Radioatividade

Fábio Lima

Fábio Lima 1 (44)

Sumário

- Radioatividade
- 2 Histórico
- 3 Marie Curie
- 4 Radiação
- 6 Radionuclídeos
- 6 Meia-vida
- 7 Reação Nuclear
- 8 Decaimento Radioativo
- Séries Radioativas
- 10 Fissão Nuclear
- 11 Fusão Nuclear
- 12 Aplicação

Fábio Lima 2 (44)

Radioatividade

Radioatividade

🛕 DEFINIÇÃO

É a desintegração espontânea ou provocada da matéria com emissões de radiações como consequência de uma estabilidade nuclear

Fáhio Lima

Histórico

Descoberta da Radioatividade

Röntgen: Percebeu uma luz fluorescente que vinha do tubo de raios catódicos. O fenômeno foi chamado de raio X.

Henri Becquerel (1896): mostrou que sais de Urânio sensibilizam placas fotográficas usando a deflexão por um campo magnético, ele descobriu 3 tipos de emissões radioativas: neutra, positiva e negativa.

Casal Curie: Isolar sais de rádio radioativo do mineral pechblenda (uraninita).

Fábio Lima 6 (44

Marie Curie

Figura 1: Marie Curie

Marie Skłodowska Curie foi uma cientista polonesa com naturalização francesa que conduziu pesquisas pioneiras no ramo da radioatividade. Foi a primeira mulher a ser laureada com um Prémio Nobel e a primeira pessoa e única mulher a ganhar o prêmio duas vezes. Em 1903, Marie dividiu o Nobel de Física com o seu marido Pierre Curie e o físico Henri Becquerel. A cientista também foi laureada com o Nobel de Ouímica em 1911.

Marie Curie morreu aos 66 anos, em 1934, em um sanatório em Sancellemoz, na França, por conta de uma anemia causada pela exposição a radiação.

Fábio Lima 8 (44)

Radiação

A radiação é a propagação de energia sob várias formas. Dependendo da quantidade de energia, pode ser classificada em não ionizantes e ionizantes

Fábio Lima 10 (44

Radiações não ionizantes

As radiações não ionizantes são caracterizadas por não possuírem energia suficiente para remover elétrons da eletrosfera do átomo, não ocasionando o processo de ionização da matéria. São classificadas de acordo com o compri-mento de onda: ultravioleta, luz visível, infravermelho, micro-ondas e ondas de rádio. É importante ressaltar que quanto menor o comprimento de onda, maior é a energia da radiação

Figura 2: Espectro das ondas eletromagnéticas

Fábio Lima 11 (44)

Radiações ionizantes

As radiações ionizantes possuem energia suficiente para provocar a ionização da matéria, ou seja, são capazes de promover a saída de elétrons da eletrosfera dos átomos, podendo causar modificações na estrutura de moléculas e do DNA (Figura ref:ionizado). Estas radiações podem ser corpusculares (partículas alfa e beta) ou ondas eletro-magnéticas (radiação gama).

Figura 3: Processo de ionização.

Fábio Lima 12 (44

Partículas

PARTÍCULA	SÍMBOLO
PRÓTON	$1P^{1}$
NÊUTRON	0^{-1}
PRÓTIO	${}_{0}^{n^{1}}$ ${}_{1}^{1}P^{1}$
DEUTÉRIO	² 1H
TRÍTIO	³ H
PRÓSITON	$^{0}_{+1}\beta^{+}$

○ Emissão de Posítron

$$_{+1}^{1}p \longrightarrow _{+1}^{0}\beta +_{0}^{1}n$$

Absorção de um Elétron

Fábio Lima 13 (44)

Radiação Alfa (α)

- \bigcirc A partícula alfa (α) é composta por dois prótons e dois nêutrons (núcleo de hélio), é emitida com alta energia e possui baixo poder de penetração e alto poder ionizante.
- São emissões típicas de átomos com alto peso atômico.
- Esse tipo de radiação tem grande importância na medicina para o tratamento de doenças, como o câncer.
- Exemplos de radionuclídeos emissores de alfa: rádio-223 (²²³Ra), urânio-238 (²³⁸U), plutônio-239 (²³⁹Pu).

