```
In [36]:
           import pandas as pd
           car_sales = pd.read_csv("data/car-sales.csv")
In [37]:
           # Convert String column to lower case
           car_sales["Make"] = car_sales["Make"].str.lower()
           car sales
Out[37]:
              Make Colour Odometer (KM) Doors
                                                      Price
            toyota
                     White
                                   150043
                                                   $4,000.00
             honda
                       Red
                                    87899
                                                   $5,000.00
             toyota
                      Blue
                                    32549
                                                   $7,000.00
          3
              bmw
                      Black
                                    11179
                                                  $22,000.00
                                   213095
             nissan
                     White
                                                   $3,500.00
                                    99213
             toyota
                     Green
                                                   $4,500.00
             honda
                                    45698
                                                   $7,500.00
                      Blue
             honda
                      Blue
                                    54738
                                                   $7,000.00
             toyota
                     White
                                    60000
                                                   $6,250.00
             nissan
                     White
                                    31600
                                                   $9,700.00
In [38]:
           # Open car-sales-missing-data.csv file (It contains some missing data)
           car sales missing = pd.read csv("data/car-sales-missing-data.csv")
           car_sales_missing.head()
Out[38]:
              Make
                   Colour Odometer Doors
                                                Price
                     White
                             150043.0
            Toyota
                                         4.0
                                              $4,000
                              87899.0
             Honda
                       Red
                                         4.0
                                              $5,000
          1
          2
             Toyota
                       Blue
                                 NaN
                                         3.0
                                              $7,000
              BMW
                      Black
                              11179.0
                                         5.0 $22,000
          3
             Nissan
                     White
                             213095.0
                                         4.0
                                              $3,500
In [39]:
           # Replace the missing values in Odometer column by the mean value of that column
           car_sales_missing["Odometer"] = car_sales_missing["Odometer"].fillna(car_sales_missing[
           car_sales_missing.head()
           # Without assign into same column we can use inplace parameter to replace Nan values au
           # car_sales_missing["Odometer"].fillna(car_sales_missing["Odometer"].mean(), inplace=Tr
Out[39]:
              Make Colour
                                Odometer Doors
                                                   Price
                     White 150043.000000
                                             4.0
                                                  $4,000
          0 Toyota
```

	Make	Colour	Odometer	Doors	Price
1	Honda	Red	87899.000000	4.0	\$5,000
2	Toyota	Blue	92302.666667	3.0	\$7,000
3	BMW	Black	11179.000000	5.0	\$22,000
4	Nissan	White	213095.000000	4.0	\$3,500

```
In [40]:
```

```
# Drop rows which having Nan in Odometer column
# We use inplace=True to overwrite the table
car_sales_missing["Odometer"].dropna(inplace=True)
car_sales_missing
```

```
Out[40]:
```

	Make	Colour	Odometer	Doors	Price
0	Toyota	White	150043.000000	4.0	\$4,000
1	Honda	Red	87899.000000	4.0	\$5,000
2	Toyota	Blue	92302.666667	3.0	\$7,000
3	BMW	Black	11179.000000	5.0	\$22,000
4	Nissan	White	213095.000000	4.0	\$3,500
5	Toyota	Green	92302.666667	4.0	\$4,500
6	Honda	NaN	92302.666667	4.0	\$7,500
7	Honda	Blue	92302.666667	4.0	NaN
8	Toyota	White	60000.000000	NaN	NaN
9	NaN	White	31600.000000	4.0	\$9,700

```
In [41]:
```

```
# Create new Series
seates_column = pd.Series([3, 4, 5, 6, 7])
# Add that Series to car_sales DataFrame as a column
car_sales["Seats"] = seates_column
car_sales # After row 5 all the values will be NaN
```

Out[41]:

	Make	Colour	Odometer (KM)	Doors	Price	Seats
0	Toyota	White	150043	4	\$4,000.00	3.0
1	Honda	Red	87899	4	\$5,000.00	4.0
2	Toyota	Blue	32549	3	\$7,000.00	5.0
3	BMW	Black	11179	5	\$22,000.00	6.0
4	Nissan	White	213095	4	\$3,500.00	7.0
5	Toyota	Green	99213	4	\$4,500.00	NaN
6	Honda	Blue	45698	4	\$7,500.00	NaN

