

## Database Systems Chapter 2: Data Models

Data Models defined.

Look @ some Data Models

 Look @ Relational Data Model

Look @ SQL in MySQL

#### What's a Data Model

- Structure of the Data
  - Tree, Graph
  - Semi-Structured (XML)
  - Probabilistic Graphs
  - Relational
- Operations on the Data
- Constraints on the Data

## What's do we get from Data Model

- Efficiency!
  - Provide us an abstraction for data.
  - Operations within abstractions optimized.
- Mathematical formalisms for proofs.

# Tree Model File System

Structure of the Data



#### Semi-Structured Data (XML)

```
<Bookstore>
 <Book ISBN="ISBN-0-13-713526-2" Price="85" Edition="3rd">
  <Title>A First Course in Database Systems </Title>
  <Authors>
    <Auth> <FName> Jeffrey</FName> <LName> Ullman</LName> </Auth>
    <Auth><FName>Jennifer</FName><LName>Widom</LName></Auth>
   </Authors>
 </Book>
  <Book ISBN="ISBN-0-13-815504-6" Price="100">
  <Remark> Buy this book bundled with "A First Course" - a great deal!
  <Title>Database Systems: The Complete Book</Title>
  <Authors>
    <Auth><FName>Hector</First Name><LName>Garcia-Molina</LName></Auth>
    <Auth><FName>Jeffrey</FName><LName>Ullman</LName></Auth>
    <Auth><FName>Jennifer</FName><LName>Widom</LName></Auth>
   </Authors>
 </Book>
```

</Bookstore>

#### **XML**

- Semantic Tags:
  - <Bookstore> elements </Bookstore>
- Attributes
  - <Book ISBN="ISBN-0-13-713526-2" Price="85" Edition="3rd"> </Book>
- Nested Elements:

```
<Book ISBN="ISBN-0-13-713526-2" Price="85" Edition="3rd">
    <Title>A First Course in Database Systems </Title>
    <Authors>
        <Auth><FName>Jeffrey</FName> <LName>Ullman</LName> </Auth>
        <Auth><FName>Jennifer</FName><LName>Widom</LName></Auth>
        </Authors>
        </Book>
```

## Data Model for Probability Distributions

- Probabilistic Graph Models
  - Designed for working with Complex Probability Distributions
- Example: Student Domain Variables
  - Course Difficulty (Difficulty)
  - Student grade in Course (Grade)
  - Quality of Recommendation Letter (Letter)
  - Student Intelligence (Intelligence)
  - Student SAT Score (SAT)
- Given a student's SAT score and Course Difficulty:
  - What is the probability student will receive an A.

#### Probabilistic Graph Models

Bayesian Networks



### Probabilistic Graph Models

Causal Inference

## Causal Reasoning



Daphne Koller

#### Probabilistic Graph Models

Judea Pearl – Turing Award, 2011

 For fundamental contributions to artificial intelligence through the development of a calculus for probabilistic and causal

reasoning.





Daphne Kollei

#### Relational Data Model

- Codd 1970
- Everything is a table
- Every row in a table has the same columns
- Relationships are implicit no pointers

### **Database Philosophy**

```
God made the integers;
all else is the work of man.
(Leopold Kronecker, 19th Century Mathematician)
```

Codd made relations; all else is the work of man. (Raghu Ramakrishnan, DB text book author)

#### Map-Reduce Model

- Unlike the Relational Data Model and other models, it is a Programming Paradigm
- Existing MapReduce and Similar Systems
  - Google MapReduce
  - Support C++, Java, Python, Sawzall, etc.
  - Based on proprietary infrastructures and some open source libraries
- Hadoop Map-Reduce
  - Open Source!
  - HDFS, Map-Reduce, Pig, Zookeeper, HBase, Hive
  - Used by Yahoo!, Facebook, Amazon and Google-IBM NSF cluster
- Dryad
  - Proprietary, based on Microsoft SQL servers

#### Data Model - Relations

- Structure of the Data: Relations
  - Physical Data Model
  - Conceptual Data Model
- Operations on the Data:
  - Queries
  - Modification
  - Allows Optimizations
- Constraints on the Data

#### Relational Data Model

- Provides limited, yet useful, operations
- Provides framework for power of languages
  - SQL

## Relation Example Person Relation

| personID | firstName | lastName | gender | birthdate  |
|----------|-----------|----------|--------|------------|
| 100      | John      | Doe100   | M      | 1960-10-10 |
| 101      | John      | Doe101   | M      | 1955-01-10 |
| 102      | Jane      | Doe102   | F      | 1955-10-01 |
| 103      | John      | Doe103   | M      | 1970-09-10 |
| 104      | Jane      | Doe104   | F      | 1977-07-07 |

## Relational Data Model Terminology

- Attributes
  - Columns of relation
- Schema
  - Schema of Relation= Name + {Attributes}
  - Schema of Database = {Schema of Relations}

## Relational Data Model Terminology

- Tuples:
  - Rows of relation
- Domains: Attributes have domains
- Relations are Sets of Tuples
- Instance of Relation
  - Set of tuples from relation
  - Current Instance = Set of tuples in relation NOW

### Relation Example Person Relation

| personID | firstName | lastName | gender | birthdate  |
|----------|-----------|----------|--------|------------|
| 100      | John      | Doe100   | M      | 1960-10-10 |
| 101      | John      | Doe101   | M      | 1955-01-10 |
| 102      | Jane      | Doe102   | F      | 1955-10-01 |
| 103      | John      | Doe103   | M      | 1970-09-10 |
| 104      | Jane      | Doe104   | F      | 1977-07-07 |

#### Attributes?

- PersonID, FirstName, LastName, Gender, Birthdate

### Relation Example Person Relation

| personID | firstName | lastName | gender | birthdate  |
|----------|-----------|----------|--------|------------|
| 100      | John      | Doe100   | M      | 1960-10-10 |
| 101      | John      | Doe101   | M      | 1955-01-10 |
| 102      | Jane      | Doe102   | F      | 1955-10-01 |
| 103      | John      | Doe103   | M      | 1970-09-10 |
| 104      | Jane      | Doe104   | F      | 1977-07-07 |

