ROCmSMI

Generated by Doxygen 1.8.11

Contents

1	ROC	Cm Syst	em Mana	gement Interface (ROCm SMI) Library	1
2	Mod	lule Inde	ex		5
	2.1	Module	es		5
3	Data	a Struct	ure Index		7
	3.1	Data S	Structures		7
4	File	Index			9
	4.1	File Lis	st		9
5	Mod	lule Dod	cumentati	on	11
	5.1	Initializ	ation and	Shutdown	11
		5.1.1	Detailed	Description	11
		5.1.2	Function	Documentation	11
			5.1.2.1	rsmi_init(uint64_t init_flags)	11
			5.1.2.2	rsmi_shut_down(void)	12
	5.2	Identifi	ier Queries	3	13
		5.2.1	Detailed	Description	13
		5.2.2	Function	Documentation	13
			5.2.2.1	rsmi_num_monitor_devices(uint32_t *num_devices)	13
			5.2.2.2	rsmi_dev_id_get(uint32_t dv_ind, uint16_t *id)	14
			5.2.2.3	rsmi_dev_vendor_id_get(uint32_t dv_ind, uint16_t *id)	14
			5.2.2.4	rsmi_dev_name_get(uint32_t dv_ind, char *name, size_t len)	14
			5.2.2.5	rsmi_dev_brand_get(uint32_t dv_ind, char *brand, uint32_t len)	15

iv CONTENTS

		5.2.2.6	rsmi_dev_vendor_name_get(uint32_t dv_ind, char *name, size_t len)	15
		5.2.2.7	rsmi_dev_serial_number_get(uint32_t dv_ind, char *serial_num, uint32_t len)	16
		5.2.2.8	rsmi_dev_subsystem_id_get(uint32_t dv_ind, uint16_t *id)	16
		5.2.2.9	rsmi_dev_subsystem_name_get(uint32_t dv_ind, char *name, size_t len)	16
		5.2.2.10	rsmi_dev_drm_render_minor_get(uint32_t dv_ind, uint32_t *minor)	17
		5.2.2.11	rsmi_dev_subsystem_vendor_id_get(uint32_t dv_ind, uint16_t *id)	17
		5.2.2.12	rsmi_dev_unique_id_get(uint32_t dv_ind, uint64_t *id)	18
5.3	PCIe C	Queries .		19
	5.3.1	Detailed	Description	19
	5.3.2	Function	Documentation	19
		5.3.2.1	rsmi_dev_pci_bandwidth_get(uint32_t dv_ind, rsmi_pcie_bandwidth_t *bandwidth)	19
		5.3.2.2	rsmi_dev_pci_id_get(uint32_t dv_ind, uint64_t *bdfid)	19
		5.3.2.3	rsmi_dev_pci_throughput_get(uint32_t dv_ind, uint64_t *sent, uint64_← t *received, uint64_t *max_pkt_sz)	20
		5.3.2.4	rsmi_dev_pci_replay_counter_get(uint32_t dv_ind, uint64_t *counter)	20
5.4	PCIe C	Control		22
	5.4.1	Detailed	Description	22
	5.4.2	Function	Documentation	22
		5.4.2.1	rsmi_dev_pci_bandwidth_set(uint32_t dv_ind, uint64_t bw_bitmask)	22
5.5	Power	Queries .		23
	5.5.1	Detailed	Description	23
	5.5.2	Function	Documentation	23
		5.5.2.1	rsmi_dev_power_ave_get(uint32_t dv_ind, uint32_t sensor_ind, uint64_t *power)	23
		5.5.2.2	rsmi_dev_power_cap_get(uint32_t dv_ind, uint32_t sensor_ind, uint64_t *cap) .	23
		5.5.2.3	rsmi_dev_power_cap_range_get(uint32_t dv_ind, uint32_t sensor_ind, uint64_ ← t *max, uint64_t *min)	24
5.6	Power	Control .		25
	5.6.1	Detailed	Description	25
	5.6.2	Function	Documentation	25
		5.6.2.1	rsmi_dev_power_cap_set(uint32_t dv_ind, uint32_t sensor_ind, uint64_t cap)	25
		5.6.2.2	rsmi_dev_power_profile_set(uint32_t dv_ind, uint32_t reserved, rsmi_power_← profile_preset_masks_t profile)	25

CONTENTS

5.7	Memor	mory Queries		
	5.7.1	Detailed	Description	27
	5.7.2	Function	Documentation	27
		5.7.2.1	rsmi_dev_memory_total_get(uint32_t dv_ind, rsmi_memory_type_t mem_type, uint64_t *total)	27
		5.7.2.2	rsmi_dev_memory_usage_get(uint32_t dv_ind, rsmi_memory_type_t mem_type, uint64_t *used)	27
		5.7.2.3	rsmi_dev_memory_busy_percent_get(uint32_t dv_ind, uint32_t *busy_percent) .	28
		5.7.2.4	rsmi_dev_memory_reserved_pages_get(uint32_t dv_ind, uint32_t *num_pages, rsmi_retired_page_record_t *records)	28
5.8	Physica	al State Qu	ueries	30
	5.8.1	Detailed	Description	30
	5.8.2	Function	Documentation	30
		5.8.2.1	rsmi_dev_fan_rpms_get(uint32_t dv_ind, uint32_t sensor_ind, int64_t *speed) .	30
		5.8.2.2	rsmi_dev_fan_speed_get(uint32_t dv_ind, uint32_t sensor_ind, int64_t *speed) .	30
		5.8.2.3	rsmi_dev_fan_speed_max_get(uint32_t dv_ind, uint32_t sensor_ind, uint64_← t *max_speed)	31
		5.8.2.4	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	31
5.9	Physica	al State Co	ontrol	33
	5.9.1	Detailed	Description	33
	5.9.2	Function	Documentation	33
		5.9.2.1	rsmi_dev_fan_reset(uint32_t dv_ind, uint32_t sensor_ind)	33
		5.9.2.2	rsmi_dev_fan_speed_set(uint32_t dv_ind, uint32_t sensor_ind, uint64_t speed) .	33
5.10	Clock,	Power and	Performance Queries	35
	5.10.1	Detailed	Description	35
	5.10.2	Function	Documentation	35
		5.10.2.1	rsmi_dev_busy_percent_get(uint32_t dv_ind, uint32_t *busy_percent)	35
		5.10.2.2	rsmi_dev_perf_level_get(uint32_t dv_ind, rsmi_dev_perf_level_t *perf)	35
		5.10.2.3	rsmi_dev_overdrive_level_get(uint32_t dv_ind, uint32_t *od)	36
		5.10.2.4	$ rsmi_dev_gpu_clk_freq_get(uint32_t \ dv_ind, \ rsmi_clk_type_t \ clk_type, \ rsmi_ \leftarrow frequencies_t *f) \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	36
		5.10.2.5	rsmi_dev_od_volt_info_get(uint32_t dv_ind, rsmi_od_volt_freq_data_t *odv)	37

vi

		5.10.2.6	rsmi_dev_od_volt_curve_regions_get(uint32_t dv_ind, uint32_t *num_regions, rsmi_freq_volt_region_t *buffer)	37
		5.10.2.7	rsmi_dev_power_profile_presets_get(uint32_t dv_ind, uint32_t sensor_ind, rsmi_power_profile_status_t *status)	37
5.11	Clock,	Power and	Performance Control	39
	5.11.1	Detailed	Description	39
	5.11.2	Function	Documentation	39
		5.11.2.1	rsmi_dev_perf_level_set(int32_t dv_ind, rsmi_dev_perf_level_t perf_lvl)	39
		5.11.2.2	rsmi_dev_overdrive_level_set(int32_t dv_ind, uint32_t od)	39
		5.11.2.3	rsmi_dev_gpu_clk_freq_set(uint32_t dv_ind, rsmi_clk_type_t clk_type, uint64_ ← t freq_bitmask)	40
5.12	Version	Queries		41
	5.12.1	Detailed	Description	41
	5.12.2	Function	Documentation	41
		5.12.2.1	rsmi_version_get(rsmi_version_t *version)	41
		5.12.2.2	rsmi_version_str_get(rsmi_sw_component_t component, char *ver_str, uint32_t len)	41
		5.12.2.3	rsmi_dev_vbios_version_get(uint32_t dv_ind, char *vbios, uint32_t len)	42
		5.12.2.4	rsmi_dev_firmware_version_get(uint32_t dv_ind, rsmi_fw_block_t block, uint64← _t *fw_version)	42
5.13	Error C	ueries .		43
	5.13.1	Detailed	Description	43
	5.13.2	Function	Documentation	43
		5.13.2.1	rsmi_dev_ecc_count_get(uint32_t dv_ind, rsmi_gpu_block_t block, rsmi_error_count_t *ec)	43
		5.13.2.2	rsmi_dev_ecc_enabled_get(uint32_t dv_ind, uint64_t *enabled_blocks)	43
		5.13.2.3	rsmi_dev_ecc_status_get(uint32_t dv_ind, rsmi_gpu_block_t block, rsmi_ras_← err_state_t ∗state)	44
		5.13.2.4	rsmi_status_string(rsmi_status_t status, const char **status_string)	44
5.14	Perforn	nance Cou	inter Functions	45
	5.14.1	Detailed	Description	45
	5.14.2	Function	Documentation	45
		5.14.2.1	rsmi_dev_counter_group_supported(uint32_t dv_ind, rsmi_event_group_t group)	45

CONTENTS vii

		5.14.2.2	rsmi_dev_counter_create(uint32_t dv_ind, rsmi_event_type_t type, rsmi_event _handle_t *evnt_handle)	46
		5.14.2.3	rsmi_dev_counter_destroy(rsmi_event_handle_t evnt_handle)	46
		5.14.2.4	rsmi_counter_control(rsmi_event_handle_t evt_handle, rsmi_counter_← command_t cmd, void *cmd_args)	46
		5.14.2.5	rsmi_counter_read(rsmi_event_handle_t evt_handle, rsmi_counter_value_t *value)	47
		5.14.2.6	rsmi_counter_available_counters_get(uint32_t dv_ind, rsmi_event_group_t grp, uint32_t *available)	47
5.15	System	Informati	on Functions	48
5	5.15.1	Detailed	Description	48
5	5.15.2	Function	Documentation	48
		5.15.2.1	rsmi_compute_process_info_get(rsmi_process_info_t *procs, uint32_t *num_← items)	48
		5.15.2.2	rsmi_compute_process_info_by_pid_get(uint32_t pid, rsmi_process_info_t *proc)	48
5.16 X	KGMI F	unctions		51
5	5.16.1	Detailed	Description	51
5	5.16.2	Function	Documentation	51
		5.16.2.1	rsmi_dev_xgmi_error_status(uint32_t dv_ind, rsmi_xgmi_status_t *status)	51
		5.16.2.2	rsmi_dev_xgmi_error_reset(uint32_t dv_ind)	51
5.17 8	Suppor	ted Functi	ons	52
5	5.17.1	Detailed	Description	52
5	5.17.2	Function	Documentation	53
		5.17.2.1	rsmi_dev_supported_func_iterator_open(uint32_t dv_ind, rsmi_func_id_iter_ ↔ handle_t *handle)	53
		5.17.2.2	rsmi_dev_supported_variant_iterator_open(rsmi_func_id_iter_handle_t obj_h, rsmi_func_id_iter_handle_t *var_iter)	54
		5.17.2.3	rsmi_func_iter_next(rsmi_func_id_iter_handle_t handle)	54
		5.17.2.4	rsmi_dev_supported_func_iterator_close(rsmi_func_id_iter_handle_t *handle) .	55
		5.17.2.5	rsmi_func_iter_value_get(rsmi_func_id_iter_handle_t handle, rsmi_func_id_↔ value_t *value)	55

viii CONTENTS

6	Data	Struct	ure Documentation	57
	6.1	id Unio	on Reference	57
		6.1.1	Detailed Description	57
		6.1.2	Field Documentation	58
			6.1.2.1 memory_type	58
	6.2	rsmi_c	counter_value_t Struct Reference	58
		6.2.1	Detailed Description	58
	6.3	rsmi_e	error_count_t Struct Reference	58
		6.3.1	Detailed Description	59
	6.4	rsmi_f	req_volt_region_t Struct Reference	59
		6.4.1	Detailed Description	59
	6.5	rsmi_f	requencies_t Struct Reference	59
		6.5.1	Detailed Description	60
		6.5.2	Field Documentation	60
			6.5.2.1 num_supported	60
			6.5.2.2 current	60
			6.5.2.3 frequency	60
	6.6	rsmi_c	od_vddc_point_t Struct Reference	60
		6.6.1	Detailed Description	60
	6.7	rsmi_c	od_volt_curve_t Struct Reference	61
		6.7.1	Detailed Description	61
		6.7.2	Field Documentation	61
			6.7.2.1 vc_points	61
	6.8	rsmi_c	od_volt_freq_data_t Struct Reference	61
		6.8.1	Detailed Description	62
		6.8.2	Field Documentation	62
			6.8.2.1 curr_mclk_range	62
	6.9	rsmi_p	ocie_bandwidth_t Struct Reference	62
		6.9.1	Detailed Description	62
		6.9.2	Field Documentation	62

CONTENTS

			6.9.2.1	transfer_rate	. 62
			6.9.2.2	lanes	. 62
	6.10	rsmi_p	ower_profi	ile_status_t Struct Reference	. 63
		6.10.1	Detailed I	Description	. 63
		6.10.2	Field Doo	cumentation	. 63
			6.10.2.1	available_profiles	. 63
			6.10.2.2	current	. 63
			6.10.2.3	num_profiles	. 63
	6.11	rsmi_p	rocess_info	fo_t Struct Reference	. 63
		6.11.1	Detailed I	Description	. 64
	6.12	rsmi_ra	ınge_t Strı	uct Reference	. 64
		6.12.1	Detailed I	Description	. 64
	6.13	rsmi_re	tired_page	e_record_t Struct Reference	. 64
		6.13.1	Detailed I	Description	. 65
	6.14	rsmi_ve	ersion_t St	truct Reference	. 65
		6.14.1	Detailed I	Description	. 65
_					-
7			entation	D /	67
	7.1	_		Reference	
		7.1.1		Description	
		7.1.2		efinition Documentation	
			7.1.2.1	RSMI_MAX_FAN_SPEED	
			7.1.2.2	RSMI_DEFAULT_VARIANT	
		7.1.3	• •	Documentation	
			7.1.3.1	rsmi_event_handle_t	
		7.1.4		tion Type Documentation	
			7.1.4.1	rsmi_status_t	
			7.1.4.2	rsmi_init_flags_t	
			7.1.4.3	rsmi_dev_perf_level_t	
			7.1.4.4	rsmi_sw_component_t	
			7.1.4.5	rsmi_event_group_t	. 75
			7.1.4.6	rsmi_event_type_t	. 76
			7.1.4.7	rsmi_counter_command_t	
			7.1.4.8	rsmi_clk_type_t	. 76
			7.1.4.9	rsmi_temperature_metric_t	. 77
			7.1.4.10	rsmi_temperature_type_t	. 77
			7.1.4.11	rsmi_power_profile_preset_masks_t	. 77
			7.1.4.12	rsmi_gpu_block_t	. 78
			7.1.4.13	rsmi_ras_err_state_t	. 78
			7.1.4.14	rsmi_memory_type_t	. 78
			7.1.4.15	rsmi_freq_ind_t	. 79
			7.1.4.16	rsmi_memory_page_status_t	. 79
les	lev				81
1117	X				X1

Chapter 1

ROCm System Management Interface (ROCm SMI) Library

The ROCm System Management Interface Library, or ROCm SMI library, is part of the Radeon Open Compute ROCm software stack. It is a C library for Linux that provides a user space interface for applications to monitor and control GPU applications.

Important note about Versioning and Backward Compatibility

The ROCm SMI library is currently under development, and therefore subject to change either at the ABI or API level. The intention is to keep the API as stable as possible even while in development, but in some cases we may need to break backwards compatibility in order to ensure future stability and usability. Following Semantic Versioning rules, while the ROCm SMI library is in high state of change, the major version will remain 0, and backward compatibility is not ensured.

Once new development has leveled off, the major version will become greater than 0, and backward compatibility will be enforced between major versions.

Building ROCm SMI

Additional Required software for building

In order to build the ROCm SMI library, the following components are required. Note that the software versions listed are what was used in development. Earlier versions are not guaranteed to work:

- CMake (v3.5.0)
- g++ (5.4.0)

In order to build the latest documentation, the following are required:

- DOxygen (1.8.11)
- latex (pdfTeX 3.14159265-2.6-1.40.16)

The source code for ROCm SMI is available on Github.

After the the ROCm SMI library git repository has been cloned to a local Linux machine, building the library is achieved by following the typical CMake build sequence. Specifically,

```
$ mk -p build
```

\$ cd build

\$ cmake <location of root of ROCm SMI library CMakeLists.txt>

\$ make

Install library file and header; default location is /opt/rocm</h5> <h5> \$ make install

The built library will appear in the build folder.

Building the Documentation

The documentation PDF file can be built with the following steps (continued from the steps above):

```
$ make doc
```

\$ cd latex

\$ make

The reference manual, refman.pdf will be in the latex directory upon a successful build.

Building the Tests

In order to verify the build and capability of ROCm SMI on your system and to see an example of how ROCm SMI can be used, you may build and run the tests that are available in the repo. To build the tests, follow these steps:

```
# Set environment variables used in CMakeLists.txt file
```

```
$ ROCM_DIR=<location of ROCm SMI library>
```

- \$ mkdir <location for test build>
- \$ cd <location for test build>
- \$ cmake -DROCM_DIR=<location of ROCM SMI library .so> <ROCm SMI source root>/tests/rocr _smi_test

"\$ make

To run the test, execute the program rsmitst that is built from the steps above.

Usage Basics

Device Indices

Many of the functions in the library take a "device index". The device index is a number greater than or equal to 0, and less than the number of devices detected, as determined by rsmi_num_monitor_devices(). The index is used to distinguish the detected devices from one another. It is important to note that a device may end up with a different index after a reboot, so an index should not be relied upon to be constant over reboots.

Hello ROCm SMI

The only required ROCm-SMI call for any program that wants to use ROCm-SMI is the rsmi_init() call. This call initializes some internal data structures that will be used by subsequent ROCm-SMI calls.

When ROCm-SMI is no longer being used, rsmi_shut_down() should be called. This provides a way to do any releasing of resources that ROCm-SMI may have held. In many cases, this may have no effect, but may be necessary in future versions of the library.

