STN Search Summary 10/620,487

```
=> d his
     (FILE 'HOME' ENTERED AT 13:19:23 ON 25 JAN 2005)
     FILE 'CAPLUS' ENTERED AT 13:21:04 ON 25 JAN 2005
L1
              6 S YFIK
L2
            134 S s (RhtB or ydeD or yedA or lysE or pecm or thrE) (s) (increas? or
L3
             24 S L2 (S) (ACTIVIT? OR EXPRESSI? OR (COPY W NUMBER))
L4
              2 S L3 (P) (MICROORGANSIM? OR COLI? OR ESCHERICHIA? OR BACTERI?)
L5
              2 s L3 (p) (microorgansim? or coli? or escherichia? or bacteri? or
                  yeast or fungus or enterobacteriaceae)
L6
              3 s 13 and (phosphoglycerate or ?serine? or ?cysteine? or ?cystine?
                  or ?glycine) and fermentati?
s 13 and (phosphoglycerate or ?serine? or ?cysteine? or ?cystine? or ?glycine) and
fermentati?
=> s yfiK
             6 YFIK
L1
=> d 11 1-6
L1
     ANSWER 1 OF 6 CAPLUS COPYRIGHT 2005 ACS on STN
     2004:131333 CAPLUS
ΑN
DN
     140:248969
ΤI
     High level cell-free expression and specific labeling of integral membrane
     proteins
AU
     Klammt, Christian; Loehr, Frank; Schaefer, Birgit; Haase, Winfried;
     Doetsch, Volker; Rueterjans, Heinz; Glaubitz, Clemens; Bernhard, Frank
CS
     Centre for Biomolecular Magnetic Resonance, Institute for Biophysical
     Chemistry, University of Frankfurt/Main, Frankfurt/Main, Germany
SO
     European Journal of Biochemistry (2004), 271(3), 568-580
     CODEN: EJBCAI; ISSN: 0014-2956
PB
     Blackwell Publishing Ltd.
DT
     Journal
LA
    English
RE.CNT 44
              THERE ARE 44 CITED REFERENCES AVAILABLE FOR THIS RECORD
              ALL CITATIONS AVAILABLE IN THE RE FORMAT
    ANSWER 2 OF 6 CAPLUS COPYRIGHT 2005 ACS on STN
L1
     2004:55470 CAPLUS
ΑN
DN
     140:127258
ΤI
     Fermentative production of amino acids of the phosphoglycerate family by
     Escherichia coli overexpressing gene yfiK
ΙN
    Maier, Thomas
PΑ
    Consortium fuer Elektrochemische Industrie GmbH, Germany
SO
     Eur. Pat. Appl., 16 pp.
    CODEN: EPXXDW
DT
     Patent
LΑ
    German
FAN.CNT 1
```

X

	PATENT NO.				KIN	D	DATE	ı	AF	PLICA	ATION	NO.		D.	ATE		
					-		-								_		
ΡI	ΕP	1382	684			A1		2004	0121	EF	2003	3-155	46		2	0030	710
		R:	AT,	BE,	CH,	DE,	DK,	ES,	FR,	GB, G	R, I	C, LI	, LU,	NL,	SE,	MC,	PT,
			ΙE,	SI,	LT,	LV,	FI,	RO,	MK,	CY, A	L, TE	R, BG	, CZ,	ΕĒ,	HU,	SK	
	DE	1023	2930			A1		2004	0205	DE	2002	2-102	32930		2	0020	719
	US	2004	0383	52		A1		2004	0226	US	2003	3-620	487		2	0030	716
	CA	2433	485			AA		2004	0119	CA	2003	3-243	3485		2	0030	717
	JΡ	2004	04923	37		A2		2004	0219	JF	2003	3-199	397		2	0030	718
	CN	1487	079			Α		2004	0407	CN	2003	3-178	667		2	0030	718
PRAI	DE	2002	-1023	3293	30	Α		2002	0719								
RE.CI	T	5	THE	ERE	ARE	5 CI	red	REFE	RENCI	ES AVA	ILABI	E FO	R THI	S RE	CORD		

RE.CNT 5 THERE ARE 5 CITED REFERENCES AVAILABLE FOR THIS RECORI ALL CITATIONS AVAILABLE IN THE RE FORMAT

- X
- L1 ANSWER 3 OF 6 CAPLUS COPYRIGHT 2005 ACS on STN
- AN 2003:116387 CAPLUS
- DN 138:334174
- TI YfiK from Escherichia coli promotes export of O-acetylserine and cysteine
- AU Franke, Isabel; Resch, Armin; Dassler, Tobias; Maier, Thomas; Bock, August
- CS Department Biologie I, Mikrobiologie, Universitat Munchen, Munich, Germany
- SO Journal of Bacteriology (2003), 185(4), 1161-1166 CODEN: JOBAAY; ISSN: 0021-9193
- PB American Society for Microbiology
- DT Journal
- LA English
- RE.CNT 32 THERE ARE 32 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT
- X
- L1 ANSWER 4 OF 6 CAPLUS COPYRIGHT 2005 ACS on STN
- AN 2001:880292 CAPLUS
- DN 136:336109
- TI Comprehensive DNA microarray analysis of Bacillus subtilis two-component regulatory systems
- AU Kobayashi, Kazuo; Ogura, Mitsuo; Yamaguchi, Hirotake; Yoshida, Ken-Ichi; Ogasawara, Naotake; Tanaka, Teruo; Fujita, Yasutaro
- CS Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, 630-0101, Japan
- SO Journal of Bacteriology (2001), 183(24), 7365-7370 CODEN: JOBAAY; ISSN: 0021-9193
- PB American Society for Microbiology
- DT Journal
- LA English
- RE.CNT 27 THERE ARE 27 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT

- L1 ANSWER 5 OF 6 CAPLUS COPYRIGHT 2005 ACS on STN
- AN 2000:456755 CAPLUS
- DN 133:85119
- TI Production of L-amino acids by bacterium transformed with amino acid excretion protein homologs
- IN Livshits, Vitaliy Arkadievich; Zakataeva, Natalia Pavlovna; Nakanishi, Kazuo; Aleshin, Vladimir Veniaminovich; Troshin, Petr Vladimirovich; Tokhmakova, Irina Lyvovna
- PA Ajinomoto Co., Inc., Japan
- SO Eur. Pat. Appl., 29 pp. CODEN: EPXXDW

DT Patent LA English FAN.CNT 1

	PAT	TENT	NO.			KIN	D	DATE			APE	PLI	CAT	ION	NO.		D?	ATE	
PI		1016 1016				A2 A3		2000 2000			EP	19	999-	1252	63		19	99912	217
		R:	AT, IE,	•	CH, LT,			ES,	FR,	GB,	GF	₹,	IT,	LI,	LU,	NL,	SE,	MC,	PT,
	RU	2175	351	•	·	C2	•	2001	1027		RU	19	99-	1044	31		19	9900	309
	ΑU	9964	493			A1		2000	0706		ΑU	19	99-	6449	3		19	99912	213
	AU	7641	89			B2		2003	0814										
	ZA	9907	767			Α		2000	0630		ZA	19	999-	7767			19	99912	220
	JΡ	2000	18918	30		A2		2000	0711		JP	19	999-	3736	51		19	99912	228
	BR	9906	287			Α		2001	0123		BR	19	99-	6287			19	99912	228
	KR	2000	0484	65		Α		2000	0725		KR	19	99-	6462	7		19	99912	229
	CN	1261	626			Α		2000	0802		CN	19	99-	1275	22		19	99912	230
PRAI	RU	1998	-1240	016		Α		1998	1230										
	RU	1999	-1044	431		Α		1999	0309										

- L1 ANSWER 6 OF 6 CAPLUS COPYRIGHT 2005 ACS on STN
- AN 1996:737199 CAPLUS
- DN 126:100025
- TI The Bacillus subtilis chromosome region near 78° contains the genes encoding a new two-component system, three ABC transporters and a lipase
- AU Yamamoto, Hiroki; Uchiyama, Shigeki; Sekiguchi, Junichi
- CS Department of Applied Biology, Faculty of Textile Science, Technology, Shinshu University, 3-15-1 Tokida, Ueda-shi, Nagano, 386, Japan
- SO Gene (1996), 181(1/2), 147-151 CODEN: GENED6; ISSN: 0378-1119
- PB Elsevier
- DT Journal
- LA English

```
L4 ANSWER 1 OF 2 CAPLUS COPYRIGHT 2005 ACS on STN
```

AN 2003:417877 CAPLUS

DN 139:2051

TI Over expressing E. coli yedA gene for increase the yield of producing of L-amino acid and its derivatives

IN Livshits, Vitaliy Arkadyevich; Vitushkina, Maria Viacheslavovna; Gusyatiner, Mikhail Markovich; Ziyatdinov, Mikhail Kharisovich; Akhverdian, Valery Zavenovich; Savrasova, Ekaterina Alekseevna; Doroshenko, Vera Georgievna; Mashko, Sergey Vladimirovich

PA Ajinomoto Co., Inc., Japan

SO PCT Int. Appl., 28 pp.

CODEN: PIXXD2

DT Patent

LA Japanese

FAN.CNT 1

	PAT	ATENT NO. O 2003044191					D	DATE			APPL	ICAT	ION 1	NO.		D.	ATE	
PI	WO	2003	0441	91		A1	_	2003	0530		WO 2	002-	JP12:	202		20	0021	121
		W:	ΑU,	BR,	BY,	CA,	CN,	HU,	IL,	IN,	JP,	KR,	MX,	NO,	PL,	UA,	VN,	ZA
		RW:	AT,	ΒE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	ES,	FΙ,	FR,	GB,	GR,	ΙE,	IT,
			LU,	MC,	NL,	PT,	SE,	SK,	TR,	BF,	ВJ,	CF,	CG,	CI,	CM,	GA,	GN,	GQ,
			GW,	ML,	MR,	NE,	SN,	TD,	TG									
	RU	2229	513			C2				RU 2	001-	1315	70		20	0011	123	
	EΡ	1449	917			A1		2004	0825		EP 2	002-	7886	35		20	0021	121
		R:	AT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR,	ΙT,	LI,	LU,	NL,	SE,	MC,	PT,
			ΙE,	FI,	CY,	TR,	BG,	CZ,	EE,	SK								
	US	2003	1484	73		A1		2003	0807		US 2	002-	3029	83		20	0021	125
PRAI	RU	2001	-131	570		Α		2001	1123									
	WO	2002	-JP1	2202		W	20021121											
DE COM 10 MURRO ARE 10 CIMER REPORTS								200	7 T T T	T 7 D T	n no:	n m	T 0 D		_			

RE.CNT 10 THERE ARE 10 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT

=> d 14 2

- L4 ANSWER 2 OF 2 CAPLUS COPYRIGHT 2005 ACS on STN
- AN 2003:266869 CAPLUS
- DN 138:266848
- TI Arginine repressor deficient strain of Escherichia or coryneform bacteria with LysE gene overexpression for L-arginine production
- IN Yamaguchi, Mikiko; Ito, Hisao; Gunji, Yoshiya; Yasueda, Hisashi
- PA Ajinomoto Co., Inc., Japan
- SO Jpn. Kokai Tokkyo Koho, 36 pp. CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

L 2 111 .	ONI I				
	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
ΡI	JP 2003102490	A2	20030408	JP 2002-214736	20020724
	US 2003113899	A1	20030619	US 2002-196232	20020717
	CN 1398964	Α	20030226	CN 2002-126904	20020725
PRAI	JP 2001-224586	Α	20010725		

=> d 13 1

- L3 ANSWER 1 OF 24 CAPLUS COPYRIGHT 2005 ACS on STN
- AN 2004:133959 CAPLUS
- DN 140:180654
- TI Sulfur-containing animal feed additives from fermentation liquors from microorganisms expressing genes for biosynthesis of sulfur amino acids and derivatives
- IN Buchholz, Michael; Binder, Michael; Hermann, Thomas; Pfefferle, Walter; Thierbach, Georg
- PA Degussa AG, Germany
- SO Eur. Pat. Appl., 22 pp. CODEN: EPXXDW
- DT Patent
- LA English

FAN.CNT 1

	PAI	ENT	NO.			KIN	D	DATE			APPL	ICAT:	ION	NO.		D.	ATE	
							-									-		
ΡI					A1		2004	0218		EP 2	003-	1714	6		2	0030	729	
		R:	ΑT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR,	IT,	LI,	LU,	NL,	SE,	MC,	PT,
			ΙE,	SI,	LT,	LV,	FI,	RO,	MK,	CY,	AL,	TR,	BG,	CZ,	EE,	HU,	SK	
	DE	1023				A1		2004									0020	816
PRAI	DE	2002	-102	3747				2002	0816									

=> d abs 13

- L3 ANSWER 1 OF 24 CAPLUS COPYRIGHT 2005 ACS on STN
- AB The invention relates to sulfur-containing animal-feed additives such as cysteine, cystine and thiazolidines and their salts produced from fermentation liquors, and to processes for their production The compds. are manufactured by

microorganisms expressing genes for enzymes of biosynthesis of these compds. at high levels. Use of a high-level expression construct for the ydeD gene to increase the content of L-cystine and thiazolidines is demonstrated.

=> 13 and (phosphoglycerate or ?serine? or ?cysteine? or ?cystine? or ?glycine) and fermentati?

L3 IS NOT A RECOGNIZED COMMAND

The previous command name entered was not recognized by the system. For a list of commands available to you in the current file, enter "HELP COMMANDS" at an arrow prompt (=>).

L6 ANS

L6 ANSWER 1 OF 3 CAPLUS COPYRIGHT 2005 ACS on STN

AN 2004:133959 CAPLUS

DN 140:180654

TI Sulfur-containing animal feed additives from fermentation liquors from microorganisms expressing genes for biosynthesis of sulfur amino acids and derivatives

IN Buchholz, Michael; Binder, Michael; Hermann, Thomas; Pfefferle, Walter; Thierbach, Georg

PA Degussa AG, Germany

SO Eur. Pat. Appl., 22 pp.

CODEN: EPXXDW

DT Patent

LA English

FAN.CNT 1

	PAT	ENT 1	NO.			KIN)	DATE		,	APPL	ICAT	ION I	.00		D	ATE	
ΡI	EP	1389	 427			A1	-	2004	0218		EP 2	003-	 1714	 6		2	0030	 729
		R:	•		•			•	FR, MK,	•	•	•		•	•	•	•	PT,
PRAT		1023	7479	·		A1 A	·	•	0226	•	•	•				•	0020	816

L6 ANSWER 2 OF 3 CAPLUS COPYRIGHT 2005 ACS on STN

AN 2002:522540 CAPLUS

DN 137:89444

TI Use of ptsH gene of Corynebacterium glutamicum for L-lysine biosynthesis

IN Farwick, Mike; Mockel, Bettina; Pfefferle, Walter

PA Degussa AG, Germany

SO U.S. Pat. Appl. Publ., 15 pp., Cont.-in-part of U.S. Ser. No. 755,187. CODEN: USXXCO

DT Patent

LA English

FAN.CNT 2

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
ΡI	US 2002090700	A1	20020711	US 2001-819930	20010329
	US 2003224499	A9	20031204		
	US 6818432	B2	20041116		
	DE 10001101	A1	20010719	DE 2000-10001101	20000113
	US 2002094554	A1	20020718	US 2001-755187	20010108
	US 2004005675	A9	20040108		
	US 2005009143	A1	20050113	US 2004-916437	20040812
PRAI	DE 2000-10001101	A	20000113		•
	US 2000-503189	В2	20000214		
	US 2001-755187	A2	20010108		
	US 2001-819930	A3	20010329		

```
L6
    ANSWER 3 OF 3 CAPLUS COPYRIGHT 2005 ACS on STN
ΑN
    2001:867953 CAPLUS
DN
    136:19157
TΙ
    The thrE gene of Corynebacterium glutamicum and its use in increasing
    yields of threonine in fermentation
ΙN
    Rieping, Mechthild
PA
    Degussa AG, Germany
SO
    Ger. Offen., 24 pp.
    CODEN: GWXXBX
DT
    Patent
LA
    German
FAN.CNT 1
    PATENT NO.
                        KIND
                               DATE
                                           APPLICATION NO.
                                                                  DATE
    -----
                        ____
                               -----
                                           -----
                               20011129
    DE 10102823
                         A1
                                           DE 2001-10102823
ΡI
                                                                  20010123
    CA 2400777
                         AΑ
                               20011206
                                           CA 2001-2400777
                                                                  20010406
    WO 2001092545
                               20011206
                                           WO 2001-EP3980
                        A1
                                                                  20010406
            AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN,
            CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
            HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT,
            LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU,
            SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU,
            ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM
        RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY,
            DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF,
            BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG
                                         EP 2001-931575
    EP 1285075
                         Α1
                               20030226
                                                                  20010406
           AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
            IE, SI, LT, LV, FI, RO, MK, CY, AL, TR
    US 2002155551
                         A1
                               20021024
                                          US 2001-834721
                                                                  20010416
PRAI DE 2000-10026494
                         A1
                               20000527
    US 2000-229328P
                         Р
                               20000901
    DE 2001-10102823
                         Α
                               20010123
    WO 2001-EP3980
                         W
                               20010406
```

C 40 g 40

SEQUENCE SEARCH SUMMERY 10/620,487

GenCore version 5.1.6 Copyright (c) 1993 - 2005 Compugen Ltd.

OM nucleic - nucleic search, using sw model

Run on:

January 3, 2005, 10:50:19; Search time 3519 Seconds

(without alignments)

10078.794 Million cell updates/sec

Title:

US-10-620-487-1

Perfect score: 750

Sequence:

1 gatccataaccccaaaccta.....ttagtaacttgctacttaag 750

Scoring table: IDENTITY NUC

Gapop 10.0 , Gapext 1.0

Searched:

4526729 segs, 23644849745 residues

Total number of hits satisfying chosen parameters:

9053458

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0% Maximum Match 100%

Listing first 45 summaries

Database :

GenEmbl:*

1: gb ba:*

2: gb htg:*

3: gb in:*

4: gb om:*

5: gb ov:*

6: gb_pat:*

gb_ph:* 7:

8: gb pl:*

gb pr:*

10: gb_ro:* 11: gb_sts:*

12: gb_sy:*

13: gb_un:*

14: gb_vi:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Result No.	Score	Query Match	Length	DB	ID	Description
1	750	100.0	750	1	CQ759947 Appl EPPat 3/09	CQ759947 Sequence
2	750	100.0	10272		ECORBAB Nah 1992?	D13169 E.coli gene
3	750	100.0	16446		D90886 Yammot 1997	D90886 E.coli geno

ECOK12RIII YU 1995 100.0 29254 750 U00096_27 :6/2004 AE015279 2001 Tin D64044 Escherichia 5 750 100.0 110000 1 Continuation (28 o 99.4 12322 99.4 290380 745.2 6 1 AE015279 Shigella 7 745.2 AE016987 1 AE016987 Shigella 98.5 300099 738.8 AE016764 8 1 AE016764 Escherich 9 687.6 91.7 12337 AE005488 AE005488 Escherich 10 687.6 91.7 270365 AP002562 AP002562 Escherich 1 11 588 78.4 588 6 E49391 E49391 Process for 588 6 12 78.4 AX030083 588 AX030083 Sequence 13 461.2 61.5 145050 1 AL627275 AL627275 Salmonell 14 461.2 61.5 300431 1 AE016835 AE016835 Salmonell C 15 458 61.1 21722 1 AE008820 AE008820 Salmonell 16 265.8 35.4 618 6 AR388761 AR388761 Sequence c 17 224.4 29.9 23738 AC020828 2 AC020828 Mus muscu 20.8 372 18 156 AR388768 AR388768 Sequence 6 13.3 19 100 100 6 AX999538 AX999538 Sequence 20 100 13.3 100 6 AX999539 AX999539 Sequence 21 100 13.3 100 6 AX999540 AX999540 Sequence c 22 9.4 288404 1 70.4 AE017272 AE017272 Bacillus 8.5 302451 c 23 1 AE016812 63.8 AE016812 Vibrio vu c 24 7.4 110000 1 AE017225 22 55.2 Continuation (23 o c 25 7.4 110000 1 AE017334_22 55.2 Continuation (23 o 7.4 110000 1 26 55.2 AE017355 23 С Continuation (24 o 55.2 c 27 7.4 293264 1 AE017031 AE017031 Bacillus 28 51 6.8 249500 1 AP005344 AP005344 Vibrio vu 29 50.4 6.7 573 6 AX432019 AX432019 Sequence 30 49.6 6.6 300600 1 AP005084 AP005084 Vibrio pa c 31 6.5 110000 49 BX950851 45 Continuation (46 o 1 6.5 344805 32 48.8 1 BX640434 BX640434 Bordetell 33 48.8 6.5 346287 1 BX640450 BX640450 Bordetell c 34 47.8 6.4 304262 AE017005 1 AE017005 Bacillus 35 47.2 6.3 13848 AE004249 AE004249 Vibrio ch BX640412 6.3 348171 36 47.2 1 BX640412 Bordetell 44.4 5.9 310029 С 37 1 AE016868 AE016868 Pseudomon 5.7 142350 38 42.8 5 BX088596 BX088596 Zebrafish 5.7 278779 39 42.8 2 BX323579 BX323579 Danio rer 40 42 5.6 669 6 AR319795 AR319795 Sequence AE016786 41 41.4 5.5 301214 AE016786 Pseudomon 1 42 41 5.5 618 12 AY657639 AY657639 Synthetic С 43 41 5.5 11869 1 AE004657 AE004657 Pseudomon c 44 40.6 5.4 125020 9 AF429315 AF429315 Homo sapi 45 40.4 5.4 14305 1 AE014000 AE014000 Yersinia

OM nucleic - nucleic search, using sw model

Run on: January 3, 2005, 09:15:06; Search time 488 Seconds

(without alignments)

8067.758 Million cell updates/sec

Title: US-10-620-487-1

Perfect score: 750

Sequence: 1 gatccataaccccaaaccta.....ttagtaacttgctacttaag 750

Scoring table: IDENTITY NUC

Gapop 10.0 , Gapext 1.0

Searched: 4134886 seqs, 2624710521 residues

Total number of hits satisfying chosen parameters: 8269772

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database: N Geneseq 23Sep04:*

1: geneseqn1980s:*

2: genesegn1990s:*

3: geneseqn2000s:*

4: geneseqn2001as:*

5: genesegn2001bs:*

6: geneseqn2002as:*

7: geneseqn2002bs:*

7. genesequizouzus.

8: geneseqn2003as:*

9: geneseqn2003bs:*

10: geneseqn2003cs:*

11: geneseqn2003ds:*
12: geneseqn2004s:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Result No.	Score	Query Match	Length	DB	ID		Description
1 2 3 4 5	750 588 295.8 265.8 156	100.0 78.4 39.4 35.4 20.8	750 588 1668 618 372		ADK66005 AAA52690 AAS81979 ACH99695 ACH99702	PD 09 Appl EP PD=7100 WU PID=3/01 X	Adk66005 E coli yf Aaa52690 Escherich Aas81979 DNA encod Ach99695 Klebsiell Ach99702 Klebsiell

	6	100	13.3	100	8	ACD79726	Acd79726 E. coli K
	7	100	13.3	100	8	ACD79725	Acd79725 E. coli K
	8	100	13.3	100	8	ACD79727	Acd79727 E. coli K
	9	50.4	6.7	573	6	ABK73143	Abk73143 Bacillus
•	10	42.6	5.7	2325	5	AAS92926	Aas92926 DNA encod
С	11	42.6	5.7	3020	5	AAS88917	Aas88917 DNA encod
	12	42	5.6	669	9	ADA31058	Ada31058 DNA encod
	13	39.8	5.3	636	10	ADF02251	Adf02251 Bacterial
	14	39.6	5.3	750	11	ABD10542	Abd10542 Pseudomon
	15	39	5.2	247682	12	ADL08109	Adl08109 Human gen
	16	38.2	5.1	636	11	ACH97476	Ach97476 Klebsiell
	17	37.2	5.0	609	10	ACF70009	Acf70009 Photorhab
С	18	37.2		110000	10	ACF65385_1	Continuation (2 of
С	19	37.2		110000	10	ACF67367_30	Continuation (31 o
	20	36.4	4.9	2000	8	ADA71938	Ada71938 Rice gene
С	21	35.6	4.7	492	10	ACD96860	Acd96860 Human col
	22	35.6	4.7	612	10	ACF71507	Acf71507 Photorhab
	23	35.6		110000	10	ACF67367_46	Continuation (47 o
С	24	35.6		110000	10	ACF65388_01	Continuation (2 of
	25	35.2	4.7	474	12	ADI45188	Adi45188 Rice isop
	26	35.2	4.7	1302	4	ABL21095	Abl21095 Drosophil
С	27	35.2	4.7	79467	9	ADA02717	Ada02717 Mouse Nfa
С	28	35.2	4.7	79467	10	ADB72455	Adb72455 Mouse Nfa
С	29	35.2	4.7	79467	10	ADE95965	Ade95965 Mouse Nfa
С	30	35	4.7	1877	4	ABL14601	Abl14601 Drosophil
С	31	35	4.7	4532	4	ABL14600	Abl14600 Drosophil
С	32	34.6	4.6	214	3	ADF57362	Adf57362 Urogenita
C	33	34.6	4.6	3821	5	ADL62643	Adl62643 Human ova
C C	34 35	34.6 34.4	4.6 4.6	3825 6996	5 4	ABV25634	Abv25634 Human pro
C	35 36	34.4	4.6	592	6	ABL21622 ABT11039	Ab121622 Drosophil
	37	34.2	4.6	645	11		Abt11039 Human bre Ach96827 Klebsiell
	38	34.2	4.6	1707	6	ACR 90827 AAS 15596	Achience Ach
С	39	34.2	4.6	2000	8	ADA71938	Ada71938 Rice gene
С	40	34.2	4.6	2000	12	ADA71936 ADJ41214	Ada/1936 Rice gene Adj41214 Plant cDN
C	41	33.4	4.5	200	3	AAC25780	Adj41214 Flant CDN Aac25780 Human sec
С	42	33.4	4.5	1055	3	AAA07254	Aaa07254 Asparagin
С	43	33.4	4.5	3077	3	AAA07255	Aaa07254 Asparagin
С	44	33.4	4.5	9951	6	ABK39929	Abk39929 Human che
~	45	33.4	4.5	29000	10	ADA66458	Ada66458 Human Tra
		20.1	1.5		- 0	1.15110-0-1-0-0	TIGHIDII OCFOODDIA

•

OM nucleic - nucleic search, using sw model

Run on: January 3, 2005, 11:25:37; Search time 100 Seconds

(without alignments)

5330.917 Million cell updates/sec

Title: US-10-620-487-1

Perfect score: 750

Sequence: 1 gatccataaccccaaaccta.....ttagtaacttgctacttaag 750

Scoring table: IDENTITY NUC

Gapop 10.0 , Gapext 1.0

Searched: 824507 seqs, 355394441 residues

Total number of hits satisfying chosen parameters: 1649014

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

1: /cgn2 6/ptodata/1/ina/5A COMB.seq:*

2: /cgn2 6/ptodata/1/ina/5B COMB.seq:*

3: /cgn2 6/ptodata/1/ina/6A COMB.seq:*

4: /cgn2_6/ptodata/1/ina/6B_COMB.seq:*

5: /cgn2_6/ptodata/1/ina/PCTUS_COMB.seq:*

6: /cgn2 6/ptodata/1/ina/backfiles1.seq:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Res	ult		% Query							
	No.	Score	Match	Length	DB	ID		Descriptio	on	
	1	265.8	35.4	618	4	US-09-489-039A-5490	Χ	Sequence	5490,	Ap
	2	156	20.8	372	4	US-09-489-039A-5497		Sequence	5497,	Αp
	3	42	5.6	669	4	US-09-328-352-2345		Sequence	2345,	Αp
	4	39.8	5.3	636	4	US-09-543-681A-2536		Sequence	2536,	Αp
	5	39.6	5.3	750	4	US-09-252-991A-9146		Sequence	9146,	Αp
	6	38.2	5.1	636	4	US-09-489-039A-3271		Sequence	3271,	Αp
	7	34.2	4.6	645	4	US-09-489-039A-2622		Sequence	2622,	Αp
	8	33.4	4.5	202	4	US-09-513-999C-29855		Sequence	29855	, A
С	9	33.4	4.5	1055	3	US-09-410-028-1		Sequence	1, Ap	pli
С	10	33.4	4.5	3077	3	US-09-410-028-3		Sequence	3, Ap	pli
	11	33	4.4	72604	3	US-09-268-992-7		Sequence	7, Ap	pli

	12	33	4.4	72604	3	US-09-657-474-7	Sequence 7, Appli
С	13	32.8	4.4	1194	4	US-09-252-991A-9124	Sequence 9124, Ap
С	14	32.8	4.4	1326	4	US-09-252-991A-9206	Sequence 9206, Ap
	15	32.8	4.4	1329	4	US-09-252-991A-8853	Sequence 8853, Ap
	16	32.6	4.3	505	4	US-09-621-976-15639	Sequence 15639, A
С	17	32.2	4.3	1001	4	US-09-641-638-340	Sequence 340, App
C	18	32.2	4.3	1001	4	US-10-170-097-340	Sequence 340, App
	19	32.2	4.3	5127	4	US-09-462-606-1	Sequence 1, Appli
	20	32.2	4.3	7207	4	US-09-462-606-3	Sequence 3, Appli
С	21	32	4.3	1338	4	US-09-489-039A-6698	Sequence 6698, Ap
С	22	31.8	4.2	789	4	US-09-134-000C-2827	Sequence 2827, Ap
С	23	31.4	4.2	965	4	US-09-270-767-14185	Sequence 14185, A
	24	31.2	4.2	1230025	4	US-09-198-452A-1	Sequence 1, Appli
	25	30.8	4.1	726	4	US-09-328-352-3033	Sequence 3033, Ap
C	26	30.8	4.1	936	4	US-09-489-039A-5469	Sequence 5469, Ap
	27	30.8	4.1	1040	4	US-09-602-787A-305	Sequence 305, App
С	28	30.8	4.1	1497	4	US-09-220-132-94	Sequence 94, Appl
	29	30.8	4.1	1500	4	US-09-602-787A-301	Sequence 301, App
	30	30.6	4.1	1269	4	US-09-489-039A-3734	Sequence 3734, Ap
	31	30.6	4.1	5396	4	US-09-270-767-29115	Sequence 29115, A
	32	30.6	4.1	7233	4	US-09-270-767-13200	Sequence 13200, A
С	33	30.4	4.1	1294	2	US-08-665-647-4	Sequence 4, Appli
С	34	30.4	4.1	1521	4	US-09-252-991A-6495	Sequence 6495, Ap
С	35	30.4	4.1	4599	4	US-09-302-626B-61	Sequence 61, Appl
С	36	30.4	4.1	5562	4	US-10-204-708-63	Sequence 63, Appl
	37	30.4	4.1	9018	4	US-10-220-587-3	Sequence 3, Appli
	38	30.2	4.0	636	4	US-09-489-039A-2437	Sequence 2437, Ap
С	39	30.2	4.0	854	4	US-09-302-626B-57	Sequence 57, Appl
С	40	30.2	4.0	5937	4	US-09-302-626B-59	Sequence 59, Appl
С	41	30.2	4.0	38564	4	US-09-734-673-3	Sequence 3, Appli
С	42	30	4.0	454	4	US-09-513-999C-10704	Sequence 10704, A
	43	30	4.0	832	4	US-09-621-976-2813	Sequence 2813, Ap
С	44	30	4.0	849	4	US-09-540-236-656	Sequence 656, App
	45	30	4.0	1173	4	US-09-248-796A-6337	Sequence 6337, Ap

,

•

•

OM nucleic - nucleic search, using sw model

Run on: January 3, 2005, 10:05:31; Search time 520 Seconds

(without alignments)

8146.523 Million cell updates/sec

Title: US-10-620-487-1

Perfect score: 750

Sequence: 1 gatccataaccccaaaccta.....ttagtaacttgctacttaag 750

Scoring table: IDENTITY NUC

Gapop 10.0, Gapext 1.0

Searched: 4176236 seqs, 2824127955 residues

Total number of hits satisfying chosen parameters: 8352472

Minimum DB seq length: 0

Maximum DB seq length: 200000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database: Published Applications NA:*

1: /cgn2 6/ptodata/2/pubpna/US07 PUBCOMB.seg:*

2: /cgn2 6/ptodata/2/pubpna/PCT NEW PUB.seq:*

3: /cgn2 6/ptodata/2/pubpna/US06 NEW PUB.seq:*

4: /cgn2 6/ptodata/2/pubpna/US06 PUBCOMB.seq:*

/ cgiiz_0/ptodata/2/pubpiia/0300_F0BCOMB.seq:

5: /cgn2_6/ptodata/2/pubpna/US07_NEW_PUB.seq:*

6: /cgn2_6/ptodata/2/pubpna/PCTUS_PUBCOMB.seq:*

7: /cgn2 6/ptodata/2/pubpna/US08 NEW PUB.seq:*

8: /cgn2 6/ptodata/2/pubpna/US08 PUBCOMB.seq:*

9: /cgn2_6/ptodata/2/pubpna/US09A PUBCOMB.seq:*

10: /cgn2 6/ptodata/2/pubpna/US09B PUBCOMB.seq:*

11: /cgn2 6/ptodata/2/pubpna/US09C PUBCOMB.seq:*

12: /cgn2 6/ptodata/2/pubpna/US09 NEW PUB.seq:*

13: /cgn2_6/ptodata/2/pubpna/US10A_PUBCOMB.seq:*

14: /cgn2_6/ptodata/2/pubpna/US10B_PUBCOMB.seq:*

15: /cgn2 6/ptodata/2/pubpna/US10C PUBCOMB.seq:*

16: /cgn2 6/ptodata/2/pubpna/US10D PUBCOMB.seq:*

17. /cgnz_o/pcodaca/2/pubpha/0010b_robcomb.seq.

17: /cgn2_6/ptodata/2/pubpna/US10E_PUBCOMB.seq:*

18: /cgn2_6/ptodata/2/pubpna/US10_NEW_PUB.seq:*

19: /cgn2_6/ptodata/2/pubpna/US11_NEW_PUB.seq:*

20: /cgn2_6/ptodata/2/pubpna/US60_NEW_PUB.seq:*

21: /cgn2 6/ptodata/2/pubpna/US60 PUBCOMB.seg:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result Query No. Score Match Length DB ID Description ______ -----1 750 100.0 750 16 US-10-620-487-1 Sequence 1, Appli 2 50.4 573 6.7 9 US-09-974-300-434 Sequence 434, App 3 39 5.2 247682 16 US-10-235-192A-28 Sequence 28, Appl 4 36.8 4.9 852 16 US-10-425-114-35996 Sequence 35996, A 5 36.8 4.9 2727 18 US-10-425-115-65647 Sequence 65647, A 6 36 4.8 486 17 US-10-767-795-2906 С Sequence 2906, Ap 7 35.2 4.7 474 16 US-10-259-194A-119 Sequence 119, App 8 35.2 4.7 79467 16 US-10-052-482-223 С Sequence 223, App 9 34.6 4.6 214 9 US-09-933-797-681 С Sequence 681, App 10 34.6 4.6 3821 10 US-09-814-353-20855 С Sequence 20855, A С 11 34.6 4.6 3825 18 US-10-357-930-25623 Sequence 25623, A 12 34.4 4.6 6630 17 С US-10-437-963-75212 Sequence 75212, A 13 2000 С 34.2 4.6 16 US-10-260-238-2214 Sequence 2214, Ap 14 4.6 141463 С 34.2 13 US-10-087-192-22 Sequence 22, Appl 33.8 497 С 15 4.5 16 US-10-424-599-84060 Sequence 84060, A 16 33.4 2924 С 4.5 16 US-10-424-599-28594 Sequence 28594, A 17 33.4 4.5 9951 16 US-10-257-166-10 Sequence 10, Appl 18 33.4 4.5 29000 10 US-09-906-158-17 Sequence 17, Appl 19 33.4 4.5 29000 15 US-10-388-263-466 Sequence 466, App 20 33.2 4.4 235 16 US-10-424-599-141309 Sequence 141309, 21 33.2 4.4 826 16 US-10-424-599-97789 Sequence 97789, A 22 33.2 4.4 3673778 15 US-10-312-841-2 Sequence 2, Appli 23 33 4.4 72604 15 US-10-162-497-7 Sequence 7, Appli 24 33 4.4 72604 17 US-10-629-313-7 Sequence 7, Appli 25 32.8 16 4.4 64492 US-10-378-083-1 Sequence 1, Appli 26 32.6 4.3 451 14 US-10-123-155-126 Sequence 126, App 27 32.6 4.3 451 15 US-10-146-731-126 Sequence 126, App 28 32.6 4.3 451 15 US-10-140-472-126 Sequence 126, App 29 32.6 451 4.3 15 US-10-141-761-126 Sequence 126, App 30 32.6 4.3 451 15 US-10-142-885-126 Sequence 126, App 31 32.6 4.3 451 15 US-10-158-790-126 Sequence 126, App 32 32.6 4.3 451 15 US-10-137-871-126 Sequence 126, App 33 32.6 4.3 451 15 US-10-140-923-126 Sequence 126, App 34 32.6 4.3 451 15 US-10-141-756-126 Sequence 126, App 35 32.6 4.3 451 15 US-10-141-759-126 Sequence 126, App 36 32.6 4.3 451 15 US-10-140-805-126 Sequence 126, App 37 32.6 4.3 451 15 US-10-140-864-126 Sequence 126, App 38 32.6 4.3 451 16 US-10-142-426-126 Sequence 126, App 39 32.6 597 18 4.3 US-10-363-345A-13041 Sequence 13041, A 40 32.6 4.3 597 18 US-10-363-345A-13042 Sequence 13042, A 41 32.6 623 17 С 4.3 US-10-767-701-883 Sequence 883, App 42 32.6 858 4.3 18 US-10-363-345A-21325 Sequence 21325, A 43 32.6 858 Sequence 21326, A С 4.3 18 US-10-363-345A-21326 44 32.6 4.3 2589 18 US-10-425-115-175990 Sequence 175990, US-10-437-963-54974 45 32.4 4.3 289 17 Sequence 54974, A

OM nucleic - nucleic search, using sw model

Run on: January 3, 2005, 11:23:52; Search time 3085 Seconds

(without alignments)

8858.930 Million cell updates/sec

Title: US-10-620-487-1

Perfect score: 750

Sequence: 1 gatccataaccccaaaccta.....ttagtaacttgctacttaag 750

Scoring table: IDENTITY NUC

Gapop 10.0 , Gapext 1.0

Searched: 32822875 seqs, 18219865908 residues

Total number of hits satisfying chosen parameters: 65645750

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database : EST:*

1: gb_est1:*
2: gb_est2:*
3: gb_htc:*
4: gb_est3:*
5: gb_est4:*

6: gb_est5:*
7: gb_est6:*
8: gb gss1:*

9: gb_gss2:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

			8						
Res	ult		Query						
	No.	Score	Match	Length	DB	ID		Descripti	Lon
		 473	63.1	 681	 6	CA366654 SCO	hout	CD 3666E4	C42270 NG
С	T				-	CA366634 J		CA36654	642278 NC
	2	351	46.8	856	9	CL650636 SEQ		CL650636	PRI0110a_
	3	331.4	44.2	791	9	CL688782		CL688782	PRIO14b G
	4	321.6	42.9	736	9	CL688905		CL688905	PRI014d C
С	5	113.2	15.1	118	6	CA374430		CA374430	648800 NC
С	6	55.2	7.4	819	8	BH447440		BH447440	BOHQB49TF
	7	50	6.7	420	8	BH374397		BH374397	AG-ND-180
С	8	49.4	6.6	862	9	CL666889		CL666889	PRI0153c

		_					
	9	43.4	5.8	450	8	ВН379453	BH379453 AG-ND-163
С	10	39.2	5.2	938	9	CL139330	CL139330 ISB1-112E
С	11	38.2	5.1	474	9	AG240288	AG240288 Lotus cor
	12	38.2	5.1	1101	9	CNS00EEC	AL069085 Drosophil
С	13	37.6	5.0	553	5	BM965274	BM965274 kj93h10.y
С	14	37.6	5.0	568	5	BQ095448	BQ095448 kk05d05.y
С	15	37.6	5.0	583	5	BM965121	BM965121 kj92c03.y
С	16	37.6	5.0	623	5	BM965443	BM965443 kj95h06.y
C	17	37.6	5.0	637	5	BM965333	BM965333 kj94f01.y
С	18	37.4	5.0	493	9	CE114952	CE114952 tigr-gss-
	19	37.4	5.0	884	9	CNS006U0	AL065923 Drosophil
С	20	37.2	5.0	939	9	CNS00CNG	AL059400 Drosophil
	21	36.8	4.9	614	5	BQ628514	BQ628514 sap47h10.
	22	36.8	4.9	650	6	CD598566	CD598566 RK114A3B1
	23	36.8	4.9	650	6	CD599088	CD599088 RK114A4B0
С	24	36.8	4.9	712	9	BX163185	BX163185 Danio rer
	25	36.8	4.9	778	9	BX175544	BX175544 Danio rer
	26	36.6	4.9	408	8	BZ716786	BZ716786 OGEBE26TM
	27	36.6	4.9	589	9	CC604749	CC604749 OGUHO32TH
С	28	36.6	4.9	787	9	CNS016H3	AL106737 Drosophil
С	29	36.6	4.9	935	9	CC604756	CC604756 OGUHO32TV
	30	36.6	4.9	963	9	CG050339	CG050339 PUIIH51TB
	31	36.4	4.9	440	6	CA678514	CA678514 wlm12.pk0
С	32	36.4	4.9	566	6	CD347163	CD347163 EtESTef11
С	33	36.4	4.9	619	5	BM964489	BM964489 kj84e08.y
	34	36.2	4.8	825	9	CC534336	CC534336 CH240 412
С	35	36	4.8	630	5	BM964821	BM964821 kj88 $\overline{0}$ 2.y
С	36	36	4.8	688	8	BZ659718	BZ659718 OGCCC31TM
С	37	35.8	4.8	1181	9	AG127050	AG127050 Pan trogl
С	38	35.6	4.7	492	1	AI908572	AI908572 RC-BT177-
С	39	35.4	4.7	699	9	CE799079	CE799079 tigr-gss-
	40	35.4	4.7	733	8	BZ389118	BZ389118 EINDJ32TF
	41	35.4	4.7	792	9	CG872981	CG872981 ZMMBBc028
С	42	35.2	4.7	226	4	BG370992	BG370992 dac11a02.
	43	35.2	4.7	500	5	BP188868	BP188868 BP188868
	44	35.2	4.7	500	5	BP189161	BP189161 BP189161
С	45	35.2	4.7	552	9	BX163834	BX163834 Danio rer

•

OM protein - protein search, using sw model

Run on: January 3, 2005, 07:57:25; Search time 81 Seconds

(without alignments)

863.608 Million cell updates/sec

Title: US-10-620-487-2

Perfect score: 996

Sequence: 1 VTPTLLSAFWTYTLITAMTP......RQLNIVLALLLVYCAVRIFY 195

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 2002273 seqs, 358729299 residues

Total number of hits satisfying chosen parameters: 2002273

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database: A Geneseq 23Sep04:*

1: genesegp1980s:*

2: geneseqp1990s:*

3: geneseqp2000s:*

4: geneseqp2001s:*

5: geneseqp2002s:*

6: geneseqp2003as:*

7: geneseqp2003bs:*

8: geneseqp2004s:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

			ક્ર						
I	Result		Query						
	No.	Score	Match	Length	DB	ID		Descript:	ion
	1	996	100.0	195	 8	ADK66006	Appl	Adk66006	E coli Yf
	2	993	99.7	195	3	AAB01788	Livshills 60	Aab01788	Escherich
	3	684	68.7	205	7	ABO66144	vaccine	Abo66144	Klebsiell
	4	505	50.7	344	4	ABG17792	X	Abg17792	Novel hum
	5	272.5	27.4	249	7	ABO76971		Abo76971	Pseudomon
	6	256	25.7	203	6	ABM70439		Abm70439	Photorhab
	7	250.5	25.2	211	7	ABO63925		Abo63925	Klebsiell
	8	232.5	23.3	212	7	ADF04482		Adf04482	Bacterial
	9	228.5	22.9	211	7	ADF06423		Adf06423	Bacterial

10	191.5	19.2	238	6	ADA35835	Ada35835 Acinetoba
11	178	17.9	241	6	ADA35872	Ada35872 Acinetoba
12	173	17.4	271	7	AB083709	Abo83709 Pseudomon
13	163.5	16.4	235	6	ADA36962	Ada36962 Acinetoba
14	162	16.3	214	7	ABO61549	Abo61549 Klebsiell
15	161.5	16.2	206	6	ABU32233	Abu32233 Protein e
16	158.5	15.9	206	7	ABO70000	Abo70000 Pseudomon
17	158.5	15.9	211	6	ABU39959	Abu39959 Protein e
18	157.5	15.8	190	4	ABG29208	Abg29208 Novel hum
19	157.5	15.8	206	6	ABU28287	Abu28287 Protein e
20	156.5	15.7	206	6	ABU50100	Abu50100 Protein e
21	156.5	15.7	206	6	ABU47858	Abu47858 Protein e
22	155.5	15.6	214	6	ADA34738	Ada34738 Acinetoba
23	155.5	15.6	237	7	ABO78429	Abo78429 Pseudomon
24	154	15.5	205	6	ABU44939	Abu44939 Protein e
25	154	15.5	210	6	ADA35521	Ada35521 Acinetoba
26	153.5	15.4	211	7	ABO72001	Abo72001 Pseudomon
27	153	15.4	214	7	ABO63276	Abo63276 Klebsiell
28	151.5	15.2	211	6	ABU19902	Abu19902 Protein e
29	149.5	15.0	250	7	ADF04202	Adf04202 Bacterial
30	148	14.9	211	7	AB063091	Abo63091 Klebsiell
31	146.5	14.7	220	6	ADA33616	Ada33616 Acinetoba
32	146	14.7	222	6	ADA35184	Ada35184 Acinetoba
33	143.5	14.4	212	3	AAB01787	Aab01787 Escherich
34	138.5	13.9	219	7	ABO61214	Abo61214 Klebsiell
35	137.5	13.8	205	6	ABU49040	Abu49040 Protein e
36	132	13.3	208	6	ADA33824	Ada33824 Acinetoba
37	129	13.0	201	6	ABM68999	Abm68999 Photorhab
38	128.5	12.9	228	7	ADF04569	Adf04569 Bacterial
39	128.5	12.9	240	6	ADA36250	Ada36250 Acinetoba
40	128	12.9	220	7	ADF04260	Adf04260 Bacterial
41	127	12.8	200	6	ADA33486	Ada33486 Acinetoba
42	126	12.7	205	3	AAY79298	Aay79298 E. coli R
43	126	12.7	205	3	AAY99597	Aay99597~E. coli L
44	125.5	12.6	214	6	ADA35408	Ada35408 Acinetoba
45	123.5	12.4	209	6	ABU38890	Abu38890 Protein e

.

OM protein - protein search, using sw model

Run on: January 3, 2005, 08:54:35; Search time 25 Seconds

(without alignments)

517.280 Million cell updates/sec

Title: US-10-620-487-2

Perfect score: 996

Sequence: 1 VTPTLLSAFWTYTLITAMTP......RQLNIVLALLLVYCAVRIFY 195

Scoring table: BLOSUM62

Gapop 10.0, Gapext 0.5

Searched: 478139 seqs, 66318000 residues

Total number of hits satisfying chosen parameters: 478139

Minimum DB seq length: 0

Maximum DB seq length: 200000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

1: /cgn2 6/ptodata/1/iaa/5A COMB.pep:*

2: /cgn2 6/ptodata/1/iaa/5B COMB.pep:*

3: /cgn2 6/ptodata/1/iaa/6A COMB.pep:*

4: /cgn2 6/ptodata/1/iaa/6B COMB.pep:*

5: /cgn2 6/ptodata/1/iaa/PCTUS COMB.pep:*

6: /cgn2 6/ptodata/1/iaa/backfiles1.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

	ક				
	Query				
Score	Match	Length	DB	ID	Description
684	 68.7	205	 4	US-09-489-039A-12661 PF 1/10	Sequence 12661, A
272.5	27.4	249	4	US-09-252-991A-25717	Sequence 25717, A
250.5	25.2	211	4	US-09-489-039A-10442	Sequence 10442, A
232.5	23.3	212	4	US-09-543-681A-4767	Sequence 4767, Ap
228.5	22.9	211	4	US-09-543-681A-6708	Sequence 6708, Ap
191.5	19.2	238	4	US-09-328-352-7122	Sequence 7122, Ap
178	17.9	241	4	US-09-328-352-7159	Sequence 7159, Ap
173	17.4	271	4	US-09-252-991A-32455	Sequence 32455, A
163.5	16.4	235	4	US-09-328-352-8249	Sequence 8249, Ap
162	16.3	214	4	US-09-489-039A-8066	Sequence 8066, Ap
158.5	15.9	206	4	US-09-252-991A-18746	Sequence 18746, A
	684 272.5 250.5 232.5 228.5 191.5 178 173 163.5 162	Score Match 684 68.7 272.5 27.4 250.5 25.2 232.5 23.3 228.5 22.9 191.5 19.2 178 17.9 173 17.4 163.5 16.4 162 16.3	Score Match Length 684 68.7 205 272.5 27.4 249 250.5 25.2 211 232.5 23.3 212 228.5 22.9 211 191.5 19.2 238 178 17.9 241 173 17.4 271 163.5 16.4 235 162 16.3 214	Score Match Length DB 684 68.7 205 4 272.5 27.4 249 4 250.5 25.2 211 4 232.5 23.3 212 4 228.5 22.9 211 4 191.5 19.2 238 4 178 17.9 241 4 173 17.4 271 4 163.5 16.4 235 4 162 16.3 214 4	Score Match Length DB ID 684 68.7 205 4 US-09-489-039A-12661 PF #0 272.5 27.4 249 4 US-09-252-991A-25717 250.5 25.2 211 4 US-09-489-039A-10442 232.5 23.3 212 4 US-09-543-681A-4767 228.5 22.9 211 4 US-09-543-681A-6708 191.5 19.2 238 4 US-09-328-352-7122 178 17.9 241 4 US-09-328-352-7159 173 17.4 271 4 US-09-252-991A-32455 163.5 16.4 235 4 US-09-328-352-8249 162 16.3 214 4 US-09-489-039A-8066

12	155.5	15.6	214	4	US-09-328-352-6025	Sequence	6025, Ap
13	155.5	15.6	237	4	US-09-252-991A-27175	Sequence	27175, A
14	154	15.5	210	4	US-09-328-352-6808	Sequence	6808, Ap
15	153.5	15.4	211	4	US-09-252-991A-20747	Sequence	20747, A
16	153	15.4	214	4	US-09-489-039A-9793	Sequence	9793, Ap
17	149.5	15.0	250	4	US-09-543-681A-4487	Sequence	4487, Ap
18	148	14.9	211	4	US-09-489-039A-9608	Sequence	9608, Ap
19	146.5	14.7	220	4	US-09-328-352-4903	Sequence	4903, Ap
20	146	14.7	222	4	US-09-328-352-6471	Sequence	6471, Ap
21	138.5	13.9	219	4	US-09-489-039A-7731	-	7731, Ap
22	132	13.3	208	4	US-09-328-352-5111	Sequence	5111, Ap
23	128.5	12.9	228	4	US-09-543-681A-4854	Sequence	4854, Ap
24	128.5	12.9	240	4	US-09-328-352-7537	Sequence	7537, Ap
25	128	12.9	220	4	US-09-543-681A-4545	Sequence	4545, Ap
26	127	12.8	200	4	US-09-328-352-4773	Sequence	4773, Ap
27	126	12.7	205	3	US-09-396-357-2	Sequence	2, Appli
28	125.5	12.6	214	4	US-09-328-352-6695	Sequence	6695, Ap
29	123.5	12.4	228	4	US-09-252-991A-23837	Sequence	23837, A
30	123.5	12.4	277	4	US-09-252-991A-23018	Sequence	23018, A
31	122.5	12.3	201	4	US-09-328-352-6409	Sequence	6409, Ap
32	115.5	11.6	260	4	US-09-252-991A-25992	Sequence	25992, A
33	112.5	11.3	249	4	US-09-328-352-5813	Sequence	5813, Ap
34	112	11.2	217	4	US-09-489-039A-8076	Sequence	8076, Ap
35	111.5	11.2	222	4	US-09-252-991A-26644	Sequence	26644, A
36	109.5	11.0	216	4	US-09-252-991A-18666	Sequence	18666, A
37	107.5	10.8	206	4	US-09-328-352-4784	Sequence	4784, Ap
38	105.5	10.6	209	4	US-09-328-352-8225	Sequence	8225, Ap
39	104.5	10.5	210	4	US-09-328-352-4775	Sequence	4775, Ap
40	103.5	10.4	226	4	US-09-252-991A-31610	Sequence	31610, A
41	102.5	10.3	221	4	US-09-328-352-6659	Sequence	6659, Ap
42	99	9.9	213	4	US-09-489-039A-11845	Sequence	11845, A
43	98.5	9.9	138	4	US-09-711-164-445	Sequence	445, App
44	98.5	9.9	269	4	US-09-489-039A-7320	Sequence	7320, Ap
45	97.5	9.8	450	4	US-09-252-991A-20484	Sequence	20484, A

OM protein - protein search, using sw model

Run on: January 3, 2005, 08:41:11; Search time 444 Seconds

(without alignments)

157.989 Million cell updates/sec

Title: US-10-620-487-2

Perfect score: 996

Sequence: 1 VTPTLLSAFWTYTLITAMTP......RQLNIVLALLLVYCAVRIFY 195

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 1599051 seqs, 359727711 residues

Total number of hits satisfying chosen parameters: 1599051

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database : Published Applications AA:*

1: /cgn2 6/ptodata/2/pubpaa/US07 PUBCOMB.pep:*

2: /cgn2 6/ptodata/2/pubpaa/PCT NEW PUB.pep:*

3: /cgn2_6/ptodata/2/pubpaa/US06_NEW_PUB.pep:*

4: /cgn2 6/ptodata/2/pubpaa/US06 PUBCOMB.pep:*

5: /cgn2_6/ptodata/2/pubpaa/US07 NEW PUB.pep:*

5: /cgn2_6/ptodata/2/pubpaa/PCTUS PUBCOMB.pep:*

7: /cgn2 6/ptodata/2/pubpaa/US08 NEW PUB.pep:*

8: /cgn2 6/ptodata/2/pubpaa/US08 PUBCOMB.pep:*

0. /cgn2_6/ptodata/2/pubpaa/0000_10000MD.pcp.

9: /cgn2_6/ptodata/2/pubpaa/US09A_PUBCOMB.pep:*

10: /cgn2_6/ptodata/2/pubpaa/US09B_PUBCOMB.pep:*

11: /cgn2_6/ptodata/2/pubpaa/US09C_PUBCOMB.pep:*

12: /cgn2_6/ptodata/2/pubpaa/US09_NEW_PUB.pep:*

13: /cgn2_6/ptodata/2/pubpaa/US10A_PUBCOMB.pep:*

14: /cgn2_6/ptodata/2/pubpaa/US10B_PUBCOMB.pep:*

15: /cgn2_6/ptodata/2/pubpaa/US10C_PUBCOMB.pep:*

16: /cgn2 6/ptodata/2/pubpaa/US10D PUBCOMB.pep:*

17: /cgn2_6/ptodata/2/pubpaa/US10_NEW_PUB.pep:*

18: /cgn2_6/ptodata/2/pubpaa/US11_NEW_PUB.pep:*

19: /cgn2 6/ptodata/2/pubpaa/US60 NEW PUB.pep:*

20: /cgn2 6/ptodata/2/pubpaa/US60 PUBCOMB.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Result No.	Score	Query Match	Length	DB	ID	Description
					US-10-620-487-2	
1	996	100.0	195	15		Sequence 2, Appli
2	161.5	16.2	206	15	US-10-282-122A-60157	Sequence 60157, A
3	158.5	15.9	211	15	US-10-282-122A-67883	Sequence 67883, A
4	157.5	15.8	206	15	US-10-282-122A-56211	Sequence 56211, A
5	156.5	15.7	206	15	US-10-282-122A-75782	Sequence 75782, A
6	156.5	15.7	206	15	US-10-282-122A-78024	Sequence 78024, A
7	154	15.5	205	15	US-10-282-122A-72863	Sequence 72863, A
8	151.5	15.2	211	15	US-10-282-122A-47826	Sequence 47826, A
9	142	14.3	217	14	US-10-156-761-10918	Sequence 10918, A
10	137.5	13.8	205	15	US-10-282-122A-76964	Sequence 76964, A
11	126	12.7	205	9	US-09-927-395-2	Sequence 2, Appli
12	126	12.7	205	9	US-09-847-392-2	Sequence 2, Appli
13	123.5	12.4	209	15	US-10-282-122A-66814	Sequence 66814, A
14	120	12.0	181	15	US-10-282-122A-44873	Sequence 44873, A
15	117.5	11.8	210	15	US-10-282-122A-69338	Sequence 69338, A
16	116.5	11.7	223	9	US-09-738-626-6070	Sequence 6070, Ap
17	116.5	11.7	223	10	US-09-746-660A-14	Sequence 14, Appl
18	112	11.2	207	9	US-09-738-626-6418	Sequence 6418, Ap
19	112	11.2	227	15	US-10-461-194-124	Sequence 124, App
20	111	11.1	227	15	US-10-461-194-94	Sequence 94, Appl
21	110.5	11.1	205	14	US-10-156-761-11297	Sequence 11297, A
22	109.5	11.0	209	15	US-10-282-122A-51102	Sequence 51102, A
23	107.5	10.8	224	14	US-10-156-761-7796	Sequence 7796, Ap
24	104	10.4	226	9	US-09-738-626-3665	Sequence 3665, Ap
25	98.5	9.9	138	14	US-10-287-274-445	Sequence 445, App
26	98.5	9.9	138	15	US-10-282-122A-42680	Sequence 42680, A
27	96	9.6	948	16	US-10-437-963-161288	Sequence 161288,
28	95.5	9.6	473	15	US-10-282-122A-61289	Sequence 61289, A
29	95	9.5	537	15	US-10-282-122A-68111	Sequence 68111, A
30	93.5	9.4	212	15	US-10-374-903A-6	Sequence 6, Appli
31	92	9.2	486	14	US-10-369-493-15301	Sequence 15301, A
32	92	9.2	488	14	US-10-369-493-15667	Sequence 15667, A
33	92	9.2	488	14	US-10-369-493-16057	Sequence 16057, A
34	92	9.2	625	14	US-10-369-493-3850	Sequence 3850, Ap
35	91.5	9.2	264	11	US-09-864-408A-4810	Sequence 4810, Ap
36	91	9.1	246	15	US-10-424-599-253409	Sequence 253409,
37	91	9.1	470	16	US-10-767-701-44234	Sequence 44234, A
38	91	9.1	551	9	US-09-738-626-4431	Sequence 4431, Ap
39	91	9.1	551	15	US-10-627-476-510	Sequence 510, App
40	90.5	9.1	680	16	US-10-437-963-142247	Sequence 142247,
41	90	9.0	204	14	US-10-156-761-8429	Sequence 8429, Ap
42	90	9.0	468	15	US-10-282-122A-52688	Sequence 52688, A
43	90	9.0	552	15	US-10-282-122A-53662	Sequence 53662, A
44	89.5	9.0	754	15	US-10-282-122A-48878	Sequence 48878, A
45	88.5	8.9	536	11	US-09-809-665A-71	Sequence 71, Appl

OM protein - nucleic search, using frame plus p2n model Run on: January 3, 2005, 09:05:56; Search time 4048 Seconds (without alignments) 2278.036 Million cell updates/sec Title: US-10-620-487-2 Perfect score: 996 1 VTPTLLSAFWTYTLITAMTP......RQLNIVLALLLVYCAVRIFY 195 Sequence: Scoring table: BLOSUM62 Xgapop 10.0 , Xgapext 0.5 Ygapop 10.0 , Ygapext 0.5 Fgapop 6.0 , Fgapext 7.0 Delop 6.0 , Delext 7.0 4526729 segs, 23644849745 residues Searched: Total number of hits satisfying chosen parameters: 9053458 Minimum DB seq length: 0 Maximum DB seq length: 2000000000 Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries Command line parameters: -MODEL=frame+ p2n.model -DEV=xlh Q=/cgn2 1/USPTO spool/US10620487/runat 29122004 134449 9000/app query.fasta 1.39 -DB=GenEmbl -QFMT=fastap -SUFFIX=rge -MINMATCH=0.1 -LOOPCL=0 -LOOPEXT=0 -UNITS=bits -START=1 -END=-1 -MATRIX=blosum62 -TRANS=human40.cdi -LIST=45 -DOCALIGN=200 -THR SCORE=pct -THR MAX=100 -THR MIN=0 -ALIGN=15 -MODE=LOCAL -OUTFMT=pto -NORM=ext -HEAPSIZE=500 -MINLEN=0 -MAXLEN=2000000000 $-USER = US10620487 _ @CGN _ 1 _ 1 _ 3731 _ @runat _ 29122004 _ 134449 _ 9000 - NCPU = 6 - ICPU = 3 _ 1284 - 1284$ -NO MMAP -LARGEQUERY -NEG SCORES=0 -WAIT -DSPBLOCK=100 -LONGLOG -DEV TIMEOUT=120 -WARN TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6 -FGAPEXT=7 -YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7 Database : GenEmbl:* 1: gb ba:* 2: gb htg:* 3: gb in:* 4: gb om:* gb ov:* 5: gb pat:* 7: gb ph:*

> 8: gb_pl:* 9: gb_pr:* 10: gb_ro:*

11: gb_sts:*
12: gb_sy:*
13: gb_un:*
14: gb_vi:*

g 8

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Resi	ult		o Query				
	No.	Score		Length	DB	ID	Description
	<u>-</u>	- 996	100.0	 588	·	E49391 JP 7/00	E49391 Process for
	1 2	996	100.0	588	6 6	AX030083 Livshits 7/002	AX030083 Sequence
	3	996	100.0	750	6	CQ759947 App	CQ759947 Sequence
	4	996	100.0	10272	1	ECODDAD	D12160 E goli gono
					1	D90886 SEQ 1997 jamama	D90886 E.coli geno
	5 6	996	100.0			ECOK12RIII SEG MACX	
		996	100.0	29254	1	U00096 27 SEQ X	D64044 Escherichia
	7	996		110000	1		Continuation (28 o
	8	992		300099	1	11010101	AE016764 Escherich
	9	990	99.4	12322	1		AE015279 Shigella
	10	990		290380	1	AE016987 'X ''	AE016987 Shigella
	11	982	98.6	12337	1	AE005488 X "	AE005488 Escherich
	12	982		270365	1	AP002562 X''	AP002562 Escherich
	13	887	89.1	21722	1	AE008820 Y	AE008820 Salmonell
	14	887		145050	1	AL627275 Y	AL627275 Salmonell
С	15	887		300431	1	AE016835	AE016835 Salmonell
	16	684	68.7	618	6	AR388761	AR388761 Sequence
С	17	311.5		110000	1	AE017225_22	Continuation (23 o
С	18	311.5		110000	1	AE017334_22	Continuation (23 o
С	19	311.5	31.3	110000	1	AE017355_23	Continuation (24 o
C	20	311.5	31.3	293264	1	AE017031	AE017031 Bacillus
С	21	310.5	31.2	288404	1	AE017272	AE017272 Bacillus
С	22	303.5	30.5	304262	1	AE017005	AE017005 Bacillus
С	23	293	29.4	23738	2	AC020828	AC020828 Mus muscu
	24	277.5	27.9	14140	1	AB015670	AB015670 Bacillus
	25	272.5	27.4	618	12	AY657639	AY657639 Synthetic
С	26	272.5	27.4	11869	1	AE004657	AE004657 Pseudomon
С	27	262.5	26.4	301214	1	AE016786	AE016786 Pseudomon
	28	260	26.1	372	6	AR388768	AR388768 Sequence
С	29	258.5	26.0	310029	1	AE016868	AE016868 Pseudomon
	30	256	25.7	349287	1	BX571860	BX571860 Photorhab
С	31	256	25.7	349980	6	AX770907	AX770907 Sequence
	32	250.5	25.2	636	6	AR386542	AR386542 Sequence
	33	244	24.5	343529	1	CR378676	CR378676 Photobact
	34	237.5	23.8	14305	1	AE014000	AE014000 Yersinia
C.	35	237.5		110000	1	BX950851 45	Continuation (46 o
	36	237.5		288050	1	AJ414141	AJ414141 Yersinia
	37	237.5		290029	1	AE017127	AE017127 Yersinia
	38	236	23.7	573	6	AX432019	AX432019 Sequence
	39	236		344805	1	BX640434	BX640434 Bordetell
	40	236		346287	1	BX640450	BX640450 Bordetell
С	41	235.5		294800	1	SME591789	AL591789 Sinorhizo
-	42	232.5	23.3		6	AR375589	AR375589 Sequence
С	43	232.5		302650	1	AP005958	AP005958 Bradyrhiz
_			•		_		: <u></u>

OM protein - nucleic search, using frame plus p2n model January 3, 2005, 08:56:05; Search time 484 Seconds Run on: (without alignments) 2114.953 Million cell updates/sec Title: US-10-620-487-2 Perfect score: 996 1 VTPTLLSAFWTYTLITAMTP......RQLNIVLALLLVYCAVRIFY 195 Sequence: Scoring table: BLOSUM62 Xgapop 10.0 , Xgapext 0.5 Ygapop 10.0 , Ygapext 0.5 Fgapop 6.0 , Fgapext 7.0 Delop 6.0 , Delext 7.0 4134886 seqs, 2624710521 residues Searched: Total number of hits satisfying chosen parameters: 8269772 Minimum DB seq length: 0 Maximum DB seq length: 2000000000 Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries Command line parameters: -MODEL=frame+ p2n.model -DEV=xlh Q=/cgn2 1/USPTO spool/US10620487/runat 29122004 134449 8990/app query.fasta 1.39 -DB=N Geneseg 23Sep04 -QFMT=fastap -SUFFIX=rng -MINMATCH=0.1 -LOOPCL=0 -LOOPEXT=0 -UNITS=bits -START=1 -END=-1 -MATRIX=blosum62 -TRANS=human40.cdi -LIST=45 -DOCALIGN=200 -THR SCORE=pct -THR MAX=100 -THR MIN=0 -ALIGN=15 -MODE=LOCAL -OUTFMT=pto -NORM=ext -HEAPSIZE=500 -MINLEN=0 -MAXLEN=2000000000 -USER=US10620487_@CGN_1_1_470_@runat_29122004_134449_8990 -NCPU=6 -ICPU=3 -NO MMAP -LARGEQUERY -NEG SCORES=0 -WAIT -DSPBLOCK=100 -LONGLOG -DEV TIMEOUT=120 -WARN TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6 -FGAPEXT=7 -YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7 N Geneseg 23Sep04:* Database : 1: geneseqn1980s:* 2: geneseqn1990s:* 3: genesegn2000s:* 4: geneseqn2001as:* 5: genesegn2001bs:* 6: genesegn2002as:* 7: genesegn2002bs:* 8: geneseqn2003as:*

geneseqn2003bs:*

10: geneseqn2003cs:*

9:

11: geneseqn2003ds:*
12: geneseqn2004s:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

			8				
Res	ult	_	Query				
	No.	Score	Match	Length	DB	ID	Description
	1	 996	100.0	588	3	AAA52690	Livshirs PD 7/00 Aaa52690 Escherich
	2	996	100.0	750	12	ADK66005	ADDO Adkaans F coli vf
	3	684	68.7	618	11	ACH99695	vaccing - kone Ach99695 Klebsiell A
	4	505	50.7	1668	5	AAS81979	X Aas81979 DNA encod
	5	272.5	27.4	750	11	ABD10542	Abd10542 Pseudomon
С	6	262.5	26.4	5040	12	ADQ07624	Adq07624 DNA seque
_	7	260	26.1	372	11	ACH99702	Ach99702 Klebsiell
	8	256	25.7	609	10	ACF70009	Acf70009 Photorhab
С	9	256		110000	10	ACF65385	
c	10	256		110000	10	ACF67367	_
_	11	250.5	25.2	636	11	ACH97476	_
	12	236	23.7	573	6	ABK73143	Abk73143 Bacillus
	13	232.5	23.3	639	10	ADF00310	Adf00310 Bacterial
	14	228.5	22.9	636	10		Adf02251 Bacterial
	15	191.5	19.2	717	9	ADA31709	Ada31709 DNA encod
	16	178	17.9	726	9	ADA31746	Ada31746 DNA encod
	17	173	17.4	816	11	ABD17280	Abd17280 Pseudomon
	18	165	16.6	100	8	ACD79725	Acd79725 E. coli K
	19	165	16.6	100	8	ACD79727	Acd79727 E. coli K
	20	163.5	16.4	708	9	ADA32836	Ada32836 DNA encod
	21	162	16.3	645	11	ACH95100	Ach95100 Klebsiell
	22	161.5	16.2	618	8	ACA36103	Aca36103 Prokaryot
	23	158.5	15.9	621	11	ABD03571	Abd03571 Pseudomon
	24	158.5	15.9	633	8	ACA43829	Aca43829 Prokaryot
С	25	158.5	15.9	813	11		Abd03188 Pseudomon
	26	157.5	15.8	618	8	ACA32157	Aca32157 Prokaryot
	27	157.5	15.8	622	5	AAS93395	Aas93395 DNA encod
	28	157	15.8	100	8	ACD79726	Acd79726 E. coli K
	29	156.5	15.7	621	8	ACA53970	Aca53970 Prokaryot
	30	156.5	15.7	621	8	ACA51728	Aca51728 Prokaryot
	31	156	15.7	663	9	ADA29490	Ada29490 DNA encod
	32	155.5	15.6	645	9	ADA30612	Ada30612 DNA encod
	33	155.5	15.6	714	11	ABD12000	Abd12000 Pseudomon
С	34	155.5	15.6	816	11	ABD11645	Abd11645 Pseudomon
	35	154	15.5	. 633	9	ADA31395	Ada31395 DNA encod
	36	153.5	15.4	636			Abd05572 Pseudomon
С	37	153.5	15.4	1071	11	ABD05828	Abd05828 Pseudomon
	38	153.5	15.4	2553	11		Abd05716 Pseudomon
	39	153	15.4	623	8	ACA48809	Aca48809 Prokaryot
	40	153	15.4	645	11	ACH96827	Ach96827 Klebsiell
	41 42	151.5 149.5	15.2	633	8	ACA23772	Aca23772 Prokaryot
	42	149.5	15.0 14.9	753 636	10 11	ADF00030 ACH96642	Adf00030 Bacterial Ach96642 Klebsiell
	43	148	14.9	669	9	ACH96642 ADA31058	Ada31058 DNA encod
	44	143.5	14.7	639	3	AAA52689	Add31036 DNA encod Aaa52689 Escherich
	43	143.3	14.4	039	J	MAMOZOOS	Mad32009 ESCHERICH

OM protein - nucleic search, using frame plus p2n model

Run on: January 3, 2005, 09:06:26; Search time 95 Seconds

(without alignments)

1458.988 Million cell updates/sec

Title: US-10-620-487-2

Perfect score: 996

Sequence: 1 VTPTLLSAFWTYTLITAMTP......RQLNIVLALLLVYCAVRIFY 195

Scoring table: BLOSUM62

Xgapop 10.0 , Xgapext 0.5 Ygapop 10.0 , Ygapext 0.5 Fgapop 6.0 , Fgapext 7.0 Delop 6.0 , Delext 7.0

Searched: 824507 segs, 355394441 residues

Total number of hits satisfying chosen parameters: 1649014

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Command line parameters:

-MODEL=frame+ p2n.model -DEV=xlh

Q=/cgn2_1/USPTO_spool/US10620487/runat_29122004_134450_9044/app_query.fasta_1.39

-DB=Issued Patents NA -QFMT=fastap -SUFFIX=rni -MINMATCH=0.1 -LOOPCL=0

-LOOPEXT=0 -UNITS=bits -START=1 -END=-1 -MATRIX=blosum62 -TRANS=human40.cdi

-LIST=45 -DOCALIGN=200 -THR SCORE=pct -THR MAX=100 -THR MIN=0 -ALIGN=15

-MODE=LOCAL -OUTFMT=pto -NORM=ext -HEAPSIZE=500 -MINLEN=0 -MAXLEN=2000000000

-USER=US10620487 @CGN 1 1 69 @runat 29122004 134450 9044 -NCPU=6 -ICPU=3

-NO MMAP -LARGEQUERY -NEG SCORES=0 -WAIT -DSPBLOCK=100 -LONGLOG

-DEV TIMEOUT=120 -WARN TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6

-FGAPEXT=7 -YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7

Database : Issued Patents NA:*

1: /cgn2 6/ptodata/1/ina/5A COMB.seq:*

2: /cgn2 6/ptodata/1/ina/5B COMB.seq:*

3: /cgn2_6/ptodata/1/ina/6A_COMB.seq:*

4: /cgn2 6/ptodata/1/ina/6B COMB.seq:*

5: /cgn2_6/ptodata/1/ina/PCTUS COMB.seq:*

6: /cgn2_6/ptodata/1/ina/backfiles1.seq:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

용 Result Query Match Length DB Description No. Score ______ 1 684 68.7 618 4 US-09-489-039A-5490 SCO Sequence 5490, Ap 2 272.5 27.4 750 US-09-252-991A-9146 Sequence 9146, Ap 3 260 26.1 372 4 US-09-489-039A-5497 Sequence 5497, Ap 4 250.5 25.2 636 4 US-09-489-039A-3271 Sequence 3271, Ap 5 232.5 23.3 639 4 US-09-543-681A-595 Sequence 595, App 6 228.5 22.9 636 US-09-543-681A-2536 Sequence 2536, Ap 7 191.5 19.2 US-09-328-352-2996 717 4 Sequence 2996, Ap 8 17.9 726 US-09-328-352-3033 Sequence 3033, Ap 178 4 9 173 17.4 816 4 US-09-252-991A-15884 Sequence 15884, A 10 163.5 16.4 708 4 US-09-328-352-4123 Sequence 4123, Ap 11 162 16.3 645 4 US-09-489-039A-895 Sequence 895, App 12 158.5 15.9 621 US-09-252-991A-2175 Sequence 2175, Ap 13 158.5 15.9 813 US-09-252-991A-1792 Sequence 1792, Ap 663 US-09-328-352-777 Sequence 777, App 14 156 15.7 4 15 155.5 15.6 645 4 US-09-328-352-1899 Sequence 1899, Ap Sequence 10604, A 16 155.5 15.6 714 4 US-09-252-991A-10604 17 155.5 15.6 816 4 US-09-252-991A-10249 Sequence 10249, A 18 154 15.5 633 4 US-09-328-352-2682 Sequence 2682, Ap US-09-252-991A-4176 Sequence 4176, Ap 19 153.5 15.4 636 1071 15.4 Sequence 4432, Ap 20 153.5 4 US-09-252-991A-4432 Sequence 4320, Ap 21 153.5 15.4 2553 4 US-09-252-991A-4320 22 153 15.4 645 4 US-09-489-039A-2622 Sequence 2622, Ap 23 149.5 15.0 753 4 US-09-543-681A-315 Sequence 315, App 24 14.9 636 US-09-489-039A-2437 Sequence 2437, Ap 148 25 146 14.7 669 US-09-328-352-2345 Sequence 2345, Ap 26 138.5 13.9 660 US-09-489-039A-560 Sequence 560, App 27 13.8 269223 US-09-596-002-41 Sequence 41, Appl 137 Sequence 15914, A 28 132 13.3 489 4 US-09-252-991A-15914 13.3 627 US-09-328-352-985 Sequence 985, App 29 132 4 128.5 12.9 687 4 US-09-543-681A-682 Sequence 682, App 30 31 128.5 12.9 723 4 US-09-328-352-3411 Sequence 3411, Ap 32 128.5 12.9 1200 3 US-09-396-357-1 Sequence 1, Appli 33 128 12.9 663 4 US-09-543-681A-373 Sequence 373, App 34 127 12.8 603 4 US-09-328-352-647 Sequence 647, App 35 125.5 Sequence 2569, Ap 12.6 645 4 US-09-328-352-2569 36 123.5 12.4 687 4 US-09-252-991A-7266 Sequence 7266, Ap 37 123.5 12.4 834 4 US-09-252-991A-6447 Sequence 6447, Ap 123.5 12.4 1521 US-09-252-991A-7437 Sequence 7437, Ap 38 39 123.5 12.4 2397 US-09-252-991A-7203 Sequence 7203, Ap 40 122.5 12.3 606 US-09-328-352-2283 Sequence 2283, Ap 12.1 930 US-09-252-991A-6103 Sequence 6103, Ap 41 121 4 Sequence 9421, Ap 42 115.5 11.6 .7834 US-09-252-991A-9421 43 1596 US-09-252-991A-9478 Sequence 9478, Ap 115.5 11.6 4 115.5 1650 4 US-09-252-991A-9352 Sequence 9352, Ap 44 11.6 С 750 4 45 112.5 11.3 US-09-328-352-1687 Sequence 1687, Ap

OM protein - nucleic search, using frame plus p2n model Run on: January 3, 2005, 09:05:27; Search time 531 Seconds (without alignments) 2074.218 Million cell updates/sec Title: US-10-620-487-2 Perfect score: 996 Sequence: 1 VTPTLLSAFWTYTLITAMTP......RQLNIVLALLLVYCAVRIFY 195 Scoring table: BLOSUM62 Xgapop 10.0 , Xgapext 0.5 Ygapop 10.0 , Ygapext 0.5 Fgapop 6.0 , Fgapext 7.0 6.0 , Delext Delop 7.0 Searched: 4176236 segs, 2824127955 residues Total number of hits satisfying chosen parameters: 8352472 Minimum DB seq length: 0 Maximum DB seq length: 2000000000 Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries Command line parameters: -MODEL=frame+ p2n.model -DEV=x1h Q=/cgn2 1/USPTO spool/US10620487/runat 29122004 134450 9020/app query.fasta 1.39 -DB=Published Applications NA -QFMT=fastap -SUFFIX=rnpb -MINMATCH=0.1 -LOOPCL=0 -LOOPEXT=0 -UNITS=bits -START=1 -END=-1 -MATRIX=blosum62 -TRANS=human40.cdi -LIST=45 -DOCALIGN=200 -THR SCORE=pct -THR MAX=100 -THR MIN=0 -ALIGN=15 -MODE=LOCAL -OUTFMT=pto -NORM=ext -HEAPSIZE=500 -MINLEN=0 -MAXLEN=2000000000 -USER=US10620487_@CGN_1_1_480_@runat_29122004_134450_9020 -NCPU=6 -ICPU=3 -NO MMAP -LARGEQUERY -NEG SCORES=0 -WAIT -DSPBLOCK=100 -LONGLOG -DEV TIMEOUT=120 -WARN TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6 -FGAPEXT=7 -YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7 Published Applications NA:* Database : 1: /cgn2 6/ptodata/2/pubpna/US07 PUBCOMB.seg:* /cgn2 6/ptodata/2/pubpna/PCT NEW PUB.seq:* /cgn2 6/ptodata/2/pubpna/US06 NEW PUB.seq:* /cgn2 6/ptodata/2/pubpna/US06 PUBCOMB.seq:* /cgn2 6/ptodata/2/pubpna/US07 NEW PUB.seq:* /cgn2 6/ptodata/2/pubpna/PCTUS PUBCOMB.seg:* /cgn2 6/ptodata/2/pubpna/US08 NEW PUB.seq:* 7: /cgn2 6/ptodata/2/pubpna/US08 PUBCOMB.seq:* 8: /cgn2 6/ptodata/2/pubpna/US09A PUBCOMB.seq:*

10: /cgn2 6/ptodata/2/pubpna/US09B PUBCOMB.seq:*

```
/cgn2 6/ptodata/2/pubpna/US09C PUBCOMB.seq:*
12:
    /cgn2_6/ptodata/2/pubpna/US09_NEW_PUB.seq:*
     /cgn2_6/ptodata/2/pubpna/US10A_PUBCOMB.seq:*
13:
14:
     /cgn2 6/ptodata/2/pubpna/US10B PUBCOMB.seq:*
    /cgn2 6/ptodata/2/pubpna/US10C PUBCOMB.seq:*
    /cgn2 6/ptodata/2/pubpna/US10D PUBCOMB.seq:*
16:
    /cgn2 6/ptodata/2/pubpna/US10E PUBCOMB.seq:*
17:
    /cgn2_6/ptodata/2/pubpna/US10_NEW_PUB.seq:*
19:
    /cgn2_6/ptodata/2/pubpna/US11_NEW_PUB.seq:*
20:
     /cgn2_6/ptodata/2/pubpna/US60_NEW_PUB.seq:*
     /cgn2_6/ptodata/2/pubpna/US60_PUBCOMB.seq:*
```

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

용

	٠,		ъ О				
	ult	Q	Query	T = = = + b = F	מס	10	Decemintion
	No.	Score	Match	Length [ID	Description
	1	996	100.0	750	16	US-10-620-487-1 App	Sequence 1, Appli
	2	236	23.7	573	9	US-09-974-300-434	Sequence 434, App
	3	161.5	16.2	618	16	US-10-282-122A-23973	Sequence 23973, A
	4	158.5	15.9	633	16	US-10-282-122A-31699	Sequence 31699, A
	5	157.5	15.8	618	16	US-10-282-122A-20027	Sequence 20027, A
	6	156.5	15.7	621	16	US-10-282-122A-39598	Sequence 39598, A
	7	156.5	15.7	621	16	US-10-282-122A-41840	Sequence 41840, A
	8	153	15.4	623	16	US-10-282-122A-36679	Sequence 36679, A
	9	151.5	15.2	633	16	US-10-282-122A-11642	Sequence 11642, A
	10	142	14.3	651	15		Sequence 3368, Ap
С	11	142	14.3		1!		Sequence 1, Appli
•	12	137.5	13.8	618	16	US-10-282-122A-40780	Sequence 40780, A
С	13	137		269223	16	US-10-672-787-41	Sequence 41, Appl
Ŭ	14	129.5	13.0	543		US-10-282-122A-8689	Sequence 8689, Ap
	15	128.5	12.9	1200	9	US-09-927-395-1	Sequence 1, Appli
	16	128.5	12.9	1200	9	US-09-847-392-1	Sequence 1, Appli
	17	123.5	12.4	630	16	US-10-282-122A-30630	Sequence 30630, A
	18	123		2731748	1		Sequence 1, Appli
	19	118.5	11.9	792	10	US-09-746-660A-13	Sequence 13, Appl
С	20	118.5		3309400	9		Sequence 1, Appli
Ŭ	21	117.5	11.8	630	16		Sequence 33154, A
	22	116.5	11.7	669	9	US-09-738-626-2570	Sequence 2570, Ap
	23	112	11.2	621	9	US-09-738-626-2918	Sequence 2918, Ap
С	24	112	11.2	85692	16	US-10-461-194-1	Sequence 1, Appli
c	25	111	11.1	86941	16	US-10-461-194-2	Sequence 2, Appli
·	26	110.5	11.1	615	15	US-10-156-761-3747	Sequence 3747, Ap
	27	109.5	11.0	627	16	US-10-282-122A-14918	Sequence 14918, A
	28	108		3309400	9	US-09-738-626-1	Sequence 1, Appli
	29	107.5	10.8	672	15	US-10-156-761-246	Sequence 246, App
С	30	106.5		2731748	1		Sequence 1, Appli
	31	104.5		1830121	1		Sequence 1, Appli
	32	104.5		1830121	1		Sequence 1, Appli
	33	104.5		1830121	1		Sequence 1, Appli
	34	104	10.4	678	9	US-09-738-626-165	Sequence 165, App
	35	98.5	9.9	417	15	US-10-287-274-274	Sequence 274, App
	36	98.5	9.9	417	16	US-10-282-122A-6496	Sequence 6496, Ap

	37	96	9.6	853	17	US-10-767-795-5271	Sequence 5271, Ap
	38	96	9.6	2847	17	US-10-437-963-58805	Sequence 58805, A
	39	95.5	9.6	1419	16	US-10-282-122A-25105	Sequence 25105, A
	40	95	9.5	1611	16	US-10-282-122A-31927	Sequence 31927, A
С	41	95	9.5	6357	18	US-10-859-149-2	Sequence 2, Appli
С	42	95	9.5	1163020	16	US-10-398-221-10	Sequence 10, Appl
С	43	95	9.5	3011208	16	US-10-398-221-2058	Sequence 2058, Ap
	44	94	9.4	1881	15	US-10-369-493-27537	Sequence 27537, A
	45	93.5	9.4	822	10	US-09-746-660A-51	Sequence 51, Appl

,

OM protein - protein search, using sw model

Run on: January 3, 2005, 08:48:36; Search time 24 Seconds

(without alignments)

781.761 Million cell updates/sec

Title: US-10-620-487-2

Perfect score: 996

Sequence: 1 VTPTLLSAFWTYTLITAMTP.....RQLNIVLALLLVYCAVRIFY 195

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 283416 seqs, 96216763 residues

