gauge O) IGAP
Invariants of intds from
uon-gauge theories - Du Pei
- why? - some cons of gauge theories.
- some cons of gauge theories: 1) seemingly, no invariants stronger
than SW jas most can be
related to those ones
11) won't give tull TQFTs,
not defined on some infos
- Purel's talk: 6d non-quryeth => 4dinus.
- Puvel's talk: 6d non-guvye th => 4dinus this talk: 4d non-gavye => 3d TQFTs
-4d N=2 theories have Coulomb branches
Mg: loul. 65. of theory Jon Stars
- hyperkahler
\$2 of cpx str1s,
pick T
F C > M >
abelian varis
By: Coul by on IR (u-plane)
- special kähler, w singularities
-examples: 10(1) gauge th, N=0
-> labelled by an elliptic
CUIVE 3

$$My = T^2 \times R^7 = Jac(\Xi) \times C$$

-trivial fibration => I is a "free theory"

-> but locally, we have triviality,

and, physically, I near a

honsingular point can be

epproximated by a free U(1)9

yauge theory (low-erage effective th.

LUCT)

Rnko (D, (1), (h) possess S'-action ('rotate By) -> look like conformal theories of U(1)-5 ymmetry) - superconformal theories S'C My The quivariant -(By) = Ept3 superconf. pt. 0 V class S, labels: q'ADB, Z'RS My = msp. of Gr-Higgs bdls M: Hitchin fibration \$1: Hitchin action -1+ q= (-> 1), (1)

My = i IV* -away from sing.; M.N (E6)

-can \$1-action help? a little

- Hilbert sp. of J (top. twister)
on \$3 2 { regular functions on By}

-partition funct of Jon \$1x\$32dim=00 -> \$'-equir. partitionet., though, ~ X 5' (GBZ)

- can we regularize \$1 x 1/3 part. function?

~> (x-family of 3d TQFT's

Coneanu sigility: XI-param. family of 3d Tafts)

~> since & is R-sym, acts on supercharges

-wants discrete flavor sym.,

won't act on superch.

Ruk \$'x33 worked, and it does

work for \$'x Seitert with

-often, it is ZNC\$!

1) N=1 -> all previous examples,

all gauge theories

11) N>1 -> non-gauge theories

~> ZN - family of 3d TAFTS