

Metodologia Científica

Teresa Ludermir tbl@cin.ufpe.br

Objetivo do curso

Expectativas em um curso de metodologia

Cursos de metodologia feitos anteriormente

Objetivo do curso

- Tratar do processo de produção do conhecimento científico.
 - Analisar as diversas etapas da pesquisa científica
 - Redação Científica
 - Ênfase:
 - Aspectos metodológicos
 - Possibilidades de apresentação dos resultados das pesquisas

Objetivo do curso – Enfoque Prático

 Aprender como organizar a atividade de pesquisa e como comunicar resultados de pesquisa

Saber:

- a estrutura do método científico
- planejar uma pesquisa
- sustentar uma hipótese
- fazer uma dissertação
- escrever artigos científicos
- fazer apresentações
- Concluir um bom mestrado

Programa do Curso

Parte 1:

- Formas de Conhecimento
- O que é Ciência
- Pesquisa Científica
- Qualidade das Fontes
- Redação Científica
- Parte 2:
 - Redação Científica
 - Dissertação
 - Elaboração do Plano, Desenvolvimento e Elaboração da Dissertação, Defesa
 - Artigos e Apresentações Científicos

O que esperamos que voces aprendam

- Como organizar seus pensamentos
- Como colocar suas idéias no papel
- Como comunicar-se de maneira adequada no meio científico

Aspectos Específicos

- Preparação para os cursos do mestrado
- Elaboração da proposta de dissertação
- Preparação de artigos
- Elaboração da dissertação
- Melhoria de estilo de escrita
- Participação em conferências científicas
- Preparação de apresentações

Método de Avaliação

Parte 1:

- Levantamento Bibliográfico da área de Pesquisa
- Resumo Crítico do Levantamento Bibliográfico
 - Entrega: 22/02/2015
- Parte 2:
 - Plano de Dissertação
 - Uma elaboração e entrega de um esboço do plano de dissertação será no segundo módulo desta disciplina. O plano de dissertação, como trabalho desta disciplina, deve ser entregue um mês depois do término das aulas.

- Lato-sensu
 - Cursos de extensão
 - Cursos de especialização
- Strictu-sensu
 - Mestrado Acadêmico
 - Mestrado Profissionalizante
 - Doutorado

Sistema de Pós-graduação no Brasil

Lato-sensu

 Têm como objetivo passar as novas tecnologias para os profissionais que atuam no mercado de trabalho.

Strictu-sensu

- Têm como objetivo desenvolvimento de pesquisa gerando contribuição inovadora e novas tecnologias (e novos docentes) para a sua área de atuação
- Estas novas tecnologias, depois de comprovadas, serão repassadas aos profissionais da área através dos Cursos Lato-sensu.

O que é pesquisar ?

Objetivos de Pesquisa

- Fazer uma contribuição inovadora para a Ciência
- Deve responder a uma pergunta
 - de interesse para a comunidade científica
 - ainda não respondida anteriormente
 - de relevância para o interesse social (caso de tecnologia)
- A parte mais difícil é:
 - achar a pergunta certa!

- Uma atividade organizada e cooperativa
 - você deve conhecer o campo de pesquisa em que irá contribuir
- Tem suas próprias regras
 - Uso de citações, plágio, ...
 - Produto da pesquisa
 - dissertações, teses, livros, artigos
 - produção na literatura aberta

Atividade de Pesquisa

- Deve produzir uma contribuição inédita em sua área do conhecimento
- Contribuição
 - pode ser puramente teórica
 - baseada em teoria com base em experimentação
 - Pode ser uma melhoria de técnicas existentes
 - deve ter resultados que possam ser generalizados

Atividade de Pesquisa

- Produção tecnológica (e.g., software)
 - um programa não é uma contribuição de pesquisa!
 - Ilustra ou materializa conceitos teóricos
 - Deve-se mostrar que o programa é "melhor" em algum sentido prático.

- Um aluno havia encontrado um problema sobre o qual iria desenvolver sua monografia: havia um rio que dividia a cidade e não havia forma segura de atravessá-lo.
- Etapas seguintes:
 - Encontrar/Convencer seu orientador para trabalhar sobre o problema
 - Coletar referências bibliográficas
 - Estudou tudo sobre rios. Após o estudo, nenhuma referência citava como atravessar o rio.

- O aluno lembrou-se de um instrumento que levava objetos do ponto A ao ponto B: catapulta
- Definida a ferramenta, iniciou-se a etapa de planejamento dos experimentos.
- Experimento 1
 - Transporte de 100 pessoas com catapulta
 - 95 não sobreviveram ao experimento
 - Conclusão do experimento:
 - Eficácia da abordagem 5%
 - Existência de grande possibilidade de melhoria, logo o tema era promissor

Experimento 2

- Transporte de 100 pessoas com catapulta + paraquedas
- 20% abriram o paraquedas antes do ponto ideal e foram arrastados pela correnteza
- 30% esqueceram de abrir o paraquedas
- Conclusão do experimento:
 - Eficácia da abordagem 50%
 - Melhoria de 45 pontos percentuais em relação ao Experimento 1

Experimento 3

- Transporte de 100 pessoas com catapulta (mas sem paraquedas) + colchão
- 5% aterrissaram fora do colchão
- Conclusão do experimento:
 - Eficácia da abordagem 95%
- O aluno orgulhoso do resultado obtido, encerra o procedimento experimental (além do mais estava difícil conseguir voluntários), escreve a monografia e entrega o texto ao orientador
 - Trabalho Futuro: um algoritmo para calcular a velocidade da catapulta baseado no peso do passageiro e no seu índice de pânico

- O aluno foi reprovado !!!
- Seguem alguns erros:
 - Falta de diálogo com o orientador
 - Revisão bibliográfica inadequada
 - Falta de justificativa adequada para a ferramenta escolhida
 - Ausência de comparação com resultados da literatura
 - Problema-alvo restrito: apenas a sua cidade

Metodologia em CC

- Ciência da Computação é uma ciência do artificial.
- É uma área nova.
- Permeia praticamente todas as atividades humanas.
- Estilos de pesquisa são variados.

Metodologia em CC

- CC pode até ser uma área nova no campo das ciências mas isto não justifica que:
 - o método científico da área tenha de ser vago
 - dissertações sejam escritas sem um embasamento metodológico adequado
- CC se inter-relaciona com muitas outras disciplinas

Estilos de Pesquisa Correntes em CC

- Apresentação de um produto
- Apresentação de algo diferente
- Apresentação de algo presumidamente melhor
- Apresentação de algo reconhecidamente melhor
- Apresentação de uma prova

- Algumas subáreas da computação aceitam pesquisa da forma: "eu fiz algo novo e eis meu produto".
- O requisito é que o algo seja relevante, interessante, deixe o leitor entusiasmado.
- Se é relevante já se tentou resolver antes, a partir daí já é possível traçar um comparativo
- Normalmente uma sub área neste estagio é uma subárea nova, e não saturada. Áreas mais maduras certamente não reconhecem pesquisas apresentadas neste formato!

- Pesquisa eminentemente exploratória
- Difícil comparar com trabalhos anteriores
- Resumo do trabalho: "Fiz algo novo. Eis meu produto". Não se apresenta um conhecimento novo. Se faz algo novo com conhecimento já estabelecido.
- Não passam em áreas estabelecidas de CC. Só em áreas novas dentro da CC.
- Pode ser apropriado para workshops de ferramentas.

- Protótipos e ferramentas não justificam o grau de mestre
- Mesmo numa área nova o pesquisador precisa mostrar que esta resolvendo um trabalho relevante
- Cuidado com pesquisas que são uma aplicação da informática em alguma outra área.

Apresentação de algo diferente

- Algumas subáreas aceitam trabalhos da forma "eu fiz algo diferente do que outros já fizeram".
- Apresentação de uma forma diferente de resolver um problema.
- Requisito alguma comparação com o já existente e mostrar as diferenças.
- Também característico de áreas novas.
- Exemplo:
 - ES trabalho apresenta uma nova técnica para realizar algo novo, em que se compara essa técnica com outras técnicas existentes (apresenta alguns estudos de caso para reforçar o argumento).

- Não há rigor científico na apresentação dos resultados.
- Comparações, se houver, são muito mais qualitativas do que quantitativas.
- Estudos de caso usualmente não prova, mas pode ajudar a convencer.
- Típico de áreas onde é difícil conseguir dados e efetuar análise empírica

- Trabalho mais robusto seria usar estudos de caso para mostrar que um método consagrado falha em um ou outro caso, explicitando o motivo da falha e propondo e validando uma solução para o problema
- Propor algo é fácil, difícil é mostrar que a proposta apresenta algum tipo de melhoria em relação a outras propostas semelhantes que existem por aí.

