Cyclistic Case Study 2021 All Trips

Hezar K

2022-11-29

This analysis is for Cyclistic Case Study for Google Data Analytics Course. This is an analysis for the year of 2021.

STEP ONE: INSTALL REQUIRED PACKAGES AND IMPORT DATA

Install the required packages. **Tidyverse** package to import and wrangling the data and **ggplot2** package for visualization of the data. **Lubridate** package for date parsing and **anytime** package for the datetime conversion.

- install.packages("tidyverse")
- install.packages("ggplot2")
- install.packages("lubridate")
- install.packages("anytime")

```
library(tidyverse)
library(lubridate)
library(data.table)
library(ggplot2)
library(anytime)
```

Import data from local drive.

```
Jan21 <- read_csv("202101-divvy-tripdata.csv")

Feb21 <- read_csv("202102-divvy-tripdata.csv")

Mar21 <- read_csv("202103-divvy-tripdata.csv")

Apr21 <- read_csv("202104-divvy-tripdata.csv")

May21 <- read_csv("202105-divvy-tripdata.csv")

Jun21 <- read_csv("202106-divvy-tripdata.csv")

Jul21 <- read_csv("202107-divvy-tripdata.csv")

Aug21 <- read_csv("202108-divvy-tripdata.csv")

Sep21 <- read_csv("202109-divvy-tripdata.csv")

Oct21 <- read_csv("202110-divvy-tripdata.csv")

Nov21 <- read_csv("202111-divvy-tripdata.csv")

Dec21 <- read_csv("202112-divvy-tripdata.csv")
```

STEP TWO: EXAMINE THE DATA

Examine the dataframe for an overview of the data. Review column names, **colnames()**. Then, we need to combine all data one dataframe. Then we examine dataframes to find dimensions, **dim()**, the first, **head()**, and the last, **tail()**, six rows in the dataframe, the summary, **summary()**, statistics on the columns of the dataframe, and review the data type structure of columns, **str()**. (To reduce cuttler I have removed colnames output from Feb21-Dec21, because all tables have the same column names.

```
colnames(Jan21)
##
  [1] "ride id"
                               "rideable type"
                                                     "started at"
   [4] "ended at"
##
                               "start station name" "start station id"
   [7] "end station name"
                                                     "start lat"
##
                               "end station id"
## [10] "start lng"
                               "end lat"
                                                     "end lng"
## [13] "member casual"
colnames (Feb21)
colnames (Mar21)
colnames (Apr21)
colnames (May21)
colnames (Jun21)
colnames (Jul21)
colnames (Aug21)
colnames (Sep21)
colnames (Oct21)
colnames (Nov21)
colnames (Dec21)
```

Since all column names are the same. We can combine the data into one dataframe.

```
all_trips <- bind_rows(Jan21, Feb21, Mar21, Apr21, May21, Jun21, Jul21,
Aug21, Sep21, Oct21, Nov21, Dec21)</pre>
```

```
View(all_trips)
```

```
nrow(all_trips)
## [1] 5595063
```

```
dim(all_trips)
## [1] 5595063 13
```

```
head(all trips)
## # A tibble: 6 × 13
    ride id ridea...¹ start...² ended...³ start...⁴ start...⁵ end s...<sup>6</sup> end s...
start...8
##
     <chr>
                                 <chr>
                                         <chr>
                                                    <chr>
                                                              <chr>
                       <chr>
                                                                      <chr>
                                                                                 <chr>
<dbl>
## 1 E19E6F1B8D4C4... electr... 1/23/2... 1/23/2... Califo... 17660
                                                                      <NA>
                                                                                 <NA>
## 2 DC88F20C2C55F... electr... 1/27/2... 1/27/2... Califo... 17660
                                                                      <NA>
                                                                                 <NA>
## 3 EC45C94683FE3... electr... 1/21/2... 1/21/2... Califo... 17660
                                                                       <NA>
                                                                                 <NA>
## 4 4FA453A75AE37... electr... 1/7/20... 1/7/20... Califo... 17660
                                                                      <NA>
                                                                                 <NA>
41.9
## 5 BE5E8EB4E7263... electr... 1/23/2... 1/23/2... Califo... 17660
                                                                      <NA>
                                                                                 <NA>
41.9
## 6 5D8969F88C773... electr... 1/9/20... 1/9/20... Califo... 17660
                                                                      <NA>
                                                                                 <NA>
41.9
## # ... with 4 more variables: start lng <dbl>, end lat <dbl>, end lng <dbl>,
        member casual <chr>, and abbreviated variable names ¹rideable type,
      <sup>2</sup>started at, <sup>3</sup>ended at, <sup>4</sup>start station name, <sup>5</sup>start station id,
## #
        <sup>6</sup>end station name, <sup>7</sup>end station id, <sup>8</sup>start lat
## #
```

```
tail(all trips)
## # A tibble: 6 × 13
                  ridea...¹ start...² ended...³ start...⁴ start...⁵ end s...⁶ end s...
## ride id
start...8
    <chr>
##
                      <chr>
                               <chr>
                                        <chr>
                                                <chr>
                                                         <chr>
                                                                 <chr>
                                                                           <chr>
<dbl>
## 1 92BBAB97D1683... electr... 12/24/... 12/24/... Canal ... 13341
                                                                 <NA>
                                                                           <NA>
41.9
## 2 847431F3D5353... electr... 12/12/... 12/12/... Canal ... 13341
                                                                <NA>
                                                                           <NA>
41.9
## 3 CF407BBC3B9FA... electr... 12/6/2... 12/6/2... Canal ... 13341
                                                                 Kingsb... KA1503...
## 4 60BB69EBF5440... electr... 12/2/2... 12/2/2... Canal ... 13341 Dearbo... TA1305...
41.9
## 5 C414F654A2863... electr... 12/13/... 12/13/... Lawnda... 362
                                                                           <NA>
                                                                 <NA>
41.9
```

```
## 6 37AC57E34B2E7... classi... 12/13/... 12/13/... Michig... TA1309... Dearbo... TA1305...
41.9

## # ... with 4 more variables: start_lng <dbl>, end_lat <dbl>, end_lng <dbl>,

## # member_casual <chr>, and abbreviated variable names ¹rideable_type,

## # 2 started_at, ³ended_at, ⁴start_station_name, ⁵start_station_id,

## # 6 end_station_name, 7 end_station_id, 8 start_lat
```

```
summary(all trips)
     ride id
                   rideable type started at
                                                    ended at
##
  Length: 5595063 Length: 5595063 Length: 5595063 Length: 5595063
## Class:character Class:character Class:character Class:character
## Mode :character Mode :character Mode :character Mode :character
##
  start station name start station id
                                  end station name
                                                   end station id
##
##
  Length: 5595063 Length: 5595063
                                  Length: 5595063
                                                  Length:5595063
## Class:character Class:character Class:character Class:character
  Mode :character Mode :character Mode :character Mode :character
##
##
   start lat
                 start lng
                               end lat
                                             end lng
  Min. :41.64 Min. :-87.84
                              Min. :41.39
                                            Min. :-88.97
##
  1st Qu.:-87.66
##
## Median :41.90 Median :-87.64 Median :41.90
                                            Median :-87.64
## Mean :41.90 Mean :-87.65 Mean :41.90
                                            Mean :-87.65
  3rd Qu.:41.93 3rd Qu.:-87.63 3rd Qu.:41.93 3rd Qu.:-87.63
  Max. :42.07 Max. :-87.52 Max. :42.17 Max. :-87.49
##
                              NA's :4771 NA's :4771
##
  member casual
##
## Length:5595063
## Class :character
## Mode :character
##
```

```
str(all_trips)
## spc_tbl_ [5,595,063 × 13] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
```

```
## $ ride id
                       : chr [1:5595063] "E19E6F1B8D4C42ED"
"DC88F20C2C55F27F" "EC45C94683FE3F27" "4FA453A75AE377DB" ...
## $ rideable type
                       : chr [1:5595063] "electric bike" "electric bike"
"electric bike" "electric bike" ...
                        : chr [1:5595063] "1/23/2021 16:14" "1/27/2021 18:43"
## $ started at
"1/21/2021 22:35" "1/7/2021 13:31" ...
## $ ended at
                       : chr [1:5595063] "1/23/2021 16:24" "1/27/2021 18:47"
"1/21/2021 \overline{2}2:37" "1/7/2021 13:42" ...
## $ start station name: chr [1:5595063] "California Ave & Cortez St"
"California Ave & Cortez St" "California Ave & Cortez St" "California Ave &
Cortez St" ...
   $ start station id : chr [1:5595063] "17660" "17660" "17660" "17660" ...
   $ end station name : chr [1:5595063] NA NA NA NA ...
##
   $ end station id
                       : chr [1:5595063] NA NA NA NA ...
                        : num [1:5595063] 41.9 41.9 41.9 41.9 ...
##
   $ start lat
                        : num [1:5595063] -87.7 -87.7 -87.7 -87.7 -87.7 ...
   $ start lng
##
                        : num [1:5595063] 41.9 41.9 41.9 41.9 ...
##
   $ end lat
##
   $ end lng
                        : num [1:5595063] -87.7 -87.7 -87.7 -87.7 -87.7 ...
   $ member casual
                       : chr [1:5595063] "member" "member" "member" "member"
##
. . .
   - attr(*, "spec")=
##
##
     .. cols(
          ride id = col character(),
##
##
          rideable type = col character(),
##
          started at = col character(),
##
          ended at = col character(),
##
          start station name = col character(),
##
          start station id = col character(),
##
          end station name = col character(),
          end station id = col character(),
##
          start lat = col double(),
##
     . .
##
          start lng = col double(),
          end lat = col double(),
##
          end lng = col double(),
##
##
          member casual = col character()
##
     ..)
## - attr(*, "problems") = <externalptr>
```

