Os Métodos Big M e Duas Fases

Professores André L.M. Marcato, Ivo C.da Silva Jr, João A.Passos Filho

Universidade Federal de Juiz de Fora Programa de Pós-Graduação em Engenharia Elétrica

 $and re.marcato @ufjf.edu.br,\ ivo.junior @ufjf.edu.br,\ joao.passos @ufjf.edu.br$

Primeiro Semestre de 2018

Agenda da Apresentação

- 1 Método do Big-M
 - Restrições de Igualdade / Maior ou Igual
 - Exemplo
- Matlab
 - Resolução do Exemplo
- Métodos das Duas Fases
 - Resolução do Exemplo

Restrições de Igualdade / Maior ou Igual

- Soluções Básicas Iniciais devem ser factíveis.
- Soluções Factíveis são diretas quando todas as restrições do modelo são da forma <.
- Restrições do modelo na forma ≥ ou = não levam a obenção direta de soluções iniciais factíveis.

Encontre uma SBF Inicial para:

max
$$Z=3x_1+2,5x_2+1,2x_3$$

Sujeito à:
 $x_1-2x_2+4x_3 \le 40$
 $x_1+x_2+2x_3 \ge 60$
 $2x_1+3x_2+x_3=15$

 $x_1, x_2, x_3 \ge 0$

Encontre uma SBF Inicial para:

max
$$Z=3x_1+2,5x_2+1,2x_3$$

Sujeito à:
 $x_1-2x_2+4x_3 \le 40$
 $x_1+x_2+2x_3 \ge 60$
 $2x_1+3x_2+x_3=15$
 $x_1,x_2,x_3 \ge 0$

Forma Padrão:

max
$$Z=3x_1+2,5x_2+1,2x_3$$

Sujeito à:
 $x_1-2x_2+4x_3+x_4=40$
 $x_1+x_2+2x_3-x_5=60$
 $2x_1+3x_2+x_3=15$
 $x_1,x_2,x_3,x_4,x_5 \ge 0$

Encontre uma SBF Inicial para:

max
$$Z=3x_1+2,5x_2+1,2x_3$$

Sujeito à:
 $x_1-2x_2+4x_3 \le 40$
 $x_1+x_2+2x_3 \ge 60$
 $2x_1+3x_2+x_3=15$

 $x_1, x_2, x_3 > 0$

Forma Padrão:

max
$$Z=3x_1+2,5x_2+1,2x_3$$

Sujeito à:
 $x_1-2x_2+4x_3+x_4=40$
 $x_1+x_2+2x_3-x_5=60$
 $2x_1+3x_2+x_3=15$
 $x_1,x_2,x_3,x_4,x_5>0$

$$VNB \begin{cases} x_1 = 0 \\ x_2 = 0 \\ x_3 = 0 \end{cases} VB \begin{cases} x_4 = 40 \\ x_5 = -60 \end{cases}$$

$$0+0+0=15$$

Encontre uma SBF Inicial para:

max
$$Z=3x_1+2,5x_2+1,2x_3$$

Sujeito à:
 $x_1-2x_2+4x_3 \le 40$
 $x_1+x_2+2x_3 \ge 60$
 $2x_1+3x_2+x_3=15$

 $x_1, x_2, x_3 > 0$

Forma Padrão:

max
$$Z=3x_1+2.5x_2+1.2x_3$$

Sujeito à:
 $x_1-2x_2+4x_3+x_4=40$
 $x_1+x_2+2x_3-x_5=60$
 $2x_1+3x_2+x_3=15$
 $x_1.x_2.x_3.x_4.x_5>0$

$$VNB \begin{cases} x_1 = 0 \\ x_2 = 0 \\ x_3 = 0 \end{cases} VB \begin{cases} x_4 = 40 \\ x_5 = -60 \end{cases}$$

$$0 + 0 + 0 = 15$$

Como obter soluções iniciais em modelos com restrições na forma ≥ ou = ?

Método das Penalidades (BIG-M)

Método das Duas Fases

Métodos das Duas Fases

Como obter soluções iniciais em modelos com restrições na forma ≥ ou = ?

Método das Penalidades (BIG-M)

Método das Duas Fases

Este método consiste em acrescentar na FOB do problema original (forma padrão) variáveis artificiais - a - com penalidades - M:

Este método consiste em acrescentar na FOB do problema original (**forma padrão**) variáveis artificiais - **a** - com penalidades - **M**:

• Negativos Muito Grandes - Problemas de Maximização

$$\max Z = 2x_1 + 3x_2 \boxed{-Ma}$$

Este método consiste em acrescentar na FOB do problema original (forma padrão) variáveis artificiais - a - com penalidades - M:

• Negativos Muito Grandes - Problemas de Maximização

$$\max Z = 2x_1 + 3x_2 \boxed{-Ma}$$

Positivos muito grandes - Problemas de Minimização

$$\max Z = 2x_1 + 3x_2 \boxed{+ \textit{Ma}}$$

Este método consiste em acrescentar na FOB do problema original (forma padrão) variáveis artificiais - a - com penalidades - M:

Negativos Muito Grandes - Problemas de Maximização

$$\max Z = 2x_1 + 3x_2 \boxed{-Ma}$$

Positivos muito grandes - Problemas de Minimização

$$\max Z = 2x_1 + 3x_2 \boxed{+ \textit{Ma}}$$

Na solução final os valores das variáveis artificiais devem ser nulos (VNB).

