Projet Réseaux

Simulation d'un protocole de routage à vecteur de distances

- Rapport -

Abdelkrim ESSAFSYFY Paul ONDAFE MATOCK

Année académique 2020-2021

Table des matières

1	Exercice 2.2]
2	Exercice 2.3	2
3	Exercice 2.4	2
4	Exercice 2.5	ę
5	Exercice 2.6	4

1 Exercice 2.2

FIGURE 1 – Topologie de 4 nœuds et 5 liens

Step	D _{R1} (R2)	D _{R2} (R2)	D _{R3} (R2)	D _{R4} (R2)
init	∞	0	∞	∞
1	1 [R1]		2 [R3]	10 [R4]
2				7 [R1]
3	14 [R4]		25 [R4]	17 [R3]
4	11 [R4]		22 [R4]	

FIGURE 2 – Tableau des routes calculées par les routeurs vers R2

La Figure 1 représente une topologie contenant 4 nœuds et 5 liens ainsi que les coûts et les interfaces par lesquelles ils sont connectés. La figure 2 quant à elle, représente les routes calculées à partir de chacun des routeurs vers une unique destination (R2).

Figure 3 – Topologie résultant en un comptage à l'infini

Simulation	Lien X-Y	Lien Y-Z	Lien X-Z	Nombre d'itérations (temps en ms)
#1	60	1	50	3350
#2	40	1	50	2602
#3	70	1	60	4022

Figure 4 – Tableau contenant 3 simulations différentes

2 Exercice 2.3

La Figure 3 représente la topologie résultant en un comptage à l'infini, le nombre 60 en rouge indique le changement nécessaire pour provoquer le comptage à l'infini.

Il doit également indiquer le nombre de messages échangés par les routeurs (i.e. nombre d'itérations) depuis le changement de métrique et jusqu'à la nouvelle convergence.

Les 2 assignements de coûts de liens qui résultant en une convergence plus courte et une autre plus longue sont renseignés dans la Figure 4.

3 Exercice 2.4

La nom de la solution au comptage à l'infini vue dans le cours est *Poisoned reverse*. Elle consiste à ne pas indiquer le coût réel vers la destination aux voisins (en leur envoyant $+\infty$ comme coût) qui passent par ce même nœud afin d'éviter de progressivement incrémenter de 1 les coûts. Dans la topologie donnée dans l'exercice 2.3, Y doit renseigner $+\infty$ à Z — son voisin — puisque celui-ci

passe pas Y afin d'atteindre X; sa destination.

4 Exercice 2.5

FIGURE 5 – Topologie où Poisoned reverse ne règle pas le problème de comptage à l'infini

La Figure 5 contient une topologie où, même avec application de la méthode Poison reverse, le problème de comptage à l'infini persiste. Dans cette topologie, le lien entre le routeur A et le routeur Y n'est plus fonctionnel. Il est donc impossible d'accéder au routeur A.

Le problème de comptage à l'infini persiste car, malgré le fait que le routeur Y informe X et Z que le coût vers A est égal à l'infini, le premier routeur recevant cette information — supposons dans ce cas qu'il s'agit de Z — remarque qu'il est toujours possible d'accéder au routeur A viaX. Ceci est dû au fait que X n'est pas au courant du changement des coûts des liens $(D_y(a) = +\infty)$. Nous remarquerons donc un comptage à l'infini entre X et Z, qui continuent d'incrémenter les coûts.

Une solution à ce problème est appelée $Split\ Horizon$. Elle consiste à interdire à un routeur de partager les coûts des liens dans la table de routage avec le routeur (interface) à partir duquel il a appris ceux-ci. Concrètement, dans la Figure 5, quand le routeur Y informe Z — et plus tard

X — que le routeur A n'est plus accessible, le routeur Z n'enverra pas à Y les coûts associés à ce routeur Y. De cette façon, Y conservera $D_y(a) = +\infty$ et le comptage à l'infini sera évité.

5 Exercice 2.6

Le rapport doit contenir un graphique (ou un tableau) contenant les temps de convergence obtenus pour chaque nombre de liens.