Key.

PID:

- Print your NAME on every page and write your PID in the space provided above.
- Show all of your work in the spaces provided. No credit will be given for unsupported answers, even if correct.
- Supporting work for a problem must be on the page containing that problem. No scratch paper will be accepted.
- No calculators, tables, phones, or other electronic devices are allowed during this exam. You may use your double-sided handwritten notes, but no books or other assistance.

DO NOT TURN PAGE UNTIL INSTRUCTED TO DO SO

(This exam is worth 40 points)

Problem 0.(1 points.) Follows the instructions on this exam and any additional instructions given during the exam.

Problem 1.(9 points.) Compute the determinant of the matrix

obicin 1.(o points) compare one	,
	$A = \begin{bmatrix} 2 & 3 & 3 & 1 \\ 0 & 4 & 3 & -3 \\ 2 & -1 & -1 & -3 \\ 0 & -4 & -3 & 2 \end{bmatrix}.$
2 3 3 1 0 4 3 -3 2 -1 -1 -3 0 -4 -3 2	2 3 3 1 0 4 3 -3 0 -4 -4 -4 0 -4 -3 2
R3+R2 R4+R2	2 3 3 1 0 4 3 -3 0 0 -1 -7 0 0 0 -1
	2(4)(-1)(-1)

Note: Coçactor expansion is also allowed!

Problem 2.(10 points.) This problem finds the curve $y = C + D \cdot 2^x$ which gives the best least squares fit to the points (x, y) = (0, 6), (1, 4), (2, 0).

- a) (5 points) Write down the 3 equations that would be satisfied if the curve went through all 3 points.
- b) (5 points) Find the coefficients C and D of the best curve

$$y = C + D \cdot 2^x.$$

a)
$$C + D2^2 = 6 \Rightarrow C + D = 6$$

 $C + D2^2 = 4 \Rightarrow C + 2D = 4$
 $C + D2^2 = 0 \Rightarrow C + 4D = 0$

b) The modrix equation is
$$\begin{bmatrix}
1 & 1 \\
1 & 2 \\
1 & 4
\end{bmatrix}
\begin{bmatrix}
CO \\
0
\end{bmatrix} = \begin{bmatrix}
6 \\
4 \\
0
\end{bmatrix}$$
Pleast squares solutions:
$$A^{T}A = \begin{bmatrix}
1 & 1 & 1 \\
1 & 2 & 4
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
1 & 4
\end{bmatrix} = \begin{bmatrix}
3 & 7 \\
7 & 21
\end{bmatrix}$$
and
$$A^{T}B = \begin{bmatrix}
1 & 1 & 1 \\
1 & 2 & 4
\end{bmatrix}
\begin{bmatrix}
6 \\
4 \\
0
\end{bmatrix} = \begin{bmatrix}
10 \\
14
\end{bmatrix}$$

$$\begin{bmatrix}
3 & 7 & 7 & 6 \\
7 & 21
\end{bmatrix}
\begin{bmatrix}
10 & 14 & 14 \\
14 & 14
\end{bmatrix}
\begin{bmatrix}
10 & 14 & 14 \\
14 & 14
\end{bmatrix}
= \frac{1}{63 - 49} \begin{bmatrix}
21 & -7 & 10 \\
-7 & 3 & 14
\end{bmatrix}$$

$$= \frac{1}{14} \begin{bmatrix}
210 & -98 \\
-70 & +42
\end{bmatrix}$$

$$= \frac{1}{14} \begin{bmatrix}
112 \\
-28
\end{bmatrix}$$

Problem 3.(10 points.) Let U be the orthogonal complement to span $\begin{cases} 2 \\ -5 \end{cases}$

- a) (4 points) Find a basis of U.
- b) (4 points) Find an orthonormal basis of U.
- is the orthogonal complement to span 2/27
 - $U = N\left[\frac{1}{2} 5\right]$
- → Find null space of the matrix [1 2 -5]. The vector in this null space is of the form:

$$\begin{bmatrix} -2\chi_2 + 5\chi_3 \\ \chi_2 \end{bmatrix} = \chi_2 \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} + \chi_3 \begin{bmatrix} 5 \\ 0 \\ 1 \end{bmatrix}$$

- = $U = \operatorname{span} \left\{ \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 5 \\ 0 \\ 1 \end{bmatrix} \right\}$ and $\left\{ \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 5 \\ 0 \\ 1 \end{bmatrix} \right\}$ is a basis or U.
- b) Use Gram-Schmidt process: $\vec{a}_1 = \begin{bmatrix} -27 \\ 1 \end{bmatrix}$ and $\vec{a}_2 = \begin{bmatrix} 57 \\ 1 \end{bmatrix}$

$$\vec{b}_{2} = \begin{bmatrix} 5 \\ 0 \\ 1 \end{bmatrix} - \frac{1}{15} \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 0 \\ 1 \end{bmatrix} + 2 \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}.$$

$$\vec{q}_{k} = \vec{b}_{k} = \vec{b}_{k} = \vec{b}_{k} = \vec{b}_{k}$$

$$\left(\begin{array}{c} q_1, q_2 \\ \end{array}\right) = \left(\begin{array}{c} 1 \\ 1 \\ \end{array}\right) \cdot \left(\begin{array}{c} 1 \\ 2 \\ \end{array}\right) = 0$$

$$\left(\begin{array}{c} 1 \\ 2 \\ \end{array}\right) \cdot \left(\begin{array}{c} 1 \\ 2 \\ \end{array}\right) = 0$$

$$\left(\begin{array}{c} 1 \\ 2 \\ \end{array}\right) \cdot \left(\begin{array}{c} 1 \\ 2 \\ \end{array}\right) = 0$$

$$= \frac{1}{12} \left[\frac{1}{12} \right] + \left[\frac{1}{12} \right] = \frac{1}{12} \left[\frac{1}{12} \right]$$

orthonormal basis of U.

c) (4 points) Find the distance between
$$v = \begin{bmatrix} 3 \\ 1 \\ 7 \end{bmatrix}$$
 and U .

First, we need to sind projuv:
$$\hat{\Delta} = \text{proj}_{0}\hat{v} = \langle v, q_{1} \rangle q_{1} + \langle v, q_{2} \rangle q_{2}$$

$$= \langle \begin{bmatrix} 3 \\ 4 \\ 7 \end{bmatrix}, \begin{bmatrix} 4 \\ 6 \end{bmatrix} \begin{bmatrix} -2 \\ 4 \end{bmatrix} \rangle \underbrace{\begin{bmatrix} 1 \\ 6 \end{bmatrix}}_{6} \underbrace{\begin{bmatrix} 1 \\ 2 \end{bmatrix}}_{6}$$

$$= \frac{1}{5}(-6 + 1)\begin{bmatrix} -2 \\ 4 \end{bmatrix} + \frac{1}{6}(3 + 2 + 7)\begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$= -1\begin{bmatrix} -2 \\ 1 \end{bmatrix} + 2\begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$= \begin{bmatrix} 4 \\ 3 \\ 2 \end{bmatrix}.$$

The distance between
$$v$$
 and U is
$$\|v + \| = \|v - \hat{v}\|$$

$$= \|\vec{3} - \vec{4}\|$$

$$= \|\vec{3} - \vec{4}\|$$

$$= \left\| \begin{bmatrix} -1 \\ -2 \end{bmatrix} \right\|$$

$$= \sqrt{1^2 + 2^2 + 5^2}$$

$$= \sqrt{1 + 4 + 25}$$

$$= \sqrt{30}$$

Problem 4.(10 points.) Consider the space \mathcal{P}_2 of polynomials of degree up to 2, together with the inner product

$$\langle p(t), g(t) \rangle = \int_0^1 p(t)g(t) dt.$$

- a) (4 points) Show that the standard basis $\{1, t, t^2\}$ is not an orthogonal basis.
- b) (4 points) Apply Gram-Schmidt to $\{1, t, t^2\}$ to obtain an orthonormal basis of \mathcal{P}_2 .

