Algebraic Topology

Gilles Castel

April 18, 2022

Contents

0	Introduction	4
	0.1 What is algebraic topology?	4
	0.2 Fundamental group	4
9	Fundamental group	7
	9.51 Homotopy of paths	7
	9.52 Fundamental group	10

Lecture 1: Introduction

di 01 okt 10:33

- First part: fundamental groups. We follow Munkres:
 - Chap 9 'Fundamental group'
 - Chap 11 'The Seifert-Van Kampen thm' and
 - Chap 12/13 'Classification covering spaces'
- Second part: Homology groups, via cudi, chapter of a book.
- 10 problems (solve them during the semester) No feedback during the semester, but asking questions is allowed. Working together is allowed.
- Exam (completely open book) First 4 questions: 1h30 prep. Last one 30 min, no prep
 - Theoretical question (open book, explain the proof, ...)
 New problem (comparable to one of the 10 problems)
 Explain your solution n-th problem solved at home
 Explain your solution m-th problem solved at home
 4 small questions

After the exam, hand in your solutions of the other problems. After a quick look, the points of 3. and 4. can be ± 1 (in extreme cases ± 2)

• No exercise classes for this course!

Figure 1: kTest inserting figures generated by inkscape

Chapter 0

Introduction

0.1 What is algebraic topology?

Functor from category of topological spaces to the category of groups.

- Category: set of spaces and morphisms.
- Functor: $X \leadsto G_X$ and $f: X \to Y \leadsto f_*: G_X \to G_Y$ such that

$$-(f \circ g)_* = f_* \circ g_*$$

 $-(1_X)_* = 1_{G_X}$

Two systems we'll discuss:

- fundamental groups
- homology groups

Example. Suppose we have a functor. If $G_X \not\cong G_Y$, then X and Y are not homeomorphic. If 'shadows' are different, then objects themselves are different too.

Proof. Suppose X and Y are homeomorphic. Then $\exists f: X \to Y$ and $g: Y \to X$, maps (maps are always continuous in this course), such that $g \circ f = 1_X$ and $f \circ g = 1_Y$. Then $f_*: G_X \to G_Y$ and $g_*: G_Y \to G_X$ such that $(g \circ f)_* = (1_X)_*$ and $(f \circ g)_* = (1_Y)_*$. Using the rules discussed previously, we get

$$g_* \circ f_* = 1_{G_X} \quad f_* \circ g_* = 1_{G_Y},$$

which means that $f_*:G_X\to G_Y$ is an isomorphism.

0.2 Fundamental group

Pick a base point x_0 and consider it fixed. (The fundamental group will not depend on it. We assume all spaces are path connected) $X \rightsquigarrow \pi(X)$.

- A loop based at $x_0 \in X$ is a map $f: I = [0,1] \to X$, $f(0) = f(1) = x_0$.
- Loops are equivalent if one can be deformed in the other in a continuous way, with the base point fixed.
- The fundamental group consists of equivalent classes of loops.

Example. Let $X = B^2$ (2 dimensional disk). Then $\pi(B^2) = 1$, because every loop is equivalent to the 'constant' loop.

Example. Let $X = S^1$ and pick x_0 on the circle. Two options:

- The loop is trivial equivalent to the constant loop
- The loop goes around the circle.
- The loop goes around the circle, twice.
- The loop goes around the circle, clockwise, once
- . .

 $\pi(S^1) \cong \mathbb{Z}$ (proof will follow).

The composition of loops is simply pasting them. In the case of the circle, the loop $-1 \circ$ the loop 2 is the loop 1.

Suppose $\alpha: I \to X$ and $f: X \to Y$. Then we define

$$f_*[\alpha] = [f \circ \alpha].$$

Theorem 1 (Fixed point theorem of Brouwer). Any continuous map from a rectangle to itself has at least one fixed point.

Proof. Suppose there is no fixed point, so $f(x) \neq x$ for all $x \in B^2$. Then we can construct map $r: B^2 \to S_1$ as follows: take the intersection of the boundary and half ray between f(x) and x.

