Pro účely důkazu si definuju posloupnost prvočísel p_n , kde je ale $p_0 = 1$, přestože se o prvočíslo nejedná. Zbavím se tím několika okrajových případů.

Když si zkusíme vypsat několik příkladů množství šošovek od začátku, můžeme určit, že pro každé přirozené n je možné množství šošovek xp_n , kdy přirozené číslo $x \in \langle p_{n-1}; p_{n+1} \rangle$ a p_n je největší prvočíselný dělitel.

Pro n=1 to platí zřejmě, protože na začátku máme $1\cdot 2$ šošovek, a při přičítání dvojky postupně dostaneme $3\cdot 2$, kdy je největší prvočíselný dělitel $p_2=3$.

Pro jakékoli přirozené n pak začínáme na $x=p_{n-1}$. Přidáváním p_n šošovek se postupně dostaneme na $x=p_{n+1}$, protože posloupnost prvočísel je rostoucí a toto je nejmenší prvočíslo, které je ostře větší než p_n . Zřejmě nemůže být x složené číslo, protože žádné složené číslo v tomto intervalu bude mít většího prvočíselného dělitele než p_n , proto se při této hodnotě mění největší prvočíselný dělitel. Tím jsme dokázali, co jsme vypozorovali.

Aby pro každé přirozené n byl celkový počet šošovek čtverec, musí platit $x=k^2p_n$ pro přirozené k. Víme, že $x < p_{n+1}$, musí tedy platit:

$$k^2 p_n < p_{n+1}$$

Protože podle Bertrandova postulátu platí $p_{n+1} < 2p_n$ pro přirozené n, platí:

$$k^2 p_n < p_{n+1} < 2p_n$$

Odkud je zřejmé, že tato podmínka je splněna právě když k=1.

Proto jediné hodnoty m, pro které může být na stole m^2 šošovek, jsou prvočíselné a žádné jiné. Q. E. D.