OPERAÇÕES UNITÁRIAS III

PROF° KASSIA G SANTOS
DEPARTMENTO DE ENGENHARIA QUÍMICA
UFTM

AULA 24

LEITO DE JORRO

LEITO DE JORRO

☐ Descoberto por MATHUR & GISHLER, 1955.

Possui regiões com escoamento distinto:

- ☐ Região de jorro: sólido tem velocidade alta e ascendente, com baixa porosidade do leito
- ☐ Região de fonte: As partículas perdem velocidade e caem na superfície do leito.
- □ Região anular (ou ânulo): parte com empacotamento denso, as partículas descem com baixa velocidade até a base do cone, sendo arrastadas para a região de jorro.
- ☐ Isto confere um movimento cíclico de sólidos.

VANTAGENS

Efetivo contato gás-sólido, o que promove a mistura rápida das partículas

Elevados coeficientes de transferência de calor e massa entre partículas e fluido;

Baixo custo de operação e instalação e não possui partes móveis.

DESVANTAGENS

Elevada perda de carga, antes de atingir o jorro estável;

Existe uma altura máxima de leito que limita a capacidade do equipamento;

Grande faixa de tempos de residência das partículas;

Dificuldade no "Scale-up".

APLICAÇÕES

Reator Químico Pirólise, catálise heterogênea, etc

Secagem

 Pastas, de grãos, químicos, farmacêuticos

Recobrimento

 Pellets, fertilizantes, comprimidos de liberação controlada, etc

Granulação

Pastas de frutas, microemcapsulamento de óleos, fertilizantes

Unidade experimental de Leito de Jorro

Recobrimento de Partículas

A Classificação de Geldart

Grupo →	Grupo C	Grupo A	Grupo B	Grupo D
Caracteristica mais relevante	Coseivo; de fluidização difícil	Ideal para fluidização Exibe uma faixa de fluidização não- borbulhante	Inicia o borbulhamento a Umf	Sólidos grossos
Sólidos típicos	Farinha de trigo cimento	Cracking catalítico	Areia de construção	Cascalho grãos de café
POPRIEDADE ▼				
Expansão do leito	Baixa devido a canalização	Alta	Moderada	Baixa
Taxa de de-aeração	Inicialmente rápida, em seguida expoencial	Lenta, linear	Rápida	Rápida
Propriedades das Bolhas	Sem bolhas - só canalização	As bolhas quebram e coalescem; Tamanho de bolha máximo	Sem limites de tamanho	Sem limites de tamanho
Mistura de sólidos	Muito baixo	Alto	Moderado	Baixo
Gas Backmixing	Muito baixo	Alto	Moderado	Baixo
Jorro	Não	Não	Somente na superfície	Sim, mesmo em leitos profundos

DIMENSIONAMENTO

Variáveis importantes: Dc, H, H0, ε₀, ρ, ρs, φ, Qmj, -∆Pmj, Hmax Curva Característica (CC) Experimental Obter -∆Pmax (ida) para dimensionar o soprador ou a bomba

Determinar condição de jorro mínimo

Visual e pela CC

Os parâmetros das experiências são sempre tomados no sentido das vazões decrescentes

→ Porque a volta é sempre igual, porém, a ida depende da compactação do leito.

CURVA CARACTERÍSTICA

CURVA CARACTERÍSTICA- Misturas

CORRELAÇÕES DA LITERATURA

Velocidade de Jorro Mínimo, q_{jm} pode ser calculada pela Equação de Mathur e Gishler:

$$q_{jm} = \left(\frac{d_p}{D_c}\right) \left(\frac{D_i}{D_c}\right)^{1/3} \left(\frac{2.g.H(\rho_s - \rho)}{\rho}\right)^{1/2}$$

Queda de Pressão de Jorro Mínimo, ΔP_{jm} pode ser calculada pela Equação de Nascimento et al.:

$$\Delta P_{jm} = \frac{2}{3} (1 - \varepsilon_{mf}) H \rho_s g$$

Altura máxima de Jorro estável, H_{max} pode ser calculada pela Equação de Malek e Lu:

$$\frac{H_{\text{max}}}{D_c} = 0.105 \left(\frac{D_c}{d_p}\right)^{0.75} \left(\frac{D_c}{D_i}\right)^{1/3} \left(\frac{1}{\phi^2 \rho_s^{1.2}}\right)$$

CORRELAÇÕES DA LITERATURA

Quadro 11.4 Correlação para a predição da velocidade superficial do fluido em jorro mínimo (leitos cilíndricos)

