7.2.2. Обработка данных: стандартные алгоритмы машинного обучения в Julia

7.2.2.1. Кластеризация данных. Метод k-средних

```
In [1]:

# 3αεργ3κα πακεπο6:
#import Pkg
#Pkg.add("DataFrames")
#Pkg.add("Statistics")
using DataFrames
using CSV
#import Pkg
#Pkg.add("PLots")

In [2]:

# 3αεργ3κα δαμμωχ:
houses = CSV.File("houses.csv") |> DataFrame
```

	street	city	zip	state	beds	baths	sq_ft
	String	String	Int64	String	Int64	Int64	Int64
1	3526 HIGH ST	SACRAMENTO	95838	CA	2	1	836
2	51 OMAHA CT	SACRAMENTO	95823	CA	3	1	1167
3	2796 BRANCH ST	SACRAMENTO	95815	CA	2	1	796
4	2805 JANETTE WAY	SACRAMENTO	95815	CA	2	1	852
5	6001 MCMAHON DR	SACRAMENTO	95824	CA	2	1	797
6	5828 PEPPERMILL CT	SACRAMENTO	95841	CA	3	1	1122
7	6048 OGDEN NASH WAY	SACRAMENTO	95842	CA	3	2	1104
8	2561 19TH AVE	SACRAMENTO	95820	CA	3	1	1177
9	11150 TRINITY RIVER DR Unit 114	RANCHO CORDOVA	95670	CA	2	2	941
10	7325 10TH ST	RIO LINDA	95673	CA	3	2	1146
11	645 MORRISON AVE	SACRAMENTO	95838	CA	3	2	909
12	4085 FAWN CIR	SACRAMENTO	95823	CA	3	2	1289
13	2930 LA ROSA RD	SACRAMENTO	95815	CA	1	1	871
14	2113 KIRK WAY	SACRAMENTO	95822	CA	3	1	1020
15	4533 LOCH HAVEN WAY	SACRAMENTO	95842	CA	2	2	1022
16	7340 HAMDEN PL	SACRAMENTO	95842	CA	2	2	1134
17	6715 6TH ST	RIO LINDA	95673	CA	2	1	844
18	6236 LONGFORD DR Unit 1	CITRUS HEIGHTS	95621	CA	2	1	795
19	250 PERALTA AVE	SACRAMENTO	95833	CA	2	1	588
20	113 LEEWILL AVE	RIO LINDA	95673	CA	3	2	1356
21	6118 STONEHAND AVE	CITRUS HEIGHTS	95621	CA	3	2	1118
22	4882 BANDALIN WAY	SACRAMENTO	95823	CA	4	2	1329
23	7511 OAKVALE CT	NORTH HIGHLANDS	95660	CA	4	2	1240
24	9 PASTURE CT	SACRAMENTO	95834	CA	3	2	1601
25	3729 BAINBRIDGE DR	NORTH HIGHLANDS	95660	CA	3	2	901
26	3828 BLACKFOOT WAY	ANTELOPE	95843	CA	3	2	1088
27	4108 NORTON WAY	SACRAMENTO	95820	CA	3	1	963
28	1469 JANRICK AVE	SACRAMENTO	95832	CA	3	2	1119
29	9861 CULP WAY	SACRAMENTO	95827	CA	4	2	1380
30	7825 CREEK VALLEY CIR	SACRAMENTO	95828	CA	3	2	1248
:	i.	:	:	:	÷	:	:

```
x = houses[:sq_ft]
y = houses[:price]
scatter(x,y,markersize=3)
```



```
In [4]:
# Фильтрация данных по заданному условию:
filter_houses = houses[houses[!,:sq__ft].>0,:]
```

	street	city	zip	state	beds	baths	sq_ft
	String	String	Int64	String	Int64	Int64	Int64
1	3526 HIGH ST	SACRAMENTO	95838	CA	2	1	836
2	51 OMAHA CT	SACRAMENTO	95823	CA	3	1	1167
3	2796 BRANCH ST	SACRAMENTO	95815	CA	2	1	796
4	2805 JANETTE WAY	SACRAMENTO	95815	CA	2	1	852
5	6001 MCMAHON DR	SACRAMENTO	95824	CA	2	1	797
6	5828 PEPPERMILL CT	SACRAMENTO	95841	CA	3	1	1122
7	6048 OGDEN NASH WAY	SACRAMENTO	95842	CA	3	2	1104
8	2561 19TH AVE	SACRAMENTO	95820	CA	3	1	1177
9	11150 TRINITY RIVER DR Unit 114	RANCHO CORDOVA	95670	CA	2	2	941
10	7325 10TH ST	RIO LINDA	95673	CA	3	2	1146
11	645 MORRISON AVE	SACRAMENTO	95838	CA	3	2	909
12	4085 FAWN CIR	SACRAMENTO	95823	CA	3	2	1289
13	2930 LA ROSA RD	SACRAMENTO	95815	CA	1	1	871
14	2113 KIRK WAY	SACRAMENTO	95822	CA	3	1	1020
15	4533 LOCH HAVEN WAY	SACRAMENTO	95842	CA	2	2	1022
16	7340 HAMDEN PL	SACRAMENTO	95842	CA	2	2	1134
17	6715 6TH ST	RIO LINDA	95673	CA	2	1	844
18	6236 LONGFORD DR Unit 1	CITRUS HEIGHTS	95621	CA	2	1	795
19	250 PERALTA AVE	SACRAMENTO	95833	CA	2	1	588
20	113 LEEWILL AVE	RIO LINDA	95673	CA	3	2	1356
21	6118 STONEHAND AVE	CITRUS HEIGHTS	95621	CA	3	2	1118
22	4882 BANDALIN WAY	SACRAMENTO	95823	CA	4	2	1329
23	7511 OAKVALE CT	NORTH HIGHLANDS	95660	CA	4	2	1240
24	9 PASTURE CT	SACRAMENTO	95834	CA	3	2	1601
25	3729 BAINBRIDGE DR	NORTH HIGHLANDS	95660	CA	3	2	901
26	3828 BLACKFOOT WAY	ANTELOPE	95843	CA	3	2	1088
27	4108 NORTON WAY	SACRAMENTO	95820	CA	3	1	963
28	1469 JANRICK AVE	SACRAMENTO	95832	CA	3	2	1119
29	9861 CULP WAY	SACRAMENTO	95827	CA	4	2	1380
30	7825 CREEK VALLEY CIR	SACRAMENTO	95828	CA	3	2	1248
:	i	:	:	:	÷	:	:

```
y = filter_houses[:price]
scatter(x,y)
```



```
In [6]: # Подключение пакета Statistics:
using Statistics

To [7]:
```

In [7]: # Определение средней цены для определённого типа домов:
 by(filter_houses,:type,filter_houses->mean(filter_houses[:price]))

Out[7]: 3 rows × 2 columns

```
        type
        x1

        String
        Float64

        1
        Residential
        2.34802e5

        2
        Condo
        1.34213e5

        3
        Multi-Family
        2.24535e5
```

```
In [8]:
# Подключение пакета Clustering:
#import Pkg
#Pkg.add("Clustering")
using Clustering
```

```
In [9]: # Добавление данных :Latitude и :Longitude в новый фрейм:
X = filter_houses[[:latitude,:longitude]]
```

	latitude	longitude
	Float64	Float64
1	38.6319	-121.435
2	38.4789	-121.431
3	38.6183	-121.444
4	38.6168	-121.439
5	38.5195	-121.436
6	38.6626	-121.328
7	38.6817	-121.352
8	38.5351	-121.481
9	38.6212	-121.271
10	38.7009	-121.443
11	38.6377	-121.452
12	38.4707	-121.459
13	38.6187	-121.436
14	38.4822	-121.493
15	38.6729	-121.359
16	38.7001	-121.351
17	38.6896	-121.452
18	38.6798	-121.314
19	38.6121	-121.469
20	38.69	-121.463
21	38.7079	-121.321
22	38.4682	-121.444
23	38.7028	-121.382
24	38.6286	-121.488
25	38.7015	-121.376
26	38.7097	-121.374
27	38.5375	-121.478
28	38.4765	-121.502
29	38.5584	-121.328
30	38.4721	-121.404
:	÷	÷

In [10]:

Конвертация данных в матричный вид: X = convert(Matrix{Float64}, X)

```
814×2 Array{Float64,2}:
Out[10]:
          38.6319 -121.435
          38.4789 -121.431
          38.6183 -121.444
          38.6168 -121.439
          38.5195 -121.436
          38.6626 -121.328
          38.6817 -121.352
          38.5351 -121.481
          38.6212 -121.271
          38.7009 -121.443
          38.6377 -121.452
          38.4707 -121.459
          38.6187 -121.436
          38.7035 -121.375
          38.7031 -121.235
          38.3898 -121.446
          38.8978 -121.325
          38.4679 -121.445
          38.4453 -121.442
          38.4174 -121.484
          38.4577 -121.36
          38.4999 -121.459
          38.7088 -121.257
          38.417
                   -121.397
          38.6552 -121.076
In [11]:
          # Транспонирование матрицы с данными:
          X = X'
         2×814 LinearAlgebra.Adjoint{Float64,Array{Float64,2}}:
Out[11]:
                                  38.6183 ...
            38.6319
                       38.4789
                                                38.7088
                                                           38.417
                                                                     38.6552
          -121.435
                     -121.431
                                -121.444
                                               -121.257
                                                          -121.397 -121.076
In [12]:
          # Задание количества кластеров:
          k = length(unique(filter houses[:zip]))
Out[12]:
In [13]:
          # Определение к-среднего:
          C = kmeans(X,k) # попробуйте поменять к
         KmeansResult{Array{Float64,2},Float64,Int64}([38.680849300000006 38.28410599999999
Out[13]:
         4 ... 38.51819435714285 38.25129599999996; -121.36293816666664 -121.29519644444443
         ... -121.49720271428573 -121.31266899999999], [35, 47, 35, 35, 10, 41, 1, 46, 60, 45
         ... 27, 36, 47, 62, 19, 61, 47, 23, 7, 28], [6.273316466831602e-5, 0.00050545454723
         76049, 7.037215982563794e-5, 6.84302649460733e-5, 0.00012161941776867025, 0.000197
         0666489796713, 0.00012683964814641513, 0.00023977080854820088, 1.144897032645531e-
         5, 0.00011686658399412408 ... 3.845047467621043e-5, 5.2413251978578046e-5, 0.00021
         6632652154658, 0.00023574619626742788, 0.00013415837747743353, 0.00012178530232631
         601, 0.0004134149457968306, 0.0005266233965812717, 7.109141370165162e-5, 0.0014500
         179277092684], [30, 9, 5, 25, 1, 1, 10, 13, 5, 22 ... 15, 18, 2, 9, 34, 36, 1, 1,
         14, 6], [30, 9, 5, 25, 1, 1, 10, 13, 5, 22 ... 15, 18, 2, 9, 34, 36, 1, 1, 14, 6],
         0.2148637686877919, 15, true)
In [14]:
          # Формирование фрейма данных:
          df = DataFrame(cluster = C.assignments,city = filter_houses[:city],
              latitude = filter_houses[:latitude],longitude = filter_houses[:longitude],zip
```