A simple "Hello World" type program that displays the device ID of detected devices would look like this:

```
1 #include <stdint.h>
2 #include "rocm_smi/rocm_smi.h"
3 int main() {
   rsmi_status_t ret;
    uint32_t num_devices;
    uint64_t dev_id;
    // We will skip return code checks for this example, but it // is recommended to always check this as some calls may not
10
     // apply for some devices or ROCm releases
     ret = rsmi_init(0);
1.3
     ret = rsmi_num_monitor_devices(&num_devices);
14
     for (int i=0; i < num_devices; ++i) {
15
       ret = rsmi_dev_id_get(i, &dev_id);
16
        // dev_id holds the device ID of device i, upon a
18
        // successful call
19
20
     ret = rsmi_shut_down();
21
     return 0;
```

ROCm System Management Interface (ROCm SMI) Library

Chapter 2

Module Index

2.1 Modules

Here is a list of all modules:

itialization and Shutdown	. 11
lentifier Queries	. 13
Cle Queries	. 19
Cle Control	. 22
ower Queries	. 23
ower Control	. 25
emory Queries	. 27
hysical State Queries	. 30
hysical State Control	. 33
lock, Power and Performance Queries	. 35
lock, Power and Performance Control	
ersion Queries	. 41
rror Queries	. 43
erformance Counter Functions	. 45
ystem Information Functions	. 48
GMI Functions	. 51
upported Functions	. 52

6 Module Index

Chapter 3

Data Structure Index

3.1 Data Structures

Here are the data structures with brief descriptions:

Id	
This union holds the value of an rsmi_func_id_iter_handle_t. The value may be a function name,	
or an ennumerated variant value of types such as rsmi_memory_type_t, rsmi_temperature_←	
metric_t, etc	
rsmi_counter_value_t	58
rsmi_error_count_t	
This structure holds error counts	58
rsmi_freq_volt_region_t	
This structure holds 2 rsmi_range_t's, one for frequency and one for voltage. These 2 ranges	
indicate the range of possible values for the corresponding rsmi_od_vddc_point_t	59
rsmi_frequencies_t	
This structure holds information about clock frequencies	59
rsmi_od_vddc_point_t	
This structure represents a point on the frequency-voltage plane	60
$rsmi_od_volt_curve_t \ \dots $	61
rsmi_od_volt_freq_data_t	
This structure holds the frequency-voltage values for a device	61
rsmi_pcie_bandwidth_t	
This structure holds information about the possible PCIe bandwidths. Specifically, the possible	
transfer rates and their associated numbers of lanes are stored here	62
rsmi_power_profile_status_t	
This structure contains information about which power profiles are supported by the system for	
a given device, and which power profile is currently active	63
rsmi_process_info_t	
This structure contains information specific to a process	63
rsmi_range_t	
This structure represents a range (e.g., frequencies or voltages)	64
rsmi_retired_page_record_t	
Reserved Memory Page Record	64
rsmi_version_t	
This structure holds version information	65

8 Data Structure Index

Chapter 4

File Index

4.1 **File List**

Here is a list of all documented files with brief descriptions:

rocm smi.h

The rocm_smi library api is new, and therefore subject to change either at the ABI or API level. Instead of marking every function prototype as "unstable", we are instead saying the API is unstable (i.e., changes are possible) while the major version remains 0. This means that if the API/ABI changes, we will not increment the major version to 1. Once the ABI stabilizes, we will

10 File Index

Chapter 5

Module Documentation

5.1 Initialization and Shutdown

Functions

- rsmi_status_t rsmi_init (uint64_t init_flags)
 - Initialize ROCm SMI.
- rsmi_status_t rsmi_shut_down (void)

Shutdown ROCm SMI.

5.1.1 Detailed Description

These functions are used for initialization of ROCm SMI and clean up when done.

5.1.2 Function Documentation

5.1.2.1 rsmi_status_t rsmi_init (uint64_t init_flags)

Initialize ROCm SMI.

When called, this initializes internal data structures, including those corresponding to sources of information that SMI provides.

Parameters

in	init_flags	Bit flags that tell SMI how to initialze. Values of rsmi_init_flags_t may be OR'd together and
		passed through init_flags to modify how RSMI initializes.

Return values

RSMI_STATUS_SUCCESS | is returned upon successful call.

5.1.2.2 rsmi_status_t rsmi_shut_down (void)

Shutdown ROCm SMI.

Do any necessary clean up.

5.2 Identifier Queries 13

5.2 Identifier Queries

Functions

• rsmi status t rsmi num monitor devices (uint32 t *num devices)

Get the number of devices that have monitor information.

• rsmi_status_t rsmi_dev_id_get (uint32_t dv_ind, uint16_t *id)

Get the device id associated with the device with provided device index.

rsmi status t rsmi dev vendor id get (uint32 t dv ind, uint16 t *id)

Get the device vendor id associated with the device with provided device index.

• rsmi_status_t rsmi_dev_name_get (uint32_t dv_ind, char *name, size_t len)

Get the name string of a gpu device.

rsmi_status_t rsmi_dev_brand_get (uint32_t dv_ind, char *brand, uint32_t len)

Get the brand string of a gpu device.

• rsmi_status_t rsmi_dev_vendor_name_get (uint32_t dv_ind, char *name, size_t len)

Get the name string for a give vendor ID.

rsmi_status_t rsmi_dev_serial_number_get (uint32_t dv_ind, char *serial_num, uint32_t len)

Get the serial number string for a device.

rsmi_status_t rsmi_dev_subsystem_id_get (uint32_t dv_ind, uint16_t *id)

Get the subsystem device id associated with the device with provided device index.

• rsmi_status_t rsmi_dev_subsystem_name_get (uint32_t dv_ind, char *name, size_t len)

Get the name string for the device subsytem.

rsmi_status_t rsmi_dev_drm_render_minor_get (uint32_t dv_ind, uint32_t *minor)

Get the drm minor number associated with this device.

rsmi_status_t rsmi_dev_subsystem_vendor_id_get (uint32_t dv_ind, uint16_t *id)

Get the device subsystem vendor id associated with the device with provided device index.

rsmi_status_t rsmi_dev_unique_id_get (uint32_t dv_ind, uint64_t *id)

Get Unique ID.

5.2.1 Detailed Description

These functions provide identification information.

5.2.2 Function Documentation

5.2.2.1 rsmi_status_trsmi_num_monitor_devices (uint32_t * num_devices)

Get the number of devices that have monitor information.

The number of devices which have monitors is returned. Monitors are referenced by the index which can be between 0 and num_devices - 1.

Parameters

in,out	num_devices	Caller provided pointer to uint32_t. Upon successful call, the value num_devices
		will contain the number of monitor devices.

Return values

5.2.2.2 $rsmi_status_t rsmi_dev_id_get (uint32_t dv_ind, uint16_t * id)$

Get the device id associated with the device with provided device index.

Given a device index dv_ind and a pointer to a uint32_t id, this function will write the device id value to the uint64_t pointed to by id. This ID is an identification of the type of device, so calling this function for different devices will give the same value if they are kind of device. Consequently, this function should not be used to distinguish one device from another. rsmi dev pci id get() should be used to get a unique identifier.

Parameters

in	dv_ind	a device index
in,out	id	a pointer to uint64_t to which the device id will be written

Return values

RSMI STATUS SUCCESS	is returned upon successful call.
---------------------	-----------------------------------

5.2.2.3 rsmi_status_t rsmi_dev_vendor_id_get (uint32_t dv_ind, uint16_t * id)

Get the device vendor id associated with the device with provided device index.

Given a device index dv_ind and a pointer to a uint32_t id, this function will write the device vendor id value to the uint64 t pointed to by id.

Parameters

in	dv_ind	a device index
in,out	id	a pointer to uint64_t to which the device vendor id will be written

Return values

RSMI_STATUS_SUCCESS	is returned upon successful call.

5.2.2.4 rsmi_status_t rsmi_dev_name_get (uint32_t dv_ind, char * name, size_t len)

Get the name string of a gpu device.

Given a device index dv_ind, a pointer to a caller provided char buffer name, and a length of this buffer len, this function will write the name of the device (up to len characters) to the buffer name.

If the integer ID associated with the device is not found in one of the system files containing device name information (e.g. /usr/share/misc/pci.ids), then this function will return the hex device ID as a string. Updating the system name files can be accompplished with "sudo update-pciids".

5.2 Identifier Queries 15

Parameters

in	dv_ind	a device index
in,out	name	a pointer to a caller provided char buffer to which the name will be written
in	len	the length of the caller provided buffer name.

Return values

RSMI_STATUS_SUCCESS	is returned upon successful call.
RSMI_STATUS_INSUFFICIENT_SIZE	is returned if len bytes is not large enough to hold the entire name. In this case, only len bytes will be written.

5.2.2.5 rsmi_status_t rsmi_dev_brand_get (uint32_t dv_ind, char * brand, uint32_t len)

Get the brand string of a gpu device.

Given a device index dv_ind , a pointer to a caller provided char buffer brand, and a length of this buffer len, this function will write the brand of the device (up to len characters) to the buffer brand.

If the sku associated with the device is not found as one of the values contained within rsmi_dev_brand_get, then this function will return the device marketing name as a string instead of the brand name.

Parameters

in		dv_ind	a device index
in,	out	brand	a pointer to a caller provided char buffer to which the brand will be written
in		len	the length of the caller provided buffer brand.

Return values

RSMI_STATUS_SUCCESS	is returned upon successful call.
---------------------	-----------------------------------

5.2.2.6 rsmi_status_t rsmi_dev_vendor_name_get (uint32_t dv_ind, char * name, size_t len)

Get the name string for a give vendor ID.

Given a device index dv_{ind} , a pointer to a caller provided char buffer name, and a length of this buffer len, this function will write the name of the vendor (up to len characters) buffer name. The id may be a device vendor or subsystem vendor ID.

If the integer ID associated with the vendor is not found in one of the system files containing device name information (e.g. /usr/share/misc/pci.ids), then this function will return the hex vendor ID as a string. Updating the system name files can be accompplished with "sudo update-pciids".

Parameters

in	dv_ind	a device index
in,out	name	a pointer to a caller provided char buffer to which the name will be written
in	len	the length of the caller provided buffer name.

Generated by Doxygen

Return values

RSMI_STATUS_SUCCESS	is returned upon successful call.
RSMI_STATUS_INSUFFICIENT_SIZE	is returned if len bytes is not large enough to hold the entire name.
	In this case, only len bytes will be written.

5.2.2.7 rsmi_status_trsmi_dev_serial_number_get(_uint32_t dv_ind, char * serial_num, uint32_t len)

Get the serial number string for a device.

Given a device index dv_ind , a pointer to a buffer of chars $serial_num$, and the length of the provided buffer len, this function will write the serial number string (up to len characters) to the buffer pointed to by $serial_\leftarrow num$.

Parameters

in	dv_ind	a device index
in,out	serial_num	a pointer to caller-provided memory to which the serial number will be written
in	len	the length of the caller provided buffer serial_num.

Return values

RSMI_STATUS_SUCCESS	is returned upon successful call.
RSMI_STATUS_INSUFFICIENT_SIZE	is returned if len bytes is not large enough to hold the entire name. In this case, only len bytes will be written.

5.2.2.8 rsmi_status_t rsmi_dev_subsystem_id_get (uint32_t dv_ind, uint16_t * id)

Get the subsystem device id associated with the device with provided device index.

Given a device index dv_ind and a pointer to a uint32_t id, this function will write the subsystem device id value to the uint64 t pointed to by id.

Parameters

in	dv_ind	a device index
in,out	id	a pointer to uint64_t to which the subsystem device id will be written

Return values

RSMI_STATUS_SUCCESS	is returned upon successful call.
---------------------	-----------------------------------

5.2.2.9 $rsmi_status_t rsmi_dev_subsystem_name_get (uint32_t dv_ind, char * name, size_t len)$

Get the name string for the device subsytem.

5.2 Identifier Queries 17

Given a device index dv_ind, a pointer to a caller provided char buffer name, and a length of this buffer len, this function will write the name of the device subsystem (up to len characters) to the buffer name.

If the integer ID associated with the sub-system is not found in one of the system files containing device name information (e.g. /usr/share/misc/pci.ids), then this function will return the hex sub-system ID as a string. Updating the system name files can be accompplished with "sudo update-pciids".

Parameters

in	dv_ind	a device index
in,out	name	a pointer to a caller provided char buffer to which the name will be written
in	len	the length of the caller provided buffer name.

Return values

RSMI_STATUS_SUCCESS	is returned upon successful call.
RSMI_STATUS_INSUFFICIENT_SIZE	is returned if len bytes is not large enough to hold the entire name.
	In this case, only len bytes will be written.

5.2.2.10 rsmi_status_t rsmi_dev_drm_render_minor_get (uint32_t dv_ind, uint32_t * minor)

Get the drm minor number associated with this device.

Given a device index dv_ind , find its render device file /dev/dri/renderDN where N corresponds to its minor number.

Parameters

in	dv_ind	a device index
in,out	minor	a pointer to a uint32_t into which minor number will be copied

Return values

\leftarrow	RSMI_STATUS_SUCCESS is returned upon successful call.
:	
\leftarrow	RSMI_STATUS_INIT_ERROR if failed to get minor number during initialization.
:	

5.2.2.11 rsmi_status_t rsmi_dev_subsystem_vendor_id_get (uint32_t dv_ind, uint16_t * id)

Get the device subsystem vendor id associated with the device with provided device index.

Given a device index dv_ind and a pointer to a uint32_t id, this function will write the device subsystem vendor id value to the uint64_t pointed to by id.

Parameters

in	dv_ind	a device index
in,out	id	a pointer to uint64_t to which the device subsystem vendor id will be written

Return values

5.2.2.12 $rsmi_status_t rsmi_dev_unique_id_get (uint32_t dv_ind, uint64_t * id)$

Get Unique ID.

Given a device index dv_ind and a pointer to a uint64_t id, this function will write the unique ID of the GPU pointed to id.

Parameters

in	dv_ind	a device index
in,out	id	a pointer to uint64_t to which the unique ID of the GPU is written

Return values

RSMI_STATUS_SUCCESS	is returned upon successful call.
---------------------	-----------------------------------

5.3 PCIe Queries 19

5.3 PCle Queries

Functions

• rsmi_status_t rsmi_dev_pci_bandwidth_get (uint32_t dv_ind, rsmi_pcie_bandwidth_t *bandwidth)

Get the list of possible PCIe bandwidths that are available.

• rsmi_status_t rsmi_dev_pci_id_get (uint32_t dv_ind, uint64_t *bdfid)

Get the unique PCI device identifier associated for a device.

rsmi_status_t rsmi_dev_pci_throughput_get (uint32_t dv_ind, uint64_t *sent, uint64_t *received, uint64_←
t *max_pkt_sz)

Get PCIe traffic information.

rsmi_status_t rsmi_dev_pci_replay_counter_get (uint32_t dv_ind, uint64_t *counter)
 Get PCIe replay counter.

5.3.1 Detailed Description

These functions provide information about PCIe.

5.3.2 Function Documentation

5.3.2.1 rsmi_status_t rsmi_dev_pci_bandwidth_get (uint32_t dv_ind, rsmi_pcie_bandwidth_t * bandwidth)

Get the list of possible PCIe bandwidths that are available.

Given a device index dv_ind and a pointer to a to an rsmi_pcie_bandwidth_t structure bandwidth, this function will fill in bandwidth with the possible T/s values and associated number of lanes, and indication of the current selection.

Parameters

in	dv_ind	a device index	
in,out	bandwidth	a pointer to a caller provided rsmi_pcie_bandwidth_t structure to which the frequency	
		information will be written	

Return values

```
RSMI_STATUS_SUCCESS is returned upon successful call.
```

```
5.3.2.2 rsmi_status_t rsmi_dev_pci_id_get ( uint32_t dv_ind, uint64_t * bdfid )
```

Get the unique PCI device identifier associated for a device.

Give a device index dv_ind and a pointer to a uint64_t bdfid, this function will write the Bus/Device/Function PCI identifier (BDFID) associated with device dv_ind to the value pointed to by bdfid.

The format of bdfid will be as follows:

Name	Field
Domain	[64:32]
Reserved	[31:16]
Bus	[15: 8]
Device	[7: 3]
Function	[2: 0]

Parameters

in	dv_ind	a device index
in,out	bdfid	a pointer to uint64_t to which the device bdfid value will be written

Return values

RSMI_STATUS_SUCCESS	is returned upon successful call.
---------------------	-----------------------------------

5.3.2.3 $rsmi_status_t rsmi_dev_pci_throughput_get (uint32_t dv_ind, uint64_t * sent, uint64_t * received, uint64_t * max_pkt_sz)$

Get PCIe traffic information.

Give a device index dv_ind and pointers to a uint64_t's, sent, received and max_pkt_sz , this function will write the number of bytes sent and received in 1 second to sent and received, respectively. The maximum possible packet size will be written to max_pkt_sz .

Parameters

in	dv_ind	a device index	
in,out	sent	a pointer to uint64_t to which the number of bytes sent will be written in 1 second. If pointer is NULL, it will be ignored.	
in,out	received	a pointer to uint64_t to which the number of bytes received will be written. If pointer is NULL, it will be ignored.	
in,out	max_pkt_sz	a pointer to uint64_t to which the maximum packet size will be written. If pointer is NULL, it will be ignored.	

Return values

RSMI_STATUS_SUCCESS is returned upon successful call
--

5.3.2.4 rsmi_status_t rsmi_dev_pci_replay_counter_get (uint32_t dv_ind, uint64_t * counter)

Get PCIe replay counter.

Given a device index dv_ind and a pointer to a uint64_t counter, this function will write the sum of the number of NAK's received by the GPU and the NAK's generated by the GPU to memory pointed to by counter.

5.3 PCle Queries 21

Parameters

in	dv_ind	a device index	
in,out	counter	a pointer to uint64_t to which the sum of the NAK's received and generated by the GPU	
		is written	

Return values

RSMI_STATUS_SUCCESS	is returned upon successful call.
---------------------	-----------------------------------

5.4 PCle Control

Functions

rsmi_status_t rsmi_dev_pci_bandwidth_set (uint32_t dv_ind, uint64_t bw_bitmask)
 Control the set of allowed PCle bandwidths that can be used.

5.4.1 Detailed Description

These functions provide some control over PCIe.

5.4.2 Function Documentation

5.4.2.1 rsmi status t rsmi dev pci bandwidth set (uint32 t dv ind, uint64 t bw bitmask)

Control the set of allowed PCIe bandwidths that can be used.

Given a device index dv_ind and a 64 bit bitmask bw_bitmask, this function will limit the set of allowable bandwidths. If a bit in bw_bitmask has a value of 1, then the frequency (as ordered in an rsmi_frequencies_t returned by rsmi_dev_gpu_clk_freq_get()) corresponding to that bit index will be allowed.

This function will change the performance level to RSMI_DEV_PERF_LEVEL_MANUAL in order to modify the set of allowable band_widths. Caller will need to set to RSMI_DEV_PERF_LEVEL_AUTO in order to get back to default state.

All bits with indices greater than or equal to the value of the rsmi_frequencies_t::num_supported field of rsmi_\top pcie_bandwidth_t will be ignored.

Parameters

in	dv_ind	a device index	
in	bw_bitmask	A bitmask indicating the indices of the bandwidths that are to be enabled (1) and disabled	
		(0). Only the lowest rsmi_frequencies_t::num_supported (of rsmi_pcie_bandwidth_t) bits	
		of this mask are relevant.	

5.5 Power Queries 23

5.5 Power Queries

Functions

• rsmi_status_t rsmi_dev_power_ave_get (uint32_t dv_ind, uint32_t sensor_ind, uint64_t *power)

Get the average power consumption of the device with provided device index.

• rsmi_status_t rsmi_dev_power_cap_get (uint32_t dv_ind, uint32_t sensor_ind, uint64_t *cap)

Get the cap on power which, when reached, causes the system to take action to reduce power.

rsmi_status_t rsmi_dev_power_cap_range_get (uint32_t dv_ind, uint32_t sensor_ind, uint64_t *max, uint64_t *min)

Get the range of valid values for the power cap.

5.5.1 Detailed Description

These functions provide information about power usage.

5.5.2 Function Documentation

```
5.5.2.1 rsmi_status_trsmi_dev_power_ave_get( uint32_t dv_ind, uint32_t sensor_ind, uint64_t * power)
```

Get the average power consumption of the device with provided device index.

Given a device index dv_ind and a pointer to a uint64_t power, this function will write the current average power consumption (in microwatts) to the uint64_t pointed to by power.

