U.K.Accidents-Ten Years History.

Sheetal Munjewar

2023-03-03

Contents

Introduction	2
Problem statement / Research Questions	2
Approach	2
How your approach addresses (fully or partially) the problem	5
Insights from Data	3
Limitations	3
Improvements	3
Concluding Remarks	3
Required Packages	
Data	4
Function declarations	4
Load Data	4
Merge data (Three datasets into one)	4
Populate column code with meaningful descriptios using Excel file Road-Accident-Safety-Data-Guide.xls into new column.	F
Get rid of excess data columns	6
Change Date column to date format	7
Adding new columns for aggregation and summerization.	7
Check "NA" counts in dataset	7
Display final data set and save it in seperate file	8
Data Analysis and Visualization Section :	11
Graph indicate reduction in the number of reported accidents between 2005 and 2014	11
Accident count on specific day of the week.	12
Accident by hours	13
Slight Accident by hours	14
Serious Accident by hours	15
Fatal Accidents by hours	16
Contingency Table and Row Percentage	17

	Accident Severity by Weather COndition	18
	Accident Severity Proportion by Weather Condition	19
	Accident Severity by Area Type	20
	Accident Severity Proportion by Area Type	21
	Road conditions contributing accidents	22
	Accident Severity by Junction Type	24
	Accident Severity Proportion by Junction Type	25
	Accurancy Matrix	26
	Accident Severity by Age of Drivers	27
	Accident Severity Proportion by Age of Driver	28
	Comparison by Engine CC	29
Infe	rential Statistics	30
	Test of Independence: Accident Severity vs Hours	30
	Test of Independence: Accident Severity vs Weekend night	31
	Test of Independence: Accident Severity vs Weather, Area Type and Junction Type	31

Introduction

Road safety is the common concern around the world, As a part of this exercise we are going to explore U.K road safety data about the circumstances of personal injury road accidents in GB from 2005 to 2014,

Data Source link: https://www.kaggle.com/datasets/benoit72/uk-accidents-10-years-history-with-many-variables

Different data Sources files (cvs):

Accident file: main data set contains information about accident severity, weather, location, date, hour, day of week, road type... Vehicle file: contains information about vehicle type, vehicle model, engine size, driver sex, driver age, car age... Casualty file: contains information about casualty severity, age, sex social class, casualty type, pedestrian or car passenger... Lookup file: contains the text description of all variable code in the three files

License - http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/

Problem statement / Research Questions

- Accidents are on rise or decline over the years?
- Co-relation between weather with number or severity of an accident?
- Does driver age has an effect on the number of accident?
- What is the relation between hour, day, week, month with number of fatal accident?
- Are certain car models safer than others?
- Is the social class of a casualty dependent of the accident severity?

Approach

Data must be collected from legal source (Publicly available), Check for missing data, merge the different data sources/files into one data frame. In out case we have four data sources. Map column codes with text string for look up table, map and assign column names. map log/lat into the countries. Filter required columns to address research questions and use graphs for visualizations.

How your approach addresses (fully or partially) the problem.

Project approach is the address following future forcast:

Can you forecast the future daily/weekly/monthly accidents? Action that can prevent future accident based on variable relationship and predictions? Fatal accidents can be predict or avoided? Variables contributing rise in fatal accidents?

Insights from Data

- Reduction in the number of reported accidents between 2005 and 2014.
- Accidents reported on Friday certainly in lead compared to other week days.
- Accidents tend to occur on the business hours when people commute to work.
- Contingency table show, proportion of fatal accidents is higher than during the day, while we observe the opposite result for the slight accidents, results proved our conclusion using chi-square test.
- Casualty Outcome proportion conclude that probability of an accident to be fatal is higher when it's foggy or misty.
- More "slight" accidents happen in urban areas; however, "fatal" accidents ratio is more in a rural area compared to total accidents occurs in both areas.
- Probability of an accident to be fatal is higher on road that are "Not a junction or within 20 metres of a junction". On the contrary an accident happening on a roundabout is much more likely to be a slight accident and not likely at all to be a fatal accident.
- Road surface with "Oil or Diesel" can cause more accidents (Slight, Serious and Fatal)
- Death rate of drivers aged over 75 is much higher probably because they are more vulnerable to injuries, or they are driving old car.

Limitations

- Data set is based on Rural and Urban categorization, however actual location and population, country geo region specific data and transparency is limited.
- Data set findings are limited and sampling based, however actual vechicle and its categorization with model and approximate count across is missing.
- Road conditions and changes across the decade are limited.
- New traffic rule and regulation like change in speed limit on highway, expansion of roads and manu more changes over the decade are limited.

Improvements

Data set used for analysis does have missing information and it doesn't cover all the facts, further data correction can improve accuracy and evaluate more observation in future.

