

Integrated circuits

Part 1 May 1980

Bipolar ICs for radio and audio equipment

INTEGRATED CIRCUITS

PART 1 - MAY 1980

BIPOLAR ICs FOR RADIO AND AUDIO EQUIPMENT

FUNCTIONAL AND NUMERICAL INDEX
MAINTENANCE TYPE LIST

GENERAL

PACKAGE OUTLINES

INTRODUCTION

DEVICE DATA

DATA HANDBOOK SYSTEM

Our Data Handbook System is a comprehensive source of information on electronic components, subassemblies and materials; it is made up of four series of handbooks each comprising several parts.

ELECTRON TUBES

BLUE

SEMICONDUCTORS

RED

INTEGRATED CIRCUITS

PURPLE

COMPONENTS AND MATERIALS

GREEN

The several parts contain all pertinent data available at the time of publication, and each is revised and reissued periodically.

Where ratings or specifications differ from those published in the preceding edition they are pointed out by arrows. Where application information is given it is advisory and does not form part of the product specification.

If you need confirmation that the published data about any of our products are the latest available, please contact our representative. He is at your service and will be glad to answer your inquiries.

This information is furnished for guidance, and with no guarantee as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor does the publisher assume liability for any consequence of its use, specifications and availability of goods mentioned in it are subject to change without notice; it is not to be reproduced in any way, in whole or in part without the written consent of the publisher.

ELECTRON TUBES (BLUE SERIES)

Starting in 1980, new part numbers and corresponding codes are being introduced. The former code of the preceding issue is given in brackets under the new code.

Part 1	February 1980	T1 02-80 (ET1a 12-75)	Tubes for r.f. heating
Part 2	April 1980	T2 04-80 (ET1b 08-77)	Transmitting tubes for communications
Part 2a	November 1977	ET2a 11-77	Microwave tubes Communication magnetrons, magnetrons for microwave heating, klystrons, travelling-wave tubes, diodes, triodes T-R switches
Part 2b	May 1978	ET2b 05-78	Microwave semiconductors and components Gunn, Impatt and noise diodes, mixer and detector diodes, backward diodes, varactor diodes, Gunn oscillators, sub- assemblies, circulators and isolators
Part 3	January 1975	ET3 01-75	Special Quality tubes, miscellaneous devices
Part 5a	October 1979	ET5a 10-79	Cathode-ray tubes Instrument tubes, monitor and display tubes, C.R. tubes for special applications
Part 5b	December 1978	ET5b 12-78	Camera tubes and accessories, image intensifiers
Part 6	January 1977	ET6 01-77	Products for nuclear technology Channel electron multipliers, neutron tubes, Geiger-Müller tubes
Part 7a	March 1977	ET7a 03-77	Gas-filled tubes Thyratrons, industrial rectifying tubes, ignitrons, high-voltage rectifying tubes
Part 7b	May 1979	ET7b 05-79	Gas-filled tubes Segment indicator tubes, indicator tubes, switching diodes, dry reed contact units
Part 8	July 1979	ЕТ8 07-79	Picture tubes and components Colour TV picture tubes, black and white TV picture tubes, monitor tubes, components for colour television, components for black and white television
Part 9	March 1978	ET9 03-78	Photomultiplier tubes; phototubes

SEMICONDUCTORS (RED SERIES)

Starting in 1980, new part numbers and corresponding codes are being introduced. The former code of the preceding issue is given in brackets under the new code.

Part 1	March 1980	S1 03-80 (SC1b 05-77)	Diodes Small-signal germanium diodes, small-signal silicon diodes, special diodes, voltage regulator diodes (< 1,5 W), voltage reference diodes, tuner diodes, rectifier diodes
Part 2	May 1980	S2 05-80 (SC1a 08-78)	Power diodes, thyristors, triacs Rectifier diodes, voltage regulator diodes (> 1,5 W), rectifier stacks, thyristors, triacs
Part 2	June 1979	SC2 06-79	Low-frequency power transistors
Part 3	January 1978	SC3 01-78	High-frequency, switching and field-effect transistors *
Part 3	April 1980	S3 04-80 (SC2 11-77, pa (SC3 01-78, pa	The state of the s
Part 4a	December 1978	SC4a 12-78	Transmitting transistors and modules
Part 4b	September 1978	SC4b 09-78	Devices for optoelectronics Photosensitive diodes and transistors, light-emitting diodes, photocouplers, infrared sensitive devices, photoconductive devices
Part 4c	July 1978	SC4c 07-78	Discrete semiconductors for hybrid thick and thin-film circuits

^{*} Field-effect transistors and wideband transistors will be transferred to S5 and SC3c respectively. The old book SC3 01-78 should be kept until then.

INTEGRATED CIRCUITS (PURPLE SERIES)

Starting in 1980, new part numbers and corresponding codes are being introduced. The former code of the preceding issue is given in brackets under the new code. Books with the purple cover will replace existing red covered editions as each is revised.

Part 1	May 1980	IC1 04-80 (SC5b 03-77)	Bipolar ICs for radio and audio equipment
Part 2	May 1980	IC2 04-80 (SC5b 03-77)	Bipolar ICs for video equipment
Part 5a	November 1976	SC5a 11-76	Professional analogue integrated circuits
Part 6	October 1977	SC6 10-77	Digital integrated circuits LOCMOS HE4000B family
Part 6b	August 1979	SC6b 08-79	ICs for digital systems in radio and television receivers
Signetics	integrated circuits		Bipolar and MOS memories 1979 Bipolar and MOS microprocessors 1978 Analogue circuits 1979 Logic - TTL 1978

COMPONENTS AND MATERIALS (GREEN SERIES)

Starting in 1980, new part numbers and corresponding codes are being introduced. The former code of the preceding issue is given in brackets under the new code.

Part 1	July 1979	CM1 07-79	Assemblies for industrial use PLC modules, high noise immunity logic FZ/30 series, NORbits 60-series, 61-series, 90-series, input devices, hybrid integrated circuits, peripheral devices
Part 3a	September 1978	CM3a 09-78	FM tuners, television tuners, surface acoustic wave filters
Part 3b	October 1978	CM3b 10-78	Loudspeakers
Part 4a	November 1978	CM4a 11-78	Soft Ferrites Ferrites for radio, audio and television, beads and chokes, Ferroxcube potcores and square cores, Ferroxcube transformer cores
Part 4b	February 1979	CM4b 02-79	Piezoelectric ceramics, permanent magnet materials
Part 6	April 1977	CM6 04-77	Electric motors and accessories Small synchronous motors, stepper motors, miniature direct current motors
Part 7	September 1971	CM7 09-71	Circuit blocks Circuit blocks 100 kHz-series, circuit blocks 1-series, circuit blocks 10-series, circuit blocks for ferrite core memory drive
Part 7a	January 1979	CM7a 01-79	Assemblies Circuit blocks 40-series and CSA70 (L), counter modules 50-series, input/output devices
Part 8	June 1979	CM8 06-79	Variable mains transformers
Part 9	August 1979	CM9 08-79	Piezoelectric quartz devices Quartz crystal units, temperature compensated crystal oscillators
Part 10	April 1978	CM10 04-78	Connectors
Part 11	December 1979	CM11 12-79	Non-linear resistors Voltage dependent resistors (VDR), light dependent resistors (LDR), negative temperature coefficient thermistors (NTC), positive temperature coefficient thermistors (PTC)
Part 12	November 1979	CM12 11-79	Variable resistors and test switches
Part 13	December 1979	CM13 12-79	Fixed resistors
Part 14	April 1980	C14 04-80 (CM2b 02-78)	Electrolytic and solid capacitors
Part 15	May 1980	C15 05-80 (CM2b 02-78)	Film capacitors, ceramic capacitors, variable capacitors

FUNCTIONAL AND NUMERICAL INDEX MAINTENANCE TYPE LIST

SELECTION GUIDE BY FUNCTION

AM CHANNELS

TDA1072

AM receiver circuit

TEA5550

AM car radio receiver circuit

FM CHANNELS

TCA420A

hi-fi FM/IF amplifier

TEA5560

FM/IF system for car radios and hi-fi

AM/FM COMBINED CHANNELS

TBA570A; AQ

AM/FM radio receiver circuit

TBA700 TDA5700: Q AM/FM radio receiver circuit AM/FM radio receiver circuit

STEREO DECODERS

TDA1005A; AT

frequency multiplex PLL stereo decoder

INTERFERENCE SUPPRESSORS

TDA1001A; AT

interference absorption circuit

D.C. CONTROLLED AUDIO CIRCUITS

TCA730A d.c. volume and balance stereo control circuit TCA740A d.c. treble and bass stereo control circuit TDA1028 signal-sources switch (2 x four channels) TDA1029 signal-sources switch (4 x two channels) TDA1074 dual electronic stereo potentiometer circuit

VOLTAGE STABILIZERS

TCA530 TCA750 voltage stabilizer for electronic tuning multi-stabilizer for electronic tuning

AUDIO POWER AMPLIFIERS

TCA760B

1,5 W audio amplifier

TDA1004A

10 W audio power amplifier with thermal shut-down

TDA1010

6 W audio power amplifier

TDA1011

2 to 6 W audio power amplifier

TDA1011A

2 to 6 W audio power amplifier with inverted input/output

TDA1013

TDA1512

4 W audio power amplifier with d.c. volume control

TDA2611A

12 to 20 W hi-fi audio power amplifier

5 W audio power amplifier

RECORDER AMPLIFIERS

TDA1002A

recording and playback amplifier

TDA1012

recording/playback and 2 W audio power amplifier

SELECTION GUIDE BY FUNCTION (continued)

MOTOR SPEED CONTROL ICs

TDA1003A motor regulator and bias/erase oscillator circuit
TDA1006A motor regulator with automatic tape-end indicator
TDA1059B motor speed regulator with thermal shut-down

TDA1059C motor speed regulator

TDA1533 PLL motor speed control circuit for hi-fi applications

MISCELLANEOUS

OM200/S2 integrated amplifier for use in ear hearing aids

TAA263 low-level amplifier

TAA320 integrated MOST amplifier TAA320A integrated MOST level sensor

TDA1008 gating/frequency divider for electronic musical instruments

NUMERICAL INDEX

OM200/S2 integrated amplifier for use in ear hearing aids

TAA263 low-level amplifier

TAA320 integrated MOST amplifier
TAA320A integrated MOST level sensor
TBA570A; AQ AM/FM radio receiver circuit

TBA700 AM/FM radio receiver circuit

TCA420A hi-fi FM/IF amplifier

TCA530 voltage stabilizer for electronic tuning
TCA730A d.c. volume and balance stereo control circuit
TCA740A d.c. treble and bass stereo control circuit

TCA750 multi-stabilizer for electronic tuning

TCA760B 1,5 W audio amplifier

TDA1001A; AT interference absorption circuit
TDA1002A recording and playback amplifier

TDA1003A motor regulator and bias/erase oscillator circuit

TDA1004A 10 W audio power amplifier with thermal shut-down

TDA1005A; AT frequency multiplex PLL stereo decoder

TDA1006A motor regulator with automatic tape-end indicator

TDA1008 gating/frequency divider for electronic musical instruments

TDA1010 6 W audio power amplifier

TDA1011 2 to 6 W audio power amplifier

TDA1011A 2 to 6 W audio power amplifier with inverted input/output TDA1012 recording/play-back and 2 W audio power amplifier

TDA1013 4 W audio power amplifier with d.c. volume control

TDA1028 signal-sources switch (2 x four channels)

TDA1029 signal-sources switch (4 x two channels)
TDA1059B motor speed regulator with thermal shut-down

TDA1059C motor speed regulator TDA1072 AM receiver circuit

TDA1074 dual electronic stereo potentiometer circuit

TDA1512 12 to 20 W hi-fi audio power amplifier

TDA1533 PLL motor speed control circuit for hi-fi applications

TDA2611A 5 W audio power amplifier
TDA5700; Q AM/FM radio receiver circuit
TEA5550 AM car radio receiver circuit

TEA5560 FM/IF system for car radios and hi-fi

MAINTENANCE TYPE LIST

The types listed below are not included in this handbook. Detailed information will be supplied on request.

SAJ110 TCA290A TCA450

TCA730 (successor type: TCA730A) TCA740 (successor type: TCA740A)

TDA1002 (successor type: TDA1002A)
TDA1005 (successor type: TDA1005A; AT)
TDA1006 (successor type: TDA1006A)
TDA1009
TDA2611 (successor type: TDA2611A)

GENERAL

Preface to data of ICs Type designation Rating systems Letter symbols

PREFACE TO DATA OF INTEGRATED CIRCUITS

1. General

The published data comprise particulars needed by designers of equipment in which integrated circuits are to be incorporated, and criteria on which to base acceptance testing of such circuits. For ease of reference, the data on each circuit are grouped according to the several headings discussed below.

The limiting values quoted under the headings Characteristics and Package Outline may be taken as references for acceptance testing.

Values cited as typical are given for information only.

For an explanation of the type designation code, see the section Type Designation. For an explanation of the letter symbols used in designating terminals and performance of integrated circuits, and the electrical and logic quantities pertaining to them, see the section Letter Symbols.

2. Quick Reference Data

The main properties of the integrated circuit summarized for quick reference

3. Ratings

Ratings are limits beyond which the serviceability of the integrated circuit may be impaired. The ratings given here are in accordance with the Absolute Maximum System as defined in publication no. 134 of the International Electrical Commission; for further details see item 2 of the section Rating Systems.

If a circuit is used under the conditions set forthin the sections Characteristics and Additional System Design Data, its operation within the ratings is ensured.

4. Circuit diagram

Circuit diagrams and logic symbols are given to illustrate the circuit function. The diagrams show only essential elements, parasitic elements due to the method of manufacture normally being omitted. The manufacturer reserves the right to make minor changes to improve manufacturability.

5. System Design Data and Additional System Design Data

System Design Data normally derived from the Characteristics and based on worst-case assumptions as to temperature, loading and supply voltage, are quoted for the guidance of equipment designers. Supplementary information derived from measurements on large production samples may be given under Additional System Design Data.

October 1968

PREFACE

6. Application information

Under this heading, practical circuit connections and the resulting performance are described. Care has been taken to ensure the accuracy and completeness of the information given, but no liability therefor is assumed, nor is licence under any patent implied.

7. Characteristics

Characteristics are measurable properties of the integrated circuit described. Under a specific set of test conditions compliance with limit values given under this heading establishes the specified performance of the circuit; this can be used as a criterion for acceptance testing.

Values cited as typical are given for information only and are not subject to any form of guarantee.

8. Logic symbols (digital circuits)

Graphical logic symbols accord with MIL standard 806B. Supplementary drawings correlate logic functions with pin locations as a help to laying out printed circuit boards.

9. Outline drawing and pin 1 identification

Dimensional drawings indicate the pin numbering of circuit packages.

Dual in-line packages have a notch at one end to identify pin 1.

Take care not to mistake adventitious moulding marks for the pin 1 identification. Flat packs identify pin 1 by a small projection on the pin itself and/or by a dot on the body of the package.

Metal can encapsulations identify pin 1 by a tab on the rim of the can.

PRO ELECTRON TYPE DESIGNATION CODE FOR INTEGRATED CIRCUITS

This type nomenclature applies to semiconductor monolithic, semiconductor multi-chip, thin-film, thick-film and hybrid integrated circuits.

A basic number consists of:

THREE LETTERS FOLLOWED BY A SERIAL NUMBER

FIRST AND SECOND LETTER

1. DIGITAL FAMILY CIRCUITS

The FIRST TWO LETTERS identify the FAMILY (see note 1).

2. SOLITARY CIRCUITS

The FIRST LETTER divides the solitary circuits into:

S: Solitary digital circuits

T: Analogue circuits

U: Mixed analogue/digital circuits

The SECOND LETTER is a serial letter without any further significance except 'H' which stands for hybrid circuits.

3. MICROPROCESSORS

The FIRST TWO LETTERS identify microprocessors and correlated circuits as follows:

Microcomputer

Central processing unit

MB : Slice processor (see note 2)

MD: Correlated memories

ME: Other correlated circuits (interface, clock, peripheral controller, etc.)

THIRD LETTER

It indicates the operating ambient temperature range.

The letters A to G give information about the temperature:

A: temperature range not specified

B: 0 to + 70 °C

C: -55 to + 125 °C

D: -25 to + 70 °C

E: -25 to +85 °C

F: -40 to +85 °C

G: -55 to +85 °C

If a circuit is published for another temperature range, the letter indicating a narrower temperature range may be used or the letter 'A'.

Example: the range 0 to + 75 °C can be indicated by 'B' or 'A'.

DESIGNATION

SERIAL NUMBER

This may be either a 4-digit number assigned by Pro Electron, or the serial number (which may be a combination of figures and letters) of an existing company type designation of the manufacturer.

To the basic type number may be added:

A VERSION LETTER

Indicates a minor variant of the basic type or the package. Except for 'Z', which means customized wiring, the letter has no fixed meaning. The following letters are recommended for package variants:

C: for cylindrical

D: for ceramic DIL

F: for flat pack

P: for plastic DIL

Q: for QIL

U: for uncased chip

Alternatively a TWO LETTER SUFFIX may be used instead of a single package version letter, if the manufacturer (sponsor) wishes to give more information.

SECOND LETTER: Material

G: Glass-ceramic (cerdip)

C: Metal-ceramic

M: Metal

P: Plastic

FIRST LETTER: General shape

C: Cylindrical D: Dual-in-line (DIL)

E: Power DIL (with external heatsink)

F: Flat (leads on 2 sides)

G: Flat (leads on 4 sides)

K: Diamond (TO-3 family)

M: Multiple-in-line (except Dual-, Triple-, Quadruple-in-line)

Q: Quadruple-in-line (QIL)

R: Power QIL (with external heatsink)

S: Single-in-line

T: Triple-in-line

A hyphen precedes the suffix to avoid confusion with a version letter.

Notes

- 1. A logic family is an assembly of digital circuits designed to be interconnected and defined by its basic electrical characteristics (such as: supply voltage, power consumption, propagation delay, noise immunity).
- 2. By 'slice processor' is meant: a functional slice of microprocessor.

RATING SYSTEMS

The rating systems described are those recommended by the International Electrotechnical Commission (IEC) in its Publication 134.

DEFINITIONS OF TERMS USED

Electronic device. An electronic tube or valve, transistor or other semiconductor device.

Note

This definition excludes inductors, capacitors, resistors and similar components.

Characteristic. A characteristic is an inherent and measurable property of a device. Such a property may be electrical, mechanical, thermal, hydraulic, electro-magnetic, or nuclear, and can be expressed as a value for stated or recognized conditions. A characteristic may also be a set of related values, usually shown in graphical form.

Bogey electronic device. An electronic device whose characteristics have the published nominal values for the type. A bogey electronic device for any particular application can be obtained by considering only those characteristics which are directly related to the application.

Rating. A value which establishes either a limiting capability or a limiting condition for an electronic device. It is determined for specified values of environment and operation, and may be stated in any suitable terms.

Note

Limiting conditions may be either maxima or minima.

Rating system. The set of principles upon which ratings are established and which determine their interpretation.

Note

The rating system indicates the division of responsibility between the device manufacturer and the circuit designer, with the object of ensuring that the working conditions do not exceed the ratings.

ABSOLUTE MAXIMUM RATING SYSTEM

Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, which should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.

The equipment manufacturer should design so that, initially and throughout life, no absolute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, equipment control adjustment, load variations, signal variation, environmental conditions, and variations in characteristics of the device under consideration and of all other electronic devices in the equipment.

DESIGN MAXIMUM RATING SYSTEM

Design maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the electronic device under consideration.

The equipment manufacturer should design so that, initially and throughout life, no design maximum value for the intended service is exceeded with a bogey device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, variation in characteristics of all other devices in the equipment, equipment control adjustment, load variation, signal variation and environmental conditions.

DESIGN CENTRE RATING SYSTEM

Design centre ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under normal conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device in average applications, taking responsibility for normal changes in operating conditions due to rated supply voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of all electronic devices.

The equipment manufacturer should design so that, initially, no design centre value for the intended service is exceeded with a bogey electronic device in equipment operating at the stated normal supply voltage.

LETTER SYMBOLS FOR LINEAR INTEGRATED CIRCUITS

General

The voltages and currents are normally related to the terminals to which they are applied or at which they appear. Each terminal is indicated by a number. In appropriate cases voltages, currents etc.pertinent to one or more of the circuit elements (transistors, diodes) are given in which case symbols are based on the recommendations as published in I.E.C. Publication 148.

Quantity symbols

1. Instantaneous values of current, voltage and power, which vary with time are represented by the appropriate lower case letter.

2. Maximum (peak), average, d.c. and root-mean-square values are represented by the appropriate upper case letter.

Polarity of current and voltage

A current is defined to be positive when its conventional direction of flow is into the device.

A voltage is measured with respect to the reference terminal, which is indicated by the subscripts. Its polarity is defined to be positive when the potential is higher than that of the reference terminal.

Subscripts

For currents the number behind the quantity symbol indicates the terminal carrying the current.

For voltages normally two number subscripts are used, connected by a hyphen. The first number indicates the terminal at which the voltage is measured and the second subscript the reference terminal.

Where there is no possibility of confusion the second subscript may be omitted.

LETTER SYMBOLS

To distinguish between maximum (peak), average,d.c.and root-mean-square values the following subscripts are added:

For maximum (peak) values : M or m For average values : AV or av

For root-mean-square values: (RMS) or (rms)

For d.c. values : no additional subscripts

The upper case subscripts indicate total values.

The lower case subscripts indicate values of varying components:

If in appropriate cases quantity symbols are pertinent to single elements of a circuit (transistors or diodes), the normal subscripts for semiconductor devices can be used.

Examples:
$$V_{CBO}$$
, V_{be} , V_{CES} , I_{C}

VDSS, VGS, ID

List of subscripts:

E, e = Emitter terminal

B, b = Base terminal for bipolar transistors,

Substrate for MOS devices

C, c = Collector terminal
D, d = Drain terminal

G, g = Gate terminal

S, s = Source terminal for MOS devices

Substrate for bipolar transistor circuits

(BR) = Break-down

M, m = Maximum (peak) value

AV, av = Average value (RMS), (rms) = R.M.S. value

Electrical Parameter Symbols

 The values of four pole matrix parameters or other resistances, impedances, admittances, etc., inherent in the device, are represented by the lower case symbol with appropriate subscript.

Examples: h_i , z_f , y_o , k_r

Subscripts for Parameter Symbols

1. The static values of parameters are indicated by upper case subscripts.

Examples: hFE, hI

2. The small signal values of parameters are indicated by lower case subscripts.

Examples: hi, zo

- The first subscript, in matrix notation identifies the element of the four pole matrix.
 - i (for 11) = input
 - o (for 22) = output
 - f (for 21) = forward transfer
 - r (for 12) = reverse transfer

Examples:
$$V_1 = h_i I_1 + h_r V_2$$

 $I_2 = h_f I_1 + h_0 V_2$

The voltage and current symbols in matrix notation are indicated by a single digit subscript.

The subscript 1 = input; the subscript 2 = output.

The voltages and currents in these equations may be complex quantities.

- 4. A second subscript is used only for separate circuit elements (e.g. transistors) to identify the circuit configuration:
 - e = common emitter
 - b = common base
 - c = common collector
- 5. If it is necessary to distinguish between real and imaginary parts of the four pole parameters, the following notation may be used:
 - Re (hi) etc. ... for the real part
 - I_m (h_i) etc. ... for the imaginary part

PACKAGE OUTLINES

METAL TO-72 (SOT-18/13)

METAL TO-72 (SOT-18/17)

PLASTIC (SOT-20)

PLASTIC TO-126 (SOT-32)

16-LEAD DUAL IN-LINE; PLASTIC (SOT-38)

Dimensions in mm

(2) Lead spacing tolerances apply from seating plane to the line indicated.

SOLDERING

1. By hand

Apply the soldering iron below the seating plane (or not more than 2 mm above it). If its temperature is below 300 °C it must not be in contact for more than 10 seconds; if between 300 °C and 400 °C, for not more than 5 seconds.

2. By dip or wave

The maximum permissible temperature of the solder is 260 °C; this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified storage maximum. If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

3. Repairing soldered joints

16-LEAD DUAL IN-LINE; PLASTIC POWER (SOT-38M and N)

Dimensions in mm

(2) Lead spacing tolerances apply from seating plane to the line indicated.

SOLDERING

1. By hand

Apply the soldering iron below the seating plane (or not more than 2 mm above it). If its temperature is below 300 $^{\circ}$ C it must not be in contact for more than 10 seconds; if between 300 $^{\circ}$ C and 400 $^{\circ}$ C, for not more than 5 seconds.

2. By dip or wave

The maximum permissible temperature of the solder is 260 °C; this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified storage maximum. If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

3. Repairing soldered joints

16-LEAD QUADRUPLE IN-LINE; PLASTIC (SOT-58)

Dimensions in mm

Lead spacing tolerances apply from seating plane to the line indicated.

SOLDERING

1. By hand

Apply the soldering iron below the seating plane (or not more than 2 mm above it). If its temperature is below $300\,^{\circ}$ C it must not be in contact for more than 10 seconds; if between $300\,^{\circ}$ C and $400\,^{\circ}$ C, for not more than 5 seconds.

2. By dip or wave

The maximum permissible temperature of the solder is 260 °C; this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified storage maximum. If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

3. Repairing soldered joints

16-LEAD DUAL IN-LINE; PLASTIC POWER (SOT-69B, D)

Dimensions in mm

Positional accuracy.

- (M) Maximum Material Condition.
- (1) Centre-lines of all leads are within ±0,127 mm of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by ±0,254 mm.
- (2) Lead spacing tolerances apply from seating plane to the line indicated.

SOLDERING

1. By hand

Apply the soldering iron below the seating plane (or not more than 2 mm above it). If its temperature is below 300 °C it must not be in contact for more than 10 seconds; if between 300 °C and 400 °C, for not more than 5 seconds.

2. By dip or wave

The maximum permissible temperature of the solder is 260 °C; this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified storage maximum. If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

3. Repairing soldered joints

18-LEAD DUAL IN-LINE; PLASTIC (SOT-102C)

- Positional accuracy.
- (M) Maximum Material Condition.
- Centre-lines of all leads are within ±0,127 mm of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by ±0,254 mm.
- Lead spacing tolerances apply from seating plane to the line indicated.

Dimensions in mm

SOLDERING

See SOT-69B, D, for example.

16-LEAD FLAT PACK; PLASTIC (SO-16; SOT-109A)

Dimensions in mm

- Positional accuracy.
- Maximum Material Condition.

SOLDERING

See next page.

SOLDERING

The reflow solder technique

The preferred technique for mounting miniature components on hybrid thick or thin-film circuits is reflow soldering. Solder is applied to the required areas on the substrate by dipping in a solder bath or, more usually, by screen printing a solder paste. Components are put in place and the solder is reflowed by heating.

Solder pastes consist of very finely powdered solder and flux suspended in an organic liquid binder. They are available in various forms depending on the specification of the solder and the type of binder used. For hybrid circuit use, a tin-lead solder with 2 to 4% silver is recommended. The working temperature of this paste is about 220 to 230 °C when a mild flux is used.

For printing the paste onto the substrate a stainless steel screen with a mesh of 80 to 105 μ m is used for which the emulsion thickness should be about 50 μ m. To ensure that sufficient solder paste is applied to the substrate, the screen aperture should be slightly larger than the corresponding contact area.

The contact pins are positioned on the substrate, the slight adhesive force of the solder paste being sufficient to keep them in place. The substrate is heated to the solder working temperature preferably by means of a controlled hot plate. The soldering process should be kept as short as possible: 10 to 15 seconds is sufficient to ensure good solder joints and evaporation of the binder fluid. After soldering, the substrate must be cleaned of any remaining flux.

9-LEAD SINGLE IN-LINE; PLASTIC (SOT-110A)

top view

3,55

Positional accuracy.

Dimensions in mm

- Maximum Material Condition.
- Centre-lines of all leads are Α within ±0,127 mm of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by ±0,254 mm.
- Lead spacing tolerances apply from seating plane to the line indicated.

9-LEAD SINGLE IN-LINE; PLASTIC POWER (SOT-131B)

Dimensions in mm

- Positional accuracy.
- (M) Maximum Material Condition.
- Centre-lines of all leads are within ±0,127 mm of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by ±0,254 mm.

9-LEAD SINGLE IN-LINE; PLASTIC (SOT-142)

Dimensions in mm

- Positional accuracy.
- M Maximum Material Condition.
- (1) Centre-lines of all leads are within ±0,127 mm of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by ±0,254 mm.
- Lead spacing tolerances apply from seating plane to the line indicated.

NTRODUCTION TO BIPOLAR ICS FOR RADIO AND AUDIO EQUIPMENT

Three main fields of application are shown in the following block diagram concepts. These are:

- · portable radio recorder,
- hi-fi,
- car radio player.

'Concept' here means: a total IC programme is available for a system, in which the ICs are perfectly matched to each other during the design phase. All ICs can also be used as solitary types in combination with other components.

The various concept types are chosen as a function of the required compromise between performance and cost.

Two concepts are given for portable radio recorders:

high performance, economical.

Some types in the IC programme are still in the development stage at the date of publication of this data handbook. These type numbers are given in brackets in the block diagrams (some of them still have the 'in-house' development number).

PORTABLE RADIO RECORDER CONCEPT

HI-FI CONCEPT

CAR RADIO PLAYER CONCEPT

INTEGRATED AMPLIFIER for use in ear hearing aids

Monolithic integrated circuit amplifier in a plastic envelope, primarily intended for use in ear hearing aids.

QUICK REFERENCE DATA				
For meaning of symbols see test circuit on page 3				
Supply voltage	v_{1-3}	max.	5	V
Supply current	I_2	max.	5	mA
Total power dissipation up to $T_{amb} = 25$ $^{\circ}C$	P_{tot}	max.	25	mW
The following data are measured in test circuit on page 3				
Total supply current	Itot	typ.	1	mA
Transducer gain	$G_{ t t r}$	> typ.	77 85	dB dB
Output power at $d_{tot} = 10\%$	P_{o}	>	0, 2	mW
Cut-off frequency (-3 dB)	f _c	>	20	kHz

PACKAGE OUTLINE (Dimensions in mm)

SOT-20

2,75 max 3,5 min 0,35 max 0,635 0,635 0,635 0,44 7255202

CIRCUIT DIAGRAM

The sealing of the plastic envelope withstands the accelerated damp heat test of IEC recommendation 68-2 (test D, severity IV, 6 cycles).

OM200/S2

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134) For meaning of symbols test circuit on page 3.

Voltages

Supply voltage		V ₁₋₃	max.	5	V	
Output voltage		v_{2-3}	max.	5	v	1
Input voltage		-V ₄₋₃	max.	. 5	V	
Currents						
Output current	•	I_2	max.	5	mA	
Input current		I_A	max.	5	mA	

Power dissipation

Power derating curve

Temperatures

Storage temperature T_{stg} -20 to +80 ^{o}C Ambient temperature (see derating curve above) T_{amb} -20 to +80 ^{o}C

¹⁾ This value may be exceeded during inductive switch-off for transient energies < 10 µWs.

CHARACTERISTICS at $V_{1-3} = 1, 3 V; I_2 = 0, 7 \text{ mA}$ and $T_{amb} = 25 \text{ }^{o}\text{C}$ unless otherwise specified

Supply currents (no signal)	$I_{ m tot}$	< typ.	1,1 0,30	mA mA
Transducer gain at f = 1 kHz	$G_{ t tr}$	> typ.	77 85	dB 1)
Total distortion at f = 1 kHz				
$P_0 = 100 \mu\text{W}$	d_{tot}	typ.	4 6	% %
$P_{O} = 200 \mu W$	$d_{\mbox{tot}}$	< ,	10	%
Noise figure at $R_S = 5 \text{ k}\Omega$				
B = 400 to 3200 Hz	F	typ.	2, 5 6	dB dB 2)
Cut-off frequency (-3 dB)	f_c	>	20	kHz
Value of R _F to adjust I ₂ at 0, 7 mA	$R_{\mathbf{F}}$	170 t	o 1000	kΩ

Test circuit

Note

 I_2 = 0, 7 mA; adjusted by means of R_F V_{1-3} = 1, 3 V; T_{amb} = 25 ^{o}C

$$G_{tr} = \frac{P_o}{V_i^2/4 R_S}$$

 $^{^{1}}$) The transducer gain is defined as the ratio of the output power in the load |Z| = 1.5 k Ω and the available input power of the source with R_S = 5 k Ω .

 $^{^{2}}$) Due to special processing and pre-measuring, the flutter-noise level is extremely low.

SOLDERING RECOMMENDATIONS

Iron soldering

At a maximum iron temperature of 300 $^{\circ}$ C the maximum permissible soldering time is 3 seconds, provided the solder spot is at least 0,5 mm from the seal and the leads are not soldered at the same time. Soldering in immediate subsequence is allowed.

2. Dipsoldering

At a maximum solder temperature of $250\,^{\rm O}{\rm C}$ the maximum permissible soldering time is 3 seconds, provided the soldered spot is at least 0,5 mm from the seal.

CHARACTERISTICS

The graph applies to test circuit on page 3

The TAA263 is a semiconductor integrated amplifier in a 4-lead TO-72 metal envelope. It comprises a three-stage, direct coupled low-level amplifier for use from d.c. up to frequencies of $600~\mathrm{kHz}$.

QUICK REFERENCE DATA					
Supply voltage	$v_{\rm B}$	max.	8	V	
Output voltage	V ₃₋₄	max.	7	v	
Output current	I_3	max.	25	mA	
Transducer gain at P _O = 10 mW					
R_L = 150 Ω ; f = 1 kHz	Gtr	typ.	77	dB	
Operating ambient temperature	T_{amb}	-20 to	+100	oC	

PACKAGE OUTLINE

Dimensions in mm

TO-72 (SOT-18/17)

CIRCUIT DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Voltages

Supply voltage	* :- - : : : : : : : : : : : : : : : : :			$v_{\rm B}$	max.	0	V
Output voltage	1.4			v_{3-4}	max.	7	V
Input voltage		•	· · · · · · · · · · · · · · · · · · ·	$-V_{1-4}$	max.	5	V

Currents

Output current	13	max.	23	ши
Input current	I_1	max.	10	mA

Power dissipation

Total power dissipation up to $T_{amb} = 65$ °C	P_{tot}	max.	70	mW

Temperatures

Temperatures			
Storage temperature	$T_{\mathbf{stg}}$	-55 to +125	°C
Operating ambient temperature (see derating curve above)	T_{amb}	-20 to +100	$^{\mathrm{o}}\mathrm{_{C}}$

CHARACTERISTICS

Test circuit:

 $T_{amb} = 25$ $^{\circ}C$

Cu.	rre	nts

Output current	I_3	typ.	12	mA
Total current drain (no signal)	$I_2 + I_3$	<	16	mA

Over-all small signal current gain

$$f = 1 \text{ kHz}$$
 $h_{f \text{ tot}}$ typ. 5.10^5

Transducer gain

$$f = 1 \text{ kHz}; P_0 = 10 \text{ mW}$$
 G_{tr} $> 70 \text{ dB}$ $typ. 77 \text{ dB}$

Output power at f = 1 kHz;
$$d_{tot}$$
 = 10% P_0 > 10 mW d_{tot} = 5% P_0 > 8 mW

$$d_{tot} = 5\%$$
 $P_o > 8 \text{ mW}$

Noise figure

 $[\]overline{1}$) Z \leq 10 Ω at f = 1 kHz

TAA263

CHARACTERISTICS (continued)

 $T_{amb} = 25$ °C

y parameters (point 4 common connection)

$$V_B = 6 \text{ V; } I_3 = 3 \text{ mA; } V_{3-4} = 4.2 \text{ V}$$

$$f = 1 \text{ kHz}$$

f = 1 kHz			
Input admittance	$y_i = g_i$	typ.	$20 \mu\Omega^{-1}$
Transfer admittance	$y_f = g_f$	typ.	11 Ω^{-1}
Output admittance	$y_0 = g_0$	typ.	$60 \mu\Omega^{-1}$
f = 450 kHz			
Input conductance	$g_{\mathbf{i}}$	typ.	15 $\mu\Omega^{-1}$
Input capacitance	Ci	typ.	14 pF

Input conductance	$g_{\mathbf{i}}$	typ.	15	$\mu\Omega^{-1}$
Input capacitance	c_i	typ.	14	pF
Transfer admittance	y _f	typ.	9.4	Ω^{-1}
Phase angle of transfer admittance	$arphi_{ ext{f}}$	typ.	125 ⁰	•
Output conductance	go	typ.	20	$\mu\Omega^{-1}$
Output capacitance	Co	typ.	13	pF

INTEGRATED MOST AMPLIFIER

The TAA320 is a silicon monolithic integrated circuit, consisting of a MOS transistor and an n-p-n transistor in a TO-18 metal envelope.

The device is primarily intended for audio amplifiers with a very high input resistance (e.g. for crystal pick-ups).

Besides this application the TAA320 is also suitable for other applications where a high input resistance is required, like impedance converters, timing circuits, microphone-amplifiers, etc.

QUICK REFERENCE DATA					
Drain-source voltage (V _{GS} = 0)	-V _{DSS}	max.	20	v	
Drain current	$-I_{D}$	max.	25	mA	
Gate-source voltage -I _D = 10 mA; -V _{DS} = 10 V	$-v_{GS}$	typ.	11	V	
Gate-source resistance $-v_{GS}$ up to 20 V; T_j up to 125 $^{\rm o}{\rm C}$	$r_{ m GS}$	>	100	GΩ	
Transfer admittance at f = 1 kHz -I _D = 10 mA; -V _{DS} = 10 V	Yfs	typ.	75	$m\Omega^{-1}$	

PACKAGE OUTLINE

Dimensions in mm

TO-18 (SOT-18/13)

Source connected to the case

Accessories supplied on request: 56246, 56263

CIRCUIT DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

	in the state of th	20101)
$-v_{DSS}$	max. 20	v
$-v_{GSO}$	max. 20	V
-V _{GSM}	max. 100	v
$-I_D$	max. 25	mA
P_{tot}	max. 200	mW
$\mathrm{T}_{\mathbf{stg}}$	-55 to +125	o _C .
T_{amb}	-20 to +125	°C
	$-V_{ m DSS}$ $-V_{ m GSO}$ $-V_{ m GSM}$ $-I_{ m D}$ $P_{ m tot}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

From junction to ambient in free air

0.5 °C/mW

CHARACTERISTICS

 T_i = 25 °C unless otherwise specified

Drain	current

$$-V_{DS} = 20 \text{ V}; V_{GS} = 0$$
 $-I_{DSS} < 0 \text{ typ. 5 nA}$ $1 \mu \text{A}$

Gate-source voltage 1)

$$-I_D = 10 \text{ mA}; -V_{DS} = 10 \text{ V}$$
 $-V_{GS}$ $\begin{array}{c} \text{typ. } 11 \text{ V} \\ \text{9 to } 14 \text{ V} \end{array}$

Gate-source resistance

$$-V_{GS}$$
 up to 20 V; T_i up to 125 °C r_{GS} > 100 G Ω

Equivalent noise voltage

y parameters at f = 1 kHz

NOTE

To exclude the possibility of damage to the gate oxide layer by an electrostatic charge building up on the high resistance gate electrode, the leads of the device have been short circuited by a clip. The clip has been arranged so that it need not be removed until the device has been mounted in the circuit.

^{1) -}V_{GS} decreases about 6 mV/°C with increasing ambient temperature at a constant -I_D.

APPLICATION INFORMATION 2 W audio amplifier with TAA320 and BD115

* The voltage dependent resistor (2322 552 03381) suppresses voltage transients that might otherwise exceed the safe operating limits of the BD115.

