

IN THE U.S. PATENT AND TRADEMARK OFFICE

JC872 U.S. PTO
09/907903
07/19/01

Applicant(s) : YAMAMOTO, Kyoko et al.

Application No.: Group:

Filed: July 19, 2001 Examiner:

For: ANISOTROPIC SCATTERING FILM AND LIQUID CRYSTAL DISPLAY

L E T T E R

Assistant Commissioner for Patents
Box Patent Application
Washington, D.C. 20231

July 19, 2001
2185-0554P-SP

Sir:

Under the provisions of 35 USC 119 and 37 CFR 1.55(a), the applicant hereby claims the right of priority based on the following application(s) :

<u>Country</u>	<u>Application No.</u>	<u>Filed</u>
JAPAN	2000-220514	07/21/00
JAPAN	2000-283114	09/19/00

A certified copy of the above-noted application(s) is(are) attached hereto.

If necessary, the Commissioner is hereby authorized in this, concurrent, and future replies, to charge payment or credit any overpayment to deposit Account No. 02-2448 for any additional fees required under 37 C.F.R. 1.16 or under 37 C.F.R. 1.17; particularly, extension of time fees.

Respectfully submitted,

BIRCH, STEWART, KOLASCH & BIRCH, LLP

By:

JOHN W. BAILEY

Reg. No. 32,881

P. O. Box 747

Falls Church, Virginia 22040-0747

Attachment
(703) 205-8000
/kw

IN THE U.S. PATENT AND TRADEMARK OFFICE

I N F O R M A T I O N S H E E T

Applicant: YAMAMOTO, Kyoko
KUWABARA, Masato
MAEDA, Yasuteru
FUJISAWA, Koichi

Application No.:

Filed: July 19, 2001

For: ANISOTROPIC SCATTERING FILM AND LIQUID CRYSTAL DISPLAY

Priority Claimed Under 35 U.S.C. 119 and/or 120:

COUNTRY	DATE	NUMBER
JAPAN	07/21/00	2000-220514
JAPAN	09/19/00	2000-283114

Send Correspondence to: BIRCH, STEWART, KOLASCH & BIRCH, LLP
P. O. Box 747
Falls Church, Virginia 22040-0747
(703) 205-8000

The above information is submitted to advise the USPTO of all relevant facts in connection with the present application. A timely executed Declaration in accordance with 37 CFR 1.64 will follow.

Respectfully submitted,

BIRCH, STEWART, KOLASCH & BIRCH, LLP

By

JOHN W. BAILEY
Reg. No. 32,881
P. O. Box 747
Falls Church, VA 22040-0747

/kw

(703) 205-8000

YAMAMOTO, Kyoko et.al.
JULY 19, 2001
BSKB, LLP
日本特許庁 (703) 205-8000
2185-0554P
1 of 2

日本特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されて
いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed
with this Office

jc876 U.S. Pro
09/907903
07/19/01

出願年月日

Date of Application:

2000年 7月21日

出願番号

Application Number:

特願2000-220514

出願人

Applicant(s):

住友化学工業株式会社

2001年 6月21日

特許庁長官
Commissioner,
Japan Patent Office

及川耕造

出証番号 出証特2001-3058562

【書類名】 特許願
【整理番号】 P151715
【提出日】 平成12年 7月21日
【あて先】 特許庁長官殿
【国際特許分類】 G02B 5/02
F21V 8/00
H01G 9/02

