Light Traffic

AUCLAIR William, LENOIR Adrien, 1G2TP5

Plan

- Contexte
- Objectifs
- Principe de fonctionnement
- Ressources
- Contraintes
- Algorithmes
- Implémentation & Maquette
- Echecs
- Améliorations
- Conclusion

Contexte

Assurer la sécurité des usagers (piétons, automobilistes) en régulant la circulation à proximité d'une intersection en T entre deux routes principale et secondaire à l'aide de feux tricolores.

Objectifs

Contrôler la circulation à l'aide de feux tricolores munis de :

- Capteurs de présence afin de détecter les usagers ;
- De chronomètres afin d'afficher le temps d'attente ;

Principe de fonctionnement

Principe de fonctionnement

Présence (P)	Présence (S)	Feux (P)	Feux (S)	
OUI + était Vert	OUI, NON + était Rouge	Vert	Rouge + Tempo (30s)	
OUI + était Rouge	OUI, NON + était Vert	Rouge + Tempo (5s)	Jaune + Tempo (5s)	
OUI + était Rouge	OUI, NON + était Jaune	Vert	Rouge + Tempo (30s)	
NON + était Vert	OUI + était Rouge	Jaune + Tempo (5s)	Rouge + Tempo (5s)	
NON + était Rouge	OUI + était Vert	Rouge + Tempo (30s)	Vert	
NON + était Jaune	OUI + était Rouge	Rouge + Tempo (30s)	Vert	
NON + était Vert	NON + était Rouge	Vert	Rouge + Tempo (30s)	
NON + était Rouge	NON + était Vert	Vert	Rouge + Tempo (5s)	
NON + était Rouge	NON + était Jaune	Vert	Rouge + Tempo (30s)	

Ressources

Langages / Logiciels:

- ASM
- C++

Matériel:

- Afficheurs 7 segments (x6)
- Carte STM32F407
- Détecteurs de présence (x3)
- LEDs (x9)

Contraintes

- Seuil de détection < 3 m avant le feu
- Temps d'attente < 5 OU 30 s
- Respect du budget imparti (40€)
- Respect de la deadline

Architecture

Main et initialisation de la carte

Initialisation des ports, lecture/écriture

Fichier C:

<u>Initialisations.c</u>

Entête:

Initialisations.h

Pins utilisés	Utilisation	Pins utilisés	Utilisation	Pins utilisés	Utilisation
PA0	Anode 0 Diz	PB0	Cathode Diz 1	PC0	Capteur 1 (P1)
PA1	Anode 1 Diz	PB1	Cathode Diz 2	PC1	Capteur 2 (P2)
PA2	Anode 2 Diz	PB2	Cathode Diz 3	PC2	Capteur 3 (S)
PA3	Anode 3 Diz	PB3	Cathode Unit 1	PC3	
PA4	Anode 4 Diz	PB4	Cathode Unit 2	PC4	
PA5	Anode 5 Diz	PB5	Cathode Unit 3	PC5	
PA6	Anode 6 Diz	PB6	LED verte 1	PC6	
PA7	Anode 0 Unit	PB7	LED Jaune 1	PC7	
PA8	Anode 1 Unit	PB8	LED Rouge 1	PC8	
PA9	Anode 2 Unit	PB9	LED verte 2	PC9	3
PA10	Anode 3 Unit	PB10	LED Jaune 2	PC10	
PA11	Anode 4 Unit	PB11	LED Rouge 2	PC11	
PA12	Anode 5 Unit	PB12	LED verte 3	PC12	
PA13	Anode 6 Unit	PB13	LED Jaune 3	PC13	3
PA14		PB14	LED Rouge 3	PC14	
PA15	10	PB15		PC15	0

Détection de présence

Fichier C:

detection.c

Entête:

detection.h

Contrôle des LEDs

Fichier C:

LEDs.c

Entête:

LEDs.h

Affichage du temps d'attente

Fichier C:

Decompte.c

Entête:

Decompte.h

Circuit imprimé

Maquette

Dimensions:

Plateau: 25x25 cm

Largeur de la route : 5 cm

Echecs & difficultés

- Le projet n'a pas pu aboutir (La maquette n'ayant été que partiellement achevée)
- Problèmes d'impression 3D
- Obtention de la liste des ports GPIOs disponibles

Améliorations

- Alimenter le réseau à l'aide de panneaux solaires ;
- Concevoir un modèle adapté à tous les usagers (piétons, ...);

Conclusion

- Expérience stimulante & accessible
- Meilleure gestion du temps
- Cependant approfondissement de l'apprentissage des langages ASM et C et amélioration de la prise en main de Eagle et Keil