Columns *started_at* and *ended_at* need to be converted from character data type to date data type. **Str()** syntax confirms changes.

```
all trips$started at <- mdy hm(all trips$started at)
all trips$ended at <- mdy hm(all trips$ended at)</pre>
str(all trips)
\#\# spc tbl [5,595,063 × 13] (S3: spec tbl_df/tbl_df/tbl/data.frame)
                        : chr [1:5595063] "E19E6F1B8D4C42ED"
"DC88F20C2C55F27F" "EC45C94683FE3F27" "4FA453A75AE377DB" ...
## $ rideable type
                      : chr [1:5595063] "electric bike" "electric bike"
"electric bike" "electric bike" ...
                       : POSIXct[1:5595063], format: "2021-01-23 16:14:00"
   $ started at
"2021-01-27 18:43:00" ...
## $ ended at
                       : POSIXct[1:5595063], format: "2021-01-23 16:24:00"
"2021-01-27 18:47:00" ...
   $ start station name: chr [1:5595063] "California Ave & Cortez St"
"California Ave & Cortez St" "California Ave & Cortez St" "California Ave &
Cortez St" ...
   $ start station id : chr [1:5595063] "17660" "17660" "17660" "17660" ...
   $ end station name : chr [1:5595063] NA NA NA NA ...
##
   $ end station id
                       : chr [1:5595063] NA NA NA NA ...
   $ start lat
                       : num [1:5595063] 41.9 41.9 41.9 41.9 ...
   $ start lng
                       : num [1:5595063] -87.7 -87.7 -87.7 -87.7 ...
                       : num [1:5595063] 41.9 41.9 41.9 41.9 ...
##
   $ end lat
   $ end lng
                       : num [1:5595063] -87.7 -87.7 -87.7 -87.7 ...
##
   $ member casual
                      : chr [1:5595063] "member" "member" "member" "member"
##
. . .
   - attr(*, "spec")=
##
     .. cols(
##
         ride id = col character(),
##
##
         rideable type = col character(),
##
         started at = col character(),
##
         ended at = col character(),
##
         start station name = col character(),
          start station id = col character(),
##
         end station name = col character(),
##
##
         end station id = col character(),
##
         start lat = col double(),
         start lng = col double(),
##
```

```
## .. end_lat = col_double(),
## .. end_lng = col_double(),
## .. member_casual = col_character()
## ..)
## - attr(*, "problems") = < externalptr>
```

