A mapping $T: \mathbb{V} \to \mathbb{W}$ is said to be a linear transformation if

$$T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$$
 for all $x, y \in \mathbb{V}$ and for all $\alpha, \beta \in \mathbb{F}$.

A mapping $T: \mathbb{V} \to \mathbb{W}$ is said to be a linear transformation if $T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$ for all $x, y \in \mathbb{V}$ and for all $\alpha, \beta \in \mathbb{F}$.

$$I(\alpha x + \beta y) = \alpha I(x) + \beta I(y)$$
 for all $x, y \in \mathbb{F}$

- [Example:]
 - 1. Let $T: \mathbb{R}^2 \to \mathbb{R}$ defined by T(x,y) = x. Then T is a linear transformation.

A mapping $T : \mathbb{V} \to \mathbb{W}$ is said to be a linear transformation if $T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$ for all $x, y \in \mathbb{V}$ and for all $\alpha, \beta \in \mathbb{F}$.

• [Example:]

- 1. Let $T: \mathbb{R}^2 \to \mathbb{R}$ defined by T(x,y) = x. Then T is a linear transformation.
- 2. Let $A \in \mathbb{M}_{m \times n}(R)$, let $T : \mathbb{R}^n \to \mathbb{R}^m$ be defined by T(x) = Ax, $x \in \mathbb{R}^n$. Then T is a linear transformation.

A mapping $T: \mathbb{V} \to \mathbb{W}$ is said to be a linear transformation if $T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$ for all $x, y \in \mathbb{V}$ and for all $\alpha, \beta \in \mathbb{F}$.

• [Example:]

- 1. Let $T: \mathbb{R}^2 \to \mathbb{R}$ defined by T(x,y) = x. Then T is a linear transformation.
- 2. Let $A \in \mathbb{M}_{m \times n}(R)$, let $T : \mathbb{R}^n \to \mathbb{R}^m$ be defined by T(x) = Ax, $x \in \mathbb{R}^n$. Then T is a linear transformation.
- 3. Let $T: C[a,b] \to \mathbb{R}$ be defined by $T(f) = \int_a^b f(x) dx$. Then T is a linear transformation.

1. Let $\mathbb V$ and $\mathbb W$ be vector spaces over the same field $\overline{\mathbb F}$. Let $\mathcal T:\mathbb V\to\mathbb W$

1. Let $\mathbb V$ and $\mathbb W$ be vector spaces over the same field $\mathbb F$. Let $\mathcal T:\mathbb V\to\mathbb W$

be defined by T(x) = 0, $x \in \mathbb{V}$. This transformation is called **Zero** transformation.

- 1. Let $\mathbb V$ and $\mathbb W$ be vector spaces over the same field $\mathbb F$. Let $T:\mathbb V\to\mathbb W$ be defined by T(x) = 0, $x \in \mathbb{V}$. This transformation is called **Zero**

2. Let \mathbb{V} be vector space over the field \mathbb{F} . Let $T: \mathbb{V} \to \mathbb{V}$ be defined by

- 1. Let $\mathbb V$ and $\mathbb W$ be vector spaces over the same field $\mathbb F$. Let $T:\mathbb V\to\mathbb W$ be defined by $T(x)=0,\ x\in\mathbb V$. This transformation is called **Zero**
 - 2. Let $\mathbb V$ be vector space over the field $\mathbb F.$ Let $\mathcal T:\mathbb V\to\mathbb V$ be defined by

 $T(x) = x, x \in \mathbb{V}$. This transformation is called **identity** transformation.

- 1. Let $\mathbb V$ and $\mathbb W$ be vector spaces over the same field $\mathbb F$. Let $T:\mathbb V\to\mathbb W$ be defined by $T(x)=0,\ x\in\mathbb V$. This transformation is called **Zero**
 - 2. Let $\mathbb V$ be vector space over the field $\mathbb F.$ Let $\mathcal T:\mathbb V\to\mathbb V$ be defined by
 - $T(x) = x, x \in \mathbb{V}$. This transformation is called **identity** transformation.

3. Let $\mathbb V$ be a vector space over the field $\mathbb F$ and let $\lambda \in \mathbb F$. Let

- 1. Let $\mathbb V$ and $\mathbb W$ be vector spaces over the same field $\overline{\mathbb F}$. Let $T: \mathbb V \to \mathbb W$ be defined by $T(x)=0, x\in \mathbb V$. This transformation is called **Zero**
- 2. Let $\mathbb V$ be vector space over the field $\mathbb F$. Let $\mathcal T:\mathbb V\to\mathbb V$ be defined by $\mathcal T(x)=x,\ x\in\mathbb V$. This transformation is called **identity**

transformation.

- 3. Let $\mathbb V$ be a vector space over the field $\mathbb F$ and let $\lambda \in \mathbb F$. Let $T: \mathbb V \to \mathbb V$ be defined by $T(x) = \lambda x, \ x \in \mathbb V$. This transformation is
- $T: \mathbb{V} \to \mathbb{V}$ be defined by $T(x) = \lambda x$, $x \in \mathbb{V}$. This transformation is called scalar transformation.

• [Theorem:] Let $T : \mathbb{V} \to \mathbb{W}$ be a LT.

Proof: We know that $0_{\mathbb{V}} + 0_{\mathbb{V}} = 0_{\mathbb{V}}$.

 \bullet [Theorem:] Let $\mathcal{T}:\mathbb{V}\to\mathbb{W}$ be a LT. Then $\mathcal{T}(0_\mathbb{V})=0_\mathbb{W}$

Proof: We know that $0_{\mathbb{V}}+0_{\mathbb{V}}=0_{\mathbb{V}}.$

$$T(0_{\mathbb{V}}+0_{\mathbb{V}})=T(0_{\mathbb{V}})$$

Proof: We know that
$$0_{\mathbb{V}}+0_{\mathbb{V}}=0_{\mathbb{V}}.$$

$$T(0_{\mathbb{V}}+0_{\mathbb{V}})=T(0_{\mathbb{V}})$$

$$\implies T(0_{\mathbb{V}}) + T(0_{\mathbb{V}}) = T(0_{\mathbb{V}})$$

Proof: We know that
$$0_{\mathbb{V}} + 0_{\mathbb{V}} = 0_{\mathbb{V}}$$
.

$$T(0_{\mathbb{V}}+0_{\mathbb{V}})=T(0_{\mathbb{V}})$$

$$\implies T(0_{\mathbb{V}}) + T(0_{\mathbb{V}}) = T(0_{\mathbb{V}})$$

$$\implies T(0_{\mathbb{V}}) + T(0_{\mathbb{V}}) + (-T(0_{\mathbb{V}})) = T(0_{\mathbb{V}}) + (-T(0_{\mathbb{V}}))$$

Proof: We know that $0_{\mathbb{V}} + 0_{\mathbb{V}} = 0_{\mathbb{V}}$.

$$T(0_{\mathbb{V}}+0_{\mathbb{V}})=T(0_{\mathbb{V}})$$

$$\implies T(0_{\mathbb{V}}) + T(0_{\mathbb{V}}) = T(0_{\mathbb{V}})$$

$$\implies T(0_{\mathbb{V}}) + T(0_{\mathbb{V}}) + (-T(0_{\mathbb{V}})) = T(0_{\mathbb{V}}) + (-T(0_{\mathbb{V}}))$$

$$\implies T(0_{\mathbb{V}}) + 0_{\mathbb{W}} = 0_{\mathbb{W}}$$

Proof: We know that
$$0_{\mathbb{V}} + 0_{\mathbb{V}} = 0_{\mathbb{V}}$$
.

$$T(0_{\mathbb{V}}+0_{\mathbb{V}})=T(0_{\mathbb{V}})$$

$$\implies T(0_{\mathbb{V}}) + T(0_{\mathbb{V}}) = T(0_{\mathbb{V}})$$

$$\implies T(0_{\mathbb{V}}) + T(0_{\mathbb{V}}) + (-T(0_{\mathbb{V}})) = T(0_{\mathbb{V}}) + (-T(0_{\mathbb{V}}))$$

$$\implies T(0_{\mathbb{V}}) + 0_{\mathbb{W}} = 0_{\mathbb{W}}$$

$$\implies T(0_{\mathbb{V}}) = 0_{\mathbb{W}}$$

Proof: We know that $0_{\mathbb{V}} + 0_{\mathbb{V}} = 0_{\mathbb{V}}$.

$$T(0_{\mathbb{V}}+0_{\mathbb{V}})=T(0_{\mathbb{V}})$$

$$\implies T(0_{\mathbb{V}}) + T(0_{\mathbb{V}}) = T(0_{\mathbb{V}})$$

$$\implies T(0_{\mathbb{V}}) + T(0_{\mathbb{V}}) + (-T(0_{\mathbb{V}})) = T(0_{\mathbb{V}}) + (-T(0_{\mathbb{V}}))$$

$$\implies T(0_{\mathbb{V}}) + 0_{\mathbb{W}} = 0_{\mathbb{W}}$$

$$\implies T(0_{\mathbb{V}}) = 0_{\mathbb{W}}$$

 $T: \mathbb{R} \to \mathbb{R}$ be a map defined by T(x) = x + 1.

Proof: We know that $0_{\mathbb{V}} + 0_{\mathbb{V}} = 0_{\mathbb{V}}$.

$$T(0_{\mathbb{V}}+0_{\mathbb{V}})=T(0_{\mathbb{V}})$$

$$\implies T(0_{\mathbb{V}}) + T(0_{\mathbb{V}}) = T(0_{\mathbb{V}})$$

$$\implies T(0_{\mathbb{V}}) + T(0_{\mathbb{V}}) + (-T(0_{\mathbb{V}})) = T(0_{\mathbb{V}}) + (-T(0_{\mathbb{V}}))$$

$$\implies T(0_{\mathbb{V}}) + 0_{\mathbb{W}} = 0_{\mathbb{W}}$$

$$\implies T(0_{\mathbb{V}}) = 0_{\mathbb{W}}$$

 $T: \mathbb{R} \to \mathbb{R}$ be a map defined by T(x) = x + 1. Using above theorem you can say that T is not linear.

$$T(x_1,\ldots,x_n)=\sum_{i=1}^k \alpha_i x_i$$
 for some $\alpha_i\in\mathbb{R}$ for $i=1,\ldots,n$ and for all $(x_1,\ldots,x_n)\in\mathbb{R}^n$.

$$T(x_1,\ldots,x_n)=\sum_{i=1}^k \alpha_i x_i$$
 for some $\alpha_i\in\mathbb{R}$ for $i=1,\ldots,n$ and for all

 $(x_1,\ldots,x_n)\in\mathbb{R}^n.$

Proof: Let $\{e_1, \ldots, e_n\}$ be a basis of \mathbb{R}^n .

$$T(x_1,\ldots,x_n)=\sum_{i=1}^k \alpha_i x_i$$
 for some $\alpha_i\in\mathbb{R}$ for $i=1,\ldots,n$ and for all $(x_1,\ldots,x_n)\in\mathbb{R}^n$.

Proof: Let $\{e_1, \ldots, e_n\}$ be a basis of \mathbb{R}^n .

