Ozvučování

Problematika ozvučování zohledňuje tyto disciplíny:

- šíření vlny ve volném poli
- šíření vlny v uzavřeném prostoru, odrazy vln od stěn
- teorie akustických vysílačů (směrové charakteristiky, výkon)
- fyziologická a psychologická akustika
- teorie signálů (řečový, hudební, přirozený, umělý..)
- prostorová a stavební akustika

Specifické typy ozvučovaných prostor

venkovní prostory prostranství

sportovní stadiony

výstražné a informační systémy v budovách, nádražích....

koncertní – poslechové sály, divadla a kina

studia

domácí prostředí

Venkovní prostory

nutné vysoké výkony

úbytek kulové vlny -6dB/dvojnásobek vzdálenosti válcové vlny -3dB/dvojnásobek vzdálenosti

problém s dosažením dostatečné úrovně a srozumitelnosti

centrální x decentralizované ozvučení

při decentralizovaném ozvučení problém s přeslechy

využití maskování

Pro ozvučování venkovních prostranství:

rychlost šíření zvuku závisí na teplotě (roste s teplotou)

ne vždy je prostředí, ve kterém se zvuk šíří, v klidu, silný vítr může vlnu "odfouknout", změna směrové charakteristiky

sportovní stadiony

dosažení dostatečné úrovně x rušení okolí

srozumitelnost hlášení

výstražné a informační systémy v budovách, nádražích....

srozumitelnost, otázka výkonu

spolehlivost

koncertní – poslechové sály, divadla a kina

vysoké nároky na kvalitu (hodnocení viz dále)

problémy s izolací prostoru vůči vnějšímu hluku

požadavek srozumitelnosti, detaily, rovnoměrnost pole

většinou malá variabilita – estetika umístění

Tvary auditorií, většinou velkých rozměrů

Akustické pole v uzavřeném prostoru

Doba dozvuku

základní parametr prostorové akustiky, velký vliv na srozumitelnost

Doba, za kterou poklesne hladina akustického tlaku v uzavřené místnosti po vypnutí zdroje o 60 dB

$$T = 0.164 \frac{V}{\alpha S + 4mV}$$

(podrobněji v předmětu Zvuková technika 2)

Doba dozvuku

Liší se dle velikosti a použití sálu

Zvuková studia

absolutní zvuková/hluková izolace od okolí krátké doby dozvuku (zaměření na detaily) ozvučení menšího prostoru (židle zvukového mistra)

Le-De (Live End Dead End) – jeden z používaných standardů pro návrh studií. Zpravidla poskytuje dobré výsledky.

"Živý konec" – místo poslechu. Mělo by simulovat průměrné domácí prostředí.

"Mrtvý konec" – místo reprodukce (pohltivé plochy okolo reproduktorů)

K posluchači tak přichází zvuk v pořadí:

- přímý z monitorů (přímý z nahr. studia)
- přímý z monitorů (odrazy z nahr.studia)
- odrazy z poslechové místnosti

Domácí prostředí a malé prostory

prostředí bývá přetlumené na výškách (čalounění)

vlastní módy prostoru bývají ve slyšitelném pásmu (příklad: výška podlaha – strop 240 cm je polovinou vlnové délky kmitočtu 70 Hz)

problém s rovnoměrností pole

Zvuk na nízkých kmitočtech může v malých prostorech být velmi nerovnoměrný vinou vlastních módů

"Filozofická otázka":

CO reprodukovat? = co má být cílem?

klasický přístup: rekonstrukce blízkého poslechu v koncertní síni

problém: hodně hudby vzniká synteticky

nová možnost – reprodukce pole, které slyší zvukový mistr ve studiu

Historický vývoj ozvučování malých prostor

monofonie

stereofonie

kvadrofonie (70. léta)

surround systémy (5-7 kanál)

Obr. 8.18
Poslechový prostor při
stereofonní reprodukci:
a) s použitím dvou reproduktorů, b) s použitím skupiny reproduktorů

kvadrofonie "pravá" a "pseudo" (70. léta)

ITU standard pro 5 kanálový surround systém

Ozvučování kin

Současné trendy

22 + 2 ... velká část prostoru rovnoměrně pokryta

2+2+2 ... vpředu, vzadu, vpředu nahoře

2+2+2+2 ... vpředu, vzadu, vpředu nahoře, vzadu nahoře

Problematika subwooferů

Vžitý nesmysl – reproduktor pro nízké kmitočty je možno strčit kamkoli (pod stůl, za sedací soupravu...)

Proč nesmysl? hlavně v menších místnostech se mohou reprodukované kmitočty shodovat s vlastními módy prostoru a tam velmi záleží na poloze reproduktoru

vhodné řešení – roh, kde budí nejvíce módů, ale SYMETRICKY

Zdroje a jejich směrovost

ch směrovost	Činitel směrovosti (—)	Index směrovosti (dB)	Předoza (–)	dní poměr (dB)
kulová	nstike Ist mát vlagtnos	0	1 sonatayy	0
osmičková 💮	7010 3 08 1617 10104	4,8		0
kardioidní	3	4,8	∞	
hyper- kardioidní	4	6	2	3 hoya 3

Vliv umístění zdroje na jeho směrovost

Source Location	Directivity Factor	Directivity Index, dB	
Free field	1	0	$L = L_p$
On a flat plane	2	3	$L = L_p + 3 dB$
At a junction of two planes	4	6	$L = L_p + 6 dB$
At a junction of three planes	8	9	$L = L_p + 9 \text{ dB}$

Ozvučovací systémy

Fig. 34. Performance of a spiral array. Side view of array (A); polar response of array at 500 Hz, 1, 2, and 4 kHz (B). (Data courtesy M. Ureda.)

35. A programmable array. View of array (A); signal flow diagram (B); examples of variable polar response (C). (Data courtesy Eastern Acoustics Works.)

Fig. 24. Directivity of various exponential horns. (Data from Olson, 1957.)

Fig. 28. Directivity of a four-element vertical line array with 0.2 meter separation between driver centers. 200 Hz (A); 350 Hz (B); 500 Hz (C); 1 kHz (D); directivity factor for arrays of 4, 6, 8, and 10 elements (E).

Fig. 32. A large array for music reinforcement. Physical layout (A); off-axis response on the ground plane (B). (Data courtesy Gander and Eargle.)