粒子物理简介

第二节 粒子运动学、衰变和散射

余钊焕

中山大学物理学院

http://yzhxxzxy.github.io

2020年8月

能量、动量和质量

☆ 粒子物理学常常研究高速运动的粒子,需要在狭义相对论框架下描述粒子的运动。平直时空中的闵可夫斯基度规通常约定为

$$g_{\mu\nu} = g^{\mu\nu} = \begin{pmatrix} +1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

$$\mu, \nu = 0, 1, 2, 3$$

爱因斯坦求和约定

省略求和符号 对重复的指标求和

$$p^2 \equiv p \cdot p \equiv p^{\mu} p_{\mu} = g_{\mu\nu} p^{\mu} p^{\nu} = g^{\mu\nu} p_{\mu} p_{\nu} = E^2 - |\mathbf{p}|^2 = m^2$$

是一个洛伦兹不变量,即在洛伦兹变换下不变,在所有惯性系中有相同的值。

- ← m 是粒子的(静止)质量
- (自由运动的粒子满足质壳条件 $E^2 = m^2 + |\mathbf{p}|^2$,即 $E = \sqrt{m^2 + |\mathbf{p}|^2}$
- 粒子的 3 维速度定义为 v = p/E

洛伦兹变换

※ 洛伦兹变换将一个洛伦兹矢量在一个惯性参考系 ∑ 中的测量值变换成它 在另一个惯性参考系 ∑ 中的测量值

 \bigcirc 设 Σ' 系相对于 Σ 系的运动速度为 β ,粒子在 Σ 系中的能量和动量分别 为 E 和 p,记 p 在平行于 β 方向上的分量为 p_i ,在垂直于 β 方向上的分量 为 p_T ,则粒子在 Σ' 系中的能量和动量为

$$\begin{pmatrix} E' \\ p'_{L} \end{pmatrix} = \begin{pmatrix} \gamma & -\gamma |\boldsymbol{\beta}| \\ -\gamma |\boldsymbol{\beta}| & \gamma \end{pmatrix} \begin{pmatrix} E \\ p_{L} \end{pmatrix}, \quad \mathbf{p}'_{T} = \mathbf{p}_{T},$$

其中洛伦兹因子 $\gamma = (1 - |\beta|^2)^{-1/2}$ \rightarrow 可以验证, $p^2 = p^2$,即 4 维动 量的内积在洛伦兹变换下不变

粒子能量 E 与质量 m 的关系为 $E = \gamma m$, 这里 $\gamma = (1 - |\mathbf{v}|^2)^{-1/2}$ 。

动尺缩短和动钟延缓

 \mathbf{y} 时空坐标 $\mathbf{x}^{\mu}=(t,\mathbf{x})$ 是洛伦兹矢量,服从洛伦兹变换

$$\begin{pmatrix} t' \\ x'_{L} \end{pmatrix} = \begin{pmatrix} \gamma & -\gamma |\boldsymbol{\beta}| \\ -\gamma |\boldsymbol{\beta}| & \gamma \end{pmatrix} \begin{pmatrix} t \\ x_{L} \end{pmatrix}, \quad \mathbf{x}'_{T} = \mathbf{x}_{T}.$$

- ◇ 引起两个相对论效应
- **① 运动的尺子变短**: 从静止参考系 Σ 中观察固定在运动参考系 Σ' 中的一个物体,则它在平行于 β 方向上的长度 L' 变短为 $L=L'/\gamma < L'$
- ② 运动的时钟变慢:运动参考系 Σ' 中的时间间隔 $\Delta t'$ 比静止参考系 Σ 中的时间间隔 Δt 长,满足 $\Delta t' = \gamma \Delta t > \Delta t$
- μ 子质量 m = 106 MeV,寿命 $\tau = 2.2 \times 10^{-6}$ s;对于能量 E = 106 GeV 的 μ 子, $\gamma = E/m = 10^3$,因而飞行寿命会延长到 $\tau' = 2.2 \times 10^{-3}$ s

