西安电子科技大学

考试科目: 离 散 数 学
考试日期: <u>2010</u> 年 <u>12 月 2 日</u> 考试时间 <u>120</u> 分
考试方式: (开卷、闭卷) 任课教师
学生姓名: 学 号:
一、 填空题(每题3分,共15分)
1. 设 $S = \{\Phi, \{a\}\}$,则 $S \times \rho(S) =$,其
中 $\rho(S)$ 表示集合A的幂集. $\{a\}$ S, $(\in, \neq, \subseteq, \neq)$;
$\{(\{a\},\{a\})\} ___ S \times \rho(S) \ (\in , \notin , \subseteq , \not\subset)$
2. A={1, 2, 3, 4, 5, 6}, A 上二元关系
$T = \{(x,y) \mid x \div y \in \mathbb{R} \}$,则用列举法
T=;
T 的关系图为
•
;
T 具有 性质。
3. 设({a,b,c},*) 为代数系统, "*"的运算如下:

*	a	Ъ	С
a	a	b	С
Ъ	Ъ	a	С
С	С	С	С

则它的单位元素为; 零元素为;
a、b、c 的逆元分别为
4. P, Q 真值为 0; R, S 真值为 1.
$(P \land (R \lor S)) \rightarrow ((P \lor Q) \land (R \land S))$ 的真值
为
5. 命题"如果你不看电影,那么我也不看电影"(P: 你看电影,
Q: 我看电影)的符号化
二. 单项选择题(每题3分,共15分)
1. N 是自然数集,定义 $f: N \to N$, $f(x) = (x) \mod 3$ (即 x 除
以 3 的余数), f 是 ().
A、满射不是单射; B、单射不是满射; C、双射; D、不是单射
也不是满射。

2. 设 $A = \Phi$, $B = \{\Phi, \{\Phi\}\}$, 则B - A是().

 $A, \ \{\{\Phi\}\}; \qquad B, \ \{\Phi\}; \qquad C, \ \{\Phi, \{\Phi\}\}; \qquad D, \ \Phi$

3. 设 S={1, 2, 3}, R 为 S 上的关系, 其关系图为:

则R具有()的性质。

A 自反、对称、传递; B、什么性质也没有;

- C、反自反、反对称、传递; D、自反、对称、反对称、传递。
- 4. 在如下各图中()是欧拉图。

5. 下面哪个命题公式是重言式()。

- A. $(P \to Q) \land (Q \to R)$; B. $(P \land Q) \to P$;
- C, $(\neg P \lor Q) \land \neg (P \land \neg Q)$; D, $\neg (P \lor Q) \land P$.

三. (10 分) 集合 $A = \{1, 2, 3, 4\}$ 上的关系

 $R = \{ \langle 1, 1 \rangle, \langle 1, 3 \rangle, \langle 2, 2 \rangle, \langle 3, 3 \rangle, \langle 3, 1 \rangle, \langle 3, 4 \rangle, \langle 4, 3 \rangle, \langle 4, 4 \rangle \}$

写出关系矩阵 M_R , 画出关系图并讨论 R 的性质。

四.(10 分) 如下图所示的赋权图表示某七个城市 $\nu_1, \nu_2, \cdots, \nu_7$ 及预先算出它们之间的一些直接通信成路造价(单位:万元),试 给出一个设计方案,使得各城市之间既能够通信又使总造价最小并 计算其最小值.

五 (10分) 用范式方法判断公式 $(P \to Q) \land (P \to R)$ 与 $P \to Q \land R$ 是 否等价.

六. (15分) 有向图如下,

试求:

- 1. 每个节点的引入次数和引出次数;
- 2. 邻接矩阵和可达矩阵;
- 3. 判断其连通性;
- 4. 求从 a 到 c 的长度小于或等于 3 的连通路数.

七. (15 分) 集合 $C^* = \{a + bi \mid i^2 = -1, a, b$ 是任意实数, $a \neq 0\}$, C^* 上定义关系 $R = \{\langle a + bi, c + di \mid ac > 0\}$, 证明 R 是 C^* 上的一个等价关系,并给出 R 等价类的几何说明。

八. (10 分) 证明: 我夫人过生日, 我送一束鲜花给她, 除非我

工作很忙,	今天我没有送鲜花给夫人,	今天是夫人的生日,	由此是
否可推得:	"今天我很忙".		
	•		
,			

一 (15分)填空

$$S \times \rho(S) = \{(\Phi, \Phi), (\Phi, \{\Phi\}), (\Phi, \{a\}\}), (\Phi, \{\Phi, \{a\}\})\}$$

$$\{(a\}, \Phi), (\{a\}, \{\Phi\}), (\{a\}, \{\{a\}\}), (\{a\}, \{\Phi, \{a\}\})\}$$

- (2) $\{a\} \notin \rho(S), \{(\{a\}, \{a\})\} \not\subset S \times \rho(S)$
- 2. (1) $\{<2,1>,<3,1>,<5,1>,<4,2>,<6,2>,<6,3>\}$;

(2)