Resolver o seguinte PPL

max
$$2x_1 + 3x_2$$

Sujeito a
 $-2x_1 + 3x_2 \le 6$
 $x_1 + 2x_2 \ge 8$
 $x_1 + x_2 = 6$
 $x_1, x_2 \ge 0$

Resolver o seguinte PPL

max
$$2x_1 + 3x_2$$

Sujeito a
 $-2x_1 + 3x_2 \le 6$
 $x_1 + 2x_2 \ge 8$
 $x_1 + x_2 = 6$
 $x_1, x_2 \ge 0$

Forma Padrão

max
$$2x_1 + 3x_2$$

Sujeito a
 $-2x_1 + 3x_2 + x_3 = 6$
 $x_1 + 2x_2 - x_4 = 8$
 $x_1 + x_2 = 6$
 $x_1, x_2, x_3, x_4 \ge 0$

Resolver o seguinte PPL

$$\max 2x_1 + 3x_2$$

Sujeito a
 $-2x_1 + 3x_2 \le 6$
 $x_1 + 2x_2 \ge 8$
 $x_1 + x_2 = 6$
 $x_1, x_2 \ge 0$

Forma Padrão

max
$$2x_1 + 3x_2$$

Sujeito a
 $-2x_1 + 3x_2 + x_3 = 6$
 $x_1 + 2x_2 - x_4 = 8$
 $x_1 + x_2 = 6$
 $x_1, x_2, x_3, x_4 > 0$

$$VNB \begin{cases} x_1 = 0 \\ x_2 = 0 \end{cases} VB \begin{cases} x_3 = 6 \\ x_4 = -8 \end{cases}$$

$$Z = 0$$

Resolver o seguinte PPL

max
$$2x_1 + 3x_2$$

Sujeito a
 $-2x_1 + 3x_2 \le 6$
 $x_1 + 2x_2 \ge 8$
 $x_1 + x_2 = 6$
 $x_1, x_2 \ge 0$

$$VNB \begin{cases} x_1 = 0 \\ x_2 = 0 \end{cases} VB \begin{cases} x_3 = 6 \\ x_4 = -8 \end{cases}$$

$$Z = 0$$

Forma Padrão

max
$$2x_1 + 3x_2$$

Sujeito a
 $-2x_1 + 3x_2 + x_3 = 6$
 $x_1 + 2x_2 - x_4 = 8$
 $x_1 + x_2 = 6$
 $x_1, x_2, x_3, x_4 > 0$

Problemas:

- $x_4 = 8$, deveria ser maior que zero.
- $x_1 + x_2 = 6$, igualdade não satisfeita
- Não possui solução inicial trivial.

Resolver o seguinte PPL

 $\max 2x_1 + 3x_2$ Sujeito a $-2x_1 + 3x_2 < 6$ $x_1 + 2x_2 > 8$ $x_1 + x_2 = 6$ $x_1, x_2 > 0$

Forma Padrão

max
$$2x_1 + 3x_2$$

Sujeito a
 $-2x_1 + 3x_2 + x_3 = 6$
 $x_1 + 2x_2 - x_4 = 8$
 $x_1 + x_2 = 6$
 $x_1, x_2, x_3, x_4 > 0$

Inserção das Variáveis Artificiais e das Penalidades

$$\max Z - 2x_1 - 3x_2$$
 $+Mx_5 + Mx_6 = 0$
Sujeito a
 $-2x_1 + 3x_2$ $+x_3$ $= 6$
 $x_1 + 2x_2$ $-x_4$ $+x_5$ $= 8$
 $x_1 + x_2$ $+x_6$ $= 6$

= 6

= 8

= 6

Resolver o seguinte PPL

max
$$2x_1 + 3x_2$$

Sujeito a
 $-2x_1 + 3x_2 \le 6$
 $x_1 + 2x_2 \ge 8$
 $x_1 + x_2 = 6$
 $x_1, x_2 > 0$

Forma Pad<u>rão</u>

max
$$2x_1 + 3x_2$$

Sujeito a
 $-2x_1 + 3x_2 + x_3 = 6$
 $x_1 + 2x_2 - x_4 = 8$
 $x_1 + x_2 = 6$
 $x_1, x_2, x_3, x_4 \ge 0$

$$VNB \begin{cases} x_1 = 0 \\ x_2 = 0 \\ x_4 = 0 \end{cases} VB \begin{cases} x_3 = 6 \\ x_5 = 8 \\ x_6 = 6 \end{cases} Z = 0$$

Resolver o seguinte PPL

max
$$2x_1 + 3x_2$$

Sujeito a
 $-2x_1 + 3x_2 \le 6$
 $x_1 + 2x_2 \ge 8$
 $x_1 + x_2 = 6$
 $x_1, x_2 > 0$

Forma Padrão

max
$$2x_1 + 3x_2$$

Sujeito a
 $-2x_1 + 3x_2 + x_3 = 6$
 $x_1 + 2x_2 - x_4 = 8$
 $x_1 + x_2 = 6$
 $x_1, x_2, x_3, x_4 \ge 0$

$$VNB \begin{cases} x_1 = 0 \\ x_2 = 0 \\ x_4 = 0 \end{cases} VB \begin{cases} x_3 = 6 \\ x_5 = 8 \\ x_6 = 6 \end{cases} Z = 0$$

A FOB deve conter somente VNB!

Métodos das Duas Fases

Inserção das Variáveis Artificiais e das Penalidades $\max Z - 2x_1 - 3x_2 \qquad \qquad +Mx_5 \qquad +Mx_6 \qquad = 0$ Sujeito a $-2x_1 + 3x_2 \qquad \qquad +x_3 \qquad \qquad = 6$ $x_1 + 2x_2 \qquad \qquad -x_4 \qquad +x_5 \qquad = 8$ $x_1 + x_2 \qquad \qquad +x_6 \qquad = 6$ $x_1, x_2, x_3, x_4, x_5, x_6 \geq 0$

Método do Big-M

0000000

Inserção das Variáveis Artificiais e das Penalidades $\max Z - 2x_1 - 3x_2 \qquad +Mx_5 +Mx_6 = 0$ Sujeito a $-2x_1 + 3x_2 \qquad +x_3 \qquad = 6$ $x_1 + 2x_2 \qquad -x_4 \qquad +x_5 \qquad = 8$ $x_1 + x_2 \qquad +x_6 = 6$ $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$

$$x_5 = 8 - x_1 - 2x_2 + x_4$$
$$x_6 = 6 - x_1 - x_2$$

$$x_5 = 8 - x_1 - 2x_2 + x_4$$
$$x_6 = 6 - x_1 - x_2$$

Inserção das Variáveis Artificiais e das Penalidades

max
$$Z + (-2 - 2M)x_1 + (-3 - 3M)x_2 + Mx_4 + 14M = 0$$

Sujeito à:

$$VNB \begin{cases} x_1 = 0 \\ x_2 = 0 \\ x_4 = 0 \end{cases} VB \begin{cases} x_3 = 6 \\ x_5 = 8 \\ x_6 = 6 \end{cases} Z = -14M$$

Inserção das Variáveis Artificiais e das Penalidades

max
$$Z + (-2 - 2M)x_1 + (-3 - 3M)x_2 + Mx_4 + 14M = 0$$

Sujeito à:

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

$$VNB \begin{cases} x_1 = 0 \\ x_2 = 0 \\ x_4 = 0 \end{cases} VB \begin{cases} x_3 = 6 \\ x_5 = 8 \\ x_6 = 6 \end{cases} Z = -14M$$

A FOB contém somente VNB!

Em geral, atribui-se a M um valor 20 vezes superior ao maior coeficiente da FOB original.

Base	Z	X_1	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	X_6	Ь
X ₃	0	-2	+3	+1	0	0	0	+6
X ₅	0	+1	+2	0	-1	+1	0	+8
<i>X</i> ₆	0	+1	+1	0	0	0	+1	+6
Z	+1	(-2-2M)	(-3-3M)	0	Μ	0	0	-14M

- Maior coeficiente função objetivo orginal: 3
- $M = 20 \times 3 = 60$

Base	Z	X_1	<i>X</i> ₂	X_3	<i>X</i> ₄	X_5	X_6	b
<i>X</i> ₃	0	-2	+3	+1	0	0	0	+6
<i>X</i> ₅	0	+1	+2	0	-1	+1	0	+8
X_6	0	+1	+1	0	0	0	+1	+6
Z	+1	-122	-183	0	+60	0	0	-840

Verificar se a solução é ótima! (Linha de Z).

Base	Z	X_1	<i>X</i> ₂	<i>X</i> ₃	X_4	<i>X</i> ₅	<i>X</i> ₆	Ь
<i>X</i> ₃	0	-2	+3	+1	0	0	0	+6
X ₅	0	+1	+2	0	-1	+1	0	+8
X_6	0	+1	+1	0	0	0	+1	+6
Z	+1	-122	-183	0	+60	0	0	-840
			1					

Entra

Escolhe variável com coeficiente mais negativo na FOB para entrar na base.

Base	Z	X_1	<i>X</i> ₂	X_3	X_4	<i>X</i> ₅	X_6	b
<i>X</i> ₃	0	-2	+3	+1	0	0	0	+6
<i>X</i> ₅	0	+1	+2	0	-1	+1	0	+8
<i>X</i> ₆	0	+1	+1	0	0	0	+1	+6
Z	+1	-122	-183	0	+60	0	0	-840

1

Entra

Para cada linha do Tableau calcular razão $\frac{b_i}{\text{coluna}}$ e verificar se há razão positiva e finita.

Base	Z	X_1	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>X</i> ₆	b
<i>X</i> ₃	0	-2	+3	+1	0	0	0	+6
X ₅	0	+1	+2	0	-1	+1	0	+8
<i>X</i> ₆	0	+1	+1	0	0	0	+1	+6
Z	+1	-122	-183	0	+60	0	0	-840
			<u> </u>					

$$\frac{+6}{+3} = +2$$

A linha com a menor razão positiva finita sairá da base.

$$\begin{split} \mathsf{LINHA}_1' &= \tfrac{1}{3} \times \mathsf{LINHA}_1 \\ \mathsf{LINHA}_2' &= \mathsf{LINHA}_2 - \tfrac{2}{3} \times \mathsf{LINHA}_1 \\ \mathsf{LINHA}_3' &= \mathsf{LINHA}_3 - \tfrac{1}{3} \times \mathsf{LINHA}_1 \\ \mathsf{LINHA}_4' &= \mathsf{LINHA}_4 + 61 \times \mathsf{LINHA}_1 \end{split}$$

Base	Z	<i>X</i> ₁	X_2	<i>X</i> ₃	X_4	<i>X</i> ₅	X_6	Ь
X_2	0	$-\frac{2}{3}$	+1	$+\frac{1}{3}$	0	0	0	+2
X ₅	0	$+\frac{7}{3}$	0	$-\frac{2}{3}$	-1	+1	0	+4
X_6	0	$+\frac{5}{3}$	0	$-\frac{1}{3}$	0	0	+1	+4
Z	+1	-244	0	+61	+60	0	0	-474

Verificar se a solução é ótima! (Linha de Z).

