Memory Mapping of Array

<u>Question</u>: Given a 2D array A[10][20], find the memory location of A[6][15] if loc(A[0][0])=100. Assume columnwise memory is allocated in the double type.

Solution:

Here,

$$I_1 = 0$$
, $u_1 = 9$, $I_2 = 0$, $u_2 = 19$
 $b = 100$, $i = 6$, $j = 15$, $L = 8$
 $M = 10$, $N = 20$

For column major:

$$addr(a[i, j]) = b + (j - I_2)*M*L + (i - I_1)L$$

Hence,

$$addr(A[6][15]) = 100 + (15 - 0)*10*8 + (6 - 0)*8$$

 $= 1348 \text{ (Ans)}$

Question: Find the memory location of A[70][60] if loc(A[20][15])=10000. Assume row-wise memory is allocated in the floating point type array A[80][100], where each float data is 4 bytes.

Solution:

For row major:

$$addr(a[i, j]) = b + (i - I_1)*N*L + (j - I_2)*L$$

At first, we need to calculate the base for A[20][15]:

Hence,

$$10000 = b + (20 - 0)*100*4 + (15 - 0)*4$$

$$b = 10000 - 8060$$

$$b = 1940$$

For A[70][60]:

$$I_1 = 0$$
, $u_1 = 79$, $I_2 = 0$, $u_2 = 99$

$$b = 1940$$
, $i = 70$, $j = 60$, $L = 4$

$$M = 80, N = 100$$

Hence,

addr(A[70][60]) =
$$1940 + (70 - 0)*100*4 + (60 - 0)*4$$

= 30180 (Ans)