56 装备制造大类

5601 机械设计制造类

专业代码 560101 专业名称 机械设计与制造 基本修业年限 三年

培养目标

本专业培养德、智、体、美全面发展,具有良好职业道德和人文素养,掌握现代机械设计、机械制造工艺、机械制图等基本知识,具备机械设计、机械加工工艺编制、数控编程与加工、机械零件测量及生产管理等能力,从事机械设计与制造、设备生产与安装、调试与维护、生产现场管理等方面工作的高素质技术技能人才。

就业面向

主要面向机械制造企业、产品设计及应用企业,在设计、工程、生产及质检管理等岗位群,从事产品的结构设计、机械加工、零件制造工艺编制、产品质量检验、现场管理和技术服务等工作。

主要职业能力

- 1. 具备对新知识、新技能的学习能力和创新创业能力;
- 2. 具备工程制图能力:
- 3. 具备使用三维机械设计软件进行结构设计的能力;
- 4. 具备基本的机械制造工艺编制能力;
- 5. 具备生产现场管理和机械设备维护能力;
- 6. 掌握常用的数控机床操作和编程技能:
- 7. 掌握机械零件测量、检验及分析技能。

核心课程与实习实训

1. 核心课程

机械制图、机械制造基础、机械设计、机械制造工艺、数控加工与编程、计算机应用技术、产品三维造型与结构设计等。

2. 实习实训

在校内进行金工、电工基本技能、机械设计课程设计、机械制造工艺课程设计、数控加工综合等实训。

在机械制造、产品设计及应用企业进行实习。

职业资格证书举例

数控铣床(加工中心)操作工 数控车床操作工 机械制图员

衔接中职专业举例

机械制造技术 机械加工技术 数控技术应用 模具制造技术

接续本科专业举例

机械工程 机械设计制造及其自动化

专业代码 560102 专业名称 机械制造与自动化 基本修业年限 三年

培养目标

本专业培养德、智、体、美全面发展,具有良好职业道德和人文素养,掌握常用零件的制造工艺编制、工装设计与选择、普通和数控加工、质量检测及机电设备应用等基本知识,具备机械加工工艺编制、数控编程与加工、机械产品安装与调试等能力,从事较简单产品的机械加工工艺编制、机械产品加工、机电设备安装调试生产线维护、生产现场管理等工作的高素质技术技能人才。

就业面向

主要面向机械与自动化企业的工程、生产及设备管理部门,在产品加工与检测、机械与自动化设备装调、设备维护管理等岗位群,从事机械产品加工与工艺编制、数控加工编程与机床操作、机械产品装配、生产线调试与维护、设备管理及生产管理、技术服务等工作。

主要职业能力

- 1. 具备对新知识、新技能的学习能力和创新创业能力;
- 2. 具备初步的生产现场管理能力;
- 3. 掌握基本的工程制图、机械产品三维造型设计技能;
- 4. 掌握合理选择常用机械零件材料及其热处理的知识:
- 5. 掌握常用机床加工应用、维护及调整技能;
- 6. 掌握中等复杂程度的机械零件的工艺规程编制的技能;
- 7. 掌握机械产品技术测量和质量分析技能;
- 8. 掌握基本的电气控制、液压与气动技术和常用机电设备应用技能:
- 9. 熟练掌握数控车、铣加工与编程技能。

核心课程与实习实训

1. 核心课程

机械制图、机械设计基础、电气技术基础、机械制造技术、产品三维造型与结构设计、

数控加工工艺与编程、电气控制与 PLC 技术、液压与气压传动技术等。

2. 实习实训

在校内进行钳工、普通车床、数控车床、数控铣床(加工中心)、设备电气控制、产品设计与制造综合等实训。

在机械制造企业进行实习。

职业资格证书举例

装配钳工 数控车床操作工 数控铣床操作工

衔接中职专业举例

机械制造技术 机械加工技术 数控技术应用 模具制造技术

接续本科专业举例

机械工程 机械设计制造及其自动化

专业代码 560103 专业名称 数控技术 基本修业年限 三年

培养目标

本专业培养德、智、体、美全面发展,具有良好职业道德和人文素养,掌握机械零部件识图与测绘、CAD 三维造型设计、机械加工工艺文件识读与编制,熟悉安全操作规程、各类金属切削加工方法及加工装备、常见零件程序编制方法与加工等基本知识,具备数控机床操作、数控加工程序编制、CAD/CAM 软件技术应用等能力,从事数控机床操作与编程、数控加工工艺编制、数控机床维护与调试、生产管理等工作的高素质技术技能人才。

就业面向

主要面向发电设备制造、军事工业、航空航天工业、船舶制造、数据设备制造等高端装备制造业,从事数控机床操作、数据加工程序编制、数据加工工艺编制、产品质量检验、现场管理、生产调度、数控设备销售与售后服务等工作。

