

WYPEŁNIA ZDAJĄCY		Miejsce na naklejkę.	
KOD	PESEL	Sprawdź, czy kod na naklejce to E-100 .	
		Jeżeli tak – przyklej naklejkę. Jeżeli nie – zgłoś to nauczycielowi.	

EGZAMIN MATURALNY Z MATEMATYKI Poziom podstawowy

DATA: 24 sierpnia 2021 r.
GODZINA ROZPOCZĘCIA: 9:00
CZAS PRACY: 170 minut

LICZBA PUNKTÓW DO UZYSKANIA: 45

WYPEŁNIA ZESPÓŁ NADZORUJĄCY
Uprawnienia zdającego do:
dostosowania zasad oceniania
dostosowania w zw. z dyskalkulią
nieprzenoszenia zaznaczeń na kartę.

EMAP-P0-**100**-2108

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 25 stron (zadania 1–35). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 3. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.
- 4. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 5. Odpowiedzi do zadań zamkniętych (1–28) zaznacz na karcie odpowiedzi w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 6. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (29–35) może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 7. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 8. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 9. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 10. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.

W każdym z zadań od 1. do 28. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. (0-1)

Liczba 9⁻¹⁰ · 3¹⁹ jest równa

- **A.** 27⁹
- **B.** 9^{-2}
- $\mathbf{C.}\ 3^{10}$
- **D.** 3^{-1}

Zadanie 2. (0-1)

Liczba $\log_6 9 + 2\log_6 2$ jest równa

- **A.** $\log_6 \frac{9}{4}$
- **B.** 1

C. 2

D. $\log_6 \frac{81}{2}$

Zadanie 3. (0-1)

Liczba x stanowi 80% liczby dodatniej y. Wynika stąd, że liczba y to

A. 125% liczby x.

B. 120% liczby *x*.

C. 25% liczby x.

D. 20% liczby x.

Zadanie 4. (0-1)

Dla każdej liczby rzeczywistej $\,x\,$ i każdej liczby rzeczywistej $\,y\,$ wyrażenie $\,(3x+8y)^2\,$ jest równe

A.
$$9x^2 + 48xy + 64y^2$$

B.
$$9x^2 + 64y^2$$

C.
$$3x^2 + 48xy + 8y^2$$

D.
$$3x^2 + 8y^2$$

Zadanie 5. (0-1)

Liczba (-2) jest rozwiązaniem równania

A.
$$x^2 + 4 = 0$$

B.
$$\frac{x+2}{2} = 1$$

c.
$$\frac{x}{x+2} = 0$$

D.
$$x^2(x+2) + 2(x+2) = 0$$

Zadanie 6. (0-1)

Zbiorem wszystkich rozwiązań nierówności $5 - \frac{2-6x}{4} \ge 2x + 1$ jest przedział

A.
$$(-\infty, 1)$$

B.
$$\langle 1, +\infty \rangle$$

C.
$$(-\infty, 7)$$

B.
$$\langle 1, +\infty \rangle$$
 C. $(-\infty, 7)$ **D.** $\langle 7, +\infty \rangle$

Zadanie 7. (0-1)

Funkcja liniowa f jest określona wzorem f(x) = -2x + 4. Wykres funkcji f przesunięto wzdłuż osi Ox o 2 jednostki w lewo (tzn. przeciwnie do zwrotu osi), w wyniku czego otrzymano wykres funkcji g. Funkcja g jest określona wzorem

A.
$$g(x) = -2x + 2$$

B.
$$g(x) = -2x$$

C.
$$g(x) = -2x + 6$$

D.
$$g(x) = -2x + 8$$

Zadanie 8. (0-1)

Funkcja f jest określona wzorem f(x) = ax + 4 dla każdej liczby rzeczywistej x. Miejscem zerowym tej funkcji jest liczba (-1). Wtedy

A.
$$a = -4$$

B.
$$a = 1$$

C.
$$a = 4$$
 D. $a = 5$

D.
$$a = 5$$

Zadanie 9. (0-1)

Prosta k przechodzi przez punkt A=(2,-3) i jest nachylona do osi Ox pod kątem 45° (zobacz rysunek). Prosta k ma równanie

A.
$$y = x - 5$$

B.
$$y = -x - 1$$

C.
$$y = -x + 5$$

D.
$$y = x + 5$$

Zadanie 10. (0-1)

Funkcja kwadratowa f jest określona wzorem f(x) = -2(x+3)(x-5). Wierzchołek paraboli, która jest wykresem funkcji f, ma współrzędną x równą

- **A.** (-3)
- **B.** (-1)
- **C.** 1

D. 5

Zadanie 11. (0-1)

Funkcja f jest określona wzorem $f(x) = -x^2 + 4$ dla każdej liczby rzeczywistej x. Zbiorem wartości funkcji f jest przedział

- **A.** $(-\infty, -2)$ **B.** $(2, +\infty)$ **C.** $(-4, +\infty)$ **D.** $(-\infty, 4)$

Zadanie 12. (0-1)

Na rysunku przedstawiono fragment wykresu funkcji kwadratowej f.

