Chapitre 2

Statistiques descriptives univariées

Statistique descriptive et inférentielle

La statistique descriptive

Sert à synthétiser un ensemble de données

(graphes, tableaux, moyenne...)

La statistique inférentielle

Tirer des conclusions sur une population à partir d'un échantillon

La statistique descriptive est l'ensemble des outils qui permettent de résumer des données obtenues sur une ou plusieurs variables

Techniques de statistique descriptive

- 1. Représentation graphique
 - Table de fréquence
 - Graphiques (circulaires, en barres, ...)
- 2. Mesures de tendance centrale et de dispersion
- 3. Mesures de relation (chapitre 3)

Résultats de 50 sujets sur la variable nominale « Comportement fumeur »

Fumeur	Non-fumeur	Ancien fumeur	Fumeur	Non-fumeur
Non-fumeur	Non-fumeur	Fumeur	Non-fumeur	Non-fumeur
Ancien fumeur	Fumeur	Non-fumeur	Non-fumeur	Non-fumeur
Fumeur	Non-fumeur	Non-fumeur	Ancien fumeur	Fumeur
Non-fumeur	Fumeur	Fumeur	Non-fumeur	Non-fumeur
Fumeur	Non-fumeur	Non-fumeur	Non-fumeur	Ancien fumeur
Non-fumeur	Non-fumeur	Fumeur	Fumeur	Non-fumeur
Ancien fumeur	Fumeur	Ancien fumeur	Non-fumeur	Non-fumeur
Non-fumeur	Non-fumeur	Non-fumeur	Ancien fumeur	Non-fumeur
Non-fumeur	Ancien fumeur	Fumeur	Non-fumeur	Fumeur

Résultats de 50 sujets sur la variable métrique « Temps à une tâche de résolution de problème »

573	538	572	750	649
485	448	567	455	681
622	434	721	568	773
715	512	593	597	592
708	530	583	603	553
756	409	554	571	661
403	549	777	798	566
579	564	678	443	668
699	612	814	534	470
502	569	541	463	524

Représentation graphique

Représentation d'une variable nominale

- Tables de fréquence
- Graphiques circulaires
- Diagrammes en barre

Représentation d'une variable ordinale ou métrique

- Tables de fréquence groupées
- Histogrammes

Les fréquences (absolues)

Fréquences ou Occurrences

= Nombre de fois qu'une valeur apparait dans un jeu de données

Ex: Fréquence de « fumeur » = 14

La table de fréquence

= Tableau qui indique les fréquences de chaque valeur d'un jeu de données

Quatre étapes de construction:

- 1. Lister toutes les valeurs observées
- 2. Compter les fréquences de chaque valeur
- 3. Indiquer les fréquences à droite des valeurs
- 4. Indiquer le total au bas du tableau

Résultats de 50 sujets sur la variable nominale « Comportement fumeur »

Fumeur	Non-fumeur	Ancien fumeur	Fumeur	Non-fumeur
Non-fumeur	Non-fumeur	Fumeur	Non-fumeur	Non-fumeur
Ancien fumeur	Fumeur	Non-fumeur	Non-fumeur	Non-fumeur
Fumeur	Non-fumeur	Non-fumeur	Ancien fumeur	Fumeur
Non-fumeur	Fumeur	Fumeur	Non-fumeur	Non-fumeur
Fumeur	Non-fumeur	Non-fumeur	Non-fumeur	Ancien fumeur
Non-fumeur	Non-fumeur	Fumeur	Fumeur	Non-fumeur
Ancien fumeur	Fumeur	Ancien fumeur	Non-fumeur	Non-fumeur
Non-fumeur	Non-fumeur	Non-fumeur	Ancien fumeur	Non-fumeur
Non-fumeur	Ancien fumeur	Fumeur	Non-fumeur	Fumeur

La table de fréquences

	Fréquences	Pourcentages
Non-Fumeurs	28	56
Fumeurs	14	28
Anciens fumeurs	8	16
Total	50	100