#### Tuples?

```
(100, John, Doe100, M, 1960-10-10)
```

(101, John, Doe101, M, 1955-01-10)

(102, John, Doe102, F, 1955-10-01)

(103, John, Doe103, M, 1970-09-10)

(104, John, Doe104, F, 1977-07-07)

### Relation Example Person Relation

| personID | firstName | lastName | gender | birthdate  |
|----------|-----------|----------|--------|------------|
| 100      | John      | Doe100   | M      | 1960-10-10 |
| 101      | John      | Doe101   | M      | 1955-01-10 |
| 102      | Jane      | Doe102   | F      | 1955-10-01 |
| 103      | John      | Doe103   | M      | 1970-09-10 |
| 104      | Jane      | Doe104   | F      | 1977-07-07 |

#### Components of the first tuple?

100 -> PersonID

John -> FirstName

Doe100 -> LastName

M -> Gender

1960-10-10 -> Birthdate

### Relation Example Person Relation

| personID | firstName | lastName | gender | birthdate  |
|----------|-----------|----------|--------|------------|
| 100      | John      | Doe100   | M      | 1960-10-10 |
| 101      | John      | Doe101   | M      | 1955-01-10 |
| 102      | Jane      | Doe102   | F      | 1955-10-01 |
| 103      | John      | Doe103   | M      | 1970-09-10 |
| 104      | Jane      | Doe104   | F      | 1977-07-07 |

#### • The Relation Schema for Person?

Person(personID, firstName, lastName, gender, birthdate)

### Relation Example Person Relation

| personID | firstName | lastName | gender | birthdate  |
|----------|-----------|----------|--------|------------|
| 100      | John      | Doe100   | M      | 1960-10-10 |
| 101      | John      | Doe101   | M      | 1955-01-10 |
| 102      | Jane      | Doe102   | F      | 1955-10-01 |
| 103      | John      | Doe103   | M      | 1970-09-10 |
| 104      | Jane      | Doe104   | F      | 1977-07-07 |

#### Suitable Domain for each attribute

personID: integer

firstName, lastName: string (varchar in MySQL)

– gender: Character(1)

– birthDate: Date

## Person Relation: Equivalent Representation

| personID | lastName | firstName | birthdate  | gender |
|----------|----------|-----------|------------|--------|
| 100      | Doe100   | John      | 1960-10-10 | M      |
| 101      | Doe101   | John      | 1955-01-10 | M      |
| 102      | Doe102   | Jane      | 1955-10-01 | F      |
| 103      | Doe103   | John      | 1970-09-10 | M      |
| 104      | Doe104   | Jane      | 1977-07-07 | F      |

## Relational Data Model Terminology

- Key Constaint
  - Attribute (or set) that are GUARANTEED unique.
- Key Examples:
  - SSN
  - Vehicle VIN
  - Student ID
  - Book ISBN

## Relational Data Model: Part 2 Language: SQL (se.quel)

- Two Aspects to language
- Data Definition (ddl):
  - Declaring database schema: tables, constraints, indexes, views.
  - like declaring data/variables in programming language
- Data Manipulation (dml):
  - asking questions (querying) and modifying data.
  - Like executable code within programming language.

#### Database Example w/ Xerox FreeFlow



#### **Database Examples**



### Database Experience



#### Chapter 2: Relational Algebra

- Data Manipulation Language Still Needed
- Enter Relational Algebra
  - In commercial systems not used directly
  - SQL (in commercial systems used directly) has Relational Algebra as it's center.
  - SQL query gets translated to Relational Algebra
  - Limited expressiveness a virtue.

### Algebra

- What is Algebra?
  - Operands & Operators
  - Closure is usually needed.

Let's take a look @ Some Algebras

#### Algebra - Arithmetic

- What is Algebra?
  - Operands & Operators
  - Closure is usually needed.
- Algebra of Arithmetic
  - Operands include: variables (x, y, z, ...), and constants (1, 4, 5, ...)
  - Operators include: addition, subtractions, division,
    ...

#### Algebra - Arithmetic

- What is Algebra?
  - Operands & Operators
  - Closure is usually needed.
- Algebra of Arithmetic
  - Operands include: variables (x, y, z, ...), and constants (1, 4, 5, ...)
  - Operators include: addition, subtractions, division, ...

#### Linear Algebra

- Operands: Matrix variables and constants
- Operators include Dot Product, Determinant, Transpose
- Operations returns matrices, allowing operator composition
  - Building Expressions

#### Relation Algebra

- Operands:
  - Relations
  - Variables representing relations
- Operators:
  - Set operations
  - Slicing Relations
  - Gluing Relations
  - Renaming Relations
- Closure is Needed

#### **Example Relation Schemas**

- R1( K, A, B, C)
- R2(K, D, E)
- R3(A, A1, A2, A3)
- R4(B, B1, B2)
- R5(C, C1, C2, C3, C4, C5)
- w/ K a key value for R1 and R2.
- w/ A a key value for R3.
- w/ B a key value for R4.
- w/ C a key value for R5.

