Similar Language Detection

Group Members:

Naveen Bhookya(140050034), Chanukya Vardhan(140050043), Uday Kusupati(140050048), Raghuveer Uppara(140050050).

Stage 1 Report:

- From the training data, for each language we first parse through the sentences and find the frequencies of all the words appearing in all the sentences.
- Among all the words and their corresponding frequencies generated for each language, we choose the top 1000 words based on their frequency values.
- Define x^l for each language I as vector $\in \mathbb{R}^{1000}$, $x^l = 1000$ -tuple of frequency of the chosen words.
- Now given an input statement s we define \$x^{I}(s)\$ for language I as follows:
 - $x^{l}(s) \in R^{1000}$ first intialised to all zeros.
 - $x_i^l(s) = 1$ if the ith word of the lth language is present in the input sentence.
- Label for statement s is

label(s) = $\operatorname{argmax}_{1 \text{ in } \{1,2,\dots,13\}}(\text{dotproduct of } x^{l}(s), x^{l}).$

The intuition is clear.

Observations:

 The confusion Matrix generated after running the code on training data(18000 samples for each language) is as follows:

• This will be used for dividing the languages into groups.