

PATENT APPLICATION

Efficient Available Bandwidth Usage in
Transmission of Compressed Video Data

Inventor: Xiaomei Liu
13 Jacklin Circle
Milpitas, CA 95035-3529
A Citizen of the People's Republic of China

Sangeeta Ramakrishnan
3275 Lac D'Azur Ct.
San Jose, CA 95148
A Citizen of India

Assignee: Cisco Technology, Inc.
170 West Tasman Drive
San Jose, California 95134-1706

A corporation of California

Prepared by:
BEYER WEAVER & THOMAS, LLP
P.O. Box 778
Berkeley, CA 94704-0778
Telephone: (510) 843-6200

Efficient Available Bandwidth Usage in Transmission of Compressed Video Data

Invented By:
Xiaomei Liu
Sangeeta Ramakrishnan

BACKGROUND OF THE INVENTION

The present invention relates generally to systems and methods for transmitting data.

- 5 More specifically, the present invention relates to efficient transmission of video data over shared transmission of channels.

Video services are provided by a wide array of video content suppliers. For example, residential digital video services may include digital television, video on demand, Internet video, etc. – each service having hundreds of programs. A program refers to one or more bitstreams that are used to represent the video content and associated audio content. A target receiver for the programs, such as a set-top box (STB) located in a residential home, receives video programs from a number of different video content suppliers via assorted transmission channels. Typically, the ‘last mile’ of transmission between the video content suppliers and the target receiver is along the same transmission channel, requiring the channel to carry multiple video programs from the wide array of suppliers - and often simultaneously.

There are presently a variety of different communication channels for transmitting or transporting video data. For example, communication channels such as coaxial cable distribution networks, digital subscriber loop (DSL) access networks, ATM networks, satellite, terrestrial, or wireless digital transmission facilities are all well known. Many standards have been developed for transmitting data on the communication channels. For the purposes herein, a channel is defined broadly as a connection facility to convey properly formatted digital information from one point to another. A channel includes some or all of the following elements: 1) physical devices that generate and receive the signals (modulator/demodulator); 2) medium that carries the actual signals; 3) mathematical schemes used to encode and decode the signals; 4) proper communication protocols used to establish, maintain and manage the connection created by the channel 5) storage systems used to store the signals such as magnetic tapes and optical disks. The concept of a channel includes but is not limited to a physical channel, but also logical connections established on

top of different network protocols, such as xDSL, ATM, IP, wireless, HFC, coaxial cable, Ethernet, Token Ring, etc.

The channel is used to transport a bitstream, or a continuous sequence of binary bits used to digitally represent video, audio and/or data. A bit rate is the number of bits per second required to transport the bitstream. A bit error rate is the statistical ratio between the number of bits in error due to transmission and the total number of bits transmitted. A channel capacity is the maximum bit rate at which a given channel can convey digital information with a bit error rate no more than a given value.

Since transmission of video data with existing communication channels is often excessive, compression is an approach that has been used to make digital video images more transportable. Digital video compression allows digitized video data to be represented in a much more efficient manner and makes it possible to transmit the compressed video data using a channel at a fraction of the bandwidth required to transmit the uncompressed video data. Compression represents significant data savings which results in much more efficient use of channel bandwidth and storage media.

When digital video is first compressed, the encoder assumes a particular bit rate profile, whether it is constant bit rate (CBR) or a variable bit rate (VBR). The word “profile” refers to the fact that transport bit rate may not be constant, but variable under certain constraints, such as peak bit rate, average bit rate, minimum bit rate, etc. The VBR representation of compressed video data allows a video encoder to generate compressed bitstreams that, when decoded, produce consistent video quality. However, as a result of the compression process, the number of bits required to represent the compressed data differs widely from picture to picture. The specific VBR characteristics of the compressed bitstream depends on the complexity of the video image, amount of motion in the video sequence, as well as changes made in post-generation such as scene cuts, fades, wipes, picture-in-picture, etc. As channel capacities are often expressed as constant bit rates, the variable nature of VBR compressed bitstream often poses a problem for video transmission.

To further reduce the transmission load, bitstreams are frequently combined for transmission within a channel. A multiplex is a scheme used to combine bitstream representations of multiple signals, such as audio, video, or data, into a single bitstream representation.

A multiplexer then refers to an apparatus or software designed or configured to multiplex multiple bitstreams using a suitable multiplex scheme. Two functions of the multiplexer are a) scheduling packets including the video data and b) rate control of the video data. When there is sufficient bandwidth on the outgoing channel to send all the video data, the multiplexer simply schedules all the packets to send out.

If the channel bandwidth is not enough, rate reduction is used to decrease the bandwidth required to send the video data. The rate reduction may include re-quantization with a larger quantization step value or complete re-encoding, for example. After suitable rate reduction, the multiplexer then schedules the packets for transmission. Rate reduction often diminishes end-user video quality. Since rate reduction often leads to picture quality degradation, it should be minimized. However, many conventional transmission systems overestimate the amount of rate reduction necessary, leading to diminished output video quality.

Based on the foregoing, improved methods and systems for transmitting video data over transmission channels would be desirable.

