习题 3.22. 证明下面文法 (其中 $V_T = \{a, b, c, d\}$)

$$S \rightarrow Aa \mid bAc \mid dc \mid bda$$

$$A \rightarrow d$$

是 LALR(1) 文法, 但不是 SLR(1) 文法。

(1) 不是SLR(1): 构造SLR分析表,规则产生的动作出现冲突

$$I_0 \colon \{S' o \cdot S, S o \cdot Aa, S o \cdot bAc, S o \cdot dc, S o \cdot bda, A o \cdot d\}$$

$$I_1\colon \left\{S o b \cdot Ac, S o b \cdot da, A o \cdot d
ight\}$$

$$I_2\colon \left\{S o bd \cdot a, A o d \cdot
ight\}$$

I2:在面对a时, S->bd•a指示<mark>移进</mark>; 而a ∈ F0LL0W(A), A->d•产生<mark>归约</mark> 存在移进-归约冲突, 不是SLR(1) **习题 3.22.** 证明下面文法 (其中 $V_T = \{a, b, c, d\}$)

$$S \rightarrow Aa \mid bAc \mid dc \mid bda$$

$$A \rightarrow d$$

是 LALR(1) 文法, 但不是 SLR(1) 文法。

(1) 是LALR(1)

 I_0 :

 $I_3 = goto(I_0, b)$:

 $I_7 = goto(I_3, d)$:

 $S' o \cdot S, \$$

 $S o b \cdot Ac, \$$

 $S o bd \cdot a, \$$

拓广文法:

 $S
ightarrow \cdot Aa, \$$

 $S o b \cdot da, \$$

 $A o d \cdot, c$

 $0. S' \rightarrow S$

 $S \rightarrow \cdot bAc, \$$

 $A
ightarrow \cdot d, c$

1. S o Aa

 $S
ightarrow \cdot dc, \$$

 $I_4 = goto(I_0, d)$:

 $I_8 = goto(I_4, c)$:

2. S o bAc

 $S
ightarrow \cdot bda, \$$

 $S o d \cdot c, \$$

 $S o dc \cdot, \$$

 $A \rightarrow \cdot d, a$

 $A \to d\cdot a$

 $I_9 = goto(I_6, c)$:

3. S o dc

4. $S \rightarrow bda$

 $I_1 = goto(I_0, S)$:

 $I_5 = goto(I_2, a)$:

 $S \to bAc\cdot, \$$

 $S \to bda \cdot, \$$

5. A o d

 $S' o S \cdot, \$$

 $S \to A \cdot a, \$$

 $S o Aa\cdot, \$$

 $I_{10} = goto(I_7, a)$:

注意标号

 $I_2 = goto(I_0, A)$:

 $I_6 = goto(I_3, A)$:

 $S \to bA \cdot c, \$$

没有同心集可以合并

习题 3.22. 证明下面文法 (其中 $V_T = \{a, b, c, d\}$)

$$S \rightarrow Aa \mid bAc \mid dc \mid bda$$

$$A \to d$$

是 LALR(1) 文法, 但不是 SLR(1) 文法。

(1) 是LALR(1)

拓广文法:

0.
$$S' o S$$

1.
$$S o Aa$$

2.
$$S o bAc$$

3.
$$S o dc$$

4.
$$S o bda$$

5.
$$A o d$$

状态	а	b	С	d	\$	S	Α
0		s3		s4		1	2
1					acc		
2	s5						
3				s7			6
4	r5		s8				
5					r1		
6			s9				9
7	s10		r5				
8					r3		
9					r2		
10					r4		

习题 3.22. 证明下面文法 (其中
$$V_T = \{a, b, c, d\}$$
)

$$S \rightarrow Aa \mid bAc \mid dc \mid bda$$

$$A \to d$$

是 LALR(1) 文法, 但不是 SLR(1) 文法。

(1) 是LALR(1)

拓广文法:

0.
$$S' o S$$

1.
$$S o Aa$$

2.
$$S o bAc$$

3.
$$S o dc$$

4.
$$S o bda$$

5.
$$A o d$$

状态	a	b	С	d	\$	S	Α
0		s3		s4		1	2
1					acc		
2	s5						
3				s7			6
4	r5		s8				
5					r1		
6			s9				9
7	s10		r5				
8					r3		
9					r2		
10					r4		

分析表中需要包含转移部分

习题 3.24. 证明下面文法 (其中 $V_T = \{a, b, c, d\}$)

$$S \rightarrow Aa \mid bAc \mid Bc \mid bBa$$

$$A \to d$$

$$B \to d$$

是 LR(1) 文法, 但不是 LALR(1) 文法。

(1) 是LR(1), 构造分析表

0	S'	\rightarrow	S
U.	D.	7	\mathcal{L}

1.
$$S \rightarrow Aa$$

2.
$$S \rightarrow bAc$$

3.
$$S \rightarrow Bc$$

$$4. S \rightarrow bBa$$

5.
$$A \rightarrow d$$

6.
$$B \rightarrow d$$

$$I_0$$
:

$$S
ightarrow \cdot Aa, \$$$

 $S' \rightarrow \cdot S, \$$

$$S
ightarrow \cdot bAc, \$$$

$$S
ightarrow \cdot Bc, \$$$

$$S
ightarrow \cdot bBa, \$$$

$$A
ightarrow \cdot d, a$$

$$B
ightarrow \cdot d, c$$

$$I_1 = \mathrm{goto}(I_0,S)$$
 :

$$S' o S \cdot, \$$$

$$I_2=\mathrm{goto}(I_0,A)$$
 :

$$S o A\cdot a,\$$$

$$I_3 = \operatorname{goto}(I_0, B)$$
:

$$S o B \cdot c, \$$$

$$I_4 = \mathrm{goto}(I_0,b)$$
 :

$$S o b \cdot Ac, \$$$

$$S o b \cdot Ba, \$$$

$$A \rightarrow \cdot d, c$$

$$B
ightarrow \cdot d, a$$

$$I_5=\mathrm{goto}(I_0,d)$$
 :

$$A o d\cdot,a$$

$$B o d\cdot, c$$

$$I_6=\mathrm{goto}(I_2,a)$$
 :

$$S o Aa\cdot,\$$$

$$I_7=\mathrm{goto}(I_3,c)$$
 :

$$S o Bc \cdot, \$$$

$$I_8=\mathrm{goto}(I_4,A)$$
 :

$$S o bA \cdot c, \$$$

$$I_9=\mathrm{goto}(I_4,B)$$
 :

$$S o bB \cdot a, \$$$

$$I_{10}=\mathrm{goto}(I_4,d)$$
:

$$A o d\cdot, c$$

$$B o d\cdot, a$$

$$I_{11} = \operatorname{goto}(I_8, c)$$
:

$$S o bAc\cdot, \$$$

$$I_{12}=\mathrm{goto}(I_9,a)$$
:

$$S o bBa \cdot , \$$$

习题 3.24. 证明下面文法 (其中 $V_T = \{a, b, c, d\}$)

$$S \rightarrow Aa \mid bAc \mid Bc \mid bBa$$

$$A \to d$$

$$B \to d$$

是 LR(1) 文法, 但不是 LALR(1) 文法。

(1) 是LR(1), 构造分析表

$$0. S' \rightarrow S$$

1.
$$S \rightarrow Aa$$

2.
$$S \rightarrow bAc$$

3.
$$S \rightarrow Bc$$

$$4. S \rightarrow bBa$$

5.
$$A \rightarrow d$$

6.
$$B \rightarrow d$$

状态	a	b	С	d	\$	S	A	В
0		s4		s5		1	2	3
1					acc			
2	s6							
3			s7					
4				s10			8	9
5	r5		r6					
6					r1			
7					r3			
8			s11					
9	s12							
10	r6		r5					
11					r2			
12					r4			

