MS211 - Cálculo Numérico

Aula 05 – Pivoteamento Parcial na Eliminação de Gauss e na Fatoração LU.

Marcos Eduardo Valle Matemática Aplicada IMECC - Unicamp

No método da eliminação de Gauss, operações elementares são usadas para transformar um sistema linear $\mathbf{A}\mathbf{x} = \mathbf{b}$ num sistema equivalente $\mathbf{U}\mathbf{x} = \mathbf{c}$, em que \mathbf{U} é uma matriz triangular superior.

No método da eliminação de Gauss, operações elementares são usadas para transformar um sistema linear $\mathbf{A}\mathbf{x} = \mathbf{b}$ num sistema equivalente $\mathbf{U}\mathbf{x} = \mathbf{c}$, em que \mathbf{U} é uma matriz triangular superior.

Organizando os multiplicadores usados na eliminação de Gauss, obtemos uma matriz $\bf L$ triangular inferior com diagonal unitária tal que $\bf A = \bf L \bf U$, chamada **fatoração LU** de $\bf A$.

No método da eliminação de Gauss, operações elementares são usadas para transformar um sistema linear $\mathbf{A}\mathbf{x} = \mathbf{b}$ num sistema equivalente $\mathbf{U}\mathbf{x} = \mathbf{c}$, em que \mathbf{U} é uma matriz triangular superior.

Organizando os multiplicadores usados na eliminação de Gauss, obtemos uma matriz $\bf L$ triangular inferior com diagonal unitária tal que $\bf A = \bf L \bf U$, chamada **fatoração LU** de $\bf A$.

Tanto a eliminação de Gauss como a fatoração LU requerem $\mathcal{O}(n^3)$ operações, em que n é a dimensão do sistema $\mathbf{A}\mathbf{x} = \mathbf{b}$.

No método da eliminação de Gauss, operações elementares são usadas para transformar um sistema linear $\mathbf{A}\mathbf{x} = \mathbf{b}$ num sistema equivalente $\mathbf{U}\mathbf{x} = \mathbf{c}$, em que \mathbf{U} é uma matriz triangular superior.

Organizando os multiplicadores usados na eliminação de Gauss, obtemos uma matriz $\bf L$ triangular inferior com diagonal unitária tal que $\bf A = \bf L \bf U$, chamada **fatoração LU** de $\bf A$.

Tanto a eliminação de Gauss como a fatoração LU requerem $\mathcal{O}(n^3)$ operações, em que n é a dimensão do sistema $\mathbf{A}\mathbf{x} = \mathbf{b}$.

Na aula de hoje, veremos um problema que surge na eliminação de Gauss/fatoração LU e apresentaremos a técnica de pivoteamento parcial como alternativa para evitar tal problema.

No método da eliminação de Gauss/fatoração LU, inicialmente escrevemos $\mathbf{A}^{(0)} = \mathbf{A}$ e $\mathbf{b}^{(0)} = \mathbf{b}$.

No método da eliminação de Gauss/fatoração LU, inicialmente escrevemos $\mathbf{A}^{(0)} = \mathbf{A}$ e $\mathbf{b}^{(0)} = \mathbf{b}$.

No j-ésimo estágio, definimos

$$m_{ij} = \frac{a_{ij}^{(j-1)}}{a_{jj}^{(j-1)}}, \quad b_i^{(j)} = b_i^{(j-1)} - m_{ij}b_j^{(j-1)} \quad e \quad \mathbf{a}_i^{(j)} = \mathbf{a}_i^{(j-1)} - m_{ij}\mathbf{a}_j^{(j-1)},$$

para i = j + 1, ..., n.

No método da eliminação de Gauss/fatoração LU, inicialmente escrevemos $\mathbf{A}^{(0)} = \mathbf{A}$ e $\mathbf{b}^{(0)} = \mathbf{b}$.

