9/14/21, 11:51 AM Week 4 Quiz | Coursera

Congratulations! You passed!

Grade received 100% **To pass** 80% or higher

Week 4 Quiz

Latest Submission Grade 100%

1.	What is the name of the method used to tokenize a list of sentences?	1 / 1 point
	outokenize(sentences)	
	o tokenize_on_text(sentences)	
	<pre>fit_to_text(sentences)</pre>	
	fit_on_texts(sentences)	
	⊘ Correct	
2.	If a sentence has 120 tokens in it, and a Conv1D with 128 filters with a Kernal size of 5 is passed over it, what's the output shape?	1 / 1 point
	(None, 116, 124)	
	(None, 120, 128)	
	(None, 120, 124)	
	(None, 116, 128)	
	○ Correct	
3.	What is the purpose of the embedding dimension?	1 / 1 point
	It is the number of dimensions for the vector representing the word encoding	
	It is the number of letters in the word, denoting the size of the encoding	
	It is the number of words to encode in the embedding	
	It is the number of dimensions required to encode every word in the corpus	
	○ Correct	
4.	IMDB Reviews are either positive or negative. What type of loss function should be used in this scenario?	1 / 1 point
	Categorical crossentropy	
	Binary crossentropy	
	O Binary Gradient descent	
	Adam	
	⊘ Correct	
5.	If you have a number of sequences of different lengths, how do you ensure that they are understood when fed into a neural network?	1 / 1 point
	Specify the input layer of the Neural Network to expect different sizes with dynamic_length	
	Use the pad_sequences object from the tensorflow.keras.preprocessing.sequence namespace	
	Process them on the input layer of the Neural Network using the pad_sequences property	
	Make sure that they are all the same length using the pad_sequences method of the tokenizer	

9/14/21, 11:51

1 AN	M Week 4 Q	uiz Coursera	
6.	When predicting words to generate poetry, the more words predicted the more likely it will end up gibberish. Why?		1 / 1 point
	Because the probability of prediction compounds, and thus increases overall		
	Because you are more likely to hit words not in the training set		
	It doesn't, the likelihood of gibberish doesn't change		
	Because the probability that each word matches an existing phrase goes down the more words you create		
	⊘ Correct		
7.	What is a major drawback of word-based training for text generation instead of character-based generation?		1 / 1 point
	Word based generation is more accurate because there is a larger body of words to draw from		
	There is no major drawback, it's always better to do word-based training		
	Because there are far more words in a typical corpus than characters, it is much more memory intensive		
	Character based generation is more accurate because there are less characters to predict		
	⊘ Correct		
8.	How does an LSTM help understand meaning when words that qualify each other aren't necessarily beside each other	r in a sentence?	1 / 1 point
	Values from earlier words can be carried to later ones via a cell state		
	They don't		
	They load all words into a cell state		
	They shuffle the words randomly		