Заняття 14. Гіпотеза де Бройля. Співвідношення невизначеностей Гайзенберга.

Аудиторне заняття

- 1. [2.9] Кінетична енергія протона $E_k = 1$ кеВ. Визначити додаткову енергію ΔE_k , яку необхідно йому надати, щоб його довжина хвилі де Бройля зменшилась в η разів.
- 2. [2.33] Кінетична енергія електрона в атомі водню складає величину порядку $E_k = 10$ eB. Використовуючи співвідношення невизначеності, оцінити мінімальні лінійні розміри атому.
- 3. Оцінити за допомогою співвідношення невизначеностей мінімальну можливу енергію електрону в атомі водню та його відповідну ефективну відстань від ядра.
- 4. [2.46] Частинка масою m перебуває у потенціальному полі $U = k x^2/2$, а її хвильова функція має вигляд: $\psi(x) = A \exp(-\alpha x^2)$, де A коефіцієнт нормування, α додатна стала. За допомогою рівняння Шрьодінгера знайти величину α та енергію частинки у цьому стані.
- 5. [2.11] При якому значенні швидкості електрону його імпульс дорівнює імпульсу фотона з довжиною хвилі $\lambda = 1$ пм.

Домашнє завдання

- 1. [2.34] Визначити відносну невизначеність $\Delta p/p$ імпульсу рухомої частинки, якщо припустити, що невизначеність її координати дорівнює довжині хвилі де Бройля.
- 2. Частинка масою m рухається в одномірному потенціальному полі $U = k x^2/2$. Оцінити за допомогою співвідношення невизначеностей мінімально можливу енергію частинки в такому полі.
- 3. [2.12] Знайти довжину хвилі фотона, імпульс якого дорівнює імпульсу електрона з кінетичною енергією $E_k = 0.3 \text{ MeB}$?
- 4. [2.8] Електрон, початковою швидкістю якого можна знехтувати, пройшов прискорюючу різницю потенціалів U. Знайти довжину хвилі де Бройля цього електрону у двох випадках: 1) U=51 B, 2) U=510 кВ.