ECON5002 Basic Econometrics

COMPUTER LAB 1-3

By Duong Trinh

Intro

- Duong Trinh
 - ▶ PhD Student in Economics (Bayesian Microeconometrics)
 - ► Email: Duong.Trinh@glasgow.ac.uk
- ECON5002-LAB04
 - Wednesday 9 11 am, 42 Bute Gardens L1113
 - 5 sessions (16-Oct, 30-Oct, 13-Nov, 20-Nov, 27-Nov)
- ECON5002-LAB05
 - Wednesday 3 5 pm, 42 Bute Gardens L1105
 - ► 5 sessions (16-Oct, 30-Oct, 13-Nov, 20-Nov, 27-Nov)

ECON5002 Note on Lab Sessions Duong Trinh 2/67

Percentiles - Definition

The p^{th} **percentile** is a value such that p percent of the observations fall below or at that value.

▶ The 50^{th} percentile is usually referred to as the **median** (p = 50): 50% of the observations fall below or at it and 50% above it.

Percentiles - Example

You are the fourth tallest person in a group of 15.

 \implies 80% of people are shorter than or as high as you:

That means you are at the 80th percentile.

If your height is 1.75m then "1.75m" is the 80^{th} percentile height in that group.

Percentiles - Quartiles

Three useful percentiles are the **quartiles**. The quartiles split distribution into four parts, each containing one quarter (25%) of the observations.

- ▶ The **first quartile** has p = 25, so it is the 25^{th} percentile.
- ▶ The **second quartile** has p = 50, so it is the 50^{th} percentile, which is the median.
- ▶ The **third quartile** has p = 75, so it is the 75^{th} percentile.

ECON5002 Note on Lab Sessions Duong Trinh 5 / 67

Skewed Distribution - Definition

Curves for Distributions Illustrating Symmetry and Skew

To skew means to stretch in one direction.

- A distribution is *skewed to the left* if left tail is longer than right tail.
- A distribution is *skewed to the right* if right tail is longer than left tail.
- ► A left-skewed distribution stretches to the left and A right-skewed distribution stretches to the right.

ECON5002 Note on Lab Sessions Duong Trinh 6 / 67

Skewed Distribution - Example

ECON5002 Note on Lab Sessions Duong Trinh

7/67

Skewness

Skewness measures the degree and direction of asymmetry.

$$skew[X] = E\left[\left(\frac{X-\mu}{\sigma}\right)^3\right] = \frac{\mu_3}{\sigma^3}$$

8/67

- A symmetric distribution has a skewness of 0.
- A *left-skewed* distribution has a *negative* skewness.
- A right-skewed distribution has a positive skewness.

ECON5002 Note on Lab Sessions **Duong Trinh**

Kurtosis

Kurtosis is a measure of the heaviness of the tails of a distribution.

$$\operatorname{Kurt}[X] = \mathbb{E}\left[\left(\frac{X-\mu}{\sigma}\right)^4\right] = \frac{\mu_4}{\sigma^4},$$

ECON5002 Note on Lab Sessions Duong Trinh 9/67

Kurtosis (cont.)

Kurtosis is a measure of the heaviness of the tails of a distribution.

- ► A normal distribution has a kurtosis of 3.
- Heavy tailed distributions will have kurtosis greater than 3.
- Light tailed distributions will have kurtosis less than 3.

ECON5002 Note on Lab Sessions Duong Trinh

10 / 67

Association - Scatterplot

Looking for trend of the association between two quantitative variables:

- **Positive association**: As *x* goes up, *y* tends to go up.
- ▶ **Negative association**: As *x* goes up, *y* tends to go down.

Association - Correlation

Summarizing **direction** and **strength** of the **linear** (straight-line) **association** between two quantitative variables.

$$r = \frac{1}{n-1} \Sigma \left(\frac{x - \bar{x}}{s_x} \right) \left(\frac{y - \bar{y}}{s_y} \right) \tag{1}$$

Correlation coefficient r takes values between -1 and +1.

Direction

- ightharpoonup r > 0 indicates a positive association
- ightharpoonup r < 0 indicates a negative association

Strength

- ▶ The closer r is to +/-1 the closer the data points fall to a straight line, and the stronger the linear association is.
- ▶ The closer *r* is to 0, the weaker the linear association is.

Association - Correlation (cont.)

Strong positive relationship r = 0.96

Moderate positive relationship r = 0.67

Very weak positive relationship r = 0.07

Note on Lab Sessions

Association - Correlation (cont.)

Very strong negative relationship r = -0.93

Moderately strong negative relationship r = -0.67

Very weak negative relationship

r = -0.13Note on Lab Sessions

Association - Correlation (cont.)

(!) Correlation poorly describes the association when the relationship is curved (non-linear).

For this U-shaped relationship, the correlation is 0 (or close to 0), even though the variables are strongly associated. Ignoring the scatterplot could result in a serious mistake when describing the relationship between two variables.

Functional Forms Involving Logarithms

Constant unit change/ Constant percentage change/ Constant elasticity?

Interpret Slope Coefficient Estimates

Model	Interpretation of \widehat{eta}_1			
Level-level	An increase in X by 1 unit is associated			
$Y_i = \beta_0 + \beta_1 X_i + u_i$	with a change in Y by \widehat{eta}_1 units on average			
Log-level	An increase in X by 1 unit is associated with			
$ln(Y_i) = \beta_0 + \beta_1 X_i + u_i$	a change in Y by $(100 imes \widehat{eta}_1)\%$ on average			
Level-log An increase in X by 1% is associated w				
$Y_i = \beta_0 + \beta_1 \ln(X_i) + u_i$	change in Y by $(\widehat{eta}_1/100)$ units on average			
Log-log	An increase in X by 1% is associated			
$ln(Y_i) = \beta_0 + \beta_1 ln(X_i) + u_i$	with a change in Y by $\widehat{eta}_1\%$ on average			

Functional Forms Involving Logarithms (cont.)

Why logarithmic transformation?

- Meaningful interpretation: reasonable, consistent with economic theories.
- ➤ Yields a distribution that is closer to normal ⇒ better for inference purpose.

R^2 and adjusted R^2

 $ightharpoonup R^2$ is the fraction of the sample variance of Y explained by X

$$R^{2} = \frac{\sum_{i=1}^{n} \left(\widehat{Y}_{i} - \overline{Y}\right)^{2}}{\sum_{i=1}^{n} \left(Y_{i} - \overline{Y}\right)^{2}} = \frac{\text{Explained sum of squares (ESS)}}{\text{Total sum of squares (TSS)}}$$

▶ Adjusted R^2 (or \bar{R}^2) takes R^2 and penalise for additional regressors

$$\bar{R}^2 = 1 - \left(\frac{n-1}{n-k-1}\right) \frac{SSR}{TSS} = 1 - \left(\frac{n-1}{n-k-1}\right) \left(1 - R^2\right)$$

- $\frac{n-1}{n-k-1}$ is greater than 1 and grows with k
- \square $\overline{R}^2 < R^2$, however two will be very close if n is large, k is small, or $R^2 = 0$ (which is very unlikely)

LAB SESSION 2

- \triangleright β_1 are **unknown** features of the population (population parameters), and we will never know them with certainty.
- Nevertheless, we can **hypothesize** about the value of β_1 and then use statistical inference to test our hypothesis.

Procedure includes 5 steps:

- ► Null hypothesis *H*₀
- ► Alternative hypothesis *H*₁
- Test statistic
- Decision rule
- Conclusion

Procedure includes 5 steps:

Null hypothesis H_0 :

$$H_0: \beta_1 = \beta_{1,0}$$

where $\beta_{1,0}$ is a hypothesized value.

- ► Alternative hypothesis *H*₁
- Test statistic
- Decision rule
- Conclusion

Procedure includes 5 steps:

Null hypothesis H_0 :

$$H_0: \beta_1 = \beta_{1,0}$$

where $\beta_{1,0}$ is a hypothesized value.

 \blacksquare Alternative hypothesis H_1 :

Test	H_1			
Two-sided	$\beta_1 \neq \beta_{1,0}$			
Left-tailed	$\beta_1 < \beta_{1,0}$			
Right-tailed	$\beta_1 > \beta_{1,0}$			

- Test statistic
- Decision rule
- Conclusion

Procedure includes 5 steps:

- ► Null hypothesis *H*₀
- ► Alternative hypothesis *H*₁
- Test statistic:

$$\textbf{t-statistic} = \frac{\widehat{\beta}_1 - \beta_{1,0}}{\textit{SE}\left(\widehat{\beta}_1\right)}$$

follows a t-distribution with degrees of freedom n - k - 1 where:

- n: number of observations
 - k: number of regressors (independent variables)
- \square k+1: number of parameters (= number of estimated coefficients)
- Decision rule
- Conclusion

Procedure includes 5 steps:

- ► Null hypothesis *H*₀
- \triangleright Alternative hypothesis H_1
- Test statistic
- Decision rule:
 - □ Is this a two-sided test or an one-sided (left-tailed/right-tailed) test? \implies Look again H_1 .
 - \square What is the **significance level** α ?
 - \implies Usually chosen to be 0.01, 0.05 or 0.10.
 - ☐ Is the decision rule based on **critical values** or **p-value**?
 - ⇒ Distinguish...
- Conclusion

Decision Rule

Approach 1: Critical-value Test

Test	H_1	Reject H_0 if		
Two-sided	$\beta_1 \neq \beta_{1,0}$	$t^{s}<-t_{rac{lpha}{2}} ext{ or } t^{s}>t_{rac{lpha}{2}}$		
Left-tailed	$\beta_1 < \beta_{1,0}$	$t^s < -t_lpha$		
Right-tailed	$\beta_1 > \beta_{1,0}$	$t^s>t_lpha$		

Approach 2: p-value Test

Test	H_1	p-value	Reject H_0 if	
Two-sided	$\beta_1 \neq \beta_{1,0}$	sum probabilities to the right of $ t^s $ and to the left of $- t^s $	$p\text{-value} \leq \alpha$	
Left-tailed	$\beta_1 < \beta_{1,0}$	probability to the left of t^s	$ extsf{p-value} \leq lpha$	
Right-tailed	$\beta_1 > \beta_{1,0}$	probability to the right of t^s	$p ext{-}value \leq \alpha$	

*Note: p-value two-sided = $2 \times p$ -value one-sided

26 / 67

Decision Rule

Procedure includes 5 steps:

- ► Null hypothesis *H*₀
- ► Alternative hypothesis *H*₁
- Test statistic
- Decision rule
- Conclusion:
 - \square Do you reject or or fail to reject the null hypothesis at the significance level α ?
 - AVOID saying that you "accept" the null hypothesis, which can be very misleading

Confidence Intervals

▶ The $100(1-\alpha)\%$ confidence interval for β_1 is given by

$$\left[\widehat{\beta}_{1}-t_{\frac{\alpha}{2},n-k-1}\cdot\textit{SE}\left(\widehat{\beta}_{1}\right),\widehat{\beta}_{1}+t_{\frac{\alpha}{2},n-k-1}\cdot\textit{SE}\left(\widehat{\beta}_{1}\right)\right]$$

- Usually $\alpha = 0.01, 0.05$ or 0.10, so that we obtain a 99%, 95% or 90% confidence interval, respectively.
- \Box $t_{\frac{\alpha}{2},n-k-1}$: same critical value as two-sided hypothesis test.

Confidence Intervals

If you have 100 random realizations of the confidence intervals, then 95 on average will include the true parameter.

ECON5002 Note on Lab Sessions Duong Trinh 30 / 67

Exercise M1(b)

Estimate the regression model:

$$log(SALARY_i) = \beta_0 + \beta_1 EDUC_i + u_i$$

Exercise M1(b)

Estimate the regression model:

$$log(SALARY_i) = \beta_0 + \beta_1 EDUC_i + u_i$$

Estimation results:

$$log(\widehat{SALARY_i}) = 9.062 + 0.096 \cdot EDUC$$
 $R^2 = 0.485$

► Test the null hypothesis that education has no effect on salary at a 5% significance level.

Exercise M1(b)

Procedure includes 5 steps:

- ► Null hypothesis *H*₀
- ► Alternative hypothesis *H*₁
- Test statistic
- Decision rule
- Conclusion

Exercise M1(b) - Two-sided test

- Null hypothesis H_0 :
 - □ H_0 : Education has zero effect on salary H_0 : $\beta_1 = 0$
- \blacksquare Alternative hypothesis H_1 :
 - \square H_0 : Education has non-zero effect on salary $H_1: \beta_1 \neq 0$
- Test statistic
- Decision rule
- Conclusion

Exercise M1(b) - Two-sided test

- ► Null hypothesis H₀
- \triangleright Alternative hypothesis H_1
- Test statistic:

t-statistic =
$$\frac{\hat{\beta}_1 - 0}{SE(\hat{\beta}_1)} = \frac{0.09596 - 0}{0.00455} = 21.1$$

- Decision rule
- Conclusion

Exercise M1(b) - Two-sided test

Test statistic:

cons

9.062102

t-statistic =
$$\frac{\hat{\beta}_1 - 0}{SE(\hat{\beta}_1)} = \frac{0.09596 - 0}{0.00455} = 21.1$$

regress LSA	LARY EDUC						
Source	ss	df	MS	Numb	er of obs	=	474
				– F(1,	472)	=	445.30
Model	36.2505493	1	36.250549	3 Prob	> F	=	0.0000
Residual	38.4240707	472	.08140692	9 R-sq	uared	=	0.4854
				– Adj	R-squared	=	0.4844
Total	74.67462	473	.15787446	1 Root	MSE	=	. 28532
	T						
LSALARY	Coefficient	Std. err.	t	P> t	[95% c	onf. :	interval]
EDUC	.095963	.0045475	21.10	0.000	.08702	71	.104899

ECON5002 Note on Lab Sessions Duong Trinh

144.44

0.000

8.938822

9.185381

35 / 67

.0627376

- ▶ Null hypothesis H₀
- ► Alternative hypothesis *H*₁
- Test statistic
- Decision rule:
 - □ Is this a two-sided test or a one-sided (left-tailed/right-tailed) test? ⇒ Two-sided test (Look again $H_1: \beta_1 \neq 0$).
 - □ What is the **significance level** α ?
 - \implies 5% significance level.
 - ☐ Is the decision rule based on **critical values** or **p-value**?
 - \Longrightarrow Distinguish...
- Conclusion

- Decision rule:
 - Two-sided test
 - \square The significance level $\alpha = 0.05$
 - Is the decision rule based on critical values or p-value?
 - *Approach 1: **Critical-value Test**: Reject *H*₀ if t-statistic
 - $>t_{lpha/2,n-k-1}$ or t-statistic $<-t_{lpha/2,n-k-1}$
 - The critical value is: $t_{0.025,472} = 1.9650$

```
. display invttail(472,0.025)
1.9650027
```

▶ Since 21.1 > 1.9650, we reject H_0 at 5% level of significance.

- Decision rule:
 - ☐ Two-sided test
 - □ The significance level $\alpha = 0.05$
 - ☐ Is the decision rule based on **critical values** or **p-value**?
 - *Approach 2: P-value Test: Reject H_0 if P-value $\leq \alpha$
 - Stata displays by default a two-sided p-value: p-value two-sided ≈ 0.000
 - ▶ Since $0.000 < 0.05 = \alpha$, we reject H_0 at 5% level of significance.

