# Effect-Abstraction Based Relaxation for Linear Numeric Planning

Dongxu Li 1, Enrico Scala 2, Patrik Haslum 1,3, Sergiy Bogomolov 1

1 The Australian National University

2 Fondazione Bruno Kessler (Italy)

3 CSIRO Data61

# Outline

- Motivation and Problem Statement
- Numeric Effect-Abstraction
- Effect-Abstraction Subgoaling Relaxation
  - Theoretical Result
  - A Novel Heuristic  $h_{abs}^{add}$
- Evaluation
- Conclusion and Future Work

• Solve planning problems by heuristic search

- Heuristics by Relaxation
  - A relaxation problem is **an easier problem** (usually could be solved in polynomial time), which can provide useful information on how to solve the master problem.
  - Relaxations are at the basis of state-of-art planners.
  - Tighter relaxation usually translates to more informative heuristics.

STEWNS OF THE STATE OF THE STAT

#### Comparison of Existing Relaxations

|                     | (Additive) Interval-<br>based [1, 2, 3] |   | Subgoaling [4, 5]                       |
|---------------------|-----------------------------------------|---|-----------------------------------------|
| Problem<br>Spectrum | General (e.g. non-linear effects)       | > | Simple (i.e. constant additive effects) |
| Tightness           | Looser                                  | < | Tighter                                 |

Table 1: Comparison between existing relaxations for numeric planning problems.

- Research Questions: can we find a relaxation that
  - handles a fragment that sits between general and simple planning;
  - tighter than Interval-based relaxation.

• Linear Numeric Planning Problem

Subclass of PDDL 2.1 level 2

- Numeric state variables
- Preconditions, effects, goals involving numbers and *linear* arithmetic expressions.

General Numeric Planning (e.g. non-linear effects) [1, 2, 3]

Linear Numeric Planning (our work)

Simple Numeric Planning (i.e. constant additive effects) [4, 5]

Figure 1. Relations among different numeric planning problems.

#### • Example: TPP-Metric problem

The #goods to purchase depends on #request - #bought, which is linear.

:effect (and (decrease (on-sale ?g ?m) (- (request ?g) (bought ?g)))



Figure 2. TPP-metric problem.

Contribution

- 1. Propose a general effect-abstraction scheme to compile linear numeric planning problems into simple (conditional) numeric planning problems;
- 2. Propose **effect-abstraction subgoaling relaxation**, proved to be tighter than Additive Interval-based Relaxation (AIBR);
- 3. Prove a safeness condition for effect-abstraction subgoaling relaxation;
- 4. A new and competitive heuristic  $h_{abs}^{add}$

#### Observation:

Linear numeric effect is a compact representation of (potentially) infinite number of *conditional effects*.

#### E.g. consider the effect

```
:effect (decrease (on-sale ?g ?m) (- (request ?g) (bought ?g))
```

Only if # request-#bought evaluates to some amount n, # on-sale could be decreased by the same amount n.

Namely, one conditional effect could be formulated as:

- Abstraction by coarsening numeric effects
- Numeric Effect-Abstraction

Figure 2. Numeric Effect-Abstraction scheme.

STENENS OF THE PROPERTY OF THE

• Numeric Effect Abstraction:  $\Gamma_{\langle D,T \rangle}(\Pi)$ 

#### D(e) - Decomposition

- Partition possibly reachable values of *rhs(e)* into disjoint intervals;
- The boundaries of such intervals induce additional conditions when linear numeric effect is activated.

#### T(e) - Tagging

- A tagging function  $T(e):D(e)\to \mathbb{Q}$  maps every interval  $l\in D(e)$  to a specific value T(e)(l) in D(e).
- Use T(e) as a coarsened representative of the effect when the right-hand side evaluates to a member in D(e).

