STATS 260 Class 21

Gavin Jaeger-Freeborn

1. Sets 25 to 27 Hypothesis Testing

2. Single Sample Hypothesis

Example

A factory has a machine that dispenses 80ml of fluid in a bottle, an employee believes the average amount of fluid is not 80ml. Using 40 samples, he measures the average amount dispensed by the machine to be 78ml with a standard deviation of 2.5.

- (a) state the null and alternative Hypothesis.
- (b) at a 95% confidence level, is there enough evidence to support the idea that the machine is not working properly.

$$H_0$$
: $\mu \neq 80$

Alternatively Hypothesis

$$H_a$$
: $\mu \neq 80$

$$\bar{x} = 78, \ s = 2.5, \ n = 40 > 30$$

Since n > 30 we can use

$$Z = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$$
$$= \frac{78 - 80}{2.5/\sqrt{40}}$$
$$= \frac{-2}{0.39528}$$

Calculated z value

$$z_c \approx -5.06$$

With a 95% confidence we can say that the machine is not working properly. Since our z value falls outside of out confidence interval.

3. p-value

The smaller the p-value the stronger the evedence against H_0 The larger the p-value is, the weaker the evidence we have against H_0

4. The p-value approach

- 1. Define the parameters to be tested. eg μ or P
- 2. Define H 0 and H 1.

- 3. Specify the test statistic and the distribution under H_0 . (assume H_0 is true)
- 4. Find the observed value of the test statistic.
- 5. Find the p-value.
- 6. Report the strength of evidence against H_0 :
 - Very strong if $p \le 0.01$
 - Strong if 0.01
 - Moderate if 0.05
 - Little or none if 0.1 < p
- 7. Answer any other questions given (i.e. report the value of the estimate, report the value of the estimated standard error, etc.)

single tail	$\mu > or \mu < or \mu \ge or \mu \le$
2 tail test	$\mu = or \ \mu \neq$

Example

A certain medication is supposed to contain 350 mg of the active ingredient per pill. It is known from previous work that this content is normally distributed with a standard deviation of 3.5 mg. Suppose a random sample of 5 pills are taken, and the average content is 346.4 mg.

Is the mean pill content not 350 mg?

1. let μ = true mean active ingredients per pill (mg)

2.
$$H_0 \cdot \mu = 350$$

 $H_{1:}\mu != 350$ (therefore its 2 tail)

3 test statistic ad distribution

$$\sigma = 3.5, n = 5$$

$$Z_{obs} = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

4

$$Z_{obs} = \frac{346.4 - 350}{3.5/\sqrt{5}} = \frac{-3.6}{1.5652} = -2.23$$

NOTE: the 1.5652 is the estimated standard error (e.s.e)

5.
$$p-value = 2 \times P(Z > 2.23) = 2 \times p(z < -2.23)$$

$$= 2 \times 0.0129$$

$$= 0.0258$$

- 6. there is **strong** evidence against H_0
- 7. Estimate = 346.4, e.s.e = 1.5652

5. Relationship between Hypothesis and pvalue

Alternate Hypothesis

$$\begin{array}{ll} h_1: \mu > \mu_0 & p(z > z_{observed}) \\ h_1: \mu < \mu_0 & p(z < z_{observed}) \\ h_1: \mu \neq \mu_0 & 2P(z < -|z_{observed}|) or 2P(z > |z_{observed}|) \end{array}$$

6. Errors and Hypothesis Tests

Two types of errors are possible in a hypothesis test.

Type I error

(Rejection Error) is made when we reject the null hypothesis when it is true.

Type II error

(Acceptance Error) is made when we do not reject the null hypothesis when it is false.

6.1. Possibility of each type of error

 α is the probability of making a Type 1 error

 $\boldsymbol{\beta}$ is the probability of making a Type 2 error

	H_0 true	H_0 false
Reject H_0	Type I	✓
do not reject H_0	✓	Type II

$\downarrow \alpha$	↑ β
$\uparrow \alpha$	↓ β

6.2. When do we reject H_0 ?

We are asked to test H_0 at some significance level α . We carry out the hypothesis test in much the same way: defining parameters, calculating the value of the test statistic, finding the p-value. Rather than giving the level of strength against H_0 , as in the p-value

Approach, we instead either reject or don't reject H_0 by the following rule:

- If $p \le \alpha$, then reject the null hypothesis.
- If $p > \alpha$, then do not reject the null hypothesis. (Some will phrase this as "maintain the null hypothesis" or "fail to reject the null hypothesis")

Example

For the pill example, if we were asked to test our hypotheses at the level $\alpha = 0.01$, what would our conclusion be?

$$p - value = 0.0258 > \alpha = 0.01$$

Conclusion: maintian H_0 at α

Example: What if we were testing at the level $\alpha = 0.05$?

$$p$$
 – $value < \alpha = 0.05$

conclusion = request H_0

IMPORTANT: It is dishonest to set your value of α after the data has been collected and examined; the value of α should be made by taking into account the consequences of Type I and II errors before the study is carried out.

