General Purpose Input/Output (GPIO)

Multifunction Pins

- A pin in the microcontroller can have multiple functions:
 - Digital I/O pin (input or output)
 - Specific peripheral function pin (for example the output of a hardware timer or an input clock signal) (Alternate function)
 - Analog input to connect to an ADC or DAC
 - The pin can be configured in Open Drain, Pull-up or pull-down, high speed or low speed.

Multifunction PINs

Configuration (using registers)

a.- Configuration process

1.- GPIO port mode register (GPIOx_MODER)
2.- GPIO port output type register (GPIOx_OTYPER)
3.- GPIO port output speed register (GPIOx_OSPEEDR)
4.- GPIO port pull-

register

up/pull-down

(GPIOx PUPDR)

		MODER(i) [1:0]		OTYPER(i)		OSPEEDR(i) [B:A]		DR(i) :0]	I/O configuration			
•			0		4		<u>/</u>		GP output	PP		
			0				0	1	GP output	PP + PU		
			0				1	0	GP output	PP + PD		
	01		0		SPEE	D	1	1	Reserved			
	01		1		[B:A]		0	0	GP output	OD		
<u> </u>			1		Ī		0	1	GP output	OD + PU		
			1				1	0	GP output	OD + PD		
ļ			1				1	1	Reserved (GP ou	itput OD)		
Γ				0			0	0	AF	PP		
	0				0	1	AF	PP + PU				
			0		Ī		1	0	AF	PP + PD		
	10			0	s	PEED	1	1	Reserved			
ĺ	10			1	[1	B:A]	0	0	AF	OD		
				1			0	1	AF	OD + PU		
				1			1	0	AF	OD + PD		
			1				1	1	Reserved	•		
Ť				x	x	×	0	0	Input	Floating		
	00			x		×	0	1	Input	PU		
	00			x		×	1	0	Input	PD		
				x	x	x	1	1	Reserved (input f	loating)		
				x x		×	0	0	Input/output	Analog		
	44			x	x	×	0	1				
	11			x	x x		1	0	Reserved			
			×		x	×	1	1				

Source: ST. RM0090 Reference manual

Direct Programming of GPIO

This code shows how manage I/O access using pointers.

```
volatile uint32 t *pGPIOA MODER = 0;
volatile uint32 t *pGPIOA ODR = 0;
pGPIOA MODER = (uint32 t*)0x48000000; // Address of the GPIOA MODER register
pGPIOA ODR = (uint32 t*) (0x48000000 + 0x14); // Address of the GPIOA ODR register
// Before use a peripheral, it must be enabled and connected to the AHBl bus
// This will be done using the HAL
*pGPIOA MODER = *pGPIOA MODER | 0x04; // Sets MODER[3:2] = 0x1 and configure like Output
*pGPIOA ODR = *pGPIOA ODR | 0x02; // Sets PAl high
                                                                        Pointer declaration and initialization
                               Assign pointer specific peripheral address
Access peripheral:
a.- Configure pin.
b.- Access pin.
```


Programming GPIO

Using HAL to manage the I/O peripheral.

HAL GPIOFunctions and Handlers

Initialization and de-initialization

```
typedef struct {
    volatile uint32_t MODER;
    volatile uint32_t OTYPER;
    volatile uint32_t OSPEEDR;
    volatile uint32_t PUPDR;
    volatile uint32_t IDR;
    volatile uint32_t ODR;
    volatile uint32_t BSRR;
    volatile uint32_t LCKR;
    volatile uint32_t AFR[2];
    volatile uint32_t BRR;
}
```

```
typedef struct {
    uint32_t Pin;
    uint32_t Mode;
    uint32_t Pull;
    uint32_t Speed;
    uint32_t Alternate;
} GPIO_InitTypeDef;
```

```
typedef enum
{
   GPIO_PIN_RESET = OU,
   GPIO_PIN_SET
}GPIO_PinState;
```


See: stm32l4xx_hal_gpio.h

Examples (Digital output)

```
GPIO_InitTypeDef GPIO_InitStruct = {0};

__HAL_RCC_GPIOB_CLK_ENABLE();

GPIO_InitStruct.Pin = GPIO_PIN_0;

GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;

GPIO_InitStruct.Pull = GPIO_NOPULL;

GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;

HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
```


Examples (digital input - interrupt)

```
GPIO_InitTypeDef GPIO_InitStruct = {0};

__HAL_RCC_GPIOF_CLK_ENABLE();

GPIO_InitStruct.Pin = GPIO_PIN_6;

GPIO_InitStruct.Mode = GPIO_MODE_INPUT;

GPIO_InitStruct.Pull = GPIO_PULLUP; //GPIO_PULLDOWN //GPIO_NOPULL
HAL_GPIO_Init(GPIOF, &GPIO_InitStruct);
```

```
GPIO_InitTypeDef GPIO_InitStruct = {0};
__HAL_RCC_GPIOC_CLK_ENABLE();
GPIO_InitStruct.Pin = GPIO_PIN_13;
GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
```

