11.a) Number of verticer Count the unique vertices Po, P,, ... Pg. hooking at the de one see that there are 9 unique vertices. Number of adges Horizontall edges: There one 12 horizontal edges

Horizontal & Calges = { Po, P, 3, {P, P2}, {P2, Po}, {P4, P7}, {P1, P2}, {P2, P6}, {P4, P7}, {P1, P2} {P8, P3}, {P3, P4}, {P4, P5}, {P5, P6}, {P7, P4}, {P6, P5} {P3, P6}, Diagonal Edges = {P6, P1}, & P3, P7}, {P7, P2}, {P6, P4}, {P6 {Po, P8}, {P, P6}, {B, P5} (P6, P2) Florizonal tal Edges = 9 Vertical edges = @ 9 Diagonal adjet = 89 Godges = 20027 No. of faces = {16, P6, P, } { P, P6, P7} 2 Ps, P2, P6}, {P2, P6, P3} = 18 A

Calculating Euler Characteristic X = V-E+F = 9-27+18=0//

- b) Rank of $\partial_i: C_i(K,F) \rightarrow C_0(K,F)$
 - · The dimension of C, (K, F) is the number of edges
 - . The dimension of Co(K,F) is the number of Vertices
 - The first Betti number $\beta_6 = 1$, indicating there is one connected component.

By rank-nullity theorem, we have:

dim(Im J_i)= dim ($C_6(K,F)$)- $B_6=9-1=8$ Therefore, the rank of S_i is 8.

Rank of $S_2: C_2(K,F) \rightarrow C_1(K,F)$

- · The dimension of C2(k,F) is the number of faces.
- · the dimension of $C_i(k,F)$ is the number of edger
- The second Betti number $\beta_1 = 2$, indicating two independent loops

Using the rank-nullity theorem for Sz:

dim (Im S2) = dim (C, (K, F)-B0 = 18-2=16

Therefore the ronk of S2 is 16.

11 (c) Betti numbers Br (k,F) n E & 0,1,23

Betti numbers (Bn) are defined as the ranked of homology groups.

 $H_n(k,F) = \frac{Z_n(k,F)}{B_n(k,F)}$

[Zn (Kif): is the group of n-cycles of (n(kif) that map to zero under In

Bn (K,F): is the group of n-boundaries

Bo: The ro. of connected components

B. The no. of 1-dim, holes on bops

B2: The ro. of 2-dim. voids.

dim (Co (Kif)) = 9

din (((kif)) = 27

dim ((2(k,f)) = 18

rank (2) = 8

mank (22) = 16

Bo:

Using the nank-nullity theorem of

): C(kif) -> Co(kif)

Bo = dim (Co (KIF) - Mank (D1) = 9-8=1

in there is I connected component in t.

B .:

Virg rank - nullity theorem for

De: (2(KIF) -> CICKIF)

B, = dim (C, (K,F)) - rank (2)

- rank (d)

= 27 -8 -16 = 3

i. There are 3 independent 1-dimensional loops in k.

Since (3 (K,F) = 0 (ro 3 -simplices in the complex) Therefore B2 is the nullity of D2, β₂ = dim ((2(k+f)) - rank (2) = 18-16 = 2 . there are 2 - diraressional voids. 2 indfendent $\beta_0 = 1$ $\beta_1 = 3$ B2 = 2 For r E & 0.1,29, the basis egen lirean subspace Bn (K,F) C Cn (k,F) of no boundaries can be examined by the computed Belti nubers: $\beta_0 = 1$, $\beta_1 = 3$, $\beta_2 = 2$ Since Bo = 1, there is only me connected component for simplical complex

- * Any single vertex can represent the connected component as basis element.
- No is one of the valices in the complex
- 2. H. (kif)

B₁ = 3, there are three independent one dimensional loops in k.

- * Identify three 1-dimensional cycles in k
 that do not bound any 2-dimensional
 faces.
- there each zi is closed Path formed by edges in the complex.

These loops one representative of three independent cycles that forms a bosis of H. (k.F.).

