応用幾何 ma・pa 課題 #13 解答例.

(2024.01.12)

空間曲面 S: z = xy $((x,y) \in \mathbb{R}^2)$ を考える.

- (1) S の グラフとしての 標準的なパラメータ表示 を記せ.
- (2) (1) のパラメータ表示に関する 基本ベクトル r_1 , r_2 , 外積 $r_1 \times r_2$ 及び 面積素 dS を求めよ.
- (3) S の点 p = (1,1,1) における 法線 ℓ を求めよ.
- (4) 平面の円板 $D: x^2 + y^2 \le a^2 \ (a > 0)$ を考える. S の 部分曲面 $S_0: z = xy \ ((x,y) \in D)$ の面積 $|S_0|$ を求めよ.
- (5) 平面の正方形 $E=[0,1]\times[0,1]$ を考える。 $S \text{ on 部分曲面} \quad S_1: z=xy \quad ((x,y)\in E) \quad \text{に対して 次の面積分を求めよ.}$ $\int_{\mathbb{R}} \boldsymbol{v}\cdot d\boldsymbol{S} \qquad \boldsymbol{v}(x,y,z)={}^t(y,-x,z)$

(解答例)

(1)
$$\mathbf{x}(x,y) = (x,y,xy) \ ((x,y) \in \mathbb{R}^2)$$

(2)
$$\mathbf{r}_{1} = \frac{\partial \mathbf{x}}{\partial x} = {}^{t}(1, 0, y), \quad \mathbf{r}_{2} = \frac{\partial \mathbf{x}}{\partial y} = {}^{t}(0, 1, x)$$

$$\mathbf{r}_{1} \times \mathbf{r}_{2} = \begin{vmatrix} \mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} \\ 1 & 0 & y \\ 0 & 1 & x \end{vmatrix} = {}^{t}(-y, -x, 1)$$

$$dS = \|\mathbf{r}_{1} \times \mathbf{r}_{2}\| \, dx dy = \sqrt{y^{2} + x^{2} + 1} \, dx dy$$

(3) 点
$$p = x(1,1)$$
 において $r_1 \times r_2 = {}^t(-1,-1,1)$ 法線 ℓ は 点 $p = (1,1,1)$ を通り、ベクトル $r_1 \times r_2 = {}^t(-1,-1,1)$ に平行な直線だから、その方程式は、次で与えられる.
$$\frac{x-1}{-1} = \frac{y-1}{-1} = \frac{z-1}{1}$$
 ∴ $x = y = 2-z$

$$(4) |S_{0}| = \int_{S_{0}} dS = \iint_{D} \sqrt{1 + x^{2} + y^{2}} \, dx dy$$

$$= \iint_{D_{0}} \sqrt{1 + r^{2}} \cdot r \, dr d\theta \qquad \text{ emens } \begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases} \qquad J = r, \qquad D_{0}: \quad 0 \le r \le a \\ 0 \le \theta \le 2\pi \end{cases}$$

$$= \int_{0}^{2\pi} d\theta \int_{0}^{a} \sqrt{1 + r^{2}} \cdot r \, dr \qquad (\text{ gath } \text{ emens } \text{ gath } \text{ for }$$

(5)
$$\mathbf{v}(\mathbf{x}(x,y)) \cdot (\mathbf{r}_{1} \times \mathbf{r}_{2}) = {}^{t}(y, -x, xy) \cdot {}^{t}(-y, -x, 1) = -y^{2} + x^{2} + xy$$

$$\therefore \int_{S_{1}} \mathbf{v} \cdot d\mathbf{S} = \iint_{E} \mathbf{v}(\mathbf{x}(x,y)) \cdot (\mathbf{r}_{1} \times \mathbf{r}_{2}) \, dxdy = \iint_{E} (-y^{2} + x^{2} + xy) \, dxdy$$

$$= \int_{0}^{1} dx \int_{0}^{1} (-y^{2} + x^{2} + xy) \, dy = \int_{0}^{1} dx \left[-\frac{1}{3}y^{3} + x^{2}y + \frac{1}{2}xy^{2} \right]_{0}^{1}$$

$$= \int_{0}^{1} \left(x^{2} + \frac{1}{2}x - \frac{1}{3} \right) dx = \left[\frac{1}{3}x^{3} + \frac{1}{4}x^{2} - \frac{1}{3}x \right]_{0}^{1} = \frac{1}{4}$$