Аналітична геометрія Семестр 1

Зміст

1	Век	тори
	1.1	Основні означення
	1.2	Поняття базис
		1.2.1 Випадок на площині
		1.2.2 Випадок в просторі
	1.3	Декартова система координат
	1.4	Лінійна залежність/незалежність
	1.5	Проєкція на вісь
	1.6	Скалярний добуток
	1.7	Векторний добуток векторів
	1.8	Мішаний добуток векторів
	1.9	Подвійний векторний добуток
	1.10	*Формула ділення відрізка в заданому співвідношенні 17
_	_	
2		аток аналітичної геометрії. Прямі та площини 19
	2.1	Пряма на площині
	2.2	Нормальне рівняння прямої
	2.3	Площина в просторі
	2.4	Нормальне рівняння площини
	2.5	Пряма в просторі
	2.6	Відстані
	2.7	*Жмутки
3	Knz	ві та поверхні другого порядку 32
	3.1	Еліпс
	3.2	Гіпербола
	3.3	Парабола
	3.4	Оптичні властивості кривих другого порядку
	3.5	Криві другого порядку як конічний перетин
	3.6	Циліндри
	3.7	Конічні поверхні
	9.1	Trom im nobepair
4	Мно	огочлени 45
	4.1	Про подільність многочленів
	4.2	Комплексні корені многочленів
	4.3	Спільні дільники та кратні двох многочленів
	4.4	Дробово-раціональні вирази, розклад

1 Вектори

1.1 Основні означення

Definition 1.1.1. Вектор - напрямлений відрізок

Позначення: \vec{a}

Definition 1.1.2. Два вектора, що лежать на паралельних прямих (або на одній прямій), називають **колінеарними** Позначення: $\vec{a} \parallel \vec{b}$

Інші позначення для колінеарних векторів:

 $\vec{a} \uparrow \uparrow \vec{b}$ - співнапрямлені вектори

 $\vec{a} \uparrow \downarrow \vec{b}$ - протилежно напрямлені вектори

 $|\vec{a}|$ - довжина вектора

Definition 1.1.3. Вектори \vec{a} та \vec{b} називають **рівними**, якщо:

$$\begin{array}{c} -\vec{a}\uparrow\uparrow\vec{b}\\ -|\vec{a}|=|\vec{b}| \end{array}$$

Definition 1.1.4. Задані операції над векторами:

- додавання;

правило трикутника

 $ec{b}$ правило паралелограма

- множення на скаляр;

А також задані наступні властивості:

$$\forall \vec{a}, \vec{b}, \vec{c} : \forall \lambda, \mu \in \mathbb{R} :$$

$$1) \vec{a} + \vec{b} = \vec{b} + \vec{a}$$

1)
$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$

2)
$$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$$

3)
$$\exists \vec{0} : \vec{a} + \vec{0} = \vec{a}$$

4)
$$\exists (-\vec{a}) : \vec{a} + (-\vec{a}) = \vec{0}$$

Тут малюнок навряд чи знадобиться

5)
$$\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b}$$

Випливає із подібності трикутників

6)
$$\vec{a}(\lambda + \mu) = \lambda \vec{a} + \mu \vec{a}$$

$$7) (\lambda \mu) \vec{a} = (\lambda \mu) \vec{a}$$

$$8) \ 1 \cdot \vec{a} = \vec{a}$$

Тут малюнок навряд чи знадобиться

Definition 1.1.5. Два вектора, що лежать на перпендикулярних прямих, називають ортогональними

Позначення: $\vec{a} \perp \vec{b}$

1.2 Поняття базис

Proposition 1.2.0. $\vec{a} \parallel \vec{b} \iff \exists \lambda \in \mathbb{R} : \vec{a} = \lambda \vec{b}$ Proof.

$$\vec{a} \parallel \vec{b} \iff \begin{bmatrix} \vec{a} \uparrow \uparrow \vec{b} \\ \vec{a} \uparrow \downarrow \vec{b} \end{bmatrix} \iff \exists \lambda : \begin{bmatrix} \vec{a} = \frac{|\vec{a}|}{|\vec{b}|} \vec{b} \\ = \lambda \\ \vec{a} = -\frac{|\vec{a}|}{|\vec{b}|} \vec{b} \end{bmatrix}$$

 $f Remark~1.2.0.~ec 0 \parallel ec b$ для будь-якого ec b

1.2.1 Випадок на площині

Theorem 1.2.1.1. Задані два вектори \vec{a} , \vec{b} , що не колінеарні Тоді $\forall \vec{c}$ на площині: $\exists ! \alpha, \beta \in \mathbb{R}$: $\vec{c} = \alpha \vec{a} + \beta \vec{b}$

Proof.

Маємо довільні вектори \vec{a} , \vec{b} , \vec{c} на площині. Ми перемістимо їх, щоб лежали на одному спільному початку

Вздовж векторів \vec{a} , \vec{b} ми також провели заштриховані лінії Тепер доведемо існування:

$$\vec{c} = \overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{AD}$$
 З малюнку видно, що $\overrightarrow{AB} \parallel \vec{a}$ Ргр. 1.2.0. $\exists \alpha, \beta : \overrightarrow{AD} = \beta \vec{b}$

Отже, $\vec{c} = \alpha \vec{a} + \beta \vec{b}$

Доведемо єдиність. !Припустимо, що розклад не є єдиним, тобто $\exists \alpha', \beta' : \vec{c} = \alpha' \vec{a} + \beta' \vec{b}$ Тоді $\vec{0} = \vec{c} - \vec{c} = (\alpha - \alpha') \vec{a} + (\beta - \beta') \vec{b}$ $\Rightarrow (\alpha - \alpha') \vec{a} = (\beta' - \beta) \vec{b} \stackrel{\textbf{Prp. 1.2.0.}}{\Rightarrow} \vec{a} \parallel \vec{b}$

4

Definition 1.2.1.2. Базисом на площині будемо називати фіксовану пару неколінеарних векторів \vec{a} , \vec{b}

 $\forall \vec{c}:\exists! \alpha,\beta\in\mathbb{R}:\vec{c}=\alpha\vec{a}+\beta\vec{b}$ - розклад за базисом

А коефіцієнти α , β задають **координати**

1.2.2Випадок в просторі

Definition 1.2.2.1. Три вектори в просторі називають **компланарними**, якщо вони паралельні одній площині

Proposition 1.2.2.2. \vec{a} , \vec{b} , \vec{c} - компланарні $\iff \exists \alpha, \beta, \gamma \in \mathbb{R}$: $\alpha \vec{a} + \beta \vec{b} + \gamma \vec{c} = \vec{0}$

Proof.

 \Longrightarrow Дано: \vec{a} , \vec{b} , \vec{c} - компланарні

Тоді перемістимо ці вектори так, щоб лежали на одній площині. Тоді один з векторів розкладається за базисом при $\vec{a} \not\parallel \vec{b} \Rightarrow \vec{c} = \alpha \vec{a} + \beta \vec{b}$

$$\Rightarrow \exists \alpha, \beta, \gamma = 1: \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c} = \vec{0}$$
 Якщо ж $\vec{a} \parallel \vec{b}$, то $\vec{a} = \lambda \vec{b}$

$$\Rightarrow \exists \alpha = 1, \beta = -\lambda, \gamma = 0 : \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c} = \vec{0}$$

 $\exists \alpha, \beta, \gamma \in \mathbb{R} :$

$$\alpha \vec{a} + \beta \vec{b} + \gamma \vec{c} = \vec{0}$$

Не втрачаючи загальності, нехай $\gamma \neq 0$. Тоді

$$\vec{c} = \left(-\frac{\alpha}{\gamma}\right) \vec{a} + \left(-\frac{\beta}{\gamma}\right) \vec{b}$$
 - розклад за базисом на площині.

Тому вони є компланарними

Theorem 1.2.2.4. Задані вектори $\vec{a}, \vec{b}, \vec{c}$, що не компланарні Тоді $\forall \vec{d}$ в просторі: $\exists ! \alpha, \beta, \gamma \in \mathbb{R}$:

$$\vec{d} = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}$$

Proof.

Маємо довільні вектори \vec{a} , \vec{b} , \vec{c} , \vec{d} в просторі. Ми перемістимо їх, щоб лежали на одному спільному початку

Вздовж векторів \vec{a} , \vec{b} , \vec{c} ми також провели заштриховані лінії

Тепер доведемо існування:

$$\vec{d} = \overrightarrow{C_1 D_1} = \overrightarrow{C_1 B_1} + \overrightarrow{C_1 C_2}$$

А тепер за порядком, що видно на малюнку:

 $\overrightarrow{C_1D_1}$, \overrightarrow{a} - колінеарні, тому $\overrightarrow{C_1D_1} = \alpha \overrightarrow{a}$

 $\overrightarrow{C_1B_1}$, \overrightarrow{b} - колінеарні, тому $\overrightarrow{C_1B_1} = \beta \overrightarrow{b}$

 $\overrightarrow{C_1C_2}, \ \overrightarrow{c}$ - колінеарні, тому $\overrightarrow{C_1C_2} = \gamma \overrightarrow{c}$

Tomy $\vec{d} = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}$

А доведення на єдиність є аналогічним **Th. 1.2.1.1.** ■

Definition 1.2.2.3. Базисом в просторі будемо називати фіксовану пару некомпланарних векторів $\vec{a}, \vec{b}, \vec{c}$

 $orall ec{d}$: $\exists ! lpha, eta, \gamma \in \mathbb{R}$: $ec{d} = lpha ec{a} + eta ec{b} + \gamma ec{c}$ - розклад за базисом

А коефіцієнти α , β , γ задають **координати**

Ще також в означенні можна позначати $\vec{d} = (\alpha, \beta, \gamma)$ - як набір координат в заданому базисі

В обох підпунктах виконується наступне твердження (надалі в основному буду розглядувати випадок простору):

Theorem 1.2. Задано базис векторів $\vec{a}, \vec{b}, \vec{c}$ і вектори $\vec{d_1} = (\alpha_1, \beta_1, \gamma_1),$ $\vec{d_2} = (\alpha_2, \beta_2, \gamma_2)$. Тоді:

- 1) $\vec{d_1} + \vec{d_2} = (\alpha_1 + \alpha_2, \beta_1 + \beta_2, \gamma_1 + \gamma_2)$
- 2) $\lambda \vec{d_1} = (\lambda \alpha_1, \lambda \beta_1, \lambda \gamma_1)$

Вказівка: підставити задані вектори та винести за дужки базисні вектори

Example 1.2.4. Нехай т. O - точка перетину медіан трикутника ABC. Відомо, що $\overrightarrow{AO}=\vec{a}, \overrightarrow{AC}=\vec{b}$. Розкласти вектор \overrightarrow{AB} за базисом \vec{a}, \vec{b}

Із малюнку можна сказати, що

$$\overrightarrow{AB} = \overrightarrow{AC} + \overrightarrow{CB}$$

Перший вектор $\overrightarrow{AC} = \overrightarrow{b}$ за умовою задачі Другий вектор $\overrightarrow{CB} = 2\overrightarrow{CD}$

Водночас
$$\overrightarrow{AC} + \overrightarrow{CD} = \overrightarrow{AD}$$

За властивістю медіан трикутників, маємо, що
$$\frac{|\overrightarrow{AO}|}{|\overrightarrow{OD}|} = \frac{2}{1}$$
, тому

$$\left|\overrightarrow{OD}\right| = \frac{1}{2} \left| \overrightarrow{AO} \right| = \frac{1}{2} |\overrightarrow{a}|$$

А оскільки вони ще й співнапрямлені, то тоді $\overrightarrow{OD} = \frac{1}{2}\vec{a}$

Звідси
$$\overrightarrow{AD} = \frac{3}{2}\overrightarrow{a}$$

Тоді
$$\overrightarrow{CD} = \overrightarrow{\overrightarrow{AD}} - \overrightarrow{AC} = \frac{3}{2}\overrightarrow{a} - \overrightarrow{b}$$

Остаточно
$$\overrightarrow{AB} = 3\vec{a} - \vec{b}$$

Декартова система координат 1.3

Definition 1.3.1. Нехай в просторі задано базис $\vec{a}, \, \vec{b}, \, \vec{c}$

Встановимо фіксовану т. О - початок координат, туди й прикладемо всі вектори

Така сукупність називається декартовою системою координат

Будь-якій т. M в просторі однозначно відповідає вектор \overrightarrow{OM} - радіус-вектор Розкладемо за нашим базисом:

$$\overrightarrow{OM} = \alpha_M \vec{a} + \beta_M \vec{b} + \gamma_M \vec{c} = (\alpha_M, \beta_M, \gamma_M)$$

Через однозначність ми назвемо $M(\alpha_M, \beta_M, \gamma_M)$ координатами т. M

А тепер нехай задані т. $M(\alpha_M, \beta_M, \gamma_M), N(\alpha_N, \beta_N, \gamma_N)$ Знайдемо координати вектора \overrightarrow{MN}

Враховуючи існування початку координат, отримаємо:

$$\overline{MN} = \overline{ON} - \overline{OM} = (\alpha_N - \alpha_M, \beta_N - \beta_M, \gamma_N - \gamma_M)$$

1.4 Лінійна залежність/незалежність

Definition 1.4.1. Система векторів $\{\vec{a_1}, \dots, \vec{a_n}\}$ називається:

- **лінійно незалежною**, якщо з рівності $\alpha_1 \vec{a_1} + \cdots + \alpha_n \vec{a_n} = \vec{0}$, де $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$, випливає $\alpha_1 = \cdots = \alpha_n = 0$

- лінійно залежною, якщо $\exists \alpha_1, \dots, \alpha_n \in \mathbb{R}: |\alpha_1| + \dots + |\alpha_n| \neq 0: \alpha_1 \vec{a_1} + \dots + \alpha_n \vec{a_n} = \vec{0}$

Definition 1.4.2. Вираз $\alpha_1\vec{a_1}+\cdots+\alpha_n\vec{a_n}$, де $\alpha_1,\ldots,\alpha_n\in\mathbb{R}$, називається лінійною комбінацією

Proposition 1.4.3. $\vec{a}, \, \vec{b}$ - л.з. $\iff \vec{a} \parallel \vec{b}$ Proof.

