

Rechnernetze

Protokolle

Protokolle

Protokolle

- Rechnernetze sind "ziemlich" komplex
 - Endgeräte, Switches, Router, Schnittstellenkarten, Leitungen, Kanäle, Verbindungen
 - Nachrichten
 - Mechanismen zur Fehlersicherung, Fluss- und Überlastkontrolle, Adressierung, Wegsuche, Weiterleitung, Medienzugriff, ...
- Protokolle
 - wesentliches Strukturierungsprinzip
 - legen Nachrichtenformat und Verhalten der Kommunikationspartner fest
 - Beispiel: Hypertext Transfer Protocol (HTTP)
 - HTTP-Client erfragt Inhalte von HTTP-Server
 - 2 Arten von Nachrichten: Anfrage und Antwort
 - festgelegte Formate beider Nachrichten
 - festgelegtes Verhalten von HTTP-Client und HTTP-Server

Analogy: The philosopher-translator-secretary architecture

Analogy: Nested Layers as nested Translations

- Vertical vs. horizontal communication
 - Vertical: always real
 - Horizontal: may be real or virtual
- Note: protocols interchangeable as long as the interface remains unchanged, e.g.:
 - Layer 2: Dutch => French
 - Layer 3: Fax => E-Mail

The Reference Model

- To keep complexity of communication systems tractable:
 - Division in subsystems with clearly assigned responsibilities layering
- Each layer offers a particular service
 - More abstract and more powerful the higher up in the layering hierarchy
- To provide a service, a layer has to be distributed over remote devices
- Remote parts of a layer use a protocol to cooperate
 - Make use of service of the underlying layer to exchange data
 - Protocol is a horizontal relationship, service a vertical relationship
- Layers/protocols are arranged as a (protocol) stack
 - One atop the other, only using services from directly beneath
 - Strict layering (alternative: cross-layering)

Multi-layer Architecture

- Number of Layers, {services, naming, and addressing conventions} / Layer
- Functions to be executed in each layer
- Protocols: (host-to-host, node-to-node, host-to-node)

Multi-layer Architecture (II)

Protocols and Messages

- When using lower-layer services to communicate with the remote peer, administrative data is usually included in those messages
- Typical example
 - Protocol receives data from higher layer,
 - 2. Adds own administrative data,
 - Passes the extended message down to the lower layer,
 - Receiver will receive original message plus administrative data.
- Encapsulating
 - Header or trailer

Embedding Messages

 Messages from upper layers are used as payload for messages in lower layers

How to structure Functions/Layers?

- Many functions have to be realized
- Not each function is necessary in each layer
- How to actually assign them into layers to obtain a real, working communication system?
 - This is the role of a specific reference model
- Two main reference models exist
 - ISO/OSI reference model (International Standards Organization Open Systems Interconnection)
 - TCP/IP reference model (by IETF Internet Engineering Taskforce)

ISO/OSI Reference Model

Basic design principles

- One layer per abstraction of the "set of duties",
- Choose layer boundaries such that information flow across the boundary is minimized (minimize inter-layer interaction),
- Enough layers to keep separate things separate, few enough to keep architecture manageable.

Result: 7-layer model

- Not strictly speaking an architecture, because
- Precise interfaces are not specified (nor protocol details!)
- Only general duties of each layer are defined

ISO/OSI Model

Brief Overview of the 7 Layers

- Physical layer: Transmit raw bits over a physical medium
- Data Link layer: Provide a (more or less) error-free transmission service for data frames - also over a shared medium!
- Network layer: Solve the forwarding and routing problem for a network bring data to a desired host
- **Transport layer**: Provide (possibly reliable, in order) end-to-end communication, overload protection, fragmentation to processes "Bringing data from process A to B with sufficient quality"
- Session layer: Group communication into sessions which can be synchronized, checkpointed, ...
- Presentation layer: Ensure that syntax and semantic of data is uniform between all types of terminals
- Application layer: Actual application, e.g., protocols to transport web pages

Internet Model (in red) vs. ISO/ OSI

Presentation, session & physical layer not present in Internet model

Architecture, Protocols

- A communication architectures needs standard protocols in addition to a layering structure
- And some generic rules & principles which are not really a protocol but needed nonetheless
 - Example principle: end-to-end
 - Example rule: naming & addressing scheme
- Popular protocols of the Internet reference model
 - Data link layer: Ethernet & CSMA/CD (defined in IEEE standard)
 - Network layer: Internet Protocol (IP)
 - Transport layer: Transmission Control Protocol (TCP)

Internet Reference Model

- Historically based on ARPANET, evolving to the Internet
 - Started out as little university networks, which had to be interconnected
- Some generic rules & principles
 - Internet connects networks
 - Minimum functionality assumed (just unreliable packet delivery)
 - Internet layer (IP): packet switching, addressing, routing & forwarding
 - → Internet over everything
 - End-to-end
 - Any functionality should be pushed to the instance needing it
 - Fate sharing
- In effect only two layers really defined: Internet and Transport Layer lower and higher layers not really defined
 - → Anything over Internet
- New applications do not need any changes in the network
 - Compare with the telephone network

The Internet Suite of Protocols

- Over time, suite of protocols evolved around core TCP/IP protocols
- Internet Protocol Suite is also refereed to as TCP/IP Protocol Suite
- "hourglass model": thin waist of the protocol stack at IP, above technological layers

Naming & Addressing in the Internet Stack

- Names: Data to identify an entity exist on different levels
 - Alphanumerical names for resources: e.g. saturn.tkn.tu-berlin.de, www.tkn.tu-berlin.de
- Address: Data how/where to find an entity
 - Address of a network device in an IP network: an IP address
 - IPv4: 32 bits, structured into 4x8 bits
 - Example: 131.234.20.99 (dotted decimal notation)
 - 2. Address of a network: Some of the initial bits of an IP address
- Address of a networked device in the Local Area (IEEE 802 standardized)
 Network (LAN): a MAC address
 - 48 bits, hexadecimal notation, example: 08:00:20:ae:fd:7e

Mapping

- Needed: mapping from name to address
- → realized by separate protocols
- From alphanumerical name to IP address:Domain Name System (DNS)
- Often also needed: mapping from IP address to MAC address:
 Address Resolution Protocol (ARP)

Web server process' service access point

Understanding Ports

- ... to distinguish between individual processes
- Port is represented by a positive (16-bit) integer value
- Some ports have been reserved to support common/well known services: http 80/tcp; ftp 21/tcp; telnet 23/tcp; smtp 25/tcp;
- User level process/services generally use port number value >= 1024

Internet End-to-End View

Process A sends a packet to process B

IP address:

A four-part "number" used by Network Layer to route a packet from one computer to another

End-to-End Layering View

[Stoica, op. cit.]

Message Receipt vs. Message Delivery

The logical organization of a distributed system to distinguish between message receipt and message delivery.

Interaction Principles: Synchronous Interaction

- Blocking send
 - Blocks until message is transmitted
 - Blocks until message acknowledged
- Blocking receive
 - Waits for message to be received
- You should know: upper/lower bounds on execution speeds, message transmission delays and clock drift rates

Synchronous Send & Receive

Interaction Principles: Asynchronous Interaction

- Non-blocking send: sending process continues as soon message is queued
- Blocking or non-blocking receive:
 - Blocking:
 - Timeout
 - Threads
 - Non-blocking: proceeds while waiting for message
 - Message is queued upon arrival
 - Process needs to poll or be interrupted
- Advantage: arbitrary process execution speeds, message transmission delays and clock drift rates
- Some problems impossible to solve (e.g., agreement)

Asynchronous Send & Synchronous Receive

Asynchronous Send & Asynchronous Receive

Standardisierung

Standardisierung

- Essentiell, um große, weltumspannende Netze zu realisieren
- Traditionell durch Organisationen getrieben mit Hintergrund in Telekommunikation / Telefonie
 - Etabliert, weltweit, relativ langsame "time to market"
- Internet
 - Im Wesentlichen durch Internet Engineering Task Force (IETF) mit assoziierten Organisationen (Internet Architectural Board IAB, Internet Research Task Force IRTF, Internet Engineering Steering Group IESG)
 - Consensus-orientiert, starker Fokus aus funktionierenden Implementierungen
 - Initial schnelle "time to market", heute aber auch deutlich langsamer
- Hersteller mit ihren jeweiligen Interessen
 - "de facto"-Standards

Standardisierung – Traditionelle Organisationen

- ITU International Telecommunication Union (formerly CCITT und CCIR)
- CCITT Consultative Committee on International Telegraphy and Telephony (Comité Consultatif International Télégraphique et Téléphonique)
- CCIR Consultative Committee on International Radio
- CEPT Conférence Européenne des Administrations des Postes et des Télécommunications
- ISO International Organization for Standardization
- DIN Deutsches Institut für Normung
 - German partner organization of ISO

ISO-Standardisierung

- WG-Treffen:
 - Alle 6-9 Monate
 - Nationale Organisationen haben Zeit, um vorgeschlagene (proposed) Konzepte zu akzeptieren
 - Dann: der eigentliche Standardisierungsprozess
 - DP: Draft Proposal
 - DIS: Draft International Standard
 - IS: International Standard
- Standard ist mehr eine Empfehlung für übergeordnete Gremien durch internationalen Konsens
- Sehr langsamer Prozess

IETF

- IETF ist organisiert in Areas und Arbeitsgruppen (Working Groups)
 - Vertreter von Industrie, Universitäten und Regierungen
- Drafts/Proposal kann von jedem eingebracht werden
 - "on-demand"
- Für Standardisierung werden mindestens zwei unabhängige Implementierungen benötigt
- Informelles Abstimmen (Voting) in Arbeitsgruppen
 - "Humming"
 - Drei Treffen pro Jahr
- Ergebnis:
 - RFC request for comment, der eigentliche Standard
 - FYI informal bzw. informational
- Januar 2019: 8521 RFCs
 - So funktioniert das Internet

