Mini Project (EE6347 Fall 2023)

Demonstrate image classification using a spiking neural network

- Objective Show as high a test accuracy as possible
- Dataset EMNIST
 - This dataset is an extended version of MNIST that contains handwritten letters in addition to digits. There are 6 splits possible for this dataset. Use the 'balanced' split.
 - More info at http://pytorch.org/vision/main/generated/torchvision.datasets.EMNIST.html

Guidelines

- Project to be done in teams of two
- Create a separate function for performing inference on test dataset. You may be asked to demonstrate during viva.
- The learning will be done using 'Backprop through Time using Surrogate Gradients' algorithms.
- Since test dataset will be used to check final test accuracy, it cannot be used for training. You may do a train: validation split of your original training dataset.
- o Show training loss vs epoch and accuracy vs epoch graphs
- You are free to choose the model, encoding method, loss functions and surrogate functions to meet the objective
- You are expected to utilize a gpu as the runs would take long
- Recommended way is to use the snnTorch library. There are many tutorials available for reference on training SNNs.
 - Look at https://snntorch.readthedocs.io/en/latest/tutorials/index.html

Grading Scheme

	Score	
Total	30	
Code	12	Implementation of dataset prep, model, optimization and final test inference
Viva	8	Communicate understanding of problem statement and explain approach
Performance	4+6	 4 marks awarded if test accuracy > 60% (i.e. model is better than coin toss) Groups will be ranked according to test accuracy and awarded remaining 6 marks relatively. Top group gets full 6 marks