Fuzzy Controllers

Controller Type Typical Operation

Mamdani (linguistic) controller *Direct* closed-loop controller with either fuzzy or singleton consequents

Takagi-Sugeno (TS) or Takagi- Supervisory controller - as a self

Sugeno-Kang controller (TSK) tuning device

The controller can be used with the process in two modes:

- Feedback mode when the controller will act as a control device
- Feedforward mode where the controller can be used as a prediction device

All inputs to, and outputs from, the controller are in the form of linguistic variables. In many ways, a fuzzy controller maps the input variables into a set of output linguistic variables.

Key Differences

A zero-order TSK model can be viewed as a special case of a Mamdani system in which each rule is specified by a fuzzy singleton or some pre-fuzzified consequent. In the TSK model, each rule has a crisp output and the overall output is obtained by a weighted average. This avoids the time consuming process of defuzzification that is required in a Mamdani model. The weighted average operator is replaced by a weighted sum to reduce the computation further.

Mamdani Controllers

Rules contain membership functions for both antecedents and consequent.

If e(k) is \$positive(e)\$ and \$\Delta e(k)\$ is \$positive(\Delta e)\$ then \$\Delta u(k)\$ is \$positive (\Delta u)\$

The Good

This method is regarded widely for capturing expert knowledge and facilitates an intuitively plausible description of the knowledge.

The Bad

This method involves the computation of a two-dimensional shape by summing, or more accurately integrating across a continuously varying function. This can be expensive.

Example

Mamdani Conntroller:

- 1. If temperature is cold then speed is minimal
- 2. If temperature is cool then speed is slow
- 3. If temperature is pleasant then speed is medium
- 4. If temperature is warm then speed is fast
- 5. If temperature is hot then speed is blast

Full example done in notes 03.

Takagi-Sugeno Controllers

Rules contain membership functions for antecedents and linear functions in the consequent.

If e(k) is \$positive(e)\$ and \$\Delta e(k)\$ is \$positive(\Delta e)\$ then \$\Delta u(k) = \alpha e(k) + \beta \Delta e(k) + \delta\$ where \$\alpha\$, \$\beta\$ and \$\delta\$ are obtained from empirical observations by relating the behaviour of the errors and change in errors over a fixed range of changes in control.

A zero order Takagi-Sugeno Model will be given as $R: (x_{1} \text{ is } \mu_{A}(x_{1}), \text{ is } \mu_{A}(x_{k})) \right]$

TSK Assumptions

- 1. Complex technological processes may be described in terms of interacting, yet simpler sub processes. This is the mathematical equivalent of fitting a piece-wise linear equation to a complex curve.
- 2. The output variable(s) of a complex physical system (e.g. in the sense that it can take a number of input variables to produce 1 or more outputs) can be related to the system's input variable in a linear manner provided the output space can be subdivided into a number of distinct regions.

Example

Zero-order TSK Controller:

- 1. If *temperature* is cold then *speed* is \$k_{1}=0\$
- 2. If temperature is cool then speed is \$k {2}=30\$
- 3. If temperature is pleasant then speed is \$k_{3}=50\$
- 4. If temperature is warm then speed is \$k_{4}=70\$
- 5. If temperature is hot then speed is \$k_{5}=100\$

Temperature is 16 degrees.

Fuzzification: Temperature is cool and pleasant

 $\sum_{\col}{T} = \max{(\min{(\frac{T-0}{12.5-0}, \frac{17.5-12.5})}, 0)}$

 $\sum_{t=0.4} T_t(\pi_{t-15}_{17.5-15}, \frac{20-17.5}), 0)$

\sum_{cold} \sum_{cool} \sum_{cool} \sum_{cool}

Temp=16 0	0.3	0.4	0	0
Fire Rule (#) no (#1)	yes (#2)	yes (#3)	no (#4)	no (#5)

Inference: Rule #2 and #3 are firing and are essentially the fuzzy patches made out of the cross
products of \$\$\text{cool} \times \text{slow}\$\$ \$\$\text{pleasant} \times \text{medium}\$\$\$

Composition:

- \$\mu_{cool} = 0.3 \rightarrow k_{2}\$
- \$\mu_{pleasant} = 0.4 \rightarrow k_{3}\$

Defuzzification:

COG: $f(0.3 \times 6.3){0.3+0.4} = 0.3 \times 9.4 \times$

Mean of Maxima: $\frac{0.4 \times 50}{0.4} = 50 \times RPM}$

Comparison

Controller	TSK Mamdani		
COG	41.43	36.91	
Mean of Maxima	50	50	
Controller	TSK N	/lamdani	
COG	12%	0%	
Mean of Maxima	35%	35%	

A zero-order Sugeno fuzzy model can be viewed as a special case of the Mamdani fuzzy inference system in which each rule is specified by the fuzzy singleton or a pre-defuzzified consequent.

In Sugeno's model, each rule has a crisp output. The overall input is obtained by the weighted average. This avoids the time consuming process of defuzzification required in a Mandani model. The weighted average operator is replaced by a weighted sum to reduce computation further.