Lecture Module - Automatic Control

ME3050 - Dynamics Modeling and Controls

Mechanical Engineering
Tennessee Technological University

Automatic Control

Lecture Module - Automatic Control

- Topic 1 Introduction to Control Systems
- Topic 2 Control of First Order Plants
- Topic 3 Control of Second Order Plants
- Topic 4 Application and Implementation

Topic 1 - Introduction to Control Systems

- Open-Loop and Closed-Loop Control
- Control System Terminology
- Modeling and Analysis
- The PID Control Algorithm

Block Diagrams and Transfer Functions

Generalized Feedback Loop

$$T(s) = \frac{X(s)}{F(s)}$$

$$T(s) = \frac{G(S)}{1 + G(s)H(s)}$$

Control System Examples:

- Thermal Control HVAC 3D Printing
- Vehicle Control Cruise ACC
- Precision Motion Control Robotics Automation

Goal: cause system output to go to specfied state

Strategy: set the system input to appropriate value to do so

- No Control
- Bang-Bang Control
- Open-Loop Control
- Closed-Loop Control

Open-Loop Control

- uses prediction of model behavior, not system state
- less complex, known as sensorless
- less robust to input disturbances
- single path block diagram

Closed-Loop Control

- uses measurement or estimation of model state and behavior
- more complex, requires integrated sensor
- can be robust to range of input disturbances
- feedback loop in block diagram

Open-Loop Control

Closed-Loop Control

images: T.Hill - modified from System Dynamics, Palm 3rd Ed.

Control System Terminology

Closed-Loop Control Terminology

pen-Loop and Closed-Loop Contro ontrol System Terminology Iodeling and Analysis he PID Control Algorithm

Control System Terminology

Open-Loop and Closed-Loop Control Control System Terminology Modeling and Analysis The PID Control Algorithm

Modeling and Analysis

Open-Loop and Closed-Loop Control Control System Terminology Modeling and Analysis The PID Control Algorithm

Modeling and Analysis

The PID Control Algorithm

The goal of the controller is to achieve the following:

- Minimize the steady state error
- Minimize the settling time
- Achieve other transient specifications (see time response)

The PID Control Algorithm

The PID Control Algorithm

The PID Control Algorithm

The control gains scale the calculated error to adjust the system input(s).

- K_P Proportional Gain Correction from current error
- K_I Integral Gain Correction from acculated error
- K_D Derivative Gain Correction from change in error

Note: P, PI, and PD controllers can be used, but the combination PID is prefered.

References

 System Dynamics, Palm III, Third Edition - Chapter 10 -Introduction to Feedback Control Systems

Topic 2 - Control of First Order Plants

- Block Diagram of Controlled System
- DC Motor Example
- Simulation with Simulink
- Simulation with Simulink + Simscape

Block Diagram of Controlled System OC Motor Example imulation with Simulink imulation with Simulink + Simscape

Harmonic Input Function

Block Diagram of Controlled System

OC Motor Example

Simulation with Simulink

Simulation with Simulink + Simscape

Block Diagram of Controlled System

Block Diagram of Controlled System

OC Motor Example

Simulation with Simulink

Simulation with Simulink + Simscape

Block Diagram of Controlled System

ock Diagram of Controlled System
C Motor Example
nulation with Simulink
nulation with Simulink + Simscape

DC Motor Example

ock Diagram of Controlled System
C Motor Example
nulation with Simulink
nulation with Simulink + Simscape

DC Motor Example

Block Diagram of Controlled System

OC Motor Example

imulation with Simulink

imulation with Simulink + Simscape

Block Diagram of Controlled System
OC Motor Example
Imulation with Simulink
Imulation with Simulink
Imulation with Simulink + Simscape

DC Motor Example

Block Diagram of Controlled System

OC Motor Example

imulation with Simulink

imulation with Simulink + Simscape

Slock Diagram of Controlled System
OC Motor Example
imulation with Simulink
imulation with Simulink + Simscape

Slock Diagram of Controlled System
OC Motor Example
imulation with Simulink
imulation with Simulink + Simscape

Block Diagram of Controlled System DC Motor Example Simulation with Simulink Simulation with Simulink + Simscape

Simulation with Simulink + Simscape

Block Diagram of Controlled System DC Motor Example Simulation with Simulink Simulation with Simulink + Simscape

Simulation with Simulink + Simscape

Topic 3 - Control of Second Order Plants

- —
- —
- —
- —

Topic 3 - Application and Implementation

- —
- —
- —
- —