MIT 3.00 Fall 2002 © W.C Carter 154

Lecture 22	

Mathematical Relations and Changing Variables

Last T	<u>ime</u>
Reac	tion Equilibria
-	
_	
Exact	t Differentials
Leger	ndre Transformations
-	
Lecha	atelier's Principle
-	

Maxwell's Relations

$$df = \left(\frac{\partial f}{\partial x}\right)_y dx + \left(\frac{\partial f}{\partial y}\right)_x dy \tag{22-1}$$

A property of a perfect differential is:

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} \tag{22-2}$$

If Equation 22-2 is applied to dU = TdS - PdV:

$$\frac{\partial^2 U}{\partial V \partial S} = -\left(\frac{\partial P}{\partial S}\right)_V \qquad \frac{\partial^2 U}{\partial S \partial V} = \left(\frac{\partial T}{\partial V}\right)_S \tag{22-3}$$

This can be summarized in the following tables (you should be able to derive these tables on your own):

Internal Energy U				
Second Law		Independent	Conjugate	Maxwell
Formulation		Variables	Variables	Relations
dU =	TdS	S	$T = \left(\frac{\partial U}{\partial S}\right)_{V, N_i}$	$\left(\frac{\partial T}{\partial V}\right)_{S,N_i} = -\left(\frac{\partial P}{\partial S}\right)_{V,N_i}$
	-PdV	V	$-P = \left(\frac{\partial U}{\partial V}\right)_{S,N_i}$	$\left(\frac{\partial \mu_i}{\partial V}\right)_{S,N_i} = -\left(\frac{\partial P}{\partial N_i}\right)_{S,V,N_i \neq N_i}$
	$+\sum_{i=1}^{C}\mu_{i}dN_{i}$	N_i	$\mu_i = \left(\frac{\partial U}{\partial N_i}\right)_{S,V,N_j \neq N_i}$	$\left(\frac{\partial \mu_i}{\partial V}\right)_{S,N_i} = -\left(\frac{\partial P}{\partial N_i}\right)_{S,V,N_j \neq N_i}$

MIT 3.00 Fall 2002 © W.C Carter 156

Enthalpy H $H = U + PV \qquad H = G + TS \qquad H = F + PV - TS$				
Cocond Low	H = U + F			
Second Law		Independent	Conjugate	Maxwell
Formulation		Variables	Variables	Relations
dH =	TdS	S	$T = \left(\frac{\partial H}{\partial S}\right)_{V,N_i}$	$\left(\frac{\partial T}{\partial P}\right)_{S,N_i} = \left(\frac{\partial V}{\partial S}\right)_{P,N_i}$
	+VdP	P	$V = \left(\frac{\partial H}{\partial P}\right)_{S,N_i}$	$\left(\frac{\partial \mu_i}{\partial P}\right)_{S,N_i} = \left(\frac{\partial V}{\partial N_i}\right)_{S,P,N_j \neq N_i}$
	$+ \sum_{i=1}^{C} \mu_i dN_i$	N_i	$\mu_i = \left(\frac{\partial H}{\partial N_i}\right)_{S,P,N_j \neq N_i}$	$\left(\frac{\partial \mu_i}{\partial S}\right)_{P,N_i} = \left(\frac{\partial T}{\partial N_i}\right)_{S,P,N_j \neq N_i}$

Helmholtz Free Energy F $F = U - TS \qquad F = H - PV - TS \qquad F = G + PV$				
Second Law		Independent	Conjugate	Maxwell
Formulation		Variables	Variables	Relations
dF =	-SdT	T	$-S = \left(\frac{\partial F}{\partial T}\right)_{V,N_i}$	$\left(\frac{\partial S}{\partial V}\right)_{T,N_i} = \left(\frac{\partial P}{\partial T}\right)_{V,N_i}$
	-PdV	V	$-P = \left(\frac{\partial F}{\partial V}\right)_{T,N_i}$	$\left(\frac{\partial \mu_i}{\partial V}\right)_{T,N_i} = -\left(\frac{\partial P}{\partial N_i}\right)_{T,V,N_j \neq N_i}$
	$+\sum_{i=1}^{C}\mu_{i}dN_{i}$	N_i	$\mu_i = \left(\frac{\partial F}{\partial N_i}\right)_{T,V,N_j \neq N_i}$	$\left(\frac{\partial \mu_i}{\partial T}\right)_{V,N_i} = -\left(\frac{\partial S}{\partial N_i}\right)_{T,V,N_j \neq N_i}$

