MODUL PENGOLAHAN DAN ANALISIS DATA DENGAN SPSS

UU No 28 tahun 2014 tentang Hak Cipta

Fungsi dan sifat hak cipta Pasal 4

Hak Cipta sebagaimana dimaksud dalam Pasal 3 huruf a merupakan hak eksklusif yang terdiri atas hak moral dan hak ekonomi.

Pembatasan Pelindungan Pasal 26

Ketentuan sebagaimana dimaksud dalam Pasal 23, Pasal 24, dan Pasal 25 tidak berlaku terhadap:

- i. penggunaan kutipan singkat Ciptaan dan/atau produk Hak Terkait untuk pelaporan peristiwa aktual yang ditujukan hanya untuk keperluan penyediaan informasi aktual;
- ii. Penggandaan Ciptaan dan/atau produk Hak Terkait hanya untuk kepentingan penelitian ilmu pengetahuan;
- iii. Penggandaan Ciptaan dan/atau produk Hak Terkait hanya untuk keperluan pengajaran, kecuali pertunjukan dan Fonogram yang telah dilakukan Pengumuman sebagai bahan ajar; dan
- iv. penggunaan untuk kepentingan pendidikan dan pengembangan ilmu pengetahuan yang memungkinkan suatu Ciptaan dan/atau produk Hak Terkait dapat digunakan tanpa izin Pelaku Pertunjukan, Produser Fonogram, atau Lembaga Penyiaran.

Sanksi Pelanggaran Pasal 113

- Setiap Orang yang dengan tanpa hak melakukan pelanggaran hak ekonomi sebagaimana dimaksud dalam Pasal 9 ayat (1) huruf i untuk Penggunaan Secara Komersial dipidana dengan pidana penjara paling lama 1 (satu) tahun dan/atau pidana denda paling banyak Rp100.000.000 (seratus juta rupiah).
- 2. Setiap Orang yang dengan tanpa hak dan/atau tanpa izin Pencipta atau pemegang Hak Cipta melakukan pelanggaran hak ekonomi Pencipta sebagaimana dimaksud dalam Pasal 9 ayat (1) huruf c, huruf d, huruf f, dan/atau huruf h untuk Penggunaan Secara Komersial dipidana dengan pidana penjara paling lama 3 (tiga) tahun dan/atau pidana denda paling banyak Rp500.000.000,00 (lima ratus juta rupiah).

MODUL PENGOLAHAN DAN ANALISIS DATA DENGAN SPSS

Trimono I Gede Susrama Mas Diyasa

MODUL PENGOLAHAN DAN ANALIS DATA DENGAN SPSS

Penulis : **Trimono, I Gede Susrama Mas Diyasa**

Editor : Trimono, I Gede Susrama Mas Diyasa

Sampul : **Rafiqi A'azzul Akrom**Layout : **Ayu Apriani Ismawati**

Cetakan Pertama, Maret 2022 viii + 60 halaman; 17,6 cm x 25 cm

ISBN:

Hak Cipta 2022, Pada Penulis Isi di luar tanggung jawab percetakan

Copyright © 2022 by RFM PRAMEDIA

All Right Reserved Hak cipta dilindungi undang-undang Dilarang keras menerjemahkan, memfotokopi, atau memperbanyak sebagian atau seluruh isi buku ini tanpa izin tertulis dari Penerbit.

PENERBIT RFM PRAMEDIA

(Grup Penerbitan CV. RFM PRAMEDIA JEMBER)

Jl. PTPN XII Gunung Gambir, Darungan, Jatiroto Lor, Sumberbaru, Jember; 68156

Anggota IKAPI: 246/JTI/2020

Hp: +6285230529762

Instagram: Rofsikaha_media Website: www.rfmpramedia.com

KATA PENGANTAR

Segala puji bagi Allah SWT yang telah melimpahkan rahmat dan karunia-Nya kepada kita semua, serta shalawat dan salam kepada Nabi Besar Muhammad SAW. Atas berkah dan ridho-Nya, buku ajar Statisitka dengan judul *Analisis Data Menggunakan Software SPSS* dapat terselesaikan dengan baik.

Buku ini disusun dengan harapan dapat digunakan sebagai bahan acuan bagi mahasiswa dan praktisi yang berminat mempelajari tentang penerapan software SPSS untuk analisis dan pengolahan data. Untuk kalangan akademisi, buku ini dapat digunakan sebagai buku acuan untuk menunjang kegiatan perkuliahan yang terkait dengan bidang Statistika, yang meliputi analisis deskriptif, uji korelasi, analisis regresi sederhana, penaksiran interval, uji hipotesis, uji Chi Kuadrat, dan ANOVA. Selain simulasi menggunakan SPSS, pada setiap bab, disajikan pula interpretasi dan analisis terhadap output analisis yang diperoleh.

Penulis mengucapkan terima kasih kepada semua pihak yang telah membantu penulisan buku ini. Ucapan terima kasih juga penulis sampaikan kepada semua penulis yang karyanya dalam bentuk buku, jurnal dan lain-lain, yang telah penulis gunakan sebagai referensi

Penulis menyadari bahwa masih banyak kekurangan pada buku ini. Saran dan kritik membangun sangat diharapkan untuk perbaikan kualitas buku ini. Pada akhirnya penulis berharap buku ini bisa bermanfaat.

Surabaya, Maret 2022

Tim Penulis

DAFTAR ISI

KATA P	ENG	ANTAR	v
DAFTA	R ISI.		vi
DAFTA	R GA	MBAR	viii
DAFTA	R TAE	BEL	xi
Bab I	PEN	IGANTAR	1
	1.1	Sekilas Tentang SPSS	1
	1.2	Menyusun Lembar Kerja Baru	9
Bab II	AN	ALISIS DESKRIPTIF	15
	2.1	Visualisasi Data	15
	2.2	Langkah Analisis Deskriptif Menggunakan SPSS	21
	2.3	Latihan Soal	26
Bab III	UJI	KORELASI	27
	3.1	Korelasi Spearman	27
	3.2	Korelasi Pearson	30
	3.3	Latihan Soal	34
Bab IV	AN.	ALISIS REGRESI SEDERHANA	35
	4.1	Pembentukan Model Regresi Linier Sederhana	
		Menggunakan SPSS	36
	4.2	Interpretasi Output Pemodelan	39
	4.3	Pengujian Asumsi	41
	4.4	Latihan Soal	45
Bab V	PEN	NAKSIRAN INTERVAL	47
Bab VI	UJI	HIPOTESIS	49
	6.1	Uji Hipotesis untuk Mean Populasi	49
	6.2	Uji Hipotesis untuk Perbandingan Dua Populasi	52
	6.3	Latihan Soal	59

Bab VII	UJI	CHI KUADRAT	61
	7.1	Uji Chi Kuadrat untuk Memeriksa	
		Ketidakbergantungan Antar Populasi	61
	7.2	Uji Chi Kuadrat untuk Memeriksa Homogenitas	
		antar Populasi	66
	7.3	Latihan Soal	71
Bab VIII	AN	OVA	73
	8.1	ANOVA Satu Arah	73
	8.2	Latihan Soal	77
DAFTAR	R PUS	STAKA	78

DAFTAR GAMBAR

Gambar 1. Tampilan pada halaman Data View saat Pertama Kali	
membuka aplikasi SPSS	2
Gambar 2. Tampilan awal halaman Variabel View	4
Gambar 3. Contoh penamaan yang benar	
Gambar 4. Tampilan kolom Type beserta penjelasan untuk setiap	
tipe data yang terdapat pada kolom Type	5
Gambar 5. Tampilan Pengaruh pemberian label pada suatu variable	
Gambar 6. Tampilan untuk mensubtitusi data dengan tipe-string	
Menjadi data dengan tipe <i>numeric</i>	8
Gambar 7. Tampilan Kolom Missing	
Gambar 8. Tampilan hasil pendefinisian variabel dan prose input	
data yang telah selesai dilakukan	12
Gambar 9. Tampilan hasil pendefinisian variabel dan prose input	
data yang telah selesai dilakukan	14
Gambar 10. Tampilan Visualisasi data melalui histogram (Analyze).	
Gambar 11. Tampilan Visualisasi data melalui histogram (Hasil)	16
Gambar 12. Tampilan Visualisasi data melalui histogram (Chart)	17
Gambar 13. Tampilan Visualisasi data melalui histogram	
(Chart Hasil akhir)	17
Gambar 14. Tampilan ikon Weight Cases pada toolbar	
Gambar 15. Tampilan opsi Weight cases by	19
Gambar 16. Tampilan Hasil Proses diagram lingkaran	20
Gambar 17. Tampilan Hasil Proses Diagram Batang	21
Gambar 18. Tampilan Analyze-Descriptive Statistic-Frequencies	21
Gambar 19. Tampilan Analyze-Descriptive Statistic-Frequencies	
Proses Nilai Kelas B	22
Gambar 20. Tampilan analisis deskriptif ukuran kecondongan dan	
keruncingan	22
Gambar 21. Tampilan Hasil Analisis Deskriptif	23
Gambar 22. Tampilan pendefinisian variabel dengan nama	
Prestasi dan IQ	28
Gambar 23. Tampilan Analyze-Correlate-Bivariate	

Gambar 24. Tampilan Luaran Analyz	ze-Correlate-Bivariate29
Gambar 25. Tampilan Input Data Con	ntoh Soal31
Gambar 26. Tampilan Proses Analyz	e-Descriptive-Explore31
Gambar 27. Tampilan Proses Normal	lity Plots with Tests 32
Gambar 28. Tampilan Hasil Proses To	est of Normality32
Gambar 29. Tampilan Proses Analyz	e-Correlate-Bivariate33
Gambar 30. Tampilan Hasil Analyze	-Correlate-Bivariate33
Gambar 31. Tampilan Proses Input D	9ata36
Gambar 32. Tampilan Legacy Dialog-	-Scatter/Dot 36
Gambar 33. Tampilan Simple Scatter.	
Gambar 34. Tampilan Hasil Proses A	nalisis 37
Gambar 35. Tampilan Analyze-Regre	esion-Linear37
Gambar 36. Tampilan Pemindahan V	'ariabel Dependent ke
Independent	
Gambar 37. Tampilan Linear Regress	ion Plots38
Gambar 38. Tampilan Linear Regress	ion: Statistics 38
Gambar 39. Tampilan Analyze-Non I	Parametric Test-Legacy Dialog,
1-Sample K-S	42
Gambar 40. Tampilan one-sample Ko	olmogorov-Smirnov Test 42
Gambar 41. Tampilan Input Data Pro	ses Analisis47
Gambar 42. Tampilan Pemilihan IHS	G 48
Gambar 43. Tampilan Untuk Mengis	i Tingkat Kepercayaan48
Gambar 44. Tampilan Uji Kesamaan	Mean 50
Gambar 45. Tampilan variabel Keunt	ungan kebagian Test Variable(s) 51
Gambar 46. Tampilan Analyze - Con	npare Means - Paired-
Samples T Test	53
Gambar 47. Tampilan Paired Sample	s T Test 53
Gambar 48. Tampilan Paired Sample	s T Test: Options54
Gambar 49. Tampilan Value Labels	55
Gambar 50. Tampilan Analyze - Con	npare Means - Independents
Samples T Test	56
Gambar 51. Tampilan Independent-S	amples T Test57
Gambar 52. Tampilan Independent-S	amples T Test: Continue 57
Gambar 53. Tampilan Value Labels	62
Gambar 54. Tampilan Pengisian Data	u Untuk Value Labels63

Gambar 55.	Tampilan Pengisian Data ke-1 Untuk Value Labels	63
Gambar 56.	Tampilan Pengisian Data ke-2 Untuk Value Labels	64
Gambar 57.	Tampilan Pengisian Missing: None, Columns: 8, Align:	
	Right, Measure: Nominal, dan Role: Input	64
Gambar 58.	Tampilan Data View	64
Gambar 59.	Tampilan Analyze - Descriptive Statistics - Crosstabs	65
Gambar 60.	Tampilan Analyze - Descriptive Statistics: Crosstabs	65
Gambar 61.	Tampilan Analyze - Descriptive Statistics: Chi-square	65
Gambar 62.	Tampilan pengisian populasi mahasiswa FEB, pada	
	Variabel View	67
Gambar 63.	Tampilan Pengisian Sikap terhadap rencana	
	pembangunan GOR, pada variabel view	68
Gambar 64.	Tampilan Pengisian Variabel Mahasiswa, Sikap dan	
	Jumlah	68
Gambar 65.	Tampilan Data View	69
Gambar 66.	Tampilan Data-Weight Cases	69
Gambar 67.	Tampilan Analyze - Descriptive Statistics - Crosstabs	69
Gambar 68.	Tampilan Hasil Proses	70
Gambar 69.	Tampilan Input Data	74
Gambar 70.	Tampilan One-Way ANOVA	75
Gambar 71.	Tampilan One-Way ANOVA: Options	75
Gambar 72.	Tampilan One-Way ANOVA: Post Hoc Multiple	
	Comparasions	75

DAFTAR TABEL

Tabel 1. Nilai UTS Statistika Dasar	. 11
Tabel 2. Hasil Panen Padi (dalam Ton)	. 15
Tabel 3. Jumlah Penjualan Mobil di Indonesia pada Januari 2022	. 18

PENGANTAR

1.1 Sekilas Tentang SPSS

Aplikasi SPSS (*Statistical Product and Service Solutions*) merupakan salah satu aplikasi berbasis GUI yang berfungsi untuk mempermudah proses pengolahan dan analisis data menggunakan metode statistika. Metode analisis yang termuat dalam SPSS terdiri dari metode statistika deskriptif dan statistika inferensial. Selain pengolahan dan analisis data, SPSS juga dapat digunakan sebagai alat bantu untuk proses *input* data, mengubah data, dan transformasi data. Beberapa kelebihan SPSS dibandingkan dengan aplikasi pengolah data lainnya adalah pilihan metode analisis yang cukup lengkap, mudah untuk dioperasikan, dan dapat digunakan untuk melakukan analisis pada data kualitatif.

Sejak pertama kali dirilis pada tahun 1968 di Amerika Serikat, IBM (International business machines corporation) sebagai perusahaan yang memiliki lisensi untuk memproduksi aplikasi SPSS, telah mengeluarkan 28 versi berbeda. Versi terbaru, yaitu versi ke-28 dirilis pada 9 November 2021. Pada modul ini, aplikasi SPSS yang akan digunakan adalah versi 19. Meskipun bukan menggunakan versi terbaru, tetapi secara umum tidak ada perbedaan yang signifikan antara SPSS versi 19 dengan versi 28. Untuk menjalankan aplikasi ini, dapat dilakukan dengan cara melakukan klik dua kali pada aplikasi SPSS yang telah terpasang pada komputer.

