Semantics of Programming Languages

Operational Semantics

Prof. Peter Müller

Software Component Technology

Peter Müller—Semantics of Programming Languages, SS04 - p.97

Big-Step and Small-Step Semantics

- ▶ Big-step semantics describe how the overall results of the executions are obtained
 - Natural semantics
- Small-step semantics describe how the individual steps of the computations take place
 - Structural operational semantics (SOS)
 - Abstract state machines

Peter Müller—Semantics of Programming Languages, SS04 - p.98

2. Operational Semantics

- 2.1 Big-Step Semantics
- 2.2 Small-Step Semantics
- 2.2.1 Structural Operational Semantics of IMP
- 2.2.2 Properties of the Semantics
- 2.2.3 Extensions of IMP
- 2.3 Equivalence
- 2.4 Applications of Operational Semantics

Structural Operational Semantics

- ► The emphasis is on the individual steps of the execution
 - Execution of assignments
 - Execution of tests
- ▶ Describing small steps of the execution allows one to express the order of execution of individual steps
 - Interleaving computations
 - Evaluation order for expressions (not shown in the course)
- Describing always the next small step allows one to express properties of looping programs

Transitions in SOS

- ► The configurations are the same as for natural semantics
- ▶ The transition relation \rightarrow_1 can have two forms
- ▶ $\langle s, \sigma \rangle \rightarrow_1 \langle s', \sigma' \rangle$: the execution of s from σ is **not completed** and the remaining computation is expressed by the intermediate configuration $\langle s', \sigma' \rangle$
- ▶ $\langle s, \sigma \rangle \rightarrow_1 \sigma'$: the execution of s from σ has terminated and the final state is σ'
- ▶ A transition $\langle s, \sigma \rangle \rightarrow_1 \gamma$ describes the first step of the execution of s from σ

Peter Müller—Semantics of Programming Languages, SS04 - p.101

Peter Müller—Semantics of Programming Languages, SS04 - p.103

Transition System

$$\begin{split} \Gamma &= \{\langle s, \sigma \rangle \mid s \in \mathsf{Stm}, \sigma \in \mathsf{State}\} \cup \mathsf{State} \\ T &= \mathsf{State} \\ \to_1 \subseteq \{\langle s, \sigma \rangle \mid s \in \mathsf{Stm}, \sigma \in \mathsf{State}\} \times \Gamma \end{split}$$

▶ We say that $\langle s,\sigma\rangle$ is **stuck** if there is no γ such that $\langle s,\sigma\rangle \to_1 \gamma$

Peter Müller—Semantics of Programming Languages, SS04 - p.102

SOS of IMP

skip does not modify the state

$$\langle \mathtt{skip}, \sigma \rangle \to_1 \sigma$$

ightharpoonup x := e assigns the value of e to variable x

$$\langle x := e, \sigma \rangle \to_1 \sigma[x \mapsto \mathcal{A}[\![e]\!]\sigma]$$

- ▶ skip and assignment require only one step
- ▶ Rules are analogous to natural semantics

$$\langle \mathtt{skip}, \sigma \rangle \to \sigma$$

$$\langle x := e, \sigma \rangle \to \sigma[x \mapsto \mathcal{A}[\![e]\!]\sigma]$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

SOS of IMP: Sequential Composition

- ▶ Sequential composition s_1 ; s_2
- ► First step of executing s_1 ; s_2 is the first step of executing s_1
- $ightharpoonup s_1$ is executed in one step

$$\frac{\langle s_1, \sigma \rangle \to_1 \sigma'}{\langle s_1; s_2, \sigma \rangle \to_1 \langle s_2, \sigma' \rangle}$$

 $ightharpoonup s_1$ is executed in several steps

$$\frac{\langle s_1, \sigma \rangle \to_1 \langle s_1', \sigma' \rangle}{\langle s_1; s_2, \sigma \rangle \to_1 \langle s_1'; s_2, \sigma' \rangle}$$

SOS of IMP: Conditional Statement

▶ The first step of executing if b then s_1 else s_2 end is to determine the outcome of the test and thereby which branch to select

