周课 7

陈漂亮

Savvy 2020

Sunday 15 March 2020

0.1	1. Noi	n-Parametric Model
	0.1.1	1. Penalized Likelihood
	0.1.2	1.2 Cubic Spline
0.2	2. Ger	neralized Additive Model (GAM)
	0.2.1	2.1 Smoothing Interation
	0.2.2	2.2 Common smoothing parameter
	0.2.3	2.3 2-D smoothing
	0.2.4	2.4 Poisson GAM: Ontario deaths
	0.2.5	2.5 Prediction
		0.2.5.1 2.5.1 Trend
		0.2.5.2 2.5.3 Forcasting
	0.2.6	2.6 Change the Parameter constraint
	0.2.7	2.7 Modelling Seasonality
0.3	3. Lab	this week

0.1 1. Non-Parametric Model

- Penalized likelihood;
- \bullet smoothing;
- fitting wiggly lines through points;
- semi-parametric models;
- splines

$$Y_i \sim \pi(\lambda_i, \theta)$$

 $g(\lambda_i) = X_i \beta + f(W_i)$

Where, $\bullet Y_i$: response

• $\pi(\lambda_i, \theta)$ is the response distribution

 $\bullet X_i, W_i are covariates$

 $\bullet f(w)$: is the smoothing function

• $g(\lambda)$: is the link function

 $\bullet \beta$: coefficients

0.1.1 1. Penalized Likelihood

$$L_P(\beta, f, \alpha; Y) = \log(\pi(Y; \beta, f)) - \alpha \int \left[\frac{\partial^2 f(w)}{\partial w^2}\right]^2 du$$

Where, $\bullet \alpha$: penalty parameter, $\alpha \uparrow \Longrightarrow$ smoother f

• smoother $f(x) \implies \text{smaller } f''(x)$

 $\Longrightarrow \hat{\beta}(\alpha), \hat{f}(\alpha) = \arg\min_{\beta, f} L_P(\beta, f, \alpha; Y)$

- A good \hat{f} is a compromise between fitting the data and being smooth.

0.1.2 1.2 Cubic Spline

• The f that maximizes the penalized likehood must be a cubic spline polynomial...

knitr::include_graphics("1.png")

knitr::include_graphics("2.png")

• The basis function of cubic splines: $ax^3 + bx^2 + cx + d$...

Maiximizing likelihood over all possible f:

- The larger the α , the smoother the curve (f)...
- When $\alpha \to \infty$, f is a straight line.

How?:

- Divide your data (evenly) into K subsets, and fit a cubic spline on each subset. Make sure the f function is continous/1st-order-diff/2nd-order-diff at each knot...

Choosing α : Cross Validation

knitr::include_graphics("3.png")

Cross validation

- ullet Find $\hat{\lambda}^{(-i)}$ by excluding observation i
- compute $pr(Y_i|\hat{\lambda}^{(-i)})$
- $\begin{array}{l} \bullet \text{ repeat for } i=1\dots N \\ \bullet \text{ CV}(\alpha)=-\sum_i \log[pr(Y_i|\hat{\lambda}^{(-i)})] \end{array}$

$$\hat{\alpha} = \mathrm{argmax}_{\alpha} \mathsf{CV}(\alpha)$$

0.2 2. Generalized Additive Model (GAM)

• Fit a GAM for the Math score data...

	Estimate	Std. Error
(Intercept)	14.3	0.1
MinorityYes	-2.9	0.2
SexFemale	-1.4	0.2
MinorityYes:SexFemale	0.2	0.3

```
plot(mathGam)
```


mathGam\$sp # smoothing parameter

s(SES) ## 0.8254378

0.2.1 2.1 Smoothing Interation

• Now we fit another GAM, with interaction between the covariates that are being smoothed...

	Estimate	Std. Error
(Intercept)	14.2	0.1
MinorityYes	-3.0	0.3
SexFemale	-1.4	0.2

	Estimate	Std. Error
MinorityYes:SexFemale	0.1	0.3

mathGamInt\$sp

```
## s(SES):MinorityNo s(SES):MinorityYes
## 0.820158 0.614983
```

```
# plot the SES/minority
plot(mathGamInt, select =1)
```



```
plot(mathGamInt,select =2)
```


0.2.22.2 Common smoothing parameter

knitr::include_graphics("4.png")

$$\begin{split} Y_{ij} \sim & N(\lambda_{ij}, \tau^2) \\ \lambda_{ij} = & X_{ij} \beta + f_i(W_{ij}; \nu) \end{split}$$

- ullet Y_{ij} is the observation for individual j in ethnic group i
- X_{ij} is a vector of covariates (ethnic group, sex, interaction) $f_i(w;\nu)$ is the smoothly-varying function of SES
- - for ethnic group i
 - with roughness parameter ν .

```
mathGamIntC =gam(MathAch~s(SES,by=Minority,id=1) +Minority*Sex,
                 data=MathAchieve)
mathGamIntC$sp
```

s(SES):MinorityNo

0.7492505

0.2.3 2.3 2-D smoothing

s(SES,MEANSES,15.57)

• If you are from upper class, your score is still likely higher even if your school is weaker...