Let $T(e_i) = \alpha_i$ for $i = 1, \ldots, n$.

$$T(x_1,\ldots,x_n)=\sum_{i=1}^k \alpha_i x_i$$
 for some $\alpha_i\in\mathbb{R}$ for $i=1,\ldots,n$ and for all $(x_1,\ldots,x_n)\in\mathbb{R}^n$.

Proof: Let $\{e_1, \ldots, e_n\}$ be a basis of \mathbb{R}^n .

Let
$$T(e_i) = \alpha_i$$
 for $i = 1, \ldots, n$.

Let
$$x = [x_1, x_2, ..., x_n] \in V$$
. Then $x = \sum_{i=1}^{n} x_i e_i$.

$$T(x_1,\ldots,x_n)=\sum_{i=1}^k \alpha_i x_i$$
 for some $\alpha_i\in\mathbb{R}$ for $i=1,\ldots,n$ and for all $(x_1,\ldots,x_n)\in\mathbb{R}^n$.

Proof: Let $\{e_1, \ldots, e_n\}$ be a basis of \mathbb{R}^n .

Let
$$T(e_i) = \alpha_i$$
 for $i = 1, \ldots, n$.

Let
$$x = [x_1, x_2, ..., x_n] \in V$$
. Then $x = \sum_{i=1}^{n} x_i e_i$.

$$T(x) = T(\sum_{i=1}^{n} x_i e_i) = \sum_{i=1}^{n} x_i T(e_i)$$

$$T(x_1,\ldots,x_n)=\sum_{i=1}^k \alpha_i x_i$$
 for some $\alpha_i\in\mathbb{R}$ for $i=1,\ldots,n$ and for all $(x_1,\ldots,x_n)\in\mathbb{R}^n$.

Proof: Let $\{e_1, \ldots, e_n\}$ be a basis of \mathbb{R}^n .

Let $T(e_i) = \alpha_i$ for $i = 1, \ldots, n$.

Let
$$x = [x_1, x_2, ..., x_n] \in V$$
. Then $x = \sum_{i=1}^{n} x_i e_i$.

$$T(x) = T(\sum_{i=1}^{n} x_i e_i) = \sum_{i=1}^{n} x_i T(e_i)$$

$$T(x) = \sum_{i=1}^{n} \alpha_i x_i$$

Then there exist linear transformations $T_i: \mathbb{R}^n \to \mathbb{R}$ for i = 1, ..., m such that $T(x) = (T_1(x), ..., T_m(x))$ for all $x \in \mathbb{R}^n$.

Then there exist linear transformations $T_i: \mathbb{R}^n \to \mathbb{R}$ for i = 1, ..., m such that $T(x) = (T_1(x), ..., T_m(x))$ for all $x \in \mathbb{R}^n$.

Proof: Let $\{e_1, \ldots, e_n\}$ be a basis of \mathbb{R}^n .

Then there exist linear transformations $T_i: \mathbb{R}^n \to \mathbb{R}$ for i = 1, ..., m such that $T(x) = (T_1(x), ..., T_m(x))$ for all $x \in \mathbb{R}^n$.

Proof: Let $\{e_1, \ldots, e_n\}$ be a basis of \mathbb{R}^n .

Let $T(e_i) = (\alpha_1^i, \dots, \alpha_m^i)$ for $i = 1, \dots, n$.

Then there exist linear transformations $T_i: \mathbb{R}^n \to \mathbb{R}$ for i = 1, ..., m such that $T(x) = (T_1(x), ..., T_m(x))$ for all $x \in \mathbb{R}^n$.

Proof: Let $\{e_1, \ldots, e_n\}$ be a basis of \mathbb{R}^n .

Let
$$T(e_i) = (\alpha_1^i, \dots, \alpha_m^i)$$
 for $i = 1, \dots, n$.

Let
$$x = [x_1, x_2, ..., x_n] \in V$$
. Then $x = \sum_{i=1}^{n} x_i e_i$.

Then there exist linear transformations $T_i: \mathbb{R}^n \to \mathbb{R}$ for i = 1, ..., m such that $T(x) = (T_1(x), ..., T_m(x))$ for all $x \in \mathbb{R}^n$.

Proof: Let $\{e_1, \ldots, e_n\}$ be a basis of \mathbb{R}^n .

Let
$$T(e_i) = (\alpha_1^i, \dots, \alpha_m^i)$$
 for $i = 1, \dots, n$.

Let
$$x = [x_1, x_2, ..., x_n] \in V$$
. Then $x = \sum_{i=1}^{n} x_i e_i$.

$$T(x) = T(\sum_{i=1}^{n} x_i e_i) = \sum_{i=1}^{n} x_i T(e_i)$$

Then there exist linear transformations $T_i: \mathbb{R}^n \to \mathbb{R}$ for i = 1, ..., m such that $T(x) = (T_1(x), ..., T_m(x))$ for all $x \in \mathbb{R}^n$.

Proof: Let $\{e_1, \ldots, e_n\}$ be a basis of \mathbb{R}^n .

Let $T(e_i) = (\alpha_1^i, \dots, \alpha_m^i)$ for $i = 1, \dots, n$.

Let $x = [x_1, x_2, \dots, x_n] \in \mathbb{V}$. Then $x = \sum_{i=1}^n x_i e_i$.

$$T(x) = T(\sum_{i=1}^{n} x_i e_i) = \sum_{i=1}^{n} x_i T(e_i)$$

$$T(x) = \sum_{i=1}^{n} (\alpha_1^i, \dots, \alpha_m^i) x_i$$

$$T(x) = \left(\sum_{i=1}^{n} x_i \alpha_i^1, \dots, \sum_{i=1}^{n} x_i \alpha_i^m\right)$$

$$T(x) = (\sum_{i=1}^{n} x_i \alpha_i^1, \dots, \sum_{i=1}^{n} x_i \alpha_i^m)$$

$$T(x) = (T_1(x), \dots, T_n(x))$$
, where $T_i(x) = \sum_{i=1}^n x_i \alpha_i^i$

$$T(x) = (\sum_{i=1}^{n} x_i \alpha_i^1, \dots, \sum_{i=1}^{n} x_i \alpha_i^m)$$

$$T(x) = (T_1(x), \dots, T_n(x)), \text{ where } T_i(x) = \sum_{i=1}^n x_i \alpha_i^i$$

• Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a map defined by $T(x_1, x_2) = (x_2 - x_1, x_1^2, x_2)$.

 $T(x) = \left(\sum_{i=1}^{n} x_i \alpha_i^1, \dots, \sum_{i=1}^{n} x_i \alpha_i^m\right)$

$$T(x) = (T_1(x), \dots, T_n(x)), \text{ where } T_i(x) = \sum_{i=1}^n x_i \alpha_i^i$$

• Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a map defined by $T(x_1, x_2) = (x_2 - x_1, x_1^2, x_2)$.

T is linear or not?

$$T(x) = \left(\sum_{i=1}^{n} x_i \alpha_i^1, \dots, \sum_{i=1}^{n} x_i \alpha_i^m\right)$$

$$T(x) = (T_1(x), \dots, T_n(x)), \text{ where } T_i(x) = \sum_{i=1}^n x_i \alpha_i^i$$

• Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a map defined by $T(x_1, x_2) = (x_2 - x_1, x_1^2, x_2)$.

T is linear or not?

$$ullet$$
 Let $T:\mathbb{R}^2 o \mathbb{R}^2$ be a linear map such that $T(e_1)=(1,1)$ and $T(e_2)=(-1,1).$

$$T(x) = \left(\sum_{i=1}^{n} x_i \alpha_i^1, \dots, \sum_{i=1}^{n} x_i \alpha_i^m\right)$$

$$T(x) = (T_1(x), \dots, T_n(x))$$
, where $T_i(x) = \sum_{i=1}^n x_i \alpha_i^i$

• Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a map defined by $T(x_1, x_2) = (x_2 - x_1, x_1^2, x_2)$.

T is linear or not?

ullet Let $\mathcal{T}:\mathbb{R}^2 o \mathbb{R}^2$ be a linear map such that $\mathcal{T}(e_1)=(1,1)$ and $\mathcal{T}(e_2)=(-1,1).$

Could it be possible to get the linear map explicitly?

$$T(x) = \left(\sum_{i=1}^{n} x_i \alpha_i^1, \dots, \sum_{i=1}^{n} x_i \alpha_i^m\right)$$

$$T(x) = (T_1(x), \dots, T_n(x)), \text{ where } T_i(x) = \sum_{i=1}^n x_i \alpha_i^i$$

ullet Let $\mathcal{T}:\mathbb{R}^2 o\mathbb{R}^3$ be a map defined by $\mathcal{T}(x_1,x_2)=(x_2-x_1,x_1^2,x_2).$

T is linear or not?

ullet Let $T:\mathbb{R}^2 o \mathbb{R}^2$ be a linear map such that $T(e_1)=(1,1)$ and $T(e_2)=(-1,1)$.

Could it be possible to get the linear map explicitly?

Answer: Yes. Let $(x_1, x_2) \in \mathbb{R}^2$. Then $(x_1, x_2) = x_1 e_1 + x_2 e_2$.

Then
$$T(x_1, x_2) = x_1 T(e_1) + x_2 T(e_2)$$

$$= x_1(1,1) + x_2(-1,1)$$

$$=(x_1-x_2,x_1+x_2)$$

Then $T(x_1, x_2) = x_1 T(e_1) + x_2 T(e_2)$

$$= x_1(1,1) + x_2(-1,1)$$
$$= (x_1 - x_2, x_1 + x_2)$$

ullet Let $\mathcal{T}:\mathbb{R}^2 o \mathbb{R}^2$ be a linear map such that $\mathcal{T}(1,0)=(1,1).$

Then
$$T(x_1, x_2) = x_1 T(e_1) + x_2 T(e_2)$$

= $x_1(1, 1) + x_2(-1, 1)$
= $(x_1 - x_2, x_1 + x_2)$

ullet Let $\mathcal{T}:\mathbb{R}^2 o\mathbb{R}^2$ be a linear map such that $\mathcal{T}(1,0)=(1,1).$

Could it be possible to get the linear map explicitly?

Then
$$T(x_1, x_2) = x_1 T(e_1) + x_2 T(e_2)$$

= $x_1(1, 1) + x_2(-1, 1)$
= $(x_1 - x_2, x_1 + x_2)$

ullet Let $\mathcal{T}:\mathbb{R}^2 o \mathbb{R}^2$ be a linear map such that $\mathcal{T}(1,0)=(1,1).$

Could it be possible to get the linear map explicitly?

Answer: No it is not possible.

• [Theorem:] Let \mathbb{V} be a finite-dimensional vector space over the field \mathbb{F} and let $\{u_1, \ldots, u_n\}$ be an **ordered basis** for \mathbb{V} .

• [Theorem:] Let $\mathbb V$ be a finite-dimensional vector space over the field $\mathbb F$ and let $\{u_1,\ldots,u_n\}$ be an **ordered basis** for $\mathbb V$. Let $\mathbb W$ be a vector space over the same field $\mathbb F$ and let w_1,\ldots,w_n be any vectors in $\mathbb W$.