Apresentação de algo diferente

- As avaliações devem ser reproduzíveis por avaliadores independentes
- Tabela comparativa de características ajuda: o novo artefato tem todas as características dos artefatos existentes

	Característica 1	Característica 2	Característica 3	Característica 4
Artefato 1	X	X		
Artefato 2	X			X
Artefato 3		X	X	X
Novo Artefato	X	X	X	X

Apresentação de um estudo de caso

- Trabalhos da forma "eu fiz algo e o mundo se tornou melhor por causa dele" ou "eu verifiquei que isso (não necessariamente de minha invenção/criação) tem esta consequência no mundo".
- Estes trabalhos estão muito perto das ciências naturais, em particular das ciências médicas você tem que mostrar que uma intervenção é melhor ou diferente de outra - e para isso precisa fazer um experimento no mundo, com grupo de controle, analise estatística, etc.

- Um estágio mais maduro que o anterior é "eu fiz algo melhor do que outros já fizeram e inventei esses testes para demonstrá-lo."
- O autor terá de testar a sua abordagem e também outras que constam na literatura
 - Muito trabalho e possível erros
 - Deixar claro como cada técnica foi aplicada
 - Importância da escolha da métrica utilizada nas comparações.

- Exige comparação com a literatura, principalmente com o estado da arte e trabalhos recentes.
- Na falta de benchmarks, o próprio autor cria seus testes.
- Trabalho extra e possibilidade de introdução de erros.
- Importante ter uma métrica clara. Ex. Software "fácil de usar" medido pela quantidade de cliques do mouse. "Fácil de usar" é uma afirmação fraca.

Apresentação de algo reconhecidamente melhor

- Trabalhos da forma "eu fiz algo melhor do que outros já fizeram e rodei esses testes padrões para demonstrá-lo."
- Estas são áreas maduras na Computação você cria um artefato que é melhor que os outros numa métrica aceita pela comunidade em exemplos aceitos pela comunidade.

Apresentação de algo reconhecidamente melhor

- Analisado através de testes padronizados reconhecidos internacionalmente.
- Supõe-se que após a publicação dos resultados ninguém mais possa ignorar esta nova abordagem em função das vantagens que ela oferece em relação às anteriores.

Apresentação de algo reconhecidamente melhor

- O trabalho se concentra na elaboração da hipótese e não na busca dos dados.
- Tendo uma boa hipótese de trabalho, promissora e que faça sentido, a pesquisa é mais fácil de ser executada.
- Encontrar uma boa hipótese não é trivial
 - Estudo do estado da arte
 - Busca por problemas em aberto
 - Observar como as técnicas resolvem os problemas desta área

- Algumas subáreas aceitam trabalhos da forma "eu provei algo ainda não provado e eis a prova".
- Provas com o rigor necessário, em geral de acordo com as regras da lógica.
- Exemplo: Métodos Formais e Compiladores
 - Pode ser demonstrado que um algoritmo é o melhor algoritmo para resolver um determinado problema.

Apresentação de uma prova

- Deve-se construir uma teoria (conjunto de definições) e uma prova formal de seus principais teoremas.
- Típico das subáreas ligadas à Lógica e Matemática.

- Pesquisas formais
 - Prova é necessária. Lógica é a ferramenta
- Pesquisas Empíricas
 - Nova abordagem é apresentada e comparada. Métodos estatísticos são as ferramentas
- Pesquisas exploratórias
 - Estudos de caso, as análises qualitativas e as pesquisas exploratórias em áreas emergentes. Argumentação e convencimento são as ferramentas

- Pesquisas formais
 - Difícil de realizar e refutar
- Pesquisas Empíricas
 - Pode ser refutada porque a estatística não explica causas. Ex. aranha surda.
- Pesquisas exploratórias
 - Abordagem mais arriscada. Pesquisa pode ser (ou parecer) mais fácil de realizar porque não precisa de lógica e estatística

- Pense sobre o tipo de pesquisa que pretende realizar, suas vantagens e desvantagens
- Qual o tipo de apresentação possivelmente mais adequado para o seu trabalho

O que é CIÊNCIA?

- O que é CIÊNCIA ?
- Quais os tipos de conhecimento que conhecemos ?
- Quais as diferenças entre os tipos de conhecimento ?

O que é CIÊNCIA?

- (Novo Dicionário Aurélio da Língua Portuguesa) "Ciência: conjunto organizado de conhecimentos relativos a um determinado objeto, especialmente os obtidos mediante a observação, a experiência dos fatos e um método próprio."
 - O método científico é baseado na observação cuidadosa e testes de teorias por experimentos.

O que é CIÊNCIA?

É a atividade que propõe a aquisição sistemática do conhecimento sobre a natureza biológica, social e tecnológica.

Princípios:

- O conhecimento científico nunca é absoluto ou final, pode ser sempre modificado ou substituído.
- A exatidão sobre um conhecimento nunca é obtida integralmente, mas sim, através de modelos sucessivamente mais próximos.
- Um conhecimento é válido até que novas observações ou experimentações o substituam.
- Serve para Melhorar a Qualidade de Vida Material e Intelectual.

O que é CIÊNCIA ?

- É uma forma humana de aprender a realidade e de produzir novos conhecimentos, independentemente deles originarem ou não tecnologias
- Ela se caracteriza pelo uso do raciocínio lógico, pela base empírica, pela precariedade do conhecimento e pelo aceite por parte da comunidade
- Ciência é internacional por natureza

Quais são os critérios da Ciência?

Produção científica

- vem em muitas formas
- tem alguns princípios gerais
- segue procedimentos racionais
- investiga fenômenos recorrentes
- busca resultados generalizáveis
- trabalha incrementalmente (quase sempre)

O objetivo da Ciência é resolver problemas!

- Qual o problema que você está resolvendo?
- Comece de um desafio prático
- Extraia daí um problema teórico
- Certifique-se que o problema é
 - relevante
 - não-resolvido
 - resolvível

Formas de Conhecimento

- Científico
- Popular
- Teológico
- Filosófico

- Entendo o mundo como uma partida de futebol
 - ET em jogo no Maracanã
 - Todos correndo atrás da bola
 - A sensibilidade dos jogadores quando a bola se aproxima da rede
 - hipótese
 - Será que o objetivo é enviar a bola o mais longe possível ?
 - Ou será que é matar o humanóide que esta com a bola ?

- Entendo o mundo como uma partida de futebol
 - Nós somos como o ET imersos no grande "jogo" da natureza tentando entender suas "regras".
 - ET é mero espectador
 - Nós interagimos com a natureza enquanto fazemos nossas hipóteses e realizamos nossos experimentos

- Peru Indutivista Bertrand Russel
 - Peru recebe ração todos os dias do ano as 9 horas da manhã
 - No começo o peru é cauteloso mas a alimentação chega todos os dias as 9 horas
 - Regra: sou sempre alimentado as 9 da manha
 - Infelizmente no dia de Natal a regra n\u00e3o se revela verdadeira

- Ignaz Semmelweis, médico, Hospital Geral de Viena, século 19
 - Muitas mulhers morriam logo após o parto childbed fever.
 Pacientes atendidas por parteiras tinham taxa de morte 5 vezes menor que pacientes atendidas pelos médicos.
 - Um dos colegas de Semmelweis cortou o dedo durante uma autópsia e morreu pouco depois com sintomas parecidos com os da childbed fever. Os médicos iam a sala de autópsia antes de visitar a maternidade.
 - Hipótese: os médicos estão transmitindo childbed fever ?
 - Os médicos deveriam lavar as mãos e os ante-braços com água com cloro antes de entrar na maternidade
 - Em dois anos as taxas de mortalidade ficaram similares

- Hoje a ciência não é mais vista como algo pronto ou acabado, não é a posse de verdades imutáveis.
 - Ciência entendida como uma busca constante de explicações e soluções, apesar da falibilidade e de seus limites.
 - Procura aproximar-se da verdade através de método, controle, sistematização
 - Busca renovar-se constantemente
 - Ciência como processo de construção permanente.

- Através da classificação, da comparação, da aplicação dos métodos, da análise e síntese, o pesquisador extrai do contexto social, ou do universo, princípios e leis que estruturam um conhecimento rigorosamente válido e universal
- Procura alcançar a verdade dos fatos (objetos) e depende da escala de valores e das crenças dos cientistas; ele resulta de pesquisas metódicas e sistemáticas da realidade

Conhecimento popular

- É conseguido na vida quotidiana e, muitas vezes, ao acaso;
- fundamenta-se apenas em experiências vivenciadas ou transmitidas de pessoas para pessoas;
- faz parte das antigas tradições.
- Este conhecimento também pode derivar de experiências casuais, através de erros e acertos, sem a fundamentação dos postulados metodológicos

Conhecimento teológico

- Este conhecimento está intimamente relacionado à fé e à crença divina, ou ainda a um Deus (...).
- De modo geral apresenta respostas para questões que o ser humano não pode responder com os demais conhecimentos (filosófico, popular ou científico), pois envolve aceitação, ou não

Conhecimento filosófico

- É a busca do SABER.
- O conhecimento filosófico conduz a uma reflexão crítica sobre os fenômenos e possibilita informações coerentes

Ciência e Verdade

- A Ciência não é dona da verdade e nem a única forma de acesso ao conhecimento.
- A ciência não assume saber a verdade sobre o mundo empírico a priori. Ela assume que deve descobrir seu conhecimento.
- O conhecimento científico é o conhecimento humano, e os cientistas são seres humanos. Não são deuses, e a ciência não é infalível.

