Теория Вероятностей

Лекции

Савва Чубий, БПИ233

2024-2025

2024-09-06	
Введение	3
Основные понятия	3
Классическое определение вероятности	4
Свойства вероятности	4
2024-09-13	
Геометрическое определение вероятности	4
Свойства $P(A)$	4
Задача	4
Частотное (статистическое) определение	5
Аксиоматическое определение Колмагорова	5
Свойства $P(A)$	5
Условная вероятность	6
2024-09-20	
Независимость в совокупности	7
Теорема умножения вероятностей	
Биномиальная схема испытаний Бернулли	
Наиболее вероятное число успехов	
Формула полной вероятности	
2024-09-27	
Формула Байеса	
Задача	
Случайные величины	
Дискретные случайные величины	
Числовые характеристики дискретных случайных величин	12
Математическое ожидание	12
2024-10-04	
Свойства математического ожидания	
Дисперсия	
Свойства дисперсии	12
Другие	13

Часто встречающиеся дискретные распределения	13
Распределение Бернулли	
Биномиальное распределение	
Распределение Пуассона	14
Геометрическое распределение	15
2024-10-11	
Непрерывные случайные величины	15
Свойства плотности распределения	16
Числовые характеристики	17
Математическое ожидание	17
Свойства математического ожидания	17
Квантиль	17
Часто встречающиеся непрерывные распределения	
Равномерное на интервале $(a;b)$	18
2024-10-18	
Экспоненциальное (показательное) распределение	18
Распределение Гаусса (Нормальное распределение)	19
Стандартное распределение Гаусса	20
Уравнение Лапласса	20
Вероятность попадания в заданный интервал	20
2024-11-01	
Неравенства Чебышева	21
Частные случаи	21
Пример	21
Случайные векторы	22
Свойства функции распределения	22
Дискретные случайные векторы	22
Непрерывные случайные векторы	23
Плотность распределения	23
Свойства плотности распределения	23
2024-11-08	
Математическое ожидание	24
Свойства математического ожидания	24
Ковариация	25
Свойства ковариации	25

2024-09-06

- Введение -----

Итог = $0.1 \cdot$ ИДЗ + $0.15 \cdot$ Сем + $0.25 \cdot$ КР + $50 \cdot$ Экз

Нужно набрать 4 — не 3.5

По ИДЗ бывают защиты

На семинарах могут быть самостоятельные

Кибзун, Горяинова, Наумов «ТВ и МС. Базовый курс с примерами к задачам» 2013 или 2014

КР на тему «случайные события и случайные величины (одномерные)» примерно после 7-ми занятий, в начале 20-ого модуля

Экз на тему «многомерные случайные величины»

— Основные понятия ——

Опр. Теория Вероятностей — раздел математики, изучающий математические модели массовых случайных явлений

При большом кол-ве событий величина $\frac{m}{n} \to P$ стабилизируется

 $\omega_1,...,\omega_n$ — элементарные случайные события

Опр. Пространство Элементарных Событий (Ω **)** — совокупность элементарных случайных событий

Опр. Случайное событие — любое $A\subset\Omega$

Опр. Достоверное событие — событие, которое происходит в опыте всегда. Совпадает с Ω

Опр. Невозможное событие — событие, которое не происходит в опыте никогда. Является \emptyset

Операции над множествами/ событиями:

- Произведение событий $A\cdot B$ событие из $A\cap B$
- Сумма событий A+B событие из $A\cup B$
- Разность событий $A \setminus B$
- Противоположное событие $\overline{A}=\Omega\setminus A$

Свойства операций над событиями:

- A + A = A
- $A \cdot A = A$
- $A \cdot \Omega = A$
- $A + \Omega = \Omega$
- A + B = B + A
- $A \cdot B = B \cdot A$
- A + (B + C) = (A + B) + C
- $A \cdot (B \cdot C) = (A \cdot B) \cdot C$
- $\overline{A} = A$
- $\overline{A+B} = \overline{A} \cdot \overline{B}$

Опр. σ -алгебра событий класс подмножеств в \mathcal{A} на пространстве элементарных событий Ω ,

1. $\Omega \in \mathcal{A}$

- 2. $A \in \mathcal{A} \Rightarrow \overline{A} \in \mathcal{A}$
- 3. $\forall A_1,...,A_n,... \in \mathcal{A} \Rightarrow \sum_{i=1}^{\infty} A_i \in \mathcal{A} \wedge \Pi_{i=1}^{\infty} A_i \in \mathcal{A}$

— Классическое определение вероятности

Опр. Пусть Ω содержит конечное число равновозможных взаимоисключающих исходов, тогда, вероятность события A:

$$P(A) = \frac{|A|}{|\Omega|},$$

где $|\mathbf{A}|$ – мощность события, количество событий, входящих в A

- $P(A) \in [0;1]$
- $P(\Omega) = 1$
- Если $A \cdot B = \emptyset$, то P(A+B) = P(A) + P(B)

2024-09-13

Геометрическое определение вероятности

Рассматриваем подмножества на \mathbb{R}^n , которые имеют конечную меру

Пример эксперимента: попадет ли случайная точка в подмножество

$$P(A) = \frac{\mu(A)}{\mu(\Omega)}$$

Опр. События **несовместны** $-A \cdot B = \emptyset$

—— Свойства P(A) ——

- 1. $P(A) \ge 0 \forall A \subset \Omega$
- 2. $P(\Omega) = 1$
- 3. если A_1 и A_2 несовместны, то $P(A_1+A_2)=P(A_1)+P(A_2)$

x — время прихода Джульеты

y — время прихода Ромео

|x - y| < 14

$$P(\overline{A}) = \frac{\mu(\overline{A})}{\mu(\Omega)} = \frac{\frac{9}{16}}{1}$$

$$P(A) = 1 - \frac{9}{16} = \frac{7}{16}$$

Частотное (статистическое) определение

Опр. Пусть опыт проведен N раз, и событие произошло m_A раз. Тогда **частота** события A:

$$\nu(A) = \frac{m_A}{N}$$

Опр.

$$P(A) = \lim_{N \to \infty} \nu(A) = \lim_{N \to \infty} \frac{m_A}{N}$$

- Аксиоматическое определение Колмагорова -

Пусть $\mathcal{A}-\sigma$ -алгебра событий на пространстве Ω . Числовая функция $P:\mathcal{A}\to\mathbb{R}-$ вероятность, если:

- 1. $\forall A \in \mathcal{A} : P(A) \geq 0$ аксиома неотрицательности
- 2. $P(\Omega) = 1$ условие нормировки
- 3. если $A_1,...,A_n,...$ попарно несовместны, то $P\left(\sum_{i=1}^\infty A_i\right)=\sum_{i=1}^\infty P(A_i)$

Число P(A) называется вероятностью события A

Тройка (Ω, \mathcal{A}, P) — вероятностное пространство

—— Свойства
$$P(A)$$
 ——

1.
$$P(\overline{A}) = 1 - P(A)$$

$$\Omega=A+\overline{A}$$

$$A\cdot\overline{A}=\emptyset$$

$$1=P(\Omega)=Pig(A+\overline{A}ig)=P(A)+Pig(\overline{A}ig)$$

- 2. $P(\emptyset) = 1 P(\Omega) = 0$
- 3. $A \subset B \Rightarrow P(A) \leq P(B)$

$$B = A + (B \setminus A)$$

$$P(B) = P(A + (B \setminus A)) = P(A) + \underbrace{P(B \setminus A)}_{\geq 0}$$

