umbers

Weak Schur Numbers

L'étude des nombres de Schur est un problème de combinatoire à l'énoncé simple formulé il y a 100 ans. L'objectif est d'améliorer les bornes connues pour ces nombres, par des moyens mathématiques ou informatiques.

Les nombres de Schur

Soit n>0 un entier, k>0 un nombre de couleurs,

Le mathématicien Issai Schur se pose le problème suivant:

Peut-on colorier les entiers de 1 à n avec k couleurs tel que si deux nombres sont de la même couleur, leur somme n'est pas de cette couleur? Si ce coloriage existe, il est dit *sans sommes*.

Par exemple, ce coloriage est sans sommes:

1 2 3 4 5 6 7 8 9 10 11 12 13

Pour k couleurs, on note S(k) le plus grand entier n tel qu'il existe une partition de 1 à n sans sommes à k couleurs. On appelle S(k) le k-ième *nombre de Schur*.

Les nombres de Weak Schur

Soit n>0 un entier, k>0 un nombre de couleurs,

Une variante du problème de Schur revient à poser le problème suivant:

Peut-on colorier les entiers de 1 à n avec k couleurs tel que si deux nombres *différents* sont de la même couleur, leur somme n'est pas de cette couleur? Si ce coloriage existe, il est dit *faiblement sans sommes*.

Par exemple, ce coloriage est faiblement sans sommes: 1 2 3 4 5 6 7 8

Pour k couleurs, on note WS(k) le plus grand entier n tel qu'il existe une partition de 1 à n faiblement sans sommes à k couleurs. On appelle WS(k) le k-ième nombre de Schur faible.

Soit n,m>0, Abbott et Hanson ont montré que:

$$S(n+m) \ge S(n)(2S(m)+1)+S(m)$$

Cette inégalité est montré grâce à une construction qui permet d'obtenir un coloriage sans sommes à n+m couleurs à partir d'un coloriage sans sommes à n couleur et un autre à m couleurs.

On peut légèrement améliorer cette construction en ne partant pas d'un coloriage sans-somme mais d'un coloriage avec des contraintes un peu plus faibles

1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18
19	20	21	22	23	24	25	26	27
28	29	30	31	32	33	34	35	36
37	38	39	40					

Construction de Abbott et Hanson dans le cas n=2 et m=2

n	1	2	3	4	5	6	7	8	9	10	11	12
Before Rowley	1	4	13	44	160	536	1680	5041	15124	51120	172216	575664
Defore Rowley					[9]	[10]	[10]	[3]	[3]	[3]	[3]	[3]
Rowley							1 696	5 286	17 694	60 320	201 696	637 856
[7], [11]							1 090 5 200	0 200	11094	00 320	201090	037 330
Our results									17 803	60 948	203 828	644 628

Tableau comprant les bornes inférieures obtenus pour les nombres de Schur

Plusieurs approches ont déjà été développées pour améliorer les bornes inférieures (constructions récursives, exploration par Monte-Carlo, solveur SAT...). Il est possible d'approfondir les pistes déjà existantes, ou d'en trouver de nouvelles!

Le projet recrute! Si vous êtes intéréssés, inscrivez-vous au pôle projet formation à la recherche.