Esercizi

Esercizio 1. Sia $\mathbf{X} = (X_1, X_2)$ un vettore aleatorio discreto con funzione di probabilità congiunta così definita:

			X_1	
		2	4	6
X_2	10 20	0.1 0.2	0.2	0.3
Λ_2	20	0.2	0.1	p

- Calcolare p.
- $\bullet\,$ Determinare le funzioni di probabilità, la media e la varianza di X_1 e $X_2.$
- $\bullet\,$ Stabilire se X_1 e X_2 sono indipendenti.
- Calcolare il coefficiente di correlazione $\varrho(X_1, X_2)$.
- Determinare la funzione di probabilità di $X_2 X_1$.
- Determinare la funzione di probabilità di $X_1 X_2$.

Esercizio 2. Sia $\mathbf{X} = (X_1, X_2)$ un vettore aleatorio discreto con funzione di probabilità congiunta così definita:

		X_1			
		1	2	3	4
	0	$\frac{1/20}{2/20}$ $\frac{3}{20}$	2/20	3/20	2/20
X_2	1	2/20	3/20	2/20	0
	2	3/20	2/20	0	0

- Determinare le funzioni di probabilità, la media e la varianza di X_1 e X_2 .
- Stabilire se X_1 e X_2 sono indipendenti.
- Calcolare il coefficiente di correlazione $\varrho(X_1,X_2)$.
- Determinare la funzione di probabilità di $X_2 X_1$.
- Determinare la funzione di probabilità di $X_1 X_2$.

Esercizio 3. Sia $\mathbf{X} = (X_1, X_2)$ un vettore aleatorio discreto con funzione di probabilità congiunta così definita:

			X_1	
		2	4	6
	1	0.14	0.28	0.28
Λ_2	3	0.06	0.12	0.12

 $\bullet\,$ Determinare le funzioni di probabilità, la media e la varianza di X_1 e $X_2.$

- Stabilire se X_1 e X_2 sono indipendenti.
- Calcolare il coefficiente di correlazione $\varrho(X_1, X_2)$.
- Determinare la funzione di probabilità di $X_2 X_1$.
- Determinare la funzione di probabilità di $X_1 X_2$.

Esercizio 4. Sia $\mathbf{X} = (X_1, X_2)$ un vettore aleatorio discreto con funzione di probabilità congiunta così definita:

			X_1	
		2	4	6
	1	0.1	0.3	0.3
X_2	3	0.1	0.1	0.1

- $\bullet\,$ Determinare le funzioni di probabilità, la media e la varianza di X_1 e X_2 .
- Stabilire se X_1 e X_2 sono indipendenti.
- Calcolare il coefficiente di correlazione $\varrho(X_1, X_2)$.
- Determinare la funzione di probabilità di $X_2 X_1$.
- Determinare la funzione di probabilità di $X_1 + X_2$.

Esercizio 5. Sia $\mathbf{X} = (X_1, X_2)$ un vettore aleatorio discreto con funzione di probabilità congiunta così definita:

		X_1		
		1	2	X_2
$\overline{X_2}$	0			0.5
Λ_2	1			0.5
	X_1	0.4	0.6	

Come è ben noto, se le variabili X_1 e X_2 sono indipendenti la covarianza è nulla; ma covarianza nulla non necessariamente implica l'indipendenza delle variabili.

- Completare la tabella in modo che risulti nulla la covarianza di X_1 e X_2 .
- Stabilire se la funzione di probabilità ottenuta è rappresentativa di variabili aleatorie indipendenti.

Esercizio 6. Sia $\mathbf{X} = (X_1, X_2)$ un vettore aleatorio discreto con funzione di probabilità congiunta così definita:

		X_1		
		0	1	X_2
	0			0.5
X_2	1			0.6
	X_1	0.3	0.7	

Come è ben noto, se le variabili X_1 e X_2 sono indipendenti la covarianza è nulla; ma covarianza nulla non necessariamente implica l'indipendenza delle variabili.

- Completare la tabella in modo che risulti nulla la covarianza di X_1 e X_2 .
- Stabilire se la funzione di probabilità ottenuta è rappresentativa di variabili aleatorie indipendenti.

Esercizio 7. Si consideri l'esperimento consistente nel lancio di due monete "oneste". Siano X e Y le variabile aleatorie che contano il numero di volte in cui si è verificato testa e il numero di volte in cui è uscito croce, rispettivamente.

- Determinare la funzione di probabilità congiunta del vettore (X, Y).
- \bullet Determinare le funzioni di probabilità marginali di X e di Y.
- \bullet Verificare che le variabili X e Y non sono indipendenti.
- Calcolare media e varianza di X e di Y e la covarianza di (X,Y).

Esercizio 8. Si consideri l'esperimento consistente nel lancio di due monete "oneste". Siano X e Y le variabile aleatorie che contano il numero di volte in cui si è verificato testa e il numero di variazioni verificatesi nei due lanci, rispettivamente.

- Determinare la funzione di probabilità congiunta del vettore (X, Y).
- \bullet Determinare le funzioni di probabilità marginali di X e di Y.
- $\bullet\,$ Verificare che le variabili X e Y non sono indipendenti.
- Calcolare media e varianza di X e di Y e la covarianza di (X,Y).

Esercizio 9. Sia X una variabile aleatoria continua distribuita uniformemente nell'intervallo (-1,1).

- ullet Determinare la funzione densità di probabilità di X, la media e la varianza.
- Sia $Z = \frac{X E(X)}{\sqrt{Var(X)}}$ la variabile standardizzata di X. Determinare la funzione densità e la funzione di distribuzione di Z.
- Determinare la funzione di distribuzione di $Y = \max(X, 0)$ e disegnarne il grafico.

Esercizio 10. Siano X_1, X_2 variabili aleatorie assolutamente continue indipendenti ed uniformemente distribuite nell'intervallo (0,1) e siano

$$U = \max(X_1, X_2), \qquad V = \min(X_1, X_2), \qquad Y = U - V, \qquad Z = U + V.$$

Determinare le funzioni di distribuzione di U, V, Y, Z.

Esercizio 11. Siano X_1, X_2 variabili aleatorie assolutamente continue indipendenti ed uniformemente distribuite nell'intervallo (1, 2) e siano

$$U = \max(X_1, X_2), \qquad V = \min(X_1, X_2), \qquad Y = U - V, \qquad Z = U + V.$$

Determinare le funzioni di distribuzione di U, V, Y, Z.

Esercizio 12. Siano X_1, X_2 variabili aleatorie assolutamente continue indipendenti ed uniformemente distribuite nell'intervallo (0, 1/2) e (1/2, 1) rispettivamente. Siano, inoltre,

$$U = \max(X_1, X_2), \qquad V = \min(X_1, X_2), \qquad Y = U - V, \qquad Z = U + V.$$

Determinare le funzioni di distribuzione di U, V, Y, Z.

Esercizio 13. Sia (X,Y) un vettore aleatorio assolutamente continuo con funzione densità congiunta

$$f(x,y) = \left\{ \begin{array}{ll} 1, & 0 < x < 1, \ 0 < y < 1 \\ 0, & altrove, \end{array} \right. .$$

- Determinare le funzioni densità marginali la media. e la varianza di X e di Y.
- \bullet Stabilire se X e Y sono indipendenti e calcolarne la covarianza.
- \bullet Determinare la funzione di distribuzione, la media e la varianza di Z=X+Y.

Esercizio 14. Sia (X,Y) un vettore aleatorio assolutamente continuo con funzione densità congiunta

$$f(x,y) = \begin{cases} 1, & 0 < x < 2, \ 0 < y < x \\ 0, & altrove, \end{cases}.$$

- Determinare le funzioni densità marginali la media. e la varianza di X e di Y.
- $\bullet\,$ Stabilire se X e Y sono indipendenti e calcolarne la covarianza.
- Determinare la funzione di distribuzione, la media e la varianza di Z=X-Y.