PROJECT: Big Mart Sales Prediction

Import required libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df=pd.read_csv('/content/Train.csv')
df
```

Out[]:		Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Identifier	Outlet_Establishment_Year	Outlet_Size	Outlet_Location_Type	Outlet_Type	Item_Outlet_Sales
	0	FDA15	9.300	Low Fat	0.016047	Dairy	249.8092	OUT049	1999	Medium	Tier 1	Supermarket Type1	3735.1380
	1	DRC01	5.920	Regular	0.019278	Soft Drinks	48.2692	OUT018	2009	Medium	Tier 3	Supermarket Type2	443.4228
	2	FDN15	17.500	Low Fat	0.016760	Meat	141.6180	OUT049	1999	Medium	Tier 1	Supermarket Type1	2097.2700
	3	FDX07	19.200	Regular	0.000000	Fruits and Vegetables	182.0950	OUT010	1998	NaN	Tier 3	Grocery Store	732.3800
	4	NCD19	8.930	Low Fat	0.000000	Household	53.8614	OUT013	1987	High	Tier 3	Supermarket Type1	994.7052
	•••					•••							
8	3518	FDF22	6.865	Low Fat	0.056783	Snack Foods	214.5218	OUT013	1987	High	Tier 3	Supermarket Type1	2778.3834
8	3519	FDS36	8.380	Regular	0.046982	Baking Goods	108.1570	OUT045	2002	NaN	Tier 2	Supermarket Type1	549.2850
8	3520	NCJ29	10.600	Low Fat	0.035186	Health and Hygiene	85.1224	OUT035	2004	Small	Tier 2	Supermarket Type1	1193.1136
8	3521	FDN46	7.210	Regular	0.145221	Snack Foods	103.1332	OUT018	2009	Medium	Tier 3	Supermarket Type2	1845.5976
8	3522	DRG01	14.800	Low Fat	0.044878	Soft Drinks	75.4670	OUT046	1997	Small	Tier 1	Supermarket Type1	765.6700

8523 rows × 12 columns

In []: df.head()

Out[]:		Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Identifier	Outlet_Establishment_Year	Outlet_Size	Outlet_Location_Type	Outlet_Type	Item_Outlet_Sales
	0	FDA15	9.30	Low Fat	0.016047	Dairy	249.8092	OUT049	1999	Medium	Tier 1	Supermarket Type1	3735.1380
	1	DRC01	5.92	Regular	0.019278	Soft Drinks	48.2692	OUT018	2009	Medium	Tier 3	Supermarket Type2	443.4228
	2	FDN15	17.50	Low Fat	0.016760	Meat	141.6180	OUT049	1999	Medium	Tier 1	Supermarket Type1	2097.2700
	3	FDX07	19.20	Regular	0.000000	Fruits and Vegetables	182.0950	OUT010	1998	NaN	Tier 3	Grocery Store	732.3800
	4	NCD19	8.93	Low Fat	0.000000	Household	53.8614	OUT013	1987	High	Tier 3	Supermarket Type1	994.7052

In []: df.tail()

Out[]:		Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Identifier	Outlet_Establishment_Year	Outlet_Size	Outlet_Location_Type	Outlet_Type	Item_Outlet_Sales
	8518	FDF22	6.865	Low Fat	0.056783	Snack Foods	214.5218	OUT013	1987	High	Tier 3	Supermarket Type1	2778.3834
	8519	FDS36	8.380	Regular	0.046982	Baking Goods	108.1570	OUT045	2002	NaN	Tier 2	Supermarket Type1	549.2850
	8520	NCJ29	10.600	Low Fat	0.035186	Health and Hygiene	85.1224	OUT035	2004	Small	Tier 2	Supermarket Type1	1193.1136
	8521	FDN46	7.210	Regular	0.145221	Snack Foods	103.1332	OUT018	2009	Medium	Tier 3	Supermarket Type2	1845.5976
	8522	DRG01	14.800	Low Fat	0.044878	Soft Drinks	75.4670	OUT046	1997	Small	Tier 1	Supermarket Type1	765.6700

Statistical measures of the dataset

In []: df.describe()

Out[]:		Item_Weight	Item_Visibility	Item_MRP	Outlet_Establishment_Year	Item_Outlet_Sales
	count	7060.000000	8523.000000	8523.000000	8523.000000	8523.000000
	mean	12.857645	0.066132	140.992782	1997.831867	2181.288914
	std	4.643456	0.051598	62.275067	8.371760	1706.499616
	min	4.555000	0.000000	31.290000	1985.000000	33.290000
	25%	8.773750	0.026989	93.826500	1987.000000	834.247400
	50%	12.600000	0.053931	143.012800	1999.000000	1794.331000
	75%	16.850000	0.094585	185.643700	2004.000000	3101.296400
	max	21.350000	0.328391	266.888400	2009.000000	13086.964800

In []: df.info()

```
<class 'pandas.core.frame.DataFrame'>
       RangeIndex: 8523 entries, 0 to 8522
       Data columns (total 12 columns):
       # Column
                                      Non-Null Count Dtype
           -----
                                      -----
                                      8523 non-null object
       0 Item Identifier
           Item Weight
                                      7060 non-null
                                                     float64
       1
            Item Fat Content
        2
                                      8523 non-null
                                                     obiect
           Item Visibility
                                      8523 non-null
       3
                                                     float64
           Item Type
                                      8523 non-null
                                                     object
        4
        5
           Item MRP
                                      8523 non-null
                                                     float64
           Outlet Identifier
                                      8523 non-null
                                                     object
       7
            Outlet Establishment Year 8523 non-null
                                                     int64
       8
           Outlet Size
                                      6113 non-null
                                                     object
       9
           Outlet Location Type
                                      8523 non-null
                                                     object
        10 Outlet Type
                                      8523 non-null
                                                     object
                                      8523 non-null
       11 Item Outlet Sales
                                                     float64
       dtypes: float64(4), int64(1), object(7)
       memory usage: 799.2+ KB
In [ ]: df.dtypes
                                      object
Out[]: Item Identifier
        Item Weight
                                     float64
        Item Fat Content
                                     object
        Item Visibility
                                     float64
        Item Type
                                     object
        Item MRP
                                     float64
        Outlet_Identifier
                                     object
        Outlet Establishment Year
                                      int64
        Outlet Size
                                     object
        Outlet Location Type
                                     object
        Outlet Type
                                     object
        Item Outlet Sales
                                     float64
        dtype: object
        Checking missing values
In [ ]: df.isna().sum()
Out[]: Item Identifier
                                       0
                                    1463
        Item Weight
        Item Fat Content
                                       0
        Item Visibility
                                       0
        Item Type
        Item MRP
                                       0
                                       0
        Outlet Identifier
        Outlet Establishment Year
                                       0
                                    2410
        Outlet Size
        Outlet Location Type
                                       0
        Outlet Type
                                       0
        Item Outlet Sales
                                       0
        dtype: int64
        Fill the missing value
In [ ]: df['Item Weight']=df['Item Weight'].fillna(df['Item Weight'].mean())
        df['Outlet Size']=df['Outlet Size'].fillna(df['Outlet Size'].mode()[0])
In [ ]: df.isna().sum()
```

```
Out[]: Item Identifier
        Item Weight
                                    0
        Item Fat Content
                                    0
        Item_Visibility
        Item Type
        Item MRP
        Outlet Identifier
        Outlet Establishment Year
        Outlet Size
        Outlet Location Type
        Outlet_Type
                                    0
        Item_Outlet_Sales
                                    0
        dtype: int64
```

Distribution of Item Weight

```
In []: sns.set()
   plt.figure(figsize=(6,6))
   sns.displot(df['Item_Weight'])
   plt.show()
```

<Figure size 600x600 with 0 Axes>

Distribution of Item Visibility

