### **Normal Forms**

- Well formed formula (wff) also called formula, is a string consists of propositional variables, connectives, and parenthesis used in the proper manner. E.g. ((p ∨ q) ∧ (¬p ∨ r))
- $p \lor q \lor \neg r$  is a disjunction expression, and  $p \land \neg q \land r$  is a conjunction expression.
- Product for conjunction, sum for disjunction.
- An elementary product (sum) is a product (sum) of the variables and their negations in a formula.
- An elementary sum is a disjunction of literals.

### **Disjunction/Conjunction Normal Form**

- Disjunctive normal form (DNF) a formula which is equivalent to a given formula and consists of a sum of elementary products
- E.g.  $(p \rightarrow q) \land \neg q \equiv (\neg p \land \neg q) \lor (q \land \neg q)$  is in DNF.
- Conjunctive normal form (CNF) a formula which is equivalent to a given formula and consists of a product of elementary sums
- E.g  $(p \rightarrow q) \land \neg q \equiv (\neg p \lor q) \land \neg q$  is in CNF.

#### **Sufficient and Necessary Condition**

- A necessary and sufficient condition for an elementary product to be false it contains at least one pair of literals in which one "is" the negation of the other.
  - A necessary and sufficient condition for an elementary sum to be true it contains at least one pair of liters in which one "is" the negation of the other.
  - $p \wedge \neg p \wedge ... \equiv F \wedge ... = F$
  - p ∨ ¬p ∨ ... ≡ T ∨ ... = T

#### **Fallacy or Tautology**

- A given formula is identically false (a contradiction), if every elementary product appearing in its disjunctive normal form is identically false.
- A given formula in a given formula is identically true (a tautology), if every elementary sum appearing in the formula has at least two literals, of which one is the negation of the other.

#### **Principal Disjunctive Normal Form**

- Minterms of p and q p<sub>\</sub>q, ¬p<sub>\</sub>q, p<sub>\</sub>¬q, ¬p<sub>\</sub>¬q
   each variable occurs either negated or nonnegated but not both occur together in the conjunction.
  - Principal disjunctive normal form for a given formula, an equivalent formula consisting of disjunctions of minterms only, also called sum of products normal form.
  - $p \rightarrow q = \neg p \lor q = (p \land q) \lor (p \land \neg q) \lor (\neg p \land \neg q)$
  - What is the principal disjunctive normal form for  $(p \land q) \lor (\neg p \land r) \lor (q \land r)$ ? (see example 4)

#### **Principal Conjunctive Normal Form**

- Maxterms of p and q pvq, ¬pvq, pv¬q, ¬pv¬q each variable occurs either negated or nonnegated but not both, appears only once.
  - Principal disjunctive normal form for a given formula, an equivalent formula consisting of disjunctions of maxterms only, also called product-of-sums canonical form.
  - $p \rightarrow q = \neg p \lor q$  is in PDNF.
  - What is the principal conjunctive normal form for  $[(p \lor q) \land \neg p \rightarrow \neg q]$ ? (see example 6)

#### **Examples of PDNF & PCNF**

■ 
$$p \leftrightarrow q = (p \land q) \lor (\neg p \land \neg q)$$
 in PDNF.  
■  $p \lor \neg q = [p \land (q \lor \neg q)] \lor [\neg q \land (p \lor \neg p)]$   
 $= (p \land q) \lor (p \land \neg q) \lor (\neg q \land p) \lor (\neg q \land \neg p)$   
 $= (p \land q) \lor (p \land \neg q) \lor (\neg p \land \neg q)$  in PDNF  
■  $p \leftrightarrow q = (\neg p \lor q) \land (\neg q \lor p)$  in PCNF  
■  $(p \rightarrow q) \rightarrow (q \rightarrow p) = (\neg p \lor q) \rightarrow (\neg q \lor p)$   
 $= \neg (\neg p \lor q) \lor (\neg q \lor p)$   
 $= \dots = (p \lor \neg q)$  in PCNF

#### Notations of $\Sigma$ and $\Pi$ (mutually excluded)

- maxterms of p and q pγq, ¬pγq, pγ¬q, ¬pγ¬q represented by 00, 10, 01, 11, or Π 0, Π 2, Π 1, Π 3
- Minterms of p and q p $\land$ q,  $\neg$ p $\land$ q, p $\land$  $\neg$ q,  $\neg$ p $\land$  $\neg$ q represented by 11, 01, 10, 00, or  $\Sigma$  3,  $\Sigma$  1,  $\Sigma$  2,  $\Sigma$  0

• 
$$[(p \lor q) \land \neg p \rightarrow \neg q] = [(p \land \neg p) \lor (q \land \neg p)] \rightarrow \neg q$$
  
= $(q \land \neg p) \rightarrow \neg q = \neg (q \land \neg p) \lor \neg q$   
= $\neg q \lor p \lor \neg q = p \lor \neg q = □ 1$ 

• 
$$(p \rightarrow q) \rightarrow (q \rightarrow p) = (\neg p \lor q) \rightarrow (\neg q \lor p)$$
  
 $= \neg (\neg p \lor q) \lor (\neg q \lor p)$   
 $= (p \land \neg q) \lor (\neg q \land (p \lor \neg p)) \lor (p \land (q \lor \neg q))$   
 $= (p \land q) \lor (p \land \neg q) \lor (\neg p \land \neg q) = \Sigma 0, 2, 3$ 

#### **First Order Logic**

- Clause form statements whose elementary components are connected by the operation OR (v)
- First-order logic
  - Objects: cs4701, fred, ph219, emptylist ...
  - Relations/Predicates: is\_Man(fred), Located(cs4701, ph219), is\_kind\_of(apple, fruit)...
  - Note: Relations typically correspond to verbs
  - Functions: Best\_friend(), beginning\_of() : Returns object(s)
  - ▶ Connectives:  $\neg$ ,  $\land$ ,  $\lor$ ,  $\rightarrow$ ,  $\leftrightarrow$
  - ➤ Quantifiers: Universal ∀ and Existential ∃
- Any statement expressed in the first-order logic can be expressed in clause form.

#### **Prenex Normal Forms**

- Facility of the formula F is called a Prenex normal form iff F is a first order logic and is in the form of  $(Q_1x_1, ..., Q_nx_n)(M)$  where every  $(Q_ix_i)$ , i=1,...,n is either  $(\forall x_i)$  or  $(\exists x_i)$  and M is a formula containing no quantifiers.  $(Q_1x_1, ..., Q_nx_n)$  is called the prenex, and M is called the matrix of F.
- Convert a first order logic into prenex normal form
  - 1. Replace  $\rightarrow$  and  $\leftrightarrow$  using  $\neg$ ,  $\land$ ,  $\lor$
  - 2. Use double negation and De Morgan's law repeatedly
  - 3. Rename the variables if necessary
  - Use rules of (i) ∀ distributes over ∧, ∃ distributes over ∨
     (ii) ∀ doesn't distribute over ∨, ∃ doesn't distribute over ∧
     to bring the quantifiers to the left.

#### **Examples of Prenex Normal Forms**

- $\neg \forall x P(x) \leftrightarrow \exists x \neg P(x)$
- (Qx)  $F(x) \vee G \leftrightarrow Qx$  ( $F(x) \vee G$ ), if G doesn't contain x
- (Qx)  $F(x) \land G \leftrightarrow Qx$  ( $F(x) \land G$ ), if G doesn't contain x
- ◆ E.g. 1  $\forall x P(x) \rightarrow \exists x Q(x)$ sol:  $\exists x (\neg P(x) \lor Q(x))$
- ◆ E.g. 2  $\forall x \forall y \exists z (P(x,z) \land P(y,z)) \rightarrow \exists uQ(x,y,u)$  sol:  $\forall x \forall y \forall z \exists u (\neg P(x,z) \lor \neg P(x,z) \lor Q(x,y,u))$

# **Terminology for Proof**

- Axioms statements we assume to be true
- Proposition, Lemma, Theorem statement that can be shown to be true.
- Corollary theorem that can be established directly from a proven theorem
- Conjecture statement that is being proposed to be a true statement, usually based on the basis of some partial evidence, a heuristic argument, or an intuition of an expert.



- Introduction to Proofs.
- What is a (valid) proof?
- Why are proofs necessary?

### Introduction to Proof techniques

- In a proof, one uses axioms/definitions, premises and proven theorems
- Proof methods: direct, indirect, trivial, contradiction, proof by cases (exhaustive proof), proof of equivalence, existence proofs (constructive or non-constructive), proof by counterexamples, backward/forward reasoning
- Open Problems famous unsolved problems

### **Direct/Indirect Proof**

- A direct proof of a conditional statement p → q is constructed when the first step is the assumption that p is true, subsequent steps using rules of inference, with the final step showing q must also be true.
- Indirect proof if we prove the theorem without starting with the premises and end with the conclusion.
- ◆ E.g. If n is an odd integer, then n² is odd.
- E.g. If n is an integer and 3n+2 is odd, then n is odd. (using indirect proof)

# **Proof by Contraposition**

```
If \sqrt{(pq)} \neq (p+q)/2, then p \neq q

Direct proof ?? (not trivial)

Contrapositive:

If p = q, then \sqrt{(pq)} = (p+q)/2

It follows by:

\sqrt{(pq)} = \sqrt{(pp)} = \sqrt{(p^2)} = p

(p+p)/2 = (p+q)/2 = p.
```



- Vacuous proof in p → q, if we know p
  is false already, the conditional
  statement must be true.
- Trivial proof in p → q, if we know q is already true.
- E.g. P(n) is "if n > 1, then  $n^2 > n$ ". Prove P(0) is true.
- E.g. P(n) is "If a and b are positive integers with  $a \ge b$ , then  $a^2 \ge b^2$ ". Prove P(0) is true.

### **Proof by cases**

If n is an integer, then n(n+1)/2 is an integer

Case 1: n is even.

```
or n = 2a, for some integer a
So n(n+1)/2 = 2a*(n+1)/2 = a*(n+1),
which is an integer.
```

Case 2: n is odd.

n+1 is even, or n+1=2a, for an integer a So n(n+1)/2 = n\*2a/2 = n\*a, which is an integer.

### **Proof by Contradiction**

#### √2 is irrational

```
• Suppose \sqrt{2} is rational. Then \sqrt{2} = p/q,
  such that p, q have no common factors.
  Squaring and transposing,
     p^2 = 2q^2 (even number)
     So, p is even (if x^2 is even, then x is even)
     that is, p = 2x for some integer x
      hence, 4x^2 = 2q^2 or q^2 = 2x^2
     So, q is even (if x^2 is even, then x is even)
      So, p,q are both even – they have a common
         factor of 2. CONTRADICTION.
     So \sqrt{2} is NOT rational.
```

### **Indirect or Contradiction**

If n is an integer and  $n^3$  +5 is odd, then n is an even Indirect proof (contrapositive): Let n = k+1,  $n^3 + 5 = 2(4k^3 + 6k^2 + 3k + 3)$ 

### **Proof by Contradiction:**

Suppose that n<sup>3</sup> +5 is odd and n is odd 5 = (n<sup>3</sup> +5) - n<sup>3</sup> should be even, because of the difference of two odds, but it is an odd.

# Existence Proofs (1/2)

E.g.1 There exists (distinct) integers x,y,z satisfying  $x^2+y^2=z^2$ 

Proof: x = 3, y = 4, z = 5. (by constructive existence proof)

E.g.2 There is a positive integer that can be written as the sum of cubes of positive integers in two different ways.

Proof:  $1729 = 10^3 + 9^3 = 12^3 + 1^3$ 

# Existence Proofs (2/2)

There exists irrational b,c, such that b<sup>c</sup> is rational By nonconstructive proof:

Consider  $\sqrt{2^{1/2}}$ . Two cases are possible:

- Case 1:  $\sqrt{2^{1/2}}$  is rational DONE (b = c =  $\sqrt{2}$ ).
- Case 2:  $\sqrt{2^{1/2}}$  is **irrational** Let b =  $\sqrt{2^{1/2}}$ , c =  $\sqrt{2}$ . Then b<sup>c</sup> =  $(\sqrt{2^{1/2}})^{1/2}$  =  $(\sqrt{2})^{1/2}$  =  $(\sqrt{2})^{1/2}$

### The Use of Counterexamples

EX1. All prime numbers are odd (false)

Proof: 2 is an even number and a prime.

EX2. Every prime number can be written as the difference of two squares, i.e.  $a^2 - b^2$ .

Proof: 2 can't be written as  $a^2 - b^2$ 



### **Proof by Equivalence**

n is even iff n² is even

Proof (by equivalence)

Let P be "n is even", Q be "n2 is even"

P and Q are equivalence can be proven by " $P \rightarrow Q$  and  $Q \rightarrow P$ "

### What is wrong with the proof?

■ If n² is positive, then n is positive.

Proof: Suppose that n<sup>2</sup> is positive. Because the conditional statement "If n is positive, then n<sup>2</sup> is positive" is true, hence we can conclude that n is positive.

■ If is not positive, then n² is not positive.

Proof: Suppose that n is not positive. Because the conditional statement "If n is positive, then n<sup>2</sup> is positive" is true, hence we conclude that n<sup>2</sup> is not positive.

### Conjectures

Fermat's Last Theorem

 $x^n + y^n = z^n$  has no solution in (positive) integers x,y,z with xyz =! 0 whenever n is an integer and is greater than 2.

 $\exists x, \exists y, \exists z, \exists n \text{ such that } x^n + y^n = z^n ?$ domain of x, y, and z is  $Z^+$ , domain of n is  $\{x \setminus x > 2, x \in Z\}$ 

### The 3X + 1 Conjecture

■ 3x+1 conjecture

Game: Start from a given integer n. If n is even, replace n by n/2. If n is odd, replace n with 3n+1. Keep doing this until you hit 1.

e.g. 
$$n=5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$$

Q: Does this game terminate for all n?

# **MEMO**

- Read section 1.7, 1.8, and 1.9
- Get familiar with terminology of theorem proving
- Be familiar with proof methods of contrapositive, counterexample, exhaustive, and existence
- What is the Fermat's last theorem?
- HW #1-4 of §1.7, #5-8 of §1.8, #5,6,9,10,17,19 of §1.9.