capítulo 8

Espacios vectoriales con producto interior

8.1. Espacios vectoriales con producto interior

Definición 8.1.1 (**Productor interior**) Sea V un espacio vectorial sobre \mathbb{K} . Una aplicación $\langle , \rangle : V \times V \to \mathbb{K}$ se dice un **producto interior** sobre V si verifica:

- 1. $\langle v, v \rangle \ge 0 \quad \forall v \in V, \qquad \langle v, v \rangle = 0 \Leftrightarrow v = \theta.$
- 2. $\forall v_1, v_2 \ y \ w \in V, \ \forall \alpha, \beta \in \mathbb{K},$

$$\langle \alpha v_1 + \beta v_2, w \rangle = \alpha \langle v_1, w \rangle + \beta \langle v_2, w \rangle.$$

3. $\langle v, w \rangle = \overline{\langle w, v \rangle} \quad \forall v, w \in V$.

Propiedades 8.1.1 1. De (3) se tiene que

$$\langle v, v \rangle = \overline{\langle v, v \rangle} \quad \forall v \in V,$$

de donde se puede concluir que $\langle v, v \rangle \in \mathbb{R}$.

2. $Si \mathbb{K} = \mathbb{R} \ y \ V$ espacio vectorial sobre \mathbb{R} entonces (3) se transforma en

$$\langle v, w \rangle = \langle w, v \rangle \quad \forall v, w \in V.$$

3. $\forall w_1, w_2 \ y \ v \in V, \ \forall \alpha_1, \alpha_2 \in \mathbb{K}$

$$\langle v, \alpha_1 w_1 + \alpha_2 w_2 \rangle = \overline{\alpha}_1 \langle v, w_1 \rangle + \overline{\alpha}_2 \langle v, w_2 \rangle.$$

En particular, si $\mathbb{K} = \mathbb{R}$ se tiene

$$\langle v, \alpha_1 w_1 + \alpha_2 w_2 \rangle = \alpha_1 \langle v, w_1 \rangle + \alpha_2 \langle v, w_2 \rangle.$$

Ejemplo 8.1.1 (Producto interior) 1.- Sea $V = \mathbb{C}^n$ espacio vectorial sobre \mathbb{C} .

$$\langle , \rangle : \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}$$

$$\langle u, v \rangle = \sum_{i=1}^n u_i \overline{v}_i,$$

es un producto interior.

2. Sea $\mathcal{M}_{n\times m}(\mathbb{R})$,

$$\langle , \rangle : \mathcal{M}_{n \times m} \times \mathcal{M}_{n \times m} \to \mathbb{R}$$

 $\langle A, B \rangle = tr(A^t B),$

es un producto interior. Donde la traza de una matriz cuadrada A es la suma de los elementos de la diagonal principal y se denota por tr(A).

3. Sea $C_{\mathbb{R}}[a,b]$ el espacio vectorial de las funciones continuas de [a,b] en \mathbb{R} .

$$\langle , \rangle : C_{\mathbb{R}}[a,b] \times C_{\mathbb{R}}[a,b] \to \mathbb{R}$$

$$\langle f, g \rangle = \int_a^b f(x)g(x)dx,$$

es un producto interior.

Definición 8.1.2 (Norma) Sea V un espacio vectorial con producto interior, se llama norma del vector v al número $||v|| = \sqrt{\langle v, v \rangle}$.

Propiedades 8.1.2 $\forall u, v, w \in V \ y \ \alpha \in \mathbb{K}$,

- 1. $||v|| = 0 \Leftrightarrow v = \theta$.
- 2. $\|\alpha v\| = |\alpha| \|v\|$.
- 3. $|\langle v, w \rangle| \le ||v|| ||w||$.
- 4. $||u+v|| \le ||u|| + ||v||$.

