

Date : 2012-09-21 Page 1 of 22

No. : HM167830

Applicant (CKT001): CKICOM TECHNOLOGY LTD.

Flat F 4/F Universal Ind. Ctr. 19-21 Shan Mei St, Fotan,

Hong Kong.

Manufacturer: CKICOM TECHNOLOGY LTD.

Flat F 4/F Universal Ind. Ctr. 19-21 Shan Mei St, Fotan,

Hong Kong.

Description of Sample(s): Submitted sample(s) said to be

Product: Wetness Sensor

Brand Name: Carease Model Number: T-230

FCC ID: YQKCEIIPT-230

Date Sample(s) Received: 2012-08-15

Date Tested: 2012-08-29 to 2012-09-10

Investigation Requested: Perform ElectroMagnetic Interference measurement in

accordance with FCC 47CFR [Codes of Federal Regulations] Part 15: 2011 and ANSI C63.4:2009 for FCC Certification.

Conclusion(s): The submitted product COMPLIED with the requirements of

Federal Communications Commission [FCC] Rules and Regulations Part 15. The tests were performed in accordance with the standards described above and on Section 2.2 in this

Test Report.

Remark(s): --

Dr. LEE Kam Chuen
Authorized Signatory
ElectroMagnetic Compatibility Department
For and on behalf of

The Hong Kong Standards and Testing Centre Ltd.

For full text of "Conditions of Issuance of Test Report", please refer to overleaf or refer to the website of Homepage.

Date: 2012-09-21 Page 2 of 22

No. : HM167830

CONTENT:

	Cover Content	Page 1 of 22 Page 2-3 of 22
1.0	General Details	
1.1	Test Laboratory	Page 4 of 22
1.2	Applicant Details Applicant Manufacturer	Page 4 of 22
1.3	Equipment Under Test [EUT] Description of EUT operation	Page 5 of 22
1.4	Date of Order	Page 5 of 22
1.5	Submitted Sample(s)	Page 5 of 22
1.6	Test Duration	Page 5 of 22
1.7	Country of Origin	Page 5 of 22
<u>2.0</u>	Technical Details	
2.1	Investigations Requested	Page 6 of 22
2.2	Test Standards and Results Summary	Page 6 of 22
<u>3.0</u>	Test Results	
3.1	Emission	Page 7-12 of 22
3.2	Bandwidth Measurement	Page 13-14 of 22

Date: 2012-09-21 Page 3 of 22

No. : HM167830

Appendix A

Page 15 of 22 List of Measurement Equipment

Appendix B

Page 16-19 of 22 Duty Cycle Correction During 100 msec

Appendix C

Page 20 of 22 Periodic Operation

Appendix D

Page 21-22 of 22 Photographs

Date: 2012-09-21 Page 4 of 22

No. : HM167830

1.0 General Details

1.1 Test Laboratory

The Hong Kong Standards and Testing Centre Ltd. EMC Laboratory 10 Dai Wang Street, Taipo Industrial Estate New Territories, Hong Kong

Telephone: 852 2666 1888 Fax: 852 2664 4353

1.2 Applicant Details Applicant

CKICOM TECHNOLOGY LTD. Flat F 4/F Universal Ind. Ctr. 19-21 Shan Mei St, Fotan, Hong Kong.

Manufacturer

CKICOM TECHNOLOGY LTD. Flat F 4/F Universal Ind. Ctr. 19-21 Shan Mei St, Fotan, Hong Kong.

Date: 2012-09-21 Page 5 of 22

No.: HM167830

1.3 Equipment Under Test [EUT] Description of Sample

Submitted sample(s) said to be

Product: Wetness Sensor

Manufacturer: CKICOM TECHNOLOGY LTD.

Flat F 4/F Universal Ind. Ctr. 19-21 Shan Mei St, Fotan, Hong Kong.

Brand Name: Carease Model Number: T-230

Rating: 3Vd.c. ("LR43" size battery x 2)

1.3.1 Description of EUT Operation

The Equipment Under Test (EUT) is a CKICOM TECHNOLOGY LTD., Wetness Sensor. The EUT is a 433MHz transceiver, a RF signal will be transmitted when the wetness sensor of EUT is triggered, the RF transmission will stop when the sensor resumed to un-triggered status or is disable by another transmitter.