```
In [ ]: plt.figure(figsize=(6,6))
    sns.displot(df['Item_Visibility'])
    plt.show()
```


Distribution of Item MRP

```
In [ ]: plt.figure(figsize=(6,6))
    sns.displot(df['Item_MRP'])
    plt.show()
```


Distribution of Item Outlet Sales

```
In [ ]: plt.figure(figsize=(6,6))
    sns.displot(df['Item_Outlet_Sales'])
    plt.show()
```


Values of Outlet Establishment Year

In []: sns.countplot(x='Outlet_Establishment_Year',data=df)

Out[]: <Axes: xlabel='Outlet_Establishment_Year', ylabel='count'>

Values of Item_Fat_Content

```
In [ ]: sns.countplot(x='Item_Fat_Content',data=df)
Out[ ]: <Axes: xlabel='Item_Fat_Content', ylabel='count'>
```


Values of Item_Type

```
In [ ]: plt.figure(figsize=(30,10))
    sns.countplot(x='Item_Type',data=df)
```

Out[]: <Axes: xlabel='Item_Type', ylabel='count'>

Values of Outlet_Size

In []: sns.countplot(x='Outlet_Size',data=df)

Out[]: <Axes: xlabel='Outlet_Size', ylabel='count'>


```
df['Item Fat Content'].value counts()
Out[]: Low Fat
                   5089
                   2889
         Regular
         LF
                    316
                    117
         reg
                    112
         low fat
         Name: Item_Fat_Content, dtype: int64
In [ ]: df['Item Fat Content'].replace({'LF':'Low Fat','low fat':'Low Fat','reg':'Regular'},inplace=True)
In [ ]: df['Item_Fat_Content'].value_counts()
Out[]: Low Fat
                   5517
         Regular
                   3006
        Name: Item Fat Content, dtype: int64
        Display Correlation of the data
In [ ]: corr=df.corr()
       <ipython-input-21-0014364bc22a>:1: FutureWarning: The default value of numeric only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only vali
       d columns or specify the value of numeric_only to silence this warning.
         corr=df.corr()
In [ ]: sns.heatmap(corr,cbar=True,square=True,fmt='.1f',annot=True,annot_kws={'size':7},cmap='Reds')
Out[ ]: <Axes: >
```


Remove unwanted column

Out[]:		Item_Weight	Item_Fat_Content	Item_Type	Item_MRP	$Outlet_Establishment_Year$	Outlet_Size	Outlet_Type	Item_Outlet_Sales
	0	9.30	Low Fat	Dairy	249.8092	1999	Medium	Supermarket Type1	3735.1380
	1	5.92	Regular	Soft Drinks	48.2692	2009	Medium	Supermarket Type2	443.4228
	2	17.50	Low Fat	Meat	141.6180	1999	Medium	Supermarket Type1	2097.2700
	3	19.20	Regular	Fruits and Vegetables	182.0950	1998	Medium	Grocery Store	732.3800
	4	8.93	Low Fat	Household	53.8614	1987	High	Supermarket Type1	994.7052

Encoding columns using LabelEncoder

