A JOURNEY

IN

PURE MATHEMATICS

A JOURNEY

IN

PURE MATHEMATICS

MAT3006 & 3040 & 4002 Notebook

Prof. Daniel Wong

The Chinese University of Hongkong, Shenzhen

Contents

Ackn	owledgments	xiii
Notat	tions	xv
1	Week1	. 1
1.1	Monday for MAT3040	1
1.1.1	Introduction to Advanced Linear Algebra	. 1
1.1.2	Vector Spaces	. 2
1.2	Monday for MAT3006	5
1.2.1	Overview on uniform convergence	. 5
1.2.2	Introduction to MAT3006	. 6
1.2.3	Metric Spaces	. 7
1.3	Monday for MAT4002	10
1.3.1	Introduction to Topology	. 10
1.3.2	Metric Spaces	. 11
1.4	Wednesday for MAT3040	14
1.4.1	Review	. 14
1.4.2	Spanning Set	. 14
1.4.3	Linear Independence and Basis	. 16
1.5	Wednesday for MAT3006	20
1.5.1	Convergence of Sequences	. 20
1.5.2	Continuity	. 24
1.5.3	Open and Closed Sets	. 25
1.6	Wednesday for MAT4002	27
1.6.1	Forget about metric	. 27
1.6.2	Topological Spaces	. 30

1.6.3	Closed Subsets	31
2	Week2	33
2.1	Monday for MAT3040	33
2.1.1	Basis and Dimension	33
2.1.2	Operations on a vector space	36
2.2	Monday for MAT3006	39
2.2.1	Remark on Open and Closed Set	39
2.2.2	Boundary, Closure, and Interior	43
2.3	Monday for MAT4002	46
2.3.1	Convergence in topological space	46
2.3.2	Interior, Closure, Boundary	48
2.4	Wednesday for MAT3040	52
2.4.1	Remark on Direct Sum	52
2.4.2	Linear Transformation	53
2.5	Wednesday for MAT3006	60
2.5.1	Compactness	60
2.5.2	Completeness	65
2.6	Wednesday for MAT4002	67
2.6.1	Remark on Closure	67
2.6.2	Functions on Topological Space	69
2.6.3	Subspace Topology	71
2.6.4	Basis (Base) of a topology	73
3	Week3	75
3.1	Monday for MAT3040	75
3.1.1	Remarks on Isomorphism	75
312	Change of Basis and Matrix Representation	76

3.2	Monday for MAT3006	83
3.2.1	Remarks on Completeness	83
3.2.2	Contraction Mapping Theorem	84
3.2.3	Picard Lindelof Theorem	87
3.3	Monday for MAT4002	89
3.3.1	Remarks on Basis and Homeomorphism	89
3.3.2	Product Space	92
3.4	Wednesday for MAT3040	94
3.4.1	Remarks for the Change of Basis	94
3.5	Wednesday for MAT3006	100
3.5.1	Remarks on Contraction	100
3.5.2	Picard-Lindelof Theorem	101
3.6	Wednesday for MAT4002	105
3.6.1	Remarks on product space	105
3.6.2	Properties of Topological Spaces	108
4	Week4	111
4.1	Monday for MAT3040	111
4.1.1	Quotient Spaces	111
4.1.2	First Isomorphism Theorem	114
4.2	Monday for MAT3006	117
4.2.1	Generalization into System of ODEs	117
4.2.2	Stone-Weierstrass Theorem	119
4.3	Monday for MAT4002	123
4.3.1	Hausdorffness	123
4.3.2	Connectedness	124
4.4	Wednesday for MAT3040	128
441	Dual Space	133

4.5	Wednesday for MAT3006	136
4.5.1	Stone-Weierstrass Theorem	. 137
4.6	Wednesday for MAT4002	142
4.6.1	Remark on Connectedness	. 142
4.6.2	Completeness	. 144
5	Week5	147
5.1	Monday for MAT3040	147
5.1.1	Remarks on Dual Space	. 148
5.1.2	Annihilators	. 150
5.2	Monday for MAT3006	154
5.2.1	Stone-Weierstrass Theorem in $\mathbb C$. 155
5.2.2	Baire Category Theorem	. 157
5.3	Monday for MAT4002	159
5.3.1	Continuous Functions on Compact Space	. 159
5.4	Wednesday for MAT3040	162
5.4.1	Adjoint Map	. 163
5.4.2	Relationship between Annihilator and dual of quotient spaces	. 166
5.5	Wednesday for MAT3006	167
5.5.1	Remarks on Baire Category Theorem	. 167
5.5.2	Compact subsets of $\mathcal{C}[a,b]$. 169
5.6	Wednesday for MAT4002	171
5.6.1	Remarks on Compactness	. 171
5.6.2	Quotient Spaces	. 172
6	Week6	177
6.1	Monday for MAT3040	177
6.1.1	Polynomials	. 177

6.2	Monday for MAT3006	180
6.2.1	Compactness in Functional Space	. 180
6.2.2	An Application of Ascoli-Arzela Theorem	. 181
6.3	Monday for MAT4002	182
6.3.1	Quotient Topology	. 182
6.3.2	Properties in quotient spaces	. 184
6.2	Wednesday for MAT3040	180
6.2.1	Eigenvalues & Eigenvectors	. 183
6.3	Wednesday for MAT4002	186
6.3.1	Remarks on Compactness	. 186
-	··· 1=	
7	Week7	187
7.1	Monday for MAT3040	187
7.1.1	Minimal Polynomial	. 187
7.1.2	Minimal Polynomial of a vector	. 191
7.2	Monday for MAT3006	193
7.2.1	Remarks on the outer measure	. 193
7.3	Monday for MAT4002	197
7.3.1	Quotient Map	. 197
7.3.2	Simplicial Complex	. 198
7.4	Wednesday for MAT3040	201
7.4.1	Cayley-Hamiton Theorem	. 201
7.5	Wednesday for MAT4002	206
7.5.1	Simplicial Sub-complex	. 206
7.5.2	Some properties of simplicial complex	. 208

8	Week8	211
8.1	Monday for MAT3040	211
8.1.1	Cayley-Hamiton Theorem	. 213
8.1.2	Primary Decomposition Theorem	. 216
8.2	Monday for MAT3006	218
8.2.1	Remarks for Outer Measure	. 218
8.2.2	Lebesgue Measurable	. 219
7.3	Monday for MAT4002	197
7.3.1	Quotient Map	. 197
7.3.2	Simplicial Complex	. 198
8.3	Wednesday for MAT3040	216
8.3.1	Cayley-Hamiton Theorem	. 216
8.4	Wednesday for MAT3006	223
8.4.1	Remarks on Lebesgue Measurability	. 223
8.4.2	Measures In Probability Theory	. 224
8.5	Wednesday for MAT4002	228
8.5.1	Homotopy	. 230
9	Week9	221
9.1	Monday for MAT3040	221
9.2	Monday for MAT3006	226
9.2.1	Measurable Functions	. 226
9.3	Monday for MAT4002	230
9.3.1	Remarks on Homotopy	. 230
8.3	Wednesday for MAT3040	216
8.3.1	Cayley-Hamiton Theorem	. 216
8.4	Wednesday for MAT3006	223
8.4.1	Remarks on Lebesgue Measurability	. 223

8.4.2	Measures In Probability Theory	224
8.3	Wednesday for MAT4002	216
8.3.1	Homotopy	218

Acknowledgments

This book is from the MAT3006,MAT3040,MAT4002 in spring semester, 2018-2019.

