

SEQUENCE LISTING

<110> OLSON, ERIC
FREY, NORBERT

<120> METHODS AND COMPOSITIONS RELATING TO MUSCLE SPECIFIC
CALCINEURIN ASSOCIATED PROTEIN (CAP)

<130> UTSD:729US

<140> 10/045,594

<141> 2001-11-07

<150> 60/246,629

<151> 2000-11-07

<160> 12

<170> PatentIn Ver. 2.1

<210> 1

<211> 2531

<212> DNA

<213> Homo sapiens

<400> 1

gtccccagggtt caaggataaaa aaccatcagg cccaaagtgc atccatagtc catctccaga 60
gtcttcctcc acaaactggg attcatcccc gctaaaaaag cacaatctaa cagcaaggga 120
acaaaaaaaaac catgctatca cataatacta ttagtgaagca gagaaaaacag caagcaacag 180
ccatcatgaa ggaagtccat ggaaatgatg ttgatggcat ggacctggc aaaaaggtca 240
gcatccccag agacatcatg ttggaagaat tatcccatct cagtaaccgt ggtgccaggc 300
tatttaagat gcgtcaaaga agatctgaca aatacacatt tgaaaatttc cagtatcaat 360
ctagagcaca aataaatcac agtattgcta tgcagaatgg gaaagtggat ggaagtaact 420
tggaaagggtgg ttgcgcgcaaa gcccccttga ctccctccaa caccggat ccacgaagcc 480
ctccaaatcc agacaacatt gctccaggat attctggacc actgaaggaa attccctctg 540
aaaaaattcaa caccacagct gtccttaagt actatcaatc tccctggag caagccattna 600
gcaatgatcc ggagctttta gaggctttat atcctaaact tttcaagcct gaaggaaagg 660
cagaactgcc tgattacagg agctttaaca gggttgcac accatttgg ggttttggaa 720
aagcatcaag aatggttaaa tttaaagttc cagatttga gctactattt ctaacagatc 780
ccaggttat gtccttgtc aatcccctt ctggcagacg gtccttaat aggactccta 840
aggatggat atctgagaat atcctatag tgataacaac cgaacctaca gatgatacca 900
ctgtaccaga atcagaagac ctatggaaag aaagttgtat gtgcacata aaactctgaa 960
tataaaagtt gctgttctac tattttact actggcaaaag cacttgcatt tttcatttagt 1020
agcaacaata gcaatttagt gatttcctt ttctgacatt caatttcaat ctcagatcaa 1080
atactaataa acaatttagaa atcttacttt aaaaaactta taactcactt gtcttcattc 1140
ataattttgt tttcacctgg tttaaagaat ccagatatt tactgcaaaa gttcagatgg 1200
aaaagtaatt gacagcttca cctttgtctc attttatatg atttattaca gtgtaaagtt 1260
ttcaagtggaa atctagaatc aaaatcacagg gagagatatg aagacctatt cagagttca 1320
tctggggatg aaagctatgg aagatgatgt acaaatttttta ttgatggaga aaatggttgg 1380
tgtgtcctt ctggtgacca tgagaaaata atatgtctt atgaagtctt ttcatttagt 1440
actcttagaa ttctaaagtg ctttgcactt ttcaatatgt tttgaatcat tagttaattt 1500
attctgatg atattcttca aaatttcaatt cagttattat attcatttag cattaagtca 1560
aggagactga gaatgactca agggacgtca tagtaccata gtttttaagga ccaaggtgtg 1620
cccagaattc aagtttcaca aatcccaatg ctgtgcattt attatgtca actttatgtg 1680
tgcattcttta gaagagtaag aacaataaa gtacaccgtt atatacatat aaatacattc 1740

atgtttgtga gagaaggaaa gagtaagtaa tttgaattgg cagcttctt tgctaaatct 1800
ttaaattctg ttaagatcct caagtaactg gggagtacat gcttttagac acaaacaaaa 1860
acaaaggcca tgaaagtatc tgaaagcaat gtacacata tctatcgtaa tataatgtaat 1920
atattgacat aaaagacaca aactaatata aagttatagt tatatcttaa aatataattg 1980
aagaagcata tgacatataa cttatagaaa tcagtatcaa ttccctcccat ttcaattcag 2040
ttaagactct gtgatagatg tttatagcag agaagaaaatg tctcatcaat agaaaaacta 2100
tcagataaag ttaggagat aggaagaagg actgtgtgt aataatggg taccaagttg 2160
caacattaca tgtttacaaa aaaaatctgt gttttagtg tggaaagtgg tgactgtttt 2220
aatcatcatc tagacttgtt aagtagaaaa attttaaaaa tttgcttatg aaaatataac 2280
ccccagaaaag taacaatgac aaagtattat atttatatat attattgttag agaatttgt 2340
tatttttaaa gatgtcttaa gatatcttaa ttttattat aagttttgtt gtttacctgt 2400
ttttaaatgta taatgttggc atctgtgata aactatcaat gaggctccca tcattgcatt 2460
tttggccat tttaatcttt aaaaaataaa aattaggcat attaaaaaaaaaaaaaaa 2520
aaaaaaaaaaa a 2531

<210> 2
<211> 264
<212> PRT
<213> Homo sapiens

<400> 2
Met Leu Ser His Asn Thr Met Met Lys Gln Arg Lys Gln Gln Ala Thr
1 5 10 15