	Make	Colour	Odometer (KM)	Doors	Price	Seats
7	Honda	Blue	54738	4	\$7,000.00	NaN
8	Toyota	White	60000	4	\$6,250.00	NaN
9	Nissan	White	31600	4	\$9,700.00	NaN

```
In [42]:
```

```
# Replace the NaN values by 5
car_sales.fillna(5, inplace=True)
car_sales
```

Out[42]:

	Make	Colour	Odometer (KM)	Doors	Price	Seats
0	Toyota	White	150043	4	\$4,000.00	3.0
1	Honda	Red	87899	4	\$5,000.00	4.0
2	Toyota	Blue	32549	3	\$7,000.00	5.0
3	BMW	Black	11179	5	\$22,000.00	6.0
4	Nissan	White	213095	4	\$3,500.00	7.0
5	Toyota	Green	99213	4	\$4,500.00	5.0
6	Honda	Blue	45698	4	\$7,500.00	5.0
7	Honda	Blue	54738	4	\$7,000.00	5.0
8	Toyota	White	60000	4	\$6,250.00	5.0
9	Nissan	White	31600	4	\$9,700.00	5.0

In [43]:

```
# To Add a Column to a DataFrame using a list (Not a Series)
# Length of the list should equal to number of rows
fuel_economy = [1.5, 2.6, 3.4, 2.5, 1.2, 2.3, 1.4, 4.5, 6.3, 2.5]
car_sales["Fuel Economy"] = fuel_economy
car_sales
```

Out[43]:

	Make	Colour	Odometer (KM)	Doors	Price	Seats	Fuel Economy
0	Toyota	White	150043	4	\$4,000.00	3.0	1.5
1	Honda	Red	87899	4	\$5,000.00	4.0	2.6
2	Toyota	Blue	32549	3	\$7,000.00	5.0	3.4
3	BMW	Black	11179	5	\$22,000.00	6.0	2.5
4	Nissan	White	213095	4	\$3,500.00	7.0	1.2
5	Toyota	Green	99213	4	\$4,500.00	5.0	2.3
6	Honda	Blue	45698	4	\$7,500.00	5.0	1.4
7	Honda	Blue	54738	4	\$7,000.00	5.0	4.5
8	Toyota	White	60000	4	\$6,250.00	5.0	6.3
9	Nissan	White	31600	4	\$9,700.00	5.0	2.5

```
In [44]:
    # Creating a new column and assign 1 value to all the rows
    car_sales["Wheels"] = 4
    car_sales
```

Out[44]:		Make	Colour	Odometer (KM)	Doors	Price	Seats	Fuel Economy	Wheels
	0	Toyota	White	150043	4	\$4,000.00	3.0	1.5	4
	1	Honda	Red	87899	4	\$5,000.00	4.0	2.6	4
	2	Toyota	Blue	32549	3	\$7,000.00	5.0	3.4	4
	3	BMW	Black	11179	5	\$22,000.00	6.0	2.5	4
	4	Nissan	White	213095	4	\$3,500.00	7.0	1.2	4
	5	Toyota	Green	99213	4	\$4,500.00	5.0	2.3	4
	6	Honda	Blue	45698	4	\$7,500.00	5.0	1.4	4
	7	Honda	Blue	54738	4	\$7,000.00	5.0	4.5	4
	8	Toyota	White	60000	4	\$6,250.00	5.0	6.3	4
	9	Nissan	White	31600	4	\$9,700.00	5.0	2.5	4

```
In [45]: # Remove Seats column
# axis=1 is used to indicate that we are referring to a column (axis=0 => row)
# inplace=True => Overwrite the DataFrame
car_sales.drop("Seats", axis=1, inplace=True)
car_sales
```

```
Out[45]:
               Make Colour Odometer (KM) Doors
                                                           Price Fuel Economy Wheels
           0 Toyota
                       White
                                      150043
                                                       $4,000.00
                                                                            1.5
                                                                                      4
             Honda
                         Red
                                       87899
                                                       $5,000.00
                                                                            2.6
                                                                                      4
              Toyota
                        Blue
                                       32549
                                                       $7,000.00
                                                                            3.4
                                                                                      4
               BMW
                        Black
                                                   5 $22,000.00
                                       11179
                                                                            2.5
                                                                                      4
              Nissan
                       White
                                      213095
                                                       $3,500.00
                                                                            1.2
                                                                                      4
              Toyota
                                                       $4,500.00
                                                                            2.3
                       Green
                                       99213
                                                                                      4
             Honda
                        Blue
                                                       $7,500.00
                                       45698
                                                                            1.4
                                                                                      4
             Honda
                        Blue
                                        54738
                                                       $7,000.00
                                                                            4.5
                                                                                      4
              Toyota
                       White
                                        60000
                                                       $6,250.00
                                                                            6.3
                                                                                      4
              Nissan
                       White
                                                       $9,700.00
                                                                            2.5
                                       31600
                                                                                      4
```

```
In [46]: # Shuffle the DataFrame by rows
    # frac=1 => get 100% of rows
    car_sales_shuffled = car_sales.sample(frac=1)
    car_sales_shuffled
```

