No.:

Test Booklet Code પરિક્ષા પુસ્તિકાનો કોડ

KHANA

This Booklet contains 24+44 pages. આ પુસ્તિકામાં 24+44 પાનાં છે.

E6

Do not open this Test Booklet until you are asked to do so. જ્યાં સુધી કહેવામાં ન આવે ત્યાં સુધી આ પુસ્તિકા ખોલવી નહીં.

Read carefully the Instructions on the Back Cover of this Test Booklet. આ પરિક્ષા પુસ્તિકાના પાછળના કવર પર આપેલ સૂચનાઓ ધ્યાનથી વાંચો.

Important Instructions:

- 1. The Answer Sheet is inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars on side-1 and side-2 carefully with blue/black ball point pen only.
- The test is of 3 hours duration and Test Booklet contains 180 questions. Each question carries 4 marks. For each correct response, the candidate will get 4 marks. For each incorrect response, one mark will be deducted from the total scores. The maximum marks are 720.
- 3. Use **Blue/Black Ball Point Pen only** for writing particulars on this page/marking responses.
- 4. Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- 5. On completion of the test, the candidate must hand over the Answer Sheet to the invigilator before leaving the Room/Hall. The candidates are allowed to take away this Test Booklet with them.
- 6. The CODE for this Booklet is **E6**. Make sure that the CODE printed on **Side-2** of the Answer Sheet is the same as that on this Test Booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet.
- 7. The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your Roll No. anywhere else except in the specified space in the Test Booklet/Answer Sheet.
- 8. Use of white fluid for correction is **NOT** permissible on the Answer Sheet.

અગત્યની સૂચનાઓ :

- આ પરિક્ષાપુસ્તિકાની અંદર ઉત્તરવહિ છે. જ્યારે આપને પરિક્ષા પુસ્તિકા ખોલવાનું કહેવામાં આવે, ત્યારે ઉત્તરવહિ નિકાળી બાજુ -1 અને બાજુ-2 પરની વિગતો ફક્ત વાદળી/કાળી બોલ પોઈન્ટ પેનથી સાવધાની સાથે ભરો.
- 2. પરિક્ષાનો ગાળો 3 કલાકનો છે અને આ પુસ્તિકામાં 180 પ્રશ્નો છે. પ્રત્યેક પ્રશ્ન 4 માર્કનો છે. પ્રત્યેક સાચા જવાબ માટે પરિક્ષાર્થીને 4 માર્ક આપવામાં આવશે. પ્રત્યેક ખોટા જવાબ માટે કુલ માર્કમાંથી 1 માર્ક ઓછો કરવામાં આવશે. મહત્તમ માર્ક 720 છે.
- 3. આ પાનાં પર લખાણ લખતી વખતે કે નિશાની કરતી વખતે ફક્ત **વાદળી/કાળી બોલ પોઈન્ટ પેનનો** પ્રયોગ કરો.
- 4. રફ કાર્ય હેતું આ પુસ્તિકામાં આપેલ નિર્ધારિત સ્થાનમાંજ કરો.
- 5. પરિક્ષા સંપન્ન થયા પછી, પરિક્ષાર્થી રૂમ/હોલ છોડતાં પહેલા ઉત્તરવહિ વર્ગ-નિરિક્ષકને અવશ્ય પાછી આપે. પરિક્ષાર્થી પોતાની સાથે આ પ્રશ્ન-પુસ્તિકા લઈ જઈ શકે છે.
- 6. આ પુસ્તિકાનો કોડ **E6** છે. એ ખાતરી કરીલો કે આ પુસ્તિકાનો કોડ, ઉત્તરવહિના **બાજુ 2** પર છાપેલ કોડ સાથે મેળ ખાય છે. જો તે અલગ હોય તો પરિક્ષાર્થી બીજી પરિક્ષા પુસ્તિકા અને ઉત્તરવહિ લેવા નિરિક્ષકને તુરંત જાણ કરે.
- 7. પરિક્ષાર્થી એ સુનિશ્ચિત કરે કે આ ઉત્તરવહિ વળે નહીં અને તેના પર કોઈ નિશાન ન કરે. પરિક્ષાર્થી પોતાનો અનુક્રમ પ્રશ્ન-પુસ્તિકા/ઉત્તરવહિમાં નિર્ધારીત સ્થાન સિવાય અન્યત્ર ક્યાંય લખવો નહીં.
- 8. ઉત્તરવહિમાં કોઈપણ પ્રકારના સુધારા માટે વ્હાઈટ-ઈન્કનો ઉપયોગ કરવાની અનમતિ **નથી**.

In case of any ambiguity in translation of any question, English version shall be treated as final. પ્રશ્નોનાં અનુવાદમાં કોઇ અસ્પષ્ટતાની સ્થિતિમાં, અંગ્રેજી સંસ્કરણને જ અંતિમ માનવામાં આવશે.

Name of the Car પરિક્ષાર્થીનું નામ (મો	ndidate (in Capitals) : ટા અક્ષરોમાં) :		
Roll Number	: in figures		
અનુક્રમ	: અંકોમાં		
	: in words		
	: શબ્દોમાં		
Centre of Exam પરિક્ષા કેન્દ્ર (મોટા ચ	ination (in Capitals) : યક્ષરોમાં) :		
Candidate's Sig	nature :	Invigilator's Signature :	
પરિક્ષાર્થીની સહી :		નિરિક્ષકની સહી :	
Facsimile signa	ture stamp of		
Centre Superin	tendent:		

1.	એક પદાર્થનું પૃથ્વીની સપાટી પર વજન 72 N છે.
	પૃથ્વીની ત્રિજ્યાનાં અડધી ઊંચાઈ પર, તેના પર કેટલું ગુરૂત્વાકર્ષણ
	બળ લાગે?

- (1) 48 N
- (2) 32 N
- (3) 30 N
- (4) 24 N
- 2. એક ગિટારમાં સમાન દ્રવ્યના બનેલા બે તારો A અને B જરાક અસમ સ્વરિત છે અને તે 6~Hz આવૃત્તિનો સ્પંદ ઉત્પન્ન કરે છે. જયારે B માં તનાવને જરાક ઘટાડવામાં આવે છે, આ સ્પંદની આવૃત્તિ વધીને 7~Hz થાય છે. જો A ની આવૃત્તિ 530~Hz હોય, તો B ની મૂળ આવૃત્તિ હશે ______.
 - (1) 523 Hz
 - (2) 524 Hz
 - (3) 536 Hz
 - (4) 537 Hz
- 3. હવા માધ્યમ ધરાવતાં એક સમાંતર બાજુ કેપેસિટરનો કેપેસિટન્સ $6~\mu F~\dot{\wp}.~~\dot{\textrm{એક}}~~\textrm{ડાયઈલેક્ટ્રિક માધ્યમ ઉમેરતાં}~~\textrm{આ કેપેસિટન્સ}$ $30~\mu F~\textrm{થાય}~\dot{\wp}.~~\textrm{આ માધ્યમની}~~\textrm{પરિમિટીવીટી}~\dot{\wp}~~\underline{\qquad}.$ $(\epsilon_0 = 8.85 \times 10^{-12}~\mathrm{C}^2~\mathrm{N}^{-1}~\mathrm{m}^{-2})$
 - (1) $0.44 \times 10^{-13} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
 - (2) $1.77 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
 - (3) $0.44 \times 10^{-10} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
 - (4) $5.00 \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
- 4. એક સ્ક્રુ ગેજની લઘુત્તમ માપ શક્તિ 0.01 mm છે અને તેની વર્તુળાકાર માપપટ્ટી પર 50 કાપાઓ છે.

આ સ્ક્રુ ગેજનો અંતરાલ (pitch) ______છે.

- (1) 0.01 mm
- (2) 0.25 mm
- (3) 0.5 mm
- (4) 1.0 mm
- 5. એક ટૂંકા વિદ્યુત દ્વિધ્રુવિયની દ્વિધ્રુવિય ચાકમાત્રા $16 \times 10^{-9} \, \mathrm{Cm}$ છે. આ દ્વિધ્રુવિયના અક્ષ સાથે 60° ખૂણો બનાવતી એક રેખા પર, આ દ્વિધ્રુવિયના કેન્દ્રથી $0.6 \, \mathrm{m}$ અંતરે રહેલ એક બિંદુ પર આ દ્વિધ્રુવિયના કારણે લાગતું વિદ્યુતસ્થિતિમાન છે :

$$\left(\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ N m}^2/\text{C}^2\right)$$

- (1) 50 V
- (2) 200 V
- (3) 400 V
- (4) શૂન્ય

- 6. એક નાના કોણ પ્રિઝ્મ (પ્રિઝ્મ કોણ A છે) ની એક સપાટી પર એક કિરણ આપાત કોણ *i* પર આપાત થાય છે અને વિરૂધ્ધ સપાટીથી લંબ રીતે નિર્ગમન પામે છે. જો આ પ્રિઝ્મમાં દ્રવ્યનો વક્કીભવનાંક µ છે, તો આપાત કોણ _____ ની નજીકનો હે
 - (1) $\frac{A}{2\mu}$
 - (2) $\frac{2A}{\mu}$
 - (3) µA
 - $(4) \qquad \frac{\mu A}{2}$
- 7. 10 cm ત્રિજ્યાનો એક ગોલીય વાહક સમાન રીતે વિતરિત 3.2×10^{-7} C વીજભાર ધરાવે છે. આ ગોળાના કેન્દ્રથી 15 cm અંતરે રહેલા બિંદુ પર વિદ્યુતક્ષેત્રનું માન શું હશે ?

$$\left(\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ N m}^2/\text{C}^2\right)$$

- (1) $1.28 \times 10^4 \text{ N/C}$
- (2) $1.28 \times 10^5 \text{ N/C}$
- (3) $1.28 \times 10^6 \text{ N/C}$
- (4) $1.28 \times 10^7 \text{ N/C}$
- - (1) બેઝ , એમિટર અને કલેક્ટર ક્ષેત્રોમાં ડોપિંગનું (અશુધ્ધિનું) પ્રમાણ સરખું હોવું જોઈએ.
 - (2) બેઝ, એમિટર અને કલેક્ટર ક્ષેત્રોનું કદ (size) સમાન હોવું જોઈએ.
 - (3) એમિટર જંક્શન અને કલેક્ટર જંક્શન બન્ને ફોર્વર્ડ બાયસ હોય છે.
 - (4) બેઝ ક્ષેત્ર ખુબજ પાતળું અને ઓછી માત્રામાં ડોપ (અશુધ્ધિ) થયેલ હોવું જોઈએ.
- 9. પ્રતિબળનું પરિમાણ _____ છે.
 - $(1) \qquad [MLT^{-2}]$
 - (2) $[ML^2T^{-2}]$
 - (3) $[ML^0T^{-2}]$
 - (4) $[ML^{-1}T^{-2}]$
- 10. 0.2 m^3 કદના અવકાશના એક ચોક્કસ ક્ષેત્રમાં 5 V નો સમાન વીજસ્થિતિમાન જોવા મળે છે. આ ક્ષેત્રમાં વિદ્યુત ક્ષેત્રનું પરિમાણ છે:
 - (1) શૂન્ય
 - (2) 0.5 N/C
 - (3) 1 N/C
 - (4) 5 N/C

- 11. જયારે એક યુરેનિયમ સમસ્થાનિક $^{235}_{92}\mathrm{U}$ પર ન્યૂદ્રૉનનો મારો ચલાવવામાં આવે છે, તે $^{89}_{36}\mathrm{Kr}$, ત્રણ ન્યૂદ્રૉન્સ અને _____ ઉત્પન્ન કરે છે.
 - (1) $^{144}_{56}$ Ba
 - (2) $^{91}_{40}$ Zr
 - (3) $^{101}_{36}$ Kr
 - (4) $^{103}_{36}$ Kr
- 12. ____ ના લીધે p-n જંક્શન ડાયોડના ડિપ્લેશન ક્ષેત્રની પહોળાઈમાં વધારો થાય છે.
 - (1) ફક્ત ફૉર્વર્ડ બાયસ
 - (2) ફક્ત રિવર્સ બાયસ
 - (3) ફૉર્વર્ડ બાયસ અને રિવર્સ બાયસ બન્ને
 - (4) ફૉર્વર્ડ પ્રવાહના વધારા
- 13. એક ટાવરની ટોચ પરથી એક દડાને $20~\mathrm{m/s}$ ના વેગથી શિરોલંબ દિશામાં નીચે તરફ ફેંકવામાં આવે છે. થોડાક સમય બાદ તે ભોંય તળિયાને $80~\mathrm{m/s}$ ના વેગથી અથડાય છે. આ ટાવરની ઊંચાઈ છે ______. $(\mathrm{g}=10~\mathrm{m/s^2})$
 - (1) 360 m
 - (2) 340 m
 - (3) 320 m
 - (4) 300 m
- 14. \mathbf{r}_1 અને \mathbf{r}_2 (\mathbf{r}_1 = 1.5 \mathbf{r}_2) ત્રિજયાઓના તાંબાના બે ઘન ગોળાઓના તાપમાનમાં 1 K જેટલો વધારો કરવા જરૂરી ઉષ્માના જથ્થાનો ગુણોત્તર છે :
 - (1) $\frac{27}{8}$
 - (2) $\frac{9}{4}$
 - $(3) \qquad \frac{3}{2}$
 - $(4) \qquad \frac{5}{3}$
- 15. એક નળાકારમાં $249 \, \mathrm{kPa}$ દબાણે અને $27^{\circ}\mathrm{C}$ તાપમાને હાઈડ્રોજન વાયુ ભરેલ છે.

તેની ધનતા છે : $(R = 8.3 \text{ J mol}^{-1} \text{ K}^{-1})$

- (1) 0.5 kg/m^3
- (2) 0.2 kg/m^3
- (3) 0.1 kg/m^3
- (4) 0.02 kg/m^3

- **16.** નીચેનામાંથી કોના એક માટે બોહર મૉડેલ માન્ય **નથી** ?
 - (1) હાઇડ્રોજન પરમાણું
 - (2) એકધા આયનિત હિલીયમ પરમાણું (${
 m He}^+$)
 - (3) ડચૂટેરોન પરમાણું
 - (4) એકધા આયનિત નિયોન પરમાણું (Ne $^+$)
- 17. L લંબાઈ અને A આડછેદનું ક્ષેત્રફળ ધરાવતો એક તાર એક જડ આધારથી લટકે છે. જ્યારે તારના મુક્ત છેડા પર દ્રવ્યમાન M લટકાવવામાં આવે ત્યારે આ તારની લંબાઈ બદલાઈને L_1 થાય છે, તો યંગ મોડચુલસનું સૂત્ર છે :
 - $(1) \qquad \frac{\mathrm{MgL_1}}{\mathrm{AL}}$
 - $(2) \qquad \frac{\mathrm{Mg}(\mathrm{L}_1-\mathrm{L})}{\mathrm{AL}}$
 - $(3) \qquad \frac{\mathrm{MgL}}{\mathrm{AL}_1}$
 - $(4) \qquad \frac{MgL}{A(L_1-L)}$
- 18. અવરોધના ઋણ તાપમાન ગુણાંક ધરાવતા હોય તેવા 'ઘન પદાર્થો' છે :
 - (1) ધાતુઓ
 - (2) કક્ત અવાહકો
 - (3) કક્ત અર્ધવાહકો
 - (4) અવાહકો અને અર્ધવાહકો
- 19. સરળ આવર્ત ગતિ કરતાં એક કણના સ્થાનાંતર અને પ્રવેગ વચ્ચેનો કળા તફાવત ______ છે.
 - (1) π rad
 - (2) $\frac{3\pi}{2}$ rad
 - (3) $\frac{\pi}{2}$ rad
 - (4) શન્ય
- 20. $20~{
 m cm}^2$ ક્ષેત્રફળ ધરાવતી એક અપરાવર્તિત સપાટી પર $20~{
 m W/cm}^2$ સરેરાશ ફ્લક્ષ ધરાવતો પ્રકાશ લંબરૂપે આપાત થાય છે. $1~{
 m Hehz}$ સમય ગાળામાં આ સપાટી દ્વારા પ્રાપ્ત થતી ઊર્જા છે :
 - (1) $10 \times 10^3 \,\mathrm{J}$
 - (2) $12 \times 10^3 \,\mathrm{J}$
 - (3) $24 \times 10^3 \,\mathrm{J}$
 - (4) $48 \times 10^3 \,\mathrm{J}$

- 21. વિદ્યુતચુંબકીય તરંગની તીવ્રતામાં વિદ્યુતક્ષેત્ર અને ચુંબકીય ક્ષેત્ર ઘટકોનાં યોગદાનનો ગુણોત્તર _____ છે. (c= વિદ્યુતચુંબકીય તરંગની ઝડપ)
 - (1) c:1
 - (2) 1:1
 - (3) 1:c
 - (4) $1:c^2$
- 22. યંગના ડબલ સ્લિટના પ્રયોગમાં, જો સુસબ્ધ ઉદ્દગમો વચ્ચેનું અંતર અડધું કરવામાં આવે અને પડદાનું સુસબ્ધ ઉદ્દગમોથી અંતર બમણું કરવામાં આવે, તો શલાકાની પહોળાઈ _____ થશે.
 - (1) બમણી
 - (2) અડધી
 - (3) ચાર ગણી
 - (4) ચોથા ભાગની
- 23. એક સ્થિર ઈલેક્ટ્રોનને V volt ના વિજસ્થિતિમાનના તફાવતથી પ્રવેગીત કરવામાં આવે છે. જો આ ઈલેક્ટ્રોનની ડી-બ્રૉગ્લી તરંગલંબાઈ $1.227 \times 10^{-2}~\mathrm{nm}$ છે, તો વિજસ્થિતિમાનનો તફાવત છે:
 - (1) 10 V
 - (2) $10^2 \,\mathrm{V}$
 - (3) $10^3 \,\mathrm{V}$
 - (4) $10^4 \, \text{V}$
- **24.** નીચેમાંનો કયો આલેખ તાંબા માટે અવરોધકનાં (ρ) નો તાપમાન (T) સાથેનો બદલાવ દર્શાવે છે?

- 25. એક એકપરમાણ્વીય વાયુની સરેરાશ ઉષ્મા ઊર્જા છે $\underline{\qquad}$. $(k_B$ એ બોલ્ટઝમાન અચળાંક અને T એ નિરપેક્ષ તાપમાન છે)
 - (1) $\frac{1}{2} k_B T$
 - $(2) \qquad \frac{3}{2} \ k_{\rm B} T$
 - (3) $\frac{5}{2} k_B T$
 - (4) $\frac{7}{2} k_{\rm B} T$
- 26. 100 આંટા ધરાવતાં 50 cm લંબાઈનો એક લાંબો સોલેનોઈડ 2.5 A વીજપ્રવાહ ધારિત છે. આ સોલેનોઈડના કેન્દ્રમાં ચુંબકીય ક્ષેત્ર છે :

 $(\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1})$

- (1) $6.28 \times 10^{-4} \,\mathrm{T}$
- (2) $3.14 \times 10^{-4} \,\mathrm{T}$
- (3) $6.28 \times 10^{-5} \,\mathrm{T}$
- (4) $3.14 \times 10^{-5} \,\mathrm{T}$
- 27. 599 સસેપ્ટીબીલીટી ધરાવતો એક લોખંડના સળિયાને $1200\,\mathrm{A\,m^{-1}}$ ચુંબકન ક્ષેત્ર આપવામાં આવે છે. આ સળિયાના દ્રવ્યની પરમિઆબીલીટી છે :

 $(\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1})$

- (1) $2.4\pi \times 10^{-4} \text{ T m A}^{-1}$
- (2) $8.0 \times 10^{-5} \,\mathrm{T} \,\mathrm{m} \,\mathrm{A}^{-1}$
- (3) $2.4\pi \times 10^{-5} \text{ T m A}^{-1}$
- (4) $2.4\pi \times 10^{-7} \text{ T m A}^{-1}$
- **28.** સાર્થક અંકોને ધ્યાનમાં રાખતાં, 9.99 m 0.0099 m નું મુલ્ય શું હશે ?
 - (1) 9.9801 m
 - (2) 9.98 m
 - (3) 9.980 m
 - (4) 9.9 m
- 29. $3 \times 10^{-10} \text{ Vm}^{-1}$ વિદ્યુતક્ષેત્રમાં એક વીજભારિત કણનો અપવહન-વેગ (drift velocity) $7.5 \times 10^{-4} \text{ m s}^{-1}$ છે અને _____ $\text{m}^2 \text{ V}^{-1} \text{ s}^{-1}$ ગતિશીલતા (mobility) છે.
 - (1) 2.25×10^{15}
 - (2) 2.5×10^6
 - (3) 2.5×10^{-6}
 - (4) 2.25×10^{-15}

30. અવગણ્ય દ્રવ્યમાન ધરાવતાં 1 m લંબાઈના એક જડ સળિયાના બે છેડા પર અનુક્રમે 5 kg અને 10 kg દ્રવ્યમાનના કણો જોડેલ છે.

5 kg ના કણથી આ તંત્રનું દ્રવ્યમાન કેન્દ્ર આશરે _____ અંતર પર છે.

- (1) 33 cm
- (2) 50 cm
- (3) 67 cm
- (4) 80 cm
- 31. આણ્વિક વ્યાસ d અને અંકઘનતા n ઘરાવતાં એક વાયુના સરેરાશ મુક્ત પથને _____ વડે રજુ કરી શકાય છે.
 - $(1) \qquad \frac{1}{\sqrt{2} \, n\pi d}$
 - $(2) \qquad \frac{1}{\sqrt{2} \, \operatorname{n} \pi \mathrm{d}^2}$
 - (3) $\frac{1}{\sqrt{2} \text{ n}^2 \pi \text{d}^2}$
 - (4) $\frac{1}{\sqrt{2} \text{ n}^2 \pi^2 \text{d}^2}$
- 32. 0.5 g પદાર્થનું ઊર્જા તુલ્યાંક _____ છે
 - (1) $4.5 \times 10^{16} \,\mathrm{J}$
 - (2) $4.5 \times 10^{13} \,\mathrm{J}$
 - (3) $1.5 \times 10^{13} \,\mathrm{J}$
 - (4) $0.5 \times 10^{13} \,\mathrm{J}$
- 33. એક મિટર-બ્રિજના ડાબા ખાંચા (gap) માં એક અવરોધ તારને જેડતાં તે જમણા ખાંચામાં ના $10~\Omega$ અવરોધને એવા બિંદુ પર સંતુલિત કરે છે કે જે આ બ્રિજના તારને 3:2 ના ગુણોત્તરમાં વિભાજત કરે છે. જો અવરોધ-તારની લંબાઈ $1.5~\mathrm{m}$ છે, તો $1~\Omega$ ના અવરોધ-તારની લંબાઈ છે:
 - (1) $1.0 \times 10^{-2} \,\mathrm{m}$
 - (2) $1.0 \times 10^{-1} \,\mathrm{m}$
 - (3) $1.5 \times 10^{-1} \,\mathrm{m}$
 - (4) $1.5 \times 10^{-2} \,\mathrm{m}$
- **34.** એક આંતરપૃષ્ઠ માટે બ્રુસ્ટર કોણ i_b હોય છે :
 - (1) $0^{\circ} < i_b < 30^{\circ}$
 - (2) $30^{\circ} < i_b < 45^{\circ}$
 - (3) $45^{\circ} < i_b < 90^{\circ}$
 - (4) $i_b = 90^{\circ}$

35. r-ત્રિજ્યા ધરાવતી એક કેપેલરી ટ્યૂબ (કેશનળી) ને પાણીમાં ડુબાડતાં તેમાં <math>h ઊંચાઈ જેટલું પાણી ચઢે છે.

આ કેશનળીમાંના પાણીનું દ્રવ્યમાન $5~\mathrm{g}$ છે. $2\mathrm{r}$ ત્રિજ્યા ધરાવતી અન્ય એક કેશનળીને પાણીમાં ડુબાડવામાં આવે છે. આ નળીમાં ઉપર ચઢતાં પાણીનું દળ છે :

- (1) 2.5 g
- (2) 5.0 g
- (3) 10.0 g
- (4) 20.0 g
- 36. એક કણ કે જેનો સ્થાન સદિશ $2 \stackrel{\wedge}{k}$ $_{
 m m}$ છે તેના પર ઉદ્દગમ બિંદુની સાપેક્ષે જયારે $3 \stackrel{\wedge}{j}$ $_{
 m N}$ બળ લાગે ત્યારનું ઘુર્ણનબળ (ટોર્ક) શોધો.
 - (1) 6i N m
 - (2) $6\hat{j}$ N m
 - (3) $-6\hat{i}$ N m
 - (4) $6 \stackrel{\wedge}{k} N m$
- 37. એક શ્રેણી LCR પરિપથને ac વોલ્ટેજ ઉદ્દગમ સાથે જોડેલ છે. જયારે પરિપથમાંથી L ને દૂર કરવામાં આવે છે ત્યારે પ્રવાહ અને વોલ્ટેજ વચ્ચેનો કળા-તફાવત $\frac{\pi}{3}$ છે. જો તેના બદલે પરિપથમાંથી C ને દૂર કરવામાં આવે ત્યારે ફરીથી પ્રવાહ અને વોલ્ટેજ વચ્ચેનો કળા-તફાવત $\frac{\pi}{3}$ છે. આ પરિપથનો શક્તિગુણાંક (power factor) છે:
 - (1) શૂન્ય
 - (2) 0.5
 - (3) 1.0
 - (4) -1.0
- **38.** DNA માં એક બોન્ડ તોડવા માટેની જરૂરી ઊર્જા $10^{-20}~\mathrm{J}$ છે. eV માં આનું મુલ્ય _____ ની નજીકનું છે.
 - (1) 6
 - (2) 0.6
 - (3) 0.06
 - (4) 0.006

4 kg અને 6 kg દ્રવ્યમાનના બે પદાર્થોને એક દ્રવ્યમાન રહિત 39. દોરીના છેડાઓ સાથે બાંધેલ છે. આ દોરી ઘર્ષણરહિત ગરગડી પરથી પસાર કરેલ છે (આકૃતિ જુઓ). ગુરૂત્વીય પ્રવેગ (g) ના પદમાં આ તંત્રનો પ્રવેગ છે :

- (1) g
- (2)g/2
- (3)g/5
- (4)g/10
- એક 200 V, 50 Hz ના ac સપ્લાય સાથે $40 \mu\text{F}$ નો એક **40.** કેપેસિટર જોડેલ છે. આ પરિપથમાંના પ્રવાહનું rms મુલ્ય આશરે
 - $1.7\,\mathrm{A}$ (1)
 - $2.05\,\mathrm{A}$ (2)
 - $2.5\,\mathrm{A}$ (3)
 - **(4)** $25.1\,\mathrm{A}$
- એક અવરોધ માટે વર્ણ-સંકેત નીચે આપેલ છે : 41.

આ અવરોધનું મુલ્ય અને સહ્યતા (tolerance) અનુક્રમે છે :

- $470 \text{ k}\Omega, 5\%$ (1)
- (2) $47 \text{ k}\Omega$, 10%
- $4.7 \text{ k}\Omega, 5\%$ (3)
- $470 \Omega, 5\%$ (4)
- કોઈ એક તારામાંથી 600 nm તરંગલંબાઈનો પ્રકાશ આવે છે તેમ **42.** ધારો. 2 m વ્યાસના ઓબ્જેક્ટીવ ધરાવતાં ટેલિસ્કોપની વિભેદન-સીમા _____ છે.
 - $3.66 \times 10^{-7} \, \text{rad}$ (1)
 - $1.83 \times 10^{-7} \, \text{rad}$ (2)
 - $7.32 \times 10^{-7} \, \text{rad}$ (3)
 - $6.00 \times 10^{-7} \, \text{rad}$ (4)

- સમાન ક્ષમતા ધરાવતાં બે નળાકારો A અને B ને એક બીજા સાથે 43. એક સ્ટોપ કૉક થી જોડેલ છે. A એક પ્રમાણભૂત તાપમાન અને દબાણે એક આદર્શ વાયુ ધરાવે છે. B સંપૂર્ણ ખાલી છે. આ આખી પ્રણાલી ઉષ્મીય અવાહક છે. આ સ્ટોપ કૉકને અચાનક ખોલવામાં આવે છે. આ પ્રક્રિયા છે :
 - સમતાપી (1)
 - સમોષ્મી (2)
 - (3)સમકદ
 - (4) સમદાબ
- થ્રેસોલ્ડ આવૃત્તિથી 1.5 ગણી આવૃત્તિનો પ્રકાશ એક પ્રકાશસંવેદી દ્રવ્ય પર આપાત થાય છે. જો આવૃત્તિ અડધી અને તીવ્રતા બમણી કરવામાં આવે તો ફોટોઈલેક્ટ્રિક પ્રવાહ શું હશે?
 - બમણો (1)
 - ચાર ગણો (2)
 - ચોથા ભાગનો (3)
 - (4) શુન્ય
- દર્શાવેલ લોજક-પરિપથ માટે સત્યાર્થ-સારણી છે : **45**.

- Y (1) В 0 0 0 0

 - 1
- Y (2)A В
 - 0 1
 - 1
- Y (3) A \mathbf{R}

 - 1
- (4) Y Α
 - 0 1
 - 1
 - 0
 - 0

46 .	નીચે	આપેલાને	જોડો	:
TU.		- 66 6766 6	30LOL	٠

(b)

BaO

ઓક્સાઈડ પ્રકૃતિ (a) CO (i) બેઝિક

- (c) Al₂O₃ (iii) એસિડિક
- (d) $\operatorname{Cl}_2\operatorname{O}_7$ (iv) ઉભયગુણીય

(ii)

તટસ્થ

નીચે આપેલા માંથી કયો સાચો વિકલ્પ છે ?

(b) (a) **(c)** (d) (iv) (1) (i) (ii)(iii) (iii) (2)(ii) (i) (iv) (ii) (3)(iii) (iv) (i)

- (4) (iv) (iii) (ii) (i)
- 47. નીચે આપેલ ધાતુ આયન ઘણા બધા ઉત્સેચકોને કાર્યાન્વિત (ઉત્તેજિત) કરે છે, તેઓ ગ્લુકોઝના ઓક્સિડેશનથી ATP ના ઉત્પાદનમાં ભાગ લે છે અને Na સાથે જ્ઞાનતંતુ સંદેશો વહન (ડ્રાન્સિમિશન) માટે પણ જવાબદાર છે.
 - (1) લોખંડ
 - (2) તાંબુ
 - (3) કેલ્શીયમ
 - (4) પોટેશિયમ
- 48. પીગાળેલ $CaCl_2$ (પરમાણ્વીય દ્રવ્યમાન, $Ca=40~\mathrm{g~mol}^{-1}$) માંથી $20~\mathrm{g}$ કેલ્શીયમનું ઉત્પાદન કરવા માટે કેટલી ફેરાડે (F) ની સંખ્યા જરૂરી છે ?
 - (1) 1
 - (2) 2
 - (3) 3
 - (4) 4
- 49. વુર્ટઝ પ્રક્રિયા વડે નીચે આપેલા આલ્કેન માંથી કયો સારી નીપજ બનાવી શકતો નથી ?
 - (1) n-હેક્ઝેન
 - (2) 2,3-ડાયમિથાઈલબ્યૂટેન
 - (3) n-હેપ્ટેન
 - (4) n-બ્યૂટેન
- 50. બેન્ઝીનનો ઠારબિંદુ અવનમન અચળાંક (K_p) $5.12 \, \mathrm{K \, kg \, mol^{-1}}$ છે. બેન્ઝીનમાં રહેલા એક વિદ્યુત–અવિભાજય દ્રાવ્ય ઘરાવતા $0.078 \, \mathrm{m}$ મોલાલીટીના દ્રાવણ માટે ઠારબિંદુ અવનમન શોધો. (બે દશાંશ સુધી પૂર્ણાંકમાં મૂકી શકાય)
 - (1) 0.20 K
 - (2) 0.80 K
 - (3) 0.40 K
 - (4) 0.60 K

- 51. 2-બ્રોમો-પેન્ટેનની વિલોપન પ્રક્રિયામાંથી બનતો પેન્ટ-2-ઈન એ નીચેના માંથી શોધો :
 - (a) β-વિલોપન પ્રક્રિયા
 - (b) ઝેત્સેવ નિયમને અનુસરે છે
 - (c) ડિહાઈડ્રોહેલોજીનેશન પ્રક્રિયા
 - (d) નિર્જલીકરણ પ્રક્રિયા
 - (1) (a), (b), (c)
 - (2) (a), (c), (d)
 - (3) (b), (c), (d)
 - (4) (a), (b), (d)
- **52.** નીચે આપેલાને જોડો અને **સાચો** વિકલ્પ ઓળખી બતાવો.

(a)
$$CO(g) + H_2(g)$$
 (i) $Mg(HCO_3)_2 + Ca(HCO_3)_2$

- (b) પાણીની અસ્થાયી (ii) ઈલેક્ટ્રોનની અછત કઠિનતા વાળો હાઈડ્રાઈડ
- (c) B_2H_6 (iii) સં 2 લેષિત વાયુ
- (d) ${
 m H_2O_2}$ (iv) બિન-સમતલીય બંધારણ
 - (a) (b) (c) (d)
- (1) (iii) (i) (ii) (iv)
- $(2) \qquad (iii) \qquad (ii) \qquad (iv)$
- (3) (iii) (iv) (ii) (i)
- (4) (i) (iii) (ii) (iv)
- **53.** નીચે આપેલા માંથી કયો એક પરમાણુઓની સંખ્યા મહત્તમ ધરાવતું હશે ?
 - (1) Ag(s) નો 1 g [Ag નું પરમાણ્વીય દળ = 108]
 - (2) Mg(s) નો 1 g [Mg નું પરમાણ્વીય દળ = 24]
 - (3) $O_{9}(g)$ નો 1 g [O નું પરમાણ્વીય દળ = 16]
 - (4) Li(s) નો 1 g [Li નું પરમાણ્વીય દળ=7]
- 54. એક પ્રથમ ક્રમ પ્રક્રિયા માટે વેગ અચળાંક $4.606 \times 10^{-3} \ \mathrm{s^{-1}}$ છે. પ્રક્રિયકનાં $2.0 \ \mathrm{g}$ માંથી $0.2 \ \mathrm{g}$ માં થતા ઘટાડા માટે કેટલો સમય જરૂરી છે ?
 - (1) 100 s
 - (2) $200 \,\mathrm{s}$
 - (3) 500 s
 - (4) 1000 s
- 55. કો-ઓર્ડીનેશન સંયોજનો (સવર્ગ સંયોજનો) બનાવવા માટે લિગાન્ડોનો ક્ષેત્ર સામર્થ્યનો ચઢતો **સાચો** ક્રમ નીચે આપેલા માંથી કયો છે ?
 - (1) $SCN^- < F^- < C_2O_4^{2-} < CN^-$
 - (2) $SCN^- < F^- < CN^- < C_2O_4^{2-}$
 - (3) $F^- < SCN^- < C_2O_4^{2-} < CN^-$
 - (4) $CN^- < C_2O_4^{2-} < SCN^- < F^-$

56. સિલીન્ડરમાં N_2 અને Ar વાયુઓનું એક મિશ્રણ N_2 ના 7 g અને Ar ના 8 g ધરાવે છે. પાત્રમાં (સિલિન્ડરમાં) વાયુઓના મિશ્રણનું કુલ દબાણ 27 બાર હોય તો, N_2 નું આંશિક દબાણ શોધો.

[પરમાણ્વીય દળો $N\!=\!14,~{\rm Ar}\!=\!40~({\rm g~mol}^{-1}$ માં) નો ઉપયોગ કરો]

- (1) 9 બાર
- (2) 12 બાર
- (3) 15 બાર
- (4) 18 બાર

57. કલિલ દ્રાવણના ક્યા ગુણધર્મને શોધવા માટે ઝેટા પોટેન્શિયલની માપણી ઉપયોગી છે ?

- (1) स्निग्धता
- (2) દ્રાવ્યતા
- (3) કલિલ કણોની સ્થિરતા
- (4) કલિલ કણોનું કદ

58. સુક્રોઝ નું જળવિભાજન કરતા શું પ્રાપ્ત થશે ?

- (1) β -D-ગ્લુકોઝ $+ \alpha$ -D-ક્રૂક્ટોઝ
- (2) α -D-ગ્લુકોઝ + β-D-ગ્લુકોઝ
- (3) α -D-ગ્લુકોઝ + β -D-ક્રુક્ટોઝ
- (4) α -D- $\frac{1}{2}$ 5 λ 3 + β -D- $\frac{1}{2}$ 5 λ 3

59. $0.1 \, \mathrm{M \, NaOH} \,$ માં $\mathrm{Ni(OH)}_2$ ની દ્રાવ્યતા શોધો. $\mathrm{Ni(OH)}_2$ નો આયનિક ગુણાકાર 2×10^{-15} આપેલ છે.

- (1) $2 \times 10^{-13} \,\mathrm{M}$
- (2) $2 \times 10^{-8} \,\mathrm{M}$
- (3) $1 \times 10^{-13} \,\mathrm{M}$
- (4) $1 \times 10^8 \,\mathrm{M}$

60. રાઉલ્ટના નિયમ થી મિશ્રણ કે જે ધન વિચલન પ્રદર્શિત કરે છે તે શોધો.

- (1) ઈથેનોલ + એસિટોન
- (2) બેન્ઝિન + ટોલ્યુઇન
- (3) એસિટોન + ક્લોરોફોર્મ
- (4) ક્લોરોઈથેન + બ્રોમોઈથેન

61. એક અણુ કે જે અસ્તિત્વ ધરાવતો નથી જે ઓળખી બતાવો.

- (1) He₂
- (2) Li₂
- (3) C_2
- (4) O_2

62. ખોટું વિધાન શોધી બતાવો.

- (1) ${
 m Cr}^{2+}({
 m d}^4)$ એ પાણીમાંના ${
 m Fe}^{2+}({
 m d}^6)$ કરતા પ્રબળ રિડક્શનકર્તા છે.
- (2) સંક્રાંતિ તત્વો અને તેના સંયોજનો તેની ઘણી બધી ઓક્સિડેશન અવસ્થાઓ ધરાવતા હોવાને કારણે તેની ઉદ્દીપકીય સક્રિયતા માટે જાણીતા છે અને તે સંકીર્ણો બનાવે છે.
- (3) જયારે H, C અથવા N જેવા નાના પરમાણુઓ ધાતુઓના સ્ફટિક લેટાઈસોના અંદરના ભાગમાં ફસાઈ જાય ત્યારે આંતરાલીય સંયોજનો બને છે.
- (4) ${\rm CrO_4^{2-}}$ અને ${\rm Cr_2O_7^{2-}}$ માં ક્રોમિયમની ઓક્સિડેશન અવસ્થા સમાન નથી.

63. નીચે આપેલા માંથી કયો બેઝિક એમિનો એસિડ છે ?

- (1) સિરીન
- (2) એલેનાઈન
- (3) ટાયરોસીન
- (4) લાઈસીન

64. 288 pm કોષ ધાર સાથે એક તત્વ અંત:કેન્દ્રિત ક્યુબિક (bcc) બંધારણ ધરાવે છે, પરમાણ્વીય ત્રિજ્યા શોધો.

- $(1) \qquad \frac{\sqrt{3}}{4} \times 288 \text{ pm}$
- $(2) \qquad \frac{\sqrt{2}}{4} \times 288 \text{ pm}$
- (3) $\frac{4}{\sqrt{3}} \times 288 \text{ pm}$
- (4) $\frac{4}{\sqrt{2}} \times 288 \text{ pm}$

65. સુક્રોઝના જળવિભાજનની પ્રક્રિયામાં નીચે આપેલ છે.

સુક્રોઝ $+ \mathrm{H_2O} \Longrightarrow$ ગ્લુકોઝ + ફ્રુક્ટોઝ

 $300~{
m K}$ પર, જો સંતુલન અચળાંક (${
m K_c}$) 2×10^{13} હોય તો, તેજ તાપમાન પર $\Delta_{\rm r}{
m G}^{\circ}$ ની કિંમત શું થશે ?

- (1) $-8.314 \,\mathrm{J}\,\mathrm{mol}^{-1}\mathrm{K}^{-1} \times 300 \,\mathrm{K} \times \ln(2 \times 10^{13})$
- (2) $8.314 \,\mathrm{J}\,\mathrm{mol}^{-1}\mathrm{K}^{-1} \times 300 \,\mathrm{K} \times \ln(2 \times 10^{13})$
- (3) $8.314 \,\mathrm{J}\,\mathrm{mol}^{-1}\mathrm{K}^{-1} \times 300 \,\mathrm{K} \times \ln(3 \times 10^{13})$
- (4) $-8.314 \,\mathrm{J}\,\mathrm{mol}^{-1}\mathrm{K}^{-1} \times 300 \,\mathrm{K} \times \ln(4 \times 10^{13})$

66. નીચે આપેલામાંથી કયો એક કુદરતી બહુલક છે ?

- (1) સીસ-1,4-પોલીઆઈસોપ્રીન
- (2) પોલી (બ્યૂટાડાઈન-સ્ટાયરીન)
- (3) પોલીબ્યુટાડાઈન
- (4) પોલી (બ્યૂટાડાઈન-એક્રિલોનાઈટ્રાઈલ)

- **67.** નીચે આપેલા માંથી કયા ને કારણે તૃતીયક બ્યૂટાઈલ કાર્બોકેશાયન એ દ્વિતીયક બ્યૂટાઈલ કાર્બોકેશાયન કરતા વધારે સ્થિર છે ?
 - (1) $-CH_3$ સમૂહોની -I અસર
 - (2) CH_3 સમૂહોની + R અસર
 - (3) $-\mathrm{CH}_3$ સમૂહોની $-\mathrm{R}$ અસર
 - (4) હાઈપરકોન્જયુગેશન
- **68.** એક પ્રક્રિયાના પ્રક્રિયકની સાંદ્રતામાં થતો વધારો નીચેના માંના ફેરફાર તરફ દોરી જશે જે શોધો :
 - (1) સક્રિયકરણ શક્તિ
 - (2) પ્રક્રિયાની ઉષ્મા
 - (3) દેહલી ઊર્જા
 - (4) અથડામણ આવૃત્તિ
- **69.** કાર્બન મોનોક્સાઈડના સંદર્ભમાં નીચે આપેલા માંથી કયું **સાચું નથી** ?
 - (1) તે કાર્બોક્સિહિમોગ્લોબીન બનાવે છે.
 - (2) તે રૂધિર માંના ઓક્સિજન પરિવહન ક્ષમતા ઘટાડે છે.
 - (3) ઓક્સિહિમોગ્લોબીન કરતા કાર્બોક્સિહિમોગ્લોબીન (હિમોગ્લોબીન સાથે જોડાયેલ CO) ઓછો સ્થિર છે.
 - (4) અપૂર્ણ દહનના કારણે તેનું ઉત્પાદન થાય છે.
- **70.** એનિસોલની HI સાથેની પ્રક્રિયા થી પ્રાપ્ત થાય તે :

(1)
$$+ CH_3I$$

(2)
$$+ CH_3OH$$

$$(3) \qquad \begin{array}{|c|c|} \hline \\ \\ \hline \\ \\ \end{array} + C_2 H_5 I$$

$$+ C_2 H_5 OH$$

71. નીચે આપેલા માંથી કયો એમાઈન કાર્બાઈલએમાઈન કસોટી આપશે ?

$$(3) \qquad \qquad \bigvee^{N(CH_3)_2}$$

72. ખોટી જોડ શોધી બતાવો :

નામ

IUPAC સ્વીકૃત (Official) નામ

- (a) અનનિલઉનિયમ
- (i) મેન્ડેલિવિયમ
- (b) અનનિલટ્રાઈયમ
- (ii) લૉરેન્સિયમ
- (c) અનનિલહેક્સિયમ
- (iii) સીબોર્ગિયમ
- (d) અનઅનયુનિયમ
- (iv) દરમ્સ્ટાદિટયમ
- (1) (a), (i)
- (2) (b), (ii)
- (3) (c), (iii)
- (4) (d), (iv)

- 73. પ્લેટીનમ (Pt) ઈલેક્ટ્રોડનો ઉપયોગ કરીને મંદ સલ્ફ્યુરીક એસિડનું વિદ્યુત વિભાજન કરતાં એનોડ પર નીપજ પ્રાપ્ત થાય છે, જે
 - (1) હાઈડ્રોજન વાયુ
 - (2) ઓક્સિજન વાયુ
 - (3) H₂S વાયુ
 - (4) SO₂ વાયુ
- 74. એક આલ્કીનનું ઓઝોનાલિસિસ કરતા નિપજો પૈકી એક મિથેનાલ નીપજ મળે છે તો તેનું બંધારણ (આલ્કીન) શોધો.

$$CH = CH - CH_3$$

$$\begin{array}{cccc} \operatorname{CH}_2 - \operatorname{CH}_2 - \operatorname{CH}_3 \\ \\ \end{array} \tag{2}$$

$$CH_2-CH=CH_2$$
 (3)

- 75. એસિટોન અને મિથાઈલમેગ્નેશિયમ ક્લોરાઈડ વચ્ચે પ્રક્રિયા કરી ત્યારબાદ જળવિભાજન કરવાથી શું બનશે ?
 - (1) આઈસોપ્રોપાઈલ આલ્કોહોલ
 - (2) દ્વિતીયક બ્યૂટાઈલ આલ્કોહોલ
 - (3) તૃતીયક બ્યૂટાઈલ આલ્કોહોલ
 - (4) આઈસોબ્યૂટાઈલ આલ્કોહોલ

- **76.** Cr^{2+} આયનની ગણતરી કરેલ સ્પિન ફક્ત ચુંબકીય ચાકમાત્રા શોધો.
 - (1) 3.87 BM
 - (2) 4.90 BM
 - $(3) 5.92 \, BM$
 - (4) 2.84 BM
- 77. મંદ NaOH ની હાજરીમાં થતી બેન્ઝાલ્ડીહાઈડ અને એસિટોફિનોન વચ્ચેની પ્રક્રિયા નીચેના તરીકે જાણીતી છે, જે _____.
 - (1) આલ્ડોલ સંઘનન
 - (2) કેનીઝારો પ્રક્રિયા
 - (3) ક્રોસ કેનીઝારો પ્રક્રિયા
 - (4) ક્રોસ આલ્ડોલ સંઘનન
- 78. નીચે આપેલા સલ્ફરના ઓક્સોએસિડ માંથી કયાં માં O O બંધન છે ?
 - (1) H_2SO_3 , સલ્ફ્યૂરસ એસિડ
 - (2) H₂SO₄, સલ્ફ્યૂરિક એસિડ
 - (3) $\mathrm{H_{2}S_{2}O_{8}}$, પરઓક્સોડાયસલ્ફ્યૂરિક એસિડ
 - (4) $H_2S_2O_7$, પાયરોસલ્ફ્યૂરિક એસિડ
- 79. નીચે આપેલા અણુઓની જોડી માંથી કયાની દ્વિધ્રુવ ચાકમાત્રા શૂન્ય થશે ?
 - (1) એમોનિયા, બેરિલિયમ ડાયફલુઓરાઈડ, પાણી, 1,4-ડાયક્લોરોબેન્ઝિન
 - (2) બોરોન દ્રાયફ્લુઓરાઈડ, હાઈડ્રોજન ફ્લુઓરાઈડ, કાર્બન ડાયોક્સાઈડ, 1,3-ડાયક્લોરોબેન્ઝિન
 - (3) નાઈટ્રોજન ટ્રાયફ્લુઓરાઈડ, બેરિલિયમ ડાયફ્લુઓરાઈડ, પાણી, 1,3-ડાયક્લોરોબેન્ઝિન
 - (4) બોરોન દ્રાયફલુઓરાઈડ, બેરિલિયમ ડાયફલુઓરાઈડ, કાર્બન ડાયોક્સાઈડ, 1,4-ડાયક્લોરોબેન્ઝિન
- **80.** $^{175}_{71}$ Lu માં પ્રોટોન, ન્યૂટ્રોન અને ઈલેક્ટ્રોનની સંખ્યા અનુક્રમે શોધો.
 - (1) 71, 104 અને 71
 - (2) 104, 71 અને 71
 - (3) 71, 71 અને 104
 - (4) 175, 104 અને 71

- 81. નીચે આપેલા વિધાનોમાંથી સાચું ઓળખી બતાવો.
 - (a) આઈસક્રીમ અને થીજવેલા ખોરાક માટે ${
 m CO_2(g)}$ નો ઉપયોગ શીતક તરીકે (રેફ્રીજરન્ટ) થાય છે.
 - (b) C_{60} નું બંધારણ, બાર છ કાર્બન ચક્રો અને વીસ પાંચ કાર્બન ચક્રો ધરાવે છે.
 - (c) ZSM-5 પ્રકારના ઝિયોલાઈટનો ઉપયોગ આલ્કોહોલ માંથી ગેસોલિનમાં રૂપાંતર કરવા થાય છે.
 - (d) CO એ રંગવિહિન અને ગંધવિહિન વાયુ છે.
 - (1) ફક્ત (a), (b) અને (c)
 - (2) ફક્ત (a) અને (c)
 - (3) ફક્ત (b) અને (c)
 - (4) ફક્ત (c) અને (d)
- 82. યૂરિયાની પાણી સાથે પ્રક્રિયા થઈને \mathbf{A} બને છે કે જેનું વિઘટન થઈને તેમાંથી \mathbf{B} બનશે. \mathbf{B} જ્યારે $\mathbf{C}\mathbf{u}^{2+}$ (જલીય) માંથી પસાર કરતાં ગાઢા ભૂરા રંગનું દ્રાવણ \mathbf{C} બને છે. નીચે આપેલામાંથી \mathbf{C} નું સૂત્ર કયું છે ?
 - (1) CuSO₄
 - (2) $[Cu(NH_3)_4]^{2+}$
 - (3) Cu(OH)₂
 - $(4) \qquad {\rm CuCO_3 \cdot Cu(OH)_2}$
- 83. નીચે આપેલામાંથી કયો એક કેટાયનિક પ્રક્ષાલક છે ?
 - (1) સોડિયમ લોરિલ સલ્ફેટ
 - (2) સોડિયમ સ્ટિયરેટ
 - (3) સિટાઈલદ્રાયમિથાઈલ એમોનિયમ બ્રોમાઈડ
 - (4) સોડિયમ ડોડેસાઈલબેન્ઝિન સલ્ફોનેટ
- 84. $2\mathrm{Cl}(g) o \mathrm{Cl}_2(g)$ પ્રક્રિયા માટે, સાચો વિકલ્પ શોધો.
 - (1) $\Delta_r H > 0$ અને $\Delta_r S > 0$
 - (2) $\Delta_r H > 0$ અને $\Delta_r S < 0$
 - (3) $\Delta_{r}H < 0$ અને $\Delta_{r}S > 0$
 - (4) $\Delta_{\rm r} {
 m H} < 0$ અને $\Delta_{
 m r} {
 m S} < 0$

- 85. નીચે આપેલા માંથી સાચું વિધાન ઓળખી બતાવો.
 - (1) ભરતર લોખંડ એ 4% કાર્બન સાથેનું અશુધ્ધ લોખંડ છે.
 - (2) ફોલ્લાવાળા તાંબામાં દેખાતા ફોલ્લા એ ${
 m CO}_2$ ના નીકળવાના કારણે છે.
 - (3) નિકલ માટે બાષ્ય અવસ્થા શુધ્ધિકરણ વાન-આર્કેલ પધ્ધતિ દ્વારા કરવામાં આવે છે.
 - (4) પિગ આયર્નને જુદા-જુદા આકારમાં ઘડી શકાય છે.
- 86. એક આદર્શ વાયુ માટે સમોષ્મી પરિસ્થિતિ હેઠળ થતું મુક્ત વિસ્તરણનો સાચો વિકલ્પ શોધો.
 - (1) $q = 0, \Delta T = 0$ અને w = 0
 - (2) $q = 0, \Delta T < 0$ અને w > 0
 - (3) $q < 0, \Delta T = 0$ અને w = 0
 - (4) $q > 0, \Delta T > 0 \text{ and } w > 0$
- 87. CaCl₂, MgCl₂ અને NaCl ના દ્રાવણમાંથી HCl ને પસાર કરવામાં આવે છે. નીચે આપેલા માંથી કયું એક સંયોજન(નો) સ્ક્રિકિમય બને છે?
 - (1) બંન્ને MgCl_2 અને CaCl_2
 - (2) ફક્ત NaCl

 - (4) NaCl, MgCl₂ અને CaCl₂
- 88. નીચે આપેલ પ્રક્રિયામાં કાર્બનના ઓક્સિડેશન આંકમાં થતો ફેરફાર શું છે ?

