EXERCICE 3.1 (Matrice d'Attila).

Soit n dans \mathbb{N}^* , et soit A la matrice de $\mathcal{M}_n(\mathbb{K})$ dont tous les coefficients sont égaux à 1. Déterminer A^k

EXERCICE 3.2 (CCP PSI 2005).

Soit $A = (a_{i,j})_{1 \leq ij \leq n}$ dans $\mathcal{M}_n(\mathbb{R})$ où $a_{ij} = 1$ si $i \neq j$ et $a_{ii} = 0$. Calculer A^p pour p dans \mathbb{N}^* .

Soit
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
.

- Soit $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

 1. Montrer que A est nilpotente d'indice 3.

 2. Montrer qu'il n'existe pas X dans $\mathcal{M}_3(\mathbb{R})$ telle que $X^2 = A$.

EXERCICE 3.4.

Soit E un \mathbb{R} -espace vectoriel de dimension 3 et f dans $\mathcal{L}(E)$ tel que $f^3 = 0$ et $f^2 \neq 0$. Montrer qu'il existe une base de E dans laquelle la matrice de f est $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

EXERCICE 3.5.

Soient A et B deux matrices carrées d'ordre n telles que A + B = AB. Montrer que $I_n - A$ est inversible.

EXERCICE 3.6.

Soit n dans \mathbb{N}^* .

- 1. Soit N une matrice nilpotente dans $\mathcal{M}_n(\mathbb{K})$. Montrer que les matrices $I_n N$ et $I_n + N$ sont inversibles.
- 2. On note A la matrice définie par $A = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$. Montrer que $I_n + A$ est inversible et déterminer son inverse.

Soit n dans \mathbb{N}^* . Soit M dans $\mathcal{M}_{n+1}(\mathbb{R})$ définie par $M = \left(C_{j-1}^{i-1}\right)_{1 \leq i,j \leq n+1}$. Montrer que M est inversible et donner son inverse.

EXERCICE 3.8 (CCP MP 2006 et 2007).

Soit n dans \mathbb{N}^* , soient u et v les aplications linéaires définies sur $\mathbb{R}_n[X]$ par

$$\forall P \in \mathbb{R}[X], u(P) = P(X+1) \text{ et } v(P) = P(X-1).$$

- 1. Déterminer le rang de f=u-v à partir de sa matrice.
- 2. Retrouver ce résultat par une autre méthode.

EXERCICE 3.9.

EXERCICE 3.10 (Navale MP 2006

Soient
$$A = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \text{ et } C = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

1. Montrer que A et C sont semblables.

- Indication de la rédaction : on cherchera la matrice de l'endomorphisme associé à C dans une nouvelle base obtenue par permutation des vecteurs de la base canonique.

EXERCICE 3.11.

Soit E un \mathbb{K} -espace vectoriel de dimension n. Déterminer la trace des endomorphismes suivants :

EXERCICE 3.12.

Soit n un entier naturel supérieur ou égal à 2.

- 1. Montrer que l'ensemble $H=\{M\in\mathcal{M}_n(\mathbb{K}),\ \mathrm{Tr}\,(M)=0\}$ est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$ et en déterminer la dimension.
- 2. Donner une base de H.
- 3. Soit ϕ l'application, qui à toute matrice M de $\mathcal{M}_n(\mathbb{K})$, associe $\phi(M)=\operatorname{Tr}(M)\,I_n-M$. Montrer que ϕ est un endomorphisme de $\mathcal{M}_n(\mathbb{K})$ et déterminer sa trace.
- 4. Etablir que $\phi \circ \phi = (n-2)\phi + (n-1)$ Id. En déduire que pour $n \geqslant 2$, l'application ϕ est inversible et déterminer son inverse.

EXERCICE 3.13.

Soient A dans $M_{m,n}(\mathbb{R})$, B dans $M_{p,q}(\mathbb{R})$ et C dans $M_{m,q}(\mathbb{R})$. On note r le rang de A et s le rang de B.

- 1. Montrer que le rang de la matrice $M_1 = \begin{pmatrix} A & 0 \\ \hline 0 & B \end{pmatrix}$ est égal à $r + s = \mathbf{rg}A + \mathbf{rg}B$.
- 2. Comparer le rang de la matrice $M_2 = \left(\begin{array}{c|c} A & C \\ \hline 0 & B \end{array}\right)$ avec r+s.
- 3. On suppose que B est inversible. Montrer qu'alors le rang de la matrice $M_2 = \begin{pmatrix} A & C \\ \hline 0 & B \end{pmatrix}$ est encore

Soit
$$N = \begin{pmatrix} a_1 & a_1 & \dots & a_1 \\ a_2 & a_2 & \dots & a_2 \\ \vdots & \vdots & & \vdots \\ a_n & a_n & \dots & a_n \end{pmatrix}$$
 où $\alpha = \sum_{i=1}^n a_i \neq 0$ et $M = (b_{ij})_{1 \leq i,j \leq n}$ la matrice définie par : $i \neq j \Rightarrow b_{ij} = 2a_{ij}$ et $b_{ii} = a_i - \sum_{\substack{j=1 \ j \neq i}}^n a_j$.