- 1. 具备对新知识、新技能的学习能力和创新创业能力;
- 2. 具备中等复杂的产品零件图、装配图、数控设备电气原理图的识图能力;
- 3. 具备熟练操作数控车床、数控铣床(加工中心)以及正确选用刀具、量具和夹具的能力;
 - 4. 具备手工编制中等复杂零件数控加工工艺及程序的能力:
 - 5. 具备熟练使用 CAD/CAM 软件自动编制较复杂零件数控加工程序的能力:
 - 6. 具备准确检验零件质量的能力;

- 7. 掌握数控机床装调与维护保养的技能;
- 8. 具备初步的生产管理和生产调度能力。

1. 核心课程

机械制图、公差配合与测量技术、金属切削加工与刀具、金属切削机床、数据加工工艺与编辑、CAD/CAM 技术、机床夹具及其应用、机床控制系统、液压与气动技术等。

2. 实习实训

在校内进行钳工、数控车削加工生产、数控铣削(加工中心)加工生产、三坐标测量、CAD/CAM 软件应用等实训。

在装备制造、数据技术企业进行实习。

职业资格证书举例

数控车工(中级) 数控程序员(中级、高级)

衔接中职专业举例

数控技术应用 机械制造技术 机械加工技术

接续本科专业举例

机械设计制造及其自动化 机械工程

专业代码 560104 专业名称 精密机械技术 基本修业年限 三年

培养目标

本专业培养德、智、体、美全面发展,具有良好职业道德和人文素养,掌握精密机械加工与制造、精密仪器测量与控制等基本知识,具备精密机械零件加工、精密机械装调、精密仪器使用与管理和通用设备保养与维修等能力,从事精密机械加工和精密仪器使用、维护与管理,精密机械与仪器制造等方面工作的高素质技术技能人才。

就业面向

主要面向精密制造、精密仪器仪表等行业,在精密和超精密加工、制造自动化、测控与 仪器仪表技术等技术领域,从事精密机械产品加工、精密机械与仪器制造、精密仪器使用安 装与调试、机械设备使用维护与管理等工作。

- 1. 具备对新知识、新技能的学习能力和创新创业能力;
- 2. 具备精密机械加工工艺编制与实施的能力;

- 3. 具备各类精密测量仪器操作、维护、管理能力与零件检测能力:
- 4. 具备本专业相关的机、光、电一体化应用及 CAD、CAM、CAT 软件操作与应用的基本能力:
 - 5. 具备精密机械设备基本操作、程序编制、安装、调试和运行维护的能力;
 - 6. 掌握精密测量系统设计与实施方法;
 - 7. 掌握精密机械与仪器结构、性能分析与设计方法。

1. 核心课程

精密机械与仪器设计、精密机械制造工艺、精密测量与控制、数控加工技术、光电加工技术智能化测控技术、传感器与检测技术、机床电气控制等。

2. 实习实训

在校内进行钳工、车工、铣工、数控车床、数控铣床、精密测量技术、电气安装与控制、 电子电路装配与调试、数控程序设计等实训。

在精密制造、精密仪器仪表等企业进行实习。

职业资格证书举例

精密仪器仪表修理工 数控机床操作工 数控车床操作 数控铣床(加工中心)操作工

衔接中职专业举例

光电仪器制造与维修 数控技术应用 机电技术应用 工业自动化仪表及应用

接续本科专业举例

机械电子工程

专业代码 560105 **专业名称** 特种加工技术 **基本修业年限** 三年

培养目标

本专业培养德、智、体、美全面发展,具有良好职业道德和人文素养,掌握激光加工、 线切割、电火花等工艺制订、生产管理与质量管理等基本知识,具备特种加工设备的操作、 工艺编制及实施能力,设备保养与维护能力,从事特种加工生产操作、工艺设计和实施、生 产管理等方面工作的高素质技术技能人才。

就业面向

主要面向模具、航空航天、军工、能源等装备制造行业及相关科研院所,在特种加工, 特别是激光、电加工等技术领域,从事工艺编制、设备操作与维护、生产管理等工作。

主要职业能力

- 1. 具备对新知识、新技能的学习能力和创新创业能力:
- 2. 具备特种加工工艺的编制及实施能力;
- 3. 具备典型特种加工设备安装、调试、维护以及改进的能力:
- 4. 具备新技术、新工艺的应用能力,及新工艺、新技术的基本研发能力;
- 5. 具备应用所学知识进行生产现场技术服务的能力;
- 6. 掌握典型特种加工设备的操作技能;
- 7. 掌握加工过程中的质量管理与工艺优化的基本理论和方法。