Autor	Correlação Observações
Mathur e Gishler (1955)	$\begin{split} q_{jm} = & \left(\frac{d_p}{D}\right) \!\! \left(\frac{D_i}{D}\right)^{\!\! 1/3} \!\! \left[2gH \! \left(\frac{\rho_p}{\rho} - 1\right) \right]^{\!\! 1/2} & D = 15,2 \text{ cm}; \\ D_i = 0,95 \text{cm}; \\ \text{base cônica de } \theta = 85^\circ; \\ 0,60 \text{ mm} < d_p < 6,4 \text{ mm}; \\ 1,10 \text{ g/cm}^3 < \rho_p < 2,70 \text{ g/cm}^3; \\ \phi = 1. \end{split}$
Smith e Reddy (1964)	$\left[\frac{q_{jm}^2}{gd_p}\left(\frac{D}{d_p}\right)\left(\frac{\rho}{\rho_p-\rho}\right)\right]^{1/2} = \left[0,64-26,8\left(\frac{D_i}{D}\right)^2\right]\left(\frac{H}{D}\right)^{\beta} \beta = \frac{1}{2}-1,76 \frac{D_i}{D}$
	(11.48)
Brunello et al. (1974)	$q_{jm} = 0.0145 d_p^{0.741} H^{0.592} \bigg[2g \bigg(\frac{\rho_p}{\rho} - 1 \bigg) \bigg]^{1/2} \qquad \begin{array}{c} D = 30.5 \text{ cm;} \\ D_i = 5.08 \text{ cm; sorgo, soja e} \\ \text{nove diferentes misturas} \\ \text{desses materials.} \end{array}$

CORRELAÇÕES DA LITERATURA

Quadro 11.2 Correlação para a predição para a máxima queda pressão (leitos cilíndricos)

Autor	Correlação	Observações
Becker (1961)	$-\Delta P_{\text{máx}} = (\rho_p - \rho)(1 - \varepsilon_{mf})gH$ (11.31)	$ ho_p$; massa específica da partícula; $ ho$, massa específica do fluido; $ ho_{mf}$; porosidade do leito em condição de mínima fluidização; H , altura do leito equivalente à mínima fluidização.
Malek e Lu (1965)	$-\Delta P_{\text{máx}} = \frac{gm_p}{\text{Årea}}$ (11.39) observe a Eq. (11.12).	m_p , massa do leito; g , cte. gravitacional; $\acute{A}rea$, área da seção transversal da coluna; D , diâmetro da coluna cilíndrica: $10,16$ cm; $15,24$ cm; $22,86$ cm; $30,48$ cm; base cônica de $\theta=60^\circ$; $H/D>1$; H , altura do leito; $0,74$ mm $< d_p < 3,68$ mm; $0,92$ $g/\text{cm}^3 < \rho_p < 2,67$ g/cm^3 ; $0,84 < \phi < 1$; $0,95 < D_i < 5,08$ cm; sendo: d_p diâmetro médio de partícula; ρ_p , massa específica da partícula; ϕ , esfericidade; D_i , diâmetro do orifício de entrada do fluido.

LEITO DE JORRO NÃO CONVENCIONAL

Leito de Jorro com Tubo DRAFT

Vantagens:

- -redução na -∆Pjm, e portanto da potência.
- Aumenta a altura máxima.
- Menor tempo de residência das partículas
- Produto mais homogêneo (evita curto-circuito).

Limitação:

menores taxas de transferência de calor e massa

Leito de jorro fluidizado

Leito de jorro de múltiplos estágios contínuo

EXERCÍCIOS DE LEITO DE JORRO

EX19- Deseja-se usar um Leito de Jorro na secagem de cereais. O tubo cilíndrico para o teste em batelada tem Dc= 30 cm, diâmetro de orifício Di = 5 cm, e ângulo de cone de 60°. Para uma operação a 1,5*qjm e uma carga de cereal de 80% da altura máxima (Hmax) que permite um jorro estável. Determine a potência do soprador. Considere a queda de pressão na tubulação como 40% da queda de pressão no leito de jorro e que ΔPmax é 50% maior que ΔPjm. (d_p = 0,25 cm; ϕ = 0,75; ρ_s = 1,18 g/cm³; ε_{mf} = 0,5; T = 85 °C)

1°) Calcular Hmax (Malek e Lu):

$$\frac{H_{\text{max}}}{D_c} = 0.105 \left(\frac{D_c}{d_p}\right)^{0.75} \left(\frac{D_c}{D_i}\right)^{0.4} \left(\frac{1}{\varphi^2 \rho_S^{1.2}}\right)$$

$$\frac{H_{\text{max}}}{30} = 0,105 \left(\frac{30}{0,25}\right)^{0,75} \left(\frac{30}{5}\right)^{0,4} \left(\frac{1}{(0,75)^2(1,18)^{1,2}}\right)$$

