DESIGN AND ANALYSIS OF ALGORITHMS

CS 4120/5120
GREEDY STRATEGY - ACTIVITY SELECTION

AGENDA

- Activity selection problem
- Greedy method

WHO GETS TO SEE THE DENTIST AND WHEN

- Dentist Smileyface is very popular in Hollywood. She routinely receives timeslots from celebrities who want to come in on a certain day.
- Being rich, all celebrities pay her a flat \$5000 fee, irrespective of how long they stay.
- Considering they are celebrities, you cannot have more than one in the office at the same time (they bite).

WHO GETS TO SEE THE DENTIST AND WHEN

- Also, considering they are celebrities, they only come in as per their own schedule.
- Example request (on the same day) are shown on the right
 - Some requests overlap
 - All celebrities need to see Dr. Smileface (obviously)
 - They do not stay for the same amount of time.
- How can we help Dr. Smileyface to earn maximum revenue possible?

Tom: [8AM – 2PM]

Meg: [9am - 10AM]

Emily: [11AM-4PM]

Britney: [5PM-520PM]

SCHEDULING FOR RUNNING COMPETITIONS

- The athletic department is trying to schedule *a day of running competitions*. The competitions include potentially the activities shown in the table.
 - Some activities have more contestants than other activities, hence they need more hours

Running Competition	Distance (meter)	Time	Running Competition	Distance (meter)	Time
Camina	100	8am ~ 9 am	Middle dieteres	800	II am ~ I pm
Sprint	200	9:30am ~ 11am	Middle distance	1500	4 pm ~ 5 pm
Hurdles	100	2 pm ~ 2:30 pm	Palovo	4 × 100	10:30 am ~ 11:10 am
Hurdies	400	3 pm ~ 3:30 pm	Relays	4 × 400	12 pm ~ 12:40 pm

- Assume two activities can be schedule back-to-back.
- How can we help the Athletic Department schedule as many activities as possible in one day?

EXAMINE THE TWO PROBLEMS

• Fill out the table

Problem	# of Event (Celebs)	Resources required	Goal
Celebrities seeing a dentist	Four celebrities	Dr. SmíleyFace	The doctor earns maximum revenue (or see as many patients as possible in a day)
Scheduling running competitions	Eight running competitions	<mark>one</mark> running track	Schedule <mark>maximum-size running competitions</mark> in a day
Summary	Several competing events	Exclusive use of a common resource	Select maximum-size activities that do not overlap

ACTIVITY-SELECTION PROBLEM

- The two stories can be modeled as one activity-selection problem.
- In the activity-selection problem, we wish to select a maximum-size subset of mutually compatible activities.
- Next, we shall see rigorous definition of the problem.

THE DEFINITION OF ACTIVITY-SELECTION PROBLEM

- Given a set $S = \{a_1, a_2, ..., a_n\}$ of n proposed activities that wish to use a resource.
- Each activity a_i has a start time s_i and a finish time f_i , where $0 \le s_i < f_i < \infty$.
 - If selected, activity a_i takes place during the half-open time interval $[s_i, f_i)$.

START AND FINISH TIME

Example

- Given $S = \{a_1, a_2, a_3\}$ and their start and finish times
 - $s_1 = 2, f_1 = 6$
 - $s_2 = 5, f_2 = 3$ $s_2 = 3, f_1 = 5$
 - $s_3 = 5, f_3 = 7$
- The start and finish time of activity $\underline{a_2}$ is NOT plausible.
- Flip the values of start and finish time of the activity mentioned above.
- After the flip, activity a_2 and a_3 can be scheduled back-to-back.

COMPATIBLE ACTIVITIES

- Activities a_i and a_j are **compatible** if the intervals $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap.
 - That is, a_i and a_j are compatible if
 - $s_i \ge f_i$, indicating that activity _____ takes place before _____ a_i ___.

• $s_i \ge f_i$, indicating that activity _____ a_i takes place before _____ a_j ___.

THE COMPLETE DEFINITION OF THE ACTIVITY-SELECTION PROBLEM

- Given a set $S = \{a_1, a_2, ..., a_n\}$ of n proposed activities that wish to use a resource. We wish to select a maximum-size subset of mutually compatible activities.
 - By mutually compatible activities, we mean no two activities in the subset overlap.
- We assume that the activities are **sorted** in monotonically **increasing** order of finish time, i.e., $f_1 \le f_2 \le f_3 \le \cdots \le f_{n-1} \le f_n$.