Tampilan awal yang muncul pada saat SPSS dibuka adalah bagian **Data Editor** yang terdiri dari 2 halaman yaitu **Data View** dan **Variabel View**. 2 halaman tersebut tergabung dalam satu *layer*. Berikut ini adalah penjelasan untuk halaman **Data View** dan **Variabel View**.

1. Halaman Data View

Secara *default*, **Data View** merupakan halaman yang pertama kali muncul pada bagian **Data Editor** ketika aplikasi SPSS pertama dijalankan. Halaman ini berfungsi untuk memasukkan data yang akan diolah dan dianalisis. Jika data yang kita miliki tersusun atas lebih dari 1 variabel, maka pembagian variabelnya adalah berdasarkan kolom. Atau dengan kata lain, kolom ke-1 berisi data untuk variabel ke-1, kolom ke-2 berisi data untuk vairbel ke-2, dan seterusnya. Gambar 1 adalah tampilan pada halaman **Data View** saat pertama kali membuka aplikasi SPSS.

Gambar 1. Tampilan pada halaman **Data View** saat pertama kali membuka aplikasi SPSS

Nama default untuk file SPSS yang sedang dijalankan adalah **Untitled 1**. Untuk mengubah nama file, dapat dilakukan dengan cara klik **File –** pilih **Save As**. Kemudian masukan nama file sesuai ketentuan kita.

Selain kolom untuk memasukkan data, pada halaman **Data View** juga terdapat **Menu Bar** dan **Toolbar**. Berikut ini adalah penjelasan untuk pilihan yang terdapat pada **Menu Bar**:

a. Menu **File**. Selain untuk menyimpan file dengan nama baru, menu ini berfungsi untuk membuka beberapa file berbeda yang telah tersimpa dan juga file database seperti file excel.

- b. Menu **Edit.** Melalui menu ini, pengguna dapat melakukan pengeditan atau modifikasi data dan variabel seperti, memotong, menempel, menyisipkan variabel baru, atau mencari karakter tertentu dengan menggunakan *tools* **find** yang tersedia pada menu ini
- c. Menu **View**. Aplikasi SPSS menyediakan menu ini untuk membantu mengatur tampilan pada halaman utama. Pengaturan yang disediakan antar lain adalah menampilkan atau menghilangkan **status bar**, dan memilih ikon-ikon yang akan ditampilkan atau disembunyikan pada **toolbar**.
- d. Menu **Data**. Menu **Data** memungkinkan pengguna untuk mengatur kelengkapan (*property*) dari variabel yang ada, mengurutkan data, menggabungkan file, membagi file, memilih data, dan memberikan pembobotan pada variabel
- e. Menu **Transform**. Pada menu **Transform** pengguna akan menemukan opsi untuk melakukan beberapa perhitungan pada variabel, membuat variabel baru dari yang sudah ada atau mengkode ulang variabel lama
- f. Menu **Analyze**. Menu **Analyze** adalah tempat semua analisis statistika dilakukan. Mulai dari analisis yang paling sederhana, hingga analisis yang kompleks seperti analisis klaster dan analisis survival.
- g. Menu **Graph**. Menu **Graph** adalah tempat pengguna dapat membuat plot dan grafik beresolusi tinggi untuk diedit di jendela editor grafik. Menu ini juga memungkinkan pengguna untuk membuat grafik interaktif
- h. Menu **Utilities**. Menu **Utilities** digunakan untuk menampilkan informasi isi file data SPSS atau untuk menjalankan skrip
- Menu Windows. Dari menu Windows, pengguna dapat mengubah bagian jendela yang aktif. Jendela dengan tanda centang adalah yang aktif. Dalam hal ini adalah jendela editor data.
- j. Menu **Help.** Menu **Help** memungkinkan pengguna untuk mendapatkan bantuan tentang topik-topik di SPSS atau untuk menanyakan beberapa pertanyaan dasar tentang metode analisis yang ada pada SPSS.

3

2. Halaman Variabel View

Halaman selanjutnya yang muncul pada **Data Editor** adalah **Variabel View**. Halam ini menampilkan informasi tentang variabel yang terdapat pada data yang kita miliki. Selain itu, fungsi lain dari halaman ini adalah sebagai tempat untuk mengatur karakteristik dari variabel, yang meliputi penamaan variabel, tipe, panjang karakter, sampai dengan jenis variabel. Gambar 2 adalah Tampilan awal halaman **Variabel View**.

Gambar 2. Tampilan awal halaman Variabel View

Jumlah baris yang terisi pada Variabel View tergantung pada dengan banyaknya variabel yang kita miliki. Misalkan pada suatu penelitian terdiri dari 4 variabel, maka baris yang terisi ada 4. Baris pertama adalah pendefinisian untuk varibel ke-1, dan seterusnya sampai dengan baris keempat yang digunakan sebagai pendefinisian untuk variabel ke-4. Berikut ini adalah penjelasan setiap kolom yang terdapat pada halaman **Variabel View**:

a. Kolom **Name**. **Name** berfungsi untuk memberikan penamaan pada variabel yang akan digunakan. Penamaan variabel dapat dilakukan dengan mengkombinasikan antara angka dengan huruf. Namun yang perlu menjadi catatan adalah, SPSS tidak dapat membaca nilai "spasi ()" pada penamaan variabel. Oleh karena itu jika nama variabel yang akan dimasukkan terdiri dari dua suku kata atau lebih, dianjurkan untuk menggunakan

"underscore (_)" sebagai tanda pemisah atau dapat juga dengan menggabungkan beberapa suku kata tadi menjadi satu suku kata saja. Contoh penamaan yang benar, seperti terlihat pada Gambar 3.

Gambar 3. Contoh penamaan yang benar

b. Kolom **Type.** Melalui kolom ini, pengguna dapat mendefinisikan tipe data yang akan dimasukkan. Sebagai contoh, jika dapat yang akan dimasukan berupa angka, maka tipe data yang dipilih adalah **Numeric**. Jika data yang akan dimasukkan berbentuk kata/kalimat, maka tipe data yang dipilih adalah **String**. Gambar 4. tampilan kolom **Type** beserta penjelasan untuk setiap tipe data yang terdapat pada kolom **Type**.

Gambar 4. Tampilan kolom **Type** beserta penjelasan untuk setiap tipe data yang terdapat pada kolom **Type**

- 1. **Numeric**: adalah tipe data yang sering digunakan. Semua data yang berbentuk angka (termasuk desimal dan angka negatif) dapat dimasukkan pada tipe **Numeric**
- 2. **Comma**: merupakan tipe data yang digunakan saat data yang kita miliki berbentuk bilangan desimal, dengan pemisahnya menggunakan tanda titik (.)

- 3. **Dot**: tipe data ini dipilih saat kita ingin memisahkan data yang berupa angka kelipatan 1000 dengan sebuah dot (koma). **Dot** merupakan kebalikan dari **Comma**. Contoh: misal untuk penulisan "dua ribu" menjadi 2,000
- 4. **Scientific Notation**: adalah tipe data yang digunakan menuliskan data angka dalam bentuk sains. Sebagai contoh, jika angka pada tipe **Numeric** dituliskan 5.4, maka pada tipe **Scientific Notation** akan tertulis 5.4E+000.
- 5. **Date**: digunakan saat data yang akan dimasukan berupa tanggal. Secara lebih detail, pengguna akan diberikan pilihan penyebutan tanggal yang diinginkan, dengan keterangan d (*day*/hari), m (*month*/bulan), dan y (*year*/tahun).
- 6. **Dollar**: merupakan tipe data untuk memasukkan data yang berbentuk mata uang dollar.
- 7. **Custom Currency**: merupakan tipe data untuk memasukkan data yang berjenis jenis mata uang selain dollar.
- 8. **String**: merupakan tipe data untuk memasukkan data yang berbentuk huruf/karakter.
- c. Kolom **Width**, kolom ini berfungsi untuk mendefinisikan jumlah karakter maksimal yang dikehendaki pada suatu variabel. Misalkan pengguna akan dimasukkan angka 500 (terdiri dari 3 karakter), tetapi pada bagian **Width** hanya tertulis 2, maka angka yang akan muncul pada halaman **Data View** hanya angka 50 (dua karakter pertama). Contoh selanjutnya, misalkan tipe data yang dipilih adalah **String** dan kolom **Width** diisi 4, kemudian dimasukkan kalimat "Harga Beras", maka karakter yang akan muncul hanya "Harg"
- d. Kolom **Decimals**, kolom **Decimals** berguna untuk mengatur jumlah karakter dibelakang koma yang akan dimunculkan dalam satu variabel. Misalkan pada kolom **Decimals** tertulis 2, lalu dimasukkan angka 3, maka pada halaman **Data View** akan tertulis 3.00

e. Kolom Label, kolom Label merupakan *tools* dari aplikasi SPSS yang berfungsi untuk memberikan label atau keterangan tambahan pada suatu variabel. Label tidak terlalu berpengaruh terhadap proses pengisian dan analisis data. Misalkan, pada variabel dengan nama "NTP" pengguna memberikan label "Nilai Tukar Petani", maka pada kotak dialog yang muncul akan tertera label yang sebelumnya telah dibuat. Sebagai tambahan, label dapat memuat karakter spasi (). Agar pengguna lebih jelas pengenai pengaruh pemberian label pada suatu variabel, perhatikan Gambar 5.

Gambar 5. Tampilan Pengaruh pemberian label pada suatu variable

f. Kolom Values, kolom ini berguna untuk mensubstitusi data dengan tipe *string* menjadi data dengan tipe *numeric*. Hal ini bertujuan untuk mempermudah proses pengolahan dan analisis data. Sebagai contoh, dalam suatu penelitian, objek yang diamati terdiri dari tiga kelas yaitu, kelas A, kelas B, dan kelas C. Selanjutnya, kelas A disubstitusi dengan angka 1, kelas B disubstitusi dengan angka 2, dan kelas C disubstitusi dengan angka 3. Untuk melakukan prosedur ini, langkah pertama adalah klik kolom Values, pada bagian Value masukkan nilai baru (berupa angka numerik) yang diinginkan, lalu pada bagian Label tambahkan keterangan yang berkaitan dengan angka numerik yang dimasukan sebelumnya, klik Add, kemudian terakhir klik OK. Untuk memperjelas, perhatikan Gambar 6.

Gambar 6. Tampilan untuk mensubstitusi data dengan tipe *string* menjadi data dengan tipe *numeric*

g. Kolom **Missing**, kolom ini membantu pengguna untuk menghapus suatu nilai tertentu sehingga tidak disertakan pada analisis data. Proses penghapusan data biasanya dilakukan apabila terdapat nilai *outlier* (pencilan) pada data. Jika kolom **Missing** diklik, maka akan muncul tampilan seperti Gambar 7.

Gambar 7. Tampilan Kolom Missing

Keterangan:

- 1. **No missing values**, dipilih saat tidak ada data yang ingin dihapus atau tidak ada data yang dianggap hilang
- 2. **Discreate missing values**, dipilih saat terdapat angka diskrit yang dianggap hilang (tidak diikutsertakan pada analisis)
- 3. Range plus one optional discreate missing value: pilihan ini berguna untuk menghilangkan angka-angka yang termasuk kedalam sebuah range/interval tertentu yang nilainya ditetapkan oleh pengguna

- h. Kolom **Columns**, berfungsi untuk mengatur lebar kolom pada halaman **Data View**. Semakin besar nilai **Columns**, maka lebar tampilan kolom pada Data View akan bertambah
- i. Kolom **Align**, kolom ini digunakan untuk mengatur rata penulisan nilai data suatu varuabel. Pada kolom **Align** tersedia tiga pilihan, yaitu:
 - 1. **Left** : penulisan nilai data menjadi rata kiri
 - 2. **Right**: penulisan nilai data menjadi rata kanan
 - 3. **Center**: penulisan nilai data menjadi rata tengah
- j. Kolom **Measure**, berfungsi untuk memberikan keterangan skala data suatu variabel. Pendefinisian skala data pada kolom **Measure** sangat berpengaruh pada pendeskripsian variabel yang akan diolah dengan metode statistika. Terdapat 3 jenis pilihan skala yang tersedia, yaitu:
 - 1. **Nominal**: dipilih saat skala data yang digunakan adalah nominal. Contoh skala nominal adalah pada data jenis kelamin, yang terdiri dari laki-laki dan perempuan dengan kedudukannya adalah setara satu sama lain
 - 2. **Ordinal**: dipilih saat skala data yang digunakan adalah ordinal. Contoh data dengan skala ordinal adalah jenjang pendidikan, yaitu SD, SMP dan SMA. Ketiga jenjang pendidikan memiliki perbedaan satu sama lain, SD yang merupakan jenjang pendidikan paling rendah, kemudian diikuti oleh SMP, dan SMA sebagai jenjang tertinggi.
 - 3. **Scale**: dipilih saat skala data yang digunakan adalah interval atau rasio. Contoh skala interval adalah suhu udara, dan contoh skala rasio adalah jumlah pendapatan perbulan.

1.2 Menyusun Lembar Kerja Baru

Saat pertama kali membuka SPSS untuk membuat lembar kerja baru, pengguna harus mendefinisikan variabel yang akan digunakan (dilakukan pada halaman **Variabel View**), setelah itu dilanjutkan dengan memasukkan data yang dimiliki pada halaman **Data View**. Secara umum, prosedur untuk menyusun lembar kerja baru adalah sebagai berikut:

- 1. Setelah aplikasi SPSS terbuka, klik halaman **View Variabel** pada bagian pojok kiri bawah.
- 2. Melakukan pendefinisian variabel. Jumlah variabel yang didefinisikan pada halaman **Data View** tergantung pada berapa banyak variabel yang kita miliki. Misalkan kita memiliki 3 variabel, maka kita harus mendefinisikan variabel sebanyak 3 kali. Pada setiap kolom untuk masing-masing variabel, perhatikan petunjuk berikut:
 - a. **Name** : pada kolom ini, lakukan pengisian nama variabel
 - b. **Type** : kolom ini digunakan untuk mengisi tipe data dari variabel yang sedang kita definisikan, misalnya *numeric* (jika data yang akan dimasukkan berupa angka), kemudian *string* (jika data yang akan dimasukkan berupa teks)
 - c. **Width** : digunakan untuk mengisi jumlah karakter maksimal pada data yang akan ditampilkan pada **Data View**.
 - d. **Decimal** : digunakan untuk mengisi jumlah karakter maksimal yang akan ditampilkan dibelakang tanda desimal
 - e. **Label** : digunakan untuk memberikan keterangan nama variabel (boleh dikosongkan).
 - f. **Value** : digunakan untuk mengisikan pengkodean/ substitusi pada variabel yang nilainya tersusun atas lebih dari satu kategori.
 - g. **Missing**: digunakan untuk mengatur perlakuan terhadap data pencilan atau data yang tidak akan dilibatkan dalam proses analisis
 - h. **Align** : digunakan untuk mengatur tampilan perataan nilai data dalam **Data View**
 - i. Measure : digunakan mengatur skala data. Kolom ini secara default akan terpilih Nominal jika variabel yang kita gunakan bertipe string, dan akan terpilih Scale jika variabel yang kita gunakan bertipe numeric.
- 3. Setelah variabel selesai didefinisikan, maka langkah selanjutnya adalah mengisikan data pada halaman mendefinisikan variabel yang digunakan, selanjutnya adalah mengisi data pada **Data View**

Agar pengguna lebih mudah untuk memahami, berikut ini akan diberikan contoh proses pendefinisian variabel serta pemasukan nilainya. Misalkan data yang digunakan adalah nilai UTS Statistika Dasar untuk 10 mahasiswa Sains Data angkatan 2018 kelas A dan B seperti tertertera pada Tabel 1.

