ĐẠI HỌC QUỐC GIA TPHCM

TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN

KHOA KHOA HỌC MÁY TÍNH

BỘ MÔN CẤU TRÚC DỮ LIỆU VÀ GIẢI THUẬT

Báo cáo

Đề tài: Divide/Decrease/Transform and Conquer

Môn học: Phân tích và thiết kế thuật toán

Sinh viên thực hiện:

Giáo viên hướng dẫn:

Nguyen Minh Huy(23520634)

Nguyen Thanh Son

Do Quang Luc(23520902)

Ngày 21 tháng 11 năm 2024

1. Divide and Conquer

Bài toán: Sắp xếp mảng bằng thuật toán Merge Sort

- Mô tả bài toán: Cho một mảng số nguyên, sắp xếp mảng theo thứ tự tăng dần.
- Cách áp dụng:
 - Chia (Divide): Chia mảng ban đầu thành hai mảng con có kích thước xấp xỉ bằng nhau.
 - Trị (Conquer): Đệ quy sắp xếp từng mảng con.
 - Hợp (Combine): Gộp hai mảng con đã được sắp xếp thành một mảng hoàn chỉnh bằng cách so sánh và chọn phần tử nhỏ hơn từ mỗi mảng.
- **Ứng dụng thực tế**: Tối ưu hóa việc sắp xếp danh sách lớn trong cơ sở dữ liệu hoặc quản lý dữ liệu giao dịch tài chính.

2. Decrease and Conquer

Bài toán: Tìm kiếm nhị phân (Binary Search)

- **Mô tả bài toán**: Cho một mảng đã được sắp xếp và một số x, tìm chỉ số của x trong mảng (hoặc trả về -1 nếu không tồn tại).
- Cách áp dụng:
 - Giảm bài toán (Decrease): Ở mỗi bước, so sánh x với phần tử giữa mảng:
 - * Nếu x nhỏ hơn phần tử ở giữa, chỉ xét nửa mảng bên trái.
 - * Nếu x lớn hơn phần tử ở giữa, chỉ xét nửa mảng bên phải.
 - Lặp lại quá trình cho đến khi tìm thấy xhoặc không còn mảng để xét.
- **Ứng dụng thực tế**: Tìm kiếm nhanh trong danh sách lớn, như tìm kiếm từ khóa trong từ điển hoặc cơ sở dữ liệu.

3. Transform and Conquer

Bài toán: Kiểm tra một số có phải là số nguyên tố

- Mô tả bài toán: Xác định xem số n có phải là số nguyên tố hay không.
- Cách áp dụng:
 - $Bi\acute{e}n$ đổi bài toán (Transform): Thay vì kiểm tra tất cả các số từ 2 đến n-1, chỉ cần kiểm tra các ước từ 2 đến \sqrt{n} , vì mọi ước x lớn hơn \sqrt{n} đều có một ước nhỏ hơn hoặc bằng \sqrt{n} .
 - Giải bài toán đã được biến đổi: Kiểm tra n có chia hết cho bất kỳ số nào từ 2 đến \sqrt{n} . Nếu không, n là số nguyên tố.
- **Úng dụng thực tế**: Kiểm tra tính nguyên tố trong các thuật toán mã hóa RSA hoặc các hệ thống bảo mật dữ liệu.

Tóm tắt

- Divide and Conquer: Chia bài toán lớn thành các bài toán con, giải từng bài toán con và kết hợp kết quả (ví dụ: Merge Sort).
- Decrease and Conquer: Giảm kích thước bài toán qua từng bước và giải bài toán nhỏ hơn (ví dụ: Binary Search).
- Transform and Conquer: Biến đổi bài toán thành một dạng khác để giải quyết dễ hơn (ví dụ: Kiểm tra số nguyên tố).

Đề bài

Cho 2 số nguyên x và n ($x \le 10^{18}, n \le 10^{18}$). Tính tổng:

$$S = x^0 + x^1 + x^2 + \dots + x^n$$

Ví dụ: với x = 5 và n = 5, thì S = 3906.

Cách 1: Duyệt tuần tự (Naive Approach)

Ý tưởng:

- Tính từng lũy thừa x^k từ k=0 đến k=n và cộng dần vào tổng S.
- Đây là cách làm đơn giản nhưng không tối ưu.

Ưu điểm:

- Dễ triển khai.
- \bullet Phù hợp khi n nhỏ.

Nhược điểm:

ullet Không khả thi khi n lớn vì số phép tính tăng tuyến tính với n.

Mã giả C++:

```
// C++ Implementation
long long naive_sum(long long x, long long n) {
   long long S = 0;
   long long current_power = 1; // x^0 = 1
   for (long long i = 0; i <= n; ++i) {
      S += current_power;
      current_power *= x;
   }
   return S;
}</pre>
```

Độ phức tạp: O(n).

Cách 2: Sử dụng công thức cấp số nhân

$\acute{\mathbf{Y}}$ tưởng:

 \bullet Tổng S của cấp số nhân được tính bằng công thức:

$$S = \frac{x^{n+1} - 1}{x - 1}$$
, nếu $x \neq 1$.

• Nếu x = 1, thì S = n + 1.

Ưu điểm:

- $\bullet\,$ Hiệu quả khi n lớn, không cần tính tất cả lũy thừa.
- Độ phức tạp thấp: $O(\log(n))$ nhờ sử dụng lũy thừa nhanh.

Nhược điểm:

• Cần xử lý số học lớn để tránh tràn số.

Mã giả C++:

```
1  // C++ Implementation
2 long long geometric_sum(long long x, long long n) {
3    if (x == 1) {
4       return n + 1;
5    } else {
6       return (pow(x, n + 1) - 1) / (x - 1);
7    }
8 }
```

Độ phức tạp: $O(\log(n))$.

Cách 3: Sử dụng Divide and Conquer

$\acute{\mathbf{Y}}$ tưởng:

• Chia bài toán thành hai phần:

$$S_1 = x^0 + x^1 + \dots + x^{\text{mid}}, \quad S_2 = x^{\text{mid}+1} + \dots + x^n,$$

với mid = $\lfloor n/2 \rfloor$.

• Tính S_1 bằng đệ quy. Sau đó, tính S_2 bằng cách nhân S_1 với $x^{\text{mid}+1}$ (do S_2 là dịch chuyển lũy thừa của S_1).

Ưu điểm:

- ullet Phù hợp khi n rất lớn.
- Tối ưu hóa tính toán bằng cách giảm số lần tính lũy thừa.

Nhược điểm:

• Phức tạp hơn khi triển khai.

Mã giả C++:

Độ phức tạp: $O(\log^2(n))$.

So sánh 3 cách giải

Cách giải	Kỹ thuật áp dụng	Độ phức tạp	Ưu điểm / Nhược điểm
Cách 1: Duyệt tuần tự	Không tối ưu	O(n)	${ m D} { m ilde{e}}$ triển khai; không khả thi khi r
Cách 2: Công thức toán học	Transform and Conquer	$O(\log(n))$	Hiệu quả; cần xử lý số học lớn
Cách 3: Divide and Conquer	Divide and Conquer	$O(\log^2(n))$	Tối ưu hóa tốt cho n lớn

_

Kết luận

- \bullet Cách 1 chỉ phù hợp với n nhỏ, đơn giản nhưng không hiệu quả.
- Cách 2 là lựa chọn tốt nhất nếu cần hiệu suất cao và tính toán chính xác.
- \bullet Cách 3 là phương pháp hiệu quả và thực tế nhất khi n rất lớn, nhờ chia nhỏ bài toán và tối ưu lũy thừa.