

Chapter 4

Vectors

Section	se oto Page Z	Worked Examples	$\begin{array}{c} \text{Exercise} \\ \text{Questions} \end{array}$	$\begin{array}{c} \mathbf{Study} \\ \mathbf{Notes} \end{array}$	Re	visio	on
Syllabus .	2 ■	•	•	-	•		
4G Geometric proofs .	3 □						

Syllabus

Geometric pro	oofs using	vectors	(8]	hours)
In this sub-tonic	etudente	will.		

$\hfill\Box$ prove the diagonals of a parallelogram meet at right angles if and only if it is a rhombus
$\hfill\Box$ prove midpoints of the sides of a quadrilateral join to form a parallelogram
\Box prove the sum of the squares of the lengths of a parallelograms diagonals is equal to the sum of the squares of the lengths of the sides
\Box prove an angle in a semicircle is a right angle
$\hfill\Box$ prove geometric results in the plane and construct simple proofs in three dimensions.

4G Geometric proofs

Example 4.1.	Exam	ple	4.1	L:
--------------	------	-----	-----	----

Prove that the diagonals of a rhombus are perpendicular.
Solution:

Example 4.2:

Prove that the angle subtended by a diameter in a circle is a right angle.
Solution:

Prove that the medians of a triangle are concurrent.

Exampl	\mathbf{e}	4.3:
--------	--------------	------

Solution:

Example 4.4:

Consider a parallelepiped OABCDEFG as shown.

- (a) Prove that the diagonals OF and CE bisect each other.
- (b) Let M be the midpoint of CB, and let N be the midpoint of DE. Prove that the midpoint of MN is the point where the diagonals OF and CE intersect.

Solution:

Page 8 of 168

Example 4.5: Prove the diagonals of a prallelogram meet at right angles if and only if it is a rhombus.
Solution:

Exampl	e 4.6:
--------	--------

Prove midpoints of the sides of a quadrilateral join to form a parallelogram.
Solution:

Example 4.7:

Prove the sum	of the squares	s of the leng	gths of a p	parallelograms	diagonals i	s equal to	the sum	of the	squares of
the lengths of	the sides.								

Solution:

Chapter 7

Trigonometry

Section	Worked Examples	Exercise Questions	$\begin{array}{c} \mathbf{Study} \\ \mathbf{Notes} \end{array}$	Rev	visio	on
	•	-	•	•		
7.1 Solving trigonometric equations 13						
7.1.1Solving trigonometric equations 13 \square						
7.1.2						
7.2 Graphing and modelling with trigonometric functions 22 \square						
7.2.1						
7.2.2						
7.2.3 Modelling with trigonometric functions 31 \square						
7.3						
7.3.1						
7.3.2						
7.4 The Pythagorean trigonometric identities 40 \Box						
7.5 Compound and double-angle identities 45 \square						
7.5.1 Sums and differences 45 \square						
7.5.2						
7.5.3						
7.6Transformations of trigonometric expressions54						

Specialist Mathematics

Syllabus

The basic trigonometric functions (2 hours) In this sub-topic, students will:	
\Box find all solutions of $f(a(x-b))$ where $f(\theta)$ is one of $\sin(\theta)$, $\cos(\theta)$ or $\tan(\theta)$	
\Box sketch and graph functions with rules of the form $y = f(a(x - b))$ where $f(\theta)$ is one of $\sin(\theta)$, $\cos(\theta)$ $\tan(\theta)$.) or
The reciprocal trigonometric functions, secant, cosecant and cotangent (3 hours) in this sub-topic, students will:	
\Box define the reciprocal trigonometric functions, sketch their graphs, and graph simple transformations them.	s of
Trigonometric identities (8 hours) In this sub-topic, students will:	
\square prove and apply the Pythagorean identities	
$\hfill\Box$ prove and apply the angle sum, difference and double-angle identities for sines and cosines	
\square prove and apply the identities for products of sines and cosines expressed as sums and differences	
\Box convert sums $a\cos(x)+b\sin(x)$ to $R\cos(x\pm a)$ or $R\sin(x\pm a)$ and apply these to sketch graphs, so equations of the form $a\cos(x)+b\sin(x)=c$ and solve real-world problems	olv€
\Box use the binomial theorem to prove and apply multi-angle trigonometric identities up to $\sin(4x)$ and $\cos(4x)$	4x)
Applications of trigonometric functions to model periodic phenomena (5 hours) In this sub-topic, students will:	
\square model periodic motion using sine and cosine functions and understand the relevance of the period amplitude of these functions in the model.	and
	• • •
	• • •

7.1 Solving trigonometric equations

7.1.1 Solving trigonometric equations

Specialist Mathematics

Example 7.1 – Solving an equation of the type $\sin(x) = c$: Solve the following equations for the given domain.

(a) $\sin(x) = \frac{1}{2}, 0 \le x \le 2\pi$	(b) $\sin(x) = -\frac{\sqrt{2}}{2}, 0 \le x \le 2\pi$
Solut	ion:
Example 7.2 – Solving an equation of the type $\cos(x)$ Solve the equation $2\cos(x) + \sqrt{3} = 0, 0 \le x \le 2\pi$.	= c:
Solut	ion:

Specialist Mathematics

Example 7.3 – Solving an equation of the type $\tan(x) = c$: Solve the equation $\tan(x) - 1 = 0$, $0^{\circ} \le x \le 360^{\circ}$.

Solu	ition:
Example 7.4 – Solving equations with different doma	ins:
Solve the following equations for the given domain.	
() () ()	1
(a) $\tan(x) = -\sqrt{3}, -\pi \le x \le \pi$	(b) $\sin(x) = \frac{1}{2}, -\frac{\pi}{2} \le x \le \frac{\pi}{2}$
Solu	ation:

Specialist Mathematics

Example 7.5 – Solving equations of the form $\sin(ax) = c$, $\cos(ax) = c$ or $\tan(ax) = c$: Solve the following equations.

(a) $\cos(2x) = \frac{1}{2}, \ 0 \le x \le 2\pi$	(b) $\sin\left(\frac{x}{3}\right) = 0.6, \ 0 \le x \le 6\pi$
	Solution:

Solution:

Specialist Mathematics

Example 7.6 – Solving equations of the form $\sin(x-b)=c$, $\cos(x-b)=c$ or $\tan(x-b)=c$: Solve the following equations.

(a) $\cos(x - 30^\circ) = \frac{\sqrt{2}}{2}, 0^\circ \le x \le 360^\circ$	(b) $\sin\left(x + \frac{5\pi}{3}\right) = \frac{1}{2}, \ 0 \le x \le 2\pi$
--	---

Example 7.7 – Solving more complex equations:

Alternate Sequence Unit 2 - Topic 2Trigonometry and functions

Specialist Mathematics

Solve the equation $\tan\left(3\left(x-\frac{\pi}{4}\right)\right)=-1,\ 0\leq x\leq 2\pi.$
Solution:

7.1.2 General solutions

Solution:

Specialist Mathematics

Example 7.8 – Solving equations with an unrestricted domain: Solve these equations, leaving your answer in general form.

$(\mathbf{a}) \sin(x) = \frac{\sqrt{3}}{2}$	(b) $\tan(x) = \frac{1}{\sqrt{2}}$
$(\mathbf{a}) \sin(x) = \frac{\sqrt{3}}{2}$	(b) $\tan(x) = \frac{1}{\sqrt{x}}$

Specialist Mathematics

Example 7.9 – Solving equations with an unrestricted domain along the vertical axis: Solve $\cos(2x) = 0$.

Solution:

7.2 Graphing and modelling with trigonometric functions

7.2.1 Graphs of sine and cosine functions

Specialist Mathematics

(a)	Write the amplitude and period of $f(x)$
	Calculate the x-intercepts, by solving the equation $f(x) = 0$.
. ,	
	Determine the equation of the median line.
(d)	Sketch the graph of the function, labelling all key features, including the coordinates of the maximum and minimum points and the median line.
	Solution:
• • • •	
• • • •	
• • • •	
• • • •	
• • • •	
• • • •	
• • • •	
• • • •	
• • • •	
• • • •	
• • • •	
• • • •	
• • • •	

Specialist Mathematics

Example 7.11 – Graphing functions of the form $f(x) = A \sin(ax)$ for A < 0: Consider the function $f(x) = -3\sin(2x), \ 0 \le x \le 2\pi$

- (a) Determine the period, amplitude and range of the function.
- (b) Determine the coordinates of the x-intercepts for the graph of y = f(x).
- (c) Determine the equation of the median line.
- (d) Sketch the graph of the function, labelling all major points in coordinate form, including the maximum and minimum points and showing the median line.

Solution:

Specialist Mathematics

Example 7.12 – Graphing a trigonometric function with a vertical translation: Consider the function $f(x) = 3\sin(2x) + 4$, $0 \le x \le 2\pi$.

(a)	Determine the amplitude, period and range of the function.
(b)	Calculate the intercepts of $f(x)$ with the median line.
(c)	Sketch the graph of the function, labelling all key points in coordinate form and showing the median line
	Solution:
• • • •	
• • • •	
• • • •	

Pearson - Chapter 7

Alternate Sequence Unit 2 - Topic 2 Trigonometry and functions

Specialist Mathematics

Page 26 of 168

Example 7.13 – Graphing a trigonometric function with a horizontal translation: Consider the function $f(x) = 3\sin\left(2x - \frac{\pi}{2}\right)$, $0 \le x \le 2\pi$.

(a) Determine the amplitude, period and range of the function. (b) Calculate the coordinates of the x-intercepts for the graph of y = f(x). (c) Sketch the graph of the function, labelling all key features. Solution:

Example 7.14 – Determining transformations of trigonometric functions:

Determine the transformations that have taken place to transform either $f(x) = \sin(x)$ or $f(x) = \cos(x)$ into the given function. Also list the period and amplitude of each function.

(a)
$$f(x) = \cos\left(3x + \frac{\pi}{6}\right)$$

(b)
$$f(x) = -\sin(\pi x) + 2$$

(c)
$$f(x) = 6\cos\left(\frac{1}{2}x - \frac{\pi}{4}\right)$$

Solution:

7.2.2 Graphs of the tangent function

Specialist Mathematics

Example 7.15 – Graphing functions of the form $f(x) = \tan(ax)$: Consider the function $f(x) = \tan(2x)$, $0 \le x \le 2\pi$. (a) Determine the period, equations of the asymptotes and x-intercepts of the function. (b) Sketch the graph of y = f(x). (c) List the transformations that have taken place to transform $y = \tan(x)$ into $y = \tan(2x)$. Solution:

Specialist Mathematics

	700101150 1110011011100105
Example 7.16 – Graphing functions of the form $f(x) = \tan(a(x-b))$: Consider $h(x) = \tan\left(2\left(x - \frac{\pi}{3}\right)\right), 0 \le x \le \pi$.	
(a) Sketch the graph of $y = h(x)$, showing the asymptotes and the coordinates of key p	oints.
(b) List the transformations in sequential order to produce the graph of $y = h(x)$ from the	graph of $f(x) = \tan(x)$
Solution:	

7.2.3 Modelling with trigonometric functions

Specialist Mathematics

Exam	ple	7.1	١7	-Mc	odelling	with	a	trigono	metric	function	1:
------	-----	-----	----	-----	----------	------	---	---------	--------	----------	----

The h	neight of a carr	riage on a Ferri	s wheel, h me	etres above	a platform	from whi	ch people w	vill enter	and ex	xit the
ride,	t minutes after	r the ride starts	s, is modelled	by the fun	ction $h(t)$	$=-10\cos$	$s\left(\frac{\pi}{9}t\right) + 10$			

- (a) Demonstrate that one complete cycle of the ride takes 18 minutes.
- (b) Calculate the maximum height of the ride above the platform.
- (c) Sketch the graph of h(t) for $0 \le t \le 18$.
- (d) In a single ride, determine when the carriage is 5 metres above the platform.

Solution:

7.3 The reciprocal trigonometric functions

7.3.1 Calculating values of reciprocal functions

Alternate Sequence Unit 2 - Topic 2 Trigonometry and functions

Specialist Mathematics

Example 7.18 – Calculating reciprocal trigonometric functions for exact values: Calculate the exact value of each of the following.

(a) $\sec(\pi)$	(b) $\csc\left(\frac{\pi}{2}\right)$	(c) $\csc(\pi)$	(d) $\cot\left(\frac{\pi}{3}\right)$	
		Solution:		
				• • • •
				• • • •
				• • • •
				• • • •
				• • • •

Solution:

Specialist Mathematics

Example 7.19 – Solving equations involving reciprocal trigonometric functions: Solve the equation $\sec(x) = 2$, for $0 \le x \le 2\pi$.

7.3.2 Graphs of reciprocal trigonometric functions

Specialist Mathematics

Example 7.20 – Sketching graphs of the reciprocal trigonometric functions of the form f(ax): Sketch the graph of $f(x) = \sec(2x)$ for $0 \le x \le 2\pi$, stating the domain, range and period. Also show the asymptotes and any intercepts with the axes.

Solution:

Example 7.21 – Sketching reciprocal trigonometric functions of the form Af(x-b):

Specialist Mathematics

Sketch the graph of $f(x)=2\cot\left(x-\frac{\pi}{4}\right)$ for $0\leq x\leq 2\pi$, stating the domain, range and period. Also show the asymptotes and any intercepts with the axes.						
Solution:						

Specialist Mathematics

Example 7.22 – Sketching reciprocal functions of the form $f(a(x-b))+c$: Sketch the graph of $f(x)=\csc\left(x+\frac{\pi}{4}\right)+1$ for $0\leq x\leq 2\pi$, stating the domain, range and period. Also show the asymptotes and any intercepts with the axes.						
the asymptotes and any intercepts with the axes.						
Solution:						

7.4 The Pythagorean trigonometric identities

Specialist Mathematics

Example 7.23 – Calculating the values of trigonometric expressions using identities: Calculate the values of the following.

(a) $\sin(\theta)$ for $\frac{\pi}{2} \le \theta \le \pi$ if $\cos(\theta) = -\frac{\pi}{25}$.	(b) $\cos(\theta)$ for $\pi \le \theta \le 2\pi$ if $\tan(\theta) = 3$.
Solu	tion:

Specialist Mathematics

Example 7.24 – Simplifying trigonometric expressions: Simplify the following.

<i>(</i>)	2(4) + • 2(4) +	1
(a)	$\cos^2(A) + \sin^2(A) +$	$\overline{\cot^2(A)}$.

(b)
$$\frac{\sin(\theta)}{1-\cos(\theta)} + \frac{\sin(\theta)}{1+\cos(\theta)}$$
, where $\cos(\theta) \neq \pm 1$.

Solution:

Specialist Mathematics

Example 7.25 – Using trigonometric identities to solve equations: Solve the following equations in the given domain.

Solve the following equations in the given domain.	
(a) $\cos^2(A) - \sin^2(A) = \frac{1}{2}, 0 \le A \le 2\pi.$	(b) $\csc^2(x) - \sqrt{3}\cot(x) = 1, 0 \le x \le \pi.$
Solu	tion:

.....