Tabel 1. Nilai UTS Statistika Dasar

Kelas A	90	67	78	85	75	60	87	87	90	60
Kelas B	87	75	67	80	70	56	76	54	87	65

Berdasarkan Tabel 1, data terdiri dari variabel, yaitu kelas A dan kelas B. Terdapat 2 cara berdasarkan penamaan variabel untuk memasukkan data tersebut pada aplikasi SPSS, yaitu:

- 1. Data disusun atas 2 variabel. Variabel pertama adalah "nilai", dan variabel kedua adalah "kelas". Prosedur penamaan variabel dan penginputan data untuk cara pertama adalah:
 - a. Klik Variabel View
 - b. Pada baris pertama di halaman **Variabel View** lakukan pendefinisian untuk variabel "Nilai" dengan ketentuan sebagai berikut:

• Name : Nilai

• Type : Numeric

• Width : 2 (banyaknya karakter)

• **Decimal** : 0 (banyaknya angka di belakang koma)

• Label : Nilai UTS

Value : None Missing : None

• **Columns** : 8

• **Align** : Right

• **Measure** : Scale (nilai termasuk skala rasio, sehingga dipilih *Scale*)

c. Pada baris kedua di halaman **Variabel View** lakukan pendefinisian untuk variabel "Kelas" dengan ketentuan sebagai berikut:

Name : KelasType : Numeric

• Width : 1 (banyaknya karakter)

• **Decimal** : 0 (banyaknya angka di belakang koma)

• Label : (dikosongkan)

• Value : "1" untuk "Kelas A"

"2" untuk "Kelas B"

• Missing : None

• **Columns** : 8

• **Align** : Right

• Measure: Nominal (angka 1 dan 2 yang akan menjadi entri

pada variabel kelas adalah notasi pengganti untuk kelas A dan B, sehingga termasuk dalam

skala nominal)

Gambar 8. ini adalah hasil pendefinisian variabel dan prose input data yang telah selesai dilakukan.

Gambar 8. Tampilan hasil pendefinisian variabel dan prose input data yang telah selesai dilakukan

- 2. Data disusun atas 2 variabel. Variabel pertama adalah "kelas A", dan variabel kedua adalah "kelas B". Prosedur penamaan variabel dan penginputan data untuk cara kedua adalah:
 - Klik Variabel View
 - b. Pada baris pertama di halaman **Variabel View** lakukan pendefinisian untuk variabel "Kelas A" dengan ketentuan sebagai berikut:

• Name : Nilai

• Type : Numeric

• Width : 2 (banyaknya karakter)

• **Decimal** : 0 (banyaknya angka di belakang koma)

• Label : Nilai Kelas A

Value : None Missing : None

• **Columns** : 8

• Align : Right

• Measure : Scale (nilai termasuk skala rasio, sehingga

dipilih Scale)

c. Pada baris kedua di halaman **Variabel View** lakukan pendefinisian untuk variabel "Kelas B" dengan ketentuan sebagai berikut:

• Name : Nilai

• Type : Numeric

• Width : 2 (banyaknya karakter)

• **Decimal** : 0 (banyaknya angka di belakang koma)

• Label : Nilai Kelas B

• Value : None

• Missing : None

• **Columns** : 8

• **Align** : Right

• Measure : Scale (nilai termasuk skala rasio, sehingga

dipilih Scale)

Gambar 9 adalah hasil pendefinisian variabel dan prose input data yang telah selesai dilakukan.

Gambar 9. Tampilan hasil pendefinisian variabel dan prose input data yang telah selesai dilakukan.

ANALISIS DESKRIPTIF

Analisis deskriptif merupakan istilah dalam ilmu statistika yang merujuk pada analisis data yang diolah melalui metode statistika deskriptif. Secara garis besar, analisis deskriptif bertujuan untuk menggambarkan dan mendeskripsikan data secara lengkap melalui grafik atau angka numerik sehingga informasi penting yang terdapat pada data dapat dipahami dengan baik oleh pembaca. Metode statistika deskriptif yang sering digunakan untuk analisis deskriptif antara lain adalah, ukuran gejala pusta (rata-rata, median, modus), ukuran penyimpangan (kuartil, standar deviasi, variansi), serta ukuran kemencengan dan keruncingan (skewness dan kurtosis).

2.1 Visualisasi Data

Visualsasi data merupakan salah satu bentuk analisis deskriptif melalui grafik. Pada analisis ini, data tersedia divisualisasikan menjadi beberapa bentuk seperti diagram batang, diagram lingkaran, histogram, poligon distribusi frekuensi, dan poligon distribusi frekuensi kumulatif. Sebagai contoh, misalkan dimiliki data hasil panen padi (dalam ton) dari 40 petani seperti pada Tabel 2.

						`			
Petani	Hasil								
ke-	Panen								
1	75	9	89	17	78	25	59	33	49
2	60	10	29	18	90	26	85	34	69
3	43	11	34	19	77	27	83	35	97
4	56	12	45	20	95	28	74	36	88
5	67	13	55	21	67	29	79	37	89
6	69	14	65	22	79	30	66	38	79
7	76	15	75	23	88	31	59	39	77
8	80	16	56	24	75	32	91	40	98

Tabel 2. Hasil Panen Padi (dalam Ton)

1. Visualisasi Data Melalui Histogram

Melalui aplikasi SPSS, pembentukan histogram sangat mudah untuk dikerjakan. Langkah-langkah yang diperlukan adalah sebagai berikut:

- Melakukan input data dengan cara seperti pada Bab I bagian 1.2.
 Pada SPSS, penamaan variabel untuk data ini adalah Hasil_Panen, dengan skala data adalah Scale
- b. Setelah data selesai dimasukkan, selanjutnya Klik **Analyze** -> klik **Descriptive Statistic** -> klik **Frequencies** (Gambar 10)

Gambar 10. Tampilan Visualisasi data melalui histogram (Analyze)

c. Pada kotak dialog yang muncul, klik **Hasil_Panen**, kemudian klik tanda agar data **Hasil_Panen** berpindah ke kolom **Variable(s)**, Gambar 11.

Gambar 11. Tampilan Visualisasi data melalui histogram (Hasil)

d. Untuk membentuk histogram, klik **Charts**, pilih **Histograms**, klik **Continue**, klik **OK**. Seperti Gambar 12.

Gambar 12. Tampilan Visualisasi data melalui histogram (Chart)

Hasil yang diperoleh adalah seperti Gambar 13.

Gambar 13. Tampilan Visualisasi data melalui histogram (Chart Hasil akhir)

e. Interpretasi histogram yang terbentuk:

Histogram hasil panen padi memiliki bentuk yang tidak simetris (cenderung menceng ke kanan) hal ini dikarenakan frekuensi hasil panen padi tidak menyebar secara merata dan cenderung berkumpul di sebelah kanan nilai rata-rata, yaitu pada sekitar angka 80-100.

2. Visualisasi Data Melalui Diagram

Pada aplikasi SPSS, tersedia banyak pilihan apabila pengguna ingin memvisualisasikan data yang dimiliki dalam bentuk diagram. Pilihan tersebut antara lain adalah, diagram batang (bar), lingkaran (pie), garis, boxplot, dan scatterplot. Diagram batang dan lingkaran digunakan saat data yang dimiliki berupa data kategorik. Atau dapat juga digunakan pada data numerik tetapi sebelumnya telah dikelompokkan dalam beberapa kelas dengan menggunakan tabel distribusi frekuensi. Diagram garis paling tepat digunakan jika data yang dimiliki berupa data deret waktu (time series), sedangkan scatterplot digunakan saat data yang kita miliki terdiri dari 2 variabel dan ingin dilihat hubungan dari kedua variabel tersebut.

Sebagai contoh, berdasarkan hasil survei penjualan mobil di Indonesia, diketahui nilai penjualan dari 5 merek pada bulan Januari 2022 adalah seperti Tabel 3.

Tabel 3.	Jumlah Pen	jualan Mobil	di Indonesia	pada	Januari 2022
----------	------------	--------------	--------------	------	--------------

Merek Mobil	Jumlah Penjualan (unit)
Mitsubishi Xpander	5282
Daihatsu Sigra	2151
Toyota Veloz	1680
Honda Brio	1655
Toyota Innova	1616

Berdasarkan data di atas, berikut ini adalah prosedur menyusun visualisasi data dalam bentuk diagram batang dan lingkaran menggunakan aplikasi SPSS:

a. Melakukan input data dengan cara seperti pada Bab I bagian 1.2

- b. Setelah data selesai dimasukkan, kita perlu melakukan proses pemobobotan masing-masing merek mobil berdasarkan jumlah penjualan dengan menggunakan *tools* **Weight Cases** sebagai berikut:
 - Klik ikon Weight Cases pada toolbar, Gambar 1

Gambar 14. Tampilan ikon Weight Cases pada toolbar

 Pada kotak dialog yang muncul, pilih opsi Weight cases by, kemudian masukkan variabel Jumlah Penjualan kedalam kotak Frequency Variable, klik OK, Gambar 15.

Gambar 15. Tampilan opsi Weight cases by

c. Untuk membuat diagram lingkaran, setelah dilakukan proses pembobotan, selanjutnya klik **Graph**, pilih **Legacy Dialogs**, pilih **Pie**.

Pada kotak dialog yang muncul, pilih opsi **Summaries for groups of cases**, klik **Define**.

Selanjutnya akan muncul kembali kotak dialog dengan nama **Define Pie: Summaries for Groups of Cases**.

Pada bagian Slices Represent, pilih N of cases.

Masukkan variabel **Merek Mobil** pada kotak **Define Slices by**, klik **OK**.

Hasil yang diperoleh adalah seperti Gambar 16.

Gambar 16. Tampilan Hasil Proses diagram lingkaran

d. Untuk membuat diagram batang, setelah dilakukan proses pembobotan, selanjutnya klik **Graph**, pilih **Legacy Dialogs**, pilih **Bar**.

Pada kotak dialog Bar Charts yang muncul, klik Simple.

Pada kolom **Data in Chat** Are, pilih opsi **Summaries for groups of cases**, klik **Define**.

Selanjutnya akan muncul kembali kotak dialog dengan nama **Define Simple Bar: Summaries for Groups of Cases**. Pada bagian **Bars Represent**, pilih **N of cases**.

Masukkan variabel **Merek Mobil** pada kotak **Category Axis**, klik **OK**.

Hasil yang diperoleh seperti Gambar 17.

Gambar 17. Tampilan Hasil Proses Diagram Batang

2.2 Langkah Analisis Deskriptif Menggunakan SPSS

Langkah-langkah melakukan analisis deskriptif menggunakan SPSS (data yang digunakan adalah nilai Statistik Bisnis I Kelas A dan B) adalah sebagai berikut:

- Lakukan input data seperti pada Bab I bagian 1.2.
- 2. Klik **Analyze** -> klik **Descriptive Statistic** -> klik **Frequencies**, Gambar 17.

Gambar 18. Tampilan Analyze-Descriptive Statistic-Frequencies

3. Klik **KELAS_A** -> klik *tanda panah* (untuk memasukkan variabel **Nilai Kelas A** ke kolom **variables(s)**, Gambar 18.

Klik **KELAS_B** -> klik *tanda panah* (untuk memasukkan variabel **Nilai Kelas B** ke kolom **variables(s)**.

Atau sorot semua variabel **KELAS_A** dan **KELAS_B** kemudian klik tanda panah.

Gambar 19. Tampilan Analyze-Descriptive Statistic-Frequencies Proses Nilai Kelas B

- 4. Beri *tanda* centang (v) **Display Frequency Tables**.
- 5. Untuk analisis deskriptif ukuran gejala pusat: Klik **Statistics**, beri centang (v) pada bagian **Mean**, **Median**, **Mode**, dan **Sum**.

Untuk analisis deskriptif ukuran lokasi: Klik **Statistics**, beri centang (v) pada bagian **Quartile**, dan **Percentiles**. Isikan angka 100 pada kolom **Percentiles**, lalu klik **Add**.

Untuk analisis deskriptif ukuran penyimpangan: Klik **Statistics**, beri centang (v) pada bagian **Std. Deviation**, **Variance**, **Range**, **Minimum**, dan **Maximum**.

Untuk analisis deskriptif ukuran kecondongan dan keruncingan: Klik **Statistics**, beri centang (v) pada bagian **Skewness** dan **Kurtosis**, Gambar 19.

