(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-48807 (P2001-48807A)

(43)公開日 平成13年2月20日(2001.2.20)

(51) Int.Cl. ⁷		識別記号		FΙ					テーマコード(参考)
A 6 1 K	47/22			A 6	1 K	47/22			4 C 0 3 1
	9/08					9/08			4 C 0 5 0
	31/4709					31/4709			4 C 0 6 3
	31/496					31/496			4 C 0 7 2
	31/519					31/519			4 C 0 7 6
			審查請求	未請求	前求	項の数8	OL	(全 13 頁)	最終頁に続く
(21)出願番号		特願平11-220912		(71)	出願人	. 00010	0492		-
						わかり	と製薬	株式会社	
(22)出願日		平成11年8月4日(1999.8.	4)			東京	8中央区	日本橋室町丁	1丁目5番3号
				(72)	発明者	鈴木	秀一		
						東京都	8中央区	日本橘室町1	し丁目5番3号わ
						かもと	上製薬株	式会社内	
				(72)	発明者	计小川	裕之		
						東京都	8中央区	日本橘室町1	し丁目5番3号わ
						かもと	上製薬株	式会社内	
				(72)	発明者	武内	正史		
						東京都	8中央区	日本橋室町 1	し丁目5番3号わ
						かもと	上製薬株	式会社内	
									最終頁に続く

(54) 【発明の名称】 難溶性薬物を水に溶解してなる製剤 (57) 【要約】

【構成】難溶性薬物、アセチルトリプトファンもしくは その薬学的に許容される塩及び/またはサッカリンもし くはその薬学的に許容される塩とポリエチレングリコー ルを含有した水性製剤。

【効果】本発明の水性製剤は生体に投与するために好ましい別域で、ジピリダモールなどに代表される難溶性薬物が水に溶解した水性製剤として調製されるため、投与時の刺激が小さくなる。

【特許請求の範囲】

【請求項1】アセチルトリプトファンもしくはその薬学的に許容される塩及び/またはサッカリンもしくはその薬学的に許容される塩とポリエチレングリコールにより難溶性薬物を水に溶解してなる製剤。

【請求項2】下記の成分A~Dを含む請求項1に記載の 水性製剤。

A. 難溶性薬物

B. アセチルトリプトファンもしくはその薬学的に許容される塩及び/またはサッカリンもしくはその薬学的に許容される塩

C. ポリエチレングリコール

D. 水溶性高分子

【請求項3】水溶性高分子がメチルセルロース、ヒドロキシプロピルメチルセルロース、ポリビニルアルコール、ポリビニルピロリドン、アルギン酸もしくはアルギン酸の薬学的に許容される塩、キトサンもしくはキトサンの薬学的に許容される塩から選ばれた少なくとも一つである請求項2に記載の水性製剤。

【請求項4】水溶性高分子がメチルセルロース及び/またはヒドロキシプロピルメチルセルロースである請求項2に記載の水性製剤。

【請求項5】pHが5.5~10.0である請求項1~4に記載の水性製剤。

【請求項6】難溶性薬物が抗真菌剤、合成抗菌剤、抗ヘルペスウイルス剤、抗血小板薬、α₁遮断薬、炭酸脱水素酵素阻害薬、副腎皮質ステロイドから選ばれた少なくとも一種である請求項1~5に記載の水性製剤。

【請求項7】 難溶性薬物がジピリダモール、ノルフロキサシン、オフロキサシン、塩酸ロメフロキサシンから選ばれた少なくとも一種である請求項6に記載の水性製剤。

【請求項8】投与剤形が内服液剤、注射剤、点耳剤、点 鼻剤、点眼剤、噴霧剤、吸入剤のいずれかである請求項 1~7に記載の水性製剤。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は難溶性薬物の水性製剤に関する。さらに詳しくは、本発明はアセチルトリプトファンもしくはその薬学的に許容される塩及び/またはサッカリンもしくはその薬学的に許容される塩とポリエチレングリコール(以下PEGと略称する)を含有することによりジピリダモールに代表される難溶性薬物を生体に投与する場合に好ましいpH領域で水に溶解した製剤に関する。

[0002]

【従来の技術及びその課題】ジピリダモールは現在狭心症、心筋梗塞、虚血性心疾患、うっ血性心疾患の治療薬として内服剤及び注射剤として市販されている。また、ジピリダモールの水溶液を点眼した場合、強い眼圧降下

作用が得られることが知られており(特開平7-25808 4)、ジピリダモールの点眼剤は新規の緑内障治療薬と して期待されている。一般に点眼剤のpHは、眼に対する 刺激の点から、5~8が好ましく、より好ましくは6~8で あることが知られている(特開平7-258084及び日本薬局 方第13局)。また、注射剤としても刺激の面からpHは中 性よりあまり大きく離れないことが望ましいとされてい る(日本薬局方第13局)。しかしながら、上記のような 中性付近でのジピリダモールの水に対する溶解度は非常 に低いため、ジピリダモールが水に溶解した製剤として 点眼剤や注射剤を中性付近で調製することは保存安定性 の面で困難である。特開平7-258084においても、pHを3 ~5に調整したジピリダモール点眼剤を開示しているだ けである。このようなことから、中性付近で適切な量の ジピリダモールが水に溶解した保存安定性に優れた製剤 が望まれている。

【0003】中性付近でジピリダモールを水に溶解する 方法として、アセチルトリプトファンもしくはトリプト ファンを添加する方法が開示されている(特開平8-1434 75) が、本発明者らがアセチルトリプトファンによるジ ピリダモールの溶解性を評価したところ、比較的早期に ジピリダモールの結晶析出が起こることが明らかになっ た。国際出願PCT/JP99/03107には、ジピリダモールに代 表される難溶性薬物を中性付近で水に溶解した水性製剤 を得るために、ポリソルベート及び/またはポリオキシ エチレン硬化ヒマシ油とメチルセルロース及び/または ヒドロキシプロピルメチルセルロースの相乗的な可溶化 効果を利用することが開示されている。また、上記組成 にPEGを配合することで難溶性薬物をさらに相乗的に可 溶化することを開示している。しかしながら、アセチル トリプトファンもしくはサッカリンの可溶化効果につい ては何ら記載されていない。

【0004】Andrew X. Chenらの報告 (Pharm. Pes., 1994年, 11(3), p398~401)には、ヌクレオシド誘導体の溶解方法としてトリプトファンもしくは、サッカリンを用いることが記載されている。しかしながら、アセチルトリプトファンの可溶化効果については何ら記載がない。また、PEGとサッカリンを併用することによる相乗的な可溶化効果についても何ら記載がない。W099/6447には、プリン骨格又はピリミジン骨格を有する抗ウイルス剤の結晶析出防止剤としてアセチルトリプトファン及び/又はサッカリン及びそれらの薬学的に許容される塩と水溶性高分子を含有する水性製剤が開示されている。しかしながら、相乗的な可溶化効果を示すPEGとアセチルトリプトファン及び/またはサッカリンに、さらに特定の水溶性高分子を配合することでさらに相乗的な可溶化効果を示すことに関しては何ら記載されていない。