- Decision rule:
 - Two-sided test
 - \square The significance level $\alpha = 0.05$
 - *Approach 3: Confidence Interval:
 - ▶ The 95% confidence interval for β_1 is

$$\left[\widehat{\beta}_{1}-t_{\frac{0.05}{2},472}\cdot\textit{SE}\left(\widehat{\beta}_{1}\right),\widehat{\beta}_{1}+t_{\frac{0.05}{2},472}\cdot\textit{SE}\left(\widehat{\beta}_{1}\right)\right]$$

▶ By default Stata displays the 95% Confidence Interval which is $[0.0870; 0.1049] \not\ni 0$, we reject H_0 at 5% level of significance.

regress LSAI	ARY EDUC					
Source	ss	df	MS	Number of o	bs =	474
				F(1, 472)	=	445.30
Model	36.2505493	1	36.2505493	Prob > F	=	0.0000
Residual	38.4240707	472	.081406929	R-squared	=	0.4854
				- Adj R-squar	ed =	0.4844
Total	74.67462	473	.157874461	. Root MSE	=	. 28532
LSALARY	Coefficient	Std. err.	t	P> t [95%	conf.	interval]
EDUC	.095963	.0045475	21.10	0.000 .087	0271	.104899
cons	9.062102	.0627376	144.44	0.000 8.93	8822	9.185381

- ► Null hypothesis *H*₀
- Alternative hypothesis H₁
- Test statistic
- Decision rule
- Conclusion:
 - ☐ Education has a significant non-zero effect on salary.

- Null hypothesis H_0 :
 - □ H_0 : Education has zero effect on salary H_0 : $\beta_1 = 0$
- \blacksquare Alternative hypothesis H_1 :
 - \square H_0 : Education has positive effect on salary $H_1: \beta_1 > 0$
- Test statistic
- Decision rule
- Conclusion

- ► Null hypothesis H₀
- Alternative hypothesis H₁
- Test statistic:

t-statistic =
$$\frac{\hat{\beta}_1 - 0}{SE(\hat{\beta}_1)} = \frac{0.09596 - 0}{0.00455} = 21.1$$

- Decision rule
- Conclusion

Test statistic:

t-statistic =
$$\frac{\hat{\beta}_1 - 0}{SE(\hat{\beta}_1)} = \frac{0.09596 - 0}{0.00455} = 21.1$$

regress LSA	LARY EDUC					
Source	SS	df	MS	Number of obs	=	474
				F(1, 472)	=	445.30
Model	36.2505493	1	36.2505493	Prob > F	=	0.0000
Residual	38.4240707	472	.081406929	R-squared	=	0.4854
				- Adj R-squared	=	0.4844
Total	74.67462	473	.157874461	Root MSE	=	. 28532
LSALARY	Coefficient	Std. err.	t	P> t [95% co	nf.	interval]
EDUC	.095963	.0045475	21.10	0.000 .087027	1	.104899
cons	9.062102	.0627376	144.44	0.000 8.93882	2	9.185381

ECON5002 Note on Lab Sessions Duong Trinh

- ► Null hypothesis *H*₀
- Alternative hypothesis H₁
- Test statistic
- Decision rule:
 - □ Is this a two-sided test or a one-sided (left-tailed/right-tailed) test? \implies Right-tailed test (Look again $H_1: \beta_1 > 0$).
 - \square What is the **significance level** α ?
 - \implies 5% significance level.
 - ☐ Is the decision rule based on **critical values** or **p-value**?
 - ⇒ Distinguish...
- Conclusion

- Decision rule:
 - ☐ Right-tailed test
 - \square The significance level $\alpha = 0.05$
 - Is the decision rule based on critical values or p-value?
 - *Approach 1: **Critical-value Test**: Reject H_0 if t-statistic $> t_{\alpha,n-k-1}$
 - ▶ The critical value is: $t_{0.05,472} = 1.6481$

```
. display invttail(472,0.05)
1.6480883
```

▶ Since 21.1 > 1.6481, we reject H_0 at 5% level of significance.

