

Déployer un modèle dans le cloud

Plan de travail

- I. Contexte et objectifs
- II. Présentation des données disponibles
- III. AWS: Architecture cloud
- IV. Traitement des images et réduction dimensionnelle
- V. Pistes d'amélioration et conclusions

Contexte & Objectifs

Contexte & Objectifs

L'entreprise: Fruits!

- → Start-up de l'Agritech
- → application de reconnaissance d'images
- → Croissance rapide des volumes de données

Déploiement d'un environnement "Big Data"

- → Prétraitements & Réduction dimensionnelle
- Elasticité du cluster de traitement
- → Accessibilité des données et résultats dans le cloud

Présentation du jeu de données

Caractéristiques du jeu de données

Le jeu de données contient :

- → 90483 images de fruits sur fond blanc téléchargeables à ce lien :

 https://www.kaggle.com/moltean/fruits
 <u>s</u>
- → classées en 131 variétés de fruits et légumes
- → Résolution : 100X100 pixels
- → Des images prise sous plusieurs angles
- → Format .jpg

Travail sur l'échantillon

Choix de cinq classes d'images pour le test de l'architecture big data pour des raisons de coûts (énergetiques et financiers)

(cohérence avec les valeurs de l'entreprise)

L'Architecture Big Data avec Amazon Web Services

Amazon Elastic Compute Cloud (Amazon EC2)

- → Création et lancement d'une instance adaptée à aux contraintes techniques :
 - t2.xlarge
 - RAM: 16 Go
 - 4 CPUs
- → Connexion via tunnel SSH (clé privée .pem)
- → Installation des différents outils nécessaires au projet (anaconda, Spark, Pyspark, java etc.);
- → Connexion à jupyter notebook via un mot de passe et début du script en pyspark.

Groupe de sécurité et accès

Mise en place du groupe de sécurité

Mise en place du rôle IAM (identity and access management)

Amazon Simple Storage Service (S3)

Stockage d'un échantillon d'images sur le S3 (Simple Storage Service)

Chargement de trois dossiers de tests (5 types de fruits) comportant chacun 10 images.

Fonctionnement général de Spark

Plateforme (framework) Opensource multi-langage et ensemble de bibliothèques pour le traitement parallélisé de données sur des grappes (clusters) d'ordinateurs.

Architecture de Spark

- → Le driver utilise SparkContext pour se connecter au cluster manager et lui soumettre des tâches;
- → Le cluster manager alloue les ressources aux workers et contrôle l'exécution des tâches;
- → Un Worker est constitué d'un ou plusieurs exécuteurs;
- → L' exécuteur exécute le code qui lui est assigné par le driver (via le CM) et lui rapporte l'état d'avancement de la tâche.

Architecture globale de l'environnement Big Data

Stockage à distance :

- Chargement des images (interface AWS);
- Chargement des features en format parquet (scripts pyspark)

Lien du bucket S3 : s3://p8-fruits-s3/

- pour python (Pyspark);
- Installation des packages;
- Extraction des features;
- Réduction dimensionnelle

Traitement des images et réduction dimensionnelle

Headlines processing & Réduction dimensionnelle

- → Choix d'un échantillon de cinq classes (Pomme, banane et citron, cerise, chou fleur);
- → Choix de dix images par classe pour le traitement
- → Scripts Pyspark construits avec l'échantillon d'images (5 types de fruits, 10 images choisis à la volée pour chacun)
- → Choix du réseau de neurones résiduels (ResNet) Resnet50 pour l'extraction de features.
- → Réduction dimensionnelle avec PCA (Principal Component Analysis)

Traitement des images

Instance Spark

Extraction des features avec Resnet 50

Extraction des features avec Resnet 50

- Resnet50 est un réseau de neurones convolutifs résiduel à 50 couches.
- → Pré-entraîné sur la base de données ImageNet (14 millions d'images).
- → Input : image en format 224X224
- → Output : vecteur de 2048 dimensions

Dans le cadre d'une extraction de features, on supprime la dernière couche : **fully connected** (couche de classification)

model = ResNet50(include_top=False)

Réduction dimensionnelle avec PCA

Features issus de l'extraction via ResNet50 passées au PCA après standardisation

path	label		feat	features	
s3a://p8-fruits-s	lemon	[0.0,	0.0,	0.0,	0
s3a://p8-fruits-s	lemon	[0.0,	0.0,	0.0,	0
s3a://p8-fruits-s	lemon	[0.0,	0.0,	0.0,	0
s3a://p8-fruits-s	lemon	[0.0,	0.0,	0.0,	0
s3a://p8-fruits-s	Apple-Golden-3	[0.0,	0.0,	0.0,	0
s3a://p8-fruits-s	lemon	[0.0,	0.0,	0.0,	0
s3a://p8-fruits-s	lemon	[0.0,	0.0,	0.0,	0
s3a://p8-fruits-s	lemon	[0.0,	0.0,	0.0,	0
s3a://p8-fruits-s	lemon	[0.0,	0.0,	0.0,	0
s3a://p8-fruits-s	lemon	[0.0,	0.0,	0.0,	0
s3a://p8-fruits-s	Apple-Golden-3	[0.0,	0.0,	0.0,	0
s3a://p8-fruits-s	lemon	[0.0,	0.0,	0.0,	0
s3a://p8-fruits-s	lemon	[0.0,	0.0,	0.0,	0
s3a://p8-fruits-s	lemon	[0.0,	0.0,	0.0,	0
s3a://p8-fruits-s	lemon	[0.0,	0.0,	0.0,	0
s3a://p8-fruits-s	lemon	[0.0,	0.0,	0.0,	0
s3a://p8-fruits-s	lemon	[0.0,	0.0,	0.0,	0
s3a://p8-fruits-s	lemon	[0.0,	0.0,	0.0,	0
s3a://p8-fruits-s	Apple-Golden-3	[0.0,	0.0,	0.0,	0
s3a://p8-fruits-s	Apple-Golden-3	[0.0,	0.0,	0.0,	0
	t	·			

