MCA I SEMESTER

Mathematical Foundations of Computer Applications (MFCA): 20BM3101 Unit – 2: Relations and Partially Ordered Set

Cartesian product: The *Cartesian product* of two sets *A* and *B*, denoted $A \times B$, is the set of all ordered pairs (a, b) where $a \in A$ and $b \in B$; that is, $A \times B = \{(a, b) | a \in A, b \in B\}$

Example:

Let $A = \{a, b, c\}$ and $B = \{1, 2\}$. Then

- i) $A \times B = \{(a,1), (a,2), (b,1), (b,2), (c,1), (c,2)\}$
- ii) $A \times A = \{(a,a), (a,b), (a,c), (b,a), (b,b), (b,c), (c,a), (c,b), (c,c)\}$
- iii) $B \times B = \{(1,1), (1,2), (2,1), (2,2)\}$
- iv) $B \times A = \{(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)\}$

Note:

- i) Elements of $A \times B$ are called *ordered pairs*
- ii) $A \times B \neq B \times A$
- iii) $A \times \phi = \phi$
- iv) If |A| = m and |B| = n then $|A \times B| = mn$

Relation: Let A, B be two non empty sets. Then a subset of $A \times B$ is called a *relation* from A to B.

Binary relation: Let A be a non empty set. Then a subset of $A \times A$ is called a *binary relation* (or *relation*) on A.

Note: If R is a relation from A to B, then $R \subseteq A \times B$ and for $(a, b) \in R$ we write aRb.

Example:

Let $A = \{a, b, c\}$ and $B = \{1, 2\}$. Then

- i) $R_1 = \{(a,1), (a,2), (b,1), (c,2)\}$
- ii) $R_2 = \{(a,2), (b,1), (c,1)\}$
- iii) $R_3 = \{ (a,2), (b,2), (c,1), (c,2) \}$
- iv) $R_4 = A \times B = \{(a,1), (a,2), (b,1), (b,2), (c,1), (c,2)\}$

Here $R_1 \subseteq A \times B$, $R_2 \subseteq A \times B$, $R_3 \subseteq A \times B$ and $R_4 \subseteq A \times B$ hence R_1 , R_2 , R_3 and R_4 are relations from A to B.

- 1. Let $A = \{a, b, c\}$. Then
 - i) $R_1 = \{(a,a), (a,b), (b,b), (b,c), (c,a)\}$
 - ii) $R_2 = \{ (a,b), (a,c), (b,a), (b,c), (c,c) \}$
 - iii) $R_3 = \{(a,b), (a,c), (b,a), (b,c), (c,a), (c,b)\}$
 - iv) $R_4 = A \times A = \{(a,a), (a,b), (a,c), (b,a), (b,b), (b,c), (c,a), (c,b), (c,c)\}$
 - v) $R_5 = \Delta_A = \{(a,a), (b,b), (c,c)\}$

Here $R_1 \subseteq A \times A$, $R_2 \subseteq A \times A$, $R_3 \subseteq A \times A$, $R_4 \subseteq A \times A$ and $R_5 \subseteq A \times A$ hence R_1, R_2, R_3, R_4 and R_5 are binary relations (or relations) on A.

Note:

- 1. If |A| = m and |B| = n then $|A \times B| = mn$ and the number of subsets of $A \times B$ is 2^{mn} , that is, the number of relations from A to B is 2^{mn} .
- 2. If |A| = n then $|A \times A| = n^2$ and the number of subsets of $A \times A$ is 2^{n^2} , that is, the number of relations on A is 2^{n^2} .

Universal & Diagonal relations: Let A be a non empty set. Then

- i) $A \times A$ is itself a subset of $A \times A$ and hence $A \times A$ is a relation on A. This relation is called the *universal relation* on A.
- ii) $\{(a,a) \mid a \in A\}$ is a subset of $A \times A$ and hence it is a relation on A. This relation is called the diagonal relation on A and it is denoted by Δ_A . That is, $\Delta_A = \{(a,a) \mid a \in A\}$

Example:

- 1. Let $A = \{1, 2, 3\}$. Then
 - i) $A \times A = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}$ is the universal relation on A
 - ii) $\Delta_A = \{(1,1), (2,2), (3,3)\}$ is the diagonal relation on A
- 2. Let $A = \{1, 2, 3, 4\}$. Then
 - i) $A \times A$ is the universal relation on A
 - ii) $\Delta_A = \{(1,1), (2,2), (3,3), (4,4)\}$ is the diagonal relation on A
- 3. Let $A = \{a, b\}$. Then
 - i) $A \times A = \{(a,a), (a,b), (b,a), (b,b)\}$ is the universal relation on A
 - ii) $\Delta_A = \{(a,a), (b,b)\}$ is the diagonal relation on A

Domain & Range of a relation: Let R be a relation on a non empty set A. Then

- i) $D(R) = \{x \in A | (x, y) \in R \text{ for some } y \in A\}$ is called the *domain* of the relation R
- ii) $R(R) = \{ y \in A | (x, y) \in R \text{ for some } x \in A \}$ is called the *range* of the relation R

Example:

Let
$$A = \{1, 2, 3, 4\}$$
. Then

- i) $R_1 = \{(1,1), (1,2), (3,1)\}$ is a relation on AHere the domain of R_1 , $D(R_1) = \{1,3\}$ and the range of R_1 , $R(R_1) = \{1,2\}$
- ii) $R_2 = \{(1,1), (1,3), (2,1), (2,4), (3,1)\}$ is a relation on AHere the domain of R_2 , $D(R_2) = \{1,2,3\}$ and the range of R_2 , $R(R_2) = \{1,3,4\}$

Problems:

- 1. Let $A = \{1, 2, 3, 4\}, R = \{(x, y) \in A \times A | x y \text{ is even } \}$ and $S = \{(x, y) \in A \times A | x + y = 5\}$
 - i) Write the elements of R and S
 - ii) Write the domain and range of R and S
 - iii) Find $R \cap S$
 - iv) Find $R \cup S$

Solution:

i)
$$R = \{(1,1), (1,3), (2,2), (2,4), (3,1), (3,3), (4,2), (4,4)\}$$

 $S = \{(1,4), (2,3), (3,2), (4,1)\}$

ii)
$$D(R) = \{1, 2, 3, 4\}, D(S) = \{1, 2, 3, 4\}, R(R) = \{1, 2, 3, 4\}, R(S) = \{1, 2, 3, 4\}$$

- iii) $R \cap S = \phi$
- iv) $R \cup S = \{(1,1),(1,3),(2,2),(2,4),(3,1),(3,3),(4,2),(4,4),(1,4),(2,3),(3,2),(4,1)\}$
- 2. Let $A = \{1, 2, 3, 4\}, R = \{(x, y) \in A \times A | x y \text{ is divisible by } 3\}$ and $S = \{(x, y) \in A \times A | x + y \text{ is even}\}$
 - i) Write the elements of R and S
 - ii) Find $R \cap S$
 - iii) Find $R \cup S$
 - iv) Find R S
 - v) Find S R

Solution:

- i) $R = \{(1,1), (1,4), (2,2), (3,3), (4,1), (4,4)\}$ $S = \{(1,1), (1,3), (2,2), (2,4), (3,1), (3,3), (4,2), (4,4)\}$
- ii) $R \cap S = \{(1,1),(2,2),(3,3),(4,4)\}$
- iii) $R \cup S = \{(1,1),(1,3),(1,4),(2,2),(2,4),(3,1),(3,3),(4,1),(4,2),(4,4)\}$
- iv) $R-S = \{(1,4),(4,1)\}$
- v) $S-R = \{(1,3),(2,4),(3,1),(4,2)\}$
- 3. Let $A = \{1, 2, 3, 4, 5\}, R = \{(x, y) \in A \times A \mid x y \text{ is divisible by 3} \}$ and $S = \{(x, y) \in A \times A \mid x + y \text{ is even } \}$
 - i) Write the elements of R and S
 - ii) Find $R \cap S$
 - iii) Find $R \cup S$

Solution:

- i) $R = \{(1,1), (1,4), (2,2), (2,5), (3,3), (4,1), (4,4), (5,2), (5,5)\}$ $S = \{(1,1), (1,3), (1,5), (2,2), (2,4), (3,1), (3,3), (3,5), (4,2), (4,4), (5,1), (5,3), (5,5)\}$
- ii) $R \cap S = \{(1,1),(2,2),(3,3),(4,4),(5,5)\}$
- iii) $R \cup S = \{(1,1), (1,3), (1,4), (1,5), (2,2), (2,4), (2,5), (3,1), (3,3), (3,5),$

$$(4,1),(4,2),(4,4),(5,1),(5,2)(5,3),(5,5)$$

4. If $N = \{0,1,2,3,\dots\}$, write the ranges of the relations $S = \{(x,x^2) | x \in N\}$ and $T = \{(x,2x) | x \in N\}$. Also find $R \cup S$ and $R \cap S$

Solution: Here
$$S = \{(x, x^2) | x \in \mathbb{N}\} = \{(0,0), (1,1), (2,4), (3,9), (4,16), \cdots\}$$
 and $T = \{(x,2x) | x \in \mathbb{N}\} = \{(0,0), (1,2), (2,4), (3,6), (4,8), \cdots\}$ Range of S, $R(S) = \{0,1,4,9,\cdots\}$ Range of T, $R(T) = \{0,2,4,6,\cdots\}$ Now $R \cup S = \{(0,0), (1,1), (1,2), (2,4), (3,6), (3,9), (4,8), (4,16), (5,10), (5,25), \cdots\}$ $= \{(x,y) | x \in \mathbb{N}, y = 2x \text{ or } y = x^2\}$ and $R \cap S = \{(0,0), (2,4)\}$ $= \{(x,y) | x \in \mathbb{N}, y = 2x \text{ and } y = x^2\}$

5. Let L denotes the relation 'less than or equal to' and D denotes the relation 'divides', where xDy means 'x divides y'. Both L and D are defined on the set $\{1,2,3,6\}$. Write L and D as sets, and find $L \cup D, L \cap D$

Solution: Let $A = \{1, 2, 3, 6\}$.

