EECS 376: Foundations of Computer Science

Chris Peikert 29 March 2023

Agenda

- * More randomness in computation: fast algos/DSs
- * Randomized QuickSort
- * Skip Lists
- * Verifying Matrix Multiplication (if time)

QuickSort

- * Recursively sorts an array of numbers
- * Q: What's the <u>worst-case</u> runtime of QuickSort? (e.g., if we always choose the first element as pivot)

QuickSort(A[1...n]):

- 1. $p \leftarrow \text{pick a "pivot" element from } A$
- 2. $(L, R) \leftarrow Partition(A, p)$ // compare elems to p
- 3. QuickSort(L) and QuickSort(R)

(P)	6	9	4	3	8	7	2	5
1	6	9	4	3	8	7	2	5

From EECS 281 on quicksort: Time Analysis

- Cost of partitioning N elements: O(N)
- Worst case: pivot always leaves one side empty

```
- T(N) = N + T(N - 1) + T(0)
- T(N) = N + T(N - 1) + C [since T(0) is O(1)]
```

- $-T(N) \sim N^2/2 \Rightarrow O(N^2)$ [via substitution]
- Best case: pivot divides elements equally

```
-T(N) = N + T(N/2) + T(N/2)
```

- -T(N) = N + 2T(N/2) = N + 2(N/2) + 4(N/4) + ... + O(1)
- $-T(N) \sim N \log N \Rightarrow O(N \log N)$ [master theorem or substitution]
- Average case: tricky ← We have the background for this now!
 - Between 2N log N and ~ 1.39 N log N ⇒ O(N log N)

Randomized QuickSort

- * What if we choose a <u>random</u> pivot?
- * Let X be the number of <u>comparisons</u> made in QuickSort on A[1...n] (note: X is a <u>random variable</u>).

Theorem: $\mathbb{E}[X] = O(n \log n)$ (<u>expected</u> runtime of randomized **QuickSort**)

RQuickSort(A[1...n]):

- 1. $p \leftarrow a \underline{random}$ "pivot" from A
- 2. $(L, R) \leftarrow Partition(A, p)$ // compare elems to p
- 3. RQuickSort(L) and RQuickSort(R)

RQuicksort Example

A Different Perspective

Computing $\mathbb{E}[X]$

Let r.v. X be the number of $\underline{comparisons}$ made in $\mathbf{RQuickSort}$ (A[1...n])

RQuickSort(A[1...n]):

- 1. $p \leftarrow \underline{random}$ "pivot" element
- 2. $(L, R) \leftarrow Partition(A, p)$ // compare elems to p
- 3. RQuickSort(L) and RQuickSort(R)
- * W.l.o.g., A[1...n] is a permutation of $\{1,2,...,n\}$.
- * For i < j, let $X_{ij} \in \{0,1\}$ be the *indicator R.V.* for whether elements i and j were compared.

* Claim:
$$X = \sum_{i=1}^{n} \sum_{j=i+1}^{n} X_{ij}$$
 (pair i, j compared at most once)

$$\mathbb{E}[X] = \sum_{i=1}^{n} \sum_{j=i+1}^{n} \mathbb{E}[X_{ij}] = \sum_{i=1}^{n} \sum_{j=i+1}^{n} \Pr[i \text{ and } j \text{ were compared}]$$

Model: A Dart Game

- * Let $1 \le i < j \le n$. Throw darts at $\{1, ..., n\}$:
 - * If k < i hit, <u>remove</u> all elements $\leq k$ and repeat.
 - * If k > j hit, <u>remove</u> all elements $\geq k$ and repeat.
 - * If $k \in \{i, i+1,...,j\}$ hit, the game ends.
- * Q: What's Pr we hit i or j when the game ends?

When Are *i* and *j* Compared?

```
RQuickSort(A[1...n]):
```

- 1. $p \leftarrow \underline{random}$ "pivot" element
- 2. $(L, R) \leftarrow Partition(A, p)$ // compare elems to p
- 3. RQuickSort(L) and RQuickSort(R)
- * When i,j in the same subarray <u>and</u> i or j chosen as pivot
- * \iff Dart game ends with i or j being hit

RQuickSort (i=4,j=8)

Note: i and j compared only <u>once</u>

Dart game

When Aren't i and j Compared?

RQuickSort(A[1...n]):

- 1. $p \leftarrow \underline{random}$ "pivot" element
- 2. $(L, R) \leftarrow Partition(A, p)$ // compare elems to p
- 3. RQuickSort(L) and RQuickSort(R)
- * When i < k < j in same subarray <u>and</u> k chosen as pivot
- * \iff Dart game ends with i or j <u>not</u> being hit

RQuickSort

Dart game

Note: *i* and *j* <u>never</u> compared

Putting It All Together

Let r.v. X be the number of $\underline{comparisons}$ made in $\mathbf{RQuickSort}$ (A[1...n])

Let $X_{ij} \in \{0,1\}$ be the *indicator R.V.* for whether elements i and j were compared.

