Introduction to Bayesian Data Analysis Tutorial 10

- (1) Problem 10.4 (Hoff) Gibbs sampling: Consider the general Gibbs sampler for a vector of parameters ϕ . Suppose $\phi^{(s)}$ is sampled from the target distribution $p(\phi)$ and then $\phi^{(s+1)}$ is generated using the Gibbs sampler by iteratively updating each component of the parameter vector. Show that the marginal probability $Pr(\phi^{(s+1)} \in A)$ equals the target distribution $\int_A p(\phi)d\phi$.
- (2) Problem 10.5 (Hoff) Logistic regression variable selection: Consider a logistic regression model for predicting diabetes as a function of x_1 =number of pregnancies, x_2 =blood pressure, x_3 =body mass index, x_4 =diabetes pedigree and x_5 =age. Using the data in azdiabetes.dat, centre and scale each of the x-variables by subtracting the sample average and dividing by the sample standard deviation for each variable. Consider a logistic regression model of the form $Pr(Y_i = 1 | \mathbf{x_i}, \gamma, \beta) = \exp(\theta_i)/(1 + \exp(\theta_i))$ where

$$\theta_i = \beta_0 + \beta_1 \gamma_1 x_{i,1} + \beta_2 \gamma_2 x_{i,2} + \beta_3 \gamma_3 x_{i,3} + \beta_4 \gamma_4 x_{i,4} + \beta_5 \gamma_5 x_{i,5}$$

In this model, each γ_i is either 0 or 1, indicating whether or not variable j is a predictor of diabetes. For example, if it were the case that $\gamma = (1, 1, 0, 0, 0)$, then $\theta_i = \beta_0 + \beta_1 x_{i,1} + \beta_2 x_{i,2}$. Obtain the posterior distributions for β and γ , using independent prior distributions for the parameters, such that $\gamma_j \sim \text{Bern}(1/2)$, $\beta_0 \sim \text{normal}(0, 16)$ and $\beta_j \sim \text{normal}(0, 4)$ for each j > 0.

- (a) Implement a Metropolis-Hastings algorithm for approximating the posterior distribution of $\boldsymbol{\beta}$ and $\boldsymbol{\gamma}$. Examine the sequences $\beta_j^{(s)}$ and $\beta_j^{(s)} \times \gamma_j^{(s)}$ for each j and discuss the mixing of the chain.
- (b) Obtain $Pr(\gamma_j = 1 | \mathbf{x}, \mathbf{y})$ for each j. How good do you think the MCMC estimates of these posterior probabilities are?
- (c) For each j, plot posterior densities and obtain posterior means for $\beta_j \gamma_j$.