Then
$$L = \{(x, y) \in A \times A | x \text{ is less than or equal to } y\}$$

$$= \{(1,1),(1,2),(1,3),(1,6),(2,2),(2,3),(2,6),(3,3),(3,6),(6,6)\}$$
and $D = \{(x,y) \in A \times A | x \text{ divides } y\}$

$$= \{(1,1),(1,2),(1,3),(1,6),(2,2),(2,6),(3,3),(3,6),(6,6)\}$$
Now $L \cup D = \{(1,1),(1,2),(1,3),(1,6),(2,2),(2,3),(2,6),(3,3),(3,6),(6,6)\}$
and $L \cap D = \{(1,1),(1,2),(1,3),(1,6),(2,2),(2,6),(3,3),(3,6),(6,6)\}$

Exercise:

- 1. Let $A = \{1, 2, 3, 4\}, R = \{(x, y) \in A \times A \mid x y = 1\}$ and $S = \{(x, y) \in A \times A \mid x + y = 5\}$
 - i) Write the elements of R and S
 - ii) Write the domain and range of R and S
 - iii) Find $R \cap S$
 - iv) Find $R \cup S$
 - v) Find R S
 - vi) Find S R
- 2. Let $A = \{1, 2, 3, 4\}, R = \{(x, y) \in A \times A | x y \text{ is divisible by 3} \}$ and $S = \{(x, y) \in A \times A | x + y \le 4\}$
 - i) Write the elements of R and S

ii) Write the domain and range of R and S

iii) Find $R \cap S$

iv) Find $R \cup S$

v) Find R - S

vi) Find S - R

3. Let $A = \{1, 2, 4, 6\}, R = \{(x, y) \in A \times A \mid x \text{ divides } y\}$ and $S = \{(x, y) \in A \times A \mid x - y \text{ is divisible by } 4\}$

i) Write the elements of R and S

ii) Write the domain and range of R and S

iii) Find $R \cap S$

iv) Find $R \cup S$

v) Find R - S

vi) Find S - R

Matrix of a relation: Let $X = \{x_1, x_2, x_3, \dots x_m\}$ and $Y = \{y_1, y_2, y_3, \dots y_n\}$ be two finite sets and R be a relation from X to Y. Then the matrix of the relation R is denoted by M_R and is defined as the $m \times n$ matrix given below.

$$M_R = (r_{ij})_{m \times n}$$
, where $r_{ij} = \begin{cases} 1 & \text{if } (x_i, y_j) \in R \\ 0 & \text{if } (x_i, y_j) \notin R \end{cases}$

Note:

i) If |A| = m, |B| = n and R is a relation A to B, then M_R is $m \times n$ matrix

ii) If |A| = n, and R is a relation on A, then M_R is $n \times n$ square matrix

iii) If |A| = n, then matrix the universal relation on A, is the $n \times n$ matrix with all 1's

iv) If |A| = n, then matrix the diagonal relation on A, is the $n \times n$ unit matrix

Example:

1. Let $A = \{a,b,c\}$ and $B = \{1,2\}$.

i) If
$$R = \{(a,1), (a,2), (b,1), (c,2)\}$$
, then $M_R = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ c & 0 \end{bmatrix}_{3\times 2}$

ii) If
$$S = \{(a,1),(a,2),(b,1),(b,2)\}$$
, then $M_S = b\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ c & 0 \end{bmatrix}_{3\times 2}$

iii) If
$$T = \{ (a, 2), (b, 2), (c, 1), (c, 2) \}$$
, then $M_T = \begin{bmatrix} a & 0 & 1 \\ 0 & 1 \\ c & 1 & 1 \end{bmatrix}_{3\times 2}$

2. Let
$$A = \{a, b, c\}$$
.

i) If
$$R = \{(a,a), (a,b), (b,a), (b,c), (c,c)\}$$
, then $M_R = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ c & 0 & 1 \end{bmatrix}_{3\times 3}$

ii) If
$$S = \{(a,a),(a,c),(b,a),(b,b),(b,c),(c,a)\}$$
, then $M_S = b \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ c & 1 & 0 & 0 \end{bmatrix}_{3\times3}$

iii) If
$$T = \{(a,b), (a,c), (b,b), (b,c), (c,b), (c,c)\}$$
, then $M_T = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ c & 0 & 1 & 1 \end{bmatrix}_{3\times 3}$

iv) If
$$R = \{(a,a),(b,b),(c,c)\}$$
, then $M_R = b \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ c & 0 & 0 & 1 \end{bmatrix}_{3\times 3}$

3. Let $A = \{1, 2, 3, 4\}$.

i) If
$$R = \{(1,1), (1,2), (2,1), (2,2), (2,3), (3,2), (3,3), (4,1), (4,3), (4,4)\}$$
, then $M_R = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{bmatrix}_{4 \times 4}$

ii) If
$$R = \{(1,2), (1,4), (2,1), (2,3), (2,4), (3,1), (3,3), (4,2), (4,3)\}$$
, then $M_R = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{4\times4}$

iii) If
$$R = \{(1,1), (2,2), (3,3), (4,4)\}$$
, then $M_R = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{4\times4}$

iv) If
$$M_R = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{4\times4}$$
, then $R = \{(1,1), (1,2), (2,2), (3,3), (3,4), (4,2), (4,4)\}$

Graph of a relation: Let $X = \{x_1, x_2, x_3, \dots x_n\}$ be a finite set and R be a relation on X. Then the graph of the relation R is denoted by G_R and is described as follows.

- i) Every point in X is represented by a dot (or a small circle) known as a vertex or node.
- ii) If $(x_i, x_j) \in R$, $i \neq j$ then the circle of x_i is connected to the circle of x_j with a directed arc in the direction from x_i to x_j .
- iii) If $(x_i, x_i) \in R$ then there is a loop at the circle of x_i .

Example:

- 1. Let $A = \{a, b, c\}$.
 - i) If $R = \{(a,a),(a,c),(b,a),(b,c),(c,a),(c,b)\}$, then the graph G_R is given as follows.
 - ii) If $R = \{(a,a),(a,c),(b,a),(b,c),(c,b),(c,c)\}$, then the graph G_R is given as follows.
 - iii) If $R = \{(a,a),(a,b),(a,c),(b,c),(c,b),(c,c)\}$, then the graph G_R is given as follows.

- 2. Let $A = \{1, 2, 3, 4\}$.

 - i) If $R = \{(1,1), (1,3), (2,1), (2,3), (2,4), (3,1), (3,2), (4,1)\}$, then the graph G_R is given as follows. ii) If $R = \{(1,1), (1,3), (2,1), (2,3), (2,4), (3,2), (3,3), (3,4), (4,1), (4,4)\}$, then the graph G_R is given as follows.
 - iii) If $R = \{(1,1), (1,2), (1,4), (2,4), (3,3), (4,3), (4,4)\}$, then the graph G_R is given as follows

Exercise:

- 1. Let $A = \{a,b,c\}, R = \{(a,b), (a,c), (b,a), (b,c), (c,c)\}$. Write the matrix and draw the graph of the relation R.
- 2. Let $A = \{1, 2, 3, 4, 5\}, R = \{(1,1), (1,4), (2,2), (2,5), (3,3), (4,1), (4,4), (5,2), (5,5)\}$. Write the matrix and draw the graph of the relation R.
- 3. Let $A = \{1, 2, 3, 4\}, R = \{(x, y) \in A \times A | x > y \}$. Write the matrix and draw the graph of the relation R.
- 4. Let $A = \{1, 2, 3, 4\}, R = \{(x, y) \in A \times A | x y \text{ is even } \}$ and $S = \{(x, y) \in A \times A | x + y = 5\}$. Write the matrices and draw the graphs of the relations R and S.
- 5. Let $A = \{1, 2, 3, 4\}, R = \{(x, y) \in A \times A | x y \text{ is divisible by } 3\}$ and $S = \{(x, y) \in A \times A | x + y \text{ is even}\}$ Write the matrices and draw the graphs of the relations R and S.
- 6. Let $A = \{1, 2, 4, 6\}, R = \{(x, y) \in A \times A \mid x \text{ divides } y\}$ and $S = \{(x, y) \in A \times A \mid x y \text{ is divisible by } 4\}$ Write the matrices and draw the graphs of the relations R and S.

Converse of a relation: Let A and B be two sets. Let R be a relation from A to B. Then the converse of R is denoted by \widetilde{R} and defined as the relation B to A given below.

$$\widetilde{R} = \{(x, y) | (y, x) \in R \}$$

Note:

- i) If R is a relations on A, then \tilde{R} is also a relation on A.
- ii) If R is a relations on A and \widetilde{R} is its converse, then $M_{\widetilde{R}} = (M_R)^T$

Example:

- 1. Let $A = \{a, b, c\}$ and $B = \{1, 2\}$.
 - i) If $R = \{(a,1),(a,2),(b,1),(c,2)\}$, then $\widetilde{R} = \{(1,a),(2,a),(1,b),(2,c)\}$

Here
$$M_R = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}_{3 \times 2}$$
 and $M_{\tilde{R}} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} = (M_R)^T$

ii) If $S = \{(a,1),(a,2),(b,1),(b,2)\}$, then $\widetilde{S} = \{(1,a),(2,a),(1,b),(2,b)\}$

Here
$$M_S = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 0 \end{bmatrix}_{3 \times 2}$$
 and $M_{\tilde{S}} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} = (M_S)^T$

- 2. Let $A = \{1, 2, 3\}$.
 - i) If $R = \{(1,1), (1,2), (2,1), (2,2), (3,2)\}$, then $\widetilde{R} = \{(1,1), (2,1), (1,2), (2,2), (2,3)\}$

Here
$$M_R = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}_{3\times 3}$$
 and $M_{\tilde{R}} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} = (M_R)^T$

ii) If $S = \{(1,1),(2,1),(3,1),(3,2)\}$, then $\widetilde{S} = \{(1,1),(1,2),(1,3),(2,3)\}$

Here
$$M_s = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}_{3\times 3}$$
 and $M_{\tilde{s}} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} = (M_s)^T$

Composition of relations: Let A, B and C be three sets. Let R be a relation from A to B, and S be a relation from B to C. Then the composition R and S is denoted by $R \circ S$ and is the relation from A to C defined as follows.

$$R \circ S = \{(a,c) \in A \times C | (a,b) \in R \text{ and } (b,c) \in S \text{ for some } b \in B \}$$

Note:

- i) If R and S are relations on A, then $R \circ S$ is also a relation on A.
- ii) If R and S are relations on A, then $R \circ S = \widetilde{S} \circ \widetilde{R}$
- iii) If R is a relations on A then $R \circ R$, $R \circ R \circ R$, ... are respectively denoted by R^2 , R^3 , ...