- 1. Calculer N^2 .
- 2. Montrer que M est inversible et déterminer son inverse.

EXERCICE 3.15 (CCP PSI 2005).

Soit
$$J = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
 et soit $C(J) = \{M \in \mathcal{M}_3(\mathbb{R}) \mid MJ = JM\}$.

1. Montrer que $C(J)$ est un sous-espace vectoriel et en donner une base. L'ensemble $C(J)$ est appelé commutant de J .

- 2. Existe-t-il une inclusion entre C(J) et $D(J) = \{Y \in \mathcal{M}_3(\mathbb{R}) \mid Y^2 = J\}$? Trouver D(J).

EXERCICE 3.16 (Centrale PSI 2006).

Soient
$$A$$
 et B dans $M_n(\mathbb{C})$ et $M = \begin{pmatrix} A & A \\ \hline A & B \end{pmatrix}$.

1. Déterminer le rang de M en fonction de A et B .

- 2. Calculer M^{-1} quand elle existe.

EXERCICE 3.17.

Soit
$$E$$
 un \mathbb{R} -espace vectoriel de dimension $3n$. Soit f un endomorphisme de E tel que $\mathbf{rg}f = 2n$ et $f^3 = 0$.
Montrer que $\mathrm{Ker}f = \mathrm{Im}f^2$ et trouver une base \mathcal{B} telle que la matrice de f dans \mathcal{B} soit $\begin{pmatrix} 0 & 0 & 0 \\ I_n & 0 & 0 \\ 0 & I_n & 0 \end{pmatrix}$.

EXERCICE 3.18 (Centrale MP 2005).

Montrer que les matrices triangulaires réelles qui commutent avec leur transposée sont diagonales.

EXERCICE 3.19 (Polytechnique MP 2005).

Soit A dans $M_n(\mathbb{C})$. On pose, pour M dans $M_n(\mathbb{C})$, $\Delta_A(M) = AM - MA$.

- 1. Calculer les puissances de Δ_A .
- 2. Montrer que si A est nilpotente, alors Δ_A est nilpotente.

EXERCICE 3.20 (Mines-Ponts MP 2006).

- 1. Soit f une forme linéaire sur $M_n(\mathbb{R})$ vérifiant : pour tout A et B dans $M_n(\mathbb{R})$, f(AB) = f(BA). Montrer que f est proportionnelle à la trace.
- 2. Soit g un endomorphisme de l'espace vectoriel $M_n(\mathbb{R})$ vérifiant : pour tout A et B dans $M_n(\mathbb{R})$, g(AB) = g(BA) et $g(I_n) = I_n$. Montrer que g conserve la trace.

EXERCICE 3.21 (Dual de $\mathcal{M}_n(\mathbb{K})$).

Montrer que pour tout ϕ dans le dual de $\mathcal{M}_n(\mathbb{K})$, il existe une matrice A telle que :

$$\forall M \in \mathcal{M}_n(\mathbb{K}), \ \phi(M) = \text{Tr}(AM).$$

EXERCICE 3.22 (Centrale MP 2006).

Trouver les A de $\mathcal{M}_n(\mathbb{K})$ telles que : $\exists B \in \mathcal{M}_n(\mathbb{K}) \setminus \{0\}, AB = BA = 0.$

EXERCICE 3.23 (TPE MP 2006, CCP MP 2007).

Soient A et B fixées dans $M_n(\mathbb{R})$. Résoudre l'équation $X + \operatorname{Tr}(X) A = B$.

EXERCICE 3.24 (Centrale MP PSI et PC 2007).

Soit n dans \mathbb{N}^* . Etant donnée une matrice M de $\mathcal{M}_n(\mathbb{R})$, déterminer toutes les matrices $X \in \mathcal{M}_n(\mathbb{R})$, telles \parallel que $X + {}^tX = \operatorname{Tr}(X) M$.

EXERCICE 3.25 (Mines-Ponts MP 2007).

Soient A dans $\mathcal{M}_{3,2}(\mathbb{R})$ et B dans $\mathcal{M}_{2,3}(\mathbb{R})$ telles que $AB = \begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ 1 & 1 & 2 \end{pmatrix}$.

- 1. Montrer que AB est la matrice d'un projecteur.
- Indication de la rédaction : on pourra commencer par montrer que BA est inversible.