【発明者】

【住所又は居所】 茨城県つくば市北原 6 住友化学工業株式会社内
【氏名】 山本 恵子

【発明者】

【住所又は居所】 茨城県つくば市北原 6 住友化学工業株式会社内
【氏名】 藤沢 幸一

【特許出願人】

【識別番号】 000002093
【氏名又は名称】 住友化学工業株式会社

【代理人】

【識別番号】 100093285
【弁理士】
【氏名又は名称】 久保山 隆
【電話番号】 06-6220-3404

【選任した代理人】

【識別番号】 100094477
【弁理士】
【氏名又は名称】 神野 直美
【電話番号】 06-6220-3404

【選任した代理人】

【識別番号】 100113000
【弁理士】

特2000-220514

【氏名又は名称】 中山 亨

【電話番号】 06-6220-3404

【手数料の表示】

【予納台帳番号】 010238

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 9903380

【ブルーフの要否】 要

【書類名】 明細書

【発明の名称】 光学異方性フィルムおよびそれを用いた液晶表示装置

【特許請求の範囲】

【請求項1】 偏光成分に対し散乱異方性を有する微孔性フィルムであって、フィルム表面に観測される微細孔の形状が実質的に橢円形状であり、該橢円形の長軸と短軸の長さの比（長軸／短軸）が1より大きく、微細孔の短軸径が用いる光の波長より小さく、微細孔の長軸方向の向きが実質的に一方向に揃っている微孔性フィルムに、該微孔性フィルムの屈折率とは異なる屈折率を有する物質を充填してなることを特徴とする異方性散乱フィルム。

【請求項2】 微孔性フィルムが高分子からなることを特徴とする請求項1記載の異方性散乱フィルム。

【請求項3】 微孔性フィルムに充填する物質が重合性物質であり、上記微孔性フィルムの微細孔に該重合性物質を充填後、重合性成分を重合することにより、支持媒質中に物質を固定してなることを特徴とする請求項1または2記載の異方性散乱フィルム。

【請求項4】 長軸方向において、上記物質と微孔性フィルムの屈折率差が後方散乱を主体とする領域にある請求項1～3のいずれかに記載の異方性散乱フィルム。

【請求項5】 少なくとも表面側に偏光板を有する液晶パネル、該液晶パネルの裏面側に位置するバックライト装置と、上記液晶パネルとバックライト装置との間に請求項1～4のいずれかに記載の異方性散乱フィルムと、バックライト装置の裏面側に反射板あるいは拡散反射板を備えてなる液晶表示装置であり、上記異方性散乱フィルムの透過軸と上記液晶パネルの透過軸をほぼ一致させてなる液晶表示装置。

【請求項6】 液晶パネルが表面側および裏面側にそれぞれ偏光板を有する請求項5記載の液晶表示装置。

【請求項7】 液晶パネルの裏面側の偏光板の透過軸と、異方性散乱フィルムの透過軸とをほぼ一致させてなる請求項6に記載の液晶表示装置。

【請求項8】 異方性散乱フィルムと反射板ないしは拡散反射板の間に位相差

板を有する請求項記載の7いずれかに記載の液晶表示装置。

【請求項9】バックライト装置が光源から導光板を通じて照明を行うサイド型バックライトまたは直下型のバックライトである請求項5～8のいずれかに記載の液晶表示装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は、非線形光学素子や液晶表示装置等に用いられる異方性散乱フィルムおよび異方性散乱フィルムを用いた液晶表示装置に関する。

【0002】

【従来の技術】

従来の液晶パネルは、吸収型偏光板を用いるために、その明るさは半分以下になっていた。使用に際しては液晶パネルの表裏に2枚の偏光板を用いるために、さらに光の利用効率が低下し、30%から40%の明るさになっていた。そこで、光の有効利用を高めるために、偏光変換してこれらの欠点を補うという試みがなされている。

【0003】

(1) 偏光ビームスピリッター(以下PBS; Polarized Beam Splitterと略す)による方法。(ASIA DISPLAY 1995年第731頁等)。

(2) 多層構造の偏光分離層を用いる方法。層の少なくとも1つの面内軸に関する屈折率が、隣接した層間で高屈折率と低屈折率が交互に積層されている。(特表平9-506985号公報等)

(3) コレスティック液晶層による偏光分離層を用いる方法(ASIA DISPLAY 1995年第735頁等)。

(4) 液晶と高分子の複合体を用いる方法(特開平8-76114号公報等)。

(5) 異方性散乱粒子を配列する方法(特開平9-297204号公報等)

【0004】

しかしながら上記の方法では以下の問題が生じる。

(ア) プリズムを用いるため、光源からの光が平行光であれば損失は少ないが、角度を有する場合、偏光変換効率が低下する。それ故角度依存性あるいは波長依存性が問題である。またプリズム等を用いるために軽量化とコンパクト化が課題である。