- 3) H2 (KIF):
 - B2 = 2,
 - this means that there one two -independent
 - 2- dimensional voids in k.
 - * Identify two 2-dimensional surfaces with k
 that are not boundary of any 3-dimension
 solid k.
 - * Lets denote these surfaces as \$1,52,
 where each si represents a collection of
 faces that enclose a void.
- For $r \in \mathcal{L} 0, 1, 2\mathcal{L}$ to John a basis

 Jon the space of r cycles $Z_r (K_1F) \subset C_r (K_1F)$ ref $0, 1, 2\mathcal{L}$ for r = 0:- $Z_r (K_1F)$:-
 - Civer.
 - * Bo = 1
 - * Basis for Ho (k,F) = Vo

* Since Zo (K,F) consists of all values in
the connected component, the basis for Zo (K,F)
includes all vertices.

Zo(K,F) = {[v,J,[v2],...[vg]}.

So, the basis of Zo(K,F) is set of all

gratices in k.

For n=1

* Z. (KIF)

* Civen that β , = 3, meaning three independent 1 - dimensional cycle.

* Basis for Z, (K,F) = Z1

To extend this basis Z. (Kif) we need to add additional cycles that captures all 1- dimensional cycles.

 $Z, (k,F) = \{ [z_1], [z_2], [z_3], \ldots, \mathcal{Y} \}$

Here, Z1, Z2, Z3 are part of a basi's for 1-dimensional cycle space.

Fon n= 2

- * Basis of Z2 (FIF)
- * Circh that B2 = 2
- * Basis for Z2 (KIF) = 3,
- * To John a bossis; for Zz (*15),

 we add any additional 2-cycles that

 John closed surface without boundaries

 of 3-dimensional simplies.

Z2 (KIF) = {[S], [S2] 3

- · Basis Jon Zo (KIF): All vertices in the complex [vi], [vz], [v3]...[vg]
- Basis Jan Z. (KIF): A combination of independent loops [v.], [vz], [vz]. [vs]....
- · Bosis for Z2 (K,1): Independent 2-dim.

 basis voids as [s,], [s2].

Since k is given to be an abstract simplifical complex
on set P

HEK, IF T'CT then T'EK
then new simplices added to form k'

ouxi3 for each of Ekoro E of

let te ouxi3 then, T can be 2 types - If the

ET, then T= o'uxi3 for some o'co

since of Ek and k is & Closed under subsets

of Ek, which implies o'uxi3 Ek'

If . ET, then TC o, since of EK and Kis an abstralt simplical complexe, TEK and thus TEK'

By the definition of an abstract simplical complexe $\phi \in k$ since k is a simplical complex $\phi \in k'$ If $T' \subseteq T$ the $T' \subseteq k'$

Since Hence K' is an abstract simplical complex

12C) 10 (120) 11 (120

Total vertices $f_0(k') = 5$ Total edges $f_1(k') = 8$ Total falles $f_2(k') = 5$

The entire Structure forms a 30 tetrahedron so we we have I filled 2 complex total 3 & Sim ple ces F3 (k)=1

130 1010 = 080

$$\times (k!) = F_0(k!) - F_1(k!) + F_2(k!) - F_3(k!)$$

 $\times (k!) = 5 - 8 + 5 - 1 = 1$

d) The Betti number Bo represents the number of Connected Components Ink'

Since k' is connected Can vertices are connecting through.

·) there is only one connected component. Therefore Bo(k'F) = 1

e) The higher Betti numbers represents higher dimensional "holes" in the Complexes

D B: The Betti number &B, represents the number of 1- dim holes (loops). In K, The Square would form a single loop (1-cycle) But in K, this loop is filled by the addition of triangles (2 simplices), so there are no 1- dim holes. Thus B, = 0.

2) Bz and higher: since k' is embedded by R2 there are no higher - dim holes, so Bn = Ofor n>1 There fore:

Bn (K; F) = O for all n>0

1 = (=1) 19 ist stg mic 18 6 1196

(K) = FO (K) = F(K) + F(K) = F(K) - F(K)

Y (K) = 4-818+8 = (K) Y

A The better number of represents the but the

Come at el com por ents in ke

a) there is only one conceled (marnegative