NOTES FOR ALGEBRAIC GEOMETRY 1

LIN CHEN

Contents

0. Introduction: why schemes?

2

 $Date \hbox{: Sep. } 11,\,2025.$

0. Introduction: why schemes?

0.1. **Algebraic sets.** Before scheme theory, algebraic geometry focused on *algebraic sets*.

Definition 0.1.1. Let k be an algebraically closed field.

- The **Zariski topology** on the affine space \mathbb{A}^n_k is the topology with a base consisting of all the subsets that are equal to the non-vanishing locus U(f) of some polynomial $f \in k[x_1, \dots, x_n]$.
- An embedded affine algebraic set 1 in \mathbb{A}^n_k is a closed subspace for the Zariski topology.
- An **embedded quasi-affine algebraic set** is a Zariski open subset of an embedded affine algebraic set.

Example 0.1.2. Any finite subset of \mathbb{A}^n_k is an embedded affine algebraic set.

Example 0.1.3. \mathbb{Z} is not an embedded affine algebraic set in $\mathbb{A}^1_{\mathbb{C}}$.

Similarly one can define *embedded (quasi)-projective algebraic set* using *homogeneous* polynomials and the projective space \mathbb{P}_k^n .

There are tons of shortcomings in the above definition. An obvious one is that the notions of *embedded* algebraic sets are not *intrinsic*.

Example 0.1.4. The embedded affine algebraic sets $\mathbb{A}^1_k \subseteq \mathbb{A}^1_k$ and $\mathbb{A}^1_k \subseteq \mathbb{A}^2_k$ should be viewed as the same algebraic sets.

Notation 0.1.5. To remedy this, we need some notations.

- For an ideal $I \subseteq k[x_1, \dots, x_n]$, let $Z(I) \subseteq \mathbb{A}^n_k$ be the locus of common zeros of polynomials in I.
- For a Zariski closed subset $X \subseteq \mathbb{A}_k^n$, let $I(X) \subseteq k[x_1, \dots, x_n]$ be the ideal of all polynomials vanishing on X.

Recall an ideal I is called radical if $I = \sqrt{I}$.

Theorem 0.1.6 (Hilbert Nullstellensatz). We have a bijection:

$$\left\{ \begin{array}{rcl} \{ \textit{radical ideals of } k[x_1, \cdots, x_n] \} & \longleftrightarrow & \left\{ \textit{Zariski closed subsets of } \mathbb{A}^n_k \right\} \\ & I & \longrightarrow & Z(I) \\ & I(X) & \longleftarrow & X. \end{array} \right.$$

Part of the theorem says the set of points of \mathbb{A}^n_k is in bijection with the set of maximal ideals of $k[x_1, \dots, x_n]$. As a corollary, Z(I) is in bijection with the set of maximal ideals containing I. The latter can be further identified with maximal ideals of $R := k[x_1, \dots, x_n]/I$.

Note that I is radical iff R is reduced, i.e., contains no nilpotent elements. This justifies the following definition.

Definition 0.1.7. An **affine algebraic** k-**set** is a maximal spectrum $\operatorname{Spm} R$ (= sets of maximal ideals) of a finitely generated (commutative unital) reduced k-algebra R. We equip it with the **Zariski topology** with a base of open subsets given by

$$U(f)\coloneqq \big\{\mathfrak{m}\in\operatorname{Spm} R\,|\, f\notin\mathfrak{m}\big\},\; f\in R.$$

¹Some people use the word *variety*, while some people reserve it for *irreducible* algebraic sets.

Example 0.1.8. Spm $k[x] \simeq \mathbb{A}^1_k$.

We have the following *duality* between algebra and geometry.

Here an element $f \in R$ corresponds to the function

$$\phi:\operatorname{Spm} R\to k,\ \mathfrak{m}\mapsto f$$

sending a maximal ideal \mathfrak{m} to the image \underline{f} of f in the residue field of \mathfrak{m} , which is canonically identified with the underlying set of \mathbb{A}^1_k via the composition $k \to R \to R/\mathfrak{m}$.

The word duality means the correspondence $R \leftrightarrow X$ is contravariant. Indeed, given a homomorphism $f: R' \to R$, we obtain a continuous map

$$\operatorname{\mathsf{Spm}} R \to \operatorname{\mathsf{Spm}} R', \ \mathfrak{m} \mapsto f^{-1}(\mathfrak{m}).$$

Note however that not all continuous maps $\operatorname{\mathsf{Spm}} R \to \operatorname{\mathsf{Spm}} R'$ are obtained in this way, nor is R determined by the topological space $\operatorname{\mathsf{Spm}} R$.

Exercise 0.1.9. Show that any bijection $\mathbb{A}^1_k \to \mathbb{A}^1_k$ is continuous for the Zariski topology. Find those bijections coming from a homomorphism $k[x] \to k[x]$.

This motivates the following definition.

Definition 0.1.10. A morphism from $\operatorname{Spm} R$ to $\operatorname{Spm} R'$ is a continuous map coming from a homomorphism $R' \to R$.

Then one can define general algebraic k-sets by gluing affine algebraic k-sets using morphisms, just like how people define structured manifolds as glued from structured Euclidean spaces using maps preserving the addiontal structures.

0.2. **Shortcomings.** The theory of algebraic k-sets provides a bridge between algebra and geometry. In particular, one can use topological/geometric methods, including various cohomology theories, to study *finitely generated reduced k-algebras*. However, these adjectives are non-necessary restrictions to this bridge.

First, number theory studies number fields and their rings of integers, such as \mathbb{Q} and \mathbb{Z} . It is desirable to have geometric objects corresponding to them. Hence we would like to consider general commutative rings rather than k-algebras. Then one immediately realizes the maximal spectra Spm are not enough.