核心课程与实习实训

1. 核心课程

机械制造基础、计算机绘图、工程力学、工程材料及热处理、数控高速加工与工艺、数控加工技术、激光加工技术、特种加工技术、工艺及表面加工技术等。

2. 实习实训

在校内进行热加工、钳工、机械加工、激光技术、线切割技术、电火花加工及其他特种 加工等实训。

在航天航空、军工、能源等企业进行实习。

职业资格证书举例

电切削工

衔接中职专业举例

金属热加工 钢铁冶炼

接续本科专业举例

材料成型及控制工程

专业代码 560106 专业名称 材料成型与控制技术 基本修业年限 三年

培养目标

本专业培养德、智、体、美全面发展,具有良好职业道德和人文素养,掌握材料成型与控制技术、工程材料及其成型工艺等基本知识,具备金属材料铸造、锻压、焊接及热处理,粉末冶金精密成型,复合材料成型等多方面或专项生产操作能力,以及成型工艺工装设计与实施能力,从事生产操作、工艺设计、常规工艺装备设计、现场管理等工作的高素质技术技能人才。

就业面向

主要面向机械、汽车、船舶、航空航天、军工、铁路机车车辆等装备制造行业及其科研院所等,在金属材料热制备及加工成型、粉末冶金、复合材料成型与加工等技术领域,从事 生产操作、工艺设计、工装设计及现场管理等工作。

主要职业能力

- 1. 具备对新知识、新技能的学习能力和创新创业能力;
- 2. 具备解决材料加工现场技术问题的能力;
- 3. 掌握常用材料成型设备操作的技能;
- 4. 掌握材料成型工艺及工装设计与实施技能;
- 5. 掌握常用材料成型设备安装、调试、维修和技术改造的技能;
- 6. 掌握材料加工质量控制基本理论和现场管理基本方法。

核心课程与实习实训

1. 核心课程

机械制图、机械设计基础、工程材料与热处理、合金熔炼技术、铸造工艺及工装设计、 锻压工艺及工装设计、熔焊原理与金属材料焊接性、焊接结构生产、钢铁热处理、粉末冶金 成型工艺及工装设计、复合材料及其成型工艺、快速成型与 3D 打印技术、检测技术及应用等。

2. 实习实训

在校内进行金属材料热加工、粉末冶金技术、复合材料成型技术和专业综合实践训练等实训。

在机械、船舶、汽车等企业进行实习。

职业资格证书举例

铸造工 熔炼工 锻压工 粉末冶金工 电焊工

衔接中职专业举例

金属热加工 钢铁冶炼

接续本科专业举例

材料科学与工程 金属材料工程 材料成型及控制工程 焊接技术与工程

专业代码 560107 专业名称 金属材料与热处理技术 基本修业年限 三年

培养目标

本专业培养德、智、体、美全面发展,具有良好职业道德和人文素养,掌握金属材料、 热处理工艺制定及实施、生产管理与质量管理等基本知识,具备热处理操作、热处理工艺编 制及实施、基本的热处理工装设计、设备保养与维护等能力,从事热处理生产操作、热处理工艺设计和实施、金属材料管理等方面工作的高素质技术技能人才。

就业面向

主要面向机械、航天航空、核工业、船舶制造、军工等企事业单位,在金属材料管理选择、金属材料改性等技术领域,从事热处理生产操作、热处理工艺设计和实施、金属材料管理、产品检验、车间生产管理等工作。

主要职业能力

- 1. 具备对新知识、新技能的学习能力和创新创业能力;
- 2. 具备编制与实施常用热处理方法的工艺及工艺规程的能力:
- 3. 具备常用工装夹具设计的能力:
- 4. 具备常用热处理设备安装、调试、维修和技术改造的能力;
- 5. 具备对金属制品进行金相分析、化学分析和力学性能检测的能力;
- 6. 具备选用各种金属材料的能力:
- 7. 具备分析、解决热处理现场技术问题的能力:
- 8. 掌握常用热处理方法。

核心课程与实习实训

1. 核心课程

机械制图及 CAD、机械设计基础、机械制造基础、金属学及金属材料、显微组织分析技术、材料成型与控制基础、金属力学性能测试技术、热加工检测技术、热处理原理及工艺等。

2. 实习实训

在校内进行机加工、钳工、材料成型与控制、金相组织分析、金属力学性能测试、机械设计基础课程设计、热处理操作技能、热处理工艺设计、应用软件技术等实训。

在机械、核工业、军工等企业进行实习。

职业资格证书举例

热处理工 金相分析员

衔接中职专业举例

金属热加工 金属表面处理技术应用

接续本科专业举例

金属材料工程 材料成型及控制工程

专业代码 560108 专业名称 铸造技术 基本修业年限 三年

培养目标

本专业培养德、智、体、美全面发展,具有良好职业道德和人文素养,掌握金属材料与 热处理、铸造成型、铸造原材料、铸造合金熔炼、铸造工艺与设备、生产管理与质量管理等 基本知识,具备铸造生产操作、铸造工艺及常规工装设计、铸造合金熔炼、铸件质量控制等 能力,从事铸造生产操作、工艺设计、常规工艺装备设计、合金熔炼、现场管理等工作的高 素质技术技能人才。

