Orthogonal Distance Regression

16 正交回归

输入和输出数据都参与主成分分析,构造正交空间

数学展现出秩序、对称和有限——这些都是美的极致形态。

The mathematical sciences particularly exhibit order, symmetry, and limitations; and these are the greatest forms of the beautiful.

—— 亚里士多德 (Aristotle) | 古希腊哲学家 | 384~322 BC

- numpy.linalg.eig() 特征值分解
- numpy.linalg.svd() 奇异值分解
- numpy.mean() 计算均值
- numpy.std() 计算均方差
- numpy.var() 计算方差
- pandas datareader.get data yahoo() 下载股价数据
- scipy.odr 正交回归
- scipy.odr.Model() 构造正交回归模型
- scipy.odr.ODR() 设置正交回归数据、模型和初始自
- scipy.odr.RealData() 加载正交回归数据
- statsmodels.api.add constant() 增加OLS常数项
- statsmodels.api.OLS 最小二乘法线性回归

16.1 主成分与回归

本章主要介绍一种和主成分分析息息相关的回归方法——**正交回归** (orthogonal regression)。

正交回归,也叫做**正交距离回归** (Orthogonal Distance Regression, ODR),又叫**全线性回归** (total linear regression)。正交回归通过将自变量通过主成分分析转换成互相正交的新变量,来消除自变量之间的多重共线性问题,从而提高回归分析的准确性和稳定性。

具体来说,正交回归通过以下步骤实现: 1)对自变量进行主成分分析,得到主成分变量,使它们互相正交。2)对因变量和主成分变量进行回归分析,得到每个主成分变量的回归系数。3)根据主成分变量的回归系数和主成分分析的结果,计算出每个自变量的回归系数和截距项。

正交回归的优点之一是消除自变量之间的多重共线性,提高回归分析的准确性和稳定性。正交回归可以在保证预测准确性的前提下,降低自变量的维度,提高回归模型的可解释性。

正交回归的缺点是计算复杂度较高,需要进行主成分分析和回归分析等多个步骤。此外,由于正交回归是基于主成分分析的,因此它可能会失去一些原始自变量的信息,因此需要在可接受的误差范围内进行权衡。

举个例子,平面上,最小二乘法线性回归 OLS 仅考虑纵坐标方向上误差,如图 1 (a) 所示;而正交回归 TLS 同时考虑横纵两个方向误差,如图 1 (b) 所示。

图 1. 对比 OLS 和 TLS 线性回归

从主成分分析角度,正交回归特点是输入数据 X 和输出数据 y 都参与主成分分析。按照特征值从小到大顺序排列特征向量 [v_1 , v_2 , ..., v_D , v_{D+1}],用其中前 D 个向量 [v_1 , v_2 , ..., v_D] 构造一个全新超平面 H。利用 v_{D+1} 垂直于超平面 H 便可以求解出回归系数。

下面用两特征 $X = [x_1, x_2]$ 数据作例子,聊一下主成分回归的思想。如图 2 所示, x_1 和 x_2 为输入数据,y 为输出数据;通过主成分分析, x_1 、 x_2 和 y 正交化之后得到 v_1 、 v_2 和 v_3 (根据特征值从小到大排列); v_1 、 v_2 和 v_3 两两正交。第一主成分 v_1 和第二主成分 v_2 构造平面 H。 v_3 垂直于平面 H,通过这层关系求解出正交回归系数。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466 欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 2. 通过主成分分析构造正交空间

前文介绍的线性回归采用算法叫做**普通最小二乘法** (Ordinary Least squares, OLS); 而正交回归采用的算法叫做**完全最小二乘法** (Total Least Squares, TLS)。

如图 3 所示,最小二乘回归,将 y 投影到 x_1 和 x_2 构造的平面上。而对于正交回归,将 y 投影到 H,得到 \hat{y} 。而残差, $\varepsilon = y - \hat{y}$,平行于 v_3 。再次强调,平面 H 是由第一主成分 v_1 和第二主成分 v_2 构造。

此外,建议读者完成本章学习之后,回过头来再比较图 3 和图 4。这样,相信大家会更清楚 OLS 和 TLS 之间的区别。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

图 3. 最小二乘回归,将y投影到 x_1 和 x_2 构造的平面上

图 4. 正交回归,将输出数据 y 投影到 H

下一节首先用一元正交回归给大家建立正交回归的直观印象,本章后续将逐步扩展到二元回归和多元回归。

16.2 _元正交回归

设定一元正交回归解析式如下:

$$y = b_0 + b_1 x \tag{1}$$

其中, b₀为截距项, b₁为斜率。

如图 5 所示,x-y 平面上任意一点 $(x^{(i)}, y^{(i)})$ 和正交回归直线距离可以利用下式获得:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466 欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

$$d_{i} = \frac{y^{(i)} - (b_{0} + b_{1}x^{(i)})}{\sqrt{1 + b_{1}^{2}}}$$
 (2)