```
In []: col=['Item_Fat_Content','Item_Type','Outlet_Size','Outlet_Type']
    from sklearn.preprocessing import LabelEncoder
    le=LabelEncoder()
    for i in col:
        df[i]=le.fit_transform(df[i])
```

df.head()

Out[]:		Item_Weight	Item_Fat_Content	Item_Type	Item_MRP	Outlet_Establishment_Year	Outlet_Size	Outlet_Type	Item_Outlet_Sales
	0	9.30	0	4	249.8092	1999	1	1	3735.1380
	1	5.92	1	14	48.2692	2009	1	2	443.4228
	2	17.50	0	10	141.6180	1999	1	1	2097.2700
	3	19.20	1	6	182.0950	1998	1	0	732.3800
	4	8.93	0	9	53.8614	1987	0	1	994.7052

Separating the Input features and target

In []: x=df.iloc[:,:-1]
y=df.iloc[:,-1]

Repeat steps in test data

In []: dfl=pd.read_csv('/content/Test.csv')
 dfl

Out[]:		Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Identifier	Outlet_Establishment_Year	Outlet_Size	Outlet_Location_Type	Outlet_Type
	0	FDW58	20.750	Low Fat	0.007565	Snack Foods	107.8622	OUT049	1999	Medium	Tier 1	Supermarket Type1
	1	FDW14	8.300	гед	0.038428	Dairy	87.3198	OUT017	2007	NaN	Tier 2	Supermarket Type1
	2	NCN55	14.600	Low Fat	0.099575	Others	241.7538	OUT010	1998	NaN	Tier 3	Grocery Store
	3	FDQ58	7.315	Low Fat	0.015388	Snack Foods	155.0340	OUT017	2007	NaN	Tier 2	Supermarket Type1
	4	FDY38	NaN	Regular	0.118599	Dairy	234.2300	OUT027	1985	Medium	Tier 3	Supermarket Type3
	•••		•••		•••		•••					
	5676	FDB58	10.500	Regular	0.013496	Snack Foods	141.3154	OUT046	1997	Small	Tier 1	Supermarket Type1
	5677	FDD47	7.600	Regular	0.142991	Starchy Foods	169.1448	OUT018	2009	Medium	Tier 3	Supermarket Type2
	5678	NCO17	10.000	Low Fat	0.073529	Health and Hygiene	118.7440	OUT045	2002	NaN	Tier 2	Supermarket Type1
	5679	FDJ26	15.300	Regular	0.000000	Canned	214.6218	OUT017	2007	NaN	Tier 2	Supermarket Type1
	5680	FDU37	9.500	Regular	0.104720	Canned	79.7960	OUT045	2002	NaN	Tier 2	Supermarket Type1

5681 rows × 11 columns

In []: df1.head()

Outlet_Type 0 FDW58 20.750 Low Fat 0.007565 Snack Foods 107.8622 OUT049 1999 Medium Tier 1 Supermarket Type1 FDW14 8.300 0.038428 Dairy 87.3198 OUT017 2007 NaN Tier 2 Supermarket Type1 1 гед 2 0.099575 OUT010 Tier 3 NCN55 14.600 Low Fat Others 241.7538 1998 NaN **Grocery Store** 3 OUT017 FDQ58 7.315 Low Fat 0.015388 Snack Foods 155.0340 2007 NaN Tier 2 Supermarket Type1 4 OUT027 FDY38 NaN Regular 0.118599 Dairy 234.2300 1985 Medium Tier 3 Supermarket Type3

In []: df1.tail()

Out[]: Item_Identifier Item_Weight Item_Fat_Content Item_Visibility Item_Type Item_MRP Outlet_Identifier Outlet_Establishment_Year Outlet_Size Outlet_Location_Type Outlet_Type 5676 FDB58 10.5 Regular 0.013496 Snack Foods 141.3154 **OUT046** 1997 Small Tier 1 Supermarket Type1 FDD47 5677 0.142991 Starchy Foods 169.1448 **OUT018** 2009 Medium 7.6 Regular Tier 3 Supermarket Type2 5678 NCO17 Low Fat 0.073529 Health and Hygiene 118.7440 **OUT045** 2002 Tier 2 Supermarket Type1 10.0 NaN 5679 FDJ26 15.3 0.000000 214.6218 **OUT017** 2007 NaN Tier 2 Supermarket Type1 Regular Canned

79.7960

Canned

OUT045

2002

NaN

Tier 2 Supermarket Type1

In []: df1.describe()

5680

FDU37

Out[]: Item_Weight Item_Visibility Item_MRP Outlet_Establishment_Year 5681.000000 5681.000000 5681.000000 **count** 4705.000000 12.695633 0.065684 141.023273 1997.828903 mean std 4.664849 0.051252 61.809091 8.372256 0.000000 min 4.555000 31.990000 1985.000000 8.645000 0.027047 1987.000000 25% 94.412000 50% 12.500000 0.054154 141.415400 1999.000000 16.700000 0.093463 186.026600 2004.000000 75% 21.350000 0.323637 266.588400 2009.000000 max

9.5

0.104720

Regular

In []: df1.info()