- (3)反对称性、反自反性
- 3. a, c, a、b、没有
- 4. 1.
- $5. \neg P \rightarrow \neg Q$.
- 二.(15分)单项选择题
 - 1(D) 2(C) 3(D) 4(b) 5(b)

三.(10分)

$$(1) \quad M_R = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

- (2) R 的关系图为
- (3) R 是自反、对称的。
- 四. (10 分) 答案解: 可以用库斯克(Kruskal) 算法求产生的最优 树。算法为:

结果如图:

树权 C(T)=23+1+4+9+3+17=57 (万元) 即为总造

五.(10分)

$$\begin{split} &(P \to Q) \land (P \to R) \Leftrightarrow (\neg P \lor Q) \land (\neg P \lor R) \\ &\Leftrightarrow ((\neg P \lor Q) \lor (R \land \neg R)) \land ((\neg P \lor R) \lor (Q \land \neg Q)) \\ &\Leftrightarrow (\neg P \lor Q \lor R) \land (\neg P \lor Q \lor \neg R) \land (\neg P \lor \neg Q \lor R) \\ &= M_{100} \land M_{101} \land M_{110} \\ &P \to Q \land R \Leftrightarrow \neg P \lor (Q \land R) \Leftrightarrow (\neg P \lor Q) \land (\neg P \lor R) \\ &\Leftrightarrow ((\neg P \lor Q) \lor (R \land \neg R)) \land ((\neg P \lor R) \lor (Q \land \neg Q)) \\ &\Leftrightarrow (\neg P \lor Q \lor R) \land (\neg P \lor Q \lor \neg R) \land (\neg P \lor \neg Q \lor R) \\ &\Leftrightarrow (\neg P \lor Q \lor R) \land (\neg P \lor Q \lor \neg R) \land (\neg P \lor Q \lor R) \\ &= M_{100} \land M_{101} \land M_{110} \end{split}$$

六.. (15分)

(1)	•					
		а	Ъ	С	d	е
	引出次	2	3	1	1	2

数			•	And the state of t	
引入次	1	1	4	2	1
数					

2

$$A(G) = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix} A^{2}(G) = \begin{pmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix} A^{3}(G) = \begin{pmatrix} 0 & 1 & 3 & 1 & 1 \\ 1 & 0 & 2 & 2 & 2 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$

$$A^{4}(G) = \begin{pmatrix} 1 & 0 & 3 & 2 & 3 \\ 0 & 1 & 5 & 2 & 2 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 2 & 1 & 1 \end{pmatrix} A^{5}(G) = \begin{pmatrix} 0 & 1 & 6 & 2 & 3 \\ 1 & 0 & 5 & 3 & 5 \\ 0 & 0 & 2 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 1 & 2 \end{pmatrix}$$

所以此图是单连通图

(4)

$$\mathbf{A} + \mathbf{A}^{2} + \mathbf{A}^{3} = \begin{bmatrix} 1 & 2 & 5 & 2 & 2 \\ 2 & 1 & 5 & 3 & 3 \\ 0 & 0 & 2 & 1 & 2 \\ 0 & 0 & 2 & 1 & 1 \\ 0 & 0 & 3 & 2 & 2 \end{bmatrix}$$

从 a 到 c 的长度小于或等于 3 的连通路数为 5.

七. (15分)证明:

- (1) 自反性: $\forall a + bi \in C^*(a \neq 0)$, aa > 0 $\therefore \langle a + bi, a + bi \rangle \in R$
- (2) 对称性: $\forall a+bi \in C^*, c+di \in C^*$ 且 $< a+bi, c+di > \in R, ac > 0$ $\Rightarrow ca > 0, ... < c+di, a+bi > \in R$ 。
- (3) 传递性: 若 $\forall a + bi \in C^*$, $c + di \in C^*$, $e + fi \in C^*$
- (5) R 两等价类: $\pi_1 = \{z \mid z = a + bi, a > 0\}$ 右半平面; $\pi_2 = \{z \mid z = a + bi, a < 0\}$ 左半平面。

八. (10 分)证明: 设 P:我夫人过生日 Q: 我送一束鲜花给她 R:

我工作很忙

$$\text{In} \frac{\neg (P \to Q) \to R,}{\neg Q \land P}$$

$$\overrightarrow{\text{III}} \neg (P \rightarrow Q) \rightarrow R = \neg (\neg P \lor Q) \rightarrow R$$

$$\neg Q \land P = P \land \neg Q$$

则由假言推理:

$$P \land \neg Q, \neg (\neg P \lor Q) \to R \mapsto R$$

故R成立。

西安电子科技大学

考试科目:		离散	(数学					
考试日期:年		月	日	考试时		120	- de montes	_分
考试方式: (开卷、	闭	卷)		任课教	牧师:			and a second of the second of
学生姓名:				学	号:			
一、 填空题(每空3	分,	共 15	分					
1. 设A= {{Φ, {Φ}}	}, [IJ A×	$\rho(\rho)$	$(\Phi))=$. ,
· 其中 ρ(A)表示集合 A 的	幂集	Ę.						
2. 设 $X = \{a,b,c\}$, X 上的关系 R 的关系矩阵是 $M_R = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$, 则								
$M_{R \circ R} =$		•						
	数系	统,*	* 运算	拿如下:				*
	*	a	Ъ	С				
	a	a	b	С				
	Ъ	Ъ	a	С				
	С	С	С	С				
	<u></u>							
则它的幺元为		_ ; ²	₹元ガ	Ŋ	· • • • • • • • • • • • • • • • • • • •			
a、b、c 的逆元分别为						*		