(イ) 構造が複雑であるため、コストが高い。

(ウ) コレステリックフィルムを用いる場合、全波長範囲をカバーするには膜厚方向にコレステリック液晶の螺旋ピッチは一定の分布を有さなくてはならず、非常に複雑な作製法が必要となるという問題がある。

(エ) 製造に相分離等の技術を用いる必要があり、液晶のドロップレットサイズ等を制御することが難しい。

(オ) 異方性散乱粒子を支持媒体中に分散する必要があり、その分散性を制御することは難しい。また分散した粒子の配向制御も難しい。

【0005】

【発明が解決しようとする課題】

本発明の目的は、製法が容易で、高い透過・散乱偏光依存性（散乱異方性）を有する異方性散乱フィルムと、該異方性散乱フィルムを用いた高輝度の液晶表示装置を提供することにある。

【0006】

【課題を解決するための手段】

本発明者らは、上記課題を解決するために銳意検討の結果、電池用セパレータに用いられている微孔性フィルムの中で特定の微細孔を有し偏光成分に対し散乱異方性を有する微孔性フィルムの微細孔内に、該微孔性フィルムの屈折率とは異なる屈折率を有する物質を充填してなることにより得られる異方性散乱フィルムが偏光変換を行うと、高い透過・散乱偏光依存性（散乱異方性）を示し、そのフィルムを用いて液晶表示装置高輝度化であることを見い出し、本発明を完成するに至った。

【0007】

すなわち、本発明は、[1] 偏光成分に対し散乱異方性を有する微孔性フィルムであって、フィルム表面に観測される微細孔の形状が実質的に橢円形状であり

、該橢円形の長軸と短軸の長さの比（長軸／短軸）が1より大きく、微細孔の短軸径が用いる光の波長より小さく、微細孔の長軸方向の向きが実質的に一方向に揃っている微孔性フィルムに、該微孔性フィルムの屈折率とは異なる屈折率を有する物質を充填してなることを特徴とする異方性散乱フィルム。

また、本発明は、〔2〕少なくとも表面側に偏光板を有する液晶パネル、該液晶パネルの裏面側に位置するバックライト装置と、上記液晶パネルとバックライト装置との間に上記〔1〕記載の異方性散乱フィルムと、バックライト装置の裏面側に反射板あるいは拡散反射板を備えてなる液晶表示装置であり、上記異方性散乱フィルムの透過軸と上記液晶パネルの透過軸をほぼ一致させてなる液晶表示装置に係るものである。

【0008】

【発明の実施の形態】

次に、本発明を詳細に説明する。

本発明の異方性散乱フィルムについて説明する。

本発明でいう異方性散乱フィルムとは、偏光成分に対し散乱異方性を有するフィルムである。

微孔性フィルムとは、多孔性又は海綿状のフィルムを示す。すなわち、微細孔が相互連結していない種類、及び微細孔が一方の外側表面又は表面領域から他方へと達することのできる曲がりくねった経路を介して本質上相互接続している種類のいずれのフィルムをも含む。

【0009】

図1に示すように、フィルム表面に観測される微細孔の形状が実質的に橢円形状であり、該橢円形の長軸と短軸の長さの比〔（長軸／短軸）以下この比をアスペクト比という〕が1より大きく、好ましくはアスペクト比が1～50、さらに好ましくはアスペクト比が4～30である。

【0010】

上記橢円形状とは、小判形、両凸レンズ形などの実質的に橢円形状である広義の形状を含み、円形とは異なる長軸と短軸が存在しうる形状であればよい。

アスペクト比を有する微細孔の短軸径は用いる光の波長より小さく、好ましく

は用いる波長よりも十分小さいものが用いられ、長軸方向の向きが実質的に一方に向揃っている。

【0011】

本発明の異方性散乱フィルムは、該微孔性フィルムに該微孔性フィルムの屈折率とは異なる屈折率を有する物質を充填してなるフィルムである。充填する物質は、等方性であっても、異方性であってもよい。

