Stat 243

R Programming Concepts

Gaston Sanchez

Creative Commons Attribution 4.0 International License

Programming Concepts

References

Most of the content in these slides is a curated collection of notes and quotes from:

- **R Programming for Bioinformatics** by Robert Gentleman.
- Software for Data Analysis by John Chambers.
- **Extending R** by John Chambers.
- ▶ **Advanced R** by Hadley Wickham.
- ► The Art of R Programming by Norman Matloff.
- ► Introduction to Scientific Programming and Simulation Using R by O. Jones, R. Maillardet, and A. Robinson.

R sessions

A typical session using R involves:

- starting R
- loading packages necessary to perform intended analysis
- loading data sets
- data manipulation in a variety of ways
- perhaps saving results and output to an external location
- ▶ etc

R sessions

- For every R session you have a workspace.
- ▶ The workspace is referred to as the **global environment**.
- This is the place where the objects that you create will be stored.
- ► The function ls() lists the objects in your current workspace.
- ► More information about your session is provided with sessionInfo().

R language basics

- Programming in R is carried out by manipulating and modifying data structures.
- ► These different transformations are carried out using functions and operators.
- ▶ In R, virtually every operation is a function call.
- ▶ In many ways, R can be considered a functional programming language.
- ▶ Among other things, functions can be paassed as arguments to functions, and returned as values.

Pretty much everything is a function call

Consider the following code

```
a <- 1:5
b <- 2
a + b
```

- ▶ The assignment operator "<-" is a function
- ► The colon operator ":" is also a function
- ► The "+" operator is another function

Pretty much everything is a function call

```
# colon operator as a function
":"(from = 1, to = 5)

# assignment as a function
"<-"(a, value = ":"(from = 1, to = 5))

# addition as a function
"+"(2, 3)</pre>
```

Objects and Names

- As in any programming language, it's essential to be able to refer to objects, in a particular context, in a way that is consistent and clear.
- ▶ In R, there is one and only one way to refer to objects: by name and an environment (i.e. context)

Objects and Names

x <- 1

- Say you create a variable (i.e. object) x
- ► You use the assignment operator <- (or =) for this purpose
- ► Formally, this object has the name "x"
- ▶ The value of 1 is **assigned** to the object x
- x lives in the global environment (i.e. your workspace)
- x will be given a memory address

Objects and references

To see the address of x, use tracemem()

```
# memory address
tracemem(x)
```

```
## [1] "<0x7ff27cabff78>"
```

Objects and references

Unless you make an assignment to x, it will keep the same address:

```
x + 2
## [1] 3
log(x)
## [1] O
tracemem(x) # same memory address as before
## [1] "<0x7ff27cabff78>"
```

Objects and references

When you make an assignment to x, it will change address:

```
# assigning a name to x (will modify its memory address) names(x) <- "a"
```

```
## tracemem[0x7ff27cabff78 \rightarrow 0x7ff27aa7a0f8]: eval eval with
```

Objects and Environments

- ▶ Any computation in R takes place in an environment.
- An environment defines how the evaluator will search for an object by name.
- ► The part of a program in which an object is defined is called its **scope**.
- We talked about environments when discussing function evaluation.

Assignments and Replacements

Assignments

As you know, you can use the arrow operator "<-" to create objects, and also to modify them:

```
x <- c(1, 2, 3)
x
```

[1] 1 2 3

[1] 0 2 3

Assignments

```
# an assignment x \leftarrow c(1, 2, 3)
# is actually a call to the assignment function "<-"() "<-"(x, value = c(1, 2, 3))
```

Replacement

```
# a replacement x[1] \leftarrow 0
# is actually a call to the replacement function "[<-"() x \leftarrow "[<-"(x, 1, value = 0)
```

What happens in a replacement?

replacement x[1] <- 0</pre>

- x[1] <- 0 gives the impression of having changed the value of x.
- ► For practical purposes, you can say that "we changed the value of x".
- ► However, R didn't change x directly.
- Instead, a copy of x was created first, and then the modification took place in such copy.
- ▶ After that, the name "x" was assigned to the modified copy.

What happens in a replacement?

In R, you constantly use expressions like this:

```
z <- runif(4)
z</pre>
```

[1] 0.1589814 0.4758246 0.7036687 0.8047777

```
z <- z - mean(z)
z
```

[1] -0.37683165 -0.05998855 0.16785561 0.26896459

What happens in a replacement?