4. P, Q 真值为 0; R, S 真值为 1。

 $(P \land (R \lor S)) \rightarrow ((P \lor Q) \land (R \land S))$ 的真为 ______

5. 算式 $((a + (b*c)*d) \div (e*f)$ 的二叉树表示为

- 二. 单项选择题(每小题3分,共15分)
- 1. N 是自然数集,定义 $f: N \to N$, $f(x) = (x) \mod 3$ (即 x 除以 3 的 余数), f 是 ()
- A、满射不是单射; B、单射不是满射; C、双射; D、不是单射也不是满射。
- 2. 设 $A = \Phi$, $B = \{\Phi, \{\Phi\}\}$, 则B A是().
- A. $\{\{\Phi\}\}\ ;$ B, $\{\Phi\}\ ;$ C, $\{\Phi,\{\Phi\}\}\ ;$ D, Φ
- 3. 设 $S = \{1, 2, 3\}$, S上关系R的关系图为

则 R 具有() 性质.

亨达复解散数端试着旁即洋河书店内

- A. 自反性、对称性、传递性; B. 反自反性、反对称性;
- C. 反自反性、反对称性、传递性; D. 自反性
- 4. 一棵无向树 T 有 7 片树叶, 3 个 3 度顶点, 其余顶点均为 4 度。则 T 有

()4度结点.

A, 1; B, 2; C, 3; D, 4

5. 命题公式 $P \rightarrow (Q \lor P)$ 是()。

A、 矛盾式; B、可满足式; C、重言式; D、等价式

- 三. (10分). 设集合 A={a,b,c,d}上关系 R={<a,b>,<b,a>,<b, c>,<c,d>} 求
 - 1.写出 R 的关系矩阵和关系图.
 - 2.用矩阵运算求出 R 的对称闭包, 自反闭包, 传递闭包.
- 四.(10分)如下图所示的赋权图表示某七个城市_{ν1},ν₂,···,ν₇及预先算出它们之间的一些直接通信成路造价(单位:万元),试给出一个设计方案,使得各城市之间既能够通信又使总造价最小。

五. (10 分)用范式方法判断公式 $(P \to Q) \land (P \to R), P \to Q \land R$ 等价. (10 分)

六. (15分) 有向图

- 1.每个节点的引入次数和引出次数;
- 2.邻接矩阵和可达矩阵;
- 3.判断其连通性;
- 4.求从 V2 到 V4 的长度小于等于 3 的连通路数.
- 七. (15 分)设 $S = R \{-1\}$ (R 为实数集), a * b = a + b + ab。
 - 1.说明 < S,* > 是否构成群;
 - 2.在S中解方程2*x*3=7.
- 八. (10分)证明: 我夫人过生日, 我送一束鲜花给她, 除非我工作很
- 忙,今天我没有送鲜花给夫人,今天是夫人的生日,由此是否可推得:
 - "今天我很忙"

一. 填空题

答案1{({Φ, {Φ}}, Φ), ({Φ, {Φ}}, {Φ}) }.

答案; 2、
$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

答案 3: 、a, c, a、b、没有

答案 4: 1;

答案 5:

1(D)2(C)3(D)4(A)5(c)

三答案(15)

$$1, \quad M_R = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix};$$

关系图

2、对称,对称,传递闭包矩阵:

$$R_{R} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$S_R = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$M_{R^2} = M_R \circ M_R = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$M_{R^3} = M_{R^2} \circ M_R = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$M_{R^4} = M_{R^3} \circ M_R = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} = M_{R^2} \quad M_{R^5} = M_{R^3} , M_{R^6} = M_{R^4} , \cdots$$

$$M_{\iota(R)} = M_R + M_{R^2} + M_{R^3} + M_{R^4} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

四 (10) 答案解: 用库斯克 (Kruskal) 算法求产生的最优树。算法为:

结果如图:

树权 C(T)=23+1+4+9+3+17=57(万元)即为总造 五(10)

$$(P \to Q) \land (P \to R) \Leftrightarrow (\neg P \lor Q) \land (\neg P \lor R)$$

$$\Leftrightarrow ((\neg P \lor Q) \lor (R \land \neg R)) \land ((\neg P \lor R) \lor (Q \land \neg Q))$$

$$\Leftrightarrow (\neg P \lor Q \lor R) \land (\neg P \lor Q \lor \neg R) \land (\neg P \lor \neg Q \lor R)$$

$$= M_{100} \land M_{101} \land M_{110}$$

$$\Re: P \to Q \land R \Leftrightarrow \neg P \lor (Q \land R) \Leftrightarrow (\neg P \lor Q) \land (\neg P \lor R)$$

$$\Leftrightarrow ((\neg P \lor Q) \lor (R \land \neg R)) \land ((\neg P \lor R) \lor (Q \land \neg Q))$$

$$\Leftrightarrow (\neg P \lor Q \lor R) \land (\neg P \lor Q \lor \neg R) \land (\neg P \lor \neg Q \lor R)$$

$$\Leftrightarrow (\neg P \lor Q \lor R) \land (\neg P \lor Q \lor \neg R) \land (\neg P \lor Q \lor R)$$

$$= M_{100} \land M_{101} \land M_{110}$$

六(15)