Fábio Lima 14 (44)

Beta (β^-)

- O A radiação beta é subdividida em dois tipos, beta menos ($β^-$) e pósitron ($β^+$). As emissões do tipo $β^-$ possuem a mesma característica dos elétrons atômicos, com a diferença que sua origem se dá no núcleo que possui um número excessivo de nêutrons sendo, portanto, instável.
- O Neste decaimento o nêutron se "transforma" em um elétron (ejetado) e um próton (este permanece no núcleo). Assim como a radiação alfa, elementos emissores de beta menos (β⁻) podem ser usados no tratamento de doenças. Exemplos: lutécio-177 (177 Lu), ítrio-90 (90 Y).

Fábio Lima 15 (44)

Pósitron (β^+)

- Outro tipo de emissão beta é o pósitron (β⁺), que consiste na transformação de um próton em nêutron e pósitron (antielétron), uma vez que o núcleo se encontra instável devido ao número elevado de prótons.
- Após sua emissão do núcleo, os pósitrons são quase que instantaneamente aniquilados dando origem a dois fótons com mesma energia (511 keV) e direções opostas. Esse tipo de radiação é utilizado na medicina diagnóstica. Exemplo de radionuclídeos emissores de pósitrons: gálio-68 (⁶⁸Ga), flúor-18 (¹⁸F).

Fábio Lima 16 (44)

Radiação Gama

{ A radiação gama (γ) é conceituada como ondas eletromagnéticas emitidas do núcleo de um átomo. Apresenta energia superiores e alto poder de penetração, enquanto que os raios X são menos energéticos. Exemplo de radionuclídeos emissores de radiação gama: 99m Tc. cobalto-60 (60 Co). }

Poder de penetração da radiação

Com isso, os radionuclídeos emissores de alfa e beta podem ser utilizados na terapia de doenças e os emissores de gama, no diagnóstico.

Figura 4: Poder de penetração das radiações.

Radionuclídeos

Os radionuclídeos podem ser encontrados na natureza, como o $_{38}^2$ U e o 233 Ra, ou podem ser produzidos artificialmente, de forma direta, em reatores nucleares e cíclotrons, ou de forma indireta, por geradores. O radionuclídeo é um átomo considerado instável em função de seu núcleo possuir energia "em excesso".

Figura 5: Processo de desintegração do radionuclídeo.

Meia-vida física

Meia-vida física $(t_{\frac{1}{2}})$ corresponde ao tempo necessário para a atividade inicial de um elemento radioativo ser reduzida à metade por meio de seu decaimento e consequente emissão de radiação. A meia-vida de um radionuclídeo pode variar de poucos segundos a vários anos.

$$m = \frac{m_0}{2^x} \tag{1}$$

$$t = x \cdot P \tag{2}$$

m massa final m_o massa inicial

x número de períodos de meia-vida (x)

P período da meia-vida

t tempo de desintegração

Figura 6: Decaimento do ¹³¹₅₃I pela sua meia-vida física de 8 dias.

Meia-vida biológica e efetiva

A meia-vida biológica representa o tempo necessário para que o organismo excrete 50% do fármaco. Quando se trata de radiofármacos, é necessário levar em conta também a meia-vida efetiva, que é a soma da meia-vida física e a meia-vida biológica.

A atividade de uma amostra é definida pelo número de desintegrações por segundo do núcleo instável de um radionuclídeo. Dessa forma, é possível mensurar a radioatividade de uma amostra.

Fábio Lima 23 (4/

- Exemplo 1 { Um radioisótopo utilizado no tratamento radioterápico apre-

senta uma meia-vida (período de semidesintegração) de 5 horas. Se um técnico utilizar uma massa de 50 g no tratamento de um paciente, após quantas horas a massa seria reduzida para 6,25 g?

- a) 5 horas. b) 25 horas. c) 15 horas. d) 30 horas. e) 10 horas.

Solução

1º Passo: Calcular o número de meias--vidas que foram necessárias para a redução de 50 g para 6,25 g por meio da fórmula a seguir.

$$m = \frac{m_0}{2^x}$$
$$6, 25 = \frac{50}{2^x}$$
$$2^x = \frac{50}{2^x}$$

2º Passo: Em seguida, para calcular o tempo, basta utilizar a seguinte expressão:

$$t = x \cdot P$$
$$t = 5 \cdot 3$$

Reação Nuclear

É a propriedade que os núcleos instáveis possuem de emitir partículas e radiações eletromagnéticas, para se tornarem estáveis

A radioatividade natural ocorre, geralmente, com os átomos de números atômicos maiores que 82

A reação que ocorre nestas condições, isto é, alterando o núcleo do átomo chama-se REAÇÃO NUCLEAR

Fábio Lima 26 (44)

Lei de Soddy

Decaimento alfa: nela, o núcleo instável emite uma partícula alfa, que é um núcleo de Hélio. Como sabemos da tabela periódica, o Hélio tem dois prótons e dois nêutrons. Assim, o elemento perde 4 de massa, tendo seu número atômico diminuído em 2.

