Escola Secundária de Francisco Franco

Matemática A (Aprendizagens Essenciais) – II.º ano Exercícios saídos em exames nacionais e em testes intermédios (desde 2011)

Tema III: sucessões

1. Seja (u_n) a sucessão definida por recorrência do seguinte modo:

$$\begin{cases} u_1 = 3 \\ u_n = u_{n-1} + 2n \text{ se } n > 1 \end{cases}$$

Seja (w_n) a sucessão de termo geral $w_n=5n-13$ Qual é o valor de *n* para o qual se tem $w_n = u_2$? (A) 3 (B) 4 (C) 5 (D) 6

TI de 11.º ano, 2011

2. Estude, quanto à monotonia, a sucessão (u_n) de termo geral

$$u_n = \frac{1 - 2n}{n + 3}$$

TI de 11.º ano. 2011

3. Seja a um número real. Considere a sucessão (u_n) definida por

$$\begin{cases} u_1 = a \\ u_{n+1} = -3u_n + 2, \quad \forall n \in \mathbb{N} \end{cases}$$

Qual é o terceiro termo desta sucessão?

- (A) 6a + 4 (B) 9a 4
- (C) 6a 4 (D) 9a + 4

Exame de 2015, 1.ª fase

4. Qual das expressões seguintes é termo geral de uma sucessão monótona e limitada?

- (A) $(-1)^n$ (C) $-\frac{1}{n}$
- (B) $(-1)^n$. n (D) $1+n^2$

Exame de 2015, 2.ª fase

- 5. De uma progressão geométrica (a_n) , sabe-se que o terceiro termo é igual a $\frac{1}{4}$ e que o sexto termo é igual
- a 2. Qual é o valor do vigésimo termo?
- (A) 8192 (B) 16 384
- (C) 32 768 (D) 65 536

Exame de 2015, fase especial

- 6. De uma progressão geométrica (u_n) , monótona crescente, sabe-se que u_4 =32 e que u_8 =8192. Qual é o quinto termo da sucessão (u_n) ?
- (A) 64 (B) 128 (C) 256 (D) 512

Exame de 2016, 2.ª fase

7. Seja (u_n) a sucessão definida por $u_n = \begin{cases} n & \text{se } n \leq 20 \\ (-1)^n & \text{se } n > 20 \end{cases}$ Qual

afirmações seguintes é verdadeira?

- (A) A sucessão (u_n) é monótona crescente.
- (B) A sucessão (u_n) é monótona decrescente.
- (C) A sucessão (u_n) é limitada.
- (D) A sucessão (u_n) é um infinitamente grande.

Exame de 2017, 1.ª fase

Qual das afirmações seguintes é verdadeira? $u_n = \left(\frac{1}{2}\right)^{1-n}$ 8. Seja (u_n) a sucessão definida por

- (A) A sucessão (u_n) é uma progressão geométrica de razão 1/2.
- (B) A sucessão (u_n) é uma progressão geométrica de razão 2.
- (C) A sucessão (u_n) é uma progressão aritmética de razão 1/2.
- (D) A sucessão (u_n) é uma progressão aritmética de razão 2.

Exame de 2017, 2.ª fase

9. Seja (u_n) uma sucessão real em que todos os termos são positivos. Sabe-se que, para todo o número natural

$$\frac{u_{n+1}}{u_n} < 1$$

Qual das afirmações seguintes é verdadeira?

- (A) A sucessão (u_n) é limitada.
- (B) A sucessão (u_n) é uma progressão aritmética.
- (C) A sucessão (u_n) é crescente.
- (D) A sucessão (u_n) é um infinitamente grande.

Exame de 2017, fase especial

10. Seja a um número real. Sabe-se que a, a + 6 e a+18são três termos consecutivos de uma progressão geométrica. Relativamente a essa progressão

geométrica, sabe-se ainda que a soma dos sete primeiros termos é igual a 381. Determine o primeiro termo dessa progressão.