# Current Instances for Relation Examples

R1

| K | А | В | С |
|---|---|---|---|
| 4 | 2 | 0 | 6 |
| 5 | 2 | 0 | 5 |
| 1 | 1 | 3 | 8 |
| 2 | 1 | 3 | 7 |
| 3 | 2 | 3 | 3 |

R2

| К | D | E |
|---|---|---|
| 4 | 1 | 6 |
| 5 | 1 | 5 |
| 1 | 1 | 8 |
| 2 | 1 | 7 |
| 3 | 1 | 3 |

R5

**R4** 

| В | B1 | B2 |
|---|----|----|
| 0 | 0  | 0  |
| 3 | 9  | 27 |

| С | C1 | C2 | C3 | C4 | C5 |
|---|----|----|----|----|----|
| 4 | 2  | 0  | 6  | 1  | 6  |
| 5 | 2  | 0  | 5  | 1  | 5  |
| 1 | 1  | 3  | 8  | 1  | 8  |
| 2 | 1  | 3  | 7  | 1  | 7  |
| 3 | 2  | 3  | 3  | 1  | 3  |

## Set Operators Union/Intersection/Difference

- X ∩ Y
- X ∪ Y
- Y X
  - Schemas must be identical

### **Operators Union**



| K | D | E |
|---|---|---|
| 1 | 1 | 8 |
| 2 | 1 | 7 |

| К | D | E |
|---|---|---|
| 4 | 1 | 6 |
| 5 | 1 | 5 |





| К | D | E |
|---|---|---|
| 4 | 1 | 6 |
| 5 | 1 | 5 |
| 1 | 1 | 8 |
| 2 | 1 | 7 |

$$X \cup Y$$

### **Operators Intersection**

#### X ∩ Y

| К | D | E |
|---|---|---|
| 4 | 1 | 6 |
| 5 | 1 | 5 |
| 1 | 1 | 8 |
| 2 | 1 | 7 |

| К | D | E |
|---|---|---|
| 1 | 1 | 8 |
| 2 | 1 | 7 |
| 3 | 1 | 3 |

| К | D | E |
|---|---|---|
| 1 | 1 | 8 |
| 2 | 1 | 7 |

X



$$X \cap Y$$

### **Operators Difference**

- X Y:
- Set of elements in X but NOT IN Y
- Element of Y ALSO IN X are removed

| K | D | E |
|---|---|---|
| 4 | 1 | 6 |
| 5 | 1 | 5 |
| 1 | 1 | 8 |
| 2 | 1 | 7 |

| K | D | E |
|---|---|---|
| 1 | 1 | 8 |
| 2 | 1 | 7 |
| 3 | 1 | 3 |

| K | D | E |
|---|---|---|
| 4 | 1 | 6 |
| 5 | 1 | 5 |
|   |   |   |

X

Y

X - Y

### **Combining Operators**

- Since each operation returns a Relation (closure) it can feed other operations.
- Can be viewed as an Expression Tree

#### **Operators** Intersection as Difference

• 
$$X \cap Y: X - (X - Y)$$

| K | D | E |
|---|---|---|
| 4 | 1 | 6 |
| 5 | 1 | 5 |
| 1 | 1 | 8 |
| 2 | 1 | 7 |

| 1 |  |
|---|--|
| Y |  |
|   |  |
|   |  |

| К | D | Е |
|---|---|---|
| 4 | 1 | 6 |
| 5 | 1 | 5 |

| K | D | E |
|---|---|---|
| 1 | 1 | 8 |
| 2 | 1 | 7 |

| K | D | Е |
|---|---|---|
| 1 | 1 | 8 |
| 2 | 1 | 7 |
| 3 | 1 | 3 |

$$X - (X - Y)$$
  
 $X \cap Y$ 

### **Operators Selection**

- $Y := \sigma_C(X)$ 
  - Select a set of rows of a relation
  - Based on conditional expression C
  - Operands in C are either attributes of relation X or constants.
  - Y includes only tuples that make C true.

### **Operators Selection**

• 
$$Y := \mathbf{\sigma}_{K < 3}(X)$$



| К | A | В | С |
|---|---|---|---|
| 4 | 2 | 0 | 6 |
| 5 | 2 | 0 | 5 |
| 1 | 1 | 3 | 8 |
| 2 | 1 | 3 | 7 |
| 3 | 2 | 3 | 3 |



| K | Α | В | С |
|---|---|---|---|
| 1 | 1 | 3 | 8 |
| 2 | 1 | 3 | 7 |

# **Operators Projection**

- $Y := \mathbf{\Pi}_L(X)$ 
  - Select a set of attributes/columns of relation

# **Operators Projection**

• 
$$Y := \pi_{C,C2}(X)$$

| С | C1 | C2 | <b>C3</b> | C4 | <b>C5</b> |
|---|----|----|-----------|----|-----------|
| 4 | 2  | 0  | 6         | 1  | 6         |
| 5 | 2  | 0  | 5         | 1  | 5         |
| 1 | 1  | 3  | 8         | 1  | 8         |
| 2 | 1  | 3  | 7         | 1  | 7         |
| 3 | 2  | 3  | 3         | 1  | 3         |

| С | C2 |
|---|----|
| 4 | 0  |
| 5 | 0  |
| 1 | 3  |
| 2 | 3  |
| 3 | 3  |

X

$$\Pi_{C,C2}(X)$$

- Z := X X Y
  - Each rows of X attached to Each Possible row of Y

• Z := R1 X R4

**R4 R1 B1 B2** Α В 

| В | B1 | B2 |
|---|----|----|
| 0 | 0  | 0  |
| 3 | 9  | 27 |

**R4** 

R1

| К | Α | В | С |
|---|---|---|---|
| 4 | 2 | 0 | 6 |
| 5 | 2 | 0 | 5 |
| 1 | 1 | 3 | 8 |
| 2 | 1 | 3 | 7 |
| 3 | 2 | 3 | 3 |

R1 X R4

| K | А | В | С | В | B1 | B2 |
|---|---|---|---|---|----|----|
| 4 | 2 | 0 | 6 | 0 | 0  | 0  |
| 4 | 2 | 0 | 6 | 3 | 9  | 27 |
| 5 | 2 | 0 | 5 | 0 | 0  | 0  |
| 5 | 2 | 0 | 5 | 3 | 9  | 27 |
| 1 | 1 | 3 | 8 | 0 | 0  | 0  |
| 1 | 1 | 3 | 8 | 3 | 9  | 27 |
| 2 | 1 | 3 | 7 | 0 | 0  | 0  |
| 2 | 1 | 3 | 7 | 3 | 9  | 27 |
| 3 | 2 | 3 | 3 | 0 | 0  | 0  |
| 3 | 2 | 3 | 3 | 3 | 9  | 27 |

