EIE2050 Digital Logic and Systems

Professor Qijun Zhang

Office: Room 404, Research A Building

Latches

Flip-flops

Applications

Reading material: Chapter 7 of Textbook:

Textbook: *Digital Fundamentals (global edition, 11th edition)*, by Thomas Floyd, Pearson 2015.

The examples used in the lecture are based on the textbook.

- Latches
 - S-R latch
 - Gated S-R latch
 - Gated D latch

• S-R Latch (set-reset latch): Logic diagram

Active-LOW input \overline{S} - \overline{R} latch

• S-R Latch: Logic symbols

Active-HIGH input S-R latch

74HC279A, a quad $\overline{S}-\overline{R}$ latch

Truth table for	an active-LOW	input \overline{S} - \overline{R} latch.
Hulli labie ioi	an active-LOVV	IIIpul 3-11 latell.

Inp	Inputs		puts	
\overline{S}	\overline{R}	Q	$\overline{\mathcal{Q}}$	Comments
1	1	NC	NC	No change. Latch remains in present state.
0	1	1	0	Latch SET.
1	0	0	1	Latch RESET.
0	0	1	1	Invalid condition

• Active LOW \(\overline{S}\)-\(\overline{R}\) Latch: waveform analysis

Gated S-R Latch

Logic symbol

Waveform analysis

Gated D Latch

Logic symbol

Waveform analysis

- Edge triggered Flip-Flops
 - D Flip-flop
 - J-K Flip-flop

• D Flip-Flops

D=0 (RESET)

Truth table	for a	positive	edge-triggere	d D	flip-flop.
Tratti tabio		POOILIVO	ougo inggoro	<u> </u>	mp mop.

Inputs		Ou		
D	CLK	ϱ	$\overline{\mathcal{Q}}$	Comments
0	↑	0	1 0	RESET SET

⁼ clock transition LOW to HIGH

J-K Flip-Flops
 (J-K: Jack Kilby)

Truth table for a positive edge-triggered J-K flip-flop.

Inputs		Out	puts		
\boldsymbol{J}	K	CLK	Q	$\overline{\mathcal{Q}}$	Comments
0	0		Q_0	\overline{Q}_0	No change
0	1	1	0	1	RESET
1	0	<u> </u>	1	0	SET
1	1	↑	\overline{Q}_0	Q_0	Toggle

^{↑ =} clock transition LOW to HIGH

 O_0 = output level prior to clock transition

J-K Flip-Flops

Waveform analysis

Edge-Triggered Operation: D Flip-Flops

Pulse transition detector

Because the triggering effect by this short pulse (spike), D needs to maintain its intended value only for a short duration.

Edge-Triggered Operation: J-K Flip-Flops

D Flip-Flop with Active-LOW Preset and Clear Inputs

Logic symbol

logic diagram

Synchronous inputs: D

Asynchronous inputs: PRE, CLR

PRE: to set Q=1

CLR: to set Q=0

D Flip-Flop with Active-LOW Preset and Clear Inputs

Waveform analysis

Flip-flops in 74 Series

74HC74

Dual

positive edge-triggered

D flip-flops

74HC112 Dual negative edge-triggered J-K flip-flops

J-K Flip-flop Example

74HC112 Dual negative edge-triggered J-K flip-flops Waveform analysis

Synchronous inputs: J, K

Asynchronous inputs: PRE, CLR

50% point on triggering edge

Flip-Flop Operating Characteristics

CLK

Setup time, hold time

Propagation Delays: CLK CLK 50% point Clock to output 50% point on HIGH-to-LOW Q50% point on LOW-to-HIGH Qtransition of O transition of Q 50% point \overline{CLR} 50% point \overline{PRE} PRE/CLR to output Q 50% point Q 50% point 50% point

Set-up time (t_s)

50% point on triggering edge

D

CLK

50% point

Hold time (t_h)

50% point on triggering edge

• Flip-Flop Operating Characteristics: example

Comparison of operating parameters for four IC families of flip-flops of the same type at 25°C.

	CM	OS	Bipolar (TTL)		
Parameter	74HC74A	74AHC74	74LS74A	74F74	
t_{PHL} (CLK to Q)	17 ns	4.6 ns	40 ns	6.8 ns	
t_{PLH} (CLK to Q)	17 ns	4.6 ns	25 ns	8.0 ns	
$t_{PHL}(\overline{CLR} \text{ to } Q)$	18 ns	4.8 ns	40 ns	9.0 ns	
$t_{PLH}(\overline{PRE} \text{ to } Q)$	18 ns	4.8 ns	25 ns	6.1 ns	
t_s (set-up time)	14 ns	5.0 ns	20 ns	2.0 ns	
t_h (hold time)	3.0 ns	0.5 ns	5 ns	1.0 ns	
t_W (CLK HIGH)	10 ns	5.0 ns	25 ns	4.0 ns	
t_W (CLK LOW)	10 ns	5.0 ns	25 ns	5.0 ns	
$t_W(\overline{CLR}/\overline{PRE})$	10 ns	5.0 ns	25 ns	4.0 ns	
f_{max}	35 MHz	170 MHz	25 MHz	100 MHz	
Power, quiescent	0.012 mW	1.1 mW			
Power, 50% duty cycle			44 mW	88 mW	

- Flip-Flop Application Examples
 - Parallel data storage
 - Frequency division
 - Counting
 - 555 timer as a stable multivibrator

Flip-Flop Application Examples – parallel data storage

A 4-bit register for data storage

Waveform analysis

Flip-Flop Application Examples – frequency division

Flip-Flop Application Examples – counting

J-K flip-flops used to generate a binary counting sequence (00, 01, 10, 11)

To count the number of pulses in CLK

Flip-Flop Application Examples – 555 timer

Internal view of 555 timer

- Flip-Flop Application Example
 - 555 timer connected as an astable multivibrator (oscillator)

frequency of the pulses =
$$\frac{1.44}{(R_1 + 2R_2)C_1}$$