

Security strength of the SHA-3 function

✓ Characteristics of the hash function:

Variable **Size**

Collision Resistant

Preimage Resistant

Second Preimage + Resistant

Pseudo-**Randomness**

Security strengths of the hash function:

Function	SHA3	Output	Security Strengths in Bits				
FullCuon	Primitive	Size	Collision	Preimage	2nd Preimage		
Cryptographic Hash	SHA3-224	224	112	224	224		
	SHA3-256 256		128	256	256		
Function	SHA3-384	384	192	384	384		
	SHA3-512	512	256	512	512		
Extendable-	SHAKE128	d	min(d/2, 128)	≥ min(d, 128)	min(d, 128)		
Output Function	SHAKE256	d	min(d/2, 256)	≥ min(d, 256)	min(d, 256)		

▶ Sponge Construction

- ✓ Sponge Construction: This structure is composed of absorbing phases and squeezing phases
- ✓ Padding: The padding algorithm (pad10*1)
- ✓ Function: The internal function used to process each input block include θ , ρ , π , χ , and ι

Ex: SHAKE-256

KECCAK-p

Ex: SHAKE-256

✓ For b=1600, the KECCAK family is referred to as KECCAK[c]:

KECCAK[c]=SPONGE[KECCAK-p[1600, 24], pad10*1, 1600-c]

✓ Given an input bit string N and an output length d:

KECCAK[c](M, d)=SPONGE[KECCAK-p[1600, 24], pad10*1, 1600-c](M, d)

b	25	50	100	200	400	800	1600
w	1	2	4	8	16	32	64
l	0	1	2	3	4	5	6

SHA3-256(M) = KECCAK[512](M|| 01, 256); SHA3-384(M) = KECCAK[768](M|| 01, 384); SHA3-512(M) = KECCAK[1024](M|| 01, 512). SHAKE128(M, d) = KECCAK[256](M|| 1111, d), SHAKE256(M, d) = KECCAK[512](M|| 1111, d).

SHA3-224(M) = KECCAK[448] (M || 01, 224);

51

Padding

- ✓ **Simple padding :** The filling method is to pad10(0*)
- ✓ **Multi-rate padding :** The filling method is to pad10(0*)1
- ✓ The padding rule for KECCAK uses multi-rate padding

Ex: SHAKE-256

Function

Function	Туре
θ	Substitution
ρ	Permutation
π	Permutation
\mathcal{X}	Substitution
L	Substitution

Function - Theta θ

- \checkmark C[x] = A[x, 0] \oplus A[x, 1] \oplus A[x, 2] \oplus A[x, 3] \oplus A[x, 4] \forall x in 0...4
- $\checkmark D[x] = C[x-1] \bigoplus ROT(C[x+1], 1) \qquad \forall x \text{ in } 0...4$
- ✓ $A[x, y] = A[x, y] \oplus D[x]$ $\forall (x, y) \text{ in } (0...4, 0...4)$

Function - Rho ρ and Pi π

✓
$$B[y, 2x + 3y] = ROT(A[x, y], r[x, y])$$

$$\forall (x, y) \text{ in } (0...4, 0...4)$$

	x = 3	x = 4	x = 0	<i>x</i> = 1	x = 2
y = 2	25	39	3	10	43
<i>y</i> = 1	55	20	36	44	6
y = 0	28	27	0	1	62
y = 4	56	14	18	2	61
y = 3	21	8	41	45	15

Function - Chi χ

 \checkmark A[x, y] = B[x, y] \bigoplus ((NOT B[x + 1, y]) AND B[x + 2, y]), \forall (x, y) in (0...4, 0...4)

Function - Iota *t*

✓ The round constant for each round is generated by a linear feedback shift register (LFSR)

$$\checkmark$$
 A[0, 0] = A[0, 0] \oplus RC

 \checkmark The bits corresponding to 63, 31, 15, 7, 3, 1, and 0 are extracted

Round	Constant	Round	Constant
0	0000_0000_0000_0001	12	0000_0000_8000_808B
1	0000_0000_0000_8082	13	8000_0000_0000_008B
2	8000_0000_0000_808A	14	8000_0000_0000_8089
3	8000_0000_8000_0000	15	8000_0000_0000_8003
4	0000_0000_0000_808B	16	8000_0000_0000_8002
5	0000_0000_8000_0001	17	8000_0000_0000_0080
6	8000_0000_8000_8081	18	A008_0000_0000_800A
7	8000_0000_0000_8009	19	8000_0000_8000_000A
8	0000_0000_0000_008A	20	8000_0000_8000_8081
9	0000_0000_0000_0088	21	8000_0000_0000_8080
10	0000_0000_8000_8009	22	0000_0000_8000_0001
11	0000_0000_8000_000A	23	8000_0000_8000_8008

