Schätzung von impliziten Volatilitäten mit neuronalen Netzen

Thomas Weber

SciComp Inc.
Weber & Partner GbR

pailab event, 5 März 2020

About SciComp Inc.

SciComp entwickelt Softwarelösungen sowie Produkte für die Bewertung von Finanzderivaten und für das Risikomanagement

```
\begin{array}{lll} \mbox{der}[V,t] + 1/2 & \mbox{sigma}^2 & \mbox{S}^2 & \mbox{der}[V,\{S,2\}] \\ & + (r-q) & \mbox{S} & \mbox{der}[V,S] - r & V = 0; \\ \mbox{Payoff}[\mbox{Max}[K-S,0]]; \\ \mbox{Output}[V, S=Spot]; \end{array}
```

Price model for an european call option

SciComp ist führend in der Entwicklung und Weiterentwicklung von Software synthesis engines

Das Training von Al Algorithmen wird schneller und günstiger Trends

Stanford University: Artificial Intelligence Index Report 2019ciComp

Al Algorithmen sind breit verfügbar

Trends

Companies using TensorFlow

See case studies ->

AI im Investmentbanking?

Trends

```
trading-platform trading systems to stock special trading platform trading mathematical-finance trading data-science portfolio-management systems trading data-science profit data-science
```

Sandom forest language Processing (NLP)

Systemic Stock in Process regularities Sentiment Analysis of Systemic Tisk Control of Systemic Stock Inspection of Stock Insp

arXiv/SSRN, Februar 2020

- Github, Februar 2020
- **...**
- Bewertung
- Hedging
- Exposureberechnung
- Kalibrierung

Bewertung

SciComp SABR Examples

- European futures options
 - Train to implied volatility, deflated via approximate formula
 - ► Single hidden layer ANN, $\mathcal{O}(10^5)$ training data
 - RMS Implied vol and PV errors of 1bp, and 0.5bp respectively
 - ► 140,000 evaluations/sec
- Double no-touch futures option
 - Parameter space divided into regions based on estimated PV
 - ▶ Train to PV spread over Black-Scholes
 - Combined single hidden layer ANNs
 - RMS PV error of 3bp
 - 140,000 evaluations/sec

Kalibrierung

Kalibierung ist das Fitten von nicht beobachtbaren Parametern eines Modells zu einem Datensatz

$$\hat{\theta} = \underset{\theta \in \Theta}{\operatorname{argmin}} \sum (\mathsf{Model}(\theta) - \mathsf{Market}(\theta))^2$$

Beispiel: Parameter für das Gausssche 2 Faktormodell für Zinsderivate

$$\theta = \{\kappa_1, \eta_1, \kappa_2, \eta_2, \rho\} = \begin{cases} dx(t) &= -\kappa_1 x_1(t) + \eta_1 dW_1 \\ & -\kappa_2 x_2(t) + \eta_2 dW_2 \end{cases}$$

$$\rho &= dw_1 dW_2$$

$$r(t) &= F(t) + \phi(t, \dots) + x_1(t) + x_2(t)$$

Klassische Vorgehensweise

- Marktdaten (Black-Scholes-Volatilitäten) als Eingabewerte
- Datenbereinigung
- Anwendung eines numerischen Suchverfahrens (z.B. Levenberg-Marquart)
- 4. Event. visuelle Überprüfung
- Nutzen der gefundenen Parameter für die Bewertung von (exotischen) Derivaten

Kalibrierung mit Neuronalen Netzen

Kalibierung ist das Fitten von nicht beobachtbaren Parametern (Knoten) eines Modells (Netzwerk) zu einem Datensatz

Mögliche Vorgehensweisen:

- 1. Direkte Kalibrierung an Marktdaten (Inverse Map)
- 2. In zwei Schritten
 - i Lerne ein Bewertungsmodell
 - ii Kalibriere das Bewertungsmodell anhand von Marktdaten

