0.1 直接求导法

例题 0.1

1. 设 $f \in C^1[0,1]$, f(0) = 0, $0 \le f'(x) \le 1$, 证明

$$\left[\int_0^1 f(x) \mathrm{d}x \right]^2 \geqslant \int_0^1 f^3(x) \mathrm{d}x,$$

并判断取等条件.

2. 设 f 在 [0,a] 可导且 $f(0) = 0, 0 \le f'(x) \le \lambda, \lambda > 0$ 为常数,证明

$$\left[\int_0^a f(x) \mathrm{d}x\right]^m \geqslant \frac{m}{(2\lambda)^{m-1}} \int_0^a f^{2m-1}(x) \mathrm{d}x,\tag{1}$$

并判断取等条件.

证明

1. 由 0 < f'(x)(x > 0) 及 f(0) = 0 可知 $f(x) > 0(0 < x \le 1)$. 设

$$g(t) = \int_0^t f^3(x) dx - \left(\int_0^t f(x) dx \right)^2 \quad (t \in [0, 1]),$$

则

$$g'(t) = f(t) \left(f^2(t) - 2 \int_0^t f(x) dx \right).$$

令 $h(t) = f^2(t) - 2 \int_0^t f(x) dx$, 则由 $0 < f'(x) \le 1(x > 0)$ 可知

$$h'(t) = 2f(t)[f'(t) - 1] \le 0, \forall t \in [0, 1].$$

从而 $h(t) \leq h(0) = 0, \forall t \in [0,1]$. 于是 $g'(t) \leq 0, \forall t \in [0,1]$. 因而 g 在 [0,1] 上单调递减. 由 g(0) = 0 知 $g \leq 0$. 若

$$\int_0^1 f^3(x) dx = \left(\int_0^1 f(x) dx \right)^2,$$

则 g(1) = 0, 因而 $g(t) \equiv 0$. 所以

$$g'(t) = f(t) \left(f^2(t) - 2 \int_0^t f(x) dx \right) = 0.$$

这推出 $f \equiv 0$ 或 $f^2(t) = 2 \int_0^t f(x) dx$. 因而

$$2f(t)f'(t) = 2f(t) \quad (0 < t \le 1).$$

这推出 f'(t) = 1, 即 f(t) = t. 故当 $f(t) \equiv 0$ 或 f(t) = t 时等号成立.

2. 定义

$$g(x) = \left(\int_0^x f(t)dt\right)^m - \frac{m}{(2\lambda)^{m-1}} \int_0^x f^{2m-1}(t)dt.$$

求导得

$$g'(x) = mf(x) \left(\int_0^x f(t) dt \right)^{m-1} - \frac{m}{(2\lambda)^{m-1}} f^{2m-1}(x)$$
$$= mf(x) \left[\left(\int_0^x f(t) dt \right)^{m-1} - \frac{1}{(2\lambda)^{m-1}} f^{2m-2}(x) \right].$$

$$h'(x) = \left[\int_0^x f(t) dt - \frac{f^2(x)}{2\lambda} \right]' = f(x) - \frac{f(x)f'(x)}{\lambda} = \frac{f(x)}{\lambda} [\lambda - f'(x)] \geqslant 0,$$

从而 $h(x) \ge h(0) = 0$. 进而

$$h^{m-1}(x) \geqslant \left(\int_0^x f(t)dt\right)^{m-1} - \frac{1}{(2\lambda)^{m-1}} f^{2m-2}(x) \geqslant 0.$$

于是我们有

$$g'(x) \geqslant g'(0) = 0,$$

从而 g 递增且

$$g(a) \geqslant g(0) = 0,$$

这就是不等式(1). 要使得等号成立, 我们需要 g 为常数, 因此需要 $g' \equiv 0$, 故需要 $f \equiv 0$ 或者

$$\int_0^x f(t)dt - \frac{f^2(x)}{2\lambda} \equiv 0,$$

令 $y = \int_0^x f(t)dt$, 则上式等价于

$$y - \frac{(y')^2}{2\lambda} = 0$$

从而解上述微分方程得到取等条件是

$$f(x) = 0$$
或者 $f(x) = \lambda x$.

