Optimization Model for Scrum-Based Software Development

Decision Variables

```
\begin{split} x_1 &= \text{NumSprints (Total sprints planned)} \\ x_2 &= \text{SprintLength (weeks per sprint)} \\ x_3 &= \text{TeamSize (members per team)} \\ x_4 &= \text{DevCount (number of developers)} \\ x_5 &= \text{QACount (number of QA engineers)} \\ x_6 &= \text{SprintBudget (allocated per sprint)} \\ x_7 &= \text{SPCapacity (planned story points per sprint)} \\ x_8 &= \text{FeaturesPerRelease (features per release)} \\ x_9 &= \text{RetroDuration (minutes per retrospective)} \\ x_{10} &= \text{DailyScrumTime (minutes per daily scrum)} \end{split}
```

Objectives (Multi-objective)

```
\max (v(x) = \text{Velocity}), \quad \min (b(x) = \text{BugCount}), \quad \max (s(x) = \text{StakeholderSatisfaction}),

\min (t(x) = \text{TimeToMarket}), \quad \max (f(x) = \text{FeaturesDelivered}), \quad \min (c(x) = \text{CostVariance}),

\max (u(x) = \text{TeamUtilization}), \quad \min (o(x) = \text{SprintOverrunRate}), \quad \max (d(x) = \text{DocCoverage}), \quad \text{max}
```

Constraints

$1 \le x_1 \le 20,$	(1)
$1 \le x_2 \le 4,$	(2)
$3 \le x_3 \le 9,$	(3)
$1 \le x_4 \le 8,$	(4)
$1 \le x_5 \le 4,$	(5)
$10,000 \le x_6 \le 200,000,$	(6)
$20 \le x_7 \le 100,$	(7)
$1 \le x_8 \le 10,$	(8)
$30 \le x_9 \le 90,$	(9)
$15 \le x_{10} \le 30.$	(10)