Producing up-to-date survival predictions from prognostic models

Sarah Booth¹ Richard D. Riley² Joie Ensor² Paul C. Lambert^{1,3} Mark J. Rutherford¹

¹Biostatistics Research Group, Department of Health Sciences, University of Leicester, Leicester, UK

²Centre for Prognosis Research, Research Institute for Primary Care and Health Sciences, Keele University, Keele, UK

³Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden

26th September 2019

PhD Project

Prognostic Models

- Prognostic models can be used to inform patients and aid treatment decisions
- Often built using data collected over a long time period
- Improvements in survival may lead to out-dated survival predictions

Methods

- Developed temporal recalibration which combines period analysis with recalibration techniques
- Alternative approach involving modelling calendar time

Full Cohort Analysis

Participant		Year of Diagnosis & Follow-Up									
1 articipant	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	
А	1	2	3	4	5	6	7	8	9	10	
В		1	2	3	4	5					
С						1	2	3	4	5	
D									1	2	

Full Cohort Analysis

Participant		Year of Diagnosis & Follow-Up									
Farticipant	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	
А	1	2	3	4	5	6	7	8	9	10	
В		1	2	3	4	5					
С						1	2	3	4	5	
D									1	2	

- Standard method used to develop prognostic models
- All 4 participants would be included

Participant		Year of Diagnosis & Follow-Up									
1 articipant	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	
А	1	2	3	4	5	6	7	8	9	10	
В		1	2	3	4	5					
С						1	2	3	4	5	
D									1	2	

• Define a recent time window (2004-2005)

H. Brenner and O. Gefeller, "An alternative approach to monitoring cancer patient survival," Cancer, vol. 78, no. 9, pp. 2004–2010, 1996.

Background

Participant		Year of Diagnosis & Follow-Up									
Farticipant	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	
А	1	2	3	4	5	6	7	8	9	10	
В		1	2	3	4	5					
С						1	2	3	4	5	
D									1	2	

- Define a recent time window (2004-2005)
- Only include those who are alive at some point in the window

H. Brenner and O. Gefeller, "An alternative approach to monitoring cancer patient survival," Cancer, vol. 78, no. 9, pp. 2004–2010, 1996.

Dantisiasas		Year of Diagnosis & Follow-Up									
Participant	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	
А	1	2	3	4	5	6	7	8	9	10	
В		1	2	3	4	5					
С						1	2	3	4	5	
D									1	2	

- Define a recent time window (2004-2005)
- Only include those who are alive at some point in the window
- Only analyse the risk-time and events within the window

H. Brenner and O. Gefeller, "An alternative approach to monitoring cancer patient survival," Cancer, vol. 78, no. 9, pp. 2004–2010, 1996.

Participant		Year of Diagnosis & Follow-Up									
Farticipant	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	
А	1	2	3	4	5	6	7	8	9	10	
В		1	2	3	4	5					
С						1	2	3	4	5	
D									1	2	

Advantages

 More up-to-date survival estimates, people diagnosed many years ago only contribute to long-term hazard rates

H. Brenner and O. Gefeller, "An alternative approach to monitoring cancer patient survival," Cancer, vol. 78, no. 9, pp. 2004–2010, 1996.

Participant		Year of Diagnosis & Follow-Up									
1 articipant	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	
А	1	2	3	4	5	6	7	8	9	10	
В		1	2	3	4	5					
С						1	2	3	4	5	
D									1	2	

Advantages

 More up-to-date survival estimates, people diagnosed many years ago only contribute to long-term hazard rates

Disadvantages

- Reduces sample size and number of events
- Larger standard errors

H. Brenner and O. Gefeller, "An alternative approach to monitoring cancer patient survival," Cancer, vol. 78, no. 9, pp. 2004–2010, 1996.

