

分圆多项式与分圆域

作者: Jiahai Wang

时间: September 10, 2024

目录

第1章	分圆多项式	1
1.1	基本性质	1
1.2	系数的探究	2
第2章	分圆域 $\mathbb{Q}(\zeta_m)$	5
2.1	分圆域 $\mathbb{Q}(\zeta_m)$ 的 Galois 群 \ldots	5
2.2	素数 p 在 $\mathbb{Z}[\zeta_m]$ 中的分解	5
2.3		

第1章 分圆多项式

1.1 基本性质

我们都知道, $\varepsilon = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}$ 是个 n 次单位根,它可以生成 $x^n - 1 = 0$ 的全部复根: $\varepsilon, \varepsilon^2, \ldots, \varepsilon^n$ 。换句话说,对于 $k = 1, 2, \ldots, n-1$ 都有 $\varepsilon^k \neq 1$ 。

对于 n 次单位根 ω ,定义它的阶 $\operatorname{ord}(\omega)$ 为满足 $\omega^k=1$ 的最小正整数 k,那么有 $\operatorname{ord}(\varepsilon)=n$,且对任意的 n 次单位根,它的阶必然能整除 n。

我们称阶为n的n次单位根为n次本原单位根。n次本原单位根当然(一般)不止 ε 一个。事实上,若d是与n 互素的正整数,则

$$\varepsilon^{dk} = 1 \Leftrightarrow n \mid dk \Leftrightarrow n \mid k$$

从而 $\operatorname{ord}(\varepsilon^d) = n$, ε^d 为一个 n 次本原单位根。

于是我们立刻得到: n 次本原单位根有 $\varphi(n)$ 个。

定义 1.1

给定正整数 n, 我们定义 n 级分圆多项式 $\Phi_n(x)$ 为

$$\Phi_n(x) = (x - \varepsilon_1)(x - \varepsilon_2) \cdots (x - \varepsilon_{\varphi(n)})$$

其中 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_{\varphi(n)}$ 是全部 n 次本原单位根。则 $\Phi_n(x)$ 是一个 $\varphi(n)$ 次多项式。

定理 1.1

对任意正整数 n, 有 $x^n - 1 = \prod_{d|n} \Phi_d(x)$ 。

 \sim

证明 令 $\varepsilon = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}$, 则

$$x^{n} - 1 = (x - \varepsilon)(x - \varepsilon^{2}) \cdots (x - \varepsilon^{n})$$

一方面,对 $k=1,2,\ldots,n,\varepsilon^k$ 是 $\operatorname{ord}(\varepsilon^k)$ 次本原单位根且 $\operatorname{ord}(\varepsilon^k)\mid n$,从而 $x-\varepsilon^k$ 是右边某一项的因式,于是我们得到了 $x^n-1\mid \prod \Phi_d(x)$ 。

另一方面,若 ω 既为 a 次本原单位根,又为 b 次本原单位根,则 $\omega^a=1,\omega^b=1$,进而由本原单位根定义有 $a\geq b, b\geq a$,则 a=b。那么 $a\neq b$ 时, $(\Phi_a(x),\Phi_b(x))=1$ 。对 n 的任意因子 d, $\Phi_d(x)\mid x^n-1$,故 $\prod_{i=1}^n \Phi_d(x)\mid x^n-1$ 。

又这两个多项式都是首一的,从而我们证明了 $x^n-1=\prod\limits_{n}\Phi_d(x)$ 。

推论 1.1

$$n = \sum_{d|n} \varphi(d)$$

 $^{\circ}$

根据莫比乌斯反演公式,还可以得到:

定义 1.2

$$\Phi_n(x) = \prod_{d|n} (x^d - 1)^{\mu(\frac{n}{d})}$$

注:下一节会给出具体的证明

定理 1.2

对任意正整数 $n, \Phi_n(x) \in \mathbb{Z}[x]$ 。

 \odot

证明 n=1 时, $\Phi_1(x)=x-1\in\mathbb{Z}[x]$ 。

假设命题对一切小于n的正整数成立,则对于n阶分圆多项式:

由 $x^n-1=\Phi_n(x)$ $\prod_{\substack{d|n,d< n}}\Phi_d(x)$, 由归纳假设和高斯引理知 $\prod_{\substack{d|n,d< n}}\Phi_d(x)$ 为本原多项式, 进而 $\Phi_n(x)\in\mathbb{Z}[x]$ 。

引理 1.1

如果 $\xi \in \mathcal{L}_{q}(x)$ 的一个根, $p \in \mathcal{L}_{q}(x)$ 的根

 \bigcirc

证明 如果 ξ^p 不是 g(x) 的根, 但是它是 $\Phi_n(x)$ 的根, 所以是 h(x) 的根。由此 $x = \xi$ 是 g(x) 和 $h(x^p)$ 的公共根。 考虑环同态:

$$\pi: \mathbb{Z}[x] \longrightarrow \mathbb{F}_p[x], \quad f(x) \longmapsto \overline{f(x)}.$$

g(x) 和 $h(x^p)$ 在 \mathbb{F}_p 仍然有公共根。而 $\overline{h(x^p)} = [\overline{h(x)}]^p$,因此 $\overline{g(x)}$ 和 $\overline{h(x)}$ 在 \mathbb{F}_p 有公共根。然而 $\Phi_n(x) \mid (x^n - 1), (x^n - 1)' = nx^{n-1} \neq 0, (x^n - 1, nx^{n-1}) = 1$. 所以 $\Phi_n(x)$ 无重根. 矛盾!

定理 1.3

对任意正整数 n, $\Phi_n(x)$ 是 $\mathbb{Z}[x]$ 中的不可约多项式。

 \sim

证明 由 Gauss 引理, $\Phi_n(x)$ 是 $\mathbb{Q}[x]$ 中的不可约多项式等价于 $\Phi_n(x)$ 是 $\mathbb{Z}[x]$ 中的不可约多项式。反证假设 $\Phi_n(x) = g(x)h(x)$. 这里 $g(x),h(x)\in\mathbb{Z}[x]$ 且首项 1,并且 $\deg g(x)\geq 1$ 且 g(x) 不可约。如果 $\xi^i\in\Theta_n$,那么 (i,n)=1,设 $i=p_1p_2\cdots p_t$ 是素因子分解。那么 $\forall j,n\nmid p_j$ 反复运用断言知道 ξ 是 g(x) 的根。所以 $g(x)=\Phi_n(x)$

定理 1.4

若 p 为素数,且 (p,n)=1,则 $\Phi_n(x^p)=\Phi_n(x)\Phi_{pn}(x)$ 。

m

证明 对照一下即可

定理 1.5

kn+1 型素数有无穷多

C

证明 这是一个经典的结论可以看《伽罗瓦理论: 天才的激情》/章璞著:-北京: 高等教育出版社注: 这个是 Dirichlet 定理的特殊情况

1.2 系数的探究

Möbius 函数

$$\sum_{d|n} \mu(d) = \begin{cases} 1 & n=1, \\ 0 & n>1, \end{cases}$$

可将 $\Phi_n(x)$ 化为

$$\Phi_n(x) = \prod_{1 \le k \le n} (x - e^{2\pi i k/n})^{\sum_{d|(k,n)} \mu(d)} = \prod_{1 \le k \le n} \prod_{d|(k,n)} (x - e^{2\pi i k/n})^{\mu(d)}$$
$$= \prod_{d|n} \prod_{\substack{1 \le k \le n \\ d|k}} (x - e^{2\pi i k/n})^{\mu(d)} = \prod_{d|n} \left[\prod_{\substack{1 \le r \le n/d}} (x - e^{2\pi i r/(n/d)}) \right]^{\mu(d)}.$$

