Rigid Algebras are right adjoint to Cospans

YTM 2024

Leor Neuhauser

Motivation - Rigid Categories

Symmetric Monoidal Categories

Symmetric monoidal categories $(C, \otimes, 1)$:

- $(Ab, \otimes, \mathbb{Z})$
- $(\operatorname{Vect}_k, \otimes_k, k)$

In presentable stable categories:

- $(Sp, \otimes, \mathbb{S})$
- $(Mod_R(Sp), \otimes_R, R)$ for $R \in CAlg(Sp)$.

"Archetypal" examples, with good properties:

- Dualizable categories
- Dualizable elements = compact elements

Rigid Categories

 $(\mathcal{C}, \otimes, \mathbb{1})$ (presentable, stable) is called **rigid** if:

- 1. 1 is compact
- 2. \otimes : $\mathcal{C} \otimes \mathcal{C} \to \mathcal{C}$ is internally left adjoint (in \mathcal{C} -bimodules)

For example:

- $Mod_R(Sp)$
- Sh(K) for K compact Hausdorff topological space

Some names

- · Gaitzgory & Rozenblyum
- · Hoyois, Safaronov, Scherotzke & Sibillia
- Clausen & Scholze
- Efimov
- Nikolaus & Krause
- Ramzi

Rigid Algebras

 $Pr_{st} \rightsquigarrow Symmetric monoidal 2-category <math>\mathcal{U}$

$$\mathsf{CAlg}_{\mathsf{Rig}}(\mathcal{U}) \subseteq \mathsf{CAlg}(\mathcal{U})$$

- categories = $(\infty, 1)$ -categories
- 2-categories = $(\infty, 2)$ -categories

(2,2)-categories - Walter & Woods

Cospans

Cospans

 \mathcal{C} with finite colimits

coSpan(C) symmetric monoidal 2-category:

• objects: $A \in \mathcal{C}$

• 1-morpisms:

· composition:

Cospans

Symmetric monoidal structure: A ⊔ B, Ø
 coproduct in C, not in coSpan(C)!

Rigid Algebras in Cospans

Every $A \in \mathcal{C}$ is canonically a rigid algebra in $coSpan(\mathcal{C})$.

Main result: coSpan(C) is the free symmetric monoidal 2-category with this property.

$$\mathsf{Fun}^{\mathsf{rex}}(\mathcal{C},\mathsf{CAlg}_{\mathsf{Rig}}(\mathcal{U})) \simeq \mathsf{Fun}^{\otimes,\mathsf{Rig}}(\mathsf{coSpan}(\mathcal{C}),\mathcal{U})$$

Adjunction and Duality

Left Adjoint

 \mathcal{U} a 2-category, $X, Y \in \mathcal{U}$.

 $f: X \to Y$ is **left adjoint** if there exists:

$$f^R\colon Y\to X$$

$$c: f \circ f^R \to \mathrm{id}_Y$$

$$u \colon \mathrm{id}_X \to f^R \circ f$$

$$f \xrightarrow{u} f \circ f^{R} \circ f$$

$$\downarrow c$$

$$f$$

$$f^R \xrightarrow{u} f^R \circ f \circ f^R$$

$$\downarrow c$$

$$f^R.$$

In Cat - adjoint functors

Dualizable Object

 $(\mathcal{U}, \otimes, \mathbb{1})$ symmetric monoidal category.

 $X \in \mathcal{U}$ is **dualizable** if there exists:

$$X^{\vee} \in \mathcal{U}$$

ev:
$$X^{\vee} \otimes X \to \mathbb{1}$$

coev:
$$\mathbb{1} \to X \otimes X^{\vee}$$

$$X \xrightarrow{\operatorname{coev} \otimes \operatorname{id}} X \otimes X^{\vee} \otimes X$$

$$\downarrow_{\operatorname{id} \otimes \operatorname{ev}}$$

$$X$$

In Vect_k - finite dimensional vector spaces

In Sp - finite spectra

Transpose

 $(\mathcal{U}, \otimes, \mathbb{1})$ symmetric monoidal category, $X, Y \in \mathcal{U}$ dualizable.

 $f \colon X \to Y$ has a **transpose** $f^t \colon Y^{\vee} \to X^{\vee}$

$$Y^{\vee} \xrightarrow{\operatorname{coev}_{X}} Y^{\vee} \otimes X \otimes X^{\vee} \xrightarrow{f} Y^{\vee} \otimes Y \otimes X^{\vee} \xrightarrow{\operatorname{ev}_{Y}} X^{\vee}$$

In $Vect_k$, this gives the dual map.