- 4. $\forall A : 0 \le P(A) \le 1$
- 5. Теорема сложения: $P(A + B) = P(A) + P(B) P(A \cdot B)$

Док-во

$$A = A\Omega = AB + A\overline{B}$$

$$B = B\Omega = AB + \overline{A}B$$

$$A + B = \underbrace{AB + A\overline{B} + \overline{A}B}_{\text{попарно несовместны}}$$

$$P(A) = P(AB) + P(\overline{AB}) \Rightarrow P(A) - P(AB) = P(\overline{AB})$$

$$P(B) = P(AB) + P(\overline{AB}) \Rightarrow P(B) - P(AB) = P(\overline{AB})$$

$$P(A + B) = P(AB) + P(\overline{AB}) + P(\overline{AB}) = P(AB) + P(AB) = P(AB)$$

6. Обобщение теоремы сложения:

$$\begin{split} P\Bigg(\underbrace{A_1 + A_2}_{A} + \underbrace{A_3}_{B}\Bigg) &= P(A) + P(B) = \\ &= P(A_1) + P(A_2) + P(A_3) - P(A_1A_2) - P(A_1A_3) - P(A_2A_3) + P(A_1A_2A_3) \\ P\Bigg(\sum_i A_i\Bigg) &= \sum_i P(A_i) - \sum_{i < j} P\Big(A_iA_j\Big) + \sum_{i < j < k} P\Big(A_iA_jA_k\Big) - \ldots + (-1)^{n+1}P(A_1...A_n) \end{split}$$

Условная вероятность -

Переходим из Ω в B

Пусть $A, B \in \Omega$ и $P(B) \neq 0$, тогда вероятность A при условии B:

$$P(A|B) = \frac{P(AB)}{P(B)}$$

Опр. A и B независимые, если P(A|B) = P(A)

Опр. A и B независимые, если P(AB) = P(A)P(B)

Любые несовместные события зависимы

2024-09-20

Независимость в совокупности

Опр. События $A_1,...,A_n$ независимы в совокупности, если

$$\forall 1 \leq i_1 < i_2 < \ldots < i_k \leq n : P(A_1 A_2 \ldots) = P\Big(A_{i_1}\Big) P\Big(A_{i_2}\Big) \ldots$$

- Независимы в совокупности ightarrow независимы попарно
- Независимы все подмножества ightarrow независимы совокупно

Пример

Дан тетраэдр. Четыре стороны покрашены в красный, синий, зеленая и все три цвета соответственно.

 A_1 — выпала грань с **красным** цветом

 A_2 — выпала грань с **синим** цветом

 A_3 — выпала грань с зеленым цветом

$$P(A_1) = P(A_2) = P(A_3) = \frac{2}{4} = \frac{1}{2}$$

$$P(A_1A_2) = P(A_1A_3) = P(A_2A_3) = \frac{1}{4}$$

$$P(A_1A_2A_3) = \frac{1}{4} \neq P(A_1)P(A_2)P(A_3)$$

– Теорема умножения вероятностей –

Пусть $P(A_1A_2...A_n) > 0$,

$$P \Biggl(\overbrace{A_1 ... A_n}^{A} \Biggr) = P(A_1) P(A_2 \mid A_1) P(A_3 \mid A_1 A_2) ... P(A_n \mid A_1 ... A_{n-1})$$

Док-во

Пусть:

$$B_{n-1} = A_1 ... A_{n-1}$$

 $B_{n-2} = A_1 ... A_{n-2}$
 \vdots
 $B_1 = A_1$

Тогда

$$\begin{split} A &= B_{n-1}A_n \\ P(A) &= P(B_{n-1}A_n) = \\ &= P\left(\overbrace{B_{n-2}A_{n-1}}^{B_{n-2}A_{n-1}}\right) P(A_n \mid B_{n-1}) = \\ &= P(A_n \mid A_1...A_{n-1}) P(B_{n-2}) P(A_{n-2} \mid B_{n-2}) = ... \end{split}$$

Пример

Перестановки: МАТАН

$$\begin{split} P(\text{'M' 'A' 'T' 'A' 'H'}) = \\ = P(\text{'M'})P(\text{'A' | 'M'})P(\text{'T' | 'M' 'A'})P(\text{'A' | 'M' 'A' 'T'})P(\text{'H' | 'M' 'A' 'T' 'A'}) = \\ = \frac{1}{5} \cdot \frac{2}{4} \cdot \frac{1}{3} \cdot \frac{1}{2} \cdot 1 \end{split}$$

Биномиальная схема испытаний Бернулли

Схема испытаний, которая удовлетворяет условиям:

- Исход двоичен. Происходит A (успех) или \overline{A} (неудача)
- Всех испытания независимы в совокупности
- p = P(A) не изменяется от опыта к опыту

k успехов из n испытаний:

$$P_n(k) = C_n^k p^k (1-p)^{n-k} = C_n^k p^k q^{n-k} \label{eq:problem}$$

Док-во

Если все успехи в начале:

$$P\left(\underbrace{\mathtt{yy...y}}_{k}\mathtt{HH...H}\right) = p^{k}q^{n-k}$$

Учтем перестановки. Выберем, где места будут успехи (C_n^k способов):

$$P_n(k) = C_n^k p^k q^{n-k}$$

$$P(k_1 \le k \le k_2) = \sum_{i=k_1}^{k_2} C_n^i p^i q^{n-i}$$

$$1 = \sum_{k=0}^n P_{n(k)} = \sum_{k=0}^n C_n^i p^i q^{n-i} = (p+q)^n = 1^n = 1$$

—— Наиболее вероятное число успехов ——

По определению:

$$k_0 = \mathrm{argmax}_{1 < i < n} C_n^i p^i q^{n-i}$$

По удобному:

$$k_0 = \begin{cases} [(n+1)p] & \text{если } (n+1)p \notin \mathbb{Z} \\ (n+1)p & \text{и } (n+1)p-1 & \text{если } (n+1)p \in \mathbb{Z} \end{cases}$$

- Формула полной вероятности

Опр. Пусть $H_1,...,H_n\in\Omega$. Если

- 1. $\forall i \neq j : H_i \cdot H_j = \emptyset$
- 2. $H_1 + \ldots + H_n = \Omega$

то $H_1,...,H_n$ полная группа событий (гипотезы)

Рис. 4. Полная группа событий (гипотезы)

Пусть $A\subset \Omega, H_1,...H_n$ — полная группа событий

$$\begin{split} P(A) &= P(A \cdot \Omega) = P(A \cdot (H_1 + \ldots + H_n)) = \\ &= P(AH_1 + \ldots + AH_n) & \begin{subarray}{c} \put(0,0) \put(0,0)$$

Пример

N — всего билетов

m — билетов студент Сидоров выучил

А — Сидорову попался счастливый билет

Иванов заходит первый. Сидоров заходит второй.

