Applications of Context for Artificial Intelligence

Quentin Truong

Overview

- Basic Problem
- Visual Cues
- Context Filtering
- AlphaGo as example
- Object relationships in Language
- BYU Solution
- Future Applications
- Citations
- Questions

Basic Knowledge Problem

- Ask a robot to bring you a cup
 - It doesn't know how to find, pick up, transport etc.
 - Might break the cup or break itself
 - Must be told how to do all of this
- We consider this knowledge trivial
 - O Understand how to hold cups, where cups are located, etc.
 - Humans use this contextual knowledge of objects
 - o But robots don't know
 - Must obtain this knowledge somehow

Visual Cues

- When trying to pick up a cup, know what a cup is
 - o because know the relative weight of a cup, know how to lift it
- Robots often lack many of these cues
 - o even if they can identify objects, often does not have extensive knowledge of these many objects
- Idea of context cues extends beyond physical interactions
 - Humans have lots of general knowledge
 - Implicitly use this knowledge to solve problems

Basic Knowledge Problem

- DARPA Robot Challenge
 - Robots can't open doors or walk really
 - o https://youtu.be/g0TaYhjpOfo?t=26s
- What we consider to be basic is actually fairly difficult
 - It's not simple to open a door or walk
- Extends beyond robotics
 - AI will require a similarly extensive amount of knowledge

Context Filtering Problem

- Humans can filter information
 - Humans often have some idea of what is likely to work and what is unlikely to work
 - Understand what information is relevant and what variables should be changed
 - Can use this to filter out poor solutions
 - o Because search-space is smaller, humans can experimentally figure out new solutions to new problems
- Machines don't have the knowledge to be capable of filtering
 - Machines don't know what is relevant and what is not
 - Must resort to brute-force search oftentimes
 - Search-space is likely to be intractably large
 - Will never find the solution if it cannot reduce the search-space

Search Space

- AlphaGo
 - 0 10^761
 - Search space intractable
 - Must reduce search space
- Humans use intuition to reduce search space

Object Relationships Problem

- Humans understand relationships between objects
 - We know how nouns relate to other verbs
 - But the machine does not know these sorts of things
- Machines don't understand relationships between objects
 - You can dethrone a king, but you can't really 'harvest' a king (Christensen)
 - Machine doesn't know that you should not eat a table
 - Machines in unstructured environments perform terribly
 - o Infeasible to hand-code this knowledge

Object Relationship Solution

- Researchers at BYU download Wikipedia
 - Teach machine relationships between nouns and verbs
 - Use Wikipedia as a source of up-to-date text
 - Extract noun-verb relationships to find Affordances (set of actions that can be done with an object)
 - o Apply math and figure out relationships between words in the text downloaded from Wikipedia
 - O So now machine knows how nouns relate to other verbs

Results of the solution

- BYU Researchers improve performance
 - For an unstructured text game where machines have to respond to textual input, improved performance on 12/16 games
 - This improvement was from understanding relationships between objects alone
 - Other improvements could include grammar, speaking conventions, etc

Future Applications

- Basic Knowledge
 - Need machines to be capable of a variety of tasks if integrated in consumer environment
 - Must understand how to not break things
 - Must not break itself
- Context Filtering
 - AI figure out solutions for unseen problems
 - o Performance in unstructured environments
- Language, Object Relationships
 - Easy, convenient format to communicate to machines
 - o NLP

Citations

Brezillon, Patrick. "Context in Artificial Intelligence: I. A Survey of the Literature." *Advances in Applied Artificial Intelligence Lecture Notes in Computer Science*, 2006,

 $www.researchgate.net/profile/Patrick_Brezillon/publication/220106390_Context_in_Artificial_Intelligence_I_A_Survey_of_the_Lite \\ rature/links/0fcfd50cb6dbdeb89f000000.pdf.$

Christensen, Andrea. "Researchers Use Wikipedia to Give AI Context Clues." *Brigham Young University*, 26 Sept. 2017, news.byu.edu/news/researchers-use-wikipedia-give-ai-context-clues.

Frantz, Roger. "Herbert Simon. Artificial Intelligence as a Framework for Understanding Intuition." *Journal of Economic Psychology*, North-Holland, 19 Feb. 2003, www.sciencedirect.com/science/article/pii/S0167487002002076.

Sloman, Aaron. "Interactions between Philosophy and Artificial Intelligence: The Role of Intuition and Non-Logical Reasoning in Intelligence." *Artificial Intelligence*, Elsevier, 21 Feb. 2003, www.sciencedirect.com/science/article/pii/0004370271900117.

Questions?