Specialist Mathematics

Example 7.26 – Proving trigonometric identities: $csc(\theta)$
Prove that $\frac{\csc(\theta)}{\tan(\theta) + \cot(\theta)} = \cos(\theta)$.
Solution:
Example 7.27 – Proving a more complex trigonometric identity: Prove that $\frac{\cos(x)}{1-\cos(x)} = \sec(x) + \tan(x)$.
Prove that $\frac{\cos(x)}{1-\sin(x)} = \sec(x) + \tan(x)$.
Example 7.27 – Proving a more complex trigonometric identity: Prove that $\frac{\cos(x)}{1-\sin(x)} = \sec(x) + \tan(x)$. Solution:
Prove that $\frac{\cos(x)}{1-\sin(x)} = \sec(x) + \tan(x)$.
Prove that $\frac{\cos(x)}{1-\sin(x)} = \sec(x) + \tan(x)$.
Prove that $\frac{\cos(x)}{1-\sin(x)} = \sec(x) + \tan(x)$. Solution:
Prove that $\frac{\cos(x)}{1-\sin(x)} = \sec(x) + \tan(x)$. Solution:
Prove that $\frac{\cos(x)}{1-\sin(x)} = \sec(x) + \tan(x)$. Solution:
Prove that $\frac{\cos(x)}{1-\sin(x)} = \sec(x) + \tan(x)$. Solution:
Prove that $\frac{\cos(x)}{1-\sin(x)} = \sec(x) + \tan(x)$. Solution:
Prove that $\frac{\cos(x)}{1-\sin(x)} = \sec(x) + \tan(x)$. Solution:
Prove that $\frac{\cos(x)}{1-\sin(x)} = \sec(x) + \tan(x)$. Solution:
Prove that $\frac{\cos(x)}{1-\sin(x)} = \sec(x) + \tan(x)$. Solution:
Prove that $\frac{\cos(x)}{1-\sin(x)} = \sec(x) + \tan(x)$. Solution:
Prove that $\frac{\cos(x)}{1-\sin(x)} = \sec(x) + \tan(x)$. Solution:
Prove that $\frac{\cos(x)}{1-\sin(x)} = \sec(x) + \tan(x)$. Solution:

7.5 Compound and double-angle identities

7.5.1 Sums and differences

Specialist Mathematics

Example 7.28 – Using identities to simplify trigonometric expressions:							
Demonstrate that $\sin\left(\frac{3\pi}{2} + x\right) = -\cos(x)$							
Solution:							
Example 7.29 – Using a compound angle identity to determine a trigonometric expression:							
If x and y are acute angles such that $\sin(x) = \frac{1}{4}$ and $\cos(y) = \frac{3}{4}$, determine $\sin(x+y)$ without calculating x or							
y.							
Solution:							

Specialist Mathematics

Example 7.30 – Determining the exact value of a trigonometric expression using a compound angle identity: Determine the exact value of $\cos(15^{\circ})$.

Solution:
Example 7.31 - Simplifying trigonometric expressions with compound angles:
Example 7.31 – Simplifying trigonometric expressions with compound angles: Simplify $\sin\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right)+\cos\left(\frac{a+b}{2}\right)\sin\left(\frac{a-b}{2}\right)$.
Solution:

7.5.2 Double-angle identities

Specialist Mathematics

Example 7.32 – Simplifying trigonometric expressions using double-angle identities: Simplify $(\sin(3x) - \cos(3x))^2$.

Solution:
Example 7.33 – Using a double-angle formula to calculate the value of trigonometric expressions:
Example 7.33 – Using a double-angle formula to calculate the value of trigonometric expressions: Given that $\tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}$, use a double-angle identity to demonstrate that $\tan\left(\frac{\pi}{3}\right) = \sqrt{3}$.
Example 7.33 – Using a double-angle formula to calculate the value of trigonometric expressions: Given that $\tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}$, use a double-angle identity to demonstrate that $\tan\left(\frac{\pi}{3}\right) = \sqrt{3}$. Solution:
Solution:
Solution:
Solution:

Example 7.34 – Using half-angle identities:

Complete the following	g.				
() 77	(2)	2()		 (A)	$\sqrt{1-\cos(A)}$

- (a) Use the identity $\cos(2x) = 1 2\sin^2(x)$, demonstrate that $\sin\left(\frac{A}{2}\right) = \pm\sqrt{\frac{1-\cos^2(x)}{2}}$
- 3π (A)

(b) If $\cos(A) = \frac{3}{5}$ for $\frac{3\pi}{2} \le A \le 2\pi$, determine the exact value of $\sin\left(\frac{A}{2}\right)$ without calculating A.			
	Sol	ution:	
			• • • • • • • • • • • •
			• • • • • • • • • • • •
	g double-angle identities in a pr	roof:	
Complete the following	3.	roof: (b) Prove that $\cos(3x) = 4\cos^3(x) - 3\cos^3(x)$	$\cos(x)$
Complete the following	$(1) - \sin(\theta))^2 = 1 - \sin(2\theta).$		$\cos(x)$
Complete the following	$\sin(\theta) - \sin(\theta))^2 = 1 - \sin(2\theta).$ Solu	(b) Prove that $\cos(3x) = 4\cos^{3}(x) - 3\cos^{3}(x)$	
Complete the following	$\sin(\theta) - \sin(\theta))^2 = 1 - \sin(2\theta).$ Solu	(b) Prove that $cos(3x) = 4cos^3(x) - 3cos^3(x)$ ution:	
Complete the following	$\sin(\theta) - \sin(\theta))^2 = 1 - \sin(2\theta).$ Solu	(b) Prove that $cos(3x) = 4cos^3(x) - 3cos^3(x)$ ution:	
Complete the following (a) Prove that $\cos(\theta)$	$(3) - \sin(heta))^2 = 1 - \sin(2 heta).$ Solu	(b) Prove that $cos(3x) = 4cos^3(x) - 3cos^3(x)$ ution:	
Complete the following (a) Prove that $\cos(\theta)$	$(3) - \sin(\theta))^2 = 1 - \sin(2\theta).$ Solution	(b) Prove that $\cos(3x) = 4\cos^3(x) - 3\cos^3(x)$ ution:	
Complete the following (a) Prove that $\cos(\theta)$	$(1) - \sin(\theta))^2 = 1 - \sin(2\theta).$ Solution	(b) Prove that $\cos(3x) = 4\cos^3(x) - 3\cos^3(x)$ ution:	
Complete the following (a) Prove that $(\cos(\theta))$	$(3) - \sin(\theta))^2 = 1 - \sin(2\theta).$ Solution	(b) Prove that $\cos(3x) = 4\cos^3(x) - 3\cos^3(x) - 3\cos^3(x)$ ution:	
Complete the following (a) Prove that $\cos(\theta)$	$(3) - \sin(\theta))^2 = 1 - \sin(2\theta).$ Solution	(b) Prove that $\cos(3x) = 4\cos^3(x) - 3\cos^3(x) - 3\cos^3(x)$ ution:	
Complete the following (a) Prove that $\cos(\theta)$	$(3) - \sin(\theta))^2 = 1 - \sin(2\theta).$ Solution	(b) Prove that $\cos(3x) = 4\cos^3(x) - 3\cos^3(x) - 3\cos^3(x)$ ution:	
Complete the following (a) Prove that $\cos(\theta)$	$(3) - \sin(\theta))^2 = 1 - \sin(2\theta).$ Solution	(b) Prove that $\cos(3x) = 4\cos^3(x) - 3\cos^3(x) - 3\cos^3(x)$ ution:	
Complete the following (a) Prove that $\cos(\theta)$	$(3) - \sin(\theta))^2 = 1 - \sin(2\theta).$ Solution	(b) Prove that $\cos(3x) = 4\cos^3(x) - 3\cos^3(x) = 4\cos^3(x) + 3\cos^3(x) + 3\cos^3(x) = 4\cos^3(x) + 3\cos^3(x) + 3$	
Complete the following (a) Prove that $\cos(\theta)$	$(3) - \sin(\theta))^2 = 1 - \sin(2\theta).$ Solution	(b) Prove that $\cos(3x) = 4\cos^3(x) - 3\cos^3(x) - 3\cos^3(x)$ ution:	

Specialist Mathematics

Example 7.36 – Solving equations using double-angle identities: Complete the following.

(a) Use the expansion found in Worked Example 35 for $\cos(3x)$ to solve the equation $4\cos^3(x) - 3\cos(x) = \frac{1}{2}$ for $0 \le x \le 2\pi$.		
(b)	Determine the value of θ such that $\sqrt{2}\sin(2\theta) = 2\cos(\theta)$, $0 \le \theta \le 2\pi$.	
	Solution:	
• • • • •		

7.5.3 Changing products to sums and differences

Specialist Mathematics

Example 7.37 – Converting products to sums or differences of trigonometric expressions: Express $\sin(\theta)\cos(3\theta)$ as a sum or difference.

Solution:

7.6 Transformations of trigonometric expressions

Specialist Mathematics

Example 7.38 – Expressing a sum or difference in the form $R\sin(x \pm \alpha)$: Express $\sin(x) - \cos(x)$ in the form $R\sin(x - \alpha)$, where R is a positive constant and $0 \le \alpha \le \frac{\pi}{2}$		
Solution:		

Specialist Mathematics

Example 7.39 – Expressing a sum or difference in the form $R\cos(x \pm \alpha)$ to solve an equation: Consider the expression $\sqrt{3}\cos(x) - \sin(x)$.