【0012】

上記微孔性フィルムの微細孔に、上記微孔性フィルムの屈折率とは異なる屈折率を有する物質を充填するが、充填する物質については無色であれば特に限定はない。光あるいは熱によって重合して微孔性フィルムの微細孔中に固定してなることを考えると、好ましくは重合性物質が用いられる。

【0013】

該微孔性フィルムに充填する物質は、該微孔性フィルムとは異なる屈折率を有するものであれば、無機物質でも有機物質でもよい。例えば有機物質としては、ポリメチルメタクリレート、ポリベンジルメタクリレート、ポリフェニルメタクリレート、ポリジアリルフタレート、ポリスチレン、ポリP-ブロモフェニルメタクリレート、ポリペンタクロロフェニルメタクリレート、ポリクロロスチレン、ポリ α ナフチルメタクリレートポリビニルナフタレン、ポリビニルカルバゾール、ポリペンタブロモフェニルメタクリレート、アセトン、醋酸メチル、1-ペンタノール、シンナムアルデヒド、二硫化炭素、1,1,2,2-テトラブロモエタン、1-ブロモナフタレン、アセトアルデヒド、アセトニトリル、イソブチルアルコール、エタノール、1-クロロナフタレン、1-ブタノール、2-ブタノール、 t -ブチルアルコール、1-ブロパノール、2-ブロパノール酢酸エチル、ジエチルエーテル、ジメトキシメタン等が挙げられる。これらは単独あるいは併用して好適に用いることができる。

【0014】

上記フィルム表面に観測される微細孔に形状異方性を有する微孔性フィルムに、該微孔性フィルムの屈折率とは異なる屈折率を有する物質を充填した異方性散乱フィルムは、フィルム表面に観測される微細孔の短軸方向に振動面を有する偏

光成分を透過し、微細孔の長軸方向に振動面を有する偏光成分を散乱する。

【0015】

上記微孔性フィルムの微細孔が占める空隙率は、特に限定はされないが、30～85%が好ましく、さらに好ましくは50～75%である。空隙率が30%より少ないと、十分な散乱強度が得られず、また85%より多いと機械的強度が低下する。

【0016】

上記微孔性フィルムの膜厚は、特に限定されないが、好ましくは1～500μm、さらに好ましくは20～200μmである。1μmより薄いと十分な散乱が得られず、また500μmより厚いと十分透過しない。

【0017】

上記微孔性フィルムの微細孔の熱収縮率が大きと、高温下で微細孔がつぶれやすいので、上記微孔性フィルムの微細孔の熱収縮率は小さい方が望ましい。好ましくは120℃での熱収縮率が9%未満、さらに好ましくは4%未満であることがより好ましい。

【0018】

異方性散乱フィルムに用いられる材質としては、軽量化、成形の点からも高分子が望ましい。高分子は、異方性散乱フィルムを高温で使用した場合や、液晶セルとの貼合工程の温度で光学的性質や形状の変化が起こらない高分子が好ましく、ガラス転移温度がある程度高い熱可塑性エンジニアリング高分子、または可塑材が添加されている高分子では流動温度がある程度高い高分子が好ましく用いられる。

【0019】

高分子のガラス転移温度または軟化温度は、液晶表示装置を使用する温度範囲内で光学特性の変化やフィルムの収縮などのないように下限が決定される。

高分子に求められるガラス転移温度または軟化温度の範囲としては、40～250℃が好ましく、50～230℃が更に好ましく、特に好ましくは60～200℃である。

【0020】

これらの条件を満たす好ましい高分子としては、ポリオレフィン系高分子などが例示される。ポリオレフィン系高分子を構成するポリオレフィンとは、エチレン、プロピレン、ブテン、ペンテン、ヘキセン等に例示される α -オレフィン単独重合体あるいは共重合体及びこれらのブレンド物である。また、各種の高分子を積層したものでもよい。

【0021】

これらの高分子に機械的強度を付与する際やLCDセルに貼合する際の接着性を改良するなどの目的のために添加物を用いてもよい。添加物の種類や量については、本発明の目的を損なわない程度の範囲であれば特に限定はない。

