第十五讲 几类常见曲面

一、柱面

- 二、锥面
- 三、旋转曲面
- 四、空间曲线的投影

一、柱面

定义 平行于定直线并沿定曲线C移动的直线L 所形成的曲面称为柱面.

这条定曲线*C* 叫柱面的准线,动直线*L* 叫柱面的 母线.

观察柱面的形成过程:

柱面举例
$$x^2 = 2y$$
 $y = x$

柱面的准线不是唯一的

$$-\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

双曲柱面

$$x^2 + y^2 = R^2$$

圆柱面

$$H(x,z)=0$$

从柱面方程看柱面的特征: G(y,z)=0

只含x,y而缺z的方程F(x,y)=0,在空间直角坐标系中表示母线平行于z轴的柱面,其准线为xoy面上曲线C:F(x,y)=0.(其它类推)

实例
$$\frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
, 椭圆柱面 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, 双曲柱面 $x^2 = 2pz$, 抛物柱面

现假设直线的方向向量为s = (a,b,c),准线 γ 的方程为

$$\begin{cases} F_1(x, y, z) = 0 \\ F_2(x, y, z) = 0 \end{cases}$$

则将方程组

$$\begin{cases}
F_1(x + at, y + bt, z + ct) = 0 \\
F_2(x + at, y + bt, z + ct) = 0
\end{cases}$$

消去 t 后得到关于 x, y, z 的关系式 F(x, y, z) = 0

即为所求的柱面方程.

例1 已知柱面的轴为

$$\frac{x}{1} = \frac{y-1}{-2} = \frac{z+1}{-2}$$

点(1,-2,1)在圆柱面上,求这个圆柱面的方程.

解: 圆柱面的准线可取为

$$\begin{cases} (x-1)-2(y+2)-2(z-1)=0\\ x^2+(y-1)^2+(z+1)^2=14 \end{cases}$$

母线方向向量可取为(1,-2,-2). 设M(x,y,z)是柱面上一点,又设过M的母线与准线交于点 $M_1(x_1,y_1,z_1)$,

则
$$x_1 = x + t, y_1 = y - 2t, z_1 = z - 2t$$
.将 x_1, y_1, z_1 代入

准线方程并消去 t 可得柱面方程为:

$$8x^2 + 5y^2 + 5z^2 + 4xy + 4xz - 8yz - 18y + 18z - 99 = 0.$$

二、锥面

定义2.5.3 空间内过一定点且与一定曲线相交的直线

簇组成的曲面称为一个锥面. 定曲线称为准线, 定点称为锥面的定点.

我们可用求柱面方程类似的方法求锥面的方程.

例2 锥面的定点为原点O,且准线为

$$\begin{cases} \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \\ z = c \end{cases}$$

求此锥面的方程.

解: 设M(x,y,z)为此锥面上任一点,则母线OM与准线交于 $M_1(x_1,y_1,z_1)$,则

$$x_1 = tx, y_1 = ty, z_1 = tz, t \in R.$$

将 x_1, y_1, z_1 代入准线方程并消去 t 可得所求准面方程为

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0.$$

(Im

三、旋转曲面

定义 一条平面曲 线绕其所在平面上 的一条直线旋转一 周所成的曲面称为 旋转曲面.

设在yoz面上有一条曲线 f(y,z)=0, 这条曲线统z轴旋 这条曲线统z轴旋 特一周,就得到 一张旋转曲面 Σ , 试求这曲面的方程.

在曲面上任取一点,不妨设为 M(x,y,z)点,且设点M是曲线 f(y,z)=0上的点 M_1 绕z轴旋转所得的一点,如图,又设 M_1 的坐标为 $(0,y_1,z_1)$,则 $f(y_1,z_1)=0$,且有 (1) $z=z_1$;

(2)
$$d = \sqrt{x^2 + y^2} = |y_1|$$
.

则有 (1)
$$z = z_1$$
; $f(y_1, z_1) = 0$, (2) $d = \sqrt{x^2 + y^2} = |y_1|$.

得方程
$$f(\pm \sqrt{x^2 + y^2}, z) = 0$$
, $f(y,z) = 0$

这就是yoz面上的已知曲线 f(y,z) = 0绕z轴旋转一周,得到的旋转曲面 Σ 的方程.

同理,yoz面上的已知曲线 f(y,z) = 0绕y轴旋转一周,得到的旋转曲面的方程为

$$f(y, \pm \sqrt{x^2 + z^2}) = 0.$$

例 3 由 Oyz 平面上的圆

$$(y-b)^2 + z^2 = a^2$$
 $(b>a>0), x=0$

绕z轴旋转所得旋转曲面方程为

$$(\pm \sqrt{x^2 + y^2} - b)^2 + z^2 = a^2$$

$$x^{2} + y^{2} + z^{2} + b^{2} - a^{2}$$
$$= \pm 2b\sqrt{x^{2} + y^{2}}$$

$$(x^{2} + y^{2} + z^{2} + b^{2} - a^{2})^{2}$$
$$= 4b^{2}(x^{2} + y^{2})$$

 $(y-b)^2 + z^2 = a^2(b > a > 0)$ 绕z轴 旋转所成曲面

例4 将下列各曲线绕对应的轴旋转一周,求生成的旋转曲面的方程.

(1) zox 面上的双曲线 $\frac{x^2}{a^2} - \frac{z^2}{c^2} = 1$ 分别绕 x轴和 z轴

绕
$$x$$
轴旋转 $\frac{x^2}{a^2} - \frac{y^2 + z^2}{c^2} = 1$,

旋转双叶双曲面

绕z轴旋转
$$\frac{x^2+y^2}{a^2}-\frac{z^2}{c^2}=1.$$

旋转单叶双曲面

旋转双曲面

(2)
$$yoz$$
 面上的椭圆 $\frac{y^2}{a^2} + \frac{z^2}{c^2} = 1$ 绕 y 轴和 z 轴;

(3) yoz 面上的抛物线 $y^2 = 2pz$ 绕z轴;

$$x^2 + y^2 = 2pz$$
. 旋转抛物面

说明下列旋转曲面是怎样形成的.

(1)
$$(z-a)^2 = x^2 + y^2$$

(2)
$$x^2 - y^2 - z^2 = 1$$

$$(3) \quad x^2 + z^2 = 3y^2$$

$$(4) \quad x^2 + y^2 = 3z$$

直线
$$\begin{cases} z - a = x \\ y = 0 \end{cases}$$
 绕z轴旋转

$$\begin{cases} x^2 - y^2 = 1 \\ z = 0 \end{cases}$$
 绕 x 轴旋转

$$\begin{cases} x^2 = 3y^2 \\ z = 0 \end{cases}$$
 绕y轴旋转

$$\begin{cases} x^2 = 3z \\ y = 0 \end{cases}$$
绕z轴旋转

四、空间曲线在坐标面上的投影

设空间曲线的一般方程为: $\begin{cases} F(x,y,z) = 0, \\ G(x,y,z) = 0, \end{cases}$

设消去变量z后得: H(x,y)=0. 则该方程表示的曲面称为所给空间曲线关于xoy 面的投影柱面.

投影柱面的特征:

以此空间曲线为准线,垂直于所投影的坐标面.

空间曲线在 xoy 面上的投影曲线的方程为

$$\begin{cases} H(x,y) = 0, \\ z = 0. \end{cases}$$

类似地:可定义空间曲线在其它坐标面上的投影:

yoz面上的投影曲线

zox面上的投影曲线

$$\begin{cases} R(y,z) = 0, \\ x = 0. \end{cases}$$

$$\begin{cases} T(x,z) = 0, \\ y = 0. \end{cases}$$

例4 求曲线
$$\begin{cases} x^2 + y^2 + z^2 = 1 \\ z = \frac{1}{2} \end{cases}$$

在xoy面上的投影.

消去变量z后得

$$x^2 + y^2 = \frac{3}{4},$$

在xoy面上的投影为

$$\begin{cases} x^2 + y^2 = \frac{3}{4}, \\ z = 0 \end{cases}$$

例5 求曲线
$$\begin{cases} x^2 + y^2 + z^2 = 1 \\ x^2 + y^2 = \frac{1}{2} \end{cases}$$
 在 xoy 面上的投影.

由于不能消去变量%, 故投影柱面为

$$x^2 + y^2 = \frac{1}{2},$$

曲线在xoy面上的投影为

$$\begin{cases} x^2 + y^2 = \frac{1}{2} \\ z = 0 \end{cases}$$

补充:空间立体或曲面在坐标面上的投影.

空间立体

曲面

例6 设一个立体,由上半球面 $z = \sqrt{4-x^2-y^2}$ 和 $z = \sqrt{3(x^2 + y^2)}$ 锥面所围成,求它在 xoy面上的投影.

半球面和锥面的交线为 $C: \begin{cases} z = \sqrt{4-x^2-y^2}, \\ z = \sqrt{3(x^2+y^2)}, \end{cases}$

消去 z 得投影柱面 $x^2 + y^2 = 1$,

则交线 C 在 xoy 面上的投影为

$$\begin{cases} x^2 + y^2 = 1, \\ z = 0. \end{cases}$$

$$\begin{cases} x^2 + y^2 \le 1 \\ z = 0. \end{cases}$$

定义 以一条平面 曲线绕其平面上的 一条直线旋转一周 所成的曲面称为旋 转曲面.

三、旋转曲面

定义 平行于定直线并沿定曲线C移动的直线L 所形成的曲面称为柱面.

这条定曲线*C* 叫柱面的准线,动直线*L* 叫柱面的 母线.

观察柱面的形成过程:

定义 平行于定直线并沿定曲线 C 移动的直线 L所形成的曲面称为柱面.

这条定曲线 C叫柱面的准线, 动直线L叫柱面 的母线.

定义 平行于定直线并沿定曲线 C 移动的直线 L所形成的曲面称为柱面.

这条定曲线C叫柱面的准线, 动直线 L叫柱面 的母线.

定义 平行于定直线并沿定曲线 C 移动的直线 L所形成的曲面称为柱面.

这条定曲线 C叫柱面的准线, 动直线 L叫柱面 的母线.

定义 平行于定直线并沿定曲线 C 移动的直线 L所形成的曲面称为柱面.

这条定曲线 C叫柱面的准线,动 直线上叫柱面的母 线.

定义 平行于定直线并沿定曲线 C 移动的直线 L所形成的曲面称为柱面.

这条定曲线 C叫柱面的准线, 动直线L叫柱面 的母线.

定义 平行于定直线并沿定曲线 C 移动的直线 L所形成的曲面称为柱面.

这条定曲线 C叫柱面的准线,动 直线L叫柱面的母 线.

定义 平行于定直线并沿定曲线 C 移动的直线 L所形成的曲面称为柱面.

这条定曲线 C叫柱面的准线,动 直线上叫柱面的母 线.

定义 平行于定直线并沿定曲线 C 移动的直线 L所形成的曲面称为柱面.

这条定曲线C叫柱面的准线, 动直线 L叫柱面 的母线.

定义 平行于定直线并沿定曲线 C 移动的直线 L所形成的曲面称为柱面.

这条定曲线 C叫柱面的准线,动 直线上叫柱面的母 线.

定义 平行于定直线并沿定曲线 C 移动的直线 L所形成的曲面称为柱面.

这条定曲线 C叫柱面的准线,动 直线上叫柱面的母 线.

定义 平行于定直线并沿定曲线 C 移动的直线 L所形成的曲面称为柱面.

这条定曲线 C叫柱面的准线,动 直线上叫柱面的母 线.

定义 平行于定直线并沿定曲线 C 移动的直线 L所形成的曲面称为柱面.

这条定曲线 C叫柱面的准线, 动直线L叫柱面 的母线.