* Conclusion: i and j were compared if and only if dart game ends with i or j being hit. Therefore:

$$\Pr[i \text{ and } j \text{ were compared}] = 2/(j-i+1)$$

$$\mathbb{E}[X] = \sum_{i=1}^{n} \sum_{j=i+1}^{n} \mathbb{E}[X_{ij}]$$

$$= \sum_{i=1}^{n} \sum_{j=i+1}^{n} \Pr[i \text{ and } j \text{ were compared}]$$

$$= \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \leq 2n \ln n = O(n \log n)$$

Skip Lists (Randomized Sets/Dictionaries)

- * **Definition:** *set/dictionary* a data structure that supports *insert*, *find* and *delete* of elements from an (ordered) universe
- * Simple implementations: linked list, array
- * Better implementations: balanced binary search trees (AVL, red-black, etc.)
 - * $O(\log n)$ time per operation in the worst case.
 - * Complicated to implement, especially "delete".
- * Idea: Use <u>randomness</u> to get balance. But <u>don't</u> maintain invariants that <u>guarantee</u> balance!

2-level Linked List

- * Consider a linked list, but with an "express lane".
 - * What is the worst-case number of comparisons for the example below, without express lane?
 - * If there were \sqrt{n} "well distributed" elements in the express lane, what would the search time be?
 - * Insert time?
 - * What is the (extra) memory size of the express lane?

2-level Linked List

- * Which elements go in the express lane?
 - * Would be nice to *guarantee* balance, but random selection might work "well enough."
 - * With what probability should we include an element in the express lane?

Idea: More Express Lanes

- * Must put every element in the "slowest" lane.
 - * Put about ½ of them in the 2nd lane
 - * Put about ½ of those in the 3rd lane, etc.
 - * How to build it?
 - * How to add an element? How to delete?

Skip Lists

- * A skip list consists of several levels.
- * The first level is a linked list that contains all the elements.
- * Each level contains random ~half of the elements from the level below.
- * Each inserted element x is replicated by coin flipping:
 - * "heads" -> replicate x to the next level and flip the coin again
 - * "tails"-> done

- * Question 1: After inserting elements $x_1, ..., x_n$, how many are on level i?
 - * $n_i = \text{number of elements on level } i$ $n_1 = n$ (lowest level contains all the elements)
 - * Define X_{ij} indicator variable for event " x_j is on level i".

$$\mathbb{E}[n_i] = \mathbb{E}[X_{i1} + \dots + X_{in}]$$

$$= \sum_{j} \mathbb{E}[X_{ij}] \qquad \text{(linearity of expectation)}$$

$$= \sum_{j} 1/2^{i-1} \qquad \text{(had to flip } \geq i-1 \text{ heads to reach level } i)}$$

$$= n/2^{i-1}$$

- * Question 2: How many levels for a list of *n* elements?
 - * We keep only levels containing at least one element; expect at least $\log n$ (base 2) levels.
 - * What is the probability that we need at least k additional levels?

$$\Pr\left[n_{\log n+k} \ge 1\right] \le \frac{\mathbb{E}\left[n_{\log n+k}\right]}{1}$$

$$= \frac{n}{2^{\log n+k-1}} = \frac{n}{n2^{k-1}} = \frac{1}{2^{k-1}}$$
(Markov's inequality)

- * How many levels do we need *in expectation*?
 - * Define Z_k as an indicator for the event that $n_{\log n+k} \geq 1$.
 - * Expected number of levels is at most $\log n + \mathbb{E}[Z_1] + \mathbb{E}[Z_2] + \mathbb{E}[Z_3] + \dots = O(\log n)$

- * Question 3: How many nodes does a search touch on level i?
 - * Suppose we are searching for y. Let w be the largest element on level i that is < y, and let z be the smallest element that is $\ge y$.
 - * The search encounters both w and z. How many elements before w does it touch?
 - * Let x_1, x_2, \dots be the elements on level i that are < w.

- * Question 3: How many nodes does a search touch on level i?
 - * Let Z_j = indicator r.v. for the event that x_j is touched on level i.
 - * Let Y = total number of elements touched on level i.

* = 2 +
$$\sum_{j \ge 1} \Pr[x_j \text{ touched}]$$
 = 2 + $\sum_{j \ge 1} 1/2^j \le 3$

$$Pr[x_3 \text{ touched}] = 1/8 \qquad Pr[x_1 \text{ touched}] = 1/2$$

$$Pr[x_2 \text{ touched}] = 1/4$$

Bonus: Verifying Matrix Mult

Goal: Given n-by-n matrices A, B, C, check whether AB = C.

Trivial: Compute AB, check if AB = C. Naïve matrix-mult time: $O(n^3)$.

Using randomization, can do it in $O(n^2)$ time! Algorithm:

- * Choose a uniformly random vector r with each entry 0 or 1.
- * Check if A(Br) = Cr.

Running time: $O(n^2)$. (Compute v = Br, then Av.)

Correctness: If AB = C, we accept with certainty.

Claim: If $AB \neq C$, then $\Pr[\text{accept}] \leq 1/2$. (Repeat to reduce!)

Proof of Claim

Claim: If $AB \neq C$, then $Pr[ABr = Cr] \leq 1/2$.

Proof: Let $D = AB - C \neq 0$. (D does not have all-zero entries.) We want to show that $\Pr[Dr \neq \mathbf{0}] \geq 1/2$.

Suppose (wlog) that column $D_1 \neq \mathbf{0}$. Fix any choice of the entries $r_2, ..., r_n$ (so only random r_1 remains).

$$Dr = r_1 D_1 + r_2 D_2 + \dots + r_n D_n.$$
fixed z

Conclusion: Dr cannot be **0** for both $r_1 = 0$ and $r_1 = 1$. QED.

