Practice Exam

- 1. Is the set $A = \{a^{2n}b^{3m} \mid n,m \ge 0\}$ regular? If your answer is yes, construct a FSA that accepts A. If your answer is no, then use the pumping lemma to show that A is not regular.
- 2. Is the set $B = \{ a^{2n}b^{3m} \mid n, m \ge 0 \text{ and } n=m \}$ regular? If your answer is yes, construct a FSA that accepts B. If your answer is no, then use the pumping lemma to show that B is not regular.
- 3. (**Subset construction**) Transform the following FSA into a deterministic FSA that accepts the same language.

4. (**Pumping Lemma**) Show that L' is not regular.

$$L' = \{a^n b^{2m} \mid n = m\}$$

- 5. Find a regular expression α such that the language of α , $L(\alpha)$, is the set of all strings over the alphabet $\{a,b\}$ that contains the substrings aa and bb. For example baababba is in $L(\alpha)$ but baaba is not in $L(\alpha)$
- 6. Transform the regular expression (000* + 111*)* into an automaton that accepts the same language.
- 7. Transform the following automaton into a regular expression that accepts the same language

