$Parcial\ 2-Modelaci\'on\ Experimental-Punto\ 2$

Andrés Grimaldos Echavarría

0		$(x_1 = -ax_1)$	+ 6 x x x 2	
2.				
+		$2 \chi_2 = C \chi_1^2$		
				para la ecuación de estado,
06818	el somos el	fel bro de Kale	nan extended	do. Asi hacener:
Disc	10 68 30 CEON	(Mitalo de Guler)		Car C
		S X1 (K+1)	$=\chi_1(\kappa)+$	(b x1(x1(x2(x))-a x10
		(X2 (K+1) =	: x2(K) +	7 (b x1(x1x2(x) - a x10) 7 (cx2(x) d dx2(x) + u(x
		tamaño de paso		
Hallor	no Jacob	rano, ma briz po	va linealizar,	pero sin ser evaluação
		e equilibrio:		
er w	ANTO C	_		-1
	J=	-a + 6 X2	620	7
		2021	- cl	
		20 X1		
-				
Hallon	os la ma	triz del modelo	Unealitedo	discreti zado:
		11+7(6	V -0)	Tb Xy]
4 =	7 + 7	= 11,10	12 40	
		2Tcx,		1-d7
481,	can el	Sistena:		
		x (K+1) = f($x_1(\kappa), u(\kappa)$	16 W(K)
++		y(k) = (x + o((t)
		Jaco		
endo	201K)	y O(K) could	blences	y admis, Eln(k)ntin]=
0100		7		De la actionada Va
	LWKIV	11(K)] = /[· · ·	midledo	X1 y estimando X2,
1 E				
	a que			
teren)] y asi	nuestras	ecuacionis para el filbo

Prediction:
$$\chi(\kappa+1|\kappa) = \int C\chi(\kappa|\kappa), u(\kappa) = \int \chi_1(\kappa|\kappa) + \Upsilon(b\chi_1(\kappa|\kappa)\chi_2(\kappa|\kappa) - q\chi_1(\kappa|\kappa))$$

$$\chi_2(\kappa|\kappa) + \Upsilon(c\chi_1^2(\kappa|\kappa) - cl\chi_2(\kappa|\kappa) + u(\kappa))$$

$$\gamma(\kappa+1|\kappa) = A \gamma(\kappa|\kappa) A^T + V M V^T.$$

$$\gamma(\kappa+1|\kappa) = \gamma(\kappa+1|\kappa) C^T C \gamma(\kappa+1|\kappa) C - V J^{-1}$$

$$\gamma(\kappa+1|\kappa+1) = \gamma(\kappa+1|\kappa) + \chi(\kappa+1) C \gamma(\kappa+1) - C \gamma(\kappa+1|\kappa) J$$

$$\gamma(\kappa+1|\kappa+1) = \Gamma \gamma - \chi(\kappa+1|\kappa) + \Gamma \gamma(\kappa+1|\kappa)$$

Ahora, como tenemos el modelo, podemos simular una solución con las condiciones iniciales $x_0 = (1,1)$, a = 0.01, b = 0.02, c = 0.1 y d = 0.2, además, usaremos una entrada dada por u(t) = sen(5t) + r, donde $r \sim N(0,1)$, dando la entrada:

Ahora, bien el código para esto fue:

```
Ts = 0.1; % tiempo de muestreo T.
tiempo = 0:Ts:50; % periodo de tiempo a usar.
x0 = [1, 1]; % Condición inicial
% Probamos dos entradas:
u = sin(5*tiempo) + randn(1,length(tiempo)); % ones(1, length(tiempo)); % sin(5*
plot(tiempo, u)
title('Entrada');
xlabel('$k$', 'Interpreter', 'Latex', 'FontSize', 15);
ylabel('$u(k)$', 'Interpreter', 'Latex', 'FontSize', 15);
grid on
a = 0.01; b = 0.02; , c = 0.1; d = 0.2;
[t, x] = ode45(@(t,x) ode_parcial(t, x, u, tiempo, a, b, c, d), tiempo, x0);
```

Donde la función ode_parcial es:

```
function dxdt = ode_parcial(t, x, u, tiempo, a, b, c, d)
    u_int = interp1(tiempo, u, t);
    dxdt = [-a*x(1) + b*x(1)*x(2); c*x(1)^2 - d*x(2) + u_int];
end
```

Ahora bien, para la implementación del filtro de Kalman, tenemos el código donde se especifica las condiciones de cada término:

```
y = x(:,1);
% Condiciones iniciales dados por el usuario:
M = 0.01 \text{ eye}(2); N = 0.5; P0 = M; x0 = [1 1]'; Ts = 0.1;
% Parámetros conocidos:
C = [1 \ 0];
n = length(y); x est = zeros(n,2); P trace = zeros(n,1); K norm = zeros(n,1);
x_act = x0; P_act = P0;
for k = 1:n
   A = A(Ts,a,b,c,d,x_act(1), x_act(2));
    % Predicción:
    x \text{ pred} = [x \text{ act}(1) + Ts*(b*x \text{ act}(1)*x \text{ act}(2)-a*x \text{ act}(1));
               x \text{ act}(2) + Ts*(c*x act(1)^2 - d*x act(2) + u(k))];
    P pred = A *P act*A ' + M;
    % Corrección:
    K = P \text{ pred*C'*inv}(C*P \text{ pred*C'} + N);
    x act = x pred + K^*(y(k) - C^*x pred);
    P act = (eye(2) - K*C)*P pred;
    % Estimación:
    x_{est(k,:)} = x_{act'};
    % Medidas:
    P trace(k) = trace(P act);
    K \text{ norm}(k) = \text{norm}(K);
plot(t, x(:,1), t, x est(:,1))
legend({'Modelo original', 'Estimación Kalman Extendido'}, 'Location', 'best');
xlabel('$k$', 'Interpreter', 'Latex', 'FontSize', 15);
ylabel('$x {2}(k)$', 'Interpreter', 'Latex', 'FontSize', 15);
title ('Comparación modelo original con estimación kalman extendido', 'FontSize', 12);
grid on
```

Donde podemos hacer la comparación para x_1 , ya que fue medida (simulada, en este caso):

Además, podemos también comparar x_2 , ya que conocemos el modelo y fue simulada, claramente, en la vida real, no tenemos esta posibilidad, pues no conocemos el modelo subyacente, ya que, si lo tuviéramos, no tendría sentido hacer la estimación, pero acá por ver el resultado del código, se hace en la figura siguiente:

Ahora, como se observa, el filtro de Kalman extendido nos da una gran aproximación, mostrando así los buenos resultados que da e incluso su robustez. Por otro lado, el código de todo se encuentra en el archivo de MATLAB.