1.4 Date of Order

2012-08-15

1.5 Submitted Sample(s):

1 Sample

1.6 Test Duration

2012-08-29 to 2012-09-10

1.7 Country of Origin

Hong Kong

Date: 2012-09-21 Page 6 of 22

No. : HM167830

<u>2.0</u> **Technical Details**

2.1 **Investigations Requested**

Perform ElectroMagnetic Interference measurement in accordance with FCC 47CFR [Codes of Federal Regulations] Part 15 2011 and ANSI C63.4:2009 for FCC Certification.

Test Standards and Results Summary Tables

EMISSION Results Summary										
Test Condition	Test Condition Test Requirement Test Method Class / Test Result									
			Severity	Pass	Failed	N/A				
Field Strength of Fundamental Emissions & Spurious Emissions	FCC 47CFR 15.231e	ANSI C63.4:2009	N/A	\boxtimes						
Radiated Emissions, 30MHz to 1GHz	FCC 47CFR 15.209	ANSI C63.4:2009	N/A	\boxtimes						

Note: N/A - Not Applicable

Date: 2012-09-21 Page 7 of 22

No. : HM167830

3.0 Test Results

3.1 Emission

3.1.1 Radiated Emissions (30 – 1000MHz)

Test Requirement: FCC 47CFR 15.231e Test Method: ANSI C63.4:2009

Test Date: 2012-08-29

Mode of Operation: Tx on mode / Rx on mode

Test Method:

The sample was placed 0.8m above the ground plane of semi-anechoic Chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

* Semi-anechoic chamber located on the G/F of "The Hong Kong Standards and Testing Centre Ltd." with a metal ground plane filed with the FCC pursuant to section 2.948 of the FCC rules, with Registration Number: 607756.

Date : 2012-09-21 Page 8 of 22

No. : HM167830

Spectrum Analyzer Setting:

9KHz – 30MHz (Pk & Av) RBW: 10kHz

VBW: 30kHz

Sweep: Auto

Span: Fully capture the emissions being measured

Trace: Max. hold

30MHz – 1GHz (QP) RBW: 120kHz

VBW: 120kHz Sweep: Auto

Span: Fully capture the emissions being measured

Trace: Max. hold

Above 1GHz (Pk & Av) RBW: 3MHz

VBW: 3MHz Sweep: Auto

Span: Fully capture the emissions being measured

Trace: Max. hold

Test Setup:

Date : 2012-09-21 Page 9 of 22

No. : HM167830

Limits for Field Strength of Fundamental Emissions [FCC 47CFR 15.231e]:

Frequency Range of	Field Strength of	Field Strength of
Fundamental	Fundamental Emission	Spurious Emission
	[Average]	[Average]
[MHz]	$[\mu V/m]$	$[\mu V/m]$
40.66-40.70	1,000	100
70-130	500	50
130-174	500 to 1,500 **	50 to 150 **
174-260	1,500	150
260-470	1,500 to 5,000 **	150 to 500 **
Above 470	5,000	500

Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 130-174 MHz, μ V/m at 3 meters = 22.72727(F) - 2454.545; for the band 260-470 MHz, μ V/m at 3 meters = 16.6667(F) - 2833.3333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.

Results of Tx on mode: PASS

TIESTING OF THE	Estats of 1x on mode: 1A55								
	Field Strength of Fundamental Emissions								
Frequency	Frequency Measured Correction Field Field Limit E-Field								
rrequency	Level @3m	Factor			@3m	Polarity			
			Strength	Strength		Polarity			
MHz	dBμV/m	dB/m	dBµV/m	μV/m	μV/m				
434.0	63.3	19.0	82.3	13,031.7	43,996.8	Horizontal			
868.1	12.8	26.3	39.1	90.2	4,399.7	Horizontal			
+ 1301.9	< 1.0	28.2	< 29.2	< 28.8	5,000.0	Horizontal			
1735.9	< 1.0	31.4	< 32.4	< 41.7	4,399.7	Horizontal			
2169.9	< 1.0	32.9	< 33.9	< 49.5	4,399.7	Horizontal			
2603.9	< 1.0	32.9	< 33.9	< 49.5	4,399.7	Horizontal			
3037.9	< 1.0	5.8	< 6.8	< 2.2	4,399.7	Horizontal			
3471.8	< 1.0	34.9	< 35.9	< 62.4	4,399.7	Horizontal			
+ 3905.8	< 1.0	26.5	< 27.5	< 23.7	5,000.0	Horizontal			
+ 4339.8	< 1.0	26.5	< 27.5	< 23.7	5,000.0	Horizontal			

Remarks:

FCC Limit for Fundamental Average Measurement = 16.6667(433.98)-2833.3333=4,399.7µV/m

+: Denotes restricted band of operation.

