

University of Applied Sciences FACHBEREICH INGENIEUR- UND NATURWISSEN-SCHAFTEN

Protokoll Analytik

Versuch 1.2

Fällungstitration

Bestimmung des Chloridgehaltes in Leitungswasser (Konduktometrie und Potentiometrie)

Gruppe 2.4 (BCUC4)

Teilnehmer:

Willy Messerschmidt Roman-Luca Zank

Datum der Versuchsdurchführung: 06.07.2020

Abgabedatum: 09.07.2020

Inhaltsverzeichnis

1	Einleitung	2
2	Theorie	2
3	Geräte und Chemikalien	3
4	Durchführung	3
5	Ergebnisse und Berechnungen	4
6	Diskussion	8
7	Fehlerbetrachtung	8
Ar	nhang	9
Literaturverzeichnis		11

1 Einleitung

Ein hoher Chloridgehalt im Trink-, sowie Brauchwasser kann aufgrund von Geschmacksbeeinträchtigung bei der Herstellung von Getränken wie Tee oder Kaffee unerwünscht sein. Für eisenhaltige Metalle können zu hohe Chloridgehalte sogar korrosiv wirken. Die Herkunft von erhöhten Chloridgehalten können in Abwässern, Düngemitteln oder auch Fäkalien liegen. Unter der Voraussetzung, dass das Trinkwasser nicht korrosiv wirken sollte, gilt es, laut Trinkwasserverordnung, einen Grenzwert von $250\,\mathrm{\frac{mg}{L}}$ Chlorid einzuhalten.

Im Praktikum wird eine Leitungswasserprobe mittels Argentometrie auf diesen Grenzwert untersucht. Für die Titration werden die Messmethoden der Konduktometrie und Potentiometrie angewandt. Im Protokoll sind dabei verschiedene Methoden für Äquivalenzpunktbestimmung darzustellen.

2 Theorie

Löslichkeitsprodukt

Löslichkeitsprodukt:

$$K_L = c \left(A^{b+} \right)^a \cdot c \left(A^{a-} \right)^b \tag{1}$$

Löslichkeit:

$$L = c(A_m B_n) = \frac{1}{m} \cdot A^{n+} = \frac{1}{n} \cdot B^{m-}$$
 (2)

Allgemein gilt auch:

$$L = \sqrt[m+n]{\frac{K_L}{m^m \cdot n^n}} \tag{3}$$

Nernst'sche Gleichung

$$E = E_0 + \frac{R \cdot T}{z \cdot F} \cdot \ln\left(\frac{c_{\text{ox}}}{c_{\text{red}}}\right) \tag{4}$$

Konduktometrie

Potentiometrie

Biamperometrische und bivoltametrische Indikation

3 Geräte und Chemikalien

Geräte:

- Vollpipetten (V= $50\,\mathrm{mL}~\&~100\,\mathrm{mL}$)
- Bechergläser
- Rührfisch mit Magnetrührer
- Konduktometer mit Leitfähigkeitselektrode
- pH-Meter mit Silber-Einstabmesskette (MICROPROCESSOR PH 539)
- Elektronische Bürette TITRONIC 97/20

Proben/Chemikalien:

- Leitungswasserprobe
- Destilliertes Wasser
- Silbernitratlösung $\left(c=0.01\,\frac{\mathrm{mol}}{\mathrm{L}}\right)$

4 Durchführung

5 Ergebnisse und Berechnungen

Abb. 1: Leitfähigkeiten in Abhängigkeit der Maßlösungszugabe

Abb. 2: Spannungen in Abhängigkeit der Maßlösungszugabe

Tab. 1: Geradengleichungen der Messreihen 1 bis 3 für die Konduktometrie

	Regressionsgerade	Regressionsgerade	R_1^2	$oldsymbol{R}_2^2$	Äquivalenzvolu-	
	(links)	(rechts)			men	
Messreihe	$\kappa_{11} = -5,186 \cdot V + 544,817$	$\kappa_{12} = 13,928 \cdot V + 409,343$	0,999	1,000	$7{,}088\mathrm{mL}$	
1						
Messreihe	$\kappa_{21} = -5,071 \cdot V + 545,483$	$\kappa_{22} = 14,077 \cdot V + 410,221$	0,999	1,000	$7,064\mathrm{mL}$	
2						
Messreihe	$\kappa_{31} = -4,957 \cdot V + 542,750$	$\kappa_{32} = 14,129 \cdot V + 407,993$	0,999	1,000	$7,060\mathrm{mL}$	
3						

Berechnung des Äquivalenzvolumens über Konduktometrie:

Es werden die jeweiligen Regressionsgeraden gleichgesetzt und nach dem Volumina umgestellt. Die Regressionsgeraden finden sich in der Tabelle 1.

$$\kappa_{11} = \kappa_{12}
m_{11} \cdot V_{\ddot{a}q} + n_{11} = m_{12} \cdot V_{\ddot{a}q} + n_{12}
V_{\ddot{a}q} = \frac{n_{12} - n_{11}}{m_{11} - m_{12}}
V_{\ddot{a}q} = \frac{409,343 \frac{\mu S}{cm} - 544,817 \frac{\mu S}{cm}}{-5,186 \frac{\mu S}{cm \cdot mL} - 13,928 \frac{\mu S}{cm \cdot mL}}
= 7,088 \text{ mL}$$
(5)

Berechnung des Äquivalenzvolumens über Potentiometrie nach Kolthoff-Hahn:

$$V_{\text{aq}} = V' + \frac{\Delta V \cdot (\Delta E_{\text{max}} - E_{\text{vor}})}{2 \cdot \Delta E_{\text{max}} - \Delta E_{\text{vor}} + \Delta E_{\text{nach}}}$$

$$= 3.5 \,\text{mL} + \frac{0.5 \,\text{mL} \cdot (56 \,\text{mV} - 25 \,\text{mV})}{2 \cdot 56 \,\text{mV} - 25 \,\text{mV} + 25 \,\text{mV}}$$

$$= 3.638 \,\text{mL}$$
(6)

Berechnung des Chlor-Gehaltes:

$$\beta = \frac{Z\ddot{a}hler}{Nenner} \tag{7}$$

Berechnung des Mittelwertes:

$$\bar{x} = \frac{\sum_{n=1}^{N} x_n}{N} \tag{8}$$

$$\bar{x} = \frac{25,128 \frac{\text{mg}}{\text{L}} + 25,044 \frac{\text{mg}}{\text{L}} + 25,031 \frac{\text{mg}}{\text{L}}}{3}$$

$$= 25,068 \frac{\text{mg}}{\text{L}}$$
(9)

Berechnung der Standardabweichung:

$$s = \sqrt{\frac{\sum_{n=1}^{N} (x_n - \bar{x})^2}{N - 1}}$$
 (10)

$$s = \sqrt{\frac{(25,128 \frac{\text{mg}}{\text{L}} - 25,068 \frac{\text{mg}}{\text{L}})^2 + (25,044 \frac{\text{mg}}{\text{L}} - 25,068 \frac{\text{mg}}{\text{L}})^2 + (25,031 \frac{\text{mg}}{\text{L}} - 25,068 \frac{\text{mg}}{\text{L}})^2}{2}}$$

$$= \underline{5,298 \cdot 10^{-2} \frac{\text{mg}}{\text{L}}}$$
(11)

Berechnung des Vertrauensintervalls:

$$conf(\bar{x}) = \bar{x} \pm \frac{t}{\sqrt{N}} \cdot s$$
 (12)

$$conf(\bar{x}) = 25,068 \frac{\text{mg}}{\text{L}} \pm \frac{2,920}{\sqrt{3}} \cdot 5,298 \cdot 10^{-2} \frac{\text{mg}}{\text{L}}$$
$$= 25,068 \frac{\text{mg}}{\text{L}} \pm 8,932 \cdot 10^{-2} \frac{\text{mg}}{\text{L}}$$
(13)