0.2.4 2.4 Poisson GAM: Ontario deaths

$$Y_i \sim Poisson(\lambda_i)$$

$$\log(\lambda_i) = X_i\beta + f(time)$$

where, $\bullet \lambda_i$ is the relative rate of death in the ith month

	est	se
(Intercept)	9.001	0.002
monthFebruary	-0.124	0.003
monthMarch	-0.055	0.003
monthApril	-0.137	0.003
monthMay	-0.138	0.003
monthJune	-0.205	0.003
monthJuly	-0.186	0.003
monthAugust	-0.192	0.003
monthSeptember	-0.207	0.003
monthOctober	-0.118	0.003
monthNovember	-0.135	0.003
monthDecember	-0.053	0.003

- relative rate: relative to the baseline, i.e. Januarry...
- Note that different month has different number of days, so, offset!!

```
Y_i \sim Poisson(O_i \lambda_i)

\log(\lambda_i) = X_i \beta + f(time)
```

where, $\bullet \lambda_i$ is the relative rate of death in the ith month

 \bullet O_i is the offset term

	est	se
(Intercept)	5.567	0.002
monthFebruary	-0.031	0.003
monthMarch	-0.055	0.003
monthApril	-0.104	0.003
monthMay	-0.138	0.003
monthJune	-0.173	0.003
monthJuly	-0.186	0.003
monthAugust	-0.192	0.003
monthSeptember	-0.174	0.003
monthOctober	-0.118	0.003
monthNovember	-0.102	0.003
month December	-0.053	0.003

0.2.5 2.5 Prediction

0.2.5.1 2.5.1 Trend

0.2.5.2 2.5.3 Forcasting

```
Stime =seq(from =as.Date("2000/1/1"),
           to =as.Date("2026/1/1"),
           by ="months")
newX =data.frame(timeNumeric
            =as.numeric(difftime(Stime,
                                  timeOrigin,
                                  units ="days")),
            month =months(Stime),
            nDays =log(Hmisc::monthDays(Stime)))
deathsPred =predict(deathsGam, newX,se.fit =TRUE)
deathsPred =as.data.frame(deathsPred)
deathsPred$lower =deathsPred$fit-2*deathsPred$se.fit
deathsPred$upper =deathsPred$fit+2*deathsPred$se.fit
matplot(Stime,
        exp(deathsPred[,c("lower","upper",+"fit")]),
        type ="1", lty =1,
        col =c("grey",+"grey","black"),
        lwd = c(2,2,1), xlab = "date",
        ylab ="deaths",yaxs ="i",xaxs ="i",
        xaxt = "n")
forAxis =seq(from =as.Date("2000/1/1"),
```


0.2.6 Change the Parameter constraint

- Add a constant to f(x) doesn't change the penalty;
- By default, f(x) sums to 0;
- But we don't know where does f(x) = 0;
- An alternative is to set $f(x_0) = 0$...

	est	se
(Intercept)	5.510	0.003
monthFebruary	-0.031	0.003
monthMarch	-0.055	0.003
monthApril	-0.104	0.003
monthMay	-0.138	0.003
monthJune	-0.173	0.003
monthJuly	-0.186	0.003
monthAugust	-0.192	0.003
+monthSeptember	-0.174	0.003
monthOctober	-0.118	0.003
monthNovember	-0.102	0.003
month December	-0.053	0.003

0.2.7 2.7 Modelling Seasonality

We can see clear seasonality from the month-effect plot.

• The trick to model seasonality is apply trignomitric function as the basis functions...

- The monthly effect isn't perfectly sinusoidal
- use a 12 month and a 6 month frequency

$$\begin{split} Y_i \sim & \mathsf{Poisson}(O_i \lambda_i) \\ & \log(\lambda_i) = & X_i \beta + f(t_i) \\ X_{i0} = 1 \\ X_{i1} = & \cos(2\pi t_i/12) \\ X_{i2} = & \sin(2\pi t_i/12) \\ X_{i3} = & \cos(2\pi t_i/6) \\ X_{i4} = & \sin(2\pi t_i/6) \end{split}$$


```
oDeaths$timeYears =oDeaths$timeNumeric/365.25
oDeaths$cos12 =cos(2*pi*oDeaths$timeYears)
oDeaths\$\sin12 =\sin(2*\pi*\oDeaths\$\timeYears)
oDeaths$cos6 =cos(2*pi*oDeaths$timeYears/2)
oDeaths\$\sin6 =\sin(2*\pi*\oDeaths\$\timeYears/2)
deathsGamS =gam(Value~cos12+sin12+cos6+sin6
              +s(timeNumeric)+offset(nDays),
              data=oDeaths,family='poisson')
knitr::kable(summary(deathsGamS)$p.table[,1:2],
# Predicting the seasonality
deathGamPred =predict(deathsGamS,cbind(oDeaths[,c("sin12","cos12","sin6",
                                                    "cos6","timeNumeric")],
                                        nDays =log(1)), type ="link",
                       se.fit =TRUE)
deathGamPredMat =do.call(cbind,
                         deathGamPred)%*%+Pmisc::ciMat()
```

	est	se
(Intercept)	5.456	0.001
cos12	0.085	0.001
sin12	0.017	0.001
cos6	-0.008	0.001
sin6	-0.003	0.001

0.3 3. Lab this week

The new blog he posted.

```
# ?gam

#+ header, results='asis', echo=FALSE
```

```
Pmisc::markdownHeader(
 title= "STA303, Coronavirus",
 author= 'Patrick Brown, University of Toronto'
#+ setup, include=FALSE
library('knitr')
knitr::knit_hooks$set(margins = Pmisc::hook_plot_margins)
knitr::knit_hooks$set(plot=Pmisc::hook_plot_htmlsubfig)
knitr::opts_chunk$set(echo=FALSE, prompt=TRUE, comment=NA,
        dev='png', margins=1, fig.cap=' ',
 fig.path=file.path('figure', 'moreBayes'),
        fig.width=5, fig.height=3, half=NULL,
       tidy=TRUE,tidy.opts=list(indent=2, width.cutoff=45)
)
knitr::opts_hooks$set(half = function(options) {
   options$tidy.opts = list(width.cutoff = 12)#list(options$tidy.opts$width.cutoff/2)
   options
 })
options(width=80)
Loading required namespace: nCov2019
Warning in load(system.file("ncovEnv.rda", package = "nCov2019")): strings not
representable in native encoding will be translated to UTF-8
Warning in load(system.file("ncovEnv.rda", package = "nCov2019")): strings not
representable in native encoding will be translated to UTF-8
Warning in load(system.file("ncovEnv.rda", package = "nCov2019")): strings not
representable in native encoding will be translated to UTF-8
Warning in readRDS(system.file("country_translate.rds", package = "nCov2019")):
```

strings not representable in native encoding will be translated to UTF-8

表 3: $\{\#tbl:unnamed-chunk-25\}$

Warning in max(which(xx > 0)): no non-missing arguments to max; returning -Inf
Warning in max(which(xx > 0)): no non-missing arguments to max; returning -Inf
Warning in max(which(xx > 0)): no non-missing arguments to max; returning -Inf
Warning in max(which(xx > 0)): no non-missing arguments to max; returning -Inf
Warning in max(which(xx > 0)): no non-missing arguments to max; returning -Inf
Warning in max(which(xx > 0)): no non-missing arguments to max; returning -Inf
Warning in max(which(xx > 0)): no non-missing arguments to max; returning -Inf

表 5: $\{\#tbl:unnamed-chunk-27\}$

表 6: {#tbl:unnamed-chunk-28}

表 7: {#tbl:unnamed-chunk-29}

21

表 8: {#tbl:unnamed-chunk-31}

Generalized linear mixed model fit by maximum likelihood (Laplace
 Approximation) [glmerMod]
Family: poisson (log)

AIC BIC logLik deviance df.resid 1360.5 1444.7 -657.2 1314.5 265

Scaled residuals:

Min 1Q Median 3Q Max -2.3685 -0.4019 -0.1308 0.1384 10.6837

Random effects:

Groups Name Variance Std.Dev. timeIntInd:countryFac (Intercept) 0.242 0.492 Xr s(timeInt) 5.705 2.388

Number of obs: 288, groups: timeIntInd:countryFac, 288; Xr, 28

Fixed effects:

	Estimate	Std. Error	z value	Pr(> z)	
X(Intercept)	-3.0198	1.0186	-2.965	0.003031	**
XcountryFacFrance	3.5030	1.0274	3.409	0.000651	***
XcountryFacGermany	3.1483	1.1480	2.743	0.006097	**
XcountryFacGuangdong	-1.7514	1.1387	-1.538	0.124033	
XcountryFacHainan	-2.4656	1.1743	-2.100	0.035761	*
XcountryFacHong Kong	0.5421	1.4400	0.376	0.706591	
XcountryFacHubei	4.2170	1.0175	4.144	3.41e-05	***
XcountryFacIran	3.8174	1.0182	3.749	0.000177	***
XcountryFacIraq	1.4753	1.1027	1.338	0.180925	
XcountryFacItaly	4.4858	1.0177	4.408	1.04e-05	***
XcountryFacJapan	1.0311	1.0504	0.982	0.326298	
${\tt XcountryFacNetherlands}$	2.6580	1.1065	2.402	0.016302	*
XcountryFacPhilippines	3.1550	1.2260	2.573	0.010069	*
XcountryFacSan Marino	2.7650	1.2913	2.141	0.032251	*
XcountryFacShandong	-1.5787	1.1384	-1.387	0.165525	
XcountryFacSouth Korea	2.0663	1.0256	2.015	0.043945	*
XcountryFacSpain	4.7081	1.0280	4.580	4.65e-06	***
${\tt XcountryFacSwitzerland}$	3.1937	1.1031	2.895	0.003790	**
XcountryFacUnited Kingdom	3.5799	1.0654	3.360	0.000779	***
XcountryFacUnited States	3.0706	1.0317	2.976	0.002918	**
Xs(timeInt)Fx1	3.4576	0.8210	4.211	2.54e-05	***

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 21 > 12. Use print(x, correlation=TRUE) or vcov(x) if you need it

表 9: {#tbl:unnamed-chunk-32}

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod]

Family: poisson (log)

AIC BIC logLik deviance df.resid 1334.9 1422.8 -643.5 1286.9 264

Scaled residuals:

Min 1Q Median 3Q Max -2.6061 -0.4135 -0.2154 0.1633 4.0676

Random effects:

Groups Name Variance Std.Dev.
timeIntInd:countryFac (Intercept) 0.1749 0.4182
Xr s(timeInt) 5.5081 2.3469
countryFac timeSlope 70.1469 8.3754

Number of obs: 288, groups: timeIntInd:countryFac, 288; Xr, 28; countryFac, 20

Fixed effects:

	Estimate	Std. Error	z value	Pr(> z)	
X(Intercept)	-2.7531	1.0715	-2.569	0.010189	*
XcountryFacFrance	3.1594	1.1220	2.816	0.004864	**
XcountryFacGermany	2.9580	1.1834	2.499	0.012438	*
XcountryFacGuangdong	0.3765	1.3772	0.273	0.784545	
XcountryFacHainan	-0.6097	1.4972	-0.407	0.683857	
XcountryFacHong Kong	0.3995	1.4844	0.269	0.787830	
XcountryFacHubei	3.9758	1.0859	3.661	0.000251	***
XcountryFacIran	3.3925	1.0922	3.106	0.001896	**
XcountryFacIraq	1.5570	1.1952	1.303	0.192667	
XcountryFacItaly	3.1394	1.0996	2.855	0.004304	**
XcountryFacJapan	1.1799	1.2096	0.975	0.329327	
${\tt XcountryFacNetherlands}$	2.4593	1.1615	2.117	0.034233	*
XcountryFacPhilippines	2.9450	1.2515	2.353	0.018615	*
XcountryFacSan Marino	2.5500	1.3154	1.939	0.052554	
XcountryFacShandong	0.4035	1.3761	0.293	0.769378	
XcountryFacSouth Korea	3.1446	1.1049	2.846	0.004428	**
XcountryFacSpain	4.4018	1.1042	3.986	6.71e-05	***
${\tt XcountryFacSwitzerland}$	2.9858	1.1496	2.597	0.009399	**
XcountryFacUnited Kingdom	3.3829	1.1219	3.015	0.002567	**
XcountryFacUnited States	3.2529	1.1164	2.914	0.003572	**
Xs(timeInt)Fx1	2.7221	0.9077	2.999	0.002708	**

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 21 > 12. Use print(x, correlation=TRUE) or vcov(x) if you need it

[1] "timeIntInd:countryFac" "Xr"

Guangdong	Shandong	South Korea	Hainan	United States
-10.7324071	-10.6298566	-7.1541950	-6.5594259	-3.1933197
Iraq	Australia	Germany	San Marino	Hong Kong
-2.3876160	-2.2672344	0.3965315	0.5833377	0.5940711
Philippines	Japan	Switzerland	Netherlands	United Kingdom
0.8131890	1.0539405	2.2961327	2.9570253	2.9775866
Hubei	Spain	Iran	France	Italy
3.7853795	5.2770467	5.6250033	5.7560949	14.6912983

"countryFac"

表 10: {#tbl:unnamed-chunk-34}

表 10: {#tbl:unnamed-chunk-34}