Base	Z	X_1		<i>X</i> ₃	X_4			b
X ₂	0	$-\frac{2}{3}$	+1	$+\frac{1}{3}$	0	0	0	+2
		$+\frac{7}{3}$						
<i>X</i> ₆	0	$+\frac{5}{3}$	0	$-\frac{1}{3}$	0	0	+1	+4
Z	+1	-244	0	+61	+60	0	0	-474

Entra

Escolhe variável com coeficiente mais negativo na FOB para entrar na base.

Base	Z	<i>X</i> ₁	X_2	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	X_6	b
X_2	0	$-\frac{2}{3}$	+1	$+\frac{1}{3}$	0	0	0	+2
X ₅	0	$+\frac{7}{3}$	0	$-\frac{2}{3}$	-1	+1	0	+4
X_6	0	$+\frac{5}{3}$	0	$-\frac{1}{3}$	0	0	+1	+4
Z	+1	-244	0	+61	+60	0	0	-474

Entra

Para cada linha do Tableau calcular razão $\frac{b_i}{\text{coluna}}$ e verificar se há razão positiva e finita.

Base	Z	X_1		<i>X</i> ₃	X_4			b		
X_2	0	$-\frac{2}{3}$	+1	$+\frac{1}{3}$	0	0	0	+2		
<i>X</i> ₅	0	$+\frac{7}{3}$	0	$-\frac{2}{3}$	-1	+1	0	+4	12 7	<
X_6	0	$+\frac{5}{3}$	0	$-\frac{1}{3}$	0	0	+1	+4		
Z	+1	-244	0	+61	+60	0	0	-474		
		1								

Entra

A linha com a menor razão positiva finita sairá da base.

 $LINHA'_1 = LINHA_1 + \frac{2}{7} \times LINHA_2$ $LINHA_2' = \frac{3}{7} \times LINHA_2$ $LINHA'_3 = LINHA_3 - \frac{5}{7} \times LINHA_2$ $LINHA'_4 = LINHA_4 + \frac{732}{7} \times LINHA_2$

0000000

Exemplo - Busca Tableau - 3ª Iteração

Base	Z	X_1	X_2	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	X_6	b
						$+\frac{2}{7}$		
X_1	0	+1	0	$-\frac{2}{7}$	$-\frac{3}{7}$	$+\frac{3}{7}$	0	$+\frac{12}{7}$
X_6	0	0	0	$+\frac{1}{7}$	$+\frac{5}{7}$	$-\frac{5}{7}$	+1	$+\frac{8}{7}$
Z						$+\frac{732}{7}$		

Verificar se a solução é ótima! (Linha de Z).

Base	Z	<i>X</i> ₁	X_2	<i>X</i> ₃	X_4	<i>X</i> ₅	<i>X</i> ₆	b
X ₂	0	0	+1	$+\frac{1}{7}$	$-\frac{2}{7}$	$+\frac{2}{7}$	0	$+\frac{22}{7}$
X ₁	0	+1	0	$-\frac{2}{7}$	$-\frac{3}{7}$	$+\frac{3}{7}$	0	$+\frac{12}{7}$
<i>X</i> ₆	0	0	0	$+\frac{1}{7}$	$+\frac{5}{7}$	$-\frac{5}{7}$	+1	$+\frac{8}{7}$
Z	+1	0	0	$-\frac{61}{7}$	$+\frac{5}{7}$ $-\frac{312}{7}$	$+\frac{732}{7}$	0	$-\frac{390}{7}$
					1			

Entra

Escolhe variável com coeficiente mais negativo na FOB para entrar na base.

Exemplo - Busca Tableau - 3ª Iteração

Base	Z	X_1	X_2	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	X_6	b	
<i>X</i> ₂	0	0	+1	$+\frac{1}{7}$	$-\frac{2}{7}$	$+\frac{2}{7}$	0	$+\frac{22}{7}$	-13
X_1	0	+1	0	$-\frac{2}{7}$	$-\frac{3}{7}$	$+\frac{3}{7}$	0	$+\frac{12}{7}$	-4
<i>X</i> ₆	0	0	0	$+\frac{1}{7}$	$+\frac{5}{7}$	$-\frac{5}{7}$	+1	$+\frac{8}{7}$	+8/5
Z	+1	0	0	$-\frac{61}{7}$	$-\frac{312}{7}$	$+\frac{732}{7}$	0	$-\frac{390}{7}$	
					1				

Entra

Para cada linha do Tableau calcular razão $\frac{b_i}{\text{coluna}}$ e verificar se há razão positiva e finita.

