ARVORE B+

Profa. Taiane C. Ramos

Estruturas de Dados e Seus

Algoritmos Profa. Taiane C. Ramos Turma de Verão 2023

ÁRVORES B+

Similar a árvore B:

- Armazena dados somente nas folhas
- As folhas são encadeadas

Índices e dados podem ser armazenados em arquivos diferentes

ÁRVORE B+ NA PRÁTICA

Muito usadas no mercado:

- Sistemas de arquivos
- ☐ Sistemas de Gerenciamento de Banco de Dados

IMPORTANTE:

☐ Índices repetem valores de chave que aparecem nas folhas (Podem existir índices com valores de chaves que não existem nos dados)

BUSCA

Só se pode ter certeza de que o registro foi encontrado quando se chega em uma folha

Notar que comparações agora devem considerar a igualdade também

- Chave maior que a buscada, desce pela esquerda
- Chave igual à buscada ou chegou ao fim da lista, desce pela direita

EXEMPLO: BUSCA DE 60

EXEMPLO: BUSCA DE 60

INSERÇÃO

Particionamento do nó folha:

Copia a chave de **d+1** pro pai e mantém o registro **d+1** inteiro na folha.

Particionamento do nó interno:

□lgual árvore B

EXEMPLO DE INSERÇÃO EM ÁRVORE B+

INSERIR CHAVE 32

EXEMPLO DE INSERÇÃO EM ÁRVORE B+

ordem d = 2

INSERIR CHAVE 32

EXEMPLO DE INSERÇÃO EM ÁRVORE B+

página)

Dividir as chaves entre as duas páginas (30; 32; 40; 46; 47) INSERIR CHAVE d chaves na página original P chave d+1 sobe para nó pai W (mas registro é mantido na nova

EXEMPLO DE INSERÇÃO EM ÁRVORE B+ INSERIR CHAVE 32

EXEMPLO DE INSERÇÃO EM ÁRVORE B+ INSERIR CHAVE 32

Dividir as chaves entre as duas páginas (09; 30; 40; 44; 48) d chaves na página original P chave d+1 sobe para nó pai W chaves d+2 em diante na nova página Q

INTERNO: INSERIR CHAVE 44

ÇÃO COM DE NÓ

EXCLUSÃO

Excluir apenas no nó folha

Chaves excluídas continuam nos nós intermediários

EXCLUIR CHAVE 30

EXCLUIR CHAVE 30

EXCLUSÃO QUE CAUSA CONCATENAÇÃO

Exclusões que causem concatenação de folhas podem se propagar para os nós internos da árvore

Importante:

- Concatenação de nó folha: a chave do nó pai não desce para o nó concatenado.
- □Concatenação de nó interno: igual a árvore B.

EXCLUIR CHAVE 52

EXCLUIR CHAVE 52

Nó ficou com menos de d entradas Soma dos registros de P e Q < 2d

EXCLUIR CHAVE 52

Concatenação:

Passar os registros de Q para P

EXCLUIR CHAVE 52

Concatenação:

Eliminar a chave em W que divide os ponteiros para as páginas P e Q

EXCLUIR CHAVE 52

Eliminar nó Q

EXCLUIR CHAVE 52

Eliminar nó Q

EXCLUIR CHAVE 52

EXCLUIR CHAVE 52

Soma de total de chaves de P e Q < 2d Solução: concatenação de nó interno

EXCLUIR CHAVE 52

EXCLUIR CHAVE 52

EXCLUIR CHAVE 52

EXEMPLO DE EXCLUSÃO EM ÁRVORE B+ EXCLUIR CHAVE 52

EXCLUSÃO QUE CAUSA REDISTRIBUIÇÃO

Exclusões que causem redistribuição dos registros nas folhas provocam mudanças no conteúdo do índice, mas não se propagam

EXCLUIR CHAVE 15

EXCLUIR CHAVE 15

Nó ficou com menos de d entradas

A soma dos registros dos irmãos adjacentes é >= 2d

Solução: redistribuição

EXCLUIR CHAVE 15

Poderíamos concatenar P e Q, mas o nó ficará cheio e vai causar concatenação na próxima inserção.

É melhor fazer a redistribuição agora.

ordem d = 2

EXCLUIR CHAVE 15

d primeiras chaves ficam em em P d+1 até o fim ficam em Q chave d+1 é copiada para o pai

EXEMPLO

(MOSTRANDO OS DADOS NAS FOLHAS)

Neste exemplo, a árvore B+ tem o nó raiz e 3 folhas

Ordem da árvore é d = 2

CONSIDERAÇÕES SOBRE IMPLEMENTAÇÃO EM DISCO

Utilizamos três arquivos:

- Metadados
 - Offset da raiz da árvore
 - ☐ Flag indicando se a raiz é folha (para saber em qual arquivo procurar)
- Arquivo de índices (nós internos da árvore)
- Arquivo de dados (folhas da árvore)

ESTRUTURA DO ARQUIVO DE ÍNDICE

Arquivo de índice é estruturado em nós (blocos/páginas)

Cada nó possui

- Inteiro m representando o número de chaves do nó
- IFlag que diz se página aponta para nó folha
- Ponteiro para o nó pai
- Uvetor p de "ponteiros" (offsets) para os próximos nós
- vetor s contendo as chaves

ESTRUTURA DO ARQUIVO DE DADOS

Arquivo de dados é estruturado em nós (blocos/páginas)

Contém as folhas da árvore

Cada nó possui

- Inteiro m representando o número de registros armazenados no nó
- Ponteiro para o nó pai
- Ponteiro para a próxima página
- m registros

CONSIDERAÇÕES SOBRE IMPLEMENTAÇÃO

Se o sistema de armazenamento tem tamanho de bloco de B bytes, e as chaves a serem armazenadas têm tamanho k bytes, a árvore B+ mais eficiente é a de ordem d=(B/k)-1

Exemplo prático:

- \square Tamanho do bloco do disco B = 4KB = 4096 bytes
- \square Tamanho da chave k = 4 bytes
- $\Box d = (4096/4) 1 = 1023$
- Quantas chaves cada nó da árvore comportará no máximo, nessa situação?
- \square 2d = 2046 chaves!

EXERCÍCIO: ÁRVORE B+

- a) Desenhar uma árvore B+ de ordem 2, resultante da inserção de registros com as seguintes chaves: 35, 41, 1, 59, 2, 3, 43, 8, 51, 15, 36, 38, 45, 39
- b) Sobre o resultado do exercício (a), excluir os registros de chave: 3, 38, 1, 41
- c) Sobre o resultado do exercício (b), incluir os registros de chave: 5, 14, 52, 53, 54

REFERÊNCIA

Szwarcfiter, J.; Markezon, L. Estruturas de Dados e seus Algoritmos, 3a. ed. LTC. Cap. 5

AGRADECIMENTOS

Exemplo cedido por Renata Galante