Create new columns as for date, month, day, year, day_of_week, and ride_length in seconds.

```
all_trips$date <- as.Date(all_trips$started_at)
all_trips$month <- format(as.Date(all_trips$date), "%m")
all_trips$day <- format(as.Date(all_trips$date), "%d")
all_trips$year <- format(as.Date(all_trips$date), "%Y")
all_trips$day_of_week <- format(as.Date(all_trips$date), "%A")
all_trips$ride_length <- difftime(all_trips$ended_at,all_trips$started_at)</pre>
```

Convert *ride_length* column to numeric in order to run calculations on the data. First, check to see if the data type is numeric, and then convert if needed.

```
is.numeric(all_trips$ride_length)
## [1] FALSE
```

Recheck ride_length data type.

```
all_trips$ride_length <- as.numeric(as.character(all_trips$ride_length))
is.numeric(all_trips$ride_length)
## [1] TRUE</pre>
```

STEP THREE: CLEAN DATA

na.omit() will remove all NA from the dataframe.

```
all_trips <- na.omit(all_trips)
```

Remove rows with the *ride_id* column character length is not 16. This will remove all the scientific ride ids that we noticed while examining the data.

```
all_trips <- subset(all_trips, nchar(as.character(ride_id)) == 16)</pre>
```

Remove rows with the *ride_length* less than 1 minute.

```
all_trips <- subset (all_trips, ride_length > "1")
```

STEP FOUR: ANALYZE DATA

Analyze the dataframe by find the mean, median, max (maximum), and min (minimum) of ride_length.

```
mean(all_trips$ride_length)
## [1] 1318.707
```

```
median(all_trips$ride_length)
## [1] 720
```

```
max(all_trips$ride_length) ## [1] 3356640
```

```
min(all_trips$ride_length)
## [1] 60
```

Run a statistical summary of the ride_length.

Compare the members and casual users

```
aggregate(all trips$ride length ~ all trips$member casual, FUN = mean)
## all trips$member casual all trips$ride length
## 1
                     casual
                                       1961.3398
## 2
                     member
                                         798.4492
aggregate(all trips$ride length ~ all trips$member casual, FUN = median)
## all trips$member casual all trips$ride length
## 1
                     casual
                                             1020
## 2
                                              600
                     member
aggregate(all trips$ride length ~ all trips$member casual, FUN = max)
## all trips$member casual all trips$ride length
## 1
                                          3356640
                     casual
## 2
                     member
                                            89700
aggregate(all trips$ride length ~ all trips$member casual, FUN = min)
   all trips$member casual all trips$ride length
## 1
                                                60
                     casual
```

```
## 2 member 60
```

Aggregate the average ride length by each day of the week for members and users.

```
aggregate(all trips$ride length ~ all trips$member casual +
all trips$day of week, FUN = mean)
      all trips$member casual all trips$day of week all trips$ride length
## 1
                                              Friday
                                                                 1865.4044
                       casual
## 2
                                                                  774.7142
                                              Friday
                       member
## 3
                                              Monday
                                                                 1969.3185
                       casual
## 4
                       member
                                             Monday
                                                                  770.6198
## 5
                                            Saturday
                                                                 2103.7133
                       casual
                       member
                                            Saturday
                                                                  898.2403
## 6
## 7
                       casual
                                              Sunday
                                                                 2268.3352
## 8
                                                                  921.2654
                       member
                                              Sunday
## 9
                                            Thursday
                                                                 1690.0091
                       casual
## 10
                       member
                                            Thursday
                                                                  747.7804
## 11
                                                                 1737.8340
                       casual
                                            Tuesday
## 12
                       member
                                             Tuesday
                                                                  749.7625
## 13
                                           Wednesday
                                                                 1705.6794
                       casual
## 14
                       member
                                           Wednesday
                                                                   754.1646
```

