Reti Logiche

Oudeys

September 25, 2024

Contents

Co	onter	nts	1		
1	Introduzione				
2	Circ	cuiti combinatori	2		
	2.1	Porte logiche	2		
		2.1.1 Operatori base	2		
		2.1.2 Operatori completi	3		
	2.2	Algebra di Boole	3		
		2.2.1 Assiomi dell'algebra booleana	3		
		2.2.2 Teoremi dell'algebra booleana	4		
		2.2.3 Teorema di espansione di Shannon	5		
	2.3	Sintesi a due livelli	6		
	2.4	Circuiti combinatori di base	7		
	2.5	Diagrammi temporali	7		
3	Circ	cuiti aritmetici	7		
4	Circ	cuiti sequenziali	7		

1 Introduzione

Definizione 1.1 (Circuito)

Un circuito è un insieme di componenti elettronici interconnessi che operano insieme per eseguire una determinata funzione. I circuiti possono essere combinatori, dove l'uscita dipende solo dagli ingressi correnti, o sequenziali, dove l'uscita dipende anche dagli stati precedenti (memoria).

- Circuito combinatorio: L'uscita è una funzione puramente degli ingressi presenti.
- Circuito sequenziale: L'uscita dipende sia dagli ingressi presenti che dalla storia degli ingressi precedenti, tramite l'uso di elementi di memoria.

2 CIRCUITI COMBINATORI

2.1 Porte logiche

2.1.1 Operatori base

AND:

x	y	$x \wedge y$
0	0	0
0	1	0
1	0	0
1	1	1

OR:

x	y	$x \vee y$
0	0	0
0	1	1
1	0	1
1	1	1

NOT:

x	$\neg x$
0	1
1	0

2.1.2 Operatori completi

NAND:

x	y	$\neg(x \land y)$
0	0	1
0	1	1
1	0	1
1	1	0

NOR:

x	y	$\neg(x\vee y)$
0	0	1
0	1	0
1	0	0
1	1	0

XOR:

x	y	$x \oplus y$
0	0	0
0	1	1
1	0	1
1	1	0

XNOR:

x	y	$\neg(x \oplus y)$
0	0	1
0	1	0
1	0	0
1	1	1

2.2 Algebra di Boole

2.2.1 Assiomi dell'algebra booleana

Definizione 2.1 (Identità)

$$x + 0 = x$$

$$y \bullet 1 = y$$

Definizione 2.2 (Commutativa)

$$x + y = y + x$$

$$x \bullet y = y \bullet x$$

Definizione 2.3 (Distributiva)

$$x \bullet (y+z) = (x \bullet y) + (x \bullet z)$$

$$x + (y \bullet z) = (x + y) \bullet (x + z)$$

Definizione 2.4 (Complementazione)

$$x + x' = 1$$

$$x \bullet x' = 0$$

2.2.2 Teoremi dell'algebra booleana

Proposizione 2.5 (Proprietà associativa)

$$x + (y+z) = (x+y) + z$$

$$x(yz) = (xy)z$$

Proposizione 2.6 (Legge dell'elemento nullo)

$$x + 1 = 1$$

$$x \bullet 0 = 0$$

Proposizione 2.7 (Involuzione)

$$(x')' = x$$

Proposizione 2.8 (Indepotenza)

$$x + x = x$$

$$x \bullet x = x$$

Proposizione 2.9 (Assorbimento)

$$x + xy = x$$

$$x(x+y) = x$$

Proposizione 2.10 (Semplificazione)

$$x + x'y = x + y$$

$$x(x'+y) = xy$$

Proposizione 2.11 (Adiacenza)

$$xy + xy' = x$$

$$(x+y)(x+y') = x$$

Teorema 2.12 (Leggi di De Morgan)

$$(x+y)' = x' \bullet y'$$

$$(x' + y') = x \bullet y$$

$$(x \bullet y)' = x' + y'$$

$$(x' \bullet y')' = x + y$$

2.2.3 Teorema di espansione di Shannon

Teorema 2.13 (Teorema di espansione di Shannon)

$$f(x_1,\ldots,x_n) = x_1 \cdot f(1,x_2,\ldots,x_n) + x_1' \cdot f(0,x_2,\ldots,x_n)$$