No j-ésimo estágio, definimos

$$m_{ij} = \frac{a_{ij}^{(j-1)}}{a_{jj}^{(j-1)}}, \quad b_i^{(j)} = b_i^{(j-1)} - m_{ij}b_j^{(j-1)} \quad e \quad \mathbf{a}_i^{(j)} = \mathbf{a}_i^{(j-1)} - m_{ij}\mathbf{a}_j^{(j-1)},$$

para i = j + 1, ..., n.

Observe que o multiplicador m_{ij} , que será um elemento da matriz **L** da fatoração LU, requer uma divisão por $a_{ij}^{(j-1)}$, chamado **pivô**.

No método da eliminação de Gauss/fatoração LU, inicialmente escrevemos $\mathbf{A}^{(0)} = \mathbf{A}$ e $\mathbf{b}^{(0)} = \mathbf{b}$.

No j-ésimo estágio, definimos

$$m_{ij} = \frac{a_{ij}^{(j-1)}}{a_{jj}^{(j-1)}}, \quad b_i^{(j)} = b_i^{(j-1)} - m_{ij}b_j^{(j-1)} \quad e \quad \mathbf{a}_i^{(j)} = \mathbf{a}_i^{(j-1)} - m_{ij}\mathbf{a}_j^{(j-1)},$$

para i = j + 1, ..., n.

Observe que o multiplicador m_{ij} , que será um elemento da matriz **L** da fatoração LU, requer uma divisão por $a_{ij}^{(j-1)}$, chamado **pivô**.

O método irá falhar se em algum estágio o pivô é nulo, ou seja, se $a_{ii}^{(j-1)}=0!$

Considere o sistema linear $\mathbf{A}\mathbf{x} = \mathbf{b}$, em que \mathbf{A} e \mathbf{b} são

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{b} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$$

A (única) solução do sistema é $\mathbf{x}^* = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$.

Considere o sistema linear $\mathbf{A}\mathbf{x} = \mathbf{b}$, em que \mathbf{A} e \mathbf{b} são

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{b} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$$

A (única) solução do sistema é $\mathbf{x}^* = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$. Porém, não é possível determina-la usando o método da eliminação de Gauss.

Considere o sistema linear $\mathbf{A}\mathbf{x} = \mathbf{b}$, em que \mathbf{A} e \mathbf{b} são

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{b} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$$

A (única) solução do sistema é $\mathbf{x}^* = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$. Porém, não é possível determina-la usando o método da eliminação de Gauss. De fato, no primeiro estágio deveríamos calcular

$$m_{21}=\frac{a_{21}}{a_{11}},$$

mas o denominador é zero! Logo, o método da eliminação de Gauss falha.

Considere o sistema linear $\mathbf{A}\mathbf{x} = \mathbf{b}$, em que \mathbf{A} e \mathbf{b} são

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{b} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$$

A (única) solução do sistema é $\mathbf{x}^* = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$. Porém, não é possível determina-la usando o método da eliminação de Gauss. De fato, no primeiro estágio deveríamos calcular

$$m_{21}=\frac{a_{21}}{a_{11}},$$

mas o denominador é zero! Logo, o método da eliminação de Gauss falha.

O ponto positivo é que temos um diagnóstico claro do problema: uma divisão por zero!

Pivoteamento Parcial

Pivoteamento parcial

Na estratégia de pivoteamento parcial, antes de iniciar o j-ésimo estágio, permutam-se linhas da matriz $\mathbf{A}^{(j-1)}$ de modo a obter

$$|a_{jj}^{(j-1)}|\geqslant |a_{ij}^{(j-1)}|, \quad \forall i=j,\ldots,n.$$

Pivoteamento Parcial

Pivoteamento parcial

Na estratégia de pivoteamento parcial, antes de iniciar o j-ésimo estágio, permutam-se linhas da matriz $\mathbf{A}^{(j-1)}$ de modo a obter