例题 0.2 设 $f,g \in C[a,b]$ 使得 f 递增且 $0 \le g \le 1$, 证明

$$\int_{a}^{a+\int_{a}^{b}g(t)\mathrm{d}t}f(x)\mathrm{d}x \leqslant \int_{a}^{b}f(x)g(x)\mathrm{d}x \leqslant \int_{b-\int_{a}^{b}g(t)\mathrm{d}t}^{b}f(x)\mathrm{d}x. \tag{2}$$

证明 考虑

$$h(y) = \int_{a}^{a+\int_{a}^{y} g(t)dt} f(x)dx - \int_{a}^{y} f(x)g(x)dx.$$

则利用

$$a + \int_{a}^{y} g(x) dx \le a + \int_{a}^{y} 1 dx = y,$$

再结合 f 递增, 我们有

$$h'(y) = g(y)f\left(a + \int_a^y g(t)dt\right) - f(y)g(y) \leqslant 0 \to h(b) \leqslant h(a) = 0,$$

故不等式(2)左侧得证. 另一侧不等式同理可得, 这就证明了不等式(2).

命题 0.1

设 f 是 [a,b] 上单调递增的连续函数. 求证

$$\int_{a}^{b} x f(x) dx \geqslant \frac{a+b}{2} \int_{a}^{b} f(x) dx.$$

笔记 许多有关连续函数积分的不等式可以通过变上限积分的性质来证明. 证明 令

 $F(t) = \int_{a}^{t} x f(x) dx - \frac{a+t}{2} \int_{a}^{t} f(x) dx.$

只需证明 $F(b) \ge 0$. 由于 f 是连续函数, F 在 [a,b] 上可微, 且

$$F'(t) = tf(t) - \frac{1}{2} \int_{a}^{t} f(x) dx - \frac{a+t}{2} f(t)$$

$$= \frac{t-a}{2} f(t) - \frac{1}{2} \int_{a}^{t} f(x) dx$$

$$\geq \frac{t-a}{2} f(t) - \frac{1}{2} (t-a) f(t) = 0.$$

这说明 f 在 [a,b] 上单调递增. 因为 F(a)=0, 所以 $F(b)\geqslant 0$.

例题 0.3 设 f 是区间 [0,1] 上的连续函数并满足 $0 \le f(x) \le x$. 求证:

$$\int_0^1 f(x) dx - \left(\int_0^1 f(x) dx \right)^2 \ge \int_0^1 x^2 f(x) dx \ge \left(\int_0^1 f(x) dx \right)^2.$$

并且上式成为等式当且仅当 f(x) = x.

证明 设 f 是连续函数满足所给的条件, $F(x) = \int_0^x f(t) dt$, 则 F' = f. 由 $0 < f(x) \leqslant x$ 得 $F(x) \leqslant \int_0^x t dt = \frac{1}{2} x^2$. 因而

$$\int_0^1 x^2 f(x) dx \ge \int_0^1 2F(x) F'(x) dx = F^2(x) \Big|_0^1 = \left(\int_0^1 f(x) dx \right)^2.$$

利用分部积分,得

$$\int_0^1 x^2 f(x) dx = x^2 F(x) \Big|_0^1 - \int_0^1 2x F(x) dx$$

$$= \int_0^1 f(x) dx - \int_0^1 2x F(x) dx$$

$$\leq \int_0^1 f(x) dx - \int_0^1 2f(x) F(x) dx$$

$$= \int_0^1 f(x) dx - F^2(x) \Big|_0^1$$

$$= \int_0^1 f(x) dx - \left(\int_0^1 f(x) dx \right)^2.$$

由证明过程可知只有当f(x) = x时,所证不等式成为等式.

