CKME136 Capstone Presentation

TalkingData AdTracking Fraud Detection Challenge https://github.com/PHLHY/Capstone

Phi Huynh 500777278 Monday, April 8, 2019

Kaggle Competition

Kaggle competition started on March 8, 2019 and ended on May 5, 2019

Prize money:

1st Place - \$12,500

2nd Place - \$7,500

3rd Place - \$5,000

Competition found on this link: https://www.kaggle.com/c/talkingdata-adtracking-fraud-detection/overview

Research Question

TalkingData provided a dataset of around 200 million clicks spanning over 4 days for a Kaggle challenge with the aim of building an algorithm for determination of users that will download a mobile application after clicking on a relevant advertisement

As per the competition, evaluation is based on the area under the ROC curve with a submission file using the attributes, "click_id" and "is_attributed" from the testing set

Techniques for classification analysis will be employed on the R platform (RStudio) to tackle this challenge

TalkingData Datasets

Training and testing datasets are provided by TalkingData. The training set includes 184903890 data points with 8 attributes while the testing set includes 18790469 data points with 7 attributes

A direct copy of the description of the attributes was provided by Talking data and can be found from this link: https://www.kaggle.com/c/talkingdata-adtracking-fraud-detection/data

- ip: ip address of click.
- app: app id for marketing.
- device: device type id of user mobile phone (e.g., iphone 6 plus, iphone 7, huawei mate 7, etc.)
- os: os version id of user mobile phone
- channel: channel id of mobile ad publisher
- click_time: timestamp of click (UTC)
- attributed_time: if user download the app for after clicking an ad, this is the time of the app download
- is_attributed: the target that is to be predicted, indicating the app was downloaded

The test data is similar, with the following differences:

- click_id: reference for making predictions
- is_attributed: not included

Approach

Data Cleaning

No missing values

Data was reduced into 25000 observations

Target attribute, "is_attributed" converted to categorical data type

The attribute, "click_time" was split into data and time format

Redundancy in "attributed_time" and "is_attributed"

Exploratory Analysis

Exploratory Analysis (cont.)

Feature Selection

StepAIC - Forward direction

The follow attributes will be carried forward for the modelling process: "ip", "app", channel", "os", and with our target attribute, "is_attributed"

Algorithms and Balancing Methods

Reduced set (25000 observations) split into testing set (70%) and validation set (30%)

Repeated cross validation done (5 folds and 3 repeats)

Constant seed set for all models in regard to the folds and resampling process for comparison of models

6 models produced based on combination of classification algorithms and balancing methods

Algorithms/Balancing	None	SMOTE	Upsampling
RandomForest	-	-	-
XGBoost	-	-	-

Evaluations of the Models

Confusion matrix statistics - Accuracy, sensitivity, specificity, precision, recall, and F1 score

Area Under the Curve (AUC) based on the Receiver Operating Characteristic (ROC) curve

Statistical significance - constant folds and resampling processes, paired T-tests, bonferroni correction

Results - Confusion Matrix Statistics

Confusion Matrix Statistics for No Balancing			
	Randon	n Forests	XGBoost
Accuracy		0.9983	0.9985
Sensitivity		0	0
Specificity	(0.9997329	1
Precision		0	NA
Recall		0	0
F1	NA		NA

Reference			
Prediction	No	Target	
No	7487	11	
Target	2	0	
Reference			
Prediction	No	Target	
No	7489	11	
110			

Confusion Matrix Statistics for SMOTE Balancing			
	Random Forests	XGBoost	
Accuracy	0.9447	0.9131	
Sensitivity	0.909091	0.818182	
Specificity	0.944719	0.913206	
Precision	0.023585	0.013657	
Recall	0.909091	0.818182	
F1	0.045977	0.026866	

Reference		
Prediction	No	Target
No	7074	1
Target	415	10
	Refer	ence
	re i en	ence
Prediction		
2017 NO 1007 NO		
Prediction	No 6839	Target

Confusion Matrix Statistics for Oversampling			
	Random Forests	XGBoost	
Accuracy	0.9973	0.9953	
Sensitivity	0.1818182	0.4545455	
Specificity	0.9985312	0.9961277	
Precision	0.1538462	0.1470588	
Recall	0.1818182	0.4545455	
F1	0.1666667	0.222222	

Results - AUC ROC

AUC ROC Results			
	None	SMOTE	Oversampling
Random Forests	0.9429	0.97	0.9314
XGBoost	0.9687	0.9351	0.9726

Results - Statistical Significance on the ROC

Main comparison model - Upsampling XGBoost algorithm

Noted to be statistically different to two other models (Unbalanced RandomForest and Upsampling RandomForest)

```
p-value adjustment: bonferroni
Upper diagonal: estimates of the difference
Lower diagonal: p-value for H0: difference = 0
ROC
          RF_NB
                    XGB_NB
                              RF_SMOTE XBG_SMOTE RF_UP
                                                            XGB_UP
RF_NB
                    -0.094942 -0.036986 -0.070935 -0.045130 -0.080962
XGB_NB
          0.0010032
                               0.057956 0.024007 0.049812 0.013980
         0.1038082 0.0003148
                                        -0.033949 -0.008144 -0.043976
XBG_SMOTE 0.0190770 0.0348973 0.0351131
                                                   0.025805 -0.010027
RF_UP
          0.5750569 0.0040562 1.0000000 1.0000000
                                                            -0.035832
XGB UP
          0.0212108 1.0000000 0.0665815 1.0000000 0.0421181
```

Statistical Differen	ces Between Mode	els (P-Values) - ROC Metric	
Main Model for Co	mparison = Oversa	ampling XGBoost	
	Oversampling		
NB - RF	2.12E-02		
NB - XBG	1		
SMOTE - RF	6.66E-02		
SMOTE - XBG	1		
OVER - RF	0.0421181		

Conclusion

Main method of evaluation for this competition was the area under the ROC curve

Thus, upsampling XGBoost model will be the choice selection for this Kaggle challenge

- Based on the highest AUC ROC score and is significantly different compared to two other models
- In addition, with consideration of the statistics from the confusion matrix, this model has the second highest precision score and F1 score

Limitations and Future Considerations

Computational limitations

- Dataset was reduced significantly to only 25000 points for training and testing
- Some of the attributes were not converted to categorical data type

Further exploratory analysis and feature engineering

- "Attributed_time" for feature engineered
- Potentially all attributes could have been included in the models for benchmarking

Modelling

- Preprocessing was not done
- Could have considered different types of balancing (ie. ROSE, undersampling etc.)