Exemplo - Busca Tableau - 3ª Iteração

Base	Z	X_1	X_2	<i>X</i> ₃	X_4	<i>X</i> ₅	X_6	b	
X_2	0	0	+1	$+\frac{1}{7}$	$-\frac{2}{7}$	$+\frac{2}{7}$	0	$+\frac{22}{7}$	
X_1	0	+1	0	$-\frac{2}{7}$	$-\frac{3}{7}$	$+\frac{3}{7}$	0	$+\frac{12}{7}$	
<i>X</i> ₆	0	0	0	$+\frac{1}{7}$	$+\frac{5}{7}$	$-\frac{5}{7}$	+1	$+\frac{8}{7}$	+
Ζ	+1	0	0	$-\frac{61}{7}$	$-\frac{312}{7}$	$+\frac{732}{7}$	0	$-\frac{390}{7}$	
					1				

Entra

A linha com a menor razão positiva finita sairá da base.

 $\begin{aligned} & \text{LINHA}_1' = \text{LINHA}_1 + \frac{2}{5} \times \text{LINHA}_3 \\ & \text{LINHA}_2' = \text{LINHA}_2 + \frac{3}{5} \times \text{LINHA}_3 \\ & \text{LINHA}_3' = \frac{7}{5} \times \text{LINHA}_3 \\ & \text{LINHA}_4' = \text{LINHA}_4 + \frac{312}{5} \times \text{LINHA}_3 \end{aligned}$

Exemplo - Busca Tableau - 4ª Iteração

Base	Z	X_1	X_2	<i>X</i> ₃	X_4	<i>X</i> ₅	<i>X</i> ₆	b
X_2	0	0	+1	$+\frac{1}{5}$	0	0	$+\frac{2}{5}$	$+\frac{18}{5}$
X_1	0	+1	0	$-\frac{1}{5}$	0	0	$+\frac{3}{5}$	$+\frac{12}{5}$
X_4	0	0	0	$+\frac{1}{5}$	+1	-1	$+\frac{7}{5}$	$+\frac{8}{5}$
Z	+1	0	0	$+\frac{1}{5}$	0	+60	$+\frac{312}{5}$	$+\frac{78}{5}$

OPTIMAL SOLUTION FOUND !!!!

Tipo	Variável	Valor
	<i>X</i> ₁	<u>12</u> 5
VB	X_2	<u>18</u> 5
	X_4	8 5
	<i>X</i> ₃	0
VNB	<i>X</i> ₅	0
	<i>X</i> ₆	0
FOB	Z	<u>78</u>

Resolver o seguinte PPL

max
$$2x_1 + 3x_2$$

Sujeito a
 $-2x_1 + 3x_2 \le 6$
 $x_1 + 2x_2 \ge 8$
 $x_1 + x_2 = 6$
 $x_1, x_2 \ge 0$

Resolver o seguinte PPL

max
$$2x_1 + 3x_2$$

Sujeito a
 $-2x_1 + 3x_2 \le 6$
 $x_1 + 2x_2 \ge 8$
 $x_1 + x_2 = 6$
 $x_1, x_2 \ge 0$

Programa em Matlab

```
1 clear all; close all; clc;

2 c = -[2 3];

3 A = [ -2 3; -1 -2 ];

4 B = [ 6 : -8 ];

5 Aeq = [ 1 1 ];

6 Beq = [ 6 ];

7 [x, fval, exitflag] = ...

linprog(c,A,B,Aeq,Beq);
```


Resolver o seguinte PPL

max
$$2x_1 + 3x_2$$

Sujeito a
 $-2x_1 + 3x_2 \le 6$
 $x_1 + 2x_2 \ge 8$
 $x_1 + x_2 = 6$
 $x_1, x_2 \ge 0$

Programa em Matlab

Command Window New to MATLAB? See resources for Getting Started.

Optimization terminated.

x =

2,4000

3.6000

fval =

-15.6000

exitflag =

1

Resolver o seguinte PPL

```
max 2x_1 + 3x_2

Sujeito a

-2x_1 + 3x_2 \le 6

x_1 + 2x_2 \ge 8

x_1 + x_2 = 6

x_1, x_2 \ge 0
```

Programa em Matlab

```
Command Window
New to MATLAB? See resources for Getting Started.
  Optimization terminated.
  x =
       2.4000 = 12/5
       3.6000 = 18/5
  fval =
     -15.6000 z = 78/5
  exitflag =
        1 ok !!!
```


Problema Modificado para BigM

Problema Modificado para BigM

Inserção das Variáveis Artificiais e das Penalidades $\max Z = 2x_1 + 3x_2 \qquad -Mx_5 - Mx_6 = 0$ Sujeito a $-2x_1 + 3x_2 \qquad +x_3 \qquad = 6$ $x_1 + 2x_2 \qquad -x_4 \qquad +x_5 \qquad = 8$ $x_1 + x_2 \qquad +x_6 = 6$ $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$

Programa em Matlab

```
1  clear all; close all; clc;
2  M = 60;
3  c = -[2  3  0  0  -M  -M];
4  A = []; B=[];
5  Aeq = [ -2  3  1  0  0  0; 1  2  0  -1  1  0; 1  1  0  0  0  1];
6  Beq = [ 6;8;6 ];
7  Ib = [ 0   0   0   0   0  0];
8  ub = [inf inf inf inf inf inf];
9  [x, fval, exitflag] = linprog(c,A,B,Aeq,Beq, lb, ub);
```


Command Window

New to MATLAB? See resources for Getting Started.

