

Praktikum Smart Data Analytics

Übungsblatt 3

11.07.2022

Agenda

- Datasets
- Pre-training
- Self-training on Transformations
 - Binary Classification
 - Multi-class Classification
- Teacher and Student Model
 - Transfer Learning
 - Supervised Training
 - Fine-tuning

Datasets

Data sets

- Opportunity:
 - 18 classes
- Daphnet:
 - 2 classes
- PAMAP2:
 - 11 classes

Opportunity

М	901	LUI	IILY												
				0.890											
				cy: 0.											
				312580											
	f1_score_m														
	8598	17	19	23	19	44	12	27	17	2	23	1	5	7	
2.5	4	6	196	31]											
1	13	49	0	23	0	0	0	0	0	0	0	0	0	0	
_	0	0	0	0]								-			
1		0	69	0	27	0	0	0	0	0	0	0	0	0	
-	0	0	0	3]	_		_	_	-			-	- N	-	
1		7	0	38	3	0	0	0	0	0	0	0	0	0	
	0	0	1 2	0]	0.4				~					~	
1	3	0	0	0	94	0	0	0	0	0	0	0	0	0	
1		0	1	0] 0	0	159	14	5	2	0	0	1	0	0	
L	0	0	0	1]	0	139	14	3		O	0	1	0	O	
1		0	ø	0	0	5	121	0	3	1	0	0	0	0	
L	ø	0	ø	2]	0		121			1		0	0		
1		ø	ø	0	0	1	0	79	1	1	1	0	1	0	
_	0	0	2	2]		_		, ,	_	_	_		_		
1		0	ø	0	0	1	4	8	44	1	2	0	1	0	
-	3	0	0	1]											
1	9	0	0	0	0	0	0	1	0	21	5	0	0	1	
	0	0	1	7]											
1	6	0	0	0	0	0	0	0	0	3	19	1	2	0	
	0	0	0	0]											
[10	0	0	0	0	0	0	3	0	5	1	13	6	3	
	3	0	0	0]											
[8	0	0	0	0	0	0	0	1	0	5	0	14	3	
	7	0	0	0]											
[0	0	0	0	0	0	0	0	0	0	1	0	43	
-	8	0	0	0]											
1		0	0	0	0	0	0	1	0	0	0	0	5	10	
-	31	0	0	0]											
[0	0	1	0	0	0	0	0	0	0	0	0	0	
_	0	50	4	0]	0	44		0	0	0			0		
L	128	2	0	0	0	11	0	0	0	0	0	0	0	0	
г	0	0	245	0]	0	0	-	0	0	0	0	0	0	0	
1		0	5 0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	68]]											

Daphnet


```
Testing Accuracy: 0.89634144

validation accuracy: 0.89634144

f1_score_m 0.7074300196606919

confusion_matrix
[[3206 84]
[ 307 175]]
```

PAMAP2


```
Testing Accuracy: 0.7420382
validation accuracy: 0.7420382
f1_score_w 0.7187668004530933
f1_score_m 0.6930108584167876
confusion matrix
                                  0]
                                  0]
    51
    20
                               0 1]
                                  0]
           63
                                  0]
                  0 19 36
                                  0]
                                  0]
                  0 55
                                  0]
                       22 12
                                  0]
                                  0]
                        1 13 40
                              27 67]]
```


Pre-training

Pre-training: Hypothesis

- Hypothesis: pretrain on another dataset and train the baseline enhances the results and convergence speed
- Works good in Computer Vision e.g. ImageNet [Huh16]
- Network:
 - Conv Input Layer different for different datasets
 - Conv Hidden Layer (1, 3, 128, 128) always the same
 - FC Output Layer different for different datasets
- Pipeline
 - Train Net 1 on one dataset (Opportunity), save Conv Hidden layer 1
 - Train Net 2 on another dataset, but initialized with Conv Hidden layer 1
 - Train many times to obtain mean and variance