就业面向

主要面向机械、汽车、船舶、航空航天、军工、铁路机车车辆等装备制造行业及其科研院所等,在铸造成型及其热处理等技术领域,从事铸造工艺及工装设计、合金熔炼工艺制定、 热处理工艺制定、生产操作、现场管理等工作。

主要职业能力

- 1. 具备对新知识、新技能的学习能力和创新创业能力;
- 2. 具备零件的铸造工艺优化设计和工装设计能力;
- 3. 具备铸造工艺规程的制定与实施的能力:
- 4. 具备应用所学知识进行生产现场技术服务的能力:
- 5. 具备铸造生产计划与定额制定的能力:
- 6. 具备对铸件进行金相分析、力学性能检测的能力;
- 7. 掌握铸造生产过程所需的熟练操作技能;
- 8. 掌握铸件质量分析、控制与检验的理论和方法。

核心课程与实习实训

1. 核心课程

机械制图、机械设计基础、工程材料与热处理、铸造合金熔炼及其控制、铸造生产及工艺工装设计、铸造 CAD/CAE 工艺优化设计与模拟、特种铸造、快速成型与 3D 打印等。

2. 实习实训

在校内进行材料成型与控制、铸造技能基础、铸造生产、特种铸造工艺及工装设计、特种铸造、毕业综合等实训。

在汽车、铁路机车、船舶等企业进行实习。

职业资格证书举例

铸造工

衔接中职专业举例

金属热加工 钢铁冶炼

接续本科专业举例

材料科学与工程 金属材料工程 材料成型及控制工程

专业代码 560109 专业名称 锻压技术 基本修业年限 三年

培养目标

本专业培养德、智、体、美全面发展,具有良好职业道德和人文素养,掌握金属材料、塑性成型、锻压技术、锻压工艺、锻压模具、生产管理与质量管理等基本知识,具备锻压操作、锻压模具设计以及锻压工艺编制与实施等能力,从事锻压设备操作、现场工艺实施、锻造工艺编制、锻压模具设计与调试等工作的高素质技术技能人才。

就业面向

主要面向机械、航空工业、船舶制造业、军工业、铁路机车制造等单位,在锻压成型和模具等技术领域,从事锻压设备操作、现场工艺实施、锻造工艺编制、锻压模具设计与调试等工作。

主要职业能力

- 1. 具备对新知识、新技能的学习能力和创新创业能力;
- 2. 具备对锻压产品设计图纸进行识读与审核的能力;
- 3. 具备实施中等复杂程度锻压产品的生产工艺能力;
- 4. 具备设计锻压模具的能力:
- 5. 具备维护保养设备的能力;
- 6. 具备对锻压产品进行金相分析、力学性能检测的能力;
- 7. 具备运用所学知识,分析、解决锻压现场技术问题的能力:
- 8. 掌握常用锻造和冲压的操作技能;
- 9. 掌握锻压生产质量控制的理论和方法。

核心课程与实习实训

1. 核心课程

机械制图及 CAD、机械设计基础、模具 CAD/CAM、工程力学、工程材料及热处理、金属塑性成型基础、锻压设备、锻造工艺与锻模设计、冲压工艺与冲模、锻压生产管理与质量管理等。

2. 实习实训

在校内进行材料成型与控制、锻压技能等实训。

在机械、航空工业、军工等企业进行实习。

职业资格证书举例

锻造工 冲压工

衔接中职专业举例

金属压力加工

接续本科专业举例

材料科学与工程 金属材料工程 材料成型及控制工程

专业代码 560110 专业名称 焊接技术与自动化 基本修业年限 三年

培养目标

本专业培养德、智、体、美全面发展,具有良好职业道德和人文素养,掌握焊接电工基础、焊接工艺、焊接质量等基本知识,熟悉焊接机器人等自动化、智能化焊接技术,具备焊接操作、焊接工装夹具选用与设计、焊接质量检测与控制、焊接生产管理等能力,从事焊接制造工艺编制及实施、生产操作和工艺技术创新等工作的高素质技术技能人才。

就业面向

主要面向机械、汽车、船舶、航空航天、军工、铁路机车车辆等装备制造行业及其科研 院所,在焊接成型、表面技术领域,从事工艺的编制与实施、焊接质量检验与分析、焊接工 艺试验以及基层管理等工作。