Consider the replacement expression: z <- z - mean(z)

- a replacement creates a new assignment of an object to the current name
- a new complete object z replaces the existing z
- this means that R makes a copy of z

Replacements and Environments

► An object assigned in an environment would only be changed by another assignment:

```
y <- 1:3
tracemem(y)
## [1] "<0x7ff27cd210e8>"
y[3] <- 5
```

```
## tracemem[0x7ff27cd210e8 \rightarrow 0x7ff27ccf3278]: eval eval w: ## tracemem[0x7ff27ccf3278 \rightarrow 0x7ff27ccdde50]: eval eval w:
```

Copy-on-change policy

```
# x and a copy of x, share the same address
x \leftarrow c(1, 2, 3)
y <- x
tracemem(x)
## [1] "<0x7ff27ca7aa38>"
tracemem(y)
## [1] "<0x7ff27ca7aa38>"
```

What if you modify x?

```
x[3] <- 4
## tracemem[0x7ff27ca7aa38 -> 0x7ff27c704728]: eval eval w:
tracemem(x)
```

```
## [1] "<0x7ff27c704728>"
```

tracemem(y)

```
## [1] "<0x7ff27ca7aa38>"
```

x had an initial address, then was copied to another address, and ultimately it ended in <0x7ff27c704728>

Copy-on-change policy

```
# what if you modify x?
x[3] <- 4</pre>
```

Even though we are changing just one element of the vector \mathbf{x} , the entire vector is reassigned. This means that the entire vector is copied, which can take up a lot of time for long vectors (especially inside a loop).

Boxing and Unboxing

```
# how does R handle this addition?
x <- c(2, 4, 6)

y <- c(3, 5, 7)

z <- x[1] + y[1]</pre>
```

Boxing and Unboxing

Figure 1: illustration of boxing and unboxing

Boxing and Unboxing

- Every value in R must be stored in a vector.
- ► This is true for values which look like scalars such as TRUE, 17, and "hello".
- Operations which are specified element-by-element on vectors occur overhead because the elements must be extracted into a vector of length 1, processed, and then transferred back to a longer vector.

Memory Management

Memory allocation

- ▶ Memory management in R is automatic
- Users do not explicitly manage memory for R objects: you do not need to allocate or delete storage explicitly
- All objects are dynamically allocated at some time during the R session
- Evaluating function calls and assigning objects triggers allocation and occasional deallocation (via garbage collection)

Memory and garbage collection

- In particular, objects cannot be deleted
- You can use the function rm() to remove the assignment of an object in an environment, but does not delete the memory of the object
- Unused dynamic storage is recovered by garbage collection
- ► Garbage collection takes place automatically and unpredictably

Memory and garbage collection

- ► Garbage collector runs automatically whenever storage requests exceed the current free memory available
- ▶ It is possible to force garbage collection with the function gc()
- You can use gcinfo() to print information when the garbage collector runs
- Garbage collection recovers storage from objects that do not have a current reference

R's Memory Management

- ▶ In R, memory is divided into 2 separate components:
 - memory for atomic vectors
 - memory for other language elements

R's Memory Management

- ▶ In R, memory is divided into 2 separate components:
 - memory for atomic vectors
 - memory for other language elements
- Vector storage is contiguous storage for homogenous elements (i.e. atomic)
- Vector storage is further divided into two types:
 - small vectors (less than 128 bytes) which are allocated in R
 - large vectors for which memory is obtained from the OS

Efficient Code

R language basics

To use R effectively, it is important to understand which operations are likely to be "expensive" and how the expense can be avoided.

The main expensive operations are:

- Boxing and unboxing
- Data copying
- Argument matching (when calling a function)

Data Copying

- When a value is passed into a function, R works hard to make it appear that it is a copy of the value which has been handed to the function.
- ▶ Many of the copy operations which R performs are unnecessary because code which decides whether it is necessary to copy errs on the conservative side.

Argument Matching

- ▶ The presence of optional arguments to R functions means that function calls are relatively expensive. (Three passes are made over the argument list).
- ► Some functions (mainly the simple mathematical functions) avoid the overhead of argument processing.
- ► These functions are called *primitive* and can be recognised by their appearance.

R language basics

- ▶ The R evaluator is written in C.
- Many commands are written in C and thus do run in machine code.
- ▶ But most other functions (and the ones you write) are written in R itself.
- ▶ Those commands that use R code are thus interpreted.
 - R is an interpreted language.

