ΜΑΣ026 - Μαθηματικά για Μηχανικούς ΙΙ Εαρινό εξάμηνο 2021

Ασκήσεις 2ου Κεφαλαίου

1. Να δειχθεί ότι τα (4,5,2), (1,7,3) και (2,4,5) είναι κορυφές ισόπλευρου τριγώνου.

Απάντηση: $||AB|| = ||AC|| = ||BC|| = \sqrt{14}$.

- 2. Να βρείτε την εξίσωση της σφαίρας στις παρακάτω περιπτώσεις.
 - i) κέντρο (7, 1, 1), ακτίνα 4,
 - ii) κέντρο (1, 0, -1), διάμετρος 8,
 - iii) κέντρο (-1, 3, 2), διέρχεται από την αρχή των αξόνων,
 - iv) κέντρο (2, -1, -3), εφάπτεται στο xy-επίπεδο.

Απάντηση: i) $(x-7)^2+(y-1)^2+(z-1)^2=16$, ii) $(x-1)^2+y^2+(z+1)^2=16$, iii) $(x+1)^2+(y-3)^2+(z-2)^2=14$.

3. Περιγράψτε την επιφάνεια με εξίσωση $x^2 + y^2 + z^2 + 10x + 4y + 2z - 19 = 0$.

Απάντηση: Κύκλος με κέντρο (-5, -2, -1) και ακτίνα 7.

- 4. Δώστε ένα πρόχειρο σχήμα για τις παρακάτω επιφάνειες στον χώρο.
 - i) $x^2 + y^2 = 25$
 - ii) $y^2 + z^2 = 25$
 - iii) $x^2 + z^2 = 25$
- 5. Βρείτε μια εξίσωση που περιγράφει τις παρακάτω επιφάνειες στον χώρο.
 - i) Επίπεδο που περιλαμβάνει τον άξονα x και το σημείο (0,1,2).
 - ii) Επίπεδο που περιλαμβάνει τον άξονα y και το σημείο (1,0,2).
 - iii) Ορθός κύλινδρος με ακτίνα 1 και άξονα την ευθεία που είναι παράλληλη στον άξονα z και διέρχεται από το (1,1,0).
 - iv) Ορθός κύλινδρος με ακτίνα 1 και άξονα την ευθεία που είναι παράλληλη στον άξονα y και διέρχεται από το (1,0,1).

Απάντηση: i) z = 2y ii) z = 2x, iii) $(x - 1)^2 + (y - 1)^2 = 1$, iv) $(x - 1)^2 + (z - 1)^2 = 1$.

6. Ένα έντομο περπατάει στην σφαίρα με εξίσωση $x^2 + y^2 + z^2 + 2x - 2y - 4z - 3 = 0$. Ποια είναι η πιο κοντινή και η πιο μακρινή απόσταση που μπορεί να έχει από την αρχή των αξόνων;

1

Απάντηση: $3 \pm \sqrt{6}$.

- 7. Να σχεδιάσετε τα διανύσματα.
 - i) (1, -2, 2)
 - ii) (2, 2, -1)
 - iii) -i + 2j + 3k
 - iv) 2i + 3j k

8. Breite tic suntetaghénec tou dianúshatoc $\overrightarrow{P_1P_2}$.

- i) $P_1(3,5), P_2(2,8),$
- ii) $P_1(5,-2,1), P_2(2,4,2).$

Απάντηση: i) (-1, 3), ii) (-3, 6, 1).

9. Έστω $\vec{u}=3\imath-k,$ $\vec{v}=\imath-\jmath+2k,$ $\vec{w}=3\jmath.$ Να γίνουν οι πράξεις.

- ii) $6\vec{u} + 4\vec{w}$

- iv) $4(3\vec{u} + \vec{v})$ v) $-8(\vec{v} + \vec{w}) + 2\vec{u}$ vi) $3\vec{w} (-\vec{v} \vec{w})$

Απάντηση: i) -i + 4j - 2k, ii) 18i + 12j - 6k, iii) -i - 5j - 2k, iv) 40i - 4j - 4k, v) -2i - 16j - 18k, vi) i + 11j + 2k.

10. Να βρεθεί η νόρμα του \vec{v} .

- i) $\vec{v} = (1, -1)$
- ii) $\vec{v} = (-1, 2, 4)$
- iii) $\vec{v} = -3i + 2j + k$

Απάντηση: i) $\sqrt{2}$, ii) $\sqrt{21}$, iii) $\sqrt{14}$.

- 11. Να χαρακτηριστεί η κάθε πρόταση ως σωστή (Σ) ή λάθος (Λ) και να αιτιολογηθεί η απάντησή σας.
 - i) Το μέτρο του αθροίσματος δύο διανυσμάτων είναι ίσο με το άθροισμα των μέτρων των δύο διανυσμάτων.
 - ii) Υπάρχουν ακριβώς δύο μοναδιαία διανύσματα που είναι παράλληλα σε ένα δοσμένο μη μηδενικό διάνυσμα.

Απάντηση: Λάθος, Σωστό.

- 12. Να βρεθεί διάνυσμα που ικανοποιεί την δοσμένη συνθήκη.
 - i) Αντίθετη κατεύθυνση από το $\vec{v} = (3, -4)$ και μέτρο το μισό του μέτρου του \vec{v} .
 - ii) Μήκος $\sqrt{17}$ και κατεύθυνση ίδια με το $\vec{v} = (7, 0, -6)$.

Απάντηση: i) (-3/2, 2), ii) $(7/\sqrt{5}, 0, -6/\sqrt{5})$.

- 13. Να βρεθεί διάνυσμα \vec{v} στο καρτεσιανό επίπεδο που ικανοποιεί τις δοσμένες συνθήκες. Με θ συμβολίζουμε τη γωνία του διανύσματος με τον άξονα Ox.
 - i) $\|\vec{v}\| = 3, \theta = \pi/4$
 - ii) $\|\vec{v}\| = 2, \theta = 90^{\circ}$

Απάντηση: i) $(3\sqrt{2}/2, 3\sqrt{2}/2)$, ii) (0, 2).

14. Να βρεθούν δύο μοναδιαία διανύσματα στο καρτεσιανό επίπεδο που ικανοποιούν τη δοσμένη συνθήκη.

2

- i) Παράλληλα στην ευθεία y = 3x + 2.
- ii) Παράλληλα στην ευθεία x + y = 4.
- iii) Κάθετα στην ευθεία y = -5x + 1.

Απάντηση: i) $\pm \frac{1}{\sqrt{10}}(1,3)$, ii) $\pm \frac{1}{\sqrt{2}}(1,-1)$, iii) $\pm \frac{1}{\sqrt{26}}(5,1)$.

15. Έστω $\overrightarrow{r}=(x,y,z)$ ένα τυχαίο διάνυσμα. Περιγράψτε το σύνολο των σημείων (x,y,z) που ικανοποιούν την δοσμένη εξίσωση.

- i) $\|\overrightarrow{r}\| = 1$
- ii) $\|\overrightarrow{r}\| \leq 1$
- iii) $\|\overrightarrow{r}\| > 1$

Απάντηση: i) Σφαίρα κέντρου Ο και ακτίνας 1, ii) Συμπαγής σφαίρα κέντρου Ο και ακτίνας 1, iii) Εξωτερικό σφαίρας κέντρου Ο και ακτίνας 1.

16. Βρείτε αν τα διανύσματα σχηματίζουν οξεία, ορθή ή αμβλεία γωνία.

- i) $\vec{u} = 7i + 3j + 5k$, $\vec{v} = -8i + 4j + 2k$
- ii) $\vec{u} = 6i + j + 3k, \vec{v} = 4i 6k$
- iii) $\vec{u} = (4, 1, 6), \vec{v} = (-3, 0, 2)$

Απάντηση: i) Αμβλεία, ii) οξεία, iii) ορθή.

17. Χρησιμοποιώντας διανύσματα να δείξετε ότι το τρίγωνο με κορυφές A(2,-1,1), B(3,2,-1) και C(7,0,-2) είναι ορθογώνιο και να βρείτε σε ποια κορυφή βρίσκεται η ορθή γωνία.

Απάντηση: $\hat{B} = \pi/2$.

18. Να δείξετε ότι $\|\vec{u} + \vec{v}\|^2 + \|\vec{u} - \vec{v}\|^2 = 2\|\vec{u}\|^2 + 2\|\vec{v}\|^2$ και να δώσετε γεωμετρική ερμηνεία του αποτελέσματος.

Απάντηση: Θεώρημα διαγωνίων παραλληλογράμμου.

