1 Épreuve de Mathématiques

1.1 Partie I : Quelques cas déterministes

 $\mathbf{Q1}$: Pour prouver la convergence de la suite $(\gamma_n)_{n\in\mathbb{N}^*}$, nous montrerons qu'elle décroissante et minorée.

$$\gamma_{n+1} - \gamma_n = (H_{n+1} - H_n) - (\ln(n+1) - \ln(n))$$

= $\frac{1}{n+1} - \ln\left(1 + \frac{1}{n}\right)$

Mais puisque $\ln(1+x) \ge \frac{x}{1+x}$ on a donc $\ln\left(1+\frac{1}{n}\right) \ge \frac{1/n}{1+1/n} = \frac{1}{n+1}$. Par conséquent $\gamma_{n+1} \le \gamma_n$ et la suite $(\gamma_n)_{n \in \mathbb{N}^*}$ est décroissante. Par ailleurs, il est connu que $x \ge \ln(1+x)$, il s'en suit alors :

$$\gamma_n = \sum_{k=1}^n \frac{1}{k} - \ln(n)$$

$$\geq \sum_{k=1}^n \ln(1 + \frac{1}{n}) - \ln(n)$$

$$= \underbrace{\sum_{k=1}^n \ln(k+1) - \ln(k) - \ln(n)}_{\text{t\'elescopage}}$$

$$= \ln(n+1) - \ln(n) = \ln(1 + \frac{1}{n})$$

$$\geq 0.$$

Notre suite est aussi minorée d'où le résultat.

Q2a. Il suffit juste de manipuler l'opérateur \sum :

$$\sum_{n=1}^{2N} \frac{(-1)^n}{n} = \sum_{n=1}^{2N} \frac{1 + (-1)^n}{n} - \sum_{n=1}^{2N} \frac{1}{n}$$
$$= \sum_{n=1}^{N} \frac{2}{2n} - H_{2N}$$
$$= H_N - H_{2N}$$

 $\mathbf{Q2b}$. Notons la somme partielle $T_N = \sum_{n=1}^N \frac{(-1)^n}{n}$. La question est donc équivalente à prouver la convergence de $(T_n)_{n \in \mathbb{N}^*}$. Autrement il est suffisant de montrer la convergence des suites $(T_{2n})_{n \in \mathbb{N}^*}$ et $(T_{2n+1})_{n \in \mathbb{N}}$. Puisque $T_{2n} - T_{2n+1} = \frac{1}{2n+1}$, il est donc suffisant de prouver la convergence $(T_{2n})_{n \in \mathbb{N}^*}$. La relation précédente implique donc que $(T_{2n+1})_{n \in \mathbb{N}}$ converge et vers la même limite que $(T_{2n})_{n \in \mathbb{N}^*}$.

Par la question Q1, on a également $H_n = \ln(n) + \gamma + o(1)$. En conséquence :

$$T_{2N} = H_N - H_{2N}$$

= $(\ln(N) + \gamma) - (\ln(2N) + \gamma) + o(1)$
= $-\ln(2) + o(1)$

Ulrich GOUE -1-

Donc $\lim_{N\to\infty} T_{2N} = -\ln(2)$. Somme toute chose dite, la série $\sum \frac{(-1)^n}{n}$ converge et sa somme est $-\ln(2)$.

Q3. Notons $U_N = \sum_{n=1}^N \frac{\varepsilon_n}{n}$. Ici on prouve que la sous-suite $(U_{3n})_{n \in \mathbb{N}^*}$ diverge. Dans ce cas elle sera aussi équivalente aux sous-suites $(U_{3n+1})_{n \in \mathbb{N}}$ et $(U_{3n+2})_{n \in \mathbb{N}}$. Comme précédemment on va juste manipuler l'opérateur Σ :

$$U_{3N} = \sum_{n=1}^{3N} \frac{\varepsilon_n}{n}$$

$$= \sum_{n=1}^{3N} \frac{1}{n} - \sum_{n=1}^{N} \frac{2}{3n}$$

$$= H_{3N} - \frac{2}{3}H_N$$

$$= (\ln(3N) + \gamma) - \frac{2}{3}(\ln(N) + \gamma) + o(1)$$

$$= \frac{1}{3}\ln(N) + \ln(3) + \frac{\gamma}{3} + o(1)$$

Ainsi comme prédit, la suite $(U_{3n})_{n\in\mathbb{N}^*}$ converge vers $+\infty$, il en est alors de même pour $(U_{3n+1})_{n\in\mathbb{N}}$ et $(U_{3n+2})_{n\in\mathbb{N}}$. En gros la série $\sum \frac{\varepsilon_n}{n}$ diverge.

 $\mathbf{Q4a}$. On a:

$$\sum_{n=0}^{N} \left(\frac{1}{4n+1} - \frac{1}{4n+3} \right) = \sum_{n=0}^{2N+1} \frac{(-1)^n}{2n+1}$$

$$= \sum_{n=0}^{2N+1} \int_0^1 (-1)^n x^{2n} dx$$

$$= \int_0^1 \sum_{n=0}^{2N+1} (-1)^n x^{2n} dx$$

$$= \int_0^1 \frac{1 - (-x^2)^{2N+1+1}}{1 + x^2} dx$$

$$= \int_0^1 \frac{1 - x^{4N+4}}{1 + x^2} dx$$

Q4b. On procède en deux points. D'abord on note $W_N = \sum_{n=0}^N \left(\frac{1}{4n+1} - \frac{1}{4n+3}\right)$. Il vient :

$$\int_0^1 \frac{1}{1+x^2} dx = \left[\arctan(x)\right]_0^1 = \frac{\pi}{4}.$$

Maintenant on prouve la convergence :

$$|W_N - \frac{\pi}{4}| = |\int_0^1 \frac{1 - x^{4N+4}}{1 + x^2} dx - \int_0^1 \frac{1}{1 + x^2} dx |$$

$$= \int_0^1 \frac{x^{4N+4}}{1 + x^2} dx$$

$$\leq \int_0^1 x^{4N+4} dx$$

$$= \frac{1}{4N + 5} \to 0$$

Ainsi $\lim_{N\to\infty} W_N = \frac{\pi}{4}$, c.a.d $\sum_{n=0}^{+\infty} \left(\frac{1}{4n+1} - \frac{1}{4n+3}\right) = \frac{\pi}{4}$.

Ulrich GOUE -2-

Q4c. On a:

$$\sum_{n=0}^{N} \left(\frac{1}{4n+2} - \frac{1}{4n+4} \right) = \sum_{n=0}^{2N+1} \frac{(-1)^n}{2(n+1)}$$

$$= \frac{1}{2} \sum_{n=0}^{2N+1} \int_0^1 (-1)^n x^n dx$$

$$= \frac{1}{2} \int_0^1 \sum_{n=0}^{2N+1} (-1)^n x^n dx$$

$$= \frac{1}{2} \int_0^1 \frac{1 - (-x)^{2N+1+1}}{1 + x} dx$$

$$= \frac{1}{2} \int_0^1 \frac{1 - x^{2N+2}}{1 + x} dx$$

On note $X_N = \sum_{n=0}^N \left(\frac{1}{4n+2} - \frac{1}{4n+4}\right)$ et on prouve la convergence de $(X_n)_{n \in \mathbb{N}}$.

$$|X_N - \frac{\ln(2)}{2}| = \frac{1}{2} |\int_0^1 \frac{1 - x^{2N+2}}{1 + x} dx - \int_0^1 \frac{1}{1 + x} dx |$$

$$= \frac{1}{2} \int_0^1 \frac{x^{2N+2}}{1 + x} dx$$

$$\leq \frac{1}{2} \int_0^1 x^{2N+2} dx$$

$$= \frac{1}{4N + 6} \to 0$$

Ainsi $\lim_{N\to\infty} X_N = \frac{\ln(2)}{2}$, c.a.d $\sum_{n=0}^{+\infty} \left(\frac{1}{4n+2} - \frac{1}{4n+2}\right) = \frac{\ln(2)}{2}$. Pour prouver la convergence de $\sum_{n=0}^{\infty} \frac{\varepsilon_n}{n}$, convergence qui peut se résumer en la convergence de $(Z_n)_{n\in\mathbb{N}^*}$ où $Z_N=\sum_{n=0}^N\frac{\varepsilon_n}{n}$, il suffit tout simplement de montrer que $(Z_{4n})_{n\in\mathbb{N}^*}$ converge en utilisant le même type d'argument qu'à la question Q2b. Or $Z_{4N+4}=W_N+X_N$, ce qui prouve la converge de $(Z_{4n})_{n\in\mathbb{N}^*}$ et la limite est la somme de la limite des deux suites $(W_n)_{n\in\mathbb{N}}$ et $(X_n)_{n\in\mathbb{N}}$ à savoir $\frac{\pi}{4} + \frac{\ln(2)}{2}$. Finalement la série $\sum \frac{\varepsilon_n}{n}$ converge et sa somme est $\frac{\pi}{4} + \frac{\ln(2)}{2}$.

Q5a ¹ Il suffit de faire le bon regroupement :

$$\begin{split} \sum_{k=2pn+1}^{2pn+2p} \frac{\varepsilon_n}{n} &= \sum_{i=1}^p \frac{1}{2pn+i} - \frac{1}{2pn+p+i} \\ &= \sum_{i=1}^p \frac{p}{(2pn+i)(2pn+p+i)} \\ &\leq \sum_{i=1}^p \frac{p}{(2pn)(2pn)} \\ &= \frac{p^2}{4p^2n^2} \\ &= \frac{1}{4n^2} \end{split}$$

Q5b. En réalité à la question précédente on a montré 2 que $S_{2p(n+1)} - S_{2pn} \leq \frac{1}{4n^2}$. Mais on s'aperçoit facilement grâce à la question précédente que $S_{2p(n+1)}-S_{2pn}\geq 0$, ainsi la suite $(S_{2pn})_{n\in\mathbb{N}^*}$ est croissante. Donc si nous

Ulrich GOUE -3-

^{1.} Dans cette preuve, on améliore la majoration de l'énoncé 2. Le lecteur pourra remarquer : $S_{2p(n+1)}-S_{2pn}=\sum_{k=2pn+1}^{2pn+2p}\frac{\varepsilon_n}{n}$

prouvons qu'elle est majorée nous avons terminé. Pour y arriver on écrit :

$$S_{2pn} = S_{2p} + \sum_{k=1}^{n-1} S_{2p(k+1)} - S_{2pk}$$

$$\leq S_{2p} + \frac{1}{4} \sum_{k=1}^{n-1} \frac{1}{k^2}$$

$$\leq S_{2p} + \frac{1}{4} \sum_{k=1}^{+\infty} \frac{1}{k^2}$$

$$= S_{2p} + \frac{\sigma}{4}$$

où $\sigma=\sum_{k=1}^{+\infty}\frac{1}{k^2}(=\frac{\pi^2}{6}).$ La suite est ainsi bornée. C.Q.F.D.

