First-Order Logic

1

Review

• Everyone at UH is smart ∀x At(x,UH) ∧ Smart(x)

Everyone is at UH and everyone is smart

 $\forall x \ At(x,UH) \Rightarrow Smart(x)$

Truth in first-order logic

- Sentences are true with respect to a model and an interpretation
- Model contains objects (domain elements) and relations among them
- Interpretation specifies referents for

constant symbols → objects

predicate symbols → relations

function symbols \rightarrow functional relations

• An atomic sentence *predicate(term₁,...,term_n)* is true iff the objects referred to by *term₁,...,term_n* are in the relation referred to by *predicate*

2

A common mistake to avoid

- \bullet Typically, \Rightarrow is the main connective with \forall
- \bullet Common mistake: using \wedge as the main connective with \forall :

 $\forall x \ At(x,UH) \land Smart(x)$ means "Everyone is at UH and everyone is smart"

3

Existential quantification

• ∃<variables> <sentence>

Someone at UH is smart: $\exists x \, At(x,UH) \Rightarrow Smart(x)$ (Also true even if the person is not at UH)

 $\exists x \, At(x,UH) \land Smart(x)$

- ∃x P is true in a model m iff P is true with x being some possible object in the model
- Roughly speaking, equivalent to the disjunction of instantiations of P
- At(KingJohn,NUS) ∧ Smart(KingJohn) ∨At(Richard,NUS) ∧ Smart(Richard) ∨At(NUS,NUS) ∧ Smart(NUS) ∨ ...

5

Properties of quantifiers

- $\forall x \forall y$ is the same as $\forall y \forall x$
- $\exists x \exists y \text{ is the same as } \exists y \exists x$
- $\exists x \ \forall y \text{ is not the same as } \forall y \ \exists x$
- $\exists x \forall y Loves(x,y)$
 - "There is a person who loves everyone in the world"
- $\forall y \exists x Loves(x,y)$
 - "Everyone in the world is loved by at least one person"
- Quantifier duality: each can be expressed using the other
- \forall x Likes(x,IceCream) $\neg \exists$ x \neg Likes(x,IceCream)
- $\exists x \text{ Likes}(x, Broccoli)$ $\neg \forall x \neg Likes(x, Broccoli)$

Another common mistake to avoid

- Typically, \wedge is the main connective with \exists
- Common mistake: using \Rightarrow as the main connective with \exists :

 $\exists x \, At(x,UH) \Rightarrow Smart(x)$

is true if there is anyone who is not at ULL!

6

Useful Metatheories

10

- Theorem (Deduction Theorem) If $\Sigma \cup \{\phi\}$ |- ψ then Σ |- $\phi \to \psi$ i.e. to prove an implication, it is ok to take the antecedent as an additional hypothesis
- Theorem (Rule T) If Σ |- ϕ_1 , ..., Σ |- ϕ_n and $\{\phi_1$, ..., $\phi_n\}$ |- ψ then Σ |- ψ
- i.e. provability is transitive, i.e. if you can prove a set of sentences from a set of premises, and you can prove other sentences from those conclusions, then you can derive the final conclusions from the original premises
- Theorem (Refutation Theorem). If $\Sigma \cup \{\neg \phi\}$ is inconsistent, then $\Sigma \mid \neg \phi$ i.e. the basis for proofs by contradiction

7

11

Important results

• connections between semantics and proof theory (Godel, 1930)

• soundness: if $|-\Phi|$ then $|-\Phi|$ • completeness: if $|-\Phi|$ then $|-\Phi|$

• suggests a procedure for showing a formula Φ is valid, namely

9

Clausal Form

- clausal form = conjunctive normal form, with all quantifiers at the front, and no existential quant.
- given a sentence (say) $\Phi = \forall x \forall y \forall z \exists w P(x,y,z,w)$

let g be a new function symbol and put $\Phi_S = \forall x \forall y \forall z P(x,y,z,g(x,y,z))$

call Φ_s the Skolemisation of Φ .

- if $\Phi = \exists wP(w)$ then $\Phi_S = P(a)$ where a is a new constant symbol
- Why this interest in Skolemisation????

Important results

12

• (Turing 1936) the validity problem for predicate logic is $\underline{\text{undecidable}}$ i.e. there is no algorithm which, given a wff Φ , halts (correctly) in finite time answering "yes Φ is valid" or "no Φ is not valid"

- however, the suggested procedure for showing a formula Φ is valid, has the property that if Φ is valid the procedure will halts (correctly) in finite time answering "yes Φ is valid" we refer to this propert as being semi-decidable
- note, the validity problem for propositional logic is <u>decidable</u>,
 i.e. there is an algorithm which

10

Skolemisation...

• Let Φ be a sentence and Φ_S its Skolemisation.

