Week 3 - Classes (not the school kind)

Based on notes from BYU's ACME Program: Link

What are Classes

- A critical element of object-oriented programming
- Directions for creating objects
 - A list of "recipes" for utilizing that object
- Allow us to generate multiple related objects, and to manipulate them, quickly and efficiently

Classes

Let's imagine we work at a cafeteria, and that we want to represent a sandwich as code. There are certain things we would want to know about every sandwich:

- 1. Whose is it?
- 2. What toppings will we put on our sandwich?
- 3. What kind of bread will we use?

How can we start designing our sandwich code?

Creating a New Class

```
class <u>Sandwich(object):</u>
    def __init__(self, owner, bread='white'):
        self.owner = owner
        self.bread = bread
        self.toppings = []
```

The FIRST thing we need to do is to initialize an object of class Sandwich. We do this by using the __init__() method (methods are functions assigned to a particular class of objects)

 We tell our object what arguments to expect, and store these values as attributes of our object

Creating a New Class

```
>>> mine = Sandwich('Dusty')
>>> print(mine)
<__main__.Sandwich object at 0x7f83ba7cc390>
```

So, I created a delicious sandwich class, but I can't print anything about it!

- We have to explain to the interpreter how to implement basic functions using our object
- We can declare basic functionality using magic methods

Magic Methods (more <u>here</u>)

Operation	Operator
Addition	+
Subtraction	-
Multiplication	*
Division	/
Less than	<
Less than or equal to	<=
Greater than	>
Greater than or equal to	>=
Equal	==
Not equal	!=
	Addition Subtraction Multiplication Division Less than Less than Creater than Greater than or equal to Equal

Magic Methods

Not all of the magic methods will make sense for all classes. Which standard operations do you think would make sense for our **Sandwich** class?

Magic Methods

Not all of the magic methods will make sense for all classes. Which standard operations do you think would make sense for our **Sandwich** class?

- Adding (we can ADD toppings)
- Subtracting (we can REMOVE toppings)
- Equality (we can determine if two sandwiches are the same)
 - If we define equality, we should also define when two sandwiches are NOT equal.
- A string format for printing (not on our list above)

Magic Methods - Adding

```
class <u>Sandwich(object):</u>
    def __init__(self, owner, bread='white'):
        self.owner = owner
        self.bread = bread
        self.toppings = []
    def __add__(self, topping):
        return self.toppings.append(topping)
```

Here, we add the magic method for addition to our class, and state that the + operator should append the topping that follows it to our list of toppings, then return that updated list.

Magic Methods - Subtracting

```
class Sandwich(object):
  def __init__(self, owner, bread='white'):
    self.owner = owner
    self.bread = bread
    self.toppings = []
  def __add__(self, topping):
    return self.toppings.append(topping)
  def __sub__(self, topping):
    if topping in self.toppings:
      return self.toppings.remove(topping)
    else:
      print("Topping not present, and can't be removed.")
```

Subtracting is trickier, but we need to declare that the poperator should check for a topping in our list, and remove it if present.

Magic Methods - (In)Equality

```
class Sandwich(object):
  def __init__(self, owner, bread='white'):
    self.owner = owner
    self.bread = bread
    self.toppings = []
  ... # This is where the add and sub methods are
  def __eq__(self, other):
    if (self.bread==other.bread) and
      (sorted(self.toppings) == sorted(other.toppings)):
      return True
    else:
     return False
  def __ne__(self, other):
    return not (self == other)
```

Remember that we have to declare both = and !=

Magic Methods - Strings

```
class Sandwich(object):
  def __init__(self, owner, bread='white'):
    self.owner = owner
    self.bread = bread
    self.toppings = []
  ... # Other magic methods here
  def __str__(self):
    alltops = "Toppings:\t"
    for i in self.toppings:
      alltops += " %s" % i
    return "Owner:\t\t "+ str(self.owner) +"\n" +
      alltops + "\nBread:\t\t " + self.bread
```

Now we can print our sandwich!

Methods - Try It!

We can also create methods that are based on the unique functionality of our class of objects. Since we are working at a *store*, we might care about pricing a given sandwich.

- Let's call the method get_price, and have it take two arguments (itself and a discount) with a default value of 0, and store price as an attribute
- Each topping costs \$1
- Specialty bread (not white bread) is \$2, white bread is provided at no cost

Methods

Possible Answer:

```
class Sandwich(object):
  def __init__(self, owner, bread='white'):
    self.owner = owner
    self.bread = bread
    self.toppings = []
  ... # Magic methods go here
  def get_price(self, discount=0.0):
    self.price = 0
    for i in self.toppings:
      self.price += 1
    if self.bread != 'white':
      self.price += 2
    if discount > 0:
      self.price *= (1-discount)
    return self.price
```

Documenting

When we create a class, a function, or a method, we should be sure to **document** that object!

- We can then remember how to use it after long breaks
- Other people can make use of our code without having to decipher each line

We can document by modifying the *docstring* of an object.

Documenting

```
class Sandwich(object):
  """A class defining a sandwich. Toppings can be added
  and removed, and the owner and bread type can be
  declared upon initiation.
 Attributes:
    owner (str): the person puchasing the sandwich
    bread (str): the type of bread to be used
    toppings (list): a list of the toppings (str) that
      are to be put on the sandwich
    price (float): the price of the sandwich
  0.00
  def get_price(self):
  ... # Class continues below
```

Documenting

```
class Sandwich(object):
  ... # Docstring for Sandwich class
  def get_price(self, discount=0.0):
    """A function to calculate the price of the sandwich.
    Each topping costs $1, and bread that is not 'white'
    costs $2. Discounts should be applied as the amount
    to be deducted.
    Inputs:
      discount (float): amount to be discounted from
        total price
    Returns:
      A Sandwich object with a price attribute
    0.00
    return self.price
```

Lab Today

Create your own ComplexNumber class!

- 1. Complex numbers have a real and an imaginary part. The __init__() method should therefore accept two numbers. Store the first as self.real and the second as self.imag.
- 2. Implement a conjugate() method that returns the object's complex conjugate (as a new ComplexNumber object). Recall that a+bi=a-bi.
- 3. Add the following magic methods:
 - o __abs__() determines the output of the builtin abs() function (absolute value). Implement __abs__() so that it returns the magnitude of the complex number. Recall that $|a+bi|=\sqrt{a^2+b^2}$.
 - \circ Implement __lt__() and __gt__() so that ComplexNumber objects can be compared by their magnitudes. That is, (a+bi)<(c+di) if and only if |a+bi|<|c+di|, and so on.
 - Implement __eq__() and __ne__() so that two ComplexNumber objects are equal if and only if they have the same real and imaginary parts.
 - Implement __add__(), __sub__(), __mul__(), and __div__() appropriately. Each of these should return a new ComplexNumber object.