The Presentation of Entities and Relations and its Application in Inference

Weidi Xu

Peking University, Computational Intelligence Laboratory

June 10, 2015

Overview

- Knowledge Graph: a directed graph with entities and relations
- Knowledge Inference: link prediction in knowledge graph
- Representation: efficient and scalable inference methods

- Background
 - Kowledge Graph
 - Knowledge Inference
 - Methods
- Representation Learning for Knowledge Graph
 - Framework
 - Methods based on Reconstruction Error
 - Methods based on Ranking Loss
- Recent Advance
 - Consider Long-Range Interation
- Pros and Cons

- Background
 - Kowledge Graph
 - Knowledge Inference
 - Methods
- 2 Representation Learning for Knowledge Graph
 - Framework
 - Methods based on Reconstruction Error
 - Methods based on Ranking Loss
- Recent Advance
 - Consider Long-Range Interation
- 4 Pros and Cons

Knowledge Graph

• Knowledge graph is a directed graph comprised by entities and relations.

- (John, athletePlaysForTeam, 76ers)
- (Bob, athletePlaysForTeam, 76ers)
- (Tom, athleteMates, Tom)
- (Tom, athletePlaysInLeague, NBA)
- (76ers, teamPlaysInLeague, NBA)
- However the knowledge graph is incomplete: it only covers small part of facts.

• Knowledge inference: link prediction in knowledge graph.

• Inference in Knowledge Graph can increase the coverage.

Methods

Methods

- Inference based on representation learning.
 - Occilective Matrix Factoriation (Nickel et al., 2011)
 - Neural Tensor Networks (Socher et al., 2013)
 - Translating Embeddings(Bordes et al., 2013)
- Inference based on markov random field.
 - Markov Logic Networks (Richardson and Domingos, 2006)
 - Probabilistic Soft Logic (Brocheler et al., 2012)
- Inference based on random walk.
 - Path Ranking (Lao et al., 2011)

- - Kowledge Graph
 - Knowledge Inference
 - Methods
- Representation Learning for Knowledge Graph
 - Framework
 - Methods based on Reconstruction Error
 - Methods based on Ranking Loss
- - Consider Long-Range Interation

Framework

• Hidden variable model: modeling data in hidden variable space.

Leanring

- Learning entity and relation embeddings in hidden vector spaces.
- Define a fitness funtion to determine the certainty of entity-relation-entity pairs.
- Define an objective funtion and use the facts dataset to learn the model parameters.

Prediction

• Using the model and objective function to inference.

Framework

• Hidden variable model: modeling data in hidden variable space.

Leanring

- Learning entity and relation embeddings in hidden vector spaces.
- Define a fitness funtion to determine the certainty of entity-relation-entity pairs.
- Define an objective funtion and use the facts dataset to learn the model parameters.

Objective function

- Reconstruction error
- Ranking loss

RESCAL: reconstruction error

 Representation in hidden vector/matrix space and the corresponding fitness function:

Learn based on reconstruction error:

$$\min_{e_i, R_k} \sum_{k} \sum_{i} \sum_{j} (y_{i,j}^k - f(e_i, r_k, e_j))^2 + \lambda R$$

assumption

It is assumed that all pairs not contained in dataset are negative.

Neural Tensor Network: ranking loss

 Representation in hidden vector/matrix space and the corresponding fitness function:

$$f(e_i, r_k, e_j) = U_k^T g(e_i^T W_k^{[1:K]} e_j + V_k[e_i : e_j] + b_k)$$

• Learn based on ranking loss:

$$\min_{e_i, R_k} \sum_{t^+ \in O} \sum_{t^- \in D} (\lambda + f(e_i, r_k, e_j) - f(e'_i, r_k, e'_j))$$

assumption

It is assumed that all pairs not contained in dataset are negative.

