Санкт-Петербургский Политехнический Университет Петра Великого Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

Телекоммуникационные технологии

Отчет по лабораторной работе №4

Аналоговая модуляция

Работу выполнил: Вашуров А., гр 33501.4 Преподаватель: Богач Н.В.

Санкт-Петербург 2017

Оглавление

Цель работы	3
Постановка задачи	3
Теоретический раздел	3
Ход работы	6
Выводы	16
Приложение	17

1. Цель работы

Изучение амплитудной модуляции/демодуляции сигнала.

2. Постановка задачи

- 1) Сгенерировать однотональный сигнал низкой частоты.
- 2) Выполнить амплитудную модуляцию (АМ) сигнала по закону

$$u(t) = (1 + MU_m \cos(\Omega t))^* \cos(\omega_0 t + \phi_0)$$

для различных значений глубины модуляции М. Использовать встроенную функцию MatLab ammod 1

- 3) Получить спектр модулированного сигнала.
- 4) Выполнить модуляцию с подавлением несущей

$$u(t) = MU_m \cos(\Omega t) \cos(\omega_0 t + \phi_0)$$
. Получить спектр.

5) Выполнить однополосную модуляцию:

u(t) = U_m cos(Ωt) cos (
$$\omega_0$$
t+ φ_0) + (U_m/2) $\sum_{n=1}^N M_n$ (cos(ω_0 + Ω_n) t + φ_0 + φ_n) положив n=1

- 6) Выполнить синхронное детектирование и получить исходный однополосный сигнал.
- 7) Рассчитать КПД модуляции

$$\eta_A M = U_m^2 M^2 / 4 P_U = M^2 / M^2 + 2$$

3. Теоретический раздел

3.1. Модуляция

Модуляция — это перенос спектра сигналов из низкочастотной области на заданную частоту. Она применяется для передачи сигнала в заданном частотном диапазоне. Для модулирующего (исходного) сигнала S(t) в канале связи для передачи формируется вспомогательный периодический высокочастотный сигнал $u(t) = f(t, [a_1, a_2, ...a_m])$. Параметры a_i определяют форму сигнала. При модуляции исходный сигнал S(t) переносят на один из параметров a_i , форма сигнала u(t) (несущей) изменяется и служит для переноса информации, содержащейся в сигнале S(t). Обратная операция

выделения сигнала S(t) из модулированного сигнала u(t) называется демодуляция.

3.2. Однотональный сигнал

Для генерации гармонического сигнала можно воспользоваться формулой

signal =
$$A*cos(2*\pi*f*t+\phi)$$
,

где A — амплитуда сигнала, f — частота, t — вектор отсчетов времени, ф — смещение по фазе.

3.3. Типы модуляции

Амплитудная модуляция Формула амплитудной модуляции имеет вид

$$u(t) = (1 + MU_{m}cos(\Omega t))cos(\omega_{0}t + \phi_{0})$$
 (1)

Рисунок 3.3.1. Спектр сигнала с амплитудной модуляцией

На графике ω_0 — частота несущей, Ω — частота модуляции.

Амплитудная модуляция имеет низкий КПД, ввиду чего применяется редко.

Амплитудная модуляция с подавлением несущей

Основная мощность амплитудно-модулированного сигнала приходится на несущую частоту. При амплитудной модуляции с подавлением несущей производится перемножение двух сигналов — модулирующего и несущего. В результате несущая частота подавляется. Формула такой модуляции:

$$u(t) = MU_{m}cos(\Omega t)cos(\omega_{0}t + \phi_{0})$$
 (2)

Рисунок 3.3.2. Спектр амплитудно-модулированного сигнала с подавлением несущей.

На графике ω_0 — частота несущей, Ω — частота модуляции. Как видно из рисунка, в спектре отсутствует несущая частота.

Однополосная модуляция

При идентичности информации в группах верхних и нижних боковых частот нет необходимости в их одновременной передаче. Можно удалить одну из боковых частот и получить сигнал с одной боковой полосой (ОБП). Функция сигнала с ОБП имеет вид:

u(t) = U_m cos(Ωt) cos (ω₀t+φ₀) + (U_m/2)
$$\sum_{n=1}^{N} M_n$$
 (cos(ω₀ + Ω_n)t + φ₀ + φ_n)

Форма ОБП сигнала похожа на форму сигнала с АМ, но ее огибающая имеет меньшую амплитуду. Для демодуляции ОБП сигнала может использоваться как двухполупериодное, так и синхронное детектирование, со всеми особенностями, присущими этим методам. Результаты демодуляции отличаются от демодуляции АМ сигналов только меньшей амплитудой выходных сигналов.

n=1

Рисунок 3.3.3. Спектр однополосно-модулированного сигнала

3.4 Демодуляция с помощью синхронного детектирования

При синхронном детектировании модулированный сигнал умножается на опорное колебание с частотой несущего колебания:

$$y(t) = U(t)\cos(\omega_0 t)\cos(\omega_0 t) = \frac{U(t)}{2}(1 + \cos(2\omega_0 t))$$
(4)

Сигнал разделяется на два слагаемых, первое из которых повторяет исходный модулирующий сигнал, а второе повторяет модулированный сигнал на удвоенной несущей частоте $2\omega_0$.