(Desigualdad de Cauchy-Schwartz)

(Desigualdad triangular)

Definición 8.1.3 Sea V un K-espacio vectorial con producto interior

- 1. $v, w \in V$, v es ortogonal a w si $\langle v, w \rangle = 0$.
- 2. un subconjunto $\{v_1, \ldots, v_n\} \subseteq V$ es un conjunto ortogonal si $\langle v_i, v_j \rangle = 0 \quad \forall i \neq j$.
- 3. un subconjunto $\{v_1, \ldots, v_n\} \subseteq V$ es un conjunto ortonormal si es un conjunto ortogonal $y \|v_i\| = 1 \quad \forall i = \{1, \ldots, n\}.$

Lema 8.1.1 Si $\{v_1, \ldots, v_n\}$ es un conjunto ortogonal de vectores no nulos, entonces $\{v_1, \ldots, v_n\}$ es L.I.

Demostración: Demostrar en clases.

Corolario 8.1.1 Si un vector w es C.L. de un conjunto ortogonal de vectores no nulos $\{x_1, \ldots, x_n\}$, entonces w es igual a

$$w = \sum_{k=1}^{n} \frac{\langle w, x_k \rangle}{\|x_k\|^2} x_k.$$

Demostración: Demostrar en clases.

Proposition 8.1.1 (Proceso de ortogonalización de Gram-Schmidt) Sea V espacio vec-

torial de dimensión finita con producto interior \langle , \rangle y $\{v_1, \ldots, v_n\}$ una base de V. Entonces existe una base ortogonal $\{w_1, \ldots, w_n\}$ tal que el subespacio generado por los vectores $\{w_1, \ldots, w_m\}$ es el mismo que el subespacio generado por $\{v_1, \ldots, v_m\}$ $(1 \le m \le n)$. Explícitamente, la base es

$$w_1 = v_1, (1)$$

$$w_2 = v_2 - \frac{\langle v_2, w_1 \rangle}{\|w_1\|^2} w_1, \tag{2}$$

$$w_3 = v_3 - \frac{\langle v_3, w_1 \rangle}{\|w_1\|^2} w_1 - \frac{\langle v_3, w_2 \rangle}{\|w_2\|^2} w_2, \tag{3}$$

: :

$$w_n = v_n - \frac{\langle v_n, w_1 \rangle}{\|w_1\|^2} w_1 - \frac{\langle v_n, w_2 \rangle}{\|w_2\|^2} w_2 - \dots - \frac{\langle v_n, w_{n-1} \rangle}{\|w_{n-1}\|^2} w_{n-1}. \tag{n}$$

Ejemplo 8.1.2 1. Sea $B = \{(3,0,4), (-1,0,7), (2,9,11)\}$ una base de \mathbb{R}^3 . Encuentre una

base ortogonal para \mathbb{R} .

Respuesta: $B' = \{(3,0,4), (-4,0,3), (0,9,0)\}$

Observación: Sea V espacio vectorial de dimensión finita con producto interior \langle , \rangle y $\{v_1, \ldots, v_n\}$ una base de V. Entonces, por Gram-Schmidt existe una base ortogonal $\{w_1, \ldots, w_n\}$ de V. Sea $u_i = w_i/\|w_i\|$, entonces $\{u_1, \ldots, u_n\}$ es una base de V donde los vectores son ortogonales y de norma 1.

Definición 8.1.4 Sea V espacio vectorial con producto interior $\langle \ , \ \rangle$ y sean U,W subespacios de V. Diremos que U es ortogonal a W y denotaremos $U \perp W$ si para todo $u \in U$ y para todo $w \in W$ tenemos que $\langle u, w \rangle = 0$.

Si X es subconjunto de V, definimos

$$X^{\perp} := \{ u \in V : \langle u, x \rangle = 0, \forall x \in X \}.$$
 (Complemento ortogonal de X)

Proposition 8.1.2 Sea V espacio vectorial con producto interior \langle , \rangle y $X \subseteq V$. Entonces X^{\perp} es un subespacio de V.

Demostración: Demostrar en clases.

