they are all have the same eigenvalues!

grout fact: all similar matrices howe the same eigenvalues!!

 $\begin{cases} \begin{bmatrix} 3 & 7 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 3 \\ 0 & 3 \end{bmatrix} & \text{example} \\ Ax = \Lambda x & (B = M^T A M) \end{cases}$

 $A \underline{MM^{-1}} x = \lambda x$ $(\widehat{I}) \Rightarrow (M^{-1}A \underline{M}M^{-1}x = \lambda \underline{M}^{-1}x)$ $\uparrow \text{ that's } B$

 $= \sum_{i=1}^{n} M^{-i} x = \sum_{i=1}^{n} M^{-i} x \quad \text{end of prove}$ so π is also B's eigenvalue, and the

eigenvector of B is M-1 (Deleigen vector of A)

=) Similar Martices have same eigenvalues and the eigenvectors sust move around

but need to discuss the lad case: cnot enough eigen BM CASE; N=N=4 suppose used to diagonize) one tamily has $\begin{bmatrix} 4 & 9 \\ 5 & 4 \end{bmatrix}$ and others

	Memo No	
Mo Tu We Th Fr Sa Su	Date / /	
		
it means all the only	1 matrix that's Smilar	
to [#4] is it self.		
#	M-120, JM = [4, 4]	
7	1	
any M	H's back again!	
		
[04] is also non undia	ogo diagonalizable, only one	
1 C 11 C 4 X 7	eigen ulus	
the family is [4X]		
[4] is called Jon	dan from	
1		
	the climax of (5.06)	
more members of fami	; h	
G [4 1] [5]	4 smiler	
[0 4], [-1 3], [. n 4]	
	it's not diagonlizable	
det = 16, trace = 8,	103 11st alay	
Ta w 7	number	
=) a m m; any	Mambe	
Lm 8-ed they an	re all similar	
see		
To 1007 - Jordan form	rank=2 2 eigenvectors 2 missing	
0000 N=0,0,0	$ \dim N(\mathcal{B}) = 2 $	
- 77	7	
[00 0 smily 00 00	the Jordan block leige	
not smally 000	Ti= Ni veets anh	

Gjordan block is not same size

以 万	Memo No
Mo Tu We Th Fr Sa Su	Date / /
Every square \widehat{A} is matrix J $J = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ The number blacks =	
the good case J is /	