UNIVERSIDAD POLITÉCNICA DE

Examples (Analog)

```
_HAL_RCC_GPIOA_CLK_ENABLE();
GPIO_InitStruct.Pin = GPIO_PIN_3;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL GPIO Init(GPIOA, &GPIO InitStruct);
```


Examples (Alternate Function)

Port		AF0 SYS	AF1	AF2 TIM3/4/5	AF3 TIM8/9/ 10/11	AF4	AF5 SPI1/2/ 3/4/5/6		SPI3/ USART1/ 2/3	USART6/ UART4/5/7 /8	AF9 CAN1/2/ TIM12/13/14 /LCD	AF10 OTG2_HS /OTG1_ FS	AF11 ETH	AF12 FMC/SDIO /OTG2_FS	AF13	AF14	AF15			
			TIM1/2														sys			
	PAO		TIM2_ CH1/TIM2 _ETR	TIM5_ CH1	TIM8_ ETR	-	1-	-	USART2_ CTS	UART4_TX	-	-	ETH_MII_ CRS	-	-		EVEN TOUT			
	PA1	-	TIM2_ CH2	TIM5_ CN2			-	-	USART2_ RTS	UART4_RX	-	-	ETH_MII_ RX_CLK/E TH_RMII_ REF_CLK	-	-	-	EVEN TOUT			
	PA2	-	TIM2_ CH3	TIM5_ CH3	TIM9_ CH1		-	-	USART2_ TX	-	-	-	ETH_ MDIO	-	-		EVEN TOUT			
	PA3	-	TIM2_ CH4	TIM5_ CH4	TIM9_ CH2	-	1	-	USART2_ RX	-	÷	OTG_HS_ ULPI_D0	ETH_MII_ COL	-	-	LCD_B5	EVEN TOUT			
	PA4		-	-			SPI1_ NSS	SPI3_ NSS/ I2S3_WS	USART2_		-	-	-	OTG_HS_	DCMI_	LCD_	EVEN			
D1 A	PA5	-	TIM2_ CH1/TIM2 _ETR	-	TIM8_ CH1N	-	SPI1_ SCK					_	_	OA_CL n = GF	_		.,			
Port A	PA6	-	TIM1_ BKIN	TIM3_ CH1	TIM8_ BKIN	- 1	SPI1_ MISO	-	1	-	GPIO	_ _InitSt	ruct.M	ode = (GPIO	_MO[DE_AF_	PP;		
	PA7	-	TIM1_ CH1N	TIM3_ CH2	TIM8_ CH1N	-	SPI1_ MOSI		-1	\ <u>.</u>	•			ull = <mark>Gf</mark> beed =	_		LL; EED FF	REQ L	_OW;	
	PA8	MCO1	TIM1_ CH1	-	-	I2C3_ SCL		-	USART1_ CK	. 1	GPIO	_ _InitSt	ruct.Al	ternate	e = GF	PIO_A	F1_TIM	12;		
	PA9	-	TIM1_ CH2	-	-	I2C3_ SMBA	-	-	USART1_ TX	-	HAL_	GPIO_	_Init(GI	PIOA, 8	&GPI	O_Init	Struct);			
	PA10	-	TIM1_ CH3	-	1-1	-		-	USART1_ RX	-		ID			D1		TOUT			
	PA11	-	TIM1_ CH4	-		-	-	-	USART1_ CTS	-	CAN1_RX	OTG_FS_ DM	-	-	-	LCD_R4	EVEN TOUT			
	PA12	-	TIM1_	_		-	-	-	USART1_	_	CAN1 TX	OTG_FS_				LCD R5	EVEN			

```
__HAL_RCC_GPIOA_CLK_ENABLE();
GPIO InitStruct.Pin = GPIO PIN 0;
GPIO InitStruct.Mode = GPIO MODE AF OD;
GPIO InitStruct.Pull = GPIO PULLUP;
GPIO InitStruct.Speed = GPIO SPEED FREQ LOW;
GPIO InitStruct.Alternate = GPIO AF1 TIM2;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
```


Conclusions

- Some STM32 microcontroller pins can be configured for different functions
 - Use HAL to configure the PIN in the initialization of your system
 - Check the reference manual to see the Alternate Functions (to be used for timers, SPI, I2C, etc)
 - Review the HAL_GPIO code in Keil environment