当 $i = 1 \sim n$ 时, d_i 构成列向量为 d:

$$d = \frac{y - (b_0 + b_1 x)}{\sqrt{1 + b_1^2}}$$
 (3)

构造如下优化问题, b_0 和 b_1 为优化变量, 优化目标为最小化欧氏距离平方和:

$$\underset{b0 b_1}{\operatorname{arg \, min}} \ f\left(b_0, b_1\right) = \left\|\boldsymbol{d}\right\|^2 = \boldsymbol{d}^{\mathrm{T}} \boldsymbol{d} \tag{4}$$

将(3)代入 f(b0, b1)得到:

$$f(b_{0},b_{1}) = \frac{(y - (b_{0} + b_{1}x))^{T} (y - (b_{0} + b_{1}x))}{1 + b_{1}^{2}}$$
(5)

为了方便计算,也引入全 1 向量 I,它和 x 形状一样为 n 行 1 列向量; $f(b_0, b_1)$ 展开整理为下式:

$$f(b_0, b_1) = \frac{nb_0^2 + 2b_0b_1\mathbf{x}^{\mathrm{T}}\mathbf{I} + b_1^2\mathbf{x}^{\mathrm{T}}\mathbf{x} - 2b_0\mathbf{y}^{\mathrm{T}}\mathbf{I} - 2b_1\mathbf{x}^{\mathrm{T}}\mathbf{y} + \mathbf{y}^{\mathrm{T}}\mathbf{y}}{1 + b_1^2}$$
(6)

 $f(b_0,b_1)$ 对 b_0 偏导为 0,构造如下等式:

$$\frac{\partial f(b_0, b_1)}{\partial b_0} = \frac{2nb_0 + 2b_1 \mathbf{x}^{\mathsf{T}} \mathbf{1} - 2\mathbf{y}^{\mathsf{T}} \mathbf{1}}{1 + b_1^2} = 0$$
 (7)

 $f(b_0, b_1)$ 对 b_1 偏导为 0,构造如下等式:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套徽课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466 欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

$$\frac{\partial f\left(b_{0},b_{1}\right)}{\partial b_{1}} = \frac{2b_{1}\boldsymbol{x}^{\mathsf{T}}\boldsymbol{x} + 2b_{0}\boldsymbol{x}^{\mathsf{T}}\boldsymbol{I} - 2\boldsymbol{x}^{\mathsf{T}}\boldsymbol{y}}{1 + b_{1}^{2}} - \frac{\left(nb_{0}^{2} + 2b_{0}b_{1}\boldsymbol{x}^{\mathsf{T}}\boldsymbol{I} + b_{1}^{2}\boldsymbol{x}^{\mathsf{T}}\boldsymbol{x} - 2b_{0}\boldsymbol{y}^{\mathsf{T}}\boldsymbol{I} - 2b_{1}\boldsymbol{x}^{\mathsf{T}}\boldsymbol{y} + \boldsymbol{y}^{\mathsf{T}}\boldsymbol{y}\right)2b_{1}}{\left(1 + b_{1}^{2}\right)^{2}} = 0 \quad (8)$$

观察 (7), 容易用 b_1 表达 b_0 :

$$b_0 = \frac{\mathbf{y}^{\mathsf{T}} \mathbf{1} - b_1 \mathbf{x}^{\mathsf{T}} \mathbf{1}}{n} = \mathbf{E}(\mathbf{y}) - b_1 \mathbf{E}(\mathbf{x})$$
(9)

其中.

$$\begin{cases}
E(x) = \frac{x^{T} \mathbf{I}}{n} = \frac{\sum_{i=1}^{n} x^{(i)}}{n} \\
E(y) = \frac{y^{T} \mathbf{I}}{n} = \frac{\sum_{i=1}^{n} y^{(i)}}{n}
\end{cases}$$
(10)

将 (9) 给出 b_0 解析式代入 (8) 获得仅含有 b_1 的一元二次方程:

$$b_1^2 + kb_1 - 1 = 0 ag{11}$$

其中,

$$k = \frac{n\mathbf{x}^{\mathsf{T}}\mathbf{x} - \mathbf{x}^{\mathsf{T}}l\mathbf{x}^{\mathsf{T}}l - n\mathbf{y}^{\mathsf{T}}\mathbf{y} + \mathbf{y}^{\mathsf{T}}l\mathbf{y}^{\mathsf{T}}l}{n\mathbf{x}^{\mathsf{T}}\mathbf{y} - \mathbf{x}^{\mathsf{T}}l\mathbf{y}^{\mathsf{T}}l}$$

$$= \frac{\left(\frac{\mathbf{x}^{\mathsf{T}}\mathbf{x}}{n} - \frac{\mathbf{x}^{\mathsf{T}}l\mathbf{x}^{\mathsf{T}}l}{n^{2}}\right) - \left(\frac{\mathbf{y}^{\mathsf{T}}\mathbf{y}}{n} - \frac{\mathbf{y}^{\mathsf{T}}l\mathbf{y}^{\mathsf{T}}l}{n^{2}}\right)}{\frac{\mathbf{x}^{\mathsf{T}}\mathbf{y}}{n} - \frac{\mathbf{x}^{\mathsf{T}}l\mathbf{y}^{\mathsf{T}}l}{n^{2}}}$$

$$= \frac{\operatorname{var}(\mathbf{x}) - \operatorname{var}(\mathbf{y})}{\operatorname{cov}(\mathbf{x}, \mathbf{y})} = \frac{\sigma_{x}^{2} - \sigma_{y}^{2}}{\rho_{xy}\sigma_{x}\sigma_{y}}$$
(12)

