Similarity Transformations

Today I Can

1. Identify similarity transformations and verify properties of similarity.

Example 1. $\triangle DEF$ has vertices D(2,0), E(1,4), and F(4,2). What is the image of $\triangle DEF$ when you apply each composition?

(a)
$$D_{1.5} \circ R_{y\text{-axis}}$$

(b)
$$R_{y-axis} \circ D_{1.5}$$

Example 2. What is a composition of rigid motions and dilations that maps each of the following?

(a) $\triangle RST$ to $\triangle PYZ$

(b) ABCD to MNHP

Similar Figures

Two figures are similar if and only if there is a similarity transformation that maps one figure onto the other.

Example 3. Is there a similarity transformation that maps $\triangle JKL$ to $\triangle RST$? If so, identify the similarity transformation and write a similarity statement. If not, explain.

