Database Management Systems (DBMS)

RAJAD SHAKYA

1. Introduction [3 hours]

- 1.1. Concepts and Applications
- 1.2. Objective and Evolution
- 1.3. Data Abstraction and Data Independence
- 1.4. Schema and Instances
- 1.5. Concepts of DDL, DML and DCL

2. Data Models [7 hours]

- 2.1. Logical, Physical and Conceptual
- 2.2. E-R Model
- 2.3. Entities and Entities sets
- 2.4. Relationship and Relationship sets
- 2.5. Strong and Weak Entity Sets
- 2.6. Attributes and Keys
- 2.7. E-R Diagram
- 2.8. Alternate Data Model (hierarchical, network, graph)

3. Relational Languages and Relational Model [7 hours]

- 3.1. Introduction to SQL
- 3.2. Features of SQL
- 3.3. Queries and Sub-Queries
- 3.4. Set Operations
- 3.5. Relations (Joined, Derived)
- 3.6. Queries under DDL and DML Commands
- 3.7. Embedded SQL

- 3. Relational Languages and Relational Model [7 hours]
 - 3.8. Views
 - 3.9. Relational Algebra
- 3.10. Database Modification
- 3.11. QBE and domain relational calculus

4. Database Constraints and Normalization [6 hours]

- 4.1. Integrity Constraints and Domain Constraints
- 4.2. Assertions and Triggering
- 4.3. Functional Dependencies (Chase Algorithm)
- 4.4. Multi-valued and Joined Dependencies
- 4.5. Different Normal Forms (1st, 2nd, 3rd, BCNF, DKNF)

5. Query Processing and Optimization [4 hours]

- 5.1. Query Cost Estimation
- 5.2. Query Operations
- 5.3. Evaluation of Expressions
- 5.4. Query Optimization
- 5.5. Query Decomposition
- 5.6. Performance Tuning

6. File Structure and Hashing [4 hours]

- 6.1. Records Organizations
- 6.2. Disks and Storage
- 6.3. Remote Backup System
- 6.4. Hashing Concepts, Static and Dynamic Hashing
- 6.5. Order Indices
- 6.6. B+ tree index

- 7. Transactions processing and Concurrency Control [6 hours]
 - 7.1. ACID properties
 - 7.2. Concurrent Executions
 - 7.3. Serializability Concept
 - 7.4. Lock based Protocols
 - 7.5. Deadlock handling and Prevention

8. Crash Recovery [4 hours]

- 8.1. Failure Classification
- 8.2. Recovery and Atomicity
- 8.3. Log-based Recovery
- 8.4. Shadow ept of Spatial Database
- 8.5. Advanced Recovery Techniques

9. Advanced database Concepts [4 hours]

- 9.1. Concept of Object-Oriented and Distributed Database Model
- 9.2. Properties of Parallel and Distributed Databases
- 9.3. Concept of Data warehouse Database

Practicals

- 1. PostgreSQL & PgAdmin Installation & Setup
- 2. Intro to SQL & DDL Commands
- 3. DML Commands in SQL + Select with conditions
- 4. Grouping, Filtering, Having + DCLs
- 5. Joins in SQL
- 6. Python + SQL Connection (Embedded SQL)

Practicals

- 7. Project Proposal
- 8. Subqueries & Procedures / Triggers
- 9. Transactions & More Advanced Topics
- 10. Project Defense

Data

- Data
 - Raw, unprocessed facts, figures, symbols, or characters.
 - It has no inherent meaning on its own.
 - Eg: A string of digits like "10247"
 - Eg: temperature readings (e.g., 22°C, 23°C, 21°C)

Information

- Information
 - Data that has been processed and organized to convey meaning
 - It provides context and understanding to raw data.
 - Eg: 10247 product code
 - Eg: Room temperature at 2 PM: 22°C

Database

- Database
 - A structured collection of information, typically stored electronically in a computer system.
 - It allows for efficient storage, retrieval, and management of large datasets.
 - Eg: A library database information about books, including titles, authors, genres

DBMS (Database Management System)

- DBMS (Database Management System)
 - Software that allows users to create, manage, and interact with databases
 - It provides tools for defining the structure of a database, manipulating data.
 - Eg:MySQL or PostgreSQL to create and manage database

Applications

- Business Applications: Customer relationship management (CRM), inventory control
- E-commerce: Product information, customer data, order processing
- Social Networks: User profiles, connections, messages, activity feeds.
- Healthcare: Patient records, medical history, appointment scheduling.

Assignment

 How does twitter use database systems to store data?

Types of Database

- Relational Databases (RDBMS)
 - Data is stored in tables with rows and columns.

