ABSTRACT

There is provided a porous hollow fiber of vinylidene fluoride resin which has a water permeation rate that is large per fiber and little dependent on the length, has a large treatment capacity per volume of a filtering module, and is therefore suitable as a microfilter element. That is, a porous hollow fiber, comprising a vinylidene fluoride resin having a weight-average molecular weight of at least 3×10^5 , having a water permeation rate F (m^3/m^2 ·day) measured at a pressure difference of 100 kPa and at a water temperature of 25°C in a range of test length L=0.2-0.8(m) and expressed in a linear relationship with the test length L of: F=C·L+F₀ (formula 1) and satisfying requirements (a)-(d) shown below: (a) a average slope C (/day) of: $-20 \le C \le 0$, (b) an intercept (basic permeability) F₀ (m^3/m^2 ·day) of: F₀ ≥ 30 , (c) a relation between F₀ (m^3/m^2 ·day) and an average pore diameter P (μ m) according to half-dry method of F₀/P ≥ 300 , and (d) an outer diameter of at most 3 mm.