# Modal Analysis VU 325.100

Johann WASSERMANN Florian TOTH

2019S

# Time and Frequency Domain

**Prerequisites** 

Time Domain

Harmonic Forcing

Orthogonality of the Eigenmodes

Receptance and Modal Parameters

Modelling of Damping

**Exercises** 

Linear Algebra

### Single degree of freedom oscillator



The equation

$$m\ddot{x} + c\dot{x} + kx = f(t)$$

is usually written as

$$\ddot{x} + 2\zeta\omega\dot{x} + \omega^2x = f(t) \tag{1}$$

with the natural frequency  $\omega$  and the damping ratio  $\zeta$ .

### Time Domain



We have an *initial value problem* to determine x(t) in

$$\mathbf{M}\ddot{\mathbf{x}} + \mathbf{C}\dot{\mathbf{x}} + \mathbf{K}\mathbf{x} = \mathbf{f} \tag{2}$$

with known initial conditions and forcing

$$\dot{\boldsymbol{x}}(t_0) = \boldsymbol{v}_0 \qquad \qquad \boldsymbol{x}(t_0) = \boldsymbol{x}_0 \qquad \qquad \boldsymbol{f} = \boldsymbol{t}(t)$$

which can be solved by forward integration in time.

Prerequisites Time Domain Harmonic Forcing Orthogonality Receptance and Modal Parameters Damping Exercises To Do Linear Algebra

# Numeric Time Integration



The second order ODE system can be recast into a first order system and solved by

- Forward Euler (explicit, stability!)
- Backward Euler
- Multi-step methods (Runge-Kutter, ...)

For structural dynamics problems one often uses specialized methods for second order ODEs

- Newmark family
- Wilson-θ
- Hilber, Hughes, Taylor (HHT) method

Most algorithms require a start value for the acceleration  $\mathbf{a}_0$  too.

### Harmonic Forcing



We assume harmonic forcing of the form

$$\mathbf{f}(t) = \Re\left\{\hat{\mathbf{f}}\mathbf{e}^{j\omega t}\right\} \tag{3}$$

and a damped system with C > 0 to obtain the *steady state* solution

$$\left(\mathbf{K} + j\omega \mathbf{C} - \omega^2 \mathbf{M}\right) \hat{\mathbf{x}} = \hat{\mathbf{f}} \quad \text{or} \quad \mathbf{Z}(\omega) \hat{\mathbf{x}} = \hat{\mathbf{f}}$$
 (4)

where we have introduced the *dynamic stiffness* matrix

$$\mathbf{Z}(\omega) = \mathbf{K} + j\omega \mathbf{C} - \omega^2 \mathbf{M} \tag{5}$$

One matrix decomposition per frequency value necessary.

◆ロ > ◆ 個 > ◆ 差 > ◆ 差 > り < ②</p>

### Transfer Function



When we consider the force at DoF j as the only input and the displacement at DoF i as an output we can write the transfer function

$$H_{ij}(\omega) = \frac{x_i(\omega)}{f_j(\omega)} \tag{6}$$

For the full system in matrix form we get

$$\begin{bmatrix} H_{11}(\omega) & H_{12}(\omega) & \dots & H_{1n}(\omega) \\ H_{21}(\omega) & H_{22}(\omega) & \dots & H_{2n}(\omega) \\ \vdots & \vdots & \ddots & \vdots \\ H_{n1}(\omega) & H_{n2}(\omega) & \dots & H_{nn}(\omega) \end{bmatrix} \begin{bmatrix} \hat{f}_1 \\ \hat{f}_2 \\ \vdots \\ \hat{f}_n \end{bmatrix} = \begin{bmatrix} \hat{x}_1 \\ \hat{x}_2 \\ \vdots \\ \hat{x}_n \end{bmatrix} \quad \text{or} \quad \mathbf{H}(\omega) \hat{\mathbf{f}} = \hat{\mathbf{x}}$$
(7)

with the receptance matrix H.

# Receptance and Dynamic Stiffness



- the dynamic stiffness matrix is symmetric (because it is composed of symmetric parts)
- dynamic stiffness and receptance are an inverse pair, i.e.

$$Z^{-1} = H$$

- as **Z** is sparse **H** is dense
- both Z and H are symmetric
- reciprocity: a single force input at *i* leads to a displacement output at *j*, which is the same as if the force was applied to *j* and the displacement measured at *i*

# Mobility and Accelerance



The mobility  $\mathbf{Y}(\omega)$  and the accelerance  $\mathbf{A}(\omega)$  can be derived from the receptance  $\mathbf{H}(\omega)$  by differentiation in the frequency domain

$$\mathbf{Y}(\omega) = j\omega \mathbf{H}(\omega)$$

$${\pmb A}(\omega) = -\omega^2 {\pmb H}(\omega)$$



#### **Oscillation Modes**



The solutions of the generalised eigenvalue problem

$$\left(\mathbf{K} - \omega^2 \mathbf{M}\right) \mathbf{v} = \mathbf{0} \tag{8}$$

are the natural frequencies  $\omega_i$  and corresponding mode shapes  $\mathbf{v}_i$ .