٦/-

Supply voltage	٧B	=	100	٧
Collector current of BD115	$I_{\mathbf{C}}$	typ.	50	mA
Drain current of TAA320	-ID	typ.	9.5	mA
Primary d.c. resistance of output transformer			140	Ω
Primary inductance of output transformer			2.7	Н
A.C. collector load for BD115			1.8	$k\Omega$
Performance at f = 1 kHz; feedback = 16 dB Output power at dtot = 10%				
(on primary of the output transformer)	$P_{\mathbf{o}}$	typ.	2.6	W
Input voltage for P _o = 50 mW	$V_{i(rms)}$	typ.	13.5	mV
Input voltage for $P_0 = 2 W$	V _{i(rms)}	typ.	86	mV
Total distortion at $P_0 = 2 W$	d_{tot}	typ.	3.6	%
Minimum frequency response (-3 dB)		60 Hz	to 20	kHz
Signal-noise ratio at Po = 2 W		typ.	73	dB

Mounting instruction for BD115

Proper continuous operation is ensured up to T_{amb} = 50 o C, provided the BD115 is directly mounted on a 1.5 mm blackened Al. heatsink of 30 cm² with a clamping washer of type 56218.

If the transistor is mounted on a heatsink with a mica washer, the heatsink should have an area of $50\ cm^2$.

Recommended diameter of hole in heatsink: 7.7 mm.

100

APPLICATION INFORMATION (continued)

Mounting instruction for BD115 see page 4

4 W audio amplifier with TAA320 and 2 transistors of type BD115.

Supply voltage	v_B	=	200	V
Collector current of a BD115	$I_{\mathbf{C}}$	typ.	52	mA
Drain current of TAA320	-I _D	typ.	8.6	mA
Performance at f = 1 kHz; feedback = 12 dB	· • • • • • • • • • • • • • • • • • • •			
Output power at d _{tot} = 10%	P_{O}	typ.	4.5	W
Input voltage for $P_0 = 50 \text{ mW}$	V _{i(rms)}	typ.	7.5	mV
Input voltage for $P_0 = 4 W$	V _{i(rms)}	typ.	67	mV
Total distortion at $P_0 = 4 W$	d _{tot}	typ.	. 6	%
Minimum frequency response (-3 dB)		50 Hz to	o 20	kHz
Signal-noise ratio at Po = 4 W		typ.	73	dB

INTEGRATED MOST LEVEL SENSOR

The TAA320A is a silicon monolithic integrated circuit, consisting of a p-channel enhancement type MOS transistor and an n-p-n transistor, in a TO-18 metal envelope. The device is intended for level sensors with a very high input resistance (e.g. timing circuits, thermostats, liquid level sensors, flame control circuits).

QUICK REFERENCE DATA							
Drain-source voltage (V _{GS} = 0)		-V _{DSS}	max. 20	V			
Drain current		$-I_{\mathbf{D}}$	max. 60	mA			
Gate-source voltage 1) - I_{D} = 10 mA; - V_{DS} = 10 V	group 1:	-v _{GS}	typ. 10,6				
	group 2:	$-v_{GS}$	typ. 11, 3 10, 7 to 11, 9				
	group 3:	$-v_{GS}$	typ. 12, 0 11, 4 to 12, 6				
	group 4:	$-v_{GS}$	typ. 12, 7 12, 1 to 13, 3				
Gate cut-off current at $T_{amb} = 25$ °C							
$-V_{GS} = 20 \text{ V}; I_{D} = 0$ $-V_{GS} = 20 \text{ V}; V_{DS} = 0$		$^{-I}_{ m GSO}$	typ. 1 typ. 1	pA pA			

PACKAGE OUTLINE

Dimensions in mm

TO-18 (SOT-18/13)

source connected to the case

Accessories supplied on request: 56246; 56263

¹⁾ For explanation of the group codefication see note b on page 3.

CIRCUIT DIAGRAM

Storage temperature

Operating ambient temperature (see curve below)

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134) Voltages Drain-source voltage ($V_{GS} = 0$) $-v_{DSS}$ max. 20 V Gate-source voltage $(I_D = 0)$ -VGSO max. v Non-repetitive peak gate-source voltage (t ≤10 ms) ±VGSM 100 ν max. Current Drain current -In max. 60 mA Peak drain current (t < 200 ms; δ 0,001) $-I_{DM}$ 100 max. mA Temperatures

 T_{stg}

Tamb

°C

°C.

-65 to +125

-20 to +125

CHARACTERISTICS	$T_j = 25$ °C unless otherwise specified				
Drain current					
$-V_{DS} = 20 \text{ V}; V_{GS} = 0$		$-I_{ m DSS}$	typ.	5 1	nA μΑ
Drain-source voltage 1)					
$-I_D = 10 \text{ mA}; -V_{GS} = 20 \text{ V}$		$-v_{DS}$	<	1 .	v
$-I_D = 60 \text{ mA}; -V_{GS} = 20 \text{ V}$		$-v_{DS}$	<	1,5	v
Gate-source voltage (see note b)					
$-I_D = 10 \text{ mA}; -V_{DS} = 10 \text{ V}$	group 1:	$-v_{GS}$	typ. 10, 0 to	10, 6 11, 2	V V
	group 2:	$-v_{GS}$	typ. 10, 7 to		V V
	group 3:	$-v_{GS}$	typ. 11,4 to		V V
	group 4:	$-v_{GS}$	typ. 12, 1 to		v v
Gate cut-off current					
$-V_{GS} = 20 \text{ V}; I_{D} = 0$		$-I_{GSO}$	typ.	1	pA ²)
$-V_{GS} = 20 \text{ V}; V_{DS} = 0$		-I _{GSS}	typ.	1	pA ²)

NOTES

The leads are short-circuited by a clip to protect the oxide layer against damage due to accumulation (or build-up) of electrostatic charge on the high resistance gate electrode. The clip should not be removed until after the device is mounted.

As a service to the customer the $-V_{\mbox{GS}}$ group to which a device belongs is identified by a numerical suffix (1, 2, 3 or 4), however, individual groups cannot be ordered separately.

^{1.} See also upper graph on page 4.

^{2.} Being dependent on handling and ambient humidity, the quoted value applies only up to the time of shipping. Efficient drying treatment is advised before the device is mounted, provided the application requires this low current.

INTEGRATED AM/FM RADIO RECEIVER CIRCUIT

The TBA570A is for use in small low-cost a.m. portable receivers as well as in high quality battery or mains-fed a.m. and a.m./f.m. receivers.

The IC incorporates: a.m. mixer, oscillator, i.f. amplifier, a.g.c. amplifier, a.m. detector and capacitor, f.m./i.f. limiting amplifier and stable base bias for f.m. frontend, and an audio preamplifier and driver.

The unique integrated audio part has an internally limited bandwidth (18 kHz) and negligible h.f. radiation back to the ferrite rod. This makes the TBA570A ideally suitable for small size a.m. receivers because print layout is not critical. The driver stage can directly drive complementary output stages ($P_O = 6$ W max.), or operate as a post amplifier ($V_O = 500$ mV).

In its standard applications, the TBA570A can replace the TBA570.

QUICK REFERENCE DA	TA			
Applicable supply voltage range of receiver V_{p} 2,7 to				
Ambient temperature	T _{amb}		25	°C
Supply voltage at pin 8	v ₈₋₁₆	nom.	5,3	V
Total quiescent current except output stages, driver stage TR30 and f.m. front-end	I _{tot}	typ.	9	mA
A.M. performance (at pin 2)	*			
R.F. input voltage; $S/N = 26 \text{ dB}$ for $P_O = 50 \text{ mW}$ (adjustable)	$egin{array}{c} V_{f i} \ V_{f i} \end{array}$	typ.	18 2	μV μV
A.G.C. range; change of r.f. input voltage for 10 dB expansion in audio range		typ.	65	ďВ
R.F. signal handling; $d_{tot} = 10\%$; $m = 0.8$		typ.	150	mV
F.M. performance (at pin 2)				
R.F. input voltage; 3 dB before limiting	v_i	typ.	50	μV
Audio performance				
Output driver current (peak value)	I_{11M}	<	100	mA
Input impedance (at pin 12)	$ z_{12-16} $	typ.	100	$\mathbf{k}\Omega$

PACKAGE OUTLINES

TBA570A: 16-lead DIL; plastic (SOT-38). TBA570AQ: 16-lead QIL; plastic (SOT-58).

v

mΑ

oC

18 ν

100

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Pin 11 voltage V₁₁₋₉ Pin 8 voltage v_{8-16} Pin 11 current (peak value) I_{11M} see derating curve below

Total power dissipation

Storage temperature Operating ambient temperature; $V_{8;4;7;1-16}$ = 8 V; I_{11M} = 100 mA; see also derating curve below Tstg

Tamb

OC: -20 to +85

-55 to +125

max.

max.

max.

DESIGN DATA

Characteristics of integrated components are determined by process and layout data.

Pins not under measuring condition should not be connected.

Voltages with respect to pin 9 and 16 (tolerated minimum: 0 V)

Pins 1 and 7	$v_{7-9(16)} v_{7-9(16)}$	max.	18	v
Pin 4	$V_{4-9(16)}$	max.	8	v
Pin 8	V ₈₋₉₍₁₆₎	max.	8	\mathbf{v}
Pin 3	V ₃₋₉₍₁₆₎	max.	3	v
Pin 5	V ₅₋₉₍₁₆₎	max.	4	v
Pin 14	V ₁₄₋₉₍₁₆₎	max.	1	V
Currents (tolerated minimum: 0 mA)				
Pins 2, 6, 12, 13 and 15	${I_{2}; I_{6}; I_{12} \atop I_{13}; I_{15}}$	max.	80	μΑ
Pin 10	I ₁₀	max.	5	mA

TBA570A TBA570AQ

D.C. CHARACTERISTICS at T _{amb} = 25 °C						
Saturation voltage of driver stage $I_C = 50 \text{ mA}$; $I_B = 2, 5 \text{ mA}$		V ₁₁₋	l 6sat	typ.	1,0 1,5	v v
Collector breakdown voltage of driver stage $I_{\hbox{\scriptsize C}}$ = 25 mA; $R_{\hbox{\scriptsize BE}}$ = 7 k Ω		V ₁₁ -1	16(BR)	>	18	V
D.C. current gain of driver stage $I_C = 50 \text{ mA}$		$h_{ m FE}$		>	25	
Total quiescent current except driver stage collector current; f. m. front-end;					•	
discrete output stages; V ₈₋₁₆ = 5, 3 V V ₈₋₁₆ = 4, 2 V		$I_{ ext{tot}}$		typ.	9 8	mA mA
Applicable supply voltage range of receiver		v_P		2, 7	to 18	V 1)
Base bias voltage for f.m. front-end total external load current at pin 2: $-I_2 = 15$	50μA	V ₂₋₁₀	5	typ.	1, 2	v
A.C. CHARACTERISTICS at $T_{amb} = 25 ^{\circ}\text{C}$; V_{8}	3-16 ⁼	5,3 V;	I _E (TR	9) = 1 n	nA.	
			0, 45	1	10,7	MHz
Input conductance at pin 2	gie	typ.	_	0, 4	0,5	mA/V
Output conductance at pin 1	goe	typ.	6	-	90	μA/V
Input conductance at pin 15	g _{ie}	typ.	0, 35		0,7	mA/V

 $^{^{\}rm l})$ Adjustable by a dropping resistor in the $V_P\text{-line};$ see also maximum tolerated voltages for pins 1, 4, 7 and 8 in design data on page 3.

ū

H.F. part of a high quality FM/AM (LW; MW; SW) receiver.

TBA570A TBA570AQ

Fig. 1 Output stage for V_P = 9 V or 6 V (resistor values between parentheses).

v_{P}	R_L	P_0 at $d_{tot} =$	10%
9 V	4Ω	1,8 W	
6 V	4Ω	0,6 W	

Fig. 2 Output stage for $V_P = 14, 4 V$; especially used in car radios.

$$\frac{V_{P}}{14.4 \text{ V}} = \frac{R_{L}}{4\Omega} = \frac{P_{o} \text{ at } d_{tot} = 10\%}{5.5 \text{ W}}$$

Fig. 3 Output stage for $V_P = 16 \text{ V}$. $\frac{V_P \quad R_L \quad P_0 \text{ at } d_{tot} = 10\%}{16 \text{ V} \quad 4\Omega \quad 6.8 \text{ W}}$

7Z76445

Fig. 4 Post amplifier for $V_0 = 500 \text{ mV}$ and $V_P = 6 \text{ V}$.

- *In circuit on page 5 volume control resistor (100 kΩ) and capacitor (100 nF) on pin 12 should be omitted.
- **Capacitor value depends on load.

TBA570A TBA570AQ

COIL DATA (in circuit on page 5)

High quality AM/FM receiver (for portable and mains-fed applications)

A.M.-I.F. coils ($f_0 = 455 \text{ kHz}$)

I.F. bandpass filter:

$$N2/N3 = 1$$
 $(N2 + N1)/N3 = 10,7$

$$|\mathbf{Z}_{\mathbf{T}}| = 3 \, \mathbf{k} \Omega$$

F.M.-I.F. coils ($f_0 = 10,7$ MHz)

Second i.f. bandpass filter:

Ratio detector:

L7 N1 + N2 = 2,
$$7\mu$$
H L8 N1 = 2, 7μ H L11 N1 = 2, 7μ H L12 N2 + N3 = 3, 25 μ H $Q_0 = 100$ $Q_0 = 90$ $Q_0 = 85$ $Q_0 = 85$

$$kQ_{L6-L7} = 1, 2$$
 $N1/N2 = 5, 5$ $kQ_{L11-L12} = 0, 7$ $(N2 + N3)/N1 = 6$ $N1/N2 = 1, 75$ $N1/N2 = 2, 2$ $N2 = N3$

Low-cost 2-band AM portable receiver (see page 9)

L1

N2 N1

N1 = 11

N2 = 2wire:1,10 L2

N1 = 60

N2 = 4

L1 and L2 on ferrite rod; 10 mmØ;

wire: $20 \times 0,03$ length = 10 cm

 $N = 284, 5 \mu H$ $f_m = 452 \text{ kHz}$ C1 = 430 pF $Q_0 = 100$

wire: 0, 1 Ø

 $N_P = 284, 5\mu H f_m = 452 kHz$ $N_P/N_S = 16,7 Q_O = 100$ C1 = 430 pF

wire: 0, 1 Ø

core material: 7 MN(C)

core material: 7 MN(C)

 $N1 + N2 = 127 \mu H$ f_m = 1 MHz L6 (N1+N2)/N2=58 $Q_0=100$ (N1+N2)/N3=4, 8 $C_p=200 pF$

wire: 0, 10

core material: 7 BR

 $N1 + N2 = 13 \mu H$ $f_m = 7 MHz$ $(N1+N2)/N2 = 20 Q_0 = 90$ (N1+N2)/N3=4 $C_D=40 pF$ wire: 0, 10

core material: 119 AM(C)

Note

In the circuit on page 9 for L3 and L4 a similar coil to L9 in the circuit on page 5 can be used with the following exceptions:

L3: secondary windings N2 and N3 are not used.

L4: secondary windings N2 and N3 are connected in series.

When using a resistor between pins 2 and 15 (see dashed resistor in circuit on page 9), signal handling is improved.

Low-cost 2-band (SW-MW) AM portable receiver (P_O = 250 mW)

Note: C1 and C6 max. 385 pF.

TBA570A TBA570AQ

APPLICATION INFORMATION at Tamb = 25 °C

A.M. performance	v ₈₋₁₆	5	5,3 V ¹)	4, 2 V	2)
R.F. input voltage: S/N = 26 dB (notes 3 and 4) for P _O = 50 mW (adjustable);	v_i	typ.	18	10	μV
notes 3, 4 and 5	v_i	typ.	2 .	2	μV
R.F. input voltage for 10 mV (a.f.) across volume control (notes 3 and 4)	v_i	typ.	2,7	4, 5	μV
A.F. voltage across volume control at $100\mu V$ (r.f.) input voltage (notes 3 and 4)	v _o	typ.	70	70	mV
Signal-to-noise ratio at 1 mV (r.f.) input voltage (notes 3 and 4)	S/N	typ.	46	47	ďВ
A.G.C. range (change in r.f. input voltage for 10 dB expansion in audio range); notes 3 and 4		typ.	60	60	dB .
R.F. signal handling capability at 80% modulation; $d_{tot} < 10\%$ (note 3)	v_i	typ.	150	7	mV
Harmonic distortion of h.f. part over most of a.g.c. range; m = 0, 3; f _m = 1 kHz (note 6)	d _{tot}	typ.	1	1	%
I.F. selectivity	s_9	typ.	33	16	dB
I.F. bandwidth (3 dB)	В	typ.	.5	5,5	kHz

Notes

- 1. See circuits on pages 5, 6 and 7 (high quality AM/FM receiver).
- 2. See circuit on page 9 (low-cost 2-band AM portable receiver).
- 3. a. A.F. signal: measured across volume control.
 - b. R.F. signal: measured at pin 2 with the aerial circuit connected (source resistance about 1 $k\Omega).$
 - c. $f_0 = 1 \text{ MHz}$; $f_m = 1 \text{ kHz}$.
- 4. m = 0, 3.
- 5. A.M. sensitivity for P_O = 50 mW can be adjusted by means of the a.c. feedback network in the audio part e.g.: V_i = 1,5 μV for P_O = 50 mW (S/N ≈ 4 dB).
- 6. Distortion can be decreased to 0,7% by connecting a resistor of 270 k Ω between pins 2 and 15.

APPLICATION INFORMATION (continued) at $T_{amb} = 25$ °C; $V_{8-16} = 5$, 3 V

Measured in the circuit on page 5

Sensitivity for an f.m. signal 3 dB before limiting

F.M. performance

at 75 Ω aerial input of f.m. front-end (note 1) at pin 2; first i.f. (notes 2 and 6)	$\begin{smallmatrix}v_{\mathbf{i}}\\v_{\mathbf{i}}\end{smallmatrix}$	typ.	3, 5 50	μ V μ V
Sensitivity for 26 dB S/N ratio at 75 Ω aerial input of f.m. front-end (note 1)	v_i	typ.	2, 5	μV
A.F. output voltage across volume control at an i.f. signal beyond limiting (note 2)	v_{o}	typ.	120	mV
Signal-to-noise ratio over most of signal range (note 2)	S/N	typ.	65	dВ
A.M. suppression over most of signal range (note 3)		typ.	60	dB
I.F. selectivity (note 4)	s ₃₀₀	typ.	43	dB
I.F. bandwidth (3 dB; note 4)	В	typ.	150	kHz
A.F. signal distortion 3 dB before i.f. limiting (note 5)	d _{tot}	typ.	0, 8	%

Notes

- 1. Aerial e.m.f. (V_i) at f_0 = 98 MHz; R_S = 50 Ω ; Δf = ±22,5 kHz; f_m = 1 kHz.
- 2. $f_0 = 10,7 \text{ MHz}$; $\Delta f = \pm 22,5 \text{ kHz}$; $f_m = 1 \text{ kHz}$.
- 3. A.M. signal: m=0,3; $f_m=1000$ Hz. F.M. signal: $f_0=10,7$ MHz; $\Delta f=\pm75$ kHz; $f_m=400$ Hz. Carrier simultaneously modulated with a.m. and f.m.
- 4. Including ratio detector.
- 5. $f_0 = 98 \text{ MHz}$; $\Delta f = \pm 40 \text{ kHz}$; $f_m = 1 \text{ kHz}$.
- 6. Pin 3 by-passed to ground with a capacitor of 220 nF.

TBA570A TBA570AQ

AUDIO PERFORMANCE

Distortion before clipping (note 1	.)			d_{tot}	typ. 0,	5 %
Input impedance (note 2)				$ z_i $	typ. 9	0 kΩ
Noise output power; volume contr	rol at n	nin. (note	3)	$P_{\mathbf{n}}$	typ. 1	0 nW
Overall fidelity; flat within 3 dB	(obtaina	able value	s)		35 Hz to 1	5 kHz
Open loop voltage gain				$G_{\mathbf{v}}$	typ. 6	2 dB
v_p	v	4,5	6	9	14, 4	16
R_L	Ω	8	4	4	4	4
P_0 at $d_{tot} = 10\%$	W	0, 22	0,6	1,8	5,5	6,8
P_0 at onset of clipping; $d_{tot} = 1\%$	W	0,15	0,4	1,2	4	4, 8
V_i for $d_{tot} = 10\%$ (pin 12)	mV	14	16	25	50	45
V_i for $P_O = 50$ mW (pin 12)	mV	5,5	4,5	4	3,5	3, 5
Output transistors		BC327 BC337	BC368 BC369	BC368 BC369	BD329 BD330	BD329 BD330
Circuit diagrams on page 6,7 or	9	page 9	Fig. 1	Fig. 1	Fig. 2	Fig. 3

Post-amplifier (see Fig. 4 on page 7)

Output voltage

: 500 mV

Audio gain (adjustable):

: 5

Distortion

: 0, 2%

Notes

- 1. Measured at 1 kHz and a negative feedback of 16 dB.
- 2. At the maximum tolerated value of resistance-tap/bleeder at pin 12.
- 3. Measured at a bandwidth of 60 Hz to 15 kHz, pin 12 being connected via a capacitor of 32 μF to pin 9; R_L = 4 $\Omega.$

APPLICATION INFORMATION (continued)

Typical a.g.c. curves for AM reception (circuit diagram on page 5)

A.F. voltage across volume control as a function of r.f. voltage at pin 2.

^{*)} Slider at lower end.

TBA570A TBA570AQ

APPLICATION INFORMATION (continued)

Typical S/N curves for FM reception (circuit diagram on page 5)

A.F. voltage across volume control as a function of aerial e.m.f. from a source with Rs = 50 Ω to the 75 Ω input of the f.m. front-end.

^{*)} Slider at lower end.

INTEGRATED A.M./F.M. RADIO RECEIVER CIRCUIT

The TBA700 is a monolithic integrated circuit for use in a.m. (including the short-wave band), a.m./f.m. receivers.

It incorporates the class-B audio output stage (1 W), stabilization circuit for quiescent current, driver, pre-amplifier, 2-stage i.f. amplifier, a.g.c. and stabilized bias circuit.

The discrete input stage (for a.m.: mixer-oscillator; for f.m.: 1st i.f.) enables a high flexibility in circuit lay-out with conventional or lumped selectivity.

The internal stabilization ensures negligible loss of sensitivity and cross-over distortion over a wide supply voltage range from 2,7 V to 12 V.

QUICK REFERENCE DATA							
Applicable supply voltage range of receiver	v ₁₀₋₈	2,7	to 12	V 1)			
Ambient temperature	T_{amb}		25	°C			
Supply voltage	v_P	nom.	9	v			
Total quiescent current (inclusive discrete input transistor, exclusive f.m. front end)	I _{tot}	typ.	24, 5	mA			
A.F. output power at $d_{tot} = 10 \%$, $R_L = 8 \Omega$	Po	typ.	1000	mW			
A.M. performance							
R.F. input voltage (S/N = 26 dB) (at base of external mixer-oscillator)	$v_{\mathbf{i}}$	typ.	15	μV			
A.G.C. range (change of r.f. input voltage for 10 dB expansion in audio range)		typ.	72	ď₿			
F.M. performance							
R.F. input voltage (at base of external i.f. stage) 3 dB before limiting	v _i	typ.	150	μV			

PACKAGE OUTLINE

16-lead DIL; plastic with internal copper slug (SOT-38).

¹⁾ The data given in this sheet are based on a receiver with $V_P = 9 \text{ V}$; $P_0 = 1000 \text{ mW}$.

CIRCUIT DIAGRAM

RATINGS Limiting values in a	ccordance with the Absolute N	laximum	System	(IEC1	34)
Voltages					
Pin No. 10 voltage	V ₁₀₋₈	max.	12	V	
Pins No. 15, 9, 2 voltages	$v_{15-8}, v_{9-8}, v_{2-8}$	max.	11,4	V	
Pin No. 16 voltage	V ₁₆₋₈	max.	0	V	¹)
Pin No. 7 voltage	±V ₇ -8	max.	5	V	
Pins No. 4, 3, 1 voltages	-V ₄₋₁₆ , -V ₃₋₁₆ , -V ₁₋₁₆	max.	5	V	
Pin No.5 voltage	±V ₅ -13	max.	5	V	
Pin No. 10 voltage	V ₁₀₋₉	max.	11,4	V	
Currents					
Pins No. 14, 12, 11, 6 currents	I ₁₄ , I ₁₂ , I ₁₁ , I ₆	max.	5	m/	4
Pins No. 13, 5, 4, 3, 1 currents	$I_{13}, I_{5}, I_{4}, I_{3}, I_{1}$	max.	0,5	m/	4
Pins No. 15, 2 currents	I ₁₅ , I ₂	max.	10	m/	Ą
Pin No. 8 current	-I _{8RM}	max.	0,8	A	2)
Pin No. 9 current	^{±I} 9RM	max.	0,8	Α	2)
Pin No. 10 current	I _{10RM}	max.	0,8	Α	2)
Dissipation					,
Total power dissipation					
at $T_{amb} = 45$ °C	P_{tot}	max.	800	mV	N
at $T_{amb} = 25$ °C	Ptot	max.	1000	mV	N
Temperatures					
Storage temperature	${ m T_{stg}}$	- 55 t	o +125	°C	

 $^{\rm o}{
m C}$

-20 to +125

Substrate connected to pin 16.
 Repetitive peak value; internally limited.

CHARACTERISTICS

D.C. characteristics at T_{amb} = 25 °C; V_P = 9 V

I.F. amplifier

i.r. ampimer				
Collector current of i.f. transistor TR2 (a.g.c. transistor "off")	ī~	typ.	1	
(418.01 11411210101 111)	^I C	0,55 to	1,6	mA
Collector current of i.f. transistor TR3	2	typ.	2.5	mA
(a.g.c. transistor "off")	$^{ m I}{ m C}$	1,4 to		
Saturation voltage of i.f. transistor TR2 at $I_{\hbox{\scriptsize C}} \leq 2~\hbox{\scriptsize mA}$	${ m v_{CEsat}}$	<		mV
Saturation voltage of i.f. transistor TR3 at $I_C \le 5 \text{ mA}$	${ m v}_{ m CEsat}$	<	200	mV
Bias voltage for mixer and tuner		f typ.	1,4	V
bias voltage for mixer and tuner	V ₁₄₋₁₆	typ. 1,25 to	1,55	V
Temperature dependency of		•		
bias voltage V ₁₄₋₁₆	T_c	typ.	- 3, 6	mV/°C
Bias current (available)	-I ₁₄	<	100	μΑ
A.F. amplifier				
Input common mode voltage range	V ₅₋₈ , V ₁₃₋₈	1,0 t	0 8,5	v 1)
Input base bias current	I ₅ , I ₁₃	<	25	μΑ
Complete circuit				
Total quiescent current with 3,3 $k\Omega$				
between pins 7 and 8 (inclusive discrete	_	typ.	24, 5	mA^{2})
input transistor, exclusive f.m. front end)	I _{tot}	τyp. <	30,5	
			, -	/

¹⁾ Maximum input common mode voltage; V_{5-8} , V_{13-8} : $\langle (V_P - 0, 5) V$.

²⁾ In those cases where a lower supply current is required the resistor between pins 7 and 8 (3, 3 k Ω) can be avoided, resulting in a total current of 17 mA. In this case however some devices may show a marginal increase of the distortion level.

CHARACTERISTICS (continued)

A.C. characteristics of i.f. part

y parameters at $f = 450 \text{ kHz}^{-1}$)	i.f. tı	ansisto	rs: TR2	TR3	
Input conductance	g _{ie}	typ.	0,45	1,15	mA/V
Input capacitance	\mathtt{C}_{ie}	typ.	23	36	pF
Output conductance	g _{oe}	typ.	6,0	13,5	μA/V
Output capacitance	Coe	typ.	4,0	4, 25	pF
Transfer admittance	y _{fe}	typ.	37	82	mA/V
Phase angle of transfer admittance	$arphi_{ extsf{fe}}$	typ.	1 ^o	2 ⁰	
Feedback admittance	$ \mathbf{y_{re}} $	typ.	2,5	1,8	μΑ/V
Phase angle of feedback admittance	$arphi_{ exttt{re}}$	typ.	90°	900	
<u>y parameters</u> at $f = 10, 7 \text{ MHz}$ 1)	i.f. tr	ansisto	rs: TR2	TR3	
Input conductance	g _{ie}	typ.	0,6	1,5	mA/V
Input capacitance	\mathtt{C}_{ie}	typ.	22	35	pF
Output conductance	g_{oe}	typ.	24	30	μA/V
Output capacitance	Coe	typ.	4,3	4,7	pF
Transfer admittance	Уfе	typ.	35	73	mA/V
Phase angle of transfer admittance	$arphi_{ extsf{fe}}$	typ.	22 ⁰	35°	
Feedback admittance	$ y_{re} $	typ.	64	4 3	μA/V
Phase angle of feedback admittance	(O	tvn.	900	900	

¹⁾ At typical values for $h_{\mbox{fe}}$ and $I_{\mbox{c}}$.

Notes to the circuit on this page

- The dashed components in the i.f.circuits can be omitted if signal handling of 6 mV (m = 80 %) at the base of TR26 is accepted. In that case the cold ends of coils L17 and L14 have to be connected directly to +2.
- For correct operation on f.m. it is essential that the polarity of the windings of L16 is such that input (N₁) and output (N₂) are in phase opposition.

Notes to the circuit on page 7

- *) For equal a.f. sensitivity: at R_L = 4 Ω , V_P = 6 V: R36 = 150 Ω at R_L = 8 Ω , V_P = 9 V: R36 = 68 Ω
- **) The dashed capacitors (C61; C62) are only necessary when the ferrite aerial rod is too near to the a.f. output components or the IC. If C61 and C62 are used the value of R42 must be decreased to 2, 2 Ω.
- ***) Can be omitted if degraded crossover distortion can be tolerated.

Reference numbers L9 and L11 are not used in this circuit.

APPLICATION INFORMATION (continued) at $T_{amb} = 25$ °C; $V_p = 9$ V

See also circuit diagram on pages 6 and 7.

A.M. performance

A.W. performance				4	
R.F. input voltage for signal to noise ratio of 26 dB	v_i	typ.	15	μV 1) ²)
R.F. input voltage for 10 mV (a.f.) across volume control	v_i	typ.	3	μV 1) ²)
A.F. voltage across volume control at 100 μV (r.f.) input voltage	$v_{\mathbf{o}}$	typ.	100	mV 1) ²)
Signal to noise ratio at 1 mV (r.f.) input voltage	S/N	typ.	53,4	dB ¹) ²)
A.G.C. range (change in r.f. input voltage for 10 dB expansion in audio range) without a.g.c. diode with a.g.c. diode		typ.	42 72	dB 1) ²) ³)) ²)
R.F. signal handling capability on base of TR26 80% modulation (d _{tot} ≤ 10%) without a.g.c. diode with a.g.c. diode	$v_i \\ v_i^i$	typ.	6 80	mV 3)
Harmonic distortion of h.f. part (over most of a.g.c. range)	d _{tot}	typ.	1	_% 1) ²)
I.F. selectivity	S ₉	typ.	30	ď₿	
I.F. bandwidth	B _{3dB}	typ.	4,5	kHz	

¹⁾ a. Negligible influence of supply voltage variations in a range of 2,7 V to 12 V

b. A.F. signal: measured across volume control.

c. R.F. signal: measured at base of external mixer-oscillator with the antenna-circuit connected (source resistance R_S of about 1 $k\Omega$).

d. $f_0 = 1$ MHz, $f_m = 1$ kHz

²⁾ m = 0.3

³⁾ Dashed parts of circuit diagram on pages 6 and 7 are omitted.

APPLICATION INFORMATION (continued) See also circuit on pages 6 and 7.

F.M. performance	e
------------------	---

T.M. politimate				•
Sensitivity for an f.m. signal 3 dB before limiting at 75 Ω aerial input of f.m. front end at base of external (first i.f.) stage at pin 3	V _i V _i V _i	typ. typ. typ.	12 150 2, 2	$\begin{array}{cc} \mu V & 1 \\ \mu V & 2 \\ m V & 2 \end{array})$
Sensitivity for 26 dB S/N ratio at 75 Ω aerial input of f.m. front end	$v_{\mathbf{i}}$	typ.	4	μV ¹)
A.F. output voltage across volume control at an i.f. signal beyond limiting	v _o	typ.	140	mV ²)
S/N ratio over most of signal range	S/N	typ.	55	dB 2)
A.M. suppression over most of signal range		>	40	$dB \stackrel{2}{\sim})^3$)
I.F. selectivity	S ₃₀₀	typ.	40	dB 4)
I.F. bandwidth	B_{3dB}	typ.	180	kHz ⁴)
A.F. signal distortion, 3 dB before i.f. limiting	d_{tot}	<	2	% ⁵)
Audio performance				
A.F. output power at $d_{tot} = 10 \%$ at onset of clipping	Po Po	typ.	1 0,7	W 6) W 6)
Distortion before clipping	\mathbf{d}_{tot}	typ.	1	% 6 ₎
A.F. input signal (at pin 13) at $P_0 = 50 \text{ mW}$ at $P_0 = 700 \text{ mW}$	$\mathbf{v_i}\\\mathbf{v_i}$	typ.	6 17	mV 6) mV 6)
Noise output power (volume control at minimum)	P_{N}	typ.	20	nW ⁷)
Typical overall fidelity (flat within 3 dB)		200 H	z to 6	kH z ⁸)
Open loop voltage gain	$G_{\mathbf{v}}$	typ.	60	₫B

¹⁾ Aerial e.m.f. (V_i) at f_0 = 100 MHz; R_S = 50 Ω (source resistance; see page 12) Δf = ± 15 kHz; f_m = 1 kHz.

²⁾ $f_0 = 10,7 \text{ MHz}$; $\Delta f = \pm 15 \text{ kHz}$; $f_m = 1 \text{ kHz}$.

³⁾ A.M. signal: m = 0, 3; $f_m = 400$ Hz (carrier simultaneously modulated with a.m. and f.m.).

⁴⁾ Including ratio detector.

⁵⁾ $f_0 = 100 \text{ MHz}$; $\Delta f = \pm 40 \text{ kHz}$; $f_m = 1 \text{ kHz}$.

⁶⁾ Measured at 1 kHz, a negative feedback of 15 dB and a loudspeaker of 8 Ω ; $V_p = 9 V$.

⁷⁾ Measured at a bandwidth of 200 Hz to 6 kHz, pin 13 being connected via a capacitor of 32 μ F to pin 16; loudspeaker impedance 8 Ω .

⁸⁾ Depending on values of capacitors C51 and C55, 50 Hz to 15 kHz is possible.

COIL DATA See also circuit on pages 6 and 7.

1. A.M.-I.F. coils $(f_0 = 452 \text{ kHz})$

First i.f. bandpass filter

Primary $: L14 = 38 \mu H$ $C_{p} = 3300 \text{ pF}$ $Q_0 = 90$

Secondary : L15 (N₁) = 125 μ H $C_p = 1000 pF$

 $Q_0 = 80$ $N_1/N_2 = 18$ kQL14-L15 = 1 Single tuned coil

 $L17 (N_1) = 125 \mu H$ $C_p = 1000 \, pF$ $Q_0 = 80$

 $N_1/N_2 = 30$

Detector coil

 $L13 (N_1 + N_2) = 0,84 \text{ mH}$ $C_p = 150 pF$

 $Q_0 = 130$ $N_1/N_2 = 3, 1$ $(N_1+N_2)/N_3 = 4$

Second single tuned filter

2. F.M.-I.F. coils ($f_0 = 10, 7 \text{ MHz}$)

First i.f. bandpass filter Primary

: L4 (N₁) = 2, 6 μ H $C_p = 82 pF$ $\dot{Q_0} = 90$ $N_1/N_2 = 10$

Secondary : L5 (N₁) = 1, 44 μ H $C_p = 150 pF$

First single tuned filter

L8 (N₁) = 1, 44 μ H L16 (N₁) = 1,44 μ H $C_p = 150 pF$ $C_p = 150 \text{ pF}$ $Q_0 = 45$ $Q_0 = 45$ $N_1/N_2 = 5,7$ $N_1/N_2 = 5,7$

$Q_0^2 = 55$ $N_1/N_2 = 5,7$ $kQ_{L4-L5} = 1,2$

Ratio detector

Primary : L10 (N_I) = 1,44 μ H $C_p = 150 \text{ pF}$ $Q_0 = 95$ $N_1/N_2 = 2$

Secondary : L12 $(N_1 + N_2) = 2,6 \mu H$ $C_p = 82 pF$ $Q_0 = 110$ $N_1/N_2 = 1$ $(N_1+N_2)/N_3 = 5,4$ $kQ_{L10-L12} = 0,7$

APPLICATION INFORMATION (continued)

Typical a.g.c. curves at a.m. reception

A.F. voltages across volume control versus r.f. voltage at base of mixer-oscillator.

¹⁾ Slider at lower end.

APPLICATION INFORMATION (continued)

Typical S/N curves at f.m. reception

A.F. voltage across volume control versus aerial e.m.f. represented by the generator voltage V_i (e.m.f.) connected to the 75 Ω input of the f.m. front-end.

Test circuit

¹⁾ Slider at lower end.

HI-FI F.M./I.F. AMPLIFIER

The TCA420A is a monolithic integrated f.m./i.f. amplifier for car and hi-fi equipment provided with the following functions:

- limiter amplifier
- symmetrical quadrature detector
- symmetrical a.f.c. output
- field-strength indication output
- stereo decoder switching voltage
- adjustable side response suppression
- muting

QUICK REFERENCE DATA

Supply voltage (pin 11)	V _P	typ.	15	٧
Supply current (pin 11)	lр	typ.	26	mΑ
Input limiting voltage (-3 dB); f _O = 10,7 MHz	V _{i lim}	typ.	20	μV
A.F. output voltage (pin 5); $\Delta f = \pm 15$ kHz; r.m.s. value	Vo(rms)	typ.	115	mV
Signal plus noise-to-noise ratio; $V_i > 1$ mV; $\Delta f = \pm 15$ kHz	S+N/N	typ.	72	dB
I.F. input voltage; $\Delta f = \pm 15 \text{ kHz}$ S + N/N = 26 dB	v _i	typ.	15	μV
S + N/N = 46 dB	Vi	typ.	45	μV
A.M. rejection; $V_i = 10 \text{ mV}$; $f_m = 1 \text{ kHz (f.m.)}$; $\Delta f = \pm 15 \text{ kHz}$	α	typ.	50	dB
Total distortion (single tuned circuit); $\Delta f = \pm 15 \text{ kHz}$	d _{tot}	typ.	0,1	%
Centre shift of f.m. detector curve	$\Delta f = f_{01} - f_{02} $	typ.	7	kHz
Field-strength indication range	ΔV_{i}	typ.	70	dB
Supply voltage range (pin 11)	V _P	6	to 18	V
Ambient temperature range	T _{amb}	−30 t	o +80	οС

PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38).

February 1980

ს 10 72674674

Fig. 1a Part of circuit diagram; other part continued in Fig. 1b.

Fig. 1b Part of circuit diagram; continued from Fig. 1a.