习题 3.24. 证明下面文法 (其中 $V_T = \{a, b, c, d\}$)

$$S \rightarrow Aa \mid bAc \mid Bc \mid bBa$$

$$A \to d$$

$$B \to d$$

是 LR(1) 文法, 但不是 LALR(1) 文法。

(1) 不是LALR(1): 合并同心集之后出现归约-归约冲突

$$I_5=\mathrm{goto}(I_0,d)$$
: $I_{10}=\mathrm{goto}(I_4,d)$:

$$A
ightarrow d\cdot, a \hspace{1cm} A
ightarrow d\cdot, c$$

$$B
ightarrow d\cdot, c$$
 $B
ightarrow d\cdot, a$

$$I_5$$
和 I_{10} 合并: $A \rightarrow d\cdot, a/c$

$$B o d\cdot, a/c$$

面对a/c时, A->d和B->d出现归约-归约冲突

习题 3.26. 假设 $V_T = \{+, id\},$

- (a) 通过构造识别活前缀的 DFA 和构造分析表,来证明文法 $E \to E + id \mid id$ 是 SLR(1) 文法。
- (b) 下面左右两个文法都和 (a) 的文法等价

$$E \to E + M \ \mathbf{id} \ | \ \mathbf{id}$$
 $E \to ME + \ \mathbf{id} \ | \ \mathbf{id}$ $M \to \varepsilon$ $M \to \varepsilon$

请指出其中有几个文法不是 LR(1) 文法, 并给出它们不是 LR(1) 文法的理由。

(b) 左边 $E \rightarrow E + M$ id | id

$$M \to \varepsilon$$

构造LR(1)项目集:

 $I_2 = \operatorname{goto}(I_0, \operatorname{id})$:

 $E o \mathrm{id}\cdot,\$/+$

$$egin{aligned} 0. \ S' &
ightarrow E \ 1. \ E &
ightarrow E + M \ id \end{aligned}$$

3.
$$M o arepsilon$$

$$egin{aligned} I_0\colon &I_3=\gcd(I_1,+)\colon \ S' o\cdot E,\$ &E o E+M ext{ id},\$/+\ E o\cdot E+M ext{ id},\$/+ &M o\cdot,id \ E o\cdot ext{id},\$/+ &I_4=\gcd(I_3,M)\colon \ S' o E\cdot,\$ &E o E+M ext{ id},\$/+ &I_5=\gcd(I_4, ext{ id})\colon \end{aligned}$$

 $E o E + M \operatorname{id} \cdot, \$/+$

状态	id	+	\$	E	M
0	s2			1	
1		s3	acc		
2		r2	r2		
3	r3				4
4	s5				
5		r1	r1		

无任何冲突, 是LR(1)

习题 3.26. 假设 $V_T = \{+, id\},$

- (a) 通过构造识别活前缀的 DFA 和构造分析表,来证明文法 $E \to E + id \mid id$ 是 SLR(1) 文法。
- (b) 下面左右两个文法都和 (a) 的文法等价

$$E \to E + M \ \mathbf{id} \ | \ \mathbf{id}$$
 $E \to ME + \ \mathbf{id} \ | \ \mathbf{id}$ $M \to \varepsilon$ $M \to \varepsilon$

请指出其中有几个文法不是 LR(1) 文法, 并给出它们不是 LR(1) 文法的理由。

(b) 右边
$$E o ME + \mathbf{id} \mid \mathbf{id}$$
 $M o \varepsilon$

$$I_0$$
 : $S'
ightarrow \cdot E, \$$

$$E
ightarrow \cdot ME + {
m id}, \$$$

$$E
ightarrow \mathrm{id}, \$$$

$$M
ightarrow \cdot, id$$

面对id时, $E \rightarrow \cdot id$, \$ 移进, $M \rightarrow \cdot , id$ 归约 冲突

习题 3.37. 下面是一个二义文法

$$S \to AS \mid b$$
$$A \to SA \mid a$$

如果为该文法构造 LR 分析表,则一定存在某些有分析动作冲突的条目,它们是哪些?假定分析表这样来使用:出现冲突时,不确定地选择一个可能的动作。给出对于输入 *abab* 所有可能的动作序列。

