max features	n estimators	min sample leaf	max_depth	training f1	valid f1	training f1 for each technique
auto	50	25	None	0.3498	0.3471	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0009, 0.0]
auto	50	25	10	0.3504	0.3466	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0]
auto	50	25	20	0.3497	0.3465	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0009, 0.0]
auto	50	25	40	0.3498	0.3465	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0009, 0.0]
auto	50	25	80	0.3498	0.3466	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0009, 0.0]
auto	50	50	None	0.35	0.3463	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0]
auto	50	50	10	0.3498	0.3463	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0]
auto	50	50	20	0.3498	0.3465	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0]
auto	50	50	40	0.35	0.3465	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0]
auto	50	50	80	0.35	0.3468	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0]
auto	50	100	None	0.3503	0.3462	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0]
auto	50	100	10	0.3501	0.346	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0]
auto	50	100	20	0.3499	0.3462	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0]
auto	50	100	40	0.3499	0.346	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0]
auto	50	100	80	0.3505	0.3458	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0]
auto	100	25	None	0.3502	0.346	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0]
auto	100	25	10	0.3506	0.3468	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0]
auto	100	25	20	0.3503	0.3468	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0]
auto	100	25	40	0.3498	0.3463	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0]
auto	100	25	80	0.3497	0.3457	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0]
auto	100	50	None	0.35	0.3463	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0]
auto	100	50	10	0.3498	0.3465	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0]
auto	100	50	20	0.35	0.3463	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0]
auto	100	50	40	0.3505	0.346	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0]
auto	100	50	80	0.3502	0.3458	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0]
auto	100	100	None	0.35	0.3457	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
auto	100	100	10	0.3497	0.3462	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
auto	100	100	20	0.35	0.3462	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
auto	100	100	40	0.35	0.346	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
auto	100	100	80	0.3497	0.3468	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
auto	200	25	None	0.3496	0.3465	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
auto	200	25	10	0.3493	0.3466	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
auto	200	25	20	0.3502	0.3463	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
auto	200	25	40	0.3496	0.3463	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0]
auto	200	25	80	0.3502	0.3463	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
auto	200	50	None	0.3498	0.346	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0]
auto	200	50	10	0.3502	0.3465	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0]
auto	200	50	20	0.3491	0.3465	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0]
auto	200	50	40	0.35	0.3463	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0]
auto	200	50	80	0.3503	0.3466	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0]
auto	200	100	None	0.3505	0.3457	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0]
auto	200	100	10	0.35	0.3463	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
auto	200	100	20	0.3498	0.346	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
auto	200	100	40	0.3504	0.346	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
auto	200	100	80	0.3501	0.3462	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
sqrt	50	25	None	0.3504	0.3465	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
sqrt	50	25	10	0.3502	0.346	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0009, 0.

max_features	n_estimators	min_sample_leaf	max_depth	training f1	valid f1	training f1 for each technique
sqrt	50	25	20	0.3496	0.3466	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
sqrt	50	25	40	0.3501	0.3463	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
sqrt	50	25	80	0.3505	0.3465	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0013, 0.
sqrt	50	50	None	0.35	0.3465	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
sqrt	50	50	10	0.3502	0.3466	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
sqrt	50	50	20	0.3501	0.3465	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
sqrt	50	50	40	0.3502	0.3466	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
sqrt	50	50	80	0.3503	0.3468	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
sqrt	50	100	None	0.3502	0.3468	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
sqrt	50	100	10	0.3499	0.346	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
sqrt	50	100	20	0.3503	0.3468	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
sqrt	50	100	40	0.35	0.3462	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
sqrt	50	100	80	0.3498	0.3466	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
sqrt	100	25	None	0.3495	0.3463	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
sqrt	100	25	10	0.3494	0.3471	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
sqrt	100	25	20	0.3501	0.3466	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
sqrt	100	25	40	0.3502	0.346	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0005, 0.
sqrt	100	25	80	0.3501	0.3471	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
sqrt	100	50	None	0.35	0.347	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
sqrt	100	50	10	0.3509	0.3463	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
sqrt	100	50	20	0.3503	0.3465	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
sqrt	100	50	40	0.35	0.3468	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
sqrt	100	50	80	0.3502	0.3457	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
sqrt	100	100	None	0.3503	0.3466	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
sqrt	100	100	10	0.3498	0.3458	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
sqrt	100	100	20	0.3497	0.3466	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
sqrt	100	100	40	0.35	0.3465	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
sqrt	100	100	80	0.3502	0.3465	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
sqrt	200	25	None	0.3506	0.3462	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
sqrt	200	25	10	0.3498	0.3457	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
sqrt	200	25	20	0.3497	0.3466	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
sqrt	200	25	40	0.3497	0.3463	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
sqrt	200	25	80	0.3493	0.3452	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
sqrt	200	50	None	0.3502	0.3463	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
sqrt	200	50	10	0.3495	0.3463	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
sqrt	200	50	20	0.3495	0.3471	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
sqrt	200	50	40	0.3495	0.3466	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
sqrt	200	50	80	0.3496	0.3466	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
sqrt	200	100	None	0.3498	0.3466	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
sqrt	200	100	10	0.3502	0.346	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
sqrt	200	100	20	0.3498	0.3465	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
sqrt	200	100	40	0.3504	0.346	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
sqrt	200	100	80	0.3497	0.3463	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
$\log 2$	50	25	None	0.3502	0.3463	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
$\log 2$	50	25	10	0.35	0.3466	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
$\log 2$	50	25	20	0.3497	0.3468	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
$\log 2$	50	25	40	0.35	0.3465	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

