Eagle: Making multiple-locus association mapping on a genome-wide scale routine

Andrew W. George 1, Arunas Verbyla 1, and Joshua Bowden 2

¹Data61, CSIRO, Australia.
 ²IM &T, CSIRO, Australia.

August 6, 2018

Supplementary Table 1: Implementation and methodology attributes of eight computer programs/packages for genome-wide association mapping.

Attributes	Eagle	bigRR	glmnet	LMM-Lasso	MLMM	$_{ m r2VIM}$	FaST-LMM	GEMMA
Implementation								
Purpose built ^a	Yes	Yes	$N_{\rm o}$	Yes	Yes	Yes	Yes	Yes
Language	R/C++	Ж	Я	Python	Я	R	$C++$ and $Python^b$	+ + D
GUI	Yes	$N_{\rm o}$	m No	$_{ m OO}$	$N_{\rm o}$	$N_{\rm o}$	m No	No
Documentation	Videos, user-manuals, website, R help	R help	Vignettes, R help	Readme.txt, test script	Vignette, R help	R help	Videos, user-manuals, website	User-manual, website
Additional fixed effects c	m Yes	Yes	Yes	$N_{\rm O}$	Yes	Yes	Yes	Yes adsf
Types of trait data	Cont.	Cont., binary, count	Cont., binary, count	Cont.	Cont.	Cont.	Cont.	Cont.
Data larger than memory	Yes	No	m No	$ m N_{O}$	m No	$ m N_{ m O}$	Yes	m No
Methodology								
$\mathrm{Model}^{\ d}$	LMM		GLMM	$_{ m GTM}$	LMM	RF	$_{ m LMM}$	LMM
${\rm SNPs~fitted}~^e$	All/multiple	A11	All	All	Multiple	Multiple	Single	Single
Selection type	Model	Variable	Variable	Variable	Model	Variable	Variable	Variable
Threshold free	Yes	No	No	No	Yes	No	No	No

 $[\]overline{a}$ Specifically created for the analysis of GWAS data.

 $^{^{}b}$ Separate programs, one written in Python, the other C++

 $^{^{}c}$ Capacity for additional fixed effects (such as age, sex, and/or population structure effects) to be included directly in the model.

Supplementary Table 2: The median run times (in minutes) of Eagle and the other association mapping programs across the six simulation scenarios.

Simulation Scenarios

Method	Name	150 x 5K	$1500 \times 50 K$	$350 \times 400 K$	$2000 \times 500 K$	$4000 \times 1.5 M$	10000 x
Multiple	Eagle	0.08	1.62	2.71	13.65	127.63	699.5
	MLMM	0.15	2.91	19.04	143.01	870.84	
	glmnet	0.11	3.95	14.06	74.03		
	r2VIM	0.09	3.66	5.51	50.59	380.52	
	$_{ m bigRR}$	1.01	113.35	54.99	1030.61		
	LMM-Lasso	0.57	52.08	92.20	1031.85		
Single	GEMMA	0.02	5.02	6.17	84.83	723.33	4071.6
-	${\rm FaST\text{-}LMM}^{few}$	0.01	0.80	7.07	20.16	193.90	346.1
	${\rm FaST\text{-}LMM}^{all}$	0.03	2.96	7.90	41.27		

Supplementary Figure 1: Memory usage (in gigabytes) of Eagle and the other association mapping programs across the six simulation scenarios. The maximum amount of memory on the computer is 128 gigabytes. The x-axis is on the log scale. GEMMA, a single-locus implementation, had the lowest memory usage. Of the multiple-locus implementations, Eagle had the lowest memory usage. Also, it was the only multiple-locus implementation able to produce results for data under scenario $10000 \times 1.5 \text{M}$. This is due to its ability to handle data larger than the available memory of a computer. FaST-LMM was run where all the SNP data are used to estimate the relationship matrix (FaST-LMM all) and where genotype data from every five-hundredth SNP are used to estimate the relationship matrix (FaST-LMM few)

.

Supplementary Figure 2: Power verse false discovery rates for Eagle and the single-locus methods GEMMA and FaST-LMM. FaST-LMM was run where all the SNP data are used to estimate the relationship matrix (FaST-LMM all) and where genotype data from every five-hundredth SNP are used to estimate the relationship matrix (FaST-LMM few). Eagle has substantially higher power than the single-locus methods.