Concluding Remarks

The total number of vehicle accidents are the decline, likelihood of being involved in a collision is higher on Fridays while the lowest is Saturday and Sunday. A severe injury or terminal outcome are a lot more likely to occur if the vehicle comes to an abrupt stop rather than skidding. Young people are more likely to drive recklessly and be involved in a collision calls for more data, the full moon has no effect whatsoever on the number of vehicle collisions.

Test of Independence, shows data findings are 95% CI statistically correct as we always have a p-value < 0.05

Required Packages

Base packages plus

"ggplot2", "dplyr", "broom", "purrr", "GGally", "scales", "caret", "moments", "ggpubr", "readxl", "corrplot"

Data

Four data Sources(cvs):

Accident file: main data set contains information about accident severity, weather, location, date, hour, day of week, road type... Vehicle file: contains information about vehicle type, vehicle model, engine size, driver sex, driver age, car age... Casualty file: contains information about casualty severity, age, sex social class, casualty type, pedestrian or car passenger... Lookup file: contains the text description of all variable code in the three files

Sources: https://www.kaggle.com/datasets/benoit72/uk-accidents-10-years-history-with-many-variables

Function declarations

```
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
     filter, lag
## The following objects are masked from 'package:base':
##
     intersect, setdiff, setequal, union
##
## corrplot 0.92 loaded
## Loading required package: lattice
  ______
## You have loaded plyr after dplyr - this is likely to cause problems.
## If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
## library(plyr); library(dplyr)
  ______
## Attaching package: 'plyr'
## The following objects are masked from 'package:dplyr':
##
     arrange, count, desc, failwith, id, mutate, rename, summarise,
##
##
     summarize
```

Load Data

- Total three data sources and one label index excel.
- Accident_Index field, unique identifier that refers to one accident and common to link all data sets.

Merge data (Three datasets into one)

```
knitr::opts_chunk$set(echo = TRUE)
knitr::opts_chunk$set(warning = FALSE)
knitr::opts_chunk$set(fig.width = 12, fig.height = 10)
knitr::opts_chunk$set(tidy.opts = list(width.cutoff = 70), tidy = TRUE)

df <- merge(Accidents, Casualties, by = "Accident_Index")
df <- merge(df, Vehicles, by = "Accident_Index")
rm(Accidents, Casualties, Vehicles)
# str(df) head(df)</pre>
```