Parameters

in	dv_ind	a device index
in	sensor_ind	a 0-based sensor index. Normally, this will be 0. If a device has more than one
		sensor, it could be greater than 0.
in,out	power	a pointer to uint64_t to which the average power consumption will be written

Return values

RSMI_STATUS_SUCCESS	is returned upon successful call.
---------------------	-----------------------------------

5.5.2.2 rsmi_status_t rsmi_dev_power_cap_get (uint32_t dv_ind, uint32_t sensor_ind, uint64_t * cap)

Get the cap on power which, when reached, causes the system to take action to reduce power.

When power use rises above the value power, the system will take action to reduce power use. The power level returned through power will be in microWatts.

Parameters

in	dv_ind	a device index
in	sensor_ind	a 0-based sensor index. Normally, this will be 0. If a device has more than one
		sensor, it could be greater than 0.
Generated by Doxygen		a pointer to a uint64_t that indicates the power cap, in microwatts

Return values

RSMI_STATUS_SUCCESS	is returned upon successful call.
---------------------	-----------------------------------

5.5.2.3 rsmi_status_t rsmi_dev_power_cap_range_get (uint32_t dv_i uint32_t $sensor_i$ uint64_t * max, uint64_t * min)

Get the range of valid values for the power cap.

This function will return the maximum possible valid power cap max and the minimum possible valid power cap min

Parameters

in	dv_ind	a device index
in	sensor_ind	a 0-based sensor index. Normally, this will be 0. If a device has more than one sensor, it could be greater than 0.
in,out	max	a pointer to a uint64_t that indicates the maximum possible power cap, in microwatts
in,out	min	a pointer to a uint64_t that indicates the minimum possible power cap, in microwatts

Return values

	RSMI STATUS SUCCESS	is returned upon successful call.
--	---------------------	-----------------------------------

5.6 Power Control 25

5.6 Power Control

Functions

• rsmi_status_t rsmi_dev_power_cap_set (uint32_t dv_ind, uint32_t sensor_ind, uint64_t cap)

Set the power cap value.

rsmi_status_t rsmi_dev_power_profile_set (uint32_t dv_ind, uint32_t reserved, rsmi_power_profile_preset
 —masks_t profile)

Set the power profile.

5.6.1 Detailed Description

These functions provide ways to control power usage.

5.6.2 Function Documentation

5.6.2.1 rsmi_status_t rsmi_dev_power_cap_set (uint32_t dv_ind, uint32_t sensor_ind, uint64_t cap)

Set the power cap value.

This function will set the power cap to the provided value cap. cap must be between the minimum and maximum power cap values set by the system, which can be obtained from rsmi_dev_power_cap_range_get.

Parameters

in	dv_ind	a device index
in	sensor_ind	a 0-based sensor index. Normally, this will be 0. If a device has more than one
		sensor, it could be greater than 0.
in,out	cap	a uint64_t that indicates the desired power cap, in microwatts

Return values

RSMI_STATUS_SUCCESS	is returned upon successful call.
---------------------	-----------------------------------

5.6.2.2 rsmi_status_t rsmi_dev_power_profile_set (uint32_t dv_ind, uint32_t reserved, rsmi_power_profile_preset_masks_t profile_)

Set the power profile.

Given a device index dv_ind and a profile, this function will attempt to set the current profile to the provided profile. The provided profile must be one of the currently supported profiles, as indicated by a call to $rsmi_dev_{\leftarrow}$ power_profile_presets_get()

Parameters

in	dv_ind	a device index	
in	reserved	Not currently used. Set to 0.	
in	profile	a rsmi_power_profile_preset_masks_t that hold the mask of the desired new power profile	L

Return values

RSMI_STATUS_SUCCESS is returned upon successful call.

5.7 Memory Queries 27

5.7 Memory Queries

Functions

rsmi_status_t rsmi_dev_memory_total_get (uint32_t dv_ind, rsmi_memory_type_t mem_type, uint64_← t *total)

Get the total amount of memory that exists.

rsmi_status_t rsmi_dev_memory_usage_get (uint32_t dv_ind, rsmi_memory_type_t mem_type, uint64_
 t *used)

Get the current memory usage.

- rsmi_status_t rsmi_dev_memory_busy_percent_get (uint32_t dv_ind, uint32_t *busy_percent)
 Get percentage of time any device memory is being used.
- rsmi_status_t rsmi_dev_memory_reserved_pages_get (uint32_t dv_ind, uint32_t *num_pages, rsmi_
 retired_page_record_t *records)

Get information about reserved ("retired") memory pages.

5.7.1 Detailed Description

These functions provide information about memory systems.

5.7.2 Function Documentation

5.7.2.1 rsmi_status_trsmi_dev_memory_total_get(_uint32_t dv_ind, rsmi_memory_type_t mem_type, uint64_t * total)

Get the total amount of memory that exists.

Given a device index dv_ind, a type of memory mem_type, and a pointer to a uint64_t total, this function will write the total amount of mem_type memory that exists to the location pointed to by total.

Parameters

in	dv_ind	a device index
in	mem_type	The type of memory for which the total amount will be found
in,out	total	a pointer to uint64_t to which the total amount of memory will be written

Return values

RSMI_STATUS_SUCCESS	is returned upon successful call.

5.7.2.2 rsmi_status_t rsmi_dev_memory_usage_get (uint32_t dv_ind, rsmi_memory_type_t mem_type, uint64_t * used)

Get the current memory usage.

Given a device index dv_ind, a type of memory mem_type, and a pointer to a uint64_t usage, this function will write the amount of mem_type memory that that is currently being used to the location pointed to by total.

Parameters

in	dv_ind	a device index
in	mem_type	The type of memory for which the amount being used will be found
in,out	used	a pointer to uint64_t to which the amount of memory currently being used will be written

Return values

RSMI_STATUS_SUCCESS	is returned upon successful call.
---------------------	-----------------------------------

5.7.2.3 rsmi_status_t rsmi_dev_memory_busy_percent_get (uint32_t dv_ind, uint32_t * busy_percent)

Get percentage of time any device memory is being used.

Given a device index dv_ind , this function returns the percentage of time that any device memory is being used for the specified device.

Parameters

in	dv_ind	a device index
in,out	busy_percent	a pointer to the uint32_t to which the busy percent will be written

Return values

RSMI_STATUS_SUCCESS	is returned upon successful call
---------------------	----------------------------------

5.7.2.4 rsmi_status_t rsmi_dev_memory_reserved_pages_get (uint32_t dv_ind, uint32_t * num_pages, rsmi_retired_page_record_t * records)

Get information about reserved ("retired") memory pages.

Given a device index dv_ind , this function returns retired page information records corresponding to the device with the provided device index dv_ind . The number of retired page records is returned through num_pages . records may be NULL on input. In this case, the number of records available for retrieval will be returned through num_pages .

Parameters

in	dv_ind	a device index
in,out	num_pages	a pointer to a uint32. As input, the value passed through this parameter is the number of rsmi_retired_page_record_t's that may be safely written to the memory pointed to by records. This is the limit on how many records will be written to records. On return, num_pages will contain the number of records written to records, or the number of records that could have been written if enough memory had been provided.
in,out	records	A pointer to a block of memory to which the retired_page_record_t values will be written. This value may be NULL. In this case, this function can be used to query how many records are available to read.

5.7 Memory Queries 29

Return values

RSMI_STATUS_SUCCESS	is returned upon successful call.
---------------------	-----------------------------------

RSMI_STATUS_INSUFFICIENT_SIZE is returned if more records were available than allowed by the provided, allocated memory.

5.8 Physical State Queries

Functions

- rsmi_status_t rsmi_dev_fan_rpms_get (uint32_t dv_ind, uint32_t sensor_ind, int64_t *speed)

 Get the fan speed in RPMs of the device with the specified device index and 0-based sensor index.
- rsmi_status_t rsmi_dev_fan_speed_get (uint32_t dv_ind, uint32_t sensor_ind, int64_t *speed)

 Get the fan speed for the specified device as a value relative to RSMI_MAX_FAN_SPEED.
- rsmi_status_t rsmi_dev_fan_speed_max_get (uint32_t dv_ind, uint32_t sensor_ind, uint64_t *max_speed)

 Get the max. fan speed of the device with provided device index.
- rsmi_status_t rsmi_dev_temp_metric_get (uint32_t dv_ind, uint32_t sensor_type, rsmi_temperature_metric
 — t metric, int64_t *temperature)

Get the temperature metric value for the specified metric, from the specified temperature sensor on the specified device.

5.8.1 Detailed Description

These functions provide information about the physical characteristics of the device.

5.8.2 Function Documentation

5.8.2.1 rsmi_status_t rsmi_dev_fan_rpms_get (uint32_t dv_ind, uint32_t sensor_ind, int64_t * speed)

Get the fan speed in RPMs of the device with the specified device index and 0-based sensor index.

Given a device index dv_ind and a pointer to a uint32_t speed, this function will write the current fan speed in RPMs to the uint32_t pointed to by speed

Parameters

in	dv_ind	a device index
in	sensor_ind	a 0-based sensor index. Normally, this will be 0. If a device has more than one
		sensor, it could be greater than 0.
in,out	speed	a pointer to uint32_t to which the speed will be written

Return values

RSMI_STATUS_SUCCESS	is returned upon successful call.
---------------------	-----------------------------------

5.8.2.2 rsmi_status_trsmi_dev_fan_speed_get(_uint32_t dv_ind, uint32_t sensor_ind, int64_t * speed_)

Get the fan speed for the specified device as a value relative to RSMI_MAX_FAN_SPEED.

Given a device index dv_ind and a pointer to a uint32_t speed, this function will write the current fan speed (a value between 0 and the maximum fan speed, RSMI_MAX_FAN_SPEED) to the uint32_t pointed to by speed

Parameters

in	dv_ind	a device index
in	sensor_ind	a 0-based sensor index. Normally, this will be 0. If a device has more than one
		sensor, it could be greater than 0.
in,out	speed	a pointer to uint32_t to which the speed will be written

Return values

RSMI_STATUS_SUCCESS	is returned upon successful call.
---------------------	-----------------------------------

5.8.2.3 rsmi status t rsmi_dev_fan_speed_max_get (uint32_t dv_ind, uint32_t sensor_ind, uint64_t * max_speed)

Get the max. fan speed of the device with provided device index.

Given a device index dv_ind and a pointer to a uint32_t max_speed, this function will write the maximum fan speed possible to the uint32_t pointed to by max_speed

Parameters

in	dv_ind	a device index	
in	sensor_ind	a 0-based sensor index. Normally, this will be 0. If a device has more than one	
		sensor, it could be greater than 0.	
in,out	max_speed	a pointer to uint32_t to which the maximum speed will be written	

Return values

RSMI_STATUS_SUCCESS	is returned upon successful call.

5.8.2.4 rsmi_status_t rsmi_dev_temp_metric_get (uint32_t dv_ind, uint32_t sensor_type, rsmi_temperature_metric_t metric, int64_t * temperature)

Get the temperature metric value for the specified metric, from the specified temperature sensor on the specified device.

Given a device index dv_ind, a sensor type sensor_type, a rsmi_temperature_metric_t metric and a pointer to an int64_t temperature, this function will write the value of the metric indicated by metric and sensor—type to the memory location temperature.

Parameters

in	dv_ind	a device index
in	sensor_type	part of device from which temperature should be obtained. This should come from
		the enum rsmi_temperature_type_t
in	metric	enum indicated which temperature value should be retrieved
in,out	temperature	a pointer to int64_t to which the temperature will be written, in millidegrees Celcius.

Return values

RSMI_STATUS_SUCCESS is returned upon successful call.

5.9 Physical State Control

Functions

- rsmi_status_t rsmi_dev_fan_reset (uint32_t dv_ind, uint32_t sensor_ind)
 - Reset the fan to automatic driver control.
- rsmi_status_t rsmi_dev_fan_speed_set (uint32_t dv_ind, uint32_t sensor_ind, uint64_t speed)

Set the fan speed for the specified device with the provided speed, in RPMs.

5.9.1 Detailed Description

These functions provide control over the physical state of a device.

5.9.2 Function Documentation

5.9.2.1 rsmi_status_t rsmi_dev_fan_reset (uint32_t dv_ind, uint32_t sensor_ind)

Reset the fan to automatic driver control.

This function returns control of the fan to the system

Parameters

in	dv_ind	a device index	
in	sensor_ind	a 0-based sensor index. Normally, this will be 0. If a device has more than one sensor, it	
	could be greater than 0.		

Return values

RSMI_STATUS_SUCCESS	is returned upon successful call.
---------------------	-----------------------------------

5.9.2.2 rsmi_status_t rsmi_dev_fan_speed_set (uint32_t dv_ind, uint32_t sensor_ind, uint64_t speed)

Set the fan speed for the specified device with the provided speed, in RPMs.

Given a device index dv_ind and a integer value indicating speed speed, this function will attempt to set the fan speed to speed. An error will be returned if the specified speed is outside the allowable range for the device. The maximum value is 255 and the minimum is 0.

Parameters

in	dv_ind	a device index	
in	sensor_ind	a 0-based sensor index. Normally, this will be 0. If a device has more than one sensor, it	
		could be greater than 0.	
in	speed	the speed to which the function will attempt to set the fan	

Return values

RSMI_STATUS_SUCCESS is returned upon successful call.

5.10 Clock, Power and Performance Queries

Functions

rsmi_status_t rsmi_dev_busy_percent_get (uint32_t dv_ind, uint32_t *busy_percent)

Get percentage of time device is busy doing any processing.

• rsmi_status_t rsmi_dev_perf_level_get (uint32_t dv_ind, rsmi_dev_perf_level_t *perf)

Get the performance level of the device with provided device index.

rsmi status t rsmi dev overdrive level get (uint32 t dv ind, uint32 t *od)

Get the overdrive percent associated with the device with provided device index.

- rsmi_status_t rsmi_dev_gpu_clk_freq_get (uint32_t dv_ind, rsmi_clk_type_t clk_type, rsmi_frequencies_t *f)

 Get the list of possible system clock speeds of device for a specified clock type.
- rsmi_status_t rsmi_dev_od_volt_info_get (uint32_t dv_ind, rsmi_od_volt_freq_data_t *odv)

This function retrieves the voltage/frequency curve information.

rsmi_status_t rsmi_dev_od_volt_curve_regions_get (uint32_t dv_ind, uint32_t *num_regions, rsmi_freq_
 volt_region_t *buffer)

This function will retrieve the current valid regions in the frequency/voltage space.

rsmi_status_t rsmi_dev_power_profile_presets_get (uint32_t dv_ind, uint32_t sensor_ind, rsmi_power_
 profile_status_t *status)

Get the list of available preset power profiles and an indication of which profile is currently active.

5.10.1 Detailed Description

These functions provide information about clock frequencies and performance.

5.10.2 Function Documentation

5.10.2.1 rsmi_status_t rsmi_dev_busy_percent_get (uint32_t dv_ind, uint32_t * busy_percent)

Get percentage of time device is busy doing any processing.

Given a device index dv_ind, this function returns the percentage of time that the specified device is busy. The device is considered busy if any one or more of its sub-blocks are working, and idle if none of the sub-blocks are working.

Parameters

in	dv_ind	a device index
in,out	busy_percent	a pointer to the uint32_t to which the busy percent will be written

Return values

RSMI_STATUS_SUCCESS	is returned upon successful call

5.10.2.2 rsmi status trsmi_dev_perf_level_get (uint32_t dv_ind, rsmi dev perf_level_t * perf)

Get the performance level of the device with provided device index.

Given a device index dv_ind and a pointer to a uint32_t perf, this function will write the rsmi_dev_perf_level_t to the uint32_t pointed to by perf

Parameters

in	dv_ind	a device index	
in,out	perf	a pointer to rsmi_dev_perf_level_t to which the performance level will be written	

Return values

RSMI_STATUS_SUCCESS	is returned upon successful call.
---------------------	-----------------------------------

5.10.2.3 rsmi_status_t rsmi_dev_overdrive_level_get (uint32_t dv_ind, uint32_t * od)

Get the overdrive percent associated with the device with provided device index.

Given a device index dv_ind and a pointer to a uint32_t od, this function will write the overdrive percentage to the uint32_t pointed to by od

Parameters

in	dv_ind	a device index	
in,o	ut od	a pointer to uint32_t to which the overdrive percentage will be written	

Return values

RSMI_STATUS_SUCCESS	is returned upon successful call.

5.10.2.4 rsmi_status_t rsmi_dev_gpu_clk_freq_get (uint32_t dv_i nd, rsmi_clk_type_t clk_t ype, rsmi_frequencies_t *f)

Get the list of possible system clock speeds of device for a specified clock type.

Given a device index dv_ind, a clock type clk_type, and a pointer to a to an rsmi_frequencies_t structure f, this function will fill in f with the possible clock speeds, and indication of the current clock speed selection.

Parameters

in	dv_ind	a device index
in	clk_type	the type of clock for which the frequency is desired
in,out	f	a pointer to a caller provided rsmi_frequencies_t structure to which the frequency
		information will be written. Frequency values are in Hz.

RSMI_STATUS_SUCCESS	is returned upon successful call.
---------------------	-----------------------------------

5.10.2.5 rsmi_status_t rsmi_dev_od_volt_info_get (uint32_t dv_ind, rsmi_od_volt_freq_data_t * odv)

This function retrieves the voltage/frequency curve information.

Given a device index dv_ind and a pointer to a rsmi_od_volt_freq_data_t structure odv, this function will populate odv. See rsmi_od_volt_freq_data_t for more details.

Parameters

in	dv_ind	a device index
in	odv	a pointer to an rsmi_od_volt_freq_data_t structure

Return values

RSMI_STATUS_SUCCESS	is returned upon successful call.
---------------------	-----------------------------------

```
5.10.2.6 rsmi_status_t rsmi_dev_od_volt_curve_regions_get ( uint32_t dv_ind, uint32_t * num_regions, rsmi_freq_volt_region_t * buffer )
```

This function will retrieve the current valid regions in the frequency/voltage space.

Given a device index dv_ind, a pointer to an unsigned integer num_regions and a buffer of rsmi_freq_volt caller structures, buffer, this function will populate buffer with the current frequency-volt space regions. The caller should assign buffer to memory that can be written to by this function. The caller should also indicate the number of rsmi_freq_volt_region_t structures that can safely be written to buffer in num_regions.

The number of regions to expect this function provide (num_regions) can be obtained by calling rsmi_dev_od~_volt_info_get().

Parameters

in	dv_ind	a device index
in,out	num_regions	As input, this is the number of rsmi_freq_volt_region_t structures that can be
		written to buffer. As output, this is the number of rsmi_freq_volt_region_t
		structures that were actually written.
in,out	buffer	a caller provided buffer to which rsmi_freq_volt_region_t structures will be written

Return values

```
RSMI_STATUS_SUCCESS | is returned upon successful call.
```

```
5.10.2.7 rsmi_status_t rsmi_dev_power_profile_presets_get ( uint32_t dv_ind, uint32_t sensor_ind, rsmi_power_profile_status_t * status_)
```

Get the list of available preset power profiles and an indication of which profile is currently active.

Given a device index dv_ind and a pointer to a rsmi_power_profile_status_t status, this function will set the bits of the rsmi_power_profile_status_t.available_profiles bit field of status to 1 if the profile corresponding to the

respective rsmi_power_profile_preset_masks_t profiles are enabled. For example, if both the VIDEO and VR power profiles are available selections, then RSMI_PWR_PROF_PRST_VIDEO_MASK AND'ed with rsmi_power_profile status_t.available_profiles will be non-zero as will RSMI_PWR_PROF_PRST_VR_MASK AND'ed with rsmi_cower_profile_status_t.available_profiles. Additionally, rsmi_power_profile_status_t.current will be set to the rsmicower_profile_preset_masks_t of the profile that is currently active.

