

โครงงาน

Final Assignment

จัดทำโดย

นายณัฏฐ์	ชูกำแพง	รหัศนักศึกษา	60070134
นางสาวณัฏฐณิชา	ชัยศิริพานิช	รหัศนักศึกษา	60070135
นายนนทกร	มาคีรี	รหัสนักศึกษา	60070144

เสนอ

รศ.ดร.กิติ์สุชาต พสุภา

โครงงานนี้เป็นส่วนหนึ่งของวิชา MACHINE LEARNING (06026125)

ภาคเรียนที่ 2 ปีการศึกษา 2562

สาขาวิทยาการข้อมูลและการวิเคราะห์ทางธุรกิจ คณะเทคโนโลยีสารสนเทศ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

คำนำ

โครงงานนี้เป็นส่วนหนึ่งของวิชา MACHINE LEARNING (06026125) โดยมีจุดประสงค์เพื่อการ วัดผลทางการ ศึกษาตลอดระยะเวลาหนึ่งเทอมที่ผ่านมาในวิชานี้ แทนการสอบวัดผลทางการศึกษา (Final Exam) ภายใน โครงงานนี้ใช้ภาษา Python ในการวิเคราะห์และแสดงผลในรูปแบบต่าง ๆ ตามโจทย์ที่ได้ รับมอบหมาย รายงานเล่มนี้จัดทำเพื่อเป็นการอธิบายแต่ละส่วน วิธีการดำเนินงาน กระบวนการในการแก้ ปัญหา ผลลัพธ์ที่ได้ในแต่ละกระบวนการ รวมถึงหลักการต่าง ๆ ที่ได้นำมาประยุกต์ใช้ในการทำโครงงาน

คณะผู้จัดทำ

สารบัญ

เรื่อง	หน้า
วิธีการดำเนินงาน	1
1. Classification	2-3
1.1 Exploration	3-8
1.2 Data preparation	9
1.3 Modeling	10-15
1.4 สรุปผลการทดลอง	15
2. Regression	16
2.1 Exploration	16-17
2.2 Feature Engineering	17-28
2.3 สรุปผลการทดลอง	28
3. Clustering	29-30
3.1 Exploration	30-33
3.2 Data preparation	34
3.3 Modeling	35-36
3.4 สรุปผลการทดลอง	37
References	38

วิธีการดำเนินการ

(1)

ทางคณะผู้จัดทำได้ดำเนินการแก้ปัญหาโดยทำตาม process การดำเนินการของ data science คังภาพด้านบน ซึ่งประกอบไปด้วย Process หลักๆอยู่ 5 ส่วน ดังนี้

- Business Understanding คือ การเข้าใจในปัญหาที่เรากำลังจะทำ
- Data Acquisition & Understanding คือการได้มาซึ่งข้อมูลและการเข้าใจในข้อมูลที่
 ใช้ในการวิเคราห์
- Feature Engineering คือ การนำข้อมูลมาจัดการให้มีประสิทธิภาพเพื่อนำไปทำแบบจำลอง
- Modeling คือ การสร้างแบบจำลองเพื่อตอบโจทย์ปัญหาของเรา
- Deployment คือ การนำเอาแบบจำลองที่สำเร็จนำไปใช้จริง

การแก้ปัญหา

1. Classification

ใช้ข้อมูล Heart Disease Classification เป็นข้อมูลของคนไข้ จำนวน 303 คน แต่ละคนมี คุณลักษณะอธิบายจำนวน 13 Factor ซึ่งแบ่งเป็น 2 ประเภท คือ เป็นโรค และ ไม่เป็นโรค

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1

โดยเป้าหมายคือ การทำ Classification ว่าเป็นโรคหัวใจหรือไม่ โดยใช้ข้อมูลที่มีมาให้ นำมาวิเคราะห์ โดยแต่ละ Factor มีคำอธิบาย ดังนี้

- age คือ อายุของคนไข้
- sex คือ เพศของคนไข้ โดยที่ 0 คือ เพศหญิง และ 1 คือ เพศชาย
- cp (Chest pain type) คือ ประเภทของการเจ็บหน้าอก มี 4 ค่า
- trestbps (Resting blood pressure) คือ ความดันโลหิตขณะที่คนไข้กำลังพัก มีหน่วยเป็น mm Hg
- chol (Serum cholesterol in mg/dl) คือ ระดับของเซรั่มคอเลสเตอรอลของคนไข้ มีหน่วยเป็น (mg / dL มิลลิกรัมต่อเดซิลิตร)
- fbs คือ ระดับค่าน้ำตาลในเลือดมากกว่า 120 mg/dl หรือไม่ โดยที่ 1 คือ True (มากกว่า 120 mg/dl) และ 0 คือ False (น้อยกว่า 120 mg/dl)
- restecg คือ ผลลัพธ์ของคลื่นไฟฟ้าของหัวใจขณะที่คนไข้กำลังพัก มี 3 ค่า คือ 0,1,2
- thalach คือ อัตราการเต้นของหัวใจสูงที่สุดของคนไข้
- exang คือ โรคหลอดเลือดหัวใจตีบที่เกิดจากการออกกำลังกาย โดยที่ 0 คือ ไม่ใช่ และ 1 คือ ใช่
- oldpeak คือ ST depression ที่เกิดจากการออกกำลังกายและมีความสัมพันธ์กับการพักผ่อน

