Etude d'un graphe d'argumentation

Perreard Antoine/Mekki Yasmina/Du Yihan/Zhang Yilun

EISTI

perreardan@eisti.eu

April 19, 2017

Contexte

- De plus en plus de données (réseaux sociaux,...)
- Utilisation de ces données pour comprendre et prévoir une situation (élection)
- Analyser les idées politiques et les comparer
- Deux possibiltés: Fond / Forme

Sommaire

- Objectifs
- 2 Données
 - Extraction
 - Modélisation
 - Exemple
- Statistique descriptives
- 4 Algorithmes
 - Evaluer la qualité d'un argument
 - Résultat
 - Conclusion
 - Personalités similaires
 - Prédiction de liens
 - Resultats / Discussion
- 6 Conclusion
- Perspectives
 - Bibliographie

Objectifs

Notre objectif est de pouvoir représenter des arguments sur un sujet et de pouvoir les étudier:

- Evaluer la qualité d'un argument
- Trouver les noeuds les plus controversés
- Regrouper des acteurs ayant des arguments similaires
- Prédiction de liens via machine learning

Extraction des données

Création des données:

- Analyse des débats et extraction des arguments "pour" ou "contre" un sujet donné (immigration, économie, ...)
- Retranscription directe sous le format gml
- Modélisation des noeuds (arguments) et des interactions entre eux par des liens (attaques/contre attaques).

Modélisation

Les noeuds centraux

Un sujet sous forme de question fermée: pour ou contre

Les noeuds

Un acteur

Son bord politique

Son contenu

Une position vis a vis du sujet

Les liens

liens d'attaque -

Liens d'approbation +

liens entre acteurs (attaque) ou vers le sujet directement (attaque ou approbation)

Exemple de graphe

Figure: Répartition des noeuds selon les acteurs

Création du graphe sous neo4j

- Transformer les données: GML=>CSV=>Cypher de Neo4j
- Pourquoi NEO4J?
 - Débuter sur de bonne base (infrastructure)
 - Reformer le graph rendant les requêtes plus facile comme Shortest Path
 - Augmenter la capacité de stockage
- Possibilité de co-opérer avec apache beam dans l'avenir

Statistique descriptives

Pour le graphe complet:

- nombre d'idées = 6 (économie, demanteler les bases nucléaire, immigration, voile, famille, service national)
- nombre de noeuds = 130
- nombre de liens = 138
- densité = 0.016
- diamètre = 16

Statistique descriptives : centralité

Utilisation des fonctions :

centralité de proximité

Conclusion: Voir les noeuds les plus centraux :

- 0.011059 : Intervention de l'état
- 0.011039 : Moins de bureaucratie
- 0.011034 : Besoin d'un revenu universel pour faire une transition et aider
- 0.011031 : Concurence avec d'autres pays. Risque de perdre des marchées et donc de la croissance
- 0.011028 : Partage du travail à cause de sa rarification dû à la numérisation
- 0.011026 : Fabrication d'eoliennes en France pour une relance économique
- 0.011025 : Relocalisation des entreprises pour créer de l'emploi en France
- 0.011024 : Baisser les impôts des sociétés

Statistique descriptives : centralité

Utilisation des fonctions :

degré

Conclusion: Voir les noeuds les plus discutés/controversés :

- 18 : Démanteler les bases nucléaires
- 15 : Intervention de l'état
- 8 : Immigration
- 5 : Service national
- 5 : 18000 emplois supprimées
- 5 : Baisse du pouvoir d'achat à court terme
- 4 : Besoin d'un revenu universel pour faire une transition et aider
- 4 : Production électricité par photovoltaique ou eolienne

Algorithmes: Evaluer la qualité d'un argument

- Répartition de poids pour les noeuds:
 - p1 = 3*n, Noeuds attaquent les même noeuds ET sont attaqués par d'autres noeuds
 - p2 = 2*n, Noeuds attaquent OU sont attaqués par les mêmes noeud
 - p3 = 1*n, Relation de transitivité
- P = p1+p2+p3-degré(in)

Algorithmes: Résultat

• P:

• Classement:

```
[11] 53 56 68 99 66 72 75 76 54 98 [11] 10 51 52 55 57 58 71 65 74 18 [21] 38 39 43 44 45 46 49 56 47 188 [31] 111 40 115 119 5 4 3 79 80 81 [41] 81 82 83 84 97 92 89 126 96 63 94 [61] 90 2 8 14 26 41 42 62 78 91 [71] 93 120 15 21 23 27 77 100 106 110 [81] 116 121 7 9 18 22 37 48 59 61 [91] 70 73 85 95 107 114 117 124 129 16 [101] 17 19 24 28 29 30 31 32 33 34 [11] 35 36 64 69 101 102 103 104 105 109 [121] 113 122 123 130 20 25 25 128 127
```


Algorithmes: Conclusion

- Plus un argument est attaqué par des "bons" arguments, plus l'argument est considéré comme mauvais
- Résultat possible:
 - Plus le score est faible, plus l'argument est mauvais
 - Plus le score est élevé, plus l'argument bon