Measurements were made using a peak detector. Any emission less than 1000 MHz and falling within the restricted bands of ECC Pulse Part 15 Section 15 205 were not adjusted for averaging

within the restricted bands of FCC Rules Part 15 Section 15.205 were not adjusted for averaging and the limits of FCC Rules Part 15 Section 15.209 were applied.

*: Adjusted by Duty Cycle = -19.3dB

Duty Cycle Correction =-20dB, if the calculation duty cycle correction >-20dB

Correction Factor includes Antenna Factor and Cable Attenuation.

Calculated measurement uncertainty : 30MHz to 1GHz 5.1dB

The Hong Kong Standards and Testing Centre Ltd.

10 Dai Wang Street, Taipo Industrial Estate, N.T., Hong Kong Tel: (852) 2666 1888 Fax: (852) 2664 4353 Homepage: www.hkstc.org E-mail: hkstc@hkstc.org

Date: 2012-09-21 Page 10 of 22

No. : HM167830

Results of Tx on mode: PASS

A	Field Strength of Fundamental Emissions								
	Average Value								
Frequency	Measured	Correction	Field	Field	Limit	E-Field			
	Level @3m	Factor	Strength	Strength	@3m	Polarity			
MHz	dBμV/m	dB/m	dBμV/m	$\mu V/m$	$\mu V/m$				
434.0	44.1	19.0	63.1	1,428.9	4,399.7	Horizontal			
868.1	0.0	26.3	26.3	20.7	440.0	Horizontal			
+ 1301.9	< 17.2	28.2	< 45.4	< 186.2	500.0	Horizontal			
1735.9	< 11.7	31.4	< 43.1	< 142.9	440.0	Horizontal			
2169.9	< 10.4	32.9	< 43.3	< 146.2	440.0	Horizontal			
2603.9	< 13.8	32.9	< 46.7	< 216.3	440.0	Horizontal			
3037.9	< 1.0	5.8	< 6.8	< 2.2	440.0	Horizontal			
3471.8	< 1.0	34.9	< 35.9	< 62.4	440.0	Horizontal			
+ 3905.8	< 1.0	26.5	< 27.5	< 23.7	500.0	Horizontal			
+ 4339.80	< 1.0	26.5	< 27.5	< 23.7	500.0	Horizontal			

Remarks:

FCC Limit for Fundamental Average Measurement = $16.6667(433.98)-2833.3333=4,399.7\mu\text{V/m}$

+: Denotes restricted band of operation.

Measurements were made using a peak detector. Any emission less than 1000 MHz and falling within the restricted bands of FCC Rules Part 15 Section 15.205 were not adjusted for averaging and the limits of FCC Rules Part 15 Section 15.209 were applied.

*: Adjusted by Duty Cycle = -19.3dB

Duty Cycle Correction =-20dB, if the calculation duty cycle correction >-20dB

Correction Factor includes Antenna Factor and Cable Attenuation.

Calculated measurement uncertainty : 30MHz to 1GHz 5.1dB

Date: 2012-09-21 Page 11 of 22

No. : HM167830

Limits for Radiated Emissions [FCC 47 CFR 15.209]:

Frequency Range [MHz]	Field strength [microvolts/meter]	Measurement distance [meters]		
0.009-0.490	2400/F(kHz)	300		
0.490-1.705	24000/F(kHz)	30		
1.705-30	30	30		
30-88	100	3		
88-216	150	3		
216-960	200	3		
Above960	500	3		

The emission limits shown in the above table are based on measurement employing a CISPR quasi-peak detector and above 1000MHz are based on measurements employing an average detector.

