N-gram Language models and Smoothing

Mittul Singh

16.11.2015

Slides inspired by Philipp Koehn's slides available at: http://www.statmt.org/book/slides/07-language-models.pdf

Recap

- Language modelling applications
- Perplexity (PPL) : 2^H , where H is cross entropy
- MLE: $P(w_2|w_1) = count(w_2, w_1)/count(w_1)$

Language Models

Language models answer the question:

How likely is it that a string of English words is good English?

- Help with reordering p_{LM} (the house is small) > p_{LM} (small is the house)
- Help the with word choice
 p_{LM}(easy to recognise speech) > p_{LM}(easy to wreck a nice beach)
- They define the probability of a string of words

N-Gram Language Models

- Given: a string of English Words $W = w_1, w_2, w_3, ..., w_n$
- Question: what is p(W)?
- Sparse data: Many perfectly good English sentences might not have been recorded (or written)
- —> Decomposing p(W) using the chain rule:

$$p(w_1, w_2, w_3, ..., w_n) = p(w_1)p(w_2|w_1)p(w_3|w_1, w_2)...p(w_n|w_1, w_2, w_3, ..., w_{n-1})$$

(not much gained yet, $p(w_n | w_1, w_2, w_3, ..., w_{n-1})$ is equally sparse)

Markov Chain

- Markov Assumption:
 - * only recent history matters
 - * limited memory: only last k words are included in history (older words less relevant)
 - kth order Markov model
- For instance 2-gram language model:

$$p(w_1, w_2, w_3, ..., w_n) \approx p(w_1)p(w_2|w_1)p(w_3|w_2)...p(w_n|w_{n-1})$$

• What is conditioned on, here w_{i-1} is called the history

Estimating N-Gram Probabilities

Maximum likelihood estimation

 $p(w_2|w_1) = count(w_1,w_2)/count(w_1)$

- Collect counts over a large text corpus
- Millions to billions of words are easy to get

(trillions of English words available on the web)

Example: 3-Gram

Counts for trigrams and estimated word probabilities

the green (total: 1748) the red (total: 225) the blue (total: 54)

word	C.	prob.
paper	801	0,458
group	640	0,367
light	110	0,063
party	27	0,015

word	C.	prob.
cross	123	0,547
tape	31	0,138
army	9	0,040
card	7	0,031

word	C.	prob.
box	16	0,296
•	6	0,111
army	6	0,111
card	3	0,056

- 225 trigrams in the Europarl corpus start with the red
- 123 of them end with cross
- —> maximum likelihood probability is 123/225 = 0,547

Example: 3-Gram

prediction	р _{LM}	-log₂р∟м	
p _{LM} (i <s>)</s>	0,109	3,197	
p _{LM} (would l <s> i)</s>	0,144	2,791	
р _{LM} (like I i would)	0,489	1,031	
р _{LM} (to I would like)	0,905	0,144	
р _{LM} (commend I like to)	0,002	8,794	
p _{LM} (him I to commend)	0,472	2,367	
р _{LM} (. I commend him)	0,290	1,785	
р _{LM} (I him .)	0,999	0,000	
	average	2,513	

Perplexity

$$PPL = 2^{\Lambda}(-\frac{1}{N}\Sigma_{i}\log_{2}p(w_{i}|w_{i-1}...))$$

- where N is the number of tokens in data D, $w_i \in D$
- Shannon-McMillan-Breiman theorem

Comparison 1 to 4-Gram

word	unigram	bigram	trigram	4-gram
i	6,684	3,197	3,197	3,197
would	8,342	2,884	2,791	2,791
like	9,129	2,026	1,031	1,290
to	5,081	0,402	0,144	0,113
commend	15,487	12,335	8,794	8,633
him	10,678	7,316	2,367	0,880
•	4,896	3,020	1,785	1,510
	4,828	0,005	0,000	0,000
average	7,613	3,898	2,513	2,302
perplexity	195,768	14,907	5,708	4,913

LT1

Unseen N-Grams

- We have seen i like to in our corpus
- We have never seen i like to smooth in our corpus
- \rightarrow p(smooth | i like to) = 0
- Any sentence that includes i like to smooth will be assigned probability 0

Seen N-Grams

- p(I like to commend) computed on training set
- Is it representative on test set?
 - Does it overfit?