◆ロ > ◆母 > ◆ き > ◆き > き め < の</p>

# Orthogonality of the Modes



We write Eq. (8) for mode i and pre-multiply with the transpose of mode  $\mathbf{v}_i$ 

$$\mathbf{v}_{j}^{T}\left(\mathbf{K}-\omega_{i}^{2}\mathbf{M}\right)\mathbf{v}_{i}=0\tag{9}$$

Similarly, we write Eq. (8) for mode j, transpose (K and M are symmetric), and post multiply with mode i

$$\mathbf{v}_{j}^{T}\left(\mathbf{K}-\omega_{j}^{2}\mathbf{M}\right)\mathbf{v}_{i}=0\tag{10}$$

Subtracting Eq. (9) from Eq. (10) we get

$$\left(\omega_i^2 - \omega_j^2\right) \mathbf{v}_j^T \mathbf{M} \mathbf{v}_i = 0 \tag{11}$$

# Mass- and Stiffness Orthogonality



For distinct eigenvalues  $\omega_i \neq \omega_i$  we get

$$\mathbf{v}_{j}^{T}\mathbf{M}\mathbf{v}_{i}=0 \tag{12}$$

For distinct eigenvalues  $\omega_i \neq \omega_j$ , the corresponding modes  $\mathbf{v}_i$  and  $\mathbf{v}_j$  are orthogonal with respect to  $\mathbf{M}$ .

Substituting Eq. (12) into Eq. (9) we get

$$\mathbf{v}_{j}^{T}\mathbf{K}\mathbf{v}_{i}=0 \tag{13}$$

For distinct eigenvalues  $\omega_i \neq \omega_j$ , the corresponding modes  $\mathbf{v}_i$  and  $\mathbf{v}_j$  are orthogonal with respect to  $\mathbf{K}$ .

- **(□) (□) (□) (□) (□)** 

# Orthogonality for repeated Eigenvalues



We assume modes *i* and *j* have the same eigenvalue  $\omega_i = \omega_0$ , thus

$$\left( oldsymbol{K} - \omega_0^2 oldsymbol{M} 
ight) oldsymbol{v}_i = 0 \ \left( oldsymbol{K} - \omega_0^2 oldsymbol{M} 
ight) oldsymbol{v}_j = 0$$

Multiplying mode  $\mathbf{v}_i$  by a constant c and summing the equations

$$K\left(\mathbf{v}_{i}+c\mathbf{v}_{j}\right)-\omega_{0}^{2}M\left(\mathbf{v}_{i}+c\mathbf{v}_{j}\right)=0$$
(14)

Any linear combination of modes with a common eigenvalue  $\omega_0$  is also and eigenvector

$$\left(\mathbf{K} - \omega_0^2 \mathbf{M}\right) \left(\mathbf{v}_i + c \mathbf{v}_j\right) = 0$$

◆ロ > ◆母 > ◆ き > ◆き > き の < ○</li>

equisites Time Domain Harmonic Forcing Orthogonality Receptance and Modal Parameters Damping Exercises To Do Linear Algebra

# Diagonalizing the System



We collect the mode shape vectors  $\mathbf{v}_i$  in the columns of the modal matrix

$$\boldsymbol{V} = \begin{bmatrix} \boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_n \end{bmatrix} \tag{15}$$

Due to the orthogonality of the mode shapes we see:

The mode shapes diagonalize the system matrices

$$\mathbf{V}^T \mathbf{M} \mathbf{V} = \begin{bmatrix} m_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & m_n \end{bmatrix}$$
  $\mathbf{V}^T \mathbf{K} \mathbf{V} = \begin{bmatrix} k_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & k_n \end{bmatrix}$ 

and thus decouple the equations of motion.

The  $m_i$  are called the generalized masses, and the  $k_i$  are called generalised stiffnesses of the system and we have  $\omega_i = \sqrt{k_i/m_i}$ .

