Active Learning for Sensing Applications

Example: Machine Monitoring

Labeling machine states by visually examining sensor data stream

Every machine condition is different (machine states, machine installation, sensor location, operation conditions)

Example: Interruptibility

When there's a new notification to deliver, ask the following:

Example: Ringer Mode Change

Actively learning users' preferences for receiving audible notification preferences to automatically change sound volume

Using Decision-Theoretic Experience Sampling to Build Personalized Mobile Phone Interruption Models Stephanie Rosenthal, Anind K. Dey, Manuela Veloso, Pervasive 2011

Example: User Behavior Tracking

Find an interesting moment to ask questions! (Drinking Behaviors)

(Passive) Supervised Learning

raw unlabeled data x_1, x_2, x_3, \dots

supervised learner induces a classifier

expert / oracle analyzes experiments to determine labels

(Passive) Supervised Learning

analyzes experiments to determine labels

supervised learner induces a classifier

(Passive) Supervised Learning

Semi-supervised Learning

expert / oracle analyzes experiments to determine labels

Active Learning vs Random Sampling

Figure 2: An illustrative example of pool-based active learning. (a) A toy data set of 400 instances, evenly sampled from two class Gaussians. The instances are represented as points in a 2D feature space. (b) A logistic regression model trained with 30 labeled instances randomly drawn from the problem domain. The line represents the decision boundary of the classifier (70% accuracy). (c) A logistic regression model trained with 30 actively queried instances using uncertainty sampling (90%).

Active Learning vs Random Sampling

- Passive Learning curve: Randomly selects examples to get labels for
- Active Learning curve: Active learning selects examples to get labels for

Learning Curves

A Naive Approach

"random sampling" may work poorly in some cases

Suppose the unlabeled data looks like this.

Then perhaps we just need five labels!

Types of Active Learning

- Largely falls into one of these two types:
 - Stream-Based Active Learning
 - Consider one unlabeled example at a time
 - Decide whether to query its label or ignore it

Types of Active Learning

- Largely falls into one of these two types:
 - Pool-Based Active Learning
 - Given: a large unlabeled pool of examples
 - Rank examples in order of informativeness
 - Query the labels for the most informative example(s)

Recap: How AL Operates?

- Active Learning proceeds in rounds
- Each round has a current model (learned using the labeled data seen so far)
- Steps
 - The current model is used to assess informativeness of unlabeled examples (e.g., using one of the query selection strategies)
 - 2. The most informative example(s) is/are selected
 - 3. The labels are obtained (by the labeling oracle)
 - 4. The (now) labeled example(s) is/are included in the training data
 - 5. The model is re-trained using the new training data
- The process repeat until we have budget left for getting labels

Query Selection Strategies

- Any Active Learning algorithm requires a query selection strategy
- Some examples:
 - Uncertainty Sampling
 - Query By Committee (QBC)
 - Density Weighted Methods
 - Expected Model Change
 - Expected Error Reduction
 - Variance Reduction

Uncertainty Sampling

- Select examples which the current model θ is the most uncertain about
- Various ways to measure uncertainty. For example:
 - Based on the distance from the hyperplane
 - Using the label probability $P_{\theta}(y|x)$ (for probabilistic models)

Uncertainty sampling based on the distance from the hyperplane (i.e., margin based)

Uncertainty Sampling

- Select examples which the current model θ is the most uncertain about
- Various ways to measure uncertainty. For example:
 - Based on the distance from the hyperplane
 - Using the label probability $P_{\theta}(y|x)$ (for probabilistic models)
- Some typically used measures based on label probabilities:

Least Confident: $x_{LC}^* = \operatorname{argmax}_x 1 - P_{\theta}(\hat{y}|x)$ where \hat{y} is the most probable label for x under the current model θ

Smallest Margin: $x_{SM}^* = \operatorname{argmin}_x P_{\theta}(y_1|x) - P_{\theta}(y_2|x)$ y_1 , y_2 are the two most probable labels for x under the current model

Label Entropy: choose example whose label entropy is maximum

$$x_{LE}^* = \underset{x}{\operatorname{argmax}} - \sum_{i} P_{\theta}(y_i|x) \log P_{\theta}(y_i|x)$$

where y_i ranges over all possible labels

Query-By-Committee (QBC)

- QBC uses a committee of models $C = \{\theta^{(1)}, \ldots, \theta^{(C)}\}\$
- All models trained using the currently available labeled data L

Version space examples for
(a) linear and (b) axis-parallel box classifiers
All hypotheses are consistent with the labeled training data in L (as indicated by shaded polygons), but each represents a different model in the version space

- How is the committee constructed? Some possible ways:
 - Sampling different models from the model distribution $P(\theta|L)$
 - Using ensemble methods (query-by-bagging/boosting, etc.)
- All models vote their predictions on the unlabeled pool
- The example(s) with maximum disagreement is/are chosen for labeling
- Each model in the committee is re-trained after including the new example(s)

Query-By-Committee (QBC)

- Measuring disagreement is the Vote Entropy
 - Vote Entropy

$$x_{VE}^* = \underset{x}{\operatorname{argmax}} - \sum_{i} \frac{V(y_i)}{C} \log \frac{V(y_i)}{C}$$

- y_i ranges over all possible labels
- V(y_i): number of votes that a label y_i received from the committee members' predictions
- C: committee size
- Kullback-Leibler (KL) divergence

$$x_{KL}^* = \underset{x}{\operatorname{argmax}} \frac{1}{C} \sum_{c=1}^{C} D(P_{\theta^{(c)}} || P_{\mathcal{C}}), \quad D(P_{\theta^{(c)}} || P_{\mathcal{C}}) = \sum_{i} P_{\theta^{(c)}}(y_i | x) \log \frac{P_{\theta^{(c)}}(y_i | x)}{P_{\mathcal{C}}(y_i | x)}$$

 $\theta^{(c)}$ represents a particular model in the committee, and C represents the committee as a whole, thus $P_{c}(y_{i} \mid x)$ is the "consensus" probability that y_{i} is the correct label

Effect of Outlier Examples

- Uncertainty Sampling or QBC may wrongly think an outlier to be an informative example
- Such examples won't really help (and can even be misleading)

- Other robust query selection methods exist to deal with outliers
- Instead of using the confidence of a model on an example, see how a labeled example affects the model itself (various ways to quantify this)
- The example(s) that affects the model the most informative

Other Query Selection Methods

Density Weighting

- Informative instances should not only be those which are **uncertain**, but also those which are "**representative**" of the underlying distribution (i.e., staying in the dense regions of the input space)
- Weight the informativeness of an example by its average similarity to the entire unlabeled pool of examples

Expected Model Change

- Select the example whose inclusion brings about the maximum change in the model (e.g., the gradient of the loss function w.r.t. the parameters)
- Here, we don't know the true label for each query instance, so we approximate using expectation over all possible labels under the current model $\boldsymbol{\theta}$

Expected Error Reduction

 Select example that reduces the expected generalization (future) error the most, which is measured w.r.t. the remaining unlabeled examples (using the expected labels)

Variance Reduction

• Select example(s) that reduces the **model variance** by the most

Practical Issues – Batching & Cost

- Batch-Mode Active Learning
 - Batch-mode active learning allows the learner to query instances in groups, which is better suited to parallel labeling environments or models with slow training procedures
- Variable Labeling Costs
 - There is variance not only in label quality from one instance to the next, but also in the cost of obtaining that label
 - Cost-sensitive active learning approaches explicitly accounts for varying label costs while selecting queries

Practical Issues – Tasks & Stopping

- Multi-Task Active Learning
 - A single query will be labeled for multiple tasks, and attempt to assess the informativeness of a query with respect to all the learners involved
- Stopping Criteria:
 - Cost of acquiring new training data is greater than the cost of the errors made by the current model
 - Recognize when the accuracy of a learner has reached a plateau, and acquiring more data is likely a waste of resources
 - Examples:
 - Active learning ceases to be useful once that measure begins to level-off or degrade
 - Measures of stability, self-confidence within the learner, or information gain of adding new samples (IMWUT'19)

Practical Issues – Stopping

OPPORTUNITY Dataset

 10-20% of data for locomotion recognition (both including and excluding Null Class)

PAMAP2 Dataset

 8% of data to reach fully supervised performance

Leveraging Active Learning and Conditional Mutual Information to Minimize Data Annotation in Human Activity Recognition, IMWUT 2019

Practical Issues – Noisy Oracle

Noisy Oracle:

- Another strong assumption in most active learning work is that the quality of labeled data is high
- If labels come from an empirical experiment (e.g., in biological, chemical, or clinical studies), then one can usually expect some noise to result from the instrumentation of experimental setting
- Even if labels come from human experts, they may not always be reliable, for several reasons
 - Some instances are implicitly difficult for people and machines
 - People can become distracted or fatigued over time, introducing variability in the quality of their annotations

Practical Issues – Noisy Oracle

Noisy Oracle:

- Humans are not "oracles" prone to make errors or produce poor quality work
- How can we build systems that are robust against such errors or low quality work?
 - Avoid errors help users to label correctly, ensure correctness (interactive visualization, and guidance)
 - Eliminate errors afterward let the users (or others) to re-review and filter errors; or collect multiple samples to "average out" errors (e.g., via M-Turk)
 - Use robust models use ML models robust against potential outliers

Practical Issues – Ask timing

- Ask Timing
 - Learner should decide when to query as opposed to letting the user choose an example
 - Predefine Conditions? Contexts? Active learning?
 - Some tasks require "experience sampling" (due to recall bias – difficult to answer later)
 - Batch answering could be okay depending on "recallability"
 - Minutes: emotion, attention
 - Hours: mood, rough activity
 - Day: rough activity
 - Contextual cues lead to better judgement
 - Examples: objective videos, or contextual summary

Practical Issues – VIL

- Data-driven knowledge discovery
 - Combine the strength of Machine Learning and Visualization

Practical Issues – VIL

- Active learning : Model-based strategy
 - Algorithms select instances to improve a learning model best
 - Querying labels for these instances from an oracle (or user)
- Visual-interactive labeling : User-based strategy
 - Visual-interactive interfaces enable users to select instances
 - Exploration as a means to identify meaningful instances

Summary

- Active Learning: Label efficient learning strategy
- Based on judging the informativeness of examples
- Several variants possible. E.g.,
 - Different examples having different labeling costs
 - Access to multiple labeling oracles (possibly noisy)
 - Active Learning on features instead of labels (e.g., if features are expensive)
- Being "actively" used in industry (IBM, Microsoft, Google)