	cluster	city	latitude	longitude	zip
	Int64	String	Float64	Float64	Int64
1	35	SACRAMENTO	38.6319	-121.435	95838
2	47	SACRAMENTO	38.4789	-121.431	95823
3	35	SACRAMENTO	38.6183	-121.444	95815
4	35	SACRAMENTO	38.6168	-121.439	95815
5	10	SACRAMENTO	38.5195	-121.436	95824
6	41	SACRAMENTO	38.6626	-121.328	95841
7	1	SACRAMENTO	38.6817	-121.352	95842
8	46	SACRAMENTO	38.5351	-121.481	95820
9	60	RANCHO CORDOVA	38.6212	-121.271	95670
10	45	RIO LINDA	38.7009	-121.443	95673
11	22	SACRAMENTO	38.6377	-121.452	95838
12	47	SACRAMENTO	38.4707	-121.459	95823
13	35	SACRAMENTO	38.6187	-121.436	95815
14	4	SACRAMENTO	38.4822	-121.493	95822
15	1	SACRAMENTO	38.6729	-121.359	95842
16	1	SACRAMENTO	38.7001	-121.351	95842
17	45	RIO LINDA	38.6896	-121.452	95673
18	13	CITRUS HEIGHTS	38.6798	-121.314	95621
19	53	SACRAMENTO	38.6121	-121.469	95833
20	45	RIO LINDA	38.69	-121.463	95673
21	13	CITRUS HEIGHTS	38.7079	-121.321	95621
22	47	SACRAMENTO	38.4682	-121.444	95823
23	43	NORTH HIGHLANDS	38.7028	-121.382	95660
24	53	SACRAMENTO	38.6286	-121.488	95834
25	43	NORTH HIGHLANDS	38.7015	-121.376	95660
26	43	ANTELOPE	38.7097	-121.374	95843
27	46	SACRAMENTO	38.5375	-121.478	95820
28	4	SACRAMENTO	38.4765	-121.502	95832
29	15	SACRAMENTO	38.5584	-121.328	95827
30	55	SACRAMENTO	38.4721	-121.404	95828
:	÷	÷	:	:	:

```
clustered_houses = df[df[:cluster].== i,:]
    xvals = clustered_houses[:latitude]
    yvals = clustered_houses[:longitude]
    scatter!(clusters_figure,xvals,yvals,markersize=4)
end
xlabel!("Latitude")
ylabel!("Longitude")
title!("Houses color-coded by cluster")
display(clusters_figure)
```



```
In [16]:
#Ποcmpoum εραφυκ, ραcκραcuβ κπαcmepы πο πονποβοму индексу:
unique_zips = unique(filter_houses[:zip])
zips_figure = plot(legend = false)
for uzip in unique_zips
    subs = filter_houses[filter_houses[:zip].==uzip,:]
    x = subs[:latitude]
    y = subs[:longitude]
    scatter!(zips_figure,x,y)
end
xlabel!("Latitude")
ylabel!("Longitude")
title!("Houses color-coded by zip code")
display(zips_figure)
```

