Foundations of Mathematics

Lukas Zamora

April 11, 2018

Contents

Co	onter	nts	1
1	Lan	guage, Logic, and Proof	3
	1.1	Language and Logic	3
	1.2	Proof	7
2	Tec	hniques of Proof	11
	2.1	Indirect Proofs: Proofs by Contradiction and Contrapositive	11
3	Ind	uction	15
	3.1	Principle of Mathematical Induction	15
4	Sets	5	17
	4.1	The Language of Sets	17
	4.2	Operations on Sets	19
	4.3	Arbitrary Unions and Intersections	21
5	Fun	actions	23
	5.1	Definition and Basic Properties	23
	5.2	Composition of Functions	24
	5.3	Surjective and Injective Functions	25
	5.4	Invertible Functions	25
	5.5	Functions and Sets	25
			25

Language, Logic, and Proof

1.1 Language and Logic

Mathematical Statements

Definition 1.1.1. A proposition is any declarative sentence that is either true or false, but not both.

A proposition cannot be neither true nor false and it cannot be both true and false.

A proposition is an example of a mathematical statement.

• Set Terminology and Notation (very short introduction)
Set is a well-defined collection of objects.

Elements are objects or members of the set.

• Roster notation:

 $A = \{a, b, c, d, e\}$ Read: "Set A with elements a, b, c, d, e."

• Indicating a pattern: $B = \{a, b, c, ..., z\}$ Read: "Set B with elements being the letters of the alphabet."

If a is an element of a set A, we write $a \in A$ that reads "a belongs to A." However, if a does not belong to A we write $a \notin A.6$

Some numbers sets:

- \mathbb{R} is the set of all *real* numbers.
- $\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$, the set of all *integers*.
- $\mathbb{N} = \{1, 2, 3, \dots\}$, the set of all *natural* numbers.
- \mathbb{Q} is the set of all rational numbers.

- $\mathbb{E} = \{0, \pm 2, \pm 4, \pm 6, \dots\}$, the set of all *even* integers.
- $\mathbb{O} = \{\pm 1, \pm 3, \pm 5, \dots\}$, the set of all *odd* integers.
- $n\mathbb{Z}$ is the set of all integer multiples of n, where $n \in \mathbb{N}$.

Trichotomy Axiom: Given fixed real numbers a and b, exactly one of the following statements is true.

$$a < b$$
 $a = b$ $b < a$

A *predicate* is any declarative sentence containing one or more variables, each variable representing a value in some prescribing set, called the *universe*, and which becomes a proposition when values from their respective universes are substituted for these variables.

Example 1. Let P(x): x+5=7 where $x \in \mathbb{R}$. Then P(2) is a true proposition, whereas P(-1) is a false proposition. P(n) becomes a true proposition when we substitute for n the values from the set $\{2\}$.

Negation

Definition 1.1.2. If P is a mathematical statement, then the **negation/denial** of P, written $\neg P$ (read "not P"), is the mathematical statement "P is false."

Basic Connectivities

We have two types of mathematical statements: propositions and predicates. We can build more complicated (compound) statements using the following logical connectivities:

Logical connectivity	write	read	meaning
Conjunction	$P \wedge Q$	P and Q	Both P and Q are true
Disjunction	$P \lor Q$	P or Q	P is true or Q is true

Example 2. Let the statements be P: "Ben is a student", Q: "Ben is a grader." Then $P \wedge Q$: "Ben is a student and a grader", $P \vee Q$: "Ben is a student or a grader."

Truth Tables

P	Q	$P \wedge Q$
T	T	T
T	F	F
F	T	F
F	F	F

P	Q	$P \lor Q$
T	T	T
T	F	T
F	T	T
F	F	F

Implications

Definition 1.1.3. Let P and Q be statements. The **implication** $P \Rightarrow Q$ (read "P implies Q") is the statement "if P is true, then Q is true."

5

In implications, P is called assumption, or hypothesis, or antecedent; and Q is called conclusion, or consequent.

The truth table for implication:

P	Q	$P \Rightarrow Q$
T	T	T
T	F	F
F	T	T
F	F	T

Converse and Contrapositive

Definition 1.1.4. The statement $Q \Rightarrow P$ is called the **converse** of the statement $P \Rightarrow Q$.

Definition 1.1.5. The statement $(\neg Q) \Rightarrow (\neg P)$ is called the **contrapositive** of the statement $P \Rightarrow Q$.

Biconditional

Definition 1.1.6. For statements P and Q,

$$(P \Rightarrow Q) \land (Q \Rightarrow P)$$

is called the **biconditional** of P and Q and is denoted by $P \Leftrightarrow Q$. The biconditional $P \Leftrightarrow Q$ is stated as "P if and only if Q."