Peter Müller—Semantics of Programming Languages, SS04 - p.105

Alternative for Conditional Statement

▶ The first step of executing if b then s_1 else s_2 end is the first step of the branch determined by the outcome of the test

$$\frac{\langle s_1,\sigma\rangle \to_1 \sigma'}{\langle \text{if } b \text{ then } s_1 \text{ else } s_2 \text{ end},\sigma\rangle \to_1 \sigma'} \quad \text{if } \mathcal{B}[\![b]\!] \sigma = tt$$

$$\frac{\langle s_1, \sigma \rangle \to_1 \langle s_1', \sigma' \rangle}{\langle \text{if } b \text{ then } s_1 \text{ else } s_2 \text{ end}, \sigma \rangle \to_1 \langle s_1', \sigma' \rangle} \quad \text{if } \mathcal{B}[\![b]\!] \sigma = tt$$

and two similar rules for $\mathcal{B}[\![b]\!]\sigma=f\!f$

- Alternatives are equivalent for IMP
- ► Choice is important for languages with parallel execution

Peter Müller—Semantics of Programming Languages, SS04 - p.106

SOS of IMP: Loop Statement

▶ The first step is to unrole the loop

$$\langle \texttt{while} \ b \ \texttt{do} \ s \ \texttt{end}, \sigma \rangle \to_1 \\ \langle \texttt{if} \ b \ \texttt{then} \ s; \texttt{while} \ b \ \texttt{do} \ s \ \texttt{end} \ \texttt{else} \ \texttt{skip} \ \texttt{end}, \sigma \rangle$$

▶ Recall that while b do s end and if b then s; while b do s end else skip end are semantically equivalent in the natural semantics

Alternatives for Loop Statement

► The first step is to decide the outcome of the test and thereby whether to unrole the body of the loop or to terminate

$$\langle \text{while } b \text{ do } s \text{ end}, \sigma \rangle \to_1 \langle s \text{; while } b \text{ do } s \text{ end}, \sigma \rangle \\ \text{if } \mathcal{B}[\![b]\!] \sigma = tt$$

$$\langle \mathtt{while}\ b\ \mathtt{do}\ s\ \mathtt{end}, \sigma \rangle \to_1 \sigma \quad \mathsf{if}\ \mathcal{B}[\![b]\!]\sigma = f\!\!f$$

- Or combine with the alternative semantics of the conditional statement
- ▶ Alternatives are equivalent for IMP

Derivation Sequences

- ▶ A derivation sequence of a statement s starting in state σ is a sequence $\gamma_0, \gamma_1, \gamma_2, \ldots$, where
 - $\gamma_0 = \langle s, \sigma \rangle$
 - $\gamma_i \rightarrow_1 \gamma_{i+1}$ for $0 \le i$
- ▶ A derivation sequence is either finite or infinite
 - Finite derivation sequences end with a configuration that is either a terminal configuration or a stuck configuration
- Notation
 - $\gamma_0 \rightarrow_1^i \gamma_i$ indicates that there are i steps in the execution from γ_0 to γ_i
 - $\gamma_0 \rightarrow_1^* \gamma_i$ indicates that there is a **finite number of steps** in the execution from γ_0 to γ_i
 - $\gamma_0 \to_1^i \gamma_i$ and $\gamma_0 \to_1^* \gamma_i$ need **not** be derivation sequences

Peter Müller—Semantics of Programming Languages, SS04 - p.109

Derivation Sequences: Example

▶ What is the final state if statement

$$z := x; \quad x := y; \quad y := z$$

is executed in state $\{x \mapsto 5, y \mapsto 7, z \mapsto 0\}$?

$$\langle z := x; x := y; y := z, \{x \mapsto 5, y \mapsto 7, z \mapsto 0\} \rangle$$

 $\rightarrow_1 \langle x := y; y := z, \{x \mapsto 5, y \mapsto 7, z \mapsto 5\} \rangle$
 $\rightarrow_1 \langle y := z, \{x \mapsto 7, y \mapsto 7, z \mapsto 5\} \rangle$
 $\rightarrow_1 \{x \mapsto 7, y \mapsto 5, z \mapsto 5\}$

Peter Müller—Semantics of Programming Languages, SS04 - p.110

Derivation Trees

- Derivation trees explain why transitions take place
- For the first step

$$\langle z := x; x := y; y := z, \sigma \rangle \rightarrow_1 \langle x := y; y := z, \sigma[z \mapsto 5] \rangle$$

the derivation tree is

$$\frac{\langle z := x, \sigma \rangle \to_1 \sigma[z \mapsto 5]}{\langle z := x; x := y, \sigma \rangle \to_1 \langle x := y, \sigma[z \mapsto 5] \rangle}$$
$$\frac{\langle z := x; x := y; y := z, \sigma \rangle \to_1 \langle x := y; y := z, \sigma[z \mapsto 5] \rangle}{\langle z := x; x := y; y := z, \sigma[z \mapsto 5] \rangle}$$