Jeden spośród podanych poniżej wzorów jest wzorem tej funkcji. Wskaż wzór funkcji f.

A.
$$f(x) = x^2 - 6x + 11$$

B.
$$f(x) = -x^2 + x + 2$$

C.
$$f(x) = x^2 - 6x - 7$$

D.
$$f(x) = -x^2 + 6x - 7$$

Zadanie 13. (0-1)

Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej $n \ge 1$. Różnica tego ciągu jest równa 2. Wtedy

A.
$$a_{24} - a_6 = 18$$

B.
$$a_{24} - a_6 = 20$$

C.
$$a_{24} - a_6 = 36$$

A.
$$a_{24} - a_6 = 18$$
 B. $a_{24} - a_6 = 20$ **C.** $a_{24} - a_6 = 36$ **D.** $a_{24} - a_6 = 38$

Zadanie 14. (0-1)

Suma wszystkich liczb całkowitych dodatnich parzystych i jednocześnie mniejszych od 1001 jest równa

A.
$$\frac{2+998}{2} \cdot 499$$

B.
$$\frac{2+1000}{2} \cdot 500$$

c.
$$\frac{2+1001}{2} \cdot 500$$

A.
$$\frac{2+998}{2} \cdot 499$$
 B. $\frac{2+1000}{2} \cdot 500$ **C.** $\frac{2+1001}{2} \cdot 500$ **D.** $\frac{1+1001}{2} \cdot 1001$

Zadanie 15. (0-1)

Trójwyrazowy ciąg (2, x, 18) jest rosnącym ciągiem geometrycznym. Wtedy

A.
$$x = 16$$

B.
$$x = 10$$
 C. $x = 6$ **D.** $x = 9$

C.
$$x = 6$$

D.
$$x = 9$$

Zadanie 16. (0-1)

Kąt α jest ostry i $\sin \alpha = \frac{7}{25}$. Wynika stąd, że

A.
$$\cos \alpha = \frac{576}{625}$$

B.
$$\cos \alpha = \frac{24}{25}$$

A.
$$\cos \alpha = \frac{576}{625}$$
 B. $\cos \alpha = \frac{24}{25}$ **C.** $\cos \alpha = -\sqrt{\frac{24}{25}}$ **D.** $\cos \alpha = \frac{18}{25}$

D.
$$\cos \alpha = \frac{18}{25}$$

Zadanie 17. (0-1)

Czworokąt ABCD jest wpisany w okrąg o środku S. Bok AD jest średnicą tego okręgu, a miara kąta *BDC* jest równa 20° (zobacz rysunek).

Wtedy miara kąta BSC jest równa

A. 10°

B. 20°

C. 30°

 $D.40^{\circ}$

Zadanie 18. (0-1)

Okrąg o środku w punkcie O jest wpisany w trójkąt ABC. Wiadomo, że |AB| = |AC| i $| 4BOC | = 100^{\circ}$ (zobacz rysunek).

Miara kąta BAC jest równa

- **A.** 20°
- **B.** 30°
- **C.** 40°
- **D.** 50°

Zadanie 19. (0-1)

Punkty A, B, C i D leżą na okręgu o środku w punkcie O. Cięciwy DB i AC przecinają się w punkcie $E, | \not ACB | = 55^\circ$ oraz $| \not AEB | = 140^\circ$ (zobacz rysunek).

Miara kąta DAC jest równa

- **A.** 45°
- **B.** 55°
- **C.** 70°
- **D.** 85°

Zadanie 20. (0-1)

Przekątna AC prostokąta ABCD ma długość 70. Na boku AB obrano punkt E, na przekątnej AC obrano punkt F, a na boku AD obrano punkt G – tak, że czworokąt AEFGjest prostokatem (zobacz rysunek). Ponadto |EF| = 30 i |GF| = 40.

Obwód prostokąta ABCD jest równy

- **A.** 158
- **B.** 196
- **C.** 336
- **D.** 490

Zadanie 21. (0-1)

W układzie współrzędnych dane są dwa punkty A = (1, -2) oraz B = (3, 1). Współczynnik kierunkowy prostej AB jest równy

- **A.** $\left(-\frac{3}{2}\right)$
- B. $\left(-\frac{2}{3}\right)$ C. $\frac{2}{3}$

Zadanie 22. (0-1)

Prosta k ma równanie $y=-\frac{4}{7}x+24$. Współczynnik kierunkowy prostej prostopadłej do prostej *k* jest równy

- **A.** $\frac{7}{4}$
- B. $\left(-\frac{7}{4}\right)$ C. $\left(-\frac{4}{7}\right)$ D. $\frac{4}{7}$

Zadanie 23. (0-1)

Punkty A = (3,7) i C = (-4,6) są końcami przekątnej kwadratu ABCD. Promień okręgu opisanego na tym kwadracie jest równy

- **A.** $\frac{\sqrt{2}}{2}$
- **B.** $\frac{5}{2}$
- **c**. $\frac{5\sqrt{2}}{2}$
- **D.** 5

Zadanie 24. (0-1)

Każda krawędź graniastosłupa prawidłowego sześciokątnego ma długość równą 2 (zobacz rysunek).