Ala Ile Met Lys Glu Val His Gly Asn Asp Val Asp Gly Met Asp Leu
20 25 30

Gly Lys Lys Val Ser Ile Pro Arg Asp Ile Met Leu Glu Glu Leu Ser
35 40 45

His Leu Ser Asn Arg Gly Ala Arg Leu Phe Lys Met Arg Gln Arg Arg
50 55 60

Ser Asp Lys Tyr Thr Phe Glu Asn Phe Gln Tyr Gln Ser Arg Ala Gln
65 70 75 80

Ile Asn His Ser Ile Ala Met Gln Asn Gly Lys Val Asp Gly Ser Asn
85 90 95

Leu Glu Gly Ser Gln Gln Ala Pro Leu Thr Pro Pro Asn Thr Pro
100 105 110

Asp Pro Arg Ser Pro Pro Asn Pro Asp Asn Ile Ala Pro Gly Tyr Ser
115 120 125

Gly Pro Leu Lys Glu Ile Pro Pro Glu Lys Phe Asn Thr Thr Ala Val
130 135 140

Pro Lys Tyr Tyr Gln Ser Pro Trp Glu Gln Ala Ile Ser Asn Asp Pro
145 150 155 160

Glu Leu Leu Glu Ala Leu Tyr Pro Lys Leu Phe Lys Pro Glu Gly Lys
165 170 175

Ala Glu Leu Pro Asp Tyr Arg Ser Phe Asn Arg Val Ala Thr Pro Phe
180 185 190

Gly Gly Phe Glu Lys Ala Ser Arg Met Val Lys Phe Lys Val Pro Asp
195 200 205

Phe Glu Leu Leu Leu Leu Thr Asp Pro Arg Phe Met Ser Phe Val Asn
210 215 220

Pro Leu Ser Gly Arg Arg Ser Phe Asn Arg Thr Pro Lys Gly Trp Ile
225 230 235 240

Ser Glu Asn Ile Pro Ile Val Ile Thr Thr Glu Pro Thr Asp Asp Thr
245 250 255

Thr Val Pro Glu Ser Glu Asp Leu
260

<210> 3

<211> 1207

<212> DNA

<213> Mus musculus

<400> 3

gagagccgac caccaactga gcagctggc agatccacct ccaccatgcc actctcgaga 60
accccgcccc ctaacaagag gaggaagtca agcaaactga ttatggagct cactggaggt 120
ggccgggaga gctcaggcct gaacctggc aagaagatca gtgtcccaag ggatgtgatg 180
ttggaggagc tgtcccttct tbeccaaccga ggctccaaga tggcaagct acggcagatg 240
cgggtggaga aatttatcta tgagaatcac cccgatgtt tctctgacag ctcaatggat 300
cacttccaga agtttcttcc cacagtggga ggacagctgg agacagctgg tcagggcttc 360
tcatatggca agggcagcag tggaggccag gctggcagca gtggctctgc tggacagtat 420
ggctctgacc gtcatcagca gggctctggg tttggagctg ggggttcagg tggcctggg 480
ggccaggctg gtggaggagg agctcctggc acagtagggc ttggagagcc cgatcaggt 540
gaccaggcag gtggagatgg aaaacatgtc actgtgttca agacttatat ttccccatgg 600
gatcgggcca tgggggttga tcctcagcaa aaagtggAAC ttggcattga cctactggca 660
tacgggtccaa aagctgaact ccccaaataa aagtcccttca acaggacagc aatggcctac 720
ggtgatatag agaaggcctc caaacgcattt accttccaga tgcccaagtt tgacctgggg 780
cctctgctga gtgaacccct ggtcctctac aaccagaacc tctccaacag gccttcttc 840
aatcgaaccc ctattccctg gttgagctt ggggagcatg tagactacaa cgtggatgtt 900
ggtatccctt tggatggaga gacagaggag ctgtgaagtg cctccctctg tcatgtgcat 960
catttcctt ctctggttcc aatttgagag tggatgctgg acaggatgcc ccaactgtta 1020
atccagtatt ctttgtggcaa tggagggtaa agggtgggtt ccgttgcctt tccacccttc 1080
aagttcctgc tccgaagcat ccctcctcac cagctcagag ctcccatcct gctgtaccat 1140
atggaatctg ctctttatg gaattttctc tgccaccggg aacagtcaat aaacttcaag 1200
gaaatga 1207

<210> 4

<211> 296

<212> PRT

<213> Mus musculus

<400> 4

Met Pro Leu Ser Gly Thr Pro Ala Pro Asn Lys Arg Arg Lys Ser Ser

1 5 10 15
Lys Leu Ile Met Glu Leu Thr Gly Gly Arg Glu Ser Ser Gly Leu
20 25 30
Asn Leu Gly Lys Lys Ile Ser Val Pro Arg Asp Val Met Leu Glu Glu
35 40 45
Leu Ser Leu Leu Thr Asn Arg Gly Ser Lys Met Phe Lys Leu Arg Gln
50 55 60
Met Arg Val Glu Lys Phe Ile Tyr Glu Asn His Pro Asp Val Phe Ser
65 70 75 80
Asp Ser Ser Met Asp His Phe Gln Lys Phe Leu Pro Thr Val Gly Gly
85 90 95
Gln Leu Glu Thr Ala Gly Gln Gly Phe Ser Tyr Gly Lys Gly Ser Ser
100 105 110
Gly Gly Gln Ala Gly Ser Ser Gly Ser Ala Gly Gln Tyr Gly Ser Asp
115 120 125
Arg His Gln Gln Gly Ser Gly Phe Gly Ala Gly Gly Ser Gly Gly Pro
130 135 140
Gly Gly Gln Ala Gly Gly Gly Ala Pro Gly Thr Val Gly Leu Gly
145 150 155 160
Glu Pro Gly Ser Gly Asp Gln Ala Gly Gly Asp Gly Lys His Val Thr
165 170 175
Val Phe Lys Thr Tyr Ile Ser Pro Trp Asp Arg Ala Met Gly Val Asp
180 185 190
Pro Gln Gln Lys Val Glu Leu Gly Ile Asp Leu Leu Ala Tyr Gly Ala
195 200 205
Lys Ala Glu Leu Pro Lys Tyr Lys Ser Phe Asn Arg Thr Ala Met Pro
210 215 220
Tyr Gly Gly Tyr Glu Lys Ala Ser Lys Arg Met Thr Phe Gln Met Pro
225 230 235 240
Lys Phe Asp Leu Gly Pro Leu Leu Ser Glu Pro Leu Val Leu Tyr Asn
245 250 255
Gln Asn Leu Ser Asn Arg Pro Ser Phe Asn Arg Thr Pro Ile Pro Trp
260 265 270
Leu Ser Ser Gly Glu His Val Asp Tyr Asn Val Asp Val Gly Ile Pro
275 280 285
Leu Asp Gly Glu Thr Glu Glu Leu
290 295