```
<class 'pandas.core.frame.DataFrame'>
       RangeIndex: 5681 entries, 0 to 5680
       Data columns (total 11 columns):
       # Column
                                      Non-Null Count Dtype
                                      -----
           -----
                                      5681 non-null object
       0
           Item Identifier
           Item Weight
                                      4705 non-null
                                                     float64
       1
            Item Fat Content
                                      5681 non-null
                                                     obiect
           Item Visibility
                                      5681 non-null
       3
                                                     float64
                                      5681 non-null
        4
           Item Type
                                                     object
       5
           Item MRP
                                      5681 non-null
                                                     float64
           Outlet Identifier
                                      5681 non-null
                                                     object
            Outlet Establishment Year 5681 non-null
       7
                                                     int64
       8
           Outlet Size
                                      4075 non-null
                                                     object
       9
          Outlet Location Type
                                      5681 non-null
                                                     object
       10 Outlet Type
                                      5681 non-null
                                                     object
       dtypes: float64(3), int64(1), object(7)
       memory usage: 488.3+ KB
In [ ]: df1.dtypes
Out[]: Item Identifier
                                     object
                                    float64
        Item Weight
        Item Fat Content
                                     object
        Item Visibility
                                    float64
        Item Type
                                     object
        Item MRP
                                    float64
        Outlet Identifier
                                     object
        Outlet Establishment Year
                                      int64
        Outlet Size
                                     object
        Outlet Location Type
                                     object
        Outlet Type
                                     object
        dtype: object
In [ ]: df1.isna().sum()
Out[]: Item Identifier
                                       0
                                     976
        Item Weight
        Item Fat Content
                                       0
        Item Visibility
        Item Type
        Item MRP
                                       0
        Outlet Identifier
                                       0
        Outlet Establishment Year
                                       0
                                    1606
        Outlet Size
        Outlet_Location_Type
                                       0
        Outlet_Type
                                       0
        dtype: int64
In [ ]: df1['Item Weight']=df1['Item Weight'].fillna(df1['Item Weight'].mean())
        df1['Outlet Size']=df1['Outlet Size'].fillna(df1['Outlet Size'].mode()[0])
In [ ]: df1.isna().sum()
```

```
Out[]: Item_Identifier
        Item Weight
                                    0
        Item Fat Content
                                    0
        Item_Visibility
        Item Type
        Item MRP
        Outlet Identifier
        Outlet Establishment Year
        Outlet Size
        Outlet_Location_Type
                                    0
        Outlet_Type
        dtype: int64
In [ ]: sns.set()
       plt.figure(figsize=(6,6))
        sns.displot(df1['Item_Weight'])
        plt.show()
       <Figure size 600x600 with 0 Axes>
          1200
          1000
           800
       Count
           600
           400
           200
```

7.5 10.0 12.5 15.0 17.5 20.0

Item_Weight

```
In []: plt.figure(figsize=(6,6))
sns.displot(df1['Item_Visibility'])
plt.show()
```

<Figure size 600x600 with 0 Axes>

5.0


```
In [ ]: plt.figure(figsize=(6,6))
    sns.displot(df1['Item_MRP'])
    plt.show()
```


In []: sns.countplot(x='Outlet_Establishment_Year',data=df1)

Out[]: <Axes: xlabel='Outlet_Establishment_Year', ylabel='count'>

In []: sns.countplot(x='Item_Fat_Content',data=df1)

