Eroi (eroi)

Ci sono N+1 città. La città numero i $(1 \le i \le N+1)$ è stata attaccata da A_i mostri.

Ci sono N eroi. L'eroe numero i $(1 \le i \le N)$ può sconfiggere solo i mostri che stanno attaccando la città i o la città (i+1), fino ad un massimo di B_i mostri.

Qual è il numero massimo di mostri che possono venire sconfitti, se gli eroi agiscono in maniera ottimale?

La risposta potrebbe non essere rappresentabile in un intero a 32-bit, ma è sempre rappresentabile in un intero a 64-bit. In C++/C per rappresentare un intero a 64-bit è possibile usare il tipo di dato long long, mentre in Java è possibile usare il tipo di dato long. In python 3 invece il tipo di dato int è sufficiente.

Dati di input

La prima linea contiene l'intero N. La seconda linea contiene N+1 interi: $A_1, A_2, \ldots, A_{N+1}$. La terza linea contiene N interi: B_1, B_2, \ldots, B_N .

Dati di output

Stampa il numero massimo di mostri che gli eroi possono sconfiggere.

Assunzioni

- $1 \le N \le 10^5$.
- $1 \le A_i \le 10^9$.
- $1 \le B_i \le 10^9$.

Esempi di input/output

input	output
2 3 5 2 4 5	9
3 5 6 3 8 5 100 8	22
2 100 1 1 1 100	3

Spiegazione

Nel primo caso d'esempio gli eroi possono sconfiggere 9 mostri agendo nel seguente modo:

eroi Pagina 1 di 2

- $\bullet\,$ L'eroe numero 1 sconfigge due mostri che stanno attaccando la città 1 e due mostri che stanno attaccando la città 2.
- \bullet L'eroe numero 2 sconfigge tre mostri che stanno attaccando la città 2 e due mostri che stanno attaccando la città 3.

Inoltre non esiste una strategia che sconfigge tutti e 10 i mostri, quindi la risposta è 9.

eroi Pagina 2 di 2

Eroi (eroi)

There are N+1 towns. The *i*-th town $(1 \le i \le N+1)$ is being attacked by A_i monsters.

We have N heroes. The i-th hero $(1 \le i \le N)$ can defeat monsters attacking the i-th or (i+1)-th town, for a total of at most B_i monsters.

What is the maximum total number of monsters the heroes can cooperate to defeat?

The answer may not be representable in a 32-bit integer, but it is always representable in a 64-bit integer. In C++/C you can use the long long data type to represent a 64-bit integer, while in Java you can use the long data type. In python 3 however the data type int is enough.

Input

The first line contains the integer N. The second line contains N+1 integers: $A_1, A_2, \ldots, A_{N+1}$. The third line containts N integers: B_1, B_2, \ldots, B_N .

Output

Print the maximum total number of monsters the heroes can defeat.

Constraints

- $1 \le N \le 10^5$.
- $1 \le A_i \le 10^9$.
- $1 \le B_i \le 10^9$.

Examples

input	output
2 3 5 2 4 5	9
3 5 6 3 8 5 100 8	22
2 100 1 1 1 100	3

Explanation

In the first sample, if the heroes choose the monsters to defeat as follows, they can defeat nine monsters in total, which is the maximum result.

eroi Page 1 of 2

- The first hero defeats two monsters attacking the first town and two monsters attacking the second town.
- The second hero defeats three monsters attacking the second town and two monsters attacking the third town.

eroi Page 2 of 2