Internet des Objets (IoT)

 $Chapitre \ 1: \ IoT \ grand \ format$

Aimen Bouchhima

Plan

Introduction

Architecture globale

L'aspect réseau (télécom)

L'aspect équipement embarqué (thing)

L'aspect applicatif

Définition

- Plusieurs tentatives de définitions existent, mais qui ne font pas l'unanimité
 - ► Pas de définition précise et formelle
- Plutôt un concept, une tendance, un buzzword ?
- Litéralement : Internet des Objets (Internet of Things)
 - Things : en français devrait être "choses" plutôt que "objects"
 - smartphones, tablettes, lunettes Google Glass, téléviseurs, pompes à essence, équipements de surveillance médicale, appareils électroménagers, caméras de sécurité, parcmètres, conteneurs, équipements industriels, voitures, etc.
 - ► Internet : Les objets ne sont pas nécessairement connectés au réseau Internet et peuvent rester sur des réseaux privés (LAN ou VPN). certains préfèrent le terme objets connectés

Définition

- L'Internet des objets représente l'extension d'Internet à des choses et à des lieux du monde physique. Il est considéré comme la troisième évolution de l'Internet, baptisée Web 3.0 qui fait suite à l'ère du Web Social
- «Il importe de noter que l'Internet des objets est un concept, non pas une technologie unique, et qu'il a des répercussions sur les technologies et la société Alain Louchez, Georgia Tech Research Institute

Des faits ...

Aujourd'hui on vend beacoup plus d'objet "loT" que de smart phone et d'ordinateurs. On prévoit que cette tendance va s'accentuer dans le futur

Segmentation du marché

Grand public Energie Industrie e-Santé **Bâtiment Transports** • Industrie 4.0 Télémédecine Compteurs Géolocalisation Maison · Chauffage, intelligent Supervision et intelligente ventilation. automatisation Appareils Supervision climatisation Surveillance Télémétrie médicaux Eclairage Maintenance et alarmes Sécurité mobiles prédictive surveillance Panneaux · Sécurité des • Maintien à solaires accès Transports Technologies domicile Chaine publics Alarmes d'approvisionne portables & Eoliennes incendie capteurs ment textiles

Architecture de l'écosystème loT

Réseau de capteur (WSN)

Wireless Sensor Network

L'aspect réseau (télécom)

Modèle OSI vs TCP/IP vs IoT

OSI model	TCP/IP model	IoT protocols
7 Application	Application	HTTPS, XMPP, CoAP, MQTT, AMQP
6 Presentation		
5 Session		
4 Transport	Transport	UDP, TCP
3 Network	Internet	IPv6, 6LoWPAN, RPL
2 Data link	Network access & physical	IEEE 802.15.4 Wifi (802.11 a/b/g/n)
1 Physical		Ethernet (802.3) GSM, CDMA, LTE

Critères de sélection d'un réseau sans fil

- Dans un réseau sans fil idéal, on cherche à :
 - Maximiser la capacité ou débit (bits par seconde)
 - Réduire la Latence : temps nécessaire pour envoyer le premier bit (seconde)
 - Maximiser la porté (mètre)
 - Réduire la puissance consommée (Watt)
- Généralement, ces critère sont antagonistes
 - Par exemple, pour augmenter la portée, il faut augmenter la puissance ou diminuer le débit

Classification selon la porté

- PAN (Personal Area Network)
 - Courte distance (quelques mètres)
 - Exemple: appareil de fitness qui communique avec un smartphone
- LAN (Local Area Network)
 - Quelques centaines mètres
 - Exemple: smart home, réseau de capteurs dans une chaîne de production industrielle
- MAN (Metropolitan Area Network)
 - Quelques kilomètres (à l'échelle d'une ville)
 - Exemple: parkings intelligents dans une ville interconnectés en maille (mash network)
- WAN (Wide Area Network)
 - Quelques dizaines de kilomètres
 - Exemple: réseau de capteurs utilisés en agriculture

Technologies sans fil

L'aspect équipement embarqué (thing)

Rôle dans l'écosystème IoT

- ▶ Dans un écosystème loT, le rôle de l'équipement embarqué (thing ou device) est essentiellement de :
 - collecter les données (capteur) ou appliquer des coommandes (actionneur)
 - traiter ces données (optionnel)
 - s'interfacer avec le réseau de communication pour envoyer/recevoir les données

Critère de sélection d'un équipement embarqué

Idéalement, dans un équipement embarqué, on cherche à :

- Augmenter la puissance de calcul pour pouvoir faire des traitements en amont sur le données
 - Appliquer l'intelligence au niveau capteur : filter les données et réduire ainsi la bande passante requise sur le réseau
 - Implémenter les protocoles de communication complexes requis par les réseaux les plus sophistiqués
- Minimiser la consommation d'énergie et donc maximiser l'autonomie de la batterie
- Réduire le coût
- Miniaturiser les dimensions

Les systèmes sur puce

Solution : Systèmes sur puce (System on Chip ou SoC)