质心系

- ☆ 对粒子能动量的实验测量是在<mark>实验室参考系</mark>中进行的;不过,对于多粒子系统,在质心参考系中描述粒子运动状态通常会更加简单
- igwedge 质心系定义为使系统总动量为零的参考系,满足 $\mathbf{p}_{ ext{CM}} \equiv \sum_i \mathbf{p}_i^{ ext{CM}} = \mathbf{0}$
- \Re 系统的<mark>质心系能量(质心能) $E_{CM} \equiv \sum_{i} E_{i}^{CM}$ 是一个洛伦兹不变量:</mark>

$$p_{\text{CM}}^{\mu} \equiv (E_{\text{CM}}, \mathbf{p}_{\text{CM}}), \quad p_{\text{CM}}^2 = \left(\sum_i E_i^{\text{CM}}\right)^2 - \left(\sum_i \mathbf{p}_i^{\text{CM}}\right)^2 = \left(\sum_i E_i^{\text{CM}}\right)^2 = E_{\text{CM}}^2$$

- igg(系统的质心系总能量 E_{CM} 是激发粒子体系内部相互作用的有效能量
- \bigcirc 几个粒子的总质心能也称为它们的<mark>不变质量</mark>, $m_{inv} = E_{CM}$;由于能动量守恒,如果几个粒子是同一个母粒子的衰变产物, m_{inv} 就是母粒子的质量
- 两个粒子碰撞时,质心系中两个入射粒子动量大小相同,方向相反;质心系中出射粒子的角度分布是轴对称的,以任一入射粒子的动量方向为轴

固定靶实验和对撞实验

@ 固定靶实验用粒子束流轰击固定靶来发生相互作用。实验室系中,记静止靶粒子 A 的动量为 $p_A^\mu = (m_A, \mathbf{0})$,入射粒子 B 的动量为 $p_B^\mu = (E_B, \mathbf{p}_B)$,则 $E_{\mathrm{CM}}^2 = (p_A + p_B)^2 = p_A^2 + p_B^2 + 2p_A \cdot p_B = m_A^2 + m_B^2 + 2m_A E_B$

式 对撞实验用两个粒子束流相撞来发生相互作用。目前已有 e^+e^- 、pp、 $p\bar{p}$ 和 $e^\pm p$ 等束流不同的对撞机。设粒子 A 和 B 沿相反方向入射并对撞,若能量远高于质量,则 $|\mathbf{p}_A| \simeq E_A$, $|\mathbf{p}_B| \simeq E_B$, $p_A^2 \simeq p_B^2 \simeq 0$,在实验室系中可得

$$E_{\text{CM}}^2 = p_{\mathcal{A}}^2 + p_{\mathcal{B}}^2 + 2p_{\mathcal{A}} \cdot p_{\mathcal{B}} \simeq 2E_{\mathcal{A}}E_{\mathcal{B}} + 2|\mathbf{p}_{\mathcal{A}}||\mathbf{p}_{\mathcal{B}}| \simeq 4E_{\mathcal{A}}E_{\mathcal{B}}$$

费米实验室的 Tevatron 是 $p\bar{p}$ 对撞机, $E_p=E_{\bar{p}}\simeq 1$ TeV, $E_{\rm CM}\simeq 2$ TeV。若改为以 p 为靶的打靶实验,需要入射 \bar{p} 能量为 $E_{\bar{p}}\simeq 2000$ TeV 才能达到相同的质心能。由此可见,对撞实验远比固定靶实验更能有效地利用能量。

末态相空间

- 🚫 衰变和散射过程可包含多个末态粒子,其能动量可取运动学允许的任意值
- → 计算衰变宽度和散射总截面要对所有末态粒子的动量相空间积分
- 单个粒子的洛伦兹不变动量相空间体积元为 $d^4p/(2\pi)^4 = dp^0d^3p/(2\pi)^4$
- ₹ 末态粒子应满足质壳条件且能量为正
- 考虑到这两个限制,体积元变成 $\frac{dp^0d^3p}{(2\pi)^4} 2\pi\delta((p^0)^2 |\mathbf{p}|^2 m^2)\theta(p^0)$

$$\frac{d^3p}{(2\pi)^3} \int \frac{dp^0}{2\pi} 2\pi \delta((p^0)^2 - |\mathbf{p}|^2 - m^2)\theta(p^0) = \frac{d^3p}{(2\pi)^3} \int dp^0 \frac{\delta(p^0 - \sqrt{|\mathbf{p}|^2 + m^2})}{2\sqrt{|\mathbf{p}|^2 + m^2}} \\
= \frac{d^3p}{(2\pi)^3 2\sqrt{|\mathbf{p}|^2 + m^2}} = \frac{d^3p}{(2\pi)^3 2E}$$