▼ z :=x; (x:=y; y:=z) would lead to a simpler tree with only one rule application

Derivation Sequences and Trees

- Natural (big-step) semantics
 - The execution of a statement (sequence) is described by one big transition
 - The big transition can be seen as trivial derivation sequence with exactly one transition
 - The derivation tree explains why this transition takes place
- Structural operational (small-step) semantics
 - The execution of a statement (sequence) is described by one or more transitions
 - Derivation sequences are important
 - Derivation trees justify each individual step in a derivation sequence

Termination

- ▶ The execution of a statement s in state σ
 - terminates iff there is a finite derivation sequence starting with $\langle s,\sigma\rangle$
 - loops iff there is an infinite derivation sequence starting with $\langle s,\sigma\rangle$
- ▶ The execution of a statement s in state σ
 - terminates successfully if $\langle s, \sigma \rangle \to_1^* \sigma'$
 - In IMP, an execution terminates successfully iff it terminates (no stuck configurations)

Peter Müller—Semantics of Programming Languages, SS04 - p.113

2. Operational Semantics

- 2.1 Big-Step Semantics
- 2.2 Small-Step Semantics
- 2.2.1 Structural Operational Semantics of IMP
- 2.2.2 Properties of the Semantics
- 2.2.3 Extensions of IMP
- 2.3 Equivalence
- 2.4 Applications of Operational Semantics

Peter Müller—Semantics of Programming Languages, SS04 - p.114

Induction on Derivations

Induction on the length of derivation sequences

- 1. **Induction base**: Prove that the property holds for all derivation sequences of length 0
- 2. **Induction step**: Prove that the property holds for all other derivation sequences:
 - ▶ Induction hypothesis: Assume that the property holds for all derivation sequences of length at most *k*
 - ightharpoonup Prove that it also holds for derivation sequences of length k+1

Induction on the length of derivation sequences is an application of strong mathematical induction.

Using Induction on Derivations

- ▶ The induction step is often done by inspecting either
 - the structure of the syntactic element or
 - the derivation tree validating the first transition of the derivation sequence
- Lemma

$$\langle s_1; s_2, \sigma \rangle \to_1^k \sigma'' \Rightarrow$$

$$\exists \sigma', k_1, k_2 : \langle s_1, \sigma \rangle \to_1^{k_1} \sigma' \wedge \langle s_2, \sigma' \rangle \to_1^{k_2} \sigma'' \wedge$$

$$k_1 + k_2 = k$$

Proof

- ▶ Proof by induction on k, that is, by induction on the length of the derivation sequence for $\langle s_1; s_2, \sigma \rangle \rightarrow_1^k \sigma''$
- ▶ Induction base: k = 0: There is no derivation sequence of length 0 for $\langle s_1; s_2, \sigma \rangle \rightarrow_1^k \sigma''$
- ▶ Induction step
 - We assume that the lemma holds for $k \le m$
 - We prove that the lemma holds for m+1
 - The derivation sequence $\langle s_1; s_2, \sigma \rangle \to_1^{m+1} \sigma''$ can be written as $\langle s_1; s_2, \sigma \rangle \to_1 \gamma \to_1^m \sigma''$ for some configuration γ

Peter Müller—Semantics of Programming Languages, SS04 – p.117

Induction Step

- $\blacktriangleright \langle s_1; s_2, \sigma \rangle \rightarrow_1 \gamma \rightarrow_1^m \sigma''$
- ▶ Consider the two rules that could lead to the transition $\langle s_1; s_2, \sigma \rangle \rightarrow_1 \gamma$
- ▶ Case 1

$$\frac{\langle s_1,\sigma
angle
ightarrow_1\,\sigma'}{\langle s_1\,;s_2,\sigma
angle
ightarrow_1\,\langle s_2,\sigma'
angle}$$

▶ Case 2

$$\frac{\langle s_1, \sigma \rangle \to_1 \langle s_1', \sigma' \rangle}{\langle s_1; s_2, \sigma \rangle \to_1 \langle s_1'; s_2, \sigma' \rangle}$$

Peter Müller—Semantics of Programming Languages, SS04 - p.118

Induction Step: Case 1

▶ From

$$\langle s_1; s_2, \sigma \rangle \to_1 \gamma \to_1^m \sigma''$$
 and $\langle s_1; s_2, \sigma \rangle \to_1 \langle s_2, \sigma' \rangle$ we conclude $\langle s_2, \sigma' \rangle \to_1^m \sigma''$

