Tunable Testbed for Detection and Attribution IDAG Workshop 2018

Nathan Lenssen ¹ Dorit Hammerling ² Alexis Hannart ³

¹Columbia University, Lamont-Doherty Earth Observatory
²National Center for Atmospheric Resarch ³Ouranos

March 14, 2018

SAMSI Working Group/Collaborators

- The Statistical and Applied Mathematical Sciences Institute (SAMSI)
 Is conducting a year-long research program on Mathematical and
 Statistical Methods for Climate and the Earth System (CLIM)
- My research is as a member of the CLIM working group on Detection and Attribution led by Dorit Hammerling
- The testbed is joint with Alexis Hannart and a continuation of [Hannart, 2016]

Testbed Motivation

A flexible and tunable testbed will allow researchers working on detection and attribution methods to:

- Evaluate methods by comparing estimated and true parameter values
 - Performance scaling as a function of sample size/dimensionality
- Simulate real-world scenarios to enable testbed results to represent applications
 - Tunable variety of climate response patterns and climate variability covariances
- Determine robustness of methods through perturbations of testbed parameters
- Compare multiple D+A methods on variety of scenarios

Roadmap of Presentation

- (I) Generative Statistical Model for Detection and Attribution
 - Ordinary Least Squares
 - Error-in-Variable Formulation
 - Sources of Variability
- (II) Major Testbed Components
 - Observed vs. Latent Data/Parameters
 - Simulation of Forced Responses
 - Covariances of Climate and Observational Variability
- (III) Results and Applications

Ordinary Least Squares (OLS)

Observed Quantities:

y: The observed climate response of interest

 $m{X}^*$ The model-simulated forcing responses $m{X}^* = (m{x}_1^*, \dots, m{x}_m^*, \dots, m{x}_M^*)$

Ordinary Least Squares (OLS)

Observed Quantities:

y: The observed climate response of interest

 $m{X}^*$ The model-simulated forcing responses $m{X}^* = (m{x}_1^*, \dots, m{x}_m^*, \dots, m{x}_M^*)$

$$y = X^*\beta + u$$

Ordinary Least Squares (OLS)

Observed Quantities:

- y: The observed climate response of interest
- $m{X}^*$ The model-simulated forcing responses $m{X}^* = (m{x}_1^*, \dots, m{x}_m^*, \dots, m{x}_M^*)$

$$y = X^*\beta + u$$

Statistical Parameter of Interest:

 β Estimation of $\beta > 0$ provides detection, inference (CIs) gives us attribution

Climate Variability:

- $m{u}$ The error due to climate variability where $m{u} \sim \mathcal{N}(0, \mathbf{C})$
- C Estimated through model control runs

Error-in-Variable (EIV)

Observed Quantities:

- y The climate response of interest
- $m{X}$ The noisy responses to forcings $m{X} = (m{x}_1, \dots, m{x}_m, \dots, m{x}_M)$

Error-in-Variable (EIV)

Observed Quantities:

- y The climate response of interest
- X The noisy responses to forcings $X = (x_1, \dots, x_m, \dots, x_M)$

$$y = X^*\beta + u_y$$
$$X = X^* + U$$

Error-in-Variable (EIV)

Observed Quantities:

- y The climate response of interest
- \boldsymbol{X} The noisy responses to forcings $\boldsymbol{X} = (\boldsymbol{x}_1, \dots, \boldsymbol{x}_m, \dots, \boldsymbol{x}_M)$

$$\mathbf{y} = \mathbf{X}^* \boldsymbol{\beta} + \mathbf{u}_{\mathbf{y}}$$
$$\mathbf{X} = \mathbf{X}^* + \mathbf{U}$$

Latent Quantities:

- \mathbf{y}^* The idealized climate response where $\mathbf{y}^* = \mathbf{X}^* \boldsymbol{\beta}$
- $m{\mathcal{X}}^*$ The idealized responses to forcings $m{\mathcal{X}}^* = (m{x}_1^*, \dots, m{x}_M^*)$

Climate Variability:

- $extbf{\textit{u}}_{ extit{y}}$ As OLS formulation with $extbf{\textit{u}}_{ extit{y}} \sim \mathcal{N}(0, extbf{C})$
- *U* The error on the forcing responses due to climate variability

$$\boldsymbol{U} = (\boldsymbol{u}_1, \dots, \boldsymbol{u}_M) \stackrel{\mathsf{iid}}{\sim} \mathcal{N}(0, \mathbf{C})$$

