The autoregressive model

TIME SERIES ANALYSIS IN R

David S. MattesonAssociate Professor at Cornell University

The autoregressive model - I

The Autoregressive (AR) recursion:

$$Today = Constant + Slope * Yesterday + Noise$$

Mean centered version:

$$(Today - Mean) =$$

$$Slope*(Yesterday-Mean)+Noise$$

The autoregressive model - II

$$(Today - Mean) =$$

$$Slope*(Yesterday-Mean)+Noise$$

More formally:

$$Y_t - \mu = \phi(Y_{t-1} - \mu) + \epsilon_t$$

where ϵ_t is mean zero white noise (WN).

- ullet The mean μ
- The slope ϕ
- The WN variance σ^2

AR processes - I

$$Y_t - \mu = \phi(Y_{t-1} - \mu) + \epsilon_t$$

- If slope $\phi=0$ then: $Y_t=\mu+\epsilon_t$ and
- And Y_t is white noise: (μ, σ^2_ϵ)
- ullet If slope $\phi
 eq 0$ then: Y_t depends on both ϵ_t and Y_{t-1} And the process $\{Y_t\}$ is autocorrelated
- ullet Large values of ϕ lead to greater autocorrelation
- ullet Negative values of ϕ result in oscillatory time series

AR examples

Autocorrelations

Random walk

If $\mu=0$ and slope $\phi=1$, then:

$$Y_t = Y_{t-1} + \epsilon_t$$

Which is:

Today = Yesterday + Noise

But this is a random walk.

And $\{Y_t\}$ is **not** stationary in this case.

Let's practice!

TIME SERIES ANALYSIS IN R

AR model estimation and forecasting

TIME SERIES ANALYSIS IN R

David S. Matteson
Associate Professor at Cornell University

AR processes: inflation rate

- One-month US inflation rate (in percent, annual rate).
- Monthly observations from 1950 through 1990

```
data(Mishkin, package = "Ecdat")
inflation <- as.ts(Mishkin[, 1])
ts.plot(inflation); acf(inflation)</pre>
```



```
(Today-Mean) = Slope*(Yesterday-Mean) + Noise Y_t - \mu = \phi(Y_{t-1} - \mu) + \epsilon_t \epsilon_t \ WhiteNoise(0,\sigma^2_\epsilon)
```

```
AR_inflation <- arima(inflation, order = c(1, 0, 0))
print(AR_inflation)</pre>
```

```
Coefficients:
    ar1 intercept
    0.5960    3.9745
s.e. 0.0364    0.3471
sigma^2 estimated as 9.713
```

ar1 =
$$\hat{\phi}$$
, intercept = $\hat{\mu}$, sigma^2 = $\hat{\sigma}_{\epsilon}^2$

AR processes: fitted values - I

AR fitted values:

$$\widehat{Today} = \widehat{Mean} + \widehat{Slope} * (Yesterday - \widehat{Mean})$$

$$\hat{Y}_t = \hat{\mu} + \hat{\phi}(Y_{t-1} - \hat{\mu})$$

• Residuals =

$$Today - \widehat{Today}$$

$$\hat{\epsilon_t} = Y_t - \hat{Y_t}$$

AR processes: fitted values - II

Forecasting

• 1-step ahead forecasts

```
predict(AR_inflation)$pred
```

Jan 1991 1.605797

predict(AR_inflation)\$se

Jan

1991 3.116526

Forecasting (cont.)

h-step ahead forecasts

```
predict(AR_inflation, n.ahead = 6)$pred
```

```
        Jan
        Feb
        Mar
        Apr
        May
        Jun

        1991
        1.605797
        2.562810
        3.133165
        3.473082
        3.675664
        3.796398
```

```
predict(AR_inflation, n.ahead = 6)$se
```

```
        Jan
        Feb
        Mar
        Apr
        May
        Jun

        1991
        3.116526
        3.628023
        3.793136
        3.850077
        3.870101
        3.877188
```

Let's practice!

TIME SERIES ANALYSIS IN R

