保密等级	A	TXW817 数据手册	文件编号	TXW817
发行日期	2024-02-23	17/401/ 致加力加	文件版本	V1.3

TXW817 数据手册

珠海泰芯半导体有限公司 Zhuhai Taixin Semiconductor Co., Limited

珠海市高新区港湾一号科创园港 11 栋 3 楼

版权所有 侵权必究 Copyright © 2023 by TaiXin All Rights Reserved

保密等级	A	TXW817 数据手册	文件编号	TXW817
发行日期	2024-02-23	17/401/ 致加力 7/1/1	文件版本	V1.3

责任与版权

责任限制

由于产品版本升级或者其他原因,本文档会不定期更新。除非另行约定,泰芯半导体有限公司对本文档 所有内容不提供任何担保或授权。

客户应在遵守法律、法规和安全要求的前提下进行产品设计,并做充分验证。泰芯半导体有限公司对应 用帮助或客户产品设计不承担任何义务。客户应对其使用泰芯半导体有限公司的产品和应用自行负责。

在适用法律允许的范围内,泰芯半导体有限公司在任何情况下,都不对因使用本文档相关内容及本文档 描述的产品而产生的损失和损害进行超过购买支付价款的赔偿(除在涉及人身伤害的情况中根据适用的法律 规定的损害赔偿外)。

版权申明

泰芯半导体有限公司保留随时修改本文档中任何信息的权利,无需提前通知且不承担任何责任。

未经泰芯半导体有限公司书面同意,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。除非获得相关权利人的许可,否则,任何人不能以任何形式对前述软件进行复制、分发、修改、摘录、反编译、反汇编、解密、反向工程、出租、转让、分许可等侵犯本文档描述的享有版权的软件版权的行为,但是适用法禁止此类限制的除外。

保密等级	A	TXW817 数据手册	文件编号	TXW817
发行日期	2024-02-23	17/401/ 致加力加	文件版本	V1.3

修订记录

日期	版本	描述	修订人
2024-02-23	V1.3	更新 TXW817-824 QFN48 封装脚位图	TX
2024-01-23	V1.2	更新引脚分配图	TX
2024-01-16	V1. 1	补充电气参数建议工作条件描述	TX
2023-12-26	V1. 0	初始版本,未来有更新时恕不另行通知,请联系 我司销售人员获取最新版本。	TX

珠海泰芯半导体有限公司 Zhuhai Taixin Semiconductor Co., Limited

珠海市高新区港湾一号科创园港 11 栋 3 楼

版权所有 侵权必究 Copyright © 2023 by TaiXin All Rights Reserved

TXW817 数据手册

文件编号 TXW817 文件版本 V1.3

目录

TXW8	817 数据手册		1
1. j	产品概述		1
	1.1. 说明		1
	1.2. 特性		2
	1.3. 功能框	图	6
	1.4. 引脚分	一帽	7
	1.5. 封装信	:息	g
	1.6. 封装尺	[寸图	ç
	1.7. 引脚说	伯明	10
	1.7.1.	模拟引脚特定功能	10
	1.7.2.	数字引脚特定功能	11
	1. 7. 3.	数字引脚输出任意映射功能	12
	1.7.4.	数字引脚输入任意映射功能	15
2. 3	功能描述		18
	2.1. 处理器	² 及存储器	18
	2. 1. 1.	CPU	18
	2. 1. 2.	存储器	18
	2. 1. 3.	存储器扩展	18
	2.2. 系统时	'钟	19
	2.3. 模拟外	、设	19
	2. 3. 1.	模数转换器(SARADC)	19
	2. 3. 2.	温度传感器	19
	2. 3. 3.	USB2. 0	19
	2. 3. 4.	XOSC	20
	2. 3. 5.	PLL	20
	2. 3. 6.	Audio ADC	20
	2. 3. 7.	Audio DAC	20
	2.4. 数字外	、设	21
	2. 4. 1.	GPIO	21
	2. 4. 2.	SPI/IIC	21
	2. 4. 3.	UART	22
	2. 4. 4.	IIS_PCM	23
		PDM.	
	2. 4. 6.	摄像头 DVP 接口	24
	2. 4. 7.	VPP 图像处理模块	24
	2. 4. 8.	PRC 数据处理模块	24
	2. 4. 9.	Motion JPEG 视频编解码器	24
	2. 4. 10.	LCD.	25
	2. 4. 11.	视频流通路	26
	2. 4. 12.	以太网控制器 MAC	26

珠海泰芯半导体有限公司 Zhuhai Taixin Semiconductor Co., Limited

珠海市高新区港湾一号科创园港 11 栋 3 楼

版权所有 侵权必究 Copyright © 2023 by TaiXin All Rights Reserved

A		文件编号	TXW8
2024-02-23	TXW817 数据手册	文件版本	V1. 3
2. 4.	13. SDI02.0 Device 控制器		26
2. 4.	14. SD HOST 控制器		27
2. 4.	15. M2M DMA 模块		27
2.5. 定日	村器资源		27
2. 5.	1. 基本定时器		27
2. 5.	2. 简单定时器		28
2. 5.	3. 看门狗定时器		28
2.6. 安全	全硬件加速器		29
2. 6.	1. CRC 模块		29
2. 6.	2. AES 模块		29
2. 6.	3. SHA 模块		29
2. 6.	4. TRNG 模块		29
3. 电气参数.			30
	付最大额定		
	义工作条件		
3.3. 直流			31
			
	1. 外部时钟源特性		
	2. 内部时钟源特性		
	毛特性		
	1. RF 功耗		
	2. CPU 功耗		
	靠性		
	1. ESD 电气特性		
	2. Latch-Up 电气特性		
	-Fi 射频性能和功耗		
	1. Wi-Fi 发射器性能		
	2. Wi-Fi 接收器性能		
	3. BLE 发射器性能		
	4. BLE 接收器性能		
	lio 性能		
	1. Audio ADC 性能		
	2. Audio DAC 性能		
4. 参考设计.			36

保密等级

发行日期

珠海泰芯半导体有限公司 Zhuhai Taixin Semiconductor Co., Limited

珠海市高新区港湾一号科创园港 11 栋 3 楼

1. 产品概述

1.1. 说明

TXW817 是一款低功耗高性能高度集成的 2.4GHz Wi-Fi+BLE 多模物联网 SOC 芯片,集成 IEEE 802.11 b/g/n 基带和 RF(Radio Frequency)电路,包括功率放大器 PA(Power Amplifier)、低噪声放大器 LNA(Low Noise Amplifier)、RF balun、天线开关以及电源管理模块等。

TXW817 Wi-Fi 基带实现正交频分复用(OFDM)技术,并向下兼容直接序列扩频(DSSS)、补码键控(CCK)技术,支持 IEEE 802.11 b/g/n 协议。支持 20MHz 标准带宽和 5MHz/10MHz 窄带宽,提供最大 72.2Mbit/s 物理层速率。

