Cognome	
Nome	
Matricola	

В

Domanda 1

- 1. Descrivere i passi dell'algoritmo di *Christofides* per il problema del Commesso Viaggiatore.
- 2. Che tipo di bound è possibile determinare con tale algoritmo?
- 3. Dimostrare che l'algoritmo di *Christofides* è 3/2-approssimato per il problema del Commesso Viaggiatore.

Esercizio 1

1. Dato il grafo in figura G, a partire dal matching corrente $M = \{24, 56, 710, 89\}$, determinare il valore del massimo matching e del minimo trasversale spiegando nel dettaglio i passi dell'algoritmo utilizzati.

- 2. A partire dalla soluzione trovata al punto 1. determinare il valore del massimo insieme stabile su G.
- 3. Sul grafo in esame, qual è il valore del minimo edge cover? Come può essere calcolato?

Esercizio 2

Dato un grafo G = (V, E) definiamo l'insieme universo U = V e la famiglia di insiemi ammissibili $\Im = \{X \subseteq V : \text{ ogni vertice in } V - X \text{ è adiacente ad almeno un vertice in } X\}$.

Dire se la coppia (U, \Im) è subclusiva e se soddisfa la proprietà di scambio.

Come si comporta l'algoritmo Greedy sulla coppia in esame?

1

Prova Parziale di	Ottimizzazione	Combinatoria
04 Maggio 2010		

Cognome	
Nome	
Matricola	

Esercizio 3

La tabella che segue contiene una lista di oggetti che volete inserire in uno zaino di capacità pari a 120Kg. Ogni oggetto ha un peso a_i e un profitto (atteso) p_i . Dopo aver formulato il problema di scegliere gli oggetti da inserire nello zaino massimizzando il profitto finale e rispettando il vincolo di capacità, determinare un upper bound ed un lower bound per il profitto massimo ottenibile.

Oggetto	1	2	3	4	5	6	7	8
Peso	11	9	20	11	29	23	39	34
Profitto	86	35	162	65	359	199	249	229

2 B