【0022】

次に、本発明で用いるの微孔性フィルムの製造方法について説明する。

微孔性フィルムの製造方法は、通常行われている多孔質フィルムの製造方法を用いることができる。

多孔質フィルムの製造方法としては、以下の方法が挙げられる。

- (1) 樹脂に充填剤を添加し、フィルムに成膜後延伸（特公昭55-9131号公報等）
- (2) ポリマー溶融物中で微細粒子を合成し、フィルムを成膜後延伸（特開平10-287758号公報等）
- (3) 樹脂に充填剤と可塑剤を添加し、フィルムに成膜後延伸（特公平7-15021号公報等）
- (4) 樹脂に表面処理された充填剤を添加し、フィルムに成膜後延伸（特開昭63-210144号公報等）
- (5) 樹脂に充填剤と結晶核剤を添加し、フィルムに成膜後延伸（特開昭64-54042号公報等）
- (6) 樹脂に非相溶性樹脂を添加し、フィルムに成膜後延伸（特開平4-142341号公報等）
- (7) 樹脂に抽出可能物質を添加し、成膜後抽出し延伸（特開平1-201342号公報等）
- (8) 結晶性樹脂を成膜後、溶媒ストレッチ法により延伸（特公平2-1914

1号公報等)

(9) 結晶性樹脂に結晶核剤を添加し、フィルムに成膜後延伸（特公平7-5780号公報等）

(10) “冷”延伸と“熱”延伸の工程を用いる方法（特公平2-11620号公報等）

(11) 溶媒キャスト法で得られたフィルムを乾燥して延伸（特開平5-98065号公報等）

【0023】

上記の様々な手法で多孔質フィルムを作製するが、本発明の散乱異方性フィルムに用いる微孔性フィルムは、フィルム表面に観測される微細孔の形状が実質的に橢円形状であり、該橢円形の長軸と短軸の長さの比（長軸／短軸）が1より大きく、微細孔の短軸径が用いる光の波長より小さく、微細孔の長軸方向の向きが実質的に一方向に揃っている必要がある。

【0024】

微細孔の短軸径は、多孔質フィルムの作製時にある程度制御することができる。例えば、ポリマーと無機微粉体及び可塑剤を混練・加熱溶融しながらフィルム状に成形した後、一軸方向方向にのみ延伸または二軸方向に延伸して多孔質フィルムを形成後、無機微粉体及び可塑剤をそれぞれ抽出除去及び乾燥して得る場合、用いる無機微粉体の粒径を変えることによって制御できる。

微細孔の長軸径は、例えば延伸時の延伸倍率を変えることによって制御できる。

特開平1-113442号公報には、延伸倍率を変えることによって微細孔のアスペクト比を大きくする方法が記載されている。

【0025】

延伸倍率は面積延伸倍率で1.5～30倍の範囲であることが好ましく、2～20倍の範囲であることがさらに好ましい。上記面積延伸倍率は1軸方向でも2軸方向でもよいが、2軸方向である場合は、微細孔のアスペクト比を大きくするために、直交する二方向において、その延伸倍率が異なることが望ましい。

【0026】

また、本発明の他の目的は、上記異方性散乱素子を用いる液晶ディスプレイを提供しようとするものであり、すなわち後方散乱を主体とする異方性散乱素子を使用する場合で、少なくとも表面側に偏光板を有する液晶パネル、該液晶パネルの裏面側に位置するバックライト装置と、上記液晶パネルとバックライト装置との間に位置する、アスペクト比が1より大きく、微細孔の短軸径が用いる光の波長より小さく、微細孔の長軸方向の向きが実質的に一方向に揃っていることを特徴とする異方性散乱フィルムと、バックライト装置の裏面側に反射板あるいは拡散反射板を備え、上記散乱素子の透過軸と上記液晶面素子の透過軸とをほぼ一致させてなる構成される。上記反射板と液晶パネルとの間に位相差板を、特に1/4波長板を備えるのが光の有効利用という面で好ましい。使用するバックライト装置としては光源から導光板を通じて照明を行うサイド型バックライト装置と直下型のバックライト装置が代表として挙げられる。