THE PROBLEM DEFINITION PRACTICE #1

- Consider the activities shown in the table.
 - Rearrange (Sort) the activities such that they qualify for the definition of the activity-selection problem.
 - Do not move the indexes when sorting the activities.
 - If two activities finish at the same time, order them by their start times.

i	1	2	3	4	5
s_i	6	2	1	3	4
S_i f_i	9	10	6	9	5
	-				
	l a				
i	1	2	3	4	5
$\frac{i}{s_i}$	1	2	3	4	5

THE PROBLEM DEFINITION PRACTICE #2

- Consider the activities after the rearrangement.
 - List all *pairs* of activities that are compatible. Write the qualifying pairs *in the form of* $< a_i, a_j >$.

$$a_1, a_4 >$$

•
$$< a_2, a_4 >$$

- •
- •

i	1	2	3	4	5
s_i	4	1	3	6	2
f_i	4 5	6	9	9	10

AN INSTANCE

• Given a list of activities and their respective start and finish time.

i	1	2	3	4	5	6	7	8	9	10	11
s_i	5	3	12	5	3	1	6	8	0	2	8
f_{i}	9	5	16	7	9	4	10	11	6	14	12

The activities must be sorted in monotonically increasing order of their finish times.

- Reorder the activities such that they can be an instance of the activity-selection problem.
 - The indices must remain where they are.
 - If two activities have the same finish time, order them in increasing order of their start times.

AN INSTANCE REORDERING

• Before

i	1	2	3	4	5	6	7	8	9	10	11
s_i	5	3	12	5	3	1	6	8	0	2	8
f_i	9	5	16	7	9	4	10	11	6	14	12

After

i	1	2	3	4	5	6	7	8	9	10	11
S_i	1	3	0	5	3	5	6	8	8	2	12
f_i											

- Goal
 - We wish to find a <u>maximum-size **subset**</u> of <u>mutually compatible</u> activities.

i	1	2	3	4	5	6	7	8	9	10	11
$\overline{s_i}$	1	3	0	5	3	5	6	8	8	2	12
f_{i}	4	5	6	7	9	9	10	11	12	14	16

- To schedule as many activities as possible, we want to first select activity $\underline{a_1}$.
- The remaining compatible activities are $a_4, a_6, a_7, a_8, a_9, a_{11}$.
- The next step is finding a maximum-size **subset** of mutually compatible activities of $a_4, a_6, a_7, a_8, a_9, a_{11}$

- Goal of step #2
 - We wish to find a maximum-size **subset** of mutually compatible activities of the remaining activities.

_i	1	4	6	7	8	9	11
				6			
f_i	4	7	9	10	11	12	16

- To schedule as many activities as possible, we want to first select activity $\underline{a_4}$.
- The remaining compatible activities are a_8, a_9, a_{11}
- The next step is finding a maximum-size **subset** of mutually compatible activities of a_8 , a_9 , a_{11}

- Goal of step #3
 - We wish to find a maximum-size **subset** of mutually compatible activities of the remaining activities.

_ i	1	4	8	9	11
s_i	1	5	8	8	12
f_i	4	7	11	12	16

- To schedule as many activities as possible, we want to first select activity $\underline{a_8}$.
- The remaining compatible activities are a_{11} .
- The next step is finding a maximum-size **subset** of mutually compatible activities of a_{11}

- Final step
 - Conclude: the maximum-size **subset** of mutually compatible activities of $S = \{a_1, a_2, ..., a_{11}\}$ is

i	1	4	8	11
s_i	1	5	8	12
f_i	4	7	11	16

- Generally
 - We pick the activity with the earliest finish time.
 - Solve the rising subproblem on the remaining activities that are compatible with the chosen one.

ATTEMPTING TO SOLVE BY DP

- Here is a checklist of the qualifications of a DP problem.
 - Optimization problem
 - Goal is to find a **maximum**-size **subset** of mutually compatible activities
 - ☐ Two key ingredients
 - ☐ Optimal substructure
 - ☐ Overlapping subproblems

DISCOVERING THE OPTIMAL SUBSTRUCTURE

General steps

- **Step I**:A solution to the problem consists of making a choice.
- **Step 2**: Suppose that for a given problem, you are given the choice that leads to an optimal solution.
- **Step 3**: Given this choice, you determine which subproblems ensue and how to best characterize the resulting space of subproblems.
- **Step 4**: Show the solutions to the subproblems used within an optimal solution to the problem must themselves be optimal by using a "cut-and-paste" technique.

