颜值经济系列深度报告之六

防晒剂黄金赛道,景气持续向上,国货崛起新阵地

增持(维持)

投资要点

- 防晒剂是化妆品原料中的黄金赛道,类型丰富、添加量较大。化妆品成分可分为基质、一般添加剂和活性成分。防晒剂是一类添加量较大的活性成分(在防晒产品中合计添加量可达 20%+),且多种防晒剂往往搭配使用,因此防晒剂的龙头厂商容易形成一定的规模效应和客户壁垒。目前主要防晒剂达 30 种左右,按作用原理可分为物理防晒剂和化学防晒剂,按吸收波段可分为 UVA 防晒剂、UVB 防晒剂和广谱防晒剂。
- 20 世纪 30 年代以来,防晒剂历经认知提升和技术突破,未来趋势包括高效、安全以及覆盖更广波段。防晒剂最初诞生于欧美用于防止美黑过程中的晒伤,随着对于防 UVA 意识的逐步提升以及技术的进步,防晒剂的类型不断丰富、防晒产品在欧美地区也得到一定普及。未来防晒剂的发展趋势包括: (1)通过物化结合覆盖更长波段、实现优势互补; (2)追求更高效、更安全的防晒剂。
- 防晒剂监管: 监管较为严格,门槛较高。各国对于防晒剂添加管理均较为严格,采用白名单管理,截至 2022 年 7 月,美国/加拿大/中国/欧盟/澳大利亚获批防晒剂数量分别为 16/20/27/29/31 个,其中美国、加拿大获批使用的防晒剂数量最少,且浓度限制较为严格。
- 防晒行业:上游防晒剂格局集中,下游产品需求景气向好。(1)需求端:下游景气度趋于提升,亚太市场是防晒剂增长主要驱动。从防晒剂原料看,欧睿统计 2021 年全球防晒剂规模达 52000 吨,其中亚太市场增速领先。从防晒品终端看,2021 年我国防晒品市场规模为 167 亿元,处于成长期前期阶段,增速快、渗透率较低。由于我国消费者一向重视美白和抗老,我们看好未来我国防晒渗透率不断提升,并带动全球防晒市场步入下一增长阶段。(2) 供给端:行业格局较为集中,主要厂商位于中国和欧洲。防晒剂主要厂商包括巴斯夫、德之馨、帝斯曼、科思股份和美峰化工,其中科思股份 2019 年销量市占率为 27.88%,行业格局较为集中。其中,国内龙头正处于代工向品牌化转变阶段。
- 投资建议: 防晒剂是化妆品原料中的黄金赛道。从需求端看,下游防晒品景气度较高,国内防晒品属于成长期前期,渗透率趋于提升,有望带动上游防晒剂在全球迎来新一轮增长阶段。从供给端看,龙头份额较为集中,议价权和成本传导能力强。此外,防晒剂由于类型丰富且添加量较大,具有一定的规模和客户壁垒。总体来看,我们看好防晒剂较强的成长性、较好的行业格局以及一定的进入壁垒。推荐全球防晒剂龙头科思股份。
- 风险提示: 原材料价格波动,疫情反复,客户流失风险。

东吴证券 SOOCHOW SECURITIES

2022年07月21日

证券分析师 吴劲草 执业证书: S0600520090006 wujc@dwzq.com.cn 证券分析师 张家璇 执业证书: S0600520120002 zhangjx@dwzq.com.cn

行业走势

相关研究

《科思股份(300856)深度报告: 全球防晒剂龙头,成就原料国货 崛起之路》

2022-05-27

表 1: 重点公司估值

代码		公司	总市值	收盘价	归母冶	争利润(1	亿元)		PE		投资评级
	1149	公-可	(亿元)	(元)	2021A	2022E	2023E	2021A	2022E	2023 E	权贝叶级
	300856	科思股份	70.23	41.48	1.33	2.13	2.76	35.24	21.95	16.93	买入

数据来源: Wind, 东吴证券研究所(注: 估值日期为 2022.7.20)

内容目录

1.	防晒剂走化妆品原料中的黄金菱通,类型丰富、添加重较大	4
	1.1. 化妆品成分可分为基质和各类化妆品添加剂, 防晒剂是一种特殊用途的化妆品活性成	
	1.2. 防晒剂添加量较大且常搭配使用,利于龙头形成规模优势和客户壁垒	5
	1.3. 中波和长波紫外线可导致皮肤晒伤、晒黑和光老化	5
	1.4. UVA、UVB 防护能力衡量标准	6
	1.5. 主要防晒剂介绍	6
2.	防晒剂应用趋势:物化结合覆盖更长波段、高效安全	9
	2.1. 防晒剂发展历程: 龙头原料商引领认知提升和技术突破	9
	2.2. 物理防晒剂 or 化学防晒剂?	10
	2.3. UVB or UVA?	
	2.4. 防晒剂未来趋势如何?	11
	2.4.1. 趋势一:物化结合覆盖更长波段、实现优势互补	11
	2.4.2. 趋势二: 追求更高效、更安全的防晒剂	14
3.	防晒剂监管:监管较为严格,门槛较高	15
	3.1. 各国对防晒剂添加管理均较严格,中国防晒品按特殊用途化妆品管理	15
	3.2. 中国获批可使用的防晒剂有 27 种,美国、加拿大监管最为严格	16
4.	防晒行业:上游防晒剂格局集中,下游产品需求景气向好	17
	4.1. 需求端:下游景气度趋于提升,亚太市场是防晒剂增长主要驱动	17
	4.2. 供给端: 行业格局较为集中,国内龙头品牌化趋势明显	21
5.	投资建议	24
6	可以担二	24

图表目录

图 1:	化妆品中活性成分一般添加量占比情况	5
图 2:	不同波长紫外线对皮肤的不同程度伤害	6
图 3:	防晒剂发展历程	9
图 4:	UVA 防晒剂 DHHB 相较于阿伏苯宗光稳定性更强	11
图 5:	防晒剂消费群体的主要产品需求分类	11
图 6:	Mexoryl 400 的波长范围和应用产品	12
图 7:	TriAsorB 的波长范围和应用产品	12
图 8:	部分防晒产品涉及抗蓝光领域	12
图 9:	2014-2021 年备案数 TOP10 化学/物理防晒剂成分	14
图 10:	2014-2021 年我国部分化学/物理防晒剂成分备案数	14
图 11:	大部分防晒剂是<500Da的小分子防晒剂	
图 12:	玉泽防晒新品添加三种大分子防晒剂	
图 13:	主要国家和地区获批防晒剂种数	16
图 14:	2016年和 2021年全球防晒剂市场规模	17
图 15:	2016-2021 全球防晒剂市场规模 CAGR 为 4%	17
图 16:	2019年各国防晒品渗透率对比	
图 18:	3-7月为国内防晒品销售高峰	
图 19:	2021 年淘系防晒品量价齐升	19
图 20:	2019年我国防晒市场体量增长来源	19
图 21:	防晒主要需求增长驱动图解	20
图 22:	我国处于防晒品的成长期前期	21
图 23:	2022 年推出的部分防晒新品大单品	
图 24:	2017-2019 全球防晒剂消耗量 (万吨)	22
图 25:	2017-2019 科思防晒剂销量及市场规模	22
图 26:	欧美系、日系、韩系、国产防晒特征对比	23
图 27:	2021 年天猫淘宝防晒品牌按国别分布	23
图 28:	2021年中国防晒品牌市占率	23
± 1	此如此可力可力。	
表 1:	物理防晒剂与化学防晒剂对比	
表 2:	衡量 UVA 防护能力的标准	
表 3:	衡量 UVB 防护能力的标准	
表 4:	主要防晒剂介绍	
表 5:	物理防晒剂与化学防晒剂对比	
表 6:	部分热门防晒产品的核心防晒成分	
表 7:	各国对防晒剂的监管情况	
表 8:	部分在主要国家获批的防晒剂最大允许使用浓度对比(w/%)	
表 9:	主要防晒剂生产厂商介绍	22

- 1. 防晒剂是化妆品原料中的黄金赛道,类型丰富、添加量较大
- 1.1. 化妆品成分可分为基质和各类化妆品添加剂,防晒剂是一种特殊用途的 化妆品活性成分

化妆品中基质占比最高,活性成分占比不高但决定了化妆品的差异化。化妆品成分可分为基质和各类化妆品添加剂,其中化妆品添加剂又可分为一般添加剂和活性成分。 在各类成分当中,基质占比最高,活性成分虽然占比较低但是决定了产品的功效作用, 是原料厂商研发的重点。

表1: 物理防晒剂与化学防晒剂对比

化妆品原料种类	细分类别	成分	作用
	油性原料	油脂、蜡类、酯类等	在皮肤表面形成疏水性薄膜,防止皮肤角质层水分过快蒸发,起到保护皮肤及增加皮肤柔滑度的作用。另外,油脂通过溶解皮肤表面油溶性污垢起到清洁作用
基质原料 (60%-	粉质原料	无机粉质原料(碳酸钙等) 有机粉质原料(硬脂酸锌等) 其他粉质原料(混合细粉等)	在化妆品中起遮盖、吸收、延展、调色等作用,可遮盖皮肤瑕疵、吸收油脂和汗液、赋予皮肤色彩,也可以做香料载体
95%)	溶剂类原料	水、醇、酮、醚、酯类有机化合物	在制品中主要起溶解作用,通常有挥发、 润湿、润滑、增塑、保香、防冻及收敛等 多方面作用
	表面活性剂	氨基酸、磷脂、蛋白质等	促使乳化体稳定并控制乳化类型,还具有 润湿、分散、去污、调理、等功能,可在 多种化妆品中用作去污剂、调理剂、乳化 剂、增溶剂等
	香精和香料	水溶性香精、油溶性香精和乳化 香精	掩盖产品中原料的不良气味
一般添加剂(1%- 10%)	颜料和色素	合成色素、无机色素、天然色素	赋予化妆品悦目的颜色,主要用于美容化 妆品中,如口红、胭脂、眼影等
	防腐剂、抗氧 剂	苯氧乙醇,羟苯乙酯等	防止微生物在化妆品中大量生长导致化妆 品劣化变质
	舒缓类	北美金缕梅、洋甘菊等	舒缓修护
	保湿类	二裂酵母发酵产物提取物、透明 质酸钠等	补水保湿
7 H F A (0.010/	美白类	烟酰胺、维C衍生物、熊果苷等	美白
活性成分 (0.01%- 30%)	抗衰类	多肽、视黄醇、玻色因等	抗老抗衰
30 76 <i>)</i>	防晒类	物理防晒剂包含二氧化钛、氧化 锌等 化学防晒剂包含阿伏苯宗、奥克 立林等	防晒

数据来源: 科思股份招股书, 东吴证券研究所

1.2. 防晒剂添加量较大且常搭配使用,利于龙头形成规模优势和客户壁垒

防晒产品中合计添加量可达 20%+,高于普通化妆品中活性成分一般添加量,需求量大&搭配使用利于核心厂商形成规模优势。大部分化妆品活性成分的一般添加量在 1%以内,而主要防晒剂的添加量可达 2%-5%。防晒产品中多种防晒剂合计添加量占比按SPF30 可达 10%+、按 SPF50 可达 20%+。由于防晒剂需求量较大且常搭配使用,生产多种防晒剂的核心厂商具有形成规模优势的基础。

防晒剂 舒缓类 保湿类 美白类 抗衰类 防腐剂 (化学防晒剂添加量SPF30约10%+, SPF50约20%+) 6%甲氧基肉桂酸乙基己酯,6% 二裂酵母发酵产物提取物 5% 胡莫柳酯,5% 5% 4% 杨酸辛酯 3% <u>奥克立林</u>,3% DHHB, 3% 3% 洋甘菊.2% 烟酰胺, 2.0% 伏苯宗, **2%** 对羟基苯乙酮 0.5% 北美金缕梅, 29 熊果苷, 1.0% 玻色因, 1.0% 泛醇. 1% 维C衍生物, 1.0% 多肽, 1.0% 1% 戊二醇, 0.5%重醇, 0.5% <mark>龙胆</mark>提取物, 1% 透明质酸钠, 0.2% 羟苯甲酯, 0.1% 视黄醇类, 0.02%

图1: 化妆品中活性成分一般添加量占比情况

数据来源: NMPA, 东吴证券研究所

0%

1.3. 中波和长波紫外线可导致皮肤晒伤、晒黑和光老化

UVB 到达皮肤表层可造成皮肤晒伤, UVA 可达到皮肤真皮层造成皮肤晒黑和光老化。中波紫外线 UVB 是造成皮肤晒伤的主要原因,而长波紫外线 UVA 是引起皮肤晒黑、损伤胶原蛋白造成皮肤老化并可能引发皮肤癌的主要原因。 UVB 波长一般为 280nm~320nm, UVA 波长一般为 320nm~400nm。 UVA 由于波长范围大,通常分为 UVA-1 和 UVA-2, UVA-1 是地表紫外线主要来源, UVA-2 在物理和生物学效应上与 UVB 相近。

图2: 不同波长紫外线对皮肤的不同程度伤害

数据来源: CBNData, 东吴证券研究所

1.4. UVA、UVB 防护能力衡量标准

一般而言,以 SPF 值衡量 UVB 的防护能力,以 PA 等级衡量 UVA 的防护能力。以 SPF 值衡量 UVB 的防护能力,即太阳辐射使皮肤变红所需要的时间,体现了产品的防晒伤能力。以 PA 等级衡量 UVA 的防护能力,体现产品防晒黑、防老化能力。

各国对 PA 等级的测定标准有所不同。在 UVA 防护能力的测定标准上,中国和日本采用 PFA 值来测定 PA 等级,欧美采用 PPD 值 (PPD 的衡量标准与 PFA 相似),美国和加拿大则采用"广谱防护"来表示 (若临界波长≥370nm,则产品可宣称提供"广谱防护",可产品上可标注"Broad Spectrum")。

表2: 衡量 UVA 防护能力的标准

PFA 值	标识 PA 等级	理论 UVA 吸 收量
<2	不得标识 UVA 防护效果	/
2~3	PA+	50%
4~7	PA++	75%
8~15	PA+++	87.5%
≥ 16	PA++++	93.75%

表3: 衡量 UVB 防护能力的标准

SPF值	日晒下最大安全时间(分钟)
SPF15	15*15=225
SPF15 ~ 25	225 ~ 375
SPF25 ~ 30+	>375
SPF50+	>750

数据来源: NMPA, 东吴证券研究所

数据来源: NMPA, 东吴证券研究所

1.5. 主要防晒剂介绍

防晒剂可根据作用原理以及吸收波段进行分类。(1)根据作用原理:防晒剂可分为物理防晒剂和化学防晒剂,其中大部分防晒剂属于化学防晒剂,物理防晒剂为二氧化钛和氧化锌。(2)根据吸收波段:防晒剂可分为 UVA 防晒剂、UVB 防晒剂和广谱防晒剂。

6 / 25

表4: 主要防晒剂介绍

类别	名称	英文名称	吸收波段 (纳米)	国内最大 添加量	备注
	阿伏苯宗/丁基甲氧基 二苯甲酰基甲烷 (AVB/BMDBM)	Avobenzone	320~ 400	5%	防护能力靠谱但光稳定性不 高
IIII / A P之中正 之]	二乙氨羟苯甲酰基苯甲酸己酯	Benzoate	320-400	10%	是 AVB 的良好替代品
UVA 防晒剂	亚甲基双-苯并三唑基 四甲基丁基酚 (MBBT/P-M)	Tinosorb M	280-400	10%	唯一一种白色的 UVA 防晒剂,能帮助修正配方的颜色
	苯基二苯并咪唑四磺 酸酯二钠 (DPDT)	Disodium Phenyl Dibenzylimidazole Tetrasulfonate	280-370	10%	与 AVB 复配可制得非常高效广谱的 UVA 防护产品
	双-乙基己氧苯酚甲氧 苯基三嗪(P-S)	Tinosorb S	290-370	10%	最高效的油溶性广谱防晒剂
	甲酚曲唑三硅氧烷/麦 素宁滤光环 (DTS)	Mexoryl XL	290-389	15%	/
	对苯二亚甲基二樟脑 磺酸/麦素宁滤光环 (TDSA)	Mexoryl SX	/	10%	与其他常用的防晒剂相比, 光稳定性和防水性能都更> 优异
	麦色滤 400 (MCE/Mexoryl 400)	ANTHELIOS UVMUNE 400	/	/	波段峰值能达到 385nm
广谱防晒剂	二苯酮-5 (BP5)	BENZOPHENONE-5	/	5%	有一定毒性和刺激性,需少 量添加
	亚苯基双-二苯基三嗪	TriAsorB	/	5% (欧盟)	新型防晒剂
	3-亚苄基樟脑 (3-BC)	3-Benzylidene camphor	/	2%	老式防晒剂;进入了2021 年1月《关于征集化妆品禁用原料目录等意见的通知》
	二乙基己基丁酰胺基 三嗪酮(DBT)	Diethylhexyl butamido triazone	/	8%	新型 UVB 吸收剂
	二甲基 PABA 乙基己 酯	4-Dimethyl amino benzoate of ethyl-2- hexyl	/	10%	/