Representation in hidden vector space and the corresponding fitness

 Representation in hidden vector space and the corresponding fitness function:

$$\begin{aligned} (e_i, r_k, e_j) & \qquad & f\left(e_i, r_k, e_j\right) = \|\mathbf{e}_i + \mathbf{r}_k - \mathbf{e}_j\|_1 \\ \downarrow & \qquad & \downarrow \\ f_{ij}^{(k)} & = \boxed{ + \boxed{ }} - \boxed{ } \\ & \qquad & \text{translation} \end{aligned}$$

Learn based on ranking loss:

$$\min_{e_i, R_k} \sum_{t^+ \in O} \sum_{t^- \in D} (\lambda + f(e_i, r_k, e_j) - f(e'_i, r_k, e'_j))$$

assumption

It is assumed that pairs not contained in dataset are partially negative.

- Background
 - Kowledge Graph
 - Knowledge Inference
 - Methods
- Representation Learning for Knowledge Grap
 - Framework
 - Methods based on Reconstruction Error
 - Methods based on Ranking Loss
- Recent Advance
 - Consider Long-Range Interation
- 4 Pros and Cons

Previous approaches only consider triples information, it's better to take long-range information into consideration.

- Relation between Relations (Bowman et al., 2014)
- Combining Long-Range Interation (Wu et al., 2015)

 This model leaves out the representation of entities and concern the relation between relations.

• It tries to minimize the difference between the inferred relation $v_r(\pi)$ (w.r.t. path π) and the single relation r.

$$v_r(\pi) = RNN(\pi)$$

$$f(\pi_r, r) = sigmoid(v_r(\pi), r)$$

• And negative samples are used to maximize the margin.

Combining Long-Range Interation (Wu et al., 2015)

• This paper jointly utilizes the triple information and long-range interaction in knowledge base.

Ranking loss for triples:

$$\min_{e_i, R_k} \sum_{t^+ \in O} \sum_{t^- \in D} (\lambda + f(e_i, r_k, e_j) - f(e_i', r_k, e_j'))$$

• And long-range loss:

$$f(\pi_r, r) = L(v_r(\pi), r)$$

- Background
 - Kowledge Graph
 - Knowledge Inference
 - Methods
- 2 Representation Learning for Knowledge Graph
 - Framework
 - Methods based on Reconstruction Error
 - Methods based on Ranking Loss
- Recent Advance
 - Consider Long-Range Interation
- Pros and Cons

Prons and Cons

- Pros
 - Hidden space model can capture the complex concepts.
 - It is computationally efficient.
- Cons
 - It is not logical: we can capture the co-occurrence information but not logical properties of relation, e.g. transitivity, reflexivity..
 - ② It is not precise: data-driven methods will be noisy-prone.

- Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., and Yakhnenko, O. (2013). Translating embeddings for modeling multi-relational data. In Advances in Neural Information Processing Systems, pages 2787–2795.
- Bowman, S. R., Potts, C., and Manning, C. D. (2014). Recursive neural networks for learning logical semantics. *arXiv* preprint *arXiv*:1406.1827.
- Brocheler, M., Mihalkova, L., and Getoor, L. (2012). Probabilistic similarity logic. arXiv preprint arXiv:1203.3469.
- Lao, N., Mitchell, T., and Cohen, W. W. (2011). Random walk inference and learning in a large scale knowledge base. In *Proceedings of the Conference on Empirical Methods in Natural Language Processing*, pages 529–539. Association for Computational Linguistics.
- Nickel, M., Tresp, V., and Kriegel, H.-P. (2011). A three-way model for collective learning on multi-relational data. In *Proceedings of the 28th international conference on machine learning (ICML-11)*, pages 809–816.
- Richardson, M. and Domingos, P. (2006). Markov logic networks. *Machine learning*, 62(1-2):107–136.
- Socher, R., Chen, D., Manning, C. D., and Ng, A. (2013). Reasoning

with neural tensor networks for knowledge base completion. In *Advances in Neural Information Processing Systems*, pages 926–934.

Wu, F., Song, J., Yang, Y., Li, X., Zhang, Z., and Zhuang, Y. (2015). Structured embedding via pairwise relations and long-range interactions in knowledge base. In *Twenty-Ninth AAAI Conference on Artificial Intelligence*.