Feuille d'exercices n°6 Corrigé

Exercice 1

1. Il s'agit de la topologie finale relatives aux inclusions des segments L_n dans L, c'est donc bien une topologie (chose que l'on peut aussi vérifier directement).

Cette topologie rend l'inclusion de L dans \mathbb{R}^2 continue puisqu'elle est continue lorsqu'on la restreint aux L_n . Ainsi, cette topologie est plus fine que celle de L vu comme sous-espace de \mathbb{R}^2 .

2. L'espace L est séparé : soient $x,y \in L$. Si x et y appartiennent à des segments différents, disons $x \in L_n$ et $y \in L_m$, les intervalles ouverts $\{(t,\frac{t}{n})\}_{0 < t \le 1}$ et $\{(t,\frac{t}{m})\}_{0 < t \le 1}$ séparent x et y. Si x et y appartiennent au même segment L_n , supposons que $x = t(1,\frac{1}{n})$ et $y = s(1,\frac{1}{n})$ où $0 \le t < s \le 1$. Les ouverts $V = \{(u,\frac{u}{n})\}_{\frac{s+t}{2} < u \le 1}$ et $U := \{(u,\frac{u}{n})\}_{0 \le u < \frac{s+t}{2}} \cup \bigcup_{m \ne n} L_m$ séparent x et y.

L'espace n'est pas compact car il n'est pas possible d'extraire de recouvrement fini du recouvrement suivant : pour $n \in \mathbb{N} \cup \{\infty\}$, on note $V_n := L_n - \{(1, \frac{1}{n})\}$, puis $U_n := \bigcup_{m \neq n} V_m \cup L_n$.

3. Raisonnous par l'absurde et soit d une distance induisant la topologie \mathcal{T} sur L. Pour tout

3. Raisonnons par l'absurde et soit d une distance induisant la topologie \mathcal{T} sur L. Pour tout $n \in \mathbb{N}^*$, la suite de terme général $\frac{1}{p}(1,\frac{1}{n}) \in L_n \subset L$ tend vers (0,0) pour \mathcal{T} lorsque p tend vers l'infini puisqu'elle tend effectivement vers (0,0) dans L_n . La distance à (0,0) tend donc vers 0 lorsque p tend vers l'infini. On peut donc trouver p_n tel que $0 < d_n := d(\frac{1}{p_n}(1,\frac{1}{n}),(0,0)) < \frac{1}{n}$. On pose ensuite $x_n := \frac{1}{p_n}(1,\frac{1}{n})$.

La suite (x_n) tend vers 0 pour la distance d qui engendre la topologie \mathcal{T} , mais (x_n) ne tend pas vers 0 pour \mathcal{T} , ce qui est absurde. En effet, pour $n \in \mathbb{N}^*$, soit V_n un voisinage de 0 dans L_n qui sépare 0 de x_n . La suite reste en dehors du voisinage

$$V := L_{\infty} \cup \bigcup_{n \in \mathbb{N}^*} V_n.$$

Exercice 2

1. Pour tout $j \in \mathbb{N}$, ∂F_j est un fermé d'intérieur vide (il est fermé car il est égal au fermé F_j privé de l'ouvert \mathring{F}_j et il est d'intérieur vide car $\widehat{\partial F_j} \subset \mathring{F}_j \subset X - \partial F_j$ donc $\widehat{\partial F_j}$ est d'intersection vide avec ∂F_j , ce qui signifie que c'est l'ensemble vide puisqu'il est inclus dans ∂F_j). D'après le théorème de Baire, une union dénombrable de fermés d'intérieur vide est d'intérieur vide. Donc $\bigcup_j \partial F_j$ est d'intérieur vide et $X - \left(\bigcup_j \partial F_j\right)$ est dense dans X.