▶ The required result follows by choosing $k_1 = 1$ and $k_2 = m$

Induction Step: Case 2

▶ From

$$\langle s_1; s_2, \sigma \rangle \to_1 \gamma \to_1^m \sigma''$$
 and $\langle s_1; s_2, \sigma \rangle \to_1 \langle s_1'; s_2, \sigma' \rangle$ we conclude $\langle s_1'; s_2, \sigma' \rangle \to_1^m \sigma''$

▶ By applying the induction hypothesis, we get

$$\exists \sigma_0, l_1, l_2 : \langle s_1', \sigma' \rangle \to_1^{l_1} \sigma_0 \land \langle s_2, \sigma_0 \rangle \to_1^{l_2} \sigma'' \land l_1 + l_2 = m$$

► From

$$\langle s_1, \sigma \rangle \to_1 \langle s_1', \sigma' \rangle$$
 and $\langle s_1', \sigma' \rangle \to_1^{l_1} \sigma_0$ we get $\langle s_1, \sigma \rangle \to_1^{l_1+1} \sigma_0$

■ By

$$\langle s_2, \sigma_0 \rangle \to_1^{l_2} \sigma''$$
 and $(l_1+1)+l_2=m+1$ we have proved the required result

Semantic Equivalence

Two statements s_1 and s_2 are semantically equivalent if for all states σ :

- $\langle s_1, \sigma \rangle \to_1^* \gamma$ iff $\langle s_2, \sigma \rangle \to_1^* \gamma$, whenever γ is a configuration that is either stuck or terminal, and
- ▶ there is an infinite derivation sequence starting in $\langle s_1, \sigma \rangle$ iff there is one starting in $\langle s_2, \sigma \rangle$

Note: In the first case, the length of the two derivation sequences may be different

Peter Müller—Semantics of Programming Languages, SS04 - p.121

Determinism

Lemma: The structural operational semantics of IMP is deterministic. That is, for all s, σ, γ , and γ' we have that $\langle s, \sigma \rangle \rightarrow_1 \gamma \wedge \langle s, \sigma \rangle \rightarrow_1 \gamma' \Rightarrow \gamma = \gamma'$

▶ The proof runs by induction on the shape of the derivation tree for the transition $\langle s, \sigma \rangle \to_1 \gamma$

Corollary: There is exactly one derivation sequence starting in configuration $\langle s,\sigma\rangle$

► The proof runs by induction on the length of the derivation sequence

Peter Müller—Semantics of Programming Languages, SS04 - p.122

2. Operational Semantics

- 2.1 Big-Step Semantics
- 2.2 Small-Step Semantics
- 2.2.1 Structural Operational Semantics of IMP
- 2.2.2 Properties of the Semantics
- 2.2.3 Extensions of IMP
- 2.3 Equivalence
- 2.4 Applications of Operational Semantics

Local Variable Declarations

- ▶ Local variable declaration var x := e in s end
- ▶ The small steps are
 - 1. Assign e to x
 - 2. Execute s
 - 3. Restore the initial value of *x* (necessary if *x* exists in the enclosing scope)
- ightharpoonup Problem: There is no history of states that could be used to restore the value of x
- ▶ Idea: Represent states as execution stacks

Modelling Execution Stacks

We model execution stacks by providing a mapping Var → Val for each scope

State : $stack of(Var \rightarrow Val)$

- Assignment and lookup have to determine the highest stack element in which a variable is defined
- ▶ Example: $\sigma(x) = 3$

$z \mapsto 4$
$x \mapsto 3$
$x \mapsto 1, y \mapsto 2$

Peter Müller—Semantics of Programming Languages, SS04 - p.125

SOS for Variable Declarations

- ▶ The small steps are
 - 1. Create new scope and assign e to x in this scope
 - 2. Execute s
 - 3. Restore the initial value of x using a return statement

$$\langle \operatorname{var} x := e \text{ in } s \text{ end}, \sigma \rangle \to_1$$
$$\langle s; \operatorname{return}, \operatorname{\textit{push}}(\{x \mapsto \mathcal{A}[\![e]\!]\sigma\}, \sigma) \rangle$$
$$\langle \operatorname{return}, \sigma \rangle \to_1 \operatorname{\textit{pop}}(\sigma)$$

