שם הקורס: הסתברות למדעי המחשב 2

שם הפקולטה: מדעי המחשב שם המחלקה: מדעי המחשב מספר הקורס:7020111

שם המרצה: פרופ' דן חפץ

מתכונת הקורס: (הרצאה + תרגולים)

שנת לימודים: ב סמסטר: ב היקף שעות: 2 ש"ס נקודות זכות:2.5

א. מטרות הקורס (מטרות על / מטרות ספציפיות): היכרות בסיסית עם תורת ההסתברות של מרחבים שאינם בני מנייה והתפלגויות רציפות. למידה מעמיקה יותר של הסתברות בדידה ושימושיה במדעי המחשב.

ב. תוכן הקורס: ריכוז מידה, גרפים מקריים והשיטה ההסתברותית, אלגוריתמים הסתברותיים, התפלגויות רציפות, משפט הגבול המרכזי ונושאים קשורים.

תכנית הוראה מפורטת לכל השיעורים:

הערות	נושא השיעור	יחידת
		שיעור
	מבוא לשיטה ההסתברותית, שיטת המומנט	.1
	הראשון.	
	שיטת המומנט השני.	.2
	נושאים בתורת הגרפים המקריים: מודלים וכלים	.3
	בסיסיים, חסם תחתון על מספרי רמזי, גרפים עם	
	מספר צביעה גדול ומותן גדול.	
	נושאים בתורת הגרפים המקריים: הופעת גרף קבוע,	.4
	התפלגות הדרגות, קשירות.	
	אלגוריתמים הסתברותיים, זיהוי פולינומים, חתך	.5
	מינימלי.	
	אלגוריתמים הסתברותיים למיון.	.6
	התפלגויות רציפות, פונקציית הסתברות מצטברת,	.7
	פונקציית צפיפות, תוחלת ושונות.	
	התפלגות אחידה רציפה, התפלגות מעריכית.	.8
	התפלגות נורמלית.	.9
	משפט הגבול המרכזי.	.10

ג. חובות הקורס:

דרישות קדם: הסתברות למדעי המחשב 1.

חובות / דרישות / מטלות: במהלך הקורס יהיו 4 מטלות. אין חובת הגשה.

מרכיבי הציון הסופי (ציון מספרי / ציון עובר): 100% בחינה.

ד. ביבליוגרפיה: (חובה/רשות)- מסודרת לפי נושאי הקורס

- 1. Devdatt P. Dubhashi and Alessandro Panconesi, Concentration of measure for the analysis of randomized algorithms, Cambridge University Press, 2009.
- 2. Michael Mitzenmacher and Eli Upfal, Probability and Computing: randomized algorithms and probabilistic analysis, Cambridge University Press, 2005.
- 3. Rajeev Motwani and Prabhakar Raghavan, Randomized algorithms, Cambridge University Press, 1995.
- 4. Noga Alon and Joel H. Spencer, The probabilistic method (fourth edition), John Wiley and Sons, 2016.
- 5. Sheldon Ross, A first course in probability (eighth edition), Pearson Prentice Hall, 2010.