1.2 Primzahlen

Es scien him gaure tablen.

Down teilt in die zaul in (symbi: m/n), falls es eine ganze Zaul le gibt mit n=le·m

Beachk: Yede Zant Kilt O!

Eine nat. Zaul n>0 heißt Primzahl, falls 1 und n die einziger nat. Zoulen sind, die u teilen.

Die ersten Primzanten sind: 1,2,3,5,7,11,13,17.19, 25,29,31,...
Cüblicherweise wird 1 hicht zu den Primzahlen gezahlt.)

Salt 1. (Primzaulzerleglug)

Es sei n eine nat. Zahl, $h \ge 2$. Down gibt es eindeutig bestimmil Primzahlen $2 \le p_1 < p_2 < \cdots < p_k$ lunch pos. not. Zahlen a_1, \ldots, a_k mit

$$h = p_1^{Q_1} \cdot p_2^{Q_2} \cdot \dots \cdot p_\ell^{Q_\ell}$$

Beispiele:

(1) $24 = 2 \cdot 12 = 2 \cdot 2 \cdot 6 = 2 \cdot 2 \cdot 2 \cdot 3 = 2^{3} \cdot k = 2, p_1 = 2, p_2 = 3, a_1 = 3, a_2 = 1$

(2) $36 - 6^2 = (2.3)^2 = 2^2 3^2$, k = 2, $p_1 = 2$, $p_2 = 3$, $q_1 = 2$, $q_2 = 2$

(3) M1 = 3.37, k=2, p=3, p=37, a===1

(4) M3 = M31; k=1, p1=113, Q1=1

1.3 Divisions resk

Es seien u eine ganze Zaul, in eine nat. 2aul, in =2. Dann teilt in die Zahl in mit Rost +, 0 = r = m-1, falls eine ganze Zani le existiest mit

u= k·m + 1

Beache: le, T eindentig

Definiere Modulo-Funktion:

mod (n, m) = r gdio, in teil n wit Rest r

beispiele:

(2)
$$mod(-7,3) = 2$$
, $dem: -7 = (-3).3 + 2$

2)
$$mod(-7,3) = 2$$
, $dem: -7 = (-3), 3 + 2$
3) $mod(9,3) = 0$, $dem: 9 = 8, 3 + 0$

Sah 2.

Es seku le, u, m gauze Zohlan, m=Z.

(3.)
$$mod(n^{\ell}, m) = mod(mod(n, m)^{\ell}, m)$$

Beispher:

(1) mod (5+7,4)

= mod (mod (5,4) + mod (7,4), 4)

= mod (1+3,4)

- (2) mod(5.7, 4)= mod(mod(5, 4). mod(7, 4), 4)= mod(1.3, 4)
 - = 3 = mod (35,4)
- = mod (35,4)
- 3) $mod (5^{7}, 4)$ = $mod (mod (5, 4)^{7}, 4)$ = $mod (1^{7}, 4)$ = 1
 = mod (78125, 4)
- (4) $mod(13^{73} \cdot 17^{25} + (-2)^{113}, 4)$ $= mod(mod(13,4)^{73} \cdot mod(17,4)^{25} + mod(-2,4)^{113}, 4)$ $= mod(1^{73} \cdot 1^{25} + 2^{113}, 4)$ $= mod(mod(1,4) + mod(2^{113},4), 4)$ $= mod(1 + mod(2^{2},4)^{56} \cdot mod(2,4), 4)$ = 1
- ES Sei \times eine reelle 2011: $L \times I = out$ größte gause 2011 $\leq \times$ $T \times 7 \geq_{out}$ kleinste ganze 8011 $\geq \times$

Beispielc.

$$(2)$$
 $[\frac{3}{2}] = 1$, $[\frac{3}{2}] = 2$

Dann gilt:
$$n = \lfloor \frac{h}{m} \rfloor m + mod(u, m)$$

Denn: Für $r = mod(u, m)$ gilt es $k = m + r$