Transitive closure of a relation: If R is a relations on A then the transitive closure of R is defined as $R^+ = R \cup R^2 \cup R^3 \cup \cdots$

Problems:

1. Let $A = \{a,b,c\}$, $B = \{1,2\}$ and $C = \{x,y\}$. Let $R = \{(a,1),(a,2),(b,1),(c,2)\}$ be a relation from A to B, and $S = \{(1,x),(2,x),(2,y)\}$ be a relation from B to C. Find $R \circ S$

Solution: $R \circ S = \{(a, x), (a, y), (b, x), (c, x), (c, y)\}$

	Elements of <i>R</i>	Elements of S	Elements of $R \circ S$
1	(a,1)	(1,x)	(a,x)
2	(a, 2)	(2,x),(2,y)	(a,x),(a,y)
3	(b,1)	(1,x)	(b,x)
4	(c,2)	(2,x),(2,y)	(c,x),(c,y)

2. Let $R = \{(1,1), (1,2), (2,1), (3,2), (3,3)\}$ and $S = \{(1,2), (2,1), (2,2)\}$ be relations on the set $A = \{1,2,3\}$. Find (i) $R \circ S$ (ii) $S \circ R$ (iii) R^2 (iv) S^2

Solution:

i) $R \circ S = \{(1,1), (1,2), (2,2), (3,1), (3,2)\}$

$$R = \{(1,1), (1,2), (2,1), (3,2), (3,3)\}, S = \{(1,2), (2,1), (2,2)\}$$

	Elements of <i>R</i>	Elements of S	Elements of $R \circ S$
1	(1,1)	(1, 2)	(1,2)
2	(1, 2)	(2,1),(2,2)	(1,1),(1,2)
3	(2,1)	(1,2)	(2,2)
4	(3,2)	(2,1),(2,2)	(3,1),(3,2)
5	(3,3)	-	-

ii)
$$S \circ R = \{(1,1),(2,1),(2,2)\}$$

 $S = \{(1,2),(2,1),(2,2)\}, R = \{(1,1),(1,2),(2,1),(3,2),(3,3)\}$

$$(1,2):(2,1)\to(1,1)$$

$$(2,1):(1,1),(1,2) \to (2,1),(2,2)$$

$$(2,2):(2,1)\to(2,1)$$

iii) $R \circ R = \{(1,1), (1,2), (2,1), (2,2), (3,1), (3,2), (3,3)\}$

$$R = \{(1,1), (1,2), (2,1), (3,2), (3,3)\}$$

$$(1,1):(1,1),(1,2) \to (1,1),(1,2)$$

$$(1,2):(2,1)\to(1,1)$$

$$(2,1):(1,1),(1,2) \to (2,1),(2,2)$$

$$(3,2):(2,1)\to(3,1)$$

$$(3,3):(3,2),(3,3) \to (3,2),(3,3)$$

iv)
$$S \circ S = \{(1,1), (1,2), (2,1), (2,2)\}$$

$$S = \{(1,2),(2,1),(2,2)\}$$

$$(1,2):(2,1),(2,2) \rightarrow (1,1),(1,2)$$

$$(2,1):(1,2) \to (2,2)$$

$$(2,2):(2,1),(2,2) \rightarrow (2,1),(2,2)$$

3. Let $A = \{1, 2, 3, 4, 5\}$ and $R = \{(1, 1), (1, 2), (2, 2), (2, 3)\}$ be a relation on A. Find (i) R^2 (ii) R^3 (iii) R^4 (iv) The transitive closure R^+

Solution:

(i)
$$R^2 = R \circ R = \{(1,1), (1,2), (1,3), (2,2), (2,3)\}$$

 $(1,1): (1,1), (1,2) \to (1,1), (1,2)$
 $(1,2): (2,2), (2,3) \to (1,2), (1,3)$
 $(2,2): (2,2), (2,3) \to (2,2), (2,3)$

(2,3):-

(ii)
$$R^3 = R^2 \circ R = \{(1,1),(1,2),(1,3),(2,2),(2,3)\} = R^2$$

Therefore,
$$R^3 = R^2$$

$$(1,1):(1,1),(1,2) \to (1,1),(1,2)$$

$$(1,2):(2,2),(2,3) \rightarrow (1,2),(1,3)$$

$$(1,3):-$$

$$(2,2):(2,2),(2,3) \to (2,2),(2,3)$$

$$(2,3):-$$

(iii)
$$R^4 = R^3 \circ R$$

= $R^2 \circ R$
= R^3
= R^2

(iv)
$$R^+ = R \cup R^2 \cup R^3 \cup \cdots$$

= $R \cup R^2 \cup R^2 \cup \cdots$
= $R \cup R^2$
= $\{(1,1),(1,2),(1,3),(2,2),(2,3)\}$

4. Let $A = \{a,b,c\}$ and $R = \{(a,b),(a,c),(c,b)\}$ be a relation on A. Find the transitive closure of R Solution:

$$R^2 = R \circ R = \{(a,b)\}$$

$$R^3 = R^2 \circ R = \phi$$

$$R^4 = R^3 \circ R = \phi \circ R = \phi, R^5 = \phi, \cdots$$

Therefore, $R^+ = R \cup R^2 \cup R^3 \cup \dots = R \cup R^2 = \{(a,b),(a,c),(c,b)\}$

5. Let $R = \{(1,1), (1,2), (2,1), (3,2), (3,3)\}$ and $S = \{(1,2), (2,1), (2,2)\}$ be relations on the set $A = \{1,2,3\}$. Find (i) M_R (ii) M_S (iii) $M_R \circ M_S$ (iv) $R \circ S$ (v) $M_{R \circ S}$ and verify $M_{R \circ S} = M_R \circ M_S$ (vi) $M_S \circ M_R$ (vii) $M_S \circ R$ (viii) $M_{S \circ R}$ and verify $M_{S \circ R} = M_S \circ M_R$

Solution:

(i)
$$M_R = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

(ii)
$$M_s = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

(iii)
$$M_R \circ M_S = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \circ \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$

(iv)
$$R \circ S = \{(1,1),(1,2),(2,2),(3,1),(3,2)\}$$

(v)
$$M_{R \circ S} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$
 and clearly $M_{R \circ S} = M_R \circ M_S$

$$(\text{vi)} \ \ M_S \circ M_R = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \circ \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

(vii)
$$S \circ R = \{(1,1),(2,1),(2,2)\}$$

(viii)
$$M_{S \circ R} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 and clearly $M_{S \circ R} = M_S \circ M_R$

6. Let $A = \{a,b,c\}$, $B = \{1,2\}$ and $C = \{x,y\}$. Let $R = \{(a,1),(a,2),(b,1),(c,2)\}$ be a relation from A to B, and $S = \{(1,x),(2,x),(2,y)\}$ be a relation from B to C.

Find (i) $R \circ S$ (ii) $R \widetilde{\circ} S$ (iii) \widetilde{R} (iv) \widetilde{S} (v) $\widetilde{S} \circ \widetilde{R}$ and verify $R \widetilde{\circ} S = \widetilde{S} \circ \widetilde{R}$ **Solution:**

(i)
$$R \circ S = \{(a, x), (a, y), (b, x), (c, x), (c, y)\}$$

(ii)
$$R \circ S = \{(x,a), (y,a), (x,b), (x,c), (y,c)\}$$

(iii)
$$\widetilde{R} = \{(1,a),(2,a),(1,b),(2,c)\}$$

(iv)
$$\tilde{S} = \{(x,1), (x,2), (y,2)\}$$

(v)
$$\widetilde{S} \circ \widetilde{R} = \{(x,a),(x,b),(x,c),(y,a),(y,c)\}$$

And therefore, $R \circ S = \widetilde{S} \circ \widetilde{R}$

Exercise:

- 1. Let $R = \{(1,1), (1,2), (2,1), (3,2), (3,3)\}$ and $S = \{(1,2), (1,3), (2,1), (2,2), (3,1)\}$ be the relations on $A = \{1,2,3\}$. Find (i) $R \circ S$ (ii) $S \circ R$ (iii) $R \circ R$ (iv) R^3 (v) $S \circ S$
- 2. Let $R = \{(1,2),(2,2),(3,4)\}$ and $S = \{(1,3),(2,5),(3,1),(4,2)\}$ be the relations on $A = \{1,2,3,4,5\}$. Find (i) $R \circ S$ (ii) $S \circ R$ (iii) $R \circ R$ (iv) R^3 (v) $S \circ S$ (vi) $R \circ (S \circ R)$ (vii) $(R \circ S) \circ R$
- 3. Let $A = \{a,b,c\}$ and $R = \{(a,b),(b,c),(c,c)\}$ be a relation on A. Find the transitive closure of R
- 4. Let $A = \{a,b,c\}$ and $R = \{(a,b),(b,c),(c,a)\}$ be a relation on A. Find the transitive closure of R
- 5. Let $A = \{1,2,3,4\}$ and $R = \{(1,2),(2,1),(3,3)\}$ be a relation on A. Find the transitive closure of R
- 6. Let $R = \{(1,2),(2,2),(3,4)\}$ and $S = \{(1,3),(2,5),(3,1),(4,2)\}$ be relations on the set $A = \{1,2,3,4,5\}$. Find (i) M_R (ii) M_S (iii) $M_R \circ M_S$ (iv) $R \circ S$ (v) $M_{R \circ S}$ and verify $M_{R \circ S} = M_R \circ M_S$ (vi) $M_S \circ M_R$ (vii) $S \circ R$ (viii) $M_{S \circ R}$ and verify $M_{S \circ R} = M_S \circ M_R$
- 7. Let $R = \{(x, y) \in A \times A \mid x y \text{ is divisible by 3} \}$ and $S = \{(x, y) \in A \times A \mid x + y \text{ is even} \}$ be relations on $A = \{1, 3, 4\}$. Find (i) $R \circ S$ (ii) $R \circ S$ (iii) $R \circ S$ (iii) $R \circ S$ (iv) $S \circ R$ and verify $R \circ S = S \circ R$

8. Given the relation matrices
$$M_R = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$
 and $M_S = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix}$,

find (i) $M_{R \circ S}$ (ii) $M_{\tilde{R}}$ (iii) $M_{\tilde{S}}$ (iv) $M_{R \circ S}$ and show that (v) $M_{R \circ S} = M_{\tilde{S} \circ \tilde{R}}$

(i)
$$M_{R \circ S} = M_R \circ M_S =$$

(ii)
$$M_{\tilde{R}} = (M_R)^T =$$

(iii)
$$M_{\tilde{s}} = (M_{\tilde{s}})^T =$$

(iv)
$$M_{R \circ S} = (M_{R \circ S})^T =$$

(v)
$$M_{\widetilde{S} \circ \widetilde{R}} = M_{\widetilde{S}} \circ M_{\widetilde{R}} =$$

Properties of relations (or Types of relations): Let R be a relation on a non empty set A. Then R is called

- i) Reflexive if $(x, x) \in R$ for all $x \in A$ or xRx for all $x \in A$
- ii) Irreflexive if $(x, x) \notin R$ for all $x \in A$ or xRx for all $x \in A$
- iii) Symmetric if for $x, y \in A$ and $(x, y) \in R$ implies $(y, x) \in R$
- iv) Anti symmetric if for $x, y \in A$ and $(x, y) \in R$, $(y, x) \in R$ implies x = y
- v) Transitive if for $x, y, z \in A$ and $(x, y) \in R$, $(y, z) \in R$ implies $(x, z) \in R$
- vi) Compatible relation if R is reflexive and symmetric
- vii) Equivalence relation if R is reflexive, symmetric and transitive
- viii) Partial Order relation if R is reflexive, anti symmetric and transitive

Note:

- 1. The diagonal relation Δ_A is reflexive, symmetric, anti symmetric and transitive. Hence Δ_A is both equivalence relation and partial order relation
- 2. Δ_A is the smallest equivalence relation on A; that is, every equivalence relation on A contains Δ_A
- 3. Δ_A is the smallest partial order relation on A; that is, every partial order relation on A contains Δ_A
- 4. The universal relation $A \times A$ is reflexive, symmetric and transitive. Hence $A \times A$ is an equivalence relation and it is the largest.
- 5. If R is a relations on A then the transitive closure R^+ is the smallest transitive relation containing R
- 6. Let R be a relation on a finite set A and M_R be the matrix of R.
 - i) R is reflexive iff all the diagonal elements of M_R are equal to 1
 - ii) R is irreflexive iff all the diagonal elements of M_R are equal to 0
 - iii) R is symmetric iff M_R is symmetric
 - iv) R is anti symmetric iff for $i \neq j$, $r_{ij} = 1$ implies $r_{ji} = 0$, where $M_R = (r_{ij})_{n \times n}$
 - v) R is transitive iff for $i, j, k, r_{ij} = 1, r_{jk} = 1$ implies $r_{ik} = 1$, where $M_R = (r_{ij})_{n \times n}$

- 7. Let R be a relation on a finite set A and G_R be the graph of R.
 - i) R is reflexive iff there is a loop at every vertex
 - ii) R is irreflexive iff there is no loop at every vertex
 - iii) R is symmetric iff all arrows (other than loops) come in pairs with reverse direction
 - iv) R is anti symmetric iff there are no pairs of arrows with reverse direction
- 8. Let R be a relation on a finite set A and \tilde{R} be its converse.
 - i) R is reflexive iff \tilde{R} is reflexive
 - ii) R is irreflexive iff \tilde{R} is irreflexive
 - iii) R is symmetric iff \tilde{R} is symmetric
 - iv) R is anti symmetric iff \tilde{R} is anti symmetric
 - v) R is transitive iff \tilde{R} is transitive

Problems:

- 1. Let $A = \{1,2,3\}$ and $R = \{(1,1),(1,2),(2,1),(2,3)\}$. Determine the properties of R
 - i) Reflexive: R is not reflexive, since $(2,2) \notin R$
 - ii) Irreflexive: R is not irreflexive, since $(1,1) \in R$
 - iii) Symmetric: R is not symmetric, since $(2,3) \in R$ but $(3,2) \notin R$
 - iv) Anti symmetric: R is not anti symmetric, since $(1,2),(2,1) \in R$ but $1 \neq 2$
 - v) Transitive: R is not transitive, since $(1,2),(2,3) \in R$ but $(1,3) \notin R$
- 2. Let $A = \{1, 2, 3\}$ and $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (2, 3)\}$. Determine the properties of R
 - i) Reflexive: R is reflexive, since $(1,1),(2,2),(3,3) \in R$
 - ii) Irreflexive: R is not irreflexive, since $(1,1) \in R$
 - iii) Symmetric: R is not symmetric, since $(2,3) \in R$ but $(3,2) \notin R$
 - iv) Anti symmetric: R is not anti symmetric, since $(1,2),(2,1) \in R$ but $1 \neq 2$
 - v) Transitive: R is not transitive, since $(1,2),(2,3) \in R$ but $(1,3) \notin R$
- 3. Let $A = \{1,2,3\}$ and $R = \{(1,2),(2,1),(2,3)\}$. Determine the properties of R
 - i) Reflexive: R is not reflexive, since $(1,1) \notin R$
 - ii) Irreflexive: R is irreflexive, since $(1,1),(2,2),(3,3) \notin R$
 - iii) Symmetric: R is not symmetric, since $(2,3) \in R$ but $(3,2) \notin R$
 - iv) Anti symmetric: R is not anti symmetric, since $(1,2),(2,1) \in R$ but $1 \neq 2$
 - v) Transitive: R is not transitive, since $(1,2),(2,3) \in R$ but $(1,3) \notin R$
- 4. Let $A = \{1,2,3\}$ and $R = \{(1,1),(1,2),(2,1),(2,3),(3,2)\}$. Determine the properties of R
 - i) Reflexive: R is not reflexive, since $(2,2) \notin R$
 - ii) Irreflexive: R is not irreflexive, since $(1,1) \in R$
 - iii) Symmetric: R is symmetric, since for $x, y \in A$ and $(x, y) \in R$ implies $(y, x) \in R$
 - iv) Anti symmetric: R is not anti symmetric, since $(1,2),(2,1) \in R$ but $1 \neq 2$
 - v) Transitive: R is not transitive, since $(1,2),(2,3) \in R$ but $(1,3) \notin R$

Verification:		Anti symmetric		Transitive	
	Element of $R:(x,y)$	$(y,x) \in R$	x = y	$(y,z)\in R$	$(x,z) \in R$
1	(1,1)	(1,1)	Yes	(1,1),(1,2)	Yes
2	(1,2)	(2,1)	No	(2,1),(2,3)	No
3	(2,1)	(1,2)	No	(1,1),(1,2)	No
4	(2,3)	(3, 2)	No	(3,2)	No
5	(3, 2)	(2,3)	No	(2,1),(2,3)	No
	Result	No		No	

- 5. Let $A = \{1,2,3\}$ and $R = \{(1,1),(1,2),(2,3)\}$. Determine the properties of R
 - i) Reflexive: R is not reflexive, since $(2,2) \notin R$
 - ii) Irreflexive: R is not irreflexive, since $(1,1) \in R$
 - iii) Symmetric: R is not symmetric, since $(2,3) \in R$ but $(3,2) \notin R$
 - iv) Anti symmetric: R is anti symmetric, since for $x, y \in A$ and $(x, y) \in R$, $(y, x) \in R$ implies x = y
 - v) Transitive: R is not transitive, since $(1,2),(2,3) \in R$ but $(1,3) \notin R$

Verification:		Anti symmetric		Transitive	
	Element of $R:(x,y)$	$(y,x) \in R$	x = y	$(y,z) \in R$	$(x,z) \in R$
1	(1,1)	(1,1)	Yes	(1,1),(1,2)	Yes
2	(1,2)	-	-	(2,3)	No
3	(2,3)	-	-		-
	Result	Yes		No	

- 6. Let $A = \{1,2,3\}$ and $R = \{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)\}$. Determine the properties of R
 - i) Reflexive: R is not reflexive, since $(3,3) \notin R$
 - ii) Irreflexive: R is not irreflexive, since $(1,1) \in R$
 - iii) Symmetric: R is not symmetric, since $(1,3) \in R$ but $(3,1) \notin R$
 - iv) Anti symmetric: R is not anti symmetric, since $(1,2),(2,1) \in R$ but $1 \neq 2$
 - v) Transitive: R is transitive, since for $x, y, z \in A$ and $(x, y) \in R$, $(y, z) \in R$ implies $(x, z) \in R$

Verification:		Anti symmetric		Transitive	
	Element of $R:(x,y)$	$(y,x) \in R$	x = y	$(y,z) \in R$	$(x,z) \in R$
1	(1,1)	(1,1)	Yes	(1,1),(1,2),(1,3)	Yes
2	(1,2)	(2,1)	No	(2,1),(2,2),(2,3)	Yes
3	(1,3)	-	_	-	
4	(2,1)	(1,2)	No	(1,1),(1,2),(1,3)	Yes
5	(2,2)	(2,2)	Yes	(2,1),(2,2),(2,3)	Yes
6	(2,3)	-	-	•	
	Result	No		Yes	

- 7. Let $A = \{1, 2, 3\}$ and $\Delta_A = \{(1, 1), (2, 2), (3, 3)\}$ the diagonal relation. Determine the properties of Δ_A
 - i) Reflexive: Δ_A is reflexive, since $(1,1),(2,2),(3,3) \in \Delta_A$
 - ii) Irreflexive: Δ_A is not irreflexive, since $(1,1) \in \Delta_A$
 - iii) Symmetric: Δ_A is symmetric, since for $x, y \in A$ and $(x, y) \in \Delta_A$ implies $(y, x) \in \Delta_A$
 - iv) Anti symmetric: Δ_A is anti symmetric, since for $x, y \in A$ and $(x, y) \in \Delta_A$, $(y, x) \in \Delta_A$ implies x = y
 - v) Transitive: Δ_A is transitive, since for $x, y, z \in A$ and $(x, y) \in \Delta_A$, $(y, z) \in \Delta_A$ implies $(x, z) \in \Delta_A$
 - vi) Δ_A is both equivalence relation and partial order relation
- 8. Let $A = \{1,2,3\}$ and $R = \{(1,2),(1,3),(2,1),(2,3)\}$. Determine the properties of R
 - i) Reflexive: R is not reflexive, since $(1,1) \notin R$
 - ii) Irreflexive: R is irreflexive, since $(1,1),(2,2),(3,3) \notin R$
 - iii) Symmetric: R is not symmetric, since $(1,3) \in R$ but $(3,1) \notin R$
 - iv) Anti symmetric: R is not anti symmetric, since $(1,2),(2,1) \in R$ but $1 \neq 2$
 - v) Transitive: R is not transitive, since $(1,2),(2,1) \in R$ but $(1,1) \notin R$

Verification:		Anti symmetric		Transitive	
	Element of $R:(x,y)$	$(y,x) \in R$	x = y	$(y,z) \in R$	$(x,z) \in R$
1	(1,2)	(2,1)	No	(2,1),(2,3)	No
2	(1,3)	-	-		-
3	(2,1)	(1,2)	No	(1,2),(1,3)	No
4	(2,3)	-	-		-
	Result	No		No	

- 9. Let $A = \{1, 2, \dots 10\}$ and $R = \{(x, y) | x + y = 10\}$. Determine the properties of R
 - i) Reflexive: R is not reflexive, since $(1,1) \notin R$, $1+1 \neq 10$
 - ii) Irreflexive: R is not irreflexive, since $(5,5) \in R$, 5+5=10
 - iii) Symmetric: R is symmetric, since for $x, y \in A$

$$(x, y) \in R \implies x + y = 10$$
$$\implies y + x = 10$$
$$\implies (y, x) \in R$$

- iv) Anti symmetric: R is not anti symmetric, since $(2,8),(8,2) \in R$ but $2 \neq 8$
- v) Transitive: R is not transitive, since $(2,8),(8,2) \in R$ but $(2,2) \notin R$
- 10. Let $A = \{1, 2, \dots 100\}$ and $R = \{(x, y) | x y \text{ is even } \}$. Determine the properties of R
 - i) Reflexive: For $x \in A$, x-x=0 is even. So $(x,x) \in R$: R is reflexive
 - ii) Irreflexive: R is not irreflexive, since $(1,1) \in R$, 1-1=0 is even
 - iii) Symmetric: For $x, y \in A$,

$$(x, y) \in R \implies x - y \text{ is even}$$

$$\implies y - x \text{ is even}$$

$$\implies (y, x) \in R$$

 $\therefore R$ is symmetric

- iv) Anti symmetric: R is not anti symmetric, since $(1,3),(3,1) \in R$ but $1 \neq 3$
- v) Transitive: For $x, y, z \in A$,

$$(x,y),(y,z) \in R \Rightarrow x-y \text{ is even, } y-z \text{ is even}$$

 $\Rightarrow x-z = (x-y)+(y-z) \text{ is also even}$
 $\Rightarrow (x,z) \in R$

 $\therefore R$ is transitive. Hence R is an equivalence relation

- 11. Let $A = \{1, 2, \dots 25\}$ and $R = \{(x, y) | x y \text{ is divisible by } 3\}$. Determine the properties of R
 - i) Reflexive: For $x \in A$, x-x=0 is divisible by 3. So $(x,x) \in R$
 - $\therefore R$ is reflexive
 - ii) Irreflexive: R is not irreflexive, since $(1,1) \in R$, 1-1=0 is divisible by 3
 - iii) Symmetric: For $x, y \in A$,

$$(x,y) \in R \Rightarrow x-y$$
 is divisible by 3
 $\Rightarrow y-x$ is also divisible by 3
 $\Rightarrow (y,x) \in R$

- $\therefore R$ is symmetric
- iv) Anti symmetric: R is not anti symmetric, since $(1,4),(4,1) \in R$ but $1 \neq 4$
- v) Transitive: For $x, y, z \in A$,

$$(x,y),(y,z) \in R \Rightarrow x-y$$
 is divisible by 3, $y-z$ is divisible by 3
 $\Rightarrow x-z=(x-y)+(y-z)$ is also divisible by 3
 $\Rightarrow (x,z) \in R$

 $\therefore R$ is transitive

Hence R is an equivalence relation but not a partial order relation

12. Let $A = \{1, 2, \dots\}$ and $R = \{(x, y) | x \le y\}$. Determine the properties of R.

(This relation is called '*less than or equal to*' relation)

- i) Reflexive: For $x \in A$, $x \le x$. So $(x,x) \in R$
 - $\therefore R$ is reflexive
- ii) Irreflexive: R is not irreflexive, since $(1,1) \in R$, $1 \le 1$
- iii) Symmetric: R is not symmetric, since $(1,2) \in R$ but $(2,1) \notin R$, $1 \le 2$ but $2 \le 1$
- iv) Anti symmetric: For $x, y \in A$,

$$(x, y), (y, x) \in R \implies x \le y, y \le x$$

 $\implies x = y$

- $\therefore R$ is anti symmetric
- v) Transitive: For $x, y, z \in A$,

$$(x, y), (y, z) \in R \implies x \le y, y \le z$$

 $\implies x \le z$
 $\implies (x, z) \in R$

 $\therefore R$ is transitive

Hence R is a partial order relation but not an equivalence relation

13. Let $A = \{1, 2, \dots\}$ and $R = \{(x, y) | x \text{ divides } y\}$. Determine the properties of R (This relation is called 'divides' relation)

- i) Reflexive: For $x \in A$, x divides x. So $(x,x) \in R$: R is reflexive
- ii) Irreflexive: R is not irreflexive, since $(1,1) \in R$, 1 divides 1
- iii) Symmetric: R is not symmetric, since $(1,2) \in R$ but $(2,1) \notin R$,

1 divides 2, but 2 does not divide 1

iv) Anti symmetric: For $x, y \in A$,

$$(x, y), (y, x) \in R \Rightarrow x \text{ divides } y, y \text{ divides } x$$

 $\Rightarrow x \le y, y \le x$
 $\Rightarrow x = y$

 $\therefore R$ is anti symmetric

v) Transitive: For $x, y, z \in A$, $(x, y), (y, z) \in R \Rightarrow x \text{ divides } y, y \text{ divides } z$ $\Rightarrow x \text{ divides } z$ $\Rightarrow (x, z) \in R$

 $\therefore R$ is transitive Hence R is a partial order relation but not an equivalence relation

Exercise:

- 1. Let $A = \{1,2,3\}$ and $R = \{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,3)\}$. Determine the properties of R
- 2. Let $A = \{1,2,3,4\}$ and $R = \{(1,1),(1,2),(1,4),(2,2)\}$. Determine the properties of R
- 3. Give an example of a relation which is neither reflexive nor irreflexive
- 4. Give an example of a relation which is both symmetric and anti symmetric
- 5. Let $A = \{1, 2, \dots 10\}$ and $R = \{(x, y) | x + y = 12\}$. Determine the properties of R
- 6. Let $A = \{1, 2, \dots 10\}$ and $R = \{(x, y) | xy = 1\}$. Determine the properties of R
- 7. Let $A = \{1, 2, \dots 100\}$ and $R = \{(x, y) | xy \text{ is even } \}$. Determine the properties of R
- 8. Let $A = \{1, 2, 4, 6\}, R = \{(x, y) \in A \times A \mid x \text{ divides } y\}$. Determine the properties of R
- 9. If R and S are both reflexive, show that $R \cap S$ and $R \cup S$ are also reflexive

Partition and Covering of a Set: Let A be non empty set and $A_1, A_2, A_3, \dots A_n$ be subsets of A. Then we say that

1.
$$X = \{A_1, A_2, A_3, \dots A_n\}$$
 is a covering of A if $A_1 \cup A_2 \cup A_3 \cup \dots \cup A_n = A$

2.
$$X = \{A_1, A_2, A_3, \dots A_n\}$$
 is a partition of A if

(i)
$$A_1 \cup A_2 \cup A_3 \cup \cdots \cup A_n = A$$

(ii) $A_1, A_2, A_3, \dots A_n$ are mutually disjoint (ie., $A_i \cap A_j = \phi$ for $i \neq j$)

In this case $A_1, A_2, A_3, \dots A_n$ are called the *blocks* of the partition.

Equivalence relation corresponding to a partition: If $X = \{A_1, A_2, A_3, \dots A_n\}$ is a partition of A, then $R_X = (A_1 \times A_1) \cup (A_2 \times A_2) \cup \dots (A_n \times A_n)$ becomes an equivalence relation on A corresponding to X.

Example: Let $A = \{1, 2, 3, 4, 5, 6, 7, 8\}.$

1. If
$$X = \{A_1, A_2, A_3\}$$
, where $A_1 = \{2, 3, 5, 8\}$, $A_2 = \{1, 3, 6\}$, $A_3 = \{4, 6, 7\}$ then

- (i) $A_1 \cup A_2 \cup A_3 = A$, therefore X is a covering of A
- (ii) $A_1 \cap A_2 = \{3\} \neq \emptyset$, therefore X is not a partition of A
- 2. If $X = \{A_1, A_2, A_3\}$, where $A_1 = \{5, 8\}$, $A_2 = \{1, 3, 6\}$, $A_3 = \{4, 7\}$ then
 - (i) $A_1 \cup A_2 \cup A_3 \neq A$, therefore X is not a covering of A and hence X is not a partition of A
- 3. If $X = \{A_1, A_2, A_3, A_4\}$, where $A_1 = \{1, 2, 3\}$, $A_2 = \{3, 4, 5\}$, $A_3 = \{5, 6, 7\}$, $A_4 = \{7, 8\}$ then
 - (i) $A_1 \cup A_2 \cup A_3 \cup A_4 = A$, therefore X is a covering of A
 - (ii) $A_1 \cap A_2 = \{3\} \neq \emptyset$, therefore X is not a partition of A
- 4. If $X = \{A_1, A_2, A_3\}$, where $A_1 = \{2, 3, 5, 8\}$, $A_2 = \{1, 6\}$, $A_3 = \{4, 7\}$ then
 - (i) $A_1 \cup A_2 \cup A_3 = A$, therefore X is a covering of A
 - (ii) $A_1 \cap A_2 = \phi$, $A_1 \cap A_3 = \phi$, $A_2 \cap A_3 = \phi$, therefore X is a partition of A
 - (iii) The equivalence relation corresponding to this partition $X = \{A_1, A_2, A_3\}$, is given by $R_X = (A_1 \times A_1) \cup (A_2 \times A_2) \cup (A_3 \times A_3) = \{(2,2),(2,3),(2,5),(2,8),(3,2),(3,3),(3,5),(3,8),(5,2),(5,3),(5,5),(5,8),(8,2),(8,3),(8,5),(8,8),(1,1),(1,6),(6,1),(6,6),(4,4),(4,7),(7,4),(7,7)\}$
- 5. If $X = \{A_1, A_2, A_3, A_4\}$, where $A_1 = \{1, 2, 3\}$, $A_2 = \{4, 5\}$, $A_3 = \{6, 7\}$, $A_4 = \{8\}$ then
 - (i) $A_1 \cup A_2 \cup A_3 \cup A_4 = A$, therefore X is a covering of A
 - $\text{(ii) } A_{1} \cap A_{2} = \phi, \quad A_{1} \cap A_{3} = \phi, \quad A_{1} \cap A_{4} = \phi, \quad A_{2} \cap A_{3} = \phi, \quad A_{2} \cap A_{4} = \phi, \quad A_{3} \cap A_{4} = \phi, \quad A_{3} \cap A_{4} = \phi, \quad A_{4} \cap A_{5} = \phi, \quad A_{5} \cap A_{5} = \phi,$

Therefore, X is a partition of A

(iii) The equivalence relation corresponding to this partition $X = \{A_1, A_2, A_3, A_4\}$, is given by $R_X = (A_1 \times A_1) \cup (A_2 \times A_2) \cup (A_3 \times A_3) \cup (A_4 \times A_4) = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (2$

$$(3,1),(3,2),(3,3),\ (4,4),(4,5),(5,4),(5,5),\ (6,6),(6,7),(7,6),(7,7),\ (8,8)$$

No. blocks: 3

 $A_1 = \{1, 2, 3\}, A_2 = \{4, 3\}, A_3 = \{0, 7\}$

No. blocks: 4

Exercise:

- 1. Check which of the following are coverings or partitions of the set $S = \{a,b,c\}$. In the case of partition, write the corresponding equivalence relation.
 - (i) $A = \{\{a,b\},\{b,c\}\}\$ (ii) $B = \{\{a\},\{a,c\}\}\}$ (iii) $C = \{\{a\},\{b,c\}\}\}$ (iv) $D = \{\{a,b,c\}\}\}$
 - (v) $E = \{\{a\}, \{b\}, \{c\}\}\}$ (vi) $F = \{\{a\}, \{a,b\}, \{a,c\}\}\}$
- 2. Check which of the following are coverings or partitions of the set $S = \{1, 2, 3, 4\}$. In the case of partition, write the corresponding equivalence relation.
 - (i) $A = \{\{2,4\},\{1,3\}\}$ (ii) $B = \{\{1\},\{2,4\}\}$ (iii) $C = \{\{1,2\},\{2,3\},\{3,4\}\}$ (iv) $D = \{\{1,2,3,4\}\}$
 - (v) $E = \{\{1\}, \{2\}, \{3\}, \{4\}\}\}$ (vi) $F = \{\{1, 2\}, \{3\}, \{4\}\}$

Equivalence relation: A relation R on a non empty set A is called an *equivalence relation* if R is

- (i) Reflexive; that is, $(x, x) \in R$ for all $x \in A$
- (ii) Symmetric; that is, for $x, y \in A$ and $(x, y) \in R$ implies $(y, x) \in R$
- (iii) Transitive; that is, for $x, y, z \in A$ and $(x, y) \in R$, $(y, z) \in R$ implies $(x, z) \in R$

Note:

- i) If A is a non empty set, then the diagonal relation Δ_A is always an equivalence relation. Also Δ_A is the smallest equivalence relation on A; that is, every equivalence relation on A contains Δ_A .
- ii) If A is a non empty set, then the universal relation $A \times A$ is always an equivalence relation. Also $A \times A$ is the largest equivalence relation on A; that is, every equivalence relation on A contained in $A \times A$.

Equivalence class: Let R be an equivalence relation on a non empty set A and $a \in A$.

Then 'R-equivalence class of a' is denoted by $[a]_R$ or [a] or \overline{a} and is defined as follows.

$$[a]_R \quad or \quad \overline{a} = \left\{ x \in A \mid (a, x) \in R \right\}$$

That is, $[a]_R$ is the set of all elements of A, which are related to a.

Note:

- i) $a \in [a]_R$
- ii) $[a]_R$ is always non empty
- iii) $(a,b) \in R \iff b \in [a]_R \text{ and } a \in [b]_R \iff [a]_R = [b]_R \iff [a]_R \cap [b]_R \neq \emptyset$
- iv) Union of all equivalence classes (in A) is equal to A; that is $[a]_R \cup [b]_R \cup [c]_R \cup \cdots = A$ In other words, the set of all equivalence classes is covering of A
- v) Intersection of any two equivalence classes is either disjoint or equal
- vi) The set $\frac{A}{R}$ of all distinct equivalence classes is partition of A

Problems:

1. Prove that $R = \{(1,1),(2,2),(3,3),(1,2),(2,1)\}$ is an equivalence relation on the set $A = \{1,2,3\}$. Write the matrix and draw the graph of R. Also write all the equivalence classes.

Reflexive: Here $(1,1),(2,2),(3,3) \in R$:: R is reflexive i)

ii) Symmetric: For $x, y \in A$ and $(x, y) \in R$ implies $(y, x) \in R$ $\therefore R$ is symmetric

Transitive: For $x, y, z \in A$ and $(x, y) \in R$, $(y, z) \in R$ implies $(x, z) \in R$ iii) $\therefore R$ is transitive. Hence R is an equivalence relation

Graph: The graph of R is given by G_R v)

Equivalence classes: vi)

$$[1]_R = \{1,2\}, \quad [2]_R = \{1,2\} = [1]_R \quad \text{and} \quad [3]_R = \{3\}$$

Therefore, the distinct equivalence classes, $\frac{A}{R} = \{[1], [3]\}$ and it is a partition of A

2. Prove that $R = \{(1,1),(2,2),(3,3),(4,4),(2,3),(3,2),(1,4),(4,1)\}$ is an equivalence relation on the set $A = \{1, 2, 3, 4\}$. Write the matrix and draw the graph of R. Also write all the equivalence classes.

Reflexive: Here $(1,1), (2,2), (3,3), (4,4) \in R$ i) $\therefore R$ is reflexive

Symmetric: For $x, y \in A$ and $(x, y) \in R$ implies $(y, x) \in R$ $\therefore R$ is symmetric ii)

Transitive: For $x, y, z \in A$ and $(x, y) \in R$, $(y, z) \in R$ implies $(x, z) \in R$

Graph: The graph of R is given by G_R v)

vi) Equivalence classes:

$$[1]_R = \{1,4\}, \quad [2]_R = \{2,3\}, \quad [3]_R = \{2,3\} \text{ and } [4]_R = \{1,4\}$$

Therefore, the distinct equivalence classes, $\frac{A}{R} = \{[1], [2]\}$ and it is a partition of A

- 3. Prove that $R = \{(x, y) \in N \times N \mid x = y\}$ is an equivalence relation on the set $N = \{1, 2, 3 \dots\}$ of all natural numbers. Write the matrix and draw the graph of R. Also write all the equivalence classes.
 - i) Reflexive: For $x \in N$, x = x. So $(x, x) \in R$
 - $\therefore R$ is reflexive
 - ii) *Symmetric*: For $x, y \in N$,

$$(x, y) \in R \implies x = y$$

 $\implies y = x$
 $\implies (y, x) \in R$

 $\therefore R$ is symmetric

iii) *Transitive*: For $x, y, z \in N$,

$$(x, y), (y, z) \in R \implies x = y, \quad y = z$$

 $\implies x = z$
 $\implies (x, z) \in R$

 $\therefore R$ is transitive. Hence R is an equivalence relation

- iv) Matrix: The matrix of R is given by $M_R = \begin{bmatrix} 1 & 0 & 0 & \cdots \\ 0 & 1 & 0 & \cdots \\ 0 & 0 & 1 & \cdots \\ \cdots & \cdots & \cdots \end{bmatrix}$
- v) Graph: The graph of R is given by G_R O O O O O O
- vi) Equivalence classes:

$$[1]_R = \{1\}, \quad [2]_R = \{2\}, \quad [3]_R = \{3\}_R, \quad [4]_R = \{4\} \quad \cdots$$

Therefore, the distinct equivalence classes, $\frac{N}{R} = \{[1], [2], [3], \cdots\}$ and it is a partition of N

- 4. Prove that $R = \{(x, y) | x y \text{ is divisible by } 3\}$ is an equivalence relation on the set $A = \{1, 2, 3, 4\}$. Write the matrix and draw the graph of R. Also write all the equivalence classes.
 - i) Reflexive: For $x \in A$, x-x=0 is divisible by 3. So $(x,x) \in R$
 - $\therefore R$ is reflexive
 - ii) Symmetric: For $x, y \in A$,

$$(x, y) \in R \Rightarrow x - y$$
 is divisible by 3
 $\Rightarrow y - x$ is also divisible by 3
 $\Rightarrow (y, x) \in R$

 $\therefore R$ is symmetric

iii) *Transitive*: For $x, y, z \in A$,

$$(x,y),(y,z) \in R \Rightarrow x-y$$
 is divisible by 3, $y-z$ is divisible by 3
 $\Rightarrow x-z=(x-y)+(y-z)$ is also divisible by 3
 $\Rightarrow (x,z) \in R$

 $\therefore R$ is transitive. Hence R is an equivalence relation

v) Graph: The graph of R is given by G_R

- vi) Equivalence classes: $[1]_R = \{1,4\}$, $[2]_R = \{2\}$, $[3]_R = \{3\}$ and $[4]_R = \{1,4\}$ Therefore, the distinct equivalence classes, $\frac{A}{R} = \{[1], [2], [3]\}$ and it is a partition of A
- 5. Prove that $R = \{(x, y) | x y \text{ is divisible by 4} \}$, is an equivalence relation on the set $Z = \{\cdots -2, -1, 0, 1, 2, 3 \cdots \}$ of all integers. Write all the equivalence classes.

(This relation is called 'congruence modulo 4 relation' or 'congruence relation'. Here R is denoted by the symbol \equiv and we write $x \equiv y \pmod{4}$ for x - y is divisible by 4. The equivalence classes are called 'residue classes modulo 4' and the distinct equivalence classes is denoted by Z_4)

- i) Reflexive: For $x \in Z$, x-x=0 is divisible by 4. So $(x,x) \in R$ $\therefore R$ is reflexive
- ii) Symmetric: For $x, y \in Z$, $(x, y) \in R \Rightarrow x y \text{ is divisible by 4}$ $\Rightarrow y x \text{ is also divisible by 4}$ $\Rightarrow (y, x) \in R$

 $\therefore R$ is symmetric

iii) Transitive: For $x, y, z \in Z$, $(x, y), (y, z) \in R \Rightarrow x - y \text{ is divisible by 4, } y - z \text{ is divisible by 4}$ $\Rightarrow x - z = (x - y) + (y - z) \text{ is also divisible by 4}$ $\Rightarrow (x, z) \in R$

 $\therefore R$ is transitive. Hence R is an equivalence relation

iv) Equivalence classes: $[0]_R = \{\cdots -8, -4, 0, 4, 8, \cdots\}, \quad [1]_R = \{\cdots -7, -3, 1, 5, 9, \cdots\},$ $[2]_R = \{\cdots -6, -2, 2, 6, 10, \cdots\}, \quad [3]_R = \{\cdots -5, -1, 3, 7, 11, \cdots\},$ $[4]_R = \{\cdots -8, -4, 0, 4, 8, \cdots\} = [0]_R,$ $[5]_R = [1]_R, \quad [6]_R = [2]_R, \quad [7]_R = [3]_R, \quad \cdots$

Hence the distinct equivalence classes, $\frac{Z}{R}$ or $Z_4 = \{[0], [1], [2], [3]\}$ and it is a partition of Z

- 6. Congruence relation: If m is a positive integer and $Z = \{\cdots -2, -1, 0, 1, 2, 3\cdots\}$ is the set of all integers, then the equivalence relation given by $R = \{(x, y) \in Z \times Z | x - y \text{ is divisible by } m \}$ is called 'congruence modulo m relation' or 'congruence relation'. Here R is denoted by the symbol \equiv and we write $x \equiv y \pmod{m}$ for x - y is divisible by m. The equivalence classes are called 'residue classes modulo m' or 'congruence classes modulo m' and the set of all distinct equivalence classes is denoted by Z_m . That is, $Z_m = \{ [0], [1], [2], \cdots [m-1] \}$
 - Reflexive: For $x \in \mathbb{Z}$, x-x=0 is divisible by m. So $(x,x) \in \mathbb{R}$ i) $\therefore R$ is reflexive
 - *Symmetric*: For $x, y \in Z$, ii) $(x, y) \in R \implies x - y$ is divisible by m $\Rightarrow y - x$ is also divisible by m $\Rightarrow (v, x) \in R$