- slope คือ ความชั้นสูงสุดของส่วนการออกกำลังกาย ST segment โดยมี 3 ค่า ค่าที่ 1 คือ upsloping ค่าที่ 2 คือ flat และค่าที่ 3 downsloping
- ca คือ จำนวนเส้นเลือดที่เกิดจากการทำ flu
- thal คือ ความผิดปกติของเลือดที่เรียกว่าธาลัสซีเมีย
- Target คือ คนไข้เป็นโรคหัวใจหรือไม่ โดยที่ 0 คือ ไม่เป็น และ 1 คือ เป็น

1.1. Exploration

• ดูว่าข้อมูลมีลักษณะและมีความสัมพันธ์เป็นอย่างไร ด้วยการใช้เทคนิคการนำ เสนอข้อมูลด้วยรูปแบบต่างๆ

จากภาพข้างต้นจะแสดงให้เห็นถึงความสัมพันธ์ระหว่างคนที่เป็นโรคกับไม่เป็นโรค

ในตัวแปรประเภท Numerical

• Heat - map

จากภาพข้างต้นจะแสดงความสัมพันธ์ระหว่างตัวแปรประเภท Numerical ว่ามีความสัมพันธ์กันมากน้อยเท่าใด

Histogram

Histogram for each numeric input variable

จากภาพข้างต้นจะแสดงการกระจายของข้อมูลในแต่ละตัวแปรประเภท

Numerical

Box-Plot for each target

จากภาพช้างต้นจะแสดงการกระจายตัวของช้อมูลที่เป็นประเภท Numerical เปรียบเทียบกับ Target ว่าเป็นโรคหรือไม่เป็นโรค

• Categorical Features

• Feature Importances

	score
0	
ср	0.229090
thal	0.180093
ca	0.138294
exang	0.088115
oldpeak	0.065899
slope	0.059119
sex	0.051821
age	0.038006
fbs	0.034018
restecg	0.029869
thalach	0.029622
trestbps	0.029416
chol	0.026637

จากภาพข้างต้นเป็นการแสดงความสำคัญในแต่ละตัวแปรที่มีผลต่อการทำ

Classification

1.2. Data preparation

ทางคณะผู้จัดทำได้ออกแบบวิธีการ Preprocess และ Feature Engineering กับ ชุดข้อมูล โดยแบ่งออกเป็น 2 กลุ่ม ได้กระบวนการดังภาพข้างต้น

สำหรับ Numerical data เนื่องจากข้อมูลมีการกระจายที่มากรวมถึงมี outlier ปะปน มาด้วยทำให้การที่ใช้ Logarithm-Transform จะช่วยทำให้ข้อมูลกระจายน้อยลง เพียงแค่นั้น ยังไม่พอ เนื่องจากข้อมูลมีช่วงที่ไม่เท่ากันเราเลยใช้ Normalization ในการปรับให้ชุดข้อมูลอยู่ ในช่วงเดียวกัน

สำหรับ Categorical data เหตุผลในการเลือกใช้ One-hot Encoding เนื่องจากถ้าเราใช้
Label Encoding จะทำมีข้อเสียสำหรับ model ที่เป็น linear เหตุเพราะ เช่นเราแปลงเพศชาย
ให้เป็น 1 และหญิงให้เป็น 0 มันแสดงให้เห็นว่า 1 นั้นมากกว่า 0

1.3. Modeling

หลังจากเตรียมข้อมูลเรียบร้อยแล้วเราได้ทำการทดสอบประสิทธิภาพของ model เพื่อใช้เป็น Baseline โดยเราได้ทำการทดลองด้วย K-Fold Cross-Validation แยกเป็น 3 แบบที่ใช้ข้อมูล Numeric, Categorical, Numeric + Categorical ได้ผลดังนี้

	model	acc (cv=10)	f1 (cv=10)	precision (cv=10)	recall (cv=10)
0	SVC	0.672473	0.507300	0.563158	0.479140
1	XGBClassifier	0.616882	0.474233	0.573333	0.415215
2	LogisticRegression	0.643333	0.485049	0.570588	0.440000
3	KNeighborsClassifier	0.606559	0.469896	0.562500	0.416559
4	DecisionTreeClassifier	0.593441	0.456584	0.564706	0.401774
5	RandomForestClassifier	0.626989	0.467590	0.566667	0.416989
6	GradientBoostingClassifier	0.607097	0.464587	0.570588	0.410430

