Licence 1: MI-MP

CC1 : 13 mars 2023 : 10h-11h (11h20 pour les tiers temps) On attachera le plus grand soin à la présentation et aux calculs. Aucun document ni appareil numérique autorisé.

Exercice 1. [4 points]. Résoudre le système suivant (et donner son rang) :

$$\begin{cases} x - y + 2z + t &= 0 \\ 2x - y + z - t &= 0 \\ -x + y + z - t &= 0 \\ 2x - y + 4z - t &= 0 \end{cases}$$

<u>correction</u>: Par la méthode du pivot on trouve z=0 et y=3t. La solution du système est donc $\mathcal{S} = \{(2t, 3t, 0, t) : t \in \mathbb{R}\}$ et le rang vaut 3=4-1.

Exercice 2. [4 points] Soit la matrice

$$A = \left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{array}\right)$$

- 1) [1 point]. Calculer le rang de A.
- 2) [1 point]. Que vaut A^2 ?
- 3) [2 points]. Pour tout $k \in \mathbb{N}^*$, exprimer A^k en fonction de A et de k (justifier l'expression obtenue).

<u>correction</u>: 1) Le système linéaire homogène associé à la matrice A s'écrit x + z = 0 et a pour solution $S = \{(-z, y, z) ; y, z \in \mathbb{R}\}$, donc le rang de A est 1 = 3 - 2.

- 2) On trouve $A^2 = 2A$.
- 3) Par réccurence (et en utilisant 2)) on montre que $A^k = 2^{k-1}A$ pour tout $k \in \mathbb{N}^*$.

Exercice 3. [5 points] Soit $A, B \in M_n(\mathbb{R})$ telles que AB-BA=A. On note Tr l'opérateur trace.

- 1) [2 point]. Que vaut Tr(A)? (justifier).
- 2) [2 points] Montrer que pour tout entier $k \ge 1$, on a $Tr(A^k) = 0$.
- 3) [1 point]. On suppose maintenant que $AB BA = A^2$. Que vaut $Tr(A^k) = 0$ pour $k \in \mathbb{N}^* \setminus \{1\}$?

<u>correction</u>: 1) En utilisant que Tr(AB) = Tr(BA) on a donc Tr(A) = 0.

- 2) Soit $k \in \mathbb{N}^*$. En multipliant AB BA = A par A^{k-1} à gauche, on a $Tr(A^k) = Tr(A^kB A^{k-1}BA) = Tr(A^kB) Tr(A^{k-1}BA) = Tr(A^kB) Tr(A^kB) Tr(A^kB) = Tr(A^kB) = 0$.
- 3) On a $BA AB = A^2$ et donc par un calcul analogue en multipliant à gauche par A^{k-2} on obtient $Tr(A^k) = 0$ pour tout entier $k \ge 2$.

Exercice 4. [5 points] Soit I_3 la matrice identité de $M_3(\mathbb{R})$ et soit

$$A = \left(\begin{array}{ccc} 2 & -1 & 2 \\ 5 & -3 & 3 \\ -1 & 0 & -2 \end{array}\right).$$

- 1) [1 point]. Montrer que $(A + I_3)^3 = A^3 + 3A^2 + 3A + I_3$.
- 2) [2 points]. Que vaut $(A + I_3)^3$?
- 2) [2 points]. En déduire que A est inversible et exprimer A^{-1} en fonction de I_3 , A, et A^2 .

 $\underline{\text{correction}}$: 1) I_3 commute avec A, d'où le résultat par le binôme de Newton.

- 2) On trouve $(A + I_3)^3 = 0$.
- 3) Il vient donc $A(-A^2 3A 3I_3) = I_3$ ainsi A^{-1} existe et $A^{-1} = -A^2 3A 3I_3$.

Exercice 5 (4 points). Soit $m \in \mathbb{R}$ et le système linéaire

$$\begin{cases} x + my + mz = 1\\ mx + y + mz = 1\\ mx + my + z = m^2 \end{cases}$$

- 1) [2 points] Résoudre le système pour m = 1 et donner son rang.
- 2) [2 points] On suppose $m \neq 1$. Lorsque c'est possible, résoudre le système et indiquer son rang.

<u>correction</u>: 1) Pour m=1, le système s'écrit x+y+z=1 dont la solution est $\{(1-y-z,y,z) ; y,z \in \mathbb{R}\}$. Ainsi le système est de rang 1.

2) Supposons $m \neq 1$. Par la méthode du pivot de Gauss, le système équivaut à

$$\left\{ \begin{array}{lll} x + my + mz & = 1 \\ (1-m^2)y + m(1-m)z & = 0 \\ m(1-m)y + (1-m^2)z & = m(m-1) \end{array} \right. ; \left\{ \begin{array}{lll} x + my + mz & = 1 \\ (1+m)y + mz & = 0 \\ my + (1+m)z & = -m \end{array} \right. ; \left\{ \begin{array}{lll} x + my + mz & = 1 \\ (1+m)y + mz & = 0 \\ (2m+1)z & = -m(m+1) \end{array} \right.$$

le dernier système étant obtenu en multipliant par m la 2ème et par (1+m) la 3ème ligne de l'avant dernier système. Par conséquent, si m = -1/2, le système est incompatible. Si $m \neq -1/2$, alors on trouve facilement une seule et unique solution

$$x = \frac{(m+1)^2}{2m+1}$$
; $y = \frac{m^2}{2m+1}$; $z = -\frac{m(m+1)}{2m+1}$

et donc le système est de rang 3.