<210> 5
 <211> 1261
 <212> DNA
 <213> Homo sapiens

<400> 5
 cggcacagc agctcagtcc tccaaagctg ctggacccca gggagagctg accactgcc 60
 gaggcggcgg ctgaatccac ctccacaatg ccgcctctcg gaacccggc ccctaataag 120
 aagagggaat ccagaagct gatcatggaa ctcactggag gtggacagga gagtcaggc 180
 ttgaacctgg gcaaaaagat cagtgtccca agggatgtga tggatggagga actgtcgctg 240
 cttaccaacc ggggctccaa gatgttcaaa ctgcggcaga tgagggttggaa gaagtttatt 300
 tatgagaacc accctgtatgt tttctctgac agctcaatgg atcacttcca gaagttcctt 360
 ccaacagtgg ggggacagct gggcacagct ggtcaggat tctcatacag caagagcaac 420
 ggcagaggcg gcagccaggc agggggcagt ggctctgccg gacagtatgg ctctgatcg 480
 cagcaccatc tgggctctgg gtctggagct ggggttacag gtggtcccgc gggccaggct 540
 gccaaaggag gagctgctgg cacaacaggg gttgttgaga caggatcagg agaccaggca 600
 ggcggagaag gaaaacatat cactgtgtc aagacctata tttccccatg ggagcgagcc 660
 atgggggttg acccccagca aaaaatggaa cttggcattt acctgtggc cttatgggccc 720
 aaagctgaac ttcccaaata taagtccctt aacaggacgg caatgcccta tggatggat 780
 gagaaggcct ccaaacgcattt gaccccttccag atgccaatgtt ttgaccttggg gcccttgctg 840
 agtgaacccc tggctctcta caacaaaaac ctctccaaca ggccttctttt caatcgaacc 900
 cctattccct ggctgagctc tggggagcct gttagactaca acgtggatat tggcatcccc 960
 ttggatggag aaacagagga gctgtgaggt gtttctctt ctgatttgc tcattttcccc 1020
 tctctggctc caatttggag agggaatgtt gaggatgat ccccccattgtt taatccagta 1080
 tccttatggg aatggaggaa aaaaggagag atctacccctt ccatttttta ctccaaagtcc 1140
 ccactccacg catccttccat caccactca gagctccct tctacttgctt ccattatggaa 1200
 cctgctcggtt tatggatattt ntctgccacc agtaacagtc aataaaacttc aaggaaaatg 1260
 a
 1261

<210> 6
 <211> 299
 <212> PRT
 <213> Homo sapiens

<400> 6
 Met Pro Leu Ser Gly Thr Pro Ala Pro Asn Lys Lys Arg Lys Ser Ser
 1 5 10 15

