

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ»

КАФЕДРА «ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЭВМ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ»

Лабораторная работа № 2 по дисциплине «Анализ алгоритмов»

Тема Алгоритмы умножения матриц

Студент Могилин Н. С.

Группа ИУ7-51Б

Преподаватели Волкова Л. Л., Строганов Д. В., Строганов Ю. В.

СОДЕРЖАНИЕ

BI	ВЕДЕ	сние	4								
1	Ана	Аналитическая часть									
	1.1	Операция умножения матриц	5								
	1.2	Алгоритмы умножения матриц	5								
		1.2.1 Стандартный алгоритм умножения матриц	5								
		1.2.2 Алгоритм Винограда умножения матриц	5								
		1.2.3 Возможные оптимизации алгоритма Винограда	6								
		1.2.4 Модель вычислений	6								
2	Кон	структорская часть	8								
	2.1	Схемы реализуемых алгоритмов	8								
3	Texi	нологическая часть	14								
	3.1	Средства реализации	14								
	3.2	Листинги алгоритмов	14								
	3.3	Функциональное тестирование	17								
	3.4	Демонстрация работы программы	17								
4	Исс	ледовательская часть	19								
	4.1	Постановка замерного эксперимента	19								
	4.2	Результаты замерного эксперимента	19								
	4.3	Вывод	23								
3 A	АКЛІ	ОЧЕНИЕ	24								
Cl	пис	ОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	25								

ВВЕДЕНИЕ

В настоящей лабораторной работе рассматриваются алгоритмы умножения матриц.

Целью данной работы является изучение, реализация, оценка и сравнение эффективности стандартного алгоритма умножения матриц и алгоритма Винограда.

Задачи работы:

- Изучить алгоритмы умножения матриц: стандартный и Винограда;
- Реализовать стандартный алгоритм умножения матриц, а также алгоритмы Винограда: с оптимизацией по варианту и без нее;
- Ввести модель вычислений и выполнить в ней оценку трудоемкости реализованных алгоритмов;
- Получить и сравнить экспериментальную эффективность полученных реализаций с теоретической.

Оптимизация алгоритма Винограда по варианту:

- Двоичный сдвиг вместо умножения на 2 при вычислении значений результирующей матрицы;
- Введение инкремента при вычислении вспомогательных массивов вместо умножения на 2;
- Вынос начальной итерации из внутреннего цикла при вычислении значений результирующей матрицы.

1 Аналитическая часть

1.1 Операция умножения матриц

Пусть даны две матрицы: $A = ||a_{ij}||$ размером $N \times M$ и $B = ||b_{ij}||$ размером $M \times Q$. Тогда произведением AB называется матрица $C = ||c_{ij}||$ размером $N \times Q$, элементы c_{ij} которой вычисляются по правилу умножения i-ой строки матрицы A на j-ый столбец матрицы B:

$$C = AB = \begin{pmatrix} a_{11} & \dots & a_{1k} & \dots & a_{1M} \\ a_{21} & \dots & a_{2k} & \dots & a_{2M} \\ \dots & \dots & \dots & \dots \\ a_{N1} & \dots & a_{Nk} & \dots & a_{NM} \end{pmatrix} \begin{pmatrix} b_{11} & \dots & b_{1k} & \dots & b_{1Q} \\ b_{21} & \dots & b_{2k} & \dots & b_{2Q} \\ \dots & \dots & \dots & \dots \\ b_{M1} & \dots & b_{Mk} & \dots & b_{MQ} \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} + \dots + a_{1M}b_{M1} & \dots & a_{11}b_{1Q} + \dots + a_{1M}b_{MQ} \\ a_{21}b_{11} + \dots + a_{2M}b_{M1} & \dots & a_{21}b_{1Q} + \dots + a_{2M}b_{MQ} \\ \dots & \dots & \dots & \dots \\ a_{N1}b_{11} + \dots + a_{NM}b_{M1} & \dots & a_{N1}b_{1Q} + \dots + a_{NM}b_{MQ} \end{pmatrix}.$$

$$(1.1)$$

Элемент c_{ij} с индексами i,j матрицы C может быть описан следующим образом:

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{iM}bMj = \sum_{k=1}^{M} a_{ik}b_{kj}, \quad i = \overline{1..N}, j = \overline{1..Q}.$$
 (1.2)

Таким образом, операция матричного умножения матриц A, B определена, если число столбцов матрицы A совпадает с числом строк матрицы B [1].

