

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the above-referenced application.

1. **(Previously Presented)** A compound having the structure:

(I)

or pharmaceutically acceptable derivative thereof;

wherein **R₁** and **R₂** are each independently hydrogen, halogen, -CN, -S(O)₁₋₂R^{1A}, -NO₂, -COR^{1A}, -CO₂R^{1A}, -NR^{1A}C(=O)R^{1B}, -NR^{1A}C(=O)OR^{1B}, -CONR^{1A}R^{1B}, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety, or -WR^{1A}; wherein W is independently -O-, -S- or -NR^{1C}-; wherein each occurrence of R^{1A}, R^{1B} and R^{1C} is independently hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; or R₁ and R₂, taken together with the carbon atoms to which they are attached, form an alicyclic, heteroalicyclic, aryl or heteroaryl moiety;

R₃ is hydrogen, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; or a prodrug moiety or an oxygen protecting group;

R₄ is halogen, -OR^{4A}, -OC(=O)R^{4A} or -NR^{4A}R^{4B}; wherein R^{4A} and R^{4B} are independently hydrogen, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; a prodrug moiety, a nitrogen protecting group or an oxygen protecting group; or R^{4A} and R^{4B}, taken together with the nitrogen atom to which they are attached, form a heterocyclic or

heteroaryl moiety; or R₄, taken together with the carbon atom to which it is attached forms a

R₅ is hydrogen, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety;

R₆ is hydrogen, halogen, -CN, -S(O)₁₋₂R^{6A}, -NO₂, -COR^{6A}, -CO₂R^{6A}, -NR^{6A}C(=O)R^{6B}, -NR^{6A}C(=O)OR^{6B}, -CONR^{6A}R^{6B}, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety, or -WR^{6A}; wherein W is independently -O-, -S- or -NR^{6C}-; wherein each occurrence of R^{6A}, R^{6B} and R^{6C} is independently hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; or R₆ and R_c, taken together with the carbon atoms to which they are attached, form an alicyclic, heteroalicyclic, aryl or heteroaryl moiety;

R_a and each occurrence of R_b are independently hydrogen, halogen, -CN, -S(O)₁₋₂R^{a1}, -NO₂, -COR^{a1}, -CO₂R^{a1}, -NR^{a1}C(=O)R^{a2}, -NR^{a1}C(=O)OR^{a2}, -CONR^{a1}R^{a2}, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety, or -WR^{a1}; wherein W is independently -O-, -S- or -NR^{a3}-; wherein each occurrence of R^{a1}, R^{a2} and R^{a3} is independently hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; or R_a and the adjacent occurrence of R_b, taken together with the carbon atoms to which they are attached, form an alicyclic, heteroalicyclic, aryl or heteroaryl moiety;

R_c is hydrogen, halogen, -CN, -S(O)₁₋₂R^{c1}, -NO₂, -COR^{c1}, -CO₂R^{c1}, -NR^{c1}C(=O)R^{c2}, -NR^{c1}C(=O)OR^{c2}, -CONR^{c1}R^{c2}; an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety, or -WR^{c1}; wherein W is independently -O-, -S- or -NR^{c3}-; wherein each occurrence of R^{c1}, R^{c2} and R^{c3} is independently hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; or R_c and R₆, taken together with the carbon atoms to which they are attached, form an alicyclic, heteroalicyclic, aryl or heteroaryl moiety;

n is an integer from 1 to 5;

X₁ is O, S, NR^{X1} or CR^{X1}R^{X2}; wherein R^{X1} and R^{X2} are independently hydrogen, halogen, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety, or a nitrogen protecting group;

Q is hydrogen, halogen, -CN, -S(O)_{1,2}R^{Q1}, -NO₂, -COR^{Q1}, -CO₂R^{Q1}, -NR^{Q1}C(=O)R^{Q2}, -NR^{Q1}C(=O)OR^{Q2}, -CONR^{Q1}R^{Q2}, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety, or -WR^{Q1}; wherein W is independently -O-, -S- or -NR^{Q3}-; wherein each occurrence of R^{Q1}, R^{Q2} and R^{Q3} is independently hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety;

Y₁ and **Y₂** are independently hydrogen, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; or -WR^{Y1}; wherein W is independently -O-, -S- or -NR^{Y2}-; wherein each occurrence of R^{Y1} and R^{Y2} is independently hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; or **Y₁** and **Y₂** together with the carbon atom to which they are attached form a moiety having the structure:

with the proviso that the compound does not have one of the following structures:

2. (Original) The compound of claim 1, wherein:

R₁ and **R₂** are each independently hydrogen or substituted or unsubstituted lower alkyl; or **R₁** and **R₂**, taken together with the carbon atoms to which they are attached, form an epoxide, an aziridine or a substituted or unsubstituted cyclopropyl moiety;

R₃ is hydrogen, or substituted or unsubstituted lower alkyl or aryl; a prodrug moiety or an oxygen protecting group;

R₄ is halogen, -OR^{4A}, -OC(=O)R^{4A} or -NR^{4A}R^{4B}; wherein R^{4A} and R^{4B} are independently hydrogen, or substituted or unsubstituted lower alkyl; a prodrug moiety, a nitrogen protecting group or an oxygen protecting group; or R^{4A} and R^{4B}, taken together with the nitrogen atom to which they are attached, form a heterocyclic or heteroaryl moiety; or R₄, taken together with the

carbon atom to which it is attached forms a moiety having the structure:

R₅ and **R₆** are each independently hydrogen or substituted or unsubstituted lower alkyl; or R₆ and R_c, taken together with the carbon atoms to which they are attached, form an epoxide, an aziridine or a substituted or unsubstituted cyclopropyl moiety;

R_a and each occurrence of **R_b** are independently hydrogen, halogen, alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl moiety, or -WR^{a1}; wherein W is independently -O-, -S- or -NR^{a3}-; wherein each occurrence of R^{a1}, and R^{a3} is independently hydrogen, or an alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl moiety; or R_a and the adjacent occurrence of R_b, taken together, form an epoxide, an aziridine or a substituted or unsubstituted cyclopropyl moiety;

R_c is hydrogen, halogen, alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl moiety, or -WR^{c1}; wherein W is independently -O-, -S- or -NR^{c3}-; wherein each occurrence of R^{c1} and R^{c3} is independently hydrogen, or an alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl moiety; or R_c and R₆, taken together with the carbon atoms to which they are attached, form an epoxide, an aziridine or a substituted or unsubstituted cyclopropyl moiety;

n is an integer from 1 to 5;

X₁ is O, S, NR^{X₁} or CR^{X₁}R^{X₂}; wherein R^{X₁} and R^{X₂} are independently hydrogen, halogen, substituted or unsubstituted alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl, or a nitrogen protecting group;

Q is hydrogen, halogen, -CN, -S(O)₁₋₂R^{Q₁}, -NO₂, -COR^{Q₁}, -CO₂R^{Q₁}, -NR^{Q₁}C(=O)R^{Q₂}, -NR^{Q₁}C(=O)OR^{Q₂}, -CONR^{Q₁}R^{Q₂}, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety, or -WR^{Q₁}; wherein W is independently -O-, -S- or -NR^{Q₃}-; wherein each occurrence of R^{Q₁}, R^{Q₂} and R^{Q₃} is independently hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety;

Y₁ and **Y₂** are independently hydrogen, an alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl moiety; or -WR^{Y₁}; wherein W is independently -O-, -S- or -NR^{Y₂}-; wherein each occurrence of R^{Y₁} and R^{Y₂} is independently hydrogen, or an alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl moiety; or **Y₁** and **Y₂** together with the carbon atom to which they are attached form a moiety having the structure:

3. **(Original)** The compound of claim 2, wherein R_a, R_b and R_c are each hydrogen, and the compound has one of the following structures:

wherein R₁-R₆, Y₂, X₁, n and Q are as defined in claim 2; W is O or NH; and R^{Y₁} is hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety.

4. **(Original)** The compound of claim 2, wherein R_a, R_b and R_c are each hydrogen, Q is a carbonyl-containing moiety and the compound has one of the following structures:

wherein R₁-R₆, Y₂, X₁, and n are as defined in claim 2; W is O or NH; and R^{Z1} is hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; R₇ is a substituted or unsubstituted lower alkyl or heteroalkyl moiety; R₈ is a substituted or unsubstituted alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl moiety; and Alk is a substituted or unsubstituted C₀₋₆alkylidene or C₀₋₆alkenylidene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl.

5. **(Original)** The compound of claim 2, wherein R_a, R_b and R_c are each hydrogen, n is 3 and the compound has one of the following structures:

wherein R₁-R₆, Y₂, Q and X₁ are as defined in claim 2; W is O or NH; and R^{Y1} is hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety.

6. **(Original)** The compound of claim 2, wherein R_a, R_b and R_c are each hydrogen, n is 3, Q is a carbonyl-containing moiety, and the compound has one of the following structures:

wherein R₁-R₆, X₁ and Y₂ are as defined in claim 2; W is O or NH; R^{Y1} is hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; R₇ is a substituted or unsubstituted lower alkyl or heteroalkyl moiety; R₈ is a substituted or unsubstituted alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl moiety; and Alk is a substituted or unsubstituted C₀₋₆alkylidene or C₀₋₆alkenylidene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl; and R₈ is a substituted or unsubstituted alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl moiety.

7. **(Original)** The compound of claim 2, wherein R_a, R_b and R_c are each hydrogen, Q is hydrogen, and the compound has the following structure:

wherein R₁-R₆, n, X₁, Y₁ and Y₂ are as defined in claim 2.

8. **(Original)** The compound of claim 2, wherein R_a, R_b and R_c are each hydrogen, n is 3, Q is hydrogen, and the compound has the following structure:

wherein R₁-R₆, X₁, Y₁ and Y₂ are as defined in claim 2.

9. **(Currently Amended)** The compound of ~~any one of claims 1-8~~ claim 1, wherein R₁ and R₂ are each hydrogen.

10. **(Currently Amended)** The compound of ~~any one of claims 1-8~~ claim 1, wherein R₅ and R₆ are each methyl.

11. **(Currently Amended)** The compound of ~~any one of claims 1-8~~ claim 1, wherein R₃ is lower alkyl.

12. **(Original)** The compound of claim 11, wherein R₃ is methyl.

13. **(Currently Amended)** The compound of ~~any one of claims 1-8~~ claim 1, wherein R₄ is OH, OAc, NH₂ or halogen, or R₄ taken together with the carbon atom to which it is attached

forms a moiety having the structure:

14. **(Original)** The compound of claim 4 or 6, wherein R₇ is lower alkyl.

15. **(Original)** The compound of claim 14, wherein R₇ is methyl.

16. **(Currently Amended)** The compound of ~~any one of claims 1-3 and 5~~ claim 1, wherein Q has the structure:

wherein R₇ is a substituted or unsubstituted, linear or branched, cyclic or acyclic lower alkyl moiety; R₈ is a substituted or unsubstituted carbocyclic, heterocyclic, aryl or heteroaryl moiety; and X, Y and Z are independently a bond, -O-, -S-, -C(=O)-, -NR^{Z1}-, -CHOR^{Z1}, -CHNR^{Z1}R^{Z2}, C=S, C=N(R^{Y1}) or -CH(Hal); or a substituted or unsubstituted C₀₋₆alkylidene or C₀₋₆alkenylidene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein Hal is a halogen selected from F, Cl, Br and I; and each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl; or R^{Z1} and R^{Z2}, taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety; and pharmaceutically acceptable derivatives thereof.

17. **(Original)** The compound of claim 16, wherein Q has the structure:

wherein R₇ is a substituted or unsubstituted, linear or branched, cyclic or acyclic lower alkyl moiety; R₈ is a substituted or unsubstituted carbocyclic, heterocyclic, aryl or heteroaryl moiety; and R^Y is hydrogen, halogen, -OR^{Y1} or -NR^{Y1}NR^{Y2}; wherein R^{Y1} and R^{Y2} are independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl, or R^{Y1} and R^{Y2}, taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety.

18. (Currently Amended) The compound of any one of claims 4, 6, 16 and 17 claim 4, wherein R₈ is one of:

wherein p is an integer from 0 to 5; q is 1 or 2, r is an integer from 1 to 6; each occurrence of R^{8A} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl, -(alkyl)aryl or -(alkyl)heteroaryl, -OR^{8C}, -SR^{8C}, -N(R^{8C})₂, -SO₂N(R^{8C})₂, -(C=O)N(R^{8C})₂, halogen, -CN, -NO₂, -(C=O)OR^{8C}, -N(R^{8C})(C=O)R^{8D}, wherein each occurrence of R^{8C} and R^{8D} is independently

hydrogen, lower alkyl, lower heteroalkyl, aryl, heteroaryl, -(alkyl)aryl or -(alkyl)heteroaryl; and each occurrence of R^{8B} is independently hydrogen or lower alkyl.