例题 0.4 设 f 是 [0,1] 上正的可导函数, 且满足 $|f'| \le 1$. 记

$$m = \min f(x), \quad M = \max f(x), \quad \beta = \int_0^1 \frac{1}{f(x)} dx.$$
 (3)

- 1. 求证: $M \leq me^{\beta}$.
- 2. 求证: 对 n > -1, 有

$$\int_{0}^{1} f^{n}(x) dx \le \frac{m^{n+1}}{n+1} \left(e^{(n+1)\beta} - 1 \right). \tag{4}$$

注 第 2 问中, 令 n=0, 可得 $\frac{m+1}{m} \le e^{\beta}$. 式 (4) 两边开 n 次方根, 再令 $n \to +\infty$, 可得 $M \le me^{\beta}$. 证明

1. 设 m = f(x), M = f(y), 则有

$$\ln M - \ln m = \ln f(y) - \ln f(x) = \int_{x}^{y} \frac{f'(t)}{f(t)} dt \le \int_{0}^{1} \frac{1}{f(t)} dt = \beta.$$

因而有 $M \leq me^{\beta}$.

2. 设

$$h_1(t) = \frac{e^{(n+1)\beta_1(t)} - 1}{n+1} f^{n+1}(t) - \int_0^t f^n(x) \, dx, \quad t \in [0,1],$$

$$h_2(t) = \frac{e^{(n+1)\beta_2(t)} - 1}{n+1} f^{n+1}(t) - \int_t^1 f^n(x) \, dx, \quad t \in [0, 1],$$

其中

$$\beta_1(t) = \int_0^t \frac{1}{f(x)} dx, \quad \beta_2(t) = \int_t^1 \frac{1}{f(x)} dx,$$

则有 $\beta_1 \ge 0, \beta_2 \ge 0, h_1(0) = 0, h_2(1) = 0,$ 且

$$\begin{split} h_1'(t) &= e^{(n+1)\beta_1(t)} f^n(t) + \left(e^{(n+1)\beta_1(t)} - 1 \right) f^n(t) f'(t) - f^n(t) \\ &= f^n(t) \left(e^{(n+1)\beta_1(t)} - 1 \right) \left(1 + f'(t) \right) \geq 0, \\ h_2'(t) &= -e^{(n+1)\beta_2(t)} f^n(t) + \left(e^{(n+1)\beta_2(t)} - 1 \right) f^n(t) f'(t) + f^n(t) \\ &= f^n(t) \left(e^{(n+1)\beta_2(t)} - 1 \right) \left(-1 + f'(t) \right) \leq 0, \end{split}$$

这说明 h_1 在 [0,1] 上单调递增, 而 h_2 在 [0,1] 上单调递减. 于是 h_1 和 h_2 都是非负函数, 即

$$\int_0^t f^n(x) \, dx \le \frac{e^{(n+1)\beta_1(t)} - 1}{n+1} f^{n+1}(t),\tag{5}$$

$$\int_{t}^{1} f^{n}(x) dx \le \frac{e^{(n+1)\beta_{2}(t)} - 1}{n+1} f^{n+1}(t).$$
 (6)

将以上两式相加,可得

$$\int_0^1 f^n(x) \, dx \le \frac{e^{(n+1)\beta_1(t)} + e^{(n+1)\beta_2(t)} - 2}{n+1} f^{n+1}(t). \tag{7}$$

容易证明对任意 x > 0, y > 0 有

$$e^x + e^y - 2 < e^{x+y} - 1$$
.

因此从式(7)可得

$$\int_0^1 f^n(x) \, dx \leq \frac{e^{(n+1)(\beta_1(t)+\beta_2(t))}-1}{n+1} f^{n+1}(t) = \frac{e^{(n+1)\beta}-1}{n+1} f^{n+1}(t),$$

这里 $t \in [0,1]$ 是任意的. 故式 (4) 成立.

