#### 微分方程模型

Ordinary Differential Equation Model, Ode Model

October 5, 2021

#### 目录

- 1 微分方程模型介绍
- 2 人口增长模型
- 3 传染病模型
- 4 猎物(食饵)-捕食者模型
- 5 课后作业

#### 微分方程模型介绍

#### 微分方程

微分方程是含有微分的方程,由此需要解释两个问题:

- ① 方程。方程是指**含有未知数的等式**。使等式成立的未知数的值称 为"解"或"根"。
- 2 微分。微分是对函数的局部变化率的一种线性描述。微分可以近似地描述当函数自变量的取值作足够小的改变时,函数的值是怎样改变的。

#### 微分方程模型介绍

例如,牛顿第二定律方程就是一个最典型的微分方程

$$f = ma = m\frac{\mathrm{d}v}{\mathrm{d}t} \tag{1}$$

例如, 这是一个一阶微分方程初值问题

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = 2\\ y(0) = 1 \end{cases} \tag{2}$$

大家应该可以非常快速地看出它的解为

$$y = 2x + 1 \tag{3}$$

#### 微分方程模型介绍

微分方程理论博大精深,我们本节仅就几个最经典的微分方程模型进行讨论,希望能够帮助大家理解微分方程建模的基本思想。我们将通过三个模型案例展开微分方程建模这一课程。他们分别是:

- 人口增长模型
- 传染病模型
- 猎物-捕食者模型

#### 人口增长模型

认识人口数量的变化规律,建立人口模型,作出较准确的预报,是有效控制人口增长的前提。下表给出了近两个世纪的美国人口统计数据,我们以此研究人口增长模型。

| 年份 | 1790 | 1800 | 1810 | 1820 | 1830 | 1840 | 1850 | 1860 |
|----|------|------|------|------|------|------|------|------|
| 人口 | 3.9  | 5.3  | 7.2  | 9.6  | 12.9 | 17.1 | 23.2 | 31.4 |

| 年份 | 1870 | 1880 | 1890 | 1900 | 1910 | 1920  | 1930  | 1940  |
|----|------|------|------|------|------|-------|-------|-------|
| 人口 | 38.6 | 50.2 | 62.9 | 76   | 92   | 106.5 | 123.2 | 131.7 |

| 年份 | 1950  | 1960  | 1970 | 1980  | 1990  | 2000  |  |
|----|-------|-------|------|-------|-------|-------|--|
| 人口 | 150.7 | 179.3 | 204  | 226.5 | 251.4 | 281.4 |  |

#### 人口增长模型

先简单通过散点图看一下人口的增长模式。

```
1 import matplotlib
2 import matplotlib.pyplot as plt
3 plt.style.use('ggplot') # 设置绘图风格为ggplot
4
5 year = [i for i in range(1790,2010,10)] # 时间列表
6 population =
      [3.9,5.3,7.2,9.6,12.9,17.1,23.2,31.4,38.6,
7 50.2,62.9,76,92,106.5,123.2,131.7,150.7,179.3,204,
8 226.5,251.4,281.4]
9 plt.scatter(year,population) # 绘制散点图
10 plt.xlabel("Year") # 加横坐标label
11 plt.ylabel("Population(Million)") # 加纵坐标label
12 plt.show()
```

#### 人口增长模型



200多年前英国人口学家T. Malthus (1766-1834)调查了英国100多年的人口统计资料,得出了人口增长率不变的假设,并据此建立了著名的人口指数增长模型。

#### 假设

指数增长模型假设人口增长率r不变

记时刻t的人口为x(t),当考察一个国家或一个较大地区的人口时,x(t)是一个很大的整数。为了利用微积分这一数学工具,将x(t)视为连续、可微函数,记初始时刻(t=0)的人口为 $x_0$ ,假设人口增长率为常数r,即单位时间内x(t)的增长量为r乘以x(t),于是得到x(t)满足微分方程

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = rx\\ x(0) = x_0 \end{cases} \tag{4}$$

由这个方程,我们通过分离变量法很容易解出其解析解:

#### 分离变量法求解微分方程

先分离变量

$$\frac{\mathrm{d}x}{x} = r\mathrm{d}t\tag{5}$$

两边同时积分

$$\int \frac{\mathrm{d}x}{x} = \int r \mathrm{d}t \tag{6}$$

解得:

$$x = e^{rt + C_1}$$
$$= Ce^{rt}$$

当x = 0时,

$$x(0) = C = x_0 \tag{7}$$

于是有

$$|n\rangle = |n\rangle + rt \quad x(t) = x_0 e^{rt}$$
 (8)

当r>0时,上式表示人口将按指数规律随时间无限增长,于是称为指数增长模型。

```
1 # 指数增长模型的绘图
2 import numpy as np
3 x0 = 1 # 初始人口数
4 r = 0.02 # 增长率
5 t = [i for i in range(1000)] # 时间列表
6 x_t = [x0 * np.exp(r * time) for time in t] # 人口增
      长记录
7 plt.plot(t, x_t) # 绘图
8 plt.xlabel("Time") # 加横坐标label
9 plt.ylabel("Population") # 加纵坐标label
10 plt.show()
```



我们来尝试用这个模型,带入19世纪的数据,来预测20世纪的人口增长规律。

为了估计指数增长模型中的参数r和 $x_0$ ,需将原式取对数,得

$$y = rt + a \tag{9}$$

其中,

$$y = \ln x, a = \ln x_0 \tag{10}$$

$$lnx = rt+ lnx$$

```
1 from sklearn.linear_model import LinearRegression
2 ln_population = np.log(population) # 对人口取对数,得
      到v
3 plt.scatter(year[0:12],ln_population[0:12])
4
5 ## 使用LinearRegression 进行线性回归
6 lrModel = LinearRegression()
7 lrModel.fit(np.array(year[0:12]).reshape(-1,1),
      ln_population[0:12])
8 ln_population_fit = [ lrModel.intercept_ + lrModel
      coef_ *i for i in range(1780,1920,10) ]
9 plt.plot(range(1780,1920,10),ln_population_fit) # 将
      线性回归以后的直线绘制在散点图上
10 plt.xlabel("Year") # 加横坐标labal
11 plt.ylabel(r'$\ln(x)$') # 加纵坐标label
12 plt.show()
```



#### 我们把以上的代码合起来, 放在一起

```
1 ## 对比一个世纪后的预测值和真实值
2 #输入原始数据
3 year = [i for i in range(1790,2010,10)] # 时间列表
4 population =
      [3.9,5.3,7.2,9.6,12.9,17.1,23.2,31.4,38.6,
5 50.2,62.9,76,92,106.5,123.2,131.7,150.7,179.3,204,
      226.5.251.4.281.4
6 plt.scatter(year,population,label = 'Real Data')
7 from sklearn.linear_model import LinearRegression
8 ln_population = np.log(population) # 对人口取对数
9 lrModel = LinearRegression()
10 lrModel.fit(np.array(year[0:12]).reshape(-1,1),
      ln_population[0:12])
11 ln_population_fit = [ lrModel.intercept_ + lrModel.
      coef_ *i for i in range(1780,1920,10)] # 给出线
      性回归直线表达式
```

```
1 #将预测值和真实值进行对比
2 r = lrModel.coef_ # 预测直线增长率
3 x0 = np.exp(lrModel.intercept_) # 取x0
4 pop_predicted = [x0 * np.exp(lrModel.coef_ * time)
     for time in year] # 预测
     值
5 plt.plot(year,pop_predicted,'b',label = 'Predicted')
      #将预测的曲线绘制在散点图
6 plt.show()
```



显然,使用1790-1900的数据得到的指数模型预测效果不好,不能够准确地预测20世纪的人口增长情况。

- 历史上,指数增长模型与19世纪以前欧洲一些地区人口统计数据可以很好地吻合,迁往加拿大的欧洲移民后代入口也大致符合这个模型。另外,用它作短期人口预测可以得到较好的结果。这是因为在这些情况下,人口增长率是常数这个基本假设大致成立。
- 但是长期来看,任何地区的人口都不可能无限增长,即指数模型不能描述、也不能预测较长时期的人口演变过程。这是因为,人口增长率事实上是在不断地变化着排除灾难、战争等特殊时期,一般说来,当人口较少时,增长较快,即增长率较大;人口增加到一定数量以后,增长就会慢下来,即增长率变小。

