第六次习题课

王沛林

Question 1. 设 G 为有限群,对 $g \in G$,令 C_g 为 g 所在的共轭类,若 $C_g = C_{g^{-1}}$,称 C_g 为一个实共轭类。证 G 只有一个实共轭类当且仅当 G 的阶为奇数。

Proof. (\Rightarrow). 设 G 的阶为偶数,则 2||G|,存在二阶元 $1 \neq g \in G$,使得 $g^2 = 1$,即 $g = g^{-1}$,有 $C_g = C_{g^{-1}}$,而 1 所在的共轭类也为实共轭类,与只有一个实共轭类矛盾,从而 G 的阶为奇数。

(\Leftarrow). 设 $C \neq \{1\}$ 为一个实共轭类。设有 $g, g^{-1} \in C$,存在 $h \in G$ 使得 $hgh^{-1} = g$ 。

$$h^{2}gh^{-2} = h(hgh^{-1})h^{-1}$$

$$= hg^{-1}h^{-1}$$

$$= (hgh^{-1})^{-1}$$

$$= (g^{-1})^{-1}$$

$$= g$$

若 h 的阶为偶数,有 $h^{2n}=1$,从而 2n||G|,矛盾。若 h 的阶为奇数,设 $h^n=1$,有 $h=h^{1-n}$,从而 $hg=g^{1-n}g=gh^{1-n}=gh$,从而 $g=g^{-1}$,g为二阶元,矛盾。从而 G 只有一个实共轭类。

Lemma 0.1. $|GL_n(\mathbb{Z}/p\mathbb{Z})| = |\operatorname{Aut}(\mathbb{Z}/p\mathbb{Z})^n| = \prod_{i=0}^{n-1} (p^n - p^i) = p^{\frac{n(n-1)}{2}} (p^n - 1)(p^{n-1} - 1) \cdots (p-1).$

Proof. 见 4.8 第三次习题课问题 3。

Question 2. 给出 $GL_n(\mathbb{Z}_p)$ 的一个 Sylow p-子群,并计算 $GL_n(\mathbb{Z}_p)$ 的 Sylow p-子群的个数。

Proof. 令 $G=GL_n(\mathbb{Z}_p)$ 。由引理 0.1, $|G|=p^{\frac{n(n-1)}{2}}(p^n-1)(p^{n-1}-1)\cdots(p-1)$,则 G 的 Sylow p-子群的阶为 $p^{\frac{n(n-1)}{2}}$ 。令 A 为 G 中所有对角元为 1 的上三角矩阵集合, $|A|=p^{\frac{n(n-1)}{2}}(p^n-1)(p^{n-1}-1)\cdots(p-1)$,从而可验证 A 为 G 的一个 Sylow p-子群。

Date: 2023 年 4 月 28 日.

王沛林

考虑 $N_G(A)$, 易验证它由 G 中所有上三角矩阵给出,从而 $|N_G(A)| =$ $p^{\frac{n(n-1)}{2}}(p^n-1)(p^{n-1}-1)\cdots(p-1)$ 。由 Sylow 定理,G 的所有 Sylow p-子群由 A 在 G 中共轭给出, 从而 $GL_n(\mathbb{Z}_p)$ 的 Sylow p-子群的个数为 $[G:N_G(A)]_{\circ}$

$$[G:N_G(A)] = |G|/|N_G(A)| = \frac{\prod_{i=1}^n (p^i - 1)}{(p-1)^n}$$

Question 3. 若有限群 G 的每一个 Sylow 子群都是正规子群,则 G 是它 Sylow 子群的直积。

Proof. 设群 G 的阶有素因子分解如下 $|G| = p_1^{n_1} \cdots p_s^{n_s}$, p_i 为互不相同的素 数。由 G 的每一 Sylow 子群都是正规子群,对每个 p_i , G 有唯一的 Sylow p_i -子群,记为 P_i ,其对应的阶为 $p_i^{n_i}$ 。

对任意 $P_i,P_j,i\neq j$,由 $p_i^{n_i}\nmid p_j^{n_j}$, $p_j^{n_j}\nmid p_i^{n_i}$, $P_i\cap P_j=e$ 。从而 $\forall x \in P_i, y \in P_j$,有 xy = yx。(见第四次作业习题 2(3)(ii))

(1) 验证 $(P_1P_2\cdots P_i)\cap P_{i+1}=e$ 。

且 $x^{p_1^{n_1} \cdots p_i^{n_i}} = e$ 。 由 $(p_{i+1}^{n_{i+1}}, p_1^{n_1} \cdots p_i^{n_i}) = 1$, x = e。 $(2) 由于 |P_1 P_2 \cdots P_s| = \frac{|P_1 \cdots P_{s-1}||P_s|}{|P_1 \cdots P_{s-1} \cap P_s|} = |P_1 \cdots P_{s-1}||P_s|$,同理

(2) 由于
$$|P_1P_2\cdots P_s| = \frac{|P_1\cdots P_{s-1}||P_s|}{|P_1\cdots P_{s-1}\cap P_s|} = |P_1\cdots P_{s-1}||P_s|$$
,同理

$$|P_1P_2\cdots P_s| = |P_1\cdots P_{s-2}||P_{s-1}||P_s| = \cdots = |P_1|\cdots |P_s| = p_1^{n_1}\cdots p_s^{n_s} = |G|.$$

故
$$G = P_1 P_2 \cdots P_s$$
,由 $(1), (2)$, G 为 P_1, \cdots, P_s 的直积。