

Project | Image compression

Title	Due date	
Image Compression Project	January 5, 2025	

Objective

In this project, you will design and implement a unique image compression system, applying both lossy and lossless techniques. The project will demonstrate your understanding of multimedia concepts while giving you hands-on experience in implementing compression algorithms.

Project Description

Each student will:

- 1. Develop a unique image compression system combining specific lossy and lossless techniques assigned to you.
- 2. Test the system on a provided input image.
- 3. Generate a compressed file and decompress it back to verify the results.
- 4. Measure and report metrics such as compression ratio and PSNR.
- 5. Submit a report explaining your implementation, results, and challenges.

Project Components

1. Input Image

Each student is assigned a unique input image to ensure projects are distinct. Use only the image assigned to you.

2. Compression Techniques

Your compression system must include:

- One lossless technique (e.g., VLC, RLC, Arithmetic Coding).
- One lossy technique (e.g., Adaptive Quantization, Wavelet Transform).

Both techniques must be implemented in your system as per the table provided.

3. System Requirements

Your program should:

- a. Accept the input image in the specified format (PNG).
- b. Perform the assigned compression tasks.
- c. Output a compressed file.
- d. Decompress the file and generate an output image.

Multimedia Project

Tasks to Complete

A. Implementation

- 1. Design your compression system: Combine the assigned lossy and lossless techniques.
- 2. Write the code: Implement the compression and decompression processes using a programming language of your choice.
- 3. Optimize: Adjust your implementation for efficiency (compression ratio vs. quality trade-offs).

B. Testing

- 1. Use the provided input image to test your system.
- 2. Measure the following:
 - Compression Ratio: Size of the compressed file compared to the original.
 - PSNR (Peak Signal-to-Noise Ratio): Indicates the quality of the decompressed image.

C. Reporting

Prepare a report (PDF format) of a maximum of 6 pages that includes:

- 1. Introduction: A brief overview of image compression and the techniques assigned to you.
- 2. Implementation Details:
 - Explain the algorithms and techniques you implemented.
 - Highlight any unique optimizations or enhancements.
- 3. Results:
 - Show before-and-after metrics (compression ratio, PSNR, SSIM).
 - Include visual comparisons of the original and decompressed images.
- 4. Conclusion: Summarize your findings and lessons learned.

D. Submission

- 1. Code files (in a ZIP archive).
- 2. A sample compressed file generated by your system.
- 3. Your report (PDF format).
- 4. A Google Drive URL of a screen-recorded demonstration of your program running.
- 5. Submit your files to the following email address: elias.alzaghrini@ul.edu.lb

Rules and Guidelines

- 1. Individual Work: This project must be completed individually. Collaboration is not allowed.
- 2. **Assigned Techniques**: You must use the techniques specified in the project table.
- 3. Late Submissions: Late submissions will incur penalties unless prior approval is granted.

Grading Criteria

30% Correctness

20% Implementation of Techniques

20% Efficiency

20% Report Quality

10% Documentation

Tools and Resources

- You may use libraries for basic image processing (e.g., OpenCV, PIL) but must implement the compression algorithms yourself.
- 2. Metrics like PSNR can be calculated using existing libraries.

Multimedia Project 2

Student ID	Input Image	Lossless Technique	Lossy Technique
Aad Nakhle	image_1.png	RLC with VLC	Adaptive Quantization
Aad Hanna	image_2.png	Entropy-based VLC	Region-specific Quantization
Achkouty Joe	image_3.png	Arithmetic Coding	Predictive Quantization (Red Channel)
Al Fhaily Christolio	image_4.png	Arithmetic Coding	Predictive Quantization (Green Channel)
Al Haber Emma Nour	image_5.png	Arithmetic Coding	Predictive Quantization (Blue Channel)
Aramouni Marissa	image_6.png	Custom VLC	Custom Quantization Matrices
Assaker Charbel	image_7.png	Run-length Encoding	Variable Block Sizes (4x4 to 16x16)
Azar Abdo	image_8.png	Optimized VLC	Frequency-domain Quantization
Beainy Theresa	image_9.png	Multi-pass Arithmetic Coding	Multi-level Quantization
Bou Malham Pierre	image_10.png	Adaptive VLC	Wavelet Transform (Haar)
Bou Merheb Kevin	image_1.png	Huffman Coding	Wavelet Transform (Daubechies)
Bou Naoum Elie	image_2.png	Huffman Coding	Wavelet Transform (Haar)
Chahine Georges	image_3.png	Adaptive VLC	Frequency-based Quantization
Chahoud Christia	image_4.png	Threshold Encoding	Threshold Quantization
Chebib Joanna	image_5.png	Color-based VLC	Color Space Compression
Daher Charbel	image_6.png	Spatial-temporal VLC	Blended Spatial-Temporal Compression
Daldalian Paolo	image_7.png	Layered VLC	Progressive Compression
Fakhoury Jad	image_8.png	Noise-aware VLC	Noise-adjusted Quantization
Hanna Johnny	image_9.png	Histogram-based VLC	Preprocessing for Quantization
Jabbour Charbel	image_10.png	Edge-aware VLC	Edge-aware Quantization
Kamal Anthony	image_1.png	Region-specific VLC	Detail-preserving Quantization
Kandalaft Yorgo	image_2.png	Dynamic Block Encoding	Adaptive Block Quantization
Kassis Pia	image_3.png	Entropy-optimized VLC	Entropy-optimized Quantization
Kdeissy Karen	image_4.png	Multi-level VLC	Frequency-domain Quantization
Kiwan Charbel	image_5.png	Frequency-aware VLC	Custom Quantization Scheme
Maalouf Pauline	image_6.png	Custom Arithmetic Coding	Dynamic Quantization Selection
Matta Marc Raphael	image_7.png	Dynamic VLC	Low-light Adjustment
Melki Georges	image_8.png	Low-light VLC	Speed-enhanced Quantization
Merhi Elissa	image_9.png	Speed-focused VLC	File Size Reduction Prioritization
Nachef Cyril	image_10.png	Size-prioritized VLC	PSNR-maximizing Quantization
Nasr Claude	image_1.png	Quality-prioritized VLC	Selective Channel Quantization
Nehme Elio	image_2.png	Selective VLC	Context-based Arithmetic Quantization
Nohra Ghayath	image_3.png	Context-based Arithmetic Coding	Custom Error Metrics
Said Hadi	image_4.png	Custom Error-aware VLC	Gradient-based Quantization
Salameh Mary	image_5.png	Gradient-specific VLC	Hybrid Quantization (Lossy & Lossless)
Sawaya John	image_6.png	Hybrid VLC	Region-specific Lossy Encoding
Teddy Elias	image_7.png	Region-priority VLC	Adaptive Lossy Compression
Touma Ralph	image_8.png	Adaptive VLC	Energy-efficient Lossy Encoding
Younes Jean Pierre	image_9.png	Energy-efficient VLC	High-resolution Lossy Optimization
Youssef Roy	image_10.png	Resolution-prioritized VLC	High-resolution Lossy Optimization

Multimedia Project 3