Populate column code with meaningful descriptios using Excel file Road-Accident-Safety-Data-Guide.xls into new column.

```
knitr::opts chunk$set(echo = TRUE)
knitr::opts chunk$set(warning = FALSE)
knitr::opts_chunk$set(fig.width = 12, fig.height = 10)
knitr::opts_chunk$set(tidy.opts = list(width.cutoff = 70), tidy = TRUE)
setwd("E:\\Data_Science_DSC510\\DSC520-Statistics\\dsc520")
Day_of_Week <- read_excel("assignments/Final-Project/Road-Accident-Safety-Data-Guide.xls",
    sheet = "Day of Week")
df <- left_join(df, Day_of_Week, by = c(Day_of_Week = "code"))</pre>
df <- dplyr::rename(df, day_of_Week = label)</pre>
rm(Day_of_Week)
Location_code <- read_excel("assignments/Final-Project/Road-Accident-Safety-Data-Guide.xls",
    sheet = "Police Force")
df <- left_join(df, Location_code, by = c(Police_Force = "code"))</pre>
df <- dplyr::rename(df, Location = label)</pre>
rm(Location code)
Junction_type <- read_excel("assignments/Final-Project/Road-Accident-Safety-Data-Guide.xls",
    sheet = "Junction Detail")
df <- left_join(df, Junction_type, by = c(Junction_Detail = "code"))</pre>
df <- dplyr::rename(df, Junction = label)</pre>
rm(Junction_type)
Light_conditions <- read_excel("assignments/Final-Project/Road-Accident-Safety-Data-Guide.xls",
    sheet = "Light Conditions")
df <- left_join(df, Light_conditions, by = c(Light_Conditions = "code"))</pre>
df <- dplyr::rename(df, Lighting = label)</pre>
rm(Light_conditions)
Weather_conditions <- read_excel("assignments/Final-Project/Road-Accident-Safety-Data-Guide.xls",
    sheet = "Weather")
df <- left_join(df, Weather_conditions, by = c(Weather_Conditions = "code"))</pre>
df <- dplyr::rename(df, Weather = label)</pre>
rm(Weather conditions)
Surface_conditions <- read_excel("assignments/Final-Project/Road-Accident-Safety-Data-Guide.xls",
    sheet = "Road Surface")
df <- left_join(df, Surface_conditions, by = c(Road_Surface_Conditions = "code"))</pre>
df <- dplyr::rename(df, Surface = label)</pre>
```

```
rm(Surface_conditions)
Vehicle_type <- read_excel("assignments/Final-Project/Road-Accident-Safety-Data-Guide.xls",
    sheet = "Vehicle Type")
df <- left_join(df, Vehicle_type, by = c(Vehicle_Type = "code"))</pre>
df <- dplyr::rename(df, Vehicle = label)</pre>
rm(Vehicle type)
Vehicle_manoeuvre <- read_excel("assignments/Final-Project/Road-Accident-Safety-Data-Guide.xls",
    sheet = "Vehicle Manoeuvre")
df <- left_join(df, Vehicle_manoeuvre, by = c(Vehicle_Manoeuvre = "code"))</pre>
df <- dplyr::rename(df, Manoeuvre = label)</pre>
rm(Vehicle manoeuvre)
Skidding <- read_excel("assignments/Final-Project/Road-Accident-Safety-Data-Guide.xls",
    sheet = "Skidding and Overturning")
df <- left_join(df, Skidding, by = c(Skidding_and_Overturning = "code"))</pre>
df <- dplyr::rename(df, Skidding = label)</pre>
rm(Skidding)
Journey_purpose <- read_excel("assignments/Final-Project/Road-Accident-Safety-Data-Guide.xls",
    sheet = "Journey Purpose")
df <- left_join(df, Journey_purpose, by = c(Journey_Purpose_of_Driver = "code"))</pre>
df <- dplyr::rename(df, Journey = label)</pre>
rm(Journey_purpose)
Age_band <- read_excel("assignments/Final-Project/Road-Accident-Safety-Data-Guide.xls",
    sheet = "Age Band")
df <- left_join(df, Age_band, by = c(Age_Band_of_Driver = "code"))</pre>
df <- dplyr::rename(df, Age_Band = label)</pre>
rm(Age_band)
Casualty_severity <- read_excel("assignments/Final-Project/Road-Accident-Safety-Data-Guide.xls",
    sheet = "Accident Severity")
df <- left_join(df, Casualty_severity, by = c(Casualty_Severity = "code"))</pre>
df <- dplyr::rename(df, Casualty Outcome = label)</pre>
rm(Casualty_severity)
Road_Surface <- read_excel("assignments/Final-Project/Road-Accident-Safety-Data-Guide.xls",
    sheet = "Road Surface")
df <- left_join(df, Road_Surface, by = c(Road_Type = "code"))</pre>
df <- dplyr::rename(df, Road_Surface = label)</pre>
rm(Road_Surface)
Urban_Rural <- read_excel("assignments/Final-Project/Road-Accident-Safety-Data-Guide.xls",</pre>
    sheet = "Urban Rural")
df <- left_join(df, Urban_Rural, by = c(Urban_or_Rural_Area = "code"))</pre>
df <- dplyr::rename(df, Urban_Rural = label)</pre>
rm(Urban Rural)
```

Get rid of excess data columns.

```
knitr::opts_chunk$set(echo = TRUE)
knitr::opts_chunk$set(warning = FALSE)
```

Change Date column to date format.

```
df$Date <- as.Date(df$Date, "%m/%d/%Y")
# str(df$Date) head(df$Date)</pre>
```

Adding new columns for aggregation and summerization.

```
df$Year <- format(as.Date(df$Date), "%Y")
df$Month <- format(as.Date(df$Date), "%m")
df$time_slot <- as.numeric(substr(df$Time, 0, 2))</pre>
```