(1)

	V1	V2	V3	V4	V5
引出	0	3	1	1	0
次数					
引入	2	0	2	1	0
次数					·

(2)

可达矩阵
$$P = A \lor A^2 \lor A^3 \lor A^4 =$$

$$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$A(+)A^{T} = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

所以此图是非连通图。

则 V2 到 V4 长度为 1 的通路个数为 1,长度为 2 的为 1,长度为 3 的为 1。

七

解: (1) 1) $\forall a,b \in S$ 易证 $a*b=a+b+ab \in S$, 即运算*是封闭的。

2) $\forall a,b,c \in S$

$$(a*b)*c = (a+b+ab)*c = a+b+ab+c+(a+b+ab)c$$
$$= a+b+c+ab+ac+bc+abc,$$

而

$$a*(b*c) = a*(b+c+bc) = a+(b+c+bc)+a(b+c+bc)$$

= $a+b+c+bc+ab+ac+abc$,

- (a*b)*c = a*(b*c), 即*可结合。
- 3) 设 S 关于*有幺元 e, 则 $\forall a \in S$, e*a=a*e=a.

$$\overline{\mathbb{m}} \ a*e = e*a = a+e+ea = a \,, \quad \therefore \ e=0 \,.$$

4) $\forall a \in S$ 设有逆元 \dot{a}^{-1} 。则 $a*a^{-1} = a^{-1}*a = e$,

即
$$a + a^{-1} + aa^{-1} = 0$$
, ... $a^{-1} = \frac{-a}{1+a}$, 即 S 中任意元都有逆元, 综上得

出, < S,* > 构成群。

(2) $\pm 2 * x * 3 = 2 + x + 3 + 2x + 3x + 6 + 6x = 12x + 11 = 7$,

$$\therefore \quad x = -\frac{1}{3}.$$

(1) 说明 < S, * > 是否构成群;

(2) 在S中解方程2*x*3=7。

解: (1) 1) $\forall a,b \in S$ 易证 $a*b=a+b+ab \in S$, 即运算*是封闭的。

2) $\forall a,b,c \in S$

$$(a*b)*c = (a+b+ab)*c = a+b+ab+c+(a+b+ab)c$$
$$= a+b+c+ab+ac+bc+abc,$$

而

$$a*(b*c) = a*(b+c+bc) = a+(b+c+bc) + a(b+c+bc)$$

= $a+b+c+bc+ab+ac+abc$,

- \therefore (a*b)*c = a*(b*c), 即*可结合。
- 3) 设 S 关丁*有幺元 e, 则 $\forall a \in S$, e * a = a * e = a。

$$\overline{m} \ a * e = e * a = a + e + ea = a$$
, $\therefore e = 0$.

4) $\forall a \in S$ 设有逆元 a^{-1} 。则 $a*a^{-1} = a^{-1}*a = e$,

即
$$a + a^{-1} + aa^{-1} = 0$$
, \therefore $a^{-1} = \frac{-a}{1+a}$, 即 S 中任意元都有逆元,综上得

出, < S,* > 构成群。

(2)
$$\text{th } 2 * x * 3 = 2 + x + 3 + 2x + 3x + 6 + 6x = 12x + 11 = 7$$
,

$$\therefore x = -\frac{1}{3}$$

1

证明: 设 P:我夫人过生日 Q: 我送一束鲜花给她 R:我工作很忙

$$\downarrow | \neg (P \to Q) \to R,$$

$$\neg Q \land P$$

$$\overline{m} \neg (P \to Q) \to R = \neg (\neg P \lor Q) \to R$$
$$\neg Q \land P = P \land \neg Q$$

则由假言推理:

$$P \land \neg Q, \neg (\neg P \lor Q) \to R \mapsto R$$

故R成立。

离散数学试题与答案试卷一

一、填空 20% (每小题 2 分)

- 1. 设 $A = \{x \mid (x \in N) \perp (x < 5)\}, B = \{x \mid x \in E^+ \perp x < 7\}$ (N. 白然数集, E⁺ 正偶数) 则 $A \cup B =$ _______。
- 2. A, B, C表示三个集合, 文图中阴影部分的集合表达式为

3. 设 P, Q 的真值为 0, R, S 的真值为 1, 则 $\neg (P \lor (Q \to (R \land \neg P))) \to (R \lor \neg S)$ 的真值=

4. 公式 $(P \land R) \lor (S \land R) \lor \neg P$ 的主合取范式为

- 5. 岩解释 I 的论域 D 仅包含一个元素,则 $\exists x P(x) \to \forall x P(x)$ 在 I 下真值为
 - 6. 设 A={1, 2, 3, 4}, A 上关系图为