Lys Leu Ile Met Glu Leu Thr Gly Gly Gln Glu Ser Ser Gly Leu
 20 25 30

Asn Leu Gly Lys Ile Ser Val Pro Arg Asp Val Met Leu Glu Glu
 35 40 45

Leu Ser Leu Leu Thr Asn Arg Gly Ser Lys Met Phe Lys Leu Arg Gln
 50 55 60

Met Arg Val Glu Lys Phe Ile Tyr Glu Asn His Pro Asp Val Phe Ser
 65 70 75 80

Asp Ser Ser Met Asp His Phe Gln Lys Phe Leu Pro Thr Val Gly Gly
 85 90 95

Gln Leu Gly Thr Ala Gly Gln Gly Phe Ser Tyr Ser Lys Ser Asn Gly
100 105 110

Arg Gly Gly Ser Gln Ala Gly Gly Ser Gly Ser Ala Gly Gln Tyr Gly
115 120 125

Ser Asp Gln Gln His His Leu Gly Ser Gly Ser Gly Ala Gly Gly Thr
130 135 140

Gly Gly Pro Ala Gly Gln Ala Gly Lys Gly Gly Ala Ala Gly Thr Thr
145 150 155 160

Gly Val Gly Glu Thr Gly Ser Gly Asp Gln Ala Gly Gly Glu Gly Lys
165 170 175

His Ile Thr Val Phe Lys Thr Tyr Ile Ser Pro Trp Glu Arg Ala Met
180 185 190

Gly Val Asp Pro Gln Gln Lys Met Glu Leu Gly Ile Asp Leu Leu Ala
195 200 205

Tyr Gly Ala Lys Ala Glu Leu Pro Lys Tyr Lys Ser Phe Asn Arg Thr
210 215 220

Ala Met Pro Tyr Gly Gly Tyr Glu Lys Ala Ser Lys Arg Met Thr Phe
225 230 235 240

Gln Met Pro Lys Phe Asp Leu Gly Pro Leu Leu Ser Glu Pro Leu Val
245 250 255

Leu Tyr Asn Gln Asn Leu Ser Asn Arg Pro Ser Phe Asn Arg Thr Pro
260 265 270

Ile Pro Trp Leu Ser Ser Gly Glu Pro Val Asp Tyr Asn Val Asp Ile
275 280 285

Gly Ile Pro Leu Asp Gly Glu Thr Glu Glu Leu
290 295

<210> 7
<211> 982
<212> DNA
<213> Mus musculus

<400> 7
attcggcaca tgggatcgag ggaccatgcc gttccagggtt caaggataaa acccattggg 60
ccatagtgcc gtcatattcc accttcagtg cttccctcca caattggat tcacccctgc 120
tggaaaagcgc acgctgacag caagggaaaca aaaaactatg ctatcacata gtgccttgtt 180
gaagcaaagg aaacagcaag catcagccat cacgaaggaa atccatggac atgatgttga 240
cggcatggac ctgggaaaaa aagtttagcat ccccagagac atcatgatac aagaattgtc 300
ccatttcagt aatcgtgggg ccaggctgtt taagatgcgt caaagaagat ctgacaaata 360
cacctttgaa aatttccagt atgaatctag agcacaatt aatcacaata tcgcctgca 420
aatgggaga gttgatggaa gcaacctgga aggtggctca cagcaaggcc cctcaactcc 480

gccccaacacc cccgatccac gaagcccccc aaatccagag aacatgcac caggatattc 540
tggaccactg aaggaaattc ctcctgaaag gtttaacacg acggccgttc ctaagtacta 600
ccggctcca tgggagcagg cgattggcag cgatccggag ctccctggagg ctttgtaccc 660
aaaactttc aagcctgaag gaaaagcaga actgcggat tacaggagct ttaacagggt 720
tgccactcca tttggaggtt ttgaaaaaagc atcaaaaatg gtcaaattca aagttccaga 780
ttttgaacta ctgctgctga cagatcccag gttttggcc tttgccaatc ctcttcggg 840
cagacgatgc tttaacaggg cgccaaaggg gtgggtatct gagaatatcc ccgtcgatgc 900
cacaacttag cctacagaag acgccactgt accggaatca gatgacctgt gagagggaaag 960
ctggggatgc cacaggaagt tc 982