1.2 Алгоритмы умножения матриц

1.2.1 Стандартный алгоритм умножения матриц

Стандартный алгоритм умножения матриц реализует формулу 1.2, то есть для каждого элемента матрицы C с индексами i, j ищется сумма поэлементных произведений чисел строки i матрицы A на числа столбца j матрицы B.

1.2.2 Алгоритм Винограда умножения матриц

Ключевая идея алгоритма Винограда — снизить долю затратных операций умножения. Для этого рассмотрим формулу 1.2 в терминах скалярного произведения строки матрицы A на столбец матрицы B. Пусть

$$U_i = A_i = (u_1 u_2 \dots u_M) = (a_{i1} a_{i2} \dots a_{iM}),$$

$$V_j = B_j = (v_1 v_2 \dots v_M) = (b_{1j} b_{2j} \dots b_{Mj}),$$
(1.3)

где $U_i - i$ -ая строка матрицы $A, V_j - j$ -ый столбец матрицы B.

Тогда формулу 1.2 можно переписать следующим образом:

$$c_{ij} = U_i \cdot V_j. \tag{1.4}$$

Пусть M = 4. Распишем скалярное произведение 1.4:

$$c_{ij} = U_i \cdot V_j = u_1 v_1 + u_2 v_2 + u_3 v_3 + u_4 v_4. \tag{1.5}$$

Равенство 1.5 можно переписать в следующем виде:

$$c_{ij} = (u_1 + v_2)(u_2 + v_1) + (u_3 + v_4)(u_4 + v_3) - u_1u_2 - u_3u_4 - v_1v_2 - v_3v_4.$$

$$(1.6)$$

На 4 слагаемых в правой части равенства 1.5 приходится 4 умножения. При этом для первых двух слагаемых правой части равенства 1.6 требуется 2 умножения. Несложно заметить, что слагаемые $-u_1u_2-u_3u_4$ не зависят от элементов V_j , а слагаемые $-v_1v_2-v_3v_4$ не зависят от элементов U_i , то есть могут быть рассчитаны предварительно для каждой матрицы. Таким образом, в самой вложенной части алгоритма (в части расчета c_{ij}) будет производиться 2 операции умножения и 6 операций сложения, в то время как в стандартном алгоритме – 4 операции умножения и 4 операции сложения.

1.2.3 Возможные оптимизации алгоритма Винограда

Стратегии оптимизации алгоритма сводятся к использованию более быстрых операций: инкремент вместо сложения, двоичный сдвиг вместо умножения на 2, использование дополнительного буфера для накопления значения при суммировании с целью минимизации обращений к ячейке матрицы. Более подробно оптимизация алгоритма будет рассмотрена далее.

1.2.4 Модель вычислений

Для оценки трудоемкости алгоритмов необходимо ввести систему стоимостей базовых операций, оператора цикла и условного оператора:

- Примем единичной трудоемкость следующих операций: =, +, -, + =, =, ==, ! =,
- <,>,<=,>=, [], <<,>>, ++, --, &&, ||,!, &, |;
- Трудоемкость операций *, /, * =, / =, %, % = примем равной 2;
- Трудоемкость оператора цикла примем равной:

$$f_{\text{II}} = f_{\text{иниц}} + f_{\text{сравн}} + n \cdot (f_{\text{инкр}} + f_{\text{сравн}} + f_{\text{тела}});$$
 (1.7)

— Трудоемкость условного оператора примем равной:

$$f_{if} = f_{\text{усл}} + \begin{cases} \min(f_1, f_2), & \text{лучший случай (л.с.)} \\ \max(f_1, f_2), & \text{худший случай (х.с.)} \end{cases}$$
 (1.8)

где $f_{\rm усл}$ — трудоемкость вычисления истинности условия, f_1 — трудоемкость блока, выполняемого при истинном условии, f_2 — при ложном условии.