(Numeric data)

	model	acc (cv=10)	f1 (cv=10)	precision (cv=10)	recall (cv=10)
0	SVC	0.788387	0.529896	0.568750	0.503387
1	XGBClassifier	0.761828	0.512293	0.571429	0.471828
2	LogisticRegression	0.821290	0.538077	0.573333	0.512957
3	KNeighborsClassifier	0.771828	0.525706	0.568750	0.496828
4	DecisionTreeClassifier	0.696237	0.476899	0.564706	0.427903
5	RandomForestClassifier	0.765269	0.519482	0.568750	0.486935
6	GradientBoostingClassifier	0.761398	0.522102	0.573333	0.489731

(Categorical data)

	model	acc (cv=10)	f1 (cv=10)	precision (cv=10)	recall (cv=10)
0	SVC	0.788172	0.529274	0.568750	0.503172
1	XGBClassifier	0.771720	0.519006	0.571429	0.481720
2	LogisticRegression	0.811290	0.533461	0.573333	0.506290
3	KNeighborsClassifier	0.764731	0.544697	0.566667	0.534731
4	DecisionTreeClassifier	0.718817	0.500624	0.564706	0.463817
5	RandomForestClassifier	0.775054	0.517203	0.564706	0.490054
6	GradientBoostingClassifier	0.761720	0.522534	0.568750	0.493387

(Numeric + Categorical)

จากผลที่ได้นั้นจะทำให้เราเห็นว่า การใช้ข้อมูลแค่ Numeric ทำให้ประสิทธิภาพของ model แย่กว่าการที่ใช้ร่วมกับ Categorical และยังทำให้เห็นอีกว่าเพียงแค่ Categorical data ก็ทำให้ model มีประสิทธิภาพที่ดีได้

ผลลัพธ์ที่ได้นั้นทำให้เราเลือก model มา 3 ตัวเพื่อใช้ในการทำ Hyperparameter Tuning โดย model ที่เราเลือกนั้นได้แก่ Support vector machine, K-Nearest Neigbhor, Logistic Regression

โดยเทคนิคที่เรามาใช้ในการทำ Hyperparameter Tuning ก็คือ Bayesian Optimization ซึ่งเป็นวิธีการที่นำเอา Probabilistic Model ในการ หาค่าแทนที่เราจะสุ่มมั่วๆ หรือใช้ Grid ในการค้นหา เราก็ random จาก Prior ปัจจุบัน แล้วทำการ update Posterior แล้ววัดผลแบบวิธีก่อนหน้านี้ (2)

SVC	Accuracy on testset: 0.9016393442622951 F1 on testset: 0.8999999999999999999999999999999999999	model acc (cv=10) f1 (cv=10) precision (cv=10) recall (cv=10) 0 SVC 0.817667 0.833096 0.807701 0.867596
KNN	Accuracy on testset: 0.8360655737704918 F1 on testset: 0.843749999999999 Precision on testset: 0.75 Recall on testset: 0.9642857142857143	model acc (cv=10) f1 (cv=10) precision (cv=10) recall (cv=10) 0 KNeighborsClassifier 0.817833 0.836632 0.830615 0.853248
Logistic Reg.	Accuracy on testset: 0.9016393442622951 F1 on testset: 0.8999999999999999999999999999999999999	model acc (cv=10) f1 (cv=10) precision (cv=10) recall (cv=10) 0 LogisticRegression 0.830167 0.841212 0.839939 0.851363

จะเห็นได้ว่าหลังจากที่ทำการ Tuning ประสิทธิภาพของ model เพิ่มขึ้นอย่างเห็นได้ชัดเจนรวม ถึงเราได้เอาไปทดสอบในชุด test set ด้วยผลลัพธ์ที่ได้อยู่ข้างต้นด้วยแล้ว โดย model ที่ให้ดีที่สุดก็คือ Logistic Regression เพื่อเพิ่มประสิทธิภาพจากเดิม เราได้ทำการออกแบบ stacking model โดยเราได้ออกแบบทั้งหมด 3 แบบดังนี้