 \vec{a} , \vec{b} - л.з. $\iff \exists \alpha, \beta: |\alpha| + |\beta| \neq 0: \alpha \vec{a} + \beta \vec{b} = \vec{0} \iff$ Не втрачаючи загальності, ми вважатимемо, що $\alpha \neq 0$

$$\iff \vec{a} = -\frac{\beta}{\alpha} \vec{b} \stackrel{\text{позн.} \lambda = -\frac{\beta}{\alpha}}{=} \lambda \vec{b} \iff \vec{a} \parallel \vec{b} \blacksquare$$

Corollary 1.4.3. \vec{a} , \vec{b} - л.н.з. $\iff \vec{a} \not\parallel \vec{b}$

Proposition 1.4.4. На площині три вектори завжди лінійно залежні Proof.

Розглянемо вектори \vec{a} , \vec{b} , \vec{c} . І знову не втрачаючи загальності, візьмемо перші два вектори та розглянемо два підпункти:

1) $\vec{a} \parallel \vec{b}$

Тоді $\vec{a}=\lambda\vec{b}\Rightarrow 1\cdot\vec{a}+(-\lambda)\vec{b}+0\cdot\vec{c}=\vec{0}$, причому тут $|1|+|-\lambda|+|0|\neq 0$. Отже, $\{\vec{a},\vec{b},\vec{c}\}$ - л.з.

 $2) \vec{a} \not\parallel \vec{b}$

Тоді $\exists \alpha, \beta: \vec{c} = \alpha \vec{a} + \beta \vec{b} \Rightarrow \alpha \vec{a} + \beta \vec{b} + (-1)\vec{c} = \vec{0}$, причому тут $|\alpha| + |\beta| + |-1| \neq 0$. Отже, $\{\vec{a}, \vec{b}, \vec{c}\}$ - л.з.

Остаточно маємо, що 3 вектори на площині - л.з.

Proposition 1.4.5. \vec{a} , \vec{b} , \vec{c} - л.з. $\iff \vec{a}$, \vec{b} , \vec{c} - компланарні Proof.

 \vec{a},\vec{b},\vec{c} - л.з. $\iff \exists \alpha,\beta,\gamma: |\alpha|+|\beta|+|\gamma|\neq 0: \alpha\vec{a}+\beta\vec{b}+\gamma\vec{c}=\vec{0} \iff$ Не обмежуючи загальності, нехай $\alpha\neq 0$

$$ec{a} = -rac{eta}{lpha} ec{b} - rac{\gamma}{lpha} ec{c}^{\, ext{позн.} \lambda = -rac{eta}{lpha}, \mu = -rac{\gamma}{lpha}} \, \lambda ec{b} + \mu ec{c} \iff ec{a}, ec{b}, ec{c}$$
 - компланарні \blacksquare

Corollary 1.4.5. \vec{a} , \vec{b} , \vec{c} - л.н.з. $\iff \vec{a}$, \vec{b} , \vec{c} - не компланарні

Proposition 1.4.6. В просторі чотири вектори завжди лінійно залежні Proof.

Розглянемо вектори \vec{a} , \vec{b} , \vec{c} , \vec{d} . І знову не втрачаючи загальності, візьмемо перші три вектори та розглянемо два підпункти:

1) \vec{a} , \vec{b} , \vec{c} - компланарні

Тоді $\exists \alpha, \beta : \vec{c} = \alpha \vec{a} + \beta \vec{b} \Rightarrow \alpha \vec{a} + \beta \vec{b} + (-1)\vec{c} + 0 \cdot \vec{d} = \vec{0}$, причому тут $|\alpha| + |\beta| + |-1| + |0| \neq 0$. Отже, $\{\vec{a}, \vec{b}, \vec{c}, \vec{d}\}$ - л.з.

2) \vec{a} , \vec{b} , \vec{c} - не компланарні

Тоді $\exists \alpha, \beta, \gamma : \vec{d} = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c} \Rightarrow \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c} + (-1)\vec{d} = \vec{0}$, причому тут $|\alpha| + |\beta| + |\gamma| + |-1| \neq 0$. Отже, $\{\vec{a}, \vec{b}, \vec{c}, \vec{d}\}$ - л.з.

Остаточно маємо, що 4 вектори в просторі - л.з. ■

Corollary 1.4.6. В просторі вектори кількістю більше 4 завжди лінійно залежні

1.5 Проєкція на вісь

Definition 1.5.1. Проєкцією вектора \vec{a} вісь l називають вираз:

$$pr_l\vec{a} = \pm |AB|$$

Якщо \vec{a} утворює гострий кут з віссю l, то беремо + Якщо \vec{a} утворює тупий кут з віссю l, то беремо -

Якщо перемістити паралельно \vec{a} так, щоб початок був в т. A, то маємо з малюнку:

$$|AB| = |\vec{a}| \cos \alpha$$

Ця формула буде також справедливою при розгляданні тупого кута Отримали інакшу формулу проєкції:

$$pr_l\vec{a} = |\vec{a}|\cos\alpha$$

Proposition 1.5.2. Властивості

- 1) $pr_l(\vec{a} + \vec{b}) = pr_l\vec{a} + pr_l\vec{b}$
- 2) $pr_l(\lambda \vec{a}) = \lambda \cdot pr_l \vec{a}$

Proof.

1) Тут є чотири випадки, наведу ілюстративно:

1.1) $pr_l(\vec{a}+b) = |AB| = |AC| + |CB| = pr_l\vec{a} + pr_lb$ 1.2), 1.3), 1.4) аналогічно

2) Тут теж чотири випадки, знову ілюстративно:

Дріб дорівнює нашому скаляру, використовуючи подібності трикутників (якщо вісь l перемістити до початку \vec{a}) 2.2), 2.3), 2.4) аналогічно \blacksquare

Definition 1.5.3. Проєкцією вектора \vec{a} на вектор \vec{b} називають проєкцію вектора на вісь, напрямок якого задається вектором \vec{b}

1.6 Скалярний добуток

Definition 1.6.1. Скалярним добутком векторів $\vec{a}, \ \vec{b}$ називають величину:

$$(\vec{a}, \vec{b}) = |\vec{a}| \cdot |\vec{b}| \cdot \cos \alpha$$

де α - кут між вектором \vec{a} та \vec{b}

Proposition 1.6.2. Критерій ортогональності

$$\vec{a} \perp \vec{b} \iff (\vec{a}, \vec{b}) = 0$$

Proof.

$$(\vec{a}, \vec{b}) = 0 \iff |\vec{a}||\vec{b}|\cos \alpha = 0 \iff \cos \alpha = 0 \iff \vec{a} \perp \vec{b} \blacksquare$$

Proposition 1.6.3. Властивості

- 1) $(\vec{a}, \vec{b}) = (\vec{b}, \vec{a})$
- 2) $(\vec{a}, \vec{b}) = pr_{\vec{b}}\vec{a} \cdot |\vec{b}| = pr_{\vec{a}}\vec{b} \cdot |\vec{a}|$
- 3) $(\vec{a_1} + \vec{a_2}, \vec{b}) = (\vec{a_1}, \vec{b}) + (\vec{a_2}, \vec{b})$
- 4) $(\lambda \vec{a}, \vec{b}) = \lambda(\vec{a}, \vec{b})$
- 5) $(\vec{a}, \vec{a}) = |\vec{a}|^2$
- 6) $\forall \vec{b} : (\vec{a}, \vec{b}) = 0 \Rightarrow \vec{a} = \vec{0}$
- 7) $\forall \vec{d} : (\vec{a}, \vec{d}) = (\vec{b}, \vec{d}) \Rightarrow \vec{a} = \vec{b}$

Proof.

- 1) $(\vec{a}, \vec{b}) = |\vec{a}||\vec{b}|\cos \alpha = |\vec{b}||\vec{a}|\cos \alpha = (\vec{b}, \vec{a})$
- 2) $(\vec{a}, \vec{b}) = |\vec{a}||\vec{b}|\cos\alpha = pr_{\vec{b}}\vec{a}\cdot|\vec{b}| = pr_{\vec{a}}\vec{b}\cdot|\vec{a}|$
- 3) $(\vec{a_1} + \vec{a_2}, \vec{b}) = pr_{\vec{b}}(\vec{a_1} + \vec{a_2})|\vec{b}| = pr_{\vec{b}}\vec{a_1}|\vec{b}| + pr_{\vec{b}}\vec{a}|\vec{b}| = (\vec{a_1}, \vec{b}) + (\vec{a_2}, \vec{b})$
- 4) $(\lambda \vec{a}, \vec{b}) = pr_{\vec{b}}(\lambda \vec{a})|\vec{b}| = \lambda pr_{\vec{b}}(\vec{a})|\vec{b}| = \lambda(\vec{a}, \vec{b})$
- 5) $(\vec{a}, \vec{a}) = |\vec{a}| |\vec{a}| \cos 0 = |\vec{a}|^2$
- 6) $\forall \vec{b} : (\vec{a}, \vec{b}) = 0 \stackrel{\vec{b} = \vec{a}}{\Rightarrow} (\vec{a}, \vec{a}) = 0 \Rightarrow \vec{a} = \vec{0}$
- $7) \ \forall \vec{d} : (\vec{a}, \vec{d}) = (\vec{b}, \vec{d}) \Rightarrow (\vec{a} \vec{b}, \vec{d}) = (\vec{a}, \vec{d}) (\vec{b}, \vec{d}) = 0 \Rightarrow \vec{a} \vec{b} = 0 \Rightarrow \vec{a} = \vec{b}$

Example 1.6.4. Нехай задані такі вектори \vec{a}, \vec{b} , що $|\vec{a}| = 3, |\vec{b}| = 2$, а також кут між ними становить $\frac{2\pi}{3}$. З'ясувати, чи будуть вектори $\vec{a} + 2\vec{b}$

та $3\vec{a}-\vec{b}$ ортогональними

Для цього знайдемо їхній скалярний добуток. За властивістю скалярного добутку, маємо:

$$(\vec{a} + 2\vec{b}, 3\vec{a} - \vec{b}) = 3(\vec{a}, \vec{a}) - (\vec{a}, \vec{b}) + 6(\vec{b}, \vec{a}) - 2(\vec{b}, \vec{b}) = 3|\vec{a}|^2 + 5(\vec{a}, \vec{b}) - 2|\vec{b}|^2 = 27 + 5|\vec{a}||\vec{b}|\cos\frac{2\pi}{3} - 8 = 4$$

$$(\vec{a} + 2\vec{b}, 3\vec{a} - \vec{b}) \neq 0 \Rightarrow \vec{a} + 2\vec{b} \not\perp 3\vec{a} - \vec{b}$$

Розглянемо вектори $\vec{a}=(a_1,a_2,a_3), \vec{b}=(b_1,b_2,b_3),$ які розкладені за базисом \vec{p},\vec{q},\vec{r}

Знайдемо їхній скалярний добуток:

$$(\vec{a}, \vec{b}) = (a_1 \vec{p} + a_2 \vec{q} + a_3 \vec{r}, b_1 \vec{p} + b_2 \vec{q} + b_3 \vec{r}) =$$

$$= a_1 b_1(\vec{p}, \vec{p}) + a_1 b_2(\vec{p}, \vec{q}) + a_1 b_3(\vec{p}, \vec{r}) +$$

$$+ a_2 b_1(\vec{q}, \vec{p}) + a_2 b_2(\vec{q}, \vec{q}) + a_2 b_3(\vec{q}, \vec{r}) +$$

$$+ a_3 b_1(\vec{r}, \vec{p}) + a_3 b_2(\vec{r}, \vec{q}) + a_3 b_3(\vec{r}, \vec{r})$$

Поки нічого особистого. Проте якщо ми вимагатимемо, що $\vec{p} \perp \vec{q}$, $\vec{q} \perp \vec{r}$, $\vec{r} \perp \vec{p}$, то $(\vec{p}, \vec{q}) = (\vec{q}, \vec{r}) = (\vec{r}, \vec{p}) = 0$.

Definition 1.6.5. Базис, в якому всі вектори перпендикулярні між собою, називається **ортогональним**

Залишиться:

$$(\vec{a}, \vec{b}) = a_1 b_1 |\vec{p}|^2 + a_2 b_2 |\vec{q}|^2 + a_3 b_3 |\vec{r}|^2$$

Вже формула приємніше. Але буде ще цікавою, коли додамо, що $\vec{p}, \vec{q}, \vec{r}$ будуть одиничними, тобто $|\vec{p}| = |\vec{q}| = |\vec{r}| = 1$

Definition 1.6.6. Ортогональний базис, в якому довжина векторів одинична, називається **ортонормальним**

Позначення: $\{\vec{i}, \vec{j}, \vec{k}\}$

Remark 1.6.6. Надалі ми будемо мати справу саме з цим базисом

Остаточно отримаємо:

Proposition 1.6.7. Для векторів $\vec{a} = (a_1, a_2, a_3), \vec{b} = (b_1, b_2, b_3)$ в ортонормованому базисі скалярний добуток рахується таким чином: $(\vec{a}, \vec{b}) = a_1b_1 + a_2b_2 + a_3b_3$

Corollary 1.6.7. Для вектора $\vec{a}=(a_1,a_2,a_3)$ в ортонормованому базисі $|\vec{a}|=\sqrt{a_1^2+a_2^2+a_3^2}$

Векторний добуток векторів 1.7

Definition 1.7.1. Упорядковану трійку некомпланарних векторів $\vec{a}, \vec{b}, \vec{c}$ ми будемо називати **правою**, якщо сісти на кінець вектора \vec{c} , взяти менший з кутів між \vec{a} та \vec{b} та спостерігати поворот від \vec{a} до \vec{b} проти годинникової стрілки

Definition 1.7.2. Якщо спостерігаємо це явище за годинниковою стрілкою, то тоді впорядковану трійку називають лівою

Proposition 1.7.3. Властивості

Задана права трійка $\{\vec{a}, \vec{b}, \vec{c}\}$. Тоді:

- 1) $\{\vec{b},\vec{c},\vec{a}\},\{\vec{c},\vec{a},\vec{b}\}$ права трійка 2) $\{\vec{a},\vec{b},-\vec{c}\},\{-\vec{a},\vec{b},-\vec{c}\},\{\vec{a},-\vec{b},-\vec{c}\}$ ліва трійка
- 3) $\{\vec{b}, \vec{a}, \vec{c}\}, \{\vec{a}, \vec{c}, \vec{b}\}, \{\vec{c}, \vec{b}, \vec{a}\}$ ліва трійка

Definition 1.7.4. Векторним добутком векторів \vec{a}, \vec{b} називається вектор \vec{c} , який:

- 1) $|\vec{c}| = |\vec{a}| |\vec{b}| \sin \alpha, \, \alpha$ кут між вектором \vec{a} та \vec{b}
- 2) $\vec{c} \perp \vec{a}, \vec{c} \perp \vec{b}$
- 3) $\{\vec{a}, \vec{b}, \vec{c}\}$ права трійка

Позначення: $\vec{c} = [\vec{a}, \vec{b}]$

Proposition 1.7.5. Властивості

- 1) $[\vec{a}, \vec{b}] = -[\vec{b}, \vec{a}]$
- 2) $[\vec{a}, \vec{b}] = \vec{0} \iff \vec{a} \parallel \vec{b}$
- 3) $[\vec{a_1} + \vec{a_2}, \vec{b}] = [\vec{a_1}, \vec{b}] + [\vec{a_2}, \vec{b}]$
- 4) $[\lambda \vec{a}, \vec{b}] = \lambda [\vec{a}, \vec{b}]$

5) Геометричний сенс: $|[\vec{a}, \vec{b}]| = S_{\text{паралелограма}}$

Proof.

1) $|[\vec{b}, \vec{a}]| = |[\vec{a}, \vec{b}]| = |\vec{a}||\vec{b}|\sin \alpha$

За означенням, $[\vec{a}, \vec{b}]$ та $[\vec{b}, \vec{a}]$ одночасно $\perp \vec{a}, \perp \vec{b}$

$$\Rightarrow [\vec{a}, \vec{b}] \parallel [\vec{b}, \vec{a}] \Rightarrow [\vec{a}, \vec{b}] = \pm [\vec{b}, \vec{a}]$$

Коли $\{\vec{b},\vec{a},[\vec{b},\vec{a}]\}$ - права, то $\{\vec{a},\vec{b},[\vec{b},\vec{a}]\}$ - ліва, а тому $\{\vec{a},\vec{b},-[\vec{b},\vec{a}]\}$ - права

Отже, $[\vec{b}, \vec{a}] = -[\vec{a}, \vec{b}]$

2)
$$[\vec{a}, \vec{b}] = \vec{0} \iff |[\vec{a}, \vec{b}]| = 0 \iff |\vec{a}||\vec{b}|\sin\alpha = 0 \Rightarrow \alpha = 0, \pi \Rightarrow \vec{a} \parallel \vec{b}$$

- 3), 4) на потім залишемо (можна й безпосередньо, але воно довге)
- 5) це випливає з означення

1.8 Мішаний добуток векторів

Definition 1.8.1. Мішаним добутков трьох векторів $\vec{a}, \vec{b}, \vec{c}$ називають число:

$$(\vec{a}, \vec{b}, \vec{c}) = (\vec{a}, [\vec{b}, \vec{c}])$$

Proposition 1.8.2. Властивості

- 1) Знак мішаного добутку:
- +, якщо $\{ec{a},ec{b},ec{c}\}$ права трійка
- -, якщо $\{ \vec{a}, \vec{b}, \vec{c} \}$ ліва трійка
- 2) $(\vec{a}, \vec{b}, \vec{c}) = (\vec{b}, \vec{c}, \vec{a}) = (\vec{c}, \vec{a}, \vec{b}) = -(\vec{b}, \vec{a}, \vec{c}) = -(\vec{a}, \vec{c}, \vec{b}) = -(\vec{c}, \vec{b}, \vec{a})$
- 3) Геометричний сенс: $|(\vec{a}, \vec{b}, \vec{c})| = V_{\text{паралелепіпед}}$
- 4) $(\vec{a}, \vec{b}, \vec{c}) = 0 \iff \vec{a}, \vec{b}, \vec{c}$ компланарні
- 5) $(\vec{a}, \vec{b}, \vec{c}) = (\vec{a}, [\vec{b}, \vec{c}]) = ([\vec{a}, \vec{b}], \vec{c})$
- 6) $(\vec{a_1} + \vec{a_2}, \vec{b}, \vec{c}) = (\vec{a_1}, \vec{b}, \vec{c}) + (\vec{a_2}, \vec{b}, \vec{c})$
- 7) $(\lambda \vec{a}, \vec{b}, \vec{c}) = \lambda(\vec{a}, \dot{\vec{b}}, \vec{c})$

Proof.

 $1)\;(a,b,c)>0\iff pr_{[\vec{b},\vec{c}]}\vec{a}>0\iff \text{кут між цими векторами - гострий}\\ \iff \{\vec{a},\vec{b},\vec{c}\}\text{ - права}\\ (a,b,c)<0\iff pr_{[\vec{b},\vec{c}]}\vec{a}<0\iff \text{кут між цими векторами - тупий}\\ \iff \{\vec{a},\vec{b},\vec{c}\}\text{ - ліва}$

- 2) Дивись **Prp. 1.7.3.**, яка трійка права та ліва. Тому й виникає рівність
- 3) Об'єм паралелепіпеда це площа основи на висоту

$$V = S \cdot h = |[\vec{b}, \vec{c}]| \cdot |pr_{[\vec{b}, \vec{c}]}\vec{a}| = |[\vec{b}, \vec{b}]pr_{[\vec{b}, \vec{c}]}\vec{a}| = |(\vec{a}, [\vec{b}, \vec{c}])| = |(\vec{a}, \vec{b}, \vec{c})|$$

 $4)\;(\vec{a},\vec{b},\vec{c})=0\iff V=0,$ тобто ці вектори лежать на одній площині - компланарні

5)
$$(\vec{a}, [\vec{b}, \vec{c}]) = (\vec{a}, \vec{b}, \vec{c}) = (\vec{c}, \vec{a}, \vec{b}) = (\vec{c}, [\vec{a}, \vec{b}]) = ([\vec{a}, \vec{b}], \vec{c})$$

6)
$$(\vec{a_1} + \vec{a_2}, \vec{b}, \vec{c}) = (\vec{a_1} + \vec{a_2}, [\vec{b}, \vec{c}]) = (\vec{a_1}, [\vec{b}, \vec{c}]) + (\vec{a_2}, [\vec{b}, \vec{c}]) = (\vec{a_1}, \vec{b}, \vec{c}) + (\vec{a_2}, \vec{b}, \vec{c})$$

7)
$$(\lambda \vec{a}, \vec{b}, \vec{c}) = (\lambda \vec{a}, [\vec{b}, \vec{c}]) = \lambda (\vec{a}, [\vec{b}, \vec{c}]) = \lambda (\vec{a}, \vec{b}, \vec{c}) \blacksquare$$

Повернемось до п. 1.7.

Доведемо останні два пункти:

- 3) Візьмемо довільний вектор \vec{d} і знайдемо наступний скалярний добуток: $(\vec{d}, [\vec{a_1} + \vec{a_2}, \vec{b}]) = (\vec{d}, \vec{a_1} + \vec{a_2}, \vec{b}) = (\vec{d}, \vec{a_1}, \vec{b}) + (\vec{d}, \vec{a_2}, \vec{b}) = (\vec{d}, [\vec{a_1}, \vec{b}]) + (\vec{d}, [\vec{a_2}, \vec{b}]) = (\vec{d}, [\vec{a_1}, \vec{b}] + [\vec{a_2}, \vec{b}])$ $\Rightarrow [\vec{a_1} + \vec{a_2}, \vec{b}] = [\vec{a_1}, \vec{b}] + [\vec{a_2}, \vec{b}]$
- 4) Візьмемо довільний вектор \vec{d} і знайдемо наступний скалярний добуток: $(\vec{d}, [\lambda \vec{a}, \vec{b}]) = (\vec{d}, \lambda \vec{a}, \vec{b}) = \lambda(\vec{d}, \vec{a}, \vec{b}) = \lambda(\vec{d}, [\vec{a}, \vec{b}]) = (\vec{d}, \lambda [\vec{a}, \vec{b}])$ $\Rightarrow [\lambda \vec{a}, \vec{b}] = \lambda[\vec{a}, \vec{b}] \blacksquare$

Розглянемо вектори $\vec{a}=(a_1,a_2,a_3), \vec{b}=(b_1,b_2,b_3),$ які розкладені за ортонормованим базисом

Знайдемо їхній векторний добуток:

$$\begin{split} &[\vec{a}, \vec{b}] = [a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}, b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}] = \\ &= a_1 b_1 [\vec{i}, \vec{i}] + a_1 b_2 [\vec{i}, \vec{j}] + a_1 b_3 [\vec{i}, \vec{k}] \\ &+ a_2 b_1 [\vec{j}, \vec{i}] + a_2 b_2 [\vec{j}, \vec{j}] + a_2 b_3 [\vec{j}, \vec{k}] \\ &+ a_3 b_1 [\vec{k}, \vec{i}] + a_3 b_2 [\vec{k}, \vec{j}] + a_3 b_3 [\vec{k}, \vec{k}] = \\ &= (a_2 b_3 - a_3 b_2) \vec{i} + (a_1 b_3 - a_3 b_1) \vec{j} + (a_1 b_2 - a_2 b_1) \vec{k} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} \\ &\text{Координати вектора} \ [\vec{a}, \vec{b}] = \begin{pmatrix} \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix}, \begin{vmatrix} a_1 & b_1 \\ a_3 & b_3 \end{vmatrix}, \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \end{pmatrix} \end{split}$$

Повернемось до п. 1.8.

Розглянемо вектори $\vec{a}=(a_1,a_2,a_3), \vec{b}=(b_1,b_2,b_3), \vec{c}=(c_1,c_2,c_3),$ які розкладені за ортонормованим базисом

Знайдемо їхній мішаний добуток:

$$(\vec{a}, \vec{b}, \vec{c}) = ([\vec{a}, \vec{b}], \vec{c}) = c_1 \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix} + c_2 \begin{vmatrix} a_1 & b_1 \\ a_3 & b_3 \end{vmatrix} + c_3 \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

1.9 Подвійний векторний добуток

Definition 1.9.1. Подвійним векторним добутком векторів $\vec{a}, [\vec{b}, \vec{c}]$ називається вектор:

$$[\vec{a}, \vec{b}, \vec{c}] = [\vec{a}, [\vec{b}, \vec{c}]]$$

Proposition 1.9.2. $[\vec{a}, [\vec{b}, \vec{c}]] = \vec{b}(\vec{a}, \vec{c}) - \vec{c}(\vec{a}, \vec{b})$

Розмновна формула: бац мінус цаб :)

Proof.

Розглянемо вектори $\vec{a}=(a_1,a_2,a_3), \vec{b}=(b_1,b_2,0), \vec{c}=(c_1,0,0),$ які розкладені за ортонормованим базисом

Маємо тоді, що $[\vec{b}, \vec{c}] = (0, 0, -b_2c_1)$

$$i [\vec{a}, [\vec{b}, \vec{c}]] = (-a_2b_2c_1, a_1b_2c_1, 0)$$

Водночас
$$\vec{b}(\vec{a}, \vec{c}) - \vec{c}(\vec{a}, \vec{b}) = a_1 c_1 \vec{b} - (a_1 b_1 + a_2 b_2) \vec{c} = (-a_2 b_2 c_1, a_1 b_2 c_1, 0)$$

Отже, $[\vec{a}, [\vec{b}, \vec{c}]] = \vec{b}(\vec{a}, \vec{c}) - \vec{c}(\vec{a}, \vec{b})$

Альтернативне доведення

Розглянемо більш детально подвійні добутки

Спочатку створімо вектор $[\vec{b}, \vec{c}]$. За означенням, $[\vec{b}, \vec{c}] \perp \vec{b}, \vec{c}$

A потім вже вектор $[\vec{a}, \vec{b}, \vec{c}]$. За означенням, $[\vec{a}, \vec{b}, \vec{c}] \perp [\vec{b}, \vec{c}]$

А це означає, що $[\vec{a}, \vec{b}, \vec{c}]$ лежить на площині, що створена векторами $\vec{b}, \vec{b},$ тоді цей вектор розкладемо за базисом

$$[\vec{a}, \vec{b}, \vec{c}] = \beta \vec{b} + \gamma \vec{c}$$

Лишилось знайти координати β, γ

Нам також відомо, що $[\vec{a}, \vec{b}, \vec{b}] \perp \vec{a} \Rightarrow ([\vec{a}, \vec{b}, \vec{b}], \vec{a}) = 0$

Але з іншого боку, $([\vec{a}, \vec{b}, \vec{b}], \vec{a}) = (\beta \vec{b} + \gamma \vec{c}, \vec{a}) = \beta(\vec{b}, \vec{a}) + \gamma(\vec{c}, \vec{a})$

Таким чином,
$$(\vec{a}, \vec{b})\beta + (\vec{a}, \vec{c})\gamma = 0 \Rightarrow \frac{\gamma}{(\vec{a}, \vec{b})} = -\frac{\beta}{(\vec{a}, \vec{c})} = \lambda$$

$$\Rightarrow [\vec{a}, \vec{b}, \vec{c}] = -\lambda \vec{b}(\vec{a}, \vec{c}) + \lambda \vec{c}(\vec{a}, \vec{b})$$

