Soit f une fonction définie sur un intervalle I.

Variations (séance1 cours+exercices : 2h)

Activité introductrice (à compléter)

Voici le relevé des températures une certaine journée de juillet dans une ville du Rhône.

1. Dans quel créneaux horaires la température a-t-elle augmenté? diminué?

On note f la fonction qui à l'heure t de la journée associe la température (en degrés).

- 3. (a) Comment évoluent les valeurs de f(t) lorsque t augmente de 6 à 18?

On dit que la fonction f est sur l'intervalle [6; 18].

- (b) Compléter (avec >,< ou =): $f(8) = \ldots$ et $f(12) = \ldots$ donc $8 \ldots 12$ et $f(8) \ldots f(12)$. On constate que f(8) et f(12) sont que 8 et 12.
- 4. (a) Comment évoluent les valeurs de f(t) lorsque t augmente de 0 à 6?

On dit que la fonction f est sur l'intervalle [0;6].

- (b) Si l'on choisit deux réels a et b dans l'intervalle [0;6], f(a) et f(b) sont ils rangés dans le même ordre que a et b? ...
- (c) Sur quel autre intervalle la fonction est-elle décroissante?

Définition 1 (à lire et compléter)

La fonction f est **croissante** sur I signifie que :

On dit que f conserve l'ordre.

La fonction f est **décroissante sur** I signifie que :

Pour tous réels a et b de I, si a < b alors

Autrement dit, les nombres f(a) et f(b) sont rangés dans l'ordre inverse de a et b. f(b)On dit que f change l'ordre.

f(b)

La fonction f est constante sur I signifie que sur I, toutes les valeurs de f(x) restent égales au même nombre.

2nde

Définition 2

Si la fonction f ne change pas de sens de variation sur I on dit qu'elle est **monotone**.

Les variations d'une fonction sur son ensemble de définition sont souvent résumées dans un tableau appelé tableau de variations.

Exemple 1 : : Dresser le tableau de variations de la fonction de l'activité introductrice.

Compléter par les flèches, toujours orientées vers la droite

1 1		/ 0		
x	0	6	18	24
f(x)	24.5		33.5	
		19		25

Le tableau est une version résumée de la courbe, les échelles ne sont pas respectées mais l'ordre des nombres oui!

Exemple 2: f est une fonction définie sur [-3;4] dont voici la courbe, dresser son tableau de variations.

x	-3	4
f(x)		

Les variations d'une fonction sont souvent faciles à lire sur la représentation graphique. Elles peuvent aussi être démontrées par un calcul.

Exemple 3:

1. Démontrons que la fonction f définie sur $]-\infty;+\infty[$ par f(x)=2x-3 est strictement croissante : Pour tous réels a et b, si a < b

$$2a \dots 2b$$

$$2a + 3 \dots 2b + 3$$

$$f(a) \dots f(b)$$

- 2. En vous inspirant de la question précédente, justifier que la fonction g définie sur $]-\infty;+\infty[$ par g(x)=-5x-2 est décroissante.
- 3. Conjecturer une règle pour donner les variations d'une fonction de la forme f(x) = mx + p.

Attention, il ne faut pas confondre le tableau de variations et le tableau de signe.

- La fonction est **croissante** lorsque la « courbe monte ». Cela se traduit par une **flèche** vers le haut dans le **tableau de variations**.
- La fonction est **positive** lorsque la « courbe est au dessus de l'axe des abscisses ». Cela se traduit par un + dans le **tableau de signes**.

Exercices

• Lire l'exercice corrigé :

Séance 2 (1h): Encore des exercices sur les tableaux de variations...

