Les équations

Activité 1. Trois programmes de calculs

Alice et Bertrand saisissent le même nombre de départ sur leurs calculatrices puis effectuent les programmes de calculs suivants :

- Alice multiplie le nombre de départ par 8 puis ajoute 7 au résultat obtenu.
- Bertrand multiplie le nombre de départ par 6 puis ajoute 13 au résultat obtenu.

Ils s'aperçoivent alors que leurs calculatrices affichent le même résultat.

- a) Le nombre 1 est-il leur nombre de départ ? Justifie tes calculs.
- b) Et le nombre 2 ? Poursuis jusqu'à ce que tu trouves le nombre solution.

Chloé effectue, avec le même nombre de départ qu'Alice et Bertrand, le programme de calculs suivant :

- Chloé multiplie le nombre de départ par 3 puis ajoute 30 au résultat obtenu.
- c) Trouve-t-elle le même résultat qu'Alice et Bertrand ? Justifie.

L. Billard -1 - Cours : les équations

Activité 2. Techniques de résolution d'équations

1) Recopie puis transforme chaque égalité en une égalité équivalente.

2) Le but est de déterminer ${m x}$ dans chacune des équations suivantes. Recopie puis détermine l'opérateur.

On rédige de la façon suivante :

$$3x = 7$$

$$x = \dots$$

On rédige de la façon suivante :

$$3x = 7$$

$$\frac{3x}{3} = \frac{7}{3}$$

$$x = \frac{7}{3}$$

3) Utilise d'abord les opérateurs pour résoudre les équations suivantes puis rédige comme cidessus. Vérifie ensuite que ta solution est juste.

a)
$$x - 5,2 = 2,6$$

b)
$$-7x = -14$$

c)
$$-x=7,2$$

- 4) De la même façon mais en deux étapes, résous les équations suivantes :
 - a) 2x + 3 = 5
 - b) 7x 6 = -1
 - c) 2,6 3x = -1,4

Activité 3. Choix de l'inconnue

Trois personnes se partagent la somme de 316 ϵ . On veut trouver la part de chacune sachant que la seconde a 32 ϵ de plus que la première et que la troisième a 15 ϵ de plus que la seconde.

1) Soit $oldsymbol{x}$ la part de la première personne. Mets ce problème en équation puis résous-le.
2) Soit $oldsymbol{x}$ la part de la deuxième personne. Mets ce problème en équation puis résous-le.
3) Y a-t-il une autre possibilité pour le choix de l'inconnue ? Si oui, mets ce problème en
équation à partir de ce choix puis résous-le.
4) Conclus.

L. Billard - 4 - Cours : les équations

1) Vocabulaire

<u>Définition</u>: Une **équation** est une expression dans laquelle il y a toujours un signe égal et une ou plusieurs inconnues (désignées chacune par une lettre, en général).

Exemple 1: $2x^2 - 5 = x + 10$ est une équation où l'inconnue est désignée par la lettre x. Cette équation a deux membres : $2x^2 - 5$ (le membre de gauche) et x + 10 (le membre de droite).

<u>Définition</u>: **Résoudre une équation** d'inconnue x, c'est déterminer toutes les valeurs de x (si elles existent) pour que l'égalité soit vraie. Chacune de ces valeurs est appelée **solution de l'équation**.

Exemple 2: Les solutions de l'équation $2x^2 - 5 = x + 10$ sont les valeurs du nombre x pour les quelles l'égalité $2x^2 - 5 = x + 10$ est vérifiée.

Exemple 3: 3 est-il une solution de l'équation $2x^2 - 5 = x + 10$?

Pour
$$x = 3$$
, on calcule séparément $2x^2 - 5$ et $2x^2 - 5 = 2 \cdot 3^2 - 5 = 2 \cdot 9 - 5 = 18 - 5 = 13$ $x + 10 = 3 + 10 = 13$

On constate qu'il y a égalité donc 3 est une solution de l'équation $2x^2 - 5 = x + 10$.

2) Résolution d'une équation du premier degré

Propriétés: Pour tous nombres a, b et c:

 Une égalité reste vraie si on ajoute ou si on soustrait un même nombre à ses deux membres. 	si a = b alors a + c = b + c si a = b alors a - c = b - c	
 Une égalité reste vraie si on multiplie ou si on divise ses deux membres par un même nombre non nul. 	si $a = b$ alors $a \cdot c = b \cdot c$ si $a = b$ alors $\frac{a}{c} = \frac{b}{c}$ (où $c \neq 0$)	

L. Billard - 6 - Cours : les équations

Exemple 1 : Résous les équations suivantes :

•
$$x - 5 = 3$$

•
$$4x = 9$$

Correction:

•
$$x - 5 = 3$$

 $x - 5 + 5 = 3 + 5$
 $x = 8$

La solution de cette équation est 8.

•
$$4x = 9$$

 $4x \div 4 = 9 \div 4$
 $x = \frac{9}{4}$

La solution de cette équation est $\frac{9}{4}$.

Exemple 2 : Résous l'équation 7x + 2 = 4x + 9.

Correction:

$$7x + 2 = 4x + 9$$

$$7x + 2 - 4x = 4x + 9 - 4x$$

On élimine les termes en x dans le membre de droite en retranchant $4x$ aux deux membres.

$$3x + 2 = 9$$

$$3x + 2 - 2 = 9 - 2$$

On isole le terme en x dans le membre de gauche en retranchant 2 aux deux membres.

$$3x = 7$$

$$\frac{3x}{3} = \frac{7}{3}$$

On cherche la valeur de l'inconnue x en divisant les deux membres par 3 .

$$x = \frac{7}{3}$$

Ainsi 7x + 2 = 4x + 9 pour l'unique solution $x = \frac{7}{3}$.

Puis, on vérifie que $\frac{7}{3}$ est une solution de l'équation 7x + 2 = 4x + 9.

Cours : les équations

3) Résolution de problème

<u>Définition</u>: **Mettre en équation un problème**, c'est traduire son énoncé par une égalité mathématique.

Exemple: Trouve le nombre tel que son double augmenté de 7 soit égal à 3.

Etape n°1 : Choix de l'inconnue	Soit x le nombre cherché.	On note généralement x l'inconnue.
Etape n°2 : Mise en équation	Le double du nombre augmenté de 7 est 2x + 7	On exprime les informations données dans l'énoncé en fonction de x.
	2x + 7 = 3	La phrase de l'énoncé se traduit ainsi.
Etape n°3 : Résolution de l'équation	$2x + 7 = 3$ $2x + 7 - 7 = 3 - 7$ $2x = -4$ $x = \frac{-4}{2} = -2$	On résout l'équation à l'aide des propriétés de la partie 2).
Etape n°4 : Vérification que la valeur trouvée est solution du problème	2·(-2) + 7 = -4 + 7 = 3	On calcule. Le double de -2 augmenté de 7 est bien égal à 3.
Etape n°5 : Conclusion	Le nombre cherché est donc	