Roll	Number:					
		3			gineering & Technology Patiala & Engineering Department	
BE CSBS Mid Term Test			UCT301: Formal Languages and Automata Theory			
Sept 28, 2022 Time: 02 Hours; MM: 30					Name of Faculty: Dr. Ajay Kun	nor
1 1111	e. 02 nours,	IVIIVI. 30			Name of Faculty. Dr. Ajay Kun	nai
					tions carry equal weightage. Assume	any
	a) Prove th		_		h question whenever required. attersection.	(3)
					nsider q ₀ as starting and q ₆ as final	
	(0) 1411111111	Le the Brief	ii iiiii waa	omaton (co	10 40 000111118 01110 40 000 111111	(3)
		Stata	Input a	Input b	1	(3)
		State				
		90 91	q ₀	q ₃		
	-		q ₂	q ₄		
		q ₃	q ₀	q ₅		
		Q ₄	q ₀	q ₆		
		q ₅	qı	Q ₄		
		q ₆	qı	q ₂		
2.	Consider th	he regular o	expression	(ab)*b		
	(a) Apply	Thompson	construction	on to conver	t the regular expression into non-	
deterministic finite automaton.						(2)
(b) Convert the obtained NFA from (a) into DFA using subset construction.						(2)
(c) Minimize the DFA obtained in step (b)						(2)
3	3. a) Write down the context-free grammar for the language $L_1 = \{a^i b^j c^k \mid j=i+k\}$.					(2)
		gn the flowchart for the pushdown automata for the language L ₁ . Write down				
	the transition		•		nomata for the language 151. Write	(4)
Á						
4.	a) Using Pumping Lemma prove that $L_2 = \{a^n \mid i > 0 \text{ and } n = i^2\}$ is not a regular language.					
	(b) Write de	own left an	d right line	ear gramma	r for the regular expression $(a+b)^*$	
3.						(3+3)
5.	a) Design I	OFA for the	language	over {a,b}	for the regular language L ₃ .	
	$L_3= \{ w$	w has an	even numb	er of a's and	d one or two b's}	(3)
	b) Write do	wn regular	expression	n for the lan	guage over $\{0,1\}$ for L ₄ and L ₅ .	(3)

 $L_4=\{\ w\ |\ All\ 0\ blocks\ of\ w\ are\ of\ even\ length\ and\ w\ is\ any\ string\ over\ \{0,1\}\}$

 $L_5=\{w \mid w \text{ consists of substring } 101\}$