Análisis de la serie de tiempo de Johnson-Johnson por modelos SARIMA

Contents

Información de contacto	2
Ajustando JJ data (Continuación)	3
Distintas transformaciones	4
Logaritmo a la serie	4
ACF y PACF	5
Diferencia estacional con la diferencia del logaritmo	6
Prueba Ljung - Box	6
ACF y PACF	7
Ajuste de diferentes modelos	8
Ajustando al mejor modelo	8
Otra manera de ajustar	9
Pronóstico	11

Información de contacto

```
Mail: alejandro.zavala 1001@gmail.com
Facebook: https://www.facebook.com/AlejandroZavala1001
Git: https://github.com/AlejandroZavala98
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
##
       as.Date, as.Date.numeric
## Loading required package: MASS
## Warning: package 'forecast' was built under R version 4.1.1
## Registered S3 method overwritten by 'quantmod':
     method
                       from
     as.zoo.data.frame zoo
##
## Attaching package: 'forecast'
## The following object is masked from 'package:astsa':
##
##
       gas
```

Ajustando JJ data (Continuación)

"Ganancias trimestrales por acción de Johnson y Johnson, 84 trimestres (21 años) medidos desde el primer trimestre de 1960 hasta el último trimestre de 1980."

Haciendo un recuento de la serie analizada, haciendo su respectivo gráfico

Ganancias trimestrales JJ

Distintas transformaciones

Logaritmo a la serie

log(Quarterly earnings)

diff(log(Quarterly earnings))

ACF y PACF

ACF de jj_log_diff

PACF de jj_log_diff

Diferencia estacional con la diferencia del logaritmo

diff(log(Quarterly earnings)) con diferencia estacional

Prueba Ljung - Box

```
##
## Box-Pierce test
##
## data: jj_log_diff_diff_4
## X-squared = 20.95, df = 4.3694, p-value = 0.0004658
```

ACF y PACF

ACF de jj_log_diff con diferencia estacional

PACF de jj_log_diff con diferencia estacional

Ajuste de diferentes modelos

```
## Modelo ( 0 1 0 0 1 0 4 ) AIC= -124.0685
                                  SSE= 0.9377871 p-VALUE= 0.0002610795
## Modelo ( 0 1 0 0 1 1 4 ) AIC= -126.3493
                                  SSE= 0.8856994 p-VALUE= 0.0001606542
## Modelo ( 0 1 0 1 1 0 4 ) AIC= -125.9198 SSE= 0.8908544 p-VALUE= 0.0001978052
## Modelo ( 0 1 0 1 1 1 4 ) AIC= -124.3648
                                  SSE= 0.8854554 p-VALUE= 0.000157403
## Modelo ( 0 1 1 0 1 0 4 ) AIC= -145.5139
                                  SSE= 0.6891988 p-VALUE= 0.03543717
## Modelo ( 0 1 1 0 1 1 4 ) AIC= -150.7528
                                  SSE= 0.6265214 p-VALUE= 0.6089542
## Modelo ( 0 1 1 1 1 0 4 ) AIC= -150.9134 SSE= 0.6251634 p-VALUE= 0.7079173
## Modelo ( 0 1 1 1 1 1 4 ) AIC= -149.1317
                                  SSE= 0.6232876 p-VALUE= 0.6780876
## Modelo ( 1 1 0 0 1 0 4 ) AIC= -139.8248 SSE= 0.7467494 p-VALUE= 0.03503386
## Modelo ( 1 1 0 1 1 1 4 ) AIC= -144.3766
                                  SSE= 0.6658382 p-VALUE= 0.5459445
## Modelo ( 1 1 1 0 1 0 4 ) AIC= -145.8284 SSE= 0.667109 p-VALUE= 0.2200484
## Modelo ( 1 1 1 0 1 1 4 ) AIC= -148.7706 SSE= 0.6263677 p-VALUE= 0.594822
## Modelo ( 1 1 1 1 1 1 4 ) AIC= -144.4483 SSE= 0.6097742 p-VALUE= 0.3002702
```

Ajustando al mejor modelo

Finalmente tenemos como modelo:

```
Y_t = Y_{t-1} + 0.678Y_{t-4} - 0.678Y_{t-5} + 0.322Y_{t-8} - 0.322Y_{t-9} + Z_t - 0.6796Z_{t-1}

Z_t \sim N(0, 0.007913)

Y_t = \log(Ganancias_t)
```

Otra manera de ajustar

```
## initial value -2.237259
## iter
          2 value -2.429075
## iter
          3 value -2.446738
## iter
          4 value -2.455821
          5 value -2.459761
## iter
          6 value -2.462511
## iter
          7 value -2.462602
## iter
##
  iter
          8 value -2.462749
## iter
          9 value -2.462749
          9 value -2.462749
## iter
          9 value -2.462749
## iter
## final value -2.462749
## converged
## initial
            value -2.411490
          2 value -2.412022
  iter
          3 value -2.412060
##
  iter
## iter
          4 value -2.412062
          4 value -2.412062
## iter
## iter
          4 value -2.412062
## final value -2.412062
## converged
```



```
## $fit
##
## Call:
## arima(x = xdata, order = c(p, d, q), seasonal = list(order = c(P, D, Q), period = S),
```

```
include.mean = !no.constant, transform.pars = trans, fixed = fixed, optim.control = list(trace =
##
##
          REPORT = 1, reltol = tol))
##
## Coefficients:
##
            ma1
                    sar1
##
        -0.6796 -0.3220
## s.e. 0.0969
                 0.1124
##
## sigma^2 estimated as 0.007913: log likelihood = 78.46, aic = -150.91
## $degrees_of_freedom
## [1] 77
##
## $ttable
##
       Estimate
                    SE t.value p.value
## ma1 -0.6796 0.0969 -7.0104 0.0000
## sar1 -0.3220 0.1124 -2.8641 0.0054
##
## $AIC
## [1] -1.840408
##
## $AICc
## [1] -1.838555
## $BIC
## [1] -1.753721
```

Pronóstico

log(Quarterly earnings)

	Point Forecast	Lo 80	Hi 80	Lo 95	Hi 95
1981 Q1	2.897541	2.782989	3.012093	2.722348	3.072734
1981 Q2	2.819607	2.698858	2.940357	2.634937	3.004278
1981 Q3	2.916669	2.793396	3.039941	2.728139	3.105198
1981 Q4	2.598883	2.473572	2.724194	2.407236	2.790529
1982 Q1	3.015049	2.841963	3.188136	2.750336	3.279762
1982 Q2	2.954676	2.773250	3.136101	2.677209	3.232143
1982 Q3	3.059134	2.872681	3.245587	2.773979	3.344289
1982 Q4	2.744766	2.553837	2.935696	2.452765	3.036768