则 $R^2 =$

7. 设 A={a, b, c, d}, 其上偏序关系 R 的哈斯图为

则 R=

8. 图

的补图为

9. 设 A={a, b, c, d}, A 上二元运算如下:

非	а	Ъ	С	d
a	a	b	С	d
ь	ь	С	d	a
С	c ,	d	a	b
d	d	a	b	С

那么代数系统<A,*>的幺元是 _____,有逆元的元素为_____,它们的

逆	76	4	놰	45
12	ノレ	フリ	フフリ	ノソ

10. 下图所示的偏序集中,是格的为 ____

二、选择 20% (每小题 2分)

- 1、下列是真命题的有()
- Α.
- $\{a\} \subseteq \{\{a\}\}\$ B. $\{\{\Phi\}\} \in \{\Phi, \{\Phi\}\}\$.
- C. $\Phi \in \{\{\Phi\}, \Phi\}$.
- $\mathsf{D}.\quad \{\Phi\}\in \{\{\Phi\}\}\ ,$
- 2、下列集合中相等的有(
 - A. $\{4, 3\} \cup \Phi$; B. $\{\Phi, 3, 4\}$; C. $\{4, \Phi, 3, 3\}$; D. $\{3, 4\}$.
- 3、设 A={1, 2, 3},则 A 上的二元关系有()个。

- A. 2^3 ; B. 3^2 ; C. $2^{3\times3}$; D. $3^{2\times2}$.
- 4、设 R, S 是集合 A 上的关系,则下列说法正确的是()
 - A. 若 R, S 是自反的, 则 $R \circ S$ 是自反的;
 - B. 若 R, S 是反自反的, 则 $R \circ S$ 是反自反的;
 - C. 若 R, S 是对称的, 则 $R \circ S$ 是对称的;
 - D. 若 R, S 是传递的, 则 $R \circ S$ 是传递的。

5、设 A={1, 2, 3, 4}, P(A)(A 的幂集)上规定二元系如下

 $R = \{ \langle s, t \rangle | s, t \in p(A) \land (|s| = |t|) \text{ for } P(A) / R = ($

- A. A; B. P(A); C. $\{\{\{1\}\}, \{\{1, 2\}\}, \{\{1, 2, 3\}\}, \{\{1, 2, 3, 4\}\}\};$
- D. $\{\{\Phi\}, \{2\}, \{2, 3\}, \{\{2, 3, 4\}\}, \{A\}\}$
- 6、设 A={Φ, {1}, {1, 3}, {1, 2, 3}}则 A 上包含关系"⊆"的哈斯图为()

- 7、下列函数是双射的为(
- A. $f: I \rightarrow E$, f(x) = 2x; B. $f: N \rightarrow N \times N$, $f(n) = \langle n, n+1 \rangle$;
- C. $f: R \rightarrow I$, f(x) = [x]; D. $f: I \rightarrow N$, f(x) = |x|.

(注: I─整数集, E─偶数集, N-白然数集, R-实数集)

8、图 中 从 v₁ 到 v₃ 长度为 3 的通路有 () 条。

- A. 0; B. 1; C. 2; D. 3
- 9、下图中既不是 Eular 图, 也不是 Hamilton 图的图是 (. .)

- 10、在一棵树中有7片树叶,3个3度结点,其余都是4度结点则该树有()个4度结点。
 - A. 1; B. 2; C. 3; D. 4 .

三、证明 26%

- 1、R 是集合 X 上的一个自反关系, 求证: R 是对称和传递的, 当且仅当 < a, b> 和 < a, c> 在 R 中有 < .b, c> 在 R 中。(8 分)
- 2、f和g 都是群< G_1 ,★>到< G_2 *>的同态映射,证明<C,★>是< G_1 ,★>的一个子 群。其中 $C=\{x \mid x \in G_1 \Box f(x) = g(x)\}$ (8分)
- 3 、G=<V, E> (|V| = v,|E| = e)是每一个面至少由 k(k≥3)条边围成的连通平面 $e \le \frac{k(v-2)}{k-2}$,由此证明彼得森图(Peterson)图是非平面图。(11 分)

四、逻辑推演 16%

用 CP 规则证明下题 (每小题 8 分)

- $A \lor B \to C \land D, D \lor E \to F \Rightarrow A \to F$
- $2 \forall x (P(x) \to Q(x)) \Rightarrow \forall x P(x) \to \forall x Q(x)$

五、计算 18%

- 1、设集合 A={a, b, c, d}上的关系 R={<a,b>,<b,a>,<b,c>,<c,d>}用矩阵运算 求出 R 的传递闭包 t (R)。 (9 分)
- 2、如下图所示的赋权图表示某七个城市 $\nu_1, \nu_2, \dots, \nu_7$ 及预先算出它们之间的一些直接通信线路造价,试给出一个设计方案,使得各城市之间能够通信而且总造价最小。 (9分)

试卷一答案:

一、填空 20% (每小题 2 分)

