

SEA regression report summary

Sample ID 001b-int-i 70° 1

Details				
Software and regression log				
Software about	Semilab - Spectroscopic Ellipsometry Analyzer - SEA			
Software version	1.7.1			
Officially licensed to	MIT			
Operator	operator			
Date and time of regression	14-07-2021 14:07			
Comments				

Regression results

Measurement information						
Measurement file path	C:\Users\emmabat\ito	-si\001b	o-int-i.smdx			
Angle of Incidence	70°					
Regression details	egression details					
Regression 1 (EllipsoReflectance)						
Wavelength range	239.84 - 1698.83 nm					
Angle of Incidence	70°	70°				
Fit to	<n>, <k></k></n>					
Angular Aperture	0°					
Fit algorithm	LMA					
Results						
Parameters	Value	Fitted	2 σ confidence limit	Unit		
Model						
AOI Shift	0			0		
Angular Aperture	0			0		
Phase 2 (ITO + void)						
Thickness	50.197	Х	0.29227	nm		
Depolarization coefficient	0.33333					
Concentration 1	0.5					
Concentration 2	0.5					
Phase 1 (ITO)						
Thickness	135.516	Х	0.72116	nm		
A (eV)	499.9547			eV		
E0 (eV)	6.0053			eV		
C (eV)	63.8341	Х	3.44088	eV		
Eg (eV)	3.32841	Х	0.1436	eV		
E_p (eV)	0.96711	Х	0.0088029	eV		
E_Γ (eV)	0.37227	Х	0.015583	eV		
f	1.07241	Х	0.0279			
E0 (eV)	3.94666	Х	0.018211	eV		
Γ (eV)	1.02731	Х	0.023051	eV		
Eps_inf	0					
Derived parameters	Value					
Phase 2 (ITO + void)						
n @ 632.8 nm	1.4392					
k @ 632.8 nm	0.0336					
Phase 1 (ITO)						
n @ 632.8 nm	1.9251					
k @ 632.8 nm	0.0732					
Substrate (si)						
n @ 632.8 nm	3.8811					
k @ 632.8 nm	0.0195					
Drude derived parameters	Value Unit			Unit		
Phase 1 (ITO)						
Conductivity (S/m)	3.3797E+04 ± 2029.9699			S/m		

Resistivity (mΩ.cm)	2.9588 ± 0.1777	mΩ.cm		
Resistance (Ω/sq)	218.3373 ± 14.2759	Ω/sq		
N type dopant concentration (at/cm3)	1.6958E+20 ± 3.0872E+18	at/cm3		
P type dopant concentration (at/cm3)	2.5098E+20 ± 4.569E+18	at/cm3		
N type dopant mobility (cm2/Vs)	12.4392 ± 0.7807	cm2/Vs		
P type dopant mobility (cm2/Vs)	8.4049 ± 0.5275	cm2/Vs		
Fit quality				
R^2	0.99512			
RMSE	0.04765			

Regression graphs

Phase 2 (ITO + void) - Dispersion graphs

Phase 1 (ITO) - Dispersion graphs

Substrate (si) - Dispersion graphs

Correlation coefficients	
Ph2 - ITO + void - Thickness Ph1 - ITO - Thickness	-0.4499
Ph2 - ITO + void - Thickness Ph1 - Tauc-Lorentz[1] - C (eV)	-0.0408
Ph2 - ITO + void - Thickness Ph1 - Tauc-Lorentz[1] - Eg (eV)	0.0341
Ph2 - ITO + void - Thickness Ph1 - Drude[2] - E_p (eV)	-0.3456
Ph2 - ITO + void - Thickness Ph1 - Drude[2] - E_Γ (eV)	-0.0979
Ph2 - ITO + void - Thickness Ph1 - Lorentz[3] - f	0.0481
Ph2 - ITO + void - Thickness Ph1 - Lorentz[3] - E0 (eV)	-0.2038
Ph1 - ITO - Thickness Ph1 - Tauc-Lorentz[1] - C (eV)	-0.1524
Ph1 - ITO - Thickness Ph1 - Tauc-Lorentz[1] - Eg (eV)	0.2265
Ph1 - ITO - Thickness Ph1 - Drude[2] - E_p (eV)	0.504
Ph1 - ITO - Thickness Ph1 - Drude[2] - E_Γ (eV)	0.6571
Ph1 - ITO - Thickness Ph1 - Lorentz[3] - f	0.0023
Ph1 - ITO - Thickness Ph1 - Lorentz[3] - E0 (eV)	0.474
Ph1 - Tauc-Lorentz[1] - C (eV) Ph1 - Tauc-Lorentz[1] - Eg (eV)	-0.9792
Ph1 - Tauc-Lorentz[1] - C (eV) Ph1 - Drude[2] - E_p (eV)	-0.4464
Ph1 - Tauc-Lorentz[1] - C (eV) Ph1 - Drude[2] - Ε_Γ (eV)	-0.0068
Ph1 - Tauc-Lorentz[1] - C (eV) Ph1 - Lorentz[3] - f	-0.6927
Ph1 - Tauc-Lorentz[1] - C (eV) Ph1 - Lorentz[3] - E0 (eV)	-0.3939
Ph1 - Tauc-Lorentz[1] - Eg (eV) Ph1 - Drude[2] - E_p (eV)	0.3953
Ph1 - Tauc-Lorentz[1] - Eg (eV) Ph1 - Drude[2] - Ε_Γ (eV)	0.0583
Ph1 - Tauc-Lorentz[1] - Eg (eV) Ph1 - Lorentz[3] - f	0.7958
Ph1 - Tauc-Lorentz[1] - Eg (eV) Ph1 - Lorentz[3] - E0 (eV)	0.5073
Ph1 - Drude[2] - E_p (eV) Ph1 - Drude[2] - Ε_Γ (eV)	0.2589
Ph1 - Drude[2] - E_p (eV) Ph1 - Lorentz[3] - f	0.0901
Ph1 - Drude[2] - E_p (eV) Ph1 - Lorentz[3] - E0 (eV)	0.359
Ph1 - Drude[2] - Ε_Γ (eV) Ph1 - Lorentz[3] - f	-0.1511
Ph1 - Drude[2] - E_Γ (eV) Ph1 - Lorentz[3] - E0 (eV)	0.1352
Ph1 - Lorentz[3] - f Ph1 - Lorentz[3] - E0 (eV)	0.6594