PREPARE-SE PARA VER UM ESPIRAL

Isto é um espiral, certo?

Não, são vários círculos independentes!

PREPARE-SE PARA VER UM ROSTO DE PERFIL

É UM ROSTO... OU A PALAVRA "LIAR"?

O trinômio: verdade, evidência e certeza

- O ser humano pode conhecer a verdade?
- O que é a verdade?
- Que evidências temos que as verdades reveladas pela religião ou pela ciência sejam realmente verdade?
- Como podemos ter certeza que o ser humano e a humanidade estão no caminho certo?

- Nenhum mortal é dono da verdade :
 - o problema da verdade está na finitude do ser humano
 - Ocultamento do ser da realidade do outro
- Pesquisador pode conhecer aspectos do objeto que se manifesta, que se impõe, porém a realidade toda jamais poderá ser captada pelo investigador
- Pode-se definir verdade como o encontro da pessoa como desocultamento e com a manifestação do ser.

- O objeto nunca se manifesta inteiramente, transparente
 - Não somos capazes de perceber tudo aquilo que se manifesta e nem é possível ter plena posse do objeto do conhecimento
 - Quando muito conhecemos os objetos pelas suas representações, imagens
 - Assim, nunca conhecemos toda a verdade, a verdade absoluta e total.

- Afirmações erradas decorrem de atitudes precipitadas e de arrogância em relação à natureza do que se desvela
- Evidência é a manifestação clara
- A verdade só resulta quando há evidência, desocultamento da essência das coisas
- É um dos critérios da verdade científica

- Adesão firme de uma verdade sem temor de engano
- Baseia-se na evidência, no desvelamento da natureza e da essência das coisas.
- Trinômio: havendo evidência (objeto se desvela com suficiente clareza) pode-se afirmar com certeza, sem temor de engano, uma verdade.

Existe ligação entre Ciência, Economia e Política?

AS PRESSUPOSIÇÕES DE UMA GERAÇÃO...

A questão dos Traseiros dos Cavalos Romanos

Você sabia que...

A bitola das ferrovias (distância entre os dois trilhos) nos Estados Unidos é de 4

pés e 8,5 polegadas.

Por que esse número foi utilizado?

Porque era esta a bitola das ferrovias inglesas e, como as americanas foram construídas pelos ingleses, esta foi a medida utilizada.

ASI PRESSUPOSIÇÕES DE UMA GERAÇÃO...

A questão dos Traseiros dos Cavalos Romanos

Por que os ingleses usavam esta medida?

Porque as empresas inglesas que construíam os vagões eram as mesmas que construíam as carroças antes das ferrovias, e se utilizavam dos mesmos ferramentais das

carroças.

Por que as medidas (4 pés e 8,5 polegadas) para as carroças?

Porque a distância entre as rodas das

carroças deveria servir para as estradas antigas da Europa, que tinham essa medida

AS PRESSUPOSIÇÕES DE UMA GERAÇÃO...

A questão dos Traseiros dos Cavalos Romanos

E por que tinham essa medida?

Porque essas estradas foram abertas pelo antigo império romano, quando de suas conquistas, e tinham as medidas baseadas nas antigas bigas romanas.

E por que as medidas das bigas foram definidas assim?

Porque foram feitas para acomodar dois traseiros de

cavalos!!!

...PODEM AFETAR AS GERAÇÕES SEGUINTES...

A que tão dos Traseiros dos Cavalos Romanos

Finalmente... O ônibus espacial americano, o Space Shuttle, utiliza dois tanques de combustível sólido (SRB - Solid Rocket Booster) que são fabricados pela Thiokol, em Utah.

Os engenheiros que os projetaram queriam fazê-lo mais largo, porém tinham a limitação dos túneis das ferrovias por onde eles seriam transportados, os quais tinham suas medidas baseadas na bitola da linha!

"COM CONSEQÜÊNCIAS IMPREVISÍVEIS

A questão dos Traseiros dos Cavalos Romanos

Conclusão: um exemplo avançado da engenharia mundial em design e tecnologia acaba sendo afetado pelo tamanho do traseiro do cavalo da Roma antiga!

Formação do espírito científico

- Ética é importante na Ciência?
- Dê exemplos do mau uso do método científico

- Espírito científico é uma atitude do pesquisador em busca de soluções sérias, com métodos adequados para o problema que enfrenta
- Espírito científico é a expressão de uma mente crítica, objetiva e racional
 - Criticar no sentido de julgar, distinguir, analisar para melhor avaliar a questão

Formação do espírito científico

- Consciência objetiva implica o rompimento com posições subjetivas, pessoais e mal fundamentadas do conhecimento vulgar
- Objetividade é a condição básica do pesquisador: desaparece a figura do pesquisador e só interessam o problema e a solução
 - Qualquer um pode repetir a mesma experiência, em qualquer tempo, e o resultado sempre será o mesmo pois independe de questões subjetivas
- O "eu acho" não satisfaz a objetividade do saber científico.

Qualidades do espírito científico

Virtude intelectual:

- senso de observação, gosto pela precisão e idéias claras,
- na imaginação ousada regida pela necessidade de prova,
- na curiosidade que leva a aprofundar o problema,
- na sagacidade e no poder de discernimento.

Qualidades do espírito científico

Virtudes morais:

- atitude de humildade e reconhecimento de suas limitações e possibilidade de certos erros e enganos
- imparcial: não torce os fatos
- cultiva a honestidade, evita o plágio, não colhe como seu o que outros plantaram
- tem horror às acomodações
- é corajoso para enfrentar os obstáculos e perigos que uma pesquisa pode oferecer

- Universitário imbuído do espírito científico se aperfeiçoará nos métodos de investigação e técnicas de trabalho
- Essencial é aprender como trabalhar, como enfrentar e solucionar os problemas não só na faculdade como na vida profissional.
- Requer hábitos, consciência e espírito preparado no emprego de instrumentos que levarão à solução de problemas.

- Perfil do Pesquisador:
 - Predisposição à enfrentar e vencer vários desafios
 - Busca, testa ou cria novos conhecimentos, procedimentos e soluções de problemas

Atitudes do Pesquisador:

- Paciência
- Autonomia intelectual
- Criatividade
- Espírito crítico e empreendedor
- Raciocínio lógico
- Persistência
- Consciência e responsabilidade ética, social e política
- Coragem para enfrentar desafios e romper paradigmas
- Humildade

Tudo aquilo que você fizer, seja na área pessoal ou profissional, faça da melhor maneira que for capaz.

A Construção, criação ou transformação de conhecimentos: o grande desafio de pesquisa Pesquisar é:

- Exercício de hipotetizações
- Predições
- Deduções
- Argumentação criativa e segura
- Buscar divergências, contradições, convergências, novas formas de explicar situações e relações

Observação

 Entender seu objeto de estudo tanto quanto sua capacidade de observação permite

Hipótese

Formular uma hipótese a partir da análise dos dados

Previsões

Usar a hipótese para predizer os resultados de novas observações

Experimento

- Desenvolver experimentos para testar suas predições.
- Repetir os passos de predição e experimentação até reduzir discrepâncias entre teoria e observações.

Teoria

 Construir uma teoria que provê um conjunto coerente de proposições que explicam uma classe de fenômenos.

O Método Científico - etapas

- Questionamento
- 2. Revisao Bibliográfica
- 3. Formulação das Hipóteses
- 4. Estudo Experimental
- 5. Análise dos Resultados e Conclusões
- 6. Reportar os Resultados

O Método Científico: visão idealizada

Algo que não pudemos explicar

Problemas

- Como os planetas se movem?
- O que causa o cólera?
- O que causou a extinção dos dinossauros?
- É possível colorir qualquer mapa com apenas 4 cores?

A ciência é um processo de solução de problemas.

O que é uma hipótese ?

A semente de uma nova teoria para resolver o problema.

Exemplos

- Os planetas giram em torno do Sol
- Cólera é transmitido ao beber água contaminada
- Os dinossauros desapareceram por uma mudança climática causada pela queda de um asteróide
- Qualquer mapa pode ser colorido com um mínimo de 4 cores.

O método científico na prática

- Hipóteses precisam ser refutáveis
- Os experimentos precisam ser reprodutíveis
- Os resultados precisam ser comunicados
- Os métodos e resultados precisam ser criticados

Como achar um bom problema

- Definir seu problema é a parte mais difícil
- Seja modesto!
- Concentre-se em achar um problema bemdefinido
- Clareza é fundamental (i.e., escrever sempre!)

