概率统计与随机过程复习题 2

- 1. 若随机变量 X 在(1, 6)上服从均匀分布,则方程 $x^2 + Xx + 1 = 0$ 有实根的概率是
- 3. 设随机变量 X 服从参数为 λ 的柏松分布,且 $P\{X=0\}=e^{-3}$,则 $P\{X>1\}=$ ______.
- 4. 设随机变量 X 服从参数为 $\lambda(\lambda>0)$ 的泊松分布,并且 $P\{X=1\}=P\{X=2\}$,则 $P\{X=3\}=$ ______.
- 5. 设 $\xi \sim N(\mu, \sigma^2)$,则 $\frac{\xi \mu}{\sigma}$ 服从的的分布为______.
- 6. 在区间[-1,1]内任意投点,以 ξ 表示投点的坐标,则 ξ 的分布函数为_____.

解答题:

1. 学生完成一道作业的时间 X 是一个随机变量(单位为小时),它的密度函数为 $f(x) = \begin{cases} cx^2 + x, & 0 \le x \le \frac{1}{2} \\ 0, & \text{其他} \end{cases}$ (2) 写出 X 的分布函数; (3) 试求在 20 分钟内完成一道作业的概率.

2. 设随机变量 X 的分布函数为 $F_X(x) = \begin{cases} 0, & x < 1 \\ \ln x, & 1 \leq x < e \ 求 ; \ (1) \, X$ 的概率密度函数 $1, & x \geq e \end{cases}$ $f_X(x); (2) \, P\{3 < X < 4\}.$

3. 设随机变量
$$X$$
 的概率密度为 $f(x) = \begin{cases} ax^2, \ 1 \le x \le 2 \\ ax, \ 2 < x < 3 \end{cases}$, 求(1)常数 a ; (2) X 的分布函数; (3) $P\{1.5 < X < 2.5\}$.

4. 某地区 18 岁的女青年的血压 X 服从 N(110, 144), 在该地区任选一个 18 岁的女青年, 测量她的血压, 求(1) $P\{X \le 105\}$; (2) $P\{100 < X \le 120\}$.

- 5. 假设一条自动生产线生产的合格品为 $\frac{4}{5}$, 要使一批产品的合格率达到 76%与 84%之间的概率不小于 90%,问这批产品至少要生产多少件?
- 6. 设某种型号的器件的寿命 X (以小时计) 具有概率密度 $f(x) = egin{cases} \frac{1000}{x^2}, x > 1000 \\ 0, 其 它 \end{cases}$, 现

有一批此种器件,各器件损坏与否相互独立,任取 5 只,问其中至少有 2 只寿命大于1500 小时的概率是多少?

7. 设随机变量 X的分布函数为 $F(x) = \begin{cases} A - e^{-0.4x}, & x > 0 \\ 0, & x \le 0 \end{cases}$, 求: (1) 常数 A; (2) X 的概率 密度 f(x); (3) $P\{X > 2\}$.