1. Simplify the following using 3-variable K-Maps:

a.
$$F(x, y, z) = \sum m_{0,2,4,5}$$

b.
$$F(x, y, z) = \sum m_{0,2,4,5,6}$$

$$\therefore F = z'x' + y'x$$

c.
$$F(x, y, z) = \sum m_{0,1,2,3,5}$$

c.
$$F(x, y, z) = \sum_{x \to 0} m_{0,1,2,3,5}$$

yz

00 01 11 10

x

1 0 1 0 0

$$\therefore F = z' + y'x$$

d.
$$F(x, y, z) = \sum m_{1,2,3,7}$$

		00	01	11	10	
x	0	0	1		1	
	1	0	0	1	0	

$$\therefore F = x' + y'z$$

$$\therefore F = x'y + x'z + yz$$

2. Simplify the following using 3-variable K-Maps:

a.
$$F = xy + x'y'z' + x'yz'$$

\boldsymbol{x}	y	z	xy	x'y'z'	x'yz'	F	#
0	0	0	0	1	0	1	0
0	0	1	0	0	0	0	1
0	1	0	0	0	1	1	2
0	1	1	0	0	0	0	3
1	0	0	0	0	0	0	4
1	0	1	0	0	0	0	5
1	1	0	1	0	0	1	6
1	1	1	1	0	0	1	7

$$\therefore F = x'z' + xy$$

b.
$$F = x'y' + yz + x'yz'$$

\boldsymbol{x}	y	z	x'y'	yz	x'yz'	$\mid F \mid$	#
0	0	0	1	0	0	1	0
0	0	1	1	0	0	1	1
0	1	0	0	0	1	1	2
0	1	1	0	1	0	1	3
1	0	0	0	0	0	0	4
1	0	1	0	0	0	0	5
1	1	0	0	0	0	0	6
1	1	1	0	1	0	1	7

$$\therefore F = yz + x'$$

c.
$$F = x'y + yz' + y'z'$$

\boldsymbol{x}	y	z	x'y	yz'	y'z'	F	#
0	0	0	0	0	1	1	0
0	0	1	0	0	0	0	1
0	1	0	1	1	0	1	2
0	1	1	1	0	0	1	3
1	0	0	0	0	1	1	4
1	0	1	0	0	0	0	5
1	1	0	0	1	0	1	6
1	1	1	0	0	0	0	7

$$\therefore F = z' + x'y$$

$$d. F = x'yz + xy'z' + xy'z$$

\boldsymbol{x}	y	z	x'yz	xy'z'	xy'z	F	#
0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	1
0	1	0	0	0	0	0	2
0	1	1	1	0	0	1	3
1	0	0	0	1	0	1	4
1	0	1	0	0	1	1	5
1	1	0	0	0	0	0	6
1	1	1	0	0	0	0	7

$$\therefore F = xy' + x'yz$$