上式,不区分求解方差协方差时,1/(n-1)和1/n之间差别。

求解 (11) 一元二次方程,得到 b_1 解如下:

$$b_{i} = \frac{-k \pm \sqrt{k^2 + 4}}{2} \tag{13}$$

将 (12) 给出的 k, 代入 (13), 整理得到 b_1 解:

$$b_{1} = \frac{\left(\sigma_{y}^{2} - \sigma_{x}^{2}\right) \pm \sqrt{\left(\sigma_{x}^{2} - \sigma_{y}^{2}\right)^{2} + 4\left(\rho_{xy}\sigma_{x}\sigma_{y}\right)^{2}}}{2\rho_{xy}\sigma_{x}\sigma_{y}}$$
(14)

发现 b_1 两个解即**主成分分析** (principal component analysis, PCA) 主元方向。

构造 [x,y] 数据矩阵,它的协方差矩阵 Σ 可以记做:

$$\Sigma = \begin{bmatrix} \sigma_x^2 & \rho_{xy}\sigma_x\sigma_y \\ \rho_{xy}\sigma_x\sigma_y & \sigma_y^2 \end{bmatrix}$$
 (15)

对 Σ 进行特征值分解,得到两个特征向量:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套徽课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466 欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

$$\mathbf{v}_{1} = \begin{bmatrix} \frac{\left(\sigma_{y}^{2} - \sigma_{x}^{2}\right) + \sqrt{\left(\sigma_{x}^{2} - \sigma_{y}^{2}\right)^{2} + 4\left(\rho_{xy}\sigma_{x}\sigma_{y}\right)^{2}}}{2\rho_{xy}\sigma_{x}\sigma_{y}} \\ 1 \end{bmatrix}$$

$$\mathbf{v}_{2} = \begin{bmatrix} \frac{\left(\sigma_{y}^{2} - \sigma_{x}^{2}\right) - \sqrt{\left(\sigma_{x}^{2} - \sigma_{y}^{2}\right)^{2} + 4\left(\rho_{xy}\sigma_{x}\sigma_{y}\right)^{2}}}{2\rho_{xy}\sigma_{x}\sigma_{y}} \\ 1 \end{bmatrix}$$
(16)

 Σ 两个特征值,从大到小排列:

$$\lambda_{1} = \frac{\sigma_{x}^{2} + \sigma_{y}^{2}}{2} + \sqrt{\left(\rho_{xy}\sigma_{x}\sigma_{y}\right)^{2} + \left(\frac{\sigma_{x}^{2} - \sigma_{y}^{2}}{2}\right)^{2}}$$

$$\lambda_{2} = \frac{\sigma_{x}^{2} + \sigma_{y}^{2}}{2} - \sqrt{\left(\rho_{xy}\sigma_{x}\sigma_{y}\right)^{2} + \left(\frac{\sigma_{x}^{2} - \sigma_{y}^{2}}{2}\right)^{2}}$$
(17)

特征值较大的特征向量为正交回归直线切线向量;特征值较小特征向量对应直线法线向量,这样求得 *b*₁ 斜率。有了上述思路,便可以用 PCA 分解来获得正交回归系数,这是下一节要讲解的内容。

如下代码首先介绍如何利用 scipy.odr 可以求解得到正交回归系数。构造线性函数 linear_func(b, x), 利用 scipy.odr.Model(linear_func) 创建线性模型; 然后,采用 scipy.odr.RealData() 加载数据,再用 scipy.odr.ODR() 整合数据、模型和初始值,输出为 odr。odr.run() 求解回归问题。然后,用 pprint()打印结果。

Beta: [0.00157414 1.43773257]
Beta Std Error: [0.00112548 0.05617699]

Beta Covariance: [[1.21904872e-02 -2.43641786e-02]

[-2.43641786e-02 3.03712371e+01]]
Residual Variance: 0.00010390932459480641
Inverse Condition #: 0.22899877744275976

Reason(s) for Halting:
Sum of squares convergence

一元正交回归的解析式为:

$$y = 1.4377x + 0.00157 \tag{18}$$

下一节将介绍如下采用主成分分析来求解一元正交回归系数,并比较正交回归和最小二乘法线性回归。

16.3 几何角度看正交回归

图 6 所示为正交回归和 PCA 分解关系,发现主元回归直线通过数据中心 (E(x), E(y)),回归直线方向和主元方向 v_1 平行,垂直于次元 v_2 方向。即,次元方向 v_2 和直线法向量 n 平行。

图 6. 正交回归和 PCA 分解关系

对于 (1) 所示一元一次函数,构造二元 F(x, y) 函数如下:

$$F(x,y) = b_0 + b_1 x - y (19)$$

F(x, y) 法向量,即平面上形如 (1) 直线法向量 n 可以通过下式求解:

$$\boldsymbol{n} = \left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}\right)^{\mathrm{T}} = \begin{bmatrix} b_{1} \\ -1 \end{bmatrix}$$
 (20)

如前文所示,n 方向即 PCA 分解第二主元方向,即次元方向。

为了方便计算, 假设数据已经经过中心化处理, 即已经完成如下运算:

$$x = x - E(x), \quad y = y - E(y)$$
(21)

由于x和y已经是中心化向量,协方差矩阵可以通过下式运算得到:

$$\Sigma = \begin{bmatrix} x & y \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} x & y \end{bmatrix} = \begin{bmatrix} x^{\mathsf{T}} \\ y^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} x & y \end{bmatrix} = \begin{bmatrix} x^{\mathsf{T}} x & x^{\mathsf{T}} y \\ y^{\mathsf{T}} x & y^{\mathsf{T}} y \end{bmatrix}$$
(22)

为了方便计算,本节计算协方差矩阵不考虑系数 1/(n-1)。

由于 n 为 Σ 次元方向:

$$\Sigma \boldsymbol{n} = \lambda_2 \boldsymbol{n} \quad \Rightarrow \quad \begin{bmatrix} \boldsymbol{x}^{\mathsf{T}} \boldsymbol{x} & \boldsymbol{x}^{\mathsf{T}} \boldsymbol{y} \\ \boldsymbol{y}^{\mathsf{T}} \boldsymbol{x} & \boldsymbol{y}^{\mathsf{T}} \boldsymbol{y} \end{bmatrix} \boldsymbol{n} = \lambda_2 \boldsymbol{n}$$
 (23)

将(20)代入(23),整理得到如下两个等式:

$$\begin{bmatrix} \mathbf{x}^{\mathsf{T}} \mathbf{x} & \mathbf{x}^{\mathsf{T}} \mathbf{y} \\ \mathbf{y}^{\mathsf{T}} \mathbf{x} & \mathbf{y}^{\mathsf{T}} \mathbf{y} \end{bmatrix} \begin{bmatrix} b_1 \\ -1 \end{bmatrix} = \lambda_2 \begin{bmatrix} b_1 \\ -1 \end{bmatrix} \implies \begin{cases} \mathbf{x}^{\mathsf{T}} \mathbf{x} b_1 - \mathbf{x}^{\mathsf{T}} \mathbf{y} = \lambda_2 b_1 \\ \mathbf{y}^{\mathsf{T}} \mathbf{x} b_1 - \mathbf{y}^{\mathsf{T}} \mathbf{y} = -\lambda_2 \end{cases}$$
(24)

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。

版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

联立 (24) 两个等式,用 λ_2 表示 b_1 :

$$b_{1\text{ TLS}} = \left(\boldsymbol{x}^{\mathrm{T}}\boldsymbol{x} - \lambda_{2}\right)^{-1} \boldsymbol{x}^{\mathrm{T}} \boldsymbol{y} \tag{25}$$

下式为本书前文获得的一元线性回归 OLS 中 b_1 解:

$$b_{\text{LOLS}} = \left(\boldsymbol{x}^{\mathsf{T}}\boldsymbol{x}\right)^{-1}\boldsymbol{x}^{\mathsf{T}}\boldsymbol{y} \tag{26}$$

对比 OLS 和 TLS; 当 (25) 中 λ_2 为 0 时, 两种回归方法得到斜率完全一致。 λ_2 = 0 时, y 和 x 完全线 性相关。

数据中心化前后,回归直线梯度向量不变;中心化之前的回归直线通过 (E(x), E(y)) 一点,即:

$$\mathbf{E}(\mathbf{y}) = b_0 + b_1 \mathbf{E}(\mathbf{x}) \tag{27}$$

获得回归式截距项 60表达式:

$$b_0 = \mathbf{E}(\mathbf{y}) - b_1 \mathbf{E}(\mathbf{x}) \tag{28}$$

图7所示为一元正交回归数据之间关系。发现自变量x列向量和因变量y列向量数据都参与PCA分 解得到正交化向量 v_1 和 v_2 ,然后用特征值中较大值对应特征向量 v_1 作为一元正交回归直线切线向量。更 为简单计算方法是,用特征值较小值对应特征向量 v2 作为一元正交回归直线法向量。

