Elementos de Análisis para Computación e Informática

Martín Villanueva

12 de abril 2016

1. Definiciones

Se listan a continuación definiciones utilizadas en este artículo

- **Norma** p-ádica: Para cualquier $x = \frac{a}{b} \neq 0$ ($a, b \in \mathbb{Z}$, $b \neq 0$) podemos realizar la factorización prima correspondiente y escribir $x = p^n \frac{a'}{b'}$ para p primo, $n \in \mathbb{Z}$, y con a' y b' primos relativos a p. Luego se define $|x|_p = p^{-n}$ ($|0|_p = 0$), la cual es una norma que satisface las siguientes propiedades
 - 1. $|x|_p \ge 0$. Por definición $|x|_p = 1/p^n > 0$. El caso x = 0 satisface la igualdad.
 - 2. $|x|_p = 0 \leftrightarrow x = 0$. Por definición.
 - 3. $|xy|_p = |x|_p |y|_p$. Sean $x = p^m a/b$ e $y = p^n c/d$, luego $|xy|_p = \left| p^{m+n} \frac{ac}{bd} \right|_p = p^{-(m+n)} = p^{-m} p^{-n} = |x|_p |y|_p$.
 - 4. $|x+y|_p \le |x|_p + |y|_p$. Considerando la misma representación que en el punto anterior, y fijando (sin pérdida de generalidad) m > n:

$$|x+y|_{p} = \left| p^{m} \frac{a}{b} + p^{n} \frac{c}{d} \right|_{p} = \left| p^{n} \left(p^{m-n} \frac{a}{b} + \frac{c}{d} \right) \right|_{p} = \left| p^{n} \left(\frac{adp^{m-n} + bc}{bd} \right) \right|_{p} = p^{-n} = |y|_{p} = \max(|x|_{p}, |y|_{p})$$

este resultado es *más fuerte* que la desigualdad triangular, y la implica directamente.

■ **Métrica** *p*-ádica: La norma anterior induce de manera directa la métrica $d_p(x, y) = |x - y|_p$ correspondiente.

2. Completación \mathbb{Q}_p de \mathbb{Q} con respecto a la métrica p-ádica.

Como vimos anteriormente, cuando se consideran sucesiones de Cauchy sobre el e.m (*espacio métrico*) $(\mathbb{Q},|\cdot|)$ (con métrica Euclidiana) es posible construir \mathbb{R} como una completación de \mathbb{Q} . Estamos ahora interesados en el e.m (\mathbb{Q}, d_p) .

Consideremos las sucesiones de Cauchy sobre los racionales $CF(\mathbb{Q})$, las cuales sabemos podemos equipar con estructura de espacio vectorial $(CF(\mathbb{Q}), +, \cdot)$. Definimos entonces las *sucesiones nulas* $NF(\mathbb{Q})$ como sigue:

$$\{a_n\} \in NF(\mathbb{Q}) \text{ ssi } \forall \epsilon > 0, \exists N \in \mathbb{N} : \forall n \in \mathbb{N} \text{ con } n \geq N, |a_n|_p < \epsilon$$

diremos entonces que $\{a_n\}, \{b_n\} \in CF(\mathbb{Q})$ estan ~ -relacionadas ssi $\{a_n - b_n\}$ es una sucesión nula:

$$\{a_n\} \sim \{b_n\} \leftrightarrow \{a_n\} - \{b_n\} = \{a_n - b_n\} \in NF(\mathbb{Q})$$

la cual claramente es una relación de equivalencia. Si se denota $\overline{\{a_n\}}$ como la clase de equivalencia de la sucesión $\{a_n\} \in CF(\mathbb{Q})$, entonces el conjunto cociente

$$CF(\mathbb{Q})/\sim := \{\overline{\{a_n\}} : \{a_n\} \in CF(\mathbb{Q})\}$$

se define como \mathbb{Q}_p . Los siguientes aspectos deben ser notados:

1. $\mathbb{Q} \subset \mathbb{Q}_p$. Consideramos las sucesiones de Cauchy constantes $\{a_n\}$ con $a_n = x \in \mathbb{Q}$, $\forall n \in \mathbb{N}$. Claramente la diferencia de dos sucesiones constantes no puede ser nula, por lo tanto cada una de estas es su propio representante en las clases de equivalencias de $CF(\mathbb{Q})/\sim$, i.e, existe una inyección de \mathbb{Q} a \mathbb{Q}_p .