- 6 Diskussion
- 7 Fehlerbetrachtung

Anhang

Tab. 2: Messwerte Konduktometrie

Messreihe 1 Messreihe 2 Messreihe 3							
0,0	545	0,0	545	0,0	543		
0,5	543	0,5	544	0,5	541		
1,0	540	1,0	541	1,0	538		
1,5	537	1,5	538	1,5	535		
2,0	534	2,0	535	2,0	533		
2,5	532	2,5	533	2,5	530		
3,0	529	3,0	530	3,0	528		
3,5	526	3,5	527	3,5	525		
4,0	524	4,0	525	4,0	522		
4,5	521	4,5	522	4,5	520		
5,0	518	5,0	520	5,0	518		
5,5	516	5,5	517	5,5	515		
6,0	514	6,0	515	6,0	513		
6,5	511	6,5	513	6,5	511		
7,0	510	7,0	511	7,0	509		
7,5	512	7,5	514	7,5	512		
8,0	518	8,0	520	8,0	519		
8,5	526	8,5	528	8,5	526		
9,0	533	9,0	535	9,0	534		
9,5	540	9,5	543	9,5	541		
10,0	548	10,0	551	10,0	549		
10,5	555	10,5	558	10,5	556		
11,0	563	11,0	565	11,0	564		
11,5	570	11,5	573	11,5	571		
12,0	577	12,0	580	12,0	579		
12,5	585	12,5	587	12,5	586		
13,0	592	13,0	595	13,0	593		
13,5	599	13,5	602	13,5	600		
14,0	606	14,0	609	14,0	607		
14,5	613	14,5	616	14,5	614		
15,0	620	15,0	623	15,0	621		
15,5	626	15,5	630	15,5	628		
16,0	633	16,0	636	16,0	635		
16,5	640	16,5	643	16,5	642		
17,0	647	17,0	650	17,0	649		
17,5	653	17,5	657	17,5	655		
18,0	660	18,0	663	18,0	662		
18,5	666	18,5	670	18,5	669		
19,0	673	19,0	676	19,0	675		
19,5	679	19,5	683	19,5	682		
20,0	685	20,0	689	20,0	688		
,		,		ı ′			

Tab. 3: Messwerte Konduktometrie

Magg	noihan 1	ΔE_1	Magazikan 2 AE			ΔE_3		
	Messreihen 1		1		ΔE_2	Messreihen 3		ΔE_3
0,0	174	-	0,0	186	-	0,0	186	-
0,5	182	8	0,5	189	3	0,5	189	3
1,0	187	5	1,0	194	5	1,0	193	4
1,5	192	5	1,5	199	5	1,5	198	5
2,0	199	7	2,0	205	6	2,0	204	6
2,5	207	8	2,5	215	10	2,5	213	9
3,0	220	13	3,0	228	13	3,0	226	13
$3,\!5$	245	25	3,5	256	28	3,5	251	25
4,0	301	56	4,0	307	51	4,0	304	53
$4,\!5$	326	25	4,5	328	21	4,5	328	24
5,0	339	13	5,0	340	12	5,0	340	12
$5,\!5$	347	8	5,5	348	8	5,5	347	7
6,0	354	7	6,0	354	6	6,0	353	6
6,5	358	4	6,5	358	4	6,5	358	5
7,0	362	4	7,0	362	4	7,0	361	3
7,5	366	4	7,5	365	3	7,5	365	4
8,0	369	3	8,0	368	3	8,0	367	2
8,5	371	2	8,5	371	3	8,5	370	3
9,0	374	3	9,0	373	2	9,0	372	2
9,5	375	1	9,5	375	2	9,5	374	2
10,0	377	2	10,0	377	2	10,0	376	2

Literatur