例题 0.5 设 $f \in C[a,b]$ 是一个正的连续函数, 且满足 Lipschitz 条件

$$|f(x) - f(y)| \leqslant L|x - y|.$$

对于区间 [c,d] ⊂ [a,b], 记

$$\beta = \int_a^b \frac{1}{f(x)} dx, \quad \alpha = \int_c^d \frac{1}{f(x)} dx.$$

求证:

$$\int_{a}^{b} f(x) dx \leqslant \frac{e^{2L\beta} - 1}{2L\alpha} \int_{c}^{d} f(x) dx.$$
 (8)

证明 只需证明对任意的 $t \in [a,b]$,有

$$\int_{a}^{b} f(x) \mathrm{d}x \leqslant \frac{\mathrm{e}^{2L\beta} - 1}{2L} f^{2}(t),\tag{9}$$

这是因为将式 (9) 两端除以 f(t), 然后关于变量 t 在区间 [c,d] 上积分, 即得式 (8). 不妨假设 a=0,b=1, 不然考虑新的函数 g(t)=(b-a)f(a(1-t)+bt)=(b-a)f(a+(b-a)t), $t\in[0,1]$. g 满足 Lipschitz 条件 $|g(x_1)-g(x_2)|\leqslant L_1|x_1-x_2|$, $L_1=(b-a)^2L$. 由于 f 的 Bernstein 多项式 $B_n(f)$ 保持 f 的 Lipschitz 常数, 而且在 [0,1] 上一致收敛于 f, 我们一开始就可以假设 f 是可导的, 此时 $|f'|\leqslant L$.

以下就在a=0,b=1且 $|f'| \leq L$ 的条件下证明式(9). 设

$$h_1(t) = \frac{e^{2L\beta_1(t)} - 1}{2L} f^2(t) - \int_0^t f(x) dx, \quad t \in [0, 1],$$

$$h_2(t) = \frac{e^{2L\beta_2(t)} - 1}{2L} f^2(t) - \int_t^1 f(x) dx, \quad t \in [0, 1],$$

其中

$$\beta_1(t) = \int_0^t \frac{1}{f(x)} dx, \quad \beta_2(t) = \int_t^1 \frac{1}{f(x)} dx.$$

则有 $h_1(0) = 0, h_2(1) = 0$, 且

$$\begin{split} h_1'(t) &= \mathrm{e}^{2L\beta_1(t)} f(t) + \frac{\mathrm{e}^{2L\beta_1(t)} - 1}{L} f(t) f'(t) - f(t) \\ &= \frac{\mathrm{e}^{2L\beta_1(t)} - 1}{L} f(t) (L + f'(t)) \geq 0, \end{split}$$

$$h_2'(t) = -e^{2L\beta_2(t)} f(t) + \frac{e^{2L\beta_2(t)} - 1}{L} f(t)f'(t) + f(t)$$
$$= \frac{e^{2L\beta_2(t)} - 1}{L} f(t)(f'(t) - L) \le 0.$$

这说明 h_1 在 [0,1] 上单调递增, 而 h_2 在 [0,1] 上单调递减. 于是 h_1 和 h_2 都是非负函数, 即

$$\int_{0}^{t} f(x) dx \leqslant \frac{e^{2L\beta_{1}(t)} - 1}{2L} f^{2}(t), \tag{10}$$

$$\int_{t}^{1} f(x) dx \leqslant \frac{e^{2L\beta_{2}(t)} - 1}{2L} f^{2}(t).$$
(11)

将此两式相加,可得

$$\int_0^1 f(x) dx \le \frac{e^{2L\beta_1(t)} + e^{2L\beta_2(t)} - 2}{2L} f^2(t).$$
 (12)

容易证明对任意 x > 0, y > 0 有

$$e^x + e^y - 2 < e^{x+y} - 1$$
.

因此从式(12)可得

$$\int_0^1 f(x) dx \le \frac{e^{2L(\beta_1(t) + \beta_2(t))} - 1}{2L} f^2(t) = \frac{e^{2L\beta} - 1}{2L} f^2(t).$$

即式 (9) 成立.