• Lire l'exercice corrigé :

énoncé : f est une fonction dont voici le tableau de variations

x	0	2	4	5
f	4	-2	6	0

- 1) Comparer f(0) et f(1)
- 2) Comparer f(2.5) et f(3)
- 3) Comparer f(1) et f(4.5)

correction:

1) Comparer f(0) et f(1)

Si on place les images de 0 (qui était déjà placé) et 1 dans le tableau en respectant l'ordre :

On constate qu'ils sont sur une portion où la fonction est strictement décroissante donc f(0) > f(1)

2) Comparer f(2.5) et f(3)

Si on place les images de 2.5 et 3 dans le tableau en respectant l'ordre :

On constate qu'ils sont sur une portion où la fonction est strictement croissante donc f(2.5) < f(3)

3) Comparer f(1) et f(4.5)

Si on place les images de 1 et 4.5 dans le tableau en respectant l'ordre :

On constate qu'ils ne sont pas sur un intervalle où la fonction est monotone, on ne peut pas conclure!

• Puis chercher:

- 1. Quel est l'ensemble de définition de f?
- 2. Comparer f(0) et f(2).
- **3.** Comparer f(-2) et f(-1,5).

fest une fonction dont voici le tableau de variations. 21 g est une fonction dont on connaît le tableau de 25 Voici le tableau de variations d'une fonction f.

x	-3	1	2	5
g	4	3 /	≠ 5 <u></u>	→ -3

- **1. a)** Donner le sens de variation de la fonction g sur l'in-
- **b)** En déduire quel est le nombre le plus grand entre g(3)
- 2. Sur le modèle de la question précédente, comparer g(1)et q(1,5).
- 3. Même question pour g(-2) et g(0).

x	-2	0	1	7
f	5	. 1 /	y 4 \	^ 0

- 1. Comparer si possible les nombres suivants en justifiant. **a)** f(2) et f(4)
- **b)** f(-2) et f(-1)
- 2. Résoudre $f(x) \ge 0$.
- **3.** On sait de plus que f(-1,5) = 4. Résoudre $f(x) \le 4$ et f(x) > 4.

II Extrema (séance 3 cours + exercices : 2h)

Activité introductrice(à compléter)

Une entreprise produit et vend des boules de Noël. Le prix de vente unitaire peut être fixé entre 1 et 10 euros. En fonction de celui-ci, le nombre de ventes, donc la recette journalière varient. Après une étude de marché, le gérant a modélisé la recette journalière (en centaines d'euros) en fonction du prix de vente par une fonction R dont voici la courbe représentative.

- 1. Quelle est la recette journalière pour un prix de vente de 9 euros ?
- 2. (a) Quelle est la recette maximale? Pour quel prix est-elle atteinte?
 - (b) Compléter : R a pour maximum 50 car, pour tout $x \in [0; 10]$, on a $f(x) \dots$
 - C'est ainsi que l'on définit le maximum d'une fonction.
- 3. Une fonction g définie sur [-5; 5] a pour minimum 2 atteint en x = a.

Écrire la traduction mathématique de cet énoncé sur le modèle de la question précédente.

Définition 3

Soit a et b deux réels de l'intervalle I,

— f admet en a un **maximum** sur l'intervalle I signifie que :

Pour tout réel x de $I, f(x) \dots f(a)$

Autrement dit, f(a) est l'ordonnée du point la plus haut (s'il existe) de la courbe représentative de f sur I.

— f admet en b un **minimum** sur l'intervalle I signifie que :

Pour tout réel x de $I, f(x) \dots f(b)$

Autrement dit, f(b) est l'ordonnée du point la plus bas (s'il existe) de la courbe représentative de f sur I.

Un **extremum** est un minimum ou un maximum.

 $Exemple\ 4$: Donner les extrema des fonctions f et g suivantes.

Remarque: Une fonction peut ne pas avoir de maximum ou de minimum, en particulier lorsqu'elle est définie sur un intervalle ouvert comme $]-\infty;+\infty[...$

Exemple 5:

La fonction carrée a pour minimum 0 (atteint lorsque x=0) mais n'a pas de maximum.