[0005]

【課題を解決するための手段】すなわち本発明の目的は、実施例1で示したようなアセチルトリプトファン及

び/またはサッカリンとPEGの相乗的な可溶化効果を利用することにより、ジピリダモールに代表される難溶性薬物を中性付近で水に溶解した水性製剤を得ることにある。また、上記組成に特定の水溶性高分子を配合した場合、実施例2、4もしくは5で示したように難溶性薬物の水への溶解性がさらに相乗的に向上するためより好ましい水性製剤が得られる。本発明の水性製剤は保存安定性に優れ、且つ生体に投与する場合に好ましい別域で調製されるため投与時の刺激性が低いことが期待される。また、懸濁製剤と異なり難溶性薬物が水に溶解しているまた、懸濁製剤で問題になっている投与時の異物感、投与量のばらつき、懸濁物の容器への沈着などを懸念する必要がない。

[0006]

【発明の実施形態】以下に本発明を詳細に説明する。本 発明に用いられる難溶性薬物とは、効力の有用性が期待 されているが、中性付近で水に難溶なためその使用が制 限されているものを指す。このような薬物は例えば、抗 真菌剤、例えば、フルコナゾール、クロトリマゾール、 硝酸イソコナゾール、硝酸エコナゾール、硝酸ミコナゾ ール、ビフォナゾールなど、合成抗菌剤、例えば、オフ ロキサシン、塩酸シプロフロキサシン、トシル酸トスフ ロキサシン、ノルフロキサシン、塩酸ロメフロキサシ ン、パズフロキサシンなど、抗ヘルペスウイルス剤、例 えば、アシクロビル、ガンシクロビル、イドクスウリジ ン、ビダラビンなど、抗血小板薬、例えば、ジピリダモ ール、シロスタゾールなど、α₁遮断薬、例えば、塩酸 プラゾシン、塩酸ブナゾシン、塩酸テラゾシンなど、炭 酸脱水素酵素阻害薬、例えば、アセタゾラミド、メタゾ ラミドなど、副腎皮質ステロイド、例えば、ジフルプレ ドナート、ブデソニド、吉草酸ジフルコルトロン、酪酸 プロピオン酸ヒドロコルチゾン、酪酸クロベタゾン、フ ルオロメトロンなど、及びこれら薬物の薬学的に許容さ れる塩が挙げられる。

【0007】アセチルトリプトファンは、光学異性体で あるD-、L-、DL-体のいずれを用いてもよく、それらの 薬学的に許容される塩を用いてもよい。これら薬学的に 許容される塩としてはナトリウム塩、カリウム塩、カル シウム塩等が例示できる。また、サッカリンについても 同様にその薬学的に許容される塩、例えばナトリウム 塩、カリウム塩、カルシウム塩等を用いてもよい。サッ カリンとしては大東化学(株)、大和化成(株)、大洋 化学工業(株)から、サッカリンナトリウムとしては富 士アミドケミカル (株)、大東化学(株)、大和化成 (株)、大洋化学工業(株)、田辺製薬(株)から市販 されており容易に入手可能である。アセチルトリプトフ ァンナトリウムとサッカリンナトリウムの概要、規格、 用途、使用量及び商品名などについては医薬品添加物事 典(日本医薬品添加物協会編集、薬事日報社発行)に詳 細に記載されている。これらアセチルトリプトファン、

サッカリン、もしくはそれらの薬学的に許容される塩は 単独で用いてもよいが、併用して用いる方が相乗的な効 果が得られより好ましい。

【0008】本発明に用いられるPEGは、PEG-200、-30 0、-600、-1000、-1540、-2000、-4000、-6000、-2000 0、-50000、-200000及び-400000の商品名で和光純薬工 業(株)からまたマクロゴール-200、-300、-400、-60 0、-1000、-1540、-4000、-6000、-20000の商品名で日 本油脂(株)より販売されている。本発明に用いられる PEGの重量平均分子量に特に制限はないが、400~50000 が好ましく、1000~20000が特に好ましい。重量平均分 子量が400以上の場合には水性製剤の浸透圧があまり高 くならないので好ましく、重量平均分子量が50000以下 の場合には液体状態での粘度が高くなりすぎないため好 ましい。また、2種以上のPEGを混合して重量平均分子 量を上記の至適範囲内に調整することも可能である。PE Gの概要、規格、用途、使用量及び商品名などについて は医薬品添加物事典(日本医薬品添加物協会編集、薬事 日報社発行)に詳細に記載されている。

【0009】上記したアセチルトリプトファン及び/ま たはサッカリンとPEGに、さらに、特定の水溶性高分子 を配合することにより、難溶性薬物の水に対する溶解性 を相乗的に向上させることが可能である。本発明で用い られる水溶性高分子としてはメチルセルロース、ヒドロ キシプロピルメチルセルロース、ポリビニルアルコー ル、ポリビニルピロリドン、アルギン酸及びアルギン酸 の薬学的に許容される塩、キトサン及びキトサンの薬学 的に許容される塩などが挙げられる。この中でも特に好 ましくは、メチルセルロースもしくはヒドロキシプロピ ルメチルセルロースである。アルギン酸の薬学的に許容 される塩としてはナトリウム塩、カリウム塩、カルシウ ム塩等が例示できる。キトサンの薬学的に許容される塩 としては塩酸塩、硫酸塩等が例示できる。本発明に用い られるメチルセルロース(以下、MCと略称する)は、そ の2%水溶液の20℃における粘度が13~12000mPa·s範囲の ものであればいずれのMCでも単独または混合して使用す ることができる。メトキシル基の含有率は水に対する溶 解性の観点から26~33%の範囲が好ましい。MCはその水 溶液の粘度により区別され、例えば、市販品の品種には 表示粘度15、25、100、400、1500、8000 (数字は2%水溶 液の20℃粘度のmPa·s) のものがある。本発明に用いら れるヒドロキシプロピルメチルセルロース(以下、HPMC と略称する)は、上記した医薬品添加物辞典によると、 そのメトキシル基及びヒドロキシプロピル基の含有率に より3種類 (2208、2906及び2910) に分けられ、さらに それぞれその水溶液の粘度により区別され、例えば、市 販品の品種には表示粘度4~100000 (数字は2%水溶液の2 0℃粘度のmPa·s) のものがあり、容易に入手可能であ る。本発明で用いられるHPMCは、取り扱いの点から、表 示粘度10000以下のものが好ましい。ポリビニルアルコ

