假设有 n 个箱子按顺序 b_1, \ldots, b_n 到达。假设每个箱子 b_i 都有一个正的重量 w_i ,并且每辆卡车能承载的最大重量是 W。为了将箱子装载到 N 辆卡车中并**保持顺序**,需要满足以下条件:

- **没有卡车超载**:每辆卡车中所有箱子的总重量小于或等于 *W*。
- **到达顺序得到保留**: 如果箱子 b_i 在箱子 b_j 之前被发送(即 b_i 被分配到卡车 x, b_j 被分配到卡车 y, 并且 x < y),那么必定是 b_i 早于 b_j 到达公司(即 i < j)。

我们通过证明贪心算法使用的卡车数量最少来证明其"保持领先"于任何其他解决方案。具体来说,我们考虑任何其他解决方案并展示以下内容。如果贪心算法将箱子 b_1, b_2, \ldots, b_j 装载到前 k 辆卡车中,并且其他解决方案将箱子 b_1, \ldots, b_i 装载到前 k 辆卡车中,那么 $i \leq j$ 。请注意,这通过将 k 设置为贪心算法使用的卡车数量,从而暗示了贪心算法的优化性。

我们将通过对 k 进行归纳来证明。一般情况 k=1 是清晰的;贪心算法在前第一辆卡车中尽可能多地装载箱子。现在,假设对于 k-1 成立;贪心算法将 j' 个箱子装载到前 k-1 辆卡车中,而其他解决方案装载了 $i' \leq j'$ 个箱子。现在,对于第 k 辆卡车,替代解决方案装载了从 $b_{i'+1}$ 到 b_{j_i} 的箱子。因此,由于 $j' \geq i'$,贪心算法至少能够将箱子 $b_{j'+1},\ldots,b_{i_k}$ 装载到第 k 辆卡车中,并且它可能装载更多。这完成了归纳步骤,也因此完成了贪心算法的最优性证明。