Y3 := Y1 X Y2

| Y1( | Α, | В) |
|-----|----|----|
|     | 1  | 2  |
|     | 3  | 4  |

Y2( B, C)
5 6
7 8
9 10

Y3(

| Α, | Y1.B, | Y2.B, | C ) |
|----|-------|-------|-----|
| 1  | 2     | 5     | 6   |
| 1  | 2     | 7     | 8   |
| 1  | 2     | 9     | 10  |
| 3  | 4     | 5     | 6   |
| 3  | 4     | 7     | 8   |
| 3  | 4     | 9     | 10  |

#### **Natural Join**

- Usually want to join tuples that in some way match.
- Natural Join requires matching attributes have matching values.
- R3 := R1 ⋈ R2.
  - Take Product: R1 X R2
  - Take Result:  $\sigma_c$
  - C is same named attributes are equal
  - Remove redundant attributes
- Dangling Tuples are tuples from one relation that have no match in the other tuple.

### **Product – Changed Instances**

Y3 := Y1 X Y2

| Y1( | Α, | В) |
|-----|----|----|
|     | 1  | 2  |
|     | 3  | 4  |

Y2( B, C)

2 11
5 9
7 2

Y2.B,

5

5

11

9

11

9

### **Natural Join**

Y3 := Y1 ⋈ Y2

| Y1( | Α, | В) |
|-----|----|----|
|     | 1  | 2  |
|     | 3  | 4  |

| <b>′</b> 3( | Α, | В, | C ) |
|-------------|----|----|-----|
|             | 1  | 2  | 11  |

Y2( B, C)
2 11
5 9
7 2

#### **Natural Join:**

### **Product & Selection & Projection**

| Y1( | Α, | B ) |
|-----|----|-----|
|     | 1  | 2   |
|     | 3  | 4   |

| Y2( | В, | <b>C</b> ) |
|-----|----|------------|
|     | 2  | 11         |
|     | 5  | 9          |
|     | 7  | 2          |

| 1   |   | 1  |
|-----|---|----|
| · Y | ≺ |    |
|     |   | ١. |
|     |   | •  |

| Α, | Y1.B, | Y2.B, | C ) |
|----|-------|-------|-----|
| 1  | 2     | 2     | 11  |
| 1  | 2     | 5     | 9   |
| 1  | 2     | 7     | 2   |
| 3  | 4     | 2     | 11  |
| 3  | 4     | 5     | 9   |
| 3  | 4     | 7     | 2   |

#### STILL NEED:

- 1. Take Result where matching attributes are equal:  $Y4=\sigma_{Y1,b=Y2,b}$  (Y3)
- 2. Remove redundant attributes:  $\Pi_{A,Y1,B,C}$  (Y4)

#### **Natural Join:**

#### **Dangling Tuples**

Y3 := Y1 X Y2

Y3(

| (   | , ,, |    | / |
|-----|------|----|---|
|     | 1    | 2  |   |
|     | 3    | 4  |   |
|     |      |    |   |
| Y2( | В,   | С  | ) |
|     | 2    | 11 |   |
|     | 5    | 9  |   |
|     |      |    |   |

| Α, | Y1.B, | Y2.B, | C ) |
|----|-------|-------|-----|
| 1  | 2     | 2     | 11  |
| 1  | 2     | 5     | 9   |
| 1  | 2     | 7     | 2   |
| 3  | 4     | 2     | 11  |
| 3  | 4     | 5     | 9   |
| 3  | 4     | 7     | 2   |

#### **STILL NEED:**

- 1. Take Result where matching attributes are equal:  $Y4=\sigma_{Y1,b=Y2,b}$  (Y3)
- 2. Remove redundant attributes:  $\Pi_{A,Y1.B,C}$  (Y4)

#### Theta-Join

- R3 := R1  $\bowtie_C$  R2
  - Take Product: R1 X R2
  - Take Result:  $\sigma_c$
  - C is boolean condition

# Theta Join: Product & Selection Y3 := $\sigma_{A < C}$ (Y1 X Y2)

| Y1( | Α, | В) | ) |
|-----|----|----|---|
|     | 1  | 2  |   |
|     | 3  | 4  |   |

Y2( B, C)
2 11
5 9
7 2

Y3(

| Α, | Y1.B, | Y2.B, | C )         |
|----|-------|-------|-------------|
| 1  | 2     | 2     | 11          |
| 1  | 2     | 5     | 9           |
| 1  | 2     | 7     | 2           |
| 3  | 4     | 2     | 11          |
| 3  | 4     | 5     | 9           |
| 3  | 4     | 7     | <del></del> |
|    | •     |       | _           |

# Theta Join: Product & Selection

$$Y3 := \sigma_{A+B$$

| Y1( | Α, | B ) |
|-----|----|-----|
|     | 1  | 2   |
|     | 3  | 4   |

Y2( B, C)
2 11
5 9
7 2

Y3(

| Α, | Y1.B, | Y2.B,      | C )         |
|----|-------|------------|-------------|
| 1  | 2     | 2          | 11          |
| 1  | 2     | 5          | 9           |
| 1  | 2     | 7          | <del></del> |
| 3  | 4     | 2          | 11          |
| 3  | 4     | 5          | 9           |
|    | T     | <i>-</i>   | )           |
| 3  | 4     | <i>-</i> 7 | <del></del> |

#### Renaming

- R1 :=  $\rho_{R1(A1,...,An)}(R2)$ 
  - makes R1 be a relation with attributes A1,...,An and the same tuples as R2.

