

$$= 312.6958776 \cdot (x^{2} - 1.50(x + 0.52294)) - 1.06.6738776 \cdot (x^{2} - 1.466x + 0.531064)$$

$$+ 273.5918367 (x^{2} - 1.451x + 0.511634)$$

$$= -0.4081635 x^{2} - 0.670240557 x + 1.015761208 , f(0.75) = 0.7317$$

$$= \left| \frac{144x^{2}f^{*}(x)}{5!} (x - 9.676240557 x + 1.015761208 ) , f(0.768) = 0.0134 \right|$$

$$= \left| \frac{0.0154}{5!} (x - 9.678)(x - 9.735)(x - 9.768) \right|$$

$$= \left| (x^{2} - 1.43)x + 0.511634 \right| (x - 9.768)(x - 9.768) - \frac{0.0154}{6} \right|$$

$$= \left| (x^{2} - 1.43)x + 0.511634 \right| (x - 9.768)(x - 9.768) - \frac{0.0154}{6} \right|$$

$$= \left| (x^{2} - 1.3427 \times 10^{-7}) \right|$$

$$= \left| (x - 9.765) (x - 9.768)(x - 9.803) - \frac{0.0152}{6} (x - 9.765)(x - 9.768)(x - 9.7$$

2. Use iterated inverse interpolation to find an approximation to the solution  $x - e^{-x} = 0$  using the data  $e^{-0.3} = 0.740818$ ,  $e^{-0.4} = 0.670320$ ,  $e^{-0.5} = 0.606531, e^{-0.6} = 0.548812.$ 

用 iterated in erse interpolation 景使用 vaille's method, 但老師沒教:用 metlab

| $\sqrt{}$ | 0.5      | 04      | 6.5      | 0.6      |
|-----------|----------|---------|----------|----------|
| e-x       | 0.740818 | 0.67032 | 0.60653) | 0.548812 |
|           |          | , ),    |          |          |

|           |           |           | 1         |                |
|-----------|-----------|-----------|-----------|----------------|
| y=x-e*    | -0.440818 | -6.270320 | -0.10653/ | 0.0511884 -> X |
| $\propto$ | 0.3       | 0,4       | 0.5       | 0.6 -) f       |

插值結果: 0.567142492111250

Neville 插值表:

0.3000

0

0

0.4000

0.5585

0

0

0.5000

0.5650

0.5671

0

0.6000

0.5675

0.5671

0.5671

$$-1. \chi = 0.567$$

$$x = e^{-x} \rightarrow y = e^{-x}$$
,  $x_1 = 0.5, y_1 = 0.606531, x_2 = 0.6, y_3 = 0.546812$ 

$$X = X_1 + \frac{y - y_1}{y_2 - y_1} (x_2 - x_1) = 0.5 + \frac{x - 0.60653}{0.548512 - 0.60653} (0.6 - 0.5)$$

$$=)$$
  $-0.057718 = -0.028859 + 0.1x - 0.060653$ 

$$\chi = 0.5 + \frac{\chi - 0.606531}{0.566916 - 0.60653}$$
 (0.566916 - 0.5)

$$= ) - 0.039615X = -0.0198075 + 0.066916X - 0.0405866284 = 12 = 0.5669$$

连插法 
$$\chi = \chi_1 + \frac{y-y}{y-y}, (\chi_2 - \chi_1)$$

| 3. A car travelling along a straight road is clocked at a num    | ber of points.    |
|------------------------------------------------------------------|-------------------|
| The data from the observations are given in the following        | g table, where    |
| the time $T$ is in seconds, the distance $D$ is in feet, and the | e speed $V$ is in |
| feet per second.                                                 |                   |

| T | 0  | 3   | 5   | 8   | 13  |
|---|----|-----|-----|-----|-----|
| D | 0  | 200 | 375 | 620 | 990 |
| V | 75 | 77  | 80  | 74  | 72  |

- a. Use a Hermite polynomial to predict the position of the car and its speed when t = 10 s.
- b. Use the derivative of the Hermite polynomial to determine whether the car ever exceeds a 55 mi/h speed limit on the road. If so, what is the first time the car exceeds this speed?
- c. What is the predicted maximum speed for the car?

$$Z_0 = Z_1 = X_1 = 8$$
,  $Z_2 = Z_3 = X_2 = 13$ 

$$= f(8) + f(8)(48) + \frac{f(21/21) - f(20/21)}{22 - 20} (x - 8)^2 + \frac{f(21/8126) - f(20/2121)}{23 - 20} (x - 8)(x - 13)$$

$$=620+74(x-8)+\frac{1}{X_2-X_1}\left[\frac{f(X_2)-f(X_1)}{X_2-X_1}-f'(X_1)\right](X-8)^2$$

$$+\frac{1}{\chi_{2}-\chi_{1}}\left\{\frac{f[Z_{1},Z_{3}]-f[Z_{1},Z_{2}]}{Z_{3}-Z_{1}}-f[Z_{0},Z_{2}]\left(\chi-\xi\right)^{2}(\chi-13)\right\}$$