SUMMARY OF THE INVENTION

The present invention provides improved systems and methods for multiplexing and transmitting video data. The systems and methods use excess bandwidth in a channel made available after meeting the minimum requirement for all transmitting multiple bitstreams to each meet downstream decoder buffer requirements. A network device of the invention flexibly allocates this available bandwidth to minimize further rate reduction in the future. More specifically, the network device periodically determines the available bandwidth, and divides the available bandwidth among multiple incoming bitstreams being multiplexed in order to increase downstream decoder buffer levels. By maintaining increased decoder buffer levels, future rate reduction of the video data may be avoided. Minimizing rate reduction in this manner improves bandwidth usage efficiency, and thus improves video data transmission and end-user output video quality.

In one aspect, the present invention relates to a network device for transmitting compressed video data onto a channel. The network device comprises a bit rate converter designed or configured to transcode compressed video data. The network device also

comprises a multiplexer designed or configured to a) schedule packets from the multiple bitstreams; and b) periodically determine if bandwidth is available on the channel prior to or after transcoding is performed on the compressed video data, and if so, allocating additional packets from the multiple bitstreams to use the available bandwidth. The network device
5 additionally comprises a network interface designed or configured to output data packets from the bitstreams onto the channel.

In another aspect, the present invention relates to a method for transmitting compressed video data onto a channel. The method comprises receiving multiple bitstreams, each bitstream including compressed video data contained in packets. The method also comprises transcoding compressed video data in one or more of the multiple bitstreams. The method further comprises scheduling the packets from the multiple bitstreams. The method additionally comprises determining an available bandwidth on the channel. The method also comprises allocating the available bandwidth to one or more of the multiple bitstreams. The method further comprises transmitting data packets from each of the multiple bitstreams onto the channel.
10
15
20
25

In yet another aspect, the present invention relates to a network device for transmitting compressed video data onto a channel. The network device comprises means for receiving multiple bitstreams, each bitstream including compressed video data contained in packets. The network device also comprises means for transcoding compressed video data in one or more of the multiple bitstreams. The network device further comprises means for scheduling the packets from the multiple bitstreams. The network device additionally comprises means for determining an available bandwidth on the channel. The network device also comprises means for allocating the available bandwidth to one or more of the multiple bitstreams. The network device further comprises means for transmitting data packets from each of the multiple bitstreams onto the channel.
30

In still another aspect, the present invention relates to a computer readable medium including instructions for transmitting compressed video data onto a channel. The instructions comprise instructions for receiving multiple bitstreams, each bitstream including compressed video data contained in packets. The instructions also comprise instructions for transcoding compressed video data in one or more of the multiple bitstreams. The instructions further comprise instructions for scheduling the packets from the multiple bitstreams. The instructions additionally comprise instructions for determining an available bandwidth on the channel. The instructions also comprise instructions for allocating the
35

available bandwidth to one or more of the multiple bitstreams. The instructions further comprise instructions for transmitting data packets from each of the multiple bitstreams onto the channel.

These and other features and advantages of the present invention will be described in
5 the following description of the invention and associated Figures.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:

FIG. 1 illustrates an exemplary network system for transmitting compressed video data in accordance with one embodiment of the present invention.

FIG. 2 is a block diagram of the network device included in the system of FIG. 1 in accordance with one embodiment of the present invention.

FIG. 3 illustrates a process flow for transmitting compressed video data onto a channel in accordance with one embodiment of the present invention.

FIG. 4 is a block diagram of a router that may be used in conjunction with the techniques of the present invention.

20 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention will now be described in detail with reference to a few preferred embodiments thereof as illustrated in the accompanying drawings. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art, 25 that the present invention may be practiced without some or all of these specific details. In some instances, well known process steps and/or structures have not been described in detail in order to not unnecessarily obscure the present invention.

The present invention describes systems and methods to efficiently distribute bandwidth in a channel among multiple bitstreams. At a minimum, network devices of the present invention distribute channel bandwidth to guarantee no video underflow in a downstream decoder buffer. In some cases, the network devices also implement techniques to improve bandwidth usage and decoded video quality.

After rate control makes bitstream bandwidth demand meet channel bandwidth availability by performing necessary rate reduction, a bandwidth arbitrator of the present invention distributes the channel bandwidth to meet the transmission requirement to guarantee no underflow or overflow of the downstream decoder video buffers. In addition, the bandwidth arbitrator determines and allocates any excess, or ‘available’, bandwidth after rate control. As a result, downstream decoder buffer levels may receive and store more data than the minimum required to maintain continuous video output. As transmission proceeds, the increased decoder buffer levels permit decreased video delivery rates resulting from bitstream bandwidth demand that exceeds channel bandwidth, e.g., at a slower rate than that otherwise required to maintain the minimum decoder buffer level. Conventionally, transmission requirements that exceed channel bandwidth would lead to bit rate reduction, and video quality degradation. However, increased decoder buffer levels achieved by techniques of the present invention may endure periods of decreased transmission, and thus minimize rate reduction. In other words, the rate reduction can be avoided or can be done to a lesser degree.

Video data transmission according to the present invention may thus reduce video quality degradation resulting from bit rate reduction, and thereby improve video data delivery and quality. The present invention addresses bandwidth distribution in general, but details techniques related to this issue – improved video quality attained by intelligent usage of available bandwidth in a channel produced after meeting the minimum buffer level requirement.

Referring now to FIG. 1, an exemplary system 10 where bandwidth allocation in accordance with the present invention is particularly useful will be described. System 10 is responsible for transmitting compressed video data from multiple bitstreams 11a-d to target decoders 12, 14 and 16. Bitstreams 11a-d include compressed video data corresponding to video programs V1, V2, V3, and V4.

Network device 20 selectively transmits compressed video data from programs V1, V2, V3, V3, and V4. For each compressed bitstream output request, the network device 20 may multiplex compressed video data from bitstreams 11a-d. In some cases, network device 20 also converts the bit rate of video data to help the output multiplexed bitstream fit within the allowable channel bandwidth between the network device 20 and one of target decoders 12, 14 and 16.

Although the present invention will now primarily be discussed with respect to multiplexing, systems and methods of the present invention are also well suited for re-multiplexing. A re-multiplex is a scheme used to combine multiple bitstream representations of multiplexed signals into a single bitstream representation. In one embodiment, network device 20 employs statistical re-multiplexing techniques. Statistical re-multiplexing, also called statistical rate re-multiplexing, is a process which performs statistical multiplexing of bitstreams already in a compressed format. Thus, statistical re-multiplexing includes accepting multiple variable bit rate bitstreams, some of which may be received in a multiplex, and outputting a single constant bit rate bitstream that fits within a channel. In applications such as video on demand, digital cable headend systems, and digital advertisement insertion systems, statistical re-multiplexing may improve the overall system efficiency, resulting in better bandwidth usage and reduced transmission cost.

In some cases, such as within a telco environment, network device 20 is aware of the video content requests of a target decoder that it transmits to and the available bandwidth therebetween. Alternatively, e.g., in some cable environments, the network device 20 broadcasts multiple multiplexed video programs without specific requests from end user receivers. In some cable distribution networks, all compressed signals and programs are transmitted via network device 20 through local networks and then to the decoders. Network device 20 and local networks together form a distribution network for the compressed signals. In one exemplary cable distribution network, network device 20 is a so-called “super head-end” facility that feeds multiple multiplexed video programs to smaller regional head-ends within local networks via fiber optical networks (such as SONET or DWDM based networks). Each regional head-end in turn is connected to its own population of target decoders, i.e., multiple decoders like 12 are usually connected to a single regional head-end. In a typical telco scenario for example, the regional head-ends are telco central offices each connecting to a large number decoder/receivers via twisted phone wires (DSL).

In other cable distribution environments, the network device 20 selects video programs not based on individual end receiver request, but on a specific programming mix that the local cable operator plans to carry over their local cable distribution. By way of example, a local cable operator in San Jose, CA may carry services such as Discovery, CNN, HBO and ABC, and thus it receives and selects such programs via network device 20 and broadcasts them over their local cable distribution plant. Alternatively, a local operator in San Francisco may carry services such as CNN, CBS and ABC, and will provide programs accordingly. In this case, end-receivers and decoders do not participate in the selection process. In contrast, in the case of video on demand, end receivers have control on the selection of programming, which typically originates from a video server and connected by the network device via local or wide area networks.

Target decoder 12, for example, receives compressed video data from network device 20 through a local network 18. Local network 18 is included in a larger network 22 that also includes local networks 24 and 26, which service the target decoders 14 and 16, respectively. In one embodiment, network device 20 is a headend and local network 18 corresponds to a geographic service area of a cable network serviced by the headed. Decoder 12 may then correspond to a decoder included in a set-top box or personal computer located in a residential home. Decoder 12 decompresses the compressed video data into an uncompressed format for visual output to the user.

As each of the bitstreams 11a-d may have a dynamically varying variable bit rate (VBR), network device 20 distributes channel bandwidth to guarantee no video underflow in downstream decoder buffers 12, 14, and 16. In addition, network device 20 determines and allocates any excess, or ‘available’, bandwidth after meeting the minimum decoder buffer level requirement to transmit more data from bitstreams 11a-d to a target decoder. Scheduling in this manner may increase downstream decoder 12, 14 and 16 buffer levels and allow excess bandwidth to be dynamically allotted between bitstreams – thus improving video quality for the end-user.

FIG. 2 illustrates a block diagram of network device 20 of FIG. 1, which provides multiplexed bitstreams including compressed video data, in accordance with one embodiment of the present invention. While the present invention will now be described as an apparatus composed of units, those skilled in the area will recognize that the present invention encompasses a method, process or software having as steps the actions performed by each unit and described below.

Network device 20 comprises: network interface 32, bit rate converter apparatus 34, a multiplexer 36, and a transmitter 38. Multiplexer 36 comprises a rate controller 40, a bandwidth arbitrator 41, and a scheduler 42. As one of skill in the art will appreciate, each of the structures of network device 20 may be a single hardware and/or software structure, 5 multiple hardware and/or software structures, or combined in a more simple apparatus scheme.

Network interface 32 has a plurality of input lines 46a-d that receive bitstreams 11a-d from a variety of sources using suitable receiving components. For example, input line 46a is coupled to a satellite receiver that receives compressed video data from a satellite based 10 communication system. Input line 46b receives compressed video data from an Internet network including a series of ATM based routers which route the compressed video data to network device 20. Input line 46c is coupled to a receiver that receives compressed video data from a terrestrial source and network interface 32 may also include a suitable frequency demodulation and descrambling facilities. The line 46d receives compressed video data from an Internet network using IP protocol that routes a compressed bitstream from a video streaming server to the network device 20.

Network device 20 may also include facilities to parse any timing, programming, video data, and other auxiliary information, as appropriate. The compressed video data is then provided to bit rate converter apparatus 34.

When necessary, bit rate converter apparatus 34 transcodes video data in one or more 20 of the incoming bitstreams. Broadly speaking, transcoding refers to altering data or information in a bitstream without changing the format of the bitstream. When desirable, the network device 20 reduces the bit rate of the compressed video data transmitted in the output multiplex 45 based on the channel capacity of the channel between the network device 20 and the target decoder. Bit rate conversion of a bitstream refers to the process performed on 25 compressed video data that results in a different transmission bit rate than the originally compressed video data. In a typical scenario, the new bit rate for the output multiplexed bitstream 34 is smaller than the original bit rates of the input bitstreams, but sometimes the resulting bit rate can also be greater than the original bit rates. The bit rate conversion may occur on any one or more of the bitstreams received by the network device 20. For example, 30 bit rate converter apparatus 34 may adapt the bit rate of video data from bitstream 11a before transmitting it in a multiplex.

In some scenarios, output multiplexed bitstream 45 is delivered to different transmission channels each having a different channel capacity - and the bit rate for each channel may be tailored accordingly. By way of example, two bitstreams received at 4 Mbps and 2 Mbps (total input = 6 Mbps) may be combined and bit rate converted by the bit rate converter apparatus 34 to a multiplexed transmission bitstream of 1.5 Mbps for a channel capable of delivering only 1.5 Mbps. The same bitstreams may also be combined and bit rate converted by the bit rate converter apparatus 34 to a compressed transmission bitstream of 3 Mbps for a channel capable of delivering only 3 Mbps. In this case, the data and bit rate conversion process is intended to remove bits from the modified compressed bitstreams so that the new bitstreams are still compliant to the given compression syntax, and can be decoded by a receiver, albeit at a possibly lower quality than the originally compressed bitstream. Bit rate conversion of a compressed bitstream is further described in commonly owned U.S. Patent No. 6,181,711, which is incorporated by reference herein for all purposes. The output of bit rate converter apparatus 34 is provided onto output lines to buffers 44.

Coupled to bit rate converter apparatus 34 is multiplexer 36. Multiplexer 36 comprises scheduler 42, which is configured to receive the compressed video data from bitstreams 11a-d, either as received by network device 20 or as transcoded by bit rate converter apparatus 34. Bandwidth arbitrator 41 allocated bandwidth to each of the bitstreams. Scheduler 42 determines the relative order of data transmission from buffers 44. Scheduler 42 outputs a multiplexed bitstream 45 including compressed video data from bitstreams 11a-d. In one embodiment, multiplexed bitstream 45 has a substantially constant bit rate. Multiplexer 36 also includes rate controller 40 and a set of input buffers 44. Input buffers 44 temporarily store compressed video data received from bit rate converter apparatus 34 for each of the input bitstreams until scheduler 42 processes the compressed video data for transmission.

Rate controller 40 connects to both bit rate converter apparatus 34 and bandwidth arbitrator 41, and determines how much to rate reduce the video data from each input bitstream 11a-d. More specifically, based on messages received from rate controller 40, bit rate converter apparatus 34 adjusts the bit rate of compressed video data from each input bitstream. Rate controller 40 may rely on information regarding the channel that the output re-multiplexed bitstream 45 is to be transmitted onto. For example, rate controller 40 may be configured to receive a rate value from an RADSL transmitter in an ADSL embodiment or to receive a rate value from an ATM network in an ATM environment. A control signal is

provided by the rate controller 40 to bit rate converter apparatus 34. The control signal specifies the amount of modifying the bit rate converter apparatus 34 performs to achieve the desired output bit rate from network device 20. Another control signal is provided by rate controller 40 to bandwidth arbitrator 41 that allocates bandwidth to each of the bitstreams 5 based on control signals from rate controller 40.

Scheduler 42 comprises inputs coupled to each buffer 44, an input line from bandwidth arbitrator 41, and an output line coupled to network interface 38. Scheduler 42 selectively combines packets including compressed video data to form multiplexed bitstream 45. Scheduler 42 may also insert any headers, stuffing bits, filler packets as appropriate.

10 In one embodiment, multiplexer 36 is a statistical multiplexer. A statistical multiplexer is a multiplexer that takes advantages of the statistical behavior of video data to minimize the total bandwidth usage of video data from multiple bitstreams. More specifically, the statistical multiplexer takes advantage of the variable bit rate (VBR) nature of multiple bitstreams comprising compressed video data. In one embodiment, when scheduler 42 combines multiple bitstreams, the bit rate of each incoming VBR bitstream may be adjusted but the total bit rate of the output multiplexed compressed bitstream 45 is kept at a substantially constant value. When a statistical multiplexer combines multiple bitstreams, an algorithm may be used to adapt the bit rate of each VBR video signal but the total bit rate of the output multiplex is kept at a constant value. In a specific embodiment, network device 20 corresponds to a RateMux C6900, or a multiple or media linecard product, as implemented in a router as described in further detail with respect to FIG. 4.

25 When there is sufficient bandwidth on the outgoing channel to transmit all the outgoing multiplexed video data, scheduler 42 simply schedules all the packets to send out – without transcoding – such that the minimum bandwidth requirement to not underflow the downstream decoder video buffer levels is met. To ensure each video channel's normal operation, there is typically a minimum bandwidth requirement just to not underflow the decoder video buffer. This minimum bandwidth is calculated as accurately as possible by bandwidth arbitrator 41 based on the variable rate compressed data being continually received. In one embodiment, scheduling and statistical multiplexing in the initial 30 multiplexing pass includes one or more of the following procedures:

- analysis of video content to determine the optimal bit budget allocation for each input bitstream and possible impact on underlying video quality at different bit budget allocations.
- coded picture decisions such as whether to use motion compensation.
- 5 · picture coding for each input bitstream that meets the bit usage budget determined by the previous procedure, also called rate control as described above with respect to the bit rate converter 34.
- monitoring and compensation of timing information on all bitstreams, e.g., in order to carry real-time compressed bitstreams.

- 40 · coordinated selection of bit rates across all input bitstreams to result in a total fixed rate.
- scheduling and multiplexing of different bitstreams into a fixed bandwidth channel.

When there is insufficient bandwidth, compressed video data from one or more bitstreams is transcoded to reduce the output bit rate of the multiplex. Often, bit rate conversion overestimates the amount of reduction necessary to fit within the allowable bandwidth. As a result, there may be excess bandwidth available after transcoding.

20 If there is available bandwidth, and after meeting the minimum requirement, bandwidth arbitrator 41 allocates the excess bandwidth to each of the bitstreams appropriately. More specifically, rate controller 40 and bit rate converter apparatus 34 make the channel bandwidth demand meet bandwidth availability, and bandwidth arbitrator 41 applies a two pass scheduling technique. In the initial pass, bandwidth arbitrator 41 distributes bandwidth to meet the bandwidth requirement of each individual channel to guarantee no underflow in downstream decoder buffer levels. In the second pass, bandwidth arbitrator 41 flexibly allocates left over bandwidth wisely to minimize future 25 rate reduction.

The leftover available bandwidth can be used for future bandwidth need by increasing downstream decoder buffer levels. In one embodiment, bandwidth arbitrator 41 models downstream decoder buffer levels corresponding to each output channel. Video buffer level provides an estimate on future bandwidth need for a decoder. When the video buffer level 30 is low, it is more likely to need rate reduction in the future. In order to avoid rate reduction in the future, bandwidth arbitrator 41 increases the video buffer level as much as possible

with the leftover available bandwidth after the initial scheduling. Bandwidth arbitrator 41 also computes the minimum bandwidth requirement such that each decoder buffer maintains at least a certain minimum level.

Arbitration of bandwidth in this manner is an effective way to optimize the quality of compressed video signals under the constraint of a fixed total transmission bandwidth, e.g., one imposed by the outgoing channel capacity. The resulting improvement can be described in terms of the so called 'statistical gain', which can be measured either in terms of the improvement of subjective visual quality of the decoded video, or the objective average amount of rate reduction used, etc. Over time, transferring saved bandwidth in this manner may result in improved video quality for the end-user.

In a specific embodiment, the number of bits in each downstream decoder buffer may be used to determine which decoder benefits from available bandwidth. Measurement in bits may not be appropriate in some cases, such as when a multiplex consists of bitstreams of vastly different bit rates, since for high bit rate channels downstream video buffer levels are higher in terms of bits than for low bit rate channels. Measurement in frames or time may be used instead. For example, picture time provides a useful estimate for modeling downstream decoder buffer levels. Here, rate controller 40 estimates enough time in the decoder for 'x' frames or pictures to be decoded and output. The minimum buffer level (or acceptable level just above underflow point) may also be also measured in units of time, rather than bits or packets. In practical implementations where buffer levels are modeled, the minimum bandwidth requirement is also computed by bandwidth arbitrator 41 in units of time or in bits. Namely, bandwidth arbitrator 41 computes the downstream decoder buffer levels such that each decoder buffer maintains at least a certain minimum bit or temporal level.

The available bandwidth after meeting the minimum decoder buffer level requirement may be divided among the transmission channels flexibly. In one embodiment, bandwidth arbitrator 41 allocates the available bandwidth substantially equally among the multiple bitstreams. In another embodiment, bandwidth arbitrator 41 allocates the available bandwidth according to the downstream buffer levels of each channel.

When each of the downstream decoder buffer levels is modeled, bandwidth arbitrator 41 may be configured such that it maintains buffer levels at a substantially equal level across each of the decoders, e.g., those channels with lower buffer level will receive relatively more

bandwidth. Preferably, bandwidth arbitrator 41 uses the available bandwidth to maximize the downstream decoder buffer levels. If all the downstream decoder buffer levels are full, this second scheduling pass may be omitted. Here, the video transmission system is operating efficiently, and may accommodate decreases in video delivery rates, and

5 corresponding decoder buffer level drops associated with insufficient channel bandwidth that would normally result in transcoding and degraded video quality.

In one embodiment, bandwidth arbitrator 41 determines how much of the available bandwidth to provide each downstream decoder according to the number of incoming bitstreams. In another embodiment, bandwidth arbitrator 41 determines how much bandwidth to provide each downstream decoder according to the channel bit rate, and inversely proportional to the downstream decoder buffer levels of each channel. In a specific embodiment, bandwidth arbitrator 41 allocates the available bandwidth in a normalized manner between all the available downstream decoders. Namely,

$$A = A_{\text{total}} * (\text{channel bit rate}/\text{ddbl}) / (\text{SUM of (channel bit rate}/\text{ddbl})) \quad (1)$$

where A represents the proportion of available provided to an individual downstream decoder, A_{total} represents the total available bandwidth after the initial allocation to meet the minimum buffer level requirement (as determined by bandwidth arbitrator 41), and ddbl represents the current downstream decoder buffer level as modeled by bandwidth arbitrator 41. The channel bit rate refers to the instantaneous channel bit rate at a current time, and it is understood that this may vary. Effectively, equation (1) provides each downstream decoder an inverse proportional space according to the decoder's buffer level, and normalizes the available bandwidth among all the individual downstream decoders.

In another embodiment, bandwidth arbitrator 41 measures how much of the available bandwidth to provide each downstream decoder according to the minimum bandwidth requirement. In this case, available bandwidth allocation is proportional to the minimum bandwidth requirement of the channel. Namely,

$$A = \text{leftover bandwidth} * (\text{minimum send rate}) / (\text{sum of minimum send rates}) \quad (2)$$

where the minimum send rate refers to the minimum bit rate needed to send bits for each downstream decoder that can minimally avoid buffer underflow at the decoding time of video output, and the sum of minimum send rates is determined according to the sum of the minimum send rate for each channel and its associated downstream decoder. Due to the dynamic environment in transmitting multiple bit streams through network device 20,

bandwidth arbitrator 41 updates the minimum send rate after video bandwidth distribution to reflect the current state of the output channel.

It is understood that the exact bandwidth allocation provided by bandwidth arbitrator 41 may vary over time. Thus, equations (1) and (2), as well as other suitable allocation 5 schemes, may be dynamically applied and switched as desired. For example, equation (1) is well suited for use when downstream decoder buffer levels across all the downstream decoders is different. In contrast, equation (1) is well-suited for use when the buffer levels maintained across all the decoders is substantially uniform.

The estimation and allocation of available bandwidth to the downstream decoders is 10 performed at periodic intervals by network device 20. For example, bandwidth arbitrator 41 may periodically estimate the available bandwidth on a temporal interval. In this case, bandwidth arbitrator 41 models the downstream decoder buffer levels on a temporal basis as well, and updates the modeled buffer levels periodically. Periodic increments in the range of about 10 milliseconds to about 250 milliseconds are suitable for many video transmission applications. Alternately, when bandwidth arbitrator 41 models downstream decoder buffer levels on a bit or packet basis, bandwidth arbitrator 41 may estimate the available bandwidth and scheduler 42 may perform scheduling on a bit or packet interval. For example, periodic increments in the range of about 100 packets to about 4000 packets is suitable for many 15 applications using a 27 Mbps (mega bits per second), but the number of packets will vary with the output channel capacity.

Periodic estimation of available bandwidth and downstream decoder buffer levels, and scheduling according to the present invention, may vary with several factors, such as the output channel capacity. Alternately, CPU speed of a processor implemented in network device 20, or other hardware design restraints, may slow the processing speed of network 20 device 20 and thereby mandate a larger periodic increments. One of skill in the art will appreciate suitable periodic ranges for specific video transmission applications. Depending on system hardware implementation, a scheduling interval may be chosen to balance CPU cycles and hardware performance requirements. In general, scheduling the available bandwidth on a periodic and updated basis in this manner allows the available bandwidth and downstream decoder buffer levels to reflect the current and adaptive state of channel 25 bandwidth availability.

The output of scheduler 42 and multiplexer 36 is multiplexed bitstream 45, which is provided to network interface 38. Network interface 38 is configured to transmit the multiplexed bitstream 45 including the scheduled compressed video data onto a suitable channel. Network interface 38 has a plurality of output lines that transmit bitstreams to a variety of sources using suitable transmitting components. For example, network interface 38 may comprise a transmitter known in the art for DSL networks. Network interface 38 may also comprise a transmitter known in the art for IP networks, for example. In a specific embodiment, the output medium is an Internet network where network interface 38 transmits through a series of nodes, which route the multiplexed bitstream to a suitable receiver.

Network interface 38 may also comprise a transmitter known in the art for ATM networks, for example. In a specific embodiment, the output medium is an Internet network where network interface 38 transmits through a series of ATM based routers which route the MPEG-2 compressed video data to a suitable receiver. The output of network interface 38 forms the output 51 of network device 20.

FIG. 3 illustrates a process flow 100 for transmitting compressed video data onto a channel in accordance with one embodiment of the present invention. Process flow 100 may take place in any network device such as the network device 20 of FIG. 2. Processes in accordance with the present invention may include up to several additional steps not described or illustrated here in order not to obscure the present invention. While scheduling will now be described as a method, those skilled in the area will recognize that the present invention encompasses a system or software having units capable of performing the actions as described below.

The process flow 100 begins by receiving multiple bitstreams each including compressed video data contained in packets (102) from one or more sources, such as satellite and Internet sources. Often, compressed video data as received has a variable bit rate profile. When there is sufficient bandwidth to send all the video channels, transcoding (106) may be skipped.

