Nome:	N° Mec.:
Declaro que desisto	

Duração total: 2 horas

Informações

- 1. Esta prova é constituída por 4 questões.
 - (a) Cada folha contém uma questão que deve ser respondida na própria folha (utilize, sempre que necessário, também o verso da folha).
 - (b) Caso necessite de folhas de continuação, deve utilizar uma para cada questão e indicar na folha de continuação o número da questão no local indicado para o efeito.
 - (c) Caso não responda a uma das questões escreva isso na respetiva folha.
- 2. Quando terminar a sua prova, organize-a de forma a juntar as folhas de continuação (caso as tenha utilizado) à folha da questão respetiva e coloque-as nos locais indicados pelo professor vigilante da sala. Não será necessário entregar esta folha de informações, exceto em caso de desistência da prova.
- 3. Caso pretenda desistir desta prova, <u>assinale-o no cabeçalho desta folha</u>, assinando no local a isso destinado e entregue todas as folhas de prova que lhe foram distribuídas. Contudo, se desistir mantém-se no regime de avaliação discreta, não podendo realizar o exame final.
- 4. <u>Justifique</u> todas as suas respostas das questões, indicando os cálculos efetuados e/ou os conceitos teóricos utilizados.
- 5. Só pode levar para a mesa onde vai realizar a prova material de escrita.
 - (a) Não é permitida a utilização de gualquer tipo de calculadora.
 - (b) Não pode ter consigo telemóvel nem qualquer dispositivo eletrónico (ainda que desligado).
 - (c) Garanta que tem em cima da mesa de prova um documento que o identifique, com fotografia (preferencialmente o Cartão de Cidadão).

Fórmulas trigonométricas

$$sec u = \frac{1}{\cos u} \left| \csc u = \frac{1}{\sin u} \right| \cot u = \frac{\cos u}{\sin u} \left| 1 + \operatorname{tg}^{2} u = \sec^{2} u \right| 1 + \cot u^{2} u = \csc^{2} u$$

$$sen^{2} u = \frac{1 - \cos(2u)}{2} \left| \cos^{2} u = \frac{1 + \cos(2u)}{2} \right| \cos(u + v) = \cos u \cos v - \sin u \sin v$$

$$sen u \operatorname{sen} v = \frac{\cos(u - v) - \cos(u + v)}{2}$$

$$\cos u \cos v = \frac{\cos(u - v) + \cos(u + v)}{2}$$

$$sen u \cos v = \frac{\sin(u - v) + \sin(u + v)}{2}$$

$$sen^{2} (\operatorname{arcsen} u) = 1 - u^{2}$$

$$\operatorname{sen}^{2} (\operatorname{arccos} u) = 1 - u^{2}$$

Uma fórmula de recorrência

$$\int \frac{1}{(x^2+a)^n} \, dx = \frac{1}{a} \left(\frac{x}{2(n-1)(x^2+a)^{n-1}} + \frac{2n-3}{2n-1} \int \frac{1}{(x^2+a)^{n-1}} \, dx \right), \ a \neq 0, \ n \neq 1.$$

Formulário de Derivadas				
Função	nção Derivada Função			
$Ku \ (K \in \mathbb{R})$	K u'	$\ln u $	$\frac{u'}{u}$	
u^r	$r u^{r-1} u'$	$\log_a u \ (a > 0 \ \mathrm{e} \ a \neq 1)$	$\frac{u'}{u \ln a}$	
e^u	$u'e^u$	$a^u(a>0 e a \neq 1)$	$a^u \ln a u'$	
$\operatorname{sen} u$	$u'\cos u$	$\cos u$	$-u' \operatorname{sen} u$	
$\operatorname{tg} u$	$u'\sec^2 u$	$\cot g u$	$-u'\csc^2 u$	
$\sec u$	$\sec u \operatorname{tg} u u'$	$\operatorname{cosec} u$	$-\csc u \cot u u'$	
$\operatorname{arcsen} u$	$\frac{u'}{\sqrt{1-u^2}}$	$\arccos u$	$-\frac{u'}{\sqrt{1-u^2}}$	
$\operatorname{arctg} u$	$\frac{u'}{1+u^2}$	$\operatorname{arccotg} u$	$-\frac{u'}{1+u^2}$	
$\operatorname{senh} u$	$u'\cosh u$	$\cosh u$	$u'\operatorname{senh} u$	

Nome:	N° Mec.:
Classificação Questão:	

Duração total: 2 horas

Questão 1 (65 pts)

- 1.1 Determine $\operatorname{tg}\left(\arccos\left(\frac{5}{13}\right)\right)$.
- 1.2 Considere a função definida por

$$f(x) = \arctan(e^x - 1).$$

- (a) Determine o domínio e o contradomínio de f.
- (b) Calcule a derivada da função f e estude f quanto a intervalos de monotonia.
- (c) A função f admite máximo absoluto? E mínimo absoluto? Justifique a sua resposta.
- (d) A função f admite assíntotas? Em caso afirmativo, determine-as.
- (e) Justifique que f é invertível e determine a sua inversa, indicando expressão analítica, domínio e contradomínio.

·			

Nome:	N° Mec.:
CLASSIFICAÇÃO OUESTÃO:	

Duração total: 2 horas

Questão 2 (40 pts)

- 2.1 Determine os seguintes limites
 - (a) $\lim_{x\to 0} \frac{\sin(2x) 2x + x^2}{\sin(2x) 2x x^2};$
 - (b) $\lim_{x \to +\infty} (\sqrt{x^2 + x + 1} \sqrt{x^2 x}).$
- 2.2 (a) Enuncie o Teorema de Rolle.
 - (b) Sejam $a_1, a_2, a_3, \ldots a_n$ números reais tais que $a_1+a_2+\ldots+a_n=0$. Mostre que o polinómio $q(x)=a_1+2a_2x+3a_3x^2+\ldots+na_nx^{n-1}$ tem pelo menos uma raiz real.

·			

Nome:	N° Mec.:
Classificação Questão:	

Duração total: 2 horas

Questão 3 (65 pts)

3.1 Encontre a função real contínua que satisfaz

$$\begin{cases} f''(x) = \frac{1}{1+x^2} \\ f(0) = 2 \\ f'(0) = 1 \end{cases}$$

3.2 Determine as famílias de primitivas:

(a)
$$\int \frac{1}{\cos(x)\cot(x)} dx \cos x \in \left]0, \frac{\pi}{2}\right[;$$

(b)
$$\int \frac{\sqrt{1-\sqrt{x}}}{\sqrt{x}} dx \text{ com } x \in]0, +\infty[.$$

(c) $\int \frac{x+1}{x^2+4x+5} dx.$

(c)
$$\int \frac{x+1}{x^2+4x+5} dx$$

·			

18 c	le	nove	embro	$d\epsilon$	2022
Dι	ıra	ação	total:	2	horas

	Nome: N° Mec.:
	Classificação Questão:
	$ ext{Quest\~ao} ext{ 4 (30 pts)}$
Par	a cada uma das questões seguintes, assinale a opção correta.
4.	Se uma função não está definida em a então
	(A) $\lim_{x \to a} f(x)$ não existe
	(B) $\lim_{x\to a} f(x)$ pode ser 0.
	(C) $\lim_{x\to a} f(x)$ deve ser ∞ .
	(D) nenhuma das afirmações acima
4.	2 Se f é uma função contínua em $[a,b]$ então
	(A) Existem $m \in M$ em \mathbb{R} tal que $m \leq f(x) \leq M, \forall x \in [a,b].$
	(B) Têm que existir extremos locais em $[a,b]$, mas pode não existir um máximo ou mínimo absoluto.
	(C) Qualquer máximo ou mínimo absoluto de f em $[a,b]$ ocorre ou nos extremos do intervalo ou num ponto do interior onde $f'(x)=0$
	(D) O contradomínio de $f \in [f(a), f(b)]$
4.	Se $f'(a)$ existe, $\lim_{x\to a} f(x)$
	(A) tem que existir mas não temos informação suficiente sobre qual o seu valor
	(B) é igual a $f(a)$
	(C) é igual a $f'(a)$
	(D) pode não existir
4.	Sabemos que $f(1) = 1$ e que $f'(1) = 3$. Então, $(f(f(x)))'$ em $x = 1$ é
	(A) 1

(B) 6.....

(C) 3.....

(**D**) 9.....