Functions written in C

Functions written in C are indicated with .Primitive()

```
# addition operator
get("+")
## function (e1, e2) .Primitive("+")
# square root
sqrt
## function (x) .Primitive("sqrt")
```

Writing "optimized" R code

- Whenever possible use Vectorization
- Understand R's functional programming nature
- Understand how R uses memory
- Use some of R's optimized utility functions

```
x < -1:10
y <- 21:30
# for-loop
z <- NULL
for (i in 1:length(x)) {
  # at each iteration we "expand" z with c()
  # (z gets copied and increases its memory)
 z \leftarrow c(z, x[i] + y[i])
```

Adding two vectors element by element

```
x < -1:10
v <- 21:30
# for-loop
z. <- NUI.I.
for (i in 1:length(x)) {
  # at each iteration we "append" a new element to z
  # (z gets copied and increases its memory)
  z[i] \leftarrow x[i] + y[i]
```

```
x < -1:10
y <- 21:30
# for-loop
z <- numeric(0)</pre>
for (i in 1:length(x)) {
  # at each iteration we "append" a new element to z
  # (z gets copied and increases its memory)
  z[i] \leftarrow x[i] + y[i]
```

```
x < -1:10
y <- 21:30
# better to "allocate" 'z' with appropriate length
z < - numeric(10)
for (i in 1:length(x)) {
  # at each iteration we "append" a new element to z
  # (z gets copied without increasing its memory)
  z[i] \leftarrow x[i] + y[i]
```

R for loops

```
z <- numeric(0)
for (i in 1:length(x)) {
  z[i] <- x[i] + y[i]
}</pre>
```

- ▶ for() is a function
- the colon operator ":" is also a function
- vector subscript operation "[" is also a function
- vector subscript assignment "[<-" is also a function</p>
- each iteration allocates a new object z

R for loops

```
x <- 1:10
y <- 21:30

# there are many function calls inside this loop
z <- numeric(10)
for (i in 1:length(x)) {
   z[i] <- x[i] + y[i]
}</pre>
```

About for loops

- R for loops have a bad reputation of being "slow"
- ▶ It is not for loops that are inherently slow
- ▶ It is what you do inside a loop that may be slow
- ► Especially when you perform many replacement operations

```
x <- 1:10
y <- 21:30

# whenever possible use vectorized code
z <- x + y</pre>
```

Vectorizaed functions

Many functions in R, and most functions that work with vectors, are already vectorized:

- arithmetic
- trigonometric
- set operations
- comparison operators
- logical operators

Vectorized Functions

Other vectorized functions are:

- ▶ ifelse()
- ▶ which()
- where()
- ▶ any()
- ▶ all()

Vectorized matrix operations

- ► rowSums()
- ► colSums()
- rowMeans()
- ► colMeans()

PS1 Example

A room contains 100 toggle switches, originally all turned off:

```
num_switches <- 100
switches <- rep("off", num_switches)</pre>
```

- ▶ 100 people enter the room in turn.
- the first person toggles every switch
- the second toggles every second switch
- the third every third switch, and so on,
- to the last person who toggles the last switch only.
- Which switches are turned on?

PS1 Example: most common answer

```
num switches <- 100
switches <- rep("off", num switches)
for (i in 1:num_switches) {
  positions <- seq(i, num_switches, by = i)
  for (pos in positions) {
    if (switches[pos] == "off") {
      switches[pos] <- "on"</pre>
    } else {
      switches[pos] <- "off"</pre>
```

PS1 Example: with vectorized ifelse()

```
switches <- rep("off", num_switches)

for (i in 1:num_switches) {
  positions <- seq(i, num_switches, by = i)
  switches[positions] <- ifelse(
    switches[positions] == "off", "on", "off")
}</pre>
```

PS1 Example: my solution with a "lookup" vector

```
switches <- rep("off", num_switches)

# ProTip: handy "lookup" vector
toggle <- c("on" = "off", "off" = "on")

for (i in 1:num_switches) {
   positions <- seq(i, num_switches, by = i)
   switches[positions] <- toggle[switches[positions]]
}</pre>
```

Tools to time R code

There are various handy functions that can help you evaluate and profile your code:

- proc.time(): determines how much real and CPU time (in seconds) the currently running R process has already taken.
- system.time(): measures CPU time used in an R expression
- Rprof(): profiling of the execution of R expressions
- microbenchmark(): from package "microbenchmark"

Function proc.time()

