```
Contents
                                     #define StarBurstStream ios base::
                                        sync_with_stdio(false); cin.tie(0);
1 Basic
                                  1
                                        cout.tie(0);
  1
                                     #define iter(a) a.begin(), a.end()
  #define riter(a) a.rbegin(), a.rend()
                                     #define lsort(a) sort(iter(a))
  2
  #define gsort(a) sort(riter(a))
  #define pb(a) push_back(a)
  #define eb(a) emplace_back(a)
                                  2
                                     #define pf(a) push_front(a)
  1.7
    #define ef(a) emplace_front(a)
2 Data Structure
                                  3
                                     #define pob pop_back()
  2.1 Binary Indexed Tree \dots \dots \dots
                                  3
                                     #define pof pop_front()
  2.2 Disjoint Set Union-Find . . . . . . . . .
                                  3
                                     #define mp(a, b) make_pair(a, b)
  2.3 Segment Tree . . . . . . . . . . . . . . . . .
                                  3
                                     #define F first
  2.4 Dynamic Segment Tree . . . . . . . . . . . .
                                  4
                                     #define S second
                                     #define mt make_tuple
  #define gt(t, i) get<i>(t)
3 Graph
                                  6
                                     #define iceil(a, b) (((a) + (b) - 1) / (
  6
  3.2 Floyd-Warshall . . . . . . . . . . . . . . .
                                  6
                                     #define tomax(a, b) ((a) = max((a), (b))
  6
  7
                                     #define tomin(a, b) ((a) = min((a), (b))
  7
  3.6 Block-cut Tree . . . . . . . . . . . . . . . .
                                     #define topos(a) ((a) = (((a) \% MOD +
                                  7
                                       MOD) % MOD))
                                  8
4 String
                                     #define uni(a) a.resize(unique(iter(a))
  8
                                        - a.begin())
  8
                                     #define printv(a, b) {bool pvaspace=
                                       false; \
  4.3 Longest Palindromic Substring . . . . . .
                                  9
                                     for(auto pva : a){ \
  4.4 Suffix Array . . . . . . . . . . . . . . . . .
                                      if(pvaspace) b << " "; pvaspace=true;\</pre>
                                  9
5 Math and Geometry
                                      b << pva; \
  5.1 Vector Operations . . . . . . . . . . . . .
                                  9
  5.2 Convex Hull . . . . . . . . . . . . . . . . .
                                     b << "\n";}
                                  10
  5.3 Prime Sieve . . . . . . . . . . . . . . . . . .
                                  10
  5.4 XOR Basis . . . . . . . . . . . . . . . . . .
                                  10
                                     using namespace std;
                                     using namespace __gnu_pbds;
6 DP Trick
                                  11
  6.1 Dynamic Convex Hull . . . . . . . . . .
                                  11
                                     typedef long long 11;
                                     typedef unsigned long long ull;
7 Numbers and Math Formulae
                                  11
                                     typedef long double ld;
  11
     11
                                     using pii = pair<int, int>;
  11
                                     using pll = pair<ll, ll>;
  7.4 Prime Numbers . . . . . . . . . . . . . . .
                                  12
                                     using pdd = pair<ld, ld>;
  12
                                     using tiii = tuple<int, int, int>;
  7.6 Combinatorics . . . . . . . . . . . . . . . .
                                     const ll MOD = 1000000007;
                                     const 11 MAX = 2147483647;
1
   Basic
                                     template < typename A, typename B>
1.1 Default Code
                                     ostream& operator << (ostream& o, pair < A,
                                       B> p){
#include <bits/stdc++.h>
                                      return o << '(' << p.F << ',' << p.S
#include <bits/extc++.h>
```

```
int main(){
   StarBurstStream
  return 0;
}
```

1.2 .vimrc

```
:set nu
:set ai
:set cursorline
:set tabstop=4
:set shiftwidth=4
:set mouse=a
:set expandtab
hi CursorLine cterm=none ctermbg=
    DarkMagenta
```

1.3 gvimrc

Put _gvimrc in HOME.

```
:set nu
:set ai
:set tabstop=4
:set shiftwidth=4
:set mouse=a
:set expandtab
:set cursorline
:set guifont=Consolas:h11
:set backspace=indent,eol,start
:syntax enable
```