Gambar 20. Tampilan analisis deskriptif ukuran kecondongan dan keruncingan

6. Klik Continue, klik OK

7. Output yang diperoleh dapat dilihat pada sheet **Output**, dengan hasilnya seperti Gambar 20.

Stat	L= _4:	

	Nilai Kelas A	Nilai Kelas B
N Valid	10	10
Missing	0	0
Mean	77,90	71,70
Median	81,50	72,50
Mode	60ª	87
Std. Deviation	11,911	11,528
Variance	141,878	132,900
Skewness	-,607	-,179
Std. Error of Skewness	,687	,687
Kurtosis	-1,318	-,926
Std. Error of Kurtosis	1,334	1,334
Range	30	33
Minimum	60	54
Maximum	90	87
Sum	779	717
Percentiles 25	65,25	62,75
50	81,50	72,50
75	87,75	81,75
100	90,00	87,00

a. Multiple modes exist. The smallest value is shown

Gambar 21. Tampilan Hasil Analisis Deskriptif

8. Interpretasi nilai output:

		Kelas A	Kelas B
	Mean	Nilai tunggal yang	Nilai tunggal yang
Ukuran		dapat mewakili	dapat mewakili
		nilai data	nilai data
		keseluruhan untuk	keseluruhan untuk
		kelas A adalah	kelas A adalah
		77,90	71,70
Gejala Pusat	Median	Nilai tengah yang	Nilai tengah yang
		membagi data	membagi data
		Kelas A menjadi	Kelas A menjadi
		dua bagian yang	dua bagian yang
		sama besar adalah	sama besar adalah
		81,50	72,50

	Modus	Nilai data yang sering muncul adalah 60, dengan frekuensi kemunculannya sebanyak 2 kali	sering muncul
Ukuran Lokasi	Kuartil	(Q1 atau Persentil 25). Nilai data yang membagi data sebebesar 50% untuk sisi kiri dan 50% untuk sisi kanan adalah 81,50 (Q2=Persentil 50=median). Nilai data yang membagi data sebebesar 75%	75% untuk sisi kanan adalah 65,75 (Q1 atau Persentil 25). Nilai data yang membagi data sebebesar 50% untuk sisi kiri dan 50% untuk sisi kanan adalah 72,50 (Q2=Persentil 50=median). Nilai data yang membagi data sebebesar 75% untuk sisi kiri dan
Ukuran Penyimpangan	Standar deviasi	rata-rata jarak penyimpangan nilai-nilai data	rata-rata jarak penyimpangan

		terhadap nilai	terhadap nilai
		rata-rata adalah	rata-rata adalah
		11,91	11,53
		Rata-rata	Rata-rata
		Jumlahan kuadrat	Jumlahan kuadrat
	X7 · ·	penyimpangan 	penyimpangan
	Variansi	masing-masing	masing-masing
		nilai data terhadap	nilai data terhadap
		nilai rata-rata	nilai rata-rata
		adalah 141,88	adalah 132,90
		perbedaan nilai	•
	Range	data terbesar dan	data terbesar dan
	range	nilai data terkecil	nilai data terkecil
		adalah 30	adalah 33
		Nilai skewness	Nilai skewness
		sebesar -0,607 (<0)	sebesar -0,179 (<0)
		menandakan	menandakan
		bahwa kurva	bahwa kurva
		fungsi distribusi	fungsi distribusi
	Skewness	yang terbentuk	yang terbentuk
	Skewness	adalah condong	adalah condong
		kanan/data	kanan/data
Ukuran		cenderung	cenderung
Kecondongan		mengumpul	mengumpul
dan		disebalah kanan	disebalah kanan
keruncingan		nilai rata-rata	nilai rata-rata
		Nilai kurtosis	Nilai kurtosis
		sebesar -1,318 (<3)	sebesar -0,926 (<3)
		menandakan	menandakan
	T.C	bahwa kurva	bahwa kurva
	Kurtosis	fungsi distribusi	
		yang terbentuk	yang terbentuk
		bersifat	bersifat
		platikurtik/landai.	
	<u> </u>	1	1

2.3 Latihan Soal

Berikut ini adalah data rata-rata harian penjualan produk sepatu untuk suatu toko sepatu di Kota Semarang:

86 87 89 94 93 98 78 89 90 94 91	86	1 8	91	91	94	0	90	89	78	98	93	94	89	87	86	
--	----	-----	----	----	----	---	----	----	----	----	----	----	----	----	----	--

Berdasarkan data di atas, bentuklah histogram serta lakukan analisis deskriptif beserta interpretasinya

UJI KORELASI

3.1 Korelasi Spearman

Koefisien korelasi Spearman adalah ukuran erat-tidaknya kaitan antara dua variabel ordinal atau ukuran atas derajat hubungan antara data yang telah disusun menurut peringkat. Koefisien korelasi digunakan untuk mengukur derajat erat tidaknya hubungan antar satu variabel terhadap variabel lainnya dimana pengamatan pada masingmasing variabel tersebut didasarkan pada pemberingan peringkat tertentu yang sesuai dengan pengamatan serta pasangannya.

Misalkaan terdapat variabel X dan Y dengan sampelnya sebanyak *n* dan nilainya saling berpasangan yaitu (X1,Y1), (X2,Y2), (X3,Y3), ...,(Xn,Yn) Untuk menghitung koefisien korelasi Spearman antara *X* dan Y terlebih dahulu disusun peringkat dari seluruh sampel berpasangan Xi dan Yi kemudian koefisien korelasi Spearman dihitung menggunakan rumus:

$$r_{hitung} = 1 - \frac{6\sum_{i=1}^{n} d_i^2}{n(n^2 - 1)}$$

Dengan:

$$\sum_{i=1}^{n} d_i^2 = \sum_{i=1}^{n} [R(X_i) - R(Y_i)]^2$$

n : banyaknya pasangan pengamatan.

r_{hitung}: Koefisien korelasi Spearman

R(Xi): Peringkat data Xi R(Yi): Peringkat data Yi

Untuk mengetahui apakah koefisien korelasi yang diperoleh signifikan atau tidak, maka perlu dilakukan pengujIan secara statistik.

Bab III Uji Korelasi 27

Jenis Hipotesis	Kaidah Pengambilan Keputusan
$H_0: r = 0 (X \operatorname{dan} Y)$	Korelasi dikatakan signifikan (H ₁ diterima)
saling bebas)	jika $r_{hitung} > r_{(n-2);(\alpha/2)}$ atau $r_{hitung} < -r_{(n-2);(\alpha/2)}$.
$H_1: r \neq 0$ (terdapat	Korelasi dikatakan signifikan jika sig (2-
korelasi antara X dan Y)	tailed)> $(\alpha/2)$
H ₀ : X dan Y saling	Korelasi dikatakan signifikan (H ₁ diterima)
bebas	jika nilai $r_{hitung} > r_{(n);(\alpha)}$
H_1 : X dan Y	Korelasi dikatakan signifikan (H1 diterima)
berkorelasi positif	jika sig > α
H ₀ : X dan Y saling	Korelasi dikatakan signifikan (H ₁ diterima)
bebas	jika nilai $r_{hitung} \leftarrow r_{(n);(\alpha)}$
H_1 : X dan Y	Korelasi dikatakan signifikan (H1 diterima)
berkorelasi negatif	jika sig > α

Contoh:

Seorang guru SMA di Kota Surabaya melakukan observasi terhadap 15 siswa kelas XII untuk mengetahui apakah terdapat pengaruh antara prestasi dengan tingkat kecerdasan. Prestasi diukur berdasarkan ratarata nilai ujian akhir semester dan tingkat kecerdasan diukur berdasarkan nilai tes IQ. Berikut adalah hasilnya observsi yang diperoleh:

Nilai UAS	86	87	89	94	93	98	78	89	90	94	91	87	88	89	95	85
IQ	112	102	92	112	102	112	97	92	102	112	102	92	94	93	111	100

Berdasarkan permasalahan tersebut, prosedur untuk melakukan uji korelasi menggunakan metode Spearman adalah:

1. Lakukan pendefinisian variabel dengan nama **Prestasi** dan **IQ**. Kemudian masukkan data sesuai tabel di atas, ke pengeloh data seperti Gambar 21.

		E 2			M B			14	AAS	
	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure
1	Prestasi	Numeric	8	0		None	None	8	≣ Right	
2	IQ	Numeric	8	0		None	None	8	≣ Right	Scale 8

Gambar 22. Tampilan pendefinisian variabel dengan nama Prestasi dan IQ

Klik Analyze - Correlate -Bivariate (Gambar 22)

Gambar 23. Tampilan Analyze-Correlate-Bivariate

- 3. Masukan variable Prestasi dan IQ ke kolom Variable
- 4. Pada kolom Correlation Coefficients pilih Spearman
- 5. Pada kolom **Test of Significance** pilih **Two-Tailed** (jika uji korelasi yang akan kita lakukan adalah uji untuk dua sisi), atau pilih **One-Tailed** (jika uji korelasi yang akan kita lakukan adalah uji untuk satu sisi). Pada modul ini, dipilih **Two-Tailed** karena akan dilihat apakah terdapat korelasi positif atau negatif.
- Klik **OK**.

Output yang diperoleh seperti Gambar 23.

		Correlations		
			Prestasi	IQ
Spearman's rho	Prestasi	Correlation Coefficient	1.000	.512*
		Sig. (2-tailed)		.043
1		И	16	16
	IQ	Correlation Coefficient	.512*	1.000
		Sig. (2-tailed)	.043	
		Ν	16	16

^{*.} Correlation is significant at the 0.05 level (2-tailed)

Gambar 24. Tampilan Luaran Analyze-Correlate-Bivariate

Berdasarkan output di atas, nilai koefisien korelasi antara Prestasi dan IQ adalah 0,512 (korelasi lemah) dengan sifatnya adalah korelasi positif. Uji korelasi untuk mengetahui apakah korelasi signifikan atau tidak adalah sebagai berikut:

- a. Hipotesis
 - H_0 : Tidak terdapat korelasi yang signifikan antara Prestasi dan IQ
 - H₁ : Prestasi dan IQ saling berkorelasi (berkorelasi positif atau negatif)
- b. Tingkat signifikansi $\alpha = 0.05 (5\%)$.
- c. Statistik uji $r_{\text{hitung}} = 0.512$

- d. Kaidah pengambilan keputusan H₀ ditolak jika nilai $Sig.(2\text{-}tailed) < \left(\frac{\alpha}{2}\right)$
- e. Keputusan Menolak H₀ karena nilai *Sig.*(2-*tailed*) yang diperoleh adalah 0,043 lebih besar $\left(\frac{\alpha}{2}\right) = 0,025$.
- f. Kesimpulan Terdapat korelasi yang signifikan antara Prestasi dan IQ.

3.2 Korelasi Pearson

Korelasi Pearson merupakan salah satu ukuran korelasi yang digunakan untuk mengukur kekuatan dan arah hubungan linier dari dua veriabel. Untuk menerapkan koefisien korelasi antara dua variabel yang masing-masing mempunyai skala pengukuran interval atau rasio maka digunakan korelasi product moment yang dikembangkan oleh Karl Pearson. Dua variabel dikatakan berkorelasi apabila perubahan salah satu variabel disertai dengan perubahan variabel lainnya, baik dalam arah yang sama ataupun arah yang sebaliknya. Untuk dua variabel X dan Y yang ukuran sampelnya masing-masing adalah n, rumus korelasi Pearson diberikan sebagai berikut:

$$r_{hitung} = \frac{\left(n \sum_{i=1}^{n} X_{i} Y_{i}\right) - \left(\sum_{i=1}^{n} X_{i} \sum_{i=1}^{n} Y_{i}\right)}{\sqrt{\left(n \sum_{i=1}^{n} X_{i}^{2}\right) - \left(\sum_{i=1}^{n} X_{i}\right)^{2}} \sqrt{\left(n \sum_{i=1}^{n} Y_{i}^{2}\right) - \left(\sum_{i=1}^{n} Y_{i}\right)^{2}}}$$

Dengan,

 X_i : nilai data variabel X ke-i (i = 1, 2, ..., n)

 Y_i : nilai data variabel Y ke-i (i = 1, 2, ..., n)

Untuk mengetahui apakah koefisien korelasi yang diperoleh signifikan atau tidak, maka perlu dilakukan pengujIan secara statistik.

Jenis hipotesis	Kaidah pengambilan keputusan
$H_0: r = 0$ (X dan Y saling	Korelasi dikatakan signifikan (H1 diterima) jika
bebas)	$r_{hitung} > r_{(n-2);(\frac{\alpha}{2})}$ atau $r_{hitung} < -r_{(n-2);(\frac{\alpha}{2})}$.
$H_1: r \neq 0$ (terdapat korelasi antara X dan Y)	Korelasi dikatakan signifikan jika sig (2-tailed) > $\left(\frac{\alpha}{2}\right)$

Contoh:

Dilakukan penelitian untuk mengetahui apakah terdapat hubungan antara pendapatan dan pengeluaran. Untuk keperluan tersebut, maka dilakukan pengumpulan data terhadap 10 responden yang diambil secara random. Berdasarkan 10 responden tersebut diperoleh data pendapatan (X) dan pengeluaran (Y) per bulan sebagai berikut:

X (Pendapatan)	Y (Pengeluaran)	X (Pendapatan)	Y (Pengeluaran)
800.000	300.000	800.000	200.000
900.000	300.000	900.000	300.000
700.000	200.000	600.000	100.000
600.000	200.000	500.000	100.000
700.000	200.000	500.000	100.000

Berdasarkan permasalahan tersebut, prosedur untuk melakukan uji korelasi menggunakan metode Pearson adalah:

Melakukan input data dengan bentuk seperti Gambar 24.

Gambar 25. Tampilan Input Data Contoh Soal

- 2. Melakukan uji normalitas dengan cara:
 - a. Klik Analyze-Descriptive-Explore, Gambar 25.

Gambar 26. Tampilan Proses Analyze-Descriptive-Explore

Bab III Uji Korelasi 31

b. Masukan variable pendapatan dan pengeluaran ke dalah kolom **Dependent List** kemudian klik **Plots** dan centang **Normality Plots with Tests**, klik **Continue**, klik **OK**, Gambar 26.

Gambar 27. Tampilan Proses Normality Plots with Tests

c. Output yang diperoleh seperti Gambar 27.

Tests of Normality

	Kolm	ogorov-Smir	nov ^a	Shapiro-Wilk				
	Statistic	df	Sig.	Statistic	df	Sig.		
Pendapatan	,149	10	,200*	,918	10	,341		
Pengeluaran	,200	10	,200*	,832	10	,035		

a. Lilliefors Significance Correction
*. This is a lower bound of the true significance.

Gambar 28. Tampilan Hasil Proses Test of Normality

d. Interpretasi (Uji normalitas menggunakan metode Kolmogorov Smirnov)

Hipotesis

H₀: Data pendapatan berdistribusi Normal

H₀*: Data pengeluaran berdistribusi Normal

H₁: Data pendapatan tidak berdistribusi Normal

H₁*: Data pengeluaran tidak berdistribusi Normal

Tingkat signifikansi

$$\alpha = 0.05 (5\%)$$
.

Statistik uji

Sig-pendapatan = 0.200

Sig-pengeluaran = 0,200

Kaidah pengambilan keputusan

 H_0 atau H_0^* ditolak jika nilai Sig < α

Keputusan

Menerima H_0 karena Sig-pendapatan $(0,2) > \alpha (0,05)$

Menerima H_0^* karena Sig-pengeluaran (0,2) > α (0,05)

Kesimpulan

Data pendapatan dan pengeluaran berdistribusi Normal

- 3. Mengukur dan menguji signifikansi korelasi Pearson (uji dilakukan dengan menggunakan uji 2 sisi) antara data pendapatan dan pengeluaran dengan prosedurnya adalah sebagai berikut:
 - a. Klik **Analyze-Correlate-Bivariate**, hasilnya terlihat seperti tampilan Gambar 28.

Gambar 29. Tampilan Proses Analyze-Correlate-Bivariate

b. Masukan Variabel Pendapatan dan Pengeluaran pada kolom **Variables.**

Pada kolom **Correlation Coefficient** centang (v) **Pearson.**Pada kolom **Test Significance** pilih **Two-Tailed** untuk uji dua sisi. Klik **OK**.

Gambar 29 adalah output yang diperoleh.

