

Базовая математика

Урок 5. Тригонометрические функции: свойства и их графики

Основными тригонометрическими функциями являются функции:

$$y = \sin(x), y = \cos(x), y = \operatorname{tg}(x), y = \operatorname{ctg}(x)$$

Рассмотрим каждую из них в отдельности.

1. $y = \sin(x)$. График функции:

Свойства:

- 1. Область определения функции множество всех действительных чисел: $D(y) = \mathbb{R}$.
- 2. Множество значений интервал [-1;1]: E(y) = [-1;1].
- 3. Функция $y = \sin(\alpha)$ нечётная: $\sin(-\alpha) = -\sin \alpha$.
- 4. Функция периодическая, самый маленький неотрицательный период соответствует 2π : $\sin(\alpha + 2\pi) = \sin(\alpha)$.
- 5. График функции пересекает ось Ox при $\alpha = \pi n, n \in \mathbb{Z}$.
- 6. Промежутки знакопостоянства: y > 0 при $\alpha \in (2\pi n; \pi + 2\pi n), n \in \mathbb{Z}$ и y < 0 при $\alpha \in (\pi + 2\pi n; 2\pi + 2\pi n), n \in \mathbb{Z}$.
- 7. Функция является непрерывной, и у нее есть производная с любым значением аргумента: $(\sin \alpha)' = \cos \alpha$.
- 8. Функция $y=\sin\alpha$ возрастает при $\alpha\in (-\pi/2+2\pi n;\pi/2+2\pi n),\ n\in\mathbb{Z},$ и убывает при $\alpha\in (\pi 2+2\pi n;3\pi 2+2\pi n),\ n\in\mathbb{Z}.$
- 9. Минимум функции при $\alpha = -\pi/2 + 2\pi n$, $n \in \mathbb{Z}$, а максимум при $\alpha = \pi/2 + 2\pi n$, $n \in \mathbb{Z}$.

2. $y = \cos(x)$. График функции:

Свойства:

- 1. Область определения функции множество всех действительных чисел: $D(y) = \mathbb{R}$.
- 2. Множество значений интервал [-1;1]: E(y) = [-1;1].
- 3. Функция $y = \cos(\alpha)$ чётная: $\cos(-\alpha) = \cos \alpha$.
- 4. Функция периодическая, самый маленький неотрицательный период соответствует 2π : $\cos(\alpha + 2\pi) = \cos(\alpha)$.
- 5. График функции пересекает ось Ox при $\alpha = \pi/2 + \pi n, n \in \mathbb{Z}$.
- 6. Промежутки знакопостоянства: y>0 при $\alpha\in (-\pi/2+2\pi n;\pi/2+2\pi n),\ n\in\mathbb{Z}$ и y<0 при $\alpha\in (\pi/2+2\pi n;3\pi/2+2\pi n),\ n\in\mathbb{Z}$.
- 7. Функция является непрерывной, у нее есть производная с любым значением аргумента: $(\cos \alpha)' = -\sin \alpha$
- 8. Функция $y=\cos\alpha$ возрастает при $\alpha\in(-\pi+2\pi n;2\pi n),\,n\in\mathbb{Z},$ и убывает при $\alpha\in(2\pi n;\pi+2\pi n),\,n\in\mathbb{Z}.$
- 9. У функции есть минимум при $\alpha = \pi + 2\pi n$, $n \in \mathbb{Z}$, а максимум при $\alpha = 2\pi n$, $n \in \mathbb{Z}$.

3. $y = \operatorname{tg}(x)$. График функции:

Свойства:

- 1. Область определения функции множество действительных чисел: D(y)=R, исключая числа $\alpha=\pi/2+\pi n$.
- 2. Множество значений множество действительных чисел: $E(y) = \mathbb{R}$.
- 3. Функция $y = \operatorname{tg}(\alpha)$ нечётная: $\operatorname{tg}(-\alpha) = -\operatorname{tg}\alpha$.
- 4. Функция периодическая, самый маленький неотрицательный период соответствует π : $\operatorname{tg}(\alpha + \pi) = \operatorname{tg}(\alpha)$.
- 5. График функции пересекает ось Ox при $\alpha = \pi n, n \in \mathbb{Z}$.
- 6. Промежутки знакопостоянства: y > 0 при $\alpha \in (\pi n; \pi/2 + \pi n), n \in \mathbb{Z}$ и y < 0 при $\alpha \in (-\pi/2 + \pi n; \pi n), n \in \mathbb{Z}$.
- 7. Функция является непрерывной, есть производная с любым значением аргумента из области определения: $(\operatorname{tg} x)' = 1/\cos^2 x$.
- 8. Функция $y = \operatorname{tg} \alpha$ возрастает при $\alpha \in (-\pi/2 + \pi n; \pi/2 + \pi n), n \in \mathbb{Z}$.