	聚硅氧烷-15	Dimethicodiethylbenz almalonate	/	8%	可用作阿伏苯宗的光稳定剂
	PEG-25 对氨基苯甲酸 (PEG-25 PABA)	Aminobenzoic acid	/	10%	/
	4-甲基苄亚基樟脑 (4-MBC)	4-Methylbenzylidene	/	4%	可以稳定阿伏苯宗
	二氧化钛(TDO)	Titanium dioxide	280-360	25%	/
	氧化锌(ZNO)	Zinc oxide	280-390	25%	/
	二苯酮-4(BP4)	Diphenyl ketone - 4	/	5%	有助于防止香精和活性成分 氧化
	二苯酮-3(BP5)	Oxybenzone	/	10%	风险系数较高的防晒剂
	甲氧基肉桂酸辛酯/甲 氧基肉桂酸乙基己酯/ 对甲氧基肉桂酸异辛 酯 (OMC)	Octinoxate	280-310	10%	是其他防晒剂的优良溶剂, 降低产品的油腻感和粘性
	水杨酸异辛酯(OS)	Octyl Salicylate	280-300	/	/
UVB 防晒剂	苯基苯并咪唑磺酸 (PBSA)	Phenylbenzimidazole sulfonic acid	290-340	4%	/
	奥克立林(OCT) Octocrylene		290-340	10%	性质稳定,能作为阿伏苯宗的有效光稳定剂,两者一起使用可实现最佳防晒效果。 能吸收少量短波 UVA;能 用作防水防晒剂
	对甲氧基肉桂酸异戊酯(IMC)	Methoxycinnamate	290-330	10%	与 OMC 复配使用、可提高 SPF 值
	原膜散酯/胡莫柳酯 (HMS)	Homosalate	295-315	10%	用于高 SPF 配方的辅助 UVB 吸收剂

乙基己基三嗪酮/辛基 三嗪酮(EHT/Uvinul T150)	Ethyl hexyl triazone	290-320	5%	/
水杨酸乙基己酯 (EHS)	Ethylhexyl salicylate	290-330	5%	用于高 SPF 配方的辅助 UVB 吸收剂
樟脑苯扎铵甲基硫酸 盐(CBM)	Camphor Benzalkonium Methosulfate		6%	/
聚丙烯酰胺甲基亚苄 基樟脑(PBC)	Polyacrylamidomethyl benzylidene camphor		6%	/

数据来源: 科思股份公告, 药监局, 东吴证券研究所(注: 红色字体为国内允许使用防晒剂)

2. 防晒剂应用趋势: 物化结合覆盖更长波段、高效安全

2.1. 防晒剂发展历程: 龙头原料商引领认知提升和技术突破

20世纪30年代以来防晒剂快速发展,龙头原料商引领认知提升和技术突破。世界防晒剂自20世纪30年代以来快速发展,由于欧美对于美黑的热潮,最初的防晒剂主要是防UVB,用于在美黑的同时防晒伤。随着对于防UVA和物理防晒剂认识的提升,各类防晒剂类型不断丰富。20世纪80年代以来,多款具有更高效能的防晒剂(例如更高防护能力、覆盖波段更广、更强稳定性、更强相容性、更大分子量)相继面世。在巴斯夫、帝斯曼、欧莱雅等龙头原料商引领下,防晒剂技术得到不断突破。

图3: 防晒剂发展历程

数据来源:《现代防晒产品发明史:由人体临床功效验证诞生的百亿企业》,东吴证券研究所

2.2. 物理防晒剂 or 化学防晒剂?

根据防晒原理,防晒剂可分为物理防晒剂和化学防晒剂。物理防晒剂主要通过反射或折射紫外线从而达到物理性屏蔽作用,化学防晒剂通过吸收紫外线达到化学性防晒作用。

物理防晒剂和化学防晒剂各有优劣,物化结合可达到更好的功效和使用感。物理防晒剂刺激性低,不易致敏,安全性较高,但仅添加物理防晒剂容易太厚重、泛白、干燥。 化学防晒剂品种更多元,使用肤感较好,但是光稳定性不足、长期使用容易敏感刺激。 物化结合的防晒霜好处是减少了刺激性的同时使用感更舒适,面部更自然。

表5: 物理防晒剂与化学防晒剂对比

项目	物理防晒剂	化学防晒剂
作用原理	通过反射或折射紫外线从而达到物理性屏蔽 作用	通过吸收紫外线达到化学性防晒作用
主要成分	我国允许使用的物理防晒剂只有二氧化钛、 氧化锌两种,其中氧化锌虽然是全波段防晒 剂,但效率不够高,而二氧化钛在 UVA 波段 反射不足,一般两种物理防晒剂搭配使用以 达到更好效果	目前我国批准 25 种化学防晒剂产品,除了两种物理防晒剂,均为化学防晒剂,包括阿伏苯宗、奥克立林、胡莫柳酯等
安全性	机理是反射紫外线,不会光降解;本身是惰性的,也不存在皮肤吸收的问题,安全级别较高	化学防晒剂在紫外线作用下会分解、裂变,光 稳定性不足,强烈日晒下需反复补涂;长期使 用容易在皮肤留下分解残余物,造成皮肤敏感 刺激
使用感	泛白、厚重、容易干燥	由于化学防晒剂是溶于油相的,即使在添加量 大的情况下,使用感仍然相对轻薄不粘腻
作用时间	在涂抹后立刻产生防晒效果,且不会随着时 间的推移而下降	一般在涂抹后 20 分钟左右起效,且防晒剂在紫外线照射下逐渐分解,防晒效果慢慢下降,直至 失效