ールとしてはゴーセノールとして日本合成化学工業 (株)、信越ポバールとして信越化学工業 (株)、電化 PVAとして電気化学工業 (株)、クラレPVAとして (株) クラレ、ユニチカポバールとしてユニチカ (株)から市販されており容易に入手可能である。アルギン酸ナトリウムはキミツアルギンとして君津化学工業 (株)、ダックアルギンとして紀文フードケミファ (株)、テキサミドとしてヘンケル白水 (株)、味の素 (株)から市販されており容易に入手可能である。ポリビニルピロリドンはポリビニルピロリドン K25, K30, K90がコリドン(登録商標)としてビーエーエスエフジャパン(株)、ブラスドンとしてISP(株)、五協産業(株)から市販されており容易に入手可能である。上記水溶性高分子の概要、規格、用途、使用量及び商品名などについては医薬品添加物事典に詳細に記載されている。

【0010】本発明の難溶性薬物含有水性製剤の実施態 様として、難溶性薬物、アセチルトリプトファン及び/ またはサッカリン、PEGの濃度範囲が以下の理由により 限定される。難溶性薬物の濃度は目的とする薬効が得ら れ、且つ水性製剤として調製できる範囲であれば特に制 限はない。例えば、ジピリダモール(以下、DPYと略称 する) の濃度は通常0.001~0.5W/V%で、好ましくは0.00 5~0.1W/V%である。DPYの濃度が0.5W/V%以下では、DPY が水に完全に溶解するので好ましい。またDPYの濃度が 0.001W/V%以上の場合、十分な薬効が期待できるため好 ましい。例えば、ノルフロキサシン、オフロキサシン、 塩酸ロメフロキサシンなどの合成抗菌剤の濃度は通常0. 01~3W/V%である。濃度が3W/V%以下の場合、薬物が水に 完全に溶解するため好ましい。また濃度が0.01W/V%以上 の場合、十分な薬効が期待できるため好ましい。アセチ ルトリプトファンもしくはサッカリンの使用濃度は通常 0.01~20W/V%である。 濃度が20W/V%以下では、 浸透圧 が高くなりすぎないため好ましい。また薬効を得るのに 必要な量の難溶性薬物を溶解するためには濃度が0.01W/ V%以上であることが好ましい。PEGの使用濃度は通常0.1 ~10W/V%である。PEGの濃度が10W/V%以下の場合は水性 製剤の粘度が取り扱いやすい範囲にあるので好ましい。 また薬効を得るのに必要な量の難溶性薬物を溶解するた めには濃度が0.1W/V%以上であることが好ましい。

【0011】水溶性高分子の使用濃度としては特に限定されないが、2~1000mPa·s程度の粘度が得られる濃度が好ましく、より好ましくは2~100 mPa・s程度の粘度の粘度が得られる濃度である。例えば、メチルセルロースとして信越化学工業(株)社製のメトローズ(登録商標)SM-15を用いた場合は0.5~3%程度、ヒドロキシプロピルメチルセルロースとして信越化学工業(株)社製のメトローズ(登録商標)60SH50を用いた場合には0.5~2%程度、ポリビニルアルコールとしてポリビニルアルコール1000(部分けん化型)を用いた場合には1~5%程度が望ましい。

【0012】本発明の水性製剤は通常pH5~10に調整され、好ましくは投与時の刺激の点よりpH5.5~8.0に調整される。

【0013】本発明の水性製剤のpHを調整するために、通常添加される種々のpH調整剤が使用される。酸類としては、例えば、アスコルビン酸、塩酸、グルコン酸、酢酸、乳酸、ホウ酸、リン酸、硫酸、酒石酸、クエン酸などが挙げられる。塩基類としては、例えば、水酸化カリウム、水酸化カルシウム、水酸化ナトリウム、水酸化マグネシウム、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどが挙げられる。その他のpH調整剤として、グリシン、ヒスチジン、ε-アミノカプロン酸などのアミノ酸類なども挙げられる。

【0014】本発明の水性製剤を調製するにあたって、 薬学的に許容し得る等張化剤、保存剤及び防腐剤などを 必要に応じて、本発明の効果を損なわない範囲で本発明 の水性製剤に添加することができる。等張化剤としては キシリトール、マンニトール、ブドウ糖等の糖類、プロ ピレングリコール、グリセリン、塩化ナトリウム、塩化 カリウムなどが挙げられる。保存剤としては塩化ベンザ ルコニウム、塩化ベンゼトニウム及びグルコン酸クロル ヘキシジンなどの逆性石鹸類、パラヒドロキシ安息香酸 メチル、パラヒドロキシ安息香酸プロピル、パラヒドロ キシ安息香酸ブチル等のパラベン類、クロロブタノー ル、フェニルエチルアルコール及びベンジルアルコール などのアルコール類、デヒドロ酢酸ナトリウム、ソルビ ン酸及びソルビン酸カリウムなどの有機酸及びその塩類 が使用できる。またその他の添加剤としてEDTA及びそれ らの薬学的に許容される塩、トコフエロール及びその誘 導体、亜硫酸ナトリウムなどの安定化剤が挙げられる。

【0015】本発明の水性製剤はメンブランフィルター によるろ過滅菌、オートクレーブによる加圧熱滅菌、間 欠滅菌法等による熱滅菌処理を施すことができる。ま た、本発明の水性製剤をプラスチック製点眼瓶に充填 し、点眼剤として用いることができる。これを長期にわ たり保存するために、脱酸素剤(例えば、エージレス (登録商標)、三菱瓦斯化学(株)) とともにポリエチ レンフィルムとアルミ箔のラミネート袋にピロー包装し ても良い。本発明の水性製剤をプラスチック製滴瓶に充 填し、点耳剤として用いることができる。本発明の水性 製剤を鼻用定量噴霧器に充填し、点鼻剤として用いるこ とができる。本発明の水性製剤をアンプルに充填後熔閉 し、注射剤(静脈内注射、動脈内注射、皮下注射、皮内 注射、筋肉内注射、脊髄腔内注射、腹腔内注射、眼内注 射等)、内服液剤、吸入剤、噴霧剤として用いることが できる。これを用法に応じて内服液剤の場合はプラスチ ック製薬瓶、吸入剤の場合は電動式ネブライザー、噴霧 剤の場合はアトマイザー等に充填して用いられる。

【0016】DPY含有水性製剤の調製を例示すると、DPY、PEG、サッカリンナトリウムを滅菌精製水に添加し攪

拌する。ここに酸類を添加し、各成分が溶解するまで混合する。さらに、水溶性高分子を滅菌精製水に溶解したものを添加し、よく混合した後、塩基類を添加することにより所定のpHに調整し、滅菌精製水で所定の容量に調整する。必要ならば各種の添加剤、例えば、緩衝剤、等張化剤、保存剤、安定化剤などを添加することができる。さらに、調製したDPY含有水性製剤をろ過滅菌後、プラスチック性点眼ボトルに充填することで、DPY含有点眼剤とすることができる。