1.4 **PBDS**

```
tree<int, int, less<>, rb_tree_tag,
    tree_order_statistics_node_update> tr
;
tr.order_of_key(123);
tr.find_by_order(123);
```

1.5 Random

```
mt19937 rnd(chrono::steady_clock::now().
    time_since_epoch().count());
uniform_int_distribution<int> dis(1,
    100);
cout << dis(rnd) << "\n";</pre>
```

1.6 Clock

```
int st = clock();
int ed = clock();
if(ed - st >= CLOCKS_PER_SEC * 1);
```

1.7 Fast IO

```
// From wanqyenjen/JAW
inline int my_getchar() {
  const int N = 1 << 20;
  static char buf[N];
  static char *p = buf , *end = buf;
  if(p == end) {
    if((end = buf + fread(buf , 1 , N ,
   stdin)) == buf) return EOF;
    p = buf;
  return *p++;
inline int readint(int &x) {
  static char c , neg;
  while((c = my_getchar()) < '-') {</pre>
    if(c == EOF) return 0;
 neg = (c == '-') ? -1 : 1;
 x = (neg == 1) ? c - '0' : 0;
  while ((c = my\_getchar()) >= '0') x = (
   x \ll 3 + (x \ll 1) + (c - '0');
  x *= neg;
  return 1;
const int kBufSize = 524288;
char inbuf[kBufSize];
char buf_[kBufSize]; size_t size_;
inline void Flush_() { write(1, buf_,
   size_); size_ = 0; }
inline void CheckFlush_(size_t sz) { if
   (sz + size_ > kBufSize) Flush_(); }
inline void PutInt(int a) {
  static char tmp[22] = "
   01234567890123456789\n";
  CheckFlush_(10);
  if(a < 0){
    *(buf_ + size_) = '-';
    a = ~a + 1;
    size_++;
  }
  int tail = 20;
  if (!a) {
    tmp[--tail] = '0';
  } else {
    for (; a; a /= 10) tmp[--tail] = (a
   % 10) ^ '0';
  memcpy(buf_ + size_, tmp + tail, 21 -
   tail);
  size_ += 21 - tail;
```

```
int main() {
  Flush_();
  return 0;
}
```

2 Data Structure

2.1 Binary Indexed Tree

```
template < typename T>
struct BIT{
private:
  vector<T> bit;
  int lowbit(int x){
    return x & (-x);
  }
public:
  explicit BIT(int sz){
    bit.resize(sz + 1);
  void modify(int x, T v){
    for(; x < bit.size(); x += lowbit(x)</pre>
   ) bit[x] += v;
  T get(int x){
    T ans = T();
    for(; x; x -= lowbit(x)) ans += bit[
    return ans;
  }
};
```

2.2 Disjoint Set Union-Find

```
vector<int> dsu, rk;

void initDSU(int n){
   dsu.resize(n);
   rk.resize(n);
   for(int i = 0; i < n; i++) dsu[i] = i,
        rk[i] = 1;
}

int findDSU(int x){
   if(dsu[x] == x) return x;
   dsu[x] = findDSU(dsu[x]);
   return dsu[x];
}

void unionDSU(int a, int b){
   int pa = findDSU(a), pb = findDSU(b);
   if(rk[pa] > rk[pb]) swap(pa, pb);
```

```
if(rk[pa] == rk[pb]) rk[pb]++;
  dsu[pa] = pb;
}
```

