TICNI						١
USN						l

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution affiliated to VTU)
III Semester B. E. Examinations March-2021
Computer Science and Engineering
OPERATING SYSTEMS

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6

PART-A

1	1.1	Each process is represented in the operating systems by a	01
	1.2	Write any two major goals of operating systems.	01
	1.3	List the four categories of multi-threaded programming benefits.	02
	1.4	The time taken for the dispatcher to stop one process and start	
		another running process is known as the	01
	1.5	Define Race Condition. Mention techniques to avoid Race Condition.	02
	1.6	Find the drawbacks of semaphores.	02
	1.7	Consider a time-sharing system, which supports 20 terminals (users),	
		each of which run a compiler. If 50kB are required for compiler and	
		5kB for data storage, find the total amount of memory required to	
		support 20 users.	02
	1.8	Why are page sizes always a power of 2 during paging?	02
	1.9	For a certain system, total number of frames is 64. The size of 2	
		processes, P_1 and P_2 are 10 and 127 respectively. How much is the	
		allocation for each of theses processes?	02
	1.10	Compare FAT and NTFS.	02
	1.11	is the additional time for the disk to rotate the desired	
		sector to the disk head.	01
	1.12	Write the methods for handling deadlocks.	02

PART-B

2	a	Discuss various schedulers used in Operating Systems.								
	b	Write a 'C' program to demonstrate the basic Pthreads API for								
		constructing a multi-threaded program that calculates the								
		summation of a non-negative integer in a separate thread.								
	c	Briefly explain microkernel and modular approaches to design								
		operating system architecture.	06							

3	a	Consider the following se	et of process,	with the length of the CPU	J					
		burst time given in milli seconds:								
		The processes are assumed to have arrived in the order								
		P1, P2, P3, P4, P5 all at time 0.								
		Process		Priority						
		<u>P1</u>	10	3						
		P2	1	1						
		P3	2	3						
		P4	1	4						
		P5	5	2						
		i) Draw four Gantt charts that illustrate the execution of these								
		processes using FCFS, SJF, a non-preemptive priority and RR (q=1) scheduling.								
		ii) What is the turnaro	e turnaround time of each process for each of the							
		scheduling algorithm	- ,							
		•		h process for each of the	2					
	_	scheduling algorithm	- '		10					
	b	Describe the Dining-Philos	sophers probler	m in detail.	06					
			OR							
4	a	Suppose that the following	ng processes	arrive for execution at time						
		indicated.	A	E Time						
			Arrival Time	Execution Time						
		P1	0.0	8						
		P2	0.4	4						
		P3	1.0	1						
		i) What is the average TAT for these processes with FCFS								
		scheduling algorithm.								
		ii) What is the AWT and ATAT for these processes with preemptive SJF algorithm?								
	b	Explain Peterson's solution to the critical section problem.								
	c	Discuss process managem		<u>-</u>	04					
5	a	Consider the following Pag		_						
		1, 2, 3, 2, 5, 6, 3, 4, 6, 3, 7, 3, 1, 5,								
				or FIFO and Optimal page						
	L.	replacement algorithms, a	_		06					
	b	fragmentation issues in co	_	ion, memory allocation, and	1 10					
		magnicination issues in CC	muguous mem	ory anocadon.						
			OR							
6	a	Distinguish logical and ph	•	-	05					
	b	With a neat sketch, explai	-	0 - 0	06					
	c	What is meant by Segmentation? Discuss the hardware support for								
		Segmentation.			05					
7	а			head disk with 200 tracks	·					
		· · · · · · · · · · · · · · · · · · ·	2	g a request at track 143 and						
			est at track 12	25. The queue of requests is	3					
		kept in FIFO order-	175 100							
		86, 147, 91, 177, 94, 150, 102,		nonto monded to estimate						
		What is the total number of head movements needed to satisfy these requests for the following disk-scheduling algorithms-i) SSTF ii) SCAN								
		iii) LOOK iv) C-SCAN.	uisk-sciieuulin	g aiguitititis-ij soir iij scar	10					
		III, DOOR IV, C-OCAIV.			10					

	b	Briefly explain the strategies and schemes for allocation of frames.									06	
8	а	Consider a system with five processes- P0 to P4and three resources A, B, C. Given that-Resource type A has 10 instances; Resource type B has 5 instances. Resource type C has 7 instances. Suppose that at time t ₀ , the following snapshot of the system has been										
		taken	<u>-</u>	1			1					
			Process	F	Allocation MAX							
			1100055	R1	R2	R3	R1	R2	R3			
			P0	0	1	0	7	5	3			
			P1	2	2 0 0 3 2 2							
			P2	3	3 0 2 9 0 2							
			Р3	2	2 1 1 2 2 2							
			P4	0	0	2	4	3	3			
		Calcu	late <i>availal</i>	ole matr	ix of res	ources,	find the	need m	atrix and	also		
		find the safe sequence.								10		
	b	Ident	ify options t	o recove	er from o	deadlocl	ks and e	xplain.			06	