Амплитудный спектр сигналов после демодуляции однозначно соотносится со спектром входного модулированного сигнала: амплитуды гармоник модулированного сигнала на частоте $2\omega_0$ в два раза меньше амплитуд входного сигнала, постоянная составляющая равна амплитуде несущей частоты ω_0 и не зависит от глубины модуляции, амплитуда информационного демодулированного сигнала в два раза меньше амплитуды исходного модулирующего сигнала.

Особенностью синхронного детектирования является независимость от глубины модуляции, т.е. коэффициент модуляции сигнала может быть больше единицы. При синхронном детектировании требуется точное совпадение фаз и частот опорного колебания демодулятора и несущей гармоники АМ сигнала.

3.5. КПД модуляции

КПД амплитудной модуляции зависит от коэффициента модуляции и может быть рассчитан по формуле:

$$\eta_A M = U_m^2 M^2 / 4 P_U = M^2 / M^2 + 2$$

4. Ход работы

Листинги программ представлены ниже в Приложении.

4.1 Генерация однотонального сигнала

С помощью формулы $s(t) = A * cos(2 * \pi * f * t + \phi)$ получим гармонический сигнал

Рисунок 4.1.1. Однотональный гармонический сигнал

Рисунок 4.1.2. Спектр однотонального гармонического сигнала

4.2 Амплитудная модуляция

Для сгенерированного однотонального сигнала получим амплитудную модуляцию с различными коэффициентами модуляции М (соотношением амплитуды модулирующего сигнала и амплитуды несущей). Так же для каждого модулированного сигнала построим спектр. Кроме гармоники информационного сигнала в спектре видно две гармоники несущего сигнала по бокам.

1. Коэффициент М = 0.2

Рисунок 4.2.1. Амплитудно-модулированный сигнал

Рисунок 4.2.2. Спектр амплитудно-модулированного сигнала

2. Коэффициент М = 1.0

Рисунок 4.2.3. Амплитудно-модулированный сигнал

Рисунок 4.2.4. Спектр амплитудно-модулированного сигнала

3. Коэффициент М = 5.0

Рисунок 4.2.5. Амплитудно-модулированный сигнал

Рисунок 4.2.6. Спектр амплитудно-модулированного сигнала

При M>1 имеем случай перемодуляции, при M=1 - случай глубокой модуляции, а при M<1 - обычный случай модуляции без совмещений полупериодов гармонического сигнала огибающей.

4.3 Амплитудная модуляция с подавлением несущей

Подавление несущей осуществляется узкополосной фильтрацией сигнала на частоте информационного. Сигнал с АМ с подавлением несущей и его спектр представлены на рисунках ниже

Рисунок 4.3.1. Амплитудно-модулированный сигнал с подавлением несущей

Рисунокс 4.3.2. Спектр амплитудно-модулированного сигнала с подавлением несущей

Подавление несущей приводит к тому, что основная мощность сигнала (приходящаяся на несущую гармонику) фильтруется. Демодулировать такой сигнал невозможно, поэтому применяют частичную фильтрацию, то есть сохранение амплитуды несущей гармоники ненулевой, но более низкой, чем у информационной составляющей.

4.4. Однополосная амплитудная модуляция

Помимо подавления несущей, можно избавиться от лишней (дублирующейся) боковой полосы спектра с помощью фильтра низких частот. Модулированный сигнал и его спектр представлены на рисунках ниже

Рисунок 4.4.1. Однополосно-модулированный сигнал

Рисунок 4.4.2. Спектр однополосно-модулированного сигнала

Спектр содержит одну полосу, что соответствует однополосной амплитудной модуляции.

4.5. Демодуляция с помощью синхронного детектирования

Произведем демодуляцию сигналов с разными коэффициентами модуляции.

1. Коэффициент М = 0.2

Рисунок 4.5.1. Демодулированный сигнал

Рисунок 4.5.2. Спектр демодулированного сигнала

2. Коэффициент М = 1.0

Рисунок 4.5.3. Демодулированный сигнал

Рисунок 4.5.4. Спектр демодулированного сигнала

3. Коэффициент М = 5.0

Рисунок 4.5.5. Демодулированный сигнал

Рисунок 4.5.6. Спектр демодулированного сигнала

Судя по рисункам, нелинейные искажения сигнала при демодуляции тем незначительнее, чем больше коэффициент модуляции. В спектре демодулированного сигнала видны искажения в области низких частот, но с увеличением коэффициента модуляции они уменьшаются.