Gambar 30. Tampilan Hasil Analyze-Correlate-Bivariate

Berdasarkan output di atas, nilai koefisien korelasi antara pendapatan dan pengeluaran adalah 0,913 (korelasi sangat kuat), dengan sifat korelasinya adalah positif. Uji korelasi untuk mengetahui apakah korelasi signifikan atau tidak adalah sebagai berikut:

Bab III Uji Korelasi 33

a. Hipotesis

 H_0 : Tidak terdapat korelasi yang signifikan antara Pendapatan dan Pengeluaran

H₁: Pendapatan dan Pengeluaran saling berkorelasi (berkorelasi positif atau negatif)

- b. Tingkat signifikansi: $\alpha = 0.05$ (5%).
- c. Statistik uji

 $r_{hitung} = 0.913$ Sig. (2-tailed) = 0.000

d. Kaidah pengambilan keputusan:

 H_0 ditolak jika nilai Sig.(2-tailed) < $(\alpha/2)$

e. Keputusan

Menolak H_0 dan menerima H_1 karena nilai Sig.(2-tailed) yang diperoleh adalah 0,085 lebih besar ($\alpha/2$)= 0,025.

f. Kesimpulan:

Terdapat korelasi positif yang signifikan antara pendapatan dan pengeluaran, dengan nilai korelasinya adalah 0,913.

3.3 Latihan Soal

1. Diberikan data nilai ulangan harian Matematika dari 12 siswa SMA sebelum mengikuti bimbel dan sesudah mengikuti bimbel:

Sebelum	65	60	70	77	61	72	75	59	68	70	62	55
Sesudah	80	78	85	82	80	81	90	72	75	83	82	70

Ukurlah nilai korelasi Spearman dari data tersebut, kemudian lakukan uji hipotesis untuk menguji apakah korelasi yang terbentuk signifikan.

2. Berikut ini adalah data suplay barang dan harga barang untuk periode Januari-Oktober 2019

Supply:	112	125	126	118	118	121	125	125	131	135
Price:	106	102	102	104	98	96	97	97	95	90

Ukurlah nilai korelasi dengan menggunakan metode Pearson dari data tersebut, kemudian lakukan uji hipotesis untuk menguji apakah korelasi yang terbentuk signifikan.

Bab IV

ANALISIS REGRESI SEDERHANA

Analisis regresi didefinisikan sebagai studi mengenai ketergantungan antara satu variabel terikat (Y) dengan satu atau lebih variabel bebas (X). Sifat hubungan antar variabel dalam model merupakan hubungan sebab akibat. Persamaan model regresi linier sederhana untuk dua variabel *X* dan *Y* adalah sebagai berikut:

$$Y = \beta_0 + \beta_1 X + e$$

Asumsi-asumsi model:

- 1. Y adalah variabel respon (dependent) yang digunakan sebagai prediksi berdasarkan nilai variabel bebas (independent) X
- 2. β_0 , β_1 adalah parameter yang nilainya belum diketahui.
- 3. Xadalah variabel bebas (variabel kontribusi) yang diukur tanpa error.
- 4. *e* adalah komponen *error* random yang saling bebas, dan mempunyai distribusi normal dengan rat-rata nol dan varian σ² yang ditentukan berdasarkan nilai data variabel tak bebas X. Sehingga asumsi dari *error* yang harus terpenuhi pada model regresi linier sederhana adalah:
 - a. error berdistribusi normal (asumsi normalitas error)
 - b. variansi *error* bernilai konstan (asumsi homogenitas *error*)
 - c. antar nilai *error* tidak terdapat korelasi yang signifikan (asumsi nonautokorelasi *error*)

Berdasarkan asumsi model diatas, dapat diartikan bahwa parameter β_0 , β_1 dan variabel bebas X adalah bersifat non random (fix). Sehingga *error* random ϵ yang mempunyai distribusi normal dengan ratarata nol dan varian σ^2 identik dengan observasi-observasi variabel Y dengan distribusi Normal dengan rata-rata $\beta_0 + \beta_1$ X dan varian σ^2 , yang dapat diuji dengan menggunakan uji Kolgomorov Smirnov.

4.1 Pembentukan Model Regresi Linier Sederhana Menggunakan SPSS

Data yang digunakan dalam praktikum kali ini adalah sebagai berikut:

Χ	45	48	50	55	65	70	75	72	80	85
Y	25	30	35	30	40	50	45	55	60	65

Langkah-langkah pembentukan model regresi adalah sebagai berikut:

1. Melakukan input data seperti Gambar 30

Gambar 31. Tampilan Proses Input Data

- 2. Sebelum melakukan pemodelan, ada baiknya terlebih dahulu kita membuat grafik plot antara X dan Y untuk melihat apakah hubungan antara kedua bersifat linier. Cara membetuk grafik adalah seperti Gambar 31 sampai Gambar 33.
 - a. Klik Graph Legacy Dialog-Scatter/Dot (Gambar 31)

Gambar 32. Tampilan Legacy Dialog-Scatter/Dot

b. Pilih Simple Scatter, klik Define (Gambar 32)

Gambar 33. Tampilan Simple Scatter

- c. Pindahkan variabel Y ke Y Axis dan variabel X ke X Axis.
- d. Klik OK
- e. Output yang diperoleh seperti Gambar 33.

Gambar 34. Tampilan Hasil Proses Analisis

Plot yang terbentuk menunjukkan bahwa hubungan antara X dan Y cenderung bersifat linier, sehingga dapat dimodelkan dengan metode Regresi Linier Sederhana.

- 3. Pemodelan regresi linier sederhana. Langkah pemodelan adalah sebagai berikut:
 - a. Klik **Analyze-**Pilih **Regresion-**Klik **Linear** (Gambar 34)

Gambar 35. Tampilan Analyze-Regresion-Linear

b. Pindahkan variabel terikat (Y) dalam kotak **Dependent** dan variabel bebas (X) dalam kotak **Independent**

Gambar 36. Tampilan Pemindahan Variabel Dependent ke Independent

c. Klik Plots - Pindahkan variabel *SRESID pada kotak Y dan *ZPRED pada kotak X (untuk keperluan uji homogenitas error) - beri tanda centang (v) pada bagian Histogram dan atau Normal Probability Plot (untuk keperluan uji normalitas error)-Klik Continue.

Gambar 37. Tampilan Linear Regression Plots

d. Klik **Statistics** – beri tanda tanda centang (v) pada bagian **Estimates**, **Model Fit**, dan **Durbin Watson** (untuk keperluan uji nonautokorelasi *error*) – klik **Continue**, Gambar 37.

Gambar 38. Tampilan Linear Regression: Statistics

e. Klik **OK**

4.2 Interpretasi Output Pemodelan

1. Model Regresi yang Terbentuk

 $Y = \beta_0 + \beta_1 X + e$, nila β_0 dan β_1 dapat dilihat pada tabel **Coefficient** berikut:

Coefficients^a

Γ		Unstandardized Coefficients		Standardized Coefficients		
M	lodel	В	Std. Error	Beta	t	Sig.
1	(Constant)	-15,906	7,069		-2,250	,055
1	X	,921	,107	,950	8,585	,000

a. Dependent Variable: Y

$$\beta_0 = B \text{ Constant} = -15,906$$

$$\beta_1 = B X = 0.921$$

Sehingga diperoleh model regresinya adalah: Y=-15,906 + 0,921X+e.

2. Uji Kecocokan Model (Uji F)

Hipotesis:

H₀ : model regresi tidak cocok

H₁ : model regresi cocok

Tingkat Signifikansi: $\alpha = 0.05 (5\%)$

Statistik Uji:

Nilai **F hitung** dan nilai **Sig** dapat dilihat pada tabel **ANOVA** berikut:

	ANOVA									
Model		Sum of Squares	df	Mean Square	F	Sig.				
1	Regression	1535,795	1	1535,795	73,701	,000ª				
	Residual	166,705	8	20,838						
	Total	1702 500	l a							

a. Predictors: (Constant), X b. Dependent Variable: Y

F-hitung = 73,70

Sig = 0.000

Kaidah pengambilan keputusan: H_0 ditolak jika nilai Sig < α

Keputusan : Menolak H₀ dan menerima H₁ karena nilai Sig (0,000)

 $< \alpha (0.05)$

Kesimpulan : Pada tingkat signifikansi α = 0,05 dapat dikatakan

bahwa model regresi cocok

3. Uji Signifikansi Parameter (Uji t)

Hipotesis:

 H_0 : $\beta_1 = 0$ (parameter β_1 tidak berpengaruh signifikan terhadap model)

 $H_1: \beta_1 \neq 0$ (parameter β_1 berpengaruh signifikan terhadap model)

Tingkat Signifikansi: $\alpha = 0.05$ (5%)

Statistik Uji:

Nilai **t hitung** dan nilai **Sig** untuk β_1 dapat dilihat pada tabel Coefficient berikut:

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients			t-hitu	ng = 8,585
Model		В	Std. Error	Beta	t	Sig.	Sig	= 0.000
1	(Constant)	-15,906	7,069		-2,250	,055	Jig	0,000
	Χ	,921	,107	,950	8,585	,000		

a. Dependent Variable: Y

Kaidah pengambilan keputusan: H_0 ditolak jika nilai Sig < α . Keputusan : Menolak H_0 dan menerima H_1 karena nilai Sig (0,000) < α (0,05).

Kesimpulan : Pada tingkat signifikansi $\alpha = 0.05$ dapat dikatakan bahwa parameter β₁ berpengaruh signifikan terhadap model.

4. Koefisien Determinasi dan Korelasi

Nilai \mathbb{R}^2 dan **r** untuk β_1 dapat dilihat pada tabel **Model Summary** berikut:

Model Summary^b

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin- Watson
1	,950ª	,902	,890	4,565	2,387

a. Predictors: (Constant), X b. Dependent Variable: Y

Berdasarkan tabel di atas, diperoleh hasil bahwa:

R² = 0,902 (90,2% nilai Y dipengaruhi oleh nilai variabel X, sedangkan 9,8% sisanya dipengaruhi oleh variabel lain).

r = 0,950 (korelasi yang terjadi antara X dan Y sangat kuat dan bersifat positif).

4.3 Pengujian Asumsi

1. Asumsi Normalitas Error

Uji normalitas digunakan dalam model regresi untuk menguji apakah nilai eror yang dihasilkan terdistribusi secara normal atau tidak. Model regresi yang baik adalah model regresi yang memiliki nilai *error* yang terdistribusi secara normal. Terdapat 2 metode uji normalitas yaitu:

a. Uji Visual

Pada metode ini, normalitas *error* dilihat secara visual melalui grafik **Normal P-P Plot of Regression Standardized Residual** yang terdapat pada halaman **Output**. Jika plot-plot *error* berada di sekitar garis lurus, maka secara visual dapat dikatakan bahwa *error* berdistribusi normal. Berdasarkan output, diperoleh grafik **Normal P-P Plot of Regression Standardized Residual** sebagai berikut:

Karena plot *error* menyebar disekiar garis lurus, secara visual dapat dikatakan bahwa *error* model berdistribusi Normal.

b. Uji formal melalui uji Kolmogorov Smirnov Uji formal dilakukan karena terkadang uji visual memberikan hasil yang tidak cukup meyakinkan. Langkah uji Kolmogorov Smirnov menggunakan SPSS adalah sebagai berikut: 1. Klik **Analyze**, pilih **Non Parametric Test**, pilih **Legacy Dialog**, pilih **1-Sample K-S**, Gambar 38.

Gambar 39. Tampilan Analyze-Non Parametric Test-Legacy Dialog, 1-Sample K-S.

2. Pada kotak dialog, masukan variabel **Unstandardized Residuals** ke kotak **Test Variabel List**, kemudian pada kolom **Test Distribution** centang pilihan **Normal**, kemudian klik **OK**, seperti tampilan 39.

Gambar 40. Tampilan one-sample Kolmogorov-Smirnov Test

3. Output yang diperoleh adalah sebagai berikut:

		Unstandardiz ed Residual
N		10
Normal Parameters ^{a,b}	Mean	,0000000
	Std. Deviation	4,30381394
Most Extreme Differences	Absolute	,231
	Positive	,130
	Negative	-,231
Kolmogorov-Smirnov Z		,729
Asymp. Sig. (2-tailed)		,663

a. Test distribution is Normal.

4. Uji Hipotesis untuk normalitas *error*

Hipotesis

H₀: error model berdistribusi Normal

H₁: error model tidak berdistribusi Normal

- Tingkat signifikansi: $\alpha = 0.05 (5\%)$.
- Statistik uji: Asymp Sig. (2-tailed) = 0,663
- Kaidah pengambilan keputusan: H_0 ditolak jika nilai Asymp Sig. (2-tailed) < α .
- Keputusan: Menerima H_0 karena Asymp Sig. (2-tailed) $(0,663) > \alpha (0,05)$.
- Kesimpulan: *Error* model berdistribusi Normal.

2. Asumsi Homogenitas Variasi Error

Uji homogenitasi digunakan untuk mengetahui apakah asumsi homogenitas variansi *error* terpenuhi. Sama seperti uji normalitas, uji homogenitas errror pada model regresi cukup dilakukan dengan uji secara visual. Uji secara visual dilakukan dengan cara melihat pola titik-titik pada scatterplot antara studentized residual (SRESID) dengan standardized predicted value (ZPRED). Jika terjadi pola tertentu, seperti titik-titik yang ada membentuk suatu pola tertentu yang teratur (bergelombang, melebar kemudian menyempit), maka variansi *error* tidak homogen. Jika tidak terdapat pola yang jelas, yaitu plot menyebar secara di atas dan di bawah angka 0 pada sumbu

b. Calculated from data.

Y, maka variansi *error* homogen. Cara kedua adalah dengan uji formal (melalui uji hipotesis), meskipun tak semudah cara pertama, cara kedua dipandang sebagai cara yang lebih efektif dan memberikan hasil yang lebih akurat. Sccaterplot yang terbentuk untuk pemodelan regresi antara variabel X dan Y adalah sebagai berikut:

Dari visual sresid by zpred scatterplot terlihat bahwa titik titik didalam plot menyebar secara acak dan tidak membentuk pola., sehingga dapat disimpulkan bahwa variansi error homogen.

3. Asumsi Nonautokorelasi Error

Untuk mengetahui apakah asumsi nonautokorelasi *error* terpenuhi, dapat dilakukan menggunakan uji Durbin Waston. Misalkan r adalah nilai korelasi antara e_i dengan e_{i+1} (untuk setiap i, dengan i = 1, 2, ..., n), uji hipotesis untuk uji Durbin Watson yaitu:

Hipotesis

 H_0 : r = 0 (tidak ada autokorelasi)

 H_1 : $r \neq 0$ (terdapat autokorelasi)

• Tingkat signifikansi

Tingkat signifikansi: $\alpha = 0.05$ (5%)

Statistik uji

Model Summary ^b								
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin- Watson			
1	,950ª	,902	,890	4,565	2,387			
a. Pre b. De								

d = 2,387 (nilai **Durbin-Watson** pada tabel Model Summary)

• Kaidah pengambilan keputusan

Diketahui bahwa α = 0,05 (5%), k (banyak variabel bebas) = 1 dan n (ukuran sampel) = 10. Maka berdasarkan tabel Durbin Watson, diperoleh d_L = 0,879 dan d_U =1,32.