Como projetar experimentos

- Requisitos de uma boa metodologia
 - fornecer evidências a favor e contra a hipótese
 - incluir um ou mais experimentos
 - ser inovadora no caso de um doutorado

Etapas da investigação científica

- Escolha do tema
- Planejamento da investigação
- Coleta e armazenamento de informações (observação, experimentação)
- Análise dos resultados, elaboração das conclusões
- Divulgação dos resultados

Escolha do tema

- Pesquisas originais, ou de confirmação ou ainda de repetição para aprendizado
- Derivado de conhecimento/investigações anteriores do tema
- Derivado de idéias dadas pelo orientador ou colegas, ou de idéias totalmente originais (insight)
- Derivado da literatura científica, pesquisa bibliográfica

Escolha do tema

- Pesquisa bibliográfica
 - levantamento de trabalhos já realizados sobre o mesmo tema, num determinado período nível geral x nível específico
 - levantamento dos métodos e técnicas a serem utilizadas na investigação
 - realizada com metodologia específica e utilizando publicações e bancos de dados especiais (índices)

Escolha do tema

- O tema escolhido deve
 - representar uma questão relevante, cujo melhor modo de solução se faz por meio de uma pesquisa científica
 - ser factível em relação à competência dos pesquisadores, à infraestrutura do laboratório e ao tempo e recursos disponíveis

Escolha do tema em Computação

- Em algumas subáreas são aceitos:
 - Eu fiz algo melhor do que outros já fizeram e rodei este teste padrão para demonstrá-lo
 - Eu provei algo ainda não provado e eis a prova
 - Eu fiz algo super-interessante (que ainda não tinha sido feito) e ei-lo aqui.

Planejamento da investigação

- Pesquisadores, técnicos e suas atribuições no projeto
- Materiais a serem utilizados: equipamentos, material de consumo, etc estão disponíveis ao longo do projeto?

Planejamento da investigação

- Métodos a serem utilizados: identificação e seleção de todos os métodos e técnicas (inclusive computacionais e estatísticas) a serem usadas na pesquisa; treinamento e validação da metodologia através de projeto piloto ou protótipo ANTES de iniciar o projeto.
- ou: Desenvolvimento ou aperfeiçoamento de técnicas e métodos (pesquisa metodológica)

Planejamento da investigação

- Como serão coletados, armazenados e analisados os dados: tamanho da amostra, formas de tabulação e tratamento dos dados, testes estatísticos a serem utilizados
- Cronograma de desenvolvimento: quais metas serão atingidas em que momentos ao longo do projeto?

Coleta e armazenamento de informações

- Realização de estudos observacionais (aplicação de questionários, estudos de campo, registro de dados exploratórios, etc.)
- Realização de estudos experimentais (manipulação das variáveis de estudo, coleta de resultados)
- Mensuração e comparação de dados de desempenho, uso, impacto, etc (quando for pesquisa metodológica)

- Questionário: instrumento ou programa de coleta de dados
 - confecção pelo pesquisador, preenchimento pelo informante
 - linguagem simples e direta
 - etapa de pré-teste, num universo reduzido
- Entrevista
 - plano
 - caráter exploratório ou coleta de informações

Estudos observacionais

- Observação
 - conhecimento prévio do que observar
 - planejamento de um método de registro
 - fenômenos não esperados
 - registro fotográfico ou vídeo
 - relatório

- Sujeitos ou objetos a serem estudados no experimento: grupos controle e experimental
 - grupo controle: não recebe a influência da variável independente
 - grupo experimental: recebe a variável independente
- Relação causa-efeito: determinada pela comparação estatística entre os grupos
- Observação dos resultados.

Estudos experimentais

- Perigo do viés (bias): influência inconsciente ou consciente por parte dos sujeitos ou pesquisadores sobre o resultado da pesquisa
- Utilizar técnicas de eliminação ou redução do viés

Análise dos resultados, elaboração das conclusões

- Dois tipos de dados e análises:
 - Qualitativos
 - Quantitativos
- Classificação, codificação e tabulação dos resultados.

Tipo de análise científica

Qualitativa:

 EXPLORATÓRIA: identifica e define problemas e variáveis relevantes e define hipóteses.

Quantitativa:

- DESCRITIVA: descreve as características de determinada situação; permite a inferência de relações entre variáveis e a previsão de fenômenos.
- EXPERIMENTAL OU CAUSAL: admite que os estudos descritivos são insuficientes para determinar a relação de causa e efeito; busca a resposta à causa de um fenômeno.

- Ciências Humanas
- Revelar Consensos, buscar
 porquês
- Raciocínio Indutivo
- Conhecimento Implícito
- Problema muda
- Compreender o fenômeno in situ

- Ciências Naturais
- Estabelecer Perfis, prever fenômenos
- Raciocínio Hipotético-Dedutivo
- Teste de Hipóteses Explícitas
- A realidade é estática
- Experimentos controlados

Qualitativa X Quantitativa

- Amostra Pequena
- Coleta via roteiros
- Entrevista em profundidade ou grupo
- Relatório destaca opiniões, comentários e frases

- Amostra grande, para generalização
- Questionários Estruturados
- Entrevistas com objetos da amostra
- Tabelas e gráficos, com discussão

Qualitativa x Quantitativa

- Generalidade é secundária
- Lógica da descoberta
- Hipóteses e variáveis conhecidas a posteriori
- Controle a posteriori das variáveis
- Procedimentos variáveis

- Objetiva, passível de reprodução
- Lógica da verificação
- Hipóteses e variáveis conhecidas a priori
- Controle a priori das variáveis
- Procedimentos fixos

O papel da estatística

- Os resultados quase sempre são variáveis
- É necessário descrever a variabilidade e as tendências centrais, para entender o fenômeno
- Para comprovar diferenças entre situações observacionais e experimentais, é necessário usar métodos estatísticos.

Descrição e análise dos dados

- O que os dados significam para a nossa pesquisa?
 - o que é típico no grupo (média, mediana e moda)?
 - até que ponto variam os indivíduos no grupo (amplitude, desvio médio e desvio padrão)?
 - como os indivíduos se distribuem com relação à variável que está sendo medida (distribuição é normal ou não)?
 - qual a relação entre as diversas variáveis (na estatística há vários métodos, mas nenhum deles garante a existência de um nexo causal)?

Elaboração das conclusões

Após estas etapas "o pesquisador fará as ligações que a lógica lhe permitir e aconselhar, procederá as comparações pertinentes e, com base nos resultados alcançados, enunciará novos princípios e fará as generalizações apropriadas".

Divulgação dos resultados

- Seminário
- Apresentação em congresso (resumo, poster, comunicação oral)
- Relatório
- Dissertação / tese
- Artigo científico
- Livro / capítulo de livro
- Internet

Variam:regras, finalidade, público atingido, etc

Método Indutivo X Dedutivo

- Há dois métodos básicos de abordagem:
- Método indutivo aborda os fenômenos pela observação de dados particulares, com vistas a se chegar a uma conclusão universal.
- Método dedutivo aborda a realidade a partir de postulados universais, leis, teorias, para a observação de fenômenos particulares.

Método Indutivo

- A finalidade da atividade científica é a obtenção da verdade, através da comprovação de hipóteses, que podem ser induzidas de um conjunto de exemplos.
- A indução pode ser classificada:
- Indução estatística consiste na observação de uma característica e na generalização estatística deste estudo à populações semelhantes.
- Indução naturalística consiste no estudo de casos sem a intenção de generalização. Esta ocorre naturalisticamente pelos leitores.

Indução estatística

- A forma básica da indução estatística segue os seguintes passos:
 - Verificam-se casos particulares X1,X2,X3....Xn são "Y",
 - Conclui-se por uma afirmação geral: Todos são "Y".

Exemplo:

- A barra de ferro 1, dilata com o calor.
- A barra de ferro 2, dilata com o calor.
- A barra de ferro 3, dilata com o calor.
- A barra de ferro n, dilata com o calor.
- Logo, Todas barras de ferro dilatam com o calor.

Indução naturalística

A indução naturalística está na base da grande maioria das pesquisas qualitativas. O pesquisador, numa pesquisa qualitativa, não está interessado em generalizar os dados obtidos, mas sim em aprofundar as nuanças, aprofundando a constituição daquilo que esta pesquisando. Dessa forma, a generalização não pode ser estabelecida pelo pesquisador, mas por atores externos à pesquisa.

Método Dedutivo

Dedução é um processo mental, por meio do qual, parte-se de um argumento geral ou universal, que funciona como premissa maior, e de um argumento particular que funciona como uma premissa menor, para chegar-se a uma conclusão em nível particular, cujo conteúdo já estava incluso, ao menos implicitamente, nas premissas.