 \mathbb{Q} 因此,n 体末态相空间不变体积元为 $d\Pi_n = \prod_{i=1}^n \frac{d^3p_i}{(2\pi)^3 2E_i}$

衰变

不稳定粒子的衰变是一个泊松过程

 \bigcirc 在静止参考系中,粒子衰变前存活的时间 $\ge t$ 的概率由指数分布给出,

$$P(t) = e^{-t/\tau} = e^{-\Gamma t},$$

🙀 τ 是粒子**寿命,**Γ 是粒子<mark>衰变宽度</mark>

$$\Gamma \equiv \frac{1}{\tau}$$

● 不稳定粒子的质量并不是确定的值,

Breit-Wigner distribution

 $m_{\rm inv}$

 $m-\Gamma$ $m-\Gamma/2$

而是一个分布,即衰变产物不变质量 m_{inv} 的分布,服从 Breit-Wigner 分布

$$f(m_{\rm inv}) = \frac{\Gamma}{2\pi} \frac{1}{(m_{\rm inv} - m)^2 + \Gamma^2/4}$$

iggle 分布的中心值 m 是通常所说的粒子<mark>质量</mark>,分布的半峰全宽是粒子宽度 Γ

 $m + \Gamma/2 + \Gamma$

分支比和分宽度

 $\stackrel{\raisebox{3.5pt}{\raisebox{3.5pt}{\times}}}{\longleftrightarrow}$ 一个粒子可能有多种衰变过程。在一次衰变中,某个衰变过程 j 发生的概率称为它的分支比 \mathcal{B}_i 。定义衰变过程 j 的分宽度为 $\Gamma_i = \Gamma \mathcal{B}_i$,则

$$\sum_j \mathcal{B}_j = rac{1}{\Gamma} \sum_j \Gamma_j = 1, \quad \mathbb{R}^p \; \Gamma = \sum_j \Gamma_j$$

 \bigcirc 对于末态为 n 体的衰变过程 j,分宽度在理论计算中表达为

$$\Gamma_{j} = \frac{1}{2m} \int \prod_{i=1}^{n} \frac{d^{3} p_{i}}{(2\pi)^{3} 2E_{i}} (2\pi)^{4} \delta^{(4)} \left(p^{\mu} - \sum_{i} p_{i}^{\mu}\right) |\mathcal{M}_{j}|^{2}$$

- \bigcirc 不变振幅 \mathcal{M}_{i} 是发生 j 过程的概率振幅,在洛伦兹变换下不变

寿命和衰变长度

- → 寿命长于 10⁻¹⁰ s 的粒子
- $^{\$}$ μ^{\pm} , π^{\pm} 介子, K^{\pm} 介子,中子 n, Λ^{0} 重子, $K_{\rm L}^{0}$ 介子,……
- ♣ 寿命在 10⁻¹² 10⁻¹⁰ s 之间的粒子
- - → 产生后能够飞行一段探测器可分辨的距离
- 寿命短于 10⁻¹² s 的粒子
- \mathcal{G} W^{\pm} , Z^{0} , t, H^{0} , π^{0} 介子, ρ^{0} 介子, ρ^{\pm} 介子, ……
- Arr 平均衰变长度 $d=eta\gamma au\simeq\gamma\left(rac{ au}{10^{-12}~{
 m s}}
 ight)300~\mu{
 m m}, \quad \gamma=rac{E}{m}=rac{1}{\sqrt{1-eta^2}}$