▶ Similar techniques can be used for procedure calls

Peter Müller—Semantics of Programming Languages, SS04 - p.126

Abortion

- ► Statement abort stops the execution of the complete program
- Abortion is modeled by ensuring that the configurations (abort, σ) are stuck
- ► There is no additional rule for abort in the structural operational semantics
- ▶ abort and skip are not semantically equivalent
 - $\langle \mathtt{abort}, \sigma \rangle$ is the only derivation sequence for abort starting is s
 - $\langle \mathtt{skip}, \sigma \rangle \to_1 \sigma$ is the only derivation sequence for \mathtt{skip} starting is s

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Abortion: Observations

▶ abort and while true do skip end are not semantically equivalent:

```
\langle \text{while true do skip end}, \sigma \rangle \to_1 \\ \langle \text{if true then skip; while true do skip end end}, \sigma \rangle \to_1 \\ \langle \text{skip; while true do skip end} \rangle \to_1 \\ \langle \text{while true do skip end}, \sigma \rangle \\
```

- ▶ In a structural operational semantics,
 - looping is reflected by infinite derivation sequences
 - abnormal termination by finite derivation sequences ending in a stuck configuration

Non-determinism

- ▶ For the statement $s_1 | s_2$ either s_1 or s_2 is non-deterministically chosen to be executed
- ► The statement

$$x := 1 [x := 2; x := x + 2]$$

could result in a state in which x has the value 1 or 4

■ Rules

$$\langle s_1 \llbracket s_2, \sigma \rangle \to_1 \langle s_1, \sigma \rangle$$
 $\langle s_1 \llbracket s_2, \sigma \rangle \to_1 \langle s_2, \sigma \rangle$

$$\langle s_1 \, | \, s_2, \sigma \rangle \to_1 \langle s_2, \sigma \rangle$$

Peter Müller—Semantics of Programming Languages, SS04 - p.129

Non-determinism: Observations

- ▶ There are two derivation sequences
 - $\langle x := 1 \mid x := 2; x := x+2, \sigma \rangle \rightarrow_1^* \sigma[x \mapsto 1]$
 - $\langle x := 1 \mid x := 2; x := x + 2, \sigma \rangle \rightarrow_1^* \sigma [x \mapsto 4]$
- ▶ There are also two derivation sequences for (while true do skip end $[x:=2; x:=x+2, \sigma)$)
 - an finite derivation sequence leading to $\sigma[x \mapsto 4]$
 - an infinite derivation sequence
- ▶ A structural operational semantics can choose the "wrong" branch of a non-deterministic choice
- ▶ In a structural operational semantics non-determinism does not suppress looping

Peter Müller—Semantics of Programming Languages, SS04 - p.130

Parallelism

ightharpoonup For the statement s_1 par s_2 both statements s_1 and s₂ are executed, but execution can be interleaved

$$\frac{\langle s_1,\sigma\rangle \to_1 \langle s_1',\sigma'\rangle}{\langle s_1 \text{ par } s_2,\sigma\rangle \to_1 \langle s_1' \text{ par } s_2,\sigma'\rangle}$$

$$\frac{\langle s_1, \sigma \rangle \to_1 \sigma'}{\langle s_1 \text{ par } s_2, \sigma \rangle \to_1 \langle s_2, \sigma' \rangle}$$

$$\frac{\langle s_2,\sigma\rangle \to_1 \langle s_2',\sigma'\rangle}{\langle s_1 \text{ par } s_2,\sigma\rangle \to_1 \langle s_1 \text{ par } s_2',\sigma'\rangle}$$

$$\frac{\langle s_2, \sigma \rangle \to_1 \sigma'}{\langle s_1 \text{ par } s_2, \sigma \rangle \to_1 \langle s_1, \sigma' \rangle}$$

Example: Interleaving

▶ The statement

$$x:=1 par x:=2; x:=x+2$$

could result in a state in which x has the value 4, 1, or 3

- Execute x:=1, then x:=2, and then x:=x+2
- Execute x:=2, then x:=x+2, and then x:=1
- Execute x:=2, then x:=1, and then x:=x+2
- ▶ In a structural operational semantics we can easily express interleaving of computations

Example: Derivation Sequences

Peter Müller—Semantics of Programming Languages, SS04 – p.133

Comparison: Summary

Natural Semantics

- Local variable declarations and procedures can be modeled easily
- No distinction between abortion and looping
- Non-determinism suppresses looping (if possible)
- Parallelism cannot be modeled

Structural Operational Semantics

- Local variable declarations and procedures require modeling the execution stack
- ► Distinction between abortion and looping
- Non-determinism does not suppress looping
- ▶ Parallelism can be modeled

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Peter Müller—Semantics of Programming Languages, SS04 - p.134