February 1980

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage (pin 11)	V _P = V ₁₁₋₁₆ max. 18 V
Total power dissipation	P _{tot} max. 720 mW
Storage temperature	T _{stg} -55 to +150 °C
Operating ambient temperature	T _{amb} -30 to +80 °C

CHARACTERISTICS

 $V_P=8 \ \text{or} \ 15 \ \text{V;} \ T_{amb}=25 \ ^{\text{o}}\text{C;} \ f_o=10,7 \ \text{MHz;} \ \Delta f=\pm15 \ \text{kHz;} \ f_m=1 \ \text{kHz;} \ R_G=30 \ \Omega; \ \text{with de-emphasis} \ (C_{5-6}=10 \ \text{nF}); \ \text{adjustment conforms to adjustment procedure unless otherwise specified;} \ \text{the characteristics are valid for a TCA420A mounted on a printed-circuit board (see Figs 2, 3 and 4).}$

Supply voltage range (pin 11)			Vp		6 to 18	V	
			$V_P = 8$	B V	V _P = 15 V		
Supply current; $R_{7-16} = 5 k\Omega$; pin 11		lp	typ.	21 -	_	mA mA	
I.F. amplifier/detector							
Input voltages (d.c. value)	V ₁₃₋₁₆ ; V ₁₄₋₁	6; V ₁₅₋₁₆	typ.	2,6	2,8	٧	
Input limiting voltage (-3 dB)		V _{i lim}	typ.	20 —	20 50	•	
I.F. output voltage (peak-to-peak value) $V_i = 5$ mV; $f = 1$ MHz; without detect $Z_{1-16} = Z_{2-16} = 10$ M Ω in parallel with	or circuit; th 8 pF	V _{1-16(p-p)} V2-16(p-p)	> typ.	300 350	320 375	mV	
Output voltages (d.c. value)		V ₅₋₁₆ V ₆₋₁₆	typ.	4,7 5,0 5,3	8,3 9,5 11,0	٧	
Output voltage difference (d.c. value) $V_i = 1 \text{ mV}$; $\Delta f = \pm 75 \text{ kHz}$		±V ₅₋₆	<	180	350	mV	
A.F. output voltage; $V_i = 1 \text{ mV}$ (pins 5 a $\Delta f = \pm 15 \text{ kHz}$	nd 6)	V _o	> typ.	_ 60	95 115	mV mV	
$\Delta f = \pm 40 \text{ kHz}$		V _o	typ.	160	307	mV	
$\Delta f = \pm 75 \text{ kHz}$		V _o	typ.	300	575	mV	
Total distortion; $V_i = 1 \text{ mV}$; single tuned with de-emphasis; $C_{F-6} = 10 \text{ nF}$	circuit; Q _L = 20) ,	* *				
$\Delta f = \pm 15 \text{ kHz}$ $\Delta f = \pm 40 \text{ kHz}$ $\Delta f = \pm 75 \text{ kHz}$		d _{tot} d _{tot} d _{tot}	< typ. typ.	0,1 0,18 0,45	0,1 0,18 0,45	%	
without de-emphasis; C_{5-6} = 220 pF Δf = ± 15 kHz Δf = ± 40 kHz		d _{tot}	< typ.	0,1 0,22	0,1 0,22	%	
$\Delta f = \pm 75 \text{ kHz}$		d _{tot}	typ.	0,65 1	0,65		
					1		

		_	<u> </u>		
		Vp=	8 V	V _P = 15	v
I.F. input voltage; with filter; B = 250 Hz to 16 kHz				-	.
S+N/N = 26 dB; with de-emphasis; $C_{5-6} = 10 \text{ nF}$.,				
$\Delta f = \pm 15 \text{ kHz}$ $\Delta f = \pm 75 \text{ kHz}$	V _i	typ.	. 15	_	μV
	_ v _i	typ.	5	"	μV
S+N/N = 26 dB; without de-emphasis; C_{5-6} = 220 pl $\Delta f = \pm 15$ kHz		4	20	20	
$\Delta f = \pm 75 \text{ kHz}$ $\Delta f = \pm 75 \text{ kHz}$	V _i V _i	typ. typ.	20 8		μV μV
	٧١	ιγp.	Ü	"	μ.ν
S+N/N = 46 dB; with de-emphasis; C_{5-6} = 10 nF Δf = ±15 kHz	Vi	typ.	45	45	μV
$\Delta f = \pm 75 \text{ kHz}$	v_i^{l}	typ.	20	I .	μV
S+N/N = 46 dB; without de-emphasis; C ₅₋₆ = 220 pl	•	-, -,			
$\Delta f = \pm 15 \text{ kHz}$	V_{i}	typ.	65	65	μV
$\Delta f = \pm 75 \text{ kHz}$	v _i	typ.	30)	μV
Signal plus noise-to-noise ratio; with filter:	1	,,			•
B = 250 Hz to 16 kHz; V _i = 1 mV	*				
with de-emphasis					
$\Delta f = \pm 15 \text{ kHz}$	S+N/N	typ.	74	76	dB
$\Delta f = \pm 75 \text{ kHz}$	S+N/N	typ.	88	90	dB
without de-emphasis					
$\Delta f = \pm 15 \text{ kHz}$	S+N/N	typ.	68	. 70	dB
$\Delta f = \pm 75 \text{ kHz}$	S+N/N	typ.	82	84	dB
Noise output voltage; weighted conform DIN45405 with de-emphasis					
$V_i = 0$	V_{no}	typ.	7	12	mV
$V_i = 1 \text{ mV}$	Vno	typ.	30	50	μV
A.M. rejection; with filter: B = 700 Hz to 5 kHz					
$f_m = 70 \text{ Hz}; \Delta f = \pm 15 \text{ kHz (for f.m.)};$		1 -			
f _m = 1 kHz; m = 0,3 (for a.m.); simultaneously mo	odulated				
$V_i = 0.3 \text{ mV}$	α	typ.	52		dB
$V_i = 1 \text{ mV}$	α	typ.	40 52		dB dB
V _i = 10 mV V _i = 100 mV	lpha	typ. typ.	52 43	-	dB
•	α	typ.	70	75	ab
Zero crossing shift of f.m. detector curve (see note)					
$f_m = 70 \text{ Hz}; \Delta f = \pm 75 \text{ kHz} \text{ (for f.m.)};$ $f_m = 1 \text{ kHz}; m = 85\% \text{ (for a.m.)}$	$\Delta f = f_{01} - f_{02} $	typ.	4		kHz
· III · K. 12, III · 00/0 (101 d.IIII)	1'01 '021	•	9		kHz
Detector input impedance	Z ₃₋₄	4	,4 kΩ/	//2,25 pF	

Output resistance

Zero crossing shift is defined as the difference between frequencies f_{01} at V_i = 1 mV and f_{02} at V_i = 30 μ V.

3,3 $k\Omega$

R₅₋₁₁;R₆₋₁₁ typ. 3,3

CHARACTERISTICS (continued)				
Side response suppression		V _P =	8 V	Vp = 15 V
Input voltage for 10 dB side response suppression a S1 = 'on' adjust R1, so V_{10-16} = 1,3 V at V_i = 0 S1 = 'off'; R4 = 3,9 k Ω		typ.	35	30 μV
Side response suppression level $\Delta f = \pm 15 \text{ kHz}$; $V_{i(rms)} = 1 \text{ mV}$ control voltage for $\Delta V_{0} = -1 \text{ dB}$ control voltage for $\Delta V_{0} = -10 \text{ dB}$	V12-16 V12-16	typ.	0,7 1,1	0,7 V 1,1 V
Muting				
Output signal muting at S2 = 'on'; reference signal at S2 = 'off'; $V_{i(rms)} = 1 \text{ mV}$; $\Delta f = \pm 75 \text{ kHz}$; R4 = 3,9 k Ω	ΔV _o	typ.	-80	-80 dB
Field-strength indication				
Output voltages (d.c. value)				
$V_i = 0$; $I_{8.9} = 0$; $R_{8-16} = 4.3 \text{ k}\Omega$	V ₉₋₁₆ V ₈₋₁₆	typ. typ.	1,75 1,90	1,85 V 2,00 V
Field-strength indicator current Rindicator = $2 k\Omega$; adjust R2 so $18.9 = 0$ at $V_i = 0$ and R3 = 0				
measured at $V_{i(rms)} = 120 \text{ mV}$	18.9	> typ.	130 190	140 μA 210 μA
Output resistance	R _o R ₉₋₁₆	typ. typ.	810 3,7	850 Ω 3,7 kΩ
Stereo decoder switching voltage				
Reference voltage; without load: I7 = 0	V ₇₋₁₆	typ.	2,05	2,25 V
Output voltage; I ₁₀ = I _{10 max}	V ₁₀₋₁₆	typ.	1,70	1,90 V
Available output current	−l 10 ma	x typ.	0,45	0,85 mA
Output voltage as a function of the i.f. input voltage R ₁₀₋₁₆ = 3,9 k Ω ; R1 = 5 k Ω	$\frac{\Delta V_{10-16}}{20 \log \frac{V_{i1}}{V_{i2}}}$	typ.	0,9	-1,2 V/20dB
Input voltage for $V_{10-16} = 0.8 \text{ V}$ adjust R1 so $V_{10-16} = 1.3 \text{ V}$ at $V_{i(rms)} = 0$	V _{i(rms)}	typ.	98 150	100 μV 200 μV
Input voltage for $V_{10-16} = 1.3 \text{ V}$ adjust R1 so $V_{10-16} = 0.8 \text{ V}$ at $V_{i(rms)} = 3 \text{ mV}$	Vi(rms)	> typ. <	_ 1,3 _	0,5 mV 1,3 mV 1,75 mV
Input resistance (pin 7)	R ₇₋₁₆	typ.	4	4,7 kΩ

R1 = preset potentiometer for adjusting output voltage V_{10-16} for mono/stereo switching of stereo decoder. S1 = side response suppression R2 = preset potentiometer for adjusting the zero level of the field-strength indicator current. switch. R3 = preset potentiometer for adjusting the maximum level of the field-strength indicator current. S2 = output signal muting switch.

R4 = preset potentiometer for adjusting the side response suppression.

February 1980

(1) $C_8 = C_{5-6}$ (see Fig. 2). For mono: $C_8 = 10 \text{ nF}$. For stereo: $C_8 = 220 \text{ pF}$.

Fig. 3 Circuit diagram showing components arrangement for printed-circuit board (Fig. 4). The circuit is similar to the test circuit of Fig. 2.

Fig. 4 Printed-circuit board component side, showing component layout. For circuit diagram see Fig. 3.

Fig. 5 $V_P = 15 V$; $f_m = 1 kHz$; B = 250 Hz to 16 kHz; typical values.

Fig. 6 A.M. rejection; f.m.: $\Delta f = \pm 15$ kHz; $f_m = 70$ Hz. v_i a.m.: m = 30%; $f_m = 1$ kHz; simultaneously modulated.

Fig. 7 Total distortion as a function of frequency deviation; single tuned circuit with Ω_L = 20; f_m = 1 kHz; C_{5-6} = 220 pF.

Fig. 8 Total distortion as a function of detuning; single tuned circuit with Q_L = 20; f_m = 1 kHz; C_{5-6} = 220 pF.

Fig. 9 Field-strength indication output voltages as a function of i.f. input voltage; R2 adjusted so Vg.9 = 0 at V_i = 0; $R_{indicator}$ + R2 = 2 $k\Omega$; for V_{8-16} * definition see Fig. 11.

Fig. 9 Scale division of indicator as a function of i.f. input voltage; R2 adjusted so V_{8.9} = 0 at V_i = 0; R_{indicator} = 2 k Ω ; R3 adjusted at indication 100%; indicator current = 140 μ A; see Fig. 11.

Fig. 11 Circuit diagram showing field-strength indicator adjustment components.

Fig. 13 Circuit diagram showing stereo decoder switching voltage adjustment.

Fig. 14 Supply current consumption.

Fig. 16 A.F. output voltage; $\Delta f = \pm 15$ kHz; $f_m = 1$ kHz; $V_i = 1$ mV.

Fig. 17 Total distortion; $f_m = 1 \text{ kHz}$; $V_i = 1 \text{ mV}$; $C_{5-6} = 220 \text{ pF}$.

February 1980

Fig. 18 Example of the TCA420A when using a detector with two tuned circuits; f_0 = 10,7 MHz; L1 = L2 \approx 0,4 μ H; Q_0 = 70.

Adjustment of the detector:

When having an i.f. input signal on top of the limiter capability, L2 should be detuned, L1 should be adjusted to minimum distortion, and then L2 to minimum distortion.

Fig. 19 Total distortion as a function of detuning; circuit as Fig. 18; f_m = 1 kHz; $C_{5.6}$ = 220 pF. V_0 = 500 mV for a frequency deviation Δf = ±75 kHz and d_{tot} < 0,1%.

APPLICATION INFORMATION

Fig. 20 I.F. coupling circuit, using LC filter; L1 = L2 = 7 + 7 turns h.f. litz wire (5×0.04) ; L3 = 3 turns h.f. litz wire wound on L2 (5×0.04) .

Fig. 21 I.F. coupling circuit, using ceramic filter; L1 = 14 turns h.f. litz wire (5 x 0,04), tab at 3 turns.

APPLICATION INFORMATION (continued)

(1) For mono: $C_{5-6} = 10 \text{ nF}$. For stereo: $C_{5-6} = 220 \text{ pF}$.

Fig. 22 Application example of using TCA420A.

The TCA530 is an adjustable 30 V integrated circuit voltage stabilizer for use with variable capacitance diodes.

The circuit features: continuous short-circuit protected output, a.f.c. control voltage input, internal switch-on delay (can be adjusted externally), pre-stabilization and crystal temperature control (temperature sensor and heater).

QUICK REFERENCE DATA

Allowable output current range	l ₆	0 to 4,6 m	Α
Allowable output voltage range	$V_0 = V_{6-16}$ 2	5 to 30 ± 0,75 V	
Output current	- 1 ₆ – 1 _Ω	typ. 3,0 m	A
input (supply) voltage variations output current variations temperature variations heater voltage variations	$\Delta V_{6-12}/\Delta V_{1}$ $\Delta V_{6-12}/\Delta I_{6}$ $\Delta V_{6-12}/\Delta T_{amb}$ $\Delta V_{6-12}/\Delta V_{1-16}$	typ. ~0,2 m typ. 0,5 m typ. 0,1 m typ. 0,2 m	V/mA V/K
Variation of output voltage as a function of:	0-10	,	
Amplitude range of output voltage for a.f.c.	ΔV ₆₋₁₆	typ. ± 0,75 V	
Output voltage	$V_0 = V_{6-16}$	typ. 30 V	
Input (supply) voltage range (for $R_i = 3.3 \text{ k}\Omega$)	$V_I = V_P$	50 to 68 V	

Fig. 1 Block diagram.

PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38).

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages:	pin 1 (heater voltage)	V ₁₋₁₆		0 to 20	V
	pin 3 (muting switch supply)	V ₃₋₁₆	max.	15	٧
	pins 10 and 11 (a.f.c. input control voltage)	± V ₁₀₋₁₁	max.	6	٧
Currents:	pin 3	± I3	max.	5	mΑ
	pin 4	14	max.	500	μΑ
	pin 5	l ₅	max.	25	mΑ
	pin 6	. I ₆	max.	30	mΑ
	pin 8	l8	max.	500	μΑ
	pin 10	¹ 10	max.	500	μΑ
	pin 11.	111	max.	500	μΑ
	pin 14	l ₁₄	max.	15	mΑ
Total pow	ver dissipation (excluding heater power)				
at T _{am}	_b = 60 °C	P_{tot}	max.	500	mW
Storage te	mperature	T_{stg}	-5	5 to + 150	οС
Operating	ambient temperature	T _{amb}	-	20 to + 80	οС

CHARACTERISTICS

 $V_{6-12} = 30 \text{ V}$; $V_{10-12} = V_{11-12} = 10 \text{ V}$; $V_{1-16} = 15 \text{ V}$; $V_{amb} = 25 \text{ °C}$; measured in Fig. 3.

Voltage control

Input (supply) voltage range* $R_i = 3.3 \text{ k}\Omega; I_6 = 3.5 \text{ mA}$	V _I = V _P	50 to 68 V
Current consumption	lp	typ. 8,1 mA 5,2 to 11,0 mA
	l ₅	typ. $I_6 + (1,1 \pm 0,3)$ mA
Regulator voltage drop within operating range of the pre-stabilizer	V ₅₋₆	typ. 2,7 V 2 to 3,5 V
outside operating range of the pre-stabilizer**	V ₅₋₆	< 6 V
Output current (start of current limiting)	16	> 8 mA
Internal reference voltage	V ₈₋₁₂	typ. 20 V

^{**} The specified output voltage dependency of the input (supply) voltage is not guaranteed outside the operating range of the pre-stabilizer.

Input current of control amplifier	l8	typ.		μ Α μ Α
Variation of output voltage as a function of *				
input (supply) voltage variations	$\Delta V_{6-12}/\Delta V_{1}$	typ.	0,2	mV/V
output current variations	$\Delta V_{6-12}/\Delta I_{6}$	typ.	0,5	mV/mA
temperature variations	$\Delta V_{6-12}/\Delta T_{amb}$	typ.	0,1	mV/K
heater voltage variations	$\Delta V_{6-12}/\Delta V_{1-16}$	typ.	0,2	mV/V
Hum suppression at f = 50 Hz				
between input (supply) voltage and pin 6		typ.	80	dB .
between pins 5 and 6		typ.	60	dB
between pins 1 and 6		typ.	80	dB
Output noise voltage at f = 10 Hz to 15 kHz (r.m.s. value)	V _{n(rms)}	<	50	μV
A.F.C. control amplifier		٠.		
Common mode input voltage range	V ₁₀₋₁₂ = V ₁₁₋₁₂	6,0 to	18,0	V
Common mode rejection ratio	CMRR	typ.		dB
In the second of		typ.	0,1	μΑ
Input current	10 = 111	ζ΄	0,5	•
Input resistance	Ri(10-11)	>	1	Ω M
Ratio between output voltage variation				
and a.f.c. input voltage variation	$\Delta V_{6-12}/\Delta V_{10-11}$. 1,	2 : 1	
Amplitude range of output voltage	۸۱/	typ. ±	0,75	V
Ampirtude range of output voltage	ΔV ₆₋₁₂	± 0,5 to	1,0	V
•				

Muting switch

When the crystal temperature has reached approximately its stationary final value, the output of the muting switch (pin 3) becomes high-ohmic. The switching of pin 3 can be delayed by an external RC-circuit at pin 4 or by a switching voltage.

Muting switch ON (pin 3 low-ohmic)

• • • • • • • • • • • • • • • • • • • •			
Input voltage	V ₄₋₁₆	<	8 V
Input current	14	typ.	1 μΑ
Output saturation voltage at I ₃ = 1 mA	V3-16 sat	typ.	0,45 V 0,6 V
Muting switch OFF (pin 3 high-ohmic)			
Input voltage	V ₄₋₁₆		8 to 11 V
Input current	14	>	0,1 μΑ
Output voltage	∨ ₃₋₁₆	<	15 V
Output current	13	<	1 μΑ
Internal switch-on delay	ta	<	3 s

^{*} External component value changes are not taken into account.

CHARACTERISTICS (continued)

Crystal temperature control

V ₁₋₁₆	8	to 20 V
^l 1M	typ.	230 mA 300 mA
11	typ.	40 mA 55 mA
P _h	typ.	600 mW
	¹ 1M	11M

Fig. 2 Curves to obtain R_i -values for various input (supply) voltages and/or output currents. Conditions: V₆₋₁₂ = 30 V; tolerance of I₆ = \pm 20%; R₅₋₁₄ = 3,6 k Ω ; tolerance of R_i = \pm 2%. Above the dotted curve a tolerance of V_I (Vp) of \pm 15% is allowed.

- (1) It is recommended that fixed resistors of the same kind be used for the voltage divider.

 The voltage divider of Fig. 4 can be used when a narrow temperature dependency is required.
- (2) This capacitor can be applied to increase the internal delay.
- (3) This resistor is recommended when the IC is not soldered on a printed-circuit board.
- (4) Can be connected to pin 6, for example.

Fig. 3 Test circuit.

Fig. 4 Voltage divider for the narrowest possible temperature dependency.

Fig. 5 Circuit extension by means of a series transistor at the output, for output currents > 4,6 mA.

The following table gives some resistor value examples for various output voltages with $\Delta R/R \le \pm 2\%$ and $\Delta Rp/Rp \le \pm 20\%$.

V _{Ostab} V	R _{P2} kΩ	R21 kΩ	R22 kΩ	R23 kΩ	R _{P1} kΩ	R1 kΩ	R2 kΩ
30 30	100 47	200 180	82 82	300 300	10 47	20 100	10 47
29					22	39	18
28 28	100 47	220 300	75 100	300 430	22	39	15
27					47	68	24
26					22	27	8,2
25 25	100 47	560 620	91 100	390 430	47	47	12

The series resistors R_i and R_i ' (see Fig. 3), as well as the input (supply) voltage V_I (V_P), have to be adapted to the chosen output voltages V_{Ostab} .

D.C. VOLUME AND BALANCE STEREO CONTROL CIRCUIT

The TCA730A is a monolithic integrated circuit for controlling volume and balance in stereo amplifiers by means of a d.c. voltage.

Features:

- physiological volume control
- balance control
- internal amplifier
- high-ohmic signals inputs
- internal supply voltage stabilizationconverter for the control voltage

QUICK REFERENCE DATA

Supply voltage (pin 8)	V _P	typ.	15	V
Supply current (pin 8)	lР	typ.	35	mΑ
Input voltage range (r.m.s. value)	V _{i(rms)}	0,1	to 1,7	٧
Nominal input voltage; m = 1 (r.m.s. value)	V _{i(rms)}	typ.	0,5	٧
Input resistance	Ri	typ.	250	$k\Omega$
Output voltage at nominal output power (r.m.s. value)	$V_{o(rms)}$	typ.	1	V
Volume control range	G_{V}	+20 to	o –80	dΒ
Channel balance	ΔG_{V}	typ.	1	dB
Balance control range	G_{V}	+5	to -7	dB
Total distortion at V _{o(rms)} = 1 V	d _{tot}	typ.	0,1	%
Channel separation	α	typ.	55	dB
Signal-to-noise ratio	S/N	typ.	67	dB
Frequency response (-1 dB)		20 Hz	to 20	kHz
Volume control voltage range	V ₁₃₋₁₅	2	to 9,5	V
Balance control voltage range	V ₁₂₋₁₅	2,5	to 9,0	٧
Supply voltage range (pin 8)	V _P	13,5 to	16,5	V
Ambient temperature range	T_{amb}	-30 t	o +80	оС

16-lead DIL; plastic (SOT-38).

- (1) 6,6 V_{BE} ; $V_1 = 4,6 V$
- (2) 0.35 Vp + 0.65 VBE; $\text{V}_2 = 5.7 \text{ V}$.

Fig. 1 Block diagram with external circuitry.

RATINGS

Limiting values in accordance with the Absolute Maximu	m System (IEC 134)			
Supply voltage (pin 8)	Vp	max.	18	V
Input voltages	V ₁₁₋₁₅ ; V ₁₄₋₁₅	min. max.	0 V _P	V V
Control voltages	V ₁₂₋₁₅ ; V ₁₃₋₁₅	min. max.	-5 12	
Total power dissipation	P _{tot}	max.	900	mW ·
Storage temperature range	T_{stg}	-55 to	+150	oC
Operating ambient temperature range	T _{amb}	-30 to	08 + c	oC .
CHARACTERISTICS				
V_P = 15 V; T_{amb} = 25 °C; measured in Fig. 1; balance conswitch off; f = 1 kHz; R_G = 22 kΩ; R_L = 5,6 kΩ; unless		12-10 = 0); phy	siology
Supply voltage range (pin 8)	V _P	13,5 to	16,5	V
Supply current	IР	typ. 25	35 to 43	mA mA

Control range		
Voltage gain range	G_{V}	0 to 20 dB
Voltage gain at $V_{13-15} = 9.5 \text{ V } (0.63 \text{ Vp})$	G _v	typ. 20 dB 18 to 22 dB
Voltage attenuation range	$G_{\mathbf{v}}$	0 to -80 dB
Voltage attenuation at $V_{13-15} = 3 \text{ V } (0,2 \text{ Vp})$	G_{V}	> -75 dB typ80 dB
Balance control range at $G_V = -10 \text{ dB}$		+ 5 to -7 dB

Control inputs		.12 1
Recommended control voltage range volume	V ₁₃₋₁₅	2 to 9,5 V
balance	V ₁₂₋₁₅	2,5 to 9,0 V
Control voltage for $G_v = -10 \text{ dB}$; $V_{12-10} = 0$	V ₁₃₋₁₅	6,7 to 7,1 V*
Control voltage for balance 0 dB; V ₁₃₋₁₅ = 6,9 V	V ₁₂₋₁₀	typ. 0 ± 0,2 V
Internal supply voltage (0,35 V_P + 0,65 V_{BE})	V ₁₀₋₁₅	typ. 5,9 V 5,7 to 6,1 V
Output resistance (pin 10)	R _{o10}	typ. 3 k Ω
Control current volume (V ₁₃₋₁₅ = 6,9 V)	1 ₁₃	typ. 15 μA < 50 μA
balance (V ₁₂₋₁₅ = 5,9 V)	112	typ. 8 μ A < 25 μ A
Input resistance pin 13 (volume) pin 12 (balance)	R _{i13} R _{i12}	typ. $500 \text{ k}\Omega$ typ. $600 \text{ k}\Omega$

^{*} Typical value 6,9 V.

CHARACTERISTICS (continued)

Signal processing			
Frequency response (-1 dB) f		20 Hz to 2) kHz
Input resistance; $R_{11-10} = R_{14-10} = 270 \text{ k}\Omega$ (pins 11; 14)	i11;14	typ. 25	λΩ
Output resistance (pins 3; 5)	o3;5	typ. 1	Ω C
Maximum input voltage; V _{o(rms)} < 1 V; d _{tot} = 0,7 % (r.m.s. value)	:/	typ. 1,	3 V 7 V
Maximum output voltage; $V_{i(rms)} < 1 \text{ V}$; $d_{tot} = 0.7\%$ (r.m.s. value) V_{i}	'a/rma\		8 V 0 V
Nominal input voltage; m = 1 (r.m.s. value)	i(rms)	typ. 0,	5 V
Nominal output voltage at nominal output power (r.m.s. value) V Total distortion	0(11110)	-,,-	1 V
$V_{O(rms)} = 1 \text{ V; } G_{V} = \text{maximum}$	tot		7 % 2 %
$V_{O(rms)} = 1 V; V_{i (rms)} = 1 V$	tot	typ. 0,	2 %
$V_{o(rms)} = 50 \text{ mV}; V_{i(rms)} = 150 \text{ mV}$	tot	,, ,	3 % 1 %
$V_{o(rms)} = 50 \text{ mV}; V_{i(rms)} = 1 \text{ V}$	tot	typ. 0,	2 %
Output noise voltage; f = 20 Hz to 20 kHz			
signal plus noise voltage (r.m.s. value) $G_V = -60 \text{ dB}$ V	no(rms)	typ.	6 μV
$G_V^* = -10 dB$	no(rms)	typ. 1	5 μV
· · · · · · · · · · · · · · · · · · ·	no(rms)	typ. 10	0 μV
noise voltage; weighted conform DIN45405 (peak value) $G_V = -60 \text{ dB}$	'no(m)	typ. 1	5 μV
$G_V = -10 \text{ dB}$	no(m)		5 μV 0 μV
G _V = maximum (+20 dB)	['] no(m)		0 μV 0 μV
Channel separation; $G_V = \pm 20 \text{ dB}$; $V_i = V_0 < 1 \text{ V}$			
f = 250 Hz to 12,5 kHz	! *.		2 dB 3 dB
f = 40 Hz to 16 kHz		•	6 dB
Channel balance		typ. 5	0 dB
	∆G <mark>∨</mark>	typ.	1 dB 2 dB

 $\Delta G_{\mathbf{v}}$

2 dB

 G_{V} < 50 dB

Amplifier characteristics				
Input resistance (pins 11 and 14)	Ri11;14	>	3	ΩM
D.C. output voltages (0,35 V _P - 1,35 V _{BE})	V ₃₋₁₅ ; V ₁₆₋₁₅	typ.	4,2	V
(6,6 V _{BE})	V ₃₋₁₅ ; V ₁₆₋₁₅	typ.	4,6	٧
Quiescent input currents (pins 1,2,6,7,11,14)	11; 12; 16; 17; 111; 114	typ.	0,5 2	μΑ μΑ
Input resistance (pins 1,2,6 and 7) of physiology; without external circuitry	R _{i1;2;6;7}	>	1	МΩ
Internal load resistance at outputs (pins 3,5,9,16)	R ₃₋₁₅ ; R ₅₋₁₅ ; R ₉₋₁₅ ; R ₁₀₋₁₅	typ.	2	kΩ
Maximum gain; no load	G ₃₋₁ ; G ₃₋₂ ; G ₅₋₆ ; G ₅₋₇	> tvn		dB dB

Fig. 2 Frequency response volume control with physiology.

Fig. 3 Volume control curves; without physiology; balance = 0; V₁₂₋₁₀ = 0.

G_{V tot}; G_{V 5-11}; G_V 3-14

G_{V 9-11}; G_V 16-14

Fig. 4 Volume adjustment curve; balance = 0; $V_{12-10} = 0$.

Fig. 5 Balance control curves; $G_{v \text{ tot}} = -10 \text{ dB (V}_{13-15} = 6.9 \text{ V)}$; for balance = 0.

Fig. 6 Balance control range; $V_{12-15} = 2.5$ to 9.0 V.

- (1) $G_V = R2/R1$
- (2) $G_V = R42/R31$
- (3) $G_V = 1/2\pi \cdot R42 \cdot C42$ (4) $G_V = 1/2\pi \cdot R41 \cdot C31 = 1/2\pi \cdot R31 \cdot C31$
- (5) $G_{V} \approx R41/R32$
- (6) $G_{v} \approx R41/R32$
- (7) $G_V = 1/2\pi \cdot R32 \cdot C31$

Fig. 7 Frequency response of the physiology part.

Fig. 8 Physiology control curve; f = 1 kHz; balance = 0; $V_{12-15} = 0$.

Fig. 9 Total distortion as a function of r.m.s. input voltage; f = 1 kHz; R $_{L}$ = 5,6 k $\!\Omega_{\rm c}$

Fig. 10 Total distortion as a function of r.m.s. output voltage; f = 1 kHz; R $_{L}$ = 5,6 k Ω .

7278945

Fig. 11 The r.m.s. output voltage as a function of voltage gain; $P_{o(nom)}$ relative to $V_{o(rms)} = 1 \text{ V}$.

without physiological volume control; —— with physiological volume control.

February 1980

APPLICATION INFORMATION

(1) RC network for limiting treble boost (linear: $f_{-3 dB} = 100 \text{ kHz}$).

Fig. 12 Application diagram for TCA730A and TCA740A. For printed-circuit board see Fig. 13.

Fig. 13 Printed-circuit board component side, showing component layout; for circuit diagram see Fig. 12.

APPLICATION INFORMATION (continued)

- (1) $C_{13-15} = C_{12-15} = 1 \mu F$ are intended for suppression of the noise when adjusting the mechanical potentiometers.
- (2) For rejecting noise, caused by switching on or off, corresponding muting switches can be used before or in the output power stage.

Fig. 14 Application example of TCA730A used for volume and balance control.

D.C. TREBLE AND BASS STEREO CONTROL CIRCUIT

The TCA740A is a monolithic integrated circuit for controlling treble and bass in stereo amplifiers by means of a d.c. voltage.

Features:

- two double potentiometer circuits
- · feedback control
- internal amplifier
- high-ohmic signal inputs
- converter for the control voltages
- low-ohmic and short-circuit protected signal outputs

QUICK REFERENCE DATA

Supply voltage (pin 8)	V _P	typ.	15	v
Supply current (pin 8)	l _P	typ.	35	mΑ
Bass boost and cut at 40 Hz (ref. 1 kHz)		typ.	± 16	dB
Treble boost and cut at 16 kHz (ref. 1 kHz)		typ.	± 16	dB
Input/output voltage at d _{tot} = 0,7% (r.m.s. value)	V _{i, o (rms)}	typ.	2	V
Total distortion at $V_{o(rms)} = 1 \text{ V}$; linear frequency response	d _{tot}	typ.	0,1	%
Channel separation	α	typ.	70	dB
Output signal plus noise voltage (r.m.s. value)	V _{no (rms)}	typ.	45	μV
Frequency response (-1 dB)	f	20 Hz	to 20	kHz
Treble/bass control voltage range	V ₁₂₋₁₆ ; V ₄₋₁₆	1,8	to 9,5	٧
Supply voltage range (pin 8)	V _P	13,5 t	o 16,5	V
Ambient temperature range	T _{amb}	-30 to	o + 80	οС

PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38).

(2) 0.31 Vp + 1.4 VBE; $\text{V}_2 = 5.6 \text{ V}$

Fig. 1 Block diagram with external circuitry.

 $V_{o(rms)} = 100 \text{ mV}; f = 1 \text{ kHz}$

 $V_{o(rms)} = 1 \text{ V; } f = 1 \text{ kHz}$

f = 20 Hz to 20 kHz

DIN45405; peak value

 $V_{o(rms)} = 100 \text{ mV}$; f = 40 Hz to 16 kHz

Input/output voltage at dtot = 0,7 % (r.m.s. value)

Output signal plus noise voltage (r.m.s. value)

 $V_{O(rms)} = 1 V$; f = 40 Hz to 16 kHz

Output noise voltage; weighted conform

Limiting values in accordance with the Absolute Maximum System (IEC 134)

RATINGS

Supply voltage (pin 8)	Vp	max.	18	٧
Control voltages (pins 4 and 12)	V ₄₋₁₆	max.		V
	-V ₄₋₁₆	max.		V
	V ₁₂₋₁₆ −V ₁₂₋₁₆	max.	12 5	V
Total power dissipation	P _{tot}	max.		mW
Storage temperature range	T _{stg}	55 to ⁴		
Operating ambient temperature range	T _{amb}	-30 to		
CHARACTERISTICS				
V_P = 15 V; T_{amb} = 25 °C; measured in Fig.1; in R_G = 60 Ω ; R_L = 5,6 k Ω ; f = 1 kHz; unless otherw	position 'linear' (V ₄₋₁₆ = wise specified	V ₁₂₋₁₆ = 5,6 V);	
Supply voltage range (pin 8)	V _P	13,5 to	13,5 to 16,5	
Supply current (pin 8)	lp	typ. 25 1	34 to 45	mA mA
Signal processing				
Voltage gain at linear frequency response	G_{V}	typ.	0	dB
Frequency response (-1 dB)	f '	. 20 Hz t	o 20	kHz
Maximum gain variation at f = 1 kHz at maximum bass/treble boost or cut	ΔG_{V}	<	± 1,5	чв
Bass boost at 40 Hz (ref. 1 kHz)	Δ0γ		•	
V ₄₋₁₆ = 9,2 V		> typ.		dB dB
Bass cut at 40 Hz (ref. 1 kHz) V4-16 = 2 V		> typ.		dB dB
Treble boost at 16 kHz (ref. 1 kHz) V12-16 = 9,2 V		> typ.		dB dB
Treble cut at 16 kHz (ref. 1 kHz) V12-16 = 2 V	•	> typ.	15	dB dB
Total distortion		••		-

d_{tot}

 d_{tot}

 d_{tot}

d_{tot}

V_{no(rms)}

 $V_{no(m)}$

 $V_{i(rms)} = V_{o(rms)}$

typ.

typ.

typ.

typ.

typ.

typ.

typ.

0,03 %

0,07 %

0.2 %

0,2 %

1,6 V

2 V

40 μV

90 μV

160 μV

0,1 %

CHARACTERISTICS (continued)				
Channel separation				
f = 1 kHz	α	typ.		dB
f = 250 Hz to 12,5 kHz	. α	typ.		dB dB
f = 40 Hz to 16 kHz	α	typ.		dB
	e e e	-,,-	-	
Control voltages				
Recommended control voltage range	,	>	_	V
treble/bass	V4-16 = V12-16	2 to	•	
		< 0,66	•	
Control voltage at linear frequency response	V ₄₋₁₆ = V ₁₂₋₁₆	typ. 5,4 to	5,6 5.8	-
osition voltage at initial inequality response	(0,31	V _P to 1,4 V _E		
Quiescent input current				
$V_{4-16} = V_{12-16} = 2 \text{ to } 9.2 \text{ V}$	1 ₄ = 1 ₁₂	typ.	-	μA μA
Input resistance (pins 4 and 12)		•		,
V ₄₋₁₆ = V ₁₂₋₁₆ = 5,6 V	R _{i4;12}	typ. 8	300	kΩ
	,			
Amplifier characteristics				
Quiescent input currents; V _i = 4,6 V		typ.	0,6	μΑ
(pins 1, 2, 6, 7, 9, 10, 14 and 15)	11;12;16;17;19;110;114;115	<	2	μΑ
Input resistance (pins 1,2,6,7,9,10,14 and 15)	Ri 1;2;6;7;9;10;14;15	>	1	ΩM
Internal emitter resistance at outputs	R ₃₋₁₆ ; R ₅₋₁₆ ; R ₁₁₋₁₆ ; R ₁₃₋₁₆	typ.	2	kΩ
Output resistance (pins 3,5,11 and 13)	Ro3;5;11;13-16	typ.	10	Ω
Maximum gain; no load	G _v	>	40	dB
Maximum gain, no load		typ.	43	dB
D.C. output voltages		typ.	4,6	V
$V_{4-16} = V_{12-16} = 5,6 \text{ V (pins 3,5,11 and 13)}$	V ₃₋₁₆ ; V ₅₋₁₆ ; V ₁₁₋₁₆ ; V ₁₃₋₁₆	4,3 to		-
	•	(6,6 V _E	BE)	.V

Fig. 2 Frequency response.

Fig. 3 Bass control curve at f = 40 Hz.

Fig. 4 Treble control curve at f = 16 kHz.

(2) Capacitors are intended for suppression of the noise when adjusting the mechanical potentiometers.

Fig. 6 Application example of TCA740A used for treble and bass control.

(1) RC network for limiting treble boost (linear: $f_{-3 dB} = 100 \text{ kHz}$).

Fig. 7 Application diagram for TCA730A and TCA740A. For printed-circuit board see Fig. 8.

Fig. 8 Printed-circuit board component side, showing component layout; for circuit diagram see Fig. 7.

MULTI-STABILIZER FOR ELECTRONIC TUNING

The TCA750 is basically a stabilizer for use in electronic tuning systems. The circuit is combined with an external reference diode which entirely determines the thermal stability of the system and can be adapted to the stability requirements of AM, FM or TV receivers.

The reference diode BZV38 used in conjunction with the TCA750 form an ideal pair for FM tuners in radio or TV receivers.

Additional to a stabilized voltage (V_O1) for the electronic tuning system, the TCA750 incorporates two other output voltages (V_O2 and V_O3) for stabilized supply of the entire receiver combination as well as the following attractive features:

- The output current of any of the three stabilizers can be increased by a discrete power transistor without affecting circuit stability.
- For mute control at switching on, V₀2 can be delayed by external components.
- An a.f.c. coupling circuit provides a constant correction factor by superimposing an a.f.c. voltage on V₀1.
- Adjustable a.f.c. amplification factor (< 5).
- Pulse or touch contact operation switches off the a.f.c. whilst changing stations.
- Delayed switching on of the a.f.c., externally adjustable (t_d < 2 s).
- Search tuning becomes very simple when using the a.f.c. current source (pin 10).
- All three stabilized outputs are protected against short-circuit and are individually adjustable.

QUICK REFERENCE DATA see page 2

PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38).