Optimization terminated.

x =

2.4000

3.6000

0.0000

1.6000

0.0000

0.0000

fval =

-15.6000

exitflag =

1

Problema Modificado para BigM

```
Command Window
New to MATLAB? See resources for Getting Started.
  Optimization terminated.
  x =
   x_1 2.4000 = 12/5
   X_2 3.6000 = 18/5
   ×3 0.0000
   x_4 1.6000 =8/5
   x_5
       0.0000
   x<sub>6</sub> 0.0000
  fval =
     -15.6000 FOB: Z = 78/5
  exitflag =
                OK !!!!
```


Como obter soluções iniciais em modelos com restrições na forma ≥ ou = ?

Método das Penalidades (BIG-M)

Método das Duas Fases

Como obter soluções iniciais em modelos com restrições na forma ≥ ou = ?

Método das Penalidades (BIG-M)

Método das Duas Fases

Inserção das Variáveis Artificiais em uma Nova FOB de Minimização

min
$$W = x_5 + x_6$$

max $Z = 2x_1 + 3x_2$
Sujeito à:
 $-2x_1 + 3x_2 + x_3 = 6$
 $x_1 + 2x_2 - x_4 + x_5 = 8$
 $x_1 + x_2 + x_6 = 6$
 $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$

Inserção das Variáveis Artificiais em uma Nova FOB de Minimização

min
$$W - x_5 - x_6 = 0$$

max $Z - 2x_1 - 3x_2 = 0$
Sujeito à:
 $-2x_1 + 3x_2 + x_3 = 6$
 $x_1 + 2x_2 - x_4 + x_5 = 8$
 $x_1 + x_2 + x_6 = 6$
 $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$

Exemplo - Método de Duas Fases

Inserção das Variáveis Artificiais em uma Nova FOB de Minimização

min
$$W + 2x_1 + 3x_2 - x_4 - 14 = 0$$
 (Fase 1)
max $Z - 2x_1 - 3x_2 = 0$ (Fase 2)
Sujeito à:
 $-2x_1 + 3x_2 + x_3 = 6$
 $x_1 + 2x_2 - x_4 + x_5 = 8$
 $x_1 + x_2 + x_6 = 6$
 $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$

Base	Z/W	X_1	X_2		<i>X</i> ₄			Ь
X ₃	0	-2	+3	+1	0	0	0	+6
X ₅	0	+1	+2	0	-1	+1	0	+8
X_6	0	+1	+1	0	0	0	+1	+6
Z	+1	-2	-3	0	0	0	0	0
W	+1	+2	+3	0	-1	0	0	+14

Verificar se a solução é ótima! (Linha de Z). Problema de Minimização, todos coeficientes devem ser negativos.

Base	Z/W	<i>X</i> ₁	X_2	<i>X</i> ₃	X_4	<i>X</i> ₅	<i>X</i> ₆	b
<i>X</i> ₃	0	-2	+3	+1	0	0	0	+6
<i>X</i> ₅	0	+1	+2	0	-1	+1	0	+8
<i>X</i> ₆	0	+1	+1	0	0	0	+1	+6
Z	+1	-2	-3	0	0	0	0	0
W	+1	+2	+3	0	-1	0	0	+14
			1					

Entra

Escolhe variável com coeficiente mais positivo na FOB para entrar na base.

Base	Z/W	<i>X</i> ₁	X_2	<i>X</i> ₃	X_4	X ₅	<i>X</i> ₆	b
<i>X</i> ₃	0	-2	+3	+1	0	0	0	+6
X ₅	0	+1	+2	0	-1	+1	0	+8
X_6	0	+1	+1	0	0	0	+1	+6
Z	+1	-2	-3	0	0	0	0	0
W	+1	+2	+3	0	-1	0	0	+14

$$\frac{6}{3} = 2$$
 $\frac{8}{2} = 4$ $\frac{6}{1} = 6$

Para cada linha do Tableau calcular razão $\frac{b_i}{\text{coluna}}$ e verificar se há razão positiva e finita.

Base	Z/W	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	X_4	<i>X</i> ₅	X_6	b
<i>X</i> ₃	0	-2	+3	+1	0	0	0	+6
<i>X</i> ₅	0	+1	+2	0	-1	+1	0	+8
<i>X</i> ₆	0	+1	+1	0	0	0	+1	+6
Z	+1	-2	-3	0	0	0	0	0
W	+1	+2	+3	0	-1	0	0	+14

Entra

A linha com a menor razão positiva finita sairá da base.

$$\begin{split} & \mathsf{LINHA}_1' \!=\! \tfrac{1}{3} \! \times \! \mathsf{LINHA}_1 \\ & \mathsf{LINHA}_2' \!=\! \mathsf{LINHA}_2 \!-\! \tfrac{2}{3} \! \times \! \mathsf{LINHA}_1 \\ & \mathsf{LINHA}_3' \!=\! \mathsf{LINHA}_3 \!-\! \tfrac{1}{3} \! \times \! \mathsf{LINHA}_1 \\ & \mathsf{LINHA}_4' \!=\! \mathsf{LINHA}_4 \!+\! \mathsf{LINHA}_1 \\ & \mathsf{LINHA}_5' \!=\! \mathsf{LINHA}_5 \!-\! \mathsf{LINHA}_1 \end{split}$$

Base	Z/W	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	X_4	X ₅	<i>X</i> ₆	b
<i>X</i> ₂	0	$-\frac{2}{3}$	+1	$+\frac{1}{3}$	0	0	0	+2
X ₅	0	$+\frac{7}{3}$	0	$-\frac{2}{3}$	-1	+1	0	+4
X_6	0	$+\frac{5}{3}$	0	$-\frac{1}{3}$	0	0	+1	+4
Z	+1	-4	0	+1	0	0	0	6
W	+1	+4	0	-1	-1	0	0	+8

Verificar se a solução é ótima! (Linha de Z). Problema de Minimização!