DISCOVERING THE OPTIMAL SUBSTRUCTURE STEP 1

- **Step I**:A solution to the problem consists of making a choice.
- The activity-selection problem can be solved by making a choice.

i	1	2	3	4	5	6	7	8	9	10	11
$\overline{s_i}$	1	3	0	5	3	5	6	8	8	2	12
f_i	4	5	6	7	9	9	10	11	12	14	16

DISCOVERING THE OPTIMAL SUBSTRUCTURE STEP 2

- **Step 2**: Suppose that for a given problem, you are given the choice that leads to an optimal solution.
 - At this point, you do not concern yourself with how to determine this choice.
- Previously, we selected activity a_1 . Based off the selection, we proceeded to solve the problem.

i	1	2	3	4	5	6	7	8	9	10	11
s_i	1	3	0	5	3	5	6	8	8	2	12
f_i	4	5	6	7	9	9	10	11	12	14	16

- We **DO NOT** know if picking a_1 leads to an optimal solution.

- **Step 2**: Suppose that for a given problem, you are given the choice that leads to an optimal solution.
- Apply abstraction
 - Denote by S_{ij} the set of activities that start after activity a_i finishes and that finish before activity a_i starts.
 - The activities included in S_{ij} are highlighted in the table below.

i	i	i + 1		k-1	k	k + 1	 <i>j</i> − 1	j
s_i	s_i	s_{i+1}	•••	s_{k-1}	s_k	S_{k+1} f_{k+1}	 s_{j-1}	$S_{\dot{J}}$
f_i	f_i	f_{i+1}		f_{k-1}	f_k	f_{k+1}	 f_{j-1}	f_{j}

• **Step 2**: Suppose that for a given problem, you are given the choice that leads to an optimal solution.

Apply abstraction

- In general, for a given set of activities S_{ij} . We suppose that we are given a choice a_k , $i \leq k \leq j$, that leads to an optimal solution.

i	i	i + 1	 k-1	k	k + 1	 <i>j</i> − 1	j
s_i	s_i	s_{i+1}	 s_{k-1} f_{k-1}	$S_{\mathbf{k}}$	s_{k+1}	 s_{j-1}	S_j
f_i	f_i	f_{i+1}	 f_{k-1}	$f_{\mathbf{k}}$	f_{k+1}	 f_{j-1}	f_{j}

DISCOVERING THE OPTIMAL SUBSTRUCTURE STEP 3

- **Step 3**: Given this choice, you determine which subproblems ensue and how to best characterize the resulting space of subproblems.
- After we include activity a_k in an optimal solution, ____ subproblems arise.
 - # I: Finding the maximum-size subset of mutually compatible activities of $\underline{S_{ik}}$

i	i	i + 1	 k-1	k	k + 1	 <i>j</i> − 1	j
s_i	s_i	s_{i+1}	 s_{k-1}	S _k	S_{k+1} f_{k+1}	 s_{j-1}	S_j
f_i	f_i	f_{i+1}	 f_{k-1}	$f_{\mathbf{k}}$	f_{k+1}	 f_{i-1}	f_i

DISCOVERING THE OPTIMAL SUBSTRUCTURE STEP 4

- **Step 4**: Show the solutions to the subproblem used within an optimal solution to the problem must themselves be optimal by using a "cut-and-paste" technique.
- We want to show that the **maximum**-size **subset** of mutually compatible activities of S_{ij} includes within itself the following.
 - # I:The maximum-size subset of mutually compatible activities of S_{ik} .
 - # 2:The maximum-size subset of mutually compatible activities of S_{kj}

						j – 1	
s_i	s_i	s_{i+1}	 s_{k-1}	$S_{\mathbf{k}}$	s_{k+1}	 S_{j-1} f_{j-1}	S_j
f_i	f_i	f_{i+1}	 f_{k-1}	$f_{\mathbf{k}}$	f_{k+1}	 f_{j-1}	f_{j}