 $\operatorname{CH}_4(\mathsf{g}) + 4\operatorname{Cl}_2(\mathsf{g}) \longrightarrow \operatorname{CCl}_4(\mathsf{l}) + 4\operatorname{HCl}(\mathsf{g})$

- (1) + 4 થી + 4
- (2) 0 થી +4
- (3) -4 થી +4
- (4) 0 થી 4

89. નીચે આપેલ પ્રક્રિયા શ્રેણીમાં સંયોજન X ઓળખી બતાવો.

$$\begin{array}{c} \text{CH}_3 \\ \hline \\ \hline \\ \text{Cl}_2/\text{h}\nu \\ \hline \\ \text{373 K} \\ \end{array}$$

- 90. પેપર ક્રોમેટોગ્રાફીનું ઉદાહરણ એ :
 - (1) અધિશોષણ ક્રોમેટોગ્રાફી
 - (2) વિભાજન ક્રોમેટોગ્રાફી (Partition chromatography)
 - (3) થીન લેયર ક્રોમેટોગ્રાફી (પાતળા સ્તર ક્રોમેટોગ્રાફી)
 - (4) સ્તંભ ક્રોમેટોગ્રાફી
- 91. સાયનેપ્ટોનીમલ સંકુલનું વિસર્જન _____ વખતે થાય છે.
 - (1) પેકીટીન
 - (2) ઝાયગોટીન
 - (3) ડીપ્લોટીન
 - (4) લેપ્ટોટીન

- 92. જાતિય સંક્રમિત રોગોનો સમાવેશ થતો હોય તેવો વિકલ્પ પસંદ કરો.
 - (1) ગોનોરિયા, સિફિલિસ, જનનાંગીય હર્પિસ
 - (2) ગોનોરિયા, મલેરિયા, જનનાંગીય હર્પિસ
 - (3) AIDS, મલેરિયા, ફાઈલેરિયા
 - (4) કેન્સર, AIDS, સિફિલિસ
- 93. નીચેનામાંથી કયું મૂત્રવૃધ્ધિને રોકે છે ?
 - (1) ADH નો ઓછો સ્નાવથી વધારે પ્રમાણમાં પાણીનું પુન:શોષણ
 - (2) આલ્ડોસ્ટેરોનને કારણે Na+ અને પાણીનું મૂત્રપિંડ નલિકામાંથી પુનઃશોષણ
 - (3) કર્ણક નેદ્રીયુરેટિક કારક રૂધિરવાહિનીનું સંકોચન કરે છે.
 - (4) JG કોષો દ્વારા રેનિનના સ્નાવમાં ઘટાડો
- 94. ઘનાકાર અધિચ્છદીય કોષો કે જેમાં રસાંકુરો બ્રશવાળી કિનારી ધરાવતા હોય તે _____ માં જોવા મળે છે.
 - (1) આંતરડાનું સ્તર
 - (2) લાળગ્રંથીની નલિકાઓ
 - (3) ઉત્સર્ગ એકમની નિકટવર્તી ગુંચળામય નલિકા
 - (4) યુસ્ટેચીયન નલિકા
- 95. નીચે પૈકી એ પદાર્થો ઓળખો, જેમની રચનામાં ગ્લાયકોસાઈડીક બંધ અને પેપટાઈડ બંધ આવેલ હોય છે :
 - (1) કાઈટીન, કોલેસ્ટરોલ
 - (2) ગ્લીસરોલ, દ્રીપસીન
 - (3) સેલ્યુલોઝ, લીસીથીન
 - (4) ઈન્યુલીન, ઈન્સ્યુલીન
- 96. Bt કપાસની જાતી કે જે *બેસીલસ થુરીએન્જોન્સિસ* (Bt) ના ઝેરી જનીનને દાખલ કરીને વિકસાવવામાં આવી છે તે _____ સામે પ્રતિકાર દર્શાવે છે.
 - (1) કિટક જીવાત
 - (2) કુગના રોગો
 - (3) વનસ્પતિ સૂત્રકૃમિઓ
 - (4) કિટભક્ષકો
- 97. આમાં, બીજાશય અર્ધ અધઃસ્થ હોય છે :
 - (1) રીંગણ
 - (2) રાઈ
 - (3) સૂર્યમુખી
 - (4) પ્લમ

કૉલેજન

(iv)

નીચે પૈકી **ખોટું** વિધાન ઓળખો : 98.

- અંત:કાષ્ઠ જળનું પરિવહન નથી કરતું પણ યાંત્રિક આધાર (1)આપે છે.
- રસકાષ્ઠ, જળ અને ખનિજતત્વોનું મૂળ થી પર્ણો સુધી (2)વહન કરે છે.
- રસકાષ્ઠ એ. સૌથી અંદર આવેલ ક્રિતીય જલવાહક છે (3)અને આછા રંગનું છે.
- ટેનિનસ્, રેઝિન્સ, તૈલી પદાર્થો, વિ.ના ભરાવાને લીધે (4) અંતઃકાષ્ઠનો રંગ ઘેરો હોય છે.

શ્વાસ દરમ્યાન થતી સાચી પ્રક્રિયા પસંદ કરો : 99.

- ઉરોદરપટલનું સંકોચન (a)
- બાહ્ય આંતર પાંસળી સ્નાયુઓનું સંકોચન (b)
- કૂપ્કૂસીય કદમાં ઘટાડો (c)
- આંતર-કૃષ્ફ્રસીય દબાણમાં વધારો (d)
- (a) અને (b) (1)
- (c) અને (d) (2)
- (3)(a), (b) અને (d)
- (4)ફક્ત (d)
- 100. જે પ્રક્રિયા દ્વારા ઘાસના પર્ણોના અગ્ર પરથી રાત્રે અને વહેલી સવારે પ્રવાહી સ્વરૂપે જળનો નિકાસ થાય છે તે :
 - ઉત્સ્વેદન (1)
 - (2)મૂળ દાબ
 - અંત:ચૂષણ (3)
 - રસ સંકોચન (4)

101. રોગપ્રતિકારકતાના સંદર્ભમાં ખોટું વિધાન ઓળખો :

- જયારે પ્રતિજન (જીવીત કે મૃત) નો સામનો થાય ત્યારે યજમાનના શરીરમાં પ્રતિદ્રવ્ય ઉત્પન્ન થાય છે. જેને 'સક્રિય રોગપ્રતિકારકતા' કહે છે.
- જયારે તૈયાર પ્રતિદ્રવ્ય ને સીધુ આપવામાં આવે તો તેને (2)'નિષ્ક્રિય રોગપ્રતિકારકતા' કહે છે.
- સક્રિય રોગપ્રતિકારકતા ઝડપી છે અને સંપૂર્ણ પ્રતિભાવ (3) આપે છે.
- ગર્ભ કેટલુક પ્રતિદ્રવ્ય માતા માંથી મેળવે છે, તે નિષ્ક્રિય (4) રોગપ્રતિકારકતાનું ઉદાહરણ છે.

- જોડકા ગોઠવો : 102.
 - અપચયી ક્રિયાનું નિરોધક રીસીન (a) (i)
 - પેપટાઈડ બંધ ધરાવે મેલોનેટ (b) (ii)
 - ફૂગમાં કોષ-દિવાલનો પદાર્થ કાઈટીન (iii) (c)
 - દ્વિતીય ઉપાપચયજ (d) નીચે પૈકી સાચું ઓપ્શન પસંદ કરો :
 - (d)
 - (a) (b) **(c)** (1) (ii) (iv) (iii) (i)
 - (2)(iii) (i) (iv) (ii)
 - (3)(ii) (iii) (iv) (i)
 - (4) (iv) (ii) (iii) (i)
- આંતરાવસ્થાના G_1 તબકકાના (ગેપ1) અનુસંધાનમાં **સાચુ** વિધાન 103. ઓળખો :
 - DNA નું સંશ્લેષણ અથવા સ્વયંજનન થાય છે. (1)
 - બધાજ કોષીય ઘટકોની પુનઃગોઠવણી થાય છે. (2)
 - કોષ ચયાપચયીક રીતે સક્રિય, વૃધ્ધિ પામે છે પરંતુ DNA (3)નું સ્વયંજનન થતુ નથી.
 - કોષકેન્દ્ર વિભાજન પામે છે. (4)
- 104. રંગસૂત્રીય આનુવંશિકતાના સિદ્ધાંતની પ્રાયોગિક ચકાસણી આમણે કરી :
 - (1) મેન્ડલ
 - (2)સટન
 - બોવેરી (3)
 - મોર્ગન (4)
- નીચેના માંથી કયા અંતઃસ્રાવનું સ્તર ગ્રાફીયન પુટીકામાંથી અંડકોષની મુક્તિ (અંડપાત) નું કારણ છે ?
 - ઈસ્ટ્રોજનની ઊંચી સાંદ્રતા (1)
 - પ્રોજેસ્ટેરોનની ઊંચી સાંદ્રતા
 - LH ની નીચી સાંદ્રતા (3)
 - FSH ની નીચી સાંઢતા
- જો બે સળંગ બેઝ જોડ વચ્ચેનું અંતર $0.34\,\mathrm{nm}$ હોય અને સસ્તનના લાક્ષણિક કોષમાં ના દ્વિકુંતલાકાર DNA માં કુલ બેઝ જોડી ની સંખ્યા 6.6×10^9 bp હોય તો DNA ની લંબાઈ આશરે કેટલી હશે ?
 - (1) 2.0 મીટર્સ
 - 2.5 મીટર્સ (2)
 - 2.2 મીટર્સ (3)
 - 2.7 મીટર્સ (4)

107.	સમૃદાય	મેરૂદંડી	માટે	નીચેના	માંથી ક	કયા વિધાન	સાચું ધ	છે	2

- (a) પૂચ્છ મેરૂદંડીઓમાં મેરૂદંડ શીર્ષ થી પૂંછડી સુધી લંબાયેલ હોય છે અને જીવન પર્યંત હાજર રહે છે.
- (b) પૃષ્ઠવંશીઓમાં મેરૂદંડ ફક્ત ગર્ભાવસ્થા દરમ્યાનજ હાજર હોય છે.
- (c) મધ્યસ્થ ચેતાતંત્ર પૃષ્ઠ અને પોલુ હોય છે.
- (d) મેરૂદંડીઓ 3 ઉપસમુદાયોમાં વિભાજત હોય છે સામી મેરૂદંડી, કંચુક મેરૂદંડી અને શીર્ષ મેરૂદંડી.
- (1) (d) અને (c)
- (2) (c) અને (a)
- (3) (a) અને (b)
- (4) (b) અને (c)

108. EcoRI દ્વારા ઓળખવામાં આવતી ખાસ પેલીન્ડ્રોમિક શૃંખલા છે.

- (1) 5' GAATTC 3'
 - 3' CTTAAG 5'
- (2) 5' GGAACC 3'
 - 3' CCTTGG 5'
- (3) 5' CTTAAG 3'
 - 3' GAATTC 5'
- (4) 5' GGATCC 3'
 - 3' CCTAGG 5'

109. કિરણ પુષ્પકોને આ હોય છે :

- (1) અધ:સ્થ બીજાશય
- (2) ઊર્ધ્વસ્થ બીજાશય
- (3) અધોજાયી બીજાશય
- (4) અર્ધ અધ:સ્થ બીજાશય

110. સાચી જોડ પસંદ કરો :

- (1) હીમોફિલિયા Y સંલગ્ન
- (2) ફીનાઈલ કીટોન્યુરીયા દૈહિક પ્રભાવી

રંગસૂત્રીય વિશેષક

(3) સિકલ સેલ એનીમિયા - દૈહિક પ્રચ્છન્ન

રંગસૂત્રીય,

રંગસૂત્ર -11 X સંલગ્ન

(4) થેલેસેમિયા -

- 111. બે વિરોધાભાસી સ્વરૂપ ધરાવતી, એક લક્ષણ સિવાય બાકીના તમામ લક્ષણ સરખા હોય, એવી કેટલી શુધ્ધ ઉછેરવાળી વટાણાની જાતિઓની જોડ મેન્ડલે પસંદ કરી હતી ?
 - (1) 4
 - (2) 2
 - (3) 14
 - (4) 8

- 112. જે સ્ત્રીઓ ગર્ભધારણ કરી શકતી નથી તેઓમાં નીચેના માંથી કઈ પધ્ધતિ થી ગર્ભના સ્થાનાંતરણમાં મદદ થાય છે ?
 - (1) ZIFT અને IUT
 - (2) GIFT અને ZIFT
 - (3) ICSI અને ZIFT
 - (4) GIFT અને ICSI
- 113. એન્ટેરોકાઈનેઝ ઉત્સેચક ____ ના રૂપાંતરણમાં મદદ કરે છે.
 - (1) પ્રોટીનનું પોલિપેપ્ટાઈડમાં
 - (2) દ્રિપ્સિનોજનનું દ્રિપ્સિનમાં
 - (3) કેસીનોજેનનું કેસીનમાં
 - (4) પેપ્સિનોજનનું પેપ્સિનમાં
- 114. આ શૃંખલા (સીક્વન્સ) દ્વારા, વાહકમાં જોડાયેલ DNA ની પ્રતિકૃતિઓનો આંકડો નક્કી થાય છે :
 - (1) પસંદગીમાન રેખક
 - (2) ઓરી સ્થાન
 - (3) પેલીન્ડ્રોમિક સીકવન્સ
 - (4) ઓળખવાનું સ્થાન
- 115. પાચનનળીના ગોબલેટ કોષો _____ માંથી રૂપાંતરિત થયેલા છે.
 - (1) લાદીસમ અધિચ્છદીય કોષો
 - (2) સ્તંભાકાર અધિચ્છદીય કોષો
 - (3) કાસ્થિકોષો
 - (4) સંયુક્ત અધિચ્છદીય કોષો
- 116. નીચે પૈકીનું કયુ વિધાન અંતર્વિષ્ટ અંત્રિકાઓ માટે **ખોટું** છે ?
 - (1) તેઓ કોઈ કલા (પટલથી) બંધાયેલ હોતા નથી.
 - (2) તેઓ ખોરાકના કણોને આરોગવામાં ગુંથાયેલ હોય છે.
 - (3) તે કોષરસમાં મુકત રીતે આવેલ હોય છે.
 - (4) તે કોષરસમાં આવેલ આરક્ષિત પદાર્થો દર્શાવે છે.
- 117. નીચે પૈકીનું કયુ વિધાન સાચું છે ?
 - (1) એડીનાઈન, થાયમીન સાથે બે H-બંધથી જોડાય છે.
 - (2) એડીનાઈન, થાયમીન સાથે 1 H-બંધથી જોડાય છે.
 - (3) એડીનાઈન, થાયમીન સાથે 3 H-બંધથી જોડાય છે.
 - (4) એડીનાઈન, થાયમીન સાથે નથી જોડ બનાવતું.

- 118. ABO રૂધિરજુથનું નિયંત્રણ કરતા જનીન 'I' ના અનુસંધાનમાં **ખોટુ** વિધાન ઓળખો.
 - (1) જનીન (I) ના ત્રણ અલીલ છે.
 - (2) વ્યક્તિમાં ત્રણમાંથી ફક્ત બે અલીલ હશે.
 - (3) જયારે I^A અને I^B સાથે હોય ત્યારે તેઓ એકજ પ્રકારની શર્કરાની અભિવ્યક્તિ કરે છે.
 - (4) અલીલ 'i' કોઈપણ પ્રકારની શર્કરા ઉત્પન્ન કરતું નથી.
- 119. નીચેના કોલમ જોડો અને સાચો વિકલ્પ પસંદ કરો :

કોલમ - I કોલમ - II જનીન થેરાપી (a) Bt કપાસ (i) એડીનોસાઈન કોષીય રક્ષણ (ii) (b) ડીએમિનેઝ ની ઊણપ HIV નો ચેપ શોધવો RNAi (iii) (c) બેસીલસ PCR (d) (iv) થુરીએન્જેન્સિસ (a) (b) **(c)** (d) (1) (iv) (i) (ii) (iii) (2)(iii) (ii)(i) (iv) (3)(ii) (iii) (iv) (i) (4) (i) (ii) (iii) (iv)

- 120. 1987 માં મોન્દ્રીઅલ પ્રોટોકોલ આના અંકુશ માટે થયો :
 - (1) જનીન-પરિવર્તીત સજીવોને એક દેશમાંથી બીજા દેશમાં લઈ જવા
 - (2) ઓઝોન વાયુ ઓછો કરતા પદાર્થીનુ ઉત્સર્જન
 - (3) ગ્રીન હાઉસ ગેસોનું નીકળવુ
 - (4) ઈ-કચરાનો નિકાલ
- 121. નીચેના રોગોને તેના માટે કારણ ભૂત સજીવો સાથે જોડી સાચો વિકલ્પ પસંદ કરો :

- 122. રીસ્ટ્રીક્શન ઉત્સેચકના અનુસંધાનમાં **ખોટુ** વિધાન ઓળખો.
 - (1) દરેક રિસ્ટ્રિક્શન ઉત્સેચક DNA ગોઠવણીની લંબાઈ તપાસીને કાર્ય કરે છે.
 - (2) તે DNA ની શૃંખલાને પેલીન્ડ્રોમિક સ્થાને થી કાપે છે.
 - (3) તે જનીન ઈજનેરી વિદ્યામાં ઉપયોગી છે.
 - (4) DNA લાઈગેઝના ઉપયોગથી ચીપકુ છેડાને જોડી શકાય છે.
- 123. પ્રમાણભૂત ECG માં QRS સંકુલ શું દર્શાવે છે?
 - (1) કર્ણકોનું પુનઃધ્રુવીકરણ
 - (2) કર્ણકોનું વિધ્રુવીકરણ
 - (3) ક્ષેપકોનું વિધ્રવીકરણ
 - (4) ક્ષેપકોનું પુનઃધ્રુવીકરણ
- 124. પ્રાણીઓમાં નીચેનામાંથી કયુ પ્રોટીન વિપુલ પ્રમાણમાં જોવા મળે છે ?
 - (1) હીમોગ્લોબીન
 - (2) કોલાજન
 - (3) લેક્ટીન
 - (4) ઈન્સ્યુલિન
- 125. જેલ ઈલેક્ટ્રોફોરેસીસમાં, છૂટા પડેલ DNA ના ટુકડાઓને, આની મદદથી જોવાય છે :
 - (1) તેજસ્વી વાદળી લાઈટમાં, એસીટોકાર્માઈનની મદદ થી
 - (2) ઈથીડીયમ બ્રોમાઈડ UV કિરણો થી
 - (3) UV કિરણોમાં એસીટોકાર્માઈન થી
 - (4) ઈન્ક્રારેડ કિરણોમાં ઈથીડીયમ બ્રોમાઈડ થી
- **126.** બીજ સુષુપ્તતાના નિયંત્રણમાં, નીચે પૈકી કયો પદાર્થ અટકાવકર્તા **નથી** ?
 - (1) જીબ્રેલીક એસિડ
 - (2) એબ્સીસીક એસિડ
 - (3) ફીનોલીક એસિડ
 - (4) પેરા–એસ્કોર્બીક એસિડ
- 127. જળકુંભી (વોટર હાયસીન્થ) અને પોયણા (વોટર લીલી)માં પરાગનયન આના દ્વારા થાય છે :
 - (1) કીટકો અથવા પવન
 - (2) માત્ર પાણીનો પ્રવાહ
 - (3) પવન અને પાણી
 - (4) કીટકો અને પાણી

128.	બીકાનેરી ઘેટી અને મરીનો ઘેટીનો ઉપયોગ કરી નીચેની કઈ પધ્ધતિ
	દ્વારા ઘેટાની નવી જાત 'હિસારડેલ' વિકસાવવામાં આવી છે.

- (1) બર્હિસંવર્ધન
- (2) ઉત્પરિવર્તન સંવર્ધન
- (3) પર સંવર્ધન
- (4) અંત:સંવર્ધન

129. મૂત્રમાં નીચેના માંથી કઈ પરિસ્થિતિ ડાયાબીટિઝ મેલિટસ સુચવે છે ?

- (1) યુરેમિયા અને કિટોન્યૃરિયા
- (2) યુરેમિયા અને મૂત્રપિંડની પથરી
- (3) કીટોન્યુરિયા અને ગ્લાયકોસોરિયા
- (4) મૂત્રપિંડની પથરી અને હાયપરગ્લાયસેમિયા

130. નીચેના માંથી કયુ-માનવજનીત કાર્યોના લીધે બદલાયેલા પર્યાવરણના કારણે ઉત્ક્રાન્તિ પામેલ સજીવનું સાચુ ઉદાહરણ છે?

- (a) ગેલેપેગોઝ ટાપુ પરની ડાર્વિન ફિન્ચ
- (b) તૃણનાશક પ્રતિરોધી ઘાસ
- (c) દવા પ્રતિરોધી સુકોષકેન્દ્રીઓ
- (d) કૂતરા જેવી માનવ સર્જિત પાલતુ જાતીયો
- (2) (a) અને (c)
- (3) (b), (c) અને (d)

131. ઉદ્દવિકાસનો ભ્રૂણવિજ્ઞાનીકી આધાર, આમણે વખોડયો :

- (1) કાર્લ અર્નસ્ટ વૉન બેઅર
- (2) આલ્ક્રેડ વૉલેસ
- (3) ચાર્લ્સ ડારવીન
- (4) ઓપેરીન

132. નીચેના કોલમને જોડો અને સાચો વિકલ્પ પસંદ કરો :

	કોલમ	- I			કોલમ - II
(a)	તરતી	પાંસળી	ઓ	(i)	બીજી અને સાતમી
					પાંસળીની વચ્ચે
					આવેલ છે
(b)	સ્કંધાગ્ર પ્રવર્ધની			(ii)	ભુજાસ્થિ શીર્ષ
(c)	સ્કંધાસ્થિ			(iii)	અક્ષક જોડાણ
(d)	સ્કંધઉ	લૂખલ		(iv)	ઉરોસ્થિ સાથે જોડાતી
		• `			નથી
	(a)	(b)	(c)	(d)	
(1)	(ii)	(iv)	(i)	(iii)	
(2)	(i)	(iii)	(ii)	(iv)	
(3)	(iii)	(ii)	(iv)	(i)	
(4)	(iv)	(iii)	(i)	(ii)	

- 133. બીજાશય નો દેહ, અહીંથી, અંડનાલ સાથે જોડાયેલ હોય છે :
 - (1) બીજકેન્દ્ર
 - (2) બીજાંડછિદ્ર
 - (3) પ્રદેહ
 - (4) અંડકતલ
- 134. નીચેના માંથી શેને એનએરોબિક સ્લજ ડાયજેસ્ટર્સમાં વાહિન મળની આગળની સારવાર માટે મૂકવામાં આવે છે :
 - (1) પ્રાથમિક સ્લજ
 - (2) તરતો કચરો
 - (3) પ્રાથમિક સારવારનું ઈફ્લ્યુઅન્ટ
 - (4) ક્રિયાશીલ સ્લજ
- 135. શીમ્બીકુળની વનસ્પતિઓની મૂળ ગંડિકામાં આવેલ નાઈટ્રોજીનેઝ જે પ્રક્રિયાનું ઉદ્દીપન કરે છે, તેની નિપજ આ છે :
 - (1) માત્ર એમોનિયા
 - (2) માત્ર નાઇટ્રેટ
 - (3) એમોનિયા અને ઓક્સિજન
 - (4) એમોનિયા અને હાઈડ્રોજન

136. નીચે પૈકી સાચી જોડ પસંદ કરો :

- (1) લીગેઝીસ બે DNA અણુઓને જોડે છે
- (2) પોલીમરેઝીસ DNA ના ડ્રકડા કરે છે
- (3) ન્યુકલીએઝીસ DNA ના બે કુંતલોને અલગ કરે હે
- (4) એક્ઝો- DNA ના અંતર્ગત, ચોક્કસ ન્યુક્લીએઝીસ સ્થાને કાપે છે
- 137. એ વૃદ્ધિનિયામકનું નામ આપો જેનો શેરડીના પાક પર છંટકાવ કરવાથી તેના પ્રકાંડની લંબાઈ વધે છે અને આમ શેરડીની ઉપજ વધે છે:
 - (1) સાયટોકાઈનીન
 - (2) જીબ્રેલીન
 - (3) ઈથીલીન
 - (4) એબ્સીસીક એસિડ

138.	નીચેના	કોલમને	જોડો	અને	સાચો	વિકલ્પ	પસંદ	કરો

કોલમ - I

કોલમ - II

- (a) ટોળામાં રહેતી પાક હાનિકારક (i) *એસ્ટેરિયસ* જીવાત
- (b) પુખ્તમાં અરીય સમમિતિ અને (ii) વીંછી ડીંભમાં દ્વિપાર્શ્વીય સમમિતિ
- (c) ફેફસા પોથી
- (iii) ટીનોપ્લાના
- (d) જૈવ પ્રદીપ્યતા
- (iv) લોકસ્ટા
- (a) (b) (c) (d)
- (1) (i) (iii) (ii) (iv)
- (2) (iv) (i) (ii) (iii)
- (3) (iii) (ii) (i) (iv)
- (4) (ii) (i) (iii) (iv)

139. ઓક્સીજનના વહનના અનુસંધાનમાં ખોટુ વિધાન ઓળખો :

- (1) ઓક્સીજનનું હિમોગ્લોબીન સાથેનું જોડાણ મુખ્યત્વે ${\rm O}_2$ ના આંશિક દબાણ સાથે સંબંધિત છે.
- (2) CO_2 નું આંશિક દબાણ O_2 ના હિમોગ્લોબીન સાથેના જેડાણમાં દખલગીરી કરે છે.
- (3) વાયુકોષ્ઠોમાં H⁺ ની ઊંચી સાંદ્રતા ઓક્સીહીમોગ્લોબીનની બનાવટમાં સહાય કરે છે.
- (4) વાયુકોષ્ઠોમાં ઓછો pCO_2 ઓક્સીહીમોગ્લોબીનની બનાવટમાં સહાય કરે છે.

140. વનસ્પતિમાં, આવશ્યક તત્વો અને તેમના કાર્યોને અનુલક્ષીને જોડકા ગોઠવો :

- (a) લોહ
- (i) જળનું પ્રકાશ વિભાજન
- (b) ઝીન્ક
- (ii) પરાગજ અંકુરણ
- (c) બોરોન
- (iii) ક્લોરોફીલના જૈવસંશ્લેષણ માટે જરૂરી
- (d) મેંગેનીઝ
- (iv) IAA જૈવસંશ્લેષણ

સાચો વિકલ્પ પસંદ કરો :

- (a) (b) (c) (d)
- (1) (ii) (i) (iv) (iii)
- (2) (iv) (iii) (ii) (i)
- (3) (iii) (iv) (ii) (i)
- (4) (iv) (i) (ii) (iii)

- 141. એક વનસ્પતિનો આડો છેદ નીચેના અંતસ્થ લક્ષણો દર્શાવે છે :
 - (a) પુલીય આવરણ ધરાવતા, અસંખ્ય, વીખરાયેલા વાહીપુલ.
 - (b) મૃદ્દતકીય કોષોનું બનેલ વિશાળ, જોઈ શકાતું આધારોત્તક.
 - (c) સહસ્થ અને અવર્ધમાન વાહીપુલો.
 - (d) અન્નવાહક મૃદ્દતકનો અભાવ.

નીચે પૈકી વનસ્પતિનો પ્રકાર અને ભાગ ઓળખો :

- (1) એકદળી પ્રકાંડ
- (2) એકદળી મૂળ
- (3) દ્વિદળી પ્રકાંડ
- (4) ક્રિદળી મૂળ

142. પ્રકાશ-પ્રક્રિયામાં, પ્લાસ્ટોક્વીનોન, અહીંથી, ઈલેક્ટ્રોનને ખસેડવામાં મદદરૂપ થાય છે :

- (1) PS-II થી Cytb₆f સંકીર્ણ સુધી
- (2) Cytb₆f સંકીર્ણ થી PS-I
- (3) PS-I થી NADP+
- (4) PS-I થી ATP સીંથેઝ

143. પૃથ્વીના નીચે પૈકીના પ્રદેશોમાંથી કયો, સૌથી વધુ જાતિ વિવિધતા દર્શાવે છે ?

- (1) ભારતનો પશ્ચિમી ઘાટ
- (2) મેડાગાસ્કર
- (3) હિમાલય
- (4) એમોઝોનના જંગલો

144. ભાષાંતર (ડ્રાન્સલેશન) નો પ્રથમ તબક્કો આ છે :

- (1) રીબોઝોમનું mRNA સાથે જોડાવવું
- (2) DNA ના અણુને ઓળખવ્
- (3) tRNA નુ એમિનોએસાયલેશન
- (4) વિરુધ્ધ-સંકેત (એન્ટી-કોડોન)ને ઓળખવુ

145. મનુષ્યના શરીરમાં પ્રવેશતો *પ્લાઝમોડીયમનો* ચેપી તબક્કો છે.

- (1) દ્રોફોઝોઈટસ
- (2) સ્પોરોઝોઈટસ
- (3) માદા જન્યુકોષ
- (4) નર જન્યુકોષ

- 146. સુકેન્દ્રી કોષો(યુકેરીઓટીક)માં ગ્લાયકોપ્રોટીન્સ અને ગ્લાયકોલીપીડસ્ના ઉત્પાદન માટે કયું, અગત્યનું સ્થાન છે ?
 - (1) અંતઃકોષરસ જાળ
 - (2) પેરોક્સીઝોમ્સ્
 - (3) ગોલ્ગીકાય
 - (4) પોલીસોમ્સ
- 147. નીચેના માંથી બેઝીક એમીનો એસિડ ઓળખો :
 - (1) ટાયરોસીન
 - (2) ગ્લુટામીક એસિડ
 - (3) લાયસીન
 - (4) વેલાઈન
- 148. એક વારના સિદ્રિક એસિડ ચક્રમાં, પ્રક્રિયાર્થી સ્તરે આટલા કોસ્કોરાયલેશન થાય છે :
 - (1) શૂન્ય
 - (2) એક
 - (3) બે
 - (4) প্রথ
- 149. એસ.એલ. મીલરે, તેમના પ્રયોગોમાં એક બંધ ફ્લાસ્કમાં, આ બધાને મિશ્રણ કરી એમિનો એસિડ ઉત્પન્ન કર્યો :
 - (1) મિથેન, હાઇડ્રોજન, એમોનિયા અને વરાળને, 800°C પર
 - (2) CH_3 , H_2 , NH_4 અને વરાળને, $800^{\circ}C$ પર
 - (3) મિથેન, હાઇડ્રોજન, એમોનિયા અને વરાળને, 600°C પર
 - (4) CH_3 , H_2 , NH_3 અને વરાળને, $600^{\circ}C$ પર
- **150.** બીજાણુપર્ણસમૂહન (સ્દ્રોબીલાઈ) કે શંકુઓ, આમાં જોવા મળે છે:
 - (1) સાલ્વીનીઆ
 - (2) પેરીસ
 - (3) માર્કેન્શિઆ
 - (4) ઈકવીસેટમ
- **151.** પ્રત્યાંકન વખતે DNA કુંતલ ને ખોલવામાં સહાય કરતા ઉત્સેચકનું નામ ઓળખો.
 - (1) DNA લાઈગેઝ
 - (2) DNA હેલીકેઝ
 - (3) DNA પોલીમરેઝ
 - (4) RNA પોલીમરેઝ

- 152. પ્રકાશ શ્વસન અંતર્ગત RuBisCo ઉત્સેચકની પ્રાણવાયુકરણ પ્રક્રિયાથી ઉત્પન્ન થાય છે :
 - (1) 3-C સંયોજનના 2 અણુઓ
 - (2) 3-C સંયોજનનો 1 અણ્
 - (3) 6-C સંયોજનનો 1 અણુ
 - (4) 4-C સંયોજનનો 1 અણુ અને 2-C સંયોજનનો 1 અણુ
- 153. ફ્લોરીડીઅન સ્ટાર્ચની રચના આના જેવી હોય છે :
 - (1) સ્ટાર્ચ અને સેલ્યુલોઝ
 - (2) એમાઈલોપેક્ટીન અને ગ્લાયકોજન
 - (3) મેનીટોલ અને આલ્ગીન
 - (4) લેમીનારીન અને સેલ્યુલોઝ
- 154. વૃધ્ધિની પ્રક્રિયા, આ દરમ્યાન સૌથી વધુ હોય છે :
 - (1) લૉગ તબક્કો
 - (2) મંદવૃધ્ધિ તબક્કો
 - (3) જુર્ણતા
 - (4) સુષુપ્તતા
- **155.** નીચેના માંથી કયુ વિધાન **સાચુ નથી** ?
 - (1) મનુષ્યમાં ઈન્સ્યુલીન નું સંશ્લેષણ પ્રોઈન્સ્યુલીન સ્વરૂપે થાય છે.
 - (2) પ્રોઈન્સ્યુલીનમાં એક વધારાનો પેપ્ટાઈડ હોય છે જેને C-પેપ્ટાઈડ કહે છે.
 - (3) સક્રિય ઈન્સ્યુલીન માં A અને B બે શૃંખલાઓ હોય છે જે હાઈડ્રોજન બંઘથી એકબીજા સાથે જોડાયેલ હોય છે.
 - (4) જનીન ઈજનેરી વિદ્યા વાળુ ઈન્સ્યુલીન (E-Coli) ઈ-કોલાઈમાં પેદા થાય છે.
- 156. સાચુ વિધાન પસંદ કરો :
 - (1) ગ્લુકોકોર્ટીકોઈડસ ગ્લુકોનિયોજનેસિસ ને પ્રેરે છે.
 - (2) ગ્લુકાગોન હાઈપોગ્લાયસેમીયા સાથે સંકળાયેલ છે.
 - (3) ઈન્સ્યુલિન સ્વાદુપિંડકોષો અને મંદપૂર્ણ કોષો પર કાર્ય કરે છે.
 - (4) ઈન્સ્યુલિન હાઈપરગ્લાયસેમીયા સાથે સંકળાયેલ છે.

157 .	અર્ધીકરણને	અનુલક્ષીને	નીચે	પૈકીને	જોડો	

- (a) ઝાયગોટીન (i) ઉપાન્તીભવન (ટર્મીનલાઇઝેશન)
- (b) પેકીટીન (ii) સ્વસ્તિક ચોકડી (ચાયેસ્મેટા)
- (c) ડીપ્લોટીન (iii) વ્યતિકરણ (ક્રોર્સીંગ ઓવર)
- (d) ડાયાકાઈનેસીસ (iv) સૂત્રયુગ્મન

નીચે પૈકી સાચો વિકલ્પ પસંદ કરો :

- (a) (b) (c) (d)
- (1) (iii) (iv) (i) (ii)
- $(2) \qquad (iv) \qquad (iii) \qquad (ii) \qquad (i)$
- (3) (i) (ii) (iv) (iii)
- (4) (ii) (iv) (iii) (i)

158. જો વંદાનું શીર્ષ દુર કરવામાં આવે તો તે થોડાક દિવસો સુધી જીવીત રહી શકે છે કારણ કે :

- (1) વંદાનો ઉપરી અન્નનાલીય ચેતાકંદ ઉદરના વક્ષભાગે આવેલો હોય છે.
- (2) વંદામાં ચેતાતંત્ર આવેલુ હોતુ નથી
- (3) શીર્ષમાં ચેતાતંત્રનો થોડોક ભાગ હોય છે જ્યારે બાકીના ભાગમાં મોટા ભાગનું ચેતાતંત્ર વક્ષ ભાગે આવેલુ છે.
- (4) શીર્ષમાં ચેતાતંત્રનો 1/3 ભાગ આવેલ છે જ્યારે બાકીનું તેના શરીરના પૃષ્ઠભાગે આવેલુ છે.

ક્રોલમ – II

159. નીચેના કોલમને જોડો અને **સાચો** વિકલ્પ પસંદ કરો :

કોલમ – I

	ગાળા	_ 1				31Ct4 - 11
(a)	6 થી	15 જોડ	ઝાલર ફ	ાડો	(i)	દ્રાઈગોન
(b)	વિષમ મીનપ	. પાલિ પૃ ક્ષ	ા્રેચ્છ	(ii)	યુષમુઆ	
(c)	પ્લવન	ાશય			(iii)	કાસ્થિમત્સ્ય
(d)	ઝેર કંત	ઝેર કંડક (શૂળ)				અસ્થિમત્સ્ય
	(a)	(b)	(c)	(d)		
(1)	(ii)	(iii)	(iv)	(i)		
(2)	(iii)	(iv)	(i)	(ii)		
(3)	(iv)	(ii)	(iii)	(i)		
(4)	(i)	(iv)	(iii)	(ii)		

160. જે મૂળ પ્રકાંડના તલભાગમાંથી ઉત્પન્ન થાય, તેને આ કહેવાય :

- (1) तंत्_{भू}ण
- (2) પ્રાથમિક મૂળ
- (3) સ્તંભ મૂળ
- (4) પાશ્વીય મુળ

161. મનુષ્યના પાચનતંત્રના અનુસંધાને સાચુ વિધાન ઓળખો :

- (1) શેષાંત્ર નાના આંતરડામાં ખુલે છે.
- (2) લસીસ્તર એ પાચનનળીનું સૌથી અંદરનું સ્તર છે.
- (3) શેષાંત્ર ખુબજ ગુંચળાદાર ભાગ છે.
- (4) કૃમિવત્ ગ્રહણી થી ઉત્પન્ન થાય છે.

162. નીચેના કોલમને જોડો અને **સાચો** વિકલ્પ પસંદ કરો :

	કોલમ - I		કોલમ - II
(a)	કલોસ્ટ્રીડીયમ બ્યુટીલીક્રમ	(i)	સાયકલો-
			સ્પોરીન-A
(b)	દ્રાઈકોડર્મા પોલીસ્પોરમ	(ii)	બ્યુટીરીક એસિડ
(c)	મોનાસ્ક્રસ પરપુરીયસ	(iii)	સાઈદ્રીક
			એસિડ
(d)	એસ્પર્જાલસ નાઈજર	(iv)	રૂધિર માં કોલેસ્ટેરોલ
			ઘટાડતો ઘટક
	(a) (b) (c) (d)		

- (1) (iii) (i) (iv) (ii) (2)(ii) (i) (iv) (iii) (3)(i) (ii) (iv) (iii) (4) (iv) (iii) (i) (ii)
- 163. નિવસન તંત્રની કુલ પ્રાથમિક ઉત્પાદકતા અને ચોખ્ખી પ્રાથમિક ઉત્પાદકતાને અનુલક્ષીને, નીચે પૈકી કયું વિધાન સાચું છે ?
 - (1) કુલ પ્રાથમિક ઉત્પાદકતા ચોખ્ખી પ્રાથમિક ઉત્પાદકતા કરતા હમેશા ઓછી હોય છે.
 - (2) કુલ પ્રાથમિક ઉત્પાદકતા ચોખ્ખી પ્રાથમિક ઉત્પાદકતા કરતા હમેશા વધુ હોય છે.
 - (3) કુલ પ્રાથમિક ઉત્પાદકતા અને ચોખ્ખી પ્રાથમિક ઉત્પાદકતા, બંને એક જ છે.
 - (4) કુલ પ્રાથમિક ઉત્પાદકતા અને ચોખ્ખી પ્રાથમિક ઉત્પાદકતા વચ્ચે કોઈ સંબંધ નથી.

164. નીચેના કોલમને જોડો અને સાચો વિકલ્પ પસંદ કરો :

	કોલમ	- I			કોલમ - II
(a)	પિટચુ	૮રી ગ્રંથી	l.	(i)	ગ્રેવ્સ રોગ
(b)	થાયરો	.ઈડ ગ્રંર્થ	l	(ii)	ડાયાબીટિઝ મેલિટસ
(c)	એડ્રીન	ાલ ગ્રંથી		(iii)	ડાયાબીટિઝ
					ઈન્સીપીડસ
(d)	સ્વાદુ	પેંડ		(iv)	એડીસન રોગ
	(a)	(b)	(c)	(d)	
(1)	(iv)	(iii)	(i)	(ii)	
(2)	(iii)	(ii)	(i)	(iv)	
(3)	(iii)	(i)	(iv)	(ii)	
(4)	(ii)	(i)	(iv)	(iii)	

105	નીચેના	Dans)	22	211	Sugar	6,421	21216	6.5	
165.	નાયના	કાલમન	જાડા	અન	સાચા	ાવકલ્પ	પસ્તદ	કરા	

	કોલમ -	· I			કોલમ - II
(a)	જરાયુ			(i)	એન્ડ્રોજન્સ
(b)	ઝોના પે	ોલ્યુસીડ	l	(ii)	હ્યુમન કોરીઓનિક ગોનેડોદ્રોપીન અંતઃસ્રાવ (hCG)
(c)	બલ્બો-	-યુરેથ્ <u>ર</u> લઃ	ગ્રંથિઓ	(iii)	અંડકોષનું આવરણ
(d)	લેડીગ ક	કોષો		(iv)	શિશ્નનું ઊંજણ
	(a)	(b)	(c)	(d)	
(1)	(iv)	(iii)	(i)	(ii)	
(2)	(i)	(iv)	(ii)	(iii)	
(3)	(iii)	(ii)	(iv)	(i)	
(4)	(ii)	(iii)	(iv)	(i)	

166. નીચેના કોલમોને જોડો અને સાચો વિકલ્પ પસંદ કરો :

	કોલમ	- I			કોલમ - II
(a)	કોર્ટિકા	ાય		(i)	મધ્યકર્ણને કંઠનળી સાથે જોડે છે
(b)	શંખિક	ι		(ii)	કુહરનો ગુંચળામય ભાગ
(c)	કર્ણ કં	ઠનળી		(iii)	અંડાકાર ગવાક્ષ સાથે જોડાયેલ
(d)	પેંગડુ			(iv)	બેસિલર કલા પર આવેલ હોય છે
	(a)	(b)	(c)	(d)	
(1)	(ii)	(iii)	(i)	(iv)	
(2)	(iii)	(i)	(iv)	(ii)	
(3)	(iv)	(ii)	(i)	(iii)	
(4)	(i)	(ii)	(iv)	(iii)	

167. દ્વિતીયક અંડકોષ નું અર્ધસૂત્રી ભાજન ____ એ પૂર્ થાય છે.

- (1) અંડપાતના પહેલા
- (2) સંભોગ વખતે
- (3) ફલિતાંડ બન્યા પછી
- (4) શુક્રકોષ અને અંડકોષના મિલન વખતે

168. તૃણભૂમિના નિવસનતંત્રમાં, પોષક સ્તરો સાથે તેમની સાચી ઉદાહરણ જાતિનું જોડકુ ગોઠવો :

- (a) ચોથુ પોષક સ્તર
- (i) કાગડો
- (b) બીજુ પોષક સ્તર
- (ii) ગીધ
- (c) પ્રથમ પોષક સ્તર
- (iii) સસલુ
- (d) ત્રીજુ પોષક સ્તર
- (iv) ધાસ

સાચો વિકલ્પ પસંદ કરો :

- (a) (b) (c) (d)
- (1) (ii) (iii) (iv) (i)
- (2) (iii) (ii) (i) (iv)
- (3) (iv) (iii) (ii) (i)
- (4) (i) (ii) (iii) (iv)

169. દ્વિતીય ચયાપચયી પદાર્થો જેવા કે, નીકોટીન, સ્ટ્રીકનીન અને કેફીન વનસ્પતિ દ્વારા આના માટે ઉત્પન્ન થાય છે :

- (1) પોષક મૂલ્ય
- (2) વૃધ્ધિ પ્રતિસાદ
- (3) સંરક્ષણ ક્રિયા
- (4) પ્રજનન પર અસર

170. એન્ટાર્કટિક પ્રદેશમાં બરફ-અંધતા, આના લીધે થાય છે :

- (1) નીચા તાપમાનને લીધે આંખના પ્રવાહીનું થીજ જવુ
- (2) UV-B કિરણોની વધુ પડતી માત્રાને લીધે કોર્નીઆમાં સૂઝન
- (3) બરફમાંથી પ્રકાશનું ખૂબ ઊંચુ પરાવર્તન
- (4) ઈન્ફ્રારેડ વિકિરણોના લીધે રેટીનાને નુકસાન થવું

171. નીચે પૈકીની જોડીઓમાંથી કઈ એકકોષીય લીલ છે ?

- (1) લેમીનારીઆ અને સરગાસમ
- (2) જેલીડીયમ અને ગ્રાસીલારીઆ
- (3) એનાબીના અને વોલ્વોકસ
- (4) કલોરેલા અને સ્પીરૂલીના

છે.

GUJAI	RAII				2	1						E(
172.	નીચેન	ા કોલમ જોડો અને	. સાચો	. વિકલ્પ	. પસંદ કરો :	177.	સજીવ	ા અને તે	ના બાયો	ટેકન <u>ો</u> લો	જમાં થ	તા ઉપયોગને જોડો :
		કોલમ - I			કોલમ - II		(a)	બેસી <i>લ</i>	નસ		(i)	પ્રતિકૃતિ વાહક
	(a)	ઈઓસિનોફિલ્સ		(i)	રોગપ્રતિકારક પ્રતિચાર		, ,	થુરીએ)ન્જ <i>િ</i> ન્સ	4	.,	C
	(b)	બેઝોફિલ્સ		(ii)	ભક્ષકકોષ		(b)	0	એકવેટી:		(ii)	સૌ પ્રથમ rDNA
	(c)	ત૮સ્થકણ		(iii)	વિનાશકારી ઉત્સેચક હિસ્ટામાઈનેઝ મુક્ત કરે છે.		(0)	વના	~134613	τι	(11)	સા પ્રવન FDNA અણુની બનાવટ
	(d)	લિમ્ફોસાઈટ્સ (લસિકાકણ)		(iv)	ુ. હિસ્ટામાઈન ધરાવતી કણિકાઓ મુક્ત કરે છે.		(c)		ખેક્ટેરીય ફેસીઅન્		(iii)	DNA પોલીમરેઝ
	(1)	(iii) (iv) ((c) (ii)	(d) (i)	-		(d)		તોનેલા !મ્યુરીયમ	d	(iv)	Cry પ્રોટીન્સ
	(2) (3)		(ii) (iv)	(iii) (iii)			સાચો	વિકલ્પ	પસંદ ક	શે :		
	(4)		(iii)	(iv)				(a)	(b)	(c)	(d)	
173.	રોબર્ટ	મે અનુસાર, પૃથ્વી	.ની જા	તિ વિવિ	ાધતા આટલી છે :		(1)	(ii)	(iv)	(iii)	(i)	
	(1)	1.5 મિલિયન					(2)	(iv)	(iii)	(i)	(ii)	
	(2)	20 મિલિયન					(3)	(iii)	(ii)	(iv)	(i)	
	(3)	50 મિલિયન					(4)	(iii)	(iv)	(i)	(ii)	
	(4)	7 મિલિયન				178.	નીચે [:]	પૈકી કયો	., વસતિ	નો ગુણ	નથી ?	
174.	પેંગ્વી•			ર્ષ	નું ઉદાહરણ છે.		(1)	જાતિ	ગુણોત્તર			
	(1)	અનુકૂલિત પ્રસરણ					(2)	જન્મદ	ર			
	(2)	કેન્દ્રાભિસારી ઉ					(3)	મૃત્યુદ	ર			
	(3)	ઔદ્યોગિક મેલાન્					(4)		આંતરક્રિ	સા		
	(4)	પ્રાકૃતિક પસંદગી										
175.	છે :		બેકની અંદર બીજા, ધરાવે	179.	 કેટલાક વિભાજન પામતા કોષો, કોષ ચક્રમાંથી નીક અપ્રવૃત્તિમય (અક્રીય) અવસ્થામાં આવે છે. અ 					વે છે. આને, કવાઈસેન્		
	` '	પરાગશયમાં આવે						· ·		.છ. અ	.ા પ્રાક્રયા	, આના અંતે થાય છે :
	(b) (c)	બે નરજન્યુ ધરાવ ફળમાં રહેલ બીજ	-	યકુારત પ	ારા∨ારજ		(1)	M અ	વસ્થા			
	(d)	ફળના રહેલ ગાળ બીજાંડ માં આવેલ		1 U 2			(2)	G ₁ અ	ાવસ્થા			
	(1)	માત્ર (a)	16 262	. %			(3)	S અવ	ાસ્થા			
	(2)	(a), (b) અને (c))				(4)	G_2 અ	ાવસ્થા			
	(3)	(c) અને (d)				100	وررون	m, 2,2	· <i>©</i> (° -		<i></i> \2.40 :	
	(4)	(a) અને (d)				180.		વાવ સમ રણ દ્વારા			૯કાજા	પ્રાણીઓ
176.	નીચે ઉ	યૈકીનુ કયું, પ્રવિષાણ	ગુઓ મ	નાટે સાર્	ું છે ?		(1)	કંકતધ				
	(1)	તેમનામાં પ્રોટીનય	યુક્ત ચ	માવરણ	યાળુ RNA હોય છે.		(2)	પૃથૃકૃિ				
	(2)	તેમનામાં પ્રોટીન ^{ર્} છે.	યુક્ત ગ	યાવરણ •	વગરના મુક્ત RNA હોય		(3)	રુઝ્ટુ [ા] સૂત્રકૃદિ				
	(3)	તેમનામાં પ્રોટીનય	યુક્ત ચ	માવરણ	યાળુ DNA હોય છે.		(4)	નુપુરક				
	(4)	તેમનામાં પ્રોટીન	મય અ	ાવરણ વ	યગરના મુક્ત DNA હોય							

- o O o -

Space For Rough Work / રફ કાર્યનું સ્થાન

Space For Rough Work / રફ કાર્યનું સ્થાન

Space For Rough Work / રફ કાર્યનું સ્થાન

No.:

Test Booklet Code પરિક્ષા પુસ્તિકાનો કોડ

KHANA

This Booklet contains 24+44 pages. આ પુસ્તિકામાં 24+44 પાનાં છે.

F6

Do not open this Test Booklet until you are asked to do so. જ્યાં સુધી કહેવામાં ન આવે ત્યાં સુધી આ પુસ્તિકા ખોલવી નહીં.

Read carefully the Instructions on the Back Cover of this Test Booklet. આ પરિક્ષા પુસ્તિકાના પાછળના કવર પર આપેલ સૂચનાઓ ધ્યાનથી વાંચો.

Important Instructions:

- 1. The Answer Sheet is inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars on **side-1** and **side-2** carefully with **blue/black** ball point pen only.
- The test is of 3 hours duration and Test Booklet contains 180 questions. Each question carries 4 marks. For each correct response, the candidate will get 4 marks. For each incorrect response, one mark will be deducted from the total scores. The maximum marks are 720.
- 3. Use **Blue/Black Ball Point Pen only** for writing particulars on this page/marking responses.
- 4. Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- 5. On completion of the test, the candidate must hand over the Answer Sheet to the invigilator before leaving the Room/Hall. The candidates are allowed to take away this Test Booklet with them.
- 6. The CODE for this Booklet is **F6**. Make sure that the CODE printed on **Side-2** of the Answer Sheet is the same as that on this Test Booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet.
- 7. The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your Roll No. anywhere else except in the specified space in the Test Booklet/Answer Sheet.
- 8. Use of white fluid for correction is **NOT** permissible on the Answer Sheet.

