

Join 'VIT Question Papers Today 'By Scanning The QR Or By Simply Searching It On Telegram App.

Continuous Assessment Test - I

Winter Semester 2019-20

Programme Name & Branch: B.Tech - EEE & EIE

Vellore Institute of Technology

Date & Slot: 19-1-2020 & A1

Course Name & Code: Semiconductor Devices & Circuits -EEE2002

Exam Duration: 1.5 Hrs

Maximum Marks:50

Faculty Name : Prof. G.K.Rajini/Prof.G. Vidhya Sagar /Prof.M.N. Venkataraman/Prof. Washima Tasnin

	Questions	
S.No. 1.	With necessary explanation discuss the characteristics of PN junction elaborate on Drift and Diffusion currents in it.	diode and [10Marks]
2. a.	For the given input signal & Clipper circuit, sketch the output voltage following specifications shown below.	v ₀ for the [5Marks]
	V = 5 V	

2.b. Design a clamper circuit using PN diode for the given input and output sinusoidal signal shown below. [5 Marks]

The Silicon PN diode in the circuit given below is specified with following voltages. Find the currents flowing through the diodes D_1 and D_2 .

[10Marks]

4. Explain the operation of BJT and explain its input & output characteristics of CE configuration and various operating regions.

[10Marks]

Determine the operating region of transistor and also the currents and voltages for the given circuit below. Given $\beta = 100$ and $V_{BE(on)} = 0.7v$

$$i)I_B$$
 $ii)I_c$ $iii)$ $I_Eiv)V_{CE}$ $v)V_{CB}$

[10 Marks]

SCHOOL OF ELECTRICAL ENGINEERING CAT I

Discipline Subject Code Subject Name

Slot

: B.Tech : EEE2001

: Network Theory

: B1+TB1

Semester

: Winter 2020 Max. Marks : 50

: 1 ½ hours Time :20.01.2010 Date:

Answer ALL questions Instructions:

Use the node-voltage method to find the branch currents Ia, Ib, Ic and Ix in the circuit shown in Fig. 1.

Fig. 1

In Fig. 2, the resistor R_L is adjusted until it absorbs the maximum average power. [10]Calculate R_L and the maximum average power absorbed by it.

Determine $i_o(t)$ in the circuit in Fig. 4. assuming zero initial conditions.

[10]

Consider the parallel *RLC* circuit of Fig. 5. Find v(t) and i(t) given that v(0) = 5 V and 5 i(0) = -2 A.

Join 'VIT Question Papers Today 'By Scanning The QR Or By Simply Searching It On Telegram App. 122

Continuous Assessment Test ~ I

Programme Name & Branch

: B.TECH (EEE, ECE, EIE and MECH)

Course Name & Code

: Engineering Electromagnetics, EEE 1004

Slot: CI+TCI

Exam Duration: 1:30 Min

Max. Marks: 50

Faculty: Dr. V. Indragandhi , Dr. Venkatesh .S, Dr. C. Rani and Dr. Himadri Lala

Answer all questions (5*10 = 50 Marks).

	No.	Question	
	1.	Express the Cartesian unit vector \hat{a}_x in Spherical coordinate systems at the point T (2,3,-4).	
	2.	State Gauss's Divergence Theorem. Verify Gauss's Divergence Theorem for the vector field $\vec{A} = xy^2\hat{a}_x + y^3\hat{a}_y + y^2z\hat{a}_z$ defined on the closed cubic region defined by $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$.	
•	3	Point charges 5 nC and 2 nC each are located at A (2, 0, 4), B (-3, 0, 5) respectively. a) Determine the force on a 1 nC point charge which is located at C (1,3,-7) b) Find the electric field at C (1,3,-7)	
	4	A point charge 100 pC is located at $(4, 1, -3)$ while the x-axis carries a line charge of 2 nC/m. If the plane $z = 3$ also carries charge of 5 nC/m ² , calculate E at $(1,1,1)$.	
	5	Determine the electric field everywhere due to a uniformly charged sphere of radius 'x' and total charge q. Make a rough plot of the magnitude of the electric field with respect to the distance from the center of the sphere.	