P	Q	$P \Leftrightarrow Q$
T	T	T
T	F	F
F	T	F
F	F	T

Logical Equivalence

Definition 1.1.7. Two compound statements are **logically equivalent** (write " \equiv ") if they have the same truth tables, which means they both are true or both are false.

Some Fundamental Properties of Logical Equivalence

Theorem 1.1.8. For the statement forms P, Q, and R,

$$A. \neg (\neg P) \equiv P$$

B. Commutative Laws

$$P \wedge Q \equiv Q \wedge P$$

$$P \lor Q \equiv Q \lor P$$

$$P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$$
$$P \vee (Q \vee R) \equiv (P \vee Q) \vee R$$

D. Distributive Laws

$$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$$

$$P \vee (Q \wedge R) \equiv (P \vee Q) \wedge (P \vee R)$$

E. De Morgan's Laws

$$\neg (P \land Q) \equiv (\neg P) \lor (\neg Q)$$
$$\neg (P \lor Q) \equiv (\neg P) \land (\neg Q)$$

$$F. \neg (P \Rightarrow Q) \equiv P \wedge (\neg Q)$$

$$G. P \Rightarrow Q \equiv (\neg P) \lor Q$$

$$\textit{H. } P \Rightarrow Q \equiv (\neg Q) \Rightarrow (\neg P)$$

I. $P \Rightarrow Q$ is NOT logically equivalent to $Q \Rightarrow P$

Proof. Each part of the theorem is verified by means of a truth table.

Tautologies and Contradictions

Tautology: statement that is always true. Contradiction: statement that is always false.

\overline{P}	$\neg P$	$P \vee (\neg P)$	$P \wedge (\neg P)$
T	F	T	F
\overline{F}	T	T	F

Remark 1.1.9. Let P and Q be statements. The biconditional $P \Leftrightarrow Q$ is a tautology if and only if P and Q are logically equivalent.

Quantified Statements

A predicate can be made into a proposition by using quantifiers.

Universal: $\forall x$ means for all/for every assigned value a of x. **Existential:** $\exists x$ means that for some assigned values a of x.

Quantified statements

	in symbols	in words
	" $\forall x \in D, P(x)$." or " $(\forall x \in D)P(x)$."	"For every $x \in D$, $P(x)$."
Ī	" $\exists x \in D \ni P(x)$." or " $(\exists x \in D)P(x)$."	"There exists x such that $P(x)$."

Once a quantifier is applied to a variable, the variable is then called a **bound** variable. The variable that is not bound is called a **free** variable.

1.2. PROOF 7

Negations of Quantified Statements

Quantified statement	Corresponding negation
$\forall x \in D, P(x)$	$\exists x \in D \ni (\neg P(x))$
$\exists x \in D \ni P(x)$	$\forall x \in D, (\neg P(x))$
$\forall x \in D, (P(x) \lor Q(x))$	$\exists x \in D \ni (\neg P(x) \land Q(x))$
$\exists x \in D \ni (P(x) \land Q(x))$	$\forall x \in D, (\neg P(x) \lor \neg Q(x))$
$\forall x \in D, (P(x) \Rightarrow Q(x))$	$\exists x \in D \ni (P(x) \land \neg Q(x))$

1.2 Proof

Logical arguments

Most theorems (or results) are stated as implications.

Trivial and Vacuous Proofs

Let P(x) and Q(x) be open sentences over a domain D. Consider the quantified statement

$$\forall x \in D, P(x) \Rightarrow Q(x) \tag{1.1}$$

Trivial Proof: If it can be shown that Q(x) is true for all $x \in D$ (regardless the truth value for P(x)), then 1.1 is true.

Vacuous Proof: If it can be shown that P(x) is false for all $x \in D$ (regardless the truth value for Q(x)), then 1.1 is true.

Example 3. Let $x \in \mathbb{R}$. If $x^6 - 3x^4 + x + 3 < 0$, then $x^4 + 1 > 0$.

Proof. Let $x \in \mathbb{R}$. Since $x^4 \ge 0$ for all $x \in \mathbb{R}$, we get $x^4 + 1 \ge 0 + 1 > 0$. Hence the statement is true by vacuous proof.

Integers and some of their basic properties and definitions

Let $a, b, c \in \mathbb{Z}$

property	w.r.t addition	w.r.t multiplication
Closure	$a+b\in\mathbb{Z}$	$a \cdot b \in \mathbb{Z}$
Associative	(a+b) + c = a + (b+c)	(ab)c = a(bc)
Commutative	a+b=b+a	ab = ba
Distributive	a(b+c) = ab + ac	a(b+c) = ab + ac
Identity	a + 0 = a	$a \cdot 1 = a$
Inverse	There exists a unique integer $-a = (-1) \cdot a$ such that $a + (-a) = 0$	Only 1 and −1 are invertible
Subtraction	b - a := b + (-a)	
No divisors of 0		If $ab = 0$ then $a = 0$ or $b = 0$
Cancellation	If $a + c = b$, then $a = b$	If $ab = ac$ and $a \neq 0$, then $b = c$

Order properties

- A. If a < b and b < c then a < c. (transitivity)
- B. Exactly one of a < b or a = b or a > b holds. (**trichotomy**)
- C. If a < b, then a + c < b + c.
- D. If c > 0, then a < b if and only if ac < bc.
- E. If c < 0, then a < b if and only if ac > bc.