- **19.** i) Χρησιμοποιώντας ορίζουσα, να υπολογιστεί το $i \times (i + j + k)$.
 - ii) Υπολογίστε το παραπάνω γινόμενο χωρίς ορίζουσα, χρησιμοποιώντας μόνο ιδιότητες του εξωτερικού γινομένου.

Απάντηση: -j + k.

- **20.** Να βρεθεί το $\vec{u} \times \vec{v}$.
 - i) $\vec{u} = (1, 2, -3), \vec{v} = (-4, 1, 2)$
 - ii) $\vec{u} = 3i + 2j k, \vec{v} = -i 3j + k$

Απάντηση: i) 7i + 10j + 9k, ii) -i - 2j - 7k.

- **21.** Να βρεθούν οι παρακάτω ποσότητες για τα διανύσματα $\vec{u} = (2, -1, 3)$, $\vec{v} = (0, 1, 7)$ και $\vec{w} = (1, 4, 5)$.
 - i) $\vec{u} \times (\vec{v} \times \vec{w})$
 - ii) $(\vec{u} \times \vec{v}) \times \vec{w}$
 - iii) $(\vec{u} \times \vec{v}) \times (\vec{v} \times \vec{w})$
 - iv) $(\vec{v} \times \vec{w}) \times (\vec{u} \times \vec{v})$

Απάντηση: i) -20i - 67j - 9k, ii) -78i + 52j - 26k, iii) 0i - 56j - 392k, iv) 0i + 56j + 392k.

22. Να βρεθούν δύο μοναδιαία διανύσματα που είναι κάθετα στο επίπεδο που ορίζουν τα σημεία A(0,-2,1), B(1,-1,-2) και C(-1,1,0).

3

Απάντηση: $\pm \frac{1}{4\sqrt{6}}(8,4,4)$.

23. Να βρεθεί το εμβαδόν του παραλληλογράμμου που ορίζουν τα διανύσματα $\vec{u} = i - j + 2k$ και $\vec{v} = 3j + k$.

Απάντηση: $\sqrt{59}$.

24. Να βρεθεί το εμβαδόν του τριγώνου με κορυφές P(1,5,-2), Q(0,0,0) και R(3,5,1).

Απάντηση: $\sqrt{374}/2$.

25. Να βρεθεί το $\vec{u} \cdot (\vec{v} \times \vec{w})$ για τα $\vec{u} = 2i - 3j + k$, $\vec{v} = 4i + j - 3k$ και $\vec{w} = j + 5k$.

Απάντηση: 80.

26. Να ελέγξετε αν τα διανύσματα είναι στο ίδιο επίπεδο χρησιμοποιώντας τριπλό βαθμωτό γινόμενο.

i)
$$\vec{u} = (1, -2, 1), \vec{v} = (3, 0, -2), \vec{w} = (5, -4, 0)$$

ii)
$$\vec{u} = 5i - 2j + k, \vec{v} = 4i - j + k, \vec{w} = i - j$$

iii)
$$\vec{u} = (4, -8, 1), \vec{v} = (2, 1, -2), \vec{w} = (3, -4, 12)$$

Απάντηση: i) συνεπίπεδα, ii) συνεπίπεδα, iii) όχι συνεπίπεδα.

27. Έστω το παραλληλεπίπεδο με διαδοχικές ακμές $\vec{u} = 3i + 2j + k$, $\vec{v} = i + j + 2k$, $\vec{w} = i + 3j + 3k$.

- i) Να βρεθεί ο όγκος του.
- ii) Να βρεθεί το εμβαδόν της έδρας που ορίζουν τα \vec{u} και \vec{w} .
- iii) Να βρεθεί η γωνία του \vec{u} με το επίπεδο που περιλαμβάνει την έδρα που ορίζουν τα \vec{v} και \vec{w} .

Απάντηση: i) 9, ii) $\sqrt{122}$, iii) $\cos^{-1}(9/14) - \pi/2$.

28. Τι συμπεραίνουμε για τη γωνία δύο διανυσμάτων \vec{u} και \vec{v} για τα οποία ισχύει $\vec{u} \cdot \vec{v} = \|\vec{u} \times \vec{v}\|$;

Απάντηση: $\theta = \pi/4$.