અગત્યની સૂચનાઓ :

- આ પરિક્ષાપુસ્તિકાની અંદર ઉત્તરવહિ છે. જ્યારે આપને પરિક્ષા પુસ્તિકા ખોલવાનું કહેવામાં આવે, ત્યારે ઉત્તરવહિ નિકાળી બાજુ -1 અને બાજુ-2 પરની વિગતો ફક્ત વાદળી/કાળી બોલ પોઈન્ટ પેનથી સાવધાની સાથે ભરો.
- 2. પરિક્ષાનો ગાળો 3 કલાકનો છે અને આ પુસ્તિકામાં 180 પ્રશ્નો છે. પ્રત્યેક પ્રશ્ન 4 માર્કનો છે. પ્રત્યેક સાચા જવાબ માટે પરિક્ષાર્થીને 4 માર્ક આપવામાં આવશે. પ્રત્યેક ખોટા જવાબ માટે કુલ માર્કમાંથી 1 માર્ક ઓછો કરવામાં આવશે. મહત્તમ માર્ક 720 છે.
- 3. આ પાનાં પર લખાણ લખતી વખતે કે નિશાની કરતી વખતે ફક્ત **વાદળી/કાળી બોલ પોઈન્ટ પેનનો** પ્રયોગ કરો.
- 4. રફ કાર્ય હેતું આ પુસ્તિકામાં આપેલ નિર્ધારિત સ્થાનમાંજ કરો.
- 5. પરિક્ષા સંપન્ન થયા પછી, પરિક્ષાર્થી રૂમ/હોલ છોડતાં પહેલા ઉત્તરવહિ વર્ગ-નિરિક્ષકને અવશ્ય પાછી આપે. પરિક્ષાર્થી પોતાની સાથે આ પ્રશ્ન-પુસ્તિકા લઈ જઈ શકે છે.
- 6. આ પુસ્તિકાનો કોડ **F6** છે. એ ખાતરી કરીલો કે આ પુસ્તિકાનો કોડ, ઉત્તરવહિના **બાજુ 2** પર છાપેલ કોડ સાથે મેળ ખાય છે. જો તે અલગ હોય તો પરિક્ષાર્થી બીજી પરિક્ષા પુસ્તિકા અને ઉત્તરવહિ લેવા નિરિક્ષકને તુરંત જાણ કરે.
- 7. પરિક્ષાર્થી એ સુનિશ્ચિત કરે કે આ ઉત્તરવહિ વળે નહીં અને તેના પર કોઈ નિશાન ન કરે. પરિક્ષાર્થી પોતાનો અનુક્રમ પ્રશ્ન-પુસ્તિકા/ઉત્તરવહિમાં નિર્ધારીત સ્થાન સિવાય અન્યત્ર ક્યાંય લખવો નહીં.
- 8. ઉત્તરવહિમાં કોઈપણ પ્રકારના સુધારા માટે વ્હાઈટ-ઈન્કનો ઉપયોગ કરવાની અનમતિ **નથી**.

In case of any ambiguity in translation of any question, English version shall be treated as final. પ્રશ્નોનાં અનુવાદમાં કોઇ અસ્પષ્ટતાની સ્થિતિમાં, અંગ્રેજી સંસ્કરણને જ અંતિમ માનવામાં આવશે.

Name of the Car પરિક્ષાર્થીનું નામ (મો	ndidate (in Capitals) : ટા અક્ષરોમાં) :		
Roll Number	: in figures		
અનુક્રમ	: અંકોમાં		
	: in words		
	: શબ્દોમાં		
Centre of Exam પરિક્ષા કેન્દ્ર (મોટા ચ	ination (in Capitals) : યક્ષરોમાં) :		
Candidate's Sig	nature :	Invigilator's Signature :	
પરિક્ષાર્થીની સહી :		નિરિક્ષકની સહી :	
Facsimile signa	ture stamp of		
Centre Superin	tendent:		

- 1. Cr^{2+} આયનની ગણતરી કરેલ સ્પિન ફક્ત ચુંબકીય ચાકમાત્રા શોધો.
 - (1) 5.92 BM
 - (2) 2.84 BM
 - (3) 3.87 BM
 - (4) 4.90 BM
- 2. નીચે આપેલામાંથી કયો એક કેટાયનિક પ્રક્ષાલક છે ?
 - (1) સિટાઈલટ્રાયમિથાઈલ એમોનિયમ બ્રોમાઈડ
 - (2) સોડિયમ ડોડેસાઈલબેન્ઝિન સલ્ફોનેટ
 - (3) સોડિયમ લોરિલ સલ્કેટ
 - (4) સોડિયમ સ્ટિયરેટ
- **3.** નીચે આપેલા માંથી કયો એમાઈન કાર્બાઈલએમાઈન કસોટી આપશે ?

$$(2) \qquad \begin{array}{c} \mathrm{NHC_2H_5} \\ \end{array}$$

$$(4) \qquad \begin{array}{c} \text{NHCH}_3 \\ \end{array}$$

- 4. નીચે આપેલા અણુઓની જોડી માંથી કયાની દ્વિધ્રુવ ચાકમાત્રા શૂન્ય થશે ?
 - (1) નાઈટ્રોજન ટ્રાયફ્લુઓરાઈડ, બેરિલિયમ ડાયફ્લુઓરાઈડ, પાણી, 1,3-ડાયક્લોરોબેન્ઝિન
 - (2) બોરોન ટ્રાયફ્લુઓરાઈડ, બેરિલિયમ ડાયફ્લુઓરાઈડ, કાર્બન ડાયોક્સાઈડ, 1,4-ડાયક્લોરોબેન્ઝિન
 - (3) એમોનિયા, બેરિલિયમ ડાયફલુઓરાઈડ, પાણી, 1,4-ડાયક્લોરોબેન્ઝિન
 - (4) બોરોન દ્રાયક્લુઓરાઈડ, હાઈડ્રોજન ફ્લુઓરાઈડ, કાર્બન ડાયોક્સાઈડ, 1,3-ડાયક્લોરોબેન્ઝિન
- 5. નીચે આપેલામાંથી કયો એક કુદરતી બહુલક છે ?
 - (1) પોલીબ્યૂટાડાઈન
 - (2) પોલી (બ્યૂટાડાઈન-એક્રિલોનાઈટ્રાઈલ)
 - (3) સીસ-1,4-પોલીઆઈસોપ્રીન
 - (4) પોલી (બ્યૂટાડાઈન-સ્ટાયરીન)
- 6. નીચે આપેલાને જોડો અને સાચો વિકલ્પ ઓળખી બતાવો.
 - (a) $CO(g) + H_2(g)$
- (i) $Mg(HCO_3)_2 + Ca(HCO_3)_2$
- (b) પાણીની અસ્થાયી કઠિનતા
- (ii) ઈલેક્ટ્રોનની અછત વાળો હાઈડ્રાઈડ
- (c) B_2H_6
- (iii) સં^{શ્}લેષિત વાયુ
- ${\rm (d)} \qquad {\rm H_2O_2}$
- (iv) બિન-સમતલીય બંધારણ

(d)

(i)

- (a) (b) (c)
- (1) (iii) (iv) (ii)
- $(2) \qquad (i) \qquad (iii) \qquad (ii) \qquad (iv)$
- (3) (iii) (i) (ii) (iv)
- (4) (iii) (ii) (iv)
- 7. એક પ્રક્રિયાના પ્રક્રિયકની સાંદ્રતામાં થતો વધારો નીચેના માંના ફેરફાર તરફ દોરી જશે જે શોધો :
 - (1) દેહલી ઊર્જા
 - (2) અથડામણ આવૃત્તિ
 - (3) સક્રિયકરણ શક્તિ
 - (4) પ્રક્રિયાની ઉષ્મા

- 8. બેન્ઝીનનો ઠારબિંદુ અવનમન અચળાંક (K_f) $5.12~K~kg~mol^{-1}$ છે. બેન્ઝીનમાં રહેલા એક વિદ્યુત–અવિભાજય દ્રાવ્ય ધરાવતા 0.078~m મોલાલીટીના દ્રાવણ માટે ઠારબિંદુ અવનમન શોધો. (બે દશાંશ સુધી પૂર્ણાંકમાં મૂકી શકાય)
 - (1) 0.40 K
 - (2) 0.60 K
 - (3) 0.20 K
 - (4) 0.80 K
- 9. એક અણુ કે જે અસ્તિત્વ ધરાવતો નથી જે ઓળખી બતાવો.
 - (1) C_2
 - (2) O₂
 - (3) He₂
 - (4) Li₂
- 10. નીચે આપેલ પ્રક્રિયામાં કાર્બનના ઓક્સિડેશન આંકમાં થતો ફેરફાર શું છે ?

 $\operatorname{CH}_4(\mathbf{g}) + 4\operatorname{Cl}_2(\mathbf{g}) \longrightarrow \operatorname{CCl}_4(\mathbf{l}) + 4\operatorname{HCl}(\mathbf{g})$

- (1) -441 + 4
- (2) 0 થી -4
- (3) + 4 થી + 4
- (4) 0 થી +4
- 11. નીચે આપેલ ધાતુ આયન ઘણા બધા ઉત્સેચકોને કાર્યાન્વિત (ઉત્તેજિત) કરે છે, તેઓ ગ્લુકોઝના ઓક્સિડેશનથી ATP ના ઉત્પાદનમાં ભાગ લે છે અને Na સાથે જ્ઞાનતંતુ સંદેશો વહન (ડ્રાન્સિમિશન) માટે પણ જવાબદાર છે.

2110

- (1) કેલ્શીયમ
- (2) પોટેશિયમ
- (3) લોખંડ
- (4) તાંબુ
- 12. નીચે આપેલાને જોડો :

Succific

	આક્સ	ાઇડ		પ્રકૃાત
(a)	CO		(i)	બેઝિક
(b)	BaO		(ii)	તટસ્થ
(c)	${\rm Al}_2{\rm O}$	3	(iii)	એસિડિક
(d)	$\mathrm{Cl}_2\mathrm{O}$	7	(iv)	ઉભયગુણીય
નીચે ઃ	આપેલા	માંથી કર	યો સા ચો	. વિકલ્પ છે ?
	(a)	(b)	(c)	(d)
(1)	(:::)	()	(:)	(::)

(ii) (1) (iii)(iv) (i) (2)(iv) (iii) (ii) (i) (3)(iii) (iv) (i) (ii)(4) (ii) (i) (iv) (iii)

- 13. મંદ NaOH ની હાજરીમાં થતી બેન્ઝાલ્ડીહાઈડ અને એસિટોફિનોન વચ્ચેની પ્રક્રિયા નીચેના તરીકે જાણીતી છે, જે ______.
 - (1) ક્રોસ કેનીઝારો પ્રક્રિયા
 - (2) ક્રોસ આલ્ડોલ સંઘનન
 - (3) આલ્ડોલ સંઘનન
 - (4) કેનીઝારો પ્રક્રિયા
- 14. એનિસોલની HI સાથેની પ્રક્રિયા થી પ્રાપ્ત થાય તે :

$$(1) \hspace{1cm} \begin{array}{c} \text{OH} \\ \\ \\ \end{array} + \text{C}_2 \text{H}_5 \text{I} \\ \end{array}$$

$$(2) \qquad \begin{array}{|c|c|} \hline & & \\ & & \\ \hline & & \\ & & \\ \end{array} + C_2 H_5 O H$$

$$(3) \qquad \begin{array}{|c|c|} \hline \\ \\ \hline \\ \\ \end{array} + \mathrm{CH_3I}$$

(4)
$$+ CH_3OH$$

- 15. $2\mathrm{Cl}(g) \to \mathrm{Cl}_2(g)$ પ્રક્રિયા માટે, સાચો વિકલ્પ શોધો.
 - (1) $\Delta_r H < 0$ અને $\Delta_r S > 0$
 - (2) $\Delta_r H < 0$ અને $\Delta_r S < 0$
 - (3) $\Delta_r H > 0$ અને $\Delta_r S > 0$
 - (4) $\Delta_r H > 0$ અને $\Delta_r S < 0$

- 16. નીચે આપેલા વિધાનોમાંથી સાચું ઓળખી બતાવો.
 - (a) આઈસક્રીમ અને થીજવેલા ખોરાક માટે $CO_2(g)$ નો ઉપયોગ શીતક તરીકે (રેફ્રીજરન્ટ) થાય છે.
 - (b) C_{60} નું બંધારણ, બાર છ કાર્બન ચક્રો અને વીસ પાંચ કાર્બન ચક્રો ધરાવે છે.
 - (c) ZSM-5 પ્રકારના ઝિયોલાઈટનો ઉપયોગ આલ્કોહોલ માંથી ગેસોલિનમાં રૂપાંતર કરવા થાય છે.
 - (d) CO એ રંગવિહિન અને ગંધવિહિન વાયુ છે.
 - (1) ફક્ત (b) અને (c)
 - (2) ફક્ત (c) અને (d)
 - (3) કક્ત (a), (b) અને (c)
 - (4) ફક્ત (a) અને (c)
- 17. વુર્ટઝ પ્રક્રિયા વડે નીચે આપેલા આલ્કેન માંથી કયો સારી નીપજ બનાવી શકતો નથી ?
 - (1) n-હેપ્ટેન
 - (2) n-બ્યૂટેન
 - (3) n-હેક્ઝેન
 - (4) 2,3-ડાયમિથાઈલબ્યૂટેન
- 18. CaCl₂, MgCl₂ અને NaCl ના દ્રાવણમાંથી HCl ને પસાર કરવામાં આવે છે. નીચે આપેલા માંથી કયું એક સંયોજન(નો) સ્ફડિકમય બને છે?

 - (2) NaCl, MgCl₂ અને CaCl₂
 - (3) બંન્ને MgCl₂ અને CaCl₂
 - (4)

 \$ধ্ব NaCl
- 19. નીચે આપેલા માંથી કયો એક પરમાણુઓની સંખ્યા મહત્તમ ધરાવતું હશે ?
 - (1) $O_2(g)$ નો 1 g[O] નું પરમાણ્વીય દળ = 16]
 - (2) Li(s) નો 1 g [Li નું પરમાણ્વીય દળ = 7]
 - (3) Ag(s) નો 1 g [Ag નું પરમાણ્વીય દળ = 108]
 - (4) Mg(s) નો 1 g [Mg નું પરમાણ્વીય દળ = 24]
- **20.** સિલીન્ડરમાં N_2 અને Ar વાયુઓનું એક મિશ્રણ N_2 ના 7 g અને Ar ના 8 g ધરાવે છે. પાત્રમાં (સિલિન્ડરમાં) વાયુઓના મિશ્રણનું કુલ દબાણ 27 બાર હોય તો, N_2 નું આંશિક દબાણ શોધો.
 - [પરમાણ્વીય દળો $N\!=\!14,\; Ar\!=\!40\; (g\; mol^{-1}\; માં)$ નો ઉપયોગ કરો]
 - (1) 15 બાર
 - (2) 18 બાર
 - (3) 9 બાર
 - (4) 12 બાર

- 21. ખોટું વિધાન શોધી બતાવો.
 - (1) જયારે H, C અથવા N જેવા નાના પરમાણુઓ ધાતુઓના સ્ફિટિક લેટાઈસોના અંદરના ભાગમાં ફસાઈ જાય ત્યારે આંતરાલીય સંયોજનો બને છે.
 - (2) ${\rm CrO_4^{2-}}$ અને ${\rm Cr_2O_7^{2-}}$ માં ક્રોમિયમની ઓક્સિડેશન અવસ્થા સમાન નથી.
 - (3) $\operatorname{Cr}^{2+}(\operatorname{d}^4)$ એ પાણીમાંના $\operatorname{Fe}^{2+}(\operatorname{d}^6)$ કરતા પ્રબળ રિડક્શનકર્તા છે.
 - (4) સંક્રાંતિ તત્વો અને તેના સંયોજનો તેની ઘણી બધી ઓક્સિડેશન અવસ્થાઓ ધરાવતા હોવાને કારણે તેની ઉદ્દીપકીય સક્રિયતા માટે જાણીતા છે અને તે સંકીર્ણો બનાવે છે.
- 22. એક આદર્શ વાયુ માટે સમોષ્મી પરિસ્થિતિ હેઠળ થતું મુક્ત વિસ્તરણનો સાચો વિકલ્પ શોધો.
 - (1) $q < 0, \Delta T = 0 \text{ with } w = 0$
 - (2) $q > 0, \Delta T > 0 \text{ with } w > 0$
 - (3) $q = 0, \Delta T = 0 \text{ w-h } w = 0$
 - (4) $q = 0, \Delta T < 0 અને w > 0$
- 23. રાઉલ્ટના નિયમ થી મિશ્રણ કે જે ધન વિચલન પ્રદર્શિત કરે છે તે શોધો.
 - (1) એસિટોન + ક્લોરોફોર્મ
 - (2) ક્લોરોઈથેન + બ્રોમોઈથેન
 - (3) ઈથેનોલ + એસિટોન
 - (4) બેન્ઝિન+ટોલ્યુઈન
- 24. નીચે આપેલા સલ્ફરના ઓક્સોએસિડ માંથી કયાં માં O O બંધન છે ?
 - (1) $H_2S_2O_8$, પરઓક્સોડાયસલ્ફ્યૂરિક એસિડ
 - (2) $H_{9}S_{9}O_{7}$, પાયરોસલ્ફ્યૂરિક એસિડ
 - (3) H_2SO_3 , સલ્ફ્યૂરસ એસિડ
 - (4) H_2SO_4 , સલ્ફ્યૂરિક એસિડ
- 25. સુક્રોઝ નું જળવિભાજન કરતા શું પ્રાપ્તા થશે ?
 - (1) α -D-ગ્લુકોઝ + β -D-ક્રુક્ટોઝ

 - (3) β -D- \circ (β) \rightarrow + α -D- β (β) \rightarrow
 - (4) α -D-ગ્લુકોઝ + β -D-ગ્લુકોઝ
- **26.** $^{175}_{71} \mathrm{Lu}$ માં પ્રોટોન, ન્યૂટ્રોન અને ઈલેક્ટ્રોનની સંખ્યા અનુક્રમે શોધો.
 - (1) 71, 71 અને 104
 - (2) 175, 104 અને 71
 - (3) 71, 104 અને 71
 - (4) 104, 71 અને 71

- 27. પ્લેટીનમ (Pt) ઈલેક્ટ્રોડનો ઉપયોગ કરીને મંદ સલ્ફ્યુરીક એસિડનું વિદ્યુત વિભાજન કરતાં એનોડ પર નીપજ પ્રાપ્ત થાય છે, જે
 - (1) H₂S વાયુ
 - (2) SO₂ વાયુ
 - (3) હાઈડ્રોજન વાયુ
 - (4) ઓક્સિજન વાયુ
- 28. નીચે આપેલા માંથી કયા ને કારણે તૃતીયક બ્યૂટાઈલ કાર્બોકેશાયન એ દ્વિતીયક બ્યૂટાઈલ કાર્બોકેશાયન કરતા વધારે સ્થિર છે ?
 - (1) CH_3 સમૂહોની R અસર
 - (2) હાઈપરકોન્જયુગેશન
 - (3) $-CH_3$ સમૂહોની -I અસર
 - (4) CH_3 સમૂહોની + R અસર
- 29. યૂરિયાની પાણી સાથે પ્રક્રિયા થઈને $\bf A$ બને છે કે જેનું વિઘટન થઈને તેમાંથી $\bf B$ બનશે. $\bf B$ જયારે ${\rm Cu}^{2+}$ (જલીય) માંથી પસાર કરતાં ગાઢા ભૂરા રંગનું દ્રાવણ $\bf C$ બને છે. નીચે આપેલામાંથી $\bf C$ નું સૂત્ર કયું છે ?
 - (1) $Cu(OH)_2$
 - (2) $CuCO_3 \cdot Cu(OH)_2$
 - (3) $CuSO_4$
 - (4) $[Cu(NH_3)_4]^{2+}$
- **30. ખોટી** જોડ શોધી બતાવો :

નામ

IUPAC સ્વીકૃત (Official) નામ

- (a) અનનિલઉનિયમ
- (i) મેન્ડેલિવિયમ
- (b) અનનિલટ્રાઈયમ
- (ii) લૉરેન્સિયમ
- (c) અનનિલહેક્સિયમ
- (iii) સીબોર્ગિયમ
- (d) અનઅનયૃનિયમ
- (iv) દરમ્સ્ટાદટિયમ
- (1) (c), (iii)
- (2) (d), (iv)
- (3) (a), (i)
- (4) (b), (ii)
- 31. એક પ્રથમ ક્રમ પ્રક્રિયા માટે વેગ અચળાંક $4.606 \times 10^{-3}~\mathrm{s}^{-1}$ છે. પ્રક્રિયકનાં $2.0~\mathrm{g}$ માંથી $0.2~\mathrm{g}$ માં થતા ઘટાડા માટે કેટલો સમય જરૂરી છે ?
 - (1) 500 s
 - (2) 1000 s
 - (3) 100 s
 - (4) 200 s

- **32.** 288 pm કોષ ધાર સાથે એક તત્વ અંતઃકેન્દ્રિત ક્યુબિક (bcc) બંધારણ ધરાવે છે, પરમાણ્વીય ત્રિજ્યા શોધો.
 - $(1) \qquad \frac{4}{\sqrt{3}} \times 288 \text{ pm}$
 - $(2) \qquad \frac{4}{\sqrt{2}} \times 288 \text{ pm}$
 - (3) $\frac{\sqrt{3}}{4} \times 288 \text{ pm}$
 - $(4) \qquad \frac{\sqrt{2}}{4} \times 288 \text{ pm}$
- 33. નીચે આપેલ પ્રક્રિયા શ્રેણીમાં સંયોજન X ઓળખી બતાવો.

$$\begin{array}{c} \text{CH}_3 \\ \hline \\ \hline \\ \text{Cl}_2/\text{h}\nu \\ \hline \\ \text{X} \\ \hline \\ \hline \\ \hline \\ \text{373 K} \\ \hline \end{array}$$

$$(1) \qquad \begin{array}{c} \text{CHCl}_2 \\ \end{array}$$

- 34. કો-ઓર્ડીનેશન સંયોજનો (સવર્ગ સંયોજનો) બનાવવા માટે લિગાન્ડોનો ક્ષેત્ર સામર્થ્યનો ચઢતો **સાચો** ક્રમ નીચે આપેલા માંથી કયો છે ?
 - (1) $F^- < SCN^- < C_2O_4^{2-} < CN^-$
 - (2) $CN^- < C_2O_4^{2-} < SCN^- < F^-$
 - (3) $SCN^- < F^- < C_2O_4^{2-} < CN^-$
 - (4) $SCN^- < F^- < CN^- < C_2O_4^{2-}$
- 35. પેપર ક્રોમેટોગ્રાફીનું ઉદાહરણ એ :
 - (1) થીન લેયર ક્રોમેટોગ્રાફી (પાતળા સ્તર ક્રોમેટોગ્રાફી)
 - (2) સ્તંભ ક્રોમેટોગ્રાફી
 - (3) અધિશોષણ ક્રોમેટોગ્રાફી
 - (4) વિભાજન ક્રોમેટોગ્રાફી (Partition chromatography)
- 36. નીચે આપેલા માંથી સાચું વિધાન ઓળખી બતાવો.
 - (1) નિકલ માટે બાષ્ય અવસ્થા શુધ્ધિકરણ વાન-આર્કેલ પધ્ધતિ દ્વારા કરવામાં આવે છે.
 - (2) પિગ આયર્નને જુદા-જુદા આકારમાં ઘડી શકાય છે.
 - (3) ભરતર લોખંડ એ 4% કાર્બન સાથેનું અશુધ્ધ લોખંડ છે.
 - (4) ફોલ્લાવાળા તાંબામાં દેખાતા ફોલ્લા એ ${
 m CO}_2$ ના નીકળવાના કારણે છે.
- 37. સુક્રોઝના જળવિભાજનની પ્રક્રિયામાં નીચે આપેલ છે.

સુક્રોઝ +H₂O
$$\rightleftharpoons$$
 ગ્લુકોઝ+ક્રુક્ટોઝ

 $300~{
m K}$ પર, જો સંતુલન અચળાંક $({
m K_c})~2 imes 10^{13}$ હોય તો, તેજ તાપમાન પર $\Delta_{
m p}{
m G}^{\circ}$ ની કિંમત શું થશે ?

- (1) $8.314 \,\mathrm{J}\,\mathrm{mol}^{-1}\mathrm{K}^{-1} \times 300 \,\mathrm{K} \times \ln(3 \times 10^{13})$
- (2) $-8.314 \,\mathrm{J}\,\mathrm{mol}^{-1}\mathrm{K}^{-1} \times 300 \,\mathrm{K} \times \ln(4 \times 10^{13})$
- (3) $-8.314 \,\mathrm{J}\,\mathrm{mol}^{-1}\mathrm{K}^{-1} \times 300 \,\mathrm{K} \times \ln(2 \times 10^{13})$
- $(4) \qquad 8.314\,J\,\textrm{mol}^{-1}\textrm{K}^{-1}\!\times\!300\,\textrm{K}\!\times\!\ln(2\!\times\!10^{13})$
- 38. પીગાળેલ CaCl_2 (પરમાણ્વીય દ્રવ્યમાન, $\operatorname{Ca} = 40 \operatorname{g mol}^{-1}$) માંથી $20 \operatorname{g}$ કેલ્શીયમનું ઉત્પાદન કરવા માટે કેટલી ફેરાડે (F) ની સંખ્યા જરૂરી છે ?
 - (1) 3
 - (2) 4
 - (3) 1
 - (4) 2

- **39.** નીચે આપેલા માંથી કયો બેઝિક એમિનો એસિડ છે *?*
 - (1) ટાયરોસીન
 - (2) લાઈસીન
 - (3) સિરીન

6

- (4) એલેનાઈન
- 40. એક આલ્કીનનું ઓઝોનાલિસિસ કરતા નિપજો પૈકી એક મિથેનાલ નીપજ મળે છે તો તેનું બંધારણ (આલ્કીન) શોધો.

$$CH_2 - CH = CH_2$$
(1)

- 41. કલિલ દ્રાવણના ક્યા ગુણધર્મને શોધવા માટે ઝેટા પોટેન્શિયલની માપણી ઉપયોગી છે ?
 - (1) કલિલ કણોની સ્થિરતા
 - (2) કલિલ કણોનું કદ
 - (3) સ્નિગ્ધતા
 - (4) દ્રાવ્યતા
- 42. $0.1 \, \mathrm{M \, NaOH} \,$ માં $\mathrm{Ni(OH)}_2$ ની દ્રાવ્યતા શોધો. $\mathrm{Ni(OH)}_2$ નો આયનિક ગુણાકાર 2×10^{-15} આપેલ છે.
 - (1) $1 \times 10^{-13} \,\mathrm{M}$
 - (2) $1 \times 10^8 \,\mathrm{M}$
 - (3) $2 \times 10^{-13} \,\mathrm{M}$
 - (4) $2 \times 10^{-8} \,\mathrm{M}$

43.	કાર્બન નથી ?	મોનોકસાઇ	ડેના સં	ાંદર્ભમાં	નીચે	આપેલા	માંથી	કયું	સાચું
	(1)	ઓક્સિહિ	કમોગ્લો	ાળીન ક	કરતા	કાર્બોકિ	સહિમો	.ગ્લો	બીન

- (હિમોગ્લોબીન સાથે જોડાયેલ CO) ઓછો સ્થિર છે.
- (2) અપૂર્ણ દહનના કારણે તેનું ઉત્પાદન થાય છે.
- (3) તે કાર્બોક્સિહિમોગ્લોબીન બનાવે છે.
- (4) તે રૂધિર માંના ઓક્સિજન પરિવહન ક્ષમતા ઘટાડે છે.
- 44. એસિટોન અને મિથાઈલમેગ્નેશિયમ ક્લોરાઈડ વચ્ચે પ્રક્રિયા કરી ત્યારબાદ જળવિભાજન કરવાથી શું બનશે ?
 - (1) તૃતીયક બ્યૂટાઈલ આલ્કોહોલ
 - (2) આઈસોબ્યુટાઈલ આલ્કોહોલ
 - (3) આઈસોપ્રોપાઈલ આલ્કોહોલ
 - (4) દ્વિતીયક બ્યૂટાઈલ આલ્કોહોલ
- 45. 2-બ્રોમો-પેન્ટેનની વિલોપન પ્રક્રિયામાંથી બનતો પેન્ટ-2-ઈન એ નીચેના માંથી શોધો :
 - (a) β-વિલોપન પ્રક્રિયા
 - (b) ઝેત્સેવ નિયમને અનુસરે છે
 - (c) ડિહાઈડ્રોહેલોજનેશન પ્રક્રિયા
 - (d) નિર્જલીકરણ પ્રક્રિયા
 - (1) (b), (c), (d)
 - (2) (a), (b), (d)
 - (3) (a), (b), (c)
 - (4) (a), (c), (d)
- 46. નીચેના કોલમને જોડો અને સાચો વિકલ્પ પસંદ કરો :

	કોલમ	- I				કોલમ - II
(a)	કલોસ્ટ્ર	ીડીયમ વ	બ્યુટીલીક	કમ	(i)	સાયકલો-
	C 3	c >	0 3			સ્પોરીન-A
(b)	દ્રાઇકો	ડમાં પોલ	<i>નીસ્પોરમ</i>	!	(ii)	બ્યુટીરીક
						એસિડ
(c)	મોનાર	પ્કસ પર્	પુરીયસ		(iii)	સાઈદ્રીક
						એસિડ
(d)	એસ્પલ	ર્જલસ ના	ાઈજર		(iv)	રૂધિર માં
						કોલેસ્ટેરોલ
						ઘટાડતો ઘટક
	(a)	(b)	(c)	(d)		
(1)	(i)	(ii)	(iv)	(iii)		
(2)	(iv)	(iii)	(ii)	(i)		
(3)	(iii)	(iv)	(ii)	(i)		
(4)	(ii)	(i)	(iv)	(iii)		

- 47. સજીવ અને તેના બાયોટેકનોલોજીમાં થતા ઉપયોગને જોડો :
 - (a) *બેસીલસ* (i) પ્રતિકૃતિ વાહક *થુરીએન્જોન્સિસ*
 - (b) *થર્મસ એકવેટીકસ* (ii) સૌ પ્રથમ rDNA અણુની બનાવટ
 - (c) *એગ્રોબેક્ટેરીયમ* (iii) DNA પોલીમરેઝ *૮યુમીફેસીઅન્સ*
 - (d) *સાલમોનેલા* (iv) Cry પ્રોટીન્સ *ટાયફામ્યુરીયમ*

સાચો વિકલ્પ પસંદ કરો :

- (a) (b) (c) (d) (1) (iii) (ii) (iv) (i)
- $(2) \qquad (iii) \qquad (iv) \qquad (i) \qquad (ii)$
- (3) (ii) (iv) (iii) (i)
- (4) (iv) (iii) (i) (ii)
- 48. નીચેનામાંથી કયું મૂત્રવૃધ્ધિને રોકે છે ?
 - (1) કર્ણક નેદ્રીયુરેટિક કારક રૂધિરવાહિનીનું સંકોચન કરે છે
 - (2) JG કોષો દ્વારા રેનિનના સ્રાવમાં ઘટાડો
 - (3) ADH નો ઓછો સ્રાવથી વધારે પ્રમાણમાં પાણીનું પુનઃશોષણ
 - (4) આલ્ડોસ્ટેરોનને કારણે Na⁺ અને પાણીનું મૂત્રપિંડ નલિકામાંથી પુનઃશોષણ
- 49. એન્ટેરોકાઈનેઝ ઉત્સેચક ____ ના રૂપાંતરણમાં મદદ કરે છે.
 - (1) કેસીનોજેનનું કેસીનમાં
 - (2) પેપ્સિનોજનનું પેપ્સિનમાં
 - (3) પ્રોટીનનું પોલિપેપ્ટાઈડમાં
 - (4) દ્રિપ્સિનોજનનું દ્રિપ્સિનમાં
- 50. નીચેના કોલમને જોડો અને સાચો વિકલ્પ પસંદ કરો :

	કોલમ	- I			કોલમ - II
(a)	પિટચુ	૮રી ગ્રંથી	l	(i)	ગ્રેવ્સ રોગ
(b)	થાયરો	ાઈડ ગ્રંર્થ	l	(ii)	ડાયાબીટિઝ મેલિટસ
(c)	એડ્રીન	ાલ ગ્રંથી		(iii)	ડાયાબીટિઝ ઈન્સીપીડસ
(d)	સ્વાદુા	.પેંડ		(iv)	એડીસન રોગ
	(a)	(b)	(c)	(d)	
(1)	(iii)	(i)	(iv)	(ii)	
(2)	(ii)	(i)	(iv)	(iii)	
(3)	(iv)	(iii)	(i)	(ii)	
(4)	(iii)	(ii)	(i)	(iv)	

- 62. નીચે પૈકી ખોટું વિધાન ઓળખો :
 - (1) રસકાષ્ઠ એ, સૌથી અંદર આવેલ દ્વિતીય જલવાહક છે અને આછા રંગનું છે.
 - (2) ટેનિનસ્, રેઝિન્સ, તૈલી પદાર્થો, વિ.ના ભરાવાને લીધે અંતઃકાષ્ઠનો રંગ ઘેરો હોય છે.
 - (3) અંતઃકાષ્ઠ જળનું પરિવહન નથી કરતું પણ યાંત્રિક આધાર આપે છે.
 - (4) રસકાષ્ઠ, જળ અને ખનિજતત્વોનું મૂળ થી પર્ણો સુધી વહન કરે છે.
- 63. કિરણ પુષ્પકોને આ હોય છે :
 - (1) અધોજાયી બીજાશય
 - (2) અર્ધ અધ:સ્થ બીજાશય
 - (3) અધ:સ્થ બીજાશય
 - (4) ઊર્ધ્વસ્થ બીજાશય
- **64.** આંતરાવસ્થાના G_1 તબકકાના (ગેપ 1) અનુસંધાનમાં **સાયુ** વિધાન ઓળખો :
 - (1) કોષ ચયાપચયીક રીતે સક્રિય, વૃઘ્ધિ પામે છે પરંતુ DNA નું સ્વયંજનન થતુ નથી.
 - (2) કોષકેન્દ્ર વિભાજન પામે છે.
 - (3) DNA નું સંશ્લેષણ અથવા સ્વયંજનન થાય છે.
 - (4) બધાજ કોષીય ઘટકોની પુન:ગોઠવણી થાય છે.
- **65.** EcoRI દ્વારા ઓળખવામાં આવતી ખાસ પેલીન્ડ્રોમિક શૃંખલા છે.
 - (1) 5' CTTAAG 3'
 - 3' GAATTC 5'
 - (2) 5' GGATCC 3'
 - 3' CCTAGG 5'
 - (3) 5' GAATTC 3'
 - 3' CTTAAG 5'
 - (4) 5' GGAACC 3'
 - 3' CCTTGG 5'
- 66. દ્વિતીય ચયાપચયી પદાર્થો જેવા કે, નીકોટીન, સ્ટ્રીકનીન અને કેફીન વનસ્પતિ દ્વારા આના માટે ઉત્પન્ન થાય છે :
 - (1) સંરક્ષણ ક્રિયા

 - (3) પોષક મૂલ્ય
 - (4) વૃધ્ધિ પ્રતિસાદ

- 67. પ્રાણીઓમાં નીચેનામાંથી કયુ પ્રોટીન વિપુલ પ્રમાણમાં જોવા મળે છે ?
 - (1) લેક્ટીન
 - (2) ઈન્સ્યુલિન
 - (3) હીમોગ્લોબીન
 - (4) કોલાજન
- 68. વૃધ્ધિની પ્રક્રિયા, આ દરમ્યાન સૌથી વધુ હોય છે :
 - (1) જર્ણતા
 - (2) સુષ્પતતા
 - (3) લોંગ તબક્કો
 - (4) મંદવૃધ્ધિ તબક્કો
- 69. રોબર્ટ મે અનુસાર, પૃથ્વીની જાતિ વિવિધતા આટલી છે :
 - (1) 50 મિલિયન
 - (2) 7 મિલિયન
 - (3) 1.5 મિલિયન
 - (4) 20 મિલિયન
- **70.** પાચનનળીના ગોબલેટ કોષો _____ માંથી રૂપાંતરિત થયેલા છે.
 - (1) કાસ્થિકોષો
 - (2) સંયુક્ત અધિચ્છદીય કોષો
 - (3) લાદીસમ અધિચ્છદીય કોષો
 - (4) સ્તંભાકાર અધિચ્છદીય કોષો
- 71. એ વૃદ્ધિનિયામકનું નામ આપો જેનો શેરડીના પાક પર છંટકાવ કરવાથી તેના પ્રકાંડની લંબાઈ વધે છે અને આમ શેરડીની ઉપજ વધે છે:
 - (1) ઈથીલીન
 - (2) એબ્સીસીક એસિડ
 - (3) સાયટોકાઈનીન
 - (4) જબ્રેલીન
- 72. નીચે પૈકીની જોડીઓમાંથી કઈ એકકોષીય લીલ છે ?
 - (1) એનાબીના અને વોલ્વોક્સ
 - (2) કલોરેલા અને સ્પીરૂલીના
 - (3) લેમીનારીઆ અને સરગાસમ
 - (4) જેલીડીયમ અને ગ્રાસીલારીઆ

						-	LU					0.00
નીચેન	ા કોલમ	ને જોડો	અને સા	ચો વિક	લ્પ પસંદ	કરો :	78.					તી, એક લક્ષણ સિવાય બાકીન
	કોલમ	- I				કોલમ - II						•
(a)	6 થી	15 જોડ	ઝાલર ફ	નડો	(i)	<i>દ્રાઈગોન</i>				5 1. 50	ા પરાહ ર	set Gen i
(b)		,	ા્રુચ્છ		(ii)	યુષમુઆ						
	_				. ,							
(d)			•	<i>(</i> 1)	(iv)	અસ્થિમત્સ્ય		(4)	2			
(1)							79.	પ્રકાશ	-પ્રક્રિયા	માં, પ્લાસ	સ્ટોક્વીનો	ાન, અહીંથી, ઈલેક્ટ્રોનને ખસેડવામ
(2)	(i)	(iv)	(iii)	(ii)				મદદરૂ	પ થાય	છે :		
(3)	(ii)	(iii)	(iv)	(i)				(1)	PS-I	થી NA	DP+	
(4)	(iii)	(iv)	(i)	(ii)				(2)	PS-I	થી AT	P સીંથેડ	8
				હકોષ્ઠી	પ્રાણીએ)		(3)	PS-I	I થી Cy	⁄tb ₆ f સં	કીર્ણ સુધી
	-		.ય છ.					(4)	Cyth	₆ f સંકીષ	ર્શ થી P	S-I
	-, -											
	• • •						80.				કુંતલ ને	ખોલવામાં સહાય કરતા ઉત્સેચકન્
								નામ :				
(4)	2,551	•1						(1)	DNA	∖ પોલીમ	રેઝ	
આમાં	i, બીજાર	ાય અર્ધ	અધ:સ્થ	ા હોય છે	:			(2)	RNA	. પોલીમ	રેઝ	
(1)	સૂર્યમુ	ખી						(3)	DNA	. લાઈગેગ	b	
(2)	પ્લમ							(4)	DNA	, હેલીકેગ્	კ	
(3)	રીંગણ	L						(-)	2211	2 (-	
(4)	રાઈ						81.			ખાવશ્યક	તત્વો અ	ાને તેમના કાર્યોને અનુલક્ષીને જોડક
-		પૈકીના પ્ર	પદેશોમાં ^ફ	થી કયો,	સૌથી વધ્	યુ જાતિ વિવિધતા		ગાઠવ				
દર્શાવે	-							(a)	લોહ		(i)	જળનું પ્રકાશ વિભાજન
(1)								(b)	ઝીન્ક		(ii)	પરાગજ અંકુરણ
(2)								(c)	બોરો•	ત	(iii)	ક્લોરોફીલના જૈવસંશ્લેષણ માતે
(3)			ામી ઘાટ									જરૂરી
(4)	મેડાગ	ાસ્કર						(d)	મેંગેની	. 3	(iv)	IAA જૈવસંશ્લેષણ
								સાચો				
								(1)				(d)
												(i)
												(iii) (iii)
(4)			ાંવર્ધન					(4)	(II)	(I) (iji)	(IV)	(III)
	(a) (b) (c) (d) (1) (2) (3) (4) (4) (2) (3) (4) (4) (2) (3) (4) (4) (2) (3) (4) (4) (4) (5) (5) (6) (7) (9) (1) (1) (2) (3) (4) (4) (5) (6) (1) (2) (3) (4) (4) (1) (2) (3) (4) (4) (5) (6) (7) (7) (8) (8) (9) (9) (9) (1) (1) (2) (3) (4) (4) (4) (5) (6) (7) (7) (8) (8) (9) (9) (9) (9) (10) (11) (22) (33) (43) (44) (45) (45) (47) (48) (48) (48) (48) (48) (48) (48) (48	કોલમ (a) 6 થી (b) વિષમ મીનપ (c) પ્લવન (d) ઝેર કંત (a) (1) (iv) (2) (i) (3) (ii) (4) (iii) દ્વિપાર્શ્વીય સમ્ ઉદાહરણ દ્વાર (1) સૂત્રકૃદ્ધિ (2) નુપુરક (3) કંકતદ (4) પૃથૃકૃદ્ધિ આમાં, બીજર (1) સૂર્યમું (2) પ્લમ (3) રીંગણ (4) રાઈ પૃથ્વીના નીચે દર્શાવે છે? (1) હિમાલ (2) એમોડ (3) ભારત (4) મેડાગ બીકાનેરી ઘેઠી દ્વારા ઘેઠાની ન (1) પર સં (2) અંતઃર (3) બહિંસ્થ	કોલમ - I (a) 6 થી 15 જોડ (b) વિષમ પાલિ પ્રાધીનપક્ષ (c) પ્લવનાશય (d) ઝેર કંટક (શૂળ (a) (b) (1) (iv) (ii) (2) (i) (iv) (3) (ii) (iii) (4) (iii) (iv) દ્વિપાર્શ્વીય સમમિતિ વ ઉદાહરણ દ્વારા દર્શાવા (1) સૂત્રકૃમિ (2) નુપુરક (3) કંકતઘરા (4) પૃથૃકૃમિ આમાં, બીજાશય અર્ઘ (1) સૂર્યમુખી (2) પ્લમ (3) રીંગણ (4) રાઈ પૃથ્વીના નીચે પૈકીના પ્રદર્શાવે છે? (1) હિમાલય (2) એમોઝોનના જ્લા (4) મેડાગાસ્કર બીકાનેરી ઘેટી અને મર્રદ્વારા ઘેટાની નવી જાત (1) પર સંવર્ધન (2) અંત:સંવર્ધન (3) બહિંસંવર્ધન	કોલમ - I (a) 6 થી 15 જોડ ઝાલર ફ (b) વિષમ પાલિ પૂચ્છ મીનપક્ષ (c) પ્લવનાશય (d) ઝેર કંટક (શૂળ) (a) (b) (c) (1) (iv) (ii) (iii) (2) (i) (iv) (iii) (3) (ii) (iii) (iv) (4) (iii) (iv) (i) (4) (iii) (iv) (i) (5) (1) સૂત્રકૃમ (2) નુપુરક (3) કંકતઘરા (4) પૃથ્રકૃમ (2) નુપુરક (3) કંકતઘરા (4) પૃથ્રકૃમ (1) સૂર્યમુખી (2) પ્લમ (3) રીંગણ (4) રાઈ પૃથ્વીના નીચે પૈકીના પ્રદેશોમાં દર્શાવે છે? (1) હિમાલય (2) એમોઝોનના જંગલો (3) ભારતનો પશ્ચિમી ઘાટ (4) મેડાગાસ્કર બીકાનેરી ઘેટી અને મરીનો ઘેટી દ્વારા ઘેટાની નવી જાત 'હિસાર પ્લાર પશ્ચિમી ઘાટ (4) મેડાગાસ્કર બીકાનેરી ઘેટી અને મરીનો ઘેટી દ્વારા ઘેટાની નવી જાત 'હિસાર પ્લાર પ્લ	કોલમ - I (a) 6 થી 15 જોડ ઝાલર ફાટો (b) વિષમ પાલિ પૂચ્છ મીનપક્ષ (c) પ્લવનાશય (d) ઝેર કંટક (શૂળ) (a) (b) (c) (d) (1) (iv) (ii) (iii) (i) (2) (i) (iv) (iii) (ii) (3) (ii) (iii) (iv) (i) (4) (iii) (iv) (i) (ii) (5) (1) (1) (iv) (i) (ii) (6) (2) (1) (1) (iv) (i) (ii) (7) (1) (1) (ii) (8) (1) (1) (1) (1) (1) (9) (1) (1) (1) (1) (1) (1) (1) (2) (1) (1) (1) (1) (3) (1) (1) (1) (1) (4) (1) (1) (1) (5) (1) (1) (1) (6) (1) (1) (1) (1) (7) (1) (1) (1) (8) (1) (1) (1) (1) (9) (1)	(a) 6 થી 15 જોડ ઝાલર ફાટો (i) (b) વિષમ પાલિ પૂચ્છ (ii) મીનપક્ષ (c) પ્લવનાશય (iii) (d) ઝેર કંટક (શૂળ) (iv) (a) (b) (c) (d) (1) (iv) (ii) (iii) (i) (2) (i) (iv) (ii) (ii) (3) (ii) (iii) (iv) (i) (4) (iii) (iv) (i) (ii) (3) (ii) (iii) (iv) (i) (4) (iii) (iv) (i) (ii) (5) (2) નુપુરક (3) કંકતઘરા (4) પૃથુકૃષિ (2) નુપુરક (3) કંકતઘરા (4) પૃથુકૃષિ આમાં, બીજાશય અર્ઘ અઘ:સ્થ હોય છે: (1) સૂર્યમુખી (2) પ્લમ (3) રીંગણ (4) રાઈ પૃથ્વીના નીચે પૈકીના પ્રદેશોમાંથી કયો, સૌથી વધ્ દર્શાવે છે? (1) હિમાલય (2) એમોઝોનના જંગલો (3) ભારતનો પશ્ચિમી ઘાટ (4) મેડાગાસ્કર બીકાનેરી ઘેટી અને મરીનો ઘેટીનો ઉપયોગ કરી ને દ્વારા ઘેટાની નવી જાત 'હિસારડેલ' વિકસાવવા? (1) પર સંવર્ધન (2) અંત:સંવર્ધન (2) અંત:સંવર્ધન (3) બહિંસંવર્ધન (3) બહિંસંવર્ધન (3) બહિંસંવર્ધન (3) બહિંસંવર્ધન	(a) 6 થી 15 જોડ ઝાલર ફાડો (i) દ્રાઈગોન (b) વિષમ પાલિ પૂચ્છ (ii) યુષમુઆ મીનપક્ષ (c) પ્લવનાશય (iii) કાસ્થિમત્સ્ય (d) ઝેર કંડક (શૂળ) (iv) અસ્થિમત્સ્ય (d) ઝેર કંડક (શૂળ) (iv) અસ્થિમત્સ્ય (d) (iv) (ii) (iii) (i) (2) (i) (iv) (iii) (ii) (3) (ii) (iii) (iv) (i) (4) (iii) (iv) (i) (ii) (5) (ij) (iv) (ii) (ii) (6) (ij) (iv) (ii) (ii) (7) (ij) (iii) (iv) (ii) (8) (ii) (iv) (i) (iii) (9) (ij) (iv) (iii) (1) મૂત્રકૃષિ (2) નુપુરક (3) કંકતઘરા (4) પૃથુકૃષિ (2) નુપુરક (3) કંકતઘરા (4) પૃથુકૃષિ (2) પ્લમ (3) રીંગણ (4) રાઈ પૃથ્વીના નીચે પૈકીના પ્રદેશો માંથી કયો, સૌથી વધુ જાતિ વિવિધતા દર્શાવ છે? (1) હિમાલય (2) એમોઝોનના જંગલો (3) ભારતનો પશ્ચિમી ઘાટ (4) મેડાગાસ્કર (4) પેડાગાસ્કર (4) પર સંવર્ધન (2) અંત:સંવર્ધન (3) બર્હિસંવર્ધન (4) પર સંવર્ધન (5) અંત:સંવર્ધન (6) પર સંવર્ધન (7) પર સંવર્ધન (8) ભર્હિસંવર્ધન	કોલમ - I (a) 6 થી 15 એડ ઝાલર ફાટો (i) ટ્રાઇગોન (b) વિષમ પાલિ પ્રચ્છ (ii) યુષમુઆ મીનપક્ષ (iii) કાસ્થિમત્સ્ય (iii) કાસ્થિમત્સ્ય (iii) કાસ્થિમત્સ્ય (iii) કાસ્થિમત્સ્ય (iii) કાસ્થિમત્સ્ય (iii) કેરા ક્યાંત્રસ્ય (iii) કાસ્થિમત્સ્ય (iii) કેરા કાસ્થિમત્સ્ય (iii) કેરા કાસ્થિમત્સ્ય (iv) અસ્થિમત્સ્ય (iv) અસ્થિમત્સ્ય (iv) (iv) (iv) (iv) (iv) (iv) (iv) (iv)	કોલમ - I કોલમ - II લા તમાગ જાતિ: (a) 6 થી 15 જોડ ઝાલર ફાટો (i) ટ્રાઇગોન (b) વિષમ પાલિ પૂચ્છ (ii) યુષમુઆ મીનપક્ષ (c) પ્લવનાશય (iii) કાસ્થિમત્સ્ય (d) ઝેર કંટક (શૂળ) (iv) અસ્થિમત્સ્ય (d) ઝેર કંટક (શૂળ) (iv) (ii) (ii) (ii) (ii) (ii) (ii) (ii	કોલમ - I કોલમ - II લો લામ લાધા મારા લાધા કોલમ - II લો લે થી 15 જોડ ઝાલર ફાટો (i) દ્રાઈગોન (ii) વિષય પાલિ પૂચ્છ (ii) યુષમુઆ મીનપક્ષ (2) 8 (2) 8 (3) 4 (4) 2 (2) 8 (3) 4 (4) 2 (4) 2 (4) 2 (4) 4 (4) 2 (4) 2 (4) 4 (4) 2 (4) 4	કોલમ - I કોલમ - II (a) 6 થી 15 જેડ ઝાલર ફાટો (i) દ્રાઈયોન્ (b) વિષમ પાલિ પૂચ્છ (ii) યુપયુઆ મીનપક્ષ (2) 8 (c) પ્લવનાશય (iii) કાસ્થિમત્સ્ય (2) 8 (d) ઝેર કંડદ શ્રૂળ) (iv) અસ્થિમત્સ્ય (4) 2 (d) ઝેર કંડદ શ્રૂળ) (iv) અસ્થિમત્સ્ય (4) 2 (e) (i) (iv) (ii) (ii) (ii) (ii) (ii) (ii)	Bicath - I (a) 6 થી 15 એડ ઝાલર ફાટો (i) દ્રાઇંગોન (b) વિષયમ પાલિ પૂચ્છ (ii) યુષ્યમુઆ મીનપક્ષ (2) 8 (c) પ્લવનાશય (iii) કાસ્થિમતસ્ય (3) 4 (d) ઝેર કંટક (શ્ળ (10) (iii) (ii) (2) (10) (iii) (iiii) (iiii) (iiii) (iiii) (iiii) (iiiii) (iiii) (iiiiii) (iiiiii) (iiiiiiii

82.	નીચેના માંથી કયુ-માનવજનીત કાર્યોના લીધે બદલાયેલા
	પર્યાવરણના કારણે ઉત્ક્રાન્તિ પામેલ સજીવનું સાચુ ઉદાહરણ છે?