- Decision rule:
 - ☐ Right-tailed test
 - □ The significance level $\alpha = 0.05$
 - ☐ Is the decision rule based on **critical values** or **p-value**?
 - *Approach 2: **P-value Test**: Reject H_0 if P-value $\leq \alpha$
 - Stata displays by default a two-sided p-value: p-value one-sided = p-value two-sided/ $2 \approx 0.000$
 - ▶ Since $0.000 < 0.05 = \alpha$, we reject H_0 at 5% level of significance.

Source	SS	df	MS	Num	ber of obs	=	474
				- F(1	, 472)	=	445.30
Model	36.2505493	1	36.250549	3 Pro	b > F	=	0.0000
Residual	38.4240707	472	.08140692	9 R-s	quared	=	0.4854
				– Adj	R-squared	=	0.4844
Total	74.67462	473	.15787446	1 Roc	t MSE	=	. 28532
LSALARY	Coefficient	Std. err.	t	P> t	[95% c	onf.	interval]
EDUC	.095963	.0045475	21.10	0.000	.08702	71	.104899
cons	9.062102	.0627376	144.44	0.000	8.9388	22	9.185381

- ▶ Null hypothesis H₀
- Alternative hypothesis H₁
- Test statistic
- Decision rule
- Conclusion:
 - ☐ Education has a significant positive effect on salary.

Procedure includes 5 steps:

- ► Null hypothesis *H*₀
- ► Alternative hypothesis *H*₁
- Test statistic
- Decision rule
- Conclusion

Null hypothesis H_0 : imposes a restriction on two or more coefficients

e.g.
$$H_0: \beta_1 = 0 \text{ and } \beta_2 = 0$$

- ► Alternative hypothesis *H*₁
- Test statistic
- Decision rule
- Conclusion

Procedure includes 5 steps:

Null hypothesis H_0 : imposes a restriction on two or more coefficients

e.g.
$$H_0: \beta_1 = 0 \text{ and } \beta_2 = 0$$

 \blacksquare Alternative hypothesis H_1 :

e.g.
$$H_0: \beta_1 \neq 0$$
 or $\beta_2 \neq 0$ or both are non-zero

- Test statistic
- Decision rule
- Conclusion

- Null hypothesis H₀
- Alternative hypothesis H₁
- Test statistic:

F-statistic =
$$\frac{(SSR_R - SSR_U)/q}{SSR_U/(n-k-1)} = \frac{(R_U^2 - R_R^2)/q}{(1 - R_U^2)/(n-k-1)}$$

where:

- n: number of observations
- k: number of regressors (independent variables) under the unrestricted model
- □ k+1: number of parameters under the unrestricted model (= number of estimated coefficients)
- q: number of restrictions (number of linear hypotheses with **equal** sign)
- Decision rule
- Conclusion

- Null hypothesis H₀
- Alternative hypothesis H₁
- Test statistic:

F-statistic =
$$\frac{(SSR_R - SSR_U)/q}{SSR_U/(n-k-1)} = \frac{(R_U^2 - R_R^2)/q}{(1 - R_U^2)/(n-k-1)}$$

Follows a $F_{q,n-k-1}$ distribution with degrees of freedom $df_1=q$ and $df_2=n-k-1$.

