From Recognition to Cognition: Visual Commonsense Reasoning

Rowan Zellers Yonatan Bisk Ali Farhadi Yejin Choi Paul G. Allen School of Computer Science & Engineering, University of Washington Allen Institute for Artificial Intelligence

Noah Lee (noahlee357@korea.ac.kr) Donghui Im (ehdgnl101@korea.ac.kr) Data Intelligence Lab, Korea University 2021 01. 27 How can we further cognition-level reasoning towards complete visual understanding?

02 Motivation

Recognition to Cognition

Achieving beyond recognition level...

- 1) Proposes a new task & a large-scale multiple choice QA dataset, VCR.
- 2) Presents **Adversarial Matching**, a new algorithm for robust multiplechoice dataset creation.
- 3) Proposes R2C, that aims to mimic the layered inference from recognition to cognition.

04 Task

Task Overview

- Holistically + Cognitive understanding
- Staged answering & justification
 - Q (query) -> A (response)
 - QA (query_concat) -> R (response)

04 Task: VCR

Task Overview

Types of Inferences

Dataset/Code

[Dataset] https://visualcommonsense.com/

[Code] https://github.com/rowanz/r2c/

- 290k multiple choice QA problems (pairs of Q,A,R)
- 110k unique movie scenes

Collection

- 1. Shot Detection Pipeline
- 2. Interestingness Filter
- 3. Crowdsourcing

Collection

- 1. Shot Detection Pipeline
- 2. Interestingness Filter
- 3. Crowdsourcing

- Iterate through video clip (1 fps)
- Register shot boundary w/ 30 pixel mean difference
- Apply Mask-RCNN (threshold 0.7) -> 3 confidence tags

Collection

- 1. Shot Detection Pipeline
- 2. Interestingness Filter
- 3. Crowdsourcing

- At least two people
- Additional filtering process (uninteresting or blurry)
 - 1) Logistic regression (Interesting vs Uninteresting)
 - 2) ResNet 50 (Interesting vs Moderate vs Boring)

Collection: Crowdsourcing

- 1. Shot Detection Pipeline
- 2. Interestingness Filter
- 3. Crowdsourcing

- Ask 1~3 questions, answers, & rationales to each image
- Produce unique answer and rationale

Adversarial Matching

Alleviating "Annotation Artifacts"

Adversarial Matching Details

Aligning Detection

Rematch detection tags

Relevance Model

Training relevance btw R & Q

Semantic Categories

Utilizing "buckets"

Similarity Model

Avoiding conflation

06 Model

R2C overview

Input: Query, Response

Output: f(q, r)

06 Model

Feature embedding

Word -> representation by Bert

Object -> Feature embedding by CNN

Grounding

Learn joint image-language representation

Bidirectional LSTM

Parameter share

Output: r for response, q for query

Contextualization

By attention mechanism

Attended query : \hat{q}_i

Attended object : \hat{o}_i

Reasoning

Input: r_i , \hat{q}_i , \hat{o}_i

Output : Probability

07 Settings

Image feature embedding: ResNet50

Projection of image feature: 2176 to 512

Language feature embedding: BERT

LSTM hidden size: 256

Recurrent dropout = 0.3

Optimizer: Adam

Learning rate: 2*10^-4 to 10^-4

Batch size: 96

Epochs: 20

Text-only Baselines

1)BERT

2)BERT(response only)

3)ESIM + ELMo

4)LSTM + ELMo

VQA Baselines

1)RevisitedVQA

2)Bottom-UP and Top-down attention

3) Multimodal Low-Rank Bilinear Attention (MLB)

4) Multimodal Tucker Fusion (MUTAN)

09 Experiment

Main Tasks

	$Q \rightarrow A$		$QA \rightarrow R$		$Q \rightarrow AR$	
Model	Val	Test	Val	Test	Val	Test
Chance	25.0	25.0	25.0	25.0	6.2	6.2
<u>></u> BERT	53.8	53.9	64.1	64.5	34.8	35.0
BERT (response only)	27.6	27.7	26.3	26.2	7.6	7.3
ESIM+ELMo	45.8	45.9	55.0	55.1	25.3	25.6
⊢ LSTM+ELMo	28.1	28.3	28.7	28.5	8.3	8.4
RevisitedVQA [38]	39.4	40.5	34.0	33.7	13.5	13.8
★ BottomUpTopDown[4]	42.8	44.1	25.1	25.1	10.7	11.0
MLB [42]	45.5	46.2	36.1	36.8	17.0	17.2
MUTAN [6]	44.4	45.5	32.0	32.2	14.6	14.6
R2C	63.8	65.1	67.2	67.3	43.1	44.0
Human		91.0		93.0		85.0

Ablation

Model	$Q \to A$	$QA \rightarrow R$	$Q \rightarrow AR$
R2C	63.8	67.2	43.1
No query	48.3	43.5	21.5
No reasoning module	63.6	65.7	42.2
No vision representation	53.1	63.2	33.8
GloVe representations	46.4	38.3	18.3

Strong textual representations are crucial to VCR

- 1) Proposes a new task & a large-scale multiple choice QA dataset, VCR
- 2) Presents **Adversarial Matching**, a new algorithm for robust multiple-choice dataset creation.
- 3) Proposes R2C, that aims to mimic the layered inference from recognition to cognition

Q&A