MA 106 : LINEAR ALGEBRA : SPRING 2023 DETERMINANTS

1. Tutorial Problems

(1) Compute the inverse of the matrix

$$\begin{bmatrix}
5 & -1 & 5 \\
0 & 2 & 0 \\
-5 & 3 & -15
\end{bmatrix}$$

using the Gauss-Jordan Elimination Method and cofactors and compare the results.

(2) Calculate the determinant of the matrix

$$\begin{bmatrix}
1 & 2 & 3 & \dots & n \\
2 & 2 & 3 & \dots & n \\
3 & 3 & 3 & \dots & n \\
\vdots & \vdots & \vdots & & \vdots \\
n & n & n & \dots & n
\end{bmatrix}.$$

- (3) (Vandermonde determinant): (a) Prove that $\det \begin{bmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{bmatrix} = (b-a)(c-a)(c-b).$
 - (b) Prove an analogous formula for $n \times n$ matrices by using row operations to clear out the first column.
- (4) Solve the following systems by Cramer's rule:

(i)
$$-x + 3y - 2z = 7$$

 $3x + y + 3z = -3$
 $2x + y + 2z = -1$
(ii) $4x + y - z = 3$
 $3x + 2y - 3z = 1$
 $-x + y - 2z = -2$

(5) Let *A* be an $n \times n$ and *B* be an $m \times m$ matrix. Show that $\det \begin{bmatrix} A & O \\ O & B \end{bmatrix} = \det A \det B$.

Hint. Note that $\begin{bmatrix} A & O \\ O & B \end{bmatrix} = \begin{bmatrix} A & O \\ O & I_m \end{bmatrix} \begin{bmatrix} I_n & O \\ O & B \end{bmatrix}$. Now regard the function $f(A) = \frac{1}{2} \left(\frac{1}{2} \left(\frac{A}{2} \right) \right) \left(\frac{A}{2} \left(\frac{A}{2$

 $\det \begin{bmatrix} A & O \\ O & I_m \end{bmatrix}$ as a function of columns of A. Show that f(A) is a determinant function. Hence $f(A) = \det A$.

2. Practice Problems

(6) Compute the inverse of the following matrices using Gauss-Jordan Method and using the cofactors and compare the results.

(i)
$$\begin{bmatrix} 5 & -1 & 5 \\ 0 & 2 & 0 \\ -5 & 3 & -15 \end{bmatrix}$$
 (ii)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}$$
.

(7) Calculate the determinant of the following matrices

(8) Prove that the equation of the line in the plane through the points (a, b), (c, d) is given by

$$\det \left[\begin{array}{ccc} x & y & 1 \\ a & b & 1 \\ c & d & 1 \end{array} \right] = 0.$$

(9) Show that the area of the triangle in the plane with vertices (a, b), (c, d), (e, f) is given by

$$\frac{1}{2}\det\begin{bmatrix} a & b & 1 \\ c & d & 1 \\ e & f & 1 \end{bmatrix}.$$

(10) Show that the volume of the tetrahedron with vertices (a_1, a_2, a_3) , (b_1, b_2, b_3) , (c_1, c_2, c_3) and (d_1, d_2, d_3) is given by

$$\frac{1}{6} \det \begin{bmatrix} a_1 & a_2 & a_3 & 1 \\ b_1 & b_2 & b_3 & 1 \\ c_1 & c_2 & c_3 & 1 \\ d_1 & d_2 & d_3 & 1 \end{bmatrix}$$

- (11) Let A be a 2×2 matrix. Show that det(A + I) = 1 + det A if and only if trace (A) = 0.
- (12) Let A be an $n \times n$ matrix having the block form

$$A = \left[\begin{array}{cccc} A_1 & 0 & \dots & 0 \\ 0 & A_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & A_k \end{array} \right]$$

where A_i is an $r_i \times r_i$ matrix for i = 1, 2, ..., k. Show that $\det A = \det A_1 \det A_2 ... \det A_k$.

(13) Prove: Let A be an $n \times n$ real matrix with the property that the entries in each row add up to 0. Show that det A = 0.

- (14) Recall that for a square matrix $adjA = (cof(a_{ij}))^T$. Show that if A is an $n \times n$ invertible matrix then $det(adj(A)) = det(A^{n-1})$.
- (15) Given n^2 functions $f_{ij}(x)$ each differentiable on the interval (a,b), define $f(x) = \det(f_{ij(x)})$ for each $x \in (a,b)$. Let $A(x) = (f_{ij}(x))$. Let $A_i(x)$ be the matrix obtained from A(x) by differentiating the functions in the i^{th} row of A(x). Prove that $f'(x) = \sum_{i=1}^n \det A_i(x)$.