Exame de 2018, 1.ª fase

11. De uma progressão aritmética (u_n) sabe-se que o terceiro termo é igual a 4 e que a soma dos doze primeiros termos é igual a 174. Averigue se 5371 é termo da sucessão (u_n) .

Exame de 2018, 2.ª fase

12. Considere a sucessão (u_n) de termo geral $u_n = \frac{n+5}{n+3}$ Estude a sucessão (u_n) quanto à

Exame de 2018, fase especial

13. Seja r um número real maior do que 1. Sabe-se que r é a razão de uma progressão geométrica de termos positivos. Sabe-se ainda que, de dois termos consecutivos dessa progressão, a sua soma é igual a 12 e a diferença entre o maior e o menor é igual a 3. Determine o valor de r.

Exame de 2019, 1.ª fase

14. Sejam *a* e b dois números reais diferentes de zero. Sabe-se que 2, a e b são três termos consecutivos de uma progressão geométrica. Sabe-se ainda que a-2, b e 2 são três termos consecutivos de uma progressão aritmética. Determine *a* e b.

Exame de 2019, 2.ª fase

15. Considere a sucessão (u_n) de termo geral $u_n = \frac{(-1)^{n+1}}{n+1}$. Determine a menor ordem a partir da qual todos os termos da sucessão (u_n) são maiores do que -0,01.

Exame de 2019, fase especial

16. Considere a sucessão (u_n) de termo geral $u_n = \frac{8n-4}{n+1}$. Estude a sucessão (u_n) quanto à monotonia.

Exame de 2020, 1.ª fase

17. De uma progressão aritmética (u_n) sabe-se que o sétimo termo é igual ao dobro do segundo e que a soma dos doze primeiros termos é igual a 57 Sabe-se ainda que 500 é termo da sucessão (u_n). Determine a ordem deste termo.

Exame de 2020, 2.ª fase

$$v_n = \begin{cases} n & \text{se } n < 10 \\ 1 + \frac{1}{n} & \text{se } n \ge 10 \end{cases}$$

18. Seja (v_n) a sucessão definida por Qual das afirmações seguintes é verdadeira?

- (A) A sucessão (v_n) tem limite nulo.
- (B) A sucessão (v_n) é divergente.
- (C) A sucessão (v_n) é limitada.
- (D) A sucessão (v_n) é monótona.

Exame de 2020, 2.ª fase

19. Considere uma progressão geométrica não monótona (u_n). Sabe-se que $u_3 = \frac{1}{12}$ e que $u_{18} = 4u_{20}$ Determine uma expressão do termo geral de (u_n). Apresente essa expressão na forma $a \times b^n$, em que ae b são números reais.

Exame de 2020, fase especial

20. Considere a sucessão (v_n) definida, por recorrência,

$$\begin{cases} v_1 = 2 \\ v_{n+1} = \frac{1}{v} \end{cases}$$

por $\begin{cases} v_{n+1} = \frac{1}{v_n}, \text{ para qualquer número natural n. Qual} \end{cases}$ das afirmações seguintes é verdadeira?

- (A) A sucessão (v_n) é uma progressão aritmética.
- (B) A sucessão (v_n) é uma progressão geométrica.
- (C) A sucessão (v_n) é monótona.
- (D) A sucessão (v_n) é limitada.

Exame de 2020, fase especial

21. Seja (v_n) uma progressão geométrica. Sabe-se que $v_5 = 4$ e que $v_8 = 108$. Qual é o valor de v_6 ? (A) 12 (B) 24 (C) 48 (D) 60

Exame de 2021, 1.ª fase

Seja sucessão definida (u_n) por $u_n = 2 + \frac{(-1)^{n+1}}{n}$. Determine, sem recorrer à calculadora, quantos termos de ordem ímpar da sucessão (u_n) pertencem ao intervalo $\left[\frac{83}{41}, \frac{67}{33}\right]$.

Exame de 2021, 1.ª fase

23. Seja (u_n) uma progressão aritmética. Sabe-se que, relativamente a (u_n), a soma do sexto termo com o vigésimo é igual a -5 e que o décimo nono termo é igual ao quádruplo do sétimo termo. Determine a soma dos dezasseis primeiros termos desta progressão.