pca = PCA(k=6, inputCol="feats_scaled", outputCol="pca")
modelpca = pca.fit(features_df_scaled)
transformed = modelpca.transform(features_df_scaled)

Eboulis de la variance expliquée : environ <u>6 composants</u> permettent d'expliquer plus de 95-98% de la variance.

Visualisation des résultats du PCA

- → On observe un bon regroupement des images d'une même espèces de fruit.
- Certaines espèces
 particulièrement bien
 séparées des autres
 (Cauliflower Chou-fleur,
 Banane), et framboise)
 d'autres plus mélangées
 (citron, Cerise et pomme)

Conclusion et perspectives

Conclusions et Perspectives

Notions apprises ou couvertes

- → Prise en main de Spark et Pyspark
- → Découverte de l'écosystème AWS
- → Administration d'un serveur Linux par SSH

Perspectives

- Test avec plus d'images! Relancer le script avec un échantillon nettement plus grand en changeant d'instance EC2 si nécessaire.
- → Utiliser t-SNE à la place de PCA pour la réduction dimensionnelle ?
- → Utiliser un service EMR (Elastic MapReduce) à la place d'EC2 ?

Merci !!!

Annexes

Connexion à EC2 et Jupyter Notebook


```
(base) MacBook-Pro-de-wick:~ macbookproal$ cd Desktop/KeyAWSEC2/
(base) MacBook-Pro-de-wick:KeyAWSEC2 macbookproal$ sudo ssh -i "p8_key_ec2.pem" ec2-user@ec2-34-244-171-139.eu-west-1.compute.amazonaws.com
Password:
The authenticity of host 'ec2-34-244-171-139.eu-west-1.compute.amazonaws.com (34.244.171.139)' can't be established.
ECDSA key fingerprint is SHA256:/taWi2eOWa6m0x0iAr2Md0RmlS9NXT9aKCYkIDHUVrM.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'ec2-34-244-171-139.eu-west-1.compute.amazonaws.com,34.244.171.139' (ECDSA) to the list of known hosts.
Last login: Fri Nov 26 20:57:39 2021 from 102.64.130.202
      __l __l_ )
_l ( / Amazon Linux 2 AMI
https://aws.amazon.com/amazon-linux-27
(base) [ec2-user@ip-172-31-26-61 ~]$ jupyter notebook
[W 2021-11-27 08:20:49.536 LabApp] 'certfile' mas moved from NotebookApp to ServerApp. This config will be passed to ServerApp. Be sure to update your config before our next release.
[W 2021-11-27 08:20:49.536 LabApp] 'keyfile' has moved from NotebookApp to ServerApp. This config will be passed to ServerApp. Be sure to update your config before our next release.
[W 2021-11-27 08:20:49.536 LabApp] 'ip' has moved from NotebookApp to ServerApp. This config will be passed to ServerApp. Be sure to update your config before our next release.
[W 2021-11-27 08:20:49.537 LabApp] 'ip' has moved from NotebookApp to ServerApp. This config will be passed to ServerApp. Be sure to update your config before our next release.
[W 2021-11-27 08:20:49.537 LabApp] 'password' has moved from NotebookApp to ServerApp. This config will be passed to ServerApp. Be sure to update your config before our next release. [W 2021-11-27 08:20:49.537 LabApp] 'port' has moved from NotebookApp to ServerApp. This config will be passed to ServerApp. Be sure to update your config before our next release. [W 2021-11-27 08:20:49.537 LabApp] 'port' has moved from NotebookApp to ServerApp. This config will be passed to ServerApp. Be sure to update your config before our next release.
[I 2021-11-27 08:20:49.545 LabApp] JupyterLab extension loaded from /home/ec2-user/anaconda3/lib/python3.8/site-packages/jupyterlab
[I 2021-11-27 08:20:49.545 LabApp] JupyterLab application directory is /home/ec2-user/anaconda3/share/jupyter/lab
[I 08:20:49.550 NotebookApp] Serving notebooks from local directory: /home/ec2-user
