Brain Computer Interfacing:

Steady State Visually Evoked Potential

Group 31 • 25.03.18

Prashanth H C Pavan Kumar D Sawan Singh Mahara Lakshmiraj

Mrs. Vidya T V

Assistant Professor, PESIT-BSC

Brief Overview

Recap

- What is SSVEP?
- What are we doing with SSVEP?
- Covariance Matrices
- Clusters

Algorithm 1

- Cluster covariance matrices in 'some space'
- Find the centroid of these clusters

Algorithm 2

- Compute 'distances' between matrix centers and an EEG epoch to be classified
- The center that gives the least distance is the class which the epoch is classified as belonging to

Progress

Accomplishments

Outlier removal from EEG epochs training set.

Filtering of EEG Signals

Outlier Removal

Outlier Removal

- Riemannian potato approach is used.
- A reference covariance matrix is estimated, by using a distance metric between trials adaptively.
- Any trial that lies too far, i.e. beyond a certain threshold, from the reference matrix in terms of the distance metric used is rejected.
- Z-score thresholding is done as:

$$z(\delta_i) = \frac{\delta_i - \mu}{\sigma} > z_{th}$$

Outlier Removal

 The reference point could be estimated in an adaptive manner during the whole recording session according to the following equation:

$$\overline{C}_{t+1} = (\overline{C}_t)^{1/2} \left[(\overline{C}_t)^{-1/2} C (\overline{C}_t)^{-1/2} \right]^{1/\alpha} (\overline{C}_t)^{1/2}$$

• The threshold 'th' is estimated based on the mean μ and standard deviation of the distance to the reference matrix defined:

$$th = \mu + 2.5\sigma$$

• Through cross-validation, though, the z-score threshold is set to z'th' = 2.2

• Because of good sensitivity of Riemannian metric, the artefacts lie several standard deviations away from the reference.

Algorithmic Briefing

Issues with using Algorithm 1 and 2 only.

- Cues for the onset and offset of EEG epochs must be provided.
- EEG Epoch size is not well defined and is seemingly arbitrary
- Thus no optimum can be quantified

Outline

- Make epoch size variable
- Predict class repeatedly
- Check how frequently the predictor classifies one class
- Define a threshold (even empirically will do)
- Compare frequency of class prediction with the threshold
- Predict a class only if this confidence is above the threshold.

Robustness

- Outline appears to be only expanding dataset for algorithm 1 and algorithm 2
- Is adding a threshold enough?
- Have to increase robustness
- Done by considering trajectories of covariance matrices in epochs.

Consider

D epochs, indexed by

$$J(d) = d - (D - 1), d - (D - 2), ..., d - 1, d$$

Let the gradient of the trajectory of the j^{th} covariance matrix to the predicted center in the epoch set be given as

$$\delta_{\overline{k}}(j) - \delta_{\overline{k}}(j-1)$$

Where

$$\delta_{\overline{k}}(j) = \frac{\delta(\hat{\Sigma}_j, \Sigma_{\mu}^{(\overline{k})})}{\sum_{k=1}^{K} \delta(\hat{\Sigma}_j, \Sigma_{\mu}^{(k)})}$$

- The trajectory of the epochs must be towards the center
- The sum of all the *D* epochs' gradients must be negative.

$$\tilde{\delta}_{\overline{k}} = \sum_{j=d-D+2}^{d} \delta_{\overline{k}}(j) - \delta_{\overline{k}}(j-1) < 0$$

• Accuracies can be improved with this condition

• Cue onset and offset is not required.

LED Array

Led Array (The 555 timer)

• 555 timer IC in an Astable mode to produce a very stable **555**Oscillator circuit.

 Whose output frequency can be adjusted by means of an externally connected RC tank circuit.

50% Duty cycle

50% Duty Cycle Frequency Equation

•
$$T_{on} = 0.693 (R_1 + Rv)C$$

•
$$T_{off} = 0.693 (R_2 + Rv)C$$

$$\bullet \quad T = T_{on} + Tof_f$$

•
$$f = \frac{1}{0.693(2R_2)C}$$

Next steps

Assignment 1: LED array module

Assignment 2: Recording of own EEG dataset

Assignment 3: Classification using curve based method

Thank You