Proof:

Proof:

Let
$$x \in \mathbb{V}$$
. Then $x = \sum_{i=1}^{n} c_i u_i$.

Proof:

Let
$$x \in \mathbb{V}$$
. Then $x = \sum_{i=1}^{n} c_i u_i$.

Define
$$T(x) = \sum_{i=1}^{n} c_i w_i$$
. It is clear that T is well defined because $x = \frac{n}{2}$

 $\sum_{i=1}^{n} c_i u_i$, this expression unique.

We first show that T is a linear transformation. Take $x, y \in \mathbb{V}$. Then

 $x = \sum_{i=1}^{n} c_i u_i$ and $y = \sum_{i=1}^{n} d_i u_i$.

We first show that T is a linear transformation. Take $x, y \in \mathbb{V}$. Then $x = \sum_{i=1}^{n} c_i u_i$ and $y = \sum_{i=1}^{n} d_i u_i$.

Let
$$\alpha, \beta \in \mathbb{F}$$
. $T(\alpha x + \beta y) = T(\sum_{i=1}^{n} (\alpha c_i + \beta d_i)u_i)$.

$$T(\alpha x + \beta y) = \sum_{i=1}^{n} (\alpha c_i + \beta d_i) w_i.$$

$$= \alpha \sum_{i=1}^{n} c_i w_i + \beta \sum_{i=1}^{n} d_i w_i.$$

$$= \alpha T(x) + \beta T(y).$$

Hence
$$T$$
 is linear.

Uniqueness: Suppose that there is another linear transformation U such that $U(u_i) = w_i$.

Uniqueness: Suppose that there is another linear transformation U such that $U(u_i) = w_i$.

To show that U = T. Let $x \in \mathbb{V}$. Then $x = \sum_{i=1}^{n} a_i u_i$. Using definition of T

we have $T(x) = T(\sum_{i=1}^{n} a_{i}u_{i}) = \sum_{i=1}^{n} a_{i}w_{i}$.

 $U(x) = U(\sum_{i=1}^{n} a_i u_i)$

$$= \sum_{i=1}^{n} a_{i} U(u_{i}) \text{ (applying the definition of linear transformation)}$$
$$= \sum_{i=1}^{n} a_{i} w_{i}.$$

Then U(x) = T(x) for all $x \in \mathbb{V}$. Hence U = T.

• [Example]

Take the basis $\{e_1,e_2,e_3\}$ in \mathbb{R}^3 . Take $1,2,3\in\mathbb{R}$. Then using previous theorem we have a unique linear transformation \mathcal{T} from \mathbb{R}^3 to \mathbb{R} such that $\mathcal{T}(e_1)=1,\,\mathcal{T}(e_2)=2,\,\mathcal{T}(e_3)=3$ and $\mathcal{T}(x_1,x_2,x_3)=x_1+2x_2+3x_3$.

Take the basis $\{e_1,e_2,e_3\}$ in \mathbb{R}^3 . Take $1,2,3\in\mathbb{R}$. Then using previous theorem we have a unique linear transformation \mathcal{T} from \mathbb{R}^3 to \mathbb{R} such that $\mathcal{T}(e_1)=2,\,\mathcal{T}(e_2)=1,\,\mathcal{T}(e_3)=3$ and $\mathcal{T}(x_1,x_2,x_3)=2x_1+x_2+3x_3$. This transformation is different between the previous transformation.

The previous theorem gives a technique to construct a linear transformation from a finite dimensional vector space to another dimensional vector space over the same filed \mathbb{F} .

- [Definition:] Let $T : \mathbb{V} \to \mathbb{W}$ be a linear transformation.
 - 1. $Ker(T) := \{x \in V : T(x) = 0\}.$

- [**Definition**:] Let $T : \mathbb{V} \to \mathbb{W}$ be a linear transformation.
 - 1. $Ker(T) := \{x \in \mathbb{V} : T(x) = 0\}$. This is called ker(T). You can easily check that Ker(T) is a subspace of \mathbb{V} .

- [**Definition:**] Let $T : \mathbb{V} \to \mathbb{W}$ be a linear transformation.
 - 1. $Ker(T) := \{x \in \mathbb{V} : T(x) = 0\}$. This is called ker(T). You can easily check that Ker(T) is a subspace of \mathbb{V} .

2. $R(T) := \{ T(x) : x \in \mathbb{V} \}.$

- [**Definition**:] Let $T : \mathbb{V} \to \mathbb{W}$ be a linear transformation.
 - 1. $Ker(T) := \{x \in \mathbb{V} : T(x) = 0\}$. This is called ker(T). You can easily check that Ker(T) is a subspace of \mathbb{V} .

2. $R(T) := \{T(x) : x \in \mathbb{V}\}$. you can easily check that R(T) is a subspace of \mathbb{W} .

- [**Definition:**] Let $T : \mathbb{V} \to \mathbb{W}$ be a linear transformation.
 - 1. $Ker(T) := \{x \in \mathbb{V} : T(x) = 0\}$. This is called ker(T). You can easily check that Ker(T) is a subspace of \mathbb{V} .

2. $R(T) := \{T(x) : x \in \mathbb{V}\}$. you can easily check that R(T) is a subspace of \mathbb{W} .

The subspaces R(T) is called the **range space** of T.

$$T(x_1, x_2, x_3) = (x_1 - x_2, x_1 - x_3)$$

$$T(x_1, x_2, x_3) = (x_1 - x_2, x_1 - x_3)$$

$$\textit{N(T)} := \{(x_1, x_2, x_3) \in \mathbb{R}^3 : \textit{T}(x_1, x_2, x_3) = 0\}.$$

$$T(x_1, x_2, x_3) = (x_1 - x_2, x_1 - x_3)$$

$$N(T) := \{(x_1, x_2, x_3) \in \mathbb{R}^3 : T(x_1, x_2, x_3) = 0\}.$$

$$T(x_1,x_2,x_3)=0$$

$$T(x_1, x_2, x_3) = (x_1 - x_2, x_1 - x_3)$$

$$N(T) := \{(x_1, x_2, x_3) \in \mathbb{R}^3 : T(x_1, x_2, x_3) = 0\}.$$

$$T(x_1,x_2,x_3)=0$$

$$\implies (x_1 - x_2, x_1 - x_3) = (0, 0)$$

$$T(x_1, x_2, x_3) = (x_1 - x_2, x_1 - x_3)$$

$$N(T) := \{(x_1, x_2, x_3) \in \mathbb{R}^3 : T(x_1, x_2, x_3) = 0\}.$$

$$T(x_1,x_2,x_3)=0$$

$$\implies (x_1 - x_2, x_1 - x_3) = (0, 0)$$

$$\implies x_1 - x_2 = 0, x_1 - x_3 = 0$$

$$T(x_1, x_2, x_3) = (x_1 - x_2, x_1 - x_3)$$

$$N(T) := \{(x_1, x_2, x_3) \in \mathbb{R}^3 : T(x_1, x_2, x_3) = 0\}.$$

$$T(x_1,x_2,x_3)=0$$

$$\implies (x_1 - x_2, x_1 - x_3) = (0, 0)$$

$$\implies x_1 - x_2 = 0, x_1 - x_3 = 0$$

$$\implies x_1 = x_2, x_1 = x_3$$

$$T(x_1, x_2, x_3) = (x_1 - x_2, x_1 - x_3)$$

$$N(T) := \{(x_1, x_2, x_3) \in \mathbb{R}^3 : T(x_1, x_2, x_3) = 0\}.$$

$$T(x_1,x_2,x_3)=0$$

$$\implies (x_1 - x_2, x_1 - x_3) = (0, 0)$$

$$\implies x_1 - x_2 = 0, x_1 - x_3 = 0$$

$$\implies x_1 = x_2, x_1 = x_3$$

$$\implies x_1 = x_2 = x_3 = k, \ k \in \mathbb{R}^3$$

$$T(x_1, x_2, x_3) = (x_1 - x_2, x_1 - x_3)$$

$$N(T) := \{(x_1, x_2, x_3) \in \mathbb{R}^3 : T(x_1, x_2, x_3) = 0\}.$$

$$T(x_1,x_2,x_3)=0$$

$$\implies (x_1 - x_2, x_1 - x_3) = (0, 0)$$

$$\implies x_1 - x_2 = 0, x_1 - x_3 = 0$$

$$\implies x_1 = x_2, x_1 = x_3$$

$$\implies x_1 = x_2 = x_3 = k, \ k \in \mathbb{R}^3$$

$$\implies (x_1, x_2, x_3) = k(1, 1, 1)$$

$$T(x_1, x_2, x_3) = (x_1 - x_2, x_1 - x_3)$$

$$N(T) := \{(x_1, x_2, x_3) \in \mathbb{R}^3 : T(x_1, x_2, x_3) = 0\}.$$

$$T(x_1,x_2,x_3)=0$$

$$\implies (x_1 - x_2, x_1 - x_3) = (0, 0)$$

$$\implies x_1 - x_2 = 0, x_1 - x_3 = 0$$

$$\implies x_1 = x_2, x_1 = x_3$$

$$\implies x_1 = x_2 = x_3 = k, \ k \in \mathbb{R}^3$$

$$\implies (x_1, x_2, x_3) = k(1, 1, 1)$$

$$\implies N(T) := \mathsf{ls}(\{(1,1,1)\})$$

$$T(x_1, x_2, x_3) = (x_1 - x_2, x_1 - x_3)$$

$$N(T) := \{(x_1, x_2, x_3) \in \mathbb{R}^3 : T(x_1, x_2, x_3) = 0\}.$$

$$\implies (x_1 - x_2, x_1 - x_3) = (0, 0)$$

 $T(x_1, x_2, x_3) = 0$

$$\implies x_1 - x_2 = 0, x_1 - x_3 = 0$$

$$\rightarrow \lambda_1 \quad \lambda_2 = 0, \lambda_1 \quad \lambda_3 = 0$$

 $\implies x_1 = x_2, x_1 = x_3$

$$\implies x_1 = x_2 = x_3 = k, k \in \mathbb{R}^3$$

$$\implies (x_1, x_2, x_3) = k(1, 1, 1)$$

$$\implies N(T) := ls(\{(1,1,1)\})$$

 $\dim(N(T)) = 1.$

 $\overline{R(T)} := \{ T(x) : x \in \mathbb{R}^3 \}.$

Let $y = (y_1, y_2) \in R(T)$. Then there exists $(x_1, x_2, x_3) \in \mathbb{R}^3$ such that $(y_1, y_2) = T(x_1, x_2, x_3)$.

Let $y = (y_1, y_2) \in R(T)$. Then there exists $(x_1, x_2, x_3) \in \mathbb{R}^3$ such that $(y_1, y_2) = T(x_1, x_2, x_3)$.