4.6. КПД модуляции

На рисунке ниже приведена зависимость КПД модуляции от амплитуды модулирующего сигнала (т.е. от коэффициента модуляции).

Рисунок 4.6.1. Зависимость КПД от амплитуды

5. Выводы

В ходе работы были исследованы виды аналоговой модуляции: амплитудная, однополосная, с подавлением несущей. Для всех типов сигналов были построены спектры, вид которых совпал с ожидаемым для каждого вида модуляции.

Также был рассмотрен способ демодуляции с помощью синхронного детектирования и исследована зависимость КПД модуляции от коэффициента модуляции.

Классическая амплитудная модуляция является неэффективной, т.к. основная спектральная составляющая — несущая, не несет полезной информации и большая часть мощности передатчика при амплитудной модуляции расходуется зря.

6. Приложение

```
function lab tele4()
close all
clc
A = 2;
OMEGA = 3; % Fs
omega_0 = 10; % Fc
Fd = 100;
t = 0:1/Fd:10;
sig_mod = A * cos(OMEGA * t);
signal one tone = figure();
plot(t, sig_mod);
ylim([-2 2]);
title('Модулирующий сигнал');
signal one tone spec = figure();
specplot(sig mod, Fd);
xlim([0 10]);
ylim([0 1000]);
title('Спектр модулирующего сигнала');
am figures = [];
A0 = 1;
phi0 = 0;
d = designfilt('lowpassfir', ...
  'PassbandFrequency', 0.15, 'StopbandFrequency', 0.2, ...
  'PassbandRipple',1,'StopbandAttenuation',20, ...
  'DesignMethod', 'equiripple');
  function [demod f, demod s f] = demodulate(s AM, m name)
    y = s_AM .* cos(2*pi*omega_0 * t);
    z = filtfilt(d, y);
    demod f = figure();
    plot(t, s_AM, '--', t, z);
    title(strcat('Демодулированный сигнал', m name))
    demod_s_f = figure();
    specplot(z, Fd);
    xlim([0 10]);
    title('Спектр демодулированного сигнала')
  function [sAM, mod f, mod s f] = modulate(signal, am,m name)
    sm = am .* signal;
```

```
sAM = ammod(sm, omega 0, Fd, phi0, A0);
    mod_f = figure();
    hold on
    plot(t, sAM);
    plot(t, A0+sm, '--', 'Color', 'red');
    hold off
    title(strcat('Модуляция',m name))
    mod s f = figure();
    specplot(sAM, Fd);
    xlim([0 100]);
    title('Спектр модулированного сигнала')
  end
for am = [0.2, 0.5, 1.0, 2.0, 5.0]
  m_name = strcat(' M = ', num2str(am));
  f name = strcat(' m ',num2str(am));
  f_name = strrep(f_name,'.','_');
  [s AM, mod f, mod s f] = modulate(sig mod,am,m name);
  [demod, demod s] = demodulate(s AM, m name);
  am figures = [am figures; {am, f name, mod f,mod s f,demod, demod s}];
end
Am = 0.1:0.2:10;
M = Am./A0;
kpd = M.^2./(M.^2.+2);
kpd f = figure();
plot(Am, kpd);
xlabel('Амплитуда');
ylabel('КПД')
omega 0 = \text{omega } 0/(2*pi);
s_AM_SC = ammod(sig_mod, omega_0, Fd);
s am f = figure();
plot(t, s_AM_SC,t,sig_mod,'--r');
s am s f = figure();
specplot(s_AM_SC, Fd)
xlim([0 20]);
s AM SSB = ssbmod(sig mod, omega 0, Fd);
s_am_ssb_f = figure();
plot(t, s AM SSB);
s am ssb s f = figure();
specplot(s AM SSB, Fd)
xlim([0 20]);
path = '../fig/';
```

```
function filesave(name,fig)
    full path = strcat(path,name);
    saveas(fig, full_path,'png')
  end
filesave('signal_one_tone',signal_one_tone);
filesave('signal_one_tone_spec',signal_one_tone_spec);
for itm = am_figures'
  name = itm(2);
  names = [
    strcat('mod_sig',name);
    strcat('mod_sig_spec',name);
    strcat('demod_sig',name);
    strcat('demod_sig_spec',name)];
  for i = 1:4
    fig = itm(i+2);
    fig = fig\{1\};
    fname = names(i);
    fname = fname{1};
    filesave(fname, fig)
  end
end
```