

Técnicas e Algoritmos em Ciência de Dados Tarefa avaliada 1

Esta tarefa deverá ser enviada até 16 de abril de 2020, às 8h00. Envios atrasados NÃO serão aceitos.

Resultados avaliado

Esta tarefa testará alguns conceitos básicos de programação Python para análise de dados (Pandas, Seaborn, Scikit-learn), incluindo carregamento e limpeza de dados, construção e avaliação de modelos simples de classificação e plotagem básica.

Instruções

Identificador

Escolha um número aleatório de 6 dígitos e escreva-o na primeira célula do notebook. Assegure-se de manter uma cópia desse número, pois ele será usado para fornecer feedback (evite números triviais, como 000000 ou 123456 - obrigado).

Envio

Envie seus arquivos através do ECLASS. Os arquivos enviados não podem ser sobregravados por outra pessoa, e não podem ser lidos por nenhum outro aluno. No entanto, você pode sobregravar o envio com a frequência desejada, reenviando, embora somente a última versão enviada seja mantida. O envio após o prazo NÃO será aceito.

Se tiver problemas, no último minuto, envie um e-mail para sua tarefa como anexo em <u>alberto.paccanaro@fqv.br</u> com o assunto "ENVIO URGENTE - TAREFA 1". No corpo da mensagem, explique o motivo de não enviar por ECLASS.

IMPORTANTE

- Seu envio consistirá em um único notebook Python implementando suas soluções.
- O nome do arquivo será o número aleatório que o identifica (por exemplo, 568423.ipynb)
- Este curso consiste em 3 partes. Certifique-se de que as 3 partes estejam claramente separadas e identificáveis no seu notebook Python.
- NÃO ENVIE NENHUM CONJUNTO DE DADOS, apenas o código.
- Qualquer função de utilitário que você usará deve ser incluída no notebook não envie scripts de utilitários.

ACONSELHAMENTO SOBRE EXERCÍCIOS DE BÔNUS

O valor de cada exercício em porcentagens é fornecido. Observe, no entanto, que a soma total das notas dos exercícios é 110/100. Isso ocorre porque 10 pontos extras são dados para exercícios BÔNUS — eles são claramente marcados no texto abaixo. Observe que esses exercícios BÔNUS são difíceis e demorados. Aconselhamos que você tenha uma solução de trabalho final para todo o curso antes de tentar responder a esses exercícios opcionais.

Todo o trabalho que você enviar deve ser exclusivamente seu próprio trabalho. Os envios de trabalho de curso serão verificados quanto a isso.

Critérios de Marcação

Este curso é avaliado e obrigatório e vale 25% do seu total de notas finais para este curso. Para obter todos os pontos de cada pergunta, você deve respondeê-la corretamente e completamente. Pontos serão dados para códigos bem escritos e estruturados.

PERGUNTAS

Parte 1 - Carregamento de dados e pré-processamento - valor desta seção: 25 %

Faça download do arquivo "Part1.tsv" da plataforma ECLASS.

Observe que este arquivo tem um formato customizado: cada ponto tem 5 características (os primeiros 5 valores) e um rótulo de classe associado (o último valor). Nesta parte, você carregará e visualizará o conjunto de dados.

Estas são as etapas que você precisará implementar:

- a) Carregar os dados em um DataFrame de pandas
- b) Limpar o conjunto de dados removendo os pontos com valores ausentes
- c) Para cada característica do conjunto de dados, faça uma figura que contenha 2 sub-gráficos mostrando:
 - O histograma dos valores da característica (todas as classes combinadas).
 - O histograma dos valores da característica separadamente para cada classe. Use uma cor diferente para cada classe.

Observe que todos os seus histogramas devem ter 50 barras (intervalos) e devem ser normalizados (a área sob o histograma deve totalizar até 1).

Para cada característica, a figura deve se parecer com a Figura 1.

Figura 1

d) Faça uma figura contendo uma matriz de sub-gráficos. Esses sub-gráficos apresentarão projeções do conjunto de dados em cada par de características, histograma de suas distribuições e valores dos coeficientes de correlação de Pearson.