Sort the days of the week in order.

```
all_trips$day_of_week <- ordered(all_trips$day_of_week, levels=c("Sunday",
"Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"))</pre>
```

Assign the aggregate the average ride length by each day of the week for members and users to x.

```
x <- aggregate(all trips$ride length ~ all trips$member casual +
all trips$day of week, FUN = mean)
head(x)
     all trips$member casual all trips$day of week all trips$ride length
## 1
                                             Sunday
                                                                2268.3352
                      casual
## 2
                      member
                                             Sunday
                                                                 921.2654
                                                                1969.3185
## 3
                      casual
                                             Monday
## 4
                      member
                                             Monday
                                                                 770.6198
## 5
                      casual
                                            Tuesday
                                                                1737.8340
                                            Tuesday
                                                                 749.7625
## 6
                      member
```

Find the average ride length of member riders and casual riders per day and assign it to y.

```
y <- all trips %>%
 mutate(weekday = wday(started at)) %>%
 group by (member casual, weekday) %>%
 summarise (number of rides = n(),
           average duration = mean(ride length), .groups = 'drop') %>%
 arrange (member casual, weekday)
head(y)
## # A tibble: 6 \times 4
## member casual weekday number of rides average duration
## <chr>
                   <int>
                                  <int>
                                                   <dbl>
## 1 casual
                       1 401470
                                                  2268.
                       2
## 2 casual
                                227603
                                                  1969.
## 3 casual
                       3
                                 213707
                                                  1738.
## 4 casual
                      4
                                216912
                                                  1706.
## 5 casual
                      5
                                 222919
                                                  1690.
## 6 casual
                                  288411
                                                   1865.
```

Analyze the dataframe to find the frequency of member riders, casual riders, classic bikes, docked bikes, and electric bikes.

```
table(all_trips$member_casual)
##
## casual member
## 2036760 2515844
table(all_trips$rideable_type)
##
## classic_bike docked_bike electric_bike
## 3216339 310815 1025450
```

STEP FIVE: VISUALIZATION

Display full digits instead of scientific number.

```
options(scipen=999)
```

Plot the number of rides by user type during the week.

Days of the Week

Plot the duration of the ride by user type during the week.

```
all_trips %>%
  mutate(day_of_week) %>%
  group_by(member_casual, day_of_week) %>%
```

Days of the Week vs Average Duration

Create new dataframe for plots for weekday trends vs weekend trends.

```
mc<- as.data.frame(table(all_trips$day_of_week,all_trips$member_casual))</pre>
```

Rename columns

```
mc<-rename(mc, day_of_week = Var1, member_casual = Var2)
head(mc)
## day_of_week member_casual Freq
## 1 Sunday casual 401470</pre>
```

```
## 2 Monday casual 227603

## 3 Tuesday casual 213707

## 4 Wednesday casual 216912

## 5 Thursday casual 222919

## 6 Friday casual 288411
```

Weekday trends (Monday through Friday).

Weekend trends (Sunday and Saturday).

Monday

Tuesday

Wednesday

Day Of The Week

Thursday

Friday

Weekends Trends

Create dataframe for member and casual riders vs ride type

```
rt<- as.data.frame(table(all_trips$rideable_type,all_trips$member_casual))
```

Rename columns.

Plot for bike user vs bike type.

```
rt %>%
  filter(member_casual == "member" |
```

```
member_casual == "casual") %>%

ggplot(aes(x = rideable_type, y = Freq, fill = member_casual))+

geom_bar(stat = "identity", position = "dodge") +

labs(title = "Riders and Ride Types",

x = "Riders",

y = "Rides")
```

Riders and Ride Types

STEP SIX: EXPORT ANALYZED DATA

Save the analyzed data as a new file.

fwrite(all_trips, "all_trips.csv")