Pour tout $x \in X - \left(\bigcup_{j} \partial F_{j}\right)$, il existe j tel que $x \in F_{j}$ (puisque les F_{j} recouvrent X). Comme $x \notin \partial F_{j}$, $x \in \text{int}(F_{j})$. Ceci démontre que :

$$X - \left(\bigcup_{j} \partial F_{j}\right) \subset \bigcup_{j} \operatorname{int}(F_{j})$$

Le premier ensemble étant dense, le deuxième l'est aussi.

2. Soient $j \in \mathbb{N}$ et $a \in \Omega_j$ quelconques. Montrons l'existence d'un tel ρ .

D'après la définition de Ω_j , il existe $i \in \mathbb{N}$ tel que $a \in \operatorname{int}(G_{i,j})$. Supposons fixé un tel i.

Il existe $\epsilon > 0$ tel que $B_X(a, \epsilon) \subset G_{i,j}$.

Puisque f_i est continue, il existe $\eta > 0$ tel que :

$$(d_X(a,x) < \eta) \quad \Rightarrow \quad \left(d_Y(f_i(a), f_i(x)) < \frac{2^{-j}}{3}\right)$$

Posons $\rho = \min(\epsilon, \eta)$. Pour tout $x \in B_X(a, \rho)$, on a, puisque $x \in B_X(a, \epsilon) \subset G_{i,j}$:

$$d_Y(f(x), f_i(x)) = \lim_{n \to +\infty} d_Y(f_n(x), f_i(x))$$

$$\leq \sup_{n \geq i} d_Y(f_n(x), f_i(x))$$

$$\leq \frac{2^{-j}}{3}$$

De même:

$$d_Y(f(a), f_i(a)) \le \frac{2^{-j}}{3}$$

Par inégalité triangulaire, on a donc :

$$d_Y(f(x), f(a)) \le d_Y(f(x), f_i(x)) + d_Y(f_i(x), f_i(a)) + d_Y(f_i(a), f(a))$$

$$\le \frac{2^{-j}}{3} + \frac{2^{-j}}{3} + \frac{2^{-j}}{3} = 2^{-j}$$

3. D'après la question précédente, f est continue sur $\bigcap_{j\in\mathbb{N}}\Omega_j$. En effet, pour tout a dans cet ensemble et pour tout $\epsilon>0$, il existe $j\in\mathbb{N}$ tel que $2^{-j}<\epsilon$. Comme $a\in\Omega_j$, la question 2. dit qu'il existe $\rho>0$ tel que, pour tout $x\in B_X(a,\rho)$:

$$d_Y(f(x), f(a)) \le 2^{-j} < \epsilon$$

L'ensemble Ω_j est un ouvert dense. Démontrons-le.

C'est une union d'ouverts donc un ouvert.

De plus, $\bigcup_{i\in\mathbb{N}} G_{i,j} = X$ (car, pour tout x, la suite $(f_k(x))_{k\in\mathbb{N}}$ converge donc ses éléments sont à distance au plus $2^{-j}/3$ à partir d'un certain rang i).

Les $G_{i,j}$ sont fermés : pour tous $i, j, G_{i,j} = \bigcap_{n \geq i} \phi_{n,i}^{-1}([0; 2^{-j}/3])$, si on pose $\phi_{n,i}(x) = d_Y(f_n(x), f_i(x))$.

Comme les fonctions $\phi_{n,i}$ sont continues, $G_{i,j}$ est une intersection de fermés. C'est donc un fermé.

On peut donc appliquer la question 1. à $\{G_{i,j}\}_{i\in\mathbb{N}}$ et elle indique que Ω_j est dense.

D'après le théorème de Baire (qu'on peut appliquer car X est complet), une intersection d'ouverts denses est dense donc $\bigcap_{j\in\mathbb{N}} \Omega_j$ est dense dans X. Il est inclus dans l'ensemble des points de continuité de f donc f est continue en un ensemble dense de points.

Exercice 3

1. Nous allons montrer la compacité à l'aide du théorème d'Ascoli.

L'ensemble [0; 1] est compact.

