Pizzaseminar zu konstruktiver Mathematik

5. Übungsblatt

Aufgabe 1. Monomorphismen und Epimorphismen aus interner Sicht

Sei X ein topologischer Raum (oder eine Örtlichkeit). Sei $\alpha: \mathcal{F} \to \mathcal{G}$ ein Morphismus von Garben auf X. Zeige, ...

- a) ... dass α genau dann Monomorphismus ist, wenn $X \models \forall x, y : \mathcal{F}. \ \alpha(x) = \alpha(y) \Rightarrow x = y$.
- b) ... dass α genau dann ein Epimorphismus ist, wenn $X \models \forall y : \mathcal{G}. \ \exists x : \mathcal{F}. \ \alpha(x) = y.$

Aus Sicht der internen Sprache des Garbentopos Sh(X) sehen also Monomorphismen wie gewöhnliche injektive und Epimorphismen wie gewöhnliche surjektive Abbildungen aus.

Aufgabe 2. Vereinfachungsregeln für die interne Sprache

Sei X ein topologischer Raum.

- a) Eindeutige Existenz ist globale Existenz. Sei \mathcal{F} eine Garbe auf X und φ eine Aussage, in der eine Variable $x : \mathcal{F}$ frei vorkommt. Zeige: Genau dann gilt $X \models \exists! x : \mathcal{F}$. φ , wenn auf jeder offenen Teilmenge $U \subseteq X$ genau ein Schnitt $s \in \Gamma(U, \mathcal{F})$ mit $U \models \varphi(s)$ existiert.
- b) Topologische Interpretation der Doppelnegation. Sei φ eine Aussage. Zeige: Genau dann gilt $X \models \neg \neg \varphi$, wenn es eine dichte offene Teilmenge $U \subseteq X$ mit $U \models \varphi$ gibt.

Aufgabe 3. Die Ringgarbe stetiger Funktionen als Körper

Sei X ein topologischer Raum. Sei \mathcal{C}^0 die Garbe der stetigen Funktionen auf X.

- a) Sei $f \in \Gamma(U, \mathcal{C}^0)$. Zeige: Die Funktion f besitzt genau dann ein multiplikatives Inverses in $\Gamma(U, \mathcal{C}^0)$, wenn $X \models \lceil f$ invertierbar \rceil , d. h. wenn $X \models \exists g : \mathcal{C}^0$. fg = 1.
- b) Zeige, dass \mathcal{C}^0 aus interner Sicht in folgendem Sinn ein Körper ist:

$$X \models \forall f : \mathcal{C}^0$$
. $\neg (\lceil f \text{ invertierbar} \rceil) \Rightarrow f = 0$.

c) Zeige, dass \mathcal{C}^0 aber nicht folgende Körperbedingung erfüllt:

$$X \models \forall f : \mathcal{C}^0. \ f = 0 \lor \ulcorner f \text{ invertierbar} \urcorner.$$

Bemerkung. Man kann zeigen, dass \mathcal{C}^0 aus interner Sicht die Rolle der über dedekindsche Schnitte konstruierten reellen Zahlen erfüllt.

Aufgabe 4. Basen endlich erzeugter Vektorräume

- a) Sei V ein endlich erzeugter Vektorraum über einem Ring k, der die Körperbedingung aus Aufgabe 3b) erfüllt. Zeige konstruktiv, dass V nicht nicht eine Basis besitzt.
 - Tipp. Verwende, dass die Menge $\{n \in \mathbb{N} \mid V \text{ besitzt ein Erzeugendensystem der Länge } n\}$ nicht nicht ein Minimum besitzt.
- b) Sei X ein topologischer Raum. Sei \mathcal{F} eine \mathcal{C}^0 -Modulgarbe, die lokal von endlichem Typ ist (das ist gleichbedeutend damit, dass \mathcal{F} aus interner Sicht ein endlich erzeugter \mathcal{C}^0 -Modul ist). Folgere direkt aus a), dass \mathcal{F} auf einer dichten offenen Teilmenge U lokal frei ist (dass es also eine offene Überdeckung $U = \bigcup_i U_i$ gibt, sodass die $\mathcal{F}|_{U_i}$ isomorph zu Modulgarben der Form $(\mathcal{C}^0|_{U_i})^{n_i}$ sind).