# Deep Learning

## **Hierarchy of Learning**

Al includes many types of intelligence Artificial Intelligence (AI) demonstrated by machines: cybernetics, symbolic, statistical learning ML can... Machine Learning (ML) Uncover structure in data (unsupervised) Make predictions (supervised) Learn by doing (reinforcement) Deep Learning (DL) DL is a type of ML that makes use of recent advances in computation to learn hierarchical representation of data

### **Types of Deep Learning Tools**

Autoencoders

Convolutional Neural Networks

Recurrent Neural Networks (including LSTMs)

Generative Adversarial Networks (GANs)



Azimov Institute: http://www.asimovinstitute.org/neural-network-zoo/

#### Autoencoders



Image from: https://www.jeremyjordan.me/autoencoders/

### **Convolutional Neural Networks**

#### **AlexNet**



Input

11x11 conv, 96

5x5 conv, 256

max pool

3x3 conv, 384

max pool

3x3 conv, 384

3x3 conv, 256

max pool

FC 4096

FC 4096

FC 1000

softmax

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems. 2012.



#### **Convolutional Neural Networks**





Image from the Mathworks

| : <b>x</b> |                  |                                                                             |                                                                                               |                                                                                                                             | _                                                                                                                                                                                                         | Weig                                                                                                                                                      | ghts: v                                                                                                                                                                                                   | V                                                                                                                                                                                                         | _                                                                                                                                                         | Outp                                                                                                                                                      | ut: <b>x</b> >                                         | * <b>W</b>                                             |                                                        |
|------------|------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| 2          | 5                | 1                                                                           | 4                                                                                             | 2                                                                                                                           |                                                                                                                                                                                                           | 1                                                                                                                                                         | 1                                                                                                                                                                                                         | 1                                                                                                                                                                                                         |                                                                                                                                                           |                                                                                                                                                           |                                                        |                                                        |                                                        |
| 2          | 3                | 2                                                                           | 0                                                                                             | 0                                                                                                                           | *                                                                                                                                                                                                         | O                                                                                                                                                         | O                                                                                                                                                                                                         | 0                                                                                                                                                                                                         | =                                                                                                                                                         |                                                                                                                                                           |                                                        |                                                        |                                                        |
| 5          | 5                | 9                                                                           | 8                                                                                             | 1                                                                                                                           |                                                                                                                                                                                                           | -1                                                                                                                                                        | -1                                                                                                                                                                                                        | -1                                                                                                                                                                                                        |                                                                                                                                                           |                                                                                                                                                           |                                                        |                                                        |                                                        |
| 3          | 4                | 2                                                                           | 3                                                                                             | 1                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                                           |                                                                                                                                                           |                                                        |                                                        |                                                        |
| 1          | 9                | 8                                                                           | 7                                                                                             | 2                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                                           |                                                                                                                                                           | •                                                      | •                                                      |                                                        |
| 3          | 5                | 5                                                                           | 5                                                                                             | 6                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                                           |                                                                                                                                                           |                                                        |                                                        |                                                        |
|            | 2<br>2<br>5<br>3 | <ul> <li>2 5</li> <li>2 3</li> <li>5 5</li> <li>3 4</li> <li>1 9</li> </ul> | 2     5     1       2     3     2       5     5     9       3     4     2       1     9     8 | 2     5     1     4       2     3     2     0       5     5     9     8       3     4     2     3       1     9     8     7 | 2       5       1       4       2         2       3       2       0       0         5       5       9       8       1         3       4       2       3       1         1       9       8       7       2 | 2     5     1     4     2       2     3     2     0     0       5     5     9     8     1       3     4     2     3     1       1     9     8     7     2 | 2       5       1       4       2         2       3       2       0       0         5       5       9       8       1         3       4       2       3       1         1       9       8       7       2 | 2       5       1       4       2         2       3       2       0       0         5       5       9       8       1         3       4       2       3       1         1       9       8       7       2 | 2     5     1     4     2       2     3     2     0     0       5     5     9     8     1       3     4     2     3     1       1     9     8     7     2 | 2     5     1     4     2       2     3     2     0     0       5     5     9     8     1       3     4     2     3     1       1     9     8     7     2 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

