1.6=1R-4-1} X 6×6 --> (xy) -> x x y = x+y+xy a) (G/X) es Gropo abeliano Si es asociativa y connectiva (x x y) x 2 = x x (y x 2) xx (y x 2) +x (y x 2) と x + y + そ + y + x z + x y そ (x x y) + 2 + (x x y) Z of es assignation Xtytxy +2 + xzt yxt xyz /Tiene inverso Elemento neutos x x x '= e = 0 exx=x XXezx X1 x'+ xx'= 0 xte+xe=x e+x+ex=x | e=0 e=0) X+XX=-X x(11x)=-x

2. En el conjunto $\mathbb{R} - \{0\}$ se define la operación binaria

$$x*y = \frac{x\cdot y}{2}$$

Estudia si $(\mathbb{R} - \{0\}, *)$ es un grupo. $(\times \times \times) \times 7 = \times \times (y \times 2) / \text{then next } 6$ $(\times \times y) \cdot 2 = \times \cdot (\frac{y \cdot 2}{2}) / \text{then next } 6$ $(\times \times y) \cdot 2 = \times \cdot (\frac{y \cdot 2}{2}) / \text{then next } 6$ $(\times \times y) \cdot 2 = \times \cdot (\frac{y \cdot 2}{2}) / \text{then next } 6$ $(\times \times y) \cdot 2 = \times \cdot (\frac{y \cdot 2}{2}) / \text{then next } 6$ $(\times \times y) \cdot 2 = \times \cdot (\frac{y \cdot 2}{2}) / \text{then next } 6$ $(\times \times y) \cdot 2 = \times \cdot (\frac{y \cdot 2}{2}) / \text{then next } 6$ $(\times \times y) \cdot 2 = \times \cdot (\frac{y \cdot 2}{2}) / \text{then next } 6$ $(\times \times y) \cdot 2 = \times \cdot (\frac{y \cdot 2}{2}) / \text{then next } 6$ $(\times \times y) \cdot 2 = \times \cdot (\frac{y \cdot 2}{2}) / \text{then next } 6$ $(\times \times y) \cdot 2 = \times \cdot (\frac{y \cdot 2}{2}) / \text{then next } 6$ $(\times \times y) \cdot 2 = \times \cdot (\frac{y \cdot 2}{2}) / \text{then next } 6$ $(\times \times y) \cdot 2 = \times \cdot (\frac{y \cdot 2}{2}) / \text{then next } 6$ $(\times \times y) \cdot 2 = \times \cdot (\frac{y \cdot 2}{2}) / \text{then next } 6$ $(\times \times y) \cdot 2 = \times \cdot (\frac{y \cdot 2}{2}) / \text{then next } 6$ $(\times \times y) \cdot 2 = \times \cdot (\frac{y \cdot 2}{2}) / \text{then next } 6$ $(\times \times y) \cdot 2 = \times \cdot (\frac{y \cdot 2}{2}) / \text{then next } 6$ $(\times \times y) \cdot 2 = \times \cdot (\frac{y \cdot 2}{2}) / \text{then next } 6$ $(\times \times y) \cdot 2 = \times \cdot (\frac{y \cdot 2}{2}) / \text{then next } 6$ $(\times \times y) \cdot 2 = \times \cdot (\frac{y \cdot 2}{2}) / \text{then next } 6$ $(\times \times y) \cdot 2 = \times \cdot (\frac{y \cdot 2}{2}) / \text{then next } 6$ $(\times \times y) \cdot 2 = \times \cdot (\frac{y \cdot 2}{2}) / \text{then next } 6$ $(\times \times y) \cdot 2 = \times \cdot (\frac{y \cdot 2}{2}) / \text{then next } 6$ $(\times \times y) \cdot 2 = \times \cdot (\frac{y \cdot 2}{2}) / \text{then next } 6$ $(\times \times y) \cdot 2 = \times \cdot (\frac{y \cdot 2}{2}) / \text{then next } 6$ $(\times \times y) \cdot 2 = \times \cdot (\frac{y \cdot 2}{2}) / \text{then next } 6$ $(\times \times y) \cdot 2 = \times \cdot (\frac{y \cdot 2}{2}) / \text{then next } 6$ $(\times \times y) \cdot 2 = \times \cdot (\frac{y \cdot 2}{2}) / \text{then next } 6$ $(\times \times y) \cdot 2 = \times \cdot (\frac{y \cdot 2}{2}) / \text{then next } 6$ $(\times \times y) \cdot 2 = \times \cdot (\frac{y \cdot 2}{2}) / \text{then next } 6$ $(\times \times y) \cdot 2 = \times \cdot (\frac{y \cdot 2}{2}) / \text{then next } 6$ $(\times \times y) \cdot 2 = \times \cdot (\frac{y \cdot 2}{2}) / \text{then next } 6$ $(\times \times y) \cdot 2 = \times \cdot (\frac{y \cdot 2}{2}) / \text{then next } 6$ $(\times \times y) \cdot 2 = \times \cdot (\frac{y \cdot 2}{2}) / \text{then next } 6$

