Post Mortem of 120k mi Light-Duty Urea SCR and DPF System

2007 DEER Conference

Christine Lambert, Yisun Cheng, Douglas Dobson, Jon Hangas, Mark Jagner, and James Warner

Chemical Engineering & Materials Departments Ford Research & Advanced Engineering

Introduction

- System basics and aging
- Physical property measurements
- Chemical property measurements
- Conclusions

120k mi Engine Aged Diesel System

90% FTP-75 NOx conversion, 0.07 g/mi TP NOx

* Note: Downpipe DOCs replaced at 50k mi.

Diesel Fuel Properties

Program fuel was typical of US low sulfur diesel.

	Proposed	Program
	Program	Fuel
Fuel Property	Min/Max	Delivered
Sulfur, ppm	10 / 15*	12.5
Density, kg/m ³	820 / 850	841.1
Aromatics, vol. %	25 / 32	29.5
Polyaromatics, wt. %	6 / 11	11.0
Cetane number	44 / 48	44.9
T50, C	250 / 280	249
T90, C	300 / 320	307

^{*} As delivered to the vehicle

Durability Test Definition (Engine Dyno Aging)

 Full-size Urea SCR – CDPF system was aged for 120k mi on engine dyno with a total of 643 CDPF regenerations.

Ford High Speed Cycle (HSC)

- Typical time at high temperature in SCR
 6 min per regen
- 643 regens x
 6 min/regen x
 h/60min = 64 h

August 14, 2007

Vehicle System Performance

• Loss of DOC activity resulted in higher NOx emissions at 120k mi

Physical Property Measurements

Surface Area Loss

Distribution of Poisons

- Phosphorus was highest in DOC inlet and in DPF ash
- Sulfur was low throughout except in DPF ash

Distribution of Poisons (con't)

- Some background Ca is in DOC and SCR substrates
- Ca and Zn were highest in DPF ash

Distribution of Washcoat Poisons

log wt% element

DOC inlet shows Ca and Zn on surface, P penetration into washcoat

SCR catalyst has Ca, Zn, and P glaze decreasing in thickness as distance from inlet increases, some P penetration

DPF Ash Accumulation

- Ash removal was performed at 44k, 79k and 112k miles.
- Ash primarily made of CaSO₄, Ca₁₉Zn₂(PO₄)₁₄, and CaZn₂(PO₄)₂

Total Ash Removed = 919 g

Engine Hours	Equiv. mi	Ash (g)
940	44k	112
1688	79k	419
2375	112k	388

middle of filter

Ash mainly in channel, not in wall

Chemical Property Measurements

Activity of Aged <u>Downpipe DOCs</u> (Exotherm Generation at 25k and 50k mi)

Aged Underbody DOCHC & CO Activity

DOC AB
DOE Vehicle 120K Miles

- Key deactivation of inlet is chemical poisoning due to phosphorous deposition
- Key deactivation of outlet is due to fuel combustion required for DPF regen

Underbody DOC Fuel Quench Test

DOC AB: 120K Miles

DOC outlet requires an inlet of 425°C to maintain DPF regeneration conditions

Underbody POC NO Activity

NO oxidation is more deactivated at the outlet of the 120k mi engine aged DOC

SCR NOx Activity

Catalyst Temperature, C

- Activity of <u>outlet</u> similar to hydrothermally aged lab piece
- Activity of <u>inlet</u> exhibited behavior atypical of base metals

Deactivation of SCR Inlet

- XRF results: no precious metals
- Ethylene hydrogenation test indicates presence of Pt
- Effects are <u>reversed</u> after 860°C treatment
- Pt below XRF detection limit of 0.002 wt% on SCR inlet is the most likely conclusion

Catalyst

Fresh

120k engine, outlet

120k engine, 1st (inlet)

120k engine, 1st (inlet) + 860°C/45min

Ethylene Hydrogenation

0.051%

0.027%

1.27% Pt effect

0.030%

August 14, 2007

Aged DPF HC and CO Activity

Stable HC and CO lightoff for the 120k mi aging

Conclusions

Catalyst Component	Key Results
DOC	 <u>Downpipe catalysts</u> were not durable for warm-up at 50k mi <u>Underbody DOC inlet</u> contained most poisons but <u>outlet</u> had most activity and surface area loss as result of high T exposure Loss of surface area resembles data from high T <u>lab aged</u> samples <u>P deposits</u> decreased from inlet to outlet <u>Very little sulfur</u> remained
SCR (Cu/Zeolite)	 SCR aging effects were most severe at inlet and progressively less effect to outlet P deposits decreased from inlet to outlet Very little sulfur remained Some activity loss due to Pt poisoning at inlet (most likely from DOC) Remainder of activity loss due to high temperature Outlet had activity similar to 670°C lab aged piece
DPF	 <u>Fairly uniform</u> surface area loss <u>Ash</u> primarily made of CaSO₄, Ca₁₉Zn₂(PO₄)₁₄, and CaZn₂(PO₄)₂ <u>Stable HC and CO lightoff</u> for the 120k mi aging

Acknowledgements

DOE DE-FC26-01NT41103 (July 2001-Dec 2005)

Ford

Hungwen Jen, Scott Williams, Dave Kubinski, Brendan Carberry, Rick Soltis, Devesh Upadhyay, Michiel van Nieuwstadt, and many others

FEV (dyno aging)

Erik Koehler, Dean Tomazic

Exxon Mobil (fuel supplier)

Mike Noorman, Charlie Schleyer