STATE OF THE STATE

#### Numeric Effect Abstraction

#### **Compiling into conditional effects**

$$\{\langle rhs(e) \in l, \langle lhs(e), op(e), T(e)(l) \rangle \rangle : l \in D(e)\}$$

#### • Example

# Effect-Abstraction Subgoaling Relaxation

#### Effect-Abstraction Subgoaling Relaxation

Master Problem (Linear)

$$\begin{array}{c|c} \Pi \\ \hline & \text{Numeric Effect} \\ \hline & \text{Abstraction } \Gamma_{\langle D,T\rangle}(\cdot) \end{array}$$

Effect-abstraction Problem (Simple)

$$\Gamma_{\langle D,T
angle}(\Pi)$$
 Subgoaling Relaxation  $\Gamma_{\langle D,T
angle}(\Pi)^1$ 

Figure 3. Effect-Abstraction Subgoaling Relaxation

Effect-Abstraction Subgoaling Relaxation - Theoretical Result

#### Safeness Condition

#### **Theorem**

 $\Gamma_{\langle D,T\rangle}(\Pi)^1$  has no solution implies  $\Pi$  has no solution if for every effect:

$$\forall l \in D(e) : \overline{l} \cdot \underline{l} > 0$$

#### Tightness

Under the Theorem, for any choice of *T*, effect-abstraction subgoaling relaxation is tighter than AIBR.

# Effect-Abstraction Subgoaling Relaxation - A Novel Heuristic $h_{abs}^{add}$

#### AIBR-based Decomposition (ABD)

- 1. Use additive interval-based relaxation (AIBR) to (over-)approximate reachable values for the right-hand side.
  - 2. Track the progression of intervals as the decomposition.
- Midpoint Tag Function (MTF)

$$MTF(I) = \begin{cases} \underline{\underline{I}} + \epsilon & \text{if } \overline{I} = \infty \\ \overline{\overline{I}} - \epsilon & \text{if } \underline{I} = -\infty \\ \underline{\underline{I} + \overline{I}} & \text{otherwise} \end{cases}$$

•  $h_{abs}^{add}$ 

Apply  $h_{hbd+}^{add}$  on the abstraction problem.

$$h_{abs}^{add}(\Pi, s_0) = h_{hbd+}^{add}(\Gamma_{\langle ABD, MTF \rangle}(\Pi), s_0)$$

# Evaluation

# Domains

- 1. IPC domain TPP-Metric;
- 2. Extensions of simple numeric planning domains (Counters, Sailing, Farmland).

|                  | Coverage        |            |                        | CF              | U-Tin      | ne (s)                 | Plan Length     |             |                        | Exp. Nodes      |            |                        |  |
|------------------|-----------------|------------|------------------------|-----------------|------------|------------------------|-----------------|-------------|------------------------|-----------------|------------|------------------------|--|
|                  | $h_{abs}^{add}$ | $h^{aibr}$ | $\hat{h}_{hbd+}^{add}$ | $h_{abs}^{add}$ | $h^{aibr}$ | $\hat{h}_{hbd+}^{add}$ | $h_{abs}^{add}$ | $h^{aibr}$  | $\hat{h}_{hbd+}^{add}$ | $h_{abs}^{add}$ | $h^{aibr}$ | $\hat{h}_{hbd+}^{add}$ |  |
| FO-COUNT(20)     | 8               | 8          | 8                      | 39.4            | 8.9        | 56.3                   | 17.5            | 20.4        | 21.9                   | 24991.1         | 5807.8     | 2239.6                 |  |
| FO-COUNT-INV(20) | 8               | 6          | 6                      | 1.0             | 67.7       | 13.0                   | 22.0            | 24.0        | 26.5                   | 804.0           | 70880.8    | 970.3                  |  |
| FO-COUNT-RND(60) | 31              | 24         | 21                     | 9.6             | 33.0       | 123.1                  | <b>19.7</b>     | 22.3        | 19.9                   | 5755.3          | 25085.0    | 9582.7                 |  |
| FO-SAILING(20)   | <b>17</b>       | 4          | 5                      | 1.0             | 344.0      | 160.6                  | 91.0            | <b>74.0</b> | 126.3                  | 92.0            | 997881.7   | 36323.0                |  |
| FO-FARMLAND(50)  | 50              | <b>50</b>  | <b>50</b>              | 0.7             | 2.0        | 64.8                   | 58.1            | 26.8        | 26.3                   | 60.4            | 638.8      | 172.4                  |  |
| TPP-METRIC(40)   | 20              | 8          | 10                     | 2.9             | 123.3      | 107.8                  | 20.5            | 20.8        | 23.2                   | 29.6            | 91546.9    | 144.0                  |  |
| Total            | 134             | 100        | 100                    |                 |            |                        |                 |             |                        |                 |            |                        |  |

Table 2: Comparison between existing heuristics for linear numeric planning problems. Time, plan length and expansions are averages over instances solved with the first three heuristics. Bold is for best performer. Timeout is 1800 seconds.