| Data: | x |   |   |   |   |
|-------|---|---|---|---|---|
| 1     | 2 | 5 | 1 | 4 | 2 |
| 0     | 2 | 3 | 2 | 0 | 0 |
| 4     | 5 | 5 | 9 | 8 | 1 |
| 6     | 3 | 4 | 2 | 3 | 1 |
| 0     | 1 | 9 | 8 | 7 | 2 |
| 2     | 3 | 5 | 5 | 5 | 6 |

| Weig | jhts: и | 7 |
|------|---------|---|
| 1    | 1       | 1 |
|      |         |   |

0.0

Output: x \* w

Computing  $1 \cdot 1 + 1 \cdot 2 + 1 \cdot 5$ one output value:

+ 0.2

$$(-1)\cdot 4 + (-1)\cdot 5 + (-1)\cdot 5$$

| Data: | x |   |   |   |   |
|-------|---|---|---|---|---|
| 1     | 2 | 5 | 1 | 4 | 2 |
| 0     | 2 | 3 | 2 | 0 | 0 |
| 4     | 5 | 5 | 9 | 8 | 1 |
| 6     | 3 | 4 | 2 | 3 | 1 |
| 0     | 1 | 9 | 8 | 7 | 2 |
| 2     | 3 | 5 | 5 | 5 | 6 |

| Weig | ıhts: и | 7 |
|------|---------|---|
| 1    | 1       | 1 |
| 0    | C       | O |

Output: x \* w

| 6 |  |  |
|---|--|--|
|   |  |  |
|   |  |  |
|   |  |  |

one output value:

0.0

Computing 
$$1 \cdot 1 + 1 \cdot 2 + 1 \cdot 5$$

10

$$(-1)\cdot 4 + (-1)\cdot 5 + (-1)\cdot 5 = -6$$

| Data: X |
|---------|
|---------|

| 1 | 2 | 5 | 1 | 4 | 2 |
|---|---|---|---|---|---|
| 0 | 2 | 3 | 2 | 0 | 0 |
| 4 | 5 | 5 | 9 | 8 | 1 |
| 6 | 3 | 4 | 2 | 3 | 1 |
| 0 | 1 | 9 | 8 | 7 | 2 |
| 2 | 3 | 5 | 5 | 5 | 6 |

#### Weights: w

| 1  | 1  | 1  |
|----|----|----|
| О  | О  | O  |
| -1 | -1 | -1 |

#### Output: X \* w

| -6 | -11 |  |
|----|-----|--|
|    |     |  |
|    |     |  |
|    |     |  |

one output value:

Computing 
$$1.2 + 1.5 + 1.1$$

$$0.2 + 0.3$$

$$(-1)\cdot 5 + (-1)\cdot 5 + (-1)\cdot 9 = -1$$

| 1 | 2 | 5 | 1 | 4 | 2 |
|---|---|---|---|---|---|
| 0 | 2 | 3 | 2 | 0 | 0 |
| 4 | 5 | 5 | 9 | 8 | 1 |
| 6 | 3 | 4 | 2 | 3 | 1 |
| 0 | 1 | 9 | 8 | 7 | 2 |
| 2 | 3 | 5 | 5 | 5 | 6 |

| ۸ / | ,      |    | 1            |     |   |    |
|-----|--------|----|--------------|-----|---|----|
| \/  |        |    | n            | t C | • | W  |
| V   | $\Box$ | IU | $\mathbf{I}$ | w   |   | VV |
|     |        |    |              |     |   |    |

| 1  | 1  | 1  |
|----|----|----|
| О  | О  | O  |
| -1 | -1 | -1 |

Output: X \* w

| -6 | -11 | -12 |  |
|----|-----|-----|--|
|    |     |     |  |
|    |     |     |  |
|    |     |     |  |

