Package 'birp'

May 16, 2025

Type Package

Title Testing for Population Trends Using Low-Cost Ecological Count Data

Version 0.0.3

Date 2025-05-14

Description A Bayesian tool to test for population trends and changes in trends under arbitrary designs, including before-after (BA), control-intervention (CI) and before-after-control-intervention (BACI) designs commonly used to assess conservation impact. It infers changes in trends jointly from data obtained with multiple survey methods, as well as from limited and noisy data not necessarily collected in standardized ecological surveys. Observed counts can be modeled as following either a Poisson or a negative binomial model, and both deterministic and stochastic trend models are available. For more details on the model see Singer et al. (2025) <doi:10.1101/2025.01.08.631844>, and the file 'AUTHORS' for a list of copyright holders and contributors.

URL https://bitbucket.org/wegmannlab/birpr/wiki/Home

License GPL (>= 2)

Imports Rcpp (>= 1.0.12), MASS

LinkingTo Rcpp, RcppArmadillo

Encoding UTF-8

RoxygenNote 7.3.1

NeedsCompilation yes

Author Madleina Caduff [aut, cre],

Daniel Wegmann [aut],

Liam Singer [aut],

Raphael Eckel [ctb],

Andreas Füglistaler [ctb]

Maintainer Madleina Caduff <madleina.caduff@unifr.ch>

Repository CRAN

Date/Publication 2025-05-16 09:50:13 UTC

2 birp-package

Contents

	birp-package																											2
	assess_NB																											3
	birp																											4
	birp_data																											
	birp_data_from_data	_frame																										6
	birp_data_from_file																											7
	birp_from_command	l_line																										8
	plot.birp																											8
	plot.birp_data																											10
	plot_epoch_pair																											11
	plot_mcmc																											12
	plot_trend																											13
	print.birp																											15
	print.birp_data																											15
	simulate_birp																											16
	simulate_birp_from_	results																										18
	summary.birp																											19
	summary.birp_data																											20
Index																												21
ınaex																												41
hirn-	nackage	Testing	ı fo	r E	Por	ula	ıtic	n '	$T_{r_{\prime}}$	วทะ	de.	Πc	in	αI	01	v_ /	70	o+ 1	Fc.	οl	201	icc	10	`o:	ınt	ח	ati	,
birp-package		resums	ju	, 1	op	uu	iio	11 1	116	, ru	is	\cup 3	iii	5 1	ωV	v - (<i>,</i>	, ι Ι	ایار		181	cu	ı	oı	ııı	υ	ш	ı

Description

A Bayesian tool to test for population trends and changes in trends under arbitrary designs, including before-after (BA), control-intervention (CI) and before-after-control-intervention (BACI) designs commonly used to assess conservation impact. It infers changes in trends jointly from data obtained with multiple survey methods, as well as from limited and noisy data not necessarily collected in standardized ecological surveys. Observed counts can be modeled as following either a Poisson or a negative binomial model, and both deterministic and stochastic trend models are available. For more details on the model see Singer et al. (2025) <doi:10.1101/2025.01.08.631844>, and the file 'AUTHORS' for a list of copyright holders and contributors.

Package Content

Index of help topics:

assess_NB

Assess whether it is possible to use the Poisson model instead of the Negative Binomial (NB) model

birp

Creating a Birp Object

birp-package

Testing for Population Trends Using Low-Cost Ecological Count Data

birp_data

Creating a Birp Data Object based on counts and

assess_NB

efforts for a single method birp_data_from_data_frame Creating a Birp Data Object based on dataframe(s) Creating a Birp Data Object based on filenames birp_data_from_file birp_from_command_line Creating a Birp Object based on output files of command-line tool plot.birp Plotting a birp object plot.birp_data Plotting a birp_data Object plot_epoch_pair Plotting posterior estimates of gamma pairs Plotting the MCMC chains plot_mcmc Plotting posterior trends plot_trend print.birp Printing a birp object print.birp_data Printing a birp_data Object simulate_birp This function simulates a birp_data object for tidy data simulate_birp_from_results This function simulates a birp_data object using all parameter estimates, dimensionality (methods, locations, timepoints) and the total number of counts nu_ij of a birp object Summarizing a birp object summary.birp summary.birp_data This function summarizes a birp_data object