b) let
$$a_1 = 1$$
 $a_2 = 1$ and $a_3 = t^2$.
 $b_1 = a_1 = 1$ $b_2 = 1$ $a_3 = 1$ $a_4 = 1$ $a_5 = 1$ $a_6 = 1$ a_6

$$b_{1} = Q_{1} = 1$$

$$b_{2} = t - \left(\int_{0}^{1} t \cdot 1 \, dt\right) \cdot \frac{1}{2} = t - \left(\frac{t^{2}}{2}\Big|_{0}^{1}\right) = t - \frac{1}{2}$$

$$Q_{2} = \left(\frac{t^{2}}{2}\Big|_{0}^{1}\right) = t - \frac{1}{2}$$

$$Q_{1} = t - \left(\frac{t^{2}}{2}\Big|_{0}^{1}\right) = t - \frac{1}{2}$$

$$Q_{2} = \frac{b_{2}}{\|b_{2}\|} = \frac{t - \frac{1}{2}}{\sqrt{(t - \frac{1}{2}, t - \frac{1}{2})^{2}}} = \frac{t - \frac{1}{2}}{\sqrt{(t - \frac{1}{2}, t - \frac{1}{2})^{2}}} = \frac{t - \frac{1}{2}}{\sqrt{(t - \frac{1}{2}, t - \frac{1}{2})^{2}}} = \frac{t - \frac{1}{2}}{\sqrt{(t - \frac{1}{2}, t - \frac{1}{2})^{2}}} = \frac{t - \frac{1}{2}}{\sqrt{(t - \frac{1}{2}, t - \frac{1}{2})^{2}}} = \frac{t - \frac{1}{2}}{\sqrt{(t - \frac{1}{2}, t - \frac{1}{2})^{2}}} = \frac{t - \frac{1}{2}}{\sqrt{(t - \frac{1}{2}, t - \frac{1}{2})^{2}}} = \frac{t - \frac{1}{2}}{\sqrt{(t - \frac{1}{2}, t - \frac{1}{2})^{2}}} = \frac{t - \frac{1}{2}}{\sqrt{(t - \frac{1}{2}, t - \frac{1}{2})^{2}}} = \frac{t - \frac{1}{2}}{\sqrt{(t - \frac{1}{2}, t - \frac{1}{2})^{2}}} = \frac{t - \frac{1}{2}}{\sqrt{(t - \frac{1}{2}, t - \frac{1}{2})^{2}}} = \frac{t - \frac{1}{2}}{\sqrt{(t - \frac{1}{2}, t - \frac{1}{2})^{2}}} = \frac{t - \frac{1}{2}}{\sqrt{(t - \frac{1}{2}, t - \frac{1}{2})^{2}}} = \frac{t - \frac{1}{2}}{\sqrt{(t - \frac{1}{2}, t - \frac{1}{2})^{2}}} = \frac{t - \frac{1}{2}}{\sqrt{(t - \frac{1}{2}, t - \frac{1}{2})^{2}}} = \frac{t - \frac{1}{2}}{\sqrt{(t - \frac{1}{2}, t - \frac{1}{2})^{2}}} = \frac{t - \frac{1}{2}}{\sqrt{(t - \frac{1}{2}, t - \frac{1}{2})^{2}}} = \frac{t - \frac{1}{2}}{\sqrt{(t - \frac{1}{2}, t - \frac{1}{2})^{2}}} = \frac{t - \frac{1}{2}}{\sqrt{(t - \frac{1}{2}, t - \frac{1}{2})^{2}}} = \frac{t - \frac{1}{2}}{\sqrt{(t - \frac{1}{2}, t - \frac{1}{2})^{2}}} = \frac{t - \frac{1}{2}}{\sqrt{(t - \frac{1}{2}, t - \frac{1}{2})^{2}}} = \frac{t - \frac{1}{2}}{\sqrt{(t - \frac{1}{2}, t - \frac{1}{2})^{2}}} = \frac{t - \frac{1}{2}}{\sqrt{(t - \frac{1}{2}, t - \frac{1}{2})^{2}}} = \frac{t - \frac{1}{2}}{\sqrt{(t - \frac{1}{2}, t - \frac{1}{2})^{2}}} = \frac{t - \frac{1}{2}}{\sqrt{(t - \frac{1}{2}, t - \frac{1}{2})^{2}}} = \frac{t - \frac{1}{2}}{\sqrt{(t - \frac{1}{2}, t - \frac{1}{2})^{2}}} = \frac{t - \frac{1}{2}}{\sqrt{(t - \frac{1}{2}, t - \frac{1}{2})^{2}}} = \frac{t - \frac{1}{2}}{\sqrt{(t - \frac{1}{2}, t - \frac{1}{2})^{2}}} = \frac{t - \frac{1}{2}}{\sqrt{(t - \frac{1}{2}, t - \frac{1}{2})^{2}}} = \frac{t - \frac{1}{2}}{\sqrt{(t - \frac{1}{2}, t - \frac{1}{2})^{2}}} = \frac{t - \frac{1}{2}}{\sqrt{(t - \frac{1}{2}, t - \frac{1}{2})^{2}}} = \frac{t - \frac{1}{2}}{\sqrt{(t - \frac{1}{2}, t - \frac{1}{2})^{2}}}$$