[I 08:20:49.550 NotebookApp] Jupyter Notebook 6.3.0 is running at:
[I 08:20:49.550 NotebookApp] https://ip-172-31-26-61.eu-west-1.compute.internal:8888/
[I 08:20:49.550 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
[W 08:21:37.196 NotebookApp] SSL Error on 10 ('102.64.130.202', 55973): [SSL: SSLV3_ALERT_CERTIFICATE_UNKNOWN] sslv3 alert certificate unknown (_ssl.c:1125)
[W 08:21:37.198 NotebookApp] SSL Error on 11 ('102.64.130.202', 55972): [SSL: SSLV3_ALERT_CERTIFICATE_UNKNOWN] sslv3 alert certificate unknown (_ssl.c:1125)
[W 08:21:37.446 NotebookApp] SSL Error on 12 ('102.64.130.202', 55974): [SSL: SSLV3_ALERT_CERTIFICATE_UNKNOWN] sslv3 alert certificate unknown (_ssl.c:1125)
[W 08:21:46.997 NotebookApp] SSL Error on 11 ('102.64.130.202', 55996): [SSL: SSLV3_ALERT_CERTIFICATE_UNKNOWN] sslv3 alert certificate unknown (_ssl.c:1125)
[W 08:21:47.005 NotebookApp] SSL Error on 10 ('102.64.130.202', 55997): [SSL: SSLV3_ALERT_CERTIFICATE_UNKNOWN] sslv3 alert certificate unknown (_ssl.c:1125)
[W 08:21:47.312 NotebookApp] SSL Error on 12 ('102.64.130.202', 55999): [SSL: SSLV3_ALERT_CERTIFICATE_UNKNOWN] sslv3 alert certificate unknown (_ssl.c:1125)
[I 08:21:47.575 NotebookApp] 302 GET / (102.64.130.202) 0.510000ms
[I 08:21:47.978 NotebookApp] 302 GET /tree? (102.64.130.202) 0.670000ms
[W 08:21:49.768 NotebookApp] SSL Error on 13 ('102.64.130.202', 56006): [SSL: SSLV3_ALERT_CERTIFICATE_UNKNOWN] sslv3 alert certificate unknown (_ssl.c:1125)
[W 08:21:49.768 NotebookApp] SSL Error on 12 ('102.64.130.202', 56008): [SSL: SSLV3_ALERT_CERTIFICATE_UNKNOWN] sslv3 alert certificate unknown (_ssl.c:1125)
[W 08:21:49.769 NotebookApp] SSL Error on 14 ('102.64.130.202', 56007): [SSL: SSLV3_ALERT_CERTIFICATE_UNKNOWN] sslv3 alert certificate unknown (_ssl.c:1125)
TW 08:21:49.773 NotebookApp] SSL Error on 15 ('102.64.130.202', 56009): [SSL: SSLV3_ALERT_CERTIFICATE_UNKNOWN] sslv3 alert certificate unknown (_ssl.c:1125)
[W 08:21:50.252 NotebookApp] SSL Error on 13 ('102.64.130.202', 56013): [SSL: SSLV3_ALERT_CERTIFICATE_UNKNOWN] sslv3 alert certificate unknown (_ssl.c:1125)
[W 08:21:50.324 NotebookApp] SSL Error on 14 ('102.64.130.202', 56014): [SSL: SSLV3_ALERT_CERTIFICATE_UNKNOWN] sslv3 alert certificate unknown (_ssl.c:1125) [W 08:21:50.851 NotebookApp] SSL Error on 14 ('102.64.130.202', 56019): [SSL: SSLV3_ALERT_CERTIFICATE_UNKNOWN] sslv3 alert certificate unknown (_ssl.c:1125)
[I 08:21:54.124 NotebookApp] 302 POST /login?next=%2Ftree%3F (102.64.130.202) 1.100000ms
[W 08:22:00.945 NotebookApp] SSL Error on 14 ('102.64.130.202', 56049): [SSL: SSLV3_ALERT_CERTIFICATE_UNKNOWN] sslv3 alert certificate unknown (_ssl.c:1125)
TW 08:22:15.371 NotebookApp7 Notebook P8_01_notebook.ipvnb is not trusted
[W 08:22:15.626 NotebookApp] SSL Error on 16 ('102.64.130.202', 56086): [SSL: SSLV3_ALERT_CERTIFICATE_UNKNOWN] sslv3 alert certificate unknown (_ssl.c:1125)
[I 08:22:17.609 NotebookApp] Kernel started: 0fc44201-87d9-46f1-ab87-8b43329fee28, name: python3
[W 08:22:18.332 NotebookApp] SSL Error on 26 ('102.64.130.202', 56096): [SSL: SSLV3_ALERT_CERTIFICATE_UNKNOWN] sslv3 alert certificate unknown (_ssl.c:1125)
[W 08:22:57.789 NotebookApp] SSL Error on 36 ('54.151.6.217', 43240): [SSL: HTTP_REQUEST] http request (_ssl.c:1125) [I 08:24:20.851 NotebookApp] Saving file at /P8_01_notebook.ipynb
[W 08:24:20.851 NotebookApp] Notebook P8_01_notebook.ipynb is not trusted
[I 08:26:19.280 NotebookApp] Saving file at /P8_01_notebook.ipynb
```

Jupyter Notebook sur EC2