- (a) ગેલેપેગોઝ ટાપુ પરની ડાર્વિન ફિન્ચ
- (b) તૃણનાશક પ્રતિરોધી ઘાસ
- (c) દવા પ્રતિરોધી સુકોષકેન્દ્રીઓ
- (d) કૂતરા જેવી માનવ સર્જિત પાલતુ જાતીયો
- (1) (b), (c) અને (d)
- (2) \$5ct (d)
- (3) \$5d (a)
- (4) (a) અને (c)

83. પ્રકાશ શ્વસન અંતર્ગત RuBisCo ઉત્સેચકની પ્રાણવાયુકરણ પ્રક્રિયાથી ઉત્પન્ન થાય છે :

- (1) 6-C સંયોજનનો 1 અણ્
- (2) 4-C સંયોજનનો 1 અણુ અને 2-C સંયોજનનો 1 અણુ
- (3) 3-C સંયોજનના 2 અણુઓ
- (4) 3-C સંયોજનનો 1 અણ

84. એન્ટાર્કટિક પ્રદેશમાં બરફ-અંધતા, આના લીધે થાય છે :

- (1) બરફમાંથી પ્રકાશનું ખૂબ ઊંચુ પરાવર્તન
- (2) ઈન્ફ્રારેડ વિકિરણોના લીધે રેટીનાને નુકસાન થવું
- (3) નીચા તાપમાનને લીધે આંખના પ્રવાહીનું થીજ જવુ
- (4) UV-B કિરણોની વધુ પડતી માત્રાને લીધે કોર્નીઆમાં સૂઝન

85. ફ્લોરીડીઅન સ્ટાર્ચની રચના આના જેવી હોય છે :

- (1) મેનીટોલ અને આલ્ગીન
- (2) લેમીનારીન અને સેલ્યુલોઝ
- (3) સ્ટાર્ચ અને સેલ્યુલોઝ
- (4) એમાઈલોપેક્ટીન અને ગ્લાયકોજન

86. નીચેના કોલમ જોડો અને સાચો વિકલ્પ પસંદ કરો :

કોલમ - I કોલમ - II જનીન થેરાપી Bt કપાસ (i) (a) એડીનોસાઈન કોષીય રક્ષણ (ii) (b) ડીએમિનેઝ ની ઊણપ HIV નો ચેપ શોધવો RNAi (c) (iii) બેસીલસ PCR (d) (iv) *થુરીએન્જેન્સિસ* (a) (b) (d) (c) (1) (ii) (iii) (iv) (i) (2)(iv) (i) (ii) (iii) (3)(iii) (iv) (i) (ii)

87. દ્વિતીયક અંડકોષ નું અર્ધસૂત્રી ભાજન ____ એ પૂર્ણ થાય છે.

(i)

(iv)

(1) ફલિતાંડ બન્યા પછી

(iii)

(ii)

- (2) શુક્રકોષ અને અંડકોષના મિલન વખતે
- (3) અંડપાતના પહેલા
- (4) સંભોગ વખતે

88. એસ.એલ. મીલરે, તેમના પ્રયોગોમાં એક બંધ ફ્લાસ્કમાં, આ બધાને મિશ્રણ કરી એમિનો એસિડ ઉત્પન્ન કર્યો :

- (1) મિથેન, હાઇડ્રોજન, એમોનિયા અને વરાળને, 600°C પર
- (2) ${
 m CH}_3, {
 m H}_2, {
 m NH}_3$ અને વરાળને, $600^{\circ}{
 m C}$ પર
- (3) મિથેન, હાઇડ્રોજન, એમોનિયા અને વરાળને, 800°C પર
- (4) ${
 m CH}_3, {
 m H}_2, {
 m NH}_4$ અને વરાળને, $800^{\circ}{
 m C}$ પર

89. નીચે પૈકી સાચી જોડ પસંદ કરો :

- (1) ન્યુક્લીએઝીસ DNA ના બે કુંતલોને અલગ કરે છે
- (2) એક્ઝો- DNA ના અંતર્ગત, ચોક્કસ ન્યુક્લીએઝીસ સ્થાને કાપે છે
- (3) લીગેઝીસ બે DNA અણુઓને જોડે છે
- (4) પોલીમરેઝીસ DNA ના ડ્રકડા કરે છે

(2)

(3)

(4)

(ii)

(iv)

(iii)

(iii)

90. નીચેના કોલમને જોડો અને સાચો વિકલ્પ પસંદ કરે	90.	નીચેના	કોલમને	જોડો	અને	સાચો	વિકલ્પ	પસંદ	કરો	į :
---	-----	--------	--------	------	-----	------	--------	------	-----	-----

કોલમ - II કોલમ - I એન્ડ્રોજન્સ (a) જરાયુ (i) ઝોના પેલ્યુસીડા હ્યુમન કોરીઓનિક (b) (ii) ગોનેડોટ્રોપીન અંતઃસ્રાવ (hCG) બલ્બો-યુરેથ્રલ ગ્રંથિઓ (iii) અંડકોષનું આવરણ (c) લેડીગ કોષો શિશ્નનું ઊંજણ (d) (iv) (a) **(b) (c)** (d) (iv) (1) (iii) (ii)(i)

91. સમુદાય મેરૂદંડી માટે નીચેના માંથી કયા વિધાન સાચું છે ?

(iv)

(i)

(ii)

(a) પૂચ્છ મેરૂદંડીઓમાં મેરૂદંડ શીર્ષ થી પૂંછડી સુધી લંબાયેલ હોય છે અને જીવન પર્યંત હાજર રહે છે.

(i)

(ii)

(iii)

- (b) પૃષ્ઠવંશીઓમાં મેરૂદંડ ફક્ત ગર્ભાવસ્થા દરમ્યાનજ હાજર હોય છે.
- (c) મધ્યસ્થ ચેતાતંત્ર પૃષ્ઠ અને પોલુ હોય છે.
- (d) મેરૂદંડીઓ 3 ઉપસમુદાયોમાં વિભાજત હોય છે સામી મેરૂદંડી, કંચુક મેરૂદંડી અને શીર્ષ મેરૂદંડી.
- (1) (a) અને (b)
- (2) (b) અને (c)
- (3) (d) અને (c)
- (4) (c) અને (a)

92. ઓક્સીજનના વહનના અનુસંધાનમાં ખોટુ વિધાન ઓળખો :

- (1) વાયુકોષ્ઠોમાં H⁺ ની ઊંચી સાંદ્રતા ઓક્સીહીમોગ્લોબીનની બનાવટમાં સહાય કરે છે.
- (2) વાયુકોષ્ઠોમાં ઓછો pCO_2 ઓક્સીહીમોગ્લોબીનની બનાવટમાં સહાય કરે છે.
- (3) ઓક્સીજનનું હિમોગ્લોબીન સાથેનું જોડાણ મુખ્યત્વે ${
 m O}_2$ ના આંશિક દબાણ સાથે સંબંધિત છે.
- (4) ${
 m CO}_2$ નું આંશિક દબાણ ${
 m O}_2$ ના હિમોગ્લોબીન સાથેના જોડાણમાં દખલગીરી કરે છે.

93. રંગસૂત્રીય આનુવંશિકતાના સિદ્ધાંતની પ્રાયોગિક ચકાસણી આમણે કરી:

- (1) બોવેરી
- (2) મોર્ગન
- (3) મેન્ડલ
- (4) સટન

- 94. આ શૃંખલા (સીક્વન્સ) દ્વારા, વાહકમાં જોડાયેલ DNA ની પ્રતિકૃતિઓનો આંકડો નક્કી થાય છે :
 - (1) પેલીન્ડ્રોમિક સીકવન્સ
 - (2) ઓળખવાનું સ્થાન
 - (3) પસંદગીમાન રેખક
 - (4) ઓરી સ્થાન

95. સાચુ વિધાન પસંદ કરો :

- (1) ઈન્સ્યુલિન સ્વાદુપિંડકોષો અને મંદપૂર્ણ કોષો પર કાર્ય કરે છે.
- (2) ઈન્સ્યુલિન હાઈપરગ્લાયસેમીયા સાથે સંકળાયેલ છે.
- (3) ગ્લુકોકોર્ટીકોઈડસ ગ્લુકોનિયોજીનેસિસ ને પ્રેરે છે.
- (4) ગ્લુકાગોન હાઈપોગ્લાયસેમીયા સાથે સંકળાયેલ છે.

96. રોગપ્રતિકારકતાના સંદર્ભમાં ખોટું વિધાન ઓળખો :

- (1) સક્રિય રોગપ્રતિકારકતા ઝડપી છે અને સંપૂર્ણ પ્રતિભાવ આપે છે.
- (2) ગર્ભ કેટલુક પ્રતિદ્રવ્ય માતા માંથી મેળવે છે, તે નિષ્ક્રિય રોગપ્રતિકારકતાનું ઉદાહરણ છે.
- (3) જયારે પ્રતિજન (જીવીત કે મૃત) નો સામનો થાય ત્યારે યજમાનના શરીરમાં પ્રતિદ્રવ્ય ઉત્પન્ન થાય છે. જેને 'સક્રિય રોગપ્રતિકારકતા' કહે છે.
- (4) જ્યારે તૈયાર પ્રતિદ્રવ્ય ને સીધુ આપવામાં આવે તો તેને 'નિષ્ક્રિય રોગપ્રતિકારકતા' કહે છે.
- 97. સુકે ન્દ્રી કોષો (યુકેરીઓટીક)માં ગ્લાયકોપ્રોટીન્સ અને ગ્લાયકોલીપીડસ્ના ઉત્પાદન માટે કયું, અગત્યનું સ્થાન છે ?
 - (1) ગોલ્ગીકાય
 - (2) પોલીસોમ્સ
 - (3) અંત:કોષરસ જાળ
 - (4) પેરોક્સીઝોમ્સ્

98. તૃણભૂમિના નિવસનતંત્રમાં, પોષક સ્તરો સાથે તેમની **સાચી** ઉદાહરણ જાતિનું જોડકુ ગોઠવો :

(iv)

- (a) ચોથુ પોષક સ્તર
- (i) કાગડો
- (b) બીજૂ પોષક સ્તર
- (ii) ગીધ
- (c) પ્રથમ પોષક સ્તર
- (iii) સસલુ
- (d) ત્રીજુ પોષક સ્તર
- (iv) ઘાસ

સાચો વિકલ્પ પસંદ કરો :

(iii)

(4)

	(a)	(b)	(c)	(d)
(1)	(iv)	(iii)	(ii)	(i)
(2)	(i)	(ii)	(iii)	(iv)
(3)	(ii)	(iii)	(iv)	(i)

(ii)

(i)

99.	નીચેના	માંથી	બેઝીક	એમીનો	એસિડ	ઓળખો	:
-----	--------	-------	-------	-------	------	------	---

- (1) લાયસીન
- (2) વેલાઈન
- (3) ટાયરોસીન
- (4) ગ્લુટામીક એસિડ

100. ઉદ્દવિકાસનો ભ્રૂણવિજ્ઞાનીકી આધાર, આમણે વખોડચો :

- (1) ચાર્લ્સ ડારવીન
- (2) ઓપેરીન
- (3) કાર્લ અર્નસ્ટ વૉન બેઅર
- (4) આલ્ક્રેડ વૉલેસ

101. એક વનસ્પતિનો આડો છેદ નીચેના અંતસ્થ લક્ષણો દર્શાવે છે :

- (a) પુલીય આવરણ ધરાવતા, અસંખ્ય, વીખરાયેલા વાહીપુલ.
- (b) મૃદુતકીય કોષોનું બનેલ વિશાળ, જોઈ શકાતું આધારોત્તક.
- (c) સહસ્થ અને અવર્ધમાન વાહીપુલો.
- (d) અન્નવાહક મૃદ્દતકનો અભાવ.

નીચે પૈકી વનસ્પતિનો પ્રકાર અને ભાગ ઓળખો :

- (1) દ્વિદળી પ્રકાંડ
- (2) દ્વિદળી મૂળ
- (3) એકદળી પ્રકાંડ
- (4) એકદળી મૂળ

102. કેટલાક વિભાજન પામતા કોષો, કોષ ચક્રમાંથી નીકળી જઈ, દૈહિક, અપ્રવૃત્તિમય (અક્રીય) અવસ્થામાં આવે છે. આને, કવાઈસેન્ટ અવસ્થા (G_0) કહેવાય છે. આ પ્રક્રિયા, આના અંતે થાય છે :

- (1) S અવસ્થા
- (2) G_2 અવસ્થા
- (3) M અવસ્થા
- (4) G₁ અવસ્થા

103. પ્રમાણભૂત ECG માં QRS સંકુલ શું દર્શાવે છે ?

- (1) ક્ષેપકોનું વિધ્રુવીકરણ
- (2) ક્ષેપકોનું પુનઃધ્રુવીકરણ
- (3) કર્ણકોનું પુનઃધ્રુવીકરણ
- (4) કર્ણકોનું વિધ્રુવીકરણ

- 104. એક વારના સિદ્રિક એસિડ ચક્રમાં, પ્રક્રિયાર્થી સ્તરે આટલા ફોસ્ફોરાયલેશન થાય છે :
 - (1) બે
 - (2) ત્રણ
 - (3) શૂન્ય
 - (4) એક
- **105.** બીજાણુપર્ણસમૂહન (સ્ટ્રોબીલાઈ) કે શંકુઓ, આમાં જોવા મળે છે:
 - (1) માર્કેન્શિઆ
 - (2) ઈકવીસેટમ
 - (3) સાલ્વીનીઆ
 - (4) પેરીસ
- **106.** મૂત્રમાં નીચેના માંથી કઈ પરિસ્થિતિ ડાયાબીડિઝ મેલિટસ સુચવે છે ?
 - (1) કીટોન્યુરિયા અને ગ્લાયકોસોરિયા
 - (2) મૂત્રપિંડની પથરી અને હાયપરગ્લાયસેમિયા
 - (3) યુરેમિયા અને કિટોન્યુરિયા
 - (4) યુરેમિયા અને મૂત્રપિંડની પથરી
- 107. પેંગ્વીન અને ડોલ્ફીનના ફ્લિપર્સ ______ નું ઉદાહરણ છે.
 - (1) ઔદ્યોગિક મેલાનિઝમ
 - (2) પ્રાકૃતિક પસંદગી
 - (3) અનુકૂલિત પ્રસરણ
 - (4) કેન્દ્રાભિસારી ઉદ્ધિકાસ

108. નીચેના માંથી કયુ વિધાન સાચુ નથી ?

- (1) સિક્રિય ઈન્સ્યુલીન માં A અને B બે શૃંખલાઓ હોય છે જે હાઈડ્રોજન બંઘથી એકબીજા સાથે જોડાયેલ હોય છે.
- (2) જનીન ઈજનેરી વિદ્યા વાળુ ઈન્સ્યુલીન (*E-Coli*) ઈ-કોલાઈમાં પેદા થાય છે.
- (3) મનુષ્યમાં ઈન્સ્યુલીન નું સંશ્લેષણ પ્રોઈન્સ્યુલીન સ્વરૂપે થાય છે.
- (4) પ્રોઈન્સ્યુલીનમાં એક વધારાનો પેપ્ટાઈડ હોય છે જેને C-પેપ્ટાઈડ કહે છે.
- 109. ઘનાકાર અધિચ્છદીય કોષો કે જેમાં રસાંકુરો બ્રશવાળી કિનારી ધરાવતા હોય તે _____ માં જોવા મળે છે.
 - (1) ઉત્સર્ગ એકમની નિકટવર્તી ગુંચળામય નલિકા
 - (2) યુસ્ટેચીયન નલિકા
 - (3) આંતરડાનું સ્તર
 - (4) લાળગ્રંથીની નલિકાઓ

110.	નીચેના	કોલ	મોને	જોડો	અને	સાચો	વિકલ્પ	પસંદ	કરો	:
TIO.		ンじへに		30101	- 6 - 6	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1.12		J (L	٠

	કોલમ	- I			કોલમ - II		
(a)	કોર્ટિક	ાય		(i)	મધ્યકર્ણને કંઠનળી સાથે જોડે છે		
(b)	શંખિક	sl		(ii)	કુહરનો ગુંચળામય ભાગ		
(c)	કર્ણ કં	ઠનળી		(iii)	અંડાકાર ગવાક્ષ સાથે જોડાયેલ		
(d)	પેંગડુ			(iv)	બેસિલર કલા પર આવેલ હોય છે		
	(a)	(b)	(c)	(d)			
(1)	(iv)	(ii)	(i)	(iii)			
(2)	(i)	(ii)	(iv)	(iii)			
(3)	(ii)	(iii)	(i)	(iv)			
(4)	(iii)	(i)	(iv)	(ii)			

111. નીચેના કોલમ જોડો અને સાચો વિકલ્પ પસંદ કરો :

	કોલમ	- I			કોલમ - II
(a)	ઈઓિ	સે નો ફિલ્	સ	(i)	રોગપ્રતિકારક પ્રતિચાર
(b)	બેઝો	ફેલ્સ		(ii)	ભક્ષકકોષ
(c)	ત૮સ્થ	કણ		(iii)	વિનાશકારી ઉત્સેચક હિસ્ટામાઈનેઝ મુક્ત કરે છે.
(d)	•	સાઈડ્સ કાકણ)		(iv)	હિસ્ટામાઈન ધરાવતી કણિકાઓ મુક્ત કરે છે.
	(a)	(b)	(c)	(d)	
(1)	(i)	(ii)	(iv)	(iii)	
(2)	(ii)	(i)	(iii)	(iv)	
(3)	(iii)	(iv)	(ii)	(i)	
(4)	(iv)	(i)	(ii)	(iii)	

- 112. જે સ્ત્રીઓ ગર્ભધારણ કરી શકતી નથી તેઓમાં નીચેના માંથી કઈ પધ્ધતિ થી ગર્ભના સ્થાનાંતરણમાં મદદ થાય છે ?
 - (1) ICSI અને ZIFT
 - (2) GIFT અને ICSI
 - (3) ZIFT અને IUT
 - (4) GIFT અને ZIFT
- 113. ભાષાંતર (ટ્રાન્સલેશન) નો પ્રથમ તબક્કો આ છે :
 - (1) tRNA નુ એમિનોએસાયલેશન
 - (2) વિરૂધ્ધ-સંકેત (એન્ટી-કોડોન)ને ઓળખવુ
 - (3) રીબોઝોમનું mRNA સાથે જોડાવવું
 - (4) DNA ના અણુને ઓળખવ્

114. જોડકા ગોઠવો :

- (a) અપચયી ક્રિયાનું નિરોધક (i)
 - (i) રીસીન
- (b) પેપટાઈડ બંધ ધરાવે
- (ii) મેલોનેટ
- (c) ક્રુગમાં કોષ-દિવાલનો પદાર્થ
- (iii) કાઈટીન
- (d) દ્વિતીય ઉપાપચયજ
- (iv) કૉલેજન

નીચે પૈકી **સાચું** ઓપ્શન પસંદ કરો :

	(a)	(b)	(c)	(d)
(1)	(iii)	(iv)	(i)	(ii)
(2)	(ii)	(iii)	(i)	(iv)
(3)	(ii)	(iv)	(iii)	(i)
(4)	(iii)	(i)	(iv)	(ii)

115. બીજ સુષુપ્તતાના નિયંત્રણમાં, નીચે પૈકી કયો પદાર્થ અટકાવકર્તા નથી ?

- (1) ફીનોલીક એસિડ
- (2) પેરા-એસ્કોર્બીક એસિડ
- (3) જીબ્રેલીક એસિડ
- (4) એબ્સીસીક એસિડ

116. વનસ્પતિના એ ભાગો, જે, બે પેઢીઓ-એકની અંદર બીજા, ધરાવે છે :

- (a) પરાગશયમાં આવેલ પરાગરજ
- (b) બે નરજન્યુ ધરાવતુ, અંકુરિત પરાગરજ
- (c) ફળમાં રહેલ બીજ
- (d) બીજાંડ માં આવેલ ભ્રૂણ પૂટ
- (1) (c) અને (d)
- (2) (a) અને (d)
- (3) માત્ર (a)
- (4) (a), (b) અને (c)

117. 1987 માં મોન્દ્રીઅલ પ્રોટોકોલ આના અંકુશ માટે થયો :

- (1) ગ્રીન હાઉસ ગેસોનું નીકળવુ
- (2) ઈ-કચરાનો નિકાલ
- (3) જનીન-પરિવર્તીત સજીવોને એક દેશમાંથી બીજા દેશમાં લઈ જવા
- (4) ઓઝોન વાયુ ઓછો કરતા પદાર્થોનુ ઉત્સર્જન

- 118. નીચે પૈકીનુ ક્યું, પ્રવિષાણુઓ માટે સાચું છે ?
 - (1) તેમનામાં પ્રોટીનયુક્ત આવરણવાળુ DNA હોય છે.
 - (2) તેમનામાં પ્રોટીનમય આવરણ વગરના મુક્ત DNA હોય છે.
 - (3) તેમનામાં પ્રોટીનયુક્ત આવરણવાળુ RNA હોય છે.
 - (4) તેમનામાં પ્રોટીનયુક્ત આવરણ વગરના મુક્ત RNA હોય છે.
- 119. નીચે પૈકીનું કયુ વિધાન સા**ચું** છે ?
 - (1) એડીનાઈન, થાયમીન સાથે 3 H-બંધથી જોડાય છે.
 - (2) એડીનાઈન, થાયમીન સાથે નથી જોડ બનાવતું.
 - (3) એડીનાઈન, થાયમીન સાથે બે H-બંધથી જોડાય છે.
 - (4) એડીનાઈન, થાયમીન સાથે 1 H-બંધથી જોડાય છે.
- 120. જેલ ઈલેક્ટ્રોફોરેસીસમાં, છૂટા પડેલ DNA ના ટુકડાઓને, આની મદદથી જોવાય છે :
 - (1) UV કિરણોમાં એસીટોકાર્માઈન થી
 - (2) ઈન્ફ્રારેડ કિરણોમાં ઈથીડીયમ બ્રોમાઈડ થી
 - (3) તેજસ્વી વાદળી લાઈટમાં, એસીટોકાર્માઈનની મદદ થી
 - (4) ઈથીડીયમ બ્રોમાઈડ UV કિરણો થી
- **121.** મનુષ્યના પાચનતંત્રના અનુસંધાને <mark>સાચુ</mark> વિધાન ઓળખો :
 - (1) શેષાંત્ર ખુબજ ગુંચળાદાર ભાગ છે.
 - (2) કૃમિવત્ ગ્રહણી થી ઉત્પન્ન થાય છે.
 - (3) શેષાંત્ર નાના આંતરડામાં ખુલે છે.
 - (4) લસીસ્તર એ પાચનનળીનું સૌથી અંદરનું સ્તર છે.
- 122. જો બે સળંગ બેઝ જોડ વચ્ચેનું અંતર $0.34~\mathrm{nm}$ હોય અને સસ્તનના લાક્ષણિક કોષમાં ના દ્વિકુંતલાકાર DNA માં કુલ બેઝ જોડી ની સંખ્યા $6.6\times10^9~\mathrm{bp}$ હોય તો DNA ની લંબાઈ આશરે કેટલી હશે ?
 - (1) 2.2 મીટર્સ
 - (2) 2.7 મીટર્સ
 - (3) 2.0 મીટર્સ
 - (4) 2.5 મીટર્સ

123. નીચેના કોલમને જોડો અને સાચો વિકલ્પ પસંદ કરો :

કોલમ - I કોલમ - II (a) ટોળામાં રહેતી પાક હાનિકારક (i) એસ્ટેરિયસ જવાત (b) પુખ્તમાં અરીય સમમિતિ અને (ii) વીંછી ડીંભમાં દ્વિપાર્શ્વીય સમમિતિ

ડાભમા ાદ્રપાશ્વાય સમામાત (c) કેકસા પોથી (iii) *ટીનોપ્લાના*

જૈવ પ્રદીપ્યતા લોકસ્ટા (iv) (d) (a) (b) **(c)** (d) (1) (iii) (ii) (i) (iv) (2)(ii) (i) (iv) (iii)

(3) (i) (iii) (ii) (iv) (4) (iv) (i) (ii) (iii)

- 124. સાચી જોડ પસંદ કરો :
 - (1) સિકલ સેલ એનીમિયા દૈહિક પ્રચ્છન્ન રંગસૂત્રીય, રંગસૂત્ર -11
 - (2) થેલેસેમિયા X સંલગ્ન
 - (3) હીમોફિલિયા Y સંલગ્ન
 (4) ફીનાઈલ કીટોન્યુરીયા દૈહિક પ્રભાવી
- 125. નિવસન તંત્રની કુલ પ્રાથમિક ઉત્પાદકતા અને ચોખ્ખી પ્રાથમિક ઉત્પાદકતાને અનુલક્ષીને, નીચે પૈકી કયું વિધાન સાચું છે ?
 - (1) કુલ પ્રાથમિક ઉત્પાદકતા અને ચોખ્ખી પ્રાથમિક ઉત્પાદકતા, બંને એક જ છે.

રંગસૂત્રીય વિશેષક

- (2) કુલ પ્રાથમિક ઉત્પાદકતા અને ચોખ્ખી પ્રાથમિક ઉત્પાદકતા વચ્ચે કોઈ સંબંધ નથી.
- (3) કુલ પ્રાથમિક ઉત્પાદકતા ચોખ્ખી પ્રાથમિક ઉત્પાદકતા કરતા હમેશા ઓછી હોય છે.
- (4) કુલ પ્રાથમિક ઉત્પાદકતા ચોખ્ખી પ્રાથમિક ઉત્પાદકતા કરતા હમેશા વધુ હોય છે.
- 126. Bt કપાસની જાતી કે જે *બેસીલસ થુરીએન્જોન્સિસ* (Bt) ના ઝેરી જનીનને દાખલ કરીને વિકસાવવામાં આવી છે તે _____ સામે પ્રતિકાર દર્શાવે છે.
 - (1) વનસ્પતિ સૂત્રકૃમિઓ
 - (2) કિટભક્ષકો
 - (3) કિટક જીવાત
 - (4) કુગના રોગો

147. ં વાત દેશમાં ગામ સાંચા ત્રાહ્યા વેતા દેશ	તાચી પ્રક્રિયા પસંદ કરો	તી સાચી પ્ર	દરમ્યાન ધ	શ્વાસ	127 .
---	--------------------------------	--------------------	-----------	-------	--------------

- (a) ઉરોદરપટલનું સંકોચન
- (b) બાહ્ય આંતર પાંસળી સ્નાયુઓનું સંકોચન
- (c) કૂપ્કુસીય કદમાં ઘટાડો
- (d) આંતર-ક્રુપ્કુસીય દબાણમાં વધારો
- (1) (a), (b) અને (d)
- (2) \$5rt (d)
- (3) (a) અને (b)
- (4) (c) અને (d)

128. નીચે પૈકી કયો, વસતિનો ગુણ નથી ?

- (1) भृत्युहर
- (2) જાતિ આંતરક્રિયા
- (3) જાતિ ગુણોત્તર
- (4) જન્મદર

129. જે પ્રક્રિયા દ્વારા ઘાસના પર્ણોના અગ્ર પરથી રાત્રે અને વહેલી સવારે પ્રવાહી સ્વરૂપે જળનો નિકાસ થાય છે તે :

- (1) અંત:ચૂષણ
- (2) રસ સંકોચન
- (3) ઉત્સ્વેદન
- (4) મૂળ દાબ

130. અર્ધીકરણને અનુલક્ષીને નીચે પૈકીને જોડો :

- (a) ઝાયગોટીન
- (i) ઉપાન્તીભવન (ટર્મીનલાઈઝેશન)
- (b) પેકીટીન
- (ii) સ્વસ્તિક ચોકડી (ચાયેસ્મેટા)
- (c) ડીપ્લોટીન
- (iii) વ્યતિકરણ (ક્રોર્સીંગ ઓવર)
- (d) ડાયાકાઈનેસીસ
- (iv) सूत्रयुग्भन

નીચે પૈકી સાચો વિકલ્પ પસંદ કરો :

- (a) (b) (c) (d)
- (1) (i) (ii) (iv) (iii)
- (2) (ii) (iv) (iii) (i)
- (3) (iii) (iv) (i) (ii)
- (4) (iv) (iii) (ii) (i)

- 131. જો વંદાનું શીર્ષ દુર કરવામાં આવે તો તે થોડાક દિવસો સુધી જીવીત રહી શકે છે કારણ કે :
 - (1) શીર્ષમાં ચેતાતંત્રનો થોડોક ભાગ હોય છે જ્યારે બાકીના ભાગમાં મોટા ભાગનું ચેતાતંત્ર વક્ષ ભાગે આવેલુ છે.
 - (2) શીર્ષમાં ચેતાતંત્રનો 1/3 ભાગ આવેલ છે જ્યારે બાકીનું તેના શરીરના પૃષ્ઠભાગે આવેલુ છે.
 - (3) વંદાનો ઉપરી અન્નનાલીય ચેતાકંદ ઉદરના વક્ષભાગે આવેલો હોય છે.
 - (4) વંદામાં ચેતાતંત્ર આવેલુ હોતુ નથી.

132. નીચેના રોગોને તેના માટે કારણ ભૂત સજીવો સાથે જોડી સાચો વિકલ્પ પસંદ કરો :

	કોલમ	- I			કોલમ - II
(a)	ટાયફા	ઈડ		(i)	<i>વુચેરેરિયા</i>
(b)	ન્યુમો	.ેનયા		(ii)	<i>પ્લાઝમોડિયમ</i>
(c)	ફાઈલે	રેએસિસ	l	(iii)	સાલ્મોનેલા
(d)	મલેરિ	યા		(iv)	હીમોફિલસ
	(a)	(b)	(c)	(d)	
(1)	(ii)	(i)	(iii)	(iv)	
(2)	(iv)	(i)	(ii)	(iii)	
(3)	(i)	(iii)	(ii)	(iv)	
(4)	(iii)	(iv)	(i)	(ii)	

- 133. શીમ્બીક્રુળની વનસ્પતિઓની મૂળ ગંડિકામાં આવેલ નાઈટ્રોજીનેઝ જે પ્રક્રિયાનું ઉદ્દીપન કરે છે, તેની નિપજ આ છે :
 - (1) એમોનિયા અને ઓક્સિજન
 - (2) એમોનિયા અને હાઈડ્રોજન
 - (3) માત્ર એમોનિયા
 - (4) માત્ર નાઇટ્રેટ
- 134. નીચેના માંથી કયા અંતઃસ્રાવનું સ્તર ગ્રાફીયન પુટીકામાંથી અંડકોષની મુક્તિ (અંડપાત) નું કારણ છે ?
 - (1) LH ની નીચી સાંદ્રતા
 - (2) FSH ની નીચી સાંદ્રતા
 - (3) ઈસ્ટ્રોજનની ઊંચી સાંદ્રતા
 - (4) પ્રોજેસ્ટેરોનની ઊંચી સાંદતા
- 135. નીચે પૈકી એ પદાર્થો ઓળખો, જેમની રચનામાં ગ્લાયકોસાઈડીક બંધ અને પેપટાઈડ બંધ આવેલ હોય છે :
 - (1) સેલ્યુલોઝ, લીસીથીન
 - (2) ઈન્યુલીન, ઈન્સ્યુલીન
 - (3) કાઈટીન, કોલેસ્ટરોલ
 - (4) ગ્લીસરોલ, દ્રીપસીન

- 136. $3 \times 10^{-10} \text{ Vm}^{-1}$ વિદ્યુતક્ષેત્રમાં એક વીજભારિત કણનો અપવહન-વેગ (drift velocity) $7.5 \times 10^{-4} \text{ m s}^{-1}$ છે અને _____ $\text{m}^2 \text{ V}^{-1} \text{ s}^{-1}$ ગતિશીલતા (mobility) છે.
 - (1) 2.5×10^{-6}
 - (2) 2.25×10^{-15}
 - (3) 2.25×10^{15}
 - (4) 2.5×10^6
- 137. આણ્વિક વ્યાસ d અને અંકઘનતા n ધરાવતાં એક વાયુના સરેરાશ મુક્ત પથને _____ વડે રજુ કરી શકાય છે.
 - (1) $\frac{1}{\sqrt{2} n^2 \pi d^2}$
 - (2) $\frac{1}{\sqrt{2} n^2 \pi^2 d^2}$
 - (3) $\frac{1}{\sqrt{2} \text{ n}\pi d}$
 - $(4) \qquad \frac{1}{\sqrt{2} \, \operatorname{n} \pi \mathrm{d}^2}$
- 138. 0.5 g પદાર્થનું ઊર્જા તુલ્યાંક _____ છે
 - (1) $1.5 \times 10^{13} \,\mathrm{J}$
 - (2) $0.5 \times 10^{13} \,\mathrm{J}$
 - (3) $4.5 \times 10^{16} \,\mathrm{J}$
 - (4) $4.5 \times 10^{13} \,\mathrm{J}$
- 139. કોઈ એક તારામાંથી 600 nm તરંગલંબાઈનો પ્રકાશ આવે છે તેમ ધારો. 2 m વ્યાસના ઓબ્જેક્ટીવ ધરાવતાં ટેલિસ્કોપની વિભેદન-સીમા ______ છે.
 - (1) $7.32 \times 10^{-7} \, \text{rad}$
 - (2) $6.00 \times 10^{-7} \, \text{rad}$
 - (3) $3.66 \times 10^{-7} \, \text{rad}$
 - (4) $1.83 \times 10^{-7} \, \text{rad}$
- 140. 100 આંટા ધરાવતાં 50 cm લંબાઈનો એક લાંબો સોલેનોઈડ $2.5\,\mathrm{A}$ વીજપ્રવાહ ધારિત છે. આ સોલેનોઈડના કેન્દ્રમાં ચુંબકીય ક્ષેત્ર છે :

$$(\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1})$$

- (1) $6.28 \times 10^{-5} \,\mathrm{T}$
- (2) $3.14 \times 10^{-5} \,\mathrm{T}$
- (3) $6.28 \times 10^{-4} \,\mathrm{T}$
- (4) $3.14 \times 10^{-4} \,\mathrm{T}$

- 141. \mathbf{r}_1 અને \mathbf{r}_2 (\mathbf{r}_1 = 1.5 \mathbf{r}_2) ત્રિજયાઓના તાંબાના બે ઘન ગોળાઓના તાપમાનમાં 1 K જેટલો વધારો કરવા જરૂરી ઉષ્માના જથ્થાનો ગુણોત્તર છે :
 - $(1) \qquad \frac{3}{2}$
 - (2) $\frac{5}{3}$
 - (3) $\frac{27}{8}$
 - $(4) \qquad \frac{9}{4}$
- 142. હવા માધ્યમ ઘરાવતાં એક સમાંતર બાજુ કેપેસિટરનો કેપેસિટન્સ 6 μF છે. એક ડાયઈલેક્ટ્રિક માધ્યમ ઉમેરતાં આ કેપેસિટન્સ 30 μF થાય છે. આ માધ્યમની પરમિટીવીટી છે _____. ($\epsilon_0 = 8.85 \times 10^{-12}~{
 m C}^2~{
 m N}^{-1}~{
 m m}^{-2})$
 - (1) $0.44 \times 10^{-10} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
 - (2) $5.00 \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
 - (3) $0.44 \times 10^{-13} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
 - (4) $1.77 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
- 143. એક ટૂંકા વિદ્યુત દ્વિધ્રુવિયની દ્વિધ્રુવિય ચાકમાત્રા $16 \times 10^{-9} \, \mathrm{Cm}$ છે. આ દ્વિધ્રુવિયના અક્ષ સાથે 60° ખૂણો બનાવતી એક રેખા પર, આ દ્વિધ્રુવિયના કેન્દ્રથી $0.6 \, \mathrm{m}$ અંતરે રહેલ એક બિંદુ પર આ દ્વિધ્રુવિયના કારણે લાગતું વિદ્યુતસ્થિતિમાન છે :

$$\left(\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ N m}^2/\text{C}^2\right)$$

- (1) 400 V
- (2) શૂન્ય
- (3) 50 V
- (4) 200 V
- 144. અવગણ્ય દ્રવ્યમાન ધરાવતાં 1 m લંબાઈના એક જડ સળિયાના બે છેડા પર અનુક્રમે 5 kg અને 10 kg દ્રવ્યમાનના કણો જોડેલ છે.
 - 5 kg ના કણથી આ તંત્રનું દ્રવ્યમાન કેન્દ્ર આશરે _____ અંતર પર છે.
 - (1) 67 cm
 - (2) 80 cm
 - (3) 33 cm
 - (4) 50 cm

145. એક આંતરપૃષ્ઠ માટે બ્રુસ્ટર કોણ i_b હોય છે :

- (1) $45^{\circ} < i_b < 90^{\circ}$
- (2) $i_h = 90^{\circ}$
- (3) $0^{\circ} < i_b < 30^{\circ}$
- (4) $30^{\circ} < i_h < 45^{\circ}$

146. નીચેનામાંથી કોના એક માટે બોહર મૉડેલ માન્ય **નથી** ?

- (1) ડચૂટેરોન પરમાણું
- (2) એકધા આયનિત નિયોન પરમાણું (Ne+)
- (3) હાઇડ્રોજન પરમાણું
- (4) એકધા આયનિત હિલીયમ પરમાણું (He+)

147. એક કણ કે જેનો સ્થાન સદિશ $2 \stackrel{\wedge}{k}$ $_{
m m}$ છે તેના પર ઉદ્દગમ બિંદુની સાપેક્ષે જ્યારે $3 \stackrel{\wedge}{j}$ $_{
m N}$ બળ લાગે ત્યારનું ઘુર્ણનબળ (ટોર્ક) શોધો.

- (1) $-6\hat{i}$ N m
- (2) $6\hat{k}$ N m
- (3) 6i N m
- (4) $6\hat{j}$ N m

148. દ્રાન્ઝિસ્ટર એક્શન માટે નીચેમાંથી કયું વિધાન સાચું છે?

- (1) એમિટર જંક્શન અને કલેક્ટર જંક્શન બન્ને ફોર્વર્ડ બાયસ હોય છે.
- (2) બેઝ ક્ષેત્ર ખુબજ પાતળું અને ઓછી માત્રામાં ડોપ (અશુધ્ધિ) થયેલ હોવું જોઈએ.
- (3) બેઝ, એમિટર અને કલેક્ટર ક્ષેત્રોમાં ડોપિંગનું (અશુધ્ધિનું) પ્રમાણ સરખું હોવું જોઈએ.
- (4) બેઝ, એમિટર અને કલેક્ટર ક્ષેત્રોનું કદ (size) સમાન હોવું જોઈએ.

149. નીચેમાંનો કયો આલેખ તાંબા માટે અવરોધકનાં (ρ) નો તાપમાન (Τ) સાથેનો બદલાવ દર્શાવે છે?

150. 10 cm ત્રિજ્યાનો એક ગોલીય વાહક સમાન રીતે વિતરિત 3.2×10^{-7} C વીજભાર ધરાવે છે. આ ગોળાના કેન્દ્રથી 15 cm અંતરે રહેલા બિંદુ પર વિદ્યુતક્ષેત્રનું માન શું હશે ?

$$\left(\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ N m}^2/\text{C}^2\right)$$

- (1) $1.28 \times 10^6 \text{ N/C}$
- (2) $1.28 \times 10^7 \text{ N/C}$
- (3) $1.28 \times 10^4 \text{ N/C}$
- (4) $1.28 \times 10^5 \text{ N/C}$

151. એક સ્ક્રુ ગેજની લઘુત્તમ માપ શક્તિ 0.01 mm છે અને તેની વર્તુળાકાર માપપટ્ટી પર 50 કાપાઓ છે.

આ સ્ક્રુ ગેજનો અંતરાલ (pitch) ______છે.

- (1) 0.5 mm
- (2) 1.0 mm
- (3) 0.01 mm
- (4) 0.25 mm

152. એક શ્રેણી LCR પરિપથને ac વોલ્ટેજ ઉદ્દગમ સાથે જોડેલ છે. જયારે પરિપથમાંથી L ને દૂર કરવામાં આવે છે ત્યારે પ્રવાહ અને વોલ્ટેજ વચ્ચેનો કળા-તફાવત $\frac{\pi}{3}$ છે. જો તેના બદલે પરિપથમાંથી C ને દૂર કરવામાં આવે ત્યારે ફરીથી પ્રવાહ અને વોલ્ટેજ વચ્ચેનો કળા-તફાવત $\frac{\pi}{3}$ છે. આ પરિપથનો શક્તિગુણાંક (power

factor) ව :

- (1) 1.0
- (2) -1.0
- (3) શૂન્ય
- (4) 0.5
- 153. એક ટાવરની ટોચ પરથી એક દડાને $20~\mathrm{m/s}$ ના વેગથી શિરોલંબ દિશામાં નીચે તરફ ફેંકવામાં આવે છે. થોડાક સમય બાદ તે ભોંય તળિયાને $80~\mathrm{m/s}$ ના વેગથી અથડાય છે. આ ટાવરની ઊંચાઈ

 - (1) 320 m
 - (2) 300 m
 - (3) 360 m
 - (4) 340 m
- 154. એક પદાર્થનું પૃથ્વીની સપાટી પર વજન 72 N છે. પૃથ્વીની ત્રિજ્યાનાં અડધી ઊંચાઈ પર, તેના પર કેટલું ગુરૂત્વાકર્ષણ બળ લાગે?
 - (1) 30 N
 - (2) 24 N
 - (3) 48 N
 - (4) 32 N
- 155. DNA માં એક બોન્ડ તોડવા માટેની જરૂરી ઊર્જા $10^{-20} \, \mathrm{J}$ છે. $\, \mathrm{eV}$ માં આનું મુલ્ય _____ ની નજીકનું છે.
 - (1) 0.06
 - (2) 0.006
 - (3) 6
 - (4) 0.6
- **156.** L લંબાઈ અને A આડછેદનું ક્ષેત્રફળ ધરાવતો એક તાર એક જડ આધારથી લટકે છે. જ્યારે તારના મુક્ત છેડા પર દ્રવ્યમાન M લટકાવવામાં આવે ત્યારે આ તારની લંબાઈ બદલાઈને L_1 થાય છે, તો યંગ મોડયુલસનું સૂત્ર છે :
 - $(1) \qquad \frac{\mathrm{MgL}}{\mathrm{AL}_1}$
 - $(2) \qquad \frac{MgL}{A(L_1-L)}$
 - $(3) \qquad \frac{\mathrm{MgL}_{1}}{\mathrm{AL}}$
 - $(4) \qquad \frac{\mathrm{Mg}(\mathrm{L}_1-\mathrm{L})}{\mathrm{AL}}$

- 157. એક સ્થિર ઈલેક્ટ્રોનને V volt ના વિજસ્થિતિમાનના તફાવતથી પ્રવેગીત કરવામાં આવે છે. જો આ ઈલેક્ટ્રોનની ડી-બ્રૉગ્લી તરંગલંબાઈ $1.227 \times 10^{-2}~\mathrm{nm}$ છે, તો વિજસ્થિતિમાનનો તકાવત છે :
 - (1) $10^3 \, \text{V}$
 - (2) $10^4 \, \text{V}$
 - (3) 10 V
 - $(4) 10^2 \, V$
- 158. 4 kg અને 6 kg દ્રવ્યમાનના બે પદાર્થોને એક દ્રવ્યમાન રહિત દોરીના છેડાઓ સાથે બાંધેલ છે. આ દોરી ઘર્ષણરહિત ગરગડી પરથી પસાર કરેલ છે (આકૃતિ જુઓ). ગુરૂત્વીય પ્રવેગ (g) ના પદમાં આ તંત્રનો પ્રવેગ છે:

- (1) g/5
- (2) g/10
- (3) ϱ
- (4) g/2
- 159. શ્રેસોલ્ડ આવૃત્તિથી 1.5 ગણી આવૃત્તિનો પ્રકાશ એક પ્રકાશસંવેદી દ્રવ્ય પર આપાત થાય છે. જો આવૃત્તિ અડધી અને તીવ્રતા બમણી કરવામાં આવે તો ફોટોઈલેક્ટ્રિક પ્રવાહ શું હશે?
 - (1) ચોથા ભાગનો
 - (2) શૂન્ય
 - (3) બમણો
 - (4) ચાર ગણો
- **160.** સાર્થક અંકોને ધ્યાનમાં રાખતાં, $9.99~\mathrm{m}-0.0099~\mathrm{m}$ નું મુલ્ય શું હશે ?
 - (1) 9.980 m
 - (2) 9.9 m
 - (3) 9.9801 m
 - (4) 9.98 m
- 161. એક નાના કોણ પ્રિઝ્મ (પ્રિઝ્મ કોણ A છે) ની એક સપાડી પર એક કિરણ આપાત કોણ i પર આપાત થાય છે અને વિરૂધ્ધ સપાડીથી લંબ રીતે નિર્ગમન પામે છે. જો આ પ્રિઝ્મમાં દ્રવ્યનો વક્કીભવનાંક μ છે, તો આપાત કોણ _____ ની નજીકનો છે.
 - (1) µA
 - $(2) \qquad \frac{\mu A}{2}$
 - (3) $\frac{A}{2\mu}$
 - (4) $\frac{2A}{\mu}$

- 162. ____ ના લીધે p-n જંક્શન ડાયોડના ડિપ્લેશન ક્ષેત્રની પહોળાઈમાં વધારો થાય છે.
 - (1) ફૉર્વર્ડ બાયસ અને રિવર્સ બાયસ બન્ને
 - (2) ફૉર્વર્ડ પ્રવાહના વધારા
 - (3) ફક્ત ફૉર્વર્ડ બાયસ
 - (4) ફક્ત રિવર્સ બાયસ
- 163. એક ગિટારમાં સમાન દ્રવ્યના બનેલા બે તારો A અને B જરાક અસમ સ્વરિત છે અને તે 6 Hz આવૃત્તિનો સ્પંદ ઉત્પન્ન કરે છે. જયારે B માં તનાવને જરાક ઘટાડવામાં આવે છે, આ સ્પંદની આવૃત્તિ વધીને 7 Hz થાય છે. જે A ની આવૃત્તિ 530 Hz હોય, તો B ની મૂળ આવૃત્તિ હશે ______.
 - (1) 536 Hz
 - (2) 537 Hz
 - (3) 523 Hz
 - (4) 524 Hz
- 164. વિદ્યુતચુંબકીય તરંગની તીવ્રતામાં વિદ્યુતક્ષેત્ર અને ચુંબકીય ક્ષેત્ર ઘટકોનાં યોગદાનનો ગુણોત્તર _____ છે. (c= વિદ્યુતચુંબકીય તરંગની ઝડપ)
 - (1) 1: c
 - (2) $1:c^2$
 - (3) c:1
 - (4) 1:1
- **165.** 0.2 m³ કદના અવકાશના એક ચોક્કસ ક્ષેત્રમાં 5 V નો સમાન વીજસ્થિતિમાન જોવા મળે છે. આ ક્ષેત્રમાં વિદ્યુત ક્ષેત્રનું પરિમાણ છે:
 - (1) 1 N/C
 - (2) 5 N/C
 - (3) શૂન્ય
 - (4) 0.5 N/C
- 166. યંગના ડબલ સ્લિટના પ્રયોગમાં, જો સુસબ્ધ ઉદ્દગમો વચ્ચેનું અંતર અડધું કરવામાં આવે અને પડદાનું સુસબ્ધ ઉદ્દગમોથી અંતર બમણું કરવામાં આવે, તો શલાકાની પહોળાઈ _____ થશે.
 - (1) ચાર ગણી
 - (2) ચોથા ભાગની
 - (3) બમણી
 - (4) અડધી

167. દર્શાવેલ લોજીક-પરિપથ માટે સત્યાર્થ-સારણી છે:

- (1) A B Y 0 0 1 0 1
 - 1 1 0
- (2) A B Y 0 0 1 0
 - 1 0 0
- (3) A B Y 0 0 0 0 0 1 0
- 168. એક મિટર-બ્રિજના ડાબા ખાંચા (gap) માં એક અવરોધ તારને જેડતાં તે જમણા ખાંચામાં ના $10~\Omega$ અવરોધને એવા બિંદુ પર સંતુલિત કરે છે કે જે આ બ્રિજના તારને 3:2 ના ગુણોત્તરમાં વિભાજત કરે છે. જો અવરોધ-તારની લંબાઈ $1.5~\mathrm{m}$ છે, તો $1~\Omega$ ના અવરોધ-તારની લંબાઈ છે:
 - (1) $1.5 \times 10^{-1} \,\mathrm{m}$
 - (2) $1.5 \times 10^{-2} \,\mathrm{m}$
 - (3) $1.0 \times 10^{-2} \,\mathrm{m}$
 - (4) $1.0 \times 10^{-1} \,\mathrm{m}$
- 169. જ્યારે એક યુરેનિયમ સમસ્થાનિક $^{235}_{92}$ U પર ન્યૂદ્રૉનનો મારો ચલાવવામાં આવે છે, તે $^{89}_{36}\mathrm{Kr}$, ત્રણ ન્યૂદ્રૉન્સ અને ઉત્પન્ન કરે છે.
 - (1) $^{101}_{36}$ Kr
 - (2) $^{103}_{36}$ Kr
 - (3) $^{144}_{56}$ Ba
 - (4) $^{91}_{40}$ Zr

170. એક અવરોધ માટે વર્ણ-સંકેત નીચે આપેલ છે :

આ અવરોધનું મુલ્ય અને સહ્યતા (tolerance) અનુક્રમે છે :

- (1) $4.7 \text{ k}\Omega, 5\%$
- (2) $470 \Omega, 5\%$
- (3) $470 \text{ k}\Omega, 5\%$
- (4) $47 \text{ k}\Omega, 10\%$
- 171. r-ત્રિજ્યા ધરાવતી એક કેપેલરી ટચૂબ (કેશનળી) ને પાણીમાં ડુબાડતાં તેમાં h ઊંચાઈ જેટલું પાણી ચઢે છે.

આ કેશનળીમાંના પાણીનું દ્રવ્યમાન $5~\mathrm{g}$ છે. $2\mathrm{r}$ ત્રિજ્યા ધરાવતી અન્ય એક કેશનળીને પાણીમાં ડુબાડવામાં આવે છે. આ નળીમાં ઉપર ચઢતાં પાણીનું દળ છે :

- (1) 10.0 g
- (2) 20.0 g
- (3) 2.5 g
- (4) 5.0 g
- 172. એક નળાકારમાં $249 \, \mathrm{kPa}$ દબાણે અને $27^{\circ}\mathrm{C}$ તાપમાને હાઈડ્રોજન વાયુ ભરેલ છે.

તેની ધનતા છે : $(R = 8.3 \text{ J mol}^{-1} \text{ K}^{-1})$

- (1) 0.1 kg/m^3
- (2) 0.02 kg/m^3
- (3) 0.5 kg/m^3
- (4) 0.2 kg/m^3
- 173. અવરોધના ઋણ તાપમાન ગુણાંક ધરાવતા હોય તેવા 'ઘન પદાર્થો' છે :
 - (1) ફક્ત અર્ધવાહકો
 - (2) અવાહકો અને અર્ધવાહકો
 - (3) ધાતૃઓ
 - (4) કક્ત અવાહકો
- - $(1) \qquad \frac{5}{2} \, k_B T$
 - (2) $\frac{7}{2} k_B T$
 - (3) $\frac{1}{2} k_B T$
 - (4) $\frac{3}{2} k_B T$

175. 20 cm² ક્ષેત્રફળ ધરાવતી એક અપરાવર્તિત સપાટી પર $20 \,\mathrm{W/cm^2}$ સરેરાશ ફ્લક્ષ ધરાવતો પ્રકાશ લંબરૂપે આપાત થાય છે. 1 મિનિટ સમય ગાળામાં આ સપાટી દ્વારા પ્રાપ્ત થતી ઊર્જા છે :

- (1) $24 \times 10^3 \,\text{J}$
- (2) $48 \times 10^3 \,\mathrm{J}$
- (3) $10 \times 10^3 \,\mathrm{J}$
- (4) $12 \times 10^3 \,\mathrm{J}$

176. પ્રતિબળનું પરિમાણ _____ છે

- (1) $[ML^0T^{-2}]$
- (2) $[ML^{-1}T^{-2}]$
- (3) [MLT⁻²]
- (4) $[ML^2T^{-2}]$

177. સમાન ક્ષમતા ધરાવતાં બે નળાકારો A અને B ને એક બીજા સાથે એક સ્ટોપ કૉક થી જોડેલ છે. A એક પ્રમાણભૂત તાપમાન અને દબાણે એક આદર્શ વાયુ ધરાવે છે. B સંપૂર્ણ ખાલી છે. આ આખી પ્રણાલી ઉષ્મીય અવાહક છે. આ સ્ટોપ કૉકને અચાનક ખોલવામાં આવે છે. આ પ્રક્રિયા છે:

- (1) સમકદ
- (2) સમદાબ
- (3) સમતાપી
- (4) સમોષ્મી

178. 599 સસેપ્ટીબીલીટી ધરાવતો એક લોખંડના સળિયાને $1200\,\mathrm{A\,m^{-1}}$ ચુંબકન ક્ષેત્ર આપવામાં આવે છે. આ સળિયાના દ્રવ્યની પરમિઆબીલીટી છે :

$$(\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1})$$

- (1) $2.4\pi \times 10^{-5} \,\mathrm{T} \,\mathrm{m} \,\mathrm{A}^{-1}$
- (2) $2.4\pi \times 10^{-7} \text{ T m A}^{-1}$
- (3) $2.4\pi \times 10^{-4} \text{ T m A}^{-1}$
- (4) $8.0 \times 10^{-5} \,\mathrm{T} \,\mathrm{m} \,\mathrm{A}^{-1}$

179. સરળ આવર્ત ગતિ કરતાં એક કણના સ્થાનાંતર અને પ્રવેગ વચ્ચેનો કળા તફાવત ______ છે.

