Date: Sep 15th 4 Sep 18th 2017.

Application of Shell Momentum Balance Thin Film of Falling Fluid

Consider a thin film of falling fluid with thickness δ as shown on a reservoir. We will ignore the initial disturbance and are interested in velocity profile of fluid in the section with steady flow profile. Use shell momentum balance to :

- a. Find the Velocity Profile
- b. Find the maximum Velocity
- c. Find the average velocity
- d. Calculate Mass flow rate
- e. Force exerted by fluid on solid surface

S-> Thickness of fluid.

Direction of fluid > VZ

Vz = function of se-direction or varies as depth of liquid.

CNOTOW in x direction or y direction).

width of the plate or w length of section for -> L steady frow

$$v_z \neq f(z) \Rightarrow \frac{\partial v_z}{\partial z} = 0$$

$$v_z \neq f(y) \Rightarrow \frac{\partial v_z}{\partial y} = 0$$

(Make assumptions based on geometry and physical situation).

Solution of the plate >> 8 (Thickness of fluid).

Here, Width of the plate >> 8 (Thickness of fluid).

Date	:	

Choose a Shell Larto Lomponents that are monzerofus this case This case The property of the control of the	The state of the s
dxz = flux of z momentumin x-direction	B 7
dyz = flux of z momentum in y-direction. Z=L dyz = 0, Since no velocity gradient in y direct w>>> 8.	g ws B

	Date :
write momentum balance equation for the component	
moh-Zero,	
-> Rate of z-momentum in at Z=0	
(dzz/z=v) WOX	
-> Rate of z-momentum out at z=	=
(Pzz/z=L) WBX	
-> Rate of z-momentum in at x=x	
(pxz x=x) WL	
-> Rate of z-momentum out at x=	×+ ΔX
$\left(\phi_{XZ} \middle _{X=X+\Delta X} \right)$	WL
momentum Balance Fan. T.) - (Momen	
T.) - (Momen	turn) + Budy
Momentum In) - (Momentum In) - (Momentum In)	t) / forces = 0
$(\phi_{xz} _{x=x})LW - (\phi_{xz} _{x+\Delta x})$ + $\int (\phi_{zz} _{z=0})LW - \chi_{x}$ + $\int (\phi_{zz} _{z=0})LW - \chi_{x}$	$\lfloor \mathcal{N} \rfloor$
$(\phi_{\times z} _{x=x})$	
+ S(b22) W DX) -	ZZ Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
t 89	WSB (LWDX)=0
	,

	Date :
\mathcal{I}°	
PZZ= P+JZZ+ PVZVZ	
PZZ = txz + Pvxyz	$\exists X = 0$
P=P(x). p z=0 will p z=L will Lis large, no presso in steady state.	be same.
$b \mid z = 0$ $ z = 1$	ve difference
Lis large, mo pris in steady state.	
$* t_{zz} = - \lambda \left[\frac{2 \partial v_z}{\partial z} \right]$	Vz is a function of χ
7	
$\frac{25}{2\sqrt{5}}$	_ <u>_</u>
PZZ Z=0 +	5 /2 /2 = 0
122/2=L = P 2=L+	PVZVZ/Z= L
\Rightarrow $ \phi_{zz} _{z=0} - \phi_{zz}$	- 12-2

Date :	
Final moment um	
belance equation	
belance equation (Earl I reduces to)	
$(\varphi_{XZ} _{X=X}) LW - (\varphi_{XZ} _{X=X+})$	\cdot $\!$
+ Pg wsB (L)	ND
(Txzlx=x) LW - (Txzlx+sx) LV + Sg cosb (LWSX) =0	
Now we can get m. a differential earn. Divide by LWDX, take limit DX-	> い
Divide by LWDX, take limit	
(Txz/x=x - Txz/x+Dx) + Jgws	iB
TAXZ = 1+ fg cws B	
+ d xz = /+ (g cw) }	

Date:

$$\frac{dx}{dx} = \int g \cos \beta$$
 $\frac{dx}{dx} = \int g \cos \beta x + (1)$
 $\frac{dx}{dx} = 0$
 $\frac{dx}{dx} = 0$
 $\frac{dx}{dx} = \int g \cos \beta x$
 $\frac{dx}{dx} = \int g \cos \beta x$

_		
Date	٠	
Date	•	

V2) = Volumetric

Journate

Cross section

Solve a

V2 dx dy

NS dx dy

NS dx dy

Force

Txz/x=8

Txz/x=8

Txz/x=8

Txz/x=8