A тепер нехай $\vec{a}=\vec{i},\vec{b}=\vec{j},\vec{c}=\vec{i}$

Отримаємо, що

$$\vec{j} = [\vec{i}, \vec{j}, \vec{i}] = -\lambda \vec{j} \Rightarrow \lambda = -1$$

Підставимо це значення та отримаємо

$$[\vec{a}, [\vec{b}, \vec{c}]] = \vec{b}(\vec{a}, \vec{c}) - \vec{c}(\vec{a}, \vec{b}) \blacksquare$$

Corollary 1.9.2.(1) Тотожність Якобі

$$[\vec{a}, [\vec{b}, \vec{c}]] + [\vec{b}, [\vec{c}, \vec{a}]] + [\vec{c}, [\vec{a}, \vec{b}]] = \vec{0}$$

1.10 *Формула ділення відрізка в заданому співвідношенні

Задані точки $A(x_A, y_A, z_A), B(x_B, y_B, z_B)$. Проведемо відрізок

Встановимо точку $P(x_P, y_P, z_P) \in AB$ таким чином, що $\frac{AP}{PB} = \frac{\lambda}{\mu}$

Знайдемо координати т. P

$$\frac{AP}{PB} = \frac{\lambda}{\mu} \Rightarrow \mu AP = \lambda PB$$

$$\overrightarrow{AP} = (x_P - x_A, y_P - y_A, z_P - z_A), \ \overrightarrow{PB} = (x_B - x_P, y_B - y_P, z_B - z_P)$$
 $\mu \overrightarrow{AP} = \lambda \overrightarrow{PB}$ Тому $\mu(x_P - x_A) = \lambda(x_B - x_P) \Rightarrow \cdots \Rightarrow x_P = \frac{\lambda x_B + \mu x_A}{\lambda + \mu}$ Для y_P, z_P аналогічна формула

2 Початок аналітичної геометрії. Прямі та площини

Definition 2. Рівнянням геометричного місця точок (ГМТ) називається рівняння вигляду F(x,y,z)=0 в просторі або F(x,y)=0 на площині, якому задовільняє будь-яка точка, що належать даному ГМТ, та не задовільняють жодна точка, що не належить ГМТ

Definition 2.0.1. Нормальним вектором прямої/площини називають будь-який ненульовий вектор, що перпендикулярний до цієї прямої/площини

Definition 2.0.2. Спрямованим вектором прямої/площини називають будь-який ненульовий вектор, що паралельний до цієї прямої/площини

2.1 Пряма на площині

А тепер знайдемо рівняння прямої, що проходить через т. $M_0=(x_0,y_0)$ Задамо пряму l, довільну т. $M=(x,y)\in l$ та нормаль $\vec{n}=(A,B)$

Тоді
$$\overline{M_0M} = (x - x_0, y - y_0)$$

Оскільки $\vec{n} \perp \overrightarrow{M_0M}$, то це теж саме, що $(\vec{n}, \overrightarrow{M_0M}) = 0 \iff$

$$A(x - x_0) + B(y - y_0) = 0$$

Отже, отримали **рівняння прямої, що проходить через т.** M_0 : $l: A(x-x_0)+B(y-y_0)=0$

Якщо розкрити дужки, отримаємо:

$$Ax + By \underbrace{-Ax_0 - By_0}_{-C} = Ax + By + C = 0$$

Отже, отримали загальне рівняння прямої

$$l: Ax + By + C = 0$$

Часткові випадки:

1)
$$A = 0$$

Тоді
$$By + C = 0 \Rightarrow y = -\frac{C}{B}$$

пряма, що паралельна осі OX

2)
$$B = 0$$

Тоді
$$Ax + C = 0 \Rightarrow x = \frac{-C}{A}$$

пряма, що паралельна осі ОУ

3)
$$C = 0$$

Тоді
$$Ax + By = 0$$

пряма, що проходить через початок координат

Розглянемо окремо, коли $A,B,C \neq 0$

$$Ax + By = -C$$

$$Ax + By = -C$$

$$\frac{x}{-\frac{C}{A}} + \frac{y}{-\frac{C}{B}} = 1$$

Позначмо
$$-\frac{C}{A} = a, -\frac{C}{B} = b$$

$$\Rightarrow \frac{x}{a} + \frac{y}{b} = 1$$

Позначмо $-\frac{C}{A}=a,\,-\frac{C}{B}=b$ $\Rightarrow \frac{x}{a}+\frac{y}{b}=1$ Отже, отримали **рівняння прямої в відрізках** $l:\frac{x}{a}+\frac{y}{b}=1$

$$l: \frac{x}{a} + \frac{y}{b} = 1$$

Шукаємо тепер рівняння прямої, що проходить через т. $M_0=(x_0,y_0)$ іншим шляхом

Задано пряму l, довільну т. $M=(x,y)\in l$ та спрямований вектор $\vec{a}=(m,n)$

Тоді
$$\overrightarrow{M_0M} = (x - x_0, y - y_0)$$

Оскільки $\vec{a} \parallel \overrightarrow{M_0 M}$ то це теж саме, що $\vec{a} = t \overrightarrow{M_0 M} \iff$

$$\frac{x - x_0}{m} = \frac{y - y_0}{n} = t$$

Отже, отримали **канонічне рівняння прямої, що проходить через** $\mathbf{T}_{\bullet}M_{\bullet}$:

$$\begin{array}{l} {\bf T.} \ M_0: \\ l: \frac{x-x_0}{m} = \frac{y-y_0}{n} \end{array}$$

Якщо параметризувати, тобто встановити рівність $\frac{x-x_0}{m}=\frac{y-y_0}{n}=t,$ то звідси

Отримаємо параметричне рівняння прямої:

$$l: \begin{cases} x = x_0 + mt \\ y = y_0 + nt \end{cases}, t \in \mathbb{R}$$

Задані дві т. $M_1=(x_1,y_1), M_2=(x_2,y_2)$. Знайдемо рівняння прямої, що проходить через них

Створимо спрямлений вектор $\vec{a} = \overrightarrow{M_2M_1} = (x_2 - x_1, y_2 - y_1)$. Тоді, використовуючи канонічне рівняння прямої,

отримаємо рівняння прямої, що проходить через дві точки:

$$\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1}$$

2.2 Нормальне рівняння прямої

У нас вже є загальне рівняння прямої:

$$Ax + By + C = 0$$

Поділимо обидві частини рівняння на $\pm \sqrt{A^2+B^2}$, щоб величина C стала недодатною (із плюсюм, коли C<0, інакше з мінусом)

$$\pm \frac{A}{\sqrt{A^2 + B^2}} x \pm \frac{B}{\sqrt{A^2 + B^2}} y \pm \frac{C}{\sqrt{A^2 + B^2}} = 0$$

Отримаємо нормаль $\vec{n} = \left(\pm \frac{A}{\sqrt{A^2 + B^2}}, \pm \frac{B}{\sqrt{A^2 + B^2}}\right)$, причому $|\vec{n}| = 1$

Більш того, маємо інші деталі:

$$(\vec{n}, \vec{i}) = \cos \alpha = \pm \frac{A}{\sqrt{A^2 + B^2}}$$
$$(\vec{n}, \vec{j}) = \cos \beta = \pm \frac{A}{\sqrt{A^2 + B^2}}$$

$$(\vec{n}, \vec{j}) = \cos \beta = \pm \frac{A}{\sqrt{A^2 + B^2}}$$

Тут α - кут між нормаллю та OX, а тут β - кут між нормаллю та OYОтже, маємо $\vec{n} = (\cos \alpha, \cos \beta)$

Також вважатимемо, що
$$\pm \frac{C}{\sqrt{A^2+B^2}} = -p$$
, причому $p \geq 0$

Тоді отримаємо рівняння такого вигляду:

$$x\cos\alpha + y\cos\beta - p = 0$$

нормальне рівняння прямої

Час дізнатись, що таке взагалі р і в чому взагалі сенс

Нехай задана т. $P=(x_P,y_P) \not\in l$. Візьмемо таку т. $M=(x_M,y_M) \in l$, щоб $\overrightarrow{MP} \parallel \vec{n}$

Тоді розпишемо параметричне рівняння:

$$\begin{cases} x_M - x_P = t \cos \alpha \\ y_M - y_P = t \cos \beta \end{cases}$$

Оскільки $M \in l$, ми можемо її підставити в нормальне рівняння та рівність буде виконуватись:

$$x_M \cos \alpha + y_M \cos \beta - p = 0$$

$$x_P \cos \alpha + y_P \cos \beta + t(\cos^2 \alpha + \cos^2 \beta) - p = 0$$

$$x_P \cos \alpha + y_P \cos \beta - p = -t$$

Запишемо наступне означення:

Definition 2.2.1. Відхиленням т. P від прямої l називається величина:

$$\delta(P, l) = x_P \cos \alpha + y_P \cos \beta - p$$

Тоді
$$\delta(P, l) = -t$$

Зокрема отримаємо, що відстань від т. P до прямої визначається таким чином:

$$d(P, l) = |\overrightarrow{PM}| = |t\overrightarrow{n}| = |\delta(P, l)|$$

Тобто відстань d(P, l) - модуль відхилення

Більш того,
$$\delta(O, l) = -p \Rightarrow d(O, l) = p$$

Тобто р відображає відстань від початку координат до прямої

I наостанок:

$$d(P, l) = |x_P \cos \alpha + y_P \cos \beta - p|$$

відстань від т. Р до прямої

 $\ddot{\mathrm{l}}\ddot{\mathrm{l}}$ можна переписати іншим шляхом, якщо згадати, що таке $\cos lpha, \cos eta, p$ з аналітичної точки зору:

$$d(P, l) = \frac{|Ax_P + By_P + C|}{\sqrt{A^2 + B^2}}$$

2.3 Площина в просторі

Тепер знайдемо рівняння площини, що проходить через т. $M_0=(x_0,y_0,z_0)$ Задамо площину π , довільну т. $M=(x,y,z)\in\pi$ та нормаль $\vec{n}=$ (A, B, C)

Тоді
$$\overrightarrow{M_0M} = (x - x_0, y - y_0, z - z_0)$$

Тоді $\overrightarrow{M_0M} = (x - x_0, y - y_0, z - z_0)$ Оскільки $\overrightarrow{n} \perp \overrightarrow{M_0M}$, то це теж саме, що $(\overrightarrow{n}, \overrightarrow{M_0M}) = 0 \iff$

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$$

Отже, отримали **рівняння площини, що проходить через т.** M_0 : $\pi: A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$

Якщо розкрити дужки, отримаємо:

$$Ax + By + Cz - Ax_0 - By_0 - Cz_0 = Ax + By + Cz + D = 0$$

Отже, отримали загальне рівняння площини

$$\pi: Ax + By + C = 0$$

Часткові випадки:

1)
$$A = 0$$

Оскільки $\vec{n} = (0, B, C)$, то $\vec{n} \perp \vec{i}$ або $\vec{n} \perp OX$. Отже, маємо: By + Cz + D = 0

площина, що паралельна осі OX

2)
$$B = 0$$

Оскільки $\vec{n} = (A, 0, C)$, то $\vec{n} \perp \vec{j}$ або $\vec{n} \perp OY$. Отже, маємо: Ax + Cz + D = 0

площина, що паралельна осі OY

3)
$$C = 0$$

Оскільки $\vec{n} = (A, B, 0)$, то $\vec{n} \perp \vec{k}$ або $\vec{n} \perp OZ$. Отже, маємо: Ax + By + D = 0

площина, що паралельна осі OZ

4)
$$A = B = 0$$

Тоді $\vec{n} = (0, 0, C) \perp \vec{i}; \perp \vec{j}$. Отже, маємо:

$$Cz + D = 0$$

площина, що паралельна площині ХОУ

5)
$$B = C = 0$$

Тоді $\vec{n} = (A, 0, 0) \perp \vec{j}; \perp \vec{k}$. Отже, маємо:

$$Ax + D = 0$$

площина, що паралельна площині YOZ

6)
$$A = C = 0$$

Тоді $\vec{n} = (0, B, 0) \perp \vec{i}; \perp \vec{k}$. Отже, маємо:

$$By + D = 0$$

площина, що паралельна площині XOZ

7)
$$D = 0$$

$$Ax + By + Cz = 0$$

площина, що проходить через початок координат

Розглянемо окремо, коли $A,B,C,D\neq 0$

$$Ax + By + Cz = -L$$

$$Ax + By + Cz = -D$$

$$\frac{x}{-\frac{D}{A}} + \frac{y}{-\frac{D}{B}} + \frac{z}{-\frac{D}{C}} = 1$$

Позначмо
$$-\frac{C}{A} = a, -\frac{B}{A} = b, -\frac{z}{-\frac{D}{C}} = c$$

$$\Rightarrow \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

Отже, отримали **рівняння площини в відрізках** $\pi: \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$

$$\pi: \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

Задані три т. $M_1=(x_1,y_1,z_1), M_2=(x_2,y_2,z_2), M_3=(x_3,y_3,z_3).$ Знайдемо рівняння площини, що проходить через них

Оберему довільну т. M=(x,y,z). Ця точка $M\in (M_1M_2M_3)\iff M_1M, \overrightarrow{M_2M_1}, \overrightarrow{M_3M_1}$ - компланарні $\iff (\overrightarrow{M_1M}, \overrightarrow{M_2M_1}, \overrightarrow{M_3M_1})=0$

Отримаємо рівняння площини, що проходить через три точки:

$$egin{array}{c|cccc} x-x_1 & y-y_1 & z-z_1 \ x_2-x_1 & y_2-y_1 & z_2-z_1 \ x_3-x_1 & y_3-y_1 & z_3-z_1 \ \hline \dot{M}_1 & \dot{M}_2 & \dot{M}_3 \ \end{array} = 0$$