Mathematical definitions are always biconditional statements.

Definition 1.2.1. An integer n is defined to be **even** if n = 2k for some integer k. An integer n is defined to be **odd** if n = 2k + 1 for some integer k.

Definition 1.2.2. The integers m and n are said to be **of the same parity** if m and n are both even, or both odd. The integers m and n are said to be of opposite parity if one of them is even and the other is odd.

Definition 1.2.3. Let a and b be integers. We say that b **divides** a, written b|a, if there is an integer c such that bc = a. We say that b and c are **factors** of a, or that a is **divisible** by b and c.

Definition 1.2.4. A real number x is rational if $x = \frac{m}{n}$ for some integers m and n.

Direct Proofs

Let P(x) and Q(x) be open sentences over a domain D.

To prove (directly) a statement of the form, "For all $x \in D$, P(x) is true":

- A. Assume x is an arbitrary (but now fixed) element $x \in D$.
- B. Demonstrate that P(x) is true.

Example 4. Let $n \in \mathbb{Z}$. Prove that if n is even, then $5n^5 + n + 6$ is even.

1.2. PROOF 9

Proof. Let $n \in \mathbb{E}$. Then n=2k for some $k \in \mathbb{Z}$. Hence $5n^5+n+6=5(2k)^5+(2k)+6=2(5\cdot 2^4\cdot k^5+k+3)\in \mathbb{E}$, because $5\cdot 2^4\cdot k^5+k+3\in \mathbb{Z}$ by closure property. Therefore $5n^5+n+6$ is even.

Theorem 1.2.5. The sum and product of every two rational numbers is rational

Proof. Let $m, n \in \mathbb{Q}$. Then $m = \frac{a_1}{b_1}$ and $n = \frac{a_2}{b_2}$ for some $a_1, b_1, a_2, b_2 \in \mathbb{Z}$. Then

$$m + n = \frac{a_1}{b_1} + \frac{a_2}{b_2}$$
$$= \frac{a_1b_2 + a_2b_1}{b_1b_2}$$
$$= \frac{z_1}{z_2}$$

where $z_1 = a_1b_2 + a_2b_1$ and $z_2 = b_1b_2$. Since $z_1, z_2 \in \mathbb{Z}$ by closure property and $z_2 \neq 0$, we conclude that $m + n \in Q$.

Example 5. Let $a, b, c \in \mathbb{Z}$. Prove that if a|b and b|c, then a|c.

Proof. Let $a,b,c \in \mathbb{Z}$. By definition, a|b is equivalent to b=ax, and b|c is equivalent to c=by for some $x,y \in \mathbb{Z}$. Hence c=by=(ax)y=a(xy)=az, where $z=xy \in \mathbb{Z}$ by closure property. Therefore a|c.

Proof by Cases

Proof by cases may be useful while attempting to give a proof of a statement concerning an element x in some set D. Namely, if x possesses one of two or more properties, then it may be convenient to divide a case into other cases, called subcases.

Example 6. Prove that if n is an integer, then $n^2 + 3n + 4$ is an even integer.

Proof. Let $n \in \mathbb{Z}$. Since every integer is either even or odd, consider the following two cases:

- Case 1: Let $n \in \mathbb{E}$. Then n = 2k for some $k \in \mathbb{Z}$. Thus, $n^2 + 3n + 4 = (2k)^2 + 3(2k) + 4 = 2(2k^2 + 3k + 2) \in \mathbb{E}$, because $2k^2 + 3k + 2 \in \mathbb{Z}$ by closure property.
- Case 2: Let $n \in \mathbb{O}$. Then n = 2k + 1 for some $k \in \mathbb{Z}$. Thus, $n^2 + 3n + 4 = (2k + 1)^2 + 3(2k + 1) + 4 = 4k^2 + 4k + 1 + 6k + 3 + 4 = 4k^2 + 10k + 8 = 2(2k^2 + 5k + 4) \in \mathbb{E}$, because $2k^2 + 5k + 4 \in \mathbb{Z}$ by closure property.

Disproving Statements

Case 1. Counterexamples

Let S(x) be an open sentence over a domain D. If the quantified statement $(\forall x \in D, S(x))$ is false, then its negation is true, i.e,

$$\neg(\forall x \in D, S(x)) \equiv \exists x \in D \ni \neg S(x)$$

Such an element x is called a **counterexample** of the false statement $\forall x \in D, S(x)$.