### Mode Normalization



The scaling of a mode is arbitrary, different methods are common

- Norm of 1
- maximum nodal displacement is 1
- Mass-normalized, i.e.  $\mathbf{v}_i \mathbf{M} \mathbf{v}_i = 1$

For mass-normalized modes  $\mathbf{v}_i$  we have

$$\mathbf{V}^{T}\mathbf{M}\mathbf{V} = \begin{bmatrix} 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \end{bmatrix} = \mathbf{I}$$
  $\mathbf{V}^{T}\mathbf{K}\mathbf{V} = \begin{bmatrix} \omega_{1}^{2} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \omega_{n}^{2} \end{bmatrix}$ 

Most eigenvalue solvers return mass-normalized modes.

### Receptance and Modal Parameters I



Taking the expression for the receptance of an un-damped system

$$\boldsymbol{H}(\omega)^{-1} = \left(\boldsymbol{K} - \omega^2 \boldsymbol{M}\right) \tag{16}$$

and post- and pre-multiplying with the modal matrix and its transpose, respectively

$$\mathbf{V}^{\mathsf{T}}\mathbf{H}(\omega)^{-1}\mathbf{V} = \begin{bmatrix} \omega_1^2 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \omega_n^2 \end{bmatrix} - \omega^2 \mathbf{I}$$
 (17)

Remembering that  $\boldsymbol{V}$  is orthogonal, inversion gives a simple expression for the receptance matrix.

Invert Eq. (17) and solve for **H** (bring modal matrices to the rhs) . . .

◆ロ > ◆回 > ◆ き > ◆ き \* り へ で

### Receptance and Modal Parameters II



The receptance is directly related to the modal parameters of the system by

$$\boldsymbol{H}(\omega) = \boldsymbol{V} \begin{bmatrix} \ddots & & 0 \\ & \frac{1}{\omega_i^2 - \omega^2} & \\ 0 & & \ddots \end{bmatrix} \boldsymbol{V}^T$$
 (18)

or for a single transfer function

$$H_{ij}(\omega) = \frac{V_{i1}V_{j1}}{\omega_1^2 - \omega^2} + \frac{V_{i2}V_{j2}}{\omega_2^2 - \omega^2} + \dots + \frac{V_{in}V_{jn}}{\omega_n^2 - \omega^2}$$
(19)

Which term will dominate the response when the system is excited close to a natural frequency?

# Types of Damping Models



Damping model can be classified in

viscous damping 
$$\mathbf{M}\ddot{\mathbf{x}} + \mathbf{C}\dot{\mathbf{x}} + \mathbf{K}\mathbf{x} = \mathbf{f}$$
 proportional damping  $\mathbf{C} = \alpha \mathbf{M} + \beta \mathbf{K}$  structural damping  $\mathbf{M}\ddot{\mathbf{x}} + \mathbf{K}_r\mathbf{x} + j\mathbf{K}_i\mathbf{x} = \mathbf{f}$ 

Proportional damping is a useful modelling assumption that can simplify the analysis.

Many real damping mechanisms are non-proportional, e.g. visco-elasticity, wave radiation, ...

VU 325.100 Modal Analysis

# Rayleigh Damping I



The damping matrix is assumed proportional to mass and stiffness matrix

$$\mathbf{C} = \alpha \mathbf{M} + \beta \mathbf{K} \tag{20}$$

Pre and post-multiplication with the (mass normalized) modal matrices gives

$$\mathbf{V}^{\mathsf{T}}\mathbf{C}\mathbf{V} = \alpha \mathbf{I} + \beta \begin{bmatrix} \omega_1^2 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \omega_n^2 \end{bmatrix} = \begin{bmatrix} \ddots & & 0 \\ & \alpha + \beta \omega_i^2 \\ & & \ddots \end{bmatrix}$$

which is again diagonal.

isites Time Domain Harmonic Forcing Orthogonality Receptance and Modal Parameters Damping Exercises To Do Linear Algebra

# Rayleigh Damping II



Looking at the similarity to the single DoF oscillator, Eq. (1), we obtain the damping ratio of each mode as

$$\zeta_i = \frac{\alpha}{2\omega_i} + \frac{\beta\omega_i}{2} \tag{21}$$

which shows the frequency-characteristic of Rayleigh damping.



Figure: The mass-proportional term  $\alpha$  controls the low-frequency behaviour and the stiffness-proportional term  $\beta$  the high-frequency behaviour.

Prerequisites Time Domain Harmonic Forcing Orthogonality Receptance and Modal Parameters Damping Exercises To Do Linear Algebra

### Modal Damping



One simply considers the un-damped system and adds arbitrary modal damping ratios  $\zeta_i$  in the diagonalized system.

