Algebraic Geometry.

Alec Zabel-Mena

June 6, 2023

Contents

4 CONTENTS

Chapter 1

Preliminaries

We assume that all rings are commutative, and have identity.

1.1 Multivariate Polynomial Rings

Theorem 1.1.1. Let I be an ideal of R and I[x] the ideal of R[x] generated by I. Then

$$R[x]/_{I[x]} \simeq R/_{I[x]}$$

Moreover, if I is a prime ideal in R, then I[x] is a prime ideal in R[x].

Proof. Consider the map $\pi:R[x]\to R/I[x]$ given by $f\to f\mod I$. That is, reduce f modulo I. Then π is a ring homomorphism with kernel ker $\pi=I[x]$. By the first isomorphism theorem, we get

$$R[x]/_{I[x]} \simeq R/_{I[x]}$$

Now, let I be a prime ideal in R, Then we have that R/I is an integral domain, hence, so is R/I[x], which makes I[x] a prime ideal of R[x].

Example 1.1. Consider the ideal $n\mathbb{Z}$ in \mathbb{Z} . By above, we have

$$\mathbb{Z}[x]_{n\mathbb{Z}[x]} \simeq \mathbb{Z}_{n\mathbb{Z}}[x]$$

with natural map reduction of polynomials modulo n. If n is composite, then the ring $\mathbb{Z}/_{n\mathbb{Z}}[x]$ is not an integral domain. If n=p a prime, then $\mathbb{Z}/_{n\mathbb{Z}}[x]$ is an integral domain.

Definition. We define the **polynomial ring** in n variables x_1, \ldots, x_n with **coefficients** in R inductively to be

$$R[x_1, \dots, x_n] = R[x_1, \dots, x_{n-1}][x_n]$$

and is the set of all **multivariate polynomials** of the form $f(x_1, \ldots, x_n) = \sum a x_1^{d_1} \ldots x_n^{d_n}$. We call the monic term $x_1^{d_1} \ldots x_n^{d_n}$ of f a **monomial**. We define the **degree** of a monomial to be $\deg x_1^{d_1} \ldots x_n^{d_n} = d_1 + \cdots + d_n$ and we define the **degree** of f to be $\deg f = \max \{\deg x_1^{d_1} \ldots x_n^{d_n}\}$ (i.e. the maximum degree of all monomials of f). If all the monomials of f have the same degree, we call f **homogeneous**, or, a **form**.

Lemma 1.1.2. Let R be a ring. Then $R[x_1, \ldots, x_n]$ is a ring.

Example 1.2. (1) Consider the polynomial ring $\mathbb{Z}[x,y]$ in two variables x and y with integer coefficients. Then $p(x,y) = 2x^3 + xy - y^2$ and has $\deg p = 3$. The polynomial $q(x,y) = -3xy + 2y^2 + x^2y^3$ has $\deg q = 5$. The sum

$$p + q(x,y) = 2x^3 - 2xy + y^2 + x^2y^3$$
 has degree deg $p + q = 5$

and the product

$$pq(x,y) = -6x^4y + 4x^3y^2 + 2x^5y^3 - 3x^2y^2 + 5xy^3 + x^3y^4 - 2y^4 - x^2y^5$$

had degree $\deg pq = 8$.

(2) The polynomial $p(x, y, z) = 4y^2z^5 - 3xy^3z + 2x^2y$ over $\mathbb{Z}[x, y, z]$ has degree deg p = 7 and the polynomial $q(x, y, z) = 5x^2y^3z^4 - 9x^2z + 7x^2$ has degree deg q = 9. The polynomials

$$p + q(x, y, z) = 5x^{2}y^{3}z^{4} + 4y^{2}z^{5} - 3xy^{3}z + 2x^{2}y - 9x^{2}z + 7x^{2}$$

and

$$pq(x,y,z) = 20x^2y^5z^9 - 15x^3y^6z^5 + 10x^4y^4z^4 - 36x^2y^2z^6 + 28x^2y^2z^5 + 27x^3y^3z^2 - 21x^3y^3z - 18x^4yz + 14x^4y$$

have degrees deg(p+q) = 9 and deg pq = 16, respectively.

(3) Consider the polynomials p and q of the above example over $\mathbb{Z}_{3\mathbb{Z}}$, i.e. as polynomials in $\mathbb{Z}_{3\mathbb{X}}[x, y, z]$. Then we have

$$p(x, y, z) = xy^{2}z^{5} + 2x^{2}y$$
$$q(x, y, z) = 2x^{2}y^{3}z^{4} + x^{2}$$

which makes

$$p + q(x, y, z) = 2x^{2}y^{3}z^{4} + y^{2}z^{5} + 2x^{2}y + x^{2}$$

and

$$pq(x,y,z) = 2x^2y^5z^9 + 1x^4y^4z^4 + 1x^2y^2z^5 + 14x^4y$$

of degrees deg(p+q) = 9 and deg pq = 16, still.