<210> 8
<211> 264
<212> PRT
<213> Mus musculus

<400> 8

Met Leu Ser His Ser Ala Met Val Lys Gln Arg Lys Gln Gln Ala Ser
1 5 10 15

Ala Ile Thr Lys Glu Ile His Gly His Asp Val Asp Gly Met Asp Leu
20 25 30

Gly Lys Lys Val Ser Ile Pro Arg Asp Ile Met Ile Glu Glu Leu Ser
35 40 45

His Phe Ser Asn Arg Gly Ala Arg Leu Phe Lys Met Arg Gln Arg Arg
50 55 60

Ser Asp Lys Tyr Thr Phe Glu Asn Phe Gln Tyr Glu Ser Arg Ala Gln
65 70 75 80

Ile Asn His Asn Ile Ala Met Gln Asn Gly Arg Val Asp Gly Ser Asn
85 90 95

Leu Glu Gly Gly Ser Gln Gln Gly Pro Ser Thr Pro Pro Asn Thr Pro
100 105 110

Asp Pro Arg Ser Pro Pro Asn Pro Glu Asn Ile Ala Pro Gly Tyr Ser
115 120 125

Gly Pro Leu Lys Glu Ile Pro Pro Glu Arg Phe Asn Thr Thr Ala Val
130 135 140

Pro Lys Tyr Tyr Arg Ser Pro Trp Glu Gln Ala Ile Gly Ser Asp Pro
145 150 155 160

Glu Leu Leu Glu Ala Leu Tyr Pro Lys Leu Phe Lys Pro Glu Gly Lys
165 170 175

Ala Glu Leu Arg Asp Tyr Arg Ser Phe Asn Arg Val Ala Thr Pro Phe
180 185 190

Gly Gly Phe Glu Lys Ala Ser Lys Met Val Lys Phe Lys Val Pro Asp
195 200 205

Phe Glu Leu Leu Leu Leu Thr Asp Pro Arg Phe Leu Ala Phe Ala Asn
210 215 220

Pro Leu Ser Gly Arg Arg Cys Phe Asn Arg Ala Pro Lys Gly Trp Val
225 230 235 240

Ser Glu Asn Ile Pro Val Val Ile Thr Thr Glu Pro Thr Glu Asp Ala
245 250 255

Thr Val Pro Glu Ser Asp Asp Leu
260

<210> 9
<211> 3330
<212> DNA
<213> Homo sapiens

<400> 9

gggacgccac gcaactctca gcttcccgac agaggtgtta atcttgaggc tctaagattc 60
cctcctgcct attgagggtcc catcctctca ggatgatccc caaggagcac aaggggccag 120
tgatggctgc catgggggac ctcactgaac cagtcctac gctggacccctg ggcaagaagc 180
tgagcgtgcc ccaggacactg atgatggagg agctgtcaact acgcaacaac agagggtccc 240
tcctcttcca gaagaggcag cgccgtgtgc agaagttcac tttcgaggtta gcagccagcc 300
agcggggcat gctggccgga agcgcaggaa ggaagggtgac tggAACAGCG gagtcgggg 360
cggttgccaa tgccaatggc cctgaggggc cgaactaccg ctcggagctc cacatcttcc 420
cgccctcacc cggggcctca ctcgggggtc ccggaggcgc ccaccctgca gccgccccctg 480
ctgggtgcgt ccccaaaaaa agcgccttgg cgccaggctca tgcggagccg ctgaaggcg 540
tcccggccaga gaagttcaac cacaccgcctca tcccaagggtt ctaccgtgc ctttggcagg 600
agttcgtcaag ctaccggac taccagagcg atggccgaag tcacaccccc agcccaacg 660
actaccgaaa ttcaacaacg accccgggtgc catttggagg accccctcgat gggggcactt 720
ttcccaggcc aggcacccccc ttcatccccc agccctcag tggcttggaa ctcctccgtc 780
tcagacccag cttcaacaga gtggcccagg gctgggtccg taacctccca gagtccgagg 840
agctgttagcc ctgcctgaa tttcagtc cccagtctcg ggggccttgtt aacatccgga 900
gccaagactt gtggacacgca cttcacaggta gaagaaggcgc cttcacacac aaaacctgat 960
tgcaaatggc ttcagaggc accaagttca gtcgtcccaa aacatgggtg tttttcaaaa 1020
ttacctgggg atgttgttcc aaatccagac aactggactg tcccagactt gcagcatcg 1080
agtctcctga gtcgaggaat ctgttattt aatagcaacc agggccgggt gtcgtggctc 1140
acgcctgtca tcccagact ttgggaggcc gaggcaggag gatcacctga ggtcaggagt 1200
ttttagacca gtctggccaa aatagtggaa ccccgctcgact aaaaaata caaaaatgag 1260
tcggacatgg tgggtgcattgc ctgttatccc agctacttgg gaggctgaga caggagaatc 1320
acttgaacta ggaggcagag gttgcagtga gcccggattt cgccactgca ccccgccctg 1380
gacaacagag tgagactcct tctcaaaatgaa aaataaataa atagcaacca gtactccagg 1440
tgattccagc ataacttata catggtttgc gtcatttagga gtccacatcc acacctctgc 1500
tcttcctgt tcctgttagt tacactcccc cgggtacagg gtcgtcaactg gcacccatc 1560
ttccctgtgaa taactcaaat aatttagaaaaa tggctttttt actgagatgc agttggctt 1620
catctattca tgctctaaac agttcctaag cgctgactgt ggcgttagaca ctggccaggcc 1680
cgccctcgaa ggagggaaatg acagtagggaa agacattata gagcatgaag tcaccataat 1740
tttccctaaat gcatgcttat tgacaattga ggaacaaatg gttgggagca gaagaaggag 1800
tccctcaccctt taggtgtgag atgggatttcc ggaagcttcc tgaaggattt gagggtggacc 1860
ttgtgggagg cgtgagagtc catgaagggg gttgtgggg gagggtattt ctggaaatgt 1920
gaccagcatg tgcaaaaata tggaaactgag cacgggtgca ggggtttctg cagaaggag 1980
aaggctgtgc tagaggagcc agtggggcc agcatgggtt gggcttcaact aaggaaatgg 2040
ggaagggtttt agtgtatgggtt cttgtgtgggt gtcgtgtggg ggcgtatattt gagaagggtt 2100