EXERCICE 3.26 (Centrale PC 2005, PSI 2006, MP 2007).

- 1. Soit E un \mathbb{K} -espace vectoriel et soit $u \in \mathcal{L}(E)$ tel que, pour tout $x \in E \setminus \{0_E\}$, la famille (x, u(x)) est liée. Montrer que u est une homothétie.
- 2. Montrer que toute matrice de $\mathcal{M}_n(\mathbb{K})$ de trace nulle est semblable à une matrice de diagonale nulle. Indication de la rédaction : on pourra raisonner par récurrence sur n.
- 3. Soient d_1, \ldots, d_n dans \mathbb{K} deux à deux distincts, et $D = \mathbf{diag}(d_1, \ldots, d_n)$. Soit $\varphi \in \mathcal{L}(\mathcal{M}_n(\mathbb{K}))$ qui à M associe DM-MD. Déterminer le noyau et l'image de φ .
- 4. Et ant donnée $A \in \mathcal{M}_n(\mathbb{K})$, établir l'équivalence des propriétés suivantes :

 - (b) $\exists (X,Y) \in (\mathcal{M}_n(\mathbb{K}))^2$ tel que XY YX = A.

EXERCICE 3.27 (Polytechnique MP 2005).

Soient A et B dans $M_n(\mathbb{C})$. On suppose qu'il existe n+1 valeurs de λ dans \mathbb{C} telles que $A+\lambda B$ soit nilpotente. Montrer que A et B sont nilpotentes.

EXERCICE 3.28.

Soient A et B deux matrices inversibles

- 1. vérifier que $A^{-1} + B^{-1} = A^{-1} (A + B) B^{-1}$ 2. Montrer que si A + B est inversible, alors $A^{-1} + B^{-1}$ est inversible et déterminer son inverse

EXERCICE 3.29.

Soient A et B deux matrices, d'ordre n, inversibles

- Vérifier que A(I_n + BA) = (I_n + AB)A et que B(I_n + AB) = (I_n + BA)B
 Montrer que si I_n+AB est inversible, alors I_n+BA est inversible et (I_n+BA)⁻¹ = I_n-B(I_n+AB)⁻¹A.

Exercice 3.30 (Matrice à diagonale strictement dominante).

$$M = (a_{i,j}) \in M_n(\mathbb{R})$$
 telle que $\forall i \in \{1, ..., n\}, |a_{i,i}| > \sum_{j \neq i} |a_{i,j}|$. Montrer que M est inversible.

EXERCICE 3.31 (Base de Taylor).

Soit $a \in \mathbb{R}$. On pose, pour tout $p \in \mathbb{N} : A_p(X) = (X - a)^p$.

- Montrer que ε = (A₀,..., A_n) est une base de R_n[X].
 Soit P ∈ R_n[X]. Montrer que P(X) = ∑_{k=0}ⁿ 1/k! P^(k)(a)A_k(X). (On pourra montrer que l'ensemble E des élément de $\mathbb{R}_n[X]$ qui satisfont à cette égalité est un sous-espace vectoriel de $\mathbb{R}_n[X]$ et contient une

Exercice 3.32 (Famille échlonnée).

Soit (P_1,\ldots,P_n) une famille de polynômes de $\mathbb{C}[X]$ non nuls, à degrés échelonnés, c'est-à -dire $\deg(P_1)<$ $\deg(P_2) < \cdots < \deg(P_n)$. Montrer que (P_1, \ldots, P_n) est une famille libre.

EXERCICE 3.33.

Soit E un \mathbb{R} -espace vectoriel. Soient p et q deux projecteurs de E.

- 1. Montrer que p+q est un projecteur si et seulement si $p \circ q = q \circ p = 0$.
- 2. Montrer que, dans ce cas, on a $\operatorname{Im}(p+q) = \operatorname{Im}(p) \oplus \operatorname{Im}(q)$ et $\operatorname{Ker}(p+q) = \operatorname{Ker} p \cap \operatorname{Ker} q$.

EXERCICE 3.34.

Soient f et g deux endomorphismes de E.

- 1. Montrer que si f et g commutent, alors $\mathrm{Ker} f$ et $\mathrm{Im} f$ sont stables par g.
- 2. Prouver que si f est un projecteur alors la réciproque est vraie.

EXERCICE 3.35.

Soit $\alpha \in \mathbb{R}$ et $f_{\alpha} : \mathbb{R} \to \mathbb{R}$, $x \mapsto e^{\alpha x}$. Montrer que la famille $(f_{\alpha})_{\alpha \in \mathbb{R}}$ est libre.

EXERCICE 3.36.