 $(y_1,y_2)=(x_1-x_2,x_1-x_3).$

Let $y = (y_1, y_2) \in R(T)$. Then there exists $(x_1, x_2, x_3) \in \mathbb{R}^3$ such that $(y_1, y_2) = T(x_1, x_2, x_3).$

$$(y_1, y_2) = (x_1 - x_2, x_1 - x_3).$$

 $(y_1, y_2) = (x_1 - x_2)(1, 0) + (x_1 - x_3)(0, 1)$

$$(y_1, y_2) = (x_1 - x_2)(1, 0) + (x_1 - x_3)(0,$$

Let
$$y = (y_1, y_2) \in R(T)$$
. Then there exists $(x_1, x_2, x_3) \in \mathbb{R}^3$ such that $(y_1, y_2) = T(x_1, x_2, x_3)$.

$$(y_1, y_2) = (x_1 - x_2, x_1 - x_3).$$

$$(y_1, y_2) = (x_1 - x_2)(1, 0) + (x_1 - x_3)(0, 1)$$

$$(v_1, v_2) = k_1(1, 0) + k_2(0, 1)$$

$$(y_1, y_2) = k_1(1, 0) + k_2(0, 1)$$

$$(y_1, y_2) = k_1(1,0) + k_2(0,1)$$

$$=k_1(1,0)+k_2(0,1)$$

$$+(x_1-x_3)(0,1)$$

$$(x_1-x_3)(0,1)$$

Let $y = (y_1, y_2) \in R(T)$. Then there exists $(x_1, x_2, x_3) \in \mathbb{R}^3$ such that $(v_1, v_2) = T(x_1, x_2, x_3).$

$$(y_1, y_2) = (x_1 - x_2, x_1 - x_3).$$

$$(y_1, y_2) = (x_1 - x_2)(1, 0) + (x_1 - x_3)(0, 1)$$

$$(y_1, y_2) = k_1(1, 0) + k_2(0, 1)$$

$$R(T) := ls(\{(1,0),(0,1)\})$$

Let $y = (y_1, y_2) \in R(T)$. Then there exists $(x_1, x_2, x_3) \in \mathbb{R}^3$ such that $(y_1, y_2) = T(x_1, x_2, x_3).$

$$(y_1, y_2) = (x_1 - x_2, x_1 - x_3).$$

 $(y_1, y_2) = (x_1 - x_2)(1, 0) + (x_1 - x_3)(0, 1)$

$$(y_1, y_2) = k_1(1,0) + k_2(0,1)$$

$$R(T) := ls(\{(1,0),(0,1)\})$$

$$\dim(R(T))=2$$

$$\dim(R(I)) =$$

ullet Let $\mathbb V$ and $\mathbb W$ be two finite dimensional vector spaces over the filed $\mathbb F.$

 \bullet Let $\mathbb V$ and $\mathbb W$ be two finite dimensional vector spaces over the filed $\mathbb F.$

The $\dim(R(T))$ is called the **rank** of T and $\dim(N(T))$ is called the **nullity** of T.

• [Definition:] Let $T : \mathbb{V} \to \mathbb{W}$ be a linear transformation.

- [Definition:] Let $T : \mathbb{V} \to \mathbb{W}$ be a linear transformation.
 - 1. T is called one-one (injective) if $T(x_1) = T(x_2) \implies x_1 = x_2$ for all $x_1, x_2 \in \mathbb{V}$.
 - 2. T is called onto (surjective) if $T(\mathbb{V}) = \mathbb{W}$, that is $R(T) = \mathbb{W}$.

- [Definition:] Let $T : \mathbb{V} \to \mathbb{W}$ be a linear transformation.
 - 1. T is called one-one (injective) if $T(x_1) = T(x_2) \implies x_1 = x_2$ for all $x_1, x_2 \in \mathbb{V}$.
 - 2. T is called onto (surjective) if T(V) = W, that is R(T) = W.
- [Theorem:] Let $T : \mathbb{V} \to \mathbb{W}$ be a linear transformation. Then T is one-one if and only if $Ker(T) = \{0\}$.

- [Definition:] Let $T : \mathbb{V} \to \mathbb{W}$ be a linear transformation.
- 1. T is called one-one (injective) if $T(x_1) = T(x_2) \implies x_1 = x_2$ for all $x_1, x_2 \in \mathbb{V}$.
- 2. T is called onto (surjective) if T(V) = W, that is R(T) = W.
- [Theorem:] Let $T : \mathbb{V} \to \mathbb{W}$ be a linear transformation. Then T is one-one if and only if $Ker(T) = \{0\}$.

- [Definition:] Let $T : \mathbb{V} \to \mathbb{W}$ be a linear transformation.
 - 1. T is called one-one (injective) if $T(x_1) = T(x_2) \implies x_1 = x_2$ for all $x_1, x_2 \in \mathbb{V}$.
 - 2. T is called onto (surjective) if $T(\mathbb{V}) = \mathbb{W}$, that is $R(T) = \mathbb{W}$.
- [Theorem:] Let $T : \mathbb{V} \to \mathbb{W}$ be a linear transformation. Then T is one-one if and only if $Ker(T) = \{0\}$.

To show $Ker(T) = \{0\}$. Let $x \in ker(T)$.

- [Definition:] Let $T : \mathbb{V} \to \mathbb{W}$ be a linear transformation.
 - 1. T is called one-one (injective) if $T(x_1) = T(x_2) \implies x_1 = x_2$ for all $x_1, x_2 \in \mathbb{V}$.
 - 2. T is called onto (surjective) if $T(\mathbb{V}) = \mathbb{W}$, that is $R(T) = \mathbb{W}$.
- [Theorem:] Let $T : \mathbb{V} \to \mathbb{W}$ be a linear transformation. Then T is one-one if and only if $Ker(T) = \{0\}$.

To show $Ker(T) = \{0\}$. Let $x \in ker(T)$. Then T(x) = 0 and we know that T(0) = 0. Since T is one-one, then x = 0. Hence $Ker(T) = \{0\}$.

- [Definition:] Let $T : \mathbb{V} \to \mathbb{W}$ be a linear transformation.
 - 1. T is called one-one (injective) if $T(x_1) = T(x_2) \implies x_1 = x_2$ for all $x_1, x_2 \in \mathbb{V}$.
 - 2. T is called onto (surjective) if $T(\mathbb{V}) = \mathbb{W}$, that is $R(T) = \mathbb{W}$.
- [Theorem:] Let $T : \mathbb{V} \to \mathbb{W}$ be a linear transformation. Then T is one-one if and only if $Ker(T) = \{0\}$.

To show $Ker(T) = \{0\}$. Let $x \in ker(T)$. Then T(x) = 0 and we know that T(0) = 0. Since T is one-one, then x = 0. Hence $Ker(T) = \{0\}$.

We now assume that $ker(T) = \{0\}.$

To show T is one-one. Let $T(x_1) = T(x_2)$.

- [Definition:] Let $T : \mathbb{V} \to \mathbb{W}$ be a linear transformation.
- 1. T is called one-one (injective) if $T(x_1) = T(x_2) \implies x_1 = x_2$ for all $x_1, x_2 \in \mathbb{V}$.
- 2. T is called onto (surjective) if $T(\mathbb{V}) = \mathbb{W}$, that is $R(T) = \mathbb{W}$.
- [Theorem:] Let $T : \mathbb{V} \to \mathbb{W}$ be a linear transformation. Then T is one-one if and only if $Ker(T) = \{0\}$.

To show $Ker(T) = \{0\}$. Let $x \in ker(T)$. Then T(x) = 0 and we know that T(0) = 0. Since T is one-one, then x = 0. Hence $Ker(T) = \{0\}$.

We now assume that $ker(T) = \{0\}.$

To show T is one-one. Let $T(x_1) = T(x_2)$. This implies $T(x_1 - x_2) = 0$. Hence $x_1 - x_2 \in Ker(T)$.

- [Definition:] Let $T : \mathbb{V} \to \mathbb{W}$ be a linear transformation.
- 1. T is called one-one (injective) if $T(x_1) = T(x_2) \implies x_1 = x_2$ for all $x_1, x_2 \in \mathbb{V}$.
- 2. T is called onto (surjective) if $T(\mathbb{V}) = \mathbb{W}$, that is $R(T) = \mathbb{W}$.
- [Theorem:] Let $T : \mathbb{V} \to \mathbb{W}$ be a linear transformation. Then T is one-one if and only if $Ker(T) = \{0\}$.

To show $Ker(T) = \{0\}$. Let $x \in ker(T)$. Then T(x) = 0 and we know that T(0) = 0. Since T is one-one, then x = 0. Hence $Ker(T) = \{0\}$.

We now assume that $ker(T) = \{0\}.$

To show T is one-one. Let $T(x_1) = T(x_2)$. This implies $T(x_1 - x_2) = 0$. Hence $x_1 - x_2 \in Ker(T)$. Therefore $x_1 - x_2 = 0$. This implies $x_1 = x_2$.

If u_1, \ldots, u_n are in \mathbb{V} such that $T(u_1), \ldots, T(u_n)$ are linearly independent in \mathbb{W} , then u_1, \ldots, u_n are linearly independent in \mathbb{V} .

If u_1, \ldots, u_n are in $\mathbb V$ such that $T(u_1), \ldots, T(u_n)$ are linearly independent in $\mathbb W$, then u_1, \ldots, u_n are linearly independent in $\mathbb V$.

If u_1, \ldots, u_n are in $\mathbb V$ such that $T(u_1), \ldots, T(u_n)$ are linearly independent in $\mathbb W$, then u_1, \ldots, u_n are linearly independent in $\mathbb V$.

Given that
$$T(u_1), \ldots, T(u_n)$$
 are LI. To show u_1, \ldots, u_n are LI.

$$c_1u_1+\cdots+c_nu_n=0_{\mathbb{V}}.$$

If u_1, \ldots, u_n are in $\mathbb V$ such that $T(u_1), \ldots, T(u_n)$ are linearly independent in $\mathbb W$, then u_1, \ldots, u_n are linearly independent in $\mathbb V$.

$$c_1u_1+\cdots+c_nu_n=0_{\mathbb{V}}.$$

$$T(c_1u_1+\cdots+c_nu_n)=0_{\mathbb{W}}$$

If u_1, \ldots, u_n are in $\mathbb V$ such that $T(u_1), \ldots, T(u_n)$ are linearly independent in $\mathbb W$, then u_1, \ldots, u_n are linearly independent in $\mathbb V$.

$$c_1u_1+\cdots+c_nu_n=0_{\mathbb{V}}.$$

$$T(c_1u_1+\cdots+c_nu_n)=0_{\mathbb{W}}$$

$$c_1 T(u_1) + \cdots + c_n T(u_n) = 0_{\mathbb{W}}.$$

If u_1, \ldots, u_n are in $\mathbb V$ such that $T(u_1), \ldots, T(u_n)$ are linearly independent in $\mathbb W$, then u_1, \ldots, u_n are linearly independent in $\mathbb V$.

$$c_1u_1+\cdots+c_nu_n=0_{\mathbb{V}}.$$

$$T(c_1u_1+\cdots+c_nu_n)=0_{\mathbb{W}}$$

$$c_1 T(u_1) + \cdots + c_n T(u_n) = 0_{\mathbb{W}}.$$

$$c_1 = c_2 = \ldots = c_n = 0$$
 as $T(u_1), \ldots, T(u_n)$ are LI.