 H_1 — Иванов вытащил счастливый (для Сидорова)

 ${\cal H}_2$ — Иванов вытащил **не** счастливый (для Сидорова)

$$\begin{split} P(H_1) &= \frac{m}{N} \\ P(H_2) &= \frac{N-m}{N} \\ P(A) &= P(H_1)P(A\mid H_1) + P(H_2)P(A\mid H_2) = \\ &= \frac{m}{N} \cdot \frac{m-1}{N-1} + \frac{N-m}{N} \cdot \frac{m}{N-1} \end{split}$$

Для гипотез:

• Априорные вероятности — знаем ещё до опыта:

$$P(H_1), ..., P(H_n)$$

• Апостериорные вероятности — вероятности гипотез после эксперимента (когда знаем, что некоторое событие уже произошло):

$$P(H_1 \mid A), ..., P(H_n \mid A)$$

2024-09-27

——— Формула Байеса ———

$$P(H_i \mid A) = rac{P(AH_i)}{P(A)} = rac{P(H_i)P(A \mid H_i)}{\sum_{j=1}^n P(H_j)P(A \mid H_j)}$$

$$\sum_{i=1}^n P(H_i) = 1$$

$$\sum_{i=1}^n P(H_i \mid A) = 1$$
 —— Задача ——

Таблица 1. Условие

Завод	Процент поставленных деталей	Вероятность исправной детали
№ 1	65%	0.9
№ 2	35%	0.8

A — деталь с дефектом оказалась в самолете

 H_1 — деталь взяли и 1-ого завода

$$P(H_1)=0.65$$

$$P(A \mid H_1) = 0.1$$

 H_2 — деталь взяли и 2-ого завода

$$P(H_1) = 0.35$$

$$P(A \mid H_1) = 0.2$$

$$P(A) = P(H_1)P(A \mid H_1) + P(H_2)P(A \mid H_2) = 0.65 \cdot 0.1 + 0.35 \cdot 0.2$$

$$P(H_1 \mid A) = \frac{P(H_1)P(A \mid H_1)}{P(A)} = \frac{65}{135} = 0.48$$

$$P(H_2 \mid A) = \frac{P(H_2)P(A \mid H_1)}{P(A)} = \frac{70}{135} = 0.52$$

—— Случайные величины –

Опр. Случайная величина (СВ) — величина, которая после эксперимента принимает заранее неизвестное значение.

Числовая функция $\xi:\Omega\to\mathbb{R}$, которая удовлетворяет условию измеримости¹:

$$\forall x \in \mathbb{R} : \{\omega : \xi(\omega) \le x\} \in \mathcal{A}$$

Таблица 2. Пример с кубиком

$$\begin{split} \Omega = \left\{ & \quad \omega_1, \quad \omega_2, \quad ..., \quad \omega_6 \quad \right\} \\ & \quad \downarrow \quad \quad \downarrow \quad \quad \downarrow \\ \xi = \left\{ \quad 1, \quad 2, \quad ..., \quad 3 \quad \right\} \end{split}$$

Опр. Функция распределения (вероятностей) случайно величины ξ называется функция

$$F_{\varepsilon}(x) = P(\omega : \xi(\omega) \le x)$$

Свойства F(x):

1.
$$F(+\infty) = 1$$

$$F(-\infty) = 0$$

$$\forall x : 0 \le F(x) \le 1$$

- 2. F(x) не убывает: $x_1 < x_2 \Rightarrow F(x_1) \leq F(x_2)$
- 3. F(x) непрерывна справа:

$$F(x_0) = \lim_{\varepsilon \to 0+} F(x_0 + \varepsilon),$$

где x_0 — точка разрыва

Если некоторая F(x) удовлетворяет условиям, то она является функцией распределения некоторой величины.

Случайные величины:

- Дискретные
- Непрерывные

— Дискретные случайные величины ——

Опр. Случайную величину называют **дискретной**, если множество её возможных значений конечно или счетно.

Опр. Ряд распределения для дискретной CB — табличка из ξ в P:

ξ	x_1	x_2	 x_n
P	p_1	p_2	 p_n

П.	риме	
	пиме	n

¹почти всегда исполняется

ξ	-1	0	2
P	$\frac{-1}{0.2}$	0.3	0.5
x <	-1:	F(x)) = 0
j	F(-1))=0	.2
F	(-0.5)	5) =	0.2
F(0) =	0.2 +	0.3
	F(2) = 1	
x >	> 2 : .	F(x)	= 1

Числовые характеристики дискретных случайных величин

Математическое ожидание

Опр. Математическим ожиданием E (среднее значение) дискретной CB ξ называется число

$$E\xi = \sum_{i=1}^{\infty} x_i p_i$$

Предполагается, что ряд $\sum_{i=1}^{\infty} \lvert x_i \rvert p_i$ сходится

2024-10-04

Свойства математического ожидания

- 1. Ec = c
- 2. $E(c\xi) = cE(\xi)$
- 3. Если $a \le \xi \le b$, то $a \le E\xi \le b$.
- 4. $E(\xi_1 + \xi_2) = E(\xi_1) + E(\xi_2)$
- 5. Пусть $\eta=\varphi(\xi)$, где φ детерминированная функция, тогда $E\eta=E\varphi(\xi)=\sum_{i=1}^n \varphi(x_i)p_i$

<u>Дисперсия</u>

Опр. Дисперсией случайной величины ξ называется число

$$D\xi = E(\xi - E\xi)^2$$

Свойства дисперсии

- 1. Dc = 0
- 2. $D(c\xi) = c^2 D(\xi)$
- 3. $\forall \xi : D(\xi) \ge 0$
- 4. $D(\xi) = E(\xi^2 2\xi E(\xi) + (E\xi)^2) = E(\xi^2) 2(E\xi)^2 + (E\xi)^2 = E\xi^2 (E\xi)^2$ удобная формальной форма мула для вычислений
- 5. $D(\xi_1+\xi_2)=E(\xi_1+\xi_2)^2-(E(\xi_1+\xi_2))^2=E(\xi_1^2)+2E(\xi_1\xi_2)+E(\xi_2^2)-(E\xi_1)^2-2E\xi_1E\xi_2+(E\xi_2)^2=D\xi_1+D\xi_2+2\underbrace{(E(\xi_1\xi_2)-E\xi_1E\xi_2)}_{\text{ковариация}}=D\xi_1+D\xi_2+2\underbrace{\cot(\xi_1,\xi_2)}_{\text{ковариация}}$ 6. Если ξ_1 и ξ_2 независимы, то $\cot(\xi_1,\xi_2)=0 \to D(\xi_1+\xi_2)=D\xi_1+D\xi_2$

Другие

Опр. Среднеквадратическое отклонение: $\sigma_{\xi} = \sqrt{D\xi}$

Опр. Начальный момент порядка k (k=1,2,...): $\mu_k=E\xi^k$

$$\mu_1 = E\xi$$

Опр. Центральный момент порядка k~(k=2,3,...): $\nu_k=E(\xi-E\xi)^k$

$$\nu_2 = D\xi$$

Опр. Центрированная случайная величина: $\xi^0 = \xi - E \xi$

$$E\xi^0 = 0$$

Опр. Нормированная случайная величина: $\xi^* = \frac{\xi^0}{\sigma}$

$$D\xi^* = D\frac{\xi^0}{\sigma} = \frac{1}{\sigma^2}D\xi^0 = 1$$

—— Часто встречающиеся дискретные распределения ——

Распределение Бернулли

$$\xi$$
 $\underset{\text{имеет распределение}}{\simeq} \operatorname{Ber}(p), 0$

ξ	0	1
P	1-p	p

$$\begin{array}{c|cc} \xi^2 & 0 & 1 \\ P & 1-p & p \end{array}$$

$$E\xi = 0 + 1 \cdot p = p$$

$$D\xi = E\xi^2 - (E\xi^2) = p - p^2 = p(1-p) = pq$$

Биномиальное распределение

$$\xi \sim \text{Bi}(n, p), 0$$

ξ	0	 k	 n
P		 $C_n^k p^k q^{n-k}$	

Матожидание. Способ 1:

$$\begin{split} E\xi &= \sum_{k=0}^n k \cdot C_n^k p^k q^{n-k} = \sum_{k=0}^n k \frac{n!}{k!(n-k)!} p^k q^{n-k} = np \sum_{k=1}^n \frac{(n-1)!}{(k-1)!(n-k)!} p^{k-1} q^{n-k} = \\ &= \{i = k-1\} = np \sum_{i=0}^n \frac{(n-1)!}{i!(n-1-i)!} p^i q^{n-1-i} = np \cdot 1 = np \end{split}$$

Маожидание. Способ 2:

$$\xi = \xi_1 + \xi_2 + \xi_3 + \dots + \xi_n$$

$$\xi_i \sim \mathrm{Ber}(p)$$

$$E\xi = E\left(\sum_{i=1}^{n} \xi_i\right) = \sum_{i=1}^{n} (E\xi_i) = np$$

Дисперсия. Способ 1:

$$D\xi = E\xi^2 - (E\xi)^2 = \sum_{k=0}^n k^2 \cdot C_n^k p^k q^{n-k} = \dots$$

Дисперсия. Способ 2:

$$D\xi = D \Biggl(\sum_{i=1}^n \xi_i \Biggr) \underbrace{=}_{ ext{т.к. He3aBucummi}} \sum_{i=1}^n D(\xi_i) = npq$$

Пример

Бросаем монетку 10 раз.

$$n = 10, p = 0.5 \rightarrow \begin{cases} E\xi = 10 \cdot 0.5 = 5\\ D\xi = 10 \cdot \frac{1}{2} \cdot \frac{1}{2} = 2.5 \end{cases}$$

Распределение Пуассона

$$\xi \sim \Pi(\lambda), \lambda > 0$$

$$\xi = \{0, 1, 2, \dots\}$$

$$P(\xi = k) = \frac{e^{-\lambda} \lambda^k}{k!}$$

Проверим условие нормировки:

$$\sum_{k=0}^{\infty} \frac{e^{-\lambda} \lambda^k}{k!} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = e^{-\lambda} e^{\lambda} = 1$$

Матожидание:

$$E\xi = \sum_{k=0}^{\infty} k \frac{e^{-\lambda} \lambda^k}{k!} = \lambda e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} = \lambda e^{-\lambda} e^{\lambda} = \lambda$$

Дисперсия:

$$D\xi = E\xi^{2} - (E\xi)^{2} = \sum_{k=0}^{\infty} k^{2} \frac{e^{-\lambda} \lambda^{k}}{k!} - \lambda^{2} = \sum_{k=0}^{\infty} k \frac{e^{-\lambda} \lambda^{k}}{(k-1)!} - \lambda^{2} =$$
$$= \lambda \sum_{k=0}^{\infty} (k-1+1) \frac{e^{-\lambda} \lambda^{k-1}}{(k-1)!} - \lambda^{2} = \lambda^{2} + \lambda - \lambda^{2} = \lambda$$

Теорема Пуассона Пусть проводятся испытания по схеме Бернулли, причем $n \to \infty, p \to 0,$ $np \to \lambda.$ Тогда

$$\lim_{n \to \infty} C_n^k p^k (1-p)^{n-k} = \frac{e^{-\lambda} \lambda^k}{k!}$$

Док-во

$$\lim_{n \to \infty} C_n^k p^k (1-p)^{n-k} = \lim_{n \to \infty} \frac{n!}{k!(n-k)!} p^k (1-p)^{n-k} =$$

$$= \lim_{n \to \infty} \frac{n!}{k!(n-k)!} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k} =$$

$$= \frac{\lambda^k}{k!} \lim_{n \to \infty} \frac{n \cdot (n-1) \cdot \dots \cdot (n-k+1)}{n^k} \frac{\left(1 - \frac{\lambda}{n}\right)^n}{\left(1 - \frac{\lambda}{n}\right)^k} = 1 \cdot \frac{e^{-\lambda}}{1} = e^{-\lambda}$$

Погрешность при замене Бернулли на Пуассона:

$$\left| C_n^k p^k q^{n-k} - \frac{e^{-np} (np)^k}{k!} \right| \le np^2$$

Геометрическое распределение

$$\xi \sim G(p), 0
$$\xi = \{1, 2, \dots\}$$

$$P(\xi = k) = q^{k-1}p$$$$

Смысл: Испытание с двумя исходами. Останавливаемся, когда произошел первый успех.

Матожидание:

$$\begin{split} E\xi &= \sum_{k=1}^{\infty} k q^{k-1} p = p \sum_{k=1}^{\infty} k q^{k-1} = p \sum_{k=1}^{\infty} \left(q^k \right)' = \\ &= p \left(\sum_{k=1}^{\infty} q^k \right)' = p \left(\frac{q}{1-q} \right)' = \frac{p}{\left(1-q \right)^2} = \frac{1}{p} \end{split}$$

Дисперсия:

$$D\xi = \frac{q}{p^2}$$

Пример

Студент знает 80% материала. Его спрашивают, пока не завалят.

$$\xi \sim G(0.2)$$

2024-10-11

- Непрерывные случайные величины

Нельзя задать рядом распределения

Можно задать функцией распределения

Опр. Плотность $f_{\xi}(x)$ случайно величины — такая неотрицательная кусочная функция, что

$$\forall x \in R: F_{\xi}(x) = \int_{-\infty}^{x} f_{\xi}(t) dt$$

Опр. Случайные величины, для которых определена плотность определения, будем называть **непрерывными**².

Канторова лестница

Пример функции, которая непрерывна, но плотности не имеет

$$F(x) = \begin{cases} 0, & x \le 0 \\ \frac{1}{2}F(3x), & 0 \le x \le \frac{1}{3} \\ \frac{1}{2}, & \frac{1}{3} \le x \le \frac{2}{3} \\ \frac{1}{2} + \frac{1}{2}F(3x - 2), \frac{2}{3} \le x \le 1 \\ 1, & x \ge 1 \end{cases}$$

В точках дифференцируемости функции F(x): f(x) = F'(x)

С какой вероятностью будет принято какое-то конкретное значение x:

$$f(x) = \lim_{\Delta x \to 0} \frac{F(x + \Delta x) - F(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{P(x < \xi \le x + \Delta x)}{\Delta x}$$
$$f(x)\Delta x = P(x < \xi \le x + \Delta x)$$

Итого, ответ 0

— Свойства плотности распределения —

- $\forall x: f(x) \geq 0$
- $\int_{-\infty}^{\infty} f(x)dx = F(+\infty) = 1$
- $\int_{x_1}^{x_2} f(x) dx = F(x_2) F(x_1) = P(x_1 < \xi \le x_2)$
- Пусть
 - ξ имеет плотность распределения $f_{\varepsilon}(x)$
 - $\eta = \varphi(\xi)$, где φ монотонная, дифференцируемая, детерминированная функция

Тогда,

$$f_{\eta}(y) = f_{\xi}\big(\varphi^{-1}(y)\big) \Big| \big(\varphi^{-1}(y)\big)' \Big|$$

Док-во

1. Пусть $\varphi(x)$ — монотонно возрастающая

$$F_{\eta}(y) = P(\eta \le y) = P(\varphi(\xi) \le y) = P(\xi \le \varphi^{-1}(y)) = F_{\xi}(\varphi^{-1}(y))$$

