People's Democratic Republic of Algeria Ministery of Higher Education and Scientific Research Ferhat Abbas University of Setif 1

Faculty of Sciences

Computer Science Department

DISSERTATION

Presented in fulfillment of the requirements of obtaining the degree

Master 2 in Computer Science

Specialty: Data Engineering and Web Technologies

THEME

Detecting SQL injections using BERT

Presented by:

Supervised by:

ATHMANI RAMI

Dr. BENZINE MEHDI

BOUHEZILA NASSIM

Dedication

To our parents,

To our grandparents,

To our brothers and sisters,

To our entire family,

To all our friends.

Athmani Rami, Bouhezila Nassim.

Abstract

Deep learning techniques have improved various domains by using their ability to learn complex patterns from large datasets. In this dissertation, we employed the power of Deep Learning, specifically BERT language model (Bidirectional Encoder Representations from Transformers), to resolve the issue of SQL injection attacks on web applications.

The goal of our study is to develop a Deep Learning model using BERT that can accurately identify SQL injections.

Based on the results, our model demonstrated excellent performance; it also indicated that BERT outperforms the compared machine learning models across different evaluation metrics. These results affirm the effectiveness of BERT in detecting SQL injection attacks, underscoring its superior performance in our study.

Keywords: Deep learning, Deep learning techniques, Deep Learning model, BERT language model, SQL injection attacks, Web applications, Machine learning models, Evaluation metrics.

Résumé

Les techniques d'apprentissage profond ont amélioré divers domaines en utilisant leur capacité à apprendre des complexes patterns à partir de grands ensembles de données. Dans ce mémoire, nous avons utilisé la puissance de l'apprentissage profond, en particulier le modèle de langage BERT (Bidirectional Encoder Representations from Transformers), pour résolu le problème des attaques par injection SQL sur les applications web.

L'objectif de notre étude est de développer un modèle d'apprentissage profond en utilisant BERT qui identifier les injections SQL avec précision.

D'après les résultats, notre modèle a démontré d'excellentes performances ; ils ont également indiqués que BERT a surpassé les autres modèles d'apprentissage automatique comparés à travers différents métriques d'évaluation. Ces résultats confirment l'efficacité de BERT dans la détection des attaques par injection SQL, confirmer sa performance supérieure dans notre étude.

Mots-clés: Apprentissage profond, Techniques d'apprentissage profond, Modèle d'apprentissage profond, Modèle de langage BERT, Attaques par injection SQL, Applications web, Modèles d'apprentissage automatique, Métriques d'évaluation.

ملخص

حسنت تقنيات التعلم العميق مجالات مختلفة باستخدام قدرتها على تعلم الأنماط المعقدة من مجموعات البيانات الكبيرة. في هذه الأطروحة، استخدمنا قوة التعلم العميق، وتحديداً نموذج اللغة "Bert" (Representations from Transformers) ، لحل مشكلة هجمات حقن SQL على تطبيقات الويب.

الهدف من در استنا هو تطوير نموذج التعلم العميق باستخدام BERT الذي يمكنه تحديد هجمات حقن SQL بدقة.

بناءً على النتائج المتحصل عليها، أظهر نموذجنا أداءً ممتازًا؛ كما أشار إلى أن BERT يتفوق في الأداء على نماذج التعلم الآلي التي تم المقارنة بها عبر مقاييس التقييم المختلفة. تؤكد هذه النتائج فعالية BERT في اكتشاف هجمات حقن SQL ، مما يؤكد أدائها المتفوق في در استنا.

الكلمات الدالة: التعلم العميق، تقنيات التعلم العميق، نموذج اللغة BERT، هجمات حقن SQL، تطبيقات الويب، نموذج التعلم العميق، نماذج التعلم الألى، مقاييس التقييم.

