Maximum and Minimum Values

Section 4.1

Outline

- ▶ 1. Definition
 - Absolute Maximum and Minimum
 - Local Maximum and Minimum
- ▶ 2. Theorems
 - ▶ The Extreme Value Theorem
 - Fermat's Theorem
- ▶ 3. Summary of Finding Extreme Values

Definition

- **Definition** Let c be a number in the domain D of a function f. Then f(c) is the
- absolute maximum value of f on D if $f(c) \ge f(x)$ for all x in D.
- **absolute minimum** value of f on D if $f(c) \le f(x)$ for all x in D.
- **2 Definition** The number f(c) is a
- local maximum value of f if $f(c) \ge f(x)$ when x is near c.
- local minimum value of f if $f(c) \le f(x)$ when x is near c.

Definition

- An absolute maximum or minimum is sometimes called a **global** maximum or minimum.
- The maximum and minimum values of f are called **extreme values** of f.
- In Definition 2, if we say that something is true **near** c, we mean that it is true on some open interval containing c. Hence, the local extreme values always occur in the **interior** of the domain of f.

Ex: The graph of fix) is given as below. Find the local extreme values and global extreme values of fix).

Local extreme values Global extreme values

Theorem

The Extreme Value Theorem If f is continuous on a closed interval [a, b], then f attains an absolute maximum value f(c) and an absolute minimum value f(d) at some numbers c and d in [a, b].

Remark:

Be careful about the requirements of the Extreme Value Theorem: *f* is *continuous* on a *closed* interval.

Remark: If requirements are not satisfied, the conclusion is not

Continuity of fix)

Counterexample:

2) The interval is closed and bounded

counterexample:

Theorem

Fermat's Theorem If f has a local maximum or minimum at c, and if f'(c) exists, then f'(c) = 0.

- Note:
- ▶ Be careful of applying Fermat's Theorem. The inverse of the theorem may not be true.

Warning: Common mistakes of applying Fernat's Theorem

1) If fix) has local extreme value at c, then f(c) =0 counterexample:

(2) If f'(c)=0, then f(x) attains local extreme value at c

counterexample =

Theorem

- Fermat's Theorem does suggest that we should at least start looking for extreme values of f at the numbers c where f'(c) = 0 or where f'(c) does not exist. Such numbers are given a special name.
- **Definition** A **critical number** of a function f is a number c in the domain of f such that either f'(c) = 0 or f'(c) does not exist.
- If f has a local maximum or minimum at c, then c is a critical number of f.

Ex: The graph of fix) is given as below. Find critical numbers of fix) and local / global extreme values.

Summary

▶ To find an absolute maximum or minimum of a continuous function on a closed interval, we note that either it is local or it occurs at an endpoint of the interval.

The Closed Interval Method To find the *absolute* maximum and minimum values of a continuous function f on a closed interval [a, b]:

- **1.** Find the values of f at the critical numbers of f in (a, b).
- **2.** Find the values of f at the endpoints of the interval.
- **3.** The largest of the values from Steps 1 and 2 is the absolute maximum value; the smallest of these values is the absolute minimum value.

Ex: Find absolute extreme values of $f(x) = x^2 - 3(x+1)$ on [-2,3]

Ex: Find absolute extreme values of $f(x) = x^{\frac{1}{3}}(x-z)$ on [-1, z].

Ex: Find absolute extreme values of $f(x) = 2\sin x - \sin 2x$ on the interval $\left[-\frac{\pi}{2}, \pi\right]$

Review

- State the definition of the absolute / local maximum and minimum of a function. What is a critical number of a function?
- State the Extreme Value Theorem.
- State Fermat's theorem.
- Describe the method of finding extreme values of a function on a closed interval.