Example 7. Disprove the following statement: "If $n \in \mathbb{O}$, then $3|n^2+2$."

Solution. A counterexample: Let n=3. Then we have that $3 \in \mathbb{O}$, but $3 \nmid 11$.

Case 2. Existence Statements

Consider the quantified statement $\exists x \in D \ni S(x)$. If this statement is false, then its negation is true, i.e,

$$\neg(\exists x \in D \ni S(x)) \equiv \forall x \in D, \neg S(x)$$

Example 8. Disprove the statement: "There exists an even integer n such that 3n + 5 is even."

Solution. It is sufficient to prove that for every integer n, the number 3n+5 is odd. Indeed, if $n \in \mathbb{E}$, then n=2k for some $k \in \mathbb{Z}$. Hence $3n+5=3(2k)+5=3(2k)+4+1=2(3k+2)+1\in \mathbb{O}$, since $3k+2\in \mathbb{Z}$ by closure property.

Techniques of Proof

2.1 Indirect Proofs: Proofs by Contradiction and Contrapositive

Proof by Contrapositive

Let P(x) and Q(x) be open sentences over a domain D. A proof by contrapositive of an implication is a direct proof of its contrapositive, that is **to prove that for all** $x \in D$, $P(x) \Rightarrow Q(x)$

- Assume that $\neg Q(x)$ is true for an arbitrary (but now fixed) element $x \in D$.
- Draw out consequences of $\neg Q(x)$.
- Use these consequences to show that $\neg P(x)$ must be true as well for this element x.
- It follows that $P(x) \Rightarrow Q(x)$ is true for all $x \in D$.

Example 9. Let $x, y \in \mathbb{Z}$. If $7 \nmid xy$, then $7 \nmid x$ and $7 \nmid y$.

Proof. By contrapositive method, it is sufficient to prove that for every $x, y \in \mathbb{Z}$, if 7|x or 7|y, then 7|xy. Consider the following cases:

- Case 1: Let 7|x. Then x = 7k for some $k \in \mathbb{Z}$. Thus xy = (7k)y = 7(ky). Since $ky \in \mathbb{Z}$ by closure property, we get that 7|xy.
- Case 2: Let 7|y. This case is similar to Case 1 because xy = yx. Thus the proof can be omitted.

Proving Biconditional Statements

Prove that $\forall x \in D, P(x) \Rightarrow Q(x)$.

```
Proof. Let x \in D.
Assume P(x). Then show Q(x).
Conversely, assume Q(x). Then show P(x).
```

Example 10. Let $x, y \in \mathbb{Z}$. Prove that x and y are of opposite parity if and only if x + y is odd.

Proof. Let $x, y \in \mathbb{Z}$. Assume that x and y are of opposite parity. Then consider the following cases:

- Case 1: Let $x \in \mathbb{E}$, $y \in \mathbb{O}$. Then x = 2k, y = 2j + 1 for some $k, j \in \mathbb{Z}$. Hence $x + y = 2k + 2j + 1 = 2(k + j) + 1 \in \mathbb{O}$, since $k + j \in \mathbb{Z}$ by closure property.
- Case 2: Let $x \in \mathbb{O}$, $y \in \mathbb{E}$. This case is similar to case 1 because of a symmetry between x and y, so it can be omitted.

(Conversely, let $x + y \in \mathbb{O}$. Then show that x and y are of same parity.)

By contrapositive method, it is sufficient to show that if x and y are of the same parity, then $x + y \in \mathbb{E}$. Assume that x and y are of the same parity, then consider the following two cases:

- Case 1: Let $x, y \in \mathbb{E}$. Then x = 2k, y = 2j for some $k, j \in \mathbb{Z}$. Thus $x + y = 2k + 2j = 2(k+j) \in \mathbb{E}$, since $k+j \in \mathbb{Z}$ by closure property.
- Case 2: Let $x, y \in \mathbb{O}$. Then x = 2k + 1, y = 2j + 1 for some $k, j \in \mathbb{Z}$. Thus $x + y = 2k + 1 + 2j + 1 = 2(k + j + 1) \in \mathbb{E}$, since $k + j + 1 \in \mathbb{Z}$ by closure property.

Proof by Contradiction

To prove a statement S is true by contradiction:

- Assume that $\neg S$ is true.
- Deduce a contradiction.
- \bullet Then conclude that S is true.

Example 11. Prove that there is no smallest positive real number.

Proof. By contradiction, assume that there is a smallest positive real number, say x. But if $x \in \mathbb{R}^+$, then $\frac{x}{2} \in \mathbb{R}^+$ and $\frac{x}{2} < x$, a contradiction, since $\frac{x}{2}$ is smaller than the smallest positive real number.

One Important Theorem

Recall that a real number x is **rational** if $x = \frac{m}{n}$ for some integers m and n. Note that if necessary, we may assume (without loss of generality) that the integers m and n have no common positive factors other than 1. (In other words, we may assume that every fraction can be reduced to least terms.)

Theorem 2.1.1. The number $\sqrt{2}$ is irrational.

Proof. By contradiction, assume that $\sqrt{2}$ is rational, i.e,

$$\sqrt{2} = \frac{m}{n} \tag{2.1}$$

for some $m, n \in \mathbb{Z}$. Without loss of generality, we may assume that m and n have no common factors other than 1 or -1. Then squaring both sides of (2.1), we get

$$m^2 = 2n^2 \tag{2.2}$$

In other words, $m^2 \in \mathbb{E}$. Hence $m \in \mathbb{E}$. Thus m = 2k for some $k \in \mathbb{Z}$. By substituting this into (2.2), we obtain $(2k)^2 = 2n^2$, or $n^2 = 2k^2$, i.e, $n^2 \in \mathbb{E}$, which implies that $n \in \mathbb{E}$. If om and n are both even, this implies that they share a common factor of 2, a contradiction.

Theorem 2.1.2. Let S and C be statements. Then $\neg S \Rightarrow (C \land \neg C)$ is logically equivalent to S.

Proof. By truth table,

To prove a statement $P \Rightarrow Q$ by contradiction:

- \bullet Assume that P is true.
- To derive a contradiction, assume that $\neg Q$ is true.
- Prove a false statement C, using negation: $\neg (P \Rightarrow Q) \equiv (P \land \neg Q)$.
- Prove $\neg C$. It follows that Q is true. (The statement $C \land \neg C$ must be false, i.e, a contradiction.)

Example 12. If m and n are integers, then $m^2 \neq 4n + 2$.

Proof. By contradiction, assume that there exists $m, n \in \mathbb{Z}$ such that $m^2 = 4n + 2$. But $m^2 = 2(2n + 1) \in \mathbb{E}$, since $2n + 1 \in \mathbb{Z}$ by closure property. We then have that $m \in \mathbb{E}$. So m = 2k for some $k \in \mathbb{Z}$. Hence $(2k)^2 = 4n + 2$, $4k^2 = 4n + 2$, or $k^2 - n = \frac{1}{2}$, a contradiction (since $\frac{1}{2} \notin \mathbb{Z}$). \square

Existence Proofs

An existence theorem can be expressed as a quantified statement $\exists x \in D \ni S(x)$:

There exists $x \in D$ such that S(x) is true.

Example 13. There exists real numbers a and b such that $\sqrt{a^2 + b^2} = a + b$.

Proof. Let
$$a = 0, b = 1$$
. Then $a, b \in \mathbb{R}$ and $\sqrt{a^2 + b^2} = \sqrt{0^2 + 1^2} = 1 = 0 + 1 = a + b$.

Theorem 2.1.3. (Intermediate Value Theorem of Calculus) If f is a real-valued function that is continuous on the closed interval [a,b] and m is a number between f(a) and f(b), then there exists a number $c \in (a,b)$ such that f(c) = m.

Induction

3.1 Principle of Mathematical Induction

Theorem 3.1.1. (Principle of Mathematical Induction) Let P(n) be a statement about the positive integer n so that n is a free variable in P(n). Suppose the following:

- (PMI 1) The statement P(1) is true.
- (PMI 2) For all positive integers k, if P(k) is true, then P(k+1) is true.

Then, for all positive integers n, P(n) is true.

Strategy

The proof by induction consists of the following steps:

- Base Case: Verify that P(1) is true.
- Inductive Hypothesis: Assume that k is a positive integer for which P(k) is true.
- Conclusion: P(n) is true for every positive integer n.

Example 14. Prove that $3|8^n - 5^n)$ for every positive integer n.

Proof. Apply PMI. Let $P(n): 3|(8^n - 5^n, n \in \mathbb{Z}^+)$.

Base Case: P(1): 3|8-5=3|3 which is true.

Inductive Hypothesis: Assume $P(k): 3|8^k - 5^k$ for some $k \in \mathbb{Z}^+$.

Inductive Step: (Prove that P(k+1) is true.) We have if $3|(8^k-5^k)$ then there exists $j \in \mathbb{Z}$ such that $8^k-5^k=3j$, or $8^k=3j+5^k$. Then

$$8^{k+1} - 5^{k+1} = 8 \cdot 8^k - 5^{k+1}$$

$$= 8(3j + 5k) - 5^{k+1}$$

$$= 8 \cdot 3j + 8 \cdot 5^k - 5 \cdot 5^k$$

$$= 8 \cdot 3j + 3 \cdot 5^k$$

$$= 3(8j + 5^k)$$

Since $8j + 5^k \in \mathbb{Z}$ by closure property, we conclude that $3|(8^{k+1} - 5^{k+1})$.