Computing 1.5 + 1.1 + 1.4one output value:

$$0.3 + 0.2 + 0.0$$

$$(-1)\cdot 5 + (-1)\cdot 9 + (-1)\cdot 8 = -12$$

| Data: X |
|---------|
|---------|

| 1 | 2 | 5 | 1 | 4 | 2 |
|---|---|---|---|---|---|
| 0 | 2 | 3 | 2 | 0 | 0 |
| 4 | 5 | 5 | 9 | 8 | 1 |
| 6 | 3 | 4 | 2 | 3 | 1 |
| 0 | 1 | 9 | 8 | 7 | 2 |
| 2 | 3 | 5 | 5 | 5 | 6 |

| $\setminus$ | e/e | ig     | h | ts | : | W |
|-------------|-----|--------|---|----|---|---|
|             |     | $\sim$ |   |    |   |   |

| 1  | 1  | 1  |
|----|----|----|
| О  | О  | O  |
| -1 | -1 | -1 |

0.2

Output: X \* w

| -6 | -11 | -12 | -11 |
|----|-----|-----|-----|
|    |     |     |     |
|    |     |     |     |
|    |     |     |     |

Computing  $1 \cdot 1 + 1 \cdot 4 + 1 \cdot 2$ one output value:

+ 0.0

13

$$(-1)\cdot 9 + (-1)\cdot 8 + (-1)\cdot 1 = -1$$

| Data: | X |
|-------|---|
|-------|---|

| 1 | 2 | 5 | 1 | 4 | 2 |
|---|---|---|---|---|---|
| 0 | 2 | 3 | 2 | 0 | 0 |
| 4 | 5 | 5 | 9 | 8 | 1 |
| 6 | 3 | 4 | 2 | 3 | 1 |
| 0 | 1 | 9 | 8 | 7 | 2 |
| 2 | 3 | 5 | 5 | 5 | 6 |

| Vei | g | h <sup>.</sup> | ts | : | W |
|-----|---|----------------|----|---|---|
|-----|---|----------------|----|---|---|

| 1  | 1  | 1  |
|----|----|----|
| O  | О  | O  |
| -1 | -1 | -1 |

#### Output: X \* w

| -6 | -11 | -12 | -11 |
|----|-----|-----|-----|
| -7 |     |     |     |
|    |     |     |     |
|    |     |     |     |

Computing 
$$1.0 + 1.2 + 1.3$$
 one output value:

$$0.4 + 0.5 + 0.5$$

$$(-1)\cdot 6 + (-1)\cdot 3 + (-1)\cdot 4 = -7$$

| Data: X |   |   |   |   |   |
|---------|---|---|---|---|---|
| 1       | 2 | 5 | 1 | 4 | 2 |
| 0       | 2 | 3 | 2 | 0 | 0 |
| 4       | 5 | 5 | 9 | 8 | 1 |
| 6       | 3 | 4 | 2 | 3 | 1 |
| 0       | 1 | 9 | 8 | 7 | 2 |
| 2       | 3 | 5 | 5 | 5 | 6 |
| 6 v 6   |   |   |   |   |   |

6 x 6

## 

\*

3 x 3

Output: X \* w

| -6 | -11 | -12 | -11 |
|----|-----|-----|-----|
| -7 | -2  | -2  | -4  |
| 4  | 1   | -2  | 1   |
| 3  | -4  | -6  | -10 |

4 x 4

### **Features**



Olah et al, 2017: <a href="https://distill.pub/2017/feature-visualization/">https://distill.pub/2017/feature-visualization/</a>

#### **Features**

Dataset Examples show us what neurons respond to in practice









**Optimization** isolates the causes of behavior from mere correlations. A neuron may not be detecting what you initially thought.



mixed4a, Unit 6

Baseball—or stripes? Animal faces—or snouts? mixed4a, Unit 240



Clouds—or fluffiness? mixed4a, Unit 453



Buildings—or sky? mixed4a, Unit 492

Olah et al, 2017: https://distill.pub/2017/feature-visualization/

#### Resources on Visualization of Features

Feature visualization: <a href="https://distill.pub/2017/feature-visualization/">https://distill.pub/2017/feature-visualization/</a>

Building blocks of interpretability: <a href="https://distill.pub/2018/building-blocks/">https://distill.pub/2018/building-blocks/</a>

Activation Activation Atlases: <a href="https://distill.pub/2019/activation-atlas/">https://distill.pub/2019/activation-atlas/</a>

**Fully Connected Layer** 



## **Convolution Layer**



#### activation map



From Fei-Fei Li, Justin Johnson, and Serena Young. CS231n, 2018

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:



We stack these up to get a "new image" of size 28x28x6!