Exame de 2021, 2.ª fase

24. Seja (u_n) a sucessão definida por $u_n = 2n + 1$.

Determine, sem recorrer à calculadora, a soma dos primeiros duzentos termos de ordem ímpar da sucessão (u_n) .

Exame de 2021, fase especial

25. Qual das expressões seguintes é termo geral de uma sucessão convergente : (A) $(-1)^n \times n$ (B) $\frac{(-1)^n}{n}$ (C) $(-1)^n + n$ (D) $(-1)^n - n$ Exame de 2022, 1.ª fase

(A)
$$(-1)^n \times n$$

(B)
$$\frac{(-1)^n}{n}$$

(C)
$$(-1)^n + n$$

(D)
$$(-1)^n - n$$

26. A soma dos cinco primeiros termos de uma progressão geométrica de razão 2/3 é 211. Determine o quinto termo desta progressão.

Exame de 2022, 1.ª fase

27. Seja (u_n) a sucessão definida por

$$u_n = \begin{cases} (-1)^n & \text{se } n \le 3 \\ \frac{4n-1}{n+3} & \text{se } n > 3 \end{cases}$$

Mostre que a sucessão (u_n) é limitada.

Exame de 2022, 2.ª fase

28. De uma progressão aritmética, (v_n), sabe-se que $v_3 = 1$ e $v_{10} = \frac{5}{4}v_9$. Averigue, sem recorrer à calculadora, se -50 é termo da progressão (v_n).

Exame de 2022, fase especial

29. A Figura 1 representa uma linha poligonal simples que começou a ser construída a partir do segmento de reta [AB]. O segundo segmento de com reta. uma das extremidades em B. construído com mais 2 cm do que o primeiro, o terceiro segmento foi construído com mais 2 cm do que o segundo, e

Figura 1

assim sucessivamente, tendo cada segmento de reta sempre mais 2 cm do que o anterior. Continuando a construção da linha poligonal, do modo acima descrito, até ao 100.º segmento de reta, obtém-se uma linha poligonal com o comprimento total de 104 metros. Determine o comprimento do segmento de reta [AB]. Apresente o valor pedido em centímetros.

Exame de 2023, 1.ª fase

30. Considere um triângulo equilátero, [ABC], $\overline{AB} = 1$. Unindo os pontos médios dos lados desse obtém-se triângulo, segundo triângulo; unindo os pontos médios dos lados do segundo triângulo, obtém-se A terceiro triângulo. Continuando a proceder deste

modo, obtém-se uma sequência de n triângulos, sendo n>4. Na Figura 1, representam-se os primeiros quatro triângulos da sequência. Mostre que a soma dos perímetros dos n triângulos da sequência é menor do que 6 unidades, qualquer que seja o valor de n.

Exame de 2023, 2.ª fase

31. Qual das expressões seguintes é termo geral de uma sucessão monótona?

(A)
$$(n-5)$$

(B)
$$\frac{(-1)^n}{n+3}$$

(C)
$$(-2)^n$$

Exame de 2023, fase especial

32. Uma composição geométrica constituída por uma sequência de 25 semicircunferências em que, à exceção da primeira, o raio de cada semicircunferência

é o dobro do raio da semicircunferência anterior. A Figura 1 representa parte dessa composição, em que c1, c2 e c3 são as três primeiras semicircunferências, com 1 cm, 2 cm e 4 cm de raio, respetivamente. Determine o comprimento total da linha obtida com esta composição geométrica. Apresente o resultado em quilómetros, arredondado às unidades.

Exame de 2023, fase especial

Soluções:

1. B 2. decresc. 3. B 4. C 5. C 7. C 8. B 9. A 10.3 12. decres. 13.5/3 6. B 11. é 15, 99 18. C 14. 1 e ½ 16. cresc. 17.997 19. $-2/3 \times (-1/2)^n$ 20. D 21. A 22. 5 24. 80200 25. B 26. 16 28. Sim 29.5 31. D

O professor: Roberto Oliveira