Answer the following questions.

- 1. How is *injectivity* of a function $f: X \to Y$ defined?
- 2. How is a scalar product $P: \mathbb{R}^n \times \mathbb{R}^n \mapsto \mathbb{R}$ defined?
- 3. Assume you are given the singular value decomposition (SVD) $U\Sigma V^{\top}=A$ of some matrix $A\in\mathbb{R}^{m\times n}$. Determine the pseudoinverse A^+ of A with the help of the SVD. Proof that $A^+=A^{-1}$, if A is invertible (hint: note that m=n in this case).
- 4. Let $A \in \mathbb{R}^{n \times n}$ be a matrix. Are the notions of injectivity and surjectivity of A equivalent? Give a short justification.
- 5. What is the normal equation? Where is it applied?
- 6. Give an example of a vector space other than \mathbb{R}^n ?
- 7. Let V be a vector space over the field \mathbb{F} . Give the definition of a basis.

Solution:

```
1. (1P) f: X \to Y injective :\Leftrightarrow f(x) = f(y) \Rightarrow x = y \ \forall x, y \in X
```

2. $P: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ scalar product, if

```
(1P) i) \forall x, y \in \mathbb{R}^n : P(x,y) = P(y,x)

(1P) ii) \forall x \in \mathbb{R}^n \setminus \{0\} : P(x,x) > 0

(1P) iii) \forall x, y, z \in \mathbb{R}^n : P(x,y+z) = P(x,y) + P(x,z)

(1P) iv) \forall x, y \in \mathbb{R}^n, \lambda \in \mathbb{R} : P(x,\lambda y) = \lambda P(x,y)
```

- 3. (1P) pseudoinverse: $A^+ = V\Sigma^+U^T$, where $\Sigma^+ = {\sf diag}(\frac{1}{\sigma_i}: \ \sigma_i \neq 0)$
 - Let $A \in GL_n(\mathbb{R})$, then (1P) $\sigma_{ii} \neq 0 \ \forall i \ \text{and} \ A^{-1} = (U\Sigma V^T)^{-1} = V\Sigma^{-1}U^T$ (1P) (V,U) orthogonal). Since $\Sigma^{-1} = \operatorname{diag}(\frac{1}{\sigma_i}) = \Sigma^+$ we find $A^{-1} = A^+$ (1P)

4.

5.

6. (1P)
$$\mathbb{R}^{m \times n}$$
, $P_n(\mathbb{R}) := \{x \mapsto \sum_{i=0}^n \alpha_i x^i : (\alpha_0, \dots, \alpha_n) \in \mathbb{R}^{n+1} \}$

7. $\{v_1, \ldots, v_n\} \subset V$ basis : \Leftrightarrow

(1P) i)
$$\{v_1, \ldots, v_n\}$$
 linearly independent $(\Leftrightarrow \sum \lambda_j v_j = 0 \Rightarrow \lambda_j = 0 \ \forall \ j$
(1P) ii) $\operatorname{span}(v_1, \ldots, v_n) = V \ (\Leftrightarrow \{\sum \lambda_j v_j : \lambda_j \in \mathbb{R}\} = V)$