Ex.

$$rc[0] = i[0] | i[4] | i[5] | i[6] | i[7] | i[10] |$$

 $i[12] | i[13] | i[14] | i[15] | i[20] | i[22];$

▶ KECCAK-p PERMUTATIONS

SHA3	MLDSA		Size in bits				
primitives	primitives	Padding	r	С	output length		
SHAKE128	G	$M \parallel 0x1f \parallel 0x00 \dots \parallel 0x80$	1344	256	unlimited		
SHAKE256	Н	M 0x1f 0x00 0x80	1088	512	unlimited		

KeyGen

Main algorithm	SHA3 primitives	Input Size	Output Size	
	H_SeedGen	(32+2)*8 = 272	128*8 = 1024	
KeyGen	G_ExapndA	34*8 = 272	894*8 = 7152	
·	H_ExpandS	(64+2)*8=528	481 * 8 = 3848	
	H_tr	1312 * 8 = 10496	64 * 8 = 512	
	G_ExapndA	34*8 = 272	894*8 = 7152	
	Η_μ	(64 +(2+n+m))*8	64 * 8 = 512	
a.	Η_ρ"	(32 + 32 + 64) *8 = 1024	64 * 8 = 512	
Sign	H_ExpandMask	(64+2)*8 = 528	32 * 18 * 8 = 4608	
	H_C_tilde	(64 + 768)*8 = 6656	128 / 4 * 8 = 256	
	H_SampleInball	128 / 4 * 8 = 256	221 * 8 = 1768	
	G_ExapndA	34*8 = 272	894*8 = 7152	
77 °C	H_tr	1312 * 8 = 10496	64 * 8 = 512	
Verify	Η_μ	(64 + 283)*8 = 2776	64 * 8 = 512	
	H_SampleInball	128 / 4 * 8 = 256	221 * 8 = 1768	

SHA3 primitives	Input Size	Output Size	mode	is_last cycle [Input Size/64] + 1	byte_num Input Size mod 64 8	Squeeze time $\left[\frac{Output\ Size}{mode\ size}\right] - 1$
H_SeedGen	272	1024	1	5	2	0
G_ExapndA	272	7152	0	5	2	6
H_ExpandS	528	3848	1	9	2	4
H_tr	10496	512	1	164	0	0
Η_μ	2776	512	1	44	3	0
Η_ρ"	1024	512	1	17	0	0
H_ExpandMask	528	4608	1	9	2	4
H_C_tilde	6656	256	1	105	0	0
H_SampleInball	256	1768	0	5	0	1

SHA3 primitives	Primitives sign	MLDSA_mode	Stage	mode	Inpu	t side		Output side	
H(ξ+x04+x04)	0	KeyGen	1	Н	MLDSA_in_1	seed_gen_index	Rho MEM	Rho_prime MEM	Kata MEM
Gen(s1)	1	KeyGen	2	Н	Rho_prime MEM	s1_gen_index	s1 MEM		
Gen(s2)	2	KeyGen	3	Н	Rho_prime MEM	s2_gen_index	s2 MEM		
Gen(A)	3	KeyGen	4	G	Rho MEM	A_gen_index	A MEM		
$H(\rho \parallel t1) = tr$	4	KeyGen	7	Н	Rho MEM	t1 MEM	tr MEM		
$H(tr \parallel M')_1$	5	SignGen	1	Н	MLDSA_in_1		u MEM		
$H(K \parallel rnd \parallel u)$	6	SignGen	2	Н	MLDSA_in_1		p" MEM		
Gen(y)	7	SignGen	3	Н	p" MEM	y_gen_index	y MEM		
Gen(A)	3	SignGen	4,5	G	Rho MEM		A MEM		
$\mathbf{H}(\mu \parallel \mathbf{w}1)$	8	SignGen	9	Н	u MEM	w MEM	c_tilde MEM		
Gen(c)_1	9	SignGen	10	Н	c_tilde MEM		c MEM		
Gen(y)	7	SignGen	15	Н	p" MEM	y_gen_index	у МЕМ		
Gen(c)_2	10	SignVer	1	Н	MLDSA_in_1		c MEM		
Gen(A)	3	SignVer	2,3	G	Rho MEM	A_gen_index	A MEM		
H(pk)	11	SignVer	4	Н	MLDSA_in_1		tr MEM		
H(tr M')_2	12	SignVer	5	Н	tr MEM	MLDSA_in_1	u MEM		
$\mathbf{H}(\mu \parallel \mathbf{w}1)$	8	SignVer	8	Н	u MEM	w MEM	c_tilde MEM		