数据来源:《科学认知防晒剂的安全性》, 东吴证券研究所

2.3. UVB or UVA?

对防晒的研究由 UVB 到 UVA,再到广谱层层递进。1928年,全世界第一支含化学防晒剂的防晒霜由 Lehn&Fink 公司开发,其中所含的化学防晒剂主要是水杨酸盐和肉桂酸盐。其旨在防止 UVB 引起的晒伤,但对 UVA 的防护没那么重视。随着防晒产品市场发展以对紫外线防护方面研究不断深入,研究发现紫外线不仅会对皮肤造成晒伤,还会造成细胞损坏、DNA 损伤、光老化等伤害,人们对 UVA 的防护重要性与必要性不断地提高。要形成对 UVA 的防护,可添加 UVA 防晒剂或覆盖波长范围更广的广谱防晒剂。

广谱防晒剂不断丰富,同时 UVB 和 UVA 防晒剂也在不断迭代。在我国允许添加的 25 种防晒剂中,共有 4 个广谱防晒剂,其中例如 P-S 由于高效且油溶性好的特质,受到 市场的欢迎。同时,针对 UVB 或 UVA 的防晒剂也在不断迭代。例如,UVB 中具有高 吸收率低添加量特点的新型防晒剂辛基三嗪酮,以及 UVA 中克服第一代阿伏苯宗光稳

定性较差问题的新型防晒剂 DHHB。

图4: UVA 防晒剂 DHHB 相较于阿伏苯宗光稳定性更强

防晒剂组合:

OMC (UVB) 、奥克立林 (UVB) 、DHHB (UVA) 、水 杨酸乙基乙酯 (UVB) 、二氧 化钛 (UVA/UVB) 、辛基三嗪 酮 (UVB) 、MBBT (UVA)

数据来源:美丽修行,东吴证券研究所

2.4. 防晒剂未来趋势如何?

2.4.1. 趋势一: 物化结合覆盖更长波段、实现优势互补

在防晒产品中,可仅使用物理防晒剂或者化学防晒剂,通过物化结合以覆盖更长波 段和达到最好功效。物理防晒剂和化学防晒剂互有优劣,可仅使用物理防晒剂或化学防 晒剂以满足特定需求的消费者。物化结合使用可达到更优的效果,在肤感、稳定性、防 护范围、安全性等方面实现更好的协同,大部分消费群体的需求均可通过物化结合解决。

图5: 防晒剂消费群体的主要产品需求分类

数据来源: 东吴证券研究所整理

欧莱雅、皮尔法伯推出超长波防晒剂。(1) 欧莱雅 Mexoryl 400: 欧莱雅和巴斯夫于 2022 年联合推出新型原料 Mexoryl 400, 其在 380nm-400nm 的超长波 UVA 波段防护力仍然坚挺, 弥补了此前防晒剂在此波段的不足, 目前欧莱雅已率先将其应用于理肤泉 ANTHELIOS 产品线的 2022 年版大哥大防晒。(2) 皮尔法伯 TriAsorB: 皮尔法伯的最新防晒剂 TriAsorB 不仅可用于对紫外线的防护,还可吸收和反射可见光,尤其对于防护400-450nm 的蓝紫光可见光表现强劲。皮尔法伯的 TriAsorB 新型原料已首先试水于雅漾的 Intense protect50+。

图6: Mexoryl 400 的波长范围和应用产品

数据来源: JID Inovations, 凯度咨询, 东吴证券研究所

图7: TriAsorB 的波长范围和应用产品

TriAsorB 的波长覆盖范围

雅漾 Intense Protect 50+

数据来源: Photochemical & Photobiological

Sciences, 东吴证券研究所

图8: 部分防晒产品涉及抗蓝光领域

数据来源: 凯度咨询, 东吴证券研究所

表6: 部分热门防晒产品的核心防晒成分

产品	防晒力度	防晒途径	物理防晒剂	化学防晒剂
珂润温和防晒霜	SPF15; PA++	物理防晒	1 种: 氧化锌 (UVA、 UVB)	-
茵芙莎 舒缓防晒乳	SPF30; PA+++	物理防晒	2 种: 氧化锌 (UVA、 UVB) 二氧化钛 (UVA、UVB)	-
欧莱雅 小金管	SPF50+; PA++++	化学防晒	-	6种: 二乙氨羟苯甲酰基苯甲酸己酯(UVA)甲氧基肉桂酸乙基己酯(UVB)、乙基己基三嗪酮(UVB) 双-乙基己氧苯酚甲氧苯基三嗪(UVA、UVB)、甲酚曲唑三硅氧烷(UVA、UVB)、亚甲基双-苯并三唑基四甲基丁基酚(UVA、UVB)
资生堂 蓝胖子	SPF50+; PA++++	物化结合	2 种: 氧化锌(UVA、 UVB) 二氧化钛(UVA、UVB)	6 种: 二乙氨羟苯甲酰基苯甲酸己酯(UVA) 甲氧基肉桂酸乙基己酯(UVB)、奧克立林(UVB)、水杨酸乙基己酯(UVB)、 苯基苯并咪唑磺酸(UVB) 双-乙基己氧苯酚甲氧苯基三嗪(UVA、 UVB)
资生堂 安耐晒	SPF50+; PA++++	物化结合	2 种: 氧化锌(UVA、 UVB) 二氧化钛(UVA、UVB)	6 种: 二乙氨羟苯甲酰基苯甲酸己酯(UVA) 甲氧基肉桂酸乙基己酯(UVB)、奧克立
薇诺娜 轻透防晒乳	SPF48; PA+++	化学防晒	-	4 种: 甲氧基肉桂酸乙基己酯(UVB)、 乙基己基三嗪酮(UVB) 双-乙基己氧苯酚甲氧苯基三嗪(UVA、UVB)、亚甲基双-苯并三唑基四甲基丁基酚(UVA、UVB)
珀莱雅 羽感防晒	SPF50+; PA+++	物化结合		7 种: 二乙氨羟苯甲酰基苯甲酸己酯(UVA) 胡莫柳酯(UVB)、奥克立林 (UVB)、水杨酸乙基己酯(UVB)、 聚硅氧烷-15(UVB)、乙基己基三嗪 酮(UVB)、双-乙基己氧苯酚甲氧苯基三嗪(UVA、UVB)