Adjunction and Duality in Cospans

Duals in Cospans

 \mathcal{C} with finite colimits.

Every $A \in \mathcal{C}$ is self dual in $coSpan(\mathcal{C})$.

Transpose in Cospans

For any morphism in coSpan(C)

The transpose is the mirror image

Left Adjoints in Cospans

Left adjoint morphisms in coSpan(C) are right way maps

with right adjoint the transpose wrong way map

Left Adjoints in Cospans

Unit:

Left Adjoints in Cospans

Counit:

Rigid Algebras

Commutative Algebras

 $(\mathcal{U}, \otimes, \mathbb{1})$ symmetric monoidal 2-category.

A **commutative algebra** $A \in CAlg(\mathcal{U})$ consists of:

- unit $\eta \colon \mathbb{1} \to A$
- multiplication $\mu \colon A \otimes A \to A$
- · compatibilities...

 $A \in \mathsf{CAlg}(\mathcal{U})$ is **rigid** if:

- 1. $\eta: \mathbb{1} \to A$ is left adjoint
- 2. $\mu \colon A \otimes A \to A$ is left adjoint (in $\mathsf{BMod}_A(\mathcal{U})$)

 $\mathsf{CAlg}_{\mathsf{Rig}}(\mathcal{U}) \subseteq \mathsf{CAlg}(\mathcal{U})$ full 2-subcategory.

Frobenius algebra

 $(\mathcal{U}, \otimes, \mathbb{1})$ symmetric monoidal category.

A commutative Frobenius algebra is:

- $A \in \mathsf{CAlg}(\mathcal{U})$
- $\epsilon \colon A \to \mathbb{1}$
- $A \otimes A \xrightarrow{\mu} A \xrightarrow{\epsilon} \mathbb{1}$ exhibits A as self dual

A has a coalgebra structure:

- counit $\epsilon = \eta^t \colon A \to \mathbb{1}$
- comultiplication $\delta = \mu^t \colon A \to A \otimes A$

Frobenius algebras are equivalentely algebra + coalgebra + Frobenius relations \longleftrightarrow δ is an A-bimodule map

Rigid is Frobenius

For $A \in \mathsf{CAlg}_{\mathsf{Rig}}(\mathcal{U})$, define:

- $\epsilon \colon A \to \mathbb{1}$ the right adjoint of η
- $\delta \colon A \to A \otimes A$ the right adjoint of μ

coalgebra + Frobenius relations \Rightarrow A is Frobenius.

Rigid Algebras are a categorification of Frobenius algebras.

In 2-categories, the extra structure is canonical.

Adjoint is transpose

- η is left adjoint to $\epsilon = \eta^t$
- μ is left adjoint to $\delta = \mu^t$

Every $f: A \to B \in \mathsf{CAlg}_{\mathsf{Rig}}(\mathcal{U})$ is left adjoint to $f^t: B \to A$.

Every 2-morphism in $CAlg_{Rig}(\mathcal{U})$ is invertible.

 $\mathsf{CAlg}_{\mathsf{Rig}}(\mathcal{U})$ is an $(\infty,1)$ -category.

Rigid Algebras in Cospans

Every $A \in \mathcal{C}$ is canonically a rigid algebra in $coSpan(\mathcal{C})$:

$$\mathcal{C} \xrightarrow{\sim} \mathsf{CAlg}_{\mathsf{Rig}}(\mathsf{coSpan}(\mathcal{C}))$$

Main Result

Setup

Categories of categories:

- Cat categories
- Cat^{rex} categories with finite colimits
- Cat_2^{\otimes} symmetric monoidal 2-categories

Functors:

• $\mathsf{coSpan} \colon \mathsf{Cat}^\mathsf{rex} \to \mathsf{Cat}_2^\otimes$

 $\bullet \; \; \mathsf{CAlg}_{\mathsf{Rig}} \colon \; \mathsf{Cat}_2^{\otimes} \to \mathsf{Cat}$

We want CAlg_{Rig} to land in Cat^{rex}.

 $CAlg_{Rig}(\mathcal{U})$ has initial object 1, what about pushouts?

Pushouts of Rigid Categories

 $A, B, C \in \mathsf{CAlg}(\mathsf{Pr}_{\mathsf{st}})$ with maps $A \to B$ and $A \to C$.

