Examples in categories

Example 1.0.1. The image of a functor is not necessarily a category Consider the following categories $\mathscr C$ and $\mathscr D$

 $\text{Consider functor } F: \mathscr{C} \rightarrow \mathscr{D}, \ F(A) = E, \ F(B) = F, \ F(C) = F, \ F(D) = G, \ F(f) = h, \ F(g) = i$

Examples in algebra

Example 2.0.1. Suppose $1 \mapsto k$ is an element in $Hom(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/m\mathbb{Z})$, then $m \mid kn \Rightarrow \frac{m}{(n,m)}$ divides $k = \frac{m}{(n,m)}$, thus $k = \frac{im}{(n,m)}$, $i = 0, \dots, (n,m) - 1$, thus $Hom(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/m\mathbb{Z}) \cong \mathbb{Z}/(n,m)\mathbb{Z}$

Consider $\mathbb{Z}/n\mathbb{Z}\otimes\mathbb{Z}/m\mathbb{Z}$, then $n(1\otimes 1)=n\otimes 1=0$, $m(1\otimes 1)=1\otimes m=0$, thus $(n,m)(1\otimes 1)=(rn+sm)(1\otimes 1)=0$

Apply functor $Hom(-,\mathbb{Z}/m\mathbb{Z})$ to short exact sequence $0 \to \mathbb{Z} \xrightarrow{\times m} \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \to 0$, we get a left exact sequence $Hom(\mathbb{Z}/n\mathbb{Z},\mathbb{Z}/m\mathbb{Z}) \to \mathbb{Z}/m\mathbb{Z} \xrightarrow{\times n} \mathbb{Z}/m\mathbb{Z} \to 0$

Apply functor $-\otimes \mathbb{Z}/m\mathbb{Z}$ to short exact sequence $0\to\mathbb{Z}\xrightarrow{\times m}\mathbb{Z}\to\mathbb{Z}/n\mathbb{Z}\to 0$, we get a left exact sequence $\mathbb{Z}/m\mathbb{Z}\xrightarrow{\times n}\mathbb{Z}/m\mathbb{Z}\to\mathbb{Z}/n\mathbb{Z}\otimes\mathbb{Z}/m\mathbb{Z}\to 0$

And the kernel and cokernel of $\mathbb{Z}/m\mathbb{Z} \xrightarrow{\times n} \mathbb{Z}/m\mathbb{Z}$ are both $\mathbb{Z}/(n,m)\mathbb{Z}$

Example 2.0.2. $\mathbb{Q}/\mathbb{Z} \cong \bigoplus_p \mathbb{Z} \left[\frac{1}{p}\right]$

Example 2.0.3. $O(1,1) = \left\{ \begin{pmatrix} \cosh t & \sinh t \\ \sinh t & \cosh t \end{pmatrix} \right\}$

 $R^2=R$

Example 2.0.4. F is a field, $R = \text{End}(F^{\infty}) = \{\text{infinite dimensional matrices}\}$, Consider $R \hookrightarrow R$ by embedding into odd rows and even rows, we have $R^2 \cong R$ as right R modules

Example 2.0.5. $GL(2, \mathbb{F}_2) = SL(2, \mathbb{F}_2) \cong S_3$

Examples in algebraic topology

Example 3.0.1 (A surjective local homeomorphism may not be a covering). $p : \mathbb{R} \setminus \{0\} \to S^1$, or n sheeted cover with a point missing, p is discrete but not proper

Example 3.0.2 (Bundle with fiber isomorphic to vector space but not a vector bundle). $E:=\bigsqcup_{x\in X}\mathbb{R}^n$

Example 3.0.3. $H'_n = H_{k+n}$ also defines a homology theory where the dimension axiom fails

Example 3.0.4 (Hawaiian earring). The **Hawaiian earring** H is the union of circles with radius $\frac{1}{n}$ and centered at $(\frac{1}{n},0)$ with subspace topology in \mathbb{R}^2

Proposition 3.0.5. Hawaiian earring is not a CW complex since it is not locally contractible

Example 3.0.6 (Topologist's sine curve). The topologist's sine curve is

$$T = \left\{ \left(x, \sin\left(rac{1}{x}
ight)
ight) igg| x \in (0, 1]
ight\} \cup \{(0, 0)\}$$

Proposition 3.0.7. The topologist's sine curve T is connected but not path connected

Example 3.0.8 (Warsaw circle). The **Warsaw circle** W is the topologist's sine curve enclosed Bijective map $W \to [0,1)$ is not a homeomorphism, thus not a quotient map. W is weakly homotopic to a point but not homotopic

Example 3.0.9. $X = \mathbb{N}$ with discrete topology, $Y = \{0, 1, \frac{1}{2}, \frac{1}{3}, \cdots\}$ with subspace topology of \mathbb{R} , then $f: X \to Y, n \mapsto \frac{1}{n}$ is a weak homotopy equivalence, however, X, Y are not homotopy equivalent, otherwise suppose $g: X \to Y, h: Y \to X$ such that $hg \simeq 1_X, gh \simeq 1_Y$, suppose $F: Y \times I \to Y$ is a homotopy, then the restriction of F on $\{y\} \times I$ must be a constant map since the connected components of Y are just points, thus F(y,0) = F(y,1), i.e. homotopic maps are in fact the same, for a similar argument on X, we have $hg = 1_X, gh = 1_Y$, thus h is injective which is impossible since $h^{-1}(h(0))$ consists of more then one point

Cofibration counterexample

Example 3.0.10. $D^2 = S^2 \setminus \{N\} \subseteq S^2$ is not a cofibration. $D^2 \setminus \{0\} \subseteq D^2$ is not a cofibration Mapping cylinder of inclusion may have different topology then induced subspace topology **Example 3.0.11.** $A = [-1,0) \cup (0,1], X = [-1,1],$ then the mapping cylinder of the inclusion $A \stackrel{i}{\hookrightarrow} X$ has different topology from the subspace topology $X \times \{0\} \cup A \times I$ induced from $X \times I$

Nonclosed cofibration

Example 3.0.12. $\{a,b\}$ with trivial topology, $\{a\} \subseteq \{a,b\}$ is a nonclosed cofibration since there is a retraction $I \sqcup I \to I \sqcup \{0\}$, $(s,t) \mapsto (s,0)$

Example 3.0.13. The **comb space** is $[(0,0),(1,0)] \bigcup \bigcup_{n=1}^{\infty} [(\frac{1}{n},0),(\frac{1}{n},1)]$

A line with two origins

Example 3.0.14. A topological space with a cell decomposition may not be Hausdorff, consider (-1, 1) with two origins, which has (-1, 0), (0, 1) as 1 cells and two origins as 0 cells

•

Examples in geometry

Definition 4.0.1 ($\mathcal{O}(n)$ bundle over Riemann sphere $S^2 \cong \mathbb{C}P^1$). Suppose $(\mathbb{C}, z \mapsto z)$, $\left(S^2 \setminus 0, z \mapsto \frac{1}{z}\right)$ are the charts coordinate of S^2 with transition map $z \mapsto \frac{1}{z}$ both ways on $\mathbb{C} \setminus 0$, or equivalently $(U_0, [1, z] \mapsto z)$, $(U_1, [z, 1] \mapsto z)$ are the corresponding charts of $\mathbb{C}P^1$ with transition map $z \mapsto \frac{1}{z}$ both ways on $U_0 \cap U_1$, namely, $S^2 \to \mathbb{C}P^1$, $z \mapsto [1, z]$, $\infty \mapsto [0, 1]$ is and isomorphism because of isomorphisms on charts

Now define $\mathcal{O}(n)$ line bundle on S^2 by specify transition functions $g_{10}(z) = z^{-n}$, $g_{01}(z) = z^n$, $\forall z \in \mathbb{C} \setminus 0 \cong U_0 \cap U_1$

Definition 4.0.2 (Tautological line bundle over Riemann sphere). The tautological bundle is $\mathcal{O}(-1)$, tautological bundle is defined as a subspace E of $\mathbb{C}P^1 \times \mathbb{C}^2$ consists of (l, v) with $v \in l$ projects to the first factor, let's figure out the trivializations!

