fecha: 1-oct-2012

<u> </u>	Source	Quote	Maturity	5>0/N (overnight)	
	LIBOR	0.15	02/10/2012	1	
-		0.21	05/11/2012	-> I m	
		0.36	03/01/2013 -	-> 3m	
	Futures	99.68	20/03/2013) ·	
		99.67	19/06/2013	/ Cotiención:	
-		99.65	18/09/2013	100. (1-Fig (Ti, Ti+1))	
		99.64	18/12/2013	[
		99.62	19/03/2014 -	99.68=100 [1-F]	
	Swap	0.36 —	03/10/20147	$\int_{0}^{\infty} F = 1 - \frac{99.08}{100} = 0.0032$	
-		0.43	05/10/2015	1 = 1 = 100 = 0.0032	
		I	03/10/2016		
		0.75	03/10/2017		
		1.17	03/10/2019	Dan T. Branc	
_		1.68	03/10/2022	1 Comen 1 ag of	
		2.19	04/10/2027	27 lienen Pages anuales	
		2.40	04/10/2032	<u> </u>	
+		2.58	03/10/2042		
				,	

Libor: Tasas capon cero que pagan a un plazo desinido

Convención : Simple ACT/360

$$D(t_0, S_1) = 1$$

$$1 + (0.15\%) \cdot (\frac{1}{360}) \quad T(t_0, S_1)$$

En nuestro ejemplo, la fecha de Fixing para el primer futuro será $T_1 = 19/12/2012$ t 1/10/2012 19/12/2012 20/p3/2013 d Por qué la feche de fixing es d Resulta que este contrato tiene como es pecificación que le distancie entre la techa de pago y la fecha de tixing es de 3 meses. Convención $R(t,T_1,T_2) = 100(1-F(t,T_1,T_2))$ Sabemos que $F(t,T_1,T_2) = \left(\frac{D(t,T_1)}{D(t,T_2)} - 1\right) \cdot \frac{1}{T}$ Ja conocemo F(+,T,T2)=0.0032 d'Cómo obtengo D(t, T,), D(t, T2)? $0.0032 = \left[\frac{D(t,T_1)}{D(t,T_2)} - 1\right] \cdot \frac{360}{91}, \quad ACT$

Entonces si conocenes
$$D(t,S_2)$$
 y $D(t,S_1)$, produces estime $D(t,T_1)$ mediante una interpolación lag-lined.

(Recordenos que $J=Y_0+\frac{U_1-Y_0}{X_1-X_0}(X-X_0)$)

=> $X_0=S_2$, $X_1=S_3$
 $Y_0=\log\left(D(t,S_2)\right)$ $Y_1=\log\left(D(t,S_3)\right)$

=> $X_0=\log\left(D(t,T_1)\right)$ (a) $X_1=\log\left(D(t,S_3)\right)$

=> $X_0=\log\left(D(t,T_1)\right)$ (a) $X_1=\log\left(D(t,S_3)\right)$

=> $X_0=\log\left(D(t,T_1)\right)$ (b) $X_1=\log\left(D(t,S_3)\right)$

=> $X_0=\log\left(D(t,T_1)\right)$ (c) $X_0=\log\left(D(t,S_3)\right)$

=> $X_0=\log\left(D(t,T_1)\right)$ (c) $X_0=\log\left(D(t,T_1)\right)$ (d) $X_0=\log\left(D(t,T_1)\right)$ (e) $X_0=\log\left(D(t,T_1)\right)$ (f) $X_0=\log\left(D$

- B.9987920982

$$D(t, T_3)$$

 $F(t, T_2, T_3)$
 $I - \frac{Q(t, T_2, T_3)}{100}$

$$f(t, T_2, T_3) = \left[\frac{D(t, T_1)}{D(t, T_3)} - 1\right] \cdot \frac{1}{2}$$

$$D(t,T_3) = [1 + TF(t,T_2,t_3)] \cdot D(t,t_2)$$

$$D(t,T_2) \quad y = [1 + TF(t,T_2,t_3)] \cdot D(t,t_2)$$

$$D(t,T_2) \quad y = [1 + TF(t,T_2,t_3)] \cdot D(t,t_2)$$

$$T_3 = [1 + TF(t,T_2,t_3)] \cdot D(t,t_2)$$

$$D(t,T_i) = [1+\tau F(t,T_{i-1},T_i]D(t,T_{i-1})$$

 $pare i = 2,3,4,...$

Para i=1, tenemos que asumir un supresto de interpolación.

$$D(t,T_i) = D(t,T_{i-1})$$

$$1 + T(T_{i-1},T_i)F(t,T_{i-1},T_i)$$

Para calcular II, tenemos que hacer un supuesto de interpolación

$$D(t, T_1) = interp (D(t, S_2), D(t, S_3))$$

"Shaping methods"

