BACTERIAL TRANSCRIPTION

EMBL 2010

Bioconductor Developer Meeting

Leonardo Collado Torres

Winter Genomics

OUTLINE

- ▶ Background information
 - Work team
 - Developer team
- Biology
- ► Goals
- Our work dynamic
- ► What we've done
- ► To do list

A DIVERSE WORK TEAM

- ► A benchwork lab (Morett's at iBT UNAM)
 - Developer of new transcription start sites mapping techniques and maintainer of the UUSMD (local seq. facility)
- A bioinformatics lab (Collado-Vides's at CCG UNAM)
 - Transcriptional bacterial regulation and maintainer of RegulonDB
- A new bioinformatics company (Winter Genomics)
 - New high throughput sequencing bioinformatics service company
- Undergraduate Program on Genomic Sciences (LCG) UNAM
 - ▶ All of the developers come from this program (graduated and current students)

DYNAMIC DEVELOPER TEAM

- April June 2010
 - ▶ (5th) Alejandro Reyes Quiroz
 - ▶ (5th) Victor Moreno Mayar
 - ▶ (5th) Gabriel Cuellar Partida
- ► Aug 2010 currently
 - ▶ (3rd) Carlos Vargas Chavez
 - ▶ (6th) Melvin Noe Gonzalez
 - ▶ (6th) Mayela Soto
 - ▶ (6th) Daniela Garcia Sorano

- Other programmers
 - Veronica Jimenez Jacinto
 - Leticia Vega Alvarado
 - Blanca Taboada

BIOLOGY

- ▶ Understand the transcriptional landscape at the genomic level
- ► Transcription Start Sites (TSSs)
 - ▶ Sites where the mRNA begins its transcription
 - ▶ Identify all active TSSs in a given condition
 - Unexpectedly high variability!
- ► Transcription Units (TUs)
 - One or multiple genes transcribed in the mRNA
 - Overlapping genes lead to complex cases!
- ► TSSs vs TUs correspondence

TSSs Overlaps in E. coli Y axis: Number of Unique Positions 1: Mono 200000 2: MonoTri 3: TriAda 4: TriExo 150000 100000 -50000 1+2+4 2+3+4 1+2+3+4 $^{\circ}$ က 1+3 1+2+3 Present only in

TSSs Overlaps in E. coli Y axis: Number of Reads

PROJECT GOALS

- ► Guarantee reproducibility
- ► Complete proposal on how to analyze this kind of data
 - Including working software!
- Facilitate future similar analyses from other bacteria
- Create easy (straight forward) to use software
- ► Learn more about BioC

WHAT WE'VE DONE SO FAR

- ► A pile of ideas ©
- ► Most of the code for the TSSs is ready
 - Granges
 - List (up to 3) of SimpleRleList
- Prototypes for the 3 TU methods
- Summary information
 - GRanges // data.frame
 - ▶ Plots mostly using lattice
- Trained undergrads in R / BioC ^_^

TO DO

- ▶ Define how to evaluate the TU methods
- ▶ Evaluate them
- DOCUMENTATION!
- Feedback on objects that would be less prone to being broken by users
- Check the SummarizedExperiment class
- Aim: getting done prior to the next release

LINKS

- ► Morett's lab http://www.ibt.unam.mx/server/PRG.base?tipo:doc,dir:PRG.grupo,par:G em,tit: Grupo_del__Dr._Juan_Enrique_Morett
- ► Collado-Vides' lab http://www.ccg.unam.mx/en/ComputationalGenomics
- ▶ Winter Genomics http://www.wintergenomics.com/
- ► UUSMD http://uusmd.unam.mx/
- ► LCG http://www.lcg.unam.mx/