شبیه سازی تصادفی تولید اعداد تصادفی

۳ مهر ۱۳۹۹

توليد اعداد تصادفي

- ◄ توزيع يكنواخت
 - ◄ نظريه اعداد
- ◄ آزمايش اعداد تصادفي
- ◄ توصيه هاي مولدهاي عدد تصادفي

خلاصه

- ◄ ما درباره شبه اعداد تصادفی صحبت می کنیم
- ◄ تعداد زیادی RNG یا مولدهای اعداد تصادفی وجود دارد
 - ◄ ... باكيفيت متفاوت
- ◄ موارد خاص خود را اجرا نكنيد، مگر براي سرگرمي يا تحقيقات پروژه.
 - ▼ RNG داخلی باید قبل از استفاده مورد بررسی قرار گیرد
 - ◄ ... حداقل در محيط هاي توسعه هدف كلي
- ◄ محیط های محاسبات علمی معمولا از پیشرفته ترین سطح RNG برخوردار است
 که می تواند قابل اعتماد باشد.
 - ◄ اگر شرایط به اندازه کافی شدید باشد، هر RNG شکست خواهد خورد.

تاريخچه/زمينه

- ◄ نیاز مشهود به اعداد تصادفی
 - ◄ جدول ها
- ◄ ژنراتورهاي فيزيكي.دستگاه هاي قرعه كشي

تعريف

- ◄ توزيع يكنواخت [١,٥].
- ◄ تصادفي بودن (استقلال)
- ▶ یک مشکل اساسی این است که کامپیوترها در اعداد تصادفی حقیقی کار نمیکنند: دنباله ای از متغیر تصادفی مستقل U_i ، به طور یکنواخت روی $[\cdot, \cdot]$ توزیع شده
 - ◄ دنباله ای از اعداد مستقل و دارای توزیع یکنواخت در بازه [۱،۰]

تعریف یک مولد اعداد تصادفی

تعريف

یک مولد اعداد تصادفی،یک الگوریتم رایانه ای است که دنباله ای از اعداد حقیقی یا صحیح را است. به صورت تصادفی تولید می کند که به طور یکنواخت روی $\{\cdot, \cdot, N-1\}$ یا $\{\cdot, \dots, N-1\}$ توزیع شده اند و از لحاظ آماری مستقل اند.

روش حذفی میان مربعی برای تولید اعداد تصادفی

تعريف

در این روش برای تولید اعداد با k رقم اعشار، در آغاز یک عدد k رقمی را به عنوان هسته برمی گزینیم و آن را با k نشان می دهیم سپس آن را به توان دو می رسانیم عدد حاصل حداکثر دارای k رقم است؛ در صورتی که تعداد ارقام عدد کمتر از k باشد، سمت چپ عدد تعدادی صفر قرار می دهیم تا k رقمی شود. سپس اگر k زوج باشد، k رقم را از دو طرف عدد و اگر فرد باشد، k رقم را از سمت راست و k رقم را از سمت چپ آن حذف می کنیم این عدد k رقمی را با k نمایش داده k آن را مانند k به توان دو می رسانیم و روند بالا را دنبال می کنیم.

مثال

برای k=4 و $x_{\circ}=4$ با روش میان مربعی ، سه مقدار اول دنباله به صورت زیر خواهند بود:

$$\begin{array}{l} x_{\circ}^{\intercal} = \Delta \Upsilon \P V^{\intercal} = \Upsilon \circ \Upsilon 1 V \circ \circ \P \Rightarrow x_{1} = \Upsilon 1 V \circ \Rightarrow u_{1} = \circ / \Upsilon 1 V \circ \\ x_{1}^{\intercal} = \Upsilon 1 V \circ {}^{\intercal} = \circ \Upsilon V \circ \Lambda \P \circ \circ \Rightarrow x_{1} = V \circ \Lambda \P \Rightarrow u_{1} = \circ / Y \circ \Lambda \P \\ x_{1}^{\intercal} = V \circ \Lambda \P^{\intercal} = \Delta \circ \Upsilon \Delta \Upsilon \P \Upsilon 1 \Rightarrow x_{T} = \Upsilon \Delta \Upsilon \P \Rightarrow u_{T} = \circ / \Upsilon \Delta \Upsilon \P \end{array}$$

- $x_i{=}x_{i-1}{+}x_{i-1}$ دنباله فیبوناتچی: ۱ $x_i{=}x_i$ دنباله فیبوناتچی: ۱
 - ◄ مولد فيبوناتچي: همچنين روش همنهشتي جمعي ناميده مي شود.

 $x_i \in [\circ, M-1]$

ماکزیمم طول دوره $M^{\tau}-1$ است که برای $M^{\tau}=1$ حاصل می شود.

روش همنهشتی برای تولید اعداد تصادفی

مولد $U_i = \operatorname{mod}(aU_{i-1},1) \quad U_i \in [\, \circ \,, 1]$ نشان دهنده این است که a بزرگ است. آخرین رقم ها خفظ می شوند. به صورت زیر قابل پیاده سازی است: (x_i) یک عدد صحیح است)

$$x_i = \operatorname{mod}(ax_{i-1}, M) \quad U_i = \frac{x_i}{M}$$

مثال ها ۲۳ a=1 و a=1 هستند.

نتیجه گیری میانی

- ◄ حالت اوليه كل دنباله را تعيين مي كند.
 - ◄ تعداد چرخه هاي مختلف
 - ◄ طول هر چرخه

اگر x_i بتواند مقادیر N را به دست آورد،حداکثر طول یک چرخه، N است.

خصوصیات یک مولد تصادفی

- ◄ طول چرخه
- ◄ تصادفي بودن
 - ◄ سرعت
 - قابل تجدید
 - قابل حمل

مولد هم نهشتی خطی (روش هم نهشتی خطی برای تولید اعداد تصادفی)

مولد هم نهشتی خطی (LCG) به صورت زیر تعریف می شود:

$$x_i = \operatorname{mod}(ax_{i-1} + c, M) \quad U_i = \frac{x_i}{M}$$

برای ضریب a ، انتقال c و مدول M . ما د ا ما رو مذال بر گریز

ما x_{\circ} و x_{\circ} را طوری در نظر می گیریم که x_{i} در x_{i} در (۰ , ۱ , ... , سافته باشد و تصادفی بنظر برسد.

```
مثال
M=۱۶ و a=۵ و c=۱
با x = ۳ :
س ۱۰ ۲ ۱۸ ۱ ۱۲ ۱۳ ۲ ۱۱ ۸ ۹ ۱۴ ۷ ۴ ۵ ۱ ۰ ۳
```

حداكثر طول چرخه

قضيه

مولد همنهشتی خطی (LCG) دارای طول تام است اگر و فقط اگر

الف: M و c نسبت به یکدیگر اول باشند.

 $\operatorname{mod}(a,p) = \mathsf{N}$ ، M اول p از

M باشید که اگر M باشد، آنگاه M باشد، آنگاه M باشد، دوره کامل تنها وقتی حاصل می شود که M باشد.

به عنوان مثال XOR بین چندین ژنراتور

- ◄ دوره را افزايش مي دهد
- ◄ تصادفي بودن را بهبود مي بخشد
 - ◄ اما به خوبی درک نشده است
- ◄ استفاده از LCG به طور گسترده توصیه می شود

Twister Mersenne

- ◄ يک ثبت تغيير شکل بازخورد خطي بزرگ
 - ◄ ۱۹۹۳۷ بيت حافظه استفاده مي كند.
 - ◄ حداكثر دوره را دارد.يعني ١ ٢١٩٩٣٧٧
 - ◄ داراي توزيع مناسب است
 - ◄ همچنین توزیع مشترک ۶۲۳ بعدی
- ◄ احتمالا بهترین PRNG تاکنون برای شبیه سازی تصادفی (نه برای رمزنگاری)

RNG ها در محيط هاي رايج

- R ◀
- Python <
- S-plus ◀
- Matlab <

تعريف

یک دنباله از اعداد شبه تصادفی U_i ، یک دنباله قطعی از اعداد در بازه $[\, 1\, , \, \circ\,]$ هستند که دارای همان خاصیت های آماری مربوطه به عنوان دنباله ای از اعداد تصادفی می باشند.

- ◄ نوع توزيع
- ◄ تصادفي بودن (استقلال،سفيدي)