Observación: Si W es subespacio y x es ortogonal a todo vector de una base de W entonces $x \in W^{\perp}$.

Ejemplo 8.1.3 1.
$$W = \{(0,0,z) : z \in \mathbb{R}\} \subset \mathbb{R}^3$$
. Encuentre W^{\perp} .

2. Sean $S = \{(x, y, z) : 2x - 3y + z = 0\}$ y $T = \{(x, y, z) : \frac{x}{2} = -\frac{y}{3} = z\}$. Muestre que $S \perp T$.

8.1.1. Listado 6

1. a) Considere \mathbb{R}^2 con el producto interior usual. Si x=(1,2) y y=(-1,1), encuentre $v\in\mathbb{R}^2$ tal que

$$\langle v, x \rangle = -2 \ \land \ \langle v, y \rangle = 3.$$

b) Demuestre que para cada vector $u \in \mathbb{R}^2$, se tiene

$$u = \langle u, e_1 \rangle e_1 + \langle u, e_2 \rangle e_2,$$

donde $\{e_1, e_2\}$ es la base canónica de \mathbb{R} .

- 2. Encuentre una base ortonormal para \mathbb{R}^3 a partir de $\{(1,1,0),(-1,1,0),(-1,1,1)\}.$
- 3. Dado el vector $(2,1,-1) \in \mathbb{R}^3$, construya a partir de él una base ortonormal de \mathbb{R}^3 .
- 4. Considere el espacio vectorial \mathbb{R}^3 con el p.i. usual. Sea $S = \langle \{(1,1,1), (-1,1,0)\} \rangle$.
 - a) Caracterice S^{\perp} y determine su dimensión.

- b) Encontrar una base B ortonormal de \mathbb{R}^3 tal que uno de sus vectores sea elemento de S^{\perp} .
- 5. Considere el espacio vectorial real $\mathcal{P}_2(\mathbb{R})$ con el p.i.

$$\langle p, q \rangle = 2 \int_0^2 p(x)q(x)dx$$

Pruebe que el conjunto $\{1, x-2, x^2-2\}$ es l.i. y ortonormalice respecto del p.i. dado.

6. En \mathbb{C}^2 se define el producto interior

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i \overline{y}_i.$$

Pruebe que los vectores $x=(3,-i),\,y=(2,6i)$ son ortogonales y normalícelos.

7. Pruebe que en el espacio $C_{\mathbb{R}}[0,1]$, con el producto interior

$$\langle f, g \rangle = \int_0^1 f(t)g(t)dt,$$

el conjunto $\{1, \sqrt{3}(2t-1), \sqrt{5}(6t^2-6t+1)\}$ es una base ortonormal.

8. En el espacio $C_{\mathbb{R}}[0,2\pi]$, con el producto interior

$$\langle f, g \rangle = \int_0^{2\pi} f(x)g(x)dx,$$

el conjunto $\{\sin(x),\cos(x)\}\$ es ortogonal.

9. Pruebe que $\{\sin(nx),\cos(nx),1\}$ es un conjunto ortogonal con el producto interior

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx.$$

10. En el espacio de los polinomios reales de grado menor o igual que 2 con el producto

$$\langle p, q \rangle = \int_{-1}^{1} p(x)q(x)dx.$$

construya a partir de la base $\{1, x, x^2\}$ una base ortonormal.

11. Sean $x \in y$ vectores de un espacio vectorial con p.i. tales que x + y es ortogonal a x - y. Demuestre que ||x|| = ||y||.

13. Sea $W = \{(x, y, z) \in \mathbb{R}^3 : x = 2y = z\}$. Halle W^{\perp} . ¿Qué representan geométricamente W

- 12. Sea V un K-espacio vectorial con p.i.. Demuestre que: $\forall x, y \in V$,
 - $||x + y||^2 + ||x y||^2 = 2||x||^2 + 2||y||^2.$

v W^{\perp} ?