Pre-training: Results And Analysis

PAMAP2 dataset, epochs=50, Ir=0.0005, num_experiments=5

Approach	Test Accuracy	F1 score weighted	F1 score mean	
Baseline	0.724 (0.035)	0.683 (0.046)	0.680 (0.044)	
Pretrained on OPP	0.811 (0.069)	0.802 (0.073)	0.774 (0.085)	

PAMAP2 dataset, epochs=100, Ir=0.0001, num_experiments=5

Approach	Test Accuracy	F1 score weighted	F1 score mean	
Baseline	0.908 (0.005)	0.906 (0.005)	0.894 (0.006)	
Pretrained on OPP	0.893 (0.021)	0.891 (0.022)	0.879 (0.023)	

Analysis

- Pre-training enhances the convergence speed
- Pre-training does not enhance the final results of the training
 - The network is too small
 - The num epochs is large

Self-training on Transformations

Hypothesis

- Hypothesis: self-training on pretext task (transformation) enhances results
- Based on [Yuan22]
- Two different approaches:
 - Binary Classification, whether the transformation is applied
 - Multi-class Classification, which transformation is applied

Multi-class classification self-training [Yuan22]

Transformations

- Different transformations are possible:
 - flip, negate, permute, time warp
- Illustration on sample from PAMAP2

Self-training: Results And Analysis

PAMAP2 dataset, epochs=100, Ir=0.0001, num_experiments=5

Approach	Flip	Permute	Time warp	Test Accuray	F1 Score weighted	F1 Score mean
Baseline	-	-	-	0.908 (0.005)	0.906 (0.005)	0.894 (0.006)
Binary Flip	+	-	-	0.819 (0.044)	0.807 (0.054)	0.793 (0.054)
Binary Permute	-	+	-	0.889 (0.009)	0.887 (0.009)	0.870 (0.013)
Binary Warp	-	-	+	0.900 (0,008)	0.899 (0.009)	0.885 (0.008)
MultiClass	+	+	+	0.809 (0.021)	0.791 (0.031)	0.772 (0.036)

- Analysis:
 - No visible advantage of self-training
 - Possible reasons:
 - Too small network

Teacher and Student Model

Transfer Learning

- Train a model with a large dataset, extract *the optimal parameters (weights)* and then store them as *a good experience*.
- Take full advantage of old knowledge rather than train a new model from zero when we get *a new similar task*.

Transfer Learning

https://github.com/iantangc/SelfHAR [CHI IAN TANG, 2021]

How to improve performance with TL? Experiment Design

- Student Model: baseline
 - a. generally, initialize this network with random weights.
 - b. Instead of random weight, adopt the weights that is extracted from *the teacher model* to train *this student model*
- Teacher Model
 - a. Train a teacher model ahead of time.
 - b. That is so-called pre-trained model.
 - c. And this process is pre-training.

Experiment Results

		Model						
Iteration	Metrics	Baseline, Student Model (Daphnet)	Teacher Model (OpportunityUCID)	Teacher-Student Model (Daphnet)				
	Testing Accuracy	0.8971368	0.89246917	0.890509				
50	Validation Accuracy	0.8971368	0.89246917	0.890509				
	fl score	0.6856091	0.89249132	0.681746				
25	Testing Accuracy	0.8894486	-	0.9135737				
	Validation Accuracy	0.8894486	-	0.9135737				
	f1 score	0.7277423	-	0.7816385				

no significant improvement

the scale of teacher model is small

Summary

Summary And Future Works

- Tested approaches:
 - Pre-training
 - Self-training on transformations
 - Teacher-Student models
- Pre-training allows faster convergence
- Self-training does not show better performance due to
 - Network Architecture
 - Hyperparameters
- Teacher-Student shows better performance
 - combine with large unlabeled dataset

Questions?

Appendix

Pre-training: Results

PAMAP2 dataset, epochs=50, Ir=0.0005, num_experiments=5

```
Test accuracy. Mean (std) = 0.724 (0.035)
Val accuracy. Mean (std) = 0.724 (0.035)
fl score weighted. Mean (std) = 0.683 (0.046)
fl score mean. Mean (std) = 0.680 (0.044)
```

Test accuracy. Mean (std) = 0.811 (0.069)Val accuracy. Mean (std) = 0.811 (0.069)fl score weighted. Mean (std) = 0.802 (0.073)fl score mean. Mean (std) = 0.774 (0.085)

Baseline after 50 epochs

Pretrained on Opportunity after 50 epochs

PAMAP2 dataset, epochs=100, Ir=0.0001, num_experiments=5

```
Test accuracy. Mean (std) = 0.908 (0.005)
Val accuracy. Mean (std) = 0.908 (0.005)
fl score weighted. Mean (std) = 0.906 (0.005)
fl score mean. Mean (std) = 0.894 (0.006)
```

Test accuracy. Mean (std) = 0.893 (0.021)Val accuracy. Mean (std) = 0.893 (0.021)fl score weighted. Mean (std) = 0.891 (0.022)fl score mean. Mean (std) = 0.879 (0.023)

Baseline after 100 epochs

Pretrained on Opportunity after 100 epochs

- Analysis
 - Pre-training enhances the convergence speed
 - Pre-training does not enhance the final results of the training
 - The network is too small
 - The num epochs is large

Results

PAMAP2 dataset, epochs=100, Ir=0.0001, num_experiments=5

```
Test accuracy. Mean (std) = 0.908 (0.005)
Val accuracy. Mean (std) = 0.908 (0.005)
f1 score weighted. Mean (std) = 0.906 (0.005)
f1 score mean. Mean (std) = 0.894 (0.006)
```

Baseline after 100 epochs

```
Test accuracy. Mean (std) = 0.900 (0.008)
Val accuracy. Mean (std) = 0.900 (0.008)
fl score weighted. Mean (std) = 0.899 (0.009)
fl score mean. Mean (std) = 0.885 (0.008)
```

Self-trained on time warp

```
Test accuracy. Mean (std) = 0.819 (0.044)
Val accuracy. Mean (std) = 0.819 (0.044)
f1 score weighted. Mean (std) = 0.807 (0.054)
f1 score mean. Mean (std) = 0.793 (0.054)
```

Self-trained on time flip

```
Test accuracy. Mean (std) = 0.869 (0.010)
Val accuracy. Mean (std) = 0.869 (0.010)
fl score weighted. Mean (std) = 0.866 (0.012)
fl score mean. Mean (std) = 0.850 (0.016)
```

Self-trained on negate

```
Test accuracy. Mean (std) = 0.889 (0.009)
Val accuracy. Mean (std) = 0.889 (0.009)
f1 score weighted. Mean (std) = 0.887 (0.009)
f1 score mean. Mean (std) = 0.870 (0.013)
```

Self-trained on permute

```
Test accuracy. Mean (std) = 0.809 (0.021)
Val accuracy. Mean (std) = 0.809 (0.021)
fl score weighted. Mean (std) = 0.791 (0.031)
fl score mean. Mean (std) = 0.772 (0.036)
```

Self-trained on flip, permute, time warp

Results

Test accuracy. Mean (std) = 0.724 (0.035) Val accuracy. Mean (std) = 0.724 (0.035) f1 score weighted. Mean (std) = 0.683 (0.046) f1 score mean. Mean (std) = 0.680 (0.044)

Test accuracy. Mean (std) = 0.746 (0.043) Val accuracy. Mean (std) = 0.746 (0.043) fl score weighted. Mean (std) = 0.719 (0.055) fl score mean. Mean (std) = 0.708 (0.060)

Baseline after 50 epochs

Self-trained on permute after 50 epochs

