Taming the Monster: A Fast and Simple Algorithm for Contextual Bandits

Authors: Alekh Agarwal, Daniel Hsu, Satyen Kale, John Langford, Lihong Li, Robert E. Schapire

Microsoft Research, Columbia University, Yahoo! Labs, Princeton University

Table of Contents

Problem & Motivation

Method & Results

Wrap-up

Table of Contents

Problem & Motivation

Method & Results

Wrap-up

Example in healthcare:

- Loop:
 - 1 Patient arrives with symptoms, medical history, genome, · · ·
 - Octor prescribes treatment
 - 3 Patient's health responses (e.g., better or worse)
- Goal: Build a robot doctor to prescribe treatments that yield good health outcomes

Contextual bandit setting:

- Set X of contexts and K arms
- For $t \in [T]$ do
 - ① Draws (x_t, r_t) from distribution D over $\mathcal{X} \times [0, 1]^K$
 - Observe context x_t (e.g., patient profile)
 - **1** Choose action $a_t \in [K]$ (e.g., prescribe treatments)
 - **6** Collect reward $r_t(a_t)$ (e.g., patient's health responses)
- Goal: algorithm for choosing at that yield high reward
- Contextual setting: use feature x_t to choose good action a_t
- Bandit setting: $r_t(a)$ for $a \neq a_t$ is not observed.
- Exploration v.s. exploitation

Figure: Healthcare example

Contextual bandit setting:

- Set X of contexts and K arms
- For $t \in [T]$ do
 - ① Draws (x_t, r_t) from distribution D over $\mathcal{X} \times [0, 1]^K$
 - Observe context x_t (e.g., patient profile)
 - **3** Choose action $a_t \in [K]$ (e.g., prescribe treatments)
 - Collect reward $r_t(a_t)$ (e.g., patient's health responses)
- Goal: algorithm for choosing at that yield high reward
- Contextual setting: use feature x_t to choose good action a_t
- Bandit setting: $r_t(a)$ for $a \neq a_t$ is not observed.
 - Exploration v.s. exploitation

Learning objective and difficulties

- No single action is good in all situations, need to exploit context
- Policy class ∏: set of functions from X → [K]
 (e.g., advice of experts, linear classifier, neural networks)
- **Regret** (i.e., relative performance to policy class π):

$$\max_{\pi \in \prod} \sum_{t=1}^{T} r_t(\pi(x_t)) - \sum_{t=1}^{T} r_t(a_t)$$

... a strong benchmark if \prod contains a policy with high reward.

 Difficulties: feedback on action only informs about subset of policies; explicit bookkeeping is computationally infeasible when ∏ is large.

Figure: Healthcare example

5 / 15

arg max oracle (AMO)

ullet Given fully-labeled data $(x_1, r_1), \cdots, (x_t, r_t)$, AMO returns

$$rg \max_{\pi \in \prod} \sum_{t=1}^{T} r_t(\pi(x_t))$$

- Abstraction for efficient search of policy class \prod , running time is polynomial, cost $\mathcal{O}(1)$.
- In practice: implement using standard heuristics (e.g., convex relax., backprop) for cost-sensitive multiclass learning algorithms.

arg max oracle (AMO)

• Given fully-labeled data $(x_1, r_1), \cdots, (x_t, r_t)$, AMO returns

$$rg \max_{\pi \in \prod} \sum_{t=1}^{T} r_t(\pi(x_t))$$

- Abstraction for efficient search of policy class \prod , running time is polynomial, cost $\mathcal{O}(1)$.
- In practice: implement using standard heuristics (e.g., convex relax., backprop) for cost-sensitive
 multiclass learning algorithms.

Contribution

- New fast and simple algorithm for contextual bandits
 - ▶ Optimal regret bound (up to log factor): $\tilde{\mathcal{O}}(\sqrt{KT \log |\prod |})$
 - ▶ Amortized $\tilde{\mathcal{O}}(\sqrt{K/T})$ calls to arg max oracle per round.
- Comparison to previous work
 - ► Thompson no general analysis
 - ► Exp4 algorithm: optimal regret, maintains weights over ∏ at each round
 - ightharpoonup ϵ -greedy variant: **sub-optimal regret**, one AMO call/round
 - ▶ Monster paper: optimal regret, $\mathcal{O}(T^5K^4)$ AMO calls/round

arg max oracle (AMO)

ullet Given fully-labeled data $(x_1, r_1), \cdots, (x_t, r_t)$, AMO returns

$$rg \max_{\pi \in \prod} \sum_{t=1}^{\mathcal{T}} r_t(\pi(x_t))$$

- Abstraction for efficient search of policy class \prod , running time is polynomial, cost $\mathcal{O}(1)$.
- In practice: implement using standard heuristics (e.g., convex relax., backprop) for cost-sensitive
 multiclass learning algorithms.