Gibbs Free Energy G				
G = U - TS + PV $G = F + PV$ $G = H - TS$				=H-TS
Second Law		Independent	Conjugate	Maxwell
Formulation		Variables	Variables	Relations
dG =	-SdT	T	$-S = \left(\frac{\partial G}{\partial T}\right)_{P,N_i}$	$\left(\frac{\partial S}{\partial P}\right)_{T,N_i} = -\left(\frac{\partial V}{\partial T}\right)_{P,N_i}$
	+VdP	P	$V = \left(\frac{\partial G}{\partial V}\right)_{T,N_i}$	$\left(\frac{\partial \mu_i}{\partial T}\right)_{P,N_i} = -\left(\frac{\partial S}{\partial N_i}\right)_{T,P,N_j \neq N_i}$
	$+\sum_{i=1}^{C} \mu_i dN_i$	N_i	$\mu_i = \left(\frac{\partial G}{\partial N_i}\right)_{T,P,N_j \neq N_i}$	$\left(\frac{\partial \mu_i}{\partial P}\right)_{T,N_i} = \left(\frac{\partial V}{\partial N_i}\right)_{T,P,N_j \neq N_i}$

Change of Variable

Sometimes it is more useful to be able to measure some quantity, such as

$$C_P = T \left(\frac{\partial S}{\partial T}\right)_P = f_1(T, P)$$
 (22-4)

or

$$C_V = T \left(\frac{\partial S}{\partial T}\right)_V = f_2(T, V)$$
 (22-5)

under different conditions than those indicated by their natural variables.

It would be easier to measure C_V at constant P, T, so a change of variable would be useful.

To change variables, a useful scheme using Jacobians can be employed:²³

$$\frac{\partial(u,v)}{\partial(x,y)} \equiv \det \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix}
= \frac{\partial u}{\partial x} \frac{\partial v}{\partial y} - \frac{\partial u}{\partial y} \frac{\partial v}{\partial x}
= \left(\frac{\partial u}{\partial x}\right)_{y} \left(\frac{\partial v}{\partial y}\right)_{x} - \left(\frac{\partial u}{\partial y}\right)_{x} \left(\frac{\partial v}{\partial x}\right)_{y}
= \frac{\partial u(x,y)}{\partial x} \frac{\partial v(x,y)}{\partial y} - \frac{\partial u(x,y)}{\partial y} \frac{\partial v(x,y)}{\partial x}$$
(22-6)

$$\frac{\partial(u,v)}{\partial(x,y)} = -\frac{\partial(v,u)}{\partial(x,y)} = \frac{\partial(v,u)}{\partial(y,x)}$$

$$\frac{\partial(u,v)}{\partial(x,v)} = \left(\frac{\partial u}{\partial x}\right)_{v}$$

$$\frac{\partial(u,v)}{\partial(x,y)} = \frac{\partial(u,v)}{\partial(r,s)} \frac{\partial(r,s)}{\partial(x,y)}$$
(22-7)

To see where the last rule comes from:

For example,

$$C_V = T \left(\frac{\partial S}{\partial T} \right)_V = T \frac{\partial (S, V)}{\partial (T, V)}$$
 (22-8)

²³An alternative scheme is presented in Denbigh, Sec. 2.10(c)

Using the Maxwell relation: $\left(\frac{\partial S}{\partial P}\right)_T = -\left(\frac{\partial V}{\partial T}\right)_P$:	
	r (AI/) - 10

MIT 3.00 Fall 2002

© W.C Carter

$$C_P - C_V = -T \frac{\left[\left(\frac{\partial V}{\partial T} \right)_P \right]^2}{\left(\frac{\partial V}{\partial P} \right)_T}$$
 (22-9)

158