THE DEPENDENCY INVERSION PRINCIPLE Java Clean code

Outline

Lesson 6.

The Single Responsibility Principle

Lesson 7.

The Open Closed Principle

Lesson 8.

The Liskov Substitution Principle

Lesson 9.

The Interface Segregation Principle

Lesson 10.

The Dependency Inversion Principle

Any fool can write code that
a computer can understand.
Good programmers write code that
humans can understand.
Martin Fowler

The Dependency Inversion Principle

- Based on the OCP & LSP
- Maintainability
- Testability
- Extensible
- Reusable

The Dependency Inversion Principle

- High-level modules should not depend on low-level modules. Both should depend on abstractions.
- Abstractions should not depend on details. Details should depend on abstractions.

The Dependency Inversion Principle

- Separate high and low level modules
- Abstraction separate them
- Interface and abstract classes are not enough

Dependency injection

- How you acquire the dependency
- Inversion of control

Runtime & Compile time

- Compile time not a problem
- Deployment
- Big projects need to work independently

Dependency Inversion Principle Summary

- Maintainability
- Testability
- Extensible
- Reusable

Course Progress

Lesson 6

The Single Responsibility Principle

Lesson 7

The Open Closed Principle

Lesson 8

The Liskov Substitution Principle

Lesson 9

The Interface Segregation Principle

Lesson 10

The Dependency Inversion Principle

DIP

https://martinfowler.com/articles/dipInTheWild.html#SynopsisOfTheDip