图 7. 一元正交回归 TLS 数据关系

图 8 所示为最小二乘法 OLS 一元线性回归系数,对应的一元 OLS 解析式为:

$$y = 1.1225x + 0.0018 \tag{29}$$

图 9 比较 OLS 和 TLS 结果。

~ ~ ~	-	
OLS	Regression	Results

=========							
Dep. Variable:		Ī	AAPL	R-squ	ared:		0.687
Model:			OLS	Adj.	R-squared:		0.686
Method:		Least Squa	ares	F-sta	atistic:		549.7
Date:		Thu, 07 Oct 2	2021	Prob	(F-statistic):	•	4.55e-65
Time:		07:08	3:46	Log-I	Likelihood:		678.03
No. Observatio	ns:		252	AIC:			-1352.
Df Residuals:			250	BIC:			-1345.
Df Model:			1				
Covariance Typ	e:	nonrol	oust				
	coef				P> t	-	
const	0.0018				0.080		
SP500	1.1225	0.048	2	3.446	0.000	1.028	1.217
Omnibus:		 52	.424	===== Durbi	========= ln-Watson:		1.864
Prob(Omnibus):			.000		ne-Bera (JB):		210.804
Skew:			.777	_	, ,		1.68e-46
Kurtosis:		7	.203	Cond	No.		46.1
=========		-========					

图 8. 最小二乘法 OLS 一元线性回归结果

图 9. 比较 OLS 和 TLS 结果

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 成权归有平人字面版在所有,有勿向用,引用有压切面处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套徽课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466 欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

Bk7_Ch16_01.ipynb 绘制本节图像。

16.4 二元正交回归

这一节用主成分分析讨论二元正交回归。

首先也是对数据进行中心化处理:

$$x_1 = x_1 - E(x_1), \quad x_2 = x_2 - E(x_1), \quad y = y - E(y)$$
 (30)

根据 PCA 计算法则,首先求解协方差矩阵。由于 x_1 、 x_2 和 y 已经为中心化矩阵,因此协方差矩阵 Σ 通过下式计算获得。

$$\Sigma = \begin{bmatrix} x_{1} & x_{2} & y \end{bmatrix}^{T} \begin{bmatrix} x_{1} & x_{2} & y \end{bmatrix} \\
= \begin{bmatrix} x_{1}^{T} \\ x_{2}^{T} \\ y^{T} \end{bmatrix} \begin{bmatrix} x_{1} & x_{2} & y \end{bmatrix} = \begin{bmatrix} x_{1}^{T} x_{1} & x_{1}^{T} x_{2} & x_{1}^{T} y \\ x_{2}^{T} x_{1} & x_{2}^{T} x_{2} & x_{2}^{T} y \\ y^{T} x_{1} & y^{T} x_{2} & y^{T} y \end{bmatrix}$$
(31)

为了方便计算,本节也计算不考虑系数 1/(n-1)。

正交回归解析式表达:

$$y = b_0 + b_1 x_1 + b_2 x_2 (32)$$

构造二元 $F(x_1, x_2, y)$ 函数如下:

$$F(x_1, x_2, y) = b_0 + b_1 x_1 + b_2 x_2 - y \tag{33}$$

 $F(x_1, x_2, y)$ 法向量即平面 $f(x_1, x_2)$ 法向量 n 通过下式求解:

$$\boldsymbol{n} = \left(\frac{\partial F}{\partial x_1}, \frac{\partial F}{\partial x_2}, \frac{\partial F}{\partial y}\right)^{\mathrm{T}} = \begin{bmatrix} b_1 & b_2 & -1 \end{bmatrix}^{\mathrm{T}}$$
(34)

n 平行于 Σ 矩阵 PCA 分解特征值最小特征向量,即:

$$\Sigma v_{3} = \lambda_{3} v_{3} \quad \Rightarrow \quad \begin{bmatrix} x_{1}^{\mathsf{T}} x_{1} & x_{1}^{\mathsf{T}} x_{2} & x_{1}^{\mathsf{T}} y \\ x_{2}^{\mathsf{T}} x_{1} & x_{2}^{\mathsf{T}} x_{2} & x_{2}^{\mathsf{T}} y \\ y^{\mathsf{T}} x_{1} & y^{\mathsf{T}} x_{2} & y^{\mathsf{T}} y \end{bmatrix} n = \lambda_{3} n$$
(35)

整理得到:

$$\begin{bmatrix} \mathbf{x}_{1}^{\mathsf{T}} \mathbf{x}_{1} & \mathbf{x}_{1}^{\mathsf{T}} \mathbf{x}_{2} & \mathbf{x}_{1}^{\mathsf{T}} \mathbf{y} \\ \mathbf{x}_{2}^{\mathsf{T}} \mathbf{x}_{1} & \mathbf{x}_{2}^{\mathsf{T}} \mathbf{x}_{2} & \mathbf{x}_{2}^{\mathsf{T}} \mathbf{y} \\ \mathbf{y}^{\mathsf{T}} \mathbf{x}_{1} & \mathbf{y}^{\mathsf{T}} \mathbf{x}_{2} & \mathbf{y}^{\mathsf{T}} \mathbf{y} \end{bmatrix} \begin{bmatrix} b_{1} \\ b_{2} \\ -1 \end{bmatrix} = \lambda_{3} \begin{bmatrix} b_{1} \\ b_{2} \\ -1 \end{bmatrix} \implies \begin{cases} (\mathbf{x}_{1}^{\mathsf{T}} \mathbf{x}_{1} - \lambda_{3}) b_{1} + \mathbf{x}_{1}^{\mathsf{T}} \mathbf{x}_{2} b_{2} = \mathbf{x}_{1}^{\mathsf{T}} \mathbf{y} \\ \mathbf{x}_{2}^{\mathsf{T}} \mathbf{x}_{1} b_{1} + (\mathbf{x}_{2}^{\mathsf{T}} \mathbf{x}_{2} - \lambda_{3}) b_{2} = \mathbf{x}_{2}^{\mathsf{T}} \mathbf{y} \end{cases}$$
(36)

n 平行于 Σ 矩阵 PCA 分解特征值最小特征向量 v_3 ,构造如下等式并求解 b_1 和 b_2 :

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

$$\begin{bmatrix} b_1 \\ b_2 \\ -1 \end{bmatrix} = k \mathbf{v}_3 \quad \Rightarrow \quad \begin{bmatrix} b_1 \\ b_2 \\ -1 \end{bmatrix} = k \begin{bmatrix} v_{1,3} \\ v_{2,3} \\ v_{3,3} \end{bmatrix}$$

$$(37)$$

根据 (37) 最后一行,可以求得 k

$$k = \frac{-1}{v_{3,3}} \tag{38}$$

b₁和 b₂构成的列向量为:

$$\begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \frac{-1}{v_{3,3}} \begin{bmatrix} v_{1,3} \\ v_{2,3} \end{bmatrix}$$
 (39)

回归方程常数项通过下式获得:

$$b_0 = \mathbf{E}(\mathbf{y}) - \left[\mathbf{E}(\mathbf{x}_1) \quad \mathbf{E}(\mathbf{x}_2)\right] \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$
(40)

为了方便多元正交回归运算,令:

$$\begin{bmatrix} x_1 & x_2 \end{bmatrix} = \begin{bmatrix} X \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} x_1 & x_2 & y \end{bmatrix} = \begin{bmatrix} X & y \end{bmatrix} \tag{41}$$

协方差矩阵 Σ 为:

$$\Sigma = \begin{bmatrix} X^{\mathsf{T}} X & X^{\mathsf{T}} y \\ y^{\mathsf{T}} X & X^{\mathsf{T}} y \end{bmatrix}$$
(42)

上式 Σ 也不考虑系数 1/(n-1):

$$\Sigma v_{3} = \lambda_{3} v_{3} \quad \Rightarrow \quad \begin{bmatrix} X^{\mathsf{T}} X & X^{\mathsf{T}} y \\ y^{\mathsf{T}} X & y^{\mathsf{T}} y \end{bmatrix} n = \lambda_{3} n \tag{43}$$

构造 $\mathbf{b} = [b_1, b_2]^{\mathrm{T}}$ 这样重新构造特征值和特征向量以及 Σ 之间关系:

$$\boldsymbol{n} = \begin{bmatrix} b_1 \\ b_2 \\ -1 \end{bmatrix} = \begin{bmatrix} \boldsymbol{b} \\ -1 \end{bmatrix} \tag{44}$$

将 (44) 代入 (43), 整理得到 b:

$$\begin{bmatrix} X^{\mathsf{T}}X & X^{\mathsf{T}}y \\ y^{\mathsf{T}}X & y^{\mathsf{T}}y \end{bmatrix} \begin{bmatrix} b \\ -1 \end{bmatrix} = \lambda_{3} \begin{bmatrix} b \\ -1 \end{bmatrix} \quad \Rightarrow \quad b = (X^{\mathsf{T}}X - \lambda_{3})^{-1} X^{\mathsf{T}}y$$
 (45)

下一节将使用(45)这一解析式计算正交回归解析式系数。

图 10 回顾本章第一节介绍的二元正交回归坐标转换过程。

数据 $[x_1, x_2, y]$ 中心化后,用 PCA 正交化获得正交系 $[v_1, v_2, v_3]$ 。 v_1, v_2 和 v_3 对应特征值由大到小。前两个主元向量 v_1 和 v_2 相互垂直,构成了一个平面 H,特征值最小主元 v_3 垂直于该平面。n 为 H 平面法向量,n 和 v_3 两者平行。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。代码及 PDF 文件下载: https://github.com/Visualize-ML

图 10 还比较了 OLS 和 TLS 回归结果。值得大家注意的是,如图 10 上半部分所示,对于最小二乘回归 OLS, \hat{y} 在 x_1 和 x_2 构造的平面上;而如图 10 下半部分,正交回归 TLS 中, \hat{y} 在 v_1 和 v_2 构造平面 H 上。

