Homework-4

Mustafa Tokat

January 19, 2021

1 Introduction

2 Analysis of Problems

2.1 Problem 1

Consider the prime p = 9929 and the primitive element 2.

2.1.1 Show the steps of the Diffie-Hellman between Alice and Bob for a=1983 and b=2014.

Table 1: Add caption

Alice	p, q) = (9929, 2)	Bob
a=1983		b=2014
	<u> </u> 	
$2^{**}1983 \pmod{9929} = 8580$		$2^{**}2014 \pmod{9929} = 5387$
5387**1983(mod 9929)	_	8580**2014(mod 9929)
	<u> </u>	
K = 7690		K = 7690

2.1.2 What is the value of the agreed secret key?

Result: 7690

2.2 Problem 2

Consider the RSA public and private key pairs: (e, n) = (17, 902801) and (d, n, p, q, ϕ) = (423953, 902801, 911, 991, 900900).

I have checked to all values (indeed, to practice).

2.2.1 Given $M_1 = 500000$, compute $C_1 = M_1^e \pmod{n}$.

Let's compute according to above formula: $C_1 = 500000^{17} \pmod{902801} = 487730$

2.2.2 Given $C_2 = 707631$, compute $M_2 = C_2^d \pmod{n}$

Similarly;

$$M_2 = 707631^{423953} \pmod{902801} = 500001$$

2.3 Problem 3

RSA with three primes would also work: n = pqr, $\phi(n) = (p-1)(q-1)(r-1)$, $gcd(e, \phi(n)) = 1$, and $d = e-1 \pmod{\phi(n)}$

- 2.3.1 Setup an example RSA public/private key pair using primes 29, 31, 37, and e=17.
- 2.3.2 Encrypt m = 10000 and then decrypt the ciphertext.
- 2.3.3 Explain why RSA with three primes algorithm is not preferred.