If u_1, \ldots, u_n are in $\mathbb V$ such that $T(u_1), \ldots, T(u_n)$ are linearly independent in $\mathbb W$, then u_1, \ldots, u_n are linearly independent in $\mathbb V$.

Given that $T(u_1), \ldots, T(u_n)$ are LI. To show u_1, \ldots, u_n are LI.

$$c_1u_1+\cdots+c_nu_n=0_{\mathbb{V}}.$$

$$T(c_1u_1+\cdots+c_nu_n)=0_{\mathbb{W}}$$

$$c_1 T(u_1) + \cdots + c_n T(u_n) = 0_{\mathbb{W}}.$$

$$c_1 = c_2 = \ldots = c_n = 0$$
 as $T(u_1), \ldots, T(u_n)$ are LI.

Converse is not true in general. That is if u_1, \ldots, u_n are LI, then $T(u_1), \ldots, T(u_n)$ may or may not be LI.

• [Theorem:] If T is one-one and u_1, \ldots, u_n are linearly independent in \mathbb{V} ,

then $T(u_1), \ldots, T(u_n)$ are linearly independent in \mathbb{W} .

then $T(u_1), \ldots, T(u_n)$ are linearly independent in \mathbb{W} . **Proof**: Given u_1, \ldots, u_n are LI and T is one-one. To show $T(u_1), \ldots, T(u_n)$

• [Theorem:] If T is one-one and u_1, \ldots, u_n are linearly independent in \mathbb{V} ,

are LI.

• [Theorem:] If T is one-one and u_1, \ldots, u_n are linearly independent in \mathbb{V} , then $T(u_1), \ldots, T(u_n)$ are linearly independent in \mathbb{W} .

Proof: Given u_1, \ldots, u_n are LI and T is one-one. To show $T(u_1), \ldots, T(u_n)$ are LI.

 $c_1 T(u_1) + \cdots + c_n T(u_n) = 0_{\mathbb{W}}.$

• [Theorem:] If T is one-one and u_1, \ldots, u_n are linearly independent in \mathbb{V} , then $T(u_1), \ldots, T(u_n)$ are linearly independent in \mathbb{W} .

Proof: Given u_1, \ldots, u_n are LI and T is one-one. To show $T(u_1), \ldots, T(u_n)$ are LI.

 $c_1 T(u_1) + \cdots + c_n T(u_n) = 0_{\mathbb{W}}.$

 $T(c_1u_1+\cdots+c_nu_n)=0_{\mathbb{W}}.$

• [Theorem:] If T is one-one and u_1, \ldots, u_n are linearly independent in \mathbb{V} , then $T(u_1), \ldots, T(u_n)$ are linearly independent in \mathbb{W} .

Proof: Given u_1, \ldots, u_n are LI and T is one-one. To show $T(u_1), \ldots, T(u_n)$

are LI.

 $T(c_1u_1+\cdots+c_nu_n)=0_{\mathbb{W}}.$

 $c_i u_1 + \cdots + c_n u_n = 0_{\mathbb{V}}$ as T is one-one.

 $c_1 T(u_1) + \cdots + c_n T(u_n) = 0_{\mathbb{W}}.$

• [Theorem:] If T is one-one and u_1, \ldots, u_n are linearly independent in \mathbb{V} , then $T(u_1), \ldots, T(u_n)$ are linearly independent in \mathbb{W} .

Proof: Given u_1, \ldots, u_n are LI and T is one-one. To show $T(u_1), \ldots, T(u_n)$ are LI

$$c_1 T(u_1) + \cdots + c_n T(u_n) = 0_{\mathbb{W}}.$$

 $T(c_1 u_1 + \cdots + c_n u_n) = 0_{\mathbb{W}}.$

$$c_i u_1 + \cdots + c_n u_n = 0_{\mathbb{V}}$$
 as T is one-one.

$$c_1 = c_2 = \ldots = c_n = 0$$
 as u_1, \ldots, u_n are LI

• [Rank-Nullity Theorem] Let $\mathbb V$ be a finite dimensional vector space. Let $T: \mathbb V \to \mathbb W$ be a linear transformation. Then $\dim(\mathbb V) = nullity(T) + rank(T)$.

• [Rank-Nullity Theorem] Let $\mathbb V$ be a finite dimensional vector space. Let $T: \mathbb V \to \mathbb W$ be a linear transformation. Then $\dim(\mathbb V) = nullity(T) + rank(T)$.

Proof: Since V is finite dimensional, then Ker(T) is finite dimensional.

• [Rank-Nullity Theorem] Let $\mathbb V$ be a finite dimensional vector space. Let $T: \mathbb V \to \mathbb W$ be a linear transformation. Then $\dim(\mathbb V) = \operatorname{nullity}(T) + \operatorname{nullity}(T)$

Proof: Since \mathbb{V} is finite dimensional, then $\mathit{Ker}(\mathcal{T})$ is finite dimensional.

Let $\dim(\mathbb{V}) = n$ and let Ker(T) = k.

rank(T).

Proof: Since V is finite dimensional, then Ker(T) is finite dimensional.

Let dim(V) = n and let Ker(T) = k.

rank(T).

Let $\{u_1, \ldots, u_k\}$ be a basis of $\dim(Ker(T))$.

 $T: \mathbb{V} \to \mathbb{W}$ be a linear transformation. Then $\dim(\mathbb{V}) = nullity(T) + rank(T)$.

Proof: Since V is finite dimensional, then Ker(T) is finite dimensional.

Let $dim(\mathbb{V}) = n$ and let Ker(T) = k.

Let $\{u_1, \ldots, u_k\}$ be a basis of $\dim(Ker(T))$.

Using extension theorem we extend $\{u_1,\ldots,u_k\}$ to a basis of $\mathbb V$ which is $\{u_1,\ldots,u_k,u_{k+1},\ldots,u_n\}$.

Proof: Since V is finite dimensional, then Ker(T) is finite dimensional.

Let $dim(\mathbb{V}) = n$ and let Ker(T) = k.

Let $\{u_1, \ldots, u_k\}$ be a basis of $\dim(Ker(T))$.

Using extension theorem we extend $\{u_1,\ldots,u_k\}$ to a basis of $\mathbb V$ which is $\{u_1,\ldots,u_k,u_{k+1},\ldots,u_n\}$.

Let $y \in R(T)$. Then there exists $x \in V$ such that T(x) = y.

Proof: Since V is finite dimensional, then Ker(T) is finite dimensional.

Let $dim(\mathbb{V}) = n$ and let Ker(T) = k.

Let $\{u_1, \ldots, u_k\}$ be a basis of $\dim(Ker(T))$.

Using extension theorem we extend $\{u_1,\ldots,u_k\}$ to a basis of $\mathbb V$ which is $\{u_1,\ldots,u_k,u_{k+1},\ldots,u_n\}$.

Let $y \in R(T)$. Then there exists $x \in \mathbb{V}$ such that T(x) = y.

Proof: Since V is finite dimensional, then Ker(T) is finite dimensional.

Let $dim(\mathbb{V}) = n$ and let Ker(T) = k.

Let $\{u_1, \ldots, u_k\}$ be a basis of $\dim(Ker(T))$.

Using extension theorem we extend $\{u_1, \ldots, u_k\}$ to a basis of \mathbb{V} which is $\{u_1, \ldots, u_k, u_{k+1}, \ldots, u_n\}$.

Let $y \in R(T)$. Then there exists $x \in \mathbb{V}$ such that T(x) = y.

$$T(x) = T(c_1u_1 + \cdots + c_nu_n)$$

Proof: Since V is finite dimensional, then Ker(T) is finite dimensional.

Let $dim(\mathbb{V}) = n$ and let Ker(T) = k.

Let $\{u_1, \ldots, u_k\}$ be a basis of $\dim(Ker(T))$.

Using extension theorem we extend $\{u_1, \ldots, u_k\}$ to a basis of \mathbb{V} which is $\{u_1, \ldots, u_k, u_{k+1}, \ldots, u_n\}$.

Let $y \in R(T)$. Then there exists $x \in \mathbb{V}$ such that T(x) = y.

$$T(x) = T(c_1u_1 + \dots + c_nu_n)$$
$$= c_1T(u_1) + \dots + c_nT(u_n)$$

Proof: Since V is finite dimensional, then Ker(T) is finite dimensional.

Let $dim(\mathbb{V}) = n$ and let Ker(T) = k.

 $T(x) = T(c_1u_1 + \cdots + c_nu_n)$

Let $\{u_1, \ldots, u_k\}$ be a basis of dim(Ker(T)).

Using extension theorem we extend $\{u_1, \ldots, u_k\}$ to a basis of \mathbb{V} which is $\{u_1, \ldots, u_k, u_{k+1}, \ldots, u_n\}$.

Let $y \in R(T)$. Then there exists $x \in \mathbb{V}$ such that T(x) = y.

$$= c_1 T(u_1) + \cdots + c_n T(u_n) = c_{k+1} T(u_{k+1}) + \cdots + c_n T(u_n)$$

Each vector of T(x) is a linear combination of $T(u_{k+1}), \ldots, T(u_n)$ and $T(u_{k+1}), \ldots, T(u_n) \in R(T)$. Hence $ls(\{T(u_{k+1}), \ldots, T(u_n)\}) = R(T)$

 $T(u_{k+1}), \ldots, T(u_n) \in R(T)$. Hence $ls(\{T(u_{k+1}), \ldots, T(u_n)\}) = R(T)$

To show that $T(u_{k+1}), \ldots, T(u_n)$ are LI. Take $a_1 T(u_{k+1}) + \cdots + \cdots$

To show that
$$T(u_{k+1}),\ldots,T(u_n)$$
 are LI. Take $a_1T(u_{k+1})+\cdots+a_{n-k}T(u_n)=0$.

.

Each vector of T(x) is a linear combination of $T(u_{k+1}), \ldots, T(u_n)$ and $T(u_{k+1}), \ldots, T(u_n) \in R(T)$. Hence $ls(\{T(u_{k+1}), \ldots, T(u_n)\}) = R(T)$

To show that $T(u_{k+1}),\ldots,T(u_n)$ are LI. Take $a_1T(u_{k+1})+\cdots+a_{n-k}T(u_n)=0$.

$$a_{n-k}T(u_n) = 0.$$

$$T(a_1u_{k+1} + \dots + a_{n-k}u_n) = 0.$$

 $T(u_{k+1}), \ldots, T(u_n) \in R(T)$. Hence $ls(\{T(u_{k+1}), \ldots, T(u_n)\}) = R(T)$

To show that $T(u_{k+1}), \ldots, T(u_n)$ are LI. Take $a_1 T(u_{k+1}) + \cdots + \cdots$ $a_{n-k}T(u_n)=0.$

$$a_{n-k} I(u_n) = 0.$$

$$T(a_1 u_{k+1} + \dots + a_{n-k} u_n) = 0.$$

Then $a_1u_{k+1} + \cdots + a_{n-k}u_n \in Ker(T)$.

