Nekilnojamojo turto objektų kainų analizė Lietuvoje Statistikos laboratorinis darbas Nr. 2

VU

2025-04-17

Contents

1	Įvao	das		1
2	Duc	omenų	aprašymas	1
	2.1	Duom	enų nuskaitymas	1
	2.2	Duom	enų patikrinimas ir išskirčių šalinimas	2
	2.3	Duom	enų vizualizacija	8
		2.3.1	Kainų pasiskirstymo analizė	8
		2.3.2	Komercinių patalpų ploto analizė	10
		2.3.3	Namų nuomos kainos ryšys su plotu	12
9	Dog	mindin	ės skaitinės charakteristikos	13
J	1 ag	,i iliaili	es skattilles charakteristikus	19
	3.1	Kieky	binių kintamųjų aprašomoji statistika	13

1 Įvadas

Šiame tyrime analizuojami Lietuvos nekilnojamojo turto rinkos duomenys, siekiant nustatyti įvairius dėsningumus ir statistines priklausomybes.

2 Duomenų aprašymas

Analizei naudojami duomenys buvo atsisiųsti iš Lithuanian Real Estate Listings GitHub repozitorijos. Duomenys buvo surinkti 2024 m. vasarį iš Aruodas.lt puslapio. Duomenų rinkinyje yra informacija apie parduodamus ir nuomojamus butus, garažus, namus, sklypus ir patalpas. Tyrime naudojami duomenys apima kainų, ploto, vietos ir kitų svarbių charakteristikų informaciją.

2.1 Duomenų nuskaitymas

Table 1: Nekilnojamojo turto duomenų kategorijos

Kategorijos
apartments apartments_rent garages_parking
garages_parking_rent house_rent
houses land land rent
premisesrent

```
# CSV failų nuskaitymas į sąrašą
csv_data_list <- list()

for (folder in folders) {
    file_path <- file.path(data_dir, folder, "all_cities_20240214.csv")
    if (file.exists(file_path)) {
        # Bandyti nuskaityti failą
        tryCatch({
            df <- read.csv(file_path)
            csv_data_list[[folder]] <- df
            cat(folder,"eilučių:", nrow(df), ", stulpelių:", ncol(df), "\n")
        }, error = function(e) {
            cat("Klaida nuskaitant", folder, ":", conditionMessage(e), "\n")
        })
    }
}</pre>
```

2

apartments eilučių: 7721 , stulpelių: 38
apartments_rent eilučių: 3208 , stulpelių: 38
garages_parking eilučių: 497 , stulpelių: 28
garages_parking_rent eilučių: 307 , stulpelių: 27

house_rent eilučių: 310 , stulpelių: 40
houses eilučių: 7284 , stulpelių: 39
land eilučių: 6322 , stulpelių: 27
land_rent eilučių: 104 , stulpelių: 27

```
## premises eilučių: 1556 , stulpelių: 37
## premises_rent eilučių: 2739 , stulpelių: 37
```

