Introducción a la Lógica y la Computación

Mariana Badano Facundo Bustos Mauricio Tellechea Gonzalo Zigarán

FaMAF, 25 de septiembre de 2024

Ejes de Contenidos

Estructuras Ordenadas

2 Lógica Proposicional

$$\frac{[\varphi \wedge \psi]_1}{\psi} \wedge E \quad \frac{[\varphi \wedge \psi]_1}{\varphi} \wedge I$$

$$\frac{\psi \wedge \varphi}{\varphi \wedge \psi \rightarrow \psi \wedge \varphi} \rightarrow I_1$$

Lenguajes y Autómatas

Parte 2: Lógica Proposicional

Contenidos estimados para hoy

Componentes de la lógica proposicional

- 2 Sintaxis
 - El lenguaje de la lógica
 - Inducción y recursión
 - Recursión en *PROP*

Sintaxis

Qué objetos usamos: proposiciones, cómo se escriben.

Sintaxis

Qué objetos usamos: **proposiciones**, cómo se escriben.

Semántica

Cómo asignamos significado a las proposiciones: valor de verdad.

Sintaxis

Qué objetos usamos: **proposiciones**, cómo se escriben.

Semántica

Cómo asignamos significado a las proposiciones: valor de verdad.

Cálculo

Cómo se deducen proposiciones a partir de otras y se obtienen teoremas

Sintaxis

Qué objetos usamos: **proposiciones**, cómo se escriben.

Semántica

Cómo asignamos significado a las proposiciones: valor de verdad.

Cálculo

Cómo se **deducen** proposiciones a partir de otras y se obtienen **teoremas**

Estudiaremos especialmente la interrelación entre los dos últimos conceptos.

Los símbolos que usaremos:

$$\Sigma := \{), (, \wedge, \vee, \rightarrow, \bot, p_0, p_1, \ldots, p_n, p_{n+1}, \ldots).$$

Los símbolos que usaremos:

$$\Sigma := \{), (, \wedge, \vee, \rightarrow, \bot, p_0, p_1, \ldots, p_n, p_{n+1}, \ldots)\}.$$

Con Σ^* denotamos el conjunto de todas las cadenas de símbolos en Σ .

Los símbolos que usaremos:

$$\Sigma := \{), (, \wedge, \vee, \rightarrow, \bot, p_0, p_1, \ldots, p_n, p_{n+1}, \ldots \}.$$

Con Σ^* denotamos el conjunto de todas las cadenas de símbolos en Σ .

Ejemplo

$$\boxed{p_{18}((((\vee), p_7p_0p_0 \to) \mathbf{y} \land \land) \bot} \text{ pertenecen a } \Sigma^*.$$

Los símbolos que usaremos:

$$\Sigma := \{), (, \wedge, \vee, \rightarrow, \bot, p_0, p_1, \ldots, p_n, p_{n+1}, \ldots)\}.$$

Con Σ^* denotamos el conjunto de todas las cadenas de símbolos en Σ .

Ejemplo

$$\boxed{p_{18}((((\vee), p_7p_0p_0 \to) \mathbf{y} \land \land) \bot} \text{ pertenecen a } \Sigma^*.$$

Llamaremos variables proposicionales a los elementos del conjunto

$$\mathcal{V} := \{p_0, p_1, \dots, p_n, p_{n+1}, \dots\} \subseteq \Sigma$$

Los símbolos que usaremos:

$$\Sigma := \{), (, \wedge, \vee, \rightarrow, \bot, p_0, p_1, \ldots, p_n, p_{n+1}, \ldots)\}.$$

Con Σ^* denotamos el conjunto de todas las cadenas de símbolos en Σ .

Ejemplo

$$\boxed{p_{18}((((\vee), p_7p_0p_0 \to) \mathbf{y} \land \land) \bot} \text{ pertenecen a } \Sigma^*.$$

Llamaremos variables proposicionales a los elementos del conjunto

$$\mathcal{V} := \{p_0, p_1, \dots, p_n, p_{n+1}, \dots\} \subseteq \Sigma$$

y llamaremos átomos a los elementos del conjunto

$$At := \{\bot\} \cup \mathcal{V} = \{\bot, p_0, p_1, \dots, p_n, p_{n+1}, \dots\} \subseteq \Sigma$$

Nos interesan algunas cadenas en Σ^* , que llamaremos proposiciones

Nos interesan algunas cadenas en Σ^* , que llamaremos proposiciones

Ejemplo

$$(p_1 \wedge p_2)$$
 , $(p_0 \vee (p_7 o p_3))$ y $(\bot o \bot)$ son proposiciones.