【0027】

次に、後方散乱が生じた時の偏光変換がなされる原理を説明する。

図5に示すように、バックライトから発せられる光は、振動面が紙面に平行な偏光と、これに直交する振動面が紙面に垂直な光からなる。本発明の異方性散乱フィルムが、例えば異方性フィルムの表面内においてアスペクト比を有する微細孔の長軸方向が紙面に平行である場合、異方性散乱フィルムを通して、振動面が紙面に垂直な偏光が透過し、振動面が紙面に平行な偏光は後方散乱される。異方性散乱フィルムによって後方散乱された偏光は、その偏光度が保たれない場合、振動面が紙面に垂直な偏光と、振動面が紙面に平行な偏光とに分けられ、バックライト裏側の反射板または拡散反射板によって再度異方性フィルムを通過する。そこで、また、振動面が紙面に対して平行な偏光と、振動面が紙面に対して垂直な偏光とで同様な偏光分離が行われる。また、異方性散乱フィルムによって後方散乱された光の偏光度が保持された場合は、拡散反射板を用いることによって、入射した偏光の偏光度が保たれず、振動面が紙面に垂直な偏光と、振動面が紙面に平行な偏光とに分ける効果も伴うこともある。

【0028】

また、より効率を上げるために位相差板を反射板上に設置することにより、後

方散乱された偏光成分の方向を変えることができ、より効率のより偏光変換素子を得ることができる。特に、 $1/2\lambda$ 板は90度偏光方向を変えることができ、より効率的な偏光変換を行う位相差板といえる。

【0029】

【実施例】

次に本発明の実施例を示す。本発明はこれに限定されるものではない。

本発明に用いた物性評価は、以下に示す方法によって測定した。

直進透過光量偏光依存性を測定するために、本発明の異方性散乱フィルムに偏光を入射し、異方性散乱フィルムをフィルム面内で回転することにより、その透過光量を測定した。光源にはハロゲンランプ（SPH-100N 中央精機製）を使用し、その透過光はオプティカルパワーメーター（ML9001A Anritsu社製）により検出した。

異方性散乱フィルムの透過軸に対して入射する偏光の振動方向を平行にした時の透過率を平行透過率、異方性散乱フィルムの透過軸に対して入射する偏光の振動方向を直交にした時の透過率を直交透過率とした。

【0030】

比較例1

屈折率1.49、厚み25μmのポリプロピレン製微孔性フィルムで、フィルム表面に観測される微細孔の形状が実質的に橍円形状であり、該橍円形状の平均アスペクト比が3であり、微細孔の平均短軸径が0.04μm、平均長軸径が0.12μmであり、その長軸方向の向きが実質的に揃っているフィルムに、トルエン（屈折率1.49）を含浸させた。これをコーニング社製ガラス基板（#7059）で挟んだ。

コーニング社製ガラス基板（#7059）の透過率を100%とした場合、上記フィルムの平行透過率は88.9%、直交透過率は87.2%であった。ほとんど偏光依存性（散乱異方性）がみられなかった。

【0031】

比較例2

屈折率1.49、厚み25μmのポリプロピレン製微孔性フィルムで、フィル

ム表面に観測される微細孔の形状が実質的に橢円形状であり、該橢円形状の平均アスペクト比が3であり、微細孔の平均短軸径が $0.04\text{ }\mu\text{m}$ 、平均長軸径が $0.12\text{ }\mu\text{m}$ であり、その長軸方向の向きが実質的に揃っているフィルムの平行透過率は2.5%、直交透過率は1.5%であった。ほとんど偏光依存性（散乱異方性）がみられなかった。

【0032】

実施例1

屈折率1.49、厚み $25\text{ }\mu\text{m}$ のポリプロピレン製微孔性フィルムで、フィルム表面に観測される微細孔の形状が実質的に橢円形状であり、該橢円形状の平均アスペクト比が3であり、微細孔の平均短軸径が $0.04\text{ }\mu\text{m}$ 、平均長軸径が $0.12\text{ }\mu\text{m}$ であり、その長軸方向の向きが実質的に揃っているフィルムに、1-ブロモナフタレン（屈折率1.66）を含浸させた。これをコーニング社製ガラス基板（#7059）で挟んだ。