Verdade universal

Fatos particulares

Argumento dedutivo ou silogismodedutivo

- Aspecto formal:
 - Premissa maior: enunciado Universal Veja-se X,Y
 - Premissa menor: enunciado particular Ora Y,Z
 - Conclusão: Dedução Então X,Z
- Exemplo;
 - Veja-se, Os mamíferos possuem pêlos
 - Ora, Coelho é um mamífero
 - Então,O Coelho possui pêlos

Diferença entre a dedução e a indução

 Na dedução, se as premissas são verdadeiras, a conclusão também o é

Na indução, se elas são verdadeiras, é provável que a conclusão o seja.

 Na dedução, todas as informações estão nas premissas.

Na indução a conclusão extrapola as premissas.

CIÊNCIA E TECNOLOGIA

- O que é Ciência?
- O que é Tecnologia?
- Qual sua fronteira?
- Bunge (1980) delimita a fronteira entre ciência e tecnologia colocando a tecnologia como ciência eminentemente aplicada, ou seja, para um usufruto. Seja para aplicar conhecimentos em pesquisas básicas, buscar conhecimentos mais específicos, ou produzir artefatos úteis e mesmo obter lucros.

CIÊNCIA E TECNOLOGIA

- Classicamente, Tecnologia pode ser definida como produção de técnica e não de conhecimento como a Ciência faz
- Em relação à Ciência pode-se dizer que a Tecnologia é um passo à frente em direção à Sociedade

CIÊNCIA E TECNOLOGIA

- A Ciência pode ser vista como um meio e não um fim.
- Já a Tecnologia está ligada a uma aplicação final e pode ser entendida como a etapa final de um processo de produção de algo útil e concreto à Sociedade.

EXEMPLO CIÊNCIA E TECNOLOGIA

- Por exemplo, o estudo da interação da radiação com a matéria por Einstein, o levou a descrever as leis que fundamentam a ação laser; Ciência pura.
- Muitas décadas depois, inventou-se o primeiro laser artificial, o que também foi um grande avanço na Ciência.

EXEMPLO CIÊNCIA E TECNOLOGIA

- A fabricação de um laser em escala industrial passou a ser um desafio tecnológico, ainda que vários avanços científicos tenham contribuído para o desenvolvimento tecnológico.
- Hoje, produzir lasers para aparelhos de CD é dominar uma tecnologia e nada tem a ver com Ciência.Dominar Tecnologia não implica em dominar a Ciência por traz da técnica, a técnica pode ser simplesmente um ato de reprodução de algo "importado".

Pesquisa & Desenvolvimento

- A pesquisa em C & T produz um determinado conhecimento, técnica ou produto
- O desenvolvimento em C & T transforma a pesquisa produzida em algo disponível para a sociedade (mercado consumidor)

Pesquisa Bibliográfica

- É o levantamento da bibliografia (dos documentos) referente ao tema de pesquisa escolhido
- É um passo decisivo em qualquer pesquisa científica
 - Elimina a possibilidade de se perder tempo investigando o que já foi solucionado!

Etapas

 Identificação dos itens bibliográficos de interesse, seleção, compilação, fichamento, redação da revisão bibliográfica

Importância da leitura

- Obtenção de informação existente
- Ampliação de conhecimentos
 - Exercitar crítica (opinião)
 - Objetivos
- Meio eficaz para aprofundamento dos estudos
 - Importante para pesquisa
- Encontrar problemas para pesquisar
- Definir trabalhos relacionados
- Procurar base para soluções interessantes

Importância da leitura

- Você deve conhecer o que está acontecendo na sua área muito bem
- A leitura ajuda a gerar boas ideias e a amadurecer ideias. Relacionamentos feitos durante a leitura dão insights e novas ideias
- Ter ideias próprias sem leitura é possível, mas a tendência é:
 - Ter ideias fracas
 - Repetir o que já foi feito

Leitura & Compreensão de texto

- Objetivos da leitura
 - Assimilação de conhecimento
 - Busca de novo conhecimento
 - Preparação intelectual para
 - Assumir posicionamentos críticos diante da realidade
 - Gerar conhecimento novo
- Primeiro passo
 - Delimitar o tema da leitura

Leituras

Se for iniciante: leia livros e surveys

- Survey: estado da arte da área de pesquisa e sua evolução histórica, indicando diferentes desdobramentos e as principais realizações
- Ir de trabalhos gerais a trabalhos mais específicos
- Se for estudar técnica de computação aplicada a uma área: tem que fazer revisão da técnica em si e sobre a área de aplicação

Tipos de fontes de informação

- Livros: informação completa, didática, bem amadurecida (não tratam de novidades)
- Livros com coletâneas de artigos: apresentam o estado de arte
- Artigos de eventos
 - Congressos, workshops, conferências, ...
 - Curtos, ciclo menor, pesquisa recente, menos qualidade
- Artigos de revistas
 - Mais longos, ciclo maior, pesquisa de 2-4 anos atrás, maior qualidade
 - "Special issues" têm ciclo menor e se focam em um assunto

Tipos de fontes de informação

- Ciência da Computação prefere publicar em eventos mas isto está mudando
- Ver artigos de Vardi
 Conferences vs. Journals in Computing Research
 - http://cacm.acm.org/magazines/2009/5/24632conferences-vs-journals-in-computing-research/fulltext
 - oRevisiting the Publication Culture in Computing Research
 - http://cacm.acm.org/magazines/2010/3/76297revisiting-the-publication-culture-in-computingresearch/fulltext

As grandes ferramentas

- Index Citeseer
 - http://citeseer.ist.psu.edu
- Google Scholar (Google Acadêmico)
 - http://scholar.google.com
- Digital Library do IEEE
 - http://ieeexplore.ieee.org
- Digital Library da ACM
 - http://portal.acm.org/dl.cfm
- Springer
 - http://www.springer.com
- Muitos periódicos acessíveis pela CAPES
 - http://www.periodicos.capes.gov.br

O que deve ser lido?

- Três passos
 - 1. Achar artigos recentes
 - 1. Identificar conferências e revistas "top"
 - 1. Examinar artigos das conferências e revistas

Achar artigos recentes

- Usar Google Scholar ou CiteSeer com boas palavras-chave para achar 3 a 5 artigos recentes na área
- Faça uma leitura superficial de cada artigo para achar o jeito do artigo
- Leia a seção de "Related work" de cada artigo
 - olsto fornece um sumário de trabalho recente
 - Se tiver sorte, vai haver uma referência a um survey recente
- Se achar um survey recente, leia o survey

Identificar conferências e revistas "top"

- Não achou survey recente ...
- Achar referências compartilhadas e nomes de autores repetidos
 - São os artigos-chave e pesquisadores principais
- Faça download dos artigos-chave e guarde
- Vá aos websites dos principais pesquisadores e verifique o que publicaram recentemente
- Assim, vai identificar as conferências e revistas "top" porque é aí que pesquisadores "top" publicam

Examinar artigos das conferências e revistas

- Vá aos websites dessas conferências e revistas e examine proceedings/volumes recentes
- Deve ser fácil identificar trabalhos recentes de alta qualidade
- Esses papers e os guardados antes constituem a primeira versão do seu survey
- Faça leitura superficial e crítica dos artigos
 - São dois níveis de leitura
 - Veremos como fazer isto depois
- Se muitos citarem um artigo que você não tinha identificado, obtenha-o

139

Outra forma de encontrar artigos relevantes

- Índice de impacto
 - Quantas vezes o artigo está sendo referenciado
 - o Ferramentas de pesquisa podem ordenar por impacto

Quando parar?

- Resposta 1: nuncaDurante a pesquisa, você continua lendo
- Resposta 2: quando não encontra mais novidades
 Você encontra muita repetição

Identificação seletiva de leituras

- Saber o que está procurando em uma leitura é importante
- Exemplo: em artigos
 - Problema
 - Relevância do problema
 - Solução
 - Método
 - Conclusões e limitações da solução

Identificação seletiva de Jeituras

- Título
- Data publicação
- Índice
- Resumo ou introdução
- Conclusão
- Uma regra básica
 - Para artigos, ler resumo, introdução e conclusão superficialmente antes de decidir fazer uma leitura aprofundada do artigo

Identificação seletiva de eituras – Leitura Superficial

- Folheamento
- Entenda o quê e por quê, não como
- Faça perguntas
- Problema?
- Importância?
- Contribuição?
- Resultados e conclusões?
- Saiba responder!
- Nas suas palavras
- Vai continuar?

Identificação seletiva de leituras – Leitura Aprofundada

- Etapas
- Entender
- Avaliar/criticar
 - Os resultados são significativos?
 - Argumentação é boa?
 - Métodos utilizados ok?
 - Valida as suposições e discute limitações?
 - Exagera nas conclusões?
- Consequências?
- Armazenar

Como armazenar

Ficha de leitura

- Referência completa com os dados técnicos
 - Referência bibtex (autores, data, titulo, página, ...),
 DOI
 - Ferramentas de "Reference Management"

http://en.wikipedia.org/wiki/Comparison_of_reference_management_software

Como armazenar

Ficha de leitura

Procedimento:

- ler e reler a obra
- entender os conceitos
- anotar as idéias principais
 - Problema abordado
 - O que há de novo
 - Sua opnião
 - Como é diferente/igual a seu trabalho

Como aproveitar melhor a leitura?

