testFile

STL.	目录
011	bitset
	bitset
windo	ws 环境下的对拍
动态规	[划]
	占位
图论	
	KM
	prufer 序列
	spfa 最短路及负环
	一些定理
	二分图匹配(HK 匈牙利匹配)
	带花树
	带花树 2
	强连通(kosaraju)
	强连通(tarjan 无 vector)
	强连通(tarjan)
	拓扑排序
	数链剖分
	最大流
	最大流(double)
	最小费用最大流
	最小路径覆盖
	最近公共祖先(倍增)
	最近公共祖先(线段树)
	有源汇上下界最大小流
	朱刘算法
	树上启发式合并
	树分治
	欧拉回路
	点分树
	虚树
多项₹	ALT.
_ //_	多项式全家桶

	字符串.		18
		AC 自动机	18
3		KMP 2	18
3		kmp	19
3		regex	19
3		Trie	20
4		可持久化字典树	20
4		后缀数组	20
4		后缀自动机	21
4		马拉车	21
4	搜索		21
5		占位	21
5	数据结构	构	21
5		CDQ 分治	21
6		kruskal 重构树	22
6		LCT	22
7		Splay	23
7		ST 表	23
8		Treap	24
8		y 总 Splay Plus	24
8		y 总 Splay	25
9		主席树	26
10		仙人掌	26
10		区间 max	27
11		回滚莫队	28
11		带修真队	28
11		普通莫队	29
12		树状数组(fenwick)	29
12		线段树合并分裂	30
13		舞蹈链(多重覆盖)	
14		舞蹈链(精确覆盖)	
14	数论	7451 M. (40 9018 M.)	
15		BSGS 扩展 BSGS	
16		burnside&polya	
16		Cipolla	
16		exgcd	
		-	

	FFT	34		枚举子集	46
	FWT	34		模拟退火	46
	lucas 求组合数	35	测试时常	常用的代码	47
	min_25 筛	35	35 算法基础		47
	NTT	36		占位	47
	Pollard_Rho+Miller-Robin	36	线性代数	ψ	47
	prufer	37		矩阵类模板_加减乘快速幂	47
	中国剩余定理	38		矩阵类模板_稀疏矩阵乘法	48
	二次剩余	38		矩阵行列式	48
	勾股数圆上格点数	39		线性基 2	48
	博弈拾遗	40		线性基模板	49
	描述	40		高斯消元	49
	先手必胜条件	40	组合数学	<u>y</u> 7	49
	卡特兰	40		斯特林数	49
	卡特兰三角	40	计算几亿	可	50
	原根	40		zyx 的计算几何	50
	快速幂	41		几何一些定理(或知识点?	55
	扩展欧拉定理	41		球体积交和并	55
	扩欧求逆元	41		自适应辛普森	55
	数学知识	41		计算几何全家桶	55
	整除分块(向上向下取整)	41	高精度.		58
	格雷码	42		高精度 GCD	58
	欧拉筛(素数)	42		高精度乘法(FFT)	59
	欧拉筛(莫比乌斯)	42		高精度乘法(乘单精)	60
	欧拉降幂	42		高精度乘法(朴素)	60
	组合数	42		高精度减法	60
	莫比乌斯反演	43		高精度加法	61
	逆元线性递推 inv 阶乘逆元组合数	44		高精度取模(对单精)	61
杂项		44		高精度幂	61
	fread 快读	44		高精度平方根	62
	int128 输出	44		高精度进制转换	63
	mt19937	44		高精度阶乘	63
	快读 read	45		高精度除法(除单精)	63
	整体二分	45		高精度除法(除高精)	63
	朝鲜大哥快读	45		龟速乘快速幂(快速幂爆 longlong	64

```
while(t--)
                                                                                    scanf("%d %d",&n,&m);
                                                                                    for(int i=0;i<m;i++)</pre>
STL
                                                                                              scanf("%s",str);
                                                                                              number[i]=bitset<500>(str);
bitset
                                                                                    int len=1<<m,ans=m+1;</pre>
C++ bitset 用法
                                                                                    for(int i=1;i<len;i++)</pre>
                                                                                              int t=i,s=0;
                                                                                              bitset<500> num(0);
      C++的 bitset 在 bitset 头文件中,它是一种类似数组
                                                                                              for(int j=0;j<m&&t>0;j++)
      的结构,它的每一个元素只能是0或1,每个元素仅用
      1 bit 空间。
                                                                                                        if(t&1)
                                                                                                        {
      bitset 数组与 vector 数组区别
                                                                                                                  num=num
      bitset 声明数组:bitset<100> number[10]
                                                               |number[j];
      vector 声明数组:vector number[10];
                                                                                                                  S++;
      bitset<每个 bitset 元素的长度(没有占满前面全部自动
      补 0)> 元素
                                                                                                        t>>=1:
      bitset 内置转化函数: 可将 bitset 转化为
      string,unsigned long,unsigned long long.
                                                                                              if(num.count()==n) ans=min
                                                               (ans,s);
构造
                                                                                    if(ans==m+1) printf("-1\n");
         bitset<4> bitset1; //无参构造,长度为4,默认每
                                                                                    else printf("%d\n",ans);
 一位为0
                                                                         return 0;
   bitset<8> bitset2(12); //长度为8,二进制保存,前面用
0补充
   string s = "100101";
   bitset<10> bitset3(s);
                             //长度为10,前面用0补充
                                                               windows 环境下的对拍
                                                               @echo off
   char s2[] = "10101";
                                                                :100p
   bitset<13> bitset4(s2);
                              //长度为13,前面用0补充
                                                                          dataa.exe > data.txt
                                                                          biaocheng.exe < data.txt > ac.txt
   cout << bitset1 << endl;</pre>
                                                                          A.exe < data.txt > test.txt
                               //00001100
   cout << bitset2 << endl;</pre>
                                                                          fc ac.txt test.txt
   cout << bitset3 << endl;</pre>
                               //0000100101
                                                                         if not errorlevel 1 goto loop
   cout << bitset4 << endl;</pre>
                               //00000000010101
                                                               pause
                                                               goto loop
函数
         bitset<8> foo ("10011011");
                                                               其中要改的部分(标红辽):
   cout << foo.count() << endl;</pre>
                                          (count 函数用来
                                                               @echo off
求bitset 中1的位数,foo中共有5个1
                                                               :loop
   cout << foo.size() << endl; //8</pre>
                                          (size 函数用来求
                                                                dataa exe > data txt
bitset 的大小,一共有8位
                                                                $\color{red}{biaocheng.exe}$ < data.txt > ac.txt
                                                                $\color{red}{A.exe}$ < data.txt > test.txt
                                             (test 函数用
                                                                fc ac.txt test.txt
   cout << foo.test(0) << endl; //true</pre>
                                                                if not errorlevel 1 goto loop
来查下标处的元素是 0 还是 1 ,并返回 false 或 true,此处 foo[0]为
                                                               pause
1,返回true
                                                               goto loop
   cout << foo.test(2) << endl; //false</pre>
                                             (同理,foo
[2]为0,返回false
                                           (any 函数检查b
   cout << foo.any() << endl;</pre>
                               //true
                                                               文件以.bat 作为后缀
itset 中是否有 1
   cout << foo.none() << endl;</pre>
                                 //false
                                             (none 函数检
查bitset 中是否没有 1
   cout << foo.all() << endl;</pre>
                                             (all 函数检查
                                //false
bitset 中是全部为1
                                                                将三个程序(数据生成文件(dataa),标程或暴力代码(biaocheng),
                                                                要看的代码(A))放在同一目录下,
                                                               记得加 freopen
2019-2020 ICPC Asia Taipei-Hsinchu Regional Contest (H
                                                               随机数记得加 srand((int)time(0));
#include <bits/stdc++.h>
#define 11 long long
using namespace std;
                                                               随机数生成 code
int t,n,m;
char str[1010];
                                                               #include <iostream>
bitset<500> number[30];
                                                               #include <cstdlib>
int main() {
                                                               #include <ctime>
         ios::sync_with_stdio(false); cin.tie(0); cout.t
                                                               using namespace std;
   //freopen("test.in","r",stdin);
//freopen("test.out","w",stdout);
                                                               \quad \quad \text{int main()} \{
                                                                          freopen("data.txt", "w", stdout);
         scanf("%d",&t);
```

```
for (11 i = 1; i <= N; i++) {
    srand((int)time(0));
                                                                                          if (!visx[i] && !slk[i] && !check(i)) retur
    int T = rand() % 100000;
                                                                         n:
    cout << T << endl:
                                                                                 }
    for (int i = 0; i < T; i++){</pre>
                                                                             }
           cout << rand() % 100;
                                                                             void init() {
                                                                                 for (ll i = 1; i <= N; i++) {
                                                                                     link_x[i] = link_y[i] = 0;
visy[i] = false;
                                                                                  for (ll i = 1; i <= N; i++) {
rand() 似乎只有三万多,需要更大的数的话要乘一下
                                                                                     hx[i] = 0;
for (11 j = 1; j <= N; j++) {
                                                                                         if (hx[i] < mp[i][j]) hx[i] = mp[i][j];</pre>
动态规划
                                                                         } km;
占位
                                                                         int main() {
                                                                             ios::sync_with_stdio(0);
图论
                                                                             11 n;
                                                                             cin >> n;
                                                                             11 \text{ ans} = 0;
                                                                             for (int i = 1; i <= n; i++) \{
#include<bits/stdc++.h>
                                                                                 ll a, b, c, d;
cin >> a >> b >> c >> d;
ans += a * a + b * b;
for (int j = 1; j <= n; j++) {
    km.mp[i][j] = -(c + d * (j - 1)) * (c + d * (j</pre>
using namespace std;
typedef long long 11;
const 11 maxN = 310;
const ll INF = 1e16;
                                                                         - 1));
                                                                                        cout << -km.mp[i][j] << ' ';</pre>
struct KM {
                                                                                       cin >> km.mp[i][j];
                                                                                       km.mp[i][j] = -km.mp[i][j];
    11 mp[maxN][maxN], link_x[maxN], link_y[maxN], N;
    bool visx[maxN], visy[maxN];
11 que[maxN << 1], top, fail, pre[maxN];</pre>
                                                                                 }
                                                                                   cout << endl;</pre>
    11 hx[maxN], hy[maxN], slk[maxN];
                                                                             km.N = n;
    inline 11 check(ll i) {
                                                                             km.init();
        visx[i] = true;
                                                                             for (int i = 1; i <= km.N; i++) km.bfs(i);</pre>
        if (link_x[i]) {
   que[fail++] = link_x[i];
                                                                             for (int i = 1; i <= n; i++) ans -= km.mp[i][km.link_x</pre>
                                                                         [i]];
            return visy[link_x[i]] = true;
                                                                             cout << ans << endl;</pre>
        while (i) {
            link_x[i] = pre[i];
            swap(i, link_y[pre[i]]);
                                                                         prufer 序列
        return 0;
                                                                         #include <iostream>
    }
                                                                         #include <cstdio>
                                                                         #include <cstring>
    void bfs(ll S) {
                                                                         #include <algorithm>
        for (ll i = 1; i <= N; i++) {
           slk[i] = INF;
                                                                         using namespace std;
            visx[i] = visy[i] = false;
                                                                         const int N = 100010;
        top = 0:
        fail = 1;
        que[0] = S;
                                                                         int f[N], d[N], p[N];
        visy[S] = true;
        while (true) {
                                                                         void tree2prufer()
            while (top < fail) {
                                                                             for (int i = 1; i < n; i ++ )</pre>
                for (ll i = 1, j = que[top++]; i <= N; i++)</pre>
{
                                                                                 scanf("%d", &f[i]);
                    if (!visx[i] && slk[i] >= (d = hx[i] + h
                                                                                 d[f[i]] ++;
y[j] - mp[i][j])) {
                         pre[i] = j;
                         if (d) slk[i] = d;
                                                                             for (int i = 0, j = 1; i < n - 2; j ++ )
                         else if (!check(i)) return;
                                                                                 while (d[j]) j ++ ;
                }
                                                                                 p[i ++ ] = f[j];
while (i < n - 2 && -- d[p[i - 1]] == 0 && p[i - 1]
            d = INF;
                                                                          < j) p[i ++ ] = f[p[i - 1]];
            for (ll i = 1; i <= N; i++) {
    if (!visx[i] && d > slk[i]) d = slk[i];
                                                                             for (int i = 0; i < n - 2; i ++ ) printf("%d ", p[i]);</pre>
            for (ll i = 1; i <= N; i++) {
                                                                         }
                if (visx[i]) hx[i] += d;
                else slk[i] -= d;
                                                                         void prufer2tree()
                if (visy[i]) hy[i] -= d;
```

```
for (int i = 1; i <= n - 2; i ++ )</pre>
                                                                 数,ny 为右边点数
                                                                    int nx,ny;//左右顶点数量
       scanf("%d", &p[i]);
                                                                    vector<int>bmap[maxn];
       d[p[i]] ++;
                                                                    int cx[maxn];//cx[i]表示左集合i 顶点所匹配的右集合的顶点
   p[n - 1] = n;
                                                                    int cy[maxn]; //cy[i]表示右集合i 顶点所匹配的左集合的顶点
                                                                 序号
   for (int i = 1, j = 1; i < n; i ++, j ++)
                                                                    int dx[maxn];
                                                                    int dy[maxn];
       while (d[j]) j ++ ;
                                                                    int dis;
 f[j] = p[i]; \\  while (i < n - 1 && -- d[p[i]] == 0 && p[i] < j) f \\  [p[i]] = p[i + 1], i ++; 
                                                                    bool bmask[maxn];
                                                                    void init(int a,int b){
                                                                        nx=a,ny=b;
                                                                        for(int i=0;i<=nx;i++){</pre>
                                                                           bmap[i].clear();
   for (int i = 1; i <= n - 1; i ++ ) printf("%d ", f[i]);</pre>
}
                                                                    void add_edge(int u,int v){
int main()
                                                                        bmap[u].push_back(v);
   scanf("%d%d", &n, &m);
if (m == 1) tree2prufer();
                                                                    bool searchpath(){//寻找 增广路径
                                                                        queue<int>0:
   else prufer2tree();
                                                                        dis=inf:
                                                                        memset(dx,-1,sizeof(dx));
   return 0;
                                                                        memset(dy,-1,sizeof(dy));
}
                                                                        for(int i=1;i<=nx;i++){//cx[i]表示左集合i 顶点所匹配
                                                                的右集合的顶点序。
                                                                           if(cx[i]==-1){//将未遍历的节点 入队 并初始化次节
spfa 最短路及负环
                                                                 点距离为 0
                                                                               Q.push(i);
#include<hits/stdc++.h>
using namespace std;
                                                                               dx[i]=0;
typedef long long 11;
                                                                        }//广度搜索增广路径
const int N = 1 << 20;
                                                                        while(!Q.empty()){
struct edge {
   ll to, len;
                                                                           int u=0.front();
                                                                           Q.pop();
                                                                           if(dx[u]>dis) break;//取右侧节点
                                                                           for(int i=0;i<bmap[u].size();i++){</pre>
vector<edge> g[N];
11 d[N], cnt[N], vis[N];
                                                                               int v=bmap[u][i];//右侧节点的增广路径的距离
                                                                               if(dy[v]==-1){
bool spfa(ll s, ll n) {
                                                                                   dy[v]=dx[u]+1;//v 对应的距离 为 u 对应距离
   queue<int> que;
                                                                 †117 1
   for (int i = 1; i <= n; i++) { //防止不连通, 全加进去
                                                                                   if(cy[v]==-1)dis=dy[v];
       que.push(i);
                                                                                   else{
       vis[i] = 1;
                                                                                      dx[cy[v]]=dy[v]+1;
                                                                                       Q.push(cy[v]);
   while (!que.empty()) {
       11 p = que.front();
                                                                               }
       que.pop();
                                                                           }
       vis[p] = 0;
       vIs[p] = 0;
for (auto x:g[p]) {
   if (d[x.to] > d[p] + x.len) {
      d[x.to] = d[p] + x.len;
      cnt[x.to] = cnt[p] + 1;
}
                                                                        return dis!=inf;
                                                                    int findpath(int u){//寻找路径 深度搜索
                                                                        for(int i=0;i<bmap[u].size();i++){</pre>
              if (!vis[x.to]) {
                                                                           int v=bmap[u][i];//如果该点没有被遍历过 并且距离
                  if (cnt[x.to] > n) return 0;
                                                                 为上一节点+1
                  vis[x.to] = 1;
                                                                           if(!bmask[v]&&dy[v]==dx[u]+1){//对该点染色
                  que.push(x.to);
                                                                               bmask[v]=1;
                                                                               if(cy[v]!=-1&&dy[v]==dis)continue;
          }
                                                                               if(cy[v]==-1||findpath(cy[v])){
       }
                                                                                   cy[v]=u;cx[u]=v;
                                                                                   return 1;
   return 1;
                                                                           }
                                                                        return 0:
一些定理
                                                                    int MaxMatch(){//得到最大匹配的数目
Hall 定理:若二分图存在完美匹配,且大小为 n,那么取任意 1≤k≤n,
                                                                        int res=0:
均满足 X 集选出 k 个不同的点,它们连向 Y 集的点的个数不小于 k。
                                                                        memset(cx,-1,sizeof(cx));
                                                                        memset(cy,-1,sizeof(cy));
                                                                        while(searchpath()){
二分图匹配(HK 匈牙利匹配)
                                                                           memset(bmask,0,sizeof(bmask));
                                                                           for(int i=1;i<=nx;i++){</pre>
//大量使用了memset,但常数貌似很小?HDU6808 跑了998ms (限制5
                                                                               if(cx[i]==-1){
   res+=findpath(i);
000ms), 然而这个代int main()不是HDU6808的
#include<bits/stdc++.h>
using namespace std;
                                                                           }
const int maxn=505;// 最大点数
                                                                        return res;
const int inf=0x3f3f3f3f;// 距离初始值
struct HK_Hungary{//这个板子从1开始,0点不能用,nx 为左边点
                                                                }HK;
```

```
FOR(i,1,n)cout << lk[i] << ' ';
int main(){
                                                                                   return 0:
    int nn.n.m:
                                                                       }
    cin>>nn:
    while(nn--){
        scanf("%d%d",&n,&m);
                                                                       带花树 2
        HK.init(n,m);//左端点和右端点数量
        for(int i=1;i<=n;i++){</pre>
                                                                       // graph
            int snum;
                                                                       template <typename T>
            cin>>snum;
                                                                       class graph {
            int v;
                                                                        public:
            for(int j=1;j<=snum;j++){</pre>
                                                                         struct edge {
                cin>>v;
                                                                           int from:
                HK.add_edge(i,v);//连边
                                                                           int to;
                                                                           T cost:
        cout<<HK.MaxMatch()<<endl;//求最大匹配
                                                                         vector<edge> edges;
                                                                         vector<vector<int> > g;
    return 0:
}
                                                                         graph(int _n) : n(_n) { g.resize(n); }
                                                                         virtual int add(int from, int to, T cost) = 0;
                                                                       };
带花树
                                                                       // undirectedgraph
                                                                       template <typename T>
                                                                       class undirectedgraph : public graph<T> {
0000n00 n 0000 m 000 000000000000000
                                                                        public:
♦♦₽
                                                                         using graph<T>::edges;
00000.00
                                                                         using graph<T>::g;
using graph<T>::n;
03000 n 000000000 i 000000 o 000 i po
                                                                         undirectedgraph(int _n) : graph<T>(_n) {}
int add(int from, int to, T cost = 1) {
                                                                           assert(0 <= from && from < n && 0 <= to && to < n);
#include<bits/stdc++.h>
                                                                           int id = (int)edges.size();
using namespace std;
                                                                           g[from].push_back(id);
#define I inline int
                                                                           g[to].push_back(id);
#define V inline void
                                                                           edges.push_back({from, to, cost});
#define FOR(i,a,b) for(int i=a;i<=b;i++)
#define REP(u) for(int i=h[u],v;v=e[i].t,i;i=e[i].n)
const int N=1e3+1,M=1e5+1;</pre>
                                                                           return id:
                                                                       };
queue<int>q;
int n,m,tot,qwq,ans;
int h[N],lk[N],tag[N],fa[N],pre[N],dfn[N];
                                                                       // blossom / find_max_unweighted_matching
                                                                       template <typename T>
struct edge{int t,n;}e[M];
                                                                       vector<int> find_max_unweighted_matching(const undirected
V link(int x,int y){lk[x]=y,lk[y]=x;}
                                                                       graph<T> &g) {
  std::mt19937 rng(chrono::steady_clock::now().time_since
V add_edge(int x,int y){
          if(!lk[x]&&!lk[y])link(x,y),ans++;
                                                                        epoch().count());
           e[++tot]=(edge){y,h[x]},h[x]=tot;
e[++tot]=(edge){x,h[y]},h[y]=tot;
                                                                         vector<int> match(g.n, -1);
vector<int> aux(g.n, -1);
                                                                                                          1/ 600
                                                                                                          // hoooo
                                                                         vector<int> label(g.n);
                                                                                                          // "o" or
V rev(int x){if(x)rev(x[pre][lk]),link(x,pre[x]);}
                                                                         vector<int> orig(g.n);
                                                                                                          11 0000
I find(int x){return fa[x]==x?x:fa[x]=find(fa[x]);}
                                                                         vector<int> parent(g.n, -1); // ♦♦♦Ж♦
I lca(int x,int y){
                                                                         queue<int> q;
           for(qwq++;;x=x[lk][pre],swap(x,y))
                                                                         int aux_time = -1;
                      if(dfn[x=find(x)]==qwq)return x;
                      else if(x)dfn[x]=qwq;
                                                                         auto lca = [&](int v, int u) {
V shrink(int x,int y,int p){
    for(;find(x)!=p;x=pre[y]){
                                                                           aux time++:
                                                                           while (true) {
                      pre[x]=y,y=lk[x],fa[x]=fa[y]=p;
if(tag[y]==2)tag[y]=1,q.push(y);
                                                                               if (aux[v] == aux\_time) { // <math>\phi \tilde{u} \phi \tilde{u} \phi \tilde{u} \phi \tilde{g} \phi \chi \phi \phi}
                                                                                 return v;
I blossom(int u){
                                                                               aux[v] = aux_time;
           FOR(i,1,n)tag[i]=pre[i]=0,fa[i]=i;
           tag[u]=1,q=queue<int>(),q.push(u);
for(int p;!q.empty();q.pop())REP(u=q.front())
                                                                               if (match[v] == -1) {
                                                                                 v = -1:
                                                                               } else {
                      \textbf{if}(\texttt{tag[v]==1})
                                                                                 v = orig[parent[match[v]]]; // ΦΦΦΦΦΚΦΦΚ
                                 p=lca(u,v),shrink(u,v,p),sh
                                                                        0000400
rink(v,u,p);
                                                                               }
                      else if(!tag[v]){
                                 pre[v]=u,tag[v]=2;
if(!lk[v])return rev(v),1;
                                                                              swap(v, u);
                                  else tag[lk[v]]=1,q.push(lk
                                                                         }; // Lca
[v]);
                                                                         auto blossom = [&](int v, int u, int a) {
  while (orig[v] != a) {
           return 0;
                                                                             parent[v] = u;
int main(){
                                                                              u = match[v];
           scanf("%d%d",&n,&m);
                                                                             if (label[u] == 1) { // ��'���Ï"o" ����
           for(int x,y;m--;add_edge(x,y))scanf("%d%d",&x,&
y);
                                                                               label[u] = 0:
           FOR(i,1,n)ans+=!lk[i]&&blossom(i);
                                                                               q.push(u);
           cout<<ans<<'\n';</pre>
```

```
orig[v] = orig[u] = a; // ����
                                                                             return match:
      v = parent[u];
  }; // blossom
                                                                           强连通 (kosaraju)
  auto augment = [&](int v) {
    while (v != -1) {
                                                                           #include <bits/stdc++.h>
     int pv = parent[v];
                                                                           using namespace std;
     int next_v = match[pv];
match[v] = pv;
match[pv] = v;
                                                                           struct SCC {
                                                                               static const int MAXV = 100000;
                                                                               int V;
      v = next_v;
                                                                               vector<int> g[MAXV], rg[MAXV], vs;
bool used[MAXV];
  }; // augment
                                                                               int cmp[MAXV];
  auto bfs = [&](int root) {
                                                                               void add_edge(int from, int to) {
    fill(label.begin(), label.end(), -1);
                                                                                   g[from].push_back(to);
    iota(orig.begin(), orig.end(), 0);
                                                                                    rg[to].push_back(from);
    while (!q.empty()) {
      q.pop();
                                                                               void dfs(int v) {
7.500(),
// 00'0000ï "o", 000000"0"0000"o", "1"0
                                                                                   used[v] = 1;
for (int i = 0; i < g[v].size(); i++) {
   if (!used[g[v][i]]) dfs(g[v][i]);</pre>
   label[root] = 0;
    while (!q.empty()) {
                                                                                    vs.push_back(v);
      int v = q.front();
                                                                               }
      q.pop();
for (int id : g.g[v]) {
                                                                               void \ rdfs(int \ v, \ int \ k) \ \{
        auto &e = g.edges[id];
int u = e.from ^ e.to ^ v;
                                                                                   used[v] = 1;
        if (label[u] == -1) { // ♠ũ♠ీ ♠õ♠
label[u] = 1; // ♠♀♠ "i"
                                                                                    cmp[v] = k;
                                                                                    for (int i = 0; i < rg[v].size(); i++) {
                                                                                       if (!used[rg[v][i]]) rdfs(rg[v][i], k);
          parent[u] = v;
          if (match[u] == -1) { // \sim \tilde{q} \sim \delta \tilde{p} \sim 0
                                                                               }
                                    // WOOOOOOO
            augment(u);
            return true;
                                                                               int solve() {
                                                                                   memset(used, 0, sizeof(used));
          vs.clear();
for (int v = 1; v <= V; v++) {</pre>
003000
          label[match[u]] = 0;
                                                                                       if (!used[v]) dfs(v);
          q.push(match[u]);
          continue;
                                                                                    memset(used, 0, sizeof(used));
        } else if (label[u] == 0 && orig[v] != orig[u]) {
// Φῦ ΦΦΘ Φ ΨΦ Τ΄"ο" Φ Φ Φῦ Φ΄ Φ΄" Φ"
int a = lca(orig[v], orig[u]);
// Φ Δ LCA Z Φ Φ Φ Φ
                                                                                    for (int i = (int)vs.size() - 1; i >= 0; i--) {
                                                                                        if (!used[vs[i]]) rdfs(vs[i], ++k);
          blossom(u, v, a);
                                                                                   return k:
          blossom(v, u, a);
     }
                                                                               void init(int n) {
    return false;
                                                                                   vs.clear();
 }; // bfs
                                                                                    for (int i = 0; i < MAXV; i++) {</pre>
                                                                                        g[i].clear();
rg[i].clear();
  auto greedy = [&]() {
   vector<int> order(g.n);
                                                                                        used[i] = 0;
    // 000000 order
                                                                                        cmp[i] = 0;
    iota(order.begin(), order.end(), 0);
    shuffle(order.begin(), order.end(), rng);
    } scc;
   for (int i : order) {
  if (match[i] == -1) {
                                                                           //记得调用 init()
        for (auto id : g.g[i]) {
  auto &e = g.edges[id];
  int to = e.from ^ e.to ^ i;
                                                                           强连通 (tarian 无 vector)
          if (match[to] == -1) {
            match[i] = to;
                                                                           #include <bits/stdc++.h>
            match[to] = i;
                                                                           using namespace std:
            break;
                                                                           struct SCC {
                                                                               static const int MAXN = 5000;
                                                                                static const int MAXM = 2000000;
     }
                                                                               int dfs_clock, edge_cnt = 1, scc_cnt;
                                                                               int drs_case, rest.
int head[MAXN];
int dfn[MAXN], lowlink[MAXN];
int sccno[MAXN];
  }; // greedy
  // h @ @ ' @ @ @ @ @ @ @ @
 greedy();
// Φοδρ Φο Φο Φο Φο Φο
                                                                               stack<int> s;
  for (int i = 0; i < g.n; i++) {
  if (match[i] == -1) {</pre>
                                                                               struct edge {
                                                                                   int v, next;
     bfs(i);
                                                                                } e[MAXM];
```

```
void add_edge(int u, int v) {
                                                                                }
        e[edge_cnt].v = v;
e[edge_cnt].next = head[u];
                                                                                void solve(int n) {
                                                                                    dfs_clock = scc_cnt = 0;
        head[u] = edge_cnt++;
                                                                                    memset(sccno, 0, sizeof(sccno));
memset(dfn, 0, sizeof(dfn));
                                                                                    memset(lowlink, 0, sizeof(lowlink));
for (int i = 1; i <= n; i++) {</pre>
    void tarjan(int u) {
                                                                                        if (!dfn[i]) dfs(i);
        dfn[u] = lowlink[u] = ++dfs_clock; //每次dfs, u的
次序号增加1
                                                //将u入栈
        s.push(u);
                                                                            } scc;
        for (int i = head[u]; i != -1; i = e[i].next) // 访
问从 u 出发的边
                                                                            // scc_cnt 为SCC 计数器, sccno[i]为i 所在SCC 的编号
        {
                                                                            // vector<int> g[MAXN] 中加边
             v = e[i].v;
                                                                            //之后再补充init()
            if (!dfn[v]) //如果v 没被处理过
                 tarjan(v); // dfs(v)
lowlink[u] = min(lowlink[u], lowlink[v]);
                                                                            拓扑排序
            } else if (!sccno[v])
lowlink[u] = min(lowlink[u], dfn[v]);
                                                                            #include <bits/stdc++.h>
                                                                            using namespace std;
         if (dfn[u] == lowlink[u]) {
                                                                            const int MAXN = 100000;
             scc_cnt++;
            do {
    v = s.top();
                                                                            int c[MAXN];
                                                                            int topo[MAXN], t, V;
                 s.pop();
                                                                            vector<int> g[MAXN];
            sccno[v] = scc_cnt;
} while (u != v);
                                                                            bool dfs(int u) {
                                                                                c[u] = -1;
for (int i = 0; i < g[u].size(); i++) {</pre>
    }
                                                                                    int v = g[u][i];
if (c[v] < 0)
    int find_scc(int n) {
        for (int i = 1; i <= n; i++)
    if (!dfn[i]) tarjan(i);</pre>
                                                                                        return false;
                                                                                    else if (!c[v] && !dfs(v))
        return scc_cnt;
                                                                                        return false;
                                                                                c[u] = 1;
topo[t--] = u;
    void init() {
        return true:
                                                                            bool toposort(int n) {
                                                                                V = n;
        memset(sccno, 0, sizeof(sccno));
        memset(dfn, 0, sizeof(dfn));
memset(lowlink, 0, sizeof(lowlink));
                                                                                t = n:
                                                                                memset(c, 0, sizeof(c));
                                                                                for (int u = 1; u <= V; u++)
    if (!c[u] && !dfs(u)) return false;</pre>
} scc;
                                                                                return true;
强连通 (tarjan)
#include <bits/stdc++.h>
                                                                            数链剖分
using namespace std;
                                                                            11 fa[N], son[N], dep[N], siz[N], dfn[N], rnk[N], top[N];
struct SCC {
                                                                            11 dfscnt;
    static const int MAXN = 100000;
                                                                            vector<ll> g[N];
    vector<int> g[MAXN];
int dfn[MAXN], lowlink[MAXN], sccno[MAXN], dfs_clock,
                                                                            ll tree[N << 1];
ll lazy[N << 1];</pre>
scc_cnt;
    stack<int> S;
                                                                            void dfs1(ll u, ll f, ll d) {
                                                                                son[u] = -1;
    void dfs(int u) {
                                                                                siz[u] = 1;
        dfn[u] = lowlink[u] = ++dfs_clock;
                                                                                fa[u] = f;
                                                                                dep[u] = d;
         S.push(u);
                                                                                dep[u] - u,
for (auto v:g[u]) {
    if (v == f) continue;
    dfs1(v, u, d + 1);
    siz[u] += siz[v];
    if (son[u] == -1 || siz[v] > siz[son[u]]) son[u] =
        for (int i = 0; i < g[u].size(); i++) {</pre>
            int v = g[u][i];
if (!dfn[v]) {
                 dfs(v);
                 lowlink[u] = min(lowlink[u], lowlink[v]);
             } else if (!sccno[v]) {
                                                                            ٧;
                 lowlink[u] = min(lowlink[u], dfn[v]);
                                                                               }
                                                                            void dfs2(11 u, 11 t) {
    dfn[u] = ++dfscnt;
        if (lowlink[u] == dfn[u]) {
             ++scc cnt;
             for (;;) {
                                                                                rnk[dfscnt] = u;
                 int x = S.top();
                                                                                top[u] = t;
                                                                                if (son[u] == -1) return;
                 S.pop();
                 sccno[x] = scc_cnt;
                                                                                dfs2(son[u], t);
                 if (x == u) break;
                                                                                for (auto v:g[u]) {
                                                                                    if (v == son[u] || v == fa[u]) continue;
        }
                                                                                    dfs2(v, v);
```

```
change\_range(1,\ 1,\ N,\ dfn[top[a]],\ dfn[a],\ x);
}
                                                                                                        ]~dfn[a]
                                                                                        //dfn[top[a]]~d
a = fa[top[a]];
11 lca(11 a, 11 b) {
    while (top[a] != top[b]) {
        if (dep[top[a]] < dep[top[b]]) swap(a, b);</pre>
                                                                                    if (dep[a] > dep[b]) swap(a, b);
         a = fa[top[a]];
                                                                                    change range(1, 1, N, dfn[a], dfn[b], x);
     return dep[a] < dep[b] ? a : b;
                                                                                    //if (a != b) change_range(1, 1, N, dfn[a] + 1, dfn[b],
}
                                                                                 x);
                                                                                    //dfn[a]\sim dfn[b],x
void init() {
   for (ll i = 0; i < N; i++) g[i].clear();</pre>
    for (ll i = 0; i < (N << 1); i++) {
        tree[i] = 0;
lazy[i] = 0;
                                                                               最大流
    dfscnt = 0;
                                                                               #include <bits/stdc++.h>
}
                                                                               using namespace std;
                                                                               typedef long long 11;
void pushdown(ll k, ll l, ll r) {
                                                                                struct Edge {
    if (k >= N || lazy[k] == 0) return;
ll len = (r - l + 1) / 2;
                                                                                    11 from, to, cap, flow;
                                                                                    Edge(ll a, ll b, ll c, ll d) : from(a), to(b), cap(c),
     tree[k << 1] = tree[k << 1] + len * lazy[k];</pre>
                                                                                 flow(d) {}
    tree[k << 1 | 1] = tree[k << 1 | 1] + len * lazy[k];
lazy[k << 1] = lazy[k << 1] + lazy[k];
lazy[k << 1 | 1] = lazy[k << 1 | 1] + lazy[k];</pre>
                                                                               struct Dinic {
    lazy[k] = 0;
                                                                                    static const ll maxn = 10000;
}
                                                                                    static const 11 inf = 0x3f3f3f3f3f3f3f3f3f3;
                                                                                    11 N, M, S, T;
11 merge_range(11 a, 11 b) {
                                                                                    vector<Edge> edges;
    11 \text{ ans} = a + b;
                                                                                    vector<ll> G[maxn];
     return ans;
                                                                                    bool vis[maxn];
                                                                                    11 d[maxn];
                                                                                    11 cur[maxn];
if (r < ql || qr < 1)return;
if (ql <= 1 && r <= qr) {</pre>
                                                                                    void AddEdge(ll from, ll to, ll cap) {
                                                                                         edges.push_back(Edge(from, to, cap, 0));
         tree[k] = tree[k] + x * (r - 1 + 1);
lazy[k] = lazy[k] + x;
                                                                                         edges.push_back(Edge(to, from, 0, 0));
                                                                                         M = edges.size();
                                                                                         G[from].push_back(M - 2);
    pushdown(k, 1, r);
ll mid = (1 + r) >> 1;
change_range(k << 1, 1, mid, ql, qr, x);
change_range(k << 1 | 1, mid + 1, r, ql, qr, x);
tree[k] = merge_range(tree[k << 1], tree[k << 1 | 1]);</pre>
                                                                                        G[to].push_back(M - 1);
                                                                                    bool BFS() {
                                                                                        memset(vis, 0, sizeof(vis));
                                                                                         queue<11> Q;
                                                                                         Q.push(S);
                                                                                        d[S] = 0;
11 query_range(l1 k, l1 l, l1 r, l1 q1, l1 qr) {
                                                                                         vis[S] = 1;
    if (r < ql || qr < l)return 0;
if (ql <= l && r <= qr) {
                                                                                         while (!Q.empty()) {
                                                                                             11 x = Q.front();
         return tree[k];
                                                                                             Q.pop();
                                                                                             for (ll i = 0; i < G[x].size(); i++) {</pre>
    pushdown(k, 1, r);
                                                                                                  Edge& e = edges[G[x][i]];
     11 \text{ mid} = (1 + r) >> 1;
                                                                                                  if (!vis[e.to] && e.cap > e.flow) {
    ll lq = query_range(k << 1, 1, mid, ql, qr);
ll rq = query_range(k << 1 | 1, mid + 1, r, ql, qr);
                                                                                                      vis[e.to] = 1;
                                                                                                      d[e.to] = d[x] + 1;
    return merge_range(lq, rq);
                                                                                                      Q.push(e.to);
                                                                                                 }
                                                                                             }
ll query_path(ll a, ll b) \{
    11 sum = 0;
                                                                                        return vis[T];
    while (top[a] != top[b]) {
         if (dep[top[a]] < dep[top[b]]) swap(a, b);</pre>
         sum = sum + query_range(1, 1, N, dfn[top[a]], dfn
                                                                                    ll DFS(ll x, ll a) {
[a]);
                                                                                        if (x == T || a == 0) return a;
11 flow = 0, f;
         //dfn[top[a]]~dfn[a]
         a = fa[top[a]];
                                                                                        for (ll% i = cur[x]; i < G[x].size(); i++) {
    Edge& e = edges[G[x][i]];
    if (d[x] + 1 == d[e.to] &&</pre>
    if (dep[a] > dep[b]) swap(a, b);
                                                                                                  (f = DFS(e.to, min(a, e.cap - e.flow))) > 0)
    sum = sum + query\_range(1, 1, N, dfn[a], dfn[b]);
                                                                                 {
    //边权
    //if (a != b) sum = sum + query_range(1, 1, N, dfn[a]
                                                                                                  edges[G[x][i] ^ 1].flow -= f;
+ 1, dfn[b]);
//dfn[a]~dfn[b].x
                                                                                                  flow += f;
                                                                                                  a -= f;
    return sum;
                                                                                                 if (a == 0) break;
}
                                                                                             }
void change_path(ll a, ll b, ll x) {
                                                                                         return flow;
    while (top[a] != top[b]) {
         if (dep[top[a]] < dep[top[b]]) swap(a, b);</pre>
```

```
11 Maxflow(11 S, 11 T) {
   this->S = S, this->T = T;
   11 flow = 0;
                                                                                   if (u == T) return limit;
                                                                                    double flow = 0;
                                                                                    for (int i = cur[u]; ~i && flow < limit; i =</pre>
       while (BFS()) {
   memset(cur, 0, sizeof(cur));
   flow += DFS(S, inf);
                                                                     ne[i])
                                                                                       cur[u] = i;
                                                                                        int ver = e[i];
        return flow;
                                                                                       if (d[ver] == d[u] + 1 && f[i] > 0)
} MF;
                                                                                           double t = find(ver, min(f[i], limit
                                                                     - flow)):
                                                                                           if (t < eps) d[ver] = -1;
f[i] -= t, f[i ^ 1] += t, flow += t;</pre>
//有源汇上下界最大流, 跑完可行流后, s-t 的最大流即为答案
//有源汇上下届最小流,不连无穷边, s-t 跑最大流,再加上 t-s 无穷
边, 再跑最大流, 无穷边流量为答案
                                                                                    return flow;
                                                                               }
//最大权闭合子图
//构造一个新的流网络,建一个源点 s 和汇点 t,从 s 向原图中所有点
                                                                                double Maxflow(int S, int T)
权为正数的点建一条容量为点权的边,
//从点权为负数的点向 t 建一条容量为点权绝对值的边,原图中各点建
                                                                                          this \rightarrow S = S, this \rightarrow T = T:
                                                                                   double r = 0, flow;
while (bfs()) while (flow = find(S, INF)) r
的边都建成容量为正无穷的边。
//然后求从 s 到 t 的最小割,再用所有点权为正的权值之和减去最小
割,就是我们要求的最大权值和了。
                                                                     += flow;
//最大密度子图
                                                                                void init() ///////
//01 分数规划
//addedge(S, V, m), addedge(E, 1), addedge(V, T, 2*g-deg(v)+m)
                                                                                          memset(h, -1, sizeof h);
//h(g)=n*m-maxflow(S,T)
                                                                                          idx = 0:
                                                                     } MF:
最大流 (double)
                                                                     // ? • • init
#include <iostream>
#include <cstring>
#include <algorithm>
                                                                     最小费用最大流
using namespace std;
                                                                     #include <bits/stdc++.h>
struct Dinic {
                                                                     using namespace std;
          static constexpr int N = 10010, M = 100010, INF
                                                                     typedef long long 11;
= 1e8;
           static constexpr double eps = 1e-8;
                                                                     struct Edge {
                                                                     11 from, to, cap, flow, cost;
Edge(l1 u, l1 v, l1 c, l1 f, l1 w):from(u), to(v), cap
(c), flow(f), cost(w) {}
           int S, T;
          int h[N], e[M], ne[M], idx;
          double f[M];
          struct MCMF {
                                                                        static const 11 maxn = 6000;
           void AddEdge(int a, int b, double c)
                                                                         static const 11 INF = 0x3f3f3f3f3f3f3f3f3;
                                                                        11 n, m;
              e[idx] = b, f[idx] = c, ne[idx] = h[a], h[a]
                                                                        vector<Edge> edges;
= idx ++ ;
                                                                         vector<11> G[maxn];
              e[idx] = a, f[idx] = 0, ne[idx] = h[b], h[b]
                                                                        11 ing[maxn];
= idx ++ :
                                                                        11 d[maxn];
                                                                         11 p[maxn]:
                                                                        11 a[maxn];
          bool bfs()
                                                                         void init(ll n) {
               int hh = 0, tt = 0;
                                                                            this->n = n;
for (ll i = 1; i <= n; i++) G[i].clear();
              memset(d, -1, sizeof d);
q[0] = S, d[S] = 0, cur[S] = h[S];
while (hh <= tt)</pre>
                                                                             edges.clear();
                  int t = q[hh ++ ];
for (int i = h[t]; ~i; i = ne[i])
                                                                         void add_edge(ll from, ll to, ll cap, ll cost) {
                                                                             from++, to++;//原板子无法使用 0 点, 故修改
                                                                             edges.push_back(Edge(from, to, cap, 0, cost));
                      int ver = e[i];
if (d[ver] == -1 && f[i] > 0)
                                                                             edges.push_back(Edge(to, from, 0, 0, -cost));
                                                                             m = edges.size();
                                                                            G[from].push_back(m - 2);
                          d[ver] = d[t] + 1;
                          cur[ver] = h[ver];
if (ver == T) return true;
                                                                            G[to].push_back(m - 1);
                          q[ ++ tt] = ver;
                                                                        \begin{tabular}{ll} bool & BellmanFord(ll s, ll t, ll\& flow, ll\& cost) \\ \hline \end{tabular}
                                                                            for (ll i = 1; i <= n; ++i) d[i] = INF;
memset(inq, 0, sizeof(inq));</pre>
                  }
                                                                             d[s] = 0, inq[s] = 1, p[s] = 0, a[s] = INF;
               return false;
                                                                             queue<11> Q;
                                                                             Q.push(s);
                                                                             while (!Q.empty()) {
          double find(int u, double limit)
                                                                                11 u = Q.front();
```

```
Q.pop();
            inq[u] = 0;
            for (ll i = 0; i < G[u].size(); ++i) {</pre>
                Edge& e = edges[G[u][i]];
                if (e.cap > e.flow && d[e.to] > d[u] + e.co
st) {
                     d[e.to] = d[u] + e.cost;
                     p[e.to] = G[u][i];
                     a[e.to] = min(a[u], e.cap - e.flow);
                     if (!inq[e.to]) {
                         O.push(e.to);
                         inq[e.to] = 1;
                }
           }
        if (d[t] == INF) return false;
        flow += a[t];
cost += (l1)d[t] * (l1)a[t];
        for (11 u = t; u != s; u = edges[p[u]].from) {
            edges[p[u]].flow += a[t];
edges[p[u] ^ 1].flow -= a[t];
        return true;
    //需要保证初始网络中没有负权圈
    11 MincostMaxflow(ll s, ll t, ll& cost) {
        S++,t++;//原板子无法使用 0 点,故修改
        11 flow = 0;
        cost = 0;
        \textbf{while} \ (\texttt{B\'ellmanFord}(\texttt{s}, \ \texttt{t}, \ \texttt{flow}, \ \texttt{cost}));\\
        return flow;
} mcmf; // 若固定流量 k,增广时在 fLow+a>=k 的时候只增广 k-f Low 单位的流量,然后终止程序
//下标从0开始
```