Но мы рассматриваем только два вида

²На самом деле есть три вида величин:

^{1.} Дискретные

^{2.} Сингулярные

^{3.} Абсолютно неприрывные

$$f_n(y) = (F_n(y))' = f_{\varepsilon}(\varphi^{-1}(y))(\varphi^{-1}(y))'$$

2. Пусть $\varphi(x)$ — монотонно убывающая

$$\begin{split} F_{\eta}(y) &= P(\eta \leq y) = P(\varphi(\xi) \leq y) = P\big(\xi \geq \varphi^{-1}(y)\big) = 1 - F_{\xi}\big(\varphi^{-1}(y)\big) \\ f_{\eta}(y) &= \big(F_{\eta}(y)\big)' = -f_{\xi}\big(\varphi^{-1}(y)\big) \underbrace{\big(\varphi^{-1}(y)\big)'}_{\xi^{0}} \end{split}$$

• Если функция не монотонная, то нужно разделить её на интервалы монотонности и применить прошлый пункт

— Числовые характеристики ——

Математическое ожидание

Опр. Математическим ожиданием непрерывной случайной величины ξ называется число

$$E\xi = \int_{-\infty}^{\infty} x f_{\xi}(x) dx,$$

если интеграл сходится абсолютно:

$$E\xi = \int_{-\infty}^{\infty} |x| f_{\xi}(x) dx.$$

Для бесконечностей:

- Если f(x)>0 только при x>0 и $\int_{-\infty}^{\infty}xf_{\xi}(x)dx$ расходится, то $E\xi=+\infty$ Если f(x)>0 только при x<0 и $\int_{-\infty}^{\infty}xf_{\xi}(x)dx$ расходится, то $E\xi=-\infty$

Свойства математического ожидания

- 1. Ec = c
- 2. $E(c\xi) = cE(\xi)$
- 3. Если $a \le \xi \le b$, то $a \le E\xi \le b$.
- 4. $E(\xi_1 + \xi_2) = E(\xi_1) + E(\xi_2)$
- 5. Пусть $\eta=\varphi(\xi)$, где φ детерминированная функция, тогда $E\eta=\int_{-\infty}^{\infty}\varphi(x)f_{\xi}(x)dx$

Опр. Число $z_\gamma, 0<\gamma<1$ называется γ -квантилью непрерывного строго монотонного распределения $F_\xi(x)$, если $\underbrace{F_\xi(z_\gamma)}_{=P\left(\xi\leq z_\gamma\right)}=\gamma$

Для непрерывного распределения верно:

$$\int_{-\infty}^{z_{\gamma}} f_{\xi}(x) dx = \gamma$$

Для дискретных величин в качестве квантили берут минимальное подходящее число:

$$z_{\gamma} = \min\{x : F(x) \ge \gamma\}$$

Если
$$\forall x: f(-x) = f(x)$$
, то $z_{\gamma} = -z_{1-\gamma}$.

Опр. Квантиль уровня 0.5 называется медианой.

Опр. Квантили уровня 0.25 и 0.75 называются нижним и верхним квартилью.

— Часто встречающиеся непрерывные распределения —

<u>Равномерное на интервале</u> (a;b)

$$f(x) = \begin{cases} 0, & x \notin (a, b) \\ \frac{1}{b-a}, x \in (a, b) \end{cases}$$

$$E\xi = \int_{a}^{b} x \cdot \frac{1}{b-a} dx = \frac{a+b}{2}$$

$$D\xi = E\xi^{2} - (E\xi)^{2} = \int_{a}^{b} \frac{x^{2}}{b-a} dx - \left(\frac{a+b}{2}\right)^{2} = \frac{(b-a)^{2}}{12}$$

$$F(x) = \int_{-\infty}^{x} f(t)d = \begin{cases} 0, & x \leq a \\ \int_{-\infty}^{a} 0 dt + \int_{a}^{x} \frac{1}{b-a} dt = \frac{x-a}{b-a}, & x \in (a, b) \\ \underbrace{\int_{-\infty}^{a} 0 dt}_{=0} + \underbrace{\int_{a}^{x} \frac{1}{b-a} dt}_{=1} + \underbrace{\int_{b}^{x} 0 dt}_{=0} = 1, x \geq b \end{cases}$$

2024-10-18

Пусть есть генератор случайно величины $\xi \sim R(0;1)$.

Хотим получить случайную величину $\eta \sim F_{\eta}(y)$

$$\eta = F_n^{-1}(\xi)$$

Обратная функция всегда существует т.к. F возрастает

Экспоненциальное (показательное) распределение

$$\xi \sim E(\lambda), \lambda > 0$$

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, x \geq 0 \\ 0, & x < 0 \end{cases}$$

$$E\xi = \int_0^\infty x \lambda e^{-\lambda x} dx = \{\text{по частям}\} =$$

$$= \underbrace{-e(-\lambda x)\mid_0^\infty}_0 + \frac{1}{\lambda} \underbrace{\int_0^{+\infty} \lambda e^{-\lambda x} dx}_{=1 \text{ (из усл. нормировки)}} = \frac{1}{\lambda}$$

$$D\xi = E\xi^2 - \frac{1}{\lambda^2} = \int_0^\infty x^2 \lambda e^{-\lambda x} dx - \frac{1}{\lambda^2} = \dots = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2}$$

$$F(x) = \begin{cases} 0, & x \leq 0 \\ \int_0^x \lambda e^{-\lambda x} dt = -e^{-\lambda t} \mid_0^x = 1 - e^{-\lambda x}, x \geq 0 \end{cases}$$

Характеристическое свойство экспоненциального распределения

Пусть:

 $\xi \sim E(\lambda)$

Тогда:

$$\forall t > 0 \forall \tau > 0 : P(\xi > t + \tau \mid \xi > t) = P(\xi > \tau)$$

Док-во

$$\begin{split} P(\xi>t+\tau\mid\xi>t) &= \frac{P(\xi>t+\tau)}{P(\xi>t)} = \frac{1-F(t+\tau)}{1-F(t)} = \\ &= \frac{e^{-\lambda(t+\tau)}}{e^{-\lambda t}} = e^{-\lambda\tau} = 1-F(\tau) = P(\xi>\tau) \end{split}$$

Из непрерывных только экспоненциальное обладает этим свойством. Из дискретных — только геометрическое.

Пример применения: теория массового обслуживания (например, обслуживание клиентов, обработка интернет-запросов)

Распределение Гаусса (Нормальное распределение)

$$\xi{\sim}N\big(m,\sigma^2\big)$$

m — математическое ожидание

 σ^2 — дисперсия

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-m)^2}{2\sigma^2}\right)$$

Симметрична относительно прямой x=m

$$f_{\text{max}} = f(m) = \frac{1}{\sqrt{2\pi}\sigma}$$

$$\lim_{x \to \pm \infty} f(x) = 0$$

При увеличении σ график становится шире, но ниже.