Results of Tx on mode (9k - 30MHz): PASS

Field Strength of Spurious Emissions									
	Average Value								
Frequency	Measured	Correction	Field	Field	Limit	E-Field			
	Level	Factor	Strength	Strength		Polarity			
MHz	dBμV/m	dB/m	dBµV/m	$\mu V/m$	$\mu V/m$				
4	Emissions detected are more than 20 dB below the FCC Limits								

Results of Tx on mode (30MHz - 1000MHz): PASS

	Field Strength of Spurious Emissions Quasi-Peak Value								
Frequency	Measured	Correction	Field	Field	Limit	E-Field			
	Level	Factor	Strength	Strength		Polarity			
MHz	dBμV/m	dB/m	dBµV/m	$\mu V/m$	$\mu V/m$	1			
Emissions detected are more than 20 dB below the FCC Limits									

Results of Tx on mode (1000MHz): PASS

	(1000)								
Field Strength of Spurious Emissions									
	Peak Value								
Frequency	Measured	Correction	Field	Field	Limit	E-Field			
	Level	Factor	Strength	Strength		Polarity			
MHz	MHz $dB\mu V/m$ dB/m $dB\mu V/m$ $\mu V/m$ $\mu V/m$								
	Emissions detected are more than 20 dB below the FCC Limits								

Results of Tx on mode (Above 1000MHz): PASS

Field Strength of Spurious Emissions								
Average Value								
Frequency	Measured	Correction	Field	Field	Limit	E-Field		
	Level	Factor	Strength	Strength		Polarity		
MHz	$dB\mu V/m$	dB/m	dBµV/m	$\mu V/m$	μV/m			
Emissions detected are more than 20 dB below the FCC Limits								

Remarks:

Correction Factor includes Antenna Factor and Cable Attenuation.

Calculated measurement uncertainty : 30MHz to 1GHz 5.1dB

The Hong Kong Standards and Testing Centre Ltd.

10 Dai Wang Street, Taipo Industrial Estate, N.T., Hong Kong Tel: (852) 2666 1888 Fax: (852) 2664 4353 Homepage: www.hkstc.org E-mail: hkstc@hkstc.org

Date: 2012-09-21 Page 12 of 22

No. : HM167830

Limits for Radiated Emissions [FCC 47 CFR 15.209]:

Emilia for recently and property of the control of								
Frequency Range [MHz]	Field strength [microvolts/meter]	Measurement distance [meters]						
0.009-0.490	2400/F(kHz)	300						
0.490-1.705	24000/F(kHz)	30						
1.705-30	30	30						
30-88	100	3						
88-216	150	3						
216-960	200	3						
Above960	500	3						

The emission limits shown in the above table are based on measurement employing a CISPR quasi-peak detector and above 1000MHz are based on measurements employing an average detector.

Results of Rx on mode (9k - 30MHz): PASS

Field Strength of Spurious Emissions									
	Average Value								
Frequency	Measured	Correction	Field	Field	Limit	E-Field			
	Level	Factor	Strength	Strength		Polarity			
MHz	$dB\muV/m$	dB/m	dBµV/m	$\mu V/m$	$\mu V/m$				
A	Emissions detected are more than 20 dB below the FCC Limits								

Results of Rx on mode (30MHz - 1000MHz): PASS

		Field Strength of Spurious Emissions Quasi-Peak Value						
	Frequency	Measured	Correction	Field	Field	Limit	E-Field	
		Level	Factor	Strength	Strength		Polarity	
1	MHz	dBμV/m	dB/m	dBµV/m	$\mu V/m$	μV/m	n	
7	434.30	1.3	19	20.3	10.4	200.0	Horizontal	

Results of Rx on mode (1000MHz): PASS

Field Strength of Spurious Emissions								
Peak Value								
Frequency	Measured	Correction	Field	Field	Limit	E-Field		
	Level	Factor	Strength	Strength		Polarity		
MHz	dBμV/m	dB/m	$dB\mu V/m$	$\mu V/m$	$\mu V/m$			
Emissions detected are more than 20 dB below the FCC Limits								

Results of Rx on mode (Above 1000MHz): PASS

Field Strength of Spurious Emissions							
Average Value							
Frequency Measured Correction Field Field Limit E-F							
	Level	Factor	Strength	Strength		Polarity	
MHz	$dB\muV/m$	dB/m	dBµV/m	$\mu V/m$	μV/m		
Emissions detected are more than 20 dB below the FCC Limits							

Remarks:

Correction Factor includes Antenna Factor and Cable Attenuation.

Calculated measurement uncertainty : 30MHz to 1GHz 5.1dB

The Hong Kong Standards and Testing Centre Ltd.