- Fazendo Anotações sobre o texto
 - É o processo de seleção de informação para posterior aproveitamento
 - As anotações (notas) devem permitir que se escreva um texto a partir delas
 - Devem capturar a essência do texto original
 - Não devem ser nem muito sucintas nem muito extensas
- Tipos de Anotações (notas)
 - Corridas
 - Esquemáticas
 - Em forma de resumo

Anotações Resumidas

- Resumo:
 - Condensação do texto
 - mantendo as idéias principais e respeitando suas inter-relações
 - Deve ser escrito com suas próprias palavras
 - Copiar o texto original é plágio!
 - Resumo não é uma colcha de retalhos
 - Deve ser coeso e coerente

Anotações Resumidas

- Capítulo de revisão bibliográfica não é escrito a partir apenas das fichas de leitura
 - Ele é escrito depois que a pesquisa foi feita, para dar crédito para conceitos-chave e para comparar o que você fez com o que há na literatura (mais detalhes depois)
- Fichas de leitura são organizadas por fonte bibliográfica
 - O que um autor diz sobre vários conceitos
- Capítulo de revisão de literatura é organizado por conceito
 - O que vários autores dizem sobre um certo conceito
 - Requer "leitura comparativa"

Textos Científicos

- Os cientistas necessitam escrever para apresentar o resultado de suas pesquisas
- Esses textos devem obedecer normas preestabelecidas
- Compreendem:
 - Embasamento teórico
 - Observações ou descrições originais
 - Trabalhos experimentais

Tipos de Textos Científicos

- Artigo científico/paper
- Comunicação científica
- Informe científico
- Resenha crítica
- Monografias científicas
 - Monografia de conclusão de curso de graduação
 - Dissertação (mestrado)
 - Tese (doutorado)

Considerações Gerais

- redação científica deve ser:
 - Direcionada aos profissionais que possuam um nível razoável de conhecimento sobre o tópico.
 - Lógica, isto é, todos os principais passos dedutivos devem ser identificáveis.
 - Direta, sem hipérboles.
 - Clara, sem ambiguidades.
- Redação científica de boa qualidade e efetividade pode ser feita em qualquer língua.

Considerações Gerais

 Para iniciantes, redigir textos científicos de boa qualidade é difícil, mesmo utilizando sua própria língua.

 Isto requer treinamento para escrever e treinamento para ler.

É MAIS DIFÍCIL AINDA ESCREVER UM TEXTO CIENTÍFICO EM OUTRA LÍNGUA

- O Inglês é atualmente a língua científica internacional.
- Para os cientistas brasileiros no começo de carreira, recomendo escrever em Português, prestando atenção a fatores que não dependem de uma linguagem específica, tais como clareza, lógica, concisão e o uso da estrutura da linguagem como uma ferramenta.
- A versão final pode ser traduzida por você mesmo ou por outros profissionais. Neste momento, as diferenças em expressões idiomáticas, vocabulário especializado e mesmo jargões podem ser ajustadas.

SUGESTÕES

- Dica importante: ao ler um trabalho científico publicado num periódico internacional de boa qualidade, faça-o várias vezes em dois níveis:
 - Conteúdo científico
 - Estrutura e uso da linguagem. O plágio da estrutura e do uso da linguagem é permitido e, até mesmo, recomendado.

ESTRUTURA TÍPICA DE UM TRABALHO CIENTÍFICO

1. Introdução

- Escreva claramente a "questão" que você pretende responder.
- Use a literatura para identificar a originalidade e a relevância de sua "questão".
- Identifique claramente os objetivos do estudo.

2. Métodos

- Forneça informação suficiente para:
 - Repetição do experimento.
 - Avaliação da adequação da abordagem experimental.

ESTRUTURA TÍPICA DE UM TRABALHO ENTÍFICO

3. Resultados – seção mais importante

- Apresente os resultados relevantes em ordem lógica, criando, portanto, um argumento para convencer o leitor.
- Determine a forma mais adequada para apresentar os dados como texto, figuras ou tabelas.
- Apresente outras informações necessárias para interpretar os resultados.

ESTRUTURA TÍPICA DE UM TRABALHO ENTÍFICO

4. Discussão

- Não repita todos os resultados em detalhes.
- Identifique seus principais resultados, discutindo-os em termos da literatura.
- Identifique as novas informações e conceitos derivados de seus resultados e discuta-os em termos de literatura.
- Estabeleça uma conexão entre seus resultados e conceitos da literatura.

Etapas da redação científica

- Anotar idéias
- Organizar idéias
- Planejar estrutura
- Preparar texto
- Revisar texto (conteúdo)
- Revisar apresentação do texto (forma)

Fluxo da redação

Pensamento, raciocínio

- Anotar idéias
- Boas
- Ruins
- Fatos
- Detalhes
- Hipóteses
- Organizar idéias
- Planejar estrutura
- Idéias principais
- Conclusões e recomendações
- Subdivisões

Redação propriamente dita

- Preparar texto
- Colocar as idéias no papel
- Revisar texto
- Verificar se texto está coerente com objetivo esperado
- Análise da linguagem e estilo
- Revisar apresentação do texto
- Verificação gramatical e ortográfica

- Listas, conexões, agrupamentos de idéias (brainstorming, em inglês)
- Estrutura: dividir idéias em grupos (começo, meio e fim)
- Abordagem jornalística: perguntas básicas (Quem? O quê? Por quê? Quando? Onde? Como?)
- Simular a situação:
- O que eu quero dizer?
- O que os leitores querem ou precisam ouvir?

Perguntas básicas e estrutura do documento científico

- Para quem? (público-alvo, leitores)
- Quem? (autores)
- O quê? (título)
- Por quê? (objetivos)
- Quando?
- Onde?
- Como? (metodologia)
- Quanto?
- O que significa? (discussão)
- O que implica? (conclusões e recomendações)

Sentenças

- Curtas: cada idéia em uma sentença
- Sentenças muito longas e com muitas idéias entrelaçadas dificultam a leitura e a compreensão do leitor
- Pontuação

Parágrafos

- Agrupamento idéias
- Conexão entre idéias
- Tamanho: exato para expressar as idéias

Principais qualidades da redação científica

Correção: uso correto do idioma

Concisão: síntese, brevidade

Clareza: transparência

Objetividade: direto, sem considerações pessoais

Imparcialidade: justo, sem motivações pessoais

Precisão: exatidão, rigor

Harmonia: ordem, consonância

Originalidade: singular, único

Vigor: força

Simplicidade: natural, compreensível

Como melhorar a redação de um texto científico

- Eliminar palavras desnecessárias
- Evitar repetições
- Evitar uso de adjetivos e advérbios
- Utilizar palavras curtas (sinônimos)
- Evitar expressões longas
- Dividir parágrafos em sentenças curtas
- Usar voz ativa
- Usar ordem direta das palavras
- Evitar o uso de termos pouco comuns

Eliminar palavras desnecessárias

- Como se pode ver pela análise dos dados apresentados na Tabela = A Tabela mostra
- Os dados estão na tabela a seguir = Na tabela ...
- Como já foi apresentado anteriormente = Como já apresentado
- O trabalho que estou apresentando é ... = Este trabalho é...
- Provocar mudança em = Mudar
- Chegar à conclusão que = Concluir
- Fazer uma recomendação = Recomendar

Evitar adjetivos e advérbios

- Adjetivos:
 - pequeno, médio, grande
- Advérbios:
 - quantidade: muito, pouco
 - tempo: recentemente, antigamente
 - modo: lentamente, provavelmente
- Expressões indefinidas:
 - quase todos, grande maioria, vários, boa parte

Utilizar palavras curtas

Com exceção de = exceto

- Neste preciso momento = agora
- Quantidade suficiente de = bastante
- No caso de = se
- Devido ao fato de = porque
- Durante o tempo em que = enquanto
- Por causa desse motivo = porque, portanto
- Utilização = uso
- Constitui-se = é
- Posteriormente = depois
- Consequentemente = assim
- Que se conhece pelo nome de = denominado, chamado

- A municipalização das ações da vigilância sanitária foi descrita neste estudo.
 O estudo descreve a municipalização das ações de vigilância sanitária.
- Analisando os dados apresentados na Tabela 1, verifica-se que houve diferença quanto à produção de alimentos nos estados brasileiros.
 Houve diferença na produção de alimentos nos estados brasileiros (Tabela 1).

Uso correto do idioma

- Grafia das palavras e acentuação
 - Significado das palavras: verificar conceitos com duplo significado
 - Abreviaturas
 - Nomes de instituições
 - Revisão gramatical:
 - Pontuação
 - Concordância
 - Regência verbal
 - Ordem das palavras
 - Emprego de maiúsculas

Uso de números no texto

No início da frase: **por extenso**

Quinze amostras foram analisadas para avaliar o grau de contaminação.