- 29. Να βρεθούν οι παραμετρικές εξισώσεις ευθείας:
 - i) που διέρχεται από τα σημεία $P_1(-1,3,5)$ και $P_2(-1,3,2)$,
 - ii) που έχει διανυσματική εξίσωση xi + yj + zk = k + t(i j + k),
 - iii) που διέρχεται από το (-2,0,5) και είναι παράλληλη στην ευθεία $x=1+2t,\,y=4-t,\,z=6+2t,$
 - iv) που είναι η εφαπτομένη του κύκλου $x^2 + y^2 = 25$ στο σημείο (3, -4).

Απάντηση: i) x = -3, y = 3, z = 5 - 3t, ii) x = 6, y = -t, z = 1 + t, iii) x = -2 + 2t, y = -t, z = 5 + 2t, iv) x = 3 + 4t, y = -4 + 3t.

30. Για την ευθεία με διανυσματική εξίσωση (x,y,z)=(-1,2,4)+t(5,7,-8) να βρεθεί ένα σημείο της P και ένα διάνυσμα \vec{v} παράλληλο σε αυτήν.

Απάντηση: (-1, 2, 4), 5i + 7j - 8k.

31. Να βρεθούν τα σημεία τομής με τα επίπεδα xy, xz και yz της ευθείας x=-2, y=4+2t, z=-3+t.

Απάντηση: (-2, 10, 0), (-2, 0, -5.

32. Να δείξετε ότι οι ευθείες L_1 : x = 2 + t, y = 2 + 3t, z = 3 + t, L_2 : x = 2 + t, y = 3 + 4t, z = 4 + 2t τέμνονται και να βρεθούν τα σημεία τομής τους.

Απάντηση: Σημείο τομής (1, -1, 2).

33. Να εξετάσετε αν οι ευθείες L_1 : x = 3 - 2t, y = 4 + t, z = 6 - t, L_2 : x = 5 - 4t, y = -2 + 2t, z = 7 - 2t είναι παράλληλες.

Απάντηση: Είναι παράλληλες.

- **34.** Να δείξετε ότι οι ευθείες L_1 : x = 1 + 3t, y = -2 + t, z = 2t, L_2 : x = 4 6t, y = -1 2t, z = 2 4t ταυτίζονται.
- 35. Να βρεθεί η εξίσωση του επιπέδου στις παρακάτω περιπτώσεις.
 - i) Διέρχεται από το σημείο P(2,6,1) και είναι κάθετο στο διάνυσμα $\vec{n}=(1,4,2)$.
 - ii) Διέρχεται από τα σημεία (-2, 1, 1), (0, 2, 3) και (1, 0, -1).
 - iii) Διέρχεται από την αρχή των αξόνων και είναι παράλληλο στο επίπεδο 4x-2y+7z+12=0.
 - iv) Διέρχεται από το (1,2,-1) και είναι κάθετο στην ευθεία τομής των επιπέδων 2x+y+z=2 και x+2y+z=3.

Απάντηση: i) x + 4y + 2x - 28 = 0, ii) 2y - z - 1 = 0, iii) 4x - 2y + 7z = 0, iv) -x - y + 3z + 6 = 0.

36. Εξετάστε αν τα επίπεδα είναι παράλληλα, κάθετα ή τίποτα από τα παραπάνω.

i)
$$2x - 8y - 6x - 2 = 0$$
, $-x + 4y + 3z - 5 = 0$

ii)
$$3x - 2y + z = 1$$
, $4x + 5y - 2z = 4$

iii)
$$x - y + 3z - 2 = 0, 2x + z = 1$$

Απάντηση: i) παράλληλα, ii) κάθετα, iii) όχι κάθετα, όχι παράλληλα.

37. Εξετάστε αν η ευθεία και το επίπεδο τέμνονται και αν ναι, προσδιορίστε την τομή τους.

i)
$$x = t, y = t, z = t, 3x - 2y + z - 5 = 0$$

ii)
$$x = 2 - t, y = 3 + t, z = t, 2x + y + z = 1$$

Απάντηση: i) Τέμνονται στο (5/2,5/2,5/2), ii) δεν τέμνονται.

38. Βρείτε το συνημίτονο της γωνίας τομής των επιπέδων x + 2y - 2z = 5 και 6x - 3y + 2z = 8.

Απάντηση: 4/21.

39. Δείξτε ότι οι ευθείες x=-2+t, y=3+2t, z=4-t και x=3-t, y=4-2t, z=t είναι παράλληλες και βρείτε την εξίσωση του επιπέδου που τις περιέχει.

Απάντηση: -7x - y - 9z + 25 = 0

40. Να δείξετε ότι τα επίπεδα -2x+y+z=0 και 6x-3y-3z-5=0 είναι παράλληλα και να βρείτε την απόστασή τους.

Απάντηση: $D = 5/\sqrt{54}$.

41. Να δείξετε ότι οι ευθείες x=1+7t, y=3+t, z=5-3t και x=4-t, y=6, z=7+2t είναι ασύμβατες και να βρεθεί η απόστασή τους.

Απάντηση: $D = 25/\sqrt{126}$.

42. Βρείτε την εξίσωση της σφαίρας με κέντρο (2,1,-3) που εφάπτεται στο επίπεδο x-3y+2z=4.

Απάντηση: $(x-2)^2 + (y-1)^2 + (z+3)^2 = \frac{121}{14}$.

43. Προσδιορίστε την τετραγωνική επιφάνεια.

i)
$$z = \frac{x^2}{4} + \frac{y^2}{9}$$

ii)
$$z = \frac{y^2}{25} - x^2$$

iii)
$$x^2 + y^2 - z^2 = 16$$

iv)
$$x^2 + y^2 - z^2 = 0$$

v)
$$4z = x^2 + 4y^2$$

vi)
$$z^2 - x^2 - y^2 = 1$$

Απάντηση: i) Ελλεπτικό παραβολοειδές με $a=2,\,b=3,$ ii) υπερβολικό παραβολοειδές με $a=1,\,b=5,$ iii) μονόχωνο υπερβολοειδές με a=b=c=4, iv) κώνος, v) ελλειπτικό παραβολοειδές με $a=2,\,b=1,$ vi) δίχωνο παραβολοειδές με a=b=c=1.

44. Να κάνετε τις παρακάτω μετατροπές.

- i) $(4\sqrt{3}, 4, -4)$ από καρτεσιανές σε κυλινδρικές,
- ii) $(1, \sqrt{3}, -2)$ από καρτεσιανές σε σφαιρικές,
- iii) $(5, \pi/6, \pi/4)$ από σφαιρικές σε καρτεσιανές,
- iv) $(\sqrt{3}, \pi/6, 3)$ από κυλινδρικές σε καρτεσιανές.

Απάντηση: i) $(8, 6, \pi/4)$, ii) $(2\sqrt{2}, \pi/3, 3\pi/4)$, iii) $(5\sqrt{6}/4, 5\sqrt{2}/4, 5\sqrt{2}/2)$, iv) $(3/2, \sqrt{3}/2, 3)$.

- **45.** Μετατρέψτε τις παρακάτω εξισώσεις σε καρτεσιανές και περιγράψτε την επιφάνεια που εκφράζουν. Σε κάθε περίπτωση δίνεται το αρχικό σύστημα συντεταγμένων.
 - i) r = 3, κυλινδρικές,
 - ii) $r=4\sin\theta$, κυλινδρικές,
 - iii) $r^2 + z^2 = 1$, κυλινδρικές,
 - iv) $\phi = \pi/4$, σφαιρικές,
 - ν) $\rho \sin \phi = 2 \cos \theta$, σφαιρικές.

Απάντηση: i) $x^2 + y^2 = 3$, κύλινδρος, ii) $x^2 + (y-2)^2 = 4$, κύλινδρος, iii) $x^2 + y^2 + z^2 = 1$, σφαίρα, iv) $z = x^2 + y^2$, κώνος, v) $(x-1)^2 + y^2 = 1$, κύλινδρος.

- **46.** Δίνονται παρακάτω οι καρτεσιανές εξισώσεις επιφανειών. Να μετατραπούν σε κυλινδρικές και σφαιρικές συντεταγμένες.
 - i) $z = 3x^2 + 3y^2$,
 - ii) 2x + 3y + 4z = 1.

Απάντηση: i) Κυλινδρικές: z=3r, Σφαιρικές: $\rho=\frac{1}{3}\cot\phi\csc\phi$, ii) Κυλινδρικές: $2r\cos\theta+3r\sin\theta+4z=1$, Σφαιρικές: $2\rho\sin\phi\cos\theta+3\rho\sin\phi\sin\theta+4\rho\cos\phi=1$.