Q5c. On note $S_n = \sum_{k=1}^n \frac{\varepsilon_k}{k}$. Pour prouver la convergence de la série $\sum_{n=1}^\infty \frac{\varepsilon_n}{n}$, il suffit de prouver la convergence des suites $(S_{2pn+i})_{n\in\mathbb{N}^*}$ vers la même limite pour $i\in\{0,1,...,2p-1\}$. A la question précédente, on vient juste de prouver que $(S_{2pn})_{n\in\mathbb{N}^*}$ convergence. Maintenant pour $i\in\{1,...,2p-1\}$, on a :

$$S_{2pn+i} = S_{2pn} + \sum_{k=1}^{i} \frac{\varepsilon_{2pn+k}}{2pn+k}$$

De la relation précédente on voit bien que $(S_{2pn+i})_{n\in\mathbb{N}^*}$ est convergente et converge vers la même limite que $(S_{2pn})_{n\in\mathbb{N}^*}$. Ceci conclut notre preuve et on peut bien écrire :

$$\Sigma_p = \sum_{n=1}^{+\infty} \frac{\varepsilon_n}{n}$$

 $\mathbf{Q6a}$. On manipule habilement l'opérateur \sum

$$\begin{split} \sum_{n=0}^{N} \left(\frac{1}{2pn+1} + \ldots + \frac{1}{2pn+p} - \frac{1}{2pn+p+1} - \ldots - \frac{1}{2pn+p} \right) &= \sum_{n=0}^{N} \sum_{i=1}^{p} \left(\frac{1}{2pn+i} - \frac{1}{2pn+p+i} \right) \\ &= \sum_{n=0}^{N} \sum_{i=1}^{p} \int_{0}^{1} (x^{2pn+i-1} - x^{2pn+p+i-1}) dx \\ &= \sum_{n=0}^{N} \sum_{i=1}^{p} \int_{0}^{1} x^{i-1} (1-x^{p}) x^{2pn} dx \\ &= \sum_{n=0}^{N} \int_{0}^{1} \sum_{i=1}^{p} x^{i-1} (1-x^{p}) x^{2pn} dx \\ &= \sum_{n=0}^{N} \int_{0}^{1} (1+x+\ldots + x^{p-1}) (1-x^{p}) x^{2pn} dx \end{split}$$

Ulrich GOUE -4-

Q6b. Toujours en utilisant la question précédente :

$$\begin{split} S_{2p(N+1)} &= \sum_{n=0}^{N} \left(\frac{1}{2pn+1} + \ldots + \frac{1}{2pn+p} - \frac{1}{2pn+p+1} - \ldots - \frac{1}{2pn+p} \right) \\ &= \sum_{n=0}^{N} \int_{0}^{1} (1+x+\ldots + x^{p-1})(1-x^{p}) x^{2pn} dx \\ &= \int_{0}^{1} (1+x+\ldots + x^{p-1})(1-x^{p}) \sum_{n=0}^{N} x^{2pn} dx \\ &= \int_{0}^{1} (1+x+\ldots + x^{p-1})(1-x^{p}) \frac{1-x^{2p(N+1)}}{1-x^{2p}} dx \\ &= \int_{0}^{1} (1+x+\ldots + x^{p-1})(1-x^{p}) \frac{1-x^{2p(N+1)}}{(1-x^{p})(1+x^{p})} dx \\ &= \int_{0}^{1} \frac{1+x+\ldots + x^{p-1}}{1+x^{p}} (1-x^{2p(N+1)}) dx \\ &= \int_{0}^{1} \frac{1+x+\ldots + x^{p-1}}{1+x^{p}} dx - \int_{0}^{1} \frac{1+x+\ldots + x^{p-1}}{1+x^{p}} x^{2p(N+1)} dx \end{split}$$

Il reste maintenant à prouver que $\int_0^1 \frac{1+x+\ldots+x^{p-1}}{1+x^p} x^{2p(N+1)} dx \to 0$:

$$\begin{split} \int_0^1 \frac{1+x+\ldots+x^{p-1}}{1+x^p} x^{2p(N+1)} dx & \leq & \int_0^1 p x^{2p(N+1)} dx \\ & = & \frac{p}{2pN+2p+1} \to 0 \end{split}$$

D'où

$$\lim_{N \to +\infty} S_{2p(N+1)} = \int_0^1 \frac{1 + x + \dots + x^{p-1}}{1 + x^p} dx$$

Q6c. A Q5c on a prouvé que $\Sigma_p = \lim_{N \to +\infty} S_{2pN}$, or on sait également que :

$$\lim_{N \to +\infty} S_{2p(N+1)} = \lim_{N \to +\infty} S_{2pN} = \int_0^1 \frac{1 + x + \dots + x^{p-1}}{1 + x^p} dx$$

En d'autres termes : $\Sigma_p = \int_0^1 \frac{1+x+...+x^{p-1}}{1+x^p} dx$.

Q7a. Posons $\phi(x) = \frac{1}{b} \arctan\left(\frac{x-a}{b}\right)$, alors :

$$\phi'(x) = \frac{1}{b} \frac{\frac{1}{b}}{1 + \left(\frac{x-a}{b}\right)^2} = \frac{1}{(x-a)^2 + b^2}$$

Q7b. En gardant à l'esprit que : $x^3 + 1 = (x+1)(x^2 - x + 1)$ on a :

$$\Sigma_3 = \int_0^1 \frac{1+x+x^2}{1+x^3} dx$$

$$= \int_0^1 \frac{1+x}{1+x^3} dx + \int_0^1 \frac{x^2}{1+x^3} dx$$

$$= \int_0^1 \frac{1}{1-x+x^2} dx + \frac{1}{3} \left[\ln(1+x^3) \right]_0^1$$

$$= \int_0^1 \frac{1}{1-x+x^2} dx + \frac{1}{3} \ln(2)$$

Ulrich GOUE -5-

On a aussi :

$$\int_0^1 \frac{1}{x^2 - x + 1} dx = \int_0^1 \frac{1}{(x - \frac{1}{2})^2 + (\frac{\sqrt{3}}{2})^2} dx$$

$$= \left[\frac{2}{\sqrt{3}} \arctan\left(\frac{2x - 1}{\sqrt{3}}\right) \right]_0^1$$

$$= \frac{2}{\sqrt{3}} \left[\arctan\left(\frac{1}{\sqrt{3}}\right) - \arctan\left(\frac{-1}{\sqrt{3}}\right) \right]$$

$$= \frac{2}{\sqrt{3}} \times 2 \arctan\left(\frac{1}{\sqrt{3}}\right) = \frac{2}{\sqrt{3}} \times 2 \times \frac{\pi}{6}$$

$$= \frac{2\pi}{3\sqrt{3}}$$

D'où $\Sigma_3 = \frac{2\pi}{3\sqrt{3}} + \frac{1}{3}\ln(2)$.

Q8a. Cette intégrale est seulement impropre en $+\infty$ car la fonction sous-jacente est continue en 0. En ce qui concerne la borne $+\infty$, on remarque que $\frac{1+x+\ldots+x^{p-2}}{1+x^p}=o\left(\frac{1}{x^{3/2}}\right)$. Comme $x\mapsto\frac{1}{x^{3/2}}$ est intégrable au voisinage de $+\infty$, il en est de même que $x\mapsto\frac{1+x+\ldots+x^{p-2}}{1+x^p}$. Par conséquent $\int_0^{+\infty}\frac{1+x+\ldots+x^{p-2}}{1+x^p}dx$ converge.

$$\int_{0}^{+\infty} \frac{1+x+\ldots+x^{p-2}}{1+x^{p}} dx = \int_{0}^{1} \frac{1+x+\ldots+x^{p-2}}{1+x^{p}} dx + \int_{1}^{+\infty} \frac{1+x+\ldots+x^{p-2}}{1+x^{p}} dx$$

$$= \int_{0}^{1} \frac{1+x+\ldots+x^{p-2}}{1+x^{p}} dx + \int_{1}^{+\infty} \frac{1+x+\ldots+x^{p-2}}{1+x^{p}} \frac{dx}{x^{2}}$$

$$= \int_{0}^{1} \frac{1+x+\ldots+x^{p-2}}{1+x^{p}} dx + \int_{1}^{+\infty} \frac{1+\frac{1}{x}+\ldots+\frac{1}{x^{p-2}}}{1+\frac{1}{x^{p}}} \frac{dx}{x^{2}}$$

$$= \int_{0}^{1} \frac{1+x+\ldots+x^{p-2}}{1+x^{p}} dx + \int_{1}^{+\infty} \frac{1+\frac{1}{x}+\ldots+\frac{1}{x^{p-2}}}{1+\frac{1}{x^{p}}} d\left(\frac{-1}{x}\right)$$

$$= \int_{0}^{1} \frac{1+x+\ldots+x^{p-2}}{1+x^{p}} dx - \int_{1}^{0} \frac{1+x+\ldots+x^{p-2}}{1+x^{p}} dx$$

$$= 2\int_{0}^{1} \frac{1+x+\ldots+x^{p-2}}{1+x^{p}} dx$$

Avec ce dernier résultat, on achève comme suit :

$$\Sigma_{p} = \int_{0}^{1} \frac{1+x+\ldots+x^{p-1}}{1+x^{p}} dx$$

$$= \int_{0}^{1} \frac{x^{p-1}}{1+x^{p}} dx + \int_{0}^{1} \frac{1+x+\ldots+x^{p-2}}{1+x^{p}} dx$$

$$= \left[\frac{\ln(1+x^{p})}{p} \right]_{0}^{1} + \frac{1}{2} \int_{0}^{+\infty} \frac{1+x+\ldots+x^{p-2}}{1+x^{p}} dx$$

$$= \frac{\ln(2)}{p} + \frac{1}{2} \int_{0}^{+\infty} \frac{1+x+\ldots+x^{p-2}}{1+x^{p}} dx$$

Q8b. Il suffit de faire le bon changement de variable comme suit :

$$\int_0^{+\infty} \frac{x(1+x^2+x^4+\ldots+x^{2p-4})}{1+x^{2p}} dx = \frac{1}{2} \int_0^{+\infty} \frac{(1+x^2+(x^2)^2+\ldots+(x^2)^{p-2})}{1+(x^2)^p} d(x^2)$$

$$=_{(u=x^2)} \frac{1}{2} \int_0^{+\infty} \frac{(1+u+u^2+\ldots+u^{p-2})}{1+u^p} du$$

Ulrich GOUE -6-

Q8c. On utilise les informations de Q8a et Q8b :

$$\Sigma_{2p} = \frac{\ln(2)}{2p} + \frac{1}{2} \int_{0}^{+\infty} \frac{1 + x + \dots + x^{2p-2}}{1 + x^{2p}} dx$$

$$= \frac{\ln(2)}{2p} + \frac{1}{2} \int_{0}^{+\infty} \frac{x(1 + x^{2} + x^{4} + \dots + x^{2p-4})}{1 + x^{2p}} dx + \frac{1}{2} \int_{0}^{+\infty} \frac{1 + x^{2} + x^{4} + \dots + x^{2p-2}}{1 + x^{2p}} dx$$

$$= \frac{\ln(2)}{2p} + \frac{1}{4} \int_{0}^{+\infty} \frac{1 + x + \dots + x^{p-2}}{1 + x^{p}} dx + \frac{1}{2} \int_{0}^{+\infty} \frac{1 + x^{2} + x^{4} + \dots + x^{2p-2}}{1 + x^{2p}} dx$$

$$= \frac{1}{2} \left(\frac{\ln(2)}{p} + \frac{1}{2} \int_{0}^{+\infty} \frac{1 + x + \dots + x^{p-2}}{1 + x^{p}} dx \right) + \frac{1}{2} \int_{0}^{+\infty} \frac{1 + x^{2} + x^{4} + \dots + x^{2p-2}}{1 + x^{2p}} dx$$

$$= \frac{1}{2} \Sigma_{p} + \frac{1}{2} \int_{0}^{+\infty} \frac{1 + x^{2} + x^{4} + \dots + x^{2p-2}}{1 + x^{2p}} dx$$

Q9a. On note $g_{\alpha}(t) = \frac{1}{t - e^{i\alpha}}$. Cherchons une primitive G_{α} de g_{α} :

$$g_{\alpha}(t) = \frac{1}{t - \cos(\alpha) - i\sin(\alpha)}$$
$$= \frac{t - \cos(\alpha) + i\sin(\alpha)}{t - \cos(\alpha)^2 + \sin^2(\alpha)}$$

On peut donc choisir comme primitive:

$$G_{\alpha}(t) = \frac{1}{2} \ln \left((t - \cos(\alpha))^2 + \sin^2(\alpha) \right) + i \operatorname{sign}(\sin(\alpha)) \arctan \left(\frac{t - \cos(\alpha)}{|\sin(\alpha)|} \right)$$