2.2 Duomenų patikrinimas ir išskirčių šalinimas

Prieš pradedant statistinę analizę, būtina identifikuoti ir pašalinti galimai klaidingas ar nekorektiškas reikšmes duomenyse. Nekilnojamojo turto rinkoje egzistuoja neįprastai didelių ar mažų kainų, kurios gali atsirasti dėl duomenų įvedimo klaidų, klaidingo formato ar kitų priežasčių. Tokios išskirtys gali reikšmingai paveikti statistinės analizės rezultatus.

```
# Apibrėžiame kainų ribas išskirčių identifikavimui
min_threshold <- 20
                             # Minimali kaina eurais
max_threshold <- 25000000</pre>
                              # Maksimali kaina eurais
# Sukuriame rezultatų lentelę
removal_results <- data.frame(</pre>
  Kategorija = character(),
  Pašalinta_eilučių = integer(),
  Per didelės kainos = integer(),
 Per_mažos_kainos = integer(),
  stringsAsFactors = FALSE
)
# Tikriname ir šaliname išskirtis kiekviename duomenų rinkinyje
for (type in names(csv data list)) {
  if (!is.null(csv data list[[type]]) && "price" %in% colnames(csv data list[[type]])) {
    # Identifikuojame kraštutines reikšmes
    extreme_high <- sum(csv_data_list[[type]] price > max_threshold, na.rm = TRUE)
    extreme_low <- sum(csv_data_list[[type]] price < min_threshold, na.rm = TRUE)
    extreme_total <- extreme_high + extreme_low</pre>
    if (extreme_total > 0) {
      # Išsaugome pradinį eilučių skaičių
      original_count <- nrow(csv_data_list[[type]])</pre>
      # Filtruojame duomenis, išlaikydami tik patikimas kainas arba NA reikšmes
      csv_data_list[[type]] <- csv_data_list[[type]][</pre>
        (csv_data_list[[type]]$price >= min_threshold &
         csv_data_list[[type]]$price <= max_threshold) |</pre>
          is.na(csv_data_list[[type]]$price), ]
      # Fiksuojame rezultatus
      new count <- nrow(csv data list[[type]])</pre>
      removed_count <- original_count - new_count</pre>
      # Pridedame rezultatus į suvestinę
      removal_results <- rbind(removal_results, data.frame(</pre>
        Kategorija = type,
        Pašalinta_eilučių = removed_count,
        Per_didelės_kainos = extreme_high,
        Per_mažos_kainos = extreme_low
      ))
    }
```

Table 2: Išskirčių šalinimo rezultatų suvestinė

Kategorija	Pašalinta_eilučių	Per_didelės_kainos	Per_mažos_kainos
$land_rent$	2	0	2
premises	65	64	1
premises_rent	192	159	33

```
# Patikriname duomenų rinkinių dydžius po valymo
data_sizes <- data.frame(
    Eilučių_skaičius = sapply(csv_data_list, nrow),
    Stulpelių_skaičius = sapply(csv_data_list, ncol)
)

kable(data_sizes,
    caption = "Duomenų rinkinių dydžiai po išskirčių šalinimo") %>%
    kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
```

Table 3: Duomenų rinkinių dydžiai po išskirčių šalinimo

	Eilučių_skaičius	Stulpelių_skaičius
apartments	7721	38
apartments_rent	3208	38
garages_parking	497	28
garages_parking_rent	307	27
house_rent	310	40
houses	7284	39
land	6322	27
land_rent	102	27
premises	1491	37
premises_rent	2547	37

Pašalintos ekstremalios kainos, kurios galėjo iškreipti vidutines reikšmes ir kitas statistines charakteristikas.

```
# Analizuojame duomenų rinkinių stulpelių struktūrą

# Sukuriame lentelę su stulpelių sąrašais kiekvienam duomenų rinkiniui
columns_by_dataset <- data.frame(
```

```
Duomenu_rinkinys = character(),
  Stulpeliu_skaičius = integer(),
  Stulpeliupavadinimai = character(),
  stringsAsFactors = FALSE
)
# Pildome lentele informacija apie stulpelius
for (folder name in names(csv data list)) {
  columns_by_dataset <- rbind(columns_by_dataset, data.frame(</pre>
    Duomenu_rinkinys = folder_name,
    Stulpeliu_skaičius = ncol(csv_data_list[[folder_name]]),
    Stulpeliu_pavadinimai = paste(colnames(csv_data_list[[folder_name]]), collapse = ", ")
  ))
}
# Atvaizduojame lentelę su stulpelių informacija
kable(columns_by_dataset,
      caption = "Kiekvieno duomenų rinkinio stulpelių struktūra") %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"),
                latex_options = c("scale_down", "hold_position"),
                font_size = 8) %>%
  column_spec(1, width = "8em") %>%
  column_spec(2, width = "8em") %>%
  column_spec(3, width = "25em")
```

Table 4: Kiekvieno duomenų rinkinio stulpelių struktūra

Duomenų_rinkinys	Stulpelių_skaičius	Stulpelių_pavadinimai
apartments	38	listing_id, type_id, price, region, microdistrict, street, coordinates, images, description, phone_number, private_seller, call_forwarding, reserved, sold_or_rented, number_of_rooms, area, floor, noof_floors, build_year, equipment, building_type, heating_system, link, add_date, modified, selected, views_total, views_today, house_no., flat_no., building_energy_efficiency_class, description_tags, additional_premises, security, additional_equipment, valid_till, unique_item_number, object
apartments_rent	38	listing_id, type_id, price, region, microdistrict, street, coordinates, images, description, phone_number, private_seller, call_forwarding, reserved, sold_or_rented, price_per_month, house_no., number_of_rooms, area, floor, noof_floors, build_year, equipment, building_type, heating_system, description_tags, additional_premises, additional_equipment, security, link, add_date, modified, selected, views_total, views_today, valid_till, flat_no., building_energy_efficiency_class, unique_item_number

garages_parking

28 listing_id, type_id, price, region, microdistrict, street, coordinates, images, description, phone_number, private_seller, call_forwarding, reserved, sold_or_rented, area, type, accommodates_no._of_cars, features, link, add_date, modified, valid_till, selected, views_total, views_today, number, unique_item_number, description_tags

garages_parking_rent

27 listing_id, type_id, price, region, microdistrict, street, coordinates, images, description, phone_number, private_seller, call_forwarding, reserved, sold_or_rented, number, area, type, accommodates_no._of_cars, features, link, add_date, modified, valid_till, selected, views_total, views_today, unique_item_number

house_rent

40 listing_id, type_id, price, region, microdistrict, street, coordinates, images, description, phone_number, private_seller, call_forwarding, reserved, sold_or_rented, price_per_month, plot_area, area, no._of_floors, build_year, equipment, building_type, heating_system, link, add_date, modified, valid_till, selected, views_total, views_today, number_of_rooms, water_system, closest_body_of_water, distance_from_body_of_water, building_energy_efficiency_class, description_tags, additional_premises, additional_equipment, security, house_no., unique_item_number

houses

39 listing_id, type_id, price, region, microdistrict, street, coordinates, images, description, phone_number, private_seller, call_forwarding, reserved, sold_or_rented, plot_area, area, no._of_floors, build_year, equipment, building_type, heating_system, link, add_date, modified, selected, views_total, views_today, house_no., number_of_rooms, water_system, closest_body_of_water, distance_from_body_of_water, description_tags, additional_premises, additional_equipment, security, valid_till, building_energy_efficiency_class, unique_item_number

land

27 listing_id, type_id, price, region, microdistrict, street, coordinates, images, description, phone_number, private_seller, call_forwarding, reserved, sold_or_rented, area_.a., purpose, type, link, add_date, modified, views_total, views_today, description_tags, valid_till, selected, unique_item_number, lot_no.

land_rent

27 listing_id, type_id, price, region, microdistrict, street, coordinates, images, description, phone_number, private_seller, call_forwarding, reserved, sold_or_rented, lot_no., area_.a., purpose, type, link, add_date, modified, valid_till, selected, views_total, views_today, description_tags, unique_item_number

```
premises
                                       listing_id, type_id, price, region, microdistrict,
                                        street, coordinates, images, description,
                                        phone_number, private_seller, call_forwarding,
                                        reserved, sold_or_rented, house_no., area, floor,
                                        no._of_floors, build_year, equipment,
                                        premises_sum, purpose, heating_system,
                                        water system, description tags,
                                        additional_equipment, link, add_date, modified,
                                        selected, views_total, views_today,
                                        unique item number, premises nr., valid till,
                                        security, building_energy_efficiency_class
                                       listing_id, type_id, price, region, microdistrict,
premises_rent
                                       street, coordinates, images, description,
                                        phone number, private seller, call forwarding,
                                        reserved, sold_or_rented, price_per_month,
                                        house_no., area, floor, no._of_floors, equipment,
                                        purpose, building_energy_efficiency_class, link,
                                        add_date, modified, valid_till, selected, views_total,
                                        views_today, heating_system,
                                        additional_equipment, security, water_system,
                                        description_tags, premises_nr., build_year,
                                        unique item number
```

```
# Randame unikalius stulpelių pavadinimus visuose duomenų rinkiniuose
all_columns <- unique(unlist(lapply(csv_data_list, colnames)))</pre>
unique_columns <- sort(all_columns)</pre>
# Analizuojame stulpelių pasikartojimą skirtinguose duomenų rinkiniuose
column_presence <- data.frame(</pre>
  Stulpelis = unique_columns,
  Pasikartojimu_skaičius = sapply(unique_columns, function(col) {
    sum(sapply(csv_data_list, function(df) col %in% colnames(df)))
 }),
  stringsAsFactors = FALSE
# Rikiuojame pagal pasikartojimų skaičių mažėjimo tvarka
column presence <- column presence[order(column presence$Pasikartojimu skaičius, decreasing = TRUE),]
# Atvaizduojame unikalių stulpelių analizę
kable(column_presence,
      caption = paste("Unikalių stulpelių pasikartojimas duomenų rinkiniuose (iš viso:", nrow(column_pr
      row.names = FALSE) %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
  scroll_box(width = "100%", height = "300px")
```

Table 5: Unikalių stulpelių pasikartojimas duomenų rinkiniuose (iš viso: 52 stulpeliai)

Stulpelis	Pasikartojimų_skaičius
add_date	10
call_forwarding	10
coordinates	10
description	10
images	10

link listing_id microdistrict modified phone_number	10 10 10 10 10
price private_seller region reserved selected	10 10 10 10 10
sold_or_rented street type_id unique_item_number valid_till	10 10 10 10 10
views_today views_total description_tags area additional_equipment	10 10 9 8 6
build_year building_energy_efficiency_class equipment heating_system house_no.	6 6 6 6
noof_floors security additional_premises building_type floor	6 6 4 4 4
number_of_rooms purpose type water_system price_per_month	4 4 4 4 3
accommodates_noof_cars areaa. closest_body_of_water distance_from_body_of_water features	2 2 2 2 2
flat_no. lot_no. number plot_area premises_nr.	2 2 2 2 2
object premises_sum	1 1

2.3 Duomenų vizualizacija

Šiame skyriuje atliksime duomenų vizualinę analizę, kuri padės geriau suprasti Lietuvos nekilnojamojo turto rinkos ypatybes. Naudosime ggplot2 paketą grafikų braižymui.

```
# Papildomų vizualizacijai reikalingų paketų įkėlimas
library(ggplot2)
library(scales)
library(gridExtra)
library(ggExtra)
# Nustatome bendrą grafikų stilių
theme scientific <- function() {</pre>
  theme minimal() +
   theme(
      plot.title = element_text(face = "bold", size = 11),
     plot.subtitle = element_text(size = 9, color = "gray50"),
      axis.title = element text(face = "bold", size = 10),
      axis.text = element_text(size = 9),
      legend.title = element_text(face = "bold", size = 9),
      legend.text = element_text(size = 8)
   )
}
```

2.3.1 Kainų pasiskirstymo analizė

Pirmiausiai analizuojame butų kainų pasiskirstymą, siekdami nustatyti kainų tendencijas ir išsibarstymo charakteristikas.

```
# Buty kainy pasiskirstymo vizualizacija
if ("apartments" %in% names(csv data list) && "price" %in% colnames(csv data list[["apartments"]])) {
  # Pasiruošiame duomenis
  df <- data.frame(price = csv_data_list[["apartments"]]$price)</pre>
  # Braižome histogramą su tankio kreive
  price_hist <- ggplot(df, aes(x = price)) +</pre>
    geom_histogram(aes(y = after_stat(density)),
                   bins = 30,
                   fill = "steelblue",
                   color = "white",
                   alpha = 0.8) +
    geom_density(color = "darkred", linewidth = 1) +
    labs(title = "Butų kainų pasiskirstymas",
         subtitle = "Histograma ir tankio funkcija",
         x = "Kaina (EUR)",
         y = "Tankis") +
   theme_scientific() +
    scale x continuous(labels = comma, limits = c(0, 1000000)) +
    coord_cartesian(xlim = c(0, 500000))
  print(price_hist)
  # Braižome dėžutės diagramą skirtingoms kainų kategorijoms
```

```
if ("city" %in% colnames(csv_data_list[["apartments"]])) {
    # Atrenkame didžiausius miestus
    top_cities <- names(sort(table(csv_data_list[["apartments"]]$city), decreasing = TRUE)[1:5])
    # Filtruojame tik pagrindinius miestus
    df_cities <- csv_data_list[["apartments"]][csv_data_list[["apartments"]]$city %in% top_cities, ]</pre>
    df_cities$city <- factor(df_cities$city, levels = top_cities)</pre>
    # Braižome dėžutės diagramą
    city_boxplot <- ggplot(df_cities, aes(x = city, y = price, fill = city)) +</pre>
      geom_boxplot(outlier.alpha = 0.3, outlier.size = 1.5) +
      labs(title = "Butų kainų pasiskirstymas didžiuosiuose miestuose",
           x = "Miestas",
           y = "Kaina (EUR)") +
      theme_scientific() +
      theme(legend.position = "none",
            axis.text.x = element_text(angle = 45, hjust = 1)) +
      scale_y_continuous(labels = comma, limits = c(0, 500000))
    print(city_boxplot)
  }
}
```


2.3.2 Komercinių patalpų ploto analizė

Analizuojame komercinių patalpų ploto pasiskirstymą skirtinguose segmentuose (pardavimas ir nuoma).

```
# Komercinių patalpų ploto analizė
premises_types <- c("premises", "premises_rent")</pre>
premises_data <- list()</pre>
# Apjungiame duomenis iš abiejų šaltinių
for (type in premises_types) {
  if (type %in% names(csv_data_list) && "area" %in% colnames(csv_data_list[[type]])) {
    df <- csv_data_list[[type]]</pre>
    df$type <- ifelse(type == "premises", "Pardavimas", "Nuoma") # Lietuviškas žymėjimas</pre>
    # Užtikriname, kad plotas būtų skaitinis
    df$area <- as.numeric(gsub(",", ".", as.character(df$area)))</pre>
    # Atmetame nelogiškus ploto dydžius (pvz., neigiamus ar per didelius)
    df <- df[!is.na(df$area) & df$area > 0 & df$area < 10000, ]</pre>
    # Užtikriname, kad visi stulpeliai būtų vienodi abiem šaltiniam (premises ir premises_rent)
    if (length(premises_data) > 0) {
      # Nustatome bendrus stulpelius tarp esamo ir pridedamo duomenų rinkinių
      common_cols <- intersect(colnames(df), colnames(premises_data[[1]]))</pre>
      # Paliekame tik bendrus stulpelius
      df <- df[, common_cols, drop = FALSE]</pre>
    }
    premises_data[[type]] <- df</pre>
 }
}
# Jei turime bent vieną patalpų rinkinį
if (length(premises_data) > 0) {
  # Sujungiame duomenis, užtikrindami stulpelių suderinamumą
  if (length(premises_data) == 2) {
    # Užtikriname, kad stulpeliai abiem šaltiniuose būtu identiški
    common_cols <- intersect(colnames(premises_data[[1]]), colnames(premises_data[[2]]))</pre>
    premises_data[[1]] <- premises_data[[1]][, common_cols, drop = FALSE]</pre>
    premises_data[[2]] <- premises_data[[2]][, common_cols, drop = FALSE]</pre>
  # Sujungiame duomenis
  combined_premises <- do.call(rbind, premises_data)</pre>
  # Braižome dėžutės diagramą
  area_boxplot <- ggplot(combined_premises, aes(x = type, y = area, fill = type)) +</pre>
    geom boxplot(outlier.color = "red", outlier.size = 1) +
    labs(title = "Komercinių patalpų ploto pasiskirstymas",
         subtitle = "Pardavimo ir nuomos sektoriuose",
         x = "Sektorius",
         y = "Plotas (kv. m)") +
    theme_scientific() +
    theme(legend.position = "none") +
    scale_fill_manual(values = c("Pardavimas" = "#619CFF", "Nuoma" = "#00BA38")) +
    scale_y_continuous(labels = comma) +
    coord_cartesian(ylim = c(0, 500))
```