QUICK REFERENCE DATA

Input voltage range	V ₁₃₋₁₆	26,5	to 54	٧
Ambient temperature	T _{amb}	typ.	25	°C
Input voltage	V ₁₃₋₁₆	typ.	45	٧
► Tuning voltage (V _O 1) *	V12-16	21	to 34	٧
Output current (I1) *	112	<	14,5	mΑ
Stabilizing time	t _{stab}	typ.	0,8	s
Temperature coefficient (V _O 1) TCA750 BZV38	ΔV ₀ 1/ΔT	typ.		ppm/o(
Line regulation	$\Delta V_0 1/\Delta V_{in}$	typ.	10	ppm/V
► Output voltage (V _O 2) *	V ₁₄₋₁₆	8	to 21	V
Output current (I2) *	l ₁₄	<	6	mA .
► Output voltage (V _o 3) *	V ₂₋₁₆	8	to 29	V
Output current (I3) *	12	<	6	mA ·

^{*} Symbols used in test circuit Fig. 3.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Input voltage (supply)	V13-16	max.	54	٧
A.F.C. input voltages (pins 8 and 9)	V ₈₋₁₆ , V ₉₋₁₆	max.	17	٧
	± V8-9	max.	6	٧
Output current				
pin 12	1 ₁₂	max.	55	mΑ
pin 14	114	max.	20	mΑ
pin 2	12	max.	25	mΑ
Input current (pin 11)	± 111	max.	6	mΑ
Storage temperature	T _{stg}	-55 to	+ 150	oC
Operating ambient temperature	T _{amb}	25 to	+ 150	oC *
Total power dissipation	see derating cur	ve Fig. 2		

Fig. 2 Power derating curve.

^{*} See derating curve Fig. 2.

* Vafcin is superimposed on a common-mode voltage (V_{com}) of 5 V to 17 V.

Fig. 3 Test circuit and multi-stabilizer peripheral components.

Note to power reduction resistor RD

For worst case conditions (maximum output currents of the three stabilizers and a high supply voltage V_{in}) the power dissipation (P_{tot}) must be reduced by the use of the external resistor RD.

Power reduction =
$$\frac{(V_{in} - V_{o}1)^{2}}{RD}$$

The minimum permissible value of RD is derived by the formula

$$RD_{min} = \frac{V_{in max} - V_{o}1 - V_{afc}out}{I_{12} - I_{13 min}}$$

where,

$$I_{13 \text{ min}} = 4.5 \text{ mA} \text{ (stand-by current } I_s)$$

 $I_{12} = I_7 + I_{RA1} + I_{1min}$

CHARACTERISTICS and APPLICATION INFORMATION

Tamb = 25 °C; see test circuit Fig. 3.

	Supplies		note	min.	typ.	max.	
	Input voltage	Vin	1	26,5	-	54	٧
	Input current	Itot	2	_	_	31	mA .
	Output characteristics	•					
	D.C. output resistance (all stabilizers) Permissible output short-circuit duration	R _{out}	-	. — .	1	_	Ω
	stabilizer 1 stabilizers 2 or 3	tshort	_	continuous -	_	10	s .
	Stabilizer 1						
-	Output voltage range (adjustable) Output current	V _o 1 I1	3 4, 5	21 0	_	34 5	V mA
	Stabilizing time Output voltage temp. coefficient Line regulation	^t stab ΔV _O 1/ΔΤ ΔV _O 1/ΔV _{in}	6 7, 8 8	_ _ _	40 10	1 - -	s ppm/ ^o C ppm/V
	A.F.C. coupling circuit		*				
	A.F.C. input voltage ($\frac{1}{2}$ V _{afc} swing) A.F.C. output voltage ($\frac{1}{2}$ V _{afc} lim swing) A.F.C. output current threshold A.F.C. output current swing A.F.C. off delay Amplification factor A.F.C. slope (Δ l _{afc} / Δ V _{afc} in) Common-mode voltage V ₀ 1 change due to a.f.c. switching Asymmetry of a.f.c. input (a.f.c. off)	V_{afc} in V_{afc} lim 110 1afc lim td μ S V_{com} ΔV_0 1/afc \pm (18-19)	- 15, 16 15, 16 15, 16 - - 14 9 -	- .	- - - 2 - 2,5 -	5 0,9 1,5 3,0 - 5 - 17 25 0,5	V V mA mA s mA/V V mV μA
	A.F.C. switch operated by manual switch						
	Input voltage (a.f.c. on) Positive input voltage (a.f.c. off) Negative input voltage (a.f.c. off) Positive input current (a.f.c. off) Negative input current (a.f.c. off)	V _{sw} + V _{sw} - V _{sw} + I ₁₁	- · · · · · · · · · · · · · · · · · · ·	-0,5 0,8 0,8 0,004 0,8		+0,5 6 - 3 2	V V V mA mA
	A.F.C. switch operated by pulse	ty v					
	Positive trigger pulse peak current pulse width = 10 µs 100 µs	+ I ₁₁ pulse	13 - -	800 80	_	3000	•
	1 ms 10 ms			8 4	_	3000	μA μA
	Negative trigger pulse peak current Negative trigger pulse width	-I ₁₁ pulse	_	0,8 10	_	2	mA μs

Stabilizer 2		note	min.	typ.	max.	
Output voltage range (adjustable)	V _o 2	10	8		21	V -
Output current	12	5	0	-	5,5	mÁ
Output voltage temp. coefficient	$\Delta V_0 2/\Delta T$	7, 8		45	-	ppm/°C
Switch-on delay time	^t d on	11	0	-	6	S
Switching voltage	V ₁₋₁₆	_	8,0	-	1	V
Stabilizer 3						
Output voltage range (adjustable)	V _o 3	12	8		29	V -
Output current	13	5	0		5,5	mΑ
Output voltage temp. coefficient	$\Delta V_0 3/\Delta T$	7, 8		45	_	ppm/ ⁰ C

Notes

- The V_{in} range depends on the value of V_O1 (see Fig. 4).
- 2. At 11 = 5 mA, 12 = 13 = 5.5 mA, $1_{10} = 0$.
- Adjustable by means of RA1, RB1 and RP.
- 4. If a higher level is required from the output of stabilizer 1, the reference diode supply may be obtained from the emitter of a power transistor connected to the output from stabilizer 3 (see Fig. 8). In this case, the current available from stabilizer 1 is increased to 12,5 mA (bleeder current $I_{RA1} = 2 \text{ mA}$).
- At T_{amb} = 60 °C maximum with all stabilizers at rated currents.
- 6. With Vol within 0,05% of its steady value.
- 7. Temperature coefficient at T_{amb} from 10 °C to 60 °C with V_{in} constant, and using metal film bleed resistors having a temperature coefficient of ≤ 50 ppm/oC.
- 8. With all stabilizer output currents constant and within the specified limits.
- 9. Common-mode voltage = voltage between pins 8 and 16, and 9 and 16 of the I.C.
- 10. V_O2 depends on the value of V_O1 (see Fig. 6); adjustable with RA2.
- Adjustable by means of RT and C_T1. The delay time is limited by the leakage current of C_T1.
- 12. V_0 3 depends on the value of V_0 1 (see Fig. 7); adjustable with RA3. 13. The delay time after triggering depends on the value of C_T2.
- 14. With RE = 10 k Ω and T_{amb} = 25 °C.
- V_{afc} out at V_{afc} in after limiting.
- 16. With RE = 10 kΩ; RA1 = 12 kΩ.

Fig. 4 Range of values for V₀1.

Fig. 6 Range of values for Vo2.

Fig. 5 Determination of I₁₀ and S-factor

Fig. 7 Range of values for Vo3.

Fig. 8 Hi-fi radio receiver with electronic tuning using TCA750.

INTEGRATED AUDIO AMPLIFIER

The TCA760B is a monolithic integrated audio amplifier incorporating high flexibility for applications in battery and mains-fed equipment.

Due to special internal circuitry (stabilization, temperature correction, high a.c. feedback of 20 dB) the cross-over distortion is negligible over the entire supply voltage range (5 to 14 V). Presetting is not required for the quiescent current (5 to 15,7 mA), it is internally adjusted.

Additional features are:

- low noise output voltage;
- high peak current (1 A);
- high unloaded supply voltage (15 V);
- high gain (closed loop 15 dB at a feedback of 20 dB);
- safe operation regarding second breakdown;
- high ripple rejection.

The device will withstand repetitive short circuits across the speaker load if the absolute maximum junction temperature is not exceeded.

QUICK REFERENCE DATA						
Supply voltage range	V _P	5 to 14		V		
Total quiescent current	I_{tot}		5 to 15,7	mA		
Supply voltage (peak value)	v_{PM}	max.	15	V		
Output power at $d_{tot} = 10\%$ at $V_P = 9 \text{ V}$; $R_L = 8 \Omega$ at $V_P = 12 \text{ V}$; $R_L = 8 \Omega$	${\color{red} P_O} \\ {\color{blue} P_O}$	typ.	1, 1 2, 1	W W		
Total distortion before clipping	$d_{ extsf{tot}}$	typ.	0,7	%		
Input impedance	$ z_i $	typ.	15	$\mathbf{k}\Omega$		
Sensitivity for P_0 at $d_{tot} = 10\%$	$v_{\mathbf{i}}$	typ.	10	$\mathbf{m}V$		

16-lead DIL; plastic (SOT-38).

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages						
Sunnl	r vol					

voltages					
Supply voltage (pin 11)	v_{11-16}	max.	14	V	
Unloaded supply voltage (pin 11; peak value) (no-signal condition)	V _{11-16M}	max.	15	v	
Currents					
Output current (pin 13, 11, 4)	I_{O}	max.	1	Α	
Non-repetitive peak output current (pin 13, 11, 4)	I_{OSM}	max.	. 2	A	
Power dissipation 1)					
Total power dissipation at $T_{amb} = 25$ ^{o}C .	P _{tot}	max.	1,4	W	

Temperatures

 T_{stg} Storage temperature -55 to +125 ^{0}C Operating ambient temperature oС T_{amb} -25 to +125

¹⁾ See derating curve on page 3.

Design data

Pin 6 to 4 voltage
Pin 13 to 16 voltage
Pin 11 to 13 voltage

 $\pm V_{6-4}$ max. 6 V V_{13-16} max. 14 V V_{11-13} max. 14 V

Input impedance

Equivalent input noise voltage at $R_S = 7 k\Omega$

CHARACTERISTICS at T_{amb} = 25 ^{o}C ; V_{P} = 9 V; R_{L} = 8 Ω unless otherwise specified D.C. characteristics Supply voltage range V₁₁₋₁₆ 5 to 14 V Total quiescent current I₁₁ tot 5 to 15,7 Saturation voltages of output stages at $I_0 = 0.5 \text{ A}$ 0,9 v_{CEsat} A.C. characteristics A.F. output power at onset of clipping P_0 .0,8 W typ. at $d_{tot} = 10\%$ Po. typ. Open loop voltage gain $G_{\mathbf{v}}$ 70 dΒ typ. 0,7 % typ. Total harmonic distortion at $P_0 = 0.7 \text{ W}$ d_{tot} Noise output power at Rs = 0 $2 \text{ nW}^{-1})^2$ P_n typ. Input sensitivity at Po = 0,7 W 4 to 8,5 mV ٧i

 $|Z_i|$

٧n

typ.

15 kΩ

 $1,5 \mu V 1^2$

¹⁾ Measured without signal.

 $^{^{2}}$) Measured at a frequency ranging from 30 Hz to 15 kHz.

³⁾ Measured across R_L.

APPLICATION INFORMATION

Supply voltage V ₁₁₋₁₆	6	6	7,5	7,5	9	9	10	12	v
Load resistance R _L	4	8	4	8	4	8	8	8	Ω
A.F. output power at onset of clipping	0,45 0,42	0,35 0,33	0,8 0,7	0,6 0,57	1, 1 1, 0	0,9	1,2 1,1	1,4 1,3	W 1) W 2)
A.F. output power at d _{tot} = 10%	0,66 0,62	0,48 0,46	1,1 1,0	0,8 0,78	1,5 1,4	1,2 1,1	1,5 1,45	2,1 2,0	W 1) W 2)
Sensitivity for $P_0 = 50 \text{ mW} \cdot V_i$ for $d_{tot} = 10\% \cdot V_i$	1,4 4,8	2,0 7,0	1,4 8,0	2,0 9,0	1,4 10	2,0 10	2,0 11,0	2,0 12,0	mV mV
T _{amb} (maximum)	93	107	78	99	45	87	81	45	°C
Supply current for full output power	185	125	225	165	300	190	215	250	mA
Quiescent current Itot	10,0	10,0	10,0	10,0	10,0	10,0	10,0	10,0	mA
Value of R1 R2 R3 C1 C2 C3 C4 C5 C6 C7 Input impedance	47 100 1 1,6 47 125 470 1000 150 47	47 100 1 1,6 47 125 220 470 150 47	47 100 1 1,6 47 125 470 1000 150 47	47 100 1 1,6 47 125 220 470 150 47	47 100 1 1,6 47 125 470 1000 150 47	47 100 1 1,6 47 125 220 470 150 47	47 100 1 1,6 47 125 220 470 150 47	47 100 1 1,6 47 125 220 470 150 47	000 14 14 14 14 14 14 14 16 16 16 16 16 16 16 16 16 16 16 16 16
Input impedance Z ₁ Closed loop voltage gain G _V	50	50	50	50	15 50	15 50	15 50	15 50	kΩ dB ³)
Open loop voltage gain G _V	66	68	70	71	70	74	76	78	dB
Frequency response	<u> </u>		s	ee pages	9 and 10				
Noise output power Pn	1		4			2		ļ	nW 4)
Noise output power Pn			50			25			nW 5)

¹⁾ Measured before output capacitor (C5).

²⁾ Measured across R_L.

³⁾ At R1 = 47 Ω . The gain can be increased by decreasing the value of R1; at decreasing the gain level however the maximum tolerated value of R1 amounts to 100Ω ; at further decrease of the gain an attenuator at the input is preferred.

⁴⁾ $R_S = 0$ Ω ; frequency range 30 Hz to 15 kHz.

⁵⁾ $R_S = 7 \text{ k}\Omega$; frequency range 30 Hz to 15 kHz.

APPLICATION INFORMATION (continued)

General notes

1. Prescription for print lay-out:

Pin 1 must be used as a ground connection for the input circuit.

Pin 16 must be used for the output circuit and for connection of the negative supply voltage.

The pins 16 and 1 have to be interconnected as close to the package as possible to prevent a common impedance in the ground line.

- 2. The smoothing capacitor across the supply must be connected close to the pins.
- 3. To prevent radio signals in the low frequency amplifier a small capacitor of about 560 pF between pins 6 and 1 is preferred.

Basic power amplifier

APPLICATION INFORMATION (continued)

Power amplifier for mains-fed supply

When using a mains-fed power supply with high ripple it is advantageous to connect the speaker to ground by bootstrapping pin 9.

Pin 7 is available for extra hum suppression (see graphs on page 9).

TCA760B

APPLICATION INFORMATION (continued)

The influence on the hum suppression when a capacitor of $10~\mu F$ is connected between pins 7 and 1 is shown in the graph below.

An increase of the capacitor value gives no further improvement in hum suppression.

October 1976

INTERFERENCE ABSORPTION CIRCUIT

The TDA1001A is a monolithic integrated circuit for very effectively suppressing interference which, especially in FM mono and stereo receivers, disturbs the quality of reception.

The operation is based on the use of a high-pass filter separating the interference from the a.f. signal. The interference pulses are amplified to trigger a one shot. In this way gating pulses are obtained interrupting the audio signal, which is delayed by a low-pass filter, during the interference periods, the output being kept constant for that time. A 19 kHz filter can be externally connected to sustain the stereo pilot signal during suppression for improved performance as described below.

An integrating network decreases the trigger sensitivity for interference of high duty factor, so that the receiver remains operative even during periods of continuous interference.

QUICK REFERENCE DATA

Supply voltage range	$V_P = V_{9-16}$		8 to 15	٧
Ambient temperature	T _{amb}	typ.	25	оС
Supply voltage	V _P	nom	. 12	V
Total quiescent current	I _{tot}	typ.	15	mΑ
A.F. input signal handling (peak-to-peak value)				
$d_{tot} < 1\%$; f = 1 kHz	V _{1-16(p-p)}	<	1,5	٧
Input impedance at f = 40 kHz (pin 1)	Zi	>	30	$k\Omega$
Audio voltage gain	V ₆₋₁₆ V ₁₋₁₆	typ.	0,8	dB
Total distortion				
$f = 1 \text{ kHz}$; $V_{i(rms)} \leq 0.5 \text{ V}$	d _{tot}	typ.	0,35	%
Residual gate pulse in output signal (pin 6) (peak-to-peak value)	Vr6-16(p-p)	<	. 4	mV
Interference trigger sensitivity (adjustable)	, , , , , , ,			
R13 = 3,3 k Ω ; peak value	V ₁₋₁₆ M	typ.	50	mV
R13 = 2,5 k Ω ; peak value	V1-16M	typ.	42	mV
Suppression pulse duration (pin 10)	·t _s		20 to 35	μs

PACKAGE OUTLINES

TDA1001A: 16-lead DIL; plastic (SOT-38)

TDA1001AT: 16-lead flat pack; plastic (SO-16; SOT-109A).

(1) The interference trigger sensitivity is predetermined by R13 (see also Fig. 3) and is defined by

N

March 1980

$$V_{tr} = \left(1 + \frac{R13}{R_S}\right) \times V_{tr0}$$
, in which $V_{tr} = \text{trigger voltage}$, $V_{tr0} = \text{trigger voltage}$ at 0 Ω , $R_S = 2.2 \text{ k}\Omega$ (internal source resistance).

Fig. 1 Block diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Limiting values in accordance with the Apsolute Maximu	m System (IEC 134)			
Supply voltage (pin 9)	V _P	max.	18	٧
D.C. input voltage (pin 1)	V ₁₋₁₆	max.	٧ _P	٧
D.C. output current (pin 6)	-1 ₆ + 1 ₆	max. max.		mA mA
Storage temperature	T _{stg}	65 to +	150	οС
Operating ambient temperature*	T _{amb}	-30 to +	- 80	οС

^{*} Based on nominal application, Fig. 3; for deviating periphery see power derating curve Fig. 2.

Fig. 2 Power derating curves; ——SOT-38; ——SO-16, SOT-109A mounted on a ceramic substrate of $50 \times 15 \times 0.7$ mm.

TDA1001A TDA1001AT

CHARACTERISTICS measured in Fig. 3			
D.C. characteristics at T _{amb} = 25 °C			
Supply voltage	VP	typ.	12 V 8 to 15 V
Total quiescent current at V _P = 12 V	I _{tot}	typ.	15 mA 25 mA
A.C. characteristics at T _{amb} = 25 °C; V _P = 12 V			
Preamplifier; delay and gating circuit; output stage	•		
(input: pin 1; output: pin 6)			
A.F. input signal handling (peak-to-peak value) for $d_{tot} < 1\%$ at pin 6; $f = 1$ kHz	V _{1-16(p-p)}	<	1,5 V
Input impedance (pin 1)			
f = 40 kHz	, Z _i	>	30 kΩ
Input impedance (pin 3)			
f = 1 kHz	Z _i	>	230 kΩ
Input impedance (pin 5) f = 1 kHz, during suppression	•		
(gating circuit non-conducting)	Z _i	>	4 ΜΩ
Audio voltage gain	V ₆₋₁₆ V ₁₋₁₆	typ.	0,8 dB
Residual gate pulse in output signal (pin 6) (peak-to-peak value)			
see note 1	V _{r6-16(p-p)}	<	4 mV
Discharge current at pin 5	l _{d5}	<	250 nA
Total distortion; no-interference condition (pin 6) $f = 1 \text{ kHz}$; $V_{i(rms)} \le 0.5 \text{ V}$	d _{tot}	typ.	0,35 % 1 %
Preamplifier; interference separator; pulse converter; one sh	ot		
(input: pin 1; output: pin 10)			
Input signal: sine-wave of 120 kHz (high-pass filter characte	ristic is V14 16/V1 16	= -2 dR	at 120 kHz)
Interference trigger sensitivity at 120 kHz (pin 1) (r.m.s. values); see note 2	7.0000 to 144-10/ v 1-16	, 205	de 120 KHZ
control function OFF (pin 12 connected to pin 9)			
at R13 = 3,3 k Ω	V _{1-16(rms)}	typ.	30 mV 0 to 42 mV
at R13 = 2,5 kΩ	V _{1-16(rms)}	typ.	25 mV 8 to 36 mV
control function ON			
at R13 = 3,3 k Ω	V _{1-16(rms)}	typ.	170 mV
at R13 = 2,5 k Ω	V _{1-16(rms)}	typ.	145 mV
			·

For notes see next page.

Input signal: pulse signal with $t_p = 10 \mu s$; repetition frequency $f_r = 1 \text{ kHz}$; pulse rise and fall times $t_r = t_f = 6$ ns

Pulse trigger sensitivity (pulse peak value); see note 2

control function OFF (pin 12 connected to pin 9)

at R13 = 3.3 k
$$\Omega$$

V_{1-16M} V_{1-16M} typ.

50 mV

42 mV typ. 20 to 35 us

Noise threshold circuit

at R13 = 2,5 k Ω

(input: pin 1; output: pin 12 with respect to pin 9)

Input signal: sine-wave of 120 kHz (high-pass filter characteristic is $V_{14-16}/V_{1-16} = -2$ dB at 120 kHz) Input voltage (r.m.s. value)

for $V_{12-9} = 100 \text{ mV}$ at R13 = 3,3 k Ω

at R13 = 2,5 k Ω

V₁₋₁₆(rms) V₁₋₁₆(rms)

15 mV typ. typ.

13 mV

for V₁₂₋₉ = 600 mV (pin 10 short-circuited to pin 9)

at R13 = 3.3 k Ω

V_{1-16(rms)}

16 mV typ. 12 to 22 mV

at R13 = 2.5 $k\Omega$

14 mV 10 to 19 mV

Minimum interference repetition rate to cause defeat action (pin 12); see note 4

^fr min

20 kHz

Amplification control by interference intensity

 $V_i = 50 \text{ mV}$; f = 19 kHz; $V_{1-16M} = 300 \text{ mV}$; pulse duration $t_p = 10 \mu s$;

repetition frequency fr = 1 kHz repetition frequency $f_r = 16 \text{ kHz}$

V₆₋₁₆ V₆₋₁₆ 50 to 60 mV 45 to 65 mV

19 kHz filter (input: pin 7; output: pin 8) Current amplification (see notes 5 and 6)

 Δ I7

typ.

>

2,8 to 3,2

Notes

- 1. See Fig. 4 for the output pulse description; with the 19 kHz filter switched off (pin 7 connected to
- 2. The interference trigger sensitivity is predetermined by R13 and is defined by the formula $V_{tr} = (1 + R13/R_S) \times V_{tr0}$ in which $R_S = 2.2 \text{ k}\Omega$ (see also note in Fig. 1).
- 3. Adjustable with R11 or C11; for 20 to 35 μ s: R11 = 6,8 k Ω and C11 = 2,2 nF.

4. Adjustable with R10; at R10 = 1,5 k Ω : f_r = 20 kHz.

- Defeat action starts if V₁₂₋₁₆ has reacted a control voltage of V_{BE} (0,6 V).
- 5. 19 kHz adjustable with R_{19kHz} (see Fig. 3).
- 6. The IC may also be used, if desired, without 19 kHz filter by connecting the 1,5 k Ω resistor and 6,6 nF capacitor of pin 5 to pin 16, and by leaving pins 7 and 8 unused (see Fig. 3).

TDA1001A TDA1001AT

÷			<u> </u>			
	APPLICATION INFORMATION					
	T_{amb} = 25 °C; V_P = 12 V; measured in Fig. 3					
	SIGNAL PATH					
	Input amplifier		. •			
	Input impedance at f = 40 kHz (pin 1) pin 2 unloaded pin 2 loaded		Z _i Z _i	typ.		kΩ kΩ
	D.C. input voltage adjustment		V ₁₋₁₆	typ. typ.	0,4 V _P	
	Output impedance (pin 2)		V 1-16	typ.	0,4 VP	•
	pin 2 unloaded; pin 1 loaded		$ Z_0 $	typ.	480	Ω
	Low-pass filter	*				
	Input impedance at f = 1 kHz (pin 3)		$ Z_i $	typ.	1	мΩ
	D.C. input current at V ₃₋₁₆ = 3,4 V		13	typ.	2	μΑ
	Output impedance (pin 4)		$ Z_0 $	tyo.	500	Ω
	-3 dB point of low-pass filter		f(-3 dB)	typ.	75	kHz
	Gate circuit with output stage					
	Leakage current (pin 5)		15	typ.	100	nΑ
	Pilot regeneration 19 kHz filter					
	Current amplification		$\frac{\Delta I_7}{\Delta I_8}$	typ.	3 2,8 to 3,2	
	INTERFERENCE PATH					
	High-pass filter		•			
	Input impedance at f = 1 kHz (pin 15)		$ Z_i $	typ.	. 1	$M\Omega$
	D.C. input current at V ₁₅₋₁₆ = 0,19 V; V ₉₋₁₆ = 2,0 V		115	typ.	1	μΑ
	Output impedance (pin 14)		Z ₀	typ.	500	-
	Voltage gain		V ₁₄₋₁₆ V ₁₅₋₁₆	typ.	1,4	
	-3 dB point of high-pass filter		f(-3 dB)	typ.	140	kHz
	Pulse amplifier; converter and gain control					
	Peak output current	•				

I_{12M}

-V₁₂₋₉

0,4 mA

0,65 V

Input voltage

(noise controlled feedback in ON position)

(noise controlled feedback in ON position)

Offset voltage; backlash

0	ne	shot

Gate circuit conducting; no-interference condition required input voltage level	v
	. v
output leakage current	14
Gate circuit non-conducting; interference condition	
required input voltage level	V
output current	· 14

V ₁₁₋₁₆ I ₁₀	< typ.	1 V 15 μΑ
V ₁₁₋₁₆	> 1	2 V
110	>	1 mA
۸۷/44 40	tvn	04 V

œ

March 1980

Fig. 3 Test/application circuit.

Fig. 4 Residual gate pulse in output signal at V_i = 80 mV; pulse duration t_p = 10 μ s; repetition frequency f_r = 1 kHz.

16-LEAD DUAL IN-LINE; PLASTIC (SOT-38)

Dimensions in mm

- within ±0,127 mm of the nominal
- position shown; in the worst case, the spacing between any two leads may deviate from nominal by ±0,254 mm.
- Lead spacing tolerances apply from seating plane to the line indicated.

SOLDERING

1. By hand

Apply the soldering iron below the seating plane (or not more than 2 mm above it). If its temperature is below 300 °C it must not be in contact for more than 10 seconds; if between 300 °C and 400 °C, for not more than 5 seconds.

top view

2. By dip or wave

The maximum permissible temperature of the solder is 260 °C; this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified storage maximum. If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

3. Repairing soldered joints

The same precautions and limits apply as in (1) above.

Dimensions in mm

- Positional accuracy.
 - Maximum Material Condition.

SOLDERING See next page.

March 1980

Interference absorption circuit

TDA1001A TDA1001AT

SOLDERING

The reflow solder technique

The preferred technique for mounting miniature components on hybrid thick or thin-film circuits is reflow soldering. Solder is applied to the required areas on the substrate by dipping in a solder bath or, more usually, by screen printing a solder paste. Components are put in place and the solder is reflowed by heating.

Solder pastes consist of very finely powdered solder and flux suspended in an organic liquid binder. They are available in various forms depending on the specification of the solder and the type of binder used. For hybrid circuit use, a tin-lead solder with 2 to 4% silver is recommended. The working temperature of this paste is about 220 to 230 °C when a mild flux is used.

For printing the paste onto the substrate a stainless steel screen with a mesh of 80 to 105 μ m is used for which the emulsion thickness should be about 50 μ m. To ensure that sufficient solder paste is applied to the substrate, the screen aperture should be slightly larger than the corresponding contact area.

The contact pins are positioned on the substrate, the slight adhesive force of the solder paste being sufficient to keep them in place. The substrate is heated to the solder working temperature preferably by means of a controlled hot plate. The soldering process should be kept as short as possible: 10 to 15 seconds is sufficient to ensure good solder joints and evaporation of the binder fluid. After soldering, the substrate must be cleaned of any remaining flux.

RECORDING AND PLAYBACK AMPLIFIER

This integrated circuit incorporates all amplifier circuits necessary for the record/playback functions, with the exception of the audio power output amplifier. It comprises:

- a preamplifier for microphone or playback,
- a recording amplifier with automatic level control,
- a dynamic limiter with a short limiting time.

Compared to its predecessor TDA1002, this type features an improved automatic level control circuit; the control range has been enlarged from 40 to 55 dB and the spread in control characteristic has been reduced to less than 2 dB.

QUICK REFERENCE DATA

Supply voltage range	Vp		4 to 12 V
Operating ambient temperature	T _{amb}	−25 t	o + 125 °C
Total quiescent current (V _P = 9 V)	l _{tot}	typ.	15 mA
Preamplifier			
Input impedance (pin 1)	Z _i	typ.	16 kΩ
Open loop gain	Go	typ.	70 dB
Clipping level (pin 4); V _P = 9 V; r.m.s. value	V _{4-5(rms)}	typ.	2 V
Equivalent noise input voltage $R_S = 500 \Omega$; B = 300 Hz to 15 kHz	V _{n(rms)}	<	0,75 μV
Recording amplifier			
Input impedance (pin 8)	Z _i	typ.	40 kΩ
Open loop gain	Go	typ.	80 dB
Clipping level (pin 9); V _P = 9 V; r.m.s. value	V _{9-10(rms)}	typ.	2 V
Automatic Level Control (A.L.C.)			
Input impedance (pin 6)			
at low signal level at pin 8	<u>Z</u> i	typ.	250 kΩ
at high signal level pin 8	Z _i	typ.	25 Ω
Control voltage	Vala	ti in	250 mV
$V_{4-5} = 10 \text{ mV}; f = 1 \text{ kHz}; V_p = 9 \text{ V}$ $V_{4-5} = 1000 \text{ mV}; f = 1 \text{ kHz}; V_p = 9 \text{ V}$	V ₉₋₁₀ V ₉₋₁₀	typ. typ.	750 mV
Limiting time (Fig. 12)	t _l	typ.	10 ms
Level setting time (Fig. 12)	t _s	typ.	4 s
Recovery time (Fig. 13)	t _r	typ.	35 s
ricecovery time (1 ig. 10)	۲	٠, ٢,	55.5

PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38).

-65 to + 125 °C

-25 to + 125 °C

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage preamplifier V₁₆₋₅ max. 12 V Supply voltage recording amplifier V₁₅₋₁₀ max. 12 V

Total power dissipation see derating curve Fig. 2

Storage temperature $\mathsf{T}_{\mathsf{stg}}$ Operating ambient temperature T_{amb}

Fig. 2 Power dissipation derating curve.

D.C. CHARACTERISTICS

Tamb = 25 °C unless otherwise specified.

Supply voltage recording amplifier	V ₁₅₋₁₀		4 to 12 V
Supply voltage preamplifier	V ₁₆₋₅		4 to 12 V
Quiescent current rec. amplifier; Vp = 9 V	l ₁₅	typ.	10 mA
Quiescent current preamplifier; V _P = 9 V	116	typ.	5 mA
Output voltage recording amplifier	V ₉₋₁₀	typ.	½ V _P V
Output voltage preamplifier	V ₄₋₅	typ. ½	V _P -0,35 V

TDA1002A

A.C. CHARACTERISTICS

 T_{amb} = 25 °C; V_P = 9 V unless otherwise specified.

· · · · · · · · · · · · · · · · · · ·					*
Preamplifier (note 1)			recording	playba	ck
Open loop voltage gain	Go	typ.	70	70	dB
Closed loop voltage gain at f = 1 kHz	Gc	typ.	38	45	dB ·
Output voltage (clipping level); r.m.s. value	V4-5(rms)	typ.	2	2	V
Equivalent noise input voltage; r.m.s. value (note 2)		<	0,75	0,75	μV
Input impedance (pin 1)	 Z _i	typ.	16	16	kΩ
Total harmonic distortion					
f = 1 kHz; V ₄₋₅ = 150 mV	d _t	typ.	_	0,12	%
f = 1 kHz; V ₄₋₅ = 500 mV	dt	<	0,2	-	
Amplitude response		flat: 20 H	z to 20 kHz	see Fig	. 7
Recording amplifier (Fig. 9)		-			
with A.L.C.; unless otherwise specified.					
Open loop gain	Go	typ.		80	dB
Closed loop voltage gain at f = 1 kHz (note 3)	G _C	typ.		49	dB
Output voltage (clipping level); r.m.s. value	V9-10(rms)	typ.		2	٧
Input impedance pin 8	Z _i	typ.		40	$k\Omega$
Input impedance pin 6					
low signal levels	Z _i	typ.		250	
high signal levels	$ Z_i $	typ.		25	Ω
Total harmonic distortion		see Fig. 1	1		
Amplitude response (note 3)		see Fig. 1	0		
Automatic level control (see Fig. 8)					
V ₄₋₅ = 10 mV; f = 1 kHz	V ₉₋₁₀	typ.		250	mV
$V_{4-5} = 100 \text{ mV}$; f = 1 kHz	V ₉₋₁₀	typ.		450	mV
$V_{4-5} = 1000 \text{ mV}$; $f = 1 \text{ kHz}$	V ₉₋₁₀	typ.			mV
V ₄₋₅ = 2000 mV; f = 1 kHz	V ₉₋₁₀	typ.		880	mV
Limiting time (see Fig. 12)	tĮ	typ.		10	ms
Level setting time (see Fig. 12)	t _s	typ.		4	s
Recovery time (see Fig. 13)	t _r	typ.		35	s
,					

Notes

^{1.} For recording see Fig. 3; for playback see Fig. 5. 2. $R_S=500~\Omega;$ bandwidth = 300 Hz to 15 kHz. 3. Pin 6 not connected to pin 8.

Fig. 3 Preamplifier used as microphone amplifier.

Fig. 4 Total harmonic distortion of preamplifier used for recording.

Fig. 5 Preamplifier used for playback.

Fig. 6 Total harmonic distortion of preamplifier used for playback at $V_{4.5} = 150 \text{ mV}$.

Fig. 7 Amplitude response of preamplifier used for playback; typical values. 0 dB = input voltage of 0,3 mV at f = 333 Hz. Dotted line according to DIN 45513.

Fig. 8 Automatic level control; for circuitry see Fig. 9; f = 1 kHz.

Fig. 9 Application of TDA1002A (recording position).

Fig. 10 Amplitude response of recording amplifier (A.L.C. not connected).

Fig. 11 Total harmonic distortion recording amplifier with A.L.C.; f = 1 kHz.

TIMING DIAGRAMS

Fig. 12 Output response at input level jumps.

Fig. 13 Output response at input level jumps.

MOTOR REGULATOR AND BIAS/ERASE OSCILLATOR CIRCUIT

The TDA1003A is pin for pin compatible with the TDA1003 with an extension of features. The TDA1003A is for use in recording/playback systems. It incorporates capstan motor speed control, an automatic stop circuit, and a bias/erase oscillator.

The motor circuit controls the back e.m.f. and delivers a stabilized voltage to the capstan motor. The motor voltage is corrected for line voltage and torque variations, and temperature variations of the magnetic material and windings. The motor speed control is operative as long as a pulse train, derived from the tape wind spool mechanism via an interrupter, is applied to the automatic stop circuit. The TDA1003A can also be used without stop circuit by connecting pin 16 to ground. An output is available for a "stop" indicator lamp.

The oscillator section contains a temperature-independent voltage reference source and an a.g.c. circuit controlling the transconductance of a balanced oscillator circuit incorporating the erase head. Any Q variations of the erase head winding are fed back to maintain the oscillator output as a constant undistorted sine-wave so that harmonic products do not cause interference during radio recording.

QUICK REFERENCE DATA						
Supply voltage range	V _P	3,	5 to 18	V		
Ambient temperature Supply voltage	T _{amb} V _P	typ.	25 9	°C V		
Motor regulator						
Current consumption Motor starting current Operating motor current Minimum operating voltage at I ₃ = 600 mA Supply voltage rejection	$egin{array}{ll} I_4 & & & \\ I_3 & & & \\ I_3 & & & \\ V_3\text{-}2\text{min} & & \\ \Delta V_3\text{-}2/\Delta V_4\text{-}2 & & \\ \end{array}$	<pre>typ. < typ. typ. typ.</pre>	1,8 1000 250 0,9	mA mA MA V mV/V		
Stop circuit				-		
Output current for "stop" indicator lamp Knee voltage at I_1 = 100 mA Input current for I_1 = 100 mA	${f I_1} {f V_{1-2}} {f I_{16}}$	< typ. >	100 0,6 4	mA V μΑ		
Bias and erase oscillator						
Current consumption at Q = 40 Erase head voltage at Q = 40 (r.m.s. value)	I ₈ V _{erase} (rms)	typ.	25 16	mA V		

PACKAGE OUTLINE

16-lead DIL; plastic power (SOT-38N).

CIRCUIT DIAGRAM

2

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages

Supply voltage or	: pin 4		v_{4-2}	max.	18	V
	pin 8		V ₈₋₂	max.	18	V
	pin 14		v_{14-2}	max.	18	V

Currents

Motor current (pin 3; peak-value)	${ m I}_{3{f M}}$	max.	1000	mA
"Stop" indicator lamp current (d.c.; pin 1)	I_1	max.	100	mA
Maximum input current (pin 15)	±I ₁₅ max	max.	20	mA
Temperatures				

Storage temperature	$T_{ m stg}$	-65 to +150	oC
Operating ambient temperature			
see also power derating curve below	T_{amb}	-20 to +150	$^{\circ}C$

Power dissipation

Total power dissipation see derating curve below

CHARACTERISTICS at V_P = 9 V; T_{amb} = 25 °C unless otherwise specified; see test circuit on page 6

	circuit on p	age 6					
	Supply voltage range (pins 4,8	and 14)	v_P		3,5 to 18	v	1)
	Motor regulator				. "		
	Current consumption	* * *	I4	typ.	1,8 1 to 3	mA mA	
	Operating motor current		13	<	250	mA	
Motor starting current (peak-value)		I_{3M}	<	1000	mA		
Input offset voltage at I ₃ = 3 mA			V7-6	typ.	2 8	mV mV	
	Input offset current at $I_3 = 3 \text{ mass}$	A ,	I7-6	typ.	0, 2	μΑ	
	Input voltage range (common m	ode)	$v_{6-2} \\ v_{7-2}$		(V _P -0, 25) (V _P -0, 25)	v	
	Input bias current		16; 17	typ.	0,1 1,0	μ Α μ Α	
	Input sensitivity (for $\Delta I_3 = 100$	mA)	Δv_{7-6}	typ. <	1	mV mV	
	Minimum operating voltage at I	3 = 600 mA	$v_{3-2\mathrm{min}}$	typ.	0,9 1,8	V V	2)
	Automatic motor "stop" circuit						
	"Stop" indicator lamp current		11	<	100	mA	
	Knee voltage at I ₁ = 100 mA	V ₁₅₋₂ = low ("stop" condition)	V1-2	typ. <	0,6 1,0	v v	
	Input current for I ₁ = 100 mA		I ₁₆	>		μΑ	
	Voltage at pin 1 without externa	$1 \log (V_{16} = \log)$	V ₁₋₂	typ.	4, 1 3 to 5, 0	v v	
	Maximum input current (pin 15)		±1 _{15 max}	<	20	mA	

 $^{^{\}rm l})$ To guarantee proper functioning with V_P = 3,5 V to 18 V, the external component values as shown in test circuit on page 6 should be modified.

²⁾ The minimum operating voltage is defined as the voltage (V_{3-2}) at which the motor still operates at correct speed.

CILAD	ACTEDICTICS	(sontinued)
CHAK	ACTERISTICS	(continued)

Bias	and	erase	oscillator

2200 0000 000000000				
Current consumption at Q = 40	18	typ.	25	mA
at Q = 20	18	∫ typ. } <	38 46	mA
		(~		mA
Internal current limiting	18	<	95	mA 1)
Peak output current	±I9	>	100	mA
Output voltage swing (peak-to-peak value)	V ₂ 9-2(p-p)	typ.	$V_{P}-2$	V
Current consumption of reference source	I ₁₄	typ.	1,8 2,4	mA mA
Reference voltage (temperature compensated) 2)	V ₁₃₋₂	typ. 1,55	1,7 to 1,9	V V
Erase head voltage; $Q = 40$; $L = 620 \mu H (r.m.s. value)$	e) V _{erase(rms)}	typ.	16	V
Change of $V_{\mbox{erase}}$ when Q changes from 20 to 60	$\Delta V_{ m erase}$	typ.	1,8	V V
APPLICATION INFORMATION measured in circuit	on page 7			
Motor regulator	1			
Supply voltage rejection	$\frac{\Delta V_{3-2}}{\Delta V_{4-2}}$	typ.	1	mV/V
Motor speed variation over $T_{amb} = -5 \text{ to } +55 ^{\circ}\text{C}$	$\pm \Delta n$	typ.	2	%
Automatic motor "stop" circuit	e eres			
Input voltage from wind spool supplied via				
$10~\mathrm{k}\Omega$ to pin 15 (peak-to-peak value)	$v_{W(p-p)}$	typ.	1,2	V
Input current (pin 15)	±1 ₁₅	<	20	mA
Bias and erase oscillator				
Erase head voltage for Q = 40;				
$L = 620 \mu H (r.m.s. value)$	V _{erase(rms)}	typ.	16	V
Change of $V_{\mbox{\footnotesize erase}}$ when Q changes from 20 to 60	$\Delta V_{ ext{erase}}$	typ.	1	v
Harmonic distortion (unsaturated erase head)	- $lpha_2$ nd $_{ m harm}$	typ.	55	dB ³)
	$-lpha_3$ rd $_{ m harm}$	typ.	40	ďВ
	$-\alpha$ >6 th harm	>	80	dB
	- O RELIN			

¹⁾ If erase head is defective.

²⁾ Typical value of temperature coefficient 0 mV/°C.
3) At unsaturated erase head, with respect to 45 kHz.

Erase head: $L = 620 \mu H$

Q = 40 $f_0 = 45 \text{ kHz}$

 $E_n = 2, 3 \text{ V at } 1500 \text{ r. p. m.}$

*) Capacitor with low losses required; especially for CrO2 tape and low battery voltage.

ШШШ

Motor (M): $R_a = 14 \Omega$

**) Switch closed: suitable for CrO₂ tape open : suitable for Fe₂O₃ tape.

Indicator lamp: 9 V; 40 mA

10 W AUDIO POWER AMPLIFIER

with thermal shut-down

The TDA1004A is a monolithic integrated circuit in a plastic 16-lead power dual in-line package, intended for use as a low-frequency class-B amplifier.

This circuit can also be used in car radios, even when 2Ω load is required.

The device provides 10 W output power at 20 V/4 Ω ; 6 W at 14 V/4 Ω and 7,5 W at 14 V/2 Ω . The supply voltage ranges from 9 to 20 V.

The TDA1004A is pin for pin compatible with the TDA1004.

The d.c. and a.c. gain are equal, which means an external feedback network is not necessary.

The circuit comprises two separate amplifiers with the following features:

- low-cost and small number of external components;
- thermal limiting circuit, the gain of the circuit decreases when the crystal temperature exceeds $150~{\rm ^{o}C}$:
- continuous short-circuit protection of the load for supply voltages up to 16 V;
- very good ripple rejection;
- low input impedance;
- low thermal resistance of the package thus requiring relatively small heatsinks;
- filtered but not stabilized supply (pin 6) available for other electronic functions.

QUICK REFERENCE DA	TA			
Supply voltage range	V _P		9 to 20	V
D.C. output current (peak value)	I_{OM}	<	2, 5	A
Output power at d_{tot} = 10% at V_P = 14 V ; R_L = 4 Ω at V_P = 14 V ; R_L = 2 Ω at V_P = 20 V ; R_L = 8 Ω at V_P = 20 V ; R_L = 4 Ω	P _O P _O P _O	typ. typ. typ.	7,0	W W W
Total harmonic distortion at $P_{O} <$ 1 W; R_{L} = 4 Ω	$d_{\mbox{tot}}$	typ.	0, 2	%
Input impedance	$ z_i $	typ.	20	kΩ
Total quiescent current at Vp = 14 V	I _{tot}	typ.	30	mA
Sensitivity at $P_0 = 1 W$; $R_L = 4 \Omega$	v_i	typ.	6, 6	mV
Operating ambient temperature	Tamb	-25	to +150	$^{\rm oC}$
Storage temperature	T_{stg}	-55	to +150	oC

PACKAGE OUTLINE

16-lead DIL; plastic power (SOT-69B).

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltage

Supply voltage	Vp	max.	24	v
buppiy voicage	* P	max.	27	٧

Currents				
Repetitive peak output current (pins 11, 12, 14)	IORM	max.	2, 5	Α

Non-repetitive peak output current (pins 11, 12, 14)
$$I_{OSM}$$
 max. 5, 0 A Supply current from pin 6 I_6 max. 30 mA

Power dissipation

Total power dissipation see derating curve below

Temperatures

Storage temperature	$\mathrm{T_{stg}}$	-55 to +150	oC
Operating ambient temperature	T_{amb}	-25 to +150	°C

Short-circuiting

A.C. short-circuit duration of load impedance during sine-wave signal drive; without heatsink at VP = 14 V

- 1. Infinite heatsink
- 2. External heatsink of 100 cm²
- 3. External heatsink of 30 cm²
- 4. External heatsink of 12 cm²
- 5. In free air: without external heatsink

Heatsink: blackened aluminium area.

	· ·			_
From junction to case	R _{th j-c}	=	3, 3	°C/W
From junction to ambient	R _{th j-a}	=	45	°C/W

CHARACTERISTICS

D.C. characteristics

Supply voltage range (pin 11)	$v_{\mathbf{p}}$		9 to 20	V	
Supply voltage (pin 6) at $I_6 = 0$ mA at $I_6 = 20$ mA	v_{6-1}	> >	11, 0 10, 8	. v	
Output current (peak value)	I_{OM}	. <	2,5	Α	
Output current at pin 6 (peak value)	I ₆ M	<	30	mA	
Total quiescent current at $V_P = 14 \text{ V}$	I_{tot}	typ.	30 90	mA mA	

A.C. characteristics at T $_{amb}$ = 25 $^{o}C;\,V_{P}$ = 14 $V;\,R_{L}$ = 4 $\Omega;\,f$ = 1 kHz unless otherwise specified; see also test circuit on page 5.

A.F. output power at $d_{tot} = 10\%$ 1) at $V_P = 14 \text{ V}$; $R_L = 4 \Omega$; without bootstrap 2)	P_{O}	> 4,8	W
at $V_P = 14 V$; $R_L = 4 \Omega$	P _O	> 5, 5 typ. 6, 2	W W
at $V_P = 14 V$; $R_L = 2 \Omega$ at $V_P = 20 V$; $R_L = 8 \Omega$ with bootstrap 1)	P _O	typ. 7,0 typ. 7,0	W W
at $V_P = 20 \text{ V}$; $R_L = 4 \Omega$	Po	typ. 11,0	W
Voltage gain preamplifier	G_{v1}	typ. 20 17 to 23	dB dB
power amplifier	G_{v2}	typ. 30 27 to 33	dB dB
total amplifier	G _{v tot}	typ. 50 47 to 53	dB dB
Total harmonic distortion at $P_0 = 1 W$	d_{tot}	typ. 0, 2 < 1, 0	% %
Frequency response (-3 dB)	В	60 Hz to 17	kHz
Input impedance: preamplifier power amplifier	$ z_i $	> 15 typ. 20 typ. 30	kΩ kΩ kΩ
Output impedance of preamplifier (pin 4)	$ z_0 $	> 10	kΩ ³)

¹⁾ Output power is always measured at the d.c. output of the amplifier, so losses in coupling capacitor are not taken into account.

²⁾ See circuit on page 7. With this circuit 4,8 W is guaranteed.

³⁾ At this impedance value from pin 4 to ground, the maximum output power can be delivered.

CHARACTERISTICS (continued)

Output voltage preamplifier at d _{tot} = 5% (r.m.s. value)	V ₄₋₁ (rms)	> typ.	0, 6 1, 0	v 1)
Noise output voltage at $R_S = 0 \Omega$ at $R_S = 2 k\Omega$	$egin{array}{c} V_n \ V_n \end{array}$	typ.	0, 3 1, 0	mV 2)
Sensitivity at $P_O = 1 W$	v_i	typ.	6,6	mV
Ripple rejection at f = 100 Hz	RR RR	typ.	32, 5 50, 0	dB 3)

Test circuit

 $^{^{1}}$) Measured with a 30 k Ω a.c. load impedance at pin 4 (disconnected from pin 5).

²⁾ Measured at a bandwidth of 60 Hz to 15 kHz.

³⁾ See ripple rejection on page 6.

TDA1004A

RIPPLE REJECTION

Typical ripple rejection measured with nominal load impedance (R $_L$ = 4 $\Omega)$ and input a.c. short-circuited.

 $V_{o \text{ max}} = 4 \text{ mV} \text{ at } f = 10^3 \text{ Hz}.$

APPLICATION INFORMATION

Without bootstrap

With bootstrap

TDA1004A

APPLICATION INFORMATION (continued)

Supply voltage (V ₁₁₋₁₄)	V _P		14		2	V	
Load resistance	$R_{ m L}$	2	4	8	4	8	Ω
Total quiescent current	I _{tot}	30	30	30	40	40	mA
Output power at d _{tot} = 10% with bootstrap without bootstrap	P _o P _o	7,0 ¹) 7,5	6 5	3, 5 3, 0	12 11	7 6	W W
Distortion at Po = 2 W	d _{tot}	1	0, 2	0, 2	0, 2	0, 2	%
Input sensitivity for $P_0 = 1 W$	v_i	4,8	6, 6	9, 1	6,6	9,1	mV
Ripple rejection at f = 100 Hz at f = 1 kHz	RR RR	32,5 50,0	32, 5 50, 0	32, 5 50, 0	32, 5 50, 0	32, 5 50, 0	dB dB
Noise output voltage at B = 60 Hz to 15 kHz	37	0.20	0.20	0.20	0.20	0.20	137
$R_{\mathbf{S}} = 0 \Omega$ $R_{\mathbf{S}} = 2 k\Omega$	V _n	0, 30 0, 45	0,30 0,45	0,30 0,45	0, 30 0, 45	0, 30 0, 45	mV mV
Input impedance	$ z_i $	23	23	23	23	23	kΩ
Maximum power dissipation	P _{tot}	5, 2	2, 8	1,6	5,5	3,0	w

 $[\]overline{\ \ \ }$) P_{O} = 9 W, when a resistor of 220 Ω is connected between pins 9 and 11.

APPLICATION INFORMATION (continued)

With bootstrap

TDA1004A

MOUNTING INSTRUCTIONS

When using an external heatsink, connected to the heat spreader of the IC, the thermal power in the circuit can be reduced to a negligible value.

The optimum heatsink dimensions (blackened aluminium) for a given operating ambient temperature, can be found from the derating curves on page 3.

The fact that the thermal resistance of the encapsulation is very good, results in a relatively small heatsink for thermal power reduction; e.g. $P_0 = 2$ W at $T_{amb} = 50$ °C can be obtained without an external heatsink.

Two mounting methods are shown below.

By using these methods, no extra copper area is required on the printed-circuit board, so a saving in printed-wiring area is obtained.

Mounting the external heatsink can be done by screwing or clipping.

Mechanical stresses do not damage the IC.

It is recommended that a heatsink-compound be used between IC heat spreader and heatsink.

Method 1

Method 2

FREQUENCY MULTIPLEX PLL STEREO DECODER

The TDA1005A is a high quality PLL stereo decoder based on the frequency-division multiplex (f.d.m.) principle, performing:

- excellent ACI (Adjacent Channel Interference) and SCA (Storecast) rejection
- very low BFC (Beat-Frequency Components) distortion in the higher frequency region

The circuit incorporates the following features:

- with simplified peripheral circuitry the circuit can perform as a time-division multiplex (t.d.m.) decoder, for use in economic medium and low-class apparatus
- for car radios: operation at a supply voltage of 8 V
- extra pin for smooth mono/stereo take-over without "clicks"
- automatic mono/stereo switching (minimum switching level is 16 mV), controlled by both pilot signal and field strength level
- low distortion in the loop resonance frequency region (\approx 300 Hz; THD = 0,2% typ.)
- external adjustment for obtaining optimum channel separation in the complete receiver
- internal amplification: t.d.m., 7 dB; f.d.m., 10 dB
- driver for stereo indicator lamp
- externally switchable: VCO-off or mono condition
- guaranteed VCO capture range (> 3,5% or 2,7 kHz)

QUICK REFERENCE DATA

Supply voltage range	V ₈₋₁₆		8	to 18	٧	
Supply voltage Ambient temperature	V8-16 T _{amb}	typ.		15 25	V °C	_
Measured at $V_{i(p-p)} = 1 V$ (MUX signal with 8% pilot)			t.d.m.	f.d.m.		
Channel separation at f = 1 kHz Carrier suppression	α	typ.	50	55	dB	
at f = 19 kHz at f = 38 kHz	α19 α29	typ.	36 45	36 40	dB dB	—
at f = 76 kHz	α38 α76	typ.	80	75	dB	
ACI rejection at f = 114 kHz SCA rejection at f = 67 kHz	α114 α67	typ.	52 85	70 90	dB dB	
VCO capture range Total harmonic distortion		>	3,5	3,5	%	
$f_m = 1 \text{ kHz}$ $f_m = 300 \text{ Hz to } 10 \text{ kHz}$	THD THD	typ. typ.	0,2 0,2	0,1 0,1	% %	

dBEC

40

BFC suppression

TDA1005A; 16-lead DIL; plastic (SOT-38).

TDA1005AT; 16-lead flat pack; plastic (SO-16; SOT-109A).

dB

February 1980

Fig. 1 Block diagram.

18 V

RATINGS

Limiting values in accordance with the Absolute Maximum System	(150 134)	
Supply voltage	V8-16	max.

Indicator lamp turn-on current (peak value)

Total power dissipation

Indicator lamp turn-on current (peak value)

Indicator lamp turn-on current (peak value)

See derating curve Fig. 2

Storage temperature $T_{\rm stg}$ -55 to + 150 $^{\rm o}{\rm C}$

Operating ambient temperature (see also Fig. 2) T_{amb} -25 to + 150 $^{\circ}$ C

Fig. 2 Power derating curve.

TDA1005A TDA1005AT

A.C. CHARACTERISTICS and APPLICATION INFORMATION

 T_{amb} = 25 °C; V_{8-16} = 15 V (unless otherwise specified); see also Fig. 7 and Fig. 10.

	note.	pin	parameter		t.d.m.	f.d.m.	un
Channel separation see Figs 23 and 24	1, 2	2, 3	, α	> typ.	40 50	45 55	dB dB
F.MI.F. roll-off correction range	1, 2				48 to 72	_	kН
Input MUX-voltage; L = 1; R = 1 for THD < 0,35%	1, 2	11	V _{i(p-p)}	typ.	1	1	·V
Input impedance		11	$ z_i $	> typ.	35 50	35 50	k۵ k۵
Voltage gain per channel	1, 2		G _v	typ.	7	10	dE
Channel balance	1, 2		± ΔG _V	<	1	1	dE
Output voltage (r.m.s. value) L = 1; R = 1	1, 2	2	V ₂₋₁₆ (rms) V ₃₋₁₆ (rms)	>	0,61 0,61	0,97 0,97	V V
Output impedance	3	2, 3	z _o	typ.	5,6 4 to 7	5,6 4 to 7	ks ks
Total harmonic distortion; see Figs 25 and 26 f _m = 1 kHz (all conditions) f _m = 1 kHz; L = 1; R = 1 f _m = 300 Hz to 10 kHz	1 1	2, 3 2, 3 2, 3	THD THD THD	typ. < typ.	0,2 0,35 0,2	0,1 0,35 0,1	% % %
Carrier suppression f = 19 kHz; without notch filter f = 19 kHz; with notch filter f = 38 kHz; without notch filter f = 38 kHz; with notch filter	1 1, 9 1 1, 9	2, 3	α ₁₉ α ₁₉ α ₃₈	typ. typ. >	36 60 40 72	36 60 38 72	dE dE dE
f = 57 kHz; without notch filter f = 57 kHz; with notch filter f = 76 kHz; without notch filter	1 1, 9		α38 α57 α57	typ. typ.	46 59 80	56 61 75	dE dE
ACI rejection at f = 114 kHz at f = 190 kHz	4 4	2, 3	^α 76 ^α 114 ^α 190	typ.	52 55	70 74	dE
SCA rejection at f = 67 kHz	5	2, 3	^α 67	typ.	85	90	dI
Ripple rejection; f = 100 Hz; V8-16(rms) = 200 mV			RR	> typ.	40 50	40 50	dl dl

	note	pin	parameter		t.d.m.	f.d.m.	unit
VCO; adjustable with R ₇₋₁₆ nominal frequency	6		fvco	typ.	76	76	kHz
capture range (deviation from 76 kHz centre frequency) 19 kHz pilot signal of 32 mV	6			>	3,5	3,5	%
temperature coefficient uncompensated compensated	6 6		−TC ± TC	typ. typ.	450.10 ⁻⁶ 200.10 ⁻⁶	450.10 ⁻⁶ 200.10 ⁻⁶	K ⁻¹ K ⁻¹
Stereo/mono switch when equal to 19 kHz pilot-tone threshold voltage; adjustable with R ₁₃₋₈	7	11	V _i		10 to 100	10 to 100	mV
when equal to threshold voltage at $R_{13-8} = 620 \text{ k}\Omega$ for switching to stereo for switching to mono		11 11	V _i	<	7 to 16	7 to 16	mV mV
hysteresis	8	11	ΔVi	typ.	2,5	2,5	dB
Smooth take-over circuit full mono full stereo	8	6	V ₆₋₁₆ V ₆₋₁₆	< >	0,65 1,3	0,65 1,3	V V

Notes

- 1. $V_{i(p-p)} = 1 \text{ V (MUX signal with 8% pilot level)}$.
- 2. $f_m = 1 \text{ kHz}$.
- 3. At supply voltages of 8 to 11 V, resistors of 5,6 k Ω have to be connected from ground to pins 2 and 3.
- 4. Measured with a composite input signal: L = R; f_m = 1 kHz; 90% M-signal; 9% pilot signal; 1% spurious signal of 110 kHz (for α_{114}) or 186 kHz (for α_{190}).

ACI suppression is defined as: 20 log $\frac{V_0 \text{ (at 4 kHz)}}{V_0 \text{ (at 1 kHz)}}$.

- 5. Measured with a composite input signal: L = R; $f_m = 1 \text{ kHz}$; 80% S-signal; 9% pilot signal; 10% SCA carrier (67 kHz); $d_{13} = 20 \log \frac{V_0 \text{ (at 9 kHz)}}{V_0 \text{ (at 1 kHz)}}$.
- 6. See also Figs 7 and 10; compensated with RC network on pin 7.
- Adjustable with R₁₃₋₈; see also Fig. 28; for field strength dependent input (pin 14) see next page.
- B. $\Delta V_i = 20 \log \frac{V_{11-16} \text{ (mono/stereo)}}{V_{11-16} \text{ (stereo/mono)}}$

For additional circuitry on pin 6 see Figs 7 and 10; for graph see Fig. 29.

9. For example of notch filter see Fig. 6.

TDA1005A TDA1005AT

D.C. CHARACTERISTICS

T _{amb} = 25 °C; V ₈₋₁₆ = 15 V (unless otherwise specified)				
Supply voltage range	V ₈₋₁₆		8 to 18	V *
Total current (except indicator lamp)	lg '	typ.	21	mΑ
Power dissipation (operating) at lamp current I ₁₅ = 100 mA; V ₈₋₁₆ = 18 V	P _{tot}	<	570	mW
Saturation voltage of lamp driver at I ₁₅ = 100 mA	V ₁₅₋₁₆	typ.	0,9	v
Maximum lamp driver voltage	V ₁₅₋₁₆	<	22	٧
Switching voltage				
to mono	V14-16	>		V **
to stereo	V14-16		0,65	
hysteresis	V14-16	typ.	0,2	v

APPLICATION NOTES

1. Switching-off the VCO

If the internal gain is used with A.M. reception, the VCO can be switched off by connecting pin 9 via a 100 $k\Omega$ resistor to ground (no h.f. signal on the leads), or connecting pin 7 to ground.

2. Mono button

The decoder can be switched to the mono position by connecting pin 12 to ground. The VCO then remains operational so this possibility cannot be used with A.M. reception.

3. Economic periphery

- a. For a fixed stereo switching level of \leq 16 mV a resistor of 620 k Ω can be connected between pin 13 and positive supply (+) instead of a potentiometer in series with a resistor.
- b. The 10 $k\Omega$ resistor connected in parallel with the stereo indicator lamp can be omitted, however, some TDA1005A circuits will switch to mono during lamp failure.
- c. The 10 μ F capacitor in series with a 1 k Ω resistor at pin 9 can be decreased to a 1 μ F capacitor, bearing in mind that the distortion will increase, especially around loop resonance.
- d. A MUX-input filter is not needed, if i.f. roll-off starts at a frequency of 62 kHz.

4. Printed-circuit boards

For both the f.d.m. and t.d.m. stereo decoder circuits a printed-circuit board layout is given as an example (Figs 8 and 11). Also for an active filter, which is mainly used with a t.d.m. decoder, a printed-circuit board layout is given in Fig. 4.

5. Notch filter

If attention has to be paid for suppression of the 57 kHz signal (T.W.S. = Traffic Warning System) and the 19 kHz signal, an input filter can be used as given in Fig. 6.

- * At supply voltages of 8 to 11 V, resistors of 5,6 k Ω have to be connected from ground to pins 2 and 3.
- ** Maximum voltage for safe operation: V₁₄₋₁₆ < 4 V.

APPLICATION INFORMATION

Fig. 3 Active filter circuit diagram.

Fig. 4 Printed-circuit board component side, showing component layout.

Fig. 5 Printed-circuit board showing track side.

- (1) Transistor to achieve low impedance driving of notch filter.
- (2) 33 nF will give common mode suppression of 19 kHz.
- (3) Coil: TOKO 10 PA, 700 turns, ϕ 0,07 mm Cu; case type: P06-0114; drumcore: AN01-0021; base 5 pins type: 07-0084-02; core type CAN02-0029.

Fig. 6 Example of using a 19 kHz tuned notch filter; for other input structures see Figs 13 to 21.

Coil data:

L₁L₂ = 2,6 mH

 $Q_{1-2} = 35$; $Q_{min} = 30$

TDA1005A TDA1005AT

 $N_{1-2} = 357\%$ turns;

 $N_{3-4} = 297\%$ turns:

scrambled wound with wire diameter 0.09 mm.

 $\frac{E_{3-4}}{E_{1-2}} \times 100\% = 82\%$

Notes

- 1. For other input structures see Figs 13 to 21; shown here is with RC-filter (Fig. 15).
- 2. The micropoco capacitor has a temperature coefficient of 125.10⁻⁶ ± 60.10⁻⁶ K⁻¹.
- 3. In simplified circuits a fixed resistor (e.g. 620 k Ω) can be used for a guaranteed switching level of \leq 16 mV.
- 4. Either the LED circuit or an external stereo indicator can be used.

Fig. 7 Basic application circuit of a frequency-division multiplex (f.d.m.) stereo decoder.

- 1. Positive supply (+ 15 V).
- (+ 15 V). 2. Left output.
- 3. Ground.
- 4. Right output.
- 5. Mono/stereo switch.
- 6. MUX input.
- 7. External stereo indicator.

Fig. 9 Printed-circuit board showing track side.

TDA1005A TDA1005AT

Notes

- 1. For other input structures see Figs 13 to 21; shown here is with RC-filter (Fig. 15).
- 2. The micropoco capacitor has a temperature coefficient of 125.10⁻⁶ ± 60.10⁻⁶ OC⁻¹.
- 3. In simplified circuits a fixed resistor (e.g. 620 k Ω) can be used for a guaranteed switching level of \leq 16 mV.
- 4. Either the LED circuit or an external stereo indicator can be used.

Fig. 10 Basic application circuit of a time-division multiplex (t.d.m.) stereo decoder.

- 1. Positive supply (+ 15 V).
- 2. Left output.
- 3. Ground.
- 4. Right output.
- 5. Mono/stereo switch.
- 6. MUX input.
- External stereo indicator.

Fig. 12 Printed-circuit board showing track side.

INPUT STRUCTURES (see also Figs 7 and 10)

Fig. 13 Without filtering.

Fig. 15 With RC-filter for achieving i.f. roll-off (typ. 62 kHz).

Fig. 14 Printed-circuit board component side, showing component layout of Fig. 13.

Fig. 16 Printed-circuit board component side, showing component layout of Fig. 15.

Fig. 17 With 19 kHz notch filter.

Fig. 18 Printed-circuit board component side, showing component layout of Fig. 17.

side, showing component layout of Fig. 19. +15 V $4.7 k\Omega$ MUX BC547 input 23 mH $4.7 \mu F$ -560 to pin 11 рF TDA1005A 6,8 1,5 kΩ 33 nF 10 kΩ to pin 12 TDA1005A 7Z78933 15 kΩ 7Z78939 4,7 µF Fig. 21 With RC-filter, buffer stage and 19 kHz notch filter.

560 p.F

7 6

1,5kΩ BC547

Fig. 22 Printed-circuit board component side, showing component layout of Fig. 21.

time-division multiplex system; adjusted at 1 kHz (R4 in Fig. 10)

--- frequency-division multiplex system; adjusted at 1 and 5 kHz (R4 and R10 in Fig. 7)

Conditions: $V_{8-16} = 15 \text{ V}$; $V_{i(p-p)} = 1 \text{ V}$.

Note: RC-filter for simulating the i.f. roll-off (typ. 62 kHz).

Fig. 23 Channel separation as a function of frequency.

Fig. 24 Channel separation at f = 1 kHz as a function of resistance between pins 5 and 10 for a t.d.m. system. For test circuit see Fig. 23.

(2)
$$d_{BFC} = 20 \log \frac{V_{BFC}}{V \text{ (at 12 kHz)}}$$
.

Fig. 26 Spectrum at the decoder outputs; A for t.d.m.; B for f.d.m. $V_{i(p-p)} = 1$ V; R = 1; L = 0; m = 90% for f = 12 kHz; m = 10% for f = 19 kHz.

Fig. 27 Typical values of the capture range of the oscillator as a function of the pilot threshold voltage at MUX-input.

 V_{8-16} = 15 V; Δf_{VCO} = f_{VCO} -76 kHz where: f_{VCO} = modulated, free-running oscillator frequency; Δf_{VCO} = maximum f_{VCO} deviation which will be captured if pilot signal (pin 11) is switched-on.

Fig. 28 Pilot input voltage switching level (stereo 'on') as a function of resistance between pins 8 and 13.

Fig. 29 Channel separation as a function of V_{6-16} at 1 kHz (smooth take-over).

6 to 22 V

MOTOR REGULATOR WITH AUTOMATIC TAPE-END INDICATOR

The TDA1006A is for use in car radio tape-decks

The circuit incorporates the following functions:

- capstan motor speed control;
- an electronic motor stop in conjunction with hysteresis slip-coupling or commutator pulses;
- an automatic switch from playback to radio at tape-end;
- playback indication with lamp;
- tape-end indication with intermittent light.

QUICK REFERENCE DATA

Supply voltage range

Supply Tollago Lango	* F		
Ambient temperature	T _{amb}	typ.	25 °C
Supply voltage	V _P	typ.	14 V
Motor regulator			
Current consumption ($R_{3-4} = 7.5 \text{ k}\Omega$) radio playback ($I_1 = 0$) playback tape-end	14 14 14 14	typ. typ. typ. typ.	9 mA 12 mA 52 mA 32 mA
Operating motor current	13	typ.	200 mA
Supply voltage rejection	$\Delta V_{3-2}/\Delta V_{4-2}$	typ.	1 mV/V
Automatic stop circuit			
Input current	114	>	25 μΑ
Input voltage at commutator	V ₁₁₋₂	-6	to +6 V

۷p

PACKAGE OUTLINE

16-lead DIL; plastic power (SOT-38N2).

November 1979

ω

RATINGS

(peak value)

Operating ambient temperature see power derating curve Fig. 2

Storage temperature

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply vo	oltage				V ₄₋₂	max.	24 V
pin 9		1			V9-2	max.	24 V
					V ₄₋₂	> ,	V ₉₋₂
Output co	urrent						
pin 1	(d.c. value)			× .	-11	max.	40 mA
	(peak value)				^{−!} 1M	max.	100 mA
pin 3	(d.c. value)				l3	max.	250 mA
	(non-repetitive peak value)		*	*	13SM	max.	600 mA
pin 8	(d.c. value)				-18	max.	45 mA
	(peak value)				−l8W	max.	80 mA
pin 10	(d.c. value)				⁻¹ 10	max.	20 mA

-110M

Tstg

Tamb

max.

-65 to +150 °C

-25 to +150 °C

20 mA

Fig. 2 Power derating curve; derating factor: 14,3 mW/°C.

CHARACTERISTICS

Input voltage (r.m.s. value)

V _P = 14 V; T _{amb} = 25 °C unless otherwise specified (see test circuit Fig. 3).						
Supply voltage range (pins 4 and 9)	VP		to 22 V	′		
	V ₄₋₂	≥	V ₉₋₂			
Motor regulator						
Current consumption ($R_{3-4} = 7.5 \text{ k}\Omega$)						
radio	14	typ.	9 m			
playback (I ₁ = 0)	14	(typ. 9,5	12 m to 17 m			
playback	14	typ.	52 m	ıΑ		
tape-end	14	typ.	32 m			
Input offset voltage at I ₃ = 3 mA	V ₇₋₆	{ typ. <	2 m 8 m			
Input voltage range (common mode)	$V_{6-2}; V_{7-2}$	2,4 to V	p-0,2 V	,		
Input bias current	1 ₆ ; 1 ₇	typ.	80 n 700 n			
Input sensitivity (for $\Delta I_3 = 100 \text{ mA}$)	ΔV_{7-6}	<	13 m	١V		
Operating voltage of TR38 at I _{3SM} = 600 mA	V ₃₋₂	typ.	900 m 1800 m			
Supply voltage rejection	$\Delta V_{3-2}/\Delta V_{4-2}$	typ.	1 m	V/Vr		
Operating motor current	13	{ typ. <	200 m 250 m			
Automatic motor 'stop' circuit						
Input current	1 ₁₄	>	25 μ	Α		
Voltage when TR20 is not conducting (pin 16; peak-to-peak value)	V _{16-2(p-p)}	0,9	to 1,4 V	,		
Voltage when TR20 is conducting (pin 16)	V ₁₆₋₂	<	250 m	ı۷		
Input voltage at commutator (pin 11)	V ₁₁₋₂	6	to +6 V	,		
Stop signal amplifier						
Differential input voltage	V ₁₂₋₁₃	typ. 2,6	3,5 m to 4,4 m			
Voltage without input signal	V ₁₁₋₂	85 t	to 170 m	ı۷		

10 mV

V_{12-13(rms)}

TDA1006A

CHARACTERISTICS (continued)

Radio and	preamplifier	supply

Radio supply current (d.c.)	
Saturation voltage at $-18M = 80 \text{ mA}$	
Preamplifier supply current (d.c.)	
Saturation voltage at $-I_{10} = 20 \text{ mA}$	

Lamp	driver

Output current (d.c.)	
Saturation voltage at $-I_{1M} = 100 \text{ mA}$	
D.C. voltage level	

-18	€	45 mA
Vg.9	€	1,35 V

$$-I_{10}$$
 \leq 20 mA V_{10-9} \leq 1,2 V

-l ₁	€	40 m/
V ₄₋₁	€	1,85 V

V₁₅₋₂

0,75 to 1,2 V

Fig. 3 Test circuit.

November 1979

APPLICATION INFORMATION

(1) Radio:

lamp off

(2) D.C. motor

Playback:

lamp on

 E_{3000} = 7,2 to 8,3 V

Tape-end: intermittent light

 $R_m = 27 \Omega$

Fig. 4 Application circuit diagram.

GATING/FREQUENCY DIVIDER FOR ELECTRONIC MUSICAL INSTRUMENTS

The TDA 1008 is a monolithic bipolar integrated circuit based on I²L (integrated injection logic), with frequency dividers directly coupled to the gating system.

The outputs of the dividers, together with the input signal, are applied internally to nine gate inputs. By activating a key input, five successive signals out of the nine are selected and transferred to the outputs. Five key inputs are available, each selecting a different combination; e.g. 16¹, 8¹, 4¹, 2¹ and 1¹. The output signal level is proportional to the voltage applied to the key inputs. By connecting RC combinations to the key inputs, sustain of the output signal is easily obtained. The duration of the sustained signal can be adjusted by connecting a variable voltage to the appropriate terminal (pin 7).

In electronic organs using a top octave synthesizer directly coupled to twelve TDA1008 circuits, only one busbar per manual is needed to obtain five octave-related tones per key.

The tone output signals are symmetrical around a fixed d.c. voltage, thereby avoiding key clicks.

QUICK REFERENCE DATA

Supply voltage (pin 1)	V _{P1-16}	typ.	12	٧
Supply voltage divider (pin 13)	V _{P13-16}	typ.	6	V
Supply voltage tone outputs (pins 2, 3, 4, 5, 6)	V _{Ptone}	typ.	9	٧
Input voltage; HIGH	V _{IH}	$>$ $^{-1}$	1,5	٧
Input voltage; LOW	v_{IL}	<	0,4	V
Required key voltage (pins 8, 9, 10, 11, 12)	V _{K1} to V _{K5}	typ.	V _{P13-16}	
Key input impedance (see note)	Z_{K1} to Z_{K5}	>	8	ΩM
Supply current (pin 1) all keys activated no activated keys	! ₁	typ.		mA mA
Supply current (pin 13)	^l 13	typ.	11.	mΑ
Sustaining voltage range (pin 7)	V _{7sust}		0 to 2	V
Input frequency	fi	<	100	kHz
Tone output signal voltage with one key activated	V _{Q(p-p)}	typ.	600	mV
Operating ambient temperature range	T _{amb}		0 to + 70	оС

Note

Key input impedance is determined by the voltage applied to pin 7. This impedance is stated at zero volt on pin 7.

PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38).

Fig. 1 Circuit diagram.

2

Fig. 2 Block diagram.

Fig. 3 Logic diagram of the I²L 2-divider.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

•	· ·			
Supply voltages				
pin 1	V _{P1-16}	max.	13	٧
pin 13	V _P 13-16	max.	6,5	٧
pin 14	VP14-16	max.	6,5	٧
Input voltages				
K inputs (pins 8, 9, 10, 11, 12)	V _{K1} to V _{K5}	max.	VP13-16	
f; input (pin 15)	V_{fi}	max.	15	٧
S input (pin 7)	VS	max.	2,5	٧
Output voltages				
Q ₁ to Q ₅ (pins 2, 3, 4, 5, 6)	V_{Q1} to V_{Q5}	max.	12	V
Operating ambient temperature	see derating co	urve Fig	. 4	
Storage temperature	T _{stg}	-2	5 to + 125	οС
Total power dissipation	see derating co	urve Fig	. 4	

Fig. 4 Power derating curve.

100 µA

typ.

CHARACTERISTICS

All voltages with reference to pin 16; all currents positive into the IC.

Supply	voltage	range
--------	---------	-------

Supply current (pin 13)

pin 13	90	V _{P13-16}	5 to 6,5 V
pin 1		VP1-16	10 to 13 V
pin 9		V _{P9-16}	see note 1

Characteristics at T_{amb} = 25 °C; V_{P13-16} = 6 V; V_{P1-16} = 12 V; see Fig. 6.

K-inputs at 6 V	l ₁₃	7,5 to 16 m typ. 11 m	
Supply current (pin 1) K-inputs at 6 V	. I ₁	8 to 16 m typ. 12,7 m	
Input current at f _i (pin 15) V _{fi} = 6 V	I ₁₅	100 to 200 μ typ. 150 μ	
Input current K-inputs (pins 8, 9, 10, 11, 12) V _K = 6 V		typ. 150 n	ıΑ

S-input connected to 0 V ١ĸ 750 nA 80 to 150 μA S-input connected to 2,0 V IK

Input current S-input (pin 7)			
no key inputs activated	Is	typ.	500 μA
all key inputs activated	Is	typ.	10 μA
Output current Q-output (pins 2, 3, 4, 5, 6)		230	0 to 450 μA

 $V_{\Omega} = LOW \text{ (note 2)}$ + 10 300 µA typ. 230 to 450 μA Vo = HIGH (note 2) $-l_{\Omega}$ typ. 300 µA

Output current pin 14 < 20 μΑ 114 Peak output voltage (pins 2, 3, 4, 5, 6) by activating one K-input only (Fig. 5) 300 mV V_{QM} typ. Input frequency at pin 15

 $V_{15HIGH} > 1,5 \text{ V}; V_{15LOW} < 0,4 \text{ V}$ fį < 100 kHz

Notes

- 1. This voltage has to be in the middle of Vp1-16 and V13-16.
- 2. To be multiplied by the number of activated K-inputs.

Fig. 5

TRUTH TABLE

	К1	K ₂	Кз	K4	К5
01	fį	fį/2	f _i /4	fį/8	f;/16
02	f _i /2	f _i /4	f _i /8	f _i /16	f _i /32
Q3	f _i /4	f _i /8	fi/16	f _i /32	f _i /64
04	f _i /8	f _i /16	f _i /32	f _i /64	f _i /128
Ω ₅	fj/16	f _i /32	f _i /64	f _i /128	f _i /256

Activating 'one' key input only gives the notified output frequency.

By activating more key inputs at a time, the output amplitude will be the sum signal of the notified frequencies.

APPLICATION INFORMATION

- (1) If required contact-current limiting resistors.
- (2) a. Factory test point; ungated output from the final divider.
 - b. Can be used for obtaining very low frequencies (pedals). It should be connected to pin 13 (+ 6 V) via a resistor of minimum 300 k Ω to deliver the current I₁₄.

Fig. 6 Basic application diagram.

6 W AUDIO POWER AMPLIFIER

The TDA1010 is a monolithic integrated class-B audio amplifier circuit in a 9-lead single in-line (S1L) plastic package. The device is primarily developed as a 6 W car radio amplifier for use with 4 Ω and 2 Ω load impedances. The wide supply voltage range and the flexibility of the IC make it an attractive proposition for record players and tape recorders with output powers up to 8 W. Special features are:

- single in-line (SIL) construction for easy mounting
- separated preamplifier and power amplifier
- high output power
- low-cost external components
- good ripple rejection
- thermal protection

QUICK REFERENCE DATA

Supply voltage range	V _P		6 to 24	٧
Repetitive peak output current	IORM	max.	3	Α
Output power at pin 2; $d_{tot} = 10\%$ $V_P = 14.4 \text{ V}$; $R_1 = 2 \Omega$	Po	typ.	6,4	w
$V_{P} = 14.4 \text{ V}; \text{ R}_{L}^{-} = 4 \Omega$ $V_{P} = 14.4 \text{ V}; \text{ R}_{L}^{-} = 8 \Omega$	Po Po	typ.	6,2 3,4	
V_P = 14,4 V; R_L = 2 Ω ; with additional bootstrap resistor of 220 Ω between pins 3 and 4	P _o	typ.	9	w
Total harmonic distortion at $P_0 = 1$ W; $R_L = 4 \Omega$	d _{tot}	typ.	0,2	%
Input impedance preamplifier (pin 8) power amplifier (pin 6)	Z _i Z _i	typ.		kΩ kΩ
Total quiescent current at V _P = 14,4 V	I _{tot}	typ.	31	mΑ
Sensitivity for P_0 = 5,8 W; R_L = 4 Ω	v _i	typ.	10	mV
Operating ambient temperature	T _{amb}	-25 t	o + 150	οС
Storage temperature	T _{stg}	-55 t	o + 150	оС

PACKAGE OUTLINE

9-lead SIL; plastic (SOT-110A).