Maintainer

Madleina Caduff <madleina.caduff@unifr.ch>

Author(s)

Madleina Caduff [aut, cre], Daniel Wegmann [aut], Liam Singer [aut], Raphael Eckel [ctb], Andreas Füglistaler [ctb]

assess_NB	Assess whether it is possible to use the Poisson model instead of the
	Negative Binomial (NB) model

Description

Assess whether it is possible to use the Poisson model instead of the Negative Binomial (NB) model

```
assess_NB(
   x,
   stochastic = FALSE,
```

4 birp

```
numRep = 100,
cutoff = 0.05,
plot = TRUE,
verbose = TRUE)
```

Arguments

x A birp object, estimated under a negative binomial model.

stochastic A boolean indicating if deterministic (default) or stochastic trend model should

be used

numRep The number of replicates to run

cutoff The fraction of replicates for which $b_Pois > b_x$

plot A boolean indicating if the distribution of b should be plotted.

verbose Logical. If FALSE, the console output is suppressed

Value

A list. If keepNB is TRUE, the data is overdispersed and the negative binomial model should be used to account for the overdispersion. If keepNB is FALSE, birp should be re-run using the Poisson model to gain power.

Examples

```
data <- simulate_birp()
est <- birp(data, negativeBinomial = TRUE)
res_assess <- assess_NB(est, numRep = 5)</pre>
```

birp

Creating a Birp Object

Description

This function creates a birp object by running the MCMC

```
birp(
  data,
  timesOfChange = c(),
  negativeBinomial = FALSE,
  stochastic = FALSE,
  BACI = NULL,
  assumeTrueDetectionProbability = FALSE,
  iterations = 1e+05,
  numBurnin = 10,
```

5 birp

```
burnin = 1000,
  thinning = 10,
  verbose = TRUE
)
```

Arguments

data A birp_data object

timesOfChange A numeric or integer vector specifying the times of change

negativeBinomial

A boolean indicating if Poisson (default) or negative binomial model should be

used

stochastic A boolean indicating if deterministic (default) or stochastic trend model should

be used

BACI A matrix specifying the BACI configuration. Each row of the matrix corre-

sponds to a control/intervention group, and each column to an epoch. The very first column specifies the name of the control-intervention group and must match the groups specified in data. The values of the matrix specify which gamma to use for each group and epoch. E.g. BACI = matrix(c("A", "B", 1, 1, 1, 2), nrow = 2) corresponds to a canonical BACI design where the first row represents the

control group (A) and the second row represents the intervention group (B)

assumeTrueDetectionProbability

A boolean indicating if provided detection probabilities are "true", i.e. meaning

that they will be transform to logit and not standardized

The number of MCMC iterations to run iterations

numBurnin The number of burnin cycles to run

burnin The number of MCMC iterations per burnin cycle

Integer value specifying the thinning interval for recording the MCMC trace. thinning

Only every thinningth iteration will be retained (e.g., thinning = 1 records

every iteration, thinning = 2 records every second iteration, and so on).

verbose Logical. If FALSE, the console output is suppressed

Value

An object of class birp

```
data <- simulate_birp()</pre>
est <- birp(data)</pre>
```

birp_data	Creating a Birp Data Object based on counts and efforts for a single method
	method

Description

This function creates a birp_data object

Usage

```
birp_data(counts, efforts, times, CI_groups = NULL, location_names = NULL)
```

Arguments

counts	An J x K matrix of the observed counts. Each of the J rows corresponds to a
--------	---

location obtained at each of K times (columns)

efforts An J x K matrix of the effort conducted to observe the counts

times A vector giving the K time points at which counts were obtained

CI_groups The name of the control-intervention (CI) group for each location. By default,

all locations belong to the same group (group_1)

location_names Names to distinguish the locations. By default, locations are named after their

row index in counts

Value

An object of type birp_data

Examples

```
data <- birp_data(c(10,20,30), c(100,200,300), c(1,2,5))
```

```
birp_data_from_data_frame
```

Creating a Birp Data Object based on dataframe(s)

Description

This function creates a birp_data object

```
birp_data_from_data_frame(data)
```

birp_data_from_file 7

Arguments

data

A single dataframe or a list of data frames (one per method). Each dataframe should consist of five columns: timepoint, location, counts, effort and CI_group. The rows of the dataframe correspond to the counts and efforts obtained at one particular timepoint, location and for one particular control-intervention (CI) group.

Value

An object of type birp_data

Examples

```
df <- data.frame(
  timepoint = 1:10,
  location = rep(1, 10),
  counts = runif(10, 0, 100),
  effort = rexp(10),
  CI_group = "intervention"
)
data <- birp_data_from_data_frame(df)</pre>
```

Description

This function creates a birp_data object

Usage

```
birp_data_from_file(filenames, method_names = NA, sep = ",")
```

Arguments

filenames A vector of filenames specifying the input file(s) (one per method)

filenames

sep The field separator character

Value

An object of type birp_data

```
dir <- system.file("extdata", package = "birp")
filenames <- file.path(dir, "birp_Method_1_simulated_counts.txt")
data <- birp_data_from_file(filenames = filenames, sep = "\t")</pre>
```

8 plot.birp

```
birp_from_command_line
```

Creating a Birp Object based on output files of command-line tool

Description

This function creates a birp object by reading the output files of the command-line tool

Usage

```
birp_from_command_line(path)
```

Arguments

path

The path where all the output files of birp are located

Value

An object of class birp

Examples

```
est <- birp_from_command_line(file.path(system.file("extdata", package = "birp")))</pre>
```

plot.birp

Plotting a birp object

Description

Plotting a birp object

```
## S3 method for class 'birp'
plot(
    x,
    shadingIncrease = NA,
    shadingDecrease = "#f2c7c7",
    col = "black",
    lwd = 1,
    lty = 1:x$num_gamma,
    xlim = NA,
    ylim = NA,
    add = FALSE,
    xlab = expression(gamma),
    ylab = "Posterior density",
```

plot.birp 9

```
legend = x$gamma_names,
lineAtZero = TRUE,
...
)
```

Arguments

X	A birp object
shadingIncrease	
ahadi naDaanaa	Shading color for the range gamma > 0. If NA, shading is omitted
shadingDecreas	Shading color for the range gamma < 0. If NA, shading is omitted
col	Line color, one per gamma. If a single value is provided, it is recycled to match the number of gammas.
lwd	Line width, one per gamma. If a single value is provided, it is recycled to match the number of gammas.
lty	Line type, one per gamma. If a single value is provided, it is recycled to match the number of gammas.
xlim	The x-limits (x1, x2) of the plot. If NA, these are determined automatically
ylim	The y-limits (y1, y2) of the plot. If NA, these are determined automatically
add	If TRUE, posterior density is added to currently open plot. If FALSE, a new plot is opened.
xlab	Name of x axis
ylab	Name of y axis
legend	Add a legend to the plot. Use NA to suppress
lineAtZero	If TRUE, adds a dashed line indicating 0.
	additional parameters passed to the function.

Value

No return value, called for side effects.

See Also

birp

```
data <- simulate_birp()
est <- birp(data)
plot(est)</pre>
```

10 plot.birp_data

Description

This function plots the counts per unit of effort per time-point, method and location

Usage

```
## $3 method for class 'birp_data'
plot(
    x,
    col = 1:length(x$locations),
    lwd = 1,
    lty = 1:length(x$method_names),
    pch = 1:length(x$CI_groups),
    xlab = "time",
    ylab = "counts per unit of effort",
    legend.x = "topright",
    legend.y = NULL,
    legend.bty = "o",
    xlim = range(as.numeric(x$times)),
    ylim = NA,
    ...
)
```

