BEICHEN HUANG

✓huangb21@mcmaster.ca

\+1 647-896-3986

Sbeichenhuang.github.io

EDUCATION

McMaster University, Canada

Sept. 2019 - now

• Bachelor of Engineering: Mechatronics Engineering

Cumulated GPA: 11.0 / 12.0

RESEARCH INTEREST

Developing algorithms to enhance efficiency and accuracy of large-scale models, and designing cost-effective machine learning systems, with a focus on applying optimization theory for data-efficient tuning, model compression, and efficient inference.

PUBLICATION

• MiLo: Effective Quantized MoE Inference with Mixture of Low-Rank Compensators Beichen Huang*, Yueming Yuan*, Zelei Shao*, Minjia Zhang

Submitted to MLSys 2025

• Multidimensional Fractional Programming for Normalized Cuts Yannan Chen*, Beichen Huang*, Licheng Zhao, Kaiming Shen

NeurIPS 2024

• Aerial-IRS-Assisted Load Balancing In Downlink Networks Shuyi Ren, Beichen Huang, Xiaoyang Li, Kaiming Shen ICASSP 2024

RESEARCH EXPERIENCE

Efficient Low-Bit Quantization and Inference System for MoE

March 2024 - Present

Supervisor: Prof. Minjia Zhang

University of Illinois Urbana-Champaign

- Conducted a comprehensive analysis and comparison of low-bit quantization techniques, factoring in MoE model structures and weight distributions, leading to **an adaptive and effective quantization strategy** tailored for complex MoE architectures.
- Proposed a novel calibration-free quantization algorithm, with jointly optimized low-rank compensators. Achieved **time-efficient** and nearly **loss-less 3-bit quantization** with minor memory overhead.
- Recovered **87% performance recovery** with **22% compression ratio**, and significantly outperformed prevailing quantization methods across 7 benchmark tests. Implemented a highly efficient 3-bit GeMM CUDA kernel, delivering a **1.3× speedup**.

Advancements in Fractional Programming for Clustering and Wireless Communication

Sept. 2023 - May 2024

Supervisor: Prof. Kaiming Shen

The Chinese University of Hong Kong (ShenZhen)

- Extended the **Quadratic Transform algorithm** to multi-dimensional cases, which effectively solved generalized fractional programming problems and addressed complex challenges in machine learning.
- Optimized the **NP-complete clustering problem** by analyzing from fractional programming perspective and directly applying Quadratic Transform, and achieved state-of-the-art clustering performance across 8+ benchmark datasets.
- Developed an **innovative wireless communication model** leveraging Aerial Intelligent Reflective Surface, and optimized load balancing within the model using an adaptive particle swarm optimization algorithm, significantly enhancing system efficiency.

WORK EXPERIENCE

Software Engineer Intern

Magna Electronics, May 2022 - May 2023

- Designed, developed, and debugged for image processing algorithm with ground truth and debugging information visualization function for the autonomous driving system. Diligently managed the project repository on GitHub.
- Effectively maintained the C++ Advanced Driver-Assistance System program, mainly focused on solving the defects of the Human Machine Interface and the data pipeline in response to customer feedback.

Teaching Assisstant

McMaster University, Dec. 2021 - May 2022

- Actively engaged in 10 lab and tutorial sessions related to embedded programming, designed and taught material to inspire students to have a clear understanding of the software for embedded systems.
- Taught and solved questions and requests from over 40 students, and received a high rating at the end of the term.

SKILLS

Programming: Pytorch, MATLAB, C, C++, ARM Assembly, Simulink, Keil, Git, LaTeX, R

Software & Tool: PyChram, MATLAB, Colab, VS Code, Autodesk Inventor, Altium Designer, NI Multisim