Troubleshooting & Chromatographic Terms

- When you run into a problem, what are good steps to follow to solve the problem?
 - Ex: Trying to win a video game?
 - Ex: Trying to fix a printer issue?
 - Ex: Trying to fix a broken car?

- In Chromatography problems can arise from many sources
- Effective troubleshooting means
 - 1. Defining the problem
 - 2. Isolating the source (finding the cause)

- How should effective troubleshooting be done?
 - Logically, systematically, intelligently, experientially, collectively
 - This is true for all troubleshooting

1. Don't add to the problem

- Think before you act
- Once the problem is evident, make sure that your actions will not contribute to the problem: don't make things worse

2. <u>Define the Problem</u>

- Identify the symptoms and accurately define the problem
- The real cause may not be the most apparent thing
- Only by identifying the <u>true</u> problem can you find the correct solution
- Symptoms are not the same as problems

SIMPLE THINGS FIRST

Troubleshooting – Define the Problem

- What is the problem/symptom?
 - Runny nose
 - Cough
 - Aching joints
- These are all symptoms, the cause is the flu

Troubleshooting Instrumentation

Need to know how each piece fits together to properly troubleshoot the instrument

The HPLC system consists of

- Solvent
- A solvent delivery system (pump)
- A sample injection valve
- A chromatographic column
- A detector
- A data system

Other important aspects to consider

Sample and standard preparation

Chromatograms as Tools

Used to identify and quantify

Chromatograms as Tools

- Can also tell us about
 - The health of the column and the instrument
 - The suitability of the instrument & column for a particular analysis

Chromatography Terms

- We can describe a separation using a number of parameters including
 - The separating power of a column
 - The retention of a compound on a column
 - The degree of separation between two peaks
- These terms allow us to compare different analyses, columns, instruments, and methods

Retention Time

- Chromatogram is a graph of detector response (y)
 vs time (x)
- Retention time t_R
 - How long it takes for a compound to go from the injector to the detector

Harris/Lucy, *Quantitative Chemical Analysis*, 10e, © 2020 W. H. Freeman and Company

Mobile phase or an unretained solute (methane) travels through the column in the minimum possible time, $t_{\rm M}$.

Void Time/Void Marker

Retention Time: t_R

- Chromatogram is a graph of detector response (y)
 vs time (x)
- Retention time t_R
 - How long it takes for a compound to go from the injector to the detector
 - Elution time
- Adjusted retention time t'_R
 - The time it takes for a compound to elute, beyond that required for the void $t_R' = t_R t_M$

Harris/Lucy, *Quantitative Chemical Analysis*, 10e, © 2020 W. H. Freeman and Company

Mobile phase or an unretained solute (methane) travels through the column in the minimum possible time, $t_{\rm M}$.

Retention Factor: k

Retention factor

 Used to describe the degree of retention for a compound

$$k = \frac{t_{\rm R} - t_{\rm M}}{t_{\rm M}} = \frac{t'_{\rm R}}{t_{\rm M}}$$

• As $t_R \uparrow$, $k \uparrow$

Harris/Lucy, *Quantitative Chemical Analysis*, 10e, © 2020 W. H. Freeman and Company

Selectivity or Separation Factor: α

• α is the ratio of the adjusted retention times for two solutes.

Figure 23-7

- Provides relative selectivity of compounds
 - Often used as a criteria for a method

$$\alpha = \frac{t_{R2}'}{t_{R1}'} = \frac{k_2}{k_1}$$

where component 2 is eluted later than component 1

Harris/Lucy, *Quantitative Chemical Analysis*, 10e, © 2020 W. H. Freeman and Company

Practice Problem 2

- Compounds A and B have retention times of 2.142 and 2.193 min, respectively, on a 15-cm column.
- An unretained species passes through the column in 0.864 min.
- The peak widths for A and B are 0.051 and 0.052 min, respectively.
- Calculate:
 - The separation factor/selectivity for the separation

$$\alpha = \frac{t_{R2}'}{t_{R1}'} = \frac{k_2}{k_1}$$

Selectivity or Separation Factor: α

 The term selectivity is also used qualitatively to mean the elution order and relative degree of separation for a set of compounds

Selectivity Changes - Example

Conditions:

Columns: 2.1 x 100 mm

 We would say the selectivity is changes for these different columns

> Meaning the elution order and/or relative degree of separation

- 5. NB
- 6. Tetryl
- 7. TNT
- 8. 2-Am-4,6-DNT
- 9. 4-Am-2,6 DNT
- 10. 2,4-DNT
- 11. 2,6-DNT
- 12. 2-NT
- 13. 4-NT
- 14. 3-NT