EIV model 2: Multimodel ensembles

Error-in-Variable (EIV): Multimember Ensembles

For a given forcing m, we run ensemble of size L_m

$$\mathbf{x}_m = (\mathbf{x}_m^{(1)}, \dots \mathbf{x}_m^{(\ell)}, \dots, \mathbf{x}_m^{(L_m)}), \qquad \mathbf{x}_m^{(\ell)} \stackrel{\mathsf{iid}}{\sim} \mathcal{N}(\mathbf{x}_m^*, \mathbf{C})$$

The ensemble mean of the m^{th} forced response is

$$\overline{\mathbf{x}_m} = \frac{1}{L_m} \sum_{\ell=1}^{L_m} \mathbf{x}_m^{(\ell)}, \qquad \overline{\mathbf{x}_m} \sim \mathcal{N}\left(\mathbf{x}_m^*, L_m^{-1} \mathbf{C}\right)$$

Rewriting in the error-in-variable formulation

$$\overline{\boldsymbol{x}_m} = \boldsymbol{x}_m^* + L_m^{-1/2} \boldsymbol{u}_m$$

Or for all forcing responses with $\boldsymbol{L} = \text{diag}(L_1, \dots, L_M)$

$$\overline{X} = X^* + L^{-1/2}U$$

EIV Model 3: Incoporation of multimodel ensembles

Error-in-Variable (EIV): Multimember Ensembles

$$\overline{X} = X^* + L^{-1/2}U$$

Plugging into our full error in variable formulation:

$$\mathbf{y} = \mathbf{X}^* \boldsymbol{\beta} + \mathbf{u}_y$$
 $\mathbf{u}_y \sim \mathcal{N}(0, \mathbf{C})$

$$\overline{\mathbf{X}} = \mathbf{X}^* + \mathbf{L}^{-1/2}\mathbf{U} \qquad \mathbf{u}_m \stackrel{\mathsf{iid}}{\sim} \mathcal{N}(0, \mathbf{C})$$

- \overline{X} The ensemble means $\overline{X} = (\overline{x_1}, \dots, \overline{x_M})$
- **L** The ensemble sizes $\mathbf{L} = (L_1, \dots, L_M)$
- $oldsymbol{U}$ The forcing variability matrix $oldsymbol{U} = (oldsymbol{u}_1, \dots, oldsymbol{u}_M)$

Observed Response Variability

The incomplete expression for the climate response y is

$$\textbf{\textit{y}} = \textbf{\textit{X}}^* \boldsymbol{\beta} + \textbf{\textit{u}}_{y} \,, \qquad \textbf{\textit{u}}_{y} \sim \mathcal{N}(0,\textbf{C})$$

We propose three different y states to fully incorporate all of the sources of variability.

$$y^*$$
 The idealized climate response (latent) $y^* = X^*\beta$

$$m{y}_{rel}$$
 The realized climate response (latent) $m{y}_{rel} = m{y}^* + m{u}_Y$
 $m{y}_{obs}$ The observed climate response $m{y}_{obs} = m{y}_{rel} + m{\varepsilon}_Y$

• With observational error $oldsymbol{arepsilon}_Y \sim \mathcal{N}(0, \mathbf{W})$

$$egin{aligned} oldsymbol{y}_{rel} &= oldsymbol{X}^*oldsymbol{eta} + oldsymbol{u}_y & oldsymbol{u}_y &\sim \mathcal{N}(0, oldsymbol{\mathsf{C}}) \ oldsymbol{y}_{obs} &= oldsymbol{y}_{rel} + oldsymbol{arepsilon}_y & egin{aligned} oldsymbol{arepsilon}_y &\sim \mathcal{N}(0, oldsymbol{\mathsf{C}}) \end{aligned}$$

Full Error-in-Variable Model:

$$egin{align} oldsymbol{y_{obs}} &= oldsymbol{y_{rel}} + oldsymbol{arepsilon_y} & oldsymbol{arepsilon_y} \sim \mathcal{N}(0, \mathbf{W}) \ oldsymbol{y_{rel}} &= oldsymbol{X}^* oldsymbol{+} oldsymbol{u_y} & oldsymbol{u_y} \sim \mathcal{N}(0, \mathbf{C}) \ oldsymbol{\overline{X}} &= oldsymbol{X}^* + oldsymbol{L}^{-1/2} oldsymbol{U} & oldsymbol{u_m} \stackrel{\mathsf{iid}}{\sim} \mathcal{N}(0, \mathbf{C}) \ \end{pmatrix}$$