Table of contents

General introduction	12
Chapter 1 SQL injection	14
1.1 Introduction	14
1.2 Understanding how web applications work	15
1.3 How SQL injections work	16
1.3.1 Definition	16
1.4 Techniques of SQL injections	18
1.4.1 Tautologies	18
1.4.2 Error-based SQL injection	18
1.4.2.1 Mysql database errors	19
1.4.3 Blind SQL Injection	23
1.4.3.1 Content-based	23
1.4.3.2 Time-based	24
1.4.4 Union-based SQL injections	25
1.5 SQL Injection defense techniques	26
1.5.1 Escaping	27
1.5.2 Input validation	27
1.5.3 Parameterized queries	29
1.5.4 Web application firewalls WAF	30

1.5	5.5 I	Detection using machine learning	30
1.6	Conc	lusion	31
Chapt	ter 2 1	Deep Learning	32
2.1	Introd	luction	32
2.2	Mach	ine learning	32
2.2	2.1	Types of machine learning	32
	2.2.1.1	Supervised learning	33
	2.2.1.2	Unsupervised learning	33
:	2.2.1.3	Reinforcement	33
2.2	2.2 N	Machine learning algorithms	34
	2.2.2.1	Linear Regression.	34
:	2.2.2.2	Logistic Regression	35
	2.2.2.3	Support vector machines	35
:	2.2.2.4	K-Means	36
2.2	2.3 N	Machine learning applications	37
2.3	Deep	learning	37
2.3	3.1 A	Artificial neural networks	38
2.3	3.2 A	Activation functions	40
2.3	3.3 I	Deep learning architectures	42
	2.3.3.1	Recurrent Neural Networks	43
:	2.3.3.2	Long Short-Term Memory Networks	44
,	2333	Gated Recurrent Units	45

2.3	3.4 Transformers	46
2.3.4	Deep learning applications	49
2.4 Conclu	ision	49
Chapter (3 Conception and Implementation	50
3.1 Intr	roduction	50
3.2 Ge	neral conception of the solution	50
3.3 Ch	osen model: BERT	51
3.3.1	BERT architecture	52
3.3.2	BERT for Text Classification	53
3.3.3	Why BERT was chosen	54
3.3.4	Fine-tuning BERT for SQL Injection Detection:	54
3.4 Pre	esentation of development tools	54
3.4.1	Programming language	54
3.4.2	Libraries	55
3.4.3	Development environment	56
3.5 Da	taset	57
3.6 Co	de and Implementation	59
3.6.1	Split and Preprocess data for the BERT model	59
3.6.2	Build the BERT model	60
3.6.3	Fine-tuning the BERT model	60
3.6.4	Make predictions with the BERT model	61
3.7 Ch	oice of hyperparameters	62

3.	7.1	Preprocessing hyperparameters	62
3.′	7.2	Data splitting hyperparameters	62
3.	7.3	Model training hyperparameters	62
3.8	Cor	nclusion	63
Chapt	ter 4	Test and Evaluation	.64
4.1	Intr	oduction	64
4.2	Cor	nfusion matrix	64
4.3	Eva	aluation metrics for assessing model performance	65
4.3	3.1	Accuracy	65
4.3	3.2	Precision	65
4.3	3.3	Recall	66
4.3	3.4	F1 Score	66
4.4	Mo	del performance analysis	66
4.5	Eva	duate the presence of overfitting	68
4.6	Cor	mparative analysis with other approaches	69
4.7	Mo	del Performance evaluation on new Data	70
4.8	Cor	nclusion	71
Gener	ral (Conclusion	.72
Dofor	onoc		71

List of figures

Figure 1.1 Three-tier architecture.	15
Figure 1.1.2 Example of a SQL injection attack [3].	17
Figure 1.3 How Information flows during an SQL injection error [4].	18
Figure 1.4 SQL injection vulnerability in PHP code.	20
Figure 1.5 handle query error with mysqli library in PHP	21
Figure 1.6 Character-escaping in PHP code example	27
Figure 1.7 Input validation of a String example in PHP code.	28
Figure 1.8 Input validation of an integer example in PHP code	28
Figure 1.9 Parameterized queries using PDO in PHP code example	29
Figure 2.1 Graphical representation of linear regression.	34
Figure 2.2 Graphical representation of logistic regression.	35
Figure 2.3 Graphical representation of Support vector machines.	36
Figure 2.4 Graphical representation of k means.	36
Figure 2.5 Typical biological-inspired neuron.	38
Figure 2.6 Schematic representation of a neural network.	39
Figure 2.7 Sigmoid activation function	41
Figure 2.8 ReLU activation function.	41
Figure 2.9 Tanh activation function.	42
Figure 2.10 Diagram of simple recurrent network.	43
Figure 2.11 Long Short-term Memory Neural Network.	44

Figure 2.12 Gated Recurrent Unit.	45
Figure 2.13 Architecture of transformers [19].	46
Figure 3.1 Sql injection Detection Tool conception and architecture	51
Figure 3.2 BERT model size.	52
Figure 3.3 BERT model architecture.	53
Figure 3.4 Dataset query classes distribution.	58
Figure 3.5 Split data into training and testing sets and preprocess data for BERT model.	. 59
Figure 3.6 Build BERT model Python code.	60
Figure 3.7 Fine-tuning BERT model Python code.	60
Figure 3.8 Make predictions with the trained model.	61
Figure 4.1 Training and validation loss	68

List of tables

Table 1.1 Results of a SELECT query without UNION.	25
Table 1.2 Result of user query after a UNION based SQL injection	26
Table 4.1 Confusion Matrix.	64
Table 4.2 Confusion Matrix (Classification Results)	67
Table 4.3 Comparing the model performances using various metrics (%)	69
Table 4.4 Confusion Matrix (Test Classification Results)	70

General Introduction

The rapid growth of web applications has revolutionized the way we interact and conduct various activities online. From e-commerce platforms and social networks to financial systems and government portals, web applications have become an integral part of our daily lives. However, with greater dependence on online applications comes an increased danger of cyber attacks with SQL injections being one of the most common and dangerous vulnerabilities.

To mitigate the growing threat of SQL injections, traditional approaches such as input validation and query parameterization have been widely adopted. While these methods provide some level of protection, they often struggle to keep pace with the evolving attack techniques employed by adversaries. Thus, there is a pressing need for more advanced and proactive defense mechanisms to detect and prevent SQL injection attacks.

In recent years, deep learning approaches have emerged as a promising solution in various domains, leveraging their ability to automatically learn complex patterns from large datasets. One such powerful deep learning model is BERT (Bidirectional Encoder Representations from Transformers), originally developed for natural language processing tasks. BERT has proven to be highly effective in capturing the semantic and contextual understanding of text, leading to remarkable performance in tasks such as text classification.

In this research, we propose using the power of BERT-based deep learning models to address the critical issue of SQL injection attacks. Our objective is to develop a reliable and efficient detection model capable of accurately identifying SQL injection attempts in real-time. By using BERT's contextual understanding and semantic representation capabilities, we aim to create a model that can effectively distinguish between normal and SQL malicious queries.

Our thesis is organized as follows:

In Chapter 1, we explore SQL injection attacks, their definitions, types and their detecting techniques, then we head on machine learning and Deep Learning, we present popular

algorithmic approaches in machine learning and explore deep learning architectures in Chapter 2. Chapter 3 is dedicated to the general conception of our work and the materials used, including the dataset and the type of deep learning architecture employed. Furthermore, we cover the preprocessing steps taken to ensure the accuracy and efficiency of our system. In Chapter 4, we discuss the test and evaluation of our model for detecting SQL injection attacks. We use a variety of evaluation metrics, including accuracy, precision, recall, and F1 score. We also compare the performance of our model to other machine learning algorithms and related works.