Kaidah pengambilan keputusannya adalah sebagai berikut:

 $d < d_L$: menolak H_0 $d > d_U$: menerima H_0

 $d_U \le d \le 4 - d_U$: pengujian tidak memberikan kesimpulan

yang meyakinkan

• Keputusan: Menerima H_0 karena nilai $d>d_U$.

• Kesimpulan: Jadi pada tingkat signifikansi $\alpha = 0.05$ dapat disimpulkan bahwa tidak terdapat autokorelasi pada *error* model (asusmsi nonautokorelasi terpenuhi).

4.4 Latihan Soal

Seorang Mahasiswa ingin melakukan analisis regresi terhadap data hasil penelitiannya yang berjudul Hubungan antara motivasi dan hasil nilai matematika di SMA Maju Jaya. Dari hasil penelitian mahasiswa tersebut diperoleh data sebagai berikut:

X	Y	X	Y	X	Y
34	32	33	31	37	33
38	35	32	31	36	32
34	31	42	36	37	34
40	38	40	37	39	35
30	29	42	35	40	36
40	35	42	38	33	32
40	33	41	37	34	32
34	30	32	30	36	34
35	32	34	30	37	32
39	36	36	30	38	34

Berdasarkan hasil penelitian di atas, bentuklah model regresi linier sederhananya, kemudian lakukan uji kecocokan model, uji signifikansi parameter, dan uji asumsi.

PENAKSIRAN INTERVAL

Estimasi interval adalah suatu selang nilai yang pada tingkat kepercayaan tertentu diyakini memuat suatu nilai parameter. Estimasi interval memiliki batas toleransi yang disebut dengan interval keyakinan (batas nilai jangkauan). Berikut ini adalah langkah-langkah estimasi interval untuk nilai µ menggunakan SPSS:

1. Input data

Misalkan data yang dimilik data IHSG Periode 03/02/2020 – 28/02/2020 dengan nilainya adalah sebagai berikut:

Periode	Harga	Periode	Harga
03/02/20	5884,17	17/02/20	5867,52
04/02/20	5922,34	18/02/20	5886,96
05/02/20	5978,51	19/02/20	5928,79
06/02/20	5987,15	20/02/20	5942,49
07/02/20	5999,61	21/02/20	5882,25
10/02/20	5952,08	24/02/20	5807,05
11/02/20	5954,40	25/02/20	5787,14
12/02/20	5913,08	26/02/20	5688,92
13/02/20	5871,95	27/02/20	5535,69
14/02/20	5866,94	28/02/20	5452,70

Sehingga data yang telah diinputkan pada SPSS seperti pada Gambar 40.

Gambar 41. Tampilan Input Data Proses Analisis

- 2. Klik Analyze Descriptive Statistics Explore
- 3. Pilih IHSG lalu pindahkan ke kolom **Dependent List** (Gambar 41)

Gambar 42. Tampilan Pemilihan IHSG

4. Klik **Statistics** – centang bagian **Descriptives** – Pada bagian **Confidence Interval for Mean**, isikan tingkat kepercayaan sesuai yang anda inginkan (pada contoh ini, dipilih tingkat kepercayaan sebesar 95%), seperti pada Gambar 42.

Gambar 43. Tampilan Untuk Mengisi Tingkat Kepercayaan

- 5. Klik Continue klik OK
- 6. Hasil yang diperoleh adalah sebagai berikut:

		•		
			Statistic	Std. Error
IHSG	Mean	5855,4870	32,25843	
	95% Confidence Interval	Lower Bound	5787,9693	
	for Mean	Upper Bound	5923,0047	
	5% Trimmed Mean	5869,8572		
	Median	5885,5650		
	Variance	20812,126		
	Std. Deviation	144,26408		
	Minimum	5452,70		
	Maximum	5999,61		
	Range	546,91		
	Interquartile Range	127,66		
	Skewness	-1,801	,512	
	Kurtosis	2,939	,992	

Descriptives

7. Berdasarkan output yang diperoleh, maka interval keyakinan 95% untuk nilai μ adalah:

 $5787,97 \le \mu \le 5923,001$

Bab VI

UJI HIPOTESIS

6.1 Uji Hipotesis untuk Mean Populasi

Uji ini bertujuan untuk mengetahui apakah nilai rata-rata populasi sama dengan suatu nilai tertentu (μ_0). Prosedur uji hipotesis menggunakan SPSS adalah sebagai berikut:

a. Melakukan input data.

Misalkan data yang dimiliki adalah data keuntungan bersih (dalam juta rupiah) 20 toko sepeda di Kota Semarang yang diambil secara acak untuk periode waktu pekan pertama bulan Juni, dengan nilainya adalah sebagai berikut:

Toko ke	Keuntungan	Toko ke	Keuntungan
1	11,55	11	12,31
2	11,62	12	12,09
3	11,52	13	11,93
4	11,75	14	12,21
5	11,9	15	12,32
6	11,64	16	11,93
7	11,8	17	11,85
8	12,03	18	11,76
9	12,94	19	12,16
10	11,92	20	11,77

b. Melakukan uji normalitas data

Karena pada uji hipotesis terdapat asumsi bahwa data harus berdistribusi Normal, maka perlu dilakukan uji normalitas terlebih dahulu. Uji normalitas dilakukan menggunakan uji Kolmogorov-Smirnov (caranya seperti pada Bab III, bagian 3.2). Output uji normalitas adalah sebagai berikut:

Bab VI Uji Hipotesis

Tests of Normality

	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Statistic	df	Sig.	Statistic	df	Sig.
Keuntungan	,174	20	,114	,899	20	,040

a. Lilliefors Significance Correction

Berdasarkan output di atas, karena nilai Sig yang diperoleh adalah $0,114 > \alpha$ (0,05) maka dapat disimpulkan bahwa data berdistribusi Normal.

- c. Memilih nilai μ_0 . Pada contoh ini, dipilih $\mu_0 = 11$.
- d. Melakukan uji kesamaan mean dengan cara:
 Klik Analyze Compare Means One-Sample T Test, seperti terlihat pada Gambar 43

Gambar 44. Tampilan Uji Kesamaan Mean

e. Pada kotak dialog yang tersedia, masukkan variabel **Keuntungan** kebagian **Test Variable(s)**. Pada bagian **Test Value**, masukkan angka 11. Klik **OK**, Gambar 44.

Gambar 45. Tampilan variabel Keuntungan kebagian Test Variable(s)

- f. Output yang diperoleh adalah sebagai berikut:
 - → T-Test

[DataSet0]

One-Sample Statistics

	N	Mean	Std. Deviation	Std. Error Mean
Keuntungan	20	11,9500	,33082	,07397

One-Sample Test

		Test Value = 11									
					95% Confidence Interval of the Difference						
	t	df	Sig. (2-tailed)	Mean Difference	Lower	Upper					
Keuntungan	12,842	19	,000	,95000	,7952	1,1048					

- g. Interpretasi output (uji hipotesis)
 - Hipotesis:
 - o H_0 : μ = 11 (rata-rata populasi sama dengan 11)
 - o $H_1: \mu \neq 11$ (rata-rata populasi tidak sama dengan 11)
 - Tingkat signifikansi: α = 0,05.
 - Statistik Uji:

Karena ukuran sampelnya kecil, statistik ujinya menggunakan thitung

t-hitung = 12,842

- Sig.(2-tailed) = 0,000
- Kaidah pengambilan keputusan: tolak H_0 jika Nilai Sig.(2-tailed) $< (\alpha/2)$

- Keputusan: Menolak H_0 dan menerima H_1 karena nilai Sig.(2-tailed) = $0.000 < (\alpha/2)$
- Kesimpulan: Pada taraf signifikansi α = 0,05 dapat disimpulkan bahwa nilai rata-rata populasi tidak sama dengan 11.

6.2 Uji Hipotesis untuk Perbandingan Dua Populasi

1. Uji Hipotesis Perbandingan Rata-Rata Dua Populasi dengan Sampel yang Diambil Saling Bergantung/ Berpasangan

Pengujian ini melibatkan dua populasi yang saling berpasangan, dengan tujuan pengujian adalah untuk mengetahui apakah terdapat perbedaan nilai rata-rata diantara kedua populasi tersebut. Prosedur uji hipotesis menggunakan SPSS adalah sebagai berikut:

a. Melakukan input data.

Misalkan data yang dimiliki adalah data perbandingan nilai ulangan harian Matematika dari 12 siswa SMA sebelum mengikuti bimbel dan sesudah mengikuti bimbel:

Sebelum	65	60	70	77	61	72	75	59	68	70	62	55
Sesudah	80	78	85	82	80	81	90	72	75	83	82	70

b. Melakukan uji normalitas data

Karena pada uji hipotesis ini terdapat berdistribusi Normal, maka perlu dilakukan uji normalitas terlebih dahulu. Uji normalitas dilakukan menggunakan uji Kolmogorov-Smirnov (caranya seperti pada Bab III, bagian 3.2). Output uji normalitas adalah sebagai berikut:asumsi bahwa data harus

Tests of Normality

	Kolm	ogorov-Smir	nov ^a	Shapiro-Wilk			
	Statistic	df	Sig.	Statistic	df	Sig.	
SEBELUM	,144	12	,200*	,965	12	,855	
SESUDAH	,179	12	,200*	,965	12	,854	

a. Lilliefors Significance Correction

^{*.} This is a lower bound of the true significance.

Berdasarkan output di atas, karena nilai Sig yang diperoleh adalah 0,200 (data Sebelum) dan 0,200 (data sesudah) > α (0,05) maka dapat disimpulkan bahwa data berdistribusi Normal.

Melakukan uji perbandingan mean dengan cara:
 Klik Analyze - Compare Means - Paired-Samples T Test, seperti
 Gambar 45

Gambar 46. Tampilan Analyze – Compare Means – Paired-Samples T Test

d. Pada kotak dialog yang tersedia, masukkan variabel **SEBELUM** ke bagian **Paired Variables-Variable1**, dan variabel **SESUDAH** ke bagian **Paired Variables-Variable2**. Klik **OK**, Gambar 46.

Gambar 47. Tampilan Paired Samples T Test

e. Klik **Options.** untuk menentukan tingkat kepercayaan, klik **Continue**, klik **OK**, Gambar 47

Pada contoh ini dipilih tingkat kepercayaan sebesar 95%, sehingga nilai α yang digunakan adalah 100%-95% = 5% = 0,05.

Gambar 48. Tampilan Paired Samples T Test: Options

f. Output yang diperoleh adalah sebagai berikut:

	Paneu Sanques rest										
ſ			Paired Differences								
						95% Confidence Interval of the Difference					
l			Mean	Std. Deviation	Std. Error Mean	Lower	Upper	t	df	Sig. (2-tailed)	
[Pair 1	SEBELUM - SESUDAH	-13,667	4,638	1,339	-16,614	-10,720	-10,207	11	,000	

- g. Interpretasi output (uji hipotesis)
 - Hipotesis:

 H_0 : $\mu_1 = \mu_2$ (rata-rata nilai sebelum bimbel sama dengan sesudah bimbel)

 $H_1: \mu_1 \neq \mu_2$ (rata-rata nilai sebelum bimbel tidak sama dengan sesudah bimbel)

- Tingkat signifikansi: $\alpha = 0.05$.
- Statistik Uji:

Karena ukuran sampelnya kecil, statistik ujinya menggunakan t-hitung

t-hitung = -10,207

Sig.(2-tailed) = 0,000

- Kaidah pengambilan keputusan: tolak H_0 jika Nilai Sig.(2-tailed) < $(\alpha/2)$
- Keputusan: Menolak H_0 dan menerima H_1 karena nilai Sig.(2-tailed) = $0,000 < (\alpha/2) = 0,025$

• Kesimpulan: Pada taraf signifikansi α = 0,05 dapat disimpulkan bahwa rata-rata nilai sebelum bimbel tidak sama dengan sesudah bimbel.

2. Uji Hipotesis Perbandingan Rata-Rata Dua Populasi, dengan Sampel yang Diambil Saling Bebas

Pengujian ini melibatkan dua populasi yang saling bebas dan tidak berpasangan, dengan pengujian adalah untuk mengetahui apakah terdapat perbedaan nilai rata-rata diantara kedua populasi tersebut. Prosedur uji hipotesis menggunakan SPSS adalah sebagai berikut:

a. Melakukan input data

Misalkan data yang dimiliki adalah data perbandingan penjualan sepeda motor merek "ABC" di kota Semarang dan Kota Surabaya bulan Januari 2020. Sampel yang ditentukan sebanyak 15 dealer sepeda motor yang dipilih secara acak, dengan nilainya adalah sebagai berikut:

Semarang 206 188 205 187 194 193 207 185 189 213 192 210 194 178 205.

Surabaya 177 197 206 201 180 176 185 200 197 192 198 188 189 203 192.

- Untuk menginputkan data, pertama pada variabel view definisikan variabel **Kota** dan **Penjualan**.
- Pada variabel Kota, definisikan nilai Values seperti Gambar
 48.

Gambar 49. Tampilan Value Labels

Klik OK

b. Melakukan uji normalitas data (menggunakan uji Kolmogorov Smirnov) dan uji homogenitas variansi

Karena pada uji hipotesis ini terdapat asumsi bahwa data harus berdistribusi Normal, maka perlu dilakukan uji normalitas terlebih dahulu. Uji normalitas dilakukan menggunakan uji Kolmogorov-Smirnov dengan cara:

- Klik Analyze Descriptive Statistics Explore.
- Masukkan variabel Penjualan ke bagian Dependent List, dan variabel Kota ke bagian Factor List.
- Klik **Plots** centang bagian **Normality plots with tests** klik **Continue** klik **OK**.

Output uji normalitas adalah sebagai berikut:

Tests of Normality®

		Kolmogorov-Smirnov ^a			Shapiro-Wilk			
	Kota	Statistic	df	Sig.	Statistic	df	Sig.	
Penjualan	Semarang	,208	14	,104	,942	14	,440	
	Surabaya	,166	15	,200*	,948	15	,490	

a. Lilliefors Significance Correction

Berdasarkan output di atas, karena nilai Sig yang diperoleh adalah 0,104 (untuk Semarang) dan 0,200 (untuk Surabaya) > α (0,05) maka dapat disimpulkan bahwa data berdistribusi Normal.

c. Melakukan uji perbandingan mean dengan cara:
 Klik Analyze - Compare Means - Independents-Samples T Test,
 Gambar 49.