4. $y = \operatorname{ctg}(x)$. График функции:

Свойства:

- 1. Область определения функции множество действительных чисел: $D(y) = \mathbb{R}$, исключая числа $\alpha = \pi n$.
- 2. Множество значений множество действительных чисел: $E(y) = \mathbb{R}$.
- 3. Функция $y = \operatorname{ctg}(\alpha)$ нечётная: $\operatorname{ctg}(-\alpha) = -\operatorname{ctg}\alpha$.
- 4. Функция периодическая, самый маленький неотрицательный период равен π : $\operatorname{ctg}(\alpha + \pi) = \operatorname{ctg}(\alpha)$.
- 5. График функции пересекает ось Ox при $\alpha = \pi/2 + \pi n$, $n \in \mathbb{Z}$.
- 6. Промежутки знакопостоянства: y > 0 при $\alpha \in (\pi n; \pi/2 + \pi n), n \in \mathbb{Z}$ и y < 0 при $\alpha \in (\pi/2 + \pi n; \pi(n+1)), n \in \mathbb{Z}$.
- 7. Функция является непрерывной, есть производная в любом значении аргумента из области определения: $(\operatorname{ctg} x)' = -1/\sin^2 x$.
- 8. Функция $y = \operatorname{ctg} \alpha$ убывает при $\alpha \in (\pi n; \pi(n+1)), n \in \mathbb{Z}$.

Существуют равенства, связывающие значения различных тригонометрических функций. Некоторые из этих равенств:

1.
$$\sin^2 t + \cos^2 t = 1$$

2. $\operatorname{tg} t = \frac{\sin t}{\cos t}, \ t \neq \frac{\pi}{2} + \pi k$
3. $\operatorname{ctg} t = \frac{\cos t}{\sin t}, \ t \neq \pi k$

Из двух последних равенств получим соотношение, связывающее $\operatorname{tg} t$ и $\operatorname{ctg} t$:

$$\operatorname{tg} t \cdot \operatorname{ctg} t = 1, \ t \neq \frac{\pi k}{2}$$

Выполняя преобразования, можно получить ещё две важные формулы:

1.
$$1 + \operatorname{tg}^2 t = \frac{1}{\cos^2 t}, \ t \neq \frac{\pi}{2} + \pi k$$

2. $1 + \operatorname{ctg}^2 t = \frac{1}{\sin^2 t}, \ t \neq \pi k$

Отдельно следует отметить тот факт, что у тригонометрических функций со сложным аргументом может быть нестандартный период. Речь идет о функциях вида:

$$y = \sin(ax \pm b), \ y = \cos(ax \pm b)$$

У них период равен $T = 2\pi/a$. И о функциях:

$$y = \operatorname{tg}(ax \pm b), \ y = \operatorname{ctg}(ax \pm b)$$

У них период равен $T = \pi/a$.

Как видим, для вычисления нового периода стандартный период просто делится на множитель при аргументе. От остальных видоизменений функции он не зависит.

Формулы приведения

Формулы приведения получили свое название не от слова «привиделось», а от слова «приводить». С их помощью синус, косинус, тангенс и котангенс произвольного угла можно привести к синусу, косинусу, тангенсу и котангенсу угла из интервала от 0 до 90 градусов (от 0 до $\pi/2$ радиан). Таким образом, формулы приведения позволяют нам переходить к работе с углами в пределах 90 градусов, что, несомненно, очень удобно. В этом одна из их основных заслуг.

Прежде чем перечислить все формулы приведения, отметим, что в этих формулах аргументами тригонометрических функций являются углы вида

$$\pm \alpha + 2\pi n$$
, $\frac{\pi}{2} \pm \alpha + 2\pi n$, $\pi \pm \alpha + 2\pi n$, $\frac{3\pi}{2} \pm \alpha + 2\pi n$,

где n — любое целое число, а α — произвольный угол поворота.

Формул приведения очень много. Запомнить их трудно — но самое главное, в этом нет необходимости. Достаточно запомнить одно-единственное правило — и вы легко сможете самостоятельно выводить формулы и упрощать выражения.

