Deep Generative Models

Lecture 13

Roman Isachenko

2024, Spring

Recap of previous lecture

Training of DDPM

- 1. Get the sample $\mathbf{x}_0 \sim \pi(\mathbf{x})$.
- 2. Sample timestamp $t \sim U\{1, T\}$ and the noise $\epsilon \sim \mathcal{N}(0, I)$.
- 3. Get noisy image $\mathbf{x}_t = \sqrt{\bar{\alpha}_t} \cdot \mathbf{x}_0 + \sqrt{1 \bar{\alpha}_t} \cdot \epsilon$.
- 4. Compute loss $\mathcal{L}_{\text{simple}} = \|\epsilon \epsilon_{\theta,t}(\mathbf{x}_t)\|^2$.

Sampling of DDPM

- 1. Sample $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$.
- 2. Compute mean of $p(\mathbf{x}_{t-1}|\mathbf{x}_t, \boldsymbol{\theta}) = \mathcal{N}(\boldsymbol{\mu}_{\boldsymbol{\theta},t}(\mathbf{x}_t), \sigma_t^2 \cdot \mathbf{I})$:

$$\mu_{\theta,t}(\mathbf{x}_t) = \frac{1}{\sqrt{\alpha_t}} \cdot \mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{\alpha_t(1 - \bar{\alpha}_t)}} \cdot \epsilon_{\theta,t}(\mathbf{x}_t)$$

3. Get denoised image $\mathbf{x}_{t-1} = \boldsymbol{\mu}_{\theta,t}(\mathbf{x}_t) + \sigma_t \cdot \boldsymbol{\epsilon}$, where $\boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I})$.

Recap of previous lecture

NCSN objective

$$\mathbb{E}_{p(\mathbf{x}'|\mathbf{x},\sigma_t)} \|\mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}',\sigma_t) - \nabla_{\mathbf{x}'} \log p(\mathbf{x}'|\mathbf{x},\sigma_t) \|_2^2 \to \min_{\boldsymbol{\theta}}$$

DDPM objective

$$\mathcal{L}_{t} = \mathbb{E}_{\epsilon \sim \mathcal{N}(0,\mathbf{I})} \left[\frac{(1-\alpha_{t})^{2}}{2\tilde{\beta}_{t}\alpha_{t}} \left\| \frac{\epsilon}{\sqrt{1-\bar{\alpha}_{t}}} - \frac{\epsilon_{\theta}(\mathbf{x}_{t},t)}{\sqrt{1-\bar{\alpha}_{t}}} \right\|^{2} \right]$$

$$\begin{split} q(\mathbf{x}_t|\mathbf{x}_0) &= \mathcal{N}(\sqrt{\bar{\alpha}_t} \cdot \mathbf{x}_0, (1 - \bar{\alpha}_t) \cdot \mathbf{I}) \\ \nabla_{\mathbf{x}_t} \log q(\mathbf{x}_t|\mathbf{x}_0) &= -\frac{\mathbf{x}_t - \sqrt{\bar{\alpha}_t} \cdot \mathbf{x}_0}{1 - \bar{\alpha}_t} = -\frac{\epsilon}{\sqrt{1 - \bar{\alpha}_t}}. \end{split}$$

Let reparametrize our model:

$$\mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}_t, t) = -\frac{\boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\mathbf{x}_t, t)}{\sqrt{1 - \bar{\alpha}_t}}.$$

1. SDE basics

2. Diffusion and Score matching SDEs

3. Probability flow ODE

1. SDE basics

2. Diffusion and Score matching SDEs

3. Probability flow ODE

Ordinary differential equantion (ODE)

Continuous-in-time Normalizing Flows

$$rac{d\mathbf{z}(t)}{dt} = \mathbf{f}_{m{ heta}}(\mathbf{z}(t),t); \quad ext{with initial condition } \mathbf{z}(t_0) = \mathbf{z}_0$$

- Let $\mathbf{z}(t_0)$ will be a random variable with some density function $p(\mathbf{z}(t_0))$.
- Then $\mathbf{z}(t_1)$ will be also a random variable with some other density function $p(\mathbf{z}(t_1))$.
- We could say that we have the joint density function p(z(t), t).
- What is the difference between p(z(t), t) and p(z, t)?