Simple Stacking

Majority Vote

• Stacking + Majority vote with multi-meta-learner

ซึ่งได้ผลลัพธ์ดังต่อไปนี้

	mod	el acc (d	cv=10)	f1 (cv=10)	precisio	on (cv=10)	recall (cv=10)
0 Stacking 3 met	a-learner and Majority vo	te 0.8	38667	0.85937		0.847083	0.883516
F1 on testset Precision on	testset: 0.90163 t: 0.89999999999 testset: 0.8437 stset: 0.9642857 precision	99999 5 1428571	L43	ore s	upport		
0 1	0.97 0.84	0.85 0.96	-	.90	33 28		
accuracy macro avg weighted avg	0.90 0.91	0.91 0.90	0	.90 .90 .90	61 61 61		
[[28 5] [1 27]]							

		model	acc (cv=10)	f1 (cv=10)	precision (cv	/=10)	recall (cv=10)
0	Ensemble major	rity vote	0.830333	0.851836	0.83	5984	0.875824
F1 Pr	curacy on t on testset ecision on call on tes	: 0.89 testse tset:	99999999999999999999999999999999999999	999999 75 714285714	13		
		preci	ision r	recall f	1-score	supp	ort
	Θ		0.97	0.85	0.90		33
	1		0.84	0.96	0.90		28
	accuracy		0.00	0.91	0.90		61 61
we	macro avg ighted avg		0.90 0.91	0.90	0.90		61
]]	28 5] 1 27]]						

			model	acc (c	v=10)	f1 (cv	/=10)	prec	ision	(cv=10)	reca	ıll (cv=10)
0	Stacking	1 meta	learner	0.8	34667	0.85	5429		0	.846131		0.876374
F1	curacy on tes	stset	0.89	99999	9999	9999		951				
	ecisior					-						
Re	call or	i tesi										
			preci	sion	r	ecal	l f	1-sc	ore	sup	port	
		0		0.97		0.8	5	0	. 90		33	
		1		0.84		0.9	6	0	. 90		28	
	accur	racy						0	.90		61	
	macro	avg		0.90		0.9	1	0	. 90		61	
we:	ighted	avg		0.91		0.9	0	0	. 90		61	
:]]	28 5] 1 27]]	1										

ทำให้เห็นว่าผลลัพธ์จากการทำ Stacking model ให้ผลลัพธ์ในเชิง Generalize ที่ดีกว่าไม่ว่าจะค่า score ใดๆในตอนทำ validation โดยรูปแบบที่ได้ผลลัพธ์ที่ดีที่สุดคือ Stacking + Majority Vote แต่จาก ผลลัพธ์ใน testset สำหรับค่า score ต่างๆจะได้เท่ากันหมดเลย

1.4. สรุปผลการทดลอง

ผลลัพธ์หลังจากทำการทดลองทำให้เราสร้าง model ที่มีประสิทธิภาพสูงสุดก็คือการทำ Stacking + Majority Vote เป็นการใช้ความหลากหลายในการทำนายข้อมูลเพียงแค่ 303 ข้อมูล โดยค่าที่เราจะให้ความ สนใจที่สุดคือ Recall เนื่องจากปัญหาของเรามี Sensitive case เราต้องการทำนายคนที่เป็นโรคแล้วเราบอก ว่าเป็นโรคให้ดีที่สุด ซึ่งใน validation เราได้อยู่ที่ 88% และใน testset อยู่ที่ 96%

2. Regression

ข้อมูลของผู้ป่วยโรค COVID-19 ในประเทศไทย ตั้งแต่วันที่มีการ Outbreak ของเชื้อโรค 22/01/2020 จนถึง 13/04/2020

	confirm	deaths	recovered
date			
2020-01-22	2	0	0
2020-01-23	3	0	0
2020-01-24	5	0	0
2020-01-25	7	0	0
2020-01-26	8	0	2

2.1. Exploration

• จำนวนการเกิดเพิ่มขึ้น, การตาย, รักษา ได้ในแต่ละวัน

จำนวนเคสสะสม

2.2. Feature Engineering

• Percentage of Change every N-days

เป็นการดูว่า จากวันปัจจุบันเทียบกับวันก่อนหน้านี้ N วัน มีค่าเพิ่มเป็นกี่เปอร์เซ็น จากภาพด้านล่าง

แสดงตัวอย่าง N=3

Moving Average size=N

เราได้ใช้ Exponential moving average ในการ smooth ค่าความถี่สะสม โดยในตัวอย่างรูปเราใช้

N = 10

Lags N-days

เป็น feature ที่เอาวันก่อนหน้าวันปัจจุบัน N วันมาเป็น feature เพิ่ม ในตัวอย่างเราให้ N=5

Modeling

เราได้ทำการแบ่งการทดลองออกเป็น 6 แบบ โดยเริ่มจาก

Timestep only

เป็นการนำเอาเฉพาะ Timestep มาเป็น feature เท่านั้น

Tree-based model

MAE: 351.39625379774304 MSE: 143627.35187444589

Linear-model

MAE: 1337.1801390431528 MSE: 1797198.1742262011

Simple NN

MAE: 1532.8501790364583

MSE: 2362376.746602217

จะเห็นได้ว่า Tree-Based model ให้ค่า Error ต่างๆน้อยที่สุด แต่ไม่สามารถทำนายข้อมูลที่เป็น test ได้ เลย เนื่องจาก Tree-Based model เป็นการสร้าง Rule แทนที่จะสร้างความสัมพันธ์ ทำให้พอเจอข้อมูลที่ไม่เคยเจอมาก่อน แล้วไม่ได้มี Rule นั้นจะทำให้ผลลัพธ์แย่ ต่างจากที่ Model แบบอื่นพยายามที่จะสร้างความสัมพันธ์ของตัวแปรต่างๆ แต่ด้วยตัวแปรที่ไม่หลายหลายและน้อยเกินไป ทำให้ผลลัพธ์ยังไม่ดีมากนัก