#### Renaming

Y1( 
$$A$$
,  $B$ )

R1( $A$ ,  $B$ )

R1( $A$ ,  $B$ ,  $B$ )

R1( $A$ ,  $B$ ,  $B$ ,  $C$ )

Y2(  $B$ ,  $C$ )

2 11

5 9

7 2 3 4 7 2

### **Renaming & Set Operations**

$$Y3 := \rho_{X,Y}(Y1) \cup \rho_{X,Y}(Y2)$$
)

Y1( В

Y2( В,

Y3(

| Χ, | Υ) |
|----|----|
| 1  | 2  |
| 3  | 4  |
| 2  | 11 |
| 5  | 9  |
| 7  | 2  |

#### Precedence

- Precedence of relational operators:
  - 1.  $[\sigma, \pi, \rho]$  (highest).
  - 2. [X, ⋈].
  - **3.** ∩.
  - **4**. [∪, —]

### Relational Algebra for Constraints

- Relation  $R \neq \emptyset$  OR  $R = \emptyset$
- Key Constraints
- Foreign Key Constraints
- Domain Value Constraints

# Example 1: Key Constraint

• PC1 = PC2 = PC

$$Y := \sigma_{PC1.model=PC2.model AND PC.maker \neq PC2.maker}(PC1 X PC2)$$

Key Constraint: Y = Ø

# Example 2 Referential Integrity Constraint

$$Y1 := \pi_{model}$$
 (Product)

$$Y2 := \pi_{model}(PC)$$

Referential Integrity Constraint: Y2 ⊆ Y1

### Example: Exercise – 2.4.1

- Product(maker, model, type)
- PC(model, speed, ram, hd, price)
- Laptop(model, speed, ram, hd, screen, price)
- Printer(model, color, type, price)

a) What PC models have a speed of at least 3.00?

| maker  | model | type    | model   | speed    | ram     | hd      | price         |       |        |         |         |          |    |
|--------|-------|---------|---------|----------|---------|---------|---------------|-------|--------|---------|---------|----------|----|
| A      | 1001  | рс      | 1001    | 2.66     | 1024    | 250     | 2114          |       |        |         |         |          |    |
| A      | 1002  | pc      | 1002    | 2.10     | 512     | 250     | 995           | model | speed  | ram     | hd      | screen   | pr |
| Α      | 1003  | рс      | 1003    | 1.42     | 512     | 80      | 478           | 2001  | 2.00   | 2048    | 240     | 20.1     | 36 |
| A      | 2004  | laptop  | 1004    | 2.80     | 1024    | 250     | 649           | 2002  | 1.73   | 1024    | 80      | 17.0     | 9  |
| A      | 2005  | laptop  | 1005    | 3.20     | 512     | 250     | 630           | 2003  | 1.80   | 512     | 60      | 15.4     | 5  |
| A      | 2006  | laptop  | 1006    | 3.20     | 1024    | 320     | 1049          | 2004  | 2.00   | 512     | 60      | 13.3     | 11 |
| В      | 1004  | pc      | 1007    | 2.20     | 1024    | 200     | 510           | 2005  | 2.16   | 1024    | 120     | 17.0     | 25 |
| В      | 1005  | pc      | 1008    | 2.20     | 2048    | 250     | 770           | 2006  | 2.00   | 2048    | 80      | 15.4     | 17 |
| В      | 1006  | pc      | 1009    | 2.00     | 1024    | 250     | 650           | 2007  | 1.83   | 1024    | 120     | 13.3     | 14 |
| В      | 2007  | laptop  | 1010    | 2.80     | 2048    | 300     | 770           | 2008  | 1.60   | 1024    | 100     | 15.4     | 9  |
| C      | 1007  | pc      | 1011    | 1.86     | 2048    | 160     | 959           | 2009  | 1.60   | 512     | 80      | 14.1     | 6  |
| D      | 1008  | pc      | 1011    | 2.80     | 1024    | 160     | 649           | 2010  | 2.00   | 2048    | 160     | 15.4     | 23 |
| D      | 1009  | pc      |         |          |         | 12255   | 112/16/01     |       | C 1    | 1 2 6   | uaviu   | · · ·    |    |
| D      | 1010  | pc      | 1013    | 3.06     | 512     | 80      | 529           | (b)   | Sample | data fo | r relat | ion Lapt | op |
| D      | 3004  | printer | (a) Ca  | -le dete | C1      | T       |               |       |        |         |         |          |    |
| D      | 3005  | printer | (a) Sam | pie data | for rea | ation F | C             |       |        |         |         |          |    |
| E      | 1011  | pc      |         |          |         |         |               |       |        |         |         |          |    |
| E      | 1012  | pc      |         |          |         | me      | odel          | color | type   |         | price   |          |    |
| E      | 1013  | pc      |         |          |         | _       | $\rightarrow$ |       |        | 400000  | _       | = 2      |    |
| E      | 2001  | laptop  |         |          |         | 30      | 01            | true  | ink-   | jet     | 99      |          |    |
| E      | 2002  | laptop  |         |          |         | 30      | 02            | false | lase   | r       | 239     |          |    |
| E      | 2003  | laptop  |         |          |         |         | 03            | true  | lase   |         | 899     |          |    |
| E      | 3001  | printer |         |          |         |         | 938           |       |        | 22.     |         |          |    |
| E      | 3002  | printer |         |          |         | 30      | 04            | true  | ink-   | jet     | 120     |          |    |
| E<br>F | 3003  | printer |         |          |         | 30      | 05            | false | lase   | r       | 120     | 1        |    |
| F      | 2008  | laptop  |         |          |         |         | 06            | true  | ink-   | iet     | 100     |          |    |
| F      | 2009  | laptop  |         |          |         | 30      | 00            | orue  | THE .  | Jec     | 100     |          |    |

(c) Sample data for relation Printer

laser

true

3007

2010

3006

3007

laptop

printer

printer

G H

H

200

price

3673

949

549

1150

2500

1700

1429

900

680

2300

### a) What PC models have a speed of at least 3.00?

- R1 :=  $\sigma_{\text{speed} \ge 3.00}$  (PC)
- R2 :=  $\pi_{\text{model}}(R1)$

