Complejidad computacional de buscar árboles generadores con una sucesión de grados específica

Maria Elena Martinez Cuero

Universidad Autónoma Metropolitana-Iztapalapa

27 de febrero de 2020

XXXV Coloquio Víctor Neumann-Lara de Teoría de las Gráficas, Combinatoria y sus Aplicaciones

Definiciónes

Definición

Objetivo de la plática

Teorema

Sean $n \geq 4$ un número entero, G una gráfica etiquetada con el conjunto de vértices $V(G) = \{w_1, w_2, \ldots, w_n\}$ y $\sigma = d_1, d_2, \ldots, d_n$ una sucesión de grados arbórea, donde $d_1 \leq d_2 \leq \cdots \leq d_n$. El problema de decidir si G tiene un árbol generador T tal que $d_T(w_i) = d_i$, con $1 \leq i \leq n$, es NP-completo.

Estrategia usual

• Mostrar que el problema esta en la clase NP

Estrategia usual

Mostrar que el problema esta en la clase NP

Estrategia usual.Punto número uno

• Mostrar que el problema esta en la clase NP

Estrategia usual. Punto número dos

Estrategia usual. Punto número dos

Transformación.

Transformación $f: G_m \rightarrow \overline{G_n}$

Transformación $f: G_m \rightarrow \overline{G_n}$

Transformación $f:G_m \to G_n$

Transformación $f: G_m \to G_n$

Si la gráfica G_m tiene una trayectoria hamiltoniana con vértice inicial v_1 y vértice final v_2 ,

Si la gráfica G_m tiene una trayectoria hamiltoniana con vértice inicial v_1 y vértice final v_2 , entonces la gráfica G_n tiene un árbol generador T tal que $d_T(w_i) = d_i$ con $1 \le i \le n$.

Si la gráfica G_m tiene una trayectoria hamiltoniana con vértice inicial v_1 y vértice final v_2 , entonces la gráfica G_n tiene un árbol generador T tal que $d_T(w_i) = d_i$ con $1 \le i \le n$.

Demostración. F subgráfica de G_n y $F\cong G_m$

Demostración. F subgráfica de G_n y $F\cong G_m$

Demostración. F subgráfica de G_n y $F\cong G_m$

 $T = H_{w_1w_2} \cup (E(G) \backslash E(F))$ subgráfica de G_n es el árbol generador deseado de G_n

 $T=H_{w_1w_2}\cup (E(G)ackslash E(F))$ subgráfica de G_n es el árbol generador deseado de G_n

 $T = H_{w_1w_2} \cup (E(G) \setminus E(F))$ subgráfica de G_n es el árbol generador deseado de G_n

Si la gráfica G con $V(G) = \{w_1, w_2, w_3, \ldots, w_n\}$ tiene un árbol generador T tal que $d_T(w_i) = d_i$ con $1 \le i \le n$, entonces la gráfica G^* tiene una trayectoria hamiltoniana con vértice inicial v_1 y vértice final v_2 .

Finalmente, veamos que al hacer $G_n = f(G_m)$, $k-2 = |G_n| \setminus |G_m|$ es el número de vértices que se le pega a G_m y dado que cada uno de estos vértices nuevos es adyacente a un v_i de G_m con $3 \le i \le m$ se usan $k-2 = |E(G_n)| \setminus |E(G_m)|$ aristas para hacer esto y el número de vértices que se reetiquetan son m. Por lo cual el trabajo que realiza la tranformación f es $2(k-2) + m \le 2n$ en un tiempo lineal.

Gracias.

