Assignment -3
Problem Statement: Abalone Age Prediction

ASSIGNMENT DATE	19 OCTOBER 2022
STUDENT NAME	R.Roja
STUDENT ROLL NUMBER	CS19035
MAXIMUM MARKS	2 mark

#1.Download the dataset

import pandas as pd import
numpy as np import
matplotlib.pyplot as plt import
seaborn as sns

#2. Load the dataset into the tool
df=pd.read_csv("abalone.csv") df.head()

	Sex	Length	Diame	eter H	eight we	Whole Shuck	ked Viscen weight weight		Shell
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	Ι	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7 df.tail()

Whol

Shucke Viscer Shell

Se Lengt Diamete Heigh e Ring x h r t weigh d a weigh s

			weight	weight t t	
417	F	0.565 0.450 0.165 0.8870	0.3700	0.2390 0.2490	11
417	M	0.590 0.440 0.135 0.9660	0.4390	0.2145 0.2605	10
417	M	0.600 0.475 0.205 1.1760	0.5255	0.2875 0.3080	9
417 5	F	0.625 0.485 0.150 1.0945	0.5310	0.2610 0.2960	10
417 6	M	0.710 0.555 0.195 1.9485	0.9455	0.3765 0.4950	12

df.shape

(4177, 9) df.info()

RangeIndex: 4177 entries, 0 to 4176 Data columns (total 9 columns):

#	Column	Non-Null Count Dtype
0	Sex	4177 non-null object
1	Length	4177 non-null float64
2	Diameter	4177 non-null float64
3	Height	4177 non-null float64
4	Whole wei	ght 4177 non-null float64
5	Shucked w	eight 4177 non-null float64

- 6 Viscera weight 4177 non-null float64
- 7 Shell weight 4177 non-null float64 8 Rings 4177 non-null int64 dtypes: float64(7), int64(1), object(1) memory usage: 293.8+ KB #3. Perform Below Visualizations #Univariate Analysis sns.boxplot(x=df['Height'])

#Bi-Variate Analysis sns.lineplot(df['Sex'],df['Length'])

C:\Users\shire\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass t he following variables as keyword args: x, y. From version 0.12, the only valid positional arg ument will be `data`, and passing other arguments without an explicit keyword will result in a n error or misinterpretation.

warnings.warn(

#Multi-Variate Analysis sns.heatmap(df.corr(),annot=**True**)

#4. Perform descriptive statistics on the dataset df.describe()

			Shucke			
	Diamet	Whole	Viscera	Shel	l	
Length Rings	er	Height	weight weight	d	weight	weight

	Diamet	Whole	Viscera	Shel	1	
Length	er	Height	weight	d	weight	weight
Rings						
			weight			

me 0.52399 0.40788 0.13951 0.82874 0.35936 0.18059 0.23883 9.93368 an 2 1 6 2 7 4 1 4

std

 $\mathbf{mi}\ 0.07500\ 0.05500\ 0.00000\ 0.00200\ 0.00100\ 0.00050\ 0.00150\ 1.00000\ \mathbf{n}\ 0\ 0\ 0\ 0\ 0\ 0\ 0$

25 0.4500 0.130		0.35 8.00		0.11	500	0.44	150	0.18600	0.09350
% 0	0	0	0	0	0	0	0		
50 0.5450 0.234		0.42 9.00		0.14	000	0.79	950	0.33600	0.17100
% 0	0	0	0	0	0	0	0		
75 0.6150	_	0.48 11.0		0.16	500	1.15	300	0.50200	0.25300
% 0	0	0	0	0	0	0	00		

ma 0.81500 0.65000 1.13000 2.82550 1.48800 0.76000 1.00500 29.0000 **x** 0 0 0 0 0 0 0 0

df.describe().T

		count mean	ı std	min 25%	50% 75%	max
Length 417 0.5450	7.0 0.5 0.615 0.8		20093	0.0750	0.4500	
cour Diameter 4177.	nt mean	std	min 0.3500	25% 50% 0.4250	75% 0.480	max 0.6500
Height	4177.0 0.13	9516 0.041827	0.0000	0.1150 0.1400	0.165	1.1300
Whole						
	4177.0 0.82	8742 0.490389	0.0020	0.4415 0.7995	1.153	2.8255
weight Shucked						

Rings 4177.0 9.933684 3.224169 1.0000 8.0000 9.0000 11.000 29.0000 #5. Check for Missing values and deal with them df.isna().sum()

Sex 0

Length 0

Diameter 0

Height 0

Whole weight 0

Shucked weight 0

Viscera weight 0

Shell weight 0

Rings 0 dtype:

int64

#6. Find the outliers and replace them outliers df['Sex'].replace({'M':1, 'F':0, 'I':-1},inplace=**True**) df.head()

	L	Sex Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	1	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	1	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	0	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9

```
3
       1
              0.440
                        0.365
                                  0.125
                                          0.5160
                                                      0.2155
                                                                0.1140
                                                                           0.155
                                                                                      10
                        0.255
                                  0.080
                                          0.2050
                                                      0.0895
                                                                0.0395
                                                                           0.055
                                                                                       7
4
              0.330
       -1
df.Sex.unique()
array([ 1, 0, -1], dtype=int64)
sns.boxplot(x=df["Sex"])
sns.boxplot(x=df["Length"])
sns.boxplot(x=df["Diameter"])
sns.boxplot(x=df["Height"])
sns.boxplot(x=df["Whole weight"])
sns.boxplot(x=df["Shucked weight"])
sns.boxplot(x=df["Viscera weight"])
sns.boxplot(x=df["Shell weight"])
sns.boxplot(x=df["Rings"])
#handle outlier qnt=df.quantile(q=[0.25,0.75])
qnt
```

Se Lengt Diamete Heigh Whol Shucke Viscer Shell Ring x h d weigh s weigh weight t r weight t t 0.450 0.35 0.115 0.4415 0.186 0.0935 8.0 0.130 0.2 1.0 5 0.7 1.0 0.48 0.615 0.165 1.1530 0.502 0.2530 0.329 11.0 **5** iqr=qnt.loc[0.75]-qnt.loc[0.25]

iqr

Sex 2.0000

Length 0.1650

Diameter 0.1300

Height 0.0500

Whole weight 0.7115

Shucked weight 0.3160

Viscera weight 0.1595

Shell weight 0.1990 Rings

3.0000 dtype: float64 #lower limit

lower=qnt.loc[0.25]-

(1.5*iqr) lower

Sex -4.00000

Length 0.20250

Diameter 0.15500

Height 0.04000

Whole weight -0.62575

Shucked weight -0.28800

Viscera weight -0.14575

Shell weight -0.16850

Rings 3.50000 dtype:

float64

upper=qnt.loc[0.75]+(1.5*iqr)

upper

Sex 4.00000

Length 0.86250

Diameter 0.67500

Height 0.24000

Whole weight 2.22025

Shucked weight 0.97600

Viscera weight 0.49225

Shell weight 0.62750

Rings 15.50000 dtype:

float64 df.mean()

Sex 0.044530

Length 0.523992

Diameter 0.407881

Height 0.139516 Whole weight 0.828742

Shucked weight 0.359367

Viscera weight 0.180594

Shell weight 0.238831 Rings 9.933684 dtype: float64

#replace outlier df['Length']=np.where(df['Length']<0.22,0.52,df['Length'])

df['Diameter']=np.where(df['Diameter']<0.155,0.407,df['Diameter'])

df['Height']=np.where(df['Height']<0.04,0.13,df['Height'])

df['Height']=np.where(df['Height']>0.24,0.13,df['Height']) df['Whole

weight']=np.where(df['Whole weight']>2.18,0.83,df['Whole weight']) df['Shucked

weight']=np.where(df['Shucked weight']>0.958,0.359367,df['Shucked weight']) df['Viscera

weight']=np.where(df['Viscera weight']>0.478,0.18,df['Viscera weight']) df['Shell

weight']=np.where(df['Shell weight']>0.61,0.238831,df['Shell weight'])

df['Rings']=np.where(df['Rings']<3.5,9.93,df['Rings'])

df['Rings']=np.where(df['Rings']>15.5,9.93,df['Rings']) sns.boxplot(df['Length'])

C:\Users\shire\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass t he following variable as a keyword arg: x. From version 0.12, the only valid positional argum ent will be `data`, and passing other arguments without an explicit keyword will result in an e rror or misinterpretation.

warnings.warn(

sns.boxplot(df['Diameter'])

C:\Users\shire\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass t he following variable as a keyword arg: x. From version 0.12, the only valid positional argum ent will be `data`, and passing other arguments without an explicit keyword will result in an e rror or misinterpretation.

warnings.warn(

sns.boxplot(df['Height'])

C:\Users\shire\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass t he following variable as a keyword arg: x. From version 0.12, the only valid positional argum ent will be `data`, and passing other arguments without an explicit keyword will result in an e rror or misinterpretation.

warnings.warn(

sns.boxplot(df['Whole weight'])

C:\Users\shire\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass t he following variable as a keyword arg: x. From version 0.12, the only valid positional argum ent will be `data`, and passing other arguments without an explicit keyword will result in an e rror or misinterpretation.

warnings.warn(

sns.boxplot(df['Shucked weight'])

C:\Users\shire\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass t he following variable as a keyword arg: x. From version 0.12, the only valid positional argum

ent will be `data`, and passing other arguments without an explicit keyword will result in an e rror or misinterpretation.

warnings.warn(

sns.boxplot(df['Viscera weight'])

C:\Users\shire\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass t he following variable as a keyword arg: x. From version 0.12, the only valid positional argum ent will be `data`, and passing other arguments without an explicit keyword will result in an e rror or misinterpretation.

warnings.warn(

sns.boxplot(df['Shell weight'])

C:\Users\shire\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass t he following variable as a keyword arg: x. From version 0.12, the only valid positional argum ent will be `data`, and passing other arguments without an explicit keyword will result in an e rror or misinterpretation.

warnings.warn(

sns.boxplot(df['Rings'])

C:\Users\shire\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass t he following variable as a keyword arg: x. From version 0.12, the only valid positional argum ent will be `data`, and passing other arguments without an explicit keyword will result in an e rror or misinterpretation.

warnings.warn(

#7. Check for Categorical columns and perform encoding df.head()

