Visão Computacional e Processamento de Imagens

Prof. André Gustavo Hochuli

gustavo.hochuli@pucpr.br aghochuli@ppgia.pucpr.br

Tópicos

- Apresentação do Professor
- O que esperar da disciplina?
- Ferramentas
 - Google Colab
 - OpenCV
- Exercícios

Prof. André Gustavo Hochuli

- . Formação
 - Ciência da Computação [2004, PUCPR]
 - Mestre [2007, PPGIA/PUCPR]
 - Doutor [2018, PPGINF/UFPR]
 - PostDoc
 - . [2019, PPGIA/PUCPR]
 - [2020, LITS/Université de Rouen FR]
- Experiência Profissional
 - P&D em Visão Computacional [2008-2013]
 - · Professor Universitário [2014 Atual]
- Linhas de Pesquisa
 - Aprendizagem de Máquina e Reconhecimento de Padrões

Hobbies:
Aviação
Esportes
Tecnologia & Pesquisa

O que esperar da disciplina?

- Processamento de Imagens
- Aprendizagem de Máquina
- Resolução de problemas com Visão Computacional
- Desafios encontrados no cotidiano
- Aulas teóricas e práticas
- Espaço para o estudante debater e trazer problemas/dúvidas
- Conteúdo incremental
- Trabalhos práticos
- Provas práticas

O que é Visão Computacional ?

Visão Computacional

Abordagem Tradicional (~2010)

Deep Learning (~2010->Hoje)

Bibliotecas e Ferramentas

• Detecção de Defeitos

• Monitoramento e Rastreamento por Câmeras

• Verificação de Montagem

• E muito mais

LINK 1

LINK 2

Oportunidades

- Oportunidades e Projetos no Brasil e no Mundo
 - Linkedin
 - Glassdoor

Imagem e Pixel

• Imagem: Matriz NxM

• Pixel: Menor informação de uma imagem

• 0 (Preto) to 255 (Branco)

157	153	174	168	150	152	129	151	172	161	155	156
155	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	161
206	109	6	124	191	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	67	71	201
172	106	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	76	20	169
189	97	165	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	105	36	190
205	174	155	252	236	251	149	178	228	43	95	234
190	216	116	149	236	187	85	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	96	50	2	109	249	215
187	196	235	75	٠,	81	47	۰	6	217	255	211
183	202	237	145	0	۰	12	108	200	138	243	236
196	206	123	207	177	121	123	200	175	13	96	218

157	153	174	168	150	152	129	151	172	161	155	156
156	182	163	74	76	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	71	201
172	106	207	233	233	214	220	239	228	98	74	206
188	88	179	209	186	215	211	158	139	75	20	169
189	97	166	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
206	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	295	224
190	214	173	66	103	143	96	50	2	109	249	215
187	196	236	75	1	81	47	0	6	217	296	211
183	202	237	145	0	0	12	108	200	138	243	236
196	206	123	207	177	121	123	200	176	13	96	218

Resolução de Imagem

- Pixel per Inch (PPI) for digital devices
- Dots per Inch (DPI) for analog devices (printers)

Qual é o problema?

Downscale and Upscale (Redimensionamento)

- Perda de Resolução
- Interpolação

Sistemas de Cores

• Binário (0-1) – 1 Canal

• Nível de Cinza (0-255) – 1 Canal

RGB – 3 Canais
 (Red, Green, Blue)Color

Outros Sistemas de Cores

Codificação

[LINK]