- proc.time() works as a stop-watch
- you initialize it to a starting time and then run all the desired code
- you stop it by subtracting the starting time from the ending time

CPU time proc.time()

```
g <- rnorm(100000)
h \leftarrow rep(NA, 100000)
# Start the clock
proc_time <- proc.time()</pre>
# Loop through the vector, adding one
for (i in 1:100000){
    h[i] <- g[i] + 1
# Stop the clock
proc.time() - proc_time
```

CPU time proc.time()

```
g <- rnorm(100000)
h <- rep(NA, 100000)

# Start the clock
proc_time <- proc.time()
# vectorized addition
h <- g + 1
# Stop the clock
proc.time() - proc_time</pre>
```

```
## user system elapsed
## 0.002 0.000 0.002
```

How to read proc.time() output?

- ► The values user, system, elapsed will be defined by your operating system.
- ▶ The user time relates to the execution of the code.
- ► The system time relates to your CPU, and it is the time spent in system calls.
- ▶ The elapsed time is the difference in times since you started the stopwatch. This is the actual time it took for the expression to be evaluated.
- ▶ It is usually the elapsed time which is important.

Function system.time()

- system.time() is similar to proc.time()
- ► However, system.time() takes a single R expression as its argument
- Typically you encapsulate your code in a function and pass it to system.time()

Timing code with system.time()

```
fast_add <- function(x) {
    return(x + 1)
}
system.time(fast_add(g))

## user system elapsed
## 0.000 0.001 0.000</pre>
```

Timing code with system.time()

```
loop_add <- function(x) {
    y <- rep(NA, length(x))
    for (i in 1:length(x)){
        y[i] <- x[i] + 1
    }
    return(h)
}</pre>
```

```
## user system elapsed
## 0.100 0.004 0.108
```

Monitoring with Rprof()

```
num_switches <- 10000
switches <- rep("off", num_switches)</pre>
Rprof()
for (i in 1:num switches) {
  positions <- seq(i, num_switches, by = i)
  for (pos in positions) {
    if (switches[pos] == "off") {
      switches[pos] <- "on"
    } else {
      switches[pos] <- "off"</pre>
Rprof(NULL)
summary_rprof <- summaryRprof()</pre>
```

How Rprof() works?

- ► R inspects the call stack to determine which function calls are in effect at that time
- ▶ It writes the result of each inspection to a file: Rprof.out
- ► The function summaryRprof() conveniently summarizes all those lines in the file
- ▶ If the code you're profiling produces many function calls, the profiling output may be hard to decipher.

Some examples from Matloff (2011)

Expected value of the maximum of independent N(0,1) random variables X and Y:

```
sum <- 0
num_reps <- 10000
for (i in 1:num_reps) {
    xy <- rnorm(2) # generate 2 N(0,1)s
    sum <- sum + max(xy)
}
sum / num_reps</pre>
```

```
## [1] 0.5785969
```

Some examples from Matloff (2011)

Expected value of the maximum of independent N(0,1) random variables X and Y:

- generated 10,000 pairs with: xy <- rnorm(2)</p>
- use a for loop to find the maximum for each pair: max(xy)
- compute estimated expected value: sum / num_reps

Some examples from Matloff (2011)

```
sum <- 0
num_reps <- 10000

for (i in 1:num_reps) {
    xy <- rnorm(2) # generate 2 N(0,1)s
    sum <- sum + max(xy)
}</pre>
```

- ▶ at each iteration we call rnorm() and max()
- at each iteration there is an assignment operation

A faster implementation

```
num_reps <- 10000

xy_matrix <- matrix(rnorm(2 * num_reps), ncol = 2)

maximums <- pmax(xy_matrix[,1], xy_matrix[,2])

mean(maximums)</pre>
```

[1] 0.5719855

Some Programming Habits

- Good programming is clear rather than clever
- ▶ Being clever is good, but given the choice, being clear is preferable
- You can start addressing a problem with a for loop that is clear
- Once you know the code works, then see what operations can be vectorized
- Identifying vectorized options takes time and practice

Lessons

- Optimizing R performance can be a very dark art.
- ▶ Knowing about the detail of how functions work internally can be helpful but is not essential.
- ► Experimentation with the code and timing the results with system.time() can reduce times by orders of magnitude.
- ▶ In general, vectorization is abig win.
- Converting loops into vetorized alternatives almost always pays off.
- Code profiling can give you a way to locate those parts of a program which will benefit most from optimization.