Contribution

- New fast and simple algorithm for contextual bandits
 - ▶ Optimal regret bound (up to log factor): $\tilde{\mathcal{O}}(\sqrt{KT \log | \Pi |})$
 - ▶ Amortized $\tilde{\mathcal{O}}(\sqrt{K/T})$ calls to arg max oracle per round.
- Comparison to previous work
 - ► Thompson no general analysis
 - ► Exp4 algorithm: optimal regret, maintains weights over ∏ at each round
 - ightharpoonup ϵ -greedy variant: **sub-optimal regret**, one AMO call/round
 - ▶ Monster paper: optimal regret, $\mathcal{O}(T^5K^4)$ AMO calls/round

Key techniques

- Action distributions, reward estimates via inverse probability weights (oldies but goodies)
- Algorithm for finding policy distributions that balance exploration/exploitation
- Warm-start/epoch trick

Presenter: Ha Bui Taming the Monster 6 / 15

Table of Contents

Problem & Motivation

Method & Results

Wrap-up

Method

Basic algorithm structure (same as Exp4)

- ullet Start with initial distribution $\mathit{Q}_1 \in \mathbb{R}^{\prod}$, over policies \prod
- For $t \in [T]$
 - **1** Draw (x_t, r_t) i.i.d. from distribution D over $\mathcal{X} \times [0, 1]^K$
 - Observe context x_t
 - **3** Compute distribution p_t over actions [K] based on Q_t and x_t
 - \bullet Draw action a_t from p_t
 - **6** Collect reward $r_t(a_t)$
 - **6** Compute new distribution Q_{t+1} over policies \prod

Method cont.

Inverse probability weighting (old trick)

• Importance-weighted estimate of reward from round t:

$$\hat{r}_t(a) := \frac{r_t(a_t) \cdot \mathbb{I}\{a = a_t\}}{p_t(a_t)}$$

- ullet Unbiased, and has range and variance bounded by $1/p_t(a)$
- Can estimate total reward and regret of any policy:

$$\widehat{\mathsf{Reward}}_t(\pi) = \sum_{i=1}^t \hat{r}_i(\pi(x_i))$$

$$\widehat{\mathsf{Regret}}_t(\pi) = \max_{\pi' \in \Pi} \widehat{\mathsf{Reward}}_t(\pi') - \widehat{\mathsf{Reward}}_t(\pi)$$

Method cont. & Regret

Constructing policy distributions

Optimization problem: Find policy distribution Q s.t.

$$\sum_{\pi \in \prod} Q(\pi) \widehat{\mathsf{Regret}}_t(\pi) \le K \sqrt{t} \tag{1}$$

• Low estimated regret (LR) - skews distribution to put more mass on good policies (exploitation)

$$\frac{1}{t} \sum_{i=1}^{t} \frac{1}{Q(\pi(x_i)|x_i)} \le K + \lambda \frac{\widehat{\mathsf{Regret}}_{\mathsf{t}}(\pi)}{\sqrt{t}}, \forall \pi \in \prod$$
 (2)

• Low estimation variance (LV) - place sufficient mass on the actions chosen by each policy (exploration)

Presenter: Ha Bui Taming the Monster 10 / 15

Method cont. & Regret

Constructing policy distributions

• Optimization problem: Find policy distribution Q s.t.

$$\sum_{\pi \in \prod} Q(\pi) \widehat{\mathsf{Regret}}_t(\pi) \le K \sqrt{t} \tag{1}$$

• Low estimated regret (LR) - skews distribution to put more mass on good policies (exploitation)

$$\frac{1}{t} \sum_{i=1}^{t} \frac{1}{Q(\pi(x_i)|x_i)} \le K + \lambda \frac{\widehat{\mathsf{Regret}}_{\mathsf{t}}(\pi)}{\sqrt{t}}, \forall \pi \in \prod$$
 (2)