 $H_{\text{max}} = 340,78 \text{ cm}$

 $H = 0.8 \cdot H_{\text{max}} \Rightarrow H = 272,63 \text{ cm}$ (altura de carga de cereal)

$$\rho = 9,82 \cdot 10^{-4} \frac{g}{\text{cm}^3}$$

2°) Calcular APjm (Nascimento):

$$\Delta P_{\text{JM}} = \frac{2}{3} (1 - \varepsilon_{mf}) H \rho_S g$$

$$\Delta P_{\text{JM}} = \frac{2}{3} (1 - 0.5) 272.63 \cdot 1.18 \cdot 980$$

$$\Delta P_{\text{JM}} = 105089,77 \frac{dyna}{\text{cm}^2} = 42,232 \text{ inH}_2\text{O} = 1072,7 \text{ mmH}_2\text{O}$$

$$\Delta P = 1, 5 \cdot \Delta P_{JM} + 0, 4 \cdot \Delta P_{JM} = 2038 \text{ mmH}_2\text{O}$$

3°) Calcular qjm (Mathur e Gishler):

$$q_{JM} = \left(\frac{\overline{d}_p}{D_c}\right) \cdot \left(\frac{D_i}{D_c}\right)^{\frac{1}{3}} \cdot \left(\frac{2g H(\rho_S - \rho)}{\rho}\right)^{\frac{1}{2}} = 116,16 \frac{\text{cm}}{s}$$

4°) Potência:

$$Q = 1.5q_{jm}A = 0.123 \frac{m^3}{s} \quad Pot(HP) = \frac{Q(m^3/s) \cdot \Delta P(\text{mmH}_2\text{O})}{75 \cdot 0.60} = 5.6HP$$

EX20 (Cremasco, pg288): Secagem de arroz em Leito de Jorro. A coluna cilíndrica tem Dc= 15,24 cm, Di = 2,54 cm, e altura de leito estável de 57 cm. Para uma operação a 1,2*qjm. ($d_p = 0.4 \text{ cm}; \ \phi = 0.8; \ \rho_s = 1.21 \text{ g/cm}^3; \ \varepsilon_{mf} = 0.5; \ T = 20 \text{ °C}$).

- a) Classificação de Geldart. b) qmj, c) ΔPmax, d) ΔPjm. e) potência do soprador.
- a) Classificação de Geldart: Tipo D
- b) Calcular qjm (Mathur e Gishler; Ergum):

$$q_{JM} = \left(\frac{\overline{d}_p}{D_c}\right) \cdot \left(\frac{D_i}{D_c}\right)^{\frac{1}{3}} \cdot \left(\frac{2g H(\rho_S - \rho)}{\rho}\right)^{\frac{1}{2}} = 155,53 \frac{\text{cm}}{s}$$

$$\left(1-\varepsilon_{mf}\right)\left(\rho_{p}-\rho\right)g=150\frac{\left(1-\varepsilon_{mf}\right)^{2}}{\varepsilon_{mf}^{3}}\frac{\mu}{\left(\phi d_{P}\right)^{2}}q_{mj}+1,75\frac{\left(1-\varepsilon_{mf}\right)}{\varepsilon_{mf}^{3}}\frac{\rho}{\left(\phi d_{P}\right)}q_{mj}^{2}$$
 e) Potência:

$$592,93 = 0,533q_{mj} + 0,0255q_{mj}^{2}$$
 $q_{mj} = 142,4cm/s$

Valor experimental (Canesin, 1981): qmj=120,6 cm/s

c) -
$$\Delta$$
Pmax (Becker, 1961): $-\Delta P_{\text{Max}} = (\rho_S - \rho)(1 - \varepsilon_{mf})gH$

$$-\Delta P_{\text{Max}} = 33797, 2 \frac{dyn}{cm^2} = 34,46cmH_2O$$

$$-\Delta P_{\text{max}}^{\text{exp}} = 32,8cmH_2O$$

d) -∆Pjm (Nascimento):

$$-\Delta P_{\rm JM} = \frac{2}{3} \left(1 - \varepsilon_{mf} \right) \left(\rho_{\rm S} - \rho \right) Hg = \frac{2}{3} \left(-\Delta P_{\rm Max} \right)$$

$$-\Delta P_{\text{JM}} = 22,98cmH_2O$$
 $-\Delta P_{\text{JM}}^{\text{exp}} = 19,8cmH_2O$

$$Pot(W) = \frac{Q\left(\frac{m^3}{s}\right) \cdot \Delta P(\frac{N}{m^2})}{\eta}$$

$$Q = 1, 2q_{jm}A = 0,031 \frac{m^3}{s}$$

$$Pot = \frac{0,031 \cdot 3379,7}{0,50} = 235,85W$$

Referências:

- ☐ Cremasco, M. A., Operações Unitárias em Sistemas particulados e Fluidomecânicos, Blucher, 2009.
- ☐ Massarani, Fluidodinâmica de Sistemas Particulados, 2001.

Atividades:

- Refazer exercícios e fazer exercícios de livros.
- □ Fazer projeto orientado, comparando leito fluidizado e de jorro.