- (1) $\frac{\pi}{2}$ rad
- (2) શૂન્ય
- (3) $\pi \operatorname{rad}$
- (4) $\frac{3\pi}{2}$ rad

180. એક 200 V, 50 Hz ના ac સપ્લાય સાથે $40~\mu F$ નો એક કેપેસિટર જોડેલ છે. આ પરિપથમાંના પ્રવાહનું rms મુલ્ય આશરે

- $\frac{}{(1)}$ 2.5 A
- (2) 25.1 A
- (3) 1.7 A
- (4) 2.05 A

No.:

Test Booklet Code પરિક્ષા પુસ્તિકાનો કોડ

KHANA

This Booklet contains 24+44 pages. આ પુસ્તિકામાં 24+44 પાનાં છે.

General Genera

Do not open this Test Booklet until you are asked to do so. જ્યાં સુધી કહેવામાં ન આવે ત્યાં સુધી આ પુસ્તિકા ખોલવી નહીં.

Read carefully the Instructions on the Back Cover of this Test Booklet. આ પરિક્ષા પુસ્તિકાના પાછળના કવર પર આપેલ સૂચનાઓ ધ્યાનથી વાંચો.

Important Instructions:

- 1. The Answer Sheet is inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars on side-1 and side-2 carefully with blue/black ball point pen only.
- The test is of 3 hours duration and Test Booklet contains 180 questions. Each question carries 4 marks. For each correct response, the candidate will get 4 marks. For each incorrect response, one mark will be deducted from the total scores. The maximum marks are 720.
- 3. Use **Blue/Black Ball Point Pen only** for writing particulars on this page/marking responses.
- 4. Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- 5. On completion of the test, the candidate must hand over the Answer Sheet to the invigilator before leaving the Room/Hall. The candidates are allowed to take away this Test Booklet with them.
- 6. The CODE for this Booklet is **G6**. Make sure that the CODE printed on **Side-2** of the Answer Sheet is the same as that on this Test Booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet.
- 7. The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your Roll No. anywhere else except in the specified space in the Test Booklet/Answer Sheet.
- 8. Use of white fluid for correction is **NOT** permissible on the Answer Sheet.

અગત્યની સૂચનાઓ :

- આ પરિક્ષાપુસ્તિકાની અંદર ઉત્તરવહિ છે. જ્યારે આપને પરિક્ષા પુસ્તિકા ખોલવાનું કહેવામાં આવે, ત્યારે ઉત્તરવહિ નિકાળી બાજુ -1 અને બાજુ-2 પરની વિગતો ફક્ત વાદળી/કાળી બોલ પોઈન્ટ પેનથી સાવધાની સાથે ભરો.
- 2. પરિક્ષાનો ગાળો 3 કલાકનો છે અને આ પુસ્તિકામાં 180 પ્રશ્નો છે. પ્રત્યેક પ્રશ્ન 4 માર્કનો છે. પ્રત્યેક સાચા જવાબ માટે પરિક્ષાર્થીને 4 માર્ક આપવામાં આવશે. પ્રત્યેક ખોટા જવાબ માટે કુલ માર્કમાંથી 1 માર્ક ઓછો કરવામાં આવશે. મહત્તમ માર્ક 720 છે.
- 3. આ પાનાં પર લખાણ લખતી વખતે કે નિશાની કરતી વખતે ફક્ત **વાદળી/કાળી બોલ પોઈન્ટ પેનનો** પ્રયોગ કરો.
- 4. રફ કાર્ય હેતું આ પુસ્તિકામાં આપેલ નિર્ધારિત સ્થાનમાંજ કરો.
- 5. પરિક્ષા સંપન્ન થયા પછી, પરિક્ષાર્થી રૂમ/હોલ છોડતાં પહેલા ઉત્તરવહિ વર્ગ-નિરિક્ષકને અવશ્ય પાછી આપે. પરિક્ષાર્થી પોતાની સાથે આ પ્રશ્ન-પુસ્તિકા લઈ જઈ શકે છે.
- 6. આ પુસ્તિકાનો કોડ **G6** છે. એ ખાતરી કરીલો કે આ પુસ્તિકાનો કોડ, ઉત્તરવહિના **બાજુ 2** પર છાપેલ કોડ સાથે મેળ ખાય છે. જો તે અલગ હોય તો પરિક્ષાર્થી બીજી પરિક્ષા પુસ્તિકા અને ઉત્તરવહિ લેવા નિરિક્ષકને તુરંત જાણ કરે.
- 7. પરિક્ષાર્થી એ સુનિશ્ચિત કરે કે આ ઉત્તરવહિ વળે નહીં અને તેના પર કોઈ નિશાન ન કરે. પરિક્ષાર્થી પોતાનો અનુક્રમ પ્રશ્ન-પુસ્તિકા/ઉત્તરવહિમાં નિર્ધારીત સ્થાન સિવાય અન્યત્ર ક્યાંય લખવો નહીં.
- 8. ઉત્તરવહિમાં કોઈપણ પ્રકારના સુધારા માટે વ્હાઈટ-ઈન્કનો ઉપયોગ કરવાની અનમતિ **નથી**.

In case of any ambiguity in translation of any question, English version shall be treated as final. પ્રશ્નોનાં અનુવાદમાં કોઇ અસ્પષ્ટતાની સ્થિતિમાં, અંગ્રેજી સંસ્કરણને જ અંતિમ માનવામાં આવશે.

Name of the Car પરિક્ષાર્થીનું નામ (મો	ndidate (in Capitals) : ટા અક્ષરોમાં) :				
Roll Number	: in figures				
અનુક્રમ	: અંકોમાં				
•	: in words				
	: શબ્દોમાં				
Centre of Exam પરિક્ષા કેન્દ્ર (મોટા ચ	ination (in Capitals) : ક્ષરોમાં) :				
Candidate's Sig	nature :	Invigilator's Signature :			
પરિક્ષાર્થીની સહી :		નિરિક્ષકની સહી :			
Facsimile signa	ture stamp of				
Centre Superin	tendent:				

(3)

(4)

(iv)

(ii)

(iii)

(iv)

(i)

(i)

(ii) (iii)

G6						:	2		GUJARATI		
1.	જળકુંભી (વોટર હાયસીન્થ) અને પોયણા (વોટર લીલી)માં							નીચે પૈકીની જોડીઓમાંથી કઈ એકકોષીય લીલ છે ?			
	પરાગ	નયન અ	ાના દ્વાર	ા થાય છે) :			(1)	જેલીડીયમ અને ગ્રાસીલારીઆ		
	(1)	માત્ર '	પાણીનો	પ્રવાહ				(2)	એનાબીના અને વોલ્વોક્સ		
	(2)	પવન	અને પા	ણી				(3)	<i>ક્લોરેલા</i> અને <i>સ્પીરૂલીના</i>		
	(3)	કીટકો	. અને પ	ાણી				(4)	લેમીનારીઆ અને સરગાસમ		
	(4)	કીટકો	. અથવા	પવન			7.	211817	ાપ્ટોનીમલ સંકુલનું વિસર્જન વખતે થાય છે		
2.	નીચે પૈકી સાચી જોડ પસંદ કરો :							(1)	. રાત્યાનલ સરુલવુ ાવસજના વ ગતા વાવ છ - ઝાયગોટીન		
	(1)		મરેઝીસ			∆ ના ટુકડા કરે છે		(2)	ડીપ્લોટીન		
	(2)		ોએઝીસ			ડ ડ ના બે કુંતલોને અલગ કરે		(3)	લેપ્ટોટીન લેપ્ટોટીન		
	· /	9			છે	3		(4)	પેકીટીન પૈકીટીન		
	(3)	એક્ઝે	l –	-	DNA	∆ ના અંતર્ગત, ચોક્કસ					
		ન્યુક્લીએઝીસ સ્થાને કાપે દ				કાપે છે	8.		તે વંદાનું શીર્ષ દુર કરવામાં આવે તો તે થોડાક દિવસો સ્		
	(4)	લીગેઝ	ડીસ	-	બે DI	VA અણુઓને જોડે છે			ત રહી શકે છે કારણ કે :		
3.	એન્ટાર્કટિક પ્રદેશમાં બરફ-અંઘતા, આના લીધે થાય છે :							(1)	વંદામાં ચેતાતંત્ર આવેલુ હોતુ નથી.		
υ.	(1) UV-B કિરણોની વધુ પડતી માત્રાને લીધે કોર્નીઆમાં							(2)	શીર્ષમાં ચેતાતંત્રનો થોડોક ભાગ હોય છે જ્યારે બાકીન		
	(1)	્ ૫- સૂઝન				The second		(0)	ભાગમાં મોટા ભાગનું ચેતાતંત્ર વક્ષ ભાગે આવેલુ છે.		
	(2)	- `		ાશનું ખ્	બ ઊંચ [ુ]	પરાવર્તન		(3)	શીર્ષમાં ચેતાતંત્રનો 1/3 ભાગ આવેલ છે જ્યારે બાકીનુ તેના શરીરના પૃષ્ઠભાગે આવેલુ છે.		
	(3)							(4)	લંદાનો ઉપરી અન્નનાલીય ચેતાકંદ ઉદરના વક્ષભાગે આવેલે		
	(4)							(4)	હોય છે.		
4.		દ્વિતીયક અંડકોષ નું અર્ધસૂત્રી ભાજન એ પૂર્ણ					9.	નીચેન	ના માંથી કયુ-માનવજનીત કાર્યોના લીઘે બદલાયેલ		
	થાય દ							પર્યાવરણના કારણે ઉત્ક્રાન્તિ પામેલ સજીવનું સાચુ ઉદાહરણ			
	(1)		ગ વખતે	•				(a)	ગેલેપેગોઝ ટાપુ પરની ડાર્વિન ફિન્ચ		
	(2)	•	ાંડ બન્ય -		_	_		(b)	તૃણનાશક પ્રતિરોધી ઘાસ		
	(3)	•			ના મિલન	. વખતે		(c)	દવા પ્રતિરોધી સુકોષકેન્દ્રીઓ		
	(4)	અંડપ	ાતના પ	<u>ક</u> ેલા				(d)	કૂતરા જેવી માનવ સર્જિત પાલતુ જાતીયો		
5 .	નીચેન	ા કોલમ	ને જોડો	અને સા	ચો વિકલ	ત્પ પસંદ કરો :		(1)	(a) અને (c)		
		કોલમ	- I			કોલમ - II		(2)	(b), (c) અને (d)		
	(a)	તરતી	પાંસળી	ઓ	(i)	બીજી અને સાતમી		(3)	ई ऽ त (d)		
						પાંસળીની વચ્ચે		(4)	ફક્ત (a)		
						આવેલ છે	10.	ઓક્ર	ીજનના વહનના અનુસંધાનમાં ખોટુ વિધાન ઓળખો :		
	(b)	સ્કંધા	ગ્ર પ્રવર્ધ•	ની	(ii)	ભુજાસ્થિ શીર્ષ	200	(1)	CO_2 નું આંશિક દબાણ O_2 ના હિમોગ્લોબીન સાથેન		
	(c)	સ્કંધા	સ્થિ		(iii)	અક્ષક જોડાણ		(-)	જોડાણમાં દ ખલગીરી કરે છે.		
	(d)	(d) સ્કંધઉલૂખલ		(iv)	iv) ઉરોસ્થિ સાથે જોડાતી નથી		(2)	વાયુકોષ્ઠોમાં H+ ની ઊંચી સાંદ્રતા ઓક્સીહીમોગ્લોબીનર્ન બનાવ૮માં સહાય કરે છે.			
		(a)	(b)	(c)	(d)	l)		(3)	વાયુકોષ્ઠોમાં ઓછો pCO ₂ ઓક્સીહીમોગ્લોબીનર્ન		
	(1)	(i)	(iii)	(ii)	(iv)			(0)	બનાવટમાં સહાય કરે છે.		
	(2)	(iii)	(ii)	(iv)	(i)		1		- ···-·		

(4)

ઓક્સીજનનું હિમોગ્લોબીન સાથેનું જોડાણ મુખ્યત્વે O_2 ના આંશિક દબાણ સાથે સંબંધિત છે.

- 11. 1987 માં મોન્દ્રીઅલ પ્રોટોકોલ આના અંક્શ માટે થયો :
 - (1) ઓઝોન વાયુ ઓછો કરતા પદાર્થીનુ ઉત્સર્જન
 - (2) ગ્રીન હાઉસ ગેસોનું નીકળવુ
 - (3) ઈ-કચરાનો નિકાલ
 - (4) જનીન-પરિવર્તીત સજીવોને એક દેશમાંથી બીજા દેશમાં લઈ જવા
- 12. નીચે પૈકીનુ ક્યું, પ્રવિષાણુઓ માટે સાચું છે ?
 - (1) તેમનામાં પ્રોટીનયુક્ત આવરણ વગરના મુક્ત RNA હોય છે.
 - (2) તેમનામાં પ્રોટીનયુક્ત આવરણવાળુ DNA હોય છે.
 - (3) તેમનામાં પ્રોટીનમય આવરણ વગરના મુક્ત DNA હોય છે.
 - (4) તેમનામાં પ્રોટીનયુક્ત આવરણવાળુ RNA હોય છે.
- 13. સાચુ વિધાન પસંદ કરો :
 - (1) ગ્લુકાગોન હાઈપોગ્લાયસેમીયા સાથે સંકળાયેલ છે.
 - (2) ઈન્સ્યુલિન સ્વાદુપિંડકોષો અને મંદપૂર્ણ કોષો પર કાર્ય કરે છે.
 - (3) ઈન્સ્યુલિન હાઈપરગ્લાયસેમીયા સાથે સંકળાયેલ છે.
 - (4) ગ્લુકોકોર્ટીકોઈડસ ગ્લુકોનિયોજીનેસિસ ને પ્રેરે છે.
- 14. બીજ સુષુપ્તતાના નિયંત્રણમાં, નીચે પૈકી કયો પદાર્થ અટકાવકર્તા નથી ?
 - (1) એબ્સીસીક એસિડ
 - (2) ફીનોલીક એસિડ
 - (3) પેરા-એસ્કોર્બીક એસિડ
 - (4) જીબ્રેલીક એસિડ
- 15. મનુષ્યના શરીરમાં પ્રવેશતો *પ્લાઝમોડીયમનો* ચેપી તબક્કો છે.
 - (1) સ્પોરોઝોઈટસ
 - (2) માદા જન્યુકોષ
 - (3) નર જન્યુકોષ
 - (4) દ્રોફોઝોઈટસ
- 16. જે સ્ત્રીઓ ગર્ભધારણ કરી શકતી નથી તેઓમાં નીચેના માંથી કઈ પધ્ધતિ થી ગર્ભના સ્થાનાંતરણમાં મદદ થાય છે ?
 - (1) GIFT અને ZIFT
 - (2) ICSI અને ZIFT
 - (3) GIFT અને ICSI
 - (4) ZIFT અને IUT

- 17. રંગસૂત્રીય આનુવંશિકતાના સિદ્ધાંતની પ્રાયોગિક ચકાસણી આમણે કરી :
 - (1) સટન
 - (2) બોવેરી
 - (3) મોર્ગન
 - (4) મેન્ડલ
- 18. રોગપ્રતિકારકતાના સંદર્ભમાં **ખોટું** વિધાન ઓળખો :
 - (1) જ્યારે તૈયાર પ્રતિદ્રવ્ય ને સીધુ આપવામાં આવે તો તેને 'નિષ્ક્રિય રોગપ્રતિકારકતા' કહે છે.
 - (2) સક્રિય રોગપ્રતિકારકતા ઝડપી છે અને સંપૂર્ણ પ્રતિભાવ આપે છે.
 - (3) ગર્ભ કેટલુક પ્રતિદ્રવ્ય માતા માંથી મેળવે છે, તે નિષ્ક્રિય રોગપ્રતિકારકતાનું ઉદાહરણ છે.
 - (4) જયારે પ્રતિજન (જીવીત કે મૃત) નો સામનો થાય ત્યારે યજમાનના શરીરમાં પ્રતિદ્રવ્ય ઉત્પન્ન થાય છે. જેને 'સક્રિય રોગપ્રતિકારકતા' કહે છે.
- 19. શીમ્બીક્રુળની વનસ્પતિઓની મૂળ ગંડિકામાં આવેલ નાઈટ્રોજીનેઝ જે પ્રક્રિયાનું ઉદ્દીપન કરે છે, તેની નિપજ આ છે :
 - (1) માત્ર નાઇદ્રેટ
 - (2) એમોનિયા અને ઓક્સિજન
 - (3) એમોનિયા અને હાઈડ્રોજન
 - (4) માત્ર એમોનિયા
- 20. તૃણભૂમિના નિવસનતંત્રમાં, પોષક સ્તરો સાથે તેમની સાચી ઉદાહરણ જાતિનું જોડકુ ગોઠવો :
 - (a) ચોથુ પોષક સ્તર
- (i) કાગડો
- (b) બીજુ પોષક સ્તર
- (ii) ગીધ
- (c) પ્રથમ પોષક સ્તર
- (iii) સસલુ
- (d) ત્રીજુ પોષક સ્તર
- (iv) ધાસ

સાચો વિકલ્પ પસંદ કરો :

(a) (b) (c) (d)

(iv)

- (1) (iii) (ii) (i)
- (2) (iv) (iii) (ii) (i)
- (3) (i) (ii) (iii) (iv)
- (4) (ii) (iii) (iv) (i)

- 21. સુકેન્દ્રી કોષો(યુકેરીઓટીક)માં ગ્લાયકોપ્રોટીન્સ અને ગ્લાયકોલીપીડસ્ના ઉત્પાદન માટે કયું, અગત્યનું સ્થાન છે?
 - (1) પેરોક્સીઝોમ્સ્
 - (2) ગોલ્ગીકાય
 - (3) પોલીસોમ્સ
 - (4) અંતઃકોષરસ જાળ
- 22. એક વનસ્પતિનો આડો છેદ નીચેના અંતસ્થ લક્ષણો દર્શાવે છે :
 - (a) પુલીય આવરણ ધરાવતા, અસંખ્ય, વીખરાયેલા વાહીપુલ.
 - (b) મૃદ્દતકીય કોષોનું બનેલ વિશાળ, જોઈ શકાતું આધારોત્તક.
 - (c) સહસ્થ અને અવર્ધમાન વાહીપુલો.
 - (d) અન્નવાહક મૃદુતકનો અભાવ.
 - નીચે પૈકી વનસ્પતિનો પ્રકાર અને ભાગ ઓળખો :
 - (1) એકદળી મૂળ
 - (2) દ્વિદળી પ્રકાંડ
 - (3) દ્વિદળી મૂળ
 - (4) એકદળી પ્રકાંડ
- 23. નીચેના માંથી શેને એનએરોબિક સ્લજ ડાયજેસ્ટર્સમાં વાહિન મળની આગળની સારવાર માટે મૂકવામાં આવે છે :
 - (1) તરતો કચરો
 - (2) પ્રાથમિક સારવારનું ઈફ્લ્યુઅન્ટ
 - (3) ક્રિયાશીલ સ્લજ
 - (4) પ્રાથમિક સ્લજ
- 24. નીચેના કોલમ જોડો અને સાચો વિકલ્પ પસંદ કરો :

કોલમ - I

કોલમ - II

- (a) ઈઓસિનોફિલ્સ
- (i) રોગપ્રતિકારક પ્રતિચાર
- (b) બેઝોકિલ્સ
- (ii) ભક્ષકકોષ
- (c) તટસ્થકણ
- (iii) વિનાશકારી ઉત્સેચક હિસ્ટામાઈનેઝ મુક્ત કરે છે.
- (d) લિમ્ફોસાઈટ્સ (લસિકાકણ)
- (iv) હિસ્ટામાઈન ધરાવતી કણિકાઓ મુક્ત કરે છે.
- (a) (b) (c) (d)
- (1) (iv) (i) (ii) (iii)
- (2) (i) (ii) (iv) (iii)
- (3) (ii) (i) (iii) (iv)
- (4) (iii) (iv) (ii) (i)

- 25. જાતિય સંક્રમિત રોગોનો સમાવેશ થતો હોય તેવો વિકલ્પ પસંદ કરો.
 - (1) ગોનોરિયા, મલેરિયા, જનનાંગીય હર્પિસ
 - (2) AIDS, મલેરિયા, ફાઈલેરિયા
 - (3) કેન્સર, AIDS, સિફિલિસ
 - (4) ગોનોરિયા, સિકિલિસ, જનનાંગીય હર્પિસ
- **26.** પ્રત્યાંકન વખતે DNA કુંતલ ને ખોલવામાં સહાય કરતા ઉત્સેચકનું નામ ઓળખો.
 - (1) DNA હેલીકેઝ
 - (2) DNA પોલીમરેઝ
 - (3) RNA પોલીમરેઝ
 - (4) DNA લાઈગેઝ
- 27. પૃથ્વીના નીચે પૈકીના પ્રદેશોમાંથી કયો, સૌથી વધુ જાતિ વિવિધતા દર્શાવે છે ?
 - (1) મેડાગાસ્કર
 - (2) હિમાલય
 - (3) એમોઝોનના જંગલો
 - (4) ભારતનો પશ્ચિમી ઘાટ
- 28. નિવસન તંત્રની કુલ પ્રાથમિક ઉત્પાદકતા અને ચોખ્ખી પ્રાથમિક ઉત્પાદકતાને અનુલક્ષીને, નીચે પૈકી કયું વિધાન સા**યું** છે ?
 - (1) કુલ પ્રાથમિક ઉત્પાદકતા ચોખ્ખી પ્રાથમિક ઉત્પાદકતા કરતા હમેશા વધુ હોય છે.
 - (2) કુલ પ્રાથમિક ઉત્પાદકતા અને ચોખ્ખી પ્રાથમિક ઉત્પાદકતા, બંને એક જ છે.
 - (3) કુલ પ્રાથમિક ઉત્પાદકતા અને ચોખ્ખી પ્રાથમિક ઉત્પાદકતા વચ્ચે કોઈ સંબંધ નથી.
 - (4) કુલ પ્રાથમિક ઉત્પાદકતા ચોખ્ખી પ્રાથમિક ઉત્પાદકતા કરતા હમેશા ઓછી હોય છે.
- 29. નીચે પૈકી કયો, વસતિનો ગુણ નથી ?
 - (1) જન્મદર
 - (2) મૃત્યૃદર
 - (3) જાતિ આંતરક્રિયા
 - (4) જાતિ ગુણોત્તર
- **30.** પ્રકાશ શ્વસન અંતર્ગત RuBisCo ઉત્સેચકની પ્રાણવાયુકરણ પ્રક્રિયાથી ઉત્પન્ન થાય છે :
 - (1) 3-C સંયોજનનો 1 અણુ
 - (2) 6-C સંયોજનનો 1 અણુ
 - (3) 4-C સંયોજનનો 1 અણુ અને 2-C સંયોજનનો 1 અણુ
 - (4) 3-C સંયોજનના 2 અણુઓ

- દ્વિતીય ચયાપચયી પદાર્થો જેવા કે, નીકોટીન, સ્ટ્રીકનીન અને 31. કેફીન વનસ્પતિ દ્વારા આના માટે ઉત્પન્ન થાય છે :
 - વૃધ્ધિ પ્રતિસાદ (1)
 - સંરક્ષણ ક્રિયા (2)
 - (3)પ્રજનન પર અસર
 - પોષક મૂલ્ય (4)
- નીચે પૈકી એ પદાર્થો ઓળખો, જેમની રચનામાં ગ્લાયકોસાઈડીક 32. બંધ અને પેપટાઈડ બંધ આવેલ હોય છે :
 - ગ્લીસરોલ, ટ્રીપસીન (1)
 - સેલ્યુલોઝ, લીસીથીન (2)
 - ઈન્યુલીન, ઈન્સ્યુલીન (3)
 - કાઈટીન, કોલેસ્ટરોલ (4)
- નીચે પૈકી **ખોટું** વિધાન ઓળખો : 33.
 - રસકાષ્ઠ, જળ અને ખનિજતત્વોનું મૂળ થી પર્ણો સુધી (1) વહન કરે છે.
 - રસકાષ્ઠ એ, સૌથી અંદર આવેલ દ્વિતીય જલવાહક છે (2)અને આછા રંગનું છે.
 - ટેનિનસ્, રેઝિન્સ, તૈલી પદાર્થો, વિ.ના ભરાવાને લીધે (3)અંતઃકાષ્ઠનો રંગ ઘેરો હોય છે.
 - અંત:કાષ્ઠ જળનું પરિવહન નથી કરતું પણ યાંત્રિક આધાર (4) આપે છે.
- મનુષ્યના પાચનતંત્રના અનુસંધાને સાચુ વિધાન ઓળખો : 34.
 - લસીસ્તર એ પાચનનળીનું સૌથી અંદરનું સ્તર છે. (1)
 - શેષાંત્ર ખુબજ ગુંચળાદાર ભાગ છે. (2)
 - કૃમિવત્ ગ્રહણી થી ઉત્પન્ન થાય છે. (3)
 - શેષાંત્ર નાના આંતરડામાં ખુલે છે. (4)
- જો બે સળંગ બેઝ જોડ વચ્ચેનું અંતર 0.34 nm હોય અને સસ્તનના 35. લાક્ષણિક કોષમાં ના દ્વિકૃંતલાકાર DNA માં કુલ બેઝ જોડી ની સંખ્યા 6.6×10^9 bp હોય તો DNA ની લંબાઈ આશરે કેટલી હશે ?
 - 2.5 મીટર્સ (1)
 - 2.2 મીટર્સ (2)
 - 2.7 મીટર્સ (3)
 - 2.0 મીટર્સ (4)

- નીચે પૈકીનું કયુ વિધાન અંતર્વિષ્ટ અંત્રિકાઓ માટે ખોટું છે ? 36.
 - તેઓ ખોરાકના કણોને આરોગવામાં ગુંથાયેલ હોય છે. (1)
 - તે કોષરસમાં મુક્ત રીતે આવેલ હોય છે. (2)
 - તે કોષરસમાં આવેલ આરક્ષિત પદાર્થો દર્શાવે છે. (3)
 - તેઓ કોઈ કલા (પટલથી) બંધાયેલ હોતા નથી. (4)
- નીચેના કોલમને જોડો અને સાચો વિકલ્પ પસંદ કરો : 37.

કોલમ - I કોલમ - II 6 થી 15 જોડ ઝાલર ફાટો *ટ્રાઈગોન* (a) (i) વિષમ પાલિ પૃચ્છ (b) (ii) યુષમુઆ મીનપક્ષ (c) પ્લવનાશય (iii) કાસ્થિમત્સ્ય અસ્થિમત્સ્ય ઝેર કંટક (શૂળ) (d) (iv) (a) (b) **(c)** (d) (1) (iii) (iv) (i) (ii)(2)(iv) (ii) (iii) (i) (3)(i) (iv) (iii) (ii) (4) (ii) (iii) (iv) (i)

- રોબર્ટ મે અનુસાર, પૃથ્વીની જાતિ વિવિધતા આટલી છે : 38.
 - 20 મિલિયન (1)
 - 50 મિલિયન (2)
 - 7 મિલિયન (3)
 - 1.5 મિલિયન
- નીચેના રોગોને તેના માટે કારણ ભૂત સજીવો સાથે જોડી સાચો **39**. વિકલ્પ પસંદ કરો :

	કોલમ	- I			કોલમ - II
(a)	ટાયફા	ઈડ		(i)	<i>વુચેરેરિયા</i>
(b)	ન્યુમો	નિયા		(ii)	<i>પ્લાઝમોડિયમ</i>
(c)	ફાઈલે	રિએસિસ્	ι	(iii)	સાલ્મોનેલા
(d)	મલેરિ	યા		(iv)	હીમોફિલસ
	(a)	(b)	(c)	(d)	
(1)	(iii)	(iv)	(i)	(ii)	
(2)	(ii)	(i)	(iii)	(iv)	
(3)	(iv)	(i)	(ii)	(iii)	
(4)	(i)	(iii)	(ii)	(iv)	

- 40.
 - રાઈ (1)
 - સૂર્યમુખી (2)
 - (3)પ્લમ
 - રીંગણ

41.	أحرول	કોલમોને	23	2117	ວມອນີ	ကြန္တေျ	naie	(c)
41.	નાચના	કાલમાન	જાડા	અન	સાચા	ાવકલ્પ	ાપસાદ ક	521

	કોલમ	- I			કોલમ - II
(a)	કોર્દિક	ાય		(i)	મધ્યકર્ણને કંઠનળી સાથે જોડે છે
(b)	શંખિક	sl		(ii)	સાય જાડ <i>ઇ</i> કુહરનો ગુંચળામય ભાગ
(c)	કર્ણ કં	ઠનળી		(iii)	અંડાકાર ગવાક્ષ સાથે
(d)	પેંગડુ			(iv)	જોડાયેલ બેસિલર કલા પર આવેલ હોય છે
	(a)	(b)	(c)	(d)	
(1)	(iii)	(i)	(iv)	(ii)	
(2)	(iv)	(ii)	(i)	(iii)	
(3)	(i)	(ii)	(iv)	(iii)	
(4)	(ii)	(iii)	(i)	(ix/)	

- 42. બે વિરોધાભાસી સ્વરૂપ ધરાવતી, એક લક્ષણ સિવાય બાકીના તમામ લક્ષણ સરખા હોય, એવી કેટલી શુધ્ધ ઉછેરવાળી વટાણાની જાતિઓની જોડ મેન્ડલે પસંદ કરી હતી ?
 - (1) 2
 - (2) 14
 - (3) 8
 - (4) 4
- 43. ABO રૂધિરજુથનું નિયંત્રણ કરતા જનીન 'I' ના અનુસંધાનમાં ખોટુ વિધાન ઓળખો.
 - (1) વ્યક્તિમાં ત્રણમાંથી ફક્ત બે અલીલ હશે.
 - (2) જયારે I^A અને I^B સાથે હોય ત્યારે તેઓ એકજ પ્રકારની શર્કરાની અભિવ્યક્તિ કરે છે.
 - (3) અલીલ 'i' કોઈપણ પ્રકારની શર્કરા ઉત્પન્ન કરતું નથી.
 - (4) જનીન (I) ના ત્રણ અલીલ છે.
- 44. એસ.એલ. મીલરે, તેમના પ્રયોગોમાં એક બંધ ફ્લાસ્કમાં, આ બધાને મિશ્રણ કરી એમિનો એસિડ ઉત્પન્ન કર્યો :
 - (1) CH_3 , H_2 , NH_4 અને વરાળને, $800^{\circ}C$ પર
 - (2) મિથેન, હાઇડ્રોજન, એમોનિયા અને વરાળને, 600°C પર
 - (3) CH_3 , H_2 , NH_3 અને વરાળને, $600^{\circ}C$ પર
 - (4) મિથેન, હાઈડ્રોજન, એમોનિયા અને વરાળને, 800°C પર
- 45. રીસ્ટ્રીક્શન ઉત્સેચકના અનુસંધાનમાં ખોટુ વિધાન ઓળખો.
 - (1) તે DNA ની શુંખલાને પેલીન્ડ્રોમિક સ્થાને થી કાપે છે.
 - (2) તે જનીન ઈજનેરી વિદ્યામાં ઉપયોગી છે.
 - (3) DNA લાઈગેઝના ઉપયોગથી ચીપકુ છેડાને જોડી શકાય છે
 - (4) દરેક રિસ્ટ્રિક્શન ઉત્સેચક DNA ગોઠવણીની લંબાઈ તપાસીને કાર્ય કરે છે.

- 46. જેલ ઈલેક્ટ્રોફોરેસીસમાં, છૂટા પડેલ DNA ના ટુકડાઓને, આની મદદથી જોવાય છે :
 - (1) ઈથીડીયમ બ્રોમાઈડ UV કિરણો થી
 - (2) UV કિરણોમાં એસીટોકાર્માઈન થી
 - (3) ઈન્ફ્રારેડ કિરણોમાં ઈથીડીયમ બ્રોમાઈડ થી
 - (4) તેજસ્વી વાદળી લાઈટમાં, એસીટોકાર્માઈનની મદદ થી
- 47. વનસ્પતિના એ ભાગો, જે, બે પેઢીઓ-એકની અંદર બીજા, ધરાવે છે :
 - (a) પરાગશયમાં આવેલ પરાગરજ
 - (b) બે નરજન્યુ ધરાવતુ, અંકુરિત પરાગરજ
 - (c) ફળમાં રહેલ બીજ
 - (d) બીજાંડ માં આવેલ ભ્રૂણ પૂટ
 - (1) (a), (b) અને (c)
 - (2) (c) અને (d)
 - (3) (a) અને (d)
 - (4) માત્ર (a)
- 48. ફ્લોરીડીઅન સ્ટાર્ચની રચના આના જેવી હોય છે :
 - (1) એમાઈલોપેક્ટીન અને ગ્લાયકોજન
 - (2) મેનીટોલ અને આલ્ગીન
 - (3) લેમીનારીન અને સેલ્યુલોઝ
 - (4) સ્ટાર્ચ અને સેલ્યુલોઝ
- 49. નીચેના કોલમને જોડો અને સાચો વિકલ્પ પસંદ કરો :

	કોલમ	- I			કોલમ - II
(a)	પિટચુ	૮રી ગ્રંથી	l	(i)	ગ્રેવ્સ રોગ
(b)	થાયરો	થાયરોઈડ ગ્રંથી			ડાયાબીટિઝ મેલિટસ
(c)	એડ્રીન	ાલ ગ્રંથી		(iii)	ડાયાબીટિઝ ઈન્સીપીડસ
(d)	સ્વાદુ	પેંડ		(iv)	એડીસન રોગ
	(a)	(b)	(c)	(d)	
(1)	(iii)	(ii)	(i)	(iv)	
(2)	(iii)	(i)	(iv)	(ii)	
(3)	(ii)	(i)	(iv)	(iii)	
(4)	(ix7)	(iii)	(i)	(ii)	

50. સમુદાય મેરૂદંડી માટે નીચેના માંથી કયા વિધાન સાચું છે 🤉
--

- (a) પૂચ્છ મેરૂદંડીઓમાં મેરૂદંડ શીર્ષ થી પૂંછડી સુધી લંબાયેલ હોય છે અને જીવન પર્યંત હાજર રહે છે.
- (b) પૃષ્ઠવંશીઓમાં મેરૂદંડ ફક્ત ગર્ભાવસ્થા દરમ્યાનજ હાજર હોય છે.
- (c) મધ્યસ્થ ચેતાતંત્ર પૃષ્ઠ અને પોલુ હોય છે.
- (d) મેરૂદંડીઓ 3 ઉપસમુદાયોમાં વિભાજત હોય છે સામી મેરૂદંડી, કંચુક મેરૂદંડી અને શીર્ષ મેરૂદંડી.
- (1) (c) અને (a)
- (2) (a) અને (b)
- (3) (b) અને (c)
- (4) (d) અને (c)

51. મૂત્રમાં નીચેના માંથી કઈ પરિસ્થિતિ ડાયાબીટિઝ મેલિટસ સુચવે છે ?

- (1) યુરેમિયા અને મૂત્રપિંડની પથરી
- (2) કીટોન્યુરિયા અને ગ્લાયકોસોરિયા
- (3) મૂત્રપિંડની પથરી અને હાયપરગ્લાયસેમિયા
- (4) યુરેમિયા અને કિટોન્યુરિયા

52. જે મૂળ પ્રકાંડના તલભાગમાંથી ઉત્પન્ન થાય, તેને આ કહેવાય :

- (1) પ્રાથમિક મૂળ
- (2) સ્તંભ મૂળ
- (3) પાશ્વીય મૂળ
- (4) तंतुभूण
- 53. કેટલાક વિભાજન પામતા કોષો, કોષ ચક્રમાંથી નીકળી જઈ, દૈહિક, અપ્રવૃત્તિમય (અક્રીય) અવસ્થામાં આવે છે. આને, કવાઈસેન્ટ અવસ્થા (G_0) કહેવાય છે. આ પ્રક્રિયા, આના અંતે થાય છે :
 - (1) G₁ અવસ્થા
 - (2) S અવસ્થા
 - (3) G_2 અવસ્થા
 - (4) M અવસ્થા
- **54.** પ્રકાશ-પ્રક્રિયામાં, પ્લાસ્ટોક્વીનોન, અહીંથી, ઈલેક્ટ્રોનને ખસેડવામાં મદદરૂપ થાય છે :
 - (1) Cytb $_6$ f સંકીર્ણ થી PS-I
 - (2) PS-I થી NADP+
 - (3) PS-I થી ATP સીંથેઝ
 - (4) $ext{PS-II}$ થી $ext{Cytb}_6 ext{f}$ સંક્રીર્ણ સુધી

- 55. EcoRI દ્વારા ઓળખવામાં આવતી ખાસ પેલીન્ડ્રોમિક શૃંખલા _____ છે.
 - (1) 5' GGAACC 3'
 - 3' CCTTGG 5'
 - (2) 5' CTTAAG 3'
 - 3' GAATTC 5'
 - (3) 5' GGATCC 3'
 - 3' CCTAGG 5'
 - (4) 5' GAATTC 3'
 - 3' CTTAAG 5'

56. નીચેના માંથી બેઝીક એમીનો એસિડ ઓળખો :

- (1) ગ્લુટામીક એસિડ
- (2) લાયસીન
- (3) વેલાઈન
- (4) ટાયરોસીન

57.	દ્ધિપાર્શ્વીય સમમિતિ અને અદેહકોષ્ઠી પ્રાણીઓ
	ઉદાહરણ દ્વારા દર્શાવાય છે.

- (1) પૃથૃકૃમિ
- (2) સૂત્રકૃમિ
- (3) નુપુરક
- (4) કંકતધરા
- 58. આ શૃંખલા (સીક્વન્સ) દ્વારા, વાહકમાં જોડાયેલ DNA ની પ્રતિકૃતિઓનો આંકડો નક્કી થાય છે :
 - (1) ઓરી સ્થાન
 - (2) પેલીન્ડ્રોમિક સીકવન્સ
 - (3) ઓળખવાનું સ્થાન
 - (4) પસંદગીમાન રેખક
- 59. પેંગ્વીન અને ડોલ્ફીનના ફ્લિપર્સ _____ નું ઉદાહરણ છે.
 - (1) કેન્દ્રાભિસારી ઉદ્ધિકાસ
 - (2) ઔદ્યોગિક મેલાનિઝમ
 - (3) પ્રાકૃતિક પસંદગી
 - (4) અનુકૂલિત પ્રસરણ
- 60. એન્ટેરોકાઈનેઝ ઉત્સેચક _____ ના રૂપાંતરણમાં મદદ કરે છે.
 - (1) દ્રિપ્સિનોજનનું દ્રિપ્સિનમાં
 - (2) કેસીનોજેનનું કેસીનમાં
 - (3) પેપ્સિનોજનનું પેપ્સિનમાં
 - (4) પ્રોટીનનું પોલિપેપ્ટાઈડમાં

G6							8		
61.	ભાષાં	તર (ટ્રાન્	સલેશન)) નો પ્રથ	મ તબક	કો આ છે :	66.	અર્ધી	કરણ
	(1)	DNA	∖ ના અહ	શુને ઓળ	ાખવુ			(a)	ین
	(2)	tRN	A નુ એિ	મેનોએસ	ાયલેશન્	t		. ,	
	(3)	વિરુદદ	ય–સંકેત	(એન્ડી-	કોડોન)ને ઓળખવુ		(b)	પે
	(4)	રીબોગ	કોમનું m	RNA ?	<u>સાથે જો</u>	ડાવવું			
62.	નીચેન	તામાંથી ક	કયું મૂત્રવૃ	.ઘ્ધિને રો	કે છે ?			(c)	3
	(1)	આલ્ડ અ	ોસ્ટેરોન	ને કારણે	ì Na+	· અને પાણીનું મૂત્રપિંડ			
			-	, ન ઃશોષણ				(d)	S
	(2)		_			ાહિનીનું સંકોચન કરે છે		નીચે	પૈકી
	(3)					માં ઘટાડો			(:
	(4)			ાોછો સ્રા	.વથી ૦	ાધારે પ્રમાણમાં પાણીનું		(1)	(i
		પુન:શ	ાષણ					(2)	(i
63.			ખાવશ્યક	તત્વો અ	ને તેમન	ાકાર્યોને અનુલક્ષીને જોડકા		(3)	(i
	ગોઠવ							(4)	(i
	(a)	લોહ		(i)		ાું પ્રકાશ વિભાજન		0.7	_
	(b)	ઝીન્ક		(ii)		જ અંકુરણ	67.	નીચેન	તા કે
	(c)	બોરોન	1	(iii)	ક્લોરો જરૂરી	ફીલના જૈવસં²લેષણ માટે			ક
	(d)	મેંગેની	.හ	(iv)	•	જૈવસં²લેષણ		(a)	ક
	સાચો	વિકલ્પ	પસંદ ક	રો :				4.	
		(a)	(b)	(c)	(d)			(b)	X
	(1)	(iv)		(ii)	(i)				
	(2) (3)	(iii) (iv)	(iv) (i)	(ii) (ii)	(i) (iii)			(c)	2
	(4)	(ii)	(i)	(iv)	(iii)				
64.	ပါက	เอเนเจโฉ [.]	ગજન (:	ઓબીલા	દી કે ઉ	ાંકુઓ, આમાં જોવા મળે		(d)	૨
01.	છે :	28 626.00	200	.X	0) 3 (
	(1)	<i>પેરી</i> સ	d						4
	(2)	<i>માર્કે િ</i>	-શેઆ					(1)	(a
	(3)	ઈકવી:	સેટમ					(1)	(i
	(4)	સાલ્વ	ીનીઆ					(2) (3)	(i (i
65.	સાચી	જોડ પર	તંદ કરો :					(4)	(i
	(1)		ોલ કીટો ·		_	દૈહિક પ્રભાવી		(-)	(-
	. /	, -		9		રંગસૂત્રીય વિશેષક	68.	કિરણ	. પુષ્
	(2)	સિકલ	. સેલ એ	નીમિયા	-	દૈહિક પ્રચ્છન્ન		(1)	9
						રંગસૂત્રીય,		(2)	ચ
						રંગસૂત્ર -11			

X સંલગ્ન

Y સંલગ્ના

થેલેસેમિયા

હીમોફિલિયા

(3)

(4)

ાને અનુલક્ષીને નીચે પૈકીને જોડો : કાયગોટી**ન** ઉપાન્તીભવન (i) (૮ર્મીનલાઈઝેશન) સ્વસ્તિક ચોકડી કીટીન (ii) (ચાયેસ્મેટા) વ્યતિકરણ (ક્રોસીંગ ીપ્લોટીન (iii) ઓવર) ાયાકાઈનેસીસ સૂત્રયુગ્મન (iv) સાચો વિકલ્પ પસંદ કરો : (b) (d) a) **(c)** iv) (iii) (ii) (i) (ii) (iii) i) (iv) ii) (i) (iv) (iii) (ii) iii) (iv) (i) ોલમને જોડો અને **સાચો** વિકલ્પ પસં**દ** કરો : ોલમ - I કોલમ - II લોસ્ટ્રીડીયમ બ્યુટીલીકમ સાયકલો-(i) સ્પોરીન -A રાઈકોડમાં પોલીસ્પોરમ બ્યુટીરીક (ii) એસિડ મોનાસ્કસ પરપુરીયસ સાઈદ્રીક (iii) એસિડ એસ્પર્જાલસ નાઈજર રૂધિર માં (iv) કોલેસ્ટેરોલ ઘટાડતો ઘટક **(b)** (d) a) **(c)** (i) (iii) ii) (iv) (iii) i) (ii) (iv) (iii) (i) iv) (ii) (iv) (ii) (i) iii) પકોને આ હોય છે : કોર્ધ્વસ્થ બીજાશય મધોજાયી બીજાશ<mark>ય</mark> અર્ધ અધઃસ્થ બીજાશય (3)

અધઃસ્થ બીજાશય

(4)

GUJA	RATI					9	9						G6	
69.	$9.$ આંતરાવસ્થાના G_1 તબકકાના (ગેપ $1)$ અનુસંધાનમાં સાચુ વિધાન						74.	સજીવ અને તેના બાયોટેકનોલોજીમાં થતા ઉપયોગને જોડે				તા ઉપયોગને જોડો :		
	ઓળ	ખો :						(a)	(a) બેસીલસ (i)			પ્રતિકૃતિ વાહક		
	(1)	બધાજ	૪ કોષીય	. ઘટકોર્ન	ી પુનઃગે	ોઠવણી થાય છે.			<i>થુરી</i> અ	ોન્જોન્સિ	સ			
	(2)			ીક રીતે ર થતુ નથી	,	ાધ્ધિ પામે છે પરંતુ DNA		(b)	થર્મસ	એકવેટી	કસ	(ii)	સૌ પ્રથમ rDNA અણુની બનાવટ	
	(3)	કોષકે•	ન્દ્ર વિભા	ાજન પા	મે છે.									
	(4)	DNA	∖નું સંશ્લે	તેષણ અ	ાથવા સ્વ	યંજનન થાય છે.		(c)	એગ્રોબેક્ટેરીયમ			(iii)	DNA પોલીમરેઝ	
70.	નીચેન	ાા કોલમ	જોડો અ	ાને સાચે	ો વિકલ્પ	ા પસંદ કરો :		૮યુમીફેસીઅન્સ (d) સાલમોનેલા			H	(iv)	Cry પ્રોટીન્સ	
		કોલમ	- I			કોલમ - II		(d) સાલનાનલા (iv) Cry પ્રાટા ટાયફામ્યુરીયમ					Ory Alet A	
	(a)	Bt કપાસ (i)				જનીન થેરાપી		સાચો	સાચો વિકલ્પ પસંદ કરો :					
	(b)		ોસાઈન		(ii)	કોષીય રક્ષણ			(a)	(b)	(c)	(d)		
		ડીએિ	મેનેઝ ર્ન	l ઊણપ				(1)	(iv)	(iii)	(i)	(ii)		
	(c)	RNA	i		(iii)	HIV નો ચેપ શોધવો		(2)	(iii)	(ii)	(iv)	(i)		
	(d)	PCR			(iv)	બેસીલસ થુરીએન્જેન્સિસ		(3) (4)	(iii) (ii)	(iv) (iv)	(i) (iii)	(ii) (i)		
		(a)	(b)	(c)	(d)		75.	વૃધ્ધિ	.ની પ્રક્રિય	તા, આ ધ	દરમ્યાન	સૌથી વ	ાધુ હોય છે :	
	(1)	(iii)	(ii)	(i)	(iv)			(1)	મંદવૃ	ધ્ધે તબ	ક્કો			
	(2)	(ii)	(iii)	(iv)	(i)			(2)	જર્ણત	tl				
	(3) (4)	(i) (iv)	(ii) (i)	(iii) (ii)	(iv) (iii)			(3)	સુષુપ્ત	ાતા				
								(4)	લૉગ લ	તબક્કો				
71.						76.	3. બીકાનેરી ઘેટી અને મરીનો ઘેટીનો ઉપયોગ કરી નીચેની કઈ પઘ્ઘતિ દ્વારા ઘેટાની નવી જાત 'હિસારડેલ' વિકસાવવામાં આવી છે.							
	(1) એડીનાઈન, થાયમીન સાથે 1 H-બંધથી જોડાય છે.			10.										
	(2) એડીનાઈન, થાયમીન સાથે 3 H-બંધથી જોડાય છે.					(1)		રેવર્તન સ્						
	(3)					ાી જોડ બનાવતું. • • • • • • •		(2)	પર સં					
	(4)	એડીન્	ાાઇન, થ	ાયમીન	સાથે બ	H-બંધથી જોડાય છે.		(3)		 સંવર્ધન				
72.	પ્રાણી છે ?	ઓમાં ર્ન	ોચેનામાં	થી કયુ પ્ર	યોટીન વિ	ોપુલ પ્રમાણમાં જોવા મળે		(4)	બર્હિસ					
	(1)	કોલા૰	૪ન				77.	પ્રમાહ	ાભૂત E	CG માં	QRS स	ાંકુલ શું ઘ	દર્શાવે છે ?	
	(2)	લેક્ટીન્						(1)	કર્ણકો	.નું વિધ્રુ	ત્રીકરણ			
	(3)	ઈન્સ્યુ						(2)	ક્ષેપકો	નું વિધ્રુવ	યીકરણ			
	(4)	•	 લોબીન					(3)	ક્ષેપકો	.નું પુનઃધ્	<u>યુ</u> વીકરણ			
					\ \ \ .	\. 0		(4)	કર્ણકો	નું પુનઃ	યુવીકરણ	l		
73.	•		_			ોરડીના પાક પર છંટકાવ યને આમ શેરડીની ઉપજ	78.	บเมะ	ചക്തിക	ગોબલે	(હાલ ડ		માંથી સ્પાંતરિત	
	કરવા વધે છે		หรเงาเ	લગાઠ	440 *	યન આને શકડાના ઉપજ	70.		પાચનનળીના ગોબલેટ કોષો માંથી રૂપો થયેલા છે.				·	
	(1)	જબ્રેલ <u>ે</u>	ીન					(1)		ાકાર અધિ	ઘેચ્છદીય	ા કોષો		
	(2)	ઈથીર્લ						(2)	કાસ્થિ	ાકોષો				
	(3)	એબ્ર્સ	ોસીક એ	.સિડ				(3)	સંયુક્ત	ા અધિચ	છદીય કે	ોષો		
	(4)	સાયટે	ોકાઈનીન	t				(4)	લાદીર	તમ અધિ	ોચ્છદીય	કોષો		

79 .	જોડકા	ગોઠવો

- (a) અપચયી ક્રિયાનું નિરોધક
- (b) પેપટાઈડ બંધ ધરાવે (
 - (ii) મેલોનેટ

(i)

રીસીન

- (c) કુગમાં કોષ-દિવાલનો પદાર્થ
- (iii) કાઈટીન
- (d) દ્વિતીય ઉપાપચયજ
- (iv) કૉલેજન

નીચે પૈકી સાચું ઓપ્શન પસંદ કરો :

- (a) (b) (c) (d)
- $(1) \qquad (iii) \qquad (i) \qquad (iv) \qquad (ii)$
- $(2) \qquad (iii) \qquad (iv) \qquad (i) \qquad (ii)$
- (3) (ii) (iii) (i) (iv)
- (4) (ii) (iv) (iii) (i)

80. Bt કપાસની જાતી કે જે *બેસીલસ થુરીએન્જોન્સિસ* (Bt) ના ઝેરી જનીનને દાખલ કરીને વિકસાવવામાં આવી છે તે ______ સામે પ્રતિકાર દર્શાવે છે.

- (1) કૂગના રોગો
- (2) વનસ્પતિ સૂત્રકૃમિઓ
- (3) કિટભક્ષકો
- (4) કિટક જીવાત

81. નીચેના કોલમને જોડો અને સાચો વિકલ્પ પસંદ કરો :

કોલમ - I

કોલમ - II

- (a) જરાયુ
- (i) એન્ડ્રોજન્સ
- (b) ઝોના પેલ્યુસીડા
- (ii) હ્યુમન કોરીઓનિક ગોનેડોદ્રોપીન અંત:સ્રાવ (hCG)
- (c) બલ્બો-યુરેથ્રલ ગ્રંથિઓ (iii) અંડકોષનું આવરણ
- (d) લેડીગ કોષો
- (iv) શિશ્નનું ઊંજણ
- લડાગ કાવા (a) (b)
- (c) (d)

(i)

- (1) (i) (iv) (ii) (iii)
- (2) (iii) (ii) (iv)
- (3) (ii) (iii) (iv) (i)
- (4) (iv) (iii) (i) (ii)

82. શ્વાસ દરમ્યાન થતી સાચી પ્રક્રિયા પસંદ કરો :

- (a) ઉરોદરપટલનું સંકોચન
- (b) બાહ્ય આંતર પાંસળી સ્નાયુઓનું સંકોચન
- (c) કુપ્કુસીય કદમાં ઘટાડો
- (d) આંતર-કુપ્કુસીય દબાણમાં વધારો
- (1) (c) અને (d)
- (2) (a), (b) અને (d)
- (3) \$5A (d)
- (4) (a) અને (b)

83. જે પ્રક્રિયા દ્વારા ઘાસના પર્ણોના અગ્ર પરથી રાત્રે અને વહેલી સવારે પ્રવાહી સ્વરૂપે જળનો નિકાસ થાય છે તે :

- (1) મૂળ દાબ
- (2) અંત: ચૂષણ
- (3) રસ સંકોચન
- (4) ઉત્સ્વેદન

84. નીચેના કોલમને જોડો અને સાચો વિકલ્પ પસંદ કરો :

કોલમ - I

કોલમ - II

- (a) ટોળામાં રહેતી પાક હાનિકારક (i) *એસ્ટેરિયસ* જીવાત
- (b) પુખ્તમાં અરીય સમમિતિ અને (ii) વીંછી ડીંબમાં દ્વિપાર્શ્વીય સમમિતિ
- (c) ફેફસા પોથી
- (iii) ટીનોપ્લાના
- (d) જૈવ પ્રદીપ્યતા
- (iv) લોકસ્ટા
- (a) (b) (c) (d) (iv) (i) (ii) (iii)
- (1) (iv) (i) (ii) (iii) (2) (iii) (ii) (i) (iv)
- (3) (ii) (i) (iii) (iv)
- (4) (i) (iii) (ii) (iv)

85. ઉદ્વિકાસનો ભ્રૂણવિજ્ઞાનીકી આધાર, આમણે વખોડયો :

- (1) આલ્ફ્રેડ વૉલેસ
- (2) ચાર્લ્સ ડારવીન
- (3) ઓપેરીન
- (4) કાર્લ અર્નસ્ટ વૉન બેઅર

86. નીચેના માંથી કયા અંતઃસ્નાવનું સ્તર ગ્રાફીયન પુટીકામાંથી અંડકોષની મુક્તિ (અંડપાત) નું કારણ છે ?

- (1) પ્રોજેસ્ટેરોનની ઊંચી સાંદ્રતા
- (2) LH ની નીચી સાંદ્રતા
- (3) FSH ની નીચી સાંદ્રતા
- (4) ઈસ્ટ્રોજનની ઊંચી સાંદ્રતા

87. બીજાશય નો દેહ, અહીંથી, અંડનાલ સાથે જોડાયેલ હોય છે :

- (1) બીજાંડછિદ્ર
- (2) પ્રદેહ
- (3) અંડકતલ
- (4) બીજકેન્દ્ર

- 88. ઘનાકાર અધિચ્છદીય કોષો કે જેમાં રસાંકુરો બ્રશવાળી કિનારી ધરાવતા હોય તે માં જોવા મળે છે.
 - (1) લાળગ્રંથીની નલિકાઓ
 - (2) ઉત્સર્ગ એકમની નિકટવર્તી ગુંચળામય નલિકા
 - (3) યુસ્ટેચીયન નલિકા
 - (4) આંતરડાનું સ્તર
- 89. નીચેના માંથી કયુ વિધાન સાચુ નથી ?
 - (1) પ્રોઈન્સ્યુલીનમાં એક વધારાનો પેપ્ટાઈડ હોય છે જેને C-પેપ્ટાઈડ કહે છે.
 - (2) સક્રિય ઈન્સ્યુલીન માં A અને B બે શૃંખલાઓ હોય છે જે હાઈડ્રોજન બંઘથી એકબીજા સાથે જોડાયેલ હોય છે.
 - (3) જનીન ઈજનેરી વિદ્યા વાળુ ઈન્સ્યુલીન (E-Coli) ઈ-કોલાઈમાં પેદા થાય છે.
 - (4) મનુષ્યમાં ઈન્સ્યુલીન નું સંશ્લેષણ પ્રોઈન્સ્યુલીન સ્વરૂપે થાય છે.
- 90. એક વારના સિદ્રિક એસિડ ચક્રમાં, પ્રક્રિયાર્થી સ્તરે આટલા ફોસ્ફોરાયલેશન થાય છે :
 - (1) એક
 - (2) બે
 - (3) ત્રણ
 - (4) શૂન્ય
- 91. એક સ્થિર ઈલેક્ટ્રોનને V volt ના વિજસ્થિતિમાનના તફાવતથી પ્રવેગીત કરવામાં આવે છે. જો આ ઈલેક્ટ્રોનની ડી-બ્રૉગ્લી તરંગલંબાઈ $1.227 \times 10^{-2}~\mathrm{nm}$ છે, તો વિજસ્થિતિમાનનો તફાવત છે:
 - (1) $10^2 \, \text{V}$
 - (2) $10^3 \, \text{V}$
 - (3) $10^4 \, \text{V}$
 - (4) 10 V
- 92. હવા માધ્યમ ધરાવતાં એક સમાંતર બાજુ કેપેસિટરનો કેપેસિટન્સ $6~\mu F~\dot{\wp}.~~$ એક ડાયઈલેક્ટ્રિક માધ્યમ ઉમેરતાં આ કેપેસિટન્સ $30~\mu F~\text{થાય}~\dot{\wp}.~~$ આ માધ્યમની પરમિટીવીટી છે _____. $(\epsilon_0 = 8.85 \times 10^{-12}~\text{C}^2~\text{N}^{-1}~\text{m}^{-2})$
 - (1) $1.77 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
 - (2) $0.44 \times 10^{-10} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
 - (3) $5.00 \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
 - (4) $0.44 \times 10^{-13} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$

- 93. \mathbf{r}_1 અને \mathbf{r}_2 (\mathbf{r}_1 = 1.5 \mathbf{r}_2) ત્રિજયાઓના તાંબાના બે ઘન ગોળાઓના તાપમાનમાં 1 K જેટલો વધારો કરવા જરૂરી ઉષ્માના જથ્થાનો ગુણોત્તર છે :
 - (1) $\frac{9}{4}$
 - (2) $\frac{3}{2}$
 - $(3) \qquad \frac{5}{3}$
 - (4) $\frac{27}{8}$
- 94. નીચેમાંનો કયો આલેખ તાંબા માટે અવરોધકનાં (ρ) નો તાપમાન (T) સાથેનો બદલાવ દર્શાવે છે?

- 95. એક કણ કે જેનો સ્થાન સદિશ $2\hat{k}$ m છે તેના પર ઉદ્દગમ બિંદુની સાપેક્ષે જયારે $3\hat{j}$ N બળ લાગે ત્યારનું ઘુર્ણનબળ (ટોર્ક) શોધો.
 - (1) $6\dot{j}$ N m
 - (2) $-6\hat{i}$ N m
 - (3) $6\hat{k}$ N m
 - (4) $6\hat{i}$ N m

- - (1) ચાર ગણો
 - (2) ચોથા ભાગનો
 - (3) શૂન્ય
 - (4) બમણો
- 97. એક નાના કોણ પ્રિઝ્મ (પ્રિઝ્મ કોણ A છે) ની એક સપાટી પર એક કિરણ આપાત કોણ *i* પર આપાત થાય છે અને વિરૂધ્ધ સપાટીથી લંબ રીતે નિર્ગમન પામે છે. જો આ પ્રિઝ્મમાં દ્રવ્યનો વક્કીભવનાંક μ છે, તો આપાત કોણ _____ ની નજીકનો છે.
 - (1) $\frac{2A}{\mu}$
 - (2) µA
 - $(3) \qquad \frac{\mu A}{2}$
 - $(4) \qquad \frac{A}{2\mu}$
- 98. એક એકપરમાણ્વીય વાયુની સરેરાશ ઉષ્મા ઊર્જા છે $\underline{\qquad}$. $(k_B$ એ બોલ્ટઝમાન અચળાંક અને T એ નિરપેક્ષ તાપમાન છે)
 - $(1) \qquad \frac{3}{2} \ k_B T$
 - $(2) \qquad \frac{5}{2} \ k_B T$
 - (3) $\frac{7}{2} k_B T$
 - (4) $\frac{1}{2} k_B T$
- 99. અવગણ્ય દ્રવ્યમાન ધરાવતાં 1 m લંબાઈના એક જડ સળિયાના બે છેડા પર અનુક્રમે 5 kg અને 10 kg દ્રવ્યમાનના કણો જોડેલ છે.
 - 5 kg ના કણથી આ તંત્રનું દ્રવ્યમાન કેન્દ્ર આશરે _____ અંતર પર છે.
 - (1) 50 cm
 - (2) 67 cm
 - (3) 80 cm
 - (4) 33 cm

- 100. સમાન ક્ષમતા ધરાવતાં બે નળાકારો A અને B ને એક બીજા સાથે એક સ્ટોપ કૉક થી જોડેલ છે. A એક પ્રમાણભૂત તાપમાન અને દબાણે એક આદર્શ વાયુ ધરાવે છે. B સંપૂર્ણ ખાલી છે. આ આખી પ્રણાલી ઉષ્મીય અવાહક છે. આ સ્ટોપ કૉકને અચાનક ખોલવામાં આવે છે. આ પ્રક્રિયા છે:
 - (1) સમોષ્મી
 - (2) સમકદ
 - (3) સમદાબ
 - (4) સમતાપી
- 101. યંગના ડબલ સ્લિટના પ્રયોગમાં, જો સુસબ્ધ ઉદ્દગમો વચ્ચેનું અંતર અડઘું કરવામાં આવે અને પડદાનું સુસબ્ધ ઉદ્દગમોથી અંતર બમણું કરવામાં આવે, તો શલાકાની પહોળાઈ _____ થશે.
 - (1) અડધી
 - (2) ચાર ગણી
 - (3) ચોથા ભાગની
 - (4) બમણી
- 102. એક અવરોધ માટે વર્ણ-સંકેત નીચે આપેલ છે :

આ અવરોધનું મુલ્ય અને સહ્યતા (tolerance) અનુક્રમે છે :

- (1) $47 \text{ k}\Omega, 10\%$
- (2) $4.7 \text{ k}\Omega, 5\%$
- (3) $470 \Omega, 5\%$
- (4) $470 \text{ k}\Omega, 5\%$
- **103.** $0.2~\text{m}^3$ કદના અવકાશના એક ચોક્કસ ક્ષેત્રમાં 5~V નો સમાન વીજસ્થિતિમાન જોવા મળે છે. આ ક્ષેત્રમાં વિદ્યુત ક્ષેત્રનું પરિમાણ છે :
 - (1) 0.5 N/C
 - (2) 1 N/C
 - (3) 5 N/C
 - (4) શૂન્ય
- 104. અવરોધના ઋણ તાપમાન ગુણાંક ધરાવતા હોય તેવા 'ઘન પદાર્થો' છે :
 - (1) ફક્ત અવાહકો
 - (2) ફક્ત અર્ધવાહકો
 - (3) અવાહકો અને અર્ધવાહકો
 - (4) ધાતુઓ

- $20~\mathrm{cm}^2$ ક્ષેત્રફળ ધરાવતી એક અપરાવર્તિત સપાટી પર 105. $20~{
 m W/cm^2}$ સરેરાશ ફ્લક્ષ ધરાવતો પ્રકાશ લંબરૂપે આપાત થાય છે. 1 મિનિટ સમય ગાળામાં આ સપાટી દ્વારા પ્રાપ્ત થતી ઊર્જા : 63
 - $12 \times 10^3 \,\mathrm{J}$ (1)
 - $24 \times 10^3 \,\mathrm{J}$ (2)
 - $48 \times 10^{3} \,\text{J}$ (3)
 - (4) $10 \times 10^3 \,\mathrm{J}$
- એક ટૂંકા વિદ્યુત દ્વિધ્રુવિયની દ્વિધ્રુવિય ચાકમાત્રા $16 \times 10^{-9} \, \mathrm{C} \, \mathrm{m}$ છે. આ દ્વિધ્રુવિયના અક્ષ સાથે 60° ખૂણો બનાવતી એક રેખા પર, આ દ્રિધ્રવિયના કેન્દ્રથી 0.6 m અંતરે રહેલ એક બિંદ્ર પર આ દ્રિધુવિયના કારણે લાગતું વિદ્યુતસ્થિતિમાન છે :

$$\left(\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ N m}^2/\text{C}^2\right)$$

- (1) $200 \, \mathrm{V}$
- (2)400 V
- (3)શુન્ય
- $50\,\mathrm{V}$ (4)
- 107. કોઈ એક તારામાંથી 600 nm તરંગલંબાઈનો પ્રકાશ આવે છે તેમ ધારો. 2 m વ્યાસના ઓબ્જેક્ટીવ ધરાવતાં ટેલિસ્કોપની વિભેદન-સીમા છે.
 - $1.83 \times 10^{-7} \, \text{rad}$ (1)
 - $7.32 \times 10^{-7} \, \text{rad}$ (2)
 - $6.00 \times 10^{-7} \, \text{rad}$ (3)
 - $3.66 \times 10^{-7} \, \text{rad}$ (4)
- 108. 10 cm ત્રિજયાનો એક ગોલીય વાહક સમાન રીતે વિતરિત $3.2 \times 10^{-7} \text{ C}$ વીજભાર ધરાવે છે. આ ગોળાના કેન્દ્રથી 15 cm અંતરે રહેલા બિંદુ પર વિદ્યુતક્ષેત્રનું માન શું હશે ?

$$\left(\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ N m}^2/\text{C}^2\right)$$

- $1.28 \times 10^{5} \text{ N/C}$ (1)
- $1.28 \times 10^6 \text{ N/C}$ (2)
- $1.28 \times 10^7 \text{ N/C}$ (3)
- $1.28 \times 10^4 \,\text{N/C}$ (4)

4 kg અને 6 kg દ્રવ્યમાનના બે પદાર્થોને એક દ્રવ્યમાન રહિત 109. દોરીના છેડાઓ સાથે બાંધેલ છે. આ દોરી ઘર્ષણરહિત ગરગડી પરથી પસાર કરેલ છે (આકૃતિ જુઓ). ગુરૂત્વીય પ્રવેગ (g) ના પદમાં આ તંત્રનો પ્રવેગ છે :

g/2(1)

13

- g/5(2)
- (3)g/10
- (4) g
- 110. સરળ આવર્ત ગતિ કરતાં એક કણના સ્થાનાંતર અને પ્રવેગ વચ્ચેનો કળા તફાવત _____ છે.
 - $\frac{3\pi}{2}$ rad

 - શૂન્ય (3)
- વિદ્યુતચુંબકીય તરંગની તીવ્રતામાં વિદ્યુતક્ષેત્ર અને ચુંબકીય ક્ષેત્ર ઘટકોનાં યોગદાનનો ગુણોત્તર _____ છે. (c= વિદ્યુતચુંબકીય તરંગની ઝડપ)
 - 1:1
 - (2)1:c
 - $1 : c^2$ (3)
 - c:1
- એક ગિટારમાં સમાન દ્રવ્યના બનેલા બે તારો A અને B જરાક અસમ સ્વરિત છે અને તે 6 Hz આવૃત્તિનો સ્પંદ ઉત્પન્ન કરે છે. જયારે B માં તનાવને જરાક ઘટાડવામાં આવે છે, આ સ્પંદની આવૃત્તિ વધીને 7 Hz થાય છે. જો A ની આવૃત્તિ 530 Hz હોય, તો B ની મૂળ આવૃત્તિ હશે _____.
 - $524\,\mathrm{Hz}$ (1)
 - $536\,\mathrm{Hz}$ (2)
 - (3) $537\,\mathrm{Hz}$
 - $523\,\mathrm{Hz}$
- 113. એક આંતરપૃષ્ઠ માટે બ્રુસ્ટર કોણ i_h હોય છે :
 - $30^{\circ}\!<\!i_b\!<\!45^{\circ}$
 - $45^{\circ}\!<\!i_b\!<\!90^{\circ}$

 - $i_b = 90^{\circ}$ $0^{\circ} < i_b < 30^{\circ}$

- 114. સાર્થક અંકોને ધ્યાનમાં રાખતાં, 9.99 m 0.0099 m નું મુલ્ય શું હશે ?
 - (1) 9.98 m
 - (2) 9.980 m
 - (3) 9.9 m
 - (4) 9.9801 m
- 115. એક મિટર-બ્રિજના ડાબા ખાંચા (gap) માં એક અવરોધ તારને જોડતાં તે જમણા ખાંચામાં ના $10~\Omega$ અવરોધને એવા બિંદુ પર સંતુલિત કરે છે કે જે આ બ્રિજના તારને 3:2 ના ગુણોત્તરમાં વિભાજીત કરે છે. જો અવરોધ–તારની લંબાઈ $1.5~\mathrm{m}$ છે, તો $1~\Omega$ ના અવરોધ–તારની લંબાઈ છે :
 - (1) 1.0×10^{-1} m
 - (2) $1.5 \times 10^{-1} \text{ m}$
 - (3) $1.5 \times 10^{-2} \,\mathrm{m}$
 - (4) $1.0 \times 10^{-2} \,\mathrm{m}$
- 116. આણ્વિક વ્યાસ d અને અંકઘનતા n ધરાવતાં એક વાયુના સરેરાશ મુક્ત પથને _____ વડે રજુ કરી શકાય છે.
 - $(1) \qquad \frac{1}{\sqrt{2} \, \operatorname{n} \pi \mathrm{d}^2}$
 - (2) $\frac{1}{\sqrt{2} n^2 \pi d^2}$
 - (3) $\frac{1}{\sqrt{2} n^2 \pi^2 d^2}$
 - $(4) \qquad \frac{1}{\sqrt{2} \text{ n}\pi d}$
- 117. r-ત્રિજ્યા ધરાવતી એક કેપેલરી ટ્યૂબ (કેશનળી) ને પાણીમાં ડુબાડતાં તેમાં h ઊંચાઈ જેટલું પાણી ચઢે છે.

આ કેશનળીમાંના પાણીનું દ્રવ્યમાન 5 g છે. 2r ત્રિજ્યા ધરાવતી અન્ય એક કેશનળીને પાણીમાં ડુબાડવામાં આવે છે. આ નળીમાં ઉપર ચઢતાં પાણીનું દળ છે :

- (1) 5.0 g
- (2) 10.0 g
- (3) 20.0 g
- (4) 2.5 g
- **118**. નીચેનામાંથી કોના એક માટે બોહર મૉડેલ માન્ય **નથી** ?
 - (1) એકધા આયનિત હિલીયમ પરમાણું (He+)
 - (2) ડચૂટેરોન પરમાણું
 - (3) એકધા આયનિત નિયોન પરમાણું (Ne+)
 - (4) હાઈડ્રોજન પરમાણું

119. એક સ્ક્રુ ગેજની લઘુત્તમ માપ શક્તિ 0.01 mm છે અને તેની વર્તુળાકાર માપપટ્ટી પર 50 કાપાઓ છે.

આ સ્ક્રુ ગેજનો અંતરાલ (pitch) _____છે.

- (1) 0.25 mm
- (2) 0.5 mm
- (3) 1.0 mm
- (4) 0.01 mm
- 120. 100 આંટા ધરાવતાં 50 cm લંબાઈનો એક લાંબો સોલેનોઈડ 2.5 A વીજપ્રવાહ ધારિત છે. આ સોલેનોઈડના કેન્દ્રમાં ચુંબકીય ક્ષેત્ર છે:

 $(\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1})$

- (1) $3.14 \times 10^{-4} \,\mathrm{T}$
- (2) $6.28 \times 10^{-5} \,\mathrm{T}$
- (3) $3.14 \times 10^{-5} \,\mathrm{T}$
- (4) $6.28 \times 10^{-4} \,\mathrm{T}$
- 121. L લંબાઈ અને A આડછેદનું ક્ષેત્રફળ ધરાવતો એક તાર એક જડ આધારથી લટકે છે. જ્યારે તારના મુક્ત છેડા પર દ્રવ્યમાન M લટકાવવામાં આવે ત્યારે આ તારની લંબાઈ બદલાઈને L_1 થાય છે, તો યંગ મોડયુલસનું સૂત્ર છે :
 - $(1) \qquad \frac{Mg(L_1-L)}{AL}$
 - (2) $\frac{\text{MgL}}{\text{AL}_1}$
 - $(3) \qquad \frac{MgL}{A(L_1-L)}$
 - (4) $\frac{\text{MgL}_1}{\text{AL}}$
- 122. એક શ્રેણી LCR પરિપથને ac વોલ્ટેજ ઉદ્દગમ સાથે જોડેલ છે. જ્યારે પરિપથમાંથી L ને દૂર કરવામાં આવે છે ત્યારે પ્રવાહ અને

વોલ્ટેજ વચ્ચેનો કળા-તફાવત $\frac{\pi}{3}$ છે. જો તેના બદલે પરિપથમાંથી

 C ને દૂર કરવામાં આવે ત્યારે ફરીથી પ્રવાહ અને વોલ્ટેજ વચ્ચેનો

કળા–તફાવત $\frac{\pi}{3}$ છે. આ પરિપથનો શક્તિગુણાંક (power

- factor) ව :
- (1) 0.5
- (2) 1.0 (3) -1.0
- (4) શૂન્ય
- 123. 599 સસેપ્ટીબીલીટી ધરાવતો એક લોખંડના સળિયાને $1200\,\mathrm{A\,m^{-1}}$ ચુંબકન ક્ષેત્ર આપવામાં આવે છે. આ સળિયાના દ્રવ્યની પરમિઆબીલીટી છે :

 $(\mu_0 \!=\! 4\pi \!\times\! 10^{\,-\,7}\; T\; m\; A^{\,-\,1})$

- (1) $8.0 \times 10^{-5} \,\mathrm{T} \,\mathrm{m} \,\mathrm{A}^{-1}$
- (2) $2.4\pi \times 10^{-5} \text{ T m A}^{-1}$
- (3) $2.4\pi \times 10^{-7} \text{ T m A}^{-1}$
- (4) $2.4\pi \times 10^{-4} \text{ T m A}^{-1}$

124. એક નળાકારમાં $249\,\mathrm{kPa}$ દબાણે અને $27^\circ\mathrm{C}$ તાપમાને હાઈડ્રોજન વાયુ ભરેલ છે.

તેની ધનતા છે : (R = $8.3~\mathrm{J~mol^{-1}\,K^{-1}}$)

- (1) 0.2 kg/m^3
- (2) 0.1 kg/m^3
- (3) 0.02 kg/m^3
- (4) 0.5 kg/m^3

125. જયારે એક યુરેનિયમ સમસ્થાનિક $^{235}_{92}\mathrm{U}$ પર ન્યૂદ્રૉનનો મારો ચલાવવામાં આવે છે, તે $^{89}_{36}\mathrm{Kr}$, ત્રણ ન્યૂદ્રૉન્સ અને ઉત્પન્ન કરે છે.

- (1) $^{91}_{40}$ Zr
- (2) $^{101}_{36}$ Kr
- (3) $^{103}_{36}$ Kr
- (4) $^{144}_{56}$ Ba

126. દર્શાવેલ લોજીક-પરિપથ માટે સત્યાર્થ-સારણી છે:

- - 1 0 1
 - 1 1 1
- (2) A B Y 0 0 1
 - $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$
 - 1 0 1
 - 1 1 0
- (3) A B Y
 - 0 0 1
 - 0 1 0
 - $\begin{array}{cccc} 1 & & 0 & & 0 \\ 1 & & 1 & & 0 \end{array}$
- (4) A B Y
 - 0 0 0
 - 0 1 0
 - $\begin{array}{cccc} 1 & 0 & 0 \\ 1 & 1 & 1 \end{array}$

- 127. $3 \times 10^{-10} \text{ Vm}^{-1}$ વિદ્યુતક્ષેત્રમાં એક વીજભારિત કણનો અપવહન-વેગ (drift velocity) $7.5 \times 10^{-4} \, \text{m s}^{-1}$ છે અને $\text{m}^2 \, \text{V}^{-1} \, \text{s}^{-1}$ ગતિશીલતા (mobility) છે.
 - (1) 2.5×10^6
 - (2) 2.5×10^{-6}
 - (3) 2.25×10^{-15}
 - (4) 2.25×10^{15}

128. DNA માં એક બોન્ડ તોડવા માટેની જરૂરી ઊર્જા $10^{-20}~\mathrm{J}$ છે. eV માં આનું મુલ્ય _____ ની નજીકનું છે.

- (1) 0.6
- (2) 0.06
- (3) 0.006
- (4) 6

129. 0.5 g પદાર્થનું ઊર્જા તુલ્યાંક _____ છે.

- (1) $4.5 \times 10^{13} \,\mathrm{J}$
- (2) $1.5 \times 10^{13} \,\mathrm{J}$
- (3) $0.5 \times 10^{13} \,\mathrm{J}$
- (4) $4.5 \times 10^{16} \,\mathrm{J}$

130. પ્રતિબળનું પરિમાણ _____ છે.

- (1) $[ML^2T^{-2}]$
- (2) $[ML^0T^{-2}]$
- (3) $[ML^{-1}T^{-2}]$
- (4) [MLT⁻²]

131. ____ ના લીધે p-n જંક્શન ડાયોડના ડિપ્લેશન ક્ષેત્રની પહોળાઈમાં વધારો થાય છે.

- (1) ફક્ત રિવર્સ બાયસ
- (2) ફૉર્વર્ડ બાયસ અને રિવર્સ બાયસ બન્ને
- (3) કૉર્વર્ડ પ્રવાહના વધારા
- (4) કક્ત ફૉર્વર્ડ બાયસ

132. એક ટાવરની ટોચ પરથી એક દડાને 20 m/s ના વેગથી શિરોલંબ દિશામાં નીચે તરફ ફેંકવામાં આવે છે. થોડાક સમય બાદ તે ભોંય તળિયાને 80 m/s ના વેગથી અથડાય છે. આ ટાવરની ઊંચાઈ

- $\dot{\vartheta}$ _____. (g = 10 m/s²)
- (1) 340 m
- (2) 320 m
- (3) 300 m
- (4) 360 m

- 133. એક 200 V, 50 Hz ના ac સપ્લાય સાથે $40~\mu F$ નો એક કેપેસિટર જોડેલ છે. આ પરિપથમાંના પ્રવાહનું rms મુલ્ય આશરે છે.
 - (1) 2.05 A
 - (2) 2.5 A
 - (3) 25.1 A
 - (4) 1.7 A
- 134. દ્રાન્ઝિસ્ટર એક્શન માટે નીચેમાંથી કયું વિધાન સાચું છે?
 - (1) બેઝ, એમિટર અને કલેક્ટર ક્ષેત્રોનું કદ્દ (size) સમાન હોવું જોઈએ.
 - (2) એમિટર જંક્શન અને કલેક્ટર જંક્શન બન્ને ફોર્વર્ડ બાયસ હોય છે.
 - (3) બેઝ ક્ષેત્ર ખુબજ પાતળું અને ઓછી માત્રામાં ડોપ (અશુધ્ધિ) થયેલ હોવું જોઈએ.
 - (4) બેઝ, એમિટર અને કલેક્ટર ક્ષેત્રોમાં ડોપિંગનું (અશુધ્ધિનું) પ્રમાણ સરખું હોવું જોઈએ.
- 135. એક પદાર્થનું પૃથ્વીની સપાટી પર વજન 72 N છે. પૃથ્વીની ત્રિજ્યાનાં અડધી ઊંચાઈ પર, તેના પર કેટલું ગુરૂત્વાકર્ષણ
 - (1) 32 N

બળ લાગે?

- (2) 30 N
- (3) 24 N
- (4) 48 N
- 136. પ્લેટીનમ (Pt) ઈલેક્ટ્રોડનો ઉપયોગ કરીને મંદ સલ્ફ્યુરીક એસિડનું વિદ્યુત વિભાજન કરતાં એનોડ પર નીપજ પ્રાપ્ત થાય છે, જે
 - (1) ઓક્સિજન વાયુ
 - (2) H₂S વાયુ
 - SO_2 વાયુ
 - (4) હાઈડ્રોજન વાયુ
- 137. પીગાળેલ CaCl_2 (પરમાણ્વીય દ્રવ્યમાન, $\operatorname{Ca} = 40 \, \mathrm{g \, mol}^{-1}$) માંથી 20 g કેલ્શીયમનું ઉત્પાદન કરવા માટે કેટલી ફેરાડે (F) ની સંખ્યા જરૂરી છે ?
 - (1) 2
 - (2) 3
 - (3) 4
 - (4) 1

- 138. 2-બ્રોમો-પેન્ટેનની વિલોપન પ્રક્રિયામાંથી બનતો પેન્ટ-2-ઈન એ નીચેના માંથી શોધો :
 - (a) β-વિલોપન પ્રક્રિયા
 - (b) ઝેત્સેવ નિયમને અનુસરે છે
 - (c) ડિહાઈડ્રોહેલોજનેશન પ્રક્રિયા
 - (d) નિર્જલીકરણ પ્રક્રિયા
 - (1) (a), (c), (d)
 - (2) (b), (c), (d)
 - (3) (a), (b), (d)
 - (4) (a), (b), (c)
- 139. એક પ્રથમ ક્રમ પ્રક્રિયા માટે વેગ અચળાંક $4.606 \times 10^{-3} \, \mathrm{s}^{-1}$ છે. પ્રક્રિયકનાં $2.0 \, \mathrm{g}$ માંથી $0.2 \, \mathrm{g}$ માં થતા ઘટાડા માટે કેટલો સમય જરૂરી છે ?
 - (1) 200 s
 - (2) 500 s
 - (3) 1000 s
 - (4) 100 s
- 140. નીચે આપેલા અણુઓની જોડી માંથી કયાની દ્વિધ્રુવ ચાકમાત્રા શૂન્ય થશે ?
 - (1) બોરોન દ્રાયફલુઓરાઈડ, હાઈડ્રોજન ફલુઓરાઈડ, કાર્બન ડાયોક્સાઈડ, 1,3-ડાયક્લોરોબેન્ઝિન
 - (2) નાઈટ્રોજન ટ્રાયફ્લુઓરાઈડ, બેરિલિયમ ડાયફ્લુઓરાઈડ, પાણી, 1,3-ડાયક્લોરોબેન્ઝિન
 - (3) બોરોન ટ્રાયફલુઓરાઈડ, બેરિલિયમ ડાયફલુઓરાઈડ, કાર્બન ડાયોક્સાઈડ, 1,4-ડાયક્લોરોબેન્ઝિન
 - (4) એમોનિયા, બેરિલિયમ ડાયફલુઓરાઈડ, પાણી, 1.4-ડાયક્લોરોબેન્ઝિન
- 141. રાઉલ્ટના નિયમ થી મિશ્રણ કે જે ધન વિચલન પ્રદર્શિત કરે છે તે શોધો.
 - (1) બેન્ઝિન + ટોલ્યુઈન
 - (2) એસિટોન + ક્લોરોફોર્મ
 - (3) ક્લોરોઈથેન + બ્રોમોઈથેન
 - (4) ઈથેનોલ + એસિટોન
- 142. સુક્રોઝ નું જળવિભાજન કરતા શું પ્રાપ્ત થશે ?
 - (1) α -D-ગ્લુકોઝ + β -D-ગ્લુકોઝ
 - (2) α-D-³લુકોઝ + β-D-ક્રુક્ટોઝ
 - (3) α -D- $\frac{1}{2}$ ક્કોઝ + β -D- $\frac{1}{2}$ ક્કોઝ
 - (4) β-D-ગ્લુકોઝ + α-D-ક્રુક્ટોઝ

- 143. નીચે આપેલા માંથી કયો બેઝિક એમિનો એસિડ છે ?
 - (1) એલેનાઈન
 - (2) ટાયરોસીન
 - (3) લાઈસીન
 - (4) સિરીન
- 144. વુર્ટઝ પ્રક્રિયા વડે નીચે આપેલા આલ્કેન માંથી કયો સારી નીપજ બનાવી શકતો નથી ?
 - (1) 2,3-ડાયમિથાઈલબ્યૂટેન
 - (2) n-હેપ્ટેન
 - (3) n-બ્યૂટેન
 - (4) n-હેક્ઝેન
- 145. નીચે આપેલામાંથી કયો એક કેટાયનિક પ્રક્ષાલક છે ?
 - (1) સોડિયમ સ્ટિયરેટ
 - (2) સિટાઈલદ્રાયમિથાઈલ એમોનિયમ બ્રોમાઈડ
 - (3) સોડિયમ ડોડેસાઈલબેન્ઝિન સલ્ફોનેટ
 - (4) સોડિયમ લોરિલ સલ્ફેટ
- 146. નીચે આપેલા માંથી કયો એમાઈન કાર્બાઈલએમાઈન કસોટી આપશે ?

$$(1) \qquad \begin{array}{c} \text{NHCH}_3 \\ \end{array}$$

(2)
$$N(CH_3)_2$$

$$(3) \qquad \begin{array}{c} \text{NHC}_2 \text{H}_5 \\ \\ \end{array}$$

- 147. પેપર ક્રોમેટોગ્રાફીનું ઉદાહરણ એ :
 - (1) વિભાજન ક્રોમેટોગ્રાફી (Partition chromatography)
 - (2) થીન લેયર ક્રોમેટોગ્રાફી (પાતળા સ્તર ક્રોમેટોગ્રાફી)
 - (3) સ્તંભ ક્રોમેટોગ્રાફી
 - (4) અધિશોષણ ક્રોમેટોગ્રાફી
- 148. $0.1 \, \mathrm{M} \, \mathrm{NaOH} \,$ માં $\mathrm{Ni(OH)}_2$ ની દ્રાવ્યતા શોધો. $\mathrm{Ni(OH)}_2$ નો આયનિક ગુણાકાર 2×10^{-15} આપેલ છે.
 - (1) $2 \times 10^{-8} \,\mathrm{M}$
 - (2) $1 \times 10^{-13} \,\mathrm{M}$
 - (3) $1 \times 10^8 \,\mathrm{M}$
 - (4) $2 \times 10^{-13} \,\mathrm{M}$
- 149. નીચે આપેલા માંથી કયો એક પરમાણુઓની સંખ્યા મહત્તમ ધરાવતું હશે ?
 - (1) Mg(s) નો 1 g[Mg નું પરમાણ્વીય દળ = 24]
 - (2) $O_2(g)$ નો 1 g [O નું પરમાણ્વીય દળ = 16]
 - (3) Li(s) નો 1 g [Li નું પરમાણ્લીય દળ = 7]
 - (4) Ag(s) નો 1 g [Ag નું પરમાણ્વીય દળ = 108]
- 150. $2\operatorname{Cl}(g) \to \operatorname{Cl}_2(g)$ પ્રક્રિયા માટે, **સાચો** વિકલ્પ શોધો.
 - (1) $\Delta_r H > 0$ અને $\Delta_r S < 0$
 - (2) $\Delta_r H < 0 અને <math>\Delta_r S > 0$
 - (3) $\Delta_r H < 0$ અને $\Delta_r S < 0$
 - (4) $\Delta_{v}H > 0$ અને $\Delta_{v}S > 0$
- 151. નીચે આપેલ પ્રક્રિયામાં કાર્બનના ઓક્સિડેશન આંકમાં થતો ફેરફાર શું છે ?

 $\operatorname{CH}_4(\mathbf{g}) + 4\operatorname{Cl}_2(\mathbf{g}) \longrightarrow \operatorname{CCl}_4(\mathbf{l}) + 4\operatorname{HCl}(\mathbf{g})$

- (1) 0 થી +4
- (2) -441 + 4
- (3) 0 થી -4
- (4) + 4 થી + 4

- 152. નીચે આપેલામાંથી કયો એક કુદરતી બહુલક છે ?
 - (1) પોલી (બ્યૂટાડાઈન-સ્ટાયરીન)
 - (2) પોલીબ્યૂટાડાઈન
 - (3) પોલી (બ્યૂટાડાઈન-એક્રિલોનાઈટ્રાઈલ)
 - (4) સીસ-1,4-પોલીઆઈસોપ્રીન
- **153.** Cr^{2+} આયનની ગણતરી કરેલ સ્પિન ફક્ત ચુંબકીય ચાકમાત્રા શોધો.
 - (1) 4.90 BM
 - (2) 5.92 BM
 - (3) 2.84 BM
 - (4) 3.87 BM
- 154. યૂરિયાની પાણી સાથે પ્રક્રિયા થઈને \mathbf{A} બને છે કે જેનું વિઘટન થઈને તેમાંથી \mathbf{B} બનશે. \mathbf{B} જ્યારે Cu^{2+} (જલીય) માંથી પસાર કરતાં ગાઢા ભૂરા રંગનું દ્રાવણ \mathbf{C} બને છે. નીચે આપેલામાંથી \mathbf{C} નું સૂત્ર કયું છે ?
 - (1) $[Cu(NH_3)_4]^{2+}$
 - (2) Cu(OH)₂
 - (3) $CuCO_3 \cdot Cu(OH)_2$
 - (4) $CuSO_4$
- 155. નીચે આપેલ ધાતુ આયન ઘણા બધા ઉત્સેચકોને કાર્યાન્વિત (ઉત્તેજિત) કરે છે, તેઓ ગ્લુકોઝના ઓક્સિડેશનથી ATP ના ઉત્પાદનમાં ભાગ લે છે અને Na સાથે જ્ઞાનતંતુ સંદેશો વહન (ડ્રાન્સિમિશન) માટે પણ જવાબદાર છે.
 - (1) તાંબુ
 - (2) કેલ્શીયમ
 - (3) પોટેશિયમ
 - (4) લોખંડ
- 156. સુક્રોઝના જળવિભાજનની પ્રક્રિયામાં નીચે આપેલ છે.

સુક્રોઝ
$$+\mathrm{H_2O} \rightleftharpoons$$
 ગ્લુકોઝ $+$ ફ્રુક્ટોઝ

 $300~{
m K}$ પર, જો સંતુલન અચળાંક $({
m K_c})~2 imes 10^{13}$ હોય તો, તેજ તાપમાન પર $\Delta_{
m r}{
m G}^{\ominus}$ ની કિંમત શું થશે ?

- (1) $8.314 \,\mathrm{J}\,\mathrm{mol}^{-1}\mathrm{K}^{-1} \times 300 \,\mathrm{K} \times \ln(2 \times 10^{13})$
- (2) $8.314 \,\mathrm{J}\,\mathrm{mol}^{-1}\mathrm{K}^{-1} \times 300 \,\mathrm{K} \times \ln(3 \times 10^{13})$
- (3) $-8.314 \,\mathrm{J}\,\mathrm{mol}^{-1}\mathrm{K}^{-1} \times 300 \,\mathrm{K} \times \ln(4 \times 10^{13})$
- (4) $-8.314 \,\mathrm{J}\,\mathrm{mol}^{-1}\mathrm{K}^{-1} \times 300 \,\mathrm{K} \times \ln(2 \times 10^{13})$

- 157. એક પ્રક્રિયાના પ્રક્રિયકની સાંદ્રતામાં થતો વધારો નીચેના માંના ફેરફાર તરફ દોરી જશે જે શોધો :
 - (1) પ્રક્રિયાની ઉષ્મા
 - (2) દેહલી ઊર્જા
 - (3) અથડામણ આવૃત્તિ
 - (4) સક્રિયકરણ શક્તિ
- **158.** કલિલ દ્રાવણના ક્યા ગુણધર્મને શોધવા માટે ઝેટા પોટેન્શિયલની માપણી ઉપયોગી છે ?
 - (1) દ્રાવ્યતા
 - (2) કલિલ કણોની સ્થિરતા
 - (3) કલિલ કણોનું કદ
 - **(4)** સ્નિગ્ધતા
- 159. એસિટોન અને મિથાઈલમેગ્નેશિયમ ક્લોરાઈડ વચ્ચે પ્રક્રિયા કરી ત્યારબાદ જળવિભાજન કરવાથી શું બનશે ?
 - (1) દ્વિતીયક બ્યૂટાઈલ આલ્કોહોલ
 - (2) તૃતીયક બ્યૂટાઈલ આલ્કોહોલ
 - (3) આઈસોબ્યૂટાઈલ આલ્કોહોલ
 - (4) આઈસોપ્રોપાઈલ આલ્કોહોલ
- 160. CaCl₂, MgCl₂ અને NaCl ના દ્રાવણમાંથી HCl ને પસાર કરવામાં આવે છે. નીચે આપેલા માંથી કયું એક સંયોજન(નો) સ્ફડિકમય બને છે?

 - (3) NaCl, MgCl₂ અને CaCl₂
 - (4) બંન્ને MgCl₂ અને CaCl₂
- **161.** $^{175}_{71} \mathrm{Lu}$ માં પ્રોટોન, ન્યૂટ્રોન અને ઈલેક્ટ્રોનની સંખ્યા અનુક્રમે શોધો.
 - (1) 104, 71 અને 71
 - (2) 71, 71 અને 104
 - (3) 175, 104 અને 71
 - (4) 71, 104 અને 71

162. નીચે આપેલાને જોડો :

	ઓક્સાઈડ		પ્રકૃતિ
(a)	CO	(i)	બેઝિક
(b)	BaO	(ii)	ત૮સથ

(c) ${\rm Al_2O_3}$ (iii) એસિડિક (d) ${\rm Cl_2O_7}$ (iv) ઉભયગુણીય નીચે આપેલા માંથી કયો **સાચો** વિકલ્પ છે ?

163. 288 pm કોષ ધાર સાથે એક તત્વ અંત:કેન્દ્રિત ક્યુબિક (bcc) બંધારણ ધરાવે છે, પરમાણ્વીય ત્રિજ્યા શોધો.

(1)
$$\frac{\sqrt{2}}{4} \times 288 \text{ pm}$$

(2) $\frac{4}{\sqrt{3}} \times 288 \text{ pm}$
(3) $\frac{4}{\sqrt{2}} \times 288 \text{ pm}$

$$(4) \qquad \frac{\sqrt{3}}{4} \times 288 \text{ pm}$$

164. સિલીન્ડરમાં N_2 અને Ar વાયુઓનું એક મિશ્રણ N_2 ના 7 g અને Ar ના 8 g ધરાવે છે. પાત્રમાં (સિલિન્ડરમાં) વાયુઓના મિશ્રણનું કુલ દબાણ 27 બાર હોય તો, N_2 નું આંશિક દબાણ શોધો.

[પરમાણ્વીય દળો N=14, ${\rm Ar}\!=\!40~({\rm g~mol}^{-1}$ માં) નો ઉપયોગ કરો]

- (1) 12 બાર
- (2) 15 બાર
- (3) 18 બાર
- (4) 9 બાર

165. કો-ઓર્ડીનેશન સંયોજનો (સવર્ગ સંયોજનો) બનાવવા માટે લિગાન્ડોનો ક્ષેત્ર સામર્થ્યનો ચઢતો **સાચો** ક્રમ નીચે આપેલા માંથી કયો છે ?

(1)
$$SCN^- < F^- < CN^- < C_2O_4^{2-}$$

(2)
$$F^- < SCN^- < C_2O_4^{2-} < CN^-$$

(3)
$$CN^- < C_2O_4^{2-} < SCN^- < F^-$$

(4)
$$SCN^- < F^- < C_2O_4^{2-} < CN^-$$

166. એનિસોલની HI સાથેની પ્રક્રિયા થી પ્રાપ્ત થાય તે :

(1)
$$+ CH_3OH$$

$$(2) \hspace{1cm} \begin{array}{c} \text{OH} \\ \\ \\ \end{array} + \text{C}_2 \text{H}_5 \text{I} \end{array}$$

$$(3) \qquad \begin{array}{|c|c|} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

(4)
$$OH$$
 $+ CH_3I$

167. એક આદર્શ વાયુ માટે સમોષ્મી પરિસ્થિતિ હેઠળ થતું મુક્ત વિસ્તરણનો સાચો વિકલ્પ શોધો.

(1)
$$q = 0, \Delta T < 0$$
 અને $w > 0$

(2)
$$q < 0, \Delta T = 0 \text{ and } w = 0$$

(3)
$$q > 0, \Delta T > 0 \text{ and } w > 0$$

(4)
$$q = 0, \Delta T = 0 \text{ and } w = 0$$

168. નીચે આપેલા માંથી સાચું વિધાન ઓળખી બતાવો.

- (1) ફોલ્લાવાળા તાંબામાં દેખાતા ફોલ્લા એ ${
 m CO}_2$ ના નીકળવાના કારણે છે.
- (2) નિકલ માટે બાષ્પ અવસ્થા શુધ્ધિકરણ વાન-આર્કેલ પધ્ધતિ દ્વારા કરવામાં આવે છે.
- (3) પિગ આયર્નને જુદા-જુદા આકારમાં ઘડી શકાય છે.
- (4) ભરતર લોખંડ એ 4% કાર્બન સાથેનું અશુધ્ધ લોખંડ છે.

169. ખોટું વિધાન શોધી બતાવો.

- (1) સંક્રાંતિ તત્વો અને તેના સંયોજનો તેની ઘણી બધી ઓક્સિડેશન અવસ્થાઓ ધરાવતા હોવાને કારણે તેની ઉદ્દીપકીય સક્રિયતા માટે જાણીતા છે અને તે સંક્રીર્ણો બનાવે છે.
- (2) જયારે H, C અથવા N જેવા નાના પરમાણુઓ ધાતુઓના સ્ફડિક લેટાઈસોના અંદરના ભાગમાં ફસાઈ જાય ત્યારે આંતરાલીય સંયોજનો બને છે.
- (3) ${\rm CrO}_4^{2-}$ અને ${\rm Cr}_2{\rm O}_7^{2-}$ માં ક્રોમિયમની ઓક્સિડેશન અવસ્થા સમાન નથી.
- (4) $\operatorname{Cr}^{2+}(\operatorname{d}^4)$ એ પાણીમાંના $\operatorname{Fe}^{2+}(\operatorname{d}^6)$ કરતા પ્રબળ રિડક્શનકર્તા છે.

170. નીચે આપેલ પ્રક્રિયા શ્રેણીમાં સંયોજન X ઓળખી બતાવો.

$$\begin{array}{c} \text{CH}_3 \\ \hline \\ \begin{array}{c} \text{Cl}_2/\text{h}\nu \\ \end{array} \\ \text{X} \\ \hline \\ \begin{array}{c} \text{H}_2\text{O} \\ \hline \\ 373 \text{ K} \\ \end{array} \\ \end{array}$$

$$(1) \qquad \begin{array}{c} \operatorname{CH_2Cl} \\ \end{array}$$

$$(2) \qquad \begin{array}{c} \text{CHCl}_2 \\ \\ \end{array}$$

171. નીચે આપેલાને જોડો અને સાચો વિકલ્પ ઓળખી બતાવો.

- (a) $CO(g) + H_2(g)$
-) $Mg(HCO_3)_2 + Ca(HCO_3)_2$
- (b) પાણીની અસ્થાયી કઠિનતા
- ઈલેક્ટ્રોનની અછત વાળો હાઈડ્રાઈડ
- (c) B_2H_6
- (iii) સંશ્લેષિત વાયુ

(ii)

- $\text{(d)} \qquad \text{H}_2\text{O}_2$
- (iv) બિન-સમતલીય બંધારણ
- (a) (b) (c) (d)
- (1) (iii) (ii) (iv)
- (2) (iii) (iv) (ii) (i)
- (3) (i) (iii) (iv)
- (4) (iii) (i) (ii) (iv)
- 172. બેન્ઝીનનો ઠારબિંદુ અવનમન અચળાંક (K_f) $5.12\,\mathrm{K\,kg\,mol^{-1}}$ છે. બેન્ઝીનમાં રહેલા એક વિદ્યુત-અવિભાજ્ય દ્રાવ્ય ધરાવતા $0.078\,\mathrm{m}$ મોલાલીટીના દ્રાવણ માટે ઠારબિંદુ અવનમન શોધો. (બે દશાંશ સુધી પૂર્ણાંકમાં મૂકી શકાય)
 - (1) 0.80 K
 - (2) 0.40 K
 - (3) 0.60 K
 - (4) 0.20 K
- 173. નીચે આપેલા માંથી કયા ને કારણે તૃતીયક બ્યૂટાઈલ કાર્બોકેશાયન એ દ્વિતીયક બ્યૂટાઈલ કાર્બોકેશાયન કરતા વધારે સ્થિર છે ?
 - $(1) CH_3$ સમૂહોની +R અસર
 - $(2) \mathrm{CH_3}$ સમૂહોની $-\mathrm{R}$ અસર
 - (3) હાઈપરકોન્જ્યુગેશન
 - (4) $CH_3 સમૂહોની <math>- I$ અસર

GUJARATI

174. એક આલ્કીનનું ઓઝોનાલિસિસ કરતા નિપજો પૈકી એક મિથેનાલ નીપજ મળે છે તો તેનું બંધારણ (આલ્કીન) શોધો.

$$\begin{array}{cccc} \operatorname{CH}_2 - \operatorname{CH}_2 - \operatorname{CH}_3 \\ \\ \end{array} \tag{1}$$

$$CH_2-CH=CH_2$$
 (2)

$$CH = CH - CH_3$$
(4)

175. કાર્બન મોનોક્સાઈડના સંદર્ભમાં નીચે આપેલા માંથી કયું સાચું નથી ?

- (1) તે રૂધિર માંના ઓક્સિજન પરિવહન ક્ષમતા ઘટાડે છે.
- (2) ઓક્સિહિમોગ્લોબીન કરતા કાર્બોક્સિહિમોગ્લોબીન (હિમોગ્લોબીન સાથે જોડાયેલ CO) ઓછો સ્થિર છે.
- (3) અપૂર્ણ દહનના કારણે તેનું ઉત્પાદન થાય છે.
- (4) તે કાર્બોક્સિહિમોગ્લોબીન બનાવે છે.

176. એક અણુ કે જે અસ્તિત્વ ધરાવતો **નથી** જે ઓળખી બતાવો.

- (1) Li₂
- (2) C₂
- $(3) \qquad {\rm O}_2$
- (4) He₂

- 177. નીચે આપેલા સલ્ફરના ઓક્સોએસિડ માંથી કયાં માં O O બંધન છે ?
 - (1) H_2SO_4 , સલ્ફ્યૂરિક એસિડ

21

- (2) $H_2S_2O_8$, પરઓક્સોડાયસલ્ફ્યૂરિક એસિડ
- (3) $H_2S_2O_7$, પાયરોસલ્ફ્યૂરિક એસિડ
- (4) H₂SO₃, સલ્ફ્યૂરસ એસિડ

178. નીચે આપેલા વિધાનોમાંથી સાચું ઓળખી બતાવો.

- (a) આઈસક્રીમ અને થીજવેલા ખોરાક માટે ${\rm CO_2}({\rm g})$ નો ઉપયોગ શીતક તરીકે (રેફ્રીજરન્ટ) થાય છે.
- (b) C_{60} નું બંધારણ, બાર છ કાર્બન ચક્રો અને વીસ પાંચ કાર્બન ચક્રો ધરાવે છે.
- (c) ZSM-5 પ્રકારના ઝિયોલાઈટનો ઉપયોગ આલ્કોહોલ માંથી ગેસોલિનમાં રૂપાંતર કરવા થાય છે.
- (d) CO એ રંગવિહિન અને ગંધવિહિન વાયુ છે.
- (1) ફક્ત (a) અને (c)
- (2) ફક્ત (b) અને (c)
- (3) ફક્ત (c) અને (d)
- (4) ફક્ત (a), (b) અને (c)

179. મંદ NaOH ની હાજરીમાં થતી બેન્ઝાલ્ડીહાઈડ અને એસિટોફિનોન વચ્ચેની પ્રક્રિયા નીચેના તરીકે જાણીતી છે, જે ______.

