Lista de Exercícios - Modelagem de representação cromossômica e função fitness

Para cada um dos problemas descritos abaixo:

- crie uma ou mais representações "cromossômicas" capazes de representar uma solução para o problema, deixando claro qual é o alfabeto que pode ser utilizado para instanciar os genes. No caso de sua representação não ser "autoexplicativa", acrescente uma discussão textual sobre ela.
- crie uma função fitness (função de avaliação) adequada para avaliar os cromossomos.
 Determine o intervalo em que essa função deve ser otimizada. Especifique se é um problema de minimização ou maximização;
- para cada representação cromossômica que você criar, mostre uma solução representada e o seu valor de fitness;
- discuta as representações criadas quanto à possibilidade de criação de soluções infactíveis quando operadores de crossover ou mutação são aplicados sobre os cromossomos. Ilustre sua resposta;
- no caso dos operadores de crossover ou mutação criarem soluções infactíveis, proponha uma estratégia de correção das soluções e analise se tal estratégia é viável ou se a solução deve ser penalizada pela função fitnnes;

Obs.: Esse exercício tem o propósito de exercitar a sua capacidade de modelar um algoritmo genético. Sempre que você tiver dificuldades para resolver uma questão, transforme o problema em um problema mais fácil e resolva o problema relaxado. Depois, acrescente as dificuldades aos poucos em sua modelagem.

a. Problema de Mochila

Dado um conjunto de **n** objetos e uma mochila com:

- c_i = benefício do objeto j
- w_j = peso do objeto j
- b = capacidade da mochila

Determinar quais objetos devem ser colocados na mochila para maximizar o benefício total de tal forma que o peso da mochila não ultrapasse sua capacidade.

b. Problema de escalonamento de tarefas

Considere um conjunto de N *jobs* $J=\{J_1, J_2, ..., J_N\}$ a serem processados em M máquinas paralelas de igual poder de processamento disponíveis $M=\{M_1, M_2, ..., M_M\}$. Determine a melhor distribuição de *jobs* nas máquinas de forma a minimizar o tempo de execução do conjunto completo de *jobs*.

Variação (exemplo do Linden, pág. 291)

Fazer uma escala de tarefa onde cada tarefa consiste em uma sequência de operações, que devem ser processadas em um conjunto fechado e limitado de máquinas, de forma que o conjunto de todas as tarefas sejam realizadas em um tempo mínimo. Cada tarefa recebe duas datas: uma a partir da qual ela pode ser realizada e um prazo máximo. O processamento de uma tarefa i em uma máquina j é denotado pelo par ordenado (i,j), com o tempo de processamento sendo designado por Tij.

Dica: A função fitness para este problema deve conter um termo para cada um dos seguintes objetivos:

- i. minimizar o atraso médio das tarefas;
- ii. minimzar o número de tarefas em atraso;
- iii. minimizar o tempo total de transição entre tarefas;
- iv. minimizar o tempo ocioso de cada máquina;
- v. minimizar o tempo total de throughput (tempo em que todas as tarefas são efetivamente realizadas).

c. Problema de calibração de câmeras

O problema de calibração de câmeras considera que é necessário encontrar o posicionamento de uma câmera real a partir de informações de uma imagem do ambiente real onde está a câmera. Para isso, pontos específicos para os quais se conhece a localização no mundo, são encontrados na imagem. Assim tem-se as coordenadas dos pontos no mundo real e no mundo da imagem. Para calibrar a câmera é preciso encontrar:

- distância focal
- matriz de rotação
- matriz de translação

que minimize o erro entre as coordenadas dos pontos na imagem e as coordenadas dos pontos na nova imagem obtida pela câmera calibrada.