- No meio da frase:
 - De um a dez (por extenso):

Foram utilizados nove equipamentos.

– De 11 em diante (algarismos):

Foram analisadas 15 amostras do produto.

Quando forem vários valores (algarismos):

Participaram do estudo 3 homens e 15 mulheres.

Utilizar ponto para separar o milhar: 1.567

Exceção anos: 2005

Números acima de mil: usar forma mista

Foram examinadas 3 milhões de pessoas que consumiram o medicamento.

Foram incinerados 2,4 mil toneladas de alimentos mal conservados.

Recursos para melhorar a redação de documentos

- Usar os recursos de correção ortográfica e gramatical dos processadores de texto (embora nem sempre se possa confiar!).
- Reler o texto várias vezes, se possível em voz alta, para identificar a sonoridade e a repetição de palavras.
- Ler o texto pensando nos leitores: conteúdo e clareza.
- Pedir a uma outra pessoa para revisar o texto (tanto sob o ponto de vista de conteúdo como de forma).
- Exercitar a redução do número de palavras, sem prejudicar a compreensão do texto.

Dissertação

- Tem finalidade didática e natureza reflexiva
 - Não exige descobertas ou contribuições originais
 - Porém, o pesquisador deve, pelo menos, expor novas formas de ver a realidade já conhecida
 - seu ponto de vista pessoal & Novas análises críticas

Plano de Dissertação

- " Ninguém é capaz de escrever bem, se não sabe bem o que vai escrever" (Camara Jr., 1978, Manual de expressão oral e escrita)
- Primeira Fase do Processo
 - Seleção do Tema/Orientador
 - Pesquisa Bibliográfica Inicial
 - Esta pesquisa pode eliminar a possibilidade de se trabalhar em vão, de se despender tempo com o que já foi feito. Consultar teses e dissertações na área de estudo.
 - Formulação do Problema
 - Escolhido o assunto, passa-se a sua delimitação e explicação dos objetivos da pesquisa. Quanto mais se delimita um assunto, maior a possibilidade de um estudo mais profundo. Considerar o tempo disponível.
 - Levantamento das Hipóteses
 - Pesquisa Bibliográfica (Focada no Problema a ser resolvido)

Plano de Dissertação

- 1. Título Provisório e Área de Concentração
- 2. Motivação (1-2 páginas)
- 3. Estado da Arte (5-10 páginas) apresenta as idéias/correntes e trabalhos principais da área até o momento
- 4. Proposta de Trabalho (2-3 páginas)
 - Definição
 - Metodologia de Trabalho
 - Construção do Protótipo (Se for o caso)
 - Trabalhos já realizados.
- 5. Cronograma de Atividades (com as atividades do ano inteiro, inclusive previsão da data da defesa)
- 6. Referências Bibliográficas Preliminares
- Assinaturas

Título Provisório

- Deve refletir a pesquisa.
- Deve ser claro, preciso, e informativo.
- Em geral é escolhido no final e neste momento é provisório.
 - Atenção: Na dissertação, escolha com bastante cuidado o título porque depois da defesa é difícil trocar o título.

Motivação

- problema/questão geral:
 - qual o problema geral que você está abordando, dentro de que área(s) de pesquisa?
 - por que é importante trabalhar com isso (motivação e relevância)?
 - quais os problemas gerais dessa área/problema?
 - problema/questão especifico(a) que será abordado na dissertação.
 - listar as próximas seções (faz sentido quando o plano tem mais de 10 páginas).
- Em alguns planos temos duas seções separadas: uma com a motivação e outra com a descrição do problema a ser abordado.

Estado da Arte

- apresenta as idéias/correntes e trabalhos principais da área até o momento.
- deve conter um resumo do que existe na área de pesquisa/desenvolvimento do problema/questão abordado pela dissertação.
- título deve ser significativo com relação ao seu conteúdo, isto é o título da seção não deve ser Estado da Arte.

Proposta de Trabalho

- Definição
- Metodologia de Trabalho
 - informar o método de pesquisa:
 - Indutivo, dedutivo.
 - informar o método utilizado na pesquisa
 - pesquisa de campo ou em laboratório & suas fases
- Construção do Protótipo (Se for o caso)
- Trabalhos já realizados.

Sugestão de Cronograma

- Mês 1 Atualização Revisão Bibliográfica
- Mês 2 Prototipo especificado
- Mês 3 Primeira implementação
- Mês 4 Primeiros Resultados Experimentais
- Mês 5 Defesa da Proposta
- Mês 6 Prototipo pronto (1a versão)
- Mês 8 Prototipo melhorado
- Mês 9 Começa a escrever a dissertação e conclui experimentos
- Mês 10 Continua escrita dissertação e escreve artigo para publicação.
- Mês 11 Texto da dissertação (completo)
- Mês 12 Defesa

Desenvolvendo a Dissertação

- O problema a ser resolvido pode ser formulado como uma pergunta. A formulação deve ser clara, precisa e operacional. O tempo disponível deve ser levado em conta.
- É necessário
 - informar o método de pesquisa:
 - Indutivo, dedutivo.
 - Partirá do estabelecido para uma explicação particular, ou partirá de um caso particular para chegar a uma verdade universal?
 - O método utilizado reflete-se na organização do texto.

Desenvolvendo a Dissertação

- Implementações:
 - Uso de ferramenta, implementação em LP
 - Considerar o tempo de aprendizagem da ferramenta ou LP

- Base de dados
 - Pública (benchmark)
 - Precisa ser construída
 - Tratamento estatístico dos Dados

Desenvolvendo a Dissertação

- Análise dos Resultados
 - Relatório de Testes
 - Objetivo dos Testes (O que se está querendo medir)
 - Set-up dos Experimentos realizados (Condições de realização do Experimento)
 - Amostra Utilizada (Como escolheu a amostra? Quantos exemplos tinha? Como eram as características de cada participante da amostra?)
 - Método Utilizado (Que medidas/técnicas foram utilizadas?
 Como foram realizados os experimentos?)
 - Resultados Obtidos (descrever com detalhes os resultados obtidos, em pesquisas experimentais um teste estatístico é necessário)

Dissertação

- Capa
- Elementos pré-textuais
 - Página de rosto, Folha da ficha catalográfica,
 Dedicatória, Agradecimentos, Resumo, Sumário,
 Lista de ilustrações, abreviaturas e siglas
 - Numerados com algarismos romanos
- Elementos textuais
 - Capítulos numerados, contendo seções com quadros, figuras e tabelas
- Elementos pós-textuais
 - Apêndices, Anexos, Bibliografia (ou Referências bibliográficas), Índice onomástico, Índice remissivo

- Página de rosto
 - Nome da instituição, Curso, Título do trabalho, nome do autor, local, mês e ano (existe uma página padrão).
- Folha da ficha catalográfica (existe uma página padrão, feita na Biblioteca Central).
- Dedicatória, Agradecimentos (opcionais)
 - Devem aparecer cada um em uma página separada. Agradecimentos só na versão final.
- Resumo
 - Em português e inglês.

- Sumário
 - Enumera as divisões do texto (capítulos, seções e subseções), indicando as páginas de início de cada divisão
 - Deve conter TODAS as partes da dissertação que o sucedem
- Lista de ilustrações, abreviaturas e siglas (opcionais)

Os capítulos

- Seqüência
 - Introdução, Revisão Bibliográfica,
 Desenvolvimento e Conclusão
 - Cada capítulos deve incluir referências à bibliografia consultada referente ao assunto daquele capítulo.
 - Páginas numeradas com algarismos arábicos

Os capítulos - Introdução

- Introdução
 - Justificativa (motivação e relevância) do trabalho, objetivo, enfoque e delimitação (escopo) da pesquisa realizada, apresentação sintética da questão abordada (solucionada), metodologia utilizada
 - levantamento bibliográfico, pesquisa de campo, uso de questionários, pesquisa de laboratório, ...
 - E referências a publicações do autor relativas ao assunto da dissertação
 - No final, incluiu um parágrafo descrevendo o conteúdo do resto do documento.

Os capítulos - Introdução

- Introdução
 - Justificativa (motivação e relevância) do trabalho, objetivo, enfoque e delimitação (escopo) da pesquisa realizada, apresentação sintética da questão abordada (solucionada), metodologia utilizada
 - levantamento bibliográfico, pesquisa de campo, uso de questionários, pesquisa de laboratório, ...
 - E referências a publicações do autor relativas ao assunto da dissertação
 - No final, incluiu um parágrafo descrevendo o conteúdo do resto do documento.