max_features	n_estimators	min_sample_leaf	max_depth	training f1	valid f1	training f1 for each technique
$-\log 2$	50	25	80	0.3499	0.3463	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
$\log 2$	50	50	None	0.3497	0.3466	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
$\log 2$	50	50	10	0.3497	0.3465	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
$\log 2$	50	50	20	0.3497	0.3465	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
$\log 2$	50	50	40	0.3499	0.3466	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
$\log 2$	50	50	80	0.35	0.3463	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
$\log 2$	50	100	None	0.3499	0.3468	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
$\log 2$	50	100	10	0.3504	0.3468	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
$\log 2$	50	100	20	0.3496	0.3465	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
$\log 2$	50	100	40	0.3498	0.3463	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
$\log 2$	50	100	80	0.3505	0.3468	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
$\log 2$	100	25	None	0.3499	0.3463	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
$\log 2$	100	25	10	0.3494	0.3468	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
$\log 2$	100	25	20	0.3501	0.3465	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
$\log 2$	100	25	40	0.3499	0.3466	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
$\log 2$	100	25	80	0.3501	0.3466	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
$\log 2$	100	50	None	0.3499	0.3466	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
$\log 2$	100	50	10	0.3496	0.3465	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
$\log 2$	100	50	20	0.35	0.3465	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
$\log 2$	100	50	40	0.35	0.3466	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
$\log 2$	100	50	80	0.3502	0.3465	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
$\log 2$	100	100	None	0.3502	0.3468	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
$\log 2$	100	100	10	0.3497	0.3458	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
$\log 2$	100	100	20	0.3498	0.3465	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
$\log 2$	100	100	40	0.3496	0.3462	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
$\log 2$	100	100	80	0.3502	0.3457	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
$\log 2$	200	25	None	0.3504	0.3463	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
$\log 2$	200	25	10	0.3503	0.3457	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
$\log 2$	200	25	20	0.3503	0.3465	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
$\log 2$	200	25	40	0.3497	0.346	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
$\log 2$	200	25	80	0.3499	0.3465	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
$\log 2$	200	50	None	0.3506	0.3466	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
$\log 2$	200	50	10	0.3502	0.3458	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
$\log 2$	200	50	20	0.3502	0.3463	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
$\log 2$	200	50	40	0.3499	0.3462	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
$\log 2$	200	50	80	0.3502	0.346	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
$\log 2$	200	100	None	0.3504	0.3462	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
$\log 2$	200	100	10	0.3505	0.3466	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
$\log 2$	200	100	20	0.3499	0.346	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
$\log 2$	200	100	40	0.35	0.3462	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
$\log 2$	200	100	80	0.3499	0.3462	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

max_features	n_estimators	min_sample_leaf	\max_{depth}	training f1	valid f1	training f1 for each technique
auto	50	25	None	0.3498	0.3471	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0009, 0.0]