Assignment Part II

Question 1

What is the optimal value of alpha for ridge and lasso regression? What will be the changes in the model if you choose double the value of alpha for both ridge and lasso? What will be the most important predictor variables after the change is implemented?

Ans: The optimal value of alpha for Ridge is 2 and for Lasso it is 0.001. With these alphas the R2 of the model was approximately 0.83.

After doubling the alpha values in the Ridge and Lasso, the prediction accuracy remains around 0.82 but there is a small change in the co-efficient values. The new model is created and demonstrated in the Jupiter notebook. Below are the changes in the co-efficient.

Ridge Regression Model

	Ridge Co-Efficient		Ridge Doubled Alpha Co-Efficient	
Total_sqr_footage	0.169122	Total_sqr_footage	0.149028	
GarageArea	0.101585	GarageArea	0.091803	
TotRmsAbvGrd	0.067348	TotRmsAbvGrd	0.068283	
OverallCond	0.047652	OverallCond	0.043303	
LotArea	0.043941	LotArea	0.038824	
CentralAir_Y	0.032034	Total_porch_sf	0.033870	
LotFrontage	0.031772	CentralAir_Y	0.031832	
Total_porch_sf	0.031639	LotFrontage	0.027526	
Neighborhood_StoneBr	0.029093	Neighborhood_StoneBr	0.026581	
Alley_Pave	0.024270	OpenPorch SF	0.022713	
OpenPorch SF	0.023148	MSSubClass_70	0.022189	
MSSubClass_70	0.022995	Alley_Pave	0.021672	
RoofMatl_WdShngl	0.022586	Neighborhood_Veenker	0.020098	
Neighborhood_Veenker	0.022410	BsmtQual_Ex	0.019949	
Sale Type_Con	0.022293	KitchenQual_Ex	0.019787	
HouseStyle_2.5Unf	0.021873	HouseStyle_2.5Unf	0.018952	
PavedDrive_P	0.020160	MasVnrType_Stone	0.018388	
KitchenQual_Ex	0.019378	PavedDrive_P	0.017973	
LandContour_HLS	0.018595	RoofMatl_WdShngl	0.017856	
SaleType_Oth	0.018123	PavedDrive_Y	0.016840	

Lasso Regression Model

OpenPorchSF	0.020776	Alley_Pave	0.016628
Alley_Pave	0.020848	Neighborhood_StoneBr	0.017152
Neighborhood_StoneBr	0.023370	BsmtQual_Ex	0.018128
Total_porch_sf	0.028923	LotArea	0.025909
CentralAir_Y	0.033294	Total_porch_sf	0.030659
LotArea	0.044597	CentralAir_Y	0.033113
OverallCond	0.046686	OverallCond	0.042168
TotRmsAbvGrd	0.063161	TotRmsAbvGrd	0.064902
GarageArea	0.110863	GarageArea	0.103822
lotal_Sqr_footage	0.202244	lotal_sqr_lootage	0.204042

OpenPorchSF

KitchenQual_Ex

MSSubClass_70

LandContour_HLS

MasVnrType_Stone

SaleCondition_Partial

LotConfig_CulDSac

Condition1_Norm

BsmtCond_TA

PavedDrive_Y

Lasso Doubled Alpha Co-Efficient

0.016490

0.016359

0.014793

0.014495

0.013292

0.012674

0.011677

0.011236

0.008776

0.008685

Lasso Co-Efficient

0.018898

0.017279

0.016795

0.016710

0.015551

0.014707

0.014389

0.013578

0.013377

0.012363

Overall, since the alpha values are small, we do not see a huge change in the model after doubling the alpha.

Question 2

You have determined the optimal value of lambda for ridge and lasso regression during the assignment. Now, which one will you choose to apply and why?

- > The optimum lambda value in case of Ridge and Lasso is as follows: -
 - \circ Ridge -2

MSSubClass_70

KitchenQual_Ex

Condition1_Norm

MasVnrType_Stone

PavedDrive_P

LotFrontage

PavedDrive_Y

Neighborhood_Veenker

BsmtQual_Ex

LandContour_HLS

- Lasso 0.0001
- The Mean Squared Error in case of Ridge and Lasso are:
 - o Ridge 0.0018396090787924262
 - o Lasso 0.0018634152629407766
- > The Mean Squared Error of both the models are almost same.
- Since Lasso helps in feature reduction (as the coefficient value of some of the features become zero), Lasso has a better edge over Ridge and should be used as the final model.

Question 3

After building the model, you realised that the five most important predictor variables in the lasso model are not available in the incoming data. You will now have to create another model excluding the five most important predictor variables. Which are the five most important predictor variables now?

Ans: The five most important predictor variables in the current lasso model is:-

- Total_sqr_footage
- 2. GarageArea
- 3. TotRmsAbvGrd
- 4. OverallCond
- 5. LotArea

We build a Lasso model in the Jupiter notebook after removing these attributes from the dataset.

The R2 of the new model without the top 5 predictors drops to .73 The Mean Squared Error increases to 0.0028575670906482538 .

The new Top 5 predictors are: -

	Lasso Co-Efficient
LotFrontage	0.146535
Total_porch_sf	0.072445
HouseStyle_2.5Unf	0.062900
HouseStyle_2.5Fin	0.050487
Neighborhood_Veenker	0.042532

Question 4

How can you make sure that a model is robust and generalisable? What are the implications of the same for the accuracy of the model and why?

Ans: As Per, Occam's Razor— given two models that show similar 'performance' in the finite training or test data, we should pick the one that makes fewer on the test data due to following reasons:-

- > Simpler models are usually more 'generic' and are more widely applicable
- > Simpler models require fewer training samples for effective training than the more complex ones and hence are easier to train.
- > Simpler models are more robust.
 - o Complex models tend to change wildly with changes in the training data set

- Simple models have low variance, high bias and complex models have low bias, high variance
- Simpler models make more errors in the training set. Complex models lead to overfitting

 they work very well for the training samples, fail miserably when applied to other test samples.

Therefore, to make the model more robust and generalizable, make the model simple but not simpler which will not be of any use.

Regularization can be used to make the model simpler. Regularization helps to strike the delicate balance between keeping the model simple and not making it too naive to be of any use. For regression, regularization involves adding a regularization term to the cost that adds up the absolute values or the squares of the parameters of the model.

Also, making a model simple may lead to Bias-Variance Trade-off:

- A complex model will need to change for every little change in the dataset and hence is very unstable and extremely sensitive to any changes in the training data.
- A simpler model that abstracts out some pattern followed by the data points given is unlikely to change wildly even if more points are added or removed.

Bias quantifies how accurate is the model likely to be on test data. A complex model can do an accurate job prediction provided there is enough training data. Models that are too naïve, for e.g., a model that gives same answer to all test inputs and makes no discrimination whatsoever has a very large bias as its expected error across all test inputs are very high.

Variance refers to the degree of changes in the model itself with respect to changes in the training data.

Therefore, accuracy of the model can be maintained by keeping the balance between Bias and Variance as it minimizes the total error as shown in the below graph.