A matriz de sub-gráficos será organizada como a figura 2.

O A seção triangular superior da matriz conterá na entrada (i,j) a correlação de Pearson entre feature i e feature j.

- A diagonal principal conterá na posição (i, i) os histogramas dos valores da feature i. Esses histogramas são os mesmos que você já plotou no ponto c): você deve usar uma cor diferente para cada classe e os histogramas devem ter 50 barras (intervalos) e devem ser normalizados (a área abaixo do histograma deve totalizar até 1).
- A seção triangular inferior da matriz conterá na entrada (i, j) as projeções dos pontos nas características i e j. Use uma cor diferente para cada classe e as cores devem corresponder às usadas nos histogramas.

Parte 2 - Mistura de Gaussianas como classificador - valor desta seção:45 %

Faça download do arquivo "Part2.tsv" da plataforma ECLASS. Neste arquivo, cada ponto tem 2 características (os primeiros 2 valores) e um rótulo de classe associado (o último valor). Nesta parte, você construirá um classificador Bayesiano baseado no modelo de mistura de Gaussianas.

Estas são as etapas que você precisará implementar:

- a) Carregar os dados em um DataFrame de pandas
- b) Fazer um gráfico de dispersão dos dados, usando cores diferentes para indicar pontos de diferentes classes.
- c) Utilizar a implementação do scikit-learn da Mixture of Gaussians para implementar um classificador bayesiano para os dados (use o teorema de Bayes).

<u>Dica 1</u>: tome cuidado para que a implementação do scikit-learn da Mixture of Gaussians é orientada para o clustering (que é o aprendizado não supervisionado) e não para a estimativa de densidade.

<u>Dica 2</u>: tome cuidado para que a implementação da Mixture of Gaussians pelo scikit-learn fornece a log-verosimilhança (não a verosimilhança!) dos dados vindo do modelo. Você precisará levar isso em conta antes de aplicar o teorema de Bayes.

BÔNUS (6% de marcas extras): Compatibilizar sua implementação com a API do estimador scikit-learn: https://scikit-learn.org/stable/developers/develop.html#rolling-your-own-estimator

Parte 3 - Seleção do Modelo - valor desta seção: 30 %

Esta peça usa os mesmos dados que você já usou na Parte 2 (ou seja, o arquivo "Part2.tsv"). Nesta parte, você comparará a performance de generalização de diferentes classificadores com relação a diversas medidas de performance.

As performances de generalização serão mensuradas em um conjunto de testes constituído por 25% dos dados.

Os classificadores são:

- implementação da Naive Bayes pela scikit-learn
- implementação do K-nearest-neighbour pela scikit-learn
- um modelo muito simples que classifica os pontos de dados usando apenas os priors de classe (Dica: similar ao que você fez no laboratório da semana 5)
- um classificador bayesiano que adequa uma única Gaussiana para cada classe. (Dica: similar ao que você fez no laboratório da semana 6)
- o classificador Bayesiano com base no modelo Mistura de Gaussianas que você implementou na Parte 2 (Note: se você não conseguiu implementar o modelo Mixture of Gaussians na parte 2, então simplesmente omita esse modelo da sua análise).

As métricas de performance são (todas implementadas no scikit-learn):

- Accuracy
- Precision
- Recall
- AUC-ROC
- AUC-PR

Seu código irá:

- a) Imprima uma tabela com os valores da métrica de performance (nas colunas) para cada modelo (nas linhas) no conjunto de teste.
- b) Faça uma única figura contendo 2 sub-gráficos. No primeiro sub-gráfico, você plotará as curvas de ROC de cada modelo. No segundo sub-gráfico, você plotará as curvas de PR para cada modelo.
- c) Para cada modelo, faça uma figura com a fronteira de decisão do modelo.

BÔNUS (4% de marcas extras): Transforme suas implementações dos modelos gaussianos anteriores e multivariados em estimadores de scikit-learn.