

PAGE NO. :

DATE: / /

	· · · · · · · · · · · · · · · · · · ·
\Rightarrow	Heat exchange between hot object and a
,	cold object:
	Heat transfer - The hot object loses heat energy.
	while the cold object gains heat energy.
* *	
	Temprature Change - The temprature of the
	hot object decreases, and the temprature
	ibf cold object increases until both objects
	reach the same temproture
3 1	
3)	Principle of Heat Exchange - IF the system is
	isoloted (like inside a heat - resistant hax
	Shown in the diagram, not heat is
- I	1 1 1 1 1 1 1 1 1 1
	heat energy last by the hot object
	heat energy lost by the hot object is equal to heat energy gained by
	the cold object.
	Formulo'-
	Heat energy lost by the hot object = Heat energy
	goined by the cold object.
	This principle is important in real life
	application like calorimetry, thermal
	insulation and heat exchangel
\neg	SIGN.:
	J.J.M.C.O.E.
II	

PAGE	NO.	:	
DATE		,	1

\Rightarrow	The different ways of heat transfer are:
	1) Conduction - Heat transfer through direct contect
	bet" particles without the movement of
	Othe substance itself. Example: A metal
	rod gets heated when one end is
	placed in same.
	placed in flame
	2) Convection - Heat tronsfer through the
	movement of fluids (liquids: or gases)
	due to temprohize differences. Example
	Halpr : heating in a pot, where hot
	water rises and cold water sinks
	3) Radiation - Heat transfer through electromagn-
	etic: waves without the need for a
	medium. Example: The sun heating
	the earth.

SIGN. :

J.J.M.C.).E.