Algoritmos Genéticos Trabajo Práctico Especial 4

Grupo 5

Sistemas de Inteligencia Artificial

12 de junio de 2012

Individiuo

Representación del individuo

Vector de \Re conformado por todos los pesos de la red, concatenando las filas de cada una de las matrices que representa las capas.

Fidelidad

- Completitud
- Coherencia
- Uniformidad
- Sencillez
- Localidad

Población

Se representa a la población como un ceil de vectores individuos.

Selección

Se implementaron los siguientes métodos

- Elitismo.
- Ruleta.
- Universal.
- Boltzmann.
- Elitismo + Ruleta
- Elitismo + Boltzmann

Para Boltzman

$$T(t) = \frac{T_{inicial}}{1 + \log t}$$

Fitness

Función de fitness

Se busca maximizar la siguiente función de fitness:

$$f(individuo) = \frac{1}{Err(individuo)} \tag{2}$$

donde la función Err(individuo) es el error cuadrático medio normalizado. Fitness aumenta a medida que el error disminuye.

Función de fitness global

$$f_{global}(P) = \sum_{i=1}^{n} f(P(i))$$
 (3)

Operadores genéticos

Crossover

- Clásico (un sólo punto)
- Múltiple
- Uniforme parametrizado
- Anular

Mutación

- Clásica
- No uniforme

Backpropagation

Es un operador específico para este problema. Se corren k pasos feed-forward, con una época de backpropagation, con k=441.

Condición de corte

Condiciones de corte implementadas

- Cantidad máxima de generaciones.
- Entorno al óptimo.
- Estructura.
- Contenido.

Pruebas

Parámetros

- Función de activación en las redes neuronales: tanh.
- 441 puntos para el cálculo del fitness y del backpropagation.

Notación

- N: Tamaño de la población.
- p_m: Probabilidad de mutación.
- p_c: Probabilidad de crossover.
- p_b: Probabilidad de backpropagation.
- $[m \ n \ o]$: red neuronal con una capa de entrada de m neuronas una capa oculta de n y una capa de salida de o.
- Err_{fmax}: error cuadrático medio normalizado del individuo con mayor fitness de la última generación.

Parámetros

- Arquitectura: [2 4 2 1]
- Selección y reemplazo: elitista
- Crossover: clásico
- Mutación: clásica
- $p_b = 0.1$
- Condición de corte: cantidad máxima de generaciones de 200

Tabla de resultados

N	p _m	p _c	G	f _{global}	Err _{fmax}
30	0.005	0.95	0.95	1394.94	7.17×10^{-4}
30	0.01	0.6	0.75	1296.88	7.71×10^{-4}
30	0.001	0.75	0.75	1435.42	6.97×10^{-4}
30	0.001	0.95	0.75	1558.97	6.41×10^{-4}
50	0.005	0.95	0.8	1914.69	5.22×10^{-4}
50	0.01	0.6	0.85	1111.08	9×10^{-4}
70	0.01	0.6	0.95	1728.77	5.78×10^{-4}
70	0.001	0.95	0.95	1769.31	5.65×10^{-4}
70	0.005	0.95	0.75	1398.98	7.15×10^{-4}
130	0.005	0.75	0.75	2559.19	3.91×10^{-4}
130	0.005	0.95	0.95	1949.53	5.13×10^{-4}

Parámetros

Se combinan distintos operadores de selección, mutación y crossover.

- Arquitectura: [2 4 2 1]
- Crossover: Clásico
- Mutación: Clásica
- N: 130
- p_m : 0.005
- p_c : 0.75
- p_b : 0.1
- G: 0.75

Tabla de resultados

Selección	Reemplazo	p _c	G	^f global	Err _f max
Ruleta	Ruleta	0.75	0.75	1490.09	6.57×10^{-4}
E + R	Elite	0.75	0.75	2493.55	4.01×10^{-4}
Elite	Ruleta	0.75	0.75	1641.21	6.09×10^{-4}
Ruleta	Elite	0.75	0.75	1688.37	5.92×10^{-4}
Elite	E + B	0.95	0.60	1005.01	1.986×10^{-1}
Universal	E + B	0.95	0.6	876,42	1.884×10^{-1}
Universal	Universal	0.95	0.65	1387,65	7.206×10^{-4}
Elite	Universal	0.95	0.75	137.864	7.2×10^{-3}
Elite	Universal	0.75	0.6	150.82	6.630×10^{-3}
E + B	Elite	0.95	0.6	1636.09	6.12×10^{-4}

Conclusiones

- Se lograron resultados comparables a los obtenidos en el Trabajo Práctico 2, donde se había logrado un error de 4.8×10^{-4} . Se puede destacar que los resultados se obtuvieron con arquitectura mucho más pequeña.
- Se obtuvieron buenos resultados en todas las corridas, a diferencia del entrenamiento con backpropagation que muchas veces se atascaba en un mínimo local.