3. En el conjunto $G =$	$\{e, a, b, c, d, f$	} se considera una	operación binaria \ast dada por
-------------------------	----------------------	--------------------	-----------------------------------

*	e	a	b	c	d	f
e	e	a	b	c	d	f
a	a	ط	e	f	c	d
b	b	e	a	Ø	4	
e-	c	d	7	e	a	X
d	d	f	C ₁	ط	9	ि
f	f	c	d	a	b	9

Completa la tabla anterior para que (G,*) sea un grupo. ¿Es abeliano? Po es convertos (G,*) sea un grupo. ¿Es abeliano?

- 4. Sea S3 el conjunto de las permutaciones de 3 elementos. de conjunto de las permutaciones de 3 elementos.
 - a) Demuestra que (S_3, \circ) es un grupo de orden 6 no conmutativo.
 - b) Halla un subgrupo de S₃ que sea conmutativo.

۱ ۸ ۸						
No ps		123/13	2/23	1/213	1312	321
Simetaço		123 13				321
= no es		137 12	3 321	312	213	231
6 MOG CCO		231 213			123	132
	_		1132			3 (2
	317	317 82	123	182	231	213
A	5 C ()	34 36	212(3	1231	132	(23
C3,2,130	1,3,7	(-13	25,1,2		'	
[[,3,2]0[7,7,17		· 1 -			
				, ,		
D/C[21,37	7 = LC	7.1.27		, , 7 (

5. Sea (S_5, \circ) el grupo de las permutaciones de 5 elementos y sean $\sigma, \rho \in S_5$

$$\sigma = [3, 5, 2, 1, 4]$$

$$\rho = [3, 1, 4, 2, 5]$$

Halla $(\sigma \circ \rho)^{-1}$ y $(\rho \circ \sigma)^{-1}$.

 Hemos visto que el subconjunto de Z formado por los números pares constituyen un subgrupo de Z, estudia si el subconjunto de los número impares también es un subgrupo.

Los impres no contiener al 0 pe es el elemento neuto so no es subgripo

- 7. Demuestra las siguientes propiedades
 - a) Si (G,*) es un grupo tal que $x^2 = e$ para todo $x \in G$, entonces es abeliano.
- b) Si (G,*) es un grupo tal que $(x*y)^{-1} = x^{-1}*y^{-1}$ para todo $x,y \in G$, entonces es abeliano.

$$(f+g)(x) = f(x) + g(x), \qquad (f \cdot g)(x) = f(x) \cdot g(x)$$

Estudia si $(\mathcal{F}(\mathbb{R},\mathbb{R}),+,\cdot)$ es anillo unitario.

F(R,R)

(ftg)(x)=f(x)+g(x) (f-g(x)=f(x)-g(g)

Estudia si (F(R,R),+,-) aville uniterio elevento restas = 0

Midades.

Asogetiva

((ftg)+h)(x)= f(x)+(gth)(x)

(ftg)(x)+h(x)=f(x)+S(x)+h(x)

Elevento reuto +

(fte)(x)=f(x)+e(x)=f(x)/ft+f'

$$\mathbb{Z}\left[\sqrt{2}\right] = \left\{x + y\sqrt{2} ; x, y \in \mathbb{Z}\right\}$$

con la suma y el producto habituales.
Como es de R. basta ver si (ELVZ), t) es
Subaryo, Subarillo o subarer po de R * (7/52], +) es subgropo de (Rx+) (x, +y, \siz) - (x2-42\siz) = (x1+2) + (41-42) \siz \in \mathbb{A}[\siz] * El podrato es me operación intera en Z[JZ]: (x1+y1JZ)·(x2+y2JZ)=x1 x2+x1y2JZ+x2y1JZ+x2y1JZ El inverso no esta necessimente en 2002] Nor eg. 2-52 No tiene inverso

7-52-4-2 - 4-2 52 = 1 - 7 06905 Si como 1+J2 * Por 6 tato 7/52] es anilo consutativo y unitario fero no es everpo-