Nos interesan algunas cadenas en Σ^* , que llamaremos proposiciones

Ejemplo

$$(p_1 \wedge p_2)$$
, $(p_0 \vee (p_7 \to p_3))$ y $(\bot \to \bot)$ son proposiciones.

Nos interesa definir un subconjunto de Σ^* que

Nos interesan algunas cadenas en Σ^* , que llamaremos proposiciones

Ejemplo

$$(p_1 \wedge p_2)$$
, $(p_0 \vee (p_7 \to p_3))$ y $(\bot \to \bot)$ son proposiciones.

Nos interesa definir un subconjunto de Σ^* que

(*) contenga a todas las variables proposicionales, a \bot , y que cada vez que dos palabras α y β estén en ese conjunto, las palabras $(\alpha \lor \beta)$, $(\alpha \land \beta)$ y $(\alpha \to \beta)$ también estén en ese conjunto.

Nos interesan algunas cadenas en Σ^* , que llamaremos proposiciones

Ejemplo

$$(p_1 \wedge p_2)$$
, $(p_0 \vee (p_7 \to p_3))$ y $(\bot \to \bot)$ son proposiciones.

Nos interesa definir un subconjunto de Σ^* que

(*) contenga a todas las variables proposicionales, a \bot , y que cada vez que dos palabras α y β estén en ese conjunto, las palabras $(\alpha \lor \beta)$, $(\alpha \land \beta)$ y $(\alpha \to \beta)$ también estén en ese conjunto. Nos gustaría que además no tuviera

otras cosas, que sólo tuviera palabras construídas de esta forma.

Nos interesan algunas cadenas en Σ^* , que llamaremos proposiciones

Ejemplo

$$(p_1 \wedge p_2)$$
, $(p_0 \vee (p_7 \to p_3))$ y $(\bot \to \bot)$ son proposiciones.

Nos interesa definir un subconjunto de Σ^* que

(*) contenga a todas las variables proposicionales, a \bot , y que cada vez que dos palabras α y β estén en ese conjunto, las palabras $(\alpha \lor \beta)$, $(\alpha \land \beta)$ y $(\alpha \to \beta)$ también estén en ese conjunto. Nos gustaría que además no tuviera

otras cosas, que sólo tuviera palabras construídas de esta forma. En algún sentido buscamos "el menor" conjunto que satisfaga (*).

Nos interesan algunas cadenas en Σ^* , que llamaremos proposiciones

Ejemplo

$$(p_1 \land p_2)$$
, $(p_0 \lor (p_7 \to p_3))$ y $(\bot \to \bot)$ son proposiciones.

Nos interesa definir un subconjunto de Σ^* que

(*) contenga a todas las variables proposicionales, a \bot , y que cada vez que dos palabras α y β estén en ese conjunto, las palabras $(\alpha \lor \beta)$, $(\alpha \land \beta)$ y $(\alpha \to \beta)$ también estén en ese conjunto. Nos gustaría que además no tuviera

otras cosas, que sólo tuviera palabras construídas de esta forma. En algún sentido buscamos "el menor" conjunto que satisfaga (*). ¿Qué significa el menor conjunto que satisface algo entre una familia de conjuntos?

Lema

La familia de conjuntos que satisfacen (*) es no vacía y cerrada por intersecciones arbitrarias.

Definición

PROP es **el menor** subconjunto de Σ^* (según \subseteq) que cumple con:

Lema

La familia de conjuntos que satisfacen (*) es no vacía y cerrada por intersecciones arbitrarias.

Definición

PROP es **el menor** subconjunto de Σ^* (según \subseteq) que cumple con:

 $\varphi \in At$ Para todo $\varphi \in At$, $\varphi \in PROP$.

Lema

La familia de conjuntos que satisfacen (*) es no vacía y cerrada por intersecciones arbitrarias.

Definición

PROP es **el menor** subconjunto de Σ^* (según \subseteq) que cumple con:

 $\boxed{\varphi \in At}$ Para todo $\varphi \in At$, $\varphi \in PROP$.

 $\overline{(\varphi \to \psi)}$ Para todas φ, ψ en *PROP*, $(\varphi \to \psi)$ está en *PROP*.

Lema

La familia de conjuntos que satisfacen (*) es no vacía y cerrada por intersecciones arbitrarias.

Definición

PROP es **el menor** subconjunto de Σ^* (según \subseteq) que cumple con:

 $\boxed{\varphi \in At}$ Para todo $\varphi \in At$, $\varphi \in PROP$.

 $(arphi
ightarrow \psi)$ Para todas $arphi, \psi$ en *PROP*, $(arphi
ightarrow \psi)$ está en *PROP*.

 $\overline{(\varphi \lor \psi)}$ Para todas φ, ψ en PROP, $(\varphi \lor \psi)$ está en PROP.

Lema

La familia de conjuntos que satisfacen (*) es no vacía y cerrada por intersecciones arbitrarias.

Definición

PROP es **el menor** subconjunto de Σ^* (según \subseteq) que cumple con:

 $\boxed{\varphi \in At}$ Para todo $\varphi \in At$, $\varphi \in PROP$.

 $(arphi
ightarrow \psi)$ Para todas $arphi, \psi$ en *PROP*, $(arphi
ightarrow \psi)$ está en *PROP*.

 $(\varphi \lor \psi)$ Para todas φ, ψ en *PROP*, $(\varphi \lor \psi)$ está en *PROP*.

 $\overline{(\varphi \wedge \psi)}$ Para todas φ, ψ en PROP, $(\varphi \wedge \psi)$ está en PROP.

Sea A un predicado sobre PROP. Luego $A(\varphi)$ es verdadero para toda $\varphi \in PROP$ si y sólo si:

Sea A un predicado sobre PROP. Luego $A(\varphi)$ es verdadero para toda $\varphi \in PROP$ si y sólo si:

Si φ es atómica, $A(\varphi)$ vale. $\}$ Caso Base

Sea A un predicado sobre PROP. Luego $A(\varphi)$ es verdadero para toda $\varphi \in PROP$ si y sólo si: Si φ es atómica, $A(\varphi)$ vale. $\}$ Caso Base Si $\underbrace{A(\varphi)}_{}$ y $\underbrace{A(\psi)}_{}$ entonces

Sea A un predicado sobre PROP. Luego $A(\varphi)$ es verdadero para toda $\varphi \in PROP$ si y sólo si: Si φ es atómica, $A(\varphi)$ vale. $\}$ Caso Base

 $SiA(\varphi) \ yA(\psi) \ entonces \ A((\varphi \rightarrow \psi)), \ A((\varphi \lor \psi)) \ yA((\varphi \land \psi))$

Sea A un predicado sobre PROP. Luego $A(\varphi)$ es verdadero para toda $\varphi \in PROP$ si y sólo si:

Si
$$\varphi$$
 es atómica, $A(\varphi)$ vale. $\}$ Caso Base

$$\mathit{Si}\, \underbrace{A(\varphi) \; \mathit{y}\, A(\psi)}_{\text{entonces}} \; \mathit{entonces}\, A((\varphi \rightarrow \psi)), A((\varphi \lor \psi)) \; \mathit{y}\, A((\varphi \land \psi))$$

Demostración.

Sea
$$X = \{ \varphi \in PROP : A(\varphi) \}.$$

Sea A un predicado sobre PROP. Luego $A(\varphi)$ es verdadero para toda $\varphi \in PROP$ si y sólo si:

Si
$$\varphi$$
 es atómica, $A(\varphi)$ vale. $\}$ Caso Base

$$\mathit{Si}\, \underbrace{A(\varphi) \; \mathit{y}\, A(\psi)}_{\text{u}} \; \mathit{entonces}\, A((\varphi \rightarrow \psi)), A((\varphi \lor \psi)) \; \mathit{y}\, A((\varphi \land \psi))$$

Demostración.

Sea $X = \{ \varphi \in PROP : A(\varphi) \}$. Quiero ver que X = PROP.

Sea A un predicado sobre PROP. Luego $A(\varphi)$ es verdadero para toda $\varphi \in PROP$ si y sólo si:

Si
$$\varphi$$
 es atómica, $A(\varphi)$ vale. $\}$ Caso Base

$$\mathit{Si}\, \underbrace{A(\varphi) \; \mathit{y}\, A(\psi)}_{\mathsf{UI}} \; \mathit{entonces}\, A((\varphi \to \psi)), A((\varphi \lor \psi)) \; \mathit{y}\, A((\varphi \land \psi))$$

Demostración.

Sea $X = \{ \varphi \in PROP : A(\varphi) \}$. Quiero ver que X = PROP. $X \subseteq PROP$ por definición.

Sea A un predicado sobre PROP. Luego $A(\varphi)$ es verdadero para toda $\varphi \in PROP$ si y sólo si:

Si
$$\varphi$$
 es atómica, $A(\varphi)$ vale. $\}$ Caso Base

$$\underline{\mathit{Si}\,\underline{A(\varphi)\,\,\mathit{y}\,A(\psi)}}\,\,\mathit{entonces}\,A((\varphi\rightarrow\psi)), A((\varphi\vee\psi))\,\,\mathit{y}\,A((\varphi\wedge\psi))$$

Demostración.

Sea $X=\{\varphi\in PROP: A(\varphi)\}$. Quiero ver que X=PROP. $X\subseteq PROP$ por definición.

Y además $PROP \subseteq X$ por minimalidad.

Inducción en PROP: ¿Para qué la usamos?

Definición

Una sucesión de proposiciones $\varphi_1, \ldots, \varphi_n$ es una **serie de formación** (sdf) de $\varphi \in PROP$ si $\varphi_n = \varphi$ y para todo $i \leq n, \varphi_i$ es:

- atómica, o bien
- igual a $(\varphi_j \to \varphi_k)$, $(\varphi_j \lor \varphi_k)$ o $(\varphi_j \land \varphi_k)$ con j, k < i.

Inducción en PROP: ¿Para qué la usamos?

Definición

Una sucesión de proposiciones $\varphi_1, \ldots, \varphi_n$ es una **serie de formación** (sdf) de $\varphi \in PROP$ si $\varphi_n = \varphi$ y para todo $i \leq n, \varphi_i$ es:

- atómica, o bien
- igual a $(\varphi_j \to \varphi_k)$, $(\varphi_j \lor \varphi_k)$ o $(\varphi_j \land \varphi_k)$ con j, k < i.

Teorema

Toda $\varphi \in PROP$ tiene una serie de formación.

Inducción en PROP: ¿Para qué la usamos?

Definición

Una sucesión de proposiciones $\varphi_1, \ldots, \varphi_n$ es una **serie de formación** (sdf) de $\varphi \in PROP$ si $\varphi_n = \varphi$ y para todo $i \leq n$, φ_i es:

- atómica, o bien
- $\blacksquare \ \, \text{igual a} \ \, (\varphi_j \to \varphi_k), \, (\varphi_j \vee \varphi_k) \ \, \text{o} \ \, (\varphi_j \wedge \varphi_k) \ \, \text{con} \, j,k < i.$

Teorema

Toda $\varphi \in PROP$ tiene una serie de formación.

Demostración.

 $\boxed{\varphi\in At}$ " φ " es una sdf de φ (tenemos $n=1,\, \varphi_1:=\varphi$).

Inducción en PROP: ¿Para qué la usamos?

Definición

Una sucesión de proposiciones $\varphi_1, \ldots, \varphi_n$ es una **serie de formación** (sdf) de $\varphi \in PROP$ si $\varphi_n = \varphi$ y para todo $i \leq n$, φ_i es:

- atómica, o bien
- igual a $(\varphi_j \to \varphi_k)$, $(\varphi_j \lor \varphi_k)$ o $(\varphi_j \land \varphi_k)$ con j, k < i.

Teorema

Toda $\varphi \in PROP$ tiene una serie de formación.

Demostración.

 $\boxed{arphi \in At}$ "arphi" es una sdf de arphi (tenemos $n=1,\, arphi_1 := arphi$).

 $(\varphi \odot \psi)$ Por HI, φ y ψ tienen sdf $\varphi_1, \ldots, \varphi_n (=\varphi)$ y $\psi_1, \ldots, \psi_m (=\psi)$.

Inducción en PROP: ¿Para qué la usamos?

Definición

Una sucesión de proposiciones $\varphi_1, \ldots, \varphi_n$ es una **serie de formación** (sdf) de $\varphi \in PROP$ si $\varphi_n = \varphi$ y para todo $i \leq n$, φ_i es:

- atómica, o bien
- igual a $(\varphi_j \to \varphi_k)$, $(\varphi_j \lor \varphi_k)$ o $(\varphi_j \land \varphi_k)$ con j, k < i.

Teorema

Toda $\varphi \in PROP$ tiene una serie de formación.

Demostración.

 $\boxed{\varphi \in At} \ \text{``}\varphi\text{''} \text{ es una sdf de }\varphi\text{ (tenemos }n=1,\,\varphi_1:=\varphi\text{)}.$

 $(\varphi \odot \psi)$ Por HI, φ y ψ tienen sdf $\varphi_1, \ldots, \varphi_n (=\varphi)$ y $\psi_1, \ldots, \psi_m (=\psi)$. Luego

$$\varphi_1,\ldots,\varphi_n,\psi_1,\ldots,\psi_m,(\varphi\odot\psi)$$
 es sdf de $(\varphi\odot\psi)$.

Recursión en PROP

Recursión en PROP

Teorema (definición por recursión en subfórmulas)

Sea A un conjunto y supongamos dadas funciones

 $H_{At}: At \rightarrow A \text{ y } H_{\odot}: A^2 \rightarrow A \text{ para cada } \odot.$

Entonces hay exactamente una función $F: PROP \rightarrow A$ tal que

$$\begin{cases} F(\varphi) &= H_{At}(\varphi) \text{ para } \varphi \text{ en } At \\ F((\varphi \odot \psi)) &= H_{\odot}\big(F(\varphi), F(\psi)\big) \end{cases}$$

Recursión

Otras versiones equivalentes útiles

Recursión en PROP

Teorema (definición por recursión en subfórmulas)

Sea A un conjunto y supongamos dadas funciones

 $H_{At}: At \rightarrow A \text{ y } H_{\odot}: A^2 \rightarrow A \text{ para cada } \odot.$

Entonces hay exactamente una función $F: PROP \rightarrow A$ tal que

$$\begin{cases} F(\varphi) &= H_{At}(\varphi) \text{ para } \varphi \text{ en } At \\ F((\varphi \odot \psi)) &= H_{\odot}\big(F(\varphi), F(\psi)\big) \end{cases}$$

Recursión

Otras versiones equivalentes útiles ---> Pizarrón

Definición

$$\boxed{\varphi \in At} gr(p_n) := n; gr(\bot) := -1.$$

$$\overline{(\varphi\odot\psi)}\ \operatorname{gr}((\varphi\odot\psi)):=\operatorname{máx}\{\operatorname{gr}(\varphi),\operatorname{gr}(\psi)\}.$$

Definición

$$\begin{array}{c} \boxed{\varphi \in At} \ gr(p_n) := n; gr(\bot) := -1. \\ \\ \hline (\varphi \odot \psi) \ gr((\varphi \odot \psi)) := \max\{gr(\varphi), gr(\psi)\}. \\ \\ gr\big(((p_0 \wedge p_3) \to p_2)\big) = \max\{gr\big((p_0 \wedge p_3)\big), gr(p_2)\} \end{array} \quad \text{caso ``\odot''}$$

Definición

$$\begin{array}{c} \boxed{\varphi \in At} \ gr(p_n) := n; gr(\bot) := -1. \\ \\ \boxed{(\varphi \odot \psi)} \ gr((\varphi \odot \psi)) := \max\{gr(\varphi), gr(\psi)\}. \\ \\ gr\big(((p_0 \wedge p_3) \to p_2)\big) = \max\{gr\big((p_0 \wedge p_3)\big), gr(p_2)\} & \text{caso "\odot"} \\ \\ = \max\{gr\big((p_0 \wedge p_3)\big), 2\} & \text{caso "At"} \end{array}$$

Definición

Definición

$$\begin{array}{c|c} \varphi \in At & gr(p_n) := n; gr(\bot) := -1. \\ \hline (\varphi \odot \psi) & gr((\varphi \odot \psi)) := \max\{gr(\varphi), gr(\psi)\}. \\ \\ gr\big(((p_0 \land p_3) \to p_2)\big) = \max\{gr\big((p_0 \land p_3)\big), gr(p_2)\} & \text{caso "\odot"} \\ & = \max\{gr\big((p_0 \land p_3)\big), 2\} & \text{caso "At"} \\ & = \max\{\max\{gr(p_0), gr(p_3)\}, 2\} & \text{caso "\odot"} \\ & = \max\{\max\{0, 3\}, 2\} & \text{caso "At"} \end{array}$$

Definición

Definición

$$\begin{array}{ll} \boxed{\varphi \in At} & gr(p_n) := n; gr(\bot) := -1. \\ \hline (\varphi \odot \psi) & gr((\varphi \odot \psi)) := \max\{gr(\varphi), gr(\psi)\}. \\ \\ gr\big(((p_0 \wedge p_3) \to p_2)\big) = \max\{gr\big((p_0 \wedge p_3)\big), gr(p_2)\} & \text{caso "\odot"} \\ & = \max\{gr\big((p_0 \wedge p_3)\big), 2\} & \text{caso "At"} \\ & = \max\{\max\{gr(p_0), gr(p_3)\}, 2\} & \text{caso "Δ"} \\ & = \max\{\max\{0, 3\}, 2\} & \text{def de m\'ax} \\ & = 3 & \text{def de m\'ax} \end{array}$$