atggccagaag ccaggaagcc tgcaaggggat gaggccatgg gaatggagag aaggggccac 2160
ccactggca cctaacagga caggtcaaa gtgggggtgc tattaagatt ctttcttcc 2220
actccattt gagcaggctg cttaaagtgg tggatgatgat gatgatgatg atggcagctt 2280
tatatcgagt gcctcagtgc ttgggtggt agtagttct ctacatatct tatttctaat 2340
tctcagaaca accctgagag aaagatattt ttgtccccac ttacagatg tggatattta 2400
ggccaaaagg aggaagtgac ttccagggg cagacaccaa atggaatct gattccagtg 2460
gatgtcttt ttcagtgac tgggtggtca atgcccactc gctctgaaaat catctgactg 2520
tgtatgcctg ccttgaggtt tagaagtgtga gtgcaggctt gggagtcaga ctggatgggg 2580
taggttctaa ctctgccact gctagccgga tgaacttggag caagtcattt cacatctccg 2640
agcctctgtt tctccaagtg taagatgagg acaagtataaa aacccctttt atgggtttgt 2700
tgtgaacaca gtgcagggca catttataat aagagctca tcaatggtag gtttcatgca 2760
actgctgtc taggctggaa aagttgttct tgcactggat gcagcatgag aagctggctg 2820
ctaagatgtc actgggggtc actaaagctg aagcctgaag gaaaggctct cattgctgt 2880
gagctctccc tgccctctc tctggggcg atggggaaagg tcaggagtcc agccattcc 2940
cagggtgtgt gggatagcga ttgcatttc ctttgcctt ggagttcac tcccttctg 3000
ggtcccaagg gcccaatggc ctgacttttta gaattgcctt caattgggtgt tttcttcttga 3060
atttgggggc tgccatttaa agccaggtt ccatgagctg aagaccagcc attcaagaat 3120
ctgaaaagta gacaagagga ctccaggatgc ctcaggttgg ttctgctgtg ctctggaaag 3180
taactgcagc caccaggtat gaaaaggagc ctgggtgggaa gaccactgca cccaaaaacaa 3240
atcccttctt cttctgagaa tgtgactttt tctgggttttga taaaaaaagaa aaaaaaaaaaag 3300
aatgctcatt gaaaaaaaaaaaaaaa 3330

<210> 10

<211> 251

<212> PRT

<213> Homo sapiens

<400> 10

Met	Ile	Pro	Lys	Glu	Gln	Lys	Gly	Pro	Val	Met	Ala	Ala	Met	Gly	Asp
1				5					10						15