Theorem

- (i) Every model of Φ_S is a model of Φ
- (ii) If Φ has a model then so does Φ_S
- (iii) Φ is satisfiable iff Φ_S is satisfiable
- i.e. although Φ and Φ_{S} are not equivalent, one is unsatisfiable, exactly when the other is
- see discussion K pg 197 at bottom
- so we can use the simpler one (no ∃) in setting up for resolution

11

Unification

- resolution in prop logic vs. resolution in pred logic?
 - because of Skolemisation, the key difference is the form of the literals
 - proposition letters vs. atomic formulae
 e.g. A & (B v ~C)
 P(x,y) & (Q(x) v ~R(x,y))
 - so ... how to deal with variables?
- C1 = {P(f(x), y), ~Q(a,b,x)}, C2 = {~P(f(g(c)), g(d))} should yield resolvent {~Q(a,b,g(c))}

because C1 represents $\forall x \forall y (P(f(x), y) \lor ^{\sim}Q(a,b,x))$ and so, in particular, $P(f(g(c)), g(d)) \lor ^{\sim}Q(a,b,g(c))$ is deducible

13

Unification, continued

- given S = {L₁, ..., L_n}, a unifier σ for S is a substitution such that L₁ σ = L₂ σ = ... = L_n σ
- {P(x,a), P(b,c)} is not unifiable
 {P(f(x), y), P(a,w)} is not unifiable
- {P(x,c), P(b,c)} is unifiable {b/x} only unifier
- {P(f(x),y), P(f(a),w)} is unifiable several unifiers, eg {a/x, w/y}, also {a/x, a/y, a/w}, also {a/x, b/y, b/w} ...
- a most general unifier (mgu) for S is ...

Theorem an mgu for set S is essentially unique (up to renaming)

Unification, continued

- a substitution is {t₁/x₁, t₂/x₂, ..., t_n/x_n} ... where the x_i are variables and the t_i are terms
- term e.g. a, x, f(x,a), f(f(x,a), x)
- $S = \{P(a,x), Q(y,z,b)\}, \theta = \{h(a)/x, g(b)/y, c/z\}$ then $S\theta = \{P(a,h(a)), Q(g(b), c, b)\}$
- E = P(x,y,w,u), $\theta = \{f(y)/x, g(z)/y, v/w\},\$ $\sigma = \{a/x, b/y, f(y)/z, w/v, c/u\}$
- $E\theta\sigma = (E\theta)\sigma = (P(f(y), g(z), v, u))\sigma = P(f(b), g(f(y)), w, c)$ so can write the composition $\theta\sigma$ of the two substitutions as a substitution $\{f(b)/x, g(f(y))/y, c/u, f(y)/z, w/v\}$

also written σοθ

14

Most General?

- consider $E = \{A(x,y,f(z)), A(a,g(z), w)\}$
- applying $\sigma_1 = \{a/x, g(a)/y, a/z, f(a)/w\}$ yields ...
- $E\sigma_1 = \{A(a, g(a), f(a))\}$
- applying $\sigma_2 = \{a/x, g(z)/y, z/z, f(z)/w\}$ yields ...
- $E\sigma_2 = \{A(a, g(z), f(z))\}$
- applying σ_1 can be seen as the same as applying σ_2 first and then σ_3 = {a/z}
- i.e. $E\sigma_1 = E\sigma_2\sigma_3$
- σ_2 is called "more general than" σ_1

Equality

• term₁ = term₂ is true under a given interpretation if and only if term₁ and term₂ refer to the same object

 $Parent(m,x) \wedge Parent(f,x) \wedge Parent(m,y) \wedge Parent(f,y)$

• E.g., definition of *Sibling* in terms of *Parent*: $\forall x,y \ Sibling(x,y) \Leftrightarrow [\neg(x = y) \land \exists m,f \neg (m = f) \land]$

17

Using FOL

The set domain:

- \forall s Set(s) \Leftrightarrow (s = {}) \vee (\exists x,s₂ Set(s₂) \wedge s = {x|s₂})
- • $\neg \exists x, s \{x \mid s\} = \{\}$
- $\forall x, s \ x \in s \Leftrightarrow s = \{x \mid s\}$
- $\forall x, s \ x \in s \Leftrightarrow [\exists y, s_2\} (s = \{y \mid s_2\} \land (x = y \lor x \in s_2))]$
- $\forall s_1, s_2 \ s_1 \subseteq s_2 \Leftrightarrow (\forall x \ x \in s_1 \Rightarrow x \in s_2)$
- $\forall s_1, s_2 (s_1 = s_2) \Leftrightarrow (s_1 \subseteq s_2 \land s_2 \subseteq s_1)$
- $\bullet \ \forall x, s_1, s_2 \ x \in (s_1 \cap s_2) \Leftrightarrow (x \in s_1 \wedge x \in s_2)$
- $\forall x, s_1, s_2 \ x \in (s_1 \cup s_2) \Leftrightarrow (x \in s_1 \lor x \in s_2)$

Using FOL

The kinship domain:

- Brothers are siblings
 ∀x,y Brother(x,y) ⇔ Sibling(x,y)
- One's mother is one's female parent
 ∀m,c Mother(c) = m ⇔ (Female(m) ∧ Parent(m,c))
- "Sibling" is symmetric
 ∀x,y Sibling(x,y) ⇔ Sibling(y,x)

18

Interacting with FOL KBs

• Suppose a wumpus-world agent is using an FOL KB and perceives a smell and a breeze (but no glitter) at t=5:

Tell(KB,Percept([Smell,Breeze,None],5))
Ask(KB,∃a BestAction(a,5))

- I.e., does the KB entail some best action at *t=5*?
- Answer: *Yes*, {*a*/*Shoot*} ← substitution (binding list)
- Given a sentence S and a substitution σ,
- Sσ denotes the result of plugging σ into S; e.g.,
 S = Smarter(x,y)
 - $\sigma = \{x/Hillary, y/Bill\}$
 - Sσ = Smarter(Hillary,Bill)
- As k(KB,S) returns some/all σ such that KB $\models \sigma$

19

Knowledge base for the wumpus world

- Perception
 - ∀t,s,b Percept([s,b,Glitter],t) ⇒ Glitter(t)
- Reflex
- ∀t Glitter(t) ⇒ BestAction(Grab,t)

21

Knowledge engineering in FOL

- 1. Identify the task
- 2. Assemble the relevant knowledge
- 3. Decide on a vocabulary of predicates, functions, and constants
- 4. Encode general knowledge about the domain
- 5. Encode a description of the specific problem instance
- 6. Pose queries to the inference procedure and get answers
- 7. Debug the knowledge base

Deducing hidden properties

• $\forall x,y,a,b \ Adjacent([x,y],[a,b]) \Leftrightarrow$ $[a,b] \in \{[x+1,y], [x-1,y],[x,y+1],[x,y-1]\}$

Properties of squares:

• \forall s,t $At(Agent,s,t) \land Breeze(t) <math>\Rightarrow$ Breezy(s)

Squares are breezy near a pit:

- Diagnostic rule---infer cause from effect ∀s Breezy(s) ⇒ \Exi{r} Adjacent(r,s) ∧ Pit(r)\$
- Causal rule---infer effect from cause ∀r Pit(r) ⇒ [∀s Adjacent(r,s) ⇒ Breezy(s)\$]

22

23

The electronic circuits domain

- 1. Identify the task
 - Does the circuit actually add properly? (circuit verification)
- 2. Assemble the relevant knowledge
 - Composed of wires and gates; Types of gates (AND, OR, XOR, NOT)
 - Irrelevant: size, shape, color, cost of gates
- 3. Decide on a vocabulary
 - Alternatives:

Type(X_1) = XOR

Type(X_1 , XOR)

 $XOR(X_1)$

25

The electronic circuits domain

5. Encode the specific problem instance

 $Type(X_1) = XOR \qquad \quad Type(X_2) = XOR$

Type(A_1) = AND Type(A_2) = AND

Type $(O_1) = OR$

 $\begin{array}{lll} Connected(Out(1,X_1), In(1,X_2)) & Connected(In(1,C_1), In(1,X_1)) \\ Connected(Out(1,X_1), In(2,A_2)) & Connected(In(1,C_1), In(1,A_1)) \\ Connected(Out(1,A_2), In(1,O_1)) & Connected(In(2,C_1), In(2,X_1)) \\ Connected(Out(1,A_1), In(2,O_1)) & Connected(In(2,C_1), In(2,A_1)) \\ Connected(Out(1,X_2), Out(1,C_1)) & Connected(In(3,C_1), In(2,X_2)) \\ Connected(Out(1,O_1), Out(2,C_1)) & Connected(In(3,C_1), In(1,A_2)) \\ \end{array}$

The electronic circuits domain

- 4. Encode general knowledge of the domain
 - $\forall t_1, t_2 \text{ Connected}(t_1, t_2) \Rightarrow \text{Signal}(t_1) = \text{Signal}(t_2)$
 - \forall t Signal(t) = 1 \vee Signal(t) = 0
 - 1 ≠ 0
 - $\forall t_1, t_2 \text{ Connected}(t_1, t_2) \Rightarrow \text{Connected}(t_2, t_1)$
 - $\forall g \ Type(g) = OR \Rightarrow Signal(Out(1,g)) = 1 \Leftrightarrow \exists n \ Signal(In(n,g)) = 1$
 - ∀g Type(g) = AND ⇒ Signal(Out(1,g)) = 0 ⇔ ∃n Signal(In(n,g)) = 0
 - ∀g Type(g) = XOR ⇒ Signal(Out(1,g)) = 1 ⇔
 Signal(In(1,g)) ≠ Signal(In(2,g))
 - \forall g Type(g) = NOT \Rightarrow Signal(Out(1,g)) \neq Signal(In(1,g)

26

28

The electronic circuits domain

6. Pose queries to the inference procedure

What are the possible sets of values of all the terminals for the adder circuit?

 $\exists i_1,i_2,i_3,o_1,o_2 \ Signal(In(1,C_1)) = i_1 \land Signal(In(2,C_1)) = i_2 \land Signal(In(3,C_1)) = i_3 \land Signal(Out(1,C_1)) = o_1 \land Signal(Out(2,C_1)) = o_2$

- 7. Debug the knowledge base
- 8. May have omitted assertions like $1 \neq 0$

Summary

- First-order logic:
 - objects and relations are semantic primitives
 - syntax: constants, functions, predicates, equality, quantifiers
- Increased expressive power: sufficient to define wumpus world