La famille \mathcal{H} est équicontinue car elle est composée de fonctions 1-lipschitziennes.

Pour tout $x_0 \in [0;1]$ et toute $v \in \mathcal{H}$:

$$\alpha(v) = \int_0^1 |v(x)| dx$$

$$\geq \int_0^1 (|v(x_0)| - |x - x_0|) dx$$

$$= |v(x_0)| - \int_0^1 |x - x_0| dx$$

$$\geq |v(x_0)| - 1$$

(On a utilisé le fait que |v| était 1-lipschitzienne.)

Puisque $\alpha(v) \leq 1$, on doit avoir $|v(x_0)| \leq 2$.

Ainsi, pour tout $x_0 \in [0; 1]$, l'ensemble $\{v(x_0)\}_{v \in \mathcal{H}}$ est d'adhérence compacte dans \mathbb{R} : il est inclus dans [-2; 2].

Les hypothèses du théorème d'Ascoli sont donc vérifiées : \mathcal{H} est d'adhérence compacte dans $\mathcal{C}([0;1],\mathbb{R})$.

Pour montrer que \mathcal{H} est compacte, il suffit donc de montrer que cette famille est fermée dans $\mathcal{C}([0;1],\mathbb{R})$.

Soit $(v_k)_{k\in\mathbb{N}}$ une suite d'éléments de \mathcal{H} convergeant vers une limite $v_\infty \in \mathcal{C}([0;1],\mathbb{R})$ (au sens de la norme uniforme). La limite v_∞ est 1-lipschitzienne (la 1-lipschitziannité est une propriété préservée par la convergence simple donc a fortiori par la convergence uniforme).

De plus, l'application α est continue sur $\mathcal{C}([0,1],\mathbb{R})$ car $|\alpha(v_1-v_2)| \leq ||v_1-v_2||_{\infty}$ pour toutes fonctions v_1, v_2 . Donc, si $\alpha(v_k) \leq 1$ pour tout k, on a aussi $\alpha(v_\infty) \leq 1$.

2. On va procéder par extraction diagonale.

Donc $v_{\infty} \in \mathcal{H}$.

[Remarque : ce procédé étant décrit dans le cours, il n'était pas nécessaire de refaire la démonstration. On pouvait aussi répondre à la question en utilisant la compacité de $\mathcal{H}^{\mathbb{N}}$, qui est une conséquence de la question précédente et du théorème de Tychonov.]

Soit $(t_k)_{k\in\mathbb{N}}$ une suite qui parcourt tous les points de $[0;1]\cap\mathbb{Q}$. Nous allons d'abord montrer qu'il existe une suite d'extractions $(\phi_k)_{k\in\mathbb{N}}$ telles que, pour tout k:

$$u_{\phi_1 \circ \dots \circ \phi_k(n)}(t_k)$$
 converge dans \mathcal{H} quand $n \to +\infty$

La construction se fait par récurrence.

Pour k = 1, c'est vrai : la suite $\{u_n(t_k)\}_{n \in \mathbb{N}}$ est une suite à valeurs dans un compact métrique, \mathcal{H} , donc on peut en extraire une sous-suite qui converge dans \mathcal{H} .

Si on suppose qu'on a construit $\phi_1, ..., \phi_k$ vérifiant la propriété voulue, on peut construire ϕ_{k+1} : $(u_{\phi_1 \circ ... \circ \phi_k(n)}(t_{k+1}))_{n \in \mathbb{N}}$ est une suite d'éléments à valeurs dans \mathcal{H} . On peut donc en extraire une sous-suite qui converge dans \mathcal{H} ; cette extraction fournit ϕ_{k+1} .

