

1. Workflow – CRISP-DM:

Forecasts for the Spanish energy transition

Data Preparation and Feature

- Checking and removing
- Checking and removing
- Check for missing value:
- Fill in missing values wit
- Crete dataset per city frc
- Restrict dataset to highly
- Create simple time featu

CRISP-DM:

[1] - https://datasolut.com/crisp-dm-standard/

2. Factors influencing the electricity price (€/MWh)

Trends and Seasonality

Trends & Seasonality of electricity prices

- Seasonality: Montly, daily and hourly
- Monthly:
 - Electricity prices tend to be lower in winter
 - Highest electricity prices in late summer (September maximum)
 - Possible reason: high demand (ac) and lower production (water)
 - Does not correlate 1:1 with electricity demand (highest in winter and summer)
- Daily:
 - Working days higher than weekends (possible reason: industry)
- Hourly:
 - Cheapest at night, most expensive in the evening (5-9 pm)
 - Striking: 13-16 h the electricity price is lower (possibly siesta time in Spain)

Electricity price (€/MWh) across weekdays & months

across weekdays & hours

06.06.2024

-3

57.5

2. Factors influencing the electricity price

Results of correlationanalysis

Figure: Highest linear correlation to the target variable electricity price

- Positively correlated::
 - Day-Ahead-Preis (0.67)
 - Generation by natural gas (0.48)
 - Erzeugung durch Kohle (0.46)
- Negatively correlated:
 - Generation by hydro pump (-0.48)
 - Generation wind power (-0.33)
 - Wind speed Madrid (-0.33)
- Strong correlation of temperature data between the cities

2. Factors influencing the electricity price

Results of correlationanalysis

Analysis of the high electricity prices in September compared to the year as a whole revealed

- Higher influencing factor due to consumption (possibly air conditioning systems with high consumption)
- Higher influencing factor Hydropower reservoir (water shortage due to drought → Generation more expensive

Rank	September Merkmal	September Korrelation	Gesamtjahr Merkmal	Gesamtjahr Korrelation
1.	Electricity price	1.0	Electricity price	1.0
2.	Gaserzeugung	0.55	Day-Ahead-Price	0.67
3.	Generation by water reservoir	0.52	Generation by gas	0.49
4.	Electricity demand	0.51	Generation by coal	0.46
5.	Day-Ahead-Price	0.48	Temp_max_Sevilla	0.42

3. Time series forecast

- Comparison of different ML models with cross-validation and AutoML (criteria: MAPE)
- Choose EBM (ML-Model) Explainable Boosting Machine (Regressor)

[2] - https://interpret.ml/docs/ebm.html

Mean absolute percentage error

Time	Prei s	Preis Prognose	Abs(Preis – Prog.)	Abs / Preis
23:00:00	67	65	2	2 / 67 = 0,029
00:00:00	58	60	MAPE = (0,0) = 0,032 \rightarrow 3	029 2 0,5835) /2 3 ,2 % ^{0,035}

4. Evaluation & Explainability

Evaluation with TSO:

Interpret Model:

Global: http://127.0.0.1:7777/140231638982464/

Lokal: http://127.0.0.1:7777/140231638978864/

4. Global Explainability

• Feature Importance from the EBM model

Overall Importance: Mean Absolute Score

5. Conclusion and outlook

Conclusion:

- Influencing factors identified and explained (see chapter 2)
- Forecast created with very low error (3.5%) for the next 24 hours
- Recommendation for transmission system operators \rightarrow Own forecast is significantly more accurate

Next steps:

- Forecast various weather data and producers for more accurate forecasts and out-of-sample forecasts
- Detailed analysis of additional features in order to identify further trends and derive new features from them
- Data set sufficiently large for an approach with artificial neural networks
 - But training computationally and time consuming

6. Additional Slides

Additional slide: Explainable Boosting Machines

- Explainable Boosting Machine (EBM) is a tree-based, cyclic gradient boosting Generalized Additive Model with automatic interaction detection. EBMs are often as accurate as state-of-the-art blackbox models while remaining completely interpretable. Although EBMs are often slower to train than other modern algorithms, EBMs are extremely compact and fast at prediction time.
- Explainable Boosting Machine (interpret.ml)
- Exploring explainable boosting machines

Additional slide: Explain calculation MAPE

Time		Price_Predictio n	Abs(price -pred)	(M)APE
23:00:00	67	65	2	2 / 67 = 0,029
00:00:00	58	60	2	2 / 58 = 0,035
				(0,029 + 0,035) /2 = 0,032 → 3,2 %