(b) Solve the equation $\sqrt{3}\cos(x) - \sin(x) = 1$, $0 \le x \le 2\pi$.				
Solution:				

Example 7.40 – Expressing a sum or difference in the form $R\sin(x\pm\alpha)$:

Specialist Mathematics

In Worked Example 38, the expression $\sin(x) - \cos(x)$ was found to be equal to $\sqrt{2}\sin\left(x - \frac{\pi}{4}\right)$. Use this relationship to sketch the graph of $y = \sin(x) - \cos(x)$.		
Solution:		

Specialist Mathematics

Example 7.41 – Solving a problem using the transformation of an expression to the form $R\sin(x+\alpha)$: A rectangle OABC is formed with one vertex from the origin O, point A at $0, 3\cos(\theta)$) and point C at $(4\sin(\theta), 0)$.

- (a) Express $4\sin(\theta) + 3\cos(\theta)$ in the form $R\sin(\theta + \alpha)$ where R > 0 and $0 \le \theta \le \frac{\pi}{2}$.
- (b) State the coordinates of B in terms of θ .
- (c) Express the perimeter of the rectangle in terms of $f(\theta)$.
- (d) Calculate the maximum value of the perimeter of the rectangle.

Solution:

Chapter 6 Graphing functions

Section Page	Notes	Worked Examples	Exercise Questions	$\begin{array}{c} \mathbf{Study} \\ \mathbf{Notes} \end{array}$	Re	visi	on
		•	•	•	•		
6.1							
6.1.1 Absolute values functions 61							
6.1.2 Graphs of the form $y = f(x) $ and $y = f(x) \dots 65$							
6.2							
6.3							
6.3.1Sketching rational functions with linear denominators 72							
6.3.2 Sketching rational functions with quadratic denominators 75							
6.3.3 Sketching rational functions with an oblique asymptote 78							

Specialist Mathematics

Syllabus

Sketching graphs (5 hours) In this sub-topic, students will:
\square use and apply the notation $ x $ for the absolute value for the real number x and the graph of $y= x $
\Box examine the relationship between the graph of $y=f(x)$ and the graphs of $y=\frac{1}{f(x)},\ y= f(x) $ and $y=f(x)$
\square sketch the graphs of simple rational functions where the numerator and denominator are polynomials to degree 3 without technology.

6.1 Absolute value functions

6.1.1 Absolute values functions

Specialist Mathematics

 $\begin{tabular}{ll} \textbf{Example 6.1} - \textbf{Determining the values of numerical expressions involving absolute values:} \\ \textbf{Determine each of the following.} \\ \end{tabular}$

(a) $ -5 $	(b) $-3 -12+2\times 5 $	(c) $-5 \times -6 - 5 \times -6 $
	Solution:	
Example 6.2 – Solving simulations of the following equation	aple equations involving absolute values: s.	
(a) $ x+3 = 5$	(b) 10 - 2	2x = 4
	Solution:	

Specialist Mathematics

Example 6.3 – Sketching graphs of simple transformations of y = |x|: Sketch the graph of the function y = -2|x-3|+4, identifying the coordinates of the vertex, and any intercepts with the axes. Solution:

Example 6.4 – Determining the equation of a simple absolute graph: Determine the equation of the function drawn below.

6.1.2 Graphs of the form y = |f(x)| and y = f(|x|)

Example 6.5 – Sketching graphs of the form y = |f(x)| and y = f(|x|):

For the function f(x) graphed on the right, sketch the following graphs, clearly indicate the location of all intercepts and turning points.

(b)
$$y = f(|x|)$$

Example 6.6 – Solving more complex equations involving absolute values: Solve for x .	
$\left \frac{1}{2}x - 6\right = x + 3$	
Solution:	

6.2 Reciprocal functions

 ${\bf Example~6.7}-{\bf Sketching~reciprocal~functions~from~coordinates:}$

A section of the graph of a function f(x) is shown with the coordinates of several points displayed. Replicate this diagram.

Then determine the reciprocal of the y-coordinate of each point given.

Hence, sketch the corresponding section of $y = \frac{1}{f(x)}$ on the same set of axes.

Example 6.8 – Sketching $y = \frac{1}{f(x)}$ from the graph of y = f(x) when f(x) is linear:

The graph of the function f(x) is shown on the right. Sketch the graph of $y=\frac{1}{f(x)}$ on the same set of axes, clearly identifying all asymptotes and intercepts.

Specialist Mathematics

Example 6.9 – Sketching $y = \frac{1}{f(x)}$ from the graph of y = f(x) when f(x) contains local extrema:

The graph of the function f(x) is shown on the right. Sketch the graph of $y=\frac{1}{f(x)}$ on the same set of axes, clearly identifying all asymptotes, intercepts, and local extrema.

6.3 Rational functions

6.3.1 Sketching rational functions with linear denominators

Alternate Sequence Unit 2 - Topic 2 Trigonometry and functions

Example 6.10 – Sketching a rational function by first simplifying: Simplify the rational function $y = \frac{2x^2 - 8}{x + 2}$ by identifying common factors in the numerator and denominator
Hence, sketch the graph of this function, clearly identifying any intercepts and discontinuous points.
Solution:
Solution.

Alternate Sequence Unit 2 - Topic 2Trigonometry and functions

Example 6.11 – Sketching functions of the form $y = \frac{ax + b}{cx + d}$:
Sketch the function $y = \frac{6-3x}{2x+2}$, clearly indicating all intercepts and asymptotes.
Solution:

6.3.2 Sketching rational functions with quadratic denominators

Alternate Sequence Unit 2 - Topic 2Trigonometry and functions

Example 6.12 – Sketching functions of the form $y = \frac{ax+b}{cx^2+dx+c}$	\overline{e} :
Sketch the function $y = \frac{-2x+2}{x^2-9}$, clearly indicating all intercepts	and asymptotes.
Solution:	

Alternate Sequence Unit 2 - Topic 2Trigonometry and functions

Example 6.13 – Sketo	thing functions of the form y	$=\frac{ax^2+bx+c}{dx^2+ex+f}$:
Sketch the function $y =$	$=\frac{2x^2+2}{x^2+2x-3}$, clearly indicate	$ax^2 + ex + f$ ing all intercepts and asymptotes.
		plution:

6.3.3 Sketching rational functions with an oblique asymptote

Alternate Sequence Unit 2 - Topic 2Trigonometry and functions

Example 6.14 – Sketching functions of the form $y = \frac{ax^2 + bx + c}{dx + e}$:	
Sketch the function $y = \frac{x^2 + 3x}{x - 1}$, clearly indicating all intercepts and asympt	otes
	0000.
Solution:	

Pearson - Chapter 6 Graphing functions Page 80 of 168

Chapter 11 Techniques of integration

Section	Page	Notes	Worked Example	Exercise Question	$\begin{array}{c} \mathbf{Study} \\ \mathbf{Notes} \end{array}$	Rev	vision
	82		•	•	•	•	
11A Finding definite integrals and using the modulus function.	83						
11B Derivatives of inverse trigonometric functions.	88						
11C Anti-derivatives involving inverse trigonometric functions.	90						
11DIntegration by substitution.	93						
11EDefinite integrals by substitution.	98						
11FUsing trigonometric identities for integration.	101						
11G Partial fractions.	104						
11HIntegration by parts.	111						
11IFurther techniques and miscellaneous exercises	115	П	П	П	П	П	

Syllabus

Integration techniques (10 hours	Integration	techniques	(10 hours)
----------------------------------	-------------	------------	------------

In	this	sub-topic,	students	will:
----	------	------------	----------	-------

\Box integrate using the trigonometric identities $\sin^2(x) = \frac{1}{2}(1 - \cos(2x))$, $\cos^2(x) = \frac{1}{2}(1 + \cos(2x))$ an $1 + \tan^2(x) = \sec^2(x)$
\square use substitution $u = g(x)$ to integrate expressions of the form $f(g(x)) g'(x)$
\Box establish and use the formula $\int \frac{1}{x} dx = \ln x + c$, for $x \neq 0$
\Box find and use the inverse trigonometric functions: arcsine, arccosine and arctangent
\Box find and use the derivative of the inverse trigonometric functions: arcsine, arccosine and arctangent
\Box integrate expressions of the form $\frac{\pm 1}{\sqrt{a^2 - x^2}}$ and $\frac{a}{a^2 + x^2}$
\Box use partial fractions where necessary for integration in simple cases
\square integrate by parts.