On pose $n_j = \phi_1 \circ ... \circ \phi_j(j)$. C'est une extraction. Pour tout k, la suite $(u_{n_j}(t_k))_{j \in \mathbb{N}}$ est une sous-suite de $(u_{\phi_1 \circ ... \circ \phi_k(n)}(t_k))_{n \in \mathbb{N}}$ si on ne considère que les indices $j \geq k$. Elle converge donc dans \mathcal{H} .

La suite $(u_{n_i}(t))_{i\in\mathbb{N}}$ converge donc bien dans \mathcal{H} pour tout $t\in[0,1]\cap\mathbb{Q}$.

3. Nous allons montrer le premier point. La démonstration du deuxième sera identique.

Posons, pour tout $x \in [0; 1]$, $u_*^+(t)(x) = \inf\{u_*(t')(x) \text{ tq } t' > t \text{ et } t' \in [0; 1] \cap \mathbb{Q}\}.$

C'est une fonction 1-lipschitzienne. En effet, pour tous x, x', puisque les $u_*(t')$ sont 1-lipschitziennes:

$$u_*^+(t)(x) = \inf\{u_*(t')(x) \text{ tq } t' > t \text{ et } t' \in [0;1] \cap \mathbb{Q}\}$$

$$\leq \inf\{u_*(t')(x') + |x - x'| \text{ tq } t' > t \text{ et } t' \in [0;1] \cap \mathbb{Q}\}$$

$$= \inf\{u_*(t')(x') \text{ tq } t' > t \text{ et } t' \in [0;1] \cap \mathbb{Q}\} + |x - x'|$$

$$= u_*^+(t)(x') + |x - x'|$$

donc $u_*^+(t)(x) - u_*^+(t)(x') \le |x - x'|$.

La même inégalité est aussi vraie si on inverse x et x' donc :

$$|u_*^+(t)(x) - u_*^+(t)(x')| \le |x - x'|$$

Pour toute suite $(t_k)_{k\in\mathbb{N}}$ décroissante de $[0;1]\cap\mathbb{Q}$ convergeant vers t, la suite $(u_*(t_k))_{k\in\mathbb{N}}$ converge simplement en décroissant vers $u_*^+(t)$: pour tout $x\in[0;1]$, la fonction $t'\in]t;1]\cap\mathbb{Q}\to u_*(t')(x)$ est croissante (si t'< t'', $u_{n_j}(t')\leq u_{n_j}(t'')$ et cette inégalité passe à la limite donc $u_*(t')\leq u_*(t'')$).

On peut donc appliquer le théorème de Dini : la suite $(u_*(t_k))_{k\in\mathbb{N}}$ est une suite de fonctions continues du compact [0;1] vers \mathbb{R} . Elle converge simplement en décroissant vers la fonction $u_*^+(t)$ qui est 1-lipschitzienne donc continue : la convergence est uniforme.

Puisque α est continue pour la norme uniforme, la suite $u_*^+(t) = \lim_{k \to +\infty} u_*(t_k)$ vérifie, par passage à la limite, $\alpha(u_*(t)) \leq 1$. Donc $u_*(t) \in \mathcal{H}$ et, pour toute suite $(t_k)_{k \in \mathbb{N}}$ décroissant vers t, on a bien la convergence uniforme voulue.

4. Pour tout n, la fonction $u_n : [0;1] \to \mathcal{H}$ est croissante. On a donc, pour tous $t_i < t_{i+1}$, $u_n(t_{i+1}) - u_n(t_i) \ge 0$. Donc :

$$\sum_{i=1}^{M} \alpha(u_n(t_{i+1}) - u_n(t_i)) = \sum_{i=1}^{M} \int_0^1 (u_n(t_{i+1})(x) - u_n(t_i)(x)) dx$$
$$= \int_0^1 u_n(t_M)(x) dx - \int_0^1 u_n(t_1)(x) dx$$
$$\leq \alpha(u_n(t_M)) + \alpha(u_n(t_1)) \leq 2$$

5. On commence par fixer $\epsilon > 0$ et par montrer que l'ensemble des $t \in [0;1] - \mathbb{Q}$ tels que $\alpha(u_*^+(t) - u_*^-(t)) > \epsilon$ est fini.

Supposons que $t_1' < ... < t_N'$ sont N points de cet ensemble. Notons $t_1, ..., t_{N+1}$ des éléments de $[0;1] \cap \mathbb{Q}$ tels que :

$$t_1 < t_1' < t_2 < t_2' < \dots < t_N' < t_{N+1}$$

À cause de la façon dont on a défini $u_*^+(t)$ et $u_*^-(t)$ à la question 3., on a, pour tout i:

$$u_*(t_i) \le u_*^-(t_i') \le u_*^+(t_i') \le u_*(t_{i+1})$$

Donc:

$$N\epsilon < \sum_{i} \alpha(u_*^+(t_i') - u_*^-(t_i'))$$

$$\leq \sum_{i} \alpha(u_*(t_{i+1}) - u_*(t_i))$$

$$= \lim_{n \to +\infty} \sum_{i} \alpha(u_n(t_{i+1}) - u_n(t_i))$$

$$\leq \Lambda$$

Donc $N < \Lambda/\epsilon$.

On remarque que $D = \bigcup_{s \in \mathbb{N}^*} \{t \in [0;1] - \mathbb{Q} \text{ tq } \alpha(u_*^+(t) - u_*^-(t)) > 1/s\}$: si $\alpha(u_*^+(t) - u_*^-(t)) = 0$, on doit avoir $u_*^+(t) - u_*^-(t) = 0$ presque partout donc $u_*^+ = u_*^-$ puisque les fonctions en question sont continues.

L'ensemble D est donc une union dénombrable d'ensemble finis : D est dénombrable.

6. En reprenant le procédé diagonal de la question 2., on peut construire une suite extraite de $(u_{n_i})_{j\in\mathbb{N}}$, qu'on note $(u_{m_i}(t))$, telle que $(u_{m_i}(t))$ converge dans \mathcal{H} pour tout $t\in D$.

Pour tout $t \in D$, $(u_{m_j}(t))$ converge donc; on note $u_*(t)$ la limite. Pour tout $t \in [0;1] \cap \mathbb{Q}$, $(u_{m_j}(t))$ converge vers $u_*(t)$ car $(u_{m_j}(t))$ est une sous-suite de $(u_{n_j}(t))$, qui converge vers $u_*(t)$. Montrons que la suite $(u_{m_j}(t))_{j\in\mathbb{N}}$ converge aussi dans \mathcal{H} pour $t \notin D \cup ([0;1] \cap \mathbb{Q})$ vers une limite $u_*(t)$. Cela conclura puisque, par passage à la limite, u_* sera nécessairement croissante de [0;1] vers \mathcal{H} et donc appartiendra à \mathcal{F} .

Soit t fixé tel que $t \notin \mathbb{Q}$ et $t \notin D$. Notons $u_*(t) = u_*^+(t) = u_*^-(t)$ et montrons que $u_{m_j}(t) \to u_*(t)$ quand $j \to +\infty$.

Pour tout $\epsilon > 0$, à cause des propriétés de la question 3., il existe t_1 et t_2 des éléments de $[0;1] \cap \mathbb{Q}$ avec $t_1 < t < t_2$ tels que :

$$||u_*(t_1) - u_*(t)||_{\infty} < \epsilon/2$$
 $||u_*(t_2) - u_*(t)||_{\infty} < \epsilon/2$

Pour tout j assez grand, on a:

$$||u_{m_j}(t_1) - u_*(t_1)||_{\infty} < \epsilon/2$$

$$||u_{m_j}(t_2) - u_*(t_2)||_{\infty} < \epsilon/2$$

Pour tout j, on a:

$$u_{m_i}(t_1) \le u_{m_i}(t) \le u_{m_i}(t_2)$$

Donc, pour tout j assez grand :

$$u_*(t) - \epsilon \le u_*(t_1) - \epsilon/2 \le u_{m_j}(t_1) \le u_{m_j}(t) \le u_{m_j}(t_2) \le u_*(t_2) + \epsilon/2 \le u_*(t) + \epsilon$$

ce qui implique :

$$||u_{m_j}(t) - u_*(t)||_{\infty} \le \epsilon$$

Exercice 4 \(\mathscr{Z} : \) la topologie compacts-ouverts

On dit qu'un espace est localement compact (s'il est séparé, et) si pour tout point x il existe une base de voisinages compacts au sens où tout voisinage de x contient un voisinage compact de x.

1. Montrer qu'un espace est localement compact si et seulement si chaque point admet un voisinage compact.

Soient X et Y deux espaces topologiques. On munit l'ensemble des applications de X dans Y de la topologie engendrée par les ensembles de la forme $\mathcal{M}_{K,U} := \{f : f(K) \subset U\}$ où K est un compact de X et U un ouvert de Y.

- 2. Soit $f: X \times Y \to Z$ une application continue. Montrer que l'application de curyfication $x \in X \mapsto f_x := (y \mapsto f(x,y)) \in Z^Y$ est continue.
- 3. Montrer que si X est localement compact, l'application d'évaluation $(x, f) \in X \times Y^X \mapsto f(x) \in Y$ est continue.
- 4. Soit $f: X \to Z^Y$ une application continue. Montrer que si X est localement compact, l'application $(x,y) \mapsto f(x)(y)$ est continue.

Exercice 5 // // : sur les différentes séparations

Soit X un espace topologique. On définit les axiomes de séparation suivants :

- (T_0) (Kolmogorov) Si $x \neq y$, il existe un ouvert contenant x et pas y ou l'inverse.
- (T_1) (faiblement séparé, ou Fréchet) Si $x \neq y$, il est possible de trouver U ouvert contenant x mais pas y.
- (T_2) (séparé, ou Hausdorff) Si $x \neq y$, il est possible de trouver des ouverts disjoints contenant respectivement x et y.
- (T_3) Si F est un fermé et $x \notin F$, on peut trouver des ouverts disjoints contenant respectivement F et x.
- (T_4) Si F_1 et F_2 sont deux fermés disjoints, on peut trouver des ouverts disjoints contenant respectivement F_1 et F_2 .
- 1. a) Montrer qu'un espace est (T_1) si et seulement si les points sont fermés.
- b) Montrer qu'un espace est (T_2) si et seulement si la diagonale est fermée dans $X \times X$.
- c) Montrer qu'un espace est (T_2) si et seulement si un point est l'intersection de ses voisinages fermés.
- d) Montrer qu'un espace est (T_3) si et seulement si tout ouvert contient un voisinage fermé de chacun de ses points.

2. Quelles sont les différentes implications que l'on a entre ces différents axiomes? (le faire sur un dessin, commencer par placer T_0 , T_1 et T_2 , puis remarquer que T_0 et T_3 impliquent T_2 . Placer T_4 est plus compliqué car un espace peut-être seulement T_0 et T_4 , ou bien T_4 mais pas T_3 . Utiliser le bestiaire fourni en fin d'exercice pour les contrexemples.)

On rajoute les intermédiaires suivants qui sont des versions plus fortes de certains des axiomes précédents :

- $(T_{2\frac{1}{2}})$ (complètement Hausdorff) Si $x \neq y$, il est possible de trouver des ouverts d'adhérences disjointes contenant respectivement x et y.
- $(T_{3\frac{1}{2}})$ Si F est un fermé et $x \notin F$, il existe une fonction (d'Urysohn) : continue à valeurs réelles et valant 0 en x et 1 sur F.
- 3. Comment placer ces nouveaux axiomes de séparation sur le diagramme d'implication?
 - (topologie de l'ordre?) Munir \mathbb{R} de la topologie où les ouverts sont les $]-\infty,a[$.
 - (topologie cofinie) Un ensemble infini munit de la topologie dont les ouverts sont les complémentaires des parties finies.
 - (topologie codénombrable) Un ensemble infini indénombrable munit de la topologie dont les fermés sont les ensembles dénombrables et l'ensemble tout entier.
 - (topologie du point exclu) Un ensemble avec un point distingué ω où les fermés sont les ensembles contenants ω .
 - (topologie de l'extension ouverte) Si X est un espace topologique, on considère $X \cup \{\omega\}$ où les ouverts sont ceux de X et l'ensemble tout entier.
 - (topologie pente irrationnelle) Soit θ un nombre irrationnel. On munit $X := \mathbb{Q} \times \mathbb{Q}_+$ de la topologie engendrée par les ε -voisinages suivants : si $(x, y) \in \mathbb{Q} \times \mathbb{Q}_+$,

$$N_{\varepsilon}(x,y) = \{(x,y)\} \cup \{(\zeta,0) : |\zeta - x - \frac{y}{\theta}|\} \cup \{(\zeta,0) : |\zeta - x + \frac{y}{\theta}|\}.$$

- (topologie demi-disque) On munit $\mathbb{R} \times \mathbb{R}_+$ de la topologie engendrée par les voisinages suivants : pour les points du demi-plan ouvert, ce sont les voisinages usuels, mais pour les points de l'axe des abscisses, ce sont les intersection des disques ouverts avec le demi-plan supérieur ouvert, plus le point lui-même. (donc le disque centré sur le point mais pas les autres points de l'axe.)
- (topologie disque tangent) On munit $\mathbb{R} \times \mathbb{R}_+$ de la topologie engendrée par les voisinages suivants : pour les points du demi-plan ouvert, ce sont les voisinages usuels, mais pour les points de l'axe des abscisses, ce sont les intersection des disques ouverts tangents à l'axe des abscisses plus le point lui-même.
- (Plan de Mysior) On munit l'ensemble $\mathbb{R} \times \mathbb{R}_+ \cup \{\omega\}$ de la topologie où les voisinages des points sont les suivants :
 - Pour un point du demi-plan ouvert, le singleton est ouvert.
 - Pour un point de l'axe (x,0), une base de voisinage est donnée par la réunion du point et de tous les points de $\{(x,t), (x+t,t)\}_{0 \le t \le 2}$ sauf un nombre fini.

— Pour ω , les ensembles de la forme $U_n := \{\omega\} \cup \{(x,y)\}_{y \geq 0, x > n}$. (Montrer que cet espace est séparé, (T_3) mais pas $(T_{3\frac{1}{2}})$.)

Exercice 6 ////: dimension boîte

Soit E une partie pré-compact d'un espace métrique (X, d). On note $N_E(\varepsilon)$ le plus petit nombre de boules fermées de rayon ε qu'il faut pour recouvrir E, et $P_E(\varepsilon)$ le cardinal maximal d'une famille de points à distance supérieure à ε les uns des autres. On note ensuite

$$\dim E := \lim_{\varepsilon \to 0} \frac{\log N_E(\varepsilon)}{-\log \varepsilon}$$

lorsque cette limite existe.

1. Montrer que

$$N_E(\varepsilon) \le P_E(\varepsilon) \le N_E\left(\frac{\varepsilon}{2}\right).$$

- 2. Calculer la dimension de la boule unité d'un espace vectoriel réel normé de dimension n.
- 3. Calculer la dimension boîte de l'ensemble de Cantor triadique. (vu comme partie de [0; 1]) Que dire si l'on remplace le 3 par autre chose?
- 4. Montrer que la dimension de l'ensemble $\{\frac{1}{n^{\alpha}}\}_n \cup \{0\}$ vaut $\frac{1}{\alpha+1}$.