1、{0, 1, 2, 3, 4, 6}; 2、 $(B \oplus C) - A$; 3、1; 4、 $(\neg P \lor S \lor R) \land (\neg P \lor \neg S \lor R)$; 5、1; 6、{<1,1>, <1,3>, <2,2>, <2,4>}; 7、{<a.b>,<a,c>,<a,d>,<b,d>,<c,d>} \cup IA ; 8、

9, a; a,b,c,d; a,d,c,d; 10, c;

二、选择 20% (每小题 2分)

题日	1	2	3	4	5	6	7	8	9	10
答案	C D	B、C	С	A	.D	С	A	D.	В	А

三、证明 26%

1、证:

" ⇒ " $\forall a,b,c \in X$ 指 < a,b >,< a,c > \in R 由 R 对 称 性 知 < b,a >,< c,a > \in R,由 R 传递性得 < b,c > \in R

" \leftarrow " 岩 < a, b > \in R , < a, c > \in R 有 < b, c > \in R 任意 $a,b\in X$,因 < a, a > \in R 岩 < a, b > \in R . . < b, a > \in R 所以 R 是对称的。

 $z < a,b > \in R$, $z < b,c > \in R$ 则 $z < b,c > \in R$ 之 $z < a,c > \in R$ 即 R 是传递的。

2、证
$$\forall a,b \in C$$
 , 有 $f(a) = g(a), f(b) = g(b)$, χ
$$f(b^{-1}) = f^{-1}(b), \quad g(b^{-1}) = g^{-1}(b) \therefore f(b^{-1}) = f^{-1}(b) = g^{-1}(b) = g(b^{-1})$$

$$\therefore f(a + b^{-1}) = f(a) * f^{-1}(b) = g(a) * g(b^{-1}) = g(a + b^{-1})$$

$$\therefore a + b^{-1} \in C \qquad \therefore < C, \; +> \; \pounds < G_1, \; +>$$
的子群。

3、证:

①设 G 有 r 个面,则
$$2e = \sum_{i=1}^r d(F_i) \ge rk \qquad r \le \frac{2e}{k} \ \ \text{on} \quad v-e+r=2$$
 故

$$2 = \nu - e + r \le \nu - e + \frac{2e}{k}$$
 即得
$$e \le \frac{k(\nu - 2)}{k - 2}$$
 。(8分)

②彼得森图为
$$k=5, e=15, \nu=10$$
, 这样 $e \le \frac{k(\nu-2)}{k-2}$ 不成立,

所以彼得森图非平面图。(3分)

二、逻辑推演 16%

1、证明:

(1) A

- P (附加前提)
- $\bigcirc A \lor B$
- T(1)I
- P
- 4 $C \wedge D$
- T23I

(5) D

- T4I
- $\textcircled{6} \ D \vee E$
- T⑤I
- $\textcircled{7} \, D \vee E \to F$
- P
- $\otimes F$
- T671
- CP

2、证明

- \bigcirc $\forall x P(x)$
- P (附加前提)

 $^{\circ}P(c)$

- US(1)
- $\exists \forall x (P(x) \to Q(x))$
- P
- $_{\textcircled{4}}P(c)\rightarrow Q(c)$
- US(3)

 $\odot Q(c)$

T241

$$\bigcirc$$
 ∀xQ(x)

UG(5)

$$\forall x P(x) \to \forall x Q(x)$$

三、计算 18%

1、解:

$$M_{R} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad M_{R^{2}} = M_{R} \circ M_{R} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$M_{R^3} = M_{R^2} \circ M_R = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$M_{R^4} = M_{R^3} \circ M_R = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$M_{I(R)} = M_R + M_{R^2} + M_{R^3} + M_{R^4} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\therefore t(R) = \{ \langle a, a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, d \rangle, \langle b, a \rangle, \langle b, b \rangle, \langle b, c \rangle, \\ \langle b, d \rangle, \langle c, d \rangle \}$$

2、解: 用库斯克 (Kruskal) 算法求产生的最优树。算法略。结果如图:

树权 C(T)=23+1+4+9+3+17=57 即为总造价。

壮	类	 试	顋	与	恷	玄
44	42	 W	凡乙			シベ

一、力	填空 20	% (每小局	返2分)					
1,	P: 你努	引,Q:你外	·败。"除非·	你努力,否	5则你将失败	τ"的翻译为	J	
			;"虽然	你努力了,	但还是失败	て了"的翻译	多为	
2,	论域 D=	={1, 2}, 指5	三谓词 P			_		
		P(1,1)	P (1,2)	P (2,1)	P (2,2)	_		
		Т	T	F	F	_		
	则公式 ∀	$x\exists y P(y,x)$ \sharp	〔值为			_ °		
2.	设 S={a	a ₁ , a ₂ ,,	ag}, B¡是;	S 的子集, 	则由 B31 所	表达的子集: - 。	足	
3、	设 A=	{2, 3, 4, 5	5,6}上的	二元关系	$R = \{ < x, y$	$> \mid x < y \lor x$	是质数},则	IJ R=
						(Xi)	J举法)。	
	D '的关系	 矩阵 M _R =					1-1-17)	
	なってい ハ	KAEP+ IVIR						
							0	
5	、 设 <i>A</i>	<u>-</u> {1, 2,	3},则。	4 上既	不是对称	的又不是	反对称的	关 系
	R= _			;	A 上既是	上对称的又	是反对称的	关系
	R= _			. 0				
			6	、设代数系	<统 <a, *="">,</a,>	其中 A={a	, b, c},	
*	a	b с	-					
a	a	b c						
b	b	ь с	贝	1 幺 元 是			_ ; 是否有	幂等
С	С	c b	性 _	; 是	否有对称性			
7 .	、4 阶群	必是		拌或		_ 群。		
8.	、下面偏	序格是分配格	务的是		, ,			

