力学与理论力学期中试卷(2020)

学号	姓名	成绩	(闭卷)
マケ	VF 24	砂箔	() オ
.1 1	VT 1	/^\ -\/\	(141.67)

一. $(8\, \mathcal{G})$ 某人在离水面高度为h的岸上用绳索拉船靠岸,人拉绳速率恒定为 v_0 ,方向与岸平行,将船的速度和加速度表示成船离岸水平距离L的函数。

二. $(8 \, \beta)$ 质点沿抛物线 $y = Ax^2$ 运动,设路程从抛物线顶点开始计算,其路程与时间的关系为 $s = bt^2 + ct$,式中A, b, c为常数且大于零,求顶点处质点的法向加速度和切向加速度。

三. $(10\ \beta)$ 均质立方体质量为 m,各边边长为 a,试求该立方体绕对角线MN的转动惯量I。

四. (10 分)质量为m的小环套在半径为a的光滑圆圈上,可在其上滑动。若圆圈在水平面内以恒定角速度ω绕圈上某点0转动,转轴垂直于水平面。如图,求小环沿圆圈切线方向的运动微分方程。

五.(15分)在水平桌面上,质量M的物块上连着一条倔强系数为k的弹簧,弹簧开始时处于原长,长度为 l_0 。某时刻一质量为 $\frac{1}{3}$ M的小球以初速度u开始与弹簧相碰并压缩弹簧,不考虑一切摩擦,求:

- (1) 弹簧的最大压缩量;
- (2) 以物块初始时刻位置为坐标零点,求在自然坐标系下物块的位移与时间的**x(t)**函数。

六.(16 分)在光滑水平面上,用长为l的轻线连接两个质量分别为 m_1 , m_2 的小球。开始时,线刚好拉直,两球的速度分别为 v_1 , v_2 。二者方向相同且垂直于连线,问:

- (1) 若 $m_1 = 3m_2$, $v_1 > v_2$, 系统相对于质心的角动量为多少?
- (2) 在(1) 问的条件下,线中的张力多大?

七.(18 分)宇宙飞船绕一行星沿圆轨道飞行,轨道半径为R,速率为 v_0 。要把轨道改为经过B点的椭圆轨道,如图,B位于以0为圆心,半径为3R的圆周上。

- (1) 写出该椭圆方程;
- (2) 飞船在A点进入上述轨道时,其速度应该增加多少:
- (3) 从A 点到 B 点的航程需要多少时间;
- (4) 当飞船位矢垂直于AB时,求速度的横向和径向分量。

八. $(15\, eta)$ 质量m,半径r的均质球位于倾角 θ 的斜面底端,开始时球的中心速度为 0,球相对过中心且与斜面平行的水平轴以角速度 ω_0 旋转,如图。已知球与斜面间的摩擦因数 $\mu > tan\theta$,在摩擦力作用下会沿斜面向上运动,试求球能上升的最大高度h。

