Тест к воркшопу по аналитической геометрии

1. Запишите произведение преобразований fg, где f – сжатие к оси Oy с коэффициентом $\alpha=3$, а g – поворот на 90° .

- 2. Найдите сингулярные направления афинных преобразований:
 - а) Сжатие к оси 4x + 6y + 1 = 0 с коэффициентом $\alpha = 1/2$:
 - b) Поворот на 30°:

c)
$$\begin{cases} x' = 3y + 3 \\ y' = 4x - 1 \end{cases}$$

3. Напишите уравнение цилиндра радиуса с направляющей x=t,y=t,z=0 радиусом R=1.

4. Запишите общий вид векторных уравнений конуса и цилиндра.

(продолжение на след. странице)

5. Сформулируйте теорему о разложении афинного преобразования.

- 6. Запишите афинное преобразование (если таковое существует), переводящее эллипс $x^2/9+y^2/4=1$ в кривую
 - a) $x^2 y^2 = 1$
 - b) $x^2 + 2y^2 = 1$
 - c) x = 0

Материалы к воркшопу по аналитической геометрии

Базовые обязательные задания

Новая тема:

- 1. Запишите формулы, задающие произведение fg данных афинных преобразований f и g, и охарактеризовать это произведение геометрически (СК общая декартова).
 - f гомотетия с центром в точке M(2,-1) и коэффициентом $\alpha = 1/2;$
 - g центральная симметрия относительно точки N(3,1).
- 2. Найдите координаты векторов, задающих главные направления данного афинного преобразования:

a)
$$\begin{cases} x' = x - y \\ y' = x + y \end{cases}$$
 b)
$$\begin{cases} x' = -4x + 7y \\ y' = 8x + y \end{cases}$$

3. Представьте афинное преобразование в виде произведения $f = h_2 h_1 g$, где g — ортогональное преобразование, а h_1 и h_2 — сжатия к двум взаимно перпендикулярным прямым.

$$\begin{cases} x' = -4x + 7y \\ y' = 8x + y \end{cases}$$

- 4. Образующие цилиндра параллельны вектору $\vec{a}(1,1,1)$, его направляющая окружность $x^2+y^2=2z,\,x^2+y^2+x^2=8.$ Напишите уравнение цилиндра.
- 5. Найдите уравнение конуса с вершиной в точке M(1,1,1), касающегося сферы $x^2+y^2+z^2=2$.

На повторение:

- 1. Найдите расстояние между прямыми x+y+z-1=0, x-y+z+1=0 и x=0, заданными в ПДСК.
- 2. В правом ОНБ три вектора $\vec{a}(1,2,3), \vec{b}(4,5,6)$ и $\vec{c}(2,3,1)$ образуют треугольную призму. Найти объем призмы и высоту, проведенную к основанию (за основание считать треугольник, образованный векторами \vec{a} и \vec{b}).

Дополнительные индивидуальные задачи

- 1. Запишите формулы, задающие афинное преобразование, переводящее прямые $x-y+1=0,\,x+y-1=0$ соответственно в прямые 3x+2y-3=0 и 2x+3y+1=0, а точку A(1,1) в точку B(-1,-2)
- 2. Центром квадрата является точка P(-1,2), а одна из сторон задается уравнением x+2y=0. Составить уравнения остальных сторон квадрата.
- 3. Составить уравнение прямой, проходщей через точку M(-7, 13) и образующей с прямыми 2x + y + 3 = 0 и x + y 2 = 0 треугольник площади 9
- 4. Доказать, что определитель линейного преобразования не зависит от системы координат

Тест к воркшопу по аналитической геометрии

1. Запишите произведение преобразований fg, где f – сжатие к оси Oy с коэффициентом $\alpha=3$, а g – поворот на 90° .

- 2. Найдите сингулярные направления афинных преобразований:
 - а) Сжатие к оси 4x + 6y + 1 = 0 с коэффициентом $\alpha = 1/2$:
 - b) Поворот на 30°:

c)
$$\begin{cases} x' = 3y + 3 \\ y' = 4x - 1 \end{cases}$$

3. Напишите уравнение цилиндра радиуса с направляющей x=t,y=t,z=0 радиусом R=1.

4. Запишите общий вид векторных уравнений конуса и цилиндра.

(продолжение на след. странице)

5. Сформулируйте теорему о разложении афинного преобразования.

- 6. Запишите афинное преобразование (если таковое существует), переводящее эллипс $x^2/9+y^2/4=1$ в кривую
 - a) $x^2 y^2 = 1$
 - b) $x^2 + 2y^2 = 1$
 - c) x = 0

Материалы к воркшопу по аналитической геометрии

Базовые обязательные задания

Новая тема:

- 1. Запишите формулы, задающие произведение fg данных афинных преобразований f и g, и охарактеризовать это произведение геометрически (СК общая декартова).
 - f гомотетия с центром в точке M(2, -1) и коэффициентом $\alpha = 1/2$;
 - g центральная симметрия относительно точки N(3,1).
- 2. Найдите координаты векторов, задающих главные направления данного афинного преобразования:

a)
$$\begin{cases} x' = x - y \\ y' = x + y \end{cases}$$
 b)
$$\begin{cases} x' = -4x + 7y \\ y' = 8x + y \end{cases}$$

3. Представьте афинное преобразование в виде произведения $f = h_2 h_1 g$, где g — ортогональное преобразование, а h_1 и h_2 — сжатия к двум взаимно перпендикулярным прямым.

$$\begin{cases} x' = -4x + 7y \\ y' = 8x + y \end{cases}$$

- 4. Образующие цилиндра параллельны вектору $\vec{a}(1,1,1)$, его направляющая окружность $x^2 + y^2 = 2z$, $x^2 + y^2 + x^2 = 8$. Напишите уравнение цилиндра.
- 5. Найдите уравнение конуса с вершиной в точке M(1,1,1), касающегося сферы $x^2+y^2+z^2=2$.

На повторение:

- 1. Найдите расстояние между прямыми x+y+z-1=0, x-y+z+1=0 и x=0, заданными в ПДСК.
- 2. В правом ОНБ три вектора $\vec{a}(1,2,3), \vec{b}(4,5,6)$ и $\vec{c}(2,3,1)$ образуют треугольную призму. Найти объем призмы и высоту, проведенную к основанию (за основание считать треугольник, образованный векторами \vec{a} и \vec{b}).

Дополнительные индивидуальные задачи

1. Запишите формулы, задающие афинное преобразование, переводящее прямые x-y+1=0, x+y-1=0 соответственно в прямые 3x+2y-3=0 и 2x+3y+1=0, а точку A(1,1) в точку B(-1,-2)

- 2. Центром квадрата является точка P(-1,2), а одна из сторон задается уравнением x+2y=0. Составить уравнения остальных сторон квадрата.
- 3. Составить уравнение прямой, проходщей через точку M(-7, 13) и образующей с прямыми 2x + y + 3 = 0 и x + y 2 = 0 треугольник площади 9
- 4. Доказать, что определитель линейного преобразования не зависит от системы координат