Cross Platform Recommendation System

Hyunjin Kim 6/7/2024

Overview

Users consume a diverse array of content across multiple platforms.

Most existing recommendation systems are confined to single platforms.

We aim to bridge the gap by developing a recommendation system that integrates user interactions across multiple platforms.

Project Formulation

Project Goals: Combine user interaction data from different platforms

Develop Predictive Model: Create machine learning models capable of providing personalized recommendations across these platforms.

Optimize Models: Fine-tune models for optimal results

Datasets

In order to develop our model we used three distinct datasets:

Books Dataset: Source: Kaggle

Key Feature: Book Ratings, Book Titles

Movies Dataset:

Source: MovieLens

Key Feature: Movie Ratings, Movie Title

Music Dataset:

Source: Zenodo

Key Feature: Artist Name, Number of Plays

Creating Synthetic Users

To simulate real-world scenarios synthetic users were created by merging the three datasets.

This approach balanced the datasets and provided a comprehensive view of user preferences across all three platforms

Key Takeaways from Data Cleaning

- 1. High Sparsity: The user item interaction matrix showed a high level of sparsity
- 2. Data Imbalance: There was an imbalance in user and item interactions with some users and items having many interactions and some having very few to none.
- 3. Standardization and Consistency: To handle the different scales of interaction, all interactions were standardized to binary values. This ensured consistency across datasets and simplified the modeling.

Exploratory Data Analysis

Distribution Analysis

Exploratory Data Analysis

Visualization of user item interaction matrix

Key Takeaways:

The matrix is predominantly sparse, indicating that most users have interacted with only a small subset of items.

The scatter of interactions across the matrix shows a diverse range of user behaviors.

Some users interact with a wide variety of items, while others show very limited interactions.

Exploratory Data Analysis

Summary Statistics:

```
Interaction Count Distribution:
       2377
       2832
        677
        337
        219
        140
         75
         55
8
9
         38
         25
10
         29
11
         12
12
13
14
15
17
18
21
27
```

```
Users after filtering: 5000
Items after filtering: 4478
Total interactions after filtering: 9123
Average interactions per user after filtering: 1.82
Average interactions per item after filtering: 2.04
```

Model Selection

1.) Singular Value Decomposition (SVD)

Rationale: Captures underlying patterns in user preferences and item characteristics which makes it effective for sparse matrices

2.) Alternating Least Squares (ALS)

Rationale: Another matrix factorization technique. Handles implicit feedback well by assigning confidence levels to interactions.

3.) Deep Learning:

Rationale: can capture complex, non-linear relationships between users and items, and can model complex interactions and dependencies.

Model Results

Model	RMSE	Precision	Recall	F1-Score
ALS	.99	1	0	0
SVD	.99	1	0	0
Deep Learning	.000004	1	1	1

Key Takeaways:

- The ALS and SVD models exhibit perfect precision but fail in recall and F1-score.
- The deep learning model overfits the training data, as
 indicated by its near-perfect scores across all metrics.

Practical Considerations and Limitations

Overfitting

- As observed the models experienced overfitting due to several factors.

Data Sparsity

- The sparse user-item matrix leads to challenges in training and prediction accuracy.

Lack of content features

- The current dataset only includes user item interactions.

Practical Considerations and Limitations

Considering there are a few items with a large number of user interactions one solution to the cold start problem could be to use these items as the initial recommendations for new users

Suggestions for improvement and future work

- Include metadata and user demographics

Во	Books_final_df.head()										
User- ID		ISBN	Book- Rating	Book-Title	Book-Title Book-Author		Publisher	Location	Age		
0	99	0451166892	3	The Pillars of the Earth	Ken Follett	1996	Signet Book	franktown, colorado, usa	42.0		

mo	<pre>movies_final_df.head()</pre>									
	user_id	gender	age	occupation	zip_code	movie_id	rating	timestamp	title	genres
0	1	F	1	10	48067	1193.0	5.0	978300760.0	One Flew Over the Cuckoo's Nest (1975)	Drama

mu	sic_final_df.head()				
	user_id	artist_name	plays	age	country
0	00000c289a1829a808ac09c00daf10bc3c4e223b	betty blowtorch	2137	22.0	Germany

Given that we were working with making synthetic users many of the features from our datasets were unused or scaled down.

Suggestions for improvement and future work

The RMSE values are scattered.

Current ranges of the hyperparameters might not be appropriate.

Evaluate training and validation loss curves to identify overfitting issues.

Conclusion and Final Thoughts

- Goal: Develop a cross-platform recommendation system for books, movies, and music.
- Methods: SVD, ALS, Deep Learning.

Key Findings:

- Deep learning model achieved the best performance after hyperparameter tuning.
- Challenges: Handling sparse data, avoiding overfitting.

Conclusion and Final Thoughts

Next Steps and Future Work:

- Incorporate additional features for better accuracy.
- Explore ensemble methods and advanced deep learning architectures.

Final Thoughts:

- Feasibility and potential of machine learning in recommendation systems.
 - Continuous improvement will refine the models.

Thank you

- Thank you for your attention.

- Questions and feedback are welcome.