Parameters

in	dv_ind	a device index
in	sensor_ind	a 0-based sensor index. Normally, this will be 0. If a device has more than one sensor, it could be greater than 0.
in,out	status	a pointer to rsmi_power_profile_status_t that will be populated by a call to this function

RSMI STATUS SUCCESS	is returned upon successful call.
1101111_01111100_0000000000000000000000	io rotarrioù aport babbbbliar bain

5.11 Clock, Power and Performance Control

Functions

- rsmi_status_t rsmi_dev_perf_level_set (int32_t dv_ind, rsmi_dev_perf_level_t perf_lvl)
 - Set the PowerPlay performance level associated with the device with provided device index with the provided value.
- rsmi_status_t rsmi_dev_overdrive_level_set (int32_t dv_ind, uint32_t od)
 - Set the overdrive percent associated with the device with provided device index with the provided value. See details for WARNING.
- rsmi_status_t rsmi_dev_gpu_clk_freq_set (uint32_t dv_ind, rsmi_clk_type_t clk_type, uint64_t freq_bitmask)

 Control the set of allowed frequencies that can be used for the specified clock.

5.11.1 Detailed Description

These functions provide control over clock frequencies, power and performance.

5.11.2 Function Documentation

5.11.2.1 rsmi_status_t rsmi_dev_perf_level_set (int32_t dv_ind, rsmi_dev_perf_level_t perf_lvl)

Set the PowerPlay performance level associated with the device with provided device index with the provided value.

Given a device index dv_{ind} and an $rsmi_{dev_{perf_{level_t}}}$ $perf_{level}$, this function will set the PowerPlay performance level for the device to the value $perf_{level}$.

Parameters

in	dv_ind	a device index
in	perf←	the value to which the performance level should be set
	_lvl	

Return values

RSMI_STATUS_SUCCESS	is returned upon successful call.
---------------------	-----------------------------------

5.11.2.2 rsmi_status_t rsmi_dev_overdrive_level_set (int32_t dv_ind, uint32_t od)

Set the overdrive percent associated with the device with provided device index with the provided value. See details for WARNING.

Given a device index dv_ind and an overdrive level od, this function will set the overdrive level for the device to the value od. The overdrive level is an integer value between 0 and 20, inclusive, which represents the overdrive percentage; e.g., a value of 5 specifies an overclocking of 5%.

The overdrive level is specific to the gpu system clock.

The overdrive level is the percentage above the maximum Performance Level to which overclocking will be limited. The overclocking percentage does not apply to clock speeds other than the maximum. This percentage is limited to 20%.

******WARNING****** Operating your AMD GPU outside of official AMD specifications or outside of factory settings, including but not limited to the conducting of overclocking (including use of this overclocking software, even if such software has been directly or indirectly provided by AMD or otherwise affiliated in any way with AMD), may cause damage to your AMD GPU, system components and/or result in system failure, as well as cause other problems. DAMAGES CAUSED BY USE OF YOUR AMD GPU OUTSIDE OF OFFICIAL AMD SPECIFICATIONS OR OUTSIDE OF FACTORY SETTINGS ARE NOT COVERED UNDER ANY AMD PRODUCT WARRANTY ACOUNTY NOT BE COVERED BY YOUR BOARD OR SYSTEM MANUFACTURER'S WARRANTY. Please use this utility with caution.

Parameters

in	dv_ind	a device index
in	od	the value to which the overdrive level should be set

Return values

RSMI_STATUS_SUCCESS	is returned upon successful call.
---------------------	-----------------------------------

5.11.2.3 rsmi_status_t rsmi_dev_gpu_clk_freq_set (uint32_t dv_ind, rsmi_clk_type_t clk_type, uint64_t freq_bitmask)

Control the set of allowed frequencies that can be used for the specified clock.

Given a device index dv_ind, a clock type clk_type, and a 64 bit bitmask freq_bitmask, this function will limit the set of allowable frequencies. If a bit in freq_bitmask has a value of 1, then the frequency (as ordered in an rsmi_frequencies_t returned by rsmi_dev_gpu_clk_freq_get()) corresponding to that bit index will be allowed.

This function will change the performance level to RSMI_DEV_PERF_LEVEL_MANUAL in order to modify the set of allowable frequencies. Caller will need to set to RSMI_DEV_PERF_LEVEL_AUTO in order to get back to default state.

All bits with indices greater than or equal to rsmi frequencies t::num supported will be ignored.

Parameters

in	dv_ind	a device index
in	clk_type	the type of clock for which the set of frequencies will be modified
in	freq_bitmask	1 ()
		(0). Only the lowest rsmi_frequencies_t.num_supported bits of this mask are relevant.

5.12 Version Queries 41

5.12 Version Queries

Functions

rsmi_status_t rsmi_version_get (rsmi_version_t *version)

Get the build version information for the currently running build of RSMI.

- rsmi_status_t rsmi_version_str_get (rsmi_sw_component_t component, char *ver_str, uint32_t len)

 Get the driver version string for the current system.
- rsmi_status_t rsmi_dev_vbios_version_get (uint32_t dv_ind, char *vbios, uint32_t len)
 Get the VBIOS identifer string.
- rsmi_status_t rsmi_dev_firmware_version_get (uint32_t dv_ind, rsmi_fw_block_t block, uint64_t *fw_version)

 Get the firmware versions for a device.

5.12.1 Detailed Description

These functions provide version information about various subsystems.

5.12.2 Function Documentation

5.12.2.1 rsmi_status_t rsmi_version_get (rsmi_version_t * version)

Get the build version information for the currently running build of RSMI.

Get the major, minor, patch and build string for RSMI build currently in use through version

Parameters

in,out	version	A pointer to an rsmi_version_t structure that will be updated with the version informa	
		upon return.	

Return values

RSMI_STATUS_SUCCESS	is returned upon successful call
---------------------	----------------------------------

5.12.2.2 rsmi_status_t rsmi_version_str_get (rsmi_sw_component_t component, char * ver_str, uint32_t len)

Get the driver version string for the current system.

Given a software component component, a pointer to a char buffer, ver_str, this function will write the driver version string (up to len characters) for the current system to ver_str. The caller must ensure that it is safe to write at least len characters to ver_str.

Parameters

in	component	nponent The component for which the version string is being requested	
in,out	ver_str A pointer to a buffer of char's to which the VBIOS name will be written		
in	len The number of char's pointed to by ver_str which can safely be written to by		
		function.	

Generated by Doxygen

Return values

5.12.2.3 rsmi_status_t rsmi_dev_vbios_version_get (uint32_t dv_ind, char * vbios, uint32_t len)

Get the VBIOS identifer string.

Given a device ID dv_{ind} , and a pointer to a char buffer, vbios, this function will write the VBIOS string (up to len characters) for device dv_{ind} to vbios. The caller must ensure that it is safe to write at least len characters to vbios.

Parameters

in	dv_ind	a device index	
in,out	vbios	A pointer to a buffer of char's to which the VBIOS name will be written	
in	len	The number of char's pointed to by vbios which can safely be written to by this function.	

Return values

RSMI_STATUS_SUCCESS	is returned upon successful call.
---------------------	-----------------------------------

 $5.12.2.4 \quad rsmi_status_t \ rsmi_dev_firmware_version_get (\ uint32_t \ dv_ind, \ rsmi_fw_block_t \ block, \ uint64_t*fw_version)$

Get the firmware versions for a device.

Given a device ID dv_ind , and a pointer to a uint64_t, $fw_version$, this function will write the FW Versions as a string (up to len characters) for device dv_ind to vbios. The caller must ensure that it is safe to write at least len characters to vbios.

Parameters

in	dv_ind	a device index
in	block	The firmware block for which the version is being requested
in,out	fw_version	The version for the firmware block

RSMI_STATUS_SUCCESS	is returned upon successful call.
---------------------	-----------------------------------

5.13 Error Queries 43

5.13 Error Queries

Functions

• rsmi_status_t rsmi_dev_ecc_count_get (uint32_t dv_ind, rsmi_gpu_block_t block, rsmi_error_count_t *ec)

Retrieve the error counts for a GPU block.

rsmi_status_t rsmi_dev_ecc_enabled_get (uint32_t dv_ind, uint64_t *enabled_blocks)
 Retrieve the enabled ECC bit-mask.

rsmi_status_t rsmi_dev_ecc_status_get (uint32_t dv_ind, rsmi_gpu_block_t block, rsmi_ras_err_state_
 t *state)

Retrieve the ECC status for a GPU block.

• rsmi_status_t rsmi_status_string (rsmi_status_t status, const char **status_string)

Get a description of a provided RSMI error status.

5.13.1 Detailed Description

These functions provide error information about RSMI calls as well as device errors.

5.13.2 Function Documentation

5.13.2.1 rsmi_status_t rsmi_dev_ecc_count_get (uint32_t dv_ind , rsmi_gpu_block_t block, rsmi_error_count_t * ec)

Retrieve the error counts for a GPU block.

Given a device index dv_ind, an rsmi_gpu_block_t block and a pointer to an rsmi_error_count_tec, this function will write the error count values for the GPU block indicated by block to memory pointed to by ec.

Parameters

in	dv_ind	a device index	
in	block	The block for which error counts should be retrieved	
in,out	ec	A pointer to an rsmi_error_count_t to which the error counts should be written	

Return values

RSMI STATUS SUCCESS	is returned upon successful call.
	io rotairioù apori oacocorai cam

5.13.2.2 rsmi_status_t rsmi_dev_ecc_enabled_get (uint32_t dv_ind, uint64_t * enabled_blocks)

Retrieve the enabled ECC bit-mask.

Given a device index dv_ind , and a pointer to a uint64_t enabled_mask, this function will write bits to memory pointed to by enabled_blocks. Upon a successful call, enabled_blocks can then be AND'd with elements

of the rsmi_gpu_block_t ennumeration to determine if the corresponding block has ECC enabled. Note that whether a block has ECC enabled or not in the device is independent of whether there is kernel support for error counting for that block. Although a block may be enabled, but there may not be kernel support for reading error counters for that block.

Parameters

in	dv_ind	a device index
in,out	enabled_blocks	A pointer to a uint64_t to which the enabled blocks bits will be written

Return values

RSMI_STATUS_SUCCESS	is returned upon successful call.
---------------------	-----------------------------------

5.13.2.3 rsmi_status_t rsmi_dev_ecc_status_get (uint32_t dv_ind, rsmi_gpu_block_t block, rsmi_ras_err_state_t * state)

Retrieve the ECC status for a GPU block.

Given a device index dv_{ind} , an $rsmi_{gpu_block_tblock}$ and a pointer to an $rsmi_{ras_err_state_t}$ state, this function will write the current state for the GPU block indicated by block to memory pointed to by state.

Parameters

in	dv_ind	a device index	
in	block	The block for which error counts should be retrieved	
in, out state A pointer to an rsmi_ras_err_state_t to which the ECC state should be written			

Return values

RSMI_STATUS_SUCCESS	is returned upon successful call.
---------------------	-----------------------------------

5.13.2.4 rsmi_status_t rsmi_status_string (rsmi_status_t status, const char ** status_string)

Get a description of a provided RSMI error status.

Set the provided pointer to a const char *, status_string, to a string containing a description of the provided error code status.

Parameters

in	status	The error status for which a description is desired
in,out	status_string	A pointer to a const char * which will be made to point to a description of the provided error code

RSMI_STATUS_SUCCESS	is returned upon successful call
---------------------	----------------------------------

5.14 Performance Counter Functions

Functions

- rsmi_status_t rsmi_dev_counter_group_supported (uint32_t dv_ind, rsmi_event_group_t group)

 Tell if an event group is supported by a given device.
- rsmi_status_t rsmi_dev_counter_create (uint32_t dv_ind, rsmi_event_type_t type, rsmi_event_handle_← t *evnt_handle)

Create a performance counter object.

• rsmi_status_t rsmi_dev_counter_destroy (rsmi_event_handle_t evnt_handle)

Deallocate a performance counter object.

 rsmi_status_t rsmi_counter_control (rsmi_event_handle_t evt_handle, rsmi_counter_command_t cmd, void *cmd_args)

Issue performance counter control commands.

- rsmi_status_t rsmi_counter_read (rsmi_event_handle_t evt_handle, rsmi_counter_value_t *value)
 - Read the current value of a performance counter.
- rsmi_status_t rsmi_counter_available_counters_get (uint32_t dv_ind, rsmi_event_group_t grp, uint32_
 t *available)

Get the number of currently available counters.

5.14.1 Detailed Description

These functions are used to configure, query and control performance counting.

5.14.2 Function Documentation

5.14.2.1 rsmi_status_t rsmi_dev_counter_group_supported (uint32_t dv_ind, rsmi_event_group_t group)

Tell if an event group is supported by a given device.

Given a device index dv_ind and an event group specifier group, tell if group type events are supported by the device associated with dv_ind

Parameters

in	dv_ind	device index of device being queried	
in	group	rsmi_event_group_t identifier of group for which support is being queried	

Return values

RSMI_STATUS_SUCCESS	if the device associatee with dv_ind support counting events of the type
	indicated by group.

RSMI_STATUS_NOT_FOUND If the device does not support event group group

5.14.2.2 rsmi_status_t rsmi_dev_counter_create (uint32_t dv_ind, rsmi_event_type_t type, rsmi_event_handle_t * evnt_handle)

Create a performance counter object.

Create a performance counter object of type type for the device with a device index of dv_ind , and write a handle to the object to the memory location pointed to by $evnt_handle$. $evnt_handle$ can be used with other performance event operations. The handle should be deallocated with $rsmi_dev_counter_destroy()$ when no longer needed.

Parameters

in	dv_ind	a device index	
in	type	the type of performance event to create	
in,out	evnt_handle	A pointer to a rsmi_event_handle_t which will be associated with a newly allocated counter	

Return values

RSMI STATUS SUCCESS	is returned upon successful call
---------------------	----------------------------------

5.14.2.3 rsmi_status_t rsmi_dev_counter_destroy (rsmi_event_handle_t evnt_handle)

Deallocate a performance counter object.

Deallocate the performance counter object with the provided rsmi_event_handle_t evnt_handle

Parameters

in	evnt_handle	handle to event object to be deallocated
----	-------------	--

Return values

RSMI_STATUS_SUCCESS	is returned upon successful call
---------------------	----------------------------------

5.14.2.4 rsmi_status_t rsmi_counter_control (rsmi_event_handle_t evt_handle, rsmi_counter_command_t cmd, void * cmd_args)

Issue performance counter control commands.

 $\label{lssue} \textbf{lssue a command cmd on the event counter associated with the provided handle \verb|evt_handle|.}$

Parameters

in	evt_handle	an event handle
in	cmd	The event counter command to be issued
in,out	cmd_args	Currently not used. Should be set to NULL.

Return values

RSMI_STATUS_SUCCESS	is returned upon successful call
---------------------	----------------------------------

 $5.14.2.5 \quad rsmi_status_t \ rsmi_counter_read \ (\ rsmi_event_handle_t \ \textit{evt_handle}, \ rsmi_counter_value_t * \textit{value} \)$

Read the current value of a performance counter.

Read the current counter value of the counter associated with the provided handle evt_handle and write the value to the location pointed to by value.

Parameters

in	evt_handle	an event handle
in,out	value	pointer to memory of size of rsmi_counter_value_t to which the counter value will be
		written

Return values

RSMI_STATUS_SUCCESS	is returned upon successful call
---------------------	----------------------------------

5.14.2.6 rsmi_status_t rsmi_counter_available_counters_get (uint32_t dv_i nd, rsmi_event_group_t grp, uint32_t * available)

Get the number of currently available counters.

Given a device index dv_{ind} , a performance event group grp, and a pointer to a uint32_t available, this function will write the number of grp type counters that are available on the device with index dv_{ind} to the memory that available points to.

Parameters

in	dv_ind	a device index	
in	grp	an event device group	
in,out	available	A pointer to a uint32_t to which the number of available counters will be written	

RSMI_STATUS_SUCCESS	is returned upon successful call
---------------------	----------------------------------

5.15 System Information Functions

Functions

- rsmi_status_t rsmi_compute_process_info_get (rsmi_process_info_t *procs, uint32_t *num_items)
 Get process information about processes currently using GPU.
- rsmi_status_t rsmi_compute_process_info_by_pid_get (uint32_t pid, rsmi_process_info_t *proc)

 Get process information about a specific process.

5.15.1 Detailed Description

These functions are used to configure, query and control performance counting.

5.15.2 Function Documentation

5.15.2.1 rsmi_status_trsmi_compute_process_info_get(rsmi_process_info_t*proces, uint32_t*num_items)

Get process information about processes currently using GPU.

Given a non-NULL pointer to an array procs of rsmi_process_info_t's, of length *num_items, this function will write up to *num_items instances of rsmi_process_info_t to the memory pointed to by procs. These instances contain information about each process utilizing a GPU. If procs is not NULL, num_items will be updated with the number of processes actually written. If procs is NULL, num_items will be updated with the number of processes for which there is current process information. Calling this function with procs being NULL is a way to determine how much memory should be allocated for when procs is not NULL.

Parameters

in,out	procs	a pointer to memory provided by the caller to which process information will be written. This may be NULL in which case only num_items will be updated with the number of processes found.
in,out	num_items	A pointer to a uint32_t, which on input, should contain the amount of memory in rsmi_process_info_t's which have been provided by the procs argument. On output, if procs is non-NULL, this will be updated with the number rsmi_process_info_t structs actually written. If procs is NULL, this argument will be updated with the number processes for which there is information.

Return values

RSMI_STATUS_SUCCESS	is returned upon successful call
---------------------	----------------------------------

RSMI_STATUS_INSUFFICIENT_SIZE is returned if there were more processes for which information was available, but not enough space was provided as indicated by procs and num_items, on input.

5.15.2.2 rsmi_status_t rsmi_compute_process_info_by_pid_get (uint32_t pid, rsmi_process_info_t * proc)

Get process information about a specific process.

5.13 System information Functions
Given a pointer to an $rsmi_process_info_t$ $proc$ and a process id pid , this function will write the process inform
tion for pid, if available, to the memory pointed to by proc.
tion for pray in available, to the memory permed to by proce.

Parameters

in	pid	The process ID for which process information is being requested
in,out	proc	a pointer to a rsmi_process_info_t to which process information for pid will be written if it is
		found.

Return values

RSMI_STATUS_SUCCESS	is returned upon successful call
---------------------	----------------------------------

RSMI_STATUS_NOT_FOUND is returned if there was no process information found for the provided pid

5.16 XGMI Functions 51

5.16 XGMI Functions

Functions

• rsmi_status_t rsmi_dev_xgmi_error_status (uint32_t dv_ind, rsmi_xgmi_status_t *status)

**Retrieve the XGMI error status for a device.

rsmi_status_t rsmi_dev_xgmi_error_reset (uint32_t dv_ind)

Reset the XGMI error status for a device.

5.16.1 Detailed Description

These functions are used to configure, query and control XGMI.

5.16.2 Function Documentation

```
5.16.2.1 rsmi_status_t rsmi_dev_xgmi_error_status ( uint32_t dv_ind, rsmi_xgmi_status_t * status )
```

Retrieve the XGMI error status for a device.

Given a device index dv_ind, and a pointer to an rsmi_xgmi_status_t status, this function will write the current XGMI error state rsmi_xgmi_status_t for the device dv_ind to the memory pointed to by status.