Algorithmes: Personalités similaires

- Utilisation de la fonction similarite:
 - Fillon et Le pen : -10
 - Mélanchon et Le Pen : 3
 - Mélanchon et Hamon : -4
 - Fillon et Hamon : -11
- Interprétation:
 - Résultats surprenants
 - Rapprochement entre extrème droite et gauche forte au niveau de l'argumentation
 - Gauche très divisé (Mélanchon et Hamon)
 - Opposition entre Fillon et Hamon
 - Opposition entre Fillon et Le pen (Droite très variées)
- Insuffisance des données pour une véritable conclusion
- Non prise en compte de la sémantique des données

Algorithmes: Prédiction de liens

Prédictions d'existence de lien en fonction de critères/métriques définis:

- Similarité de Jaccard $J(A, B) = \frac{A \cap B}{AUB}$
- Pondération Inverse à la Distance $w_k(x) = \frac{1}{d(x,x_k)^p}$
- Degrès
- Shortest Path

```
SP classe
                  jac
             0.333333
                        0.360674
                                           False
             0.333333
                                          False
         20
                       0.360674
             0.333333
                       0.360674
                                   2
                                          False
         19
3
         11
             0.333333
                       0.360674
                                   1
                                          False
             0.333333
                       0.360674
                                   1
                                          False
         10
             0.333333
                        0.360674
                                          False
                       0.360674
                                          False
             0.333333
                                          False
             0.333333
                       0.360674
                                   1
             0.333333
                       0.360674
                                   1
                                          False
             0.333333
                       0.360674
                                   3
                                          False
10
             0.333333
                        0.360674
                                           False
11
             0.333333
                       0.360674
                                           True
                                          False
12
         21
             0.333333
                        0.360674
                                   1
13
             0.333333
                       0.360674
                                   1
                                          False
         20
14
             0.333333
                       0.360674
                                   2
                                          False
         19
15
             0.333333
                                   1
                                          False
         11
                        0.360674
                                           False
16
         10
             0.333333
                       0.360674
```

Algorithmes: Prédiction de liens

Etapes:

- Génération de données
- Création d'un arbre de décision
- Evaluation par validation croisé

Resultat -1-

=== Summary ===

```
Correctly Classified Instances
                                     112
                                                       94.9153 %
Incorrectly Classified Instances
                                                        5.0847 %
Kappa statistic
Mean absolute error
                                       0.0766
Root mean squared error
                                      0.2197
Relative absolute error
                                      73.4472 %
Root relative squared error
                                     99.5712 %
Total Number of Instances
                                    118
```

=== Detailed Accuracy By Class ===

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
	1,000	1,000	0,949	1,000	0,974	0,000	0,641	0,963	False
	0,000	0,000	0,000	0,000	0,000	0,000	0,641	0,078	True
Weighted Avg.	0,949	0,949	0,901	0,949	0,924	0,000	0,641	0,918	

=== Confusion Matrix ===

```
a b <-- classified as
112 0 | a = False
6 0 | b = True</pre>
```

Resultat -2-

=== Summary ===

```
Correctly Classified Instances
                                      139
                                                       86.875 %
Incorrectly Classified Instances
                                                        13,125 %
Kappa statistic
                                       0.6818
Mean absolute error
                                       0.1597
Root mean squared error
                                       0.349
Relative absolute error
                                      37.9074 %
Root relative squared error
                                      76.1309 %
Total Number of Instances
                                      160
```

=== Detailed Accuracy By Class ===

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
	0,920	0,250	0,896	0,920	0,907	0,683	0,845	0,888	False
	0,750	0,080	0,800	0,750	0,774	0,683	0,845	0,761	True
Weighted Avg.	0,869	0,199	0,867	0,869	0,868	0,683	0,845	0,850	

=== Confusion Matrix ===

```
a b <-- classified as
103 9 | a = False
12 36 | b = True</pre>
```

Resultat -2-

Discussion

- Base de donnée déséquilibré ==> sur-représentation d'une classe
- Métriques non adaptés au problème
- Incapacité à représenter la sémantique du problème
- Problème mal abordé

Conclusion

- Travail axé sur le fond via les graphes
- Retranscription des liens entre arguments
- Analyse des interactions entre arguments (similarité arguments, sujets les plus discutés, founis, ...)
- prédiction de lien

Perspectives

- Analyse du discours
 - Extraction de sens
 - Modélisation de celui ci dans un graphe

Perspectives

Identifier une personne à un bord politique d'après son argumentation (forme et non fond)

Abordé le problème par une analyse de texte:

- L'utilisation de phrases longue
- Ratio champs lexicaux d'une idée / tout les mots
- Utilisation du vouvoiement/tutoiement
- Voir si le discours est policé ou s'il utilise des mots de tendance "cru" (noir, ...)
- Utilisation de figures de styles
- Reformulation de la question
- Mesure de tempérament
- Esquive d'une question
- Historique

Bibliographie

Pour la génération de données:

- vidéo de débats politique de 'L Emission Politique' sur youtube.com ou sur francetvinfo.fr/replay-magazine/france-2/l-emission-politique
- Les programmes politiques sur .lemonde.fr/personnalite/nom de la personne/programme
- Apache beam : https://beam.apache.org/
- Neo4j: https://neo4j.com/developer/

Merci de votre attention Avez vous des questions ?