Le graphique circulaire

Diagramme circulaire

Diagramme en secteurs

Camembert

Le diagramme en barres

Remarques sur les pourcentages

Fréquence relative ou proportion de fréquence

 $Fréquence\ relative = rac{Fréquence\ de\ la\ catégorie}{Somme\ des\ fréquences\ de\ toutes\ les\ catégories}$

valeur entre 0 et 1

Pourcentage de fréquence

Pourcentage de fréquence = $\frac{Fréquence\ de\ la\ catégorie\ \times 100}{Somme\ des\ fréquences\ de\ toutes\ les\ catégories}$

valeur entre 0 et 100

Remarques sur les pourcentages

Attention, les pourcentages peuvent être :

1. Les scores d'une variable métrique

Chaque sujet obtient un pourcentage Ex: le sujet 8 a obtenu 50% à son examen

2. Une synthèse des valeurs d'une variable nominale

Le pourcentage porte sur plusieurs sujets Ex: 40% des sujets de l'échantillon sont fumeurs

Représentation graphique d'une variable ordinale ou métrique

573	538	572	750	649
485	448	567	455	681
622	434	721	568	773
715	512	593	597	592
708	530	583	603	553
756	409	554	571	661
403	549	777	798	566
579	564	678	443	668
699	612	814	534	470
502	569	541	463	524

La table de fréquences groupées

= Table de fréquences dans laquelle les valeurs ont été regroupées en intervalles

Quatre étapes de construction:

- 1. Fixer le nombre et la taille des intervalles
- 2. Indiquer tous les intervalles en ordre
- 3. Indiquer les fréquences de chaque intervalle
- 4. Indiquer les pourcentages ou fréquences cumulées

La table de fréquences groupées

Intervalle	Point central	Fréquence	Fréquence cumulée
400-450	425	5	5
450-500	475	4	9
500-550	525	8	17
550-600	575	15	32
600-650	625	4	36
650-700	675	5	41
700-750	725	3	44
750-800	775	5	49
800-850	825	1	50

La table de fréquences groupées

Règles à respecter

- 5 à 20 intervalles de taille égale
- Taille des intervalles = étendue / nbr d'intervalles
- Ordre croissant ou décroissant
- Représenter tous les intervalles
- Convention pour les valeurs qui tombent sur les bornes
- Facultatif: ajouter les fréquences ou % cumulés

Les histogrammes de fréquence

Les mesures de tendance centrale

= le centre d'une distribution , la valeur typique

- Le mode
- La médiane
- La moyenne

Le mode

= la valeur la plus fréquente

Distribution unimodale

Distribution uniforme

Distribution bimodale

Distribution multimodale

Le mode (exemple)

Test de culture générale, X = résultat

0	
8 5 	
9	
10 15	
11 22	
12 25	
13 38	
14 54	
15 30	
16 32	
17 15	
18 8	
19 2	
20 1	

Le mode (exemple)

Test de culture générale, X = résultat

X (résultat sur 20)	<u>Fréquence</u>	
8	5	
9	8	
10	15	
11	22	
12	25	
13	38	
14	54 ← Le Mode = 1	4
15	30	
16	32	
17	15	
18	8	
19	2	
20	1	

Le mode

- Mesure de tendance centrale pour les variables nominales
- Peu utile pour les variables métriques
- Utilité variable pour les variables ordinales

La médiane

= la donnée centrale lorsque valeurs classées en ordre croissant

= le score par rapport auquel il y autant de scores qui sont plus grands que de scores plus petits

La médiane (exemple)

