- 1. Clases de Direcciones de IP.
 - i) Indicar cuales son y su rango
 - ii) Indicar la Máscara de Subred por Defecto
 - iii) Indicar dentro de las clases descriptas en el item i cuales son direcciones privadas
- 1.i) Clase A Rango: 1 127 (La red 127 se reserva para loopback y pruebas internas)

Clase B Rango: 128 – 191 Clase C Rango: 192 – 223

Clase D Rango: 224 – 239 (Reservadas para multicast)

Clase E Rango: 240 – 255 (Reservadas para experimentación, usadas para investigación)

ii) Clase A 255.0.0.0

Ćlase B 255.255.0.0

Clase C 255.255.255.0

iii) Clase A Rango: 10.0.0.0 – 10.255.255.255

Clase B Rango: 172.16.0.0 – 172.31.255.255

Clase C Rango: 192.168.0.0 – 192.168.255.255

2. Dadas las siguientes direcciones de IP. Indicar si corresponde:

Clase de Red Parte de red de cada dirección Parte del host de cada dirección Máscara de red por defecto

220.200.23.1 – Clase C, Máscara: 255.255.255.0, Parte de red: 220.200.23, Parte de host: 1

148.17.9.1 - Clase B, Máscara: 255.255.0.0, Parte de red: 148.17, Parte de host: 9.1

33.15.4.13 – Clase A, Máscara: 255.0.0.0, Parte de red: 33, Parte de host: 15.4.13

249.240.80.78 – Clase E

230.230.45.68 - Clase D

192.68.12.8 – Clase C, Máscara: 255.255.255.0, Parte de red: 192.68.12, Parte de host: 8

177.100.18.4 – Clase B, Máscara: 255.255.0.0, Parte de red: 177.100, Parte de host: 18.4

95.250.91.99 – Clase A, Máscara: 255.0.0.0, Parte de red: 95, Parte de host: 250.91.99

CÁLCULO DE DIRECCIONES

Fórmula para calcular subredes

m = la cantidad de bits que se tomaron prestados

La cantidad de hosts

$$Hosts = 2^{n} - 2,$$

n = la cantidad de bits para hosts.

- 5. Una empresa cuenta con 8 sucursales y cuenta con una dirección IP 193.52.57.0
 - i. ¿Cuál sería la máscara de red más adecuada?
- ii. ¿Cuáles son los rangos de direcciones para cada sucursal y que cantidad de host puede tener cada una de ellas?
 - iii. ¿Cuál es la dirección de broadcast para la tercer sucursal?

Dirección de IP: 193.52.57.0 - Clase C - Máscara: 255.255.255.0

Número de hosts	256	128	64	32	16	8	4	2
Número de subredes	2	4	8	16	32	64	128	256
Valores binarios	128	64	32	16	8	4	2	1

Número total de subredes: 16

Número total de direcciones de host: 16

Número total de direcciones de host útiles: 14

Máscara de subred adaptada: 255.255.255.240 o \28

Rango de direcciones:

11	193.52.57.48	to	193.52.57.63
100	193.52.57.64	to	193.52.57.79
101	193.52.57.80	to	193.52.57.95
110	193.52.57.96	to	193.52.57.111
111	193.52.57.112	to	193.52.57.127
1000	193.52.57.128	to	193.52.57.143
1110	193.52.57.224	to	193.52.57.239
1111	193.52.57.240	to	193.52.57.255

La dirección de broadcast de la tercera sucursal es 193.52.57.63

7. Suponga que en la estructura de red siguiente Red1, Red2, Red3 y todos los anfitriones incluyendo R están bajo su administración, y se desea que todos ellos tengan acceso a Internet. Dar la configuración de la red en cada uno de los siguientes casos:

i. Se cuenta con tres juegos de direcciones IP públicas ruteables : 200.13.147.0; 200.13.148.0; 200.13.149.0

Asignar direcciones IP a todos los anfitriones y al router. Diseñar la tabla de ruteo para el router R.

Destino	Mascara	Gateway
200.13.147.0	/24	Entrega Directa
200.13.148.0	/24	Entrega Directa
200.13.149.0	/24	Entrega Directa

ii. Se cuenta con un juego de direcciones IP públicas ruteables: 200.13.147.0. Utilizar subredes.

Asignar direcciones IP a todos los anfitriones y al router. Diseñar la tabla de ruteo para el router R.

Número de hosts	256	128	64	32	16	8	4	2
Número de subredes	2	4	8	16	32	64	128	256
Valores binarios	128	64	32	16	8	4	2	1

Identificación de red	Dirección de red
Red 1	200.13.147.0/26
Red 2	200.13.147.64/26
Red 3	200.13.147.124/26
Red 4 (Salida a Internet)	200.13.147.192/26

Red	Anfitrión	IP
1	Α	200.13.147.1
	В	200.13.147.2
	С	200.13.147.3
	R	200.13.147.62
2	F	200.13.147.65
	G	200.13.147.66
	R	200.13.147.122
3	D	200.13.147.125
	E	200.13.147.126
	R	200.13.147.190
4	R	200.13.147.240

Tabla de Ruteo de R

Destino	Mascara	Gateway
200.13.147.0	/26	Entrega directa (ED)
200.13.147.64	/26	Entrega directa (ED)
200.13.147.128	/26	Entrega directa (ED)
200.13.147.192	/26	Entrega directa (ED)
0.0.0.0	/0	200.13.147.1

9. La compañía *ArgenCore* es una red privada que tiene acceso a internet través de R2, donde no es necesario que la red1 tenga acceso a Internet, aunque si las demás. El proveedor de Internet asignó la red 200.113.2.192/26 a la empresa, que necesita ubicar 13 maquinas en la red 2, 28 en la red 3 y 12 en la 4. Para la interfaz exterior de R2 asignó la ip 200.100.2.2/30.

- i. Determinar direcciones y máscaras de red a cada red, y asignarle ip a todas las interfaces los routers.
- ii. Diseñar tabla de ruteo para R2 y R3. Determine Ud. mismo cual es la puerta de enlace para R2, en base a la información disponible. Tenga en cuenta que las maquinas de las Redes 2, 3 y 4 deben poder acceder a la Red 1.