数据来源:美丽修行,东吴证券研究所

2.4.2. 趋势二: 追求更高效、更安全的防晒剂

新型防晒剂防护更加高效,一般来说,防晒剂添加量越少,其对皮肤的负担越小、风险越低、肤感越轻薄。因此,好的防晒配方能够以较少的防晒剂用量实现较高的防晒能力。根据巴斯夫的研究,对于同样能够达到 SPF18、PA++的三个配方,使用新型防晒剂 UVA Plus 和 Tinosorb M 的两个防晒组合的防晒剂添加量仅 9%,添加量小于使用传统防晒剂 BMDBM 的防晒组合。

10% Uvinul® MC80 (EHMC) 7% Uvinul® MC80 (EHMC) 6% Uvinul® MC80 (EHMC) 5% BMDBM 4% Tinosorb® M (MBBT) 2% Tinosorb® M (MBBT) 2% Uvinul® A Plus (DHHB) 15% UV filter 9% UV filter ✓ 9% UV filter ✓ SPF calc. 18 SPF calc. 18 SPF calc. 18 PPD calc. 4.8 PA++ ✓ PPD calc. 7.2 PA++ ✓ PPD (calc.) 4.3 PA++

图9: 2014-2021 年备案数 TOP10 化学/物理防晒剂成分

数据来源: 巴斯夫护理化学品, 东吴证券研究所

风险系数较高的防晒剂成分或逐步被市场淘汰。通过对 2014-2021 年我国部分化学/物理防晒剂成分备案数进行分析,我们发现容易被皮肤吸收、诱发光过敏的二苯酮-3 不仅被各国严格规范使用(例如中国规定含量不能超过 10%,且须在产品上注明含二苯酮-3),其备案数也一直远小于阿伏苯宗、奥克立林等使用较广的防晒剂和 P-S、DHHB等新型防晒剂。由此,我们认为消费者对防晒剂的安全性重视在提升,风险系数、致敏性较高的成分或逐步被市场淘汰。

图10: 2014-2021 年我国部分化学/物理防晒剂成分备案数

数据来源:美业颜究院,美丽修行,东吴证券研究所

五泽推出大分子防晒产品,主打不易渗透、更安全。2022年3月,主打皮肤屏障修护品牌的玉泽推出大分子防晒新品,其防晒剂配方为三种新型大分子防晒剂(Tinosorb M、EHT、 Tinosorb S)。大分子防晒剂的使用可尽可能防止防晒剂渗透进皮肤,因此安全性也更高。

图11: 大部分防晒剂是 < 500Da 的小分子防晒剂

图12: 玉泽防晒新品添加三种大分子防晒剂

数据来源: chemBlink, 东吴证券研究所

数据来源:美丽修行,东吴证券研究所

3. 防晒剂监管: 监管较为严格, 门槛较高

3.1. 各国对防晒剂添加管理均较严格,中国防晒品按特殊用途化妆品管理

世界各国对于防晒剂添加管理均较为严格,采用白名单管理。由于防晒剂若添加不规范可能对皮肤健康造成影响,因此各国对于防晒剂的添加管理均有严格要求:在美国防晒产品按照非处方药管理,在加拿大按照天然健康产品管理,在我国按照特殊用途化妆品管理,管理要求均高于普通化妆品。各国的防晒产品仅可添加允许使用的防晒剂。

表7: 各国对防晒剂的监管情况

国家或地区	防晒剂归属品类	监管机构	相关法规
欧盟	化妆品	欧盟委员会	欧盟化妆品法规(EC) No 1223/2009(2009 年版)
美国	非处方药	美国食品药品管理局 (FDA)	21CFR《联邦食品、药品和化妆品法案》(1999 年 版)
加拿大	天然健康产品或药品	加拿大卫生部	《防晒专论 2.0》(2013年)
澳大利亚	化妆品或药品	澳大利亚药品管理局 (TGA)	《澳大利亚防晒产品监管指南》(2021年版)
中国	特殊用途化妆品	国家食品药品监督管理总 局(NMPA)	《化妆品安全技术规范》(2015版)

数据来源: NMPA,欧盟委员会官网,加拿大卫生部官网,澳大利亚药品管理局官网,东吴证券研究所

3.2. 中国获批可使用的防晒剂有 27 种,美国、加拿大监管最为严格

美国、加拿大获批使用的防晒剂数量最少,且浓度限制较为严格。(1) 从防晒剂获批数量看,美国和加拿大获批数量最少,截至 2022 年 7 月分别为 16 个和 20 个。美国获批的防晒剂不仅考量防晒剂的安全性和有效性,也考核其环保性。例如,被质疑有可能造成环境污染的 4-甲基苄亚基樟脑至今未在美国获批。(2) 从允许使用浓度看,我们发现不少防晒剂在美国、加拿大允许使用的浓度要低于在中国、欧盟和澳大利亚允许使用的浓度。例如,阿伏苯宗在美国、加拿大允许使用的最大浓度为 3%、在中国、欧盟和澳大利亚允许使用的最大浓度为 5%。

图13: 主要国家和地区获批防晒剂种数

数据来源: NMPA, 欧盟委员会官网, 加拿大卫生部官网, 澳大利亚药品管理局官网, 东吴证券研究所(注: 截至 2022 年 7 月)

表8: 部分在主要国家获批的防晒剂最大允许使用浓度对比(w/%)

防晒剂	氧化锌	二苯酮-3	二苯酮-4/ 二苯酮-5	阿伏苯宗	ОМС	〕胡莫柳酯	PBSA	4-甲基苄 亚基樟脑	СВМ	DTS	乙基己基三嗪酮
美国	25	6	10	3	7.5	15	4	未获批	未获批	未获批	未获批
加拿大	25	6	10	3	7.5	15	4	4	未获批	15	未获批
中国	25	10	5	5	10	10	8	4	6	15	5
欧盟	25	6	5	5	10	10	8	4	6	15	5
澳大利亚	N/A	10	10	5	10	15	4	4	6	10	5