#sex is categorical and encoding is performed

		Who	ole Shucked	Viscera	Shell
Sex	Length	Diameter	Height	weight	weight
		weight	weight Ring	gs	

```
0.455 0.365 0.095 0.5140
                                                                 0.1010
                                                                                0.150 15.0
 0
       1
                                                   0.2245
 1
       1
              0.350 0.265 0.090 0.2255
                                                   0.0995
                                                                 0.0485
                                                                                0.070 7.0
 2
       0
              0.530 0.420 0.135 0.6770
                                                   0.2565
                                                                 0.1415
                                                                                0.210 9.0
 3
              0.440 0.365 0.125 0.5160
                                                                                0.155 10.0
       1
                                                   0.2155
                                                                 0.1140
              0.330 0.255 0.080 0.2050
                                                   0.0895
                                                                 0.0395
                                                                                0.055 7.0
       -1
#8. Split the data into dependent and independent variables
#independent variable x=df.drop(columns=['Rings'],axis=1).values
x array([[1. , 0.455, 0.365, ..., 0.2245, 0.101, 0.15],
, 0.35 , 0.265 , ..., 0.0995, 0.0485, 0.07 ],
        [0. , 0.53, 0.42, ..., 0.2565, 0.1415, 0.21],
    ...,
        [1. , 0.6 , 0.475, ..., 0.5255, 0.2875, 0.308],
       [0. , 0.625, 0.485, ..., 0.531, 0.261, 0.296],
       [1. , 0.71 , 0.555 , ..., 0.9455, 0.3765, 0.495 ]])
#dependent variable
y=df['Rings'].values y
array([15., 7., 9., ..., 9., 10., 12.]) #9. Scale
the independent variables from
sklearn.preprocessing import
                                    scale
x = scale(x) x
array([[ 1.15434629, -0.66347373, -0.50167301, ..., -0.61177023,
     -0.73234257, -0.64358992],
    [ 1.15434629, -1.60127264, -1.57291477, ..., -1.21969385,
     -1.23612645, -1.25742425],
    [-0.05379815, 0.00638264, 0.08750996, ..., -0.45614178,
     -0.34370929, -0.18321418],
    ...,
```

```
[ 1.15434629, 0.63158191, 0.67669293, ..., 0.85210986,
     1.05728969, 0.56873287],
    [-0.05379815, 0.85486737, 0.78381711, ..., 0.8788585,
     0.80299878, 0.47665772],
    [ 1.15434629, 1.61403792, 1.53368634, ..., 2.89473324,
1.91132331, 2.0035706 ]]) #10. Split the data into training and
testing from sklearn.model selection import train test split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)
#11. Build the Model
from sklearn.linear_model import LinearRegression linreg=LinearRegression() #12. Train
the Model linreg.fit(x_train,y_train)
LinearRegression() #13. Test the
Model
test_pred=linreg.predict(x test)
test_pred
array([10.49406044, 14.63071197, 9.5052661, 7.12175027, 9.59508595,
9.4343576, 8.77992046, 10.17130406, 7.45502774, 9.87604313,
    10.98645479, 7.5538718, 8.87927518, 9.7638226, 8.54256728,
    10.42387201, 9.10033819, 9.87903278, 11.42897247, 7.06763663,
    10.57223182, 9.76975285, 12.30738965, 8.55382376, 9.52374863,
    8.21301289, 6.25183627, 7.12742482, 9.74741373, 10.3017582,
    9.82726168, 9.84749184, 10.4108395, 10.3081998, 10.08572396,
    8.30245647, 7.235845, 6.74452118, 10.42584137, 7.64274971,
    7.14405667, 9.16150599, 8.70935569, 10.74880185, 9.86452375,
    12.88609365, 6.57858505, 9.5398517, 6.81250209, 10.60088961,
    10.58682023, 10.59758934, 10.63987208, 10.60373354, 9.03578911,
    8.62103663, 9.90652623, 7.02963956, 9.84641914, 8.62932278,
    7.71223792, 11.69923451, 11.10448696, 8.06123754, 8.55513658,
    13.39968976, 8.26727764, 9.52753025, 9.09315656, 12.58339768,
    9.99703469, 10.24999324, 9.29384572, 10.84986883, 9.23432613,
```

```
7.71248702, 10.82510489, 9.74110842, 10.18617001, 11.15757814,
8.15589364, 7.74042932, 6.90572983, 10.00216891, 12.35623317,
9.2594473, 9.83903046, 8.79445305, 9.98771476, 10.72074918,
5.76586411, 8.83952495, 7.82141633, 9.27397291, 10.08449131,
7.97368561, 8.13133341, 10.58531402, 8.54116758, 8.87592087,
10.27752815, 9.91826533, 7.35190815, 10.30758392, 7.30769068,
10.3549833, 10.69101603, 10.1181462, 10.39559027, 11.9945787,
10.05265786, 12.85497306, 11.33865314, 10.6160416, 10.86643523,
9.98776731, 10.07059534, 7.51087688, 8.81450733, 10.76394848,
9.23449231, 8.9394567, 11.35528501, 7.02952734, 8.22981655,
7.39038626, 7.16648403, 7.72492669, 6.96924802, 7.78201642,
7.17710403, 9.82222011, 9.56803182, 8.40217156, 8.3040808,
9.19097285, 7.27282145, 8.7291546, 8.02818234, 9.6287928,
9.17367559, 10.67429449, 10.83594529, 10.03487667, 7.01082421,
8.22106326, 9.52078398, 12.01200605, 7.0664238, 7.02545033,
6.38664272, 9.03716991, 9.89980919, 9.54143876, 10.48601031,
7.89737086, 10.57993475, 12.60549688, 8.9722634, 8.86375281,
10.58737471, 8.23508559, 9.16831774, 11.32643922, 11.72162036,
7.35637849, 7.57148604, 7.1648948, 10.85620295, 9.55486626,
10.68453461, 10.42003548, 9.94733416, 11.13891581, 9.01364719,
7.82060141, 10.78208786, 7.46904197, 9.32761963, 7.78647994,
10.75827275, 8.09475084, 9.26765508, 9.58812949, 7.26964315,
8.97532078, 8.90396235, 6.62637508, 7.78750708, 8.243058,
9.46740388, 8.01654749, 8.84610761, 12.06376478, 11.18458934,
7.95791777, 8.73139889, 7.63438426, 10.19784773, 10.19657975,
9.88547762, 8.18847269, 7.75134569, 7.93222173, 8.53043085,
11.47767482, 11.63701859, 9.67054006, 7.15334679, 11.58254568,
10.91672544, 10.65123953, 11.30462744, 8.01570854, 8.691925,
6.99630889, 10.45505798, 11.08400844, 7.84853522, 7.89503444,
10.36775292, 9.29193168, 8.45869519, 9.40891292, 8.71995183,
10.41488943, 9.80584287, 9.40871844, 10.47585472, 6.77413109,
10.07855451, 9.36989613, 12.40825012, 8.71057984, 9.97974427,
9.26533226, 10.63083868, 9.49615866, 10.23657265, 11.25380255,
10.65503119, 7.22469252, 10.23933921, 11.66614343, 7.52501383,
```

9.78137819, 11.74179743, 10.06569605, 7.59341194, 9.32548854, 9.09407202, 10.37992831, 10.4198217, 9.20540036, 13.37322348, 7.04827246, 7.30060552, 7.76040817, 8.26405016, 8.37641501, 7.98024139, 8.66106856, 10.29294231, 8.4533951, 9.1029908, 7.6728443, 9.17493898, 11.3350483, 8.14113401, 9.57990685, 8.99792287, 7.81308267, 7.88056289, 9.71714644, 8.78928014, 7.48733805, 9.29344547, 8.25005563, 6.32596886, 10.67952799, 10.34988789, 10.61398995, 9.73029599, 10.61124145, 8.10672637, 10.83303256, 10.58983644, 11.56224758, 11.51701776, 7.26264654, 9.17142228, 5.94220242, 8.79721855, 10.20287693, 10.40251293, 7.26467813, 11.44855319, 10.18314512, 11.56865106, 10.08095547, 11.04935475, 8.88901813, 10.06455925, 8.2275154, 11.38494403, 10.46370124, 8.81517211, 8.07626049, 10.29997579, 10.70159463, 9.52425275, 8.55212551, 11.63567264, 7.01687668, 10.64424025, 11.65796361, 8.03040793, 8.99581481, 5.87918977, 7.22561493, 8.64902765, 8.46282178, 10.26638935, 7.77541642, 10.48666402, 10.97160807, 7.77090259, 6.95097016, 10.66867657, 9.81598811, 8.86175523, 10.14390988, 10.13604128, 7.67979877, 8.32951005, 10.52746288, 11.03253764, 9.72136409, 9.96003508, 10.72896737, 9.69336726, 9.0723992, 9.28253035, 7.15534276, 10.02260695, 8.39025513, 9.17409245, 8.79400875, 8.03635255, 13.46848816, 11.25697851, 7.00933557, 8.2469982, 8.44066123, 12.07134675, 7.86611644, 6.91634306, 10.45047036, 9.05831727, 7.61872774, 12.12276476, 12.15336763, 10.21088672, 7.30640948, 11.7712247, 8.22309031, 9.00229321, 12.56925984, 9.89227365, 9.12720821, 9.92856998, 6.15308924, 9.65988046, 7.26498527, 8.69157712, 10.66712505, 12.0903993, 10.00895812, 8.32592796, 10.09475343, 9.9180563, 7.79788418, 8.227395, 9.67655999, 8.49861084, 10.68758867, 10.96226694, 9.31583533, 9.88280193, 12.49353697, 9.68406614, 8.39535884, 9.21841136, 8.05640704, 7.73070397, 10.69944854, 6.88662863, 10.44933744, 8.63070059, 9.5300456, 7.17288396, 7.23961838, 8.2406796, 12.33534676, 9.31607714, 8.5199514, 7.7413676, 9.75259252, 9.03154513, 8.99602774,

