CSC 503 Homework Assignment 13

Out: November 6, 2015
Due: November 13, 2015

rsandil

Q1. [30 points total] Let ϕ be the sentence $E_G p \rightarrow E_G E_G p$, where p is an atomic proposition and G is the set $\{1, 2\}$.

(a) [10 points]: Give a formal KT45 2 (two-agent) Kripke model I = (W, R₁, R₂, L) in which φ is true in every world.

Solution:

Consider the model $M = \{W, R_1, R_2, L\}$ with the following representations. The Kripke modal frame diagram is:

 $W = \{a, b\}$ is the set of worlds

 $R_1 = \{(a, b), (b, a)\}$ is accessibility function for agent K_1

 $R_2 = \{(a, b), (b, a)\}$ is accessibility function for agent K_2

 $L = \{L(a) = q, L(b) = q\}$ is the set of labelling functions

(b) [5 points]: Briefly explain why I makes φ true at every world

Solution:

The above kripke diagram satisfies the KT45² since we have self-loop on both the worlds which satisfies the reflexive property. Also the relations are symmetric since the link is bi-directional. Since both the world a and b satisfies $q \to q$ thus Euclidean property is also satisfied. Thus KT45² model is validated. Interpretation I makes true for every world since LHS of the implication $E_G p$ is always false for the above interpretation making $E_G p \to E_G E_G p$ always True. This is so because World 'a' does not force $k_1 p$ or $k_2 p$, similarly world 'b' does not force $k_1 p$ or $k_2 p$ thus $E_G p$ is false for both the worlds making $E_G p \to E_G E_G p$ True for all the worlds.

(c) [10 points]: Give a formal KT45 2 (two-agent) Kripke model J = (W', R1', R2', L') in which ϕ is false at some world.

Solution:

 $W = \{a, b, c\}$ is the set of worlds $R_1' = \{(a, b), (b, a), \{b, c\}, \{c, b\}\}$ is accessibility function for agent K_1 $R_2' = \{(a, b), (b, a)\}$ is accessibility function for agent K_2 $L = \{L(a) = p, L(b) = p, L(c) = q\}$ is the set of labelling functions

d) Briefly explain why J makes ϕ false at some world.

Solution: The above kripke diagram satisfies the KT45² since we have self-loop on all the worlds which satisfies the reflexive property. Also the relations are symmetric since the link is bidirectional. Also the Euclidean property is satisfied validating the KT45² model. In the world 'a', E_Gp is true since 'a' forces k_1p and k_2p . 'a' forces k_2p (since 'a' is accessible by 'b' through relation R1' and 'b' forces p). E_GE_Gp is false in 'a' because 'b' does not force E_Gp . it is because 'b' is accessible by a world 'c' which does not force p. Thus LHS is True and RHS is false for $E_Gp \rightarrow E_GE_Gp$ making it false overall. Thus Interpretation J makes φ false at some world.

Q2. [30 points] Find a natural deduction proof using basic or derived rules in the modal logic KT45ⁿ for the statement $\neg p \rightarrow K_2 \neg K_2 K_1 p$

Solution:

We prove the validity of given expression by:

1	¬р	assumption
2	K_2K_1p	assumption
3	K_1p	KT, 2
4	P	KT, 3
5	1	¬e, 4, 1
6	$\neg K_2 K_1 p$	¬i, 2−5
7	$-K_2K_1p$ $K_2-K_2K_1p$	K5, 6
8	$\neg p \rightarrow \neg K_2 K_1 p$	→i, 1–7

Q3. [40 points] Find a natural deduction proof using basic or derived rules in the modal logic KT45ⁿ for the sequent C (¬p \rightarrow q), C (¬p \rightarrow K₂¬p), K₁¬K₂q `F K₁p.

Solution:

1	$C(\neg p \rightarrow q)$	Premise
2	$C(\neg p \rightarrow K_2 \neg p)$	Premise
3	$K_1 \neg K_2 q$	Premise
4	$K_1(\neg p \rightarrow q)$	CK, 1
5	$K_1(\neg p \rightarrow K_2 \neg p)$	CK, 2
6	$\kappa_1 \neg K_2 q$	Ke, 3
7	$(\neg p \rightarrow q)$	Ke, 4
8	$(\neg p \rightarrow K_2 \neg p)$	Ke, 5
9	¬p	assumption
10.	K ₂ ¬p	→ e, 9, 8
11	к₂ ¬р	Ke, 10
12	q	→ e, 11, 7
13	K₂q	Ki, 11–12
14	1	¬e, 13, 6
15	¬¬р	¬i, 9–14
16	p	¬-e, 15
	·	
17	K ₁ p	Ki, 6–16