VIII UNIWERSYTECKI OBÓZ OLIMPIADY MATEMATYCZNEJ

Kombinatoryka (i grafy)

Rozgrzewka

Zadanie 1. Ile jest przestawień (nie)słowa LEWINKLODZKI?

Zadanie 2. Ile jest przestawień liter ABC i cyfr 1234 tak, że najpierw stoją litery, a potem liczby? Ile jest przestawień, że litery nie stoją obok siebie?

Zadanie 3. Ile wynosi n, jeśli liczba permutacji zbioru mającego (n+1) elementów jest o 600 większa od liczby permutacji zbioru mającego n elementów?

Dwumian Newtona

Liczbe

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

nazywamy dwumianem Newtona. Warto kojarzyć tzw. trójkąt Pascala

$$n = 0$$
 1
 $n = 1$ 1 1
 $n = 2$ 1 2 1
 $n = 3$ 1 3 3 1
 $n = 4$ 1 4 6 4 1

który w wierszu n ma wartości $\binom{n}{k}$ dla k odpowiadającemu numerowi kolumny (licząc od k=0 do k=n).

Zadanie 4. Chcemy się wszyscy na sali przywitać uściskiem dłoni. Ile zostanie wymienionych uścisków dłoni?

Zadanie 5 (trudniejsze). Zakładając, że jesteśmy po poniedziałku 4 XI 2024, zgadnij (warto spojrzeć na \triangle Pascala) wzór na

$$\sum_{k=0}^{n} \binom{n}{k}$$

i udowodnij go indukcyjnie.

Możesz też spróbować zinterpretować powyższą wartość jako zliczanie ciągów długości n złożonych z samych 0 i 1.

Zadanie 6. Dodaj do siebie n pierwszych liczb naturalnych. Teraz dodaj do siebie kwadraty n pierwszych liczb naturalnych. Czy umiesz wytłumaczyć ten wzór przy pomocy \triangle Pascala i bez jego pomocy?

Zadanie 7. Na ile sposobów potrafisz rozłożyć 25 skarpet do 5 szuflad tak, żeby żadna szuflada nie była pusta?

Zadanie 8. Na ile sposobów umiesz zapisać liczbę 25 jako sumę 5 liczb naturalnych różnych od 0? A jeśli chcesz wysumować w ten sposób liczbę x?

Zadanie 9. Na ile sposobów potrafisz wysumować liczbę 10 z 3 liczb naturalnych (włączając 0)?

Zasada włączeń i wyłączeń

Przypomnijmy zasadę włączeń i wyłączeń z wczoraj. Niech $A_1, ..., A_n$ będą dowolnymi skończonymi zbiorami. Wtedy ilość elementów ich sumy mnogościowej wyraża się wzorem

$$|A_1 \cup ... \cup A_n| = \sum_{i=1}^n |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j| + \sum_{i < j < k} |A_i \cap A_j \cap A_k| - ... + (-1)^{n+1} |A_1 \cap ... \cap A_n|.$$

Zadanie 10. Ile jest rozwiązań równania $x_1 + x_2 + x_3 = 80$, jeśli $0 \le x_i \le 30$ dla i = 1, 2, 3?

Pojęcie grafu

Grafem nazywamy parę zbiorów G=(V,E), gdzie V to zbiór wierzchołków, a elementy zbioru E to (nieuporządkowane) pary $\{v,w\}$ dla $v,w\in V$. Zbiór E nazywamy zbiorem krawędzi grafu G.

Zadanie 11. Narysuj grafy G = (V, E) dla:

- (1) $V = \{1, 2, 3, 4\}, E = \{\{1, 2\}, \{2, 3\}, \{3, 4\}\}$ (taki graf nazwiemy drogą długości 4 i oznaczymy P_4)
- (2) $V = \{1, 2, 3, 4\}, E = \{\{1, 2\}, \{2, 3\}, \{3, 4\}, \{4, 1\}\}$ (taki graf oznaczamy C_4 jak go nazwać?)
- (3) V zbiór (dodatnich) liczb naturalnych nie większych niż 7, $E = \{\{x,y\}: x,y \in V, x+y \text{ jest nieparzysta}\}$ (ten to z kolei $K_{3,4}$)
- (4) V to dwuelementowe podzbiory zbioru $\{1, 2, 3, 4, 5\}$, zaś $E = \{\{x, y\} : x, y \in V, x \cap y = \emptyset\}$ (taki graf to graf Petersona).