Soit $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{C})$ une matrice carrée à coefficients complexes telle que:

$$\forall (i,j) \in [[1,n]]^2, |a_{ij}| < \frac{1}{n}$$

Démontrer que $I_n + A$ est inversible

EXERCICE 3.37 (Matrice de rang ≤ 1).

Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice telle que $\mathbf{rg}(A) \leqslant 1$

- 1. Montrer qu'il existe $U,V\in\mathcal{M}_{n,1}(\mathbb{K})$ tels que: A=U tV et $\mathrm{Tr}\,(A)=^tVU$ 2. En déduire que $A^2=\mathrm{Tr}\,(A)\,A$

EXERCICE 3.38.

Soit $E = \{\text{matrices de } \mathcal{M}_n(\mathbb{R}) \text{ antisymétriques} \}$ et

$$f: \left\{ \begin{array}{ccc} E & \longrightarrow & E \\ M & \longrightarrow & {}^t\!AM + MA \end{array} \right.$$

- où $A \in \mathcal{M}_n(\mathbb{R}).$ 1. Montrer que f est un endomorphisme.
 - 2. Quelle est la trace de f?

EXERCICE 3.39.

Soient A, B et C trois matrices carrées d'ordre n. Calculer le déterminant $D = \begin{vmatrix} 0 & B \\ A & C \end{vmatrix}$ en fonction des

Exercice 3.40 (Déterminant de Vadermonde).

RCICE 3.40 (Déterminant de Vadermonde).

Soit
$$n \ge 2$$
, pour tout $a_1, ..., a_n \in \mathbb{K}$, on note $V(a_1, ..., a_n) = \begin{vmatrix} 1 & a_1 & a_1^2 & ... & a_1^{n-1} \\ 1 & a_2 & a_2^2 & ... & a_2^{n-1} \\ \vdots & & & & \vdots \\ 1 & a_n & a_n^2 & ... & a_n^{n-1} \end{vmatrix}$.

Montrer que $V(a_1, ..., a_n) = \prod_{1 \le i < j \le n} (a_j - a_i)$.

Exercice 3.41 (Déterminant de CAUCHY).

ERCICE 3.41 (Déterminant de CAUCHY).

Soit
$$a_1, ..., a_n \in \mathbb{K}$$
 et $b_1, ..., b_n \in \mathbb{K}$ tels que pour tout $(i, j), a_i + b_j \neq 0$.

Calculer le déterminant d'ordre n . $\Delta_n = \begin{vmatrix} \frac{1}{a_1 + b_1} & \frac{1}{a_1 + b_2} & \dots & \frac{1}{a_1 + b_n} \\ \frac{1}{a_2 + b_1} & \dots & \dots & \frac{1}{a_2 + b_n} \\ \vdots & & & & \\ \frac{1}{a_n + b_1} & \dots & & \frac{1}{a_n + b_n} \end{vmatrix}$. (ind. utiliser la fraction rationnelle $F(X) = \frac{(b_1 - X)...(b_{n-1} - X)}{(X + a_1)...(X + a_n)}$).

Exercice 3.42 (Déterminant compagnon).

Soit
$$(a_0, ..., a_{n-1}) \in \mathbb{C}^n$$
, $x \in \mathbb{C}$. Calculer

$$\Delta_n(a_0, ..., a_n, x) = \begin{vmatrix} -x & 0 & a_0 \\ 1 & \ddots & \ddots & \vdots \\ & \ddots & -x & a_{n-2} \\ 0 & 1 & a_{n-1} - x \end{vmatrix}$$

EXERCICE 3.43.

Soit
$$A \in GL_3(\mathbb{R})$$
 et $B \in M_3(\mathbb{R})$. Montrer que : $(\exists \varepsilon > 0)$ $(\forall x \in \mathbb{R}) : |x| < \varepsilon \Rightarrow (A + xB) \in \mathcal{G}L_n(\mathbb{R})$.

Soient n un entier supérieur à 2 et $A \in \mathcal{M}_n(\mathbb{K})$.

$$\begin{cases} \operatorname{rg}(A) = n & \Rightarrow \operatorname{rg}\left(\operatorname{com}(A)\right) = n \\ \operatorname{rg}(A) = n - 1 & \Rightarrow \operatorname{rg}\left(\operatorname{com}(A)\right) = 1 \\ \operatorname{rg}(A) \leqslant n - 2 & \Rightarrow \operatorname{rg}\left(\operatorname{com}(A)\right) = 0 \end{cases}$$

- 2. Montrer $\det(\text{com}(A)) = (\det A)^{n-1}$
- 3. En déduire com(com(A))

EXERCICE 3.45.

Calculer le déterminant de l'endomorphisme $f: \mathcal{M}_n(\mathbb{K}) \longrightarrow \mathcal{M}_n(\mathbb{K}), M \longmapsto {}^t M$