Temporal Recalibration

Participant		Year of Diagnosis & Follow-Up									
1 articipant	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	
А	1	2	3	4	5	6	7	8	9	10	
В		1	2	3	4	5					
С						1	2	3	4	5	
D									1	2	

Method

• Fit a full cohort model

Temporal Recalibration

Participant		Year of Diagnosis & Follow-Up									
1 articipant	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	
А	1	2	3	4	5	6	7	8	9	10	
В		1	2	3	4	5					
С						1	2	3	4	5	
D									1	2	

Method

- Fit a full cohort model
- Use a period analysis sample to recalibrate the model

Temporal Recalibration

Participant		Year of Diagnosis & Follow-Up									
1 articipant	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	
А	1	2	3	4	5	6	7	8	9	10	
В		1	2	3	4	5					
С						1	2	3	4	5	
D									1	2	

Method

- Fit a full cohort model
- Use a period analysis sample to recalibrate the model
- The predictor effects are constrained to be the same (i.e hazard ratios for age, sex, stage are the same)
- The baseline hazard function is allowed to vary which can capture any improvements in survival

Summary of Methods

Type of Analysis	Predictor Effects	Baseline
Full Cohort	All	All
Period Analysis	Recent	Recent
Temporal Recalibration	All	Recent

Type of Analysis	Year of	Diagno	osis & F	ollow-U	р	Follow-Up Only
Type of Allalysis	1996-2002	2003	2004	2005	2006	2007-2015
Full Cohort						
Temporal Recalibration						
Period Analysis						
Validation						

Surveillance, Epidemiology, and End Results (SEER) Program (www.seer.cancer.gov) Research Data (1973-2015), National Cancer Institute, DCCPS, Surveillance Research Program, released April 2018, based on the November 2017 submission

Type of Analysis	Year of Diagnosis & Follow-U				р	Follow-Up Only
	1996-2002	2003	2004	2005	2006	2007-2015
Full Cohort						
Temporal Recalibration						
Period Analysis						
Validation						

 US colon cancer registry data from the Surveillance, Epidemiology, and End Results (SEER) Program

Surveillance, Epidemiology, and End Results (SEER) Program (www.seer.cancer.gov) Research Data (1973-2015), National Cancer Institute, DCCPS, Surveillance Research Program, released April 2018, based on the November 2017 submission

Type of Analysis	Year of Diagnosis & Follow-U				р	Follow-Up Only
	1996-2002	2003	2004	2005	2006	2007-2015
Full Cohort						
Temporal Recalibration						
Period Analysis						
Validation						

- US colon cancer registry data from the Surveillance, Epidemiology, and End Results (SEER) Program
- Cause-specific survival models

Surveillance, Epidemiology, and End Results (SEER) Program (www.seer.cancer.gov) Research Data (1973-2015), National Cancer Institute, DCCPS, Surveillance Research Program, released April 2018, based on the November 2017 submission

Type of Analysis	Year of Diagnosis & Follow-U				р	Follow-Up Only
	1996-2002	2003	2004	2005	2006	2007-2015
Full Cohort						
Temporal Recalibration						
Period Analysis						
Validation						

- US colon cancer registry data from the Surveillance, Epidemiology, and End Results (SEER) Program
- Cause-specific survival models
- No variable selection: Age (modelled with splines), sex, race, stage and grade

Surveillance, Epidemiology, and End Results (SEER) Program (www.seer.cancer.gov) Research Data (173-2015), National Cancer Institute, DCCPS, Surveillance Research Program, released April 2018, based on the November 2017 submission

Survival Models

Cox Proportional Hazards Models

$$h(t;x_i)=h_0(t)e^{\beta x_i}$$

Post-estimation of baseline using restricted cubic splines

D. R. Cox, "Regression models and life-tables," Journal of the Royal Statistical Society. Series B (Methodological), vol. 34, no. 2, pp. 187–220, 1972.