19. **(Original)** The compound of claim 18, wherein R₈ has the structure:

wherein R^{8B} is hydrogen or lower alkyl.

20. **(Currently Amended)** The compound of ~~claim 1, 2, 3 or 4~~ claim 1, wherein n is 3.

21. **(Currently Amended)** The compound of ~~claim 3, 4, 5 or 6~~ claim 3, wherein Y₁ is OR^{Y1} and Y₂ is lower alkyl; wherein R^{Y1} is hydrogen or lower alkyl.

22. **(Original)** The compound of claim 21, wherein Y₁ is OH and Y₂ is CF₃.

23. **(Original)** The compound of claim 2 wherein R_a, R_b and R_c are each hydrogen, and the compound has one of the structures:

or pharmaceutically acceptable derivative thereof;

wherein R₃-R₆, n and Q are as defined in claim 2; and Y₂ and R^{Y1} are independently hydrogen or lower alkyl.

24. **(Original)** The compound of claim 2 wherein the compound has the structure:

or pharmaceutically acceptable derivative thereof;

wherein R₃-R₆ and Q are as defined in claim 2; and Y₂ and R^{Y1} are independently hydrogen or lower alkyl.

25. (Original) The compound of claim 2 wherein the compound has the structure:

or pharmaceutically acceptable derivative thereof;

wherein R₃-R₆ and n are as defined in claim 2; Y₂ and R^{Y1} are independently hydrogen or lower alkyl; R₇ is a substituted or unsubstituted, linear or branched, cyclic or acyclic lower alkyl moiety; R^{8B} is hydrogen or lower alkyl; and X, Y and Z are independently a bond, -O-, -S-, -C(=O)-, -NR^{Z1}-, -CHOR^{Z1}, -CHNR^{Z1}R^{Z2}, C=S, C=N(R^{Y1}) or -CH(Hal); or a substituted or unsubstituted C₀₋₆alkylidene or C₀₋₆alkenylidene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein Hal is a halogen selected from F, Cl, Br and I; and each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl; or R^{Z1} and R^{Z2}, taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety.

26. (Original) The compound of claim 2 wherein the compound has the structure:

or pharmaceutically acceptable derivative thereof;

wherein R₃-R₆ are as defined in claim 2; Y₂ and R^{Y1} are independently hydrogen or lower alkyl; R₇ is a substituted or unsubstituted, linear or branched, cyclic or acyclic lower alkyl moiety; R^{8B} is hydrogen or lower alkyl; and X, Y and Z are independently a bond, -O-, -S-, -C(=O)-, -NR^{Z1}-, -CHOR^{Z1}, -CHNR^{Z1}R^{Z2}, C=S, C=N(R^{Y1}) or -CH(Hal); or a substituted or unsubstituted C₀₋₆alkylidene or C₀₋₆alkenylidene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein Hal is a halogen selected from F, Cl, Br and I; and each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl; or R^{Z1} and R^{Z2}, taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety.

27. **(Original)** The compound of claim 25 or 26, wherein $-X-Y-Z$ together represents the moiety $-CH_2-Y-CH_2-$; wherein Y is $-CHOR^{Y1}$, $-CHNR^{Y1}R^{Y2}$, $C=O$, $C=S$, $C=N(R^{Y1})$ or $-CH(Hal)$; wherein Hal is a halogen selected from F, Cl, Br and I; and R^{Y1} and R^{Y2} are independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl, or R^{Y1} and R^{Y2} , taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety.

28. **(Original)** The compound of claim 2 wherein the compound has the structure:

wherein R₃-R₆ and n are as defined in claim 2; Y₂ and R^{Y1} are independently hydrogen or lower alkyl; R₇ is a substituted or unsubstituted, linear or branched, cyclic or acyclic lower alkyl moiety; R^{8B} is hydrogen or lower alkyl; and Y is -CHOR^{Y1}, -CHNR^{Y1}R^{Y2}, C=O, C=S, C=N(R^{Y1}) or -CH(Hal); wherein Hal is a halogen selected from F, Cl, Br and I; and R^{Y1} and R^{Y2} are independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl, or R^{Y1} and R^{Y2}, taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety.

