Homophily and triangles

Social Networks Analysis and Graph Algorithms

Prof. Carlos Castillo — https://chato.cl/teach

Contents

- This is all about friends, and friends of friends
- Homophily
- Clustering coefficient

Sources

- A. L. Barabási (2016). Network Science Chapter 02
- F. Menczer, S. Fortunato, C. A. Davis (2020). A First Course in Network Science Chapter 02
- URLs cited in the footer of specific slides

Homophily

Who is a friend? [Homophily]

- In social networks, nodes have characteristics that influence their preferences
 - Age, gender identity, ethnicity, sexual preference,
 location, topics of interest, artistic sensitivities, ...
- People tend to befriend those who are like them: that is called homophily

"Birds of a feather flock together"

Quantifying homophily

• Let G be a graph of N nodes: N_a "yellow" and N_b "blue" $N = N_a + N_b$

• Let G have L undirected links (including self loops), of which L_{aa} connect yellow to yellow, L_{ab} connect yellow to blue, and L_{bb} connect blue to blue

$$L = L_{aa} + L_{ab} + L_{bb}$$
 $L_{a} = L_{aa} + L_{ab}$ $L_{b} = L_{bb} + L_{ab}$

 $N_a = 6$, $N_b = 6$, $L_a = 14$, $L_b = 16$, $L_{ab} = 5$,

Expected links across groups

If yellow nodes have L_a links placed at random (incl. self loops), how many should go to a blue node?

$$L_a\left(\frac{N_b}{N}\right)$$

Quantifying homophily of a group

 We compare observed against the expected number of links crossing to the other group

$$<1 \Rightarrow$$
 homophily $1 \Rightarrow$ neutral $>1 \Rightarrow$ heterophily

Homophily(a) =
$$\frac{L_{ab}}{L_a\left(\frac{N_b}{N}\right)}$$
 Homophily(b) = $\frac{L_{ab}}{L_b\left(\frac{N_a}{N}\right)}$

Homophily(a) =
$$\frac{L_{ab}}{L_a\left(\frac{N_b}{N}\right)} = \frac{5}{14\left(\frac{6}{12}\right)} = \frac{5}{7}$$

Yellow nodes are homophilic

$$N_a = 6$$
, $N_b = 6$, $L_a = 14$, $L_b = 16$, $L_{ab} = 5$,

Homophily(b) =
$$\frac{L_{ab}}{L_b\left(\frac{N_a}{N}\right)} = \frac{5}{16\left(\frac{6}{12}\right)} = \frac{5}{8}$$

Blue nodes are homophilic

$$N_a = 6$$
, $N_b = 6$, $L_a = 14$, $L_b = 16$, $L_{ab} = 5$,

Exercise

Compute homophily of both groups and indicate if each group is homophilic, heterophilic, or neutral

Homophily(a) =
$$\frac{L_{ab}}{L_a\left(\frac{N_b}{N}\right)}$$

Homophily(b) =
$$\frac{L_{ab}}{L_b\left(\frac{N_a}{N}\right)}$$

Clustering coefficient

Who is a friend? [Triangle closure]

A prevalent way in which we form friendships is by befriending friends of friends

Tendency to form triangles

The dynamics **on** the network, i.e., information diffusion, affect the dynamics **of** the network, i.e., the creation of links

 ullet B is more likely to start following A after seeing content posted by A and re-posted by an account C that B already follows

Example 1

Node c has 3 neighbors: a, b, g

They form two triangles out of the possible 3 (the missing one is drawn with a dotted line)

Example 2

Node b has 4 neighbors: e, c, g, h

They form two triangles out of the possible 6 (the missing ones are drawn with a dotted line)

Remember

The maximum number of links between k nodes is

$$\frac{k(k-1)}{2}$$

Local clustering coefficient

- The local clustering coefficient C_i is a property of a node i
- Let L_i represent the number of links among neighbors of node i

$$C_i = \frac{L_i}{\frac{k_i(k_i-1)}{2}} = \frac{2L_i}{k_i(k_i-1)}$$
 $C_i \triangleq 0 \text{ if } k_i \leq 1$

Exercise

What is the local clustering coefficient of each node?

$$C_i = \frac{2L_i}{k_i(k_i - 1)}$$

$$C_i \triangleq 0 \text{ if } k_i \leq 1$$

Average clustering coefficient ("global clustering coefficient")

The average clustering coefficient is a property of the entire graph

$$\langle C \rangle = \frac{1}{N} \sum_{i=1}^{N} C_i$$

Sometimes this is called the *curvature* of a graph

Summary

Things to remember

- How to quantify if a group is
 - Homophilic
 - Heterophilic
 - Neutral
- Local and global clustering coefficient

Practice on your own

- Determine if the set {C, D, G} is homophilic or heterophilic
- Calculate local clustering coefficient of each node in this graph