Continuous-in-time Normalizing Flows

What do we need?

- ▶ We need the way to compute $p(\mathbf{z}, t)$ at any moment t.
- We need the way to find the optimal parameters θ of the dynamic \mathbf{f}_{θ} .

Theorem (Kolmogorov-Fokker-Planck: special case)

If f is uniformly Lipschitz continuous in z and continuous in t, then

$$\frac{d \log p(\mathbf{z}(t), t)}{dt} = -\text{tr}\left(\frac{\partial \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{z}(t), t)}{\partial \mathbf{z}(t)}\right).$$

$$\log p(\mathbf{z}(t_1), t_1) = \log p(\mathbf{z}(t_0), t_0) - \int_{t_0}^{t_1} \operatorname{tr} \left(\frac{\partial \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{z}(t), t)}{\partial \mathbf{z}(t)} \right) dt.$$

It means that if we have the value $\mathbf{z}_0 = \mathbf{z}(t_0)$ then the solution of the ODE will give us the density at the moment t_1 .

Stochastic differential equation (SDE)

Let define stochastic process $\mathbf{x}(t)$ with initial condition $\mathbf{x}(0) \sim p_0(\mathbf{x})$:

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}$$

- ▶ $\mathbf{f}(\mathbf{x},t): \mathbb{R}^m \to \mathbb{R}^m$ is the **drift** function of $\mathbf{x}(t)$.
- ▶ $g(t) : \mathbb{R} \to \mathbb{R}$ is the **diffusion** function of $\mathbf{x}(t)$.
- ▶ If g(t) = 0 we get standard ODE.
- $\mathbf{w}(t)$ is the standard Wiener process (Brownian motion):
 - 1. $\mathbf{w}(0) = 0$ (almost surely);
 - 2. $\mathbf{w}(t)$ has independent increments;
 - 3. $\mathbf{w}(t) \mathbf{w}(s) \sim \mathcal{N}(0, (t-s)\mathbf{I})$.
- $\mathbf{w} = \mathbf{w}(t + dt) \mathbf{w}(t) = \mathcal{N}(0, \mathbf{l} \cdot dt) = \epsilon \cdot \sqrt{dt}$, where $\epsilon \sim \mathcal{N}(0, \mathbf{l})$.

Note: In contrast to ODE, initial condition $\mathbf{x}(0)$ does not uniquely determine the process trajectory.

Stochastic differential equation (SDE)

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}, \quad d\mathbf{w} = \epsilon \cdot \sqrt{dt}, \quad \epsilon \sim \mathcal{N}(0, \mathbf{I}).$$

- At each moment t we have the density $p(\mathbf{x}(t), t)$.
- ▶ How to get distribution p(x, t) for x(t)?

Theorem (Kolmogorov-Fokker-Planck)

Evolution of the distribution $p(\mathbf{x}, t)$ is given by the following ODE:

$$\frac{\partial p(\mathbf{x},t)}{\partial t} = \operatorname{tr}\left(-\frac{\partial}{\partial \mathbf{x}}\left[\mathbf{f}(\mathbf{x},t)p(\mathbf{x},t)\right] + \frac{1}{2}g^{2}(t)\frac{\partial^{2}p(\mathbf{x},t)}{\partial \mathbf{x}^{2}}\right)$$

Note: This is the generalization of KFP theorem that we used in continuous-in-time NF.

Langevin SDE (special case)

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}$$
$$d\mathbf{x} = \frac{1}{2} \frac{\partial}{\partial \mathbf{x}} \log p(\mathbf{x}, t)dt + 1 \cdot d\mathbf{w}$$

Langevin SDE (special case)

$$d\mathbf{x} = \frac{1}{2} \frac{\partial}{\partial \mathbf{x}} \log p(\mathbf{x}, t) dt + 1 \cdot d\mathbf{w}$$

Let apply KFP theorem.

