylthio,

C₁-C₆-alkylsulfinyl, C₁-C₆-haloalkylsulfinyl,

C₁-C₆-alkylsulfonyl, C₁-C₆-haloalkylsulfonyl,

aminosulfonyl, N-(C₁-C₆-alkyl)aminosulfonyl,

N,N-di-(C₁-C₆-alkyl)aminosulfonyl,

N-(C₁-C₆-alkylsulfonyl)amino,

N-(C₁-C₆-haloalkylsulfonyl)amino,

N-(C₁-C₆-alkyl)-N-(C₁-C₆-alkylsulfonyl)amino or

N-(C₁-C₆-alky)-N-(C₁-C₆-haloalkylsulfonyl)amino;

R⁵ is hydrogen or C₁-C₆-alkyl.

25

5

30

35

40

Tricyclic benzoylpyrazole derivatives

Abstract

5

Tricyclic benzoylpyrazole derivatives of the formula I

15 where:

X is oxygen, sulfur, S=0, $S(=0)_2$, CR^6R^7 , NR^8 or a bond;

y together with the two carbons to which it is attached forms a saturated, partially saturated or unsaturated 5- or 6-membered heterocycle;

R¹, R², R⁶, R⁷ are hydrogen, alkyl, haloalkyl, alkoxy or haloalkoxy;

25 R³ is halogen, alkyl, haloalkyl, alkoxy or haloalkoxy;

is hydrogen, nitro, halogen, cyano, alkyl, haloalkyl, alkoxy, haloalkoxy, alkylthio, haloalkylthio, alkylsulfinyl, haloalkylsulfinyl, alkylsulfonyl, haloalkylsulfonyl, unsubstituted or substituted aminosulfonyl or unsubstituted or substituted

sulfonylamino;

R⁵ is hydrogen, alkyl or halogen;

35

30

1 is 0, 1 or 2;

R⁹ is substituted pyrazol-4-ylcarbonyl or substituted 5-oxopyrazolin-4-ylmethylidene;

45 and their agriculturally useful salts;

163

processes and intermediates for preparing the tricyclic benzoylpyrazole derivatives; compositions comprising them and the use of these derivatives or of the compositions comprising them for controlling undesirable plants are described.

Declaration, Power of Attorney

Page 1 of 5

0050/049828

We (I), the undersigned inventor(s), hereby declare(s) that:

My residence, post office address and citizenship are as stated below next to my name,

We (I) believe that we are (I am) the original, first, and joint (sole) inventor(s) of the subject matter which is claimed and for which a patent is sought on the invention entitled

Tricyclic benzoylpyrazole derivatives

the specifica	ation of which	eh	
礿	is attached	hereto.	
[]	was filed or	1	as
	Application	n Serial No.	
	and amend	ed on	·
[x]] was filed a	s PCT international application	
	Number	PCT/EP00/02010	
	on	March 8, 2000	
	and was a	mended under PCT Article 19	
	on		(if applicable).

We (I) hereby state that we (I) have reviewed and understand the contents of the above—identified specification, including the claims, as amended by any amendment referred to above.

We (I) acknowledge the duty to disclose information known to be material to the patentability of this application as defined in Section 1.56 of Title 37 Code of Federal Regulations.

We (I) hereby claim foreign priority benefits under 35 U.S.C. § 119(a)—(d) or § 365(b) of any foreign application(s) for patent or inventor's certificate, or § 365(a) of any PCT International application which designated at least one country other than the United States, listed below and have also identified below, by checking the box, any foreign application for patent or inventor's certificate, or PCT International application having a filing date before that of the application on which priority is claimed. Prior Foreign Application(s)

Application No	. Country	Day/Month/Year	Priority Claimed
19911219.3	Germany	12 March 1999	[x] Yes [] No

Declaration

Page 2 of 5

0050/049828

(Application	Number)	(Filing Date)
(Application	Number)	(Filing Date)
this application is not disclosed st paragraph of 35 U.S.C. § 112, I	in the prior United States or PCT I acknowledge the duty to disclose i	and, insofar as the subject matter of each of international application in the manner proving information which is material to patentability a prior application and the national or PCT Int
pplication Serial No.	Filing Date	Status (pending, patente abandoned)
pplication Serial No.	Filing Date	Status (pending, patente abandoned)
Application Serial No.	Filing Date	Status (pending, patente abandoned)

We (I) declare that all statements made herein of our (my) own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

D.C. 20036 (telephone 202-659-0100), our attorneys, with full power of substitution and revocation, to prosecute this application, to make alterations and amendments therein, to sign the drawings, to receive the patent, and to transact all

business in the Patent Office connected therewith.

Declaration

Page 3 of 5

0050/049828

Matthias Witschel NAME OF INVENTOR

haker Gobel

Date March 23, 2000

Wittelsbachstr. 81

67061 Ludwigshafen

Germany

Citizen of: Germany

Post Office Address: same as residence

Steffen Kudis

NAME OF INVENTOR

Date March 23, 2000

Spelzenstr: 10

68167 Mannheim

Germany

Citizen of: Germany

Post Office Address: same as residence

Klaus Langemann

NAME OF INVENTOR

Date March 23, 2000

Goldbergstr. 18

67551 Worms Germany

Citizen of: Germany

Post Office Address: same as residence

Ernst Baumann

NAME OF INVENTOR

Signature of Inventor

March 23, 2000 Date

Falkenstr.6a

67373 Dudenhofen

Germany

Citizen of: Germany

Post Office Address: same as residence

DEX

DEX

Declaration

Page 4 of 5

0050/049828

5,00

Wolfgang von Deyn NAME OF INVENTOR

Signature of Inventor

Date

March 23, 2000

An der Bleiche 24 67435 Neustadt

Germany

Citizen of: Germany

Post Office Address: same as residence

6-00

<u>Guido Mayer</u> NAME OF INVENTOR

Signature of Inventor

Date

March 23, 2000

Gutleuthausstr. 8 67433 <u>Neustad</u>t

Germany

Citizen of: Germany

Post Office Address: same as residence

7-0

Ulf Mißlitz

NAME OF INVENTOR

Signature of Inventor

Date

March 23, 2000

Mandelring 74 67433 Neustadt

Germany

Citizen of: Germany

DEX

Post Office Address: same as residence

8-W

Ulf Neidlein

NAME OF INVENTOR

Signature of Inventor

Date

March 23, 2000

Brahmsstr.3

68165<u>Mannhei</u>m

Germany

Citizen of: Germany

Post Office Address: same as residence

DEX

Declaration

Page 5 of 5

0050/049828

9-00

Martina Otten
NAME OF INVENTOR

Machina M Signature of Inventor

Date March 23, 2000

 $\textit{Gunterstr.}\,28$

67069 Ludwigshafen

Germany

Citizen of: Germany

Post Office Address: same as residence

10-00

Karl-Otto Westphalen

NAME OF INVENTOR

Hart-Ollo Westplial

Signature of Inventor

Date March 23, 2000

Zum Pfauenturm 17

67346 Speyer

Germany Citizen of: Germany

Post Office Address: same as residence

11-00

Helmut Walter

NAME OF INVENTOR

Signature of Inventor

Date March 23, 2000

Grünstadter Str.82 67283 Obrigheim

Germany

Citizen of: Germany

Post Office Address: same as residence