29. (Original) The compound of claim 2 wherein the compound has the structure:

wherein R₃-R₆ are as defined in claim 2; Y₂ and R^{Y1} are independently hydrogen or lower alkyl; R₇ is a substituted or unsubstituted, linear or branched, cyclic or acyclic lower alkyl

moiety; R^{8B} is hydrogen or lower alkyl; and Y is -CHOR^{Y1}, -CHNR^{Y1}R^{Y2}, C=O, C=S, C=N(R^{Y1}) or -CH(Hal); wherein Hal is a halogen selected from F, Cl, Br and I; and R^{Y1} and R^{Y2} are independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl, or R^{Y1} and R^{Y2}, taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety.

30. (Original) The compound of claim 2 wherein the compound has the structure:

wherein n, R₃ and R₄ are as defined in claim 2; Y₂ and R^{Y1} are independently hydrogen or lower alkyl; R^{8B} is hydrogen or lower alkyl; and R^Y is hydrogen, halogen, -OR^{Y1} or -NR^{Y1}NR^{Y2}; wherein R^{Y1} and R^{Y2} are independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl, or R^{Y1} and R^{Y2}, taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety.

31. (Original) The compound of claim 2 wherein the compound has the structure:

wherein R₃ and R₄ are as defined in claim 2; Y₂ and R^{Y1} are independently hydrogen or lower alkyl; R^{8B} is hydrogen or lower alkyl; and R^Y is hydrogen, halogen, -OR^{Y1} or -NR^{Y1}NR^{Y2}; wherein R^{Y1} and R^{Y2} are independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl, or R^{Y1} and R^{Y2}, taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety.

32. (Original) The compound of claim 2 wherein the compound has the structure:

wherein R₃-R₆ and n are as defined in claim 11; Y₂ and R^{Y₁} are independently hydrogen or lower alkyl; R₇ is a substituted or unsubstituted, linear or branched, cyclic or acyclic lower alkyl moiety; and R^{8B} is hydrogen or lower alkyl.

33. (Original) The compound of claim 2 wherein the compound has the structure:

wherein R₃-R₆ are as defined in claim 11; Y₂ and R^{Y1} are independently hydrogen or lower alkyl; R₇ is a substituted or unsubstituted, linear or branched, cyclic or acyclic lower alkyl moiety; and R^{8B} is hydrogen or lower alkyl.

34. (Original) The compound of claim 2 wherein the compound has the structure:

wherein R₃-R₆ and n are as defined in claim 2; and Y₂ and R^{Y1} are independently hydrogen or lower alkyl.

35. **(Original)** The compound of claim 2 wherein the compound has the structure:

wherein R₃-R₆ are as defined in claim 2; and Y₂ and R^{Y1} are independently hydrogen or lower alkyl.

36. **(Original)** The compound of claim 2 wherein the compound has the structure:

wherein R₃-R₆ and n are as defined in claim 2; and Y₂ and R^{Y1} are independently hydrogen or lower alkyl.

37. **(Original)** The compound of claim 2 wherein the compound has the structure:

wherein R₃-R₆ are as defined in claim 2; and Y₂ and R^{Y1} are independently hydrogen or lower alkyl.

Claims 38-47 (Cancelled)

48. **(Currently Amended)** The compound of ~~any one of claims 34-37~~ claim 35, wherein Y₂ is lower alkyl optionally substituted with one to three halogen atoms and R^{Y1} is hydrogen or lower alkyl; R₃, R₅ and R₆ are each methyl; R₄ is OH, OAc, NH₂ or F, or R₄ taken together with

the carbon atom to which it is attached forms a moiety having the structure: ; and the

stereocenter has the following stereochemistry .

49. **(Original)** A pharmaceutical composition comprising:

a pharmaceutically acceptable carrier, adjuvant or vehicle; and

a compound having the structure:

(I)

or pharmaceutically acceptable salt thereof;

wherein \mathbf{R}_1 and \mathbf{R}_2 are each independently hydrogen, halogen, -CN, -S(O)₁₋₂R^{1A}, -NO₂, -COR^{1A}, -CO₂R^{1A}, -NR^{1A}C(=O)R^{1B}, -NR^{1A}C(=O)OR^{1B}, -CONR^{1A}R^{1B}, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety, or -WR^{1A}; wherein W is independently -O-, -S- or -NR^{1C}-; wherein each occurrence of R^{1A}, R^{1B} and R^{1C} is independently hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; or \mathbf{R}_1 and \mathbf{R}_2 , taken together with the carbon atoms to which they are attached, form an alicyclic, heteroalicyclic, aryl or heteroaryl moiety;