Leu Thr Glu Pro Val Pro Thr Leu Asp Leu Gly Lys Lys Leu Ser Val
20 25 30

Pro Gln Asp Leu Met Met Glu Glu Leu Ser Leu Arg Asn Asn Arg Gly
35 40 45

Ser Leu Leu Phe Gln Lys Arg Gln Arg Arg Val Gln Lys Phe Thr Phe
50 55 60

Glu Leu Ala Ala Ser Gln Arg Ala Met Leu Ala Gly Ser Ala Arg Arg
65 70 75 80

Lys Val Thr Gly Thr Ala Glu Ser Gly Thr Val Ala Asn Ala Asn Gly
85 90 95

Pro Glu Gly Pro Asn Tyr Arg Ser Glu Leu His Ile Phe Pro Ala Ser
100 105 110

Pro Gly Ala Ser Leu Gly Gly Pro Glu Gly Ala His Pro Ala Ala Ala
115 120 125

Pro Ala Gly Cys Val Pro Ser Pro Ser Ala Leu Ala Pro Gly Tyr Ala
130 135 140

Glu Pro Leu Lys Gly Val Pro Pro Glu Lys Phe Asn His Thr Ala Ile
145 150 155 160

Pro Lys Gly Tyr Arg Cys Pro Trp Gln Glu Phe Val Ser Tyr Arg Asp
165 170 175

Tyr Gln Ser Asp Gly Arg Ser His Thr Pro Ser Pro Asn Asp Tyr Arg
180 185 190

Asn Phe Asn Lys Thr Pro Val Pro Phe Gly Gly Pro Leu Val Gly Gly
195 200 205

Thr Phe Pro Arg Pro Gly Thr Pro Phe Ile Pro Glu Pro Leu Ser Gly
210 215 220

Leu Glu Leu Leu Arg Leu Arg Pro Ser Phe Asn Arg Val Ala Gln Gly
225 230 235 240

Trp Val Arg Asn Leu Pro Glu Ser Glu Glu Leu
245 250

<210> 11

<211> 913

<212> DNA

<213> Mus musculus

<400> 11

gtcgactgc aatagacaca caggccataa aactccagct tcccactga agtgttaatc 60
ttgggggtct gacatttctt cccatctact gtggcccac caggatgatc cccaaggagc 120
agaaggagcc agtgatggct gtcccgaaaa accttgctga accagtccct tcgctggacc 180
tggggaaagaa gctgagcgtg cctcaggacc taatgataga ggagctgtct ctacaaaaca 240
accgcggatc cctccctttt cagaagaggc agcggcggt gcagaagttt accttgagc 300
tatcagaaag ttgcaggcc atcctggcga gtagtgcgg aggaaaatg gctggcagag 360
cggcgcaggc aacggttccc aatggcttg aggagcagaa ccaccactcc gagacgcacg 420
tgttccaggg gtcacctggg gaccccgaaa tcaccatct gggagcagcg gggactgggt 480
cggccgttag tccaagcgcc ctggcaccag gctatgcaga gccccctgaag ggcgtccac 540
cggagaagtt caaccacact gccatccccca aaggctaccg gtgccttgg caggagttca 600
ccagctacca agactactcg agtggcagca gaagtcacac tcccatcccc cgagactatc 660
gcaacttcaa caagaccccc gtgccatttg gaggacccca cgtgagggag gccatttcc 720
acgcaggcac ccccttgtc ccggagtcct tcagttggctt ggaacttctc cgcctcagac 780
ccaaatttcaa cagggttgct cagggtctggg tccggaaagct cccggaggtct gaggaactgt 840
agcctcagcc tgaagctaca attccctggg ctcaagaaaac atgcttgct tgaaaaaaaaa 900
aaaaaaaaaaa aaa 913

<210> 12

<211> 245

<212> PRT

<213> Mus musculus

<400> 12

Met Ile Pro Lys Glu Gln Lys Glu Pro Val Met Ala Val Pro Gly Asp
1 5 10 15

Leu Ala Glu Pro Val Pro Ser Leu Asp Leu Gly Lys Lys Leu Ser Val
20 25 30

Pro Gln Asp Leu Met Ile Glu Glu Leu Ser Leu Arg Asn Asn Arg Gly
35 40 45

Ser Leu Leu Phe Gln Lys Arg Gln Arg Arg Val Gln Lys Phe Thr Phe
50 55 60

Glu Leu Ser Glu Ser Leu Gln Ala Ile Leu Ala Ser Ser Ala Arg Gly
65 70 75 80

Lys Val Ala Gly Arg Ala Ala Gln Ala Thr Val Pro Asn Gly Leu Glu
85 90 95

Glu Gln Asn His His Ser Glu Thr His Val Phe Gln Gly Ser Pro Gly
100 105 110

Asp Pro Gly Ile Thr His Leu Gly Ala Ala Gly Thr Gly Ser Val Arg
115 120 125

Ser Pro Ser Ala Leu Ala Pro Gly Tyr Ala Glu Pro Leu Lys Gly Val
130 135 140

Pro Pro Glu Lys Phe Asn His Thr Ala Ile Pro Lys Gly Tyr Arg Cys
145 150 155 160

Pro Trp Gln Glu Phe Thr Ser Tyr Gln Asp Tyr Ser Ser Gly Ser Arg
165 170 175

Ser His Thr Pro Ile Pro Arg Asp Tyr Arg Asn Phe Asn Lys Thr Pro
180 185 190

Val Pro Phe Gly Gly Pro His Val Arg Glu Ala Ile Phe His Ala Gly
195 200 205

Thr Pro Phe Val Pro Glu Ser Phe Ser Gly Leu Glu Leu Leu Arg Leu
210 215 220

Arg Pro Asn Phe Asn Arg Val Ala Gln Gly Trp Val Arg Lys Leu Pro
225 230 235 240

Glu Ser Glu Glu Leu
245