Arguments

x	The birp data object to be printed.
col	A vector of colors, recycled to match the number of methods and locations
lwd	A vector of line width, recycled to match the number of methods and locations
lty	A vector of line types, recycled to match the number of methods and locations
pch	A vector of plotting characters, recycled to match the number of control/intervention groups
xlab	The label of the x-axis
ylab	The label of the y-axis
legend.x	The x coordinate to position the legend. Use legend.x=NA to omit legend
legend.y	The y coordinate to position the legend
legend.bty	The type of box to be drawn around the legend. The allowed values are "o" (the default) and "n".
xlim	Set the limits of the x-axis
ylim	Set the limits of the y-axis
	Additional parameters passed to plotting functions.

plot_epoch_pair 11

Value

No return value, called for side effects

Examples

```
data <- simulate_birp()
plot(data)</pre>
```

plot_epoch_pair

Plotting posterior estimates of gamma pairs

Description

Plotting posterior estimates of gamma pairs

Usage

```
plot_epoch_pair(
 Х,
  gamma1 = 1,
 gamma2 = 2,
 xlab = .getLabelGamma.birp(x, gamma1),
 ylab = .getLabelGamma.birp(x, gamma2),
 xlim = range(x$trace_gamma[, c(gamma1, gamma2)]),
 ylim = xlim,
  col = "deeppink",
 diag.col = "black",
 diag.lwd = 1,
 diag.lty = 1,
  zero.col = "black",
  zero.lwd = 1,
  zero.lty = 2,
 print.p = TRUE,
  add = FALSE,
)
```

Arguments

```
x A birp object
gamma1 The index of the first gamma to plot
gamma2 The index of the second gamma to plot
xlab A label for the x axis
ylab A label for the y axis
```

plot_mcmc

xlim	The x-limits $(x1, x2)$ of the plot. Note that $x1 > x2$ is allowed and leads to a "reversed axis". The default value, NULL, indicates that the range of the finite values to be plotted should be used
ylim	The y-limits of the plot
col	The color for the contour lines
diag.col	The color of the diagonal line. Use NA to indicate that no line should be plotted
diag.lwd	The line width of the diagonal line
diag.lty	The line type of the diagonal line
zero.col	The color of the line at zero. Use NA to indicate that no line should be plotted
zero.lwd	The line width of the line at zero
zero.lty	The line type of the line at zero
print.p	If TRUE, add text representing the posterior probability of a trend change
add	Boolean indicating if a lines should be added to an existing plot
	additional parameters passed to the function

Value

No return value, called for side effects.

See Also

birp

Examples

```
data <- simulate_birp(timesOfChange = 2)
est <- birp(data, timesOfChange = 2)
plot_epoch_pair(est)</pre>
```

 ${\tt plot_mcmc}$

Plotting the MCMC chains

Description

Plotting the MCMC chains

Usage

```
plot_mcmc(x, col = c("black", "blue"))
```

Arguments

birp object

col Color(s) used in the plot

plot_trend 13

Value

No return value, called for side effects

See Also

```
birp
```

Examples

```
data <- simulate_birp()
est <- birp(data)
plot_mcmc(est)</pre>
```

plot_trend

Plotting posterior trends

Description

Plotting posterior trends

```
plot_trend(
  Х,
 CI_group = 1,
  n_points = 1000,
  quantiles = c(0.99, 0.9, 0.5, 0.25),
 quantile.col = gray(seq(1, 0, length.out = length(quantiles) + 2)[2:(length(quantiles)
    + 1)]),
  quantile.border = NA,
 median.col = "deeppink",
 median.lwd = 1,
 median.lty = 1,
  epoch.col = "black",
  epoch.lwd = 1,
  epoch.lty = 1,
  times.col = "black",
  times.lwd = 1,
  times.lty = 2,
  log = FALSE,
  xlab = "Time",
 ylab = paste(c("log", "Relative Density")[c(log, TRUE)], collapse = " "),
 main = x$CI_groups[CI_group],
)
```

