ACT6100 Analyse de données H2019 Série 3

Apprentissage supervisé - Introduction

- 1. La base de données data EXO1.csv disponible sur le site du cours contient 100 observations d'une variable réponse Y et d'une variable explicative X.
 - (a) Réaliser un nuage de points représentant ces données. En R, estimer les paramètres d'un modèle de régression linéaire et ajouter ce modèle sur le graphique. Est-ce que les paramètres sont significatifs? Quelle est l'erreur quadratique moyenne?
 - (b) En R, ajuster maintenant un modèle quadratique et ajouter ce modèle sur le graphique. Est-ce que les paramètres sont significatifs? Quelle est l'erreur quadratique moyenne?
 - (c) Si on utilise l'algorithme des K plus proches voisins, quelle valeur de K minimise l'erreur quadratique d'entrainement? Ajouter ce modèle au graphique. Quelle est la valeur de l'erreur quadratique moyenne d'entrainement du modèle optimal?
 - (d) Si on utilise l'algorithme des K plus proches voisins avec validation croisée (Leave one out), quelle valeur de K minimise l'erreur quadratique de validation? Ajouter ce modèle au graphique. Quelle est la valeur de l'erreur quadratique moyenne de validation du modèle optimal?
 - (e) Pour une nouvelle observation $(x^*, y^*) = (333.2522, 99508.44)$, utiliser les 4 modèles précédents afin d'obtenir une prédiction et calculer, à chaque fois, l'erreur quadratique de prédiction.
- 2. On considère une petite base de données contenant les valeurs présentées à la Table 1. Répondre aux questions ci-dessous « à la main ».

\overline{i}	Y_i	X_i
1	4	1
2	2	4
3	8	2
4	5	9
5	3	7

Table 1 – Base de données.

- (a) Ajuster un modèle de régression linéaire en minimisant l'erreur quadratique moyenne d'entrainement. Écrire l'équation du modèle.
- (b) Pour un modèle des 2 plus proches voisins, ajuster le modèle sans validation croisée et écrire l'équation du modèle.
- (c) Pour un modèle des 2 plus proches voisins, calculer la valeur du vMSE avec leave one out cross validation.
- 3. La base de données *swmotorcycle* disponible dans la librarie *CASdatasets* contient des fréquences de sinistre observées (variable **ClaimNb**) pour 64 548 assurés ainsi que l'âge de la personne assurée (variable **OwnerAge**) et l'exposition (variable **Exposure**), en années.
 - (a) En considérant uniquement les trois variables mentionnées, réaliser un « nettoyage » de la base de données. Justifier.

(b) Afin de modéliser la fréquence des sinistres (N), on souhaite utiliser un modèle Poisson avec

$$E[N] = (\mathbf{Exposure}) \exp(\beta_0 + \beta_1 \mathbf{OwnerAge}).$$

Calculer $\widehat{\beta}_0$ et $\widehat{\beta}_1$.

(c) Généralement, dans l'idée de construire une table de tarification, on divise la variable OwnerAge en groupes. On peut, par exemple, construire un modèle avec deux classes telles que x ∈ C₁ si l'âge de l'assuré est plus petit ou égal à K années et x ∈ C₂ sinon. Déterminer, (i) sans validation croisée et (ii) avec une 12-validation croisée (groupes de tailles égales), le modèle optimal en vous basant sur l'erreur quadratique moyenne. Quelles seront les fréquences moyennes par groupe pour un assuré dont l'exposition est unitaire?

Réponses

- 1. (a) Les deux paramètres sont significatifs. Le MSE est 543 910 771 909.
 - (b) Le paramètre X n'est pas significatif. Un modèle avec une ordonnée à l'origine et une variable X^2 conduit à un MSE de $434\,064\,644\,839$.
 - (c) K = 1 avec un MSE de 0.
 - (d) K = 10 avec un MSE de 572388692923.
 - (e) On obtient, dans l'ordre, 6 609 874 222, 2 580 396 252, 17 333 311 211, 2 338 794 222.
- 2. (a) $\widehat{f}(X) = 5.1327 0.159292X$

(b)

$$\widehat{f}(X) = \begin{cases} 6, & X \le 2.5 \\ 5, & 2.5 < X \le 4.5 \\ 2.5, & 4.5 < X \le 6.5 \\ 4, & X > 6.5 \end{cases}$$

- (c) 48.5
- 3. (a) -
 - (b) $\hat{\beta}_0 = -2.13447$ et $\hat{\beta}_1 = -0.06035$
 - (c) (i) division à 77 ans \rightarrow 0.01064113 et 1.300423 × 10⁻⁷ (ii) division à 30 ans \rightarrow 0.03132543 et 0.006331919