- **Step 4**: Show the solutions to the subproblem used within an optimal solution to the problem must themselves be optimal by using a "cut-and-paste" technique.
- Repeatedly saying the maximum-size subset of mutually compatible activities of S_{ij} can be a hassle. Let us denote such a maximum-size subset by A_{ij} .
 - In other words, A_{ij} is an optimal solution to S_{ij} .

					k+1			
s_i	s_i	s_{i+1}	 s_{k-1}	$S_{\mathbf{k}}$	S_{k+1} f_{k+1}	•••	s_{j-1}	S_j
f_i	f_i	f_{i+1}	 f_{k-1}	$f_{\mathbf{k}}$	f_{k+1}		f_{i-1}	f_i

- **Step 4**: Notations.
- The goal of step 4 can be rephrased as showing that the maximum size subset of mutually compatible activities of S_{U} includes within itself the following.
 - # I: The maximum size subset of mutually compatible activities of S_{lR} . A_{lR}
 - # 2: The maximum-size subset of mutually compatible activities of S_{kj} . A_{kj}
- In other words, we want to prove that $A_{ij} = A_{ik} \cup \{a_k\} \cup A_{kj}$.
 - The U operator indicates these are set operations.

- Step 4: Proof of optimality of sub-solutions using a "cut-and-paste" technique.
- $A_{ij} = A_{ik} \cup \{a_k\} \cup A_{kj}$
- The goal is to prove that A_{ik} and A_{kj} are the maximum-size subset of mutually compatible of S_{ik} and S_{kj} , respectively.
 - i. Assume that A_{ik} is NOT an optimal solution in S_{ik} , and that A_{kj} is NOT an optimal solution in S_{kj}
 - a. Instead, let $A_{ik} = S_{ik} \cap A_{ij}$ and $A_{kj} = S_{kj} \cap A_{ij}$, yielding $A_{ij} = A_{ik} \cup \{a_k\} \cup A_{kj}$.
 - b. The cardinality of A_{ij} , $|A_{ij}| = \underline{\qquad} A_{ik} \underline{\qquad} + \underline{\qquad} 1 \underline{\qquad} + \underline{\qquad} A_{kj} \underline{\qquad}$.

- Step 4: Proof of optimality of sub-solutions using a "cut-and-paste" technique. (Continued)
- The goal is to prove that A_{ik} and A_{kj} are the maximum-size subset of mutually compatible of S_{ik} and S_{kj} , respectively.
 - ii. There exist an optimal solution, denoted by A_{ik}^* in S_{ik} , and A_{kj}^* in S_{kj} .
 - a. The following relationships hold $|A_{ik}^*| > |A_{ik}|$ and $|A_{kj}^*| > |A_{kj}|$.

- Step 4: Proof of optimality of sub-solutions using a "cut-and-paste" technique. (Continued)
- The goal is to prove that A_{ik} and A_{kj} are the **maximum**-size **subset** of mutually compatible of S_{ik} and S_{kj} , respectively.
 - iii. We can construct a subset A_{ij}^* as follows, $A_{ij}^* = A_{ik}^* \cup \{a_k\} \cup A_{kj}^*$
 - iv. Obviously, A_{ij}^* contains the mutually compatible activities of set $\underline{S_{ij}}$, and the cardinality of A_{ij}^* , $|A_{ij}^*| = \underline{|A_{ik}^*|} + \underline{1} + \underline{|A_{kj}^*|} > \underline{|A_{ij}^*|}$, contradicting the supposition that $\underline{A_{ij}}$ is the maximum-size subset of mutually compatible activities of $\underline{S_{ij}}$.
 - v. Therefore, A_{ik} is an optimal solution in S_{ik} and A_{ki} is an optimal solution in S_{ki} .

DISCOVERING THE OPTIMAL SUBSTRUCTURE CONCLUSION

- Given a set $S = \{a_1, a_2, ..., a_n\}$ of n proposed activities that wish to use a resource. We wish to select a **maximum-size** subset of mutually compatible activities.
- Denote by S_{ij} the set of activities that start after activity a_i finishes and that finish before activity a_j starts.
- Let A_{ij} denote the maximum-size subset of mutually compatible activities of S_{ij} .
- The optimal substructure
 - The **optimal** solution A_{ij} must also include **optimal** solutions to the two subproblems for S_{ik} and S_{kj} , i.e., $A_{ij} = A_{ik} \cup \{a_k\} \cup A_{kj}$.

