Ashwin Balakrishna

Email: abalakrishna@gmail.com, Website, Google Scholar

BACKGROUND I am excited about data-driven decision making, especially for robotic control. I am currently a Research Scientist at Toyota Research Institute working on building foundation models for general purpose robotic manipulation. I am particularly interested in bridging vision and language foundation models with paradigms for robot learning from experience such as imitation and reinforcement learning.

WORK
EXPERIENCE

Toyota Research Institute, Research Scientist	Aug 2023 - Present
Large Behavior Model Team	
Nuro, Senior Research Scientist	Aug 2022 - Aug 2023
Machine Learning Research Team	
Toyota Research Institute, Research Intern	Sep - Dec 2021
Machine Learning Research Team	
SpaceX, Software Engineering Intern (Avionics)	Jun - Sep 2017
Power Electronics Software Team	
Intel, Hardware Engineering Intern	Jun - Sep 2016

EDUCATION

UC Berkeley, Berkeley, CA Aug 2018 - May 2022 Ph.D. in Computer Science GPA: 3.97/4.00

Thesis: Scalable Supervision for Safe and Efficient Online Robot Learning

Power Electronics Hardware Team

California Institute of Technology, Pasadena, CA Sep 2014 - Jun 2018 Bachelor of Science in Electrical Engineering GPA: 3.97/4.00

SELECTED

Alexander Khazatsky, Karl Pertsch, Suraj Nair, **Ashwin Balakrishna**, et al. DROID: PUBLICATIONS A Large-Scale In-The-Wild Robot Manipulation Dataset. Preprint 2024.

> Siddharth Karamcheti, Suraj Nair, Ashwin Balakrishna, Percy Liang, Thomas Kollar, and Dorsa Sadigh. Prismatic VLMs: Investigating the Design Space of Visually-Conditioned Language Models. Preprint 2024.

> Albert Wilcox, Ashwin Balakrishna, Jules Dedieu, Wyame Benslimane, Daniel S. Brown, Ken Goldberg. Monte Carlo Augmented Actor-Critic for Sparse Reward Deep Reinforcement Learning from Suboptimal Demonstrations. Conference on Neural Information Processing Systems (NeurIPS) 2022.

> Brijen Thananjeyan*, Ashwin Balakrishna*, Suraj Nair, Michael Luo, Krishnan Srinivasan, Minho Hwang, Joseph E. Gonzalez, Julian Ibarz, Chelsea Finn, Ken Goldberg. Recovery RL: Safe Reinforcement Learning with Learned Recovery Zones. Robotics and Automation Letters (RA-L) and International Conference on Robotics and Automation (ICRA) 2021.

AWARDS & **HONORS**

Qualcomm Innovation Fellowship Finalist	2021
Timothy B. Campbell Innovation Award (Berkeley EECS)	2020-2021
Apple AI/ML PhD Fellowship Nomination (Berkeley EECS)	2020
National Science Foundation Graduate Research Fellowship	2018-2021