主要职业能力

- 1. 具备对新知识、新技能的学习能力和创新创业能力:
- 2. 具备常用焊接方法的熟练操作能力;
- 3. 具备对产品设计图纸进行工艺性审查的能力;
- 4. 具备编制与实施焊接结构制造工艺规程的能力;
- 5. 具备根据标准编制焊接工艺评定规程及报告的能力;
- 6. 具备选用和设计焊接工装夹具的能力;
- 7. 具备对焊接设备进行安装和调试的能力;
- 8. 具备焊接机器人及其他常用自动化、智能化焊接技术的使用能力:
- 9. 掌握焊接质量分析、检测与控制技能。

核心课程与实习实训

1. 核心课程

机械制图、工程材料与热处理、焊接电工基础、熔焊过程与缺欠控制、焊接方法与设备使用、焊接工艺制定与评定、焊接结构制造工艺及实施、焊接质量检测技术等。

2. 实习实训

在校内进行典型焊接接头电弧焊、焊接施工图识读、焊接专业毕业综合实践等实训。在机械、船舶、汽车等企业进行实习。

职业资格证书举例

焊工 特种作业操作工

衔接中职专业举例

焊接技术应用

接续本科专业举例

焊接技术与工程

专业代码 560111 专业名称 机械产品检测检验技术 基本修业年限 三年

培养目标

本专业培养德、智、体、美全面发展,具有良好职业道德和人文素养,掌握机械识图和绘图、机械加工、金属材料机械加工质量影响因素及控制措施、机械制造企业质量管理、计量管理和产品检测等基本知识,具备机械加工与质量控制、产品检测、计量器具检定与调修、企业质量管理和计量管理能力,从事机械制造企业产品性能检验、几何量精密测量、计量器具检定、质量管理等工作的高素质技术技能人才。

就业面向

主要面向装备制造业、航空航天业、核工业、船舶制造业、军工企业及科研院所、产品 质量检测鉴定所等企事业单位,在机械产品检测检验技术岗位群,从事产品性能检验、几何 量精密测量、计量器具检定、质量管理等工作。

- 1. 具备对新知识、新技能的学习能力和创新创业能力;
- 2. 具备识图与绘图能力:
- 3. 具备常用机床的操作能力;
- 4. 具备中等复杂零件加工工艺编制及实施能力;
- 5. 具备零件机械加工与质量控制能力;
- 6. 具备机械制造企业现场几何量精密检测能力:
- 7. 具备机械产品性能检验的能力:
- 8. 具备机械制造企业几何量计量器具检定和维修能力;
- 9. 具备机械制造企业计量管理和质量管理能力。

1. 核心课程

机械制图、金属材料与热加工基础、几何量精密检测、误差与数据处理、量仪的检定与调修计量、管理与质量管理、传感器与检测技术等。

2. 实习实训

在校内进行钳工、普通机加工、数控加工、夹具与检具课程设计、精密检测专用周和量仪检定与调修等实训。

在装备制造、航天航空等企业进行实习。

职业资格证书举例

机械产品检验工 车工 铣工

衔接中职专业举例

机械制造技术 机械加工技术 机电产品检测技术应用

接续本科专业举例

机械设计制造及其自动化 机械工程 测控技术与仪器

专业代码 560112 专业名称 理化测试与质检技术 基本修业年限 三年

培养目标

本专业培养德、智、体、美全面发展,具有良好职业道德和人文素养,掌握金属材料检测、质量管理等基本知识,具备工件制品的无损检测、材料的力学性能测试、化学成分分析、金相分析等检测能力,具备检验工艺与方案编制和质量管理能力,从事检验检测操作与评定、检验工艺与分析检验方案制定、质量管理等工作的高素质技术技能人才。

就业面向

主要面向装备制造、航天航空、核工业、船舶制造、军事工业、特种设备、检测公司或第三方检验等企业,在质量检验检测与质量管理等技术领域,从事金属材料及制品的质量检验操作与评定、检验工艺编制、分析检验方案制定、质量管理等工作。

- 1. 具备对新知识、新技能的学习能力和创新创业能力;
- 2. 具备出具检测报告的能力:
- 3. 具备对常用检验仪器设备进行安装、调试、维护、保养的能力:
- 4. 具备金相组织分析的技能与评定能力;
- 5. 具备制定检验工艺与方案的能力;

- 6. 掌握力学性能测试的操作技能:
- 7. 掌握常用无损检测方法(超声、射线、表面检测)与检测结果评价的方法;
- 8. 掌握常用化学成分分析的方法。

1. 核心课程

机械制图、超声检测、射线检测、表面检测、金属材料成分分析技术、金相组织分析技术、力学性能检测技术等。

2. 实习实训

在校内进行无损检测、化学成分分析、力学性能检测、组织分析等实训。 在核工业、特种设备、检测等企业进行实习。

职业资格证书举例

无损检测员 化学检验工

衔接中职专业举例

工程材料检测技术 机电产品检测技术应用

接续本科专业举例

材料科学与工程

专业代码 560113 专业名称 模具设计与制造 基本修业年限 三年

培养目标

本专业培养德、智、体、美全面发展,具有良好职业道德和人文素养,熟悉先进的模具 CAD/CAM 软件应用、模具生产企业生产流程与管理等基本知识,具备较强现代模具制造设备 操作技能和管理等能力,从事产品成型工艺制定与模具设计、模具制造工艺编制、现代模具 制造设备的使用与维护、模具装配与调试、项目管理等工作的高素质技术技能人才。

