Date: 2020-10-13

Created by: Jonas Eichhorn

1/4

Charakterisierung der Wellenplatte W1

Die Bauelemente der Fiberbenches müssen charakterisiert werden. Die Bauelemente sind die verwendeten Fasern, die linear Polarisatoren, die Wellenplatten und ähnliches. Es wird deshalb dokumentiert wie die messbare Laserleistung durch die optischen Elemente reduziert wird. Interessant ist dabei wie stark die Laserleistung in Abhängigkeit seiner Ausrichtung zu linear polarisiertem Licht reduziert wird.

Aufbau 1

Ramanspektrometer	WiTec (ZAF)
Powermeter	PM100D/S130C
Linearpolarisatoren	P1, P2
Zu charakterisierendes Bauteil	Wellenplatte W1

Experiment 1: Nullpunktsbestimmung

Es soll herausgefunden werden, wie die Wellenplatter orientiert sein muss, dass sie die Lichtolarisation um 90° dreht. Der Laserstrahl wird durch eine Fiberbench geleitet. Im Strahlengang werden zwei Linearpolarisatoren, das zu untersuchende Bauteil und die Messsonde des Powermeters plaziert. Der Laser passiert dabei zuerst einen Linearpolarisator, dann die Wellenplatte, den zweiten Polarisator und trift zuletzt auf die Messsonde. Der erste Linearpolarisator wird in die Position rotiert, welche die gemessene Laserleistung maximiert, ohne dass Linearpolarisator 2 verwendet wird. Der zweite Linearpolarisator wird in die Position rotiert, welche die Laserleistung minimiert. Dabei sind beide Linearpolarisatoren verbaut. Die Laserleistung wird zuerst für den Aufbau ohne das zu charakterisierende Bauteil gemessen. Anschließend wird die Laserleistung für den Aufbau mit dem zu charakterisierenden Bauteil gemessen. Das zu charakterisierende optische Element wird nach jeder Messung rotiert und der neue Messwert vermerkt.

Position Linearpolarisator P1 / °	6
Position Linearpolarisator P2 / °	76
Maximale Laserleistung / mW	54,4
Gemessene Leistung ohne Bauteil / mW	233,2e-3 (Ändert sich während des Experiments)
Gemessene Leistung ohne Laser / mW	0,6e-6

PDF generated with elabftw, a free and open source lab notebook

Date: 2020-10-13

Created by: Jonas Eichhorn

2/4

Experiment 2: Transmissionsverhalten

Es wird auch untersucht, wie stark die Wellenplatte in Abhängigkeit ihrer Rotation das Laserlicht absorbiert. Dafür wird der Laserstrahl durch eine Fiberbench geleitet. Im Strahlengang wird ein Linearpolarisator, die Wellenplatte und die Messsonde des Powermeters plaziert. Der Strahl passiert zuerst den Linearpolarisator und trifft zuletzt auf die Messsonde. Der Linearpolarisator ist so eingestellt, dass die Laserleistung ohne Wellenplatte maximal ist. Anschließend wird die Wellenplatte eingesetzt und die Laserleistung für verschiedene Positionen der Wellenplatte detektiert.

Position Linearpolarisator P1 / °	6
Maximale Laserleistung / mW	54,4
Gemessene Leistung ohne Bauteil / mW	1,687 (Ändert sich während des Experiments)
Gemessene Leistung ohne Laser / mW	34,9e-6

Messung für Exp. 1 und 2

Position Wellenplatte / °	Gemessene Leistung Messung 1 / mW	Gemessene Leistung ohne Bauteil Messung 1 / mW	Gemessene Leistung Messung 2 / mW	Gemessene Leistung ohne Bauteil Messung 2 / mW
0	2,535e-3	233,2e-6	1,687	1,687
10	177,0e-3		1,680	
20	0,618		1,670	
30	1,072		1,660	
40	1,368		1,663	
50	1,382		1,668	
60	1,062		1,662	
70	0,563		1,673	
80	175,8e-3		1,680	
90	0,468e-3		1,680	
100	163,4e-3		1,685	
110	0,592		1,677	
120	1,048		1,673	
130	1,379		1,661	
140	1,345		1,648	

Date: 2020-10-13

Created by: Jonas Eichhorn

3 / 4

150	1,037		1,649	
160	0,550		1,642	
170	153,8e-3		1,638	
180	2,326e-3		1,637	
190	164,7e-3		1,644	
200	0,628		1,640	
210	1,066		1,648	
220	1,389		1,662	
230	1,325		1,661	
240	0,944		1,670	
250	0,500	197,5e-6	1,673	1,722
260	93,4e-3		1,672	
270	7,67e-3		1,680	
280	247,0e-3		1,676	
290	0,665		1,671	
300	1,159		1,665	
310	1,387		1,667	
320	1,327		1,674	
330	1,018		1,670	
340	0,499		1,667	
350	123,7e-3		1,675	
358	0,413e-3	321,4e-6	1,688	1,718
2	13,66e-3		1,684	
356	2,96e-3		1,684	
354	24,51e-3		1,691	
48	1,387		1,670	
46	1,420		1,673	
44	1,409		1,677	
42	1,407		1,671	
86	24,70e-3		1,682	
88	6,02e-3		1,684	
92	10,05e-3		1,690	
94	29,5e-3		1,689	
126	1,290		1,677	1,724

Date: 2020-10-13

Created by: Jonas Eichhorn

4/4

128	1,325	227,1e-6	1,675	
132	1,393		1,669	
134	1,407		1,670	
176	23,59e-3		1,634	
178	4,08e-3		1,632	
182	12,40e-3		1,647	
184	47,0e-3		1,634	
228	1,357		1,673	
226	1,408		1,674	
224	1,413		1,664	
222	1,395		1,660	
268	0,289e-3		1,670	
264	30,3e-3		1,673	
266	7,21e-3		1,669	
272	38,4e-3		1,669	
314	1,420		1,668	
312	1,420		1,671	
316	1,401		1,678	
318	1,375		1,667	

Comment:

On 2020-10-13 10:38:14 Jonas Eichhorn wrote:

Die Positionen der Linearpolarisatoren scheinen nicht mit den Messungen vom 12. Oktober 2020 übereinszustimmen.

Unique eLabID: 20201013-7a51d136346c32dac0317a5287cd2157b08cad62

link: https://elab.ipht-jena.de/experiments.php?mode=view&id=27