如果根据上面给出的数据计算一下美国人口的年增长率。

```
1 ## 增长率可视化
2 year = [i for i in range(1790,2010,10)] #时间列表
3 population =
      [3.9,5.3,7.2,9.6,12.9,17.1,23.2,31.4,38.6,
4 50.2,62.9,76,92,106.5,123.2,131.7,150.7,179.3,204,
5 226.5.251.4.281.47
6 ## 计算增长率
7 \text{ rate} = []
8 for i in range(len(population)-1):
      rate.append((population[i+1] - population[i])/
         population[i])
10 ## 可视化
plt.scatter(year[1:],rate)
12 plt.xlabel("Year") # 加横坐标label
13 plt.ylabel("r") # 加纵坐标label
14 plt.show()
```



可以看到增长率从19世纪开始就基本上在缓慢下降。如果用一个平均的年增长率作为r,用指数增长模型描述美国人口的变化,会发现结果与实际数据相差很大。看来,为了使人口预报特别是长期预报更好地符合实际情况,必须修改指数增长模型关于人口增长率是常数这个基本假设。

通过分析人口增长到一定数量后增长率下降的主要原因,人们注意到,自然资源、环境条件等因素对人口的增长起着阻滞作用,并且随着人口的增加,阻滞作用越来越大。所谓阻滞增长模型就是考虑到这个因素,对指数增长模型的基本假设进行修改后得到的。

阻滞作用体现在对人口增长率r的影响上,使得r随着人口x的增加而下降。若将r表示为x的函数r(x),则它应该是减函数。于是

$$\frac{\mathrm{d}x}{\mathrm{d}t} = r(x)x, x(0) = x_0 \tag{11}$$

对r(x)一个最简单的假定是,设r(x)为x的线性函数,即

$$r(x) = r - sx(r, s > 0) \tag{12}$$

这里r称固有增长率,表示人口很少时(理论上是x=0的增长率)。为了确定系数s的意义,引入自然资源和环境条件所能容纳的最大人口数量 $x_m$ ,称人口容量,当 $x=x_m$ 时人口不再增长,即增长率 $r(x_m)=0$ . 于是

$$r(x) = r(1 - \frac{x}{x_m}) = r - \frac{r}{\lambda_m} \lambda \qquad (13)$$

带回原方程,得到

$$\frac{\mathrm{d}x}{\mathrm{d}t} = rx(1 - \frac{x}{x_m}), x(0) = x_0 \tag{14}$$

方程右端的因子rx体现人口自身的增长趋势,因子 $(1-rac{x}{x_m})$ 则体现了环境和资源对人口增长的阻滞作用。

显然, x越大, 前一因子越大, 后一因子越小, 人口增长是两个因子共同作用的结果, 上式称为阻滞增长模型。同样地, 我们使用分离变量法来求解这个方程。

#### 分离变量法求解微分方程

将原方程分离变量后有 $\frac{\mathrm{d}x}{x(1-\frac{x}{x})}=r\mathrm{d}t$ ,等式左边变

 $\mathcal{H}(\frac{1}{x} + \frac{1}{x_m - x}) dx = r dt.$ 两边同时积分

$$\int \left(\frac{1}{x} + \frac{1}{x_m - x}\right) dx = \int r dt \tag{15}$$

整理有

$$\ln x - \ln(x_m - x) = \ln(\frac{x}{x_m - x}) = rt + C$$
 (16)

两边同时取指数

$$\frac{x}{x_{--} - x} = e^{rt + C} = e^{rt} \cdot e^{C} = C_1 \cdot e^{rt} (17)$$

得到

$$x = \frac{x_m}{1 + C_1 e^{-rt}} \tag{18}$$

$$\frac{\frac{dx}{dt}}{x} = r(1 - \frac{x}{x_m}) = r - \frac{r}{x_m}x$$

$$\frac{dx}{dt} = rx(1 - \frac{x}{x_m}), x(0) = x_0$$

#### 分离变量法求解微分方程

将初始条件 $x(0) = \frac{x_m}{1+C_1}$ 代入,得到 $C_1 = \frac{x_m}{x_0} - 1$ ,最终得到

$$x(t) = \frac{x_m}{1 + (\frac{x_m}{x_0} - 1)e^{-rt}}$$
 (19)