- 9、n 个结点的无向完全图 K_n的边数为 ______
- 欧拉图的充要条件是
- 10、公式 $(P \lor (\neg P \land Q)) \land ((\neg P \lor Q) \land \neg R)$ 的根树表示为

二、选择 20% (每小题 2 分)

1、在下述公式中是重言式为(

$$_{\mathsf{A.}} \ (P \land Q) \rightarrow (P \lor Q) \; ; \; \; _{\mathsf{B.}} \ \ (P \leftrightarrow Q) \leftrightarrow ((P \rightarrow Q) \land (Q \rightarrow P)) \; ;$$

- C. $\neg (P \rightarrow Q) \land Q$; D. $P \rightarrow (P \lor Q)$.
- 2、命题公式 $(\neg P \to Q) \to (\neg Q \lor P)$ 中极小项的个数为 (),成真赋值的个数 为()。
- A. 0; B. 1; C. 2; D. 3 .
- 3、设 $S = \{\Phi, \{1\}, \{1,2\}\}$,则 2^s 有 () 个元素。

- A. 3; B. 6; C. 7; D. 8 .

 $_{4}$ 、设 $S = \{1, 2, 3\}$, 定义 $S \times S$ 上的等价关系

 $R = \{ << a, b>, < c, d> | < a, b> \in S \times S, < c, d> \in S \times S, a+d=b+c \}$ 则由 R 产 生

- 的 $S \times S$ 上一个划分共有 () 个分块。

- A. 4; B. 5; C. 6; D. 9.

 $S = \{1, 2, 3\}$, $S \perp \times$ $X \in \mathbb{R}$ 的关系图为

则 R 具有()性质。

- A. 自反性、对称性、传递性;
- C. 反自反性、反对称性、传递性; D. 自反性。
- 6、设 +,° 为普通加法和乘法,则(

$$S = \{x \mid x = a + b\sqrt{3}, a, b \in Q\}$$
 $B : S = \{x \mid x = 2n, a, b \in Z\}$

- C. $S = \{x \mid x = 2n + 1, n \in Z\}$

7、下面偏序集()能构成格。

)<S,+,º>是域。

B. 反自反性、反对称性;

- D. $S = \{x \mid x \in Z \land x \ge 0\} = N$.

8、在如下的有向图中,从 V₁ 到 V₄ 长度为 3 的道路有(

) 条。

- A. 1;
- B. 2;
- C. 3;
- D. 4 .
- 9、在如下各图中()欧拉图。

10.

设 R 是实数集合,"×"为普通乘法,则代数系统<R , ×> 是(),

- A. 群; B. 独异点; C. 半群。

三、证明 46%

1、设R是A上一个二元关系,

 $S = \{ \langle a,b \rangle | (a,b \in A) \land ($ 对于某一个 $c \in A$,有 $\langle a,c \rangle \in R$ 且 $\langle c,b \rangle \in R$)} 试证明者 $R \neq A$ 上一个等价关系,则 S 也是 A 上的一个等价关系。(9分)

2、 用逻辑推理证明:

所有的舞蹈者都很有风度,王华是个学生且是个舞蹈者。因此有些学生很有风度。 (11 分)

- 3、 若 $f:A \to B$ 是从 A 到 B 的函数,定义一个函数 $g:B \to 2^A$ 对任意 $b \in B$ 有 $g(b) = \{x \mid (x \in A) \land (f(x) = b)\}$,证明: 若 f 是 A 到 B 的满射,则 g 是从 B 到 2^A 的单射。(10 分)
- 4、 若无向图 G 中只有两个奇数度结点,则这两个结点一定连通。(8分)
- $m=\frac{1}{2}(n-1)(n-2)+2$ 5、设 G 是具有 n 个结点的无向简单图,其边数 $=\frac{1}{2}(n-1)(n-2)+2$,则 G 是 Hamilton 图(8 分)

四、计算 14%

- 1、设< Z_6 ,+ $_6$ >是一个群,这里+ $_6$ 是模 6 加法, Z_6 ={[0],[1],[2],[3],[4],[5]}, 试求出< Z_6 ,+ $_6$ >的所有子群及其相应左陪集。(7分)
- 2. 权数 1, 4, 9, 16, 25, 36, 49, 64, 81, 100 构造一棵最优三义树。(7分)

试卷二答案:

一、 填空 20% (每小题 2分)

$$\begin{pmatrix}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

6、a; 否; 有

3>,<5,4>,<5,5>,<5,6>} : R={<1,1>,<2,2>,<3,3>} ⁽⁾ 5 、 R={<1,2>,<1,3>,<2,1>} ; 7、Klein 四元群;循环群 8、 B 9、

 $\frac{1}{2}$ n(n-1) ; 图中无奇度结点且连通 10 、

二、 选择 20% (每小题 2分)

[题目	1	2	3 .	4	5	6	7' '	8	9	10
	答案	B, D	D; D	D	В	D	A	В	В	В	В、С

三、 证明 46%

1、(9分)

(1) S 白反的

 $\forall a \in A$, $\oplus R$ $\bigcirc \not \sqsubseteq$, $\therefore (\langle a, a \rangle \in R) \land (\langle a, a \rangle \in R)$, $\therefore \langle a, a \rangle \in S$

(2) S对称的

 $\forall a, b \in A$

$$< a,b> \in S \Rightarrow (< a,c> \in R) \land (< c,b> \in R)$$
 …S 定义
$$\Rightarrow (< a,c> \in R) \land (< c,b> \in R)$$
 …R 对称
$$\Rightarrow < b,a> \in S$$
 …R 传递

(3) S传递的

 $\forall a, b, c \in A$

 $\langle a, b \rangle \in S \land \langle b, c \rangle \in S$

$$\Rightarrow$$
 $(\langle a, d \rangle \in R) \land (\langle d, b \rangle \in R) \land (\langle b, e \rangle \in R) \land (\langle e, c \rangle \in R)$

$$\Rightarrow (\langle a, b \rangle \in R) \land (\langle b, c \rangle \in R)$$

...R 传递

 $\Rightarrow \langle a, c \rangle \in S$

...s 定义

由(1)、(2)、(3)得; S是等价关系。

2、11分

证明,设 P(x):x 是个舞蹈者; Q(x):x 很有风度; S(x):x 是个学生; a: 王华

上述句子符号化为:

前提: $\forall x(P(x) \to Q(x))$ 、 $S(a) \land P(a)$ 结论: $\exists x(S(x) \land Q(x))$ 3 分

 $\bigcirc S(a) \wedge P(a)$

Р

 $\bigcirc \forall x (P(x) \to Q(x))$

P

 $_{\scriptsize{\textcircled{3}}}P(a) \rightarrow Q(a)$

US②

 $\bigcirc P(a)$

T(1)I

 $\mathfrak{G}Q(a)$.

T34I

 $\mathfrak{S}(a)$

T(1)I

 $\Im S(a) \wedge Q(a)$

T(5)(6) I

 $\mathfrak{B} \exists x (S(x) \land Q(x))$

EG(7)

----11 分

3、10分

证明: $\forall b_1, b_2 \in B, (b_1 \neq b_2) :: f 满射 :: \exists a_1, a_2 \in A$

使 $f(a_1) = b_1, f(a_2) = b_2, 且 f(a_1) \neq f(a_2),$ 由于f是函数, $\therefore a_1 \neq a_2$

 $\nabla g(b_1) = \{x \mid (x \in A) \land (f(x) = b_1)\}, \quad g(b_2) = \{x \mid (x \in A) \land (f(x) = b_2)\}$

 $\therefore \ a_1 \in g(b_1), a_2 \in g(b_2) \ \ \boxminus \ a_1 \notin g(b_2), a_2 \notin g(b_1) \ \therefore g(b_1) \neq g(b_2)$

由b,,b,任意性知, g为单射。

4、8分

证明:设 G 中两奇数度结点分别为 u 和 v,若 u,v 不连通,则 G 至少有两个连通分支 G_1 、 G_2 ,使得 u 和 v 分别属于 G_1 和 G_2 ,于是 G_1 和 G_2 中各含有 1 个奇数度结点,这与图论基本定理矛盾,因而 u,v 一定连通。

5、8分

证明: 证 G 中任何两结点之和不小于 n。

反证法: 若存在两结点 u, v 不相邻且 $d(u) + d(v) \le n - 1$,令 $V_1 = \{u, v\}$,则 G-V₁

 $m' \ge \frac{1}{2}(n-1)(n-2) + 2 - (n-1)$ 是具有 n-2 个结点的简单图,它的边数 ,可得

 $m \ge \frac{1}{2}(n-2)(n-3)+1$, 这与 G_1 = G_1 - G_2 个结点为简单图的题设矛盾,因而 G_3 中任何两个相邻的结点度数和不少于 G_4 n。

所以 G 为 Hamilton 图.

四、 计算 14%

1、7分

解: 子粹有<{[0]},+6>: <{[0],[3]},+6>; <{[0],[2],[4]},+6>; <{Z6},+6>

{[0]}的左陪集: {[0]}, {[1]}; {[2]}, {[3]}; {[4]}, {[5]}

{[0], [3]}的左陪集: {[0], [3]}; {[1], [4]}; {[2], [5]}

{[0], [2], [4]}的左陪集: {[0], [2], [4]}; {[1], [3], [5]}

Z₆的左陪集: Z₆。

2、7分