Figure 1: Proof of the Brouwer fixed point theorem

If x lies on the boundary, we have the identity map. This map is

continuous. Then we have $S^1 \to B^2 \to S^1$, via the inclusion and r. Looking at the fundamental groups:

$$\pi(S^1) = \mathbb{Z} \to \pi(B^2) = 1 \to \pi(S^1) = \mathbb{Z}.$$

The map from $\pi(S^1)\to\pi(S^1)$ is the identity map, but the first map maps everything on 1.

Chapter 9

Fundamental group

9.51 Homotopy of paths

Definition 1 (Homotopy). Let $f, g: X \to Y$ be maps (so continuous). Then a homotopy between f and g is a continuous map $H: X \times I \to Y$ such that

- H(x,0) = f(x), H(x,1) = g(x)
- For all $t \in I$, define $f_t : X \to Y : x \mapsto H(x,t)$

We say that f is homotopic with g, we write $f \simeq g$. If g is a constant map, we say that f is null homotopic.

Definition 2 (Path homotopy). Let $f, g: I \to X$ be two paths such that $f(0) = g(0) = x_0$ and $f(1) = g(1) = x_1$. Then $H: I \times I \to X$ is a path homotopy between f and g, if and only if

- H(s,0) = f(s) and H(s,1) = g(s) (homotopy between maps)
- $H(0,t) = x_0$ and $H(1,t) = x_1$ (start and end points fixed)

Notation: $f \simeq_p g$.

Lemma 1. \simeq and \simeq_p are equivalence relations.

Proof.

- Reflective: F(x,t) = f(x)
- Symmetric: G(x,t) = H(x,1-t)
- Transitive: Suppose $f \simeq g$ and $g \simeq h$, with H_1, H_2 resp.

$$H(x,t) = \begin{cases} H_1(x,2t) & 0 \le t \le \frac{1}{2} \\ H_2(x,2t-1) & \frac{1}{2} \le t \le 1 \end{cases}.$$

Figure 9.1: General example of a homotopy.

Example (Trivial, but important). Let $C \subset \mathbb{R}^n$ be a convex subset.

- Any two maps $f, g: X \to C$ are homotopic.
- Any two paths $f,g:I\to C$ with f(0)=g(0) and g(1)=f(1) are path homotopic.

Choose $H: X \times I \to C: (x,t) \to H(x,t) = (1-t)f(x) + tg(x)$.

Product of paths

Let $f: I \to X$, $g: I \to X$ be paths, f(1) = g(0). Define

$$f*g:I\to X:s\mapsto \begin{cases} f(2s) & 0\leq s\leq\frac{1}{2}\\ g(2s-1) & \frac{1}{2}\leq s\leq 1. \end{cases}$$

Remark. If f is path homotopic to f' and g path homotopic to g' (which means that f(1) = f'(1) = g(0) = g'(0)), then $f * g \simeq_p f' * g'$.

So we can define [f] * [g] := [f * g] with $[f] := \{g : I \to X \mid g \simeq_p f\}$

Theorem 2.

- 1. [f] * ([g] * [h]) is defined iff ([f] * [g]) * [h] is defined and in that case, they are equal.
- 2. Let e_x denote the constant path $e_x: I \to X: s \mapsto x, x \in X$. If $f(0) = x_0$ and $f(1) = x_1$ then $[e_{x_0}] * [f] = [f]$ and $[f] * [e_{x_1}] = [f]$.
- 3. Let $\overline{f}: I \to X: s \mapsto f(1-s)$. Then $[f]*[\overline{f}] = [e_{x_0}]$ and $[\overline{f}]*[f] = [e_{x_1}]$

Proof. First, two observations

• Suppose $f \simeq_p g$ via homotopy $H, f, g: I \to X$. Let $k: X \to Y$.

Then $k \circ f \simeq_p k \circ g$ using $k \circ H$.

• If f * g (not necessarily path homotopic). Then $k \circ (f * g) = (k \circ f) * (k \circ g)$.