【0017】以下に実施例を挙げて本発明をさらに詳細に説明するが、本発明の範囲を限定するものではない。 【0018】実施例1

滅菌精製水50mLに0.05gのDPY、0.4gのサッカリン・Na及び4.8gのPEG4000(マクロゴール4000、日本油脂(株))を添加し攪拌した。ここに1Nの塩酸をpHが3以下になるまで添加し溶解した。さらに0.5gの ϵ -アミノカプロン酸を添加し、攪拌溶解した。1NのNaOHもしくは1Nの塩酸でpHを5.5に調整し、滅菌精製水を添加することで100mLにした。調製した液を孔径0.45 μ mのメンブランフィルターでろ過し、バイアル瓶に充填し、本発明の水性製剤(処方No.1)とした。比較として本発明のDPY水性製剤

に対し、サッカリン・NaもしくはPEG4000のいずれか一方 を添加しない比較用DPY水性製剤(処方No.2及び3)を同 様な方法により調製した。また、滅菌精製水50mLに0.05 gのDPY及び2.4gのPEG4000を添加し攪拌した。ここに1N の塩酸をpHが3以下になるまで添加し溶解した。さらに2 5W/V%アセチルトリプトファン水溶液(調製法:滅菌精 製水50mLに25gのN-アセチル-L-トリプトファンを添加 し、5NのNaOHを添加することにより溶解した。ここに3N の塩酸を添加し、pHを5.6に調整後、滅菌精製水で100mL にした。) の0.8mLを添加し混合後、0.5gのε-アミノカ プロン酸を添加し、攪拌溶解した。1NのNaOHもしくは1N 塩酸でpHを5.5に調整し、滅菌精製水を添加することで1 00mLにした。調製した液を孔径0.45μmのメンブランフ ィルターでろ過し、バイアル瓶に充填し、本発明の水性 製剤(処方No.4)とした。比較として本発明のDPY水性 製剤に対し、アセチルトリプトファンもしくはPEG4000 のいずれか一方を添加しない比較用DPY水性製剤(処方N 0.5及び6)を同様な方法により調製した。調製したそれ ぞれのDPY水性製剤を25℃に保存し、DPYの結晶が析出す るまでの時間を測定した。そして次の(1)式により、本 発明の難溶性薬物における可溶化効果を評価した。

結晶析出遅延度 = (A - (B + C)) *100 / (B + C) (1

A: 本発明の水性製剤(a)において、難溶性薬物が析出するまでの時間

B: 比較製剤(b)において、難溶性薬物が析出するまでの時間

C: 比較製剤(c)において、難溶性薬物が析出するまでの時間

(b及びcはaの添加剤の中でどちらか一方を含まないものとする)

尚、製剤の調製が不可能な場合、A、B、Cに入れる値は0とした。(1)式で求めた結晶析出遅延度が正の値を示す場合、本発明の水性製剤における可溶化効果は比較製剤の可溶化効果をたしあわせたものよりも高いので、相乗的な可溶化効果を示している。また、結晶析出遅延度が0の場合、本発明の水性製剤における可溶化効果は比較・製剤の可溶化効果をたしあわせたものと同等なので、相加的な可溶化効果を示している。さらに、結晶析出遅延度が負の値を示す場合、本発明の水性製剤は比較製剤の可溶化効果をたしあわせたものよりも低いので、比較製

剤の可溶化効果を減弱していることを示している。調製した水性製剤(処方 $No.1\sim6$)について上記の評価法で検討した結果を表-1に示した。本発明の水性製剤の結晶析出遅延度はいずれも正の大きな値になり、強い相乗的な可溶化効果があることを示している。つまり、サッカリンもしくはアセチルトリプトファン(以下、AcTrpと略称する)とPEGの難溶性薬物に対する可溶化効果は相乗的であることが示された。

[0019]

【表-1】

No.	1	2	3
区分	本発明	比較例	比較例
DPY (#/v%)	0. 05	0. 05	0. 05
サッカリン・Na(w/v%)	0. 4	0.4	-
PEG4000 (w/v%)	4.8	•	4.8
ε-アミノカプロン酸(w/v%)	0.5	0. 5	0. 5
NaOH、HC!	適量	適量	適量
Hq.	5. 5	5. 5	5. 5
調製時の性状	黄色澄明	黄色澄明	調製不可
結晶析出遅延度	1350		

No.	4	5	6
区分	本発明	比較例	比較例
DPY (w/v%)	0. 05	0. 05	0. 05
AcTrp (w/v%)	0.2	0. 2	-
PEG4000 (w/v%)	2.4	-	24
ε-アミノカプロン酸(w/v%)	0. 5	0. 5	0. 5
NaOH , HCI	適量	適量	適量
pН	5. 5	5. 5	5. 5
調製時の性状	黄色澄明	黄色澄明	調製不可
結晶析出遅延度	200		

【0020】実施例2

滅菌精製水50mLに0.05gのDPY、0.2gのサッカリン・Na及 び2.4gのPEG4000を添加し攪拌した。ここに1Nの塩酸をp Hが3以下になるまで添加し溶解した。さらに、MC(SM-1 5、メトローズ(登録商標) 、信越化学(株)) を4W/V% になるように滅菌精製水に溶解させたものを12.5mLと0. 5gのε-アミノカプロン酸を添加し、攪拌溶解した。1N のNaOHもしくは1Nの塩酸でpHを5.5に調整し、滅菌精製 水を添加することで100mLにした。調製した液を孔径0.4 5μmのメンブランフィルターでろ過し、バイアル瓶に充 填し、本発明の水性製剤(処方No.7)とした。比較とし て本発明のDPY水性製剤に対し、サッカリン・NaとPEG400 0もしくはSM-15のいずれか一方を添加しない比較用DPY 水性製剤(処方No.8及び9)を同様な方法により調製し た。また、滅菌精製水50mLに0.05gのDPY及び2.4gのPEG4 000を添加し攪拌した。ここに1Nの塩酸をpHが3以下にな るまで添加し溶解した。さらに25W/V%AcTrp水溶液を0.8 mL添加し、均一になるまで混合後、4W/V%SM-15を12.5mL

と0.5gのε-アミノカプロン酸を添加し、攪拌溶解し た。1NのNaOHもしくは1N塩酸でpHを5.5に調整し、滅菌 精製水を添加することで100mLにした。調製した液を孔 径0.45μmのメンブランフィルターでろ過し、バイアル 瓶に充填し、本発明の水性製剤(処方No.10)とした。 比較として本発明のDPY水性製剤に対し、AcTrpとPEG400 0もしくはSM-15のいずれか一方を添加しない比較用DPY 水性製剤(処方No.4及び9)を同様な方法により調製し た。調製したそれぞれのDPY水性製剤について、DPYの結 晶が析出するまでの時間を測定した。そして、実施例1 と同様な方法により本発明の難溶性薬物に対する可溶化 効果を評価し、結果を表-2に示した。本発明の水性製 剤の結晶析出遅延度はいずれも正の大きな値になり、強 い相乗的な可溶化効果があることを示している。つま り、サッカリンもしくはAcTrp、PEGとMCの難溶性薬物に 対する可溶化効果は相乗的であることが示された。