P. Royston and M. K. B. Parmar, "Flexible parametric proportional-hazards and proportional-odds models for censored survival data, with application to prognostic modelling and estimation of treatment effects," Statistics in Medicine, vol. 21, no. 15, pp. 2175–2197, 2002.

Survival Models

Cox Proportional Hazards Models

$$h(t;x_i)=h_0(t)e^{\beta x_i}$$

Post-estimation of baseline using restricted cubic splines

Flexible Parametric Survival Models

$$ln[H(t|x_i)] = \gamma_0 + \gamma_1 z_{1i} + \gamma_2 z_{2i} + \gamma_3 z_{3i} + ... + \beta x_i$$

• z_i = derived variables for the restricted cubic splines

D. R. Cox, "Regression models and life-tables," Journal of the Royal Statistical Society. Series B (Methodological), vol. 34, no. 2, pp. 187–220, 1972.

P. Royston and M. K. B. Parmar, "Flexible parametric proportional-hazards and proportional-odds models for censored survival data, with application to prognostic modelling and estimation of treatment effects," Statistics in Medicine, vol. 21, no. 15, pp. 2175–2197, 2002.

Background Methods **Models** Results Updating Models Conclusion Discussion

oo ooo oo oo oo oo

Individual Survival Predictions

Background Methods Models **Results** Updating Models Conclusion Discussion

OO OO OO OO OO OO

Calibration of Models

Background Methods Models **Results** Updating Models Conclusion Discussion

OO OO OO OO OO OO

Calibration of Models

Background Methods Models **Results** Updating Models Conclusion Discussion

OO OO OO OO OO OO

Calibration of Models

Period Analysis Window

Type of Analysis	Sample Size Number of Events	
Full Cohort	48,861	12,040
2 Year Window	33,197	2,900
1 Year Window	30,427	1,500
6 Month Window	28,896	774
3 Month Window	28,099	383

 Width of window could be determined using sample size criteria by Riley et al.

R. D. Riley et al. "Minimum sample size for developing a multivariable prediction model: PART II - binary and time-to-event outcomes," Statistics in Medicine, 2018.

Background Methods Models **Results** Updating Models Conclusion Discussior

○○ ○○○ ○○○ ○○ ○○ ○○ ○

Hazard Ratio

Type of Analysis	log HR Female	Standard Error
Full Cohort	-0.05	0.018
2 Year Window	-0.10	0.038
1 Year Window	-0.13	0.053
6 Month Window	-0.07	0.073
3 Month Window	-0.06	0.104

Updating Prognostic Models

	Year of Diagnosis & Follow-Up			Follow-Up Only
	1986-1995	1996-2005	2006	2007-2015
Development				
Updating				
Validation				

- M1: Original full cohort model (1986-1995)
- M2: Full cohort model with all available data (1986-2005)
- M3: Full cohort model with most recent data (1996-2005)
- M4: Temporal recalibration of M1 (period window 2004-2005)
- M5: Temporal recalibration of M3 (period window 2004-2005)

Observed Survival: Individuals diagnosed in 2006

M1: Original full cohort model (1986-1995)

M2: Full cohort model with all available data (1986-2005)

M3: Full cohort model with most recent data (1996-2005)

M4: Temporal recalibration of M1

M5: Temporal recalibration of M3

Summary

- Full cohort models often underestimate survival if there have been recent improvements in survival
- Period analysis uses a subset of data to create more up-to-date survival predictions
- Temporal recalibration also produces more up-to-date survival predictions but all the data is used to estimate the predictor effects

Discussion: Modelling calendar time (year of diagnosis)

Functional form

- Linear, categorical, restricted cubic splines
- Incorporate month of diagnosis for a smoother function
- Time dependent effects
- Interactions between predictor effects and year of diagnosis

Survival predictions e.g. new patient diagnosed in 2007 and the model is fitted using data from 1996-2005

- Use the most recent year (2005) included in the model
- Extrapolate the trend to 2007
- Update the prognostic model every year