#### model

1005

1006

1013

### a) What PC models have a speed of at least 3.00?

 $\pi_{\mathrm{model}}$  $\sigma_{\text{speed} \geq 3.00}$ 

### Example: Exercise – 2.4.1

- Product(maker, model, type)
- PC(model, speed, ram, hd, price)
- Laptop(model, speed, ram, hd, screen, price)
- Printer(model, color, type, price)

b) Which manufacturers make laptops with a hard disk of at least 100gb

# b) Which manufacturers make laptops with a hard disk of at least 100gb

- R1 :=  $\sigma_{hd \ge 100}$  (Laptop)
- R2 := Product (R1)
- R3 :=  $\pi_{maker}$  (R2)



E

A

B

F

G

# b) Which manufacturers make laptops with a hard disk of at least 100gb



# Example: Exercise – 2.4.1

- Product(maker, model, type)
- PC(model, speed, ram, hd, price)
- Laptop(model, speed, ram, hd, screen, price)
- Printer(model, color, type, price)

c) Find all model number and price of all products (of any type) made by manufacturer B

# c) Find all model number and price of all products (of any type) made by manufacturer B

- R1 :=  $\sigma_{\text{maker=B}}$  (Product  $\bowtie$  PC)
- R2 :=  $\sigma_{\text{maker=B}}$  (Product  $\bowtie$  Laptop)
- R3 :=  $\sigma_{\text{maker=B}}$  (Product  $\bowtie$  Printer)
- R4 :=  $\pi_{\text{model,price}}$  (R1)
- R5 :=  $\pi_{\text{model,price}}$  (R2)
- R6: =  $\pi_{\text{model,price}}$  (R3)
- R7 := R4 ∪ R5 ∪ R6

| model | price |
|-------|-------|
| 1004  | 649   |
| 1005  | 630   |
| 1006  | 1049  |
| 2007  | 1429  |

# In-Class 2b Ullman & Widom pg. 52

- Product(maker, model, type)
- PC(model, speed, ram, hd, price)
- Laptop(model, speed, ram, hd, screen, price)
- Printer(model, color, type, price)
- Write the Relational Algebra to:

Ex: 2.4.1.d) Find the model numbers of all color laser printers

Ex: 2.4.1.e) Find those manufacturers (maker) that sell laptops, but not PC's.

| maker  | model | type               | model   | speed                                   | ram                                     | hd                                      | price                                   | model                              | speed         | ram      | hd       | screen                                  | price                                   |
|--------|-------|--------------------|---------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------|---------------|----------|----------|-----------------------------------------|-----------------------------------------|
| A      | 1001  | pc                 | 1001    | 2.66                                    | 1024                                    | 250                                     | 2114                                    | 2001                               | 2.00          | 2048     | 240      | 20.1                                    | 3673                                    |
| A      | 1002  | pc                 | 1002    | 2.10                                    | 512                                     | 250                                     | 995                                     | 2002                               | 1.73          | 1024     | 80       | 17.0                                    | 949                                     |
| A      | 1003  | pc                 |         | 16603100000                             | 2000 SSOC                               | 2000 S                                  | 357.000 TO                              |                                    |               | 300000   | 12223    |                                         | 200.000                                 |
| A      | 2004  | laptop             | 1003    | 1.42                                    | 512                                     | 80                                      | 478                                     | 2003                               | 1.80          | 512      | 60       | 15.4                                    | 549                                     |
| A      | 2005  | laptop             | 1004    | 2.80                                    | 1024                                    | 250                                     | 649                                     | 2004                               | 2.00          | 512      | 60       | 13.3                                    | 1150                                    |
| A      | 2006  | laptop             | 1005    | 3.20                                    | 512                                     | 250                                     | 630                                     | 2005                               | 2.16          | 1024     | 120      | 17.0                                    | 2500                                    |
| В      | 1004  | pc                 |         | 229 PROTECTION                          | 0.0000000000000000000000000000000000000 | 100000000000000000000000000000000000000 |                                         | 2006                               | 2.00          | 2048     | 80       | 15.4                                    | 1700                                    |
| В      | 1005  | pc                 | 1006    | 3.20                                    | 1024                                    | 320                                     | 1049                                    | 2007                               | 1.83          | 1024     | 120      | 13.3                                    | 1429                                    |
| В      | 1006  | pc                 | 1007    | 2.20                                    | 1024                                    | 200                                     | 510                                     |                                    | 100 mm 100 mm |          | 100000   | 100000000000000000000000000000000000000 | 100000000000000000000000000000000000000 |
| В      | 2007  | laptop             | 1008    | 2.20                                    | 2048                                    | 250                                     | 770                                     | 2008                               | 1.60          | 1024     | 100      | 15.4                                    | 900                                     |
| C      | 1007  | pc                 |         | 100000000000000000000000000000000000000 | 0.5000000000000000000000000000000000000 | 120220                                  | 100000000000000000000000000000000000000 | 2009                               | 1.60          | 512      | 80       | 14.1                                    | 680                                     |
| D      | 1008  | pc                 | 1009    | 2.00                                    | 1024                                    | 250                                     | 650                                     | 2010                               | 2.00          | 2048     | 160      | 15.4                                    | 2300                                    |
| D<br>D | 1010  | pc                 | 1010    | 2.80                                    | 2048                                    | 300                                     | 770                                     |                                    | i inconsensor | 7225119  | david    | ruby                                    | 93                                      |
| D      | 3004  | pc                 | 1011    | 1.86                                    | 2048                                    | 160                                     | 959                                     | (b)                                | Sample        | data fo  | r relati | ion Lant                                | on                                      |
| D      | 3004  | printer<br>printer | 1012    | 2.80                                    | 1024                                    | 160                                     | 649                                     | (b) Sample data for relation Lapto |               |          |          |                                         |                                         |
| E      | 1011  | pc                 |         |                                         | - TOTAL ST                              | 12000                                   |                                         | mo                                 | $del \mid cc$ | olor     | type     | pri                                     | ce                                      |
| E      | 1012  | pc                 | 1013    | 3.06                                    | 512                                     | 80                                      | 529                                     | 300                                | )1 t.1        | rue      | ink-j    | et.                                     | 99                                      |
| E      | 1013  | pc                 |         |                                         |                                         |                                         |                                         |                                    |               |          |          | PC-COTTE                                |                                         |
| E      | 2001  | laptop             | (a) Sam | (a) Sample data for relation PC         |                                         |                                         | C                                       |                                    |               | alse     | laser    | 555                                     | 39                                      |
| E      | 2002  | laptop             |         |                                         |                                         |                                         |                                         | 300                                | )3   ti       | rue      | laser    | 8                                       | 99                                      |
| E      | 2003  | laptop             |         |                                         |                                         |                                         |                                         | 300                                | )4 t          | rue      | ink-j    | et 1                                    | 20                                      |
|        | 3001  | printer            |         |                                         |                                         |                                         |                                         | 300                                | 936           | alse     | laser    | A                                       | 20                                      |
| E      | 3002  | printer            |         |                                         |                                         |                                         |                                         |                                    | 2000          |          |          | Same III                                |                                         |
| E<br>E | 3003  | printer            |         |                                         |                                         |                                         |                                         | 300                                | )6   tı       | rue      | ink-j    | et 1                                    | 00                                      |
| F      | 2008  | laptop             |         |                                         |                                         |                                         |                                         | 300                                | )7 t          | rue      | laser    | 20                                      | 00                                      |
| F      | 2009  | laptop             |         |                                         |                                         |                                         |                                         |                                    |               | 2300000  |          | S                                       |                                         |
| G      | 2010  | laptop             |         |                                         |                                         |                                         |                                         | (c) S                              | ample c       | lata for | r relati | ion Prin                                | ter                                     |
| Н      | 3006  | printer            |         |                                         |                                         |                                         |                                         | (c) S                              | ampie (       | iata 10  | relati   | ion FIII                                | reer                                    |
| H      | 3007  | printer            |         |                                         |                                         |                                         |                                         |                                    |               |          |          |                                         |                                         |

