COMP 3711 Design and Analysis of Algorithms

Tutorial 1: Asymptotic Analysis

Asymptotic Notation: Quick Revision

Upper bounds. T(n) = O(f(n))

if exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$, $T(n) \le c \cdot f(n)$.

Lower bounds. $T(n) = \Omega(f(n))$

if exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$, $T(n) \ge c \cdot f(n)$.

Tight bounds. $T(n) = \Theta(f(n))$

if T(n) = O(f(n)) and $T(n) = \Omega(f(n))$.

Note: Here "=" means "is", not equal.

More mathematically correct expression should be $T(n) \in O(f(n))$.

constant < logarithmic < polynomial < exponential 99999999999999 < $\log^{10} n$ < $n^{0.1}$ < $n\log n$ < n^2 < 2^n

Some Basic Properties

- a) If f(n) = O(g(n)) and $g(n) = O(h(n)) \Rightarrow f(n) = O(h(n))$
- b) If $f(n) = \Omega(g(n))$ and $g(n) = \Omega(h(n)) \Rightarrow f(n) = \Omega(h(n))$
- c) If $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$
- d) If f(n) = O(h(n)) and $g(n) = O(h(n)) \Rightarrow f(n) + g(n) = O(h(n))$
- e) If $f(n) = \Omega(h(n))$ and $g(n) = \Omega(h(n)) \Rightarrow f(n) + g(n) = \Omega(h(n))$
- f) If $f(n) = \Theta(h(n))$ and $g(n) = \Theta(h(n)) \Rightarrow f(n) + g(n) = \Theta(h(n))$

Prove by definition

For each of the following statements, answer whether the statement is true or false.

a)
$$1000n^2 + 1000n = O(n^3)$$
 True

b)
$$n^2 - n = \Theta(n)$$
 False

c)
$$nlog(n) = O(n^2)$$
 True

d)
$$nlog(n) = \Theta(n^2)$$
 False

e)
$$\frac{n}{100} = \Omega(n)$$
 True

f)
$$12n + 2^n + n^3 = O(n^3)$$
 False

g)
$$2nlog(n) + n = \Theta(nlogn)$$
 True

Suppose $T_1(n) = O(f(n))$ and $T_2(n) = O(f(n))$. Which of the following are true? Justify your answers.

(a)
$$T_1(n) + T_2(n) = O(f(n))$$

(b)
$$\frac{T_1(n)}{T_2(n)} = O(1)$$

(c)
$$T_1(n) = O(T_2(n))$$

Suppose $T_1(n) = O(f(n))$ and $T_2(n) = O(f(n))$. Is the following true?

(a)
$$T_1(n) + T_2(n) = O(f(n))$$
? True.

This was just basic property (d).

Example

$$T_1(n) = 2n^4 + 3n^3$$
 and $T_2(n) = 5n^4 + 2n^2$

$$T_1(n) = O(n^4)$$
 and $T_2(n) = O(n^4)$

$$\Rightarrow T_1(n) + T_2(n) = O(n^4)$$

Suppose $T_1(n) = O(f(n))$ and $T_2(n) = O(f(n))$. Is the following true?

(b)
$$\frac{T_1(n)}{T_2(n)} = O(1)$$
? False.

Counterexample: Set $T_1(n) = n^2$, $T_2(n) = n$, $f(n) = n^2$.

$$\Rightarrow T_1(n) = O(f(n)), T_2(n) = O(f(n))$$

but
$$\frac{T_1(n)}{T_2(n)} = n \neq O(1)$$

(c)
$$T_1(n) = O(T_2(n))$$
? False.

Use the same counterexample as in part (b).

$$n^2 \neq O(n)$$

Let f(n) be a function. Suppose that, for all i>0, $T_i(n)=O\bigl(f(n)\bigr)$. Define $g_{k(n)}=\sum_{i=1}^k T_i(n)$

- (a) For fixed k, is $g_k(n) = O(f(n))$?
- (b) Define $g(n) = g_n(n)$. Is g(n) = O(f(n))? Is g(n) = O(nf(n))?

Question 3: (a)

(a) For fixed
$$k$$
, is $g_k(n) = O(f(n))$? Yes.

Recall
$$g_k(n) = \sum_{i=1}^k T_i(n)$$
 where, for each i , $T_i(n) = O(f(n))$.

We know (basic property (d)) that

if
$$U(n) = O(f(n))$$
 and $V(n) = O(f(n))$ then $(U(n) + V(n)) = O(f(n))$
(a) For fixed k , is $g_k(n) = O(f(n))$?

Then
$$g_2(n) = T_1(n) + T_2(n) = O(f(n))$$

Iterating, using induction, shows that, for FIXED k

9

Question 3:

(b)
$$g_k(n) = \sum_{i=1}^k T_i(n)$$
 where, for each i , $T_i(n) = O(f(n))$.

$$g(n) = g_n(n) = \sum_{i=1}^n T_i(n)$$

Even though we just saw that, for FIXED k, $g_k(n) = O(f(n))$,

It is NOT true that g(n) = O(f(n)) or even that g(n) = O(nf(n)).