Check "NA" counts in dataset

```
# Check 'NA' count in dataset.
sort(sapply(df, function(x) sum(is.na(x))), decreasing = TRUE)
```

```
##
                                        Date
                                                                                    Year
##
                                     2578146
                                                                                2578146
##
                                       Month
                                                                           Road Surface
##
                                     2578146
                                                                                  20880
##
                                   time slot
                                                                 Location_Easting_OSGR
##
                                          264
                                                                                    256
                     Location_Northing_OSGR
                                                                              Longitude
##
                                          256
                                                                                    256
                                    Latitude
##
                                                                         Accident Index
##
                                          256
##
                                Police_Force
                                                                     Accident_Severity
##
##
                                                                  Number_of_Casualties
                         Number_of_Vehicles
##
                                                                                       0
##
                                 Day_of_Week
                                                                                    Time
##
##
                Local_Authority_.District.
                                                             Local_Authority_.Highway.
##
##
                             X1st_Road_Class
                                                                       X1st_Road_Number
```

```
##
                                                                           Speed_limit
                                   Road_Type
##
                                                                      X2nd_Road_Number
##
                            X2nd_Road_Class
##
         Pedestrian_Crossing.Human_Control Pedestrian_Crossing.Physical_Facilities
##
                           Light_Conditions
##
                                                                    Weather_Conditions
##
##
                    Road_Surface_Conditions
                                                           Special_Conditions_at_Site
##
##
                        Urban or Rural Area
                                                                   Vehicle Reference.x
##
##
                             Casualty_Class
                                                                       Sex_of_Casualty
##
                            Age_of_Casualty
                                                                 Age Band of Casualty
##
                          Casualty_Severity
                                                                         Car Passenger
##
                     Bus_or_Coach_Passenger
                                                                         Casualty_Type
                    Casualty_Home_Area_Type
                                                                  Vehicle_Reference.y
##
##
                               Vehicle_Type
                                                                     Vehicle_Manoeuvre
##
##
          Vehicle_Location.Restricted_Lane
                                                             Skidding_and_Overturning
##
##
                       X1st_Point_of_Impact
                                                         Was_Vehicle_Left_Hand_Drive.
##
##
                  Journey_Purpose_of_Driver
                                                                         Sex_of_Driver
##
##
                              Age_of_Driver
                                                                 Engine_Capacity_.CC.
##
                             Age_of_Vehicle
                                                                           day_of_Week
##
##
                                    Location
                                                                              Junction
                                                                                      0
##
                                    Lighting
                                                                               Weather
                                                                                      0
                                     Surface
                                                                               Vehicle
##
                                           0
                                                                                      0
                                                                              Skidding
##
                                   Manoeuvre
##
                                           0
                                                                                      0
##
                                     Journey
                                                                              Age_Band
##
                                           0
##
                           Casualty_Outcome
                                                                           Urban Rural
##
                                           0
                                                                                      0
```