 $T(u_{k+1}), \ldots, T(u_n) \in R(T)$. Hence $ls(\{T(u_{k+1}), \ldots, T(u_n)\}) = R(T)$ To show that $T(u_{k+1}), \ldots, T(u_n)$ are LI. Take $a_1 T(u_{k+1}) + \cdots + \cdots$

 $a_{n-k}T(u_n)=0.$

$$T(a_1u_{k+1}+\cdots+a_{n-k}u_n)=0.$$

Then $a_1u_{k+1} + \cdots + a_{n-k}u_n \in Ker(T)$.

 $a_1 u_{k+1} + \cdots + a_{n-k} u_n = b_1 u_1 + \cdots + b_k u_k$

Then
$$a_1u_{k+1}+\cdots+a_{n-k}u_n\in Ker(T)$$
.

To show that $T(u_{k+1}), \ldots, T(u_n)$ are LI. Take $a_1 T(u_{k+1}) + \cdots + \cdots$

 $a_{n-k} T(u_n) = 0.$ $T(a_1u_{k+1} + \cdots + a_{n-k}u_n) = 0.$

$$T(a_1u_{k+1}+\cdots+a_{n-k}u_n)=0.$$

Then $a_1u_{k+1} + \cdots + a_{n-k}u_n \in Ker(T)$.

Then
$$a_1u_{k+1}+\cdots+a_{n-k}u_n\in Ker(T)$$
.

 $a_1 u_{k+1} + \cdots + a_{n-k} u_n - b_1 u_1 - \cdots - b_k u_k = 0$

 $a_1 u_{k+1} + \cdots + a_{n-k} u_n = b_1 u_1 + \cdots + b_k u_k$

 $T(u_{k+1}), \ldots, T(u_n) \in R(T)$. Hence $ls(\{T(u_{k+1}), \ldots, T(u_n)\}) = R(T)$

 $T(u_{k+1}), \ldots, T(u_n) \in R(T)$. Hence $ls(\{T(u_{k+1}), \ldots, T(u_n)\}) = R(T)$

To show that $T(u_{k+1}), \ldots, T(u_n)$ are LI. Take $a_1 T(u_{k+1}) + \cdots + \cdots$ $a_{n-k} T(u_n) = 0.$

 $T(a_1u_{k+1} + \cdots + a_{n-k}u_n) = 0.$

Then $a_1u_{k+1} + \cdots + a_{n-k}u_n \in Ker(T)$.

 $a_1 u_{k+1} + \cdots + a_{n-k} u_n = b_1 u_1 + \cdots + b_k u_k$

 $a_1 u_{k+1} + \cdots + a_{n-k} u_n - b_1 u_1 - \cdots - b_k u_k = 0$

Since $\{u_1,\ldots,u_k,u_{k+1},\ldots,u_n\}$ is basis of \mathbb{V} . Then $a_1=\cdots=a_{n-k}=0$.

 $T(u_{k+1}), \ldots, T(u_n) \in R(T)$. Hence $ls(\{T(u_{k+1}), \ldots, T(u_n)\}) = R(T)$

To show that $T(u_{k+1}), \ldots, T(u_n)$ are LI. Take $a_1 T(u_{k+1}) + \cdots + \cdots$

 $a_{n-k} T(u_n) = 0.$

 $T(a_1u_{k+1} + \cdots + a_{n-k}u_n) = 0.$

Then $a_1u_{k+1} + \cdots + a_{n-k}u_n \in Ker(T)$.

 $a_1 u_{k+1} + \cdots + a_{n-k} u_n = b_1 u_1 + \cdots + b_k u_k$

 $a_1 u_{k+1} + \cdots + a_{n-k} u_n - b_1 u_1 - \cdots - b_k u_k = 0$

Since $\{u_1,\ldots,u_k,u_{k+1},\ldots,u_n\}$ is basis of \mathbb{V} . Then $a_1=\cdots=a_{n-k}=0$.

Therefore $T(u_{k+1}), \ldots, T(u_n)$ are LI. Hence $\{T(u_{k+1}), \ldots, T(u_n)\}$ is a ba-

sis of R(T). Then $\dim(R(T)) = n - k$.

Question: Is there a linear transformation T from an infinite dimensional vector space \mathbb{V} to another vectors space \mathbb{W} such that rank(T) and nullity(T) are finite?

Question: Is there a linear transformation T from an infinite dimensional vector space \mathbb{V} to another vectors space \mathbb{W} such that rank(T) and nullity(T) are finite?

Answer: Not possible to have such type of LT. Let nullity(T) = k and rank(T) = m.

Question: Is there a linear transformation T from an infinite dimensional vector space \mathbb{V} to another vectors space \mathbb{W} such that rank(T) and nullity(T) are finite?

Answer: Not possible to have such type of LT. Let nullity(T) = k and rank(T) = m.

Let $\{u_1, \ldots, u_k\}$ be a basis of Ker(T). We extend $\{u_1, \ldots, u_k\}$ to a LI set of m+k vectors (this is possible as $\mathbb V$ is infinite dimensional) which is $\{u_1, \ldots, u_k, \ldots, u_{k+1}, \ldots, u_{m+k+1}\}$.

Question: Is there a linear transformation T from an infinite dimensional vector space \mathbb{V} to another vectors space \mathbb{W} such that rank(T) and nullity(T) are finite?

Answer: Not possible to have such type of LT. Let nullity(T) = k and rank(T) = m.

Let $\{u_1, \ldots, u_k\}$ be a basis of Ker(T). We extend $\{u_1, \ldots, u_k\}$ to a LI set of m+k vectors (this is possible as $\mathbb V$ is infinite dimensional) which is $\{u_1, \ldots, u_k, \ldots, u_{k+1}, \ldots, u_{m+k+1}\}$.

Let $\mathbb{S} = \mathsf{ls}(\{u_1, \dots, u_k, \dots, u_{k+1}, \dots, u_{m+k+1}\})$. So \mathbb{S} is a subspace of \mathbb{V} and $\mathsf{dim}(\mathbb{S}) = m + k + 1$.

Question: Is there a linear transformation T from an infinite dimensional vector space \mathbb{V} to another vectors space \mathbb{W} such that rank(T) and nullity(T) are finite?

Answer: Not possible to have such type of LT. Let nullity(T) = k and rank(T) = m.

Let $\{u_1,\ldots,u_k\}$ be a basis of Ker(T). We extend $\{u_1,\ldots,u_k\}$ to a LI set of m+k vectors (this is possible as $\mathbb V$ is infinite dimensional) which is $\{u_1,\ldots,u_k,\ldots,u_{k+1},\ldots,u_{m+k+1}\}$.

Let $\mathbb{S} = \mathsf{ls}(\{u_1, \dots, u_k, \dots, u_{k+1}, \dots, u_{m+k+1}\})$. So \mathbb{S} is a subspace of \mathbb{V} and $\mathsf{dim}(\mathbb{S}) = m + k + 1$.

 $T_{\mathbb{S}}$ is a LT from \mathbb{S} to \mathbb{W} . Then $Ker(T_{\mathbb{S}}) \subseteq Ker(T)$ and $R(T_{\mathbb{S}}) \subseteq R(T)$.

Therefore there is no linear transformation T from an infinite dimensional vector space \mathbb{V} to another vectors space \mathbb{W} such that rank(T) and nullity(T) is finite.

Therefore there is no linear transformation T from an infinite dimensional vector space \mathbb{V} to another vectors space \mathbb{W} such that rank(T) and nullity(T) is finite.

Applications of Rank-Nullity Theorem: Let $\mathbb V$ and $\mathbb W$ be two vector spaces over the filed $\mathbb F$ such that $\dim(\mathbb V)=\dim(\mathbb W)$. Let $\mathcal T:\mathbb V\to\mathbb W$ be a LT. Then the following are equivalent.

Therefore there is no linear transformation T from an infinite dimensional vector space \mathbb{V} to another vectors space \mathbb{W} such that rank(T) and nullity(T) is finite.

Applications of Rank-Nullity Theorem: Let $\mathbb V$ and $\mathbb W$ be two vector spaces over the filed $\mathbb F$ such that $\dim(\mathbb V)=\dim(\mathbb W)$. Let $\mathcal T:\mathbb V\to\mathbb W$ be a LT. Then the following are equivalent.

1. T is one-one.

Therefore there is no linear transformation T from an infinite dimensional vector space \mathbb{V} to another vectors space \mathbb{W} such that rank(T) and nullity(T) is finite.

Applications of Rank-Nullity Theorem: Let $\mathbb V$ and $\mathbb W$ be two vector spaces over the filed $\mathbb F$ such that $\dim(\mathbb V)=\dim(\mathbb W)$. Let $\mathcal T:\mathbb V\to\mathbb W$ be a LT. Then the following are equivalent.

- 1. *T* is one-one.
- 2. *T* is onto.

• Let $\mathbb V$ and $\mathbb W$ be two vector spaces over the filed $\mathbb F$ such that $\dim(\mathbb V) < \dim(\mathbb W)$. Then there is no onto linear transformation from $\mathbb V$ to $\mathbb W$.

• Let $\mathbb V$ and $\mathbb W$ be two vector spaces over the filed $\mathbb F$ such that $\dim(\mathbb V) < \dim(\mathbb W)$. Then there is no onto linear transformation from $\mathbb V$ to $\mathbb W$.

• Let $\mathbb V$ and $\mathbb W$ be two vector spaces over the filed $\mathbb F$ such that $\dim(\mathbb V)>\dim(\mathbb W)$. Then there is no one-one linear transformation from $\mathbb V$ to $\mathbb W$.

• [Definition:] Let $T : \mathbb{V} \to \mathbb{W}$ be a linear transformation. Then T is said to be isomorphism if T is bijective (one-one+onto).

- [Example:]
 - 1. Let $\mathbb V$ be a vector space over $\mathbb F$. Let $T:\mathbb V\to\mathbb V$ be defined by $T(x)=\alpha x$, $\alpha\neq 0$. Then T is an isomorphism.
 - 2. Let $\mathbb{V}=M_{n\times m}(\mathbb{R})$ be the set of $n\times m$ matrices with real entries and let $\mathbb{W}=\mathbb{R}^{mn}$. Define $T:\mathbb{V}\to\mathbb{W}$ by
 - $T(A)=(a_{11},\ldots,a_{1m},a_{21},\ldots,a_{2m},\ldots,a_{n1},\ldots,a_{nm}).$ Here $A=(a_{ij})\in\mathbb{V}.$ Then T is an isomorphism.
 - 4. Let $\mathbb{V}=M_{n\times n}(\mathbb{R})$ be the set of $n\times n$ matrices with real entries. Define $T:\mathbb{V}\to\mathbb{R}$ by T(A)=trace(A). Then T is not an isomorphism as T is not one-one.
 - 5. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation define by $T(x_1, x_2) = (x_1, x_1 x_2)$. Then T is an isomorphism.

• [**Definition**:] Let $\mathbb V$ and $\mathbb W$ be two vector spaces over the same field $\mathbb F$. Then $\mathbb V$ and $\mathbb W$ are said to be isomorphic if there is an isomorphism from $\mathbb V$ to $\mathbb W$.