Corta - Liquida + Liquide 14

$$\sum_{i=1}^{n} V_n D(t, U_i) + D(t, U_n) = 1$$

$$\sum_{i=1}^{n} P_{a+a} - \left(1 - D(t, U_n)\right)$$

$$\sum_{i=1}^{n} P_{a+a} - \sum_{f \mid a \mid t = n} P_{a+a}$$

$$\sum_{f \mid a \mid t = n} P_{a+a} - \sum_{f \mid a \mid t = n} P_{a+a}$$

 $\frac{\sum_{i=1}^{n-1}}{\sum_{i=1}^{n}} \mathcal{T}_{n} \mathcal{D}(t, \mathcal{U}_{i}) + \mathcal{V}_{n} \mathcal{D}(t, \mathcal{U}_{n}) + \mathcal{D}(t, \mathcal{U}_{n}) = 1$

$$\frac{1 - \sum_{i=1}^{n-1} V_n D(t, u_i)}{1 + V_n T(u_{n-1}, u_n)}$$

Hay un probleme! Tenemos más incógnitos que variables! $\frac{D(t,T)}{V} \frac{D(t,U_1)}{D(t,U_2)} \frac{D(t,U_2)}{D(t,U_3)} \frac{D(t,U_3)}{V(t,U_3)} \frac{D(t,U_4)}{V(t,U_3)}$ -> Si noso tros interpolamos sobre las tosas swap, podemos incurrir en crors de continuidad en la
curva. y
suavitado. -> d'Por que nos interese que la conve sea suave? -> En particular, puedo volva un forward dada una curva. $F(t,T,S) = \left[\frac{D(t,t)}{D(t,S)} - 1 \right] \cdot \frac{1}{2}$ $= \left(\frac{D(t, t) - D(t, s)}{D(t, s)}\right) \cdot \frac{1}{2}$

Cambio parcentual del plezo S

$$F(t,T,S) \propto \left[\frac{D(t,T) - D(t,S)}{D(t,S)} \right]$$

$$\frac{9}{6}$$

$$\frac{1}{6}$$

Pado lo anterior, quisiéramos

garantizar le existencie de f (t, T) para

todar T, ya que con esto, gerantiza
mos que Todos los forwards serán ulvados

de Forme corrector.

$$D(t, \mathcal{U}_2) = \frac{1 - r_2 D(t, \mathcal{U}_1) \tau(\mathcal{U}_1, \mathcal{U}_2)}{1 + r_2 \tau(\mathcal{U}_1, \mathcal{U}_2)}$$

$$D(t, U_3) = 1 - (V_3 D(t, U_2) T + V_3 D(t, U_1))$$

$$1 + V_3 T (U_2, U_3)$$

Source	Quote Maturity				
LIBOR	0.15 02/10/2012				
LIBOX	0.21 05/11/2012				
	0.36 03/01/2013				
Futures	99.68 20/03/2013				
	99.67 19/06/2013				
	99.65 18/09/2013				
	99.64 18/12/2013				
	99.62 19/03/2014 $\mathcal{V}_{5} D(t, \mathcal{U}_{i}) \mathcal{T}(\mathcal{U}_{i-1}, \mathcal{U}_{i}) + D(t, \mathcal{U}_{n}) = 1$				
Swap					
	0.43 05/10/2015				
	0.56 03/10/2016				
ا ء	->1.17 03/10/2019 ->				
⊃	1.69 02/10/2022				
	2.19 04/10/2027				
	2.40 04/10/2032				
	2.58 03/10/2042				
	2/10/14 = 10/15				
	3/10/13 3/10/14 5/10/15				
	1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
	V5 D(+,U)+V5D(+,U2)+V5D(+,U3)+				
	7172				
	r5D(t, U4) + r5 D(t, U5) + r5D(t, U1) +				
	3/10/16 3/10/17				
	3/10/16 3/10/17 3/10/18				
	V5 D(+, U2) + D(+, U2) = 1				
	$\frac{15}{2}$				
	3/10/19				
	Vanos e hace o tra emperate de				
	Vamos a hacer o tro supuesto de interpolación lined para obtene				
	interpolación lined our obtene				
	TII 11				
	$D(t, \mathcal{U}_{i})$				
	$U_{5} < U_{6} < U_{4}$				
	- '5 '6 'F				
	\downarrow				
	D(EUS) D(t, Uz) No la conozca				
	$U(t, U_2)$ No la conozco				
	V				
	Vamos a encontrar el factor de lescuento				
	+ (171)				
	D(t,Ux) td que:				
>	~ 1.5				
	5 and 13 fage				
_	Satisfage & Interpole a D(+, U6)				
一>	interpole a 20076/				


```
DF. DF.
Bootstrapping Biseción (swap, a, b)
              swaxp (DF1)
                     [ mD(t,ti) T(ti,ti)+DF,) =
               D(t, ti-1)=interp(D(t,t-2), DF))
T(tin, ti)=14
                                                   [14, 24, 3... 104] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] [124] 
     return ( 2 rnD(t, ti) + D(t, tn) - 1)
                                    + = 14
                                        t = 3 y
                                                                                                                                                                D (t, 3y)
                                                                                                                                                                  D(+, 43)
D(+, 53)
                                             t = 5 y
```