注意到当 $r=1,2,\ldots,n/d$ 时, $e^{2\pi i r/(n/d)}$ 遍历全体 n/d 次单位根,得

$$\Phi_n(x) = \prod_{d|n} (x^{n/d} - 1)^{\mu(d)}.$$

定理 1.6

若 $n = p_1^{k_1} p_2^{k_2} \cdots p_s^{k_s}$ 、 $m = p_1 p_2 \cdots p_s$,则有

$$\Phi_n(x) = \prod_{d|m} (x^{\frac{n}{m} \cdot \frac{m}{d}} - 1)^{\mu(d)} = \Phi_m(x^{n/m})$$

简化为 n 为奇无平方因子数的情况。

若 n 为偶无平方因子数,设 m=n/2,则可将 $d\mid n$ 分为两种不重叠的情况: 1. d 为偶数,故 $d=2\delta$,其中 $\delta\mid m$ 。 2. d 为奇数,故 $d\mid m$ 。

因此变为:

$$\begin{split} \Phi_{2m}(x) &= \prod_{\delta \mid m} (x^{m/\delta} - 1)^{\mu(2\delta)} \prod_{d \mid m} (x^{2m/d} - 1)^{\mu(d)} \\ &= \prod_{\delta \mid m} (x^{m/\delta} - 1)^{-\mu(\delta)} \prod_{d \mid m} (x^{2m/d} - 1)^{\mu(d)} \\ &= \prod_{\delta \mid m} \left(\frac{x^{2m/\delta} - 1}{x^{m/\delta} - 1} \right)^{\mu(\delta)} = \prod_{\delta \mid m} (x^{m/\delta} + 1)^{\mu(\delta)}. \end{split}$$

结合 $x^{m/d} + 1 = (-1)[(-x)^{m/d} - 1]$ 有:

定理 1.7

若m > 1为奇数,则

$$\Phi_{2m}(x) = \Phi_m(-x)$$

将 n = pq 代入, 得:

$$x^{pq} - 1 = (x - 1) \cdot \frac{x^p - 1}{x - 1} \cdot \frac{x^q - 1}{x - 1} \cdot \Phi_{pq}(x),$$

有

$$\Phi_{pq}(x) = \frac{(x-1)(x^{pq}-1)}{(x^p-1)(x^q-1)}.$$

对两侧同乘 $x^{pq}-1$,遂有公式

$$(x^{pq} - 1)\Phi_{pq}(x) = \Phi_{p}(x^{q})\Phi_{q}(x^{p})(x - 1)$$

因为 $\deg \Phi_{pq}=(p-1)(q-1)< pq$,所以 $x^{pq}\Phi_{pq}(x)$ 和 $-\Phi_{pq}(x)$ 展开式中的项不会合并。故将右侧次数不超过 (p-1)(q-1) 的项整理出来便得 $-\Phi_{pq}(x)$ 的展开式,于是 $\Phi_{pq}(x)$ 只包含 $\pm x^k$ 形式的项。

我们就证出了本文的主要结论:

定理 1.8 (Migotti 1883)

若 n 至多只能被两个不同的奇素数整除,则 $\Phi_n(x)$ 的展开式中只含有形如 $\pm x^k$ 的项。

事实上 $105 = 3 \times 5 \times 7$ 就是第一个系数不为 ± 1 的例子:

$$\Phi_{105}(x) = x^{48} + x^{47} + x^{46} - x^{43} - x^{42} - 2x^{41} - x^{40} - x^{39}$$

$$+ x^{36} + x^{35} + x^{34} + x^{33} + x^{32} + x^{31} - x^{28} - x^{26}$$

$$- x^{24} - x^{22} - x^{20} + x^{17} + x^{16} + x^{15} + x^{14} + x^{13}$$

$$+ x^{12} - x^9 - x^8 - 2x^7 - x^6 - x^5 + x^2 + x + 1.$$

第2章 分圆域 $\mathbb{Q}(\zeta_m)$

考虑方程 $x^m - 1 = 0$ 的根 $\zeta_m = e^{\frac{2\pi i}{m}}$,则我们有

$$(x-1)(x-\zeta_m)\cdots(x-\zeta_m^{m-1}) = x^m - 1$$

于是数域 $F = \mathbb{Q}(\zeta_m)$ 是多项式 $x^m - 1$ 的分裂域。接下来我们就来研究一下 m 次分圆域 $F = \mathbb{Q}(\zeta_m)$ 的性质。