Pole powierzchni całkowitej tego graniastosłupa jest równe

A.
$$24 + 2\sqrt{3}$$

B.
$$24 + 6\sqrt{3}$$

A.
$$24 + 2\sqrt{3}$$
 B. $24 + 6\sqrt{3}$ **C.** $24 + 12\sqrt{3}$ **D.** $24 + 24\sqrt{3}$

D.
$$24 + 24\sqrt{3}$$

Zadanie 25. (0-1)

Przekątna sześcianu jest równa 6. Wynika stąd, że objętość tego sześcianu jest równa

A.
$$24\sqrt{3}$$

C.
$$54\sqrt{2}$$

D.
$$648\sqrt{3}$$

Zadanie 26. (0-1)

Wszystkich liczb naturalnych pięciocyfrowych parzystych jest

$$\mathbf{A.}\ 9\cdot 2\cdot 10^3$$

B.
$$9 \cdot 5 \cdot 10^3$$
 C. $5 \cdot 10^4$

C.
$$5 \cdot 10^4$$

D.
$$4 \cdot 10^5$$

Zadanie 27. (0-1)

W pudełku znajdują się tylko kule białe i kule czerwone. Stosunek liczby kul białych do liczby kul czerwonych jest równy 3:4. Wylosowanie każdej kuli z tego pudełka jest jednakowo prawdopodobne. Losujemy jedną kulę. Niech A oznacza zdarzenie polegające na tym, że wylosowana z pudełka kula będzie biała. Prawdopodobieństwo zdarzenia A jest równe

A.
$$\frac{1}{4}$$

B.
$$\frac{1}{3}$$

c.
$$\frac{3}{7}$$

D.
$$\frac{3}{4}$$

Zadanie 28. (0-1)

Średnia arytmetyczna pięciu liczb: 5x + 6, 6x + 7, 7x + 8, 8x + 9, 9x + 10, jest równa 8. Wtedy x jest równe

Zadanie 29. (0-2)

Rozwiąż nierówność:

$$x^2 - 5 \ge 4x$$

Zadanie 30. (0-2)

Rozwiąż równanie:

$$\frac{x+8}{x-7} = 2x$$

	Nr zadania	29.	30.
Wypełnia	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 31. (0-2)

Wykaż, że dla każdej liczby rzeczywistej $\,a\,$ i każdej liczby rzeczywistej $\,b\,$ spełniona jest nierówność

$$b(5b - 4a) + a^2 \ge 0$$

Zadanie 32. (0-2)

W trójkącie ABC kąt przy wierzchołku A jest prosty, a kąt przy wierzchołku B ma miarę 30° . Na boku AB tego trójkąta obrano punkt D tak, że miara kąta CDA jest równa 60° oraz |AD| = 6 (zobacz rysunek). Oblicz |BD|.

	Nr zadania	31.	32.
Wypełnia	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 33. (0-2)

Dany jest trapez ABCD o podstawach AB i CD. Przekątne AC i BD tego trapezu przecinają się w punkcie S (zobacz rysunek) tak, że $\frac{|AS|}{|SC|} = \frac{3}{2}$. Pole trójkąta ABS jest równe 12. Oblicz pole trójkąta CDS.

Zadanie 34. (0-2)

Doświadczenie losowe polega na dwukrotnym rzucie symetryczną sześcienną kostką do gry, która na każdej ściance ma inną liczbę oczek – od jednego do sześciu oczek. Niech $\,A\,$ oznacza zdarzenie polegające na tym, że iloczyn liczb oczek wyrzuconych w dwóch rzutach jest równy $\,12.$ Oblicz prawdopodobieństwo zdarzenia $\,A.$

Wypełnia	Nr zadania	33.	34.
	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 35. (0-5)

Dany jest ciąg (a_n) określony wzorem $a_n=\frac{5-3n}{7}$ dla każdej liczby naturalnej $n\geq 1$. Trójwyrazowy ciąg $(a_4$, x^2+2 , a_{11}), gdzie x jest liczbą rzeczywistą, jest geometryczny. Oblicz x oraz iloraz tego ciągu geometrycznego.

	Nr zadania	35.
Wypełnia egzaminator	Maks. liczba pkt	5
	Uzyskana liczba pkt	

