supporting fractional investment & tokenized real estate: multiple regression analysis

presented by: marvin lee

final model:

OLS Regression Resu	ults		
Dep. Variable:	price	R-squared:	0.821
Model:	OLS	ان R-squared:	0.818
Method:	Least Squares	F-statistic:	324.9
Date:	Sun, 01 Nov 2020	Prob (F-stull tip):	J.00
Time:	20:02:45	Log-Likelihood:	416.17
No. Observations:	4320	AIC:	- 710.3

4 60.336			
	0.000	5.489	5.858
2 47.327	0.000	0.557	0.605
8 22.228	0.000	0.160	0.190
7 20.112	0.000	0.305	0.370
37.429	0.000	1.052	1.169
18.822	0.000	0.649	0.800
	22.228 17 20.112 30 37.429	08 22.228 0.000 17 20.112 0.000 80 37.429 0.000	08 22.228 0.000 0.160 17 20.112 0.000 0.305 30 37.429 0.000 1.052

Keys: log-transformed price, zip code dominance, log+scale of sqft_above

background: decentralized, trustless systems for real estate asset management need accurate price predictions

- collateral
- home upgrades
- [insert need here]

Fractional and frictionless real estate investing

OWNERSHIP REINVENTED

For the first time, investors around the globe can buy into the US real estate market through fully-compliant, fractional, tokenized ownership. Powered by blockchain.

data

- KC house data set (21,000+ items)
- Output "cleaned" data set to a CSV file
- Most variables were turned into categorical variables
- Primary goal: improve R2 / Secondary goal: a trustless model
- Used stepwise method for initial "automatic" add/drop statistical analysis
- Log-transformed + scaled continuous variables / Log-transformed target

Created the following features:

home_age, living_lot_ratio, baths_with_reno

.

eda

checked for:

- multicollinearity
- subjectivity
- redundancy
- mostly categoricals

modeling

Living lot ratio proved to have homoscedasticity and was therefore unfit to be included in the final model.

```
outcome3 = 'price'
                predictors3 = train.drop('price',axis=1)
                pred_sum3 = '+'.join(predictors3[result_final])
                formula3 = outcome3 + '~' + pred_sum3
                model3 = ols(formula=formula3, data=train).fit()
             9 model3.summary()
Out[108]:
           OLS Regression Results
                Dep. Variable:
                                                  R-squared: 0.856
                      Model:
                                              Adj. R-squared:
                    Method:
                                Least Squares
                                                             1041.
                       Date: Sun, 01 Nov 2020 Prob (F-statistic):
                                              Log-Likelihood: 3304.7
                       Time:
            No. Observations:
                                      17276
                                                       AIC: -6411.
```

Log-transformation of the target variable + stepwise addition led to the best R-squared value

features stepwise

```
1 include1 = [i for i in train if 'zip' in i]
2 include2 = ['sqft_above', 'has_basement', 'home_age', 'living_lot_ratio']
   outcome3 = 'price'
  predictors3 = train.drop('price',axis=1)
   pred_sum3 = '+'.join(predictors3[include1+include2])
   formula3 = outcome3 + '~' + pred_sum3
   model3 = ols(formula=formula3, data=train).fit()
10 model3.summary()
```

Out[129]:

OLS Regression Results

Dep. Variable:	price	R-squared:	0.823
Model:	OLS	Adj. R-squared:	0.822
Method:	Least Squares	F-statistic:	1094.
Date:	Sun, 01 Nov 2020	Prob (F-statistic):	0.00
Time:	17:19:55	Log-Likelihood:	1517.0
No. Observations:	17276	AIC:	- 2886.
Df Residuals:	17202	BIC:	- 2312.
Df Model:	73		
Covariance Type:	nonrobust		

zips + minimum other features

R-squared of 0.823

2 variables with p-value > 0.05

conclusion + the future

base collateral levels on:

location + sqft_above

features
didn't pass
but may still hold insights

segmented modeling high prices vs. lower prices

study grading subjective variables

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-2.607e+05	8.44e+04	-3.089	0.002	-4.26e+05	-9.53e+04
has_waterfront	8.138e+05	1.62e+04	50.226	0.000	7.82e+05	8.46e+05
sqft_above	206.4688	3.368	61.304	0.000	199.867	213.070
has_basement	9.21e+04	3554.150	25.913	0.000	8.51e+04	9.91e+04
sqft_living15	85.4519	3.169	26.968	0.000	79.241	91.663
home_age	198.0654	77.734	2.548	0.011	45.698	350.433
living_lot_ratio	-8.247e+04	7794.683	-10.581	0.000	-9.78e+04	-6.72e+04

04

thank you

www.github.com/emel333