- Decision rule
- Conclusion

F-distribution

- ▶ Null hypothesis H₀
- Alternative hypothesis H₁
- Test statistic
- Decision rule:
 - \square What is the **significance level** α ?
 - \implies Usually chosen to be 0.01, 0.05 or 0.10.
 - ☐ Is the decision rule based on **critical values** or **p-value**?
 - ⇒ Distinguish...
- Conclusion

Decision Rule

- ☐ Approach 1: Critical-value Test
 - Reject H_0 if F-statistic > Critical value F_{α}
- □ Approach 2: **p-value Test**Reject H_0 if p-value $\leq \alpha$

Procedure includes 5 steps:

- ► Null hypothesis *H*₀
- Alternative hypothesis H₁
- Test statistic
- Decision rule
- Conclusion:
 - \square Do you reject or or fail to reject the null hypothesis at the significance level α ?
 - AVOID saying that you "accept" the null hypothesis, which can be very misleading

Test whether *fathcoll* and *mothcoll* are jointly statistically significant at the 5% level.

- ▶ Null hypothesis H_0 :
 - \Box $H_0: \beta_{fathcoll} = 0$ and $\beta_{mothcoll} = 0$
- ▶ Alternative hypothesis H_1 :
 - \square H_1 : At least one of $\beta_{fathcoll}$ and $\beta_{mothcoll}$ is non-zero
- Test statistic
- Decision rule
- Conclusion

Test statistic
$$\textbf{F-statistic} = \frac{\left(15.1486 - 15.0940\right)/2}{15.0940/135} = \frac{\left(0.2222 - 0.2194\right)/2}{\left(1 - 0.2222\right)/135} \approx 0.24$$
 (2)

Follows a $F_{2,135}$ distribution with degrees of freedom $df_1 = 2$ and $df_2 = 141 - 5 - 1 = 135$ (since n = 141, k = 5, q = 2)

1) restricted model:

2) unrestricted model:

							. reg colGPA	PC hsGPA ACT 1	fathcoll mo	thcoll				
. reg colGPA	PC hsGPA ACT													
	1						Source	SS	df	MS			=	141
Source	SS	df	MS		er of obs =								-	7.71
				- F(3,		12.83	Model	4.31210399		.86242079			-	0.0000
Model	4.25741863	3	1.41913954				Residual	15.0939955	135	.11180737		,	=	0.2222
Residual	15.1486808	137	.110574313									n squares	=	0.1934
					R-squared =		Total	19.4060994	140	.13861499	6 Root	t MSE	=	.33438
Total	19.4060994	140	.138614996	Root	MSE :	.33253								
													_	
							colGPA	Coefficient	Std. err.	t	P> t	[95% conf	r. i	interval]
colGPA	Coefficient	Std. err.	t	P> t	[95% conf.	interval]							_	
							PC	.1518539	.0587161	2.59	0.011	.0357316		.2679763
PC	.1573092	.0572875	2.75	0.007	.0440271	.2705913	hsGPA	.4502203	.0942798	4.78	0.000	.2637639		.6366767
hsGPA	.4472417	.0936475	4.78	0.000	.2620603	.632423	ACT	.0077242	.0106776	0.72	0.471	0133929		.0288413
ACT	.008659	.0105342	0.82	0.413	0121717	.0294897	fathcoll	.0417999	.0612699	0.68	0.496	079373		.1629728
_cons	1.26352	.3331255	3.79	0.000	.6047871	1.922253	mothcoll	0037579	.0602701	-0.06	0.950	1229535		.1154377
							_cons	1.255554	.3353918	3.74	0.000	.5922526		1.918856

- Decision rule:
 - \square The significance level $\alpha = 0.05$
 - ☐ Is the decision rule based on **critical values** or **p-value**?
 - *Approach 1: Critical-value Test:

Reject H_0 if F-statistic > Critical value F_{α}

► The critical value is: $F_{0.05,2,135} = 3.0632$

```
. display invFtail(2,135,0.05)
3.0632039
```

▶ Since 0.24 < 3.0632, we fail to reject H_0 at 5% level of significance.

- Decision rule:
 - \square The significance level $\alpha = 0.05$
 - ☐ Is the decision rule based on **critical values** or **p-value**?
 - *Approach 2: P-value Test: Reject H_0 if p-value $\leq \alpha$
 - ▶ The p-value of the F-statistic is 0.78.

```
. display Ftail(2,135,0.24) .78696277
```

▶ Since $0.78 > 0.05 = \alpha$, we fail to reject H_0 at 5% level of significance.

ECON5002 Note on Lab Sessions Duong Trinh 60 / 67

- ► Null hypothesis *H*₀
- ► Alternative hypothesis *H*₁
- Test statistic
- Decision rule
- Conclusion:
 - ☐ fathcoll and mothcoll are jointly insignificant.

LAB SESSION 3

Exercise C2(iv) Dummy Variable Trap

Consider four dummies corresponding to four separate groups of people: marrblck, marrnonblck, singblck, and singnonblck.

- marrblck: indicator = 1 if married and black.
- \square marrnonblck: indicator =1 if married and nonblack.
- \square singblck: indicator =1 if single and black.
- \square singnonblck: indicator = 1 if single and nonblack.

Exercise C2(iv) Dummy Variable Trap

Why is singnonblck excluded from the regression? What would happen if you included it in the regression?

Exercise C2(iv) Dummy Variable Trap

Why is singnonblck excluded from the regression? What would happen if you included it in the regression?

lwage	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
educ	.0654751	.006253	10.47	0.000	.0532034	.0777469
exper	.0141462	.003191	4.43	0.000	.0078837	.0204087
tenure	.0116628	.0024579	4.74	0.000	.006839	.0164866
south	0919894	.0263212	-3.49	0.000	1436455	0403333
urban	.1843501	.0269778	6.83	0.000	.1314053	.2372948
marrnonblck	.1889147	.0428777	4.41	0.000	.1047659	.2730635
marrblck	.0094484	.0560131	0.17	0.866	1004789	.1193757
singblck	24082	.0960229	-2.51	0.012	4292677	0523723
singnonblck	0	(omitted)				
_cons	5.403793	.1141222	47.35	0.000	5.179825	5.627762

Exercise C2(iv) Perfect Multicollinearity

Why is singnonblck excluded from the regression? What would happen if you included it in the regression?

Let's ask a question...

Which group does the individual *i* belong to?

	marrblck	marrnonblck	singblck	singnonblck
married and black	1	0	0	0
married and nonblack	0	1	0	0
single and black	0	0	1	0
single and nonblack	0	0	0	1

 \implies Always: marrblck + marrnonblck + singblck + singnonblck = 1

Exercise C2(iv) Perfect Multicollinearity

Why is singnonblck excluded from the regression? What would happen if you included it in the regression?

- ▶ singnonblck is omitted to avoid perfect multicollinearity: This is because marrblck + marrnonblck + singblck + singnonblck = 1, which equals the value of the 'constant' regressor that determines the intercept
 - \rightarrow one regressor is an exact linear function of the other regressors.
 - ightarrow Assumption (MLR.3) is violated, the OLS estimator is not defined.
- ➤ Stata will drop one of the dummy variables if marrblck, marrnonblck, singblck, singnonblck, and the constant term all included in the regression.
- If there are G dummy variables and each observation falls into one and only one category, you will include only G-1 of them as regressors to avoid dummy variable trap.

Exercise C2(iv) Interpretation

$$log(wage) = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 tenure + \beta_4 south + \beta_5 urban$$

+ $\beta_6 marrblck + \beta_7 marrnonblck + \beta_8 singblck + u$
 $\mathbb{E}[log(wage)|singnonblck = 1, educ, expert, tenure, south, urban] = \Delta$
 $\mathbb{E}[log(wage)|marrblck = 1, educ, expert, tenure, south, urban] = \Delta + \beta_6$

 $\mathbb{E}[log(wage)|marrnonblck = 1, educ, expert, tenure, south, urban] = \Delta + \beta_7$ $\mathbb{E}[log(wage)|singblck = 1, educ, expert, tenure, south, urban] = \Delta + \beta_8$

The coefficients on the included dummy variables represent the incremental effect of being in that category, relative to the base case of the omitted category, holding constant the other regressors.