11A Finding definite integrals and using the modulus function

Specialist Mathematics

Example 11.1:

Evaluate each of the following integrals:

(a) $\int_0^{\frac{\pi}{2}} \cos(3x) dx$	(b) $\int_0^1 e^{2x} - e^x dx$	(c) $\int_0^{\frac{\pi}{8}} \sec^2(2x) dx$	$(\mathbf{d}) \int_0^1 \sqrt{2x+1} dx$
	So	lution:	

Example 11.2:

Evaluate each of the following:

(a) $|-3 \times 2|$

(c) $\left| \frac{-4}{2} \right|$

(e) |-6+2|

(b) $|-3| \times |2|$

(d) $\frac{|-4|}{|2|}$

(f) |-6| + |2|

Solution:

Examp	le :	11.	3:
-------	------	-----	----

llowing:

(a) $\frac{d}{dx}(\ln x)$ for $x \neq 0$.	(b) $\frac{d}{dx}(\ln \sec x)$ for $x \notin \{\frac{(2k+1)\pi}{2} : k \in \mathbb{Z}\}.$
Solu	tion:

Example 11.4:

Calculate the following:

(a) An anti-derivative of $\frac{1}{4x+2}$ for $x \neq -\frac{1}{2}$.

(b)	$\int_{}^{1}$	1	-dx
(D)	\int_{0}	4x +	$\overline{2}^{ax}$

(c)
$$\int_{-2}^{-1} \frac{1}{4x+2} dx$$
.]

Solution:

11B Derivatives of inverse trigonometric functions

Example 11.5:

Differentiate each of the following with respect to x:

(a)
$$\sin^{-1}\left(\frac{x}{3}\right)$$

(b)
$$\cos^{-1}(4x)$$

(c)
$$\tan^{-1}\left(\frac{2x}{3}\right)$$
 (d) $\sin^{-1}(x^2-1)$

(d)
$$\sin^{-1}(x^2 - 1)$$

Solution:

11C Anti-derivatives involving inverse trigonometric functions

Alternate Sequence Unit 2 - Topic 3 Integration and applications of integration

Example 11.6:

Calculate an anti-derivative of each of the following:

(a)	-	 /[)	1	_	3	r:	<u>=</u>	

(b)
$$\frac{1}{\sqrt{9-4x^2}}$$

(c)	1
(C)	$9 + 4x^2$

Solution:

$\begin{tabular}{ll} Alternate Sequence Unit 2 - Topic 3 \\ Integration and applications of integration \\ \end{tabular}$

Example 11.7:

Evaluate each of the following definite integrals:

(a)
$$\int_0^1 \frac{1}{\sqrt{4-x^2}} dx$$

(b)
$$\int_0^2 \frac{1}{4+x^2} dx$$

(c)
$$\int_0^1 \frac{3}{\sqrt{9-4x^2}} dx$$

Solution:

11D Integration by substitution

Example 11.8:

Differentiating each of the following with respect to x:

(a)
$$(2x^2+1)^5$$

(b)
$$\cos^3 x$$

(c)
$$e^{3x^2}$$

we have:

(a) Let
$$y = (2x^2 + 1)^5$$
 and $u = 2x^2 + 1$.
Then $y = u^5$, $\frac{dy}{du} = 5u^4$ and $\frac{du}{dx} = 4x$.
Then:

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$
$$= 5u^4 \cdot 4x$$
$$= 20u^4x$$
$$= 20x (2x^2 + 1)^4$$

(b) Let
$$y = \cos^3 x$$
 and $u = \cos x$.
Then $y = u^3$, $\frac{dy}{du} = 3u^2$ and $\frac{du}{dx} = -\sin x$.

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$
$$= 3u^2 \cdot (-\sin x)$$
$$= 3\cos^2 \cdot (-\sin x)$$
$$= -3\cos^2 x \sin x$$

(c) Let
$$y = e^{3x^2}$$
 and $u = 3x^2$.
Then $y = e^u$, $\frac{dy}{du} = e^u$ and $\frac{du}{dx} = 6x$.

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = e^u \cdot 6x$$
$$= 6xe^{3x^2}$$

Note:

(a)
$$\int 20x (2x^2 + 1)^4 dx = (2x^2 + 1)^5 + c$$
, then letting $h(x) = x^2 + 1$, we have: $\int 5h'(x) (h(x))^4 dx = (h(x))^5 + c$

(b)
$$\int -3\cos^2 x \sin x dx = \cos^3 x + c, \text{ then letting } h(x) = \cos x, \text{ we have:}$$
$$\int 3h'(x) (h(x))^2 dx = (h(x))^3 + c$$

(c)
$$\int 6xe^{3x^2}dx = e^{3x^2} + c$$
, then letting $h(x) = 3x^2$, we have:
$$\int h'(x)e^{(h(x)}dx = e^{h(x)} + c$$

Exampl	e 11	L.9:
--------	------	------

Determine an anti-derivative of each of	of the following:	
(a) $\sin x \cos^2 x$	(b) $5x^2(x^3-1)^{\frac{1}{2}}$	(c) $3xe^{x^2}$

Solution:

Alternate Sequence Unit 2 - Topic 3 Integration and applications of integration

Example 11.10:

Determine an anti-derivative of each of	the following:
(a) $\frac{2}{x^2 + 2x + 6}$	(b) $\frac{3}{\sqrt{9-4x-x^2}}$
	Solution:

Example 11.11:

Determine an anti-derivative of each of the following:

(a)
$$(2x+1)\sqrt{x+4}$$

(b)
$$\frac{2x+1}{(1-2x)^2}$$

(c)
$$x^2\sqrt{3x-1}$$

Solution:

11E Definite integrals by substitution

Exai	nple	11.1	2:
Б.	_	$\int_{-\infty}^{4}$	_

xampie	11.14:
Evaluate \int	$\int_{0}^{4} 3x\sqrt{x^2+9}$
Evaluate /	$\int_{0}^{4} 3x\sqrt{x^2+9}$

Solution:			

Example 11.13:

Evaluate	the	foll	lowing:
----------	-----	------	---------

(a) $\int_0^{\frac{\pi}{2}} \cos^3 x dx$	(b) $\int_0^1 2x^2 e^{x^3} dx$
--	--------------------------------

Solution:

11F Using trigonometric identities for integration

|--|

Evaluate the following:

(a) $\int \cos^2 x dx$	(c) $\int \sin(2x)\cos(2x)dx$	(e) $\int \sin^3 x \cos^2 x dx$
(b) $\int \tan^2 x dx$	(d) $\int \cos^4 x dx$	

Solution:

 •
•
 •
 •
 •

11G Partial fractions

Example 11.15: $\frac{3m+5}{2m+5}$
Example 11.15: Resolve $\frac{3x+5}{(x-1)(x+3)}$ into partial fractions.
Solution:
Example 11.16: Resolve $\frac{2x+10}{(x+1)(x-1)^2}$ into partial fractions. Solution:
Solution:

Example 11.17:
Example 11.17: Resolve $\frac{x^2 + 6x + 5}{(x-2)(x^2 + x + 1)}$ into partial fractions.
Solution:

Example 11.18: $r^5 + 2$
Example 11.18: Express $\frac{x^5+2}{x^2-1}$ as partial fractions.
Solution:

Example 11.19: Evaluate $\int \frac{3x+5}{(x-1)(x+3)} dx.$
Solution:
Example 11.20: Evaluate $\int \frac{x^5 + 2}{x^2 - 1} dx$.
Solution:

Example 11.21: $(3x + 1)$
Example 11.21: Express $\frac{3x+1}{(x+2)^2}$ in partial fractions and hence evaluate $\int \frac{3x+1}{(x+2)^2} dx$.
Solution:

Example 11.22:
Determine an anti-derivative of $\frac{4}{(x+1)(x^2+1)}$ by first expressing it as partial fractions.
Solution:

11H Integration by parts

Example 11.23:

$\label{lem:alternate} \mbox{Alternate Sequence Unit 2 - Topic 3} \\ \mbox{Integration and applications of integration}$

Calculate an anti-derivati	ve of each of the following:		
(a) $x \cos x$	(b) xe^x	(c) $\arcsin x$	
	Solution:		

Example 11.24: Determine $\int x^2 e^x dx$.
Solution:
Solution.