Conclusion: P(n) is true for all $n \in \mathbb{Z}^+$

Sets

4.1 The Language of Sets

Set Terminology and Notation

Set is a well-defined collection of objects. **Elements** are objects or members of the set.

Describing a Set

• Roster Notation:

 $A = \{a, b, c, d, e\}$ Read: Set A with elements a, b, c, d, e.

• Indicating a pattern:

 $B = \{a, b, c, \dots, z\}$ Read: Set B with elements being the letters of the alphabet.

If a is an element of set A, we write $a \in A$ that reads "a belongs to A". If a does not belong to A, we write $a \notin A$.

Set-Builder Notation

Definition 4.1.1. Let P(x) be a predicate. Then the notation

$$\{x|P(x)\}$$
 or $\{x:P(x)\}$

denotes the set of all elements x such that P(x) is a true statement. (The symbol "|" is read "such that".)

When D is a set,

$$\{x \in D | P(x)\} = \{x | x \in D \land P(x)\}$$

18 CHAPTER 4. SETS

Interval Notation

Bounded Intervals

- Closed interval $[a, b] = \{x \in \mathbb{R} | a \le x \le b\}$
- Open interval $(a, b) = \{x \in \mathbb{R} | a < x < b\}$
- Half-open, half-closed interval $(a, b] = \{x \in \mathbb{R} | a < x \le b\}$
- Half-closed, half-open interval $[a, b) = \{x \in \mathbb{R} | a \le x < b\}$

Unbounded Intervals

- $[a, \infty) = \{x \in \mathbb{R} | a \le x\}$
- $(a, \infty) = \{x \in \mathbb{R} | a < x\}$
- $(-\infty, a] = \{x \in \mathbb{R} | x \ge a\}$
- $\bullet \ (-\infty, a) = \{x \in \mathbb{R} | x > a\}$
- $(-\infty, \infty) = \{x \in \mathbb{R}\}$

Subsets

- Two sets, A and B, are **equal**, written A = B if and only if they have exactly the same elements. (NOTE: they do not have to be in the same order!)
- If every element in set A is also an element in set B, then A is a subset of B, written $A \subseteq B$.
- If $A \subseteq B$, but $A \neq B$, then A is a **proper** subset of B, written $A \subset B$.
- The **empty set** is the set that does not have any elements, denoted by \emptyset or $\{\}$.
- \bullet The universal set is the set that contains all of the elements for a problem, denoted by \mathcal{U} .

In Symbols

Let $A, B \subseteq \mathcal{U}$. Then

- $A = B \Leftrightarrow \forall x \in \mathcal{U}, (x \in A \Leftrightarrow x \in B)$
- $A \subseteq B \Leftrightarrow \forall x \in \mathcal{U}, (x \in A \Rightarrow x \in B)$
- $A \subset B \Leftrightarrow \forall x \in \mathcal{U}, (x \in A \Rightarrow x \in B) \land (\exists x \ni x \notin A \land x \in B)$
- $A \neq B \Leftrightarrow \exists x \in \mathcal{U} \ni [(x \in A \land x \notin B) \lor (x \in A \land x \notin B)]$

Example 15. Let $A = \{n \in \mathbb{Z} | n = 3t - 2, t \in \mathbb{Z}\}, B = \{n \in \mathbb{Z} | n = 3t + 1, t \in \mathbb{Z}\}.$ Prove that A = B.

Proof. Let $n \in \mathbb{Z}$. It is sufficient to prove that $n \in A \Leftrightarrow n \in B$. Let $n \in A$. Then n = 3t - 2 for some $t \in \mathbb{Z}$. Hence n = 3t - 2 = 3t - 2 - 1 + 1 = (3t - 3) + 1 = 3(t - 1) + 1 = 3s + 1, where $s = t - 1 \in \mathbb{Z}$. So $n \in B$.

Let $n \in B$. Then n = 3t + 1 for some $t \in \mathbb{Z}$. Hence n = 3t + 1 = 3t + 1 + 2 - 2 = 3(t + 1) - 3 = 3s - 2, where $s = t + 1 \in \mathbb{Z}$. So $n \in A$.

Cardinality

The cardinality of A, written |A|, is the number of elements in A.

4.2 Operations on Sets

Venn Diagrams

Venn diagrams are visual representations of sets (the universal set \mathcal{U} is represented by a rectangle, and subsets of \mathcal{U} are represented by regions lying inside of the rectangle).

