Probabilidades

Probabilidade – conceitos

Suponha que você esteja jogando um jogo de tabuleiro no qual se lança um único dado. Se você está a 5 casas de um objetivo (ou da vitória), essa distância é mais ou menos provável de sair no dado?

Resposta

Em teoria, se o dado for honesto, a chance de sair um valor, é igual para todas as faces...

Face	1	2	3	4	5	6	Total
Frequência teórica	1/6	1/6	1/6	1/6	1/6	1/6	1

Teoria Clássica da Probabilidade

Suponha que um evento E possa acontecer de h maneiras diferentes, em um total de h modos possíveis, igualmente prováveis.

Assim, a chance de ocorrência, ou a *probabilidade de ocorrência de um evento* (também chamado de *sucesso*) é definida por:

$$p = \Pr\{E\} = \frac{h}{n}$$

Teoria Clássica de Probabilidade

É fácil ver que a probabilidade de não-ocorrência de um evento (denominado *insucesso*) é definida por:

$$q = \Pr\{n\tilde{a}o\ E\} = \frac{n-h}{n} = 1 - \frac{h}{n} = 1 - p = 1 - \Pr\{E\}$$

Assim,

$$p + q = \Pr\{E\} + \Pr\{n\tilde{a}o\ E\} = 1$$

ou seja, a soma de todas as probabilidades é sempre igual a 1 e, por consequência, a probabilidade de um evento é sempre menor que 1.

Mais exemplos de probabilidade clássica

- 1. Em uma reunião com 3 mulheres e 2 homens, qual a probabilidade de, ao acaso, se sortear uma mulher para presidir tal reunião?
- 2. Em um jogo de dados para obter a vitória o participante não pode tirar 3 ou 4 no lançamento de um único dado. Qual a chance de vitória?

3. Se o jogo em questão utilizar dois dados, qual a chance do participante tirar o valor 2? E o valor 1? Qual o valor mais provável de sair (e por quê)?

Conceitos fundamentais

Espaço Amostral

Pensem no evento que é jogar uma moeda 2 vezes seguidas. Os eventos que podem ocorrer são:

{(cara,cara), (cara, coroa), (coroa, cara), (coroa, coroa)}

O conjunto de todas as possibilidades de um determinado evento é chamado de *Espaço amostral*.

Conceitos fundamentais

Para o mesmo evento anterior, qual a probabilidade de sair duas faces iguais???

É fácil ver que a probabilidade de faces iguais é:

$$P(A) = P\{e_1, e_4\} = \frac{1}{2} + \frac{1}{2} = \frac{1}{4}$$

Conceitos fundamentais

De modo geral, a probabilidade de um evento evento A é a soma das probabilidades que compõem o evento:

$$P(A) = \sum_{i=1}^{n} e_i$$

Vale lembrar que a soma de todas as probabilidades é *sempre igual a* 1 (que representa 100%).

$$\sum_{i=1}^{n} P_i = 1$$

Probabilidade Condicional Eventos independentes e dependentes

Se E_1 e E_2 são dois eventos, a probabilidade de E_2 ocorrer depois de E_1 ter acontecido, é definido por $\Pr\{E_2|E_1\}$ ou $\Pr\{E_2 \ dado \ E_1\}$ e é chamada de **probabilidade condicional de E_2**, **depois de E_1 ter ocorrido.**

Se a ocorrência ou não de E_1 não afetar a probabilidade de ocorrência E_2 , então $\Pr\{E_2|E_1\}=\Pr\{E_2\}$ e diz-se que E_1 e E_2 são **eventos** independentes.

Caso contrário, os eventos são ditos dependentes.

Probabilidade Condicional Eventos independentes e dependentes

Exemplo:

Seja um evento o lançamento sucessivo de moedas. Qual a probabilidade de sair cara na quinta jogada de moeda?

Qual a probabilidade de sair cara na sexta jogada?

Qual a probabilidade de sair cara na 5º jogada e cara na 6º jogada? Este evento é dependente ou independente?

Probabilidade Condicional Eventos independentes e dependentes

Outro exemplo:

Se a probabilidade de um certo ser vivo estar vivo em 20 anos é 70% e a de um outro ser vivo é de 50%, qual a probabilidade que ambos estejam vivos em 20 anos?