• [Example:]

- 1. \mathbb{R}^n and \mathbb{R}^m are isomorphic if and only if m = n.
- 2. \mathbb{R}^{mn} are isomorphic to $\mathbb{V}=M_{n\times m}(\mathbb{R})$, the set of $n\times m$ matrices with real entries.
- 3. \mathbb{R}^n is isomorphic to $\mathbb{P}_n(x,\mathbb{R})$, set of all real polynomials of degree at most n.

Proof: We first assume that \mathbb{V} and \mathbb{W} are isomorphic.

Proof: We first assume that $\mathbb V$ and $\mathbb W$ are isomorphic. Let $\mathcal T$ be an isomorphism from $\mathbb V$ to $\mathbb W$.

Proof: We first assume that $\mathbb V$ and $\mathbb W$ are isomorphic. Let $\mathcal T$ be an isomorphism from $\mathbb V$ to $\mathbb W$. Let $\{u_1,\ldots,u_n\}$ be a basis of $\mathbb V$.

Since T is one-one, then $\{T(u_1), \ldots, T(u_n)\}$ is linearly independent.

$$\mathbb{W} = R(T) = \operatorname{ls}(\{T(u_1), \ldots, T(u_n)\}).$$

Proof: We first assume that $\mathbb V$ and $\mathbb W$ are isomorphic. Let $\mathcal T$ be an isomorphism from $\mathbb V$ to $\mathbb W$. Let $\{u_1,\ldots,u_n\}$ be a basis of $\mathbb V$.

Since T is one-one, then $\{T(u_1), \ldots, T(u_n)\}$ is linearly independent.

 $\mathbb{W} = R(T) = \operatorname{ls}(\{T(u_1), \dots, T(u_n)\})$. Hence $\{T(u_1), \dots, T(u_n)\}$ is a basis of \mathbb{W} .

Proof: We first assume that $\mathbb V$ and $\mathbb W$ are isomorphic. Let $\mathcal T$ be an isomorphism from $\mathbb V$ to $\mathbb W$. Let $\{u_1,\ldots,u_n\}$ be a basis of $\mathbb V$.

Since T is one-one, then $\{T(u_1), \ldots, T(u_n)\}$ is linearly independent.

 $\mathbb{W} = R(T) = ls(\{T(u_1), \dots, T(u_n)\})$. Hence $\{T(u_1), \dots, T(u_n)\}$ is a basis of \mathbb{W} . Then $dim(\mathbb{V}) = dim(\mathbb{W})$.

Converse: We now assume that $dim(\mathbb{V}) = dim(\mathbb{W})$.

Proof: We first assume that \mathbb{V} and \mathbb{W} are isomorphic. Let T be an isomorphism from \mathbb{V} to \mathbb{W} . Let $\{u_1, \ldots, u_n\}$ be a basis of \mathbb{V} .

Since T is one-one, then $\{T(u_1), \ldots, T(u_n)\}$ is linearly independent.

 $\mathbb{W} = R(T) = ls(\{T(u_1), \dots, T(u_n)\})$. Hence $\{T(u_1), \dots, T(u_n)\}$ is a basis of \mathbb{W} . Then $dim(\mathbb{V}) = dim(\mathbb{W})$.

Converse: We now assume that $\dim(\mathbb{V}) = \dim(\mathbb{W})$. Let $\{u_1, \ldots, u_n\}$ and $\{v_1, \ldots, v_n\}$ be two bases of \mathbb{V} and \mathbb{W} , respectively.

We have a linear transformation T such that $T(u_i) = v_i$ for i = 1, ..., n. We can easily check that T is bijective.

• [**Definition**:] Let \mathbb{V} and \mathbb{W} be two vector spaces over the same field \mathbb{F} . Let $T: \mathbb{V} \to \mathbb{W}$ be a linear transformation. Then T is called invertible if T is bijective (one-one+onto).

• [Example:]

- 1. Let \mathbb{V} be a vector space over \mathbb{F} . Let $T: \mathbb{V} \to \mathbb{V}$ be defined by $T(x) = \alpha x$, $\alpha \neq 0$. Then T is invertible.
- 2. Let $\mathbb{V} = M_{n \times m}(\mathbb{R})$ be the set of $n \times m$ matrices with real entries and let $\mathbb{W} = \mathbb{R}^{mn}$. Define $T : \mathbb{V} \to \mathbb{W}$ by
- $T(A)=(a_{11},\ldots,a_{1m},a_{21},\ldots,a_{2m},\ldots,a_{n1},\ldots,a_{nm}).$ Here $A=(a_{ij})\in\mathbb{V}.$ Then T is invertible.
- 4. Let $\mathbb{V} = M_{n \times n}(\mathbb{R})$ be the set of $n \times n$ matrices with real entries. Define $T : \mathbb{V} \to \mathbb{R}$ by T(A) = trace(A). Then T is not invertible.

- ullet We use $\mathcal{L}(\mathbb{V},\mathbb{W})$ to denote set of all linear transformation from \mathbb{V} to \mathbb{W} .
- Let $S, T \in \mathcal{L}(\mathbb{V}, \mathbb{W})$ and $\alpha \in \mathbb{R}$. Then S + T and αS defined by (S + T)(x) = S(x) + T(x) (vector addition) and $(\alpha S)x = \alpha S(x)$ (scalar multiplication).
- [Theorem:] Let $\mathbb V$ and $\mathbb W$ be two VS over $\mathbb F$. Then $\mathcal L(\mathbb V,\mathbb W)$ is also a vector space with respect to above two operations over $\mathbb F$.

Proof It is trivial.

• [Definition:]

- 1. A linear transformation \mathcal{T} from \mathbb{V} to \mathbb{V} is called a **linear operator**.
- 2. A linear transformation T from \mathbb{V} to \mathbb{F} is called a **linear functional**.

• [Example]

- 1. Let $T : \mathbb{M}_{n \times n} \to \mathbb{R}$ defined as T(A) = trace(A), $A \in \mathbb{M}_{n \times n}$. T is linear functional.
- 2. Let $T: C[0,1] \to \mathbb{R}$ defined as $T(f) = \int_{0}^{1} f(x) dx$. T is linear functional.
- 3. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined as $T(x_1, x_2) = (x_1 + x_2, x_1 x_2)$. T is linear operator.

- [Definition:] The space $\mathcal{L}(\mathbb{V}, \mathbb{F})$ is called the **dual space** of \mathbb{V} and it is denoted by \mathbb{V}^* . Elements of \mathbb{V}^* are usually denoted by lower case letters f, g, etc.
- [Theorem:] Let $\mathbb V$ be a finite dimensional space and $B=\{v_1,\ldots,v_n\}$ be an ordered basis of $\mathbb V$.

For each
$$j \in \{1, ..., n\}$$
, let $f_j : \mathbb{V} \to \mathbb{F}$ be defined by $f_j(x) = \alpha_j$ for $x = \sum_{j=1}^n \alpha_j v_j$.

Then the following are true.

- 1. f_1, \ldots, f_n are in \mathbb{V}^* and they satisfy $f_i(v_j) = \delta_{ij}$ for $i, j \in \{1, \ldots, n\}$.
- 2. $\{f_1, \ldots, f_n\}$ is a basis of \mathbb{V}^* .

Proof: We first show that $f_i(v_j) = \delta_{ij}$ for $i, j \in \{1, ..., n\}$.

 $v_j = 0v_1 + \cdots + v_j + \cdots + 0v_n$. Using the definition of f_i , we have

$$f_i(v_j) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

That is $f_i(v_j) = \delta_{ij}$.

We now show that $f_i \in \mathbb{V}^*$, that is f_i is a linear functional for $i=1,\ldots,n$.

Let $x, y \in \mathbb{V}$. Then $x = a_1v_1 + \cdots + a_nv_n$ and $y = b_1v_1 + \cdots + a_nv_n$.

Using definition of f_i we have, $f_i(x) = a_i$ and $f_i(y) = b_i$.

Let $\alpha, \beta \in \mathbb{F}$. Then $\alpha x + \beta y = (\alpha a_1 + \beta b_1)v_1 + \cdots + (\alpha a_n + \beta b_n)v_n$.

Using definition of f_i we have

$$f_i(\alpha x + \beta y)$$

$$= \alpha \mathbf{a_i} + \beta \mathbf{b_i}$$

$$= \alpha f_i(x) + \beta f(y).$$

Hence f_i is linear transformation from $\mathbb V$ to $\mathbb F$ for $i=1,\ldots,n$. We have proved that $f_i\in\mathbb V^*$ for $i=1,\ldots,n$.

We mow show that $\{f_1, \ldots, f_n\}$ is a basis of \mathbb{V}^* . We first show that $\{f_1, \ldots, f_n\}$ is linearly independent.

$$(c_1f_1 + c_2f_2 + \cdots + c_nf_n)v_1 = 0(v_1).$$

$$c_1 f_1(v_1) + \cdots + c_n f_n(v_1) = 0.$$

 $c_1 f_1 + c_2 f_2 + \cdots + c_n f_n = 0.$

$$c_1 \tau_1(v_1) + \cdots + c_n \tau_n(v_1) = 0$$

$$c_1 = 0.$$

Similarly you can show that $c_2=\cdots=c_n=0$. Hence $\{f_1,\ldots,f_n\}$ is linearly independent.

Let $f \in \mathbb{V}^*$. Let $f(v_i) = c_i$ for i = 1, ..., n where $c_1, ..., c_n \in \mathbb{F}$. We have to show that $f = a_1 f_1 + \cdots + a_n f_n$ where $a_i, ..., a_n \in \mathbb{F}$.

Let $x \in \mathbb{V}$. Then $x = b_1 v_1 + \cdots + b_n v_n$.

$$f(x) = f(b_1v_1 + \cdots + b_nv_n)$$

$$=b_1f(v_1)+\cdots+b_nf(v_n)$$

$$=c_1b_1+\cdots+c_nb_n$$

$$=c_1f_1(x)+\cdots+c_nf(x)$$

$$f(x) = (c_1 f_1 + \dots + c_n f)(x)$$
 for all $x \in \mathbb{V}$. Therefore $f = c_1 f_1 + \dots + c_n f$.

Hence $\operatorname{ls}(\{f_1,\ldots,f_n\}) = \mathbb{V}^*$.

• [**Definition**:] Let \mathbb{V} be a finite dimensional space and $B = \{v_1, \ldots, v_n\}$ be an order basis of \mathbb{V} . A basis $\{f_1, \ldots, f_n\}$ of \mathbb{V}^* such that $f_i(v_j) = \delta_{ij}$ for $i, j \in \{1, \ldots, n\}$. Then $\{f_1, \ldots, f_j\}$ is called **dual basis** of \mathbb{V}^* .

• [Example: How to compute dual basis:]

Let $\mathbb{V}=\mathbb{R}^2$. Let $B=\{(1,0),(0,1)\}$ be a basis of \mathbb{V} . Find the dual basis of \mathbb{V}^* corresponding B.