$$|b_2| = |b_2| = |b_2$$

let cal culate
$$\int_{0}^{\infty} (t-\frac{1}{2})^{2} dt = \int_{0}^{\infty} t^{2} dt = \int_{$$

$$\langle a_3, q_1 \rangle = \int_0^1 e^{-1} dt = \frac{1}{3}$$

$$\langle q_3, q_1 \rangle = \int_0^1 t^2 \cdot (\sqrt{112}t - \sqrt{3}) dt = \sqrt{\frac{3}{6}}.$$

$$a_3 = t^2 - \frac{1}{3} \cdot 1 - \frac{13}{6} \cdot (112 + - 13) = t^2 - t + \frac{1}{6} \cdot (112 + 12) = t^2 - t + \frac{1}{6} \cdot (112 + 12) = t^2 - t + \frac{1}{6} \cdot (112 + 12) = t^2 - t + \frac{1}{6} \cdot (112 + 12) = t^2 -$$

$$|\mathbf{q}_{3}, \mathbf{q}_{2}\rangle = |\mathbf{r} \cdot (112t - 13)| \text{ of } t = t^{2} - t + \frac{1}{6}.$$

$$|\mathbf{q}_{3}, \mathbf{q}_{2}\rangle = |\mathbf{r}^{2} - \frac{1}{3} \cdot 1| - \frac{13}{6} \cdot (112t - 13)| = t^{2} - t + \frac{1}{6}.$$

$$|\mathbf{q}_{3}| = \frac{t^{2} - t + \frac{1}{6}}{t^{2} - t + \frac{1}{6}}| = \frac{t^{2} - t + \frac{1}{6}}{t^{2} - t + \frac{1}{6}}| = \frac{t^{2} - t + \frac{1}{6}}{\sqrt{\frac{1}{180}}} = \frac{15(t^{2} - t)}{\sqrt{\frac{1}{180}}} = \frac{15$$

c) (2 points) What is the orthogonal projection of t^2 onto span $\{1, t\}$?

$$span \{1,t\} = span \{\frac{1}{4}, \frac{12}{92} + - \frac{13}{92}\}.$$

٤.

Key.

PID:

- \bullet Print your NAME on every page and write your PID in the space provided above.
- Show all of your work in the spaces provided. No credit will be given for unsupported answers, even if correct.
- Supporting work for a problem must be on the page containing that problem. No scratch paper will be accepted.
- No calculators, tables, phones, or other electronic devices are allowed during this exam. You may use your double-sided handwritten notes, but no books or other assistance.

DO NOT TURN PAGE UNTIL INSTRUCTED TO DO SO

(This exam is worth 40 points)

Problem 0.(1 points.) Follows the instructions on this exam and any additional instructions given during the exam.

