*
$$\lim_{b\to\infty} \frac{-b}{(s-1)e^{b(s-1)}} \to L^3H \to \lim_{b\to\infty} \frac{-1}{(s-1)^2e^{b(s-1)}} = 0$$

$$f(s) = \frac{1}{(s-1)^2} \rightarrow F(s) = \frac{1}{(s-1)^2}$$

TRANSFORMADAS DE LAPLACE	
$\mathscr{L}{f(t)} = \lim_{b \to \infty} \left[\int_0^b e^{-st} f(t) dt \right] \checkmark$	
f(t)	$\mathscr{L}\{f(t)\}=F(s)$
C ;donde "C" es una constante	$\frac{\mathbb{C}}{s}$
t^n ; $n>0$ y es entero	$\frac{n!}{s^{n+1}}$
e^{at} ; $a=\pm cons$	$\begin{cases} si + a & \frac{1}{s-a} \\ si - a & \frac{1}{s+a} \end{cases}$
cos(kt); k = cons	$\frac{s}{s^2+k^2}$
sen(kt); k = cons	$\frac{k}{s^2+k^2}$
$\cos h(kt)$; $k = cons$	$\frac{s}{s^2-k^2}$

\longrightarrow senh(kt); $k = cons$		$\frac{k}{s^2 - k^2}$
$f^{(n)}(t)$;	Donde "n" es el orden de derivación	$ \begin{vmatrix} s^n F(s) - s^{n-1} f(0) - s^{n-2} f^{I}(0) \\ - s^{n-3} f^{II}(0) - \cdots \end{vmatrix} $
$t^n f(t);$	Donde "n" es un entero	$(-1)^n \frac{d}{ds^n} \mathcal{L}\{f(t)\}$
$\mathbb{C} \mathcal{U}(t)$	$-a$); $\mathbb{C} = cons$	$\frac{\mathbb{C}}{s}e^{-as}$
(t -	-a)U(t-a)	$e^{-as}F(s)$
\mathcal{L}	$\mathcal{L}{f(t) * g(t)}$	$\mathscr{L}\{f(t)\}\mathscr{L}\{g(t)\}$
$\mathscr{L}\left\{\int_0^t f(\tau)g(t-\tau)d\tau\right\}$		$\mathscr{L}\{f(t)\}\mathscr{L}\{g(t)\}$
	$e^{at}f(t)$	F(s-a)
f(t+T);	Donde "T" es el periodo	$\frac{1}{1-e^{-sT}} \left(\int_{o}^{T} e^{-st} f(t) dt \right)$

Calcular la Tranformada de Laplace $\mathcal{L}\{f(t)\}\$ de :

1)
$$f(t) = 4t^2 - 5e^t + \cos(2t)$$

 $f(t) = 4f(t) - 5f(t) - 5f(t) + f(t)$ (os (2t))
 $f(t) = 4f(t) - 5f(t) - 5f(t) + f(t)$ (os (2t))
 $f(t) = 4f(t) - 5f(t) - 5f(t) + f(t)$ (os (2t))

$$F(s) = 4\left[\frac{2^{\frac{1}{5}}}{5^{2+1}}\right] - 5\left[\frac{1}{5-1}\right] + \frac{5}{5^{2}+4}$$

$$F(5) = \frac{8}{5^3} - \frac{5}{5^{-1}} + \frac{5}{5^2 + 4}$$

Calcular la Tranformada de Laplace $\mathcal{L}\{f(t)\}\$ de :

$$2) f(t) = \cosh(3t) + 3\sinh(4t)$$

$$2f(t) = 2f(c)h(3t) + 32f(s)h(4t)$$

 $cosh(kt); k=3$ S=Nh(xt); k=4

$$F(s) = \frac{s}{s^2 - 9} + 3\left[\frac{4}{s^2 - 16}\right]$$

$$F(s) = \frac{s}{s^2 - 9} + \frac{12}{s^2 - 16}$$

Calcular la Tranformada de Laplace $\mathcal{L}\{f(t)\}$ de :

3)
$$f(t) = (e^t - e^{-t})^2 = e^{2t} - 2 + e^{-2t}$$

$$23f(t) = 27e^{2t} - 27e^{2t} + 27e^{2t}$$

 $e^{at}; a=2$ $E=2$ $e^{at}; a=-2$

$$F(s) = \frac{1}{s-2} - \frac{2}{s} + \frac{1}{s+2}$$