Variables aléatoires discrètes

Dans tout le chapitre, (Ω, \mathcal{T}, P) est un espace probabilisé.

I. Généralités

I.1. Définition

Définition. On appelle variable aléatoire discrète (en abrégé v.a.d.) sur (Ω, \mathcal{T}, P) , toute application X de Ω dans un ensemble E, vérifiant :

- l'ensemble image $X(\Omega)$ est au plus dénombrable;
- pour tout $x \in X(\Omega)$, l'ensemble $X^{-1}(\{x\}) = \{\omega \in \Omega \mid X(\omega) = x\}$ est un événement.

La variable est dite **réelle** si $E \subset \mathbb{R}$; on abrège alors en v.a.r.d.

L'événement $X^{-1}(\{x\})$ est noté (X=x).

Pour toute partie A de E, l'ensemble $X^{-1}(A)$ est alors la réunion des $X^{-1}(\{x\})$ pour x décrivant $A \cap X(\Omega)$ (qui est au plus dénombrable) ; c'est donc un événement, qui est noté $(X \in A)$.

Proposition I.1 (Fonction d'une variable aléatoire). Soit X une variable aléatoire discrète sur Ω , à valeurs dans E; soit f une fonction de E dans un ensemble F, définie au moins sur $X(\Omega)$. Alors, la fonction $f \circ X$, notée en général f(X), est une variable aléatoire discrète.

I.2. Loi d'une variable

Définition. Soit X une variable aléatoire discrète sur Ω . On appelle **loi** de X, l'application $P_X : \mathcal{P}(X(\Omega)) \longrightarrow [0,1], A \longmapsto P(X \in A)$.

Si deux variables aléatoires X et Y, sur Ω_1 et Ω_2 respectivement, vérifient $X(\Omega_1) = Y(\Omega_2)$ et $P_X = P_Y$, on dit que X et Y suivent la même loi, et on écrit $X \sim Y$.

Proposition I.2. Si X est une variable aléatoire discrète sur Ω , alors P_X est une probabilité sur l'ensemble $X(\Omega)$, muni de la tribu $\mathcal{P}(X(\Omega))$.

Proposition I.3. Soit L une application définie sur un ensemble A au plus dénombrable, à valeurs dans [0,1], et telle que $\sum_{a\in A} L(a) = 1$. Alors, il existe un espace probabilisé (Ω, \mathcal{T}, P) et une variable aléatoire discrète X sur cet espace tels que $X(\Omega) = A$ et que L soit la loi de X.

On dira dans ce cas que X suit la loi L, et on écrira $X \sim L$.

I.3. Loi conditionnelle

Définition. Soit X une v.a.d. sur Ω , et $A \subset \Omega$ un événement de probabilité non nulle. On appelle loi de X conditionnée à A, ou loi de X sachant A, la loi de X définie à partir de la probabilité conditionnelle P_A . Autrement dit, c'est l'application $P_{X|A}$ définie par : pour toute partie B de $X(\Omega)$, $P_{X|A}(B) = P(X \in B|A)$.

II. Lois usuelles

II.1. Lois à support fini

Si $A = \{a_1, \dots, a_n\}$ est de cardinal n, la variable X suit la **loi uniforme** sur A si P(X = x) = 1/n pour tout $x \in A$.

Soit $p \in [0,1]$. La variable X suit la **loi de Bernoulli** de paramètre p, notée $\mathcal{B}(p)$, si $X(\Omega) = \{0,1\}$, P(X=1) = p et P(X=0) = 1 - p.

Soient $n \in \mathbb{N}^*$ et $p \in [0,1]$. La variable X suit la **loi binômiale** de paramètres n et p, notée $\mathcal{B}(n,p)$, si $X(\Omega) = \llbracket 0,n \rrbracket$ et, pour tout $k \in \llbracket 0,n \rrbracket$,

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k} = \binom{n}{k} p^k q^{n-k}$$

en posant q = 1 - p.

II.2. Loi géométrique

Soit $p \in [0,1]$. La variable X suit la **loi géométrique** de paramètre p, notée $\mathcal{G}(p)$, si $X(\Omega) = \mathbb{N}^*$ et, pour tout $k \in \mathbb{N}^*$, $P(X = k) = (1 - p)^{k-1}p = q^{k-1}p$.

Le nombre P(X=k) s'interprète comme la probabilité d'obtenir le premier succès au rang k dans une suite infinie d'expériences de Bernoulli indépendantes de même paramètre p.

Proposition II.1. Soit X une variable aléatoire à valeurs dans \mathbb{N}^* . Elle suit une loi géométrique si et seulement si, pour tout $(N,k) \in (\mathbb{N}^*)^2$, $P(X > N) \neq 0$ et P(X > N + k | X > N) = P(X > k).

II.3. Loi de Poisson

Soit $\lambda \in \mathbb{R}_+$. La variable X suit la **loi de Poisson** de paramètre λ , notée $\mathcal{P}(\lambda)$, si $X(\Omega) = \mathbb{N}$ et, pour tout $k \in \mathbb{N}$, $P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$.

Proposition II.2. Soit (p_n) une suite d'éléments de [0,1] telle que la suite np_n converge vers un nombre λ . Soit (X_n) une suite de variables aléatoires telle que, pour chaque n, X_n suive la loi binômiale $\mathcal{B}(n, p_n)$.

Alors, pour tout
$$k \in \mathbb{N}$$
, $P(X_n = k) \underset{n \to +\infty}{\longrightarrow} e^{-\lambda} \frac{\lambda^k}{k!}$.

III. Vecteurs aléatoires

III.1. Couple de variables

Proposition III.1. Soient X et Y deux variables aléatoires discrètes sur un espace probabilisé (Ω, \mathcal{T}, P) , à valeurs dans des ensembles E_1 et E_2 respectivement. Alors, l'application $(X,Y):\Omega \longrightarrow E_1 \times E_2$, $\omega \longmapsto (X(\omega),Y(\omega))$ est une variable aléatoire discrète sur (Ω, \mathcal{T}, P) .

La variable (X,Y) est appelée un **vecteur aléatoire**. On appelle alors :

- \circ loi conjointe de X et Y, la loi de probabilité de la variable (X,Y), autrement dit l'application
- $E_1 \times E_2 \longrightarrow [0,1], (x,y) \longmapsto P([X=x] \cap [Y=y]);$
- \circ lois marginales du vecteur (X,Y), les lois des variables X et Y;
- o loi de Y conditionnée à X=x, l'application $y\longmapsto P(Y=y\,|\,X=x)$, ce pour tout $x\in X(\Omega)$.

Proposition III.2. Soit (X,Y) un couple aléatoire discret. Pour tout $y \in Y(\Omega)$, on a

$$P(Y = y) = \sum_{x \in X(\Omega)} P([X = x] \cap [Y = y]) = \sum_{x \in X(\Omega)} P(Y = y \mid X = x) P(X = x)$$

III.2. Couple de variables indépendantes

Définition. On dit que deux variables aléatoires sur Ω sont indépendantes si, pour tout $(x, y) \in X(\Omega) \times Y(\Omega)$, les événements X = x et Y = y sont indépendants, c'est-à-dire

$$P([X=x] \cap [Y=y]) = P(X=x)P(Y=y)$$

On écrit alors $X \perp \!\!\! \perp Y$.

Proposition III.3. Si $X \perp \!\!\!\perp Y$, alors, pour tout $A \subset X(\Omega)$ et tout $B \subset Y(\Omega)$, $P((X \in A) \cap (Y \in B)) = P(X \in A)P(Y \in B)$.

Proposition III.4. Si $X \perp \!\!\! \perp Y$, alors les variables f(X) et g(Y) sont indépendantes, pour tout couple de fonctions (f,g) pour lequel cela a un sens.

III.3. Vecteurs aléatoires

Plus généralement, si X_1, \ldots, X_n sont n variables aléatoires sur (Ω, \mathcal{T}, P) , l'application $\omega \longmapsto (X_1(\omega), \ldots, X_n(\omega))$ est une variable aléatoire, appelée vecteur aléatoire.

On définit comme dans le cas de deux vecteurs la loi conjointe : $(x_1, \ldots, x_n) \mapsto P((X_1 = x_1) \cap \cdots \cap (X_n = x_n))$ et les lois marginales des variables X_k .

Définition. Les variables aléatoires d'une famille $(X_i)_{i\in I}$ sont dites **mutuellement indépendantes** si, pour toute partie finie $J\subset I$ et toute famille $(x_j)_{j\in J}$, on a $P\left(\bigcap_{j\in J}(X_j=x_j)\right)=\prod_{j\in J}P(X_j=x_j)$.

Proposition III.5. Si les variables (X_1, \ldots, X_n) sont mutuellement indépendantes, alors les variables $f(X_1, \ldots, X_n)$ et $g(X_{p+1}, \ldots, X_n)$ sont indépendantes.

Proposition III.6. Si $(L_n)_{n\in\mathbb{N}}$ est une suite de lois, il existe un espace probabilisé et une suite (X_n) de variables mutuellement indépendantes sur cet espace tels que $X_n \sim L_n$ pour tout n.

Définition. Si les variables de la suite $(X_n)_{n\in\mathbb{N}}$ sont mutuellement indépendantes et suivent la même loi L, on dit que la suite est i.i.d. (pour variables Indépendantes et Identiquement Distribuées)

IV. Espérance

IV.1. Définition

 ${\bf D\'efinition.}\ \ Soit\ X\ \ une\ \ variable\ \ al\'eatoire\ \ discrète.$

- $ightharpoonup Si \ X \ prend ses valeurs dans \ \mathbb{R}_+ \cup \{+\infty\}, \ on \ appelle \ esp\'erance \ de \ X, \ et \ on \ note \ E(X), \ le \ nombre \ \sum_{x \in X(\Omega)} x P(X=x), \ avec \ les \ conventions \ +\infty \times P(X=+\infty) = 0 \ si \ P(X=+\infty) = 0, \ et \ E(X) = +\infty \ si \ la \ famille \ n'est \ pas \ sommable.$
- $ightharpoonup Si~X~est~\`a~valeurs~complexes,~on~dit~que~X~est~d'espérance~finie~si~la~famille <math>(xP(X=x))_{x\in X(\Omega)}~est~sommable~;~on~appelle~alors~espérance~de~X,~et~on~note~E(X),~le~nombre~~\sum_{x\in X(\Omega)}xP(X=x).$

On écrira $X \in L^1$ pour dire que la variable X est d'espérance finie. On dit qu'une variable aléatoire X est **centrée** si $X \in L^1$ et E(X) = 0.

Proposition IV.1. Soit X une variable aléatoire discrète à valeurs dans \mathbb{N} . Alors

$$E(X) = \sum_{k=1}^{+\infty} P(X \geqslant k)$$

IV.2. Formule de transfert

Proposition IV.2. Soit X une variable aléatoire discrète à valeurs dans E. Soit $f: E \longrightarrow \mathbb{C}$. Alors, f(X) est d'espérance finie si et seulement si la famille $(f(x)P(X=x))_{x\in X(\Omega)}$ est sommable; et, dans ce cas,

$$E(f(X)) = \sum_{x \in X(\Omega)} f(x)P(X = x)$$

Corollaire IV.3. Si Ω est au plus dénombrable, et si Y est une variable aléatoire complexe sur Ω , alors Y est d'espérance finie si et seulement si la famille $(Y(\omega)P(\{\omega\}))_{\omega\in\Omega}$ est sommable; et, dans ce cas, $E(Y) = \sum_{\omega\in\Omega} Y(\omega)P(\{\omega\})$.

IV.3. Linéarité

Proposition IV.4. Soient X et Y deux v.a.d. complexes sur un même espace, et $(\lambda, \mu) \in \mathbb{C}^2$. Si X et Y sont d'espérance finie, alors $\lambda X + \mu Y$ est d'espérance finie, et $E(\lambda X + \mu Y) = \lambda E(X) + \mu E(Y)$.

Corollaire IV.5. Si la variable X est d'espérance finie, alors la variable X-E(X) est centrée.

IV.4. Autres propriétés

Proposition IV.6 (Positivité). Si X prend ses valeurs dans $\mathbb{R}_+ \cup \{+\infty\}$, alors $E(X) \ge 0$. Si de plus E(X) = 0, alors P(X = 0) = 1; autrement dit, X est presque sûrement nulle.

Proposition IV.7 (Croissance). Si les v.a.r.d. X et Y sont d'espérance finie, et si $X(\omega) \leq Y(\omega)$ pour tout $\omega \in \Omega$, alors $E(X) \leq E(Y)$.

Proposition IV.8. Soient X une v.a.d. complexe et Y une v.a.d. réelle sur Ω . Si $Y \in L^1$, et si $|X(\omega)| \leq Y(\omega)$ pour tout $\omega \in \Omega$, alors $X \in L^1$ et $|E(X)| \leq E(Y)$. En particulier, si $X \in L^1$, alors $|E(X)| \leq E(|X|)$.

Théorème IV.9 (Inégalité de Markov). Soit X une v.a.r.d. à valeurs **positives**. Alors, pour tout $a \in \mathbb{R}_+^*$, $P(X \geqslant a) \leqslant \frac{E(X)}{a}$.

Proposition IV.10. Soient X et Y deux v.a.d. complexes indépendantes et d'espérance finie. Alors, XY est d'espérance finie, et E(XY) = E(X)E(Y).

V. Variance

V.1. Définition

Définition. Soit X une v.a.r.d. On dit que X admet un moment d'ordre 2, ou que $X \in L^2$, si la variable X^2 est d'espérance finie.

Proposition V.1. Si $X \in L^2$, alors $X \in L^1$.

Proposition V.2. Si $X \in L^2$, alors la variable centrée X - E(X) est aussi dans L^2 , et

$$E[(X - E(X))^{2}] = E(X^{2}) - E(X)^{2}$$

Définition. Si $X \in L^2$, le nombre $V(X) = E\left[\left(X - E(X)\right)^2\right]$ est appelé variance de X; le nombre $\sigma(X) = \sqrt{V(X)}$ est appelé écart-type de X.

V.2. Propriétés

Proposition V.3. Si $X \in L^2$ et V(X) = 0, alors X est presque sûrement constante; autrement dit, il existe une valeur a telle que P(X = a) = 1.

Proposition V.4. Soit $X \in L^2$, et $(a,b) \in \mathbb{R}^2$. Alors, la variable aX + b est dans L^2 , et $V(aX + b) = a^2V(X)$.

Définition. Une variable $X \in L^2$ est dite **réduite** si V(X) = 1.

$$Si \ X \in L^2$$
, et $Si \ V(X) \neq 0$, alors la variable $\frac{X - E(X)}{\sigma(X)}$ est réduite centrée.

Théorème V.5 (Inégalité de Bienaymé-Tchebychev). Soit $X \in L^2$. Alors, pour tout $\varepsilon > 0$, $P(|X - E(X)| \ge \varepsilon) \le \frac{V(X)}{\varepsilon^2}$.

V.3. Covariance

Proposition V.6 (Inégalité de Cauchy-Schwarz). Soient X et Y deux variables de L^2 sur un même espace Ω . Alors, $XY \in L^1$, et $E(XY)^2 \leq E(X^2)E(Y^2)$.

Corollaire V.7. L'ensemble des v.a.r.d. sur Ω admettant un moment d'ordre 2, est un espace vectoriel.

Définition. Soient X et Y deux v.a.r.d. sur un même espace Ω , ayant un moment d'ordre 2. Le nombre $\operatorname{Cov}(X,Y) = E\big[\big(X-E(X)\big)\big(Y-E(Y)\big)\big]$ est appelé covariance de X et Y.

