Module MA-INF 2312	Image Acquisition and Analysis in Neuroscience					
Workload	Credit points	Duration	Freque	ncy		
180 h	6 CP	1 semester	_	at least every 2 years		
Module	JunProf. Dr. Thomas Schultz					
coordinator						
Lecturer(s)	JunProf. Dr. Thomas Schultz					
Classification	Programme		Mode	Semest	ter	
	M. Sc. Compu	iter Science	Optiona	l 14		
Technical skills	Students will l	learn about ii	ut image acquisition and analysis			
	pipelines which are used in neuroscience. They will understand					
	algorithms for image reconstruction, artifact removal, image					
	registration and segmentation, as well as relevant statistical and					
	machine learning techniques. A particular focus will be on data					
	from Magnetic Resonance Imaging and on mathematical models					
	for functional and diffusion MRI data.					
Soft skills	Productive work in small teams, self-dependent solution of					
	practical problems in the area of biomedical image processing,					
	presentation of solution strategies and implementations, self					
	management, critical reflection of conclusions drawn from					
	complex experimental data.					
Contents	This course covers the full image formation and analysis pipeline that is typically used in biomedical studies, from image					
Duonoguisitos	acquisition to image processing and statistical analysis. Recommended:					
Prerequisites	Mathematical background (calculus, linear algebra, statistics);					
	imperative programming.					
	Teaching forms		oup size	h/week	Workload[h]	CP
Format	Lecture		60	3	45 T / 45 S	3
	Exercises		30	1	15 T / 75 S	3
	T = face-to-face teaching; S = independent study					
Exam achievements	Oral exam (graded)					
Study achievements					(not gra	
Forms of media	(mot graded)					
	• B. Preim, C. Botha: Visual Computing for Medicine: Theory,					
	Algorithms, and Applications. Morgan Kaufmann, 2014					
	• R.A. Poldrack, J.A. Mumford, T.E. Nichols: Handbook of					
Literature	Functional MRI Data Analysis. Cambridge University Press,					
	2011					
	• D.K. Jones: Diffusion MRI: Theory, Method, and					
	Applications, Oxford University Press, 2011					