Правило приведения

- Для выражений $\pi + t$, πt , $2\pi + t$, $2\pi t$:
 - В приведенном выражении следует сохранить тригонометрическую функцию преобразуемого выражения.
 - Перед полученной функцией следует поставить тот знак, который имела бы преобразуемая функция при условии, что $0 < t < \pi/2$.
- Для выражений $\pi/2+t, \pi/2-t, 3\pi/2+t, 3\pi/2-t$:
 - В приведенном выражении следует изменить тригонометрическую функцию преобразуемого выражения на противоположную.
 - Перед полученной функцией следует поставить тот знак, который имела бы преобразуемая функция при условии, что $0 < t < \pi/2$.

Полный список формул приведения:

$$\cos(\pi + t) = -\cos t \qquad \cos(2\pi + t) = \cos t \qquad \cos(\pi/2 + t) = -\sin t \qquad \cos(3\pi/2 + t) = \sin t$$

$$\sin(\pi + t) = -\sin t \qquad \sin(2\pi + t) = \sin t \qquad \sin(\pi/2 + t) = \cos t \qquad \sin(3\pi/2 + t) = -\cos t$$

$$tg(\pi + t) = tgt \qquad tg(2\pi + t) = tgt \qquad tg(\pi/2 + t) = -tgt \qquad tg(3\pi/2 + t) = -tgt$$

$$\cot(\pi + t) = \cot t \qquad \cot(2\pi + t) = \cot t \qquad \cot(\pi/2 + t) = -tgt \qquad \cot(3\pi/2 + t) = -tgt$$

$$\cot(\pi + t) = \cot t \qquad \cot(\pi/2 + t) = -tgt \qquad \cot(\pi/2 + t) = -tgt \qquad \cot(\pi/2 + t) = -tgt$$

$$\cot(\pi/2 + t) = -\cot t \qquad \cot(\pi/2 + t) = -tgt \qquad \cot(\pi/2 + t) = -tgt$$

$$\cot(\pi/2 + t) = -\cot t \qquad \cot(\pi/2 + t) = -tgt \qquad \cot(\pi/2 + t) = -tgt$$

$$\cot(\pi/2 + t) = -\cot t \qquad \cot(\pi/2 + t) = -tgt \qquad \cot(\pi/2 + t) = -tgt$$

$$\cot(\pi/2 + t) = -\cot t \qquad \cot(\pi/2 + t) = -tgt \qquad \cot(\pi/2 + t) = -tgt$$

$$\cot(\pi/2 + t) = -\cot t \qquad \cot(\pi/2 + t) = -tgt \qquad \cot(\pi/2 + t) = -tgt$$

$$\cot(\pi/2 + t) = -\cot t \qquad \cot(\pi/2 + t) = -tgt \qquad \cot(\pi/2 + t) = -tgt$$

$$\cot(\pi/2 + t) = -\cot t \qquad \cot(\pi/2 + t) = -tgt \qquad \cot(\pi/2 + t) = -tgt$$

$$\cot(\pi/2 + t) = -\cot t \qquad \cot(\pi/2 + t) = -tgt$$

$$\cot(\pi/2 + t) = -\cot t \qquad \cot(\pi/2 + t) = -tgt$$

$$\cot(\pi/2 + t) = -\cot t \qquad \cot(\pi/2 + t) = -tgt$$

$$\cot(\pi/2 + t) = -\cot t \qquad \cot(\pi/2 + t) = -tgt$$

$$\cot(\pi/2 + t) = -\cot t \qquad \cot(\pi/2 + t) = -tgt$$

$$\cot(\pi/2 + t) = -tgt$$

Пример 1. Найти область определения функции $y = \sin 3x + \tan 2x$.

Pewenue. Нужно выяснить, при каких значениях x выражение $\sin 3x + \operatorname{tg} 2x$ имеет смысл.

- Выражение $\sin 3x$ имеет смысл при любом значении x.
- Выражение $\operatorname{tg} 2x$ при $2x \neq \frac{\pi}{2} + \pi n, n \in \mathbb{Z}$, т.е. $x \neq \frac{\pi}{4} + \frac{\pi n}{2}, n \in \mathbb{Z}$.

Следовательно, областью определения данной функции является множество действительных чисел $x \neq \frac{\pi}{4} + \frac{\pi n}{2}, n \in \mathbb{Z}$.

Omeem: $x \neq \frac{\pi}{4} + \frac{\pi n}{2}$, $n \in \mathbb{Z}$.