Proposition V.8. Soient X et Y dans L^2 ; alors

$$Cov(X, Y) = E(XY) - E(X)E(Y)$$

En particulier, si X et Y sont indépendantes, alors Cov(X,Y) = 0.

Proposition V.9. Soient X et Y dans L^2 ; alors

$$V(X + Y) = V(X) + V(Y) + 2\operatorname{Cov}(X, Y)$$

En particulier, si X et Y sont indépendantes, alors V(X+Y) = V(X) + V(Y).

Proposition V.10. Soient X et Y dans L^2 ; alors $Cov(X,Y)^2 \leq V(X)V(Y)$.

V.4. Loi faible des grands nombres

Théorème V.11. Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite i.i.d. de variables réelles, admettant une espérance m et une variance σ^2 . Pour tout $n\in\mathbb{N}^*$, soit $S_n=\sum_{k=1}^n X_k$; soit $\varepsilon>0$. Alors:

$$\circ \ pour \ tout \ n \in \mathbb{N}^*, \ P\left(\left|\frac{S_n}{n} - m\right| \geqslant \varepsilon\right) \leqslant \frac{\sigma^2}{n\varepsilon^2};$$
$$\circ \ P\left(\left|\frac{S_n}{n} - m\right| \geqslant \varepsilon\right) \underset{n \to +\infty}{\longrightarrow} 0.$$

VI. Fonction génératrice

VI.1. Généralités

Définition. Soit X une v.a.d. prenant ses valeurs dans \mathbb{N} . La fonction

$$G_X: t \in \mathbb{C} \longmapsto E(t^X) = \sum_{k=0}^{+\infty} P(X=k)t^k$$

est appelée fonction génératrice de la variable X.

Proposition VI.1. Soit X une v.a.d. prenant ses valeurs dans \mathbb{N} . Alors, sa fonction génératrice est définie et continue sur le disque fermé de centre 0 et de rayon 1; et la donnée de la fonction G_X suffit à définir complètement la loi de la variable X.

VI.2. Somme de variables indépendantes

Proposition VI.2. Soient X et Y deux v.a.d. à valeurs dans \mathbb{N} , indépendantes. Alors, pour tout $t \in D(0,1)$, $G_{X+Y}(t) = G_X(t)G_Y(t)$.

VI.3. Fonction génératrice et espérance

Proposition VI.3. Soit X une v.a.d. à valeurs dans \mathbb{N} . Alors, X est d'espérance finie si et seulement si la restriction à \mathbb{R} de G_X est dérivable en 1; dans ce cas, $G'_X(1) = E(X)$.

VII. Caractéristiques des lois usuelles

Nom	$X(\Omega)$	P(X = k)	E(X)	V(X)	$G_X(t)$
Uniforme	$[\![1,n]\!]$	1	n+1	n^2-1	$t-t^{n+1}$
$n \in \mathbb{N}^*$		n	2	12	n(1-t)
Bernoulli $\mathcal{B}(p)$	{0,1}	$p_1 = p$	p	p(1-p)	1-p+pt
$p \in [0, 1]$	το, τζ	$p_0 = 1 - p$	P	p(1-p)	$p + p\iota$
Binômiale $\mathcal{B}(n,p)$	$[\![0,n]\!]$	$\binom{n}{k} p^k (1-p)^{n-k}$	np	np(1-p)	$(1-p+pt)^n$
$n \in \mathbb{N}, \ p \in [0, 1]$					
Géométrique $\mathcal{G}(p)$	N*	$p(1-p)^{k-1}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pt}{1 - (1 - p)t}$
$p \in [0, 1]$					
Poisson $\mathcal{P}(\lambda)$	N	$e^{-\lambda} \frac{\lambda^k}{k!}$	λ	λ	$e^{\lambda(t-1)}$
$\lambda \in \mathbb{R}_+$	1 /	k!			U · /