Houses color-coded by zip code

7.2.2.2. Кластеризация данных. Метод к ближайших соседей

```
In [17]:
          # Подключение пакета NearestNeighbors:
          #import Pkg
          #Pkg.add("NearestNeighbors")
          using NearestNeighbors
In [18]:
          #Найдём к-среднее одного из объектов недвижимости:
          knearest = 10
          id = 70
          point = X[:,id]
         2-element Array{Float64,1}:
Out[18]:
            38.44004
           -121.421012
In [19]:
          # Поиск ближайших соседей:
          kdtree = KDTree(X)
          idxs, dists = knn(kdtree, point, knearest, true)
         ([70, 764, 196, 125, 557, 368, 415, 92, 112, 683], [0.0, 0.006264891539364138, 0.0
Out[19]:
         0825320259050462, 0.008473585132630057, 0.009164073548370188, 0.00940506512469770
         6,\ 0.009921759722950759,\ 0.009941028618812013,\ 0.010332637707777167,\ 0.01116899391
         1721985])
In [20]:
          # Все объекты недвижимости:
          x = filter_houses[!,:latitude];
          y = filter_houses[!,:longitude];
          scatter(x,y)
```



```
In [21]:
           # Соседи:
           x = filter_houses[idxs,:latitude];
           y = filter_houses[idxs,:longitude];
           scatter!(x,y)
Out[21]:
           -120.6
                                                                                             y1
y2
           -120.8
           -121.0
           -121.2
           -121.4
                                   38.4
                                                                           38.8
                                                                                               39.0
                                                       38.6
```

```
In [22]:
# Фильтрация по районам соседних домов:
cities = filter_houses[idxs,:city]
```

```
Out[22]: 10-element Array{String,1}:
    "SACRAMENTO"
    "ELK GROVE"
    "SACRAMENTO"
    "SACRAMENTO"
    "SACRAMENTO"
    "SACRAMENTO"
    "ELK GROVE"
    "ELK GROVE"
    "ELK GROVE"
    "ELK GROVE"
    TALK GROVE
    "ELK GROVE"
    TALK GROVE

TO.2.2.3. Oбработка данных. Метод главных компонент

In [23]: # Φρεŭм с указанием площади и цены недвижимости:
    F = filter_houses[[:sq__ft,:price]]
```

	sq_ft	price
	Int64	Int64
1	836	59222
2	1167	68212
3	796	68880
4	852	69307
5	797	81900
6	1122	89921
7	1104	90895
8	1177	91002
9	941	94905
10	1146	98937
11	909	100309
12	1289	106250
13	871	106852
14	1020	107502
15	1022	108750
16	1134	110700
17	844	113263
18	795	116250
19	588	120000
20	1356	121630
21	1118	122000
22	1329	122682
23	1240	123000
24	1601	124100
25	901	125000
26	1088	126640
27	963	127281
28	1119	129000
29	1380	131200
30	1248	132000
÷	:	:

In [24]:

Конвертация данных в массив: F = convert(Array{Float64,2},F)'

```
2×814 LinearAlgebra.Adjoint{Float64,Array{Float64,2}}:
Out[24]:
                     1167.0
             836.0
                                796.0
                                         852.0
                                                   797.0 ...
                                                                1216.0
                                                                          1685.0
                                                                                     1362.0
           59222.0 68212.0 68880.0 69307.0 81900.0
                                                              235000.0 235301.0 235738.0
In [25]:
           # Подключение nakema MultivariateStats:
           #import Pkg
           #Pkg.add("MultivariateStats")
           using MultivariateStats
In [26]:
           # Приведение типов данных к распределению для РСА:
           M = fit(PCA, F)
          PCA(indim = 2, outdim = 1, principalratio = 0.9999840784692097)
Out[26]:
In [27]:
            = MultivariateStats.transform(M, F)
          1×814 Array{Float64,2}:
Out[27]:
           -170228.0 -1.61237e5 -1.6057e5 ... 4551.16 5550.15 5852.95 6288.7
In [28]:
           # Выделение значений главных компонент в отдельную переменную:
          Xr = reconstruct(M, y)
          2×814 Array{Float64,2}:
Out[28]:
             936.922
                        971.477
                                                975.681 ... 1613.64
                                    974.039
                                                                             1615.32
           59221.6
                      68212.8
                                  68879.3
                                              69306.5
                                                                2.35301e5 235737.0
In [29]:
           # Построение графика с выделением главных компонент:
           scatter(F[1,:],F[2,:])
           scatter!(Xr[1,:],Xr[2,:])
Out[29]:
           8×10<sup>5</sup>
           6×10<sup>5</sup>
           4 \times 10^{5}
           2×10<sup>5</sup>
               0
                        1000
                                      2000
                                                    3000
                                                                  4000
                                                                                5000
```

7.2.2.4. Обработка данных. Линейная регрессия

```
xvals = repeat(1:0.5:10,inner=2)
yvals = 3 .+ xvals + 2*rand(length(xvals)) .- 1
scatter(xvals,yvals,color=:black,leg=false)
```