图 10. 几何角度解释二元正交回归坐标转换

图 11 解释二元正交回归数据关系。如前文反复强调,输入数据和输出数据都参与主成分分析,也就是正交化过程,因此特征向量既有"输入"成分,也有"输出"成分,呈现"你中有我,我中有你"。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套徽课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

图 11. 二元正交回归数据关系

利用上一节介绍的 scipy.odr,可以求解一个二元正交回归的结果如下。利用主成分分析,我们可以获得相同正交回归的系数。

二元正交回归的平面解析式为:

$$y = 0.4079x_1 + 0.4438x_2 - 0.00061 \tag{46}$$

图 12 所示为最小二乘法 OLS 二元线性回归结果,对应的平面解析式如下:

$$y = 0.3977x_1 + 0.4096x_2 - 0.006 (47)$$

OLS Regression Results									
Dep. Variable Model: Method: Date: Time: No. Observati Df Residuals: Df Model: Covariance Ty	T.cons:	Least Squ hu, 07 Oct	2021 1:57 252 249 2	F-sta Prob	uared: R-squared: atistic: (F-statistic) Likelihood:	:	0.830 0.829 607.4 1.69e-96 831.06 -1656. -1646.		
========	coef	std err			P> t	[0.025	0.975]		
AAPL	0.3977		16	.984	0.326 0.000 0.000	0.350	0.446		
Omnibus: Prob(Omnibus) Skew: Kurtosis:	:	0	.744 .000 .492 .749				1.991 157.710 5.67e-35 59.4		

图 12. 最小二乘法 OLS 二元线性回归结果

图 13 比较 OLS 和 TLS 二元回归结果。

图 13. 比较 OLS 和 TLS 二元回归结果

Bk7_Ch16_02.ipynb 完成本节回归运算。

16.5 多元正交回归

下面,把上述思路推广到 D 维度 X 矩阵。首先中心化数据,获得如下两个中心化 X, y 向量:

$$\boldsymbol{X}_{\scriptscriptstyle n\times D} = \left(\boldsymbol{I} - \frac{1}{n}\boldsymbol{\mathcal{U}}^{\scriptscriptstyle T}\right)\boldsymbol{X}, \quad \boldsymbol{y} = \boldsymbol{y} - \mathbf{E}(\boldsymbol{y})$$
(48)

为了表达方便,假设 X 和 y 已经为中心化数据;这样,构造回归方程式时,不必考虑常数项 b_0 ,即回归方程中没有截距项:

$$y = b_1 x_1 + b_2 x_2 + \dots + b_{D-1} x_{D-1} + b_D x_D$$
 (49)

为了进行 PCA 分解,首先计算 [X, y] 矩阵协方差矩阵。

X和y均是中心化数据,不考虑系数 1/(n-1),协方差矩阵通过下式简单运算获得:

$$\Sigma_{\scriptscriptstyle (D+1) \mapsto (D+1)} = \begin{bmatrix} X, y \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} X, y \end{bmatrix} = \begin{bmatrix} X^{\mathsf{T}} \\ y^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} X, y \end{bmatrix} = \begin{bmatrix} X^{\mathsf{T}} X & X^{\mathsf{T}} y \\ y^{\mathsf{T}} X & y^{\mathsf{T}} y \end{bmatrix}$$
(50)

上述协方差矩阵行列宽度均为 D+1。对它进行特征值分解得到:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

$$\Sigma = V\Lambda V^{-1} \tag{51}$$

其中,

$$\boldsymbol{\Lambda} = \begin{bmatrix} \lambda_{1} & & & & \\ & \lambda_{2} & & & \\ & & \ddots & & \\ & & & \lambda_{D} & & \\ & & & & \lambda_{D+1} \end{bmatrix}, \quad \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{D} \geq \lambda_{D+1}$$

$$\boldsymbol{V} = \begin{bmatrix} \boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \cdots & \boldsymbol{v}_{D} & \boldsymbol{v}_{D+1} \end{bmatrix}$$
(52)

特征值矩阵对角线特征值从左到右,由大到小。有了本章之前内容铺垫,相信读者已经清楚正交回 归的矩阵运算过程,具体如图 14 所示。

图 14. 多元正交回归矩阵运算过程

V中第 1 到第 D 个行向量 $[v_1, v_2, ..., v_D]$ 构造超平面 H, 而 v_{D+1} 垂直于该超平面。

构造 $F(x_1, x_2, ..., x_D, y)$ 函数:

$$F(x_1, x_2, ..., x_D, y) = b_1 x_1 + b_2 x_2 + \dots + b_{D-1} x_{D-1} + b_D x_D - y$$
(53)

 $F(x_1, x_2, ..., x_D, y)$ 法向量即平面上 $f(x_1, x_2, ..., x_D)$ 法向量 n 通过下式求解:

$$\boldsymbol{n} = \left(\frac{\partial F}{\partial x_1}, \dots, \frac{\partial F}{\partial x_D}, \frac{\partial F}{\partial y}\right)^{\mathrm{T}} = \begin{bmatrix} b_1 & b_2 & \dots & b_D & -1 \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} \boldsymbol{b} \\ -1 \end{bmatrix}$$
(54)