10.86102952, 9.72912372, 11.45369535, 7.73315024, 8.72272879, 12.62516987, 8.07189869, 8.610371, 7.96393172, 10.52464571, 10.2889487, 9.77064556, 7.2484293, 6.75663943, 7.31758214, 6.86054595, 8.3547735, 8.28097679, 9.20481118, 6.17213238, 7.7808438, 10.18114547, 8.28582292, 9.34694407, 9.87520219, 7.50494736, 8.88762551, 9.97581207, 11.05621772, 8.42628309, 10.45364784, 13.37825413, 6.81598561, 9.27660382, 9.93844627, 9.48483861, 8.2229326, 10.77401117, 8.49913631, 9.69420869, 10.1276895, 9.32434402, 9.03969924, 9.2090436, 11.16679102, 11.52625517, 9.11519373, 10.26990747, 10.25863036, 9.68179585, 10.50254453, 8.4147771, 9.44129266, 12.51844495, 11.28219296, 9.28797035, 7.81873126, 11.23464985, 6.11774657, 7.48506274, 10.47162748, 6.18121011, 10.64721055, 6.36753714, 7.43156506, 10.74864602, 8.27254424, 10.53053898, 8.98245363, 7.14884702, 7.9185863, 11.07177623, 9.84080718, 9.7463575, 12.36483198, 9.59473052, 11.53900136, 12.11790837, 10.456185, 9.38664402, 8.72639235, 10.05931532, 10.69421662, 9.40048527, 7.89705404, 7.528022 , 9.54735021, 9.53043136, 9.60930106, 10.966415 , 8.41651724, 10.80665528, 10.82306864, 9.64976908, 10.84804833, 7.25708744, 10.75477728, 10.31460886, 8.66916119, 9.59165337, 10.71167513, 7.44318757, 7.33630981, 8.26722774, 10.24637661, 7.26052307, 8.64349261, 8.00969525, 9.44531738, 9.25336289, 8.8173519, 11.10766426, 11.42811883, 11.63225499, 12.2226451, 9.55772247, 10.01762113, 8.49878439, 13.07325304, 10.22581239, 9.68317467, 9.36644105, 13.91225633, 8.11861748, 11.22528029, 6.41498717, 8.33450985, 9.29388748, 9.5787418, 9.62165703, 9.34579274, 9.37312624, 7.57787897, 8.25299105, 7.75499926, 10.20611942, 8.96911496, 10.13240095, 9.40401846, 10.01532991, 6.42889635, 11.0992981, 9.81411854, 10.66690492, 9.77542891, 10.7579419, 11.4218958, 9.17569936, 11.15119791, 8.00751085, 11.0322202, 9.70187637, 11.70832554, 6.53861204, 8.01923515, 6.92318834, 8.59732263, 8.40056135, 7.30281719, 9.14429838, 10.45215168, 10.2717039, 10.67123959, 7.59738449, 10.61468447, 9.42817769, 7.65101852, 10.71028888, 8.43697555, 6.37462576,

