

Description

These N-Channel enhancement mode power field effect transistors are using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and with stand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

Features

- $60V,60A,R_{DS(ON).max}=11m\Omega@V_{GS}=10V$
- Improved dv/dt capability
- Fast switching
- ♦ 100% EAS Guaranteed
- Green device available

Applications

- Motor Drives
- ♦ UPS
- ◆ DC-DC Converter

Product Summary

 $\begin{array}{ll} V_{DSS} & \qquad 60V \\ R_{DS(on).max} \textcircled{0} \ V_{GS} = 10V & \qquad 11 m\Omega \\ I_D & \qquad 60A \end{array}$

Pin Configuration

Absolute Maximum Ratings Tc = 25°C unless otherwise noted

Parameter	Symbol	Value	Unit	
Drain-Source Voltage	V _{DSS}	60	V	
Continuous drain current (T _C = 25°C)	1	60	А	
Continuous drain current (T _C = 100°C)	- I _D	39	Α	
Pulsed drain current ¹⁾	Ірм	240	Α	
Gate-Source voltage	V _{GSS}	±20	V	
Avalanche energy ²⁾	E _{AS}	132	mJ	
Power Dissipation (T _C = 25°C)	P _D	83	W	
Storage Temperature Range	T _{STG}	-55 to +150	°C	
Operating Junction Temperature Range	TJ	-55 to +150	°C	

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	Rejc	1.5	°C/W

Package Marking and Ordering Information

Device	Device Package	Marking
VSM60N06-T3	TO-263	VSM60N06-T3
VSM60N06-TC	TO-220C	VSM60N06-TC

Electrical Characteristics T_J = 25°C unless otherwise noted

Electrical Characteristics	1	T _J = 25°C unless otherwise noted					
Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit	
Static characteristics				_			
Drain-source breakdown voltage	BV _{DSS}	V _{GS} =0 V, I _D =250uA	60			V	
Gate threshold voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =250uA	1	1.6	2.5	V	
Drain-source leakage current	I _{DSS}	V _{DS} =60V, V _{GS} =0V, T _J = 25°C			1	μА	
		V _{DS} =48V, V _{GS} =0V, T _J = 125°C			30	μА	
Gate leakage current, Forward	I _{GSSF}	V _{GS} =20V, V _{DS} =0 V			100	nA	
Gate leakage current, Reverse	I _{GSSR}	V _{GS} =-20V, V _{DS} =0 V			-100	nA	
5	Б	V _{GS} =10V, I _D =20A		8	11	mΩ	
Drain-source on-state resistance	R _{DS(on)}	V _{GS} =4.5V, I _D =10A		11	14	mΩ	
Forward transconductance	g _{fs}	V _{DS} =5V , I _D =20A		38		S	
Dynamic characteristics							
Input capacitance	C _{iss})/ 05)/)/ 0)/		2767			
Output capacitance	Coss	V _{DS} = 25V, V _{GS} = 0V, F = 1MHz		209		pF	
Reverse transfer capacitance	Crss	- F - IIVIDZ		162			
Turn-on delay time	t _{d(on)}			17		ns	
Rise time	t _r	V _{DD} = 30V,V _{GS} =10V, I _D =25A		167.5			
Turn-off delay time	t _{d(off)}			315			
Fall time	t _f			73.5			
Gate resistance	Rg	V _{GS} =0V, V _{DS} =0V, F=1MHz		1.7		Ω	
Gate charge characteristics							
Gate to source charge	Q _{gs}			11.2			
Gate to drain charge	Q _{gd}	V _{DS} =48V, I _D =25A, V _{GS} = 10V		12.6		nC	
Gate charge total	Qg			55			
Drain-Source diode characteristic	cs and Maxii	num Ratings		'			
Continuous Source Current	Is				60	А	
Pulsed Source Current ³⁾	I _{SM}]			240	А	
Diode Forward Voltage	V _{SD}	V _{GS} =0V, I _S =20A, T _J =25°C			1.2	V	
Reverse Recovery Time	t _{rr}			29.6		ns	
Reverse Recovery Charge	Qrr	I _S =25A,di/dt=100A/us, T _J =25℃		40.5		nC	

Notes

- 1: Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2: V_{DD} =25V, V_{GS} =10V, L=0.5mH, I_{AS} =23A, R_G =25 Ω , Starting T_J =25 $^{\circ}$ C.
- 3: Pulse Test: Pulse Width $\leq 300 \, \mu \, \text{s}$, Duty Cycle $\leq 2\%$.

Electrical Characteristics Diagrams

Figure 1. Typ. Output Characteristics

Figure 2. Transfer Characteristics

Figure 3. Capacitance Characteristics

Figure 4. Gate Charge Waveform

Figure 5. Body-Diode Characteristics

Figure 6. Rdson-Drain Current

Figure 7. Rdson-Junction Temperature(°C)

Figure 8. Maximum Safe Operating Area

Figure 6. Normalized Maximum Transient Thermal Impedance (RthJC)

Test Circuit & Waveform

Figure 8. Gate Charge Test Circuit & Waveform

Figure 9. Resistive Switching Test Circuit & Waveforms

Figure 10. Unclamped Inductive Switching (UIS) Test Circuit & Waveform

Figure 11. Diode Recovery Circuit & Waveform

