DeViSE: A Deep Visual-Semantic Embedding Model

Presenters: Ji Gao, Fandi Lin

Motivation

Visual recognition systems experience problems with large amount of categories.

- Insufficient labeled training data
- Blurred distinction between classes

How do we improve predictions of unknown categories?

Background

N-way discrete classifiers

- Labels treated as unrelated
- Semantic information not captured

Result: These systems cannot make zero-shot predictions without additional information, i.e. text data.

Related Work

WSABIE: Linear map from image features to embedding space. Only used training labels.

Socher et al: Linear map from image features to embedding space. Outlier detection. Only 8 known and 2 unknown classes.

Other work that has shown zero-shot classification relies on curated information.

Proposed Method

Combine a traditional Visual model with a language model.

Proposed Method

- 1. Train a language model for semantic information
- 2. At the same time, train a CNN for images
- 3. Initialize the combined model using pre-trained parameters
- Train the combined model.

Skip-gram language model

- Efficient estimation of word representations in vector space, ICLR 2013
- Skip-gram: a generalization of *n*-grams
 which skips the words between
- Skip-gram model: Learn a NN from a word to predict nearby words.

Skip-gram language model

Learn the relationship between labels.

 Data: 5.7 million documents (5.4 billion words) extracted from wikipedia.org

CNN model

- AlexNet
- Winner of ILSVRC 2012
- 5 conv layers

Combined model

Use a linear embedding layer to map the features extracted before Softmax(4096d) to match the size of the language model(500 or 1000d).

Deep Visual Semantic Embedding Model

Loss function:

$$loss(image, label) = \sum_{j \neq label} \max[0, margin - \vec{t}_{label} M \vec{v}(image) + \vec{t}_{j} M \vec{v}(image)]$$

Experiment

Task:

- Image classification
- Zero-shot image classification

Experiment - With same label set (not zero-shot)

Baselines:

- Alexnet
- Random Embedding: Alexnet + a random vectors (instead of the language model)

		Flat hit@ k (%)			Hierarchical precision@k				
Model type	dim	1	2	5	10	2	5	10	20
Softmax baseline	N/A	55.6	67.4	78.5	85.0	0.452	0.342	0.313	0.319
DeViSE	500	53.2	65.2	76.7	83.3	0.447	0.352	0.331	0.341
	1000	54.9	66.9	78.4	85.0	0.454	0.351	0.325	0.331
Random embeddings	500	52.4	63.9	74.8	80.6	0.428	0.315	0.271	0.248
	1000	50.5	62.2	74.2	81.5	0.418	0.318	0.290	0.292
Chance	N/A	0.1	0.2	0.5	1.0	0.007	0.013	0.022	0.042

Table 1: Comparison of model performance on our test set, taken from the ImageNet ILSVRC 2012 1K validation set. Note that hierarchical precision@1 is equivalent to flat hit@1. See text for details.

Experiment: Zero-shot

Dataset:

- 2-hop: two clusters of labels
- 3-hop: three clusters of labels
- ImageNet2011: Use labels in ImageNet2011 that doesn't appear in ImageNet2012

		250 Fee 30 - 1-250 et al 11	Flat hit@k (%)			-	
		# Candidate					
Data Set	Model	Labels	1	2	5	10	20
2-hop	DeViSE-0	1,589	6.0	10.0	18.1	26.4	36.4
	DeViSE+1K	2,589	0.8	2.7	7.9	14.2	22.7
3-hop	DeViSE-0	7,860	1.7	2.9	5.3	8.2	12.5
	DeViSE+1K	8,860	0.5	1.4	3.4	5.9	9.7
ImageNet 2011 21K	DeViSE-0	20,841	0.8	1.4	2.5	3.9	6.0
	DeViSE+1K	21,841	0.3	0.8	1.9	3.2	5.3

Experiment: Zero-shot

Comparing to pure CNN:

		Hierarchical precision@k				
Data Set	Model	1	2	5	10	20
	DeViSE-0	0.06	0.152	0.192	0.217	0.233
2-hop	DeViSE+1K	0.008	0.204	0.196	0.201	0.214
	Softmax baseline	0	0.236	0.181	0.174	0.179
	DeViSE-0	0.017	0.037	0.191	0.214	0.236
3-hop	DeViSE+1K	0.005	0.053	0.192	0.201	0.214
	Softmax baseline	0	0.053	0.157	0.143	0.130
	DeViSE-0	0.008	0.017	0.072	0.085	0.096
ImageNet 2011 21K	DeViSE+1K	0.003	0.025	0.083	0.092	0.101
	Softmax baseline	0	0.023	0.071	0.069	0.065

Experiment: Zero-shot

Compare to previous zero-shot result

Model	200 labels	1000 labels
DeViSE	31.8%	9.0%
Mensink et al. 2012 [12]	35.7%	1.9%
Rohrbach et al. 2011 [17]	34.8%	_

Conclusion

DeViSE achieves state-of-the-art performance in classification task, and also able to do zero-shot learning.

Suitable for large amount of data, and can handle labels with not enough number of data.

Show the power of combining image and semantic data.