最小路径覆盖

对于有向无环图 (DAG)

定义:在一个有向图中,找出最少的路径,使得这些路径经过了所有的点。

最小路径覆盖分为最小不相交路径覆盖和最小可相交路径覆盖。

最小不相交路径覆盖:每一条路径经过的顶点各不相同。

最小可相交路径覆盖:每一条路径经过的顶点可以相同。

DAG 的最小不相交路径覆盖:

把原图的每个点v拆成 v_x 和 v_y 两个点,如果有一条有向边 $A\to B$,就加边 $A_x\to B_y$,这样就得到一个二分图,最小路径覆盖=原图的节点数-新图的最大匹配数

DAG 的最小可相交路径覆盖:

先用 floyd 求出原图的传递闭包,即若 a 到 b 有路径,则加边 $a \rightarrow b$,转 化为最小不相交路径覆盖问题

最近公共祖先(倍增)

```
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int MAX = 600000;

struct edge {
    int t, nex;
} e[MAX << 1];
int head[MAX], tot;

int depth[MAX], fa[MAX][22], lg[MAX];

void add_edge(int x, int y) {</pre>
```

```
e[++tot].t = y;
e[tot].nex = head[x];
     head[x] = tot;
     e[++tot].t = x;
e[tot].nex = head[y];
     head[y] = tot;
void dfs(int now, int fath) {
    .d dfs(int now, int fath) {
    fa[now][0] = fath;
    depth[now] = depth[fath] + 1;
    for (int i = 1; i <= lg[depth[now]]; ++i)
        fa[now][i] = fa[fa[now][i - 1]][i - 1];
    for (int i = head[now]; i; i = e[i].nex)
        if (e[i].t != fath) dfs(e[i].t, now);</pre>
int lca(int x, int y) {
     \textbf{if} \; (\mathsf{depth}[x] \; \langle \; \mathsf{depth}[y]) \; \mathsf{swap}(x, \; y); \\
     \label{eq:while} \mbox{ $depth[x] > depth[y]) } \ x = \mbox{ $fa[x][lg[depth[x] - de] $} \ .
pth[y]] - 1];
     if (x == y) return x;
for (int k = lg[depth[x]] - 1; k >= 0; --k)
          if (fa[x][k] != fa[y][k]) x = fa[x][k], y = fa[y]
     return fa[x][0];
void init(int n, int root) {
   for (int i = 1; i <= n; ++i) lg[i] = lg[i - 1] + (1 <<
lg[i - 1] == i);</pre>
     dfs(root, 0);
最近公共祖先(线段树)
#include <bits/stdc++.h>
using namespace std;
int n. m. root:
const int MAX_N = 500005;
const int MAX = 1 << 20;</pre>
vector<int> g[MAX_N];
vector<int> vs;
pair<int, int> tree[MAX * 2 + 10];
int fir[MAX_N];
int fa[MAX N]
int dep[MAX_N];
void dfs(int k, int p, int d) {
     fa[k] = p;
     dep[k] = d;
     vs.push_back(k);
     for (int i = 0; i < g[k].size(); i++) {
   if (g[k][i] != p) {</pre>
                dfs(g[k][i], k, d + 1);
                vs.push_back(k);
          }
     }
void build(int k) {
```

if (k >= MAX) return;

tree[k] = min(tree[k << 1], tree[k << 1 | 1]);</pre>

if (1 <= s && e <= r) return tree[k];</pre>

for (int i = MAX; i < MAX + vs.size(); i++)</pre>

for (int i = 0; i < vs.size(); i++) {
 if (fir[vs[i]] == 0) fir[vs[i]] = i + 1;</pre>

pair<int, int> query(int k, int s, int e, int l, int r) {
 if (e < l || r < s) return pair<int, int>(INT_MAX, 0);

return min(query(k << 1, s, (s + e) >> 1, l, r), query(k << 1 | 1, ((s + e) >> 1) + 1, e, l,

dfs(root, root, 0);
for (int i = 0; i < MAX * 2 + 10; i++) tree[i] = pair<i</pre>

tree[i] = pair<int, int>(dep[vs[i - MAX]], vs[i -

build(k << 1);
build(k << 1 | 1);</pre>

r));

void init() {

nt, int>(INT_MAX, 0);