Forme canoniche:

Definizione 2.14 (Somma di prodotti)

$$f(a,b,c) = a'b'c' + a'b'c + a'bc' + ab'c + abc$$

Definizione 2.15 (Prodotto di somme)

$$f(a, b, c) = (a + b' + c') \bullet (a' + b + c) \bullet (a' + b' + c)$$

2.3 Sintesi a due livelli

Definizione 2.16 (Livello)

Massimo numero di porte logihe attraversate dall'ingresso all'uscita.

Definizione 2.17 (Letterale)

Variabile in forma affermata o in forma negata.

Definizione 2.18 (Minterm - Prodotto fondamentale)

Prodotto in cui ogni variabile compare una volta come letterale.

Definizione 2.19 (Maxterm - Somma fondamentale)

Somma in cui ogni variabile compare una volta come letterale.

Definizione 2.20 (Implicante)

Siano f e g funzioni di n variabili.

 $g \ \dot{e} \ implicante \ di \ f \Leftrightarrow per \ qualunque \ assegnamento \ (x_1, \ldots, x_n) \ alle \ variabili:$

$$q(x_1,\ldots,x_n)=1 \Rightarrow f(x_1,\ldots,x_n)=1$$

Quando g è implicante di f, possiamo affermare:

- (i) Se g vale 1 in qualche punto, allora f vale 1.
- (ii) Se q vale 0, allora f può essere indifferentemente 0 o 1.

Definizione 2.21 (Term)

Gruppo di 1 di f che non sia un minterm.

Definizione 2.22 (Multiplexer)

Un multiplexer (o MUX) è un circuito combinatorio che seleziona una delle molteplici linee di ingresso e la indirizza a un'unica uscita. Il multiplexer utilizza n linee di selezione per scegliere quale tra 2^n ingressi indirizzare all'uscita.

 $Y = D_i$ dove i è determinato dalle linee di selezione.

Il multiplexer è spesso utilizzato per ridurre la complessità di un sistema, consentendo il controllo di più segnali con un numero ridotto di risorse di controllo.

Definizione 2.23 (Mappa di Karnaugh)

La Mappa di Karnaugh (K-map) è una rappresentazione grafica utilizzata per semplificare funzioni logiche booleane. Organizza i termini minterm di una funzione in una griglia, dove le posizioni adiacenti differiscono per un solo bit, permettendo di visualizzare chiaramente le ridondanze e le semplificazioni. Ogni cella della mappa corrisponde a un minterm, e la semplificazione avviene raggruppando celle adiacenti. La Mappa di Karnaugh facilita la riduzione di espressioni logiche per minimizzare il numero di porte logiche necessarie in un circuito digitale.

Definizione 2.24 (Implicanti primi)

Un implicante è primo quando non è contenuto in un altro implicante.

- 1. Ridondanti: uno degli implicanti non serve perché gli altri da soli già coprono la funzione.
- 2. Essenziali: coprono un 1 non coperto da nessun altro implicante primo, devono necessariamente comparire in qualunque copertura minima.

Definizione 2.25 (Semplificazione) 1. Trovare il più piccolo insieme di implicanti primi che ricoprano tutta la funzione.

- 2. Scrivere la tabella della verità in forma di mappa di Karnaugh.
- 3. Partendo dai minterm ci si espande per trovare gli implicanti primi.
- 4. Si scrive l'espressione degli implicanti guardando le variabili che sono costanti.
- 5. Si sceglie un insieme di implicanti non ridondante.

Definizione 2.26 (Priority encoder)

- 2.4 Circuiti combinatori di base
- 2.5 Diagrammi temporali
- 3 Circuiti aritmetici
- 4 CIRCUITI SEQUENZIALI