다다스 어수 추천 / 림 예측 프로그램

AA 20230904 경북대학교 AI·빅데이터 전문가 양성과정 4기 사사 () 사사 () 보고 원 이승수 이승훈 최성진

INDEX

01 주제 선정 이유

02 프로그램 개요

02-1 선수 찾으시옷

02-2 림 만드//옷

03 분석데이터

04 예측 모델링

05 프로그램 시연

<u>01-1</u> 주제 선정 미유

- 구단주의 입장에서 Potential에 높은 선수를 Value가 낮을 때 영입하는 것이 유리함
- 하지만, Value 대비 Potential에 높은 선수를 찾기 <mark>어려움</mark>
- 따라서, 회귀 모델을 통해 미래의 선수가치를 예측 하여 낮은 금액으로 높은 Potential의 선수를 미리 영입하는 것이 목표

01-2 업무별담당자

역할 구분	담당자	비고
주제 선정	전원	
자료 조사	전원	
데이터 전처리	전원	
모델링 1	최성진	Dverall 예측 모델링
모델링 2	미승수	Potential 예측 모델링
모델링 3	박소원	Value 예측 모델링
모델링 4	미승훈	Wage 예측 모델링
크롤링	미승수	
함수 구현	이승훈, 최성진	
발표 자료 준비	박소원	

[선수 추천 프로그램]

- 이적 시장에서 성공적인 선수 영입 및 방출을 위해 원하는 능력치와 금액에 맞는 선수 추천
- 원하는 수준의 Dverdl 입력
 - ⇒ 입력된 값에 적합한 선수 top 10을 추천

[주요 제공 항목]

- EXICE: FW/DF/MID/GK

■ Dverg|| : 선수의 종합 능력치

■ Potential: 선수의 잠재력, 늦은 순 추천

■ Value : 선수의 현재 가치, <mark>늦</mark>은 순 추천

■ Wage : 선수의 주급, <mark>늦</mark>은 순 추천

- 위 4가지 항목에 대한 그래프 제공

02-2 림 만드시옷

[림 Dverall 예측 프로그램]

- [선수 찾으시옷]을 통해 11명의 선수 선택 ⇒ 생성한 팀의 Dverall 예측 프로그램
- 생성한 팀과 같은 Overall을 가진
 실제 구단 및 실제 구단 기준 순위를 제공
 ⇒ 생성한 팀의 Overall 수준 파악

03-1 데이터 출처

[데이터 출처]

- 선수 데이터 파일 출처
 - https://www.kaggle.com/datasets/stefanoleone992/ fifa-22-complete-player-dataset
 - 18~22년 데이터 파일
- <mark>릭</mark> 데이터 <u>크롤링</u> 출처
 - https://sofifa.com/teams

03-2 데이터 전처리

[데이터 전처리]

- 분석 특성 선정
 - 세부능력치를 <mark>분야별 종합능력치</mark> 평균으로 분석
 - 분야별 종합능력치 결측치 제거
 - 이상치 / 중복값 없음
 - 포지션 FW, MID, DF, GK로 통일

	name	age	overall	potential	value_eur	wage_eur	position	attacking	skill	movement	power	mentality	defending	goalkeeping
ı	L. Messi	34	93	93	78000000.0	320000.0	RW	85.8	79.000000	90.2	77.8	73.833333	28.25	10.8
R. Lewar	ndowski	32	92	92	119500000.0	270000.0	ST	86.0	68.500000	81.6	84.8	80.666667	35.00	10.2
istiano F	Ronaldo	36	91	91	45000000.0	270000.0	ST	87.6	70.500000	85.4	87.2	74.333333	28.50	11.6
Ne	eymar Jr	29	91	91	129000000.0	270000.0	LW	80.6	75.166667	90.2	71.8	77.000000	33.25	11.8
K. De	Bruyne	30	91	91	125500000.0	350000.0	СМ	81.4	74.000000	80.0	81.6	82.666667	62.50	11.2
D. I	Da Silva	21	47	55	90000.0	500.0	GK	12.4	11.666667	34.0	35.4	17.166667	10.00	46.2
ŀ	H. Singh	18	47	64	120000.0	500.0	СМ	39.2	33.500000	62.4	48.2	47.166667	41.50	12.2
M.	O'Brien	18	47	61	110000.0	500.0	RM	41.0	34.500000	54.0	41.4	40.666667	25.25	10.8
C	C. Porter	19	47	59	110000.0	500.0	СМ	43.2	36.500000	60.0	48.8	46.500000	42.25	9.4
N	l. Logue	21	47	55	100000.0	500.0	СМ	40.0	36.833333	56.6	49.4	42.500000	42.75	7.4

에이터 전처리 완료 결과

04-1 Overall

[선수의 능력치 예측]

- 주요 학습 방법 : 회귀
- 세부 학습 방법 : 선형회귀(LinearRegression)
- 특성 공학: 골키퍼/수비수/미드필더/공격수 나눠서 분석

수비수

Feature : 수비력, 정신력

Target : 능력치

미드필더

Feature : 공격력, 스킬, 정신력

Target : 능력치

04-2 Potential

■ 주요 학습 방법: 주성분 분석

세부 학습 방법: Random Forest Regressor

특성과 타겟의 상관관계 비교 결과 관련 있는 변수가 없어서 주성분분석으로 차원 축소하여 분석함

주성분 2개 결정 ⇒ <mark>2차원</mark> 축소

04-2 Potential

[실제 데이터 분포]

[차원축소 데이터 분포]

주성분 분석한 특성으로 <mark>랜덤포레스트 회귀</mark>분석

[실제 값과 예측 값]

04-3 Value

[선수의 가치 예측]

- 주요 학습 방법 : 회귀 분석
- 세부 학습 방법 : Bagging Regressor
- 모델 선정 과정
 - 1. 모델 선정 함수를 통해 5개의 모델 선별

```
('HistGradientBoostingRegressor', 0.95, 0.94, 0.92), ('MLPRegressor', 0.95, 0.94, 0.92), ('KNeighborsRegressor', 0.92, 0.94, 0.93), ('BaggingRegressor', 0.91, 0.95, 0.95), ('RandomForestRegressor', 0.91, 0.95, 0.95), ('GradientBoostingRegressor', 0.9, 0.95, 0.94), ('DecisionTreeRegressor', 0.89, 0.95, 0.95),
```

2. 각 모델 학습 후 결정 계수(R Square)가 가장 좋은 모델 선정 ⇒ Bagging Regressor (score : 0.9252)

04-4 Wage

[선수의 가치 예측]

■ 주요 학습 방법 : 회귀

■ 세부 학습 방법 : 랜덤포레스트(Regressor)

모델 시각화

중요도가 가장 높은 Dverall, value, skill 을 Feature 변수로 선정

훈련점수 : 0.82 테스트점수 : 0.79

05-1 선수 찾으시옷

05-1 선수 찾으시옷

[선수의 변화량 그래프]

05-2 림 만드시옷

[11명 선수 ID 입력]

- 입력한 선수 정보 출력
- 내가 뽑은 선수들의 능력치 평균과 같은 팀 출력

선수 정보

,							
	sofifa_id	name	overall	value_eur	wage_eru	potential	value_bg
	193041	K. Navas	75	15500000	130000	87.60	12386667
	216267	A. Robertson	84	83500000	175000	79.22	19539666
	231281	T. Alexander-Arnold	82	114000000	150000	78.74	17983769
	239818	Rúben Dias	84	102500000	170000	79.87	20048407
	189332	Jordi Alba	80	47000000	200000	80.15	15130274
	215914	N. Kanté	77	100000000	230000	82.82	16247359
	200145	Casemiro	79	88000000	310000	79.09	14590409
	212622	J. Kimmich	82	108000000	160000	81.75	24480986
	239085	E. Haaland	81	137500000	110000	79.02	17983769
	208830	J. Vardy	83	33000000	180000	77.43	17584895
	179813	E. Cavani	84	26000000	190000	80.27	20048407

비슷한 팀 순위

	team	TOTAL_MEAN	rank
12	Tottenham Hotspur	81	13
13	Borussia Dortmund	81	13
14	RB Leipzig	81	13
15	Milan	81	13