2.1 分圆域 $\mathbb{Q}(\zeta_m)$ 的 Galois 群

定理 2.1

设 G 为 F/\mathbb{Q} 的 Galois 群,则存在从 G 到 $U(\mathbb{Z}/m\mathbb{Z})$ 的单同态 θ 满足对于 $\sigma \in G$ 有 $\sigma(\zeta_m) = \zeta_m^{\theta(\sigma)}$.

证明 由于 $\zeta_m^m = 1$,我们知道 $\sigma(\zeta_m)^m = 1$,于是 $\sigma(\zeta_m) = \zeta_m^{\theta(\sigma)}$ 其中 $\theta(\sigma) \in \mathbb{Z}/m\mathbb{Z}$ 。若 $\tau = \sigma^{-1}$,则 $\zeta_m = \tau \sigma(\zeta_m) = \tau(\zeta_m^{\theta(\sigma)}) = \zeta_m^{\theta(\sigma)\theta(\tau)}$ 。因此 $\theta(\sigma)\theta(\tau) = \bar{1}$ 。于是这一映射是良定义的。

容易印证 θ 是一个群同态。当 $\theta(\sigma) = \bar{1}$ 时, $\sigma(\zeta_m) = \zeta_m$,于是 σ 为 G 中的单位元,因此 θ 是一个单同态。根据这一性质我们可以得到推论: $[\mathbb{Q}(\zeta_m):\mathbb{Q}]$ 整除 $\phi(m)$ 。事实上,接下来我们想要证明更强的结论: $[\mathbb{Q}(\zeta_m):\mathbb{Q}] = \phi(m)$ 。

下面我们来研究 $\Phi_m(x)$ 的性质。

引理 2.1

设 p 是一个素数且 $p \nmid m$,且 P 是 \mathcal{O}_K 中包含 p 的一个素理想,则 $1, \zeta_m, \zeta_m^2, \cdots, \zeta_m^{m-1}$ 在 \mathcal{O}_K/P 中互不相同,且若 P 的剩余类域指数为 f 则 $p^f \equiv 1 \pmod{m}$ 。

定理 2.2

 $\Phi_m(x)$ 在 $\mathbb{Z}[x]$ 中是不可约的。

证明 [第二次证明] 设 $f(x) \in \mathbb{Z}[x]$ 为 ζ_m 的最小多项式,我们先证明若素数 $p \nmid m$,则 ζ_m^p 也是 f(x) 的零点。记 P 是一个包含 p 的素理想。

由于 x^m-1 是 f(x) 的倍式,因此可以设 $x^m-1=f(x)g(x)$ 。 $w\in\mathcal{O}_K$ 则用 \bar{w} 表示 w 在 $\mathcal{O}_K\to\mathcal{O}_K/P$ 的自然同态的像。因此 $x^m-\bar{1}=\bar{f}(x)\bar{g}(x)\in\mathbb{Z}/p\mathbb{Z}[x]$,由于引理 1.3 知 $x^m-\bar{1}$ 在 \mathcal{O}_K/P 中有着互异的根,因此 $\bar{f}(x),\bar{g}(x)$ 有着互异的零点,由于 ζ_m^p 是 $x^m-\bar{1}$ 的根,因此若 $\bar{f}(\zeta_m^p)\neq 0$,则 $g(\zeta_m^p)=0$ 进而 $\bar{g}(\bar{\zeta}_m^p)=\bar{g}^p(\bar{\zeta}_m)=0$ 。因此 $\bar{g}(\bar{\zeta}_m)=\bar{0}\Rightarrow \bar{f}(\bar{\zeta}_m)\neq 0$,这与 $f(\zeta_m)=0$ 矛盾。