款 散射是两个粒子通过碰撞发生反应的过程

- 弹性散射:碰撞粒子之间只有动量交换,类型和内部状态没有发生改变
- 非弹性散射: 粒子内部状态有所改变或转化为其它粒子
- \rightarrow 描述散射过程本质的物理量是<mark>散射截面</mark> σ ,它是粒子间相互作用的有效面积,表征相互作用的强弱;常用单位是靶,记作 b,1 b = 10^{-28} m²
- $\mbox{\it }$ 1 pb = 10^{-36} cm² = 2.568 × 10^{-9} GeV⁻², 1 GeV⁻² = 3.894 × 10^{8} pb
- \bigcirc 对于末态为 n 体的散射过程,散射截面在理论计算中表达为

$$\sigma = \frac{1}{2E_{\mathcal{A}}2E_{\mathcal{B}}|\mathbf{v}_{\mathcal{A}} - \mathbf{v}_{\mathcal{B}}|} \int \prod_{i=1}^{n} \frac{d^{3}p_{i}}{(2\pi)^{3}2E_{i}} (2\pi)^{4} \delta^{(4)} \left(p_{\mathcal{A}}^{\mu} + p_{\mathcal{B}}^{\mu} - \sum_{i} p_{i}^{\mu}\right) |\mathcal{M}|^{2}$$

ightharpoonup 与分宽度的计算公式类似,4 维 ho 函数体现能动量守恒,而 ho 是散射过程的不变振幅,可以通过费曼图计算

散射截面与相互作用率

 $lackbox{ }$ 设两束粒子 A 和 B 发生散射,各自含有 N_A 和 N_B 个粒子,A 与 B 相互作用的散射截面为 σ ,粒子束相互投射的区域横截面积为 A,则相互作用发生的次数为

$$N = N_{\mathcal{A}} N_{\mathcal{B}} \frac{\sigma}{A}$$

 \bigcirc 若两个粒子束的数密度为 n_A 和 n_B ,彼此间相对速度为 $v = |\mathbf{v}_A - \mathbf{v}_B|$,则在 t 时间内相互投射的区域体积为 V = Avt

 \bigcirc 由于 $N_A = n_A V$, $N_B = n_B V$,单位时间单位体积内的<mark>相互作用率</mark>为

$$\mathbf{R} = \frac{N}{Vt} = \frac{1}{Vt} \frac{n_{\mathcal{A}} V n_{\mathcal{B}} V \sigma}{A} = n_{\mathcal{A}} n_{\mathcal{B}} \sigma \frac{V}{At} = n_{\mathcal{A}} n_{\mathcal{B}} \sigma v$$

Mandelstam 变量

🔦 两体散射常用到洛伦兹不变的 Mandelstam 变量

$$\begin{split} s &\equiv (p_{\mathcal{A}} + p_{\mathcal{B}})^2 = (p_1 + p_2)^2, \quad t \equiv (p_{\mathcal{A}} - p_1)^2 = (p_{\mathcal{B}} - p_2)^2 \\ u &\equiv (p_{\mathcal{A}} - p_2)^2 = (p_{\mathcal{B}} - p_1)^2, \quad s + t + u = \sum_{i = \mathcal{A}, \mathcal{B}, 1, 2} m_i^2 \end{split}$$

- \bigcirc s 的定义可推广到任意 n 体末态,且 $\sqrt{s} = E_{\text{CM}}$

运动学条件

- ₩ 根据狭义相对性原理,物理定律在一切惯性参考系中具有相同形式
- → 利用质心系可以方便地分析一个过程需要满足的运动学条件
- 衰变过程质心能为母粒子质量 m
- ◆ 根据能量守恒,发生衰变的运动学条件是 $m > \sum_{i} m_i$
- ☞ 粒子只能衰变成质量之和比它轻的末态粒子
- $m_e=0.511$ MeV, $m_\mu=106$ MeV, $m_{\nu_e}\simeq m_{\nu_\mu}\simeq 0$
 - rightarrow $\mu^-
 ightarrow e^- \bar{\nu}_e \nu_\mu$ 可以发生, $e^-
 ightarrow \mu^- \bar{\nu}_\mu \nu_e$ 不能发生
- \bigcirc 对于散射过程,能量守恒要求的<mark>运动学条件</mark>是 $√s > \sum_i m_i$
- ★ 散射过程质心能应大于末态粒子质量之和
- \Re 当 $\sqrt{s} > 2m_{\mu}$ 时, $e^+e^- \rightarrow \mu^+\mu^-$ 过程才能发生