 Each table represents a specific entity, and columns represent attributes of that entity.

Types of Database

- Non-Relational Databases (NoSQL):
 - Data can be stored in various formats like documents (JSON), key-value pairs, graphs, or wide-column stores.

```
f
na
ag na
st ag
gr st age: 18,
gr status: "D",
groups: [ "politics", "news" ]
}
Collection
```

Types of Database

- Non-Relational Databases (NoSQL):
 - Data can be stored in various formats like documents (JSON), key-value pairs, graphs, or wide-column stores.

```
f
na
ag na
st ag
gr st age: 18,
gr status: "D",
groups: [ "politics", "news" ]
}
Collection
```

DBMS vs File System

- Data Redundancy
- Data Inconsistency
- Difficult Data Sharing
- Limited Data Security
- Inefficient Query Processing
- Limited Data Integrity
- No Concurrency Control
- Limited Recovery Options

Students				
id	name	college	location	
1	а	ismt	ktm	
2	b	herald	lal	
3	С	british	bhak	
4	d	ismt	ktm	
5	е	ismt	ktm	

Students		
id	name	college_id(fk)
1	а	1
2	b	2
3	С	3
4	d	1
5	е	1

College		
id (pk)	college	location
1	ismt	ktm
2	herald	lal
3	british	bhak

Students				
id	name	college	location	
1	а	ismt	ktm	
2	b	herald	lal	
3	С	british	bhak	
4	d	ismt	ktm	
5	е	ismt	ktm	- 1
6	f	islington	pokh	

Students		
id	name	college_id(fk)
1	а	1
2	b	2
3	С	3
4	d	1
5	е	1
6	f	4

college	location
ismt	ktm
herald	lal
british	bhak
islington	pokh
	ismt herald british

Try this !!

ID	FirstName	LastName	Class	Department	Departme nt_Code
1	John	Doe	10	Science	101
2	Jane	Smith	11	Arts	102
3	Mark	Johnson	12	Science	101

Try this !!

Departments

	Departme nt_Code (PK)	
Science	101	
Arts	102	

	Students				
ID	FirstName	lastName	Grade	Departme nt_Code (FK)	
1	John	Doe	1	0 101	
2	Jane	Smith	1	1 102	
3	Mark	Johnson	1	2 101	

Data Abstraction

Data Abstraction

- hides unnecessary data storage details from users and applications
- exposing only the essential information needed for interaction.

Types of Data Abstraction:

- Physical Level (Internal Level):
 - lowest level of abstraction
 - dealing with the physical storage of data on disks
 - details like data structures, access methods, and storage allocation

Types of Data Abstraction:

- Logical Level (Conceptual Level)
 - Defines the logical structure of the data
 - focusing on what data is stored and how it's organized
 - uses data models to represent entities, attributes, and relationships between them.
 - Users and applications interact with the database at this level

Types of Data Abstraction:

- View Level (External Level)
 - Provides different user groups with customized views of the data.
 - Views can be based on tables, joins, and queries
 - simplified and focused representation of the underlying data

Types of Data Abstraction:

- Eg: library database
 - Librarians
 - Patrons

Data Independence

- ability to modify the schema (structure) of a database at one level
- without affecting the schema or functionality at a higher level.
- helps maintain data integrity and reduces the need to rewrite application logic

Data Independence

- ability to modify the schema (structure) of a database at one level
- without affecting the schema or functionality at a higher level.
- helps maintain data integrity and reduces the need to rewrite application logic

Types of Data Independence

- Physical Data Independence:
 - ability to modify the physical storage details of a database without affecting the logical level
 - Changing the storage device (e.g., from hard drive to SSD)

Types of Data Independence

- Logical Data Independence:
 - ability to modify the logical structure of a database without affecting the applications
 - Eg: adding new columns, removing existing ones, changing data types

Schema

- logical structure, acts as a blueprint for your database.
- It includes Tables, Columns, Data Types, Constraints

- Physical Schema:
 - deals with the physical storage details of the data,
 - including storage allocation, indexing methods, and access paths.
 - typically hidden from users as it deals with the internal workings of the DBMS.

- Logical Schema
 - user's view of the database, focusing on the tables, columns, data types, and relationships.
 - It describes how data is logically organized and accessed.

- View Schema
 - virtual table created based on a query against the underlying tables.
 - It allows users to see a specific subset of data
 - present the data in a customized way without modifying the base tables

Instance

- is the actual data stored in the database at a specific point in time.
- It represents the population of the tables defined by the schema.

Three-Schema Architecture

Thank You

RAJAD SHAKYA