- Idée : rassembler le maximum de fonctionalités sur une même puce de silicium (chip) sous forme de circuit intégré
 - ► Technologie VLSI (Very Large Scale Integration) : mettre un milliard de transistors sur une même puce
 - Aujourd'hui la taille d'un transistor a atteint les 14 nm
 - Loi de Moore : la capacité d'intégration double chaque 18 mois

Les systèmes sur puce

SoC : architecture mixte logicielle/matérielle

- Partie logicielle : représentée par un (ou plusieurs) processeur(s)
 - Processeur à haute efficacité énergétique (exemple ARM)
 - Programmable via las languages de haut niveau (C/C++/Java/Python...)
 - Apporte la flexibilité et réduit le coût de conception
- Partie matérielle : représentée par les accélérateurs
 - Implémentation optimisée des parties critiques (exemple : contôleur de communication WIFI/Bluetooth)
 - Un accélérateur matériel est toujous plus performant qu'un processeur qui exécute la même fonction en logiciel
 - ▶ Apporte l'aspect performance et faible consommation d'énergie

Logiciel embarqué

- Système d'exploitation temps réel (RTOS)
 - Facilite la programmation des tâches d'aquisition et de contrôle
 - Respect des contraintes temporelles
 - Implémente la gestion intelligente de la consommation d'énergie
- Couches de communication réseau (niveau transport et application) disponibles comme bibliothèques/drivers

Archiecture d'un Gateway

Interface entre deux réseaux différents

Exemple: PARTICLE XENON

- Nordic Semiconductor nRF52840 SoC
 - ARM Cortex-M4F 32-bit processor @ 64MHz
 - ► 1MB flash, 256KB RAM
 - ► IEEE 802.15.4-2006: 250 Kbps
 - Bluetooth 5: 2 Mbps, 1 Mbps, 500 Kbps, 125 Kbps
 - ► 20 mixed signal GPIO (6 x Analog, 8 x PWM), UART, I2C, SPI
- Consommation: 6 mA
- ► Coût : 10 \$

Exemple: PARTICLE ARGON

- Nordic Semiconductor nRF52840 SoC
- Espressif ESP32-D0WD 2.4Ghz Wi-Fi coprocessor
 - On-board 4MB flash for the ESP32
 - ► 802.11 b/g/n support
 - 802.11 n (2.4 GHz), up to 150 Mbps
- ► Consommation: 10 mA
- ► Coût : 19 \$

Exemple: Raspberry Pi 3 Model B+

- Broadcom BCM2837B0 SoC
 - Cortex-A53 (ARMv8) 64-bit @ 1.4GHz
 - 1GB LPDDR2 SDRAM
 - ➤ 2.4GHz and 5GHz IEEE 802.11.b/g/n/ac wireless LAN
 - ▶ Bluetooth 4.2, BLE
 - ► Gigabit Ethernet over USB 2.0
 - CSI camera port
- ► Consommation: 500 mA
- ► Coût: 35 \$

L'aspect applicatif

Position dans l'écosystème IoT

- Couches 5, 6 et 7 du modèle OSI (session, présentation et application)
- Objectifs
 - Acheminer les données vers le cloud (ou serveur local)
 - Gérer/contrôler les équipements
 - Stockage et archivage
 - Reporting
 - Analyse
 - Transformations

Protocoles de communication

- ► HTTP est le protocole le plus utilisé dans les applications classiques sur internet
- ► HTTP continue a être utilisé dans le domaine loT surtoût pour l'invocation de services HTTP/REST (après tout, l'IoT est une extension du web classique)
- Cependant, HTTP ne convient pas forcément pour toute la chaîne de traitement IoT
 - Le protocole HTTP est basé sur le mécanisme requête/réponse
 - ► HTTP suppose que le réseau est fiable et que les intervenants dans l'échange d'information sont toujous en ligne.
 - ► En IoT, les messages échangés sont souvent de petite taille (quelques octets). L'entête d'un paquet HTTP (plusieurs centaines d'octets) représente un surcoût (overhead) important par rapport à la taille totale du message
 - Protocole assez complexe pour être implémenté efficacement sur les devices

Protocoles de communication

- ▶ Dans le domaine loT, on besoin de protocoles qui implémentent un mécanisme d'envoi de message et qui soient:
 - Simple à mettre en oeuvre même sur des équipements à ressources limitées
 - Avec un surcoût minimal en terme de taille du paquet à fin de ne pas encombrer le réseau
 - A faible latence
 - Avec une qualité de service (QoS) pouvant s'adapter à différents cas d'utilisation

Protocoles de communication

- Principaux protocoles utilisés dans le domaine IoT
 - ► MQTT (Message Queuing Telemetry Transport). Utilise TCP/IP. Basé sur le modèle d'envoi de message de type publier/souscrire (publish/subscribe ou encore P/S)
 - AMQP (Advanced Message Queuing Protocol). Utilise TCP/IP. Envoi de message de type point-à-point et P/S
 - COAP-(Constrained Application Protocol) Utilise UDP. peut être vu comme une redéfinition de HTTP pour l'IoT (basé sur le même modèle requête/réponse)

Plateforme IBM Watson IoT

Architecture