2. (\mathbb{Q}_p, d_p) es completo. Puede ser mostrado (to-do), que cualquier elemento en \mathbb{Q}_p puede ser escrito de manera única como $\sum_{i=k}^{\infty} \alpha_i p^i$ con $\alpha_i \in \{0, 1, \dots, p-1\} \ \forall i \ y \ \alpha_k > 0 \ k \in \mathbb{Z}$. Luego pueden construirse sucesiones de Cauchy sobre \mathbb{Q}_p del siguiente modo:

$$\{a_n\} = \left\{ a_n := \sum_{i=k}^n \alpha_i p^i \quad \forall n \in \mathbb{N} : n \ge k \right\}$$

El que esta sucesión converge es intuitivo; Cada nuevo término de la sucesión agrega una potencia mayor de p y por lo tanto es p-ádicamente más pequeño. Veámoslo más formalmente, notando en primer lugar la siguiente propiedad:

$$|a_n|_p = \left| \sum_{i=k}^n \alpha_i p^i \right|_p = \max(|\alpha_i p^i|_p \ i = k : n) = \max(|p^i|_p \ i = k : n) = \frac{1}{p^k}$$
 (1)

y luego tomemos dos términos de la sucesión a_r , a_s con r > s, entonces haciendo uso de (1), su distancia p-ádica es:

$$|a_r - a_s|_p = \left| \sum_{i=k}^r \alpha_i p^i - \sum_{i=k}^s \alpha_i p^i \right|_p = \left| \sum_{i=s+1}^r \alpha_i p^i \right|_p = \frac{1}{p^{s+1}}$$
 (2)

por lo tanto, si se escogen r, s lo suficientemente grandes (> N), su distancia puede hacerse arbitrariamente pequeña (< ϵ). Esto demuestra que tales sucesiones convergen, y además convergen en Q_p , logrando entonces la completitud.

3. ¿Es $\mathbb{Q}_p = \mathbb{Q}_q$?

Sean p,q dos primos distintos, y consideremos un elemento pertenecientes a ambos conjuntos: $x \in \mathbb{Q}_p$ y $x \in \mathbb{Q}_q$. Tal elemento está asociado a las clases de equivalencias siguientes

$$(x \in \mathbb{Q}_p)$$
: $x = \sum_{i=k_p}^{\infty} \alpha_i p^i = \{\text{clase de equivalencia de sucesiones } CF(\mathbb{Q}_p) \text{ que convergen a x} \}$

$$(x \in \mathbb{Q}_q)$$
: $x = \sum_{i=k_q}^{\infty} \alpha_i q^i = \{\text{clase de equivalencia de sucesiones } CF(\mathbb{Q}_q) \text{ que convergen a x} \}$

de antemano conocemos $\{a_n\}$ y $\{b_n\}$ dos representantes de cada clase respectivamente:

$$\{a_n\} = \left\{ a_n := \sum_{i=k_p}^n \alpha_i p^i \quad \forall n \in \mathbb{N} : n \ge k_p \right\}$$

$$\{b_n\} = \left\{b_n := \sum_{i=k_q}^n \alpha_i q^i \quad \forall n \in \mathbb{N} : n \ge k_q\right\}$$

ambas sucesiones son intrínsecamente distintas, por lo tanto también deben serlo las clases correspondientes. Se concluye entonces que $\mathbb{Q}_p \neq \mathbb{Q}_q$.

Nota: Intuitivamente ambos conjuntos poseen los mismos elementos, pero con una representación diferente. Es por lo tanto de esperar que exista un *isomorfismo* entre ambos.