Out 1/16	
Out 46	

	Make	Colour	Odometer (KM)	Doors	Price	Fuel Economy	Wheels
3	BMW	Black	11179	5	\$22,000.00	2.5	4
2	Toyota	Blue	32549	3	\$7,000.00	3.4	4
4	Nissan	White	213095	4	\$3,500.00	1.2	4
6	Honda	Blue	45698	4	\$7,500.00	1.4	4
0	Toyota	White	150043	4	\$4,000.00	1.5	4
8	Toyota	White	60000	4	\$6,250.00	6.3	4
5	Toyota	Green	99213	4	\$4,500.00	2.3	4
1	Honda	Red	87899	4	\$5,000.00	2.6	4
9	Nissan	White	31600	4	\$9,700.00	2.5	4
7	Honda	Blue	54738	4	\$7,000.00	4.5	4

In [47]:

Get only 25% of data by shuffling (get randomly)
car_sales.sample(frac=0.25)

Out[47]:

	Make	Colour	Odometer (KM)	Doors	Price	Fuel Economy	Wheels
9	Nissan	White	31600	4	\$9,700.00	2.5	4
1	Honda	Red	87899	4	\$5,000.00	2.6	4

In [48]:

To reset the shuffled DataFrame
drop=True => Avoid getting 2 index columns
car_sales_shuffled.reset_index(drop=True)

Out[48]:

	Make	Colour	Odometer (KM)	Doors	Price	Fuel Economy	Wheels
0	BMW	Black	11179	5	\$22,000.00	2.5	4
1	Toyota	Blue	32549	3	\$7,000.00	3.4	4
2	Nissan	White	213095	4	\$3,500.00	1.2	4
3	Honda	Blue	45698	4	\$7,500.00	1.4	4
4	Toyota	White	150043	4	\$4,000.00	1.5	4
5	Toyota	White	60000	4	\$6,250.00	6.3	4
6	Toyota	Green	99213	4	\$4,500.00	2.3	4
7	Honda	Red	87899	4	\$5,000.00	2.6	4
8	Nissan	White	31600	4	\$9,700.00	2.5	4
9	Honda	Blue	54738	4	\$7,000.00	4.5	4

In [49]:

Convert Odometer KM Column to Miles by values by 1.6

Use Lambda function

car_sales["Odometer (KM)"] = car_sales["Odometer (KM)"].apply(lambda x:x/1.6)
car_sales

Out[49]:

	Make	Colour	Odometer (KM)	Doors	Price	Fuel Economy	Wheels
0	Toyota	White	93776.875	4	\$4,000.00	1.5	4
1	Honda	Red	54936.875	4	\$5,000.00	2.6	4
2	Toyota	Blue	20343.125	3	\$7,000.00	3.4	4
3	BMW	Black	6986.875	5	\$22,000.00	2.5	4
4	Nissan	White	133184.375	4	\$3,500.00	1.2	4
5	Toyota	Green	62008.125	4	\$4,500.00	2.3	4
6	Honda	Blue	28561.250	4	\$7,500.00	1.4	4
7	Honda	Blue	34211.250	4	\$7,000.00	4.5	4
8	Toyota	White	37500.000	4	\$6,250.00	6.3	4
9	Nissan	White	19750.000	4	\$9,700.00	2.5	4