

<u>Home</u>

Gameboard

Physics

Electricity Components

Potential Dividers With LEDs 8.1

Potential Dividers With LEDs 8.1

Figure 1: A circuit with a single cell in series with a resistor and an LED.

Quantities:

 ε e.m.f. (V)

V p.d. across fixed resistor (V)

 V_{LED} p.d. across LED (V)

I current through circuit (A)

R fixed resistor resistance (Ω)

E photon energy (J)

 λ wavelength of emitted light (m)

Equations:

$$V = IR$$
 $arepsilon = V_{\mathsf{LED}} + V$ $V_{\mathsf{LED}} = rac{E}{e}$ $E = rac{hc}{\lambda}$

Use the equations above to derive expressions for:

Part A The resistance of the fixed resistor R

the resistance of the fixed resistor R in terms of the e.m.f. ε , the p.d. across the LED V_{LED} and the current I.

The following symbols may be useful: I, R, V_LED, epsilon

Part B $\;\;\;\;$ The resistance of the fixed resistor R, using λ

the resistance of the fixed resistor R in terms of the e.m.f. ε , the wavelength of the LED λ , the current I and the physical constants h, c and e.

The following symbols may be useful: I, R, c, e, epsilon, h, lambda

<u>Home</u> <u>Gameboard</u>

Physics

Electricity Components

Potential Dividers With LEDs 8.3

Potential Dividers With LEDs 8.3

A blue LED produces light of wavelength $480\,\mathrm{nm}$. It is powered using a $9.00\,\mathrm{V}$ battery using the circuit design shown below. Assume that there is no internal resistance in the power supply.

Figure 1: A circuit with a single cell in series with a resistor and an LED.

Part A The p.d. across the LED

Calculate the p.d. across the LED.

Part B The minimum value of R

Calculate the minimum value of R to ensure the current through the LED does not exceed $50.0\,\mathrm{mA}$.

Part C The resistance of the LED

Calculate the resistance of the LED.

Gameboard:

STEM SMART Physics 30 - Complicated circuits

<u>Home</u> <u>Gameboard</u> Physics Electricity Resistors Current Division 9.2

Current Division 9.2

A $9.0\,\Omega$ resistor is connected in parallel with a $81\,\Omega$ resistor. What fraction of the total current flows through the $81\,\Omega$ resistor?

Gameboard:

STEM SMART Physics 30 - Complicated circuits

<u>Home</u> <u>Gameboard</u> Physics Electricity Resistors

Current Division 9.4

I am going to connect two resistors in parallel to share a $13\,\mathrm{A}$ current so that $5.0\,\mathrm{A}$ flows through one resistor. The resistor with the larger resistance is a $2.2\,\Omega$ resistor. Calculate the resistance of the other resistor.

Current Division 9.4

Gameboard:

STEM SMART Physics 30 - Complicated circuits

<u>Home</u>

Gameboard

Physics

Electricity

Power

Power in a Potential Divider 10.2

Power in a Potential Divider 10.2

Calculate the load power P for an emf $\varepsilon=240\,\mathrm{V}$ generator with internal resistance $2.5\,\Omega$ when it is supplying $4.2\,\mathrm{A}$.

Gameboard:

STEM SMART Physics 30 - Complicated circuits

<u>Home</u>

<u>Gameboard</u>

Physics

Electricity Power

Power in a Potential Divider 10.8

Power in a Potential Divider 10.8

A $\varepsilon=5.4\,\mathrm{V}$ power supply (with $r=8.0\,\Omega$) powers a $50\,\Omega$ phone. A voltmeter (with resistance $200\,\Omega$) is connected to measure V.

$\mathbf{Part}\,\mathbf{A} \quad \mathbf{Voltage}\,V$

How much voltage V is measured across the phone?

Part B Power delivered

Calculate the power delivered to the phone.

Gameboard:

STEM SMART Physics 30 - Complicated circuits

Home Gameboard Physics Electricity Resistors Non-linear I-V

Non-linear I-V

The circuit below contains a metal oxide rod, represented by a dashed line. The potential difference (in volts) across the rod is given by $V=0.200I^2$ where I is the current (in amps) through the rod. This relationship is only valid for I>0.

Figure 1: Circuit diagram showing how the rod, resistors and cell are connected to each other.

Given that $R_1=3.00\,\Omega$, $R_2=2.00\,\Omega$ and $V_{\sf in}=6.00\,
m V$ what is the total current drawn from the cell?

Adapted with permission from UCLES, A Level Physics, June 1961, Paper 3, Question 8

Gameboard:

STEM SMART Physics 30 - Complicated circuits

<u>Home</u> <u>Gameboard</u> Physics Electricity Resistors Transforming Resistors

Transforming Resistors

The two resistor networks below can be called equivalent if they have the same electrical properties when viewed between any two of the terminals A, B or C. $R_{\rm a}$, $R_{\rm b}$ and $R_{\rm c}$ can be given values based on the values of $R_{\rm x}$, $R_{\rm y}$ and $R_{\rm z}$ in order to make the two networks equivalent.

Figure 1: Two resistor networks.

Part A Expression for R_{a}

If the two resistor networks of **Figure 1** are equivalent, find an expression for R_a in terms of R_x , R_y and R_z .

The following symbols may be useful: R_a, R_x, R_y, R_z

Part B A circuit

Figure 2: A circuit with two cells and five resistors.

Using the transformation and your result from Part A, or otherwise, work out the value of the current I_1 in the circuit of **Figure 2**. You are given that $R_1=1.0\,\Omega$, $R_2=R_4=R_5=3.0\,\Omega$, $R_3=2.0\,\Omega$, $V_1=22\,\mathrm{V}$ and $V_2=11\,\mathrm{V}$.

Created for isaacphysics.org by Dominic Lyons

Gameboard:

STEM SMART Physics 30 - Complicated circuits

<u>Home</u> <u>Gameboard</u> Physics Electricity Resistors Cube of Resistors

Cube of Resistors

Imagine a cube of resistors, where each edge of the cube is a resistor of resistance 1Ω . In this question we will find the equivalent resistance between different vertices.

Figure 1: A cube of 1Ω resistors. Six of the twelve edges are labelled; all have the same resistance. Four of the vertices are labelled.

Part A Resistance across main diagonal

What is the equivalent resistance between two vertices on the main diagonal, e.g. between points A and B in **Figure 1**? Give your answer to 3 s.f.

Part B Resistance across diagonal of a face

What is the equivalent resistance between two vertices on the diagonal of a face, e.g. between points A and C in **Figure 1**? Give your answer to 3 s.f.

Part C Resistance between adjacent vertices

What is the equivalent resistance between two adjacent vertices, e.g. between points A and D in **Figure 1**? Give your answer to 3 s.f.

Created for isaacphysics.org by Ben Blayney

Gameboard:

STEM SMART Physics 30 - Complicated circuits

<u>Home</u> <u>Gameboard</u> Physics Electricity Resistors Rambunctious Resistors

Rambunctious Resistors

The circuit diagram below shows a combination of resistors with equivalent resistance $R_{\sf eq}=37.0\,\Omega.$

Figure 1: Circuit diagram showing how the resistors are arranged and the values of the resistances. The unknown resistor has resistance R_{x} .

What value of resistance R_{x} for the unknown resistor satisfies this value for the equivalent resistance?

Created for isaacphysics.org by Ben Blayney