Donc:

$$\int_{-A}^{A} \frac{dt}{t - e^{i\alpha}} = \frac{1}{2} \ln \left(\frac{(A - \cos(\alpha))^2 + \sin^2(\alpha)}{(A + \cos(\alpha))^2 + \sin^2(\alpha)} \right) + i \operatorname{sign}(\sin(\alpha)) \left[\arctan \left(\frac{A - \cos(\alpha)}{|\sin(\alpha)|} \right) + \arctan \left(\frac{A + \cos(\alpha)}{|\sin(\alpha)|} \right) \right]$$

Par conséquent :

$$\lim_{A \to +\infty} \int_{-A}^{A} \frac{dt}{t - e^{i\alpha}} = \frac{1}{2} \ln(1) + i \operatorname{sign}(\sin(\alpha)) \left(\frac{\pi}{2} + \frac{\pi}{2}\right)$$
$$= i \operatorname{sign}(\sin(\alpha)) \pi$$
$$= \begin{cases} i\pi & \text{si } \alpha \in]0, \pi[\\ -i\pi & \text{sinon} \end{cases}$$

Q9bi. Dans cette question il s'agit de prouver qu'il existe un unique polybôme L_r de $\mathbb{C}_{2p-1}[X]$ vérifiant $L_r(z_k) = \delta_{kr}$ pour $0 \le k \le 2p-1$, δ_{kr} étant le symbôle de Kronecker. On prouve l'existance en posant :

$$L_r = \frac{\prod_{1 \le i \le 2p-1, i \ne r} (X - z_i)}{\prod_{1 \le i \le 2p-1, i \ne r} (z_r - z_i)}$$

A ce niveau, on voit sans difficulté que $L_r(z_k) = \delta_{kr}$. Quant à l'unicité, supposons par l'absurde qu'il existe un autre polynôme L'_r de $\mathbb{C}_{2p-1}[X]$ vérifiant les mêmes conditions que L_r . Dans de telles considérations le polynôme $L'_r - L_r$ serait un polynôme de $\mathbb{C}_{2p-1}[X]$ aynat plus de 2p-1 racines (exactement 2p) qui sont les z_k avec $0 \le k \le 2p-1$. Contradiction! D'où l'unicité.

Q9bii. Notons $\mathcal{B} = (L_0, L_1, ..., L_{2p-1})$. On montre d'abord que \mathcal{B} est une famille libre de $\mathbb{C}_{2p-1}[X]$. On considère

Ulrich GOUE -7-

des nombres complexes $\beta_0, \beta_1, ..., \beta_{2p-1}$ tels que $\sum_{k=0}^{2p-1} \beta_k L_k = 0$. Il est aussi vrai que :

$$\forall x \in \mathbb{C}, \quad \sum_{k=0}^{2p-1} \beta_k L_k(x) = 0$$

En prenant $x=z_k$, on obtient bel et bien $\beta_k=0$. La famille \mathcal{B} est par conséquent libre. Toutefois elle est libre maximale car dim($\mathbb{C}_{2p-1}[X]$) = 2p, elle est donc une base.

Q9ci. Avant de répondre clairement à cette question, il est important de remarquer que les z_k $(0 \le k \le 2p-1)$ sont les zéros du polynôme $1 + X^{2p}$. La famille \mathcal{B} étant une base de $\mathbb{C}_{2p-1}[X]$, il existe donc des nombres complexes $\lambda_0',\lambda_1',...,\lambda_{2p-1}'$ tels que $X^{2q}=\sum_{k=0}^{2p-1}\lambda_k'L_k=0.$ On n'a plus qu'à remarquer que :

$$\frac{L_k(t)}{1+t^{2p}} = \frac{1}{\prod_{1 \le i \le 2p-1, i \ne k} (z_k - z_i)} \frac{\prod_{1 \le i \le 2p-1, i \ne k} (t - z_i)}{\prod_{1 \le i \le 2p-1} (t - z_i)}$$
$$= \frac{1}{\prod_{1 \le i \le 2n-1, i \ne k} (z_k - z_i)} \frac{1}{(t - z_k)}$$

Donc en posant $\lambda_k=\lambda_k'/[\prod_{1\leq i\leq 2p-1, i\neq k}(z_k-z_i)],$ et en particulier pour un réel t :

$$\frac{t^{2q}}{1+t^{2p}} = \sum_{k=0}^{2p-1} \lambda'_k \frac{L_k(t)}{1+t^{2p}}$$

$$= \sum_{k=0}^{2p-1} \lambda'_k \frac{1}{\prod_{1 \le i \le 2p-1, i \ne k} (z_k - z_i)} \frac{1}{(t - z_k)}$$

$$= \sum_{k=0}^{2p-1} \frac{\lambda_k}{t - z_k}$$

Q9cii. De la question précédente on peut écrire

$$\frac{t^{2q+1}}{1+t^{2p}} = \sum_{k=0}^{2p-1} \lambda_k \frac{t}{t-z_k}$$

. Maintenant $\lim_{t\to+\infty}\frac{t}{t-z_k}=1$ et $\lim_{t\to+\infty}\frac{t^{2q+1}}{1+t^{2p}}=0$ car $2q+1<2p^4$. En faisant tendre la dernière relation vers l'infini, on obtien bel et bien :

$$\sum_{k=0}^{2p-1} \lambda_k = 0$$

Q9ciii. Comme $\frac{t^{2q}}{1+t^{2p}} = \sum_{k=0}^{2p-1} \frac{\lambda_k}{t-z_k}$ donc $\lambda_k = \lim_{t\to z_k} t^{2q} \frac{t-z_k}{1+t^{2p}}$. En poursuivant les calculs :

$$\lambda_k = z_k^{2q} \lim_{t \to z_k} \frac{t - z_k}{1 + t^{2p}}$$

$$= z_k^{2q} \lim_{t \to z_k} \frac{1}{2pt^{2p-1}} \text{ (règle de l'hopital)}$$

$$= z_k^{2q} \frac{1}{2pz_k^{2p-1}}$$

$$= z_k^{2q} \frac{1}{2p(-z_l^{-1})} = -\frac{z_k^{2q+1}}{2p} \text{ (car } z_k^{2p} = -1)$$

- 3. donc $1+X^{2p}=\prod_{1\leq i\leq 2p-1}(X-z_i).$ 4. En effet $q\leq p-1$ implique que $2q+1\leq 2p-1<2p$

Ulrich GOUE -8Q9d. On va s'engager dans un long calcul...

$$\begin{split} \int_{-\infty}^{\infty} \frac{x^{2q}}{1+x^{2p}} dx &= \lim_{A \to +\infty} \int_{-A}^{A} \frac{x^{2q}}{1+x^{2p}} dx \\ &= \lim_{A \to +\infty} \int_{-A}^{A} \sum_{k=0}^{2p-1} \frac{\lambda_k}{x-z_k} dx \\ &= \lim_{A \to +\infty} \int_{-A}^{A} \sum_{k=0}^{p-1} \left(\frac{\lambda_k}{x-z_k} + \frac{\lambda_{k+p}}{x-z_{k+p}} \right) dx \\ &= \sum_{k=0}^{p-1} \lim_{A \to +\infty} \int_{-A}^{A} \left(\frac{\lambda_k}{x-z_k} + \frac{\lambda_{k+p}}{x-z_{k+p}} \right) dx \\ &= \sum_{k=0}^{p-1} (\lambda_k i\pi - \lambda_{k+p} i\pi) \left[\text{car } \arg(z_k) \in]0, \pi[\text{ et } \arg(z_{k+p}) \in]\pi, 2\pi[\ \] \\ &= \sum_{k=0}^{p-1} 2\lambda_k i\pi = -\sum_{k=0}^{p-1} 2\frac{z_k^{2q+1}}{2p} i\pi \\ &= -\frac{i\pi}{p} \sum_{k=0}^{p-1} z_k^{2q+1} \end{split}$$

Maintenant on conclut en utilisant la parité de $x \mapsto \frac{x^{2q}}{1+x^{2p}}$:

$$\begin{split} \int_0^\infty \frac{x^{2q}}{1+x^{2p}} dx &= \frac{1}{2} \int_{-\infty}^\infty \frac{x^{2q}}{1+x^{2p}} dx \\ &= -\frac{i\pi}{2p} \sum_{k=0}^{p-1} z_k^{2q+1} \\ &= -\frac{i\pi}{2p} \sum_{k=0}^{p-1} \exp\left(\left[\frac{(2k+1)(2q+1)}{2p}\right] i\pi\right) \end{split}$$

Q10. En utilisant Q8c avec p = 2 on a :

$$\Sigma_4 = \frac{1}{2}\Sigma_2 + \frac{1}{2}\int_0^{+\infty} \frac{1+x^2}{1+x^4} dx$$

. D'après la question Q4c on a : $\Sigma_2 = \frac{\pi}{4} + \frac{\ln(2)}{2}.$ Maintenant en utilisant Q9d

$$\int_0^\infty \frac{1}{1+x^4} dx = -\frac{i\pi}{4} \left[\exp\left(\frac{i\pi}{4}\right) + \exp\left(\frac{i\pi}{4}\right) \right] = -\frac{i\pi}{4} \left(\frac{2i}{\sqrt{2}}\right) = \frac{\pi}{2\sqrt{2}}$$

$$\int_0^\infty \frac{x^2}{1+x^4} dx = -\frac{i\pi}{4} \left[\exp\left(\frac{3i\pi}{4}\right) + \exp\left(\frac{9i\pi}{4}\right) \right] = -\frac{i\pi}{4} \left(\frac{2i}{\sqrt{2}}\right) = \frac{\pi}{2\sqrt{2}}$$

Ainsi:

$$\Sigma_4 = \frac{1}{2} \left(\frac{\pi}{4} + \frac{\ln(2)}{2} \right) + \frac{1}{2} \left(\frac{\pi}{2\sqrt{2}} + \frac{\pi}{2\sqrt{2}} \right)$$
$$= \frac{1}{4} \left[\pi \left(\frac{1}{2} + \sqrt{2} \right) + \ln(2) \right]$$

Ulrich GOUE -9-

1.2 Partie II : Un cas aléatoire

A1ai. On remarque déjà que les ensembles de la forme $\{|S_n - S_p| \le \varepsilon\}$ sont mésurables, i.e. $\{|S_n - S_p| \le \varepsilon\} \in \mathcal{A}$. Du coup $\bigcap_{n,p \ge N} \{|S_n - S_p| \le \varepsilon\} \in \mathcal{A}$ puisqu'il est une intersection dénombrable d'ensembles mésurables. Egalement par un argument similaire (union dénombrable) on a aussi $\bigcup_{N=1}^{+\infty} \bigcap_{n,p \ge N} \{|S_n - S_p| \le \varepsilon\} \in \mathcal{A}$.

