Introduction to structural equation modeling and mixed models in

Day 5 – Part 1: SEM

Oksana Buzhdygan

oksana.buzh@fu-berlin.de

Day 5 – Part 1

Outline

- binary (yes/no, failure/success, dead/alive, male/female),
- nominal (site 1, site 2, site 3)
- ordinal levels (small < medium < large; yang < middle < old).

- binary (yes/no, failure/success, dead/alive, male/female),
- nominal (site 1, site 2, site 3)
- ordinal levels (small < medium < large; yang < middle < old).

- binary (yes/no, failure/success, dead/alive, male/female),
- nominal (site 1, site 2, site 3)
- ordinal levels (small < medium < large; yang < middle < old).

- binary (yes/no, failure/success, dead/alive, male/female),
- nominal (site 1, site 2, site 3)
- ordinal levels (small < medium < large; yang < middle < old).

_	X ₂				
	Species				
	spec1				
	spec1				
	spec2				
	spec1				
	spec2				

X ₂			
Species			
spec1			
spec1			
spec2			
spec1			
spec2			

* 2	
Species	
spec1	
spec1	
spec2	
spec1	
spec2	

spec1	spec2
1	0
1	0
0	1
1	0
0	1

X ₂	
Species	
spec1	
spec1	
spec2	
spec1	
spec2	

spec1	spec2
1	0
1	0
0	1
1	0
0	1

Approaches when we have Exogenous Categorical Variables:

- 1) for nominal, binary, or ordinal variables, create separate dummy variables for each factor levels (treat them as absent "0" or present "1").
 - The key: for the factor with k levels use k-1 dummy variables (to avoid singularity)
- 2) for binary variables, set the values as 0 or 1 and model as numeric (yields a single coefficient).
- 3) for ordinal variables, set the values depending on the order of the factor, e.g., small = 1 < medium = 2 < large = 3, and then model as numeric (yields a single coefficient).
- 4) Use piecewiseSEM

Biocontrol agents of crop-pests (aphids)

Lacewing larva

Parasitic wasp

Intercropping with repellent plants

150 experimental microcosms

Categorical Exogenous Variable

```
# Read and check the data
aphid data <- read.csv("Aphid data.csv")</pre>
> str(aphid data)
'data.frame': 150 obs. of 8 variables:
$ aphid : num 14.9 35.6 43.8 2.1 36.7 ...
                                                        binary variable
$ host plant: num 38.8 40.7 46.9 35.2 50.9 ...
$ garlic_ef : Factor w/ 2 levels "absent", "present": 2 1 1 2 1 2 2 2 1 1 ...
$ garlic : int 1 0 0 1 0 1 1 1 0 0 ...
                                                     (0/1) - dummy variable for binary
$ enemy : Factor w/ 3 levels "no", "predator", "parasite": 3 3 1 2 1 1 3 2 3 2 ...
$ no enemy : int 0 0 1 0 1 1 0 0 0 0 ....
                                                            nominal variable
$ predator : int 1 1 0 0 0 0 1 0 1 0 ...
dummy variables
                                                      created for each
                                                      factor level
```

Categorical Exogenous Variable

_							
	# Results						
	Model Test User Model:						
	Test statistic				1.658		
	Degrees of free	edom			2		
	P-value (Chi-so	quare)			0.436		
	Regressions:						
	1.092000101101	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
	aphid ~		564.	_	- (- 1 - 1 /	554.21	564.411
	host plant	0.408	0.041	9.925	0.000	0.408	0.534
	garlic	-8.506				-8.506	
	predator					-11.372	
	parasite					-7.375	
	_			- , - , - ,			
	host_plant ~	7 570	0.760	0.704	0 006	7 570	0.010
	garlic	-7.570	2.769	-2.734	0.006	-7.570	-0.218
	Variances:						
		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
	.aphid	72.753	8.401	8.660	0.000	72.753	0.414
	$. { t host_plant}$	287.445	33.191	8.660	0.000	287.445	0.953
	R-Square:						
	- <u>-</u>	Estimate					
	aphid	0.586					
	host plant	0.047					
L							