Total number of hits satisfying chosen parameters: 283416

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

0

Maximum Match 100%

Listing first 45 summaries

Database : PIR_79:*

1: pir1:*

2: pir2:*

3: pir3:*

4: pir4:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Result No.	Score	Query Match	Length	DB	ID	Description
1 2 3 4 5 6 7 8 9 10 11 12 13	993 979 979 884 272.5 235.5 172 169 165.5 164 164 163 162.5	99.7 98.3 98.3 88.8 27.4 23.6 17.3 17.0 16.6 16.5 16.5	195 195 195 195 205 200 204 222 206 205 224 210 249	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A65036 SEO Blattner D91059 SEO Hayashi B85904 SEO Parkhul AF0830 SEO A10022 B82166 E87264 B91223 A12614 H97396 E87252 AG3485	hypothetical 21.2 hypothetical prote hypothetical prote probable membrane conserved hypothet probable ABC-trans conserved hypothet efflux protein, Ly homoserine/homoser RhtB family transp dihydrodipicolinat efflux protein, Ly homoserine/homoser

14	160.5	16.1	222	2	F82353
15	158.5	15.9	197	2	B83280
16	158.5	15.9	216	2	C55580
17	158	15.9	210	2	D84016
18	156.5	15.7	206	2	AF0917
19	156.5	15.7	206	2	AG0466
20	156.5	15.7	235	2	AD2904
21	156.5	15.7	235	2	F97679
22	155.5	15.6	209	2	E82388
23	155.5	15.6	216	2	F83051
24	154.5	15.5	207	2	D83187
25	153	15.4	212	2	H87498
26	143.5	14.4	212	2	F64940
27	143	14.4	212	2	AF2805
28	143	14.4	273	2	F97584
29	142.5	14.3	212	2	G85790
30	140.5	14.1	212	2	C90942
31	139	14.0	212	2	AD0714
32	137.5	13.8	205	2	G82358
33	135.5	13.6	278	2	E98301
34	134.5	13.5	210	2	AC2982
35	130	13.1	207	2	E83703
36	129	13.0	208	2	C82471
37	123.5	12.4	206	2	C82979
38	123.5	12.4	209	2	C82990
39	123	12.3	213	2	C82523
40	122.5	12.3	205	2	AH3641
41	122	12.2	206	2	C82139
42	122	12.2	216	2	A97675
43	120	12.0	208	2	G87305
44	119.5	12.0	204	2	B82410
45	119.5	12.0	208	2	G84086

conserved hypothet hypothetical prote hypothetical prote hypothetical prote homoserine/homoser probable homoserin RhtB family transp hypothetical prote conserved hypothet conserved hypothet hypothetical prote LysE family transl hypothetical prote homoserine/homoser hypothetical prote hypothetical prote hypothetical prote probable membrane conserved hypothet hypothetical prote RhtB family transp hypothetical prote conserved hypothet hypothetical prote hypothetical prote amino acid transpo transporter, lysE conserved hypothet amino acid effluxefflux protein, Ly conserved hypothet dihydrodipicolinat

OM protein - nucleic search, using frame plus p2n model Run on: January 3, 2005, 08:57:56; Search time 3043 Seconds (without alignments) 2335.113 Million cell updates/sec Title: US-10-620-487-2 Perfect score: 996 1 VTPTLLSAFWTYTLITAMTP......RQLNIVLALLLVYCAVRIFY 195 Sequence: Scoring table: BLOSUM62 Xgapop 10.0 , Xgapext 0.5 Ygapop 10.0 , Ygapext 0.5 Fgapop 6.0, Fgapext 7.0 6.0 , Delext Delop 7.0 32822875 segs, 18219865908 residues Searched: Total number of hits satisfying chosen parameters: 65645750 Minimum DB seq length: 0 Maximum DB seq length: 2000000000 Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries Command line parameters: -MODEL=frame+ p2n.model -DEV=xlh Q=/cgn2 1/USPTO spool/US10620487/runat 29122004 134449 9010/app query.fasta 1.39 -DB=EST -QFMT=fastap -SUFFIX=rst -MINMATCH=0.1 -LOOPCL=0 -LOOPEXT=0 -UNITS=bits -START=1 -END=-1 -MATRIX=blosum62 -TRANS=human40.cdi -LIST=45 -DOCALIGN=200 -THR SCORE=pct -THR MAX=100 -THR MIN=0 -ALIGN=15 -MODE=LOCAL -OUTFMT=pto -NORM=ext -HEAPSIZE=500 -MINLEN=0 -MAXLEN=2000000000 -USER=US10620487_@CGN_1_1_3437_@runat_29122004_134449_9010 -NCPU=6 -ICPU=3 -NO MMAP -LARGEQUERY -NEG SCORES=0 -WAIT -DSPBLOCK=100 -LONGLOG -DEV TIMEOUT=120 -WARN TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6 -FGAPEXT=7 -YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7 Database : EST:* 1: gb est1:* 2: gb_est2:* 3: gb_htc:* 4: gb_est3:* 5: gb est4:* 6: qb est5:* 7: gb est6:*

8: gb_gss1:*
9: gb_gss2:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

						SUMMAI	RIES			
			8							
Res	ult		Query					•		
	No.	Score		Length	DB	ID			Descript	Lon
С	1	617	61.9	681	6	CA366654	550	trait,	CA366654	642278 NC
_	2		50.3	856	9	CL650636	टहरू	remascor		PRI0110a
	3	464	46.6	791	9	CL688782	11	11		PRIO110a_
					_			1.		
	4	451	45.3	736	9	CL688905	11	Brassica		PRI014d_C
С	5	311.5	31.3	819	8	BH447440	SEQ	pressing		BOHQB49TF
С	6	219.5	22.0	862	9	CL666889				PRI0153c_
	7	217	21.8	420	8	BH374397			BH374397	AG-ND-180
С	8	202.5	20.3	1233	8	BZ579504			BZ579504	msh2 6385
	9	200	20.1	450	8	BH379453			BH379453	AG-ND-163
С	10	199	20.0	118	6	CA374430			CA374430	648800 NC
С	11	198.5	19.9	511	6	CD093163				MC1-0105T
С	12	165.5	16.6	665	9	AG613339				Escherich
_	13	165.5	16.6	818	9	CL669909				PRI0160c
С	14	162.5	16.3	863	9	CL689879				PRI0152b
c	15	149	15.0	784	8	BZ577923				msh2 5638
С	16	137.5	13.8	1018	8	BZ577925				
C	17	121.5	12.2	770						pacs2-164
					8	BZ573390				msh2_3082
	18	120	12.0	237	2	AW802587				IL5-UM007
	19	115.5	11.6	443	4	BG038404				dg34h08.y
С	20	111.5	11.2	798	9	CNS01QYA				Anopheles
С	21	110.5	11.1	407	8	AZ576789				01a12 Sho
	22	110.5	11.1	428	2	BF614897				dg18a02.y
С	23	109	10.9	829	8	BZ549776				pacs1-60_
С	24	108	10.8	1014	8	BZ558389				pacs1-60_
С	25	106	10.6	799	7	CN823350			CN823350	Oa_splbn_
С	26	105	10.5	1244	2	BF981306				602308552
	27	101.5	10.2	881	8	BZ549402			BZ549402	pacs1-60
	28	101	10.1	1239	8	BZ555841			BZ555841	pacs1-60
	29	101	10.1	1932	9	CG756745			CG756745	P051-4-F0
С	30	100	10.0	1299	2	BE966761			BE966761	601661261
С	31	99.5	10.0	. 774	5	BU961093			BU961093	AGENCOURT
С	32	99.5	10.0	1012	9	CL119129			CL119129	ISB1-75N6
С	33	99.5	10.0	1068	9	AG078894			AG078894	Pan trogl
	34	99	9.9	614	7	CO536048				tai10f08.
	35	98	9.8	562	8	AQ365906				nbxb0064N
С	36	98	9.8	1151	2	BF037237				601460948
С	37	97	9.7	1112	4	BI763871				603049636
С	38	97	9.7	1690	2	BF128393				601810283
c	39	97	9.7	1823	4	BG253780				602366662
c	40	95.5	9.6	621	8	AZ452242				1M0252D04
•	41	95.5	9.6	641	7	CN222730				RJA088F06
С	42	95.5	9.6	649	8	AZ649701				1M0519P23
C	43	95.5	9.6	1623	2	BF131641				601820464
c	44	95.5	9.5	1745	9	CL512730				SAIL 866
С	45	94.5	9.5	723	4	BJ502772				
C	4 J	24.3	9.3	123	4	DUJUZIIZ			BU3UZ11Z	BJ502772

OM protein - protein search, using sw model

Run on: January 3, 2005, 07:58:40 ; Search time 106 Seconds

(without alignments)

1058.472 Million cell updates/sec

Title: US-10-620-487-2

Perfect score: 996

Sequence: 1 VTPTLLSAFWTYTLITAMTP......RQLNIVLALLLVYCAVRIFY 195

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 1825181 seqs, 575374646 residues

Total number of hits satisfying chosen parameters: 1825181

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

ક્ર

Maximum Match 100%

Listing first 45 summaries

Database: UniProt 02:*

1: uniprot_sprot:*
2: uniprot trembl:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Result No.	Score	Query Match	Length	DB		Description
No. 1 2 3 4 5 6 7 8 9 10 11	Score 993 989 987 987 979 979 884 884 367.5 311.5	Match 99.7 99.3 99.1 98.3 98.3 88.8 88.8 36.9 31.3 31.3	195 195 195 195	DB 1 2 2 2 2 2 2 2 2 2 2 2 2 2	YFIK_ECOLI 1994 SED Q8FF11 Q7C0E0 Q83K22 Q7ABJ3 Q8XA19 Q8Z4J7 Q8ZMX5 Q7P2H4 Q6HIR1 Q81QH8	P38101 escherichia Q8ff11 escherichia Q7c0e0 shigella fl Q8ask22 shigella fl Q7abj3 escherichia Q8xa19 escherichia Q8z4j7 salmonella Q8zmx5 salmonella Q7p2h4 fusobacteri Q6hir1 bacillus th Q81qh8 bacillus an
12 13 14 15	311.5 310.5 310.5 310.5 303.5	31.3 31.2 31.2 30.5	194 194 194 194	2 2 2 2	AAT31562 Q738B5 AAS41397 Q81DI7	Aat31562 bacillus Q738b5 bacillus ce Aas41397 bacillus Q81di7 bacillus ce

16	277.5	27.9	198	2	082971	002071 hanillun an
17				2		082971 bacillus sp
	272.5	27.4	205	_	Q9I1G9	Q9i1g9 pseudomonas
18	262.5	26.4	209	2	Q88HF4	Q88hf4 pseudomonas
19	258.5	26.0	202	2	Q87ZH7	Q87zh7 pseudomonas
20	256	25.7	202	2	Q7N9E0	Q7n9e0 photorhabdu
21	244	24.5	204	2	Q6LKF4	Q61kf4 photobacter
22	244	24.5	204	2	CAG22196	Cag22196 photobact
23	237.5	23.8	200	2	Q6CZU2	Q6czu2 erwinia car
24	236	23.7	219	2	Q7W450	Q7w450 bordetella
25	236	23.7	219	2	Q7WFK7	Q7wfk7 bordetella
26	235.5	23.6	197	2	Q92NSO	Q92ns0 rhizobium m
27	235.5	23.6	200	2	Q8ZJD2	Q8zjd2 yersinia pe
28	234.5	23.5	192	2	Q8CK91	Q8ck91 yersinia pe
29	234.5	23.5	192	2	AAS60457	Aas60457 yersinia
30	232.5	23.3	202	2	Q89G49	Q89g49 bradyrhizob
31	232	23.3	219	2	Q7VSL5	Q7vsl5 bordetella
32	231	23.2	196	2	Q7QMF4	Q7qmf4 anopheles g
33	222.5	22.3	197	2	Q8EG90	Q8eg90 shewanella
34	221	22.2	193	2	Q88HC2	Q88hc2 pseudomonas
35	215.5	21.6	199	2	Q8D574	Q8d574 vibrio vuln
36	214.5	21.5	188	2	Q882W8	Q882w8 pseudomonas
37	213.5	21.4	198	2	Q98KK8	Q98kk8 rhizobium l
38	211.5	21.2	200	2	Q6LVD7	Q6lvd7 photobacter
39	211.5	21.2	200	2	CAG18738	Cag18738 photobact
40	211.5	21.2	206	2	Q7NWS8	Q7nws8 chromobacte
41	206.5	20.7	208	2	Q7NWP5	Q7nwp5 chromobacte
42	206	20.7	195	2	Q7MG87	Q7mg87 vibrio vuln
43	204.5	20.5	248	2	Q7WDP6	Q7wdp6 bordetella
44	202	20.3	195	2	Q8D4N7	Q8d4n7 vibrio vuln
45	199.5	20.0	208	2	Q7W2P8	Q7w2p8 bordetella

.

. . .

. .