 $\therefore R$ is symmetric

Transitive: For $x, y, z \in Z$, iii)

$$(x, y), (y, z) \in R \Rightarrow x - y$$
 is divisible by $m, y - z$ is divisible by $m \Rightarrow x - z = (x - y) + (y - z)$ is also divisible by $m \Rightarrow (x, z) \in R$

 $\Rightarrow ((c,d),(a,b)) \in R$

 $\therefore R$ is transitive. Hence R is an equivalence relation

7. Let R denote a relation on the set of ordered pairs of positive integers such that (a,b)R(x,y) iff ay = bx. Show that R is an equivalence relation

Here
$$R = \{ ((a,b), (x,y)) | a,b,x,y \in Z^+, ay = bx \}$$

- Reflexive: For $a, b \in Z^+$ we have ab = ba, so $((a,b), (a,b)) \in R$ i) p = (a,b) $\therefore R$ is reflexive $(p,p) \in R$
- p = (a,b), q = (c,d)Symmetric: For $a,b,c,d \in \mathbb{Z}^+$, ii) $((a,b),(c,d)) \in R \Rightarrow ad = bc$ $(p,q) \in R \Longrightarrow (q,p) \in R$ $\Rightarrow cb = da$

 $\therefore R$ is symmetric

p = (a,b), q = (c,d), r = (e,f)*Transitive*: For $a,b,c,d,e,f \in \mathbb{Z}^+$, $((a,b),(c,d)),((c,d),(e,f)) \in R \Rightarrow ad = bc, cf = de$ $(p,q),(q,r) \in R \Longrightarrow (p,r) \in R$ $\Rightarrow \frac{a}{b} = \frac{c}{d}, \ \frac{c}{d} = \frac{e}{f}$ $\Rightarrow \frac{a}{b} = \frac{e}{f}$ $\Rightarrow af = be$ $\Rightarrow ((a,b), (e,f)) \in R$

 $\therefore R$ is transitive. Hence R is an equivalence relation

8. If R and S are both equivalence relations, show that $R \cap S$ is also equivalence relation

Reflexive: Since R and S are both equivalence relations, we have R and S are both reflexive.

So, $(x, x) \in R$ and $(x, x) \in S$ for all x

Therefore, $(x,x) \in R \cap S$ for all x

Hence $R \cap S$ is reflexive

Symmetric: Since R and S are both equivalence relations, we have R and S are both symmetric.

Now for
$$x, y \in A$$
, $(x, y) \in R \cap S \Rightarrow (x, y) \in R$, $(x, y) \in S$

$$\Rightarrow (y, x) \in R, \quad (y, x) \in S$$

$$\Rightarrow$$
 $(y, x) \in R \cap S$

Therefore, $R \cap S$ is symmetric

Transitive: Since R and S are both equivalence relations, we have R and S are both transitive.

Now for
$$x, y, z \in A$$
, $(x, y), (y, z) \in R \cap S \Rightarrow (x, y), (y, z) \in R$, $(x, y), (y, z) \in S$

$$\Rightarrow (x, z) \in R, (x, z) \in S$$

$$\Rightarrow$$
 $(x, z) \in R \cap S$

Therefore, $R \cap S$ is transitive. Hence $R \cap S$ is an equivalence relation.

Exercise:

- 1. If R and S are both equivalence relations, show that $R \cap S$ is also equivalence relation
- 2. Prove that $R = \{(1,1),(2,2),(3,3),(4,4),(5,5),(2,5),(5,2),(1,4),(4,1)\}$ is an equivalence relation on the set $A = \{1,2,3,4,5\}$. Write the matrix and draw the graph of R. Also write all the equivalence classes.
- 3. Prove that $R = \{(x, y) \in A \times A | x y \text{ is divisible by 3} \}$ is an equivalence relation on the set $A = \{1, 2, \dots 6\}$. Write the matrix and draw the graph of R. Also write all the equivalence classes.
- 4. Prove that $R = \{(x, y) | x y \text{ is divisible by 6} \}$, is an equivalence relation on the set $Z = \{\cdots -2, -1, 0, 1, 2, 3 \cdots \}$ of all integers. Write all the equivalence classes.
- 5. Prove that the relation '**congruence modulo** m 'given by $\equiv =\{(x,y) \in Z \times Z \mid x-y \text{ is divisible by } m\}$ over the set of positive integers is an equivalence relation. Show also that if $x_1 \equiv y_1$ and $x_2 \equiv y_2$, then $(x_1 + x_2) \equiv (y_1 + y_2)$

Partial order relation: A relation R on a non empty set A is called a *partial order relation* or a *partial ordering* in A if R is

- (i) Reflexive; that is, $(x, x) \in R$ for all $x \in A$
- (ii) Anti symmetric; that is, for $x, y \in A$ and $(x, y) \in R$, $(y, x) \in R$ implies x = y

Or for
$$x, y \in A$$
 and $x \neq y \Rightarrow at$ least one of $(x, y), (y, x) \notin R$

(iii) Transitive; that is, for $x, y, z \in A$ and $(x, y) \in R$, $(y, z) \in R$ implies $(x, z) \in R$

Note:

- i) Generally partial order relations are denoted by the symbols like \leq , \geq , \subseteq , \supseteq
- ii) If \leq is a partial order relation on a non empty set A, then \leq is a subset of $A \times A$ and for $(a,b) \in \leq$ we write $a \leq b$; that is, $a \leq b$ if and only if $(a,b) \in \leq$
- iii) If A is a non empty set, then the diagonal relation Δ_A is always a partial order relation. Also Δ_A is the smallest partial order relation on A; that is, every partial order relation on A contains Δ_A .

Partially Ordered Set (or Poset): If \leq is a partial order relation on a non empty set P, then the ordered pair (P, \leq) is called a *partially ordered set* or a *poset*.

Comparable and Incomparable elements: Let (P, \leq) be a poset and $a, b \in P$. Then we say that

- (i) a, b are comparable if $a \le b$ or $b \le a$ ie., $(a, b) \in \le$ or $(b, a) \in \le$
- (ii) a, b are incomparable if neither $a \le b$ nor $b \le a$ ie., $(a, b) \notin \le a$ and $(b, a) \notin \le a$

Totally Ordered Set (or Chain or Simply Ordered Set): A poset (P, \leq) is called a *chain* or *totally ordered set* or *simply ordered set* if every pair of elements of P are comparable; that is $a, b \in P$ implies $a \leq b$ or $b \leq a$. In this case \leq is called a total order relation.

Problems:

- 1. Prove that $\leq = \{(1,1),(2,2),(3,3),(1,2),(1,3),(2,3)\}$ is a partial order relation on the set $A = \{1,2,3\}$. Also prove that \leq is a total order relation
 - i) Reflexive: Here $(1,1),(2,2),(3,3) \in \subseteq$ $\therefore \subseteq$ is reflexive

 - iii) Transitive: For $x, y, z \in A$ and $(x, y) \in A$, $(y, z) \in A$ is transitive $(x, z) \in A$

Therefore, \leq is a partial order relation and hence (A, \leq) is a partially ordered set or a poset.

iv) Here observe that $1 \le 2$, $1 \le 3$, $2 \le 3$; that is, (1,2), (1,3), $(2,3) \in \le$ Therefore, every pair of elements of A are comparable; that is, for $x, y \in A$ we have $x \le y$ or $y \le x$

Thus, \leq is a total order relation and hence (A, \leq) is a totally ordered set or a chain.

- 2. Prove that $R = \{(1,1),(2,2),(3,3),(4,4),(1,2),(1,3),(1,4),(2,4)\}$ is a partial order relation on the set $A = \{1,2,3,4\}$. But not a chain.
 - i) Reflexive: Here $(1,1),(2,2),(3,3),(4,4) \in \mathbb{R}$:: \mathbb{R} is reflexive
 - ii) Anti symmetric: For $x, y \in A$ and $(x, y) \in R$, $(y, x) \in R$ implies x = y $\therefore R$ is anti symmetric
 - iii) Transitive: For $x, y, z \in A$ and $(x, y) \in R$, $(y, z) \in R$ implies $(x, z) \in R : R$ is transitive. Therefore, R is a partial order relation and hence (A, R) is a partially ordered set or a poset.
 - iv) Here observe that $1 \le 2$, $1 \le 3$, $1 \le 4$, $2 \le 4$; that is, (1,2), (1,3), (1,4), $(2,4) \in R$

Therefore, the pairs 1 and 2, 1 and 3, 1 and 4, 2 and 4 are comparable

But we have $2 \le 3$ and $3 \le 2$; that is, $(2,3) \notin R$ and $(3,2) \notin R$

Therefore, the pair 2 and 3 is incomparable.

Similarly the pair 3 and 4 is also incomparable, since $3 \le 4$ and $4 \le 3$.

Therefore, R is not a total order relation and hence (A,R) is a poset but not a chain.

- 3. Prove that $R = \{(x, y) | x \le y\}$, where \le is the usual 'less than or equal to', is a partial order relation on the set $A = \{1, 2, 3, \dots\}$ of all integers. Also prove that R is a total order relation. (This relation is called 'less than or equal to' relation)
 - i) Reflexive: For $x \in A$, we have $x \le x$. So $(x, x) \in R$:: R is reflexive
 - ii) Anti symmetric: For $x, y \in A$, $(x, y) \in R$, $(y, x) \in R \Rightarrow x \le y$, $y \le x$

$$\Rightarrow x = y$$
 :: R is anti symmetric

iii) *Transitive*: For $x, y, z \in A$,

$$(x, y) \in R, (y, z) \in R \Rightarrow x \le y, y \le z$$

 $\Rightarrow x \le z$
 $\Rightarrow (x, z) \in R$ $\therefore R$ is transitive

Therefore, R is a partial order relation and hence (A,R) is a partially ordered set or a poset.

iv) Here observe that every pair of elements of A are comparable; that is,

for $x, y \in A$ we have $x \le y$ or $y \le x$

Thus, R is a total order relation and hence (A,R) is a totally ordered set or a chain.

4. Prove that $\leq = \{(x, y) | x \text{ divides } y \}$ is a partial order relation on the set $P = \{1, 2, 3, 6\}$. Also prove that \leq is a total order relation. (This relation is called 'divides' relation on P) Or

Prove that the set $P = \{1, 2, 3, 6\}$ is a chain with respect to the 'divides' relation.