Deaths + Recovered

เป็นการนำเอา Timestep มารวมกับยอดการตาย และการรักษาเพิ่มขึ้นมา

MAE: 351.39625379774304 MSE: 143627.35187444589

Linear-model

MAE: 1409.7490166714028 MSE: 2219637.74807361 Simple NN

MAE: 482.06049262152777 MSE: 321756.1618236436

ผลลัพธ์แต่ละ Model ทำได้พิสูจน์ให้เราเห็นว่า Tree-Based model ได้ค่าเดิมเลย ดังนั้นเราจะ ไม่ให้ความสำคัญกับ Tree-Based แล้วด้วยเหตุผลที่เคยกล่าวไปก่อนหน้านี้ และการที่มี Feature มากขึ้น ทำให้ model สามารถเรียนรู้ที่ยากขึ้นได้ตาม แต่ผลลัพธ์ก็ยังไม่ดีเท่าที่ควร

• Timestep + Feature Engineer

เป็นการนำเอา Timestep มา Aggregate กับ Feature Engineer ที่เรากล่าวไว้ก่อนหน้านี้ทั้งหมด

Tree-based model

MAE: 351.39625379774304

MSE: 143627.35187444589

Linear-model

MAE: 471.8428740296137 MSE: 224026.88627028847

Simple NN

MAE: 821.5978054470486 MSE: 677970.293885587

ผลลัพธ์ดูดีขึ้นถ้าเทียบกับ Timestep อย่างเดียว

• Deaths + Recovered + Feature Engineer

เป็นการนำเอาจำนวนการตาย และการช่วยเหลือได้ มา Aggregate ด้วย Feature Engineering

Tree-based model

MAE: 351.39625379774304 MSE: 143627.35187444589

MAE: 18524.310798585433 MSE: 486729606.5048068

Simple NN

MAE: 351.46446397569446 MSE: 161067.08303092586

Feature ที่ได้ออกมานั้นมีความหลากหลายและซับซ้อนมากทำให้ส่งผลดีกับ Model ประเภท Neural Network แต่สำหรับ Linear model นั้นแย่ไปเลยอาจจะมาจากการที่มัน Complex เกินไป

• Timestep Polynomial Degree 3

เป็นการนำเอา Timestep มา Aggregate ด้วย Polynomial feature

Trop-based mode

MAE: 351.39625379774304 MSE: 143627.35187444589

Linear-model

MAE: 619.9329186379055 MSE: 513656.26932440576

Simple NN

MAE: 489.47998046875 MSE: 321080.9520906077

ผลลัพธ์ที่ได้นั้นดีขึ้นมาก เนื่องจากกราฟไม่ได้มีความเป็น Linear แต่มีความเป็น Polynomial มากกว่า ทำให้เราเห็นว่าการที่ Feature เยอะขึ้นนั้นส่งผลดีกับ Model ที่รองรับความ Complex มากๆได้ แต่มันไม่จำเป็นต้องมี Feature ที่เยอะ ขอแค่มี Feature ที่แสดงถึงความสัมพันธ์จริงๆแค่นั้นก็เพียงพอแล้ว เราจะเห็นได้จากตัวอย่างนี้

Exponential Model

หลังจากได้ทดลอง Polynomial Regression ไปทำให้เราเห็นว่ามันได้ผลลัพธ์ที่ดีโดยไม่ต้องใช้
Feature ที่เยอะมากมาย และแน่นอนว่ากราฟจริงๆมันไม่ใช่ Polynomial แต่มีความเป็น Exponential
มากกว่า เราเลยได้ทำการทดลองโดยอิงจากสมการ และเราเปลี่ยนมาทำนายเคสที่จะเกิดขึ้นในอนาคตแทน

$$f(x) = ae^{b(x-c)}$$

โดย a,b,c คือ parameter ที่เราต้องการทราบ เราได้ทำการสร้าง model จากข้อมูลถึงวันที่ 22 มีนาคม เนื่องจากมีการเติบโตแบบ Exponential ในช่วงนี้ สาเหตุมาจากประเทศไทยยังไม่ได้ทำการ Curfew แต่พอเรามาดูข้อมูลเต็มๆแล้วนั้น (จนถึงวันที่ 14 เมษายน) ดังรูปต่อไปนี้