 $\varphi_0: U_0 \times \mathbb{C}^2 \cap E \to \mathbb{C} \times \mathbb{C}, ([1, z], t(1, z)) \mapsto (z, t), \text{ and } \varphi_1: U_1 \times \mathbb{C}^2 \cap E \to \mathbb{C} \times \mathbb{C}, ([z, 1], t(z, 1)) \mapsto (z, t), \text{ since } \varphi_1 \circ \varphi_0^{-1}: (U_0 \cap U_1) \times \mathbb{C}^2 \cap E \to (U_0 \cap U_1) \times \mathbb{C}^2 \cap E, (z, t) \mapsto \left(\frac{1}{z}, zt\right), \text{ the transition function } g_{10}(z) = z$

Remark 4.0.3. $\mathcal{O}(-1)$ doesn't nonzero global section, suppose s is a global section of $\mathcal{O}(-1)$, then $s(x) = (x, f(x)) \in E \hookrightarrow \mathbb{C}P^1 \times \mathbb{C}^2$ is holomorphic, but then image of σ has to be a point, and this point must be zero

Example 4.0.4. We still use U_0, U_1 to denote coordinate charts, φ_0, φ_1 to denote corresponding trivializations

Global sections of $\mathcal{O}=\mathcal{O}(0)$ are exactly holomorphic functions which are just constants, suppose $s:S^2\to\mathcal{O}$ is a section, and $\varphi_0\circ s|_{U_0}(z)=(z,f_0(z)),\ \varphi_1\circ s|_{U_1}\left(\frac{1}{z}\right)=\left(\frac{1}{z},f_1\left(\frac{1}{z}\right)\right)$, then we have $(z,f_1(z))=\varphi_1\circ s|_{U_1}(z)=\varphi_1\circ s|_{U_0}(z)=\varphi_1\circ \varphi_0^{-1}\circ \varphi_0\circ s|_{U_0}(z)=\varphi_1\circ \varphi_0^{-1}(z,f_0(z))=(z,g_{10}(z)f_0(z)), \forall z\in U_0\cap U_1$, thus $f_1(z)=g_{10}(z)f_0(z)=f_0(z)$ which precisely means s correspond to holomorphic function f over $X,f|_{U_0}=f_0,f|_{U_1}=f_1$

Let's show that the canonical bundle (which in the case of a Riemann surface is the same as the cotangent bundle) is $\mathcal{O}(-2)$, since $d\left(\frac{1}{z}\right) = -\frac{1}{z^2}dz$, the transition function would be $g_{10}(z) = -z^2$, but using dz or -dz as the a basis element would be isomorphic

Proposition 4.0.5. $H^0(CP^1, \mathcal{O}(n))$, the vector space of global sections of $\mathcal{O}(n) \to \mathbb{C}P^1, n \geq 0$ generated by homogeneous polynomials $z_0^n, z_0^{n-1}z_1, \dots, z_0z_1^{n-1}, z_1^n$

Proof. $z_0^k z_1^{n-k}$ have the forms z_1^{n-k} and z_0^k in U_0 and U_1

Example 4.0.6 (Line bundles on the projective space $\mathbb{C}P^n$). Suppose $(U_0, [1, z_1, \dots, z_n] \mapsto (z_1, \dots, z_n))$, $(U_n, [z_0, z_1, \dots, z_{n-1}, 1] \mapsto (z_0, \dots, z_{n-1}))$ be coordinate charts of $\mathbb{C}P^n$, with transition map

 $U_i \cap U_j \to U_i \cap U_j$, $\left(\frac{z_0}{z_i}, \cdots, \frac{\widehat{z_i}}{z_i}, \cdots, \frac{z_n}{z_i}\right) \mapsto \left(\frac{z_0}{z_j}, \cdots, \frac{\widehat{z_j}}{z_j}, \cdots, \frac{z_n}{z_j}\right)$, which is kind of like multiply by $\frac{z_i}{z_j}$, then the line bundle $\mathcal{O}(m)$ is defined by transition function $g_{ji} = \frac{z_j}{z_i}$ which satisfies the cocycle condition

Similarly, we can check that the tautological bundle $E = \{(l, v) | v \in l\} \subset \mathbb{C}P^n \times \mathbb{C}^{n+1}$ projects to $\mathbb{C}P^n$ is $\mathcal{O}(1)$

It is obvious that any degree n polynomial are global section of $\mathcal{O}(n)$

Examples in Lie groups and Lie algebras

Example 5.0.1. X is topological space, End(X) is a unital nonassociative \mathbb{R} algebra which is not symmetric, antisymmetric, nor does it satisfy Jacobi identity

Example 5.0.2. Consider $C^{\infty}(M)$ where M is a smooth manifold, then $\mathcal{L}(M) = Der(C^{\infty}(M))$ consists of vector fields, it is a Lie algebra, hence we can think of derivations as linear differential operator of order 1, then we know that the commutator of two such operators is again a linear differential operator of order 1

Example 5.0.3. Let \mathfrak{g} be a Lie algebra, then ideals of \mathfrak{g} precisely the Lie algebra subrepresentations of the adjoint representation (ad, \mathfrak{g})

Example 5.0.4 (Lie algebra of $M_n(\mathbb{R})$). Suppose $X = \sum_{i,j} X_{ij} \frac{\partial}{\partial x_{ij}}$ is a left invariant

$$X_{kl}(A) = \sum_{i,j} X_{ij}(A) \frac{\partial x_{kl}}{\partial x_{ij}}(A)$$

$$= X_A(x_{kl}) = (L_A)_0 X_0(x_{kl})$$

$$= X_0(x_{kl} \circ L_A)$$

$$= \sum_{i,j} X_{ij}(0) \frac{\partial (x_{kl} \circ L_A)}{\partial x_{ij}}(0)$$

$$= X_{kl}(0)$$

Thus X_{ij} are constants

$$[X,Y] = \left[\sum_{i,j} X_{ij} \frac{\partial}{\partial x_{ij}}, \sum_{k,l} Y_{kl} \frac{\partial}{\partial x_{kl}} \right]$$

$$= \sum_{i,j,k,l} X_{ij} Y_{kl} \left[\frac{\partial}{\partial x_{ij}}, \frac{\partial}{\partial x_{kl}} \right]$$

$$= \sum_{i,j} X_{ij} Y_{ij} \left[\frac{\partial}{\partial x_{ij}}, \frac{\partial}{\partial x_{kl}} \right]$$

$$= 0$$

Therefore $\operatorname{Lie}(M_n(\mathbb{R})) = 0$

Example 5.0.5 (Lie algebra of $GL(n,\mathbb{R})$). Suppose $X = \sum_{i,j} c_{ij} \frac{\partial}{\partial x_{ij}}$ is a left invariant field

$$c_{kl}(A) = \sum_{i,j} c_{ij}(A) \frac{\partial x_{kl}}{\partial x_{ij}}(A)$$

$$= X_A(x_{kl}) = (L_A)_I X_I(x_{kl})$$

$$= X_I(x_{kl} \circ L_A)$$

$$= \sum_{i,j} c_{ij}(I) \frac{\partial (x_{kl} \circ L_A)}{\partial x_{ij}}(I)$$

$$= \sum_{i} a_{ki} c_{il}(I)$$

Hence C(A) = AC(I), $\frac{\partial c_{kl}}{\partial x_{ij}} = \delta_{ki}c_{jl}(I)$