ATTEMPTING TO SOLVE BY DP

- Here is a checklist of the qualifications of a DP problem.
 - Optimization problem
 - Goal is to find a **maximum**-size **subset** of mutually compatible activities
 - ☐ Two key ingredients
 - Optimal substructure
 - ☐ Overlapping subproblems

DISCOVER OVERLAPPING SUBPROBLEMS

 Draw the corresponding subproblem graph to the input instance

i	1	2	3	4	5
S_i	1	3	0	5	3
f_i	4	5	6	7	9

- Let a vertex S_{ij} represent the size of the (sub)problem.
 - Insert two dummy activities a_0 and a_6

ATTEMPTING TO SOLVE BY DP

- Here is a checklist of the qualifications of a DP problem.
 - Optimization problem
 - Goal is to find a **maximum**-size **subset** of mutually compatible activities
 - Two key ingredients
 - Optimal substructure
 - Overlapping subproblems

MOVING FORWARD WITH DYNAMIC PROGRAMMING

General steps

- **Step I**: Characterize the structure of an optimal solution
- **Step 2**: Recursively define the **value** of an optimization.
 - The *value* of an optimization in the activity-selection problem is the size of an optimal solution for the set S_{ij} . We will denote the size by c[i,j], then we would have the following recurrence

$$c[i,j] = \begin{cases} 0 & \text{if } S_{ij} = \emptyset, \\ \max_{a_k \in S_{ij}} \left\{ c[i,k] + c[k,j] + 1 \right\} & \text{if } S_{ij} \neq \emptyset. \end{cases}$$

- Step 3: Compute the *value* of an optimal solution. (Top-down or Bottom-up with *memo*ization)
- **Step 4**: Construct the optimal solution from the computed information.

SEEKING A FASTER WAY

- From previous analysis, we see that a DP solution can be developed.
- However, we would be overlooking another important characteristic of the activity-selection problem.
- Consider the input activities.
 - They are ordered in monotonically increasing order of their finish times.

i											
$\frac{\overline{s_i}}{f_i}$	1	3	0	5	3	5	6	8	8	2	12
f_i	4	5	6	7	9	9	10	11	12	14	16

SEEKING A FASTER WAY THE BEST CHOICE

• Consider the input activities ordered in **monotonically increasing order** of their finish times.

- Which of the activity would be the best activity to be scheduled first?
 - We want to choose an activity that leaves the resource available for as many other activities
 as possible as all activities share the same resource.
 - If we pick a_1 (finishes the earliest), we will have a longer period of time available.
- Which of the remaining to schedule after that?

MAKING A GREEDY CHOICE

- In discovering the **optimal substructure**, we suppose that **we are given a choice** that leads to an optimal solution.
- If picking the activity that finishes the earliest is included in the optimal solution, then we no longer need such a supposition.
- We need to prove the optimality of the greedy choice.

THE GREEDY CHOICE NOTATIONS

- Let us use $S_k = \{a_i \in S : s_i \ge f_k\}$ to denoted the activities that start after a_k finishes.
- Let a_m be an activity in S_k with the earliest finish time.
- Consider the instance below

$$-S_1 = \{a_4, a_6, a_7, a_8, a_9, a_{11}\}, a_m = a_4$$

$$-S_3 = \{a_7, a_8, a_9, a_{11}\}$$
 $, a_m = \underline{a_7}$

$$-S_{10} = 0$$

THE GREEDY CHOICE THEOREM

Theorem 16.1

- Consider any nonempty subproblem S_k , and let a_m be an activity in S_k with the earliest finish time. Then a_m is included in some maximum-size subset of mutually compatible activities of S_k .

Visualization

- Let A_k be a maximum-size subset of mutually compatible activities in S_k .
 - Then we have $a_m \in A_k$. We shall prove this theorem by the "cut-and-paste" technique.

PROOF OF THE GREEDY CHOICE CASE #1

- Our goal is to show that a_m is included in the optimal solution for S_k .
- Let a_i be the activity in A_k with the earliest finish time. Two cases arise
 - Case #1: If $a_i = a_m$ (activity a_i and a_m overlap), done $a_m \in A_k$.

