

CVT control software testing

Lionel Belmon, Liu Fei – Global Crown Technology, Beijing Zeng Weihua - Jianglu Rongda, Changsha

1

Motivation

2

Vehicle plant modeling

3

TCU embedded software

4

Simulation validation

5

TCU Testing

Motivation

Motivation and objectives

Develop and test TCU control software

High quality vehicle model Realistic simulation

Interaction road - vehicle - hydraulics - TCU

Cover large number of test cases

Vehicle plant model

Vehicle model overview

GlobalCrown Technology (BeiJing) Co., Ltd.

Hydraulic module

Hydraulic Unit tests and validation

Adjustment of solenoid characteristics

GlobalCrown Technology Co., Ltd.

Variator belt model concept

Variator ratio change by controlling primary/secondary pressure

$$\frac{di}{dt} = K_i n_{pri} (F_{pri} - F_{pri}^*)$$
Actual force

steady-state force required

$$P_{\sec mx} = \frac{T_{pri}\beta\cos\alpha}{2\mu_{\sec}R_{pri}A_{\sec}}$$

Max torque limit depends on pressure!

Real-time simulation

Adjustment of hydraulic volumes and mechanical stiffness

Fixed-step solver – 0.5 ms

~80 ODE state variables

~200 inputs/outputs variables (CAN, sensors, actuators)

Code generation from SimulationX to FMU cosimulation

Execution in QTronic Silver

Simulated time: 98.38s; Actual time spent computing: 18.62s; Speedup factor: 5.28

TCU embedded software

TCU software generation process

Virtual TCU with Silver

Virtual TCU platform

Validation of vehicle simulation

Test cases for simulation validation

~20 test drive cases to test various model characteristics:

```
10% pedal acceleration – coasting 30% pedal acceleration – coasting
```

• • •

Lever position changes: N-R-N-D-N-R-P-R-N...

Heavy braking with ABS

Tip-in, Tip-off

. . .

Example of test drive validation

GlobalCrown Technology Co., Ltd.

TCU embedded software testing

Test requirements

Usual test drive cases NEDC, 100km/h acceleration...

Calibration parameters
Software functions activation/deactivation

Various environment conditions:

- slope, snow/water...

Fault monitoring and reaction

Fault insertion

Fault insertion – how it works

Example on solenoid valve fault

Fault insertion – how it works

Example on solenoid valve fault

Fault insertion – how it works

Example on solenoid valve fault

Use of QTronic TestWeaver

- Formal requirements monitoring
- Hand written test scripts
- Automatic test cases generation
- Automatic test report generation

ABS simulation example

Clutch locked + Strong braking → Wheel block → **strong engine deceleration**→ Transmission torque exceeded → **belt Slip!**

→ Belt slips are reported automatically in TestWeaver reports

Test case generation

QTronic TestWeaver automatically generates drive sequences Example of Belt Slip found by TestWeaver

Code coverage with CTC++

MC/DC coverage

```
fve StandStill F01 15_STANDSTILL_IMPL_p01_15_StandStill
              362
                       = jvr F01 15 STANDSTILL IMPL p01_15 StandStill >= _jvru_StandStill_buff
              363
                       && jvrs F01 15 STANDSTILL IMPL p01 15 StandStill >= jvru StandStill buff
              364
                       && vve F01 15 STANDSTILL IMPL p01 15 StandStill < vveu StandStill C
              365
                       && hap F01 15 STANDSTILL IMPL p01 15 StandStill < hapu StandStill C
              366
                       && npm F01 15 STANDSTILL IMPL p01 15 StandStill < npmu StandStill C && fbp StandStill
              367
123000 137137
123000
              367
                     1: T && T && T && T && T && T
          0 367
                     2: T && T && T && T && F
             367
                     3: T && T && T && T && F &&
        3772 367
                    4: T & & T & & T & & F & & & & &
       59469 367
                     5: Taa Taa Faa aa aa
         115
              367
                     6: T && F && && && &&
                     7: F && && && && &&
       73781
              367
```

Conclusion

Realistic simulation – complex scenarios

Vehicle model + TCU + calibration :

validated simulation, reproduce very well the actual execution of TCU in the real vehicle

Fault insertion and validation of TCU fault management

Automatic **generation** and **evaluation** of test cases TestWeaver + requirements modeling

Very efficient support for TCU development and testing!

謝謝! Thank you!