2.3 Segment Tree

```
template < typename T>
struct Node{
  T v = 0, tag = 0;
  int sz = 1, 1 = -1, r = -1;
  T rv(){
    return v + tag * sz;
  void addTag(T t){
    tag += t;
  }
};
template < typename T>
T pullValue(T b, T c){
  return b + c;
template < typename T>
void pull(Node<T> &a, Node<T> &l, Node<T</pre>
   > &r){
  a.v = pullValue(1.rv(), r.rv());
  a.sz = 1.sz + r.sz;
template < typename T>
void push(Node<T> &a, Node<T> &l, Node<T</pre>
   > &r){
  1.addTag(a.tag);
  r.addTag(a.tag);
  a.v = a.rv();
  a.tag = 0;
template < typename T>
struct SegmentTree{
  vector < Node < T >> st;
  int cnt = 0;
  explicit SegmentTree(int sz){
    st.resize(4 * sz);
  int build(int 1, int r, vector<T>& o){
    int id = cnt++;
    if(1 == r){
      st[id].v = o[1];
      return id;
    }
    int m = (1 + r) / 2;
    st[id].1 = build(1, m, o);
    st[id].r = build(m + 1, r, o);
```

```
pull(st[id], st[st[id].1], st[st[id
   ].r]);
    return id;
  }
  void modify(int 1, int r, int v, int L
   , int R, int id){
    if(1 == L \&\& r == R){
      st[id].addTag(v);
      return;
    }
    int M = (L + R) / 2;
    if(r <= M) modify(1, r, v, L, M, st[
   id].1);
    else if(l > M) modify(l, r, v, M +
   1, R, st[id].r);
    else{
      modify(1, M, v, L, M, st[id].1);
      modify(M + 1, r, v, M + 1, R, st[
   id].r);
    }
    pull(st[id], st[st[id].1], st[st[id
   ].r]);
  T query(int 1, int r, int L, int R,
   int id){
    if(1 == L \&\& r == R) return st[id].
    push(st[id], st[st[id].1], st[st[id
   ].r]);
    int M = (L + R) / 2;
    if(r <= M) return query(1, r, L, M,</pre>
   st[id].1);
    else if(l > M) return query(l, r, M
   + 1, R, st[id].r);
    else{
      return pullValue(query(1, M, L, M,
    st[id].1), query(M + 1, r, M + 1, R,
    st[id].r));
    }
  }
};
```

2.4 Dynamic Segment Tree

```
template < typename T >
struct Node {
   T v = T(), tag = T();
   int l = -1, r = -1;
   int lr = -1, rr = -1;
   T rv() {
     return v + tag * (rr - lr + 1);
   }
   void addTag(T t) {
     tag += t;
```

```
};
template < typename T>
T pullValue(T b, T c){
  return b + c;
template < typename T>
struct SegmentTree{
  vector < Node < T >> st;
  int cnt = 0;
  explicit SegmentTree(int sz){
    st.resize(sz);
  int node(int 1, int r){
    int id = cnt++;
    st[id].lr = 1;
    st[id].rr = r;
    return id;
  }
  void pull(int id){
    st[id].v = pullValue(st[id].1 == -1
   ? T() : st[st[id].1].rv(), st[id].r
   == -1 ? T() : st[st[id].r].rv());
  void push(int id, int L, int R){
    int M = (L + R) / 2;
    if(st[id].l == -1) st[id].l = node(L
   , M);
    st[st[id].1].addTag(st[id].tag);
    if(st[id].r == -1) st[id].r = node(M
    + 1, R);
    st[st[id].r].addTag(st[id].tag);
    st[id].v = st[id].rv();
    st[id].tag = T();
  int modify(int 1, int r, T v, int L,
   int R, int id){
    if(id == -1) id = node(L, R);
    if(1 == L \&\& r == R){
      st[id].addTag(v);
      return id;
    }
    int M = (L + R) / 2;
    if(r \le M) st[id].l = modify(l, r, v)
   , L, M, st[id].1);
    else if(l > M) st[id].r = modify(l,
   r, v, M + 1, R, st[id].r);
    else{
      st[id].1 = modify(1, M, v, L, M,
```

```
st[id].1);
      st[id].r = modify(M + 1, r, v, M + 1)
    1, R, st[id].r);
    pull(id);
    return id;
  T query(int 1, int r, int L, int R,
   int id){
    if(id == -1) return T();
    if(1 == L \&\& r == R) return st[id].
   rv();
    push(id, L, R);
    int M = (L + R) / 2;
    if(r <= M) return query(1, r, L, M,</pre>
   st[id].1);
    else if(1 > M) return query(1, r, M
   + 1, R, st[id].r);
    else{
      return pullValue(query(1, M, L, M,
    st[id].1), query(M + 1, r, M + 1, R,
    st[id].r));
    }
  }
};
```