# Conclusion and Future Work

#### **Conclusion**

- 1. **Numeric effect-abstraction**: a general scheme to apply relaxations/heuristics for simple numeric planning with more complex numeric effects;
- 2. Proved **safeness condition** in combination with numeric subgoaling relaxation/heuristics;
- 3. A new and competitive heuristic  $h_{abs}^{add}$

#### **Future Work**

Expand to other relaxations/heuristics and effects beyond linear.

#### Reference

- [1] Hoffmann, J. (2003). The Metric-FF Planning System: Translating `Ignoring Delete Lists" to Numeric State Variables. *Journal of artificial intelligence research*, 20, 291-341.
- [2] Scala, E., Haslum, P., Thiébaux, S., & Ramirez, M. (2016, August). Interval-Based Relaxation for General Numeric Planning. In *ECAI* (pp. 655-663).
- [3] Aldinger, J., Mattmüller, R., & Göbelbecker, M. (2015, September). Complexity of interval relaxed numeric planning. In *Joint German/Austrian Conference on Artificial Intelligence (Künstliche Intelligenz)* (pp. 19-31). Springer, Cham.
- [4] Scala, E., Haslum, P., & Thiébaux, S. (2016, July). Heuristics for Numeric Planning via Subgoaling. In *IJCAI* (pp. 3228-3234).
- [5] Piacentini, C., Castro, M., Cire, A., & Beck, J. C. (2018). Linear and integer programming-based heuristics for costoptimal numeric planning. AAAI.

# Appendix

We also compared  $h_{abs}^{add}$  with Metric-FF.

- 1. Much better than FF heuristics with GBFS;
- 2. Even solved more problem instances than Metric-FF full system.

Note that ENHSP with  $h_{abs}^{add}$  and GBFS is complete, while Metric-FF with helpful action pruning, hill-climbing search is not.

|                  | Coverage        |            |                        | CPU-Time (s)    |            |                        | Plan Length     |             |                        | Exp. Nodes      |            |                        | Coverage          |      |
|------------------|-----------------|------------|------------------------|-----------------|------------|------------------------|-----------------|-------------|------------------------|-----------------|------------|------------------------|-------------------|------|
|                  | $h_{abs}^{add}$ | $h^{aibr}$ | $\hat{h}_{hbd+}^{add}$ | $h_{abs}^{add}$ | $h^{aibr}$ | $\hat{h}_{hbd+}^{add}$ | $h_{abs}^{add}$ | $h^{aibr}$  | $\hat{h}_{hbd+}^{add}$ | $h_{abs}^{add}$ | $h^{aibr}$ | $\hat{h}_{hbd+}^{add}$ | $h_{ m LNF}^{FF}$ | M-FF |
| FO-COUNT(20)     | 8               | 8          | 8                      | 39.4            |            | 56.3                   |                 | 20.4        | 21.9                   | 24991.1         | 5807.8     | 2239.6                 | 1                 | 8    |
| FO-COUNT-INV(20) | 8               | 6          | 6                      | 1.0             | 67.7       | 13.0                   | 22.0            | 24.0        | 26.5                   | 804.0           | 70880.8    | 970.3                  | 1                 | 7    |
| FO-COUNT-RND(60) | 31              | 24         | 21                     | 9.6             | 33.0       | 123.1                  | <b>19.7</b>     | 22.3        | 19.9                   | 5755.3          | 25085.0    | 9582.7                 | 0                 | 23   |
| FO-SAILING(20)   | <b>17</b>       | 4          | 5                      | 1.0             | 344.0      | 160.6                  | 91.0            | <b>74.0</b> | 126.3                  | 92.0            | 997881.7   | 36323.0                | 0                 | 11   |
| FO-FARMLAND(50)  | 50              | <b>50</b>  | <b>50</b>              | 0.7             | 2.0        | 64.8                   | 58.1            | 26.8        | 26.3                   | 60.4            | 638.8      | 172.4                  | 0                 | 38   |
| TPP-METRIC(40)   | 20              | 8          | 10                     | 2.9             | 123.3      | 107.8                  | 20.5            | 20.8        | 23.2                   | 29.6            | 91546.9    | 144.0                  | 6                 | 40   |
| Total            | 134             | 100        | 100                    |                 |            |                        |                 |             |                        |                 |            |                        | 8                 | 127  |

Table 3: Comparison result including Metric-FF (present in paper).