Display final data set and save it in seperate file.

```
# write.csv(df, file = 'filtered_eported_data.csv')
head(df)
```

```
## Accident_Index Location_Easting_OSGR Location_Northing_OSGR Longitude
## 1 200501BS00001 525680 178240 -0.191170
```

```
## 2 200501BS00002
                                     524170
                                                             181650 -0.211708
## 3 200501BS00003
                                                             182240 -0.206458
                                     524520
## 4 200501BS00003
                                     524520
                                                             182240 -0.206458
## 5 200501BS00004
                                                             177530 -0.173862
                                     526900
## 6 200501BS00005
                                     528060
                                                             179040 -0.156618
     Latitude Police_Force Accident_Severity Number_of_Vehicles
## 1 51.48910
                                             2
                          1
                                             3
## 2 51.52007
                          1
                                                                  1
## 3 51.52530
                                             3
                                                                  2
                          1
                                             3
## 4 51.52530
## 5 51.48244
                                             3
                          1
                                                                  1
                                             3
## 6 51.49575
                                 Date Day_of_Week Time Local_Authority_.District.
##
     Number_of_Casualties
                         1 2005-04-01
                                                 3 17:42
                                                 4 17:36
## 2
                         1 2005-05-01
                                                                                    12
## 3
                         1 2005-06-01
                                                 5 00:15
                                                                                    12
## 4
                         1 2005-06-01
                                                 5 00:15
                                                                                    12
                         1 2005-07-01
                                                 6 10:35
## 5
                                                                                    12
## 6
                         1 2005-10-01
                                                 2 21:13
                                                                                    12
     Local_Authority_.Highway. X1st_Road_Class X1st_Road_Number Road_Type
##
                      E09000020
## 1
                                               3
                                                              3218
                                                                            6
## 2
                      E09000020
                                               4
                                                               450
                                                                            3
## 3
                      E09000020
                                               5
                                                                 0
                                                                            6
## 4
                      E09000020
                                               5
                                                                  0
                                                                            6
## 5
                      E09000020
                                               3
                                                              3220
                                                                            6
                      E09000020
                                               6
                                                                  0
                                                                            6
## 6
     Speed_limit X2nd_Road_Class X2nd_Road_Number
## 1
              30
                               -1
              30
## 2
                                5
                                                   0
## 3
              30
                                                   0
                               -1
##
  4
              30
                                -1
                                                   0
              30
## 5
                               -1
                                                   0
                               -1
                                                   0
     Pedestrian_Crossing.Human_Control Pedestrian_Crossing.Physical_Facilities
##
## 1
## 2
                                       0
                                                                                  5
## 3
                                       0
                                                                                 0
## 4
                                       0
                                                                                 0
                                       0
                                                                                 0
## 5
                                       0
                                                                                  0
##
     Light_Conditions Weather_Conditions Road_Surface_Conditions
## 1
                     1
## 2
                     4
                                         1
                                                                   1
                     4
## 3
                                                                   1
## 4
                     4
                                         1
                                                                   1
## 5
                                         1
## 6
                     7
                                         1
     Special_Conditions_at_Site Urban_or_Rural_Area Vehicle_Reference.x
## 1
                               0
                                                     1
                                                                          1
## 2
                               0
                                                                          1
                                                     1
                               0
## 3
                                                                          2
                                                     1
## 4
                               0
                                                                          2
                                                     1
## 5
                               0
                                                     1
                                                                          1
                                                     1
                                                                          1
##
     Casualty_Class Sex_of_Casualty Age_of_Casualty Age_Band_of_Casualty
                   3
## 1
                                    1
```

```
## 2
                                                     37
                                                                            7
                   2
## 3
                                                    62
                                                                            9
                   1
                                    1
## 4
                   1
                                                    62
                                                                            9
                                    1
## 5
                   3
                                                    30
                                                                            6
                                    1
##
  6
                   1
                                    1
                                                    49
     Casualty_Severity Car_Passenger Bus_or_Coach_Passenger Casualty_Type
##
                      2
                                     0
  1
                      3
                                     0
##
                                                                            11
                      3
##
  3
                                     0
                                                              0
                                                                             9
                      3
                                                                             9
                                     0
##
  4
                                                              0
## 5
                      3
                                     0
                                                              0
                                                                             0
                      3
##
                                     0
                                                              0
##
     Casualty_Home_Area_Type Vehicle_Reference.y Vehicle_Type Vehicle_Manoeuvre
##
                             1
                                                               11
                                                                                    4
                                                  1
##
                                                  1
                                                               11
                                                                                   17
##
  4
                                                  2
                                                                9
                                                                                    2
                             1
##
  5
                             1
                                                  1
                                                                                   18
## 6
                                                                3
                                                                                   18
                            -1
     Vehicle_Location.Restricted_Lane Skidding_and_Overturning
##
  1
##
                                      0
                                                                 0
                                      0
                                                                 0
##
  3
                                      0
                                                                 0
##
  4
## 5
                                      0
                                                                 0
                                      0
##
     X1st_Point_of_Impact Was_Vehicle_Left_Hand_Drive. Journey_Purpose_of_Driver
##
                                                                                    15
  1
                         1
                                                         1
##
                                                                                     1
## 3
                         4
                                                                                     1
                                                         1
##
  4
                         3
                                                                                    15
## 5
                         1
                                                         1
                                                                                    15
                         1
     Sex_of_Driver Age_of_Driver Engine_Capacity_.CC. Age_of_Vehicle day_of_Week
##
                  2
##
  1
                                74
                                                       -1
                                                                       -1
                                                                               Tuesday
##
  2
                  1
                                42
                                                    8268
                                                                        3
                                                                            Wednesday
                                35
                                                    8300
                                                                        5
                  1
                                                                             Thursday
##
                                62
                                                     1762
                                                                        6
                                                                             Thursday
                  1
                                                                        4
##
  5
                  2
                                49
                                                     1769
                                                                               Friday
##
                  1
                                                       85
                                                                       10
                                49
                                                                               Monday
                 Location
                                                        Junction
## 1 Metropolitan Police Not at junction or within 20 metres
## 2 Metropolitan Police
                                                     Crossroads
## 3 Metropolitan Police Not at junction or within 20 metres
## 4 Metropolitan Police Not at junction or within 20 metres
## 5 Metropolitan Police Not at junction or within 20 metres
## 6 Metropolitan Police Not at junction or within 20 metres
##
                         Lighting
                                                  Weather
## 1
                         Daylight Raining no high winds Wet or damp
## 2
           Darkness - lights lit
                                      Fine no high winds
                                                                    Dry
## 3
           Darkness - lights lit
                                      Fine no high winds
                                                                   Dry
           Darkness - lights lit
                                      Fine no high winds
                                                                    Dry
## 5
                         Daylight
                                      Fine no high winds
                                                                    Dry
  6 Darkness - lighting unknown
                                      Fine no high winds Wet or damp
##
                                    Vehicle
                                                                Manoeuvre Skidding
## 1
                                        Car
                                                        Going ahead other
                                                                               None
```

```
## 2 Bus or coach (17 or more pass seats)
                                                   Slowing or stopping
                                                                           None
## 3 Bus or coach (17 or more pass seats) Going ahead right-hand bend
                                                                           None
## 4
                                      Car
                                                                Parked
                                                                           None
## 5
                                      Car
                                                     Going ahead other
                                                                           None
## 6
               Motorcycle 125cc and under
                                                     Going ahead other Skidded
##
                       Journey Age_Band Casualty_Outcome Road_Surface Urban_Rural
## 1 Other/Not known (2005-10) 66 - 75
                                                  Serious Oil or diesel
                                                                              Urban
       Journey as part of work 36 - 45
                                                                              Urban
## 2
                                                   Slight
                                                                   Snow
## 3
       Journey as part of work
                                26 - 35
                                                   Slight Oil or diesel
                                                                              Urban
## 4 Other/Not known (2005-10) 56 - 65
                                                  Slight Oil or diesel
                                                                              Urban
## 5 Other/Not known (2005-10) 46 - 55
                                                  Slight Oil or diesel
                                                                              Urban
                                                  Slight Oil or diesel
## 6 Other/Not known (2005-10) 46 - 55
                                                                              Urban
    Year Month time slot
##
## 1 2005
             04
## 2 2005
             05
                       17
## 3 2005
             06
                        0
## 4 2005
             06
                        0
## 5 2005
             07
                       10
## 6 2005
             10
                       21
```

Data Analysis and Visualization Section:

Graph indicate reduction in the number of reported accidents between 2005 and 2014.

Accident count on specific day of the week.

```
df %>%
    group_by(day_of_Week) %>%
    dplyr::summarize(total_accidents = n_distinct(Accident_Index)) %>%
    ggplot(aes(x = day_of_Week, y = total_accidents)) + geom_bar(stat = "identity",
    fill = "steelblue") + geom_text(aes(label = total_accidents), vjust = 1.6,
    color = "white", size = 3.5) + theme_minimal()
```


Accident by hours.

Slight Accident by hours

```
head(df$Casualty_Severity)
## [1] 2 3 3 3 3 3
```

```
df %>%
    filter(Casualty_Outcome == "Slight") %>%
    group_by(time_slot) %>%
    dplyr::summarize(total_accidents = n_distinct(Accident_Index)) %>%
    ggplot(aes(x = time_slot, y = total_accidents)) + geom_bar(stat = "identity",
    fill = "steelblue") + geom_text(aes(label = total_accidents), vjust = 1.6,
    color = "black", size = 3) + scale_x_continuous(breaks = round(seq(0, 24, by = 2), 0)) + ggtitle("Total Slight Accidents by Hours from 2005 to 2014") +
```

```
xlab("Hours") + ylab("Total Accidents") + theme(plot.title = element_text(hjust = 0.5),
panel.background = element_blank())
```


Serious Accident by hours

```
head(df$Casualty_Severity)
```

```
## [1] 2 3 3 3 3 3
```

```
df %>%
   filter(Casualty_Outcome == "Serious") %>%
   group_by(time_slot) %>%
   dplyr::summarize(total_accidents = n_distinct(Accident_Index)) %>%
```

```
ggplot(aes(x = time_slot, y = total_accidents)) + geom_bar(stat = "identity",
fill = "steelblue") + geom_text(aes(label = total_accidents), vjust = 1.6,
color = "black", size = 3) + scale_x_continuous(breaks = round(seq(0,
24, by = 2), 0)) + ggtitle("Total Serious Accidents by Hours from 2005 to 2014") +
xlab("Hours") + ylab("Total Accidents") + theme(plot.title = element_text(hjust = 0.5),
panel.background = element_blank())
```

Total Serious Accidents by Hours from 2005 to 2014

Fatal Accidents by hours

```
head(df$Casualty_Severity)
```

[1] 2 3 3 3 3 3

```
df %>%
    filter(Casualty_Outcome == "Fatal") %>%
    group_by(time_slot) %>%
    dplyr::summarize(total_accidents = n_distinct(Accident_Index)) %>%
    ggplot(aes(x = time_slot, y = total_accidents)) + geom_bar(stat = "identity",
    fill = "steelblue") + geom_text(aes(label = total_accidents), vjust = 1.6,
    color = "black", size = 3) + scale_x_continuous(breaks = round(seq(0,
    24, by = 2), 0)) + ggtitle("Total Fatal Accidents by Hours from 2005 to 2014") +
    xlab("Hours") + ylab("Total Accidents") + theme(plot.title = element_text(hjust = 0.5),
    panel.background = element_blank())
```