Example 11.25: Evaluate $\int e^x \cos x dx$.
Solution:
Evample 11.26
Example 11.26: Evaluate $\int_{1}^{2} \ln x dx$.
Solution:

11I Further techniques and miscellaneous exercises

Example 11.27:
Determine the derivative of $\sin^{-1}(x) + x\sqrt{1-x^2}$, hence evaluate $\int_0^{\frac{1}{2}} \sqrt{1-x^2} dx$.
Solution:

Chapter 12 Applications of integration

Section	ge Z	Worked Examples	$\mathbf{E}_{\mathbf{xercise}}$	Study Notes	Rev	v i sio	n
12A The fundamental theorem of calculus1	.19 □						
12B Area of a region between two curves	.23 🗆						
12C Integration using a graphics calculator1	.28 🗆						
12D Volumes of solids of revolution 1	.31 □						
12E The exponential probability distribution	.35 □						
12F Simpson's rule	38 □	ı	П	П	П		\Box

Specialist Mathematics

Syllabus

In this sub-topic, students will:
\Box calculate areas between curves determined by functions
\Box determine volumes of solids of revolution about either axis
\Box use the numerical integration method of Simpson's rule, using technology
\Box use and apply the probability density function, $f(t) = \lambda e^{-\lambda t}$ for $t \ge 0$, of the exponential random variable with parameter $\lambda > 0$, and use the exponential random variables and associated probabilities and quantile to model data and solve practical problems.

12A The fundamental theorem of calculus

Example 12.1:

The graph of $y=\frac{1}{\sqrt{4-x^2}}$ is shown. Determine the area of the shaded region.

Solution:

Example 12.2:
Determine the area under the graph of $y = \frac{1}{4 + x^2}$ between $x = -2$ and $x = 2$. Solution:
Determine the area under the graph of $y = \frac{6}{4 + x^2}$ between $x = -2$ and $x = 2$. Solution:

Specialist Mathematics

Example 12.3:

Sketch the graph of $f(x) = \sin^{-1}(2x), x \in [-\frac{1}{2}, \frac{1}{2}]$. Shade the region defined by the inequalities $0 \le x \le \frac{1}{2}$ and $0 \le y \le f(x)$. Determine the area of this region.

Example 12.4:
Sketch the graph of $y = \frac{1}{4-x^2}$. Shade the region for the area determined by $\int_{-1}^{1} \frac{1}{4-x^2} dx$ and calculate this area.
Solution:

Example 12.5:

The graph of $y = \cos^3 x$ is shown. Determine the area of the shaded region.

Solution:

 • •
 • •
 • •
 • •

12B Area of a region between two curves

Specialist Mathematics

Example 12.6:

Calculate the area of the region bounded by the parabola $y = x^2$ and the line $y = 2x$.
Solution:
Example 12.7: Calculate the area of the region enclosed by the curves with equations $y = x^2 + 1$ and $y = 4 - x^2$ and the lines $x = -1$ and $x = 1$.
Solution:

Example 12.8:
Determine the area of the region enclosed by the graphs of $f(x) = x^3$ and $g(x) = x$.
Solution:

Example 12.9:

Calculate the area of the shaded region.

Solution:

Example 12.10:

Calculate the area of the shaded region.

Solution:

12C Integration using a graphics calculator

Example	12.11:				
-					c^2
 .					- 1

Using a graphics calculator, evaluate $\int_1^{\sin x} dx$.	
Solution:	
Example 12.12:	
The graph of $y = e^{\sin x} - 2$ is as shown. Using a graphics	
The graph of $y = e^{\sin x} - 2$ is as shown. Using a graphics calculator, determine the area of the shaded regions.	
calculator, determine the area of the shaded regions. $O = \frac{\pi}{2} + \frac{3\pi}{2} + \frac{3\pi}{2$	
calculator, determine the area of the shaded regions. $O = \frac{\pi}{2} + \frac{3\pi}{2} + \frac{3\pi}{2$	
calculator, determine the area of the shaded regions. $O = \frac{\pi}{2} + \frac{3\pi}{2} + \frac{3\pi}{2$	
calculator, determine the area of the shaded regions. Solution:	
calculator, determine the area of the shaded regions. Solution:	
calculator, determine the area of the shaded regions. Solution:	
calculator, determine the area of the shaded regions. Solution:	
calculator, determine the area of the shaded regions. Solution:	
calculator, determine the area of the shaded regions. Solution:	
calculator, determine the area of the shaded regions. Solution:	
Solution:	
Solution:	
Solution:	

Example 12.13: Plot the graph of $F(x) = \int_1^x \frac{1}{t} dt$ for $x > 1$.
J_1 t Solution:
Example 12.14:
Use a graphics calculator to calculate an approximate value of $\int_0^{\frac{\pi}{3}} \cos(x^2) dx$ and to plot the graph of
$f(x) = \int_0^x \cos\left(t^2\right) dt \text{ for } -\frac{\pi}{4} \le x \le \pi.$
Solution:

12D Volumes of solids of revolution

Exam	ple	12.	15:

(a) the x-axis for $0 \le x \le 1$	(b) the y-axis for $0 \le y \le 1$
	Solution:
Example 12.16:	
	olution when the region bounded by the graphs of $y = 2e^{2x}$, $y = 1$
x = 0 and $x = 1$.	
	Solution:
• • • • • • • • • • • • • • • • • • • •	***************************************

Example 12.17:

The shaded region is rotated around the x-axis. Calculate the volume of the resulting solid.

Example 12.18:

A solid is formed when the region bounded by the x-axis and the graph of $y=3\sin(2x),\ 0\leq x\leq \frac{\pi}{2}$ is rotated around the x-axis. Determine the volume of this solid.

Solution:

Specialist Mathematics

Example 12.19:

The curve $y = 2\sin^-$	$x^1, 0 \le x$	≤ 1 , is	rotated	around	the	y-axis	to	form a	solid	of revol	ution.	Calcula	te the
volume of this solid.													

Solution:

12E The exponential probability distribution

Example 12.20:

The time, X minutes, that a shop assistant waits before the next customer arrives is known to be exponentially distributed, with probability density function given by

$$f(x) = \begin{cases} 0.2e^{-0.2x} & x \ge 0\\ 0 & x < 0 \end{cases}$$

Calculate the probability that he will wait more than 8 minutes for the next customer to arrive.

Solution:
Example 12.21:
Example 12.21: For the situation in Example 20, calculate the mean adm standard deviation of the time that the shop assistant waits for a customer.
For the situation in Example 20, calculate the mean adn standard deviation of the time that the shop assistant
For the situation in Example 20, calculate the mean adn standard deviation of the time that the shop assistant waits for a customer.
For the situation in Example 20, calculate the mean adn standard deviation of the time that the shop assistant waits for a customer.
For the situation in Example 20, calculate the mean adn standard deviation of the time that the shop assistant waits for a customer.
For the situation in Example 20, calculate the mean adn standard deviation of the time that the shop assistant waits for a customer. Solution:
For the situation in Example 20, calculate the mean adn standard deviation of the time that the shop assistant waits for a customer. Solution:
For the situation in Example 20, calculate the mean adn standard deviation of the time that the shop assistant waits for a customer. Solution:
For the situation in Example 20, calculate the mean adn standard deviation of the time that the shop assistant waits for a customer. Solution:
For the situation in Example 20, calculate the mean adn standard deviation of the time that the shop assistant waits for a customer. Solution:
For the situation in Example 20, calculate the mean adn standard deviation of the time that the shop assistant waits for a customer. Solution:
For the situation in Example 20, calculate the mean adn standard deviation of the time that the shop assistant waits for a customer. Solution:
For the situation in Example 20, calculate the mean adn standard deviation of the time that the shop assistant waits for a customer. Solution:

Specialist Mathematics

Example 12.22:

The time	$e, T \min v$	tes, that	it takes	a librarian	to loca	te a	book is	exponentially	distributed	with a	mean	of 3
minutes.	Determin	ne:										

(a) the probability density function of T						
(b) the probability that it takes her less than 2 minutes to find a book.						
Solution:						
Example 12.23: For the situation in Example 20, determine the cumulative distribution function of X , and hence calculate the						
probability that the shop assistant waits between 5 and 10 minutes for a customer.						
Solution:						

12F Simpson's rule

Example 12.24:					
Use Simpson's rule to estimate the integral $\int_{2}^{3} x^{3} dx$.					
Solution:					
Example 12.25:					
Use Simpson's rule to estimate the integral $\int_0^1 e^x dx$.					
J_0 Solution:					
Solution:					

Example 12.26:	1
Use Simpson's rule with 10 subintervals to estimate the integral	$\int_0^1 e^x dx.$

Solution:

Chapter 8

Vector calculus

Section	Page	Notes	Worked Examples	Exercise Questions	$\begin{array}{c} \textbf{Study} \\ \textbf{Notes} \end{array}$	Rev	visio	n
	142							
8A Summary of differentiation and anti-differentiation.	143							
8BPosition vectors as a function of time.	147							
8CVector calculus.	150							
8D Velocity and acceleration for motion along a curve.	155							
8EMotion in a straight line.	160							
8FProjectile motion.	163							
9C Cincular metion	165							

Alternate Sequence Unit 2 - Topic 4Vector calculus

Specialist Mathematics

Syllabus

Vector calculus (5 hours) In this sub-topic, students will:
\Box consider position of vectors as a function of time
\Box derive the Cartesian equation of a path given as a vector equation in two dimensions, including circles ellipses and hyperbolas
\Box differentiate and integrate a vector function with respect to time
\Box determine equations of motion of a particle travelling in a straight line with both constant and variable acceleration
\Box apply vector calculus to motion in a plane, including projectile and circular motion.

8A Summary of differentiation and anti-differentiation

Alternate Sequence Unit 2 - Topic 4 Vector calculus

Exampl	e 8	.1
--------	-----	----

Example 8.1:		
Differentiate each of the following	with respect to x :	
(a) $\sqrt{x}\sin x$	(b) $\frac{x^2}{\sin x}$	(c) $\cos(x^2+1)$
	$\sin x$	
	Solut	ion
	Solut	1011
Example 8.2:		
Differentiate each of the following	w.r.t. <i>x</i> :	
(a) $\tan (5x^2 + 3)$	(b) $\tan^3 x$	(c) $\sec^2(3x)$
	()	
	Solut	ion:

Example 8.3:

Determine the second derivative of each fo the following w.r.t. x

(a)	f(x)	$= 6x^4$	$-4x^{3}$	+	4x
-----	------	----------	-----------	---	----

(b)
$$y = e^x \sin x$$

	Solution:	
Example 8.4: Determine an anti-derivative of each	of the following:	
(a) $\sin\left(3x - \frac{\pi}{4}\right)$	(b) e^{3x+4}	(c) $6x^3 - \frac{2}{x^2}$
	Solution:	

Examp	le	8.	5	:
-------	----	----	---	---

Determine f(x) for each of the following.

- (a) $f'(x) = 3x^2 + 1$, given f(0) = 1.
- (b) f''(x) = -9.8, given f(0) = 0 and f'(0) = 3.

Solution:

8B Position vectors as a function of time

Example 8.6:

Each of the following vector functions describes the motion of a particle by giving its position vector, r(t), at time t. For each vector function:

- i. Determine the Cartesian relation that represents the path of the particle, determine its domain and range, and sketch its graph.
- ii. Give the starting point of the particle's motion, the direction of motion and the period of motion (if applicable).

(a)
$$r(t) = -5\cos\left(\frac{\pi t}{2}\right)i + 5\sin\left(\frac{\pi t}{2}\right)j$$
, $t \ge 0$

(b)
$$r(t) = -5\cos\left(\frac{\pi t}{2}\right)i + 12\sin\left(\frac{\pi t}{2}\right)j$$
, $t \ge 0$

(c)
$$r(t) = 4 \tan \left(\frac{\pi t}{2}\right) i - 3 \sec \left(\frac{\pi t}{2}\right) j, t \in (1,3)$$

Solution:

8C Vector calculus

Let $\mathbf{r}(t) = 20t\mathbf{i} + (15t - 5t^2)\mathbf{j}$. Determine $\dot{\mathbf{r}}(t)$ and $\ddot{\mathbf{r}}(t)$.
Solution:
Example 8.8: Let $\mathbf{r}(t) = \cos t \mathbf{i} - \sin t \mathbf{j} + 5t \mathbf{k}$. Determine $\dot{\mathbf{r}}(t)$ and $\ddot{\mathbf{r}}(t)$.
Solution:

Example 8.9: Let $\mathbf{r}(t) = t\mathbf{i} + ((t-1)^3 + 1)\mathbf{j}$. Determine $\dot{\mathbf{r}}(\alpha)$ and $\ddot{\mathbf{r}}(\alpha)$ where $\mathbf{r}(\alpha) = \mathbf{i} + \mathbf{j}$.		
Solution:		
Example 8.10: Let $\mathbf{r}(t) = e^t \mathbf{i} + ((e^t - 1)^3 + 1) \mathbf{j}$. Determine $\dot{\mathbf{r}}(\alpha)$ and $\ddot{\mathbf{r}}(\alpha)$ where $\mathbf{r}(\alpha) = \mathbf{i} + \mathbf{j}$.		
Solution:		

Example 8.11: A curve is described by the vector equation $\mathbf{r}(t) = 2\cos t\mathbf{i} + 2\sin t\mathbf{j}$.
(a) Determine $\dot{\boldsymbol{r}}(t)$ and $\ddot{\boldsymbol{r}}(t)$.
(b) Determine the gradient of the curve at the point (x, y) , where $x = 2\cos t$ and $y = 3\sin t$.
Solution:
Example 8.12: A curve is described by the vector equation $r(t) = \sec(t)i + \tan(t)j$, with $t \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
(a) Determine the gradient of the curve at the point (x, y) , where $x = \sec(t)$ and $y = \tan(t)$.
(b) Determine the gradient of the curve where $t = \frac{\pi}{4}$.
Solution:

Example 8.13: Let $\vec{r}(t)=10i-12k$. (a) Determine $\hat{r}(t)$ if $\hat{r}(0)=30i-20j+10k$. (b) Determine $\hat{r}(t)$ if additionally $r(0)=0i+0j+2k$. Solution: Solution: Example 8.14: Given $\hat{r}(t)=-9.8j$ with $r(0)=0$ and $\hat{r}=30i+40j$, determine $r(t)$. Solution:	
(b) Determine $\ddot{r}(t)$ if additionally $r(0)=0i+0j+2k$. Solution: Example 8.14: Given $\ddot{r}(t)=-9.8j$ with $r(0)=0$ and $\dot{r}=30i+40j$, determine $r(t)$. Solution:	
Solution: Example 8.14: Given $\vec{r}(t) = -9.8j$ with $r(0) = 0$ and $\dot{r} = 30i + 40j$, determine $r(t)$. Solution:	(a) Determine $\dot{\boldsymbol{r}}(t)$ if $\dot{\boldsymbol{r}}(0) = 30\boldsymbol{i} - 20\boldsymbol{j} + 10\boldsymbol{k}$.
Example 8.14: Given $\vec{r}(t) = -9.8j$ with $r(0) = 0$ and $\dot{r} = 30i + 40j$, determine $r(t)$. Solution:	(b) Determine $\ddot{\boldsymbol{r}}(t)$ if additionally $\boldsymbol{r}(0) = 0\boldsymbol{i} + 0\boldsymbol{j} + 2\boldsymbol{k}$.
Example 8.14: Given $\dot{r}(t) = -9.8\dot{j}$ with $r(0) = 0$ and $\dot{r} = 30\dot{i} + 40\dot{j}$, determine $r(t)$. Solution:	Solution:
Example 8.14: Given $\ddot{r}(t) = -9.8\dot{j}$ with $r(0) = 0$ and $\dot{r} = 30\dot{i} + 40\dot{j}$, determine $r(t)$. Solution:	
Example 8.14: Given $\ddot{r}(t) = -9.8j$ with $r(0) = 0$ and $\dot{r} = 30i + 40j$, determine $r(t)$. Solution:	
Example 8.14: Given $\vec{r}(t) = -9.8 \vec{j}$ with $r(0) = 0$ and $\vec{r} = 30 \vec{i} + 40 \vec{j}$, determine $r(t)$. Solution:	
Example 8.14: Given $\vec{r}(t) = -9.8 j$ with $r(0) = 0$ and $\vec{r} = 30 i + 40 j$, determine $r(t)$. Solution:	
Example 8.14: Given $\vec{r}(t) = -9.8 j$ with $r(0) = 0$ and $\dot{r} = 30 i + 40 j$, determine $r(t)$. Solution:	
Example 8.14: Given $\ddot{r}(t) = -9.8 \dot{s}$ with $r(0) = 0$ and $\dot{r} = 30 \dot{i} + 40 \dot{j}$, determine $r(t)$. Solution:	
Example 8.14: Given $\ddot{r}(t)=-9.8j$ with $r(0)=0$ and $\dot{r}=30i+40j$, determine $r(t)$. Solution:	
Example 8.14: Given $\vec{r}(t) = -9.8 j$ with $r(0) = 0$ and $\vec{r} = 30 i + 40 j$, determine $r(t)$. Solution:	
Example 8.14: Given $\ddot{r}(t) = -9.8 \dot{j}$ with $r(0) = 0$ and $\dot{r} = 30 \dot{i} + 40 \dot{j}$, determine $r(t)$. Solution:	
Example 8.14: Given $\ddot{r}(t) = -9.8 j$ with $r(0) = 0$ and $\dot{r} = 30 i + 40 j$, determine $r(t)$. Solution:	
Example 8.14: Given $\ddot{r}(t) = -9.8 \dot{j}$ with $r(0) = 0$ and $\dot{r} = 30 \dot{i} + 40 \dot{j}$, determine $r(t)$. Solution:	
Example 8.14: Given $\ddot{r}(t) = -9.8 j$ with $r(0) = 0$ and $\dot{r} = 30 i + 40 j$, determine $r(t)$. Solution:	
Example 8.14: Given $\vec{r}(t) = -9.8 j$ with $r(0) = 0$ and $\vec{r} = 30 i + 40 j$, determine $r(t)$. Solution:	
Given $\ddot{\boldsymbol{r}}(t) = -9.8\boldsymbol{j}$ with $\boldsymbol{r}(0) = \boldsymbol{0}$ and $\dot{\boldsymbol{r}} = 30\boldsymbol{i} + 40\boldsymbol{j}$, determine $\boldsymbol{r}(t)$. Solution:	
Solution:	Example 8.14:
	Given $\ddot{\boldsymbol{r}}(t) = -9.8\boldsymbol{j}$ with $\boldsymbol{r}(0) = \boldsymbol{0}$ and $\dot{\boldsymbol{r}} = 30\boldsymbol{i} + 40\boldsymbol{j}$, determine $\boldsymbol{r}(t)$.
	Solution:

8D Velocity and acceleration for motion along a curve

Example 8.15: The position of an object is $\mathbf{r}(t)$ metres at time t seconds, where $\mathbf{r}(t) = e^t \mathbf{i} + \frac{2}{9} e^{2t} \mathbf{j}, t \ge 0$.
(a) Determine the velocity vector for time t.
(b) Determine the acceleration vector for time t .
(c) Determine the speed at time t .
Solution:
Example 8.16: The position vector of a particle at time t is given by $\mathbf{r}(t) = (2t - t^2) \mathbf{i} + (t^2 - 3t) \mathbf{j} + 2t\mathbf{k}$, where $t \ge 0$.
(a) Determine the velocity of the particle at time t .
(b) Determine the speed of the particle at time t .
(c) Determine the minimum speed of the particle.
Solution:

Specialist Mathematics

Example 8.17:

The position of a projectile at time t is given by $\mathbf{r}(t) = 400t\mathbf{i} + \left(500t - 5t^2\right)\mathbf{j}$, for $t \ge 0$, where \mathbf{i} is the unit vector in a horizontal direction and \mathbf{j} is a unit vector vertically up. The projectile is fired from a point on the ground.

(a)	Determine the time taken to reach the ground again.
(b)	Determine the speed at which the projectile hits the ground.
(c)	Determine the maximum height of the projectile.
(d)	Determine the initial speed of the projectile.
	Solution:
• • • •	
• • • •	
• • • •	
• • • •	
• • • •	
• • • •	
• • • •	
• • • •	
• • • •	
• • • •	
• • • •	
• • • •	

Example 8.18: The position vector of a particle at time t is given by $\mathbf{r}(t) = 2\sin(2t)\mathbf{i} + \cos(2t)\mathbf{j} + 2t\mathbf{k}$, where $t \ge 0$.
(a) Determine the velocity at time t .
(b) Determine the speed of the particle at time t .
(c) Determine the maximum speed.
(d) Determine the minimum speed.
Solution:

Example 8.19:

The position vectors at time $t \geq 0$, of particles A and B are given by

$$\boldsymbol{r}_A(t) = \left(t^3 - 9t + 8\right)\boldsymbol{i} + t^2\boldsymbol{j}$$

$$\boldsymbol{r}_B(t) = \left(2 - t^2\right)\boldsymbol{i} + \left(3t - 2\right)\boldsymbol{j}$$

Prove that A and B collide while travelling at the same speed but at right angles to each other.

Solution:

8E Motion in a straight line

A particle moves along a straight line such that its position vector, r(t) cm, at time t seconds is given by

$\mathbf{r}(t) = (3t - t^3) \mathbf{i}$, for $t \ge 0$.	
(a) Determine its initial position.	(d) Determine its velocity when $t = 2$.
(b) Determine its position when $t = 2$.	(e) Determine its speed when $t = 2$.
(c) Determine its initial velocity.	(f) Determine when and where the velocity is zero.
Soluti	ion:

Specialist Mathematics

Example 8.21:

A cricket ball is projected vertically upwards from ground level with an initial speed of 15 m/s. Take the origin O to be the point of projection and take j to be the unit vector vertically up, where the unit of distance is metres.

Relative to this frame of reference, let r(t) m be the position of the ball at time t seconds. Then $\ddot{r} = -g\dot{j}$, where g m/s² is the magnitude of acceleration due to gravity ($g \approx 9.8$).

(a)	Determine an expression for $\dot{r}(t)$.	(c)	Determine the max height reached by the ball.
(b)	Determine an expression for $r(t)$.	(d)	Determine when the ball returns to ground level.
	Solutio	n:	
• • • •			
• • • •			
• • • •			

8F Projectile motion

Example 8.22: A particle is projected from a point on horizontal ground Let \boldsymbol{i} and \boldsymbol{j} be unit vectors in the horizontal (x) and vertical (x) and (x) and (x) and (x) and (x) and (x)	· -
(a) Determine the initial velocity vector.	(c) Determine the position vector at time t seconds
(b) Determine the velocity vector at time t seconds.	(d) Determine the Cartesian equation of the path.
Solut	cion:

8G Circular motion

Exam	ple	8.	23	:

A particle is movi	ng around a circle	of radius 3 m	with a cons	stant speed or	f 2 m/s.	It is known	that $\theta = 0$ at
time $t = 0$.							

- (a) Determine the angular velocity of the particle.
- (b) Determine the position of the particle at time $t=\pi$ seconds.
- (c) Determine the velocity of the particle at time $t=\pi$ seconds.
- (d) Determine the acceleration of the particle at time $t=\pi$ seconds.

Solution:

Specialist Mathematics

Example 8.24:

A particle moves at a constant speed of 8 m/s around a circle with radius of 4 m. Assume that $\theta = 0$ when t = 0.

(a) Determine the position of the particle, relative to the centre of the circle, at time t seconds. (b) Determine the veloicty of the particle at time t seconds. (c) Determine the acceleration of the particle at time t seconds. Solution:

Cambridge - Chapter 8 Vector calculus Page 168 of 168