Zadanie 12. Czy potrafisz narysować grafy C_6 , $K_{4,5}$?

Kiedy dwa grafy są tym samym?

Czasem zdarza się, że dwa grafy $G_1 = (V_1, E_1)$ i $G_2 = (V_2, E_2)$ mają wierzchołki podpisane w inny sposób, ale potrafimy narysować je w identyczny sposób. Takie grafy nazywamy izomorficznymi.

Formalniej, potrafimy przeprowadzić wierzchołki G_1 na wierzchołki G_2 i vice versa tak, żeby wierzchołki połączone krawędzią nadal takie były.

Zadanie 13. Ile jest nieizomorficznych grafów o 3, 4 lub 5 wierzchołkach?

Zadanie 14. Drzewo to graf, w którym nie istnieje podzbiór wierzchołków $x_i \in V$ dla $0 \le i \le k$ taki, że $x_0 = x_k$ oraz $\{\{x_i, x_{i+1}\} : 0 \le i \le k\} \subseteq E$ (nie ma w nim cyklu). Policz, ile jest różnych drzew o:

- (1) trzech wierzchołkach
- (2) czterech wierzchołkach
- (3) pięciu wierzchołkach

Zadanie 15. Czy umiesz pokazać, ile krawędzi ma drzewo o n wierzchołkach?

Stopień wierzchołka

Dla wierzchołka $v \in V$ przez jego zbiór sąsiadów rozumiemy zbiór

$$\Gamma(v)=\{w\in V\ :\ \{v,w\}\in E\}.$$

Ilość elementów tego zbioru nazywamy stopniem wierzchołka v i oznaczamy $d(v) = |\Gamma(v)|$.

Zadanie 16. Wybierz dowolny wierzchołek grafu Petersona, znajdź zbiór jego sąsiadów i oblicz jego stopień. Czy każdy wierzchołek tego grafu ma taki sam stopień?

Zadanie 17. Narysuj graf, którego wierzchołki mają stopnie 1, 1, 1, 2, 2, 3, 4. A co, jeśli dołożymy jeszcze jeden wierzchołek stopnia 1?

Zadanie 18. Jaki jest związek między liczbą krawędzi grafu a sumą stopni wszystkich jego wierzchołków? Czy umiesz wytłumaczyć dlaczego nie udało Ci się narysować drugiego grafu z poprzedniego zadania?

Graf regularny

Graf, w którym wszystkie wierzchołki mają ten sam stopień równy k nazywamy grafem k-regularnym.

Zadanie 19. Podaj przykład

- (1) grafu 2-regularnego o 5 wierzchołkach
- (2) grafu 4-regularnego, który nie jest izomorficzny z K_5 ani z $K_{4,4}$.

Zadanie 20. Ile jest grafów regularnych o 6 wierzchołkach?

Zadanie 21. Dla jakich n i r istnieją grafy r-regularne o n wierzchołkach?

Wzór Eulera

Graf planarny to taki, który umiesz narysować na kartce bez przecinających się krawędzi. Ścianą takiego grafu nazywamy dowolny obszar ograniczony przez jego krawędzie lub przez krawędzie i brzegi kartki (tzn. \triangle jako graf ma dwie ściany - środek trójkąta i obszar na zewnątrz).

Niech v oznacza ilość wierzchołków grafu planarnego, e ilość jego krawędzi, a f -ilość ścian. Zachodzi wówczas równanie

$$v - e + f = 2$$

Zadanie 22. "Gra w kropki" polega na tym, że po narysowaniu na kartce dowolnej ilości wierzchołków (kropek) gracze na przemian wykonują następujący ruch: łączą krawędzią (krzywą ciągłą) dwa wierzchołki i zaznaczają na niej nowy wierzchołek. Warunek, jaki musi być spełniony jest taki, że krawędzie nie mogą się przecinać i stopień wierzchołków nie może przekraczać 3. Udowodnij, że gra zawsze kończy się po skończonej liczbie ruchów.

Kolorowanie grafu

Kolorowanie grafu G=(V,E) przy pomocy n kolorów to przypisanie jego wierzchołkom dokładnie jednego z tych kolorów tak, żeby wierzchołki połączone krawędzią nie miały tego samego koloru.

Zadanie 23. Ile kolorów potrzebujesz, żeby pokolorować graf Petersena? Narysuj graf, dla którego potrzebujesz co najmniej 6 kolorów.