我们可以看一下 logistic模型的增长曲线。

```
1 ## 阻滞增长模型的绘图
2 ## 输入初始参数
3 \times 0 = 1
4 \text{ xm} = 30
5 r = 0.02
6
7 # 获得x 和 f(x)
8 t = [i for i in range(400)] # 取合适的值t
9 x_t = [xm * (1 + (xm/x0 - 1)*np.exp(- r * time))]
      **(-1) for time in tl
11 # 绘图增长曲线1:
12 plt.figure(figsize=(15,5))
13 plt.subplot(1,2,1)
14 plt.plot(t,x_t) # 绘图
15 plt.xlabel("Time") # 加横坐标label
16 plt.ylabel("Population") # 加纵坐标label
```

```
1 # 绘图增长速度2:
2 plt.subplot(1,2,2)
3 x = [xm*i/30 for i in range(31)] # 对取值x
4 deri_x = [r * xx * (1 - xx/xm) for xx in x] # 表达
     式deri x
5 plt.plot(x,deri_x) # 绘图
6 plt.xlabel(r'$x$') # 加横坐标label
7 plt.ylabel(r'$\frac{\mathrm{d}x}{\mathrm{d}t}$')
8 # 加纵坐标label
9 plt.show()
```



上面的阻滞增长模型,是荷兰生物数学家Verhulst 19世纪中叶提出的,它不仅能够大体上描述人口及许多物种数量(如森林中的树木、鱼塘中的鱼群等)的变化规律,而且在社会经济领域也有广泛的应用,例如耐用消费品的销售就可以用它来描述。基于这个模型能够描述一些事物符合逻辑的客观规律,人们常称它为logistic模型。

用阻滞增长模型进行人口预报,先要作**参数估计**。除了初始人口 $x_0$ 外,还要估计r和 $x_m$ 。它们可以用人口统计数据拟合得到,也可以辅之以专家对于参数的估计。 原方程可以写为

$$\frac{\frac{\mathrm{d}x}{\mathrm{d}t}}{x} = r - sx, s = \frac{r}{x_m} \tag{20}$$

上式左端可以从实际人口数据用数值微分算出,右端对参数r,s是线性的,r,s可借助线性拟合获得。

```
1 ## 对比一个世纪后的预测值和真实值
2 import seaborn as sns
3 from sklearn.linear_model import LinearRegression #
4
5 # 输入初始数据
6 year = [i for i in range(1790,2010,10)] # 时间列表
7 population =
      [3.9,5.3,7.2,9.6,12.9,17.1,23.2,31.4,38.6,
8 50.2,62.9,76,92,106.5,123.2,131.7,150.7,179.3,204,
9 226.5,251.4,281.4]
10 y = []
for i in range(len(population)-1):
      y.append( (population[i+1] - population[i])/10 /
12
          population[i] )
13 plt.figure(figsize = (15,5))
```

```
1 # 可视化线性回归结果
2 plt.subplot(1,2,1)
3 sns.regplot(population[1:],y,ci = 0)
4 plt.ylabel(r'$\frac{\mathrm{d}x}{\mathrm{d}t}/{x}$')
       # 加纵坐
      标label
5 plt.xlabel(r'$x$') # 加横坐标label
6 lrModel = LinearRegression()
7 lrModel.fit(np.array(population[7:-1]).reshape(-1,1)
      .v[6:-1])
8 # 输入数据
9 r = lrModel.intercept_
10 xm = r/(-lrModel.coef_)
```

```
x(t) = \frac{x_m}{1 + (\frac{x_m}{x_n} - 1)e^{-rt}}
1 # 可视化拟合结果
2 plt.subplot(1,2,2)
3 \times 0 = population[0]
4 plt.plot(year,population,label = 'Real Data') # 绘图
5 pop_predicted = [xm * (1 + (xm/x0 - 1)*np.exp(- r * (
      time - 1790)))**(-1) for time in year] # 预测曲
     线
6 plt.plot(year,pop_predicted,label = 'Predicted')
7 # 绘图
8 plt.xlabel('Year') # 加横坐标label
9 plt.xlabel('Population') # 加横坐标label
10 plt.show()
```



可以看出,这个模型整体拟合效果不错。我们可以用模型计算2000年的人口,用预测数据与已知的实际数据比较,来检验模型是否合适。