Definition 4.2.1. Let A and B be sets in a universal set \mathcal{U} . The **union** of A and B, written $A \cup B$, is the set of all elements that belong to either A or B or both. Symbolically,

$$A \cup B = \{x \in \mathcal{U} | x \in A \lor x \in B\}$$

Definition 4.2.2. Let A and B be sets in a universal set \mathcal{U} . The **intersection** of A and B, written $A \cap B$, is the set of all elements in common with A and B or both. Symbolically,

$$A \cap B = \{x \in \mathcal{U} | x \in A \land x \in B\}$$

Definition 4.2.3. Let A and B be sets in a universal set \mathcal{U} . The **complement of** A **in** B, denoted B - A, is

$$B - A = \{ x \in \mathcal{U} | x \in B \land x \notin A \}$$

20 CHAPTER 4. SETS

set notation	=	\subset,\subseteq	U	\cap	-	Ø	\mathcal{U}
logical connectivity	\Leftrightarrow	\Rightarrow	V	\wedge	Г	contradiction	tautology

Power Set

Definition 4.2.4. Let A be a set. The power set of A, written $\mathcal{P}(A)$, is the following set,

$$\mathcal{P}(A) = \{X | X \subseteq A\}$$

In other words, it is the set of all possible subsets of A.

$$\mathcal{P}(\{x,y\}) = \{\emptyset, \{x\}, \{y\}, \{x,y\}\}\$$

Cartesian Product

Definition 4.2.5. Let A and B be sets. The Cartesian product of A and B, written $A \times B$, is the following set,

$$A \times B = \{(a, b) | a \in A \land b \in B\}$$

Fundamental Properties of Sets

Theorem 4.2.6. The following statements are true for all sets A, B, and C contained in a universal set U.

- $A. \ A \cup B = B \cup A \ (commutative)$
- $B. A \cap B = B \cap A \ (commutative)$
- $C. \ (A \cup B) \cup C = A \cup (B \cup C) \ (associative)$
- $D. (A \cap B) \cap C = A \cap (B \cap C)$ (associative)
- $E. \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \ (distributive)$
- $F. \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \ (distributive)$
- $G. \ \overline{A \cup B} = \overline{A} \cap \overline{B} \ (DeMorgan's \ Law)$
- $H. \ \overline{A \cap B} = \overline{A} \cup \overline{B} \ (DeMorgan's \ Law)$

Proving Set Properties

Use the following tautologies:

- $x \in A \cap B \Leftrightarrow (x \in A \land x \in B)$
- $x \in A \cup B \Leftrightarrow (x \in A \lor x \in B)$
- $x \in A B \Leftrightarrow (x \in A \land x \notin B)$
- $(x,y) \in A \times B \Leftrightarrow (x \in A \land y \in B)$

Example 16. Let A and B be subsets of a universal set \mathcal{U} . Prove that $(A - B) \cap B = \emptyset$.

Proof. Let $x \in \mathcal{U}$. Assume, by contradiction, that $(A - B) \cap B \neq \emptyset$. Then there exists $x \in (A - B) \cap B$. Thus,

$$x \in (A - B) \cap B \Rightarrow x \in ((A - B) \land x \in B)$$
$$\Rightarrow (x \in A \land x \notin B) \land (x \in B)$$
$$\Rightarrow x \in A \land (x \notin B \land x \in B)$$
$$\Rightarrow x \notin B \land x \in B,$$

a contradiction.

Example 17. Let A, B, C be subsets in a universal set \mathcal{U} . Prove that

$$A\times (B\cup C)=(A\times B)\cup (A\times C)$$

Proof. Let $x, y \in \mathcal{U}$. Then

$$\begin{split} (x,y) \in A \times (B \cup C) &\Leftrightarrow (x \in A) \wedge (y \in (B \cup C)) \\ &\Leftrightarrow (x \in A) \wedge (y \in B \vee y \in C) \\ &\Leftrightarrow (x \in A \wedge y \in B) \vee (x \in A \wedge y \in C) \\ &\Leftrightarrow ((x,y) \in A \times B) \vee ((x,y) \in A \times C) \\ &\Leftrightarrow (x,y) \in (A \times B) \cup (A \times C) \end{split}$$

4.3 Arbitrary Unions and Intersections

Definition 4.3.1. Let I be a set. An indexed collection of sets $\{A_{\alpha}\}_{{\alpha}\in I}$ represents a collection of sets that for every ${\alpha}\in I$, there is a corresponding set A_{α} . In this case we call I the indexed set.

Collection of sets	Indexed set	Shortened notation	
$A_0, A_1, A_2, A_3, \dots, A_{2016}$	$I = \{0, 1, 2, 3, \dots, 2016\}$	$\{A_{\alpha}\}_{\alpha\in I}$	
$B_3, B_6, B_9, \dots, B_77$	$J = \{3, 6, 9, \dots, 77\}$	$\{B_{\beta}\}_{\beta\in J}$	
$C_5, C_{10}, C_{15}, \dots, C_{2015}$	$k = \{5t 1 \le t \le 403, t \in \mathbb{Z}\}$	$\{C_i\}_{i\in k}$	

Example 18. Given $B_i = \{i, i+1\}$ for i = 1, 2, ..., 10.

(a)
$$\bigcap_{i=1}^{10} = (B_1 \cap B_2) \cap B_3 \cap \dots \cap B_{10} = (\{2\} \cap B_3) \cap (B_4 \cap \dots \cap B_{10}) = \emptyset \cap (B_4 \cap \dots \cap B_{10}) = \emptyset$$

(b)
$$B_i \cap B_{i+1} = \{i, i+1\} \cap \{i+1, i+2\} = \{i+1\}$$

Functions

5.1 Definition and Basic Properties

Definition 5.1.1. Let X and Y be nonempty sets. A function from the set X to the set Y is a correspondence that assigns to each element x in the set X one and only one element y in the set Y, which is denoted by f(x).

We call X the **domain** of f and Y the **codomain** of f.

If $x \in X$ and $y \in Y$ are such that y = f(x), then y is called the **value** of f at x, or the **image** of x under f. We may also say that f **maps** x to y. Using diagram,

Definition 5.1.2. Two functions f and g are **equal** if they have the same domain and the same codomain and if f(x) = g(x) for all x in the domain.

Definition 5.1.3. The graph of $f: X \to Y$ is the set

$$G_f = \{(x, y) \in X \times Y | y = f(x)\}$$

Some common functions

• Identity function $I_X: X \to X$ maps every element to itself,

$$\forall x \in X, i_X(x) = x$$

• Polynomial function of degree n with real coefficients a_0, a_1, \ldots, a_n is a function from \mathbb{R} to \mathbb{R} :

$$P_n(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_{n-1} x + a_n$$

If $a_0 \neq 0$, then deg $P_n(x) = n$.

Range (or Image) of a Function

Definition 5.1.4. Let $f: X \to Y$ be a function. The **range** of f (also called the **image** of f) is the set

$$\{y \in Y | y = f(x) \text{ for some } x \in X\}$$

We denote the range (or image) of the function f by ran f (or Im f).

Example 19. Let $f: [\frac{1}{3}, \infty] \to \mathbb{R}$ be defined by $f(x) = \sqrt{3x - 1}$ and $S = \{y \in \mathbb{R} | y \ge 0\}$. Prove that ranf = S.

Proof. Let $y \in \operatorname{ran} f$. Then y = f(x) for some $x \in [\frac{1}{3}, \infty]$. But $f(x) = \sqrt{3x - 1}$, so $y = \sqrt{3x - 1} \ge 0$ and hence $y \in S$. Thus $\operatorname{ran} f \subseteq S$.

Conversely, let $y \in S$. In order to show that $y \in \operatorname{ran} f$, we must find $x \in [\frac{1}{3}, \infty]$ such that f(x) = y. Indeed, if $x = \frac{y^2 + 1}{3}$ then $x \in [\frac{1}{3}, \infty]$ (because $y \in S \Rightarrow y \geq 0 \Rightarrow y^2 \geq 0 \Rightarrow y^2 + 1 \geq 1 \Rightarrow x = \frac{y^2 + 1}{3} \geq \frac{1}{3}$) and $f(x) = f(\frac{y^2 + 1}{3}) = \sqrt{3\left(\frac{y^2 + 1}{3}\right) - 1} = \sqrt{y^2 + 1 - 1} = \sqrt{y^2} = |y| = y$ (since $y \geq 0$). Thus $S \subseteq \operatorname{ran} f$.

5.2 Composition of Functions

Definition 5.2.1. Let A, B, C be nonempty sets, and let $f: A \to B, g: B \to C$ be functions. we define a function

$$g \circ f : A \to C$$

called the **composition** of f and g, by

$$(q \circ f)(a) = q(f(a))$$

Using diagram,

Example 20. Let $f, g : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = e^x$ and $g(x) = x \sin(x)$. Find $f \circ g$ and $g \circ f$.

Solution. First note that $f \circ g : \mathbb{R} \to \mathbb{R}$ and $g \circ f : \mathbb{R} \to \mathbb{R}$. Let $x \in \mathbb{R}$.

$$(f \circ g)(x) = f(g(x)) = f(x\sin(x)) = e^{x\sin(x)}$$

 $(g \circ f)(x) = g(f(x)) = g(e^x) = e^x \sin(e^x)$

We conclude that $f \circ g \neq g \circ f$, so function composition is **not** commutative.

Proposition 5.2.2. Let $f: A \rightarrow B, \ g: B \rightarrow C \ and \ h: C \rightarrow D.$ Then

$$(h \circ g) \circ f = h \circ (g \circ f)$$

Proof. First note that $(h \circ g) \circ f : A \to D$ and $h \circ (g \circ f) : A \to D$. Let $x \in A$. Then $((h \circ g) \circ f)(x) = h(g(f(x)))$ and $(h \circ (g \circ f))(x) = h(g(f(x)))$.

h

5.3 Surjective and Injective Functions

5.4 Invertible Functions

5.5 Functions and Sets