If the channel bandwidth is not enough to meet delivery needs for all the incoming video data, rate reduction is used to decrease the bandwidth requirement to meet the available bandwidth. Transcoding (106), such as bit rate conversion, may be performed on any one of the compressed bitstreams to be multiplexed. Bit rate alteration of one or more of the compressed bitstreams may be based on the bit rate capacity of the channel between the network device and the target decoder. In some embodiments, a compressed bitstream may

be partially encoded or decoded to facilitate transcoding. The bit rate alteration may then occur on compressed video data, uncompressed video data, or at any partial compression status therebetween. By way of example, the bit rate alteration may include partial decoding, re-quantization, and VLC encoding to reduce redundancy and produce compressed video data with less information and a lower bit rate. Alternatively, the bit rate alteration may include full or partial decoding and downsampling that takes a high resolution video data and converts it to lower resolution video data. In another embodiment, the present invention relates to bit rate alteration methods that use a combination of bit rate alteration techniques. Once the rate control has ensured that there is sufficient bandwidth for all bitstreams, the minimum bandwidth needed to avoid underflow of decoder buffers is allocated to each bitstream (107).

10

15

20

Process flow 100 then determines the left over bandwidth on the channel after meeting the minimum requirements. Available bandwidth is computed as the difference between the total output bandwidth of the channel and the sum of the bandwidth needed for each individual bitstream to ensure it does not underflow the decoder buffer. In other words, it is the difference between the total output channel capacity and the sum of the bandwidth allocated in the previous step (107). As mentioned before, this determination may occur on a periodic bit, temporal, or packet, basis. The available bandwidth is then allocated to one or more of the multiple bitstreams (108) in a manner so as to increase the decoder buffer levels across all the bitstreams.

25

As a result, the decoder buffer levels may receive and store more data than the minimum required to maintain the minimum continuous video output. As transmission proceeds, the increased decoder buffer levels permit decreased video delivery rates resulting from bitstream bandwidth demand that exceeds channel bandwidth. This allows for the video data to be delivered without rate reduction or with less rate reduction, which results in better video quality.

The compressed video data is then scheduled to provide a bitstream comprising compressed video data (110). This ensures that downstream decoder buffer levels are maintained at the minimum required to provide continuous video output.

30 Once scheduling is complete, the multiplexed bitstream may then be transmitted onto a transmission channel to the target decoder/receiver as desired (112). In one embodiment, the compressed video data is received, processed and transmitted in real-time.

The present invention is suitable for use with the MPEG-1 specification, described in ISO/IEC International Standard 11172; "Coding of moving pictures and associated audio for digital storage media up to about 1.5 Mbits/s", November 1993, which is herein incorporated by reference. The present invention is also suitable for use with the MPEG-2 specification, 5 described in ISO/IEC International Standard 13818; "Generic coding of moving pictures and associated audio information", November 1994, which is herein incorporated by reference. The present invention is also suitable for use with the MPEG-4 specification, described in ISO/IEC International Standard; "Coding of moving pictures and associated audio 10 information", March 2000, which is herein incorporated by reference. The structure of an MPEG bitstream is well-known to one of skill in the art and not described in detail for sake of brevity.

The methods of this present invention may be implemented on various systems. For example, the invention may be implemented on network devices such routers and/or switches. In a specific embodiment, the systems of this invention may be specially configured routers such as, for example, specially configured router models 1600, 2500, 15 2600, 3600, 4500, 4700, 7200, and 7500 available from Cisco Systems, Inc. of San Jose, California. In another specific embodiment, the systems of this invention may be specially configured CMTSs such as, for example, specially configured models in the uBR-7200 series 20 of CMTSs available from Cisco Systems. A general architecture for some of these machines will be given below. In an alternative embodiment, the methods of this invention may be implemented on a video streaming server, a cache server, a web server, or a general-purpose network host machine such as a personal computer or workstation. Further, the invention may be at least partially implemented on a card (e.g., an interface card) for a network device or a general-purpose computing device.

FIG. 4 shows a block diagram of a specific embodiment of a Cable Modem 25 Termination System (CMTS) 700 which may be used to implement certain aspects of the present invention. As shown in FIG. 4, the CMTS 700 may comprise a plurality of routing engines (e.g. 701a, 701b).

Each of the routing engines may include a variety of similar modules and/or 30 components. According to a specific embodiment, Routing Engine A may be configured or designed to include a plurality of functionally different modules or components, including, for example, a Forwarding Processor (FP) Module 711a adapted to provide packet forwarding functionality; a Route Processor (RP) Module 703a adapted to implement routing

or forwarding operations; a utility component adapted to provide system clock and timestamp functionality; etc. The routing engine components provide may be configured to provide layer one, layer two, layer three and layer four functionality as well as quality of service (QoS) functionality.

5 According to a specific implementation, the RP Module 703a may be configured as a processor-based routing system comprising functionality incorporated within a typical router, such as, for example, specially configured router models 1600, 2500, 2600, 3600, 4500, 4700, 7200, 7500, 10012, and 12000 available from Cisco Systems, Inc. of San Jose, California. For example, as shown in the embodiment of FIG. 4, the RP Module 703a comprises a general-purpose processor 705a (e.g., a MIPS route processor) coupled to a system controller 709a and memory 707a.

10 The memory 707a may comprise synchronous dynamic random access memory (SDRAM) storage locations addressable by the processor 705a for storing software programs, video data, and data structures accessed by the components. A network routing operating system, portions of which may reside in memory and executed by the route processor, functionally organizes the router by invoking network operations in support of software processes executing on the router.