Нормальне рівняння площини 2.4

У нас вже є загальне рівняння площини:

$$Ax + By + Cz + D = 0$$

Поділимо обидві частини рівняння на $\pm \sqrt{A^2 + B^2 + C^2}$, щоб величина D стала недодатною (плюс, коли D < 0, інакше мінус)

$$\pm \frac{A}{\sqrt{A^2+B^2+C^2}} x \pm \frac{B}{\sqrt{A^2+B^2+C^2}} y \pm \frac{C}{\sqrt{A^2+B^2+C^2}} z \pm \frac{D}{\sqrt{A^2+B^2+C^2}} = 0$$
 Отримаємо нормаль $\vec{n} = \left(\pm \frac{A}{\sqrt{A^2+B^2+C^2}}, \pm \frac{B}{\sqrt{A^2+B^2+C^2}}, \pm \frac{C}{\sqrt{A^2+B^2+C^2}}\right),$ причому $|\vec{n}| = 1$

Більш того, маємо інші деталі:

$$(\vec{n}, \vec{i}) = \cos \alpha = \pm \frac{A}{\sqrt{A^2 + B^2 + C^2}}$$
 $(\vec{n}, \vec{j}) = \cos \beta = \pm \frac{B}{\sqrt{A^2 + B^2 + C^2}}$ $(\vec{n}, \vec{k}) = \cos \gamma = \pm \frac{C}{\sqrt{A^2 + B^2 + C^2}}$ Тут α - кут між нормаллю та OX , β - кут між нормаллю та OY , γ - кут

між нормаллю та OZ

Отже, маємо
$$\vec{n}=(\cos\alpha,\cos\beta,\cos\gamma)$$
 Також вважатимемо, що $\pm\frac{D}{\sqrt{A^2+B^2+C^2}}=-p$, причому $p\geq 0$

Тоді отримаємо рівняння такого вигляду:

 $x\cos\alpha + y\cos\beta + z\cos\gamma - p = 0$

нормальне рівняння площини

Час дізнатись, що таке взагалі p і в чому взагалі сенс (спойлер: тут все так само XD)

Нехай задана т. $P=(x_P,y_P,z_P)\not\in\pi$. Візьмемо таку т. $M=(x_M,y_M,z_M)\in$ π , щоб $\overrightarrow{MP} \parallel \vec{n}$ Тоді $\overrightarrow{MP} = t\overrightarrow{n}$

$$\begin{cases} x_M - x_P = t \cos \alpha \\ y_M - y_P = t \cos \beta \\ z_M - z_P = t \cos \gamma \end{cases}$$

Оскільки $M \in l$, ми можемо її підставити та рівність буде виконуватись:

$$x_M \cos \alpha + y_M \cos \beta + z_M \cos \gamma - p = 0$$

$$x_P \cos \alpha + y_P \cos \beta + z_P \cos \gamma + t(\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma) - p = 0$$

$$x_P \cos \alpha + y_P \cos \beta + z_P \cos \gamma - p = -t$$

Запишемо наступне означення:

Definition 2.4.1. Відхиленням т. P від площини π називається величина:

$$\delta(P, l) = x_P \cos \alpha + y_P \cos \beta + z_P \cos \gamma - p$$

Тоді
$$\delta(P, l) = -t$$

Зокрема отримаємо, що відстань від т. P до площини визначається таким чином:

$$d(P, l) = |\overrightarrow{PM}| = |t\overrightarrow{n}| = |\delta(P, l)|$$

Тобто відстань d(P, l) - модуль відхилення

Більш того,
$$\delta(O, l) = -p \Rightarrow d(O, l) = p$$

Тобто р відображає відстань від початку координат до площини

I наостанок:

$$d(P, l) = |x_P \cos \alpha + y_P \cos \beta + z_P \cos \gamma - p|$$

відстань від т. Р до площини

з аналітичної точки зору:
$$d(P,l) = \frac{|Ax_P + By_P + Cz_P + D|}{\sqrt{A^2 + B^2 + C^2}}$$

2.5 Пряма в просторі

З геометрії відомо, що дві площини перетинаються по прямій. Тому якщо задати два рівняння площини з нормалями $\vec{n_1} = (A_1, B_1, C_1), \vec{n_2} = (A_2, B_2, C_2)$, причому вони не є паралельними, то

отримаємо рівняння прямої, за якою перетинаються дві площини:

$$l: \begin{cases} A_1x + B_1y + C_1z + D_1 = 0\\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$$

Шукаємо тепер рівняння прямої, що проходить через т. $M_0=(x_0,y_0,z_0)$

іншим шляхом

Задано пряму l, довільну т. $M = (x, y, z) \in l$ та спрямований вектор $\vec{a} = (m, n, p)$

Тоді
$$\overrightarrow{M_0M} = (x - x_0, y - y_0, z - z_0)$$

Тоді $\overrightarrow{M_0M} = (x-x_0, y-y_0, z-z_0)$ Оскільки $\overrightarrow{a} \parallel \overrightarrow{M_0M}$ то це теж саме, що $\overrightarrow{a} = t\overrightarrow{M_0M} \iff$

$$\frac{x - x_0}{m} = \frac{y - y_0}{n} = \frac{z - z_0}{p} = t$$

Отже, отримали канонічне рівняння прямої, що проходить через

$$l: \frac{x - x_0}{m} = \frac{y - y_0}{n} = \frac{z - z_0}{p}$$

Якщо параметризувати, тобто $\frac{x-x_0}{m} = \frac{y-y_0}{n} = \frac{z-z_0}{p} = t$, то звідси

Отримаємо параметричне рівняння прямої:

$$l: \begin{cases} x = x_0 + mt \\ y = y_0 + nt \\ z = z_0 + pt \end{cases}, t \in \mathbb{R}$$

Задані дві т. $M_1 = (x_1, y_1, z_1), M_2 = (x_2, y_2, z_2)$. Знайдемо рівняння прямої, що проходить через них

Створимо спрямлений вектор $\vec{a} = \overrightarrow{M_2 M_1} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$. Тоді, використовуючи канонічне рівняння прямої,

отримаємо рівняння прямої, що проходить через дві точки:

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$$

2.6 Відстані

1. Від точки до прямої в просторі

Маємо канонічне рівняння прямої, що проходить через т. $M_0 = (x_0, y_0, z_0)$:

$$\frac{x - x_0}{m} = \frac{y - y_0}{n} = \frac{z - z_0}{p}$$

m n p Зафіксуємо т
. $M \in l.$ Знайдемо відстань від т
.Pдо прямої

3 геометричних міркувань, $S_{\text{паралелограм}} = |\overrightarrow{M_0M}| \cdot d(P,l)$ Але з іншого боку, $S_{\text{паралелограм}} = |[\overrightarrow{M_0M}, \overrightarrow{M_0P}]|$

Тоді отримаємо:

$$d(P,l) = \frac{\left| \left[\overrightarrow{M_0 M}, \overrightarrow{M_0 P} \right] \right|}{\left| \overrightarrow{M_0 M} \right|}$$

2. Від точки до площини (вже знайшли) -
$$d(P,\pi) = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$$
 - $d(P,\pi) = |x_P \cos \alpha + y_P \cos \beta + z_P \cos \gamma - p|$

3. Між двома прямими в просторі

 $-l_1 \parallel l_2$

Можна обрати довільну точку прямої l_2 та рахувати відстань за п.1.

- l_1, l_2 - мимобіжні

Необхідно знайти довжину їхнього спільного перпендикуляру

В цьому випадку, червона лінія відповідає висоті паралелепіпеда

$$V_{\text{паралеленіпед}} = S_{\text{паралелограм}} \cdot h$$

$$\Rightarrow d(l_1, l_2) = \frac{\left| \left(\overrightarrow{M_1 M_2}, \overrightarrow{a_1}, \overrightarrow{a_2} \right) \right|}{\left| \left[\overrightarrow{a_1}, \overrightarrow{a_2} \right] \right|}$$

Ми додатково знайдемо рівняння спільного перпендикуляру за цим малюнком:

Ми додатково знаидемо рівняння спільного перпендикуляру з
$$\begin{cases} x = x_1 + tm_1 \\ y = y_1 + tn_1 \end{cases}$$
 $\begin{cases} x = x_2 + sm_2 \\ y = y_2 + sn_2 \end{cases}$ Нехай $N_1 \in l_1$ та $N_2 \in l_2$ - точки спільного перпендикуляру Тоді $\overrightarrow{N_1N_2} \perp \overrightarrow{a_1}; \overrightarrow{N_1N_2} \perp \overrightarrow{a_2}$ $\Leftrightarrow \begin{cases} (\overrightarrow{N_1N_2}, \overrightarrow{a_1}) = 0 \\ (\overrightarrow{N_1N_2}, \overrightarrow{a_2}) = 0 \end{cases}$

Тоді
$$\overrightarrow{N_1N_2} \perp \overrightarrow{a_1}; \overline{N_1N_2} \perp \overrightarrow{a_2}$$

$$\iff \begin{cases} (\overrightarrow{N_1N_2}, \overrightarrow{a_1}) = 0\\ (\overrightarrow{N_1N_2}, \overrightarrow{a_2}) = 0 \end{cases}$$

Якщо це розписати, то отримаємо систему двох рівнянь з невідомими t,s

2.7 *Жмутки

Definition 2.7.1. Жмутком прямих на площині називають множину всіх прямих, що проходят через одну фіксовану точку - центр жмутку

Жмуток однозначно визначається будь-якою парою прямих $l_1,\, l_2,\,$ що не є паралельними

$$l_1: A_1x + B_1y + C_1 = 0$$

$$l_2: A_2x + B_2y + C_2 = 0$$

Позначимо
$$V(x,y) = A_1x + B_1y + C_1$$

 $V(x,y) = A_2x + B_2y + C_2$

 $l_2: A_2x + B_2y + C_2 = 0$ Позначимо $U(x,y) = A_1x + B_1y + C_1$ $V(x,y) = A_2x + B_2y + C_2$ **Theorem 2.7.2.** Якщо l_1 , l_2 визначають жмуток, то рівняння жмутка матиме вигляд:

$$\alpha U(x,y) + \beta V(x,y) = 0$$
, tyt $\alpha^2 + \beta^2 \neq 0$

Proof.

Зафіксуємо центр жмутку $M_0 = (x_0, y_0)$

Оскільки $l_1 \not \parallel l_2$, то відповідно $\vec{n_1} \not \parallel \vec{n_2}$. Візьмемо довільний вектор нормалі \vec{n} на площині та розкладемо за двома неколінеарними векторами: $\vec{n} = \alpha \vec{n_1} + \beta \vec{n_2} = (\alpha A_1 + \beta A_2, \alpha B_1 + \beta B_2)$

Тут одразу зауважимо, що $\alpha \neq 0$, тому що отримаємо, що $\vec{n} \parallel \vec{n_2}$, а це задає рівняння прямої l_2 , що не цікаво

Аналогічними міркуваннями $\beta \neq 0$ Тому і виникає додаткова умова: $\alpha^2 + \beta^2 \neq 0$ Тоді ми можемо записати рівняння прямої, що проходить через т. M_0 : $(\alpha A_1 + \beta A_2)(x - x_0) + (\alpha B_1 + \beta B_2)(y - y_0) = 0$ $\alpha (A_1 x + B_1 y - A_1 x_0 - B_1 y_0) + \beta (A_2 x + B_2 y - A_2 x_0 - B_2 y_0) = 0$ Покладемо $C_1 = -A_1 x_0 - B_1 y_0$ та $C_2 = -A_2 x_0 - B_2 y_0$. Тоді $\alpha U(x,y) + \beta V(x,y) = 0$

Це все означає, що ми можемо отримати будь-яку пряму, що проходить через т. $M_0=(x_0,y_0)$

3 Криві та поверхні другого порядку

Криві другого порядку

Definition 3.(1) Загальне рівняння кривого другого порядку визначається такою формулою:

$$a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + b_1x + b_2y + c = 0$$

3.1 Еліпс

Definition 3.1.1. Еліпсом називають ГМТ, для яких сума відстаней від двох фіксованих точок F_1, F_2 - фокуси еліпса - є постійною

Тобто задані дві точки $F_1=(x_1,y_1),\, F_2=(x_2,y_2)$ M=(x,y) - точка еліпсу $\iff |MF_1|+|MF_2|=2a$

Нехай
$$F_1 = (-c, 0), F_2 = (c, 0), c > 0$$

Тоді
$$|F_1F_2| = 2c$$

При 2c > 2a випадок не є можливим (нерівність трикутника підтвердить)

При 2c = 2a отримаємо, що т. M належить відрізку $|F_1F_2|$

При 2c < 2a знайдемо рівняння:

$$|MF_1| = \sqrt{(x+c)^2 + y^2}, |MF_2| = \sqrt{(x-c)^2 + y^2} \Rightarrow$$

$$\sqrt{(x+c)^2 + y^2} + \sqrt{(x-c)^2 + y^2} = 2a$$

$$\sqrt{(x+c)^2 + y^2} = 2a - \sqrt{(x-c)^2 + y^2}$$

$$(x+c)^2 + y^2 = 4a^2 + (x-c)^2 + y^2 - 4a\sqrt{(x-c)^2 + y^2}$$

$$4a\sqrt{(x-c)^2 + y^2} = 4a^2 - 4cx$$

$$a^2(x^2 - 2cx + c^2 + y^2) = a^4 - 2a^2cx + c^2x^2$$

$$(a^2 - c^2)x^2 + a^2c^2 + a^2y^2 = a^4$$
Позначимо $a^2 - c^2 = b^2 > 0$

$$b^2x^2 + a^2c^2 = a^4 - a^2c^2 = a^2b^2$$

І нарешті отримаємо канонічне рівняння еліпса

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

з фокусами на OX, що симетричні відносно початку координат, а також $b^2=a^2-c^2$

Зробимо перевірку для початкового рівняння:

Specimic hepesiph, with the harmonic pushion:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \Rightarrow y^2 = b^2 \left(1 - \frac{x^2}{a^2} \right)$$

$$|MF_1| = \sqrt{(x+c)^2 + y^2} = \sqrt{x^2 + 2xc + c^2 + b^2 - \frac{x^2}{a^2}b^2} =$$

$$= \sqrt{x^2 \left(1 - \frac{b^2}{a^2} \right) + 2xc + a^2} = \sqrt{x^2 \frac{c^2}{a^2} + 2xc + a^2} = \sqrt{\left(\frac{xc}{a} + a \right)^2} = \left| \frac{xc}{a} + a \right| =$$

$$\frac{c}{a} \left| x + \frac{a^2}{c} \right|$$

Із рівняння $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ випливає, що $\frac{x^2}{a^2} \le 1 \Rightarrow |x| \le a = a\frac{a}{c} = \frac{a^2}{c}$

Tomy
$$|MF_1| = \frac{c}{a} \left(x + \frac{a^2}{c} \right)$$

Аналогічно для $|MF_2|$

Tomy
$$|MF_2| = \frac{c}{a} \left(\frac{a^2}{c} - x \right)$$

 $\Rightarrow |MF_1| + |MF_2| = 2a$

Отже, канонічне $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ - норм та описує еліпс

Definition 3.1.2. Прямі $x=\pm\frac{a^2}{c}$ називають **директрисами еліпса**

Позначення:
$$dir_1 = x + \frac{a^2}{c}$$

$$dir_2 = x - \frac{x^2}{c}$$

Директриси завжди знаходяться за межами еліпсу, оскільки c < a, тому $\frac{a^2}{c} > a$ і $-\frac{a^2}{c} < -a$

Definition 3.1.3. Величину $\frac{c}{a}$ називають **ексцентриситетом**

Позначення: $\varepsilon = \frac{c}{a} < 1$

Повернемось до $|MF_1|, |MF_2|$. Там, насправді, "стоїть" відстань від т. M, що належить еліпсу, до директрис

Рівності можна записати таким чином:

$$\begin{split} |MF_1| &= \varepsilon \cdot d(dir_1, M) \quad |MF_2| = \varepsilon \cdot d(dir_2, M) \text{ Або} \\ \frac{|MF_1|}{d(dir_1, M)} &= \varepsilon \quad \frac{|MF_2|}{d(dir_2, M)} = \varepsilon \end{split}$$

Remark 3.1.4. Директриса еліпса - прямі, що перпендикулярні до фокальної осі F_1F_2 та віддалені від центра еліпса на відстань $\frac{a^2}{c}$

Theorem 3.1.5. Геометрична характеристика еліпсу

Точка
$$M$$
 належить деякому еліпсу $\iff \frac{d(M,F)}{d(M,dir)} = \varepsilon$

Proof.

При паралельному переносі та повороті відстані не змінюються. Тому таким чином розташуємо еліпс канонічним чином. А для канонічно розташованого еліпсу співвідношення $\frac{d(M,F)}{d(M,dir)} = \varepsilon$ вірне

3.2 Гіпербола

Definition 3.2.1. Гіперболой називають ГМТ, для яких модуль різниці відстаней від двох фіксованих точок F_1, F_2 - фокуси гіперболи - є постійною

Тобто задані дві точки
$$F_1=(x_1,y_1),\,F_2=(x_2,y_2)$$
 $M=(x,y)$ - точка гіперболи $\iff ||MF_1|-|MF_2||=2a$

Нехай
$$F_1 = (-c, 0), F_2 = (c, 0), c > 0$$

Тоді $|F_1F_2| = 2c$

Випадок 2c < 2a не є можливим, а при 2c = 2a маємо пряму, що містить 'пробіл' між двома точками

При
$$2c>2a$$
 знайдемо рівняння:
$$|MF_1|=\sqrt{(x+c)^2+y^2},|MF_2|=\sqrt{(x-c)^2+y^2}\Rightarrow \left|\sqrt{(x+c)^2+y^2}-\sqrt{(x-c)^2+y^2}\right|=2a$$

$$\sqrt{(x+c)^2+y^2}=2a+\sqrt{(x-c)^2+y^2}$$

$$x^2+2cx+c^2+y^2=4a^2+4a\sqrt{(x-c)^2+y^2}+x^2-2cx+c^2+y^2$$

$$a\sqrt{(x-c)^2+y^2}=-a^2+xc$$

$$a^2(x^2-2cx+c^2+y^2)=a^4-2a^2cx+c^2x^2$$

$$x^2(a^2-c^2)+a^2y^2=a^2(a^2-c^2)$$
 Позначимо $c^2-a^2=b^2>0$
$$-b^2x^2+a^2y^2=-a^2b^2$$

І нарешті отримаємо канонічне рівняння гіперболи

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Причому $b^2 = c^2 - a^2$

 $\Rightarrow ||MF_1| - |MF_2|| = 2a$

Зробимо перевірку на початкове рівняння:
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \Rightarrow y^2 = b^2 \left(\frac{x^2}{a^2} - 1\right)$$

$$|MF_1| = \sqrt{(x+c)^2 + y^2} = \sqrt{x^2 + 2cx + c^2 + b^2 \frac{x^2}{a^2} - b^2} =$$

$$= \sqrt{\left(1 + \frac{b^2}{a^2}\right)x^2 + 2cx + c^2 - b^2} = \sqrt{\frac{c^2}{a^2}x^2 + 2cx + a^2} = \sqrt{\left(\frac{c}{a}x + a\right)^2} =$$

$$\left|\frac{c}{a}x + a\right| = \frac{c}{a}\left|x + \frac{a^2}{c}\right|$$
 Із рівняння
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 випливає, що
$$\frac{x^2}{a^2} \ge 1 \Rightarrow |x| \ge a > \frac{a^2}{c}$$
 Тому
$$|MF_1| = \begin{bmatrix} \frac{c}{a}\left(x + \frac{a^2}{c}\right), x > 0 \\ -\frac{c}{a}\left(x + \frac{a^2}{c}\right), x < 0 \end{bmatrix}$$
 Аналогічно для
$$|MF_2|$$

$$= \begin{bmatrix} \frac{c}{a}\left(x - \frac{a^2}{c}\right), x < 0 \\ -\frac{c}{a}\left(x - \frac{a^2}{c}\right), x < 0 \end{bmatrix}$$

Отже, $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ - норм та описує гіперболу

Remark 3.2.2. Рівняння $y = \pm \frac{b}{a}x$ є асимптотами гіперболи

Definition 3.2.3. Прямі $x=\pm \frac{a^2}{c}$ називають **директрисами гіперболи**

Позначення:
$$dir_1 = x + \frac{a^2}{c}$$

$$dir_2 = x - \frac{x^2}{c}$$

Директриси завжди знаходяться між гіперболами, оскільки c>a, тому $\frac{a^2}{c} < a$ і $-\frac{a^2}{c} > -a$

Definition 3.2.4. Величину $\frac{c}{a}$ називають **ексцентриситетом** Позначення: $\varepsilon = \frac{c}{a} > 1$

Повернемось до $|MF_1|, |MF_2|$. Там, насправді, "стоїть" відстань від т. M, що належить еліпсу, до директрис

Рівності можна записати таким чином:

$$\begin{split} |MF_1| &= \varepsilon \cdot d(dir_1, M) \quad |MF_2| = \varepsilon \cdot d(dir_2, M) \text{ Або} \\ \frac{|MF_1|}{d(dir_1, M)} &= \varepsilon \quad \frac{|MF_2|}{d(dir_2, M)} = \varepsilon \end{split}$$

Remark 3.2.5. Директриса гіперболи - прямі, що перпендикулярні до фокальної осі F_1F_2 та віддалені від початку координат на відстань $\frac{a^2}{c}$

Theorem 3.2.6. Геометрична характеристика еліпсу

Точка M належить деякій гіперболі $\iff \frac{d(M,F)}{d(M,dir)} = \varepsilon$

Proof.

При паралельному переносі та повороті відстані не змінюються. Тому таким чином розташуємо гіперболу канонічним чином. А для канонічно розташованої гіперболи співвідношення $\frac{d(M,F)}{d(M,dir)} = \varepsilon$ вірне

3.3 Парабола

Definition 3.3.1. Параболою називають ГМТ, для яких відстань до фіксованої точки - фокуса F - дорівнює відстані до фіксованої прямої - директриси dir

Тобто
$$M=(x,y)$$
 - точка параболи $\iff |MF|=d(M,dir),$ або $\frac{MF}{d(M,dir)}=1$

Нехай
$$F=(p,0),$$
 а діректриса: $dir=x+p,$ тобто $x=-p$ $d(M< F)=\sqrt{(x-p)^2+y^2}$ $d(M,dir)=|x+p|\Rightarrow \sqrt{(x-p)^2+y^2}=|x+p|$ $x^2-2px+p^2+y^2=x^2+2px+p^2$

Отримаємо канонічне рівняння параболи

$$y^2 = 4px$$

Вироджені криві другого порядку:

$$\frac{1}{a^2} + \frac{y^2}{b^2} = 0$$
 - точка

$$(2) \frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$$
 - уявний еліпо

$$a_1^2$$
 $\frac{a_2^2}{x^2} + \frac{b_2^2}{b^2} = -1$ - уявний еліпс 3) $(A_1x + B_1y + C_1)(A_2x + B_2y + C_2) = 0$ - пара прямих

Оптичні властивості кривих другого порядку 3.4

Через т. F_1 проводяться проміні. Тоді виявляється, що всі вони будуть збігатись в т. F_2

Через т. F_1 проводяться проміні. Тоді виявляється, що всі вони будуть уявно збігатись в т. F_2

Через т. F_1 проводяться проміні. Тоді виявляється, що всі вони будуть паралельні вісі абсцис

3.5 Криві другого порядку як конічний перетин

Якщо площина паралельна основі конуса, то перетин - коло; Якщо площина нахилена основі конуса, то перетин - еліпс; Якщо площина нахилена так, що вона паралельна твірної, то перетин - парабола;

Якщо площина ще сильніше нахилена, то перетин - гіпербола;

Поверхні другого роду

Definition 3.(2). Загальне рівняння поверхні другого порядку визначається такою формулою:

$$a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{13}xz + 2a_{23}yz + b_1x + b_2y + b_3z + c = 0$$

Lemma 1. Задана точка $M_0 = (x_0, y_0)$

При обертанні цієї точки навколо вісі OX отримуємо коло, яке задається рівнянням:

$$\begin{cases} x = x_0 \\ y^2 + z^2 = y_0^2 \end{cases}$$

Думаю, тут все зрозуміло

Lemma 2. В площині XOY задана така крива рівнянням F(x, y), що є парною відносно y (тобто крива симетрична відносно OY)

При обертанні цієї кривої навколо осі OX отримуємо поверхню, яка задається рівнянням:

$$F(x, \sqrt{y^2 + z^2}) = 0$$

Proof.

Фіксуємо $M_0 = (x_0, y_0)$ - точку кривої. Зробимо обертання навколо OX, тоді отримаємо коло:

$$\begin{cases} x = x_0 \\ y^2 + z^2 = y_0^2 \end{cases}$$

Звідси
$$|y_0| = \sqrt{y^2 + z^2}$$

Для т. x_0, y_0 виконана рівність:

$$F(x_0, y_0) = F(x_0, \sqrt{y^2 + z^2}) = 0$$

Але т. M_0 була довільною, тому $F(x, \sqrt{y^2 + z^2}) = 0$, що й є бажаною поверхньою

І. Еліпсоїд

У нас вже є еліпс $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

Обертаємо навколо OX, тоді отримуємо:

$$\frac{x^2}{a^2} + \frac{y^2 + z^2}{b^2} = 1$$

Отримаємо еліпсоїд обертання:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{b^2} = 1$$

 ${3}$ робимо стискання/розтягнення вздовж осі OZ:

$$z_{old}=\lambda z_{new}$$
 Тобто $\dfrac{z^2}{b^2}
ightarrow \dfrac{\lambda^2 z^2}{b^2}=\dfrac{z^2}{c^2}$

Отримаємо канонічне рівняння еліпсоїда:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

II. Гіперболоїд

а) Візьмемо гіперболу $\frac{z^2}{c^2} - \frac{x^2}{a^2} = 1$ Обертаємо навколо OZ, тоді отримуємо: $\frac{z^2}{c^2} - \frac{x^2 + y^2}{b^2} = 1$ Отримаємо гіперболоїд обертання: $\frac{z^2}{c^2} - \frac{x^2}{b^2} - \frac{y^2}{b^2} = 1$ Зробимо стискомує $\frac{z^2}{c^2} - \frac{x^2}{b^2} - \frac{y^2}{b^2} = 1$

$$\frac{z^2}{c^2} - \frac{x^2 + y^2}{b^2} = 1$$

$$\frac{z^2}{c^2} - \frac{x^2}{b^2} - \frac{y^2}{b^2} = 1$$

Зробимо стискання/розтягнення вздовж осі OX:

$$x_{old} = \lambda x_{new}$$
Тобто $\frac{x^2}{b^2} o \frac{\lambda^2 x^2}{b^2} = \frac{x^2}{a^2}$

Отримаємо канонічне рівняння двопорожнинного гіперболоїда:

$$\frac{z^2}{c^2} - \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

б) Візьмемо гіперболу
$$\frac{x^2}{a^2} - \frac{z^2}{c^2} = 1$$
 Обертаємо навколо OZ , тоді отримуємо: $\frac{x^2+y^2}{a^2} - \frac{z^2}{c^2} = 1$ $\frac{x^2}{a^2} + \frac{y^2}{a^2} - \frac{z^2}{c^2} = 1$ Зробимо стискання/розтягнення вздовж осі OY :

$$\frac{x^2 + y^2}{a^2} - \frac{z^2}{c^2} = 1$$
$$\frac{x^2}{a^2} + \frac{y^2}{a^2} - \frac{z^2}{c^2} = 1$$

$$y_{old} = \lambda y_{new}$$
Тобто $\frac{y^2}{a^2} \rightarrow \frac{\lambda^2 y^2}{a^2} = \frac{y^2}{b^2}$

Отримаємо канонічне рівняння однопорожнинного гіперболоїда:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

III. Параболоїд

 ∇ нас вже є парабола $y^2 = 4px$

Обертаємо навколо
$$OX$$
, тоді отримуємо: $y^2 + z^2 = 4px \Rightarrow x = \frac{y^2}{4p} + \frac{z^2}{4p}$

Знову ті махінації з OZ, а також $z \to x$

а) Отримаємо рівняння еліптичного параболоїду

$$z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

42

б) Також отримаємо рівняння гіперболічного параболоїду

$$z = \frac{x^2}{a^2} - \frac{y^2}{b^2}$$

3.6 Циліндри

На площині XOY задана крива F(x,y)=0 - основа циліндра - та пряма l, що перетинає основу. Через кожну точку основи M=(x,y,0) проведемо пряму, паралельну l.