\mathbf{R}_3 is hydrogen, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; or a prodrug moiety or an oxygen protecting group;

\mathbf{R}_4 is halogen, -OR^{4A}, -OC(=O)R^{4A} or -NR^{4A}R^{4B}; wherein R^{4A} and R^{4B} are independently hydrogen, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; a prodrug moiety, a nitrogen protecting group or an oxygen protecting group; or R^{4A} and R^{4B}, taken together with the nitrogen atom to which they are attached, form a heterocyclic or heteroaryl moiety; or \mathbf{R}_4 , taken together with the carbon atom to which it is attached forms a

\mathbf{R}_5 is hydrogen, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety;

\mathbf{R}_6 is hydrogen, halogen, -CN, -S(O)₁₋₂R^{6A}, -NO₂, -COR^{6A}, -CO₂R^{6A}, -NR^{6A}C(=O)R^{6B}, -NR^{6A}C(=O)OR^{6B}, -CONR^{6A}R^{6B}, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety, or -WR^{6A}; wherein W is independently -O-, -S- or -NR^{6C}-; wherein each occurrence of R^{6A}, R^{6B} and R^{6C} is independently hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; or \mathbf{R}_6 and \mathbf{R}_c , taken together with the carbon atoms to which they are attached, form an alicyclic, heteroalicyclic, aryl or heteroaryl moiety;

R_a and each occurrence of **R_b** are independently hydrogen, halogen, -CN, -S(O)₁₋₂R^{a₁}, -NO₂, -COR^{a₁}, -CO₂R^{a₁}, -NR^{a₁}C(=O)R^{a₂}, -NR^{a₁}C(=O)OR^{a₂}, -CONR^{a₁}R^{a₂}, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety, or -WR^{a₁}; wherein W is independently -O-, -S- or -NR^{a₃}-; wherein each occurrence of R^{a₁}, R^{a₂} and R^{a₃} is independently hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; or **R_a** and the adjacent occurrence of **R_b**, taken together with the carbon atoms to which they are attached, form an alicyclic, heteroalicyclic, aryl or heteroaryl moiety;

R_c is hydrogen, halogen, -CN, -S(O)₁₋₂R^{c₁}, -NO₂, -COR^{c₁}, -CO₂R^{c₁}, -NR^{c₁}C(=O)R^{c₂}, -NR^{c₁}C(=O)OR^{c₂}, -CONR^{c₁}R^{c₂}; an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety, or -WR^{c₁}; wherein W is independently -O-, -S- or -NR^{c₃}-; wherein each occurrence of R^{c₁}, R^{c₂} and R^{c₃} is independently hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; or **R_c** and **R₆**, taken together with the carbon atoms to which they are attached, form an alicyclic, heteroalicyclic, aryl or heteroaryl moiety;

n is an integer from 1 to 5;

X₁ is O, S, NR^{X₁} or CR^{X₁}R^{X₂}; wherein R^{X₁} and R^{X₂} are independently hydrogen, halogen, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety, or a nitrogen protecting group;

Q is hydrogen, halogen, -CN, -S(O)₁₋₂R^{Q₁}, -NO₂, -COR^{Q₁}, -CO₂R^{Q₁}, -NR^{Q₁}C(=O)R^{Q₂}, -NR^{Q₁}C(=O)OR^{Q₂}, -CONR^{Q₁}R^{Q₂}, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety, or -WR^{Q₁}; wherein W is independently -O-, -S- or -NR^{Q₃}-; wherein each occurrence of R^{Q₁}, R^{Q₂} and R^{Q₃} is independently hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety;

Y₁ and **Y₂** are independently hydrogen, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; or -WR^{Y₁}; wherein W is independently -O-, -S- or -NR^{Y₂}-; wherein each occurrence of R^{Y₁} and R^{Y₂} is independently hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; or **Y₁** and

Y_2 together with the carbon atom to which they are attached form a moiety having the

50. **(Original)** The pharmaceutical composition of claim 49 wherein the compound is present in an amount effective to inhibit the metastasis of tumor cells.

51. **(Original)** The pharmaceutical composition of claim 49 wherein the compound is present in an amount effective to inhibit angiogenesis.

