反馈放大/阻容耦合放大电路

一. 实验目的

- 1. 加深理解反馈放大电路的工作原理及负反馈对放大电路性能的影响。
- 2. 学习反馈放大电路性能的测量与测试方法。

二. 电路原理简述

实验电路为阻容耦合的两级放大电路,如图 6-1 所示。在电路中引入由电阻 R_{F2} 和电位器 R_{F1} 组成的电压负反馈电路。 引入负反馈的放大电路,其性能可以得到改善。

图 6-1

其中: R_{F1} =1k Ω , R_{w} =150k Ω , C_2 = C_3 =0.47 μ F, C_7 = C_8 =0.01 μ F, C_1 =10 μ F/25V, C_{E1} = C_{E2} =47 μ F/25V, R_{E1} ' = R_{E2} ' =10 Ω , R_{F2} =51 Ω , R_{C1} ' = R_{E1} " =120 Ω , R_{C2} = R_{S} = R_{E2} " =470 Ω , R_{B22} =1k Ω , R_{B21} =1.5k Ω , R_{B1} =10k Ω , T_1 = T_2 =9013 (β =160-200), 外接电阻 R_1 =2k Ω

三. 实验设备

	名称	数量	型号
1.	直流稳压电源	1台	MC1095
2.	函数信号发生器	1台	学校自备
3.	示波器	1台	学校自备
4.	晶体管毫伏表	1 只	学校自备
5.	万用表	1 只	学校自备
6.	电阻	1 只	2k Ω *1
7.	反馈放大电路模块	1块	ST2002
8.	短接桥和连接导线	若干	P8-1 和 50148

四. 实验内容与步骤

1. 按照电路原理图选用 "ST2002 反馈放大电路"模块,熟悉元件安装位置后, 开始接线:一根连接直流稳压电源的+12V 和电路图中的+12V 端;一根连接稳压 电源负端和电路图中的 0V 端;线路经检查无误后,方可闭合电源开关。

2. 测定静态工作点

将电路 D 端接地, AB 不连线, R_w 调到中间合适位置。输入端接入信号源,令 V_i =20mV,f=1kH,调 R_w 使输出电压 V_o 为最大不失真(V_i 尽量最大,也可增大输入信号)正弦波后, 撤出信号源,输入端(I)接地,用万用表测量下表 6-1 中各直流电位(对地):

表 6-1

测量项目	V_{e1}	V_{c1}	V_{b2}	$V_{\rm e2}$	V_{c2}
测量数据	4.93V	6.73V	4.50V	3.809V	7.63V

3. 测量基本放大电路的性能

将D端接地,AB不连接(即无负反馈的情况),Rg调到中间位置。

1)测量基本放大电路的放大倍数 Av 。

令 V_i =20mv,f=1kHz 不接 R_L ,用毫伏表/示波器测量 V_o 记入表 6-2,并用公式 A_v = V_o / V_i 求取电压放大倍数 A_v 。

2) 测量基本放大电路的输出电阻 r_o 仍令 V_i =20m V_i , f=1k Hz_i , 接入负载电阻 R_i =2k Ω_i , 测输出电压 V_o '并记入表 6-2,

则
$$r_o = \frac{Vo - Vo'}{Vo'} R_L = \left(\frac{V_0}{V_0'} - 1\right) R_L$$

式中 V。是未接负载电阻 R. 时的输出电压;

V。'是接负载电阻 R. 后的输出电压。

设接负载 R_L 后的电压放大倍数为 A_V ',则 A_V '= V_0 '/ V_1

3) 观察负反馈对波形失真的改善

拆下负载电阻 R_L , 当 AB 不连线时,令 V_i 值增大,从示波器上看输出电压的波形失真;而当 AB 连线时,在同样大的 V_i 值下,波形则不失真。

4) 测量基本放大电路的输入电阻 r.

在电路的输入端接入 R_s =470 Ω , 把信号发生器的两端接在 V_s 两端,加大信号源电压,使放大电路的输入信号仍为 20mv(即用毫伏表测 I 端和接地端的电压仍为 20mv),测量此时信号源电压 V_s ,并记录表 6-2,则

$$r_i = \frac{V_i}{V_s - V_i} R_s$$

4. 测定反馈放大电路的性能

将AB连线,即有反馈放大电路。

1)测量反馈放大电路的放大倍数 A.,

与上同,令 V_i =20mv, f=1kHz,不接 R_L ,测量 V_{of} ,并记入表 6-2 中,并用公式 A_{of} = V_{of} / V_i 可求取电压放大倍数 A_{of} 。

2) 测量反馈放大电路输出电阻 r_{of}

仍令 V_i =20mv,f=1kHz 接入 R_L =2k Ω ,用毫伏表测量输出电压 V_{of} ' 记入表 6-2 中,并用公式 r_{of} =(V_{of}/V_{of} '-1) R_L ,来计算 r_{of} ,用 A_{vf} '= V_{of} '/ V_i 求取 A_{vf} '。

表 6-2

测量	测量项目			计算项目				
电路								
基本		Vo	Vo'	Vs	Av	Av'		
放大	Vi	(不接	VO (接 R _L)	(接 Rs)	(不接	(接	$r_{\rm i}$	$\mathbf{r}_{\scriptscriptstyle 0}$
电路		R_L)	(按八)	(1女 1(5)	R_L)	R_L)		
(无	20mV	2. 432V	2.024V	26.3mV	121.6	101.2	1492. 1 $Ω$	403. 2 Ω
反	f=1kHz							
馈)								
反馈	V_{i}	$V_{\rm of}$	V _{of} '	$V_{\rm sf}$	$A_{\rm vf}$	A _{vf} '	r_{if}	r_{\circ}
放大	20mV	0.656V	0.602V	23.6mV	16. 9	16.5	2611. 1 $Ω$	179. 4Ω
电路	f=1kHz							
(AB								
连								
接)								

(3) 测量反馈放大电路输入电阻 r_{if}

与上同, 在电路输入端接入 R_s =470 Ω ,把信号发生器的两端接在 V_s 两端, 加大信号源电压, 使放大电路的输入信号仍为 20mv, 测量此时信号源电压 V_{sr} , 并记入表 6-2. 则

$$r_{if} = \frac{V_i}{V_{Sf} - V_i} R_S$$

五. 分析与讨论

总结电压串联负反馈对放大电路性能的影响,包括输入电阻,输出电阻,放大倍数及波形失真的改善等。