15 The RP processor 705a may be configured to construct and load routing tables used by the FP Module 711a. The processor 705a may also be configured or designed to perform configuration management functions of the routing engine 701a, and to communicate with neighboring peer, standby, and/or backup routers to exchange protocol data units used to construct the routing tables in accordance with conventional routing algorithms. It will be apparent to those skilled in the art that other memory types, including various computer readable media, may be used for storing and executing program instructions pertaining to the 20 operation of the routing engine.

25 Interface circuitry 727a may be coupled to the respective interface circuitry 733a, 733b of line cards 731a, 731b. According to various embodiments, the FP Module 711 may comprise a processor 713a and memory 715a for handling transport layer 717 and network layer 719 functionality. The FP Module 711a may also be configured to provide transaction 30 compacting functionality, data parcel tunneling functionality, video data transmission functionality, etc.

According to different embodiments of the present invention, one or more of the routing engines may be configured to communicate with a plurality of line cards (e.g. 731, 735) via point-to-point links. For example, as shown in FIG. 4, each of the plurality of line cards 731 and 735 are connected to each of the routing engines 701a, 701b via point-to-point links 741 and 743. One advantage of the point-to-point link configuration is that it provides additional reliability in that the failure of one or more line cards will not interfere with communications between other line cards and the routing engine(s). For example, if Line Card A 731a suddenly failed, each of the routing engines would still be able to communicate with the other line cards.

The techniques of the present invention may be implemented on various general purpose Cable Modem Termination Systems. In a specific embodiment, the systems of this invention may be specially configured CMTSs such as, for example, specially configured models in the uBR-7200 and uBR-10012 series of CMTSs available from Cisco Systems, Inc. of San Jose, California. In an alternative embodiment, the methods of this invention may be implemented on a general-purpose network host machine such as a personal computer or workstation. Further, the invention may be at least partially implemented on a card (e.g., an interface card) for a network device or a general-purpose computing device.

Regardless of network device's configuration, it may employ one or more memories or memory modules (e.g., memory 707a, 715a, etc.) configured to store video data, program instructions for the network operations and other functions of the present invention described herein. The program instructions may specify an operating system and one or more applications, for example. Such memory or memories may also be configured to store data structures, video data, or other specific non-program information described herein.

Because such information and program instructions may be employed to implement the systems/methods described herein, the present invention relates to machine-readable media that include program instructions, state information, etc. for performing various operations described herein. Examples of machine-readable media include, but are not limited to, magnetic media such as hard disks, floppy disks, and magnetic tape; optical media such as CD-ROM disks; magneto-optical media such as floptical disks; and hardware devices that are specially configured to store and perform program instructions, such as read-only memory devices (ROM) and random access memory (RAM). The invention may also be embodied in a carrier wave travelling over an appropriate medium such as airwaves, optical lines, electric lines, etc. Examples of program instructions include both machine code, such

as produced by a compiler, and files containing higher level code that may be executed by the computer using an interpreter.

While the discussion to this point has focused on techniques for cable networks, the technology of the present invention may be applied to any access or shared-access network having a plurality of hosts or nodes which share at least one channel for communicating with at least one "Head End" in the network. Examples of shared-access networks include, in addition to cable networks, wireless networks, Ethernet, FastEthernet, GigabitEthernet, LANs, etc. In the cable network, the plurality of nodes represents a plurality of cable modems that communicate with at least one CMTS at the centralized termination system using at least one shared-access upstream and downstream channel.

One particular communication channel that is becoming increasingly common is the cable modem channel, such as that defined by the DOCSIS cable modem standard by CableLabs and the DAVIC cable modem standard by DVB. In DOCSIS based cable data networks, operators and digital service providers use the radio frequency spectrum in the coaxial cable network to deliver digital data signal in a 6MHz frequency slot. The aggregate data bit rate capacity of the slot may be shared by multiple, possibly different, types of information services. Cable modem service is one such information service that allows service operators to provide a number of two-way interactive digital services to subscribers. One particular digital service delivers a compressed digital video signal for video streaming or video on demand.

Another particular communication channel that is becoming increasingly common is IP networks and Asynchronous Transfer Mode (ATM) networks. Both networks are based on different transport protocols which can be used to transport data or multimedia bitstreams with a pre-specified quality of service. For example, ATM protocol specifies how data is first packetized into fixed sized data units, called cells. It also specifies how such a cell stream can be multiplexed, de-multiplexed, switched and routed between different locations to support end-to-end connections at given bit rate and/or quality of service (QOS).

In another communication channel example, integrated services (IntServ), differential services (DiffServ), and Multiple Protocol Label Switch (MPLS) are used to establish a QOS for different network traffic. These services may use the Common Open Policy Service (COPS) for admission control. Internet Group Management Protocol (IGMP) and a variety of multicast routing protocols are also used to establish and tear down service on a multicast

tree, which is commonly used for video transmission. In all these cases, the requested connection must provide the available bandwidth for the data being sent or the requested connection may either have to be rejected or a new set of admissible connection parameters may have to be negotiated.

5 While the present invention has been primarily described in terms of transmission based on manipulation of video data compressed according to MPEG standards, the present invention may use other video compression and packaging schemes. Other compression standards suitable for use with the present invention may include MPEGX compression, H.26X compression for video conferencing, compression using proprietary video stream formats, and compression of non-real-time data bit streams, or any other compression formats that use block based compression.

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
9365
9370
9375
9380
9385
9390
9395
9400
9405
9410
9415
9420
9425
9430
9435
9440
9445
9450
9455
9460
9465
9470
9475
9480
9485<br