Total: 10 points for 5 questions, Due at 11:59PM April 5, 2024

What to submit: Put your answers in solution sections bellow and submit a PDF to Cat-Courses. Select all choices that apply for multiple-choices problems.

Student Name:

1. (1 point) Calculate the probability of the sentence i want to eat lunch, given the probabilities for a bi-gram language model in Fig. 1. Assume P(i|< s>)=0.19 with start-symbol < s> and P(</ s>|lunch)=0.40 with end-symbol </ s>.

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

Figure 1: Bigram probabilities for eight words learned from a corpus. Zero probabilities are in gray. The rows are previous words and the columns are next words.

Solution:

2. (2 points) Consider a single-headed self-attention mechanism that processes N input tokens of D dimensions to produce N output tokens of the same size. How many weights and biases are used to compute the queries, keys, and values that have D dimensions? What is the size of the attention matrix? If not using attention, how many weights and biases would there be in a fully connected network relating all DN inputs to all DN outputs?

Solution:

- 3. (3 points) Consider the softmax operation $\mathbf{y} = \operatorname{softmax}(\mathbf{z})$ on a vector $\mathbf{z} = [z_1, z_2, z_3]$.
 - (a) Given values: $z_1 = -3, z_2 = 1, z_3 = 2$, compute the 9 derivatives, $\frac{\partial y_i}{\partial z_j}$ for all $i, j \in 1, 2, 3$. What do you conclude? **Solution:**
 - (b) Does the output change due to a scaling of the input, i.e. $\operatorname{softmax}(c\mathbf{z})$ for all non-zero c?

Solution:

Assignment 1 Page 2 of 2

(c) Does the output change due to a shift of the input, i.e. $\operatorname{softmax}([z_1+c, z_2+c, z_3+c]])$ for all real c?

Solution:

- 4. (1 point) Which of the following are true about recurrent neural networks?
 - (a) Training recurrent neural networks can be impeded by the exploding gradient problem
 - (b) Unlike standard feedforward networks, recurrent neural networks can learn from sequences of variable length.
 - (c) Gradient clipping might help if your RNN is troubled by vanishing gradients.
 - (d) None of the above

Solution:

- 5. (3 points) This question is about fine-tuning a large language model.
 - (a) What is the advantage of LoRA(low-rank adaptation) over adaptor module for parameter-efficient fine-tuning of large language model? Give your answer in a few sentences.

Solution:

(b) Use the provided notebook tutorial for fine-tuning Gemma models using LoRA. (https://colab.research.google.com/drive/1Ntlh1cXjcQ_RKSYPpVIhEVaufkaDNxfE? usp=sharing) Gemma is a family of lightweight open models from Google, and we will fine-tune Gemma using Databricks Dolly 15k dataset.

Show the responses to the following instruction **before** and **after** fine-tuning.

What should I do on a trip to Europe?

Solution: