Exercices semaines 6, 7 et 8

Pour répondre à toutes les questions ci-dessous, vous devez utiliser Stata (et, spécifiquement, DASP, si demandé). Soyez concis(es) et clair(e)s dans vos réponses.

L'examen est divisé en trois exercices (les points assignés à chaque exercice sont indiqués à côté de chaque exercice). Veuillez répondre (R) directement dans ce fichier après chaque question (Q) et veuillez joindre le fichier *.do (do-file) que vous avez généré. Renommez ces deux fichiers en : "Exercice semaines 6_7_8 - Prénom, Nom" et veuillez les soumettre par la boîte de dépôt du portail de cours avant mardi le 23 mars à 23h59. (heure du Québec).

Exercice 1 (3.5%):

- 1.1 En utilisant le fichier de données data_b3_2.dta, estimez le seuil de pauvreté subjective en considérant les informations suivantes :
 - Le bien-être équivalent-adulte observé est la variable : ae_exp
 - Le bien-être équivalent-adulte perçu minimum pour échapper à la pauvreté est min_ae_exp .
 - L'unité d'analyse est l'individu (utilisez la variable de taille du ménage).

R:

- 1.2 Estimez l'intensité de la pauvreté (avec les variables : *ae_exp* and *hsize*) pour chacun de ces trois cas, et discutez les résultats :
 - a) Le seuil de pauvreté subjective ;
 - b) Le seuil de pauvreté absolue (z=20600);
 - c) Le seuil de pauvreté relative (z= moitié du revenu moyens).

R:

a)

. ifgt ae_exp, alpha(0) hsize(hsize) pline(22441.69)

Poverty index : FGT index Household size : hsize Sampling weight : sweight Parameter alpha : 0.00

Variable	Estimate	STE	LB	UB	Pov. line
ae_exp	0.369575	0.017197	0.335819	0.403331	22441.69

. ifgt ae_exp, alpha(0) hsize(hsize) pline(20600)

Poverty index : FGT index Household size : hsize Sampling weight : sweight Parameter alpha : 0.00

Variable	Estimate	STE	LB	UB	Pov. line
ae_exp	0.306824	0.017156	0.273149	0.340499	20600.00

c)

. ifgt ae_exp, alpha(0) hsize(hsize) opl(mean) prop(50)

Poverty index : FGT index Household size : hsize Sampling weight : sweight Parameter alpha : 0.00

Variable	Estimate	STE	LB	UB	Pov. line
ae_exp	0.213034	0.017753	0.178188	0.247880	17243.92

1.3 Selon vous, quelle est la méthode la plus appropriée pour mesurer la pauvreté dans les pays <u>développés</u> et pourquoi ?

R: Dans les pays développés, la méthode la plus appropriée est la pauvreté relative car elle mesure la pauvreté comme étant inférieure à un certain seuil relatif de pauvreté. Aussi lorsque les revenus réels augmentent mais que la distribution des revenus ne change pas, la pauvreté relative ne changera pas non plus.

Exercice 2 (4.5%):

Les indices de pauvreté additive, comme l'indice FGT, permettent d'effectuer une décomposition analytique exacte de ces indices par sous-groupe de population. Ceci est utile pour montrer la contribution de chaque groupe à la pauvreté totale

2.1 Utilisez le fichier data_b3_2.dta et décomposez la pauvreté (taux de pauvreté) selon le sexe du chef de ménage (*sex*) (le seuil de pauvreté est 20600). Que pouvons-nous conclure ?

R:

. dfgtg ae_exp, hgroup(sex) hsize(hsize) alpha(0) pline(20600)

Decomposition of the FGT index by groups

Poverty index : FGT index Household size : hsize Sampling weight : sweight Group variable : sex Parameter alpha : 0.00

Group	FGT index	Population share	Absolute contribution	Relative contribution
Male	0.292844	0.794986	0.232807	0.758764
	0.017957	0.011824	0.014660	0.024917
Female	0.361034	0.205014	0.074017	0.241236
	0.035384	0.011824	0.008928	0.024917
Population	0.306824	1.000000	0.306824	1.000000
	0.017156	0.000000	0.017156	0.000000

Conclusion : En thème de contribution relative et absolue, les ménages dirigés par les hommes sont les plus pauvres.

2.2 Estimez la pauvreté totale (taux de pauvreté) en fonction de la région du chef de ménage (*region*).

R:

. dfgtg ae exp, hgroup(region) hsize(hsize) alpha(0) pline(20600)

Decomposition of the FGT index by groups

Poverty index : FGT index Household size : hsize Sampling weight : sweight Group variable : region Parameter alpha : 0.00

Group	FGT index	Population share	Absolute contribution	Relative contribution
central	0.172511	0.299749	0.051710	0.168533
	0.021242	0.016365	0.007205	0.023455
eastern	0.339337	0.256752	0.087125	0.283958
	0.027234	0.013749	0.008720	0.028180
northern	0.599108	0.188621	0.113005	0.368304
	0.047338	0.016391	0.015483	0.038845
western	0.215728	0.254878	0.054984	0.179205
	0.027715	0.013794	0.007673	0.024078
Population	0.306824	1.000000	0.306824	1.000000
-	0.017156	0.000000	0.017156	0.000000

- 2.3 La répartition des dépenses en équivalent-adultes est similaire à celle de la période initiale (*ae_exp*), avec les légères différences suivantes
 - Les dépenses en équivalent-adultes ont augmenté de 12% dans la région 3;
 - Les dépenses en équivalent-adultes ont diminué de 6% dans la région 2;

Générez la variable *ae_exp2* en vous basant sur les informations ci-dessus.