- ◆ロ ▶ ◆園 ▶ ◆園 ▶ ■ め Q @

### Non-Proportional Viscous Damping



To decouple the system on needs to solve the quadratic eigenvalue problem

$$[\mathbf{K} + \lambda \mathbf{C} + \lambda^2 \mathbf{M}] \mathbf{x} = \mathbf{0} \tag{22}$$

◆ロ > ◆母 > ◆ き > ◆き > き め < @ </p>

### Non-Proportional Structural Damping



For structural damping the stiffness matrix is complex valued. i.e.  $\hat{\mathbf{K}} = \mathbf{K}_r + j\mathbf{K}_i$ . One has to solve a complex valued, generalised EV problem

$$[\hat{\mathbf{K}} + \lambda^2 \mathbf{M}] \mathbf{x} = \mathbf{0} \tag{23}$$

In general the eigenvectors become complex valued.

◆□▶◆□▶◆■▶◆■▶ ■ かなの

Prerequisites Time Domain Harmonic Forcing Orthogonality Receptance and Modal Parameters Damping Exercises To Do Linear Algebra

#### **Exercises**



- Templates are available in TUWEL
- Solutions should be presented during workshop
- Distribute the work within your team

◆ロ > ◆団 > ◆ き > ◆き > ・ き ・ り < ()</li>

### Exercise 2



- Use the system matrices of the plate from last exercise
- Consider the case where it is clamped at its short edge
- Play around in time and frequency domain



<ロ > ← □ > ← □ > ← □ > ← □ ≥ ← つへ()

Time Domain Harmonic Forcing Orthogonality Receptance and Modal Parameters Damping Exercises To Do Linear Algebra

#### Exercise 2: Tasks



- Compute the transient response of the system for a vertical force on the corner of the plate (choosing a forcing function which will show interesting dynamics)
- Compute the steady state response for a vertical force at the corner in the frequency range of 2-40Hz, and plot the receptances, i.e. the transfer functions for the vertical excitation at the corner with respect to the displacement of the corner and the center of the plate
- Visualize the response at characteristic frequencies
- Plot the average vertical response of all points of the plate surface (one layer, e.g. top or bottom, is sufficient)
- Estimate the recentance using the time domain data
- 6 Compare the receptance computed by the inversion of the dynamic stiffness matrix with the one computed from the model parameters (using the first few modes)

◆ロ → ◆団 → ◆ 豆 → ◆ 豆 → り へ ○

# Exercise 2: Tipps



- use a smooth step or smooth impulse for transient loading, e.g.  $f(t) = 1 - e^{(t/T_s)^k}$  or  $f(t) = e^{((t-t_0)/T_s)^k}$
- observe the frequency-content of the exitation signal
- compute the first few natural frequencies to get an idea of the system dynamics
- use spares matrices for the computations
- think about necessary time step size (> 10 per period) and simulation duration (frequency resolution for receptance estimation)
- it might be useful to assume some slight damping ( $\zeta < 0.05$ )
- animate your computation results
- use the provided function for time integration

VU 325.100 Modal Analysis

Prerequisites Time Domain Harmonic Forcing Orthogonality Receptance and Modal Parameters Damping Exercises To Do Linear Algebra

### Dates



#### all events at Wednesday, 09:00-11:00 in BA 05

- 13/03/2019 overview lecture 1
- 20/03/2019 team meeting
- 27/03/2019 team meeting
- 03/04/2019 workshop 1 & overview lecture 2
- 10/04/2019 team learning
- 08/05/2019 workshop 2 & overview lecture 3
- 15/05/2019 team learning
- 22/05/2019 workshop 3
- 01/06/2019 Paper draft deadline
- 15/06/2019 Paper review submission deadline
- 01/07/2019 Paper submission deadline

◆ロ → ◆団 → ◆ 豆 → ◆ 豆 ・ か へ ②

- Go through the theory and complete the exercises
- Prepare for the workshop

# Linear Algebra Rules I



#### inverse of product

For two square, invertible matrices  $\mathbf{A}$ ,  $\mathbf{B} \in \mathbb{C}^{n \times n}$  we have

$$(AB)^{-1} = A^{-1}B^{-1}.$$

#### inverse of orthogonal martix

An orthogonal matrix  $\mathbf{Q} \in \mathbb{R}^{n \times n}$  is defined as

$$\mathbf{Q}^T\mathbf{Q}=\mathbf{I},$$

thus, its inverse is equal to its transpose  $\mathbf{Q}^{-1} = \mathbf{Q}^{T}$ .

- ◆ロ ▶ ◆昼 ▶ ◆ 種 ▶ → 種 → 夕 Q @