10. En el conjunto

$$\mathcal{M}_{2\times 2}(\mathbb{Z}_3) = \left\{ \begin{pmatrix} x & y \\ -y & x \end{pmatrix} \; ; \; x, y \in \mathbb{Z}_3 \right\}$$

se consideran la suma y el producto de matrices habituales (definidos a partir de la suma y el producto en \mathbb{Z}_3). Estudia si $(\mathcal{M}_{2\times 2}(\mathbb{Z}_3), +, \cdot)$ es un anillo.

suma y el producto en \mathbb{Z}_3). Estudia si $(\mathcal{M}_{2\times 2}(\mathbb{Z}_3), +, \cdot)$ es un anillo.
Es un merpo. Dado que no esta contendo en
un cuerpo conocido, tenemos que comprobar todas
las propredudes.
de les antières con la sona
En general, subsemos que lus matrices con la sura
Joinan un grupo conmutation. Tambien susemes que
el producto es asociativo, tiene elemento anidad y
distribuje con la sunta.
que ver que et products el inverso dentro
el producto es asociation. Por la tanto, solo termos distribuye con la suma. Por la tanto, solo termos que ver que el producto es interno en el subconjunto, que es communativo y que existe el inverso dentro
De Justoniani
(x, y, (xz yz) = /x1x2 - x1yz x1yz +x2y/ -y2 xz) (-x1y2 - x2x1 x1x2 - y1yy)
1 / X2 87 - / X1X7 - X1X - X1X - X1X
(-Y, X, / (-Y, X) = / X,X2 - Y,Y2
(1/2 1/2) (-x1/2 -x2/1 x1/2 - x1/y)
/×2 /2\ /×1 //\ /
(-Y7 X1 + Y1 X = ((()
(10 th) YIXI
es conont true
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1-4×11
$\begin{pmatrix} x \\ y \end{pmatrix} \begin{pmatrix} \frac{x}{x^2 + y^2} & \frac{x}{x^2 + y^2} \\ \frac{y}{x^2 + y^2} & \frac{x}{x^2 + y^2} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
~ 77

$$S = \{0, 3, 6, 9, 12\}$$

Estudia si es un anillo unitario. ¿Es un subanillo de \mathbb{Z}_{15} ?

* Dado que S C Z15, empezamos comprobando n es derado pera las operaciones, lo que probaria que trene la misma estructura de Z15. Los elementos de S son:

$$n_1 m \in S \implies n \cdot m = 3k \cdot 3q = 3(3kq) = O(mod 3)$$

Por la tanto, S es carado pora el producto y en consemencia es subanillo de (215, +151.15). Paro 14S, por lo que no es manillo mitario.

La emación ax=a en 78 se corresponde con la congruencia ax = a (mod 8) Por el teorema de Poramagupta (Mat. Discreta), tiene solución si mad (a.8) a y es úmica si mad (a.8) = l la primera condición se verifica para todo a y la segunda se verifica para a £31,3,5,7.7.{	única.		A V = 6	a. 7-		CP(1870s	do
Por el teorema de Bramagupta (Mat. Discreta), tiene solución si mod (a.8) a u es única si mod (a.8) = l	La eu	rauou	ax = a	en 28	120	مراجي)	
Por el teorema de Bramagupta (Mat. Discreta), tiene solución si mod (a.8) a u es única si mod (a.8) = l	cou s	lee congr	nencia	,	(0)		
Por el teorema de Bramagupta (Mat. Discreta), tiene solución si mod (a.8) a u es única si mod (a.8) = l		·	a	x≡a (m	od 81		
tiene solución si ence (a.8) (a u es unica si oned (a.8) = l	P () Leones	na de	Bramago	pta 1	Kat Dis	cieta),
u es unica si mod (a.8)=1	101 2	_ ,		//	1		′ _
u es unica si mod (a.8)=1	tiene	solución	8	1			
u es unica si mod/a.8/=1			mco	L(a.8) [a		
la primera condición se verifica para todo a y la regunda se verifica para a + 31,3,5,7{	_						
la primera condición se verifica para todo a y la segunda se verifica para a €31,3,5,7{	م ق	unica	w cuco	L(a,8)=	L		
la primeta condución de de ejembre a	1		ري هم دي	outton a	para ta	lo a u	1
la segunda se verifica para attilization	La prime	ice conqu	uou ne		-21	2 = 2 (ر
	la negi	mda s	e verifica	pula	affli	1912	
	0		'	ţ			