Total Fatal Accidents by Hours from 2005 to 2014

Contingency Table and Row Percentage

```
# Looking at the proportion table it seems that the hour when the
# accident occurs has an impact on the accident severity. We can
# observe that during the night the proportion of fatal accidents is
# higher than during the day while we observe the opposite result for
# the slight accidents. Result can be conclude using chi-square test.

acc_time_severity <- table(df$time_slot, df$Casualty_Outcome)
prop.table(acc_time_severity, 1)</pre>
```

```
##
##
              Fatal
                        Serious
                                     Slight
##
    0 0.021861896 0.144985121 0.833152983
    1 0.024825576 0.150697697 0.824476728
##
##
    2 0.026132889 0.163191549 0.810675563
##
    3 0.027645340 0.157643802 0.814710858
##
    4 0.029419036 0.155451174 0.815129790
##
    5 0.028080761 0.154692836 0.817226403
    6 0.017307967 0.132727793 0.849964240
##
    7 0.009280456 0.103431637 0.887287907
##
    8 0.005340104 0.079921145 0.914738752
    9 0.007100083 0.083528678 0.909371239
##
##
    10 0.009902410 0.090959827 0.899137763
##
    11 0.008340327 0.089898937 0.901760736
    12 0.007638865 0.088334297 0.904026838
    13 0.007935690 0.090285037 0.901779273
##
##
    14 0.008880752 0.096156473 0.894962775
##
    15 0.007749175 0.096827816 0.895423009
##
    16 0.007897682 0.097013114 0.895089205
     17 0.007280241 0.096227233 0.896492526
##
##
    18 0.007905668 0.100456973 0.891637358
##
    19 0.010719464 0.105627039 0.883653498
    20 0.012939036 0.116994773 0.870066191
##
##
    21 0.013592608 0.120276801 0.866130591
    22 0.016509455 0.124017241 0.859473304
##
    23 0.018486344 0.129439155 0.852074501
```

Accident Severity by Weather COndition

Accident Severity Proportion by Weather Condition

```
df %>%
    group_by(Weather, Casualty_Outcome) %>%
    dplyr::summarize(total_accidents = n_distinct(Accident_Index)) %>%
    mutate(freq = percent(total_accidents/sum(total_accidents))) %>%
    ggplot(aes(x = Casualty_Outcome, y = freq, fill = Weather)) + geom_bar(stat = "identity",
    position = "dodge") + ggtitle("Accident Severity Proportion by Weather") +
    xlab("Accident Severity") + ylab("Accident Proportion") + theme(plot.title = element_text(hjust = 0.5),
    panel.background = element_blank(), axis.text.y = element_blank(),
    axis.ticks.y = element_blank())
```

Accident Severity Proportion by Weather

Accident Severity by Area Type

Accident Severity by Area Type

Accident Severity Proportion by Area Type

```
df %>%
    group_by(Urban_Rural, Casualty_Outcome) %>%
    filter(Urban_Rural != "Unallocated") %>%
    dplyr::summarize(total_accidents = n_distinct(Accident_Index)) %>%
    mutate(freq = percent(total_accidents/sum(total_accidents))) %>%
    ggplot(aes(x = Casualty_Outcome, y = freq, fill = Urban_Rural)) + geom_bar(stat = "identity",
    position = "dodge") + ggtitle("Accident Severity Proportion by Area Type") +
    xlab("Accident Severity") + ylab("Accident Severity Proportion") +
    theme(plot.title = element_text(hjust = 0.5), panel.background = element_blank(),
        axis.ticks.y = element_blank())
```


Road conditions contributing accidents.

```
df %>%
    group_by(Road_Surface, Casualty_Outcome) %>%
    dplyr::summarize(total_accidents = n_distinct(Accident_Index)) %>%
    ggplot(aes(x = Casualty_Outcome, y = total_accidents, fill = Road_Surface)) +
    geom_bar(stat = "identity", position = "dodge") + ggtitle("Accident count by Road conditions") +
    xlab("Accident Severity") + ylab("Total Accidents") + theme(plot.title = element_text(hjust = 0.5),
    panel.background = element_blank(), axis.text.x = element_text(angle = 45,
        hjust = 1))
```

Accident count by Road conditions


```
df %>%
    group_by(Surface, Casualty_Outcome) %>%
    dplyr::summarize(total_accidents = n_distinct(Accident_Index)) %>%
    ggplot(aes(x = Casualty_Outcome, y = total_accidents, fill = Surface)) +
    geom_bar(stat = "identity", position = "dodge") + ggtitle("Accident by road conditions impacted by Weather")
    xlab("Accident Severity") + ylab("Total Accidents") + theme(plot.title = element_text(hjust = 0.5),
    panel.background = element_blank(), axis.text.x = element_text(angle = 45,
        hjust = 1))
```

Accident by road conditions impacted by Weather

Accident Severity by Junction Type

Accident Severity Proportion by Junction Type

```
df %>%
    group_by(Junction, Casualty_Outcome) %>%
    filter(Junction != "Data missing or out of range") %>%
    dplyr::summarize(total_accidents = n_distinct(Accident_Index)) %>%
    mutate(freq = percent(total_accidents/sum(total_accidents))) %>%
    ggplot(aes(x = Casualty_Outcome, y = freq, fill = Junction)) + geom_bar(stat = "identity",
    position = "dodge") + ggtitle("Accident Severity Proportion by Junction Type") +
    xlab("Accident Severity") + ylab("Accident Severity Proportion") +
    theme(plot.title = element_text(hjust = 0.5), panel.background = element_blank(),
        axis.ticks.y = element_blank())
```


Accurancy Matrix

```
# We can see that the probability of an accident to be fatal is
# higher on road that ar enot a junction or within 20 metres of a
# junction. On the contrary an accident happening on a roundabout is
# much more likely to be a slight accident and not likely at all to
# be a fatal accident.

# Why I removed the rows labelled as 'Data missing or out of range'?
# There's only 26 rows with missing information over million rows so
# it is safe to remove them. And also as we can see in the below
# frquency table the proportion of the fatal accident for 'Data
# missing or out of range' would be missleading in our plot 5/26~19%
# while the second highest proportion is just 3%.
```

Serious
Accident Severity

```
tt <- table(df$Junction, df$Casualty_Outcome)
prop.table(tt, 1)</pre>
```

```
##
##
                                               Fatal
                                                         Serious
                                                                      Slight
##
    Crossroads
                                         0.004971314 0.084453076 0.910575610
                                         0.037735849 0.056603774 0.905660377
##
    Data missing or out of range
    Mini-roundabout
##
                                         0.002679957 0.068573981 0.928746062
    More than 4 arms (not roundabout)
##
                                         0.003852718 0.077426114 0.918721168
    Not at junction or within 20 metres 0.015837429 0.118661959 0.865500612
##
##
    Other junction
                                         0.007350642 0.086299909 0.906349448
    Private drive or entrance
                                         0.007660691 0.103079321 0.889259988
##
##
    Roundabout
                                         0.001941470 0.060376874 0.937681656
##
    Slip road
                                         0.009421106 0.073704762 0.916874132
##
                                         0.006421158 0.096987396 0.896591446
    T or staggered junction
```

Accident Severity by Age of Drivers

```
df %>%
    group_by(Age_Band, Casualty_Outcome) %>%
    dplyr::summarize(total_accidents = n_distinct(Accident_Index)) %>%
    ggplot(aes(x = Casualty_Outcome, y = total_accidents, fill = Age_Band)) +
    geom_bar(stat = "identity", position = "dodge") + ggtitle("Accident by Age of Drivers") +
    xlab("Accident Severity") + ylab("Total Accidents") + theme(plot.title = element_text(hjust = 0.5),
    panel.background = element_blank(), axis.text.x = element_text(angle = 45,
        hjust = 1))
```


Accident Severity Proportion by Age of Driver

```
df %>%
    group_by(Age_Band, Casualty_Outcome) %>%
    dplyr::summarize(total_accidents = n_distinct(Accident_Index)) %>%
    mutate(freq = percent(total_accidents/sum(total_accidents))) %>%
    ggplot(aes(x = Casualty_Outcome, y = freq, fill = Age_Band)) + geom_bar(stat = "identity",
    position = "dodge") + ggtitle("Accident Severity Proportion by Age of Driver") +
    xlab("Accident Severity") + ylab("Accident Severity Proportion") +
    theme(plot.title = element_text(hjust = 0.5), panel.background = element_blank(),
        axis.ticks.y = element_blank())
```


Comparison by Engine CC

```
func_plotHistogram(df, round(df$Engine_Capacity_.CC./5000), df$Casualty_Outcome,
    "Engine CC * 5000", "# of Accidents", "Accidents by Engine CC", "Accident Severity")
```


Inferential Statistics

Test of Independence: Accident Severity vs Hours

X-squared = 23317, df = 46, p-value < 2.2e-16

```
# As the p-value is significantly less than 0.05, we reject with the
# Null hypothesis that the accident severity is independent of the
# hours.
chisq.test(acc_time_severity)

##
## Pearson's Chi-squared test
##
## data: acc_time_severity
```

Test of Independence: Accident Severity vs Weekend night

• Again we reject with the Null hypothesis that the accident severity is independent of Weekend night hours.

Test of Independence: Accident Severity vs Weather, Area Type and Junction Type

```
# All our previous findings are with 95% CI statistically correct as
# we always have a p-value < 0.05
acc_weather_severity <- table(df$Weather, df$Casualty_Outcome)</pre>
acc_area_severity <- table(df$Urban_Rural, df$Casualty_Outcome)</pre>
acc_junction_severity <- table(df$Junction, df$Casualty_Outcome)</pre>
chisq.test(acc_weather_severity)
##
##
   Pearson's Chi-squared test
##
## data: acc_weather_severity
## X-squared = 3284.1, df = 18, p-value < 2.2e-16
chisq.test(acc_area_severity)
##
##
   Pearson's Chi-squared test
##
## data: acc_area_severity
## X-squared = 27715, df = 4, p-value < 2.2e-16
chisq.test(acc_junction_severity)
##
##
   Pearson's Chi-squared test
##
## data: acc_junction_severity
## X-squared = 28573, df = 18, p-value < 2.2e-16
```