ANSWERS TO PRACTICE PROBLEMS CHAPTER 6

1.

(i) (a)
$$\lambda_1 = -1$$
 $\mathbf{x}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, $\lambda_2 = 1$ $\mathbf{x}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.
(b) $\lambda_1 = i$ $\mathbf{x}_1 = \begin{bmatrix} -i \\ 1 \end{bmatrix}$, $\lambda_2 = -i$ $\mathbf{x}_2 = \begin{bmatrix} i \\ 1 \end{bmatrix}$.
(c) $\lambda_1 = \lambda_2 = 1$ $\mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\mathbf{x}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, (d) $\lambda_1 = \lambda_2 = 1$ $\mathbf{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

(ii) (a) The matrix is diagonalizable:
$$X = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$
 and $D = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$
(b) The matrix is diagonalizable: $X = \begin{bmatrix} -i & i \\ 1 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$
(c) The matrix is diagonalizable: $X = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

(d) The matrix is defective.

2

(a) The eigenvalues of
$$A$$
 are $\lambda_1 = 1$, $\lambda_2 = 0$, $\lambda_3 = 3$.
The eigenvalues of A^2 are 1, 0 9 and the eigenvalues of A^n are 1, 0 3ⁿ.

(b) The associated eigenspaces for the matrix A have basis $\mathbf{x}_1 = [1, 0, 0]^T$, $\mathbf{x}_2 = [-2, 1, 0]^T$, $\mathbf{x}_3 = [5, 4, 2]^T$ These are also the basis for the eigenspaces for the matrix A^2 and A^n .

(c)

$$A^{n} = \begin{bmatrix} 1 & 2 & -\frac{13}{2} + \frac{5(3^{n})}{2} \\ 0 & 0 & 2(3^{n}) \\ 0 & 0 & 3^{n} \end{bmatrix}$$

(d)

$$A^{7} = \begin{bmatrix} 1 & 2 & -\frac{13}{2} + \frac{5(3^{7})}{2} \\ 0 & 0 & 2(3^{7}) \\ 0 & 0 & 3^{7} \end{bmatrix} = \begin{bmatrix} 1 & 2 & 5461 \\ 0 & 0 & 4374 \\ 0 & 0 & 2187 \end{bmatrix}$$

3

(a)
$$\lambda_1 = 2$$
 and $\lambda_2 = 3$.

(b)
$$\lambda_1 = 2^2 + 2\alpha + \beta$$
, $\lambda_2 = 3^2 + 3\alpha + \beta$

4. k < 4.

5.
$$\lambda_1 = -2$$
, $\lambda_2 = 7$

6. (a)
$$v = 4x_1 + 5x_2$$

(b)
$$A$$
v = $[37, 38, 1]^T$

7.

(a) Defective

(b)
$$X = \begin{bmatrix} 1 & 0 & -3 \\ 1 & 0 & 0 \\ 0 & 1 & 4 \end{bmatrix}$$
 and $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{bmatrix}$

$$\mathbf{8.} \quad B = \begin{bmatrix} 2 & -1 & 0 \\ 0 & 1 & 0 \\ -4/3 & 4/3 & 1 \end{bmatrix}$$

9.
$$\lambda_1 = 3 + 2i$$
, $\lambda_2 = 3 - 2i$, $\lambda_3 = 0$, $\lambda_4 = -2i$

10.

- (a) If $\lambda = 0$ then $\det(A \lambda I) = \det(A) = 0$ and the matrix is singular which contradicts the assumption, thus $\lambda \neq 0$.
- **(b)** If $A\mathbf{x} = \lambda \mathbf{x}$ then $A^{-1}A\mathbf{x} = \lambda A^{-1}\mathbf{x}$ which gives $\mathbf{x} = \lambda A^{-1}\mathbf{x}$ or $A^{-1}\mathbf{x} = \frac{1}{\lambda}\mathbf{x}$ thus $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} with \mathbf{x} the corresponding eigenvector.

11.

The matrix has the eigenvalue $\lambda = a$ with Algebraic Multiplicity 3. The basis of the corresponding eigenspace consists of two linearly independent eigenvectors: $[1, 0, 0]^T$ and $[0, 1, 0]^T$. Thus GM = 2 < AM = 3 and the matrix is defective.

12.

If A is diagonalizable, then $A = XDX^{-1}$ where D is a diagonal matrix. If B is similar to A, then there exists a nonsingular matrix S such that $B = S^{-1}AS$. It follows that

$$B = S^{1}(XDX^{1})S$$

=(S^{1} X)D(S^{1}X)^{-1}

Therefore B is diagonalizable with diagonalizing matrix $S^{-1}X$.

13.

- (a) rank(A) = 3.
- **(b)** An orthonormal basis for $R(A^T)$ is given by \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , where \mathbf{v}_i is the *i*th column of V.
- (c) An orthonormal basis is given by \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3 where \mathbf{u}_i is the *i*th column of U
- 20 20 20 20

(e)
$$||B - A||_F = 10\sqrt{2}$$
.

(f)
$$C = \begin{bmatrix} 18 & 22 & 22 & 18 \\ 18 & 22 & 22 & 18 \\ 18 & 22 & 22 & 18 \\ 23 & 17 & 17 & 23 \\ 32 & 28 & 28 & 32 \end{bmatrix}$$

(g)
$$||C-A||_F = 10$$
.

14.
$$\hat{\mathbf{x}} = \frac{(\mathbf{u}_1^T \mathbf{b})}{\sigma_1} \mathbf{v}_1 + \frac{(\mathbf{u}_2^T \mathbf{b})}{\sigma_2} \mathbf{v}_2 = -\frac{4.5}{20} \mathbf{v}_1 - \frac{1.5}{15} \mathbf{v}_2 = \begin{bmatrix} 0.12 \\ -.215 \end{bmatrix}$$

15.
$$U = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & 0 & 0 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \Sigma = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad V = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix}$$