A FIRST COURSE

IN

NUMERICAL ANALYSIS

A FIRST COURSE

IN

NUMERICAL ANALYSIS

MAT4001 Notebook

Prof. Yutian Li

The Chinese University of Hongkong, Shenzhen

Contents

Ackno	owledgments	vii
Notat	ions	ix
1	Week1	1
1.1	Tuesday	1
1.1.1	News Vendor Problems	1
2	Week2	3
2.1	Tuesday	3
2.1.1	Optimal order quantity	3
2.1.2	Non-perishable Products	4
2.2	Thursday	6
2.2.1	Discrte Time Markov Chains	6

Acknowledgments

This book is from the MAT4001 in fall semester, 2018.

CUHK(SZ)

Notations and Conventions

 \mathbb{R}^n *n*-dimensional real space \mathbb{C}^n *n*-dimensional complex space $\mathbb{R}^{m \times n}$ set of all $m \times n$ real-valued matrices $\mathbb{C}^{m \times n}$ set of all $m \times n$ complex-valued matrices *i*th entry of column vector \boldsymbol{x} x_i (i,j)th entry of matrix \boldsymbol{A} a_{ij} *i*th column of matrix *A* \boldsymbol{a}_i $\boldsymbol{a}_{i}^{\mathrm{T}}$ *i*th row of matrix **A** set of all $n \times n$ real symmetric matrices, i.e., $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $a_{ij} = a_{ji}$ \mathbb{S}^n for all *i*, *j* \mathbb{H}^n set of all $n \times n$ complex Hermitian matrices, i.e., $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $\bar{a}_{ij} = a_{ji}$ for all i, j $\boldsymbol{A}^{\mathrm{T}}$ transpose of \boldsymbol{A} , i.e, $\boldsymbol{B} = \boldsymbol{A}^{\mathrm{T}}$ means $b_{ji} = a_{ij}$ for all i,jHermitian transpose of \boldsymbol{A} , i.e, $\boldsymbol{B} = \boldsymbol{A}^{H}$ means $b_{ji} = \bar{a}_{ij}$ for all i,j A^{H} trace(A)sum of diagonal entries of square matrix A1 A vector with all 1 entries 0 either a vector of all zeros, or a matrix of all zeros a unit vector with the nonzero element at the *i*th entry e_i C(A)the column space of \boldsymbol{A} $\mathcal{R}(\boldsymbol{A})$ the row space of \boldsymbol{A} $\mathcal{N}(\boldsymbol{A})$ the null space of \boldsymbol{A}

 $\operatorname{Proj}_{\mathcal{M}}(\mathbf{A})$ the projection of \mathbf{A} onto the set \mathcal{M}

Chapter 1

Week1

1.1. Tuesday

The Markov Chains course mainly focus on the performance analysis for which the Markov decision is made.

1.1.1. News Vendor Problems

A store sells perishable iterms (newpapers) with:

- Selling price $c_p = 1$
- Variable cost $c_v = 0.25$
- Salvage value $c_s = 0$

The aim is to decide how many copies should be ordered. Before making the decision, we need to estimate the demand.

Suppose the demand *D* has the following distribution:

$$d$$
 10 15 20 25 30 \mathbb{P} 1/4 1/8 1/8 1/4 1/4

Hence, the profit for the day i is given by:

profit per day =
$$min(q, D_i)c_p - qc_v$$
,

with *q* being the number of copies ordered.

More generally, for $c_s \neq 0$, the profit for the day i is

profit per day =
$$\min(q, D_i)c_p - qc_v + \max(q - D_i, 0)c_s$$
,

Hence, our objective is to maximize the expected profit for a day

$$h(q) = \mathbb{E}_D \operatorname{Profit}(q, D)$$

$$= c_p \mathbb{E}_D \min(q, D) - c_v q + c_s \mathbb{E}_D \max(q - D, 0)$$
(1.1)

Chapter 2

Week2

2.1. Tuesday

2.1.1. Optimal order quantity

The optimal y^* is the smallest y such that

$$F(y) \ge \frac{c_p - c_v}{c_p - c_s}$$

Discrete Case Optimization. Given the expected profit function h(y), we want to find the optimal y. Note that y cannot be optimal if h(y+1) - h(y) > 0.

$$h(y+1) - h(y) = \mathbb{E}\operatorname{profit}(y+1,D) - \operatorname{profit}(y,D)$$

= $\mathbb{E}\operatorname{revenue}(y+1,D) - \operatorname{revenue}(y,D) - c_v$

If $D \ge y + 1$, there will be no leftover iterms in both systems:

$$revenue(y+1,D) - revenue(y,D) = c_p$$

If $D \leq y$,

$$revenue(y+1,D) - revenue(y,D) = c_s$$

It follows that

$$h(y+1) - h(y) = c_p \mathbb{P}[D \ge y+1] + c_s \mathbb{P}[D \le y] - c_v$$

= $c_p - c_v - (c_p - c_s) \mathbb{P}[D \le y]$

Hence, h(y+1) > h(y) iff

$$\mathbb{P}[D \le y] < \frac{c_p - c_v}{c_v - c_s}$$

In this case y cannot be optimal. Hence, y^* is the smallest y s.t.

$$\mathbb{P}[D \le y] \ge \frac{c_p - c_v}{c_v - c_s}$$

Holding Cost for h = .1. If each leftover item cost h, we have

$$\mathbb{E}\operatorname{Profit}(q,D) = \mathbb{E}\min(q,D)c_p - c_v q - h\mathbb{E}(q-D)^+$$

In addiction, if given a fixed cost of order c_f , we derive

$$\mathbb{E}\operatorname{Profit}(q,D) = \mathbb{E}\min(q,D)c_p - c_vq - h\mathbb{E}(q-D)^+ - c_f$$

Confidence Interval. The expected profit in next three months is a summation of 90 i.i.d. RVs:

$$R(25) = P_1(25) + \cdots + P_{90}(25)$$

Using central limit theorem, this RV is approximatly normal. It follows that

$$R(25) \sim \mathcal{N}(11812, 90\sigma^2)$$

where $\sigma^2 = Var(R(25))$. Hence,

$$\mathbb{P}\left(\left|\frac{R(25) - 11812}{\sqrt{90}\sigma}\right| < 1.96\right) = 0.95$$

With 95% level of confidence, R(25) is between $11812+1.96\cdot\sqrt{90}\sigma$ and $11812-1.96\cdot\sqrt{90}\sigma$

2.1.2. Non-perishable Products

1. For $X_n \ge s$, do not order anything

2. Otherwise, order enough to bring the inventory level to *S* at the beginning of the next period.

For example, (s,S) = (20,30), determine the probability $\mathbb{P}\{X_10 = 10 \mid X_9 = 10\}$ and $\mathbb{P}\{X_10 = 10 \mid X_9 = 20\}$:

$$\mathbb{P}\{X_{10} = 10 \mid X_9 = 10\} = \mathbb{P}(D_{10} = 20) = \frac{1}{8}$$

$$\mathbb{P}\{X_{10} = 10 \mid X_9 = 20\} = \mathbb{P}(D_{10} = 10) = \frac{1}{4}.$$

Actually, we can create a matrix to describe these conditional probabilities:

$$S_{ij} = \mathbb{P}\{X_{10} = j \mid X_9 = i\}$$

Knowing current state, past states are irrelevant to predict future states.

2.2. Thursday

Earning & learning

2.2.1. Discrte Time Markov Chains

Given

- time index $T = \{0, 1, 2, ...\}$
- ullet discrte set of states (alphabet): ${\cal S}$
- X_n denotes the state at time n
- Transition probabilities (Time homogeneous):

$$P_{ij} = \mathbb{P}\{X_{n+1} = j \mid X_n = i\} \quad i, j \in \mathcal{S}$$

 $X = \{X_n : n = 0, 1, ...\}$ satisfies the Markov property, i.e., for each $n \ge 1$ for $i_0, i_1, ..., i, j \in S$,

$$\mathbb{P}\{X_{n+1}=j\mid X_n=i, X_0=i_0, X_1=i_1, \dots, X_{n-1}=i_{n-1}\}=P_{ij}$$

Given the current information, the past information is irralevant for future information.

Example 1: simple random walk. Suppose toss a coin at each time, and you go right if get a head; go left if get a tail. *i* denotes the location. We have the conditional probability

$$\mathbb{P}\{X_{n+1}=i+1 \mid X_n=i, X_{n-1}, \dots, X_0\} = \mathbb{P}\{X_{n+1}=i+1 \mid X_n=i\} = p$$

In this case the transition probability matrix has infinite dimension.

Given $S = \{0,1\}$ and the transition probability matrix

$$P = \begin{pmatrix} \alpha & 1 - \alpha \\ 1 - \beta & \beta \end{pmatrix} = \begin{pmatrix} 3/4 & 1/4 \\ 1/2 & 1/2 \end{pmatrix}$$

Theorem 2.1 Given a function

$$f:(i,u)\in\mathcal{S}\times\mathbb{R}^+, \ f(i,u)\in\mathcal{S}$$

 $\{U_n : n = 1, 2, ...\}$ is an i.i.d. sequence. $X_{n+1} = f(X_n, U_{n+1})$. Then $\{X_n : n = 1, 2, ...\}$ is a DTMC.

Application 1. Suppose U_n is a coin toss at time n, i.e.,

$$\mathbb{P}(U_n = 1) = p, \ \mathbb{P}(U_n = -1) = q$$

and define $f:(i,u)\in\mathbb{Z}\times\{-1,1\}=i+u\in\mathbb{Z}$