From Fei-Fei Li, Justin Johnson, and Serena Young. CS231n, 2018

**Preview:** ConvNet is a sequence of Convolution Layers, interspersed with activation functions



Parameters = (5\*5\*3)\*6 = 450

(5\*5\*6)\*10 = 1,500

From Fei-Fei Li, Justin Johnson, and Serena Young. CS231n, 2018

## 1 x 1 Convolution Explained



From Fei-Fei Li, Justin Johnson, and Serena Young. CS231n, 2018

## **Max Pooling**

#### Single depth slice



max pool with 2x2 filters and stride 2

| 6 | 8 |
|---|---|
| 3 | 4 |

From Fei-Fei Li, Justin Johnson, and Serena Young. CS231n, 2018

#### **AlexNet**



Input

11x11 conv, 96

5x5 conv, 256

max pool

3x3 conv, 384

max pool

3x3 conv, 384

3x3 conv, 256

max pool

FC 4096

FC 4096

FC 1000

softmax

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems. 2012.



AlexNet (2012)

Input 11x11 conv, 96 5x5 conv. 256 max pool 3x3 conv, 384 max pool

VGG16 (2014)

Input 3x3 conv, 64 3x3 conv. 64

max pool

3x3 conv, 128

3x3 conv, 128

max pool

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

max pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

max pool 3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

max pool

FC 4096

FC 4096

FC 1000

softmax

VGG19

Input 3x3 conv, 64

(2014)3x3 conv. 64

max pool

3x3 conv, 128

3x3 conv, 128

max pool

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

max pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

max pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

max pool

FC 4096

FC 4096

FC 1000

softmax

Note: an activation function is applied to the output of each layer

3x3 conv, 384 3x3 conv, 256 max pool FC 4096 FC 4096 FC 1000 softmax

Fewer layers, larger filters

#### Convolutional Layer Fully Connected Layer max pooling layer

Input or output layer

Key

### **CNN Architectures**

Adapted from Fei-Fei Li, Justin Johnson, and Serena Young. CS231n, 2018





**Object** 



**Image** 







Kyle Bradbury Deep Learning

Lecture 15 27







Scene classification

**Kyle Bradbury** 

AlexNet VGG GoogLeNet ResNet Inception
DenseNet
SqueezeNet
EfficientNet

is classified

Object detection

Faster/Fast/R-CNN Mask R-CNN YOLO Single Shot Detector (SSD) RetinaNet

Object type & probability

Image segmentation U-Net (2015) SegNet (2016) DeepLab (2017) FCN (2016)

Confidence or probability

Residential
Commercial
Forest
0.1
Desert
0.75

Body of water

Confidence or probability

0.6

0.2

0.2

0.1

Each image (scene)





28

Deep Learning Lecture 15

## ImageNet Large Scale **Visual Recognition** Challenge (ILSVRC)

Fei-Fei Li et al. 2010 (link)

Competition at:

Conference on Computer Vision and Pattern Recognition (CVPR)



Source: Quartz, link Deep Learning Lecture 15 29

100%

## Deep Learning Models Compared





Models compared for ImageNet Many of these models are available through Keras (<u>link</u>)

A. Canziani, E. Culurciello and A. Paszke, "Evaluation of neural network architectures for embedded systems," *2017 IEEE International Symposium on Circuits and Systems (ISCAS)*, Baltimore, MD, 2017, pp. 1-4.

## Deep learning frameworks

#### Tensorflow (link)

Framework for implementing graphical models, such as neural networks

#### Keras (<u>link</u>)

Wrapper for Tensorflow to make coding easier: higher level and excellent API

#### PyTorch (link)

Framework for implementing graphical models, such as neural networks







## **KERAS DEMO**

#### **Generative Adversarial Networks**



Image from: https://skymind.ai/wiki/generative-adversarial-network-gan