

Department of Engineering and Architecture Master of Science in Communication Engineering (Laurea Magistrale)

Exploring Machine Learning Algorithms for Decoding Linear Block Codes

Advisor:

Prof. Riccardo Raheli

Co-Advisors:

Prof. Henry D. Pfister Dr. Christian Häger

Dr. Marco Martalò

Thesis presented by:

Fabrizio Carpi

- Thesis done while I was visiting Professor Henry D. Pfister, Duke University, North Carolina (USA).
- Thanks to a 6-months "Overworld" scholarship from Università di Parma.

- Introduction
 - Background
 - Objectives
- Belief Propagation Decoding Optimization
 - Decoding Scenario
 - Optimization
 - Results
- Reinforcement Learning for Bit Flipping Decoding
 - Decoding Scenario
 - Learning
 - Results
- Summary

Introduction

Introduction

- Background
- Objectives
- - Decoding Scenario
 - Optimization
 - Results
- - Decoding Scenario
 - Learning
 - Results

Linear Block Codes

- C is a linear block code (n, k) described by a Parity Check (PC) matrix \mathbf{H} $(m \times n)$.
- We consider Reed–Muller codes with PC matrix H composed of minimum-weight PCs¹.

¹Elia Santi, Christian Häger, Henry D. Pfister. "Decoding Reed-Muller codes using minimum-weight parity checks". in *Proc. IEEE ISIT* 2018. Vail. Colorado. USA. Jun 2018. arXiv:1804.10319

Objectives

Objectives

- Investigate machine learning techniques applied to communication problems, in particular the decoding of linear block codes.
 - Belief Propagation (BP) decoding optimization with supervised learning.
 - Learning Bit Flipping (BF) decoding with Reinforcement Learning (RL).

- - Background
 - Objectives
- Belief Propagation Decoding Optimization
 - Decoding Scenario
 - Optimization
 - Results
- - Decoding Scenario
 - Learning
 - Results

Parameterized BP

- Interpret the unrolled BP iterations as a deep neural network².
- Introduce the following parameters to be optimized: iteration weights and damping coefficient.

²E. Nachmani, Y. Be'ery, D. Burshtein, "Learning to decode linear codes using deep learning", in *Proc. 2016* 54th Annual Allerton Conference on Communication, Control, and Computing, Sep 2016, arXiv:1607.04793

Training

- Always transmit all-zero codeword→ simple training set.
- Loss function: $\ell(\mathbf{o}) = \sum_i (1 \tanh(o_i))$, where \mathbf{o} is the vector of output marginal LLRs. $\ell(\mathbf{o})$ is proportional to the bit error rate.³
- Stochastic Gradient Descent (SGD) to minimize $\ell(\mathbf{o})$ with respect to weights and damping.

³Assume BPSK modulation and Binary-Input AWGN channel.

Results

- - Background
 - Objectives
- - Decoding Scenario
 - Optimization
 - Results
- Reinforcement Learning for Bit Flipping Decoding
 - Decoding Scenario
 - Learning
 - Results

MDP for Bit Flipping Decoding

- Syndrome: s = H z, where $z \in \mathbb{F}_2^n$ is the received word.⁴ Any codeword $c \in \mathcal{C}$ satisfies H c = 0.
- Standard BF decoding: flip the bit that solves most PCs.
- We approach BF as a Markov Decision Process (MDP).

large r_t if codeword is correctly decoded

⁴Consider the Binary Symmetric Channel.

Q-Learning

- The goal is to find the optimal policy $\pi^*: \mathcal{S} \to \mathcal{A}$ that maximizes the expected cumulative reward.
- Solution: Q-Learning. Use the Q-function to build the action-values for every state

Q-Learning

- The goal is to find the optimal policy $\pi^*: \mathcal{S} \to \mathcal{A}$ that maximizes the expected cumulative reward.
- Solution: Q-Learning. Use the Q-function to build the action-values for every state

Neural Network Model

 Use a Neural Network (NN) to approximate the Q-values, with Dueling architecture⁵.

⁵Z. Wang, T. Schaul, M. Hessel *et al.* "Dueling network architectures for deep reinforcement learning", in *Proc.* 33rd International Conference on Machine Learning, New York, USA, Jun 2016. arXiv:1511.06581

BP Optimization

Optimization RL for BF Decoding

Summary

- - Background
 - Objectives
- - Decoding Scenario
 - Optimization
 - Results
- - Decoding Scenario
 - Learning
 - Results
- Summary

Summary

Introduction

- BP optimization with supervised learning.
 - Code Tanner graph \approx deep NN.
 - Transmit all-zero codeword \rightarrow simple training set and loss.
 - ✓ optimized coefficients for the BP graph.
- Reinforcement learning for BF decoding.
 - MDP framework for the BF decoding.
 - The agent starts with no prior knowledge about the code and the MDP. The code is intrinsic in the MDP.
 - NN allows the agent to have a higher-dimensional representation of the syndrome that may outperform standard BF decoding.
- Future work
 - Investigate parameterized BP on other codes.
 - Adapt RL model for BI-AWGN channel.

Thank you!

Department of Engineering and Architecture Master of Science in Communication Engineering (Laurea Magistrale)

Exploring Machine Learning Algorithms for Decoding Linear Block Codes

Advisor:

Prof. Riccardo Raheli

Co-Advisors:

Prof. Henry D. Pfister
Dr. Christian Häger
Dr. Marco Martalò

Thesis presented by: Fabrizio Carpi

Backup slides I

Backup slides II

Backup slides III

Backup slides IV

Backup slides V

Backup slides X

