Ideias Gerais de Endereços IP - IPV4

Classe	Começo do Octeto	Intervalo	Máscara de Subrede	Função
A	0	1 - 126	255.0.0.0	poucas redes, muito grandes
В	10	128 - 191	255.255.0.0	mais redes, de tamanho médio
С	110	192 - 223	255.255.255.0	muitas redes, de pequeno tamanho
D	1110	224 - 239		multicast (método de comunicação)
E	11111	240 - 255		pesquisa e experimentação

127.0.0.0 —> Localhost

Transformando Octetos Binários nas Trincas

128	64	32	16	8	4	2	1	Resultado
0	1	1	0	1	1	0	0	01101100 => 108
1	0	0	0	1	1	1	1	10001111 => 143
1	1	0	0	0	0	0	0	11000000 => 192

Nome da Rede e BroadCast - Endereços Reservados

1. Nome da Rede (Endereço de Rede)

• O que é?

É o primeiro endereço de uma rede ou sub-rede. Ele identifica a própria rede, não um dispositivo específico.

• Exemplo:

Em um host 192.168.1.100/24, o endereço de rede é 192.168.1.0.

• Por que é reservado?

Porque ele serve para representar a identidade da rede. Ele não pode ser atribuído a nenhum host, pois é usado pelos dispositivos e roteadores para saber a qual rede um IP pertence.

2. Endereço de Broadcast

O que é?

É o último endereço de uma sub-rede. Usado para enviar mensagens para todos os dispositivos daquela rede ao mesmo tempo.

• Exemplo:

Em um host 192.168.1.100/24, o broadcast é 192.168.1.255.

• Por que é reservado?

Porque ele é usado para comunicação simultânea com todos os hosts da rede. Também não pode ser atribuído a nenhum host.

Máscara e CIDR

1. Máscara de Sub-rede

• O que é?

A máscara de sub-rede (subnet mask) define qual parte do endereço IP representa a rede e qual parte representa os hosts.

Exemplo:

IP: 192.168.1.10

Máscara: 255.255.255.0 = 11111111.11111111.11111111.00000000 → Isso indica que os primeiros 24 bits são da rede (192.168.1) e os últimos 8 bits são para hosts.

Formato tradicional:

Decimal separado por pontos (ex: 255.255.255.0)

2. CIDR (Classless Inter-Domain Routing)

• O que é?

Uma forma mais moderna e flexível de representar a máscara. Indica quantos bits pertencem à parte de rede do IP.

Indica o número de "1" presente na junção dos 4 octetos da máscara, importante para determinar subredes.

Exemplo:

192.168.1.0/24

 \rightarrow O /24 indica que os primeiros 24 bits são da rede (equivale a 255.255.255.0)

Subredes

1. Resumo:

Sub-redes são divisões menores de uma rede maior.

A técnica de subnetting permite dividir uma rede IP em partes menores, chamadas de sub-redes, cada uma funcionando como uma rede independente.

2. Motivação:

As subredes são criadas muitas vezes no intuito de organizar setores, como por exemplo de uma empresa maior, dividindo a parte de administração, vendas, TI, etc.

3. Como identificar uma subrede:

É possível identificar a presença de subredes caso a máscara ou o CIDR estejam diferentes dos padrões correspondentes a sua classe.

Padrões:

Classe	Máscara	CIDR
А	255.0.0.0	/8
В	255.255.0.0	/16
С	255.255.255.0	/24

Por exemplo, se uma rede apresentar a seguinte nomeação: 192.168.0.0/25, esse CIDR mostrará que se trata de uma subrede.

Se uma rede apresentar a nomeação 192.168.0.0 e a máscara 255.255.255.128, se tratará da mesma configuração de subrede.

4. Como funciona uma subrede:

Uma subrede divide a rede principal em x partes, dependendo do seu CIDR e Máscara de subrede.

192.168.0.0/25 = 255.255.255.128

Esse um bit a mais do CIDR fez aumentar o último octeto da máscara, que passou de **00000000** para **100000000**, recebendo o valor de 128.

Para determinar o número total de subredes, primeiro determinamos o salto da subrede, quantos endereços são direcionados pra cada. Para calcular o salto fazemos SEMPRE:

Salto = 256 - (último octeto da máscara)

Se usarmos como exemplo a máscara 255.255.255.128, o salto será igual a 256 - 128, logo salto = 128. Isso significa que cada subrede tem um total de 128 endereços, desconsiderando broadcast e nome da rede.

Agora para determinarmos o número total de subredes, pegamos o total (256) e dividimos pelo número do salto. Logo no nosso exemplo ficaria 256/128 = 2. A nossa rede foi dividida em DUAS subredes, cada uma comportando 128 endereços. Elas apresentarão os seguintes intervalos:

Subrede1 = 192.168.0.0 - 192.168.0.127 Subrede2 = 192.168.0.128 - 192.168.0.255 Porém não podemos desconsiderar o nome da rede e broadcast de cada uma das duas subredes:

	Nome da rede	Broadcast
Subrede1	192.168.0.0	192.168.0.127
Subrede2	192.168.0.128	192.168.0.255

5. Mais exemplos:

192.168.0.0/27, máscara igual = 255.255.255.224.

Salto = 256 - 224, salto = 32.

Número de subredes = 256/32, n = 8.

	Nome da rede	Broadcast
Subrede1	192.168.0.0	192.168.0.31
Subrede2	192.168.0.32	192.168.0.63
Subrede3	192.168.0.64	192.168.0.95
Subrede4	192.168.0.96	192.168.0.127
Subrede5	192.168.0.128	192.168.0.159
Subrede6	192.168.0.160	192.168.0.191
Subrede7	192.168.0.192	192.168.0.221
Subrede8	192.168.0.224	192.168.0.255