2.5 Treap

```
mt19937 rnd(chrono::steady_clock::now().
   time_since_epoch().count());
template < typename T>
struct Node{
  int l = -1, r = -1, pri = rnd(), sz =
 T v, sum, tag;
 T rsum(){
    return sum + tag * sz;
  }
};
template < typename T>
struct Treap{
  vector<Node<T>> tr;
  int ts = 0;
  explicit Treap(int sz){
    tr.resize(sz);
  int node(T v){
    int r = ts++;
    tr[r].v = v;
    tr[r].sum = 0;
    tr[r].tag = 0;
    return r;
```

```
void pull(int r){
  if(r != -1){
    tr[r].sz = 1;
    tr[r].sum = tr[r].v;
    if(tr[r].l != -1){
      tr[r].sum += tr[tr[r].1].rsum();
      tr[r].sz += tr[tr[r].1].sz;
    }
    if(tr[r].r != -1){
      tr[r].sum += tr[tr[r].r].rsum();
      tr[r].sz += tr[tr[r].r].sz;
 }
}
void push(int r){
  if(r == -1) return;
  if(tr[r].l != -1){
    tr[tr[r].1].tag += tr[r].tag;
  if(tr[r].r != -1){
    tr[tr[r].r].tag += tr[r].tag;
  tr[r].sum = tr[r].rsum();
  tr[r].v += tr[r].tag;
 tr[r].tag = 0;
void merge(int a, int b, int& r){
  push(a);
  push(b);
  if (a == -1 \&\& b == -1) r = -1;
  else if (a == -1) r = b;
  else if(b == -1) r = a;
  else{
    if(tr[a].pri > tr[b].pri){
      merge(tr[a].r, b, tr[a].r);
    }
    else{
      r = b;
      merge(a, tr[b].1, tr[b].1);
 }
 pull(r);
void split1(int a, T k, int& r1, int&
 r2){
 if(a == -1){
    r1 = r2 = -1;
    return;
  }
  push(a);
```

```
if(tr[a].v < k){
      r1 = a;
      split1(tr[a].r, k, tr[a].r, r2);
    else{
      r2 = a;
      split1(tr[a].1, k, r1, tr[a].1);
    pull(a);
  }
  void split2(int a, int k, int& r1, int
   & r2){
    if(a == -1){
      r1 = r2 = -1;
      return;
    }
    push(a);
    if(k == 0){
      r1 = -1;
      r2 = a;
      return;
    }
    if(tr[a].l == -1 || tr[tr[a].l].sz <
      r1 = a;
      if(tr[a].1 != -1) split2(tr[a].r,
   k - tr[tr[a].1].sz - 1, tr[a].r, r2);
      else split2(tr[a].r, k - 1, tr[a].
   r, r2);
    else{
      r2 = a;
      split2(tr[a].1, k, r1, tr[a].1);
    pull(a);
  }
  void printtr(int now){
    if(now == -1) return;
    printtr(tr[now].1);
    cerr << now << "," << tr[now].v + tr
   [now].tag << "," << tr[now].rsum() <<</pre>
    "," << tr[now].tag << " ";
    printtr(tr[now].r);
  }
  void print(int r){
    printtr(r);
    cerr << "\n";
  }
};
```

3 Graph

3.1 Dijkstra

```
//The first element in pair should be
   edge weight, and the second should be
    vertex
vector<vector<pii>> g;
int n;
int dijkstra(int start, int end){
  priority_queue<pii, vector<pii>,
   greater<pii>> q;
  for(pii p : g[start]){
    q.push(p);
  }
  q.push(mp(0, start));
  vector<int> dis(n, -1);
  dis[start] = 0;
  vector<int> visit(n);
  while(q.size()){
    int v = q.top().S;
    int d = q.top().F;
    if(v == end) break;
    q.pop();
    if(visit[v]) continue;
    visit[v] = true;
    for(pii p : g[v]){
      if(visit[p.S]) continue;
      if(dis[p.S] == -1 \mid \mid d + p.F < dis
   [p.S]){
        dis[p.S] = d + p.F;
        q.push(mp(dis[p.S], p.S));
    }
  }
  return dis[end];
```