Mais um...

Suponha que uma urna contenha 3 bolas brancas e 2 bolas pretas. Seja o evento E_1 que consiste na probabilidade de a primeira bola retirada ser a bola branca, enquanto o segundo evento seja a probabilidade da 2^{a} bola retirada ser branca. Sabendo que as bolas sorteadas não volta ao trabalho, qual a probabilidade de ambas as bolas retiradas serem pretas.

Pelo nome, qual o entendimento da definição????

O caso mais utilizado é o de apostas em casas de jogos, as famosas "bet"...

Se as chances (hipotéticas) de um time vencer o outro forem maiores, a probabilidade de prêmio é menor.

No caso em que se aposta em dupla-hipótese (vitória de uma equipe ou vitória da outra equipe, por exemplo), a chance de ocorrência aumenta, embora os eventos sejam excludentes entre si, o que diminui o valor do prêmio.

Exemplo:

Qual a probabilidade de se retirar um ás de um baralho de cartas completo? E qual a probabilidade de ser retirar um rei?

SOLUÇÃO

$$E_1$$
 = Probabilidade de se retirar um ás = $\frac{4}{52} = \frac{1}{13}$

$$E_2$$
 =Probabilidade de se retirar um rei = $\frac{4}{52} = \frac{1}{13}$

Continuando o exemplo:

Qual a probabilidade de se retirar um ás de um baralho de cartas completo ou retirar um rei?

SOLUÇÃO

$$E_1$$
 = Probabilidade de se retirar um ás = $\frac{4}{52} = \frac{1}{13}$

$$E_2$$
 = Probabilidade de se retirar um rei = $\frac{4}{52} = \frac{1}{13}$

Neste caso temos
$$Pr\{E_1 + E_2\} = Pr\{E_1\} + Pr\{E_2\} = \frac{2}{13}$$

Notem quem no exemplo anterior eu posso tirar na primeira carta um às ou um rei e isso torna o evento mutuamente exclusivo, uma vez que somente um dos eventos poderá ocorrer.

Se a pergunta fosse: "qual a probabilidade de se retirar um ás ou uma carta de espadas?" teríamos a seguinte lógica:

$$Pr\{E_1\}$$
 = Probabilidade de se retirar um ás = $\frac{4}{52}$

$$Pr\{E_2\}$$
 = Probabilidade de se retirar uma carta de espadas = $\frac{13}{52}$
 $Pr\{E_1E_2\}$ = Probabilidade de se retirar um ás de espadas = $\frac{1}{52}$

$$Pr\{E_1E_2\}$$
 = Probabilidade de se retirar um ás de espadas = $\frac{1}{52}$

$$Pr\{E_1 + E_2\} = Pr\{E_1\} + Pr\{E_2\} - Pr\{E_1E_2\} = \frac{4}{52} + \frac{13}{52} - \frac{1}{52}$$

Assim, para eventos mutuamente exclusivos, $Pr\{E_1E_2\} = 0!$

Se $E_1 + E_2$ representa a ocorrência de " E_1 ou de E_2 ou de ambos", então:

$$Pr\{E_1 + E_2\} = Pr\{E_1\} + Pr\{E_2\} - Pr\{E_1E_2\}$$

Em particular

$$Pr\{E_1 + E_2\} = Pr\{E_1\} + Pr\{E_2\}$$

No caso de eventos mutuamente exclusivos.

Eventos mutuamente exclusivos outro exemplo

Seja a distribuição de alunos segundo o gênero e o curso escolhido

Responda:

- a) Qual a probabilidade de, ao acaso, se escolher uma mulher nessa amostra?
- b) Qual a probabilidade de se escolher um estudante de Matemática Aplicada?
- c) Qual a probabilidade de se escolher ao acaso uma mulher que faça o curso de Matemática Aplicada?
- d) Qual a probabilidade de, ao acaso, se escolher um estudante de Computação ou Matemática Aplicada?

Curso Sexo	Homens (H)	Mulheres (F)	Total
Matemática Pura (M)	70	40	110
Matemática Aplicada (A)	15	15	30
Estatística (E)	10	20	30
Computação (C)	20	10	30
Total	115	85	200

