LUNDS TEKNISKA HÖGSKOLA MATEMATIK

TENTAMENSSKRIVNING Tredimensionell vektoranalys 2014–04–03 kl 8–10

Svar och anvisningar.

- 1. Låt ${\pmb F}=(P,Q,R)$ vara ett C^1 -vektorfält i ${\mathbb R}^3$ och låt $K\subseteq {\mathbb R}^3$ vara en kropp.
 - a) Definiera divergensen av \boldsymbol{F} och formulera Gauss sats med alla förutsättningar på K och ∂K . (0.3)

Svar: Se kapitel 10.3 (speciellt Sats 10.4).

b) Betrakta nu kroppen K som ges av olikheterna

$$x^2 + y^2 + 1 \le z^2$$
 och $1 \le z \le 2$.

Beräkna flödet av fältet $\mathbf{F} = (x^3 z, y^3 z, -(x^2 + y^2)z^2)$ ut ur kroppen K. (0.4)

Svar: Vi har

$$\operatorname{div} \mathbf{F} = 3x^2z + 3y^2z - 2(x^2 + y^2)z = (x^2 + y^2)z$$

så enligt Gauss sats är

$$\iint_{\partial K} \mathbf{F} \cdot \mathbf{n} \, dS = \iiint_{K} (x^2 + y^2) z \, dx dy dz$$
$$= \iint_{D} (x^2 + y^2) \left(\int_{\sqrt{x^2 + y^2 + 1}}^2 z \, dz \right) dx dy,$$

där $D=\left\{(x,y);\,x^2+y^2\leq 3\right\}$. Övergång till polära koordinater ger nu att

$$\iint_D (x^2 + y^2) \left(2 - \frac{x^2 + y^2 + 1}{2}\right) dx dy = \int_0^{2\pi} \left(\int_0^{\sqrt{3}} r^2 \left(2 - \frac{r^2 + 1}{2}\right) r dr\right) d\theta$$
$$= 2\pi \int_0^{\sqrt{3}} \left(\frac{3}{2}r^3 - \frac{1}{2}r^5\right) dr = \frac{9\pi}{4}.$$

c) Bestäm alla värden på den reella konstanten a så att

$$\iint_{\Gamma} \mathbf{F}_a \cdot \mathbf{n} \, dS = 0,$$

 $d\ddot{a}r \Gamma \ddot{a}r ytan$

$$x^2 + y^2 + 1 = z^2$$
, $x^2 + y^2 < 3$, $z > 1$.

och fältet F_a ges av

$$\mathbf{F}_a(x, y, z) = (2xz - x, -a^2yz, z - 2). \tag{0.3}$$

<u>Svar</u>: Observera att Γ och cirkelskivan $D_2 = \{(x, y, z); x^2 + y^2 \leq 3, z = 2\}$ utgör randen till K. Eftersom $\mathbf{F}_a \cdot \mathbf{n} = 0$ på D_2 (ty $\mathbf{n} = (0, 0, 1)$ och z - 2 = 0) så följer det att

$$\iint_{\Gamma} \mathbf{F}_a \cdot \mathbf{n} \, dS = \iint_{\partial K} \mathbf{F}_a \cdot \mathbf{n} \, dS = \iiint_{K} \operatorname{div} \mathbf{F}_a \, dx dy dz.$$

Vi har

$$\operatorname{div} \mathbf{F}_a = 2z - 1 - a^2z + 1 = (2 - a^2)z$$

och ser alltså att div $\mathbf{F}_a > 0$ (el. < 0) på hela K om $a^2 < 2$ (resp. > 2).

Slutsatsen är att

$$\iint_{\Gamma} \mathbf{F}_a \cdot \mathbf{n} \, dS = 0 \text{ om och endast om } a^2 = 2, \text{ dvs. } \mathbf{a} = \pm \sqrt{2}.$$

2. Betrakta ytan \mathcal{C} som ges av parametriseringen

$$r(s,t) = (\cos s, \sin s, t), \quad 0 \le s \le 2\pi, -2 \le t \le 2.$$

a) Rita en skiss av \mathcal{C} och bestäm dess area. (0.3)

Svar: C är en cylinder med area 8π .

b) Beräkna rotationen av vektorfältet $\mathbf{F} = (x \cos y, x \sin y, z^2)$ och bestäm sedan värdet av

$$\int_{\partial \mathcal{C}} \boldsymbol{F} \cdot d\boldsymbol{r},$$

där randen till \mathcal{C} är positivt orienterad.

(0.4)

Svar: Vi har

$$rot \mathbf{F} = (0 - 0, 0 - 0, \sin y - (-x \sin y)) = (0, 0, (x + 1) \sin y)$$

så enligt Stokes sats är

$$\int_{\partial \mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \iint_{\mathcal{C}} (\operatorname{rot} \mathbf{F}) \cdot \mathbf{n} \, dS = \mathbf{0},$$

eftersom rot \mathbf{F} är ortogonal mot $\mathbf{n} = (x, y, 0)$.

c) Planet x+y+z=0 skär $\mathcal C$ i en ellips γ och delar ytan i två lika stora delar. Beräkna kurvintegralen

$$\int_{\gamma} \frac{y \, dx}{x^2 + y^2} - \frac{x \, dy}{x^2 + y^2} + z \, dz,$$

där orienteringen av γ är valt så att kurvan går ett varv runt z-axeln moturs. (0.3)

Svar: Om vi sätter

$$G = \left(\frac{y}{x^2 + y^2}, \frac{-x}{x^2 + y^2}, z\right)$$

så är rot G = 0 (kolla!). Vi kan *inte* dra slutsatsen att G är ett potentialfält, ty $\mathbb{R}^3 \setminus \{z\text{-axeln}\}$ är *inte* enkelt sammanhängande.

Men Stokes sats använt på den övre delen av \mathcal{C} ger att

$$\int_{\gamma} \mathbf{G} \cdot d\mathbf{r} = \int_{\sigma} \mathbf{G} \cdot d\mathbf{r},$$

där σ är cirkel
n $x^2+y^2=1,\,z=2$ genomlöpt ett varv runt z-axeln moturs. Vi ser direkt att

$$\int_{\sigma} \frac{y \, dx}{x^2 + y^2} - \frac{x \, dy}{x^2 + y^2} + z \, dz = \int_{0}^{2\pi} \sin t \cdot (-\sin t) - \cos t \cdot \cos t + 2 \cdot 0 \, dt = -2\pi,$$

vilket även är värdet av integralen längs γ .