Wuhan-coronavirus homologue map

Kou Amano

Background and Objective

Background: At the beginning of 2020, global risk of infection of coronavirus is spreded. The pandemic started in 2019 and governments announced a state of emergency. In Japan, the government adopted PCR as a diagnosis method of the infection. But the selection of prmers infruence the accuracy greatly. Objective: Therefor, I provide a "map" of homological region of coronavirus to other viruses and annimals to help the primer design.

Data

Vertebrates:

- ◆ Bat (NW_017738920.1 .. NW_017802358.1; 63439frgs)
 ◆ Dog (NC_006583.3 .. NC_006621.3; 39chrs)
- Beluga (NW_022097992.1 .. NW_022103895.1; 5904frgs)
- Camel (NC_044511.1 .. NC_044547.1; 37chrs)
- Cat (NC_018723.3 .. NC_018741.3; 19chrs) Viruses:
- 7554 genomes of viruses or phages
- Ferret (NW_004569142.1 .. NW_004576923.1; 7782frgs)
- Human (NC_000001.4 .. NC_000024.3; 24chrs)
- Mouse (NC_000067.6 .. NC_000087.7; 21chrs)
- Wuhan-corona virus genome (MN908947.3)
- Rabbit (NC_013669.1 .. NC_013690.1; 22chrs)
- Pig (NC_010443.5 .. NC_010462.3; 20chrs)
- Rock Pigeon (NW_004973171.1 .. NW_004988092.1; 14922frgs)
- Turkey (NC_015011.2 .. NC_015042.2; 32chrs)

Method

BLAST

DB: makeblastdb -in <<input file>> -out <<DB name>> -dbtype nucl -parse_seqids Query: megablast -d <<DB name>> -i <<query sequence>> -W 10 > <<output file>>

in CDS

count

Self-BLAST

homologue

Fragmentation: fragment bf=<<input file>> S=25 G=25 cs=1 > <<output file>> DB: same as above. Query: same as above.

start

Window-fourrier

Fragmentation: 30 fragments – 1000 bases Conversion: "A" -> 1, "T" -> -1, "G" -> I, "C" -> -I Fourier transform: Ft (<< ach fragment>>)

Selection of frequent homologues

Vertebrate: base-hit count >= 5; seq-lenght >= 5 Viruses: base-hit count >= 18; seq-lenght >= 5

Result

The homologues

1	AATTTTA	1787	1793	6	Yes	_					
2	GATGAGGATGAAGAAGAAGGT	3047	3067	6	Yes						
3	CTACAAAGAAAACAGTTAC	5866	5884	5	Yes						
4	ATAAATATTATAATTTG	6944	6960	7	Yes						
5	TTGCAT	7425	7430	5	Yes	No	homologue	start	and	count	in CDC
6	CCATCCATCTTTACTTTGATAAA	7764	7786	7	Yes	No.	homologue	start	end	count	in CDS
7	TTTTTGTTGCTGCTATTTTCTATTTA	8607	8632	9	Yes	15	CAAGATCTCAATGGTAACTGGTATGATTTCGGTGATT	14 068	14 104	21	Yes
8	ATTTCTCTGTTTGTTTTTGT	11 167	11 186	7	Yes	16 17	TGGTAATGCTGC ACAAAACGTAATGTCATCCCTACTATAACTCAAATGAATCTTAAGTATGCCATTAGTGCAAAGAATAGAGCTCGCACCGTAGCTGGTGTCTCTAT	14 775 15 031	14 786 15 125	18 32	Yes Yes
9	AAAAGT	12 198	12 203	5	Yes	18	CTTATGGGTTGGGATTATCCTACTATAACTCAAATGAATCTTAAGTATGCCATTAGTGCAAAGAATAGAGCTCGCACCGTAGCTGGTGTCTCTAT	15 280	15 123	32 37	Yes
10	ATAAAATAGAAGAA	19 121	19 134	6	Yes	19	GATGCCACAACTGCTTATGCTAATAGTGTTTTTTAACAT	15 490	15 527	19	Yes
11	TGTTTGTTTTTCTTGTTTTATTGC	21564	21587	14	Yes	20	CAAAACAATGTTTTTATGTCTGAAGCAAAATGTTGGACTGAGACTGACCTTACTAAAGGACCTCATGAATTTTGCTCTCAACATACA	15 805	15 891	26	Yes
12	TATTAAAATATAATGAA	22 389	22 405	5	Yes	21	GGTTGTGATGGCAGTTTGTATGTAAATAAACATGCATTCCACACACC	19 276	19 325	27	Yes
13	TTTTCT	26 495	26 500	5	No	22	TATGAGAGTTATACATTTTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGGTAC	20 850	20 903	21	Yes
14	CCTAA	29 375	29 379	5	Yes	23	CCGAGGCCACGCGGAGTACGAGTGTACAG	29 732	29 764	32	No

The plot