Parameters

in	dv_ind	a device index
in, out	status	A pointer to an rsmi_xgmi_status_t to which the XGMI error state should be written

Return values

RSMI_STATUS_SUCCESS	is returned upon successful call.
---------------------	-----------------------------------

5.16.2.2 rsmi_status_t rsmi_dev_xgmi_error_reset (uint32_t dv_ind)

Reset the XGMI error status for a device.

Given a device index dv_{ind} , this function will reset the current XGMI error state $rsmi_xgmi_status_t$ for the device dv_{ind} to $rsmi_xgmi_status_t$::RSMI_XGMI_STATUS_NO_ERRORS

Parameters

in	dv_ind	a device index

RSMI_STATUS_SUCCESS	is returned upon successful call.

5.17 Supported Functions

Functions

rsmi_status_t rsmi_dev_supported_func_iterator_open (uint32_t dv_ind, rsmi_func_id_iter_handle_← t*handle)

Get a function name iterator of supported RSMI functions for a device.

rsmi_status_t rsmi_dev_supported_variant_iterator_open (rsmi_func_id_iter_handle_t obj_h, rsmi_func_id
 iter_handle_t *var_iter)

Get a variant iterator for a given handle.

• rsmi_status_t rsmi_func_iter_next (rsmi_func_id_iter_handle_t handle)

Advance a function identifer iterator.

rsmi_status_t rsmi_dev_supported_func_iterator_close (rsmi_func_id_iter_handle_t *handle)

Close a variant iterator handle.

• rsmi_status_t rsmi_func_iter_value_get (rsmi_func_id_iter_handle_t handle, rsmi_func_id_value_t *value)

Get the value associated with a function/variant iterator.

5.17.1 Detailed Description

API function support varies by both GPU type and the version of the installed ROCm stack. The functions described in this section can be used to determine, up front, which functions are supported for a given device on a system. If such "up front" knowledge of support for a function is not needed, alternatively, one can call a device related function and check the return code.

Some functions have several variations ("variants") where some variants are supported and others are not. For example, on a given device, rsmi_dev_temp_metric_get may support some types of temperature metrics (e.g., RSMI_TEMP_CRITICAL_HYST), but not others (e.g., RSMI_TEMP_EMERGENCY).

In addition to a top level of variant support for a function, a function may have varying support for monitors/sensors. These are considered "sub-variants" in functions described in this section. Continuing the rsmi_dev_temp_metric __get example, if variant RSMI_TEMP_CRITICAL_HYST is supported, perhaps only the sub-variant sensors RS __MI_TEMP_TYPE_EDGE and RSMI_TEMP_TYPE_EDGE are supported, but not RSMI_TEMP_TYPE_MEMORY.

In cases where a function takes in a sensor id parameter but does not have any "top level" variants, the functions in this section will indicate a default "variant", RSMI_DEFAULT_VARIANT, for the top level variant, and the various monitor support will be sub-variants of this.

The functions in this section use the "iterator" concept to list which functions are supported; to list which variants of the supported functions are supported; and finally which monitors/sensors are supported for a variant.

Here is example code that prints out all supported functions, their supported variants and sub-variants. Please see the related descriptions functions and RSMI types.

```
rsmi_func_id_iter_handle_t iter_handle, var_iter, sub_var_iter;
rsmi_func_id_value_t value;
rsmi_status_t err;
for (uint32_t i = 0; i < <number of devices>; ++i) {
  std::cout << "Supported RSMI Functions:" << std::endl;</pre>
 std::cout << "\tVariants (Monitors)" << std::endl;
 err = rsmi_dev_supported_func_iterator_open(i, &iter_handle);
 while (1) {
   err = rsmi_func_iter_value_get(iter_handle, &value);
   std::cout << "Function Name: " << value.name << std::endl;
   err = rsmi_dev_supported_variant_iterator_open(iter_handle, &
   var_iter);
if (err != RSMI_STATUS_NO_DATA) {
     std::cout << "\tVariants/Monitors: ";
     while (1) {
       err = rsmi_func_iter_value_get(var_iter, &value);
       if (value.id == RSMI_DEFAULT_VARIANT) {
   std::cout << "Default Variant ";</pre>
         std::cout << value.id;</pre>
       std::cout << " (";
          rsmi_dev_supported_variant_iterator_open(var_iter, &
     sub_var_iter);
       if (err != RSMI_STATUS_NO_DATA) {
            err = rsmi_func_iter_value_get(sub_var_iter, &value);
           std::cout << value.id << ", ";
            err = rsmi func iter next(sub var iter);
            if (err == RSMI_STATUS_NO_DATA) {
             break;
         err = rsmi_dev_supported_func_iterator_close(&sub_var_iter)
     ;
       std::cout << "), ";
       err = rsmi_func_iter_next(var_iter);
       if (err == RSMI_STATUS_NO_DATA) {
         break;
     std::cout << std::endl;
     err = rsmi_dev_supported_func_iterator_close(&var_iter);
   err = rsmi_func_iter_next(iter_handle);
   if (err == RSMI STATUS NO DATA) {
     break;
 err = rsmi_dev_supported_func_iterator_close(&iter_handle);
```

5.17.2 Function Documentation

5.17.2.1 rsmi_status_t rsmi_dev_supported_func_iterator_open (uint32_t dv_ind, rsmi_func_id_iter_handle_t * handle)

Get a function name iterator of supported RSMI functions for a device.

Given a device index dv_ind , this function will write a function iterator handle to the caller-provided memory pointed to by handle. This handle can be used to iterate through all the supported functions.

Parameters

in	dv_ind	a device index of device for which support information is requested
in,out	handle	A pointer to caller-provided memory to which the function iterator will be written.

Return values

RSMI_STATUS_SUCCESS	is returned upon successful call.
---------------------	-----------------------------------

5.17.2.2 rsmi_status_t rsmi_dev_supported_variant_iterator_open (rsmi_func_id_iter_handle_t *obj_h*, rsmi_func_id_iter_handle_t * var_iter)

Get a variant iterator for a given handle.

Given a rsmi_func_id_iter_handle_t obj_h, this function will write a function iterator handle to the caller-provided memory pointed to by var_iter. This handle can be used to iterate through all the supported variants of the provided handle. obj_h may be a handle to a function object, as provided by a call to rsmi_dev_supported_func __iterator_open, or it may be a variant itself (from a call to rsmi_dev_supported_variant_iterator_open), it which case var_iter will be an iterator of the sub-variants of obj_h (e.g., monitors).

This call allocates a small amount of memory to var_iter. To free this memory rsmi_dev_supported_func_\(\cdot\) iterator_close should be called on the returned iterator handle var_iter when it is no longer needed.

Parameters

in	obj_h	an iterator handle for which the variants are being requested
in,out	var_iter	A pointer to caller-provided memory to which the sub-variant iterator will be written.

Return values

RSMI_STATUS_SUCCESS	is returned upon successful call.
---------------------	-----------------------------------

5.17.2.3 rsmi_status_trsmi_func_iter_next(rsmi_func_id_iter_handle_t handle)

Advance a function identifer iterator.

Given a function id iterator handle (rsmi_func_id_iter_handle_t) handle, this function will increment the iterator to point to the next identifier. After a successful call to this function, obtaining the value of the iterator handle will provide the value of the next item in the list of functions/variants.

If there are no more items in the list, RSMI_STATUS_NO_DATA is returned.

Parameters

in	handle	A pointer to an iterator handle to be incremented

Return values

RSMI_STATUS_SUCCESS	is returned upon successful call.
RSMI_STATUS_NO_DATA	is returned when list of identifiers has been exhausted

 $5.17.2.4 \quad rsmi_status_t \ rsmi_dev_supported_func_iterator_close \left(\ rsmi_func_id_iter_handle_t * \textit{handle} \ \right)$

Close a variant iterator handle.

Given a pointer to an rsmi_func_id_iter_handle_t handle, this function will free the resources being used by the handle

Parameters

in	handle	A pointer to an iterator handle to be closed
----	--------	--

Return values

RSMI_STATUS_SUCCESS	is returned upon successful call.
---------------------	-----------------------------------

5.17.2.5 rsmi_status_t rsmi_func_iter_value_get (rsmi_func_id_iter_handle_t handle, rsmi_func_id_value_t * value)

Get the value associated with a function/variant iterator.

Given an rsmi_func_id_iter_handle_t handle, this function will write the identifier of the function/variant to the user provided memory pointed to by value.

 $\verb|value| may point to a function name, a variant id, or a monitor/sensor index, depending on what kind of iterator \\ \verb|handle| is |$

Parameters

in	handle	An iterator for which the value is being requested
in,out	value	A pointer to an rsmi_func_id_value_t provided by the caller to which this function will
		write the value assocaited with handle

RSMI_STATUS_SUCCESS is returned upon successful call.

Chapter 6

Data Structure Documentation

6.1 id Union Reference

This union holds the value of an rsmi_func_id_iter_handle_t. The value may be a function name, or an ennumerated variant value of types such as rsmi_memory_type_t, rsmi_temperature_metric_t, etc.

```
#include <rocm_smi.h>
```

Data Fields

```
• uint64 t id
     uint64_t representation of value
• const char * name
     name string (applicable to functions only)
• union {
    rsmi_memory_type_t memory_type
      < Used for rsmi_memory_type_t variants
   rsmi_temperature_metric_t temp_metric
      Used for rsmi_event_type_t variants.
    rsmi_event_type_t evnt_type
      Used for rsmi_event_group_t variants.
   rsmi_event_group_t evnt_group
      Used for rsmi_clk_type_t variants.
    rsmi clk type t clk type
      Used for rsmi fw block t variants.
   rsmi_fw_block_t fw_block
      Used for rsmi_gpu_block_t variants.
    rsmi_gpu_block_t gpu_block_type
 };
```

6.1.1 Detailed Description

This union holds the value of an rsmi_func_id_iter_handle_t. The value may be a function name, or an ennumerated variant value of types such as rsmi_memory_type_t, rsmi_temperature_metric_t, etc.

6.1.2 Field Documentation

```
6.1.2.1 rsmi_memory_type_t id::memory_type
```

```
< Used for rsmi_memory_type_t variants
```

Used for rsmi_temperature_metric_t variants

The documentation for this union was generated from the following file:

· rocm_smi.h

6.2 rsmi_counter_value_t Struct Reference

```
#include <room_smi.h>
```

Data Fields

uint64_t value

Counter value.

· uint64 t time enabled

Time that the counter was enabled.

• uint64_t time_running

Time that che counter was running.

6.2.1 Detailed Description

Counter value

The documentation for this struct was generated from the following file:

• rocm_smi.h

6.3 rsmi_error_count_t Struct Reference

This structure holds error counts.

```
#include <rocm_smi.h>
```

Data Fields

• uint64_t correctable_err

Accumulated correctable errors.

• uint64_t uncorrectable_err

Accumulated uncorrectable errors.

6.3.1 Detailed Description

This structure holds error counts.

The documentation for this struct was generated from the following file:

· rocm smi.h

6.4 rsmi_freq_volt_region_t Struct Reference

This structure holds 2 rsmi_range_t's, one for frequency and one for voltage. These 2 ranges indicate the range of possible values for the corresponding rsmi_od_vddc_point_t.

```
#include <room_smi.h>
```

Data Fields

• rsmi_range_t freq_range

The frequency range for this VDDC Curve point.

rsmi_range_t volt_range

The voltage range for this VDDC Curve point.

6.4.1 Detailed Description

This structure holds 2 rsmi_range_t's, one for frequency and one for voltage. These 2 ranges indicate the range of possible values for the corresponding rsmi_od_vddc_point_t.

The documentation for this struct was generated from the following file:

· rocm_smi.h

6.5 rsmi_frequencies_t Struct Reference

This structure holds information about clock frequencies.

```
#include <room_smi.h>
```

Data Fields

- uint32_t num_supported
- uint32 t current
- uint64_t frequency [RSMI_MAX_NUM_FREQUENCIES]

6.5.1 Detailed Description

This structure holds information about clock frequencies.

6.5.2 Field Documentation

6.5.2.1 uint32_t rsmi_frequencies_t::num_supported

The number of supported frequencies

6.5.2.2 uint32_t rsmi_frequencies_t::current

The current frequency index

6.5.2.3 uint64_t rsmi_frequencies_t::frequency[RSMI_MAX_NUM_FREQUENCIES]

List of frequencies. Only the first num_supported frequencies are valid.

The documentation for this struct was generated from the following file:

• rocm_smi.h

6.6 rsmi_od_vddc_point_t Struct Reference

This structure represents a point on the frequency-voltage plane.

```
#include <rocm_smi.h>
```

Data Fields

uint64_t frequency

Frequency coordinate (in Hz)

• uint64_t voltage

Voltage coordinate (in mV)

6.6.1 Detailed Description

This structure represents a point on the frequency-voltage plane.

The documentation for this struct was generated from the following file:

rocm_smi.h

6.7 rsmi_od_volt_curve_t Struct Reference

```
#include <rocm_smi.h>
```

Data Fields

• rsmi_od_vddc_point_t vc_points [RSMI_NUM_VOLTAGE_CURVE_POINTS]

6.7.1 Detailed Description

RSMI_NUM_VOLTAGE_CURVE_POINTS number of rsmi_od_vddc_point_t's

6.7.2 Field Documentation

6.7.2.1 rsmi_od_vddc_point_t rsmi_od_volt_curve_t::vc_points[RSMI_NUM_VOLTAGE_CURVE_POINTS]

Array of RSMI_NUM_VOLTAGE_CURVE_POINTS rsmi_od_vddc_point_t's that make up the voltage frequency curve points.

The documentation for this struct was generated from the following file:

· rocm smi.h

6.8 rsmi_od_volt_freq_data_t Struct Reference

This structure holds the frequency-voltage values for a device.

```
#include <rocm_smi.h>
```

Data Fields

• rsmi_range_t curr_sclk_range

The current SCLK frequency range.

- rsmi_range_t curr_mclk_range
- rsmi_range_t sclk_freq_limits

The range possible of SCLK values.

• rsmi_range_t mclk_freq_limits

The range possible of MCLK values.

• rsmi_od_volt_curve_t curve

The current voltage curve.

• uint32_t num_regions

The number of voltage curve regions.

6.8.1 Detailed Description

This structure holds the frequency-voltage values for a device.

6.8.2 Field Documentation

```
6.8.2.1 rsmi_range_t rsmi_od_volt_freq_data_t::curr_mclk_range
```

The current MCLK frequency range; (upper bound only)

The documentation for this struct was generated from the following file:

rocm_smi.h

6.9 rsmi_pcie_bandwidth_t Struct Reference

This structure holds information about the possible PCIe bandwidths. Specifically, the possible transfer rates and their associated numbers of lanes are stored here.

```
#include <rocm_smi.h>
```

Data Fields

- rsmi_frequencies_t transfer_rate
- uint32_t lanes [RSMI_MAX_NUM_FREQUENCIES]

6.9.1 Detailed Description

This structure holds information about the possible PCIe bandwidths. Specifically, the possible transfer rates and their associated numbers of lanes are stored here.

6.9.2 Field Documentation

6.9.2.1 rsmi_frequencies_t rsmi_pcie_bandwidth_t::transfer_rate

Transfer rates (T/s) that are possible

6.9.2.2 uint32_t rsmi_pcie_bandwidth_t::lanes[RSMI_MAX_NUM_FREQUENCIES]

List of lanes for corresponding transfer rate. Only the first num_supported bandwidths are valid.

The documentation for this struct was generated from the following file:

• rocm_smi.h

6.10 rsmi_power_profile_status_t Struct Reference

This structure contains information about which power profiles are supported by the system for a given device, and which power profile is currently active.

```
#include <room_smi.h>
```

Data Fields

- rsmi_bit_field_t available_profiles
- rsmi_power_profile_preset_masks_t current
- uint32 t num profiles

6.10.1 Detailed Description

This structure contains information about which power profiles are supported by the system for a given device, and which power profile is currently active.

6.10.2 Field Documentation

```
6.10.2.1 rsmi_bit_field_t rsmi_power_profile_status_t::available_profiles
```

Which profiles are supported by this system

 $6.10.2.2 \quad rsmi_power_profile_preset_masks_t \ rsmi_power_profile_status_t::current$

Which power profile is currently active

6.10.2.3 uint32_t rsmi_power_profile_status_t::num_profiles

How many power profiles are available

The documentation for this struct was generated from the following file:

rocm_smi.h

6.11 rsmi_process_info_t Struct Reference

This structure contains information specific to a process.

```
#include <rocm_smi.h>
```

Data Fields

```
· uint32_t process_id
```

Process ID.

uint32_t pasid

PASID.

6.11.1 Detailed Description

This structure contains information specific to a process.

The documentation for this struct was generated from the following file:

• rocm_smi.h

6.12 rsmi_range_t Struct Reference

This structure represents a range (e.g., frequencies or voltages).

```
#include <rocm_smi.h>
```

Data Fields

• uint64_t lower_bound

Lower bound of range.

• uint64_t upper_bound

Upper bound of range.

6.12.1 Detailed Description

This structure represents a range (e.g., frequencies or voltages).

The documentation for this struct was generated from the following file:

· rocm_smi.h

6.13 rsmi_retired_page_record_t Struct Reference

Reserved Memory Page Record.

```
#include <rocm_smi.h>
```

Data Fields

```
uint64_t page_address
```

Start address of page.

• uint64_t page_size

Page size.

· rsmi_memory_page_status_t status

Page "reserved" status.

6.13.1 Detailed Description

Reserved Memory Page Record.

The documentation for this struct was generated from the following file:

· rocm_smi.h

6.14 rsmi_version_t Struct Reference

This structure holds version information.

```
#include <rocm_smi.h>
```

Data Fields

• uint32_t major

Major version.

· uint32_t minor

Minor version.

uint32_t patch

Patch, build or stepping version.

· const char * build

Build string.

6.14.1 Detailed Description

This structure holds version information.

The documentation for this struct was generated from the following file:

rocm_smi.h

Chapter 7

File Documentation

7.1 rocm_smi.h File Reference

The rocm_smi library api is new, and therefore subject to change either at the ABI or API level. Instead of marking every function prototype as "unstable", we are instead saying the API is unstable (i.e., changes are possible) while the major version remains 0. This means that if the API/ABI changes, we will not increment the major version to 1. Once the ABI stabilizes, we will increment the major version to 1, and thereafter increment it on all ABI breaks.

```
#include <stdint.h>
#include <stddef.h>
```

Data Structures

- struct rsmi_counter_value_t
- struct rsmi_retired_page_record_t

Reserved Memory Page Record.

· struct rsmi_power_profile_status_t

This structure contains information about which power profiles are supported by the system for a given device, and which power profile is currently active.

· struct rsmi_frequencies_t

This structure holds information about clock frequencies.

· struct rsmi_pcie_bandwidth_t

This structure holds information about the possible PCIe bandwidths. Specifically, the possible transfer rates and their associated numbers of lanes are stored here.

· struct rsmi_version_t

This structure holds version information.

· struct rsmi_range_t

This structure represents a range (e.g., frequencies or voltages).

· struct rsmi_od_vddc_point_t

This structure represents a point on the frequency-voltage plane.

• struct rsmi_freq_volt_region_t

This structure holds 2 rsmi_range_t's, one for frequency and one for voltage. These 2 ranges indicate the range of possible values for the corresponding rsmi_od_vddc_point_t.

- · struct rsmi od volt curve t
- struct rsmi_od_volt_freq_data_t

This structure holds the frequency-voltage values for a device.

· struct rsmi_error_count_t

This structure holds error counts.

· struct rsmi process info t

This structure contains information specific to a process.

union id

This union holds the value of an rsmi_func_id_iter_handle_t. The value may be a function name, or an ennumerated variant value of types such as rsmi_memory_type_t, rsmi_temperature_metric_t, etc.

Macros

• #define RSMI MAX NUM FREQUENCIES 32

Guaranteed maximum possible number of supported frequencies.

- #define RSMI_MAX_FAN_SPEED 255
- #define RSMI_NUM_VOLTAGE_CURVE_POINTS 3

The number of points that make up a voltage-frequency curve definition.

#define RSMI_MAX_NUM_POWER_PROFILES (sizeof(rsmi_bit_field_t) * 8)

Number of possible power profiles that a system could support.

Typedefs

• typedef uintptr_t rsmi_event_handle_t

Handle to performance event counter.

· typedef uint64 t rsmi bit field t

Bitfield used in various RSMI calls.

• typedef struct rsmi_func_id_iter_handle * rsmi_func_id_iter_handle_t

Opaque handle to function-support object.

typedef union id rsmi func id value t

This union holds the value of an rsmi_func_id_iter_handle_t. The value may be a function name, or an ennumerated variant value of types such as rsmi_memory_type_t, rsmi_temperature_metric_t, etc.

Enumerations

```
    enum rsmi_status_t {
        RSMI_STATUS_SUCCESS = 0x0, RSMI_STATUS_INVALID_ARGS, RSMI_STATUS_NOT_SUPPORTED,
        RSMI_STATUS_FILE_ERROR,
        RSMI_STATUS_PERMISSION, RSMI_STATUS_OUT_OF_RESOURCES, RSMI_STATUS_INTERNAL_
        EXCEPTION, RSMI_STATUS_INPUT_OUT_OF_BOUNDS,
        RSMI_STATUS_INIT_ERROR, RSMI_INITIALIZATION_ERROR = RSMI_STATUS_INIT_ERROR, RSMI
        _STATUS_NOT_YET_IMPLEMENTED, RSMI_STATUS_NOT_FOUND,
        RSMI_STATUS_INSUFFICIENT_SIZE, RSMI_STATUS_INTERRUPT, RSMI_STATUS_UNEXPECTED_
        SIZE, RSMI_STATUS_NO_DATA,
        RSMI_STATUS_UNKNOWN_ERROR = 0xFFFFFFFF}
        Error codes retured by rocm_smi_lib functions.
```

enum rsmi init flags t { RSMI INIT FLAG ALL GPUS = 0x1 }

Initialization flags.

```
69
enum rsmi_dev_perf_level_t {
 RSMI DEV PERF LEVEL AUTO = 0, RSMI DEV PERF LEVEL FIRST = RSMI DEV PERF LEVEL \leftrightarrow
 AUTO, RSMI_DEV_PERF_LEVEL_LOW, RSMI_DEV_PERF_LEVEL_HIGH,
 VEL_STABLE_PEAK, RSMI_DEV_PERF_LEVEL_STABLE_MIN_MCLK,
 RSMI DEV PERF LEVEL STABLE MIN SCLK, RSMI DEV PERF LEVEL LAST = RSMI DEV PER↔
 F LEVEL STABLE MIN SCLK, RSMI DEV PERF LEVEL UNKNOWN = 0x100 }
    PowerPlay performance levels.

    enum rsmi_sw_component_t { RSMI_SW_COMP_FIRST = 0x0, RSMI_SW_COMP_DRIVER = RSMI_SW ←

 COMP FIRST, RSMI SW COMP LAST = RSMI SW COMP DRIVER }
    Available clock types.

    enum rsmi event group t { RSMI EVNT GRP XGMI = 0, RSMI EVNT GRP INVALID = 0xFFFFFFFF }

    Enum denoting an event group. The value of the enum is the base value for all the event enums in the group.
• enum rsmi event type t {
 RSMI EVNT FIRST = RSMI EVNT GRP XGMI, RSMI EVNT XGMI FIRST = RSMI EVNT GRP XGMI,
 RSMI EVNT XGMI 0 NOP TX = RSMI EVNT XGMI FIRST, RSMI EVNT XGMI 0 REQUEST TX,
 RSMI EVNT XGMI 0 RESPONSE TX, RSMI EVNT XGMI 0 BEATS TX, RSMI EVNT XGMI 1 NO↔
 P TX, RSMI EVNT XGMI 1 REQUEST TX,
 RSMI EVNT XGMI 1 RESPONSE TX, RSMI EVNT XGMI 1 BEATS TX, RSMI EVNT XGMI LAST =
 RSMI EVNT XGMI 1 BEATS TX, RSMI EVNT LAST = RSMI EVNT XGMI LAST }
    Event type enum. Events belonging to a particular event group rsmi_event_group_t should begin ennumerating at the
    rsmi_event_group_t value for that group.

    enum rsmi counter command t { RSMI CNTR CMD START = 0, RSMI CNTR CMD STOP }

enum rsmi_clk_type_t {
 RSMI_CLK_TYPE_SYS = 0x0, RSMI_CLK_TYPE_FIRST = RSMI_CLK_TYPE_SYS, RSMI_CLK_TYPE_↔
 DF, RSMI CLK TYPE DCEF,
 RSMI_CLK_TYPE_SOC, RSMI_CLK_TYPE_MEM, RSMI_CLK_TYPE_LAST = RSMI_CLK_TYPE_MEM,
 RSMI_CLK_INVALID = 0xFFFFFFF }
• enum rsmi temperature metric t {
 RSMI TEMP CURRENT = 0x0, RSMI TEMP FIRST = RSMI TEMP CURRENT, RSMI TEMP MAX, R↔
 SMI TEMP MIN.
 RSMI TEMP MAX HYST, RSMI TEMP MIN HYST, RSMI TEMP CRITICAL, RSMI TEMP CRITICAL
  HYST,
 RSMI_TEMP_EMERGENCY, RSMI_TEMP_EMERGENCY_HYST, RSMI_TEMP_CRIT_MIN, RSMI_TEM ←
 P CRIT MIN HYST,
```

 $\mathsf{RSMI_TEMP_OFFSET}, \ \mathsf{RSMI_TEMP_LOWEST}, \ \mathsf{RSMI_TEMP_HIGHEST}, \ \mathsf{RSMI_TEMP_LAST} = \ \mathsf{RSMI_} \leftarrow$ TEMP HIGHEST }

Temperature Metrics. This enum is used to identify various temperature metrics. Corresponding values will be in millidegress Celcius.

enum rsmi_temperature_type_t {

RSMI TEMP TYPE FIRST = 0, RSMI TEMP TYPE EDGE = RSMI TEMP TYPE FIRST, RSMI TEMP ↔ TYPE JUNCTION, RSMI TEMP TYPE MEMORY,

RSMI_TEMP_TYPE_LAST = RSMI_TEMP_TYPE_MEMORY }

This ennumeration is used to indicate from which part of the device a temperature reading should be obtained.

enum rsmi_power_profile_preset_masks_t {

RSMI PWR PROF PRST CUSTOM MASK = 0x1, RSMI PWR PROF PRST VIDEO MASK = 0x2, R↔ SMI PWR PROF PRST POWER SAVING MASK = 0x4, RSMI PWR PROF PRST COMPUTE MASK = 0x8.

RSMI_PWR_PROF_PRST_VR_MASK = 0x10, RSMI_PWR_PROF_PRST_3D_FULL_SCR_MASK = 0x20, RSMI_PWR_PROF_PRST_BOOTUP_DEFAULT = 0x40, RSMI_PWR_PROF_PRST_LAST = RSMI_PW↔ R PROF PRST BOOTUP DEFAULT,

Pre-set Profile Selections. These bitmasks can be AND'd with the rsmi_power_profile_status_t.available_profiles returned from rsmi_dev_power_profile_presets_get to determine which power profiles are supported by the system.

enum rsmi gpu block t { RSMI GPU BLOCK INVALID = 0x0000000000000000, RSMI GPU BLOCK FIRST = 0x000000000000001,

This enum is used to identify different GPU blocks.

• enum rsmi ras err state t {

RSMI_RAS_ERR_STATE_NONE = 0, RSMI_RAS_ERR_STATE_DISABLED, RSMI_RAS_ERR_STATE ← PARITY, RSMI_RAS_ERR_STATE SING_C,

RSMI_RAS_ERR_STATE_MULT_UC, RSMI_RAS_ERR_STATE_POISON, RSMI_RAS_ERR_STATE_E
NABLED, RSMI_RAS_ERR_STATE_LAST = RSMI_RAS_ERR_STATE_ENABLED,
RSMI_RAS_ERR_STATE_INVALID = 0xFFFFFFFF}

The current ECC state.

enum rsmi_memory_type_t {

RSMI MEM TYPE LAST = RSMI MEM TYPE GTT }

Types of memory.

enum rsmi_freq_ind_t { RSMI_FREQ_IND_MIN = 0, RSMI_FREQ_IND_MAX = 1, RSMI_FREQ_IND_INV
 ALID = 0xFFFFFFFF}

The values of this enum are used as frequency identifiers.

enum rsmi fw block t {

RSMI_FW_BLOCK_FIRST = 0, RSMI_FW_BLOCK_ASD = RSMI_FW_BLOCK_FIRST, RSMI_FW_BLOCK_CE, RSMI_FW_BLOCK_DMCU,

 $\label{eq:rsm_fw_block_sdma} \ RSMI_FW_BLOCK_SDMA, \ RSMI_FW_BLOCK_SDMA2, \ RSMI_FW_ \\ \Leftrightarrow \ BLOCK_SMC,$

RSMI_FW_BLOCK_SOS, RSMI_FW_BLOCK_TA_RAS, RSMI_FW_BLOCK_TA_XGMI, RSMI_FW_BL↔ OCK_UVD,

 $\label{eq:rsmi_fw_block_vce} \textbf{RSMI_FW_BLOCK_VCN}, \ \textbf{RSMI_FW_BLOCK_LAST} = \texttt{RSMI_FW_BLOCK_V} \leftrightarrow \texttt{CN} \ \}$

The values of this enum are used to identify the various firmware blocks.

• enum rsmi_xgmi_status_t { RSMI_XGMI_STATUS_NO_ERRORS = 0, RSMI_XGMI_STATUS_ERROR, R \hookleftarrow SMI_XGMI_STATUS_MULTIPLE_ERRORS }

XGMI Status

enum rsmi_memory_page_status_t { RSMI_MEM_PAGE_STATUS_RESERVED = 0, RSMI_MEM_PAGE
 _STATUS_PENDING, RSMI_MEM_PAGE_STATUS_UNRESERVABLE }

Reserved Memory Page States.

Functions

• rsmi status t rsmi init (uint64 t init flags)

Initialize ROCm SMI.

• rsmi_status_t rsmi_shut_down (void)

Shutdown ROCm SMI.

• rsmi status t rsmi num monitor devices (uint32 t *num devices)

Get the number of devices that have monitor information.

rsmi_status_t rsmi_dev_id_get (uint32_t dv_ind, uint16_t *id)

Get the device id associated with the device with provided device index.

rsmi_status_t rsmi_dev_vendor_id_get (uint32_t dv_ind, uint16_t *id)

Get the device vendor id associated with the device with provided device index.

rsmi_status_t rsmi_dev_name_get (uint32_t dv_ind, char *name, size_t len)

Get the name string of a gpu device.

• rsmi_status_t rsmi_dev_brand_get (uint32_t dv_ind, char *brand, uint32_t len)

Get the brand string of a gpu device.

rsmi_status_t rsmi_dev_vendor_name_get (uint32_t dv_ind, char *name, size_t len)

Get the name string for a give vendor ID.

• rsmi_status_t rsmi_dev_serial_number_get (uint32_t dv_ind, char *serial_num, uint32_t len)

Get the serial number string for a device.

rsmi_status_t rsmi_dev_subsystem_id_get (uint32_t dv_ind, uint16_t *id)

Get the subsystem device id associated with the device with provided device index.

• rsmi_status_t rsmi_dev_subsystem_name_get (uint32_t dv_ind, char *name, size_t len)

Get the name string for the device subsytem.

rsmi_status_t rsmi_dev_drm_render_minor_get (uint32_t dv_ind, uint32_t *minor)

Get the drm minor number associated with this device.

• rsmi_status_t rsmi_dev_subsystem_vendor_id_get (uint32_t dv_ind, uint16_t *id)

Get the device subsystem vendor id associated with the device with provided device index.

rsmi_status_t rsmi_dev_unique_id_get (uint32_t dv_ind, uint64_t *id)

Get Unique ID.

rsmi_status_t rsmi_dev_pci_bandwidth_get (uint32_t dv_ind, rsmi_pcie_bandwidth_t *bandwidth)

Get the list of possible PCIe bandwidths that are available.

rsmi_status_t rsmi_dev_pci_id_get (uint32_t dv_ind, uint64_t *bdfid)

Get the unique PCI device identifier associated for a device.

rsmi_status_t rsmi_dev_pci_throughput_get (uint32_t dv_ind, uint64_t *sent, uint64_t *received, uint64_←
 t *max_pkt_sz)

Get PCIe traffic information.

• rsmi_status_t rsmi_dev_pci_replay_counter_get (uint32_t dv_ind, uint64_t *counter)

Get PCIe replay counter.

rsmi_status_t rsmi_dev_pci_bandwidth_set (uint32_t dv_ind, uint64_t bw_bitmask)

Control the set of allowed PCIe bandwidths that can be used.

• rsmi_status_t rsmi_dev_power_ave_get (uint32_t dv_ind, uint32_t sensor_ind, uint64_t *power)

Get the average power consumption of the device with provided device index.

rsmi_status_t rsmi_dev_power_cap_get (uint32_t dv_ind, uint32_t sensor_ind, uint64_t *cap)

Get the cap on power which, when reached, causes the system to take action to reduce power.

• rsmi_status_t rsmi_dev_power_cap_range_get (uint32_t dv_ind, uint32_t sensor_ind, uint64_t *max, uint64_t *min)

Get the range of valid values for the power cap.

• rsmi status t rsmi dev power cap set (uint32 t dv ind, uint32 t sensor ind, uint64 t cap)

Set the power cap value.

rsmi_status_t rsmi_dev_power_profile_set (uint32_t dv_ind, uint32_t reserved, rsmi_power_profile_preset
 —masks_t profile)

Set the power profile.

rsmi_status_t rsmi_dev_memory_total_get (uint32_t dv_ind, rsmi_memory_type_t mem_type, uint64_← t *total)

Get the total amount of memory that exists.

 rsmi_status_t rsmi_dev_memory_usage_get (uint32_t dv_ind, rsmi_memory_type_t mem_type, uint64_← t *used)

Get the current memory usage.

• rsmi_status_t rsmi_dev_memory_busy_percent_get (uint32_t dv_ind, uint32_t *busy_percent)

Get percentage of time any device memory is being used.

rsmi_status_t rsmi_dev_memory_reserved_pages_get (uint32_t dv_ind, uint32_t *num_pages, rsmi_
retired_page_record_t *records)

Get information about reserved ("retired") memory pages.

rsmi_status_t rsmi_dev_fan_rpms_get (uint32_t dv_ind, uint32_t sensor_ind, int64_t *speed)

Get the fan speed in RPMs of the device with the specified device index and 0-based sensor index.

rsmi_status_t rsmi_dev_fan_speed_get (uint32_t dv_ind, uint32_t sensor_ind, int64_t *speed)

Get the fan speed for the specified device as a value relative to RSMI_MAX_FAN_SPEED.

• rsmi_status_t rsmi_dev_fan_speed_max_get (uint32_t dv_ind, uint32_t sensor_ind, uint64_t *max_speed)

Get the max. fan speed of the device with provided device index.

rsmi_status_t rsmi_dev_temp_metric_get (uint32_t dv_ind, uint32_t sensor_type, rsmi_temperature_metric
 — t metric, int64_t *temperature)

Get the temperature metric value for the specified metric, from the specified temperature sensor on the specified device.

• rsmi status t rsmi dev fan reset (uint32 t dv ind, uint32 t sensor ind)

Reset the fan to automatic driver control.

rsmi status t rsmi dev fan speed set (uint32 t dv ind, uint32 t sensor ind, uint64 t speed)

Set the fan speed for the specified device with the provided speed, in RPMs.

rsmi_status_t rsmi_dev_busy_percent_get (uint32_t dv_ind, uint32_t *busy_percent)

Get percentage of time device is busy doing any processing.

rsmi_status_t rsmi_dev_perf_level_get (uint32_t dv_ind, rsmi_dev_perf_level_t *perf)

Get the performance level of the device with provided device index.

• rsmi_status_t rsmi_dev_overdrive_level_get (uint32_t dv_ind, uint32_t *od)

Get the overdrive percent associated with the device with provided device index.

• rsmi_status_t rsmi_dev_gpu_clk_freq_get (uint32_t dv_ind, rsmi_clk_type_t clk_type, rsmi_frequencies_t *f)

Get the list of possible system clock speeds of device for a specified clock type.

• rsmi status t rsmi dev od volt info get (uint32 t dv ind, rsmi od volt freq data t *odv)

This function retrieves the voltage/frequency curve information.

rsmi_status_t rsmi_dev_od_volt_curve_regions_get (uint32_t dv_ind, uint32_t *num_regions, rsmi_freq_
volt_region_t *buffer)

This function will retrieve the current valid regions in the frequency/voltage space.

rsmi_status_t rsmi_dev_power_profile_presets_get (uint32_t dv_ind, uint32_t sensor_ind, rsmi_power_
 profile_status_t *status)

Get the list of available preset power profiles and an indication of which profile is currently active.

rsmi_status_t rsmi_dev_perf_level_set (int32_t dv_ind, rsmi_dev_perf_level_t perf_lvl)

Set the PowerPlay performance level associated with the device with provided device index with the provided value.

• rsmi_status_t rsmi_dev_overdrive_level_set (int32_t dv_ind, uint32_t od)

Set the overdrive percent associated with the device with provided device index with the provided value. See details for WARNING.

- rsmi_status_t rsmi_dev_gpu_clk_freq_set (uint32_t dv_ind, rsmi_clk_type_t clk_type, uint64_t freq_bitmask)

 Control the set of allowed frequencies that can be used for the specified clock.
- rsmi status t rsmi version get (rsmi version t *version)

Get the build version information for the currently running build of RSMI.

• rsmi_status_t rsmi_version_str_get (rsmi_sw_component_t component, char *ver_str, uint32_t len)

Get the driver version string for the current system.

• rsmi_status_t rsmi_dev_vbios_version_get (uint32_t dv_ind, char *vbios, uint32_t len)

Get the VBIOS identifer string.

- rsmi_status_t rsmi_dev_firmware_version_get (uint32_t dv_ind, rsmi_fw_block_t block, uint64_t *fw_version)

 Get the firmware versions for a device.
- rsmi_status_t rsmi_dev_ecc_count_get (uint32_t dv_ind, rsmi_gpu_block_t block, rsmi_error_count_t *ec)

 Retrieve the error counts for a GPU block.
- rsmi_status_t rsmi_dev_ecc_enabled_get (uint32_t dv_ind, uint64_t *enabled_blocks)

Retrieve the enabled ECC bit-mask.

rsmi_status_t rsmi_dev_ecc_status_get (uint32_t dv_ind, rsmi_gpu_block_t block, rsmi_ras_err_state_
 t *state)

Retrieve the ECC status for a GPU block.

rsmi_status_t rsmi_status_string (rsmi_status_t status, const char **status_string)

Get a description of a provided RSMI error status.

• rsmi_status_t rsmi_dev_counter_group_supported (uint32_t dv_ind, rsmi_event_group t group)

Tell if an event group is supported by a given device.

 rsmi_status_t rsmi_dev_counter_create (uint32_t dv_ind, rsmi_event_type_t type, rsmi_event_handle_← t *evnt handle)

Create a performance counter object.

• rsmi status t rsmi dev counter destroy (rsmi event handle t evnt handle)

Deallocate a performance counter object.

• rsmi_status_t rsmi_counter_control (rsmi_event_handle_t evt_handle, rsmi_counter_command_t cmd, void *cmd args)

Issue performance counter control commands.

• rsmi status t rsmi counter read (rsmi event handle t evt handle, rsmi counter value t *value)

Read the current value of a performance counter.

rsmi_status_t rsmi_counter_available_counters_get (uint32_t dv_ind, rsmi_event_group_t grp, uint32_
 t *available)

Get the number of currently available counters.

rsmi_status_t rsmi_compute_process_info_get (rsmi_process_info_t *procs, uint32_t *num_items)

Get process information about processes currently using GPU.

• rsmi_status_t rsmi_compute_process_info_by_pid_get (uint32_t pid, rsmi_process_info_t *proc)

Get process information about a specific process.

• rsmi_status_t rsmi_dev_xgmi_error_status (uint32_t dv_ind, rsmi_xgmi_status_t *status)

Retrieve the XGMI error status for a device.

rsmi_status_t rsmi_dev_xgmi_error_reset (uint32_t dv_ind)

Reset the XGMI error status for a device.

rsmi_status_t rsmi_dev_supported_func_iterator_open (uint32_t dv_ind, rsmi_func_id_iter_handle_
 t *handle)

Get a function name iterator of supported RSMI functions for a device.

rsmi_status_t rsmi_dev_supported_variant_iterator_open (rsmi_func_id_iter_handle_t obj_h, rsmi_func_id
 iter_handle_t *var_iter)

Get a variant iterator for a given handle.

rsmi_status_t rsmi_func_iter_next (rsmi_func_id_iter_handle_t handle)

Advance a function identifer iterator.

rsmi_status_t rsmi_dev_supported_func_iterator_close (rsmi_func_id_iter_handle_t *handle)

Close a variant iterator handle.

rsmi_status_t rsmi_func_iter_value_get (rsmi_func_id_iter_handle_t handle, rsmi_func_id_value_t *value)

Get the value associated with a function/variant iterator.

7.1.1 Detailed Description

The rocm_smi library api is new, and therefore subject to change either at the ABI or API level. Instead of marking every function prototype as "unstable", we are instead saying the API is unstable (i.e., changes are possible) while the major version remains 0. This means that if the API/ABI changes, we will not increment the major version to 1. Once the ABI stabilizes, we will increment the major version to 1, and thereafter increment it on all ABI breaks.

Main header file for the ROCm SMI library. All required function, structure, enum, etc. definitions should be defined in this file.

7.1.2 Macro Definition Documentation

7.1.2.1 #define RSMI_MAX_FAN_SPEED 255

Maximum possible value for fan speed. Should be used as the denominator when determining fan speed percentage.

Place-holder "variant" for functions that have don't have any variants, but do have monitors or sensors.

7.1.3 Typedef Documentation

7.1.3.1 typedef uintptr_t rsmi_event_handle_t

Handle to performance event counter.

Event counter types

7.1.4 Enumeration Type Documentation

7.1.4.1 enum rsmi status t

Error codes retured by rocm_smi_lib functions.

Enumerator

RSMI_STATUS_SUCCESS Operation was successful.

RSMI_STATUS_INVALID_ARGS Passed in arguments are not valid.

RSMI_STATUS_NOT_SUPPORTED The requested information or action is not available for the given input, on the given system

RSMI_STATUS_FILE_ERROR Problem accessing a file. This may because the operation is not supported by the Linux kernel version running on the executing machine

RSMI_STATUS_PERMISSION Permission denied/EACCESS file error. Many functions require root access to run

RSMI_STATUS_OUT_OF_RESOURCES Unable to acquire memory or other resource

RSMI_STATUS_INTERNAL_EXCEPTION An internal exception was caught.

RSMI_STATUS_INPUT_OUT_OF_BOUNDS The provided input is out of allowable or safe range

RSMI_STATUS_INIT_ERROR An error occurred when rsmi initializing internal data structures

RSMI_STATUS_NOT_YET_IMPLEMENTED The requested function has not yet been implemented in the current system for the current devices

RSMI_STATUS_NOT_FOUND An item was searched for but not found

RSMI_STATUS_INSUFFICIENT_SIZE Not enough resources were available for the operation

RSMI_STATUS_INTERRUPT An interrupt occurred during execution of function

RSMI_STATUS_UNEXPECTED_SIZE An unexpected amount of data was read

RSMI_STATUS_NO_DATA No data was found for a given input

RSMI_STATUS_UNKNOWN_ERROR An unknown error occurred.

7.1.4.2 enum rsmi_init_flags_t

Initialization flags.

Initialization flags may be OR'd together and passed to rsmi_init().

Enumerator

RSMI_INIT_FLAG_ALL_GPUS Attempt to add all GPUs found (including non-AMD) to the list of devices from which SMI information can be retrieved. By default, only AMD devices are ennumerated by RSMI.

7.1.4.3 enum rsmi_dev_perf_level_t

PowerPlay performance levels.

Enumerator

RSMI_DEV_PERF_LEVEL_AUTO Performance level is "auto".

RSMI_DEV_PERF_LEVEL_LOW Keep PowerPlay levels "low", regardless of workload

RSMI_DEV_PERF_LEVEL_HIGH Keep PowerPlay levels "high", regardless of workload

RSMI_DEV_PERF_LEVEL_MANUAL Only use values defined by manually setting the RSMI_CLK_TYP ← E_SYS speed

RSMI_DEV_PERF_LEVEL_STABLE_STD Stable power state with profiling clocks

RSMI_DEV_PERF_LEVEL_STABLE_PEAK Stable power state with peak clocks.

RSMI_DEV_PERF_LEVEL_STABLE_MIN_MCLK Stable power state with minimum memory clock

RSMI_DEV_PERF_LEVEL_STABLE_MIN_SCLK Stable power state with minimum system clock

RSMI_DEV_PERF_LEVEL_UNKNOWN Unknown performance level.

7.1.4.4 enum rsmi_sw_component_t

Available clock types.

Software components

Enumerator

RSMI_SW_COMP_DRIVER Driver.

7.1.4.5 enum rsmi_event_group_t

Enum denoting an event group. The value of the enum is the base value for all the event enums in the group.

Event Groups

Enumerator

RSMI_EVNT_GRP_XGMI Data Fabric (XGMI) related events.

```
7.1.4.6 enum rsmi_event_type_t
```

Event type enum. Events belonging to a particular event group rsmi_event_group_t should begin ennumerating at the rsmi_event_group_t value for that group.

Event types

Enumerator

```
RSMI_EVNT_XGMI_0_NOP_TX NOPs sent to neighbor 0.

RSMI_EVNT_XGMI_0_REQUEST_TX Outgoing requests to neighbor 0

RSMI_EVNT_XGMI_0_RESPONSE_TX Outgoing responses to neighbor 0

RSMI_EVNT_XGMI_0_BEATS_TX Data beats sent to neighbor 0

RSMI_EVNT_XGMI_1_NOP_TX NOPs sent to neighbor 1.

RSMI_EVNT_XGMI_1_REQUEST_TX neighbor 1 Outgoing requests to

RSMI_EVNT_XGMI_1_RESPONSE_TX Outgoing responses to neighbor 1
```

RSMI_EVNT_XGMI_1_BEATS_TX Data beats sent to neighbor 1

```
7.1.4.7 enum rsmi_counter_command_t
```

Event counter commands

Enumerator

```
RSMI_CNTR_CMD_START Start the counter. 
RSMI_CNTR_CMD_STOP Stop the counter.
```

```
7.1.4.8 enum rsmi clk type t
```

Clock types

Enumerator

```
RSMI_CLK_TYPE_SYS System clock.

RSMI_CLK_TYPE_DF Data Fabric clock (for ASICs running on a separate clock)

RSMI_CLK_TYPE_DCEF Display Controller Engine clock.

RSMI_CLK_TYPE_SOC SOC clock.

RSMI_CLK_TYPE_MEM Memory clock.
```

7.1.4.9 enum rsmi_temperature_metric_t

Temperature Metrics. This enum is used to identify various temperature metrics. Corresponding values will be in millidegress Celcius.

Enumerator

RSMI_TEMP_CURRENT Temperature current value.

RSMI_TEMP_MAX Temperature max value.

RSMI_TEMP_MIN Temperature min value.

RSMI_TEMP_MAX_HYST Temperature hysteresis value for max limit. (This is an absolute temperature, not a delta).

RSMI_TEMP_MIN_HYST Temperature hysteresis value for min limit. (This is an absolute temperature, not a delta).

RSMI_TEMP_CRITICAL Temperature critical max value, typically greater than corresponding temp_max values.

RSMI_TEMP_CRITICAL_HYST Temperature hysteresis value for critical limit. (This is an absolute temperature, not a delta).

RSMI_TEMP_EMERGENCY Temperature emergency max value, for chips supporting more than two upper temperature limits. Must be equal or greater than corresponding temp_crit values.

RSMI_TEMP_EMERGENCY_HYST Temperature hysteresis value for emergency limit. (This is an absolute temperature, not a delta).

RSMI_TEMP_CRIT_MIN Temperature critical min value, typically lower than corresponding temperature minimum values.

RSMI_TEMP_CRIT_MIN_HYST Temperature hysteresis value for critical minimum limit. (This is an absolute temperature, not a delta).

RSMI_TEMP_OFFSET Temperature offset which is added to the temperature reading by the chip.

RSMI_TEMP_LOWEST Historical minimum temperature.

RSMI_TEMP_HIGHEST Historical maximum temperature.

7.1.4.10 enum rsmi temperature type t

This ennumeration is used to indicate from which part of the device a temperature reading should be obtained.

Enumerator

```
RSMI_TEMP_TYPE_EDGE Edge GPU temperature.

RSMI_TEMP_TYPE_JUNCTION Junction/hotspot temperature

RSMI_TEMP_TYPE_MEMORY VRAM temperature.
```

7.1.4.11 enum rsmi_power_profile_preset_masks_t

Pre-set Profile Selections. These bitmasks can be AND'd with the rsmi_power_profile_status_t.available_profiles returned from rsmi_dev_power_profile_presets_get to determine which power profiles are supported by the system.

Enumerator

```
RSMI_PWR_PROF_PRST_CUSTOM_MASK Custom Power Profile.
```

RSMI_PWR_PROF_PRST_VIDEO_MASK Video Power Profile.

RSMI_PWR_PROF_PRST_POWER_SAVING_MASK Power Saving Profile.

RSMI_PWR_PROF_PRST_COMPUTE_MASK Compute Saving Profile.

RSMI_PWR_PROF_PRST_VR_MASK VR Power Profile. 3D Full Screen Power Profile

RSMI_PWR_PROF_PRST_BOOTUP_DEFAULT Default Boot Up Profile.

RSMI_PWR_PROF_PRST_LAST Invalid power profile.

7.1.4.12 enum rsmi_gpu_block_t

This enum is used to identify different GPU blocks.

Enumerator

RSMI_GPU_BLOCK_INVALID Used to indicate an invalid block

RSMI_GPU_BLOCK_UMC UMC block.

RSMI_GPU_BLOCK_SDMA SDMA block.

RSMI_GPU_BLOCK_GFX GFX block.

RSMI_GPU_BLOCK_MMHUB MMHUB block.

RSMI_GPU_BLOCK_ATHUB ATHUB block.

RSMI_GPU_BLOCK_PCIE_BIF PCIE_BIF block.

RSMI_GPU_BLOCK_HDP HDP block.

RSMI_GPU_BLOCK_XGMI_WAFL XGMI block.

RSMI_GPU_BLOCK_DF DF block.

RSMI_GPU_BLOCK_SMN SMN block.

RSMI_GPU_BLOCK_SEM SEM block.

RSMI_GPU_BLOCK_MP0 MP0 block.

RSMI_GPU_BLOCK_MP1 MP1 block.

RSMI_GPU_BLOCK_FUSE Fuse block.

RSMI_GPU_BLOCK_LAST for supported blocks The highest bit position

7.1.4.13 enum rsmi_ras_err_state_t

The current ECC state.

Enumerator

RSMI_RAS_ERR_STATE_NONE No current errors.

RSMI RAS ERR STATE DISABLED ECC is disabled.

RSMI_RAS_ERR_STATE_PARITY ECC errors present, but type unknown.

RSMI_RAS_ERR_STATE_SING_C Single correctable error.

RSMI_RAS_ERR_STATE_MULT_UC Multiple uncorrectable errors.

RSMI_RAS_ERR_STATE_POISON Firmware detected error and isolated page. Treat as uncorrectable.

RSMI_RAS_ERR_STATE_ENABLED ECC is enabled.

7.1.4.14 enum rsmi_memory_type_t

Types of memory.

Enumerator

RSMI_MEM_TYPE_VRAM VRAM memory.

RSMI_MEM_TYPE_VIS_VRAM VRAM memory that is visible.

RSMI_MEM_TYPE_GTT GTT memory.

7.1.4.15 enum rsmi_freq_ind_t

The values of this enum are used as frequency identifiers.

Enumerator

RSMI_FREQ_IND_MIN Index used for the minimum frequency value. **RSMI_FREQ_IND_MAX** Index used for the maximum frequency value. **RSMI_FREQ_IND_INVALID** An invalid frequency index.

7.1.4.16 enum rsmi_memory_page_status_t

Reserved Memory Page States.

Enumerator

RSMI_MEM_PAGE_STATUS_RESERVED Reserved. This gpu page is reserved and not available for use RSMI_MEM_PAGE_STATUS_PENDING Pending. This gpu page is marked as bad and will be marked reserved at the next window.

RSMI_MEM_PAGE_STATUS_UNRESERVABLE Unable to reserve this page.

Index

available_profiles	Memory Queries, 27
rsmi_power_profile_status_t, 63	rsmi_dev_memory_busy_percent_get, 28
	rsmi_dev_memory_reserved_pages_get, 28
Clock, Power and Performance Control, 39	rsmi_dev_memory_total_get, 27
rsmi_dev_gpu_clk_freq_set, 40	rsmi_dev_memory_usage_get, 27
rsmi_dev_overdrive_level_set, 39	memory_type
rsmi_dev_perf_level_set, 39	id, 58
Clock, Power and Performance Queries, 35	
rsmi_dev_busy_percent_get, 35	num_profiles
rsmi_dev_gpu_clk_freq_get, 36	rsmi_power_profile_status_t, 63
rsmi_dev_od_volt_curve_regions_get, 37	num_supported
rsmi_dev_od_volt_info_get, 36	rsmi_frequencies_t, 60
rsmi_dev_overdrive_level_get, 36	
rsmi_dev_perf_level_get, 35	PCIe Control, 22
rsmi_dev_power_profile_presets_get, 37	rsmi_dev_pci_bandwidth_set, 22
curr_mclk_range	PCIe Queries, 19
rsmi_od_volt_freq_data_t, 62	rsmi_dev_pci_bandwidth_get, 19
current	rsmi_dev_pci_id_get, 19
rsmi_frequencies_t, 60	rsmi_dev_pci_replay_counter_get, 20
rsmi_power_profile_status_t, 63	rsmi_dev_pci_throughput_get, 20
Funer Occasion 40	Performance Counter Functions, 45
Error Queries, 43	rsmi_counter_available_counters_get, 47
rsmi_dev_ecc_count_get, 43	rsmi_counter_control, 46
rsmi_dev_ecc_enabled_get, 43	rsmi_counter_read, 47
rsmi_dev_ecc_status_get, 44	rsmi_dev_counter_create, 45
rsmi_status_string, 44	rsmi_dev_counter_destroy, 46
frequency	rsmi_dev_counter_group_supported, 45
rsmi_frequencies_t, 60	Physical State Control, 33
701111_110quo110100_1, 00	rsmi_dev_fan_reset, 33
id, 57	rsmi_dev_fan_speed_set, 33
memory_type, 58	Physical State Queries, 30
Identifier Queries, 13	rsmi_dev_fan_rpms_get, 30
rsmi_dev_brand_get, 15	rsmi_dev_fan_speed_get, 30
rsmi_dev_drm_render_minor_get, 17	rsmi_dev_fan_speed_max_get, 31
rsmi_dev_id_get, 14	rsmi_dev_temp_metric_get, 31
rsmi_dev_name_get, 14	Power Control, 25
rsmi_dev_serial_number_get, 16	rsmi_dev_power_cap_set, 25
rsmi_dev_subsystem_id_get, 16	rsmi_dev_power_profile_set, 25
rsmi_dev_subsystem_name_get, 16	Power Queries, 23
rsmi_dev_subsystem_vendor_id_get, 17	rsmi_dev_power_ave_get, 23
rsmi_dev_unique_id_get, 18	rsmi_dev_power_cap_get, 23
rsmi_dev_vendor_id_get, 14	rsmi_dev_power_cap_range_get, 24
rsmi_dev_vendor_name_get, 15	
rsmi_num_monitor_devices, 13	RSMI_CLK_TYPE_DCEF
Initialization and Shutdown, 11	rocm_smi.h, 76
rsmi_init, 11	RSMI_CLK_TYPE_DF
rsmi_shut_down, 11	rocm_smi.h, 76
	RSMI_CLK_TYPE_MEM
lanes	rocm_smi.h, 76
rsmi pcie bandwidth t. 62	RSMI CLK TYPE SOC

rocm_smi.h, 76	rocm_smi.h, 78
RSMI_CLK_TYPE_SYS	RSMI_GPU_BLOCK_HDP
rocm_smi.h, 76	rocm_smi.h, 78
RSMI_CNTR_CMD_START	RSMI_GPU_BLOCK_INVALID
rocm_smi.h, 76	rocm_smi.h, 78
RSMI_CNTR_CMD_STOP	RSMI_GPU_BLOCK_LAST
rocm_smi.h, 76	rocm_smi.h, 78
RSMI_DEFAULT_VARIANT	RSMI_GPU_BLOCK_MMHUB
rocm_smi.h, 74	rocm_smi.h, 78
RSMI_DEV_PERF_LEVEL_AUTO	RSMI_GPU_BLOCK_MP0
rocm_smi.h, 75	rocm_smi.h, 78
RSMI_DEV_PERF_LEVEL_HIGH	RSMI_GPU_BLOCK_MP1
rocm_smi.h, 75	rocm_smi.h, 78
RSMI_DEV_PERF_LEVEL_LOW	RSMI_GPU_BLOCK_PCIE_BIF
rocm_smi.h, 75	rocm_smi.h, 78
RSMI_DEV_PERF_LEVEL_MANUAL	RSMI_GPU_BLOCK_SDMA
rocm_smi.h, 75	rocm_smi.h, 78
RSMI_DEV_PERF_LEVEL_STABLE_MIN_MCLK	RSMI GPU BLOCK SEM
rocm_smi.h, 75	rocm_smi.h, 78
RSMI_DEV_PERF_LEVEL_STABLE_MIN_SCLK	RSMI GPU BLOCK SMN
rocm_smi.h, 75	rocm smi.h, 78
RSMI_DEV_PERF_LEVEL_STABLE_PEAK	RSMI_GPU_BLOCK_UMC
rocm_smi.h, 75	rocm_smi.h, 78
RSMI DEV PERF LEVEL STABLE STD	RSMI GPU BLOCK XGMI WAFL
rocm_smi.h, 75	rocm_smi.h, 78
RSMI_DEV_PERF_LEVEL_UNKNOWN	RSMI_INIT_FLAG_ALL_GPUS
rocm_smi.h, 75	rocm_smi.h, 75
RSMI_EVNT_GRP_XGMI	RSMI_MAX_FAN_SPEED
rocm_smi.h, 75	rocm_smi.h, 74
RSMI_EVNT_XGMI_0_BEATS_TX	RSMI_MEM_PAGE_STATUS_PENDING
rocm_smi.h, 76	rocm_smi.h, 79
RSMI_EVNT_XGMI_0_NOP_TX	RSMI_MEM_PAGE_STATUS_RESERVED
rocm_smi.h, 76	rocm_smi.h, 79
RSMI_EVNT_XGMI_0_REQUEST_TX	RSMI_MEM_PAGE_STATUS_UNRESERVABLE
rocm_smi.h, 76	rocm_smi.h, 79
RSMI_EVNT_XGMI_0_RESPONSE_TX	RSMI_MEM_TYPE_GTT
rocm_smi.h, 76	rocm_smi.h, 78
RSMI_EVNT_XGMI_1_BEATS_TX	RSMI_MEM_TYPE_VIS_VRAM
rocm_smi.h, 76	rocm_smi.h, 78
RSMI_EVNT_XGMI_1_NOP_TX	RSMI_MEM_TYPE_VRAM
rocm_smi.h, 76	rocm_smi.h, 78
RSMI_EVNT_XGMI_1_REQUEST_TX	RSMI_PWR_PROF_PRST_BOOTUP_DEFAULT
rocm_smi.h, 76	rocm_smi.h, 77
RSMI_EVNT_XGMI_1_RESPONSE_TX	RSMI_PWR_PROF_PRST_COMPUTE_MASK
rocm_smi.h, 76	rocm_smi.h, 77
RSMI_FREQ_IND_INVALID	RSMI_PWR_PROF_PRST_CUSTOM_MASK
rocm_smi.h, 79	rocm_smi.h, 77
RSMI_FREQ_IND_MAX	RSMI_PWR_PROF_PRST_LAST
rocm_smi.h, 79	rocm_smi.h, 77
RSMI_FREQ_IND_MIN	RSMI_PWR_PROF_PRST_POWER_SAVING_MASK
rocm_smi.h, 79	rocm_smi.h, 77
RSMI_GPU_BLOCK_ATHUB	RSMI_PWR_PROF_PRST_VIDEO_MASK
rocm_smi.h, 78	rocm_smi.h, 77
RSMI_GPU_BLOCK_DF	RSMI_PWR_PROF_PRST_VR_MASK
rocm_smi.h, 78	rocm_smi.h, 77
RSMI_GPU_BLOCK_FUSE	RSMI_RAS_ERR_STATE_DISABLED
rocm_smi.h, 78	rocm_smi.h, 78
RSMI_GPU_BLOCK_GFX	RSMI_RAS_ERR_STATE_ENABLED
	<u></u>

rocm_smi.h, 78	rocm_smi.h, 77
RSMI_RAS_ERR_STATE_MULT_UC	RSMI_TEMP_HIGHEST
rocm smi.h, 78	rocm_smi.h, 77
RSMI_RAS_ERR_STATE_NONE	RSMI_TEMP_LOWEST
rocm_smi.h, 78	rocm_smi.h, 77
RSMI_RAS_ERR_STATE_PARITY	RSMI_TEMP_MAX_HYST
rocm_smi.h, 78	rocm_smi.h, 77
RSMI_RAS_ERR_STATE_POISON	RSMI_TEMP_MAX
rocm_smi.h, 78	rocm_smi.h, 77
RSMI_RAS_ERR_STATE_SING_C	RSMI_TEMP_MIN_HYST
rocm_smi.h, 78	rocm_smi.h, 77
RSMI_STATUS_FILE_ERROR	RSMI_TEMP_MIN
rocm_smi.h, 74	rocm_smi.h, 77
RSMI_STATUS_INIT_ERROR	RSMI_TEMP_OFFSET
rocm_smi.h, 74	rocm_smi.h, 77
RSMI_STATUS_INPUT_OUT_OF_BOUNDS	RSMI_TEMP_TYPE_EDGE
rocm_smi.h, 74	rocm_smi.h, 77
RSMI_STATUS_INSUFFICIENT_SIZE	RSMI_TEMP_TYPE_JUNCTION
rocm_smi.h, 74	rocm_smi.h, 77
RSMI_STATUS_INTERNAL_EXCEPTION	RSMI_TEMP_TYPE_MEMORY
rocm_smi.h, 74	rocm_smi.h, 77
RSMI_STATUS_INTERRUPT	rocm_smi.h, 67
rocm_smi.h, 74	RSMI_CLK_TYPE_DCEF, 76
RSMI_STATUS_INVALID_ARGS	RSMI_CLK_TYPE_DF, 76
rocm_smi.h, 74	RSMI_CLK_TYPE_MEM, 76
RSMI_STATUS_NO_DATA	RSMI_CLK_TYPE_SOC, 76
rocm_smi.h, 74	RSMI_CLK_TYPE_SYS, 76
RSMI_STATUS_NOT_FOUND	RSMI_CNTR_CMD_START, 76
rocm_smi.h, 74	RSMI_CNTR_CMD_STOP, 76
RSMI_STATUS_NOT_SUPPORTED	RSMI_DEFAULT_VARIANT, 74
rocm_smi.h, 74	RSMI_DEV_PERF_LEVEL_AUTO, 75
RSMI_STATUS_NOT_YET_IMPLEMENTED	RSMI_DEV_PERF_LEVEL_HIGH, 75
rocm_smi.h, 74	RSMI DEV PERF LEVEL LOW, 75
RSMI_STATUS_OUT_OF_RESOURCES	RSMI_DEV_PERF_LEVEL_MANUAL, 75
rocm_smi.h, 74	RSMI_DEV_PERF_LEVEL_STABLE_MIN_MCLK
RSMI_STATUS_PERMISSION	75
rocm_smi.h, 74	RSMI_DEV_PERF_LEVEL_STABLE_MIN_SCLK,
RSMI_STATUS_SUCCESS	75
rocm_smi.h, 74	RSMI_DEV_PERF_LEVEL_STABLE_PEAK, 75
RSMI_STATUS_UNEXPECTED_SIZE	RSMI_DEV_PERF_LEVEL_STABLE_STD, 75
rocm smi.h, 74	RSMI DEV PERF LEVEL UNKNOWN, 75
RSMI_STATUS_UNKNOWN_ERROR	RSMI EVNT GRP XGMI, 75
rocm_smi.h, 74	RSMI EVNT XGMI 0 BEATS TX, 76
RSMI SW COMP DRIVER	RSMI_EVNT_XGMI_0_NOP_TX, 76
rocm smi.h, 75	RSMI EVNT XGMI 0 REQUEST TX, 76
-	
RSMI_TEMP_CRIT_MIN_HYST	RSMI_EVNT_XGMI_0_RESPONSE_TX, 76
rocm_smi.h, 77	RSMI_EVNT_XGMI_1_BEATS_TX, 76
RSMI_TEMP_CRIT_MIN	RSMI_EVNT_XGMI_1_NOP_TX, 76
rocm_smi.h, 77	RSMI_EVNT_XGMI_1_REQUEST_TX, 76
RSMI_TEMP_CRITICAL_HYST	RSMI_EVNT_XGMI_1_RESPONSE_TX, 76
rocm_smi.h, 77	RSMI_FREQ_IND_INVALID, 79
RSMI_TEMP_CRITICAL	RSMI_FREQ_IND_MAX, 79
rocm_smi.h, 77	RSMI_FREQ_IND_MIN, 79
RSMI_TEMP_CURRENT	RSMI GPU BLOCK ATHUB, 78
rocm_smi.h, 77	RSMI_GPU_BLOCK_DF, 78
RSMI_TEMP_EMERGENCY_HYST	RSMI_GPU_BLOCK_FUSE, 78
rocm smi.h, 77	RSMI GPU BLOCK GFX, 78
-	
RSMI_TEMP_EMERGENCY	RSMI_GPU_BLOCK_HDP, 78

RSMI_GPU_BLOCK_INVALID, 78	RSMI_TEMP_EMERGENCY_HYST, 77
RSMI_GPU_BLOCK_LAST, 78	RSMI_TEMP_EMERGENCY, 77
RSMI_GPU_BLOCK_MMHUB, 78	RSMI_TEMP_HIGHEST, 77
RSMI_GPU_BLOCK_MP0, 78	RSMI_TEMP_LOWEST, 77
RSMI_GPU_BLOCK_MP1, 78	RSMI TEMP MAX HYST, 77
RSMI_GPU_BLOCK_PCIE_BIF, 78	RSMI TEMP MAX, 77
RSMI_GPU_BLOCK_SDMA, 78	RSMI_TEMP_MIN_HYST, 77
RSMI_GPU_BLOCK_SEM, 78	RSMI TEMP MIN, 77
RSMI_GPU_BLOCK_SMN, 78	RSMI_TEMP_OFFSET, 77
RSMI GPU BLOCK UMC, 78	RSMI_TEMP_TYPE_EDGE, 77
RSMI_GPU_BLOCK_XGMI_WAFL, 78	RSMI_TEMP_TYPE_JUNCTION, 77
RSMI_INIT_FLAG_ALL_GPUS, 75	RSMI_TEMP_TYPE_MEMORY, 77
RSMI MAX FAN SPEED, 74	rsmi_clk_type_t, 76
RSMI_MEM_PAGE_STATUS_PENDING, 79	rsmi_counter_command_t, 76
RSMI_MEM_PAGE_STATUS_RESERVED, 79	rsmi_dev_perf_level_t, 75
RSMI_MEM_PAGE_STATUS_UNRESERVABLE,	rsmi_event_group_t, 75
79	rsmi_event_handle_t, 74
RSMI_MEM_TYPE_GTT, 78	rsmi_event_type_t, 75
RSMI_MEM_TYPE_VIS_VRAM, 78	rsmi_freq_ind_t, 78
RSMI_MEM_TYPE_VRAM, 78	rsmi_gpu_block_t, 77
RSMI_PWR_PROF_PRST_BOOTUP_DEFAULT,	rsmi_init_flags_t, 74
77	rsmi_memory_page_status_t, 79
RSMI_PWR_PROF_PRST_COMPUTE_MASK, 77	rsmi_memory_type_t, 78
RSMI_PWR_PROF_PRST_CUSTOM_MASK, 77	rsmi_power_profile_preset_masks_t, 77
RSMI_PWR_PROF_PRST_LAST, 77	rsmi_ras_err_state_t, 78
RSMI_PWR_PROF_PRST_POWER_SAVING_←	rsmi_status_t, 74
MASK, 77	rsmi_sw_component_t, 75
RSMI_PWR_PROF_PRST_VIDEO_MASK, 77	rsmi_temperature_metric_t, 76
RSMI_PWR_PROF_PRST_VR_MASK, 77	rsmi_temperature_type_t, 77
RSMI_RAS_ERR_STATE_DISABLED, 78	rsmi_clk_type_t
RSMI_RAS_ERR_STATE_ENABLED, 78	rocm_smi.h, 76
RSMI_RAS_ERR_STATE_MULT_UC, 78	rsmi_compute_process_info_by_pid_get
RSMI_RAS_ERR_STATE_NONE, 78	System Information Functions, 48
RSMI_RAS_ERR_STATE_PARITY, 78	rsmi_compute_process_info_get
RSMI_RAS_ERR_STATE_POISON, 78	System Information Functions, 48
RSMI_RAS_ERR_STATE_SING_C, 78	rsmi_counter_available_counters_get
RSMI_STATUS_FILE_ERROR, 74	Performance Counter Functions, 47
RSMI STATUS INIT ERROR, 74	rsmi_counter_command_t
RSMI_STATUS_INPUT_OUT_OF_BOUNDS, 74	rocm_smi.h, 76
RSMI_STATUS_INSUFFICIENT_SIZE, 74	rsmi counter control
RSMI STATUS INTERNAL EXCEPTION, 74	Performance Counter Functions, 46
RSMI_STATUS_INTERRUPT, 74	rsmi_counter_read
RSMI_STATUS_INVALID_ARGS, 74	Performance Counter Functions, 47
RSMI_STATUS_NO_DATA, 74	rsmi counter value t, 58
RSMI STATUS NOT FOUND, 74	rsmi_dev_brand_get
RSMI STATUS NOT SUPPORTED, 74	Identifier Queries, 15
RSMI_STATUS_NOT_YET_IMPLEMENTED, 74	rsmi_dev_busy_percent_get
RSMI_STATUS_OUT_OF_RESOURCES, 74	Clock, Power and Performance Queries, 35
RSMI STATUS PERMISSION, 74	rsmi_dev_counter_create
RSMI_STATUS_SUCCESS, 74	Performance Counter Functions, 45
RSMI_STATUS_UNEXPECTED_SIZE, 74	rsmi_dev_counter_destroy
RSMI_STATUS_UNKNOWN_ERROR, 74	Performance Counter Functions, 46
RSMI_SW_COMP_DRIVER, 75	rsmi_dev_counter_group_supported
RSMI TEMP CRIT MIN HYST, 77	Performance Counter Functions, 45
RSMI_TEMP_CRIT_MIN, 77	rsmi_dev_drm_render_minor_get
RSMI_TEMP_CRITICAL_HYST, 77	Identifier Queries, 17
RSMI TEMP CRITICAL, 77	rsmi_dev_ecc_count_get
RSMI_TEMP_CURRENT, 77	Error Queries, 43

rami day aga anablad gat	rami day nawar aan gat
rsmi_dev_ecc_enabled_get Error Queries, 43	rsmi_dev_power_cap_get Power Queries, 23
rsmi_dev_ecc_status_get Error Queries, 44	rsmi_dev_power_cap_range_get Power Queries, 24
rsmi_dev_fan_reset	rsmi_dev_power_cap_set
Physical State Control, 33	Power Control, 25
•	
rsmi_dev_fan_rpms_get	rsmi_dev_power_profile_presets_get
Physical State Queries, 30	Clock, Power and Performance Queries, 37
rsmi_dev_fan_speed_get	rsmi_dev_power_profile_set
Physical State Queries, 30	Power Control, 25
rsmi_dev_fan_speed_max_get	rsmi_dev_serial_number_get
Physical State Queries, 31	Identifier Queries, 16
rsmi_dev_fan_speed_set	rsmi_dev_subsystem_id_get
Physical State Control, 33	Identifier Queries, 16
rsmi_dev_firmware_version_get	rsmi_dev_subsystem_name_get
Version Queries, 42	Identifier Queries, 16
rsmi_dev_gpu_clk_freq_get	rsmi_dev_subsystem_vendor_id_get
Clock, Power and Performance Queries, 36	Identifier Queries, 17
rsmi_dev_gpu_clk_freq_set	rsmi_dev_supported_func_iterator_close
Clock, Power and Performance Control, 40	Supported Functions, 55
rsmi_dev_id_get	rsmi_dev_supported_func_iterator_open
Identifier Queries, 14	Supported Functions, 53
rsmi_dev_memory_busy_percent_get	rsmi_dev_supported_variant_iterator_open
Memory Queries, 28	Supported Functions, 54
rsmi_dev_memory_reserved_pages_get	rsmi_dev_temp_metric_get
Memory Queries, 28	Physical State Queries, 31
rsmi_dev_memory_total_get	rsmi_dev_unique_id_get
Memory Queries, 27	Identifier Queries, 18
rsmi_dev_memory_usage_get	rsmi_dev_vbios_version_get
Memory Queries, 27	Version Queries, 42
rsmi_dev_name_get	rsmi_dev_vendor_id_get
Identifier Queries, 14	Identifier Queries, 14
rsmi_dev_od_volt_curve_regions_get	rsmi_dev_vendor_name_get
Clock, Power and Performance Queries, 37	Identifier Queries, 15
rsmi dev od volt info get	rsmi dev xgmi error reset
Clock, Power and Performance Queries, 36	XGMI Functions, 51
rsmi dev overdrive level get	rsmi_dev_xgmi_error_status
Clock, Power and Performance Queries, 36	XGMI Functions, 51
rsmi_dev_overdrive_level_set	rsmi_error_count_t, 58
Clock, Power and Performance Control, 39	
	rsmi_event_group_t
rsmi_dev_pci_bandwidth_get	rocm_smi.h, 75
PCIe Queries, 19	rsmi_event_handle_t
rsmi_dev_pci_bandwidth_set	rocm_smi.h, 74
PCIe Control, 22	rsmi_event_type_t
rsmi_dev_pci_id_get	rocm_smi.h, 75
PCIe Queries, 19	rsmi_freq_ind_t
rsmi_dev_pci_replay_counter_get	rocm_smi.h, 78
PCIe Queries, 20	rsmi_freq_volt_region_t, 59
rsmi_dev_pci_throughput_get	rsmi_frequencies_t, 59
PCIe Queries, 20	current, 60
rsmi_dev_perf_level_get	frequency, 60
Clock, Power and Performance Queries, 35	num_supported, 60
rsmi_dev_perf_level_set	rsmi_func_iter_next
Clock, Power and Performance Control, 39	Supported Functions, 54
rsmi_dev_perf_level_t	rsmi_func_iter_value_get
rocm_smi.h, 75	Supported Functions, 55
rsmi_dev_power_ave_get	rsmi_gpu_block_t
Power Queries, 23	rocm_smi.h, 77

rsmi_init	vc_points
Initialization and Shutdown, 11	rsmi_od_volt_curve_t, 61
rsmi_init_flags_t	Version Queries, 41
rocm_smi.h, 74	rsmi_dev_firmware_version_get, 42
rsmi_memory_page_status_t	rsmi_dev_vbios_version_get, 42
rocm_smi.h, 79	rsmi_version_get, 41
rsmi_memory_type_t	rsmi_version_str_get, 41
rocm_smi.h, 78	XGMI Functions, 51
rsmi_num_monitor_devices	rsmi_dev_xgmi_error_reset, 51
Identifier Queries, 13	rsmi_dev_xgmi_error_status, 51
rsmi_od_vddc_point_t, 60	Tomi_dov_xgmi_onor_otatao, or
rsmi_od_volt_curve_t, 61	
vc_points, 61	
rsmi_od_volt_freq_data_t, 61	
curr_mclk_range, 62 rsmi_pcie_bandwidth_t, 62	
lanes, 62	
transfer_rate, 62	
rsmi_power_profile_preset_masks_t	
rocm smi.h, 77	
rsmi_power_profile_status_t, 63	
available_profiles, 63	
current, 63	
num_profiles, 63	
rsmi_process_info_t, 63	
rsmi_range_t, 64	
rsmi_ras_err_state_t	
rocm_smi.h, 78	
rsmi_retired_page_record_t, 64	
rsmi_shut_down	
Initialization and Shutdown, 11	
rsmi status string	
Error Queries, 44	
rsmi status t	
rocm_smi.h, 74	
rsmi_sw_component_t	
rocm_smi.h, 75	
rsmi_temperature_metric_t	
rocm_smi.h, 76	
rsmi_temperature_type_t	
rocm_smi.h, 77	
rsmi_version_get	
Version Queries, 41	
rsmi_version_str_get	
Version Queries, 41	
rsmi_version_t, 65	
Supported Functions, 52	
rsmi_dev_supported_func_iterator_close, 55	
rsmi_dev_supported_func_iterator_open, 53	
rsmi_dev_supported_variant_iterator_open, 54	
rsmi_func_iter_next, 54	
rsmi_func_iter_value_get, 55	
System Information Functions, 48	
rsmi_compute_process_info_by_pid_get, 48	
rsmi_compute_process_info_get, 48	
transfer_rate	
rsmi_pcie_bandwidth_t, 62	