$$\frac{\partial p(\mathbf{x}, t)}{\partial t} = \operatorname{tr}\left(-\frac{\partial}{\partial \mathbf{x}}\left[p(\mathbf{x}, t)\frac{1}{2}\frac{\partial}{\partial \mathbf{x}}\log p(\mathbf{x}, t)\right] + \frac{1}{2}\frac{\partial^2 p(\mathbf{x}, t)}{\partial \mathbf{x}^2}\right) =$$

$$= \operatorname{tr}\left(-\frac{\partial}{\partial \mathbf{x}}\left[\frac{1}{2}\frac{\partial}{\partial \mathbf{x}}p(\mathbf{x}, t)\right] + \frac{1}{2}\frac{\partial^2 p(\mathbf{x}, t)}{\partial \mathbf{x}^2}\right) = 0$$

The density $p(\mathbf{x}, t) = \text{const}(t)!$

Discretized Langevin SDE

$$\mathbf{x}_{t+1} - \mathbf{x}_t = \frac{\eta}{2} \cdot \frac{\partial}{\partial \mathbf{x}} \log p(\mathbf{x}, t) + \sqrt{\eta} \cdot \epsilon, \quad \eta \approx dt.$$

Langevin dynamic

$$\mathbf{x}_{t+1} = \mathbf{x}_t + \frac{\eta}{2} \cdot \nabla_{\mathbf{x}} \log p(\mathbf{x}|\boldsymbol{\theta}) + \sqrt{\eta} \cdot \boldsymbol{\epsilon}, \quad \eta \approx dt.$$

ODE and SDE discretization

1. SDE basics

2. Diffusion and Score matching SDEs

Probability flow ODE

Score matching SDE

Denoising score matching

$$\mathbf{x}_{l} = \mathbf{x} + \sigma_{l} \cdot \boldsymbol{\epsilon}_{l}, \quad p(\mathbf{x}_{l} | \mathbf{x}, \sigma_{l}) = \mathcal{N}(\mathbf{x}, \sigma_{l}^{2} \mathbf{I})$$

$$\mathbf{x}_{l-1} = \mathbf{x} + \sigma_{l-1} \cdot \boldsymbol{\epsilon}_{l-1}, \quad p(\mathbf{x}_{l-1} | \mathbf{x}, \sigma_{l-1}) = \mathcal{N}(\mathbf{x}, \sigma_{l-1}^{2} \mathbf{I})$$

$$\mathbf{x}_{l} = \mathbf{x}_{l-1} + \sqrt{\sigma_{l}^{2} - \sigma_{l-1}^{2}} \cdot \boldsymbol{\epsilon}, \quad p(\mathbf{x}_{l} | \mathbf{x}_{l-1}, \sigma_{l}) = \mathcal{N}(\mathbf{x}_{l-1}, (\sigma_{l}^{2} - \sigma_{l-1}^{2}) \cdot \mathbf{I})$$

Let turn this Markov chain to the continuous stochastic process $\mathbf{x}(t)$ taking $L \to \infty$:

$$\mathbf{x}(t+dt) = \mathbf{x}(t) + \sqrt{\frac{\sigma^2(t+dt) - \sigma^2(t)}{dt}} dt \cdot \epsilon = \mathbf{x}(t) + \sqrt{\frac{d[\sigma^2(t)]}{dt}} \cdot d\mathbf{w}$$

Variance Exploding SDE

$$d\mathbf{x} = \sqrt{\frac{d[\sigma^2(t)]}{dt}} \cdot d\mathbf{w}$$

Song Y., et al. Score-Based Generative Modeling through Stochastic Differential Equations, 2020

Diffusion SDE

Denoising Diffusion

$$\mathbf{x}_t = \sqrt{1 - \beta_t} \cdot \mathbf{x}_{t-1} + \sqrt{\beta_t} \cdot \epsilon, \quad q(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathcal{N}(\sqrt{1 - \beta_t} \cdot \mathbf{x}_{t-1}, \beta_t \cdot \mathbf{I})$$

Let turn this Markov chain to the continuous stochastic process taking $T \to \infty$ and taking $\beta(\frac{t}{T}) = \beta_t \cdot T$

$$\begin{split} \mathbf{x}(t) &= \sqrt{1 - \beta(t)dt} \cdot \mathbf{x}(t - dt) + \sqrt{\beta(t)dt} \cdot \epsilon \approx \\ &\approx (1 - \frac{1}{2}\beta(t)dt) \cdot \mathbf{x}(t - dt) + \sqrt{\beta(t)dt} \cdot \epsilon = \\ &= \mathbf{x}(t - dt) - \frac{1}{2}\beta(t)\mathbf{x}(t - dt)dt + \sqrt{\beta(t)} \cdot d\mathbf{w} \end{split}$$