La fonction définie par $g(x) = \frac{2}{1+x^2}$ sur \mathbb{R} a pour maximum 2 (atteint en 0) mais n'a pas de minimum. Sa courbe représentative se rapproche de l'axe des abscisses sans l'atteindre.

Rappel des variations des fonctions de référence

Sur leurs ensembles de définition respectifs,

Les extrema d'une fonction sont souvent faciles à lire sur la représentation graphique ou le tableau de variations. Ils peuvent aussi être démontrés par un calcul.

Exemple 6: On souhaite étudier la fonction $f(x) = x^2 - 2x - 3$ définie sur \mathbb{R} .

- 1. Utiliser la calculatrice pour visualiser sa courbe et donner son tableau de variation.
- 2. Montrer que $f(x) = (x-1)^2 4$. En déduire que pour tout $x, f(x) \ge -4$.

correction de l'exemple On souhaite étudier la fonction $f(x) = x^2 - 2x - 3$ définie sur \mathbb{R} .

1. Utiliser la calculatrice pour visualiser sa courbe et donner son tableau de variation.

2. Montrer que $f(x) = (x-1)^2 - 4$. En déduire que pour tout $x, f(x) \ge -4$. Pour tout x,

$$(x-1)^{2}-4 = x^{2}-2x+1-4$$
$$= x^{2}-2x-3$$
$$= f(x)$$

Or un carré est toujours positif, donc pour tout x,

$$(x-1)^{2} \geqslant 0$$

$$(x-1)^{2} - 4 \geqslant -4$$

$$f(x) \geqslant -4$$

Exercices

 $\frac{34}{100}$ f et g sont des fonctions dont voici les courbes repré- $\frac{37}{100}$ f est une fonction dont voici le tableau de variations. sentatives

- ${f 1.}\,f$ admet-elle un maximum ? un minimum ? Si oui, pour
- quelle(s) valeur(s) de x sont-ils atteints ? 2. Même question pour la fonction q.
- $\frac{36}{f}$ f est une fonction dont voici le tableau de variations.

- 1. Donner l'ensemble de définition de f.
- **2.** *f* admet-elle un maximum ? Si oui, pour quelle(s) valeur(s) de x est-il atteint?
- 3. f admet-elle un minimum ? Si oui, pour quelle(s) valeur(s) de x est-il atteint?

x	-4	1	3	6
f	0 -	-3-	> 1	→ _5

- 1. Donner l'ensemble de définition de f.
- 2. Déterminer le minimum de f et la valeur de x pour laquelle
- 3. Déterminer le maximum de f et la valeur de x pour laquelle il est atteint.
- f est une fonction dont voici le tableau de variations.

x	-4	-1	1	3	7
f	-4 /	4 \	▲ -5 /	≠ ² ∕	▲ -1

- 1. Donner l'ensemble de définition de f.
- 2. Donner un encadrement de f(x) sur l'ensemble de définition de f.
- 3. L'équation f(x) = 3 peut-elle avoir trois solutions ?
- f est une fonction dont voici le tableau de variations.

- 1. Donner son ensemble de définition.
- **2.** Donner un encadrement de f(x) lorsque $x \in [-5; -3]$.
- 3. Donner un encadrement de f(x) lorsque $x \in [-3; 4]$.
- 4. Comparer si possible, les nombres suivants.
- **a)** f(-4) et f(-3)**b)** f(-2) et f(3)

49 1. f est une fonction paire définie sur [–3; 3] dont voici l'ébauche de son tableau de variations.

- Le recopier et le compléter.
- 2. g est une fonction impaire définie sur [-5; 5] dont voici l'ébauche de son tableau de variations.

x	-5	-1	0	
f	-1 _	→ -3 <i>─</i>	0	

- Le recopier et le compléter.
- 57 Pour chaque tableau de variations, déterminer si la fonction représentée admet un maximum et/ou un minimum avec les informations disponibles.

Séance finale : QCM Bilan sur l'ENT