Вывод

В этом разделе были рассмотрены алгоритмы вычисления произведения матриц, а также была введена модель вычислений трудоемкости алгоритма для дальнейшей оценки реализуемых программ.

2 Конструкторская часть

В данном разделе приводятся схемы алгоритмов, реализуемых в рамках лабораторной работы.

2.1 Схемы реализуемых алгоритмов

На рисунках 2.1-2.5 приведены схемы реализуемых алгоритмов.

Рисунок 2.1 — Схема стандартного алгоритма умножения матриц

Рисунок 2.2 — Алгоритм Винограда, часть 1: предварительный расчет произведений

Рисунок 2.3 — Алгоритм Винограда, часть 2: расчет результирующей матрицы

Рисунок 2.4 — Оптимизированный по варианту алгоритм Винограда, часть 1: предварительный расчет произведений

Рисунок 2.5 — Оптимизированный по варианту алгоритм Винограда, часть 2: расчет результирующей матрицы

К алгоритму Винограда применимы следующие оптимизации:

- Введение инкремента на значение, то есть использование a+=b вместо a=a+b. Выигрыш 1 условная единица трудоемкости;
- Двоичный сдвиг влево на 1 вместо умножения на 2. Выигрыш 1 усл. ед.;
- Альтернатива к предыдущему пункту: использование инкремента счетчика цикла на

2 в заголовке вместо того, чтобы на каждой итерации производить умножение на 2;

- Использование буфера для накопления значений MulH[i], MulV[i], c[i][j]. Выигрыш на каждой итерации 1;
- Вынесение первой итерации из самого вложенного цикла алгоритма, разбиение на случаи m == 1 и m > 1.

В настоящей работе применены первая оптимизация, вторая оптимизация для расчета матрицы c, третья оптимизация при расчете вспомогательных массивов и последняя оптимизация.

Вывод

В текущем разделе были рассмотрены схемы алгоритмов, рассматриваемых в лабораторной работе.

3 Технологическая часть

В данном разделе рассматриваются средства реализации, а также листинги алгоритмов нахождения расстояния Левенштейна и Дамерау-Левенштейна.

3.1 Средства реализации

Для написания лабораторной работы использовался язык программирования *Python* [3], предоставляющий необходимый инструментарий для постановки замерного эксперимента и построения графиков: библиотеки *utime* [4] и *matplotlib* [5].

Выбор библиотеки для микроконтроллеров utime обосновывается тем, что замеры времени выполнения алгоритмов в данной лабораторной работе производились на отладочной плате NUCLEO-F767ZI [6], на которой можно запускать программы на языке *MicroPython* [7].

3.2 Листинги алгоритмов

В листингах 3.1-3.4 приведены реализации алгоритмов Левенштейна и Дамерау-Левенштейна.

```
def lev_recursive(str1: str, str2: str) -> int:
      l1 = len(str1)
2
      12 = len(str2)
      if not 11 and not 12:
        return 0
5
      if (12 == 0) != (11 == 0):
6
        return 11 + 12
      flag = 0 if str1[11 - 1] == str2[12 - 1] else 1
9
10
      return min(lev_recursive(str1, str2[:12 - 1]) + 1,
                  lev_recursive(str1[:l1 - 1], str2) + 1,
12
                  lev_recursive(str1[:l1 - 1], str2[:l2 - 1]) + flag)
13
```

