Modelling CS u: control input, y: plant output State variable CS is in state variable form if State variable CS is in state variable form if $x_1=f_1(t,x_1,\ldots,x_n,u),\ldots,x_n=f_n(t,x_1,\ldots,x_n,u)$ $y=h(t,x_1,\ldots,x_n,u)$ is a collection of n 1st order ODEs. Time-Invariant (TI) CS is TI if $f_i(\cdot)$ does not depend on t. State space (SS) TI CS is in SS form if x=f(x,u),y=h(x,u) where $x(t)\in\mathbb{R}^n$ is called the state. Single-input-single-output (SISO) CS is SISO if $u(t),y(t)\in\mathbb{R}$. LTI CS in SS form is LTI if x=Ax+Bu,y=Cx+Du $A\in\mathbb{R}^{n\times n},\ B\in\mathbb{R}^{n\times m},\ C\in\mathbb{R}^{p\times n},\ D\in\mathbb{R}^{p\times m}$ where $x(t)\in\mathbb{R}^n,\ u(t)\in\mathbb{R}^m,\ y(t)\in\mathbb{R}^p$. Input-Output (IO) LTI CS is in IO form if $\frac{d^ny}{dt^n}+a_n-1\frac{d^{n-1}}{dt^{n-1}}+\cdot+a_1\frac{dy}{dt}+a_0y=bm\frac{d^mu}{dt^m}+\cdot+b_1\frac{du}{dt}+b_0u$ where $m\leq n$ (causality)

IO to SS Model 1. Define x s.t. highest order derivative in xIO to SS Model 1. Define x s.t. highest order derivative in \dot{x} 2. Write x=Ax+Bu=f(x,u) by isolating for components of x 3. Write y=Cx+Du=h(x,u) by setting measurement output y to component of x $Equilibria y_d$ (steady state) b/c if $y(0)=y_d$ at t=0, then $y(t)=y_d \ \forall t\geq 0$. Equilibrium pair Consider the system x=f(x,u). The pair (\bar{x},\bar{u}) is an equilibrium pair if $f(\bar{x},\bar{u})=0$. Equilibrium point \bar{x} is an equilibrium point w/ control $u=\bar{u}$. If $u=\bar{u}$ and $x(0)=\bar{x}$ then $x(t)=\bar{x}$ $\forall t\geq 0$ (i.e. a system that starts at equilibrium remains at equilibrium). Find Equilibrium Pair/Point 1. Set f(x,u)=0 2. Solve f(x,u)=0 to find $(x,u)=(\bar{x},\bar{u})$. 3. If specific $u=\bar{u}$, then find $x=\bar{x}$ by solving $f(x,\bar{u})=0$. We equ. pair (\bar{x}, \bar{u}) , then error coordinates around equ. pair $\delta x = x - \bar{x}$, $\delta u = u - \bar{u}$, $\delta y = y - h(\bar{x}, \bar{u})$ where $\delta x = x - \bar{x}$, $\delta u = u - \bar{u}$, $\delta y = y - h(\bar{x}, \bar{u})$ where $\delta x = A\delta x + B\delta u$, $\delta x = A\delta x +$

 $\delta y = C\delta x + D\delta u, \ C = \frac{\partial h}{\partial x}(\bar{x}, \bar{u}) \in \mathbb{R}^{1 \times n_1}, \ D = \frac{\partial h(\bar{x}, \bar{u})}{\partial u} \in \mathbb{R}$ *Only valid at equ. pairs.

Linear Approx. Given a diff. fcn. $f: \mathbb{R} \to \mathbb{R}$, its linear approx at \bar{x} is $f_{\text{lin}} = f(\bar{x}) + f'(\bar{x})(x - \bar{x})$.

*Remainder Thm: $f(x) = f_{\text{lin}} + r(x)$ where $\lim_{x \to \bar{x}} \frac{r(x)}{x - \bar{x}} = 0$.

*Note: Can provide a good approx. near \bar{x} but not globally.

- *Gen. $f: \mathbb{R}^{n_1} \to \mathbb{R}^{n_2}$, $f(x) = f(\bar{x}) + \frac{\partial f}{\partial x}(\bar{x})(x \bar{x}) + R(x)$ *Jacobian: $\frac{\partial f}{\partial x}(\bar{x}) = \left[\frac{\partial f}{\partial x_1}(\bar{x}) \dots \frac{\partial f}{\partial x_{n_1}}(\bar{x})\right] \in \mathbb{R}^{n_2 \times n_1}$ Linearization Steps. I. Find equ. pair (\bar{x}, \bar{u}) 2. Derive A, B, C, D and then evaluate at (\bar{x}, \bar{u})

3. Write $\dot{\delta x} = A\delta x + B\delta u$ and $\delta y = C\delta x + D\delta u$