Math 4573: Number Theory

Lecturer: **James Cogdell**Notes by: Farhan Sadeek

Spring 2025

1 January 8, 2025

Dr. Cogdell explained the logistics of the class and also took attendance.

1.1 Conjectures in Number Theory

- A number is divisible by 3 if the sum of its digits is divisible by 3.
- **Fermat's Last Theorem**: There are no three positive integers a, b, and c that satisfy the equation $a^n + b^n = c^n$ for any integer value of n greater than 2.
- · There are infinitely many primes.
- $\sqrt{2}$ is irrational.
- π is irrational.
- Every number can be written as the sum of four squares (Lagrange's Four Square Theorem). For example, $1000 = 10^2 + 30^2 + 0^2 + 0^2$ and $999 = 30^2 + 9^2 + 3^2 + 3^2$.
- The polynomial $n^2 n + 41$ produces prime numbers for $n = 0, 1, 2, \dots, 40$, but not for n = 41.
- Euler conjectured that no n^{th} power can be written as the sum of two n^{th} powers for n > 2. This was proven false by the counterexample $144^5 = 27^5 + 84^5 + 110^5 + 133^5$.
- Goldbach's Conjecture: Every even integer greater than 2 can be written as the sum of two primes. For example, 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5, 12 = 5 + 7, 14 = 7 + 7, 16 = 3 + 13, 18 = 7 + 11. This has been verified for numbers up to 100,000 but remains unproven.

Number theory is related to **Abstract Algebra**, but also intersects with other domains such as **Combinatorics**, **Analysis**, and **Topology**. We will accept a few fundamental facts about **Number Theory**.

Fact 1

If S is a non-empty set of positive integers, then S contains a smallest element. This is known as the Well-Ordering Principle.

1.2 Divisibility

This concept has been known since the time of Euclid.

Definition 2

An integer b is divisible by an integer $a \neq 0$ if there is an integer x such that b = ax. We write this as $a \mid b$. If b is not divisible by a, we write $a \nmid b$.

There are two derivative notions:

- If 0 < a < b, then a is called a **proper divisor** of b.
- If $a^k \parallel b$, it means $a^k \mid b$ and $a^{k+1} \nmid b$.

Theorem 3

Let a, b, and c be integers. Then the following are true:

- If *a* | *b*, then *a* | *bc*.
- If $a \mid b$, then $a \mid b + c$.
- If $a \mid b$ and $a \mid c$, then $a \mid b + c$.
- If $a \mid b$ and $b \mid a$, then a = b or a = -b.
- If $a \mid b$ and a > 0 and b > 0, then $a \le b$.
- If $m \neq 0$ and $a \mid b$, then $am \mid bm$.
- If $a \mid b_1, a \mid b_2, \ldots, a \mid b_n$, then $a \mid \sum_{i=1}^n b_i x_i$ for any integers x_i .

Theorem 4 (The Division Algorithm)

Given integers a and b with a > 0, there exist unique integers q and r such that $0 \le r < a$ and b = aq + r.

Proof. Consider the arithmetic progression . . . , b-3a, b-2a, b-a, b, b+a, b+2a, b+3a, In this sequence, select the smallest non-negative member. This defines r and satisfies the inequalities of the theorem. Since r is in the sequence, it can be written as b-qa. To prove the uniqueness of q and r, suppose there is another pair q_1 and r_1 that satisfies the same conditions. We first prove that $r=r_1$. If not, assume $r< r_1$, so $0< r_1-r< a$. But $r_1-r=a(q-q_1)$, meaning $a\mid (r_1-r)$, which contradicts the fact that $0< r_1-r< a$. Thus, $r=r_1$ and $q=q_1$.

Fact 5

If $a \mid b$, then r satisfies the stronger inequality $0 \le r < a$.

Fact 6

The Division Algorithm can be stated without the assumption a>0. Given integers a and b with $a\neq 0$, there exist integers a and b such that b=a0, with a1.