Flow Based Deep Generative Models

Tuesday, November 16, 2021 9:15 AM

Tuesday, November 16, 2021 9:15 AM

Given
$$2 \wedge Z$$
 and $x \wedge X$ with $p(Z)$ and $p(x)$ respectively,

If z and x are related by $x = f(Z)$ $z \xrightarrow{f} x$
 $z = f^{-1}(x)$ $x \xrightarrow{f} Z$

If we know
$$p(z)$$
, can we find $p(x)$?

Answer: $p(x) = p(z = f'(x)) \left| \frac{df'(x)}{dx} \right| \left(\frac{Eq}{q} \right)$

Answer: $p(x) = p(z = f'(x)) \left| \frac{df'(x)}{dx} \right| \left(\frac{Eq}{q} \right)$

For example: $f'(x) = f'(x) = f'(x)$

This term is the determinant of the determinant o

$$E_{\varphi} / \rho(x) = \rho(z = f'(x)) / \frac{df'(x)}{dx} / \frac{df'(x)}{dx}$$

1 This is the key insight for Flow-based Deep Generative models.

- The model assume I a bijective mop f such that X can be mapped to Z and back,

$$z = f^{-1}(x)$$

$$Z \xrightarrow{f} \chi$$
 Assume $Z \sim N(0,1)$

- Since p(z) is known (N(0,1)), if we know f and f^{-1} then we can obtain p(x) purely from data via Eq. 1.

$$p(x) = p(z = f^{-1}(x)) \left| \frac{df^{-1}(x)}{dx} \right| \qquad (Eq 1)$$

- We can also generate samples from p(X) by directly sampling from p(Z) \ N(O,I).
- The key is (If we know f and f)

Since the data X can be very complicated, in reality we don't know f and 5-1

The flow model solves this question.

The trick

Let's assume that the data X and Z both hove 4 dimensions,

$$X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix} \quad \text{and} \quad Z = \begin{bmatrix} Z_1 \\ Z_2 \\ Z_3 \\ Z_4 \end{bmatrix}$$

The mapping from X to Z where Z=f-(X) is

 $\begin{bmatrix} z_1 \end{bmatrix} \begin{bmatrix} z_1 \end{bmatrix}$

$$X = \begin{bmatrix} X_{0} \\ X_{0} \end{bmatrix} = \begin{bmatrix} X_{1} \\ X_{2} \end{bmatrix} \longrightarrow \begin{bmatrix} X_{3} \\ X_{4} \end{bmatrix} \longrightarrow \begin{bmatrix} X_{3} \\ X_{4} \end{bmatrix} \bigcirc S(\begin{bmatrix} X_{1} \\ X_{2} \end{bmatrix}) + t(\begin{bmatrix} X_{1} \\ X_{2} \end{bmatrix}) \longrightarrow \begin{bmatrix} Z_{3} \\ Z_{4} \end{bmatrix} = \begin{bmatrix} Z_{0} \\ Z_{4} \end{bmatrix}$$

There fore

$$z_a = X_a$$

 $z_b = X_b C^{S(X_a)} + t(X_a)$

- Since s(Xa) and t(Xa) are considered as constants

Zb is a linear function and "invertable"

= In fact we know the inverse

$$X_{a} = Z_{a}$$

$$X_{b} = \frac{Z_{b} - t(Z_{a})}{e^{s(X_{a})}}$$

- while the output of S(Xa) and t(Xa) are constants, they themselves can be very complicated functions.

Here, we set S(Xa) and t(Xa) as
(Veural Networks,

- We next return to Eq 1

$$p(x) = p(z = f'(x)) \left| \frac{df'(x)}{dx} \right|$$

- We can find for by finding the for that maxmizes the maximum likelihood of the data.

$$\max_{f^{-1}} \log \frac{n}{1!} p(x) = \max_{f^{-1}} \log \frac{n}{1!} p(z=f^{-1}(x)) \left| \frac{df^{-1}(x)}{dx} \right|$$

Here we have
$$2_1 = f_a^{-1}(X)$$

$$2_2 = f$$