CUHK(SZ)

Notations and Conventions

 \mathbb{R}^n *n*-dimensional real space \mathbb{C}^n *n*-dimensional complex space $\mathbb{R}^{m \times n}$ set of all $m \times n$ real-valued matrices $\mathbb{C}^{m \times n}$ set of all $m \times n$ complex-valued matrices *i*th entry of column vector \boldsymbol{x} x_i (i,j)th entry of matrix \boldsymbol{A} a_{ij} *i*th column of matrix *A* \boldsymbol{a}_i $\boldsymbol{a}_{i}^{\mathrm{T}}$ *i*th row of matrix **A** set of all $n \times n$ real symmetric matrices, i.e., $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $a_{ij} = a_{ji}$ \mathbb{S}^n for all *i*, *j* \mathbb{H}^n set of all $n \times n$ complex Hermitian matrices, i.e., $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $\bar{a}_{ij} = a_{ji}$ for all i, jtranspose of \boldsymbol{A} , i.e, $\boldsymbol{B} = \boldsymbol{A}^{\mathrm{T}}$ means $b_{ji} = a_{ij}$ for all i,j $\boldsymbol{A}^{\mathrm{T}}$ Hermitian transpose of \boldsymbol{A} , i.e, $\boldsymbol{B} = \boldsymbol{A}^{H}$ means $b_{ji} = \bar{a}_{ij}$ for all i,j A^{H} trace(A)sum of diagonal entries of square matrix A1 A vector with all 1 entries 0 either a vector of all zeros, or a matrix of all zeros a unit vector with the nonzero element at the *i*th entry e_i

C(A)

 $\mathcal{R}(\boldsymbol{A})$

 $\mathcal{N}(\boldsymbol{A})$

the column space of \boldsymbol{A}

the row space of \boldsymbol{A}

the null space of \boldsymbol{A}

 $\operatorname{Proj}_{\mathcal{M}}(\mathbf{A})$ the projection of \mathbf{A} onto the set \mathcal{M}

9.3. Monday for MAT4002

Reviewing.

- 1. Homotopy: $f \cong g$
- 2. If $Y \subseteq \mathbb{R}$ is convex, then the set of continuous functions $f: X \to Y$ form a single equivalence class, i.e., {continuous functions $f: X \to Y$ } / \sim has only one element

9.3.1. Remarks on Homotopy

Proposition 9.4 Consider

$$W \rightarrow_f X$$
, $X \rightarrow_g Y$, $X \rightarrow_h Y$, $Y \rightarrow_k Z$

where f, g, h, k are all continuous. If $g \cong h$, then

$$g \circ f \cong h \circ f$$
, $k \circ g \cong k \circ h$

Proof. Suppose $H: g \cong h$, then $k \circ H: X \times I \to Z$ givs the momotopy between $k \circ g$ and $k \circ h$.

Simiarly, $H \circ (f \times id_I) : W \times I \rightarrow Y$ gives homotopy $g \circ f \simeq h \circ f$.

Definition 9.4 [Homotopy Equivalent] Two topological spaces X and Y are **homotopy** equivalent if there are continuous maps $f: X \to Y$, and $g: Y \to X$ such that

$$g \circ f \simeq \mathsf{id}_{X \to X}$$

$$f \circ g \simeq \mathrm{id}_{Y \to Y}$$

denoted as $X \simeq Y$.

R

- 1. If $X \cong Y$ are homeomorphic, then they are homotopic equivalent.
- 2. $X \simeq Y$ gives a bijection between $\{\phi : \text{continuous } W \to X\} / \sim \text{ and } \{\phi : \text{continuous } W \to Y\} / \sim$
- 3. exercise: $X \simeq Y$ forms an equivalence relation between topological spaces

Some properties are lost when we only study spaces up to homotopy equivalence.

Definition 9.5 [Contractible] X is **contractible** if it is homotopy equivalent to a point $\{*\}$.

Equivalently, we need f,g such that

$$\{*\} \rightarrow_f X \rightarrow_g \{*\}, \ g \circ f \simeq \operatorname{id}_{\{*\}}$$

$$X \rightarrow_g \{*\} \rightarrow_f X, \ f \circ g \simeq \operatorname{id}_X$$

Note that $f \circ g = c_y$ for some $y \in X$, where $c_y : X \to X$ is $c_y(x) = y, \forall x \in X$. Therefore, to check X is contractible, we only need to check $c_y \simeq \mathrm{id}_X, \forall y \in X$

Example 9.1 1. $X = \mathbb{R}^2$ is contractible.