#### Write the Relational Algebra to:

- Ex: 2.4.1.d) Find the model numbers of all color laser printers
- Ex: 2.4.1.e) Find those manufacturers (maker) that sell laptops, but not PC's.

# **Answers Follow**

- Product(maker, model, type)
- PC(model, speed, ram, hd, price)
- Laptop(model, speed, ram, hd, screen, price)
- Printer(model, color, type, price)
- Write the Relational Algebra to:

Ex: 2.4.1.d) Find the model numbers of all color laser printers

Ex: 2.4.1.e) Find those manufacturers (maker) that sell laptops, but not PC's.

- Product(maker, model, type)
- PC(model, speed, ram, hd, price)
- Laptop(model, speed, ram, hd, screen, price)
- Printer(model, color, type, price)
- Write the Relational Algebra to:

Ex: 2.4.1.d) Find the model numbers of all color laser printers

R1 :=  $\sigma_{\text{color} = \text{true AND type} = \text{laser}}$  (Printer)

 $R2 := \pi_{model} (R1)$ 

CORRECT

model

3003

- Product(maker, model, type)
- PC(model, speed, ram, hd, price)
- Laptop(model, speed, ram, hd, screen, price)
- Printer(model, color, type, price)
- Write the Relational Algebra to:

Ex: 2.4.1.d) Find the model numbers of all color laser printers

 $\pi_{\text{model}}$  (  $\sigma_{\text{color} = \text{true AND type} = \text{laser}}$  (Printer) )

**CORRECT** 

model

3003

- Product(maker, model, type)
- PC(model, speed, ram, hd, price)
- Laptop(model, speed, ram, hd, screen, price)
- Printer(model, color, type, price)
- Write the Relational Algebra to:

Ex: 2.4.1.d) Find the model numbers of all color laser printers

R1 :=  $\sigma_{\text{color} = \text{true } AND \text{ type} = \text{laser}}$  (Printer)

 $R2 := \pi_{model}(R1)$ 

**Partially Correct** 

model

3003

- Product(maker, model, type)
- PC(model, speed, ram, hd, price)
- Laptop(model, speed, ram, hd, screen, price)
- Printer(model, color, type, price)
- Write the Relational Algebra to:

Ex: 2.4.1.d) Find the model numbers of all color laser printers

R1 :=  $\sigma_{color=true}$  (Printer)

R2 :=  $\sigma_{type=laser}$  (Printer)

R3 := R1 ⋈ R2

R3 := R1 ∩ R2

 $R4 := \pi_{model} (R3)$ 

**Partially Correct** 

model

3003

- Product(maker, model, type)
- PC(model, speed, ram, hd, price)
- Laptop(model, speed, ram, hd, screen, price)
- Printer(model, color, type, price)
- Write the Relational Algebra to:

Ex: 2.4.1.d) Find the model numbers of all color laser printers

 $R1 := \sigma_{color=true}$  (Printer)

**Partially Correct** 

model

3003

- Product(maker, model, type)
- PC(model, speed, ram, hd, price)
- Laptop(model, speed, ram, hd, screen, price)
- Printer(model, color, type, price)
- Write the Relational Algebra to:

Ex: 2.4.1.d) Find the model numbers of all color laser printers

**R1** 

 $R1 := \pi_{\text{model,color}}(Printer)$ 

 $R2 := \sigma_{model}(R1)$ 

Incorrect

| model | Color |
|-------|-------|
| 3002  | False |
| 3003  | True  |
| 3007  | True  |

- Product(maker, model, type)
- PC(model, speed, ram, hd, price)
- Laptop(model, speed, ram, hd, screen, price)
- Printer(model, color, type, price)
- Write the Relational Algebra to:

Ex: 2.4.1.e) Find those manufacturers (maker) that sell laptops, but not PC's.