[0021]

【表-2】

No.	7	8	9
区分	本発明	比較例	比較例
DPY (w/v%)	0. 05	0. 05	0. 05
サッカリン・Na(w/v%)	0.2	0. 2	-
PEG4000 (w/v%)	24	2. 4	-
SN-15 (w/v/s)	0.5	-	0. 5
ε-アミノカプロン酸(w/v%)	0. 5	0. 5	0. 5
NaOH, HCI	適量	適量	適量
pH	5. 5	5. 5	5. 5
調製時の性状	黄色澄明	黄色澄明	調製不可
枯晶析出遅延度	717		

No.	10	4	9
区分	本発明	比較例	比較例
DPY (w/v%)	0. 05	0. 05	0. 05
AcTrp (w/v%)	0. 2	0.2	-
PEG4000 (w/v%)	2. 4	2.4	-
SN-15 (w/v%)	0. 5	•	0.5
ε-アミノカプロン酸(w/v¼)	0.5	0.5	0. 5
NaOH, HCI	適量	適量	適量
pH	5. 5	5. 5	5. 5
調製時の性状	黄色澄明	黄色澄明	調製不可
結晶析出遅延度	978		

【0022】実施例3

滅菌精製水50mLに0.05gのDPY、0.2gのサッカリン・Na及び2.4gのPEG4000を添加し攪拌した。ここに1Nの塩酸をpHが3以下になるまで添加し溶解した。さらに25W/V%AcTrp水溶液を0.8mL添加し、均一になるまで混合後、4W/V%SM~15を12.5mLと0.5gの ϵ -アミノカプロン酸を添加し、攪拌溶解した。1NのNaOHもしくは1N塩酸でpHを5.5に調整し、滅菌精製水を添加することで100mLにした。調製した液を孔径0.45 μ mのメンブランフィルターでろ過し、バイアル瓶に充填し、本発明の水性製剤(処方No.11)とした。比較として本発明のDPY水性製剤に対し、AcTrpもしくはサッカリンのいずれか一方を添加しない比

較用DPY水性製剤(処方No.7及び10)を同様な方法により調製した。調製したそれぞれのDPY水性製剤について、DPYの結晶が析出するまでの時間を測定した。そして、実施例1と同様な方法により本発明の難溶性薬物に対する可溶化効果を評価し、結果を表-3に示した。本発明の水性製剤の結晶析出遅延度は正の大きな値になり、強い相乗的な可溶化効果があることを示している。つまり、PEGとMCが存在する場合、サッカリンとAcTrpの難溶性薬物に対する可溶化効果は相乗的であることが示された。

【0023】 【表-3】

表 - 3

No.	- 11	7	10
区分	本発明	比較例	比較例
DPY (w/v%)	0. 05	0. 05	0. 05
サッカリン・Na(w/v¾)	0. 2	0.2	-
AcTrp (w/v%)	0.2	-	0.2
PEG4000 (w/v%)	2.4	2.4	2.4
SN-15 (w/v%)	.0.5	0. 5	0. 5
ε-アミノカプロン酸(w/ν%)	0. 5	0. 5	0. 5
NaOH, HCI	適量	適量	適量
pH	5. 5	5. 5	5. 5
調製時の性状	黄色澄明	黄色證明	黄色澄明
結晶折出遅延度	437		

【0024】実施例4

滅菌精製水50mLに0.3gのノルフロキサシン(以下、NFLX と略称する)及び2.4gのPEG4000を添加し攪拌した。こ こに1Nの塩酸をpHが5以下になるまで添加し溶解した。 さらに25W/V%AcTrp水溶液を2.4mL添加し、均一になるま で混合後、1NのNaOHもしくは1N塩酸でpHを7.0に調整 し、滅菌精製水を添加することで100mLにした。調製し た液を孔径0.45μmのメンブランフィルターでろ過し、 バイアル瓶に充填し、本発明の水性製剤(処方No. 12)とした。比較として本発明のNFLX水性製剤に対し、AcTrpもしくはPEG4000のいずれか一方を添加しない比較用NFLX水性製剤(処方No. 13及び14)を同様な方法により調製した。また、滅菌精製水50mLに0. 3gのNFLX及び2. 4gのPEG4000を添加し攪拌した。ここに1Nの塩酸をpHが5以下になるまで添加し溶解した。さらに25W/V%AcTrp水溶液を1. 2mL及び4W/V%SM-15を5mL添加し、均一になるまで混

合した。1NのNaOHもしくは1N塩酸でpHを7.0に調整し、 滅菌精製水を添加することで100mLにした。調製した液 を孔径0.45μmのメンブランフィルターでろ過し、バイ アル瓶に充填し、本発明の水性製剤(処方No. 15)とし た。比較として本発明のNFLX水性製剤に対し、AcTrpとP EG4000もしくはSM-15のいずれか一方を添加しない比較 用NFLX水性製剤(処方No. 16及び17)を同様な方法によ り調製した。調製したそれぞれのNFLX水性製剤につい て、NFLXの結晶が析出するまでの時間を測定した。そし て、実施例1と同様な方法により本発明の難溶性薬物に 対する可溶化効果を評価し、結果を表-4に示した。本 発明の水性製剤の結晶析出遅延度はいずれも正の大きな 値になり、強い相乗的な可溶化効果があることを示して いる。つまり、実施例2でも示したように、AcTrp、PEG とMCの難溶性薬物に対する可溶化効果は相乗的であるこ とが示された。

【0025】 【表-4】

表~4

No.	12	13	14
区分	本発明	比較例	比較例
NFLX (w/v%)	0. 3	0. 3	0. 3
AcTrp (w/v%)	0. 6	0.6	-
PEG4000 (w/v%)	2.4	-	2.4
NaOH, HCI	適量	適量	適量
pH	7. 0	7. 0	7. 0
調製時の性状	無色澄明	無色證明	調製不可
結晶析出遅延度	67		

No.	15	16	17
区分	本発明	比較例	比較例
NFLX (w/v%)	0. 3	0. 3	0. 3
AcTrp (w/v%)	0. 3	0.3	-
PEG4000 (w/vk)	2. 4	-	2. 4
SN-15 (w/v%)	0. 2	-	0.2
NaOH、HC1	適量	適量	適量
pH	7. 0	7. 0	7. 0
調製時の性状	無色澄明	調製不可	無色澄明
結晶析出遅延度	875		