We display a counterexample.

A Counterexample

Set
$$T_i(n) = i \cdot n$$
, and $f(n) = n$.

$$=> T_i(n) = O(f(n))$$
 for all FIXED $i \ge 1$.

$$=> g_k(n) = \sum_{i=1}^k T_i(n) = \sum_{i=1}^k i \cdot n = n \frac{k(k+1)}{2}$$

$$\Rightarrow g_k(n) = c_k n$$
 where $c_k = \frac{k(k+1)}{2}$

$$=>$$
 So, for fixed k , $g_k(n)=O(n)$

Which we also know is true from part (a)

But
$$g(n) = g_n(n) = n \frac{n(n+1)}{2} = \Theta(n^3)$$

In particular,

$$g(n)$$
 is NOT $O(f(n))$ or even $O(n f(n))!$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad 0 \choose n^2}$$

A Deeper Dive

Suppose that $T_i(n) = O(f(n))$ for all $i \ge 0$ and set $g(n) = \sum_{i=1}^n T_i(n)$.

(*)
$$g(n) \stackrel{\text{(a)}}{=} \sum_{i=1}^{n} O(f(n)) \stackrel{\text{(b)}}{=} O\left(\sum_{i=1}^{n} f(n)\right) = O(n f(n))$$

IS NOT CORRECT. Why is this "proof" wrong?

Use the counterexample from previous page to unpack problem.

Set
$$T_i(n) = i \cdot n$$
, and $f(n) = n$. $g(n) = \Theta(n^3) \neq O(n f(n)) = O(n^2)$

The problem is that equalities (a) and (b) aren't **mathematically well defined**. O() notation has a multiplicative constant associated with it, i.e., writing $T_i(n) = O(n)$ implies there is a constant c_i , s.t. $T_i(n) \le c_i n$

The way that (a) and (b) are written imply that all of the constants are the same. But they are NOT. $c_i = i$, so the constants are increasing.

Let $a_1, a_2, ..., a_n$ be a sequence that has the following property:

There exists some k such that

$$\forall i : 1 \le i < k, \ a_i > a_{i+1};$$

$$\forall i : k \le i < n, \ a_i < a_{i+1}$$

Such a sequence is called **unimodal** with the unique minimum a_k .

(The sequence goes down and then goes up, with minimum at a_k .)

Design an $O(\log n)$ algorithm for finding k in a unimodal sequence $(n \ge 3)$.

Example

Example: A = [10, 8, 6, 5, 25, 30, 40, 70, 90, 100]

A is unimodal with minimum $a_4 = 5$.

Solution

Example: $A = \begin{bmatrix} 10, 8, 6, 5, 25, 30, 40, 70, 90, 100 \end{bmatrix}$

- We can binary search for the transition point where the items stop decreasing and start increasing.
- Define new array B = [1, n-1] where

$$B[i] = \begin{cases} + & if \ A[i] > A[i+1] \\ - & if \ A[i] < A[i+1] \end{cases}$$

- Unimodality implies that B is in form B = [+, +, +, ..., +, -, -, ..., -], where k, the location of the minimum value in A, is the location of the first "—" in B.
- This k can then be found using an $O(\log n)$ binary search for the first "—" in B[].

Solution

Example: $A = \begin{bmatrix} 10, 8, 6, 5, 25, 30, 40, 70, 90, 100 \end{bmatrix}$

- We can binary search for the transition point where the items stop decreasing and start increasing.
- Define new array B = [1, n-1] where

$$B[i] = \begin{cases} + & if \ A[i] > A[i+1] \\ - & if \ A[i] < A[i+1] \end{cases}$$

For example A: B = [+, + +, -, -, -, -, -, -]

k can be found by an $O(\log n)$ binary search for the first "-" in B[].

• No need to actually build $B[\]$; B's entries can be calculated in O(1) time from $A[\]$, so we may assume B is given.

Solution: More Details

BSearch(i, j) will be the algorithm. The call assumes i < j and the invariant that B[i] = +, B[j] = -.

The first call will be BSearch(1, n - 1), which satisfies this invariant.

BSearch(i, j) will return the smallest $k \in [i...j]$ such that B[k] = -.

or

```
Example: B = [ +, + +, -, -, -, -
```

```
BSearch(i,j)

If (j = i + 1)

return(j)

Else

m = \left\lfloor \frac{i+j}{2} \right\rfloor

If B[m] = +

BSearch(m,j)

Else /*B[m] = - */

BSearch(i,m)
```

```
BSearch(i,j)

If (j = i + 1)

return(j)

Else

m = \left\lfloor \frac{i+j}{2} \right\rfloor

If A[m] > A[m+1]

BSearch(m,j)

Else /* A[m] < A[m+1] */

BSearch(i,m)
```