Base	Z/W	<i>X</i> ₁	X_2	<i>X</i> ₃	<i>X</i> ₄	X ₅	<i>X</i> ₆	b
X ₂	0	$-\frac{2}{3}$	+1	$+\frac{1}{3}$	0	0	0	+2
X ₅	0	$+\frac{7}{3}$	0	$-\frac{2}{3}$	-1	+1	0	+4
<i>X</i> ₆	0	$+\frac{5}{3}$	0	$-\frac{1}{3}$	0	0	+1	+4
Z	+1	-4	0	+1	0	0	0	6
W	+1	+4	0	-1	-1	0	0	+8
		4						

Entra

Escolhe variável com coeficiente mais positivo na FOB para entrar na base.

Base	Z/W	<i>X</i> ₁	X_2	<i>X</i> ₃	X_4	X_5	X_6	b		
X ₂	0	$-\frac{2}{3}$	+1	$+\frac{1}{3}$	0	0	0	+2	-3	
X ₅	0	$+\frac{7}{3}$	0	$-\frac{2}{3}$	-1	+1	0	+4	$+\frac{12}{7}$	(
X ₆	0	$+\frac{5}{3}$	0	$-\frac{1}{3}$	0	0	+1	+4	$+\frac{12}{5}$	4
Z	+1	-4	0	+1	0	0	0	6		
W	+1	+4	0	-1	-1	0	0	+8		
		1								

Entra

Para cada linha do Tableau calcular razão $\frac{b_i}{\text{coluna}}$ e verificar se há razão positiva e finita.

Base	Z/W	<i>X</i> ₁	X_2	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	X_6	b
X_2	0	$-\frac{2}{3}$	+1	$+\frac{1}{3}$	0	0	0	+2
X ₅	0	$+\frac{7}{3}$	0	$-\frac{2}{3}$	-1	+1	0	+4
<i>X</i> ₆	0	$+\frac{5}{3}$	0	$-\frac{1}{3}$	0	0	+1	+4
Ζ	+1	-4	0	+1	0	0	0	6
W	+1	+4	0	-1	-1	0	0	+8
		1						

Entra

A linha com a menor razão positiva finita sairá da base.

$$\begin{split} \text{LINHA}_1' &= \text{LINHA}_1 + \frac{2}{7} \times \text{LINHA}_2 \\ &\quad \text{LINHA}_2' = \frac{3}{7} \times \text{LINHA}_2 \\ &\quad \text{LINHA}_3' = \text{LINHA}_3 - \frac{5}{7} \times \text{LINHA}_2 \\ &\quad \text{LINHA}_4' = \text{LINHA}_4 + \frac{12}{7} \times \text{LINHA}_2 \\ &\quad \text{LINHA}_5' = \text{LINHA}_5 - \frac{12}{7} \times \text{LINHA}_2 \end{split}$$

 $+\frac{12}{7}$

Base	Z/W	X_1	<i>X</i> ₂	<i>X</i> ₃	X_4	<i>X</i> ₅	<i>X</i> ₆	b
<i>X</i> ₂	0	0	+1	$+\frac{1}{7}$	$-\frac{2}{7}$	$+\frac{2}{7}$	0	$+\frac{22}{7}$
X_1	0	+1	0	$-\frac{2}{7}$	$-\frac{3}{7}$	$+\frac{3}{7}$	0	$+\frac{12}{7}$
X_6						$-\frac{5}{7}$		
Z	+1	0	0	$-\frac{1}{7}$	$-\frac{12}{7}$	$+\frac{12}{7}$	0	$+\frac{90}{7}$
W	+1	0	0	$+\frac{1}{7}$	$+\frac{5}{7}$	$-\frac{12}{7}$	0	$+\frac{8}{7}$

Verificar se a solução é ótima! (Linha de Z). Problema de Minimização

Base	Z/W	X_1	X_2	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	X_6	b
X_2	0	0	+1	$+\frac{1}{7}$	$-\frac{2}{7}$	$+\frac{2}{7}$	0	$+\frac{22}{7}$
X ₁	0	+1	0	$-\frac{2}{7}$	$-\frac{3}{7}$	$+\frac{3}{7}$	0	$+\frac{12}{7}$
<i>X</i> ₆	0	0	0	$+\frac{1}{7}$	$+\frac{5}{7}$		+1	$+\frac{8}{7}$
Z	+1	0	0	$-\frac{1}{7}$	$-\frac{12}{7}$	$+\frac{12}{7}$	0	$+\frac{90}{7}$
W	+1	0	0	$+\frac{1}{7}$	$+\frac{5}{7}$	$-\frac{12}{7}$	0	$+\frac{8}{7}$
					1			

Entra

Escolhe variável com coeficiente mais positivo na FOB para entrar na base.