【0026】実施例5

滅菌精製水50mLに0.05gのDPY、0.2gのサッカリン・Na及び2.4gのPEG4000を添加し攪拌した。ここに1Nの塩酸をpHが3以下になるまで添加し溶解した。さらに、4W/V%SM-15を12.5mLと0.5gの ϵ -アミノカプロン酸を添加し、攪拌溶解した。1NのNaOHもしくは1Nの塩酸でpHを5.5に調整し、滅菌精製水を添加することで100mLにした。調製した液を孔径0.45 μ mのメンブランフィルターでろ過し、バイアル瓶に充填し、本発明の水性製剤(処方No.7)とした。比較として本発明のDPY水性製剤に対し、サッカリン・NaとPEG4000もしくはSM-15のいずれか一方を添加しない比較用DPY水性製剤(処方No.8及び9)を同様な方法により調製した。4W/V%SM15を12.5mL添加する代わりに、HPMC(60SH50、メトローズ(登録商標)、信越化学(株))を1.25W/V%になるように滅菌精製水に溶解

させたものを40mL添加した本発明のDPY含有水性製剤 (処方No.18) を調製した。比較として、サッカリン·Na とPEG4000を添加しない比較用DPY水性製剤(処方No.1 9) を調製した。4W/V%SM15を12.5mL添加する代わりに、 ポリビニルアルコール (ポリビニルアルコール1000, 部 分けん化型、和光純薬工業(株)、以下PVAと略称す る)を1.25W/V%になるように滅菌精製水に溶解させたも のを40mL添加した本発明のDPY含有水性製剤(処方No.2 0) を調製した。比較として、サッカリン·NaとPEG4000 を添加しない比較用DPY水性製剤(処方No.21)を調製し た。4W/V%SM15を12.5mL添加する代わりに、ポリビニル ピロリドン (コリドン (登録商標) K25、ピーエーエス エフジャパン (株)、以下PVPと略称する) を1.25W/V% になるように滅菌精製水に溶解させたものを40mL添加し た本発明のDPY含有水性製剤(処方No.22)を調製した。 比較として、サッカリン・NaとPEG4000を添加しない比較 用DPY水性製剤(処方No.23)を調製した。4W/V%SM15を1 2.5mL添加する代わりに、アルギン酸·Na(和光純薬工業 (株)) を1.25W/V%になるように滅菌精製水に溶解させ たものを40mL添加した本発明のDPY含有水性製剤(処方N o.24) を調製した。比較として、サッカリン・NaとPEG40 00を添加しない比較用DPY水性製剤(処方No.25)を調製 した。4W/V%SM15を12.5mL添加する代わりに、キトサン (キトサン10、和光純薬工業(株)) を1.25W/V%になる ように滅菌精製水に溶解させたものを40mL添加した本発 明のDPY含有水性製剤(処方No.26)を調製した。比較と して、サッカリン・NaとPEG4000を添加しない比較用DPY 水性製剤(処方No. 27) を調製した。4W/V%SM15を12.5mL 添加する代わりに、コンドロイチン硫酸・Na(和光純薬 工業(株)) を1.25W/V%になるように滅菌精製水に溶解 させたものを40mL添加したDPY含有水性製剤(処方No.2 8) を調製した。比較として、サッカリン·NaとPEG4000 を添加しないDPY水性製剤(処方No.29)を調製した。4W /V%SM15を12.5mL添加する代わりに、ヒアルロン酸·Na (ヒアルロンサン HA-Q、キューピー(株)) を1.25W/V %になるように滅菌精製水に溶解させたものを40mL添加 したDPY含有水性製剤(処方No.30)を調製した。比較と して、サッカリン・NaとPEG4000を添加しないDPY水性製 剤(処方No.31) を調製した。4W/V%SM15を12.5mL添加す る代わりに、カルボキシビニルポリマー(ハイビスワコ -104、和光純薬工業(株)) を0.25W/V%になるように 滅菌精製水に溶解させたものを40mL添加したDPY含有水 性製剤(処方No.32)を調製した。比較として、サッカ リン·NaとPEG4000を添加しないDPY水性製剤(処方No.3 3) を調製した。調製したそれぞれのDPY水性製剤につい て、DPYの結晶が析出するまでの時間を測定した。そし て、実施例1と同様な方法により本発明の難溶性薬物に 対する可溶化効果を評価し、結果を表-5に示した。添 加した水溶性高分子の中で結晶析出遅延度が正の値にな ったのはMC、HPMC、PVA、PVP、アルギン酸・Na及びキト

サンであった。つまり、サッカリン、PEGとこれらの水溶性高分子は難溶性薬物に対して相乗的な可溶化効果を持つことが示された。特に、MC及びHPMCの相乗効果が強いことが示された。また、コンドロイチン硫酸・Na、ヒアルロン酸・Naもしくはカルボキシビニルポリマーの結晶析出遅延度は負の値になり、これらの水溶性高分子の

添加はサッカリンとPEGの可溶化効果を減弱することが示された。つまり、サッカリンとPEGとに配合した場合、難溶性薬物に対して相乗的な可溶化効果が得られるのはある特定の水溶性高分子であることが示された。

[0027]