TXW817 芯片集成高性能 32bit 微处理器,内置 MJPEG(支持 VGA/720P),提供 DVP、LCD、USB2.0 High Speed Host/Device、SDMMC Host、SDIO2.0 Slave、RMII MAC、SPI Master & Device、UART、IIC、IIS、PDM、IR Send/Recieve、PWM、GPIO 以及普通和音频 ADC/DAC 等丰富的外设接口,支持在 SPI Flash 上运行程序。支持 RTOS 和第三方组件,并配套提供开放、易用的开发和调试环境。

TXW817 系列包括多个型号,提供 QFN48 主流封装形式;根据不同的封装形式,器件中的外设资源配置不尽相同;部分封装支持内置 PSRAM、Flash。

应用场合:

- 无线音视频应用
- MiniDV
- IPC

1.2. 特性

• Wi-Fi MAC & PHY

- ▶ 支持 IEEE 802.11 b/g/n 规范
- ▶ 支持 1T1R 模式,数据速率高达 72. 2Mbps
- ▶ 优秀的发射功率和接收灵敏度
- ▶ 内置 PA、LNA 和射频开关
- ▶ 支持 STA、AP、AP+STA(中继)、STA+STA 功能
- ▶ 帧聚合(TX/RX A-MPDU、RX A-MSDU)
- ➤ 支持 TX LDPC
- ▶ 支持 RX STBC(Space Time Block Coding)
- ➤ 支持 WPA/WPA2/WPA3

BLE

- > 支持蓝牙快速配网
- ▶ 支持 Wi-Fi/BLE 共存

Video

- ▶ 视频数据源支持DVP、UVC、SPI镜头输入
- ▶ 1路MJPEG编码器,支持最大分辨率为: 1920*1080 @ 30fps
- ▶ 1 路MJPEG编解码器,支持最大分辨率为: 1920*1080 @ 30fps
- ▶ 支持时间水印、彩色相框、支持运动检测、光流算法硬件加速

Audio

- ▶ 支持单端和差分输入高性能模拟mic,内置PGA
- ➤ 1路delta-sigma audio ADC
- ▶ 1路delta-sigma audio DAC
- ▶ 支持 8/11.025/12/16/22.05/24/32/44.1/48KHz采样率

LCD

- ▶ 支持 RGB 接口, MCU8080 接口, MCU6800 接口 LCD 屏幕显示
- ▶ 支持图像缩放、90/180/270度旋转、水平和垂直镜像
- ▶ 支持图像OSD, Alpha Blending
- ▶ 支持CCM, Gamma校正,饱和度,对比度调整功能

MCU

- ➤ CK803 CPU, 最高主频 240Mhz
- > 272KB SRAM
- ▶ 支持外部多种频率晶体振荡器,支持与系统主控芯片共享晶振输入
- ➤ 支持 RTC
- ▶ 支持 32KHz 晶振
- ▶ 17 个定时器
 - 1 个常电域 32bit 定时器
 - 4个低功耗模式 16bit 定时器, 支持硬件低功耗呼吸灯功能
 - 8 个 32bit 定时器
 - 2个16bit 定时器,支持红外收发、LED灯带驱动
 - 1个24bit 系统滴答定时器
 - 1个RTCC定时器
- D 支持 ULP、LP 低功耗模式, ULP 模式电流<28uA@25℃,同时支持多路 IO 唤醒
- ▶ 内置温度传感器
- ▶ 内置 LVD 检测
- ▶ 内置看门狗
- ▶ 内置多路 LDO 输出,输出电压范围 1.8~3.3V
- ▶ 48 位的芯片唯一 ID (UID)

● 外设

- ▶ 31 路可编程 GPIO, 支持边沿或电平触发中断
- ▶ 1路 12bit ADC, 可复用为 DAC
- ▶ 1路 12bit 模拟比较器
- ▶ 1路 QSPI, 支持外挂 SPI FLASH和 PSRAM
- ▶ 1 路 CMOS Sensor 8-bit DVP,接口最高支持 120Mhz
- ▶ 1路 Motion JPEG 编码器
- ▶ 1路 Motion JPEG 编解码器
- ➤ 1路 LCD
- ➤ 2路 I2S/PCM
- ➤ 1路 PDM
- ▶ 1路 SDIO2.0 High Speed Device
- ➤ 1路SD Host Controller
- ▶ 1路 USB2.0 High Speed Device/Host
- ▶ 3路 SPI 接口 Master/Slave (其中 2路可配置为 IIC Master/Slave)
- ▶ 3路 UART接口(其中1路支持流控和 RS485)
- ▶ 1路红外发送和多路接收
- ▶ 14 路 PWM 输出(复用 timer),其中 4 路独立 16-bit PWM,支持低功耗模式 PWM;

● 启动接口

- > SDIO2.0 Device, USB2.0 Device, SPI Slave, UART
- > SPI FLASH

● 数据安全性

- ▶ 支持 AES 128/192/256 ECB/CBC/CTR 加解密
- ▶ 支持 SHA256
- ▶ 支持 5/7/8/16/32 bit CRC 效验

- ▶ 支持 SPI Flash 固件加密保护
- > TRNG 真随机数发生器

● 封装

➤ QFN48 5x5 封装

● 温度范围

➤ -40° C to 85° C

1.3. 功能框图

Note: Nor Flash 和 PSRAM 在部分芯片封装中内置。

1.4. 引脚分配

图1-4-1 TXW817-8x0 QFN48封装脚位图

图1-4-2 TXW817-824 QFN48封装脚位图

1.5. 封装信息

TXW817 系列的型号如下表格:

表1-5-1 封装信息

型号	封装	大小	包装
TXW817-8x0	QFN48	5x5	

1.6. 封装尺寸图

图1-6-1 QFN48封装POD图(对称封装)

1.7. 引脚说明

1.7.1. 模拟引脚特定功能

注意:

- 1) VCAM电源域的IO仅在VCAM有电时输入高阻(VCAM在芯片上电时默认关闭)
- 2) 不要使用同一通路内的两个GPI0同时作为模拟ADC。
- 3) 比较器P/N端比较,需要配对使用。

