Aucun document autorisé

<u>SAUF</u>: Abaques de Smith et Formulaire (1 feuille polycopiée au recto et manuscrite au verso)

Calculatrice autorisée

QUESTIONS DE COURS (compléter ce document qui à rendre avec votre copie) 3pts

- 1) On veut adapter par tronçon quart d'onde $Z_R=20\Omega$ sur $Z_0=50$ Ω à 1GHz. Calculer Zc et L : impédance caractéristique et longueur du tronçon quart d'onde (on prendra $\varepsilon r=1$)
- 2) Lister sur votre copie les éléments utilisables pour adapter en puissance en hyperfréquence.
- 3) On considère le schéma de la figure ci-dessous. Uniquement l'onde réfléchie est présente :

- a. Donner l'expression de $\underline{Vr}(x)$ en fonction de $\underline{Vr}(0)$.
- b. Donner l'expression de $\underline{Ir}(x)$ en fonction de $\underline{Ir}(0)$.
- 4) Γ_R =0.55-0.23×j est le coefficient de réflexion d'une charge connectée au bout d'une ligne de longueur=1.5× λ . Que vaut Γ e : coefficient de réflexion à l'entrée ?

EXERCICE 1 : Lecture et utilisation d'une Abaque de Smith (5 points) à rédiger sur une copie + abaque de Smith

On considère une charge d'impédance Z_R = 25 + i×12,6 Ω . On travaille à f_0 =1GHz.

- 1) Placer Z_R sur l'abaque de Smith (L'abaque de Smith sera normalisé par rapport à Z_0 =50 Ω).
- 2) Déduire, en précisant les unités :
 - a) Le coefficient de réflexion Γ_R (partie réelle et partie imaginaire PUIS module et phase),
 - b) Le Rapport d'Onde Stationnaire (ROS),
 - c) l'admittance Y_R (partie réelle et partie imaginaire).

On connecte à Z_R une ligne à air $(\epsilon_r=1)$, sans pertes, d'impédance caractéristique $Z_c=50\Omega$, et de longueur L=4 cm.

3) Déterminer à l'aide de l'Abaque de Smith l'impédance (partie réelle et imaginaire) équivalente de l'ensemble *ligne de* $transmission + Z_R$.

EXERCICE 2 : Adaptation (7 points) à rédiger sur une copie + abaque de Smith Les parties A et B sont indépendantes.

On considère un générateur sinusoïdal (f=500MHz) d'impédance interne Z_g =50 Ω connecté à une charge d'impédance complexe Z_R = 11- i×15 Ω . par une ligne à air (ϵ_r =1), sans pertes, d'impédance caractéristique Z_c =50 Ω .

Partie A (4pts)

- 1) Placer Γ_R sur l'abaque de Smith.
- 2) Peut-on directement adapter Z_R par ligne quart d'onde, pourquoi ?

On adapte Z_R à l'aide d'une ligne quart-d'onde, d'impédance caractéristique Z_c' et d'une ligne coaxiale RG58 (ϵ_r =2,25), de longueur l, d'impédance caractéristique Z_c =50 Ω , insérée entre ce tronçon λ /4 et la charge (voir schéma ci-dessus)

3) Déterminer à l'aide d'un abaque de Smith, la longueur l (la plus petite) de la ligne qui transforme l'impédance complexe Z_R en impédance réelle (notée Z_1). Donner la valeur et l'unité de Z_1 .

Partie B (3 pts)

- 4) On suppose que l'ensemble (Z_R + ligne Z_c =50 Ω de longueur l) est équivalent à une impédance Zeq=10 Ω . Afin d'adapter Zeq sur 50 Ω , on rajoute une ligne quart d'onde (voir la figure ci-dessus).
 - a) Démontrer que la relation qui donne l'impédance d'entrée d'un tronçon quart d'onde (notée Z_e) en fonction de son impédance caractéristique (notée Z_c) et de son impédance de charge (notée Z_1) vaut $Z_e = Z_c^2/Z_1$.
 - b) En déduire alors l'impédance caractéristique Z_c du tronçon quart-d'onde afin de réaliser l'adaptation. Calculer la longueur de la ligne quart d'onde sachant que, pour cette ligne, ε_r =2.25.

EXERCICE 3: Ligne en régime impulsionnel (5 points)

Questions 1 et 2 : à rédiger sur une copie

Question 3 : compléter les chronogrammes joints qui seront à rendre avec votre copie

On considère une ligne sans perte d'impédance caractéristique $Z_C = 75\Omega$ et de constante diélectrique de 2,1 (Téflon) et de longueur 50m, reliée à une extrémité, à un générateur d'impulsion d'impédance interne Z_g et à l'autre, à une antenne d'impédance Z_R .

- Faire un schéma résumant l'énoncé avec toutes les informations (Impédance, longueur, coefficient de réflexion, charge...). (1 pt)
- 2) Calculer le temps τ que met une impulsion pour se propager jusqu'à l'antenne. (0.5 pt)
- 3) Compléter les chronogrammes des tensions d'entrée et de sortie de la ligne pour les différents cas de Z_g et $Z_{R,e}$ en détaillant les calculs sur votre copie. La première impulsion de Ve vous est donnée à 5V. (3,5 pts)

Compléter ces chronogrammes qui seront rendre avec votre copie :