Variance Preserving SDE

$$d\mathbf{x} = -\frac{1}{2}\beta(t)\mathbf{x}(t)dt + \sqrt{\beta(t)}\cdot d\mathbf{w}$$

Song Y., et al. Score-Based Generative Modeling through Stochastic Differential Equations, 2020

Diffusion SDE

Variance Exploding SDE (NCSN)

$$d\mathbf{x} = \sqrt{\frac{d[\sigma^2(t)]}{dt}} \cdot d\mathbf{w}$$

Variance Preserving SDE (DDPM)

$$d\mathbf{x} = -\frac{1}{2}\beta(t)\mathbf{x}(t)dt + \sqrt{\beta(t)}\cdot d\mathbf{w}$$

Song Y., et al. Score-Based Generative Modeling through Stochastic Differential Equations, 2020

1. SDE basics

2. Diffusion and Score matching SDEs

3. Probability flow ODE

Probability flow ODE

Stochastic differential equation

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}$$

Theorem (Kolmogorov-Fokker-Planck)

$$\frac{\partial p(\mathbf{x},t)}{\partial t} = \operatorname{tr}\left(-\frac{\partial}{\partial \mathbf{x}}\left[\mathbf{f}(\mathbf{x},t)p(\mathbf{x},t)\right] + \frac{1}{2}g^{2}(t)\frac{\partial^{2}p(\mathbf{x},t)}{\partial \mathbf{x}^{2}}\right)$$

$$d\mathbf{x} = \left[\mathbf{f}(\mathbf{x}, t) - \frac{1}{2}g^2(t)\frac{\partial}{\partial \mathbf{x}}\log p(\mathbf{x}, t)\right]dt = \tilde{\mathbf{f}}(\mathbf{x}, t)dt$$

Probability flow ODE

Kolmogorov-Fokker-Planck equation

$$\frac{\partial p(\mathbf{x}, t)}{\partial t} = \operatorname{tr}\left(-\frac{\partial}{\partial \mathbf{x}}\left[\mathbf{f}(\mathbf{x}, t)p(\mathbf{x}, t)\right] + \frac{1}{2}g^{2}(t)\frac{\partial^{2}p(\mathbf{x}, t)}{\partial \mathbf{x}^{2}}\right) =$$

$$= \operatorname{tr}\left(-\frac{\partial}{\partial \mathbf{x}}\left[\mathbf{f}(\mathbf{x}, t)p(\mathbf{x}, t) + \frac{1}{2}g^{2}(t)\frac{\partial p(\mathbf{x}, t)}{\partial \mathbf{x}}\right]\right) =$$

$$= \operatorname{tr}\left(-\frac{\partial}{\partial \mathbf{x}}\left[\mathbf{f}(\mathbf{x}, t)p(\mathbf{x}, t) + \frac{1}{2}g^{2}(t)p(\mathbf{x}, t)\frac{\partial \log p(\mathbf{x}, t)}{\partial \mathbf{x}}\right]\right) =$$

$$= \operatorname{tr}\left(-\frac{\partial}{\partial \mathbf{x}}\left[\left(\mathbf{f}(\mathbf{x}, t) + \frac{1}{2}g^{2}(t)\frac{\partial \log p(\mathbf{x}, t)}{\partial \mathbf{x}}\right)p(\mathbf{x}, t)\right]\right)$$

$$= \operatorname{tr}\left(-\frac{\partial}{\partial \mathbf{x}}\left[\tilde{\mathbf{f}}(\mathbf{x}, t)p(\mathbf{x}, t)\right]\right)$$

Probability flow ODE

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}$$
$$d\mathbf{x} = \left[\mathbf{f}(\mathbf{x}, t) - \frac{1}{2}g^{2}(t)\frac{\partial}{\partial \mathbf{x}}\log p(\mathbf{x}, t)\right]dt$$

Summary

Score matching (NCSN) and diffusion models (DDPM) are the discretizations of the SDEs (variance exploding and variance preserving).