Fig. 1 Circuit diagram.

RATINGS Limiting va

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage	V_P	max.	24 V
Peak output current	losa	max	5 A

Repetitive peak output current IORM max. 3 A

Total power dissipation see derating curve Fig. 2

Storage temperature T_{stg} -55 to $+150\,$ °C Operating ambient temperature T_{amb} -25 to $+150\,$ °C

A.C. short-circuit duration of load during sine-wave drive; without heatsink at Vp = 14,4 V

t_{sc} max. 100 hours

Fig. 2 Power derating curve.

HEATSINK DESIGN

Assume Vp = 14,4 V; R_L = 2 Ω ; T_{amb} = 60 °C maximum; thermal shut-down starts at T_j = 150 °C. The maximum sine-wave dissipation in a 2 Ω load is about 5,2 W. The maximum dissipation for music drive will be about 75% of the worst-case sine-wave dissipation, so this will be 3,9 W. Consequently, the total resistance from junction to ambient

$$R_{th j-a} = R_{th j-tab} + R_{th tab-h} + R_{th h-a} = \frac{150 - 60}{3.9} = 23 \text{ °C/W}.$$

Since R_{th i-tab} = 12 °C/W and R_{th tab-h} = 1 °C/W,

$$R_{th h-a} = 23 - (12 + 1) = 10 \text{ °C/W}.$$

_					
	D.C. CHARACTERISTICS				
	Supply voltage range	V _P	6 t	o 24	\mathbf{V}^{-}
	Repetitive peak output current	IORM	<	3	Α
	Total quiescent current at V _P = 14,4 V	I _{tot}	typ.	31	mA.
	A.C. CHARACTERISTICS				
	T_{amb} = 25 °C; V_P = 14,4 V; R_L = 4 Ω ; f = 1 kHz unless otherwise	specified; see a	lso Fig. 3.		
	A.F. output power (see Fig. 4) at d _{tot} = 10%; measured at pin 2; with bootstrap				
	$V_P = 14,4 \text{ V; R}_L = 2 \Omega \text{ (note 1)}$	Po	typ.	6,4	W
	V_p = 14,4 V; R_L = 4 Ω (note 1 and 2)	Po	{ > typ.	5,9 6,2	
	$V_P = 14,4 \text{ V; R}_L = 8 \Omega \text{ (note 1)}$	Po	typ.	3,4	W
	$V_P = 14.4 \text{ V}$; $R_L = 4 \Omega$; without bootstrap	Po	typ.	5,7	W
	V_P = 14,4 V; R_L = 2 Ω ; with additional bootstrap resistor of 220 Ω between pins 3 and 4	Po	typ.	9	w
	Voltage gain preamplifier (note 3)	G _{v1}	typ.	24 o 27	dB dB
	power amplifier	G _{v2}	typ.		dB
	total amplifier	G _{v tot}	typ. 51 t	54 o 57	dB dB
	Total harmonic distortion at P _O = 1 W	d _{tot}	typ.	0,2	%
	Efficiency at $P_0 = 6 \text{ W}$	η	typ.	75	%
	Frequency response (-3 dB)	В	80 Hz t	o 15	kHz
	Input impedance preamplifier (note 4)	Z _i	typ. 20 t	30 o 40	kΩ kΩ
	power amplifier (note 5)	Z _i	typ. 14 t	20 o 26	$k\Omega$
	Output impedance of preamplifier; pin 7 (note 5)	Zo	typ. 14 t	20 o 26	$k\Omega$
	Output voltage preamplifier (r.m.s. value) d _{tot} < 1% (pin 7) (note 3)	V _{o(rms)}	>	0,7	v
	Noise output voltage (r.m.s. value; note 6) $R_S = 0 \Omega$	V _{n(rms)}	typ.	0.3	mV
		· n(rms)	typ.	•	mV
	$R_S = 8.2 \text{ k}\Omega$	V _{n(rms)}	<	•	mV
	Ripple rejection at f = 1 kHz to 10 kHz (note 7) at f = 100 Hz; C2 = 1 μ F	RR RR	> >		dB dB
	Sensitivity for P _O = 5,8 W	Vi	typ.		mV
	Bootstrap current at onset of clipping; pin 4 (r.m.s. value)	¹ 4(rms)	typ.		mΑ

Notes

- 1. Measured with an ideal coupling capacitor to the speaker load.
- 2. Up to $P_0 \le 3 \text{ W}$: $d_{tot} \le 1\%$.
- 3. Measured with a load impedance of 20 k Ω .
- 4. Independent of load impedance of preamplifier.
- Output impedance of preamplifier (| Z_o|) is correlated (within 10%) with the input impedance (| Z_i|) of the power amplifier.
- 6. Unweighted r.m.s. noise voltage measured at a bandwidth of 60 Hz to 15 kHz (12 dB/octave).
- 7. Ripple rejection measured with a source impedance between 0 and 2 k Ω (maximum ripple amplitude: 2 V).

Fig. 3 Test circuit.

Fig. 4 Output power of the circuit of Fig. 3 as a function of the supply voltage with the load impedance as a parameter; typical values. Solid lines indicate the power across the load, dashed lines that available at pin 2 of the TDA1010. R_L = 2 $\Omega^{(1)}$ has been measured with an additional 220 Ω bootstrap resistor between pins 3 and 4. Measurements were made at f = 1 kHz, d_{tot} = 10%, T_{amb} = 25 °C.

Fig. 5 See next page.

Total harmonic distortion in the circuit of Fig. 3 as a function of the output power with the load impedance as a parameter; typical values. Solid lines indicate the power across the load, dashed lines that available at pin 2 of the TDA1010. R_L = 2 Ω (1) has been measured with an additional 220 Ω bootstrap resistor between pins 3 and 4. Measurements were made at f = 1 kHz, Vp = 14,4 V.

Fig. 5 For caption see page 6.

Fig. 6 Frequency characteristics of the circuit of Fig. 3 for three values of load impedance; typical values. P_0 relative to 0 dB = 1 W; V_p = 14,4 V.

Fig. 7 Total power dissipation (solid lines) and the efficiency (dashed lines) of the circuit of Fig. 3 as a function of the output power with the load impedance as a parameter (for R_L = 2 Ω an external bootstrap resistor of 220 Ω has been used); typical values. V_P = 14,4 V; f = 1 kHz.

Fig. 8 Thermal resistance from heatsink to ambient of a 1,5 mm thick bright aluminium heatsink as a function of the single-sided area of the heatsink with the total power dissipation as a parameter.

APPLICATION INFORMATION

Fig. 9 Complete mono audio amplifier of a car radio.

7277931

Fig. 10 Track side of printed-circuit board used for the circuit of Fig. 9; p.c. board dimensions 92 mm \times 52 mm.

Fig. 11 Component side of printed-circuit board showing component layout used for the circuit of Fig. 9.

Fig. 12 Complete stereo car radio amplifier.

Fig. 13 Track side of printed-circuit board used for the circuit of Fig. 12; p.c. board dimensions 83 mm x 65 mm.

Fig. 14 Component side of printed-circuit board showing component layout used for the circuit of Fig. 12. Balance control is not on the p.c. board.

Fig. 15 Channel separation of the circuit of Fig. 12 as a function of the frequency.

Fig. 16 Power supply of circuit of Fig. 17.

Fig. 17 Complete mains-fed ceramic stereo pick-up amplifier; for power supply see Fig. 16.

Fig. 18 Track side of printed-circuit board used for the circuit of Fig. 17 (Fig. 16 partly); p.c. board dimensions 169 mm x 118 mm.

Fig. 19 Component side of printed-circuit board showing component layout used for the circuit of Fig. 17 (Fig. 16 partly).

Fig. 20 Channel separation of the circuit of Fig. 17 as a function of frequency.

2 TO 6 W AUDIO POWER AMPLIFIER

The TDA1011 is a monolithic integrated audio amplifier circuit in a 9-lead single in-line (SIL) plastic package. The device is especially designed for portable radio and recorder applications and delivers up to 4 W in a 4 Ω load impedance. The device can deliver up to 6 W into 4 Ω at 16 V loaded supply in mains-fed applications. The maximum permissible supply voltage of 24 V makes this circuit very suitable for d.c. and a.c. apparatus, while the very low applicable supply voltage of 3,6 V permits 6 V applications. Special features are:

- single in-line (SIL) construction for easy mounting
- single in the (ore) construction for easy mounts
 separated preamplifier and power amplifier
- high output power
- thermal protection
- high input impedance
- low current drain
- limited noise behaviour at radio frequencies

QUICK REFERENCE DATA

Supply voltage range	V _P	3,6 to 24 V		V
Peak output current	I _{OM}	max.	3	Α.
Output power at d _{tot} = 10%				
$V_P = 16 \text{ V}; R_L = 4 \Omega$	· Po	typ.	6,5	Ŵ
$V_P = 12 \text{ V}; \text{ R}_L = 4 \Omega$	P_{o}	typ.	4,2	W
$V_P = 9 V; R_L = 4 \Omega$	Po	typ.	2,3	W
$V_P = 6 V; R_L = 4 \Omega$	P_{o}	typ.	1,0	W
Total harmonic distortion at P_0 = 1 W; R_L = 4 Ω	d _{tot}	typ.	0,2	%
Input impedance				
preamplifier (pin 8)	Z _i	> "	100	$k\Omega$
power amplifier (pin 6)	Zi	typ.	20	$k\Omega$
Total quiescent current	ltot	typ.	14	mΑ
Operating ambient temperature	T _{amb}	-25 to	+ 150	oC
Storage temperature	T _{stg}	-55 to	+ 150	oC

PACKAGE OUTLINE

9-lead SIL; plastic (SOT-110A).

Fig. 1 Circuit diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage V_P max. 24 V

Peak output current I_{OM} max. 3 A

Total power dissipation see derating curve Fig. 2

Storage temperature T_{stg} -55 to + 150 °C Operating ambient temperature T_{amb} -25 to + 150 °C

A.C. short-circuit duration of load during sine-wave drive; $V_P = 12 V$ t_{SC} max. 100 hours

Fig. 2 Power derating curve.

	D.C. CHARACTERISTICS				
	Supply voltage range	VP	3,6	to 24	٧
	Repetitive peak output current	IORM	<	2	A
	Total quiescent current at V _P = 12 V	l _{tot}	typ.	• •	mA mA
	A.C. CHARACTERISTICS				
	T_{amb} = 25 °C; V_p = 12 V; R_L = 4 Ω ; f = 1 kHz unless otherwise specifi	ed: see also	Fig. 3.		
	A.F. output power at d _{tot} = 10% (note 1) with bootstrap:			0.5	
	$V_P = 16 \text{ V}; R_L = 4 \Omega$	Po	typ.	6,5	
	$V_P = 12 \text{ V}; R_L = 4 \Omega$	Po	> typ.	3,6 4,2	
	$V_P = 9 V; R_L = 4 \Omega$	Po	typ.	2,3	
	$V_P = 6 V; R_L = 4 \Omega$	Po	typ.	1,0	
-	without bootstrap: $V_P = 12 \text{ V}; R_L = 4 \Omega$	Po	typ.	3,0	
	Voltage gain:	•		22	-ID
	preamplifier (note 2)	G _{v1}	typ. 21	25 to 25	dB dB
	power amplifier	G _{v2}	typ. 27	29 to 31	dB dB
	total amplifier	G _{v tot}	typ. 50	52 to 54	dB dB
	Total harmonic distortion at P ₀ = 1,5 W	d _{tot}	typ.	0,3 1	% %
	Frequency response; –3 dB (note 3)	В	60 Hz	to 15	kHz
	Input impedance: preamplifier (note 4)	Z _{i1}	> typ.	100 200	
	power amplifier	Z _{i2}	typ.		kΩ
	Output impedance preamplifier	Z ₀ 1	typ.	1	kΩ
	Output voltage preamplifier (r.m.s. value) dtot < 1% (note 2)	V _{o(rms)}	>	0,7	V 1
	Noise output voltage (r.m.s. value; note 5) R_{S} = 0 Ω	V _{n(rms)}	typ.	0,2	mV
	$R_S = 10 \text{ k}\Omega$	V _{n(rms)}	typ.		mV
		TI(TITIS)	<	1,4	mV .
	Noise output voltage at f = 500 kHz (r.m.s. value) B = 5 kHz; $R_S = 0 \Omega$	V _{n(rms)}	typ.	8	μ٧
	Ripple rejection (note 6) f = 1 to 10 kHz f = 100 Hz; C2 = 1 µF	RR RR	typ.		dB dB
	Bootstrap current at onset of clipping; pin 4 (r.m.s. value)				
	bootstrap current at onset or clipping; pin 4 (r.m.s. value)	¹ 4(rms)	typ.	33	mΑ

Notes

- 1. Measured with an ideal coupling capacitor to the speaker load.
- 2. Measured with a load resistor of 20 k Ω .
- Measured at P_O = 1 W; the frequency response is mainly determined by C1 and C3 for the low frequencies and by C4 for the high frequencies.
- 4. Independent of load impedance of preamplifier.
- 5. Unweighted r.m.s. noise voltage measured at a bandwidth of 60 Hz to 15 kHz (12 dB/octave).
- 6. Ripple rejection measured with a source impedance between 0 and 2 k Ω (maximum ripple amplitude : 2 V).

Fig. 3 Test circuit.

APPLICATION INFORMATION

Fig. 4 Circuit diagram of a 4 W amplifier.

Fig. 5 Total quiescent current as a function of supply voltage.

Fig. 6 Track side of printed-circuit board used for the circuit of Fig. 4; p.c. board dimensions 62 mm \times 48 mm.

Fig. 7 Component side of printed-circuit board showing component layout used for the circuit of Fig. 4.

Fig. 8 Total harmonic distortion as a function of output power across R_L ; —— with bootstrap; -- without bootstrap; f=1 kHz; typical values. The available output power is 5% higher when measured at pin 2 (due to series resistance of C10).

Fig. 9 Output power across R $_{\rm L}$ as a function of supply voltage with bootstrap; d $_{\rm tot}$ = 10%; typical values. The available output power is 5% higher when measured at pin 2 (due to series resistance of C10).

Fig. 10 Voltage gain as a function of frequency; P_0 relative to 0 dB = 1 W; V_P = 12 V; R_L = 4 Ω .

Fig. 11 Total harmonic distortion as a function of frequency; P_0 = 1 W; V_P = 12 V; R_L = 4 Ω .

Fig. 12 Ripple rejection as a function of R2 (see Fig. 4); RS = 0; typical values.

Fig. 13 Noise output voltage as a function of R2 (see Fig. 4); measured according to A-curve; capacitor C5 is adapted for obtaining a constant bandwidth.

Fig. 14 Noise output voltage as a function of frequency; curve a: total amplifier; curve b: power amplifier; B = 5 kHz; $R_S = 0$; typical values.

Fig. 15 Voltage gain as a function of R2 (see Fig. 4).

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

2 TO 6 W AUDIO POWER AMPLIFIER

The TDA1011A is a monolithic integrated audio amplifier circuit in a 9-lead single in-line (SIL) plastic package. The device is especially designed for portable radio and recorder applications and delivers up to 4 W in a 4 Ω load impedance. The device can deliver up to 6 W into 4 Ω at 16 V loaded supply in mains-fed applications. The maximum permissible supply voltage of 24 V makes this circuit very suitable for d.c. and a.c. apparatus, while the low applicable supply voltage of 5,4 V permits 9 V applications. The power amplifier has an inverted input/output which makes the circuit optimal for applications with active tone control and spatial stereo. Special features are:

- single in-line (SIL) construction for easy mounting
- separated preamplifier and power amplifier
- high output power
- thermal protection
- high input impedance
- low current drain
- limited noise behaviour at radio frequencies

QUICK REFERENCE DATA

Supply voltage range	V_{P}	/ _P 5,4 to 24 V		V
Peak output current	IOM	max.	3	Α
Output power at d_{tot} = 10% V_P = 16 V ; R_L = 4 Ω V_P = 12 V ; R_L = 4 Ω V_P = 9 V ; R_L = 4 Ω	Po Po Po	typ. typ. typ.	6,5 4,2 2,3	W W
$V_P = 6 \text{ V}; R_L = 4 \Omega$ Total harmonic distortion at $P_0 = 1 \text{ W}; R_L = 4 \Omega$	P _o d _{tot}	typ. typ.	1,0 0,2	
Input impedance preamplifier (pin 8)	Z _i	>	·	kΩ
Total quiescent current	ltot	typ.	14	mΑ
Operating ambient temperature Storage temperature	T _{amb} T _{stg}	–25 to + –55 to +		-

PACKAGE OUTLINE

9-lead SIL; plastic (SOT-110A).

Fig. 1 Circuit diagram.

Tamb

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

24 V Supply voltage V_{P} max.

Peak output current max. 3 A ЮМ Total power dissipation see derating curve Fig. 2

Storage temperature -55 to + 150 °C T_{sta} Operating ambient temperature -25 to + 150 °C

A.C. short-circuit duration of load during sine-wave drive; Vp = 12 V max. 100 hours t_{sc}

Fig. 2 Power derating curve.

TDA1011A

D.C. CHARACTERISTICS	-			
Supply voltage range	Vp	5,4 to	o 24	V
Repetitive peak output current	ORM	<		Α
Total quiescent current at V _P = 12 V	I _{tot}	typ.		mA mA
A.C. CHARACTERISTICS				
T_{amb} = 25 °C; V_P = 12 V; R_L = 4 Ω ; f = 1 kHz unless otherwise speci	fied; see also	Fig. 3.		
A.F. output power at d _{tot} = 10% (note 1) with bootstrap:		-		
$V_P = 16 \text{ V}; R_L = 4 \Omega$	Po	typ.	6,5	W
$V_P = 12 \text{ V}; R_L = 4 \Omega$	P_{O}	> typ.	3,6 4,2	
$V_P = 9 V; R_L = 4 \Omega$	Po	typ.	2,3	W
$V_P = 6 \text{ V}; R_L = 4 \Omega$	Po	typ.	1,0	W
without bootstrap: $V_P = 12 \text{ V; R}_L = 4 \Omega$	Po	typ.	3,5	w
Voltage gain: preamplifier (note 2)	G _{v1}	typ. 21 to	23 o 25	dB dB
power amplifier (note 3)	G _{v2}	typ.	29	dB
total amplifier (note 3)	G _{v tot}	typ.	52	dB
Total harmonic distortion at P _o = 1,5 W	d _{tot}	typ.	0,3 1	%
Frequency response; -3 dB (note 4)	В	60 Hz te	o 15	kHz
Input impedance: preamplifier (note 5)	z _{i1}	> typ.	100 200	
Output impedance preamplifier	Z ₀₁	typ.		kΩ
Output voltage preamplifier (r.m.s. value) dtot < 1% (note 2)		>	0,7	
Noise output voltage (r.m.s. value; note 6)	V _{o(rms)}		•	
$R_S = 0 \Omega$	V _{n(rms)}	typ.	•	mV
$R_S = 10 \text{ k}\Omega$	V _{n(rms)}	typ.	0,8	mV
Noise output voltage at f = 500 kHz (r.m.s. value) B = 5 kHz; $R_S = 0 \Omega$	V _{n(rms)}	typ.	8	μV
Ripple rejection (note 6) f = 1 to 10 kHz f = 100 Hz; C2 = 1 µF	RR RR	typ.		dB dB
				٠.

14(rms)

typ.

35 mA

Bootstrap current at onset of clipping; pin 4 (r.m.s. value)

Notes

- 1. Measured with an ideal coupling capacitor to the speaker load.
- 2. Measured with a load resistor of 20 k Ω .
- 3. Measured with R2 = 20 k Ω .
- Measured at P_O = 1 W; the frequency response is mainly determined by C1 and C3 for the low frequencies and by C4 for the high frequencies.
- 5. Independent of load impedance of preamplifier.
- 6. Unweighted r.m.s. noise voltage measured at a bandwidth of 60 Hz to 15 kHz (12 dB/octave).
- 7. Ripple rejection measured with a source impedance between 0 and 2 k Ω (maximum ripple amplitude: 2 V).

Fig. 3 Test circuit.

APPLICATION INFORMATION

Fig. 4 Circuit diagram of a 4 W amplifier.

Fig. 5 Total quiescent current as a function of supply voltage.

Fig. 6 Total harmonic distortion as a function of output power across R_L ; —— with bootstrap; —— without bootstrap; f = 1 kHz; typical values. The available output power is 5% higher when measured at pin 2 (due to series resistance of C10).

Fig. 7 Output power across R_L as a function of supply voltage with bootstrap; $d_{tot} = 10\%$; typical values. The available output power is 5% higher when measured at pin 2 (due to series resistance of C10).

Fig. 8 Noise output voltage as a function of frequency; curve a: total amplifier; curve b: power amplifier; B = 5 kHz; B = 0; typical values.

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

RECORDING / PLAY-BACK AND 2 W AUDIO POWER AMPLIFIER

The TDA1012 is a monolithic integrated audio power amplifier, preamplifier and A.L.C. circuit designed for applications in radio-recorders and recorders. The wide supply voltage range makes this circuit very suitable for d.c. and a.c. apparatus. The circuit is thermal protected and contains the following functions:

- Power amplifier
- Preamplifier
- Automatic Level Control (A.L.C.) circuit
- Voltage stabilizer

QUICK REFERENCE DATA

Supply voltage range	V _P	3,6	to 18	V
Total quiescent current at V _p = 9 V	Itot	typ.	14	mΑ
Power amplifier				
Output power at d_{tot} = 10 % V_P = 9 V ; R_L = 4 Ω	Po	typ.	2	w
Closed loop voltage gain	$G_{\mathbf{c}}$	typ.	36	dB
Preamplifier				
Open loop voltage gain	Go	>	66	dB
Minimum closed loop voltage gain	G _{c min}		31	dB
Output voltage at d _{tot} = 1 %	· v _o	>	2	٧
Automatic Level Control (A.L.C.)				
Gain variation for $\Delta V_i = 40 \text{ dB}$	$\Delta G_{oldsymbol{v}}$	typ.	2	dΒ
Stabilized supply voltage				
Output voltage	V ₁₁₋₁₅	typ.	4,2	٧

PACKAGE OUTLINE

16-lead DIL; plastic medium power (with internal heat spreader).

February 1980

Fig. 1 Block diagram with external components; also used as test circuit.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage (pin 4) $V_P = V_{4-1}$ max.

 $V_{P} = V_{4-1}$ max. 18 V

Non-repetitive peak output current (pin 2)

IOSM max.

2 A

Storage temperature T_{stg}
Crystal temperature T_c

-55 to +150 °C max. 150 °C

Total power dissipation

T_C max. see derating curve Fig. 2

A.C. short-circuit duration of load during sine-wave drive; Vp = 12 V

 t_{SC}

max.

100 hours

Fig. 2 Power derating curve.

I.MA	.н. д	CTEF	

 V_P = 9 V; R_L = 4 Ω ; f = 1 kHz; T_{amb} = 25 °C; measured in test circuit of Fig. 1; unless otherwise specified.

unless otherwise specified.			
Power amplifier			
Output power at d _{tot} = 10 %	Po	typ.	2 W
Closed loop voltage gain	G _c	typ.	36 dB
Total harmonic distortion at P _o = 1W	d _{tot}	<	1 %
Input impedance	z _i	>	1 ΜΩ
Ripple rejection at f = 100 Hz	RR	> '	40 dB
Noise output voltage (r.m.s. value) $R_S = 0 \Omega$; B = 60 Hz to 15 kHz	V _{n(rms)}	typ.	150 μV
Preamplifier			
Open loop voltage gain	Go	>	66 dB
Closed loop voltage gain	G _c	typ.	48 dB
Minimum closed loop voltage gain (when changing R_{f})	G _{c min}		31 dB
Output voltage at d _{tot} = 1 %	V _o	>	2 V
Output voltage with A.L.C. V _i = 4,8 mV	Vo	typ.	1,1 V
Total harmonic distortion with A.L.C.			
$V_i = 4.8 \text{ mV}$ $V_i = 480 \text{ mV}$	d _{tot}	< <	1 % 3 %
Signal-to-noise ratio	d _{tot}		J 70
related to V _i = 1,2 mV; R _S = 0 Ω ; B = 60 Hz to 15 kHz	S/N	typ.	60 dB
Input impedance	Zi	>	100 kΩ
Ripple rejection at f = 100 Hz	RR	>	52 dB
Output impedance	Z _o	<	50 Ω
Automatic Level Control (A.L.C.)	, 0,		
Gain variation for $\Delta V_i = 40 \text{ dB}$	ΔG_{V}	typ.	2 dB
Limiting time at $\Delta V_i = 40 \text{ dB}$	tį	<	50 ms
Level setting time at $\Delta V_i = 40 \text{ dB}$	t _S	<	50 ms
Recovery time at $\Delta V_i = 40 \text{ dB}$	t _r	typ.	100 s
Voltage stabilizer			
Output voltage	V ₁₁₋₁₅	typ.	4,2 V
Load current	¹ 11	<	1 mA

RR

40 dB

Ripple rejection at f = 100 Hz

16-LEAD DUAL IN-LINE; PLASTIC MEDIUM POWER!

top view

- M Maximum Material Condition.
- Centre-lines of all leads are within ±0,127 mm of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by ±0,254 mm.
- Lead spacing tolerances apply from seating plane to the line indicated.

Dimensions in mm

SOLDERING

1. By hand

Apply the soldering iron below the seating plane (or not more than 2 mm above it). If its temperature is below 300 °C it must not be in contact for more than 10 seconds; if between 300 °C and 400 °C, for not more than 5 seconds.

2. By dip or wave

The maximum permissible temperature of the solder is 260 °C; this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified storage maximum. If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

3. Repairing soldered joints

The same precautions and limits apply as in (1) above.

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

4 W AUDIO POWER AMPLIFIER WITH D.C. VOLUME CONTROL

The TDA1013 is a monolithic integrated audio amplifier circuit with d.c. volume control in a 9-lead single in-line (SIL) plastic package. The wide supply voltage range makes this circuit very suitable for applications in mains-fed apparatus such as: television receivers and record players.

The d.c. volume control stage has a good control characteristic with a range of more than 80 dB; control can be obtained by means of a variable d.c. voltage between 4 and 8 V.

The audio amplifier has a well defined open loop gain and a fixed integrated closed loop gain. This offers an optimum in number of external components, performance and stability.

The SIL package (SOT-110A) offers a simple and low-cost heatsink connection.

QUICK REFERENCE DATA

V _P	. 15	to 35 V
IORM	max.	1,5 A
Vi	typ.	55 mV
Po	typ.	4,5 W
d _{tot}	typ.	0,5 %
Vi	typ.	125 mV
ϕ	$_{i}$ $>$ $_{i}$	80 dB
Vi	>	1,2 V
v _i	typ.	55 mV
$ z_i $	typ.	200 kΩ
	Po dtot Vi Vi	I_{ORM} max. V_i typ.

9-lead SIL; plastic (SOT-110A).

Fig. 1 Block diagram and external components.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage	Vp ·	max. 35 V	,
Non-repetitive peak output current	IOSM	max. 3 A	١.
Repetitive peak output current	IORM	max. 1,5 A	١.
Storage temperature	T_{stg}	-55 to + 150 o	С
Crystal temperature	Ti	-25 to + 150 o	С
Total power dissipation	see derating cu	ırve Fig. 2	

HEATSINK DESIGN

Assume Vp = 18 V; RL = 8 Ω ; T_{amb} = 60 °C (max.); T_j = 150 °C (max.); for a 4 W application into an 8 Ω load, the maximum dissipation is about 2,5 W.

The thermal resistance from junction to ambient can be expressed as:

$$R_{th\ j-a} = R_{th\ j-tab} + R_{th\ tab-h} + R_{th\ h-a} = \frac{T_{j\ max} - T_{amb\ max}}{P_{max}} = \frac{150 - 60}{2.5} = 36\ \text{K/W}.$$
 Since $R_{th\ j-tab} = 12\ \text{K/W}$ and $R_{th\ tab-h} = 1\ \text{K/W}$, $R_{th\ h-a} = 36 - (12 + 1) = 23\ \text{K/W}.$

CHARACTERISTICS

$V_P = 18 \text{ V}; R_L = 8 \Omega; f = 1 \text{ kHz}; T_{amb} = 25 \text{ °C};$; unless otherwise specified
---	------------------------------

- 4,112				
Supply voltage	V _P	typ. 15 to	18 35	
Total quiescent current	I _{tot}	typ.	35	mΑ
Ripple rejection at f = 100 Hz; R _S = 0	RR	>	40	dB
Signal-to-noise ratio (d.c. control at minimum gain) see also note	S/N	>	60	dB
Total sensitivity (d.c. control at maximum gain) for $P_0 = 2.5 \text{ W}$	Vi	typ.	55	mV
Audio amplifier				
Repetitive peak output current	IORM	<	1,5	Α
Output power at d _{tot} = 10%	Po	> typ.	4 4,5	W
Total harmonic distortion at P _o = 2,5 W	d _{tot}	typ.	0,5	%
Voltage gain	$G_{\mathbf{v}}$	typ.	30	dB
Sensitivity for P _O = 2,5 W	Vi	typ.	125	mV
Input impedance (pin 5)	$ z_i $	typ. :		k Ω
Frequency response	. f	> 1	15	kHz

Measured in a bandwidth according to IEC-curve 'A', related to P $_{0}$ = 2,5 W; R $_{S}$ = 5 k $\Omega.$

CHARACTERISTICS (continued)

D.C. volume of	ontrol unit
----------------	-------------

D.O. Volume Control and			
Gain control range (see also Fig. 3)	φ	>	80 dB
Signal handling at d _{tot} < 1 % (d.c. control at 0 dB)	Vi	>	1,2 V
Sensitivity for V _o = 125 mV at max. voltage gain	Vi	typ.	55 mV
Input impedance (pin 9)	z _i	typ. 100 to	200 kΩ 500 kΩ
Output impedance (pin 7)	Z ₀	typ.	1 kΩ

Fig. 3 Gain control curve; V_i at pin 8.

SIGNAL-SOURCES SWITCH

The TDA1028 is a quadruple operational amplifier connected as an impedance converter. Each amplifier has 2 switchable inputs which are protected by clamping diodes. The input currents are independent of the switch position and the outputs are short-circuit protected.

The device is intended as an electronic four-channel signal-sources switch in a.f. amplifiers.

QUICK REFERENCE DATA

Supply voltage range (pin 9)	Vp	6	6 to 23	٧	
Operating ambient temperature	ambient temperature		-30 to +80 ⁽		
Supply voltage (pin 9)	V _P	typ.	20	V	
Current consumption (pins 4, 5, 12, 13 unloaded)	lg	typ.	2,9	mΑ	
Maximum input signal handling (r.m.s. value)	V _{i(rms)}	typ.	6	٧	
Voltage gain	G_{v}	typ.	1		
Total harmonic distortion	$d_{ extsf{tot}}$	typ.	0,01	%	
Crosstalk	α	typ.	70	dB	
Signal-to-noise ratio	S/N	typ.	120	dΒ	

PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38).

TDA1028

Fig. 1 Block diagram.

Voltage gain of a switched-on input at I_4 ; 5; I_2 ; $I_3 = 0$; $R_L = \infty$

Current gain of a switched-on amplifier

RATINGS

	V _P 0,5 0 to 23	V
max. max. max.	V _P 0,5 0 to 23	V
max. max.	0,5 0 to 23	
max.	0 to 23	
		V
	20	
max.		mA
	50	mΑ
max.	800	mW
-55	to + 150	oC
-30	to +80	oC.
tvp.	2.9	mΑ
	6 to 23	V
+	2	mV
τyp. <		mV
41.45	20	A
τyp. <		
		*
tvp.	20	nA
<		
tvp.	250	nΑ
<		
typ.	0,5	pF
	3 to 19	٧
R typ.	100	$\mu V/V$
tvn	3.5	υV
ns) cyp.	0,0	~ "
ıs) typ.	0,05	nΑ
tien	100	чD
typ.	100	αD
	max55 -30 typ. 1 typ. < typ. < typ. < typ. < typ. < typ. < typ. typ. typ. typ. typ.	max. 50 max. 800 -55 to + 150 -30 to + 80 typ. 2,9 1,6 to 4,2 6 to 23 typ. 20 < 200 typ. 250 < 950 typ. 0,5 3 to 19 R typ. 100 ms) typ. 3,5 ns) typ. 0,05

. 10⁵

 G_{v}

Gį

typ.

typ.

CHARACTERISTICS (continued)

Signal outpu	ıts	
--------------	-----	--

Signal outputs			
Output resistance	Ro	typ.	400 Ω
Output current capability (pins 4, 5, 12 and 13)	± I _o	>	5 mA
Frequency limit of the output voltage at $V_{i(p-p)} = 1 \text{ V}$; $R_{S} < 1 \text{ k}\Omega$; $R_{L} = 10 \text{ M}\Omega$; $C_{L} = 10 \text{ pF}$,	typ.	1,3 MHz
Slew rate (unity gain) ΔV_4 ; 5; 12; 13-16/ Δt at R ₁ = 10 M Ω ; C ₁ = 10 pF	Š	tvo.	2 V/μs

Switch control

switched-on	interconnected	control	voltages
inputs	pins	V ₁₋₁₆	V ₈₋₁₆
I-1, II-1	2-4, 15-13	Н	-
I-2, II-2	3-4, 14-13	L	-
III-1, IV-1 III-2, IV-2	7-5, 10-12 6-5, 11-12		H L

Control inputs (pins 1 and 8)

Required voltage			
HIGH LOW	V _{SH} V _{SL}	> -	3,3 V * 2,1 V
Input current HIGH (leakage current) LOW (control current)	ISH -ISL	< ¹ × ¹	1 μA 200 μA

^{*} Or control inputs open; R₁₋₁₆, R₈₋₁₆ > 33 M Ω .

APPLICATION INFORMATION

 $V_P = 20 \text{ V}$; $T_{amb} = 25 \,^{\circ}\text{C}$; measured in Fig. 1; $R_S = 47 \,\text{k}\Omega$; $C_i = 0.1 \,\mu\text{F}$; $R_{bias} = 470 \,\text{k}\Omega$; $R_1 = 4.7 \,\text{k}\Omega$; C_L = 100 pF (unless otherwise specified) -1.5 dB Voltage gain G_v typ. D.C. output voltage variation when 10 mV typ. switching the inputs (pins 4, 5, 12 and 13) ΔV_{o} < 100 mV Total harmonic distortion over most of signal range (see Fig. 4) d_{tot} typ. 0,01 % at V; = 5 V; f = 1 kHz 0,02 % dtot typ. at $V_i = 5 V_i f = 20 Hz to 20 kHz$ d_{tot} 0,03 % typ. Output signal handling 5.0 V $d_{tot} = 0,1\%$; f = 1 kHz (r.m.s. value)Vo(rms) tvp. 5,3 V Noise output voltage (unweighted) f = 20 Hz to 20 kHz (r.m.s. value) V_{n(rms)} typ. . 5 μV Noise output voltage (weighted) f = 20 Hz to 20 kHz (in accordance with DIN 45405) ٧n typ. 12 µV Amplitude response (pins 4, 5, 12 and 13) $V_i = 5 V_i f = 20 Hz to 20 kHz$ ΔV_{o} 0,1 dB * typ. Crosstalk between a switched-on input and a non-switched-on input; measured at the output at f = 1 kHz75 dB ** tvp. Crosstalk between switched-on inputs and the outputs of the other channels; at f = 1 kHz typ. 90 dB ** α

^{*} The lower cut-off frequency depends on values of R_{bias} and C_i.

^{**} Depends on external circuitry and R_S. The value will be fixed mostly by capacitive crosstalk of the external components.

Fig. 2 Equivalent input noise current.

Fig. 3 Equivalent input noise voltage.

Fig. 4 Total harmonic distortion as a function of r.m.s. output voltage.

— f = 1 kHz; — - — - f = 20 kHz.

Fig. 5 Output voltage as a function of supply voltage.

Fig. 6 Noise output voltage as a function of input resistance; $G_V = 1$; f = 20 Hz to 20 kHz. — V_n (output); $- - V_n$ (Rg).

APPLICATION NOTES

Input protection circuit and indication

Fig. 7 Circuit diagram showing input protection and indication.

Unused signal inputs

Any unused inputs must be connected to a d.c. (bias) voltage, which is within the d.c. input voltage range.

Circuits with standby operation

The control inputs (pins 1 and 8) are high-ohmic at $V_{SH} \le 20 \text{ V}$ (ISH $\le 1 \mu A$), as well as, when the supply voltage (pin 9) is switched off.

Fig. 8 Typical application diagram for a switchable scratch/rumble filter.

Fig. 9 Frequency response curves for scratch/rumble filters in Fig. 8.

January 1980

Fig. 10 Half of TDA1028 used as a mono/stereo switch.

SIGNAL-SOURCES SWITCH

The TDA1029 is a dual operational amplifier (connected as an impedance converter) each amplifier having 4 mutually switchable inputs which are protected by clamping diodes. The input currents are independent of switch position and the outputs are short-circuit protected.

The device is intended as an electronic two-channel signal-source switch in a.f. amplifiers.

QUICK REFERENCE DATA

Supply voltage range (pin 14)	VP	. 6	6 to 23 V
Operating ambient temperature	T _{amb}	-30 t	o + 80 °C
Supply voltage (pin 14)	V _P	typ.	20 V
Current consumption	114	typ.	3,5 mA
Maximum input signal handling (r.m.s. value)	V _{i(rms)}	typ.	6 V
Voltage gain	$G_{\mathbf{v}}$	typ.	1
Total harmonic distortion	d _{tot}	typ.	0,01 %
Crosstalk	α	typ.	70 dB
Signal-to-noise ratio	S/N	typ.	120 dB

PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38).

Fig. 1 Block diagram.