Add-One Smoothing

For all possible n-grams, add the count of one

$$p = \frac{c+1}{N+v^n} < \frac{c}{N}$$

- c = count of n-gram in corpus
- N = count of history
- v = vocabulary size
- But there are many more unseen n-grams than seen n-grams
- Example: Europarl bigrams:
 - 86700 distinct words
 - $86700^2 = 7516890000$ possible bigrams (~ 7,517 billion)
 - but only about 30000000 bigrams (~30 million) in corpus

Add-a Smoothing

• Add α < 1 to each count

$$p = \frac{c + \alpha}{N + \alpha v^n}$$

- What is a good value of α?
- Could be optimised on held-out set

Example: 2-Grams in Europarl

C	$(c+1)\frac{N}{N+v^2}$	$(c+a)\frac{N}{N+av^2}$	t _c
0	0,00378	0,00016	0,00016
1	0,00755	0,95725	0,46235
5	0,02266	4,78558	4,35234
8	0,03399	7,65683	7,15074
10	0,04155	9,57100	9,11927
20	0,07931	19,14183	18,95948

- Add-a smoothing with a=0,00017
- t_c are average counts of n-grams in test set that occurred c times in corpus

Deleted Estimation

- Estimate true counts in held-out data
 - split corpus in two halves: training and held-out
 - counts in training $C_t(w_1,...,w_n)$
 - number of n-grams with training count r: N_r
 - total times n-grams of training count r seen in held-out data: T_r
- Held-out estimator:

$$p_h(w_1,..., w_n) = \frac{T_r}{N_r N}$$
 where $count(w_1,..., w_n) = r$

Both halves can be switched and results combined

$$p_h(w_1,..., w_n) = \frac{T_r^1 + T_r^2}{N(N_r^1 + N_r^2)} \text{ where } count(w_1,..., w_n) = r$$

Good-Turing Smoothing

Adjust actual counts r to expected counts r* with formula

$$r^* = (r+1) \frac{N_{r+1}}{N_r}$$

- N_r number of n-grams that occur exactly r times in corpus
- N₀ total number of n-grams
- This smoothing works well for low r
 - It fails for high r, as $N_r = 0$

Good-Turing for 2-Grams in Europarl

Count	Count of counts	Adjusted count	Test count
r	N _r	r *	t
0	7514941065	0,00015	0,00016
1	1132844	0,46539	0,46235
5	49254	4,36967	4,35234
8	21693	7,43798	7,15074
10	14880	9,31304	9,11927
20	4546	19,54487	18,95948

adjusted count fairly accurate when compared against the test count

Back-Off

- In given corpus, we may never observe
 - Scottish beer drinkers
 - Scottish beer eaters
- Both have count 0
 - our smoothing methods will assign then same probability
- Better: back-off to bigrams:
 - beer drinkers
 - beer eaters

Interpolation

- Higher and lower order n-gram models have different strengths and weaknesses
 - high-order n-grams are sensitive to more context, but have sparse counts
 - low-order n-grams consider only very limited context, but have robust counts
- Combine them

$$p_{I}(W_{3}|W_{1},W_{2}) = \lambda_{1}p_{1}(W_{3}) + \lambda_{2}p_{2}(W_{3}|W_{2}) + \lambda_{3}p_{3}(W_{3}|W_{1},W_{2})$$

$$\lambda_1 + \lambda_2 + \lambda_3 = 1$$

Recursive Interpolation

- We can trust some histories $w_{i-n+1}, \ldots, w_{i-1}$ more than others
- Condition interpolation weights on history: $\lambda(w_{i-n+1},...,w_{i-1})$
- Recursive definition of interpolation

$$p_{n}(w_{i}|w_{i-n+1},...,w_{i-1}) = \lambda(w_{i-n+1},...,w_{i-1}) p(w_{i}|w_{i-n+1},...,w_{i-1}) + (1-\lambda(w_{i-n+1},...,w_{i-1}))p_{n}(w_{i}|w_{i-n+2},...,w_{i-1})$$

Example: Recursive Interpolation

Consider a trigram: in spite of (BTW: GT = Good Turing) $p_{I}(of \mid in \ spite) = \lambda_{in \ spite} \ p_{GT}(of \mid in \ spite) + (1-\lambda_{in \ spite}) p_{I}(of \mid spite)$ $= \lambda_{in \ spite} \ p_{GT}(of \mid in \ spite) \qquad (\because \ expanding \ p_{I}(of \mid spite))$ $+ (1-\lambda_{in \ spite}) \{ \lambda_{spite} \ p_{GT}(of \mid spite) + (1-\lambda_{spite}) p_{I}(of) \}$ $= \lambda_{in \ spite} \ p_{GT}(of \mid in \ spite) \qquad (\because \ p_{I}(of) = p_{GT}(of))$

+ $(1-\lambda_{in \ spite}) \{ \lambda_{spite} p_{GT}(of \mid spite) + (1-\lambda_{spite}) p_{GT}(of) \}$

Back-Off

Trust the highest order language model that contains the n-gram

$$p^{BO}_{n}(w_{i}|w_{i-n+1},...,w_{i-1}) =$$

$$q_{n}(w_{i}|w_{i-n+1},...,w_{i-1}) \text{ if } count_{n}(w_{i-n+1},...,w_{i}) > 0$$

$$q_{n}(w_{i-n+1},...,w_{i-1}) p^{BO}_{n}(w_{i}|w_{i-n+2},...,w_{i-1}) \text{ else}$$

- Requires
 - adjusted prediction model a_n(w_i|w_{i-n+1},...,w_{i-1})
 - discounting function $d_n(w_{i-n+1},...,w_{i-1})$: left over mass from the adjusted predicted model

