Algebra - Lista 2

Zadanie 1. Niech S,T będą skończenie-wymiarowymi podprzestrzeniami przestrzeniV. Pokaż, że

$$\dim(S) + \dim(T) = \dim(S \cap T) + \dim(S + T).$$

Zadanie 2. Niech V' < V będzie podprzestrzenią liniową, zaś U i U' jej warstwami. Pokaż, że

$$U = U'$$
 lub $U \cap U' = \emptyset$.

Zadanie 3. Pokaż równoważność następujących warunków (dla $B = \{v_1, v_2, \dots, v_k\}$):

- Zbiór B jest liniowo niezależny.
- ullet Wektor $oldsymbol{\vec{0}}$ ma dokładnie jedno przedstawienie w postaci kombinacji liniowej wektorów ze zbioru B.
- ullet Pewien wektor z LIN(B) ma dokładnie jedno przedstawienie w postaci kombinacji liniowej wektorów ze zbioru B.
- ullet Każdy wektor z LIN(B) ma najwyżej jedno przedstawienie w postaci kombinacji liniowej wektorów ze zbioru B.

Zadanie 4. Rozważamy przestrzenie nad \mathbb{R} . Niech v_1, v_2, \dots, v_n będą liniowo niezależne. Dla jakich wartości α zbiory wektorów

- $\{\alpha v_1 + v_2, v_1 + \alpha v_2\}$
- $\{v_1 + v_2, v_2 + v_3, v_3 + v_4, \dots, v_{n-1} + v_n, v_n + \alpha v_1\}$

są liniowo niezależne?

Zadanie 5. Niech M będzie zbiorem skończonym. Na zbiorze jego podzbiorów 2^M określamy operacje:

$$U + V := V \triangle U$$
, $1 \cdot U = U$, $0 \cdot U = \emptyset$,

gdzie \triangle oznacza różnicę symetryczną, tj. $U \triangle V = (U \setminus V) \cup (V \setminus U)$. Pokaż, że tak określony zbiór jest przestrzenią liniową nad \mathbb{Z}_2 . Jaki jest jej wymiar?

Wsk. Istnieje bardzo "prosta" baza.

Zadanie 6. Dla zbioru określonego powyżej, niech $V_1, V_2, \ldots, V_k \subseteq M$ są takie, że dla każdego i, j zbiór V_i nie jest podzbiorem sumy pozostałych zbiorów, tj. $\bigcup_{i \neq i} V_j$. Pokaż, że V_1, V_2, \ldots, V_k są liniowo niezależne.

Zadanie 7. Wyznacz wymiary $LIN(S) \cap LIN(T)$ oraz LIN(S) + LIN(T) dla

- $S = \{(1, 2, 0, 1), (1, 1, 1, 0)\}, T = \{(1, 0, 1, 0), (1, 3, 0, 1)\};$
- $S = \{(1, 1, 1, 1), (1, -1, 1, -1), (1, 3, 1, 3)\}, T = \{(1, 2, 0, 2), (1, 2, 1, 2), (3, 1, 3, 1)\};$
- $S = \{(2, -1, 0, -2), (3, -2, 1, 0), (1, -1, 1, -1)\}, T = \{(3, -1, -1, 0), (0, -1, 2, 3), (5, -2, -1, 0)\}.$

Zadanie 8. Na wykładzie pokazaliśmy, że ciągi spełniające równanie:

$$b_n = b_{n-1} + b_{n-2} - 1$$

są warstwa. Pokaż, że jest to warstwa względem przestrzeni ciągów spełniających równanie

$$b_n = b_{n-1} + b_{n-2}.$$

Zadanie 9. Załóżmy, że V jest przestrzenią skończenie-wymiarową. Niech U-zbiór liniowo niezależny a $\{v_1, v_2, \dots, v_k\}$ będzie bazą. Pokaż, że albo U jest bazą, albo istnieje $v_i \in \{v_1, v_2, \dots, v_k\}$, taki że $\{v_i\} \cup U$ jest liniowo niezależny.

Zadanie 10. Dla poniższych zbiorów wektorów sprawdź, czy są one bazą przestrzeni \mathbb{R}^4 . Jeśli nie, to wybierz z nich maksymalny zbiór liniowo niezależny X i podaj dowolny zbiór wektorów Y, taki że $X \cup Y$ jest bazą.

- $\{(1,0,-1,2),(2,3,4,1),(0,0,1,0)\}$
- $\{(1,1,0,0),(1,0,1,0),(0,0,1,1),(0,1,0,1)\}$
- $\{(1,1,0,0),(1,0,1,0),(0,0,1,1),(0,0,0,1)\}$
- $\{(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)\}$
- $\{(1,0,1,0),(1,0,0,1),(2,0,1,1),(-1,0,1,-2)\}$