进而我们可以推出,若 (a,m)=1,则 ζ_m^a 是 f(x) 的根,这就表明 $\deg f(x) \geq \phi(m) = \deg \Phi_m(x)$ 。而另一方面, $\Phi_m(\zeta_m)=0$,于是 $f(x)|\Phi_m(x)$,因此有 $f(x)=\Phi_m(x)$ 。这样就证明了 $\Phi_m(x)$ 是不可约的。

从这一定理我们也可以推出 $[\mathbb{Q}(\zeta_m):\mathbb{Q}] = \phi(m)$ 以及 $Gal(\mathbb{Q}(\zeta_m)/\mathbb{Q}) \simeq U(\mathbb{Z}/m\mathbb{Z})$ 。

2.2 素数 p 在 $\mathbb{Z}[\zeta_m]$ 中的分解

我们本小节的主要结论是:假设 $p \nmid m$,则 (p) 在 \mathcal{O}_K 中是不分歧的。 先来一些引理做准备

引理 2.2

设 K/\mathbb{Q} 是一个代数数域且 $[K:\mathbb{Q}]=n$, 设 $\alpha_1,\alpha_2,\cdots,\alpha_n\in\mathcal{O}_K$ 是 K 的一组 \mathbb{Q} 基。 $d=\Delta(\alpha_1,\alpha_2,\cdots,\alpha_n)$,

则

$$d\mathcal{O}_K \subset \mathbb{Z}\alpha_1 + \mathbb{Z}\alpha_2 + \cdots + \mathbb{Z}\alpha_n.$$

证明 对于任一 $w \in \mathcal{O}_K$,存在有理数 $r_1, r_2, \cdots, r_n \in \mathbb{Q}$ 使得

$$w = \sum_{i=1}^{n} r_i \alpha_i.$$

两边乘以 α_i 并取迹得

$$\operatorname{tr}(w\alpha_j) = \sum_{i=1}^n r_i \operatorname{tr}(\alpha_i \alpha_j) \quad (j = 0, 1, \dots, n)$$

这构成了一个关于 r_1, r_2, \dots, r_n 的 n 元线性方程组。注意到 $\operatorname{tr}(w\alpha_j), \operatorname{tr}(\alpha_i\alpha_j) \in \mathbb{Z}$ 。根据 Cramer 法则知,每个 r_i 可以写成一个整数除以 d 的形式(因为方程组的系数矩阵等于 d)。于是 $dw \in \mathbb{Z}\alpha_1 + \mathbb{Z}\alpha_2 + \dots + \mathbb{Z}\alpha_n$ 。进而 我们就得到了 $d\mathcal{O}_K \subset \mathbb{Z}\alpha_1 + \mathbb{Z}\alpha_2 + \dots + \mathbb{Z}\alpha_n$

引理 2.3

判别式
$$\Delta(1,\zeta_m,\zeta_m^2,\cdots,\zeta_m^{\phi(m)-1})$$
 整除 $m^{\phi(m)}$ 。

通过这两个引理,我们可以推出当 $p \nmid m$ 时,代数整数环 \mathcal{O}_K 中的任一元素都可以在模p意义下与 $\mathbb{Z}[\zeta_m]$ 中的一个元素等价。

推论 2.1

设 $p \in \mathbb{Z}$ 为素数且 $p \nmid m$,则对于任意的 $w \in \mathcal{O}_K$,存在 $\sum a_i \zeta_m^i \in \mathbb{Z}[\zeta_m]$ 使得 $w \equiv \sum a_i \zeta_m^i \pmod{p}$ 。

推论 2.2

若 $p \nmid m$, 且n满足 $p^n \equiv 1 \pmod{m}$, 则对于任意 $w \in \mathcal{O}_K$ 满足 $w^{p^n} \equiv w \pmod{p}$ 。