 \uparrow set α before the study is completed

7. "Relationship between hypothesis testing and confidence intervals"

Suppose we construct a $(1 - \alpha)100\%$ confidence interval for μ .

It is true that for any number k in this interval, that if we were to test H 0: $\mu = k$, H 1: μ 6 = k, we'd have a p-value greater than α .

This means that if we were testing H0: $\mu = k$, H1: $\mu 6 = k$ at the level of α , we would reject the null hypothesis if and only if k were not inside the $(1-\alpha)100\%$ confidence interval for μ .

Example

Using our pill data, we can find that a 95% confidence interval for μ is (343.77, 349.03).

What would our conclusion be if we test H 0 : μ = 344, H 1 : μ 6 = 344 at the level α = 0.05?

 $\alpha = 1 - confidence interval = 1 - 95 = 0.05$

344 is inside the CI

p - value > 0.05

 \therefore Retain H_0

Example

What would our conclusion be if we test H_0 : $\mu = 342$, H_1 : $\mu 6 = 342$ at the level $\alpha = 0.05$?

(343. 77, 349. 03) 342 is outside the CI

 \therefore reject H_0 because p-value < 0.05

Example

The lengths of mourning doves (from beak to tail) are known to be normally distributed. Suppose that 5 mourning doves are selected at random, and it is found that the average length of the mourning doves is 32.4 cm, with a standard deviation of 2.9 cm.

Let μ denote the true mean length of mourning doves. Test the hypotheses H_0 : $\mu = 30$, H a: $\mu > 30$ at the level $\alpha = 0.1$.

3. Test statistic and distribution:

Population is normal

$$n = 5, s = 2.9$$

Therefore we sue t_{n-1}

$$t_{obs} = \frac{\bar{x} - \mu}{s/\sqrt{n}} \sim t_{n-1} = t_4$$

$$s = 2.9cm$$

$$\bar{x} = 32.4cm$$

$$n = 5 < 30$$

$$H_0$$
: $\mu = 30$

$$H_a$$
: $\mu > 30$

$$\alpha = 0.1$$

4.
$$t_{obs} \frac{\bar{X} - \mu}{so/\sqrt{n}}$$

$$t_{obs} = \frac{32.4 - 30}{2.9/\sqrt{5}}$$

$$\frac{2.4}{1.296919}$$

$$t_{observed}=1.\,85054$$

Now find p-value using t table

$$p - value = P(t_4 > 1.8505)$$

NOTE: the reason for using > is becouse the alternative is >

In R

Therefore the p-value is 0.06895478

$$0.05 \le p - value \le 0.1$$

- 6. Moderate evidence against H_0
- 7. estimate = 32.4

$$e.s.e = 1.2969$$

p-value > 0.05

 \therefore retain H_0

Example

In a sample of 46 people, we find the average blood glucose level upon waking up is 5.3 mmol/L with a standard deviation of 1.2 mmol/L. Is there reason to believe that the true mean blood glucose level upon waking for people is not 5 mmol/L?

let μ denote true mean blood glucose level of people upon waking up

2.
$$h_0$$
: $\mu = 5 h_1$: $\mu \neq 5$

2 tail

3. test statistic, distrubution

$$z_o = \frac{\bar{x} - \mu}{s/\sqrt{n}} \sim N(0, 1)$$

4.
$$z \text{ sub } o = \{5.3 - 5\} \text{ over } \{1.2 / \text{ sqrt } 46\} = 0.3 \text{ over } 0.1764 = 1.6956$$

5.
$$p-value = 2P(z > 1.6956)$$

= $2P(z < -1.6956)$
= 0.0892

6. There is moderate evidence against H_0

$$\bar{x}=5.3mol/L,\,ese=0.\,1769mmol/L$$