2.3.3 Namų nuomos kainos ryšys su plotu

Analizuojame, kaip namų nuomos kainų dydis priklauso nuo ploto.

```
# Namų nuomos kainos ir ploto priklausomybės analizė
if ("house_rent" %in% names(csv_data_list) &&
    all(c("price", "area") %in% colnames(csv_data_list[["house_rent"]]))) {
  # Pasiruošiame duomenis
  df <- csv_data_list[["house_rent"]]</pre>
  # Standartizuojame ploto stulpelį: pakeičiame kablelius taškais ir konvertuojame į skaičius
  df$area <- as.numeric(gsub(",", ".", as.character(df$area)))</pre>
  # Atmetame nelogiškas reikšmes
  df <- df[!is.na(df$area) & !is.na(df$price) &</pre>
           df$area > 0 & df$area < 500 &
           df$price > 0 & df$price < 6000, ]</pre>
  # Apskaičiuojame kainą už kvadratinį metrą
  df$price_per_sqm <- df$price / df$area</pre>
    # Braižome taškinę diagramą su regresijos linija
  scatter_plot <- ggplot(df, aes(x = area, y = price)) +</pre>
    geom_point(alpha = 0.7, color = "steelblue") +
```

Su tiesine regresijos kreive 5,000 4,000 1,000 1,000

200

Plotas (kv. m)

300

Koreliacijos koeficientas tarp namų ploto ir nuomos kainos: 0.692

3 Pagrindinės skaitinės charakteristikos

100

Namu nuomos kainos priklausomybe nuo ploto

3.1 Kiekybinių kintamųjų aprašomoji statistika

Šiame skyriuje pateikiamos pagrindinės skaitinės charakteristikos kiekybiniams nekilnojamojo turto rinkos kintamiesiems. Kiekvieno kintamojo aprašomoji statistika apima:

400

• Centrinės tendencijos matus:

```
- Aritmetinis vidurkis (Mean)
```

- Mediana (Median)
- Moda (Mode)
- Sklaidos matus:
 - Dispersija (Variance)
 - Standartinis nuokrypis (Standard deviation)
 - Kvartiliai (Quartiles) Q1 (25%), Q2 (50%), Q3 (75%)
 - Minimalios ir maksimalios reikšmės (Min, Max)

Analizei atrinkti šie kiekybiniai kintamieji:

- 1. Kaina (price) nekilnojamojo turto kaina EUR
- 2. Mėnesinė nuomos kaina (price_per_month) EUR/mėn
- 3. Peržiūrų skaičius (views total) skelbimo peržiūrų kiekis
- 4. Būsto plotas (area) kvadratiniais metrais
- 5. Žemės plotas (area_.a.) arais
- 6. Statybos metai (build year)
- 7. Aukštų skaičius (no._of_floors)
- 8. Buto aukštas (floor)
- 9. Kambarių skaičius (number of rooms)
- 10. Sklypo plotas (plot_area)

```
# Duomenų rinkinių filtravimas pagal stulpelio pavadinimą
filter datasets by column <- function(data list, column name) {
  filtered <- data list[sapply(data list, function(df) column name %in% colnames(df))]
  return(filtered)
}
# Modos skaičiavimo funkcija
get_mode <- function(v) {</pre>
  uniqv <- na.omit(unique(v))</pre>
  if (length(uniqv) == 0) return(NA)
  return(uniqv[which.max(tabulate(match(v, uniqv)))])
# Statistikų skaičiavimas kintamajam
calculate_summary <- function(data_list, variable_name, target_datasets) {</pre>
  # Sukuriame tuščią rezultatų lentelę su lietuviškais pavadinimais
  results <- data.frame(
    Duomenu_rinkinys = character(),
    Vidurkis = numeric(),
    Mediana = numeric(),
    Moda = character(),
    Stand_nuokr = numeric(),
    Q1 = numeric(),
    Q3 = numeric(),
    Minimumas = numeric(),
    Maksimumas = numeric(),
    stringsAsFactors = FALSE
```

```
# Ciklas per nurodytus duomenų rinkinius
  for (df_name in target_datasets) {
    if (df_name %in% names(data_list) && variable_name %in% colnames(data_list[[df_name]])) {
      # Išskiriame reikšmes ir konvertuojame į skaitinius duomenis
      values <- data_list[[df_name]][[variable_name]]</pre>
      numeric_values <- as.numeric(gsub(",", ".", as.character(values)))</pre>
      # Pašaliname NA reikšmes skaičiavimams
      clean values <- numeric values[!is.na(numeric values)]</pre>
      if (length(clean_values) > 0) {
        # Gauname statistikas iš R summary funkcijos
        summ <- summary(clean_values)</pre>
        # Apskaičiuojame papildomas statistikas
        n_val <- length(clean_values)</pre>
        mean_val <- mean(clean_values)</pre>
        median_val <- median(clean_values)</pre>
        mode_val <- get_mode(clean_values)</pre>
        sd_val <- sd(clean_values)</pre>
        quant_vals <- quantile(clean_values, probs = c(0.25, 0.5, 0.75))
        min_val <- min(clean_values)</pre>
        max_val <- max(clean_values)</pre>
        # Pridedame rezultatus į lentelę
        results <- rbind(results, data.frame(</pre>
          Duomeny_rinkinys = df_name,
          Vidurkis = mean_val,
          Mediana = median_val,
          Moda = as.character(mode_val),
          Stand_nuokr = sd_val,
          Q1 = quant_vals[1],
          Q3 = quant_vals[3],
          Minimumas = min_val,
          Maksimumas = max_val
        ))
      }
    }
  }
  return(results)
}
# Apibrėžiame analizuojamus kiekybinius kintamuosius
columns_to_check <- c(</pre>
  "price", "price_per_month", "views_total", "area", "area_.a.",
  "build_year", "no._of_floors", "floor", "number_of_rooms", "plot_area"
# Sukuriame sąrašą rezultatams saugoti
column_results <- list()</pre>
# Apdorojame kiekvieną stulpelį ir saugome rezultatus
```

```
for (col in columns_to_check) {
  column_results[[col]] <- filter_datasets_by_column(csv_data_list, col)</pre>
}
# Apibrėžiame duomenų rinkinio grupes
sale_datasets <- c("apartments", "garages_parking", "houses", "land", "premises")</pre>
rent_datasets <- c("apartments_rent", "house_rent", "premises_rent")</pre>
all_datasets <- c("apartments", "apartments_rent", "garages_parking", "garages_parking_rent",
                "house_rent", "houses", "land", "land_rent", "premises", "premises_rent")
# Apskaičiuojame kainos statistikas pardavimo duomenims
sale_price_stats <- calculate_summary(csv_data_list, "price", sale_datasets)</pre>
# Apskaičiuojame kainos statistikas nuomos duomenims
rent_price_stats <- calculate_summary(csv_data_list, "price", rent_datasets)</pre>
# Atvaizduojame rezultatus lentelėse
if (nrow(sale_price_stats) > 0) {
  # Pašaliname indekso stulpelį, kuris rodo "25%"
  kable(sale_price_stats,
        caption = "Pardavimų kainų statistika pagal nekilnojamojo turto tipą",
        digits = 2,
        row.names = FALSE) %>%
    kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
}
```