【表-5】

No.	7	9	18	19
区分 DPY (w/v¾)	本発明	比較例	本発明	比較例
	0. 05	0. 05	0. 05	0. 05
サッカリン・Na(w/v%)	0.2	-	0. 2	-
PEG4000 (w/v%)	2.4	-	2.4	
水溶性高分子の種類	MC	MC	HPMC	HPMC
水溶性高分子の濃度(w/v%)	0.5	0.5	0.5	0.5
ε-アミノカプロン酸(w/v¼)	0.5	0. 5	0. 5	0. 5
NaOH, HCI	適量	連量	適量	適量
. Ha	5. 5	5. 5	5.5 .	5. 5
関型時の性状	黄色澄明	関製不可	黄色澄明	調製不可
店品が出連延度	717	994-9K-13	867	Metast-11-7
后鹤打山建蓝度	111		1 . 007	
la.	20	21	22	23
		比較例	本発明	
文分	本発明			比較例
PY (w/v%)	0.05	0. 05	0.05	0. 05
ナッカリン・Na(w/vk)	0.2	•	0.2	•
*EG4000 (w/v%)	24		2.4	
水溶性高分子の種類	PVA	PVA	PVP	PVP
水溶性高分子の温度(w/vk)	0.5	0.5	0.5	0.5
ε-アミノカプロン酸(w/v%)	0.5	0. 5	0.5	0. 5
NaOH. HCI	决量	清量	適量	適量
H	5. 5	5.5	5. 5	5. 5
関製時の性状	黄色澄明	調製不可	黄色澄明	調製不可
		国教へり		調製作り
洁晶折出遅延度	433	- "-	150	
lo.	24	25	26	27
	本発明	上校何	本発明	比較例
3分				
PY (w/v%)	0. 05	0. 05	0. 05	0. 05
サッカリン・Na(w/v%)	0.2	-	0.2	•
ÆG4000 (n/v%)	2.4	-	2.4	-
水溶性高分子の種類	がする酸・地	アルギン酸・Na	キトサン	キトサン
水溶性高分子の濃度(w/vk)	0.5	0.5	0.5	0.5
E-アミノカプロン酸(w/v¾)	0.5	0.5	0.5	0. 5
HaOH, HCI	適量	適量	適量	適量
H	5. 5	5.5	5. 5	5. 5
興製時の性状	黄色證明	調製不可	黄色澄明	調製不可
信品析出選延度	25	, Jac	75	
200711412142	1			
lo.	28	29	30	31
区分	比較例	比較例	比較例	比較例
)PY (#/v%)	0.05	0, 05	0. 05	0. 05
ナッカリン・Na(w/v指)	0.2		0.2	
EG4000 (w/v%)	2.4	_	2.4	
k溶性富分子の種類	コント ロイチン 研放・No	コント ロイチン 味噌・Na	E7482数・Na	ヒアトロンコントル
	0.5	0.5	0.5	0.5
k溶性高分子の温度(w/vk)	1		7. 2	
E・アミノカプロン酸(w/v%)	<u>0.5</u>	<u>0 5</u>	0.5	<u>0. 5</u>
aOH、HCI	適量	遊量	適量	適量
Н	5. 5	5.5	5. 5	5. 5
関製時の性状_	黄色證明	調製不可	黄色澄明	調製不可
吉晶析出遅延度	-50		-75	
				•
۵.	32	33	8	-
3分	比較例	比較例	比較例	
PY (w/v%)	0.05	0.05	0.05	
ナッカリン・Na(w/v‰)	0.2	-	0.2	
EG4000 (w/v/4)	2.4	-	2.4	
k溶性高分子の種類	284"456"=64"17-	\$\$\$**\$5t"=\$\$**\$7-	1	
k溶性高分子の温度(w/vk)	0.1	0.1		
			li .	
: -アミノカプロン酸(w/v%)	0.5	0.5	0.5	
aOH, HCI	連量	適量	適量	
H	5. 5	5. 5	5.5	•
H 関製時の性状 結晶析出遅延度	5.5 黄色澄明 -33	3.3 調製不可	黄色津明	

【0028】実施例6

滅菌精製水50mLにDPY (1mgもしくは0.5g) 及びPEG4000 (0.1gもしくは10g) を添加し攪拌した。ここに1Nの塩酸をpHが3以下になるまで添加し溶解した。さらに、サッカリン・Na (10mgもしくは20g) もしくはAcTrp (10mg

もしくは20g) を添加し、添加成分がすべて溶解するまで5NのNaOHを添加した。続いて0.5gのε-アミノカプロン酸を添加し、攪拌溶解後、pHが5.5になるまで3Nの塩酸を添加した。ここに4W/V%のSM-15を12.5mLもしくは2.5mL添加し混合後、滅菌精製水を添加することで100mLに

した。調製した液を孔径0.45μmのメンプランフィルタ ーでろ過し、バイアル瓶に充填し、本発明の水性製剤 (処方No. 34、35、38、39) とした。滅菌精製水50mLに1 OmgのDPY及び2.4gのPEG4000を添加し攪拌した。ここに1 Nの塩酸をpHが3以下になるまで添加し溶解した。さら に、3.1gのサッカリン・Naもしくは25W/V%AcTrp水溶液を 12.4mL及び4W/V%のSM-15を12.5mL添加し、攪拌溶解し た。pHが10.0になるまで1NのNaOHを添加し、滅菌精製水 を添加することで100mLにした。調製した液を孔径0.45 μmのメンブランフィルターでろ過し、バイアル瓶に充 填し、本発明の水性製剤(処方No.37、41)とした。熱 水70mLに4.0gのSM-15を添加し、分散後、SM-15が溶解す るまで氷冷下攪拌した。ここに、0.05gのDPY及び2.4gの PEG4000を添加し攪拌した後、1Nの塩酸をpHが3以下にな るまで添加し溶解した。さらに、3.1gのサッカリン・Na もしくは25W/V%AcTrp水溶液を12.4mL及び0.5gのε-アミ ノカプロン酸を添加し、攪拌溶解した。1NのNaOHもしく は1Nの塩酸でpHを5.5に調整し、滅菌精製水を添加する ことで100mLにした。調製した液を孔径0.45μmのメンブ ランフィルターでろ過し、バイアル瓶に充填し、本発明 の水性製剤(処方No.36、40)とした。滅菌精製水50mL にNFLX (10mgもしくは3g) 及びPEG4000 (0.1g、2.4gも しくは10g)を添加し攪拌した。ここに1Nの塩酸をpHが4

以下になるまで添加し溶解した。さらに、AcTrp(10m g、3.1gもしくは20g) を添加し、添加成分がすべて溶解 するまで5NのNaOHを添加した。続いて4W/V%のSM-15を5m Lもしくは12.5mL添加し、均一に混合後、1NのNaOHもし くは1Nの塩酸でpHを7.0もしくは8.5に調整し、滅菌精製 水を添加することで100mLにした。調製した液を孔径0.4 5μmのメンブランフィルターでろ過し、バイアル瓶に充 填し、本発明の水性製剤(処方No.42、43、45)とし た。熱水70mLに4.0gのSM-15を添加し、分散後、SM-15が 溶解するまで氷冷下攪拌した。ここに、0.3gのNFLX及び 2.4gのPEG4000を添加し攪拌後、INの塩酸をpHが5以下に なるまで添加し溶解した。さらに、25W/V%AcTrp水溶液 を12.4mLを添加し、均一に混合後、INのNaOHもしくは1N の塩酸でpHを6.5に調整し、滅菌精製水を添加すること で100mLにした。調製した液を孔径0.45μmのメンブラン フィルターでろ過し、バイアル瓶に充填し、本発明の水 性製剤(処方No.44)とした。調製した本発明の水性製 剤を25℃で3ヶ月間保存した。各製剤とも保存後に難溶 性薬物の析出などはみられず安定であった。結果を表ー 6に示した。

[0029]

【表一6】

表-6

No.	34	35	36	37
DPY (w/v%)	0.5	0. 001	0. 05	0. 01
サッカリン・Na(w/v%)	20	0. 01	3. 1	3.1
PEG4000 (w/v%)	10	0. 1	2. 4	2.4
SM-15 (w/v%)	0.5	0. 1	4. 0	0.5
ε-アミノカプロン酸(w/v/i)	0.5	0. 5	0. 5	-
NaOH, HCI	適量	適量	適量	適量
pH	5. 5	5. 5	5. 5	10. 0
調製時の性状	黄色澄明	黄色澄明	黄色澄明	黄色澄明
25℃保存3ヶ月後の性状	変化なし	変化なし	変化なし	変化なし

