CAnD3

Fellow name: Nicole Antunes Rezende

Assignment: Research Replicability and Workflow Management (RRWM)

Research question:

How does the region of origin influence the educational attainment of immigrants, controlling for sex, province of residence, and age at immigration?

COMPLETE CODE

1. Open the dataset using the package readr

install.packages('readr')
library (readr)

read_csv('pumf-98M0001-E-2016-individuals_F1.csv')

censusdata <- read_csv('pumf-98M0001-E-2016-individuals_F1.csv')

2. Select only the variables of our study (PPSORT, HDGREE, AGEIMM, POB, PR, Sex) using the package dplyr

install.packages("dplyr")
library(dplyr)

selected_censusdata <- censusdata |> select(PPSORT, HDGREE, AGEIMM, POB, PR, Sex)

```
# (Optional) have an idea of the variables using the function glimpse of the
package tibble
install.packages('tibble')
library(tibble)
glimpse (selected censusdata)
#3. Recode Sex: Female from 1 to 0 and Male from 2 to 1.
      # 3.1 Transform the variable Sex into a categorical variable using the
function factor
selected censusdata$Sex <- ifelse(selected censusdata$Sex == 1, 0, 1)
selected censusdata$Sex <- factor (selected censusdata$Sex, levels = c(0,1),
labels = c('Female', 'Male'))
# 4. Recode POB, creating a new variable 'origin region', knowing that:
1 = "Born in Canada",
2 = "Born in USA",
3 to 6 = "Born in Latin America",
7 to 15 = "Born in Europe",
16 to 18 = "Born in Africa",
19 to 31 = "Born in Asia",
32= "Born in Oceania and others",
88= "Missing value"
table(selected censusdata$POB)
library(dplyr)
```

```
selected censusdata <- selected censusdata |>
 mutate(originregion = case when (
  POB == 1 \sim 1,
  POB == 2 \sim 2,
  POB >= 3 \& POB <= 6 \sim 3.
  POB >= 7 \& POB <= 15 \sim 4
  POB >= 16 & POB <= 18 ~ 5,
  POB >= 19 & POB <= 31 ~ 6,
  POB == 32 \sim 7,
  POB == 88 ~ NA
  ))
selected censusdata$originregion
table (selected_censusdata$originregion)
      # 4.1 Add the previous labels to the new variable 'origin region':
selected_censusdata$originregion <- factor (selected_censusdata$originregion,</pre>
                             levels = c(1,2,3,4,5,6,7, NA),
                             labels = c("Born in Canada",
                                    "Born in USA",
                                    "Born in Latin America",
                                    "Born in Europe",
                                    "Born in Africa",
                                    "Born in Asia",
                                    "Born in Oceania and others"))
```

```
selected censusdata$originregion
table (selected_censusdata$originregion)
print(selected censusdata)
# 5. Recode HDGREE creating a new variable 'educlevel', knowing that:
1 = "No certificate, diploma or degree" ///
2 = "Secondary (high) school diploma or equivalency certificate" ///
3 and 4 = "Trades or Apprenticeship certificate/diploma" ///
5 to 8 = "College, CEGEP or other non-university certificate or diploma;
University certificate or diploma below bachelor level" ///
9 = "Bachelor degree" ///
10 to 13 = "University certificate, diploma or degree above bachelor level"
88 or 99 = NA
table (selected censusdata$HDGREE)
selected censusdata <- selected censusdata |>
 mutate(educlevel = case when (
  HDGREE == 1 \sim 1,
  HDGREE == 2 \sim 2.
  HDGREE \geq 3 & HDGREE \leq 4 ~ 3,
  HDGREE >= 5 & HDGREE <= 8 ~ 4,
  HDGREE == 9 \sim 5,
  HDGREE >= 10 & HDGREE <= 13 ~ 6.
  HDGREE == 88 | HDGREE == 99 ~ NA
```

```
selected_censusdata$educlevel
table (selected_censusdata$educlevel)
#6. Add the labels to the variable PR, following the information of the Census
codebook (pdf) avaible with the Census dataset:
table (selected censusdata$PR)
selected censusdata$PR <- factor (selected censusdata$PR,
                         levels = c(10, 11, 12, 13, 24, 35, 46, 47, 48, 59, 70),
                         labels = c("Newfoundland and Labrador",
                                "Prince Edward Island",
                                "Nova Scotia",
                                "New Brunswick",
                                "Quebec",
                                "Ontario",
                                "Manitoba",
                                "Saskatchewan",
                                "Alberta",
                                "British Columbia",
                                "Northern Canada"))
selected_censusdata$PR
table (selected_censusdata$PR)
print(selected censusdata)
```

7. Add the labels to the variable AGEIMM, following the information of the Census codebook (pdf) avaible with the Census dataset:

table (selected censusdata\$AGEIMM)

selected_censusdata\$AGEIMM
table (selected_censusdata\$AGEIMM)
print(selected_censusdata)

8. Create one frequency table for the variables origin region and PR

```
crosstable1 <- table(selected censusdata$originregion,
selected censusdata$PR)
print(crosstable1)
      #8.1 Export to a csv document using the function 'write.csv'
write.csv(crosstable1, 'output_crosstable1_code_NicoleAR.csv', row.names = T)
#9. Perform a linear regression, using as dependent variable: educ level. The
main independent variable is originregion. Control for Sex, PR and AGEIMM
model <- Im(educlevel ~ originregion + Sex + PR + AGEIMM, data =
selected censusdata)
summary (model)
      # 9.1 Format the results using the function 'tidy' of the package named
'broom', before exporting it to a cvs document using the function 'write.csv'
install.packages('broom')
library (broom)
regression <- tidy(model)
write.csv(regression, 'output regression code NicoleaAR.csv', row.names = T)
# 10. Format the two output cvs documents (convert the text of the csv
documents into separate columns, using the path: Data --> Text to Columns -->
Delimited --> Delimiter: comma --> Finish)
```