9 sujets ont été soumis à une épreuve de mémoire

X = nombre d'erreurs commises

$$X = 3, 5, 5, 7, 8, 9, 12, 13, 15$$

Calcul de la médiane avec un nombre impair de scores

$$X = 7, 12, 5, 9, 8, 5, 15, 13, 3$$

Etape 1: Disposer les scores en ordre croissant

Etape 2: calculer la position médiane

$$\frac{N+1}{2} = \frac{9+1}{2} = 5$$

Calcul de la médiane avec un nombre impair de scores

Etape 3: La médiane se trouve à la position

médiane

= la cinquième valeur

3, 5, 5, 7, 8, 9, 12, 13, 15

Calcul de la médiane avec un nombre pair de scores

$$X = 7, 12, 5, 9, 8, 5, 15, 13, 3, 15, 6, 11$$
 (N=12)

Etape 1: Disposer les scores en ordre croissant

Etape 2: calculer la position médiane

$$\frac{N+1}{2} = \frac{12+1}{2} = 6,5$$

Calcul de la médiane avec un nombre pair de scores

Etape 3: La médiane se trouve à la position médiane

= la valeur entre la position 6 et 7

3, 5, 5, 6, 7, 8, 9, 11, 12, 13, 15, 15

Médiane

On prend la moyenne des 6ème et 7ème valeurs

Médiane = 8,5

La moyenne arithmétique

= la somme des scores divisée par le nombre de scores

$$\overline{X} = \frac{\sum X}{N} = \frac{X_1 + X_2 + X_3 + \dots + X_N}{N}$$

La moyenne (exemple)

Erreurs commises: 7, 12, 5, 9, 8, 5, 15, 13, 3, 15, 6, 11

N=12

$$\overline{X} = \frac{7+12+5+9+8+5+15+13+3+15+6+11}{12}$$

$$=\frac{109}{12}=9,08$$

Calculer la moyenne à partir d'un tableau de fréquence

X (résultat sur 20)	<u>Fréquence</u>
8	5
9	8
10	15
11	22
12	25
13	38 $\overline{X} = \frac{8+8+8+8+9++20}{255} = \frac{3473}{255} = 13,62$
14	54 255 - 13,02
15	30
16	32
17	15
18	8
19	2
20	1

Calculer la moyenne à partir d'un tableau de fréquence

X (résultat sur 20) 8 9 10 11 12 13 14 15	Fréquence 5 8 15 22 25 38 54 30	$\overline{X} = rac{\Sigma f_i X_i}{N}$
12	25	$ \sum f X$
13	38	$\mathbf{V} = \mathcal{I}_{i}^{\mathbf{I}} \mathbf{I}_{i}$
14	54	$\Lambda - \overline{}$
15	30	IV
16	32	
17	15	
18	8	
19	2	
20	1	

$$\overline{X} = \frac{(5 \times 8) + (8 \times 9) + \dots + (2 \times 19) + (1 \times 20)}{255} = \frac{3473}{255} = 13,62$$

Choix de la mesure de tendance centrale

Dépend de quatre caractéristiques :

- Sensibilité aux scores extrêmes
- Stabilité
- Etre un score réellement observé
- Utilisation dans les équations

Sensibilité aux scores extrêmes

- Mode et médiane sont insensibles aux scores extrêmes
- Moyenne est (très) sensible aux scores extrêmes
- Moyenne est problématique pour les variables métriques avec une distribution asymétrique

Sensibilité aux scores extrêmes – Exemple

X = Temps de latence pour répondre à une cible

X = 360, 360, 390, 400, 420, 450, 470, 480, 520

Mode = 360

Médiane = 420

Moyenne = 427,78

Sensibilité aux scores extrêmes – Exemple

X = Temps de latence pour répondre à une cible

X = 360, 360, 390, 400, 420, 450, 470, 480, 2520

Mode = 360

Médiane = 420

Moyenne = 650

Sensibilité aux scores extrêmes

Médiane est une meilleure mesure de tendance centrale pour les distributions asymétriques

Stabilité

Si on tire successivement des échantillons dans une même population, les mesures sontelles stables ?

Moyenne > Médiane > Mode

La mesure est une valeur réellement observée

- Mode est toujours une valeur observée
- Médiane est très souvent une valeur observée
- Moyenne peut être une valeur impossible

Ex: Dans un pays les femmes ont en moyenne 1,8 enfants

Utilisation dans les équations

- Moyenne est manipulable sous forme d'équation
- Mode et médiane ne s'écrivent pas sous forme d'équation

	Est utilisé principalement avec	Avantages	Inconvénients
Mode	- Variables nominales	- Ne nécessite pas de	- Instable
	- Variables ordinales non	valeurs chiffrées ordonnées	- Inutilisable en équation
	chiffrées	- Insensible aux scores extrêmes	- Parfois peu représentatif
		- Est une valeur réelle	
Médiane	- Certaines variables ordinales	- Insensible aux scores	- Instable
	- Variables métriques avec	extrêmes	- Inutilisable en équation
	forte asymétrie	- Est souvent une valeur	
		réelle	
Moyenne	- La majorité des variables	- Plus stable	- Sensible aux scores
	ordinales et métriques	- Se prête bien aux	extrêmes
		équations	- Est parfois une valeur
			impossible

Les mesures de variabilité

= la dispersion des données autour de la tendance centrale

- 1. L'étendue
- 2. L'écart moyen
- 3. L'écart absolu moyen
- 4. La variance
- 5. L'écart-type

Illustration de la variabilité

Résultats aux examens de deux cours

L'étendue

La distance entre le score le plus élevé et le score le moins élevé

Etendue = Plus grande obs. – Plus petite obs.

Mesure facile à calculer mais peu utilisée en raison de son inconvénient majeur

L'étendue (exemples)

Exemple 1

X = nombre d'erreurs commises lors d'un test de mémoire

$$X = 3, 5, 5, 6, 7, 8, 9, 10, 12, 13, 15, 15$$

Etendue = 15 - 3 = 12

L'étendue (exemples)

Exemple 2

X = nombre d'erreurs commises lors d'un test de mémoire

$$X = 3, 5, 5, 6, 7, 8, 9, 10, 12, 13, 15, 27$$

Etendue = 27 - 3 = 24

L'écart moyen

Calculer les écarts par rapport à la moyenne

Faire la moyenne des écarts

L'écart moyen (exemple)

$$X = 7, 12, 5, 9, 8, 5, 15, 13, 3, 15, 6, 10$$

Moyenne = 9

Ecarts =
$$-2$$
, 3, -4 , 0, -1 , -4 , 6, 4, -6 , 6, -3 , 1

La moyenne de ces écarts est :

$$\frac{-2+3-4+0-1-4+6+4-6+6-3+1}{12} = \frac{0}{12} = 0$$

L'écart moyen

Calculer les écarts par rapport à la moyenne

Faire la moyenne des écarts

La moyenne des écarts est toujours zéro

L'écart moyen n'est pas un estimateur de la variabilité

L'écart absolu moyen (EAM)

Calculer les écarts par rapport à la moyenne

Prendre les valeurs absolues de ces écarts

Faire la moyenne des écarts absolu

L'écart absolu moyen

$$EAM = \frac{\sum_{i=1}^{N} |\overline{X} - X_i|}{N}$$

L'écart absolu moyen (exemple)

$$X = 7, 12, 5, 9, 8, 5, 15, 13, 3, 15, 6, 10$$

Moyenne = 9

Ecarts =
$$-2$$
, 3, -4 , 0, -1 , -4 , 6, 4, -6 , 6, -3 , 1

Ecarts absolus = 2, 3, 4, 0, 1, 4, 6, 4, 6, 6, 3, 1

La moyenne de ces écarts est :

$$\frac{2+3+4+0+1+4+6+4+6+6+3+1}{12} = \frac{40}{12} = 3,33$$

La variance

Calculer les écarts par rapport à la moyenne

Mettre les écarts au carré

Faire la moyenne des écarts au carré

(= écart quadratique moyen)

