МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

Національний університет "Львівська політехніка" Інститут комп'ютерних наук та інформаційних технологій

Кафедра САП

Звіт

до лабораторної роботи №2

на тему: «МЕТОДИ ЕВОЛЮЦІЙНОГО ПОШУКУ»

3 курсу: «Методи нечіткої логіки та еволюційні алгоритми при автоматизованому проектуванні»

Виконав: ст.гр. СПКс-11 Гуменний Л.О.

> Прийняв: Кривий Р.З.

Мета роботи: ознайомитися з основними теоретичними відомостями про методи еволюційного пошуку. Вивчити роботу функції да пакету Matlab.

Завдання: Розробити за допомогою пакету Matlab програмне забезпечення, що реалізує 2 методи еволюційного пошуку.

Еволюційні оператори					
Відбір	Мутація				
турнірний	однорідне	гауссовська			
ранжирування	діагональне	випадкова			

Виконання лабораторного завдання

Тестові функції.

1) Функція Швефеля для однієї змінної:

$$f(x) = 418,9829 - x * sin\sqrt{|x|}$$

Рис.1. Функція Растригина однієї змінної.

Мінімум функції знаходиться в точці x = 5.24 а значення функції рівне 415.04.

2) Синусоїдальна функція:

$$f(x) = x * \sin(4x) + 1.1y * \sin(2y)$$

Рис.2. Синусоїдальна функція для двох змінних.

Мінімум функції при $0 \le x \le 10$ знаходиться в точці (20.03,18.07), а мінімальне значення функції -39.9.

3) Функція Екклі:

$$f(x) = 20 + e - 20 \exp\left(-0.2\sqrt{\frac{1}{2}(x_1^2 + x_2^2)}\right) - \exp\left(\frac{1}{2}(\cos 2\pi x_1 + \cos 2\pi x_2)\right)$$

Рис.2. Функція Екклі для двох змінних.

Мінімум функції знаходиться в точці (0,0), а значення функції 0.

Знаходження мінімуму функції за допомогою генетичного алгоритму.

Для знаходження мінімуму функції за допомогою генетичних алгоритмів в середовищі MATLAB я використав Genetic Algorithm Tool. В 1 задачі відбір турнірний(Tournament), схрещування однорідне(реалізовувалось самостійно crossover_uniform), мутація гауссівська(Gaussian). В 2 задачі відбір ранжування(Stochastic uniform), схрещування діагональне(але якщо кількість батьків двоє то він є однаковим з одноточковим кросинговером single point), мутація випадкова(uniform).

Задача 1

Рис.4. Налаштування комплекту Genetic Algorithm Tool для задачі 1.

Рис. 5. Графіки знаходження мінімуму функції Швефеля для 1 задачі.

Рис. 6. Графіки знаходження мінімуму синусої дальної функції для 1 задачі.

Рис. 7. Графіки знаходження мінімуму функції Екклі для 1 задачі.

Задача 2

Рис. 8. Налаштування комплекту Genetic Algorithm Tool для задачі 2.

Рис. 9. Графіки знаходження мінімуму функції Швефеля для 2 задачі.

Рис.10. Графіки знаходження мінімуму синусоїдальної функції для 2 задачі.

Рис.11. Графіки знаходження мінімуму функції Екклі для 2 задачі.

Таблиця похибок генетичного алгоритму для тестових функцій

	Відбір : турнірний			Відбір : ранжування		
	Схрещування однорідне			Схрещування: діагональне		
	Мутація: гаусівська			Мутація: випадкова		
Назва функції	Швефеля	Синусо-	Екклі	Швефеля	Синусо-	Екклі
(к-сть змінних)	(1)	їдальня	(2)	(1)	їдальня	(2)
		(2)			(2)	
Мінімум функції	415.04	-39.9	0	415.04	-39.9	0
Мінімум функції за допомогою ГА (середнє при 5 запусканнях	415.037	-39.51	0.116	418.22	-39.81	-1.65
Похибка,%	0.0007	0.98	11.6	0.76	0.2	16.5

Код реалізованого опратора

crossover_uniform.m(однорідне схрещквання)

```
function xoverKids = crossover_uniform(parents, options, nvars, FitnessFcn, ...
    unused, thisPopulation)) %однорідне схрещування
    leng = length(parents)/2;
    for j = 1:nvars
        maska = rand(1,leng);
        for i = 1:leng
            if (maska(i) <=0.5) xoverKids(i,j)=parents(i);
            else xoverKids(i,j)=parents(i + leng);
            end
        end
    end
end

Kog тестових функцій:

function y = fun1(x)%функція Швефеля
y = 418.9829-x.*sin(abs(x).^0.5);</pre>
```

```
function y = fun1(x) %функція Швефеля y = 418.9829-х.*sin(abs(x).^0.5); end function y = fun2(x) %синусоїдальна функція y = x(1).*sin(4*x(1))+1.1*x(2).*sin(2*x(2)); end function y = fun3(x) %функція Екклі y = 20 + exp(1) - 20 * exp(-0.2*((1/2)*(x(1).^2 + x(2).^2)).^0.5)-exp((1/2)*(cos(2*pi*x(1))+cos(2*pi*x(2)))); end
```

Висновок: виконавши дану лабораторну роботу я ознайомився з основними теоретичними відомостями про методи еволюційного пошуку, вивчив роботу функції да пакету Matlab і реалізував еволюційні оператори згідно завдання. Генетичні алгоритми при обчислювання допускають похибку 0.0007-16.5%.