Let $\{f_1, f_1\}$ be the dual basis of \mathbb{V}^* corresponding B. $f_1(x_1, x_2) = \alpha_1 x_1 + \alpha_2 x_2$ and $f_2 = \beta_1 x_1 + \beta_2 x_2$ where $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{R}$. $f_1(1, 0) = 1 \implies \alpha_1 = 1$ and $f_1(0, 1) = 0 \implies \alpha_2 = 0$

Similarly $f_2(1,0) = 0 \implies \beta_1 = 0$ and $f_2(0,1) = 0 \implies \beta_2 = 1$.

$$f_1(x_1,x_2)=x_1$$
 and $f_2(x_1,x_2)=x_2$

• [Theorem:]If $\mathbb V$ is finite dimensional, then $\mathbb V$ and $\mathbb V^*$ are isomorphic.

Proof: We have seen that $\dim(\mathbb{V}) = \dim(\mathbb{V}^*)$. Then they are isomorphic.

Let $\mathbb V$ and $\mathbb W$ be two FDVS over $\mathbb F$. Let $B_1=\{u_1,\ldots,u_n\}$ and $B_2=\{u_1,\ldots,u_n\}$ $\{v_1,\ldots,v_m\}$ be two ordered bases of \mathbb{V} and \mathbb{W} , respectively.

Let $T: \mathbb{V} \to \mathbb{W}$ be a linear transformation.

 $T(u_i) \in \mathbb{W}$. Then there exist $a_{ii} \in \mathbb{F}$ for i = 1, ..., m such that

$$T(u_j) = a_{1j}v_1 + a_{2j}v_2 + \cdots + a_{mj}v_m \text{ for } j = 1, \dots, n.$$

$$[x]_{B_1} = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}.$$

Let $x \in \mathbb{V}$. There exist $\alpha_1, \ldots, \alpha_m \in \mathbb{F}$ such that $x = \sum_{i=1}^n \alpha_i u_i$. That is

$$T(x) = T(\sum_{j=1}^{n} \alpha_{j} u_{j})$$

$$=\sum_{j=1}^n \alpha_j T(u_j)$$

$$= \sum_{j=1}^{n} \alpha_j \sum_{i=1}^{m} a_{ij} v_i$$

$$= \sum_{i=1}^{m} \left(\sum_{i=1}^{n} \alpha_{i} a_{ij} \right) v_{i}.$$

Let
$$[T(x)]_{B_2} = \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_m \end{bmatrix}$$
.

Then
$$\beta_i = \sum_{j=1}^n \alpha_j a_{ij}$$
 for $j = 1, \dots, m$

$$\begin{bmatrix} \beta_1 \\ \vdots \\ \beta_m \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}.$$

 $[T(x)]_{B_2} = A[x]_{B_1}$ where $A = [a_{ij}]_{m \times n}$. That is co-ordinate of T(x) with respect to the basis B_2 is $[T(x)]_{B_2}$ which can be calculated using the co-ordinate of x with respect to basis B_1 .

Let
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
 defined by $T\left(\begin{bmatrix}x\\y\\z\end{bmatrix}\right) = \begin{bmatrix}x+y\\x-z\end{bmatrix}$. Let

$$B_1 = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\} \text{ and } B_2 = \left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0 \end{bmatrix} \right\} \text{ be bases of } \mathbb{R}^3$$

$$\mathcal{T}\Bigg(egin{bmatrix}1\\0\\0\end{bmatrix}\Bigg)=egin{bmatrix}1\\1\end{bmatrix}=1\cdotegin{bmatrix}1\\1\end{bmatrix}+0\cdotegin{bmatrix}0\\1\end{bmatrix}$$

and \mathbb{R}^2 , respectively.

$$T\left(\begin{bmatrix}0\\1\\1\end{bmatrix}\right) = \begin{bmatrix}1\\-1\end{bmatrix} = 1 \cdot \begin{bmatrix}1\\1\end{bmatrix} - 2 \cdot \begin{bmatrix}0\\1\end{bmatrix}$$

$$T\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = \begin{bmatrix}0\\-1\end{bmatrix} = 0 \cdot \begin{bmatrix}1\\1\end{bmatrix} - 1 \cdot \begin{bmatrix}0\\1\end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & -2 & -1 \end{bmatrix}.$$

Let
$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \in \mathbb{R}^3$$
. Then $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 1 \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + 1 \cdot \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + 0 \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

The co-ordinate of $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ with respect to B_1 is $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$.

$$[T \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}]_{B_2} = A \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}]_{B_1} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & -2 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$$

$$T\left(\begin{bmatrix}1\\1\\1\end{bmatrix}\right) = \begin{bmatrix}1\\0\end{bmatrix} = 2 \cdot \begin{bmatrix}1\\1\end{bmatrix} - 2 \cdot \begin{bmatrix}0\\1\end{bmatrix}$$

The matrix $A = (a_{ij})$ in the above discussion is called the **matrix representation** of T with respect to the <u>o</u>rdered bases B_1 and B_2 of \mathbb{V} and \mathbb{W} , respectively. This matrix is usually denoted by $[T]_{B_1B_2}$, that is, $[T]_{B_1B_2} = (a_{ij})$.

Let \mathbb{V} and \mathbb{W} be finite dimensional vector spaces over the same field \mathbb{F} . Let $\dim(\mathbb{V}) = n$ and $\dim(\mathbb{W}) = m$. Assume that $B = \{u_1, \ldots, u_n\}$ and $B' = \{v_1, \ldots, v_m\}$ are ordered basis of \mathbb{V} and \mathbb{W} respectively.

- 1. We have seen that for each linear transformation $T: \mathbb{V} \to \mathbb{W}$, we have a matrix $A \in \mathbb{M}_{m \times n}(\mathbb{F})$ such that $[T]_{BB'} = A$.
- 2. Let $A \in \mathbb{M}_{m \times n}(\mathbb{F})$. Then there exists a linear transformation $T : \mathbb{V} \to \mathbb{W}$ such that $A = [T]_{BB'}$ and such linear transformation is $T(u_j) = \sum_{i=1}^m a_{ij}v_i$ for $j = 1 \dots, n$.
- 3. Let $T, S : \mathbb{V} \to \mathbb{W}$ be two linear transformation. Let B_1 and B_2 be two bases of \mathbb{V} and \mathbb{W} , respectively. Then $[T+S]_{B_1B_2}=[T]_{B_1B_2}+[S]_{B_1B_2}$ and $[\alpha T]_{B_1B_2}=\alpha [T]_{B_1B_2}$.

• [Theorem:] Let \mathbb{V} and \mathbb{W} be finite dimensional vector spaces over the same field \mathbb{F} . Let $\dim(\mathbb{V}) = n$ and $\dim(\mathbb{W}) = m$. Then $\mathcal{L}(\mathbb{V}, \mathbb{W})$ is isomorphic to $\mathbb{M}_{m \times n}(\mathbb{F})$.

Proof: Let $B = \{u_1, \dots, u_n\}$ and $B' = \{v_1, \dots, v_m\}$ be bases of \mathbb{V} and \mathbb{W} , respectively.

Define $\zeta: \mathcal{L}(\mathbb{V}, \mathbb{W}) \to \mathbb{M}_{m \times n}(\mathbb{F})$ such that $\zeta(T) = [T]_{BB'}$.

Using previous remark it is cleared that ζ is linear from $\mathcal{L}(\mathbb{V},\mathbb{W})$ to $\mathbb{M}_{m\times n}(\mathbb{F})$. We now show that ζ is bijective.

Let $T \in Ker(\zeta)$. Then $\zeta(T) = 0_{m \times n}$.

This implies that $[T]_{BB'} = 0_{m \times n}$.

This implies $[T(x)]_{B'}=0_{n\times 1}$, co-ordinate of T(x) for each $x\in \mathbb{V}$ with respect to B' is zero. Hence $T(x)=0_{\mathbb{W}}$ for each $x\in \mathbb{V}$. Then T=0. Therefore $Ker(\zeta)=\{0\}$.

We now show that ζ is onto. Let $A \in \mathbb{M}_{m \times n}$. Define $T(u_j) = \sum_{i=1}^m a_{ij} v_i$ for $j = 1 \dots, n$. It is clear that $[T]_{BB'} = A$. Hence ζ is onto.

Therefore $\mathcal{L}(\mathbb{V},\mathbb{W})$ is isomorphic to $\mathbb{M}_{m\times n}(\mathbb{F})$.

• [Theorem:] Let $\mathbb V$ and $\mathbb W$ be finite dimensional vector spaces over the same field $\mathbb F$. Let $\dim(\mathbb V)=n$ and $\dim(\mathbb W)=m$. Then dimension of $\mathcal L(\mathbb V,\mathbb W)=mn$.

[Theorem:] Let V be a finite dimensional vector space over the same field F. Let S and T be two linear transformations from V and to V. Let B be an ordered basis of V. Then [S ∘ T]_{BB} = [S]_{BB}[T]_{BB}.

Proof: Let $B = \{v_1, \dots, v_n\}$. Let $[T]_{BB} = A$ and $[S]_{BB} = C$.

Then $T(v_i) = a_{1i}v_1 + a_{2i}v_2 + \cdots + a_{ni}v_n$ for $i = 1, \dots, n$.

$$S(v_i) = b_{1i}v_1 + b_{2i}v_2 + \cdots + b_{ni}v_n \text{ for } i = 1, \dots, n.$$

$$= S(a_{11}v_1 + a_{21}v_2 + \cdots + a_{n1}v_n)$$

 $(S \circ T)(v_1) = S(T(v_1))$

$$= a_{11}S(v_1) + a_{21}S(v_2) + \cdots + a_{n1}S(v_n)$$

$$= a_{11}(b_{11}v_1 + b_{21}v_2 + \dots + b_{n1}v_n) + a_{21}(b_{12}v_1 + b_{22}v_2 + \dots + b_{n2}v_n) + \dots + a_{n1}(b_{1n}v_1 + b_{2n}v_2 + \dots + b_{nn}v_n)$$

$$= (a_{11}b_{11} + a_{21}b_{12} + \cdots + a_{n1}b_{1n})v_1 + \cdots + (a_{11}b_{n1} + a_{21}b_{n2} + \cdots + a_{n1}b_{nn})v_n$$

$$= \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix} \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{bmatrix}$$

$$[(S \circ T)(u_i)] = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix} \begin{bmatrix} a_{1i} \\ a_{2i} \\ \vdots \\ a_{ni} \end{bmatrix}$$

$$[S \circ T]_{BB} = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

• [Remark:] Let dim V=n and dim W=m. Let $T: \mathbb{V} \to \mathbb{W}$ and $S: \mathbb{W} \to \mathbb{V}$ be two linear transformation. Let B and B' be bases of \mathbb{V} and \mathbb{W} , respectively. Then $[S \circ T]_{BB'} = [S]_{BB'}[T]_{BB'}$.

• [Theorem:]Let $\mathbb V$ be a finite dimensional vector space over the same field $\mathbb F$. Let T be an invertible linear transformation from $\mathbb V$ and to $\mathbb V$. Let B be an ordered basis of $\mathbb V$. Then $[T^{-1}]_{BB} = [T]_{BB}^{-1}$.