

International Institute of Information Technology Bangalore

PROJECT PROPOSAL
DS/NC/ESD 863 Machine Perception

Vehicle Driving Assistant

Akanksha Dwivedi - MT2016006 Anoop Toffy - MT2016016 Athul Suresh - MT2016030 Tarini Chandrashekhar - MT2016144

Group 7

Guide : Prof. Dinesh Babu Jayagopi

March 9, 2017

Contents

1	Brief Description 1.1 Problem Formulation	2
2	Dataset	3
3	Proposed Plan of Execution	4
	3.1 Phase 1	4
	3.2 Phase 2	4
	3.3 Phase 3	
	3.4 Phase 4	4
4	Main Challenges	4
5	Learning Objectives	5

1 Brief Description

This project aims to provide a comprehensive set of assistance features to aid the driver (or autonomous vehicle) to drive safely. This includes a number of indicator and cues regarding the environment.

1.1 Problem Formulation

- Application/System (Driving Assistance)
 - MP Module (Obstacle detection)
 - ML task (Multiclass Classification)
 - Features, Models, Optimization algorithm (To be decided based on empirical observations)

2 Dataset

 $360\mathrm{p}$ video of roads in and around Electronic City Phase was recorded by us. We used a Cannon 1300D to record the video.

Figure 1: Dataset thumbnails

3 Proposed Plan of Execution

3.1 Phase 1

• Data collection and video pre-processing.

Video of roads in Electronic City was collected manually with a DSLR camera held by a pillion rider on a moving motorcycle. About 20 minutes worth of video was collected for Phase 1 of the project. The video was pre-processed to reduce excessive jitter.

3.2 Phase 2

• Pothole detection in video frames.

3.3 Phase 3

- Improving accuracy of the current model.
- Comparing the result with alternate models.

3.4 Phase 4

- Detection of other obstacles (pedestrians, oncoming traffic etc).
- Provide driving cues based on detected entities.

4 Main Challenges

- Procuring large and varied data to work on.
- Presence of noise, shadows and excessive jitter in data.
- Diversity and non-uniformity among roads and potholes which makes it difficult to generalise.
- Detecting obstacles with an obstructed field of view.
- Consistency in object detection with increase in speeds.

5 Learning Objectives

- Finding a real world problem and formulating it as a machine perception problem.
- Get acquainted with different aspects of image analysis for feature extraction.
- Be able to extract appropriate features and apply machine learning algorithms to solve the problem.
- Be able to read current research papers and understand the issues discussed.
- Obtaining and cleaning data.