UNIVERSITÄT SALZBURG

FB Computerwissenschaften

VO Algorithmen und Datenstrukturen Robert Elsässer

Probeklausur (12. Juni 2013)

Name:		والمستنب أستم	Matr.Nr	ii	• •
Unterlagen dür	lie die folgenden Fragen sa rfen Sie ein mitgebrachtes lung von Unterlagen oder (doppelseitig handbesc	hriebenes Blatt verwe	nden. Darüberhinausg	
Teil 1: Multi	ple Choice			10	P
Bei den folgenden Fragen ist jeweils genau eine Antwort zu wählen. Falsche Antworten führen zu Punkteabzügen. Die Variablen V , E , n , k haben die in der Vorlesung definierte Bedeutung.					
Frage 1.a:	Gegeben sind die folgender $f(n) = n^2$		h(n) =	□ ja □ ne	in
Gilt $f \in O(g)$	$f(n) = n^{-}$ $\forall h \in \Omega(g) \lor f \in \Theta(h)?$	$g(n) = n \log n$	n(n) = -	\sqrt{n}	
Frage 1.b:	Quicksort ist nie asymptot	isch langsamer als M	ergesort.	\Box ja \Box ne	in
Frage 1.c:	Jeder Sortieralgorithmus hat eine worst-case Laufzeit von $\Omega(n \log n)$.			□ ja □ ne	in
Frage 1.d:	Matrix-Multiplikationen b	enötigen immer Zeit !	$\Omega(n^3)$	□ ja □ ne	in
Frage 1.e: Mit Hilfe einer Tiefensuche kann für einen ungerichteten Graphen festgeballe ja einen stellt werden, ob der Graph zusammenhängend ist. \Box nein stellt werden, ob der Graph zusammenhängend ist.					
Frage 1.f: $\Box \Theta(n)$	Counting-Sort hat eine La $\Box \Theta(n+k)$	\Box $\Theta(n \cdot k)$	$\square \; \Theta(n \log n)$	$\square\ \Theta(n\log n + k)$	
Frage 1.g: $\Box \Theta(n \log n)$	Build-Max-Heap hat eine \square $\Theta(n^2)$		$\Box \ \Theta(\log n)$	$\ \Box \ \Theta(n^{\log n})$	
Frage 1.h:					
Zeit von $\square \Theta(1)$	$\square\ \Theta(\log n)$	$\square \ \Theta(n)$	$\square \ \Theta(n^2)$	\square $\Theta(\sqrt{n})$	
Frage 1.i: $\Box O(n^{2.7})$	Der Algorithmus von Stras $\square O(n^{\log_2 7})$	ssen hat eine Laufzeit $\square \ O(n^3)$	$ \begin{array}{c} \text{von} \\ \square \ O(n \log n) \end{array}$	$\square\ O(n^3 + m\log^2 m)$	
Frage 1.j: $\Box O(V)$	Eine Breitensuche in einer $\square O(E)$	n Graphen benötigt 2 $\square O(V \log(V))$		$\square \ O(V \cdot E)$	

VO Algorithmen und Datenstrukturen

Teil 2: Sortieren 5 P

Frage 2.a: Verwenden Sie Quicksort wie in der Vorlesung vorgestellt, um folgendes Array zu sortieren:

9 3 8 2 1 4

Frage 2.b: Angenommen, Sie bekommen bei Quicksort die Garantie, dass die Wahl Ihres Pivot-Elementes immer zu einer Partitionierung in zwei Teile führt, sodass beide Teile kleiner als ein konstanter Faktor α der ursprünglichen Größe sind. Beweisen Sie, dass für ein konstantes α mit $0.5 \le \alpha < 1$ dieses Verfahren immer eine Laufzeitkomplexität in $O(n \log n)$ hat.

Teil 3: Datenstrukturen

5 P

Frage 3.a: Geben Sie eine Datenstruktur an, die folgende Eigenschaften mit sich bringt:

- ullet Der Zugriff soll in erwartet konstanter Zeit O(1) möglich sein.
- \bullet Einfügen und Löschen soll erwartet in konstanter Zeit O(1) möglich sein.
- Alle Operationen sollen im worst case $O(\log n)$ Zeit benötigen.

Gehen Sie davon aus, dass die einzufügenden Daten einer Gleichverteilung unterliegen.

Frage 3.b: Begründen Sie die Korrektheit Ihrer Lösung!

Teil 4: Graphentheoretische Algorithmen

Gegeben ist folgender Graph:

Frage 4.a: Verwenden Sie Prims Algorithmus, um für den Graphen einen minimalen Spannbaum zu ermitteln.

Frage 4.b: Skizzieren Sie den Korrektheitsbeweis für Prims Algorithmus.

5 P

Teil 5: O-Kalkül

Für Funktionen $f,g:\mathbb{N}\to\mathbb{R}^+$ lässt sich ähnlich der Klasse O(f) auch o(f) (Klein-O) definieren. Informell bedeutet $f \in o(g)$, dass für beliebige positive konstante k die Ungleichung $f(n) \leq k \cdot g(n)$ ab einem gewissen

Formal können wir die Menge von Funktionen o(f) wie folgt definieren:

$$o(f) = \{g : \mathbb{N} \to \mathbb{R}^+ | \forall k > 0 \ \exists n_0 \in \mathbb{N} \ \forall n > n_0 \quad g(n) \le k \cdot f(n) \} .$$

Es gilt:

$$\lim_{n\to\infty}\frac{g(x)}{f(x)}=0\Leftrightarrow g\in o(f)$$

Verwenden Sie dies, um zu Zeigen, dass für beliebige konstante $k \in \mathbb{N}$ gilt: Frage 5.a:

$$\log^k(n) \in o(n)$$