3.2 Floyd-Warshall

```
vector<vector<int>> g;
int n;

void floydwarshall(){
  for(int k = 0; k < n; k++)
    for(int i = 0; i < n; i++)
      for(int j = 0; j < n; j++)
        if(g[i][k] != -MAX && g[k][j] !=
      -MAX && (g[i][j] == -MAX || g[i][k]
      + g[k][j] < g[i][j]))
      g[i][j] = g[i][k] + g[k][j];
}</pre>
```

3.3 Kruskal

```
int kruskal(){
```

```
int ans = 0;
lsort(e);
initDSU();
for(auto& i : e){
   int a = i.S.F, b = i.S.S;
   if(findDSU(a) == findDSU(b))
   continue;
   ans += i.F;
   unionDSU(a, b);
}
return ans;
}
```

3.4 Tarjan SCC

```
vector<vector<int>> g;
vector<int> st;
vector<bool> inst;
vector<int> scc;
vector<int> ts, low;
int tmp = 0;
int sccid = 0;
void initSCC(int n){
 tmp = 0;
 sccid = 0;
 st.clear();
 g.clear();
 g.resize(2 * n + 1);
 inst.clear();
 inst.resize(2 * n + 1);
 scc.clear();
 scc.resize(2 * n + 1);
 ts.clear();
 ts.resize(2 * n + 1, -1);
 low.clear();
 low.resize(2 * n + 1);
}
void dfs(int now){
 st.eb(now);
  inst[now] = true;
 ts[now] = ++tmp;
 low[now] = ts[now];
 for(int i : g[now]){
    if(ts[i] == -1){
      dfs(i);
      low[now] = min(low[now], low[i]);
   else if(inst[i]) low[now] = min(low[
   now], ts[i]);
  if(low[now] == ts[now]){
    sccid++;
```

```
int t;
do{
    t = st.back();
    st.pob;
    inst[t] = false;
    scc[t] = sccid;
}
while(t != now);
}
```

3.5 SPFA

```
const 11 INFINITE = 2147483647;
int n;
vector<vector<pii>> g;
int spfa(int start, int end){
  vector<int> dis(n, INFINITE);
  int start;
  cin >> start;
  dis[start] = 0;
  queue < int > q;
  q.push(start);
  vector < bool > inq(n);
  inq[start] = true;
  vector<int> cnt(n);
  while(!q.empty()){
    int v = q.front();
    q.pop();
    inq[v] = false;
    for(pii p : g[v]){
      if(!(dis[p.F] == INFINITE || dis[v
   ] + p.S < dis[p.F])) continue;
      cnt[p.F]++;
      if(cnt[p.F] >= n) return -INFINITE
   ; //negetive cycle
      dis[p.F] = dis[v] + p.S;
      if(!inq[p.F]){
        inq[p.F] = true;
        q.push(p.F);
      }
    }
  return dis[end];
3.6 Block-cut Tree
```

#include <bits/stdc++.h>

```
#define eb(a) emplace_back(a)
using namespace std;
// tg is the origin graph, g is the
   result
vector<vector<int>> tg, g;
int bcc; // = n+1, initially
vector<int> low, in;
int tts = 1;
stack<int> st;
vector<vector<int>> c;
vector<bool> iscut;
void dfsbcc(int now, int p){ //
   calculate low
 low[now] = in[now] = tts++;
 for(int i : tg[now]){
    if(i == p) continue;
    if(in[i]) low[now] = min(low[now],
   in[i]);
    else{
      dfsbcc(i, now);
      low[now] = min(low[now], low[i]);
      c[now].eb(i);
    }
    if(low[i] >= in[now] && now != 1)
   iscut[now] = true;
 if(now == 1 \&\& c[now].size() > 1)
   iscut[now] = true;
}
void dfsbcc2(int now, int p){ // build
   block-cut tree
  st.push(now);
 for(int i : c[now]){
    dfsbcc2(i, now);
 if(now == 1){
    if(st.size() > 1){
      while(!st.empty()){
        g[st.top()].eb(bcc);
        g[bcc].eb(st.top());
        st.pop();
      }
      bcc++;
    }
 }
  else if((p != 1 && low[now] >= in[p])
   | | (p == 1 \&\& c[p].size() > 1)){
    while(!st.empty()){
      int t = st.top();
      g[st.top()].eb(bcc);
      g[bcc].eb(st.top());
      st.pop();
```

```
if(t == now) break;
}
g[bcc].eb(p);
g[p].eb(bcc);
bcc++;
}
```