Интеграл от f(x) не берется, F(x) записать нельзя, поэтому используют таблички.

$$E\xi = \int_{-\infty}^{+\infty} x f(x) dx = \int_{-\infty}^{+\infty} \frac{x}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-m)^2}{2\sigma^2}\right) dx = \int_{-\infty}^{+\infty} \frac{x-m+m}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-m)^2}{2\sigma^2}\right) dx = \int_{-\infty}^{+\infty} \underbrace{\frac{x-m}{\sqrt{2\pi}\sigma}} \exp\left(-\frac{(x-m)^2}{2\sigma^2}\right) dx + m \underbrace{\int_{-\infty}^{\infty} f(x) dx}_{=1} = m$$

$$D\xi = \int_{-\infty}^{+\infty} \frac{(x-m)^2}{\sqrt{1\pi}\sigma} \exp\left(-\frac{(x-m)^2}{2\sigma^2}\right) = \left\{y = \frac{x-m}{\sigma}\right\} =$$

$$= 2\sigma^2 \int_0^{+\infty} \frac{y^2}{\sqrt{2\pi}} \exp\left(-\frac{y^2}{2}\right) dy = 2\sigma^2 \left(\underbrace{\frac{y}{\sqrt{2\pi}} \exp\left(-\frac{y^2}{2}\right)}_{=0} \mid_0^{+\infty} - \underbrace{\int_0^{\infty} f(y) dy}_{=\frac{1}{2}}\right) = \sigma^2$$

Стандартное распределение Гаусса

Чтобы использовать таблички, используем стандартное гауссовское распределение.

$$\xi \sim N(0; 1)$$

$$f(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$

Рис. 5. Купюра с изображением гауссовского распределения

Уравнение Лапласса

$$\Phi_0(x) = \int_0^x \frac{\exp\left(-\frac{t^2}{2}\right)}{\sqrt{2\pi}} dt$$

Очень быстро стремится к нулю (для числа пять почти равна нулю (до 7-ого знака))

$$\begin{split} \Phi_0(+\infty) &= \frac{1}{2} \\ \Phi_0(-x) &= -\Phi_0(x) \\ -\frac{1}{2} &\leq \Phi_0(x) \leq \frac{1}{2} \\ \Phi(x) &\coloneqq F(x) = \Phi_0(x) + \frac{1}{2} \end{split}$$

Вероятность попадания в заданный интервал

Хотим посчитать вероятность попадания ξ в интервал (α, β) .

Общий случай:

$$P(\alpha < \xi < \beta) = \left\{ y = \frac{x-m}{\sigma}; dy = \frac{1}{\sigma} dx \right\} = \int_{\frac{\alpha-m}{\sigma}}^{\frac{\beta-m}{\sigma}} \frac{\exp\left(-\frac{y^2}{2}\right)}{\sqrt{2\pi}} = \Phi_0\left(\frac{\beta-m}{\sigma}\right) - \Phi_0\left(\frac{\alpha-m}{\sigma}\right)$$

Если интервал симметричен относительно m

$$P(|\xi-m|<\delta) = \Phi_0\bigg(\frac{\delta}{\sigma}\bigg) - \Phi_0\bigg(-\frac{\delta}{\sigma}\bigg) = 2\Phi_0\bigg(\frac{\delta}{\sigma}\bigg)$$

Правило трех сигм:

$$P(|\xi-m|<3\sigma)=2\Phi_0\bigg(\frac{3\sigma}{\sigma}\bigg)=2\Phi_0(3)\approx 0.997$$

Т.е. почти все значение лежат в промежутке $(-3\sigma, 3\sigma)$.

2024-11-01

– Неравенства Чебышева ——

Пусть

$$E|\xi|^r < \infty,$$

Тогда

$$\forall \varepsilon > 0 : P(|\xi| \ge \varepsilon) \le \frac{E|\xi|^r}{\varepsilon^r}.$$

Часто дает очень грубую оценку

Док-во

$$E|r| = \int_{-\infty}^{+\infty} |x|^2 f(x) dx \geq \int_{|x|>\varepsilon} |x|^2 f(x) dx \geq \varepsilon^r \int_{|x|>\varepsilon} f(x) dx = \varepsilon^r P(|\xi| \geq \varepsilon)$$

— Частные случаи —

• Неравенство Маркова: r=1 и $P(\xi \geq 0)=1$

$$P(\xi \ge \varepsilon) \le \frac{E(\xi)}{\varepsilon}$$

• r = 2:

$$P(|\xi| \ge \varepsilon) \le \frac{E\xi^2}{\varepsilon^2}$$

• r=2 и $\eta=arepsilon-Earepsilon$:

$$P(|\xi - E\xi| \ge \varepsilon) \le \frac{D}{\varepsilon^2}$$

—— Пример ——

 ξ — расход электроэнергии $E\xi=4000rac{\mathrm{KB}}{\mathrm{q}}$

Оценить, что в какой-то день $P(\xi \ge 10000)$

$$r = 1$$
$$P(\xi \ge 0) = 1$$

$$P(\xi \ge 10000) = \frac{4000}{10000} = 0.4$$

—— Случайные векторы ——

Опр. Вектор $\xi=(\xi_1,...,\xi_n)$, где $\xi_1,...,\xi_n$ — случайные величины, называется **случайным вектором**.

Случайные вектора нужны, так как случайные величины обычно полезно рассматривать в совокупности.

Опр. Функцией распределения случайного вектора $\xi = (\xi_1, ..., \xi_n)$ называется функция

$$F_{\xi}(x_1,...,x_n) = P(\xi_1 < x_1,...,\xi_n \leq x_n) \coloneqq P(\xi_1 < x_1 \wedge ... \wedge \xi_n \leq x_n)$$

Пусть $n=2: F_\xi(xy) = P(\xi_1 \le x, \xi_2 \le y)$

—— Свойства функции распределения ——

Ha примере n=2

- 1. $\forall (x, y) \in \mathbb{R}^2 : 0 \le F(x, y) \le 1$
- 2. $F(-\infty, -\infty) = F(-\infty, y) = F(x, -\infty) = 0$
- 3. $F(+\infty, +\infty) = 1$
- 4. $F_{\xi}(+\infty, y) = F_{\xi_2}(y)$ $F_{\xi}(x, +\infty) = F_{\xi_1}(x)$
- 5. $P(a_1 \le \xi_1 \le a_2, b_1 \le \xi_2 \le b_2) = F(a_2, b_2) F(a_1, b_2) F(a_2, b_1) + F(a_1, b_1)$
- 6. F(x, y) монотонно не убывает по каждому аргументу

Док-во

$$F(x+\Delta x,y) = P(\xi_1 \leq x + \Delta x, \xi_2 \leq y) = \underbrace{P(\xi_1 \leq x, \xi_2 \leq y)}_{=F(x,y)} + \underbrace{P(x \leq \xi_1 \leq x + \Delta x, \xi_2 \leq y)}_{\geq 0}$$

Опр. Частное/ маргинальное распределение — распределение одной из компонент вектора

Опр. Компоненты ξ_1,ξ_2 случайного вектора $\xi=(\xi_1,x_2)$ называются **независимыми**, если $F_\xi(x,y)=F_{\xi_1}(x)\cdot F_{\xi_2}(y)$

— Дискретные случайные векторы ——

Опр. Случайный вектор $\xi=(\xi_1,\xi_2)$ называется **дискретным**, если ξ_1 и ξ_2 — дискретные случайные величины.

