Definition, analytical expression and properties of scalar product

two

scalar product between is represented vectors $u \rightarrow$ and $v \rightarrow$, that by u→·v→, is a real number that is obtained by multiplying the magnitude of u→ by magnitude of $v\rightarrow$ and by the cosine of the angle that is formed

From the definition of the scalar product we have: 1. If $\vec{u}=\vec{0}$ or $\vec{v}=\vec{0}$, then $\vec{u}\cdot\vec{v}=0$.

```
2. If \vec{u} and \vec{v} are perpendicular vectors and since \cos(\widehat{uv})=\cos(90^\circ)=0, we have \vec{u}\cdot\vec{v}=0.
```

If
$$\vec{u}=(0,2), \vec{v}=(3,3)$$
 and $\widehat{uv}=45^\circ$:

$$\vec{u} - (0, 2), \vec{v} - (3, 3)$$
 and $\vec{u}\vec{v} = 43$.
$$\vec{u} \cdot \vec{v} = |\vec{u}||\vec{v}|\cos(45^\circ) = 2 \cdot \sqrt{18} \frac{\sqrt{2}}{2} = \sqrt{36} = 6$$

If
$$|\vec{u}|=3$$
, $|\vec{v}|=2$ and $\vec{u}\cdot\vec{v}=0$. What angle is formed by \vec{u} and \vec{v} ? Since the formula of the scalar product is $\vec{u}\cdot\vec{v}=|\vec{u}||\vec{v}|\cos(\vec{u}\vec{v})$, by replacing the informatio

have, we will obtain:
$$\cos(\widehat{uv}) = 0 \Rightarrow \widehat{uv} = 90^\circ$$

 $\vec{u}\cdot\vec{v}=u_1v_1+u_2v_2$

The

If
$$\vec{u}=(3,1)$$
 and $\vec{v}=(2,-1)$, then:
$$\vec{u}\cdot\vec{v}=3\cdot 2+1\cdot (-1)=6-1=5$$

Given $ec{u}=(u_1,u_2)$ and $ec{v}=(v_1,v_2)$, its scalar product can be written as