Para saber as coordenadas do ponto na nova imagem obtida pela câmera calibrada execute:

```
ponto_novo = matriz 1 * matriz 2 * matriz 3 * ponto no mundo real

matriz 1 = [ constante 1 constante 2 constante 3; 0 constante 4 constante 5; 0 0 1 ]

matriz 2 = [ distância focal 0 0 0; 0 distância focal 0 0; 0 0 1 0 ]

matriz 3 = [ Matriz de Rotação Matriz de Translação; 0 1 ]

Matriz de Rotação = [ v1 v2 v3; v4 v5 v6; v7 v8 v9 ]

Matriz de Transalação = [ v10; v11; v12 ]
```

d. Problema do carteiro chinês

Problema de encontrar uma rota para um carteiro, onde as seguintes restrições são colocadas:

- todas as ruas devem ser visitadas;
- o caminho deve ser mínimo, ou seja, a distância percorrida pelo carteiro deve ser a menor possível.

Considere:

- i. grafos não orientados;
- ii. grafos orientados.

e. Problema de agrupamento

Considere um conjunto de N dados que devem ser agrupados e C grupos. O melhor agrupamento é aquele que minimiza as distâncias entre os dados de um grupo e maximiza a distância dos dados de grupos diferentes.

f. Problema do Caixeiro Viajante

Dado um grafo não orientado totalmente conectado com arcos pesados, onde os nós representam cidades, os arcos representam caminhos entre as cidades e os pesos dos arcos representam o custo de cada caminho, um caixeiro viajante precisa passar por todas as cidades, retornando à cidade inicial, sem passar duas vezes por uma mesma cidade.

g. Problema das 8 rainhas

Dado um tabuleiro de xadrez (com 64 posições distribuídas em 8 linhas e 8 colunas) e 8 rainhas, o objetivo é distribuir as 8 rainhas pelo tabuleiro de forma que elas não se ameacem. Duas rainhas se ameaçam quando elas estão posicionadas em uma mesma linha, uma mesma coluna ou em uma mesma diagonal.

h. Problema da geração de horário escolar

Dado um conjunto de N disciplinas, M professores e D salas de aulas, o problema é distribuir as aulas das disciplinas pelas salas de aula e associar cada aula a um professor. Cada disciplina tem 4 horas de aula, um dia de aula possui 4 horas de aula. Assuma que diferentes instâncias do problema valoram N, M e D de diferentes formas e impõem diferentes restrições, tais como, não se pode ter 4 horas de aulas seguidas de uma mesma disciplina, um professor pode ministrar duas disciplinas desde que o horário permita, e deve-se minimizar o trânsito dos alunos entre diferentes salas de aula, deixando esta tarefa para o professor. Uma solução balanceada, ou seja, que não sobrecarregue alguns professores, é altamente desejável. Note que neste problema existem restrições que tornam uma solução infactível, enquanto outras apenas tornam a solução indesejável.

Incrementando o problema:

- e.1) assuma que existem turmas de tamanhos diferentes e salas de aula de tamanhosdiferentes e que uma solução ótima deveria alocar turmas pequenas para salas de aulas pequenas e turmas grandes para salas de aulas grandes;
- e.2) considere que o horário que está sendo criado atende a um departamento de uma universidade, portanto, nesta variação é possível ter várias turmas diferentes cursando períodos diferentes do curso; nesse contexto, disciplinas diferentes relacionadas a um mesmo período não podem ser colocadas no mesmo horário;
- e.3) assuma que um professor deve ter um mínimo de "buracos" no seu horário específico.

Um exemplo de instância (exemplo do Linden, pág, 287):

salas de aulas:

A - com capacidade para 40 alunos

B - com capacidade para 20 alunos

quatro turmas:

T1: 30 alunos

T2: 15 alunos

T3: 18 alunos

T4: 20 alunos

O professor Fulano leciona nas turmas T1 e T3 e prefere que ambas sejam na mesma sala.

O professor Sicrano leciona na turma 2 e recusa-se a dar aulas pela manhã, e o professor Beltrano leciona na turma T4, que tem alunos em comum com a turma T2.