• Low estimation variance (LV) - place sufficient mass on the actions chosen by each policy (exploration)

Theorem

If we obtain policy distributions Q_t via solving (OP), then with high probability, regret after T rounds is at most

$$\tilde{\mathcal{O}}\left(\sqrt{\mathit{KT}\log\left(\left|\prod\right|\right)}\right).$$

10 / 15

Presenter: Ha Bui Taming the Monster

Method cont. & Regret

Constructing policy distributions

Optimization problem: Find policy distribution Q s.t.

$$\sum_{\pi \in \prod} Q(\pi) \widehat{\mathsf{Regret}}_t(\pi) \le K \sqrt{t} \tag{1}$$

4 - 1 - 4 - 4 - 5 - 4 - 5 - 5

Low estimated regret (LR) - skews distribution to put more mass on good policies (exploitation)

$$\frac{1}{t} \sum_{i=1}^{t} \frac{1}{Q(\pi(x_i)|x_i)} \le K + \lambda \frac{\overline{\mathsf{Regret}_t(\pi)}}{\sqrt{t}}, \forall \pi \in \prod$$
 (2)

• Low estimation variance (LV) - place sufficient mass on the actions chosen by each policy (exploration)

Theorem

If we obtain policy distributions Q_t via solving (OP), then with high probability, regret after T rounds is at most

$$\tilde{\mathcal{O}}\left(\sqrt{\mathit{KT}\log\left(\left|\prod\right|\right)}\right).$$

Sketch proof:

- Lemma: By Eq. 2, then with high prob., each round t in epoch m, $\forall \pi \in \prod$, $Regret_t(\pi) \leq 2\widehat{Regret}_t(\pi) + \mathcal{O}(K\mu_m)$, where $\mu_m := \min\{1/2K, \sqrt{\ln(16\tau_m^2|\prod|/\delta)/(K\tau_m)}\}$, $\forall m$.
- Using Lemma and Eq. 1, then with high prob., at round t, $\sum_{\pi \in \Pi} Q_{m-1} Regret_t(\pi) \leq \mathcal{O}(K\mu_{m-1})$.
- Summing these terms up over all T rounds and applying martingale concentration gives the Theorem.

Presenter: Ha Bui Taming the Monster 10 / 15

Algorithm

Basic algorithm structure (same as Exp4)

- Initial distribution $Q_1 \in \mathbb{R}^{\prod}$, over policies \prod , epoch schedule $0 < \tau_1 < \tau_2 < \cdots$, history set $H_t = \emptyset$
- For $t \in [T]$
 - ① Draw (x_t, r_t) i.i.d. from distribution D over $\mathcal{X} \times [0, 1]^K$
 - ② Observe context x_t
 - **3** Compute distribution p_t over actions [K] based on Q_t and x_t
 - \bullet Draw action a_t from p_t
 - **1** Collect reward $r_t(a_t)$

 - **()** If $t = \tau_m$: compute Coordinate descent algorithm based on H_t

Algorithm

Basic algorithm structure (same as Exp4)

- Initial distribution $Q_1 \in \mathbb{R}^{\prod}$, over policies \prod , epoch schedule $0 < \tau_1 < \tau_2 < \cdots$, history set $H_t = \emptyset$
- For $t \in [T]$
 - ① Draw (x_t, r_t) i.i.d. from distribution D over $\mathcal{X} \times [0, 1]^K$
 - 2 Observe context x_t
 - lacksquare Compute distribution p_t over actions [K] based on Q_t and x_t
 - \bigcirc Draw action a_t from p_t
 - **5** Collect reward $r_t(a_t)$