WTS $f(\mathbf{x}) = \mathbf{x}$ (i.e., $f = \mathrm{id}$) is homotopic to the constant function $g(x) = (0,0), \forall x \in \mathbb{R}^2$, i.e., $g = c_{(0,0)}$

Consider $H(\mathbf{x},t) = t f(\mathbf{x})$, which implies

$$H(x,0) = c_{(0,0)}, \qquad H(x,1) = id$$

Therefore, id $\simeq c_{(0,0)}$, and $c_{(0,0)} \simeq c_y, \forall y \in \mathbb{R}^2$

Therefore, X is contractible.

More generally, any convex $X \subseteq \mathbb{R}^n$ is contractible.

 \mathbb{R}^{1} is not contractible, and we will see it in 3 weeks' time.

We are not able to construct

$$H: S^1 \to [0,1] \to S^1$$

such that $H(e^{2\pi ix},0) = e^{2\pi ix}$ and $H(e^{2\pi ix},1) = e^{2\pi i(0)} = 1$ (c₁)

But how about $H(e^{2\pi ix},t)=e^{2\pi ixt}$? What's wrong with H? Such a function is not well-defined:

$$H(e^{2\pi i(1)},t) = e^{2\pi i(1-t)} = H(e^{2\pi i(0)},t) = 1$$

Therefore, H is not well-defined for $t \neq 0,1$.

Definition 9.6 Let $A \subseteq X$ and $i : \hookrightarrow X$ be an inclusion. We say A is a homotopy retract of X if there exists continuous mapping $r : X \to A$ such that

$$A \hookrightarrow X \to^r A \implies r \circ i = id_{A \to A}$$

$$X \to^r A \hookrightarrow^i X \implies i \circ r \simeq id_X$$

In particualr, $A \simeq X$.

■ Example 9.2 S^1 is a homotopy retract of M= Mobius Band Here $M=[0,1]^2/\sim$ and $S^1=[0,1]/\sim$. Define

$$i: S^1 \hookrightarrow M, \quad [x] \mapsto [(x, \frac{1}{2})]$$

$$r: M \to S^1$$

$$[(x,y)] \mapsto [x]$$

Then $r \circ i = \mathrm{id}_{S^1}$; $i \circ r([(x,y)]) = [(x,1/2)]$; $\mathrm{id}_M([(x,y)]) = [(x,y)]$.

Define $H: M \times I \rightarrow M$ by

$$H([(x,y)],t) := [(x,(1-t)y+t/2)]$$

We really need to check

$$H([(0,y)],t) = H([(1,1-y)],t), \quad \forall y \in [0,1]$$

Therefore, H gives a homotopy between $i\circ r$ and id_M , i.e., $i\circ r\simeq \mathrm{id}_M$

 S^{n-1} is a homotopy retract of $\mathbb{R}^n \setminus \{\mathbf{0}\}$.

We have $i : id = S^{n-1} \to \mathbb{R}^n \setminus \{0\}$ and

$$r: \mathbb{R}^n \setminus \{0\} \to \mathbb{S}^{n-1}$$
$$x \mapsto \frac{x}{\|x\|}$$

Therefore, $r \circ i = \mathrm{id}_{S^{n-1}}$ and $i \circ r(x) = x/\|x\|$.

WTS $i \circ r \simeq \mathrm{id}_{\mathbb{R}^n \setminus \{0\}}$ Consider $H(x,t) = t\mathbf{x} + (1-t)\mathbf{x}/\|\mathbf{x}\|$:

$$H(\boldsymbol{x},0) = i \circ r(\boldsymbol{x}), \quad H(\boldsymbol{x},1) = \boldsymbol{x} = \mathrm{id}(\boldsymbol{x})$$

However, we need to check that $H(x,t) \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ for all $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ and $t \in [0,1]$.

Definition 9.7 [Homotopic Relative] Let $A\subseteq X$ be topological spaces. We say $f,g:X\times I\to Y$ are homotopic relative to A if there eixsts $H:X\times I\to Y$ such that

$$\begin{cases} H(x,0) = f(x) \\ H(x,1) = g(x) \end{cases}$$

and

$$H(a,t) = f(a) = g(a), \forall a \in A$$