D1

In [1]: import pandas as pd
 import numpy as np
 import matplotlib.pyplot as plt
 import seaborn as sns

In [2]: df=pd.read_csv(r"C:\Users\user\Downloads\1_fiat500_VehicleSelection_Dataset.csv
df

Out[2]:

		ID	model	engine_power	age_in_days	km	previous_owners	lat	I
	0	1.0	lounge	51.0	882.0	25000.0	1.0	44.907242	8.6115598
	1	2.0	рор	51.0	1186.0	32500.0	1.0	45.666359	12.241889
	2	3.0	sport	74.0	4658.0	142228.0	1.0	45.503300	11.417
	3	4.0	lounge	51.0	2739.0	160000.0	1.0	40.633171	17.634609
	4	5.0	pop	73.0	3074.0	106880.0	1.0	41.903221	12.495650
15	544	NaN	NaN	NaN	NaN	NaN	NaN	NaN	lenç
15	45	NaN	NaN	NaN	NaN	NaN	NaN	NaN	con
15	46	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Null valı
15	47	NaN	NaN	NaN	NaN	NaN	NaN	NaN	fi
15	48	NaN	NaN	NaN	NaN	NaN	NaN	NaN	seai
154	49 r	ows ×	: 11 colu	ımns					
4									>

In [3]: df.head(10)

Out[3]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon
0	1.0	lounge	51.0	882.0	25000.0	1.0	44.907242	8.611559868
1	2.0	рор	51.0	1186.0	32500.0	1.0	45.666359	12.24188995
2	3.0	sport	74.0	4658.0	142228.0	1.0	45.503300	11.41784
3	4.0	lounge	51.0	2739.0	160000.0	1.0	40.633171	17.63460922
4	5.0	pop	73.0	3074.0	106880.0	1.0	41.903221	12.49565029
5	6.0	рор	74.0	3623.0	70225.0	1.0	45.000702	7.68227005
6	7.0	lounge	51.0	731.0	11600.0	1.0	44.907242	8.611559868
7	8.0	lounge	51.0	1521.0	49076.0	1.0	41.903221	12.49565029
8	9.0	sport	73.0	4049.0	76000.0	1.0	45.548000	11.54946995
9	10.0	sport	51.0	3653.0	89000.0	1.0	45.438301	10.99170017
4								+

In [4]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1549 entries, 0 to 1548
Data columns (total 11 columns):

		, .	
#	Column	Non-Null Count	Dtype
0	ID	1538 non-null	float64
1	model	1538 non-null	object
2	engine_power	1538 non-null	float64
3	age_in_days	1538 non-null	float64
4	km	1538 non-null	float64
5	previous_owners	1538 non-null	float64
6	lat	1538 non-null	float64
7	lon	1549 non-null	object
8	price	1549 non-null	object
9	Unnamed: 9	0 non-null	float64
10	Unnamed: 10	1 non-null	object

dtypes: float64(7), object(4)

memory usage: 133.2+ KB

In [5]:

df.describe()

```
Out[5]:
                        ID engine_power age_in_days
                                                            km previous_owners
                                                                                        lat
          count
                1538.000000
                             1538.000000
                                        1538.000000
                                                     1538.000000
                                                                     1538.000000
                                                                                1538.000000
          mean
                 769.500000
                              51.904421
                                        1650.980494
                                                    53396.011704
                                                                       1.123537
                                                                                  43.541361
                               3.988023
                                        1289.522278
                                                    40046.830723
                                                                                   2.133518
           std
                444.126671
                                                                       0.416423
                  1.000000
                              51.000000
                                         366.000000
                                                     1232.000000
                                                                       1.000000
                                                                                  36.855839
           min
           25%
                385.250000
                              51.000000
                                         670.000000
                                                    20006.250000
                                                                       1.000000
                                                                                  41.802990
           50%
                769.500000
                              51.000000
                                        1035.000000
                                                    39031.000000
                                                                       1.000000
                                                                                  44.394096
           75%
                1153.750000
                              51.000000
                                        2616.000000
                                                    79667.750000
                                                                       1.000000
                                                                                  45.467960
           max 1538.000000
                              77.000000
                                        4658.000000
                                                   235000.000000
                                                                       4.000000
                                                                                  46.795612
In [6]: dft=df.drop(["Unnamed: 9","Unnamed: 10"],axis=1)
In [7]:
        dff=dft.dropna()
In [8]:
        dff.isnull().sum()
Out[8]:
        ID
                             0
         model
                             0
                             0
         engine_power
         age_in_days
                             0
                             0
                             0
         previous owners
                             0
         lat
         lon
                             0
         price
                             0
         dtype: int64
In [9]: |dff.columns
dtype='object')
```

In [10]: sns.pairplot(dff)

Out[10]: <seaborn.axisgrid.PairGrid at 0x1ead9000ee0>

In [11]: sns.distplot(dff["km"])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hi stograms).

warnings.warn(msg, FutureWarning)

Out[11]: <AxesSubplot:xlabel='km', ylabel='Density'>

In [13]: sns.heatmap(df1.corr())

Out[13]: <AxesSubplot:>


```
In [16]: from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[16]: LinearRegression()

```
In [18]: coeff = pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

```
Out[18]: Co-efficient

ID 5.096533

engine_power 293.020024

age_in_days 24.738277

previous_owners 5606.894794

lat -243.470544
```

```
In [19]: prediction=lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[19]: <matplotlib.collections.PathCollection at 0x1eadb738a60>


```
In [20]: print(lr.score(x_test,y_test))
```

0.6947791082610598

```
In [21]: | from sklearn.linear model import Ridge, Lasso
In [22]: |rr=Ridge(alpha=10)
         rr.fit(x_train,y_train)
Out[22]: Ridge(alpha=10)
In [23]: |rr.score(x_test,y_test)
Out[23]: 0.6951828056222507
In [24]: | la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[24]: Lasso(alpha=10)
In [25]: |la.score(x_test,y_test)
Out[25]: 0.6948626031682503
In [26]: | from sklearn.linear model import ElasticNet
         en=ElasticNet()
         en.fit(x_train,y_train)
Out[26]: ElasticNet()
In [27]: |print(en.coef_)
             5.23696939 273.84944813
                                         24.87484581 1522.2673386 -222.90936913]
In [28]: |print(en.intercept_)
         1203.3292278990484
In [29]:
         print(en.predict(x_train))
         [26696.67991866 38412.21737543 30675.50598894 ... 32820.37662363
          31448.44004584 32088.92888378]
In [30]:
         print(en.score(x_train,y_train))
         0.6960249553313316
In [31]: | from sklearn import metrics
In [32]: print("Mean Absolytre Error:",metrics.mean_absolute_error(y_test,prediction))
         Mean Absolytre Error: 16187.181219200658
In [33]: print("Mean Square Error:",metrics.mean_squared_error(y_test,prediction))
         Mean Square Error: 526360230.7799673
```

In [34]: print("Root Mean Square Error:",np.sqrt(metrics.mean_absolute_error(y_test,prediction Root Mean Square Error: 127.2288537211613
In []: