PERMUTATIONS OF MINIMUM DEPTH

A permutation w is a sequence $w = w_1 w_2 \cdots w_n$ of n elements where each positive integer in $\{1, \ldots, n\}$ appears exactly once. (Note: One can think of a permutation as a bijection from $\{1, \ldots, n\}$ to $\{1, \ldots, n\}$. This point of view is not so important for this project, but it may explain some notation at some point.)

Denote the set of all permutations of n elements by S_n , and the set of all permutations of any number of elements by S (so $S = \bigcup_{n=1}^{\infty} S_n$.

Given two positive integers i, j with $1 \le i, j \le n$, define $t_{i,j}: S_n \to S_n$ to be the transposition (or swap) switching the entries in the i-th and j-th positions. Formally, given $w = w_1 \cdots w_n \in S_n$, $t_{i,j}(w)$ is the permutation with $[t_{i,j}(w)]_k = w_k$ if $k \ne i, j$, $[t_{i,j}(w)]_i = w_j$, and $[t_{i,j}(w)]_j = i$.

Given a positive integer i with $1 \le i \le n-1$, define $s_i = t_{i,i+1}$; these functions are called adjacent or simple transpositions.

For each positive integer n, the identity permutation $id \in S_n$ is the permutation $12 \cdots n$ (so $id_i = i$ for all i with $1 \le i \le n$).

Given a permutation $w \in S_n$ the length of w (denoted $\ell(w)$) is the smallest positive integer ℓ such that there exist ℓ simple transpositions $s_{i_1}, \ldots, s_{i_\ell}$ with $s_{i_1}(s_{i_2}(\cdots(s_{i_\ell}(w))\cdots)) = id$. (From now on, to make things easier on the eyes, I won't type all those parentheses.) By convention $\ell(id) = 0$.

Given a permutation $w \in S_n$, the inversion set of w is the set

$$\mathrm{Inv}(w) = \{(i,j) \in \mathbb{Z} \times \mathbb{Z} \mid 1 \leq i < j \leq n, w_i > w_j\}$$

of pairs of positions that are "out of order."

Exercise:

Prove that $\ell(w) = |\operatorname{Inv}(w)|$. (Hint: You will need to prove separately that $\ell(w) \leq |\operatorname{Inv}(w)|$ and $\ell(w) \geq |\operatorname{Inv}(w)|$. One will require induction on $\ell(w)$ and the other induction on $|\operatorname{Inv}(w)|$. The idea is that any simple transposition decrease the number of inversions by at most 1, and there always exists (except for w = id, which is the base case) a simple transposition that decreases the number of inversions by 1.)

Given a permutation $w \in S_n$ the reflection length of w (denoted r(w)) is the smallest positive integer r such that there exist r (not necessarily simple) transpositions $t_{i_1,j_1}, \dots, t_{i_r,j_r}$ with $t_{i_1,j_1} \cdots t_{i_r,j_r} w = id$.

Given a permutation $w \in S_n$, define the equivalence relation \equiv_w on $\{1, \ldots, n\}$ by declaring classes of \equiv_w .

Exercise: Prove that $r(w) = n - |\operatorname{Cyc}(w)|$. (Hint: First show that $|\operatorname{Cyc}(t_{i,j}(w))| = |\operatorname{Cyc}(w)| + 1$ if and only if $i \equiv_w j$. (Otherwise, $|\operatorname{Cyc}(t_{i,j}(w))| = |\operatorname{Cyc}(w)| - 1$.) Then use

Given a transposition $t_{i,j}$, define the depth of $t_{i,j}$, denoted $dp(t_{i,j})$, to be |i-j|. Given an arbitrary permutation $w \in S_n$ define dp(w) to be the smallest positive integer d such that there exists an integer k and transpositions $t_{i_1,j_1},\ldots,t_{i_k,j_k}$ with $t_{i_1,j_1}\cdots t_{i_k,j_k}w=id$ and $\sum_{m=1}^{k} dp(t_{i_m,j_m}) = d.$

Given a permutation $w \in S_n$, define the total exceedences e(w) to be $\sum_{i=1}^n \max(0, w_i - i)$. Exercise:

Prove that dp(w) = e(w). (Hint: Use induction as before. To show $dp(w) \le e(w)$, for $w \neq id$, define t_{i_k,j_k} (the first transposition applied to w) by letting i_k be the largest integer with $w_{i_k} > i_k$, and let j_k be the smallest integer $j_k > i_k$ with $w_{j_k} < j_k$. (Of course you have to explain why such integers exist.))

Exercise:

Prove that, for any permutation w, $dp(w) \ge (\ell(w) + r(w))/2$. (Hint: You want to use the definitions, not the results of any of the previous exercises.)

Exercise:

Prove that $dp(w) = (\ell(w) + r(w))/2$ if and only if:

· w = id, or • There exists $t_{i,j}$ such that, if we let $v = t_{i,j}(w)$, then $dp(v) = (\ell(v) + r(v))/2$, r(v) = r(w) - 1, and $\ell(v) = \ell(w) - (2|i - j| - 1)$.

(Actually, I haven't thought through this exercise, so it's possible that it's a good deal harder than I thought.)

Now on to the actual problem:

Let $m \le n$. If $v \in S_m$ and $w \in S_n$, we say w contains v if there exist integers i_1, \ldots, i_m , with $1 \le i_1 < i_2 < \cdots < i_m \le n$, such that $v_j \le v_k$ if and only if $w_{i_j} \le w_{i_k}$

If w does not contain v, then we say w avoids v.

We say w is shallow if $dp(w) = (r(w) + \ell(w))/2$.

Prove the following are equivalent:

- · w avoids 4231 and is shallow
- w avoids 4231, 3412, 34521, 54123, 365214, 541632, 7652143, and 5476321

