Port Overview

PORT Name	Port Description	
PORTB	 Microcontroller Pins: PB0-PB7 8 pins total, only PB0-PB5 are connected to Uno R3 header pins PB6 and PB7 are dedicated to the external clock crystal Functions: digital I/O, SPI interface, timer PWM (Pulse Width Modulation) outputs 	
PORTC	 Microcontroller Pins: PC0-PC6 7 pins, only PC0-PC5 are exposed PC6 is a RESET pin (used to restart the chip) Functions: ADC inputs, I2C communication, digital I/O 	
PORTD	 Microcontroller Pins: PD0-PD7 Functions: UART (serial communication), external interrupts, timer PWM (Pulse Width Modulation), digital I/O 	

Pin Overview

Port B Pins

MCU Pin Name	Arduino Function	Arduino Header Pin
PB0	Digital 8	D8
PB1	Digital 9 (PWM)	D9
PB2	Digital 10 (PWM,SS)	D10
PB3	Digital 11 (PWM, MOSI)	D11
PB4	Digital 12 (MISO)	D12
PB5	Digital 13 (SCK / onboard LED)	D13
PB6	XTAL1 (Crystal input)	Not exposed to headers
PB7	XTAL2 (Crystal output)	Not exposed to headers

Port C Pins

MCU Pin Name	Arduino Function	Arduino Header Pin
PC0	Analog 0	A0
PC1	Analog 1	A1
PC2	Analog 2	A1
PC3	Analog 3	A2
PC4	Analog 4 (A4 / SDA)	A3
PC5	Analog 5 (A5 / SCL)	A4
PC6	RESET	RESET

Port D Pins

MCU Pin Name	Arduino Function	Arduino Header Pin
PD0	Digital 0 (RX)	D0
PD1	Digital 1 (TX)	D1
PD2	Digital 2	D2
PD3	Digital 3 (PWM)	D3
PD4	Digital 4	D4
PD5	Digital 5 (PWM)	D5
PD6	Digital 6 (PWM)	D6
PD7	ADC Power	D7

Other pins

MCU Pin Name	Arduino Function	Arduino Header Pin
AVCC	ADC Power	+5V
AREF	Analog Reference	AREF
GND	Ground	GND
VCC	Power +5V	+5V

Function Description

- <u>PWM (Pulse Width Modulation)</u> A technique where a digital pin switches rapidly between HIGH and LOW to simulate an analog output
 - The pin is always either 5V (HIGH) or 0V (LOW), but the ratio of high time to low time changes
 - The ratio between HIGH time and LOW time is called duty cycle
 - Duty Cycle (%) = $\frac{Time\ HIGH}{Total\ period}$ x 100

Duty Cycle	What it does	Average Voltage (5V system)
0%	Always LOW	0V
25%	High ¼ of the time	1.25V
50%	High ½ of the time	2.5V
75%	High ¾ of the time	3.75V
100%	Always high	5V

- What is PWM used for
 - LED brightness control Dim an LED smoothly by changing duty cycle
 - Motor speed control More high time > motor pins faster
 - Analog-like voltage output Can be filtered to make a steady voltage for circuits
 - Audio / tone generation Rapid PWM can generate sound frequencies for buzzers for speakers
- <u>SS (Slave Select)</u> A digital control line used in SPI communications. This pin is used by the master to tell a specific slave that the master wants to communicate with them

- MOSI (Master Out, Slave In)
 - Used in SPI Communication
 - This is the line where the master sends data to the slave
 - Example: Master sends a byte to an SPI sensor
- MISO (Master In, Slave Out)
 - Used in SPI communication
 - This is the line where the slaves sends data back to the master
 - o Example: Sensor sends a reading back to Arduino
- SCK (Serial Clock)
 - Clock line for SPI
 - The master generates this clock to synchronize data transfer on MOSI and MISO
 - Data is only valid on clock edges, so timing is controlled by SCK

Crystal Input

- Pins for the external crystal oscillator
- Provide the microcontroller with a stable clock
- Not exposed as headers used internally to run the MCU at precise timing
- SDA (Serial Data)
 - Used in I2C communication
 - Carries the data line for all I2C devices on the bus
 - o Can be used to talk to sensors, displays, or other microcontrollers over I2C
- SCL (Serial Clock)
 - Clock line for I2C
 - Master generates this clock to synchronize data on SDA
- RX (Receive)
 - Serial UART receive pin
 - Reads incoming data from another device over UART/Serial
 - o Example: Receiving data from a computer or GPS module
- TX (Transmit)
 - Serial UART transmit pin
 - Sends data to another device over UART/Serial
 - Example: Sending sensor readings to a computer
- ADC (Analog-to-Digital Converter)
 - o Converts an analog voltage into a digital number
 - ATmega328P has 10-bit ADC, so 0-1023 values correspond to 0-5V
 - Example: Reading a potentiometer