Table 6: Pardavimų kainų statistika pagal nekilnojamojo turto tipą

Duomenų_rinkinys	Vidurkis	Mediana	Moda	$Stand_nuokr$	Q1	Q3	Minimumas	Maksimumas
apartments	143718.13	107558	125000	146129.71	64000	172000	43	2500000
garages_parking	19015.55	15000	15000	19477.64	10000	22499	500	248000
houses	183734.43	140000	35000	223884.94	55000	235000	200	4200000
land	115388.60	35000	25000	386437.38	18000	79900	100	12000000
premises	413170.38	165000	145000	762212.43	70000	399850	490	10000000

Table 7: Nuomos kainų statistika pagal nekilnojamojo turto tipą

Duomenų_rinkinys	Vidurkis	Mediana	Moda	Stand_nuokr	Q1	Q3	Minimumas	Maksimumas
apartments_rent	609.95	525	600	1529.12	380	690.0	20	84900
house_rent	1428.76	1200	1500	1327.40	750	1500.0	50	13000

Table 8: Peržiūrų skaičiaus statistika pagal nekilnojamojo turto tipą

Duomenų_rinkinys	Vidurkis	Mediana	Moda	Stand_nuokr	Q1	Q3	Minimumas	Maksimumas
apartments	1573	892	527	2244	425	1860	0	56297
apartments_rent	1806	606	193	9703	286	1315	2	355786
garages_parking	727	433	161	1017	194	876	13	12209
garages_parking_rent	374	173	23	728	80	404	6	7521
house_rent	1275	582	20	2332	262	1411	20	24014
houses	2247	1133	412	3549	501	2612	2	71418
land	869	346	76	2965	140	872	1	191374
land_rent	477	256	70	560	100	619	11	2658
premises	647	310	58	1296	132	710	0	21298
premises_rent	742	257	42	2341	106	607	1	46715

Table 9: Aukštų skaičiaus statistika pagal nekilnojamojo turto tipą

Duomenų_rinkinys	Vidurkis	Mediana	Moda	Stand_nuokr	Q1	Q3	Minimumas	Maksimumas
apartments	5.1	5	5	3.0	3	5	1	34
apartments_rent	5.3	5	5	3.0	4	6	1	34
house_rent	1.8	2	2	0.6	1	2	1	4
houses	1.6	2	2	0.6	1	2	1	15
premises	2.4	2	1	1.9	1	3	1	18
premises_rent	2.8	2	1	2.9	1	3	1	31

```
if (nrow(rooms_stats) > 0) {
   kable(rooms_stats,
      caption = "Kambarių skaičiaus statistika pagal nekilnojamojo turto tipą",
      digits = 1,
      row.names = FALSE) %>%
   kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
}
```

Table 10: Kambarių skaičiaus statistika pagal nekilnojamojo turto tipą

Duomenų_rinkinys	Vidurkis	Mediana	Moda	Stand_nuokr	Q1	Q3	Minimumas	Maksimumas
apartments	2.4	2	2	1.0	2	3	1	13
apartments_rent	2.0	2	2	0.8	1	2	1	10
house_rent	4.2	4	4	1.7	3	5	1	13
houses	4.2	4	4	2.0	3	5	1	54

- 4. Sudarykite dažnių lenteles kategoriniams kintamiesiems.
- 5. Suformuluokite bent 6 tyrimo hipotezes iš savo duomenų rinkinio
- 6. Užrašykite kokius testus parinkote savo tyrimo hipotezėms. Hipotezės turi būti skirtos skirtingų testų naudojimui. Jei reikia susikurkite naujus kintamuosius iš turimų duomen.
- 7. Patikrinkite, ar kintamieji tenkina būtinas sąlygas testų taikymui. Jei netenkina, atlikite duomenų transformacijas.
- 8. Atlikite statistinį tyrimą savo suformuluotoms hipotezėms.
- 9. Pateikite tyrimo atsakymą.