build(1);

```
edges[G[x][i] ^ 1].flow -= f;
int lca(int a, int b) {
                                                                                                                                                               flow += f;
       return query(1, 1, MAX, min(fir[a], fir[b]), max(fir
                                                                                                                                                               a -= f:
                                                                                                                                                               if (a == 0) break;
[a], fir[b])).second;
                                                                                                                                                       }
int main() {
       scanf("%d%d%d", &n, &m, &root);
                                                                                                                                                return flow;
       for (int i = 1; i < n; i++) {</pre>
                                                                                                                                         }
              int a, b;
               scanf("%d%d", &a, &b);
                                                                                                                                         \begin{tabular}{ll} \beg
                                                                                                                                                11 siz = edges.size();
for(ll i = 0; i < siz; ++ i) {
   if(edges[i].from == u && edges[i].to == v) {</pre>
               g[a].push_back(b);
               g[b].push_back(a);
                                                                                                                                                               edges[i].cap = edges[i].flow = 0;
edges[i ^ 1].cap = edges[i ^ 1].flow = 0;
       init();
       for (int i = 1; i <= m; i++) {
              int a, b;
              scanf("%d%d", &a, &b);
printf("%d\n", lca(a, b));
                                                                                                                                                               break;
      }
}
                                                                                                                                                }
有源汇上下界最大小流
                                                                                                                                         ll getValue() {
                                                                                                                                                return edges[2 * m].flow;
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
                                                                                                                                         ll Maxflow(ll S, ll T) \{
                                                                                                                                                this->S = S, this->T = T;
struct Edge {
                                                                                                                                                11 flow = 0;
      11 from, to, cap, flow, mn;
Edge(ll a, ll b, ll c, ll d, ll e) : from(a), to(b), ca
                                                                                                                                                while (BFS()) {
   memset(cur, 0, sizeof(cur));
   flow += DFS(S, inf);
p(c)\text{, flow}(d)\text{, mn}(e)\text{ }\{\}
                                                                                                                                                return flow;
11 n, m;
                                                                                                                                 } MF;
struct Dinic {
       static const ll maxn = 50010; // 点的大小,记得改
                                                                                                                                 int main() {
       static const 11 inf = 0x3f3f3f3f3f3f3f3f3f3;
                                                                                                                                         11 s, t;
       11 N, M, S, T;
                                                                                                                                         cin >> n >> m >> s >> t;
      vector<Edge> edges;
vector<11> G[maxn];
                                                                                                                                     // n 个点, m 条边, 给的源点汇点
       bool vis[maxn];
                                                                                                                                         ll mp[50010] = {0}; // 点的大小,记得改for(ll i = 1; i <= m; ++ i) {
       11 d[maxn];
       11 cur[maxn];
                                                                                                                                                11 a, b, c, d; // 从a到b有一条下界c上界d的边
                                                                                                                                                cin >> a >> b >> c >> d;
       void AddEdge(ll from, ll to, ll cap, ll c) {
                                                                                                                                                mp[b] += c;
               edges.push_back(Edge(from, to, cap, 0, c));
                                                                                                                                                mp[a] -= c;
               edges.push_back(Edge(to, from, 0, 0, c));
                                                                                                                                                MF.AddEdge(a, b, d - c, c);
               M = edges.size();
               G[from].push_back(M - 2);
                                                                                                                                         MF.AddEdge(t, s, 1e18, 0); //
              G[to].push_back(M - 1);
                                                                                                                                         11 tot = 0;
for(11 i = 1; i <= n; ++ i) {</pre>
                                                                                                                                                if(mp[i] > 0) {
    tot += mp[i];
       bool BFS() {
               memset(vis, 0, sizeof(vis));
                                                                                                                                                        MF.AddEdge(0, i , mp[i], 0);
               queue<11> Q;
               Q.push(S);
              d[S] = 0;
vis[S] = 1;
                                                                                                                                                       MF.AddEdge(i, n + 1, -mp[i], 0);
               while (!Q.empty()) {
                      11 x = Q.front();
                      Q.pop();
                                                                                                                                         if( MF.Maxflow(0, n + 1) != tot) {
   cout << "No Solution" << endl;</pre>
                      for (ll i = 0; i < G[x].size(); i++) {</pre>
                             Edge& e = edges[G[x][i]];
                             \textbf{if} \ (\,!\, vis[\, e.to \,] \ \&\& \ e.\, cap \, > \, e.\, flow) \ \{
                                                                                                                                         else {
                                    vis[e.to] = 1;
d[e.to] = d[x] + 1;
                                                                                                                                                ll res = MF.getValue(); // 从t 到s 边的流量
                                                                                                                                                MF.deleteEdge(t, s);
                                    Q.push(e.to);
                                                                                                                                             //cout << res + MF.Maxflow(s, t) << endl; // 最大流
                            }
                      }
                                                                                                                                                cout << res - MF.Maxflow(t, s) << endl; // 最小流
               return vis[T];
      }
                                                                                                                                         return 0;
       11 DFS(11 x, 11 a) {
              if (x == T || a == 0) return a;
               ll flow = 0, f;
for (ll& i = cur[x]; i < G[x].size(); i++) {
                                                                                                                                 朱刘算法
                      Edge& e = edges[G[x][i]];
                                                                                                                                 #include <iostream>
                      if (d[x] + 1 == d[e.to] &&
                                                                                                                                 #include <cstring>
#include <cstdio>
                             (f = DFS(e.to, min(a, e.cap - e.flow))) > 0)
  {
                                                                                                                                 #include <algorithm>
                             e.flow += f:
                                                                                                                                 #include <cmath>
```

```
break;
#define x first
                                                                                           }
#define y second
                                                                                           for (int i = 2; i <= n; i++)
    if (id[pre[i]] == id[i])</pre>
using namespace std;
                                                                                                    res += d[pre[i]][i];
typedef pair<double, double> PDD;
                                                                                           for (int i = 1; i <= cnt; i++)
    for (int j = 1; j <= cnt; j++)
        bd[i][j] = INF;</pre>
const int N = 110;
const double INF = 1e8;
                                                                                           for (int i = 1; i <= n; i++)
  for (int j = 1; j <= n; j++)
    if (d[i][j] < INF && id[i] != id[j]) {
        int a = id[i], b = id[j];
        if (id[pre[j]] == id[j]) bd[a][b] = min</pre>
int n, m;
PDD q[N];
bool g[N][N];
double d[N][N], bd[N][N];
int pre[N], bpre[N];
int dfn[N], low[N], ts, stk[N], top;
                                                                                  (bd[a][b], d[i][j] - d[pre[j]][j]);
int id[N], cnt;
                                                                                                         else bd[a][b] = min(bd[a][b], d[i][j]);
bool st[N], ins[N];
void dfs(int u) {
                                                                                           n = cnt:
    st[u] = true:
                                                                                           memcpy(d, bd, sizeof d);
    for (int i = 1; i <= n; i++)
    if (g[u][i] && !st[i])</pre>
             dfs(i);
                                                                                      return res;
                                                                                  }
                                                                                  int main() {
    while (~scanf("%d%d", &n, &m)) {
bool check_con() {
    memset(st, 0, sizeof st);
    dfs(1);
for (int i = 1; i <= n; i++)</pre>
                                                                                           for (int i = 1; i <= n; i++) scanf("%1f%1f", &q[i].</pre>
         if (!st[i])
             return false;
                                                                                           memset(g, 0, sizeof g);
    return true;
                                                                                           while (m--) {
}
                                                                                               int a, b;
                                                                                                scanf("%d%d", &a, &b);
double get_dist(int a, int b) {
                                                                                               if (a != b && b != 1) g[a][b] = true;
    double dx = q[a].x - q[b].x;
double dy = q[a].y - q[b].y;
return sqrt(dx * dx + dy * dy);
                                                                                           if (!check_con()) puts("poor snoopy");
                                                                                           else printf("%.21f\n", work());
void tarjan(int u) {
    dfn[u] = low[u] = ++ts;
                                                                                      return 0;
    stk[++top] = u, ins[u] = true;
    int j = pre[u];
if (!dfn[j]) {
                                                                                  树上启发式合并
         tarjan(j);
low[u] = min(low[u], low[j]);
                                                                                  #include <bits/stdc++.h>
    } else if (ins[j]) low[u] = min(low[u], dfn[j]);
                                                                                  using namespace std;
    \textbf{if} \ (\texttt{low}[\texttt{u}] \ == \ \texttt{dfn}[\texttt{u}]) \ \{
                                                                                  typedef long long 11;
         int y;
                                                                                  const int N = 2e5 + 10:
         ++cnt:
         do {
                                                                                  int vis[N], now;
             y = stk[top--], ins[y] = false, id[y] = cnt;
         } while (y != u);
                                                                                  vector<int> g[N];
                                                                                  int fa[N], son[N], siz[N], ans[N];
}
                                                                                  void insert(int pos) {
double work() {
    double res = 0;
                                                                                      now = now + 1 - vis[pos - 1] - vis[pos + 1];
    for (int i = 1; i <= n; i++)

for (int j = 1; j <= n; j++)

if (g[i][j]) d[i][j] = get_dist(i, j);
                                                                                  void remove(int pos) {
              else d[i][j] = INF;
                                                                                      vis[pos] = 0;
                                                                                      now = now - 1 + vis[pos - 1] + vis[pos + 1];
    while (true) {
         for (int i = 1; i <= n; i++) {</pre>
             pre[i] = i;
for (int j = 1; j <= n; j++)</pre>
                                                                                  void dfs1(ll u, ll f) {
                                                                                      siz[u] = 1;
                 if (d[pre[i]][i] > d[j][i])
                                                                                      fa[u] = f;
                      pre[i] = j;
                                                                                      son[\tilde{u}] = -1;
         }
                                                                                      for (auto v:g[u]) {
   if (v == f) continue;
         memset(dfn, 0, sizeof dfn);
                                                                                           dfs1(v, u);
         ts = cnt = 0;
for (int i = 1; i <= n; i++)
                                                                                           siz[u] += siz[v];
                                                                                           if (son[u] == -1 || siz[v] > siz[son[u]]) son[u] =
              if (!dfn[i])
                  tarjan(i);
                                                                                      }
         if (cnt == n) {
              for (int i = 2; i <= n; i++) res += d[pre[i]]</pre>
                                                                                  void add(int u, int exc, int op) {
[i];
```

```
if (op) insert(u);
                                                                            //查找重心, t 为连通分量大小
    else remove(u);
                                                                            // pair (最大子树顶点数, 顶点编号)
    for (auto x:g[u]) {
                                                                            pair<int, int> search_centroid(int v, int p, int t) {
        if (x == fa[u] | | x == exc) continue;
                                                                                pair<int, int> res = pair<int, int>(INF, -1);
        add(x, exc, op);
                                                                                 int s = 1, m = 0;
                                                                                for (int i = 0; i < g[v].size(); i++) {</pre>
}
                                                                                    int w = g[v][i].to;
                                                                                    if (w == p | | centroid[w]) continue;
void dfs(ll u, ll opt) {
                                                                                    res = min(res, search_centroid(w, v, t));
m = max(m, subtree_size[w]);
    for (auto x:g[u]) {
    if (x == fa[u] || x == son[u]) continue;
                                                                                    s += subtree_size[w];
        dfs(x, 0);
                                                                                m = max(m, t - s);
    if (son[u] != -1) dfs(son[u], 1);
                                                                                res = min(res, pair<int, int>(m, v));
    add(u, son[u], 1);
ans[u] = now;
                                                                                return res;
    if (!opt) {
        add(u, 0, 0);
                                                                            void init(int n) {
    }
                                                                                memset(centroid, 0, sizeof(centroid));
}
                                                                                memset(subtree_size, 0, sizeof(subtree_size));
for (int i = 0; i <= n; i++) g[i].clear();</pre>
int main() {
    ios::sync_with_stdio(false),
             cin.tie(nullptr),
                                                                            cout.tie(nullptr);
    int t;
                                                                                int s = search_centroid(u, -1, subtree_size[u]).second;
    cin >> t;
                                                                                centroid[s] = \overline{1};
                                                                                for (int i = 0; i < g[s].size(); i++) {
   int v = g[s][i].to;</pre>
    int test = 0:
    while (t--) {
        int n;
                                                                                    if (centroid[v]) continue;
        cin >> n;
         for (int i = 1; i < n; i++) {
            int a, b;
                                                                                /*do something*/
             cin >> a >> b;
                                                                                centroid[s] = 0;
             g[a].push_back(b);
                                                                                return ans;
            g[b].push_back(a);
        cout << "Case #" << ++test << ": ";
        dfs1(1, -1);
                                                                            欧拉回路
        dfs(1, 0);
         for (int i = 1; i <= n; i++) {
                                                                            #include <bits/stdc++.h>
            if (i != 1) cout << ' ';</pre>
             cout << ans[i];</pre>
                                                                            using namespace std;
                                                                            typedef long long ll;
const int N = 1e6 + 10;
        cout << endl;
        for (int i = 1; i <= n; i++) g[i].clear();</pre>
   }
}
                                                                            int stk[N], top;
                                                                            struct edge {
                                                                                int to, idx;
树分治
                                                                            vector<edge> g[N];
#include <bits/stdc++.h>
using namespace std;
                                                                            namespace Euler1 { //有向图欧拉回路
const int MAXN = 10005;
                                                                                bool vis[N];
const int INF = 1000000000;
                                                                                int cur[N]:
struct edge {
    int to, length;
                                                                                void dfs(int u, const int &w) {
   vis[abs(w)] = true;
  for (int &i = cur[u]; i < g[u].size();) {</pre>
    edge() {}
    edge(int a, int b) : to(a), length(b) {}
};
                                                                                         int idx = g[u][i].idx, v = g[u][i].to;
                                                                                         if (!vis[abs(idx)]) dfs(v, idx);
vector<edge> g[MAXN];
                                                                                    stk[++top] = w;
bool centroid[MAXN];
int subtree_size[MAXN];
                                                                                bool solve(int n) {
int ans;
                                                                                     // init()
                                                                                    for (int i = 0; i <= n; i++) cur[i] = 0;
for (int i = 0; i <= n; i++) vis[i] = 0;</pre>
// 计算子树大小
int compute_subtree_size(int v, int p) {
                                                                                    // calculate degree
for (int i = 1; i <= n; i++) {
    if (g[i].size() & 1) return false;
    int c = 1;
    int c = 1;
for (int i = 0; i < g[v].size(); i++) {
    int w = g[v][i].to;
    if (w == p || centroid[w]) continue;</pre>
                                                                                     // Hierholzer
        c += compute subtree size(w, v);
                                                                                    for (int i = 1; i <= n; i++)
    if (!g[i].empty()) {</pre>
    subtree_size[v] = c;
                                                                                             dfs(i, 0);
    return c;
                                                                                             break:
                                                                                    return true;
```

```
vector<father> f[N];
} // namespace Euler1
                                                                              vector<vector<son> > s[N];
                                                                              vector<edge> g[N];
                                                                              bool st[N];
namespace Euler2 { // 无向图欧拉回路
    int deg[N], cur[N];
                                                                              11 siz[N];
    void dfs(int u, const int &w) {
   for (int &i = cur[u]; i < g[u].size();) {
     int idx = g[u][i].idx, v = g[u][i].to;</pre>
                                                                              11 getsiz(ll u, ll fa) {
                                                                                  if (st[u]) return 0;
                                                                                  siz[u] = 1;
                                                                                  for (auto x:g[u]) {
                                                                                      if (x.to == fa) continue;
if (st[x.to]) continue;
             dfs(v, idx);
                                                                                       siz[u] += getsiz(x.to, u);
         stk[++top] = w;
    }
                                                                                  return siz[u];
    bool solve(int n) {
         // init
         for (int i = 0; i <= n; i++) deg[i] = 0;</pre>
                                                                              void getwc(ll u, ll fa, ll tot, ll &wc) {
         for (int i = 0; i <= n; i++) cur[i] = 0;
                                                                                  if (st[u]) return;
         // calculate degree
                                                                                  11 \text{ mmax} = 0, sum = 1;
                                                                                  for (auto x:g[u]) {
   if (x.to == fa) continue;
         for (int i = 1; i <= n; ++i) {</pre>
             for (auto x: g[i]) deg[i]++, deg[x.to]--;
                                                                                       if (st[x.to]) continue;
         for (int i = 1; i <= n; ++i)
    if (deg[i]) return false;</pre>
                                                                                       getwc(x.to, u, tot, wc);
                                                                                       mmax = max(mmax, siz[x.to]);
                                                                                       sum += siz[x.to];
         // Hierholzer
         for (int i = 1; i <= n; ++i)
             if (!g[i].empty()) {
                                                                                  mmax = max(mmax, tot - sum);
                                                                                  if (2 * mmax <= tot) wc = u;
                 dfs(i, 0);
                 break;
                                                                              void getdist(ll u, ll fa, ll now, ll rt, ll kth, vector<so</pre>
         return true:
                                                                              n> &v) {
                                                                                  if (st[u]) return;
} // namespace Euler2
                                                                                  f[u].push_back({rt, kth, now});
int main() {
                                                                                  v.push\_back(\{age[u],\ now\});\\
                                                                                   \begin{array}{lll} \mbox{for (auto } x \hbox{:} g[u]) \ \{ \\ \mbox{if } (x \hbox{.} to == fa \ || \ st[x \hbox{.} to]) \ \mbox{continue}; \end{array} 
    int t, n, m;
    cin >> t >> n >> m;
                                                                                       getdist(x.to, u, now + x.val, rt, kth, v);
    for (int u, v, i = 1; i <= m; i++) {
        cin >> u >> v:
        g[u].push_back({v, i});
if (t == 1) g[v].push_back({u, -i});
                                                                              void calc(ll u) {
                                                                                  if (st[u]) return;
    bool flag = t == 1 ? Euler1::solve(n) : Euler2::solve
                                                                                  getwc(u, -1, getsiz(u, -1), u);
(n);
                                                                                  st[u] = 1:
    if (!flag | \ | \ (m > 0 \ \&\& \ top - 1 < m))
                                                                                  for (auto x: g[u]) {
        puts("NO");
                                                                                       if (st[x.to]) continue;
    else {
        puts("YES");
for (int i = top - 1; i > 0; --i) printf("%d%c", st
                                                                                       s[u].push_back(vector<son>(0));
                                                                                       auto &v = s[u].back();
k[i], " \n"[i == 1]);
                                                                                       v.push_back({-0x3f3f3f3f, 0});
                                                                                       v.push_back({0x3f3f3f3f, 0});
getdist(x.to, u, x.val, u, (11) s[u].size() - 1,
    return 0:
                                                                              v):
                                                                                       sort(v.begin(), v.end(), [](son a, son b) { return
                                                                               a.age < b.age; });
    for (ll i = 1; i < v.size(); i++) {</pre>
点分树
                                                                                          v[i].dist += v[i - 1].dist;
#include <bits/stdc++.h>
                                                                                  for (auto x:g[u]) {
using namespace std;
                                                                                      calc(x.to);
typedef long long l1;
const 11 N = 2e5 + 10;
11 age[N]:
                                                                              11 query(11 u, 11 1, 11 r) {
struct edge {
                                                                                  ll ans = 0;
   ll to, val;
                                                                                  for (auto x:f[u]) {
                                                                                       if (1 <= age[x.u] && age[x.u] <= r) ans += x.dist;
for (11 i = 0; i < s[x.u].size(); i++) {
   if (i == x.num) continue;</pre>
struct father {
    11 u, num;
                                                                                           auto &v = s[x.u][i];
    ll dist:
                                                                                           11 btn = lower_bound(v.begin(), v.end(), (son)
                                                                              {1, 0}) - v.begin() - 1;
                                                                                           11 top = upper_bound(v.begin(), v.end(), (son)
struct son {
                                                                              {r, 0}) - v.begin() - 1;
    ll age, dist:
                                                                                           ans += v[top].dist - v[btn].dist;
ans += (top - btn) * x.dist;
    bool operator<(const son &s) const {</pre>
        return age < s.age;
                                                                                  for (auto v:s[u]) {
};
                                                                               11 btn = lower_bound(v.begin(), v.end(), (son) {1, 0}) - v.begin() - 1;
```

```
ll top = upper_bound(v.begin(), v.end(), (son) \{r,
                                                                  vector<int> vg[N];
0}) - v.begin() - 1;
                                                                  int sta[N], tot;
       ans += v[top].dist - v[btn].dist:
                                                                  int h[N];
                                                                  void build(int *H, int num) {
   sort(H + 1, H + 1 + num, [](int a, int b) { return dfn
   return ans;
}
                                                                  [a] < dfn[b]; });
                                                                      sta[tot = 1] = 1, vg[1].clear();// 1 号节点入栈,清空 1
signed main() {
                                                                   号节点对应的邻接表,设置邻接表边数为 1
   ios::sync_with_stdio(false);
                                                                      for (int i = 1, 1; i <= num; ++i) \{
   cin.tie(nullptr):
                                                                         if (H[i] == 1) continue; //如果 1 号节点是关键节点就
   cout.tie(nullptr);
                                                                   不要重复添加
                                                                         l = lca(H[i], sta[tot]); //计算当前节点与栈顶节点的
   11 n, q, a;
                                                                  I CA
   cin >> n >> q >> a;
                                                                          if (l != sta[tot]) { //如果 LCA 和栈顶元素不同,则说
    for (ll i = 1; i <= n; i++) cin >> age[i];
                                                                   明当前节点不再当前栈所存的
    for (ll i = 1; i < n; i++) {
                                                                             while (dfn[1] < dfn[sta[tot - 1]]) {//当次大节
       11 x, y, z;
                                                                  点的 Dfs 序大于 LCA 的 Dfs 序
       cin >> x >> y >> z;
                                                                                 vg[sta[tot - 1]].push_back(sta[tot]);
vg[sta[tot]].push_back(sta[tot - 1]);
       g[x].push_back({y, z});
       g[y].push_back({x, z});
                                                                              } //把与当前节点所在的链不重合的链连接掉并且弹出
   calc(1);
                                                                             if (dfn[1] > dfn[sta[tot - 1]]) { //如果 LCA 不
                                                                  等于次大节点(这里的大于其实和不等于没有区别)
   ll ans = 0;
                                                                                 vg[1].clear();
   while (q--) {
                                                                                 vg[1].push\_back(sta[tot]);\\
       ll u, l, r;
                                                                                 vg[sta[tot]].push_back(1);
sta[tot] = 1;//说明 LCA 是第一次入栈,清空其
       cin >> u >> 1 >> r:
       l = (l + ans) \% a;

r = (r + ans) \% a;
                                                                  邻接表,连边后弹出栈顶元素,并将 LCA 入栈
                                                                             } else {
       if (\hat{l} > r) swap(l, r);
                                                                                 vg[1].push_back(sta[tot]);
       ans = query(u, l, r);
                                                                                 vg[sta[tot]].push_back(1);
tot--; //说明 LCA 就是次大节点,直接弹出栈顶元
       cout << ans << endl;</pre>
                                                                   素
}
                                                                             }
                                                                          vg[H[i]].clear();
虚树
                                                                         sta[++tot] = H[i];
//当前节点必然是第一次入栈,清空邻接表并入栈
11 fa[N], son[N], dep[N], siz[N], dfn[N], rnk[N], top[N];
11 dfscnt;
                                                                      for (int i = 1; i < tot; ++i) {
vector<11> g[N];
                                                                          vg[sta[i]].push_back(sta[i + 1]);
11 mmin[N];
                                                                          vg[sta[i + 1]].push_back(sta[i]);
                                                                      } //剩余的最后一条链连接一下
void dfs1(ll u, ll f, ll d) {
                                                                      return;
   son[u] = -1;
siz[u] = 1;
   fa[u] = f;
dep[u] = d;
    for (auto v:g[u]) {
       if (v == f) continue;
                                                                  多项式
       dfs1(v, u, d + 1);
       siz[u] += siz[v];
       if (son[u] == -1 || siz[v] > siz[son[u]]) son[u] =
                                                                  多项式全家桶
٧;
                                                                  //#pragma GCC optimize(2)
}
                                                                  #include <bits/stdc++.h>
void dfs2(11 u, 11 t) {
                                                                  using namespace std;
   dfn[u] = ++dfscnt;
                                                                  typedef long long 11;
    rnk[dfscnt] = u;
    top[u] = t;
                                                                  const int N = 3000007;
   if (son[u] == -1) return;
                                                                  const int p = 998244353, gg = 3, ig = 332738118, img = 865
   dfs2(son[u], t);
   for (auto v:g[u]) {
                                                                  const int mod = 998244353;
       if (v == son[u] || v == fa[u]) continue;
       dfs2(v, v);
                                                                  int qpow(int a, int b) {
   }
                                                                      int res = 1;
}
                                                                      while (b) {
                                                                         if (b & 1) res = 111 * res * a % mod;
11 lca(ll a, ll b) {
    while (top[a] != top[b]) {
                                                                          a = 111 * a * a % mod;
                                                                          b >>= 1;
       if (dep[top[a]] < dep[top[b]]) swap(a, b);</pre>
       a = fa[top[a]];
                                                                      return res;
   return dep[a] < dep[b] ? a : b;</pre>
                                                                  namespace Poly {
                                                                  #define mul(x, y) (111 * x * y >= mod ? 111 * x * y % mod :
struct edge {
                                                                   111 * x * y)
   ll s, t, v;
                                                                  #define minus(x, y) (111 * x - y < \emptyset ? 111 * x - y + mod :
                                                                  111 * x - y)
edge e[N];
                                                                  #define plus(x, y) (111 * x + y >= mod ? 111 * x + y - mod :
                                                                   111 * x + y)
```

```
#define ck(x) (x >= mod ? x - mod : x)//取模运算太慢了
                                                                                   NTT(A, 1, limit);
                                                                                   NTT(B, 1, limit);
                                                                                   for (int i = 0; i < limit; ++i)
C[i] = 111 * A[i] * B[i] % mod;
    typedef vector<int> poly;
    const int G = 3;//根据具体的模数而定,原根可不一定不一
                                                                                   NTT(C, 0, limit);
                                                                                   C.resize(deg);
    //一般模数的原根为 2 3 5 7 10 6
                                                                                   return C;
    const int inv G = qpow(G, mod - 2);
    int RR[N], inv[N];
   int deer[2][22][N];
                                                                               poly poly_inv(poly &f, int deg) {//多项式求逆
    void init(const int t) {//预处理出来NTT 里需要的w和w
                                                                                       return poly(1, qpow(f[0], mod - 2));
n, 砍掉了一个Log 的时间
//
          for (int p = 1; p <= t; ++p) {
                                                                                   int buf1 = qpow(G, (mod - 1) / (1 << p));
               int buf0 = qpow(inv_G, (mod - 1) / (1 << p));
               deer[0][p][0] = deer[1][p][0] = 1;
              for (int i = 1; i < (1 << p); ++i) {
    deer[0][p][i] = 1|L * deer[0][p][i - 1] *
buf0 % mod;//逆
                                                                          d) % mod;
                  deer[1][p][i] = 1ll * deer[1][p][i - 1] *
                                                                                   NTT(A, 0, limit);
buf1 % mod;
                                                                                   A.resize(deg);
                                                                                   return A:
        inv[1] = 1;
        for (int i = 2; i <= (1 << t); ++i)
                                                                               poly poly_dev(poly f) {//多项式求导
            inv[i] = 1ll * inv[mod % i] * (mod - mod / i) %
                                                                                   int n = f.size();
mod;
                                                                                   for (int i = 1; i < n; ++i) f[i - 1] = 111 * f[i] *
                                                                            i % mod;
                                                                                   return f.resize(n - 1), f;//f[0] = 0, 这里直接扔了,
    int NTT_init(int n) {//快速数论变换预处理
                                                                           从1开始
        int limit = 1, L = 0;
        while (limit <= n) limit <<= 1, L++;
for (int i = 0; i < limit; ++i)
RR[i] = (RR[i >> 1] >> 1) | ((i & 1) << (L -
                                                                               poly poly_idev(poly f) {//多项式求积分}
                                                                                   int n = f.size();
1));
                                                                                   for (int i = n - 1; i; --i) f[i] = 111 * f[i - 1] *
        return limit;
                                                                            inv[i] % mod;
    }
                                                                                   return f[0] = 0, f;
// 省空间用
    int deer[2][N];
                                                                               poly poly_ln(poly f, int deg) {//多项式求对数
                                                                                   poly A = poly_idev(poly_mul(poly_dev(f), poly_inv
    void NTT(poly &A, int type, int limit) {//快速数论变换
                                                                           (f, deg)));
        A.resize(limit);
                                                                                   return A.resize(deg), A;
        for (int i = 0; i < limit; ++i)
    if (i < RR[i])</pre>
                 swap(A[i], A[RR[i]]);
                                                                               poly poly_exp(poly &f, int deg) {// 多项式求指数}
        for (int mid = 2, j = 1; mid <= limit; mid <<= 1, +</pre>
                                                                                   if (deg == 1)
+i) {
                                                                                       return poly(1, 1);
             int len = mid >> 1;
                                                                                   poly B = poly_exp(f, (deg + 1) >> 1);
                                                                                   B.resize(deg);
             int buf1 = qpow(G, (mod - 1) / (1 << j));
                                                                                   poly lnB = poly_ln(B, deg);
for (int i = 0; i < deg; ++i)
    lnB[i] = ck(f[i] - lnB[i] + mod);</pre>
             int buf0 = qpow(inv_G, (mod - 1) / (1 << j));</pre>
             deer[0][0] = deer[1][0] = 1;
for (int i = 1; i < (1 << j); ++i) {
    deer[0][i] = 111 * deer[0][i - 1] * buf0 %</pre>
                                                                                   mod;//遊
                 deer[1][i] = 111 * deer[1][i - 1] * buf1 %
mod;
                                                                                       B[i] = 111 * B[i] * (1 + lnB[i]) % mod;
             }
                                                                                   NTT(B, 0, limit);
                                                                                   B.resize(deg);
             for (int pos = 0; pos < limit; pos += mid) {</pre>
                                                                                   return B:
                   int *wn = deer[type][j];
                  省空间用
                 int *wn = deer[type];
                                                                               poly poly_sqrt(poly &f, int deg) {//多项式开方
                 for (int i = pos; i < pos + len; ++i, ++wn)</pre>
                                                                                   y pouy_sqrt(poly ar, int deg) {//>
if (deg == 1) return poly(1, 1);
poly A(f.begin(), f.begin() + deg);
poly B = poly_sqrt(f, (deg + 1) >> 1);
poly IB = poly_inv(B, deg);
int limit = NTT_init(deg << 1);
NTT(A, 1, limit), NTT(IB, 1, limit);</pre>
 {
                      int tmp = 111 * (*wn) * A[i + len] % mod;
                     A[i + len] = ck(A[i] - tmp + mod);
                     A[i] = ck(A[i] + tmp);
                }
            }
                                                                                   for (int i = 0; i < limit; ++i)
   A[i] = 111 * A[i] * IB[i] % mod;</pre>
        if (type == 0) {
   for (int i = 0; i < limit; ++i)</pre>
                                                                                   NTT(A, 0, limit);
                                                                                   for (int i = 0; i < deg; ++i)
   A[i] = 111 * (A[i] + B[i]) * inv[2] % mod;</pre>
                 A[i] = 111 * A[i] * inv[limit] % mod;
                                                                                   A.resize(deg);
    }
                                                                                   return A:
    poly poly_mul(poly A, poly B) {//多项式乘法
        int deg = A.size() + B.size() - 1;
int limit = NTT_init(deg);
                                                                               poly poly_pow(poly f, int k) {//多项式快速幂
                                                                                   if(f.size()==1){
        poly C(limit);
                                                                                       f[0] = qpow(f[0],k);
```

```
return f:
                                                                                            sz = 1:
                                                                                           \texttt{memset}(\mathsf{ch}[@], \ @, \ \mathsf{sizeof}(\mathsf{ch}[@]));
         f = poly_ln(f, f.size());
for (auto &x: f) x = 111 * x * k % mod;
return poly_exp(f, f.size());
                                                                                           ans.clear();
                                                                                       int idx(const char &c) { return c - 'a'; }
    poly_cos(poly f, int deg) {//多项式三角函数 (cos) poly A(f.begin(), f.begin() + deg);
                                                                                       void insert(string s, int v) {
                                                                                           int u = 0, n = s.length();
for (int i = 0; i < n; i++) {
   int c = idx(s[i]);
   if (!ch[u][c]) {</pre>
         poly B(deg), C(deg);
for (int i = 0; i < deg; ++i)
A[i] = 111 * A[i] * img % mod;
                                                                                                     memset(ch[sz], 0, sizeof(ch[sz]));
        B = poly_exp(A, deg);
C = poly_inv(B, deg);
int inv2 = qpow(2, mod - 2);
for (int i = 0; i < deg; ++i)
    A[i] = 111 * (111 * B[i] + C[i]) % mod * inv2 %</pre>
                                                                                                     val[sz] = 0:
                                                                                                     ch[u][c] = sz++;
                                                                                                u = ch[u][c];
                                                                                            val[u] = v;
         return A;
                                                                                       void get_fail() {
    poly poly_sin(poly f, int deg) {//多项式三角函数 (sin) poly A(f.begin(), f.begin() + deg);
                                                                                           queue<int> que;
                                                                                            fail[0] = 0;
                                                                                            for (int c = 0; c < sigma_size; c++) {</pre>
         poly B(deg), C(deg);
for (int i = 0; i < deg; ++i)
   A[i] = 111 * A[i] * img % mod;</pre>
                                                                                                int u = ch[0][c];
                                                                                                if (u) {
                                                                                                     fail[u] = 0;
                                                                                                     que.push(u):
         B = poly_exp(A, deg);
                                                                                                     last[u] = 0;
         C = poly_inv(B, deg);
         int inv2i = qpow(img << 1, mod - 2);
for (int i = 0; i < deg; ++i)
A[i] = 111 * (111 * B[i] - C[i] + mod) % mod *
                                                                                           while (!que.empty()) {
                                                                                                int r = que.front();
inv2i % mod:
                                                                                                que.pop();
         return A:
                                                                                                for (int c = 0; c < sigma_size; c++) {
   int u = ch[r][c];</pre>
                                                                                                     if (!u) continue;
    poly poly_arcsin(poly f, int deg) {
                                                                                                     que.push(u);
         poly A(f.size()), B(f.size()), C(f.size());
                                                                                                     int v = fail[r];
         A = poly_dev(f);
                                                                                                     while (v && !ch[v][c]) v = fail[v];
         B = poly_mul(f, f);
for (int i = 0; i < deg; ++i)</pre>
                                                                                                     fail[u] = ch[v][c];
         B[i] = minus(mod, B[i]);
B[0] = plus(B[0], 1);
C = poly_sqrt(B, deg);
                                                                                                     last[u] = val[fail[u]] ? fail[u] : last[fai
                                                                                  1[u]];
         C = poly_inv(C, deg);
                                                                                           }
         C = poly_mul(A, C);
                                                                                       }
         C = poly_idev(C);
                                                                                       void print(int j) {
         return C;
                                                                                           if (j) {
    }
                                                                                                ans.push_back(pair<int, int>(j, val[j]));
                                                                                                print(last[j]);
    poly poly_arctan(poly f, int deg) {
         poly A(f.size()), B(f.size()), C(f.size());
                                                                                           }
                                                                                       }
         A = poly dev(f);
         B = poly_mul(f, f);
                                                                                       void find() {
         B[0] = plus(B[0], 1);
                                                                                           int n = strlen(T);
         C = poly_inv(B, deg);
                                                                                            int j = 0;
         C = poly_mul(A, C);
                                                                                            for (int i = 0; i < n; i++) {
         C = poly_idev(C);
                                                                                                int c = idx(T[i]);
         return C:
                                                                                                while (j && !ch[j][c]) j = fail[j];
    }
                                                                                                j = ch[j][c];
if (val[j])
}
                                                                                                    print(j);
using namespace Poly;
                                                                                                else if (last[j])
                                                                                                     print(last[j]);
                                                                                  } ac; //字符串下标从 0 开始
字符串
AC 自动机
                                                                                  KMP 2
#include <bits/stdc++.h>
                                                                                  #include <bits/stdc++.h>
using namespace std;
                                                                                  using namespace std;
struct AC {
                                                                                  struct KMP {
    static const int maxnode = 200005:
                                                                                      static const int MAXN = 1000010;
    static const int sigma_size = 26;
                                                                                       char T[MAXN], P[MAXN];
    char T[maxnode];
                                                                                       int fail[MAXN];
    int ch[maxnode][sigma_size];
                                                                                       vector<int> ans;
    int val[maxnode], fail[maxnode], last[maxnode];
                                                                                      void init() { ans.clear(); }
    vector<pair<int, int> > ans;
                                                                                       void get fail() {
    void init() {
```

```
int m = strlen(P);
                                                     元字符
                                                               描述
      fail[0] = fail[1] = 0;
                                                               配"do"或"does"。?等价于{0,1}。
      for (int i = 1; i < m; i++) {
         int j = fail[i];
while (j && P[i] != P[j]) j = fail[j];
fail[i + 1] = (P[i] == P[j] ? j + 1 : 0);
                                                     {n}
                                                               n 是一个非负整数。匹配确定的 n 次。例如,"o{2}"不能
                                                               匹配"Bob"中的"o",但是能匹配"food"中的两个 o。
                                                               n是一个非负整数。至少匹配 n次。例如,"o{2,}"不能匹
                                                     \{n,\}
  }
                                                               配"Bob"中的"o",但能匹配"foooood"中的所有 o。"o{1,}"
                                                               等价于"o+"。"o{0,}"则等价于"o*"。
   void find() {
                                                               m 和 n 均为非负整数,其中 n <= m。最少匹配 n 次且最多
                                                     \{n,m\}
      int n = strlen(T), m = strlen(P);
                                                               匹配 m 次。例如,"o{1,3}"将匹配"fooooood"中的前三个
      get_fail();
                                                               o 为一组, 后三个 o 为一组。"o{0,1}"等价于"o?"。请注意
      int j = 0;
      for (int i = 0; i < n; i++) {
   while (j && P[j] != T[i]) j = fail[j];</pre>
                                                               在逗号和两个数之间不能有空格。
                                                     ?
                                                                当该字符紧跟在任何一个其他限制符(,+,?, {n}, {n,},
         if (P[j] == T[i]) j++;
                                                               {n,m*}) 后面时, 匹配模式是非贪婪的。非贪婪模式尽可
         if (j == m) ans.push_back(i - m + 1);
                                                               能少地匹配所搜索的字符串,而默认的贪婪模式则尽可能
                                                               多地匹配所搜索的字符串。例如,对于字符串"oooo","o+"将尽可能多地匹配"o",得到结果["oooo"],而"o+?"将
} kmp; //P 为模式串,下标从 Ø 开始,输入后直接调用 find()
                                                               尽可能少地匹配"o",得到结果['o','o','o','o']
                                                               匹配除"\n"和"\r"之外的任何单个字符。要匹配包括"\n"
                                                     占.
kmp
                                                               和"\r"在内的任何字符,请使用像"[\s\S]"的模式。
//next 数组等价于前缀函数
                                                     (pattern)
                                                               匹配 pattern 并获取这一匹配。所获取的匹配可以从产生
#include<bits/stdc++.h>
                                                               的 Matches 集合得到,在 VBScript 中使用 SubMatches 集
using namespace std;
                                                               合,在 JScript 中则使用 0...9 属性。要匹配圆括号字符,
typedef long long 11;
                                                               请使用"("或")"。
                                                     (?:pattern)
                                                               非获取匹配,匹配 pattern 但不获取匹配结果,不进行存
int kmp(char *s1,int *p1,char *s2=0,int *p2=0){//必须先求s
                                                               储供以后使用。这在使用或字符"([]"来组合一个模式的各
1 的 next 数组,即 kmp(s1,p1); 再 kmp(s1,p1,s2,p2);
                                                               个部分时很有用。例如"industr(?:y|ies)"就是一个比
   int n=strlen(s1);
                                                               "industry|industries"更简略的表达式。
   if(p2==0){
      p1[0]=0;
                                                               非获取匹配,正向肯定预查,在任何匹配 pattern 的字符
                                                     (?=pattern
      for(int i=1;s1[i]!='\0';i++){
                                                               串开始处匹配查找字符串,该匹配不需要获取供以后使
         int j=p1[i-1];
                                                               用。例如, "Windows(?=95|98|NT|2000)"能匹配
         while(j>0&&s1[i]!=s1[j])j=p1[j-1];
                                                               "Windows2000"中的"Windows",但不能匹配
         if(s1[i]==s1[j])j++;
                                                               "Windows3.1"中的"Windows"。预查不消耗字符,也就是
         p1[i]=j;
                                                               说,在一个匹配发生后,在最后一次匹配之后立即开始下
                                                                一次匹配的搜索,而不是从包含预查的字符之后开始。
   else{
                                                     (?!pattern)
                                                               非获取匹配,正向否定预查,在任何不匹配 pattern 的字
      for(int i=0;s2[i]!='\0';i++){
                                                               符串开始处匹配查找字符串,该匹配不需要获取供以后使
         int j=i==0?0:p2[i-1];
                                                               用。例如"Windows(?!95|98|NT|2000)"能匹配
         while(j>0\&&s2[i]!=s1[j])j=p1[j-1];
                                                                "Windows3.1"中的"Windows", 但不能匹配
         if(s2[i]==s1[j])j++;
         p2[i]=j;
                                                               "Windows2000"中的"Windows"。
         if(j==n)return i-n+2;//返回位置
                                                               非获取匹配,反向肯定预查,与正向肯定预查类似,只是
                                                     (?<=patter
                                                               方向相反。例如, "(?<=95|98|NT|2000)Windows"能匹配
                                                               "2000Windows"中的"Windows",但不能匹配
   return 0;
                                                                "3.1Windows"中的"Windows"。*python 的正则表达式没
                                                               有完全按照正则表达式规范实现,所以一些高级特性建议
int main(){
   char s1[15],s2[105];
                                                               使用其他语言如 iava、scala 等
   int p1[15],p2[105];
                                                               非获取匹配,反向否定预查,与正向否定预查类似,只是
                                                     (?<!patter
   cin>>s1>>s2;
                                                                方向相反。例如"(?<!95|98|NT|2000)Windows"能匹配