表1-7-1-1 管脚特定模拟功能表

 引脚名字	I/0	功能描述	电源	ADC 通路	比较器通路	特殊功能		
11104-11 1	类型	默认状态	域	(任意端采样)	(P/N 端比较)	20,000		
VCC	A	电源						
VCCA	A	电源						
VCCD	A	电源						
VCCRF	A	电源						
VCCPA	A	电源						
VCAM	A	摄像头电源输出						
VCC18	A	电源						
VDD	A	电源						
VDD15R	A	电源						
VDD15L	A	电源						
VDD150	A	电源						
VSS	A	地						
ANT	A	天线						
MICP	A	麦克风输入P端						
VCMAU	A	音频 VCM 输入						
V33AUDIO	A	音频电源						
AUDIOVDD	A	音频电源						
DACOUT	A	音频 DAC 输出						
XI	A	高速晶振输入						
XO	A	高速晶振输出						
HSDP	A	USB	VCC			数字 IO: PC6		
HSDM	A	USB	VCC			数字 IO: PC7		
PA0	I/0	输入高阻	VCC					
PA2	I/0	输入高阻	VCC			低功耗 PWM0		
PA3	I/0	输入高阻	VCC	ADVIDV. NO	OMP. DO	低功耗 PWM1		
PA4	I/0	输入高阻	VCC	ADKEY_NO	CMP_P0			
PA6	I/0	输入高阻	VCC					
PA7	I/0	输入高阻	VCC					

PA8	I/0	输入高阻	VCC			低功耗 PWM2
PA9	I/0	输入上拉 100K Ω	VCC			
PA10	I/0	输入上拉 100K Ω	VCC			
PA11	I/0	输入高阻	VCC	ADKEY_N1	CMP_N1	低功耗 PWM3
PA12	I/0	输入高阻	VCC			低速晶振输出
PA13	I/0	输入高阻	VCC			低速晶振输入
PA14	I/0	输入高阻	VCC			
PB6	I/0	输入高阻	VCAM			
PB7	I/0	输入高阻	VCAM			
PB8	I/0	输入高阻	VCAM			
PB9	I/0	输入高阻	VCAM			
PB10	I/0	输入高阻	VCAM	- ADKEY_N2 CMP_N2		
PB11	I/0	输入高阻	VCAM	ADRET_NZ	CMI_IVZ	
PB12	I/0	输入高阻	VCAM			
PB13	I/0	输入高阻	VCAM			
PB14	I/0	输入高阻	VCAM			
PB15	I/0	输入高阻	VCAM			
PC0	I/0	输入高阻	VCAM			
PC1	I/0	输入高阻	VCAM			
PC2	I/0	输入高阻	VCAM	ADKEY PO	CMP_P2	
PC3	I/0	输入高阻	VCAM	ADKET_F0	CMI _I Z	
PC4	I/0	输入高阻	VCAM			
PC5	I/0	输入高阻	VCAM			

1.7.2. 数字引脚特定功能

表1-7-2-1 GPIO管脚特定数字功能表

引脚名字	I/0 类型		电源域	复用功能 0	复用功能 1	复用功能 2	复用功能 3
PA0	I/0	输入高阻	VCC	lcd_data5	lcd_te	rmii_rxd1	lcd_data15
PA2	I/0	输入高阻	VCC	lcd_data7	qspi_io0	ospi_io0	
PA3	I/0	输入高阻	VCC	qspi_io1	qspi_io3	ospi_io3	ospi_io1
PA4	I/0	输入高阻	VCC	lcd_data8	rmii_rxd2	rmii_txd0	lcd_data17
PA6	I/0	输入高阻	VCC	lcd_data10		rmii_tx_en	lcd_data19
PA7	I/0	输入高阻	VCC	lcd_datall		ospi_nss0	rmii_crs_dv
PA8	I/0	输入高阻	VCC	sd_dat0	qspi_clk	ospi_clk	rmii_rx_er
PA9	I/0	输入上拉 100KΩ	VCC	sd_clk	qspi_io2	ospi_io2	
PA10	I/0	输入上拉 100KΩ	VCC	sd_cmd	qspi_iol	ospi_io1	
PA11	I/0	输入高阻	VCC	lcd_data12	qspi_io2	ospi_io2	

PA12	I/0	输入高阻	VCC	lcd_data13	qspi_io1	ospi_io1	lcd_data20
PA13	I/0	输入高阻	VCC	lcd_data14	qspi_io0	ospi_io0	lcd_data21
PA14	I/0	输入高阻	VCC	lcd_data15	qspi_io3	ospi_io3	lcd_data23
PB6	I/0	输入高阻	VCAM	sd_dat1	dvp_vsync	lcd_data0	lcd_data8
PB7	I/0	输入高阻	VCAM	sd_dat0	dvp_hsync	lcd_data1	lcd_data9
PB8	I/0	输入高阻	VCAM	sd_clk	dvp_data_in7	lcd_data2	lcd_data10
PB9	I/0	输入高阻	VCAM	sd_cmd	dvp_mclk	lcd_data3	lcd_data11
PB10	I/0	输入高阻	VCAM	sd_dat3	dvp_data_in6	lcd_data4	lcd_data12
PB11	I/0	输入高阻	VCAM	sd_dat2	dvp_data_in5	lcd_data5	lcd_data13
PB12	I/0	输入高阻	VCAM	rmii_rxd0	dvp_pixel_clk_in	lcd_data6	lcd_data14
PB13	I/0	输入高阻	VCAM	rmii_rxd1	dvp_data_in4	lcd_data7	lcd_data15
PB14	I/0	输入高阻	VCAM	rmii_ref_clkin	dvp_data_in0	lcd_dotclk_or_rwr	lcd_data16
PB15	I/0	输入高阻	VCAM	rmii_txd0	dvp_data_in3	lcd_hsync_or_dc	lcd_data17
PC0	I/0	输入高阻	VCAM	rmii_txd1	dvp_data_in1	lcd_vsync_or_cs	lcd_data18
PC1	I/0	输入高阻	VCAM	rmii_tx_en	dvp_data_in2	lcd_de_or_erd	lcd_data19
PC2	I/0	输入高阻	VCAM	rmii_crs_dv		lcd_data8	lcd_data20
PC3	I/0	输入高阻	VCAM	rmii_rx_er		lcd_data9	lcd_data21
PC4	I/0	输入高阻	VCAM	rmii_rxd2		lcd_data10	lcd_data22
PC5	I/0	输入高阻	VCAM	rmii_rxd3		lcd_datall	lcd_data23
PC6	I/0	输入高阻	VCC				
PC7	I/0	输入高阻	VCC				

1.7.3. 数字引脚输出任意映射功能

表1-7-3-1 GPIO输出功能任意映射表

功能编号	功能名字	功能说明
1	COMP_DOUT_DIGO	比较器 0 数字 IO 输出
2	COMP_DOUT_DIG1	比较器 1 数字 I0 输出
3	GRANT_BLE_SWITCH_O	蓝牙共存 SWITCH 信号
4	GRANT_BLE	蓝牙共存 BLE 仲裁信号
5	GRANT_WI-FI_SWITCH_O	蓝牙共存 WI-FI SWITCH 信号
6	RF_SWITCH_EN1	外置射频开关使能 1
7	RF_SWITCH_ENO	外置射频开关使能 0
8	ANTENNA_SEL	双天线选择信号
9	PA_EN	外置 PA 使能信号
10	RF_EXT_LNA_EN	外置 RF LNA 使能信号
11	RF_TX_EN_FEM	外置 RF FEM 发送使能
12	RF_RX_EN_FEM	外置 RF FEM 接收使能

	T	
13	UART4_TX	UART4 TX 输出
14	UART5_TX	UART5 TX 输出
15	UARTO_RTS_RE_O	UARTO RTS RE 输出
16	UARTO_CTS_DE_OUT	UARTO RTS DE 输出
17	UARTO_OUT	UARTO TX 输出
18	STMR5_PWM_OUT	SIMPLE TIMER5 PWM 输出
19	STMR4_PWM_OUT	SIMPLE TIMER4 PWM 输出
20	STMR3_PWM_OUT	SIMPLE TIMER3 PWM 输出
21	STMR2_PWM_OUT	SIMPLE TIMER2 PWM 输出
22	STMR1_PWM_OUT	SIMPLE TIMER1 PWM 输出
23	STMRO_PWM_OUT	SIMPLE TIMERO PWM 输出
24	TMR3_PWM_OUT	TIMER3 PWM 输出
25	TMR2_PWM_OUT	TIMER2 PWM 输出
26	TMR1_PWM_OUT	TIMER1 PWM 输出
27	TMRO_PWM_OUT	TIMERO PWM 输出
28	LED_TMRO_PWM_OUT	LED TIMERO PWM 输出
29	LED_TMR1_PWM_OUT	LED TIMER1 PWM 输出
30	LED_TMR2_PWM_OUT	LED TIMER2 PWM 输出
31	LED_TMR3_PWM_OUT	LED TIMER3 PWM 输出
32	SDHOST_SCLK_0	SDC HOST SDCLK 输出
33	SDHOST_CMD_OUT	SDHOST CMD 输出
34	SDHOST_DATO_OUT	SDHOST DATO 输出
35	SDHOST_DAT1_OUT	SDHOST DAT1 输出
36	SDHOST_DAT2_OUT	SDHOST DAT2 输出
37	SDHOST_DAT3_OUT	SDHOST DAT3 输出
38	PDM_MCLK	PDM MCLK 输出
39	QSPI_NSS1_OUT	QSPI 片选 1 输出
40	SPIO_NSS_OUT	SPIO 片选输出
41	SPIO_SCK_OUT	SPIO CLK 输出
42	SPIO_IOO_OUT	SPIO IOO 输出
43	SPIO_IO1_OUT	SPI0 I01 输出
44	SPIO_IO2_OUT	SPI0 IO2 输出
45	SPIO_IO3_OUT	SPIO IO3 输出
46	SPI1_NSS_OUT	SPI1 片选输出

	T	
47	SPI1_SCK_OUT	SPI1 CLK 输出
48	SPI1_IO0_OUT	SPI1 IOO 输出
49	SPI1_I01_OUT	SPI1 IO1 输出
50	SPI1_I02_OUT	SPI1 IO2 输出
51	SPI1_IO3_OUT	SPI1 I03 输出
52	SPI2_NSS_OUT	SPI2 片选输出
53	SPI2_SCK_OUT	SPI2 CLK 输出
54	SPI2_IO0_OUT	SPI2 I00 输出
55	SPI2_I01_OUT	SPI2 I01 输出
56	SPI2_I02_OUT	SPI2 I02 输出
57	SPI2_I03_OUT	SPI2 I03 输出
58	IISO_MCLK_OUT	IISO MCLK 输出
59	IISO_WSCLK_OUT	IISO WS 输出
60	IISO_BCLK_OUT	IISO BCLK 输出
61	IISO_DO	IISO DAT 输出
62	IIS1_MCLK_OUT	IIS1 MCLK 输出
63	IIS1_WSCLK_OUT	IIS1 WS 输出
64	IIS1_BCLK_OUT	IIS1 BCLK 输出
65	IIS1_D0	IIS1 DAT 输出
66	CLK_TO_IO	时钟源 IO 输出
67	LCD_DOTCLK_OR_RWR	LCD 显示接口 DOTCLK/RWR 输出
68	LCD_VSYNC_OR_CS	LCD 显示接口 VSYNC/CS 输出
69	LCD_HSYNC_OR_DC	LCD 显示接口 HSYNC/DC 输出
70	LCD_DE_OR_ERD	LCD 显示接口 DE/ERD 输出
71	LCD_DATO	LCD 显示接口数据位 0 输出
72	LCD_DAT1	LCD 显示接口数据位 1 输出
73	LCD_DAT2	LCD 显示接口数据位 2 输出
74	LCD_DAT3	LCD 显示接口数据位 3 输出
75	LCD_DAT4	LCD 显示接口数据位 4 输出
76	LCD_DAT5	LCD 显示接口数据位 5 输出
77	LCD_DAT6	LCD 显示接口数据位 6 输出
78	LCD_DAT7	LCD 显示接口数据位 7 输出
79	LCD_DAT8	LCD 显示接口数据位 8 输出
80	LCD_DAT9	LCD 显示接口数据位 9 输出

81	LCD_DAT10	LCD 显示接口数据位 10 输出
82	LCD_DAT11	LCD 显示接口数据位 11 输出
83	LCD_DAT12	LCD 显示接口数据位 12 输出
84	LCD_DAT13	LCD 显示接口数据位 13 输出
85	LCD_DAT14	LCD 显示接口数据位 14 输出
86	LCD_DAT15	LCD 显示接口数据位 15 输出
87	LCD_DAT16	LCD 显示接口数据位 16 输出
88	LCD_DAT17	LCD 显示接口数据位 17 输出
89	LCD_DAT18	LCD 显示接口数据位 18 输出
90	LCD_DAT19	LCD 显示接口数据位 19 输出
91	LCD_DAT20	LCD 显示接口数据位 20 输出
92	LCD_DAT21	LCD 显示接口数据位 21 输出
93	LCD_DAT22	LCD 显示接口数据位 22 输出
94	LCD_DAT23	LCD 显示接口数据位 23 输出

1.7.4. 数字引脚输入任意映射功能

表1-7-4-1 GPIO输入功能任意映射表

功能编号	功能名字	功能说明
1	TMRO_CAP_IN	TimerO 捕获输入
2	TMRO_SYNC_IN/ext_rfswitch_en0_in	Timer0 同步输入/外部射频开关使能 0 输入
3	TMR1_CAP_IN	Timer1 捕获输入
4	TMR2_CAP_IN	Timer2 捕获输入
5	TMR3_CAP_IN	Timer3 捕获输入
6	PDM_DATA_IN	PDM DATA 输入
7	PTA_REQ_in	PTA REQ 输入
8	PTA_PRI_in	PTA PRI 输入
9	FREQ_IND_IN	FREQ IND 输入
10	STMRO_CAP_IN/LCD_D3_IN	简单 TimerO 捕获输入/LCD_D3_IN 输入
11	STMR1_CAP_IN/LCD_D4_IN	简单 Timerl 捕获输入/LCD_D4_IN 输入
12	STMR2_CAP_IN/LCD_D5_IN	简单 Timer2 捕获输入/LCD_D5_IN 输入
13	STMR3_CAP_IN/LCD_D6_IN	简单 Timer3 捕获输入/LCD_D6_IN 输入
14	PORT_WKUP_INO	10 唤醒通道 0 输入
15	PORT_WKUP_IN1/LCD_D7_IN	IO 唤醒通道 1 输入/LCD_D7_IN 输入

16	PORT_WKUP_IN2/LCD_D8_IN	IO 唤醒通道 2 输入/LCD_D8_IN 输入
17	PORT_WKUP_IN3/LCD_TE	IO 唤醒通道 3 输入/LCD_TE 输入
18	UARTO_IN	UARTO RX 输入
19	UARTO_CTS_DE_IN	UARTO CTS/DE 输入
20	UART1_IN/LCD_D9_IN	UART1 RX 输入/LCD_D9_IN 输入
21	UART1_CTS_DE_IN/LCD_D10_IN	UART1 CTS/DE 输入/LCD_D10_IN 输入
22	FB_IN/EXT_PA_EN/SYS_NMI	FB_IN/EXT_PA 使能输入/SYS_NMI 输入
23	UART4_IN	UART4 RX 输入
24	LCD_D0_IN	LCD_D0_IN 输入
25	SPIO_NSS_IN	SPIO NSS 输入
26	SPIO_SCK_IN	SPI0 SCK 输入
27	SPIO_IOO_IN	SPI0 I00 输入
28	SPIO_IO1_IN	SPIO IOI 输入
29	SPIO_IO2_IN	SPI0 I02 输入
30	SPIO_IO3_IN	SPI0 I03 输入
31	SPI1_NSS_IN/LCD_D11_IN	SPI1 NSS 输入/LCD_D11_IN 输入
32	SPI1_SCK_IN	SPI1 SCK 输入
33	SPI1_IOO_IN	SPI1 I00 输入
34	SPI1_I01_IN/LCD_D12_IN	SPI1 I01 输入/LCD_D12_IN 输入
35	LCD_D1_IN	LCD_D1_IN 输入
36	LCD_D2_IN	LCD_D2_IN 输入
37	SPI2_NSS_IN/LCD_D13_IN	SPI2 NSS 输入/LCD_D13_IN 输入
38	SPI2_SCK_IN	SPI2 SCK 输入
39	SPI2_IOO_IN	SPI2 I00 输入
40	SPI2_IO1_IN/LCD_D14_IN	SPI2 I01 输入/LCD_D14_IN 输入
41	SPI2_I02_IN/LCD_D15_IN	SPI2 I02 输入/LCD_D15_IN 输入
42	SPI2_IO3_IN/LCD_D16_IN	SPI2 I03 输入/LCD_D16_IN 输入
43	STMR4_CAP_IN/LCD_D17_IN	简单 Timer4 捕获输入/LCD_D17_IN 输入
44	STMR5_CAP_IN/LCD_D18_IN	简单 Timer5 捕获输入/LCD_D18_IN 输入
45	SDHOST_CMD_IN	SDHOST CMD 输入
46	SDHOST_DATO_IN	SDHOST DATO 输入
47	SDHOST_DAT1_IN	SDHOST DAT1 输入
48	SDHOST_DAT2_IN	SDHOST DAT2 输入
49	SDHOST_DAT3_IN	SDHOST DAT3 输入
_		

50	IISO_MCLK_IN/LCD_D19_IN	IISO MCLK 输入/LCD_D19_IN 输入
51	IISO_WSCLK_IN/LCD_D2O_IN	IISO WS 输入/LCD_D20_IN 输入
52	IISO_BCLK_IN/LCD_D21_IN	IISO BCLK 输入/LCD_D21_IN 输入
53	IISO_DAT_IN	IISO DAT 输入
54	IIS1_MCLK_IN/UART5_IN/LCD_D22_IN	IIS1 MCLK 输入/UART5 RX 输入/LCD_D22_IN 输入
55	IIS1_WSCLK_IN/LCD_D23_IN	IIS1 WS 输入/LCD_D23_IN 输入
56	SPI1_IO2_IN/IIS1_BCLK_IN	SPI1 IO2 输入/IIS1 BCLK 输入
57	SPI1_IO3_IN/IIS1_DAT_IN	SPI1 I03 输入/IIS1 DAT 输入

2. 功能描述

2.1. 处理器及存储器

2. 1. 1. CPU

TXW817 系列芯片搭载 CK803 处理器,最高主频为 240MHz,具有以下特性:

- 精简指令集处理器架构 (RISC)
- 32 位数据, 16 位/32 位混合编码指令
- 3级流水线
- 32KByte 高速缓存
- 单周期快速硬件乘法器
- 矢量中断控制器与滴答计时器
- 中断响应延时仅为13个处理器周期

2.1.2. 存储器

TXW817 系列芯片片上存储器包括:

- ROM: BOOTLOADER 及部分内核函数
- 272KB SRAM: 数据和指令空间
- 54Bit EFUSE: 用于密钥和客户自定义使用

2.1.3. 存储器扩展

TXW817 系列芯片支持存储器扩展,支持扩展 SPI 接口的 SPI Flash 和 PSRAM (部分芯片已经内置)。通过片上 QSPI 控制器支持外部 QSPI Flash 和 PSRAM (最多支持扩展两个存储器),支持 XIP 功能。QSPI 支持外扩最大 32MByte 的 Flash 和 PSRAM 的访存空间映射。

2.2. 系统时钟

TXW817 系列芯片时钟源有:

- 128KHz LIRC
- 10MHz HIRC
- 32.768KHz 低速晶体振荡器
- 24~50MHz 高速晶体振荡器
- 480MHz 的小数分频 USB2.0 PLL
- 外部 IO 输入时钟源

2.3. 模拟外设

2.3.1. 模数转换器 (SARADC)

TXW817 系列芯片内部集成了1个12bit 比较器;1个12bit SARADC,可以工作在ADC/DAC模式,具体特性如下:

- 支持高达 1MHz 的时钟输入
- 高达 62.5Ksps
- 支持 12bit ADC/DAC 转换精度
- 支持基本定时器 0/1/2/3, 简单定时器 0/1/2/3/4/5 和软件触发 ADC 进行转换

2.3.2. 温度传感器

TXW817 系列芯片內部集成了 1 个温度传感器,通过 ADC 的一个内部通道将温度传感器的电压采样,通过计算得到芯片內部的温度值。

2. 3. 3. USB2. 0

TXW817 系列芯片内置 USB2. 0 Controller 和 USB2. 0 PHY, 兼容标准 USB2. 0 High/Full

Speed Host & Device 协议。

TXW817 系列芯片高性能 USB2. 0 高速 PHY, 自研创新架构的 CDR 专利技术,可以保障在恶劣的环境下也能正常工作。无需外挂独立的 USB2. 0 PHY 就可以支持高速模式,理论速率可达 480Mbps。支持无晶振 USB。当应用方案中不需要用 USB2. 0 的功能时,可以作为两个GPI0 来用。

2. 3. 4. XOSC

TXW817 系列芯片内部集成了 1 个高速晶体振荡器电路模块,需要外挂 24~50MHz 的无源晶体振荡器。

2. 3. 5. PLL

TXW817系列芯片内部集成了高性能 480MHz 的小数分频 USB2.0 PLL。

2. 3. 6. Audio ADC

TXW817 系列芯片内部 1 路 delta-sigma audio ADC, 内置 PGA,支持单端和差分模拟麦克风输入。

- AUDIO Codec支持 8/11.025/12/16/22.05/24/32/44.1/48KHz采样率
- 支持单端和差分输入高性能模拟mic,内置PGA
- 支持啸叫抑制功能
- 支持G711 的A律编解码
- 支持VAD(voice action detect)事件产生

2. 3. 7. Audio DAC

TXW817 系列芯片内部 1 路 delta-sigma audio DAC。

2.4. 数字外设

2. 4. 1. GPIO

TXW817系列芯片内部集成了最多31个通用GPIO,具体特性如下:

- 上拉电阻可变成配置,配置电阻值有 4.7KΩ、100KΩ;
- 下拉电阻值有 100K Ω;
- 支持 4 档 IO 输出驱动可配置,配置范围为 4/12/20/28mA,每档位 8mA;
- 支持开漏输出高的功能;
- 支持低功耗模式下断电后 IO 状态锁存功能;
- 支持 ADC 模拟输入功能;
- 支持独立的数字 IO 输入和输出方向使能,关闭数字 IO 的输入输出功能;

2. 4. 2. SPI/IIC

TXW817 系列芯片内部集成了 3 个 SPI。SPIO/1 都支持 SPI 主从模式, 其中 SPIO 只支持 SPI 功能, SPI1/2 支持 SPI 和 IIC 复合功能。其特性如下:

SPI 功能特点如下:

- 支持主机模式和从机模式
- 支持 Motorola SPI
- 支持主从半双工收发
- 极性相位可编程的串行时钟
- 支持4种模式
 - 标准模式: SCLK、CS、IOO (MOSI) 、IO1 (MISO), 一个 SCLK 传送 1bit
 - 3线模式: SCLK、CS、IOO, 一个 SCLK 传送 1bit
 - DUAL 模式: SCLK、CS、IOO、IO1, 一个 SCLK 传送 2bit
 - QUAL 模式: SCLK、CS、IOO、IO1、IO2、IO3,一个 SCLK 传送 4bit

- 带 MCU 中断的传输结束标志
- 支持主模式波特率高达 1/2 的系统时钟
- 支持 1~32 位数据宽度可选
- 支持 DMA(direct memory access)
- 支持高位先发或低位先发

IIC模块的功能特点如下:

- 支持主机模式和从机模式
- 支持主机时钟同步和仲裁
- 支持从机在发送数据没有准备好或者接收 buffer 满的时候拉低 SCL
- 支持从机 7bit 地址或者 10bit 地址
- 支持 DMA

2. 4. 3. UART

TXW817 系列芯片内部集成了 3 个 UART, 其中有 2 个简单功能 UART (UART4/5), 1 个复杂功能的 UART0。

UARTO 的功能特性如下:

- 支持 8bit 数据和 9bit 数据模式
- 支持奇偶校验
- 具有 4 帧数据的接收缓存,一帧数据的发送缓存
- 支持接收和发送 DMA
- 支持硬件流控制, RTS_N 和 CTS_N 分别有使能信号,可以配置接收缓存有 N (N=0, 1, 2, 3) 个数据后 RTS N 有效
- 硬件检测接收 time out, time out 配置范围: 1~65536 比特率时间
- 支持 rs485 模式

UART4/5 具体特性如下:

- 支持半双工
- 支持发送 9bit 数据
- 支持软件奇偶校验

2.4.4. IIS PCM

TXW817 系列芯片内部集成了 2 个 IIS_PCM 功能模块,用于应用扩展音频功能,具体特性如下:

- 支持IIS/左对齐/右对齐/PCM格式的发送
- 支持左声道/右声道/立体声模式
- 支持主/从模式
- 支持 2-32bit的工作位宽
- 支持输出MCLK模式,同时支持使用输入的MCLK作为主从机的时钟
- 支持左右声道互换
- 支持双地址自动切换

2.4.5. PDM

TXW817 系列芯片内部集成了 1 个 PDM 功能模块,用于应用扩展音频功能。

PDM 模块是处理数字 MEMS 麦克风的音频接口,可以提供配置高精度的输出时钟,同时支持 左/右声道,立体声的使用,该芯片集成了一个 PDM 接口具体功能如下:

- 支持数字MEMS麦克风输入的PDM数据转换为 16bit PCM数据
- 支持左声道/右声道/立体声模式
- 提供 50/100 两种PDM/PCM模式的抽取比
- 支持左右声道互换
- 支持DMA双地址自动切换

2.4.6. 摄像头 DVP 接口

TXW817 系列芯片内部集成了 1 个 CMOS Sensor DVP 接口功能模块,用于外部扩展连接摄像头。具体特性如下:

- 支持Sensor 8 bits并行接口;
- 支持HSYNC和VSYNC极性选择;
- 支持HSYNC和VSYNC失效判断;
- 支持数据格式: YUV422 和RAW DATA;

2.4.7. VPP 图像处理模块

- 支持YUV数据顺序调整;
- 支持只保留Y数据;
- 支持YUV数据范围限制;
- 支持YUV图像缩小 1/2 或 1/3;
- 支持Scatter DMA, 仅YUV格式;
- 支持时间水印、彩色相框、运动检测

2.4.8. PRC 数据处理模块

- 支持数据YUV422 重排
- 光流算法硬件加速
- 支持Scatter DMA;

2.4.9. Motion JPEG 视频编解码器

TXW817 系列芯片内部集成了 1 路 MJPEG 视频编码器和 1 路 MJPEG 视频编解码器,用于压缩/解压图片或者视频。具体特性如下:

- 支持最大分辨率:
 - 8000*8000 2fps; (拍照模式)
 - 4000*4000 5fps; (拍照模式)
 - 1920*1080 30fps
 - 1280*720 60fps;
 - 640*480 120fps;
- 支持JPEGO/1编码,像素数据格式YUV420;
- 支持JPEG1 解码,像素数据格式YUV420/422;
- 支持压缩数据双Buffer;
- 支持DQT动态调整;
- 支持JPEG表头编/解码;
- 支持Gather DMA

2. 4. 10. LCD

TXW817 系列芯片内部集成了 1 路 LCD 显示接口控制器和视频后处理器算法硬件模块, 具体特性如下:

- 支持RGB和MCU (8080 & 6800)接口
- 支持图像缩放、90/180/270度旋转、水平和垂直镜像
- 支持图像OSD、Alpha Blending
- 支持CCM、Gamma校正、饱和度、对比度调整
- 支持 2D-GDMA

2.4.11. 视频流通路

图2-4-9-1 视频编解码和显示子系统数据流架构图

2.4.12. 以太网控制器 MAC

TXW817 系列芯片内部集成了 1 路 MAC 功能模块,用于扩展以太网有线连接。具体特性如下:

- 支持 10/100Mbps;
- 支持RMII接口;
- 支持半双工和全双工模式;
- 支持最多 16 个MAC地址过滤;
- 支持 "ring" 描述符结构;
- 符合IEEE 802.3 CSMA/CD标准。

2.4.13. SDIO2.0 Device 控制器

TXW817 系列芯片内部集成了 1 个 SDIO2. 0 Device 控制器功能模块,支持 SD 1/4bit 模式,支持 SDIO SPI 模式;时钟最高支持 50MHz。用于主机 SDIO host 接口可以通过其方

便连接扩展 Wi-Fi 应用。

2.4.14. SD HOST 控制器

TXW817 系列芯片内部集成了 1 个 SD host 控制器功能模块,支持 SD 1/4bit 模式,时钟最高支持 50MHz。用于扩展外部 SD 存储卡或者 SDIO device 接口设备。

2.4.15. M2M DMA 模块

TXW817 系列芯片内部集成了 2 个 memory to memory DMA 控制器功能模块。用于芯片内部 SRAM 到 SRAM 数据流的 DMA 数据搬运。具体特性如下:

- 支持byte对齐
- 支持一次最多 64KB传输
- 支持memcpy, memset模式
- 支持 4 个word缓存buffer
- 支持传输完成标志和中断

2.5. 定时器资源

2.5.1. 基本定时器

TXW817 系列芯片内部集成了 4个 Normal timer, 其中 timer 0/3 为 32 位 timer, timer 1/2 为带 DMA 和红外功能的 16 位 timer。

下面仅以 16 位计数器 timer1 进行说明, timer0/3 对应的把各种位宽定义为 32 位。

定时器 timer1 由一个 16 位的自动装载计数器组成,可测量输入信号的脉冲宽度(输入捕获),或者产生输出波形(输出比较、PWM等)。主要特性:

- 16 位递增计数器
- 可编程(可以实时修改)预分频器,最高支持128倍分频

- 支持选择 GPIO 作为计数时钟源
- 支持不同计数时钟源
- 允许在每次计数器周期之后更新定时周期寄存器
- 支持输入捕获功能:
- 最多支持同时保存1个捕获事件指针
- 每个捕获事件极性独立可配置
- 每次捕获事件发生可配置是否复位计数值
- PWM 输出
- 支持周期和占空比 auto-reload
- 使用外部信号控制定时器和定时器互联的同步电路
- 支持红外功能

2.5.2. 简单定时器

TXW817 系列芯片内部集成了 1 个 simple timer, simple timer 模块是由 stimer0、stimer1、stimer2、stimer3、stimer4、stimer5, 共有 6 个 32 bit 的基础功能定时器组成,支持多种计数时钟源选择,支持定时器模式、计数器模式、捕获模式和 PWM 模式等多种工作模式。

2.5.3. 看门狗定时器

TXW817 系列芯片内部集成一个独立于系统运行的看门狗模块,用于保护系统异常发生之后的复位重启系统。看门狗模块工作时钟是常开的 64KHz 的低速 RC 的 2 分频时钟,即工作在 32KHz 的独立于系统时钟的时钟。默认配置是 2 秒钟复位一次系统。所以在用户程序中需要在看门狗复位之前要喂狗,使其重新计时。用户可以配置看门狗复位时间间隔范围从8ms~ 256s。工作模式可以选择看门狗产生中断或者直接复位。

2.6. 安全硬件加速器

2.6.1. CRC 模块

TXW817 系列芯片内部集成了 1 个 CRC 功能模块,用于数据校验。具体特性如下:

- 支持 5/7/8/16/32 等不同长度的多项式
- 支持自定义的多项式
- 支持多个分断数据 CRC 校验

2.6.2. AES 模块

TXW817 系列芯片内部集成了1个系统 AES 功能模块,用于数据加解密。具体特性如下:

- 支持AES-128/192/256 ECB/CBC/CTR加解密
- 支持DMA模式, DMA数据长度最大支持到 1MBytes

2.6.3. SHA 模块

TXW817系列芯片内部集成了1个SHA功能模块,用于数据校验。具体特性如下:

- 支持 SHA2-256
- 支持DMA模式, DMA数据长度最大支持到 65536 Bytes
- 支持多个分段数据SHA运算
- 最大数据率为: 700Mbps @ 240MHz(system clock)

2.6.4. TRNG 模块

TXW817 系列芯片内部集成了 1 个真随机数功能模块,用户数据安全的随机种子生成。

3. 电气参数

3.1. 绝对最大额定

符号	参数	条件	最小值	最大值	单位
V_{vcc}	工作电压	-	-0.3	3.6	V
V _{VCCA}	模拟部分工作电压	_	-0.3	3. 6	V
VCCPA VCCRF	射频部分工作电压	_	-0.3	3. 6	V
Tst	存储温度	_	-40	150	$^{\circ}$

在绝对最大额定值条件之外的操作可能会导致永久芯片损坏。芯片在建议的工作条件之 外绝对最大额定值规定内使用,可能会影响芯片的可靠性、功能和性能,并缩短芯片寿命。

3.2. 建议工作条件

符号	参数	条件	最小值	典型值	最大值	单位
V_{VCC}	工作电压	_	3	3.3	3.6	V
V_{VCCA}	模拟部分工作电压	_	3	3.3	3. 6	V
VCCPA VCCRF	射频部分工作电压	-	3	3. 3	3.6	V
VCAM ⁽¹⁾	Vcam LDO 负载能力	VCAM = 2.8V		150		mW
VCC18	VCC18 LDO 负载能力	VCC18 = 1.8V		180		mW
$T_{\scriptscriptstyle A}$	工作温度	_	-40	-	85	$^{\circ}$

(1) Vcam/VCC18 LDO 负载能力指标为工作温度 85°C 时的情况。Vcam LDO 负载能力会随温度降低而变强;会随 VCC 电压降低而变弱;随 VCAM 电压挡位降低而变强。

注意:

1、内置 PSRAM 封装时, PSRAM 自身会消耗 VCC18 LDO 约 20mA 的负载能力。

3.3. 直流电气特性

符号	参数	最小值	典型值	最大值	单位
CIN	管脚电容	_	2	ı	pF
VIH	高电平输入电压	0.7*VCC	_	VCC+0.3	V
VIL	低电平输入电压	-0.3	_	0.3*VCC	V
IIH	高电平输入电流	_	_	50	nA
IIL	低电平输入电流	_	_	50	nA
VOH	高电平输出电压	0.9*VCC	_	_	V
VOL2	低电平输出电压	_	_	0.1*VCC	V
ІОН	高电平拉电流(VCC = 3.3 V, VOH >= 2.64 V, PAD_DRIVER = 3)	-	28	-	mA
IOL	低电平灌电流(VDD1 = 3.3 V, VOL = 0.5 V,PAD_DRIVER = 3)	-	50	-	mA
RPU	上拉电阻	4.7	100	100	$\mathrm{k}\Omega$
RPD	下拉电阻		100		kΩ
VIH_nRST	芯片 MCLR 复位释放电压	0.7*VCC	_	VCC+0.3	V
VIL_nRST	芯片 MCLR 复位电压	-0.3	_	0.3*VCC	V
) M 111					

说明:

3.4. 交流电气特性

3.4.1. 外部时钟源特性

符号	参数	条件	最小值	典型值	最大值	单位
f_{xoscm}	用户外部时钟频率			40		MHz
$V_{{\scriptscriptstyle BIAS}}$	XOSCI/XOSCO 偏置电平	_	_	550	_	mV
V_{xoh}	XOSCI 输入引脚高电平电压	_	_	0.77	_	V
V_{xol}	XOSCO 输入引脚低电平电压	_	_	0.33	_	V
Duty _(xoscm)	占空比	_	42	_	58	%

^{1.} VOH 和 VOL 为负载是高阻条件下的测试值。

ACC_{xoscm}	HSE 精度	_	_	_	-	ppm
$t_{SU(xoscm)}$	启动时间	_	_	5		ms
I _{VCCA(XOSCM)}	XOSCM 振荡器功耗	平均功耗	_	0.7	-	mA

3.4.2. 内部时钟源特性

表3-4-2-1 RC10M振荡器特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{VCCA}	供电电压	_	3	3.3	3.6	V
RC10M	频率	25℃ trim后测试	9	10	11	MHz
ACC _{RC10M}	RC10M 振荡器的精度	-40℃至 85℃	-6	-	+6	%
$t_{SU(RC10M)}$	RC10M 振荡器启动时间	-	_	60	-	us
I _{VCCA(RC10M)}	RC10M 振荡器功耗	平均功耗	_	-	1	mA

表3-4-2-2 RC128K振荡器特性

符号	参数	条件	最小值	典型值	最大值	单位
RC128K	频率	TA=25°C	-	128	-	kHz
$I_{DD(RC128K)}$	RC128K 振荡器功耗	_	_	ı	-	uA

3.5. 功耗特性

3.5.1. RF 功耗

下列功耗数据是基于 3.3V 电源、25℃环境温度、CPU 跑 120MHz 的测试结果。 所有发射数据均基于 100%的占空比测得。

RF 功耗(100%占空比实测)					
工作模式描述					
		802.11g, 20 MHz, 54 Mbps, 15dBm	240		
Active (LDO Mode)	TX	802.11n, 20 MHz, MCS7, 15dBm	240		
Active (LDO Mode)		802.11n, 20 MHz, MCS7, 6dBm	168		
	RX	802.11b/g/n, 20 MHz	76		

下列功耗数据为推算数据:

RF 功耗(50%占空比推算)					
工作模式描述描述均值(mA)					
		802.11g, 20 MHz, 54 Mbps, 15dBm	158		
Active (LDO Mode)	TX+RX	802.11n, 20 MHz, MCS7, 15dBm	158		
		802.11n, 20 MHz, MCS7, 6dBm	122		

3.5.2. CPU 功耗

MCU 状态	WLAN 状态	TX/RX	测试条件		功耗
(1)	OFF	-	常开电源域逻辑工作,272KB SRAM 不断电	-	233. 5uA
$LP^{(1)}$	OFF	-	常开电源域逻辑工作,16KB SRAM 不断电	-	31. 3uA
ULP (1)	OFF	_	_	_	28. 1uA
芯片关闭	_	_	CHIP_EN 为 0	_	0. 7uA

(1) 只支持 IO 和内部 RC 唤醒

3.6. 可靠性

3.6.1. ESD 电气特性

符号	参数	测试条件	最大值	单位	等级
ESD	静电放电 (人体放电模型 HBM)	TA = + 25℃, JEDEC EIA/JESD22-A114	2000	V	-
EOD	静电放电 (元件充电模型 CDM)	TA = + 25℃, JEDEC EIA/JESD22-C101-B	1000	V	_

3. 6. 2. Latch-Up 电气特性

符号	参数	测试条件	测试类型	最小值	单位
LU	Static latch-up class	JEDEC STANDARD NO.78D NOVEMBER 2011	Class I (TA = +25 ℃)	±200	mA

3.7. Wi-Fi 射频性能和功耗

3.7.1. Wi-Fi 发射器性能

参数	条件	典型值(dBm)
输出功率	802.11g, 20 MHz, 54 Mbps	16
	802.11n, 20 MHz, MCS7	16

3.7.2. Wi-Fi 接收器性能

参数	条件	典型值(dBm)
接收灵敏度	HT20 MCS7 4k	-72.5
	NONHT 54M	-74.5
	NONHT 6M	-89.5
	CCK11M	-85

CCK5. 5M	-88
DSSS2M	-91.5
DSSS1M	-96

3.7.3. BLE 发射器性能

参数	条件	典型值(dBm)
输出功率		20

3.7.4. BLE 接收器性能

参数	条件	典型值(dBm)
接收灵敏度	1Mbps	-98

3.8. Audio 性能

3.8.1. Audio ADC 性能

参数	条件	典型值 (dB)
SNR	1KHz 静音文件,采样率=44.1KHz, 编码率=44.1*16Kbps	81
THD+N	1KHz 静音文件,采样率=44.1KHz, 编码率=44.1*16Kbps	-78

3.8.2. Audio DAC 性能

参数	条件	典型值 (dB)
SNR	1KHz 静音文件,采样率=44.1KHz,编码率=44.1*16Kbps	82
THD+N	1KHz 静音文件,采样率=44.1KHz,编码率=44.1*16Kbps	-75

	4. 参	4 参
	考设计	老设计
36		

5. 订购信息

TXW817

图5-1 型号命名

表5-1 订购信息

产品编号	封装	大小	描述
TXW817-810	QFN48	5x5	内置 8Mbit FLASH,视频+音频应用
TXW817-824	QFN48	5x5	内置 16Mbit FLASH + 32Mbit PSRAM,视频+ 音频应用