GSOE9210 Engineering Decisions

Victor Jauregui

vicj@cse.unsw.edu.au
www.cse.unsw.edu.au/~gs9210

Victor Jauregui

Engineering Decisions

Updating belief

- Bayesian updating
 - Airline case study
- Value of information
- Revision of Bayesian beliefs
 - Incorporating additional information
 - Updating reliability likelihood
- Sensitivity analysis

Outline

- Bayesian updating
 - Airline case study
- 2 Value of information
- 3 Revision of Bayesian beliefs
 - Incorporating additional information
 - Updating reliability likelihood
- Sensitivity analysis

Victor Jauregui

Engineering Decisions

Bayesian updating

Airline case study

Case study: capital purchase

Example (To purchase or not)

You're the chief engineer of a small commercial airline which, due to increased demand, is considering adding to its fleet by buying (B) a used airliner. Another company is offering to sell one of its airliners for \$400,000. Used airlines range in reliability, which is hard to evaluate without a detailed inspection.

Question: should you purchase?

Problem modelling

- Problem 1: how to measure reliability? Operating hours
- Simplification 1: classify airliners as either: very reliable (vR) (>90%), moderately reliable (mR), or unreliable (uR) (<50%) Beliefs about reliability:

	Reliability			
	vR	mR	uR	
Probability	0.2	0.3	0.5	
Utility	1.0	0.34	0.01	

- Simplification 2: assume a very reliable airliner makes \$1M profit (best outcome); an unreliable one makes \$200K loss (worst)
- Simplification 3: utility of not buying airliner—status quo: 0.17

Victor Jauregui Engineering Decisions

Bayesian updating Airline case study

Decision C (buy or not)

Decision C

- Evaluate decision points/nodes by maximal utility of alternatives (i.e., actions/strategies)
- The value of node C is 0.31, because 0.31>0.17; i.e., $0.31=\max\{0.17,0.31\}$

Victor Jauregui

Engineering Decisions

Value of information

Outline

- Bayesian updatingAirline case study
- 2 Value of information
- 3 Revision of Bayesian beliefs
 - Incorporating additional information
 - Updating reliability likelihood
- Sensitivity analysis

Get more information?

Example (Additional information)

You have the option to consult an aeronautical engineering firm to conduct an assessment of the airliner for \$10K. The report's will be either favourable (f) or unfavourable (u) as to whether or not to purchase.

- Firm's assessment reliable?
- Guess/estimate that 90% of very reliable planes receive favourable assessment; i.e., P(f|vR)=0.9

... conditional on:

Probability of:	vR	mR	uR
f	0.9	0.6	0.1
u	0.1	0.4	0.9

Victor Jauregui Engineering Decisions

Revision of Bayesian beliefs

Outline

- Bayesian updatingAirline case study
- 2 Value of information
- Revision of Bayesian beliefs
 - Incorporating additional information
 - Updating reliability likelihood
- 4 Sensitivity analysis

Conditional probability

Definition

The *conditional probability* of event A conditional on B (provided B is possible; *i.e.*, $P(B) \neq 0$), written P(A|B), is defined by:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

In the diagram above, P(A|B) represents the ratio of (the area of) the region AB (the dark region) to that of the whole of B.

Victor Jauregui Engineering Decisions

Revision of Bayesian beliefs

Incorporating additional information

Conditional independence

Definition

Event A is (conditionally) independent of event B if:

$$P(A|B) = P(A).$$

Event A is (conditionally) dependent on B if A is not (conditionally) independent of B.

For example, if B is a random sample of a population.

Bayes's rule

• Rearranging the definition of conditional probability:

$$P(A \cap B) = P(A|B)P(B)$$

• By symmetry $P(A \cap B) = P(B \cap A)$; therefore: P(A|B)P(B) = P(B|A)P(A). Rearranging gives:

Theorem (Bayes's Theorem I)

If A and B are any two events (such that $P(A) \neq 0$), then:

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

Victor Jauregui Engineering Decisions

Bayes's Venn diagram

But $A = AB \cup A\overline{B}$. So we get the following:

Theorem (Bayes's Theorem I')

If A and B are any two events $(P(A) \neq 0)$, then:

$$P(B|A) = \frac{P(AB)}{P(AB) + P(A\overline{B})}$$

Extending Bayes's rule

$$P(B_1|A) = \frac{P(AB_1)}{P(AB_1) + P(AB_2) + P(AB_3)}$$

$$P(B_2|A) = \frac{P(AB_2)}{P(AB_1) + P(AB_2) + P(AB_3)}$$

$$P(B_3|A) = \frac{P(AB_3)}{P(AB_1) + P(AB_2) + P(AB_3)}$$

Victor Jauregui Engineering Decisions

Bayes's rule generalised

Events B_1, \ldots, B_n are said to be *universally exhaustive* (of Ω) if $\bigcup_{i=1}^n B_i = \Omega$.

