Теория информационного поиска

Лекция 8. Оценка качества поиска

Дмитрий Грановский

СПбГУ

05.05.2025

Релевантность

- задает ранжирование
- безразмерная величина, важно только сравнивать документы между собой
- считается для пары (запрос, документ)
 - точнее: для тройки (запрос, документ, **пользовательский** контекст)
- бывает разная:
 - бинарная и произвольная
 - пользовательская и вычисленная

Общий подход

- оценка = сравнение с идеальной системой
- идеальная система:
 - показывает только релевантные документы
 - самые релевантные ранжирует выше
 - может иметь дополнительные требования: свежесть, разнообразие и т.д.
 - не существует :-(
- оценка численная, состоит в расчете метрики

Общий подход конкретнее

- оцениваем качество по корзине запросов и усредняем
 - составить хорошую корзину отдельная задача
- как оценить качество по одному запросу:
 - попросим экспертов (*aceccopoв*) оценить какое-то множество документов на релевантность запросу
 - ullet желательно много асессоров и >1 асессора на документ
 - эти оценки используем для расчета метрик (подробности далее)

Оценка качества булева (двоичного) поиска

- далее везде считаем, что смотрим на один запрос q
- $Rel(D_i, q) \in \{0, 1\}$
- рассматриваем ситуацию:
 - ullet асессоры: релевантны документы $d_{i_1} \dots d_{i_n}$
 - ullet система: нашла документы $d_{j_1} \dots d_{j_k}$
 - ранжирования нет
- возможные состояния документа:
 - релевантный, нашелся
 - нерелеватный, нашелся
 - релевантный, не нашелся
 - нерелевантный, не нашелся (их большинство)

Оценка

	Rel	NRel
нашли	true positive (tp)	false positive (fp)
не нашли	false negative (fn)	true negative (tn)
Σ	R	N-R

Оценка

	Rel	NRel
нашли	true positive (tp)	false positive (fp)
не нашли	false negative (fn)	true negative (tn)
Σ	R	N-R

- мы не можем оценить всю коллекцию
- поэтому обычно оцениваем верх фактической выдачи
- количество **tn** нам безразлично

Типы ошибок

	Rel	NRel
нашли	true positive (tp)	false positive (fp)
не нашли	false negative (fn)	true negative (tn)

Типы ошибок

	Rel	NRel
нашли	true positive (tp)	false positive (fp)
не нашли	false negative (fn)	true negative (tn)

- булев поиск можно рассмотреть как задачу классификации на 2 класса (по релевантности)
- false positive = ошибка I рода
- false negative = ошибка II рода
- таблица называется матрицей несоответствий/ошибок (confusion matrix)

Метрики классификации

	Rel	NRel
нашли	true positive (tp)	false positive (fp)
не нашли	false negative (fn)	true negative (tn)

Метрики классификации

	Rel	NRel
нашли	true positive (tp)	false positive (fp)
не нашли	false negative (fn)	true negative (tn)

Две фундаментальные метрики:

- точность (precision): $P = \frac{tp}{tp + fp}$
- ullet полнота (recall): $R=rac{tp}{tp+fn}$
- ullet ещё бывает *accuracy*: $Acc=rac{tp+tn}{tp+tn+fp+fn}$

Точность и полнота

- идеальная классификация недостижима
- почти всегда можем сдвигать качество либо к точности с потерей полноты, либо наоборот (tradeoff)
- в некоторых задачах важнее точность, в некоторых полнота
- ullet если мы понимаем, в какой пропорции важны точность и полнота, можно использовать F-меру (f-score)
- ullet в частности, F_1 -меру: $F_1(P,R)=rac{2 imes P imes R}{P+R}$
- ullet пример: $F_1(0.3,0.1)=rac{2 imes 0.3 imes 0.1}{0.3+0.1}=0.15$

Оценка качества поиска с ранжированием

- $Rel(d_i, q) \in [0, 1]$
- рассматриваем ситуацию:
 - ullet асессоры: релевантность документа $d_i=Rel_{d_i}$
 - ullet система: нашла документы $d_{j_1} \dots d_{j_k}$ в этом порядке
- набор дискретных оценок релевантности, например:
 - ullet Vital (в статье Rel=0.4)
 - Useful
 - Rel+
 - Rel-
 - Stupid

Precision @k

k	Rel?	Bcero Rel	P@k
1	R	1	$\frac{1}{1} = 1.0$
2	NR	1	$\frac{1}{2} = 0.5$
3	NR	1	$\frac{1}{3} \approx 0.33$
4	R	2	$\frac{2}{4} = 0.5$