Detalhando a Introdução

- Introdução
 - Embora este seja o primeiro capítulo da dissertação, deve ser escrito durante ou no final da elaboração do documento. Aqui você deve responder a 3 questões básicas:
 - O que? explique qual o problema tratado;
 - Por que? justifique a motivação e a relevância do seu trabalho;
 - Como? que técnicas/teorias usou no desenvolvimento do seu trabalho.
 - As vezes, além da introdução temos um capítulo descrevendo o problema abordado.

Detalhando o "Problema"

- Este capítulo é opcional.
- O problema é sucinta e objetivamente explicado, a fim de possibilitar uma melhor apreciação dos capítulos posteriores.
- O título do capítulo deve ser significativo com relação ao seu conteúdo.
- Apresentar informação de background que auxilie os leitores a compreenderem melhor seu trabalho
 - Trabalho está relacionado a mais de uma área de pesquisa
 - Caso o problema tratado seja de difícil compreensão

Os capítulos – Estado da Arte

- Revisão Bibliográfica (Estado da Arte)
 - Resultado da pesquisa bibliográfica sobre o tema da dissertação
 - idéias/correntes e trabalhos principais da área até o momento (excluindo seu próprio trabalho, obviamente)
 - Deve conter uma análise crítica sobre o estado da arte
 - O título do capítulo deve ser significativo com relação ao seu conteúdo.

Detalhando – Estado da Arte

- O estado da arte deve falar sobre:
 - Motivação (para trabalhar nessa área)
 - Relevância (do problema enfocado)
 - Abordagens existentes:
 - características e linha evolutiva;
 - avaliação dos pros e contras.
 - Aplicações dessas abordagens:
 - Para dissertações práticas, veremos aqui os sistemas implementados;
 - Para dissertações teóricas, veremos aqui os modelos criados com base nas abordagens existentes, e que problemas eles resolvem.

Detalhando – Estado da Arte (Cont.)

Tendências para o futuro:

- Que problemas ainda estão em aberto, e qual a tendência de abordagem mais promissora no momento para resolvelos (e porque).
- É aqui que seu trabalho deve estar sendo desenvolvido.

Conclusões:

 onde geralmente se faz uma comparação entre as abordagens/aplicações apresentadas de forma crítica, tecendo seus próprios comentários sobre o que foi revisto.

Os capítulos

- Desenvolvimento (um ou mais capítulos)
 - Informação nova, trabalho desenvolvido pelo autor da dissertação
 - Objetivo: demonstrar o que foi proposto na Introdução
 - Exposição dos fundamentos do trabalho (argumentos), discussão (apresentação dos contra-argumentos) e demonstração (exame e demonstração do raciocínio, apresentação de provas)
 - Em geral temos mais de um capítulo
 - Método Proposto
 - Implementação ou Prova
 - Resultados

Método Proposto

- qual o problema sendo tratado
 - uma descrição do problema/questão tratado
- relevância
 - por que é importante resolver isso
- descrição clara de "como" o problema foi resolvido por você
 - que abordagem foi adotada na solução do problema
 - como o modelo foi concebido
 - quais suas características
 - como ele consegue resolver o problema proposto

Implementação ou Prova

- Implementação
 - deve conter os algoritmos desenvolvidos e os detalhes de implementação do protótipo
- Teórica
 - mostrar uma prova de que o modelo proposto está correto.

Resultados

- Comparar sua solução com o que existe (o que foi apresentado no Estado da Arte)
 - mostrar em que seu trabalho é melhor do que as outras soluções
 - quais seus problemas (suas limitações)!
- Se for o caso, apresentar uma avaliação do desempenho do protótipo.

Os capítulos

- Conclusão
 - Síntese das idéias defendidas na dissertação
 - Retoma as pré-conclusões expostas ao longo do texto, reforça a linha de pensamento que dá sustentação à dissertação
 - Um breve resumo, ressaltando as contribuições
 - Trabalhos Futuros
- Obs.: A introdução aponta problemas e a conclusão sintetiza a postura do autor diante do problema

- Páginas numeradas com algarismos arábicos
 - Continuação da seção anterior
- Apêndices e Anexos
 - Trazem material de importância secundária para o trabalho, mas que auxilia na compreensão do texto.
 Por exemplo, tabelas muito grandes de estudos de caso, código dos programas desenvolvidos, provas matemáticas longas, etc.

Apêndices

- Texto escrito pelo autor da dissertação, mas não é central para o trabalho
 - e por isso n\u00e3o aparece dentro da parte textual
- código de programa, regras e fórmulas, texto com informações de importância secundaria, etc.

Anexos

 Textos que não foram escritos pelo autor da dissertação (com as devidas referências), e que estão relacionados com o tema da dissertação

- Referências Bibliográficas
 - Lista de documentos que foram mencionados no texto da dissertação
 - Referências atuais
 - Tentar utilizar as normas da ABNT (Associação Brasileira de Normas Técnicas)
 - Existem dois sistemas mais usados para indicar fontes bibliográficas
 - Autor-data e Numérico

- Índice remissivo (opcional)
 - Lista dos termos do texto, com indicação das páginas onde aparecem
- Índice onomástico (opcional)
 - Lista dos autores citados, com indicação das páginas onde aparecem

- Resumos de dissertações no site da capes http://www.capes.gov.br/servicos/bancoteses.html
- Busca de dissertações em outros mestrados profissionais: UFPE, UNICAMP, UFRGS, mestrado em Informática Aplicada da UNIFOR
- Portal Domínio Público

http://www.dominiopublico.gov.br/pesquisa/PesquisaObraForm.jsp;jsessionid=18B4F36373DB7ED8 BE6731CD2A558E7A

- Uso do portal de periódicos da CAPES
 - www.periodicoscapes.gov.br
 - Pode ser acessado de fora da UFPE através do VPN. Instruções na página do NTI.
- Uso da biblioteca da UFPE
 - www.biblioteca.ufpe.br
 - http://www.bdtd.ufpe.br/bdtd/tedeSimplifica do/ fora do ar temporariamente
 - http://repositorio.ufpe.br/handle/123456789/
 50

- Google www.google.com
 - http://scholar.google.com
- ACM Digital Library www.acm.org
 - http://portal.acm.org/dl.cfm
- Citeseer http://citeseer.ist.psu.edu/cs
 - Contém citações e textos completos de artigos científicos na área de ciência da computação. Base parou as atualizações.

- Web of Science
 - http://isiknowledge.com
- DBLP Computer Science Bibliography
 - http://www.informatik.unitrier.de/~ley/db/

Outras Informações

- Estudo mais aprofundado do tema da dissertação
 - É possível que haja uma disciplina no tema no próximo semestre.
- Seminários ou estudo em grupo para manter a motivação
- Reuniões regulares com o orientador para manter o trabalho andando

Outras Informações

- Cuidado com cópias de textos.
- Importante publicação de artigos para validação do trabalho desenvolvido. Para quem deseja fazer doutorado as publicações são imprescindíveis.
- Importância da leitura (técnica e não técnica).
 Leia dissertações recentes.
- Defesas do mestrado profissional.

Referências

- Metodologia de Pesquisa para Ciência da Computação. Raul Sidnei Wazlawick, Editora Campus, 2009
- Redação Científica: a prática de fichamentos, resumos, resenhas. João Bosco Medeiros, 4. ed. Editora Atlas, 2000
- Pesquisa na Escola. Marcos Bagno, Edições Loyola, 1998.
- How to Write Better Essays. Bryan Greethan. Palgrave, 2001.
- Ciência: da filosofia à publicação. Gilson Volpato, 5^a edição. Scripta.

Outras Referências

- Para mais sugestões sobre como escrever sua dissertação, veja também:
 - 1) How to do Research At the MIT AI Lab, mais especificamente, em: The thesis
 - http://www.cs.indiana.edu/mit.research.how.to/section3.11.html
 - 2) Advice on Research and Writing University of Carnegie Mellon. Mais especificamente, em: How to Organize your Thesis
 - http://www.sce.carleton.ca/faculty/chinneck/the sis.html

Outras Referências

Cursos/Aulas Consultadas

- Gilberto Camara
- Mario Duarte
- Flavia Barros e Patrícia Tedesco
- Alejandro Frery
- Ronilson de Souza
- Luiz Antonio Dias
- Renato Roratto
- Nance Beyer Nardi
- Kelson Mota t. Oliveira
- George Darmiton Cavalcanti

Atividade Prática

O que é pesquisar?

Sobre o seu projeto

- Qual é meu tema ?
- Por que fazer ?
- O que sei sobre o assunto ?
- Qual é minha pergunta ?
- O que o trabalho pretende demonstrar ?
- Como se chamará ?
- Para que fazer ?
- Como vou desenvolver minha pesquisa ?
- Quando e em que ordem vou realizar a pesquisa ?
- De que vou precisar ?
- O que consultei para fazer o projeto ?
- Quais as hipóteses consideradas ?
- Descreva sucintamente seus planos para testes do seu projeto.

- Para entregar em 22/02/2015
- Levantamento Bibliográfico da área de Pesquisa
- Resumo Crítico do Levantamento Bibliográfico