Solutions to Problem Set 2

Reading: Chapters ??, Mathematical Data Types; ??, First-Order Logic.

These assigned readings do not include the Problem sections. (Many of the problems in the text will appear as class or homework problems.)

Reminder: Comments on the reading using the *NB online annotation system* are due at times indicated in the online tutor problem set TP.2. Reading Comments count for 5% of the final grade.

Problem 1.

Recall that the composition of relations $R:A\to B$ and $S:B\to C$ is the relation $S\circ R:A\to C$ defined by the rule

$$a (S \circ R) c$$
 IFF $\exists b. (a R b) \text{ AND } (b S c).$

We can represent a relation S between two sets A and B of size n as an $n \times n$ square matrix M_S , where the elements of M_S are defined by the rule

$$i S j$$
 IFF $M_S(i,j) = 1$.

If we represent relations as matrices in this fashion, then we can compute the composition of two relations by a "boolean" matrix multiplication of their matrices. Boolean matrix multiplication is the same as matrix multiplication except that "+" is replaced by OR and " \times " is replaced by AND.

Prove that the matrix representation of $S \circ R$ is equal to the boolean product of M_R and M_S (note the reversal of R and S), where M_R is the matrix representing R and M_S is the matrix representing S.

Solution. *Proof.* Let M_P be the boolean product of M_R and M_S (notice that M_P , M_R and M_S are all $n \times n$ square matrices). What we want to prove is that

$$i (S \circ R) j$$
 IFF $M_P(i,j) = 1$.

Recall that by the definition of composition, i ($S \circ R$) j iff there exists a k such that i R k and k S j. Also, by the definition of boolean matrix multiplication,

$$M_P(i,j) = \underbrace{[M_R(i,k_1) \text{ AND } M_S(k_1,j)]}_{k_1 \text{ is the "link"}} \text{OR} \underbrace{[M_R(i,k_2) \text{ AND } M_S(k_2,j)]}_{k_2 \text{ is the "link"}} \text{OR} \ldots \text{OR} \underbrace{[M_R(i,k_n) \text{ AND } M_S(k_n,j)]}_{k_n \text{ is the "link"}} \text{OR} \underbrace{[M_R(i,k_n) \text{ AND } M_S(k_n,j)]}_{k_n \text{ is the "link"}} \text{OR} \underbrace{[M_R(i,k_n) \text{ AND } M_S(k_n,j)]}_{k_n \text{ is the "link"}} \text{OR} \underbrace{[M_R(i,k_n) \text{ AND } M_S(k_n,j)]}_{k_n \text{ is the "link"}} \text{OR} \underbrace{[M_R(i,k_n) \text{ AND } M_S(k_n,j)]}_{k_n \text{ is the "link"}} \text{OR} \underbrace{[M_R(i,k_n) \text{ AND } M_S(k_n,j)]}_{k_n \text{ is the "link"}} \text{OR} \underbrace{[M_R(i,k_n) \text{ AND } M_S(k_n,j)]}_{k_n \text{ is the "link"}} \text{OR} \underbrace{[M_R(i,k_n) \text{ AND } M_S(k_n,j)]}_{k_n \text{ is the "link"}} \text{OR} \underbrace{[M_R(i,k_n) \text{ AND } M_S(k_n,j)]}_{k_n \text{ is the "link"}} \text{OR} \underbrace{[M_R(i,k_n) \text{ AND } M_S(k_n,j)]}_{k_n \text{ is the "link"}} \text{OR} \underbrace{[M_R(i,k_n) \text{ AND } M_S(k_n,j)]}_{k_n \text{ is the "link"}} \text{OR} \underbrace{[M_R(i,k_n) \text{ AND } M_S(k_n,j)]}_{k_n \text{ is the "link"}} \text{OR} \underbrace{[M_R(i,k_n) \text{ AND } M_S(k_n,j)]}_{k_n \text{ is the "link"}} \text{OR} \underbrace{[M_R(i,k_n) \text{ AND } M_S(k_n,j)]}_{k_n \text{ is the "link"}} \text{OR} \underbrace{[M_R(i,k_n) \text{ AND } M_S(k_n,j)]}_{k_n \text{ is the "link"}} \text{OR} \underbrace{[M_R(i,k_n) \text{ AND } M_S(k_n,j)]}_{k_n \text{ is the "link"}} \text{OR} \underbrace{[M_R(i,k_n) \text{ AND } M_S(k_n,j)]}_{k_n \text{ is the "link"}} \text{OR} \underbrace{[M_R(i,k_n) \text{ AND } M_S(k_n,j)]}_{k_n \text{ is the "link"}} \text{OR} \underbrace{[M_R(i,k_n) \text{ AND } M_S(k_n,j)]}_{k_n \text{ is the "link"}} \text{OR} \underbrace{[M_R(i,k_n) \text{ AND } M_S(k_n,j)]}_{k_n \text{ is the "link"}} \text{OR} \underbrace{[M_R(i,k_n) \text{ AND } M_S(k_n,j)]}_{k_n \text{ is the "link"}} \text{OR} \underbrace{[M_R(i,k_n) \text{ AND } M_S(k_n,j)]}_{k_n \text{ is the "link"}} \text{OR} \underbrace{[M_R(i,k_n) \text{ AND } M_S(k_n,j)]}_{k_n \text{ is the "link"}} \text{OR} \underbrace{[M_R(i,k_n) \text{ AND } M_S(k_n,j)]}_{k_n \text{ is the "link"}} \text{OR} \underbrace{[M_R(i,k_n) \text{ AND } M_S(k_n,j)]}_{k_n \text{ is the "link"}} \text{OR} \underbrace{[M_R(i,k_n) \text{ AND } M_S(k_n,j)]}_{k_n \text{ is the "link"}} \text{OR} \underbrace{[M_R(i,k_n) \text{ AND } M_S(k_n,j)]}_{k_n \text{ is the "link"}} \text{OR} \underbrace{[M_R(i,k_n) \text{ AND } M_S(k_n,j)]}_{k_n \text{ is the "link"}} \text{OR} \underbrace{[M_R(i,k_n) \text{ AND } M_S(k_n,j)]}_{k_n \text{ i$$

Case 1:(IMPLIES) If i $(S \circ R)$ j, then for at least one k, say k', i R k' and k' S j. Consequently, $M_R(i,k') = 1$ and $M_S(k',j) = 1$. This turns $[M_R(i,k') \text{ AND } M_S(k',j)]$ true, and hence $M_P(i,j) = 1$.

Case 2: (\iff) If $M_P(i,j)=1$, then there is at least one k, say k', for which $[M_R(i,k')]$ AND $M_S(k',j)=1$. This means that both $M_R(i,k')=1$ and $M_S(k',j)=1$. Since M_R and M_S are the matrix representations of R and S, we can conclude that i R k' and k' S j, and so, by the definition of composition, i ($S \circ R$) j.

Problem 2.

Prove that for any sets A, B, C, and D, if $A \times B$ and $C \times D$ are disjoint, then either A and C are disjoint or B and D are disjoint.

Solution. *Proof.* We will prove the contrapositive. In other words, we will assume

$$[(A \cap C) \neq \emptyset \text{ AND } (B \cap D) \neq \emptyset] \tag{1}$$

and prove that

$$(A \times B) \cap (C \times D) \neq \emptyset. \tag{2}$$

Now by 1, there must be an element $e \in A$ AND $e \in C$, as well as an element $f \in B$ AND $f \in D$. So, $(e, f) \in A \times B$ by definition of Cartesian product, and likewise $(e, f) \in C \times D$. This means that

$$(e, f) \in (A \times B) \cap (C \times D),$$

so $(A \times B) \cap (C \times D) \neq \emptyset$

Problem 3.

Find the flaw in the following false proof, and give a counterexample to the claim.

Claim. Suppose R is a relation on a set, A. If R is symmetric and transitive, then R is reflexive.

False proof. Let a be an arbitrary element of A. Let b be any element of A such that a R b. Since R is symmetric, it follows that b R a. Then since a R b and b R a, we conclude by transitivity that a R a. Since a was arbitrary, we have shown that $\forall a \in A$. a a a, which means that a is reflexive.

Solution. The flaw is assuming that b exists. It is possible that there is an $a \in A$ that is not related by R to anything. No such R will be reflexive. The simplest such R that is also symmetric and transitive is the empty relation on any nonempty set A. We can easily construct other examples, such as letting $A := \{a, b, c\}$ and

graph
$$(R_0) := \{(c, c), (c, b), (b, c), (b, b)\}$$
.

Now R_0 is not reflexive because NOT($a R_0 a$). So R_0 is a counterexamples to the claim.

Note that the theorem can be fixed: R restricted to its domain of definition is reflexive.

jjjjjjj .mine

Problem 4.

Suppose that f is a function of the form $f: A \mapsto B$, and g is a function of the form $g: B \mapsto C$. The composed function $g \circ f$ has domain A, range C, and is defined by $(g \circ f)(a) = g(f(a))$.

(a) Prove that if the composition $g \circ f$ is a bijection, then f is an injection and g is a surjection.

Solution. *Proof.* Suppose that $g \circ f$ is a bijection.

Assume for the purpose of contradiction that f is not an injection. Then there exist elements $a_1, a_2 \in A$, such that $f(a_1) = f(a_2)$. This implies that $g(f(a_1)) = g(f(a_2))$. Therefore, $g \circ f$ is not an injection and thus not a bijection. This is a contradiction; therefore, f must be an injection.

Now assume for the purpose of contradiction that g is not a surjection. Then there exists an element $c \in C$ such that for all $b \in B$, $g(b) \neq c$. Therefore, for all $a \in A$, $g(f(a)) \neq c$. This implies that $g \circ f$ is not a surjection and thus not a bijection. This is again a contradiction; therefore, g must be a surjection.

If f is an injection and g is a surjection, then is $g \circ f$ necessarily a bijection?

Solution. No. For example, consider the following setup.

$$A = \{1\}$$

 $B = \{1, 2\}$
 $C = \{1, 2\}$

$$f(x) = x$$
$$g(x) = x$$

In this case, f is injective, g is surjective, but $g \circ f$ is not bijective.

.r679. يَزِيْزِيْنِ =====