Back-Off with Good-Turing Smoothing

Previously, we computed n-gram probabilities based on relative frequency

$$p(w_2|w_1) = \frac{count(w_1, w_2)}{count(w_1)}$$

Good Turing smoothing adjusts counts c to expected counts c*

$$count^*(w_1, w_2) \leq count(w_1, w_2)$$

We use the expected counts for the prediction model (but 0* remains 0)

$$\alpha(w_2|w_1) = \frac{count^*(w_1, w_2)}{count(w_1)}$$

This leaves probability mass for the discounting function

$$d_2(w_1) = 1 - \sum_{w_2} \alpha(w_2 | w_1)$$

Example: Back-Off with GT Smoothing

- $p_{BO}(\text{ of } | \text{ spite }) = \alpha_{GT}(\text{ of } | \text{ spite }) [:: c(\text{spite of}) > 0]$
- $p_{BO}(.|spite) = a_{GT}(.|spite) [:: c(spite.) > 0]$
- α_{GT} < p_{MLE}, to allow for unseen words
- d(spite) = 1 α_{GT} (of | spite) + α_{GT} (. | spite) [a piece of the pie left for unseen words]
- Test set: Cut your nose to spite your face
- pBO(your | spite) = d(spite) x pGT(your)

Diversity of Histories

- Consider the word York
 - fairly frequent word in Europarl, occurs 477 times
 - as frequent as foods, indicates and provides
 - in unigram language model: a respectable probability
- However, it almost always directly follows New (473 times)
- Recall: unigram model only used, if the bigram model inconclusive
 - York unlikely second word in unseen bigram
 - in back-off unigram model, *York* should have low probability

Kneser-Ney Smoothing

- Kneser-Ney smoothing takes diversity of histories into account
- Count of histories for a word

$$N_{1+}(\bullet W) = |\{W_i : C(W_i, W) > 0\}|$$

Recall: maximum likelihood estimation of unigram language model

$$p_{ML}(w) = \frac{C(w)}{\sum_{i} C(w_{i})}$$

In Kneser-Ney smoothing, replace raw counts with count of histories

$$p_{KN}(w) = \frac{N_{1+}(\bullet w)}{\sum_{i} N_{1+}(\bullet w_{i})}$$

Example: Kneser-Ney Smoothing

I can't see without my _____ $p(York \mid my) = a_{GT}(my York) + d_{my} \times a_{GT}(York)$ $= c*(my York) + d_{my} \times c*(York)$ c(my) => p(York | my) > p(glasses | my) Applying Kneser-Ney ... $p(York \mid my) = a_{KN}(my York) + d_{my} \times a_{KN}(York)$ $= c*(my York) + d_{my} x N_{1+}(\bullet York)$ c(my) => p(York | my) < p(glasses | my)

Modified Kneser Ney Smoothing

Absolute discounting: subtract a fixed D from all non-zero counts

$$\alpha(W_n | W_1, ..., W_{n-1}) = \frac{C(W_1, ..., W_n) - D}{\sum_{w \in W_1, ..., w_{n-1}, w}}$$

Refinement: three different discount values

$$D_1 \text{ if } c=1$$

$$D(c) \qquad D_2 \text{ if } c=2$$

$$D_{3+} \text{ if } c>=3$$

Discount Parameters

• Optimal discounting parameters D₁,D₂,D₃₊can be computed quite easily

$$Y = \frac{N_1}{N_1 + 2N_2}$$

$$D_1 = 1 - 2Y - \frac{N_2}{N_1}$$

$$D_2 = 2 - 3Y - \frac{N_3}{N_2}$$

$$D_{3+} = 3 - 4Y - \frac{N_4}{N_3}$$

Values N_c are the counts of n-grams with exactly count c

Interpolated Back-Off

- Back-off models use only highest order n-gram
 - if sparse, not very reliable
 - two different n-grams with same history occur once —> same probability
 - one may be an outlier, the other under-represented in training
- To remedy this, always consider the lower-order back-off models
- Adapting the α function into interpolated α_I function by adding back-off

$$a_l(W_n | W_1, ..., W_{n-1}) = a(W_n | W_1, ..., W_{n-1}) + d(W_1, ..., W_{n-1})p_l(W_n | W_2, ..., W_{n-1})$$

Note that d function needs to adapted as well

Evaluation

Evaluation of smoothing methods:

Perplexity for language models trained on the Europarl corpus

Smoothing method	bigram	trigram	4-gram
Good-Turing	96,2	62,9	59,9
Modified Kneser-Ney	95,4	61,6	58,6
Interpolated Modified Kneser Ney	94,5	59,3	54,0

Summary

- Language models: How likely is a string of English words good English?
- N-Gram models (Markov Assumption)
- Count smoothing
 - add-one, add-a
 - deleted estimation
 - Good Turing
- Interpolation and back off
 - Good Turing
 - Kneser-Ney