Now, the proof

2. Take $e_0: I \to I: s \mapsto 0$. Take $i: I \to I: s \mapsto s$ Then $e_0 * i$ is a path from 0 to $1 \in I$. The path i is also such a path. Because I is a convex subset, $e_0 * i$ and i are path homotopic, $e_0 * i \simeq_p i$. Using one of our observations, we find that

$$f \circ (e_0 * i) \simeq_p f \circ i$$
$$(f \circ e_0) * (f \circ i) \simeq_p f$$
$$e_{x_0} * f \simeq_p f$$
$$[e_{x_0}] * [f] = [f].$$

3. Note that $i * \bar{i} \simeq_p e_0$. Now, applying the same rules, we get

$$f \circ (i * \overline{i}) \simeq_p f \circ e_0$$
$$f * \overline{f} \simeq_p e_{x_0}$$
$$[f] * [\overline{f}] = [e_{x_0}].$$

1. Remark: Only defined if f(1) = g(0), g(1) = h(0). Note that $f * (g * h) \neq (f * g) * h$. The trajectory is the same, but the speed is not.

Assume the product is defined. Suppose [a,b], [c,d] are intervals in \mathbb{R} . Then there is a unique positive (positive slope), linear map from $[a,b] \to [c,d]$. For any $a,b \in [0,1)$ with 0 < a < b < 1, we define a path

$$\begin{split} k_{a,b} : [0,1] &\longrightarrow X \\ [0,a] &\xrightarrow{\text{lin.}} [0,1] \xrightarrow{f} X \\ [a,b] &\xrightarrow{\text{lin.}} [0,1] \xrightarrow{g} X \\ [b,0] &\xrightarrow{\text{lin.}} [0,1] \xrightarrow{h} X \end{split}$$

Then $f*(g*h)=k_{\frac{1}{2},\frac{3}{4}}$ and $(f*g)*h=k_{\frac{1}{4},\frac{1}{2}}$ Let γ be that path $\gamma:I\to I$ with the following graphs:

Figure 9.2: proof path

Note that $\gamma \simeq_p i$. Now, using the fact that composition of positive linear maps is positive linear.

$$k_{c,d} \circ \gamma \simeq_p k_{c,d} \circ i$$

 $k_{a,b} \simeq_p k_{c,d},$

which is what we wanted to show.

9.52 Fundamental group

Definition 3. Let X be a space and $x_0 \in X$, then the fundamental group of X based at x_0 is

$$\pi(X, x_0) = \{ [f] \mid f : I \to X, f(0) = f(1) = x_0 \}.$$

(Also $\pi_1(X, x_0)$ is used, first homotopy group of X based at x_0)

For $[f], [g] \in \pi(X, x_0)$, [f] * [g] is always defined, $[e_{x_0}]$ is an identity element, * is associative and $[f]^{-1} = [\overline{f}]$. This makes $(\pi(X, x_0), *)$ a group.

Example. If $C \subset \mathbb{R}^n$, convex then $\pi(X, x_0) = 1$. E.g. $\pi(B^2, x_0) = 1$.

Remark. All groups are a fundamental group of some space.

Question: how does the group depend on the base point?

Theorem 3 (52.1). Let X be a space, $x_0, x_1 \in X$ and $\alpha: I \to X$ a path

from x_0 to x_1 . Then

$$\hat{\alpha}: \pi(X, x_0) \longrightarrow \pi(x, x_1)$$
$$[f] \longmapsto [\overline{\alpha}] * [f] * [\alpha].$$

is an isomorphisms of groups. Note however that this isomorphism depends on α .

Proof. Let $[f], [g] \in \pi_1(X, x_0)$. Then

$$\begin{split} \widehat{\alpha}([f]*[g]) &= [\overline{\alpha}]*[f]*[g]*[\alpha] \\ &= [\overline{\alpha}]*[f]*[\alpha]*[\overline{\alpha}]*[g]*[\alpha] \\ &= \widehat{\alpha}[f]*\widehat{\alpha}[g]. \end{split}$$

We can also construct the inverse, proving that these groups are isomorphic. $\hfill\Box$

Figure 9.3: Construction of the group homomorphism

Remark. If $f:(x,x_0)\to (Y,y_0)$ is a map of pointed topology spaces $(f:X\to Y \text{ continuous and } f(x_0)=y_0)$. Then

$$f_*:\pi(X,x_0)\to\pi(Y,y_0):[\gamma]\mapsto[f\circ\gamma]$$

is a morphism of groups, because of the two 'rules' discussed previously, with

$$(f \circ g)_* = f_* \circ g_* \qquad (1_X)_* = 1_{\pi(X, x_0)}.$$