PROOF OF THE GREEDY CHOICE CASE #2

- Our goal is to show that a_m is included in the optimal solution for S_k .
- Let a_i be the activity in A_k with the earliest finish time. Two cases arise.
 - Case #2: Else $a_j \neq a_m$. Let us construct a new set of activities $A_k' = (A_k \{a_j\}) \cup \{a_m\}$.
 - Cut $\{a_j\}$ out of A_k and paste a_m , i.e., substitute a_m for a_j in A_k .

PROOF OF THE GREEDY CHOICE CASE #2 (CONT'D)

- Our goal is to show that a_m is included in the optimal solution for S_k .
- Let a_i be the activity in A_k with the earliest finish time. Two cases arise.
 - Case #2: Else $a_j \neq a_m$. After constructing $A_k' = (A_k \{a_j\}) \cup \{a_m\}$.
 - The activities in A_k' are disjoint as the activities in A_k are disjoint.
 - Activities in a set being disjoint means that no two activities overlap.
 - a_j is the first activity in A_k to finish, therefore $f_m \leq f_j$

PROOF OF THE GREEDY CHOICE CASE #2 (CONT'D)

- Our goal is to show that a_m is included in the optimal solution for S_k .
- Let a_i be the activity in A_k with the earliest finish time. Two cases arise.
 - Case #2: Else $a_j \neq a_m$. After constructing $A_k' = (A_k \{a_j\}) \cup \{a_m\}$.
 - $|A'_k| = |A_k| 1 + 1 = |A_k|$
 - Conclude case #2, A'_k is a maximum-size subset of mutually compatible activities of S_k , and it includes a_m .

CONTINUE TO SOLVE THE PROBLEM

- Design an algorithm that makes the greedy choice every time.
 - Unlike a normal DP solution where the algorithms can be in **bottom-up** fashion, a greedy algorithm **does not need to work bottom-up**.
- Generally, the algorithm can work as follows
 - make a greedy choice to put into the optimal solution and then
 - solve the subproblem of choosing activities from those that are compatible with those already chosen.

RECURSIVE-ACTIVITY-SELECTOR

- Input
 - An array s that stores the start times
 of the activities
 - An array f that stores the finish times of the activities
 - An index k that defines the subproblem S_k it is to solve. Use 0 for initial call.
 - The size $oldsymbol{n}$ of the original problem
- Example: RECURSIVE-ACTIVITY-SELECTOR (s, f, 0, 5)

$$- s = \{1, 3, 0, 5, 3\}, f = \{4, 5, 6, 7, 9\}$$

RECURSIVE-ACTIVITY-SELECTOR (s, f, k, n)
m = k + 1
2 while $m \le n$ and $s[m] < f[k]$ // find the first activity
in S_k to finish
m=m+1
4 if $m \leq n$
5 return $\{a_m\} \cup RECURSIVE-ACTIVITY-$
SELECTOR (s, f, m, n)
6 else return Ø

i	1	2	3	4	5
S_i	1	3	0	5	3
f_{i}	4	5	6	7	9

RECURSIVE-ACTIVITY-SELECTOR THE USE OF FICTITIOUS ACTIVITY a_0

- The initial call to solve a given problem is RECURSIVE-ACTIVITY-SELECTOR (s, f, 0, 5)
 - Line 2 accesses f[k] = f[0] to make a choice
- We add a **fictitious activity** a_0 with $f_0 = 0$ to avoid index-out-of-bound exception.

```
RECURSIVE-ACTIVITY-SELECTOR (s, f, k, n)

I m = k + 1

2 while m \le n and s[m] < f[k] // find the first activity in S_k to finish

3 m = m + 1

4 if m \le n

5 return \{a_m\} \cup \mathsf{RECURSIVE-ACTIVITY-SELECTOR}(s, f, m, n)

6 else return \emptyset
```

- The input activities must be sorted in non-decreasing order by their finish times
 - If the given input is NOT sorted, we can spend $O(n \lg n)$ time to sort it.

RECURSIVE-ACTIVITY-SELECTOR IN ACTION

• Run the algorithm on the input sequence.