Тригонометрические уравнения

Мы подошли к одной из самых главных частей темы «Тригонометрия», которую мы посвятим решению *тригонометрических уравнений*. Умение решать такие уравнения важно.

Запишем простейшее тригонометрическое уравнение:

$$\sin x = \frac{\sqrt{3}}{2}$$

Решением такого уравнения являются аргументы, синус которых равен $\frac{\sqrt{3}}{2}$. Но мы уже знаем, что из-за периодичности синуса таких аргументов существует бесконечное множество. Таким образом,

решением этого уравнения будут $x = \frac{\pi}{3}$, $x = \frac{\pi}{3} + 2\pi$ и т.д. То же самое относится и к решению любого другого простейшего тригонометрического уравнения, их будет бесконечное количество.

Тригонометрические уравнения делятся на несколько основных типов. Отдельно следует остановиться на простейших, т.к. все остальные к ним сводятся. Таких уравнений четыре (по количеству основных тригонометрических функций). Для них известны общие решения, их необходимо запомнить.

Простейшие тригонометрические уравнения и их общие решения выглядят следующим образом:

- 1. $\sin x = a$ при $|a| \le 1 \Leftrightarrow x = (-1)^n \arcsin a + \pi n, n \in \mathbb{Z}$.
- 2. $\cos x = a$ при $|a| \le 1 \Leftrightarrow x = \pm \arccos a + 2\pi n, n \in \mathbb{Z}$.
- 3. $\operatorname{tg} x = a \Leftrightarrow x = \operatorname{arctg} a + \pi n, n \in \mathbb{Z}$.
- 4. $\operatorname{ctg} x = a \Leftrightarrow x = \operatorname{arcctg} a + \pi n, n \in \mathbb{Z}$.

Обратите внимание, что на значения синуса и косинуса необходимо учитывать известные нам ограничения. Например, уравнение $\sin x = 2$, не имеет решений, поэтому применять указанную формулу не нужно.

Кроме того, указанные формулы корней содержат параметр в виде произвольного целого числа n. Это произвольное целое число показывает, что можно выписать бесконечное количество корней любого из указанных уравнений просто подставляя вместо n по очереди все целые числа.

Отдельно необходимо обратить внимание на решение частных случаев простейших уравнений с синусом и косинусом. Эти уравнения имеют вид:

$$\sin x = -1; \sin x = 0; \sin x = 1$$

И

$$\cos x = -1$$
; $\cos x = 0$; $\cos x = 1$

К ним не следует применять формулы нахождения общих решений. Такие уравнения удобнее всего решаются с использованием тригонометрической окружности, что дает более простой результат, чем формулы общих решений.

Например, решением уравнения $\sin x = 1$ являются $x = \frac{\pi}{2} + 2\pi n, n \in \mathbb{Z}$.

Методы решения тригонометрических уравнений

Решение тригонометрического уравнения состоит из двух этапов: *преобразование уравнения* для получения его простейшего вида и *решение* полученного простейшего тригонометрического уравнения. Существует несколько основных методов решения тригонометрических уравнений.

1. Алгебраический метод (метод замены переменной и подстановки) и сведение к квадратному уравнению. Это универсальный способ. Применяется в любых уравнениях — степенных, показательных, тригонометрических, логарифмических, каких угодно. Замена не всегда видна сразу, и уравнение нужно сначала преобразовать.

Пример 2. Решите уравнение: $2\cos^2 x + 5\sin x = 5$.

Решение. Преобразуем его, применив основное тригонометрическое тождество:

$$2(1 - \sin^2 x) + 5\sin x = 5$$

$$2\sin^2 x - 5\sin x + 3 = 0$$

Заменяя $\sin x$ на t, приходим к квадратному уравнению:

$$2t^2 - 5t + 3 = 0$$

Решая его, получим:

$$t_1 = 3/2, t_2 = 1$$

Теперь вспоминаем, что мы обозначили за t. Первый корень приводит нас к уравнению:

$$\sin x = \frac{3}{2}$$

Оно не имеет решений, поскольку $-1 \le \sin x \le 1$. Второй корень даёт простейшее уравнение:

$$\sin x = 1$$

Решаем его:

$$x = \frac{\pi}{2} + 2\pi n, \ n \in \mathbb{Z}$$

Omeem: $x = \frac{\pi}{2} + 2\pi n, n \in \mathbb{Z}$.

2. Разложение на множители. Очень хорошо, если уравнение удаётся представить в таком виде, что в левой части стоит произведение двух или нескольких множителей, а в правой части — ноль. Произведение двух или нескольких множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю. Сложное уравнение, таким образом, распадается в совокупность более простых.

Пример 3. Решите уравнение: $\sin 2x = \cos x$.

Решение. Применяем формулу синуса двойного угла:

$$2\sin x\cos x = \cos x$$

Ни в коем случае не сокращайте на косинус! Ведь может случиться, что соз х обратится в нуль, и мы потеряем целую серию решений. Переносим всё в одну часть, и общий множитель — за скобки:

$$2\sin x\cos x - \cos x = 0$$

$$\cos x(2\sin x - 1) = 0$$

Полученное уравнение равносильно совокупности двух уравнений:

$$\cos x = 0$$
 и $2\sin x - 1 = 0$

Решаем каждое из них и берём объединение множества решений.

Omeem:
$$x_1 = \pi/2 + \pi n, n \in \mathbb{Z}; x_2 = (-1)^n \pi/6 + \pi n, n \in \mathbb{Z}.$$

3. Однородные уравнения.

Пример 4. Решите уравнение: $\sin^2 x + 2\sin x \cos x - 3\cos^2 x = 0$.

Peшение. Степень каждого слагаемого в левой части равна двум. Точно так же, как в обычном многочлене $a^2 + 2ab - 3b^2$ степень каждого слагаемого равна двум (степень одночлена — это сумма степеней входящих в него сомножителей).

Поскольку степени всех слагаемых одинаковы, такое уравнение называют однородным. Для однородных уравнений существует стандартный приём решения — деление обеих его частей на $\cos^2 x$. Возможность этого деления, однако, должна быть обоснована: а что, если косинус равен нулю?

Предположим, что $\cos x = 0$. Тогда в силу уравнения и $\sin x = 0$, что противоречит основному тригонометрическому тождеству. Следовательно, любое решение данного уравнения удовлетворяет условию $\cos x \neq 0$, и мы можем поделить обе его части на $\cos^2 x$.

В результате деления приходим к равносильному квадратному уравнению относительно тангенса:

$$tg^2 x + 2tg x - 3 = 0$$

Заменяя $\operatorname{tg} x$ на t, приходим к квадратному уравнению:

$$t^2 + 2t - 3 = 0$$

Решая его, получим:

$$t_1 = -3, t_2 = 1$$

Теперь вспоминаем, что мы обозначили за t:

$$\operatorname{tg} x = -3 \Rightarrow x_1 = \operatorname{arctg}(-3) + \pi n, \ n \in \mathbb{Z}$$

$$\operatorname{tg} x = 1 \Rightarrow x_2 = \pi/4 + \pi n, \ n \in \mathbb{Z}$$

Omeem: $x_1 = \operatorname{arctg}(-3) + \pi n, n \in \mathbb{Z}; x_2 = \pi/4 + \pi n, n \in \mathbb{Z}.$

4. Введение дополнительного угла. Этот метод применяется для уравнений вида:

$$a\cos x + b\sin x = c$$

Пример 5. Решите уравнение: $\sqrt{3}\sin x + \cos x = 2$.

Решение. Делим обе части на 2:

$$\frac{\sqrt{3}}{2}\sin x + \frac{1}{2}\cos x = 1$$

Замечаем, что $\frac{\sqrt{3}}{2} = \cos \frac{\pi}{6}, \, \frac{1}{2} = \sin \frac{\pi}{6}.$ Получаем:

$$\cos\frac{\pi}{6}\sin x + \sin\frac{\pi}{6}\cos x = 1$$

В левой части получили синус суммы:

$$\sin\left(x + \frac{\pi}{6}\right) = 1,$$

откуда

$$x + \frac{\pi}{6} = \frac{\pi}{2} + 2\pi n$$

Omeem:
$$x = \frac{\pi}{3} + 2\pi n, n \in \mathbb{Z}.$$

Мы рассмотрели только несколько основных методов решения тригонометрических уравнений. В более сложных и нестандартных задачах нужно ещё догадаться, как использовать те или иные методы. Это приходит только с опытом.

Домашнее задание

- 1. Найти множество значений функции $y = 3 + \sin x \cos x$.
- 2. Решить уравнение $2\cos^2 x 5\sin x + 1 = 0$. 3. Решить уравнение $6\sin^2 x + 2\sin^2 2x = 5$.