No.	38	39	40	41
DPY (w/v%)	0. 5	0. 001	0. 05	0. 01
AcTrp (w/v%)	20	0. 01	3. 1	3. 1
PEG4000 (w/v%)	10	0. 1	2. 4	2. 4
SM-15 (w/v%)	0. 5	0. 1	4. 0	0. 5
ε-アミノカプロン酸(w/v%)	0. 5	0. 5	0. 5	-
NaOH, HCI	遗量	適量	適量	適量
pH .	5. 5	5. 5	5. 5	10. O
調製時の性状	黄色澄明	黄色澄明	黄色澄明	黄色澄明
25℃保存3ヶ月後の性状	変化なし	変化なし	変化なし	変化なし

No.	42	43	44	45
NFLX (w/v%)	3. D	0. 01	0. 3	0. 01
AcTrp (w/v%)	20	0. 01	3. 1	3. 1
PEG4000 (w/v%)	10	0. 1	2. 4	2.4
SM-15 (w/v%)	0. 2	0. 2	4. 0	0. 5
NaOH, HCI	,適量	適量	適量	適量
pH	7. 0	7. 0	6. 5	8.5
調製時の性状	黄色澄明	無色澄明	無色澄明	無色證明
25℃保存3ヶ月後の性状	変化なし	変化なし	変化なし	変化なし

【0030】実施例7

滅菌精製水500mLにDPY (0.2~0.5g) 、サッカリン・Na

g) 及びNaCl (2.3g) を添加し攪拌した。ここに1Nの塩 酸をpHが3以下になるまで添加し溶解した。さらに、4W/ V%SM-15を125mLと4gのε-アミノカプロン酸を添加し、 攪拌溶解した。1NのNaOHもしくは1Nの塩酸でpHを5.5に 調整し、滅菌精製水を添加することで1000mLにした。調 製した液を孔径0.2μmのメンプランフィルターでろ過

し、5mLのプラスチック製点眼ボトルに充填し、本発明 のDPY含有水性点眼剤(処方No.46~50)とした。調製し た本発明の点眼剤を25℃もしくは7℃で3ヶ月間保存し た。各製剤とも保存後に難溶性薬物の析出などはみられ ず安定であった。結果を表-7に示した。

[0031] 【表一7】

表一7

No.	46	47	48	49	50
DPY (w/v%)	0. 02	0. 03	0. 04	0. 05	0. 05
サッカリン・Na(w/v%)	1. 0	2. 0	2. 0	2. 0	5. O
PEG4000 (w/v%)	2.0	2. 0	2.0	2. 0	2. 0
SN-15 (w/v%)	0. 5	0. 5	0. 5	0. 5	0. 5
ε-アミノカプロン酸(w/v%)	0.4	0. 4	0. 4	0. 4	0. 4
クロロブタノール(w/v%)	0.4	0. 4	0. 4	0. 4	0.4
NaC1	0. 23	0. 23	0. 23	0. 23	0. 23
NaOH , HC1	適量	適量	適量	適量	適量
pH	5. 5	5. 5	5. 5	5. 5	5. 5
調製時の性状	黄色澄明	黄色澄明	黄色澄明	黄色澄明	黄色澄明
25℃保存3ヶ月後の性状	変化なし	変化なし	変化なし	変化なし	変化なし

変化なし 変化

【0032】実施例8 滅菌精製水500mLに3gのNFLX、オフロキサシン(以下、0 FLXと略称する)もしくはロメフロキサシン(以下、LFL Xと略称する)及び24gのPEG4000を添加し攪拌した。こ こに1Nの塩酸をpHが5以下になるまで添加し溶解した。 さらに25W/V%AcTrp水溶液を160mL添加し、均一になるま で混合後、1NのNaOHもしくは1N塩酸でpHを7.0に調整 し、滅菌精製水を添加することで1000mLにした。調製し

し、変化なし、変化なし カルターでろ過し、5m Lのプラスチック製点眼ボトルに充填し、本発明のDPY含 有水性点眼剤(処方No.51、52、53)とした。調製した 本発明の点眼剤を25℃もしくは7℃で3ヶ月間保存した。 各製剤とも保存後に難溶性薬物の析出などはみられず安 定であった。結果を表-8に示した。

[0033]

【表-8】

表-8

No.	51	52	53
薬物	0FLX	LFLX	NFLX
薬物濃度(w/v%)	0. 3	0. 3	0. 3
AcTrp (w/v%)	2. 5	2. 5	2. 5
PEG4000 (w/v%)	2. 4	2. 4	2. 4
SM-15 (w/v%)	0. 5	0. 5	0. 5
NaOH, HCI	適量	適量	避量
Hq	7. 0	7. 0	7. 0
調製時の性状	無色澄明	無色證明	無色澄明
25℃保存3ヶ月後の性状	変化なし	変化なし	変化なし
7℃保存3ヶ月後の性状	変化なし	変化なし	変化なし

[0034]

【発明の効果】本発明の難溶性薬物含有水性製剤は、難

溶性薬物が中性付近で水に溶解しており、結晶や異物の 発生もなく保存安定性に優れている。

フロントページの続き

(51) Int. Cl. ⁷		識別記号	FΙ		テーマコード(参考)
A 6 1 K	31/538		A 6 1 K	31/538	4 C 0 8 6
	31/5383			31/5383	
	47/32			47/32	
	47/34			47/34	
	47/36			47/36	
	47/38			47/38	
A 6 1 P	5/38		A 6 1 P	5/38	

	7/02		7/02
105	25/02	105	25/02
	31/04		31/04
	31/10		31/10
	31/12		31/12
	C 0 7 D 215/56		// C 0 7 D 215/56
	403/04		403/04
1 4 8	487/04	1 4 8	487/04
	498/06		498/06

Fターム(参考) 4C031 PA02

4C050 AA01 BB08 CC08 EE04 FF01 GG04 HH04 4C063 AA01 BB02 CC34 DD14 EE01

4C072 AA02 AA06 BB03 BB06 CC01 CC11 EE07 FF07 GG09 HH08

UU01

4C076 AA12 AA24 AA93 BB01 BB03
BB11 BB24 BB25 BB26 CC01
CC11 CC14 CC30 CC31 CC35
DD51E DD61E EE16E EE23E
EE32E EE36E EE37E EE60E
FF15

4C086 AA01 BC29 BC50 CB10 CB22 GA12 MA13 MA17 MA52 MA57 MA58 MA59 MA66 NA02 ZA26 ZA42 ZA54 ZB33 ZB35 ZC08 ZC20