ТЕМА 6. СОБСТВЕННЫЕ ЗНАЧЕНИЯ И СОБСТВЕННЫЕ ВЕКТОРЫ КОМПАКТНОГО ОПЕРАТОРА

Пусть X – нормированное векторное пространство, $A: X \to X$ – линейный оператор.

Определение 1. Число λ называется собственным значением оператора A, если существует ненулевой вектор $x \in X$ такой, что

$$Ax = \lambda x. \tag{2.1}$$

Вектор $x \neq 0$ называется co6cm6ehhым 6ekmopom, отвечающим собственному значению λ оператора A.

Поскольку наряду с вектором x вектор $cx(c - \text{const}, c \neq 0)$ также является собственным, то собственные векторы можно считать нормированными, например, условием ||x|| = 1.

Максимальное число линейно независимых собственных векторов, отвечающих данному собственному значению, называют *кратностью* этого собственного значения.

Лемма 1. Собственные векторы линейного оператора, отвечающие различным собственным значениям, линейно независимы.

 $\Pi p \, u \, M \, e \, p \, 1$. Пусть $A: \mathbb{R}^n \to \mathbb{R}^n$ – линейный оператор, определенный матрицей $(a_{ij}), \, i,j=\overline{1,n}$. Тогда для нахождения собственных значений оператора A, необходимо, чтобы уравнение $(A-\lambda E)x=0$ имело нетривиальное решение. Это равносильно тому, что

$$det|A - \lambda E| = 0. (2.2)$$

Уравнение (2.2) называется характеристическим уравнением.

Таким образом, в конечномерном пространстве, собственными значениями линейного оператора являются корнями характеристического уравнения.

Пусть теперь X – банахово пространство, $A: X \to X$ – компактный оператор. Пусть λ – собственное значение оператора A, а X_{λ} – собственное подпространство, состоящее из собственных векторов, отвечающих значению λ .

Теорема 1. Пусть X – банахово пространство, $A \in \mathcal{K}(X)$. Тогда его собственное подпространство X_{λ} , отвечающее собственному значению $\lambda \neq 0$, конечномерно.

Теорема 2. Пусть X – банахово пространство, $A \in \mathcal{K}(X)$. Тогда для любого $\varepsilon > 0$ вне круга $|\lambda| \leqslant \varepsilon$ комплексной плоскости (вещественной оси) может содержаться лишь конечное число собственных значений оператора A.

Следствие 1. Множество значений компактного оператора не более чем счетно и может быть занумеровано в порядке невозрастания модулей $|\lambda_1| \geqslant |\lambda_2| \geqslant$ и $\lambda_n \longrightarrow 0$ при $n \longrightarrow \infty$.

Пример 2. Рассмотрим интегральный оператор Фредгольма

$$Ax(t) = \int_{a}^{b} \mathcal{K}(t,s)x(s) \,ds$$
 (2.3)

с непрерывным комплекснозначным ядром $\mathcal{K}(t,s)$. Будем решать задачу на собственные значения и собственные вектора вида

$$Ax(t) = \int_{a}^{b} \mathcal{K}(t,s)x(s) \, \mathrm{d}s = \lambda x(t). \tag{2.4}$$

Поскольку ядро $\mathcal{K}(t,s)$ непрерывно, то оператор A является компактным. Для (2.4) возможны следующие варианты:

- 1. (2.4) имеет лишь нулевое решение: x(t) = 0 при $\lambda \neq 0$. Это означает, что интегральный оператор не имеет собственных значений отличных от нуля;
- 2. Существует конечное число собственных значений, отличных от нуля;
- 3. Существует последовательность собственных значений λ_n , причем $\lambda_n \to 0$ при $n \to \infty$.

В пространстве $L_2[a,b]$ рассмотрим интегральное уравнение Фредгольма второго рода с комплекснозначным параметром λ

$$x(t) - \lambda \int_{a}^{b} \mathcal{K}(t,s)x(s) \, \mathrm{d}s = y(t). \tag{2.5}$$

Будем предполагать, что ядро $\mathcal{K}(t,s)$ интегрального оператора таково, что уравнение (2.5) является уравнением с компактным оператором.

Число $1/\lambda, \lambda \neq 0$ называют *характеристическим числом* интегрального оператора. Тогда альтернатива Фредгольма для уравнения (2.5) может быть сформулирована следующим образом:

Теорема 3. Для того, чтобы уравнение (2.5) было разрешимо для любого $y \in L_2[a,b]$ необходимо и достаточно, чтобы λ не было характеристическим числом интегрального оператора (2.3). Если λ – характеристическое число, то его кратность конечна и $\overline{\lambda}$ является характеристическим числом сопряженного оператора A^* к оператору (2.3) той же кратности. Для разрешимости уравнения (2.5) необходимо и достаточно, чтобы функция y(t) была ортогональна всем собственным функциям оператора A^* , соответствующим собственному значению $1/\overline{\lambda}$. При этом у уравнения (2.5) существует единственное решение, ортогональное всем собственным функциям оператора A, отвечающим собственному значению $1/\lambda$.

Пусть H — гильбертово пространство, $A:H\to H$ — самосопряженный оператор.

Теорема 4 . Все собственные значения самосопряженного оператора в гильбертовом пространстве вещественны. Собственные подпространства H_{λ_1} и H_{λ_2} , отвечающие различным собственным значениям λ_1 и λ_2 , ортогональны.

Теорема 5. Компактный самосопряженный оператор в гильбертовом пространстве имеет по крайней мере одно собственное значение.

Cледствие 2. Если компактный самосопряженный оператор в гильбертовом пространстве H не имеет отличных от нуля собственных значений, то A=0.

Теорема 6 . Все собственные значения компактного самосопряженного оператора $A: H \to H$ расположены на отрезке [m,M], где

$$m = \inf_{\|x\|=1} (Ax, x), \quad M = \sup_{\|x\|=1} (Ax, x).$$
 (2.6)

Подпространство $L \subset H$ назовем *инвариантным* подпространством оператора A, если для любого $x \in L$ имеем $Ax \in L$.

Обозначим через H_n подпространство пространства H, состоящее из элементов $x \in H$, ортогональных первым n собственным векторам оператора A, $(x,x_i)=0$, $i=1,2,\ldots,n$. Для любого $x \in H_n$ вектор $Ax \in H_n$, т. е. $(Ax,x_i)=(x,Ax_i)=\lambda_i(x,x_i)=0$. Это означает, что оператор A можно рассматривать как оператор $A:H_n \to H_n$. При этом он, естественно, является самосопряженным и компактным. Поэтому, по теореме 4,

$$|\lambda_{n+1}| = \sup_{\substack{\|x\|=1\\x\in H_n}} |(Ax,x)|$$

и так далее.

Теорема 7. Пусть A – компактный самосопряженный оператор из H в H, а x – произвольный элемент из H. Тогда элемент $Ax \in H$ разлагается в сходящийся ряд Фурье по системе $\{\varphi_k\}_{k=1}^{\infty}$ собственных векторов оператора A.

Cледствие 3. Если компактный самосопряженный оператор в H имеет обратный, то система его собственных векторов образует базис в H.

Cледствие 4. Если A — компактный самосопряженный оператор в сепарабельном гильбертовом пространстве H, то в H существует ортонормированный базис из собственных векторов оператора A.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

 $\Pi p u M e p 3$. Найти характеристические числа и собственные функции интегрального оператора

$$Ax(t) = \int_{0}^{\pi} \left(\cos^{2}t \cos 2s + \cos 3t \cos^{3}s\right) x(s) ds.$$

Решение. Запишем уравнение для нахождения характеристических чисел и соответствующих им собственных функций интегрального оператора в виде

$$x(t) = \lambda \cos^2 t \int_0^{\pi} \cos 2sx(s) ds + \lambda \cos 3t \int_0^{\pi} \cos^3 sx(s) ds.$$