Gambar 50. Tampilan Analyze – Compare Means – Independents-Samples T Test

^{*.} This is a lower bound of the true significance.

b. Penjualan is constant when Kota = 0. It has been omitted.

d. Pada kotak dialog yang tersedia, masukkan variabel **Penjualan** ke bagian **Test Variable(s)**, seperti Gambar 50.

Masukkan variabel Kota ke bagian Grouping Variable.

Klik **Define Groups.. -** Klik tanda bulat pada **Use specified values** - isikan angka 1 pada **Group 1**, dan angka 2 pada **Group 2**. Klik **Continue.**

Gambar 51. Tampilan Independent-Samples T Test

e. Klik **Options...** untuk menentukan tingkat kepercayaan, klik **Continue**, klik **OK**, Gambar 51.

Pada contoh ini dipilih tingkat kepercayaan sebesar 95%, sehingga nilai α yang digunakan adalah 100%-95% = 5% = 0,05.

Gambar 52. Tampilan Independent-Samples T Test: Continue

f. Output yang diperoleh adalah sebagai berikut:

Group Statistics									
	Kota	N	Mean	Std. Deviation	Std. Error Mean				
Penjualan	Semarang	15	196,40	10,480	2,706				
	Surabaya	15	192,07	9,438	2,437				

	Independent Samples Test										
Levene's Test for Equality of Variances						t-test for Equality of Means					
									95% Confidenc Differ		
		ı	F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	Lower	Upper
Penjualan	Equal variances assumed		,554	,463	1,190	28	,244	4,333	3,641	-3,126	11,792
	Equal variances n assumed	ot			1,190	27,698	,244	4,333	3,641	-3,129	11,796

g. Interpretasi output (uji hipotesis)

Sebelum kita melakukan uji kesamaan rata-rata, ada baiknya kita melakukan uji kesamaan variansi sampel untuk kedua populasi. Uji kesamaan variansi dapat dilakukan menggunakan uji Levene sebagai berikut:

• Hipotesis:

H₀: Variansi sampel 15 dealer di Kota Semarang sama dengan Kota Surabaya

H₁: Variansi sampel 15 dealer di Kota Semarang tidak sama dengan Kota Surabaya

- Tingkat signifikansi: $\alpha = 0.05 (5\%)$
- Statistik uji:

F-hitung = 0.329

Sig = 0.571

- Kaidah pengambilan keputusan: H_0 ditolak jika Sig < α (0,05).
- Keputusan: Menerima H_0 karena Sig $(0.571) > \alpha (0.05)$.
- Kesimpulan: Variansi sampel 15 dealer di Kota Semarang sama dengan Kota Surabaya

Karena variansi sampelnya sama, maka kita dapat mengasumsikan bahwa variansi populasi adalah sama. Selanjutnya uji kesamaan rata-rata dapat dilakukan dengan cara:

• Hipotesis:

 $H_0: \mu_1 = \mu_2$ (rata-rata penjualan di Kota Semarang sama dengan Kota Surabaya)

 $H_1: \mu_1 \neq \mu_2$ (rata-rata penjualan di Kota Semarang tidak sama dengan Kota Surabaya)

- Tingkat signifikansi: $\alpha = 0.05$.
- Statistik Uji:
 t-hitung = 1,190 dan Sig.(2-tailed) = 0,244
- Kaidah pengambilan keputusan: tolak H_0 jika Nilai Sig.(2-tailed) < $(\alpha/2)$
- Keputusan: Menerima H_0 karena nilai Sig.(2-tailed) = 0,244 > $(\alpha/2)=0,025$
- Kesimpulan: Pada taraf signifikansi α = 0,05 dapat disimpulkan bahwa rata-rata penjualan di Kota Semarang sama dengan di Kota Surabaya.

6.3 Latihan Soal

1. Berikut ini adalah data waktu tunggu yang diperlukan oleh 22 alumni Prodi Sains Data angkatan 2015 dari mereka lulus sampai dengan mereka memperoleh pekerjaan (waktu dihitung dalam bulan)

alumni	Gaji	alumni	Gaji	alumni	Gaji
ke-	pertama	ke-	pertama	ke-	pertama
1	5	9	4.5	17	5
2	5.5	10	5	18	5.5
3	4.5	11	5	19	4.5
4	5	12	4.5	20	5.5
5	5	13	4.5	21	5
6	6	14	5.5	22	5.5
7	5	15	4		
8	5	16	5		

Lakukanlah uji hipotesis untuk menguji apakah rata-rata waktu tunggu yang diperlukan sama dengan 4 bulan?

2. Berikut ini adalah data jumlah penjualan mingguan BBM jenis pertalite (dalam ratusan liter) dari 12 toko SPBU di Kota Semarang dan Kabupaten Demak yang dipilih secara acak:

SPBU ke-	Semarang	Demak	SPBU ke-	Semarang	Demak
1	300	274	7	288	315
2	280	220	8	321	258
3	344	308	9	376	318
4	385	336	10	290	310
5	372	198	11	301	332
6	360	300	12	283	263

Lakukanlah uji hipotesis untuk menguji apakah rata-rata penjualan BBM jenis pertalite di Kota Semarang sama dengan Kabupaten Demak?

Bab VII

UJI CHI KUADRAT

7.1 Uji Chi Kuadrat untuk Memeriksa Ketidakbergantungan Antar Populasi

Uji ini digunakan untuk membandingkan apakah dua populasi memiliki ketergantungan satu sama lain. Uji Chi Kuadrat termasuk kedalam statistika non parametrik, karena dalam pengujiannya tidak memerlukan asumsi bahwa data harus mengikuti distribusi tertentu. Studi kasus yang digunakan dalam praktikum kali ini adalah "Apakah terdapat ketergantungan/hubungan antara pendapatan perbulan dengan tingkat pendidikan?". Adapun bentuk kuesioner yang diajukan adalah:

- 1. Pertanyaan kuesoioner variabel tingkat pendidikan. Apakah tingkat pendidikan terakhir anda? (1) SMA/Sederajat, (2) S-1/D-IV.
- 2. Pertanyaan kuesoioner variabel jumlah penghasilan perbulan. Berapakah kisaran pendapatan perbulan yang anda peroleh? (1) < 2,5 juta, (2) 2,5-5 juta.

Kuesioner tersebut diajukan kepada 30 responden yang dipilih secara acak. Hasil jawabannya adalah:

Responden	Pendidikan	Penghasilan	Responden	Pendidikan	Penghasilan
ke	terakhir		ke	terakhir	
1	1	1	16	2	2
2	1	1	17	2	2
3	1	1	18	2	2
4	1	1	19	2	2
5	1	1	20	2	2
6	1	1	21	2	2

7	1	1	22	2	2
8	1	1	23	2	2
9	1	1	24	2	2
10	1	1	25	2	2
11	2	1	26	2	2
12	2	1	27	2	2
13	2	1	28	2	2
14	1	2	29	2	2
15	1	2	30	2	2

Jika disederhanakan, hasilnya adalah:

Penghasilan	Pendidikan T	Jumlah	
per bulan	SMA Sederajat	S-1/D-IV	
< 2,5 juta	10 orang	3 orang	13 orang
2,5 – 5 juta	2 orang	15 orang	17 orang
Jumlah	12 orang	18 orang	30 orang

Langkah-langkah analisis menggunakan SPSS:

- 1. Input data.
 - a. Untuk variabel **Pendidikan Terakhir**, pada **variabel view** diisi dengan ketentuan sebagai berikut:

Name: Pendidikan; Type: Numeric; Width: 8; Decimals: 0; Label: Pendidikan terakhir. Values: Klik kolom None pada Values sampai muncul kotak dialog Value Label. Pada kotak Value isikan 1, dan pada kotak Label isikan SMA/Sederajat. lalu klik Add, pada layar akan muncul, seperti tambilan Gambar 52.

Gambar 53. Tampilan Value Labels

Berikutnya, isi kembali kotak **Value** dengan angka 2, pada kotak **Label** isikan **S-1/D-IV**, klik **Add**. Tampak pada layar atau seperti terlihat pada Gambar 53. klik **OK**

Gambar 54. Tampilan Pengisian Data Untuk Value Labels

b. Untuk variabel **Penghasilan**, pada **variabel view** diisi dengan ketentuan sebagai berikut:

Name: **Penghasilan**; Type: **Numeric**; Width: **8**; Decimals: **0**; Label: **Penghasilan dalam 1 bulan**; Values: Klik kolom **None** pada **Values** sampai muncul kotak dialog **Value Label**. Pada kotak **Value** isikan 1, dan pada kotak **Label** isikan **Kurang dari 2,5 Juta**. lalu klik **Add**, pada layar akan muncul tampilan seperti Gambar 54.

Gambar 55. Tampilan Pengisian Data ke-1 Untuk Value Labels

Berikutnya, isi kembali kotak **Value** dengan angka 2, pada kotak **Label** isikan **2,5 – 5 Juta**, klik **Add**. Tampak pada layar (Gambar 55), kemudian klik **OK**

Gambar 56. Tampilan Pengisian Data ke-2 Untuk Value Labels

Selanjutnya, untuk variabel **Pendidikan** dan **Penghasilan**, isikan Missing: **None**, Columns: **8**, Align: **Right**, Measure: **Nominal**, dan Role: **Input**.

Jika sudah benar, tampilan dari **Variabel View** seperti terlihat pada Gambar 55.

Gambar 57. Tampilan Pengisian Missing: None, Columns: 8, Align: Right, Measure: Nominal, dan Role: Input

2. Pada **Data View**, isikan nilai untuk setiap variabel sesuai dengan hasil survei yang diperoleh, yaitu dimasukan seperti tampilan Gambar 56.

	Pendidikan	Penghasilan		Pendidikan	Penghasilan		Pendidikan	Penghasilan
1	1	1	11	2	1	21	2	2
2	1	1	12	2	1	22	2	2
3	1	1	13	2	1	23	2	2
4	1	1	14	1	2	24	2	2
5	1	1	15	1	2	25	2	2
6	1	1	16	2	2	26	2	2
7	1	1	17	2	2	27	2	2
8	1	1	18	2	2	28	2	2
9	1	1	19	2	2	29	2	2
10	1	1	20	2	2	30	2	2

Gambar 58. Tampilan Data View

3. Klik **Analyze - Descriptive Statistics - Crosstabs** (Gambar 57)

Gambar 59. Tampilan Analyze - Descriptive Statistics - Crosstabs

4. Pada kota dialog **Crosstabs**, masukan **Penghasilan** ke kotak **Row(s)**, dan Pendidikan ke kotak **Column(s)**, Gambar 58.

Gambar 60. Tampilan Analyze - Descriptive Statistics: Crosstabs

5. Klik **Statistics**, centang **Chi-Square**, klik **Continue**, klik **OK**, Gambar 59.

Gambar 61. Tampilan Analyze - Descriptive Statistics: Chi-square

6. Output yang diperoleh adalah:

Chi.	Saua	то Т	oete

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	13,032ª	1	,000		
Continuity Correction®	10,458	1	,001		
Likelihood Ratio	14,020	1	,000		
Fisher's Exact Test				,001	,000
Linear-by-Linear Association	12,597	1	,000		
N of Valid Cases	30				

a. 0 cells (,0%) have expected count less than 5. The minimum expected count is 5,20. b. Computed only for a 2x2 table

7. Interpretasi output (uji hipotesis)

Hipotesis

H₀ : tidak terdapat hubungan antara pendidikan terakhir dengan penghasilan per bulan

 H_1 : terdapat hubungan antara pendidikan terakhir dengan penghasilan per bulan

- Tingkat signifikansi: $\alpha = 0.05 (5\%)$.
- Statistik uji:

$$\chi^2_{hitung}$$
 = 13,032, dan Sig (2-tailed) = 0,000

- Kaidah pengambilan keputusan: H_0 ditolak jika Sig (2-tailed) < α = 0,05 (5%).
- Keputusan: Menolak H_0 dan menerima H_1 karena nilai Sig (2-tailed) < α
- Kesimpulan: terdapat hubungan antara pendidikan terakhir dengan penghasilan per bulan.

7.2 Uji Chi Kuadrat untuk Memeriksa Homogenitas antar Populasi

Uji ini digunakan untuk membandingkan apakah dua variabel yang diteliti berasal dari populasi yang homogen. Studi kasus yang digunakan dalam contoh kali ini adalah "Apakah Populasi yang meliputi mahasiswa Akuntansi, IESP, dan Manajemen homogen dalam hal sikap terhadap terdapat terhadap rencana pembangunan gelanggang olahraga indoor di FEB". Adapun bentuk kuesioner yang diajukan adalah:

Apakah anda setuju dengan rencana pembangunan gelanggang olahraga indoor di FEB? (a) Tidak Setuju (b) Netral, (c) Setuju.

Kuesioner tersebut diajukan kepada 850 responden yang dipilih secara acak, dengan proporsi 250 mahasiswa Akuntansi, 200 mahasiswa IESP, 250 mahasiswa Manajemen. Hasil jawabannya adalah:

Populasi (mahasiswa FEB)	Sikap terhac pembangu	Jumlah		
	Tidak setuju	Netral	Setuju	
Akuntansi	2	5	243	250
IESP	2	6	192	200
Manajemen	0	4	246	250
Jumlah	5	20	825	850

Langkah-langkah analisis menggunakan SPSS:

- 1. Input data.
 - a. Untuk **populasi mahasiswa FEB**, pada **Variabel View** diisi dengan ketentuan sebagai berikut:

Name: **Mahasiswa**; Type: **Numeric**; Width: **8**; Decimals: **0**; Label: Asal **Jurusan**; Values: isikan "**A**" untuk **Akuntansi**, "**I**" untuk **IESP**, dan "**M**" untuk **Manajemen** (cara sama seperti pada subbab 7.1). Hasilnya input nilai values adalah seperti pada gambar 60, kemudian klik **OK**

Gambar 62. Tampilan Pengisian populasi mahasiswa FEB, pada Variabel View

b. Untuk variabel **Sikap terhadap rencana pembangunan GOR**, pada **variabel view** diisi dengan ketentuan sebagai berikut: Name: **Sikap**; Type: **Numeric**; Width: **8**; Decimals: **0**; Label: **dikosongkan**;

Values: isikan angka 1 untuk **Tidak Setuju**, 2 untuk **Netral**, dan 3 untuk **Setuju** (cara sama seperti pada subbab 7.1). Hasilnya input nilai values adalah seperti Gambar 61. Kemudian klik **OK**

Gambar 63. Tampilan Pengisian Sikap terhadap rencana pembangunan GOR, pada variabel view

c. Untuk variabel **Jumlah**, pada **variabel view** diisi dengan ketentuan sebagai berikut:

Name: **Jumlah**; Type: **Numeric**; Width: **8**; Decimals: **0**; Label: **dikosongkan**; Values: **dikosongkan**.

Selanjutnya, untuk Variabel **Mahasiswa**, **Sikap** dan **Jumlah**, isikan:

Missing: None, Columns: 8, Align: Right, Measure: Nominal (untuk **Mahasiswa** dan **Sikap**) dan Scale (untuk **Jumlah**),Role: Input. Jika sudah benar, tampilan dari **Variabel View** adalah seperti Gambar 62.

4		/								
	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure
1	Mahasiswa	String	8	0	Asal jurusan	{A, Akuntan	None	8	 Left	& Nominal
2	Sikap	String	8	0		{1, Tidak Se	None	8	≣ Left	& Nominal
3	Jumlah	Numeric	8	0		None	None	8	≣ Right	

Gambar 64. Tampilan Pengisian Variabel Mahasiswa, Sikap dan Jumlah

2. Pada **Data View**, isikan nilai untuk setiap variabel sesuai dengan hasil survei yang diperoleh, yaitu seperti tampilan Gambar 63.

	Mahasiswa	Sikap	Jumlah
1	Α	1	2
2	Α	2	5
3	Α	3	243
4	1	1	2
5	1	2	6
6	1	3	192
7	M	1	0
8	M	2	4
9	M	3	246

Gambar 65. Tampilan Data View

3. Klik **Data-Weight Cases.** Pada kotak dialog, klik **Weight cases by**, pidahkan **Jumlah** ke kolom **Frequency Variable**, klik **OK**, Gambar 64,

Gambar 66. Tampilan Data-Weight Cases

- 4. Klik Analyze Descriptive Statistics Crosstabs
- 5. Pada kotak dialog, masukkan **Mahasiswa** ke bagain **Row(s)**, dan **Sikap** ke bagian **Column(s)**, seperti Gambar 65.

Gambar 67. Tampilan Analyze - Descriptive Statistics - Crosstabs

6. Klik Statistics, beri tanda centang pada Chi-Square, Contingency coefficient, dan Phi and Cramer's V, klik Continue.
Klik Cells, pada beri tanda centang pada Observed dan Expected, klik Continue, klik OK, akan terlihat seperti tampilan pada Gambar 66.

Gambar 68. Tampilan Hasil Proses

7. Output yang diperoleh adalah:

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	3,419ª	4	,490
Likelihood Ratio	4,661	4	,324
N of Valid Cases	700		

a. 4 cells (44,4%) have expected count less than 5. The minimum expected count is 1,14.

8. Interpretasi output (uji hipotesis):

• Hipotesis

H₀: keempat populasi yang diamati homogen dalam hal sikap terhadap rencana pembangunan gelanggang olahraga *indoor* di FEB.

H₁: keempat populasi yang diamati tidak homogen dalam hal sikap terhadap rencana pembangunan gelanggang olahraga *indoor* di FEB.

- Tingkat signifikansi: $\alpha = 0.05$ (5%). Statistik uji: $\chi^2_{hitung} = 3.419$ dan Sig = 0.490
- Kaidah pengambilan keputusan: H_0 ditolak jika Sig < α
- Keputusan: menerima H_0 karena nilai Sig = 0,490 > α (0,05).

7.3 Latihan Soal

Seorang kepala HRD sebuah perusahaan melakukan survei kepada 100 karyawan dari 3 divisi yang berbeda yang bekerja pada perusahaan tersebut. Survei tersebut bertujuanuntuk mengetahui sikap karyawan terhadap rencana perusahaan melakukan pemotongan gaji sebagai akibat dari adanya pandemi COVID-19. Hasil survey adalah sebagai berikut:

	Sikap terhada		
Divisi	pemotonga	Jumlah	
	Tidak setuju	Setuju	
Divisi A	5	25	30
Divisi B	10	20	30
Divisi C	13	27	40
Jumlah	28	72	100

Dengan menggunakan uji Chi Kuadrat, berikan kesimpulan apakah ketiga divisi homogen dalam hal sikap terhadap rencana pemotongan gaji.

Bab VIII

ANOVA

8.1 ANOVA Satu Arah

Analisis variansi satu arah adalah jenis analisis variansi yang digunakan untuk menguji kesamaan rata-rata beberapa populasi dengan hanya terdapat satu faktor yang menjadi sumber keragaman dan berpengaruh terhadap rata-rata populasi. Studi kasus yang akan digunakan pada praktikum kali ini adalah penelitian tentang efektivitas penerapan teknik pemasaran terhadap tingkat penjualan bulanan. Terdapat 3 teknik pemasaran yang diamati yaitu, sosial media marketing, content marketing, dan inbound marketing. Ingin diketahui apakah ketiganya memiliki efektivitas yang sama terhadap tingkat penjualan bulanan. Data yang diperoleh adalah sebagai berikut:

Penjualan (dalam ribuan)	Metode penjualan				
Tenjuaian (dalam muan)	SMM	CM	IM		
Jan-20	9,72	12,22	14,54		
Feb-20	11,75	10,76	13,09		
Mar-20	8,99	14,04	17,91		
Apr-20	9,22	10,17	11,08		
Mei-20	11,65	11,18	14,80		
Total	51,33	58,37	71,42		

Langkah analisis menggunakan SPSS:

- Mendefinisikan variabel yang akan diamati
 Pada Variabel View, buatlah dua variabel yaitu Metode dan Penjualan.
 - a. Untuk variabel **Metode**, pada **Variabel View** diisi dengan ketentuan sebagai berikut:

Bab VIII Anova 73

Name: **Metode**; Type: **Numeric**; Width: **8**; Decimals: **0**; Label: **Metode Penjualan**;

Values: isikan 1 untuk Sosial Media Marketing, 2 untuk Content Marketing, dan 3 untuk Inbound Marketing (cara sama seperti pada subbab 7.1). klik OK

b. Untuk variabel **Penjualan**, pada **Variabel View** diisi dengan ketentuan sebagai berikut:

Name: **Penjualan**; Type: **Numeric**; Width: **8**; Decimals: **2**; Label: **Jumlah Penjualan**.

Selanjutnya, untuk variabel **Metode** dan **Penjualan**, isikan Missing: **None**, Columns: **8**, Align: **Right**, Measure: **Nominal** (untuk **Metode**) **Scale** (untuk **Penjualan**), dan Role: **Input**.

2. Melakukan input data, seperti Gambar 67

	Metode	Penjualan	8	2	14,04
1	1	9,72	9	2	10,17
2	1	11,75	10	2	11,18
3	1	8,99	11	3	14,54
4	1	9,22	12	3	13,09
5	1	11,65	13	3	17,91
6	2	12,22	14	3	11,08
7	2	10,76	15	3	14,80

Gambar 69. Tampilan Input Data

3. Melakukan uji normalitas Kolmogorov Smirnov, hasil uji normaltias yang diperoleh adalah:

Tosts of Hormany								
		Kolmogorov-Smir <mark>nov^a</mark>			Shapiro-Wilk			
	Metode Penjualan	Statistic	df	Sig.	Statistic	df	Sig.	
Jumlah Penjualan	sosial media marketing	,259	5	,200*	,821	5	,119	
	content marketing	,227	5	,200*	,926	5	,569	
	inbound marketing	,219	5	,200*	,974	5	,902	
1.00 6 00 0								

Tests of Normality

Karena nilai sig yang diperoleh semuanya lebih besar dari α (0,05), maka dapat disimpulkan bahwa data berdistribusi Normal.

4. Pilih **Analyze-Compare Means**, pilih **One-Way ANOVA**Pada kotak dialog **One-Way ANOVA**, variabel **Jumlah** dimasukkan ke kotak **Dependent List**, dan variabel **Metode** dimasukkan ke kotak **Factor**. Sehingga nampak seperti Gambar 68.

a. Lilliefors Significance Correction
* This is a lower bound of the true significance

Gambar 70. Tampilan One-Way ANOVA

5. Klik **Options**, centang bagian **Descriptive** dan **Homogenity of variance test**, Gambar 69.

Gambar 71. Tampilan One-Way ANOVA: Options

6. Klik Post Hoc, centang bagian **Tukey**, masukkan taraf signifikansi yang akan digunakan pada bagian Significance Level (pada praktikum ini, dipilih sebesar 0,05), Gambar 70

Gambar 72. Tampilan One-Way ANOVA: Post Hoc Multiple Comparisons

Bab VIII Anova 75

- 7. Klik Continue, klik OK
- 8. Interpretasi Output:
 - a. Rata-rata setiap metode. Nilai rata-rata setiap metode dapat dilihat pada bagian **Descriptives**

Jumlah Penjualan								
					95% Confidence Interval for Mean			
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
sosial media marketing	5	10,2660	1,33586	,59742	8,6073	11,9247	8,99	11,75
content marketing	5	11,6740	1,51966	,67961	9,7871	13,5609	10,17	14,04
inbound marketing	5	14,2840	2,50853	1,12185	11,1692	17,3988	11,08	17,91
Total	15	12,0747	2,43650	,62910	10,7254	13,4240	8,99	17,91

Descriptives

b. Uji kesamaan variansi

Test of Homogeneity of Variances						
Jumlah Penjualan						
Levene Statistic df1 df2 Sig.						
,573 2 12 ,579						

Karena nilai sig pada uji kesamaan variansi adalah sebesar 0,579 > α (0,05), maka dapat disimpulkan bahwa variansi setiap metode adalah sama (homogen)

c. Uji ANOVA satu arah

Output:

ANOVA

Jumlah Penjualan

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	41,565	2	20,782	6,003	,016
Within Groups	41,547	12	3,462		
Total	83,111	14			

Uji hipotesis

 H_0 : $\mu_1 = \mu_2 = \mu_3$ (tidak ada perbedaan rata-rata hitung penjualan dari ketiga metode penjualan)

 H_1 : setidaknya terdapat satu i dan satu j sedemikian sehingga $\mu_i \neq \mu_j$, dengan i,j=1,2,3 (terdapat perbedaan rata-rata hitung penjualan dari ketiga teknik pemasaran)

Tingkat signifikansi α = 5%.

Statistik uji: F hitung = 6,003 dan Sig = 0,016

Kaidah pengambilan keputusan: H_0 ditolak jika sig < α .

Keputusan: Menolak H_0 karena nilai sig (0,016) < α

Kesimpulan: Pada tingkat signifikansi a = 5%, terdapat perbedaan rata-rata hitung dari ketiga teknik penjualan.

d. Melihat kelompok mana saja yang rata-rata penjualannya berbeda:

Multiple	Comparisons
----------	-------------

Jumlah Penjualan Tukey HSD

(I) Metode Penjualan	(J) Metode Penjualan	Mean Difference (I- J)	Std. Error	Sig.
sosial media marketing	content marketing	-1,40800	1,17681	,477
	inbound marketing	-4,01800 [*]	1,17681	,013
content marketing	sosial media marketing	1,40800	1,17681	,477
	inbound marketing	-2,61000	1,17681	,108
inbound marketing	sosial media marketing	4,01800	1,17681	,013
	content marketing	2,61000	1,17681	,108

^{*.} The mean difference is significant at the 0.05 level.

Jika nilai sig $< \alpha$ (0,05), maka rata-rata kedua kelompok adalah berbeda.

Berdasarkan output di atas, maka dapat disimpulkan bahwa: Rata-rata penjulan dengan metode SMM berbeda dengan metode IM Rata-rata penjulan dengan metode SMM sama dengan metode CM Rata-rata penjulan dengan metode IM berbeda dengan metode CM.

8.2 Latihan Soal

Misalkan terdapat data mengenai tingkat produksi dari 3 mesin suatu perusahaan makanan, dengan nilainya adalah:

Produksi ke-	Jenis Mesin				
1 louuksi ke-	Mesin A	Mesin B	Mesin C		
1	51	23	56		
2	45	43	76		
3	33	23	74		
4	45	43	87		
5	67	45	56		

Ujilah menggunakan ANOVA satu arah untuk mengetahui apakah rata-rata produksi ketiga mesin tersebut sama

Bab VIII Anova 77

DAFTAR PUSTAKA

- Anderson, D.R., Sweeney, D.J., Williams, T.A. 2011. Statistics for Business and Economics. USA: South-Western, Cengage Learning
- Andi. 2007. *Statistika "Data Kajian Deskriptif, Inferensi, dan Non Parametrik"*. Jakarta: Kencana Prenada Media Group.
- Boddington, L. 1921. *Statistics and Their Application to Commerce*. English: forgotten books.
- Bowley, A. L. 1921. Element of Statistics. *The Economic Journal*. Vol. 31, No. 122, 220-224.
- Buku Pedoman Fakultas Ekonomi Universitas Narotama Surabaya
- Dajan, Anto. 2000. *Pengantar Metode Statistik*. *Cetakan Ke-16*, Jakarta: LP3ES.
- Daniel, W.W. 1978. Statistika Nonparametrik Terapan. Alih bahasa oleh: Alex Tri Kantjono 1989. Jakarta: Gramedia.
- Davis, H.T., dan Nelson, W.F.C. 1935. *Element of Statistics: with Application to Economic Data*. USA: Principa Press.
- Ghozali, I. 2012. Aplikasi Analisis Multivariate dengan Program IBM SPSS. Semarang: Universitas Diponegoro
- Gravetter FJ, dan Wallnau LB. 2000. *Statistics for the Behavioral Sciences*. *Edisi ke-5*. Belmont: Wadsworth-Thomson Learning.
- Gujarati, D. N. 2003. Basic Econometric Forth Edition. New York: Mc Graw-Hill.
- Harinaldi. 2005. *Prinsip-Prinsip Statistik untuk Teknik dan Sains*. Jakarta: Erlangga.
- Hawkins, D. 1980. *Identification of Outliers*. Chapman and Hall.
- Heryanto, N. 2003. Statistik. Bandung: Pustaka Setia.

- Kerlinger. 2006. *Asas–Asas Penelitian Behaviour. Edisi 3, Cetakan 7*. Yogyakarta: Gadjah Mada University Press.
- Levin, R.I., dan Rubin, D.S. 2012. *Statistics for Management, 7th Edition*. Inggris: Prentice Hall.
- Montgomery, D.C., Peck, E.A., Vining, G.G. 2012. Introduction to Linier Regression Analysis, Edisi kelima. USA: John Wiley & Sons.
- Petrie A, dan Sabin C. 2000. *Medical Statistics at A Glance. Edisi ke-3*. Oxford: Wiley-Blackwell.
- Sarwono, J. 2006. Metode Penelitian Kuantitatif Dan Kualitatif. Yogyakarta: Andi
- Schober, P., Boer, C., dan Schwarte, L. 2018. Correlation Coefficients: Appropriate Use and Interpretation. International Anesthesia Research Society. Vol 126(5): 1763-1768.
- Sugiarto. 2002. Metode Statistik. Jakarta: Gramedia.
- Walpole, R. E. dkk. 2012. *Probability and Statistics for Engineers & Scientists* : 9th edition. Boston : Pearson