ArcFace: Additive Angular Margin Loss for Deep Face Recognition

Jiankang Deng, Jia Guo, Niannan Xue, Stefanos Zafeiriou

Imperial College London, InsightFace

February 9, 2019

Пайплайн системы распознавания лиц

• Softmax:

$$Softmax(x_i) = \frac{\exp(x_i)}{\sum_i \exp(x_i)}$$

• Cross Entropy:

$$CE = -\sum_{i}^{C} t_{i} \log (f_{i}(s))$$

$$L = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{\exp(x_i)}{\sum_{j} \exp(x_j)}$$

$$L = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{e^{W_{y_i}^T x_i + by_i}}{\sum_{j=1}^{n} e^{W_{j}^T x_i + b_j}}$$

$$L = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{e^{W_{y_i}^T x_i}}{\sum_{j=1}^{n} e^{W_j^T x_j}}$$

$$L = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{e^{\left\|W_{j}\right\| \|x_{i}\| \cos \theta_{j}}}{\sum_{i=1}^{n} e^{\left\|W_{j}\right\| \|x_{i}\| \cos \theta_{j}}}$$

$$L = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{e^{s \cos \theta_{y_i}}}{e^{s \cos \theta_{y_i}} + \sum_{j=1, j \neq y_i}^{n} e^{s \cos \theta_j}}$$

ArcFace Loss

$$L = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{e^{s(\cos(\theta y_i + m))}}{e^{s(\cos(\theta y_i + m))} + \sum_{j=1, j \neq y_i}^{n} e^{s\cos\theta_j}}$$

ArcFace

- Обнулить смещения: $b_i = 0$
- ullet Преобразовать произведение: $W_j^T x_i = \|W_j\| \, \|x_i\| \cos heta_j$
- ullet Нормализовать W_j : $\|W_j\|=1$
- ullet Нормализовать x_i и отмасштабировать s: $\|x_i\|=s$

Softmax vs ArcFace

Softmax embeddings

ArcFace embeddings

Распределение значений углов между сэмплами

ArcFace, SphereFace и CosFace вместе

$$L = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{e^{s\left(\cos\left(m_1\theta_{y_i} + m_2\right) - m_3\right)}}{e^{s\left(\cos\left(m_1\theta_{y_i} + m_2\right) - m_3\right)} + \sum_{j=1, j \neq y_i}^{n} e^{s\cos\theta_j}}$$

- SphereFace: $\cos(m_1\theta_{v_i})$
- ArcFace: $\cos(\theta_{v_i} + m_2)$
- CosFace: $\cos(\theta_{y_i}) m_3$

Бенчмарки [MS1MV2 Dataset, ResNet-100]

Method	Images	LWF	YTF
DeepID	0.2M	99.47	93.20
Deep Face	4.4M	97.35	91.4
VGG Face	2.6M	98.95	97.30
FaceNet	200M	99.63	95.10
Center Loss	0.7M	99.28	94.9
Range Loss	5M	99.52	93.70
SphereFace	0.5M	99.42	95.00
CosFace	5M	99.73	97.60
ArcFace	5.8M	99.83	98.02

Плюсы и минусы

Pros

- State-of-the-art качество
- Простота имплементации
- Эффективность

Cons

• Не сходится в обучении с нуля модели с небольшой размерностью эмбеддинга (128d)

AirFace [Li-ArcFace Loss]

$$L = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{e^{s\left(\pi - 2\left(\theta_{y_i} + m\right)\right)/\pi}}{e^{s\left(\pi - 2\left(\theta_{y_i} + m\right)\right)/\pi} + \sum_{i=1, i \neq v:}^{n} e^{s\left(\pi - 2\theta_{j}\right)/\pi}}$$

• Монотонно уменьшается при угле от 0 до $\pi+m$, что положительно влияет на сходимость, особенно при малых размерах эмбеддинга

Ссылки

- ArcFace: https://arxiv.org/abs/1801.07698
- Deep Face Recognition: A Survey: https://arxiv.org/abs/1804.06655
- AirFace: https://arxiv.org/abs/1907.12256