_	-
	•

RATINGS				
Limiting values in accordance with the Absolute Maximum System	(IEC 134)			
Supply voltage (pin 14)	V_{P}	max.	23	٧
Input voltage (pins 1 to 8)	ν _ι -ν _ι	max. max.	V _P 0,5	V
Switch control voltage (pins 11, 12 and 13)	٧s		0 to 23	٧
Input current	± I į	max.	20	mA
Switch control current	-I _S	max.	50	mA
Total power dissipation	P _{tot}	max.	800	mW
Storage temperature	T_{stq}	55 1	to + 150	oC
Operating ambient temperature	Tamb	-30 1	to +80	oC
CHARACTERISTICS				
Vp = 20 V; T _{amb} = 25 °C; unless otherwise specified				
Current consumption			35	mA
without load; $l_9 = l_{15} = 0$	¹ 14	typ.	2 to 5	
Supply voltage range (pin 14)	VP		6 to 23	٧
Signal inputs				
Input offset voltage of switched-on inputs				
$R_S \leq 1 k\Omega$	v_{io}	typ.	_	mV mV
Input offset current		two	20	nΑ
of switched-on inputs	lio	typ.	200	
Input offset current				
of a switched-on input with respect to a		typ.	20	nA ·
non-switched-on input of a channel	lio	<	200	
Input bias current		typ.	250	nΛ
independent of switch position	l _i	<	950	
Capacitance between adjacent inputs	C	typ.	0,5	pF
D.C. input voltage range	V_{I}		3 to 19	٧
Supply voltage rejection ratio; $R_S \le 10 \text{ k}\Omega$	SVRR	typ.	100	μV/V
Equivalent input noise voltage $R_S = 0$; $f = 20$ Hz to 20 kHz (r.m.s. value)		tvn	3,5	
Equivalent input noise current	V _{n(rms)}	typ.	0,0	μν.
f = 20 Hz to 20 kHz (r.m.s. value)	I _{n(rms)}	typ.	0,05	nA
Crosstalk between a switched-on input and a non-switched-on input;				
measured at the output at $R_S = 1 \text{ k}\Omega$; $f = 1 \text{ kHz}$	α	typ.	100	dB

CHARACTERISTICS (continued)

Signal amplifier

Signal amplifier			
Voltage gain of a switched-on input at $l_9 = l_{15} = 0$; $R_L = \infty$	G _v	typ.	1
Current gain of a switched-on amplifier	Gi	typ.	10 ⁵
Signal outputs			
Output resistance (pins 9 and 15)	Ro	typ.	400 Ω
Output current capability at V _P = 6 to 23 V	± lg; ± l ₁₅	typ.	5 mA
Frequency limit of the output voltage $V_{i(p-p)} = 1 \text{ V; R}_S = 1 \text{ k}\Omega; \text{ R}_L = 10 \text{ M}\Omega; \text{ C}_L = 10 \text{ pF}$	f	typ.	1,3 MHz
Slew rate (unity gain); $\Delta V_{9.16}/\Delta t$; $\Delta V_{15-16}/\Delta t$ R _L = 10 M Ω ; C _L = 10 pF	S	typ.	2 V/μs
Bias voltage	41 - 44 - 1		
D.C. output voltage	V ₁₀₋₁₆	typ. 10,2 t	11 V * to 11,8 V
Output resistance	B10.16	tvn.	82 kΩ

Switch control

switched-on	interconnected		control voltages	
inputs	pins	V11-16	V ₁₂₋₁₆	V ₁₃₋₁₆
I-1, II-1	1-15, 5-9	н	Н	Н
1-2, 11-2	2-15, 6-9	н	Н	L
I-3, II-3	3-15, 7-9	H.	L	H
1-4, 11-4	4-15, 8-9	L	н	н
1-4, 11-4	4-15, 8-9	L	L	H
1-4, 11-4	4-15, 8-9	L	Н	L
1-4, 11-4	4-15, 8-9	L	. L	L
1-3, 11-3	3-15, 7-9	Н	L.	L

In the case of offset control, an internal blocking circuit of the switch control ensures that not more than one input will be switched on at a time. In that case safe switching-through is obtained at V_{SL} ≤ 1,5 V.

Control inputs (pins 11, 12 and 13)

Required voltage			
HIGH	V _{SH}	>	3,3 V *
LOW	V _{SL}	<	2,1 V
Input current			
HIGH (leakage current)	ISH	<	1 μΑ
LOW (control current)	-ISL	<	250 μΑ

 $[\]begin{array}{l} V_{10\text{-}16} \text{ is typically } 0.5 \cdot V_{14\text{-}16} + 1.5 \cdot V_{BE}. \\ \text{Or control inputs open } (R_{11,12,13\text{-}16} \!>\! 33 \text{ M}\Omega). \end{array}$

APPLICATION INFORMATION

V_P = 20 V; T_{amb} = 25 °C; measured in Fig. 1; R_S = 47 kΩ; C C_L = 100 pF (unless otherwise specified)	$C_i = 0.1 \mu\text{F}; R_{\text{bias}} =$	470 ks	Ω ; R _L = 4,7 k Ω ;
Voltage gain	G_{v}	typ.	-1,5 dB
Output voltage variation when switching the inputs	ΔV ₉₋₁₆ ; ΔV ₁₅₋₁₆	typ.	10 mV 100 mV
Total harmonic distortion over most of signal range (see Fig. 4) $V_i = 5 \text{ V}; f = 1 \text{ kHz}$ $V_i = 5 \text{ V}; f = 20 \text{ Hz to } 20 \text{ kHz}$	d _{tot} d _{tot} d _{tot}	typ. typ. typ.	0,01 % 0,02 % 0,03 %
Output signal handling d _{tot} = 0,1%; f = 1 kHz (r.m.s. value)	Vo(rms)	> typ.	5,0 V 5,3 V
Noise output voltage (unweighted) f = 20 Hz to 20 kHz (r.m.s. value)	V _{n(rms)}	typ.	5 μV
Noise output voltage (weighted) f = 20 Hz to 20 kHz (in accordance with DIN 45405)	v _n	typ.	12 μV
Amplitude response $V_i = 5 \text{ V}$; $f = 20 \text{ Hz}$ to 20 kHz ; $C_i = 0.22 \mu\text{F}$	ΔV ₉₋₁₆ ; ΔV ₁₅₋₁₆	<	0,1 dB *
Crosstalk between a switched-on input and a non-switched-on input; measured at the output at f = 1 kHz	α	tun	75 dB **
Crosstalk between switched-on inputs and the outputs of the other channels	α	typ.	90 dB **
· · · · · · · · · · · · · · · · · · ·			

The lower cut-off frequency depends on values of R_{bias} and C_i . Depends on external circuitry and R_S . The value will be fixed mostly by capacitive crosstalk of the external components.

Fig. 2 Equivalent input noise current.

Fig. 3 Equivalent input noise voltage.

Fig. 4 Total harmonic distortion as a function of r.m.s. output voltage.

— f = 1 kHz; — - — - f = 20 kHz.

Fig. 5 Output voltage as a function of supply voltage.

Fig. 6 Noise output voltage as a function of input resistance; $G_V = 1$; f = 20 Hz to 20 kHz. V_n (output); $- - V_n$ (Rs).

APPLICATION NOTES

Input protection circuit and indication

Fig. 7 Circuit diagram showing input protection and indication.

Unused signal inputs

Any unused inputs must be connected to a d.c. (bias) voltage, which is within the d.c. input voltage range; e.g. unused inputs can be connected directly to pin 10.

Circuits with standby operation

The control inputs (pins 11, 12 and 13) are high-ohmic at $V_{SH} \le 20 \text{ V (I}_{SH} \le 1 \mu\text{A})$, as well as, when the supply voltage (pin 14) is switched off.

Fig. 8 TDA1029 connected as a four input stereo source selector.

Fig. 10 TDA1029 connected as a third-order active high-pass filter with Butterworth response and component values chosen according to the method proposed by Fjällbrant. It is a four-function circuit which can select mute, rumble filter, subsonic filter and linear response.

Switch control

function	V11-16	V ₁₂₋₁₆	V13-16
linear	Н	Н	Н
subsonic filter 'on'	Н	H .	L
rumble filter 'on'	н	L	X
mute 'on'	L	X	X

Fig. 11 Frequency response curves for the circuit of Fig. 10.

DEVELOPMENT SAMPLE DATA

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

MOTOR SPEED REGULATOR WITH THERMAL SHUT-DOWN

The TDA1059B is a monolithic integrated circuit with a current limiter and with good thermal characteristics in a 100 105 plastic package for easy mounting. It is intended to regulate the speed of d.c. motors in record piegars, cassette recorders and car cassette recorders.

QUICK REFERENCE DATA

Supply voltage	Vp = V ₂₋₁	typ.	9 V	
Supply voltage	VP - V2-1	3,3 to 16 V		
Internal reference voltage	V _{ref}	typ.	1,3 V	
Drop-out voltage	V ₃₋₁	typ.	1,8 V	
Limited output current	¹ 3lim	typ.	0,6 A	
Multiplication coefficient	k	typ.	9	

PACKAGE OUTLINE

Dimensions in mm

Fig. 1 TO-126 (SOT-32).

Pin 1 connected to metal part of mounting surface.

(1) Within this region the cross-section of the leads is uncontrolled.

Fig. 2 Functional diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

-		and the second s	
Supply voltage	$V_{P} = V_{2-1}$	max. 16 V	
Storage temperature	T _{stg}	-55 to + 150 °C	
Operating ambient temperature (see Fig. 3 and note)	T _{amb}	-25 to + 130 °C	

THERMAL RESISTANCE

From junction to case		R _{th j-c}	. =	* :	10 K/W
From junction to ambient	*	R _{th j-a}	=		100 K/W

Fig. 3 Power derating curve.

Note

At ambient temperatures above 130 °C, the crystal temperature limiter decreases the internal power consumption.

CHARACTERISTICS

 V_P = 9 V; T_{amb} = 25 °C; R20 = 0; heatsink with R_{th} = 100 K/W and after thermal stabilization; unless otherwise specified; see test circuit Fig. 4.

		min.	typ.	max
Supply voltage	$V_{P} = V_{2-1}$	3,3	9	16 V
Internal reference voltage				*
$V_P = 3.3 \text{ V}; I_3 = 80 \text{ mA}$	V _{ref}	1,24	1,3	1,36 V
Drop-out voltage				
$I_3 = 80 \text{ mA}; \Delta V_{ref} = 5\%$	V ₃₋₁	_	1,8	2,06 V
Quiescent current; 13 = 0	^l q	1,8	2,3	2,8 mA
Limited output current*	^l 3lím	0,3	0,6	1 A
Multiplication coefficient I ₃ = 50 mA ± 10 mA	$k = \frac{\Delta l_3}{\Delta l_2}$	8,5	9	9,5
Line regulation				
$V_P = 3.3 \text{ to } 16 \text{ V at } 1_3 = 50 \text{ mA}$	ΔV_{rof}]
reference voltage variation	$\frac{\Delta V_{ref}}{V_{ref}} / \Delta V_{P}$	-0,115	0	+0,115 %/V
multiplication coefficient variation				
$1_3 = 50 \pm 10 \text{ mA}$	$\frac{\Delta k}{k}/\Delta V_{P}$	-	0,86	- %/V
input gurrent verietien. In = E0 = A	Δ12			
input current variation; I ₃ = 50 mA	$\frac{\Delta I_2}{\Delta V_P}$	-15	0	+ 15 μA/V
Load regulation	•			
reference voltage variation	437			- :
$I_3 = 20^{\circ} \text{ to } 80^{\circ} \text{ mA}$	$\frac{\Delta V_{ref}}{V_{ref}}$ / ΔI_3	0	19	38,5 %/A
multiplication coefficient variation	V _{ref}		. 4	
I ₃ = 30 ± 10 to 70 ± 10 mA	$\frac{\Delta k}{k} / \Delta l_3$	0,075	0	+0,075 %/mA
<u>_</u> .	k J	-,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Temperature coefficient $I_3 = 50 \text{ mA}$; $I_{amb} = -15 \text{ to } + 65 ^{\circ}\text{C}$				
reference voltage variation	ΔV_{ref}			
reference voltage variation	$\frac{\Delta V_{ref}}{V_{ref}} / \Delta T_{amb}$	-0,03	0	+0,03 %/K
multiplication coefficient variation				
$\Delta l_3 = \pm 10 \text{ mA}$	$\frac{\Delta k}{k} / \Delta T_{amb}$		0,008	- %/K
	κ Δ1 ₂			,
input current variation	Δ1 <u>2</u>	-2	0	+2 μA/K

^{*} If the motor is stopped by a mechanical brake, the current limitation is effective in the supply voltage range. If the motor is short-circuited, the TDA1059B will be damaged if the supply voltage is higher than 10 V due to parasitic oscillations.

Fig. 4 Test circuit.

Note

For start operation: V_{ref} must start with final V_P = 6,7 V and a time constant of 3 τ = 100 ms in which τ = R.C; R = source impedance, C = by-pass capacitor.

Catalogue no. 9904 120 01806; n = 2000 rev/min; R20 = 180 Ω (\pm 2%); R32 = 100 Ω + 100 Ω (variable).

Fig. 5 Example of using the TDA1059B in a d.c. motor speed regulation circuit.

Motor equations

$$E_m = \alpha_1 n$$
 where: $\alpha_1, \alpha_2 = motor constant$

$$I_m = \alpha_2 r$$
 $n = number of revolutions$

The back electromotive force (E_m) in Fig. 5 can be expressed (excluding diode D) as:

$$E_{m} = \left(\frac{R20}{k} - R_{m}\right) I_{m} + V_{ref} \left\{1 + \frac{R20}{R32} \left(1 + \frac{1}{k}\right)\right\} + R20 I_{o}$$

and including diode D, as:

$$E_{m} = \left(\frac{R20}{k} - R_{m}\right) I_{m} + \left(V_{ref} + V_{D}\right) \left\{1 + \frac{R20}{R32} \left(1 + \frac{1}{k}\right)\right\} + R20 I_{O}$$

Speed regulation is constant when E_m is independent of I_m variations; this will be obtained when $R20 = kR_{m}$

E_m, and therefore the motor speed, is regulated by R32. A practical condition for stability is $R20 < kR_m$.

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

MOTOR SPEED REGULATOR

The TDA1059C is a monolithic integrated circuit with a current limiter and with good thermal characteristics in a TO-126 plastic package for easy mounting. It is intended to regulate the speed of d.c. motors in record players, cassette recorders and car cassette recorders.

QUICK REFERENCE DATA

Suppy voltage	$V_P = V_{2-1}$	typ. 2,5 1	9 to 15	V V
Internal reference voltage	V _{ref}	typ.	1,1	V
Drop-out voltage	V ₃₋₁	typ.	1,0	V
Limited output current	3lim	typ.	0,6	Α
Multiplication coefficient	k	typ.	9	

PACKAGE OUTLINE

Dimensions in mm

Fig. 1 TO-126 (SOT-32).

Pin 1 connected to metal part of mounting surface.

(1) Within this region the cross-section of the leads is uncontrolled.

Fig. 2 Functional diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage $V_P = V_{2-1}$ max. 16 V Storage temperature T_{stg} —55 to + 150 °C Operating ambient temperature (see Fig. 3) T_{amb} —25 to + 150 °C

THERMAL RESISTANCE

From junction to case $R_{th j-c} = 10 \text{ K/W}$ From junction to ambient $R_{th j-a} = 100 \text{ K/W}$

Fig. 3 Power derating curve.

CHARACTERISTICS

 V_P = 9 V; T_{amb} = 25 °C; R20 = 0; heatsink with R_{th} = 100 K/W and after thermal stabilization; unless otherwise specified; see test circuit Fig. 4

		min.	typ.	max.
	., .,		+	
Supply voltage	$V_{P} = V_{2-1}$	2,5	9	15 V
Internal reference voltage				
$V_P = 2.5 \text{ V}; I_3 = 80 \text{ mA}$	V_{ref}	1,05	1,1	1,15 V
Drop-out voltage				
$I_3 = 80 \text{ mA}; \Delta V_{ref} = 5\%$	V ₃₋₁	_	1,0	1,45 V
Quiescent current; I ₃ = 0	I _q	2,5	3	3,5 mA
Limited output current *	l _{3lim}	0,3	0,6	1 A
Multiplication coefficient I ₃ = 50 mA ± 10 mA	$k = \frac{\Delta l_3}{\Delta l_2}$	8,5	9	9,5
Line regulation $V_P = 2.5$ to 15 V at $I_3 = 50$ mA				
reference voltage variation	$\frac{\Delta V_{ref}}{V_{ref}}/\Delta V_{P}$	0,04	0,13	0,22 %/V
multiplication coefficient variation $1_3 = 50 \pm 10 \text{ mA}$	$\frac{\Delta k}{k}/\Delta V_{p}$	-	0,86	– %/V
input current variation; I ₃ = 50 mA	$\frac{\Delta l_2}{\Delta V_P}$	0	15	30 μA/V
Load regulation				
reference voltage variation I ₃ = 20 to 80 mA	$\frac{\Delta V_{ref}}{V_{ref}}/\Delta I_3$	0	23	45,5 %/A
multiplifaction coefficient variation $l_3 = 30 \pm 10$ to 70 ± 10 mA	$\frac{\Delta k}{k}/\Delta l_3$	_	0	– %/mA
Temperature coefficient $I_3 = 50 \text{ mA}$; $T_{amb} = -15 \text{ to } + 65 ^{\circ}\text{C}$				
reference voltage variation	$\frac{\Delta V_{ref}}{V_{ref}}/\Delta T_{amb}$	-0,036	0	+0,036 %/K
multiplication coefficient variation $\Delta I_3 = \pm 10 \text{ mA}$	$\frac{\Delta k}{k}/\Delta T_{amb}$	- -	0,008	– %/K
input current variation	$\frac{\Delta I_2}{\Delta T_{amb}}$	- -	0	– μA/K

^{*} If the motor is stopped by a mechanical brake, the current limitation is effective in the supply voltage range. If the motor is short-circuited, the TDA1059C will be damaged if the supply voltage is higher than 10 V due to parasitic oscillations.

Note

For start operation: V_{ref} must start with final $V_P = 6,7$ V and a time constant of $3\tau = 100$ ms in which $\tau = R.C.$; R = source impedance, C = by-pass capacitor.

Fig. 4 Test circuit.

(2) Motor example (without diode D):

Catalogue no. 9904 120 01806; n = 2000 rev/min; R20 = 180 Ω (± 2%); R32 = 39 Ω + 47 Ω (variable).

Fig. 5 Example of using the TDA1059C in a d.c. motor speed regulation circuit.

Motor equations

 $E_m = \alpha_1 n$

where: α_1 , α_2 = motor constant r = motor torque

 $I_m = \alpha_2 r$

n = number of revolutions

 $V_m = E_m + R_m I_m$

E_m = back electromotive force

R_m = motor resistance

The back electromotive force (E_m) in Fig. 5 can be expressed (excluding diode D) as:

$$E_{m} = \left(\frac{R20}{k} - R_{m}\right) I_{m} + V_{ref} \left\{1 + \frac{R20}{R32}\left(1 + \frac{1}{k}\right)\right\} + R20.I_{0}$$

and including diode D, as:

$$E_{m} = \left(\frac{R20}{k} - R_{m}\right) I_{m} + \left(V_{ref} + V_{D}\right) \left\{1 + \frac{R20}{R32}\left(1 + \frac{1}{k}\right)\right\} + R20.I_{o}$$

Speed regulation is constant when E_m is independent of I_m variations; this will be obtained when

E_m, and therefore the motor speed, is regulated by R32. A practical condition for stability is $R20 < kR_m$.

AM RECEIVER CIRCUIT

The TDA1072 is a monolithic integrated AM receiver circuit provided with the following functions:

- controlled h.f. preamplifier
- multiplicative balanced mixer
- separate oscillator with amplitude control
- i.f. amplifier with gain control
- balanced full-wave detector
- a.f. preamplifier
- internal a.g.c. voltage
- amplifier for field-strength indication
- electronic stand-by on/off switch

QUICK REFERENCE DATA

Supply voltage (pin 13)	V _P	typ.	15 V	V
Supply current	lp	typ.	22 n	nΑ
H.F. input voltage S + N/N = 6 dB S + N/N = 26 dB	V _i V _i	typ. typ.	2,2 μ 30 μ	
H.F. input voltage; d _{tot} = 3%; m = 80%	v_i	typ.	650 n	ηV
A.F. output voltage; V _i = 2 mV	V_0	typ.	340 n	nV
Total distortion	d _{tot}	typ.	0,5 %	%
Input voltage range for $\Delta V_0 = 6 \text{ dB}$	ΔV_{i}	typ.	91 d	βB
Oscillator frequency range	fosc	0,0	6 to 31 N	ИHz
Oscillator voltage amplitude	Vosc	typ.	140 n	ηV
Field-strength indication range	ΔV_{i}	typ.	100 d	άB
Supply voltage range	 V _P	7,!	 5 to 18 √	 /
Ambient temperature range	T _{amb}	-30 t	to + 80 °	C

PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38).

TDA1072

(1) T1 : N1/N2 = 34/9; Q_0 = 65; Q_L = 60; Z_{21} = 700 Ω at $R_{L(3)}$ = 3 k Ω ; Z_{11} = 5,2 k Ω .

Fig. 1 Block diagram with external components; used as test circuit.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage (pin 13) Vp = V13-16 max. Voltage on pin 2

23 V 0 to 23 V

H.F. inputs

Voltages between:

pins 14 and 15 pins 14 and 16

pins 15 and 16 Or currents:

pin 14 pin 15

Storage temperature range Operating ambient temperature range ± V14-15 V14-16

V₂₋₁₆

V₁₅₋₁₆ max.

± 114 ± 115 Tsta

10 mA max. 10 mA max.

-55 to + 150 °C

-30 to +80 °C

12 V

Vp V

Vp V

CHARACTERISTICS

 $V_P = 15 \text{ V}$; $T_{amb} = 25 \text{ °C}$; $f_i = 1 \text{ MHz (h.f.)}$, $R_G = 50 \Omega$; $f_m = 0.4 \text{ kHz}$; m = 30%; i.f. frequency = 460 kHz; unless otherwise specified

Supply voltage range (pin 13)

Supply current; without load $(I_{L(11)} = 0)$

٧p ĺρ

 $Z_{0(1-16)}$

V_O(1)(p-p)

Vi(14-15)(p-p)

SM

lo(1)

 ΔS_{M}

Tamb

typ.

max.

max.

22 mA 15 to 30 mA

6 kΩ

6 pF

9 kΩ

2,5 pF

200 kΩ

4 pF

30 dB

7.5 to 18 V

H.F. preamplifier and mixer

D.C. input voltages Input impedance

 $V_i < 300 \mu V$ $V_i > 10 \text{ mV}$

Output impedance

Maximum conversion conductance Maximum i.f. output voltage (peak-to-peak value)

Output current capability Control range of preamplifier Maximum h.f. input voltage (peak-to-peak value)

typ. 2,75 (4VBE) V V14-16; V15-16 typ.

Zi(14-16);Zi(15-16) typ. tvp. Zi(14-16);Zi(15-16)

typ. > typ. typ.

typ.

5.5 mA/V* 2,8 V typ. typ. 1 mA

2,8 V typ.

S_M is defined as I_{O(1)}/V_i.

CHARACTERISTICS (continued)				
Oscillator				
Frequency range	fosc(12)	0.6	to 31	MHz
Oscillator impedance range	Z _L (12)		o 200	
Controlled oscillator amplitude	V _{osc(12)}	typ.	140	mV mV
D.C. output voltage (I _{L(11)} = 0)	V ₁₁₋₁₆	typ. V	′ _P –1,3	V
Output load current range	-IL(11)	0	to 15	mΑ
Output resistance; $I_{L(11)} = 5 \pm 0.5 \text{ mA}$	R _{o(11)}	typ.	7	Ω
Oscillator frequency output (pin 10)				
Output voltage (peak-to-peak value)				
$R_{10-16} = 15 k\Omega (R_{L(10)})$	V _{o(10)(p-p)}	typ.	200	mV
Output resistance	R _o (10)	typ.	150	Ω
Allowable output current (peak value)	l _{o(10)M}	<	2	mA
I.F. amplifier and a.f. stage				
D.C. input voltages	V ₃₋₁₆ ; V ₄₋₁₆	typ.	2	٧
Input impedance	Z _{i(3)}	typ. 2,4 typ.	to 3,9	kΩ kΩ pF
Max. i.f. input voltage; m = 80%; d _{tot} = 3%	V _{i(3)}	typ.	75	mV
Control range; $V_0 = -6 \text{ dB}$	ΔVi	typ.	62	dB
A.F. output voltage; V _{i(3)} = 2 mV; without load	V _{o(6)}	typ.	350	mV
A.F. output resistance	R _{o(6)}	typ.	3,5	kΩ
Field-strength indication				
D.C. indicator voltage $V_i = 0$; $R_{L(9)} = 2.7 \text{ k}\Omega$	V ₉₋₁₆	typ.		mV mV
$V_i = 500 \text{ mV; R}_{L(9)} = 2.7 \text{ k}\Omega$	V ₉₋₁₆	typ. 2,5	2,8 to 3,1	
Output current capability	-lg	>	1,2	mΑ
Output resistance; -Ig = 0,5 mA	R _{o(9)}	typ.	250	Ω^{c}
Leakage voltage at the output; \pm Ig \leq 1 μ A; at AM switch off (V ₂₋₁₆ \geq 3,5 V)	V ₉₋₁₆	typ.	6	V

I.F. selectivity $\Delta f = \pm 9 \text{ kHz}$

 $\Delta f = \pm 36 \text{ kHz}$

Stand-by switch				
Switching voltage	V ₂₋₁₆	typ.	2,6	V
Required control voltage*	2 10			
AM on	V ₂₋₁₆	<	2	٧
AM off	V ₂₋₁₆	>	3,5	V**
Input current				
AM on; switching current	-l ₂	<	100	•
AM off; leakage current ($V_{2-16} = V_{3-16}$)	± l2	<	1	μΑ
APPLICATION INFORMATION				
$V_P = 15 \text{ V}$; $T_{amb} = 25 \text{ °C}$; measured in Fig. 1; $f_i = 1 \text{ MHz}$ (h.f.); $f_m = 0$ otherwise specified	0,4 kHz; m	= 30%; (ınless	
H.F. input voltage				
S + N/N = 6 dB	Vi	typ.	2,2	μV
S + N/N = 10 dB	Vi	typ.	3,5	μV
S + N/N = 26 dB	V _i	typ.		μV
S + N/N = 46 dB	v _i	typ.	550	
H.F. input voltage for a.g.c. operation	Vi	typ.	14	μV
Control range for $\Delta V_0 = 6 \text{ dB}$ reference value $V_i = 500 \text{ mV}$	۸۱/.	thum.	01	dB
· · · · · · · · · · · · · · · · · · ·	ΔV_{i}	typ.	91	uь
Maximum h.f. input voltage d _{tot} = 3%; m = 80%	Vi	tu en	0,65	V
d _{tot} = 3%; m = 30%	V _i	typ.	0,05	
d _{tot} = 10%; m = 30%	V _i	typ.	1,3	
A.F. output voltage; V _i = 2 mV	v _o	typ.	340	
Change of a.f. output voltage; V _i = 2 mV	ΔV_{Ω}	typ.	± 2	dB
H.F. input voltage; $V_0 = 60 \text{ mV}$	V _i	typ.	4	μV
Total distortion of a.f. output voltage	•			
$V_i = 2 \text{ mV}; m = 80\%$	d_{tot}	typ.	0,5	%
V _i = 500 mV; m = 80%	d _{tot}	typ.	1,8	
	∽tot	<	3	%
Signal plus noise-to-noise ratio of a.f. output voltage				
$V_i = 2 \text{ mV}$	S + N/N	typ.	50	dB
I.F. bandwidth (—3 dB)	В	typ.	4,6	kHz

30 dB

60 dB

typ.

typ.

S₍₉₎

S(36)

^{*} At allowable ambient temperature range and supply voltage range.
** Also achieved at open input.

Fig. 2 A.F. output voltage as a function of h.f. input voltage; f_i = 1 MHz (h.f.); R_G = 50 Ω ; f_m = 0,4 kHz.

Fig. 3 Indication voltage as a function of h.f. input voltage; $R_{9-16} = 2.7 \text{ k}\Omega$.

Fig. 4 Total distortion and signal plus noise-to-noise ratio as a function of h.f. input voltage; for d_{tot} : $f_m = 0.4 \text{ kHz}$; m = 80%.

 $C_{8-16} = 22 \mu F.$

Fig. 6 Frequency responses (wobbled) for various conditions:

----- with a.f. and i.f. filter

--- with i.f. filter

--- with a.f. filter

(1) T1 : N1/N2 = 34/9; Q₀ = 65; Q_L = 60; Z₂₁ = 700 Ω at R_{L(3)} = 3 k Ω ; Z₁₁ = 5,2 k Ω . (2) T2 : N1/N2/N3 = 14/67/17; L = 175 μ H; Q₀ = 145; Q_L = 50 (f = 1 MHz); V_i/V_G = -6 dB.

Fig. 7 Application circuit diagram of a AM-MW receiver with two double variable tuning capacitors; $f_i = 510 \text{ to } 1620 \text{ kHz (h.f.)}; f_i = 460 \text{ kHz (i.f.)}.$

Fig. 8 A.F. output voltage as a function of the h.f. generator input voltage; f_i = 1 MHz (h.f.); f_m = 0,4 kHz.

Fig. 9 Total distortion and signal plus noise-to-noise ratio as a function of h.f. generator input voltage; for d_{tot} : $f_m = 0.4$ kHz; m = 80%.

TDA1074

DEVELOPMENT SAMPLE DATA This information is derived from development samples made available for evaluation. It does not form part of our data handbook system and does not necessarily imply that the device will go into production

DUAL ELECTRONIC STEREO POTENTIOMETER CIRCUIT

The TDA1074 is a monolithic integrated circuit designed for use as adjustment circuit in stereo amplifiers. The circuit contains the following functions:

- internal amplifier
- two high-ohmic inputs for each adjuster
- electronic supply voltage filter
- feedback output stages with short-circuit protected current limitation

QUICK REFERENCE DATA

Supply voltage (pin 11)	Vp	typ.	20	٧
Supply current (pin 11)	lp	typ.	20	mΑ
Input signal voltage (r.m.s. value)	Vi(rms)	<	6	٧
Output signal voltage (r.m.s. value)	Vo(rms)	<	6	V
Total distortion	$d_{ extsf{tot}}$	typ.	0,05	%
Output noise voltage (r.m.s. value)	$V_{no(rms)}$	typ.	50	μ٧
Adjustment range	$\Delta \alpha$	typ.	110	dB
Channel separation	α	typ.	80	dB
Hum suppression	α ₁₀₀	typ.	46	dB
Channel balance	ΔG	typ.	0,5	dB
Supply voltage range	Vp	7,5	to 23	v
Ambient temperature range	T _{amb}	-30 to	+ 80	οС

PACKAGE OUTLINE

18-lead DIL; plastic (SOT-102C).

Fig. 1 Block diagram and external components; $I_{c(1)}$, $I_{c(1)}$, $V_{c(1)}$ = V9.8, $V_{c(1)}$ = V10.8 are control input currents and voltages; Z1 = Z2 = Z3 = Z4 = 22 k Ω ; $R_G = 60$ Ω ; $R_L = 4.7$ k Ω ; $C_1 = 2.2$ μ F; $C_0 = 10$ μ F.

Application notes

When one or more adjusters of an IC are not used, the following is recommended:

- Unused signal inputs of an adjuster should be connected to the associated output, e.g. pins 3 and 4 to pin 2.
- 2. Unused control voltage inputs should be connected directly to pin 8.
- 3. Where more than one TDA1074 circuit is used in an application, pins 1 can be connected together; however, pins 8 may not be connected together directly.

RATINGS

Limiting values	in accordance	with the	Absolute	Maximum	System (II	:C 134)

Supply voltage (pin 11)	. УР	max.	23	٧
Control voltages (V _C)	V ₉₋₈ ; V ₁₀₋₈	max.	1	V
	-V ₉₋₈ ; -V ₁₀₋₈	max.	1	٧
Input voltages (with respect to pin 18)				
at pins 3, 4, 5, 6, 13, 14, 15, 16		0	to V _P	

lotal power dissipation	P _{tot}	max. 800 mV
Storage temperature range	T_{stg}	-55 to + 150 °C
Operating ambient temperature range	Tomb	-30 to +80 °C

THERMAL RESISTANCE

From crystal to ambient	R _{th cr-a}	=	80 °C/W

Fig. 2 Application diagram for treble and bass control.

 $V_{P(rms)} \le 200 \text{ mV (at 100 Hz)}; V_c = 0$

APPLICATION INFORMATION

Tone control circuit

 V_P = 20 V; T_{amb} = 25 °C; in the application for treble control and bass control Fig. 2; R_G = 60 Ω; $R_L \geqslant$ 4,7 kΩ; $C_L \leqslant$ 30 pF; f = 1 kHz; unless otherwise specified.

——————————————————————————————————————					
Supply current; without load	lp	typ. 13	20 to 30	mA mA	
Frequency response ($-1 dB$) $V_c = 0$	f	10 Hz	to 20	kHz	
Voltage gain at linear frequency response $V_c = 0$	G _V	typ.	0	dB	
Maximum gain variation at f = 1 kHz at maximum bass/treble boost or cut					
$\pm V_{c} = 120 \text{ mV}$	ΔG_{V}	typ.	± 1,5	dB	
Bass boost at 40 Hz (ref. 1 kHz) $V_{C(II)} = V_{10-8} = 120 \text{ mV}$		typ.	17	dB	
Bass cut at 40 Hz (ref. 1 kHz) -V _{c(II)} = V ₁₀₋₈ = 120 mV		typ.	-17	dB .	
Treble boost at 16 kHz (ref. 1 kHz) $V_{C(1)} = V_{9-8} = 120 \text{ mV}$		typ.	16	dB	
Treble cut at 16 kHz (ref. 1 kHz) -V _{c(I)} = Vg.8 = 120 mV		typ.	_ _16	dB	
Total distortion at $V_{i(rms)} = 5 V$ $V_{c} = 0$, at linear frequency response					
for f = 1 kHz	d _{tot}	typ.	0,03 0,1		
for f = 40 Hz to 16 kHz	d _{tot}	typ.	0,07	%	
Channel separation at V _{i(rms)} = 5 V		41.45	en.	alD .	
$V_c = 0$, at linear frequency response	α	typ.	80	dB	
Output noise voltages; V _C = 0; f = 20 Hz to 20 kHz signal plus noise voltage (r.m.s. value)	V _{no(rms)}	typ.	75	μV	
	110(11113)	typ.	170		
noise voltage; weighted conform DIN 45405; peak value	$V_{no(m)}$	tγp. ≼	230	• •	
Signal level for $d_{tot} = 1\%$; $V_c = 0$ Hum suppression for $f = 100 \text{ Hz}$	V _{i(rms)} = V _{o(rms)}	typ.		V	

α₁₀₀

46 dB

typ.

Fig. 3 Frequency response curves; voltage gain (bass and treble) as a function of frequency.

Fig. 4 Control capability; Vp = 20 V; f = 1 kHz, V_c = V₉₋₈ = V₁₀₋₈ = 0 V (linear, G_{V tot} = 1); R_L = 4,7 k Ω .

Fig. 5 Control curve; voltage gain (treble) as a function of control voltage; f = 16 kHz.

Fig. 6 Control curve; voltage gain (bass) as a function of control voltage.

APPLICATION INFORMATION (continued)

Fig. 7 Adjustment curves at 40 Hz to 16 kHz as a function of the angle of rotation (α) of a linear potentiometer (R); for curves see table below.

. 1	10 kΩ
2	100 kΩ
3	220 kΩ
4	470 kΩ
5	1 ΜΩ

value of R

Fig. 8 Circuit diagram showing measurement of curves in Fig. 7.

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

12 TO 20 W HI-FI AUDIO POWER AMPLIFIER

The TDA1512 is a monolithic integrated hi-fi audio power amplifier designed for asymmetrical or symmetrical power supplies for mains-fed apparatus.

Special features are:

- Thermal protection
- Low intermodulation distortion
- Low transient intermodulation distortion
- Built-in output current limiter
- Low input offset voltage
- Output stage with low cross-over distortion
- Single in-line (SLL) power package

QUICK REFERENCE DATA

Supply voltage range	V _P		15 to 35	٧
Total quiescent current at V _P = 25 V	I _{tot}	typ.	65	mΑ
Output power at d _{tot} = 0,7% sine-wave power				
$V_{P} = 25 \text{ V}; R_{I} = 4 \Omega$	Po	typ.	13	W
$V_P = 25 \text{ V}; R_L^- = 8 \Omega$	Po	typ.	. 7	W
music power $V_P = 32 \text{ V; } R_L = 4 \Omega$ $V_P = 32 \text{ V; } R_1 = 8 \Omega$	Po Po	typ. typ.	21 12	
Closed-loop voltage gain (externally determined)	G _c	typ.	-	dB
Input resistance (externally determined)	Ri	typ.	20	kΩ
Signal-to-noise ratio at P _O = 50 mW	S/N	typ.	72	dB
Supply voltage ripple rejection at f = 100 Hz	RR	typ.	50	dΒ

9-lead SIL; plastic power (SOT-131B).

February 1980

Fig. 1 Simplified internal circuit diagram.

PINNING

- 1. Non-inverting input
- 2. Input ground (substrate)
- 3. Compensation
- 4. Negative supply (ground)
- 5. Output
- 6. Positive supply (Vp)7. Externally connected to
- pin 6 8. Ripple rejection
 - Ripple rejection
- 9. Inverting input (feedback)

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage	Vp	max.	35	٧
Repetitive peak output current	IORM	max.	3,2	Α
Non-repetitive peak output current	IOSM	max.	5	Á
Total nower dissipation	see deratin	a curve Fia. 2		

Storage temperature
Operating ambient temperature

A.C. short-circuit duration of load during full-load sine-wave drive $R_L = 0$; $V_P = 30 \text{ V}$ with $R_i = 4 \Omega$

see derating curve Fig. 2 T_{stg} -55 to + 150 °C T_{amb} -25 to + 150 °C t_{sc} max. 100 hours

--- mounted on heatsink of 6 K/W.

Fig. 2 Power derating curves.

THERMAL RESISTANCE

From junction to mounting base

R_{th j-mb}

4 K/W

D.C. CHARACTERISTICS

Supply voltage range	 Vp		15 to 35 V
Total quiescent current at Vp = 25 V	l _{tot}	typ.	65 mA

A.C. CHARACTERISTICS

 V_P = 25 V; R_L = 4 Ω ; f = 1 kHz; T_{amb} = 25 °C; measured in test circuit of Fig. 3; unless otherwise specified

Outp	ut	po	wer

specified				
Output power sine-wave power at d _{tot} = 0,7 %				
$R_L = 4.\Omega$	Po	typ.	13 W	
R _L = 8 Ω	P _o	typ.	7: W	
music power at Vp = 32 V				
$R_L = 4 \Omega$; $d_{tot} = 0.7 \%$	Po '	typ.	21 W	
$R_L = 4 \Omega$; $d_{tot} = 10 \%$	Po	typ.	25 W	
$R_L = 8 \Omega$; $d_{tot} = 0.7 \%$	Po	typ.	12 W	
$R_L = 8 \Omega$; $d_{tot} = 10 \%$	Po	typ.	15 W	
Power bandwidth; -3 dB; d _{tot} = 0,7 %	В	· ·	lz to 20 kH	1-
		201	12 to 20 Kill	-
Voltage gain				
open-loop	G _o	typ.	74 dB	
closed-loop	G _c	typ.	30 dB	
Input resistance (pin 1)	R;	> '	100 kΩ	2
Input resistance of test circuit (Fig. 3)	Ri	typ.	20 kΩ	L
Input sensitivity				
for $P_0 = 50 \text{ mW}$	V_{i}	typ.	16 m\	/
for P _O = 10 W	v _i .	typ.	210 m\	/
Signal-to-noise ratio				
at $P_0 = 50 \text{ mW}$; $R_S = 2 \text{ k}\Omega$;				
f = 20 Hz to 20 kHz; unweighted	S/N	typ.	72 dB	j
weighted; measured according to				
IEC 173 (A-curve)	S/N	typ.	76 dB	
			50 dB	
Ripple rejection at f = 100 Hz	RR	typ.		
Total harmonic distortion at $P_0 = 10 \text{ W}$	d_{tot}	typ. <	0,1 % 0.3 %	

0,1 Ω

Output resistance (pin 5)

input (R_S)

ШШ

February 1980

G

Fig. 4 Output power as a function of the supply voltage; f = 1 kHz; dtot = 0,7 %; $---d_{\text{tot}} = 10 \text{ %}$.

Fig. 5 Total harmonic distortion as a function of the output power.

9 to 11 V

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

PLL MOTOR SPEED CONTROL CIRCUIT FOR HI-FI APPLICATIONS

The TDA1533 is a monolithic integrated circuit intended for PLL motor speed control in several hi-fi applications; e.g. record players, cassette recorders, reel-to-reel, and operates in accordance with the phase-locked-loop (PLL) system.