Problem 1.(9 points.) Compute the determinant of the matrix

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 \\ 0 & 1 & -2 & 2 \\ 1 & 1 & 1 & 2 \\ 0 & 1 & -2 & -2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 \\ 0 & 1 & -2 & 2 \\ 1 & 1 & 1 & 2 \\ 0 & 1 & -2 & -2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 \\ 0 & 1 & -2 & 2 \\ 1 & 1 & 1 & 2 \\ 0 & 1 & -2 & -2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 \\ 0 & 1 & -2 & 2 \\ 0 & -1 & -1 & 1 \\ 0 & 1 & -2 & -2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 \\ 0 & 1 & -2 & 2 \\ 0 & -1 & -1 & 1 \\ 0 & 1 & -2 & -2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 \\ 0 & 1 & -2 & 2 \\ 0 & 0 & -3 & 3 \\ 0 & 0 & 3 & 2 - 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 \\ 0 & 1 & -2 & 2 \\ 0 & 0 & -3 & 3 \\ 0 & 0 & 3 & 2 - 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 \\ 0 & 1 & -2 & 2 \\ 0 & 0 & -3 & 3 \\ 0 & 0 & 3 & 2 - 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 \\ 0 & 1 & -2 & 2 \\ 0 & 0 & -3 & 3 \\ 0 & 0 & 3 & 2 - 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 \\ 0 & 1 & -2 & 2 \\ 0 & 0 & -3 & 3 \\ 0 & 0 & 3 & 2 - 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 \\ 0 & 1 & -2 & 2 \\ 0 & 0 & -3 & 3 \\ 0 & 0 & 3 & 2 - 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 \\ 0 & 1 & -2 & 2 \\ 0 & 0 & -3 & 3 \\ 0 & 0 & 3 & 2 - 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 \\ 0 & 1 & -2 & 2 \\ 0 & 0 & -3 & 3 \\ 0 & 0 & 3 & 2 - 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 \\ 0 & 1 & -2 & 2 \\ 0 & 0 & -3 & 3 \\ 0 & 0 & 3 & 2 - 4 \end{bmatrix}$$

Problem 2.(10 points.) This problem finds the curve $y = C + D \cdot 2^x$ which gives the best least squares fit to the points (x, y) = (0, 8), (1, -4), (2, 0).

- a) (5 points) Write down the 3 equations that would be satisfied if the curve went through all 3 points.
- b) (5 points) Find the coefficients C and D of the best curve

$$y = C + D \cdot 2^x.$$

a)
$$C+D=8$$

 $C+2D=-4$
 $C+4D=0$

b) The modrix equation is
$$\begin{bmatrix}
1 & 1 \\
1 & 2
\end{bmatrix} \begin{bmatrix}
0 \\
0
\end{bmatrix} = \begin{bmatrix}
8 \\
-4
\end{bmatrix}$$
and
$$\begin{bmatrix}
1 & 1 \\
1 & 2
\end{bmatrix} \begin{bmatrix}
4 \\
1 & 2
\end{bmatrix} = \begin{bmatrix}
3 \\
7 \\
21
\end{bmatrix}$$
and
$$\begin{bmatrix}
1 & 1 \\
1 & 2
\end{bmatrix} \begin{bmatrix}
4 \\
0
\end{bmatrix} = \begin{bmatrix}
4 \\
0
\end{bmatrix}$$

$$\begin{bmatrix}
6 \\
-2
\end{bmatrix}$$

$$\begin{bmatrix}
6 \\
-2
\end{bmatrix}$$

$$\Rightarrow$$
 $y = 6-1 - 2.2^{x}$.