 $\mathcal{L}[p][m], \quad \mathcal{L}[n] \bowtie \mathcal{L}[p] = 1 \pmod{m}, \quad \mathcal{M}[n] \mid \mathcal{L}[\mathcal{L}[m] \bowtie \mathcal{L}[m] \vee \mathcal{L}[$

证明 根据推论 2.3 知存在 $\sum a_i \zeta_m^i$ 使得 $w \equiv \sum a_i \zeta_m^i$ (mod p),于是

$$w^p \equiv \sum a_i^p \zeta_m^{pi} \equiv \sum a_i \zeta_m^{pi} \pmod{p}.$$

重复 n 次得 $w^{p^n} \equiv w \pmod{p}$ 。

性质 若 p 是素数且 $p \nmid m$, 则 (p) 在 O_K 中是不分歧的。

证明 假设 (p) 是分歧的,则存在素理想 P 使得 $P^2 \subset (p)$ 。于是我们可以取 $w \in P$ 但 $w \notin P^2$ 。于是 $w^{p^n} \equiv w$ \pmod{P} 。由于 $p^n \geq 2$,我们可以知道 $w \in P^2$,这与假设矛盾。因此 (p) 是不分歧的。

性质 对于任意 $w \in \mathcal{O}_K$, 有 $\sigma_p(w) \equiv w^p \pmod{p}$.

证明 根据推论得存在 a_i 使得 $w \equiv \sum a_i \zeta_m^i \pmod{p}$, 于是

$$\sigma_p(w) \equiv \sum a_i \zeta_m^{ip} \equiv \sum a_i^p \zeta_m^{ip} \pmod{p}.$$

同时

$$w^p \equiv \left(\sum a_i \zeta_m^i\right)^p \equiv \sum a_i^p \zeta_m^{ip} \pmod{p}.$$

证明完成!

推论 2.3

设P是 \mathcal{O}_K 中包含p的素理想,则 $\sigma_p P = P$ 。

证明 由于对于 $\forall w \in P$, $\sigma_p w \equiv w^p \equiv 0 \pmod{P}$, 于是 $\sigma_p P \subset P$ 。又因为 $\sigma_p P$ 为极大理想,于是有 $\sigma_p P = P$ 。

 \Diamond

定理 2.3

假设 p 是一个素数且 $p \nmid m$, 且 f 是满足 $p^f \equiv 1 \pmod{m}$ 的最小的正整数 f,则在 \mathcal{O}_K 中有

$$(p) = P_1 P_2 \cdots P_g,$$

其中各个素理想 P_i 的剩余类域指数 $|\mathcal{O}_K/P_i| = f$ 且 $g = \phi(m)/f$ 。

证明 由推论得 $\sigma_p \in G(P)$, 于是 $\langle \sigma_p \rangle \subset G(P)$ 。设 $g \to (p)$ 的分裂次数,则考虑 G 在 $\{P_1, P_2, \cdots, P_q\}$ 上的群作 用,得到

$$|G(P)| = \frac{|G|}{g} = \frac{\phi(m)}{g} = f$$

由于 f 是满足 $p^f \equiv 1 \pmod{p}$ 的最小的正整数,因此

$$|\langle \sigma_p \rangle| = f = |G(P)|$$

 $\mathbb{P} G(P) = \langle \sigma_p \rangle$

2.3 素数分圆域的代数整数环

我们想证明, 当 l 为素数时, $K = \mathbb{Q}(\zeta_l)$ 的代数整数环 $\mathcal{O}_K = \mathbb{Z}[\zeta_l]$ 。

性质 设 l 为素数,则 (l) 在 $\mathbb{Q}(\zeta_l)$ 中完全分歧,且记 $L=(1-\zeta_l)$,则 $(l)=L^{l-1}$ 。

