

Reinforcement Learning for Eco-Lagrangian Control at Intersections

Vindula Jayawardana and Cathy Wu

Robotics for Climate Change Workshop
International Conference on Robotics and Automation 2022

U.S. GHG Emission

Transportation sector in the US contributes 29% to the green house gas emission (GHG) in which 77% is due to land transportation.

Challenge: In arterial roads, traffic signals result in stop-and-go traffic waves producing acceleration, and idling events, increasing fuel consumption and emission levels.

Cities as Robots Sync..

Future cities are operation grounds for fleets of autonomous vehicles.

Motivation: Reduce GHG levels and fuel consumptions of vehicles when approaching and leaving a signalized intersection.

Objectives:

- Reduce fuel consumption
- Reduce CO₂ emission
- Reduce the impact on travel time

Approach: Model-free Reinforcement learning for multi-agent control.

- POMDP formulation
- Policy gradient methods

Cities as Robots Sync..

Note: In the PDF version, the videos are not supported. Please visit our website for the videos.

https://vindulamj.github.io/eco-driving-rl/

Human driving behavior (100% human driver penetration)

Learned control behavior (100% AV penetration)

Looking forward to seeing you at our poster!