Categorical Exogenous Variable

```
# calculate indirect effects
sem mod <- ' aphid ~ a1*host plant + a2*garlic + predator + parasite
           host plant ~ a3*garlic
                # define indirect and total effect
                direct := a2
                indirect := a3*a1
                total := direct + indirect
fit <- sem(sem mod, data=aphid data)</pre>
summary(fit, standardize = T, rsq = T, fit.measures=T)
>
Defined Parameters:
                 Estimate Std.Err z-value P(>|z|) Std.lv Std.all
   direct
                -8.506 1.437 -5.921 0.000 -8.506 -0.321
   indirect -3.086 1.171 -2.636 0.008 -3.086 -0.116
          -11.592 1.800 -6.439 0.000 -11.592
                                                            -0.437
   total
```


Approaches when we have Endogenous Categorical Variables:

- 1) for binary and ordinal variables use the argument 'ordered' in *lavaan* with fitting function 'sem'
- 2) for nominal variables (i.e., levels are not ordered) use the factor levels to construct a composite variable.

- Normal distribution means continuous data
- Ordinal data can not be assumed normal

Solution: to use the threshold models

- Normal distribution means continuous data
- Ordinal data can not be assumed normal

Solution: to use the threshold models

- Normal distribution means continuous data
- Ordinal data can not be assumed normal

Solution: to use the threshold models

- Normal distribution means continuous data
- Ordinal data can not be assumed normal

Solution: to use the threshold models

Estimation not via ML but via (diagonally) weighted least squares (D)WLS

$$F_{WLS} = (s - \sigma)^{\mathsf{T}} \mathbf{W}^{-1} (s - \sigma)$$

Human activities affect fish communities in ponds

120 ponds

Categorical Endogenous Variable

```
# Read and check the data
fish data <- read.csv("Fish data.csv")</pre>
str(fish data)
sem mod2 <- ' inv fish ~ HII</pre>
                 native fish ~ plant div + HII
                plant_div ~ HII
                 native fish ~~ inv fish
fit2 <- sem(sem mod2, data=fish data,</pre>
                       ordered = c("inv fish"))
summary(fit2, standardize = T, rsq = T)
```


Categorical Endogenous Variable

# Read and check the data			
Estimator	DWLS		
Optimization method	NLMINB		
Number of model parameters	10		
Number of observations	120		
Model Test User Model:			
	Standard	Robust	
Test Statistic	0.022	0.022	
Degrees of freedom	1	1	
P-value (Chi-square)	0.882	0.882	
Scaling correction factor		1.000	
Shift parameter		0.000	
simple second-order correction			
Parameter Estimates:			
Standard errors	Robust.sem		

Regressions:							
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
inv_fish ~							
HII	0.308	0.128	2.411	0.016	0.308	0.268	
native_fish ~							
plant_div	0.475	0.059	7.994	0.000	0.475	0.576	
HII	-1.186	0.424	-2.797	0.005	-1.186	-0.210	
plant_div ~							
HII	-1.785	0.695	-2.569	0.010	-1.785	-0.261	
Covariances:							
covariances.	Estimate	C+d Exx		D/>1-1)	C+4 1	C+d all	
.inv fish ~~	ESCIMACE	Sta.EII	z-varue	F(> 2)	Sta.IV	Sta.all	
.native fish	_1 466	0 572	_2 561	0 010	_1 466	-0 303	
.nacive_rish	-1.400	0.572	-2.501	0.010	-1.400	-0.363	
Thresholds:							
iniconoras.	Estimate	Std Err	7-Walue	D(>)	S+d 1 ₁₇	Std all	
inv fish t1							
	0.567	0.288	1.909	0.049	0.307	0.540	
R-Square:							
n bquare.	Estimate						
inv fish	0.072						
native fish							
—							
plant_div	0.068						

Effects of land use on arthropod food webs in grasslands

Food webs

Net sampling of arthropods in grasslands

235 grasslands

Food-web length

"1 level": only herbivores and decomposers,

"2 levels": carnivores present in addition to level 1,

"3 levels": omnivores present in addition to level 1 and level 2.

Grazing intensity

("low", "medium", or "high")

Effects of land use on food webs in grasslands

Effects of land use on food webs in grasslands

Effects of land use on food webs in grasslands

Grazing

35

- 1. Specify the following model in lavaan
 - For this, <u>if needed</u>, recode the categorical variables in a way appropriate for the analysis

Effects of land use on food webs in grasslands

Grazing

36

- 1. Specify the following model in lavaan
 - For this, <u>if needed</u>, recode the categorical variables in a way appropriate for the analysis