数据来源: NMPA, 欧盟委员会官网, 加拿大卫生部官网, 澳大利亚药品管理局官网, 东吴证券研究所

4. 防晒行业: 上游防晒剂格局集中,下游产品需求景气向好

4.1. 需求端: 下游景气度趋于提升, 亚太市场是防晒剂增长主要驱动

根据 Euromonitor 统计, 2021 年全球防晒剂规模达 52000 吨, 其中亚太市场增速 领先。根据 Euromonitor 统计, 2016 年至 2021 年, 全球防晒剂消耗量由约 44,000 吨增长至约 52,000 吨, 年均复合增长率约 4%。其中, 亚太区域市场为防晒剂消耗量增长的主要驱动力, 其增速将远超过其他区域。

图14: 2016年和2021年全球防晒剂市场规模

数据来源: Euromonitor, 东吴证券研究所

图15: 2016-2021 全球防晒剂市场规模 CAGR 为 4%

数据来源: Euromonitor, 东吴证券研究所

中国防晒品规模增速远超全球,终端防晒品需求景气度较高。根据欧睿统计,2021 年全球和中国防晒品规模分别为 794 亿元和 167 亿元,2012-2021 年全球和中国防晒品

规模增速 CAGR 分别为 0.9%/10.5%,中国防晒品规模增速远超全球,防晒品需求景气度较高。

与英美韩相比,我国防晒品渗透率提升空间较大,仍处于发展初期。根据凯度咨询统计,2019年我国防晒品渗透率仅为16%,低于英美韩。我国防晒品渗透率也远小于美妆整体,2019年我国美妆整体渗透率达76%。

图16: 2019 年各国防晒品渗透率对比

数据来源: 凯度咨询, 东吴证券研究所

图17: 2012-2021 年中国防晒品规模增速高于全球防晒品规模增速

数据来源: Euromonitor, 东吴证券研究所

3-7月为国内防晒品销售高峰。从月度分布看,3-7月为国内防晒品销售高峰。2021年 3-7月防晒品淘系 GMV 为 68.8 亿元,2021年全年防晒品淘系 GMV 为 101.8 亿元,3-7月销售占比达 67.6%。

图18: 3-7月为国内防晒品销售高峰

数据来源: 魔镜, 东吴证券研究所

从淘系平台看,防晒增速较护肤整体更快,防晒品呈现量价齐升趋势。根据第三方平台魔镜的数据,2021年淘系平台中防晒、护肤 GMV 分别同增 21.2%/8.7%,防晒增速较护肤整体更快。其中,防晒品类销量、均价分别同增 13.1%/7.2%,呈现量价齐升趋势。

2019年我国防晒市场体量增长来源包括购买人数增加、客单提升和购买件数增加。 根据凯度咨询统计,2019年我国防晒市场的体量增长来源包括量增和价增。(1)量增: 购买人数增加和购买件数增加分别贡献51%和20%的体量增长来源;(2)价增:客单价提升贡献29%的体量增长来源。

图19: 2021 年淘系防晒品量价齐升

数据来源:魔镜,东吴证券研究所

图20: 2019 年我国防晒市场体量增长来源

数据来源: 凯度咨询, 东吴证券研究所

图21: 防晒主要需求增长驱动图解

数据来源: 凯度咨询,美业颜究院,东吴证券研究所(注: 消费频次和购买件数统计时间为 2019 年)

我国防晒品处于成长期前期,由于消费者重视美白和抗老,对防晒长期需求增长空间广阔。我国和欧美消费者处于防晒消费的不同阶段,其中欧美消费者对于防晒的认知始于20世纪30年代,从纯防晒伤需求升级到抗光老化,目前已基本步入成熟期。我国消费者对于防晒认知还处于较早阶段,仅部分消费者具有防晒意识和习惯,且对于防晒认知不足,大部分消费者认为防晒即防晒黑,很少有消费者人知道防晒的抗光老化作用。

随着厂商相继发布防晒大单品,国人对于防晒认知开始提升。由于我国消费者一向重视美白和抗老,长期来看我国防晒市场空间也十分广阔。2021年以中国为主的亚太市场全球规模占比约 1/4,我们认为随着国内渗透率的提升,全球防晒市场也有望步入下一增长阶段。

图22: 我国处于防晒品的成长期前期

数据来源: 东吴证券研究所整理

图23: 2022 年推出的部分防晒新品大单品

数据来源:各品牌天猫旗舰店,东吴证券研究所

4.2. 供给端: 行业格局较为集中, 国内龙头品牌化趋势明显

防晒剂主要厂商包括巴斯夫、德之馨、帝斯曼、科思股份和美峰化工,国内龙头正处于由代工向品牌化转变阶段。巴斯夫是老牌德国化工企业,是世界上工厂面积最大的化学产品基地。集团在欧洲、亚洲、南北美洲的 41 个国家拥有超过 160 家全资子公司或者合资公司。科思股份和美峰化工均为国内防晒剂原料企业,其中科思股份全球份额领先,美峰化工凭借相对低廉的价格在亚太地区有不错的市占率。国内防晒剂龙头起初是为国际大厂做代工起家,随着规模提升和类型的丰富,近年来也逐步吸引部分优质品牌客户,正在处于由原料代工向原料品牌化转变的阶段。

表9: 主要防晒剂生产厂商介绍

厂商	国家	成立时间	业务板块				
巴斯夫	德国	成立于 1865 年	化学品、功能性产品、功能性原材料和方案、农 业解决方案、石油和天然气、其他				
徳之馨	徳国	于 2003 年 Haarmann & Reimer 和 Dragoco 两家公司合并而来,历史最早可追溯至1874 年	香料香精、营养品、个人护理三大板块				
帝斯曼	荷兰	成立于 1902 年,源自荷兰国 有煤矿公司 (Dutch State Mines)	涉足食品和保健品、个人护理产品、医药及医疗设备、饲料、汽车和运输、涂料及油漆、建筑、 电子电气、生命防护、替代能源以及生物基材料 等终端市场				
科思股份	中国	成立于 2000 年	产品包括防晒剂等化妆品活性成分、合成香料等				
美峰化工	中国	成立于 2003 年(前身为铁山 区赤东化工厂,创建于 1993 年)	专业生产紫外线吸收剂系列产品及药物中间体, 集防晒剂类添加剂、塑料和涂料添加剂、医药中 间体等领域研究、开发、生产、销售及服务于一 体				

数据来源: 美颜研究院, 各公司官网, 东吴证券研究所

2017-2019 年科思防晒剂全球占比规模不断上升,从 20.65%增长至 27.88%。据 Euromonitor 预计,2016 年至 2021 年,全球防晒剂消耗量将由约 44,000 吨增长至约52,000 吨,年均复合增长率约 4%。按 Euromonitor 假设的 2017 年、2018 年、2019 年全球防晒剂消耗量均较上年复合增长 4%,则科思股份 2017-2019 年防晒剂市场销量占全球市场份额比例分别为 20.65%、25.67%和 27.88%。防晒剂产品的总销售量位居同行业前列,市场份额保持较快增长。

图24: 2017-2019 全球防晒剂消耗量 (万吨)

图25: 2017-2019 科思防晒剂销量及市场规模

数据来源: Euromonitor, 东吴证券研究所

数据来源: Euromonitor, 东吴证券研究所

日系、国货防晒备受青睐,适应国人青睐轻薄肤感的需求。2021年2月到2022年1月,天猫淘宝防晒品牌中,日本品牌占比29.5%,中国品牌占比26.9%,远高于其他地区的市场份额。从产品特点来看,日系品牌和国货品牌注重舒适肤感,更加迎

合中国消费者的需求。

定位"防晒+养肤"的薇诺娜市占率在国货中领先,快速起量。根据 Euromonitor ,2021年中国防晒市场中,薇诺娜表现良好, 市占率从 2020年的 1.9%跃升至 3.3%,首次进入市占率前十,快速起量。薇诺娜主打"防晒+养肤",不添加酒精、适合所有肤质,因"安全温和"的特性成为了敏感肌群体的优先选择。

图26: 欧美系、日系、韩系、国产防晒特征对比

数据来源:美颜研究院,东吴证券研究所

图27: 2021 年天猫淘宝防晒品牌按国别分布

数据来源: 魔镜, 美颜研究院, 东吴证券研究所 (注: 统计时间为 2021.2~2022.1)

图28: 2021年中国防晒品牌市占率

数据来源: 魔镜, 美颜研究院, 东吴证券研究所 (注: 统计时间为 2021.2~2022.1)

5. 投资建议

防晒剂是化妆品原料中的黄金赛道。**从需求端看**,下游防晒品景气度较高,国内防晒品属于成长期前期,渗透率趋于提升,有望带动上游防晒剂在全球迎来新一轮增长阶段。**从供给端看**,龙头份额较为集中,议价权和成本传导能力强。此外,防晒剂由于类型丰富且添加量较大,具有一定的**规模和客户壁垒**。总体来看,我们看好防晒剂较强的成长性、较好的行业格局以及一定的进入壁垒。推荐全球防晒剂龙头**科思股份**。

6. 风险提示

原材料价格波动。化工原材料价格受国际形势、国内宏观经济变化和供求关系等 多种因素的影响,价格变动存在一定不确定性,会对行业企业盈利情况造成一定扰动。

疫情反复。国内外疫情的持续发展会对下游产品消费市场产生影响,进而影响行业企业产品销售。

客户流失风险。若核心大客户流失,则可能对行业企业营收增长造成一定影响。

免责声明

东吴证券股份有限公司经中国证券监督管理委员会批准,已具备证券投资咨 询业务资格。

本研究报告仅供东吴证券股份有限公司(以下简称"本公司")的客户使用。 本公司不会因接收人收到本报告而视其为客户。在任何情况下,本报告中的信息 或所表述的意见并不构成对任何人的投资建议,本公司不对任何人因使用本报告 中的内容所导致的损失负任何责任。在法律许可的情况下,东吴证券及其所属关 联机构可能会持有报告中提到的公司所发行的证券并进行交易,还可能为这些公 司提供投资银行服务或其他服务。

市场有风险,投资需谨慎。本报告是基于本公司分析师认为可靠且已公开的信息,本公司力求但不保证这些信息的准确性和完整性,也不保证文中观点或陈述不会发生任何变更,在不同时期,本公司可发出与本报告所载资料、意见及推测不一致的报告。

本报告的版权归本公司所有,未经书面许可,任何机构和个人不得以任何形式翻版、复制和发布。如引用、刊发、转载,需征得东吴证券研究所同意,并注明出处为东吴证券研究所,且不得对本报告进行有悖原意的引用、删节和修改。

东吴证券投资评级标准:

公司投资评级:

买入: 预期未来6个月个股涨跌幅相对大盘在15%以上;

增持: 预期未来6个月个股涨跌幅相对大盘介于5%与15%之间;

中性: 预期未来 6个月个股涨跌幅相对大盘介于-5%与 5%之间;

减持: 预期未来 6个月个股涨跌幅相对大盘介于-15%与-5%之间;

卖出: 预期未来 6个月个股涨跌幅相对大盘在-15%以下。

行业投资评级:

增持: 预期未来6个月内,行业指数相对强于大盘5%以上;

中性: 预期未来6个月内,行业指数相对大盘-5%与5%;

减持: 预期未来6个月内,行业指数相对弱于大盘5%以上。

东吴证券研究所