La variance d'une population

$$\sigma^2 = \frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N}$$

La variance d'une population

Formule rapide

$$\sigma^2 = \frac{\sum X_i^2 - \frac{\left(\sum X_i\right)^2}{N}}{N}$$

La variance d'un échantillon

$$S^{2} = \frac{\sum_{i=1}^{N} \left(X_{i} - \overline{X}\right)^{2}}{N-1}$$

Estimateur de la variance

La variance d'un échantillon

Formule rapide

$$S^{2} = \frac{\sum X_{i}^{2} - \frac{\left(\sum X_{i}\right)^{2}}{N}}{N-1}$$

La variance d'un échantillon

Pour un échantillon, la formule dépend de l'objectif:

- Si estimation de la variance de population (statistiques inférentielles): n – 1
 - = estimateur de la variance

Si simple mesure de variance de l'échantillon: n

Calcul de la variance de avec formule complexe

$$X = 7, 12, 5, 9, 8, 5, 15, 13, 3, 15, 6, 10$$

Moyenne = 9

Ecarts =
$$-2$$
, 3, -4 , 0, -1 , -4 , 6, 4, -6 , 6, -3 , 1

Ecarts au carré = 4, 9, 16, 0, 1, 16, 36, 16, 36, 36, 9, 1

$$\frac{4+9+16+0+1+16+36+16+36+36+9+1}{12-1} = \frac{180}{11} = 16,36$$

Calcul de la variance de avec formule rapide

$$X = 7, 12, 5, 9, 8, 5, 15, 13, 3, 15, 6, 10$$

$$\Sigma X = 7 + 12 + 5 + 9 + 8 + 5 + 15 + 13 + 3 + 15 + 6 + 10 = 108$$

$$\Sigma X^2 = 7^2 + 12^2 + 5^2 + 9^2 + 8^2 + 5^2 + 15^2 + 13^2 + 3^2 + 15^2 + 6^2 + 10^2 = 1152$$

$$S^{2} = \frac{\sum X^{2} - \frac{(\sum X)^{2}}{n}}{n - 1} = \frac{1152 - \frac{108^{2}}{12}}{12 - 1} = \frac{180}{11} = 16,36$$

Calculer la variance à partir d'un tableau de fréquences

$$S^{2} = \frac{\sum_{i=1}^{N} f_{i} \left(X_{i} - \overline{X}\right)^{2}}{N-1}$$

Calculer la variance à partir d'un tableau de fréquences

$$S^{2} = \frac{\sum f_{i} X_{i}^{2} - \frac{\left(\sum f_{i} X_{i}\right)^{2}}{N}}{N-1}$$

L'écart-type

La racine carrée de la variance

Ecart-type de la population

$$\sigma = \sqrt{\sigma^2} = \sqrt{\frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N}}$$

Ecart-type d'un échantillon

$$S = \sqrt{S^2} = \sqrt{\frac{\sum_{i=1}^{N} \left(X_i - \overline{X}\right)^2}{N - 1}}$$

La variabilité : résumé

L'écart moyen: toujours égal à 0 L'écart absolu moyen: problème pour les équations

Stratégie utilisée:

Ecart quadratique moyen (variance)

Puis racine carré = Ecart-type

Signification de l'écart-type

Résultats aux examens de deux cours

$$\overline{X} = 12$$

$$S = 1,13$$

$$X = 12$$

$$S = 3.92$$

Rappel de notation

```
\mu = la moyenne de la population
\sigma^2 = la variance de la population
\sigma = l'écart-type de la population
X = la moyenne d'un échantillon
S^2 = la variance d'un échantillon
S = l'écart-type d'un échantillon
N = le nombre d'observations
```

Rapporter les statistiques descriptives univariées dans un rapport écrit

Mesure de tendance centrale ± variabilité

Exemple:

« Le temps moyen de résolution des problèmes pour l'ensemble des sujets (n = 50) était de 590,52 \pm 104,77 (moyenne \pm écart-type) ».