- (1) કેનીઝારો પ્રક્રિયા
- (2) ક્રોસ કેનીઝારો પ્રક્રિયા
- (3) ક્રોસ આલ્ડોલ સંઘનન
- (4) આલ્ડોલ સંઘનન

180. ખોટી જોડ શોધી બતાવો :

IUPAC સ્વીકૃત નામ (Official) નામ અનનિલઉનિયમ મેન્ડેલિવિયમ (a) (i) અનનિલટાઈયમ લૉરેન્સિયમ (b) (ii) અનનિલહેક્સિયમ સીબોર્ગિયમ (iii) (c) અનઅનયૃનિયમ દરમ્સ્ટાદૃટિયમ (d) (iv) (b), (ii) (1) (2)(c), (iii) (3) (d), (iv) (a), (i)

No.:

Test Booklet Code પરિક્ષા પુસ્તિકાનો કોડ

KHANA

This Booklet contains 24+44 pages. આ પુસ્તિકામાં 24+44 પાનાં છે.

Do not open this Test Booklet until you are asked to do so. જ્યાં સુધી કહેવામાં ન આવે ત્યાં સુધી આ પુસ્તિકા ખોલવી નહીં.

Read carefully the Instructions on the Back Cover of this Test Booklet. આ પરિક્ષા પુસ્તિકાના પાછળના કવર પર આપેલ સૂચનાઓ ધ્યાનથી વાંચો.

Important Instructions:

- 1. The Answer Sheet is inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars on side-1 and side-2 carefully with blue/black ball point pen only.
- The test is of 3 hours duration and Test Booklet contains 180 questions. Each question carries 4 marks. For each correct response, the candidate will get 4 marks. For each incorrect response, one mark will be deducted from the total scores. The maximum marks are 720.
- 3. Use **Blue/Black Ball Point Pen only** for writing particulars on this page/marking responses.
- 4. Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- 5. On completion of the test, the candidate must hand over the Answer Sheet to the invigilator before leaving the Room/Hall. The candidates are allowed to take away this Test Booklet with them.
- 6. The CODE for this Booklet is **H6**. Make sure that the CODE printed on **Side-2** of the Answer Sheet is the same as that on this Test Booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet.
- 7. The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your Roll No. anywhere else except in the specified space in the Test Booklet/Answer Sheet.
- 8. Use of white fluid for correction is **NOT** permissible on the Answer Sheet.

અગત્યની સૂચનાઓ :

- આ પરિક્ષાપુસ્તિકાની અંદર ઉત્તરવહિ છે. જ્યારે આપને પરિક્ષા પુસ્તિકા ખોલવાનું કહેવામાં આવે, ત્યારે ઉત્તરવહિ નિકાળી બાજુ -1 અને બાજુ-2 પરની વિગતો ફક્ત વાદળી/કાળી બોલ પોઈન્ટ પેનથી સાવધાની સાથે ભરો.
- 2. પરિક્ષાનો ગાળો 3 કલાકનો છે અને આ પુસ્તિકામાં 180 પ્રશ્નો છે. પ્રત્યેક પ્રશ્ન 4 માર્કનો છે. પ્રત્યેક સાચા જવાબ માટે પરિક્ષાર્થીને 4 માર્ક આપવામાં આવશે. પ્રત્યેક ખોટા જવાબ માટે કુલ માર્કમાંથી 1 માર્ક ઓછો કરવામાં આવશે. મહત્તમ માર્ક 720 છે.
- 3. આ પાનાં પર લખાણ લખતી વખતે કે નિશાની કરતી વખતે ફક્ત **વાદળી/કાળી બોલ પોઈન્ટ પેનનો** પ્રયોગ કરો.
- 4. રફ કાર્ય હેતું આ પુસ્તિકામાં આપેલ નિર્ધારિત સ્થાનમાંજ કરો.
- 5. પરિક્ષા સંપન્ન થયા પછી, પરિક્ષાર્થી રૂમ/હોલ છોડતાં પહેલા ઉત્તરવહિ વર્ગ-નિરિક્ષકને અવશ્ય પાછી આપે. પરિક્ષાર્થી પોતાની સાથે આ પ્રશ્ન-પુસ્તિકા લઈ જઈ શકે છે.
- 6. આ પુસ્તિકાનો કોડ $\mathbf{H6}$ છે. એ ખાતરી કરીલો કે આ પુસ્તિકાનો કોડ, ઉત્તરવહિના બાજુ-2 પર છાપેલ કોડ સાથે મેળ ખાય છે. જો તે અલગ હોય તો પરિક્ષાર્થી બીજી પરિક્ષા પુસ્તિકા અને ઉત્તરવહિ લેવા નિરિક્ષકને તુરંત જાણ કરે.
- 7. પરિક્ષાર્થી એ સુનિશ્ચિત કરે કે આ ઉત્તરવહિ વળે નહીં અને તેના પર કોઈ નિશાન ન કરે. પરિક્ષાર્થી પોતાનો અનુક્રમ પ્રશ્ન-પુસ્તિકા/ઉત્તરવહિમાં નિર્ધારીત સ્થાન સિવાય અન્યત્ર ક્યાંય લખવો નહીં.
- 8. ઉત્તરવહિમાં કોઈપણ પ્રકારના સુધારા માટે વ્હાઈટ-ઈન્કનો ઉપયોગ કરવાની અનમતિ **નથી**.

In case of any ambiguity in translation of any question, English version shall be treated as final. પ્રશ્નોનાં અનુવાદમાં કોઇ અસ્પષ્ટતાની સ્થિતિમાં, અંગ્રેજી સંસ્કરણને જ અંતિમ માનવામાં આવશે.

Name of the Car પરિક્ષાર્થીનું નામ (મો	ndidate (in Capitals) : ટા અક્ષરોમાં) :		
Roll Number	: in figures		
અનુક્રમ	: અંકોમાં		
	: in words		
	: શબ્દોમાં		
Centre of Exam પરિક્ષા કેન્દ્ર (મોટા ચ	ination (in Capitals) : યક્ષરોમાં) :		
Candidate's Sig	nature :	Invigilator's Signature :	
પરિક્ષાર્થીની સહી :		નિરિક્ષકની સહી :	
Facsimile signa	ture stamp of		
Centre Superin	tendent:		

H6		2		GUJARATI
1.	નીચે પૈકીની જોડીઓમાંથી કઈ એકકોષીય લીલ છે ?	7.	મનુજ	યના શરીરમાં પ્રવેશતો <i>પ્લાઝમોડીયમનો</i> ચેપી તબક્કો
	(1) કલોરેલા અને સ્પીરૂલીના			છે.
	(2) લેમીનારીઆ અને સરગાસમ		(1)	નર જન્યુકોષ
	(3) જેલીડીયમ અને ગ્રાસીલારીઆ		(2)	<i>ડ્રો</i> ફ્રોઝોઈટસ
	(4) એનાબીના અને વોલ્વોક્સ		(3)	સ્પોરોઝોઈટસ
2.	પાચનનળીના ગોબલેટ કોષો માંથી રૂપ	ાં તરિત	(4)	માદા જન્યુકોષ
	થયેલા છે.	8.	⁸ ધાસ	દરમ્યાન થતી સાચી પ્રક્રિયા પસંદ કરો :
	(1) સંયુક્ત અધિચ્છદ્દીય કોષો		(a)	ઉરોદરપટલનું સંકોચન
	(2) લાદીસમ અધિચ્છદીય કોષો		(b)	બાહ્ય આંતર પાંસળી સ્નાયુઓનું સંકોચન
	(3) સ્તંભાકાર અધિચ્છદ્દીય કોષો		(c)	કુપ્કુસીય કદમાં ઘટાડો
	(4) કાસ્થિકોષો		(d)	આંતર–કુપ્કુસીય દબાણમાં વધારો
3.	એન્ટેરોકાઈનેઝ ઉત્સેચક ના રૂપાંતરણ	i nee	(1)	ફક્ત (d)
ο.	કરે છે.	11 466	(2)	(a) અને (b)
	(1) પેપ્સિનોજનનું પેપ્સિનમાં		(3)	(c) અને (d)
	(2) પ્રોટીનનું પોલિપેપ્ટાઈડમાં		(4)	(a), (b) અને (d)
	(3) દ્રિપ્સિનોજનનું દ્રિપ્સિનમાં	9.	વધ્ધિ	ની પ્રક્રિયા, આ દરમ્યાન સૌથી વધુ હોય છે :
	(4) કેસીનોજેનનું કેસીનમાં		(1)	સુષુપ્તતા
	and pari 12 uniel (12) l Pare manurai 2	2113	(2)	ું લૉગ તબક્કો
4.	પ્રાણીઓમાં નીચેનામાંથી કયુ પ્રોટીન વિપુલ પ્રમાણમાં જો છે ?	.વા મળ	(3)	મંદવૃધ્ધિ તબક્કો
	ા (1) ઈન્સ્યુલિન		(4)	જર્ણતા
	(2) હીમોગ્લોબીન			
	(3) કોલાજન	10.		įંખલા (સીક્વન્સ) દ્વારા, વાહકમાં જેડાયેલ DNA ની તિઓનો આંકડો નક્કી થાય છે ∶
	(4) લેક્ટીન		•	
				ઓળખવાનું સ્થાન પસંદગીમાન રેખક
5 .	Bt કપાસની જાતી કે જે <i>બેસીલસ થુરીએન્જેન્સિસ</i> (Bt)	ના ઝેરી	(2)	
	જનીનને દાખલ કરીને વિકસાવવામાં આવી છે તે સામે પ્રતિકાર દર્શાવે છે.		(3)	ઓરી સ્થાન
			(4)	પેલીન્ડ્રોમિક સીકવન્સ
	•	11.	વનસ	પતિના એ ભાગો, જે, બે પેઢીઓ–એકની અંદર બીજા, ધરાવે
	``		છે :	
	•		(a)	પરાગશયમાં આવેલ પરાગરજ
	(4) વનસ્પતિ સૂત્રકૃમિઓ		(b)	બે નરજન્યુ ધરાવતુ, અંકુરિત પરાગરજ
6.	બે વિરોધાભાસી સ્વરૂપ ધરાવતી, એક લક્ષણ સિવાય		(c)	ફળમાં રહેલ બીજ
	તમામ લક્ષણ સરખા હોય, એવી કેટલી શુધ્ધ ઉછેરવાળી વ	ટાણાની	(d)	બીજાંડ માં આવેલ ભ્રૂણ પૂટ
	જાતિઓની જોડ મેન્ડલે પસંદ કરી હતી ?		(1)	(a) અને (d)
	(1) 8 (2) 4		(2)	માત્ર (a)
	$\begin{array}{ccc} (2) & 4 \\ (3) & 2 \end{array}$		(3)	(a), (b) અને (c)
	(4) 14		(4)	(c) અને (d)

12.	નીચે	પૈકીનું કર્	યુ વિધ	યાન	સાચું દ	<u>ે</u>
	(1)	એડીન	ાઈન	, થાય	યમીન	સાર
		2.0	r		0	

- યે નથી જોડ બનાવતું.
- એડીનાઈન, થાયમીન સાથે બે H-બંધથી જોડાય છે. (2)
- એડીનાઈન. થાયમીન સાથે 1 H-બંધથી જોડાય છે. (3)
- એડીનાઈન, થાયમીન સાથે 3 H-બંધથી જોડાય છે. (4)
- પ્રકાશ-પ્રક્રિયામાં, પ્લાસ્ટોક્વીનોન, અહીંથી, ઈલેક્ટ્રોનને ખસેડવામાં 13. મદદરૂપ થાય છે :
 - PS-I થી ATP સીંથેઝ (1)
 - PS-II થી Cytb₆f સંકીર્ણ સુધી (2)
 - Cytb₆f સંકીર્ણ થી PS-I (3)
 - PS-I થી NADP+ (4)
- નીચે પૈકીનું કયુ વિધાન અંતર્વિષ્ટ અંત્રિકાઓ માટે **ખોટું** છે ? 14.
 - તે કોષરસમાં આવેલ આરક્ષિત પદાર્થો દર્શાવે છે. (1)
 - તેઓ કોઈ કલા (પટલથી) બંધાયેલ હોતા નથી. (2)
 - તેઓ ખોરાકના કણોને આરોગવામાં ગુંથાયેલ હોય છે. (3)
 - તે કોષરસમાં મુક્ત રીતે આવેલ હોય છે. **(4)**
- ઘનાકાર અધિચ્છદ્દીય કોષો કે જેમાં રસાંકુરો બ્રશવાળી કિનારી 15. ધરાવતા હોય તે _____ માં જોવા મળે છે.
 - યુસ્ટેચીયન નલિકા (1)
 - આંતરડાનું સ્તર (2)
 - લાળગ્રંથીની નલિકાઓ (3)
 - ઉત્સર્ગ એકમની નિકટવર્તી ગુંચળામય નલિકા **(4)**
- નીચેના કોલમને જોડો અને સાચો વિકલ્પ પસંદ કરો : 16.

	કોલમ	- I				કોલમ - II
(a)	કલોસ્દ્ર	રીડીયમ	બ્યુટીલી	કમ	(i)	સાયક્લો-
(b)	દ્રાઈકો	ડર્મા પોલ	લીસ્પોર	(ii)	સ્પોરીન-A બ્યુટીરીક એસિડ	
(c)	મોના	સ્કસ પર	પુરીયસ	(iii)	આસડ સાઈદ્રીક એસિડ	
(d)	એસ્પ	ર્જલસ ન	(ઇજર		(iv)	રૂધિર માં કોલેસ્ટેરોલ ઘટાડતો ઘટક
	(a)	(b)	(c)	(d)		
(1)	(iv)	(iii)	(ii)	(i)		
(2)	(iii)	(iv)	(ii)	(i)		
(3)	(ii)	(i)	(iv)	(iii)		
(4)	(i)	(ii)	(iv)	(iii)		

- વનસ્પતિમાં, આવશ્યક તત્વો અને તેમના કાર્યોને અનુલક્ષીને જોડકા 17. ગોઠવો :
 - લોહ (a)
- જળનું પ્રકાશ વિભાજન (i)
- ઝીન્ક (b)
- પરાગજ અંકુરણ (ii)
- બોરોન (c)
- ક્લોરોફીલના જૈવસંશ્લેષણ માટે (iii) જરૂરી
- મેંગેનીઝ (d)
- IAA જૈવસંશ્લેષણ (iv)

સાચો વિકલ્પ પસંદ કરો :

- (a) **(b) (c)** (d)
- (iii) (1) (iv) (i) (ii) (2)(ii) (iv) (iii) (i)
- (3)(iv) (iii) (ii) (i)
- (4) (iii) (ii) (i) (iv)
- એન્ટાર્કટિક પ્રદેશમાં બરફ-અંધતા, આના લીધે થાય છે : 18.
 - ઈન્ફ્રારેડ વિકિરણોના લીધે રેટીનાને નુકસાન થવું
 - નીચા તાપમાનને લીધે આંખના પ્રવાહીનું થીજ જવુ (2)
 - UV-B કિરણોની વધુ પડતી માત્રાને લીધે કોર્નીઆમાં (3)સૂઝન
 - બરફમાંથી પ્રકાશનું ખૂબ ઊંચુ પરાવર્તન (4)
- નીચેના કોલમને જોડો અને સાચો વિકલ્પ પસંદ કરો : 19.

	કોલમ	- I			કોલમ - II
(a)	પિટચુ	૮રી ગ્રંથી	l	(i)	ગ્રેવ્સ રોગ
(b)	થાયરો	ાઈડ ગ્રંર્થ	l	(ii)	ડાયાબીટિઝ મેલિટસ
(c)	એડ્રીન	ાલ ગ્રંથી		(iii)	ડાયાબીટિઝ ઈન્સીપીડસ
(d)	સ્વાદુા	પિંડ		(iv)	એડીસન રોગ
	(a)	(b)	(c)	(d)	
(1)	(ii)	(i)	(iv)	(iii)	
(2)	(iv)	(iii)	(i)	(ii)	
(3)	(iii)	(ii)	(i)	(iv)	
(4)	(iii)	(i)	(iv)	(ii)	

- બીજ સુષુપ્તતાના નિયંત્રણમાં, નીચે પૈકી કયો પદાર્થ અટકાવકર્તા 20. નથી 🤈
 - પેરા-એસ્કોર્બીક એસિડ (1)
 - છબ્રેલીક એસિડ (2)
 - એબ્સીસીક એસિડ (3)
 - ફીનોલીક એસિડ

H6											
21.	મનુષ્યન	ના પાચન	ાતંત્રના ર	ખનુસંધા	ને સાચુ	વિધાન ઓળખો :					
	(1)	કૃમિવત્	. ગ્રહણી	થી ઉત્પ	ત્ર થાય	છે.					
	(2)	શેષાંત્ર •	નાના અ	ાંતરડામ	ાં ખુલે છે						
	(3)	લસીસ્ત	ાર એ પા	ચનનળી	. નું સૌથી	. અંદરનું સ્તર છે.					
	(4)	શેષાંત્ર '	ખુબજ ર	<u>ા</u> ુંચળાદા	ર ભાગ ધ	છે.					
22.	આમાં,	બીજાશ	ય અર્ધ ચ	યધઃસ્થ	હોય છે :						
	(1)	પ્લમ									
	(2)	રીંગણ									
	(3)	રાઈ									
	(4)	સૂર્યમુર્ખ	l)								
23.						પરથી રાત્રે અને વહેલી ય છે તે :					
	(1)	રસ સંક	ોચન								
	(2)	ઉત્સ્વેદન									
	(3)	મૂળ દાબ									
	(4)	અંતઃચૂષણ									
24.	અર્ધીકર	.ણને અન	નુલક્ષીને	નીચે પૈક	કીને જોડે	\ :					
	(a)	ઝાયગો	ટીન		(i)	ઉપાન્તીભવન (૮ર્મીનલાઈઝેશન)					
	(b)	પેકીટીન્	l		(ii)	સ્વસ્તિક ચોકડી (ચાયેસ્મેટા)					
	(c)	ડીપ્લોર્ટ	ોન		(iii)	વ્યતિકરણ (ક્રોર્સીંગ ઓવર)					
	(d)	ડાયાકા	ઈનેસીસ		(iv)	સૂત્રયુગ્મન					
	નીચે પૈ	કી સાચો	ા વિકલ્પ	. પસંદ ક	ત્રો :						
		(a)	(b)	(c)	(d)						
	(1)	(ii)	(iv)	(iii)	(i)						
		(iii)									
		(iv)									
	(4)	(i)	(ii)	(iv)	(iii)						
25.		માંથી બે		મીનો એ	ાસિડ એ	ોળખો :					
	(1)	વેલાઈન									
	(2)	ટાયરોસ્	ીન								
	(3)	ગ્લુટામી	lક એસિ	S							

લાયસીન

(4)

GUJARATI જેલ ઈલેક્ટ્રોફોરેસીસમાં, છૂટા પડેલ DNA ના ટુકડાઓને, આની 26. મદદથી જોવાય છે: ઈન્ફ્રારેડ કિરણોમાં ઈથીડીયમ બ્રોમાઈડ થી તેજસ્વી વાદળી લાઈટમાં, એસીટોકાર્માઈનની મદદ થી ઈથીડીયમ બ્રોમાઈડ UV કિરણો થી UV કિરણોમાં એસીટોકાર્માઈન થી નીચે પૈકી એ પદાર્થો ઓળખો, જેમની રચનામાં ગ્લાયકોસાઈડીક બંધ અને પેપટાઈડ બંધ આવેલ હોય છે : ઈન્યુલીન, ઈન્સ્યુલીન કાઈટીન, કોલેસ્ટરોલ ગ્લીસરોલ, ટ્રીપસીન સેલ્યુલોઝ, લીસીથીન દ્વિતીય ચયાપચયી પદાર્થો જેવા કે, નીકોટીન, સ્ટ્રીકનીન અને કેફીન વનસ્પતિ દ્વારા આના માટે ઉત્પન્ન થાય છે : પ્રજનન પર અસર પોષક મૂલ્ય (2)વૃધ્ધિ પ્રતિસાદ સંરક્ષણ ક્રિયા દ્વિપાર્શ્વીય સમમિતિ અને અદેહકોષ્ઠી પ્રાણીઓ _ ઉદાહરણ દ્વારા દર્શાવાય છે. નુપુરક (2)કંકતધરા પૃથૃકૃમિ સૂત્રકૃમિ શીમ્બીકૂળની વનસ્પતિઓની મૂળ ગંડિકામાં આવેલ નાઈટ્રોજીનેઝ જે પ્રક્રિયાનું ઉદ્દીપન કરે છે, તેની નિપજ આ છે : એમોનિયા અને હાઈડ્રોજન માત્ર એમોનિયા (2)માત્ર નાઈટ્રેટ એમોનિયા અને ઓક્સિજન નીચેનામાંથી કયું મૂત્રવૃધ્ધિને રોકે છે ? JG કોષો દ્વારા રેનિનના સ્રાવમાં ઘટાડો ADH નો ઓછો સ્નાવથી વધારે પ્રમાણમાં પાણીનું પુનઃશોષણ

આલ્ડોસ્ટેરોનને કારણે Na+ અને પાણીનું મૂત્રપિંડ

કર્ણક નેદ્રીયુરેટિક કારક રૂધિરવાહિનીનું સંકોચન કરે છે

નલિકામાંથી પુનઃશોષણ

(4)

- 32. સાચુ વિધાન પસંદ કરો :
 - (1) ઈન્સ્યુલિન હાઈપરગ્લાયસેમીયા સાથે સંકળાયેલ છે.
 - (2) ગ્લુકોકોર્ટીકોઈડસ ગ્લુકોનિયોજનેસિસ ને પ્રેરે છે.
 - (3) ગ્લુકાગોન હાઈપોગ્લાયસેમીયા સાથે સંકળાયેલ છે.
 - (4) ઈન્સ્યુલિન સ્વાદુપિંડકોષો અને મંદ્રપૂર્ણ કોષો પર કાર્ય કરે છે.
- **33.** સુકેન્દ્રી કોષો(યુકેરીઓટીક)માં ગ્લાયકોપ્રોટીન્સ અને ગ્લાયકોલીપીડસ્ના ઉત્પાદન માટે કયું, અગત્યનું સ્થાન છે?
 - (1) પોલીસોમ્સ
 - (2) અંત:કોષરસ જાળ
 - (3) પેરોક્સીઝોમ્સ્
 - (4) ગોલ્ગીકાય
- 34. એ વૃદ્ધિનિયામકનું નામ આપો જેનો શેરડીના પાક પર છંટકાવ કરવાથી તેના પ્રકાંડની લંબાઈ વધે છે અને આમ શેરડીની ઉપજ વધે છે:
 - (1) એબ્સીસીક એસિડ
 - (2) સાયટોકાઈનીન
 - (3) જબ્રેલીન
 - (4) ઈથીલીન
- 35. કેટલાક વિભાજન પામતા કોષો, કોષ ચક્રમાંથી નીકળી જઈ, દૈહિક, અપ્રવૃત્તિમય (અક્રીય) અવસ્થામાં આવે છે. આને, કવાઈસેન્ટ અવસ્થા (G_0) કહેવાય છે. આ પ્રક્રિયા, આના અંતે થાય છે :
 - (1) G_2 અવસ્થા
 - (2) M અવસ્થા
 - (3) G₁ અવસ્થા
 - (4) S અવસ્થા
- 36. પેંગ્વીન અને ડોલ્ફીનના ફ્લિપર્સ _____ નું ઉદાહરણ છે
 - (1) પ્રાકૃતિક પસંદગી
 - (2) અનુકૂલિત પ્રસરણ
 - (3) કેન્દ્રાભિસારી ઉદ્ધિકાસ
 - (4) ઔદ્યોગિક મેલાનિઝમ
- 37. એક વનસ્પતિનો આડો છેદ નીચેના અંતસ્થ લક્ષણો દર્શાવે છે :
 - (a) પુલીય આવરણ ધરાવતા, અસંખ્ય, વીખરાયેલા વાહીપુલ.
 - (b) મૃદ્દતકીય કોષોનું બનેલ વિશાળ, જોઈ શકાતું આધારોત્તક.
 - (c) સહસ્થ અને અવર્ધમાન વાહીપુલો.
 - (d) અન્નવાહક મૃદ્દતકનો અભાવ.
 - નીચે પૈકી વનસ્પતિનો પ્રકાર અને ભાગ ઓળખો :
 - (1) દ્વિદળી મૂળ
 - (2) એકદળી પ્રકાંડ
 - (3) એકદળી મૂળ
 - (4) દ્વિદળી પ્રકાંડ

- **38.** જળકુંભી (વોટર હાયસીન્થ) અને પોયણા (વોટર લીલી)માં પરાગનયન આના દ્વારા થાય છે :
 - (1) કીટકો અને પાણી
 - (2) કીટકો અથવા પવન
 - (3) માત્ર પાણીનો પ્રવાહ
 - (4) પવન અને પાણી
- 39. રોગપ્રતિકારકતાના સંદર્ભમાં ખોટું વિધાન ઓળખો :
 - (1) ગર્ભ કેટલુક પ્રતિદ્રવ્ય માતા માંથી મેળવે છે, તે નિષ્ક્રિય રોગપ્રતિકારકતાનું ઉદાહરણ છે.
 - (2) જયારે પ્રતિજન (જીવીત કે મૃત) નો સામનો થાય ત્યારે યજમાનના શરીરમાં પ્રતિદ્રવ્ય ઉત્પન્ન થાય છે. જેને 'સક્રિય રોગપ્રતિકારકતા' કહે છે.
 - (3) જ્યારે તૈયાર પ્રતિદ્રવ્ય ને સીધુ આપવામાં આવે તો તેને 'નિષ્ક્રિય રોગપ્રતિકારકતા' કહે છે.
 - (4) સક્રિય રોગપ્રતિકારકતા ઝડપી છે અને સંપૂર્ણ પ્રતિભાવ આપે છે.
- 40. નીચેના માંથી શેને એનએરોબિક સ્લજ ડાયજેસ્ટર્સમાં વાહિન મળની આગળની સારવાર માટે મૂકવામાં આવે છે :
 - (1) ક્રિયાશીલ સ્લજ
 - (2) પ્રાથમિક સ્લજ
 - (3) તરતો કચરો
 - (4) પ્રાથમિક સારવારનું ઈફ્લ્યુઅન્ટ
- 41. જોડકા ગોઠવો :
 - (a) અપચયી ક્રિયાનું નિરોધક
- (i) રીસીન
- (b) પેપટાઈડ બંધ ધરાવે
- (ii) મેલોનેટ
- (c) ફુગમાં કોષ-દિવાલનો પદાર્થ
- (iii) કાઈટીન
- (d) દ્વિતીય ઉપાપચયજ
- (iv) કૉલેજન
- નીચે પૈકી સાચું ઓપ્શન પસંદ કરો :
 - (a) (b) (c) (d)
- (1) (ii) (iii) (i) (iv)
- (2) (ii) (iv) (iii) (i)
- (3) (iii) (i) (iv) (ii)
- (4) (iii) (iv) (i) (ii)
- 42. નીચેના માંથી કયા અંતઃસ્નાવનું સ્તર ગ્રાફીયન પુટીકામાંથી અંડકોષની મુક્તિ (અંડપાત) નું કારણ છે ?
 - (1) FSH ની નીચી સાંદ્રતા
 - (2) ઈસ્ટ્રોજનની ઊંચી સાંદ્રતા
 - (3) પ્રોજેસ્ટેરોનની ઊંચી સાંદ્રતા
 - (4) LH ની નીચી સાંદ્રતા

Н6						(6		GUJARATI		
43.	જાતિય કરો.	ા સંક્રમિ	ત રોગોન	તો સમાવે નો	યેશ થતો	હોય તેવો વિકલ્પ પસંદ	47.		——— વારના સિદ્રિક એસિડ ચક્રમાં, પ્રક્રિયાર્થી સ્તરે આટલા રાયલેશન થાય છે :		
	(1)	કેન્સર	, AIDS	ડ, સિફિ	લેસ			(1)	ત્રણ		
	(2)	ગોનો(રિયા, સિ	ાફિલિસ,	જનનાંગ	ાીય હર્પિસ		(2)	શૂન્ય		
	(3)	ગોનો(રિયા, મ	લેરિયા, હ	જનનાંગી	lય હર્પિસ		(3)	એક		
	(4)	AID	S, મલેિ	રેયા, ફાઇ	િલેરિયા			(4)	બે		
44.	નીચેન	ા કોલમે	ોને જોડો	. અને સ	ાચો વિક	લ્પ પસંદ કરો :		(1)	•		
		કોલમ	- I			કોલમ - II	48.	એસ.એલ. મીલરે, તેમના પ્રયોગોમાં એક બંધ ફ્લાસ્કમાં			
	(a)	2.00			(i)	મધ્યકર્ણને કંઠનળી		બધાન	તે મિશ્રણ કરી એમિનો એસિડ ઉત્પન્ન કર્યો :		
						સાથે જોડે છે		(1)	$\mathrm{CH_3,H_2,NH_3}$ અને વરાળને, $600^{\circ}\mathrm{C}$ પર		
	(b)	શંખિક	કા		(ii)	કુહરનો ગુંચળામય ભાગ		(2)	મિથેન, હાઈડ્રોજન, એમોનિયા અને વરાળને, 800°C		
	(c)	કર્ણ કંઠનળી (iii)			(iii)	અંડાકાર ગવાક્ષ સાથે			પર		
	(1)	2,211			(:)	જોડાયેલ બેસિલર કલા પર		(3)	$\mathrm{CH}_3,\mathrm{H}_2,\mathrm{NH}_4$ અને વરાળને, $800^{\circ}\mathrm{C}$ પર		
	(d)	પેંગડુ (a)	(b)	(a)	(iv) (d)	ખાસલર કલા પર આવેલ હોય છે		(4)	મિથેન, હાઈડ્રોજન, એમોનિયા અને વરાળને, 600°C પર		
	(1)	(a) (i)	(b) (ii)	(c) (iv)	(u) (iii)		40	ر. در ا			
	(2)	(ii)	(iii)	(i)	(iv)		49.		શય નો દેહ, અહીંથી, અંડનાલ સાથે જોડાયેલ હોય છે :		
	(3)	(iii)	(i)	(iv)	(ii)			(1)	અંડકતલ		
	(4)	(iv)	(ii)	(i)	(iii)			(2)	બીજકેન્દ્ર		
45.	નીચે પૈ	પૈકી ખો ટ્	ું વિધાન	. ઓળખ	ù :			(3)	બીજાંડછિદ્ર		
	(1)			ન્સ, તૈલ ાંગ ઘેરો લ		ર્ો, વિ.ના ભરાવાને લીધે		(4)	પ્રદેહ		
	(2)			ાનું પરિવ	ાહન નર્થ	l કરતું પણ યાંત્રિક આધાર	50.	પ્રમાણ	રાભૂત ECG માં QRS સંકુલ શું દર્શાવે છે ?		
		આપે						(1)	ક્ષેપકોનું પુનઃધ્રુવીકરણ		
	(3)		ષ્ઠ, જળ કરે છે.	. અને ખ	ાનિજતત	વોનું મૂળ થી પર્ણો સુધી		(2)	કર્ણકોનું પુન:ધ્રુવીકરણ		
	(4)			મૌથી અં	ાંદર આવે	યેલ દ્વિતીય જલવાહક છે		(3)	કર્ણકોનું વિધ્રુવીકરણ		
	(1)		ુ ., ખાછા રં ^ર					(4)	ક્ષેપકોનું વિઘુવીકરણ		
46.	આંતર ઓળપ		ા G ₁ તબ	ાકકાના (ગેપ 1) :	બનુસંધાનમાં સાચુ વિધાન	51.	દ્વિતીય થાય ધ	યક અંડકોષ નું અર્ધસૂત્રી ભાજન એ પૂર્ણ છે.		
	(1)	કોષકે•	ન્દ્ર વિભ	ાજન પા	મે છે.			(1)	શુક્રકોષ અને અંડકોષના મિલન વખતે		
	(2)		•			યંજનન થાય છે.		(2)	ું અંડપાતના પહેલા		
	(3)				-	ોઠવણી થાય છે. -		(3)	સંભોગ વખતે		
	(4)				_	્ધિ પામે છે પરંતુ DNA					
		નુ સ્વ	પજનન	થતુ નથી	••			(4)	ફલિતાંડ બન્યા પછી		

								•					110
52.	નીચેન	ા કોલમ	ને જોડો	અને સા	ચો વિકલ	૫ પસંદ	કરો :	55.		•	નું વિસર્જ	ર્⁄ન	વખતે થાય છે.
		કોલમ	- I			કોલમ	- II		(1)	લેપ્ટોટીન			
	(a)	તરતી	પાંસળી	ઓ	(i)	બીજી	અને સાતમી		(2)	પેકીટીન			
							ીની વચ્ચે		(3)	ઝાયગોટીન ૧			
						આવેલ	ા છે		(4)	ડીપ્લોટીન			
	(b)	સ્કંધા	ય્ર પ્રવર્ધન	ની	(ii)	ભુજારિ	<u>-</u> થ શીર્ષ	56.	નીચે	પૈકીનુ કયું, પ્રવિષ	-		-
	(c)	સ્કંધા	.સ્થિ		(iii)	અક્ષક	જોડાણ		(1)		નમય અ	ાવરણ વ	યગરના મુક્ત DNA હોય
	(d)	સ્કંધઉ	લૂખલ		(iv)		થે સાથે જોડાતી		(2)	છે. આ પ્રાથમિક સ્ટેસ્			
						નથી			(2)		•		વાળુ RNA હોય છે.
		(a)	(b)	(c)	(d)				(3)	તમનામા પ્રાટા છે.	.નવુકત ર	યાવરણ	વગરના મુક્ત RNA હોય
	(1)	(iv)	(iii)	(i)	(ii)				(4)		નયક્ત ર	ખાવરાગ	યાળુ DNA હોય છે.
	(2) (3)	(ii) (i)	(iv) (iii)	(i) (ii)	(iii) (iv)			_ _			Ü		
	(4)	(iii)	(ii)	(iv)	(i)			57.			ાનાકા ચ	યાધાર, ઃ	બામણે વખોડચો :
									(1)	ઓપેરીન કાર્લ અર્નસ્ટ વ	ו בל אין	2	
53.				નાટે કારા	ણ ભૂત ર	નજવો ર	તાથે જોડી સાચો		(2)	કાલ અનસ્ટ વ આલ્ફ્રેડ વૉલેસ		٠,	
	વિકલ્પ	ા પસંદ							(3)	આલ્ફ્રડ વાલસ ચાર્લ્સ ડારવીન			
		કોલમ	- I			કોલમ	- II		(4)			•	
	(a)	ટાયફા			<i>વુચેરે1</i>	<i>રેયા</i>	58.	Ecol		વામાં અ	ાવતી ખ	ાસ પેલીન્ડ્રોમિક શૃંખલા	
	(b)	ન્યુમો	નિયા		(ii)	<i>પ્લાઝ</i>	મોડિયમ		(1)	છે. 5' - GGAT(7C _ 3'		
	(c)	ફાઈલે	રિએસિસ	1	(iii)	સાલ્મ	ોનેલા		(1)	3' - CCTAC			
	(d)	મલેરિ	યા		(iv)	હીમો!	<i>કેલસ</i>		(2)	5' - GAATT			
		(a)	(b)	(c)	(d)				(3)	3' - CTTAA 5' - GGAA			
	(1)	(iv)	(i)	(ii)	(iii)				(0)	3' - CCTT(
	(2)	(i)	(iii)	(ii)	(iv)				(4)	5' - CTTAA			
	(3)	(iii)	(iv)	(i)	(ii)					3' - GAAT'I			
	(4)	(ii)	(i)	(iii)	(iv)			59.	સજીવ		ાટેકનોલો	જીમાં થ	તા ઉપયોગને જોડો :
54.	નીચેન	ા કોલમ	ને જોડો	અને સા	ચો વિકલ	૫ પસંદ	કરો :		(a)	<i>બેસીલસ</i>		(i)	પ્રતિકૃતિ વાહક
		કોલમ	- I				કોલમ - II			<i>થુરીએન્જોન્સિ</i>		4	3
	(a)	ટોળાગ	માં રહેતી	. પાક હ	ાનિકારક	(i)	એસ્ટેરિયસ	[(b)	થર્મસ એકવેટી	કસ	(ii)	સૌ પ્રથમ rDNA
	. ,	જીવાત	t										અણુની બનાવટ
	(b)	પૃખ્ત	માં અરીય	ય સમમિ	તિ અને	(ii)	વીંછી		(c)	એગ્રોબેક્ટેરીય:	\mathcal{U}	(iii)	DNA પોલીમરેઝ
		~	ાં દ્વિપા ^{ક્}			, ,			(0)	ટ્યુમીફેસીઅ ન		(111)	Divil titte to
	(c)	ફેફસા	પોથી			(iii)	ટીનોપ્લાના		(d)	ુ . સાલમોનેલા		(iv)	Cry પ્રોટીન્સ
	(d)	જૈવ ર	ા દીપ્યતા	L		(iv)	લોકસ્ટા			ટાયફામ્યુરીય	Ч		
		(a)	(b)	(c)	(d)				સાચો	વિકલ્પ પસંદ ક	રો :		
	(1)	(ii)	(i)	(iii)	(iv)				(3)	(a) (b)	(c)	(d)	
	(2)	(i)	(iii)	(ii)	(iv)				(1) (2)	(iii) (iv) (ii) (iv)	(i) (iii)	(ii) (i)	
	(3)	(iv)	(i)	(ii)	(iii)				(3)	(iv) (iii)	(ii)	(ii)	
	(4)	(iii)	(ii)	(i)	(iv)				(4)	(iii) (ii)	(iv)	(i)	

H6							8							GUJARATI
60.	સમુદ					ા વિધાન સાચું છે ?	64.	પૃથ્વીના નીચે પૈકીના પ્રદેશોમાંથી કયો, સૌથી વધુ જાતિ વિવિધત						યું જાતિ વિવિધતા
	(a)	61	•	•		ોથી પૂંછડી સુધી લંબાયેલ		દર્શાવે	ા છે ?					
		-			_	ર રહે છે.		(1)						
	(b)	પૃષ્ઠવ હોય દ		ાં મેરૂદંડ ફ	ફક્ત ગભ	ર્ાાવસ્થા દરમ્યાનજ હાજર		(2)	ભારત	નો પશ્ચિ	.મી ઘાટ			
	(a)	હાય છે. મધ્યસ્થ ચેતાતંત્ર પૃષ્ઠ અને પોલૃ હોય છે.						(3)	મેડાગ	.ાસ્કર				
	(c) (d)		મેરૂદંડીઓ 3 ઉપસમુદાયોમાં વિભાજત હોય છે - સામી						હિમાલ	તય				
	(u)	•		_		ર્યા છે. પ મેરૂદંડી.	65.	નીએન	ના કોલમ	ને એડો	અને ચા	ચો વિકલ	น นม่ร	. દિસ
	(1)	·	મને (c)	•		•	00.	111 41	ા કારાગ કોલમ		-1.1.411	-tt (-t5\	. 1 1116	કોલમ - II
	(2)		મને (c)					(-)			ઝાલર ફ)	(;)	કાલ ન - 11 દ્રાઈગોન
	(3)	(c) ઝ	ાને (a)					(a)			`	ici	(i)	
	(4)							(b)	ાવવન મીનપ	ા પાલિ પૃ .ક્ષ	ૂચ્છ		(ii)	યુષમુઆ
61.	1987	7 માં મો•	-દ્રીઅલ :	પ્રોટોકોલ	આના :	ખંકુશ માટે થયો :		(c)	પ્લવન	ાશય			(iii)	કાસ્થિમત્સ્ય
	(1)	ઈ-કર	યરાનો નિ	નેકાલ		-		(d)	ઝેર કં	૮ક (શૂળ	າ)		(iv)	અસ્થિમત્સ્ય
	(2)	જનીન	ત−પરિવ	.તીંત સજ	્ રવોને ચ	મેક દેશમાંથી બીજા દેશમાં			(a)	(b)	(c)	(d)		
		લઈ જ	/વા					(1)	(i)	(iv)	(iii)	(ii)		
	(3)	ઓઝો	ાન વાયુ	ઓછો ક	રતા પદ	ાર્થોનુ ઉત્સર્જન		(2)	(ii)	(iii)	(iv)	(i)		
	(4)	ગ્રીન (હાઉસ ગે	સોનું નીક	કળવુ			(3)	(iii)	(iv)	(i)	(ii)		
62.	જો બે	સળંગ બે	.ઝ જોડ વ	ાચ્ચેનું અંહ	તર 0.3્	4 nm હોય અને સસ્તનના		(4)	(iv)	(ii)	(iii)	(i)		
				•		A માં કુલ બેઝ જોડી ની	66.	નીચે	પૈકી કયો	ા, વસતિ	ાનો ગુણ	નથી ?		
			10 ⁹ br	ં હોય તો	l DNA	. ની લંબાઈ આશરે કેટલી		(1)	જાતિ	આંતરફિ	ક્યા			
	હશે ?		0 0					(2)	જાતિ	ગુણોત્તર				
	(1)	2.73						(3)	(3) જન્મદર					
	(2)	2.03						(4) મૃત્યુદર						
	(3)	2.5 F						0.5		2.2	. > ?			2
	(4)						67.	નાચન	ના કોલમ ••••		ાન સાચ	ા ાવકલ્પ		
63.	નીચેન			અને સા	યો વિક	ત્પ પસંદ કરો :			કોલમ -				કોલમ	
		કોલમ				કોલમ - II		(a)	Bt s			(i)		ા થેરાપી
	(a)	જરાયુ	•		(i)	એન્ડ્રોજન્સ		(b)		ોસાઈન જેવેલ	ી ઊણપ	(ii)	કોષીય	ા રક્ષણ
	(b)	ઝોના	પેલ્યુસી	ડા	(ii)	હ્યુમન કોરીઓનિક		()			ા હાણાવ	/ ***\		2 200 02002
						ગોનેડોદ્રોપીન અંતઃસ્રાવ (hCG)		(c)	RNA			(iii)		નો ચેપ શોધવો
	(c)	બલ્બે)_ચ ે શહ	ત ગ્રંથિઓ) (iii)	અંડકોષનું આવરણ		(d)	PCR			(iv)	બેસીલ યુઝીસ	નસ ોન્જોન્સિસ
	(d)		કુર,ત્ર . કોષો		(iv)	શિશ્નનું ઊંજણ			(-)	(1-)	(-)	(4)	વુસ	1 08 1 1111
	(u)	(a)	(b)	(c)	(d)	13 00% 51		(1)	(a) (i)	(b) (ii)	(c) (iii)	(d) (iv)		
	(1)	(ii)	(iii)	(iv)	(i)			(2)	(iv)	(i)	(ii)	(iii)		
	(2)	(iv)	(iii)	(i)	(ii)			(3)	(iii)	(ii)	(i)	(iv)		
	(3)	(i)	(iv)	(ii)	(iii)			(4)	(ii)	(iii)	(iv)	(i)		
	(4)	(iii)	(ii)	(iv)	(i)			(*)	()	((-1)	(-)		

74.

- 68. નીચેના માંથી કયુ-માનવજનીત કાર્યોના લીધે બદલાયેલા પર્યાવરણના કારણે ઉત્ક્રાન્તિ પામેલ સજીવનું સાચુ ઉદાહરણ છે?
 - (a) ગેલેપેગોઝ ટાપુ પરની ડાર્વિન ફિન્ચ
 - (b) તૃણનાશક પ્રતિરોધી ઘાસ
 - (c) દવા પ્રતિરોધી સુકોષકેન્દ્રીઓ
 - (d) કૂતરા જેવી માનવ સર્જિત પાલતુ જાતીયો

 - (2) \$5rt (a)
 - (3) (a) અને (c)
 - (4) (b), (c) અને (d)
- **69.** જે સ્ત્રીઓ ગર્ભધારણ કરી શકતી નથી તેઓમાં નીચેના માંથી કઈ પધ્ધતિ થી ગર્ભના સ્થાનાંતરણમાં મદદ થાય છે ?
 - (1) GIFT અને ICSI
 - (2) ZIFT અને IUT
 - (3) GIFT અને ZIFT
 - (4) ICSI અને ZIFT
- **70.** રંગસૂત્રીય આનુવંશિકતાના સિદ્ધાંતની પ્રાયોગિક ચકાસણી આમણે કરી :
 - (1) મોર્ગન
 - (2) મેન્ડલ
 - (3) સટન
 - (4) બોવેરી
- 71. પ્રકાશ ધ્વસન અંતર્ગત RuBisCo ઉત્સેચકની પ્રાણવાયુકરણ પ્રક્રિયાથી ઉત્પન્ન થાય છે :
 - (1) 4-C સંયોજનનો 1 અણુ અને 2-C સંયોજનનો 1 અણુ
 - (2) 3-C સંયોજનના 2 અણુઓ
 - (3) 3-C સંયોજનનો 1 અણુ
 - (4) 6-C સંયોજનનો 1 અણ્
- 72. જો વંદાનું શીર્ષ દુર કરવામાં આવે તો તે થોડાક દિવસો સુધી જીવીત રહી શકે છે કારણ કે :
 - (1) શીર્ષમાં ચેતાતંત્રનો 1/3 ભાગ આવેલ છે જ્યારે બાકીનું તેના શરીરના પૃષ્ઠભાગે આવેલુ છે.
 - (2) વંદાનો ઉપરી અન્નનાલીય ચેતાકંદ ઉદરના વક્ષભાગે આવેલો હોય છે.
 - (3) વંદામાં ચેતાતંત્ર આવેલુ હોતુ નથી.
 - (4) શીર્ષમાં ચેતાતંત્રનો થોડોક ભાગ હોય છે જ્યારે બાકીના ભાગમાં મોટા ભાગનું ચેતાતંત્ર વક્ષ ભાગે આવેલુ છે.

- **73. સાચી** જોડ પસંદ કરો :
 - (1) થેલેસેમિયા X સંલગ્ન
 - (2) હીમોફિલિયા Y સંલગ્ના
 - (3) ફીનાઈલ કીટોન્યુરીયા દૈહિક પ્રભાવી રંગસુત્રીય વિશેષક
 - (4) સિકલ સેલ એનીમિયા દૈહિક પ્રચ્છન્ન

રંગસૂત્રીય, રંગસુત્ર -11

બીજાણુપર્ણસમૂહન (સ્ટ્રોબીલાઈ) કે શંકુઓ, આમાં જોવા મળે

(1) ઈક્વીસેટમ

છે :

- (2) સાલ્વીનીઆ
- (3) પેરીસ
- (4) માર્કેન્શિઆ
- 75. નીચેના કોલમ જોડો અને સાચો વિકલ્પ પસંદ કરો :

કોલમ - I

કોલમ - II

- (a) ઈઓસિનોફિલ્સ
- (i) રોગપ્રતિકારક પ્રતિચાર
- (b) બેઝોફિલ્સ
- (ii) ભક્ષકકોષ
- (c) તટસ્થકણ
- (iii) વિનાશકારી ઉત્સેચક હિસ્ટામાઈનેઝ મુક્ત કરે છે.
- (d) લિમ્ફોસાઈટ્સ (લસિકાકણ)
- (iv) હિસ્ટામાઈન ધરાવતી કણિકાઓ મુક્ત કરે છે.
- (a) (b) (c) (d)
- (1) (ii) (i) (iii) (iv)
- (2) (iii) (iv) (ii) (i) (3) (iv) (i) (ii) (iii)
- (4) (i) (ii) (iv) (iii)
- 76. રોબર્ટ મે અનુસાર, પૃથ્વીની જાતિ વિવિધતા આટલી છે :
 - (1) 7 મિલિયન
 - (2) 1.5 મિલિયન
 - (3) 20 મિલિયન
 - (4) 50 મિલિયન
- 77. બીકાનેરી ઘેટી અને મરીનો ઘેટીનો ઉપયોગ કરી નીચેની કઈ પધ્ધતિ દ્વારા ઘેટાની નવી જાત 'હિસારડેલ' વિકસાવવામાં આવી છે.
 - (1) અંત:સંવર્ધન
 - (2) બર્હિસંવર્ધન
 - (3) ઉત્પરિવર્તન સંવર્ધન
 - (4) પર સંવર્ધન

- 78. જે મૂળ પ્રકાંડના તલભાગમાંથી ઉત્પન્ન થાય, તેને આ કહેવાય :
 - (1) પાશ્વીય મૂળ
 - (2) તંતુમૂળ
 - (3) પ્રાથમિક મૂળ
 - (4) સ્તંભ મૂળ
- **79.** ઓક્સીજનના વહનના અનુસંધાનમાં **ખોટુ** વિધાન ઓળખો :
 - (1) વાયુકોષ્ઠોમાં ઓછો pCO_2 ઓક્સીહીમોગ્લોબીનની બનાવટમાં સહાય કરે છે.
 - (2) ઓક્સીજનનું હિમોગ્લોબીન સાથેનું જોડાણ મુખ્યત્વે ${\rm O}_2$ ના આંશિક દબાણ સાથે સંબંધિત છે.
 - (3) CO_2 નું આંશિક દબાણ O_2 ના હિમોગ્લોબીન સાથેના જેડાણમાં દખલગીરી કરે છે.
 - (4) વાયુકોષ્ઠોમાં H⁺ ની ઊંચી સાંદ્રતા ઓક્સીહીમોગ્લોબીનની બનાવટમાં સહાય કરે છે.
- **80.** મૂત્રમાં નીચેના માંથી કઈ પરિસ્થિતિ ડાયાબીટિઝ મેલિટસ સુચવે છે ?
 - (1) મૃત્રપિંડની પથરી અને હાયપરગ્લાયસેમિયા
 - (2) યુરેમિયા અને કિટોન્યુરિયા
 - (3) યુરેમિયા અને મૂત્રપિંડની પથરી
 - (4) કીટોન્યુરિયા અને ગ્લાયકોસોરિયા
- 81. કિરણ પુષ્પકોને આ હોય છે :
 - (1) અર્ધ અધ:સ્થ બીજાશય
 - (2) અધ:સ્થ બીજાશય
 - (3) ઊર્ધ્વસ્થ બીજાશય
 - (4) અધોજાયી બીજાશય
- 82. પ્રત્યાંકન વખતે DNA કુંતલ ને ખોલવામાં સહાય કરતા ઉત્સેચકનું નામ ઓળખો.
 - (1) RNA પોલીમરેઝ
 - (2) DNA લાઈગેઝ
 - (3) DNA હેલીકેઝ
 - (4) DNA પોલીમરેઝ

- 83. રીસ્ટ્રીક્શન ઉત્સેચકના અનુસંધાનમાં ખોટુ વિધાન ઓળખો.
 - (1) DNA લાઈગેઝના ઉપયોગથી ચીપકુ છેડાને જોડી શકાય છે.
 - (2) દરેક રિસ્ટ્રિક્શન ઉત્સેચક DNA ગોઠવણીની લંબાઈ તપાસીને કાર્ય કરે છે.
 - (3) તે DNA ની શૃંખલાને પેલીન્ડ્રોમિક સ્થાને થી કાપે છે.
 - (4) તે જનીન ઈજનેરી વિદ્યામાં ઉપયોગી છે.
- **84.** તૃણભૂમિના નિવસનતંત્રમાં, પોષક સ્તરો સાથે તેમની **સાચી** ઉદાહરણ જાતિનું જોડકુ ગોઠવો :
 - (a) ચોથુ પોષક સ્તર
- (i) કાગડો
- (b) બીજુ પોષક સ્તર
- (ii) ગીધ
- (c) પ્રથમ પોષક સ્તર
- (iii) સસલુ
- (d) ત્રીજુ પોષક સ્તર
- (iv) ધાસ

સાચો વિકલ્પ પસંદ કરો :

- (a) (b) (c) (d)
- $(1) \qquad (i) \qquad (ii) \qquad (iii) \qquad (iv)$
- (2) (ii) (iii) (iv) (i)
- (3) (iii) (ii) (iv)
- $(4) \qquad (iv) \qquad (iii) \qquad (ii) \qquad (i)$
- 85. નિવસન તંત્રની કુલ પ્રાથમિક ઉત્પાદકતા અને ચોખ્ખી પ્રાથમિક ઉત્પાદકતાને અનુલક્ષીને, નીચે પૈકી કયું વિધાન સા**યું** છે ?
 - (1) કુલ પ્રાથમિક ઉત્પાદકતા અને ચોખ્ખી પ્રાથમિક ઉત્પાદકતા વચ્ચે કોઈ સંબંધ નથી.
 - (2) કુલ પ્રાથમિક ઉત્પાદકતા ચોખ્ખી પ્રાથમિક ઉત્પાદકતા કરતા હમેશા ઓછી હોય છે.
 - (3) કુલ પ્રાથમિક ઉત્પાદકતા ચોખ્ખી પ્રાથમિક ઉત્પાદકતા કરતા હમેશા વધુ હોય છે.
 - (4) કુલ પ્રાથમિક ઉત્પાદકતા અને ચોખ્ખી પ્રાથમિક ઉત્પાદકતા, બંને એક જ છે.
- 86. ફ્લોરીડીઅન સ્ટાર્ચની રચના આના જેવી હોય છે :
 - (1) લેમીનારીન અને સેલ્યુલોઝ
 - (2) સ્ટાર્ચ અને સેલ્યુલોઝ
 - (3) એમાઈલોપેક્ટીન અને ગ્લાયકોજન
 - (4) મેનીટોલ અને આલ્ગીન

87. નીચે પૈકી સાચી જોડ પસંદ કરો :

- (1) એક્ઝો- DNA ના અંતર્ગત, ચોક્કસ ન્યુક્લીએઝીસ સ્થાને કાપે છે
- (2) લીગેઝીસ બે DNA અણુઓને જોડે છે
- (3) પોલીમરેઝીસ DNA ના ટુકડા કરે છે
- (4) ન્યુક્લીએઝીસ DNA ના બે કુંતલોને અલગ કરે છે

88. ABO રૂધિરજુથનું નિયંત્રણ કરતા જનીન 'I' ના અનુસંધાનમાં **ખોટુ** વિધાન ઓળખો.

- (1) અલીલ 'i' કોઈપણ પ્રકારની શર્કરા ઉત્પન્ન કરતું નથી.
- (2) જનીન (I) ના ત્રણ અલીલ છે.
- (3) વ્યક્તિમાં ત્રણમાંથી ફક્ત બે અલીલ હશે.
- (4) જયારે I^A અને I^B સાથે હોય ત્યારે તેઓ એકજ પ્રકારની શર્કરાની અભિવ્યક્તિ કરે છે.