4 String

4.1 KMP

```
vector<int> f;
void build(string& t){
  f.clear();
  f.resize(t.size());
  int p = -1;
  f[0] = -1;
  for(int i = 1; i < t.size(); i++){</pre>
    while (p != -1 \&\& t[p + 1] != t[i]) p
    = f[p];
    if(t[p + 1] == t[i]) f[i] = p + 1;
    else f[i] = -1;
    p = f[i];
  }
}
int kmp(string& s, string& t){
  int ans = 0;
  int p = -1;
  for(int i = 0; i < s.size(); i++){
    while (p != -1 \&\& t[p + 1] != s[i]) p
    = f[p];
    if(t[p + 1] == s[i]) p++;
    if(p + 1 == t.size()){
      ans++;
      p = f[p];
    }
  }
  return ans;
```

4.2 Z Value

```
}
```

4.3 Longest Palindromic Substring

```
#define T(x) ((x) % 2 ? s[(x) / 2] : '.'
string s;
int L;
int ex(int 1, int r){
 int i = 0;
 while (1 - i \ge 0 \&\& r + i < L \&\& T(1 - i)
    i) == T(r + i)) i++;
 return i;
int lps(string ss){
 s = ss;
 L = 2 * s.size() + 1;
 int mx = 0;
  int center = 0;
 vector<int> r(L);
 int ans = 1;
 r[0] = 1;
 for(int i = 1; i < L; i++){
    int ii = center - (i - center);
    int len = mx - i + 1;
    if(i > mx){
      r[i] = ex(i, i);
      center = i;
      mx = i + r[i] - 1;
    else if(r[ii] == len){
      r[i] = len + ex(i - len, i + len);
      center = i;
      mx = i + r[i] - 1;
    else r[i] = min(r[ii], len);
    ans = max(ans, r[i]);
 }
  return ans - 1;
```

4.4 Suffix Array

```
#include <bits/stdc++.h>
#define eb(a) emplace_back(a)
using namespace std;
vector<int> sa(string s){
   s += '$';
   int n = s.size();
```

```
int t = __lg(n) + 1;
vector<vector<int>> rk(t + 1, vector<</pre>
 int>(n)), b;
vector<vector<int>> c1(27);
for(int i = 0; i < n; i++) c1[s[i] ==
 '$' ? 0 : s[i] - 'a' + 1].eb(i);;
for(int i = 0; i < 27; i++){
  if(!c1[i].empty()) b.eb(c1[i]);
}
b.resize(n);
for(int i = 0; i < n; i++){
  for(int k : b[i]) rk[0][k] = i;
for(int i = 1; i <= t; i++){
 vector<vector<int>> tb(n);
  for(int j = 0; j < n; j++){
    for(int k : b[j]){
      int tmp = ((k - (1 << (i - 1)))
 % n + n) % n;
      int now = rk[i - 1][tmp];
      tb[now].eb(tmp);
   }
 }
 b = tb;
  int cnt = -1;
  for(int j = 0; j < n; j++){
    int lst = -1;
    for(int k : b[j]){
      int now = rk[i - 1][(k + (1 << (
 i - 1))) % n];
      if(now != lst) cnt++;
      rk[i][k] = cnt;
      lst = now;
    }
 }
}
return rk[t];
```

5 Math and Geometry

5.1 Vector Operations

```
template < typename T>
pair < T, T > operator + (pair < T, T > a, pair <
    T, T > b) {
    return mp(a.F + b.F, a.S + b.S);
}

template < typename T >
pair < T, T > operator - (pair < T, T > a, pair <
    T, T > b) {
    return mp(a.F - b.F, a.S - b.S);
}
```

```
}
                                                     hull.pop_back();
                                                   }
template < typename T>
                                                   hull.pb(pnt);
pair<T, T> operator*(pair<T, T> a, T b){
                                                 }
  return mp(a.F * b, a.S * b);
                                                 hull.pop_back();
                                                 reverse(iter(pnts));
template < typename T>
pair<T, T> operator/(pair<T, T> a, T b){
                                               return hull;
  return mp(a.F / b, a.S / b);
}
                                             5.3 Prime Sieve
template < typename T>
T dot(pair<T, T> a, pair<T, T> b){
                                             vector<int> prime;
  return a.F * b.F + a.S * b.S;
                                             vector<int> p;
}
                                             void sieve(int n){
                                               prime.resize(n + 1, 1);
template < typename T>
                                               for(int i = 2; i <= n; i++){
T cross(pair<T, T> a, pair<T, T> b){
                                                 if(prime[i] == 1){
  return a.F * b.S - a.S * b.F;
                                                   p.push_back(i);
}
                                                   prime[i] = i;
template < typename T>
                                                 for(int j : p){
T abs2(pair<T, T> a){
                                                   if((11)i * j > n || j > prime[i])
  return a.F * a.F + a.S * a.S;
}
                                                   prime[i * j] = j;
    Convex Hull
                                                 }
                                               }
                                             }
template < typename T>
pair<T, T> operator-(pair<T, T> a, pair<
   T, T > b
                                                 XOR Basis
  return mp(a.F - b.F, a.S - b.S);
}
                                             const int mxdigit = 50;
template < typename T>
                                             vector<ll> b(mxdigit + 1);
T cross(pair<T, T> a, pair<T, T> b){
  return a.F * b.S - a.S * b.F;
                                             void add(ll t){
}
                                               for(int i = mxdigit; i >= 0; i--){
                                                 if(!(1LL << i & t)) continue;</pre>
template < typename T>
                                                 if(b[i] != 0){
vector<pair<T, T>> getConvexHull(vector<</pre>
                                                   t ^= b[i];
   pair<T, T>>& pnts){
                                                   continue;
  int n = pnts.size();
                                                 for(int j = 0; j < i; j++){
  lsort(pnts);
                                                   if(1LL << j & t) t ^= b[j];</pre>
  vector<pair<T, T>> hull;
                                                 for(int j = i + 1; j <= mxdigit; j</pre>
  hull.reserve(n);
                                                   if(1LL << i & b[j]) b[j] ^= t;</pre>
  for(int i = 0; i < 2; i++){
    int t = hull.size();
                                                 b[i] = t;
    for(pair<T, T> pnt : pnts){
```

break;

while(hull.size() - t >= 2 &&
cross(hull.back() - hull[hull.size()
- 2], pnt - hull[hull.size() - 2]) <=</pre>

0){

6 DP Trick

6.1 Dynamic Convex Hull

```
const ll INF = 1LL << 60;</pre>
template < typename T>
struct Line{
  mutable T a, b, r = 0;
  Line(T a, T b) : a(a), b(b){}
  bool operator < (Line < T > 1) const{
    return a < 1.a;
  bool operator<(T v)const{</pre>
    return r < v;
  }
};
template < typename T>
T divfloor(T a, T b){
  return a / b - ((a ^ b) < 0 && a % b);
}
template < typename T>
struct DynamicHull{
  multiset<Line<T>, less<>> s;
  int size(){
    return s.size();
  }
  bool intersect(typename set<Line<T>>::
   iterator a, typename set<Line<T>>::
   iterator &b){
    if(b == s.end()){
      a \rightarrow r = INF;
       return false;
    if(a->a == b->a){}
       if(a->b > b->b) a->r = INF;
       else a \rightarrow r = -INF;
    }
    else{
      a \rightarrow r = divfloor(b \rightarrow b - a \rightarrow b, a \rightarrow a)
    - b->a);
    }
    return a->r >= b->r;
  }
  void insert(T a, T b){
    Line T > l(a, b);
    auto it = s.insert(1), after = next(
   it), before = it;
    while(intersect(it, after)) after =
```

```
s.erase(after);
  if(before != s.begin() && intersect
  (--before, it)){
    it = s.erase(it);
    intersect(before, it);
}
  while((it = before) != s.begin() &&
  (--before)->r >= it->r) intersect(
  before, it = s.erase(it));
}

T query(T v){
  Line<T> l = *s.lower_bound(v);
  return l.a * v + l.b;
};
```