Efficiency or Plate Count

- N = the efficiency of a column
 - A gauge of how well the column is performing
- Should stay constant
 - If changes perhaps the column is damaged or not connected properly
- W_{0.5} is easiest to measure
 - Esp if baseline separation not achieved

Practice Problem 3

- Compounds A and B have retention times of 2.142 and 2.193 min, respectively, on a 15-cm column.
- An unretained species passes through the column in 0.864 min.
- The peak widths at base for A and B are 0.051 and 0.052 min, respectively.
- Calculate:
 - The efficiency for the last peak

Resolution Between Peaks

- Resolution (Rs) = $\frac{2*|t_{RB}-t_{RA}|}{W_A+W_B}$
- Separation at base of peaks
- Baseline resolution is ideal
 - Where the peaks touch down between each other (Rs = 1.5)
- Many methods have a minimum resolution requirements

Practice Problem 4

- Compounds A and B have retention times of 2.142 and 2.193 min, respectively, on a 15-cm column.
- An unretained species passes through the column in 0.864 min.
- The peak widths for A and B are 0.051 and 0.052 min, respectively.
- Calculate:
 - Resolution (Rs) = $\frac{2*|t_{RB}-t_{RA}|}{W_A+W_B}$

Selectivity vs Resolution

- Both take into account the separation of the peaks at their apex
 - Only resolution includes the width of the peaks

Tailing Factor

- In an ideal world peaks are symmetrical
- In HPLC "tailing" can be problematic
 - Decreases resolution
 - USP tailing calculated by software
 - Many methods have a USP Tailing factor pass/fail criteria

USP Tailing Factor

Asymmetry

Examples of Tailing

Applications to Troubleshooting

- We can compare these terms to monitor for changes and evaluate methods for success
 - Changing retention times may indicate problems with the flow rate, column, or mobile phase
 - Changing resolution may indicate problems with tubing and/or columns
 - Changing peak areas may indicate a problem with the injector, samples, or standards
 - Changing efficiency may indicate the column is aging and in need of replacement
 - Unacceptable values may indicate the instrument is not suitable or that the method is not fit for purpose

Troubleshooting - Chromatograms

"My peak areas aren't the same"

- Define the Problem
 - All of the peaks or just some?
 - How many injections?
 - How significant?
- All peak areas for second injection were double the first

3. Gather information

- What is and is not affected?
- Do I know and understand these things?
- What was happening before the problem happened?
 - What events transpired
- Give information that is accurate, detailed and all inclusive
- Don't leave something out because you think it does not matter
- Review critically and carefully any hard data the supports the existence of the problem

Troubleshooting - Chromatograms

- Peak areas for second injection were double the first
- Gather information
 - What is the standard? Or sample?
 - Same instrument? Manual or Autosampler?
 - Same day? Right after each other?
 - Retention times unchanged
 - No new peaks

4. Narrow the cause down

- Rule #1 consider the simple things first
- Eliminate potential causes that would not apply
- To investigate the issue change or consider ONE thing at a time

Troubleshooting – Chromatograms

- Potential causes
 - User error with needle (manual injector)
 - Variability in needle fill
 - Needle not fully seated in injector
 - Injector malfunction (autosampler)
 - Wrong standard injected

5. Try the options

- What is left to try & does it make sense to try it?
- Keep the problem and what is and is not affected in the front of your mind
- Get help
 - Choose your help wisely!!!

Troubleshooting – Chromatograms

- Information: Autosampler, making multiple injections in series
- Options: Wrong standard injected, autosampler malfunction
- Try: Review injection instructions did you inject from the same vial twice?
 - Oh! The method says vial 1 then vial 2!

6. Evaluate success

- Did your solution work?
- Go tell your boss what happened and how you took care of it:
 Congratulations you are gaining experience and prestige!

Troubleshooting – Chromatograms

- Updated method to inject twice from the vial 1 before moving to vial 2.
 - Problem solved

Troubleshooting 101 - Summary

- 1. Don't add to the problem
- 2. Define the Problem
- 3. Gather information
- 4. Narrow it down
- 5. Try the options
- **6. Evaluate success**

Note: If you are not successful, you may have to repeat all 6 steps, or you may not. Do I need to repeat from step 2? from step 3? From step 5?

Summary

- Troubleshooting
 - Should be performed in a linear, logical fashion
 - Know the general steps discussed
 - Keep it Simple
- These key terms discussed are important and will be used routinely in industry