 $B \otimes_A C$ is pushout in $CAlg(Pr_{st})$.

A, B, C rigid $\implies B \otimes_A C$ rigid.

Does this always work?

Not every $\mathcal{U} \in \mathsf{Cat}_2^\otimes$ has relative tensor products.

Restrict to subcategory $Cat_2^{RigBar} \subseteq Cat_2^{\otimes}$.

Setup

$$\mathsf{CAlg}_{\mathsf{Rig}} : \mathsf{Cat}_2^{\otimes} \to \mathsf{Cat} \ \mathsf{restricts} \ \mathsf{to}$$

$$\mathsf{CAlg}_{\mathsf{Rig}} : \mathsf{Cat}_2^{\mathsf{RigBar}} \to \mathsf{Cat}^{\mathsf{rex}} \,.$$
 For every $\mathcal{C} \in \mathsf{Cat}^{\mathsf{rex}}$, $\mathsf{coSpan}(\mathcal{C}) \in \mathsf{Cat}_2^{\mathsf{RigBar}}$

 $\mathsf{coSpan}: \mathsf{Cat}^\mathsf{rex} o \mathsf{Cat}^\mathsf{RigBar}_2$

Theorem

There is an adjunction

$$\mathsf{coSpan} \colon \mathsf{Cat}^\mathsf{rex} \rightleftarrows \mathsf{Cat}_2^\mathsf{RigBar} \colon \, \mathsf{CAlg}_\mathsf{Rig}$$

$$\mathsf{Fun}^{\mathsf{rex}}(\mathcal{C},\mathsf{CAlg}_{\mathsf{Rig}}(\mathcal{U})) \simeq \mathsf{Fun}^{\mathsf{RigBar}}(\mathsf{coSpan}(\mathcal{C}),\mathcal{U})$$

- unit $\mathcal{C} \xrightarrow{\sim} \mathsf{CAlg}_{\mathsf{Rig}}(\mathsf{coSpan}(\mathcal{C}))$
- counit coSpan(CAlg_{Rig}(\mathcal{U})) $\rightarrow \mathcal{U}$ from CAlg_{Rig}(\mathcal{U}) $\rightarrow \mathcal{U}$ (universal property of cospans).

Corollaries

Corollaries

- 1. $\mathsf{coSpan} : \mathsf{Cat}^\mathsf{rex} \to \mathsf{Cat}_2^\mathsf{RigBar}$ is fully faithful. $\mathsf{coSpan} : \mathsf{Cat}^\mathsf{rex} \to \mathsf{Cat}_2^\mathsf{RigBar}$ is also fully faithful.
- 2. $\mathcal{S}^{\mathrm{fin}}$ the category of finite spaces. $\mathsf{coSpan}(\mathcal{S}^{\mathrm{fin}}) \in \mathsf{Cat}_2^{\mathrm{RigBar}}$ is free on a single rigid algebra.

$$\mathsf{Fun}^{\mathsf{RigBar}}(\mathsf{coSpan}(\mathcal{S}^{\mathsf{fin}}),\mathcal{U}) \simeq \mathsf{CAlg}_{\mathsf{Rig}}(\mathcal{U})$$

Six Functors Formalism

(Gaitzgory & Rozenblyum) A 6 functors formalism is a symmetric monoidal functor

$$\mathsf{coSpan}(\mathcal{C}, E) o \mathsf{Pr}_{\mathsf{st}}.$$

Taking regular cospans, we get a (particular kind of) 6 functors formalism

$$\mathsf{coSpan}(\mathcal{C}) \to \mathsf{Pr}_{\mathsf{st}}.$$

Six Functors Formalism

 $\mathcal{C} \to \mathsf{CAlg}(\mathsf{Pr}_{st})$ that lands in rigid categories

$$\begin{array}{c} \updownarrow\\ \mathcal{C} \to \mathsf{CAlg}_{\mathsf{Rig}}(\mathsf{Pr}_{\mathsf{st}}) \\ \\ \updownarrow\\ \mathsf{coSpan}(\mathcal{C}) \to \mathsf{Pr}_{\mathsf{st}} \end{array}$$

 $\mathsf{Sh}\colon \mathsf{CompHaus}^{op}\to \mathsf{CAlg}(\mathsf{Pr}_{st})\ \leadsto \mathsf{6}\ \mathsf{functors}\ \mathsf{formalism}\ \mathsf{on}\ \mathsf{Sh}$

Thank You!