```
Out[ ]: <Axes: xlabel='Item_Fat_Content', ylabel='count'>
```



```
In [ ]: plt.figure(figsize=(30,10))
    sns.countplot(x='Item_Type',data=df1)
```

Out[]: <Axes: xlabel='Item_Type', ylabel='count'>

In []: sns.countplot(x='Outlet_Size',data=df1)

Out[]: <Axes: xlabel='Outlet_Size', ylabel='count'>


```
In [ ]: df1['Item Fat Content'].value counts()
                   3396
Out[]: Low Fat
                   1935
        Regular
        LF
                    206
                     78
        reg
                     66
        low fat
        Name: Item_Fat_Content, dtype: int64
In [ ]: df1['Item Fat Content'].replace({'LF':'Low Fat','low fat':'Low Fat','reg':'Regular'},inplace=True)
In [ ]: df1['Item Fat Content'].value counts()
Out[]: Low Fat
                   3668
                   2013
        Regular
        Name: Item Fat Content, dtype: int64
In [ ]: corr=df1.corr()
       <ipython-input-45-fa62c0265c31>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only vali
       d columns or specify the value of numeric_only to silence this warning.
       corr=df1.corr()
In [ ]: sns.heatmap(corr,cbar=True,square=True,fmt='.1f',annot=True,annot kws={'size':7},cmap='Reds')
```

Out[]: <Axes: >

Out[]:		Item_Weight	Item_Fat_Content	Item_Type	Item_MRP	Outlet_Establishment_Year	Outlet_Size	Outlet_Type
	0	20.750000	Low Fat	Snack Foods	107.8622	1999	Medium	Supermarket Type1
	1	8.300000	Regular	Dairy	87.3198	2007	Medium	Supermarket Type1
	2	14.600000	Low Fat	Others	241.7538	1998	Medium	Grocery Store
	3	7.315000	Low Fat	Snack Foods	155.0340	2007	Medium	Supermarket Type1
	4	12.695633	Regular	Dairy	234.2300	1985	Medium	Supermarket Type3

```
In []: col=['Item_Fat_Content','Item_Type','Outlet_Size','Outlet_Type']
    from sklearn.preprocessing import LabelEncoder
    le=LabelEncoder()
    for i in col:
        df1[i]=le.fit_transform(df1[i])
    df1.head()
```

Out[]:		Item_Weight	Item_Fat_Content	Item_Type	Item_MRP	Outlet_Establishment_Year	Outlet_Size	Outlet_Type
	0	20.750000	0	13	107.8622	1999	1	1
	1	8.300000	1	4	87.3198	2007	1	1
	2	14.600000	0	11	241.7538	1998	1	0
	3	7.315000	0	13	155.0340	2007	1	1
	4	12.695633	1	4	234.2300	1985	1	3

Model creation using

- LinearRegression
- DecisionTreeRegressor
- RandomForestRegressor

3690.82901 , 1274.061564])

XGBRegressor

• XGBRegressor

LinearRegression

```
In [ ]: from sklearn.linear model import LinearRegression
        model=LinearRegression()
        model.fit(x,y)
        y pred=model.predict(df1)
        y_pred
Out[]: array([1470.24359658, 1211.77796228, 2703.10752783, ..., 1649.20733998,
               3189.12700876, 1095.27431328])
        DecisionTreeRegressor
In [ ]: from sklearn.tree import DecisionTreeRegressor
        dec=DecisionTreeRegressor()
        dec.fit(x,y)
        y_pred1=dec.predict(df1)
        y_pred1
Out[]: array([1965.4416, 1142.5128, 759.012, ..., 964.0784, 4060.7142,
               1038.648 ])
        RandomForestRegressor
In [ ]: from sklearn.ensemble import RandomForestRegressor
        rfg=RandomForestRegressor()
        rfg.fit(x,y)
        y pred2=rfg.predict(df1)
        y_pred2
Out[]: array([1848.806756, 1197.328114, 637.243838, ..., 1600.703044,
```