Transfer Learning

Большая модель для маленькой задачи

Большие модели могут выучить много информации

=> логично использовать их для всех задач

Большие модели требуют много данных для обучения

На маленьких задачах они переобучаются

[Как решить эту проблему?]

JAKE-CLARK.TUMBLR

Transfer learning

Transfer learning – перенос знаний обученной модели на новую задачу.

Обучение разбивается на две стадии:

- Предобучение self-supervised обучение на куче данных
- **Дообучение** на небольшую downstream задачу

Модификации BERT и GPT

Классификация текста:

- У обеих моделей меняется последний линейный слой
- У BERT берется выход [CLS] токена
- У GPT выход последнего токена

Модификации BERT и GPT

Классификация токенов:

- Так же меняется последний линейный слой
- Берутся выходы каждого токена
- Лучше использовать **BERT**

Способы дообучения

Обучение головы (линейный пробинг)

Parameter Efficient Fine-tuning

Обучается только последний слой

Обучается вся модель

Обучается небольшой набор весов

Пробинг vs Fine-tuning

Downstream задача – небольшая по объему данных задача, на которую дообучается модель (напр., классификация новостей).

Пробинг vs Fine-tuning

Downstream задача – небольшая по объему данных задача, на которую дообучается модель (напр., классификация новостей).

Пробинг

- Самый простой и быстрый способ дообучения
- Не меняем информацию, извлекаемую моделью

Fine-tuning

- Самый долгий, но эффективный способ
- Обучает модель извлекать важную для downstream задачи информацию

Сравнение с точки зрения ID и ООD

ID (In Distribution) – данные, лежащие в распределении downstream задачи (на чем обучаем)

• Новости издания Известия

OOD (Out Of Distribution) – данные, лежащие вне распределения **downstream** задачи (другие данные для задачи такого вида)

- Новости из Одноклассники.ru
- Новости Russia Today (RT)

Сравнение с точки зрения ID и ООD

ID (In Distribution) – данные, лежащие в распределении downstream задачи (на чем обучаем)

• Новости издания Известия

OOD (Out Of Distribution) – данные, лежащие вне распределения **downstream** задачи (другие данные для задачи такого вида)

- Новости из Одноклассники.ru
- Новости Russia Today (RT)

Точность классификации

Fine-tuning портит модель

Из-за случайной инициализации головы градиенты слишком сильно сдвигают веса модели на первых итерациях. Это приводит к переобучению.

Недостаточно близко подходим к оптимуму

Близко подходим к оптимуму, но сильно меняем исходные параметры модели

Пробинг - Fine-tuning

Обучим сначала голову, а затем дообучим веса всей модели с помощью fine-tuning.

Пробинг -> Fine-tuning

Качество вырастает как на OOD, так и на ID.

	Fine-tuning	Пробинг Г	1робинг → Fine-tunii	ng
ID test	85.1%	82.9%	85.7%	
OOD test	59.3%	66.2%	68.9%	

Точность классификации

План

- Что такое Transfer Learning
- Способы дообучения моделей
- Parameter-Efficient Fine-tuning
 - Prompt-tuning
 - Adaptars
 - LoRa

Parameter-Efficient Fine-tuning

- Способ дообучения моделей с изменением минимального числа параметров
- Используется для обучения LLM, которые слишком затратно обучать целиком
- При дообучении на несколько разных задач можно хранить только набор измененных параметров для каждой задачи

Few-shot и Zero-shot для GPT

- GPT-3 обучалась на 45 тб данных. Это дает ей интересные свойства.
- Модель можно применять для новой задачи, показав ей примеры решения в промпте.

```
Переведи с русского на английский:

стол => table

сыр => cheese

дом =>
```

Это называется Few-shot режим.

Few-shot и Zero-shot для GPT

Можно вообще не показывать правильных решений

Переведи с русского на английский: дом =>

Это называется Zero-shot режим.

Few-shot и Zero-shot для GPT

Чем больше модель, тем лучше она работает в таком режиме.

Однако результат может быть так себе из-за того, что

- Модель не училась решать эту задачу
- Промпт недостаточно хорош

Prompt Tuning

Идея: Попробуем автоматически подобрать наиболее подходящий промпт

- Инициализируем эмбеддинги промпта случайно, задавая только их число
- Можно инициализировать эмбеддингами текстового промпта
- Для задачи классификации нужно дополнительно обучить голову

Prompt Tuning

- Длина промпта напрямую влияет на качество модели
- Однако чем больше модель, тем меньше разница в качестве

Prompt Tuning: Недостатки

- Дополнение обучаемого промпта ограничивает максимальную длину и замедляет модель
- Prompt Tuning учится очень нестабильно и качество меняется немонотонно при увеличении размеров промпта и модели

Adapters

- После каждого слоя внимания и FFN добавляется небольшой обучаемый адаптер
- Адаптер имеет skip-connection и два полносвязный слоя с понижением размерности (уменьшает число параметров)
- Обучаются только адаптеры, нормализации и голова
- Такое дообучение по качеству достигает fine-tuning

Feedforward

up-project

Nonlinearity

Feedforward

00 ≈ 64

Adapters: Недостатки

- Базовая версия адаптера добавляет довольно много параметров по сравнению с Prompt Tuning
- Адаптеры добавляют дополнительные слои, которые нельзя считать параллельно
- Это замедляет модель. Особенно для малых размеров батча.

LoRA Low-Rank Adaptation

• Идея: для адаптации модели к новой задаче нужно сдвинуть веса в сторону антиградиента

$$W' = W + \delta W$$

LoRA Low-Rank Adaptation

• Идея: для адаптации модели к новой задаче нужно сдвинуть веса в сторону антиградиента

$$W' = W + \delta W$$

• Приблизим δW произведением обучаемых матриц AB

$$W' = W + AB$$

LoRA Low-Rank Adaptation

• Идея: для адаптации модели к новой задаче нужно сдвинуть веса в сторону антиградиента

$$W' = W + \delta W$$

• Приблизим δW произведением обучаемых матриц AB

$$W' = W + AB$$

- Так изменяются только матрицы W_q и W_v механизма внимания
- Так добавляется очень мало параметров и добавка может считаться параллельно с основным блоком
- Наиболее популярный способ PEFT

BitFitBias-terms Fine-tuning

Идея: сдвиги имеют очень мало параметров, будем обучать только их

Attention

$$egin{aligned} \mathbf{Q}^{m,\ell}(\mathbf{x}) &= \mathbf{W}_q^{m,\ell}\mathbf{x} + \mathbf{b}_q^{m,\ell} \ \mathbf{K}^{m,\ell}(\mathbf{x}) &= \mathbf{W}_k^{m,\ell}\mathbf{x} + \mathbf{b}_k^{m,\ell} \ \mathbf{V}^{m,\ell}(\mathbf{x}) &= \mathbf{W}_v^{m,\ell}\mathbf{x} + \mathbf{b}_v^{m,\ell} \end{aligned}$$
 $egin{aligned} \mathbf{h}_1^\ell &= att(\mathbf{Q}^{1,\ell},\mathbf{K}^{1,\ell},\mathbf{V}^{1,\ell},..,\mathbf{Q}^{m,\ell},\mathbf{K}^{m,\ell},\mathbf{V}^{m,l}) \end{aligned}$

Feed Forward Network

$$\begin{aligned} \mathbf{h}_{2}^{\ell} &= \operatorname{Dropout}(\mathbf{W}_{m_{1}}^{\ell} \cdot \mathbf{h}_{1}^{\ell} \ + \ \mathbf{b}_{m_{1}}^{\ell}) \\ \mathbf{h}_{3}^{\ell} &= \mathbf{g}_{LN_{1}}^{\ell} \odot \frac{(\mathbf{h}_{2}^{\ell} + \mathbf{x}) - \mu}{\sigma} + \mathbf{b}_{LN_{1}}^{\ell} \\ \mathbf{h}_{4}^{\ell} &= \operatorname{GELU}(\mathbf{W}_{m_{2}}^{\ell} \cdot \mathbf{h}_{3}^{\ell} \ + \ \mathbf{b}_{m_{2}}^{\ell}) \\ \mathbf{h}_{5}^{\ell} &= \operatorname{Dropout}(\mathbf{W}_{m_{3}}^{\ell} \cdot \mathbf{h}_{4}^{\ell} \ + \ \mathbf{b}_{m_{3}}^{\ell}) \\ \operatorname{out}^{\ell} &= \mathbf{g}_{LN_{2}}^{\ell} \odot \frac{(\mathbf{h}_{5}^{\ell} + \mathbf{h}_{3}^{\ell}) - \mu}{\sigma} + \mathbf{b}_{LN_{2}}^{\ell} \end{aligned}$$

Сравнение методов

Пусть у нас есть трансформер с 350М параметров и 24 слоями.

Метод	Число параметров	
Prompt tuning (длина: 20)	15 тыс (0.006%)	
Adapters (размерность 64)	6M (2%)	
LoRA (размерность 8)	0.8M (0.22%)	
BitFit	0.32M (0.09%)	

Все три метода показывают сравнимое качество, однако LoRA наиболее стабильна и используется чаще остальных