และหลังจากการสร้าง model ด้วย Exponential equation จนถึงวันที่ 22 มีนาคม จะได้ผลลัพธ์ดังนี้

MAE: 3.161197049503777 MSE: 46.044494914312864

Sigmoid Model

และถ้าเราสังเกตุจากความถี่สะสมของเคสที่เกิดขึ้นตามภาพด้านล่างจะเห็นได้ว่ามันมีการเติบโตที่น้อย ลงหรือก็คือเลิกเป็น Exponential แล้วและมีหน้าตาคล้ายกับ Sigmoid มากขึ้น ทำให้เราจะลองทำ Sigmoid function แทนที่จะเป็น Exponential สำหรับจำนวนเคสสะสม

สมการที่เราจะนำมาใช้จะมีการดัดแปลงจากสมการข้างล่างได้สมการดังนี้

$$f(x) = \frac{a}{1 + e^{-b(x-c)}}$$

และได้ทำการสร้าง model ได้ผลลัพธ์ดังนี้

Sigmoid estimate (2020-01-22 to None)

MAE: 28.06544662939251 MSE: 1092.2103923640457

ผลลัพธ์ที่ได้นั้นทำให้เราสร้าง Model ที่สามารถทำนายจำนวนเคสสะสมได้ค่อนข้างแม่นยำ

Logistic Distribution Model

เนื่องจากเราสามารถสร้าง Model ที่สามารถทำนายยอดสะสมต่อไปได้แล้ว เราเลยพยายามที่จะ ทำนายเคสที่จะเกิดแต่ละวันให้ดีขึ้นจาก Exponential model ที่มีข้อจำกัดอยู่ที่ทำนาย เพียงแค่ช่วงที่เติบโต แบบ Exponential เราได้ไปทำการศึกษาหาความสัมพันธ์ของ Sigmoid function ทำให้เราทราบว่าเรา สามารถ map Sigmoid ที่เราสามารถทำนายเคสสะสมให้กลายมา เป็นทำนายจำนวนที่จะเกิดแต่ละวันได้ด้วย Logistic Distribution Function (3)

$$f(x) = \frac{ae^{-b(x-c)}}{1 + e^{-b(x-c)}}$$

ด้วยสมการข้างต้นทำให้เราสร้าง Model ได้ดังต่อไปนี้

Logistic distribution estimate (2020-01-22 to None)

MAE: 7.367697908085666 MSE: 241.92153058208407

ผลลัพธ์ที่ได้นั้นค่อนข้างน่าพึงพอใจ

2.3. สรุปผลการทดลอง

การที่เราใช้ Feature ที่เยอะส่งผลให้ Model มี Feature ที่หลากหลายได้เรียนรู้ และมีผลดีถ้า Model นั้นสามารถรองรับความซับซ้อนสูงๆได้ แต่การที่มี Feature เยอะก็ไม่ได้สำคัญเท่าการมี Feature ที่มีคุณภาพ โดยงานของเราได้ทำการเน้นไปที่การให้ความสำคัญกับการสร้าง Feature ที่ดีที่สุด ซึ่งต้องอาศัย ความเข้าใจทางด้านคณิตศาสตร์ และทักษะทางการสังเกตุ ท้ายที่สุด Model ที่เหมาะสำหรับ ทำนายเคสที่ จะเกิดในแต่ละวันก็คือ Logistic Distribution Regression และสำหรับทำนายยอดรวมสะสมก็คือ Sigmoid Distribution

3. Clustering

Credit Card User เป็นข้อมูลของผู้ใช้บัตรเครดิต จำนวน 8950 แต่ละคนมีคุณลักษณะ อธิบาย จำนวน 17 Factor เป้าหมายคือแบ่งกลุ่มจากข้อมูล เช่น เอาข้อมูลการใช้จ่ายของลูกค้ามาดูว่าควรเพิ่มวงเงิน ให้ลูกค้าไหม โดยแต่ละ Factor มีคำอธิบาย ดังนี้

- CUST_ID คือ เลข ID การระบุตัวตนของผู้ถือบัตรเครดิต
- BALANCE คือ ยอดเงินคงเหลือในบัญชีของผู้ถือบัตรเครดิต
- BALANCE_FREQUENCY คือ ยอดคงเหลือมีการอัปเดตบ่อยเพียงใด โดย 0 คือ อัพเดทไม่บ่อยครั้ง และ 1 คือ มีการอัปเดตบ่อยครั้ง
- PURCHASES คือ จำนวนการซื้อจากบัญชี
- ONEOFF_PURCHASES คือ จำนวนการซื้อสูงสุดทำได้ในครั้งเดียว
- INSTALLMENTS PURCHASES คือ จำนวนการซื้อที่ทำในค่างวดเงินผ่อน
- CASH_ADVANCE คือ เงินสดล่วงหน้าที่ได้รับจากผู้ใช้
- PURCHASES_FREQUENCY คือ ความถี่ในการซื้อสินค้า โดย 0 คือ ไม่ซื้อบ่อย และ 1 คือ ซื้อบ่อย
- ONEOFF_PURCHASES_FREQUENCY คือ ความถี่ในการสั่งซื้อเพียงครั้งเดียว โดย 0 คือ ไม่ซื้อบ่อย และ 1 คือ ซื้อบ่อย
- PURCHASES_INSTALLMENTS_FREQUENCY คือ ความถี่ในการซื้อสินค้าแบบผ่อนชำระ โดย 0 คือ ไม่ซื้อบ่อย และ 1 คือ ซื้อบ่อย
- CASH ADVANCE FREQUENCY คือ ความถี่ในการจ่ายเงินสดล่วงหน้า
- CASH_ADVANCE_TRX คือ จำนวนการทำรายการด้วย "เงินสดล่วงหน้า"
- PURCHASES_TRX คือ จำนวนการทำธุรกรรมการซื้อ
- CREDIT_LIMIT คือ วงเงินบัตรเครดิต
- PAYMENTS คือ จำนวนเงินที่ชำระโดยผู้ใช้

- MINIMUM_PAYMENTS คือ จำนวนเงินขั้นต่ำที่ผู้ใช้จ่าย
- PRC_FULL_PAYMENT คือ เปอร์เซ็นต์ของการชำระเงินเต็มจำนวนโดยผู้ใช้
- TENURE คือ อายุการใช้งานของบริการบัตรเครดิตสำหรับผู้ใช้

3.1. Exploration

ในขั้นตอนนี้เราจะเลือกตัวแปรมาทั้งหมด 6 ตัวแปร ได้แก่ BALANCE, PURCHASES, CASH_ADVANCE, PAYMENTS, CREDIT_LIMIT, PURCHASES_TRX และได้ทำการลบข้อมูลที่มีค่า Null ทิ้งทั้งหมด

ดูว่าข้อมูลมีลักษณะและมีความสัมพันธ์เป็นอย่างไร ด้วยการใช้เทคนิคการนำเสนอข้อมูล
 ด้วยรูปแบบต่างๆ โดยจากรูปด้านล่างนี้เป็นการแสดงโดยที่ยังไม่ได้จัดการกับ Outlier
 ของข้อมูล

คณะผู้จัดทำได้เลือก 2 วิธีในการดูรูปแบบของข้อมูล คือ Principal Component Analysis (PCA) และ t-Distributed Stochastic Neighbor Embedding (t-SNE)

Principal Component Analysis (PCA)

เป็นกระบวนการในการลดมิติของข้อมูลรูปแบบหนึ่ง ด้วยการตัด features ที่ไม่สำคัญออก โดยการ Normalize data ด้วย Standard deviation ต่อด้วยการทำ Convarience matrix จากนั้นทำตามทฤษฎีของ Eigen ผลลัพธ์ที่ได้คือค่าที่ใช้ในการสกัดข้อมูล หลังจากนั้นเราจะสามารถสกัด Feature ที่สมควรแก่การนำไปใช้ในการวิเคราะห์

• t-Distributed Stochastic Neighbor Embedding (t-SNE)

เป็นกระบวนในการลดมิติของข้อมูลเช่นกัน แต่เป็นการลดมิติแบบไม่เชิงเส้น ซึ่งตรงกันข้าม กับ PCA โดย t-SNE จะทำการคำนวณหา Probability of similarity และพยายาม เรียนรู้เป็น Iteration โดยทำให้ตัวที่มี Embedding คล้ายกัน ให้มาอยู่ใกล้กันและ จัดเป็นกลุ่มเดียวกัน (4) (5)

• Original - Features

• Logarithm - transformation

Log - transformation เป็นวิธีการหนึ่งในการทำ Feature Engineering เพื่อทำให้มีการ กระจายตัวของข้อมูลกว้างมากขึ้น ส่งผลให้ข้อมูลมีการกระจายตัวออกจากกันเพิ่มมากขึ้น โดยเราจะแสดงเปรียบเทียบให้เห็นทั้งสองอย่าง (6)

3.2. Data preparation

เนื่องจากข้อมูลมี Outlier ทางคณะผู้จัดทำจึงเลือกที่จะจัดการกับ Outlier โดยใช้

Standard Deviation

```
for feat in features:
    df[feat] = StandardDeviation(df[feat])[0]

df = df[features].dropna()
```

```
df.to_csv('./data/01_clean.csv')
```

3.3. Modeling

ทางผู้จัดทำได้เลือกโมเดลมาทั้งหมด 3 แบบ โดยทดสอบจาก 2 Feature ได้แก่ PCA, t-SNE

ภาพที่ใช้ Feature PCA

จากภาพ โมเดล K-mean กลุ่มสีแดงและกลุ่มสีเขียว มีการ cluster ผิดกลุ่ม ทำให้มีบางตัวไปปะปนอยู่ในกลุ่มสีน้ำเงิน ซึ่งเป็นเพราะว่าตัวสีแดงที่ควรอยู่ในกลุ่มสีน้ำเงินนั้น มี Distance ใกล้กับ Centroid ของกลุ่มสีแดงมากกว่า เลยทำให้เห็นว่า การใช้ Distance ในการแบ่ง กลุ่มอย่างเดียว ยังไม่ดีพอ ควรจะมี Density มาเกี่ยวข้องด้วย อย่างในตัวอย่างที่ใช้โมเดล DBSCAN มีการแบ่งกลุ่มได้ดีที่สุด แต่จะ Sensitive กับ Outlier ทำให้เห็นได้ว่ามีกลุ่มเพิ่มขึ้นมา 1 กลุ่ม

จากภาพ โมเดล K-mean ยังมีส่วนของกลุ่มสีเขียวและแดงมาปะปนอยู่ในกลุ่มสีน้ำเงิน โมเดล Hierarchical มีส่วนของกลุ่มแดงเข้ามาปะปนกันเยอะพอสมควร โมเดล DBSCAN ยังมี จำนวนกลุ่มที่มากกว่าอีก 2 model ซึ่งกลุ่มที่เกินมาของ DBSCAN อาจมองเป็น Outlier ดังนั้น ผู้จัดทำเลือก DBSCAN มีความสมเหตุสมผลมากที่สุด เพราะในความเป็นจริงเราไม่รู้ว่าข้อมูลมีกี่กลุ่ม ทำให้ไม่ต้องกำหนดค่า K เลยทำให้เป็นข้อได้เปรียบ

3.4. สรุปผลการทดลอง

เนื่องจากในตอนแรกชุดข้อมูลก็ยังค่อนข้างจัดกลุ่มยาก จึงใช้ Log – Transformation ใน การจัดการข้อมูล แล้วทำการทดลองโมเดลทั้งหมด 3 แบบ ได้แก่ K - Mean, Hierarchical, DBSCAN ซึ่งทั้ง 3 โมเดล ก็ให้ผลลัพธ์ที่มีความแตกต่างกันเพียงเล็กน้อย แต่ความต่างระหว่าง PCA กับ t-SNE นั้นมี ความแตกต่างกันค่อนข้างมาก ซึ่งเราต้องเลือกใช้โมเดลให้เหมาะสมกับ feature ด้วย ซึ่งผลลัพธ์หลังจากทำ Log – Transformation แล้วมาใช้ feature PCA, t-SNE ทำให้ข้อมูล แบ่งกลุ่มได้อย่างชัดเจนแทบจะดูด้วยตาก็บอกได้ สุดท้ายนี้ทางผู้จัดทำเลือก โมเดล DBSCAN และใช้ Feature PCA ในการ Clustering เพราะเป็นการที่แบ่งกลุ่มได้อย่างชัดเจนที่สุด ส่วนกลุ่มที่เป็นส่วน น้อยและเกินออกมาอาจเป็น Outlier ของข้อมูล

References

- 1. -Proposed TDSP data science process The two figures above, figure 5 and... |

 Download Scientific Diagram [Internet]. [cited 2020 May 3]. Available from:

 https://www.researchgate.net/figure/Proposed-TDSP-data-science-process-The-two-figures-above-figure-5-and-figure-6-which_fig5_336530802
- 2. Frazier Pl. A Tutorial on Bayesian Optimization. 2018 Jul 8 [cited 2020 May 3];

 Available from: http://arxiv.org/abs/1807.02811
- 3. Logistic distribution Wikipedia [Internet]. [cited 2020 May 3]. Available from: https://en.wikipedia.org/wiki/Logistic_distribution
- 4. Wattenberg M, Viégas F, Johnson I. How to Use t-SNE Effectively. Distill [Internet]. 2016

 Oct 13 [cited 2020 May 3];1(10):e2. Available from: http://distill.pub/2016/misreadtsne
- การลดมิติข้อมูลโดยใช้ PCA และ t-SNE Konakona Chan Medium [Internet]. [cited 2020 May 3].
 Available from: https://medium.com/@konakona7393/การลดมิติข้อมูลโดยใช้-pca-และ-t-sne-e6679f44143d
- 6. Feature engineer: การแปลงข้อมูลโดใช้ค่าล็อก (Log Transformation) | Big Data Experience Center [Internet]. [cited 2020 May 3]. Available from: http://bigdataexperience.org/feature-engineer-with-log-transformation/