A1aii. On raisonne simplement par équivalence :

$$\omega \in \mathcal{C} \quad \Leftrightarrow \quad \forall \varepsilon > 0 \quad \exists N \in \mathbb{N}^* \quad \forall (n,p) \in \mathbb{N}^2 \quad (p \ge N \text{ et } n \ge N \Rightarrow |S_n - S_p| \le \varepsilon).$$

$$\Leftrightarrow \quad \forall \varepsilon > 0 \quad \exists N \in \mathbb{N}^* \quad \omega \in \cap_{n,p \ge N} \{|S_n - S_p| \le \varepsilon\}$$

$$\Leftrightarrow \quad \forall \varepsilon > 0 \quad \omega \in \cup_{N=1}^{+\infty} \cap_{n,p \ge N} \{|S_n - S_p| \le \varepsilon\}$$

$$\Leftrightarrow \quad \forall \varepsilon > 0 \quad \omega \in B(\varepsilon)$$

$$\Leftrightarrow \quad \omega \in \cap_{\varepsilon > 0} B(\varepsilon)$$

Ce qui veut dire que :

$$\mathcal{C} = \cap_{\varepsilon > 0} B(\varepsilon)$$

A1aiii. Soit ε et ε' tels que $0 < \varepsilon < \varepsilon'$:

$$\{|S_n - S_p| \le \varepsilon\} \subseteq \{|S_n - S_p| \le \varepsilon'\}$$

D'où:

$$\bigcup_{N=1}^{+\infty} \cap_{n,p>N} \{ |S_n - S_p| \le \varepsilon \} \subseteq \bigcup_{N=1}^{+\infty} \cap_{n,p>N} \{ |S_n - S_p| \le \varepsilon' \}$$

En d'autres termes :

$$B(\varepsilon) \subseteq B(\varepsilon')$$

A1aiv. On sait que $\frac{1}{k} > 0$ pour tout $k \in \mathbb{N}^*$ donc :

$$\cap_{\varepsilon>0}B(\varepsilon)\subseteq\cap_{k=1}^{+\infty}B\left(\frac{1}{k}\right)$$

Maintenant considérons $\omega \in \bigcap_{k=1}^{+\infty} B\left(\frac{1}{k}\right)$. Et soit $\varepsilon > 0$, alors il existe un entier $k_0 \in \mathbb{N}^*$ tel que $\frac{1}{k_0} < \varepsilon$. Et commme $B\left(\frac{1}{k_0}\right) \subseteq B(\varepsilon)$, alors $\omega \in B(\varepsilon)$. i.e. $\omega \in \bigcap_{\varepsilon > 0} B(\varepsilon)$. On a alors notre dernière inclusion :

$$\cap_{k=1}^{+\infty} B\left(\frac{1}{k}\right) \subseteq \cap_{\varepsilon > 0} B(\varepsilon)$$

Avec ces deux inclusions on a bien:

$$\bigcap_{k=1}^{+\infty} B\left(\frac{1}{k}\right) = \bigcap_{\varepsilon > 0} B(\varepsilon) \text{ soit } \mathcal{C} = \bigcap_{k=1}^{+\infty} B\left(\frac{1}{k}\right)$$

A2a. Supposons que $\mathbb{P}\left(B\left(\frac{1}{k}\right)\right) = 1$ pour tout $k \in \mathbb{N}^*$. Mais en remarquant que la suite $\left(B\left(\frac{1}{k}\right)\right)_{k \in \mathbb{N}^*}$ est parfaitement

Ulrich GOUE -10-

décroissante, on a :

$$\mathbb{P}(\mathcal{C}) = \mathbb{P}\left(\cap_{k=1}^{+\infty} B\left(\frac{1}{k}\right)\right)$$
$$= \lim_{k \to +\infty} \mathbb{P}\left(B\left(\frac{1}{k}\right)\right)$$
$$= \lim_{k \to +\infty} 1$$
$$= 1.$$

Maintenant supposons que $\mathbb{P}(\mathcal{C}) = 1$. Alors il suffit de remarquer que :

$$1 = \mathbb{P}(\mathcal{C}) = \mathbb{P}\left(\cap_{k=1}^{+\infty} B\left(\frac{1}{k}\right)\right) \le \mathbb{P}\left(B\left(\frac{1}{k}\right)\right) \le 1$$

Par conséquent $\mathbb{P}\left(B\left(\frac{1}{k}\right)\right)=1$ pour tout $k\in\mathbb{N}^*$. Ceci achève l'équivalence.

A2b. Montrons d'abord l'équivalence :

$$\mathbb{P}\left(B\left(\frac{1}{k}\right)\right) = 1, \forall k \in \mathbb{N}^* \Leftrightarrow \mathbb{P}\left(B\left(\varepsilon\right)\right) = 1, \forall \varepsilon > 0$$

On a clairement l'inclusion ci-dessous comme acquise car $\frac{1}{k}>0$ pour $k\in\mathbb{N}^*$:

$$\mathbb{P}\left(B\left(\varepsilon\right)\right) = 1, \forall \varepsilon > 0 \Longrightarrow \mathbb{P}\left(B\left(\frac{1}{k}\right)\right) = 1, \forall k \in \mathbb{N}^*$$

Maintenant supposons que $\mathbb{P}\left(B\left(\frac{1}{k}\right)\right)=1, \forall k\in\mathbb{N}^*$. On sait que pour $\varepsilon>0$, alors il existe un entier $k_0\in\mathbb{N}^*$ tel que $\frac{1}{k_0}<\varepsilon$. Et commme $B\left(\frac{1}{k_0}\right)\subseteq B(\varepsilon)$, il s'en suit :

$$1 = \mathbb{P}\left(B\left(\frac{1}{k_0}\right)\right) \le \mathbb{P}\left(B\left(\varepsilon\right)\right) \le 1$$

Alors $\mathbb{P}(B(\varepsilon)) = 1, \forall \varepsilon > 0$. Ceci achève notre équivalence. On repond maintenant à la question comme-ci :

$$\mathbb{P}(\mathcal{C}) = 1 \quad \Leftrightarrow \quad \mathbb{P}\left(B\left(\frac{1}{k}\right)\right) = 1, \forall k \in \mathbb{N}^*$$

$$\Leftrightarrow \quad \mathbb{P}\left(B\left(\varepsilon\right)\right) = 1, \forall \varepsilon > 0$$

$$\Leftrightarrow \quad \mathbb{P}\left(\cup_{N=1}^{+\infty} \cap_{n,p \geq N} \left\{|S_n - S_p| \leq \varepsilon\right\}\right) = 1, \forall \varepsilon > 0$$

$$\Leftrightarrow \quad \mathbb{P}\left(\cap_{N=1}^{+\infty} \cup_{n,p \geq N} \left\{|S_n - S_p| > \varepsilon\right\}\right) = 0, \forall \varepsilon > 0 \text{ (par passage au complémentaire)}$$

A2c. Posons $C_N(\varepsilon) = \bigcup_{n,p \geq N} \{|S_n - S_p| > \varepsilon\}$, mais sans problèmes il apparaît clairement $(C_N(\varepsilon))_{N \in \mathbb{N}^*}$ est une suite décroissante donc :

$$\mathbb{P}\left(\cap_{N=1}^{+\infty} \cup_{n,p \ge N} \{|S_n - S_p| > \varepsilon\}\right) = \lim_{N \to +\infty} \mathbb{P}\left(\cup_{n,p \ge N} \{|S_n - S_p| > \varepsilon\}\right)$$

Ulrich GOUE -11-

Alors avec ce résultat, il nous suffit juste d'utiliser l'information de la question A2b:

$$\mathbb{P}(\mathcal{C}) = 1 \quad \Leftrightarrow \quad \mathbb{P}\left(\bigcap_{N=1}^{+\infty} \cup_{n,p \ge N} \{|S_n - S_p| > \varepsilon\}\right) = 0, \forall \varepsilon > 0$$
$$\Leftrightarrow \quad \lim_{N \to +\infty} \mathbb{P}\left(\cup_{n,p \ge N} \{|S_n - S_p| > \varepsilon\}\right) = 0, \forall \varepsilon > 0$$

C.Q.F.D.

B1a. Il suffit d'utiliser une définition de la théorie de la mesure ⁵

$$\mathbb{E}(\mathbf{1}_A) = \int \mathbf{1}_A d\mathbb{P} = \int_A d\mathbb{P} = \mathbb{P}(A)$$

B1b. Cette question est très facile:

$$\mathbb{E}(S_p - S_N) = \mathbb{E}\left(\sum_{k=N+1}^p Y_k\right)$$
$$= \sum_{k=N+1}^p \mathbb{E}(Y_k)$$
$$= 0 \left(\operatorname{car} \mathbb{E}(Y_k) = 0, \forall k \in \mathbb{N}^*\right)$$

$$\mathbb{E}\left((S_p - S_N)^2\right) = \mathbb{E}\left(\left(\sum_{k=N+1}^p Y_k\right)^2\right)$$

$$= \mathbb{E}\left(\sum_{k=N+1}^p Y_k^2 + 2\sum_{N+1 \le i < j \le p} Y_i Y_j\right)$$

$$= \mathbb{E}\left(\sum_{k=N+1}^p Y_k^2\right) + 2\mathbb{E}\left(\sum_{N+1 \le i < j \le p} Y_i Y_j\right)$$

$$= \sum_{k=N+1}^p \mathbb{E}\left(Y_k^2\right) + 2\sum_{N+1 \le i < j \le p} \underbrace{\mathbb{E}(Y_i Y_j)}_{=0}$$

$$= \sum_{k=N+1}^p \mathbb{E}\left(Y_k^2\right)$$

B2. Pour k > N:

$$[T_N = k] = \left(\bigcup_{p=N+1}^{k-1} \{ |S_p - S_N| \le \varepsilon \} \right) \cap \{ |S_k - S_N| > \varepsilon \}$$

En conséquence $[T_N = k]$ est mésurable ⁶, i.e. $[T_N = k] \in \mathcal{A}$ pour tout k > N. On remarque que pour $k \leq N$, $[T_N = k] = \emptyset \in \mathcal{A}$. Ainsi on voit bien que pour tout $k \in \mathbb{N}^*$, $[T_N = k] \in \mathcal{A}$ ainsi T_N est bien une variable aléatoire, en d'autres termes elle est une variable aléatoire.

B3a. Par définition de T_N , lorsque T_N est fini alors $\varepsilon < |S_{T_N} - S_N|$ donc :

$$\varepsilon^2 \mathbf{1}_{T_N = k} \le (S_k - S_N)^2 \mathbf{1}_{[T_N = k]}$$

Ulrich GOUE -12-

^{5.} Un peu utiliser une preuve relevant du calcul-proba en remarquant $\mathbf{1}_A$ est une loi de Bernouilli vérifiant que $\mathbb{P}(\mathbf{1}_A=1)=\mathbb{P}(A)$.

^{6.} Le premier membre de la relation précédente étant mésurble car il est une union finie d'ensembles dénombrables.

En appliquant l'opérateur de l'espérance \mathbb{E} à la relation précédente, alors :

$$\varepsilon^2 \mathbb{P}(T_N = k) \le \mathbb{E}\left((S_k - S_N)^2 \mathbf{1}_{[T_N = k]}\right)$$

B3b. On sait que : $S_p - S_k = \sum_{j=k+1}^p Y_j = f(Y_{k+1}, \dots, Y_p)$ pour une certaine fonction f. Aussi

$$(S_k - S_N)\mathbf{1}_{[T_N = k]} = \begin{cases} \sum_{i=N+1}^k Y_i & \text{si } T_N = k \\ 0 & \text{sinon} \end{cases} = g(Y_{N+1}, \dots, Y_k) \text{ pour une certaine function } g$$

Maintenant les variables aléatoires (Y_{N+1}, \ldots, Y_p) étant indépendantes, il en est de même que pour les v.a. $g(Y_{N+1}, \ldots, Y_k)$ et $f(Y_{k+1}, \ldots, Y_p)$. Écrit autrement on vient de prouver que $S_p - S_k$ et $(S_k - S_N) \mathbf{1}_{T_N = k}$ sont indépendantes.

B3c. Pour $N < k \le p$, on a :

$$\mathbb{E}\left((S_{p}-S_{N})^{2}\mathbf{1}_{[T_{N}=k]}\right) = \mathbb{E}\left((S_{k}-S_{N})^{2}\mathbf{1}_{[T_{N}=k]} + (S_{p}-S_{k})^{2}\mathbf{1}_{[T_{N}=k]} + 2(S_{p}-S_{k})(S_{k}-S_{N})\mathbf{1}_{[T_{N}=k]}\right)$$

$$= \mathbb{E}\left((S_{k}-S_{N})^{2}\mathbf{1}_{[T_{N}=k]}\right) + \mathbb{E}\left((S_{p}-S_{k})^{2}\mathbf{1}_{[T_{N}=k]}\right) + 2\mathbb{E}\left((S_{p}-S_{k})(S_{k}-S_{N})\mathbf{1}_{[T_{N}=k]}\right)$$

$$= \mathbb{E}\left((S_{k}-S_{N})^{2}\mathbf{1}_{[T_{N}=k]}\right) + \mathbb{E}\left((S_{p}-S_{k})^{2}\mathbf{1}_{[T_{N}=k]}\right)$$

$$\geq \mathbb{E}\left((S_{k}-S_{N})^{2}\mathbf{1}_{[T_{N}=k]}\right)$$

$$\geq \varepsilon^{2}\mathbb{P}(T_{N}=k) \text{ (D'après la question Q3b)}$$

B3d. Pour p > N:

$$\varepsilon^{2} \sum_{k=N+1}^{p} \mathbb{P}(T_{N} = k) \leq \sum_{k=N+1}^{p} \mathbb{E}\left((S_{p} - S_{N})^{2} \mathbf{1}_{[T_{N} = k]}\right)$$

$$= \mathbb{E}\left(\sum_{k=N+1}^{p} (S_{p} - S_{N})^{2} \mathbf{1}_{[T_{N} = k]}\right)$$

$$= \mathbb{E}\left((S_{p} - S_{N})^{2} \sum_{k=N+1}^{p} \mathbf{1}_{[T_{N} = k]}\right)$$

$$= \mathbb{E}\left((S_{p} - S_{N})^{2} \mathbf{1}_{[N+1 \leq T_{N} \leq p]}\right)$$

$$\leq \mathbb{E}\left((S_{p} - S_{N})^{2}\right)$$

$$= \sum_{i=N+1}^{p} \mathbb{E}\left(Y_{i}^{2}\right)$$

B4. D'après la question B3d.

$$\mathbb{P}([N+1 \le T_N \le p]) = \sum_{k=N+1}^{p} \mathbb{P}(T_N = k)$$

$$\le \frac{1}{\varepsilon^2} \sum_{i=N+1}^{p} \mathbb{E}(Y_i^2)$$

$$\le \frac{1}{\varepsilon^2} \sum_{i=N+1}^{+\infty} \mathbb{E}(Y_i^2) \text{ (En effet } \sum \mathbb{E}(Y_m^2) \text{ converge.)}$$

Ulrich GOUE -13-

Or dire qu'il existe un entier k compris entre N+1 et p tel que $|S_k-S_N|>\varepsilon$ veut dire que $N+1\leq T_N\leq p$ en d'autres termes :

$$\bigcup_{k=N+1}^{p} \{ |S_k - S_N| > \varepsilon \} \subset [N+1 \le T_N \le p]$$

Donc il s'en suit :

$$\mathbb{P}\left(\bigcup_{k=N+1}^{p} \left\{ |S_k - S_N| > \varepsilon \right\} \right) \leq \mathbb{P}([N+1 \leq T_N \leq p])$$

$$\leq \frac{1}{\varepsilon^2} \sum_{i=N+1}^{+\infty} \mathbb{E}\left(Y_i^2\right)$$

Ainsi en faisant tendre p vers $+\infty$ on a bel et bien :

$$\mathbb{P}\left(\cup_{p>N}\left\{|S_{p}-S_{N}|>\varepsilon\right\}\right) = \mathbb{P}\left(\cup_{k=N+1}^{+\infty}\left\{|S_{k}-S_{N}|>\varepsilon\right\}\right)$$

$$= \lim_{p\to+\infty}\mathbb{P}\left(\cup_{k=N+1}^{p}\left\{|S_{k}-S_{N}|>\varepsilon\right\}\right)$$

$$\leq \lim_{p\to+\infty}\frac{1}{\varepsilon^{2}}\sum_{i=N+1}^{+\infty}\mathbb{E}\left(Y_{i}^{2}\right)$$

$$= \frac{1}{\varepsilon^{2}}\sum_{i=N+1}^{+\infty}\mathbb{E}\left(Y_{i}^{2}\right)$$

C1. Soit $\omega \in \bigcup_{p,n \geq N} \{|S_p - S_n| > \varepsilon\}$. Raisonnons par l'absurde et supposons que $\omega \notin \bigcup_{p > N} \{|S_p - S_N| > \frac{\varepsilon}{2}\}$. Comme $\omega \in \bigcup_{p,n \geq N} \{|S_p - S_n| > \varepsilon\}$, il existe $p,n \geq N$ tel que $|S_p(\omega) - S_n(\omega)| > \varepsilon$. Si p = N ou n = N on alors $\omega \in \bigcup_{p \geq N} \{|S_p - S_N| > \frac{\varepsilon}{2}\}$, ce qui est contradictoire ⁷. Par conséquent p,n > N, ce qui implique en gardant à l'esprit que $\omega \notin \bigcup_{p > N} \{|S_p - S_N| > \frac{\varepsilon}{2}\}$, les inégalités suivantes : $|S_p(\omega) - S_N(\omega)| \leq \frac{\varepsilon}{2}$ et $|S_n(\omega) - S_N(\omega)| \leq \frac{\varepsilon}{2}$. En appliquant l'inégalité triangulaire :

$$|S_p(\omega) - S_n(\omega)| = |(S_p(\omega) - S_N(\omega)) + (S_N(\omega) - S_n(\omega))| \le |S_p(\omega) - S_N(\omega)| + |S_n(\omega) - S_N(\omega)| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Résultat en contradiction avec le fait que $\omega \in \bigcup_{p,n \geq N} \{|S_p - S_n| > \varepsilon\}$. Notre hypothèse est donc fausse et $\omega \in \bigcup_{p>N} \{|S_p - S_N| > \frac{\varepsilon}{2}\}$. D'où l'inclusion :

$$\bigcup_{p,n\geq N} \left\{ |S_p - S_n| > \varepsilon \right\} \subset \bigcup_{p>N} \left\{ |S_p - S_N| > \frac{\varepsilon}{2} \right\}$$

C2. Il n'est pas difficile de voir que $\mathbb{E}(X_k/k) = 0$ et $\mathbb{E}((X_k/k)^2) = 1/k^2, \forall k \in \mathbb{N}^*$. Donc la série $\sum \mathbb{E}((X_m/m)^2)$ converge grâce à la règle de Riemann. Maintenant son reste $R_n = \sum_{i=n+1}^{+\infty} \mathbb{E}((X_i/i)^2)$ converge vers 0. Maintenant comme la suite $(X_k/k)_{k \in \mathbb{N}^*}$ est une suite de **v.a. indépendantes centrées** et tel que $\sum \mathbb{E}((X_m/m)^2)$ converge, il vient alors que :

$$\mathbb{P}\left(\cup_{p>N}\left\{|S_p - S_N| > \frac{\varepsilon}{2}\right\}\right) \le \frac{4}{\varepsilon^2} R_{N+1}$$

7. On aura soit $|S_p(\omega) - S_N(\omega)| > \varepsilon > \frac{\varepsilon}{2}$ ou $|S_n(\omega) - S_N(\omega)| > \varepsilon > \frac{\varepsilon}{2}$, le cas n = p = N étant exclus.

Ulrich GOUE -14-

D'après la question C1

$$\mathbb{P}\left(\bigcup_{p,n\geq N}\left\{|S_p - S_n| > \varepsilon\right\}\right) \leq \mathbb{P}\left(\bigcup_{p>N}\left\{|S_p - S_N| > \frac{\varepsilon}{2}\right\}\right)$$

$$\leq \frac{4}{\varepsilon^2}R_{N+1}$$

Ainsi d'après le théorème des gendarmes :

$$\lim_{N \to +\infty} \mathbb{P}\left(\bigcup_{p,n \ge N} \left\{ |S_p - S_n| > \varepsilon \right\} \right) = 0$$

Enfin en utilisant A2c nous avons donc que l'ensemble des $\omega \in \Omega$ tel que $S_n(\omega)$ converge est de probabilité 1. Autrement dit, la série $\sum_n \frac{X_n}{n}$ converge presque sûrement.

Ulrich GOUE -15-

2 Épreuve à option (A) : Mathématiques

2.1 Partie 1 : étude des espaces $E_n(a)$

Q1a. Soit $f \in E$, au voisinage de a il vient que :

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k} + o((x-a)^{n})$$

Quand $f^{(k)}(a) = 0, \forall k \in \{1, 2, ..., n\}$ alors $f(x) = o((x - a)^n)$, i.e $f \in E_n(a)$. Ceci conclut la première partie de la preuve.

Maintenant supposons que $f \in E_n(a)$ et $\exists k_0 \in \{1, 2, ..., n\}$ tel que $f^{(k_0)} \neq 0$. Donc on peut définir $k^* = \inf\{k | 1 \leq k \leq n, f^{(k)} \neq 0\}$. Dans ce cas on a :

$$f(x) = \frac{f^{(k^*)}(a)}{k^*!} (x - a)^{k^*} + o((x - a)^{k^*})$$

Ce qui veut dire f ne peut pas être négligeable devant $o((x-a)^n)$, Contradiction! Par conséquent $f^{(k)}(a) = 0, \forall k \in \{1, 2, ..., n\}$. On vient donc de prouver que :

$$f \in E_n(a) \Leftrightarrow f^{(k)}(a) = 0, \forall k \in \{1, 2, \dots, n\}$$

C.Q.F.D.

Q1b. Définissons $E_{\infty}(a)$ l'ensemble des fonctions de E qui sont ultraplates en a. On a alors :

$$E_{\infty}(a) = \bigcap_{n=1}^{+\infty} E_n(a)$$

On va caractériser $E_{\infty}(a)$:

$$f \in E_{\infty}(a) \Leftrightarrow \forall n \in \mathbb{N}^*, f \in E_n(a)$$

 $\Leftrightarrow \forall n \in \mathbb{N}^*, \forall k \in \{1, 2, ..., n\}, f^{(k)}(a) = 0$
 $\Leftrightarrow \forall n \in \mathbb{N}^*, f^{(n)}(a) = 0$

Pour revenir à notre question :

$$s \in E_{\infty}(0)$$
 \Leftrightarrow $\forall n \in \mathbb{N}^*, s^{(n)}(0) = 0$
 \Leftrightarrow $\forall n \in \mathbb{N}^*, n! a_n = 0$
 \Leftrightarrow $\forall n \in \mathbb{N}^*, a_n = 0$
 \Leftrightarrow $s = a_0$
 \Leftrightarrow s est constante

Ulrich GOUE -16-

Q2a. On remarque sans problème que :

$$\forall x > 0, b'(x) = \frac{-2\ln(x)}{x} \exp(-\ln(x)^2)$$

Par conséquent la fonction b est croissante sur]0,1] et décroissante sur l'intervalle $[1,+\infty[$. On calcule sa dérivée seconde :

$$\forall x > 0, b''(x) = \frac{-2}{x^2} \exp(-\ln(x)^2) + \frac{2\ln(x)}{x^2} \exp(-\ln(x)^2) + \frac{4\ln(x)^2}{x} \exp(-\ln(x)^2)$$

$$= \frac{4\ln(x)^2 + 2\ln(x) - 2}{x} \exp(-\ln(x)^2)$$

$$= \frac{4(\ln(x) + 1)(\ln(x) - \frac{1}{2})}{x} \exp(-\ln(x)^2)$$

On est maintenant à mesure de sortir les points d'inflexions :

$$b''(x) = 0 \Leftrightarrow \ln(x) = -1 \text{ ou } \ln(x) = \frac{1}{2}$$

 $\Leftrightarrow x = \frac{1}{e} \text{ ou } x = \sqrt{e}$

Au final leurs coordonnées sont : $(\frac{1}{e}, \frac{1}{e})$ et $(\sqrt{e}, \frac{1}{e^{1/4}})$. Un aperçu de l'évolution de la fonction b peut se voir à la figure 1.