10.74709502, 9.62271633, 9.58770478, 9.24606927, 10.7670444, 11.54380344, 8.06392442, 7.21039732, 6.1079307, 6.93022124, 11.10032424, 10.95983728, 9.75697819, 11.52451347, 10.70619701, 8.81853322, 10.6684791, 8.01063822, 8.90079346, 10.47543873, 8.91318792, 9.95998451, 10.44139164, 10.51897794, 11.57882658, 11.84456732, 10.35382107, 10.7726265, 9.30094023, 9.25140448, 10.4064332, 10.66595425, 10.0278771, 11.38272576, 10.0385854, 10.42082743, 11.13369816, 7.28230658, 11.78485276, 12.16118565, 9.89429226, 8.37477714, 8.11694818, 9.03563761, 10.98296898, 9.93984071, 10.56108814, 9.64267504, 11.89934257, 8.11015003, 10.80031907, 8.74094699, 10.97226077, 9.77774357, 10.43921997, 6.49816132, 9.67821635, 10.28257624, 8.7629948, 9.63511441, 10.895716, 7.45692129, 10.19374451, 9.22221708, 9.78041215, 11.44760477, 10.41100083, 8.30416136, 11.68611051, 7.68861374, 11.71009186, 8.69958294, 9.71949872, 10.71546544, 8.45414734, 10.70782326, 9.69817259, 8.49010884, 11.20048579, 7.10417804, 8.60959772, 10.33897341, 7.17493522, 9.45440014, 11.11859072, 7.47758363, 9.19445458, 6.8574115, 10.35808533, 9.28828818, 10.45985457, 11.31466369, 11.4669934, 11.68665773, 8.99993578, 8.97952297, 7.78900018, 8.18450868, 7.95794984, 9.00396033, 10.17991165, 11.09356031, 9.46220989, 10.7942435, 11.84593758, 11.40717735, 7.86855466, 9.27888622, 9.84437026, 7.75099815, 10.19060927, 10.91126132, 7.79415953, 10.83764466, 11.13188532, 9.26878746, 8.73638969, 11.64932488, 10.11452862, 9.03523089, 12.91263157, 10.25364549, 9.4425625, 11.00469399, 6.22828241, 10.16979898, 10.60212058, 9.6577842, 10.23672345, 10.83518908, 9.19495763, 10.08590973, 6.08966019, 10.98866463, 9.45082712, 8.46473954, 8.37293439, 8.07427585, 7.88270037, 10.85787601, 9.6116211, 9.75365118, 8.42323857, 8.42694641, 10.07460764, 10.94404488, 10.76805849, 8.29820248, 8.70900854, 10.84338969, 9.02533208, 7.51567397, 10.11480584, 11.19191832, 10.22483298, 9.75858954, 11.01863784, 11.04401786, 9.82237998, 11.11036566, 9.12657119, 9.9134041, 9.96637254, 7.98851208, 8.76813529, 8.44222221, 9.8299799, 11.43538793, 11.46727411, 9.58198696,

9.41516146, 6.04997802, 8.7382142, 8.39811798, 8.89002643, 9.15796197, 9.72926536, 9.62033314, 9.80335615, 10.09973494, 10.45277764, 9.26207715, 6.99253028, 11.70117286, 9.10432505, 11.81609264, 11.15118373, 10.07627417, 7.47581497, 10.97754338, 11.23837153, 8.82525246, 11.42534581, 9.66056195, 10.662489 10.08497982, 10.34406113, 8.7286661, 11.0201679, 10.54348108, 10.61281915, 9.54283796, 11.26940858, 11.40514896, 12.76704696, 10.95727404, 12.53310884, 10.53660577, 6.13174213, 8.22141479, 11.11480284, 7.86786733, 8.46800754, 8.51586463, 9.13625447, 9.34245631, 9.11866664, 9.495566, 8.95509321, 10.63760259, 7.98105786, 9.62091863, 10.82472807, 10.27078687, 7.94382377, 12.27535451, 8.13050337, 7.74354516, 9.18857763, 8.50048233, 10.91163797, 9.5968706, 9.38561823, 7.46683215, 10.37626812, 11.54365374, 9.26738518, 8.86708666, 7.51672746, 8.24395976, 6.40001408, 10.94290447, 9.54647858, 8.12274086, 9.33606364, 6.62231198, 9.09139994, 7.91419542, 9.40328905, 9.63625618, 10.84323552, 9.07989997, 9.43956278, 9.18170767, 10.22881222, 6.75527458])

#14. Measure the performance using Metrics.

from sklearn import metrics from sklearn.metrics import mean_squared_error metrics.r2_score(y_test,test_pred)

0.4166836799902973 df.head()

				Wh	Whole Shucked		Shell
		Sex	Length	Diameter	Height	weight	weight
				weight	weight Rin	gs	
0	1	0.455	0.365 0.09	95 0.5140	0.2245	0.1010	0.150 15.0
1	1	0.350	0.265 0.09	90 0.2255	0.0995	0.0485	0.070 7.0

2	0	0.530 0.420 0.135 0.6770	0.2565	0.1415	0.210 9.0
3	1	0.440 0.365 0.125 0.5160	0.2155	0.1140	0.155 10.0
4	-1	0.330 0.255 0.080 0.2050	0.0895	0.0395	0.055 7.0

 $linreg. predict([[0.455, 0.365, 0.095, 0.5140, 0.2245, 0.1010, 0.150, 15.0]])\ array([21.53400745])$