The circuit incorporates the following functions:

- A quartz reference oscillator
- A synthesizer for adjustment of the phase detector reference frequency
- A programmable scaler for the several applications
- A digital memory phase detector
- A tacho-signal amplifier/limiter
- Two operational amplifiers for the external integration and loop filtering of the phase detector output.

٧p

QUICK REFERENCE DATA

Supply voltage range

Supply current	A contract	lΡ	typ.	50 mA	١
Crystal oscillator			•		
Frequency		f	<	5 MH	łz
Temperature coefficient		TC	<	0,1.10 ⁻⁶ K ⁻¹	ı
Tacho input					
Input voltage		v_{l}	-0	,3 to + 10 V	
Input sensitivity (peak-to-peak value)		$V_{i(p-p)}$	>	10 mV	1
Operational amplifiers					
Voltage gain		G_{v}	typ.	10 000	
Input bias current		bias	<	′ 100 nA	
Input offset voltage		Vio	<	15 mV	/
Temperatures					
Storage temperature		T _{stg}	-25	5 to + 125 °C	
Operating ambient temperature		Tamb	(to +60 °C	

18-lead DIL; plastic (SOT-102C).

PINNING

- 1. Ground
- 2. Test input/output
- 3. Output of opamp 1
 4. Input of opamp 1
- 5. Up/down input/output
- 6. Input of opamp 2

- 7. Output of opamp 2 8. Positive supply (+ 10 V)
- 9. Phase detector output
- 10. Lock indicator output
- 11. + input tacho limiter12. input tacho limiter

Output tacho limiter
 A-input scaler control

TDA1533

- 15. B-input scaler control
- 16. Reset input/output
- 17. Crystal oscillator input
 18. Crystal oscillator output

Fig. 1 Block diagram.

GENERAL DESCRIPTION (see also Fig. 1)

The crystal frequency (e.g. 4,8 MHz) is divided by the presettable 901 to 1099 divider. The scaler is used to obtain the reference signal for the digital memory phase detector. The tacho signal is derived from the tacho amplifier/limiter.

The output of the phase detector becomes HIGH on the positive-going edge of the reference signal, and it is floating on the first-coming positive edge of the tacho signal, if the angle between the edges is not more than 360°. The output becomes LOW if the first positive-going edge is the edge of the tacho signal, and it is floating on the first-coming positive edge of the reference signal. This means that the holding range is 720°.

The lock indication output is HIGH, except for the period between the two positive and the two negative-going edges of the tacho and reference signals.

The dividing number of the presettable divider depends on the state of its presets, thus on the position of the up/down counter.

A pull-up to the IC supply voltage of the reset input results into a reset of the up/down counter and dividing by 1000.

The up/down counter can be changed in position by means of the up/down input and the up/down control unit, and therefore the divisors of the presettable divider in a range from 901 to 1099.

The clock of the up/down counter is available at the reset input as a 0,1 Vp to 0,8 Vp pulse.

The timing diagram of the up/down counter is given in Fig. 2.

The up/down input and the scaler control inputs are 3-state inputs. The scaler truth table is given below. A HIGH level at the up/down input gives an increase, a LOW level a decrease, of the phase detector reference signal frequency.

The information at the up/down input will be internally forced on the state present, over a period of 250 ms. Together with the up/down clock at the reset pin, this offers the possibility of displaying the number of clock pulses used.

SCALER TRUTH TABLE

control	inputs B	division ratio
H H F	H L F	note 1 note 2 4
F	H L	8 2
H L	F H	54 10
L	L F	20 40

H = HIGH state (the more positive voltage)

L = LOW state (the less positive voltage)

F = floating (pin open)

Notes

- 1. Test 1; general preset.
- 2. Test 2; fast clock via test pin (pin 2).

RATINGS				
Limiting values in accordance with the Absolute Ma	ximum System (IEC 134)			
Supply voltage	$V_{P} = V_{8-1}$	max.	12	V
Total power dissipation	P _{tot}	max.	1	w
Storage temperature	T _{stg}	-25 to	+ 125	оС
Operating ambient temperature	T _{amb}	-20	to + 80	оС
CHARACTERISTICS				
Supply voltage	Vp	typ.	10 9 to 11	
Supply current	lp	typ.		mΑ
Operating ambient temperature	T _{amb}		0 to 60	
The following characteristics are measured at V _P =				
Crystal oscillator				
Frequency		typ.	4.8	MHz
Frequency	f (4)	<		MHz
Input voltage HIGH	ViH	2,0	6 to 10	V
Input voltage LOW	v_IL	−2,0 t	o + 2,0	٧
Input resistance	R _i	>	50	kΩ
Input capacitance	Ci	<	5	pΕ
Open voltage 1	V _{o1}	typ.	2	٧
Open voltage 2	V _{o2}	typ.	1,3	٧
Temperature coefficient	TC	< (),1.10 ⁻⁶	K-1
Lock indicator output (open collector)				
Output voltage HIGH	Voh	<	12	V
Output voltage LOW at 10 mA	VOL	typ.	0,25 0,5	
Output sink current	I _O	typ.	-	mΑ
Phase detector output	.0	<	20	mΑ
		>	9,5	v
Output voltage HIGH at 20 μA	Voн	typ.	9,7	
Output voltage LOW at 20 μA	V _{OL}	typ.	0,3	
Output current	•		0,5	
source	l _o	>	30	•
	. •	typ.	44	•
sink	l _o	> typ.	30	•
		- / 1		•

Output voltage LOW

Output voltage HIGH

Tacho input		
Input voltage	\vee_1	–0,3 to + 10 V
Input biasing current	l _{bias}	typ. $0.5 \mu A$ $< 5.0 \mu A$
Input sensitivity (peak-to-peak value)	$V_{i(p-p)}$	> 10 mV
Offset voltage over temperature range	Vio	typ. 0,1 mV < 2,0 mV
Offset current over temperature range	I _{io}	typ. 50 nA < 250 nA
Tacho output (open collector)		
Output voltage HIGH	Vон	< 12 V
Output voltage LOW at 5 mA	VOL	< 0,5 V
Output sink current	lo	< 10 mA
Up/down - input/output		
Input voltage LOW	VIL	typ. 0 V -0,4 to + 0,4 V
Output voltage HIGH	v_{OH}	3 to 10 V
Open voltage	v_{o}	typ. 0,7 V 0,6 to 0,8 V
Open voltage HIGH at 0,5 mA	V_{oH}	> 8,5 V typ. 9,0 V
Open voltage LOW at 0,5 mA	V _{oL}	< 0,5 V
Output sink current	lo	< 10 mA
Output source impedance	$ z_0 $	< 1,5 kΩ
Scaler inputs		
Input voltage LOW	VIL	typ. 0 V -0,4 to + 0,4 V
Input voltage HIGH	VIH	4 to 10 V
Open voltage	Vo	typ. 0,7 V 0,6 to 0,8 V
Reset input/output		
Input voltage HIGH	V _{IH}	> 9,5 V typ. 10,0 V

typ.

<

typ.

VOL

Voн

10,0 V 0,3 V 0,5 V

8 V

CHARACTERISTICS (continued)

Operational amplifiers

• • • • • • • • • • • • • • • • • • • •			
Voltage gain	G_{V}	typ.	10 000
Input bias current	bias	typ.	30 nA 100 nA
Output sink current at V _O = 1 V	lo	typ.	0,1 mA
Output source current at V ₀ = 9 V	l _o	> typ.	15 mA 20 mA
Input offset voltage	V_{io}	<	15 mV
Input offset voltage drift	$\Delta V_{io}/\Delta T$	<	0,25 mV/K
Bandwidth (3 dB)	В		60 Hz

- (1) Start operation of up/down pin.
- (2) 1st clock pulse.
- (3) From this point on, restart of cycle by second excitation is possible.
- (4) 2nd clock pulse.
- (5) 3rd clock pulse.
- (6) 4th clock pulse.

Fig. 2 Timing diagram of up/down counter.

5 W AUDIO POWER AMPLIFIER

The TDA2611A is a monolithic integrated circuit in a 9-lead single in-line (SIL) plastic package with a high supply voltage audio amplifier. Special features are:

- possibility for increasing the input impedance
- single in-line (SIL) construction for easy mounting
- very suitable for application in mains-fed apparatus
- extremely low number of external components
- thermal protection
- well defined open loop gain circuitry with simple quiescent current setting and fixed integrated closed loop gain

QUICK REFERENCE DATA

Supply voltage range	V _P		6 to 35	٧	
Repetitive peak output current	IORM	<	1,5	Α	
Output power at d_{tot} = 10% V_P = 18 V; R_L = 8 Ω V_P = 25 V; R_L = 15 Ω	P _o P _o	typ.	4,5 5	W W	
Total harmonic distortion at P_0 < 2 W; R_L = 8 Ω	d _{tot}	typ.	0,3	%	-
Input impedance	$ Z_i $	typ.	45	kΩ	
Total quiescent current at V _P = 18 V	l _{tot}	typ.	25	mΑ	
Sensitivity for $P_0 = 2.5 \text{ W}$; $R_L = 8 \Omega$	٧i	typ.	55	mV	
Operating ambient temperature	T_{amb}	-25	to + 150	оС	
Storage temperature	T _{stg}	-55	to + 150	оС	

9-lead SIL; plastic (SOT-110A).

TDA2611A

Fig. 1 Circuit diagram; pin 3 not connected.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage	V _P	max.	35 \	/
Non-repetitive peak output current	^l osm	max.	3 A	4
Repetitive peak output current	IORM	max.	1,5 /	4
Total power dissipation	see derat	ing curves	Fig. 2	
Storage temperature	T_{stg}	-55 to	+ 150 °	C
Operating ambient temperature	Tamb	-25 to	+ 150	C

Fig. 2 Power derating curves.

D.C. CHARACTERISTICS

Supply voltage range	V _P	6 to 35 V
Repetitive peak output current	lorm s	< 1,5 A
Total quiescent current at Vp = 18 V	l _{tot} 1	typ. 25 mA
A.C. CHARACTERISTICS		

Tamb = 25 °C; vp = 10 v; nL = 0.32; r = 1 kmz uniess otherwise	specified; see	aiso rig. 3)
A.F. output power at $d_{tot} = 10\%$ $V_P = 18 \text{ V}; R_L = 8 \Omega$	Po	> typ.	4 W 4,5 W
$V_{P} = 12 \text{ V; } R_{L} = 8 \Omega$ $V_{P} = 8,3 \text{ V; } R_{L} = 8 \Omega$ $V_{P} = 20 \text{ V; } R_{L} = 8 \Omega$ $V_{P} = 25 \text{ V; } R_{L} = 15 \Omega$	Po Po Po	typ. typ. typ.	1,7 W 0,65 W 6 W 5 W
Total harmonic distortion at P _o = 2 W	P _o d _{tot}	typ. typ. <	0,3 % 1 %
Frequency response		>	15 kHz
Input impedance	$ z_i $	typ.	45 kΩ *
Noise output voltage at RS = 5 k Ω ; B = 60 Hz to 15 kHz	v_n	typ.	0,2 mV 0,5 mV
Sensitivity for $P_0 = 2.5 \text{ W}$	v _i	typ.	55 mV 4 to 66 mV

Fig. 3 Test circuit; pin 3 not connected.

^{*} Input impedance can be increased by applying C and R between pins 5 and 9 (see also Figures 6 and 7).

Fig. 4 Total harmonic distortion as a function of output power.

Fig. 5 Output power as a function of supply voltage.

Fig. 6 Input impedance as a function of frequency; curve a for C = 1 μ F, R = 0 Ω ; curve b for C = 1 μ F, R = 1 k Ω ; circuit of Fig. 3; C2 = 10 pF; typical values.

Fig. 7 Input impedance as a function of R in circuit of Fig. 3; C = 1 μ F; f = 1 kHz.

Fig. 8 Total harmonic distortion as a function of R_S in the circuit of Fig. 3; P_0 = 3,5 W; f = 1 kHz.

Fig. 9 Total power dissipation and efficiency as a function of output power.

APPLICATION INFORMATION Ϊ C5 〒 22μF volume 100 220 kΩ 1 ΜΩ nF (log) СЗ 220 μF R4 560 pF +01 C4 -TDA2611A 100 $1\,\text{M}\Omega$ R3 C9 рF (log) 51 6 100 R2 kΩ : C8 nF tone C6 5 1 μF 10 Ω R6 C2 + 10 nF

Fig. 10 Ceramic pickup amplifier circuit.

7277975

Fig. 11 Total harmonic distortion as a function of output power; —— with tone control; —— without tone control; in circuit of Fig. 10; typical values.

Fig. 12 Frequency characteristics of the circuit of Fig. 10; —— tone control max. high; —— tone control min. high; P_0 relative to 0 dB = 3 W; typical values.

Fig. 13 Frequency characteristic of the circuit of Fig. 10; volume control at the top; tone control max. high.

DEVELOPMENT SAMPLE DATA

This information is derived from development samples made available for evaluation. It does not form part of our data handbook system and does not necessarily imply that the device will go into production

TDA5700 TDA5700Q

INTEGRATED AM/FM RADIO RECEIVER CIRCUIT

The TDA5700 is for use in high quality battery or mains-fed a.m. and a.m./f.m. receivers as well as small low-cost a.m. portable receivers. The IC incorporates a.m. mixer, oscillator, i.f. amplifier, a.g.c. amplifier, a.m. detector and capacitor, f.m./i.f. limiting amplifier and stable base bias for f.m. front-end. The TDA5700 is pin compatible, with the h.f. part of the TBA570A. The IC has been designed to improve the distortion characteristics of the a.m. part and is very suitable in combination with ceramic filters, of which application is given.

QUICK REFERENCE DATA

Applicable supply voltage range of receiver	V _P	2,7	to 12 V
Ambient temperature	T _{amb}		25 °C
Supply voltage at pin 8	V ₈₋₁₆	nom.	5,4 V
Total quiescent current	I _{tot}	typ.	9 mA
A.M. performance (at pin 2)		1	
R.F. input voltage			
S/N = 26 dB	V _i	typ.	18 μV
for $V_0 = 10 \text{ mV}$	Vi	typ.	2,5 μV
A.G.C. range; change of r.f. input voltage			
for 10 dB expansion in audio range		typ.	65 dB
R.F. signal handling			
$d_{tot} = 10\%$; m = 0,8	Vi	typ.	300 mV
F.M. performance (at pin 2)			
R.F. input voltage			
3 dB before limiting	Vi	typ.	125 μV

PACKAGE OUTLINES

TDA5700: 16-lead DIL; plastic (SOT-38). TDA5700Q: 16-lead QIL; plastic (SOT-58).

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

8 V Voltage pin 8 V8-16 max. Total power dissipation see derating curve (Fig. 2)

Storage temperature T_{sta} -55 to + 150 °C

Operating ambient temperature V8; 4; 7; 1-16 = 8 V; see also derating curve (Fig. 2)

-20 to +85 °C T_{amb}

Fig. 2 Derating curve.

DESIGN DATA

Characteristics of integrated components are determined by process and layout data. Pins not under measuring condition should not be connected.

Pins 9, 10, 11, 12 and 13 are not allowed to be connected

Voltage pins 1 and 7 *	V ₁₋₁₆ V ₇₋₁₆	max.	12	٧
Voltage pin 4 *	V ₄₋₁₆	min. max.	V ₈ - 0,5 V ₈ + 0,5	
Voltage pin 8 *	V ₈₋₁₆	max.	7	٧
Voltage pin 3 *	V ₃₋₁₆	max.	3	٧
Voltage pin 5 *	V ₅₋₁₆	max.	4	٧
Voltage pin 14 *	V ₁₄₋₁₆	max.	- 1	٧
Current pin 2, 6 and 15 *	12; 16; 115	max.	80	μΑ

V₁₋₁₆

Tolerated minimum for voltages 0 V; for currents 0 mA.

TDA5700 TDA5700Q

D.C. CHARACTERISTICS

T _{amb} = 25 °C						
Total quiescent current						
V ₈₋₁₆ = 5,4 V		I _{tot}		typ.	9	mA
$V_{8-16} = 3.4 V$		l _{tot}		typ.	8	mΑ
Applicable supply voltage range of receiver (note 1)		٧p		2,7	to 12	٧
Base bias voltage for f.m. front-end						
total external load current at pin 2: $-I_2 = 150 \mu A$		V ₂₋₁₆	3	typ.	1,2	V
A.C. CHARACTERISTICS						
$T_{amb} = 25 {}^{\circ}\text{C}; V_{8-16} = 5.4 \text{V}; I_{E} (TR9) = 1 \text{mA}$						
			0,45	1	10,7	MHz
Input conductance at pin 2	gie	typ.	_	0,3	0,4	mA/V
Output conductance at pin 1	goe	typ.	10	-	40	μ A/V
Input conductance at pin 15	gie	typ.	0,5	-	1,0	mA/V
A.M. performance (in test circuit Fig. 3)						
		V ₈₋₁₆	3	5,4 V	3,4	٧
R.F. input voltage; S/N = 26 dB (notes 2 and 3)		Vi	typ.	18		μV
R.F. input voltage for 10 mV (a.f.)						
across volume control		٧i	typ.	2,5	6,0	μV
A.F. voltage across volume control			1			
at 100 μ V (r.f.) input voltage (notes 2 and 3)		V _o	typ.	100	100	mV
Signal-to-noise ratio						
at 1 mV (r.f.) input voltage (notes 2 and 3)		S/N	typ.	46	49	dB
A.G.C. range (change in r.f. input voltage for 10 dB expansion in audio range) (notes 2 and 3)			typ.	65	65	dB
R.F. signal handling capability at 80% modulation;			-,,			
d_{tot} < 10% (note 2)		٧i	typ.	300	100	mV
Harmonic distortion of h.f. part over most of						
a.g.c. range; $m = 0.3$; $f_m = 1 \text{ kHz}$		d _{tot}	typ.	1	1	%

Notes

I.F. selectivity

I.F. bandwidth (3 dB)

 Adjustable by a dropping resistor in the V_p-line; see also maximum tolerated voltages for pins 1, 4, 7 and 8 in design data on page 3.

Sg

typ.

typ.

5 kHz

- 2. a. A.F. signal: measured across volume control.
 - b. R.F. signal: measured at pin 2 at source impedance of 50 Ω .
 - c. $f_0 = 1 \text{ MHz}$; $f_m = 1 \text{ kHz}$.
- 3. m = 0.3.

Fig. 3 A.M. performance test circuit.

7284061

Fig. 4 Component side of printed-circuit board (test circuit Fig. 3).

Fig. 5 Track side of printed-circuit board (test circuit Fig. 3).

TDA5700 TDA5700Q

F.M. performance test circuit (Fig. 6)

 $\rm T_{amb}$ = 25 °C; V_{8-16} = 5,4 V; f $_{o}$ = 10,7 MHz; $\Delta \rm f$ = ± 22,5 kHz; f $_{m}$ = 1 kHz; R $_{S}$ = 50 Ω ; unless otherwise specified.

Sensitivity for an f.m. signal 3 dB before limiting			
at pin 2	Vi	typ.	125 μV
at pin 15	vi	typ.	500 μV
A.F. output voltage across a load of 100 k Ω	Vo	typ.	140 mV
Signal-to-noise ratio over most of signal range	S/N	typ.	65 dB
A.F. signal distortion 3 dB before i.f. limiting (note 1)	d _{tot}	typ.	0,5 %

Fig. 6 Test circuit f.m. performance.

Fig. 7 Component side of printed-circuit board (test circuit Fig. 6).

Fig. 8 Track side of printed-circuit board; (test circuit Fig. 6).

May 1979

APPLICATION INFORMATION

Fig. 9 Performance of an f.m. circuit including the f.m. tuner.

APPLICATION INFORMATION (continued)

F.M. performance of the complete f.m. circuit measured at $V_P = 6.0 \text{ V}$.

Sensitivity for an f.m. signal 3 dB before limiting at 75 Ω aerial input of the f.m. front-end (note 1)	Vi	typ.	12,5 μV
at pin 2; first i.f. input (notes 2 and 6)	Vi	typ.	125 ^μ V
Sensitivity for 26 dB S/N ratio at 75 Ω aerial input of the f.m. front-end (note 1)	Vi	typ.	3 μV
A.F. output voltage across a volume control of 100 $k\Omega$ at an i.f. signal beyond limiting	Vo	typ.	140 mV
Signal-to-noise over most of the signal range	S/N	typ.	65 dB
A.M. suppression over most of the signal range (note 3)	S/N	typ.	60 dB
I.F. selectivity (note 4)	\$300	typ.	55 dB
I.F. bandwidth (3 dB; note 4)	В	typ.	180 kHz
A.F. distortion at an i.f. signal level 3 dB before limiting (note 5)	d _{tot}	typ.	0,5 %

Notes

- 1. Aerial e.m.f. (V_i) at f_0 = 98 MHz; R_S = 75 Ω ; Δf = \pm 22,5 kHz; f_m = 1 kHz.
- 2. $f_0 = 10,7 \text{ MHz}$; $\Delta f = \pm 22,5 \text{ kHz}$; $f_m = 1 \text{ kHz}$.
- 3. A.M. signal: m = 0,3; f_m = 1 kHz.
 - F.M. signal: $f_0 = 10.7 \text{ MHz}$; $\Delta f = \pm 75 \text{ kHz}$; $f_m = 70 \text{ Hz}$.
 - Carrier simultaneously modulated with a.m. and f.m.
- Including the ratio detector, measured at N1 of the secondary coil of the ratio detector.
 Level of measurement: 3 dB before limiting.
- 5. $f_0 = 98 \text{ MHz}$; $\Delta f = 40 \text{ kHz}$; $f_m = 1 \text{ kHz}$.
 - Measurement carried out selectively to avoid noise influence on meter reading.
- 6. Pin 3 bypassed to ground with a capacitor of 220 nF.

TDA5700 TDA5700Q

COIL DATA

A.M. - i.f. coils (Fig. 3)

Fig. 10 I.F. bandpass filter (L1). TOKO sample no. 7 MCS-A 3544 EK. L = 680 μ H at 455 kHz; $\Omega_{\rm O}$ = 110.

Fig. 11 Oscillator coil (L2). TOKO sample no. 7 BOS-A 3498 EK. L = 115 μ H at 796 kHz; Q₀ = 110.

F.M. — i.f. coils (Figs 6 and 9)

Fig. 12 Primary ratio detector coil (L3). TOKO sample no. 119 ACS-A 3503 AO. L = 2,7 μ H at 10,7 MHz; Q $_0$ = 90.

Fig. 13 Secondary ratio detector coil (L4). TOKO sample no. 119 ACS-A 3258 EK. L = 3,25 μ H at 10,7 MHz; Q₀ = 85.

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

AM CAR RADIO RECEIVER CIRCUIT

The TEA5550 is a monolithic integrated radio circuit, primarily intended for use in car radios.

The IC can reduce the costs in a car radio due to the following features:

- minimum periphery
- ceramic filter application
- simple a.m./f.m. switching possibility

The TEA5550 incorporates the following functions:

- a double balanced mixer with large signal handling and common mode rejection properties
- a 'one-pin' oscillator, permitting the application of a variable capacitance diode
- an i.f. amplifier, designed for ceramic filters
- an a.m. envelope detector
- a.g.c. stages
- a voltage stabilizer, for the internal circuit current and an external current up to 20 mA
- a simple d.c. switch for a.m./f.m. radios

QUICK REFERENCE DATA

Supply voltage range (pin 8)	V _P	10,2	to 16	٧
Ambient temperature	T _{amb}	typ.	25	°C
Supply voltage (pin 8)	V _P	typ.	14,4	٧
R.F. input voltage (pin 1)				
$V_0 = 30 \text{ mV}$	Vj	typ.	4	μV
S/N = 26 dB	v_i	typ.	13	μV
S/N = 46 dB	Vi	typ.	160	μV
A.F. output voltage (pin 10)	•			
$V_i = 1 \text{ mV}$	V _o	typ.	180	mV
Total harmonic distortion; m = 0,8; V _i = 1 mV	THD	<	2,5	%
R.F. signal handling				
THD $< 10\%$; m = 0,8	Vi	typ.	400	.mV

PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38).

Fig. 1 Block diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltages pin 8 pin 3	V _P = V ₈₋₁₆ V ₃₋₁₆	max. 24 V max. 24 V
Non-repetitive peak output current (pin 9)	¹ 9SM	max. 100 mA
Total power dissipation	P _{tot}	max. 1100 mW
Storage temperature	T _{stg}	-65 to + 150 °C
Operating ambient temperature	T _{amb}	-30 to +85 °C

D.C. CHARACTERISTICS at $V_i = 0$

Vp = 14,4 V; T_{amb} = 25 °C; measured in Fig. 2 Supply voltage range (unstabilized)* Vρ 10,2 to 16 V 8 V Voltage at pin 9; -19 = 0V₉₋₁₆ 7,5 to 9 V Voltage at pin 10 V₁₀₋₁₆ typ. 1,2 V Voltage at pins 1 and 2 V₁₋₁₆ = V₂₋₁₆ typ. 5,2 V

^{*}A stabilized supply voltage of 7 to 9 V can also be applied at pin 9 instead of V_p (pin 8).

····· ···· · · · · · · · · · · ·					_
Total supply current; —Ig = 0 Current drain	I _{tot}	typ.	20	mA	
pin 3 pin 15	13 1 ₁₅	typ. typ.		mA mA	
Current supplied from pin 9	-lg	<	20	mΑ	
Power dissipation; $-1g = 0$	P	typ.	300	mW	
A.C. CHARACTERISTICS					
$V_P = 14,4 \ V; T_{amb} = 25 \ ^{\circ}C; r.f. condition: f_i = 1 \ MHz, m = 0,3, f_m = 1 $ unless otherwise specified	kHz; meası	red in F	ig. 2;		
R.F. input voltage; $V_0 = 30 \text{ mV}$	٧i	2,5 t	o 5,5	μV	
H.F. sensitivity for: S/N = 6 dB	V _i	typ.	1,3	μV	
S/N = 26 dB	V _i	<		μV	
S/N = 46 dB	v _i	typ.	160	μV	
S/N = 50 dB	٧i	typ.	350	μV	
Input conductance at pin 1 V _i = 0,1 mV V _i = 100 mV	gie gie	typ.	0,2 0,1		
Input conductance at pin 6	g _{ie}	typ.	0,3	mS	
Change in r.f. input voltage for 10 dB change in a.f. output voltage; V _{i1} = 200 mV	V _{i1} /V _{i2}	typ.	86		
A.F. output voltage V _i = 1 mV	v _o	> typ.	160 180		
A.F. output impedance (pin 10)	Zo	typ.	2,7	kΩ	
Total harmonic distortion at m = 0,8	, 0,	••	-		
$V_i = 16 \mu\text{V}$ $V_i = 1 \text{mV}$ $V_i = 2,5 \text{mV}$	THD THD THD	< typ. <	2,5 1,2 2,5	%	٠
R.F. signal handling THD < 10%; m = 0,8	Vi	> typ.	350 400		
I.F. suppression V _O = 30 mV; without input selection	α	. · .>	20	dB*	
Oscillator voltage Vg-16 = 8 V; f _{OSC} = 1468 kHz	V ₁₅₋₈	< '	250	mV	

^{*} α = 20 log $\frac{V_{i1}}{V_{i2}}$, where: V_{i1} is input voltage at f = 468 kHz and V_{i2} is input voltage at f = 1 MHz.

Fig. 2 AM test circuit; for printed-circuit board see Figs 3 and 4.

Fig. 3 Printed-circuit board component side, showing component layout. For circuit diagram see Fig. 2.

Fig. 4 Printed-circuit board showing track side.

DEVELOPMENT SAMPLE DATA

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

FM/IF SYSTEM

The TEA5560 is a monolithic integrated f.m./i.f. system circuit, intended for car radios and home-receivers equipped with a ratio detector.

The system incorporates the following functions:

- a three-stage i.f. limiting amplifier
- a 15 dB field-strength dependent muting circuit
- a field-strength dependent d.c. voltage for e.g.: mono/stereo switching channel separation control of a stereo decoder an indicator (I_{max} ≤ 1 mA)
- standby ON/OFF switching circuit
- a voltage stabilizer, for the internal circuit current and an external current up to 10 mA
- adjustable gain (ΔG = 15 dB)

QUICK REFERENCE DATA

Supply voltage range (pin 6)	V _P	10,2	to 16 V
Ambient temperature	T _{amb}	typ.	25 °C
Supply voltage (pin 6)	V _P	typ.	14,4 V
Frequency	fo		10,7 MHz
Sensitivity (3 dB limiting)	v _i	typ.	 150 μV
Signal-to-noise ratio for V _i = 10 mV	S/N	>	70 dB
A.F. output voltage at $\Delta f = \pm 22.5 \text{ kHz}$	v _o	typ.	190 mV
Total harmonic distortion; $\Delta f = \pm 22.5 \text{ kHz}$	THD	typ.	0,35 %
A.M. suppression a.m. signal: $m = 0.3$; $f_m = 1$ kHz f.m. signal: $\Delta f = \pm 22.5$ kHz; $f_m = 70$ Hz	α	typ.	50 dB

9-lead SIL; plastic (SOT-142).

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltages pin 6 pin 7	V _P = V ₆₋₉ V ₇₋₉	max. max.	24 24	
Voltage at pin 4	V ₄₋₉	max.	7	٧
Voltage at pin 5	V ₅₋₉	max.	9	٧
Non-repetitive peak output current (pin 8)	-lasm	max.	100	mΑ
Total power dissipation	P _{tot}	max.	1000	mW
Storage temperature	T _{stq}	-65 to	+ 150	oC.
Operating ambient temperature	T _{amb}	-30 to	+ 85	οС

D.C. CHARACTERISTICS at V_i = 0

 $V_P = 14,4 \text{ V; } T_{amb} = 25 \text{ °C; measured in Fig. 2}$

Supply voltage range (unstabilized, pin 6)*	V _P	10,2 to 16 V	
Voltage at pin 8	V ₈₋₉	typ.	8 V
Voltage at pin 4 (level detector)	V ₄₋₉	<	100 mV
Voltage at pins 1, 2 and 3	V _{1; 2; 3-9}	typ.	2,3 V
Total supply current —Ig = 0	l _{tot}	typ.	20 mA

 $V_{5-9} = 0$

Current supplied from pin 8

DEVELOPMEN! SAMPLE DATA

1,5 mA Current into pin 5 15 typ. Current into pin 7 17 typ. 3,5 mA Power dissipation; -18 = 0300 mW typ.

Itot

-18

typ.

<

11 mA

10 mA

A stabilized supply voltage of 7 to 9 V can also be applied at pins 5 and 6 (linked); in that case pin 8 must be not connected.

A.C. CHARACTERISTICS

 V_P = 14,4 V; T_{amb} = 25 °C; V_i = 1 mV; f_o = 10,7 MHz; Δf = ± 22,5 kHz; f_m = 1 kHz; measured in Fig. 2; unless otherwise specified

I.F. part and ratio detector •				450	.,
Sensitivity at -3 dB before limiting (pin 1)		v_i	typ. 85 t	150 o 210	•
A.F. output voltage					•
$\Delta f = \pm 22,5 \text{ kHz}$		V_{o}	typ.	190	
$\Delta f = \pm 75 \text{ kHz}$		Vo	typ.	600	mV
Total harmonic distortion					
$\Delta f = \pm 22,5 \text{ kHz}$		THD	typ.	0,35	
$\Delta f = \pm 75 \text{ kHz}$		THD	typ.	1,7	%
A.M. suppression					
a.m. signal: m = 0,3; f _m = 1 kHz		A 4	41.00	EΩ	dB
f.m. signal: $\Delta f = \pm 22.5 \text{ kHz}$; $f_{\text{m}} = 70 \text{ Hz}$		α	typ.	50	ub
H.F. sensitivity at B = 300 Hz to 15 kHz for a signal-to-noise ratio of:				·	
S/N = 26 dB		٧i	typ.	4	μV
S/N = 70 dB		ν̈́i	> ,		mV
Level detector circuit	•				
D.C. output voltage at pin 4					
$V_i = 200 \mu\text{V}$		V ₄₋₉	typ.	1,4	٧
$V_i = 500 \mu V$		V ₄₋₉	typ.	2,0	
$V_i = 1 \text{ mV}$		V ₄₋₉	typ.	2,6	
$V_i = 10 \text{ mV}$		V ₄₋₉	typ.	4,5	٧
Muting circuit					
Output voltage ratio at $V_i = 3 \mu V$					
with muting: $V_{4-9} < 0.3 V$ and					
without muting: $V_{4.9} = 1 \text{ V}$		α_{VO}	typ.	15	dB
Stabilizer circuit		-			

7,6 to 8,2 V

10 mA

-lg

Voltage at pin 8; $-I_8 = 0$

Maximum current supplied from pin 8

Fig. 3 Printed-circuit board component side, showing component layout. For circuit diagram see Fig. 2.

Fig. 4 Printed-circuit board showing track side.

BIPOLAR ICS FOR RADIO AND AUDIO EQUIPMENT

FUNCTIONAL AND NUMERICAL INDEX MAINTENANCE TYPE LIST

GENERAL

PACKAGE OUTLINES

INTRODUCTION

DEVICE DATA

Argentina: FAPESA I.y.C., Av. Crovara 2550, Tablada, Prov. de BUENOS AIRES, Tel. 652-7438/7478.

Australia: PHILIPS INDUSTRIES HOLDINGS LTD., Elcoma Division, 67 Mars Road, LANE COVE, 2066, N.S.W., Tel. 427 08 88.

Austria: ÖSTERREICHISCHE PHILIPS BAUELEMENTE Industrie G.m.b.H., Triester Str. 64, A-1101 WIEN, Tel. 62 91 11.

Belgium: M.B.L.E., 80, rue des Deux Gares, B-1070 BRUXELLES, Tel. 523 00 00. Brazil: IBRAPE, Caixa Postal 7383, Av. Brigadeiro Faria Lima, 1735 SAO PAULO, SP, Tel. (011) 211-2600.

Canada: PHILIPS ELECTRONICS LTD., Electron Devices Div., 601 Milner Ave., SCARBOROUGH, Ontario, M1B 1M8, Tel. 292-5161.

Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel. 39-40 01.

Colombia: SADAPE S.A., P.O. Box 9805, Calle 13, No. 51 + 39, BOGOTA D.E. 1., Tel. 600 600.

Denmark: MINIWATT A/S, Emdrupvej 115A, DK-2400 KØBENHAVN NV., Tel. (01) 69 16 22.

Finland: OY PHILIPS AB, Elcoma Division, Kaivokatu 8, SF-00100 HELSINKI 10, Tel. 1 72 71. France: R.T.C. LA RADIOTECHNIQUE-COMPELEC, 130 Avenue Ledru Rollin, F-75540 PARIS 11, Tel. 355-44-99.

Germany: VALVO, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, D-2 HAMBURG 1, Tel. (040) 3296-1.

Greece: PHILIPS S.A. HELLENIQUE, Elcoma Division, 52, Av. Syngrou, ATHENS, Tel. 915 311.

Hong Kong: PHILIPS HONG KONG LTD., Elcoma Div., 15/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, Tel. NT 24 51 21.

India: PEICO ELECTRONICS & ELECTRICALS LTD., Ramon House, 169 Backbay Reclamation, BOMBAY 400020, Tel. 295144,

Indonesia: P.T. PHILIPS-RALIN ELECTRONICS, Elcoma Division, 'Timah' Building, Jl. Jen. Gatot Subroto, P.O. Box 220, JAKARTA, Tel. 44 163.

Ireland: PHILIPS ELECTRICAL (IRELAND) LTD., Newstead, Clonskeagh, DUBLIN 14, Tel. 69 33 55.

Italy: PHILIPS S.p.A., Sezione Elcoma, Piazza IV Novembre 3, I-20124 MILANO, Tel, 2-6994.

Japan: NIHON PHILIPS CORP., Shuwa Shinagawa Bldg., 26-33 Takanawa 3-chome, Minato-ku, TOKYO (108), Tel. 448-5611.

(IC Products) SIGNETICS JAPAN, LTD, TOKYO, Tel. (03)230-1521.

Korea: PHILIPS ELECTRONICS (KOREA) LTD., Elcoma Div., Philips House, 260-199 Itaewon-dong, Yongsan-ku, C.P.O. Box 3680, SEOUL, Tel. 794-Malaysia: PHILIPS MALAYSIA SDN. BERHAD, Lot 2, Jalan 222, Section 14, Petaling Jaya, P.O.B. 2163, KUALA LUMPUR, Selangor, Tel. 77 44 11.

Mexico: ELECTRONICA S.A. de C.V., Varsovia No. 36, MEXICO 6, D.F., Tel. 533-11-80.

Netherlands: PHILIPS NEDERLAND B.V., Afd. Elonco, Boschdijk 525, 5600 PB EINDHOVEN, Tel. (040) 79 33 33. New Zealand: PHILIPS ELECTRICAL IND, LTD., Elcoma Division, 2 Wagener Place, St. Lukes, AUCKLAND, Tel. 867 119.

Norway: NORSK A/S PHILIPS, Electronica, Sørkedalsveien 6, OSLO 3, Tel. 46 38 90.

Peru: CADESA, Rocca de Vergallo 247, LIMA 17, Tel. 62 85 99. Philippines: PHILIPS INDUSTRIAL DEV. INC., 2246 Pasong Tamo, P.O. Box 911, Makati Comm. Centre, MAKATI-RIZAL 3116, Tel. 86-89-51 to 59.

Portugal: PHILIPS PORTUGESA S.A.R.L., Av. Eng. Duharte Pacheco 6, LISBOA 1, Tel. 68 31 21.

Singapore: PHILIPS PROJECT DEV. (Singapore) PTE LTD., Elcoma Div., P.O.B. 340, Toa Payoh CPO, Lorong 1, Toa Payoh, SINGAPORE 12, Tel. 53

South Africa: EDAC (Pty.) Ltd., 3rd Floor Rainer House, Upper Railway Rd. & Ove St., New Doornfontein, JOHANNESBURG 2001, Tel. 614-2362/9. Spain: COPRESA S.A., Balmes 22, BARCELONA 7, Tel. 301 63 12.

Sweden: A.B. ELCOMA, Lidingövägen 50, S-115 84 STOCKHOLM 27, Tel. 08/67 97 80.

Switzerland: PHILIPS A.G., Elcoma Dept., Allmendstrasse 140-142, CH-8027 ZÜRICH, Tel. 01/43 22 11.

Taiwan: PHILIPS TAIWAN LTD., 3rd Fl., San Min Building, 57-1, Chung Shan N. Rd, Section 2, P.O. Box 22978, TAIPEI, Tel. 5513101-5.

Thailand: PHILIPS ELECTRICAL CO. OF THAILAND LTD., 283 Silom Road, P.O. Box 961, BANGKOK, Tel. 233-6330-9.

Turkey: TÜRK PHILIPS TICARET A.S., EMET Department, Inonu Cad. No. 78-80, ISTANBUL, Tel. 43 59 10.

United Kingdom: MULLARD LTD., Mullard House, Torrington Place, LONDON WC1E 7HD, Tel. 01-580 6633. United States: (Active devices & Materials) AMPEREX SALES CORP., Providence Pike, SLATERSVILLE, R.I. 02876, Tel. (401) 762-9000.

(Passive devices) MEPCO/ELECTRA INC., Columbia Rd., MORRISTOWN, N.J. 07960, Tel. (201) 539-2000.

(IC Products) SIGNETICS CORPORATION, 811 East Arques Avenue, SUNNYVALE, California 94086, Tel. (408) 739-7700.

Uruguay: LUZILECTRON S.A., Rondeau 1567, piso 5, MONTEVIDEO, Tel. 94321.

Venezuela: IND. VENEZOLANAS PHILIPS S.A., Elcoma Dept., A. Ppal de los Ruices, Edif. Centro Colgate, CARACAS, Tel. 36 05 11.

A15

4 1980 N.V. Philips' Gloeilampenfabrieken