Theorem (Bayes's Theorem II)

If events $B_1, \ldots, B_k, \ldots, B_n$ are mutually exclusive and universally exhaustive, and A is a possible event $(P(A) \neq 0)$, then:

$$P(B_k|A) = \frac{P(AB_k)}{\sum_{i=1}^n P(AB_i)}$$

Theorem (Bayes's Theorem II')

If $B_1, \ldots, B_k, \ldots, B_n$ are mutually exclusive and universally exhaustive events and A is a possible event $(P(A) \neq 0)$ then:

$$P(B_k|A) = \frac{P(A|B_k)P(B_k)}{\sum_{i=1}^{n} P(A|B_i)P(B_i)}$$

Example: Bayes's rule

Example (Medical diagnostics)

In a given population of people, one in every thousand have hypo-cytocitic cancer. A certain pathology test is used to detect the disease. The test is 'good' but not perfect; it returns a positive result in 98% of persons with the disease, and registers a *false positive* (*i.e.*, gives a positive result for a person free of the disease) 5% of the time.

Exercise

A random person comes in to get tested and the test returns a positive result. What is the probability that the person has cancer?

Victor Jauregui Engineering Decisions

Example: solution

Given information:

$$P(C) = \frac{1}{1000} \qquad P(\overline{C}) = \frac{999}{1000}$$

$$P(T^{+}|C) = \frac{98}{100} \qquad P(\overline{T^{+}}|C) = \frac{2}{100}$$

$$P(T^{+}|\overline{C}) = \frac{5}{100} \qquad P(\overline{T^{+}}|\overline{C}) = \frac{95}{100}$$

What is $P(C|T^+)$?

$$\begin{split} P(C|T^+) &= \frac{P(CT^+)}{P(T^+)} = \frac{P(CT^+)}{P(CT^+ \cup \overline{C}T^+)} = \frac{P(CT^+)}{P(CT^+) + P(\overline{C}T^+)} \\ &= \frac{P(T^+|C)P(C)}{P(T^+|C)P(C) + P(T^+|\overline{C})P(\overline{C})} \\ &= \frac{\frac{98}{100} \times \frac{1}{1000}}{\frac{98}{100} \times \frac{1}{1000} + \frac{5}{100} \times \frac{999}{1000}} = \frac{98}{98 + 5 \times 999} \approx \frac{100}{5000} = 0.02 \end{split}$$

Patient only has 2% chance of having cancer despite testing positive?!

Decision C (buy or not)

Victor Jauregui

Engineering Decisions

Post-report (posterior) probabilities

• If report favourable (f):

$$P(vR|f) = \frac{P(f|vR)P(vR)}{P(f|vR)P(vR) + P(f|mR)P(mR) + P(f|uR)P(uR)}$$

$$= \frac{0.9(0.2)}{0.9(0.2) + 0.6(0.3) + 0.1(0.5)}$$

$$= \frac{0.18}{0.41} \approx 0.44$$

Similarly: $P(mR|f) \approx 0.44$ and $P(uR|f) \approx 0.12$

• If report unfavourable (u):

$$P(vR|u) = \frac{0.02}{0.59} \approx 0.04$$
$$P(mR|u) \approx 0.20$$
$$P(uR|u) \approx 0.76$$

Decision A (report favourable)

- The revised expected utility of buying the airliner is $U(\mathsf{B}) = 0.44(0.99) + 0.44(0.33) + 0.12(0.0) = 0.58$
- The utility of not buying it is $U(\overline{\mathsf{B}}) = 0.16$.

Victor Jauregui Engineering Decisions

Decision B (report unfavourable)

- The revised expected utility of buying the airliner is $U(\mathsf{B})=0.04(0.99)+0.20(0.33)+0.76(0.0)=0.10$
- The utility of not buying it is $U(\overline{\mathsf{B}}) = 0.16$.

		0.20		
	vR	mR	uR	U
В	0.99	0.33	0.0	0.10 0.16
\overline{B}	0.16	0.16	0.16	0.16

Utility adjustments

- Problem: cost associated with report? Question: How does report's cost (\$10K) affect utility?
- Observation: report cost small relative to other monetary quantities: potential profit \$1M; i.e., $\$10K \ll \$1M$
- Simplification 3: model effect by constant shift; *i.e.*, for report costing $x (x \ll 1M)$, change of utility is $\Delta u = \frac{x}{1M}$; \$1M
- That is, every \$10K is worth 0.01 utiles

Victor Jauregui

Engineering Decisions

Revision of Bayesian beliefs

Updating reliability likelihood

Combined decision

- Combine all three possible cases into one big decision problem
- Introduce new decision: commission survey/report, and no survey/report
- Introduce new event: report outcome (f or u)
- If consultant good, report likely to be good predictor of (i.e., correlated to) aircraft reliability
- Consultant's increased predictive accuracy is valuable in making decision

Victor Jauregui

Engineering Decisions

Combined decision

From the denominators in the earlier calculations:

$$P(f) = 0.41$$

$$P(u) = 0.59$$

• Therefore, if report commissioned:

• Utility of report: 0.33

Victor Jauregui

Engineering Decisions

Decision table

	$\int f, vR$	f, mR	f, uR	u, vR	u, mR	u, uR	U
A_1	1.0	0.34	0.01	1.0	0.34	0.01	0.31
A_2	0.17	0.17	0.17	0.17	0.17	0.17	0.17
A_3	0.99	0.33	0	0.99	0.33	0	
÷	:	:					
A_6							

where

 A_1 no survey; buy airliner

 A_2 no survey; don't buy airliner

 A_3 commission survey; buy airliner

 A_4 commission survey; don't buy

 A_5 commission survey; if favourable, buy airliner; else don't buy

 A_6 commission survey; if favourable, don't buy airliner; else buy

Value of information

• Optimal policy if report commissioned:

Policy for C: report commissioned

If report favourable, buy airliner, if not don't buy.