Ziele des Trainierens von Neuronalen Netzen

 Den Fehler beim Training so klein wie möglich halten (Underfitting)¹

Einzelnes Neuron und seine Komponenten

2. Den Verallgemeinerungsfehler so klein wie möglich zu halten (Overfitting)

¹Erfolg ist garantiert! Dank des Universal Approximation Theorems, Vgl. Hull, Neural Network Approach to Understanding Implied Volatility Movement, mp 2019

Datenvorbereitung

Beispiel: Kalibrierung des Gaussschen 2-Faktormodells

50000 Datensätze mit analytischer Formel für die Bewertung von Swaptions mit unterschiedlichen Laufzeiten, Tenors und Moneyness, d.h. 1,8 Mio. Bewertungen mit gewürfelten Parametern

- Umrechnung in Black-Scholes Volatilitäten
- Bereinigung der Daten
 - ► Entfernen aller Datensätze bei der die meisten Bewertungen null sind
 - Setzen der verbleibenden 0-Bewertungen auf einen Minimalwert
- ► Aufteilung der Daten in Trainings- und Testdaten (15%)ciComp

Datenskalierung und -normalisierung

Beispiel: Kalibrierung des Gaussschen 2-Faktormodells

- Verschiedene ML-Algorithmen erwarten Werte mit Durchschnitt 0 und vergleichbarer Standardabweichung
- Standard ist $z = \frac{x-\mu}{s}$, wobei μ der Durchschnitt und s die Standardabweichung aus den Trainingsdaten ist.

- ▶ Viele andere Möglichkeiten
- Skalierung hat Effekt auf das Ergebnis

Kalibrierung des Gaussschen 2-Faktormodells

1. Versuch

Neural Network Forward Architektur mit 3 versteckten Schichten und 30 Neuronen in jeder versteckten Schicht, mit 36 (Markt-)Volatilitäten als Eingabe den Modelparametern (hier Gaussche 2 Faktor Model) als Ausgabe (Supervised Learning). Hier insgesamt 3125 Knoten/Parameter

Erstellen und Trainieren des Neuronalen Netzes

1. Versuch

Hier Verwendung von Tensorflow in Python

Festlegung der Zielfunktion ...

... Starten

```
history=model.fit(x_train_transform, y_train_transform, validation_data = (x_test_transform, y_test_transform) batch_size=32, epochs = 200, verbose = 0, shuffle=1)
```

4 ロ ト 4 周 ト 4 豆 ト 4 目 ト タ Q P

Ergebnisse

Fehler bei den Parametern

Geschätzte Parameter

Kalibrierung des Gaussschen 2-Faktormodells

2. Versuch

Neural Network Forward Architektur mit fünf Parameter als Eingabe und 36 MArktvolatilitäten als Ausgabe. Hier insgesamt 3156 Knoten/Parameter

Ergebnisse

Ergebnisse pro Swaption

Testfall 2955

Ergebnisse pro Swaption

Testfall 893

Ergebnisse pro Swaption

2. Versuch

Fehler bei den Testdaten

♥SciComp

Fehler bei den Parametern

2. Versuch

Geschätzte Parameter

Zwischenergebnisse

- Neuronale Netze können Bewertungsmodelle sehr genau approximieren und erlauben eine deutliche Beschleunigung der Berechnungen
- Insbesondere bieten sie eine Ergänzung für Bewertungen, die PDEs oder MC erfordern
- Kalibrierung bleibt Alchemie
- Nächste Schritte
 - Konzentration auf Exposure-Berechnung
 - Neural Structured Learning

Literatur I

Model calibration with neural networks Risk Magazin, 2017.

B. Horvath, A. Muguruza, M. Tomas. Deep Learning Volatility: A deep neural network perspective on pricing and calibration in (rough) volatility models SSRN-id3322085, 2019.

A. Itkin.

Deep learning calibration of option pricing models: some pitfalls and solutions.

arXiv:1906.03507, 2019

Backup I

Swaptionwerte der Testdaten