7 Numbers and Math Formulae

f(n) = f(n-1) + f(n-2)

7.1 Fibonacci

$$\begin{bmatrix} f(n) \\ f(n-1) \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\begin{array}{ccc} 1 & 1 & 2 \\ 1 & 0 & 12 \end{array}$$

 $f(45) \approx 10^9$ $f(88) \approx 10^{18}$

7.2 Catalan

$$C_0 = 1, C_n = \sum_{i=0}^{n-1} C_i C_{n-1-i}$$

$$C_n = C_n^{2n} - C_{n-1}^{2n}$$

$$0 \mid 1 \qquad 1 \qquad 2 \qquad 5$$

$$4 \mid 14 \qquad 42 \qquad 132 \qquad 429$$

$$8 \mid 1430 \qquad 4862 \qquad 16796 \qquad 58786$$

$$12 \mid 208012 \qquad 742900 \qquad 2674440 \qquad 9694845$$

7.3 Geometry

• Heron's formula: The area of a triangle whose lengths of sides are a,b,cand s = (a+b+c)/2 is $\sqrt{s(s-a)(s-b)(s-c)}$.

• Vector cross product: $v_1 \times v_2 = |v_1||v_2|\sin\theta = (x_1 \times y_2) - (x_2 \times y_1).$ • Vector dot product:

$$v_1 \cdot v_2 = |v_1||v_2|\cos\theta = (x_1 \times y_1) + (x_2 \times y_2).$$

7.4 Prime Numbers

First 50 prime numbers:

1	2	3	5	7	11
6	13	17	19	23	29
11	31	37	41	43	47
16	53	59	61	67	71
21	73	79	83	89	97
26	101	103	107	109	113
31	127	131	137	139	149
36	151	157	163	167	173
41	179	181	191	193	197
46	199	211	223	227	229

Very large prime numbers:

1000001333 1000500889 2500001909 2000000659 900004151 850001359

7.5 Number Theory

- Inversion: $aa^{-1} \equiv 1 \pmod{m}. \ a^{-1} \text{ exists iff } \gcd(a,m) = 1.$
- Linear inversion: $a^{-1} \equiv (m \lfloor \frac{m}{a} \rfloor) \times (m \mod a)^{-1} \pmod{m}$
- Fermat's little theorem: $a^p \equiv a \pmod{p}$ if p is prime.
- Euler function: $\phi(n) = n \prod_{p|n} \frac{p-1}{p}$
- Euler theorem: $a^{\phi(n)} \equiv 1 \pmod{n}$ if $\gcd(a, n) = 1$.
- Extended Euclidean algorithm: $ax + by = \gcd(a, b) = \gcd(b, a \mod b) = \gcd(b, a \lfloor \frac{a}{b} \rfloor b) = bx_1 + (a \lfloor \frac{a}{b} \rfloor b)y_1 = ay_1 + b(x_1 \lfloor \frac{a}{b} \rfloor y_1)$
- Divisor function:

$$\sigma_x(n) = \sum_{d|n} d^x. \quad n = \prod_{i=1}^r p_i^{a_i}.$$

$$\sigma_x(n) = \prod_{i=1}^r \frac{p_i^{(a_i+1)x} - 1}{p_i^x - 1} \quad \text{if} \quad x \neq 0. \quad \sigma_0(n) = \prod_{i=1}^r (a_i + 1).$$

• Chinese remainder theorem: $x \equiv a_i \pmod{m_i}$.

$$M = \prod_{i=1}^{n} m_i. \ M_i = M/m_i. \ t_i = M_i^{-1}.$$
$$x = kM + \sum_{i=1}^{n} a_i t_i M_i, \ k \in \mathbb{Z}.$$

7.6 Combinatorics

- $P_k^n = \frac{n!}{(n-k)!}$
- $C_k^n = \frac{n!}{(n-k)!k!}$
- $H_k^n = C_k^{n+k-1} = \frac{(n+k-1)!}{k!(n-1)!}$