Lemma 1.1.3. Let R be a commutative ring, and π a permutation of the set $\{1, \ldots, n\}$. Then $R[x_1, \ldots, x_n] \simeq R[x_{\pi(1)}, \ldots, x_{\pi(n)}]$. That is, multivariate polynomial rings are independent of the ordering of their variables.

Proof. Define the map $\Pi: R[x_1, \ldots, x_n] \to R[x_{\pi(1)}, \ldots, x_{\pi(n)}]$ termwise by first sending $x_1 \ldots x_n \to x_{\pi(1)} \ldots x_{\pi(n)}$. Then notice that Π defines a ring homomorphism, and moreover, for any $f \in R[x_1, \ldots, x_n]$, Π permutes the terms of f. So that Π dictates the required isomorphism.

1.2 Noetherian Rings

Definition. Let R be a ring. We call a nondecreasing sequence $\{I_n\}_{n\in\mathbb{Z}^+}$ of ideals of R an ascending chain of ideals. We call R Noetherian if it satisfies the ascending chain considition; that is, if $\{I_n\}$ is an ascending chain of ideals of R, then there exists an $m \in \mathbb{Z}^+$ for which $I_n = I_m$ for all $n \ge n$.

Lemma 1.2.1. If I is an ideal of a Noetherian ring R, then the factor ring R_{I} is also Noetherian. In particular, the image of a Noetherian ring under any ring homomorphism is Noetherian.

Proof. This follows by the isomorphism theorems for ring homomorphisms.

Theorem 1.2.2. The following are equivalent for any ring R.

- (1) R is Noetherian.
- (2) Every nonempty collection of ideals of R contains a maximal element under inclusion.
- (3) Every ideal of R is finitely generated.

Proof. Let R be Noetherian, and let \mathcal{I} an nonempty collection of ideals of R. Choose an ideal $I_1 \in \mathcal{I}$. If I_1 is maximal, we are done. If not, then there is an ideal $I_2 \in \mathcal{I}$ for which $I_1 \subseteq I_2$. Now, if I_2 is maximal, we are done. Otherwise, proceeding inductively, if there are no maximal ideals of R in \mathcal{I} , then by the axiom of choice, construct the infinite strictly increasing chain

$$\cdots \subset I_1 \subset I_2 \subset \cdots$$

of ideal of R. This contradicts that R is Noetherian, so \mathcal{I} must contain a maximal element. Now, suppose that any nonempty collection of ideals of R contains a maximal element. Let \mathcal{I} the collection of all finitely generated ideals of R, and let I be any ideal of R. By hypothesis, \mathcal{I} has a maximal element I'. Now suppose that $I \neq I'$, and choose an $x \in I \setminus I'$, then the ideal generated by I' and x is finitely generated, and so is in \mathcal{I} ; but that contradicts the maximality of I'. Therefore we must have I = I'.

Finally, suppose every ideal of R is finitely genrated, and let $I = (a_1, \ldots, a_n)$. Let

$$I_1 \subseteq I_2 \subseteq \dots$$

an ascending chain of ideals of R for which

$$I = \bigcup_{n \in \mathbb{Z}^+} I_n$$

Since $a_i \in I$ for each $1 \leq j \leq n$, we have that $a_i \in I_{i_j}$ and $i \in \mathbb{Z}^+$. Now, let $m = \max\{j_1, \ldots, j_n\}$ and coinsider the ideal I_m . Then $a_i \in I_m$ for each i, which makes $I \subseteq I_m$. That is, $I_n = I_m$ for some $n \geq m$; which makes R Noetherian.

Example 1.3. (1) Every principle ideal domain (PID) is Noetherian, since any collection of ideals has a maximal element.

- (2) The rings \mathbb{Z} , $\mathbb{Z}[i]$, and k[x] (where k is a field) are Noetherian.
- (3) The multivariate polynomial ring $\mathbb{Z}[x_1, x_2, \dots]$ is not Noetheria, since the ideal (x_1, x_2, \dots) is not finitely generated.

Theorem 1.2.3 (Hilbert's Basis Theorem). If R is a Noetherian ring, then so is the polynomial ring R[x].