コーニング社製ガラス基板（#7059）の透過率を100%とした場合、上記フィルムの平行透過率は62.3%、直交透過率は42.5%であった。このように、本発明の異方性散乱フィルムで透過-散乱偏光依存性が見られ、比較例1、比較例2に比べて高い偏光依存性（散乱異方性）が得られた。

また、上記のフィルムを図3または図4に示す構成にすれば、輝度が向上した液晶表示装置が得られる。

実施例2

屈折率1.49、厚み $25\text{ }\mu\text{m}$ のポリプロピレン-ポリエチレン-ポリプロピレン（3層構造である）製微孔性フィルムで、フィルム表面に観測される微細孔の形状が実質的に橢円形状であり、該橢円形状の平均アスペクト比が5であり、微細孔の平均短軸径が $0.04\text{ }\mu\text{m}$ 、平均長軸径が $0.2\text{ }\mu\text{m}$ であり、その長軸方向の向きが実質的に揃っているフィルムに、1-ブロモナフタレン（屈折率1.66）を含浸させた。これをコーニング社製ガラス基板（#7059）で挟んだ。

コーニング社製ガラス基板（#7059）の透過率を100%とした場合、上

記フィルムの平行透過率は70.0%、直交透過率は47.5%であった。このように、本発明の異方性散乱フィルムで透過ー散乱偏光依存性が見られ、比較例1、比較例2に比べて高い偏光依存性（散乱異方性）が得られた。

また上記のフィルムを図3または図4に示す構成にすれば、輝度が向上した液晶表示装置が得られる。

【0033】

【発明の効果】

本発明によれば、製法が容易で、高い散乱異方性を有する異方性散乱フィルムを得ることができ、また該異方性散乱フィルムを用いることによって、輝度の向上した液晶表示装置を提供できる。

【図面の簡単な説明】

【図1】

微孔性フィルム断面内図

【図2】

微細孔の断面図

【図3】

液晶表示装置構成図

【図4】

液晶表示装置構成図

【図5】

液晶表示装置動作原理図

【符号の説明】

- 1：異方性散乱フィルム
- 2：フィルム面内における微細孔
- 3：微細孔のフィルム面内における短軸径
- 4：微細孔のフィルム面内における長軸径
- 5：長軸方向の向き
- 6：偏光板
- 7：液晶セル

8：バックライト

9：反射板あるいは拡散反射板

10：位相差板

11：振動面が紙面に垂直な偏光

12：振動面が紙面に平行な偏光

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

【図5】

【書類名】 要約書

【要約】

【課題】 製法が容易で、高い透過・散乱偏光依存性（散乱異方性）を有する異方性散乱フィルムと、該異方性散乱フィルムを用いた高輝度の液晶表示装置を提供する。

【解決手段】 [1] 偏光成分に対し散乱異方性を有する微孔性フィルムであって、フィルム表面に観測される微細孔の形状が実質的に橢円形状であり、該橢円形の長軸と短軸の長さの比（長軸／短軸）が1より大きく、微細孔の短軸径が用いる光の波長より小さく、微細孔の長軸方向の向きが実質的に一方向に揃っている微孔性フィルムに、該微孔性フィルムの屈折率とは異なる屈折率を有する物質を充填してなることを特徴とする異方性散乱フィルム。

[2] 少なくとも表面側に偏光板を有する液晶パネル、該液晶パネルの裏面側に位置するバックライト装置と、上記液晶パネルとバックライト装置との間に上記[1]記載の異方性散乱フィルムと、バックライト装置の裏面側に反射板あるいは拡散反射板を備えてなる液晶表示装置であり、上記異方性散乱フィルムの透過軸と上記液晶パネルの透過軸をほぼ一致させてなる液晶表示装置。

【選択図】 なし

出願人履歴情報

識別番号 [000002093]

1. 変更年月日 1990年 8月28日

[変更理由] 新規登録

住 所 大阪府大阪市中央区北浜4丁目5番33号

氏 名 住友化学工業株式会社