 $R1 := \sigma_{type=laptop}$  (Product)

R2 :=  $\sigma_{type=PC}$ (Product)

 $R3 := \pi_{maker}(R1)$ 

 $R4 := \pi_{maker}(R2)$ 

R5 := R3 - R4

CORRECT

maker

F

G

- Product(maker, model, type)
- PC(model, speed, ram, hd, price)
- Laptop(model, speed, ram, hd, screen, price)

**R1** 

- Printer(model, color, type, price)
- Write the Relational Algebra to:

Ex: 2.4.1.e) Find those manufacturers (maker) that sell laptops, but not PC's.

$$R1 := \sigma_{type=laptop}$$
 (Product)

R2 := 
$$\sigma_{type=PC}(Product)$$

$$\pi_{maker}(R1-R2)$$

Correct:  $\pi_{maker}(R1)-\pi_{maker}(R2)$ 

| maker | model | type   |
|-------|-------|--------|
| A     | 2004  | laptop |
| A     | 2006  | laptop |
| F     | 2008  | laptop |

| maker | model | type |
|-------|-------|------|
| A     | 1002  | PC   |
| A     | 1003  | PC   |

2

- Product(maker, model, type)
- PC(model, speed, ram, hd, price)
- Laptop(model, speed, ram, hd, screen, price)
- Printer(model, color, type, price)
- Write the Relational Algebra to:

Ex: 2.4.1.e) Find those manufacturers (maker) that sell laptops, but not PC's.

$$\begin{array}{l} \textbf{R1} := \sigma_{\text{type=laptop}} \text{-} (\textbf{Product}) \\ \textbf{R2} := \sigma_{\text{type=PC}} \text{-} (\textbf{Product}) \\ \textbf{R3} := \sigma_{\text{maker}} \text{-} (\textbf{laptop}) \end{array}$$

 $R4 := \sigma_{maker}(PC)$ 

R5 := R3 - R4

**Partially Correct** 



F

G

#### DB4



#### RA: A Relational Algebra Interpreter

http://www.cs.duke.edu/~junyang/ra/

#### Introduction

RA is a simple relational algebra interpreter written in Java. It is built on top of an SQL-based relational database system. It implements relational algebra queries by translating them into SQL queries and executing them on the underlying database system through JDBC. RA is packaged with SQLiteJDBC, so you can use RA as a standalone relational-algebra database system. Alternatively, you can use RA as a relational-algebra frontend to other database systems.

- \select\_{cond}
- \project\_{attr\_list}
- \join\_{cond}
- \join
- \cross
- \union, \diff, and \intersect are the relational union, difference, and intersect operators.
- \rename\_{new\_attr\_name\_list} is the relational rename operator,

- \select\_{cond}
  - is the relational selection operator.
  - For example, to select Drinker tuples with name Amy or Ben, we can write
    - \select\_{name = 'Amy' or name = 'Ben'} Drinker;.
  - Syntax for cond follows SQL.
  - Note that string literals should be enclosed in single quotes, and you may use boolean operators and, or, and not.
  - Comparison operators <=, <, =, >, >=, and <> work on both string and numeric types.
  - For string match you can use the SQL LIKE operator;
    - \select\_{name like 'A%'} drinker;
    - finds all drinkers whose name start with A, as % is a wildcard character that matches any number of characters.

- \project\_{attr\_list}
  - is the relational projection operator,
  - attr\_list is a comma-separated list of attribute names.
  - For example, to find out what beers are served by Talk of the Town (but without the price information), we can write:

```
\project_{bar, beer} (\select_{bar = 'Talk of the Town'} Serves);
```

- \join\_{cond}
  - is the relational theta-join operator.
  - For example, to join Drinker(name, address) and Frequents(drinker, bar, times\_a\_week) relations together using drinker name, we can write
    - Drinker \join\_{name = drinker} Frequents;.
  - Syntax for cond again follows SQL; see notes on \select for more details.

#### • \join

- is the relational natural join operator.
- For example, to join Drinker(name, address) and Frequents(drinker, bar, times\_a\_week) relations together using drinker name, we can write
  - Drinker \join \rename\_{name, bar, times\_a\_week} Frequents;.
  - Natural join will automatically equate all pairs of identically named attributes from its inputs (in this case, name), and output only one attribute per pair.
  - Here we use \rename to create two name attributes for the natural join; see notes on \rename below for more details.

#### \cross

- is the relational cross product operator.
- For example, to compute the cross product of Drinker and Frequents, we can write Drinker
  - \cross Frequents;.

- \union, \diff, and \intersect are the relational union, difference, and intersect operators.
  - For a trivial example, to compute the union, difference, and intersection between Drinker and itself, we can write
    - Drinker \union Drinker;
      - which would return Drinker itself
    - Drinker \diff Drinker;
      - an empty relation
    - Drinker \intersect Drinker;
      - Drinker itself
- \rename\_{new\_attr\_name\_list}
  - is the relational rename operator, where new\_attr\_name\_list is a commaseparated list of new names, one for each attribute of the input relation.
  - For example, to rename the attributes of relation Drinker and compute the cross product of Drinker and itself, we can write
    - \rename\_{name1, address1} Drinker \cross \rename\_{name2, address2} Drinker;

# Example RA Expression

Here is an example of a complex query, which returns beers liked by those drinkers who do not frequent James Joyce Pub:

# **Example 2: RA Expression**

We've created a small sample database to use for this assignment. It contains four relations:

```
Person(name, age, gender) // name is a key
Frequents(name, pizzeria) // [name,pizzeria] is a key
Eats(name, pizza) // [name,pizza] is a key
Serves(pizzeria, pizza, price) // [pizzeria,pizza] is a key
```

View the database. (You can also download the schema and data.)

#### Q1 (1 point possible)

Find all pizzas eaten by at least one female over the age of 20.

- View the RA Relational Algebra Syntax guide
- If you generate an error, you will see the message from the underlying SQLite system -- apologies for the lack of better error messages



#### Q9 (1 point possible)

Find all pizzerias that serve every pizza eaten by people over 30. (This query is very challenging; extra congratulations if you get it right.)

- View the RA Relational Algebra Syntax guide
- If you generate an error, you will see the message from the underlying SQLite system -- apologies for the lack of better error messages

1 Enter your RA query here