这样重新构造特征值 λ_{D+1} 和特征向量 v_{D+1} 以及 Σ 之间关系。注意,n 平行 v_{D+1} 。n 对应 Σ 矩阵 PCA 分解特征值最小特征向量,即:

$$\Sigma v_{D+1} = \lambda_{D+1} v_{D+1} \quad \Rightarrow \quad \begin{bmatrix} X^{\mathsf{T}} X & X^{\mathsf{T}} y \\ y^{\mathsf{T}} X & y^{\mathsf{T}} y \end{bmatrix} n = \lambda_{D+1} n$$
 (55)

求解获得多元正交回归系数列向量 b 解:

$$\begin{bmatrix} X^{\mathsf{T}}X & X^{\mathsf{T}}y \\ y^{\mathsf{T}}X & y^{\mathsf{T}}y \end{bmatrix} \begin{bmatrix} b \\ -1 \end{bmatrix} = \lambda_{D+1} \begin{bmatrix} b \\ -1 \end{bmatrix} \quad \Rightarrow \quad b_{\mathsf{TLS}} = (X^{\mathsf{T}}X - \lambda_{D+1})^{-1}X^{\mathsf{T}}y$$
 (56)

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。

版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

对比多元线性最小二乘系数向量结果:

$$\boldsymbol{b}_{\text{OLS}} = \left(\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y} \tag{57}$$

发现当 λ_{D+1} 等于 0 时, y 完全被 X 列向量解释, 即两个共线性。

这里我们再次区分一下最小二乘法和正交回归。最小二乘法寻找因变量和自变量之间残差平方和最小超平面;几何角度上讲,将因变量投影在自变量构成超平面 H,使得残差向量垂直 H。正交回归则通过正交化自变量和因变量,构造一个新正交空间;这个新正交空间基底向量为分解得到主元向量,具体如图 15 所示。

图 15. 几何角度解释多元正交回归

n 平行于数据 [X, y] PCA 分解特征值最小特征向量 v_{D+1} ,构造如下等式并求解 b_1 , ..., b_D :

$$\begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{D} \\ -1 \end{bmatrix} = \begin{bmatrix} \mathbf{b} \\ -1 \end{bmatrix} = k\mathbf{v}_{D+1} \quad \Rightarrow \quad \begin{bmatrix} \mathbf{b} \\ -1 \end{bmatrix} = k \begin{bmatrix} v_{1,D+1} \\ v_{2,D+1} \\ \vdots \\ v_{D,D+1} \\ v_{D+1,D+1} \end{bmatrix}$$

$$(58)$$

求解 k 得到:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466 欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

$$k = \frac{-1}{v_{\text{political}}} \tag{59}$$

求解 b 得到:

$$\boldsymbol{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_D \end{bmatrix} = \frac{-1}{v_{D+1,D+1}} \begin{bmatrix} v_{1,D+1} \\ v_{2,D+1} \\ \vdots \\ v_{D,D+1} \end{bmatrix}$$
(60)

b0通过下式求得。

$$b_0 = \mathbf{E}(\mathbf{y}) - \left[\mathbf{E}(\mathbf{x}_1) \quad \mathbf{E}(\mathbf{x}_2) \quad \cdots \quad \mathbf{E}(\mathbf{x}_D)\right] \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_D \end{bmatrix}$$
(61)

图 16 展示多元正交回归运算数据关系。看到数据 [X,y] 均参与到了正交化中;正交化结果为 D+1 个正交向量 $[v_1,v_2,...,v_D,v_{D+1}]$ 。通过向量 v_{D+1} 垂直 $v_1,v_2,...,v_D$ 构成超平面,推导出多元正交回归解析式。

图 16. 多元正交回归运算数据关系

图 17 所示直方图, 比较多元 TLS 回归和多元 OLS 回归系数。

图 17. 比较多元 TLS 回归和多元 OLS 回归系数

Bk7_Ch16_03.ipynb 完成本节回归运算。

正交回归和最小二乘法回归都是回归分析中的方法,但它们之间有很大的区别。

OLS 通过最小化实际观测值与预测值之间的误差平方和,来确定回归系数。这种方法非常直观且易于理解,但存在一些缺点,例如当数据存在多重共线性时,OLS 的估计结果可能会变得不稳定,且估计结果受到极端值的影响较大。

与 OLS 不同,正交回归是一种基于主成分分析的回归方法。它通过将自变量通过主成分分析转换成 互相正交的新变量,来消除自变量之间的多重共线性问题,从而提高回归分析的准确性和稳定性。

因此,正交回归方法相对于 OLS 方法更加鲁棒,适用于多重共线性较强的数据集,同时也能够在保证预测准确性的前提下,降低自变量的维度,提高回归模型的可解释性。