52. **(Original)** The composition of claim 49, further comprising a cytotoxic agent.

53. **(Original)** The composition of claim 52, wherein the cytotoxic agent is an anticancer agent.

54. **(Original)** The composition of claim 53, wherein the anticancer agent is 12,13-desoxyepothilone B, (E)-9,10-dehydro-12,13-desoxyEpoB, 26-CF3-(E)-9,10-dehydro-12,13-desoxyEpoB, taxol, radicicol or TMC-95A/B.

55. **(Original)** The composition of claim 49, further comprising a palliative agent.

56. **(Original)** A method for treating or lessening the severity of metastasis of tumor cells in a subject comprising:

administering to a subject in need thereof a therapeutically effective amount of a composition according to claim 49;

said method optionally further comprising a cytotoxic agent.

57. **(Original)** The method of claim 56, wherein the method is used to treat or lessen the severity of metastasis of prostate, breast, colon, bladder, cervical, skin, testicular, kidney, ovarian, stomach, brain, liver, pancreatic or esophageal cancer or lymphoma, leukemia, or multiple myeloma.
58. **(Original)** The method of claim 57, wherein the cancer is a solid tumor.
59. **(Original)** The method of claim 56, wherein the cytotoxic agent is an anticancer agent.
60. **(Original)** The method of claim 59, wherein the anticancer agent is 12,13-desoxyepothilone B, (E)-9,10-dehydro-12,13-desoxyEpoB, 26-CF3-(E)-9,10-dehydro-12,13-desoxyEpoB, taxol, radicicol or TMC-95A/B.
61. **(Original)** The method of claim 59, further comprising administering a palliative agent.
62. **(Original)** A method for inhibiting angiogenesis in a subject comprising: administering to a subject in need thereof an angiogenesis inhibiting amount of a composition according to claim 49.
63. **(Original)** The method of claim 62, wherein the angiogenesis causes an angiogenesis dependent disease.
64. **(Original)** The method of claim 63, wherein the angiogenesis dependent disease is ocular angiogenic diseases, diabetic retinopathy, retinopathy of prematurity, corneal graft rejection, neovascular glaucoma, retrobulbar fibroplasias, rubeosis, solid tumors, blood born tumors, leukemias, tumor metastases, benign tumors, acoustic neuromas, neurofibromas, trachomas, pyogenic granulomas, rheumatoid arthritis, psoriasis, Osler-Webber Syndrome, myocardial

angiogenesis, plaque neovascularization, telangiectasia, hemophiliac joints, angiofibroma, or wound granulation.

Claims 65-70 (Canceled)

71. **(Previously Presented)** The compound of claim 7 having one of the structure:

wherein Y_1 and Y_2 are independently hydrogen, an alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl moiety; or $-WR^{Y1}$; wherein W is independently -O-, -S- or $-NR^{Y2}-$, wherein each occurrence of R^{Y1} and R^{Y2} is independently hydrogen, or an alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl moiety; or Y_1 and Y_2 together with the carbon atom to which they are attached form a moiety having the structure:

72. **(Previously Presented)** The compound of claim 8 having one of the structure:

wherein Y_1 and Y_2 are independently hydrogen, an alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl moiety; or $-WR^{Y1}$; wherein W is independently -O-, -S- or -

$\text{NR}^{\text{Y}2}-$, wherein each occurrence of $\text{R}^{\text{Y}1}$ and $\text{R}^{\text{Y}2}$ is independently hydrogen, or an alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl moiety; or Y_1 and Y_2 together with the carbon atom to which they are attached form a moiety having the structure:

73. **(Previously Presented)** The compound of claim 71 having the structure:

wherein n is 3; and Y_1 and Y_2 are independently hydrogen, an alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl moiety.

74. **(Previously Presented)** The compound of claim 72 having the structure:

wherein Y_1 and Y_2 are independently hydrogen, an alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl moiety.

75. **(Previously Presented)** The compound of claim 73 or 74, wherein R_5 and R_6 are each methyl.

76. **(Previously Presented)** The compound of claim 73 or 74, wherein R₃ is lower alkyl.

77. **(Previously Presented)** The compound of claim 76, wherein R₃ is methyl.

78. **(Previously Presented)** The compound of claim 73 or 74, wherein R₄ is OH, OAc, NH₂ or halogen, or R₄ taken together with the carbon atom to which it is attached forms a moiety

having the structure: