Chemie 10 (Nehring)

08.06.2020

In der letzten Stunde wurde das Ester-Gleichgewicht mittels des Massenwirkungsgesetzes betrachtet. Gesucht waren die Stoffmengen aller beteiligten Stoffe im Gleichgewicht. Dies ist jedoch nur ein Fall, den man mit dem MWG lösen kann – weitere sollen in der heutigen Stunde betrachtet werden.

1. Gleichgewichtskonstante gesucht

a) mit Lösungsweg

Die Reaktion 2 A + B \rightleftharpoons 2 C befindet sich im Gleichgewicht. Wie groß ist die Gleichgewichtskonstante dieser Reaktion, wenn die Gleichgewichtskonzentrationen für A = 0,5 mol/l, B = 4 mol/l und für C = 2 mol/l betragen?

	·
Schritt 1: Aufstellen der Reaktionsgleichung	2A + B ⇌ 2C
Schritt 2: Angabe der Gleichgewichtskonzentrationen aus der Aufgabenstellung	0,5 mol/l 4 mol/l 2 mol/l
Schritt 3: Aufstellen des Massenwirkungsgesetzes (vgl. Formelsammlung!)	$K = \frac{c(C)^2}{c(A)^2 \cdot c(B)}$
Schritt 4: Einsetzen der gegebenen Gleichgewichtskonzentrationen und Berechnen der Gleichgewichtskonstante K, dabei die Einheiten beachten!	$K = \frac{(2 mol/l)^2}{(0.5 mol/l)^2 \cdot (4 mol/l)}$ $K = 4 l/mol$
Schritt 5: Antwortsatz	Die Gleichgewichtskonstante K beträgt 4 Liter pro Mol.

- b) Die Reaktion 2 A \rightleftharpoons B befindet sich im Gleichgewicht. Wie groß ist die Gleichgewichtskonstante dieser Reaktion, wenn die Gleichgewichtskonzentrationen für A = 0,5 mol/l und für B = 1 mol/l beträgt?
- c) Bei einer Reaktion $A + B \rightleftharpoons C + D$ befindet sich im Gleichgewicht. Die Reaktionsteilnehmer liegen in folgender Konzentration vor: A = 0.25 mol/l, B = 0.1 mol/l, C = 0.75 mol/l und D = 0.3 mol/l. Welchen Wert hat damit die Gleichgewichtskonstante dieser Reaktion? Liegt das Gleichgewicht eher auf Seiten der Edukte oder der Produkte?
- d)
 Kohlenstoffmonoxid und Wasser reagieren in einer exothermen Reaktion zu Kohlenstoffdioxid und Wasserstoff. Bei 773 K beträgt die Ausbeute im Gleichgewicht für Kohlenstoffonoxid 0,58 mol, für Wasser 0,2 mol, für Kohlenstoffdioxid 0,41 mol und für Wasserstoff 1,41 mol. Berechne die Gleichgewichtskonstante!
- Bei der Veresterung von 5 mol Essigsäure und 1 mol Ethanol sind im Gleichgewicht 18,9 % der Säure umgesetzt. Berechne die Gleichgewichtskonstante!

2. Eine Gleichgewichtskonzentration gesucht

a) mit Lösung

Die Reaktion 2 A + 2 B \rightleftharpoons 2 C + D befindet sich im Gleichgewicht. Die Gleichgewichtskonstante ist K = 4 l/mol. Die Reaktionsteilnehmer liegen in folgenden Konzentrationen vor: A = 0,5 mol/l, B = 2 mol/l und D = 1 mol/l. Wie groß ist die Gleichgewichtskonzentration von C?

Schritt 1: Aufstellen der Reaktionsgleichung	2A	+	2B	=	2C	+	D
Schritt 2: Angabe der Gleichgewichtskonzentrationen aus der Aufgabenstellung	0,5 mol/l		2 mol/l		gesuc	ht	1 mol/l
Schritt 3: Aufstellen des Massenwirkungsgesetzes (vgl. Formelsammlung!)	$K = \frac{c(c)}{c(c)}$	$\frac{(C)^2 \cdot c}{(A)^2 \cdot c}$	$\frac{(D)}{(B)^2}$				
Schritt 4: Einsetzen der gegebenen Gleichgewichtskonzentrationen sowie der Gleichgewichtskonstanten, Umformen nach der Unbekannten Konzentration und Berechnen der unbekannten Gleichgewichtskonzentration, dabei sollte die Einzeit mol/l erhalten werden!	$41/mol = \frac{c(C)^{2} \cdot (1 mol/l)}{(0.5 mol/l)^{2} \cdot (2 mol/l)^{2}}$ $c(C) = \sqrt{\frac{41/mol \cdot (0.5 mol/l)^{2} \cdot (2 mol/l)^{2}}{1 mol/l}}$ $c(C) = 2 mol/l$						
Schritt 5: Antwortsatz	Die Gleic	hgew	richtskon	zentr	ation vo	n C be	eträgt 2 mol/l.

b)

Die Reaktion $A + B \rightleftharpoons 2$ C hat eine Gleichgewichtskonstante von K = 5. Im Reaktionsgleichgewicht ist die Konzentration von A = 1 mol/l und von B = 0,2 mol/l. Wie groß ist die Gleichgewichtskonzentration von C in mol/l?

- c) Die Reaktion $2A + B \rightleftharpoons 3C$ befindet sich im Gleichgewicht. Die dabei beobachteten Gleichgewichtskonzentrationen sind für A=1 mol/l, für B=0,2 mol/l und die Gleichgewichtskonstante K=40. Wie groß muss daher die Konzentration von C sein?
- d) Die chemische Reaktion $A + B \rightleftharpoons C + 2D$ befindet sich im Gleichgewicht. Die Reaktionsteilnehmer liegen in folgenden Konzentrationen vor: B=0,1 mol/l, C=4,5 mol/l, D=0,3 mol/l. Welche Konzentration hat A, wenn die Gleichgewichtskonstante K=9 mol/l ist?