Problem 3.(10 points.) Let U be the orthogonal complement to span $\{$

- a) (4 points) Find a basis of U.
- b) (4 points) Find an orthonormal basis of U.

a)
$$\begin{bmatrix} -5x_2 + 2x_3 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -5 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$$

a)
$$\begin{bmatrix} -5x_2 + 2x_3 \\ x_2 \\ x_3 \end{bmatrix} = x_2 \begin{bmatrix} -57 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 27 \\ 0 \\ 1 \end{bmatrix}.$$

$$\Rightarrow \begin{cases} \begin{bmatrix} -57 \\ 4 \\ 0 \end{bmatrix}, \begin{bmatrix} 27 \\ 67 \end{bmatrix} \end{cases} \text{ is the basis of } U = N(15 - 27)$$

b)
$$b_1 = \begin{bmatrix} -5 \\ 1 \\ 0 \end{bmatrix}$$
 $b_2 = \begin{bmatrix} -5 \\ 1 \\ 0 \end{bmatrix}$

$$b_2 = \begin{bmatrix} 2 \\ 6 \\ 1 \end{bmatrix} - \frac{1}{116} \begin{pmatrix} -10 \end{pmatrix} \stackrel{1}{\cancel{60}} \begin{bmatrix} -5 \\ 1 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 10 \\ 26 \end{bmatrix} \begin{bmatrix} -5 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 - \frac{25}{13} \\ 5/13 \\ 1 \end{bmatrix} = \begin{bmatrix} 4/13 \\ 5/13 \\ 1 \end{bmatrix}.$$

$$||b_2|| = \sqrt{\frac{1}{169} + \frac{25}{169} + \frac{169}{169}} = \sqrt{\frac{175}{169}} = \sqrt{\frac{1}{169}} = \sqrt{\frac{1}{169}}$$

$$q_2 = \frac{b_2}{\|b_0\|} = \frac{1}{135} \begin{bmatrix} \frac{1}{5} \\ \frac{1}{5} \end{bmatrix}$$

$$\Rightarrow \left\{ \frac{1}{126} \begin{bmatrix} -5\\ 0 \end{bmatrix}, \frac{1}{175} \begin{bmatrix} 1\\ 5\\ 13 \end{bmatrix} \right\}$$

or the normal basis of U

c) (4 points) Find the distance between $\boldsymbol{v} = \begin{bmatrix} 3 \\ 1 \\ 7 \end{bmatrix}$ and U.

$$25 = 37 \cdot \frac{1}{126} =$$

the distance between v and U is the norm of the projection of v onto span $\left\{\begin{bmatrix} \frac{1}{2} \\ -2 \end{bmatrix}\right\} = U^{\frac{1}{2}}$

$$\Rightarrow \text{ projulo} = \frac{\left[\frac{37}{4}, \left[\frac{1}{5}\right]\right)}{\left[\frac{1}{5}\right], \left[\frac{1}{5}\right]} \left[\frac{17}{5}\right]$$

$$= \frac{(3+5-14)}{1+25+4} \begin{bmatrix} 17\\ 5\\ -2 \end{bmatrix}.$$

$$= \frac{-6}{30} \begin{bmatrix} \frac{17}{5} \\ -\frac{2}{2} \end{bmatrix}.$$

$$= -\frac{1}{5}\begin{bmatrix} \frac{1}{5} \\ -\frac{1}{2} \end{bmatrix} + \frac{1}{5}$$

$$\Rightarrow \| \text{proj}_{u} v \| = \frac{1}{5} \sqrt{1 + 25 + 4} = \frac{\sqrt{30}}{5}$$

Problem 4.(10 points.) Consider the space \mathcal{P}_2 of polynomials of degree up to 2, together with the inner product

$$\langle p(t), g(t) \rangle = \int_0^1 p(t)g(t) dt.$$

- a) (4 points) Show that the standard basis $\{1, t, t^2\}$ is not an orthogonal basis.
- b) (4 points) Apply Gram-Schmidt to $\{1, t, t^2\}$ to obtain an orthonormal basis of \mathcal{P}_2 .

ame

20

Ver A

c) (4 points) What is the orthogonal projection of t onto span $\{1, t^2\}$?

Span
$$\{1,t^2\}$$

Find orthonormal basis:

 $q_1 = 1$.

 $q_2 = 1$.

 $q_3 = 1$.

 $q_4 = 1$.

 $q_5 = 1$.

 $q_5 = 1$.

 $q_6 = 1$.