$$\begin{split} [X,Y] &= \left[\sum_{i,j} c_{ij} \frac{\partial}{\partial x_{ij}}, \sum_{k,l} d_{kl} \frac{\partial}{\partial x_{kl}} \right] \\ &= \sum_{i,j,k,l} \left[c_{ij} \frac{\partial}{\partial x_{ij}}, d_{kl} \frac{\partial}{\partial x_{kl}} \right] \\ &= \sum_{i,j,k,l} c_{ij} \frac{\partial}{\partial x_{ij}} \left(d_{kl} \frac{\partial}{\partial x_{kl}} \right) - d_{kl} \frac{\partial}{\partial x_{kl}} \left(c_{ij} \frac{\partial}{\partial x_{ij}} \right) \\ &= \sum_{i,j,k,l} c_{ij} \left(\frac{\partial d_{kl}}{\partial x_{ij}} \frac{\partial}{\partial x_{kl}} + d_{kl} \frac{\partial^2}{\partial x_{ij} \partial x_{kl}} \right) - d_{kl} \left(\frac{\partial c_{ij}}{\partial x_{kl}} \frac{\partial}{\partial x_{ij}} + c_{ij} \frac{\partial^2}{\partial x_{ij} \partial x_{kl}} \right) \\ &= \sum_{i,j,k,l} c_{ij} \frac{\partial d_{kl}}{\partial x_{ij}} \frac{\partial}{\partial x_{kl}} - d_{kl} \frac{\partial c_{ij}}{\partial x_{kl}} \frac{\partial}{\partial x_{kl}} \frac{\partial}{\partial x_{ij}} \\ &= \sum_{i,j,k,l} c_{ij} \frac{\partial d_{kl}}{\partial x_{ij}} \frac{\partial}{\partial x_{kl}} - \sum_{i,j,k,l} d_{ij} \frac{\partial c_{kl}}{\partial x_{ij}} \frac{\partial}{\partial x_{kl}} \\ &= \sum_{i,j,k,l} c_{ij} \frac{\partial d_{kl}}{\partial x_{ij}} - d_{ij} \frac{\partial c_{kl}}{\partial x_{ij}} \right) \frac{\partial}{\partial x_{kl}} \\ &= \sum_{i,j,k,l} \left(c_{ij} \frac{\partial d_{kl}}{\partial x_{ij}} - d_{ij} \frac{\partial c_{kl}}{\partial x_{ij}} \right) \frac{\partial}{\partial x_{kl}} \\ &= \sum_{j,k,l} \left(c_{kj} d_{jl} - d_{kj} c_{jl} \right) \frac{\partial}{\partial x_{kl}} \\ &= \sum_{k,l} \left(\sum_{j} c_{kj} d_{jl} - d_{kj} c_{jl} \right) \frac{\partial}{\partial x_{kl}} \\ &= \sum_{k,l} \left(\sum_{j} c_{kj} d_{jl} - d_{kj} c_{jl} \right) \frac{\partial}{\partial x_{kl}} \end{aligned}$$

Here B = [C, D]. Therefore $\text{Lie}(GL(n, \mathbb{R})) = \mathfrak{gl}(n, \mathbb{R})$

Example 5.0.6. Consider the $\Phi: GL(n,\mathbb{R}) \to M_n(\mathbb{R}), A \mapsto A^TA$ which is a smooth map, and level set $\Phi^{-1}(I) = O(n,\mathbb{R})$ is the orthogonal group, to show this is a Lie subgroup, thanks to Theorem ??, it suffices to show Φ is of constant rank, but Φ is equivariant assuming $GL(n,\mathbb{R})$ acts on itself by right multiplication and acts on $M_n(\mathbb{R})$ by $X \cdot A = A^TXA, X \in M_n(\mathbb{R}), A \in GL(n,\mathbb{R})$, since $\Phi(A) \cdot B = B^TA^TAB = \Phi(AB)$ $(d\Phi)_I(B) = B^T + B$, and $T_I(O(n,\mathbb{R})) = \ker(d\Phi)_I = \{B \in M(n,\mathbb{R}) | B^T + B = 0\}$

Examples in algebraic geometry

Example 6.0.1. Suppose $V\subseteq \mathbb{A}^n$ is an affine variety, $m_P\in \mathrm{Spm} k[V],\ k[V]_{m_P}$ is the stalk of the sheaf of regular functions. Tow representatives $\frac{f}{u},\frac{g}{v}$ are of the same germ $\Leftrightarrow \frac{f}{u}=\frac{g}{v}$ on D(wuv) for some $w(P)\neq 0 \Leftrightarrow w(fv-gu)=0$

Example 6.0.2.

Examples in analysis

Example 7.0.1. $D \subseteq \mathbb{C}$ is the unit disc, $f(z) = \sum_{n=0}^{\infty} \frac{z^{2^n}}{n^2}$ is continuous on \overline{D} and holomorphic on D but not on any point on ∂D

Example 7.0.2 (Tractrix). An interval I with one end point pushed or dragged along the x axis gives a **Tractrix**. The velocity has the same direction as I, i.e. $\frac{dx}{dy} = \pm \frac{\sqrt{a^2 - y^2}}{y}$, which gives solution $x = \pm \left(\ln \frac{a + \sqrt{a^2 - y^2}}{y} - \sqrt{a^2 - y^2} \right)$