Листинг 3.1 — Рекурсивный алгоритм нахождения расстояния Левенштейна

```
def lev_recursive_cached_rec(str1: str, str2: str, matrix) -> int:
      l1 = len(str1)
2
      12 = len(str2)
      if not 11 and not 12:
         return 0
      if 12 and not 11:
         return 12
      if 11 and not 12:
         return 11
10
       str1_s = str1[:l1 - 1]
11
       str2_s = str2[:12 - 1]
12
      if matrix[11][12 - 1] == -1:
         matrix[11][12 - 1] = lev_recursive_cached_rec(str1, str2_s,
            matrix)
      if matrix[11 - 1][12] == -1:
15
         matrix[11 - 1][12] = lev_recursive_cached_rec(str1_s, str2,
            matrix)
      if matrix[11 - 1][12 - 1] == -1:
17
         matrix[11 - 1][12 - 1] = lev_recursive_cached_rec(str1_s, str2_s,
             matrix)
19
      flag = 0 if str1[l1 - 1] == str2[l2 - 1] else 1
20
21
      return min(matrix[11][12 - 1] + 1,
                  matrix[11 - 1][12] + 1,
23
                  matrix[11 - 1][12 - 1] + flag)
25
    def lev_recursive_cached(str1: str, str2: str) -> int:
26
      matrix = []
27
      for i in range(len(str1) + 1):
         matrix.append([-1] * (len(str2) + 1))
       return lev_recursive_cached_rec(str1, str2, matrix)
30
```

Листинг 3.2 — Рекурсивный алгоритм нахождения расстояния Левенштейна с меморизацией

```
matrix.append([0] * (12 + 1))
       for i in range((12 + 1)):
         matrix[0][i] = i
10
       for i in range(l1 + 1):
         matrix[i][0] = i
12
13
       for i in range(1, 11 + 1):
         for j in range (1, 12 + 1):
           matrix[i][j] = min(
16
           matrix[i - 1][j] + 1,
17
           matrix[i][j - 1] + 1,
           matrix[i - 1][j - 1] + (str1[i - 1] != str2[j - 1]))
19
       return matrix[11][12]
20
```

Листинг 3.3 — Матричный алгоритм нахождения расстояния Левенштейна

```
def dam_lev_dynamic(str1: str, str2: str) -> int:
      matrix = []
2
      for i in range(len(str1) + 1):
3
        matrix.append([0] * (len(str2) + 1))
5
      for i in range((len(str2) + 1)):
        matrix[0][i] = i
      for i in range(len(str1) + 1):
        matrix[i][0] = i
10
      for i in range(1, len(str1) + 1):
        for j in range(1, len(str2) + 1):
12
          matrix[i][j] = min(
13
          matrix[i - 1][j] + 1,
           matrix[i][j - 1] + 1,
15
           matrix[i - 1][j - 1] + (str1[i - 1] != str2[j - 1]))
16
           if i > 1 and j > 1 and str1[i - 1] == str2[j - 2] and str1[i - 1]
17
              2] == str2[j - 1]:
             matrix[i][j] = min(matrix[i][j], matrix[i - 2][j - 2] + 1)
18
19
      return matrix[len(str1)][len(str2)]
```

Листинг 3.4 — Матричный алгоритм нахождения расстояния Дамерау-Левенштейна

3.3 Функциональное тестирование

Для тестирования выделим следующие классы эквивалентности:

- 1) Обе строки пусты;
- 2) Одна из строк имеет нулевую длину;
- 3) Две непустные строки равны;
- 4) Две разные непустые строки, при расчете расстояния между которыми перестановки не играют роли;
- 5) Две разные непустые строки, при расчете расстояния между которыми используются перестановки.

В таблице 3.1 приведены функциональные тесты для программы, реализующей алгоритмы нахождения расстояния Левенштейна и Дамерау-Левенштейна. Все тесты пройдены программой успешно.

Таблица 3.1 — Функциональные тесты

No	Строка 1	Строка 2	Ожидаемый результат	
112			Левенштейн	Дамерау-Левенштейн
1	Пустая строка	Пустая строка	0	0
2	Пустая строка	"Привет, Мир!"	12	12
3	"Hello, world!"	Пустая строка	13	13
4	"Равные"	"Равные"	0	0
5	"Равные"	"Разные"	1	1
6	"Hello!"	"Greetings!"	8	8
7	"123456"	"654321"	6	5
8	"12"	"21"	2	1

3.4 Демонстрация работы программы

На рисунке 3.1 показан результат работы программы на функциональном тесте №5 из таблицы 3.1.

```
Режимы работы программы:
1. Ввод двух строк и расчет расстояния между ними;
2. Генерация случайных строк и проведение замерного эксперимента.
Режим работы: 1
Введите первую строку: Равные
Введите вторую строку: Разные
Расстояние Левенштейна (рекурсия): 1
Расстояние Левенштейна (рекурсия с меморизацией): 1
Кэш-матрица алгоритма:
/ ОРазные
    1 2 3 4 5 6
 1 0 1 2 3 4 5
 2 1 0 1 2 3 4
 3 2 1 1 2 3 4
н 4 3 2 2 1 2 3
ы 5 4 3 3 2 1 2
e 6 5 4 4 3 2 1
Расстояние Левенштейна (матричный): 1
Матрица алгоритма:
/ 0 Разны
 0 1 2 3 4 5 6
 1 0 1 2 3 4 5
 2 1 0 1 2 3 4
 3 2 1 1 2 3 4
  4 3 2 2 1 2 3
 5 4 3 3 2 1 2
 6 5 4 4 3 2 1
Расстояние Дамерау-Левенштейна (матричный): 1
Матрица алгоритма:
/ ОРазные
 0 1 2 3 4 5 6
    0 1 2 3 4 5
 2 1 0 1 2 3 4
в 3 2 1 1 2 3 4
н 4 3 2 2 1 2 3
ы 5 4 3 3 2 1 2
e 6 5 4 4 3 2 1
```

Рисунок 3.1 — Демонстрация работы программы на одном из функциональных тестов

Вывод

В этом разделе были рассмотрены средства реализации и листинги алгоритмов поиска редакционного расстояния.

4 Исследовательская часть

В данном разделе будет описано проведение замерного эксперимента, приведены его результаты, а также сформулированы выводы на их основе. <цель исследования, на какой машине делали (указать ЦПУ, ОЗУ, ОС), желательно написать, как исследовали и при каких условиях; что получили в результате (таблицы + графики)>

4.1 Постановка замерного эксперимента

Замерный эксперимент был поставлен на отладочной плате NUCLEO-F767ZI [6], позволяющей запускать программы на языке *MicroPython* [7].

Технические характеристики NUCLEO-F767ZI:

- Разрядность шины данных 32 бита;
- Процессор Arm Cortex-M7;
- Объем ОЗУ 512 Кбайт;

Замеры времени проводились с помощью функции *ticks_us* [8] библиотеки *utime* [4]. Данная функция позволяет получить процессорное время в микросекундах, отсчитываемое от некоторой референтной точки.

Для рекурсивного алгоритма Левенштейна замеры времени проводились на длинах строк от 1 до 4, так как максимальная глубина рекурсии при работе на отладочной плите ограничена. В силу ограничений по памяти на матричных алгоритмах были проведены замеры на длинах строк от 1 до 64, при этом для алгоритма Левенштейна с меморизацией максимально допустимая длина строк составила 20.

4.2 Результаты замерного эксперимента

В результате проведения эксперимента были получены данные, приведенные в таблице 4.1.

Таблица 4.1 — Результаты проведения замерного эксперимента на отладочной плате. Все числа приведены в миллисекундах

Длина	Рекурсия	Рекурсия с	матричный	матричный
строк	Левенштейн	кэшированием	Левенштейн	Дамерау-Левенштейн
1	2	2	2	2
2	6	5	3	4
3	27	10	5	6
4	139	16	7	9
5	-	32	10	13
6	-	46	13	17
7	-	65	17	22
8	-	88	21	28
10	-	142	31	41
12	-	229	43	58
14	-	320	58	77
16	-	428	75	102
18	-	622	92	125
20	-	819	112	157
22	-	-	134	189
24	-	-	160	229
26	-	-	188	267
28	-	-	216	313
30	-	-	246	352
32	-	-	281	408
34	-	-	319	456
36	-	-	356	512
38	-	-	397	570
40	-	-	438	643
42	-	-	486	707
44	-	-	531	783
46	-	-	579	848
48	-	-	633	928
50	-	-	693	1008
52	-	-	739	1108
54	-	-	807	1197
56	-	-	868	1277
58	-	-	936	1384
60	-	-	1000	1483
62	-	-	1072	1587
64	-	-	1145	1706

Визуализация и сравнение рекурсивных и нерекурсивных алгоритмов на полученных данных продемонстрировано на рисунках 4.1-4.2.