对撞机实验坐标系

- 以東流方向为 z 轴,视作纵向
- 将粒子的三维动量 \mathbf{p} 分解为纵向动量 $\mathbf{p}_x \equiv |\mathbf{p}_x|$ 和横向动量 $\mathbf{p}_T \equiv |\mathbf{p}_T|$
- **p** 的方向由极角 $\theta \in [0, \pi]$ 和方位角 $\phi \in [0, 2\pi)$ 描述
- 通常用**赝快度** η ∈ (-∞, ∞) 代替 θ

η	$\equiv -1$	ln (tan	$\left(\frac{\theta}{2}\right)$,	$\theta = 2 \tan^{-1} e^{-\eta}, -\eta = -\ln\left(\frac{1}{2}\right)^{-1}$					$\left(\tan\frac{\pi-\theta}{2}\right)$	
η	0	0.5	1	1.5	2	2.5	3	4	5	10
θ	90°	62.5°	40.4°	25.2°	15.4°	9.4°	5.7°	2.1°	0.77°	0.005°

- \bigcirc 在壳粒子的四维动量 $p^\mu = (E, p_x, p_y, p_z)$ 可以用变量集 $\{m, p_T, \eta, \phi\}$ 表达
- **)** 两个粒子动量之间的角间距用 $\Delta R = \sqrt{(\phi_1 \phi_2)^2 + (\eta_1 \eta_2)^2}$ 描述
- $igg| p_{\mathrm{T}}$ 较大的粒子更可能来自**硬散射** 👉 根据 p_{T} 大小为粒子或喷注排序

快度

- \P 引入快度 $\xi \equiv \tanh^{-1} \frac{p_z}{E}$,它是将
- p_z 变换为零的洛伦兹变换的速度参数

$$cos \theta = \frac{p_z}{|\mathbf{p}|} = \frac{p_z}{E} = \tanh \xi$$

$$\eta = -\ln \tan \frac{\theta}{2} = \frac{1}{2} \ln \frac{1 + \cos \theta}{1 - \cos \theta}$$

$$= \frac{1}{2} \ln \frac{1 + \tanh \xi}{1 - \tanh \xi} = \frac{1}{2} \ln \frac{\cosh \xi + \sinh \xi}{\cosh \xi - \sinh \xi} = \frac{1}{2} \ln e^{2\xi} = \xi$$

- ightharpoonup 对于**相对论性**粒子,赝快度 η 是快度 ξ 的**良好近似**
- → 若一个粒子衰变为粒子 1 和粒子 2,则它的质量 m 可以表达为

$$m = \sqrt{m_1^2 + m_2^2 + 2[E_{1T}E_{2T}\cosh(\xi_1 - \xi_2) - \mathbf{p}_{1T} \cdot \mathbf{p}_{2T}]}$$

运动学变量:不变质量、反冲质量

- 🔦 在对撞机实验中,经常有多个过程贡献到**相同**的末态
- 💡 通过构造多种各具特色的运动学变量,可以在数据分析中区分不同过程
- $igcolor{1}{igcolor{1}{1}{1}}$ 不变质量 $m_{ ext{inv}} \equiv \sqrt{(p_1 + p_2 + \dots + p_i)^2}$ 用于从衰变产物重建母粒子质量
- igcep 在 e^+e^- 对撞机上,入射粒子的四维动量是确定的,可以定义<mark>反冲质量</mark>
- $^{\$}$ 对于 $e^+ + e^- \rightarrow 1 + 2 + \cdots + n$ 过程,粒子 1 的反冲质量定义为

$$m_{1, \text{rec}} \equiv \sqrt{[p_{e^+} + p_{e^-} - (p_2 + \dots + p_n)]^2}$$

[CEPC CDR Vol. 2, arXiv:1811.10545]