Табличный способ задания

	y_1		y_k
x_1	p_{11}		p_{1k}
:	:	٠.	:
x_n	p_{m1}		p_{mk}

$$P_{ij}=P\big(\xi_1=x_i,\xi_2=y_j\big)$$

$$P_{i\cdot} \coloneqq \sum_{j=1}^k p_{ij}$$

$$P(\xi_1 = x_1) = P_1.$$

$$P(\xi_2=y_1)=P_{\cdot 1}$$

Опр. Компоненты ξ_1,ξ_2 дискретного вектора $\xi=(\xi_1,\xi_2)$ независимы, если $\forall i,j:P_{ij}=p_i.p_{\cdot j}$

Непрерывные случайные векторы

- Плотность распределения

Опр. Неотрицательная кусочно непрерывная функция $f_{\xi}(x,y)$, такая что

$$F_{\xi}(x,y)=\int_{-\infty}^{x}\int_{-\infty}^{y}f(t_1,t_2)dt_2dt_1$$

называется **плотностью распределения** $\xi = (\xi_1, \xi_2).$

В точках, где $F_{\xi}(x,y)$ дифференцируема:

$$f(x,y) = \frac{\partial^2 F(x,y)}{\partial x \partial y}$$

Свойства плотности распределения

- $\begin{array}{l} \bullet \ \, \forall x,y: f(x,y) \geq 0 \\ \bullet \ \, \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) dx dy = F(+\infty,+\infty) = 1 \\ \bullet \ \, \int_{a_1}^{a_2} \int_{b_1}^{b_2} f(x,y) dx dy = F(a_2,b_2) F(a_2,b_1) (F(a_1,b_2) F(a_1,b_1)) = P(a_1 \leq \xi_1 \leq a_2,b_1 \leq a_2,b_2) \\ \bullet \ \, \int_{a_1}^{a_2} \int_{b_1}^{b_2} f(x,y) dx dy = F(a_2,b_2) F(a_2,b_1) (F(a_1,b_2) F(a_1,b_1)) = P(a_1 \leq \xi_1 \leq a_2,b_1 \leq a_2,b_2) \\ \bullet \ \, \int_{a_1}^{a_2} \int_{b_1}^{b_2} f(x,y) dx dy = F(a_2,b_2) F(a_2,b_1) (F(a_1,b_2) F(a_2,b_1)) \\ \bullet \ \, \int_{a_1}^{a_2} \int_{b_1}^{b_2} f(x,y) dx dy = F(a_2,b_2) F(a_2,b_1) (F(a_1,b_2) F(a_2,b_1)) \\ \bullet \ \, \int_{a_1}^{a_2} \int_{b_1}^{b_2} f(x,y) dx dy = F(a_2,b_2) F(a_2,b_2) F(a_2,b_2) \\ \bullet \ \, \int_{a_1}^{a_2} \int_{b_1}^{b_2} f(x,y) dx dy = F(a_2,b_2) F(a_2,b_2) \\ \bullet \ \, \int_{a_1}^{a_2} \int_{b_1}^{b_2} f(x,y) dx dy = F(a_2,b_2) F(a_2,b_2) \\ \bullet \ \, \int_{a_1}^{a_2} \int_{b_1}^{b_2} f(x,y) dx dy = F(a_2,b_2) F(a_2,b_2) \\ \bullet \ \, \int_{a_1}^{a_2} \int_{b_1}^{b_2} f(x,y) dx dy = F(a_2,b_2) F(a_2,b_2) \\ \bullet \ \, \int_{a_1}^{a_2} \int_{b_1}^{b_2} f(x,y) dx dy = F(a_2,b_2) F(a_2,b_2) \\ \bullet \ \, \int_{a_1}^{a_2} \int_{b_1}^{b_2} f(x,y) dx dy = F(a_2,b_2) F(a_2,b_2) \\ \bullet \ \, \int_{a_1}^{a_2} \int_{a_1}^{b_2} f(x,y) dx dy = F(a_2,b_2) F(a_2,b_2) \\ \bullet \ \, \int_{a_1}^{a_2} \int_{a_2}^{b_2} f(x,y) dx dy = F(a_2,b_2) F(a_2,b_2) \\ \bullet \ \, \int_{a_1}^{a_2} \int_{a_2}^{b_2} f(x,y) dx dy = F(a_2,b_2) F(a_2,b_2) \\ \bullet \ \, \int_{a_1}^{a_2} \int_{a_2}^{b_2} f(x,y) dx dy = F(a_2,b_2) F(a_2,b_2) \\ \bullet \ \, \int_{a_1}^{a_2} f(x,y) dx dy = F(a_2,b_2) F(a_2,b_2) \\ \bullet \ \, \int_{a_1}^{a_2} f(x,y) dx dy = F(a_2,b_2) F(a_2,b_2) \\ \bullet \ \, \int_{a_1}^{a_2} f(x,y) dx dy = F(a_2,b_2) F(a_2,b_2) \\ \bullet \ \, \int_{a_1}^{a_2} f(x,y) dx dy = F(a_2,b_2) F(a_2,b_2) \\ \bullet \ \, \int_{a_1}^{a_2} f(x,y) dx dy = F(a_2,b_2) F(a_2,b_2) \\ \bullet \ \, \int_{a_1}^{a_2} f(x,y) dx dy = F(a_2,b_2) F(a_2,b_2) \\ \bullet \ \, \int_{a_1}^{a_2} f(x,y) dx dy dx dy = F(a_2,b_2) F(a_2,b_2) \\ \bullet \ \, \int_{a_1}^{a_2} f(x,y) dx dy dx dy = F(a_2,b_2) F(a_2,b_2) \\ \bullet \ \, \int_{a_1}^{a_2} f(x,y) dx dy dx dx dx dx dx$
- $P(\xi \in D) = \iint_D f(x,y) dx dy$

$$F_{\xi_1}(x)=F_{\xi}(x,+\infty)=\int_{-\infty}^x\int_{-\infty}^{+o}f(t_1,t_2)dt_2dt_1$$

$$f_{\xi_1}(x) = \frac{d}{dx} F_{\xi_1}(x) = \frac{d}{dx} \int_{-\infty}^x \int_{-\infty}^{+\infty} f(t_1, t_2) dt_2 dt_1 = \int_{-\infty}^{+\infty} f(x, t_2) dt_2 = \int_{-\infty}^{+\infty} f(x, y) dy$$

2024-11-08

Пусть $\xi = \left(\xi, \xi_2\right)$ — непрерывный случайный вектор. Тогда

 ξ_1 и ξ_2 независимы $\Leftrightarrow f_\xi(x,y) = f_{\xi_1}(x) f_{\xi_2}(y)$

Док-во

(→)

$$f_{\xi}(x,y) = \frac{\partial^2 F(x,y)}{\partial x \partial y} = \frac{\partial^2 F_{\xi_1}(x) F_{\xi_2}(y)}{\partial x \partial y} = \frac{dF_{\xi_1}(x)}{dx} \frac{dF_{\xi_2}(y)}{dy} = f_{\xi_1}(x) f_{\xi_2}(y)$$

$$F_{\xi}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{\xi}(t,s) ds dt = \int_{-\infty}^{x} \int_{\infty}^{y} f_{\xi_{1}}(t) f_{\xi_{2}}(s) ds dt = F_{\xi_{1}}(x) F_{\xi_{2}}(y)$$

Опр. Случайный вектор $\xi=(\xi_1,...,\xi_n)$ имеет равномерное распределение в области $D\in\mathbb{R}^n$ если

$$f_{\xi}(x_1,...,x_n) = \begin{cases} c, \text{if } (x_1,...,x_n) \in D \\ 0, \text{oth} \end{cases}$$

При $n=2:c=\frac{1}{S_D}$

Пример 1

Пусть $\xi=(\xi_1,\xi_2)$ распределен равномерно в прямоугольнике с углами в (0,0),(1,1). Хотим проверить [не]зависимость компонент.

$$\begin{split} f_{\xi}(x,y) &= \begin{cases} 1, \text{if } x \in (0,1) \land y \in (0,1) \\ 0, \text{oth} \end{cases} \\ f_{\xi_1}(x) &= \int_{-\infty}^{+\infty} f_{\xi}(x,y) dy = \begin{cases} \int_0^1 1 dy = 1, \text{if } x \in (0,1) \\ 0, & \text{if } x \notin (0,1) \end{cases} \\ f_{\xi_2}(y) &= \int_{-\infty}^{+\infty} f_{\xi}(x,y) dx = \begin{cases} \int_0^1 1 dx = 1, \text{if } y \in (0,1) \\ 0, & \text{if } y \notin (0,1) \end{cases} \end{split}$$

Т.к. $f_{\xi}(x,y) = f_{\xi_1}(x) \cdot f_{\xi_2}(y)$, то компоненты независимы

Пример 2

Пусть $\xi = (\xi_1, \xi_2)$ распределен равномерно в круге c = (0, 0), r = r.

$$\begin{split} f_{\xi}(x,y) &= \begin{cases} \frac{1}{\pi r^2}, \text{if } x^2 + y^2 \leq R^2 \\ 0, \quad \text{oth} \end{cases} \\ f_{\xi_1}(x) &= \int_{-\infty}^{+\infty} f(x,y) dy = \int_{-\sqrt{R^2 - x^2}}^{\sqrt{R^2 - x^2}} \frac{1}{\pi r^2} dy = \begin{cases} \frac{2\sqrt{R^2 - x^2}}{\pi r^2}, \text{if } |x| \leq r \\ 0, \quad \text{oth} \end{cases} \\ f_{\xi_2}(y) &= \int_{-\infty}^{+\infty} f(x,y) dx = \int_{-\sqrt{R^2 - y^2}}^{\sqrt{R^2 - y^2}} \frac{1}{\pi r^2} dx = \begin{cases} \frac{2\sqrt{R^2 - y^2}}{\pi r^2}, \text{if } |y| \leq r \\ 0, \quad \text{oth} \end{cases} \end{split}$$

Т.к. $f_{\xi}(x,y) \neq f_{\xi_1}(x) f_{\xi_2}(y)$, то ξ_1 и ξ_2 — зависимы

—— Математическое ожидание ——

Опр. Математическим ожиданием вектора $\xi=(\xi_1,\xi_2)$ называется вектор $E\xi=(m_1,...,m_n)$, где $m_i=E\xi_i$.

Свойства математического ожидания

• $E(\xi_1 + \xi_2) = E\xi_1 + E\xi_2$

Док-во

Для дискретного случая (для непрерывного аналогично):

$$\begin{split} E\Bigg(\underbrace{\xi_1+\xi_2}_{\eta}\Bigg) &= \sum_i \sum_j \big(x_i+y_j\big) p_{ij} = \sum_i \sum_j x_i p_i j + \sum_i \sum_j y_j p_i j = \\ &= \sum_i x_i p_{i\cdot} + \sum_j y_j p_{\cdot j} = E\xi_1 + E\xi_2 \end{split}$$

• Если ξ_1 и ξ_2 независимы, то $E(\xi_1\xi_2)=E\xi_1\cdot E\xi_2$

Док-во

Для непрерывного случая (для дискретного аналогично):

$$\begin{split} E\xi_1\xi_2 &= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xy f(x,y) dx dy \underbrace{=}_{\text{независимы}} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xy f_{\xi_1}(x) f_{\xi_2}(y) dx dy = \\ &= \int_{-\infty}^{+\infty} x f_{\xi_1}(x) \cdot \int_{-\infty}^{+\infty} y f_{\xi_2}(y) = E\xi_1 E\xi_2 \end{split}$$

— Ковариация —

Опр. Ковариация 3 ξ_1 и ξ_2 ($\mathrm{cov}(\xi_1,\xi_2)$ или $k_{\xi_1\xi_2}$):

$$k_{\xi_1\xi_2}=E(\xi_1-E\xi_1)(\xi_2-E\xi_2)=E\xi_1^0\xi_2^0$$

Опр. Коэффициентом корреляции ξ_1 и ξ_2 называется

$$\rho_{\xi_1\xi_2} = \frac{k_{\xi_1\xi_2}}{\sqrt{D\xi_1D\xi_2}} = k_{\xi_1^*\xi_2^*}$$

Опр. Величины ξ_1 и ξ_2 называются **некоррелированными**, если $ho_{\xi_1\xi_2}=0$

Опр. Величины ξ_1 и ξ_2 называются положительно коррелированными, если $ho_{\xi_1\xi_2}>0$

Опр. Величины ξ_1 и ξ_2 называются **отрицательно коррелированными**, если $\rho_{\xi_1\xi_2}<0$

Свойства ковариации

•
$$cov(\xi, \xi) = D\xi$$

•
$$D(\xi + \eta) = D\xi + D\eta + 2 \operatorname{cov}(\xi, \eta)$$

•
$$cov(\xi, \eta) = cov(\eta, \xi)$$

•
$$cov(\xi, \eta) = E(\xi - E\xi)(\eta - E\eta) = \dots = E\xi\eta - E\xi E\eta$$

•
$$cov(a\xi + b, c\eta + d) = ab cov(\xi, \eta)$$

$$\begin{array}{l} \bullet \; \operatorname{cov}(a\xi+b,c\eta+d) = ab \; \operatorname{cov}(\xi,\eta) \\ \bullet \; \left| \rho_{\xi\eta} \right| = \frac{|\operatorname{cov}(\eta,\xi)|}{\sigma_{\xi}\sigma_{\eta}} \leq 1 \end{array}$$

$$|\text{cov}(\eta, \xi)| \le \sigma_{\xi} \sigma_{\eta}$$

Док-во

³от «совместная изменяемость»

$$\begin{split} 0 & \leq D(\xi^* + \eta^*) = D\xi^* + D\eta^* + 2 \, \operatorname{cov}(\xi^*, \eta^*) = 1 + 1 + 2\rho_{\xi\eta} \\ & \Rightarrow \rho_{\xi\eta} \geq -1 \\ \\ 0 & \leq D(\xi^* - \eta^*) = D\xi^* + D\eta^* - 2 \, \operatorname{cov}(\xi^*, \eta^*) = 1 + 1 - 2\rho_{\xi\eta} \\ & \Rightarrow \rho_{\xi\eta} \leq 1 \\ \\ -1 & \leq \rho_{\xi\eta} \leq 1 \end{split}$$

• Если ξ и η независимы и с конечными дисперсиями, то $\mathrm{cov}(\xi,\eta)=0$

$$\begin{array}{c} \text{Док-во} \\ \\ \hline\\ &= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \left(x-m_\xi\right) \left(y-m_\eta\right) f(x,y) dx dy = \\ \\ &= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \left(x-m_\xi\right) f_\xi(x) \left(y-m_\eta\right) f_\eta(y) dx dy = \\ \\ &= \int_{-\infty}^{+\infty} \left(x-m_\xi\right) f_\xi dx \cdot \int_{-\infty}^{+\infty} (x) \left(y-m_\eta\right) f_\eta(y) dy = 0 \cdot 0 = 0 \end{array}$$