• Return: $\{a_1, a_4, a_8, a_{11}\}$

DEC	רו ור		۸CTI\	/ITY	CELE	CTC	DR(s,	f lz	n)		
			~C 11'	VII I-	SELL	CIC	/IX (3,	J,K,	π)		
	i = k	$\frac{1}{1} + \frac{1}{1}$									
2 w	hile	$m \leq$	n an	d s[1	n] <	f[k]] // fi	nd th	e firs	st act	ivity
							i	in S_k	to fir	nish	
3	γ	n = 1	m + 1								
4 if	$m \leq$	n									
5	5 return $\{a_m\} \cup RECURSIVE\text{-}ACTIVITY$ -										
	SELECTOR (s, f, m, n)										
6 e	lse r	etur	n Ø					_	•		
		ı									
i	1	2	3	4	5	6	7	8	9	10	11
S_i	1		0	5	3	5	6	8	8	2	12
f_i	4	5	6	7	9	9	10	11	12	14	16

RECURSIVE-ACTIVITY-SELECTOR RUNNING TIME

- The algorithm examines each activity EXACTLY once.
- The running time function of RECURSIVE-ACTIVITY-SELECTOR algorithm is $T(n) = \underline{\Theta(n)}$.

```
RECURSIVE-ACTIVITY-SELECTOR (s, f, k, n)

I m = k + 1

2 while m \le n and s[m] < f[k] // find the first activity in S_k to finish

3 m = m + 1

4 if m \le n

5 return \{a_m\} \cup \text{RECURSIVE-ACTIVITY-SELECTOR } (s, f, m, n)

6 else return \emptyset
```

RECURSIVE-ACTIVITY-SELECTOR TAIL RECURSIVE

- The algorithm is almost "tail recursive."
 - It ends with a recursive call to itself followed by a union operation.
- A *tail-recursive* procedure is easy to transform to an *iterative* form.

```
RECURSIVE-ACTIVITY-SELECTOR (s, f, k, n)

I m = k + 1

2 while m \le n and s[m] < f[k] // find the first activity in S_k to finish

3 m = m + 1

4 if m \le n

5 return \{a_m\} U RECURSIVE-ACTIVITY-SELECTOR (s, f, m, n)

6 else return \emptyset
```

ITERATIVE-ACTIVITY-SELECTOR

- Input
 - An array s that stores the start times of the activities
 - An array f that stores the finish times of the activities
- The algorithm takes advantage of the greedy property by including the first activity in set *A*.
 - The input must be pre-sorted.
 - This way activity a_1 is always the one with the earliest finish time.

```
GREEDY-ACTIVITY-SELECTOR (s, f)

I n = s. length

2 A = \{a_1\}

3 k = 1

4 for m = 2 to n

5 if s[m] \ge f[k]

6 A = A \cup \{a_m\}

7 k = m

8 return A
```

ITERATIVE-ACTIVITY-SELECTOR IN ACTION

• Run the algorithm on the input sequence.

	,	m					7				
i	1	2	3	4	5	6	7	8	9	10	11
s_i	1	3	0	5	3	5	6 10	8	8	2	12
f_i	4	5	6	7	9	9	10	11	12	14	16
	k										

```
GREEDY-ACTIVITY-SELECTOR (s, f)

I n = s. length

2 A = \{a_1\}

3 k = 1

4 for m = 2 to n

5 if s[m] \ge f[k]

6 A = A \cup \{a_m\}

7 k = m

8 return A
```

•
$$A = \{ a_1 \} \cup \{ a_4 \} \cup \{ a_8 \} \cup \{ a_{11} \} = \{ a_1, a_4, a_8, a_{11} \}$$

ITERATIVE-ACTIVITY-SELECTOR RUNNING TIME

• The code of the GREEDY-ACTIVITY-SELECTOR (s, f) algorithm is structured as follows.

```
for m = 2 to n
if s[m] \ge f[k]
Union
```

- Therefore, the running time T(n) =______
 - Assuming the input activities are sorted and union operation takes $\Theta(1)$.

G	REEDY-ACTIVITY-SELECTOR (s, f)
I	n = s. length
2	$A = \{a_1\}$
3	k = 1
4	for $m = 2$ to n
5	if $s[m] \ge f[k]$
6	$A = A \cup \{a_m\}$
7	k = m
8	return A

NEXT UP HUFFMAN CODES

REFERENCE

- https://www.netclipart.com/isee/hRwxRh_kids-clipart-nurse-cute-female-doctor-cartoon/
- https://listposts.com/lera-kiryakova-celebrities-cartoon-characters/