Out[30]:

12

10

8

6

```
In [31]: #Определим функцию линейной регрессии:
function find_best_fit(xvals,yvals)
    meanx = mean(xvals)
    meany = mean(yvals)
    stdx = std(xvals)
    stdy = std(yvals)
    r = cor(xvals,yvals)
    a = r*stdy/stdx
    b = meany - a*meanx
    return a,b
end
```

6

8

10

4

Out[31]: find_best_fit (generic function with 1 method)

2

```
In [32]: #Применим функцию линейной регрессии для построения соответствующего графика значе a,b = find_best_fit(xvals,yvals) ynew = a * xvals .+ b
```

```
Out[32]: 38-element Array{Float64,1}:
            4.210197911424078
            4.210197911424078
            4.708165370535329
            4.708165370535329
            5.206132829646579
            5.206132829646579
            5.7041002887578305
            5.7041002887578305
            6.20206774786908
            6.20206774786908
            6.700035206980331
            6.700035206980331
            7.198002666091581
           10.683774879870334
           10.683774879870334
           11.181742338981586
           11.181742338981586
           11.679709798092835
           11.679709798092835
           12.177677257204087
           12.177677257204087
           12.675644716315336
           12.675644716315336
           13.173612175426587
           13.173612175426587
In [33]:
           plot!(xvals,ynew)
Out[33]:
           12
           10
           8
            6
                        2
                                                         6
                                                                          8
                                                                                          10
In [34]:
           #Сгенерируем больший набор данных:
           xvals = 1:100000;
           xvals = repeat(xvals,inner=3);
           yvals = 3 .+ xvals + 2*rand(length(xvals)) .- 1;
In [35]:
           @show size(xvals)
```

```
@show size(yvals)
          size(xvals) = (300000,)
          size(yvals) = (300000,)
          (300000,)
Out[35]:
In [36]:
          #Определим, сколько времени потребуется, чтобы найти соответствие этим данным:
          @time a,b = find_best_fit(xvals,yvals)
           0.132372 seconds (323.96 k allocations: 16.933 MiB)
          (1.0000000566451486, 2.996018700163404)
Out[36]:
In [37]:
          #Для сравнения реализуем подобный код на языке Python:
          #import Pkg
          #Pkg.add("PyCall")
          #Pkg.add("Conda")
          using PyCall
          using Conda
In [38]:
          py"""
          import numpy
          def find_best_fit_python(xvals,yvals):
              meanx = numpy.mean(xvals)
              meany = numpy.mean(yvals)
              stdx = numpy.std(xvals)
              stdy = numpy.std(yvals)
              r = numpy.corrcoef(xvals,yvals)[0][1]
              a = r*stdy/stdx
              b = meany - a*meanx
              return a,b
In [39]:
          find_best_fit_python = py"find_best_fit_python"
         PyObject <function find_best_fit_python at 0x0000000061344A60>
Out[39]:
In [40]:
          xpy = PyObject(xvals)
          ypy = PyObject(yvals)
          @time a,b = find_best_fit_python(xpy,ypy)
           0.096835 seconds (195.44 k allocations: 10.155 MiB)
          (1.0000000566451517, 2.996018700010609)
Out[40]:
In [41]:
          #Используем пакет для анализа производительности, чтобы провести сравнение:
          #import Pkg
          #Pkg.add("BenchmarkTools")
          using BenchmarkTools
In [42]:
          @btime a,b = find_best_fit_python(xvals,yvals)
           8.559 ms (27 allocations: 1.02 KiB)
          (1.0000000566451517, 2.996018700010609)
Out[42]:
```

```
In [43]: @btime a,b = find_best_fit(xvals,yvals)

1.175 ms (1 allocation: 32 bytes)
Out[43]:
In []:
In []:
```