Precision @k, пример #2

k	Rel?	Bcero Rel	P@k
1	R	1	$\frac{1}{1} = 1.0$
2	R	2	$\frac{2}{2} = 1.0$
3	NR	2	$\frac{2}{3} \approx 0.67$
4	NR	2	$\frac{2}{4} = 0.5$

Precision @k, пример #2

k	Rel?	Bcero Rel	P@k
1	R	1	$\frac{1}{1} = 1.0$
2	R	2	$\frac{2}{2} = 1.0$
3	NR	2	$\frac{2}{3} \approx 0.67$
4	NR	2	$\frac{2}{4} = 0.5$

Проблема: эта выдача лучше предыдущей, а Р@4 такой же

Average precision

k	Rel?	AP@k
1	R	$\frac{1\times1/1}{1} = 1.0$
2	NR	$\frac{(1\times1/1) + (0\times1/2)}{2} = 0.5$
3	NR	$\frac{(1\times1/1)+(0\times1/2)+(0\times1/3)}{3}\approx0.33$
4	R	$\frac{(1\times1/1) + (0\times1/2) + (0\times1/3) + (1\times2/4)}{4} = 0.375$

Average precision @k, пример #2

k	Rel?	AP@k
1	R	$\frac{1\times1/1}{1} = 1.0$
2	R	$\frac{\frac{1}{(1\times1/1)+(1\times2/2)}}{2} = 1.0$
3	NR	$\frac{(1\times1/1)+(1\times2/2)+(0\times2/3)}{3} \approx 0.67$
4	NR	$\frac{(1\times1/1) + (1\times2/2) + (0\times2/3) + (0\times2/4)}{4} = 0.5$

Average precision @k, пример #2

k	Rel?	AP@k
1	R	$\frac{1\times1/1}{1} = 1.0$
2	R	$\frac{(1\times1/1) + (1\times2/2)}{2} = 1.0$
3	NR	$\frac{(1\times1/1)+(1\times2/2)+(0\times2/3)}{3}\approx0.67$
4	NR	$\frac{(1\times1/1) + (1\times2/2) + (0\times2/3) + (0\times2/4)}{4} = 0.5$

mAP@k (mean AP@k) — усредненное по корзине запросов

Оценка ранжированной выдачи: DCG

• CG@K (Cumulative Gain at k)

$$CG_k = \sum_{i=1}^k rel_i$$

• DCG@K (Discounted Cumulative Gain at k)

$$DCG_k = \sum\limits_{i=1}^k rac{rel_i}{\log_2(i+1)}$$
 или

•
$$DCG_k = \sum_{i=1}^{k} \frac{2^{rel_i}-1}{\log_2(i+1)}$$

Оценка ранжированной выдачи: DCG

NDCG@k (Normalized DCG@k)

$$NDCG_k = \frac{DCG_k}{IDCG_k}$$

, где IDCG — Ideal DCG:

$$IDCG_k = \sum_{i=1}^{|REL_k|} \frac{2^{rel_i}-1}{\log_2(i+1)}$$

, где REL_k — все релевантные документы, отсортированные по убыванию релевантности

Оценка ранжированной выдачи: pFound

$$pFound_k = \sum\limits_{i=1}^k pLook_i imes pRel_i$$
, где:

- ullet $pLook_i$ вероятность просмотреть i-й документ
- ullet $pRel_i$ вероятность, что i-й документ релевантный

Оценка ранжированной выдачи: pFound

$$pLook_i = pLook_{i-1} \times (1 - pRel_{i-1}) \times (1 - pBreak)$$

Идея этой формулы:

- пользователь просматривает результаты сверху вниз
- он прекращает просмотр, найдя релевантный документ
- ullet ни у какого документа нет $pRel_i=1$
 - ullet в статье единственное ненулевое значение 0.4
- ullet с вероятностью pBreak он прекращает просмотр просто так («надоело» ©)
 - ullet в статье pBreak=0.15

Другие метрики, которые не влезли

- ROC-AUC (площадь под кривой ошибок)
- MRR (mean reciprocal rate)

Онлайн

 все метрики выше считаются оффлайн, по оценкам релевантности

Теория информационного поиска

- но иногда лучше/проще смотреть на поведение пользователей онлайн
 - соответствующие онлайн-метрики, например:
 - CTR.
 - время до клика,
 - средняя позиция первого клика,
 - часто в виде А/В тестирования