10 Dai Wang Street, Taipo Industrial Estate, N.T., Hong Kong Tel: (852) 2666 1888 Fax: (852) 2664 4353 Homepage: www.hkstc.org E-mail: hkstc@hkstc.org

Date: 2012-09-21 Page 13 of 22

No.: HM167830

3.2 20dB Bandwidth of Fundamental Emission

Test Requirement: FCC 47 CFR 15.231e

Test Method: ANSI C63.4:2003 (Section 13.1.7)

Test Date: 2012-09-10 Mode of Operation: Tx on mode

Test Method:

The bandwidth is measured at an amplitude level reduced from the reference level by a specified ratio. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst-case (i.e. the widest) bandwidth.

Test Setup:

As Test Setup of clause 3.1.1 in this test report.

Date: 2012-09-21 Page 14 of 22

No. : HM167830

Limits for 20 dB Bandwidth of Fundamental Emission:

Frequency Range	20dB Bandwidth	FCC Limits *
[MHz]	[kHz]	[kHz]
433.98	166.3	1084.95

*: FCC Limit for Bandwidth measurement = (0.25%)(Center Frequency) =(0.0025)(433.98) = 1084.95kHz

Date: 3.SEP.2012 13:50:12

Date: 2012-09-21 Page 15 of 22

No. : HM167830

Appendix A

List of Measurement Equipment

Radiated Emission

EQP NO.	DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	LAST CAL	DUE CAL
EM299	DOUBLE-RIDGED WAVEGUIDE HORN ANTENNA	ETS-LINDGREN	3115	00114120	2012/01/25	2014/01/25
EM215	MULTIDEVICE CONTROLLER	EMCO	2090	00024676	N/A	N/A
EM216	MINI MAST SYSTEM	EMCO	2075	00026842	N/A	N/A
EM217	ELECTRIC POWERED TURNTABLE	EMCO	2088	00029144	N/A	N/A
EM218	ANECHOIC CHAMBER	ETS-LINDGREN	FACT-3		2011/10/25	2012/10/25
EM194	BICONILOG ANTENNA	EMCO	3142B	1795	2010/10/06	2012/10/06
EM229	EMI TEST RECEIVER	R&S	ESIB40	100248	2012/05/03	2013/05/03
EM022	LOOP ANTENNA	EMCO	6502	1189-2424	2011/09/14	2013/09/14

Remarks:-

CM Corrective Maintenance

N/A Not Applicable TBD To Be Determined

Date: 2012-09-21 Page 16 of 22

No. : HM167830

Appendix B

Duty Cycle Correction During 100msec [FCC 47CFR 15.231(e)]

The transmitter periodically sends a different series of characters, There are 3 pulses (pulse duration = 3.61ms) within 100ms. Assuming any combination of short and long pulses may be obtained due to encoding the worst case transmit duty cycle would be considered (3x3.61msec)/100x100% = 10.83% duty cycle. Figure A through F show the characteristics of the pulses train for one of these functions.

Remarks:

Duty Cycle Correction = 20log (0.1083)=-19.3dB

Duty Cycle Correction =-20dB, if the calculation duty cycle correction >-20dB

The following figures [Figure A to Figure C] showed the characteristics of the pulse train for one of these functions.

Date: 2012-09-21 Page 17 of 22

No. : HM167830

Date: 10.SEP.2012 11:20:08

Date: 2012-09-21 Page 18 of 22

No. : HM167830

Date: 10.SEP.2012 12:27:19

Date: 2012-09-21 Page 19 of 22

No. : HM167830

Figure C [Silent Period = 20.922s] Silent Period should be >30 times of Transmission Period (12.3s)

Date: 10.SEP.2012 12:30:08

Date : 2012-09-21 Page 20 of 22

No. : HM167830

Appendix C

Periodic Operation [FCC 47CFR 15.231(e)]

According to FCC 47CFR15.231 (e). A periodic transmitter shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

Date: 2012-09-21 Page 21 of 22

No. : HM167830

Appendix D

Photographs of EUT

Inner Circuit Top View

Inner Circuit Bottom View

Date: 2012-09-21 Page 22 of 22

No. : HM167830

Photographs of EUT

***** End of Test Report *****

The Hong Kong Standards and Testing Centre Ltd.

10 Dai Wang Street, Taipo Industrial Estate, N.T., Hong Kong
Tel: (852) 2666 1888 Fax: (852) 2664 4353 Homepage: www.hkstc.org E-mail: hkstc@hkstc.org