Introduction

- Nuclear Energy is a carbon free energy source and an attractive alternative to fossil fuel
- Computational fluid dynamics can characterize the turbulent flow in nuclear reactors with greater accuracy than other methods
- Uncertainty quantification of computer simulations will drive the practicality of sourcing clean energy from boiling water reactors
- The Standard $k-\epsilon$ model was used for the computer simulations

Standard k-ε 2-layer [all y+]	
meshing	state
coarse	steady(1)
medium (2x)	steady(2)/unsteady(4)
fine (4x)	steady(3)
resolved	steady(5)
low re [all y+]	
resolved	steady(6)

Assessment of a Physics Based UQ Method for the Application of CFD

T. Kovacevic¹, M. Acton², and E. Baglietto² ¹Department of Chemistry, University of Colorado Denver ²Department of Nuclear Science & Engineering, MIT

Fig 2. Constant Mesh (left), Hyperbolic Mesh (right)

Fig 1. GEMIX Geometry¹

Discretization Study

separate elements in a system

6 computed simulations

to use for UQ

Summary & Future Work

- The UQ method has successfully bounded experimental data
- The UQ method is a new implantation of modeling uncertainty was characterized in CFD. This quantification will allow for CFD use in nuclear reactor safety analysis
- The UQ method has been designed for single phase flow. Boiling and pressurized water reactors frequently experience two phase flows
- Future work includes developing a UQ method for two phase flow
- Employ this UQ method in code, scaling, applicability, & uncertainty (CSAU) during reactor licensing²

Source of uncertainty: model

RANS Momentum Equation

$$\frac{\partial(\rho\overline{u}_l)}{\partial t} + \rho\overline{u}_l \frac{\partial(\overline{u}_l)}{\partial x_j} = -\frac{\partial\overline{p}}{\partial x_i} + \nu \frac{\partial\overline{u}_l}{\partial x_j x_j} - \frac{\partial}{\partial x_i} \rho \overline{u}_l' \underline{u}_j'$$

Boussinesq assumption

$$\overline{u_l'u_j'} = \mu_t \left(\frac{\partial \overline{u}_j}{\partial x_i} + \frac{\partial \overline{u}_i}{\partial x_j}\right) - \frac{2}{3}k\delta_{ij}$$

Uncertainty Quantification

$$TKE = \frac{1}{2} (\langle u'^2 \rangle + \langle v'^2 \rangle + \langle w'^2 \rangle)$$