EHB 315- Sayısal İşaret İşleme – Ödev 2

 $\mathbf{1}.x_1[n] = 2\delta[n] + 2\delta[n-1] - 2\delta[n-2]$ ve $x_2[n] = 2\delta[n] - \delta[n-1] + 3\delta[n-2] + \delta[n-3]$ ise aşağıdaki işaretleri çiziniz.

a.
$$(x_1[n-2])_4$$

d.
$$y_1[n] = x_1[n] * x_2[n]$$
 (Doğrusal Konvolüsyon)

b.
$$(x_1[n-2])_5$$

e.
$$y_2[n] = x_1[n] \otimes x_2[n]$$
 (4 Noktalı Dairesel konvolüsyon)

c.
$$(x_1[n+3])_5$$

2. $x[n] = 2.5\delta[n] + \delta[n-2] - 2\delta[n-4]$ ve $h[n] = 4\delta[n] + 3\delta[n-1] - 2\delta[n-2]$ işaretlerinin sırasıyla 5-noktalı ve 7-noktalı dairesel konvolüsyonlarını bulunuz. Ayrıca bu işaretlerin AFD'leri X[k] ve H[k]'dan yararlanarak çıkış işaretini bulunuz ve çıkış işaretlerini bu iki yöntem için karşılaştırınız.

3.MATLAB

- **a.** MATLAB programı kullanarak $x[n] = \{3, -2, 4, -1, 5\}$ işaretini tanımlayınız.
- **b.** MATLAB programı kullanarak $h[n] = \{3, 2, -2, 1\}$ işaretini tanımlayınız.
- **c.** N=7 olarak tanımlanmak üzere $W_7=e^{-j\frac{2\pi}{N}}$ işaretini çizdiriniz.
- **d.** $X_k = \sum_{n=0}^{N-1} x[n] W_7^{nk}$ olarak tanımlanıyorsa, N = 7 değerden oluşan "X_k" işaretini MATLAB programına hesaplatınız. (for döngüsü veya matris işlemleri kullanabilirsiniz. FFT komutu kullanamazsınız.) "figure" ve "subplot" komutları kullanarak alt alta iki şekilde X_k işaretinin öncelikle genlik değerini sonra faz değerlerini çizdiriniz. (ipucu: "abs(X k)" ve "phase(X k)")
- e. "d" şıkkına benzer şekilde N=7 değerden oluşan "H_k" işaretini Matlab programına hesaplatınız. (for döngüsü veya matris işlemleri kullanabilirsiniz. Fft komutu kullanamazsınız.) "figure" ve "subplot" komutları kullanarak alt alta iki şekilde H_k işaretinin öncelikle genlik değerini sonra faz değerlerini çizdiriniz. (ipucu: "abs(H_k)" ve "phase(H_k)")
- f. Nokta çarpım işlemi ile " $Y_k = X_k$.* H_k " (eleman eleman çarpım), 7 uzunluklu Y_k değişkenini bulunuz. "figure" ve "subplot" komutları kullanarak alt alta iki şekilde Y_k işaretinin öncelikle genlik değerini sonra faz değerlerini çizdiriniz. (ipucu: "abs(Y_k)" ve "phase(Y_k)")
- **g.** $y[n] = \frac{1}{N} \sum_{k=0}^{N-1} Y_k W_7^{nk}$ formülünü kullanarak y[n] işaretini geri elde ediniz. Command Window'da yazdırınız.