$$|a_{jj}^{(j-1)}|\geqslant |a_{ij}^{(j-1)}|, \quad \forall i=j,\ldots,n.$$

Em palavras, o pivô é escolhido como sendo um dos elementos de maior valor absoluto dentre

$$a_{jj}^{(j-1)}, a_{j+1,j}^{(j-1)}, \dots, a_{nj}^{(j-1)}.$$

Pivoteamento Parcial

Pivoteamento parcial

Na estratégia de pivoteamento parcial, antes de iniciar o j-ésimo estágio, permutam-se linhas da matriz $\mathbf{A}^{(j-1)}$ de modo a obter

$$|a_{jj}^{(j-1)}|\geqslant |a_{ij}^{(j-1)}|, \quad \forall i=j,\ldots,n.$$

Em palavras, o pivô é escolhido como sendo um dos elementos de maior valor absoluto dentre

$$a_{jj}^{(j-1)}, a_{j+1,j}^{(j-1)}, \dots, a_{nj}^{(j-1)}.$$

Vejamos como incluir a técnica de pivoteamento parcial no método da eliminção de Gauss.

Algoritmo da Eliminação de Gauss (sem pivoteamento parcial)

Entrada: Matriz não-singular $\mathbf{A} \in \mathbb{R}^{n \times n}$ e vetor coluna $\mathbf{b} \in \mathbb{R}^n$.

para j = 1 até n - 1 faça

para i = j + 1 até n faça

• $m_{ij} = \frac{a_{ij}}{a_{jj}}$.

• $b_i = b_i - m_{ij}b_j$.

para
$$k = j + 1$$
 até n faça

•
$$a_{ik} = a_{ik} - m_{ij}a_{jk}$$

fim

fim

fim

Resolver $\mathbf{A}\mathbf{x} = \mathbf{b}$ com substituição reversa.

Saída: Solução do sistema linear.

Eliminação de Gauss com Pivoteamento Parcial

Entrada: Matriz não-singular $\mathbf{A} \in \mathbb{R}^{n \times n}$ e vetor coluna $\mathbf{b} \in \mathbb{R}^n$. para j = 1 : n - 1 faça

- Determine k tal que $|a_{kj}| = \max_{i=j:n} |a_{ij}|$. (índice do pivô)
- Permute as linhas j e k de \mathbf{A} e \mathbf{b} .

para
$$i = j + 1$$
 até n faça

•
$$m_{ij}=\frac{a_{ij}}{a_{jj}}$$
.

•
$$b_i = b_i - m_{ij}b_j$$
.

para
$$k = j + 1$$
 até n faça

•
$$a_{ik} = a_{ik} - m_{ij}a_{jk}$$

fim

fim

fim

Resolver $\mathbf{A}\mathbf{x} = \mathbf{b}$ com substituição reversa.

Saída: Solução do sistema linear.

Use o método da eliminação de Gauss com pivoteamento parcial para determinar a solução do sistema $\mathbf{A}\mathbf{x}=\mathbf{b}$, em que

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 4 \\ 5 \end{bmatrix}$$

Use o método da eliminação de Gauss com pivoteamento parcial para determinar a solução do sistema $\mathbf{A}\mathbf{x}=\mathbf{b},$ em que

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 4 \\ 5 \end{bmatrix}$$

Resposta: Permutamos a primeira com a terceira linha:

$$\bar{\mathbf{A}}^{(0)} = \begin{bmatrix} 8 & 7 & 9 & 5 \\ 4 & 3 & 3 & 1 \\ 2 & 1 & 1 & 0 \\ 6 & 7 & 9 & 8 \end{bmatrix} \quad e \quad \bar{\mathbf{b}}^{(0)} = \begin{bmatrix} 4 \\ 2 \\ 1 \\ 5 \end{bmatrix}$$

Use o método da eliminação de Gauss com pivoteamento parcial para determinar a solução do sistema $\mathbf{A}\mathbf{x}=\mathbf{b}$, em que