- Value of policy is U(C) = 0.33, inclusive of the 0.01 fee
- Optimal policy if report not commissioned:

Policy for \overline{C} : report not commissioned

Buy the airliner.

- $U(\overline{C}) = 0.31$
- How much is report worth?
- $U(\mathsf{C}) = 0.34 u_r \geqslant 0.31 = U(\overline{\mathsf{C}})$; *i.e.*, should commission report for fee up to $u_r = 0.03$; *i.e.*, for any fee up to \$30K

Victor Jauregui Engineering Decisions

Sensitivity analysis

Outline

- Bayesian updating
 Airline case stud
- 2 Value of information
- 3 Revision of Bayesian beliefs
 - Incorporating additional information
 - Updating reliability likelihood
- Sensitivity analysis

Production and demand

Example (Production)

Alice is the CTO at a company and Bob is the CFO. They're considering two possible production processes for a product. Process A is expected to net \$40K if demand increases, \$30K if demand remains stable, and \$20K if demand falls. Process B requires a greater initial capital expenditure; it will only net \$10K if demand drops, and \$40K otherwise. Future estimates of demand are: 20% of an increase, 30% chance of

Which process should Alice implement?

staying level, and 50% of a decrease.

Victor Jauregui E

Engineering Decisions

Sensitivity analysis

Example

The decision table is:

$$V_{\$}(\mathsf{A}) = \frac{5}{10}(20) + \frac{3}{10}(30) + \frac{2}{10}(40)$$
$$= 10 + 9 + 8 = \$27$$
$$V_{\$}(\mathsf{B}) = \frac{5}{10}(10) + \frac{3}{10}(40) + \frac{2}{10}(40)$$
$$= 5 + 12 + 8 = \$25$$

Alternative A has greater expected monetary value

Example

Alice consults Bob who advises her that, under its current financial position, the company's preferences are:

$$\$20 \sim \left[\frac{3}{5} : \$40 | \frac{2}{5} : \$10\right]$$

 $\$30 \sim \left[\frac{4}{5} : \$40 | \frac{1}{5} : \$10\right]$

The company's utility for money is:

The utility table:

$$U(\mathsf{A}) = \frac{5}{10} \left(\frac{3}{5}\right) + \frac{3}{10} \left(\frac{4}{5}\right) + \frac{2}{10} (1)$$

$$= \frac{1}{50} \left(15 + 12 + 10\right) = \frac{74}{100}$$

$$U(\mathsf{B}) = \frac{5}{10} (0) + \frac{3}{10} (1) + \frac{2}{10} (1)$$

$$= \frac{1}{50} \left(0 + 15 + 10\right) = \frac{50}{100}$$

Therefore, A will also have greater utility

Victor Jauregui

Engineering Decisions

Sensitivity analysis

Sensitivity analysis

Suppose Bob cannot give precise assessments on values of \$20 and \$30, only bounds:

$$\left[\frac{3}{5} \$40 \right] \succ \$20 \succ \left[\frac{1}{2} \$40 \right]$$
$$\$40 \succ \$30 \succ \left[\frac{4}{5} \$40 \right]$$

The utility for money is:

Lower bound for A:

Upper bound for A:

Sensitivity analysis

Bounds on A:

$$\begin{split} U(\mathsf{A}) &> \frac{5}{10}(\frac{1}{2}) + \frac{3}{10}(\frac{4}{5}) + \frac{2}{10}(1) \\ &= \frac{1}{100}\left(25 + 24 + 20\right) \\ &= \frac{69}{100} \\ U(\mathsf{A}) &< \frac{5}{10}(\frac{3}{5}) + \frac{3}{10}(1) + \frac{2}{10}(1) \\ &= \frac{1}{100}\left(30 + 30 + 20\right) \\ &= \frac{80}{100} \end{split}$$

That is:

$$\frac{69}{100} < U(A) < \frac{80}{100}$$

Conclusion:

A is guaranteed to be preferred to B $(U(B) = \frac{50}{100})$ regardless of the uncertainty over the precise preference for \$20 and \$30.

Victor Jauregui

Engineering Decisions

Sensitivity analysis

Summary

- Explored decision problems in greater depth:
 - actions that affect epistemic state (value of information-gathering actions)
 - dealing with uncertainty in preferences (sensitivity analysis)
- Updating beliefs (epistemic state) via Bayes's theorem
- Value of information: cost of gathering more information versus increase in expected utility due to new information
- Sensitivity analysis:
 - decisions under imprecise preferences
 - how might preference uncertainty affect a decision?