Analisi Matematica 2 – 8 giugno 2023 – Ing. Informatica Proff. Garrione - Gazzola - Noris - Piovano

Cognome:	Nome:	Matricola:

Parte A	Es.1	Es.2	Es.3	Totale

Per superare l'esame devono essere raggiunte le seguenti soglie: parte $A \ge 4$, parte $B \ge 12$, totale ≥ 18 . Tempo di svolgimento complessivo delle parti A+B = 100 minuti.

PARTE A. Domanda aperta (4 punti). Sia $f:A\subset\mathbb{R}^2\to\mathbb{R}$, con A aperto, e sia $(x_0,y_0)\in A$. Scrivere la definizione di differenziabilità per f in (x_0, y_0) e dimostrare che se f è differenziabile in (x_0, y_0) allora è continua in tale punto.

Domande a risposta multipla $(4 \times 1 = 4 \text{ punti})$: una sola è corretta.

- (1) Sia $a_0 + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx))$ la serie di Fourier della funzione $f(x) = \cos x \sin x$. Allora: (a) $a_2 = b_2 = 1/2$ (b) $a_2 = b_2 = 0$ (c) $a_2 = 0$ e $b_2 = 1$ (d) $a_2 = 0$ e $b_2 = 1/2$
- (2) Siano $E \subset \mathbb{R}^2$ e $x_0 \in \mathbb{R}^2$. Allora:
- (a) se $x_0 \in E$, allora x_0 è un punto interno ad E (b) se $x_0 \in \partial E$, allora $x_0 \notin E$
- (c) se x_0 è un punto esterno ad E, allora $x_0 \notin E$ (d) nessuna delle altre
- (3) Sia $f: \mathbb{R}^2 \to \mathbb{R}$ di classe C^2 e sia $x_0 \in \mathbb{R}^2$ un suo punto critico. Si denoti con $H_f(x_0)$ la matrice Hessiana di f calcolata in x_0 . Allora:
- (a) se 2 è un autovalore di $H_f(x_0)$, allora x_0 non può essere un punto di massimo relativo per f
- (b) se det $H_f(x_0) < 0$, il punto x_0 può essere un punto di minimo relativo per f
- (c) se i termini sulla diagonale principale di $H_f(x_0)$ sono gli unici nulli, x_0 può essere estremo relativo per f
- (d) nessuna delle altre
- (4) Sia $\varphi:[0,2\pi]\to\mathbb{R}^2$ definita da $\varphi(t)=(\cos t,\sin t)$. Quale tra le seguenti curve percorre il sostegno di φ due volte in senso orario, mantenendo il punto iniziale e il punto finale di φ ?
- (a) $\psi(s) = (\cos s, -\sin s), s \in [0, \pi]$ (b) $\psi(s) = (\cos(2s), -\sin(2s)), s \in [0, 2\pi]$ (c) $\psi(s) = (\cos(2s), -\sin(2s)), s \in [0, 2\pi]$ $s \in [0, \pi]$ (d) $\psi(s) = (\cos s, -\sin s), s \in [0, 2\pi]$

PARTE B. Esercizi $(3 \times 8 = 24 \text{ punti})$

Esercizio 1 (a) (4 punti) Determinare l'integrale generale dell'equazione differenziale $y''(t)+2y'(t)+y(t)=e^{-2t}$. (b) (2 punti) Stabilire se tale equazione possieda soluzioni y tali che $\lim_{t\to +\infty}y(t)=0$; in caso affermativo, determinarle tutte.

(c) (2 punti) Risolvere il problema di Cauchy $\begin{cases} y''(t) + 2y'(t) + y(t) = e^{-2t} \\ y(0) = 1 \\ y'(0) = -1. \end{cases}$

Esercizio 2 Sia $g:[0,\pi] \to \mathbb{R}$ definita da

$$g(x) = \begin{cases} \frac{3}{4}\pi^2 & x \in [0, \pi/2) \\ -x^2 + \pi^2 & x \in [\pi/2, \pi]. \end{cases}$$

Sia $g_p:[-\pi,\pi]\to\mathbb{R}$ l'estensione pari di g, e sia $f:\mathbb{R}\to\mathbb{R}$ l'estensione 2π -periodica di g_p .

- (a) (1 punto) Disegnare il grafico di f sull'intervallo $[0,4\pi]$.
- (b) (4 punti) Scrivere la serie di Fourier di f.
- (c) (3 punti) Discutere convergenza puntuale, convergenza in media quadratica e convergenza totale della serie trovata.

Esercizio 3 Calcolare

$$I = \iiint_D z \, e^{-(x^2 + y^2)} \, dx \, dy \, dz \quad \text{con} \quad D = \{(x, y, z) \in \mathbb{R}^3 \mid 0 \le z \le 1, \ z^2 \le x^2 + y^2 \le 4z^2\}.$$