Full Error-in-Variable Model:

$$egin{aligned} oldsymbol{y}_{obs} &= oldsymbol{y}_{rel} + oldsymbol{arepsilon}_y & oldsymbol{arepsilon}_y \sim \mathcal{N}(0, \mathbf{W}) \ oldsymbol{y}_{rel} &= oldsymbol{X}^* oldsymbol{+} oldsymbol{u}_y & oldsymbol{u}_y \sim \mathcal{N}(0, \mathbf{C}) \ oldsymbol{\overline{X}} &= oldsymbol{X}^* + oldsymbol{L}^{-1/2} oldsymbol{U} & oldsymbol{u}_m \stackrel{ ext{iid}}{\sim} \mathcal{N}(0, \mathbf{C}) \end{aligned}$$

Scale-Variant Error-in-Variable Model:

$$egin{aligned} \mathbf{y}_{obs} &= \mathbf{y}_{rel} + arepsilon_y & arepsilon_y \sim \mathcal{N}(0, \mathbf{W}) \ \mathbf{y}_{rel} &= \mathbf{X}^*eta + \mathbf{u}_y & \mathbf{u}_y \sim \mathcal{N}(0, oldsymbol{lpha}^{-1}\,\mathbf{C}) \ \overline{\mathbf{X}} &= \mathbf{X}^* + \mathbf{L}^{-1/2}oldsymbol{U} & \mathbf{u}_m \overset{ ext{ind}}{\sim} \mathcal{N}(0, \gamma_m^{-1}\,\mathbf{C}) \end{aligned}$$

Dorit will talk about fitting this model!

Roadmap of Presentation

- (I) Generative Statistical Model for Detection and Attribution
 - Ordinary Least Squares
 - Error-in-Variable Formulation
 - Sources of Variability
- (II) Major Testbed Components
 - Observed vs. Latent Data/Parameters
 - Simulation of Forced Responses
 - Covariances of Climate and Observational Variability
- (III) Results and Applications

Data and Parameters of Interest

$$egin{aligned} oldsymbol{y}_{obs} &= oldsymbol{y}_{rel} + oldsymbol{arepsilon}_y & oldsymbol{arepsilon}_y \sim \mathcal{N}(0, oldsymbol{\mathsf{W}}) \ oldsymbol{y}_{rel} &= oldsymbol{X}^* oldsymbol{\beta} + oldsymbol{u}_y & oldsymbol{u}_y \sim \mathcal{N}(0, lpha^{-1} \, oldsymbol{\mathsf{C}}) \ oldsymbol{\overline{X}} &= oldsymbol{X}^* + oldsymbol{\mathsf{L}}^{-1/2} oldsymbol{\mathsf{U}} & oldsymbol{u}_m \overset{\mathsf{ind}}{\sim} \mathcal{N}(0, \gamma_m^{-1} \, oldsymbol{\mathsf{C}}) \end{aligned}$$

Observed Objects:

X Observed forcing response ensembles

$$m{X} = (m{x}_1, \dots, m{x}_M) \ = \left([m{x}_1^{(1)}, \dots, m{x}_1^{(L_1)}], \dots, [m{x}_M^{(1)}, \dots, m{x}_M^{(L_M)}] \right)$$

Yobs Observed climate response ensemble

$$oldsymbol{Y}_{obs} = (oldsymbol{y}_{obs}^{(1)}, \dots, oldsymbol{y}_{obs}^{(L_y)})$$

 X_0 Control runs from the climate model used in forcing response experiments

$$\pmb{X}_0 = (\pmb{X}_0^{(1)}, \dots, \pmb{X}_0^{(L_0)})$$

Data and Parameters of Interest

$$egin{aligned} oldsymbol{y}_{obs} &= oldsymbol{y}_{rel} + oldsymbol{arepsilon}_{y} & oldsymbol{arepsilon}_{y} \sim \mathcal{N}(0, oldsymbol{\mathsf{W}}) \ oldsymbol{y}_{rel} &= oldsymbol{X}^{*}oldsymbol{eta} + oldsymbol{\mathsf{u}}_{y} & oldsymbol{u}_{y} \sim \mathcal{N}(0, oldsymbol{\alpha}^{-1} \, oldsymbol{\mathsf{C}}) \ oldsymbol{\overline{X}} &= oldsymbol{X}^{*} + oldsymbol{\mathsf{L}}^{-1/2} oldsymbol{\mathsf{U}} & oldsymbol{\mathsf{u}}_{m} \stackrel{\mathsf{ind}}{\sim} \mathcal{N}(0, \gamma_{m}^{-1} \, oldsymbol{\mathsf{C}}) \end{aligned}$$

Latent Objects

 θ The statistical parameters in the model

$$\boldsymbol{\theta} = \{\beta, \alpha, \boldsymbol{\gamma}, \mathbf{C}, \mathbf{W}\}$$

- \boldsymbol{X}^* True forcing response $\boldsymbol{X} = (\boldsymbol{x}_1, \dots, \boldsymbol{x}_M)$
- \mathbf{y}^* True climate response $\mathbf{y}^* = \mathbf{X}\boldsymbol{\beta}$
- y_{rel} Realized climate response

Simulation Procedure

$$egin{aligned} oldsymbol{y}_{obs} &= oldsymbol{y}_{rel} + oldsymbol{arepsilon}_{y} & oldsymbol{arepsilon}_{y} \sim \mathcal{N}(0, oldsymbol{\mathsf{W}}) \ oldsymbol{y}_{rel} &= oldsymbol{X}^{*} oldsymbol{+} oldsymbol{u}_{y} & oldsymbol{u}_{y} \sim \mathcal{N}(0, oldsymbol{\alpha}^{-1} \, oldsymbol{\mathsf{C}}) \ oldsymbol{\overline{X}} &= oldsymbol{X}^{*} + oldsymbol{\mathsf{L}}^{-1/2} oldsymbol{\mathsf{U}} & oldsymbol{u}_{m} \overset{\mathsf{ind}}{\sim} \mathcal{N}(0, \gamma_{m}^{-1} \, oldsymbol{\mathsf{C}}) \end{aligned}$$

For a simulation of fixed dimensionality:

- 1) Set/Simulate fixed objects $\theta = \{\beta, \alpha, \gamma, C, W\}$ and $X^* \times X^*$, C, and W according to simulation modules
- 2a) Simulate the observed forcing response ensembles x_m

$$oldsymbol{x}_m^{(\ell)} \stackrel{\mathsf{iid}}{\sim} \mathcal{N}(oldsymbol{x}_m^*, \mathbf{C})$$

2b) Simulate the realized climate response y_{rel}

$$\mathbf{y}_{rel} \sim \mathcal{N}(\mathbf{X}^* \boldsymbol{eta}, \mathbf{C})$$

3) Simulate the observed climate response ensemble Y_{obs}

$$\mathbf{y}_{obs}^{(\ell)} \stackrel{\text{iid}}{\sim} \mathcal{N}(y_{rel}, \mathbf{W})$$

(M1) True Forcing Response X*

Simulated Matérn Patterns

- Fields simulated with covariance matrices according to the Matérn covariance function
- Flexible statistical model that can be fit to replicate climate fields
 - Simulate land-sea interface
- Random generation of X* allows for robustness testing of methods

(M1) True Forcing Response X*

Simulated Patterns

(M2) Climate Variability Covariance C

- Exponential covariance function too smooth and regular for climate applications like precipitation
- Goal: Generate non-stationary, non-isotropic covariance matrix
- Issue: Difficult to create and guarantee invertibility!
- Solution: Modify the eigenvalues of a decomposed exponential covariance matrix

Eigenfunctions of Exponential Covariance Function

 $\Sigma_{\text{exp}} = V_{\text{exp}} \Lambda V_{\text{exp}}^{-1}$

(M2) Climate Variability Covariance C

Modified eigenfunction covariance $\mathbf{C} = V_{exp} \tilde{\Lambda} V_{exp}^{-1}$

Simulation Procedure

$$egin{aligned} oldsymbol{y}_{obs} &= oldsymbol{y}_{rel} + oldsymbol{arepsilon}_y & oldsymbol{arepsilon}_y \sim \mathcal{N}(0, oldsymbol{\mathsf{W}}) \ oldsymbol{y}_{rel} &= oldsymbol{X}^* oldsymbol{eta} + oldsymbol{\mathsf{u}}_y & oldsymbol{u}_y \sim \mathcal{N}(0, lpha^{-1} \, oldsymbol{\mathsf{C}}) \ oldsymbol{\overline{\mathsf{X}}} &= oldsymbol{\mathsf{X}}^* + oldsymbol{\mathsf{L}}^{-1/2} oldsymbol{\mathsf{U}} & oldsymbol{\mathsf{u}}_m \overset{\mathsf{ind}}{\sim} \mathcal{N}(0, \gamma_m^{-1} \, oldsymbol{\mathsf{C}}) \end{aligned}$$