就业面向

主要面向现代装备制造业,在产品设计、3D 打印、模具设计、模具制造等技术领域,从事产品成型工艺制定、模具设计、模具制造工艺规划、模具制造、模具装配与调试、快速成型设备操作、产品品质管理、生产组织管理等工作。

- 1. 具备对新知识、新技能的学习能力和创新创业能力;
- 2. 具备产品成型工艺规划的能力:

- 3. 具备设计中等复杂程度冲压模具、塑料模具的能力:
- 4. 具备编制模具零件制造工艺的能力:
- 5. 具备模具装配与调试、维修、保养的能力:
- 6. 具备产品测绘、三维数字化建模及操作快速成型设备的能力;
- 7. 具备产品质量检测、生产组织管理能力:
- 8. 掌握典型模具加工设备的编程与操作技能:
- 9. 掌握冲压、塑压等设备的运行、维护、管理、保养的技能。

1. 核心课程

机械制图、机械设计基础、模具 CAD 技术、测量技术、冲压工艺与模具设计、塑料成型工艺与模具设计、模具制造工艺、快速成型技术等。

2. 实习实训

在校内进行机工、钳工、数控编程与操作、电加工、模具制作、专业综合等实训。 在产品设计、3D 打印、模具设计企业进行实习。

职业资格证书举例

模具设计师 模具制造工 电切削工 数控铣床(加工中心)操作工

衔接中职专业举例

模具制造技术 机械加工技术

接续本科专业举例

材料成型及控制工程 机械设计制造及其自动化

专业代码 560114 专业名称 电机与电器技术 基本修业年限 三年

培养目标

本专业培养德、智、体、美全面发展,具有良好职业道德和人文素养,掌握电机和低压 电器产品设计制造的相关知识,具备电机电器产品辅助设计、制造、检验、检测、安装、调 试、售后服务能力,从事电机装配、常用电机检修、高低压电器装配、生产设备电气控制线 路维修维护、电机电器产品设计等工作的高素质技术技能人才。

就业面向

主要面向电机、电器、新能源制造类企业,在产品装配、调试、维护维修、质量检验与试验、生产管理、质量控制、计算机辅助设计等岗位群,从事电机电器产品计算机辅助设计、制造、检验、检测、安装、调试、售后服务以及生产设备电气控制线路的维修、维护等工作。

主要职业能力

- 1. 具备对新知识、新技能的学习能力和创新创业能力:
- 2. 具备电机电器产品计算机辅助设计能力;
- 3. 具备编制电机电器产品工艺文件的能力:
- 4. 具备基层生产管理、技术管理、经济管理能力;
- 5. 掌握电机装配与检修操作技能;
- 6. 掌握高低压电器装配与设备安装及调试基本操作技能。

核心课程与实习实训

1. 核心课程

机械设计基础、电机与拖动基础、电气控制技术、可编程控制技术应用、电力电子与变频技术、成套电器设备工艺技术、电机与电器制造工艺等。

2. 实习实训

在校内进行电工、钳工、AutoCAD、电气 CAD、电机装配、电气、成套电器等实训。 在新能源、电机、电器企业进行实习。

职业资格证书举例

电机装配工 常用电机检修工 高低压电器装配工 维修电工

衔接中职专业举例

电机电器制造与维修

接续本科专业举例

电气工程及其自动化

专业代码 560115 专业名称 电线电缆制造技术 基本修业年限 三年

培养目标

本专业培养德、智、体、美全面发展,具有良好职业道德和人文素养,掌握电线电缆生产工艺及设备操作、结构设计、原材料及产品检验等基本知识,具备电线电缆产品工艺编制、产品制造、产品检验、现场管理、新产品设计能力,从事电线电缆制造、电线电缆产品检验、电线电缆工艺设计等工作的高素质技术技能人才。

就业面向

主要面向电线电缆设计、生产制造及电线电缆检测企业,从事电线电缆生产设备操作、电线电缆检验、电线电缆工艺设计、电线电缆产品质量控制、电线电缆销售及电线电缆生产现场管理等工作。

