Preprocessing and Pipelines

TM Quest

Overview

What Will we Learn in This Module?

- Preprocessing
 - Filling in missing data
 - Selecting useful features
 - Scaling features
- Pipelines
 - What is a pipeline?
 - How to create a pipeline?

What is Preprocessing?

What is Preprocessing?

- Everything you do to make the data ready to be trained on.
- Example:
 - Dropping features
 - Combining features

Filling in Missing Values

- Observations are often missing some features.
- For the training step the data need to be uniform.
- We can either drop the missing observations,
- or we can fill them in using for example the mean of each column.

Missing Values

Before

Feature 1	Feature 2
1	NaN
	6
7	9
4	2
8	9
	1
9	0
4	NaN

After

(ij eei		
Feature 1	Feature 2	
1	4.7	
5.5	6	
7	9	
4	2	
8	9	
5.5	1	
9	0	
4	4.7	

Standard Scaler

Scales the data uniformly with mean 0 and variance 1.

Figure: Blue: Before, Orange: after

Code Examples

Missing Values

```
# Drop observations with missing values
df["column"].dropna(inplace=True)

# Fill in missing values with the number 42
df["column"].fillna(value=42, inplace=True)
```

Standard Scaler

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()

# Scale the data
scaler.fit(data)
scaler.transform(data)
```

Transformer

1. One Hot Encoding

2. Making New Features

ML Pipeline

4. Doing Linear Regression

3. Scaling the Features

Code Example

```
from sklearn.pipeline import Pipeline

# Create a pipeline
pipeline = Pipeline([
    ("first_step", FirstTransformer()),
    ("second_step", SecondTransformer()),
    ("last_step", Predictor())])
```

The Pipeline now Works as a Predictor