PESC - Universidade Federal do Rio de Janeiro TRABALHO COMPUTACIONAL - Otimização - 2024.2 Prof. Luidi Simonetti

A partir das funções:

min
$$f(x) = \sum_{i=1}^{6} (100(x_{i+1} - x_i^2)^2 + (1 - x_i)^2)$$

s. a. $x \in \mathbb{R}^7$

min
$$f(x) = \sum_{i=1}^{100} x_i^4 - 16x_i^2 + 5x_i$$

s. a. $x \in \mathbb{R}^{100}$

min
$$f(x) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$$

s. a. $x \in \mathbb{R}^2$

- o Trabalho Computacional consta das fases abaixo:
 - 1. Realização de um pequeno estudo para melhor compreender o comportamento das funções. Por exemplo: pontos críticos, convexidade, existência de ponto(s) ótimo(s), além de plotar sua função, etc.
 - 2. Implementação de cada um dos seguintes métodos vistos em sala de aula, que visam obter o(s) ponto(s) mínimo(s), caso exista(m): Método do Gradiente; Método de Newton; e pelo menos um Método Quase-Newton (DFP e/ou BFGS). Utilização da busca de Armijo em todos os casos.
 - 3. Utilização de um ou mais critérios de parada, lembrando de deixar claro quais critérios foram utilizados. Exemplos de critérios de parada: $x^k = x^{k-1}$; $\Delta f(x^k) = 0$; limite de tempo; limite de iterações; e limite de iterações sem melhoria. Poderão ser utilizados outros critérios de parada que o grupo achar conveniente, não ficando os grupos restritos somente aos critérios listados acima.
 - 4. Consideração de vários pontos iniciais distintos (pelo menos cinco).
 - 5. Elaboração de uma tabela com os resultados obtidos por cada um dos métodos implementados por seu grupo no item 2 (uma tabela para cada método), partindo dos distintos pontos iniciais escolhidos no item 4. Essa tabela deve conter pelo menos as seguintes informações (veja Tabela 1):
 - 6. Apresente seus resultados de forma que possa comparar as taxas de convergência dos métodos, o progresso da função objetivo e o impacto da busca unidirecional.

Tabela 1: Resultados computacionais pelo Método do Gradiente.

Ponto	# de	# de cham.	Ponto	Valor	Erro de
inicial	iterações	Armijo	ótimo	ótimo	aproximação
(0,45; 0,51)	65	65	(0,499999;0,5)	1,66511	9,27003e-007
(0,4;0,6)	71	100	(0,499999; 0,500001)	1,66511	9,93398e-007
(0,1;0,9)	85	95	(0,499999; 0,500001)	1,66511	9,92053e-007
(0,2;0,3)	79	209	(0,499999; 0,499999)	1,66511	9,79813e-007
(0,7;0,6)	75	75	(0,500001; 0,500001)	1,66511	9,82938e-007

Observação importante: nas apresentações dos Trabalhos Computacionais serão avaliados: o estudo inicial do problema (item 1), a implementação dos algoritmos, os resultados obtidos, as justificativas para os resultados obtidos e as decisões tomadas pelo grupo (demais itens).