Q2b. A cette question on montre par récurrence que pour tout $n \in \mathbb{N}^*$ $b^{(n)}$ est continue et dérivable sur $]0, +\infty[$ et qu'il existe un polynôme B_n de degré n et à coefficient dominant $(-2)^n$ tels que :

$$\forall x > 0, b^{(n)}(x) = \frac{B_n(\ln(x))}{x^n} \exp(-\ln(x)^2)$$

A la question 2a. on a vu que

$$\forall x > 0, b'(x) = \frac{-2\ln(x)}{x} \exp(-\ln(x)^2)$$

Ulrich GOUE -17-

ce qui veut dire que b' est continue et dérivable ⁸ sur $]0, +\infty[$ et qu'en choisissant $B_1(X) = -2X$ notre hypothèse de récurrence est vérifiée pour n = 1. A présent supposons que notre hypothèse est vraie pour un certain $n \in \mathbb{N}^*$, on montre qu'elle est aussi vraie pour n + 1. Par hypothèse de récurrence $b^{(n)}$ est dérivable, donc l'on peut écrire :

$$\forall x > 0, b^{(n+1)}(x) = b^{(n)'}(x)$$

$$= \frac{B'_n(\ln(x))}{x^{n+1}} \exp(-\ln(x)^2) - \frac{nB_n(\ln(x))}{x^{n+1}} \exp(-\ln(x)^2) - 2\frac{B_n(\ln(x))\ln(x)}{x^{n+1}} \exp(-\ln(x)^2)$$

$$= \frac{B'_n(\ln(x)) - nB_n(\ln(x)) - 2B_n(\ln(x))\ln(x)}{x^{n+1}} \exp(-\ln(x)^2)$$

$$= \frac{B_{n+1}(\ln(x))}{x^{n+1}} \exp(-\ln(x)^2)$$

Où on a posé que $B_{n+1} = B'_n - nB_n - 2XB_n$. Ainsi à l'aide des théorèmes généraux $b^{(n+1)}$ est continue et dérivable sur $]0, +\infty[$. En outre avec notre récurrence polynômiale on voit bien que $\deg(B_{n+1}) = n+1$ avec un coefficient dominant égal à $-2(-2)^n = (-2)^{n+1}$. Ceci achève la récurrence et répond à la question.

Q2c. Déjà la fonction b est prolongeable par continuité en 0 car $\lim_{x\longrightarrow 0^+} b(x) = \lim_{u\longrightarrow -\infty} \exp(u) = 0 = c(0)$. Ainsi notons cette fonction \bar{b} . De même toutes les dérivées $b^{(n)}$ sont prolongeables par continuité en 0 pour tout $n \in \mathbb{N}^*$:

$$\lim_{x \to 0^+} b^{(n)}(x) = \lim_{x \to 0^+} \frac{B_n(\ln(x))}{x^n} \exp(-\ln(x)^2)$$

$$= \lim_{u \to -\infty} B_n(u) \exp(-u^2 - nu)$$

$$= 0 (\operatorname{car} \forall k \in \mathbb{N}, \lim_{u \to -\infty} u^k \exp(-u^2 - nu) = 0)$$

Ainsi globalement \bar{b} est de classe \mathcal{C}^{∞} sur $[0, +\infty[$ et vérifie pour tout $n \in \mathbb{N}$:

$$\bar{b}^{(n)}(x) = \begin{cases} b^{(n)}(x) & \text{si } x > 0 \\ 0 & \text{si } x = 0 \end{cases}$$

par définition on a $c(x) = \bar{b}(|x|), \forall x \in \mathbb{R}$, de ce qui précède la fonction c est donc indéfiniment dérivable en tout point $x \neq 0$. Maintenant il reste à regarder le cas zéro, à ce niveau on prouve que $c^{(n)} = 0$ pour tout $n \in \mathbb{N}$. La relation est déjà vraie en n = 0, on la vérifie maintenant pour n > 0:

$$\lim_{x \to 0^+} c^{(n)}(x) = \lim_{x \to 0^+} b^{(n)}(x) = 0$$

$$\lim_{x \to 0^{-}} c^{(n)}(x) = \lim_{x \to 0^{-}} (-1)^{n} b^{(n)}(-x) = \lim_{x \to 0^{+}} (-1)^{n} b^{(n)}(x) = 0$$

Du coup $c^{(n)}$ est continue en zéro et vérifie $c^{(n)}=0$ pour tout $n \in \mathbb{N}^*$. Ainsi d'après la question 1a c est ultraplate en 0. On peut écrire :

$$\forall x \neq 0, c'(x) = \frac{-2\ln(|x|)}{x} \exp(-\ln(|x|)^2)$$

Ainsi les autres points non nuls qui annulent c' sont 1 et -1. Cependant ces points n'annulent pas c'' car ils ne sont pas solution de $\ln(|x|) \in \{-1, \frac{1}{2}\}$. En conclusion les seuls autres points en lesquels c est plate sont 1 et -1 et cela d'ordre 1

Ulrich GOUE -18-

^{8.} Évidemment grâce aux théorèmes généraux sur la dérivabilité et la continuité.

Q3a. Soit $n \in \mathbb{N}^*$ et $a \in \mathbb{R}$. On répond à la question en utilisant tout simplement la définition d'une sous-algèbre :

- † $\mathbf{1}_E \in E_n(a)$ où $\mathbf{1}_E : x \in \mathbb{R} \mapsto 1$, ses dérivées étant nulles en tout point.
- † $\forall \lambda, \mu \in \mathbb{R}, \forall f, g \in E_n(a)$ on a $\lambda f + \mu g \in E_n(a)$ en vertu de la question 1a et de la linéarité de la dérivation.
- † Maintenant prenons $f, g \in E_n(a)$. On prouve alors que $fg \in E_n(a)$. Grâce à la formule de Leibniz :

$$(fg)^{(k)}(x) = \sum_{j=0}^{k} C_k^j f^{(j)}(x) g^{(k-j)}(x), \forall x \in \mathbb{R}, \forall k \in \mathbb{N}^*$$

Par définition $f^{(k)}(a) = g^{(k)}(a) = 0, \forall k \in \{1, 2, ..., n\}$, ce qui implique $(fg)^{(k)}(a) = 0, \forall k \in \{1, 2, ..., n\}$. En d'autres termes $fg \in E_n(a)$.

Q3b. on prouve que $E_n(a)$ n'est pas un idéal de E. En effet on exhibe $f \in E_n(a)$ et $g \in E$ tel que $fg \notin E_n(a)$. On prend $f(x) = 1, g(x) = (x - a + 1)^{n+1}$. Donc $(fg)^{(k)}(a) = \frac{(n+1)!}{(n+1-k)!}, \forall k \in \{1, 2, ..., n\}$, i.e $fg \notin E_n(a)$.

Q4a. On montre que $x \mapsto f(x-a)$ est ultraplate en a.

$$\lim_{x \to a} \frac{f(x-a)}{(x-a)^n} = \lim_{x \to a} \frac{f(u)}{u^n} \text{ (On utilise le changement de variable } u = x-a)$$

$$= 0 \text{ (car } f \text{ est } ultraplate \text{ en 0)}$$

Soit $f(x-a) = o((x-a)^n), \forall n \in \mathbb{N}$. C.Q.F.D.

Q4b. On pose tout simplement $d(x) = c(x)c_1(x)c_{-1}(x)$ où $c_1 : x \mapsto c(x-1)$ et $c_{-1} : x \mapsto c(x+1)$ sont des fonctions respectivement *ultraplate* en 1 et -1. Pour vérifier que d est *ultraplate* en 0,1 et -1 il suffit de remarquer :

$$d^{(n)}(x) = \sum_{i+j+l=n} \frac{n!}{i!j!l!} c^{(i)}(x) c_1^{(j)}(x) c_{-1}^{(l)}(x), \forall n \in \mathbb{N}^*$$

De cette relation on déduit aisément en prenant successivement x = 0, 1, -1 que :

$$c^{(n)}(0) = c_1^{(n)}(1) = c_{-1}^{(n)}(-1) = 0, \forall n \in \mathbb{N}^*$$

Enfin d'après notre caractérisation à la question 1b, on voit bien que d est ultraplate en 0,1 et -1.

2.2 Partie 2 :interpolations polynomiales avec ajustement de dérivées

Q1a. Soit un polynôme $P_n \in \mathbb{R}_{n+2}[X]$ vérifiant $P_n(0) = 0$; $P_n(1) = 1$ et $P_n \in E_n(0) \cap E_1(1)$. On peut déjà écrire $P_n = \sum_{k=0}^{n+2} a_k X^k$. Maintenant de $P_n(0) = 0$ on tire que $a_0 = 0$. Également $P_n \in E_n(0)$ donc $P_n^{(k)}(0) = k!a_k = 0$ ou encore $a_k = 0$ pour tout $1 \le k \le n$. On arrive donc au point où $P_n = a_{n+1} X^{n+1} + a_{n+2} X^{n+2}$. Maintenant en utilisant les deux dernières conditions $P_n(1) = P_n'(1) = 0$. On en vient au système ci-dessous :

$$\begin{cases} a_{n+1} + a_{n+2} = 1 \\ (n+1)a_{n+1} + (n+2)a_{n+2} = 1 \end{cases} \Leftrightarrow \begin{cases} a_{n+1} = n+2 \\ a_{n+2} = -n-1 \end{cases}$$

D'où l'unicité de P_n qui s'écrit $P_n = (n+2)X^{n+1} - (n+1)X^{n+2} = X^{n+1}(n+2-(n+1)X)$.

Ulrich GOUE -19-

Q1b. Il vient pour tout $x \in [0, 1]$:

$$\lim_{n \to +\infty} P_n(x) = \lim_{n \to +\infty} (n+2)x^{n+1} - (n+1)x^{n+2} = 0$$

Par conséquent $(P_n)_{n\in\mathbb{N}^*}$ converge simplement vers la fonction nulle sur [0,1]. Toutefois cette convergence n'est pas uniforme sur [0,1] car $\sup_{[0,1]} |P_n| = 1$. Au demeurant la convergence est uniforme sur tout intervalle $[0,\xi]$ avec $\xi < 1$ car $\sup_{[0,\xi]} |P_n| = (n+2)\xi^{n+1} - (n+1)\xi^{n+2} \to 0$.

Q2a. La linéarité de Φ est immédiate, on s'attaque à la question sur son noyau. Soit un polynôme $P \in \ker(\Phi)$. Il vient alors que $\forall 1 \leq i \leq p$ et $\forall 0 \leq j \leq n_i$, $P^{(j)}(a_i) = 0$. En d'autres termes a_i est une racine de multiplicité au moins $n_i + 1$ de P, i.e. P est divisible par $(X - a_i)^{n_i + 1}$ et ce $\forall 1 \leq i \leq p$. En résumant toute l'information $\prod_{i=1}^p (X - a_i)^{n_i + 1}$ divise P. Ce qui veut dire qu'il existe un polynôme Q tel que $P = Q \prod_{i=1}^p (X - a_i)^{n_i + 1}$. On vient de prouver que $\ker(\Phi) \subset \left(\prod_{i=1}^p (X - a_i)^{n_i + 1}\right) \mathbb{R}[X]$, l'inclusion réciproque étant immédiate on alors :

$$\ker(\Phi) = \left(\prod_{i=1}^{p} (X - a_i)^{n_i + 1}\right) \mathbb{R}[X]$$

On prouve maintenant que $\mathbb{R}_m[X]$ et $\ker(\Phi)$ sont supplémentaires dans $\mathbb{R}[X]$. D'abord comme deg $\left(\prod_{i=1}^p (X-a_i)^{n_i+1}\right) = m+1$ on a d'après l'égalité ensembliste précédente que $\mathbb{R}_m[X] \cap \ker(\Phi) = \{0\}$. Enfin en prenant un élément P de $\mathbb{R}[X]$, en opérant sa division euclidienne avec $\prod_{i=1}^p (X-a_i)^{n_i+1}$ il existe un polynôme Q et un polynôme (reste) R tel que $\deg(R) \leq m$ vérifiant :

$$P = Q \cdot \prod_{i=1}^{p} (X - a_i)^{n_i + 1} + \underbrace{R}_{\in \mathbb{R}_m[X]}$$

Par conséquent :

$$\mathbb{R}[X] = \ker(\Phi) \oplus \mathbb{R}_m[X]$$

Q2b. De la question précédente on déduit que la restriction $\Phi_{\mathbb{R}_m[X]}$ de Φ à $\mathbb{R}_m[X]$ induit un isomorphisme sur \mathbb{R}^{m+1} . Ainsi pour tout vecteur κ de \mathbb{R}^{m+1} il existe un unique polynôme P_{κ} de $\mathbb{R}_m[X]$ tel que $\Phi(P_{\kappa}) = \kappa$. Pour revenir à la question pour $1 \leq i \leq p$, considérons le vecteur x_i de \mathbb{R}^{n_i} tel que $x_i = (\alpha_i, 0, \dots, 0)$. On définit le grand vecteur $\Theta = (x_1 \dots x_p)$ en matrice blocs. Du coup chercher un polynôme P de $\mathbb{R}_m[X]$ tel que $P \in \bigcap_{k=1}^p E_{n_k}(a_k)$ et vérifiant $P(a_k) = \alpha_k$ pour tout $1 \leq k \leq n$ revient à résoudre :

$$\Phi(P) = \Theta$$

Ainsi l'argument ci-dessous justifie l'existence et l'unicité de P et on peut noter :

$$P = P_{\Theta}$$

Q3a. C'est juste le résultat de Q2b avec p=3, $a_1=0$, $a_2=-1$, $a_3=1$, $a_1=0$, $a_2=\alpha_3=1$. Le m correspondant est alors

$$m = 3 - 1 + n + 1 + 1 = n + 4$$
.

