TA: Ondřej Čertík

web: http://hpfem.math.unr.edu/~ondrej/

class: MATH 181.002 date: January 20, 2009

Quiz 0

Problem 1

Find the equation of a line that passes through the points $P_1(-6, -3)$ and $P_2(2, 4)$.

Problem 2

Find the equation of a line that passes through the point $P_1(-6, -3)$ and has a slope 2.

Problem 3

Find the slope and the y-intercept of the equation of a line:

$$x + 3y = 0.$$

Problem 4

Solve for x:

$$4 = e^x$$
.

Problem 5

Find the equation of a vertical line passing through the point (5,0).

Solutions

Problem 1

The equation of a line is y = mx + b with $m = \frac{y_2 - y_1}{x_2 - x_1}$ so

$$m = \frac{4 - (-3)}{2 - (-6)} = \frac{7}{8}$$

and we get

$$y = \frac{7}{8}x + b.$$

To calculate b, we substitute either point into the equation, for example $x=2,\,y=4$:

$$4 = \frac{7}{8}2 + b$$

from which $b = \frac{9}{4}$. The equation of a line is then:

$$y = \frac{7}{8}x + \frac{9}{4}.$$

Problem 2

We are given the slope m=2 so:

$$y = 2x + b.$$

To calculate b, we substitute the point P_1 into the equation and solve for b:

$$-3 = 2(-6) + b,$$

$$b = 9$$
.

The equation of a line is then:

$$y = 2x + 9.$$

Problem 3

We rewrite the equation to the form y = mx + b:

$$x + 3y = 0,$$

$$y = -\frac{1}{3}x.$$

So the slope is $m = -\frac{1}{3}$ and y-intercept is 0.

Problem 4

We apply the natural logarithm to both sides of the equation:

$$4 = e^x,$$

$$\ln 4 = \ln e^x$$

and use the identity $\ln e^x = x$:

$$x = \ln 4$$
.

Problem 5

The equation of such line is just:

$$x = 5$$
.