Рисунок 4.1 — Сравнение времени работы алгоритмов поиска редакционного расстояния

Рисунок 4.2 — Сравнение времени работы матричных алгоритмов поиска редакционного расстояния

Из полученных данных видно, что рекурсивный алгоритм вычисления расстояния Левенштейна является наиболее медленным в силу большого числа рекурсивных вызовов. Рекурсивный алгоритм с меморизацией работает быстрее реализации без запоминания, поскольку не происходит повторных вычислений, но все еще медленнее матричных алгоритмов из-за затрат, связанных с многократным вызовом функции (выделение кадра стека, копирование параметров и адреса возврата, выполенение передачи управления).

На небольших размерах строк матричные алгоритмы достаточно близки друг к другу по затратам времени, однако с ростом длин обрабатываемых строк растет и преимущество в эффективности алгоритма Левенштейна. Матричные алгоритмы Левенштейна и Дамерау-Левенштейна отличаются по временной эффективности в 1.2-1.5 раза на длинах строк до 64. Это наблюдение можно объяснить тем, что в алгоритме Дамерау-Левенштейна содержится дополнительная проверка на возможность транспозиции и в случае успешности проверки дополнительное вычисление минимума двух чисел.

4.3 Вывод

В результате проведения замерного эксперимента было выявлено, что матричная нерекурсивная реализация алгоритма Левенштейна является наиболее эффективной по времени выполнения по сравнению с другими рассмотреными реализациями.

При этом если размер оперативной памяти достаточно велик и допустимо удерживать большой объем памяти долгое время, лучше подойдет матричный алгоритм. Если же имеется достаточный объем памяти (по абсолютному значению больший, чем в предыдущем случае), но нет возможности удерживать максимальный объем занимаемой памяти длительное время, лучше подойдет рекурсивный алгоритм.

ЗАКЛЮЧЕНИЕ

В ходе выполнения лабораторной работы были изучены алгориты Левенштейна и Дамерау-Левенштейна, реализованы их рекурсивные (с кешированием и без) и нерекурсивные реализации, проведены замерные эксперименты, в которых было выявлено, что матричные реализации алгоритмов Левенштейна и Дамерау-Левенштейна являются наиболее эффективными по времени выполнения, однако занимают значительный объем памяти в течение всего времени выполнения программы. Матричные алгоритмы различаются между собой по временной эффективности в 1.2-1.5 раза в пользу алгоритма Левенштейна за счет меньшего числа производимых операций.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Расстояние Левенштейна [Электронный ресурс]. URL: https://www.codecamp.ru/blog/levenshtein-distance-in-python (дата обращения 25.09.24);
- 2. Расстояние Дамерау-Левенштайна [Электронный ресурс]. URL: https://programm.top/c-sharp/algorithm/damerau-levenshtein-distance (дата обращения 28.09.24);
- 3. Язык программирования Python [Электронный ресурс]. URL: https://www.python.org (дата обращения 28.09.24);
- 4. Библиотека utime [Электронный ресурс]. URL: https://docs.micropython.org/en/v1.15/library/utime.ht (дата обращения 28.09.24);
- 5. Библиотека Matplotlib [Электронный ресурс]. URL: https://matplotlib.org (дата обращения 28.09.24);
- 6. Отладочная плата NUCLEO-F767ZI [Электронный ресурс]. URL: https://www.st.com/en/evaluation-tools/nucleo-f767zi.html (дата обращения 28.09.24);
- 7. MicroPython [Электронный ресурс]. URL: https://micropython.org (дата обращения 28.09.24);
- 8. Описание функции ticks_us библиотеки utime [Электронный ресурс]. URL: https://docs.micropython.org/en/v1.15/library/utime.html#utime.ticks_us (дата обращения 28.09.24);