1L)1 > 3 o	T. •	T (T A):	I (I C)	. /	$S o AS \cdot,/a/b$
	I_0 :	$I_2=\operatorname{goto}(I_0,A)$:	$I_5=goto(I_1,S):$	$I_7=\mathrm{goto}(I_1,b)$:	$S ightarrow \cdot AS, a/b$
0. $S' o S$	$S' ightarrow \cdot S, \$$	$S o A \cdot S, \$/a/b$	$S \to \cdot AS, a/b$	$S o b \cdot, a/b$	$S ightarrow \cdot b, a/b$
$0.5 \rightarrow 5$	$S o \cdot AS, \$/a/b$	$S ightarrow \cdot AS, \$/a/b$	$S ightarrow \cdot b, a/b$	× ×	
1. $S o AS$	$S o \cdot b, \$/a/b$	$S o \cdot b, \$/a/b$	$A \to S \cdot A, a/b$	$I_8=\mathrm{goto}(I_1,S)$:	$A \to S \cdot A, a/b$
2. $S \rightarrow b$	$A \to \cdot SA, a/b$	$A ightarrow \cdot SA, a/b$	$A ightarrow \cdot SA, a/b$	98 19 19	$A \rightarrow \cdot SA, a/b$
$\angle . \ \mathcal{S} \to 0$	$A ightarrow \cdot a, a/b$, ,		$S o AS \cdot, \$/a/b$	$A \to \cdot a, a/b$
3. $A o SA$	11 / 4,4/0	$A \rightarrow \cdot a, a/b$	$A ightarrow \cdot a, a/b$	$S ightarrow \cdot AS, a/b$	11 / a, a/o
$4. A \rightarrow a$	$I_1=\operatorname{goto}(I_0,S)$:	$I_3=\mathrm{goto}(I_0,a)$:	$I_6=\mathrm{goto}(I_1,A)$:	$S o \cdot b, a/b$	$I_{10}=\mathrm{goto}(I_6,A)$:
1. 21 / W	$S' o S \cdot, \$$		$S ightarrow A \cdot S, a/b$	$A o S\cdot A, a/b$	
	$S ightarrow \cdot AS, a/b$	$A \to a \cdot, a/b$			$S \to A \cdot S, a/b$
		T (T 1).	$S ightarrow \cdot AS, a/b$	$A \to \cdot SA, a/b$	$S ightarrow \cdot AS, a/b$
	$S ightarrow \cdot b, a/b$	$I_4=\mathrm{goto}(I_0,b)$:	$S \to \cdot b, a/b$	$A \to \cdot a, a/b$	$S ightarrow \cdot b, a/b$
	$A \to S \cdot A, a/b$	$S o b \cdot, \$/a/b$	$A \to SA \cdot, a/b$. ,
	$A \rightarrow \cdot SA, a/b$		$A ightarrow \cdot SA, a/b$		$A \to \cdot SA, a/b$
	$A \rightarrow \cdot a, a/b$				$A \to \cdot a, a/b$
	the state of the s		$A \rightarrow \cdot a, a/b$		

 $I_9=\mathrm{goto}(I_6,S)$:

习题 3.37. 下面是一个二义文法

$$S \to AS \mid b$$

$$A \to SA \mid a$$

如果为该文法构造 LR 分析表,则一定存在某些有分析动作冲突的条目,它们是哪些? 假定分析表这样来使用: 出现冲突时,不确定地选择一个可能的动作。给出对于输入 *abab* 所有可能的动作序列。

	127		
0	CI		C
		\rightarrow	

1.
$$S \rightarrow AS$$

$$2. S \rightarrow b$$

3.
$$A o SA$$

$$4. A \rightarrow a$$

状态	a	b	\$	S	A
0	s3	s4		1	2
1	s3	s7	acc	5	6
2	s3	s4		8	2
3	r4	r4			
4	r2	r2	r2		
5	s3	s7		5	6
6	s3/r3	s7/r3		9	10
7	r2	r2			
8	s3/r1	s7/r1	r1	5	6
9	s3/r1	s7/r1		5	6
10	s3	s7		9	10

习题 3.37. 下面是一个二义文法

$$S \to AS \mid b$$

$$A \to SA \mid a$$

如果为该文法构造 LR 分析表,则一定存在某些有分析动作冲突的条目,它们是哪些?假定分析表这样来使用:出现冲突时,不确定地选择一个可能的动作。给出对于输入 abab 所有可能的动作序列。 情况1:状态8移进,状态6移进

状态	a	b	\$	S	A
0	s3	s4		1	2
1	s3	s7	acc	5	6
2	s3	s4		8	2
3	r4	r4			
4	r2	r2	r2		
5	s3	s7		5	6
6	s3/r3	s7/r3		9	10
7	r2	r2			
8	s3/r1	s7/r1	r1	5	6
9	s3/r1	s7/r1		5	6
10	s3	s7		9	10

分析栈	输入	动作	说明
0	abab\$	s3	移进a到状态3
0a3	bab\$	r4	归约 $A \rightarrow a$ 到状态 0 ,再转移到状态 2
0A2	bab\$	s4	移进b到状态4
0A2b4	ab\$	r2	归约 $S \rightarrow b$ 到状态2,再转移到状态8
0A2S8	ab\$	s3	移进a(状态8冲突:选移进)
0A2S8a3	b\$	r4	归约 $A \rightarrow a$ 到状态8,再转移到状态6
0A2S8A6	b\$	s7	移进b(状态6冲突:选移进)
0A2S8A6b7	\$	r2	归约 $S \rightarrow b$ 到状态 6 ,再转移到状态 9
0A2S8A6S9	\$	错误	

情况2: 状态8移进, 状态6归约

分析栈	输入	动作	说明
0	abab\$	s3	移进a到状态3
0a3	bab\$	r4	归约 $A \rightarrow a$ 到状态 0 ,再转移到状态 2
0A2	bab\$	s4	移进b到状态4
0A2b4	ab\$	r2	归约 $S o b$ 到状态2,再转移到状态8
0A2S8	ab\$	s3	移进a(状态8冲突: 选移进)
0A2S8a3	b\$	r4	归约 $A o a$ 到状态 8 ,再转移到状态 6
0A2S8A6	b\$	s7	归约 $A o SA$ 到状态2,再转移到状态2(状态6冲突:选归约)
0A2A2	b\$	s4	移进b到状态4
0A2A2b4	\$	r2	归约 $S o b$ 到状态2,再转移到状态8
0A2A2S8	\$	r1	归约 $S o AS$ 到状态2,再转移到状态8
0A2S8	\$	r1	归约 $S o AS$ 到状态 0 ,再转移到状态 1
0S1	\$	acc	接受

情况3: 状态8归约, 状态6移进

分析栈	输入	动作	说明
0	abab\$	s3	移进a到状态3
0a3	bab\$	r4	归约 $A \rightarrow a$ 到状态 0 ,再转移到状态 2
0A2	bab\$	s4	移进b到状态4
0A2b4	ab\$	r2	归约 $S o b$ 到状态2,再转移到状态8
0A2S8	ab\$	r1	归约 $S \to AS$ 到状态 0 ,再转移到状态 1 (状态 8 冲突:选归约)
0S1	ab\$	s3	移进a到状态3
0S1a3	b\$	r4	归约 $A \rightarrow a$ 到状态2,再转移到状态6
0S1A6	b\$	s7	移进b到状态7(状态6冲突:选移进)
0S1A6b7	\$	错误	

情况4: 状态8归约, 状态6移进

分析栈	输入	动作	说明
0	abab\$	s3	移进a到状态3
0a3	bab\$	r4	归约 $A o a$ 到状态 0 ,再转移到状态 2
0A2	bab\$	s4	移进b到状态4
0A2b4	ab\$	r2	归约 $S \rightarrow b$ 到状态2,再转移到状态8
0A2S8	ab\$	r1	归约 $S o AS$ 到状态 0 ,再转移到状态 1 (状态 8 冲突:选归约)
0S1	ab\$	s3	移进a到状态3
0S1a3	b\$	r4	归约 $A ightarrow a$ 到状态2,再转移到状态6
0S1A6	b\$	s7	归约 $A \to SA$ 到状态 0 ,再转移到状态 2 (移进 b 到状态 7 (状态 6 冲 突:选归约)
0A2	b\$	s4	移进b到状态4
0A2b4	\$	r2	归约 $S o b$ 到状态2,再转移到状态8
0A2S8	\$	r1	归约 $S o AS$ 到状态 0 ,再转移到状态 1
0S1	\$	acc	接受