The 'divides' relation is given by $\leq = \{(x, y) | x \text{ divides } y \}$

- i) Reflexive: For $x \in P$, x divides x. So $(x,x) \in \leq :: \leq$ is reflexive
- ii) Anti symmetric: For $x, y \in P$, $(x, y), (y, x) \in \leq \Rightarrow x \text{ divides } y, y \text{ divides } x$ $\Rightarrow x = y$ $\therefore \leq \text{ is anti symmetric}$
- iii) *Transitive*: For $x, y, z \in P$,

$$(x,y),(y,z) \in \leq \Rightarrow x \text{ divides } y, y \text{ divides } z$$

 $\Rightarrow x \text{ divides } z$
 $\Rightarrow (x,z) \in \leq \therefore \leq \text{ is transitive}$

Therefore, \leq is a partial order relation and hence (P, \leq) is a partially ordered set or a poset.

iv) Here observe that every pair of elements of P are comparable; that is, for $x, y \in P$ we have $x \le y$ or $y \le x$

Thus, \leq is a total order relation and hence (P, \leq) is a totally ordered set or a chain.

5. Let $X = \{a,b,c\}$ and P be the set of all subsets (power set) of X. Prove that the 'subset relation' given by $\leq = \{(A,B) \in P \times P \mid A \subseteq B\}$ is a partial order relation on P. Also prove that \leq is not a total order relation.

Or

Prove that the power set P of the set $X = \{a,b,c\}$ is a poset with respect to the 'subset' relation.

The 'subset' relation is given by $\leq = \{(A, B) \in P \times P \mid A \subseteq B\}$

- i) Reflexive: For $A \in P$, we have $A \subseteq A$. So $(A, A) \in \subseteq A$ is reflexive
- ii) Anti symmetric: For $A, B \in P$,

$$(A,B), (B,A) \in \leq \Rightarrow A \subseteq B, B \subseteq A$$

 $\Rightarrow A = B$

 \therefore is anti symmetric

iii) *Transitive*: For $A, B, C \in P$,

$$(A,B), (B,C) \in \leq \Rightarrow A \subseteq B, B \subseteq C$$

 $\Rightarrow A \subseteq C$
 $\Rightarrow (A,C) \in \leq$

 $\therefore \leq$ is transitive

Therefore, \leq is a partial order relation and hence (P, \leq) is a partially ordered set or a poset.

iv) Here observe that $\{a\}, \{b\} \in P$ and $\{a\} \nsubseteq \{b\}, \{b\} \nsubseteq \{a\}$

Thus, \leq is not a total order relation and hence (P, \leq) is a poset but not a chain.

Exercise:

- 1. If R and S are both partial order relation, show that $R \cap S$ is also partial order relation
- 2. Prove that $R = \{(1,1),(2,2),(3,3),(1,2),(1,3),(2,3)\}$ is a partial order relation on the set $A = \{1,2,3\}$
- 3. Prove that the 'divides relation' given by $\leq = \{(x, y) \in A \times A \mid x \text{ divides } y \}$ is a partial order relation on the set $A = \{1, 2, 3, \dots 100\}$
- 4. Prove that the '*less than or equal to relation*' given by $R = \{(x, y) \in N \times N \mid x \le y\}$ is a partial order relation on the set $N = \{1, 2, 3, \dots 20\}$ of all natural numbers.
- 5. Prove that $R = \{(x, y) \in N \times N \mid x \le y\}$ is a partial order relation on the set $N = \{1, 2, 3, \dots\}$ of all natural numbers.
- 6. Let $X = \{a,b,c,d\}$ and P be the set of all subsets (power set) of X. Prove that the 'subset relation' given by $\leq = \{(A,B) \in P \times P \mid A \subseteq B\}$ is a partial order relation on P.

Covering elements: Let (P, \leq) be a poset and $a, b \in P$. Then we say that

- (i) a < b if and only if $a \le b$ and $a \ne b$
- (ii) b covers a if and only if a < b and there is no element $x \in P$ such that $a \le x \le b$ (Also we say that a is covered by b). In this case we write $a \prec b$

Hasse Diagram: Every poset can be represented by means of a diagram known as a 'Hasse diagram' or 'poset diagram' of the poset. In this diagram, we have the following.

- (i) Every element of the poset represented by a small circle or a dot.
- (ii) If a < b, then the circle for a is below the circle for b.
- (iii) If b covers a, then a straight line is drawn between the circles of a and b.
- (iv) If a < b and b does not cover a, then the circles of a and b are not connected directly by a single line. However they are connected through one or more elements of the poset.

Problems:

1. Let $P = \{1, 2, 3, 4\}$ and \leq be the 'less than or equal to' relation on P. Draw the Hasse diagram for the poset (P, \leq) .

Here 1 < 2 < 3 < 4 that is, 1 is covered by 2, 2 is covered by 3, 3 is covered by 4. The Hasse diagram is given as follows.

2. Let $P = \{1, 2, 3, 4\}$ and \leq be the 'divides' relation on P. Draw the Hasse diagram for the poset (P, \leq) . Here 1 < 2 < 4 that is, 1 is covered by 2, 2 is covered by 4 and 1 < 3 that is, 1 is covered by 3

The Hasse diagram is given as follows.

3. Let $P = \{1,2,3\}$ and $\leq = \{(1,1),(2,2),(3,3),(1,2),(1,3),(2,3)\}$ be the partial order relation on P. Draw the Hasse diagram for the poset (P, \leq) .

Here 1 < 2 < 3 that is, 1 is covered by 2, 2 is covered by 3

The Hasse diagram is given as follows.

4. Let $D_6 = \{1, 2, 3, 6\}$ the divisors of 6, and \leq be the 'divides' relation on P. Draw the Hasse diagram for the poset (P, \leq) .

Here 1 < 2 < 6 that is, 1 is covered by 2, 2 is covered by 6

And $1 \prec 3 \prec 6$ that is, 1 is covered by 3, 3 is covered by 6

The Hasse diagram is given as follows.

5. Let $D_8 = \{1, 2, 4, 8\}$ the divisors of 8, and \leq be the 'divides' relation on P. Draw the Hasse diagram for the poset (P, \leq) .

Here 1 < 2 < 4 < 8 that is, 1 is covered by 2, 2 is covered by 4, 4 is covered by 8. The Hasse diagram is given as follows.

6. Let $D_8 = \{1, 2, 4, 8\}$ the divisors of 8, and \leq be the 'less than or equal to' relation on P. Draw the Hasse diagram for the poset (P, \leq) .

Here 1 < 2 < 4 < 8 that is, 1 is covered by 2, 2 is covered by 4, 4 is covered by 8. The Hasse diagram is given as follows.

7. Let $P = \{1, 2, 3, 4, 6\}$ and \leq be the relation on P such that $x \leq y$ if and only if x divides y.

Draw the Hasse diagram for the poset (P, \leq)

Here we have $1 \prec 2 \prec 4$,

$$1 \prec 2 \prec 6$$

$$1 \prec 3 \prec 6$$

Now the Hasse diagram is given as follows.

8. Let $P = \{1, 2, 3, 4, 6, 12\}$ and \leq be the relation on P such that $x \leq y$ if and only if x divides y.

Draw the Hasse diagram for the poset (P, \leq)

Here we have $1 \prec 2 \prec 4 \prec 12$,

$$1 \prec 2 \prec 6 \prec 12$$

$$1 \! \prec \! 3 \! \prec \! 6 \! \prec \! 12$$

Now the Hasse diagram is given as follows.

9. Let $P = \{2,3,6,12,24,36\}$ and \leq be the relation on P such that $x \leq y$ if and only if x divides y.

Draw the Hasse diagram for the poset (P, \leq)

Here we have
$$2 \prec 6 \prec 12 \prec 24$$
, $2 \prec 6 \prec 12 \prec 36$,

$$3 \prec 6 \prec 12 \prec 24$$
, $3 \prec 6 \prec 12 \prec 36$

Now the Hasse diagram is given as follows.

10. Let $X = \{a,b,c\}$ and P be the set of all subsets (power set) of X. Prove that the 'subset relation' given by $\leq = \{(A, B) \in P \times P \mid A \subseteq B\}$ is a partial order relation on P. Also draw the Hasse diagram for the poset (P, \leq) .

Here we have
$$\phi \prec \{a\} \prec \{a,b\} \prec \{a,b,c\}$$
, $\phi \prec \{a\} \prec \{a,c\} \prec \{a,b,c\}$,

$$\phi \prec \{a\} \prec \{a,c\} \prec \{a,b,c\}$$

$$\phi \prec \{b\} \prec \{a,b\} \prec \{a,b,c\}, \qquad \phi \prec \{b\} \prec \{b,c\} \prec \{a,b,c\},$$

$$\phi \prec \{b\} \prec \{b,c\} \prec \{a,b,c\}$$

$$\phi \prec \{c\} \prec \{a,c\} \prec \{a,b,c\},$$

$$\phi \prec \{c\} \prec \{b,c\} \prec \{a,b,c\}$$

The Hasse diagram is given as follows.

Exercise:

- 1. Let $P = \{1, 2, 5, 10\}$. Draw the Hasse diagram for the poset with respect to the (i) 'less than or equal to' relation (ii) 'divides' relation on P.
- 2. Let $D_{10} = \{1, 2, 5, 10\}$, the divisors of 10. Draw the Hasse diagram for the poset with respect to the (i) 'less than or equal to' relation (ii) 'divides' relation on D_{10} .
- 3. Let $D_{12} = \{1, 2, 3, 4, 6, 12\}$, the divisors of 12. Draw the Hasse diagram for the poset with respect to the (i) 'less than or equal to' relation (ii) 'divides' relation on D_{12} .
- 4. Let $P = \{2,3,4,6\}$. Draw the Hasse diagram for the poset with respect to the (i) 'less than or equal to' relation (ii) 'divides' relation on P.
- 5. Let $P = \{1, 2, 3, 6, 12\}$. Draw the Hasse diagram for the poset with respect to the (i) 'less than or equal to' relation (ii) 'divides' relation on P.
- 6. Let $P = \{1, 2, 3, 12, 18, 36\}$. Draw the Hasse diagram for the poset with respect to the (i) 'less than or equal to' relation (ii) 'divides' relation on P.
- 7. Let $D_{30} = \{1, 2, 3, 5, 6, 10, 15, 30\}$, the divisors of 30. Draw the Hasse diagram for the poset with respect to the (i) 'less than or equal to' relation (ii) 'divides' relation on D_{30} .
- 8. Let $P = \{2, 4, 5, 10, 12, 20, 25\}$ and \leq be the relation on P such that $x \leq y$ if and only if x divides y. Draw the Hasse diagram for the poset (P, \leq) .
- 9. Let $P = \{ \phi, \{1\}, \{1,2\}, \{1,2,3\} \}$ and \leq be the subset relation on P. Draw the Hasse diagram for the poset (P, \leq) .
- 10. Let $P = \{ \phi, \{1\}, \{2\}, \{1,2\}, \{2,3\}, \{1,2,3\} \}$ and \leq be the subset relation on P. Draw the Hasse diagram for the poset (P, \leq) .