plot_trend

Arguments

x	A birp object
CI_group	The index of the control-intervention (CI) group to plot. By default, the first group is plotted.
n_points	Number of points
quantiles	Which quantiles to plot
quantile.col	Colors of the quantiles
quantile.borde	r
	Define border of the quantile. NA is possible
median.col	Color of the median
median.lwd	Line width of median
median.lty	Line type of median
epoch.col	Color to represent the epochs
epoch.lwd	Line width to represent the epochs
epoch.lty	Line type to represent the epochs
times.col	Color to represent the times of change
times.lwd	Line width that represents times of change
times.lty	Line type that represents times of change
log	Plot relative densities in log
xlab	A label for the x axis
ylab	A label for the y axis
main	A title for the plot
• • •	additional parameters passed to the function

Value

No return value, called for side effects

See Also

birp

```
data <- simulate_birp()
est <- birp(data)
plot_trend(est)</pre>
```

print.birp 15

print.birp

Printing a birp object

Description

Printing a birp object

Usage

```
## S3 method for class 'birp'
print(x, ...)
```

Arguments

x A birp object.

. . . Additional parameters passed to print functions.

Value

No return value, called for side effects.

See Also

birp

Examples

```
data <- simulate_birp()
est <- birp(data)
print(est)</pre>
```

print.birp_data

Printing a birp_data Object

Description

Printing a birp_data Object

```
## S3 method for class 'birp_data'
print(x, ...)
```

16 simulate_birp

Arguments

x The birp_data object to be printed.

... Other parameters passed to function

Value

No return value, called for side effects

Examples

```
data <- simulate_birp()
print(data)</pre>
```

simulate_birp

This function simulates a birp_data object for tidy data

Description

This function simulates a birp_data object for tidy data

```
simulate_birp(
  timepoints = c(1, 2, 3),
  timesOfChange = c(),
  gamma = NULL,
 negativeBinomial = FALSE,
  stochastic = FALSE,
 numLocations = 2,
 numMethods = 1,
  numCIGroups = 1,
 numCovariatesEffort = 1,
 numCovariatesDetection = 0,
 BACI = NULL,
  n_{bar} = 1000,
 N_0 = NULL
  a = NULL,
  logSigma = NULL,
  logPhi = NULL,
  covariatesEffort = "gamma(1, 2)",
  covariatesDetection = "normal(0, 1)",
 proportionZeroEffort = 0,
  verbose = TRUE
)
```

simulate_birp 17

Arguments

timepoints A vector of integers that denote the time points

timesOfChange A numeric or integer vector specifying the times of change

gamma A numeric vector denoting the values of gamma to simulate. If NULL, all

gamma will be set to zero

negativeBinomial

A boolean indicating if the Poisson (default) or negative binomial model should

be used

stochastic A boolean indicating if the deterministic (default) or stochastic trend model

should be used

numLocations An integer denoting the number of locations numMethods An integer denoting the number of methods

numCIGroups An integer denoting the number of control-intervention (CI) groups

numCovariatesEffort

An integer denoting the number of covariates for modeling the effort

numCovariatesDetection

An integer denoting the number of covariates for modeling the detection proba-

bilities

BACI A matrix specifying the BACI configuration. Each row of the matrix corre-

sponds to a control/intervention group, and each column to an epoch. In addition, the very first column specifies the name of the control-intervention group. The values of the matrix specify which gamma to use for each group and epoch. E.g. BACI = matrix(c("A", "B", 1, 1, 1, 2), nrow = 2) corresponds to a canonical BACI design where the first row represents the control group (A) and the second

row represents the intervention group (B)

n_bar A numeric value denoting the average number of counts to be simulated

N_0 A numeric value denoting the expected number of observations at the first time

point. If NULL, n bar will be used instead

A single value (shared across methods) or a numeric vector (per method) used

to simulate values under the negative binomial distribution

logSigma A single value denoting the value of logSigma of the stochastic model to simu-

late. If NULL, logSigma will be set to -1

logPhi A numeric vector denoting the values of logPhi of the stochastic model to sim-

ulate. If NULL, logPhi will be simulated according to the model assumptions

covariatesEffort

Denotes the covariates for calculating the effort. There are 3 options: 1) a single number, which is used for all covariates and locations; 2) a vector of numbers, one per covariate but the same for all location; 3) a distribution to simulate the effort from, which can be either "gamma(a, b)" or "uniform(a, b)" where a and

b can be set or 4) a vector of such distributions, one per covariate

covariatesDetection

Denotes the covariates for calculating the detection probabilities. There are 3 options: 1) a single number, which is used for all covariates and locations; 2) a

vector of numbers, one per covariate but the same for all location; 3) a distribution to simulate the detection probabilities from, which can be either "normal(a, b)" or "uniform(a, b)" where a and b can be set or 4) a vector of such distributions, one per covariate

proportionZeroEffort

The proportion of effort covariates which are set to zero

verbose

Logical. If FALSE, the console output is suppressed

Value

An object of type birp_data

Examples

```
data <- simulate_birp()</pre>
```

```
simulate_birp_from_results
```

This function simulates a birp_data object using all parameter estimates, dimensionality (methods, locations, timepoints) and the total number of counts nu_ij of a birp object

Description

This function simulates a birp_data object using all parameter estimates, dimensionality (methods, locations, timepoints) and the total number of counts nu_ij of a birp object

Usage

```
simulate_birp_from_results(
    x,
    negativeBinomial = FALSE,
    stochastic = FALSE,
    mu = NULL,
    b = NULL,
    logSigma = NULL,
    logPhi = NULL,
    verbose = TRUE
)
```

Arguments

x An object of type birp negativeBinomial

A boolean indicating if the Poisson (default) or negative binomial model should be used

summary.birp 19

stochastic	A boolean indicating if the deterministic (default) or stochastic trend model should be used
mu	A numeric vector denoting the values of mu to be used for the negative binomial model, where the size is given by the number of method-location combinations. If NULL, all mu_i for one method i are set to the (number of locations)^(-1) for that method
b	A numeric vector denoting the values of b to be used for the negative binomial model (one per method). If NULL, all b_i are set to 1
logSigma	A single value denoting the value of logSigma of the stochastic model to simulate. If NULL, logSigma will be set to -1
logPhi	A numeric vector denoting the values of logPhi of the stochastic model to simulate. If NULL, logPhi will be simulated according to the model assumptions
verbose	Logical. If FALSE, the console output is suppressed

Value

An object of type birp_data

Examples

```
data <- simulate_birp()
x <- birp(data)
data2 <- simulate_birp_from_results(x)</pre>
```

summary.birp

Summarizing a birp object

Description

Summarizing a birp object

Usage

```
## S3 method for class 'birp'
summary(object, ...)
```

Arguments

object A birp object.

... Additional parameters passed to summary functions.

Value

No return value, called for side effects.

20 summary.birp_data

See Also

birp

Examples

```
data <- simulate_birp()
est <- birp(data)
summary(est)</pre>
```

summary.birp_data

This function summarizes a birp_data object

Description

This function summarizes a birp_data object

Usage

```
## S3 method for class 'birp_data'
summary(object, ...)
```

Arguments

object The birp_data object to be printed.
... Other parameters passed to function

Value

No return value, called for side effects

```
data <- simulate_birp()
summary(data)</pre>
```

Index

```
* package
    birp-package, 2
assess_NB, 3
birp, 4, 9, 12–15, 20
{\tt birp-package, 2}
birp_data, 5, 6, 7, 18, 19
birp_data_from_data_frame, 6
birp_data_from_file, 7
birp\_from\_command\_line, 8
plot.birp, 8
plot.birp_data, 10
plot_epoch_pair, 11
plot_mcmc, 12
plot_trend, 13
print.birp, 15
print.birp_data, 15
simulate_birp, 16
simulate\_birp\_from\_results, 18
summary.birp, 19
summary.birp_data, 20
```