Отримана множина точок і є **циліндром** із основою F(x,y)=0 та прямою l

І. Еліптичний циліндр

$$\vec{l} = (0, 0, 1)$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Будь-яка точка, що належить еліпсу, буде належати циліндру

II. Гіперболічний циліндр

$$\vec{l} = (0, 0, 1)$$

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Будь-яка точка, що належить гіперболі, буде належати циліндру

III. Параболічний циліндр

$$\vec{l} = (0, 0, 1)$$

$$y^2 = 4px$$

Будь-яка точка, що належить параболі, буде належати циліндру

Конічні поверхні 3.7

На площині XOY задана крива F(x,y) = 0 - основа конуса - та пряма l, що перетинає основу. Через кожну точку основи M = (x, y, 0) проведемо пряму, паралельну l.

Отримана множина точок і є **циліндром** із основою F(x,y) = 0 та т. $K = (x_k, y_k, z_k)$ - вершина конусу. Проведемо прямі, які проходять через $\underset{\neq 0}{\longleftarrow}$

вершину конусу K та через основу

Отримана множина точок і є **конусом** із основою F(x,y) = 0 та вершиною

$$K = (x_k, y_k, \underset{\neq 0}{z_k})$$

Вироджені поверхні другого роду:

$$(1)\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 0$$
 - точка

$$(2) \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = -1$$
 - уявний еліпсоїд

Вироджент поверхні другого роду.

1)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 0$$
 - точка

2) $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = -1$ - уявний еліпсоїд

3) $(A_1x + B_1y + C_1z + D_1)(A_2x + B_2y + C_2z + D_2) = 0$ - пара площин

44

4 Многочлени

Definition 5. Многочлен - функція такого вигляду:

Позначення: $P_n(x) = a_n x^n + \dots + a_1 x + a_0$ де $a_n, \dots, a_1, a_0 \in \mathbb{R}$ або \mathbb{C}

Для них все зрозуміло з операціями додавання та множення многочлена на скаляр

4.1 Про подільність многочленів

Definition 5.1.1. Степеню многочлена $f(x) = a_n x^n + \cdots + a_1 x + a_0$ назвемо найвищу степінь із всіх одночленів Позначення: $\deg(f(x)) = n$

Theorem 5.1.2. Для будь-яких многочленів f(x) та g(x) існують єдині многочлени s(x), r(x), такі, що

$$f(x) = s(x)g(x) + r(x)$$

де $\deg(r(x)) < \deg(g(x))$ або $r(x) \equiv 0$

Proof.

Спочатку доведемо існування:

I.
$$\deg(f(x)) < \deg(g(x))$$

Тоді s(x) = 0 та r(x) = f(x). Інших просто нема

II.
$$deg(f(x)) \ge deg(g(x))$$

Проведемо MI за степеню $k = \deg(f(x)) - \deg(g(x))$

$$k=0$$
, тобто $\deg(f(x))=\deg(g(x))=n$

Маємо многочлени:

$$f(x) = a_n x^n + \dots + a_0$$

$$g(x) = b_n x^n + \dots + b_0$$

Тоді
$$f(x) = \underbrace{\frac{a_n}{b_n}}_{=s(x)} (b_n x^n + \dots + b_0) +$$

$$+\underbrace{(a_{n-1}x^{n-1} + \dots + a_0 - \frac{a_nb_{n-1}}{b_n}x^{n-1} - \dots - \frac{b_0a_n}{b_n})}_{=r(x)}$$

Причому $\deg(r(x)) = n - 1 < n = \deg(g(x))$

Нехай для $k \geq 0$ існують $\tilde{s}(x), \tilde{r}(x)$

Доведемо існування s(x) та r(x) для k+1:

$$f(x) = a_{m+k+1}x^{m+k+1} + a_{m+k}x^{m+k} + \dots + a_0$$

$$g(x) = b_m x^m + \dots + b_0$$
Тоді $f(x) = \frac{a_{m+k+1}}{b_m} x^{k+1} (b_m x^m + \dots + b_0) +$

$$+ \underbrace{\left(a_{m+k}x^{m+k} + \dots + a_0 - \left(\frac{b_{m-1}a_{m+k+1}}{b_m}x^{m+k} + \dots + \frac{b_0a_{m+k+1}}{b_m}x^k\right)\right)}_{=p(x)}$$

Отримали $f(x) = \frac{a_{m+k+1}}{b_m} x^{k+1} g(x) + p(x)$

де $\deg(p(x)) = m + k < m + k + 1 = \deg(f(x))$

За припущеннями MI, для многочленів p(x), g(x) існує $\tilde{s}(x), \tilde{r}(x)$, оскільки різниця степеней = k

Тоді: $p(x) = \tilde{s}(x)g(x) + \tilde{r}(x)$

Звідси
$$f(x) = \frac{a_{m+k+1}}{b_m} x^{k+1} g(x) + \tilde{s}(x) g(x) + \tilde{r}(x) =$$

$$=\underbrace{\left(\frac{a_{m+k+1}}{b_m}x^{k+1} + \tilde{s}(x)\right)}_{=s(x)}g(x) + \underbrace{\tilde{r}(x)}_{=r(x)}$$

Причому $\deg(r(x)) < \deg(g(x))$ або $r(x) \equiv 0$ MI доведено

Залишилось довести єдиність

!Припустимо, що існують ще $s^*(x), r^*(x)$, такі, що

$$f(x) = s^*(x)g(x) + r^*(x)$$

Причому $\deg(r^*(x)) < \deg(g(x))$ або $r^*(x) \equiv 0$

Тоді
$$0 = f(x) - f(x) = (s(x) - s^*(x))g(x) + (r(x) - r^*(x))$$

Або $(s(x) - s^*(x))g(x) = r^*(x) - r(x)$

 $\operatorname{deg}(r^*(x) - r(x)) < \operatorname{deg}(q(x))$

A рівність можлива лише тоді, коли $s(x) - s^*(x) = 0 \Rightarrow s(x) = s^*(x)$

A звідси й $r(x) = r^*(x)$. Суперечність!

Definition 5.1.3. Число a називають **коренем многочлена** f(x), якщо f(a) = 0

Theorem 5.1.4. Теорема Безу

a - корінь многочлена $f(x) \iff \exists h(x) : f(x) = (x-a)h(x)$

Proof.

 \Rightarrow Дано: a - корінь многочлена f(x), тобто f(a) = 0

Поділимо f(x) на g(x) = x - a

Отримаємо: f(x) = s(x)(x-a) + r(x)

де $\deg(r(x)) < \deg(q(x)) = \deg(x-a) = 1$

Tоді звідси r(x) = c

Підставимо x = a в наше рівняння:

$$0 = f(a) = c$$

Остаточно,
$$f(x) = \underbrace{s(x)}_{=h(x)}(x-a)$$

$$\sqsubseteq$$
 Дано: $\exists h(x) : f(x) = (x - a)h(x)$
Тоді одразу $f(a) = 0 \Rightarrow a$ - корень $f(x)$

Definition 5.1.5. Число a називають **коренем многочлена** f(x) **кратності** k, якщо $f(x) = (x-a)^k g(x)$, де $g(a) \neq 0$

Перед теоремою зробимо деяке зауваження:

Розглянемо многочлен f(x) степені n. Будь-яка функція розкладається формулою Тейлора:

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + \frac{f^{(n+1)}(\theta)}{(n+1)!}(x-a)^{n+1}$$

Через те, що $\deg(f(x)) = n$, маємо, що $f^{(n+1)}(x) = 0$

Тоді остаточно отримаємо іншу репрезентацію многочлена:

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

Theorem 5.1.6. Критерій кратності кореня

a - корінь кратності k многочлена $f(x) \iff f(a) = f'(a) = \cdots = f^{(k-1)}(a) = 0,$ але $f^{(k)}(a) \neq 0$

Proof.

 \implies Дано: a - корінь кратності k для f(x), тобто:

$$f(x) = (x - a)^k g(x)$$
, де $g(a) \neq 0$

Більш того, якщо $\deg(f(x)) = n$, то звідси $\deg(g(x)) = n - k$

Тому розкладемо функцію g(x) за щойно отриманою формулою:

$$f(x) = (x-a)^k \left(g(a) + \frac{g'(a)}{1!} (x-a) + \dots + \frac{g^{(n-k)}(a)}{(n-k)!} (x-a)^{n-k} \right) =$$

$$= (x-a)^k g(a) + (x-a)^{k+1} \frac{g'(a)}{1!} + \dots + (x-a)^n \frac{g^{(n+k)}(a)}{(n+k)!}$$

Але з іншого боку:

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \dots + \frac{f^{(k-1)}(a)}{(k-1)!}(x-a)^{k-1} + \frac{f^{(k)}(a)}{k!}(x-a)^k + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

В першому рівності многочлен починався зі степені k, тому й друга рівність має починатись зі степені k, звідси й

$$f(a) = 0$$
 $\frac{f'(a)}{1!} = 0$... $\frac{f^{(k-1)}(a)}{k!} = 0$

При цьому $\frac{f^{(k)}(a)}{b!} \neq 0$. Отже, отримали бажану умову

Розкладемо нашу функцію
$$f$$
 за формулою:
$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \dots \frac{f^{(k-1)}(a)}{(k-1)!}(x-a)^{k-1} + \frac{f^{(k)}(a)}{k!}(x-a)^k + \dots$$

$$\cdots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

Тоді

$$f(x) = \frac{f^{(k)}(a)}{k!}(x-a)^k + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n =$$

$$= (x-a)^k \underbrace{\left(\frac{f^{(k)}(a)}{k!} + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^{n-k}\right)}_{=q(x)}$$

Через те, що $f^{(k)}(a) \neq 0$, то звідси $g(a) \neq 0$, отже: $f(x) = (x-a)^k g(x) \Rightarrow a$ - корінь кратності k

4.2 Комплексні корені многочленів

Proposition 5.2.1. Якщо $z \in \mathbb{C}$ є коренем многочлена f(x) з дійсними коефіцієнтами, то \bar{z} - теж корінь

Задано многочлен: $f(x) = a_n x^n + \cdots + a_0$

$$де f(z) = 0$$

Тоді маємо:

$$\underline{f}(\bar{z}) = a_n \bar{z}^n + \dots + a_0 = \overline{a_n z^n} + \dots + \overline{a_0} = \overline{a_n z^n} + \dots + a_0 = \overline{f(z)} = 0$$

Proposition 5.2.2. Kopeni z та \bar{z} мають однакову кратність Proof.

Нехай z - корінь кратності k, тобто $f(z)=f'(z)=\cdots=f^{(k-1)}(z)=$ $0, f'^{(k)}(z) \neq 0$

Тоді за міркуваннями минулого твердження,

$$f(\bar{z}) = f'(\bar{z}) = \dots = f^{(k-1)}(\bar{z}) = 0, f'^{(k)}(\bar{z}) \neq 0$$

Отже, \bar{z} - корінь кратності k

Theorem 5.2.3. Основна теорема алгебри

У многочлена з комплексними коефіцієнтами є принаймні один корень

 $z_0 \in \mathbb{C}$

Без доведення

Corollary 5.2.3. Заданий многочлен степені n з комплексними коефіцієнтами. Тоді має n коренів, враховуючи кратність

Proof.

Нехай
$$z_1$$
 - корінь $f(z) \Rightarrow f(z) = (z - z_0)^{k_1} g(z)$, причому $g(z_1) \neq 0$
За основною теоремою алгебри, $g(z)$ має корінь $z_2 \Rightarrow$

$$q(z) = (z-z_0)^{k_2}q_2(z)$$
, причому $q_2(z_2) \neq 0$

I знову за основною теоремою алгебри, $g_2(z)$ має корінь $z_3 \dots$

Тому остаточно отримуємо:

$$f(z) = A_0(z-z_1)^{k_1}(z-z_2)^{k_2}\dots(z-z_m)^{k_m}$$
, де $k_1 + k_2 + \dots + k_m = n = \deg(f(z))$

Theorem 5.2.4. Функція f(x) з дійсними коефіцієнтами розкладається на прості множники:

$$f(x) = A_0(x-a_1)^{k_1} \dots (x-a_m)^{k_m} (x^2+p_1x+q_1)^{s_1} \dots (x^2+p_j+q_j)^{s_j}$$
 де $k_1 + \dots + k_m + 2s_1 + \dots + 2s_j = n = \deg(f(x))$

Більш того, всі дискримінанти квадратних рівнянь - від'ємні

 $a_1, \ldots a_m \in \mathbb{R}$

Proof.

За попереднім наслідком,

$$f(x) = A_0(x - a_1)^{k_1} \dots (x - a_m)^{k_m} (x - z_1)^{s_1} (x - \bar{z_1})^{s_1} \dots (x - z_j)^{s_j} (x - \bar{z_j})^{s_j}$$

Розпишемо такі добутки:

$$(x-z_1)(x-\bar{z_1}) = x^2 - x(z_1+\bar{z_1}) + z_1\bar{z_1} =$$

$$z_1 + \bar{z_1} = 2\operatorname{Re} z_1 \stackrel{\text{позн.}}{=} -p_1 \in \mathbb{R}$$

$$z_1 + \bar{z}_1 = 2\operatorname{Re} z_1 \stackrel{\text{позн.}}{=} -p_1 \in \mathbb{R}$$
$$z_1 \bar{z}_1 = (\operatorname{Re} z_1)^2 + (\operatorname{Im} z_1)^2 \stackrel{\text{позн.}}{=} q_1 \in \mathbb{R}$$

 $=x^2+p_1x+q_1$, для якого D<0 (тому що фактично 2 корені є комплексними) I так з рештою. Тому

$$f(x) = A_0(x - a_1)^{k_1} \dots (x - a_m)^{k_m} (x^2 + p_1 x + q_1)^{s_1} \dots (x^2 + p_j + q_j)^{s_j} \blacksquare$$

4.3 Спільні дільники та кратні двох многочленів

Definition 5.3.1.(1) Многочлен h(x) називається **дільником** f(x), якщо f(x) = s(x)h(x) + 0

Definition 5.3.1.(2) Многочлен h(x) називається **спільним дільником** f(x) та g(x), якщо він є дільником кожного

Definition 5.3.1.(3) Многочлен d(x) називається **найбільшим спільним**

дільником f(x) та g(x), якщо він ділиться без остачі на будь-який спільний дільник f(x) та g(x)

Позначення: d(x) = GCD(f, g)

Proposition 5.3.2. Нехай d_1 та d_2 - НСД f(x) та g(x)

Тоді $\exists c \in \mathbb{R} : d_1(x) = cd_2(x)$

Proof.

Якщо $d_1(x) = GCD(f,g)$ та d_2 - спільний дільник f,g, то d_1 ділиться націло на $d_2,$ тобто

$$d_1(x) = s_1(x)d_2(x)$$
 (*)

Якщо $d_2(x) = \mathrm{GCD}(f,g)$ та d_1 - спільний дільник f,g, то d_2 ділиться націло на $d_1,$ тобто

$$d_2(x) = s_2(x)d_1(x) (**)$$

Повернемось до рівняння (*):

$$\Rightarrow d_1(x) = s_1(x)d_2(x) \stackrel{(**)}{=} s_1(x)s_2(x)d_1(x)$$

 $\Rightarrow s_1(x)s_2(x) = 1 \Rightarrow s_1(x) = c_1, s_2(x) = c_2$
Отже, $d_1(x) = c_1d_2(x)$ ■

Remark 5.3.2. $d(x) = GCD(f, g) \Rightarrow \forall c \in \mathbb{R} : cd(x) = GCD(f, g)$

Дійсно,
$$f(x) = s_1(x)d(x) \Rightarrow f(x) = \frac{s_1(x)}{c}cd(x)$$

Також
$$g(x) = s_2(x)d(x) \Rightarrow g(x) = \frac{s_2(x)}{c}cd(x)$$

Алгоритм Евкліда, для пошуку НСД

Задані f(x) та g(x)

1)
$$f(x) = s_1(x)g(x) + r_1(x)$$

2)
$$g(x) = s_2(x)r_1(x) + r_2(x)$$

3)
$$r_1(x) = s_3(x)r_2(x) + r_3(x)$$

. . .

n)
$$r_{n-2}(x) = s_n(x)r_{n-1}(x) + r_n(x)$$

Зауважимо, що $\deg(r_1(x)) > \deg(r_2(x)) > \cdots > \deg(r_n(x))$

Тобто наш алгоритм точно є скінченним

n+1)
$$r_{n-1}(x) = s_{n+1}(x)r_n(x) + 0$$

Таким чином, ми отримаємо:

$$r_n(x) = GCD(f, g)$$

Маємо наступне твердження:

Proposition 5.3.3. $GCD(f,g) = r_n(x)$

Proof.

Покажемо, що $r_n(x)$ - спільний дільник f,g

Дійсно, якщо r_{n-1} підставити в 'n)', потім r_{n-2} - в 'n-1)' і так до кінця,

то отримаємо, що $f:r_n$

Покажемо, що $r_n(x)$ - НСД f,g

Дійсно, якщо d - довільний спільний дільник f,g, то звідси r_1 : $d,\ r_2$: $d,\ \dots,\ r_n$:d

Таким чином, $r_n(x) = GCD(f, g)$

Proposition 5.3.4. Нехай d(x) - довільний дільник f(x), g(x) Тоді $\deg(d(x)) > \deg(\mathrm{GCD}(f,g))$

Definition 5.3.5.(1) Многочлен m(x) називається **спільним кратним** f(x) та g(x), якщо m(x) ділиться на f(x) та g(x) одночасно

Definition 5.3.5.(2) Многочлен M(x) називається <u>найменшим</u> спільним кратним f(x) та g(x), якщо він ділиться без остачі на будь-яке спільне кратне f(x) та g(x)

Позначення: M(x) = LCM(f, g)

Знаходження НСК

I. Знайти GCD(f,g) = d(x), тобто

$$f(x) = f_1(x)d(x)$$

$$g(x) = f_2(x)d(x)$$

II. Тоді
$$k(x) = f_1(x)f_2(x)d_2(x)$$

Це є спільним кратним f(x) та g(x)

Будь-яке спільне кратне повинно ділитись на f(x) та g(x), а отже, й на $f_1(x)f_2(x)d(x)=k(x)$

Звідси отримуємо

LCM
$$(f, g) = \frac{f(x)g(x)}{GCD(f, g)}$$

Proposition 5.3.6. Нехай k_1 та k_2 - HCK f(x) та g(x)

Тоді $\exists c \in \mathbb{R} : k_1(x) = ck_2(x)$

Proof.

Скористаємось отриманою щойно формулою

Коли
$$k_1(x) = \text{LCM}(f,g)$$
, то $d_1(x) = \text{GCD}(f,g) = \frac{f(x)g(x)}{k_1(x)}$

Коли
$$k_2(x) = \text{LCM}(f,g)$$
, то $d_2(x) = \text{GCD}(f,g) = \frac{f(x)g(x)}{k_2(x)}$

Але оскільки
$$d_1(x) = c^*d_2(x)$$
, то звідси $\frac{1}{k_1(x)} = \frac{c^*}{k_2(x)} \Rightarrow k_1(x) = ck_2(x)$

Дробово-раціональні вирази, розклад 4.4

Definition 5.4.1.(1) Дробово-раціональним виразом називають $\frac{P(x)}{O(x)}$, де P(x), Q(x) - многочлени

Definition 5.4.1.(2) Простими дробами називають один із дробовораціональних виразів

$$\frac{1}{x-a} \qquad \frac{1}{(x-a)^k} \qquad \frac{Ax+B}{x^2+px+q} \qquad \frac{Ax+B}{(x^2+px+q)^k}$$

Останні два дроби - це в дійсному випадку. Ба більше, дискриминанти знаменників - від'ємний

Розклад дробово-раціональних виразів на суму простих дробов

1) Якщо $\deg(P(x)) \ge \deg(Q(x))$, то ділимо одне одного, тобто

$$P(x) = S(x)Q(x) + P_1(x)$$

Звідси
$$\frac{P(x)}{Q(x)} = S(x) + \frac{P_1(x)}{Q(x)}$$

Type $\deg(P_1(x)) < \deg(Q(x))$

2) Якщо deg(P(x)) < deg(Q(x))

Вже відомо, що

$$Q(x)=E(x-a_1)^{k_1}\dots(x-a_m)^{k_m}(x^2+p_1x+q_1)^{l_1}\dots(x^2+p_sx+q_s)^{l_s}$$
 - розклад

Lemma 5.4.2.(1) Нехай $\frac{P(x)}{Q(x)}$, $\deg(P(x)) < \deg(Q(x))$

$$Q(x) = (x-a)^k Q_1(x)$$
, де $Q_1(a) \neq 0$

Тоді
$$\exists A \in \mathbb{R} : \exists P_1(x) : \deg(P_1(x)) < \deg(P(x))$$
 та $P_1(a) \neq a$:

$$Q(x) \equiv (x-a) \ Q_1(x), \text{ де } Q_1(a) \neq 0$$

Тоді $\exists A \in \mathbb{R} : \exists P_1(x) : \deg(P_1(x)) < \deg(P(x)) \text{ та } P_1(a) \neq a :$
$$\frac{P(x)}{Q(x)} = \frac{A}{(x-a)^k} + \frac{P_1(x)}{(x-a)^{k-1}Q_1(x)}$$

Proof.

Хочемо знайти A та $P_1(x)$, таку, що

$$\frac{P(x)}{(x-a)^kQ_1(x)} = \frac{A}{(x-a)^k} + \frac{P_1(x)}{(x-a)^{k-1}Q_1(x)}$$

$$\frac{P(x)}{(x-a)^kQ_1(x)} = \frac{AQ_1(x) + P_1(x)(x-a)}{(x-a)^kQ_1(x)}$$

$$P(x) = AQ_1(x) + P_1(x)(x-a)$$
 - виконується $\forall x$

Тому для
$$x=a$$
 випливає, що $P(a)=AQ_1(x)\Rightarrow A=\frac{P(a)}{Q_1(a)}$

Крім того, $P_1(x)(x-a) = P(x) - AQ_1(x)$

Оскільки
$$P(a) - AQ_1(a) = 0$$
, то $P(x) - AQ_1(x) = P_1(x)(x-a)$ Тобто $P_1(x)$ отримується діленням $P(x) - AQ_1(x)$ на $(x-a)$

Lemma 5.4.2.(2) Задано
$$\frac{P(x)}{Q(x)}$$
, $\deg(P(x)) < \deg(Q(x))$

$$Q(x) = (x^2 + px + q)^k Q_1(x)$$

Тоді $\exists A, B \in \mathbb{R} : \exists P_1(x) : \deg(P_1(x)) < \deg(P(x))$ та P(x) не ділиться на $x^2 + px + q$:

$$\frac{P(x)}{Q(x)} = \frac{Ax + B}{(x^2 + px + q)^k} + \frac{P_1(x)}{(x^2 + px + q)^{k-1}Q_1(x)}$$

Proof.

Хочемо знайти A, B та $P_1(x)$, таку, що

$$\frac{P(x)}{(x^2 + px + q)^k Q_1(x)} = \frac{Ax + B}{(x^2 + px + q)^k} + \frac{P_1(x)}{(x^2 + px + q)^{k-1} Q_1(x)}
\frac{P(x)}{(x^2 + px + q)^k Q_1(x)} = \frac{P(x)}{(x^2 + px + q)^k Q_1(x)} = \frac{(Ax + B)Q_1(x) + P_1(x)(x^2 + px + q)}{(x^2 + px + q)^k Q_1(x)}
P(x) = (Ax + B)Q_1(x) + P_1(x)(x^2 + px + q) (*)$$

Нехай z_0 та $\bar{z_0}$ - корені $x^2 + px + q$

Оскільки P(x) Та Q(x) не діляться на $x^2 + px + q$, то

$$P(z_0) \neq 0, Q(z_0) \neq 0, P(\bar{z_0}) \neq 0, Q(\bar{z_0}) \neq 0$$

Підставимо $z_0, \bar{z_0}$ в (*)

$$\begin{cases} P(z_0) = (Az_0 + B)Q_1(z_0) \\ P(\bar{z_0}) = \overline{P(z_0)} = (A\bar{z_0} + B)Q_1(\bar{z_0}) = (A\bar{z_0} + B)\overline{Q_1(z_0)} \end{cases}$$

 $\mathring{\square}$ одамо два рівняння, також віднімемо та поділемо на i, тоді:

$$\begin{cases} 2 \operatorname{Re} P(z_0) = 2A \operatorname{Re}(z_0 Q_1(z_0)) + 2B \operatorname{Re} Q(z_0) \\ 2 \operatorname{Im} P(z_0) = 2 \operatorname{Im}(z_0 Q_1(z_0)) + 2B \operatorname{Im} Q(z_0) \end{cases}$$

 $\dot{\text{Hy}}$ а далі шукаємо A,B, які будуть дійсними

Повернемось до рівняння:

$$P(x) = (Ax + B)Q_1(x) + P_1(x)(x^2 + px + q)$$

A, B вже маємо

$$P_1(x)(x^2 + px + q) = P(x) - (Ax + B)Q_1(x)$$

Корені $z_0, \bar{z_0}$ многочлена $x^2 + px + q$ є коренями $P(x) - (Ax + B)Q_1(x)$

Тому $P(x) - (Ax + B)Q_1(x)$ ділиться на $x^2 + px + q$

Остаточно знайдемо $P_1(x)$

Theorem 5.4.3. Задано
$$\frac{P(x)}{Q(x)}$$
, $\deg(P(x)) < \deg(Q(x))$
 $Q(x) = E(x - a_1)^{k_1} \dots (x - a_m)^{k_m} (x^2 + p_1 x + q_1)^{l_1} \dots (x^2 + p_s x + q_s)^{l_s}$
Тоді $\frac{P(x)}{Q(x)} = \frac{A_{11}}{(x - a_1)} + \dots + \frac{A_{1k_1}}{(x - a_1)^{k_1}} + \frac{A_{21}}{(x - a_2)} + \dots + \frac{A_{2k_2}}{(x - a_2)^{k_2}} + \dots$

$$+\frac{A_{m1}}{(x-a_m)}+\cdots+\frac{A_{mk_m}}{(x-a_m)^{k_m}}+\frac{B_{11}x+C_{11}}{x^2+p_1x+q_1}+\cdots+\frac{B_{1l_1}x+C_{1l_1}}{(x^2+p_1x+q_1)^{l_1}}+\cdots+\frac{B_{s1}x+C_{s1}}{x^2+p_sx+q_s}+\cdots+\frac{B_{sl_s}x+C_{sl_s}}{(x^2+p_sx+q_s)^{l_s}}$$

Грунтуеться на попередньо доведених лем