Q3b. On va appliquer la même stratégie qu'à la question Q1a. Écrivons $H_n = \sum_{k=0}^{n+4} a_k X^k$. En utilisant le fait que

Ulrich GOUE -20-

 $H_n(0) = 0$ et $H_n \in E_n(0)$ permet d'obtenir que $a_k = 0$ pour $k \le n$. Ainsi :

$$H_n = a_{n+1}X^{n+1} + a_{n+2}X^{n+2} + a_{n+3}X^{n+3} + a_{n+4}X^{n+4}$$

. Maintenant il reste à utiliser les quatre dernières conditions $H_n(1) = H_n(-1) = 1$, $H'_n(1) = H'_n(-1) = 0$ pour former un système linéaire que nous appelons (Σ) .

$$(\Sigma) \Leftrightarrow \begin{cases} a_{n+1} + a_{n+2} + a_{n+3} + a_{n+4} = 1 \\ -a_{n+1} + a_{n+2} - a_{n+3} + a_{n+4} = (-1)^n \\ (n+1)a_{n+1} + (n+2)a_{n+2} + (n+3)a_{n+3} + (n+4)a_{n+4} = 0 \\ -(n+1)a_{n+1} + (n+2)a_{n+2} - (n+3)a_{n+3} + (n+4)a_{n+4} = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} a_{n+2} + a_{n+4} = \frac{1+(-1)^n}{2} \\ a_{n+1} + a_{n+3} = \frac{1-(-1)^n}{2} \\ (n+1)a_{n+1} + (n+3)a_{n+3} = 0 \\ (n+2)a_{n+2} + (n+4)a_{n+4} = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} a_{n+2} = \frac{1+(-1)^n}{4}(n+4) \\ a_{n+4} = -\frac{1+(-1)^n}{4}(n+2) \\ a_{n+1} = \frac{1-(-1)^n}{4}(n+3) \\ a_{n+3} = -\frac{1-(-1)^n}{4}(n+1) \end{cases}$$

Donc selon que n = 2k ou n = 2k + 1, on a :

$$H_{2k} = H_{2k+1} = H_{2\left[\frac{n}{2}\right]} = (k+2)X^{2k+2} - (k+1)X^{2k+4}$$

Q3c. Il vient pour tout $x \in]-1,1[$:

$$\lim_{n \to +\infty} H_n(x) = \lim_{n \to +\infty} \left(\left\lceil \frac{n}{2} \right\rceil + 2 \right) x^{2\left\lceil \frac{n}{2} \right\rceil + 2} - \left(\left\lceil \frac{n}{2} \right\rceil + 1 \right) x^{2\left\lceil \frac{n}{2} \right\rceil + 4} = 0$$

Par conséquent $(H_n)_{n\in\mathbb{N}^*}$ converge simplement vers la fonction nulle sur]-1,1[. Toutefois cette convergence n'est pas uniforme sur]-1,1[car $\sup_{]-1,1[}|H_n|=1$. Au demeurant la convergence est uniforme sur tout intervalle $[-\zeta,\zeta]$ avec $0<\zeta<1$ car $\sup_{]-\zeta,\zeta]}|P_n|=\left(\left[\frac{n}{2}\right]+2\right)\zeta^{2\left[\frac{n}{2}\right]+2}-\left(\left[\frac{n}{2}\right]+1\right)\zeta^{2\left[\frac{n}{2}\right]+4}\to 0$.

2.3 Partie 3 : fonctions génératrices plates en 0

Q1a. Si G_X est plate d'ordre n en 0, alors $G_X \in E_n(0)$. Par conséquent $G_x^{(k)} = k!p_k = 0$ soit $p_k = 0$ pour tout $k \in \{1, ..., n\}$. Du coup on peut écrire :

$$G_X(x) - G_X(0) = \sum_{k=n+1}^{+\infty} p_n x^n = p_{n+1} x^{n+1} + x^{n+2} \sum_{k=0}^{+\infty} p_{n+2+k} x^k$$

Ulrich GOUE -21-

Mais comme G_X ne peut pas être négligeable devant $x^{(n+1)}$ alors on a nécessairement $p_{n+1} > 0$.

Réciproquement supposons que $p_k = 0, \forall k \in \{1, ..., n\}$ et $p_{n+1} > 0$. On a encore :

$$G_X(x) - G_X(0) = \sum_{k=n+1}^{+\infty} p_n x^n = p_{n+1} x^{n+1} + x^{n+2} \sum_{k=0}^{+\infty} p_{n+2+k} x^k$$

ce qui prouve que dans ce cas G_X est plate d'ordre n.

En résumé:

 G_x est plate en 0 d'ordre n ssi $p_k = 0, \forall k \in \{1, ..., n\}$ et $p_{n+1} > 0$.

Q1b On utilise la question Q1a de la partie 1 :

$$G_X$$
 est ultraplate en 0 \Leftrightarrow $G_X = G_X(0)$ sachant que $\sum_{k=0}^{+\infty} P([X=k]) = 1$
 \Leftrightarrow $P([X=k]) = 0, \forall k \in \mathbb{N}^*$ sachant que $\sum_{k=0}^{+\infty} P([X=k]) = 1$
 \Leftrightarrow $P([X=0]) = 1$

Q2a. Le rayon de S étant infini, elle est de classe \mathcal{C}^{∞} sur \mathbb{R} . Maintenant considérons la suite de polynôme $(P_n)n \geq 0$ tel que $P_n = \prod_{k=0}^{n-1} (X-k)^9$. On a une suite de polynôme à degré échelonné donc pour tout entier n, la famille (P_0, \ldots, P_n) constitue une base pour $\mathbb{R}_n[X]$. Par conséquent il existe des réels β_0, \ldots, β_n tel que : $X^n = \sum_{k=0}^n \beta_k P_k$. En d'autre termes :

$$k^n = \sum_{j=0}^n \beta_j P_j(k), \forall k \in \mathbb{N}$$

Ainsi en posant $M_{[n]}=\sum_{k=0}^{+\infty}k^np_kx^k$, La série $M_{[n]}$ est aussi de rayon infini, converge et vérifie :

$$M_{[n]}(x) = \sum_{j=0}^{n} \beta_j x^j G_X^{(j)}(x), \forall x \in \mathbb{R}$$

Dans de telles conditions $\mathbb{E}(X^n)$ existe pour tout entier n et se définit comme suit :

$$\mathbb{E}(X^n) = M_{[n]}(1) = \sum_{j=0}^n \beta_j G_X^{(j)}(1).$$

Q2b. Dans le cas où G_x est plate d'ordre n on a alors $p_k = 0, \forall k \in \{1, ..., n\}$ et $p_{n+1} > 0$. Ceci implique que $\sum_{k=n+1}^{+\infty} P([X=k]) = 1 \text{ et } \mathbb{E}(X) = \sum_{k=n+1}^{+\infty} kP([X=k]). \text{ Alors il s'en suit que :}$

$$\mathbb{E}(X) = \sum_{k=n+1}^{+\infty} kP([X=k])$$

$$\geq \sum_{k=n+1}^{+\infty} (n+1)P([X=k])$$

$$= n+1$$

L'égalité survient que lorsque X ne charge que n+1, i.e. P([X=n+1])=1.

Ulrich GOUE -22-

^{9.} Par convention $P_0 = 1$

Q3a. On va construire cette variable aléatoire tout en gardant à l'esprit que $\mathbb{E}(X) = G'(1)$. On pose m = [c] + 1 et $\lambda = \frac{c-n-1}{m-n-1}$. Le réel λ est bien dans l'intervalle]0,1[car n+1 < c < m. Soit la variable aléatoire à deux valeurs X tel que $P([X=n+1]) = 1 - \lambda$ et $P([X=m]) = \lambda$:

$$X \sim n + 1 + (m - n - 1)\mathcal{B}(\lambda)$$

On a alors:

$$\mathbb{E}(X) = \frac{m-c}{m-n-1}(n+1) + \frac{c-n-1}{m-n-1}m = c$$

C.Q.F.D.

Q3b. Remarquons que : $X^2 = X(X-1) + X = P_2 + P_1$ donc $\mathbb{E}(X^2) = G_X''(1) + G_X'(1)$. Donc la variance est alors $\mathbb{V}(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2 = G_X''(1) + G_X'(1) - G_X'(1)$ et comme $\mathbb{V}(X) \ge 0$ alors

$$G_X''(1) \ge G_X'^2(1) - G_X'(1) = G_X'(1)(G_X'(1) - 1)$$

Mais pour cette classe de variable aléatoire $G_X'(1) = c$ d'où

$$G_X''(1) \ge c(c-1)$$

Pour la suite, on note $\mathcal{V}(c)$ l'ensemble de variables aléatoires X définies sur \mathbb{N} vérifiant $G_X'(1) = c$.

Q3c Au vu de la question précédente le cas d'égalité survient quand $\mathbb{V}(X) = 0$ c'est à dire quand X est constante. Donc il existerait un entier $k_0 \geq n+1$ tel que $X = k_0$ presque-sûrement. Dans cette configuration on a bien $\mathbb{E}(X) = G_X'(1) = c = k_0$. Ainsi le cas d'égalité impose que c soit un entier. On prouve bien que la borne inférieure $G_X''(1)$ est atteinte dans $\mathcal{V}(c)$ quand c est un entier.

Quand au dernier volet de la question nous pensons qu'il y a une erreur dans le sujet. Quand bien même que $G_X''(1)$ est minorée dans $\mathcal{V}(c)$ quand $c \notin \mathbb{N}$, elle n'atteint pas sa borne inférieure. Donc on ne peut parler de valeur minimale. Raisonnons par l'absurde et supposons que :

$$Y = \arg\min_{X \in \mathcal{V}(c)} G_X''(1) \tag{1}$$

Ici comme $c \notin \mathbb{N}$, Y ne peut charger un seul point. Elle charge donc au moins deux points. Choisissons deux points parmi ceux qu'elle charge, disons i,j avec i < j. On définit la variable aléatoire Z comme suit $P[Z=i] = P([Y=i]) + \frac{j}{i}\epsilon$, $P[Z=j] = P([Y=j]) - \epsilon$ et P[Z=k] = P([Y=k]) pour tout $k \notin \{i,j\}$, avec ϵ un réel positif et suffisamment petit. Par construction $Z \in \mathcal{V}(c)$ car : iP[Z=i] + jP[Z=j] = iP([Y=i]) + jP([Y=j]). Ainsi on a :

$$\begin{split} G_Z''(1) - G_Y''(1) &= i^2 P[Z=i] + j^2 P[Z=j] - i^2 P([Y=i]) - j^2 P([Y=j]) \\ &= i^2 \left(P([Y=i]) + \frac{j}{i} \epsilon \right) + j^2 (P([Y=j]) - \epsilon) - i^2 P([Y=i]) - j^2 P([Y=j]) \\ &= \epsilon j (i-j) \\ &< 0 \end{split}$$

Ulrich GOUE -23-

On a prouvé que $G_Z''(1) < G_Y''(1)$, chose qui contredit 1. D'où le résultat.