 $f(\chi_2) = 990$ 

f(X1)=(20

 $f(z_1,z_2) = \frac{f(x_2)-f(x_1)}{x_2-x_1}$ 

= 14

f(z), Z1 = f'(x2) = f'(3)

=112

$$= 1/4x + 28 + \frac{1}{5}(x^{2} + 16x + 64)(1/4 + 24) + \frac{1}{5} \cdot \frac{1}{5} \cdot (f(x_{2}) - \frac{f(x_{3}) - f(x_{1})}{x_{2} \cdot x_{1}})(x + 8)(x + 13)$$

$$= 74x + 28 - \frac{2}{55} \left( x^3 - 13x^2 - 16x + 208x + 64x - 832 \right)$$

$$= -\frac{2}{25}x^{2} + \frac{58}{25}x^{2} + 52.24x + 94.56 \qquad f(16) = 768.96 \times$$

(b) 55 mi/h = 55 x 
$$\frac{5280}{3600}$$
 =  $60.67$  ft/s

位置:  $H_3(X) = \frac{1}{25}X + \frac{116}{25}X + 52.24X + 74.55$ 

速度:  $H_5'(X) = \frac{-6}{25}X + \frac{116}{25}X + 52.24$ 
 $H_3''(X) = \frac{12}{25}X + \frac{116}{25} = 0$  一展大速度  $= X = \frac{29}{3}$  件  $= \frac{19}{3}$  件  $= \frac$ 

1.0e+02 \*

Columns 1 through 5

0.7500000000000000 2.2500000000000000 0.7500000000000000 2.2500000000000000 0.7700000000000000 0.006666666666667 0.00222222222222 3.830000000000000 0.0100000000000000 0.7900000000000000 0.000666666666667 0.800000000000000 -0.0010000000000000 0.000300000000000 6.230000000000000 0.7400000000000000 -0.020000000000000 -0.006666666666667 -0.0011333333333333 9.930000000000000 0.7400000000000000 0.0025000000000000 0.0011458333333333 9.930000000000000 0.7200000000000000 -0.0040000000000000 -0.0008000000000000 -0.000412500000000

-0.000064444444444 0.000116666666667 -0.000286666666667 -0.000050416666667 -0.000009131944444 0.000001305267916 0.000227916666667 0.0000514583333333 0.000007836538462 -0.000194791666667 -0.000042270833333 -0.000009372916667 -0.000001323804241 -0.000000202236320 標準多項式的係數 (從最高次到常數項):

Columns 1 through 5

Columns 6 through 10

5.508120511334900 -10.095308938641073

7.161908037475344 75.000000000000000

0

 $5/(\frac{1}{3} + 0.1854) = -0.0002023632 x^{2} + 0.00104059026361 x^{2} - 0.210156663 x^{2} + 0.24604 x^{6} - 1.5682956 x^{5} + 5.50812 x^{6} - 10.095309 x^{3} + 1.1619 x^{7} + 75 x$   $1/9'(x) = -0.00008198 x^{8} + 0.00832492 x^{2} - 0.15516 x^{6} + 1.458245 x^{5} - 1.691478 x^{6} + 22.05248 x^{3} - 30.285924 x^{7} + 14.32816 x + 15$   $1/9''(x) = -0.00145584 x^{7} + 0.0582330 x^{6} - 0.91878 x^{5} + 1.29125 x^{6} + 1.4323846 = 0$   $-30.765912 x^{3} + 66.697446 x^{7} - 60.571854 x + 14.323846 = 0$ 

- 0.00018198\*+\*\*8 + 0.00832472\*+\*\*7 - 0.15313\*+\*6 + 1.45825\*+\*5 - 7.69148\*+\*4 + 22.0325\*+\*3 - 30.2859\*+\*2 + 14.3238\*+ + 75.0

Numerical solutions for P'(t) = 0:

0.35025436048295864316799755384753

1.6418205550470977559091294295497

6.5415765505114210653806946864661

9.9450554372086821841451875446878

12.442243616456030480773284460538

4.5530701847012537879777722258876 + 0.63777315103519074947388872108713i

4.5530701847012537879777722258876 - 0.637773151035190749473888721087131

一般解不参,可知在 次=0.5503,1.642,6.54,9.945,12.44 Hg似有最大值 代因 Hg′(X) 扩造监路的速度 V(0.55) = 11.1399 V(1.642) = 13.1552 V(16.54) = 81.5644 V(9.945) = 51.56288 V(12.44) = 137.6032 (b) ... 在  $\chi = 6.54$  時 實有最大個 137.6032

 $-0.00145584*t^7 + 0.058273*t^6 - 0.918778*t^5 + 7.29124*t^4 - 30.7659*t^3 + 66.0974*t^2 - 60.5719*t + 14.32388*t^4 + 14.32388*t^4 + 14.32388*t^5 + 14.32388*t^6 + 14.32888*t^6 + 14.32388*t^6 + 14.32388*t^6 + 14.32388*t^6 + 14.32388*t^6 + 14.32388*t^6 + 14.32388*t^6 + 14.32888*t^6 + 14.328888*t^6 + 14.32888*t^6 + 14.328888*t^6 + 14.328888*t^6 + 14.32888*t^6 + 14.3$