

world table: prob. distribution of the

variables

0.4

0.6

0.7

0.3

0.8

0.2

0.25

0.25

0.25

0.25

→ 1

→ 1

 $w \rightarrow 1$

→ 3

new variable for

MayBMS: A System for Managing Large Uncertain and Probabilistic Databases

Lyublena Antova Cornell University

Christoph Koch Cornell University

Dan Olteanu Oxford University

1. Motivation

Goal: manage uncertain information in different application scenarios: data integration, scientific data collections, census ...

There are 2 * 2 * 2 * 4 = 32 possible instances of the forms information!

Features of MayBMS

- ✓ scalable DBMS for supporting uncertain and probabilistic data
- ✓ purely relational representation of attribute-level uncertainty
- √ efficient query processing
- ✓ query language for probabilistic databases

2. U-relational Databases

R[SSN,N,MS]: personal information

[SSN]	TID	SSN	$V_1 \rightarrow D_1$	U _{R[MS]}	TID	MS	$V_1 \rightarrow D_1$	$\mathbf{U}_{R[N]}$	TID	N	V ₁ →[ک _₁
	t ₁	185	x → 1		t ₁	1	z → 1		t ₁	Smith		
	t,	785	x → 2		t ₁	2	$z \rightarrow 2$		t ₂	Brown		
	t ₂	185	v → 1		t ₂	1	w → 1				W	
	t ₂	186	v → 2		t ₂	2	$W \rightarrow 2$					F
	'2		, -		t ₂	3	w → 3					ŀ
					t ₂	4	$W \rightarrow 4$					L
SN,ST]: credit status									L			
Construct a possible world: pick a								L				
	TID	I NRS	ST IV.	•D.			each vari					L

SISS

U _{S[SSN,ST]}	TID	SSN	ST	$V_1 \rightarrow D_1$
	S ₁	185	bad	$W \rightarrow 3$
	S ₁	185	good	w <u></u> 4

encode attribute alternatives and correlations with variables

t ₁	785	Smith	
t ₂	186	Brown	
S	SSN	ST	

SSN Name

Probability of the world: 0.6*0.3*0.2*0.25=0.009

3. Query Language

World-set Algebra

✓ extend relational algebra with uncertainty-specific constructs e.g.

- conf: confidence computation
- repair by key: create the possible repairs of an instance violating a key constraint
- assert: remove worlds violating a constraint
- ✓ semantics: evaluate the guery in each world
- generic: independent from representation details
- conservative over relational algebra: right degree of expressive power
- efficient evaluation: simple encoding of positive relational algebra + possible into positive relational algebra queries on U-relational databases

4. Query Evaluation

Query on column-stores

final result:								
U _{P[MS]}	TID	MS	$V_1 \rightarrow D_1$	$V_2 \rightarrow D_2$	$V_3 \rightarrow D_3$			
	t ₁ ,s ₁	1	$x \rightarrow 1$	$w \rightarrow 3$	$z \rightarrow 1$			
	t,,s,	2	$x \rightarrow 2$	$W \rightarrow 3$	$z \rightarrow 2$			
D_2	t ₂ ,s1	3	y → 1	$W \rightarrow 3$				
. 3								
. 3								

5. Confidence Computation

				•				
U _{R[A]}	A 1	$V_1 \rightarrow D_1$ $x \rightarrow 1$	$V_2 \rightarrow D_2$	confidence of (A:1) = probability of the world-set defined by				
	-							
	1	$x \rightarrow 2$	y → 1	$\{\{x \rightarrow 1\}, \{x \rightarrow 2, y \rightarrow 1\}, \{x \rightarrow 2, z \rightarrow 1\},$				
	1	$x \rightarrow 2$	$z \rightarrow 1$	$\{u\rightarrow 1, v\rightarrow 1\}, \{u\rightarrow 2\}\}$				
	1	u → 1	v →1					
	1	$u \rightarrow 2$						
+ mutual exclusiveness +								
$ \{\{x \to 1\}\} \qquad \{\{x \to 2, y \to 1\}, \{x \to 2, z \to 1\}\} \{\{u \to 1\}, \{v \to 1\}\} \{\{u \to 2\}\} $								
			_					

6. Experiments

c) $\pi_{MS}(R\bowtie_{SSN}(\sigma_{ST=bad}S))$

- ✓ extended TPC-H population generator 2.6 to generate U-relational databases
- ✓ parameters: scale (s), uncertainty ratio (x), correlation ratio (z), max alternatives per field (m), drop after correlation (p)
- ✓ each generated world has the sizes of relations and join selectivities of the original TPC-H one-world case
- √queries translated into SQL and run on PostgresSQL

dbsize	
5427	
6682	
11264	
13312	
X=0.1	

Fig. 1: Number of worlds and size in MB of the U-relational db for different scale, uncertainty and correlation ratios.

Fig. 3: Attribute- vs. tuple-

Fig. 2: Query evaluation

7. Selected Publications

- Fast and simple relational processing of uncertain data, ICDE'08
 Conditioning Probabilistic Databases. Technical report '08
 MaySMS: Managing incomplete information with probabilistic world-set decompositions, ICDE'07, Denno paper
 1-10*10*6 worlds and beyond: "fifticent representation and processing of incomplete information, ICDE'07
 From complete to incomplete information and back, SIGMOD'07