Proof. Let I be an ideal of R[x], and let L be the set of all leading coefficients of polyonimials in I. Notice that since $0 \in I$, then $0 \in L$, so that L is nonempty. Moreover, let $f(x) = ax^d + \ldots$ and $g(x) = bx^e + \ldots$ polynomials in I of degree $\deg f = d$ and $\deg g = e$, with leading coefficients $a, b \in R$. Then for any $r \in R$, we have the coefficient ra - b = 0, or ra - b is the leading coefficient of the polynomial $rx^e f - x^d g \in I$. In either case, we get $ra - b \in L$. This makes L an ideal of R. Now, since R is Noetherian L is finitely generated; let $L = (a_1, \ldots, a_n)$. Then for every $1 \le i \le n$, let $f_i \in I$ the polynomial of degree $\deg f_i = e_i$ whose leading coefficient is a_i . Take, then $N = \max\{e_1, \ldots, e_n\}$. Then for any $d \in \mathbb{Z}/N\mathbb{Z}$, let L_d be the set of all leading coefficients of polynomials in I, of degree d, together with 0. Let $f_{di} \in I$ a polynomial of degree $\deg f_{di} = d$ with leading coefficient b_{di} . We wish to show that

$$I = (f_1, \dots, f_n) \cup (f_{d1}, \dots f_{nd})$$

Let $I' = (f_1, \ldots, f_n) \cup (f_{d1}, \ldots f_{nd})$. By construction, since the generators were chosen from $I, I' \subseteq I$. Now, if $I \neq I'$. Then there is a nonzero polynomial $f \in I$ of minimum degree not contained in I' (i.e $f \notin I'$). Let $\deg f = d$, and let a be the leading coefficient of f. Suppose that $d \geq N$. Since $a \in L$, a is an R-linear combination of the generators of L; i.e.

$$a = r_1 a_1 + \dots + r_n a_n$$

where $r_1, \ldots, r_n \in R$. Let

$$g = r_1 x^{d-e_1} f_1 + \dots + r_n x^{d-e_n} f_n$$

then $g \in I'$ and has degree deg g = d and leading coefficient a. Hence $f - g \in I'$ is of smaller degree, and by the minimality of f, f - g = 0, which makes $f = g \in I'$; a contradiction. Therefore I = I'

Now, if d < N, then $a \in L_d$, and so is an R-linear combination of generators of L_d ; that is

$$a = r_1 b_{d1} + \dots + r_n b_{dn}$$

where $r_1, \ldots, r_n \in R$. Then let

$$g = r_1 f_{d1} + \dots + r_n f_{dn}$$

then $g \in I'$ is a polynomial of degree $\deg g = d$ and leading coefficient a; which gives us the above contradiction.

Therefore, I = I', and since I' is finitely generated, R[x] is Noetherian.

Corollary. Let k be a field. Then the polynomial ring in n variables $k[x_1, \ldots, x_n]$ is Noetherian.

Definition. Let k be a field. We call a ring R a k-algebra if k is contained in the center of R (i.e. $k \subseteq Z(R)$), and $1_k = 1_R$. We call R a **finitely generated** k-algebra if R is generated by k together with a finite set $\{r_1, \ldots, r_n\}$ of elements of R.

Definition. Let k be a field and R and S k-algebras. We call a map $\phi: R \to S$ a k-algebra homomorphism if ϕ is a ring homomorphism, and ϕ is the identity on k.

Lemma 1.2.4. Let k be a field. Then a ring R is a finitely generated k-algebra if, and only if there exists a k-algebra homomorphism $\phi: k[x_1, \ldots, x_n] \to R$ taking $k[x_1, \ldots, x_n]$ onto R.

Proof. If R is generated by elements r_1, \ldots, r_n as a k-algebra, then define the map ϕ : $k[x_1, \ldots, x_n] \to R$ by taking $x_i \to r_i$, for all $1 \le i \le n$, and $\phi(a) = a$ for all $a \in k$. Then ϕ extends to a ring homomorphism of $k[x_1, \ldots, x_n]$ onto R.

Conversly, let ϕ be a k-algebra homomorphism of $k[x_1, \ldots, x_n]$ onto R, such that the images $\phi(x_1), \ldots, \phi(x_r)$ generate R as a k-algebra. Then R is finitely generated, and since $k[x_1, \ldots, x_n]$ is Notherian by the corollary to Hilbert's basis theorem, R is a quotient of a Noetherian ring, and hence R is Noetherian. This makes R a finitely generated k-algebra.

Example 1.4. Let R be a k-algebra, for some field k, viewed as a finite dimensional vector space over k. In particular, let $R = {}^k[x]/{}_{f(x))}$, where f(x) is a nonzero polynomial over k. Then R is a finitely generated k-algebra, since it has a finite basis, and that basis serves as a generator for R as a k-algebra. Thus, we have the ideals of R are k-subspaces. Moreover, any ascending chain of ideals of R has at most $\dim_k R - 1$ distinct terms, which means that R satisfies the ascending chain condition.

Bibliography

- [1] D. Dummit, Abstract algebra. Hoboken, NJ: John Wiley & Sons, Inc, 2004.
- [2] I. N. Herstein, Topics in algebra. New York: Wiley, 1975.