```
Computer Architectures
02LSEOV

By 2:00 AM on October, 16 2024

The expected delivery of lab_02.zip must include:
- program_1.s
- This file, filled with information and possibly compiled in a pdf format.
```

Please configure the WinMIPS64 simulator with the *Initial Configuration* provided below c):

Integer ALU: 1 clock cycle Data memory: 1 clock cycle

Code address bus: 12Data address bus: 12

• FP arithmetic unit: pipelined, 4 clock cycles

• FP multiplier unit: pipelined, 6 clock cycles

• FP divider unit: not pipelined, 30 clock cycles

1) Write an assembly program (**program_1.s**) for the *WinMIPS64* architecture described before being able to implement the following high-level code:

```
for (i = 31; i >= 0; i--){
	v4[i] = v1[i]*v1[i] - v2[i];
	v5[i] = v4[i]/v3[i] - v2[i];
	v6[i] = (v4[i]-v1[i])*v5[i];
}
```

Assume that the vectors v1[], v2[], and v3[] have been previously allocated in memory and contain 32 double-precision **floating-point values**; also assume that v3[] does not contain 0 values. Additionally, the vectors v4[], v5[], v6[] are empty vectors also allocated in memory.

<u>Calculate</u> the data memory footprint of your program:

Data	Number of bytes
V1	256
V2	256
V3	256
V4	256
V5	256
V6	256
Total	1536

Are there any issues? Yes, where and why? No? Do you need to change something?

Your answer:

Tutti i vettori nella sezione .data vengono allocati e quindi occupano tanta memoria, il poter eseguire il programma dipende quindi se l'architettura ha abbastanza memoria.poteri usare i 3 vettori originali come vettori V4 V5 V6 ma utilizzando più registri

ATTENTION: WinMIPS64 has a limitation regarding the maximum length of the string when declaring a vector. It is therefore recommended to split the elements of the vectors into multiple lines: this also increases readability.

• Calculate the CPU performance equation (CPU time) of the above program by assuming a clock frequency of 15 MHz:

CPU time =
$$(\sum_{i=1}^{n} CPI_{i} \times IC_{i}) \times Clock$$
 cycle period

By definition:

- CPI is equal to the number of clock cycles required by the related functional unit to execute the instruction (EX stage).
- IC_i is the number of times an instruction is repeated in the referenced source code.
- Recalculate the CPU performance equation assuming that you can triple the speed by just one unit of your choice between the FP multiplier or the FP divider:
 - FP multiplier unit: $6 \square 2$ clock cycles

• FP divider unit: 30 □ 10 clock cycles

Table 1: CPU time by hand

	Initial CPU time (a)	CPU time (b – MUL speeded up)	CPU time (b – DIV speeded up)
program_1.s	0.00013453	0.00011746	0.00009186

• Using the simulator, calculate the CPU time again and fill in the following table:

Table 2: CPU time using the simulator

Initial CPU	CPU time	CPU time
time (a)	(b – MUL speeded	(b – DIV speeded up)
	up)	

			_
program_1.s	0.0002926	0.0002128	0.0001554

Are there any differences? If so, where and why? If not, please provide some comments in the box below:

Your answer:

Nella formula fatta a mano non tengo conto dell'ordine in cui vengono eseguite le istruzioni e quindi non so considerare gli stalli dovuti alle dipendenze.

• Using the simulator and the *Initial Configuration*, enable the Forwarding option and compute how many clock cycles the program takes to execute.

Table 3: forwarding enabled

	Number	of	IPC (Instructions Per
	clock cycles		Clock)
program 1.s	1711	•	0.27352

Enable one at a time the *optimization features* that were initially disabled and collect statistics to fill the following table (fill all required data in the table before exporting this file to pdf format to be delivered).

Table 4: Program performance for different processor configurations

Program	Forwarding		Branch Buffer	Target	Delay S	Slot	Forward Branch Buffer	ding + Target
	IPC	CC	IPC	CC	IPC	CC	IPC	CC
program_1.s	0.273	1711	0.230	2028	0.243	74	0.277	1685

2) Using the WinMIPS64 simulator, validate experimentally the Amdahl's law, defined as follows:

speedup_{overall} =
$$\frac{\text{execution time}_{\text{old}}}{\text{execution time}_{\text{new}}} = \frac{1}{(1 - \text{fraction}_{\text{enhanced}}) + \frac{\text{fraction}_{\text{enhanced}}}{\text{speedup}_{\text{enhanced}}}}$$

- a. Using the program developed before: program_1.s
- b. Modify the processor architectural parameters related to multicycle instructions (Menu Configure Architecture) in the following way:
 - 1) Configuration 1
 - Starting from the *Initial Configuration*, change the FP addition latency to 3
 - 2) Configuration 2
 - Starting from the *Initial Configuration*, change the FP multiplier latency to 4
 - 3) Configuration 3
 - Starting from the *Initial Configuration*, change the FP division latency to 10

Compute both manually (using the Amdahl's Law) and with the simulator the speed-up for any one of the previous processor configurations. Compare the obtained results and complete the following table.

Table 5: program 1.s speed-up computed by hand and by simulation

Proc. Config.	Initial config.	Config. 1	Config. 2	Config. 3
Speed-up comp.	[6.6.]			
By hand	<u>2018</u>	1.052	<u>1.046</u>	<u>1.046</u>
By simulation	<u>2054</u>	2054/1649=	<u>2054/1525=1.34</u>	<u>2054/1029=1.99</u>
		<u>1.245</u>	<u>6</u>	<u>6</u>