Advances in k-mer matrix construction for analysis of large sequencing collections

Téo Lemane¹ Rayan Chikhi² Pierre Peterlongo¹

 1 Univ. Rennes, Inria, CNRS, Rennes, France 2 Department of Computational Biology, Institut Pasteur, Paris, France

SeqBIM 26/11/2021

k-mer matrices

• An holistic representation of sequence content across sequencing samples.

k0 k1 k2 k3 k4	1	2	3	4	5	6
k0	2	1	3	2	3	1
k1	3	8	9	1	0	2
k2	7	5	8	0	0	0
k3	4	4	6	3	7	5
k4	2	0	6	8	9	9
kn	6	4	8	2	2	3

Applications

- Sequence similarity between metagenomic sequencing samples¹
- RNA-Seq analyses²
- Bacterial GWAS³
- Read samples indexing⁴
- k-mer-based variants detection⁵

¹Benoit et al., "Multiple comparative metagenomics using multiset k-mer counting"

²Audoux et al., "DE-kupl: Exhaustive capture of biological variation in RNA-seq data through k-mer decomposition"

³ Jaillard et al., "A fast and agnostic method for bacterial genome-wide association studies: Bridging the gap between k-mers and genetic events"

⁴Lemane et al., "kmtricks: Efficient construction of Bloom filters for large sequencing data collections"

⁵Rahman et al., "Association mapping from sequencing reads using k-mers"

kmtricks overview

Main features

- k-mer matrix construction
- Bloom matrix construction
- k-mer filtering

241 sampling stations

- 712 short read samples, +6TB of compressed data
- 266 billions of distinct k-mers

241 sampling stations

- 712 short read samples, +6TB of compressed data
- 266 billions of distinct k-mers

	Time (min)	Mem (GB)	Disk (TB)
kmtricks	2248	43.4	2.2
Jellyfish-HowDe	>10000	80.6	pprox 1.1
KMC3-HowDe	>8500	213	≈ 1.1

k-mer rescue:

• Save rare but shared k-mers

k-mer rescue:

Save rare but shared k-mers

Filtered cells

Expected errors
Using the hard ab. threshold
Using the rescue strategy

98 billion 756 billion 86 billion

Availibility: O https://github.com/tlemane/kmtricks

Availibility: O https://github.com/tlemane/kmtricks

CLI

- pipeline: kmtricks pipeline --file in.fof --run-dir kdir
- modules: kmtricks count --id D1 --run-dir kdir --mode kmer
- tools: kmtricks aggregate --run-dir kdir --matrix kmer --format text > matrix.txt

CLI

- pipeline: kmtricks pipeline --file in.fof --run-dir kdir
- modules: kmtricks count --id D1 --run-dir kdir --mode kmer
- tools: kmtricks aggregate --run-dir kdir --matrix kmer --format text > matrix.txt

API

```
KmerMerger merger(...);
while (merger.next()) {
    // matrix streaming
}
```

```
Repartition repart(...);
repart.get_partition(kmer.minimizer());
```

CLI

- pipeline: kmtricks pipeline --file in.fof --run-dir kdir
- modules: kmtricks count --id D1 --run-dir kdir --mode kmer
- tools: kmtricks aggregate --run-dir kdir --matrix kmer --format text > matrix.txt

API

```
KmerMerger merger(...);
while (merger.next()) {
    // matrix streaming
}
```

Repartition repart(...); repart.get_partition(kmer.minimizer());

PLUGIN

• Easily extend kmtricks features

kmtricks plugin: a stupid example

Implementation: explugin.cpp

```
#include <kmtricks/plugin.hpp>
class ExPlugin : public km::IMergePlugin
{
    public:
        bool process_kmer(...) override {
        if (counts[0] > 42)
            return true; // keep row
        return false; // discard row
    }
};
```

Usage

```
kmtricks --plugin libexplugin.so [kmtricks args...]
```

Complete examples are available on the github wiki.

kmtricks conclusion

- Efficient and flexible k-mer matrix toolbox
 - Tara Ocean: 36h instead of week
- Supports large datasets
 - Tara Ocean
 - Applied on large human cohorts at Institut Pasteur
- Comes with a set of utilities/API for downstream analysis

kmtricks conclusion

- Efficient and flexible k-mer matrix toolbox
 - Tara Ocean: 36h instead of week
- Supports large datasets
 - Tara Ocean
 - Applied on large human cohorts at Institut Pasteur
- Comes with a set of utilities/API for downstream analysis

Future work:

- Support findere¹ algorithm
 - "Free" multi-hash Bloom filter
 - Reduce index size and query time

¹Robidou and Peterlongo, "findere: Fast and Precise Approximate Membership Query" □ ▶ + ♂ ▶ + ₹ ▶ + ₹ ▶ - ₹ → ೨,000

k-mer based variant calling

A reversed approach

- Identification of all sequences (k-mers) associated with the phenotype
- Characterization of SVs in these sequences

k-mer based variant calling

A reversed approach

- Identification of all sequences (k-mers) associated with the phenotype
- Characterization of SVs in these sequences

	Control			Case		
	1	2	3	4	5	6
k0	2	1	3	2	3	1
k1	3	8	9	1	0	2
k2	7	5	8	0	0	0
k3	4	4	6	3	7	5
k4	2	0	6	8	9	9
kn	6	4	8	2	2	3

k-mer based variant calling

A reversed approach

- Identification of all sequences (k-mers) associated with the phenotype
- Characterization of SVs in these sequences

	Control			Case		
	1	2	3	4	5	6
k0	2	1	3	2	3	1
k1	3	8	9	1	0	2
k2	7	5	8	0	0	0
k3	4	4	6	3	7	5
k4	2	0	6	8	9	9
kn	6	4	8	2	2	3

Association mapping from sequencing reads using k-mers. Rahman et al.

Statistical test:

• Likelihood ratio assuming Poisson distribution ¹

FWER/FDR control:

- Bonferroni
- Benjamini-Hochberg

Correction of population stratification:

PCA on a random subset of counted k-mers ^{2 3}

Almit ted Sequencing reads from case and control individuals Count k-mer frequencies in sequencing data Find k-mers GCCGAC **AGCTGA** associated with cases ATAACC GCTGAC and controls AGCCGA AGCCGA AGCTGA Locally assemble GCCGAC GCTGAC overlapping k-mers AGCCGAC ATAACC **AGCTGAC**

Implemented in **HAWK** (Hitting Association With K-mers)

¹Rahman et al., "Association mapping from sequencing reads using k-mers"

²Price et al., "Principal components analysis corrects for stratification in genome-wide association studies"

³Patterson, Price, and Reich, "Population Structure and Eigenanalysis"

HAWK in practice

Pros:

- Good recall
- Considers population stratification

HAWK in practice

Pros:

- Good recall
- Considers population stratification

Cons (kmdiff motivations):

- Doesn't scale up
- Limited to 31-mers
- Outputs are limited to significant k-mers
- Not very user-friendly

kmdiff overview (WIP)

- Basically: kmtricks + HAWK statistical methods
 - Provides same functionalities but more efficiently

kmdiff benchmarks

Simulated data:

- Human chromosome 1, 20X, 1% errors, 100bp
- Insertion, deletion, inversion, $|SV| = 500 \pm 200$

^{*}Use an older (slower) version of kmtricks

kmdiff conclusion

- Scalable
- More flexible
 - Unlimited k-mer size (for recent sequencing data types)
 - Designed to add new models, like kmtricks it will probably support plugin later

kmdiff conclusion

- Scalable
- More flexible
 - Unlimited k-mer size (for recent sequencing data types)
 - Designed to add new models, like kmtricks it will probably support plugin later

Future work:

- Application on real data (Alzheimer, Parkinson)
- **SVs characterization** (i.e significant k-mer set to VCF)

Thank you!