Example 0.2.1. The map $\mathbb{Z} \to \mathbb{Q}$ does not induce a map from $\mathsf{Spm}\,\mathbb{Q}$ to $\mathsf{Spm}\,\mathbb{Z}$. Namely, the inverse image of $(0) \subseteq \mathbb{Q}$ in \mathbb{Z} is a non-maximal prime ideal.

This suggests for general algebra R, we should consider its *prime spectrum*, denoted by $\operatorname{\mathsf{Spec}} R$, rather than just its maximal spectrum.

Second, even in the study of finitely generated algebras, one naturally encounters non-finitely generated ones.

Example 0.2.2. Let $\mathfrak{p} \subseteq R$ be a prime ideal of a finitely generated algebra. The localization $R_{\mathfrak{p}}$ and its completion $\widehat{R}_{\mathfrak{p}}$ are in general not finitely generated.

Of course, one can restrict their attentions to *Noetherian* rings (and live a happy life). But let me object the false feeling that all natural rings one care are Noetherian.

Example 0.2.3. Noetherian rings are not stable under tensor products: $\overline{\mathbb{Q}} \otimes_{\mathbb{Q}} \overline{\mathbb{Q}}$ is not Noetherian.

Example 0.2.4. The ring of adeles of \mathbb{Q} is not Noetherian.

Example 0.2.5. Natural moduli problems about Noetherian objects can fail to be Noetherian. My favorite ones includes: the space of formal connections, the space (stack) of formal group laws...

In short, there are important applications of non-Noetherian rings, and this course will deal with the latter.

Finally, we want to remove the restriction about reducedness.

Example 0.2.6. Reduced rings are not stable under tensor products: $k[x] \otimes_{k[x,y]} k[x,y]/(y-x^2)$ is not reduced. Geometrically, this means Z(y) and $Z(y-x^2)$ do not intersect transversally inside \mathbb{A}^2_k .

One may notice that without reducedness, we should accordingly consider all ideals rather than just radical ideals, but then the construction $I \mapsto Z(I)$ would not be bijective. Indeed, ideals with the same nilpotent radical would give the same $topological\ subspace$ of Spec R.

But this is a feature rather than a bug. In Example 0.2.6, the ideal $(y, y - x^2) = (x^2, y)$ is not radical, and it carries geometric meanings that cannot be seen from its nilpotent radical (x, y). Namely, $f \in (x, y)$ iff f(0, 0) = 0, while $f \in (x^2, y)$ iff $f(0, 0) = \partial_x f(0, 0) = 0$. Roughly speaking, this suggests that $(y, y - x^2)$ remembers that the curves Z(y) and $Z(y-x^2)$ are tangent to each other at the point $(0, 0) \in \mathbb{A}^2_k$, and the tangent vector is $\partial_x|_{(0,0)}$. Also note that the length of $k[x,y]/(y,y-x^2)$ is equal to 2, which is the number of intersection points predicted by the Bézout's theorem.

In summary, on the algebra side, we should consider *all* commutative rings. On the geometric side, the corresponding notion is called *affine schemes*. Our first task in this course is to develop the following duality:

Algbera	$\operatorname{Geometry}$
commutative rings R	affine schemes X
prime ideals $\mathfrak{p} \subseteq R$	points $x \in X$
elements $f \in R$	functions $X \to \mathbb{A}^1_{\mathbb{Z}}$
ideals $I \subseteq R$	closed subschemes $Z \subseteq X$.

0.3. **Schemes as structured spaces.** In theory, one can *define* a morphism between affine schemes to be a continuous map coming from a ring homomorphism. Then one can define general *schemes* by gluing affine schemes using such morphisms. This mimics the definition of differentiable manifold in the sense that a scheme would be a topological space equipped with a *maximal* affine atlas.

In practice, the above approach is awkward to work with. We prefer a more efficient way to encode the additional structure on the topological space underlying a scheme. One extremely simple but powerful way to achieve this, maybe discovered

by Serre and popularized by Grothendieck, is the notion of *sheaves* on topological spaces. Roughtly speaking, a sheaf \mathcal{F} on X is an *contravariant* assignment

$$U \mapsto \mathcal{F}(U)$$

sending open subsets $U \subseteq X$ to certain structures (e.g. sets, groups, rings) $\mathcal{F}(U)$, such that a certain gluing condition is satisfied. Here contravariancy means that for $U \subseteq V$, we should provide a map $\mathcal{F}(V) \to \mathcal{F}(U)$ preserving the prescribed structures

Example 0.3.1. Let X be any topological space. The assignment

$$U \mapsto C(U, \mathbb{R})$$

sending $U \subseteq X$ to the ring of continuous functions on U would be a sheaf of commutative rings on X.

Similarly, for a smooth manifold $X, U \mapsto C^{\infty}(U, \mathbb{R})$ would be a sheaf of commutative rings on X. This motivates us to define:

Pre-Definition 0.3.2. A **scheme** is a topological space X equipped with a sheaf of commutative rings \mathcal{O}_X such that locally it is isomorphic to an affine scheme.

Here for an open subset $U \subseteq X$, $\mathcal{O}_X(U)$ should be the ring of *algebraic* functions on U, but we have not defined the latter notion yet. Nevertheless, for an *affine* scheme $X \cong \operatorname{Spec} R$, the previous discussion suggests we should have $\mathcal{O}_X(X) \cong R$. As we shall see in future lectures, we can bootstrap from this to get the definition of the entire sheaf \mathcal{O}_X .

The goal of this course is to define schemes and study their basic properties.