89. ભાષાંતર (ડ્રાન્સલેશન) નો પ્રથમ તબક્કો આ છે :

- (1) વિરૂધ્ધ-સંકેત (એન્ટી-કોડોન)ને ઓળખવુ
- (2) રીબોઝોમનું mRNA સાથે જોડાવવું
- (3) DNA ના અણુને ઓળખવુ
- (4) tRNA નુ એમિનોએસાયલેશન

90. નીચેના માંથી કયુ વિધાન સાચુ નથી ?

- (1) જનીન ઈજનેરી વિદ્યા વાળુ ઈન્સ્યુલીન (E-Coli) ઈ-કોલાઈમાં પેદા થાય છે.
- (2) મનુષ્યમાં ઈન્સ્યુલીન નું સંશ્લેષણ પ્રોઈન્સ્યુલીન સ્વરૂપે થાય છે.
- (3) પ્રોઈન્સ્યુલીનમાં એક વધારાનો પેપ્ટાઈડ હોય છે જેને C-પેપ્ટાઈડ કહે છે.
- (4) સક્રિય ઈન્સ્યુલીન માં A અને B બે શૃંખલાઓ હોય છે જે હાઈડ્રોજન બંઘથી એકબીજા સાથે જોડાયેલ હોય છે.

91. એસિટોન અને મિથાઈલમેગ્નેશિયમ ક્લોરાઈડ વચ્ચે પ્રક્રિયા કરી ત્યારબાદ જળવિભાજન કરવાથી શું બનશે ?

- (1) આઈસોબ્યૂટાઈલ આલ્કોહોલ
- (2) આઈસોપ્રોપાઈલ આલ્કોહોલ
- (3) દ્વિતીયક ખ્યૂટાઈલ આલ્કોહોલ
- (4) તૃતીયક બ્યૂટાઈલ આલ્કોહોલ

- 92. સુક્રોઝ નું જળવિભાજન કરતા શું પ્રાપ્ત થશે ?
 - (1) α -D- $\frac{1}{8}$ ક્કોઝ + β -D- $\frac{1}{8}$ ક્કોઝ
 - (2) β -D-ગ્લુકોઝ + α -D-ક્રુક્ટોઝ
 - (3) α -D- \circ લુકોઝ + β -D- \circ લુકોઝ
 - (4) α -D-ગ્લુકોઝ + β -D-ક્રુક્ટોઝ
- 93. સિલીન્ડરમાં N_2 અને Ar વાયુઓનું એક મિશ્રણ N_2 ના 7 g અને Ar ના 8 g ધરાવે છે. પાત્રમાં (સિલિન્ડરમાં) વાયુઓના મિશ્રણનું કુલ દબાણ 27 બાર હોય તો, N_2 નું આંશિક દબાણ શોધો.

[પરમાણ્વીય દળો N=14, Ar=40 (g mol^{-1} માં) નો ઉપયોગ કરો]

- (1) 18 બાર
- (2) 9 બાર
- (3) 12 બાર
- (4) 15 બાર
- **94.** $^{175}_{71}\mathrm{Lu}$ માં પ્રોટોન, ન્યૂટ્રોન અને ઈલેક્ટ્રોનની સંખ્યા અનુક્રમે શોધો.
 - (1) 175, 104 અને 71
 - (2) 71, 104 અને 71
 - (3) 104, 71 અને 71
 - (4) 71, 71 અને 104
- 95. પ્લેટીનમ (Pt) ઈલેક્ટ્રોડનો ઉપયોગ કરીને મંદ સલ્ફ્યુરીક એસિડનું વિદ્યુત વિભાજન કરતાં એનોડ પર નીપજ પ્રાપ્ત થાય છે, જે
 - (1) SO₂ વાયુ
 - (2) હાઈડ્રોજન વાયુ
 - (3) ઓક્સિજન વાયુ
 - (4) H₂S વાયુ
- 96. નીચે આપેલાને જોડો અને સાચો વિકલ્પ ઓળખી બતાવો.
 - (a) $CO(g) + H_2(g)$
- (i) $Mg(HCO_3)_2 + Ca(HCO_3)_2$
- (b) પાણીની અસ્થાયી કઠિનતા
- (ii) ઈલેક્ટ્રોનની અછત વાળો હાઈડ્રાઈડ
- (c) B_2H_6
- (iii) સંશ્લેષિત વાય્
- ${\rm (d)} \qquad {\rm H_2O_2}$
- (iv) બિન-સમતલીય બંધારણ
- (a) (b) (c) (d)
- $(1) \qquad (i) \qquad (iii) \qquad (ii) \qquad (iv)$
- (2) (iii) (i) (ii) (iv)
- (3) (iii) (ii) (iv)
- (4) (iii) (iv) (ii) (i)

- 97. કલિલ દ્રાવણના ક્યા ગુણધર્મને શોધવા માટે ઝેટા પોટેન્શિયલની માપણી ઉપયોગી છે ?
 - (1) કલિલ કણોનું કદ
 - (2) સ્નિગ્ધતા
 - (3) દ્રાવ્યતા
 - (4) કલિલ કણોની સ્થિરતા
- 98. સુક્રોઝના જળવિભાજનની પ્રક્રિયામાં નીચે આપેલ છે.

સુક્રોઝ +H₂O = ગ્લુકોઝ+ક્રુક્ટોઝ

 $300~{
m K}$ પર, જો સંતુલન અચળાંક $({
m K_c})~2 \times 10^{13}$ હોય તો, તેજ તાપમાન પર $\Delta_{\rm L}{
m G}^{\circ}$ ની કિંમત શું થશે ?

- (1) $-8.314 \,\mathrm{J}\,\mathrm{mol}^{-1}\mathrm{K}^{-1} \times 300 \,\mathrm{K} \times \ln(4 \times 10^{13})$
- (2) $-8.314 \,\mathrm{J}\,\mathrm{mol}^{-1}\mathrm{K}^{-1} \times 300 \,\mathrm{K} \times \ln(2 \times 10^{13})$
- (3) $8.314 \,\mathrm{J}\,\mathrm{mol}^{-1}\mathrm{K}^{-1} \times 300 \,\mathrm{K} \times \ln(2 \times 10^{13})$
- (4) $8.314 \,\mathrm{J}\,\mathrm{mol}^{-1}\mathrm{K}^{-1} \times 300 \,\mathrm{K} \times \ln(3 \times 10^{13})$
- 99. એક પ્રથમ ક્રમ પ્રક્રિયા માટે વેગ અચળાંક $4.606 \times 10^{-3}~\mathrm{s}^{-1}$ છે. પ્રક્રિયકનાં $2.0~\mathrm{g}$ માંથી $0.2~\mathrm{g}$ માં થતા ઘટાડા માટે કેટલો સમય જરૂરી છે ?
 - (1) 1000 s
 - (2) 100 s
 - (3) 200 s
 - (4) 500 s
- 100. એનિસોલની HI સાથેની પ્રક્રિયા થી પ્રાપ્ત થાય તે :

(1)
$$+ C_2H_5OH$$

(2)
$$+ CH_3I$$

$$(4) \qquad \begin{array}{c} \text{OH} \\ \\ + \text{C}_2\text{H}_5\text{I} \end{array}$$

- 101. મંદ NaOH ની હાજરીમાં થતી બેન્ઝાલ્ડીહાઈડ અને એસિટોફિનોન વચ્ચેની પ્રક્રિયા નીચેના તરીકે જાણીતી છે, જે _____.
 - (1) ક્રોસ આલ્ડોલ સંઘનન
 - (2) આલ્ડોલ સંઘનન
 - (3) કેનીઝારો પ્રક્રિયા
 - (4) ક્રોસ કેનીઝારો પ્રક્રિયા
- **102.** નીચે આપેલા સલ્ફરના ઓક્સોએસિડ માંથી કયાં માં O O બંધન છે ?
 - (1) $H_2S_2O_7$, પાયરોસલ્ફ્યૂરિક એસિડ
 - (2) H_2SO_3 , સલ્ફ્યૂરસ એસિડ
 - (3) H_2SO_4 , સલ્ફ્યૂરિક એસિડ
 - (4) $H_2S_2O_8$, પરઓક્સોડાયસલ્ફ્યૂરિક એસિડ
- 103. યૂરિયાની પાણી સાથે પ્રક્રિયા થઈને $\bf A$ બને છે કે જેનું વિઘટન થઈને તેમાંથી $\bf B$ બનશે. $\bf B$ જયારે ${\rm Cu}^{2+}$ (જલીય) માંથી પસાર કરતાં ગાઢા ભૂરા રંગનું દ્રાવણ $\bf C$ બને છે. નીચે આપેલામાંથી $\bf C$ નું સૂત્ર કયું છે ?
 - (1) $CuCO_3 \cdot Cu(OH)_2$
 - (2) $CuSO_4$
 - (3) $[Cu(NH_3)_4]^{2+}$
 - (4) $Cu(OH)_2$
- 104. નીચે આપેલામાંથી કયો એક કેટાયનિક પ્રક્ષાલક છે ?
 - (1) સોડિયમ ડોડેસાઈલબેન્ઝિન સલ્ફોનેટ
 - (2) સોડિયમ લોરિલ સલ્કેટ
 - (3) સોડિયમ સ્ટિયરેટ
 - (4) સિટાઈલટ્રાયમિથાઈલ એમોનિયમ બ્રોમાઈડ
- 105. બેન્ઝીનનો ઠારબિંદુ અવનમન અચળાંક (K_f) $5.12~K~kg~mol^{-1}$ છે. બેન્ઝીનમાં રહેલા એક વિદ્યુત–અવિભાજય દ્રાવ્ય ધરાવતા 0.078~m મોલાલીટીના દ્રાવણ માટે ઠારબિંદુ અવનમન શોધો. (બે દશાંશ સુધી પૂર્ણાંકમાં મૂકી શકાય)
 - (1) 0.60 K
 - (2) 0.20 K
 - (3) 0.80 K
 - (4) 0.40 K
- 106. $2\operatorname{Cl}(g) \to \operatorname{Cl}_2(g)$ પ્રક્રિયા માટે, સાચો વિકલ્પ શોધો.
 - (1) $\Delta_{r}H < 0$ અને $\Delta_{r}S < 0$
 - (2) $\Delta_r H > 0 અને <math>\Delta_r S > 0$
 - (3) $\Delta_r H > 0$ અને $\Delta_r S < 0$
 - (4) $\Delta_r H < 0$ અને $\Delta_r S > 0$

- 107. એક પ્રક્રિયાના પ્રક્રિયકની સાંદ્રતામાં થતો વધારો નીચેના માંના ફેરફાર તરફ દોરી જશે જે શોધો :
 - (1) અથડામણ આવૃત્તિ
 - (2) સક્રિયકરણ શક્તિ
 - (3) પ્રક્રિયાની ઉષ્મા
 - (4) દેહલી ઊર્જા
- 108. નીચે આપેલા વિધાનોમાંથી સાચું ઓળખી બતાવો.
 - (a) આઈસક્રીમ અને થીજવેલા ખોરાક માટે ${
 m CO_2(g)}$ નો ઉપયોગ શીતક તરીકે (રેફ્રીજરન્ટ) થાય છે.
 - (b) C_{60} નું બંધારણ, બાર છ કાર્બન ચક્રો અને વીસ પાંચ કાર્બન ચક્રો ધરાવે છે.
 - (c) ZSM-5 પ્રકારના ઝિયોલાઈટનો ઉપયોગ આલ્કોહોલ માંથી ગેસોલિનમાં રૂપાંતર કરવા થાય છે.
 - (d) CO એ રંગવિહિન અને ગંધવિહિન વાયુ છે.
 - (1) ફક્ત (c) અને (d)
 - (2) ફક્ત (a), (b) અને (c)
 - (3) ફક્ત (a) અને (c)
 - (4) ફક્ત (b) અને (c)
- 109. નીચે આપેલા માંથી કયો એક પરમાણુઓની સંખ્યા મહત્તમ ધરાવતું હશે ?
 - (1) Li(s) નો 1 g [Li નું પરમાણ્વીય દળ = 7]
 - (2) Ag(s) નો 1 g [Ag નું પરમાણ્વીય દળ = 108]
 - (3) ${
 m Mg(s)}$ નો $1~{
 m g}~{
 m [Mg}$ નું પરમાણ્વીય દળ= 24]
 - (4) $O_2(g)$ નો 1 g [O નું પરમાણ્વીય દળ = 16]
- 110. પેપર ક્રોમેટોગ્રાફીનું ઉદાહરણ એ :
 - (1) સ્તંભ ક્રોમેટોગ્રાફી
 - (2) અધિશોષણ ક્રોમેટોગ્રાફી
 - (3) વિભાજન ક્રોમેટોગ્રાફી (Partition chromatography)
 - (4) થીન લેયર ક્રોમેટોગ્રાફી (પાતળા સ્તર ક્રોમેટોગ્રાફી)
- 111. પીગાળેલ CaCl_2 (પરમાણ્વીય દ્રવ્યમાન, $\operatorname{Ca} = 40 \operatorname{g mol}^{-1}$) માંથી $20 \operatorname{g}$ કેલ્શીયમનું ઉત્પાદન કરવા માટે કેટલી ફેરાડે $\operatorname{(F)}$ ની સંખ્યા જરૂરી છે ?
 - (1) 4
 - (2) 1
 - (3) 2
 - (4) 3

- 112. ખોટું વિધાન શોધી બતાવો.
 - (1) ${
 m CrO}_4^{2-}$ અને ${
 m Cr}_2{
 m O}_7^{2-}$ માં ક્રોમિયમની ઓક્સિડેશન અવસ્થા સમાન નથી.
 - (2) ${
 m Cr}^{2+}({
 m d}^4)$ એ પાણીમાંના ${
 m Fe}^{2+}({
 m d}^6)$ કરતા પ્રબળ રિડક્શનકર્તા છે.
 - (3) સંક્રાંતિ તત્વો અને તેના સંયોજનો તેની ઘણી બધી ઓક્સિડેશન અવસ્થાઓ ધરાવતા હોવાને કારણે તેની ઉદ્દીપકીય સક્રિયતા માટે જાણીતા છે અને તે સંકીર્ણો બનાવે છે.
 - (4) જયારે H, C અથવા N જેવા નાના પરમાણુઓ ધાતુઓના સ્ફડિક લેટાઈસોના અંદરના ભાગમાં ફસાઈ જાય ત્યારે આંતરાલીય સંયોજનો બને છે.
- 113. 288 pm કોષ ધાર સાથે એક તત્વ અંત:કેન્દ્રિત ક્યુબિક (bcc) બંધારણ ધરાવે છે, પરમાણ્વીય ત્રિજ્યા શોધો.
 - $(1) \qquad \frac{4}{\sqrt{2}} \times 288 \text{ pm}$
 - $(2) \qquad \frac{\sqrt{3}}{4} \times 288 \text{ pm}$
 - $(3) \qquad \frac{\sqrt{2}}{4} \times 288 \text{ pm}$
 - $(4) \qquad \frac{4}{\sqrt{3}} \times 288 \text{ pm}$
- 114. $0.1~{
 m M}~{
 m NaOH}~{
 m Hi}~{
 m Ni(OH)}_2$ ની દ્રાવ્યતા શોધો. ${
 m Ni(OH)}_2$ નો આયનિક ગુણાકાર $2\times 10^{-15}~{
 m sm}$ આપેલ છે.
 - (1) $1 \times 10^8 \,\mathrm{M}$
 - (2) $2 \times 10^{-13} \,\mathrm{M}$
 - (3) $2 \times 10^{-8} \,\mathrm{M}$
 - (4) $1 \times 10^{-13} \,\mathrm{M}$
- 115. એક અણુ કે જે અસ્તિત્વ ધરાવતો **નથી** જે ઓળખી બતાવો.
 - (1) O_2
 - (2) He₂
 - (3) Li₂
 - (4) C_2
- 116. નીચે આપેલા માંથી કયો બેઝિક એમિનો એસિડ છે ?
 - (1) લાઈસીન
 - (2) સિરીન
 - (3) એલેનાઈન
 - (4) ટાયરોસીન

- 117. નીચે આપેલામાંથી કયો એક કુદરતી બહુલક છે ?
 - (1) પોલી (બ્યૂટાડાઈન-એક્રિલોનાઈટ્રાઈલ)
 - (2) સીસ-1,4-પોલીઆઈસોપ્રીન
 - (3) પોલી (બ્યૂટાડાઈન-સ્ટાયરીન)
 - (4) પોલીબ્યૂટાડાઈન
- 118. નીચે આપેલા માંથી સાચું વિધાન ઓળખી બતાવો.
 - (1) પિગ આયર્નને જુદા-જુદા આકારમાં ઘડી શકાય છે.
 - (2) ભરતર લોખંડ એ 4% કાર્બન સાથેનું અશુધ્ધ લોખંડ છે.
 - (3) ફોલ્લાવાળા તાંબામાં દેખાતા ફોલ્લા એ ${
 m CO}_2$ ના નીકળવાના કારણે છે.
 - (4) નિકલ માટે બાષ્ય અવસ્થા શુધ્ધિકરણ વાન-આર્કેલ પધ્ધતિ દ્વારા કરવામાં આવે છે.
- 119. કાર્બન મોનોક્સાઈડના સંદર્ભમાં નીચે આપેલા માંથી કયું સાચું નથી ?
 - (1) અપૂર્ણ દહનના કારણે તેનું ઉત્પાદન થાય છે.
 - (2) તે કાર્બોક્સિહિમોગ્લોબીન બનાવે છે.
 - (3) તે રૂધિર માંના ઓક્સિજન પરિવહન ક્ષમતા ઘટાડે છે.
 - (4) ઓક્સિહિમોગ્લોબીન કરતા કાર્બોક્સિહિમોગ્લોબીન (હિમોગ્લોબીન સાથે જોડાયેલ CO) ઓછો સ્થિર છે.
- 120. નીચે આપેલાને જોડો:

	ઓક્સ	ાઈડ		પ્રકૃતિ
(a)	CO		(i)	બેઝિક
(b)	BaO		(ii)	ત૮સ્થ
(c)	$\mathrm{Al}_2\mathrm{O}$	3	(iii)	એસિડિક
(d)	$\mathrm{Cl}_2\mathrm{O}$	7	(iv)	ઉભયગુણીય
નીચે વ	ખાપેલા <i>ં</i>	માંથી કર	યો સાચો	. વિકલ્પ છે ?
	(a)	(b)	(c)	(d)

	(a)	(b)	(c)	(d)
(1)	(iv)	(iii)	(ii)	(i)
(2)	(i)	(ii)	(iii)	(iv)
(3)	(ii)	(i)	(iv)	(iii)
(4)	(iii)	(iv)	(i)	(ii)

- 121. નીચે આપેલ ધાતુ આયન ઘણા બધા ઉત્સેચકોને કાર્યાન્વિત (ઉત્તેજિત) કરે છે, તેઓ ગ્લુકોઝના ઓક્સિડેશનથી ATP ના ઉત્પાદનમાં ભાગ લે છે અને Na સાથે જ્ઞાનતંતુ સંદેશો વહન (ડ્રાન્સિમિશન) માટે પણ જવાબદાર છે.
 - (1) પોટેશિયમ
 - (2) લોખંડ
 - (3) તાંબૃ
 - (4) કેલ્શીયમ

- 122. નીચે આપેલા અણુઓની જોડી માંથી કયાની દ્વિધ્રુવ ચાકમાત્રા શૂન્ય થશે ?
 - (1) બોરોન ટ્રાયફલુઓરાઈડ, બેરિલિયમ ડાયફલુઓરાઈડ, કાર્બન ડાયોક્સાઈડ, 1,4-ડાયક્લોરોબેન્ઝિન
 - (2) એમોનિયા, બેરિલિયમ ડાયફલુઓરાઈડ, પાણી, 1,4-ડાયક્લોરોબેન્ઝિન
 - (3) બોરોન દ્રાયફ્લુઓરાઈડ, હાઈડ્રોજન ફ્લુઓરાઈડ, કાર્બન ડાયોક્સાઈડ, 1,3-ડાયક્લોરોબેન્ઝિન
 - (4) નાઈટ્રોજન ટ્રાયફ્લુઓરાઈડ, બેરિલિયમ ડાયફ્લુઓરાઈડ, પાણી, 1,3-ડાયક્લોરોબેન્ઝિન
- 123. નીચે આપેલા માંથી કયો એમાઈન કાર્બાઈલએમાઈન કસોટી આપશે ?

- 124. નીચે આપેલા માંથી કયા ને કારણે તૃતીયક બ્યૂટાઈલ કાર્બોકેશાયન એ દ્વિતીયક બ્યૂટાઈલ કાર્બોકેશાયન કરતા વધારે સ્થિર છે ?
 - (1) હાઈપરકોન્જ્યુગેશન
 - (2) $-CH_3$ સમૂહોની -I અસર
 - (3) $-CH_3$ સમૂહોની +R અસર
 - (4) CH_3 સમૂહોની R અસર

- 125. 2-બ્રોમો-પેન્ટેનની વિલોપન પ્રક્રિયામાંથી બનતો પેન્ટ-2-ઈન એ નીચેના માંથી શોધો :
 - (a) β-વિલોપન પ્રક્રિયા
 - (b) ઝેત્સેવ નિયમને અનુસરે છે
 - (c) ડિહાઈડ્રોહેલોજીનેશન પ્રક્રિયા
 - (d) નિર્જલીકરણ પ્રક્રિયા
 - (1) (a), (b), (d)
 - (2) (a), (b), (c)
 - (3) (a), (c), (d)
 - (4) (b), (c), (d)
- **126.** Cr^{2+} આયનની ગણતરી કરેલ સ્પિન ફક્ત ચુંબકીય ચાકમાત્રા શોધો.
 - (1) 2.84 BM
 - (2) 3.87 BM
 - (3) 4.90 BM
 - (4) 5.92 BM
- 127. એક આલ્કીનનું ઓઝોનાલિસિસ કરતા નિપજો પૈકી એક મિથેનાલ નીપજ મળે છે તો તેનું બંધારણ (આલ્કીન) શોધો.

$$\begin{array}{c} \operatorname{CH_2CH_2CH_3} \\ \end{array} \tag{1}$$

$$CH = CH - CH_3$$
(2)

$$\begin{array}{c} \operatorname{CH}_2 - \operatorname{CH}_2 - \operatorname{CH}_3 \\ \\ \end{array} \tag{3}$$

$$\mathbf{CH}_2 - \mathbf{CH} = \mathbf{CH}_2$$
 (4)

- 128. વુર્ટઝ પ્રક્રિયા વડે નીચે આપેલા આલ્કેન માંથી કયો સારી નીપજ બનાવી શકતો નથી ?
 - (1) n-બ્યૂટેન
 - (2) n-હેક્ઝેન
 - (3) 2,3-ડાયમિથાઇલબ્યૂટેન
 - (4) n-હેપ્ટેન
- 129. નીચે આપેલ પ્રક્રિયા શ્રેણીમાં સંયોજન X ઓળખી બતાવો.

$$\begin{array}{c} \text{CH}_3 \\ \hline \\ \text{Cl}_2/\text{h}\nu \\ \hline \\ \text{373 K} \end{array} \begin{array}{c} \text{CHO} \\ \hline \\ \end{array}$$

$$(1) \qquad \begin{array}{c} \operatorname{CCl}_3 \\ \end{array}$$

- 130. કો-ઓર્ડીનેશન સંયોજનો (સવર્ગ સંયોજનો) બનાવવા માટે લિગાન્ડોનો ક્ષેત્ર સામર્થ્યનો ચઢતો **સાચો** ક્રમ નીચે આપેલા માંથી કયો છે ?
 - (1) $CN^- < C_2O_4^{2-} < SCN^- < F^-$
 - (2) $SCN^- < F^- < C_2O_4^{2-} < CN^-$
 - (3) $SCN^- < F^- < CN^- < C_2O_4^{2-}$
 - (4) $F^- < SCN^- < C_2O_4^{2-} < CN^-$
- 131. રાઉલ્ટના નિયમ થી મિશ્રણ કે જે ધન વિચલન પ્રદર્શિત કરે છે તે શોધો.
 - (1) ક્લોરોઈથેન + બ્રોમોઈથેન
 - (2) ઈથેનોલ + એસિટોન
 - (3) બેન્ઝિન + ટોલ્યુઇન
 - (4) એસિટોન + ક્લોરોફોર્મ
- 132. ખોટી જોડ શોધી બતાવો :

નામ

IUPAC સ્વીકૃત (Official) નામ

- (a) અનનિલઉનિયમ
- (i) મેન્ડેલિવિયમ
- (b) અનનિલટ્રાઈયમ
- (ii) લૉરેન્સિયમ
- (c) અનનિલહેક્સિયમ
- (iii) સીબોર્ગિયમ
- (d) અનઅનયૃનિયમ
- (iv) દરમ્સ્ટાદટિયમ
- (1) (d), (iv)
- (2) (a), (i)
- (3) (b), (ii)
- (4) (c), (iii)
- 133. એક આદર્શ વાયુ માટે સમોષ્મી પરિસ્થિતિ હેઠળ થતું મુક્ત વિસ્તરણનો સાચો વિકલ્પ શોધો.
 - (1) $q > 0, \Delta T > 0 \text{ and } w > 0$
 - (2) $q = 0, \Delta T = 0 \text{ even} w = 0$
 - (3) $q = 0, \Delta T < 0 \text{ 2nd } w > 0$
 - (4) $q < 0, \Delta T = 0 \text{ even} w = 0$
- 134. $CaCl_2$, $MgCl_2$ અને NaCl ના દ્રાવણમાંથી HCl ને પસાર કરવામાં આવે છે. નીચે આપેલા માંથી કયું એક સંયોજન(નો) સ્ફરિકમય બને છે?
 - (1) NaCl, MgCl₂ અને CaCl₂
 - (2) બંન્ને MgCl_2 અને CaCl_2

 - (4)

 \$ধ্ব MgCl₂

135. નીચે આપેલ પ્રક્રિયામાં કાર્બનના ઓક્સિડેશન આંકમાં થતો ફેરફાર શું છે ?

 $\mathrm{CH_4}(\mathrm{g}) + 4\mathrm{Cl_2}(\mathrm{g}) \longrightarrow \mathrm{CCl_4}(\mathrm{l}) + 4\mathrm{HCl}(\mathrm{g})$

- (1) 0 થી -4
- (2) + 4 all + 4
- (3) 0 થી +4
- (4) -4 થી +4
- 136. એક મિટર-બ્રિજના ડાબા ખાંચા (gap) માં એક અવરોધ તારને જેડતાં તે જમણા ખાંચામાં ના $10~\Omega$ અવરોધને એવા બિંદુ પર સંતુલિત કરે છે કે જે આ બ્રિજના તારને 3:2 ના ગુણોત્તરમાં વિભાજત કરે છે. જો અવરોધ-તારની લંબાઈ $1.5~\mathrm{m}$ છે, તો $1~\Omega$ ના અવરોધ-તારની લંબાઈ છે:
 - (1) $1.5 \times 10^{-2} \,\mathrm{m}$
 - (2) $1.0 \times 10^{-2} \,\mathrm{m}$
 - (3) $1.0 \times 10^{-1} \,\mathrm{m}$
 - (4) $1.5 \times 10^{-1} \,\mathrm{m}$
- 137. શ્રેસોલ્ડ આવૃત્તિથી 1.5 ગણી આવૃત્તિનો પ્રકાશ એક પ્રકાશસંવેદી દ્રવ્ય પર આપાત થાય છે. જો આવૃત્તિ અડધી અને તીવ્રતા બમણી કરવામાં આવે તો ફોટોઈલેક્ટ્રિક પ્રવાહ શું હશે?
 - (1) શૂન્ય
 - (2) બમણો
 - (3) ચાર ગણો
 - (4) ચોથા ભાગનો
- 138. દર્શાવેલ લોજીક-પરિપથ માટે સત્યાર્થ-સારણી છે :

- (1) A B Y 0 0 1
 - $\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 0 \end{array}$
- - $\begin{array}{cccc} 0 & 1 & 0 \\ 1 & 0 & 0 \end{array}$
- 1 1 1 (3) A B Y
 - $\begin{array}{cccc} 0 & 0 & 0 \\ 0 & 1 & 1 \end{array}$
- - 1 1 (

139. 4 kg અને 6 kg દ્રવ્યમાનના બે પદાર્થોને એક દ્રવ્યમાન રહિત દોરીના છેડાઓ સાથે બાંઘેલ છે. આ દોરી ઘર્ષણરહિત ગરગડી પરથી પસાર કરેલ છે (આકૃતિ જુઓ). ગુરૂત્વીય પ્રવેગ (g) ના પદમાં આ તંત્રનો પ્રવેગ છે:

- (1) g/10
- (2) g
- (3) g/2
- (4) g/5
- 140. એક સ્થિર ઈલેક્ટ્રોનને V volt ના વિજસ્થિતિમાનના તફાવતથી પ્રવેગીત કરવામાં આવે છે. જો આ ઈલેક્ટ્રોનની ડી-બ્રૉગ્લી તરંગલંબાઈ $1.227 \times 10^{-2}~\mathrm{nm}$ છે, તો વિજસ્થિતિમાનનો તફાવત છે:
 - $(1) 10^4 \, \mathrm{V}$
 - (2) 10 V
 - (3) $10^2 \,\mathrm{V}$
 - (4) $10^3 \,\mathrm{V}$
- 141. કોઈ એક તારામાંથી 600 nm તરંગલંબાઈનો પ્રકાશ આવે છે તેમ ધારો. 2 m વ્યાસના ઓબ્જેક્ટીવ ધરાવતાં ટેલિસ્કોપની વિભેદન-સીમા _____ છે.
 - (1) $6.00 \times 10^{-7} \, \text{rad}$
 - (2) $3.66 \times 10^{-7} \, \text{rad}$
 - (3) $1.83 \times 10^{-7} \, \text{rad}$
 - (4) $7.32 \times 10^{-7} \, \text{rad}$
- 142. એક ટૂંકા વિદ્યુત દ્વિધ્રુવિયની દ્વિધ્રુવિય ચાકમાત્રા $16 \times 10^{-9} \, \mathrm{Cm}$ છે. આ દ્વિધ્રુવિયના અક્ષ સાથે 60° ખૂણો બનાવતી એક રેખા પર, આ દ્વિધ્રુવિયના કેન્દ્રથી $0.6 \, \mathrm{m}$ અંતરે રહેલ એક બિંદુ પર આ દ્વિધ્રુવિયના કારણે લાગતું વિદ્યુતસ્થિતિમાન છે :

$$\left(\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ N m}^2/\text{C}^2\right)$$

- (1) શૂન્ય
- (2) 50 V
- (3) 200 V
- (4) 400 V

- 143. ____ ના લીધે p-n જંક્શન ડાયોડના ડિપ્લેશન ક્ષેત્રની પહોળાઈમાં વધારો થાય છે.
 - (1) ફૉર્વર્ડ પ્રવાહના વધારા
 - (2) કક્ત ફૉર્વર્ડ બાયસ
 - (3) ફક્ત રિવર્સ બાયસ
 - (4) ફૉર્વર્ડ બાયસ અને રિવર્સ બાયસ બન્ને
- 144. એક 200 V, 50 Hz ના ac સપ્લાય સાથે $40~\mu F$ નો એક કેપેસિટર જોડેલ છે. આ પરિપથમાંના પ્રવાહનું rms મુલ્ય આશરે છે.
 - (1) 25.1 A
 - (2) 1.7 A
 - (3) 2.05 A
 - (4) 2.5 A
- - $(1) \qquad \frac{7}{2} \, \, \mathbf{k_B T}$
 - $(2) \qquad \frac{1}{2} \ k_B T$
 - (3) $\frac{3}{2} k_B T$
 - $(4) \qquad \frac{5}{2} \, \, k_B T$
- **146.** સાર્થક અંકોને ધ્યાનમાં રાખતાં, 9.99 m 0.0099 m નું મુલ્ય શું હશે ?
 - (1) 9.9 m
 - (2) 9.9801 m
 - (3) 9.98 m
 - (4) 9.980 m
- 147. એક ગિટારમાં સમાન દ્રવ્યના બનેલા બે તારો A અને B જરાક અસમ સ્વરિત છે અને તે 6 Hz આવૃત્તિનો સ્પંદ ઉત્પન્ન કરે છે. જયારે B માં તનાવને જરાક ઘટાડવામાં આવે છે, આ સ્પંદની આવૃત્તિ વધીને 7 Hz થાય છે. જો A ની આવૃત્તિ 530 Hz હોય, તો B ની મૂળ આવૃત્તિ હશે ______.
 - (1) 537 Hz
 - (2) $523 \,\mathrm{Hz}$
 - (3) 524 Hz
 - (4) 536 Hz

- 148. જ્યારે એક યુરેનિયમ સમસ્થાનિક $^{235}_{92}$ U પર ન્યૂદ્રૉનનો મારો ચલાવવામાં આવે છે, તે $^{89}_{36}\mathrm{Kr}$, ત્રણ ન્યૂદ્રૉન્સ અને _____ ઉત્પન્ન કરે છે.
 - (1) $^{103}_{36}$ Kr
 - (2) $^{144}_{56}$ Ba
 - (3) $^{91}_{40}$ Zr
 - (4) $^{101}_{36}$ Kr
- 149. પ્રતિબળનું પરિમાણ _____ છે.
 - (1) $[ML^{-1}T^{-2}]$
 - (2) $[MLT^{-2}]$
 - (3) $[ML^2T^{-2}]$
 - (4) $[ML^0T^{-2}]$
- 150. આણ્વિક વ્યાસ d અને અંકઘનતા n ધરાવતાં એક વાયુના સરેરાશ મુક્ત પથને _____ વડે રજુ કરી શકાય છે.
 - (1) $\frac{1}{\sqrt{2} n^2 \pi^2 d^2}$
 - $(2) \qquad \frac{1}{\sqrt{2} \, n\pi d}$
 - $(3) \qquad \frac{1}{\sqrt{2} \, \operatorname{n} \pi \operatorname{d}^2}$
 - (4) $\frac{1}{\sqrt{2} n^2 \pi d^2}$
- 151. 20 cm² ક્ષેત્રફળ ધરાવતી એક અપરાવર્તિત સપાટી પર $20~\mathrm{W/cm^2}$ સરેરાશ ફ્લક્ષ ધરાવતો પ્રકાશ લંબરૂપે આપાત થાય છે. 1 મિનિટ સમય ગાળામાં આ સપાટી દ્વારા પ્રાપ્ત થતી ઊર્જા છે:
 - (1) $48 \times 10^3 \,\mathrm{J}$
 - (2) $10 \times 10^3 \,\mathrm{J}$
 - (3) $12 \times 10^3 \,\text{J}$
 - (4) $24 \times 10^3 \,\text{J}$
- 152. DNA માં એક બોન્ડ તોડવા માટેની જરૂરી ઊર્જા $10^{-20}~\mathrm{J}$ છે. eV માં આનું મુલ્ય _____ ની નજીકનું છે.
 - (1) 0.006
 - (2) 6
 - (3) 0.6
 - (4) 0.06

153. 10 cm ત્રિજ્યાનો એક ગોલીય વાહક સમાન રીતે વિતરિત 3.2×10^{-7} C વીજભાર ધરાવે છે. આ ગોળાના કેન્દ્રથી 15 cm અંતરે રહેલા બિંદુ પર વિદ્યુતક્ષેત્રનું માન શું હશે ?

$$\left(\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ N m}^2/\text{C}^2\right)$$

- (1) $1.28 \times 10^7 \text{ N/C}$
- (2) $1.28 \times 10^4 \text{ N/C}$
- (3) $1.28 \times 10^5 \text{ N/C}$
- (4) $1.28 \times 10^6 \text{ N/C}$
- 154. એક નાના કોણ પ્રિઝ્મ (પ્રિઝ્મ કોણ A છે) ની એક સપાટી પર એક કિરણ આપાત કોણ i પર આપાત થાય છે અને વિરૂધ્ધ સપાટીથી લંબ રીતે નિર્ગમન પામે છે. જો આ પ્રિઝ્મમાં દ્રવ્યનો વક્કીભવનાંક μ છે, તો આપાત કોણ _____ ની નજીકનો છે.
 - (1) $\frac{\mu A}{2}$
 - (2) $\frac{A}{2\mu}$
 - (3) $\frac{2A}{u}$
 - (4) μA
- 155. અવરોધના ઋણ તાપમાન ગુણાંક ધરાવતા હોય તેવા 'ઘન પદાર્થો' છે :
 - (1) અવાહકો અને અર્ધવાહકો
 - (2) ધાતુઓ
 - (3) ફક્ત અવાહકો
 - (4) કક્ત અર્ધવાહકો
- 156. 100 આંટા ધરાવતાં 50 cm લંબાઈનો એક લાંબો સોલેનોઈડ 2.5 A વીજપ્રવાહ ધારિત છે. આ સોલેનોઈડના કેન્દ્રમાં ચુંબકીય ક્ષેત્ર છે:

$$(\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1})$$

- (1) $3.14 \times 10^{-5} \,\mathrm{T}$
- (2) $6.28 \times 10^{-4} \,\mathrm{T}$
- (3) $3.14 \times 10^{-4} \,\mathrm{T}$
- (4) $6.28 \times 10^{-5} \,\mathrm{T}$
- 157. 0.2 m^3 કદના અવકાશના એક ચોક્કસ ક્ષેત્રમાં 5 V નો સમાન વીજસ્થિતિમાન જોવા મળે છે. આ ક્ષેત્રમાં વિદ્યુત ક્ષેત્રનું પરિમાણ છે :
 - (1) 5 N/C
 - (2) શૂન્ય
 - (3) 0.5 N/C
 - (4) 1 N/C

158. એક આંતરપૃષ્ઠ માટે બ્રુસ્ટર કોણ i_b હોય છે :

- (1) $i_b = 90^{\circ}$
- (2) $0^{\circ} < i_b < 30^{\circ}$
- (3) $30^{\circ} < i_b < 45^{\circ}$
- (4) $45^{\circ} < i_b < 90^{\circ}$

159. હવા માધ્યમ ધરાવતાં એક સમાંતર બાજુ કેપેસિટરનો કેપેસિટન્સ $6~\mu F$ છે. એક ડાયઈલેક્ટ્રિક માધ્યમ ઉમેરતાં આ કેપેસિટન્સ $30~\mu F$ થાય છે. આ માધ્યમની પરમિટીવીટી છે _____. ($\epsilon_0 = 8.85 \times 10^{-12}~\mathrm{C}^2~\mathrm{N}^{-1}~\mathrm{m}^{-2}$)

- (1) $5.00 \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
- (2) $0.44 \times 10^{-13} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
- (3) $1.77 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
- (4) $0.44 \times 10^{-10} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$

160. સરળ આવર્ત ગતિ કરતાં એક કણના સ્થાનાંતર અને પ્રવેગ વચ્ચેનો કળા તફાવત _____ છે.

- (1) શૂન્ય
- (2) $\pi \operatorname{rad}$
- (3) $\frac{3\pi}{2}$ rad
- (4) $\frac{\pi}{2}$ rad

161. $3 \times 10^{-10} \text{ Vm}^{-1}$ વિદ્યુતક્ષેત્રમાં એક વીજભારિત કણનો અપવહન-વેગ (drift velocity) $7.5 \times 10^{-4} \text{ m s}^{-1}$ છે અને ______ $\text{m}^2 \text{ V}^{-1} \text{ s}^{-1}$ ગતિશીલતા (mobility) છે.

- (1) 2.25×10^{-15}
- (2) 2.25×10^{15}
- (3) 2.5×10^6
- (4) 2.5×10^{-6}

162. નીચેમાંનો કયો આલેખ તાંબા માટે અવરોધકનાં (ρ) નો તાપમાન (T) સાથેનો બદલાવ દર્શાવે છે?

163. 599 સસેપ્ટીબીલીટી ધરાવતો એક લોખંડના સળિયાને $1200\,\mathrm{A\,m^{-1}}$ ચુંબકન ક્ષેત્ર આપવામાં આવે છે. આ સળિયાના દ્રવ્યની પરમિઆબીલીટી છે :

$$(\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1})$$

- (1) $2.4\pi \times 10^{-7} \text{ T m A}^{-1}$
- (2) $2.4\pi \times 10^{-4} \text{ T m A}^{-1}$
- (3) $8.0 \times 10^{-5} \,\mathrm{T}\,\mathrm{m}\,\mathrm{A}^{-1}$
- (4) $2.4\pi \times 10^{-5} \text{ T m A}^{-1}$

164. અવગણ્ય દ્રવ્યમાન ધરાવતાં 1 m લંબાઈના એક જડ સળિયાના બે છેડા પર અનુક્રમે 5 kg અને 10 kg દ્રવ્યમાનના કણો જોડેલ છે.

5 kg ના કણથી આ તંત્રનું દ્રવ્યમાન કેન્દ્ર આશરે _____ અંતર પર છે.

- (1) 80 cm
- (2) 33 cm
- (3) 50 cm
- (4) 67 cm

- 165. દ્રાન્ઝિસ્ટર એક્શન માટે નીચેમાંથી કયું વિધાન સાચું છે?
 - (1) બેઝ ક્ષેત્ર ખુબજ પાતળું અને ઓછી માત્રામાં ડોપ (અશુધ્ધિ) થયેલ હોવું જોઈએ.
 - (2) બેઝ, એમિટર અને કલેક્ટર ક્ષેત્રોમાં ડોપિંગનું (અશુધ્ધિનું) પ્રમાણ સરખું હોવું જોઈએ.
 - (3) બેઝ, એમિટર અને કલેક્ટર ક્ષેત્રોનું કદ (size) સમાન હોવું જોઈએ.
 - (4) એમિટર જંક્શન અને કલેક્ટર જંક્શન બન્ને ફોર્વર્ડ બાયસ હોય છે.
- **166.** એક કણ કે જેનો સ્થાન સદિશ $2 \hat{k} \mod 9$ તેના પર ઉદ્દગમ બિંદુની સાપેક્ષે જ્યારે $3 \hat{j} \mod 9$ બળ લાગે ત્યારનું ઘુર્ણનબળ (ટોર્ક) શોધો.
 - (1) $6\hat{k}$ N m
 - (2) $6\hat{i}$ N m
 - (3) $6\hat{j}$ N m
 - (4) $-6\hat{i}$ N m
- 167. એક અવરોધ માટે વર્ણ-સંકેત નીચે આપેલ છે :

આ અવરોધનું મુલ્ય અને સહ્યતા (tolerance) અનુક્રમે છે :

- (1) $470 \Omega, 5\%$
- (2) $470 \text{ k}\Omega, 5\%$
- (3) $47 \text{ k}\Omega, 10\%$
- (4) $4.7 \text{ k}\Omega, 5\%$
- 168. એક ટાવરની ટોચ પરથી એક દડાને $20~\mathrm{m/s}$ ના વેગથી શિરોલંબ દિશામાં નીચે તરફ ફેંકવામાં આવે છે. થોડાક સમય બાદ તે ભોંય તળિયાને $80~\mathrm{m/s}$ ના વેગથી અથડાય છે. આ ટાવરની ઊંચાઈ છે _____. (g= $10~\mathrm{m/s}^2$)
 - (1) 300 m
 - (2) 360 m
 - (3) 340 m
 - (4) 320 m

169. r-ત્રિજ્યા ધરાવતી એક કેપેલરી ટચૂબ (કેશનળી) ને પાણીમાં ડુબાડતાં તેમાં h ઊંચાઈ જેટલું પાણી ચઢે છે.

આ કેશનળીમાંના પાણીનું દ્રવ્યમાન $5~\mathrm{g}$ છે. 2r ત્રિજ્યા ધરાવતી અન્ય એક કેશનળીને પાણીમાં ડુબાડવામાં આવે છે. આ નળીમાં ઉપર ચઢતાં પાણીનું દળ છે :

- (1) 20.0 g
- (2) 2.5 g
- (3) 5.0 g
- (4) 10.0 g
- 170. 0.5 g પદાર્થનું ઊર્જા તુલ્યાંક _____ છે
 - (1) $0.5 \times 10^{13} \,\mathrm{J}$
 - (2) $4.5 \times 10^{16} \,\mathrm{J}$
 - (3) $4.5 \times 10^{13} \,\mathrm{J}$
 - (4) $1.5 \times 10^{13} \,\mathrm{J}$
- 171. સમાન ક્ષમતા ધરાવતાં બે નળાકારો A અને B ને એક બીજા સાથે એક સ્ટોપ કૉક થી જોડેલ છે. A એક પ્રમાણભૂત તાપમાન અને દબાણે એક આદર્શ વાયુ ધરાવે છે. B સંપૂર્ણ ખાલી છે. આ આખી પ્રણાલી ઉષ્મીય અવાહક છે. આ સ્ટોપ કૉકને અચાનક ખોલવામાં આવે છે. આ પ્રક્રિયા છે:
 - (1) સમદાબ
 - (2) સમતાપી
 - (3) સમોષ્મી
 - (4) સમકદ
- 172. એક સ્ક્રુ ગેજની લઘુત્તમ માપ શક્તિ 0.01 mm છે અને તેની વર્તુળાકાર માપપટ્ટી પર 50 કાપાઓ છે.

આ સ્ક્રુ ગેજનો અંતરાલ (pitch) _____છે.

- (1) 1.0 mm
- (2) 0.01 mm
- (3) 0.25 mm
- (4) 0.5 mm
- 173. યંગના ડબલ સ્લિટના પ્રયોગમાં, જો સુસબ્ધ ઉદ્દગમો વચ્ચેનું અંતર અડઘું કરવામાં આવે અને પડદાનું સુસબ્ધ ઉદ્દગમોથી અંતર બમણું કરવામાં આવે, તો શલાકાની પહોળાઈ _____ થશે.
 - (1) ચોથા ભાગની
 - (2) બમણી
 - (3) અડધી
 - (4) ચાર ગણી

174.	એક પદાર્થનું પૃથ્વીની સપાટી પર વજન 72 N છે.
	પૃથ્વીની ત્રિજ્યાનાં અડધી ઊંચાઈ પર, તેના પર કેટલું ગુરૂત્વાકર્ષણ બળ લાગે?

- (1) 24 N
- (2) 48 N
- (3) 32 N
- (4) 30 N
- 175. વિદ્યુતચુંબકીય તરંગની તીવ્રતામાં વિદ્યુતક્ષેત્ર અને ચુંબકીય ક્ષેત્ર ઘટકોનાં યોગદાનનો ગુણોત્તર _____ છે. (c= વિદ્યુતચુંબકીય તરંગની ઝડપ)
 - (1) $1:c^2$
 - (2) c:1
 - (3) 1:1
 - (4) 1:c
- 176. \mathbf{r}_1 અને \mathbf{r}_2 (\mathbf{r}_1 = 1.5 \mathbf{r}_2) ત્રિજયાઓના તાંબાના બે ઘન ગોળાઓના તાપમાનમાં 1 K જેટલો વધારો કરવા જરૂરી ઉષ્માના જથ્થાનો ગુણોત્તર છે :
 - (1) $\frac{5}{3}$
 - (2) $\frac{27}{8}$
 - (3) $\frac{9}{4}$
 - (4) $\frac{3}{2}$
- 177. એક શ્રેણી LCR પરિપથને ac વોલ્ટેજ ઉદ્દગમ સાથે જોડેલ છે. જયારે પરિપથમાંથી L ને દૂર કરવામાં આવે છે ત્યારે પ્રવાહ અને વોલ્ટેજ વચ્ચેનો કળા-તફાવત $\frac{\pi}{3}$ છે. જો તેના બદલે પરિપથમાંથી C ને દૂર કરવામાં આવે ત્યારે ફરીથી પ્રવાહ અને વોલ્ટેજ વચ્ચેનો કળા-તફાવત $\frac{\pi}{3}$ છે. આ પરિપથનો શક્તિગુણાંક (power factor) છે:
 - (1) -1.0
 - (2) શૂન્ય
 - (3) 0.5
 - (4) 1.0

178. એક નળાકારમાં $249 \, \mathrm{kPa}$ દબાણે અને $27^{\circ}\mathrm{C}$ તાપમાને હાઈડ્રોજન વાયુ ભરેલ છે.

તેની ધનતા છે : $(R = 8.3 \text{ J mol}^{-1} \text{ K}^{-1})$

- (1) 0.02 kg/m^3
- (2) 0.5 kg/m^3
- (3) 0.2 kg/m^3
- (4) 0.1 kg/m^3
- 179. L લંબાઈ અને A આડછેદનું ક્ષેત્રફળ ધરાવતો એક તાર એક જડ આધારથી લટકે છે. જ્યારે તારના મુક્ત છેડા પર દ્રવ્યમાન M લટકાવવામાં આવે ત્યારે આ તારની લંબાઈ બદલાઈને L_1 થાય છે, તો યંગ મોડયુલસનું સૂત્ર છે :
 - $(1) \qquad \frac{MgL}{A(L_1-L)}$
 - $(2) \qquad \frac{\mathrm{MgL}_1}{\mathrm{AL}}$
 - $(3) \qquad \frac{Mg(L_1-L)}{AL}$
 - $(4) \qquad \frac{\mathrm{MgL}}{\mathrm{AL_1}}$
- **180.** નીચેનામાંથી કોના એક માટે બોહર મૉડેલ માન્ય **નથી** ?
 - (1) એકધા આયનિત નિયોન પરમાણું (Ne +)
 - (2) હાઈડ્રોજન પરમાણું
 - (3) એકધા આયનિત હિલીયમ પરમાણું (He ⁺)
 - (4) ડચૂટેરોન પરમાણું

- o O o -

Space For Rough Work / રફ કાર્યનું સ્થાન

Space For Rough Work / રફ કાર્યનું સ્થાન

Space For Rough Work / રફ કાર્યનું સ્થાન