R:

```
gen ae_exp2 = ae_exp * (1.00+0.12) if region==3
replace ae_exp2 = ae_exp * (1.00-0.06) if region==2
replace ae_exp2 = ae_exp if region==1
replace ae_exp2 = ae_exp if region==4
```

2.4 En utilisant l'approche de Shapley, décomposez le changement de l'intensité de la pauvreté en croissance et redistribution. Puis discutez des résultats.

_	_	
1	•	
	•	

2.5 Effectuez une décomposition sectorielle (basée sur les groupes de régions) de la variation de l'intensité de la pauvreté totale. Discutez des résultats.

R:

Exercice 3 (4.5%):

Supposons que la population est composée de dix individus. Le tableau suivant montre la distribution des revenus de deux périodes successives.

Identifier	weight	inc_t1	Inc_t2
0	0	0.00	0.00
1	0.1	1.50	1.54
2	0.1	4.50	3.85
3	0.1	7.50	6.60
4	0.1	3.00	2.75
5	0.1	4.50	4.40
6	0.1	9.00	7.70
7	0.1	10.50	8.80
8	0.1	15.00	7.70
9	0.1	12.00	6.60
10	0.1	13.50	6.60

3.1 Insérez les données, puis générez les centiles (basé sur le rang des revenus de la période initiale (variable perc)), et le premier centile doit être égal à zéro).

R:

. list perc

	perc
1. 2. 3. 4. 5.	0 .1 .2 .3
6. 7. 8. 9.	.5 .6 .7 .8
11.	1

3.2 Initialisez le scalaire *g_mean*, qui est égal au taux de croissance du revenu moyen.

```
R:
```

```
qui sum inc_t1 [aw=weight] // Pour calculer la moyenne des revenus en t1.
                            // Pour garder en mémoire le scalaire mean1 = r(mean) in t1
scalar mean1=r(mean)
qui sum Inc_t2 [aw=weight]
scalar mean2=r(mean)
                           // Pour garder en mémoire le scalaire mean2 = r(mean) in t2
scalar g_mean = (mean 2 - mean 1)/mean 1
gen g_mean = (mean2-mean1)/mean1
                                             // Pour generer la variable g_mean, qui est égale à
la croissance des moyennes.
                   =" mean1
dis "Mean 1
dis "Mean 2
                  = " mean2
dis "Growth in averages = " g_mean
Mean 1
               =8.1
              = 5.654
Mean 2
g_mean
               = -.30197531
```

3.3 Générez la variable g_{inc} , comme la croissance des revenus individuels.

R:

```
gen g_inc =(Inc_t2-inc_t1)/inc_t1 replace g_inc = 0 in 1
```

3.4 Dessinez la *courbe d'incidence de la croissance* à l'aide des variables *g_inc* et *perc*. Discutez des résultats.

R:

3.5 Supposons que le seuil de pauvreté est égal à 10.4. Estimez l'indice pro-pauvres de Chen et Ravallion (2003) ($IP = \frac{1}{q} \sum_{i=1}^{q} \gamma^{t}(p_{i})$). Discutez des résultats.

R:

. ipropoor inc_t1 Inc_t2, pline(10.4) // Pour calculer différents indices de pauvreté avec DASP MUM-.4 DENUM -.29999999

Poverty line : 10.40 Parameter alpha : 0.00

Pro-poor indices	Estimate	STE	LB	UB
Growth rate(g)	-0.301975	0.068365	-0.456627	-0.147324
Ravallion & Chen (2003) index Ravallion & Chen (2003) - g	-0.081296 0.220679	0.027568 0.075578	-0.143659 0.049710	-0.018934 0.391648
Kakwani & Pernia (2000) index	1.333333	0.418947	0.385608	2.281058
PEGR index PEGR - g	-0.402634 -0.100658	0.181351 0.136631	-0.812878 -0.409739	0.007610 0.208422

Discussion:

3.6 En utilisant l'approche de Shapley, décomposez le changement de l'intensité de la pauvreté en composantes de croissance et de redistribution. Discutez des résultats.

R:

. dfgtgr inc_t1 Inc_t2, alpha(1) pline(10.4)

Decomposition of the variation in the FGT index into growth and redistribution.

Parameter alpha : 1.00 Poverty line : 10.40

	Estimate	STE	LB	UB
Distribution_1	0.311538	0.105810	0.072180	0.550897
Distribution_2	0.456346	0.072481	0.292383	0.620309
Difference: (d2-d1)	0.144808	0.044233	0.044745	0.244871
	Datt & Ravallion a	pproach: refere	nce period t1	
Growth	0.145484	0.036725	0.062407	0.228562
Redistribution	-0.057026	0.026851	-0.117767	0.003714
Residue	0.056350			
	Datt & Ravallion a	pproach: refere	nce period t2	
Growth	0.201834	0.059022	0.068318	0.335350
Redistribution	-0.000677	0.009501	-0.022169	0.020816
Residue	-0.056350			
	Shapley approach			
Growth	0.173659	0.046125	0.069318	0.278001
Redistribution	-0.028851	0.010816	-0.053318	-0.004385

Discussion