证明 注意到 $l = \prod_{i=1}^{l-1} (1-\zeta_l^i)$ 。设 $u_i = \frac{1-\zeta_l^i}{1-\zeta_l}$,我们试图证明它是代数整数环 \mathcal{O}_K 的单位元。事实上,由于 $l \nmid i$, 我们能够找到 $i \notin i = 1 \pmod{l}$, 因此

$$u_i^{-1} = \frac{1 - \zeta_l}{1 - \zeta_l^i} = \frac{1 - \zeta_l^{ij}}{1 - \zeta_l^i} = 1 + \zeta_l^j + \dots + \zeta_l^{j(i-1)} \in \mathcal{O}_K$$

于是 u_i 是单位元

因此

$$l = \prod_{i=1}^{l-1} (1 - \zeta_l^i) = (1 - \zeta_l)^{l-1} \prod_{i=1}^{l-1} u_i$$

于是 $(l) = L^{l-1}$ 。同时, 我们设 L 的剩余类域指数为 f, 则由于分歧指数 e = l-1, 因此根据 $efg = \phi(l) = l-1$, 得 f = q = 1。于是 $|\mathcal{O}_K/L| = l$

性质 若 l 是素数,则代数整数环 $\mathcal{O}_K = \mathbb{Z}[\zeta_l]$ 。

证明 显然 $\mathbb{Z}[\zeta_l] \subset \mathcal{O}_K$ 。又因为 $1, \zeta_l, \zeta_l^2, \cdots, \zeta_l^{l-2}$ 为 K 的一组 \mathbb{Q} 基,则对于任意 $\alpha \in \mathcal{O}_K$,存在一列有理数 ${a_i}(1 < i < l - 2)$ 使得

$$\alpha = a_0 + a_1 \zeta_l + \dots + a_{l-2} \zeta_l^{l-2}$$

考虑 ζ_i^i 的迹,容易计算 $\operatorname{tr}(\zeta_i^i) = -1(l \nmid i)$,而 $\operatorname{tr}(1) = l - 1$ 。于是

$$\operatorname{tr}(\alpha \zeta_{l}^{-s}) = -a_{0} - a_{1} - \dots - a_{s-1} + (l-1)a_{s} - a_{s+1} - \dots - a_{l-2}$$

于是 $\operatorname{tr}(\alpha\zeta_{l}^{-s} - \alpha\zeta_{l}) = la_{s}$ 。由于 $\operatorname{tr}(\alpha\zeta_{l}^{-s} - \alpha\zeta_{l}) \in \mathcal{O}_{K} \cap \mathbb{Q} = \mathbb{Z}$,于是 $la_{s} \in \mathbb{Z}$ 。

于是存在 $\{b_i\}(0 \le i \le l-2) \in \mathbb{Z}$, 满足

$$l\alpha = la_0 + la_1\zeta_l + \dots + la_{l-2}\zeta_l^{l-2} = b_0 + b_1\lambda + \dots + b_{l-2}\lambda^{l-2}$$
(*)

由于性质得 $(l) = (\lambda)^{l-1}$, 于是 $\lambda \mid b_0$, 两边取范数得

$$N(\lambda) = \prod_{i=1}^{l-1} (1 - \sigma_i(\zeta_l)) = \prod_{i=1}^{l-1} (1 - \zeta_l^i) = l, \quad N(b_0) = b_0^{l-1}$$

于是 $l \mid b_0^{l-1} \Rightarrow l \mid b_0 \Rightarrow \lambda^{l-1} \mid b_0$ 。

再对 (*) 式两边模 λ^{l-2} 得 $\lambda^2 \mid b_1 \lambda \Rightarrow \lambda \mid b_1 \Rightarrow l \mid b_1$ 。

重复这个过程得知 $l\mid b_i(0\leq i\leq l-2)$ 。记 $b_i=lb_i'(b_i'\in\mathbb{Z})$,则 $\alpha=b_0'+b_1'\lambda+\cdots+b_{l-2}'\lambda^{l-2}$

这就推出了 $\alpha \in \mathbb{Z}[\zeta_l]$ 。于是 $\mathbb{Z}[\zeta_l] = \mathcal{O}_K$