For a simulation of fixed dimensionality:

- 1) Set/Simulate fixed objects $\theta = \{\beta, \alpha, \gamma, C, W\}$ and $X^* \rightarrow X^*$, C, and W according to simulation modules
- 2a) Simulate the observed forcing response ensembles x_m

$$oldsymbol{x}_m^{(\ell)} \stackrel{\mathsf{iid}}{\sim} \mathcal{N}(oldsymbol{x}_m^*, \mathbf{C})$$

2b) Simulate the realized climate response y_{rel}

$$oldsymbol{y}_{rel} \sim \mathcal{N}(oldsymbol{X}^*oldsymbol{eta}, oldsymbol{\mathsf{C}})$$

3) Simulate the observed climate response ensemble Y_{obs}

$$\mathbf{y}_{obs}^{(\ell)} \stackrel{\mathsf{iid}}{\sim} \mathcal{N}(y_{rel}, \mathbf{W})$$

2a) Simulate the Observed Forcing Responses

 $\mathbf{x}_m^{(\ell)} \stackrel{\mathsf{iid}}{\sim} \mathcal{N}(\mathbf{x}_m^*, \gamma_m^{-1}\mathbf{C})$

2b) Simulate the Realized Climate Response $\mathbf{y}_{rel} \sim \mathcal{N}(\mathbf{X}^*\boldsymbol{\beta}, \alpha^{-1}\mathbf{C})$

Simulation Procedure

$$egin{aligned} oldsymbol{y}_{obs} &= oldsymbol{y}_{rel} + oldsymbol{arepsilon}_{y} & oldsymbol{arepsilon}_{y} \sim \mathcal{N}(0, oldsymbol{\mathsf{W}}) \ oldsymbol{y}_{rel} &= oldsymbol{X}^{*} oldsymbol{+} oldsymbol{u}_{y} & oldsymbol{u}_{y} \sim \mathcal{N}(0, oldsymbol{\alpha}^{-1} \, oldsymbol{\mathsf{C}}) \ oldsymbol{\overline{X}} &= oldsymbol{X}^{*} + oldsymbol{L}^{-1/2} oldsymbol{U} & oldsymbol{u}_{m} \overset{\mathsf{ind}}{\sim} \mathcal{N}(0, \gamma_{m}^{-1} \, oldsymbol{\mathsf{C}}) \end{aligned}$$

For a simulation of fixed dimensionality:

- 1) Set/Simulate fixed objects $\theta = \{\beta, \alpha, \gamma, C, W\}$ and $X^* \rightarrow X^*$, C, and W according to simulation modules
- 2a) Simulate the observed forcing response ensembles x_m

$$oldsymbol{x}_m^{(\ell)} \stackrel{\mathsf{iid}}{\sim} \mathcal{N}(oldsymbol{x}_m^*, \mathbf{C})$$

2b) Simulate the realized climate response y_{rel}

$$\mathbf{y}_{rel} \sim \mathcal{N}(\mathbf{X}^* \boldsymbol{\beta}, \mathbf{C})$$

3) Simulate the observed climate response ensemble Y_{obs}

$$oldsymbol{y}_{obs}^{(\ell)} \stackrel{\mathsf{iid}}{\sim} \mathcal{N}(y_{rel}, oldsymbol{\mathsf{W}})$$

3) Simulate the observed climate response

 $oldsymbol{y}_{obs}^{(\ell)} \stackrel{\mathsf{iid}}{\sim} \mathcal{N}(y_{rel}, oldsymbol{\mathsf{W}})$

Discussion and Next Steps

- Current Testbed
 - ► Flexible, fast generation of EIV Detection and Attribution data
 - Non-isotropic climate variability
- First Applications
 - Used in testing new method from Smith, Hammerling and Johnson
- Next Steps
 - ▶ Fit forcing responses and sources of variability to real applications
 - Compare traditional OLS and TLS methods as a function of testbed parameters
 - ▶ Evaluate models from [Hannart, 2016] and [Katzfuss et al., 2017]
- Thank you/Input/Requests

References

Hannart, A. (2016).

Integrated optimal fingerprinting: Method description and illustration. *Journal of Climate*, 29(6):1977–1998.

Katzfuss, M., Hammerling, D., and Smith, R. L. (2017).

A bayesian hierarchical model for climate change detection and attribution.

Geophysical Research Letters, 44(11):5720–5728. 2017GL073688.