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 4 \\ 5 \end{bmatrix}$$

Introduzir zeros abaixo do pivô:

$$m_{21} = 1/2, \quad m_{31} = 1/4 \quad \text{e} \quad m_{41} = 3/4.$$

$$\mathbf{A}^{(1)} = \begin{bmatrix} 8 & 7 & 9 & 5 \\ 0 & -1/2 & -3/2 & -3/2 \\ 0 & -3/4 & -5/4 & -5/4 \\ 0 & 7/4 & 9/4 & 17/4 \end{bmatrix} \quad \text{e} \quad \mathbf{b}^{(1)} = \begin{bmatrix} 4 \\ 0 \\ 0 \\ 2 \end{bmatrix}$$

Use o método da eliminação de Gauss com pivoteamento parcial para determinar a solução do sistema $\mathbf{A}\mathbf{x}=\mathbf{b}$, em que

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 4 \\ 5 \end{bmatrix}$$

Permutar a quarta linha com a segunda:

$$\bar{\boldsymbol{A}}^{(1)} = \begin{bmatrix} 8 & 7 & 9 & 5 \\ 0 & 7/4 & 9/4 & 17/4 \\ 0 & -3/4 & -5/4 & -5/4 \\ 0 & -1/2 & -3/2 & -3/2 \end{bmatrix} \quad e \quad \bar{\boldsymbol{b}}^{(1)} = \begin{bmatrix} 4 \\ 2 \\ 0 \\ 0 \end{bmatrix}$$

Use o método da eliminação de Gauss com pivoteamento parcial para determinar a solução do sistema $\mathbf{A}\mathbf{x}=\mathbf{b}$, em que

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 4 \\ 5 \end{bmatrix}$$

Introduzir zeros abaixo do pivô:

$$\mathbf{A}^{(2)} = \begin{bmatrix} 8 & 7 & 9 & 5 \\ 0 & 7/4 & 9/4 & 17/4 \\ 0 & 0 & -2/7 & 4/7 \\ 0 & 0 & -6/7 & -2/7 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{b}^{(2)} = \begin{bmatrix} 4 \\ 2 \\ 6/7 \\ 4/7 \end{bmatrix}$$

 $m_{32} = -3/7$ e $m_{42} = -2/7$.

Use o método da eliminação de Gauss com pivoteamento parcial para determinar a solução do sistema $\mathbf{A}\mathbf{x}=\mathbf{b},$ em que

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 4 \\ 5 \end{bmatrix}$$

Permutar a quarta linha com a terceira:

$$\bar{\boldsymbol{A}}^{(2)} = \begin{bmatrix} 8 & 7 & 9 & 5 \\ 0 & 7/4 & 9/4 & 17/4 \\ 0 & 0 & -6/7 & -2/7 \\ 0 & 0 & -2/7 & 4/7 \end{bmatrix} \quad e \quad \bar{\boldsymbol{b}}^{(2)} = \begin{bmatrix} 4 \\ 2 \\ 4/7 \\ 6/7 \end{bmatrix}$$

Use o método da eliminação de Gauss com pivoteamento parcial para determinar a solução do sistema $\mathbf{A}\mathbf{x} = \mathbf{b}$, em que

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 4 \\ 5 \end{bmatrix}$$

Introduzir zero abaixo do pivô:

$$m_{43}=1/3.$$

$$\label{eq:U} \textbf{U} = \textbf{A}^{(3)} = \begin{bmatrix} 8 & 7 & 9 & 5 \\ 0 & 7/4 & 9/4 & 17/4 \\ 0 & 0 & -6/7 & -2/7 \\ 0 & 0 & 0 & 2/3 \end{bmatrix} \quad e \quad \textbf{c} = \textbf{b}^{(3)} = \begin{bmatrix} 4 \\ 2 \\ 4/7 \\ 2/3 \end{bmatrix}$$

$$\mathbf{e} \quad \mathbf{c} = \mathbf{b}^{(3)} = \begin{bmatrix} \mathbf{c} \\ \mathbf{c} \\ \mathbf{c} \end{bmatrix}$$

Use o método da eliminação de Gauss com pivoteamento parcial para determinar a solução do sistema $\mathbf{A}\mathbf{x}=\mathbf{b}$, em que

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 4 \\ 5 \end{bmatrix}$$

A solução do sistema é:

$$\mathbf{x}^* = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \end{bmatrix}.$$

Fatoração LU com Pivoteamento Parcial

Os multiplicadores determinados no método da eliminação de Gauss com pivoteamento parcial podem ser organizados, com cuidado devido as permutações das linhas, numa matriz **L** triangular inferior com diagonal unitária.

Fatoração LU com Pivoteamento Parcial

Os multiplicadores determinados no método da eliminação de Gauss com pivoteamento parcial podem ser organizados, com cuidado devido as permutações das linhas, numa matriz **L** triangular inferior com diagonal unitária.

Sobretudo, a matriz original **A**, a matriz triangular superior **U** obtida no final do processo de eliminação e a matriz **L** triangular inferior com os multiplicadores satisfazem:

$$PA = LU$$

em que **P** é a matriz de permutação (obtida permutando linhas da matriz identidade).

Determine a fatoração LU, com pivoteamento parcial, da matriz

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix}.$$

Determine a fatoração LU, com pivoteamento parcial, da matriz

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix}.$$

Resposta: No primeiro estágio, permutamos a primeira com a terceira linha. A matriz de permutação do primeiro estágio **P**⁽¹⁾ é obtida efetuando essas operações na matriz identidade:

$$\mathbf{P}^{(1)} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Determine a fatoração LU, com pivoteamento parcial, da matriz

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix}.$$

Os multiplicadores usados para introduzir zeros abaixo do pivô são:

$$m_{21} = 1/2$$
, $m_{31} = 1/4$ e $m_{41} = 3/4$.

Organizamos os multiplicadores na matriz

$$\mathbf{L}^{(1)} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1/2 & 0 & 0 & 0 \\ 1/4 & 0 & 0 & 0 \\ 3/4 & 0 & 0 & 0 \end{bmatrix}.$$

Determine a fatoração LU, com pivoteamento parcial, da matriz

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix}.$$

Definimos também:

$$\boldsymbol{U}^{(1)} = \boldsymbol{A}^{(1)} = \begin{bmatrix} 8 & 7 & 9 & 5 \\ 0 & -1/2 & -3/2 & -3/2 \\ 0 & -3/4 & -5/4 & -5/4 \\ 0 & 7/4 & 9/4 & 17/4 \end{bmatrix}.$$

Determine a fatoração LU, com pivoteamento parcial, da matriz

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix}.$$

No estágio 2, permutamos a quarta linha com a segunda. Fazemos a mesma operação com ${\bf P}^{(1)}$ e ${\bf L}^{(1)}$, obtendo

$$\boldsymbol{P}^{(2)} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \quad e \quad \boldsymbol{\bar{L}}^{(1)} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 3/4 & 0 & 0 & 0 \\ 1/4 & 0 & 0 & 0 \\ 1/2 & 0 & 0 & 0 \end{bmatrix}.$$

Determine a fatoração LU, com pivoteamento parcial, da matriz

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix}.$$

Adicionamos multiplicadores

$$m_{32} = -3/7$$
 e $m_{42} = -2/7$,

usados para introduzir zeros abaixo do pivô na matriz $\bar{L}^{(1)}$, obtendo

$$\boldsymbol{L}^{(2)} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 3/4 & 0 & 0 & 0 \\ 1/4 & -3/7 & 0 & 0 \\ 1/2 & -2/7 & 0 & 0 \end{bmatrix}.$$

Determine a fatoração LU, com pivoteamento parcial, da matriz

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix}.$$

Tal como no estágio anterior, definimos

$$\label{eq:U2} \boldsymbol{U}^{(2)} = \boldsymbol{A}^{(2)} = \begin{bmatrix} 8 & 7 & 9 & 5 \\ 0 & 7/4 & 9/4 & 17/4 \\ 0 & 0 & -2/7 & 4/7 \\ 0 & 0 & -6/7 & -2/7 \end{bmatrix}.$$

Determine a fatoração LU, com pivoteamento parcial, da matriz

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix}.$$

No último estágio, permutamos a quarta linha com a terceira. Fazendo a mesma operação com ${\bf P}^{(2)}$ e ${\bf L}^{(2)}$, encontramos

$$\boldsymbol{P}^{(2)} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \quad e \quad \bar{\boldsymbol{L}}^{(2)} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 3/4 & 0 & 0 & 0 \\ 1/2 & -2/7 & 0 & 0 \\ 1/4 & -3/7 & 0 & 0 \end{bmatrix}.$$

Determine a fatoração LU, com pivoteamento parcial, da matriz

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix}.$$

Adicionamos o multiplicador

$$m_{43} = 1/3$$
,

em $\bar{L}^{(2)}$, fornecendo

$$\boldsymbol{L}^{(3)} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 3/4 & 0 & 0 & 0 \\ 1/2 & -2/7 & 0 & 0 \\ 1/4 & -3/7 & 1/3 & 0 \end{bmatrix}.$$

Determine a fatoração LU, com pivoteamento parcial, da matriz

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix}.$$

Finalmente, definimos $\mathbf{P} = \mathbf{P}^{(3)}$, $\mathbf{L} = \mathbf{L}^{(3)} + \mathbf{I}$, ou seja, \mathbf{L} é a matriz $\mathbf{L}^{(3)}$ com 1 na diagonal, e

$$\label{eq:U} \boldsymbol{U} = \boldsymbol{A}^{(3)} = \begin{bmatrix} 8 & 7 & 9 & 5 \\ 0 & 7/4 & 9/4 & 17/4 \\ 0 & 0 & -6/7 & -2/7 \\ 0 & 0 & 0 & 2/3 \\ \end{bmatrix}.$$

Determine a fatoração LU, com pivoteamento parcial, da matriz

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix}.$$

Concluindo, a fatoração LU de A com pivoteamento parcial é

$$\underbrace{ \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} }_{\mathbf{P}} \underbrace{ \begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix} }_{\mathbf{A}} = \underbrace{ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 3/4 & 1 & 0 & 0 \\ 1/2 & -2/7 & 1 & 0 \\ 1/4 & -3/7 & 1/3 & 1 \end{bmatrix} }_{\mathbf{L}} \underbrace{ \begin{bmatrix} 8 & 7 & 9 & 5 \\ 0 & 7/4 & 9/4 & 17/4 \\ 0 & 0 & -6/7 & -2/7 \\ 0 & 0 & 0 & 2/3 \end{bmatrix} }_{\mathbf{U}}.$$

Observe que o multiplicador m_{ij} , determinado no processo de eliminação, não aparece necessariamente na posição (i,j) da matriz **L** por causa das permutações das linhas!

Teorema 4

Qualquer matriz $\mathbf{A} \in \mathbb{R}^{n \times n}$ não-singular pode ser fatorada como

$$PA = LU$$
,

em que ${\bf U}$ é triangular superior, ${\bf L}$ é triangular inferior com diagonal unitária e ${\bf P}$ é uma matriz de permutação.

Teorema 4

Qualquer matriz $\mathbf{A} \in \mathbb{R}^{n \times n}$ não-singular pode ser fatorada como

$$PA = LU$$
,

em que **U** é triangular superior, **L** é triangular inferior com diagonal unitária e **P** é uma matriz de permutação.

Como consequência, tanto a eliminação de Gauss como a fatoração LU, ambos com pivoteamento parcial, podem ser usadas para resolver $\mathbf{A}\mathbf{x} = \mathbf{b}$ com \mathbf{A} não-singular.