Base	Z/W	X_1	X ₂	<i>X</i> ₃	X_4	<i>X</i> ₅	X_6	b
X_2	0	0	+1	$+\frac{1}{7}$	$-\frac{2}{7}$	$+\frac{2}{7}$	0	$+\frac{22}{7}$
X_1	0	+1	0	$-\frac{2}{7}$	$-\frac{3}{7}$		0	$+\frac{12}{7}$
<i>X</i> ₆	0	0	0	$+\frac{1}{7}$		$-\frac{5}{7}$	+1	$+\frac{8}{7}$
Z	+1	0	0	$-\frac{1}{7}$		$+\frac{12}{7}$	0	$+\frac{90}{7}$
W	+1	0	0	$+\frac{1}{7}$	$+\frac{5}{7}$	-	0	$+\frac{8}{7}$
					1			

4 <u>8</u>

-11

Para cada linha do Tableau calcular razão $\frac{b_i}{\text{coluna}}$ e verificar se há razão positiva e finita.

Base	Z/W	X_1	X_2	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	X_6	b		
X ₂	0	0	+1	$+\frac{1}{7}$	$-\frac{2}{7}$	$+\frac{2}{7}$	0	$+\frac{22}{7}$	-11	
X_1	0	+1	0	$-\frac{2}{7}$	$-\frac{3}{7}$	$+\frac{3}{7}$	0	$+\frac{12}{7}$	-4	
<i>X</i> ₆	0	0	0	$+\frac{1}{7}$	$+\frac{5}{7}$	$-\frac{5}{7}$	+1	$+\frac{8}{7}$	$+\frac{8}{5}$	← Sai
Z	+1	0	0	$-\frac{1}{7}$	$-\frac{12}{7}$	$+\frac{12}{7}$	0	$+\frac{90}{7}$		
W	+1	0	0	$+\frac{1}{7}$	$+\frac{5}{7}$	$-\frac{12}{7}$	0	$+\frac{8}{7}$		
					1					

Entra

A linha com a menor razão positiva finita sairá da base.

$$\begin{split} & \text{LINHA}_1' \!=\! \text{LINHA}_1 \!+\! \tfrac{2}{5} \!\times\! \text{LINHA}_3 \\ & \text{LINHA}_2' \!=\! \text{LINHA}_2 \!+\! \tfrac{3}{5} \!\times\! \text{LINHA}_3 \\ & \text{LINHA}_3' \!=\! \tfrac{7}{5} \!\times\! \text{LINHA}_3 \\ & \text{LINHA}_4' \!=\! \text{LINHA}_4 \!+\! \tfrac{12}{5} \!\times\! \text{LINHA}_3 \\ & \text{LINHA}_5' \!=\! \text{LINHA}_5 \!-\! \text{LINHA}_3 \end{split}$$

Base	Z/W			<i>X</i> ₃		X ₅	<i>X</i> ₆	b
X_2	0	0	+1	$+\frac{1}{5}$	0	0	$+\frac{2}{5}$	$+\frac{18}{5}$
X_1	0	+1	0	$-\frac{1}{5}$	0	0	$+\frac{3}{5}$	$+\frac{12}{5}$
X_4	0	0	0	$+\frac{1}{5}$	+1	-1	$+\frac{7}{5}$	$+\frac{8}{5}$
Z	+1	0	0	$+\frac{1}{5}$	0	0	$+\frac{12}{5}$	$+\frac{78}{5}$
W	+1	0	0	0	0	-1	-1	0

OPTIMAL SOLUTION FOUND DA FASE 1!!!!

Base	Z/W	X_1	X_2	<i>X</i> ₃	X_4	<i>X</i> ₅	<i>X</i> ₆	b
X ₂	0	0	+1	$+\frac{1}{5}$	0	0	$+\frac{2}{5}$	$+\frac{18}{5}$
X ₁	0	+1	0	$-\frac{1}{5}$	0	0	$+\frac{3}{5}$	$+\frac{12}{5}$
X_4	0	0	0	$+\frac{1}{5}$	+1	-1	$+\frac{7}{5}$	$+\frac{8}{5}$
Z	+1	0	0	$+\frac{1}{5}$	0	0	$+\frac{12}{5}$	$+\frac{78}{5}$
W	+1	0	0	0	0	-1	-1	0

Elimanam-se as colunas das variáveis artificiais e a linha da FOB de Minimização!!!! Inicia-se a FASE 2.

Base	Z/W			<i>X</i> ₃		Ь
X_2	0	0	+1	$+\frac{1}{5}$	0	$+\frac{18}{5}$
X_1	0	+1	0	$-\frac{1}{5}$	0	$+\frac{12}{5}$
X_4	0	0	0	$+\frac{1}{5}$	+1	$+\frac{8}{5}$
Z	+1	0	0	$+\frac{1}{5}$	0	$+\frac{78}{5}$

Verificar se a solução é ótima! (Linha de Z). Problema de Maximização

Base	Z/W	X_1	X_2	<i>X</i> ₃	X_4	b
<i>X</i> ₂	0	0	+1	$+\frac{1}{5}$	0	$+\frac{18}{5}$
X_1	0	+1	0	$-\frac{1}{5}$	0	$+\frac{12}{5}$
X_4	0	0	0	$+\frac{1}{5}$	+1	$+\frac{8}{5}$
Z	+1	0	0	$+\frac{1}{5}$	0	$+\frac{78}{5}$

OPTIMAL SOLUTION FOUND !!!!

Tipo	Variável	Valor
	v an la v or	
	X_1	<u>12</u> 5
VB	X_2	<u>18</u> 5
	<i>X</i> ₄	<u>8</u> 5
	<i>X</i> ₃	0
VNB	<i>X</i> ₅	0
	<i>X</i> ₆	0
FOB	Z	<u>78</u>

Método das Duas Fases - Youtube

Clicar para assistir video no YouTube !!!

Fim