主要职业能力

- 1. 具备对新知识、新技能的学习能力和创新创业能力:
- 2. 具备正确操作电线电缆生产设备,生产各种规格的电线电缆产品的能力;
- 3. 具备正确运用相关仪器进行电线电缆材料、半成品及产品检验的能力:
- 4. 具备电线电缆生产工艺编制和生产过程管理能力;
- 5. 具备解决生产现场工艺和质量问题的能力;
- 6. 掌握电线电缆结构设计的知识:
- 7. 掌握编制电线电缆产品工艺文件等方面的知识;
- 8. 掌握模具选择和装配、生产设备操作与维护等方面的知识;
- 9. 熟悉电线电缆材料的基本化学和物理性质。

核心课程与实习实训

1. 核心课程

电线电缆制造工艺技术、电线电缆制造设备、电线电缆结构设计、电线电缆产品检验、电力电缆设计与应用、光纤光缆设计与制造等。

2. 实习实训

在校内进行电线电缆产品检验、电线电缆设计制造、电线电缆料配方设计、电线电缆制造工考证训练等实训。

在电线电缆设计、生产制造企业进行实习。

职业资格证书举例

电线电缆制造工

衔接中职专业举例

机电技术应用 电气技术应用 高分子材料加工工艺 橡胶工艺

接续本科专业举例

电气工程及其自动化 高分子材料与工程

专业代码 560116 专业名称 内燃机制造与维修

基本修业年限 三年

培养目标

本专业培养德、智、体、美全面发展,具有良好职业道德和人文素养,掌握内燃机制造与维修技术的基本知识,具备内燃机制造、维修、测试、运用等实际工作能力,从事生产、管理、质量控制等工作的高素质技术技能人才。

就业面向

本专业主要面向内燃机、汽车、石油化工、工程机械、船舶等行业,在制造、维修、测试、运用等岗位群,从事制造工艺、技术和管理等工作。

主要职业能力

- 1. 具备对新知识、新技能的学习能力和创新创业能力:
- 2. 具备阅读内燃机及相关产品的外语文献资料的能力,并能进行简单翻译:
- 3. 具备简单程序编制、计算机数据采集与处理能力;
- 4. 具备结构装调、动力装置匹配、故障诊断与维修能力;
- 5. 具备应用内燃机测试设备及进行内燃机性能试验的能力;
- 6. 具备编制和初步设计主要零部件制造工艺的能力;
- 7. 掌握机械制图与测绘、零件加工检测、机械装置装配等技能,能够进行机械工程现场 布置。

核心课程与实习实训

1. 核心课程

机械设计基础、内燃机构造、内燃机原理、内燃机制造工艺学、内燃机电控技术、内燃机故障诊断与维修、内燃机测试技术等。

2. 实习实训

在校进行金工实训、电工技能训练、机械设计课程设计、内燃机制造工艺学课程设计、 内燃机设计课程设计、数控加工、内燃机拆装与调试、内燃机故障诊断与维修、内燃机实验 等实训。

在内燃机、汽车、石油化工等企业进行实习。

职业资格证书举例

机械产品检验工 汽车维修工 数控铣床操作工

衔接中职专业举例

机械制造技术 汽车运用与检修

接续本科专业举例

机械设计制造及其自动化

专业代码 560117 专业名称 机械装备制造技术 基本修业年限 三年

培养目标

本专业培养德、智、体、美全面发展,具有良好职业道德和人文素养,掌握机械识图、 绘图和机械加工工艺等基本知识,具备机械加工和机械装备装调能力,从事一般机械装备常 用零件加工、装调与维修等工作的高素质技术技能人才。

就业面向

主要面向农业机械、轻工机械、服装机械、起重运输机械、工程机械制造等企业,在机械加工、机械产品装调及维修等岗位群,从事机械常用零件加工、装备安装与调试及维修等工作。

主要职业能力

- 1. 具备对新知识、新技能的学习能力和创新创业能力;
- 2. 具备机械装备产品简单部件装配工艺编制能力;
- 3. 具备一般机械装备产品部件和整机的装配与维修能力;
- 4. 具备机械识图与绘图能力;
- 5. 具备简单零件加工工艺编制能力;
- 6. 具备使用常用机床对零件进行加工的能力:
- 7. 掌握机械加工和机械装配基础知识:
- 8. 了解一般机械装备基本结构和工作原理。

核心课程与实习实训

1. 核心课程

机械制图、电工电子基础、机械制造基础、机械制造工艺、CAD/CAM 应用、机械拆装与测绘等。

2. 实习实训

在校内进行钳工基本技能、电工基本技能、机械拆装与测绘、CAD/CAM 应用操作等实训。 在农业机械、轻工机械企业进行实习。

职业资格证书举例

装配工 部件装配工 装配钳工 维修电工

衔接中职专业举例

机械制造技术 机电技术应用 机电设备安装与维修

接续本科专业举例

机械工程 机械设计制造及其自动化

专业代码 560118 专业名称 工业设计 基本修业年限 三年

培养目标

本专业培养德、智、体、美全面发展,具有良好职业道德和人文素养,掌握工业设计基本理论和方法,熟悉产品设计、制造、设计商品化等基本知识,具备较强计算机辅助设计、手绘表达、模型制作能力,从事产品创意设计、产品造型设计、人机交互界面设计和其他产品设计等工作的高素质技术技能人才。

就业面向

主要面向创意设计企业和产品生产企业的产品开发部门,从事新产品策划与创意设计、产品外观设计、产品交互设计、产品结构设计、产品推广设计和其他艺术设计等工作。

主要职业能力

- 1. 具备对新知识、新技能的学习能力和创新创业能力;
- 2. 具备敏锐的观察力,能够进行市场调研与分析判断,掌握工业设计程序与方法,具备进行产品策划、技术整合、交互设计等创意设计的能力;
- 3. 具备艺术修养,掌握人机工程、材料与工艺等知识,具备使用手绘、三维建模和产品造型设计的能力;
- 4. 具备材料与工艺和模具与成型知识,了解机械、电子等技术,具备产品设计或结构设计能力:
 - 5. 具备将产品市场化过程中的设计企划,设计执行和设计实现的能力;
 - 6. 掌握平面设计方法与技巧, 具备产品推广或企业形象设计能力。

核心课程与实习实训

1. 核心课程

设计程序与方法、产品创意设计、产品造型设计、三维建模、平面设计、材料与工艺、人机工程学等。

2. 实习实训

在校内进行计算机辅助设计、模型制作等实训。在创意设计、产品生产企业实习。

职业资格证书举例

工业设计师 产品造型设计师

衔接中职专业举例

机械制造技术 机械加工技术 模具制造技术 工艺美术 美术设计与制作

接续本科专业举例

工业设计 产品设计 工艺美术 艺术与科技

专业代码 560119 专业名称 工业工程技术 基本修业年限 三年

培养目标

本专业培养德、智、体、美全面发展,具有良好职业道德和人文素养,掌握管理理论知识与技能,以及机械工程基本知识,具备熟练运用计算机和 ERP 管理软件、分析和解决制造业企业生产现场管理问题、制造成本核算能力,从事机械制造生产管理、产品质量控制、能耗与成本控制等工作的高素质技术技能人才。

就业面向

主要面向机械制造企业的生产管理部门、质量控制部门和成本管理部门,从事管理(工业)工程技术、会计等工作。

主要职业能力

- 1. 具备对新知识、新技能的学习能力和创新创业能力;
- 2. 具备生产现场控制能力;
- 3. 具备熟练运用办公自动化系统及其他现代办公设备的能力;
- 4. 具备运用 ERP 生产管理的能力:
- 5. 具备核算制造成本的能力;
- 6. 掌握工业企业管理的基本理论和技能:
- 7. 了解机械工程相关基础知识。

核心课程与实习实训

1. 核心课程

机械加工基础、管理实务、生产管理、质量管理、成本核算、财务管理、市场营销等。

2. 实习实训

在校内进行钳工、机加工、ERP 等实训。

在机械制造企业进行实习。

职业资格证书举例

全国信息化工程师 国际/国家质量管理体系内审员 助理生产运作师

衔接中职专业举例

产品质量监督检验 机械制造技术 机械加工技术 机电技术应用 市场营销

接续本科专业举例

工业工程 工商管理 市场营销

5602 机电设备类

专业代码 560201 专业名称 自动化生产设备应用 基本修业年限 三年

培养目标

本专业培养德、智、体、美全面发展,具有良好职业道德和人文素养,掌握自动控制和自动化生产设备相关的基本知识,具备自动化设备和生产线安装调试、操作使用、故障排除、维护维修、技术改造、管理服务等能力,从事检测与维修、运行与维护工作等工作的高素质技术技能人才。

就业面向

主要面向机械、冶金、电子、轻工、采矿等行业,在自动化生产设备操作、调试、维修、管理等岗位群,从事自动化生产设备安装调试、故障诊断、维护维修、售后服务、技术改造等工作。

主要职业能力

- 1. 具备对新知识、新技能的学习能力和创新创业能力;
- 2. 具备外语阅读、计算机及软件应用能力;
- 3. 具备一定的在本专业领域进行技术改造的能力;
- 4. 掌握自动化设备和生产线安装调试、故障诊断、操作使用和维护维修的技能;
- 5. 掌握自动控制理论知识和技术:
- 6. 掌握自动化设备及生产过程相关的专业知识和技术理论。

核心课程与实习实训

1. 核心课程

机械设计基础、电工电子技术、机电传动控制、PLC 技术应用、自动化设备检测技术、液压与气压传动、机电设备故障诊断与维修、典型自动化设备应用技术等。

2. 实习实训

在校内进行金工、电工电子、液压气动、PLC、设备故障诊断、机电传动控制等实训。 在机械、冶金、采矿等企业进行实习。

职业资格证书举例

维修钳工 维修电工