2.4 Partie 4: approximations polynomiales

Q1a. Considérons une suite $(f_n)_{n\geq 0}$ de F qui converge vers une certaine fonction f. Comme $f_n\in F$, alors $f_n(0)=0$ donc en faisant tendre n vers $+\infty$ on obtient f(0)=0, i.e $f\in F$. Ainsi F est bien un fermé.

Q1b. En définissant $f_n: x \mapsto \sqrt{x^2 + \frac{1}{n}} - \sqrt{\frac{1}{n}}$. On remarque sans difficulté que les f_n sont négligeables devant x au voisinage de 0:

$$\lim_{x \to 0} \frac{f_n(x)}{x} = \lim_{x \to 0} \frac{x}{\sqrt{x^2 + \frac{1}{n}} + \sqrt{\frac{1}{n}}} = 0$$

On voit aisément que $(f_n)_{n\geq 1}$ converge vers $x\mapsto |x|$. Maintenant on laisse le lecteur prouver que :

$$\max_{x \in [-1,1]} |f_n(x) - |x|| = 1 + \sqrt{\frac{1}{n}} - \sqrt{1 + \frac{1}{n}} \sim \frac{1}{\sqrt{n}}$$

Ce qui veut dire que $(f_n)_{n\geq 1}$ converge uniformément vers $\mu: x\mapsto |x|$. Cependant μ n'est pas négligeable devant x au voisinage de 0, i.e l'ensemble des fonctions de F négligeables devant x au voisinage de 0 n'est pas une partie fermée.

Q2a. Il est évident que pour toute fonction $f \in F$, $T(f) \in F$. Il est facile de voir que T est une application linéaire, donc on montre qu'elle est continue comme ci-dessous :

$$|T(f)(x)| \leq |\int_0^x ||f|| dx|$$
$$= ||f|| |x|$$
$$\leq ||f||$$

Par conséquent $||T(f)|| \le ||f||$. Ceci prouve la continuité de T.

Q2b. Par définition de T, il apparaît que pour tout $f \in F$, que T(f) = 0 et T(f)' = f. En particulier on peut prouver par récurrence (laissée au lecteur) que pour tout $k \le n$, $(T^n(f))^{(k)} = T^{n-k}(f)$. Ainsi en posant $y = T^n(f)$, y est solution de l'équation différentielle :

$$(\mathcal{E}): y^{(n)} = f, \quad y(0) = y'(0) = \dots = y^{(n-1)}(0) = 0$$

Les conditions initiales garantissant l'unicité de la solution de \mathcal{E} ; alors $T^n(f)$ est l'unique fonction de F nulle en 0 dont la dérivée n-ième est f et dont toutes les dérivées d'ordre inférieur à n s'annulent en 0.

Remarque : On a prouvé à la question précédente que $||T|| \le 1$, mieux on a aussi (pour anticiper) que T^n est continue avec $||T^n|| \le 1$, pour tout entier n.

Q2c. Soit $f, g \in F$, tel que T(f) = T(g). Ceci veut dire que T(f - g) = 0. Donc en dérivant la dernière relation on obtient bien f - g = 0 ou f = g. Par conséquent T est injective. Par ailleurs, on remarque que si $h \in T(F)$ alors h(0) = 0, ainsi par exemple $\mathbf{1}_{[-1,1]} \notin T(F)$. On conclut que T n'est pas surjective.

Q3a. L'application $f^{(k+3)}: [-1,1] \to \mathbb{R}$ étant continue sur [-1,1], il existe alors d'après le le Premier Théorème de Weierstrass une suite de polynômes $(P_n)_{n\in\mathbb{N}^*}$ qui converge uniformement vers $f^{(k+3)}$ sur le segment [-1,1]. A

Ulrich GOUE -24-

titre d'exemple on peut prendre le classique polynôme de Bernstein :

$$P_n(x) = B_n\left(\frac{x+1}{2}\right) = \sum_{k=0}^n C_n^k \left(\frac{1+x}{2}\right)^k \left(\frac{1-x}{2}\right)^{n-k} f^{(k+3)} \left(\frac{2k-n}{n}\right).$$

Q3b. La fonction T^{k+3} est aussi continue. Pour tout entier n on a :

$$||T^{k+3}(P_n) - T^{k+3}(f^{(k+3)})|| = ||T^{k+3}(P_n - f^{(k+3)})||$$

$$\leq ||T^{k+3}|| \cdot ||P_n - f^{(k+3)}||$$

$$\leq ||P_n - f^{(k+3)}|| \operatorname{car} ||T^{k+3}|| \leq 1$$

Comme $\lim_{n\to+\infty} ||P_n-f^{(k+3)}||=0$ alors $\lim_{n\to+\infty} ||T^{k+3}(P_n)-T^{k+3}(f^{(k+3)})||=0$. Ce qui veut dire que $(T^{k+3}(P_n))_{n\in\mathbb{N}^*}$ converge uniformément sur [-1,1] vers la fonction $T^{k+3}(f^{(k+3)})$. Par ailleurs $T^{k+3}(f^{(k+3)})$ est solution de l'équation différentielle :

$$(\mathcal{E}'): y^{(k+3)} = f^{(k+3)}, \quad y(0) = y'(0) = \dots = y^{(k+2)}(0) = 0$$

En intégrant (\mathcal{E}') on voit aisément qu'il existe $R \in \mathbb{R}_{k+2}[X]$ tel que $T^{k+3}(f^{(k+3)}) = f+R$. Mais à l'aide des conditions initiales : $R^{(j)}(0) = -f^{(j)}(0)$ pour $j \leq k+2$. Mais comme f est plate d'ordre k en 0, alors $R^{(j)}(0) = -f^{(j)}(0) = 0$ pour $j \leq k$. Donc nous sommes suffisamment armés pour appliquer la formule de Taylor :

$$R(x) = \sum_{j=0}^{k+2} \frac{R^{(j)}(0)}{j!} x^j = -\frac{f^{(k+1)}(0)}{(k+1)!} x^{k+1} - \frac{f^{(k+2)}(0)}{(k+2)!} x^{k+2}$$

 ${f Q3c}.$ d'après la question Q2b de la partie 2, il existe un unique polynôme de degré au plus k+2 noté $\Lambda_{[k]}$ vérifiant :

$$\Lambda_{[k]}(1) = f(1), \quad \Lambda_{[k]}(-1) = f(-1), \quad \Lambda_{[k]}(0) = f(0), \quad \Lambda'_{[k]}(0) = \ldots = \Lambda_{[k]}^{(k)} = 0$$

En procédant comme dans la deuxième partie du problème, on montre que :

$$\Lambda_{[k]}(x) = f(0) + \mu_{k+1}x^{k+1} + \mu_{k+2}x^{k+2}$$

Où:

$$\mu_{k+1} = \frac{(f(1) - f(0) + (-1)^{k+1}(f(-1) - f(0))}{2}, \quad \mu_{k+2} = \frac{(f(1) - f(0) - (-1)^{k+1}(f(-1) - f(0)))}{2}$$

Maintenant en prenant p=3, $a_1=0$, $a_2=-1$, $a_3=3$, puis $n_1=k$, $n_2=n_3=0$ pour la fonction Φ de la partie 2; il vient donc que $\Phi(Q_n)=\Phi(\Lambda_{[k]})$, $\forall n\in\mathbb{N}^*$. Dans ce cas comme $\ker(\Phi)$ est l'idéal de $\mathbb{R}[X]$ engendré par $X^{k+1}(X^2-1)$ alors il existe donc une suit de polynôme $(T_n)_{n\in\mathbb{N}^*}$ tel que :

$$Q_n = \Lambda_{[k]} + T_n X^{k+1} (X^2 - 1)$$
 (2)

Maintenant en considérant la fonction φ de [-1,+1] dans \mathbb{R} telle que $\varphi: x \mapsto \frac{f(x) - \Lambda_{[k]}(x)}{x^{k+1}(x^2-1)}$. Il n'est pas difficile que

Ulrich GOUE -25-

la fonction φ est continue partout sur [-1,+1]. Pour le voir il suffit d'appliquer la règle de l'hôpital :

$$\lim_{x \to 0} \frac{f(x) - \Lambda_{[k]}(x)}{x^{k+1}} = \lim_{x \to 0} \frac{f^{(k+1)}(x) - \Lambda_{[k]}^{(k+1)}(x)}{(k+1)!} = \frac{f^{(k+1)}(0) - \Lambda_{[k]}^{(k+1)}(0)}{(k+1)!}$$

$$\lim_{x \to \varepsilon} \frac{f(x) - \Lambda_{[k]}(x)}{x - \varepsilon} = \lim_{x \to \varepsilon} \frac{f'(x) - \Lambda'_{[k]}(x)}{1} = f'(\varepsilon) - \Lambda'_{[k]}(\varepsilon), \quad \varepsilon \in \{-1, 1\}$$

 φ étant continue, via le Premier théorème de Weierstrass on peut choisir $(T_n)_{n\in\mathbb{N}^*}$ de sorte qu'elle converge uniformément vers φ sur [-1,+1] et que $T_n(0)=\varphi(0)$ pour tout entier $n\geq 1$ 10. Dans de telles conditions on montre maintenant que $(Q_n)_{n\in\mathbb{N}^*}$ ainsi définie converge uniformément vers f. Pour cela, on remarque $f=\Lambda_{[k]}+\varphi X^{k+1}(X^2-1)$. On a alors :

$$||Q_n - f|| = ||(\Lambda_{[k]} + T_n X^{k+1} (X^2 - 1)) - (\Lambda_{[k]} + \varphi X^{k+1} (X^2 - 1))||$$

$$= ||X^{k+1} (X^2 - 1) (T_n - \varphi)||$$

$$\leq ||X^{k+1} (X^2 - 1))|| \cdot ||T_n - \varphi||$$

$$\leq ||T_n - \varphi|| \to 0$$

D'où le résultat. Mais il reste à achever de montrer que les Q_n sont plates d'ordre k en 0. Déjà la relation (2) prouve que $Q_n^{(j)}(0) = 0, \forall 1 \leq j \leq k$ pour tout entier $n \geq 1$. Il reste à montrer que $Q_n^{(k+1)}(0) \neq 0$. A l'aide toujours de la relation (2) on obtient : $Q_n^{(k+1)}(0) = \Lambda_{[k]}^{(k+1)}(0) - (k+1)!T_n(0)$. Mais en se référant aux calculs de limite ci-dessus :

$$T_n(0) = \varphi(0) = -\frac{f^{(k+1)}(0) - \Lambda_{[k]}^{(k+1)}(0)}{(k+1)!}$$

Finalement $Q_n^{(k+1)}(0)=f^{(k+1)}(0)\neq 0$ car f est plate en 0 d'ordre k. C.Q.F.D.

Ulrich GOUE -26-

^{10.} En effet par le Premier théorème de Weierstrass il existe une $(U_n)_{n\in\mathbb{N}^*}$ qui converge uniformément vers φ sur [-1,+1]. A ce niveau il suffit de poser $T_n=U_n+(\varphi(x)-U_n(x))\mathbf{1}_{[x=0]}$. On laisse le lecteur prouver que cette suite $(T_n)_{n\in\mathbb{N}^*}$ marche.

J'espère que cette Solution vous aidera et Bonne Chance pour votre Concours.

Contactez moi à l'adresse de haut de page en cas de questions.

Également avertissez moi si vous soupçonnez une quelconque erreur.

Cordialement Ulrich GOUE

Ulrich GOUE -27-