                                                     n)
   kmp(s1,p1);
                                                                "3.1Windows"中的"Windows",但不能匹配
   cout<<kmp(s1,p1,s2,p2)<<endl;</pre>
                                                                "2000Windows"中的"Windows"。*python 的正则表达式
   return 0;
}
                                                               没有完全按照正则表达式规范实现,所以一些高级特性建
                                                               议使用其他语言如 java、scala 等
                                                               匹配 x 或 y。例如, "z|food"能匹配"z"或"food"(此处请谨
                                                     x|y
regex
                                                               慎)。"[z|f]ood"则匹配"zood"或"food"。
元字符
         描述
                                                               字符集合。匹配所包含的任意一个字符。例如,"[abc]"可
                                                     [xyz]
         将下一个字符标记符、或一个向后引用、或一个八进制转
                                                               以匹配"plain"中的"a"。
          义符。例如,"\n"匹配\n。"\n"匹配换行符。序列"\"匹配
                                                                负值字符集合。匹配未包含的任意字符。例如,"abc"可
                                                     [^xyz]
          "\"而"("则匹配"("。即相当于多种编程语言中都有的"转义
                                                                以匹配"plain"中的"plin"任一字符。
         字符"的概念。
                                                               字符范围。匹配指定范围内的任意字符。例如,"[a-z]"可
                                                     [a-z]
         匹配输入字行首。如果设置了 RegExp 对象的 Multiline 属
                                                               以匹配"a"到"z"范围内的任意小写字母字符。注意:只有连
         性, ^也匹配"\n"或"\r"之后的位置。
                                                               字符在字符组内部时,并且出现在两个字符之间时,才能表
$
         匹配输入行尾。如果设置了 RegExp 对象的 Multiline 属
                                                               示字符的范围; 如果出字符组的开头,则只能表示连字符本
         性, $也匹配"\n"或"\r"之前的位置。
         匹配前面的子表达式任意次。例如, zo 能匹配"z", 也能
                                                                负值字符范围。匹配任何不在指定范围内的任意字符。例
                                                     [^a-z]
         匹配"zo"以及"zoo"。等价于{0,}。
                                                               如, "a-z"可以匹配任何不在"a"到"z"范围内的任意字符。
         匹配前面的子表达式一次或多次(大于等于1次)。例
                                                               匹配一个单词的边界, 也就是指单词和空格间的位置(即
                                                     \b
          如, "zo+"能匹配"zo"以及"zoo", 但不能匹配"z"。+等价于
                                                               正则表达式的"匹配"有两种概念,一种是匹配字符,一种
                                                                是匹配位置,这里的\b 就是匹配位置的)。例如,"er\b"
                                                               可以匹配"never"中的"er",但不能匹配"verb"中的"er";
?
         匹配前面的子表达式零次或一次。例如, "do(es)?"可以匹
```

```
static const int sigma_size = 26;
元字符
          描述
                                                            int ch[maxnode][sigma_size];
          "\b1"可以匹配"123"中的"1", 但不能匹配"213"中的"1"。
                                                            int val[maxnode]:
\Β
          匹配非单词边界。"er\B"能匹配"verb"中的"er",但不能匹
                                                            int sz;
          配"never"中的"er"。
                                                            Trie() {
          匹配由 x 指明的控制字符。例如, \cM 匹配一个 Control-
\cx
          M或回车符。x的值必须为 A-Z或 a-z 之一。否则,将 c
                                                               memset(ch[0], 0, sizeof(ch[0]));
          视为一个原义的"c"字符。
          匹配一个数字字符。等价于[0-9]。grep 要加上-P, perl
\d
                                                            int idx(const char &c) { return c - 'a'; }
          正则支持
                                                            void insert(string s, int v) {
          匹配一个非数字字符。等价于 0-9。grep 要加上-P, perl
\D
                                                               int u = 0, n = s.length();
for (int i = 0; i < n; i++) {</pre>
          正则支持
\f
          匹配一个换页符。等价于\x0c和\cL。
                                                                  int c = idx(s[i]);
                                                                  if (!ch[u][c])
\n
          匹配一个换行符。等价于\x0a 和\cJ。
                                                                      memset(ch[sz], 0, sizeof(ch[sz]));
                                                                     val[sz] = 0;
ch[u][c] = sz++;
١r
          匹配一个回车符。等价于\x0d 和\cM。
          匹配任何不可见字符,包括空格、制表符、换页符等等。
\s
          等价于[\f\n\r\t\v]。
                                                                  u = ch[u][c];
\S
          匹配任何可见字符。等价于 \f\n\r\t\v。
                                                               val[u] = v;
\t
          匹配一个制表符。等价于\x09 和\cI。
\v
          匹配一个垂直制表符。等价于\x0b 和\cK。
                                                            int find(string s) {
                                                               int u = 0, n = s.length();
for (int i = 0; i < n; i++) {</pre>
          匹配包括下划线的任何单词字符。类似但不等价于"[A-Za-
\w
          z0-9_]", 这里的"单词"字符使用 Unicode 字符集。
                                                                  int c = idx(s[i]);
                                                                  if (!ch[u][c]) return 0;
\W
          匹配任何非单词字符。等价于"A-Za-z0-9_"。
                                                                  u = ch[u][c];
          匹配 n, 其中 n 为十六进制转义值。十六进制转义值必须
\xn
          为确定的两个数字长。例如,"\x41"匹配"A"。"\x041"则
                                                               return val[u];
          等价于"\x04&1"。正则表达式中可以使用 ASCII 编码。
                                                        } trie;
          匹配 num, 其中 num 是一个正整数。对所获取的匹配的
*num*
          引用。例如,"(.)\1"匹配两个连续的相同字符。
*n*
          标识一个八进制转义值或一个向后引用。如果*n 之前至
                                                        可持久化字典树
          少n 个获取的子表达式,则n 为向后引用。否则,如果n
          为八进制数字(0-7),则 n*为一个八进制转义值。
                                                        struct Trie01 {
                                                            static const int maxnode = 2000005;
*nm*
          标识一个八进制转义值或一个向后引用。如果*nm 之前至
                                                            static const int sigma_size = 2;
          少有 nm 个获得子表达式,则 nm 为向后引用。如果\nm
                                                            int ch[maxnode << 5][sigma_size], val[maxnode << 5];</pre>
          之前至少有 n 个获取,则 n 为一个后跟文字 m 的向后引
                                                            int rt[maxnode];
          用。如果前面的条件都不满足, 若 n 和 m 均为八进制数
                                                            int sz:
          字 (0-7) ,则\nm 将匹配八进制转义值 nm*。
                                                            Trie01() {
          如果n为八进制数字(0-7),且m和l均为八进制数字
*nml*
                                                               SZ = 0:
           (0-7),则匹配八进制转义值 nml
                                                               memset(ch[0], 0, sizeof(ch[0]));
\un
          匹配 n, 其中 n 是一个用四个十六进制数字表示的
          Unicode 字符。例如,\u00A9 匹配版权符号(@)。
                                                            void insert(int &now, int pre, int v) {
          小写 p 是 property 的意思,表示 Unicode 属性,用于
p{P}
                                                               now = ++sz;
for (int i = 30; i >= 0; i--) {
          Unicode 正表达式的前缀。中括号内的"P"表示 Unicode
          字符集七个字符属性之一:标点字符。其他六个属性:
                                                                  int k = ((v >> i) & 1);
                                                                  ch[now][k] = ++sz;
ch[now][k ^ 1] = ch[pre][k ^ 1];
val[ch[now][k]] = val[ch[pre][k]] + 1;
          L: 字母; M: 标记符号(一般不会单独出现); Z: 分隔
          符(比如空格、换行等); S: 符号(比如数学符号、货
          币符号等); N: 数字(比如阿拉伯数字、罗马数字
                                                                  now = ch[now][k];
          等); C: 其他字符。*注: 此语法部分语言不支持,例:
                                                                  pre = ch[pre][k];
          javascript .
          匹配词(word)的开始(<)和结束(>)。例如正则表
          达式<the>能够匹配字符串"for the wise"中的"the",但是
                                                        } trie;
          不能匹配字符串"otherwise"中的"the"。注意: 这个元字
          符不是所有的软件都支持的。
                                                        后缀数组
()
          将(和)之间的表达式定义为"组"(group),并且将匹
          配这个表达式的字符保存到一个临时区域(一个正则表达
                                                        #include <bits/stdc++.h>
          式中最多可以保存9个),它们可以用 \1 到\9 的符号
                                                        using namespace std;
          来引用。
                                                         struct SuffixArray
                                                            static const int MAXN = 1100000;
          将两个匹配条件进行逻辑"或"(or)运算。例如正则表达
Ι
                                                            char s[MAXN];
          式(him|her) 匹配"it belongs to him"和"it belongs to
                                                            int sa[MAXN], t[MAXN], t1[MAXN], c[MAXN], ra[MAXN], he
          her",但是不能匹配"it belongs to them."。注意:这个元
                                                         ight[MAXN], m;
          字符不是所有的软件都支持的。
                                                           inline void init() { memset(this, 0, sizeof(SuffixArra
                                                        y)); }
Trie
                                                            inline void get_sa(int n) {
                                                               m = 256;
#include <bits/stdc++.h>
                                                               int *x = t, *y = t1;
using namespace std;
                                                               for (int i = 1; i <= m; i++) c[i] = 0;
for (int i = 1; i <= n; i++) c[x[i] = s[i]]++;
struct Trie {
   static const int maxnode = 200005;
                                                               for (int i = 1; i <= m; i++) c[i] += c[i - 1];</pre>
```

```
for (int i = n; i >= 1; i--) sa[c[x[i]]--] = i;
                                                                               f[u] += f[e[i]];
        for (int k = 1; k <= n; k <<= 1) {
            int p = 0;
                                                                            if (f[u] > 1) ans = max(ans, f[u] * node[u].len);
                                                                        }
            for (int i = n - k + 1; i \le n; i++) y[++p] = i;
            for (int i = 1; i <= n; i++)
               if (sa[i] > k) y[++p] = sa[i] - k;
                                                                        int main() {
                                                                            scanf("%s", str);
            for (int i = 1; i <= m; i++) c[i] = 0;
            for (int i = 1; i <= n; i++) c[x[y[i]]]++;
for (int i = 1; i <= m; i++) c[i] += c[i - 1];
                                                                            for (int i = 0; str[i]; i++) extend(str[i] - 'a');
                                                                            memset(h, -1, sizeof h);
            for (int i = n; i >= 1; i--) sa[c[x[y[i]]]--] =
                                                                            for (int i = 2; i <= tot; i++) add(node[i].fa, i);</pre>
y[i];
                                                                            dfs(1):
                                                                            printf("%lld\n", ans);
            std::swap(x, y);
            p = x[sa[1]] = 1;
for (int i = 2; i <= n; i++) {
                                                                           return 0;
                x[sa[i]] = (y[sa[i - 1]] == y[sa[i]] &&
                            y[sa[i - 1] + k] == y[sa[i] + k])
                                                                        马拉车
            if (p >= n) break;
                                                                        #include <bits/stdc++.h>
            m = p;
                                                                        using namespace std;
       }
                                                                        const int maxn = 100005;
char s[maxn];
    }
                                                                        char s_new[maxn * 2];
    inline void get_height(int n) {
                                                                        int p[maxn * 2];
        int i, j, k = 0;
for (int i = 1; i <= n; i++) ra[sa[i]] = i;</pre>
                                                                        int Manacher(char* a, int 1) {
        for (int i = 1; i <= n; i++) {</pre>
                                                                           s_new[0] = '$';
s_new[1] = '#';
            if (k) k--:
            int j = sa[ra[i] - 1];
                                                                            int len = 2;
            while (s[i + k] == s[j + k]) k++;
height[ra[i]] = k;
                                                                            for (int i = 0; i < 1; i++) {</pre>
                                                                               s_new[len++] = a[i];
s_new[len++] = '#';
                                                                            s new[len] = '\0';
} SA; //字符串下标从一开始
                                                                            int id;
int mx = 0;
                                                                            int mmax = 0;
后缀自动机
                                                                            for (int i = 1; i < len; i++) {
   p[i] = i < mx ? min(p[2 * id - i], mx - i) : 1;</pre>
#include <bits/stdc++.h>
                                                                                while (s_new[i + p[i]] == s_new[i - p[i]]) p[i]++; if (mx < i + p[i]) {
using namespace std:
                                                                                    id = i;
typedef long long l1;
                                                                                   mx = i + p[i];
const int N = 2e6 + 10;
int tot = 1, last = 1;
                                                                               mmax = max(mmax, p[i] - 1);
struct Node {
   int len, fa;
                                                                            return mmax:
    int ch[26];
} node[N]:
char str[N];
                                                                        int main() {
11 f[N], ans;
int h[N], e[N], ne[N], idx;
                                                                            cin >> s;
                                                                            cout << Manacher(s, strlen(s));</pre>
void extend(int c) {
    int p = last, np = last = ++tot;
f[tot] = 1;
    node[np].len = node[p].len + 1;
    搜索
\lceil c \rceil = np:
    if (!p) node[np].fa = 1;
                                                                        占位
    else {
        int q = node[p].ch[c];
        if (node[q].len == node[p].len + 1) node[np].fa =
q;
                                                                        数据结构
            int na = ++tot:
            node[nq] = node[q], node[nq].len = node[p].len
                                                                        CDQ 分治
+ 1;
            node[q].fa = node[np].fa = nq;
            for (; p && node[p].ch[c] == q; p = node[p].fa)
                                                                        处理三维偏序问题,
 node[p].ch[c] = nq;
                                                                        每个 node 的三维不能完全相等,完全相等的话加权做
}
                                                                        #include <iostream>
                                                                        #include <cstring>
void add(int a, int b) {
   e[idx] = b, ne[idx] = h[a], h[a] = idx++;
                                                                        #include <algorithm>
                                                                        using namespace std:
void dfs(int u) {
   for (int i = h[u]; ~i; i = ne[i]) {
                                                                        const int N = 100010, M = 200010;
       dfs(e[i]);
                                                                        int n, m;
```

```
pa[i] = i;
struct Data
                                                                             }
    int a, b, c, s, res;
                                                                         }
                                                                          int find(int a) {
    bool operator< (const Data& t) const
                                                                              return pa[a] == a ? a : pa[a] = find(pa[a]);
        if (a != t.a) return a < t.a;</pre>
        if (b != t.b) return b < t.b;
        return c < t.c;
                                                                          struct edge {
                                                                             int from, to, 1;
    bool operator == (const Data& t) const
        return a == t.a && b == t.b && c == t.c;
                                                                          int w[N];
                                                                          edge e[N]:
}q[N], w[N];
                                                                          vector<int> g[N];
int tr[M], ans[N];
                                                                          int kruskal(int n, int m) {
int lowbit(int x)
                                                                              int kcnt = n;
                                                                              init(n);
                                                                              sort(e + 1, e + 1 + m, [](edge a, edge b) { return a.l
    return x & -x:
                                                                          < b.1; });
for (int i = 1; i <= m; i++) {
                                                                                  int u = find(e[i].from);
void add(int x, int v)
                                                                                  int v = find(e[i].to);
    for (int i = x; i < M; i += lowbit(i)) tr[i] += v;</pre>
                                                                                  if (u == v) continue;
                                                                                  w[++kcnt] = e[i].1;
pa[kcnt] = pa[u] = pa[v] = kcnt;
int query(int x)
                                                                                  g[u].push_back(kcnt);
                                                                                  g[v].push back(kcnt);
                                                                                  g[kcnt].push_back(u);
    int res = 0;
    for (int i = x; i; i -= lowbit(i)) res += tr[i];
                                                                                  g[kcnt].push_back(v);
    return res;
                                                                              return kcnt;
void merge_sort(int 1, int r)
   if (1 >= r) return;
                                                                          LCT
   int mid = 1 + r \gg 1;
   merge_sort(1, mid), merge_sort(mid + 1, r);
int i = 1, j = mid + 1, k = 0;
while (i <= mid && j <= r)</pre>
                                                                          11 ch[N][2], f[N], sum[N], val[N], tag[N], siz[N], siz2[N];
                                                                          inline void pushup(ll p) {
       if (q[i].b <= q[j].b) add(q[i].c, q[i].s), w[k ++ ]</pre>
                                                                              | sum[p] = sum[ch[p][0]] ^ sum[ch[p][1]] ^ val[p];
| siz[p] = siz[ch[p][0]] + siz[ch[p][1]] + 1 + siz2[p];
        else q[j].res += query(q[j].c), w[k ++ ] = q[j ++ ];
    while (i \leftarrow mid) add(q[i].c, q[i].s), w[k \leftrightarrow j] = q[i \leftrightarrow j]
+];
                                                                          inline void pushdown(ll p) {
   while (j \le r) q[j].res += query(q[j].c), w[k ++ ] = q
                                                                              if (tag[p]) {
[j ++ ];
                                                                                  if (ch[p][0]) swap(ch[ch[p][0]][0], ch[ch[p][0]]
    for (i = 1; i <= mid; i ++ ) add(q[i].c, -q[i].s);</pre>
                                                                          [1]), tag[ch[p][0]] ^= 1;
if (ch[p][1]) swap(ch[ch[p][1]][0], ch[ch[p][1]]
    for (i = 1, j = 0; j < k; i ++, j ++) q[i] = w[j];
                                                                          [1]), tag[ch[p][1]] ^= 1;
                                                                                  tag[p] = 0;
int main()
   scanf("%d%d", &n, &m);
for (int i = 0; i < n; i ++ )</pre>
                                                                          11 getch(l1 x) { return ch[f[x]][1] == x; }
        int a, b, c;
scanf("%d%d%d", &a, &b, &c);
                                                                          bool isroot(ll x)  { return ch[f[x]][0] != x && ch[f[x]][1]
        q[i] = \{a, b, c, 1\};
                                                                          inline void rotate(ll x) {
    sort(q, q + n);
                                                                             11 y = f[x], z = f[y], k = getch(x);
if (!isroot(y)) ch[z][ch[z][1] == y] = x;
    int k = 1;
                                                                              // 上面这句一定要写在前面,普通的 Splay 是不用的,因为 is Ro
    for (int i = 1; i < n; i ++ )
if (q[i] == q[k - 1]) q[k - 1].s ++ ;
                                                                          ot (后面会讲)
                                                                              ch[y][k] = ch[x][!k], f[ch[x][!k]] = y;
ch[x][!k] = y, f[y] = x, f[x] = z;
        else q[k ++ ] = q[i];
                                                                              pushup(y), pushup(x);
    merge_sort(0, k - 1);
    for (int i = 0; i < k; i ++ )</pre>
        ans[q[i].res + q[i].s - 1] += q[i].s;
                                                                          // 从上到下一层一层 pushDown 即可
                                                                          void update(ll p) {
    for (int i = 0; i < n; i ++ ) printf("%d\n", ans[i]);</pre>
                                                                              if (!isroot(p)) update(f[p]);
                                                                              pushdown(p);
    return 0;
}
                                                                          \textbf{inline void } \texttt{splay}(\texttt{ll } \texttt{x}) \ \{
                                                                              update(x); // 马上就能看到啦。 在
kruskal 重构树
                                                                              // SpLay 之前要把旋转会经过的路径上的点都 PushDown
                                                                              for (11 fa; fa = f[x], !isroot(x); rotate(x)) {
int pa[N];
                                                                                  if (!isroot(fa)) rotate(getch(fa) == getch(x) ? fa
void init(int n) {
    for (int i = 0; i <= n; i++) {
                                                                          }
```

```
// 回顾一下代码
                                                                               // 从上到下一层一层 pushDown 即可
inline void access(ll x) {
    for (11 p = 0; x; p = x, x = f[x]) {
    splay(x), siz2[x] += siz[ch[x][1]] - siz[p], ch[x]
                                                                               void update(ll p) {
                                                                                   if (!isroot(p)) update(f[p]);
[1] = p, pushup(x);
                                                                                   pushdown(p);
}
                                                                               inline void splay(ll x) {
inline void makeroot(ll p) {
                                                                                   update(x); // 马上就能看到啦。 在
    access(p);
                                                                                    // Splay 之前要把旋转会经过的路径上的点都 PushDown
    splay(p);
                                                                                   for (ll fa; fa = f[x], !isroot(x); rotate(x)) {
    swap(ch[p][0], ch[p][1]);
                                                                                       if (!isroot(fa)) rotate(getch(fa) == getch(x) ? fa
    tag[p] ^= 1;
inline void split(ll a, ll b) {
    makeroot(a);
                                                                               // 回顾一下代码
    access(b);
                                                                               inline void access(ll x) {
    splay(b);
                                                                                   for (11 p = 0; x; p = x, x = f[x]) {
}
                                                                                       splay(x), ch[x][1] = p, pushup(x);
inline ll find(ll p) {
    access(p), splay(p);
                                                                               inline void makeroot(ll p) {
    while (ch[p][0]) pushdown(p), p = ch[p][0];
                                                                                   access(p);
    splay(p);
                                                                                   splay(p);
                                                                                   swap(ch[p][0], ch[p][1]);
                                                                                   tag[p] ^= 1;
inline void link(ll x, ll y) {
    makeroot(y);
                                                                               inline void split(ll a, ll b) {
    makeroot(x):
                                                                                   makeroot(a):
    if (find(y) != x) {
                                                                                   access(b);
        f[x] = y;
                                                                                   splay(b);
         siz2[y] += siz[x];
}
                                                                               inline ll find(ll p) {
\textbf{inline void } \texttt{cut}(\texttt{ll } \texttt{x}, \texttt{ ll } \texttt{y}) \ \{\\
                                                                                   access(p), splay(p);
    makeroot(x);
if (find(y) == x && f[y] == x) {
                                                                                   \textbf{while } (\mathsf{ch}[p][\emptyset]) \ \mathsf{pushdown}(p) \text{, } p = \mathsf{ch}[p][\emptyset] \text{;}
                                                                                   splay(p);
        ch[x][1] = f[y] = 0;
                                                                                   return p;
        pushup(x);
}
                                                                               inline void link(ll x, ll y) {
                                                                                   makeroot(x);
void init(int n) {
                                                                                   if (find(y) != x) f[x] = y;
    for (int i = 1; i <= n; i++) siz[i] = 1;</pre>
                                                                               inline void cut(ll x, ll y) {
                                                                                   makeroot(x);
                                                                                   if (find(y) == x && f[y] == x) {
    ch[x][1] = f[y] = 0;
Splay
11 ch[N][2], f[N], sum[N], val[N], tag[N], siz[N];
                                                                                       pushup(x);
inline void pushup(ll p) {
    sum[p] = sum[ch[p][0]] ^ sum[ch[p][1]] ^ val[p];
siz[p] = siz[ch[p][0]] + siz[ch[p][1]] + 1;
                                                                               ST 表
inline void pushdown(ll p) {
                                                                               #include <bits/stdc++.h>
    if (tag[p]) {
        if (ch[p][0]) swap(ch[ch[p][0]][0], ch[ch[p][0]]
                                                                               using namespace std;
[1]), tag[ch[p][0]] ^= 1;
    if (ch[p][1]) swap(ch[ch[p][1]][0], ch[ch[p][1]]
                                                                               const int logn = 21;
                                                                               const int N = 2000001;
[1]), tag[ch[p][1]] ^= 1;
                                                                               int f[N][logn + 1], lg[N + 1];
        tag[p] = 0;
                                                                               void pre() {
                                                                                   lg[1] = 0;
                                                                                    for (int i = 2; i < N; i++) {
11 getch(ll x) { return ch[f[x]][1] == x; }
                                                                                       lg[i] = lg[i / 2] + 1;
\textcolor{red}{\textbf{bool}} \hspace{0.1cm} \textbf{isroot}(\texttt{ll} \hspace{0.1cm} \textbf{x}) \hspace{0.1cm} \{ \hspace{0.1cm} \textbf{return} \hspace{0.1cm} \textbf{ch}[\texttt{f}[\texttt{x}]][\emptyset] \hspace{0.1cm} != \texttt{x} \hspace{0.1cm} \&\& \hspace{0.1cm} \textbf{ch}[\texttt{f}[\texttt{x}]][1]
 !=x;}
                                                                               int main() {
inline void rotate(ll x) {
    ll y = f[x], z = f[y], k = getch(x);
                                                                                   ios::sync_with_stdio(false);
                                                                                   int n, m;
    if (!isroot(y)) ch[z][ch[z][1] == y] = x;
                                                                                   cin >> n >> m;
    // 上面这句一定要写在前面,普通的 Splay 是不用的,因为 isRo
                                                                                   for (int i = 1; i <= n; i++) cin >> f[i][0];
ot (后面会讲)
    ch[y][k] = ch[x][!k], f[ch[x][!k]] = y;
ch[x][!k] = y, f[y] = x, f[x] = z;
                                                                                    for (int j = 1; j <= logn; j++)</pre>
                                                                                       for (int i = 1; i + (1 << j) - 1 <= n; i++)
    pushup(y), pushup(x);
                                                                                            f[i][j] = max(f[i][j-1], f[i+(1 << (j-1))]
```

```
[j - 1]);
                                                                            y 总 Splay Plus
    for (int i = 1; i <= m; i++) {</pre>
        int x, y;
                                                                            #include <iostream>
        cin >> x >> y;
                                                                            #include <cstdio>
        int s = lg[y - x + 1];
printf("%d\n", max(f[x][s], f[y - (1 << s) + 1]
                                                                            #include <cstring>
                                                                            #include <algorithm>
[s]));
                                                                            using namespace std:
    return 0;
                                                                            const int N = 500010, INF = 1e9;
                                                                            int n, m;
                                                                            struct Node
Treap
                                                                                int s[2], p, v;
int rev, same;
#include <bits/stdc++.h>
using namespace std;
                                                                                 int size, sum, ms, ls, rs;
struct node {
    node* ch[2]:
                                                                                 void init(int _v, int _p)
    int r:
    int v:
                                                                                     s[0] = s[1] = 0, p = _p, v = _v;
    int cmp(int const& a) const {
                                                                                     rev = same = 0;
        if (v == a) return -a;
                                                                                    size = 1, sum = ms = v;
ls = rs = max(v, 0);
        return a > v ? 1 : 0;
                                                                            }tr[N];
void rotate(node*& a, int d) {
                                                                             int root, nodes[N], tt;
   node* k = a->ch[d ^ 1];
a->ch[d ^ 1] = k->ch[d];
                                                                            int w[N];
    k \rightarrow ch[d] = a;
                                                                            void pushup(int x)
    a = k;
                                                                                 auto &u = tr[x], &1 = tr[u.s[0]], &r = tr[u.s[1]];
void insert(node*& a, int x) {
                                                                                 u.size = 1.size + r.size + 1;
    if (a == NULL) {
                                                                                 u.sum = 1.sum + r.sum + u.v;
       a = new node;
                                                                                 u.ls = max(1.ls, 1.sum + u.v + r.ls);
        a \rightarrow ch[0] = a \rightarrow ch[1] = NULL;
                                                                                 u.rs = max(r.rs, r.sum + u.v + 1.rs);
        a \rightarrow v = x;
                                                                                 u.ms = max(max(1.ms, r.ms), 1.rs + u.v + r.ls);
        a->r = rand();
    } else {
    int d = a->cmp(x);
        insert(a->ch[d], x);
if (a->ch[d]->r > a->r) rotate(a, d ^ 1);
                                                                            void pushdown(int x)
                                                                                 auto &u = tr[x], &l = tr[u.s[0]], &r = tr[u.s[1]];
                                                                                 if (u.same)
void remove(node*& a, int x) {
                                                                                     u.same = u.rev = 0;
    int d = a \rightarrow cmp(x);
                                                                                     if (u.s[0]) 1.same = 1, 1.v = u.v, 1.sum = 1.v * 1.
    if (d == -1) {
        if (a->ch[0] == NULL)
                                                                            size:
        a = a->ch[1];
else if (a->ch[1] == NULL)
                                                                                     if (u.s[1]) r.same = 1, r.v = u.v, r.sum = r.v * r.
                                                                            size:
                                                                                     if (u.v > 0)
            a = a - > ch[0];
        else {
                                                                                         if (u.s[0]) 1.ms = 1.1s = 1.rs = 1.sum;
             int d2 = a->ch[1]->r > a->ch[0]->r ? 0 : 1;
                                                                                         if (u.s[1]) r.ms = r.ls = r.rs = r.sum;
             rotate(a, d2);
             remove(a \rightarrow ch[d2], x);
                                                                                     élse
    } else {
                                                                                         if (u.s[0]) 1.ms = 1.v, 1.ls = 1.rs = 0; if (u.s[1]) r.ms = r.v, r.ls = r.rs = 0;
        remove(a->ch[d], x);
int find(node*& a, int x) {
                                                                                 else if (u.rev)
    if (a == NULL)
        return 0;
                                                                                     u.rev = 0, 1.rev ^= 1, r.rev ^= 1;
    else if (a->v == x)
                                                                                     \mathsf{swap}(\mathsf{l.ls},\;\mathsf{l.rs}),\;\mathsf{swap}(\mathsf{r.ls},\;\mathsf{r.rs});
       return 1;
    else {
                                                                                     swap(1.s[0], 1.s[1]), swap(r.s[0], r.s[1]);
       int d = a->cmp(x);
                                                                            }
        return find(a->ch[d], x);
                                                                            void rotate(int x)
int main() {
                                                                                 int y = tr[x].p, z = tr[y].p;
    node* a = NULL;
                                                                                int k = tr[y].s[1] == x;
tr[z].s[tr[z].s[1] == y] = x, tr[x].p = z;
tr[y].s[k] = tr[x].s[k ^ 1], tr[tr[x].s[k ^ 1]].p = y;
tr[x].s[k ^ 1] = y, tr[y].p = x;
pushup(y), pushup(x);
    int k, 1;
    while (cin >> k >> 1) {
        if (k == 1)
            insert(a, 1);
        else if (k == 2)
            remove(a, 1);
        else {
                                                                            void splay(int x, int k)
            cout << find(a, 1) << end1;
                                                                                 while (tr[x].p != k)
   }
}
                                                                                     int y = tr[x].p, z = tr[y].p;
                                                                                     if (z != k)
                                                                                         if ((tr[y].s[1] == x) ^ (tr[z].s[1] == y)) rota
```

```
te(x);
                                                                                                   int posi, tot;
                                                                                                   int posi, tot;
scanf("%d%d", &posi, &tot);
int l = get_k(posi), r = get_k(posi + tot + 1);
splay(1, 0), splay(r, 1);
auto& son = tr[tr[r].s[0]];
              else rotate(y);
         rotate(x);
    if (!k) root = x;
}
                                                                                                   son.rev ^= 1;
                                                                                                   swap(son.ls, son.rs);
int get_k(int k)
                                                                                                   swap(son.s[0], son.s[1]);
                                                                                                   pushup(r), pushup(1);
    int u = root;
                                                                                              else if (!strcmp(op, "GET-SUM"))
    while (u)
         pushdown(u);
                                                                                                   int posi, tot;
         if (tr[tr[u].s[0]].size >= k) u = tr[u].s[0];
                                                                                                   scanf("%d%d", &posi, &tot);
                                                                                                   int l = get_k(posi), r = get_k(posi + tot + 1);
splay(l, 0), splay(r, 1);
printf("%d\n", tr[tr[r].s[0]].sum);
         else if (tr[tr[u].s[0]].size + 1 == k) return u;
         else k \rightarrow tr[tr[u].s[0]].size + 1, u = tr[u].s[1];
}
                                                                                              else printf("%d\n", tr[root].ms);
int build(int 1, int r, int p)
     int mid = 1 + r \gg 1;
                                                                                         return 0:
    int u = nodes[tt -- ];
     tr[u].init(w[mid], p);
     if (1 < mid) tr[u].s[0] = build(1, mid - 1, u);</pre>
    if (mid < r) tr[u].s[1] = build(mid + 1, r, u);</pre>
                                                                                    y 总 Splay
    pushup(u);
    return u:
                                                                                    #include <bits/stdc++.h>
}
                                                                                    using namespace std;
void dfs(int u)
                                                                                    const int N = 1e6 + 10;
                                                                                    struct node {
     if (tr[u].s[0]) dfs(tr[u].s[0]);
                                                                                         int p, v, s[2];
int siz, tag;
    if (tr[u].s[1]) dfs(tr[u].s[1]);
     nodes[ ++ tt] = u;
                                                                                         void init(int _v, int _p) {
}
                                                                                             v = _v, p = _p;
                                                                                              siz = 1;
int main()
                                                                                         }
     for (int i = 1; i < N; i ++ ) nodes[ ++ tt] = i;</pre>
                                                                                    node tr[N];
     scanf("%d%d", &n, &m);
                                                                                    int root, idx;
     tr[0].ms = w[0] = w[n + 1] = -INF;
     for (int i = 1; i <= n; i ++ ) scanf("%d", &w[i]);</pre>
                                                                                     void pushup(int x) { tr[x].siz = tr[tr[x].s[0]].siz + tr[t
     root = build(0, n + 1, 0);
                                                                                    r[x].s[1]].siz + 1; }
    char op[20];
                                                                                    void pushdown(int x) {
    while (m -- )
                                                                                         if (tr[x].tag) {
                                                                                              swap(tr[x].s[0], tr[x].s[1]);
         scanf("%s", op);
if (!strcmp(op, "INSERT"))
                                                                                              tr[tr[x].s[0]].tag ^= 1;
tr[tr[x].s[1]].tag ^= 1;
                                                                                              tr[x].tag = 0;
              int posi, tot;
                                                                                         }
              scanf("%d%d", &posi, &tot);
for (int i = 0; i < tot; i ++ ) scanf("%d", &w</pre>
                                                                                     void rotate(int x) {
                                                                                         d rotate(int x) {
  int y = tr[x].p, z = tr[y].p;
  int k = tr[y].s[1] == x;
  tr[y].s[k] = tr[x].s[k ^ 1], tr[tr[y].s[k]].p = y;
  tr[x].s[k ^ 1] = y, tr[y].p = x;
  tr[z].s[tr[z].s[1] == y] = x, tr[x].p = z;
  return(x) = return(x);
[i]);
              int 1 = get_k(posi + 1), r = get_k(posi + 2);
splay(1, 0), splay(r, 1);
              int u = build(0, tot - 1, r);
              tr[r].s[0] = u;
              pushup(r), pushup(1);
                                                                                         pushup(y), pushup(x);
         else if (!strcmp(op, "DELETE"))
                                                                                    void splay(int x, int k) {
              \label{eq:conf_posi} \begin{split} & \text{int posi, tot;} \\ & \text{scanf}(\text{"}%d\%d", \&posi, \&tot); \\ & \text{int } 1 = \text{get\_k(posi)}, \ r = \text{get\_k(posi + tot + 1)}; \end{split}
                                                                                         while (tr[x].p != k) {
                                                                                             int y = tr[x].p, z = tr[y].p;
if (z != k) {
              splay(1, 0), splay(r, 1);
                                                                                                   if ((tr[z].s[1] == y) ^ (tr[y].s[1] == x)) {
              dfs(tr[r].s[0]);
                                                                                                       rotate(x);
              tr[r].s[0] = 0;
                                                                                                   } else {
              pushup(r), pushup(1);
                                                                                                        rotate(y);
                                                                                                   }
         else if (!strcmp(op, "MAKE-SAME"))
                                                                                              rotate(x);
              int posi, tot, c;
scanf("%d%d%d", &posi, &tot, &c);
                                                                                         if (!k) root = x;
              int l = get_k(posi), r = get_k(posi + tot + 1);
              splay(1, 0), splay(r, 1);
              auto& son = tr[tr[r].s[0]];
                                                                                     void insert(int v) {
              son.same = 1, son.v = c, son.sum = c * son.size; if (c > 0) son.ms = son.ls = son.rs = son.sum; else son.ms = c, son.ls = son.rs = 0;
                                                                                         int u = root, p = 0;
                                                                                         while (u) p = u, u = tr[u].s[v > tr[u].v];
                                                                                         u = ++idx;
              pushup(r), pushup(1);
                                                                                         if (p) tr[p].s[v > tr[p].v] = u;
                                                                                         tr[u].init(v, p);
         else if (!strcmp(op, "REVERSE"))
                                                                                         splay(u, 0);
```

```
}
                                                                         val[now] = update(val[ch[now][0]], val[ch[now][1]]);
                                                                         return now:
int getk(int k) {
   int u = root;
   while (1) {
                                                                     ll kth(ll pre, ll now, ll l, ll r, ll k) { // 查询操作
       pushdown(u);
                                                                         11 \text{ mid} = (1 + r) >> 1;
        if (k <= tr[tr[u].s[0]].siz) {</pre>
                                                                         ll x = val[ch[now][0]] - val[ch[pre][0]]; // 通过区间
           `u = tr[u].s[0];
                                                                      减法得到左儿子的信
         else if (k == tr[tr[u].s[0]].siz + 1) {
                                                                         if (1 == r) return 1;
            splay(u, 0);
                                                                         if (k <= x) // 说明在左儿子中
            return u;
                                                                             return kth(ch[pre][0], ch[now][0], 1, mid, k);
        } else {
           k = tr[tr[u].s[0]].siz + 1, u = tr[u].s[1];
                                                                             \textbf{return} \ kth(ch[\texttt{pre}][\texttt{1}], \ ch[\texttt{now}][\texttt{1}], \ \texttt{mid} + \texttt{1}, \ \texttt{r}, \ \texttt{k} \ \texttt{-}
   }
}
                                                                     ll query(ll pre, ll now, ll l, ll r, ll ql, ll qr) { // 查
int n, m;
void output(int u) {
                                                                         if (ql <= 1 && r <= qr) {
   if (u == 0) return;
                                                                             return val[now] - val[pre];
   pushdown(u):
   output(tr[u].s[0]);
                                                                         if (qr < 1 || r < q1) {
   if (1 <= tr[u].v && tr[u].v <= n) cout << tr[u].v << '</pre>
                                                                             return 0:
   output(tr[u].s[1]);
                                                                         11 \text{ mid} = (1 + r) >> 1;
}
                                                                         11 lv = query(ch[pre][0], ch[now][0], 1, mid, ql, qr);
                                                                         11 rv = query(ch[pre][1], ch[now][1], mid + 1, r, ql,
int main() {
   \verb"ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);\\
                                                                         return update(lv, rv);
    cin >> n >> m:
    for (int i = 0; i <= n + 1; i++) insert(i);</pre>
                                                                     //修改查询记得用rt[]!!!
   while (m--) {
        int a, b;
        cin >> a >> b;
       int id1 = getk(a), id2 = getk(b + 2);
splay(id1, 0), splay(id2, id1);
                                                                     仙人堂
       tr[tr[id2].s[0]].tag ^= 1;
                                                                      仙人掌:任意一条边至多只出现在一条简单回路的无向连通图称为仙人
   output(root);
                                                                      堂。
}
                                                                      转化为圆方树,然后根据树的算法来做一些问题,注意区分圆点和方点
                                                                      这题: 求带环(环和环之间无公共边)无向图两点间的最短路径
主席树
                                                                     #include <iostream>
#include <bits/stdc++.h>
                                                                     #include <cstring>
                                                                     #include <algorithm>
using namespace std;
typedef long long 11;
                                                                     using namespace std:
const 11 N = 1 << 20:
                                                                     const int N = 12010, M = N * 3;
11 ch[N << 5][2], rt[N], tot;</pre>
11 val[N << 5];</pre>
                                                                     int n, m, Q, new_n;
                                                                     int h1[N], h2[N], e[M], w[M], ne[M], idx;
ll update(ll a, ll b) {
                                                                     \quad \text{int dfn}[N], \ low[N], \ cnt; \\
    return a + b;
                                                                     int s[N], stot[N], fu[N], fw[N];
int fa[N][14], depth[N], d[N];
                                                                     int A, B;
ll build(ll l, ll r) { // 建树
   11 p = ++tot;
                                                                     void add(int h[], int a, int b, int c)
   if (1 == r) {
        //初始化
                                                                         e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
        val[p] = 0;
       return p;
                                                                     void build_circle(int x, int y, int z)
    11 \text{ mid} = (1 + r) >> 1;
   ch[p][0] = build(1, mid);
                                                                          int sum = z:
    ch[p][1] = build(mid + 1, r);
                                                                         for (int k = y; k != x; k = fu[k])
   val[p] = update(val[ch[p][0]], val[ch[p][1]]);
                                                                         {
   return p; // 返回该子树的根节点
                                                                             s[k] = sum;
                                                                             sum += fw[k];
                                                                         s[x] = stot[x] = sum;
ll modify(ll pre, ll l, ll r, ll pos, ll v) { // 插入操作
                                                                         add(h2, x, ++ new_n, 0);
for (int k = y; k != x; k = fu[k])
   11 \text{ now} = ++\text{tot};
    ch[now][0] = ch[pre][0], ch[now][1] = ch[pre][1];
   if (1 == r) {
    val[now] = val[pre] + v;
                                                                         {
                                                                             stot[k] = sum;
                                                                             add(h2, new_n, k, min(s[k], sum - s[k]));
       return now:
   11 \text{ mid} = (1 + r) >> 1;
   if (pos <= mid)</pre>
        ch[now][0] = modify(ch[now][0], 1, mid, pos, v);
                                                                     void tarjan(int u, int from)
   else
                                                                         dfn[u] = low[u] = ++ cnt;
        ch[now][1] = modify(ch[now][1], mid + 1, r, pos,
                                                                         for (int i = h1[u]; ~i; i = ne[i])
v);
```

```
int j = e[i];
         if (!dfn[j])
                                                                                         #include <bits/stdc++.h>
               fu[j] = u, fw[j] = w[i];
                                                                                         using namespace std;
               tarjan(j, i);
low[u] = min(low[u], low[j]);
                                                                                         typedef long long 11;
                                                                                         const int N = 1 \ll 20:
               if (dfn[u] < low[j]) add(h2, u, j, w[i]);</pre>
                                                                                         struct node {
          else if (i != (from ^ 1)) low[u] = min(low[u], dfn
                                                                                              int mmax, semax, cnt;
[j]);
                                                                                              11 sum;
     for (int i = h1[u]; ~i; i = ne[i])
                                                                                         node tree[N << 1];</pre>
          int j = e[i];
if (dfn[u] < dfn[j] && fu[j] != u)</pre>
                                                                                         int init[N << 1];</pre>
               build_circle(u, j, w[i]);
                                                                                         node merge_range(node a, node b) {
                                                                                              node ans;
}
                                                                                              ans.sum = a.sum + b.sum;
                                                                                              if (a.mmax == b.mmax) {
void dfs lca(int u, int father)
                                                                                                   ans.mmax = a.mmax;
                                                                                                   ans.cnt = a.cnt + b.cnt;
     depth[u] = depth[father] + 1;
                                                                                                   ans.semax = max(a.semax, b.semax);
     fa[u][0] = father;
                                                                                              } else {
     for (int k = 1; k <= 13; k ++ )
                                                                                                  if (a.mmax < b.mmax) swap(a, b);</pre>
     fa[u][k] = fa[fa[u][k - 1]][k - 1];
for (int i = h2[u]; ~i; i = ne[i])
                                                                                                   ans.mmax = a.mmax;
                                                                                                   ans.cnt = a.cnt;
                                                                                                   ans.semax = max(a.semax, b.mmax);
         int j = e[i];
d[j] = d[u] + w[i];
dfs_lca(j, u);
                                                                                              return ans;
                                                                                         void build(int k, int l, int r) {
                                                                                              if (1 == r) {
int lca(int a, int b)
                                                                                                   tree[k] = {init[l], -1, 1, init[l]};
                                                                                                   return;
    if (depth[a] < depth[b]) swap(a, b);
for (int k = 13; k >= 0; k -- )
   if (depth[fa[a][k]] >= depth[b])
                                                                                              int mid = (1 + r) >> 1;
                                                                                             \begin{array}{l} \text{build(k << 1, 1, mid);} \\ \text{build(k << 1 | 1, mid + 1, r);} \\ \end{array}
             a = fa[a][k];
                                                                                              \label{eq:tree} \texttt{tree}[\overset{.}{k}] = \texttt{merge\_range}(\texttt{tree}[\overset{.}{k} << 1], \; \texttt{tree}[\overset{.}{k} << 1 \; | \; 1]);
     if (a == b) return a;
     for (int k = 13; k >= 0; k -- )
          if (fa[a][k] != fa[b][k])
               a = fa[a][k]:
                                                                                         void pushdown(int k, int l, int r) {
               b = fa[b][k];
                                                                                              if (1 == r) return;
                                                                                         \label{eq:continuous_section} \begin{tabular}{ll} if (tree[k].mmax < tree[k << 1].mmax < tree[k << 1].mmax - tree[k].mmax) * tree[k << 1].cnt; \end{tabular}
     A = a, B = b;
     return fa[a][0];
                                                                                                  tree[k << 1].mmax = tree[k].mmax;</pre>
int main()
                                                                                              if (tree[k].mmax < tree[k << 1 | 1].mmax) {</pre>
                                                                                         tree[k << 1 | 1].sum -= 1LL * (tree[k << 1 | 1].mma
x - tree[k].mmax) * tree[k << 1 | 1].cnt;
tree[k << 1 | 1].mmax = tree[k].mmax;
     scanf("%d%d%d", &n, &m, &Q);
     new n = n:
     memset(h1, -1, sizeof h1);
     memset(h2, -1, sizeof h2);
     while (m -- )
                                                                                         node query(int k, int l, int r, int ql, int qr) {
          scanf("%d%d%d", &a, &b, &c);
                                                                                             if (qr < 1 || r < q1) return {0, -1, 1, 0};
if (ql <= 1 && r <= qr) {
          add(h1, a, b, c), add(h1, b, a, c);
                                                                                                   return tree[k];
     tarjan(1, -1);
                                                                                             pushdown(k, 1, r);
int mid = (1 + r) >> 1;
node lq = query(k << 1, 1, mid, q1, qr);
node rq = query(k << 1 | 1, mid + 1, r, q1, qr);</pre>
     dfs_lca(1, 0);
     while (Q -- )
     {
         int a, b;
scanf("%d%d", &a, &b);
                                                                                              return merge_range(lq, rq);
          int p = lca(a, b);
          if (p <= n) printf("%d\n", d[a] + d[b] - d[p] * 2);</pre>
                                                                                         void modify(int k, int l, int r, int ql, int qr, int x) {
          else
                                                                                               \  \  \text{if } (\textit{qr} < \textit{l} \ | \ | \ \textit{r} < \textit{ql}) \ \textit{return}; \\
                                                                                              if (q1 <= 1 && r <= qr && tree[k].semax < x) {
   if (x < tree[k].mmax) {</pre>
               int da = d[a] - d[A], db = d[b] - d[B];
               int 1 = abs(s[A] - s[B]);
                                                                                                        tree[k].sum -= 1LL * (tree[k].mmax - x) * tree
              int dm = min(1, stot[A] - 1);
printf("%d\n", da + dm + db);
                                                                                         [k].cnt;
                                                                                                        tree[k].mmax = x;
    }
                                                                                                   return;
                                                                                              \begin{array}{l} \text{pushdown(k, l, r);} \\ \text{int mid} = (1 + r) >> 1; \\ \end{array}
     return 0;
                                                                                              modify(k << 1, 1, mid, ql, qr, x);
modify(k << 1 | 1, mid + 1, r, ql, qr, x);</pre>
```

区间 max

```
tree[k] = merge\_range(tree[k << 1], tree[k << 1 | 1]);
                                                                     len = sqrt(n);
                                                                     for (int i = 1; i \leftarrow n; i \leftrightarrow p) scanf("%d", &w[i]), nums.
                                                                 push back(w[i]);
                                                                     sort(nums.begin(), nums.end());
signed main() {
// freopen("data.txt", "r", stdin);
// freopen("test1.txt", "w", stdout);
                                                                     \verb|nums.erase(unique(nums.begin(), nums.end()), nums.end|\\
                                                                     for (int i = 1; i <= n; i ++ )</pre>
                                                                         w[i] = lower_bound(nums.begin(), nums.end(), w[i])
   scanf("%d", &t);
                                                                   - nums.begin();
   while (t--) {
      int n, q;
scanf("%d%d", &n, &q);
for (int i = 1; i <= n; i++) scanf("%d", &init[i]);</pre>
                                                                     for (int i = 0; i < m; i ++)
                                                                         int 1, r;
       build(1, 1, n);
                                                                         scanf("%d%d", &1, &r);
       while (q--) {
                                                                         q[i] = \{i, 1, r\};
           int x, y, op, val;
           scanf("%d%d%d", &op, &x, &y);
                                                                     sort(q, q + m, cmp);
           if (op == 0) {
               scanf("%d", &val);
                                                                     for (int x = 0; x < m;)
               modify(1, 1, n, x, y, val);
           } else if (op == 1) {
   node ans = query(1, 1, n, x, y);
                                                                         printf("%d\n", ans.mmax);
                                                                         int right = get(q[x].1) * len + len - 1;
              node ans = query(1, 1, n, x, y);
                                                                         // 暴力求块内的询问
               printf("%lld\n", ans.sum);
                                                                         while (x < y \&\& q[x].r <= right)
      }
   }
                                                                             int id = q[x].id, 1 = q[x].1, r = q[x].r;
}
                                                                             for (int k = 1; k \leftarrow r; k \leftrightarrow p) add(w[k], res);
                                                                             ans[id] = res;
                                                                             for (int k = 1; k <= r; k ++ ) cnt[w[k]] -- ;</pre>
回滚莫队
                                                                         // 求块外的询问
离线,询问按左端点升序为第一关键字,右端点升序为第二关键字
                                                                         LL res = 0;
对于都在块内的点直接暴力,否则跨块:
                                                                         int i = right, j = right + 1;
若当前左端点所属的块与上一个不同,则将左端点初始为当前块的右端
                                                                         while (x < y)
点+1, 右端点初始为当前块的右端点
左端点每次暴力,右端点单调
                                                                             LL backup = res;
                                                                            while (j > 1) add(w[ -- j], res);
ans[id] = res;
#include <iostream>
#include <cstring>
#include <cstdio>
                                                                             while (j < right + 1) cnt[w[j ++ ]] -- ;</pre>
#include <algorithm>
                                                                             res = backup;
#include <cmath>
#include <vector>
                                                                         memset(cnt, 0, sizeof cnt);
using namespace std;
typedef long long LL;
                                                                     for (int i = 0; i < m; i ++ ) printf("%lld\n", ans[i]);</pre>
const int N = 100010;
                                                                     return 0;
int n, m, len;
int w[N], cnt[N];
LL ans[N];
                                                                 带修莫队
struct Query
                                                                 #include <bits/stdc++.h>
   int id, 1, r;
                                                                 using namespace std;
}q[N];
vector<int> nums;
                                                                 const int N = 10010;
int get(int x)
                                                                 int a[N], cnt[1000010], ans[N];
   return x / len;
                                                                 int len, mq, mc;
                                                                 struct Query {
bool cmp(const Query& a, const Query& b)
                                                                            int id, 1, r, t;
                                                                 } a[N];
   int i = get(a.1), j = get(b.1);
   if (i != j) return i < j;
return a.r < b.r;</pre>
                                                                 struct Modify {
                                                                            int p, c;
                                                                 } c[N];
void add(int x, LL& res)
                                                                 int getNum(int x) {
                                                                            return x / len;
   cnt[x] ++ :
                                                                 }
   res = max(res, (LL)cnt[x] * nums[x]);
                                                                 // L 所在块的编号, r 所在块的编号, t 升序
int main()
                                                                 bool cmp(const Query& a, const Query& b) {
                                                                            if(getNum(a.1) == getNum(b.1) && getNum(a.r) ==
   scanf("%d%d", &n, &m);
```

```
getNum(b.r)) {
                                                                                struct node {
                                                                                             int id, l, r;
                         return a.t < b.t:
                                                                                } mp[M];
            if(getNum(a.1) == getNum(b.1)) return a.r < b.r;</pre>
            return a.1 < b.1;
                                                                                int len;
}
                                                                                int ans[M], cnt[1000010];
void add(int x, int& res) {
                                                                                int getNum(int 1) {
    if (!cnt[x]) res ++ ;
                                                                                             return 1 / len;
    cnt[x] ++ ;
                                                                                 //左指针的分块,右指针的大小
void del(int x, int& res) {
                                                                                bool cmp (const node &a, const node & b) {
     if(getNum(a.1) == getNum(b.1)) return a.r < b.r;</pre>
    cnt[x] --
    if (!cnt[x]) res -- ;
                                                                                             return a.1 < b.1;
                                                                                /* 奇偶优化
                                                                                struct node {
int main() {
                                                                                   int L, r, id;
            ios::sync\_with\_stdio(0); cin.tie(0); cout.tie
                                                                                   bool operator<(const node &x) const {</pre>
(0):
                                                                                     if (L / unit != x.L / unit) return L < x.L;</pre>
                                                                                     if ((l / unit) & 1)
            int n, m;
cin >> n >> m;
                                                                                       return r < x.r; // 注意这里和下面一行不能写小于 (大
                                                                                 于)等于
             char op;
                                                                                     return r > x.r;
            int x, y;
            for(int i = 1; i <= n; ++ i) {</pre>
                         cin >> a[i];
            for(int i = 1; i <= m; ++ i) {
                                                                                void add(int x, int& res) {
         cin >> op >> x >> y;
if (op == '0') q[++ mq] = {mq, x, y, mc};
else c[ ++ mc] = {x, y};
                                                                                             if(cnt[x] == 0) res++;
                                                                                             cnt[x] ++;
                                                                                void del(int x, int& res) {
            len = cbrt((double)n * mc) + 1;
                                                                                             if(cnt[x] == 0) res --;
  sort(q + 1, q + mq + 1, cmp);
            int i = 1, j = 0, t = 0, res = 0;
for(int k = 1; k <= mq; ++ k) {
    int id = q[k].id, 1 = q[k].1, r = q[k].</pre>
                                                                                int main() {
                                                                                              ios::sync_with_stdio(0); cin.tie(0); cout.tie
r, tm = q[k].t;
                         while(j < r) add(a[++ j], res);</pre>
                                                                                             int n;
                         while(j > r) del(a[j --], res);
while(i < l) del(a[i ++], res);</pre>
                                                                                              cin >> n;
                                                                                              for(int i = 1; i <= n; ++ i) {</pre>
                         \label{eq:while} \mbox{while}(\mbox{i} > \mbox{l}) \mbox{ add}(\mbox{a[-- i], res)};
                                                                                                          cin >> a[i];
                         \textbf{while}(\texttt{t} \, < \, \texttt{tm}) \, \, \{
                                                                                             int m;
                                      if(c[t].p >= i && c[t].p <=
                                                                                             cin >> m;
j) {
                                                                                              len = sqrt((double)n * n / m);
                                                   del(a[c[t].p], re
                                                                                              for(int i = 1; i <= m; ++ i) {
s);
                                                                                                          mp[i].id = i;
                                                   add(c[t].c, res);
                                                                                                          cin >> mp[i].1 >> mp[i].r;
                                      swap(a[c[t].p], c[t].c);
                                                                                              sort(mp + 1, mp + m + 1, cmp);
                         while(t > tm) {
                                                                                              //离线处理询问
                                      if(c[t].p >= i && c[t].p <=
                                                                                             fint res = 0, i = 0, j = 0;
for(int k = 1; k <= m; ++ k) {
   int id = mp[k].id, l = mp[k].l, r = mp</pre>
j) {
                                                   del(a[c[t].p], re
s);
                                                                                [k].r;
                                                   add(c[t].c, res);
                                                                                                          while(j < r) add(a[++j], res);</pre>
                                                                                                          while(j > r) del(a[j--], res);
while(i < l) del(a[i++], res);</pre>
                                      swap(a[c[t].p], c[t].c);
                                      -- t;
                                                                                                          \label{eq:while} \mbox{while}(\mbox{i} > 1) \mbox{ add}(\mbox{a}[\mbox{--i}], \mbox{ res});
                                                                                                          ans[id] = res;
                         ans[id] = res;
            }
                                                                                              for(int i = 1; i <= m; ++ i) {</pre>
            for(int i = 1; i <= mq; ++ i) {
          cout << ans[i] << endl;</pre>
                                                                                                          cout << ans[i] << endl;</pre>
                                                                                              return 0;
}
普通莫队
                                                                                树状数组(fenwick)
#include <bits/stdc++.h>
                                                                                template <typename T>
using namespace std;
                                                                                struct fenwick {
                                                                                     vector<T> fenw;
const int N = 1e6 + 10, M = 1e6 + 10;
                                                                                     int n;
int a[N];
                                                                                     fenwick(\verb"int _n") \; : \; n(\_n) \; \{
```

```
fenw.resize(n);
                                                                                 \mbox{if } (\mbox{val}[\mbox{ch}[\mbox{p}][\mbox{0}]] \mbox{$>=$ $k$}) \mbox{ {\it return } $kth(\mbox{ch}[\mbox{p}][\mbox{0}], \mbox{ $l$, mid,} $} 
    }
                                                                             k); }
                                                                                else { return kth(ch[p][1], mid + 1, r, k - val[ch[p]
    void clear(){
                                                                            [0]]); }
         fenw.clear();
         fenw.resize(n);
                                                                            11 merge(11 x, 11 y, 11 1, 11 r) {
                                                                                if (!x || !y) {
                                                                                    return x + y;
    void modify(int x, T v) {
                                                                                     // 只有一边有点,不用合并
         while (x < n) {
             fenw[x] += v;
                                                                                ll p = newnod(); // 创建一个新结点 p
             //if(fenw[x]>=mod)fenw[x]-=mod;
                                                                                                                  // 边界 (某些时候可以省略,
                                                                                if (1 == r) {
             x = (x + 1);
                                                                             见下面一个代码)
        }
                                                                                    val[p] = val[x] + val[y];
    }
                                                                                    return p;
                                                                                }
    T get(int x) {
                                                                                  pushdown(x), pushdown(y);
                                                                                11 \text{ mid} = (1 + r) >> 1;
         while (x >= 0) {
                                                                                ch[p][0] = merge(ch[x][0], ch[y][0], 1, mid);
ch[p][1] = merge(ch[x][1], ch[y][1], mid + 1, r);
            v += fenw[x];
             //if(v >= mod)v -= mod;
                                                                                recyc(x), recyc(y);
                                                                                                                 // 垃圾回收
             x = (x & (x + 1)) - 1;
                                                                                pushup(p);
                                                                                                                    // pushup
                                                                                return p;
        return v;
                                                                            void split(11 x, 11 &y, 11 k) {
   if (x == 0) return;
    T gets(int l,int r){
        T res=get(r)-get(1-1);
                                                                                y = newnod()
         //if(res<0)res+=mod:
                                                                                11 v = val[ch[x][0]];
         return res:
                                                                                   pushdown(x)
                                                                                };
                                                                                else { swap(ch[x][1], ch[y][1]); }
if (k < v) { split(ch[x][0], ch[y][0], k); }
val[y] = val[x] - k;</pre>
线段树合并分裂
                                                                                val[x] = k;
                                                                                return;
11 nodetot, recycnt, bac[N << 5], ch[N << 5][2], rt[N];</pre>
11 val[N << 5];</pre>
11 newnod() { return (recycnt ? bac[recycnt--] : ++nodeto
                                                                            舞蹈链 (多重覆盖)
t); }
                                                                            #include <bits/stdc++.h>
void recyc(ll p) {
                                                                            using namespace std;
    bac[++recycnt] = p, ch[p][0] = ch[p][1] = val[p] = 0;
                                                                            struct DLX {
    return;
                                                                                                                      //列的上限
//解的上限
                                                                                static const int maxn = 1000;
                                                                                static const int maxr = 1000;
                                                                                static const int maxnode = 5000; //总结点数上限
void pushdown(ll p) {
                                                                                 static const int INF = 1000000000;
                                                                                int n, sz;
}
                                                                                int S[maxn];
void pushup(ll p) {
    val[p] = 0;
if (ch[p][0]) val[p] += val[ch[p][0]];
                                                                                int row[maxnode], col[maxnode];
                                                                                int L[maxnode], R[maxnode], U[maxnode], D[maxnode];
     \textbf{if} \ (\mathsf{ch}[\mathsf{p}][\mathsf{1}]) \ \mathsf{val}[\mathsf{p}] \ += \ \mathsf{val}[\mathsf{ch}[\mathsf{p}][\mathsf{1}]]; \\
                                                                                int ansd, ans[maxr];
                                                                                int vis[maxnode];
void modify(ll &p, ll l, ll r, ll pos, ll v) {
    if (!p) { p = newnod(); }
if (1 == r) {
                                                                                void init(int n) {
        val[p] += v;
                                                                                     this->n = n;
        return;
                                                                                     //虚拟节占
    11 \text{ mid} = (1 + r) >> 1;
                                                                                     for (int i = 0; i <= n; i++) {</pre>
                                                                                         U[i] = i;
D[i] = i;
L[i] = i - 1;
      pushdown(p);
    if (pos <= mid) \{ modify(ch[p][0], 1, mid, pos, v); \}
    else { modify(ch[p][1], mid + 1, r, pos, v); }
    pushup(p);
                                                                                         R[i] = i + 1;
    return;
                                                                                     R[n] = 0;
                                                                                     L[0] = n;
ll query(ll p, ll l, ll r, ll xl, ll xr) {    if (xr < l || r < xl) { return 0; }    if (xl <= l && r <= xr) { return val[p]; }
                                                                                     sz = n + 1;
                                                                                     memset(S, 0, sizeof(S));
    11 \text{ mid} = (1 + r) >> 1;
      pushdown(p)
    return query(ch[p][0], 1, mid, x1, xr) + query(ch[p]
                                                                                void addRow(int r, vector<int> columns) {
[1], mid + 1, r, xl, xr);
                                                                                     int first = sz;
                                                                                     for (int i = 0; i < columns.size(); i++) {</pre>
                                                                                         int c = columns[i];
L[sz] = sz - 1;
ll kth(ll p, ll l, ll r, ll k) {
                                                                                         R[sz] = sz + 1;
    if (1 == r) { return 1; }
11 mid = (1 + r) >> 1;
                                                                                         D[sz] = c;
                                                                                         U[sz] = U[c];
    pushdown(p);
```

```
D[U[c]] = sz;
                                                               //使用时 init 初始化,vector 中存入 r 行结点列表用 addRow 加行,
          U[c] = sz;
row[sz] = r;
                                                               solve(ans)后答案按行的选择在ans 中
                                                               DLX dlx;
           col[sz] = c;
                                                                int main() {
           S[c]++;
                                                                   int n, m;
           sz++;
                                                                   cin >> n >> m;
                                                                   dlx.init(m);
for (int i = 1; i <= n; i++) {</pre>
       R[sz - 1] = first;
      L[first] = sz - 1;
                                                                       vector<int> v;
                                                                       for (int j = 1; j <= m; j++) {
#define FOR(i, A, s) for (int i = A[s]; i != s; i = A[i])
void remove(int c) {
                                                                          int a:
                                                                          cin >> a;
      FOR(i, D, c) { L[R[i]] = L[i], R[L[i]] = R[i]; }
                                                                          if (a == 1) v.push_back(j);
                                                                       dlx.addRow(i, v);
   void restore(int c) {
       FOR(i, U, c) { L[R[i]] = i, R[L[i]] = i; }
                                                                   vector<int> ans:
                                                                   dlx.solve(ans):
   int f_check() //精确覆盖区估算剪枝
                                                                   for (int i = 0; i < ans.size(); i++) cout << ans[i];</pre>
   {
       强剪枝。这个
       剪枝利用的思想是A*搜索中的估价函数。即,对于当前的递归
                                                               舞蹈链 (精确覆盖)
深度 K 下的矩阵,估计其最好情况下(即最少还需要多少步)才能出
解。也就是,如果将能够覆盖当
                                                               #include <bits/stdc++.h>
       前列的所有行全部选中,去掉这些行能够覆盖到的列,将这个
                                                               using namespace std;
操作作为一层深度。重复此操作直到所有列全部出解的深度是多少。如
                                                               struct DLX {
                                                                                                   //列的上限
果当前深度加上这个估价函数返
                                                                   static const int maxn = 1000;
       回值, 其和已然不能更优(也就是已经超过当前最优解),则
                                                                   static const int maxr = 1000;
                                                                                                    //解的上限
                                                                   static const int maxnode = 5000; //总结点数上限
直接返回, 不必再搜。
                                                                   int S[maxn];
       int ret = 0;
       FOR(c, R, 0) vis[c] = true;
                                                                   int row[maxnode], col[maxnode];
                                                                   int L[maxnode], R[maxnode], U[maxnode], D[maxnode];
       FOR(c, R, 0)
       if (vis[c]) {
          ret++;
vis[c] = false;
                                                                   int ansd, ans[maxr]:
          FOR(i, D, c)
FOR(j, R, i) vis[col[j]] = false;
                                                                   void init(int n) {
                                                                       this->n = n;
                                                                       //虚拟节点
       return ret;
                                                                       for (int i = 0; i <= n; i++) {
   // d 为递归深度
                                                                          U[i] = i;
                                                                          D[i] = i;
L[i] = i - 1;
R[i] = i + 1;
   void dfs(int d, vector<int>& v) {
       if (d + f_check() >= ansd) return;
       if (R[0] == 0) {
           \textbf{if} \ (\textbf{d} < \textbf{ansd}) \ \{
                                                                       R[n] = 0;
              ansd = d:
                                                                       L[0] = n;
              v.clear();
              for (int i = 0; i < ansd; i++) {</pre>
                 v.push_back(ans[i]);
                                                                       sz = n + 1;
                                                                       memset(S, 0, sizeof(S));
                  //找到解
          return; //记录解的长度
                                                                   void addRow(int r, vector<int> columns) {
                                                                       int first = sz:
                                                                       for (int i = 0; i < columns.size(); i++) {</pre>
       //找到5最小的列c
                                                                          int c = columns[i];
       int c = R[0];
                                                                          L[sz] = sz - 1;
R[sz] = sz + 1;
       FOR(i, R, 0)
       if (S[i] < S[c])
                                                                          D[sz] = c;
U[sz] = U[c];
                     //第一个未删除的列
          c = i;
                     //删除第c列
                                                                          D[U[c]] = sz;
       FOR(i, D, c) { //用结点 i 所在的行能覆盖的所有其他列
                                                                          U[c] = sz:
           ans[d] = row[i];
                                                                          row[sz] = r;
           remove(i);
                                                                          col[sz] = c;
          FOR(j, R, i) remove(j); //删除结点i 所在的能覆
                                                                          S[c]++;
的所有其他列
          dfs(d + 1, v);
FOR(j, L, i) restore(j);
                                                                       R[sz - 1] = first;
           restore(i); //恢复结点i 所在的行能覆盖的所有其他
                                                                      L[first] = sz - 1;
列
                                                               #define FOR(i, A, s) for (int i = A[s]; i != s; i = A[i])
      }
                      //恢复第c列
                                                                   void remove(int c) {
                                                                      L[R[c]] = L[c];
R[L[c]] = R[c];
   bool solve(vector<int>& v) {
                                                                       FOR(i, D, c)
      v.clear();
                                                                       FOR(j, R, i) {
       ansd = INF;
                                                                          U[D[j]] = U[j];
D[U[j]] = D[j];
      dfs(0, v);
return !v.empty();
                                                                          --S[col[j]];
};
                                                                   }
```

```
* a % p) {
   void restore(int c) {
       FOR(i, U, c)
FOR(j, L, i)
                                                                                           mp\lceil j \rceil = i;
           ++S[col[j]];
           U[D[j]] = j;
                                                                                int ak = 1;
           D[U[j]] = j;
                                                                                for(int i = 0; i < k; ++i) {</pre>
                                                                                           ak = (11)ak * a % p;
        L[R[c]] = c;
       R[L[c]] = c;
                                                                                for(int i = 1, j = ak \% p; i <= k; ++ i, j = (11)
                                                                     j * ak % p) {
    // d 为递归深度
                                                                                           if(mp.count(j)) return (ll)i * k - mp
   bool dfs(int d) {
                                                                     [i];
                                                                                }
       if (R[0] == 0) {
                         //找到解
           ansd = d:
                                                                                return -1;
           return true; //记录解的长度
                                                                     int main() {
        //找到S最小的列c
                                                                                ios::sync with stdio(0);
        int c = R[0];
                                                                                cin.tie(0); cout.tie(0);
       FOR(i, R, 0) if (S[i] < S[c]) c = i; //第一个未删除
的列
                                                                                int a, p, b;
                                                                                while(cin >> a >> p >> b, a \mid p \mid b) \{
       int res;
                                                                                           res = bsgs(a, p, b);
           ans[d] = row[i];
                                                                                           if(res == -1) {
           FOR(j, R, i) remove(col[j]); //删除结点i 所在的
                                                                                                      cout << "No Solution\n";</pre>
能覆的所有其他列
           if (dfs(d + 1)) return true;
                                                                                           else {
                                                                                                      cout << res << endl;</pre>
           FOR(j, L, i) restore(col[j]); //恢复结点 i 所在
的行能覆盖的所有其他列
        restore(c); //恢复第c列
                                                                                return 0;
       return false;
   }
                                                                     扩展 BSGS
   bool solve(vector<int>& v) {
       v.clear():
                                                                     求a^t \equiv b \pmod{p} 的最小的 t
        if (!dfs(0)) return false;
        for (int i = 0; i < ansd; i++) v.push_back(ans[i]);</pre>
                                                                     当(a,p)! = 1
        return true;
                                                                     (a,p) = d d \nmid b 无解
//使用时 init 初始化,vector 中存入 r 行结点列表用 addRow 加行,
solve(ans)后答案按行的选择在 ans 中
                                                                     a^t \equiv b \pmod{p}, a^t + kp = b 两边同时除以 d, \frac{a}{d}a^{t-1} + k\frac{p}{d} = \frac{b}{d}
                                                                                             a^{t-1} \equiv \frac{b}{d} \left(\frac{a}{d}\right)^{-1}
数论
                                                                                        t' = t - 1, p' = \frac{p}{d}, b' = \frac{b}{a} \left(\frac{a}{d}\right)^{-1}
BSGS 扩展 BSGS
                                                                     #include <bits/stdc++.h>
BSGS
                                                                     using namespace std;
                                                                     typedef long long 11:
求a^t \equiv b \pmod{p} (a,p) = 1 的最小的 t
                                                                     unordered_map<11, 11> mp;
               t = x \times k - y, x \in [1, k], y \in [0, k - 1]
               t\in \left[1,k^2\right]
                                                                     ll bsgs(ll a, ll p, ll b) {
                      a^k x \equiv b \times a^y \pmod{p}
                                                                                if(1 % p == b % p) return 0; // 特判0是不是解
                                                                                mp.clear();
对 b \times a^y 建立 hash 表, 枚举 x 看是否有解
                                                                                11 k = sqrt(p) + 1;
#include <bits/stdc++.h>
                                                                                for(ll i = 0, j = b % p; i < k; ++i, j = (ll)j *
using namespace std;
                                                                      a % p) {
                                                                                           mp[j] = i;
typedef long long 11;
unordered_map<int , int> mp;
                                                                                ll ak = 1;
                                                                                for(ll i = 0; i < k; ++i) {</pre>
int bsgs(int a, int p, int b) {
                                                                                           ak = (11) ak * a % p;
          if (1 % p == b % p) return 0; // 特判 0 是不是解
          mp.clear();
                                                                                for(11 i = 1, j = ak \% p; i <= k; ++i, j = (11)j
                                                                     * ak % p) {
           int k = sqrt(p) + 1;
                                                                                           if(mp.count(j)) return (ll) i * k - m
                                                                     p[j];
```

for(int i = 0, j = b % p; i < k; ++ i, j = (11)j

```
}
           return -1:
ll gcd(ll x, ll y) {
           return x % y == 0 ? y : gcd(y, x % y);
void extgcd(ll a,ll b,ll% d,ll% x,ll% y){
    if(!b){
       d = a; x = 1; y = 0;
    else{
        extgcd(b, a%b, d, y, x);
       y -= x * (a / b);
}
11 inverse(ll a,ll n){
    11 d,x,y;
    extgcd(a,n,d,x,y);
    return d == 1 ? (x + n) % n : -1;
int main() {
           11 a, p, b;
           while(cin >> a >> p >> b, a | p | b) {
     11 d = gcd(a, p);
     if(d == 1) {
                                  11 res = bsgs(a, p, b);
                                  if(res == -1) {
                                             cout << "No Solut
ion\n";
                                  else {
                                             cout << res << en
d1;
                      else {
                                  if(b % d != 0) {
                                             cout << "No Solut
ion\n":
                                             continue:
                                  else {
                                             p = p / d;
                                             b = (b / d) * inv
erse(a / d, p);
                                             11 \text{ res} = \text{bsgs}(a,
p, b);
                                             if(res == -1) {
                                                         cout <<
 "No Solution\n";
                                              else {
                                                         cout <<
res + 1 << endl;
                                  }
                      }
           }
           return 0;
burnside&polya
```

burnside 引理

burnside : 用 $D(a_j)$ 表示在置换 a_j 下不变的元素的个数,L 表示本质不同的方案数(等价类):

$$L = \frac{1}{|G|} \sum_{j=1}^{s} D\left(a_{j}\right)$$

定理: $|E_k| \times |Z_k| = |G|, k = 1,2,...,n$, 该定理的一个重要研究对象是群的元素个数,其中 Z_k 是 K 不动置换类,设 G 是 1,2,...n 的置换群,若 k 是 1 到 n 中某个元素,则 G 中使 K 保持不变的置换的全体,为 Z_k . E_k 是

等价类,设G 是 1,2, ... n 的置换群,若 k 是 1 到 n 中某个元素,k 在 G 的作用下的轨迹,为 E_k ,即 k 在 G 的作用下能变化成的所有元素的集合

$$\sum_{k=1}^{n} |Z_k| = \sum_{i=1}^{L} \sum_{k \in E_i} |Z_k| = \sum_{i=1}^{L} |E_i| \times |Z_i| = L \times |G|$$

每个置换的不动点的平均值就是不同方案数

任何一个置换都可以拆解成若干个循环置换

polya 定理

polya: 设 G 是 p 个对象的一个置换群,用 m 种颜色涂染 p 个对象,则不同染色的方案为:

$$L = \frac{1}{|G|} \left(m^{c(g_I)} + m^{c(g_Z)} + \dots + m^{c(g_s)} \right)$$

其中 $G = \{g_1, g_2...g_s\}, c(g_i)$ 为置换 g_i 为置换的循环节数

浅证: $D(a_i) = m^{c(g_i)}$

每个置换的不动点有公式可以求 *每个循环的方案数^{循环数}*

(不同循环直接完全独立)

Cipolla

```
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
11 I_mul_I; // 虚数单位的平方
struct Complex {
    ll real, imag;
    Complex(11 real = 0, 11 imag = 0) : real(real), imag(i
mag) {}
};
inline bool operator==(Complex x, Complex y) {
    return x.real == y.real and x.imag == y.imag;
inline Complex operator*(Complex x, Complex y) {
   return Complex((x.real * y.real + I_mul_I * x.imag % m
   * y.imag) % mod,
                   (x.imag * y.real + x.real * y.imag) % mo
d);
Complex power(Complex x, 11 k) {
    Complex res = 1;
    while (k) {
       if (k & 1) res = res * x;
x = x * x;
        k >>= 1;
    return res;
bool check_if_residue(ll x) {
    return power(x, (mod - 1) >> 1) == 1;
void solve(ll n, ll &x0, ll &x1) {
    11 a = rand() % mod;
    while (!a or check_if_residue((a * a + mod - n) % mod))
    a = rand() % mod;
I_mul_I = (a * a + mod - n) % mod;
```

x0 = ll(power(Complex(a, 1), (mod + 1) >> 1).real);

x1 = mod - x0;

```
signed main() {
                                                                       //R 是区间的长度, j 表示前已经到哪个位置了
    ios::sync_with_stdio(false);
                                                                                   Complex w(1, 0); //幂
    cin.tie(nullptr):
                                                                                   for (int k = 0; k < mid; k++, w = w * Wn) { ///
    cout.tie(nullptr);
                                                                       举左半部分
                                                                                       Complex x = A[j + k], y = w * A[j + mid + k];
    11 t;
                                                                        //蝴蝶效应
                                                                                       A[j + k] = x + y;
    while (t--) {
                                                                                       A[j + mid + k] = x - y;
        11 n;
        cin >> n >> mod:
                                                                                  }
        if (n == 0) {
                                                                              }
            cout << 0 << endl;
            continue;
        if (!check_if_residue(n)) {
                                                                       void FFT(int n, int m) {
            cout << "Hola!" << endl;</pre>
                                                                           limit = 1:
            continue;
                                                                           L = 0:
                                                                           while (limit <= n + m) limit <<= 1, L++;</pre>
        11 x0, x1;
                                                                           for (int i = 0; i < limit; i++) r[i] = (r[i >> 1] >> 1)
        solve(n, x0, x1);
if (x0 > x1) swap(x0, x1);
cout << x0 << ' ' << x1 << endl;</pre>
                                                                        | ((i & 1) << (L - 1));
                                                                          // 在原序列中 i 与 i/2 的关系是 : i 可以看做是 i/2 的二进
                                                                       制上的每一位左移一位得来
   }
                                                                           // 那么在反转后的数组中就需要右移一位,同时特殊处理一下奇
}
                                                                       数
                                                                           fft(a, 1), fft(b, 1);
                                                                           for (int i = 0; i \leftarrow limit; i++) a[i] = a[i] * b[i];
exgcd
                                                                           fft(a, -1);
                                                                           for (int i = 0; i <= n + m; i++) a[i].x /= limit;</pre>
ll ex gcd(ll a, ll b, ll &x, ll &y) {
    if (b == 0) {
       x = 1;
                                                                       int main() {
       y = 0;
                                                                           int n, m;
        return a;
                                                                           cin >> n >> m;
                                                                           for (int i = 0; i <= n; i++) cin >> a[i].x;
    ll d = ex_gcd(b, a % b, x, y);
                                                                           for (int i = 0; i <= m; i++) cin >> b[i].x;
    11 temp = x;
                                                                           FFT(n, m);
   x = y;
y = temp - a / b * y;
                                                                           for (int i = 0; i <= n + m; i++) cout << (int) (a[i].x</pre>
                                                                       + 0.5) << ' ';
    return d;
                                                                           réturn 0;
FFT
                                                                       FWT
#include <bits/stdc++.h>
                                                                       #include <bits/stdc++.h>
using namespace std:
                                                                       using namespace std;
typedef long long 11;
                                                                       typedef long long 11;
const int N = 1e7 + 10;
                                                                       const int mod = 998244353;
                                                                       \  \  \, \text{void add(int } \&x\,, \ \text{int } y) \ \{\\
const double Pi = acos(-1.0);
                                                                           (x += y) >= mod && (x -= mod);
struct Complex {
    double x, y;
                                                                       void sub(int &x, int y) {
                                                                           (x -= y) < 0 && (x += mod);
    Complex(double xx = 0, double yy = 0) { x = xx, y = yy;
} a[N], b[N];
                                                                       namespace FWT {
                                                                           int extend(int n) {
Complex operator+(Complex _a, Complex _b) { return Complex
                                                                              int N = 1;
for (; N < n; N <<= 1);</pre>
(a.x + b.x, a.y + b.y);}
                                                                              return N:
Complex operator-(Complex _a, Complex _b) { return Complex
(_a.x - _b.x, _a.y - _b.y); }
                                                                           void FWTor(std::vector<int> &a, bool rev) {
int n = a.size();
                                                                               for (int 1 = 2, m = 1; 1 <= n; 1 <<= 1, m <<= 1) {
    for (int j = 0; j < n; j += 1)
        for (int i = 0; i < m; i++) {</pre>
+ _a.y * _b.x);
} //不懂的看复数的运算那部分
                                                                                           if (!rev) add(a[i + j + m], a[i + j]);
else sub(a[i + j + m], a[i + j]);
int L, r[N];
int limit = 1:
                                                                               }
void fft(Complex *A, int type) {
   for (int i = 0; i < limit; i++)</pre>
       if (i < r[i]) swap(A[i], A[r[i]]); //求出要迭代的序
                                                                           void FWTand(std::vector<int> &a, bool rev) {
                                                                               int n = a.size();
   for (int mid = 1; mid < limit; mid <<= 1) { //待合并区
                                                                               for (int 1 = 2, m = 1; 1 <= n; 1 <<= 1, m <<= 1) {
    for (int j = 0; j < n; j += 1)
        for (int i = 0; i < m; i++) {</pre>
        Complex Wn(cos(Pi / mid), type * sin(Pi / mid)); //
                                                                                           if (!rev) add(a[i + j], a[i + j + m]);
```

for (int R = mid << 1, j = 0; j < limit; j += R) $\{$

```
else sub(a[i + j], a[i + j + m]);
                }
       }
    }
                                                                           lucas 求组合数
    void FWTxor(std::vector<int> &a, bool rev) {
                                                                           #include <bits/stdc++.h>
        int n = a.size(), inv2 = (mod + 1) >> 1;
                                                                           using namespace std;
         for (int 1 = 2, m = 1; 1 <= n; 1 <<= 1, m <<= 1) {
             for (int j = 0; j < n; j += 1)
                                                                           typedef long long 11;
                 for (int i = 0; i < m; i++) {
                     int x = a[i + j], y = a[i + j + m];
                                                                           11 p;
                     if (!rev) {
                         a[i + j] = (x + y) \% mod;
                                                                           const int maxn = 1e5 + 10:
                          a[i + j + m] = (x - y + mod) \% mod;
                     } else {
                                                                           a[i + j] = 1LL * (x + y) * inv2 % mo
d;
                                                                                       while(n){
                          a[i + j + m] = 1LL * (x - y + mod) *
                                                                                                   if(n & 1) res = (res * x) % p;
inv2 % mod:
                                                                                                   x = (x * x) % p;
                     }
                                                                                                   n >>= 1:
                }
        }
                                                                                       return res:
    std::vector<int> Or(std::vector<int> a1, std::vector<i</pre>
                                                                           11 C(11 up, 11 down){
        int n = std::max(a1.size(), a2.size()), N = extend
                                                                                       if(up > down) return 0;
(n);
                                                                                       11 \text{ res} = 1;
        a1.resize(N), FWTor(a1, false);
a2.resize(N), FWTor(a2, false);
                                                                                       for(int i = up + 1; i <= down; ++ i){
    res = (res * i) % p;
        std::vector<int> A(N);
        for (int i = 0; i < N; i++) A[i] = 1LL * a1[i] * a2
[i] % mod;
                                                                                       for(int i = 1; i <= down - up; ++ i){
        FWTor(A, true);
                                                                                                   res = (res * qpow(i, p - 2)) % p;
        return A;
    }
                                                                                        for(int i = 1, j = down; i <= up; ++ i, -- j){}
    std::vector<int> And(std::vector<int> a1, std::vector<</pre>
                                                                                                   res = (res * j) % p;
res = (res * qpow(i, p - 2)) % p;
int> a2) {
        int n = std::max(a1.size(), a2.size()), N = extend
(n);
        a1.resize(N), FWTand(a1, false);
a2.resize(N), FWTand(a2, false);
                                                                                       return res;
        std::vector<int> A(N);
        for (int i = 0; i < N; i++) A[i] = 1LL * a1[i] * a2</pre>
[i] % mod:
                                                                           ll lucas(ll up, ll down){}
        FWTand(A, true);
                                                                                       \textbf{if}(\texttt{up} \, < \, \texttt{p} \, \, \&\& \, \, \texttt{down} \, < \, \texttt{p}) \, \, \, \textbf{return} \, \, \, \texttt{C}(\texttt{up}, \, \, \texttt{down}) \, ;
        return A:
                                                                                       return C(up % p, down % p) * lucas(up / p, down
                                                                            / p) % p;
    std::vector<int> Xor(std::vector<int> a1, std::vector<</pre>
int> a2) {
                                                                           int main(){
        int n = std::max(a1.size(), a2.size()), N = extend
                                                                                        ios::sync_with_stdio(0); cin.tie(0); cout.tie
(n);
                                                                           (0);
        a1.resize(N), FWTxor(a1, false);
a2.resize(N), FWTxor(a2, false);
                                                                                       int T;
        std::vector<int> A(N);
                                                                                       cin >> T:
        for (int i = 0; i < N; i++) A[i] = 1LL * a1[i] * a2
                                                                                       while (T --){
[i] % mod;
                                                                                                   11 down, up;
        FWTxor(A, true);
                                                                                                   cin >> down >> up >> p;
        return A;
                                                                                                   cout << lucas(up, down) % p << endl;</pre>
};
                                                                                       }
int main() {
                                                                                       return 0:
    int n;
                                                                           }
    scanf("%d", &n);
    std::vector<int> a1(n), a2(n);
                                                                           min_25 筛
    for (int i = 0; i < n; i++) scanf("%d", &a1[i]);
    for (int i = 0; i < n; i++) scanf("%d", &a2[i]);</pre>
    std::vector<int> A;
    for interest and sale for (int i = 0; i < n; i++) {
    printf("%d%c", A[i], " \n"[i == n - 1]);</pre>
                                                                           https://loj.ac/p/6053
                                                                            筛积性函数f 的前缀和
                                                                           f(1)=1
                                                                           f(p^e)=f xor e
                                                                           n<=1e10, LOJ 347ms 本地 1100ms
    A = FWT::And(a1, a2);
    for (int i = 0; i < n; i++) {
    printf("%d%c", A[i], " \n"[i == n - 1]);</pre>
                                                                           #include<bits/stdc++.h>
                                                                           using namespace std;
    A = FWT::Xor(a1, a2);
                                                                           typedef long long 11;
    for (int i = 0; i < n; i++) {
    printf("%d%c", A[i], " \n"[i == n - 1]);</pre>
                                                                           const 11 mod=1e9+7,inv3=3333333336;
                                                                           const int N=1e5+5;//开到sqrt(n)即可
    return 0;
```

```
ll prime[N], sp0[N], sp1[N], sp2[N], g0[N<<1], g1[N<<1], g2[N<<
11 pnum,min25n,sqrn,w[N<<1],ind1[N],ind2[N];</pre>
bool notp[N];
                                                                   NTT
void pre() { //预处理, 线性筛
                                                                   #include <bits/stdc++.h>
   notp[1]=1:
    for(int i=1; i<N; i++) {</pre>
                                                                   using namespace std;
       if(!notp[i]) {
                                                                   typedef long long 11;
           prime[++pnum]=i;
           sp0[pnum]=(sp0[pnum-1]+1)%mod;//p^0 前缀和 (p 指
                                                                   const int N = 4e6 + 10;
质数),可以按需增删,下标意义为第pnum 个质数的前缀和,而g的
                                                                   const 11 mod = 998244353, G = 3, Gi = 332748118;
实际下标意义为w之前的前缀和,两者有所区别
                                                                   int limit = 1, L, r[N];
           sp1[pnum]=(sp1[pnum-1]+i)%mod;//p^1 前缀和
                                                                   ll a[N], b[N];
           sp2[pnum]=(sp2[pnum-1]+111*i*i)%mod;//p^2 前缀
和
                                                                   ll qpow(ll _a, ll _b) {
                                                                        11 ans = 1;
        for(int j=1; j<=pnum&&prime[j]*i<N; j++) {</pre>
                                                                       while (_b) {
           notp[i*prime[j]]=1;
                                                                           if (_b & 1) ans = (ans * _a) % mod;
           if(i%prime[j]==0)break;
                                                                           _b >>= 1;
_a = (_a * _a) % mod;
}
                                                                       return ans;
void min25(ll n) {
   11 tot=0;
                                                                   void ntt(l1 *A, int type) {
   auto swap = [](l1 &_a, l1 &_b) {
   min25n=n;
    sqrn=sqrt(n);
                                                                          _a ^= _b, _b ^= _a, _a ^= _b;
    for(ll i=1; i<=n; i=n/(n/i)+1) {</pre>
       w[++tot]=n/i;//实际下标
                                                                       for (int i = 0; i < limit; i++)</pre>
       11 x=w[tot]%mod;
                                                                           if (i < r[i]) swap(A[i], A[r[i]]);</pre>
       g0[tot]=x-1;//x^0 前缀和
                                                                       for (int mid = 1; mid < limit; mid <<= 1) {</pre>
       g1[tot]=x*(x+1)/2%mod-1;//x^1 前缀和
                                                                           11 Wn = qpow(type == 1 ? G : Gi, (mod - 1) / (mid <</pre>
       g2[tot]=x*(x+1)/2%mod*(2*x+1)%mod*inv3%mod-1;//x^2
前缀和
                                                                           for (int j = 0; j < limit; j += (mid << 1)) {
       if(n/i<=sqrn)ind1[n/i]=tot;//离散下标
                                                                               11 w = 1:
       else ind2[n/(n/i)]=tot;//离散下标
                                                                               for (int k = 0; k < mid; k++, w = (w * Wn) % mo
                                                                   d) {
                                                                                   int x = A[j + k], y = w * A[j + k + mid] % m
    for(int i=1; i<=pnum; i++) {//扩展埃氏筛, 筛质数部分前缀
                                                                   od;
ЯП
                                                                                   A[j + k] = (x + y) \% mod,
       for(int j=1; j<=tot&&prime[i]*prime[i]<=w[j]; j++)</pre>
                                                                                           A[j + k + mid] = (x - y + mod) \% mod;
           int id=w[j]/prime[i]<=sqrn?ind1[w[j]/prime[i]]:</pre>
                                                                           }
ind2[n/(w[j]/prime[i]
           g0[j]-=(g0[id]-sp0[i-1]+mod)%mod;
           g1[j]-=prime[i]*(g1[id]-sp1[i-1]+mod)%mod;
g2[j]-=prime[i]*prime[i]*mod*(g2[id]-sp2[i-1]+
                                                                   void NTT(int n, int m) {
mod)%mod:
                                                                       limit = 1;
           g0[j]\%=mod,g1[j]\%=mod,g2[j]\%=mod;
           if(g0[j]<0)g0[j]+=mod;
                                                                       while (limit <= n + m) limit <<= 1, L++;
           if(g1[j]<0)g1[j]+=mod;
                                                                       for (int i = 0; i < limit; i++) r[i] = (r[i >> 1] >> 1)
           \textbf{if}(\texttt{g2[j]} < \texttt{0})\texttt{g2[j]} + = \texttt{mod};
                                                                     | ((i & 1) << (L - 1));
                                                                       ntt(a, 1), ntt(b, 1);
for (int i = 0; i < limit; i++) a[i] = (a[i] * b[i]) %</pre>
   }
                                                                   mod:
                                                                       ntt(a, -1);
//该前缀和不计算f(1),需要自行加上
                                                                       11 inv = qpow(limit, mod - 2);
11 S(11 x, int y) {//x 以内最小质因子大于第 y 个因子的前缀和
                                                                        for (int i = 0; i <= n + m; i++) a[i] = a[i] * inv % mo
   if(prime[y]>=x)return 0;
    int id=x<=sqrn?ind1[x]:ind2[min25n/x];</pre>
    ll ans=(((g1[id]-g0[id])-(sp1[y]-sp0[y]))%mod+mod)%mo
                                                                   int main() {
   if(x>=2&&y<1)ans=(ans+2)%mod;//特判包含f(2)的情况
                                                                       int n. m:
   for(int i=y+1; i<=pnum&&prime[i]*prime[i]<=x; i++) {//</pre>
                                                                       cin >> n >> m;
筛合数部分前缀
                                                                       for (int i = 0; i <= n; i++) {
       11 pe=prime[i];
                                                                           cin >> a[i];
        for(int e=1; pe<=x; e++,pe=pe*prime[i]) {</pre>
                                                                           a[i] = (a[i] + mod) \% mod;
           ll fpe=prime[i]^e;//
           ans=(ans+fpe\%mod*(S(x/pe,i)+(e!=1)))\%mod;
                                                                       for (int i = 0; i \leftarrow m; i++) {
                                                                           cin >> b[i];
                                                                           b[i] = (b[i] + mod) \% mod;
    return ans%mod;
}
                                                                       for (int i = 0; i <= n + m; i++) cout << a[i] << ' ';</pre>
int main() {
   pre();//预处理一次即可
    11 n:
   scanf("%11d",&n);
                                                                   Pollard Rho+Miller-Robin
   min25(n);//每个不同的 n 都要调用一次该函数, 再调用 S(n,0)
   printf("%lld\n",S(n,0)+1);//加上f(1)
                                                                   typedef long long 11:
   return 0:
                                                                   namespace Miller_Rabin {
                                                                       const 11 Pcnt = 12;
```

```
const ll p[Pcnt] = {2, 3, 5, 7, 11, 13, 17, 19, 61, 233
3, 4567, 24251};
    ll pow(ll a, ll b, ll p) \{
        ll ans = 1;
        for (; b; a = (__int128) a * a % p, b >>= 1)if (b &
1)ans = (__int128) ans * a % p;
        return ans;
    \textcolor{red}{\texttt{bool}} \ \mathsf{check}(\texttt{ll} \ \mathsf{x}, \ \texttt{ll} \ \mathsf{p}) \ \{
        if (x \% p == 0 | | pow(p \% x, x - 1, x) ^ 1)return t
rue;
        ll t, k = x - 1; while ((k ^ 1) & 1)  {
            t = pow(p \% x, k >>= 1, x);
            if (t ^ 1 && t ^ x - 1)return true;
            if (!(t ^ x - 1))return false;
        return false:
    }
    inline bool MR(ll x) { //用这个
        if (x < 2)return false;</pre>
        for (int i = 0; i ^ Pcnt; ++i) {
            if (!(x ^ p[i]))return true;
            if (check(x, p[i]))return false;
        return true:
   }
namespace Pollard Rho {
#define Rand(x) (111*rand()*rand()%(x)+1)
    11 gcd(const 11 a, const 11 b) { return b ? gcd(b, a %
b) : a; }
    11 mul(const 11 x, const 11 y, const 11 X) {
ll k = (1.0L * x * y) / (1.0L * X) - 1, t = (__int1
28) x * y - (_int128) k * X;
while (t < 0)t += X;
        return t:
    11 PR(const 11 x, const 11 y) {
        int t = 0, k = 1;
11 v0 = Rand(x - 1), v = v0, d, s = 1;
        while (true) {
            v = (mul(v, v, x) + y) \% x, s = mul(s, abs(v - v)) \% x
v0), x);
            if (!(v ^ v0) || !s)return x;
            if (++t == k) {
                if ((d = gcd(s, x)) ^ 1)return d;
                 v0 = v, k <<= 1;
        }
   }
   void Resolve(11 x, 11 &ans) {
   if (!(x ^ 1) || x <= ans)return;</pre>
        if (Miller_Rabin::MR(x)) {
            if (ans < x)ans = x;
            return;
        while ((y = PR(x, Rand(x))) == x);
        while (!(x \% y))x /= y;
        Resolve(x, ans);
        Resolve(y, ans);
    long long check(ll x) { //用这个, 素数返回本身
        Resolve(x, ans);
        return ans;
}
```

prufer

Prufer 序列 (Prufer code), 这是一种将带标号的树用一个唯一的整数序列表示的方法。

Prufer 序列可以将一个带标号 n 个结点的树用[1,n]中的n-2 个整数表示。你也可以把它理解为完全图的生成树与数列之间的双射。

显然你不会想不开拿这玩意儿去维护树结构。这玩意儿常用组合计数问题上。

线性建立 prufer

Prufer 是这样建立的:每次选择一个编号最小的叶结点并删掉它,然后在序列中记录下它连接到的那个结点。重复n-2次后就只剩下两个结点,算法结束。

线性构造的本质就是维护一个指针指向我们将要删除的结点。首先发现,叶结点数是非严格单调递减的。要么删一个,要么删一个得一个。

于是我们考虑这样一个过程:维护一个指针 p。初始时 p指向编号最小的叶结点。同时我们维护每个结点的度数,方便我们知道在删除结点的时候是否产生新的叶结点。操作如下:

- 1. 删除 指向的结点,并检查是否产生新的叶结点。
- 2. 如果产生新的叶结点,假设编号为x , 我们比较 p,x的大小关系。如果 x>p,那么不做其他操作;否则就立刻删除 x,然后检查删除 x 后是否产生新的叶结点,重复 2 步骤,直到未产生新节点或者新节点的编号>p。
- 3. 让指针 p 自增直到遇到一个未被删除叶结点为止;

循环上述操作 n-2 次, 就完成了序列的构造。

```
// 从原文摘的代码, 同样以 0 为起点
vector<vector<int>> adj;
vector<int> parent;
void dfs(int v) +
  for (int u : adj[v]) {
    if (u != parent[v]) parent[u] = v, dfs(u);
vector<int> pruefer_code() {
  int n = adj.size();
  parent.resize(n), parent[n - 1] = -1;
  dfs(n - 1);
  int ptr = -1;
 int pr = -1,
vector(int) degree(n);
for (int i = 0; i < n; i++) {
    degree[i] = adj[i].size();
    if (degree[i] == 1 && ptr == -1) ptr = i;</pre>
  vector<int> code(n - 2);
  int leaf = ptr;
  for (int i = 0; i < n - 2; i++) {
    int next = parent[leaf];
    code[i] = next;
    if (--degree[next] == 1 && next < ptr) {</pre>
     leaf = next;
    } else {
      while (degree[ptr] != 1) ptr++;
      leaf = ptr;
    }
  return code;
}
```

性质

- 1. 在构造完 Prufer 序列后原树中会剩下两个结点,其中一个 一定是编号最大的点 。
- 2. 每个结点在序列中出现的次数是其度数减 1 。(没有出现的就是叶结占)

线性 prufer 转化成树

同线性构造 Prufer 序列的方法。在删度数的时侯会产生新的叶结点,于是判断这个叶结点与指针 p 的大小关系,如果更小就优先考虑它

// 原文摘代码

```
vector<pair<int, int>> pruefer_decode(vector<int> const&
code) {
 int n = code.size() + 2;
 vector<int> degree(n, 1);
 for (int i : code) degree[i]++;
 int ptr = 0;
 while (degree[ptr] != 1) ptr++;
 int leaf = ptr;
 vector<pair<int, int>> edges;
 for (int v : code)
   edges.emplace_back(leaf, v);
   if (--degree[v] == 1 && v < ptr) {</pre>
     leaf = v;
   } else {
     ptr++;
     while (degree[ptr] != 1) ptr++;
     leaf = ptr;
 edges.emplace_back(leaf, n - 1);
 return edges;
```

cayley 公式

完全图 K_n 有 n^{n-2} 棵生成树。

用 Prufer 序列证:任意一个长度为 n-2 的值域 [1,n] 的整数序列都可以通过 Prufer 序列双射对应一个生成树,于是方案数就是 n^{n-2} 。

图连通方案数

一个 n 个点 m 条边的带标号无向图有 k 个连通块。我们希望添加 k - 1 条边使得整个图连通。求方案数。

设 s_i 表示每个连通块的数量。我们对 k 个连通块构造 Prufer 序列,然后你发现这并不是普通的 Prufer 序列。因为每个连通块的连接方法很多。不能直接淦就设啊。于是设 d_i 为第 i 个连通块的度数。由于度数之和是边数的两倍,于是 $\sum_{i=1}^k d_i = 2k-2$ 。则对于给定的 d 序列构造 Prufer 序列的方案数是

 $\$ thin om{k - 2}{d_1 - 1, d_2 - 1, \dots, d_k - 1} = \frac{(k - 2)!}{(d_1 - 1)!(d_2 - 1)! \cdot (d_k - 1)!}

对于第 i 个连通块,它的连接方式有 s_i^d 种,因此对于给定 d 序列使图连通的方案数是

 $\$ \times_{k - 2}{d_1 - 1, d_2 - 1, \dots, d_k - 1} \prod_{i = 1}^{k}s_i^{d_i}

现在我们要枚举 d 序列, 式子变成

 $\$ \sum_{d_i \geq 1. \sum_{i = 1}^{k} d_i = 2k - 2} \t on {k - 2}{d_1 - 1, d2 - 1, \dots, d_k - 1} \prod_{i = 1}^{k}s_i^{d_i}

根据多元二项式定理

对原式换元,设 $e_i = d_i - 1$,显然有 $\sum_{i=1}^k e_i = k - 2$

中国剩余定理

#include <bits/stdc++.h>

```
typedef long long 11;
const int maxn = 20;
11 A[maxn], B[maxn];
ll exgcd(ll a, ll b, ll & x, ll & y) {
          return a;
           11 d = exgcd(b, a % b, y, x);
           y -= (a / b) * x;
           return d:
int main() {
           int n;
           cin >> n;
           11 M = 111;
           for(int i = 0; i < n; ++ i) {</pre>
                      cin >> A[i] >> B[i];
M = M * A[i];
           11 ans = 0;
           11 x, y;
           for(int i = 0; i < n; ++ i) {</pre>
                      11 Mi = M / A[i];
exgcd(Mi, A[i], x, y);
ans += B[i] * Mi * x;
           cout << (ans % M + M) % M;
```

using namespace std;

二次剩余

解的数量

对于 $\mathbf{x}^2 \equiv n \pmod{p}$ 能满足 n 是 mod p 的二次剩余的 n 一共有 $\frac{p-1}{2}$ 个(不包括 0),非二次剩余为 $\frac{p-1}{2}$ 个

勒让德符号

欧拉判别准则

$$\left(\frac{n}{p}\right) \equiv n^{\frac{p-1}{2}} \pmod{p}$$

若 n 是二次剩余,当且仅当 $n^{\frac{p-1}{2}} \equiv 1 \pmod{p}$

若 n 是非二次剩余,当且仅当 $n^{\frac{p-1}{2}} \equiv -1 \pmod{p}$

Cipolla

找到一个数 a 满足 a^2-n 是 **非二次剩余** ,至于为什么要找满足非二次剩余的数,在下文会给出解释。 这里通过生成随机数再检验的方法来实现,由于非二次剩余的数量为 $\frac{p-1}{2}$,接近 $\frac{p}{2}$,所以期望约 2 次就可以找到这个数。

建立一个"复数域",并不是实际意义上的复数域,而是根据复数域的概念建立的一个类似的域。 在复数中 $i^2=-1$,这里定义 $i^2=a^2-n$,

于是就可以将所有的数表达为A+Bi 的形式,这里的 和 都是模意义下的数,类似复数中的实部和虚部。

在有了 i 和 a 后可以直接得到答案, $x^2 \equiv n \pmod{p}$ 的解为 $(a+i)^{\frac{p+1}{2}}$ 。

```
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
int t;
11 n, p;
11 w;
                   //建立一个复数域
struct num {
         11 x, y;
}:
num mul(num a, num b, ll p) { //复数乘法
         num ans = \{0, 0\};
          ans.x = ((a.x * b.x \% p + a.y * b.y \% p * w \% p)
% p + p) % p;
         ans.y = ((a.x * b.y % p + a.y * b.x % p) % p + p)
         return ans;
}
11 binpow_real(l1 a, l1 b, l1 p) {
                                        ll ans = 1;
         while (b) {
                    if (b & 1) ans = ans * a % p;
                    a = a * a % p;
          return ans % p;
ll binpow_imag(num a, ll b, ll p) \{
                                       //虚部快速幂
         num ans = \{1, 0\};
         while (b)
                    if (b & 1) ans = mul(ans, a, p);
                    a = mul(a, a, p);
                    b >>= 1;
         return ans.x % p;
ll cipolla(ll n, ll p) {
         n %= p;
if (p == 2) return n;
         if (binpow_real(n, (p - 1) / 2, p) == p - 1) ret
urn -1;
          11 a;
         while (1) {
                             //生成随机数再检验找到满足非
二次剩余的a
                    a = rand() % p;
                    w = ((a * a % p - n) % p + p) % p;
                    if (binpow_real(w, (p - 1) / 2, p) ==
p - 1) break;
          num x = \{a, 1\};
```

勾股数圆上格点数

勾股数

$$a^2 + b^2 = c^2$$

return binpow_imag(x, (p + 1) / 2, p);

1.任何一个勾股数(a,b,c)内的三个数同时乘以一个正整数 n 得到的新数组 (na,nb,nc)仍然是勾股数,

于是找 abc 互质的勾股数

一, 当 a 为大于 1 的奇数 2n+1 时, $b=2n^2+2n$, $c=2n^2+2n+1$

(把a拆成两个连续的自然数)

二, 当 a 为大于 4 的偶数 2n 时, $b = n^2 - 1$, $c = n^2 + 1$

(只想得到互质的数的话: a=4n, $b=4n^2-1$, $c=4n^2+1$

公式 1

a=2mnt

 $b = (m^2 - n^2) t$

 $c = (m^2 + n^2) t$

(t 是倍数)

完全公式

a=m, $b=(m^2/k-k)/2$, $c=(m^2/k+k)/2$

其中 m ≥3

1. 当 m 确定为任意一个 ≥3 的奇数时, $k={1, m^2 }$ 的所有小于 m 的因子}

2. 当 m 确定为任意一个 ≥4 的偶数时,k={m^2 / 2 的所有小于 m 的偶数因子}

高斯整数/高斯素数

3B1B 的视频

洛谷某题

二维平面转化为复数平面,

4n+1 的素数,都能分解成高斯素数,4n+3 的素数,他们本身就是高斯素数,2 特殊

(乘以1, -1, i, -i 四个

半径为 \sqrt{n} 的圆上的格点数, 先将 n 分解质因数, 对每个不是高斯素数的数分解成共轭的高斯素数, 分配数比指数多 1, 指数是偶数的话, 有一种方法分配, 不然就没有格点

2 = (1+i)(1+i) , 但是这对数格点数没有影响, 因为要乘-i。

引入
$$f(x) = \begin{cases} 1, x 为素数x = 4n + 1 \\ -1, x 为素数x = 4n + 3 \\ 0, x 为偶数 \end{cases}$$

它是一个周期函数,同时是一个积性函数,

再来看这个问题,

\$\$45 = 3^2 \times 5 \ 半径为 \sqrt{45} 圆上格点数问题 = 4 \times (f(1)+f(3)+f(3^2)) \times(f(1)+f(5))\\ =4 \times (f(1)+f(3)+f(5)+f(9)+f(15)+f(45))\$\$

最后转化为 45 的所有约数

 $f(x) = \lceil (ases) 1, x 为素数 x = 4n+1 \ -1, x 为素数 x = 4n+3 \ 0, x 为偶数 \ \ (二维坐标轴 xy 都为整数的点) 是 4 \times \sum_{d|n}f(d)$$$

博弈拾遗

SG 定理:

mex(minimal excludant)运算,表示最小的不属于这个集合的非负整数。例如 $mex\{0,1,2,4\}=3$ 、 $mex\{2,3,5\}=0$ 、 $mex\{\}=0$ 。

Sprague-Grundy 定理(SG 定理): 游戏和的 SG 函数等于各个游戏 SG 函数的 Nim 和。这样就可以将每一个子游戏分而治之,从而简化了问题。而 Bouton 定理就是 Sprague-Grundy 定理在 Nim 游戏中的直接应用,因为单堆的 Nim 游戏 SG 函数满足 SG(x) = x。

Nimk

普通的 NIM 游戏是在 n 堆石子中每次选一堆,取任意个石子,而 NIMK 游戏是在 n 堆石子中每次选择 k 堆, 1<=k<=n,从这 k 堆中每堆里都取出任意数目的石子,取的石子数可以不同,其他规则相同。

对于普通的 NIM 游戏, 我们采取的是对每堆的 SG 值进行异或, 异或其实就是对每一个 SG 值二进制位上的数求和然后模 2, 比如说 3^5 就是 011+101=112, 然后对每一位都模 2 就变成了 110, 所以 3^5=6。而 NIMK 游戏和 NIM 游戏的区别就在于模的不是 2, 如果是取 k 堆, 就模 k+1, 所以取 1 堆的普通 NIM 游戏是模 2。当 k=2

时,3^5→011+101=112,对每一位都模3之后三位二进制位上对应的数仍然是1,1,2。那么当且仅当每一位二进制位上的数都是0的时候,先手必败,否则先手必胜。

anti nim

描述

和最普通的 Nim 游戏相同,不过是取走最后一个石子的人输。

先手必胜条件

以下两个条件满足其一即可:

- 1. 所有堆的石子个数=1,且异或和=0(其实这里就是有偶数 堆的意思)。
- 2. 至少存在一堆石子个数>1,且异或和≠0。

卡特兰

卡特兰数 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012,...

$$C_n = \frac{1}{n+1}C_{2n}^n = C_{2n}^n - C_{2n}^{n-1}$$

$$C_n = \frac{1}{n+1} \sum_{i=0}^{n} (C_n^i)^2$$

$$C_n = \frac{4n-2}{n+1}C_{n-1}(C_0 = 1)$$

$$C_{n+1} = \sum_{i=0}^{n} C_i C_{n-i} (C_0 = 1)$$

超级卡特兰数 1,1,3,11,45,197,903,4279,20793,103049,...(从第 0 项 开始)

$$F_n * (n + 1) = (6 * n - 3) * F_{n-1} - (n - 2) * F_{n-2}$$

大施罗德数(OEIS A006318)1, 2, 6, 22, 90, 394, 1806, 8558, 41586, 206098,...

超级卡特兰数的两倍 (除第一项)

卡特兰三角

卡特兰三角

卡特兰数: 由 $n \cap X$ 和 $n \cap Y$ 组成的一个序列中,满足**所有前缀中 Y 出现的次数不超过 X 出现的次数**的序列的个数

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

卡特兰三角: 由 $n \cap X$ 和 $k \cap Y$ 组成的一个序列,满足**所有前缀中 Y 出现的次数-X 出现的次数小于 m** 的序列的个数

$$C_m(n,k) = \begin{cases} \binom{n+k}{k}, \ 0 \leq k < m \\ \binom{n+k}{k} - \binom{n-k}{k-m}, \ m \leq k \leq n+m-1 \\ 0, \ k > n+m-1 \end{cases}$$

卡特兰三角 (OEIS): T(n,k) = T(n-1,k) + T(n,k-1)

$$T(n+1, n+1) = \sum_{k=0}^{n} T(n, k)$$

原根

#include<bits/stdc++.h>

using namespace std;

11 pri[N], tot;

```
ll getRoot(ll p) //求质数 p 的最小原根
{
    tot = 0;
    ll n = p - 1, sq = sqrt(p + 0.5);
    for (ll i = 2; i <= sq; i++)
        if (n % i == 0) {
            pri[tot++] = i;
            while (n % i == 0)n /= i;
        }
    if (n > 1)pri[tot++] = n;
    for (ll g = 2; g <= p - 1; g++) //法探每一个g是否原根
    {
        ll flag = 1;
        for (ll i = 0; i < tot; i++)
            if (qpow(g, (p - 1) / pri[i], p) == 1) {
            flag = 0;
                 break;
    }
```

```
if (flag)return g;
}
return -1; //没有原根
```

快速幂

```
11 qpow(11 a, 11 b) {
    11 ans = 1;
    while (b) {
        if (b & 1) ans = (ans * a) % mod;
        a = (a * a) % mod;
        b >>= 1;
    }
    return ans;
}
```

扩展欧拉定理

用于在底数与模数不互质的情况下将质数降将至与模数 同阶大小,从而使用快速幂

 $\a^c = \left(\mod \right) , \gcd(a, m) = 1 \ a^c, \gcd(a, m) \cap 1 \ a^c, \gcd(a, m) \cap 1 \ a c \ \phi(m) \ a^c \ \phi(m) + \phi(m) , \gcd(a, m) \cap 1 \ a c \ g \ \phi(m) \ end(cases)$

证明以及引理:

欧拉定理: $a^{\phi(m)} \equiv 1 \pmod{m}$

证明欧拉:记 x_i 为第 i 个与 m 互质的数,则小于 m 的范围内共有 $\phi(m)$ 个这样的数

 $p_i = a \times x_i$

 $\Delta: \{p_i\}$ 两两不同余且与 m 互质, $\{x_i\}$ 两两不同余

所有 p_i 的模 m 的集合与 $\{x_i\}$ 相等 \Rightarrow 他们的积模 m 相等

$$\Rightarrow \prod_{i=1}^{\phi m} p_i = a^{\phi(m)} \prod_{i=1}^{\phi(m)} x_i = \prod_{i=1}^{\phi(m)} x_i \pmod{m}$$

扩展欧拉:

 $\a^c = \left(\mod \right), \ \gcd(a, m) = 1 \ \a^c, \gcd(a, m) \cap = 1 \ \a^c, \gcd(a, m) \cap = 1 \ \a^c \ \gcd(a, m) \cap = 1 \ \gcd(a, m)$

证明扩展欧拉(3):

- 1. $\phi(p^r) = (p-1) \times p^r$, P 为质数
- 2. $\$ \exist a, b, x, y, s.t. x^a \times y^b = k, 都有 a, b\le \phi(k)\$
- 3. $\ \$ \exist r \le c ,s.t. a^{\phi(m)+r} \equiv a ^r (\mod m)\$

证明其中 3: $m = t \times a^r$, 其中 gcd(a,t) = 1

又 ϕ 是一个积性函数, 故 $\phi(t) | \phi(m)$

$$a^{\phi(t)} \equiv 1 \big(\bmod t \big) \Rightarrow a^{\phi(m)} \equiv 1 \big(\bmod t \big)$$

两边同乘以 $a^r \Rightarrow a^{\phi(m)+r} \equiv a^r \pmod{m}$

根据 2, $r \le \phi(m)$ 又 $c \ge \phi(m)$, 得证

$$a^c \equiv a^{c-r+r} \equiv a^{c-r+\phi(m)+r} \equiv a^{c+\phi(m)} \pmod{m}$$

扩欧求逆元

```
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
void extgcd(l1 a,l1 b,l1& d,l1& x,l1& y){
   if(!b){ d=a; x=1; y=0;}
   else{ extgcd(b,a%b,d,y,x); y-=x*(a/b); }
ll inverse(ll a,ll n){
   11 d,x,y;
   extgcd(a,n,d,x,v);
   return d==1?(x+n)%n:-1;
int main(){
          int x, y;
           //cin >> x >> y;
          while(1){}
                     cin >> x >> y;
                     cout << inverse(x, y) << endl;</pre>
          //cout << inverse(x, y) << endl;</pre>
```

数学知识

数学知识的一些范围(?

1~n 的质数个数

 $\frac{n}{l_n n}$

1~2e9 中拥有最多约数个数的数拥有的约数个数

约 1600

n 个不同的点可以构成 nⁿ⁻² 棵不同的树

判断一个数是否为11的倍数

奇偶位置上的数位和的差是否为11的倍数

平方前缀和

$$\frac{n \times (n+1) \times (2 \times n+1)}{6}$$

立方前缀和

$$\left(\frac{n\times(n+1)}{2}\right)^2$$

库默尔定理

设 m,n 为正整数,p 为素数,则 C_{m+n}^m 含 p 的幂次等于 m+n 在 p 进制下的进位次数

原根存在定理

一个数 m 存在原根当且仅当 $m = 2,4, p^{\alpha}, 2p^{\alpha}$, 其中 p 为奇素数, $\alpha \in N^*$

整除分块(向上向下取整)

```
int x;
scanf("%d",&x);
int ans1=0,ans2=0;
//向下取整
for(int l=1,r;1<=x;l=r+1){
    int m=x/1;
    r=x/m;
    ans1+=(r-1+1)*m;
}
//向上取整
```

```
int R=1e5;
                                                                                               break:
                                                                                          } else { mu[i * prime[j]] = -mu[i]; }
for(int l=1,r;l<=R;l=r+1){</pre>
    int m=(x+l-1)/1;
                                                                                     }
                                                                                 }
    r=m!=1?(x-1)/(m-1):R;
    ans2+=(r-1+1)*m;
                                                                             }
                                                                             int main() {
                                                                                 init_mu();
格雷码
int gray_encode(int num) {
    return num ^ (num >> 1);
                                                                             欧拉隆幂
                                                                             不知道它有什么用毕竟已经有快速幂子
int gray_decode(int num) {
    int head;
                                                                             这里有一张图可以很好的说明欧拉降幂是什么
    if (!num) return 0;
    head = 1 << int(log(num) / log(2));
    return head + gray_decode((num ^ head) ^ (head >> 1));
                                                                                          a^{b\%\varphi(n)} \pmod{n}
                                                                                a^b \equiv \left\{ egin{array}{ll} a^b (mod n) & b < arphi(n) \ a^{b\%arphi(n) + arphi(n)} (mod n) & b \geq arphi(n) \end{array} 
ight.
欧拉筛 (素数)
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
const int N = 1000005;
int phi[N], prime[N], cnt;
                                                                             //其实只是想试一下 markdown 怎么用
bool st[N];
                                                                             //假装这里有代码
void get_eulers() {
                                                                             然后下面这个是用 $\LaTeX$公式写的
    phi[1] = 1;
for (int i = 2; i < N; i++) {
        if (!st[i]) {
                                                                                                    (a^{b\%\varphi(n)} (\bmod n)
                                                                                                                         n,a互质
             prime[cnt++] = i;
                                                                                               a^b \equiv \left\{ a^b (\bmod n) \right\}
                                                                                                                        b < \varphi(n)
             phi[i] = i - 1;
                                                                                                    a^{b\%\varphi(n)+\varphi(n)} \pmod{n} \quad b \ge \varphi(n)
        for (int j = 0; prime[j] * i < N; j++) {
    st[prime[j] * i] = 1;
    if (i % prime[j] == 0) {
        phi[prime[j] * i] = phi[i] * prime[j];
    }
}</pre>
                                                                             组合数
                                                                             #include <bits/stdc++.h>
                                                                             using namespace std:
                                                                             typedef long long l1;
const l1 mod = 1e9 + 7;
             phi[prime[j] * i] = phi[i] * (prime[j] - 1);
                                                                             const 11 \text{ maxn} = 3e4 + 5;
   }
                                                                             11 inv[maxn], fac[maxn];
}
                                                                             ll qpow(ll a, ll b) {
int main() {
    get_eulers();
                                                                                 11 \text{ ans} = 1;
                                                                                 while (b) {
   if (b & 1) ans = (ans * a) % mod;
   a = (a * a) % mod;
    cin >> n;
    11 ans = 0;
                                                                                     b >>= 1:
    for (int i = 1; i <= n; i++) ans += phi[i];</pre>
    cout << ans;</pre>
                                                                                 return ans;
                                                                             ll c(ll n, ll m) {
欧拉筛 (莫比乌斯)
                                                                                 if (n < 0 || m < 0 || n < m) return 0;
                                                                                 return fac[n] * inv[n - m] % mod * inv[m] % mod;
#include <bits/stdc++.h>
using namespace std;
                                                                             void init() {
typedef long long 11;
                                                                                  fac[0] = 1;
const int N = 1e5 + 10;
                                                                                  for (int i = 1; i < maxn; i++) {</pre>
                                                                                      fac[i] = fac[i - 1] * i % mod;
hool vis[N]:
ll prime[N], mu[N];
                                                                                 inv[maxn - 1] = qpow(fac[maxn - 1], mod - 2);
                                                                                 for (ll i = maxn - 2; i >= 0; i--) {
   inv[i] = (inv[i + 1] * (i + 1)) % mod;
void init_mu() {
    11 cnt = 0;
    mu[1] = 1;
    for (11 i = 2; i < N; i++) {
        if (!vis[i]) {
             prime[cnt++] = i;
             mu[i] = -1;
        for (ll j = 0; j < cnt && i * prime[j] < N; j++) {
             vis[i * prime[j]] = 1;
if (i % prime[j] == 0) {
                 mu[i * prime[j]] = 0;
```

莫比乌斯反演

莫比乌斯函数

对加进行因数分解:
$$n=P_1^{\alpha_1}P_2^{\alpha_2}...P_k^{\alpha_k}$$
 , 则 $\mu(n)=\begin{cases} 1,\,n=1\\ 0,\,\forall\alpha_i\geq 2\\ \pm 1,\,(-1)^k \end{cases}$

n 的所有约数的莫比乌斯的和

$$S(n) = \sum_{d|n} \mu(d) = \begin{cases} 1, & n = 1 \\ 0, & else \end{cases}$$

反演

$$(- 般不用)$$
1. 若 $F(n) = \sum_{d|n} f(d)$,则 $f(n) = \sum_{d|n} \mu(d) F\left(\frac{n}{d}\right)$

$$(\sqrt{2}.$$
 若 $F(n) = \sum_{n|d} f(d)$, 则 $f(n) = \sum_{n|d} \mu\left(\frac{d}{n}\right)F(d)$

构造[MathProcessingError]F(n)和f(n)使 f(n)为目标,F(n)好求

1

求满足 $a \le x \le b, c \le y \le d$ 且 gcd(x, y) = k 的 xy 的对数

$$F(n) = gcd(x,y) = n$$
的倍数的xy的对数

$$f(n) = gcd(x, y) = n 的xy的对数$$

#include <bits/stdc++.h>
using namespace std;

typedef long long 11;

const int N = 50010;

11 primes[N], mu[N], sum[N], cnt;
bool st[N];

void init() {
 mu[1] = 1;

ll g(ll n, ll x) {

}

return n / (n / x);

11 f (int a, int b, int k) {
 a = a / k, b = b / k;

```
11 res = 0:
                  11 n = min(a, b);
                   for(11 \ 1 = 1, \ r; \ 1 <= n; \ 1 = r + 1) {
                                     r = min(n, min(g(a, 1), g(b, 1))); 
 res += (sum[r] - sum[1 - 1]) * (a / 1) 
  * (b / 1);
                  return res;
int main() {
                   ios::sync_with_stdio(0); cin.tie(0); cout.tie
(0);
                  init();
                  int T;
cin >> T;
                  while(T --) {
                                     int a, b, c, d, k;
                                     cin >> a >> b >> c >> d >> k;
                                     \texttt{cout} \, \mathrel{<<} \, \mathsf{f}(\texttt{b}, \, \texttt{d}, \, \texttt{k}) \, \mathrel{-} \, \mathsf{f}(\texttt{a} \, \mathrel{-} \, \texttt{1}, \, \texttt{d}, \, \texttt{k}) \, \mathrel{-}
f(b, c - 1, k)
                                                                          + f(a - 1, c - 1,
 k) << endl:
                  return 0;
\dot{\mathcal{R}}\textstyle\sum_{i=1}^{N}\textstyle\sum_{j=1}^{M}d\left(ij\right)
// d(ij) = \sum_{x|i} \sum_{y|j} \left[ (x,y) = 1 \right]
                              F(n) = \sum_{i=1}^{N} \sum_{i=1}^{M} \sum_{x|i} \sum_{y|j} [n|(x, y)]
                             f(n) = \sum_{i=1}^{N} \sum_{j=1}^{M} \sum_{x|i} \sum_{y|j} [(x, y) = n]
F(n) = \sum_{i=1}^{N} \sum_{j=1}^{M} \sum_{\substack{y \in J \\ x | j}} \left[ n | (x, y) \right] = \sum_{i=1}^{N} \sum_{y=1}^{M} \left\lfloor \frac{N}{x} \right\rfloor \lfloor \frac{M}{y} \rfloor [n | (x, y)]
                                                                            =\sum_{n=1}^{\frac{N}{n}}\sum_{n=1}^{\frac{M}{n}}\lfloor\frac{N}{x'n}\rfloor\lfloor\frac{M}{y'n}\rfloor
两次整数分块
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
const int N = 50010;
int primes[N], cnt, mu[N], sum[N], h[N];
bool st[N];
inline int g(int n, int x) {
                  return n / (n / x);
void init() {
                  mu[1] = 1;
                   for(int i = 2; i < N; ++i) {
                                    if(!st[i]){
                                                       primes[cnt++] = i;
                                                       mu[i] = -1;
                                     for(int j = 0; primes[j] * i < N; ++j)</pre>
```

```
char next_char() {
     static char buf[1 << 20], *first, *last;</pre>
                                                               st[primes[j] * i] = 1;
                                                               if(i \% primes[j] == 0) brea
                                                                                                                                                         if(first == last) {
k:
                                                               mu[primes[j] * i] = -mu[i];
                                                                                                                                                                             last = buf + fread(buf, 1, 1 << 20, st
                                                                                                                                    din);
                                                                                                                                                                              first = buf;
                                                                                                                                                         return first == last ? EOF : *first ++;
                    }
                     for(int i = 1; i < N; ++ i) {</pre>
                                          sum[i] = sum[i - 1] + mu[i];
                                                                                                                                    inline int read(){
    int x = 0, w = 0; char ch = 0;
    while(!isdigit(ch)) {w |= ch == '-'; ch = next_c
                    for(int i = 1; i < N; ++i) {
    for(int 1 = 1, r; 1 <= i; 1 = r + 1) {</pre>
                                                                                                                                    har(); }
                                                                                                                                                         while(isdigit(ch)) \{x = (x << 3) + (x << 1) + (c << 1
                                                              r = min(i, g(i, 1));
                                                                                                                                    h ^ 48), ch = next_char(); }
                                                               h[i] += (r - 1 + 1) * (i / 1)
                                                                                                                                                        return w ? -x : x;
1);
                     }
                                                                                                                                    int main(){
                                                                                                                                                         }
                                                                                                                                     0 0 h 0 0 Çz 0 0 aaa
                                                                                                                                                        int T;
int main() {
                     //ios::sync_with_stdio(0); cin.tie(0); cout.tie
                                                                                                                                                         cin >> T;
(0);
                                                                                                                                                         while(T --){
                    init();
                                                                                                                                                                              int x = read();
                                                                                                                                                                              cout << x << endl;</pre>
                    int T;
scanf("%d", &T);
                                                                                                                                                        }
                     while(T--) {
                                         int n, m;
                                          scanf("%d %d", &n, &m);
                                                                                                                                    int128 输出
                                          11 res = 0;
                                          int k = min(n, m);
                                                                                                                                    inline void print(__int128 x) {
                                          for(int l = 1, r; l <= k; l = r + 1) {
                                                                                                                                           if (x < 0) {
    putchar('-');</pre>
                                                              r = min(k, min(g(n, 1), g(m,
 1)));
                                                                                                                                                   x = -x
                                                               res += (11)(sum[r] - sum[1
- 1]) * h[n / 1] * h[m / 1];
                                                                                                                                           if (x > 9)
                                                                                                                                           print(x / 10);
putchar(x % 10 + '0');
                            printf("%lld\n", res);
                    return 0;
                                                                                                                                    mt19937
逆元线性递推 inv 阶乘逆元组合数
                                                                                                                                    mt19937
                                                                                                                                    #include <random>
ll fac[N];// n!
                                                                                                                                    #include <iostream>
ll invfac[N]; // n!的inv
ll invn[N]; //n 的inv
                                                                                                                                    int main()
inline void init() {
  fac[0] = fac[1] = invfac[0] = invfac[1] = invn[0] = in
vn[1] = 1;
                                                                                                                                           gine seeded with rd(
        for (int i = 2; i < N; ++i) {
                                                                                                                                           std::uniform_int_distribution<> dis(0, 9);
              fac[i] = fac[i - 1] * i % mod;
invn[i] = (mod - mod / i) * invn[mod % i] % mod;
invfac[i] = invfac[i - 1] * invn[i] % mod;
                                                                                                                                           for (int n = 0; n<20; ++n)
    std::cout << dis(gen) << ' ';
std::cout << '\n';</pre>
      }
}
                                                                                                                                           system("pause");
                                                                                                                                           return 0;
ll C(ll up, ll down) {
       if (up > down) return 0;
if (up < 0 || down < 0) return 0;
                                                                                                                                    //可能的结果: 72214140472109192351
       11 res = fac[down];
       res = res * invfac[down - up] % mod;
res = res * invfac[up] % mod;
return res;
                                                                                                                                    doule: std::uniformrealdistribution<> dis(0, 9);
                                                                                                                                    #include <iostream>
                                                                                                                                    #include <chrono>
//先init
                                                                                                                                    #include <random>
                                                                                                                                    using namespace std;
                                                                                                                                    int main()
                                                                                                                                                         // 随机数种子
杂项
                                                                                                                                                         unsigned seed = std::chrono::system_clock::now
                                                                                                                                    ().time_since_epoch().count();
                                                                                                                                                        mt19937 rand_num(seed); // 大随机数
fread 快速
                                                                                                                                                        uniform_int_distribution<long long> dist(0, 100
#include <bits/stdc++.h>
                                                                                                                                                         cout << dist(rand_num) << endl;</pre>
using namespace std;
```

```
return 0:
                                                                                      } else {
                                                                                          q2[++cq2] = q[i];
                                                                                  } else {
注意: 代码中的 rand_num 和 dist 都是自己定义的对象,不是系统
                                                                                      11 sum = query_bit(q[i].y) - query_bit(q[i].x -
的。
                                                                           1);
                                                                                       if (sum >= q[i].k) {
洗牌算法
                                                                                           q1[++cq1] = q[i];
#include <random>
                                                                                       } else {
#include <algorithm>
#include <iterator>
                                                                                           q2[++cq2] = q[i];
                                                                                           q2[cq2].k -= sum;
#include <iostream>
                                                                                  }
int main()
                                                                              for (ll i = 1; i <= cq1; i++) if (q1[i].type == 1) add_</pre>
    std::vector<int> v = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
                                                                          bit(q1[i].x, -q1[i].k);
                                                                               for (ll i = 1; i <= cq1; i++) q[ql + i - 1] = q1[i];
    std::random device rd;
                                                                               for (11 i = 1; i \le cq2; i++) q[q1 + cq1 + i - 1] = q2
    std::mt19937 g(rd());
                                                                          [i];
                                                                              solve(1, mid, ql, ql + cq1 - 1);
solve(mid + 1, r, ql + cq1, qr);
    std::shuffle(v.begin(), v.end(), g);
    std::copy(v.begin(), v.end(), std::ostream_iterator<in</pre>
    std::cout, " "));
std::cout << "\n";
                                                                          void init() {
                                                                              totx = 0;
                                                                              tot = 0:
    system("pause");
                                                                              memset(bit, 0, sizeof bit);
    return 0;
快读 read
                                                                          朝鲜大哥快读
inline int read(){
    int X=0,w=0; char ch=0;
                                                                          #define FI(n) FastIO::read(n)
    while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
                                                                          #define FO(n) FastIO::write(n)
    while(isdigit(ch))X=(X<<3)+(X<<1)+(ch^48), ch=getchar
                                                                          #define Flush FastIO::Fflush()
                                                                          //程序末尾写上 Flush;
    return w?-X:X;
                                                                          namespace FastIO {
                                                                              const int SIZE = 1 << 16;</pre>
                                                                              char buf[SIZE], obuf[SIZE], str[60];
                                                                          int bi = SIZE, bn = SIZE, opt;
double D[] = {0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000
001, 0.0000001, 0.00000001, 0.000000001, 0.0000000001};
整体二分
11 bit[N];
                                                                              int read(char *s) {
void add_bit(ll k, ll a) {
                                                                                  while (bn) {
   while (k < N) {
    bit[k] = bit[k] + a;</pre>
                                                                                      for (; bi < bn && buf[bi] <= ' '; bi++);</pre>
                                                                                       if (bi < bn)
        k += k \& -k;
                                                                                          break;
    }
                                                                                      bn = fread(buf, 1, SIZE, stdin);
}
                                                                                      bi = 0;
11 query_bit(ll k) {
                                                                                  int sn = 0;
    ll ans = 0;
while (k) {
                                                                                  while (bn) {
                                                                                      for (; bi < bn && buf[bi] > ' '; bi++)
        ans = ans + bit[k];
                                                                                          s[sn++] = buf[bi];
        k -= k & -k;
                                                                                      if (bi < bn)</pre>
                                                                                          break:
    return ans;
                                                                                      bn = fread(buf, 1, SIZE, stdin);
}
                                                                                      bi = 0;
struct node {
                                                                                  s[sn] = 0;
   ll x, y, k, id, type;
                                                                                  return sn;
node q[N], q1[N], q2[N];
ll ans[N], now[N], tot, totx;
                                                                              bool read(int &x) {
                                                                                  int n = read(str), bf = 0;
void solve(ll 1, ll r, ll ql, ll qr) {
   if (ql > qr) return;
                                                                                  if (!n)
                                                                                      return 0;
    if (1 == r) {
                                                                                  int i = 0;
         for (lĺ i = ql; i <= qr; i++) {
                                                                                  if (str[i] == '-')
            if (q[i].type == 2) {
                                                                                  bf = 1, i++;
else if (str[i] == '+')
                ans[q[i].id] = 1;
             }
                                                                                      i++;
                                                                                  for (x = 0; i < n; i++)
x = x * 10 + str[i] - '0';
        return;
                                                                                  if (bf)
    11 \text{ mid} = (1 + r) >> 1;
                                                                                      x = -x;
    11 \ cq1 = 0, cq2 = 0;
                                                                                  return 1;
    for (ll i = ql; i <= qr; i++) {</pre>
        if (q[i].type == 1) {
            if (q[i].y <= mid) {
   add_bit(q[i].x, q[i].k);</pre>
                                                                              bool read(long long \&x) {
                                                                                  int n = read(str), bf;
                q1[++cq1] = q[i];
```

```
if (!n)
                                                                  枚举子集
           return 0;
       int i = 0;
if (str[i] == '-')
                                                                    for (int s = n; s; s = (s - 1) & n) {
           bf = -1, i++;
                                                                       cout << bitset<8>(s) << endl;</pre>
       else
          bf = 1;
       for (x = 0; i < n; i++)
x = x * 10 + str[i] - '0';
                                                                  模拟退火
       if (bf < 0)
          x = -x;
       return 1;
                                                                  "优化的随机算法"
                                                                  连续函数找区间最优
   void write(int x) {
       if (x == 0)
                                                                  // 找一个点,与平面中的 n 个点的距离和最近
           obuf[opt++] = '0';
       else {
                                                                  //进行多次模拟退火避免局部最大值
           if (x < 0)
              obuf[opt++] = '-', x = -x;
                                                                  #include <bits/stdc++.h>
           int sn = 0;
           while (x)
                                                                  #include <ctime>
              str[sn++] = x % 10 + '0', x /= 10;
                                                                  using namespace std;
           for (int i = sn - 1; i >= 0; i--)
              obuf[opt++] = str[i];
                                                                  const int maxn = 110:
       if (opt >= (SIZE >> 1)) {
                                                                  int n:
           fwrite(obuf, 1, opt, stdout);
                                                                  #define x first
           opt = 0:
                                                                  #define y second
   }
                                                                  typedef pair<double, double> PDD;
   void write(long long x) {
                                                                  PDD q[maxn];
       if (x == 0)
                                                                  double ans = 1e8;
           obuf[opt++] = '0';
       else {
                                                                  double rand(double 1, double r) {
           if (x < 0)
              obuf[opt++] = '-', x = -x;
                                                                     return (double) rand() / RAND_MAX * (r - 1) + 1;
           int sn = 0;
           while (x)
                                                                  double getDist(PDD a, PDD b) {
              str[sn++] = x % 10 + '0', x /= 10;
                                                                     double dx = a.x - b.x;
double dy = a.y - b.y;
return sqrt(dx * dx + dy * dy) ;
           for (int i = sn - 1; i >= 0; i--)
              obuf[opt++] = str[i];
       if (opt >= (SIZE >> 1)) {
           fwrite(obuf, 1, opt, stdout);
                                                                  double calc(PDD p) {
           opt = 0;
                                                                      double res = 0;
                                                                      for(int i = 0; i < n; ++ i) {</pre>
   }
                                                                         res += getDist(q[i], p);
   void write(unsigned long long x) {
                                                                      ans = min(ans, res);
           obuf[opt++] = '0';
                                                                      return res;
       else {
           int sn = 0:
           while (x)
                                                                  double simulate_anneal() {
              str[sn++] = x % 10 + '0', x /= 10;
                                                                      PDD cur(rand(0, 10000), rand(0, 10000)); // 随机一个起
           for (int i = sn - 1; i >= 0; i--)
              obuf[opt++] = str[i];
                                                                      for(double T = 1e4; T > 1e-4; T = T * 0.99) { // 初始温
                                                                  度,末态温度,衰减系数,一般调整衰减系数 0.999 0.95
       if (opt >= (SIZE >> 1)) {
                                                                         PDD np(rand(cur.x - T, cur.x + T), rand(cur.y - T,
           fwrite(obuf, 1, opt, stdout);
                                                                  cur.y + T)); // 随机新点
           opt = 0:
                                                                         double delta = calc(np) - calc(cur);
       }
                                                                  if(exp(-delta / T) > rand(0, 1)) cur = np; //如果新
点比现在的点更优,必过去,不然有一定概率过去
   }
                                                                     }
   void write(char x) {
       obuf[opt++] = x;
       if (opt >= (SIZE >> 1)) {
           fwrite(obuf, 1, opt, stdout);
                                                                  int main() {
           opt = 0;
                                                                      cin >> n;
       }
                                                                      for(int i = 0; i < n; ++ i) {
   }
                                                                         cin >> q[i].x >> q[i].y;
   void Fflush() {
                                                                      while((double) clock() / CLOCKS_PER_SEC < 0.8) { // #</pre>
           fwrite(obuf, 1, opt, stdout);
                                                                  时 // 或for (100)
       opt = 0;
                                                                         simulate anneal();
}; // namespace FastIO
                                                                      cout << (int)(ans + 0.5) << endl;</pre>
                                                                      return 0;
```

```
// n 个点带权费马点 // 平衡点||吊打 XXX
//n 个二维坐标点, 带重物重量, 找平衡点
                                                                              算法基础
//进行一次模拟退火,但是在局部最大值周围多次跳动(以提高精度
                                                                               占位
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <ctime>
                                                                              线性代数
const int N = 10005;
                                                                              矩阵类模板 加减乘快速幂
int n, x[N], y[N], w[N];
double ansx, ansy, dis;
                                                                              #include <bits/stdc++.h>
double Rand() { return (double)rand() / RAND_MAX; }
                                                                              using namespace std;
double calc(double xx, double yy) {
                                                                              typedef long long 11;
 double tare(weath xx, double yy);
for (int i = 1; i <= n; ++i) {
  double dx = x[i] - xx, dy = y[i] - yy;
  res += sqrt(dx * dx + dy * dy) * w[i];</pre>
                                                                              const 11 N = 305;
                                                                              const 11 mod = 998244353;
                                                                               //矩阵类模板
                                                                              struct Matrix {
  if (res < dis) dis = res, ansx = xx, ansy = yy;</pre>
                                                                                   11 n, m;
11 a[N][N];
  return res;
void simulateAnneal() {
                                                                                   void set(ll _a, ll _b) {
    n = _a, m = _b;
  double t = 100000:
  double nowx = ansx, nowy = ansy;
  while (t > 0.001) {
    double nxtx = nowx + t * (Rand() * 2 - 1);
                                                                                   Matrix() {
    double nxty = nowy + t * (Rand() * 2 - 1);
                                                                                       clear();
    double delta = calc(nxtx, nxty) - calc(nowx, nowy);
    if (exp(-delta / t) > Rand()) nowx = nxtx, nowy = nxty;
    t *= 0.97;
                                                                                   void clear() {
                                                                                       n = m = 0;
  for (int i = 1; i <= 1000; ++i) {
  double nxtx = ansx + t * (Rand() * 2 - 1);</pre>
                                                                                       memset(a, 0, sizeof(a));
    double nxty = ansy + t * (Rand() * 2 - 1);
    calc(nxtx, nxty);
                                                                                   Matrix operator+(const Matrix &b) const {
                                                                                       Matrix tmp:
                                                                                       tmp.n = n;
int main() {
                                                                                       tmp.m = m;
for (ll i = 0; i < n; ++i)
 nc main() {
    srand(time(0));
    scanf("%d", &n);
    for (int i = 1; i <= n; ++i) {
        scanf("%d%d", &x[i], &y[i], &w[i]);
        ansx += x[i], ansy += y[i];
    }
}</pre>
                                                                                            for (11 j = 0; j < m; ++j)
                                                                                                tmp.a[i][j] = (a[i][j] + b.a[i][j]) % mod;
                                                                                       return tmp;
                                                                                   }
  ansx /= n, ansy /= n, dis = calc(ansx, ansy);
                                                                                   Matrix operator-(const Matrix &b) const {
  simulateAnneal();
                                                                                       Matrix tmp;
  printf("%.31f %.31f\n", ansx, ansy);
                                                                                       tmp.n = n;
  return 0:
                                                                                        tmp.m = m;
                                                                                       for (11 i = 0; i < n; ++i) {
    for (11 j = 0; j < m; ++j)</pre>
                                                                                                tmp.a[i][j] = (a[i][j] - b.a[i][j] + mod) %
                                                                               mod;
测试时堂田的代码
                                                                                       }
return tmp:
#ifdef ONLINE JUDGE
#else
                                                                                   Matrix operator*(const Matrix &b) const {
    freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
                                                                                       Matrix tmp;
                                                                                        tmp.clear();
                                                                                       tmp.n = n;
tmp.m = b.m;
//������stdin/stdout��in.txt/out.txt��"r"��"w"
                                                                                       tmp.m = b.m;
for (ll i = 0; i < n; ++i)
  for (ll j = 0; j < b.m; ++j)
    for (ll k = 0; k < m; ++k) {
        tmp.a[i][j] += a[i][k] * b.a[k][j];
        tmp.a[i][j] %= mod;</pre>
Ï 00000
#include<ctime>
    clock t ST,ED;
    ST=clock():
    // 00000000 0 tij 000
                                                                                       return tmp;
    cout<<ED-ST<<"ms"<<endl;</pre>
                                                                                   Matrix get(ll x) {//幂运算
                                                                                       Matrix E;
#include<ctime>
                                                                                       E.clear();
#include<cstdlib>
                                                                                       E.set(n, m);
for (ll i = 0; i < n; ++i)
    srand(time(0));//\phi \phi' \phi \phi
    rand();// * * * * * [0, RAND_MAX] * * * * * * * * * * * * * * (int) *
                                                                                            E.a[i][i] = 1;
```

```
if (x == 0) return E;
                                                                                                                                                                    for (int i=0;i<n;++i){
               else if (x == 1) return *this;
Matrix tmp = get(x / 2);
                                                                                                                                                                                        for(int j=0;j<b.m;++j){
    if(a[i][k]==0) continue;
    for(int j=0;j<b.m;++j){
        if(b.a[k][j]==0) continue;
        if(b.a[k][j]==0) continue;

               tmp = tmp * tmp;
if (x % 2) tmp = tmp * (*this);
                                                                                                                                                                                                               tmp.a[i][j]+=a[i][k]*b.a[k]
               return tmp;
                                                                                                                                            [j];
                                                                                                                                                                                     tmp.a[i][j]%=mod;
                                                                                                                                                                                                                                     }
       if (!_b)return x = 1, y = 0, void();
exgcd(_b, _a % _b, y, x);
y -= x * (_a / _b);
                                                                                                                                                             return tmp;
                                                                                                                                            };
                                                                                                                                            //稀疏矩阵乘法
       ll inv(ll p) {
               11 x, y;
               exgcd(p, mod, x, y);
return (x + mod) % mod;
                                                                                                                                            矩阵行列式
                                                                                                                                            #include <bits/stdc++.h>
                                                                                                                                            using namespace std;
       Matrix inv() {
   Matrix E = *this;
                                                                                                                                            typedef long long 11;
               for (11 k = 0; k < E.n; k++) {
    is[k] = js[k] = -1;
    for (11 j = k; j < E.n; j++) // 1
    for (11 j = k; j < E.n; j++)
                                                                                                                                             const 11 \mod = 1e9 + 7;
                                                                                                                                            struct Matrix {
                                                                                                                                                    static const 11 MAXN = 300;
                                                                                                                                                    11 a[MAXN][MAXN];
                                                                                                                                                    void init() { memset(a, 0, sizeof(a)); }
                                      if (E.a[i][j]) {
                                                is[k] = i, js[k] = j;
                                               break;
                                                                                                                                                             for (int i = 0; i < n; i++)
                                                                                                                                                                  for (int j = 0; j < n; j++) a[i][j] = (a[i][j]
                        if (is[k] == -1) {
                                                                                                                                            + mod) % mod;
                                E.clear();
                                                                                                                                                            11 res = 1;
for (int i = 0; i < n; i++) {</pre>
                                return E;
                                                                                                                                                                    if (!a[i][i]) {
   bool flag = false;
                        for (ll i = 0; i < E.n; i++) // 2
   swap(E.a[k][i], E.a[is[k]][i]);</pre>
                                                                                                                                                                             for (int j = i + 1; j < n; j++) {
                        for (ll i = 0; i < E.n; i++)
    swap(E.a[i][k], E.a[i][js[k]]);</pre>
                                                                                                                                                                                    if (a[j][i]) {
                                                                                                                                                                                             flag = true;
                        if (!E.a[k][k]) {
                                                                                                                                                                                             for (int k = i; k < n; k++) {
                                E.clear();
                                                                                                                                                                                                    swap(a[i][k], a[j][k]);
                                return E:
                                                                                                                                                                                             res = -res;
                        E.a[k][k] = inv(E.a[k][k]); // 3
                                                                                                                                                                                            break;
                       for (11 j = 0; j < E.n; j++)
if (j != k) // 4
                        (E.a[k][j] *= E.a[k][k]) %= mod;
for (ll i = 0; i < E.n; i++)
if (i != k) // 5
                                                                                                                                                                             if (!flag) return 0;
                                        for (11 j = 0; j < E.n; j++)
                                                                                                                                                                     for (int j = i + 1; j < n; j++) {
                                              if (j != k)
                                                                                                                                                                             while (a[j][i]) {
                                                       (E.a[i][j] += mod - E.a[i][k] *
                                                                                                                                                                                    fact (ali)[i]/ a[j][i];
for (int k = i; k < n; k++) {
    a[i][k] = (a[i][k] - t * a[j][k]) %</pre>
E.a[k][j] \% mod) \% = mod;
                        for (ll i = 0; i < E.n; i++)
    if (i != k) // 就是这里不同
    E.a[i][k] = (mod - E.a[i][k] * E.a[k][k]
                                                                                                                                            mod;
                                                                                                                                                                                             swap(a[i][k], a[j][k]);
 % mod) % mod;
                                                                                                                                                                                    res = -res;
                for (ll k = E.n - 1; k >= 0; k--) { // 6
for (ll i = 0; i < E.n; i++)
                                                                                                                                                                            }
                               swap(E.a[js[k]][i], E.a[k][i]);
                                                                                                                                                                     res *= a[i][i];
                        for (ll i = 0; i < E.n; i++)
                                                                                                                                                                    res %= mod;
                               swap(E.a[i][is[k]], E.a[i][k]);
                                                                                                                                                             return (res + mod) % mod;
               return E;
      }
                                                                                                                                            } mat;
//矩阵模板结束
                                                                                                                                            线性基 2
矩阵类模板 稀疏矩阵乘法
                                                                                                                                            线性基 能表示的线性空间与原向量 能表示的线性空间等价
struct Matrix{
       int n,m;
        int a[maxn][maxn];////
        void clear(){
                                                                                                                                            用高斯消元得到线性基
               n=m=0:
                memset(a,0,sizeof(a));
                                                                                                                                            先输入数组 a[] 中
       Matrix operator * (const Matrix &b) const{
                                                                                                                                            int n, k;
               Matrix tmp;
                                                                                                                                            ll a[N];
                tmp.clear();
                tmp.n=n;tmp.m=b.m;
                                                                                                                                            void getVec() {
                for (int k=0; k<m; ++k) {
```

```
k = 0;
   for(int i = 62; i >= 0; -- i) {
       for(int j = k; j < n; ++ j) {
    if(a[j] >> i & 1) {
              swap(a[j], a[k]);
              break;
          }
       if(!(a[k] >> i & 1)) continue;
       for(int j = 0; j < n; ++j) {
    if(j != k && (a[j] >> i & 1)) {
              a[j] ^= a[k];
       ++k;
       if(k == n) break;
}
这里注意最后的线性基是 a∏中从 0 到 k-1 个,在前的是高位
线性基模板
const int maxbit = 62;
                                        //maxbit 🍎 🍎 👰 🤣
memset(lba, 0, sizeof(lba));
          void Insert(ll val){
                                       110000
       for(int i = maxbit - 1; i >= 0; -- i) // ♦Ы ♦\
DAi
           if(val & (1ll << i)){ //</pre>
              \textbf{if}(\texttt{!lba[i]})\{
                  lba[i] = val;
                  break:
              val ^= lba[i];
//' øã ø øinsert
// ----- Ø Ø Ø h Ø g Ø Ø
高斯消元
#include <iostream>
#include <vector>
using namespace std;
const double eps = 1e-8;
void sway(vector<double>& a, vector<double>& b) {
   vector<double> s;
for (int i = 0; i < a.size(); i++) {</pre>
      s.push_back(a[i]);
   a.clear();
   for (int i = 0; i < b.size(); i++) {</pre>
      a.push_back(b[i]);
   b.clear();
   for (int i = 0; i < s.size(); i++) {</pre>
       b.push_back(s[i]);
vector<double> gauss_jordan(const vector<vector<double> >
                         const vector<double>& b) {
   int n = A.size();
   vector < vector < double > B(n, vector < double > (n + 1));
   for (int i = 0; i < n; i++)</pre>
       for (int j = 0; j < n; j++) B[i][j] = A[i][j];</pre>
   for (int i = 0; i < n; i++) B[i][n] = b[i];</pre>
```

```
for (int i = 0; i < n; i++) {
         int pivot = i;
for (int j = i; j < n; j++) {
    if (abs(B[j][i]) > abs(B[pivot][i])) pivot = j;
         swap(B[i], B[pivot]);
         if (abs(B[i][i]) < eps) return vector<double>();
         for (int j = i + 1; j <= n; j++) B[i][j] /= B[i][i];
         for (int j = 0; j < n; j++) {
   if (i != j) {
      for (int k = i + 1; k <= n; k++) B[j][k] -=</pre>
B[j][i] * B[i][k];
         }
     vector<double> x(n);
     for (int i = 0; i < n; i++) x[i] = B[i][n];</pre>
    return x:
int main() {
    int n, m;
    cin >> n >> m;
     vector<vector<double> > mat(n, vector<double>(m));
    for (int i = 0; i < n; i++) {
    for (int j = 0; j < m; j++) {
             cin >> mat[i][j];
    vector<double> val(n);
    for (int i = 0; i < n; i++) cin >> val[i];
vector<double> ans = gauss_jordan(mat, val);
     for (int i = 0; i < ans.size(); i++) cout << ans[i] <<</pre>
```

组合数学

斯特林数

百度百科讲的超好

第一类斯特林数 (无符号第一类)

定义: $\begin{bmatrix} n \\ k \end{bmatrix}$ 表示将 n 个两两不同的元素,划分为 k 个非空圆排列的方 客粉。

递推式 $\begin{bmatrix} k \\ n \end{bmatrix} = \begin{bmatrix} n-1 \\ k-1 \end{bmatrix} + (n-1)\begin{bmatrix} n-1 \\ k \end{bmatrix}$

升阶函数

$$x^{n\uparrow}=x\left(x+1
ight)\left(x+2
ight)\cdots\left(x+n-1
ight)=\sum_{k=0}^{n}s_{u}\left(n,k
ight)x^{k}$$

(每一项系数则为无符号第一类斯特林数,求前 n 项和则为取 x=1)

$$\odot s_u\left(0,0\right)=1$$

$$2 s_u(n,0) = 0$$

$$3s_n(n,n)=1$$

$$5 s_u(n, n-1) = C(n, 2)$$

⑧
$$\sum_{k=0}^{n} s_u\left(n,k\right) = n!$$
 证明可令升阶函数中的x=1,比较两边系数。

第二类斯特林数

定义: $\binom{n}{k}$ 表示将 n 个两两不同的元素,划分为 k 个非空子集的方案 数。

递推式
$$\binom{n}{k} = \binom{n-1}{k-1} + k \binom{n-1}{k}$$

性质

$$\bigcirc S(n,0) = 0^n$$

$$2S(n,1) = 1$$

$$\Im S(n,n) = 1$$

$$4 S(n,2) = 2^{n-1} - 1$$

$$\ \, { \ \, }^{ \bigcirc }\,S\left(n,3\right) = \frac{1}{2}(3^{n-1}+1) - 2^{n-1}$$

$$\otimes S(n, n-3) = C(n,4) + 10 \cdot C(n,5) + 15 \cdot C(n,5)$$

⑨
$$\sum_{k=0}^n S(n,k) = B_n$$
 , B_n 是贝尔数。

通项公式:

$$S\left(n,m
ight) =rac{1}{m!}\sum_{k=0}^{m}\left(-1
ight) ^{k}C\left(m,k
ight) \left(m-1
ight) ^{k}C\left(m,k$$

两类Stirling数之间的关系

两类Stirling数之间的递推式和实际含义很类似,事实上他们之间存在一个互为转置的转化关系;

$$\sum_{k=0}^n S(n,k)s(k,m) = \sum_{k=0}^n s(n,k)S(k,m)$$

计算几何

```
zyx 的计算几何
```

```
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
const int N = 1e6 + 10;
const double eps = 1e-9;
const double PI = acos(-1.0);
const double dinf = 1e99;
const 11 inf = 0x3f3f3f3f3f3f3f3f3f3;
struct Line;
struct Point {
    double x, y;
    Point() { x = y = 0; }
    Point(const Line &a);
    Point(const double &a, const double &b) : x(a), y(b) {}
    Point operator+(const Point &a) const {
        return \{x + a.x, y + a.y\};
    Point operator-(const Point &a) const {
        return \{x - a.x, y - a.y\};
    Point operator*(const double &a) const {
        \textbf{return} \ \{\textbf{x} \ * \ \textbf{a}, \ \textbf{y} \ * \ \textbf{a}\};
    Point operator/(const double &d) const {
        \textbf{return} \ \{x \ / \ d, \ y \ / \ d\};
    bool operator==(const Point &a) const {
        return abs(x - a.x) + abs(y - a.y) < eps;
    // 标准化, 转化为膜长为1
    void standardize() {
   *this = *this / sqrt(x * x + y * y);
};
double norm(const Point &p) { return p.x * p.x + p.y * p.y;
//逆时针转90度
Point orth(const Point &a) { return Point(-a.y, a.x); }
//两点问距离
double dist(const Point &a, const Point &b) {
    return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) *
(a.y - b.y));
//两点间距离的平方
double dist2(const Point &a, const Point &b) {
   return (a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y)
 b.y);
struct Line {
```

```
Point s, t;
                                                                         while ((top > 1) \&\& det(convex[top - 1] - convex[to
                                                                  p - 2], point[i] - convex[top - 1]) <= 0)</pre>
   Line() {}
                                                                             top--:
                                                                         convex[top++] = point[i];
   Line(const Point &a, const Point &b) : s(a), t(b) {}
                                                                     int tmp = top;
                                                                     for (int i = n - 2; i >= 0; i--) {
};
                                                                         while ((top > tmp) && det(convex[top - 1] - convex
                                                                  [top - 2], point[i] - convex[top - 1]) <= 0)
struct Circle {
   Point o:
                                                                         convex[top++] = point[i];
   double r:
                                                                     if (n > 1) top--;
                                                                     return top;
   Circle() {}
   Circle(Point P, double R = 0) { o = P, r = R; }
                                                                  //斜率
                                                                  double slope(const Point &a, const Point &b) { return (a.y
//向量的膜长
                                                                   - b.y) / (a.x - b.x); }
double length(const Point &p) {
                                                                  //斜率
   return sqrt(p.x * p.x + p.y * p.y);
                                                                  double slope(const Line &a) { return slope(a.s, a.t); }
//线段的长度
double length(const Line &1) {
                                                                  Point ll_intersection(const Line &a, const Line &b) {
   Point p(1);
                                                                     double s1 = det(Point(a), b.s - a.s), s2 = det(Point
   return length(p);
                                                                  (a), b.t - a.s);
                                                                     if (sgn(s1) == 0 && sgn(s2) == 0) return a.s;
                                                                     return (b.s * s2 - b.t * s1) / (s2 - s1);
Point::Point(const Line &a) { *this = a.t - a.s; }
istream &operator>>(istream &in, Point &a) {
                                                                  //两线段交点p,返回0为无交点,2为交点为端点,1为相交
   in >> a.x >> a.y;
                                                                  int ss cross(const Line &a, const Line &b, Point &p) {
   return in:
                                                                     int d1 = sgn(det(a.t - a.s, b.s - a.s));
                                                                      int d2 = sgn(det(a.t - a.s, b.t - a.s));
                                                                      int d3 = sgn(det(b.t - b.s, a.s - b.s));
ostream &operator<<((ostream &out, Point &a) {</pre>
                                                                     int d4 = sgn(det(b.t - b.s, a.t - b.s));
if ((d1 ^ d2) == -2 && (d3 ^ d4) == -2) {
   out << fixed << setprecision(10) << a.x << ' ' << a.y;</pre>
                                                                         p = ll_intersection(a, b);
                                                                         return 1:
//占积
                                                                     if (!d1 && sp_on(a, b.s)) {
double dot(const Point &a, const Point &b) { return a.x *
                                                                         p = b.s;
b.x + a.y * b.y; }
                                                                         return 2;
                                                                      if (!d2 && sp_on(a, b.t)) {
                                                                         p = b.t;
double det(const Point &a, const Point &b) { return a.x *
b.y - a.y * b.x; }
                                                                         return 2:
                                                                      if (!d3 && sp_on(b, a.s)) {
// 正分判断
int sgn(const double &x) { return fabs(x) < eps ? 0 : (x >
                                                                         p = a.s;
                                                                         return 2:
0?1:-1);}
                                                                      if (!d4 && sp_on(b, a.t)) {
                                                                         p = a.t;
double sqr(const double &x) { return x * x; }
                                                                         return 2;
//将向量 a 逆时针旋转 ang (弧度制)
                                                                     return 0:
Point rotate(const Point &a, const double &ang) {
   double x = cos(ang) * a.x - sin(ang) * a.y;
double y = sin(ang) * a.x + cos(ang) * a.y;
                                                                  //两向量直接的相对位置关系,含义见英文注释
   return {x, y};
                                                                  int ccw(const Point &a, Point b, Point c) {
                                                                     b = b - a, c = c - a;
                                                                     if (sgn(det(b, c)) > 0) return +1; // "COUNTER_CLOCKW
//点p 在线段 seg 上,<=0 则包含端点
                                                                  ISE"
bool sp_on(const Line &seg, const Point &p) {
                                                                     if (sgn(det(b, c)) < 0) return -1; // "CLOCKWISE"</pre>
   Point a = seg.s, b = seg.t;
                                                                                                            // "ONLINE_BACK
                                                                     if (sgn(dot(b, c)) < 0) return +2;</pre>
   return !sgn(det(p - a, b - a)) && sgn(dot(p - a, p - b))
<= 0:
                                                                     if (sgn(norm(b) - norm(c)) < 0) return -2; // "ONLINE
}
                                                                  _FRONT
                                                                     return 0;
                                                                                                      // "ON_SEGMENT"
//点 p 在直线 Line 上
bool lp_on(const Line &line, const Point &p) {
   Point a = line.s, b = line.t;
   return !sgn(det(p - a, b - a));
                                                                  //点p 在线 L 上的投影位置
                                                                  Point project(const Line &1, const Point &p) {
                                                                     Point base(1);
//凸包,下标从 0 开始,<=0 则凸包中不包含共线点
                                                                     double r = dot(base, p - 1.s) / sqr(length(base));
return 1.s + (base * r);
int andrew(Point *point, Point *convex, int n) {
   sort(point, point + n, [](Point a, Point b) {
       if (a.x != b.x) return a.x < b.x;</pre>
       return a.y < b.y;</pre>
                                                                  //线段 L 和点 p 的距离
                                                                  double sp_dist(const Line &1, const Point &p) {
   int top = 0:
                                                                     if (1.s == 1.t) return dist(1.s, p);
   for (int i = 0; i < n; i++) {
```

```
Point x = p - 1.s, y = p - 1.t, z = 1.t - 1.s;
                                                                        if (sgn(r1 + r2 - d) == 0) return 3; //外切
   if (sgn(dot(x, z)) < 0)return length(x);//P 距离A 更近
                                                                        else return 1; //内切
    if (sgn(dot(y, z)) > 0)return length(y);//P 距离B 更近
   return abs(det(x, z) / length(z));//面积除以底边长
                                                                    //Two Intersections
                                                                    double delta = sqrt(q * q - p * r * 4);
                                                                    cosa = (delta - q) / p / 2;
                                                                    cosb = (-delta - q) / p / 2;
sina = sqrt(1 - sqr(cosa));
//直线 L 和点 p 的距离
double lp_dist(const Line &1, const Point &p) {
                                                                    Sinb = Sqrt(1 - Sqr(cosb));

Point p1(x1 + r1 * cosa, y1 + r1 * sina);

Point p2(x1 + r1 * cosb, y1 + r1 * sinb);
   Point x = p - 1.s, y = p - 1.t, z = 1.t - 1.s; return abs(det(x, z) / length(z));//面积除以底边长
                                                                    if (sgn(dist(p1, c2) - r2)) p1.y = y1 - r1 * sina;
                                                                    if (sgn(dist(p2, c2) - r2)) p2.y = y1 - r1 * sinb;
//圆c和直线L的交点,返回值为交点的数量, ans 为交点位置
                                                                    if (p1 == p2) p1.y = y1 - r1 * sina;
int cl_cross(const Circle &c, const Line &l, pair<Point, P</pre>
                                                                    ans = pair<Point, Point>(p1, p2);
oint> &ans) {
                                                                    return 2; // 相交
   Point a = c.o;
    double r = c.r;
   Point pr = project(1, a);
double dis = dist(pr, a);
double tmp = r * r - dis * dis;
if (sgn(tmp) == 1) {
                                                                 //点p 关于直线 L 的对称点
                                                                Point lp_sym(const Line &1, const Point &p) {
                                                                    return p + (project(1, p) - p) * 2;
       double base = sqrt(max(0.0, r * r - dis * dis));
       Point e(1);
                                                                 //返回两向量的夹角
       e.standardize();
                                                                double alpha(const Point &t1, const Point &t2) {
       e = e * base;
                                                                    double theta:
       ans = make_pair(pr + e, pr - e);
                                                                    theta = atan2((double) t2.y, (double) t2.x) - atan2((d
       return 2;
                                                                ouble) t1.y, (double) t1.x);
   } else if (sgn(tmp) == 0) {
       ans = make_pair(pr, pr);
                                                                    if (sgn(theta) < 0)</pre>
       return 1:
                                                                        theta += 2.0 * PI;
                                                                    return theta;
   } else return 0;
                                                                //【射线法】判断点 A 是否在任意多边形 Poly 以内,下标从 1 开始
//圆c和线段L交点个数,下面cs cross用到
int intersectCS(Circle c, Line 1) {
                                                                  (为保险起见,可以在判断前将所有点随机旋转一个角度防止被卡)
   if (sgn(norm(project(1, c.o) - c.o) - c.r * c.r) > 0)
                                                                int pip(const Point *P, const int &n, const Point &a) {
return 0:
                                                                    int cnt = 0:
   double tmp;
                                                                    for (int i = 1; i <= n; ++i) {
                                                                        int j = i < n ? i + 1 : 1;
 - c.r) > 0 && sgn(d2 - c.r) < 0)) return 1;
                                                                        if (sp_on(Line(P[i], P[j]), a))return 2;//点在多边
   Point h = project(1, c.o);
    if (dot(1.s - h, 1.t - h) < 0) return 2;</pre>
                                                                        if (a.y >= min(P[i].y, P[j].y) && a.y < max(P[i].y,
   return 0;
                                                                 P[j].y))//纵
                                                                           tmp = P[i].x + (a.y - P[i].y) / (P[j].y - P[i].
                                                                y) * (P[j].x - P[i].x), cnt += sgn(tmp - a.x) > 0;//交点在
//圆和线段交点,返回交点数量
                                                                A 右方
int cs_cross(Circle c, Line s, pair<Point, Point> &ans) {
   Line l(s);
                                                                    return cnt & 1;//穿过奇数次则在多边形以内
   int num = cl_cross(c, l, ans);
int res = intersectCS(c, s);
   if (res == 2) return 2;
                                                                 //判断AL 是否在AR 右边
   if (num > 1) {
                                                                 bool pip_convex_jud(const Point &a, const Point &L, const
       if (dot(l.s - ans.first, l.t - ans.first) > 0) swap
                                                                Point &R) {
(ans.first, ans.second);
                                                                    return sgn(det(L - a, R - a)) > 0;//必须严格以内
       ans.second = ans.first;
   return res:
                                                                 //【二分法】判断点 A 是否在凸多边形 Poly 以内,下标从 0 开始
                                                                bool pip_convex(const Point *P, const int &n, const Point
//两圆交点, 位置关系见注释
                                                                    //点按逆时针给出
int cc_cross(const Circle &cir1, const Circle &cir2, pair<
Point, Point> &ans) {
                                                                    const Point &c1 = cir1.o, &c2 = cir2.o;
                                                                 [0], P[n - 1], a)) return 0;//在P[0_1]或P[0_n-1]
    const double &r1 = cir1.r, &r2 = cir2.r;
                                                                    if (sp_on(Line(P[0], P[1]), a) || sp_on(Line(P[0], P[n
   double x1 = c1.x, x2 = c2.x, y1 = c1.y, y2 = c2.y;
                                                                   1]), a)) return 2;//在P[0_1]或P[0_n-1]上
                                                                    int l = 1, r = n - 2;
    double d = length(c1 - c2);
    if (sgn(fabs(r1 - r2) - d) > 0) return 0; //内含
                                                                    while (1 < r) {//二分找到一个位置 pos 使得 P[0]_A 在 P[0_p
    if (sgn(r1 + r2 - d) < 0) return 4; //相离
                                                                os1,P[0 (pos+1)]之间
   double a = r1 * (x1 - x2) * 2, b = r1 * (y1 - y2) * 2,
                                                                        int mid = (1 + r + 1) >> 1;
c = r2 * r2 - r1 * r1 - d * d;
double p = a * a + b * b, q = -a * c * 2, r = c * c - b
                                                                       if (pip_convex_jud(P[0], P[mid], a))1 = mid;
else r = mid - 1;
 * b;
                                                                    if (pip_convex_jud(P[1], a, P[1 + 1]))return 0;//在P[p
   double cosa, sina, cosb, sinb;
                                                                os_(pos+1)
    //One Intersection
                                                                    if (sp\_on(Line(P[1], P[1 + 1]), a))return 2;//\#P[pos\_
   if (sgn(d - (r1 + r2)) == 0 \mid \mid sgn(d - fabs(r1 - r2)) =
                                                                 (pos+1)]_
= 0) {
                                                                    return 1;
       cosa = -q / p / 2;
       sina = sqrt(1 - sqr(cosa));
                                                                // 多边形是否包含线段
       Point p0(x1 + r1 * cosa, y1 + r1 * sina);
                                                                // 因此我们可以先求出所有和线段相交的多边形的顶点,然后按照X-Y
       if (sgn(dist(p0, c2) - r2)) p0.y = y1 - r1 * sina;
                                                                 坐标排序(X 坐标小的排在前面,对于X 坐标相同的点,Y 坐标小的排在
       ans = pair<Point, Point>(p0, p0);
                                                                 前面.
```

```
// 这种排序准则也是为了保证水平和垂直情况的判断正确),这样相邻
                                                                            while (h < t && judge(L[i], ll_intersection(Q[h],</pre>
的两个点就是在线段上相邻的两交点,如果任意相邻两点的中点也在多
                                                                     Q[h + 1]))) ++h;//当队头两个直线交点不是在直线 L[i]上或者左边
                                                                     时就出队
边形内,
// 则该线段一定在多边形内。
                                                                             Q[++t] = L[i];
//【判断多边形 A 与多边形 B 是否相离】
                                                                         while (h < t \&\& judge(Q[h], ll_intersection(Q[t], Q[t]))
int pp_judge(Point *A, int n, Point *B, int m) {
                                                                     - 1]))) --t;
    for (int i1 = 1; i1 <= n; ++i1) {
   int j1 = i1 < n ? i1 + 1 : 1;
   for (int i2 = 1; i2 <= m; ++i2) {</pre>
                                                                         while (h < t && judge(Q[t], ll_intersection(Q[h], Q[h
                                                                     + 1]))) ++h;
                                                                         n = 0;
            int j2 = i2 < m ? i2 + 1 : 1;
                                                                         for (int i = h; i <= t; ++i) {</pre>
            Point tmp;
                                                                            P[n++] = ll\_intersection(Q[i], Q[i < t ? i + 1 :
           if (ss_cross(Line(A[i1], A[j1]), Line(B[i2], B
[j2]), tmp)) return 0;//
           if (pip(B, m, A[i1]) || pip(A, n, B[i2]))return
                                                                         return n;
 0;//点包含在内
       }
                                                                     Point V1[N], V2[N]:
    return 1;
                                                                     //【闵可夫斯基和】求两个凸包{P1},{P2}的向量集合{V}={P1+P2}构
//【任意多边形 P 的面积】,下标从 0 开始
                                                                     int mincowski(Point *P1, int n, Point *P2, int m, Point *V)
double area(Point *P, int n) {
    double S = 0:
                                                                         for (int i = 0; i < n; ++i) V1[i] = P1[(i + 1) \% n] - P
    for (int i = 0; i < n; i++) S += det(P[i], P[(i+1) %
                                                                     1[i];
n]);
                                                                         for (int i = 0; i < m; ++i) V2[i] = P2[(i + 1) % m] - P
   return S * 0.5;
                                                                     2[i];
                                                                         int t = 0, i = 0, j = 0;
                                                                         V[t++] = P1[0] + P2[0];
//多边形和圆的面积交 ,下表从 0 开始
                                                                         while (i < n \&\& j < m) V[t] = V[t - 1] + (sgn(det(V1[i], v)))
double pc_area(Point *p, int n, const Circle &c) {
                                                                      V2[j])) > 0 ? V1[i++] : V2[j++]), t++;
while (i < n) V[t] = V[t - 1] + V1[i++], t++;
    if (n < 3) return 0;
    function<double(Circle, Point, Point)> dfs = [&](Circl
                                                                         while (j < m) \ V[t] = V[t - 1] + V2[j++], \ t++;
e c, Point a, Point b) {
                                                                         return t;
       Point va = c.o - a, vb = c.o - b;

double f = det(va, vb), res = 0;

if (sgn(f) == 0) return res;
                                                                     //【三点确定一圆】向量垂心法
        if (sgn(max(length(va), length(vb)) - c.r) <= 0) r</pre>
                                                                     Circle external_circle(const Point &A, const Point &B, con
                                                                     st Point &C) {
       Point d(dot(va, vb), det(va, vb));
                                                                         Point P1 = (A + B) * 0.5, P2 = (A + C) * 0.5;
        if (sgn(sp\_dist(Line(a, b), c.o) - c.r) >= 0) retu
                                                                         Line R1 = Line(P1, P1 + orth(B - A));
Line R2 = Line(P2, P2 + orth(C - A));
rn c.r * c.r * atan2(d.y, d.x);
       pair<Point, Point> u;
                                                                         Circle 0;
        int cnt = cs_cross(c, Line(a, b), u);
                                                                         0.o = 11 intersection(R1, R2);
        if (cnt == 0) return res;
                                                                         0.r = length(A - 0.0);
       if (cnt > 1 && sgn(dot(u.second - u.first, a - u.fi
                                                                         return 0;
rst)) > 0) swap(u.first, u.second);
       res += dfs(c, a, u.first);
        if (cnt == 2) res += dfs(c, u.first, u.second) + df
                                                                     //三角形内接圆
s(c, u.second, b);
                                                                     Circle internal_circle(const Point &A, const Point &B, con
       else if (cnt == 1) res += dfs(c, u.first, b);
                                                                     st Point &C) {
        return res;
                                                                         double a = dist(B, C), b = dist(A, C), c = dist(A, B);
                                                                         double s = (a + b + c) / 2;
    double res = 0;
                                                                         double S = sqrt(max(0.0, s * (s - a) * (s - b) * (s -
    for (int i = 0; i < n; i++) {
                                                                     c)));
       res += dfs(c, p[i], p[(i + 1) % n]);
                                                                         double r = S / s:
    return res * 0.5;
                                                                         return Circle((A * a + B * b + C * c) / (a + b + c), r);
}
                                                                     }
Line O[N];
//【半平面交】
                                                                     struct ConvexHull {
int judge(Line L, Point a) { return sgn(det(a - L.s, L.t -
                                                                        int op;
L.s)) > 0; }//判断点 a 是否在直线 L 的右边
int halfcut(Line *L, int n, Point *P) {
                                                                         struct cmp {
    sort(L, L + n, [](const Line \&a, const Line \&b) {
                                                                             bool operator()(const Point &a, const Point &b) co
double d = atan2((a.t - a.s).y, (a.t - a.s).x) - at
an2((b.t - b.s).y, (b.t - b.s).x);
                                                                                 return sgn(a.x - b.x) < 0 \mid \mid sgn(a.x - b.x) ==
       return sgn(d) ? sgn(d) < 0 : judge(a, b.s);</pre>
                                                                     0 && sgn(a.y - b.y) < 0;
    });
                                                                         };
    int m = n;
    n = 0:
for (int i = 0; i < m; ++i)
    if (i == 0 || sgn(atan2(Point(L[i]).y, Point(L[i]).x)
    - atan2(Point(L[i - 1]).y, Point(L[i - 1]).x)))</pre>
                                                                         set<Point, cmp> s;
                                                                         ConvexHull(int o) {
    L[n++] = L[i];

int h = 1, t = 0;

for (int i = 0; i < n; ++i) {
                                                                             s.clear();
       while (h < t && judge(L[i], ll_intersection(Q[t],
                                                                         inline int PIP(Point P) {
Q[t - 1]))) --t;//当队尾两个直线交点不是在直线 L[i]上或者左边
                                                                            set<Point>::iterator it = s.lower_bound(Point(P.x,
时就出队
                                                                      -dinf));//找到第一个横坐标大于P的点
```

```
if (it == s.end())return 0;
                                                                                        temp[k++] = i;
        if (sgn(it\rightarrow x - P.x) == 0) return sgn((P.y - it\rightarrow y)
* op) <= 0;//比较纵坐标大
                                                                                sort(temp, temp + k, [&](const int &a, const int &b)
        if (it == s.begin())return 0;
                                                                         {
        set<Point>::iterator j = it, k = it;
                                                                                    return sgn(p[a].y - p[b].y) < 0;</pre>
        --i;
        return sgn(det(P - *j, *k - *j) * op) >= 0;//看叉姬
                                                                                });
                                                                                for (i = 0; i < k; i++) {
1
                                                                                    for (j = i + 1; j < k && sgn(p[temp[j]].y - p[t</pre>
   }
                                                                                  - d) <= 0; j++) {
    double d3 = dist(p[temp[i]], p[temp[j]]);
                                                                       emp[i]].y
    inline int judge(set<Point>::iterator it) {
        set<Point>::iterator j = it, k = it;
                                                                                        d = min(d, d3);
        if (j == s.begin())return 0;
        --j;
                                                                                return d;
        if (++k == s.end())return 0;
        return sgn(det(*it - *j, *k - *j) * op) >= 0;//看叉
                                                                            sort(p, p + n, [&](const Point &a, const Point &b) {
姬
                                                                                if (sgn(a.x - b.x) == 0) return sgn(a.y - b.y) < 0; else return sgn(a.x - b.x) < 0;
    inline void insert(Point P) {
                                                                           return merge(0, n - 1);
        if (PIP(P))return;//如果点P 已经在凸壳上或凸包里就不
        set<Point>::iterator tmp = s.lower_bound(Point(P.x,
                                                                       //圆和点的切线
                                                                        int tangent(const Circle &c1, const Point &p2, pair<Point,</pre>
        if (tmp != s.end() \&\& sgn(tmp->x - P.x) == 0)s.eras
                                                                         Point> &ans) {
e(tmp);//特判横坐标相等的点要去掉
                                                                           Point tmp = c1.o - p2;
        s.insert(P);
                                                                            int sta;
        set<Point>::iterator it = s.find(P), p = it;
                                                                           if (sgn(norm(tmp) - c1.r * c1.r) < 0) return 0;</pre>
        if (p != s.begin()) {
                                                                            else if (sgn(norm(tmp) - c1.r * c1.r) == 0) sta = 1;
                                                                            else sta = 2
            while (judge(p)) {
    set<Point>::iterator temp = p--;
                                                                           Circle c2 = Circle(p2, sqrt(max(0.0, norm(tmp) - c1.r
                                                                        * c1.r)));
                s.erase(temp);
                                                                           cc cross(c1, c2, ans);
                                                                           return sta;
        if ((p = ++it) != s.end()) {
            while (judge(p)) {
                                                                        //圆和圆的切线
                set<Point>::iterator temp = p++;
                                                                       int tangent(Circle c1, Circle c2, vector<Line> &ans) {
                s.erase(temp);
                                                                            ans.clear();
                                                                            \mbox{if } (\mbox{sgn}(\mbox{c1.r} - \mbox{c2.r}) < 0) \mbox{ swap}(\mbox{c1, c2}); \\
        }
                                                                           double g = norm(c1.o - c2.o);
                                                                           if (sgn(g) == 0) return 0;
Point u = (c2.o - c1.o) / sqrt(g);
Point v = orth(u);
} up(1), down(-1);
int PIC(Circle C, Point a) { return sgn(length(a - C.o) -
                                                                            for (int s = 1; s >= -1; s -= 2) {
C.r) <= 0; }//判断点A是否在圆C内
                                                                                double h = (c1.r + s * c2.r) / sqrt(g);
void Random(Point *P, int n) { for (int i = 0; i < n; ++i)</pre>
                                                                                if (sgn(1 - h * h) == 0) {
swap(P[i], P[(rand() + 1) % n]); }//随机一个排列
                                                                                    ans.push_back(Line(c1.o + u * c1.r, c1.o + (u +
//【求点集 P 的最小覆盖圆】 O(n)
                                                                        v) * c1.r));
Circle min_circle(Point *P, int n) {
                                                                                } else if (sgn(1 - h * h) >= 0) {
   Point uu = u * h, vv = v * sqrt(1 - h * h);
// random_shuffle(P,P+n);
    Random(P, n);
                                                                                    ans.push_back(Line(c1.o + (uu + vv) * c1.r, c2.
   Circle C = Circle(P[0], 0);
for (int i = 1; i < n; ++i)
                                                                       o - (uu + vv) * c2.r * s)
                                                                                    ans.push_back(Line(c1.o + (uu - vv) * c1.r, c2.
       if (!PIC(C, P[i])) {
                                                                       o - (uu - vv) * c2.r * s));
            C = Circle(P[i], 0);
for (int j = 0; j < i; ++j)
    if (!PIC(C, P[j])) {</pre>
                                                                           }
                    C.o = (P[i] + P[j]) * 0.5, C.r = length
                                                                           return ans.size();
(P[i] - C.o);
                    for (int k = 0; k < j; ++k) if (!PIC(C,
P[k])) C = external_circle(P[i], P[j], P[k]);
                                                                        //两圆面积交
                                                                       double areaofCC(Circle c1, Circle c2) {
                                                                           if (c1.r > c2.r) swap(c1, c2);
    return C:
                                                                           double nor = norm(c1.o - c2.o);
                                                                           double dist = sqrt(max(0.0, nor));
                                                                           if (sgn(c1.r + c2.r - dist) <= 0) return 0;</pre>
int temp[N];
                                                                           if (sgn(dist + c1.r - c2.r) \leftarrow 0) return c1.r * c1.r *
//最近点对
                                                                       PI;
double closest_point(Point *p, int n) {
    function<double(int, int)> merge = [&](int 1, int r) {
                                                                           double val;
        double d = dinf:
                                                                            val = (nor + c1.r * c1.r - c2.r * c2.r) / (2 * c1.r * d)
        if (1 == r) return d;
                                                                       ist);
        if (1 + 1 == r) return dist(p[1], p[r]);
                                                                           val = max(val, -1.0), val = min(val, 1.0);
double theta1 = acos(val);
        int mid = (1 + r) >> 1;
        double d1 = merge(1, mid);
double d2 = merge(mid + 1, r);
                                                                           val = (nor + c2.r * c2.r - c1.r * c1.r) / (2 * c2.r * d
                                                                       ist);
        d = min(d1, d2);
                                                                           val = max(val, -1.0), val = min(val, 1.0);
        int i, j, k = 0;
                                                                           double theta2 = acos(val);
        for (i = 1; i <= r; i++) {
                                                                           return (theta1 - sin(theta1 + theta1) * 0.5) * c1.r *
             \textbf{if } (\texttt{sgn}(\texttt{abs}(\texttt{p[mid].x - p[i].x}) - \texttt{d}) \iff \emptyset ) 
                                                                       c1.r + (theta2 - sin(theta2 + theta2) * 0.5) * c2.r * c2.r;
```

```
}
                                                                              ld d=dis(x1,y1,z1,x2,y2,z2);
//https://onlinejudae.u-aizu.ac.ip/courses/library/4/CGL/
                                                                              if(d>=pow2(r1+r2))return 0;
all/CGL 4 C
//把凸包切一万
                                                                              if(d<=pow2(r1-r2))return pow3(min(r1,r2))*4*pi/3;</pre>
int convexCut(Point *p, Point *ans, int n, Line 1) {
    int top = 0;
                                                                              ld h1=r1-r1*cos(r2,r1,sqrt(d)),h2=r2-r2*cos(r1,r2,sqr
    for (int i = 0; i < n; i++) {
                                                                         t(d));
        Point a = p[i], b = p[(i + 1) \% n];
                                                                              return cap(r1,h1)+cap(r2,h2);
        if (ccw(1.s, 1.t, a) != -1) ans[top++] = a;
if (ccw(1.s, 1.t, a) * ccw(1.s, 1.t, b) < 0)</pre>
            ans[top++] = 11_intersection(Line(a, b), 1);
                                                                          //2 球体积并
                                                                         ld sphere_union(ld x1,ld y1,ld z1,ld r1,ld x2,ld y2,ld z2,
    return top:
                                                                         ld r2)
}
                                                                              ld d=dis(x1,y1,z1,x2,y2,z2);
//两球体积交
double SphereCross(double d. double r1. double r2) {
                                                                              if(d>=pow2(r1+r2))return (pow3(r1)+pow3(r2))*4*pi/3;
   if (r1 < r2) swap(r1, r2);
if (sgn(d - r1 - r2) >= 0) return 0;
if (sgn(d + r2 - r1) <= 0) return 4.0 / 3 * PI * r2 * r
                                                                              if(d<=pow2(r1-r2))return pow3(max(r1,r2))*4*pi/3;</pre>
                                                                              ld h1=r1+r1*cos(r2,r1,sqrt(d)),h2=r2+r2*cos(r1,r2,sqr
    double co = (r1 * r1 + d * d - r2 * r2) / (2.0 * d * r
                                                                         t(d));
1);
                                                                              return cap(r1,h1)+cap(r2,h2):
    \begin{array}{l} \mbox{double h} = \mbox{r1} \ * \ (1 \ - \ \mbox{c0}); \\ \mbox{double ans} = \ (1.0 \ / \ 3) \ * \mbox{PI} \ * \ (3.0 \ * \ \mbox{r1} \ - \ \mbox{h}) \ * \ \mbox{h} \ * \ \mbox{h}; \\ \mbox{co} = \ (\mbox{r2} \ * \ \mbox{r2} \ + \ \mbox{d} \ * \ \mbox{d} \ - \ \mbox{r1} \ * \ \mbox{r1}) \ / \ (2.0 \ * \ \mbox{d} \ * \ \mbox{r2}); \\ \end{array} 
                                                                         int main()
    h = r2 * (1 - co);
    ans += (1.0 / 3) * PI * (3.0 * r2 - h) * h * h;
                                                                              double x1,y1,z1,r1,x2,y2,z2,r2;
    return ans;
                                                                              sf("%lf%lf%lf%lf%lf%lf%lf%lf",&x1,&y1,&z1,&r1,&x2,&y2,
                                                                         &z2,&r2);
                                                                              pf("%.12Lf\n",sphere union(x1,y1,z1,r1,x2,y2,z2,r2));
                                                                              return 0;
几何一些定理(或知识点?
多而体欧拉定理
                                                                         自适应辛普森
多面体欧拉定理是指对于简单多面体, 其各维对象数总满足一定的数学
关系,在三维空间中多面体欧拉定理可表示为:
                                                                         double f(double x) {
"顶点数-棱长数+表面数=2"。
简单多面体即表面经过连续变形可以变为球面的多面体。
                                                                         double simpson(double 1, double r) {
   double mid = (1 + r) / 2;
球体积交和并
                                                                              return (r - 1) * (f(1) + 4 * f(mid) + f(r)) / 6; // ?
                                                                          普森公式
#include<bits/stdc++.h>
                                                                         }
#define fi first
#define sf scanf
                                                                         double asr(double 1, double r, double EPS, double ans) {
#define se second
                                                                             double mid = (1 + r) / 2;
#define pf printf
                                                                              double fl = simpson(1, mid), fr = simpson(mid, r);
#define pb push_back
                                                                              if (abs(fl + fr - ans) <= 15 * EPS)
#define mp make_pair
                                                                                 return fl + fr + (fl + fr - ans) / 15; // 足够相似
#define sz(x) ((int)(x).size())
#define all(x) (x).begin(),(x).end()
                                                                             return asr(1, mid, EPS / 2, f1) +
#define mem(x,y) memset((x),(y),sizeof(x))
                                                                                     asr(mid, r, EPS / 2, fr); // 否则分割成两段递归
#define fup(i,x,y) for(int i=(x); i <=(y); ++i) #define fdn(i,x,y) for(int i=(x); i >=(y); --i)
                                                                          求解
                                                                         }
typedef long long 11;
typedef long double ld;
typedef unsigned long long ull;
typedef std::pair<int,int> pii;
                                                                         计算几何全家桶
using namespace std;
                                                                         #include <bits/stdc++.h>
const ld pi=acos(-1);
                                                                         using namespace std;
ld pow2(ld x){return x*x;}
                                                                         typedef long long 11;
                                                                         const ll N = 1 << 20;
const ll mod = 1e9 + 7;</pre>
ld pow3(ld x){return x*x*x;}
                                                                         const double dinf = 1e99;
ld dis(ld x1,ld y1,ld z1,ld x2,ld y2,ld z2)
                                                                         const int inf = 0x3f3f3f3f;
                                                                         const 11 linf = 0x3f3f3f3f3f3f3f3f3f3f;
    return pow2(x1-x2)+pow2(y1-y2)+pow2(z1-z2);
                                                                         const double eps = 1e-9;
                                                                         const double PI = acos(-1.0);
ld cos(ld a,ld b,ld c){return (b*b+c*c-a*a)/(2*b*c);}
                                                                         struct Line:
ld cap(ld r,ld h){return pi*(r*3-h)*h*h/3;} // 球缺体积公
式,h 为球缺的高
                                                                         struct Point {
                                                                              double x, y;
//2 球体积交
                                                                              Point() { x = y = 0; }
ld sphere intersect(ld x1.ld v1.ld z1.ld r1.ld x2.ld v2.ld
z2,1d r2)
                                                                              Point(const Line &a);
```

```
double sqr(const double &x) { return x * x; }
    Point(const \ double \ \&a, \ const \ double \ \&b) \ : \ x(a), \ y(b) \ \{\}
                                                                       Point rotate(const Point &a, const double &ang) {
                                                                           double x = cos(ang) * a.x - sin(ang) * a.y;
double y = sin(ang) * a.x + cos(ang) * a.y;
    Point operator+(const Point &a) const {
        return \{x + a.x, y + a.y\};
                                                                           return {x, y};
    Point operator-(const Point &a) const {
       return {x - a.x, y - a.y};
                                                                        //点在线段上 <=0 包含端点
                                                                       bool sp_on(const Line &seg, const Point &p) {
                                                                           Point a = seg.s, b = seg.t;
   Point operator*(const double &a) const {
    return {x * a, y * a};
                                                                            return \ !sgn(\overline{det}(p \ - \ a, \ \overline{b} \ - \ a)) \ \&\& \ sgn(dot(p \ - \ a, \ p \ - \ b)) 
                                                                       }
    Point operator/(const double &d) const {
                                                                       bool lp on(const Line &line, const Point &p) {
      return {x / d, y / d};
                                                                           Point a = line.s, b = line.t;
                                                                           return !sgn(det(p - a, b - a));
    bool operator==(const Point &a) const {
       return abs(x - a.x) + abs(y - a.y) < eps;
                                                                        //等于不包含共线
                                                                       int andrew(Point *point, Point *convex, int n) {
                                                                            sort(point, point + n, [](Point a, Point b) {
    void standardize() {
                                                                               if (a.x != b.x) return a.x < b.x;</pre>
        *this = *this / sqrt(x * x + y * y);
                                                                               return a.y < b.y;</pre>
};
                                                                            int top = 0:
                                                                           for (int i = 0; i < n; i++) {
Point normal(const Point &a) { return Point(-a.y, a.x); }
                                                                               while ((top > 1) && det(convex[top - 1] - convex[to
                                                                       p - 2], point[i] - convex[top - 1]) <= 0)</pre>
double dist(const Point &a, const Point &b) {
   return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) *
                                                                                   top--;
                                                                               convex[top++] = point[i];
(a.y - b.y));
                                                                           int tmp = top;
                                                                           for (int i = n - 2; i >= 0; i--) {
double dist2(const Point &a, const Point &b) {
                                                                               while ((top > tmp) && det(convex[top - 1] - convex
   return (a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y)
                                                                       [top - 2], point[i] - convex[top - 1]) <= 0)
b.y);
                                                                                   top--;
}
                                                                                convex[top++] = point[i];
struct Line {
                                                                           if (n > 1) top--;
   Point s, t;
                                                                           return top;
    Line() {}
                                                                       double slope(const Point &a, const Point &b) {
    Line(const Point &a, const Point &b) : s(a), t(b) {}
                                                                           return (a.y - b.y) / (a.x - b.x);
};
                                                                       double slope(const Line &a) {
struct circle {
                                                                           return slope(a.s, a.t);
    Point o;
    double r;
                                                                       Point ll intersection(const Line &a, const Line &b) {
    circle() {}
                                                                           double s1 = det(Point(a), b.s - a.s), s2 = det(Point
                                                                        (a), b.t - a.s);
    circle(Point P, double R = 0) { o = P, r = R; }
                                                                           return (b.s * s2 - b.t * s1) / (s2 - s1);
};
double length(const Point &p) {
                                                                       int ss_cross(const Line &a, const Line &b, Point &p) {
   return sqrt(p.x * p.x + p.y * p.y);
                                                                           int d1 = sgn(det(a.t - a.s, b.s - a.s));
int d2 = sgn(det(a.t - a.s, b.t - a.s));
                                                                            int d3 = sgn(det(b.t - b.s, a.s - b.s));
                                                                           int d4 = sgn(det(b.t - b.s, a.t - b.s));
if ((d1 ^ d2) == -2 && (d3 ^ d4) == -2) {
double length(const Line &1) {
    Point p(1);
    return length(p);
                                                                               p = ll_intersection(a, b);
                                                                               return 1;
Point::Point(const Line &a) { *this = a.t - a.s; }
                                                                           if (!d1 && sp_on(a, b.s)) {
                                                                                p = b.s;
istream &operator>>(istream &in, Point &a) {
                                                                               return 2:
    in >> a.x >> a.y;
    return in;
                                                                            if (!d2 && sp_on(a, b.t)) {
                                                                                return 2;
double dot(const Point &a, const Point &b) {
   return a.x * b.x + a.y * b.y;
                                                                           \textbf{if} \ (!d3 \ \&\& \ sp\_on(b, \ a.s)) \ \{\\
                                                                               p = a.s;
                                                                               return 2:
double det(const Point &a, const Point &b) {
    return a.x * b.y - a.y * b.x;
                                                                           if (!d4 && sp_on(b, a.t)) {
                                                                               p = a.t:
                                                                                return 2;
int sgn(const double &x) { return fabs(x) < eps ? 0 : (x >
0?1:-1); }
                                                                           return 0;
```

```
}
                                                                             theta += 2.0 * PI;
                                                                          return theta:
Point project(const Line &1, const Point &p) {
    Point base(1);
    double r = dot(base, p - 1.s) / sqr(length(base));
return 1.s + (base * r);
                                                                      int pip(const Point *P, const int &n, const Point &a) {//
                                                                       【射线法】判断点A 是否在任意多边形 Poly 以内
                                                                          int cnt = 0:
                                                                          int tmp:
double sp_dist(const Line &1, const Point &p) {
                                                                          for (int i = 1; i <= n; ++i) {
    if (l.s == l.t) return dist(l.s, p);
                                                                             int j = i < n ? i + 1 : 1;
    Point x = p - 1.s, y = p - 1.t, z = 1.t - 1.s;
                                                                             if (sp_on(Line(P[i], P[j]), a))return 2;//点在多边
    if (sgn(dot(x, z)) < 0)return length(x);//P 距离 A 更近
    if (sgn(dot(y, z)) > 0)return length(y);//P 距离 B 更近
                                                                             if (a.y >= min(P[i].y, P[j].y) && a.y < max(P[i].y,</pre>
    return abs(det(x, z) / length(z));//面积除以底边长
                                                                       P[j].y))//纵坐标在设
                                                                                 tmp = P[i].x + (a.y - P[i].y) / (P[j].y - P[i].
                                                                      y) * (P[j].x - P[i].x), cnt += sgn(tmp - a.x) > 0; //交点在
double lp_dist(const Line &1, const Point &p) {
                                                                      A 右方
    Point x = p - 1.s, y = p - 1.t, z = 1.t - 1.s; return abs(det(x, z) / length(z));//面积除以底边长
                                                                          return cnt & 1;//穿过奇数次则在多边形以内
int lc_cross(const Line &1, const Point &a, const double &
                                                                      bool pip_convex_jud(const Point &a, const Point &L, const
r, pair<Point, Point> &ans) {
                                                                      Point &R) {//判断AL 是否在AR 右边
    int num = 0;
Point pr = project(1, a);
double dis = dist(pr, a);
                                                                          return sgn(det(L - a, R - a)) > 0;//必须严格以内
    double tmp = r * r - dis * dis;
                                                                      bool pip_convex(const Point *P, const int &n, const Point
    if (sgn(tmp) == 1) num = 2;
                                                                      &a) {//【二分法】判断点 A 是否在凸多边形 PoLy 以内
    else if (sgn(tmp) == 0) num = 1;
                                                                          //占按谱时针给出
    else return 0;
    double base = sqrt(r * r - dis * dis);
                                                                          if (pip_convex_jud(P[0], a, P[1]) || pip_convex_jud(P
                                                                      [0], P[n - 1], a)) return 0;//在P[0_1]或P
    Point e(1):
                                                                          \textbf{if } (sp\_on(Line(P[0],\ P[1]),\ a)\ ||\ sp\_on(Line(P[0],\ P[n]))
    e.standardize():
                                                                       - 1]), a)) return 2;//在P[0_1]或P[0_n-1]上
    e = e * base;
                                                                         int l = 1, r = n - 2;
while (l < r) {//二分找到一个位置pos 使得P[0]_A 在P[0_p
    ans = make_pair(pr + e, pr - e);
    return num;
                                                                      os1,P[0 (pos+1)]之间
                                                                              int mid = (1 + r + 1) >> 1;
int cc_cross(const Point &c1, const double &r1, const Poin
                                                                              if (pip_convex_jud(P[0], P[mid], a))1 = mid;
t &c2, const double &r2, pair<Point, Point> &ans) {
    double x1 = c1.x, x2 = c2.x, y1 = c1.y, y2 = c2.y;
    double d = length(c1 - c2);
                                                                          if (pip_convex_jud(P[1], a, P[1 + 1]))return 0;//在P[p
    if (sgn(fabs(r1 - r2) - d) > 0) return -1; //内含
                                                                      os (pos+1)
if (sgn(r1+r2-d) < 0) return 0; //HB
double a = r1 * (x1 - x2) * 2, b = r1 * (y1 - y2) * 2,
c = r2 * r2 - r1 * r1 - d * d;
double p = a * a + b * b, q = -a * c * 2, r = c * c - b
                                                                         if (sp_on(Line(P[1], P[1 + 1]), a))return 2;//在P[pos_
                                                                      (pos+1)7/
                                                                         return 1;
                                                                      // 多边形是否包含线段
                                                                      // 因此我们可以先求出所有和线段相交的多边形的顶点,然后按照X-Y
    double cosa, sina, cosb, sinb;
                                                                      坐标排序(X 坐标小的排在前面,对于X 坐标相同的点,Y 坐标小的排在
     //One Intersection
                                                                      前面,
    if (sgn(d - (r1 + r2)) == 0 \mid | sgn(d - fabs(r1 - r2)) =
= 0) {
                                                                      // 这种排序准则也是为了保证水平和垂直情况的判断正确),这样相邻
                                                                      的两个点就是在线段上相邻的两交点,如果任意相邻两点的中点也在多
        cosa = -q / p / 2;
        sina = sqrt(1 - sqr(cosa));
Point p0(x1 + r1 * cosa, y1 + r1 * sina);
                                                                      边形内,
                                                                      // 则该线段一定在多边形内。
        if (sgn(dist(p0, c2) - r2)) p0.y = y1 - r1 * sina;
        ans = pair<Point, Point>(p0, p0);
                                                                      int pp_judge(Point *A, int n, Point *B, int m) {//【判断多
        return 1;
                                                                      边形A 与多边形B 是否相离】
                                                                          for (int i1 = 1; i1 <= n; ++i1) {</pre>
    //Two Intersections
                                                                              int j1 = i1 < n ? i1 + 1 : 1;
    double delta = sqrt(q * q - p * r * 4);
cosa = (delta - q) / p / 2;
cosb = (-delta - q) / p / 2;
                                                                              for (int i2 = 1; i2 <= m; ++i2) {
                                                                                 int j2 = i2 < m ? i2 + 1 : 1;</pre>
                                                                                 Point tmp;
    sina = sqrt(1 - sqr(cosa));
                                                                                 if \ (ss\_cross(Line(A[i1],\ A[j1]),\ Line(B[i2],\ B
    sinb = sqrt(1 - sqr(cosb));
                                                                      [j2]), tmp)) return 0;/
    Point p1(x1 + r1 * cosa, y1 + r1 * sina);
Point p2(x1 + r1 * cosb, y1 + r1 * sinb);
                                                                                 if (pip(B, m, A[i1]) \mid \mid pip(A, n, B[i2]))return
                                                                       0;//点包含在内
    if (sgn(dist(p1, c2) - r2)) p1.y = y1 - r1 * sina;
if (sgn(dist(p2, c2) - r2)) p2.y = y1 - r1 * sinb;
                                                                            }
    if (p1 == p2) p1.y = y1 - r1 * sina;
ans = pair<Point, Point>(p1, p2);
                                                                          return 1;
    return 2;
                                                                      double area(Point *P, int n) {//【任意多边形 P 的面积】
                                                                          double S = 0;
Point lp_sym(const Line &1, const Point &p) {
                                                                          for (int i = 1; i <= n; i++) S += det(P[i], P[i < n ? i</pre>
    return p + (project(1, p) - p) * 2;
                                                                       + 1 : 1]);
                                                                         return S / 2.0;
double alpha(const Point &t1, const Point &t2) {
    double theta;
    theta = atan2((double) t2.y, (double) t2.x) - atan2((d
                                                                      Line O[N];
ouble) t1.y, (double) t1.x);
                                                                      int judge(Line L, Point a) { return sgn(det(a - L.s, L.t -
    if (sgn(theta) < 0)</pre>
```

```
L.s)) > 0; }//判断点 a 是否在直线 L 的右边
                                                                          inline int PIP(Point P) {
int halfcut(Line *L, int n, Point *P) {//【半平面交】
                                                                              set<Point>::iterator it = s.lower bound(Point(P.x.
   sort(L, L + n, [](const Line &a, const Line &b) {
                                                                       -dinf));//找到第一个横坐标大于P的点
        double d = atan2((a.t - a.s).y, (a.t - a.s).x) - at
                                                                              if (it == s.end())return 0;
an2((b.t - b.s).y, (b.t - b.s).x);
       return sgn(d) ? sgn(d) < 0 : judge(a, b.s);</pre>
                                                                              if (sgn(it\rightarrow x - P.x) == 0) return sgn((P.y - it\rightarrow y)
                                                                       * op) <= 0;//比较纵坐标大
                                                                              if (it == s.begin())return 0;
   int m = n;
                                                                              set<Point>::iterator j = it, k = it;
   n = 0;
                                                                              --i;
for (int i = 0; i < m; ++i)
    if (i == 0 || sgn(atan2(Point(L[i]).y, Point(L[i]).x) - atan2(Point(L[i - 1]).y, Point(L[i - 1]).x)))</pre>
                                                                              return sgn(det(P - *j, *k - *j) * op) >= 0;//看叉姬
   L[n++] = L[i];
int h = 1, t = 0;
                                                                          inline int judge(set<Point>::iterator it) {
    for (int i = 0; i < n; ++i) {</pre>
                                                                              set<Point>::iterator j = it, k = it;
       while (h < t && judge(L[i], ll_intersection(Q[t],</pre>
                                                                              if (j == s.begin())return 0;
Q[t-1]))) --t;//当队尾两个直线交点不是在直线L[i]上或者左边
                                                                              --i;
                                                                              if (++k == s.end())return 0;
       while (h < t && judge(L[i], ll_intersection(Q[h],</pre>
                                                                              return sgn(det(*it - *j, *k - *j) * op) >= 0;//看叉
Q[h + 1]))) ++h;//当队头两个直线交点不是在直线 L[i]上或者左边
时就出版
       Q[++t] = L[i];
                                                                          inline void insert(Point P) {
                                                                              if (PIP(P))return;//如果\triangle P 已经在凸壳上或凸包里就不
   while (h < t \&\& judge(Q[h], ll_intersection(Q[t], Q[t]))
                                                                      插入了
- 1]))) --t;
                                                                              set<Point>::iterator tmp = s.lower_bound(Point(P.x,
   while (h < t && judge(Q[t], ll_intersection(Q[h], Q[h</pre>
                                                                       -inf));
                                                                              if (tmp != s.end() \&\& sgn(tmp->x - P.x) == 0)s.eras
+ 1]))) ++h;
   n = 0;
                                                                      e(tmp);//特判横坐标相等的点要去掉
    for (int i = h; i <= t; ++i) {</pre>
                                                                              s.insert(P);
       P[n++] = ll\_intersection(Q[i], Q[i < t ? i + 1 :
                                                                              set<Point>::iterator it = s.find(P), p = it;
                                                                              if (p != s.begin()) {
                                                                                  --n:
   return n;
                                                                                  while (judge(p)) {
}
                                                                                      set<Point>::iterator temp = p--;
                                                                                      s.erase(temp);
Point V1[N], V2[N];
int mincowski(Point *P1, int n, Point *P2, int m, Point *V)
                                                                              if ((p = ++it) != s.end()) {
{//【闵可夫斯基和】求两个凸包{P1},{P2}的向量集合{V}={P1+P2}
                                                                                  while (judge(p)) {
    set<Point>::iterator temp = p++;
构成的凸包
   for (int i = 0; i < n; ++i) V1[i] = P1[(i + 1) \% n] - P
                                                                                      s.erase(temp);
1[i];
   for (int i = 0; i < m; ++i) V2[i] = P2[(i + 1) % m] - P
                                                                              }
2[i];
   int t = 0, i = 0, j = 0;
                                                                      } up(1), down(-1);
   V[t++] = P1[0] + P2[0];
   while (i < n \&\& j < m) \ V[t] = V[t - 1] + (sgn(det(V1[i], v)))
                                                                      int PIC(circle C, Point a) { return sgn(length(a - C.o) -
 \begin{array}{l} V2[j])) > 0? \ V1[i++] \ : \ V2[j++]), \ t++; \\ \text{while } (i < n) \ V[t] = V[t-1] + V1[i++], \ t++; \\ \text{while } (j < m) \ V[t] = V[t-1] + V2[j++], \ t++; \end{array} 
                                                                      C.r) <= 0; }//判断点A 是否在圆C 内
void Random(Point *P, int n) { for (int i = 0; i < n; ++i)
                                                                      swap(P[i], P[(rand() + 1) % n]); }//随机一个排列
   return t;
                                                                      circle min_circle(Point *P, int n) {//【求点集 P 的最小覆盖
                                                                      圆】 O(n)
                                                                      // random_shuffle(P,P+n);
circle getcircle(const Point &A, const Point &B, const Poi
                                                                          Random(P, n);
nt &C) {// 【三点确定一圆】向量垂心法
                                                                          circle C = circle(P[0], 0);
for (int i = 1; i < n; ++i)
   Point P1 = (A + B) * 0.5, P2 = (A + C) * 0.5;
    Line R1 = Line(P1, P1 + normal(B - A));
                                                                              if (!PIC(C, P[i])) {
   Line R2 = Line(P2, P2 + normal(C - A));
                                                                                  C = circle(P[i], 0);
    circle 0:
                                                                                  for (int j = 0; j < i; ++j)
   if (!PIC(C, P[j])) {</pre>
   O.o = ll intersection(R1, R2);
   0.r = length(A - 0.o);
                                                                                          C.o = (P[i] + P[j]) * 0.5, C.r = length
   return 0;
                                                                      (P[j] - C.o);
                                                                                          for (int k = 0; k < j; ++k) if (!PIC(C,
                                                                      P[k])) C = getcircle(P[i], P[j], P[k]);
struct ConvexHull {
   int op;
                                                                          return C:
   struct cmp {
        bool operator()(const Point &a, const Point &b) co
            return sgn(a.x - b.x) < 0 \mid \mid sgn(a.x - b.x) ==
0 && sgn(a.y - b.y) < 0;
                                                                      高精度
   };
                                                                      高精度 GCD
   set<Point, cmp> s;
                                                                      #include <bits/stdc++.h>
   ConvexHull(int o) {
                                                                      using namespace std;
       op = 0;
                                                                      string add(string a, string b) {
        s.clear():
                                                                          const int L = 1e5:
                                                                           string ans;
```

```
int na[L] = \{0\}, nb[L] = \{0\};
                                                                                  //如果 a<b,则商为0,余数为被除数
   int la = a.size(), lb = b.size();
                                                                   int t = La - Lb; //除被数和除数的位数之差
   for (int i = 0; i < la; i++) na[la - 1 - i] = a[i] - '0
                                                                   for (int i = La - 1; i >= 0; i--) //将除数扩大10<sup>*</sup>t 倍
                                                                      if (i >= t)
   for (int i = 0; i < lb; i++) nb[lb - 1 - i] = b[i] - '0
                                                                          b[i] = b[i - t];
                                                                      else
   int lmax = la > lb ? la : lb;
                                                                         b[i] = 0;
   for (int i = 0; i < lmax; i++)</pre>
                                                                  Lb = La;
       na[i] += nb[i], na[i + 1] += na[i] / 10, na[i] %= 1
                                                                   for (int j = 0; j <= t; j++) {
                                                                      int temp;
   if (na[lmax]) lmax++;
                                                                      while ((temp = sub(a, b + j, La, Lb - j)) >=
   for (int i = lmax - 1; i >= 0; i--) ans += na[i] + '0';
                                                                            0) //如果被除数比除数大继续减
   return ans;
                                                                          La = temp:
string mul(string a, string b) {
   const int L = 1e5;
                                                                          r[t - j]++;
   string s;
   int na[L], nb[L], nc[L],
                                                                   for (i = 0; i < L - 10; i++)
      La = a.size(), Lb = b.size(); // na 存储被乘数, nb
                                                                      r[i + 1] += r[i] / 10, r[i] %= 10; //统一处理进位
存储乘数, nc 存储积
                                                                  while (!r[i]) i--; //将整形数组表示的商转化成字符串表示
   fill(na, na + L, 0);
   fill(nb, nb + L, 0);
                                                                  while (i >= 0) s += r[i--] + '0';
   fill(nc, nc + L, 0); //将 na, nb, nc 都置为0
                                                                   // cout<<s<<endl:</pre>
   for (int i = La - 1; i >= 0; i--)
                                                                  i = tp;
       na[La - i] =
                                                                  while (!a[i]) i--; //将整形数组表示的余数转化成字符串表
          a[i] - '0'; //将字符串表示的大整形数转成 i 整形数
                                                               示的</snan>
组表示的大整形数
                                                                  while (i >= 0) v += a[i--] + '0';
   for (int i = Lb - 1; i >= 0; i--) nb[Lb - i] = b[i] - '
                                                                  if (v.empty()) v = "0";
                                                                   // cout<<v<<endl:</pre>
   for (int i = 1; i <= La; i++)</pre>
                                                                   if (nn == 1) return s;
       for (int j = 1; j \leftarrow Lb; j++)
                                                                  if (nn == 2) return v;
          nc[i + j - 1] +=
              na[i] *
                                                               bool judge(string s) //判断 s 是否为全 0 串
              nb[j]; // a 的第i 位乘以 b 的第j 位为积的第i+
j-1 位(先不考虑进位
                                                                   for (int i = 0; i < s.size(); i++)</pre>
   for (int i = 1; i <= La + Lb; i++)</pre>
                                                                      if (s[i] != '0') return false;
       nc[i + 1] += nc[i] / 10, nc[i] %= 10; //统一处理进
                                                                  return true:
   if (nc[La + Lb]) s += nc[La + Lb] + '0'; //判断第i+j
                                                               string gcd(string a, string b) //求最大公约数
位上的数字是不是自
   for (int i = La + Lb - 1; i >= 1; i --)
                                                                  string t;
                                                                  while (!judge(b)) //如果余数不为0,继续除
      s += nc[i] + '0'; //将整形数组转成字符串
   return s:
                                                                      t = a:
                                                                                        //保存被除数的值
int sub(int *a, int *b, int La, int Lb) {
                                                                                       //用除数替换被除数
                                                                      a = b;
   if (La < Lb) return -1; //如果 a 小于 b, 则返回-1
                                                                      b = div(t, b, 2); //用余数替换除数
   if (La == Lb) {
       for (int i = La - 1; i >= 0; i--)
                                                                  return a;
           if (a[i] > b[i])
              break;
           else if (a[i] < b[i])</pre>
                                                               //o(无法估计)
              return -1; //如果 a 小于 b,则返回-1
   for (int i = 0; i < La; i++) //高精度减法
                                                               高精度乘法 (FFT)
       a[i] -= b[i];
                                                               #include <bits/stdc++.h>
       if (a[i] < 0) a[i] += 10, a[i + 1]--;</pre>
                                                               using namespace std;
                                                               #define L(x) (1 << (x))
   for (int i = La - 1; i >= 0; i--)
                                                               const double PI = acos(-1.0);
      if (a[i]) return i + 1; //返回差的位数
                                                               const int Maxn = 133015;
                              //返回差的位数
                                                               double ax[Maxn], ay[Maxn], bx[Maxn], by[Maxn];
                                                               char sa[Maxn / 2], sb[Maxn / 2];
string div(string n1, string n2,
                                                               int sum[Maxn];
         int nn) // n1,n2 是字符串表示的被除数,除数,nn 是
                                                               int x1[Maxn], x2[Maxn];
选择返回商还是余数
                                                               int revv(int x, int bits) {
{
                                                                   int ret = 0:
   const int L = 1e5;
                                                                   for (int i = 0; i < bits; i++) {</pre>
   string s, v; // s 存商,v 存余数
                                                                      ret <<= 1;
   int a[L], b[L], r[L],
                                                                      ret |= x & 1;
       La = n1.size(), Lb = n2.size(), i,
                                                                      x >>= 1;
       tp = La; // a, b 是整形数组表示被除数, 除数, tp 保存
被除数的长度
                                                                  return ret:
   fill(a, a + L, 0);
                                                               void fft(double* a, double* b, int n, bool rev) {
   fill(b, b + L, 0);
                                                                  int bits = 0;
   fill(r, r + L, 0); //数组元素都置为0
                                                                   while (1 << bits < n) ++bits;</pre>
   for (i = La - 1; i >= 0; i--) a[La - 1 - i] = n1[i] - '
                                                                   for (int i = 0; i < n; i++) {
0';
                                                                      int j = revv(i, bits);
   for (i = Lb - 1; i >= 0; i--) b[Lb - 1 - i] = n2[i] - '
                                                                      if (i < j) swap(a[i], a[j]), swap(b[i], b[j]);</pre>
   if (La < Lb | | (La == Lb && n1 < n2)) {</pre>
                                                                  for (int len = 2; len <= n; len <<= 1) {
   int half = len >> 1;
       // cout<<0<<endl;</pre>
       return n1:
```

```
double wmx = cos(2 * PI / len), wmy = sin(2 * PI /
                                                                     高精度乘法 (乘单精)
len):
        if (rev) wmy = -wmy;
                                                                     #include <bits/stdc++.h>
        for (int i = 0; i < n; i += len) {
                                                                     using namespace std;
            double wx = 1, wy = 0;
for (int j = 0; j < half; j++) {</pre>
                                                                     string mul(string a, int b) //高精度 a 乘单精度 b
               double cx = a[i + j], cy = b[i + j];
double dx = a[i + j + half], dy = b[i + j +
                                                                         const int L = 100005:
                                                                         int na[L]:
half];
                                                                         string ans;
               double ex = dx * wx - dy * wy, ey = dx * wy
                                                                         int La = a.size();
+ dv * wx:
                                                                          fill(na, na + L, 0);
               a[i + j] = cx + ex, b[i + j] = cy + ey;
a[i + j + half] = cx - ex, b[i + j + half] =
                                                                          for (int i = La - 1; i >= 0; i--) na[La - i - 1] = a[i]
                                                                       - '0';
cy - ey;
                                                                         int w = 0;
               double wnx = wx * wmx - wy * wmy, wny = wx *
                                                                         for (int i = 0; i < La; i++)</pre>
 wmy + wy * wmx;
                                                                             na[i] = na[i] * b + w, w = na[i] / 10, na[i] = na[i]
               wx = wnx, wy = wny;
                                                                         while (w) na[La++] = w % 10. w /= 10:
       }
                                                                         while (La >= 0) ans += na[La--] + '0';
   if (rev) {
                                                                         return ans:
        for (int i = 0; i < n; i++) a[i] /= n, b[i] /= n;
                                                                     //o(n)
int solve(int a[], int na, int b[], int nb, int ans[]) {
   int len = max(na, nb), ln;
for (ln = 0; L(ln) < len; ++ln)</pre>
                                                                     高精度乘法(朴素)
   len = L(++ln);
                                                                     #include <bits/stdc++.h>
    for (int i = 0; i < len; ++i) {
                                                                     using namespace std;
       if (i >= na)
                                                                     string mul(string a, string b) //高精度乘法a,b,均为非负整
           ax[i] = 0, ay[i] = 0;
                                                                      数
           ax[i] = a[i], ay[i] = 0;
                                                                         const int L = 1e5:
                                                                         string s;
   fft(ax, ay, len, 0);
                                                                         int na[L], nb[L], nc[L],
    for (int i = 0; i < len; ++i) {
       if (i >= nb)
                                                                             La = a.size(), Lb = b.size(); // na 存储被乘数, nb
                                                                      存储乘数, nc 存储积
           bx[i] = 0, by[i] = 0;
        else
                                                                          \begin{array}{l} \mbox{fill(na, na + L, 0);} \\ \mbox{fill(nb, nb + L, 0);} \end{array} 
           bx[i] = b[i], by[i] = 0;
                                                                         fill(nc, nc + L, 0); //将na,nb,nc 都置为0
    fft(bx, by, len, 0);
                                                                          for (int i = La - 1; i >= 0; i--)
    for (int i = 0; i < len; ++i) {
                                                                             na[La - i] =
       double cx = ax[i] * bx[i] - ay[i] * by[i];
double cy = ax[i] * by[i] + ay[i] * bx[i];
                                                                                 a[i] - '0'; //将字符串表示的大整形数转成 i 整形数
                                                                      组表示的大整形数
       ax[i] = cx, ay[i] = cy;
                                                                         for (int i = Lb - 1; i >= 0; i--) nb[Lb - i] = b[i] - '
    fft(ax, ay, len, 1);
                                                                          for (int i = 1; i <= La; i++)</pre>
    for (int i = 0; i < len; ++i) ans[i] = (int)(ax[i] + 0.
                                                                             for (int j = 1; j <= Lb; j++)
                                                                                 nc[i + j - 1] +=
na[i] *
   return len;
                                                                                     nb[j]; // a 的第 i 位乘以 b 的第 j 位为积的第 i+
string mul(string sa, string sb) {
                                                                     j-1 位(先不考虑进位
   int 11, 12, 1:
                                                                         for (int i = 1; i <= La + Lb; i++)</pre>
    int i:
                                                                             nc[i + 1] += nc[i] / 10, nc[i] %= 10; //统一处理进
   string ans;
   memset(sum, 0, sizeof(sum));
                                                                         if (nc[La + Lb]) s += nc[La + Lb] + '0'; //判断第i+j
    11 = sa.size();
   12 = sb.size();
                                                                      位上的数字是不是0
   for (i = 0; i < 11; i++) x1[i] = sa[11 - i - 1] - '0'; for (i = 0; i < 12; i++) x2[i] = sb[12 - i - 1] - '0';
                                                                         for (int i = La + Lb - 1; i >= 1; i--)
                                                                             s += nc[i] + '0'; //将整形数组转成字符串
   1 = solve(x1, 11, x2, 12, sum);
                                                                         return s;
   for (i = 0; i < l || sum[i] >= 10; i++) // 遊位
       sum[i + 1] += sum[i] / 10;
                                                                     1/o(n^2)
       sum[i] %= 10;
   \hat{1} = i:
                                                                     高精度减法
   while (sum[1] <= 0 && 1 > 0) 1--;
                                                     // 检索最
                                                                     #include <bits/stdc++.h>
   for (i = 1; i >= 0; i--) ans += sum[i] + '0'; // 倒序
                                                                     using namespace std;
输出
                                                                     string sub(string a, string b) // 只限大的非负整数减小的非负
   return ans:
                                                                     整数
int main() {
                                                                         const int L = 1e5;
   cin.sync_with_stdio(false);
                                                                         string ans;
   string a, b;
                                                                         int na[L] = {0}, nb[L] = {0};
   while (cin >> a >> b) cout << mul(a, b) << endl;</pre>
                                                                         int la = a.size(), lb = b.size();
   return 0;
                                                                         for (int i = 0; i < la; i++) na[la - 1 - i] = a[i] - '0
                                                                         for (int i = 0; i < lb; i++) nb[lb - 1 - i] = b[i] - '0
//o(nlogn)
                                                                          int lmax = la > lb ? la : lb;
```

```
int half = len >> 1;
double wmx = cos(2 * PI / len), wmy = sin(2 * PI /
    for (int i = 0; i < lmax; i++) {</pre>
        na[i] -= nb[i];
        if (na[i] < 0) na[i] += 10, na[i + 1]--;</pre>
                                                                          len):
                                                                                   if (rev) wmy = -wmy;
for (int i = 0; i < n; i += len) {</pre>
    while (!na[--lmax] && lmax > 0)
                                                                                        double wx = 1, wy = 0;
                                                                                        for (int j = 0; j < half; j++) {</pre>
    lmax++;
                                                                                            double cx = a[i + j], cy = b[i + j];
double dx = a[i + j + half], dy = b[i + j +
    for (int i = lmax - 1; i >= 0; i--) ans += na[i] + '0';
    return ans;
                                                                           half];
                                                                                            double ex = dx * wx - dy * wy, ey = dx * wy
//o(n)
                                                                           + dv * wx:
                                                                                            a[i + j] = cx + ex, b[i + j] = cy + ey;
a[i + j + half] = cx - ex, b[i + j + half] =
                                                                            cy - ey;
高精度加法
                                                                                            double wnx = wx * wmx - wv * wmv, wnv = wx *
                                                                            wmy + wy * wmx;
#include <bits/stdc++.h>
                                                                                            wx = wnx, wy = wny;
using namespace std;
string add(string a, string b) // 只限两个非负整数相加
                                                                                   }
    const int L = 1e5;
                                                                               if (rev) {
    string ans;
                                                                                    for (int i = 0; i < n; i++) a[i] /= n, b[i] /= n;
    int na[L] = \{0\}, nb[L] = \{0\};
   int la = a.size(), lb = b.size();
for (int i = 0; i < la; i++) na[la - 1 - i] = a[i] - '0</pre>
                                                                           int solve(int a[], int na, int b[], int nb, int ans[]) {
   int len = max(na, nb), ln;
   for (int i = 0; i < lb; i++) nb[lb - 1 - i] = b[i] - '0
                                                                               for (ln = 0; L(ln) < len; ++ln)</pre>
    int lmax = la > lb ? la : lb;
                                                                               len = L(++ln);
    for (int i = 0; i < lmax; i++)</pre>
                                                                                for (int i = 0; i < len; ++i) {
       na[i] += nb[i], na[i + 1] += na[i] / 10, na[i] %= 1
                                                                                   if (i >= na)
                                                                                       ax[i] = 0, ay[i] = 0;
    if (na[lmax]) lmax++;
                                                                                    else
    for (int i = lmax - 1; i >= 0; i--) ans += na[i] + '0';
                                                                                        ax[i] = a[i], ay[i] = 0;
    return ans:
                                                                               fft(ax, ay, len, 0);
for (int i = 0; i < len; ++i) {
   if (i >= nb)
//o(n)
                                                                                        bx[i] = 0, by[i] = 0;
                                                                                    else
高精度取模 (对单精)
                                                                                        bx[i] = b[i], by[i] = 0;
#include <bits/stdc++.h>
                                                                               fft(bx, by, len, 0);
                                                                               for (int i = 0; i < len; ++i) {
   double cx = ax[i] * bx[i] - ay[i] * by[i];
   double cy = ax[i] * by[i] + ay[i] * bx[i];</pre>
using namespace std:
int mod(string a, int b)//高精度 a 除以单精度 b
    int d=0:
                                                                                   ax[i] = cx, ay[i] = cy;
   for(int i=0;i<a.size();i++) d=(d*10+(a[i]-'0'))%b;//求
                                                                               fft(ax, ay, len, 1);
出余数
                                                                               for (int i = 0; i < len; ++i) ans[i] = (int)(ax[i] + 0.
    return d;
                                                                           5);
}
                                                                               return len:
//o(n)
                                                                           string mul(string sa, string sb) {
   int 11, 12, 1;
                                                                               int i;
高精度幂
                                                                               string ans;
                                                                               memset(sum, 0, sizeof(sum));
#include <bits/stdc++.h>
                                                                               11 = sa.size();
#define L(x) (1 << (x))
                                                                               12 = sb.size();
using namespace std;
                                                                               const double PI = acos(-1.0);
const int Maxn = 133015;
                                                                               l = solve(x1, 11, x2, 12, sum); for (i = 0; i < 1 \mid | sum[i] >= 10; i++) // 进位
double ax[Maxn], ay[Maxn], bx[Maxn], by[Maxn];
char sa[Maxn / 2], sb[Maxn / 2];
int sum[Maxn];
                                                                                   sum[i + 1] += sum[i] / 10;
int x1[Maxn], x2[Maxn];
                                                                                   sum[i] %= 10;
int revv(int x, int bits) {
    int ret = 0;
                                                                               1 = i:
    for (int i = 0; i < bits; i++) {</pre>
                                                                               while (sum[1] \le 0 \&\& 1 > 0) 1--;
       ret <<= 1;
                                                                           高位
        ret |= x & 1;
                                                                               for (i = l; i >= 0; i--) ans += sum[i] + '0'; // 倒序
        x >>= 1;
                                                                           输出
    return ret;
                                                                               return ans:
                                                                           string Pow(string a, int n) {
void fft(double* a, double* b, int n, bool rev) {
                                                                               if (n == 1) return a;
    int bits = 0;
                                                                               if (n & 1) return mul(Pow(a, n - 1), a);
    while (1 << bits < n) ++bits;
                                                                               string ans = Pow(a, n / 2);
    for (int i = 0; i < n; i++)
    int j = revv(i, bits);</pre>
                                                                               return mul(ans, ans);
         if \; (i < j) \; swap(a[i], \; a[j]), \; swap(b[i], \; b[j]); \\
    for (int len = 2; len <= n; len <<= 1) {
```

```
高精度平方根
#include <bits/stdc++.h>
                                                                        a[i] -= b[i];
using namespace std;
const int L = 2015;
string add(string a, string b) // 只限两个非负整数相加
   string ans;
                                                                    return 0;
   int na[L] = {0}, nb[L] = {0};
   int la = a.size(), lb = b.size();
   for (int i = 0; i < la; i++) na[la - 1 - i] = a[i] - '0
   for (int i = 0; i < 1b; i++) nb[1b - 1 - i] = b[i] - '0
                                                                 选择返回商还是余数
   int lmax = la > lb ? la : lb;
   for (int i = 0; i < lmax; i++)</pre>
                                                                    int a[L], b[L], r[L],
       na[i] += nb[i], na[i + 1] += na[i] / 10, na[i] %= 1
   if (na[lmax]) lmax++;
                                                                 被除数的长度
   for (int i = lmax - 1; i >= 0; i--) ans += na[i] + '0';
                                                                    fill(a, a + L, 0);
   return ans;
                                                                    fill(b, b + L, 0);
string sub(string a, string b) //只限大的非负整数减小的非负
整数
   string ans;
   int na[L] = {0}, nb[L] = {0};
   int la = a.size(), lb = b.size();
for (int i = 0; i < la; i++) na[la - 1 - i] = a[i] - '0</pre>
                                                                        // cout<<0<<endl:
                                                                        return n1;
   for (int i = 0; i < lb; i++) nb[lb - 1 - i] = b[i] - '0</pre>
   int lmax = la > lb ? la : lb;
                                                                        if (i >= t)
   for (int i = 0; i < lmax; i++) {
       na[i] -= nb[i];
                                                                        else
       if (na[i] < 0) na[i] += 10, na[i + 1]--;</pre>
                                                                           b[i] = 0;
                                                                    Lb = La;
   while (!na[--lmax] && lmax > 0)
                                                                        int temp;
   for (int i = lmax - 1; i >= 0; i--) ans += na[i] + '0';
   return ans:
                                                                            La = temp;
string mul(string a, string b) //高精度乘法a,b,均为非负整
                                                                           r[t - j]++;
数
                                                                        }
   string s;
   int na[L], nb[L], nc[L],
      La = a.size(), Lb = b.size(); // na 存储被乘数, nb
存储乘数, nc 存储积
   fill(na, na + L, 0);
   fill(nb, nb + L, 0);
                                                                     // cout<<s<<endl;</pre>
   fill(nc, nc + L, 0); //将 na, nb, nc 都置为0
                                                                    i = tp;
   for (int i = La - 1; i >= 0; i--)
       na[La - i] =
          a[i] - '0'; //将字符串表示的大整形数转成 i 整形数
组表示的大整形数
   for (int i = Lb - 1; i >= 0; i--) nb[Lb - i] = b[i] - '
   for (int i = 1; i <= La; i++)</pre>
       for (int j = 1; j <= Lb; j++)
    nc[i + j - 1] +=
    na[i] *</pre>
              nb[j]; // a 的第i 位乘以 b 的第j 位为积的第i+
j-1 位(先不考虑进位
   for (int i = 1; i <= La + Lb; i++)</pre>
                                                                    return 0:
       nc[i + 1] += nc[i] / 10, nc[i] %= 10; //统一处理进
   if (nc[La + Lb]) s += nc[La + Lb] + '0'; //判断第i+j
                                                                    int i;
位上的数字是不是 0
   for (int i = La + Lb - 1; i >= 1; i --)
      s += nc[i] + '0'; //将整形数组转成字符串
                                                                    return s.substr(i);
   return s:
int sub(int *a, int *b, int La, int Lb) {
   if (La < Lb) return -1; //如果 a 小于 b,则返回-1
                                                                    n = DeletePreZero(n);
   if (La == Lb) {
       for (int i = La - 1; i >= 0; i--)
                                                                    while (cmp(l, r)) {
          if (a[i] > b[i])
```

```
break:
          else if (a[i] < b[i])
             return -1; //如果 a 小于 b,则返回-1
   for (int i = 0; i < La; i++) //高精度减法
      if (a[i] < 0) a[i] += 10, a[i + 1]--;</pre>
   for (int i = La - 1; i >= 0; i--)
      if (a[i]) return i + 1; //返回差的位数
                             // 返回差的位数
string div(string n1, string n2,
         int nn) // n1, n2 是字符串表示的被除数,除数, nn 是
   string s, v; // s 存商,v 存余数
      La = n1.size(), Lb = n2.size(), i,
      tp = La; // a, b 是整形数组表示被除数,除数,tp 保存
   fill(r, r + L, 0); //数组元素都置为0
   for (i = La - 1; i >= 0; i--) a[La - 1 - i] = n1[i] - '
   for (i = Lb - 1; i \ge 0; i--) b[Lb - 1 - i] = n2[i] - '
   if (La < Lb | | (La == Lb && n1 < n2)) {</pre>
                   //如果 a<b,则商为0,余数为被除数
   int t = La - Lb; //除被数和除数的位数之差
   for (int i = La - 1; i >= 0; i--) //将除数扩大10^t 倍
         b[i] = b[i - t];
   for (int j = 0; j <= t; j++) {
       while ((temp = sub(a, b + j, La, Lb - j)) >=
            0) //如果被除数比除数大继续减
   for (i = 0; i < L - 10; i++)
      r[i + 1] += r[i] / 10, r[i] %= 10; //统一处理进位
   while (!r[i]) i--; //将整形数组表示的商转化成字符串表示
   while (i >= 0) s += r[i--] + '0';
   while (!a[i]) i--; //将整形数组表示的余数转化成字符串表
   while (i >= 0) v += a[i--] + '0';
   if (v.empty()) v = "0";
   // cout<<v<<endl;
if (nn == 1) return s;</pre>
   if (nn == 2) return v;
bool cmp(string a, string b) {
   if (a.size() < b.size()) return 1; // a 小于等于b 返回
   if (a.size() == b.size() && a <= b) return 1;</pre>
string DeletePreZero(string s) {
   for (i = 0; i < s.size(); i++)
      if (s[i] != '0') break;
string BigInterSqrt(string n) {
   string l = "1", r = n, mid, ans;
      mid = div(add(1, r), "2", 1);
```

```
\textbf{if} \ (\texttt{cmp}(\texttt{mul}(\texttt{mid}, \ \texttt{mid}), \ \texttt{n}))
                                                                      string r, ans;
           ans = mid, \hat{l} = add(mid, "1");
                                                                      int d = 0;
       else
                                                                      if (a == "0") return a; //特判
           r = sub(mid, "1");
                                                                      for (int i = 0; i < a.size(); i++) {</pre>
                                                                         r += (d * 10 + a[i] - '0') / b + '0'; //求出商
d = (d * 10 + (a[i] - '0')) % b; //求出余数
   return ans;
}
                                                                      int p = 0;
// o(n^3)
                                                                      for (int i = 0; i < r.size(); i++)</pre>
                                                                         if (r[i] != '0') {
                                                                             p = i;
高精度进制转换
                                                                             break:
                                                                      return r.substr(p);
#include <bits/stdc++.h>
using namespace std:
//将字符串表示的10 进制大整数转换为m 进制的大整数
//并返回 m 进制大整数的字符串
                                                                  //o(n)
bool judge(string s) //判断串是否为全零串
   for (int i = 0; i < s.size(); i++)</pre>
                                                                  高精度除法 (除高精)
      if (s[i] != '0') return 1;
                                                                  #include <bits/stdc++.h>
   return 0:
                                                                  using namespace std;
int sub(int *a, int *b, int La, int Lb) {
string solve(
   string s, int n,
                                                                      if (La < Lb) return -1; //如果 a 小于 b, 则返回-1
                                                                      if (La == Lb) {
   int m) // n 进制转 m 进制 只限 0-9 进制, 若涉及带字母的进
制,稍作修改即可
                                                                         for (int i = La - 1; i >= 0; i--)
                                                                             if (a[i] > b[i])
                                                                                 break;
   string r, ans;
int d = 0;
                                                                             else if (a[i] < b[i])</pre>
   if (!judge(s)) return "0"; //特判
                                                                                 return -1; //如果 a 小于 b,则返回-1
                              //被除数不为0则继续
   while (judge(s))
                                                                      for (int i = 0; i < La; i++) //高精度减法
       for (int i = 0; i < s.size(); i++) {
    r += (d * n + s[i] - '0') / m + '0'; //求出商
    d = (d * n + (s[i] - '0')) % m; //求出余刻
                                                                         a[i] -= b[i];
                                                                         if (a[i] < 0) a[i] += 10, a[i + 1]--;</pre>
                                                //求出余数
       }
                                                                      for (int i = La - 1; i >= 0; i--)
                       //把商赋给下一次的被除数
       s = r;
                                                                        if (a[i]) return i + 1; //返回差的位数
       r = "";
                       //把商清空
                                                                                                 //返回差的位数
       ans += d + '0'; //加上进制转换后数字
       d = 0:
                       //清空余数
                                                                  string div(string n1, string n2, int nn)
                                                                  // n1,n2 是字符串表示的被除数,除数,nn 是选择返回商还是余数
   reverse(ans.begin(), ans.end()); //倒置下
   return ans:
                                                                      const int L = 1e5;
}
                                                                      string s, v; // s 存商,v 存余数
                                                                      int a[L], b[L], r[L], La = n1.size(), Lb = n2.size(),
//o(n^2)
                                                                  i, tp = La;
                                                                      // a,b 是整形数组表示被除数,除数,tp 保存被除数的长度
                                                                      fill(a, a + L, 0);
高精度阶乘
                                                                      fill(b, b + L, 0);
                                                                      fill(r, r + L, 0); //数组元素都置为0
#include <bits/stdc++.h>
                                                                      for (i = La - 1; i >= 0; i--) a[La - 1 - i] = n1[i] - '
using namespace std;
string fac(int n) {
                                                                     for (i = Lb - 1; i >= 0; i--) b[Lb - 1 - i] = n2[i] - '
   const int L = 100005;
   int a[L];
                                                                      if (La < Lb | | (La == Lb && n1 < n2)) {</pre>
   string ans;
                                                                          // cout<<0<<endl;</pre>
   if (n == 0) return "1";
                                                                          return n1;
   fill(a, a + L, 0);
                                                                                       //如果 a<b,则商为0,余数为被除数
   int s = 0, m = n;
   while (m) a[++s] = m % 10, m /= 10;
for (int i = n - 1; i >= 2; i--) {
                                                                      int t = La - Lb; //除被数和除数的位数之差
                                                                      for (int i = La - 1; i >= 0; i--) //将除数扩大10<sup>*</sup>t 倍
                                                                         if (i >= t)
       int w = 0;
       for (int j = 1; j <= s; j++)
a[j] = a[j] * i + w, w = a[j] / 10, a[j] = a[j]
                                                                             b[i] = b[i - t];
                                                                          else
                                                                             b[i] = 0;
                                                                      Lb = La;
       while (w) a[++s] = w \% 10, w /= 10;
                                                                      for (int j = 0; j <= t; j++) {
                                                                         int temp;
   while (!a[s]) s--;
                                                                          while ((temp = sub(a, b + j, La, Lb - j)) >=
   while (s >= 1) ans += a[s--] + '0';
                                                                                0) //如果被除数比除数大继续减
   return ans:
                                                                             La = temp;
                                                                             r[t - j]++;
//o(n^2)
                                                                      for (i = 0; i < L - 10; i++)
高精度除法 (除单精)
                                                                         r[i + 1] += r[i] / 10, r[i] %= 10; //统一处理进位
                                                                      while (!r[i]) i--; //将整形数组表示的商转化成字符串表示
#include <bits/stdc++.h>
using namespace std;
                                                                      while (i >= 0) s += r[i--] + '0';
string div(string a, int b) //高精度 a 除以单精度 b
                                                                      // cout<<s<<endl:</pre>
```

```
i = tp;
    while (!a[i]) i--; //将整形数组表示的余数转化成字符串表
    while (i >= 0) v += a[i--] + '0';
if (v.empty()) v = "0";
// cout<<v<endl;
if (nn == 1) return s; //返回商
if (nn == 2) return v; //返回余数
//o(n^2)
龟速乘快速幂(快速幂爆 longlong
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
11 qmul(11 a, 11 b, 11 p) {
        11 res = 0;
        while(b) {
            if(b & 1) res = (res + a) % p;
            a = (a + a) % p;
            b >>= 1;
}
            return res;
n >>= 1;
            return res % p; // 1 0 1
}
return 0;
}
```