运动学变量: E_T, H_T, m_{eff}

₹ 对撞机上的探测器**不能**测量中微子和假想的暗物质粒子,它们的存在会导致测量到的横向总动量非零,可用所有可见粒子i的横向动量定义<mark>横向丢失动量 $p_T = -\sum_i p_T^i$ 和横向丢失能量 $p_T = |p_T|$ (亦记为 p_T^{miss}),以表征不可见粒子的能量标度</mark>

- \P 喷注 j_i 的横向动量的<mark>标量和 $H_{\rm T} \equiv \sum_i p_{\rm T}^{j_i}$ 表征硬散射过程中喷注的能量标度</mark>
- $\frac{1}{2}$ 有效质量 $m_{\text{eff}} = \cancel{\mathbb{E}}_{\text{T}} + H_{\text{T}}$ 表征硬散射过程中喷注加不可见粒子的能量标度

[CMS Coll., arXiv:1109.2352, PRL]

运动学变量:

 \P 考虑像 $W \to \ell \nu_{\ell}$ 这样的半不可见衰变过程 $P \to \nu + i$,其中 ν 是可见粒 子,i 是不可见粒子,定义<mark>横向质量 $m_{\mathrm{T}} \equiv \sqrt{m_{\mathrm{H}}^2 + m_{i}^2 + 2(E_{\mathrm{T}}^{\nu}E_{\mathrm{T}}^i - \mathbf{p}_{\mathrm{T}}^{\nu} \cdot \mathbf{p}_{\mathrm{T}}^i)}$,其</mark> 中 $E_{\mathrm{T}}^{\nu,i} \equiv \sqrt{m_{\nu,i}^2 + (p_{\mathrm{T}}^{\nu,i})^2}$, $\mathbf{p}_{\mathrm{T}}^i = \mathbf{p}_{\mathrm{T}}$, 则由 $\cosh x \ge 1$ 得

$$m_{\mathrm{T}} \le \sqrt{m_{\nu}^2 + m_i^2 + 2[E_{\mathrm{T}}^{\nu} E_{\mathrm{T}}^i \cosh(\xi_{\nu} - \xi_i) - \mathbf{p}_{\mathrm{T}}^{\nu} \cdot \mathbf{p}_{\mathrm{T}}^i]} = m_{P}$$

- rightarrow P 的质量 m_p 约束了 m_T 的值
- 在实践中, m_v 通常很小, m_i 要 么为零要么未知,因此经常采用近似 定义 $m_{\mathrm{T}} = \sqrt{2(p_{\mathrm{T}}^{\nu} \not \!\!\! E_{\mathrm{T}} - \mathbf{p}_{\mathrm{T}}^{\nu} \cdot \mathbf{p}_{\mathrm{T}})}$
- 对于只包含一个不可见粒子的三 体衰变过程(如 $t \rightarrow b\ell^+\nu_{\ell}$),可以 先将两个可见粒子的横向动量叠加 起来,然后再定义 m_{T}

[ATLAS Coll., arXiv:1402.7029, JHEP]

运动学变量: m_{T2}

- \P 对于双重半不可见衰变过程,可以利用 m_{T2} 变量
- 考虑一对正反粒子 $P\bar{P}$ 的衰变过程 $P(\to v_1 i) + \bar{P}(\to v_2 \bar{i})$,其中 v_1 和 v_2 是可见粒子,i 和 \bar{i} 是不可见粒子,定义 [Lester & Summers, arXiv:hep-ph/9906349, PLB]

$$m_{\text{T2}}(\mu_i) = \min_{\mathbf{p}_{\text{T}}^1 + \mathbf{p}_{\text{T}}^2 = \mathbf{p}_{\text{T}}} \left\{ \max \left[m_{\text{T}}(\mathbf{p}_{\text{T}}^{\nu_1}, \mathbf{p}_{\text{T}}^1; m_{\nu_1}, \mu_i), m_{\text{T}}(\mathbf{p}_{\text{T}}^{\nu_2}, \mathbf{p}_{\text{T}}^2; m_{\nu_2}, \mu_i) \right] \right\}$$

- $\int \mu_i$ 是 i 粒子的测试质量,经常设为零
- \iint 如果 μ_i 等于 i 粒子的真实质量 m_i ,就可以推出 $m_{T2} \leq m_P$