SHA3 primitives	Primitives sign	mode	Input	t side		Output side		sha_byte_num	i_last cycle times
H(ξ+x04+x04)	0	Н	MLDSA_in_1	seed_gen_index	Rho MEM	Rho_prime MEM	Kata MEM	010	5
Gen(s1)	1	Н	Rho_prime MEM	s1_gen_index	s1 MEM			010	9
Gen(s2)	2	Н	Rho_prime MEM	s2_gen_index	s2 MEM			010	9
Gen(A)	3	G	Rho MEM	A_gen_index	A MEM			010	5
H(pk)_1	4	Н	Rho MEM	t1 MEM	tr MEM			000	165
$H(tr \parallel M')_1$	5	Н	MLDSA_in_1		u MEM			(64+2+n+m) mod 8	$\left\lceil \frac{64+2+n+m}{8} \right\rceil$
$H(K \parallel rnd \parallel u)$	6	Н	MLDSA_in_1		p" MEM			000	17
Gen(y)	7	Н	p" MEM	y_gen_index	y MEM			010	9
$H(\mu \parallel \mathbf{w}1)$	8	Н	u MEM	w1 MEM	c_tilde MEM			000	105
Gen(c)_1	9	Н	c_tilde MEM		c MEM			000	5
Gen(c)_2	10	Н	MLDSA_in_1		c MEM			000	5
H(pk)_2	11	Н	MLDSA_in_1		tr MEM			000	165
H(tr M')_2	12	Н	tr MEM	MLDSA_in_1	u MEM			011	44

SHA3 primitives	Primitives sign	mode	Inpu	t side		Output side		sha_byte_num	i_last cycle times
H(ξ+x04+x04)	0	Н	MLDSA_in_1	seed_gen_index	Rho MEM	Rho_prime MEM	Kata MEM	010	5
Gen(A)	1	G	Rho MEM	A_gen_index	A MEM			010	5
Gen(s1)	2	Н	Rho_prime MEM	s1_gen_index	s1 MEM			010	9
Gen(s2)	3	Н	Rho_prime MEM	s2_gen_index	s2 MEM			010	9
Gen(y)	4	Н	p" MEM	y_gen_index	y MEM			010	9
$\mathbf{H}(\mu \parallel \mathbf{w}1)$	5	Н	u MEM	w MEM	c_tilde MEM			000	105
H(pk)_1	6	Н	Rho MEM	t1 MEM	tr MEM			000	165
H(pk)_2	7	Н	MLDSA_in_1		tr MEM			000	165
Gen(c)_1	8	Н	c_tilde MEM		с МЕМ			000	5
Gen(c)_2	9	Н	MLDSA_in_1		с МЕМ			000	5
$H(K \parallel rnd \parallel u)$	10	Н	MLDSA_in_1		p" MEM			000	17
H(tr M')_1	11	Н	MLDSA_in_1		u MEM			(64+2+n+m) mod 8	$\left\lceil \frac{64+2+n+m}{8} \right\rceil$
$H(tr \parallel M')_2$	12	Н	tr MEM	MLDSA_in_1	u MEM			(64+2+n+m) mod 8	$\left\lceil \frac{64+2+n+m}{8} \right\rceil$

SHA3 primitives	Primitives sign	mode	Inpu	t side	Output side			sha_byte_num	i_last cycle times
Gen_Seed	0	Н	MLDSA_in_1	seed_gen_index	Rho MEM	Rho_prime MEM	Kata MEM	010	5
Gen_A	1	G	Rho MEM	A_gen_index	A MEM			010	5
Gen_s1	2	Н	Rho_prime MEM	s1_gen_index	s1 MEM			010	9
Gen_s2	3	Н	Rho_prime MEM	s2_gen_index	s2 MEM			010	9
Gen_y	4	Н	p" MEM	y_gen_index	y MEM			010	9
H_u_w1	5	Н	u MEM	w MEM	c_tilde MEM			000	105
H_pk_1	6	Н	Rho MEM	t1 MEM	tr MEM			000	165
H_pk_2	7	Н	MLDSA_in_1		tr MEM			000	165
Gen_c_1	8	Н	c_tilde MEM		c MEM			000	5
Gen_c_2	9	Н	MLDSA_in_1		c MEM			000	5
H_K_rnd_u	10	Н	MLDSA_in_1		p" MEM			000	17
H_tr_M_1	11	Н	MLDSA_in_1		u MEM			(64+2+n+m) mod 8	$\left\lceil \frac{64+2+n+m}{8} \right\rceil$
H_tr_M_2	12	Н	tr MEM	MLDSA_in_1	u MEM			(64+2+n+m) mod 8	$\left\lceil \frac{64+2+n+m}{8} \right\rceil$

Data source	keccak_in_sel	mem_sel_1	mem_sel_2	index_sel	in_seed_sel
Rho MEM	0	0	X	X	X
Rho_prime MEM	0	1	X	X	X
Rho_prime_prime MEM	0	2	X	X	X
u MEM	0	3	X	X	X
w MEM	1	X	0	X	X
t1 MEM	1	X	1	X	X
c_tilde MEM	1	X	2	X	X
tr MEM	1	X	3	X	X
A_gen_index	2	X	X	0	X
s1_gen_index	2	X	X	1	X
s2_gen_index	2	X	X	2	X
y_gen_index	2	X	X	3	X
MLDSA_in_1	3	X	X	X	0
seed_gen_index	3	X	X	X	1

Data source	keccak_in_sel	mem_sel_1	mem_sel_2	index_sel	in_seed_sel
Seed MEM	0	0	X	X	X
u MEM	0	1	X	X	X
w MEM	1	X	0	X	X
t1 MEM	1	X	1	X	X
c_tilde MEM	1	X	2	X	X
tr MEM	1	X	3	X	X
A_gen_index	2	X	X	0	X
s1_gen_index	2	X	X	1	X
s2_gen_index	2	X	X	2	X
y_gen_index	2	X	X	3	X
MLDSA_in_1	3	X	X	X	0
seed_gen_index	3	X	X	X	1

Data source	keccak_in_sel	kk_sub_sel_1	kk_sub_sel_2	kk_sub_sel_3
Seed MEM	0	0	X	X
u MEM	0	1	X	X
w MEM	0	2	X	X
t1 MEM	0	3	X	X
c_tilde MEM	1	X	0	X
tr MEM	1	X	1	X
zero_index	1	X	2	X
seed_gen_index	1	X	3	X
A_gen_index	2	X	X	0
s1_gen_index	2	X	X	1
s2_gen_index	2	X	X	2
y_gen_index	2	X	X	3
MLDSA_in_1	3	X	X	X

MLDSA SHA3 Module

MLDSA SHA3 Block Diagram

MLDSA SHA3 Block Diagram

0.155/min a ...144/min 1911 511155/2554172441724511602554121 5365/2172116231162716172411111111494

PS C:\Users\fossu\Desktop\ML_DSA_Syn\SHA3\python> python -u "c:\Users\fossu\Desktop\ML_DSA_Syn\SHA3\python\SHA_3.py"

ACC0939DFAAE297E681F5698CB063B05315B2B374AF88EFD9C089FE793FC67E2420B4DD30138F14FA4970FD23A3BB9400920BCE83750376E81F8ABABF200C27668AA7AE7D3F52FDDCCF36C0E578001F3667B89B30401F98FBB5B52697C268809D4AC
993D6FA5D4EB20869B196B33729E0724C632EC0EA29E4C2F93A312620C25DE72ACB56BFD0434