Deep Learning paper review

Improving Language Understanding by Generative Pre-Training

인천대학교 컴퓨터공학부 DILAB 강병하

논문 소개

Improving Language Understanding by Generative Pre-Training

Alec Radford
OpenAIKarthik Narasimhan
OpenAITim Salimans
OpenAIIlya Sutskever
OpenAIalec@openai.comOpenAIOpenAItim@openai.comilyasu@openai.com

- Open AI가 2018년 6월 발표
- GPT-1 논문 (Generative Pre-Training → GPT)
- 특정 task에만 특화된 모델이 아니라 광범위한 task를 처리할 수 있는 **다재다능**한 모델을 만들 수 없을까? 의 출발점
- 이후 GPT-2(2019)와 GPT-3(2020)가 공개

Background : 왜 Generative Model이 적합한가?

✓ Discriminative Model

titanic dataset

PassengerId	Survived	Pclass	Name	Sex	Age
1	0	3	Braund, Mr. Owen Harris	male	22
2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Thayer)	female	38
3	1	3	Heikkinen, Miss. Laina	female	26
4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35
5	0	3	Allen, Mr. William Henry	male	35

✓ Generative Model

- 클래스간 차이에 주목(boundaries)
- 과적합 되기 쉬움
- Labeled data에 적합

Discriminative

- 클래스별 분포에 주목
- Unlabeled data에 적합
- Data가 충분히 많으면 현실 분포와
 매우 유사한 확률 분포 학습

GPT 등장 배경

(기존)태스크별로 별도의 데이터셋으로 학습 → 태스크별 labeled data 필요 → 시간・비용↑

반면 디지털 세상에 unlabeled data는 매우 풍부

다양하고 방대한 raw text**로 g**enerative **p**re-**t**raining **>** 태스크마다 개별적으로 fine-tuning

소규모의 labeled 데이터만 있으면 됨.

미세조정 (태스크별 훈련)

사전학습 (언어 이해)

textual entailment

question answering

semantic similarity assessment

document classification

:

Pre-train의 문제

Pre-trained Word embedding

- Word2Vec
- Glove

다양한 task에서의 성능 향상

(-) 단어 레벨 이상의 의미를 파악하기에는 어려움

- ✓ Unlabeled Text에서 단어 레벨 이상(구, 문장, 스토리)의 정보를 추출하자!
 - 어떤 목적함수(optimization objective)를 사용해야 하는가?
 - 학습된 표현을 transfer하는 가장 효과적인 방법은 무엇인가?

GPT의 기본 아이디어

목표 : 다양한 Task에 적용할 수 있는 universal representation을 학습 ← 언어 자체에 대한 이해

2단계

- 1. Unlabeled Text로 **언어 모델링** 학습 진행 with Transformer 디코더
- 2. Task별 labeled dataset으로 지도학습 진행 ← 각 태스크별 input transformations
 - Natural Language Inference
 - Semantic Similarity
 - Question Answering and Commonsense Reasoning
 - Classification

Unsupervised pre-training

일반적인 언어 모델링 objective 사용

$$L_1(\mathcal{U}) = \sum_{i} \log P(u_i|u_{i-k}, \dots, u_{i-1}; \Theta)$$

L1의 likelihood를 최대화 하는 것이 목적 in **pre-training**

 \mathcal{U} : 말뭉치 토큰(unlabeled)

k : Context window size

(): 파라미터

Unsupervised pre-training: Transformer Decoder

multi-layer(12개) Transformer 디코더 사용

토큰들의 context vector

$$h_0 = UW_e + W_p$$

토큰 임베딩 위치 임베딩

 $h_l = \mathtt{transformer_block}(h_{l-1}) \forall i \in [1, n]$

$$P(u) = \mathtt{softmax}(h_n W_e^T)$$

Figure 1: The Transformer - model architecture.

Output Probabilities

Unsupervised pre-training: Masked Self-Attention

Transformer 디코더의 Masked Self-Attention

: 앞의 단어만 가지고 다음 단어 예측 → LM

→ 이후 GPT의 Text Generation 능력의 이유

Supervised fine-tuning

Pre-train을 통해 초기화된 파라미터를 각 Task별로 fine-tuning

 h_l^m : 마지막 Transformer 블록의 출력

 W_y : linear layer의 가중치

Only extra parameter

$$L_2(\mathcal{C}) = \sum_{(x,y)} \log P(y|x^1, \dots, x^m)$$

L2의 likelihood를 **최대화** 하는 것이 목적 in **fine-tuning**

Text

Start

Classification

Extract Transformer Linear

 \mathcal{C} : labeled dataset

Supervised fine-tuning: auxiliary objective

Fine-tuning에서 L1을 함께 사용 → 학습에 도움

$$L_3(\mathcal{C}) = L_2(\mathcal{C}) + \lambda * L_1(\mathcal{C})$$
가중치

Labeled Corpus에 대한 LM도 함께 업데이트

helped learning by (a) improving generalization of the supervised model, and (b) accelerating convergence. This is in line with prior work [50, 43], who also observed improved performance with

- 다운 스트림 Task에 대한 일반적 성능 향상
- 학습 속도 향상

Task-specific input transformations

모델의 수정을 최소화하기 위해 구조화된 입력(Task마다 다름)을 사용

데이터셋

| Pre-train(Unlabeled)

✓ BooksCorpus dataset

7,000 unique unpublished books from a variety of genres (어드벤처, 판타지, 로맨스)

Fantasy, and Romance. Crucially, it contains long stretches of contiguous text, which allows the generative model to learn to condition on long-range information. An alternative dataset, the 1B

✓ 1B Word Benchmark (alternative, ELMo에서 사용됨)

| Fine-tuning(labeled)

Task	Datasets
Natural language inference	SNLI [5], MultiNLI [66], Question NLI [64], RTE [4], SciTail [25]
Question Answering	RACE [30], Story Cloze [40]
Sentence similarity	MSR Paraphrase Corpus [14], Quora Question Pairs [9], STS Benchmark [6]
Classification	Stanford Sentiment Treebank-2 [54], CoLA [65]

실험 결과 : Natural language Inference

두 쌍의 문장의 관계(entailment or contradiction or neutral)

The president was assassinated.

entailment

• The president is **dead**.

Method	MNLI-m	MNLI-mm	SNLI	SciTail	QNLI	RTE
ESIM + ELMo [44] (5x)	_	-	89.3	-	-	-
CAFE [58] (5x)	80.2	79.0	<u>89.3</u>	-	-	-
Stochastic Answer Network [35] (3x)	<u>80.6</u>	<u>80.1</u>	-	-	-	-
CAFE [58]	78.7	77.9	88.5	83.3		
GenSen [64]	71.4	71.3	-	-	82.3	59.2
Multi-task BiLSTM + Attn [64]	72.2	72.1	-	-	82.1	61.7
Finetuned Transformer LM (ours)	82.1	81.4	89.9	88.3	88.1	56.0

평가지표로 accuracy 사용

실험 결과 - Question Answering and Commonsense Reasoning

Method	Story Cloze	RACE-m	RACE-h	RACE
val-LS-skip [55]	76.5	-	-	-
Hidden Coherence Model [7]	<u>77.6</u>	-	-	-
Dynamic Fusion Net [67] (9x)	-	55.6	49.4	51.2
BiAttention MRU [59] (9x)	-	<u>60.2</u>	<u>50.3</u>	<u>53.3</u>
Finetuned Transformer LM (ours)	86.5	62.9	57.4	59.0

실험 결과 - Semantic similarity

Method	Classification		Seman	GLUE		
	CoLA (mc)	SST2 (acc)	MRPC (F1)	STSB (pc)	QQP (F1)	
Sparse byte mLSTM [16]	-	93.2	-	-	-	-
TF-KLD [23]	-	-	86.0	-	-	-
ECNU (mixed ensemble) [60]	-	-	-	<u>81.0</u>	-	-
Single-task BiLSTM + ELMo + Attn [64] Multi-task BiLSTM + ELMo + Attn [64]	35.0 18.9	90.2 91.6	80.2 83.5	55.5 72.8	66.1 63.3	64.8 68.9
Finetuned Transformer LM (ours)	45.4	91.3	82.3	82.0	70.3	72.8

분석: Impact of number of layers transferred

Pre-trained 모델의 디코더 블록의 수↑ → Accuracy↑

12개부터 성능 향상이 완만해짐 → 12개 사용

분석: Zero-shot Behaviors

Zero-shot (without supervised fine-tuning)

Generative Pre-training이 광범위한 작업에 유용

분석: Various Model Ablations

Method	Avg. Score	CoLA (mc)	SST2 (acc)	MRPC (F1)	STSB (pc)	QQP (F1)	MNLI (acc)	QNLI (acc)	RTE (acc)
Transformer w/ aux LM (full)	74.7	45.4	91.3	82.3	82.0	70.3	81.8	88.1	56.0
Transformer w/o pre-training Transformer w/o aux LM LSTM w/ aux LM	59.9 75.0 69.1	18.9 47.9 30.3	84.0 92.0 90.5	79.4 84.9 83.2	30.9 83.2 71.8	65.5 69.8 68.1	75.7 81.1 73.7	71.2 86.9 81.1	53.8 54.4 54.6

데이터셋이 큰 경우: Fine-tuning 중, LM을 목적함수로 함께 사용 \rightarrow 성능 향상 $L_3(\mathcal{C}) = L_2(\mathcal{C}) + \lambda * L_1(\mathcal{C})$

데이터셋이 작은 경우: Fine-tuning 중, LM을 목적함수로 함께 사용 X → 성능 향상

데이터셋이 작다면 LM을 Labeled Corpus로 fine-tuning하지 않는 것이 좋다 $L_2(\mathcal{C}) = \sum_{(x,y)} \log P(y|x^1,\dots,x^m)$

결론

- generative pre-training과 개별적 fine-tuning을 통해 특정 task에 국한되지 않는 모델이 가능함을 보임
- Labeled 데이터를 구축하기 위한 시간, 비용 ↓
- 제로-샷 모델의 첫 걸음
- 이후 GPT-2, GPT-3 파라미터 수 증가(117M → 345M → 1,542M)
 - → 미세 조정 지분 감소(거의 혹은 전혀)