Linear Regression

Introduction

Linear regression is a supervised machine learning algorithm used for **predicting a continuous target variable** (label) based on one or more predictor variables (features). The core idea is to find the line that best fits the data points.

Key Concepts

What is Regression? (important)

Regression is a type of predictive modeling technique that aims to predict the target variable based on the given predictor variables. It's essentially trying to find the "relationship" between the variables.

Equation of a Line (important)

The equation of a line is given by (y = mx + c), where:

- (y) is the target variable you're trying to predict
- (x) is the feature variable you are using to predict (y)
- (m) is the slope of the line (shows how (y) changes for a one-unit change in (x))
- (c) is the y-intercept (value of (y) when (x = 0))

In multiple linear regression, this extends to:

$$y=c+m_1\cdot x_1+m_2\cdot x_2+\dots$$

Cost Function (important)

The cost function measures how well the line fits the data points. The goal is to minimize this function. A common cost function is Mean Squared Error (MSE).

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

Gradient Descent (important)

Gradient Descent is an optimization algorithm to minimize the cost function. It iteratively adjusts the values of (m) and (c) to find the minimum MSE.

Practical Examples

Simple Linear Regression in Python (important)

Here's a quick code snippet using Python's sklearn library to perform simple linear regression.

```
from sklearn.linear_model import LinearRegression
import numpy as np

# Sample data
X = np.array([1, 2, 3, 4, 5]).reshape(-1, 1)
y = np.array([2, 4, 3, 3, 5])

# Initialize and fit the model
model = LinearRegression()
model.fit(X, y)

# Make predictions
predictions = model.predict([[6]])

print(f'Prediction for x=6 is {predictions[0]}')
```

In this example, the model learns the best-fit line based on the X and y data and makes a prediction for when (x = 6).

Summary of Key Takeaways

- 1. **What is Regression**: Regression aims to predict the target variable based on predictor variables.
- 2. **Equation of a Line:** (y = mx + c) represents a line in simple linear regression.
- 3. **Cost Function**: The goal is to minimize this function (usually MSE) to find the best-fit line.
- 4. **Gradient Descent**: An optimization algorithm to minimize the cost function.

Further Resources

- 1. <u>Introduction to Statistical Learning (Text)</u>
- 2. Andrew Ng's Machine Learning Course (Video)

I hope this presentation has provided you with a clear and comprehensive understanding of linear regression. Feel free to ask for further clarification on any point.