Fábio Lima 28 (44)

Lei de Soddy, Fajans e Russel I

Decaimento beta: a partícula beta é um elétron ejetado de um nêutron. Como elétrons não têm massa, ela também não tem. O elemento radioativo tem um nêutron transformado em próton, então aumenta seu número atômico em 1.

Fábio Lima 29 (44

Lei de Soddy, Fajans e Russel II

Fábio Lima 30 (44)

Lei de Soddy, Fajans e Russel III

Decaimento Pósitron: No decaimento de pósitrons, perdemos uma carga positiva do núcleo. Isso significa que o número atômico diminuirá em uma unidade.

Fábio Lima 31 (44)

Radiação Gamma

Fábio Lima 32 (44)

Exemplo 2 Exemplo Ao se desintegrar, o átomo ²²²Rn emite 3 partículas alfa e 4 partículas beta. O nº atômico e o nº de massa do átomo final são, respecti-

- vamente:
- a) 84 e 210. b) 210 e 84. c) 82 e 210. d) 210 e 82. e) 86 e 208.

Solução

$$\overset{222}{86} \mathrm{Rn} \, \longrightarrow \, 3 \cdot \alpha_2^4 \quad + \quad 4 \cdot_{-1} \, \beta^0 \quad + \quad \overset{A}{Z} X$$

$$86 = 3 \cdot 2 + 4 \cdot (-1) + Z$$

$$86 = 6 - 4 + Z$$

$$Z = 86-2$$

$$Z = 84$$

$$222 = 3 \cdot 4 + 4 \cdot 0 + A$$

$$222 = 12 + A$$

$$A = 222-12$$

$$A = 210$$

Séries Radioativas

○ É o conjunto de elementos que têm origem na missão de partículas alfa e beta, resultando, como elemento final, um isótopo estável do chumbo.

Série do Urânio-238 O resultado é que sempre haverá um resto igual a 2 Exemplos: 238U -> 238: 4 = 59 + resto 2 234Th -> 234: 4 = 58 + resto 2 Regra: A = 4n + 2

Fissão Nuclear

Fissão Nuclear

A fissão nuclear é caracterizada pelo processo de quebra de núcleos grandes em núcleos menores, provocando a liberação de uma grande quantidade de energia.

Fábio Lima 37 (44

Fusão Nuclear

Fusão Nuclear

A fusão nuclear é uma reação nuclear na qual dois núcleos de átomos leves se unem para formar outro núcleo mais pesado.

Fábio Lima 39 (44

Radioterapia

A radioterapia é um tratamento no qual se utilizam radiações ionizantes (raio-X, por exemplo), um tipo de energia direcionada, para destruir ou impedir que as células do tumor aumentem.

Fábio Lima 41 (44

Radiofármacos

O Tabela mostra os radiofármacos mais utilizados para tratamentos específicos. Para cada caso há um tempo de exposição e uma dose que varia de fração de segundos a horas.

Tabela 1: Radiofármacos específicos para tratamento

Radiofármaco	Tratamento
IODO (¹³¹ ₅₃ I)	Tumores de tiroíde, fígado e rins
CROMO ($^{51}_{24}$ Cr)	Trato de patologias intestinais
GÁLIO (⁶⁷ Ga)	Tumores em tecidos moles.
TECNÉSIO (99/43Tc)	Tumores de cérebro, glândulas salivares, coração
GADOLÍNIO (159/64)	estomâgo, sistema ósseo, fígado, rins, pulmão

Fábio Lima 42 (44

Fim da Aula

Bons Estudos !!!!

Download Aula

Fábio Lima 43 (44)

Recomendações

Filme

Radioatividade https://www.netflix.com/br/title/81168940

Documentário

O brilho da morte https://youtu.be/gCcTxnvZb-k?si=ITvRVFqsry2oGc1A

Fábio Lima 44 (44