 - **()** If $t = \tau_m$: compute Coordinate descent algorithm based on H_t

Coordinate descent algorithm

- Input: Initial weights Q, history set H_t
- Loop:
 - ightharpoonup Check OP conditions by Q and H_t
 - ▶ If (LR) $\sum_{\pi \in \Pi} Q(\pi) \widehat{\operatorname{Regret}}_t(\pi) \leq K \sqrt{t}$ is violated, then replace Q by cQ
 - ▶ If there is a policy π causing (LV) $\frac{1}{t}\sum_{i=1}^{t}\frac{1}{Q(\pi(x_i)|x_i)} \leq K + \lambda \frac{\bar{\mathsf{Regret}}_t(\pi)}{\sqrt{t}}$ to be violated, then
 - ★ Update $Q(\pi) = Q(\pi) + \alpha$
 - ► Else
 - * Return Q
- Claim: can check the if condition by making one AMO call per iteration
- ullet Above, both 0 < c < 1 and lpha have closed-form expressions

Computational complexity

Iteration bound for coordinate descent

- ullet # steps of coordinate descent $= \tilde{\mathcal{O}}(\sqrt{\mathit{Kt}/\log|\prod|})$
- Also gives bound on the sparsity of Q
- Analysis via a potential function argument

Computational complexity

Iteration bound for coordinate descent

- ullet # steps of coordinate descent $= \tilde{\mathcal{O}}(\sqrt{\mathit{Kt}/\log|\prod|})$
- Also gives bound on the sparsity of Q
- Analysis via a potential function argument

Warm-start

ullet If we warm-start coordinate descent (initialize with Q_t to get Q_{t+1}), then only need

$$\tilde{\mathcal{O}}(\sqrt{\mathit{KT}/\log|\prod|})$$

coordinate descent iterations over all $\ensuremath{\mathcal{T}}$ rounds

Computational complexity

Iteration bound for coordinate descent

- # steps of coordinate descent = $\tilde{\mathcal{O}}(\sqrt{Kt/\log|\prod|})$
- Also gives bound on the sparsity of Q
- Analysis via a potential function argument

Warm-start

• If we warm-start coordinate descent (initialize with Q_t to get Q_{t+1}), then only need

$$\tilde{\mathcal{O}}(\sqrt{KT/\log|\prod|})$$

coordinate descent iterations over all T rounds

Epoch trick

- ullet Regret analysis: Q_t has low instantaneous expected regret (crucially relying on i.i.d. assumption).
 - ▶ Therefore same Q_t can be used for $\mathcal{O}(t)$ more rounds!
- If $\tau_m = m$, we need $\tilde{\mathcal{O}}(\sqrt{KT^3/\log|\prod|})$ AMO calls \Rightarrow split T rounds into epochs, solve (OP) per each:
 - **Doubling**: only update on round $2^1, 2^2, 2^3, 2^4, \cdots$
 - **★** Total of $\mathcal{O}(\log(T))$ updates, so overall # AMO calls unchanged (up to log factor)
 - ▶ Squares: only update on round $1^2, 2^2, 3^2, 4^2, \cdots$
 - \star Total of $\mathcal{O}(T^{1/2})$ updates, each requiring $\tilde{\mathcal{O}}\sqrt{K/\log|\prod|}$ AMO calls, on average

Empirical results

Table 1. Progressive validation loss, best hyperparameter values, and running times of various algorithm on RCV1.

Algorithm	ϵ -greedy	Explore-first	Bagging	LinUCB	Online Cover	Supervised
P.V. Loss	0.148	0.081	0.059	0.128	0.053	0.051
Searched	$0.1 = \epsilon$	2×10^5 first	16 bags	10 ³ dim, minibatch-10	$\operatorname{cover} n = 1$	nothing
Seconds	17	2.6	275	212×10^{3}	12	5.3

Figure: Bandit problem derived from classification task (RCV1). Reporting progressive validation loss

- RCV1: document classification dataset, 781265 examples, and 47152 features.
- "Online Cover": variant with stateful AMO, i.e., set size $|H_t|=1$
 - Achieves the best loss of 0.053
 - Efficient by only requires 12 seconds

Table of Contents

Problem & Motivation

Method & Results

Wrap-up

Wrap-up

Taming the Monster: a new fast and simple algorithm for contextual bandits

- Algorithm = Inverse probability weighting + solving Optimization Problem by coordinate descent with warm-start/epoch trick + arg max oracle.
- Optimal regret bound (up to log factor): $\tilde{\mathcal{O}}(\sqrt{KT\log|\prod|})$
- Amortized $\tilde{\mathcal{O}}(\sqrt{K/(T \log | \prod |)})$ calls to arg max oracle per round.