Teorema 4

Qualquer matriz $\mathbf{A} \in \mathbb{R}^{n \times n}$ não-singular pode ser fatorada como

$$PA = LU$$
,

em que **U** é triangular superior, **L** é triangular inferior com diagonal unitária e **P** é uma matriz de permutação.

Como consequência, tanto a eliminação de Gauss como a fatoração LU, ambos com pivoteamento parcial, podem ser usadas para resolver $\mathbf{A}\mathbf{x} = \mathbf{b}$ com \mathbf{A} não-singular.

Se a matriz **A** for singular, haverá um pivô nulo no processo de eliminação com pivoteamento parcial!

Comandos da biblioteca NumPy e SciPy

O sistema $\mathbf{A}\mathbf{x} = \mathbf{b}$ é resolvido usando o comando:

$$>>> x = np.linalg.solve(A,b)$$

ou

$$>>> x = linalg.solve(A,b)$$

das bibliotecas $NumPy^1$ e $SciPy^2$. Esses comandos, basicamente, implementam a eliminação de Gauss com pivoteamento parcial.

¹ import numpy as np

²from scipy import linalg

Comandos da biblioteca NumPy e SciPy

O sistema $\mathbf{A}\mathbf{x} = \mathbf{b}$ é resolvido usando o comando:

$$>>> x = np.linalg.solve(A,b)$$

ou

$$>>> x = linalg.solve(A,b)$$

das bibliotecas $NumPy^1$ e $SciPy^2$. Esses comandos, basicamente, implementam a eliminação de Gauss com pivoteamento parcial.

A fatoração LU de **A** e muitas outras fatorações também estão disponíveis na biblioteca SciPy.

¹ import numpy as np

²from scipy import linalq

Há também uma estratégia de pivoteamento total, na qual busca-se o elemento de maior valor absoluto dentre as linhas e colunas abaixo do pivô.

Há também uma estratégia de pivoteamento total, na qual busca-se o elemento de maior valor absoluto dentre as linhas e colunas abaixo do pivô.

O pivoteamento total, porém, requer uma busca longa entre os elementos da matriz **A**.

Há também uma estratégia de pivoteamento total, na qual busca-se o elemento de maior valor absoluto dentre as linhas e colunas abaixo do pivô.

O pivoteamento total, porém, requer uma busca longa entre os elementos da matriz **A**.

Consequentemente, não há benefícios ao empregar a estratégia de pivoteamento total!

Há também uma estratégia de pivoteamento total, na qual busca-se o elemento de maior valor absoluto dentre as linhas e colunas abaixo do pivô.

O pivoteamento total, porém, requer uma busca longa entre os elementos da matriz **A**.

Consequentemente, não há benefícios ao empregar a estratégia de pivoteamento total!

O pivoteamento parcial é tão empregado que, ao referir a fatoração LU ou eliminação de Gauss, geralmente assumimos o uso essa estratégia!

Considerações Finais

Na aula de hoje apresentamos a técnica de pivotemamento parcial para o método da eliminação de Gauss e fatoração LU.

Considerações Finais

Na aula de hoje apresentamos a técnica de pivotemamento parcial para o método da eliminação de Gauss e fatoração LU.

Na técnica de pivoteamento parcial, permutamos linhas da matriz de modo que o pivo, i.e., elemento da diagonal, tenha valor absoluto maior ou igual aos elementos abaixo dele.

Considerações Finais

Na aula de hoje apresentamos a técnica de pivotemamento parcial para o método da eliminação de Gauss e fatoração LU.

Na técnica de pivoteamento parcial, permutamos linhas da matriz de modo que o pivo, i.e., elemento da diagonal, tenha valor absoluto maior ou igual aos elementos abaixo dele.

O pivoteamento parcial é tão empregado que, ao referir a fatoração LU ou eliminação de Gauss, geralmente assumimos o uso dessa estratégia!

Muito grato pela atenção!