TP1 Analyse Univariée avec R

2020-2021

Objectif principal : Analyser et cartographier la distribution statistique et spatiale des arbres dans Paris Objectif secondaire : revoir les concepts d'analyse univariée, et réaliser des cartes avec R.

0.1 Les données

0.1.1 Arbres

Les données proviennent du site opendata.paris.fr (url)

Ils sont disponibles en plusieurs formats (KML, geoJSON, SHP, CSV ,...)

les variables du jeu de données sont :

- remarquable: le caractère remarquable (1) ou non (0) de l'arbre; contient des valeurs NA.
- circonferenceencm : la circonférence en centimètres du tronc de l'arbre
- stadedeveloppement: stade de développement \in {"A", "J", "JA", "M"}; contient des valeurs NA.
- genre: nom latin du genre de l'arbre, 175 modalités, ; contient des valeurs NA.
- *idbase* : identifiant unique de l'arbre.
- arrondissement: libellé de l'arrondissement où se trouve l'arbre, ainsi que les zones "BOIS DE BOULOGNE", "BOIS DE VINCENNES", "HAUTS-DE-SEINE", "SEINE-SAINT-DENIS", "VAL-DE-MARNE"
- idemplacement : code de l'emplacement de l'arbre, non unique.
- geo_point_2d : coordonnées [X,Y] de l'arbre en texte brut e.g.[48.8409288153,2.27798983391]
- qeometry : attribut géometrique de l'arbre : simple feature de classe POINT (XY)
- adresse : libellé de l'adresse de l'emplacement de l'arbre
- libellefrancais : libellé de l'espèce de l'arbre e.g. "BOULEVARD SAINT GERMAIN"
- complementadresse : complément de l'adresse, souvent le numéro; contient des valeurs NA
- domanialite: type de localisation de l'arbre \in {"Alignement", "CIMETIERE", "DAC", "DASCO", "DASES", "DFPE", "DJS", "Jardin", "PERIPHERIQUE"}
- typeemplacement : variable constante égale à "Arbre"
- hauteurenm : hauteur en mètres
- varieteoucultivar : variété de l'arbre, 453 modalités, contient des valeurs NA
- espèce : espèce de l'arbre, 537 modalités; contient des valeurs NA

Précison sur la hiérarchie des types d'arbres : l'ordre est Genre > Espèce > Variété (ou cultivar)

0.1.2 Contour des quartiers administratifs

Les contours des quartiers proviennent également du site opendata.paris.fr (url) Chaque arrondissement est constitué de 4 quartiers.

Les variables disponibles sont :

- n_sq_qu : identifiant séquentiel du quartier, constitué de la concaténation de 75000 et du code de quartier
- c_{qu} : code du quartier, valeur entière $\in [1; 80]$
- c_quinsee : Numéro INSEE du quartier, valeur entière. format 751AAQQ avec AA le numéro d'arrondissement ∈ [1; 20] et QQ le numéro de quartier ∈ [1; 4]

- l_qu : libellé du quartier , e.g. "La Chapelle"
- c_ar : numéro d'arrondissement, valeur entière $\in [1; 20]$
- n_sq_ar : identifiant séquentiel de l'arrondissement , \in [750000001; 750000020], format 75000000AA avec AA le numéro de l'arrondissement.
- perimetre : périmètre de la géométrie du quartier
- surface : aire de la géométrie du quartier
- geometry: attribut géometrique du quartier: simple feature de classe POLYGON

1 Distribution statistiques des arbres

Vous disposez de deux jeux de données :

- le contours des quartiers de paris (vectoriel, polygones)
- l'implantation et les variables des arbres de Paris (vectoriel, ponctuel)

1.1 Calculer le nombre d'arbres par quartier

Étapes:

- identifier les données pertinentes pour réaliser ce calcul
- réaliser une jointure spatiale (laquelle ?)
- calculer le nombre d'arbres par quartier
- stocker le résultat dans une variable nb_arbres dans la couche vectorielle des quartiers

Les packages dplyr et sf sont requis, pour les installer, utiliser la fonction install.packages.

Fonctions utiles:

- read_sf pour charger les données spatiales
- plot pour afficher
- st intersects et st within prédicats pour la jointure spatiale
- st_join pour la jointure spatiale

Autres fonctions auxiliaires:

- filter pour filtrer des données
- table pour des tables de contingences
- st_crs pour connaître et fixer le CRS de données patiales

1.2 Calculer la densité d'arbres par quartier

Étapes:

- étapes précédentes
- calculer la surface des quartiers (certes elle existe déjà, mais on ne sait pas comment elle a été calculée. E.g. la projection est-elle équivalente ?)
- calculer la densité d'arbres par quartiers
- stocker le résutat dans une variable dens_arbres dans la couche vectorielle des quartiers

Fonctions utiles:

 ${\tt st_area}$ pour calculer l'aire d'un polygone

1.3 Comparaison des variables nombre et densité

Étapes:

• Calculer la moyenne et l'écart-type du nombre et de la densité d'arbres

- Afficher les histogrammes de ces deux variables
- Calculer les indicateurs de formes (kurtosis et skewness) des distributions de ces deux variables

Commenter les résultats obtenus

2 Distribution spatiale des arbres

2.1 Carte(s) simple(s)

Réaliser une carte simple des arbres des six genres les plus représentés dans la population

Réaliser une carte simple des arbres en faisant apparaître la variable domanialite de façon à représenter le type d'implantation des arbres

Commenter les cartes obtenues

Fonctions utiles:

arrange pour trier un tableau

2.2 Cartographie du nombre d'arbres

Vous pouvez au choix:

- réaliser un carte choroplète du nombre d'arbre par quartier (cartographier un nombre est déconseillé, pourquoi ?)
- réaliser une carte de chaleur du nombre d'arbres sur une grille raster
- réaliser une carte avec des symboles proportionels représentant le nombre d'arbres par quartier

Commenter les cartes obtenues

2.3 Cartographie de la densité d'arbres

Etapes:

• Cartographier la densité d'arbres par quartiers

Commenter la carte obtenue

3 Export des données

Exporter les données ajoutées (nombre et densité d'arbres) dans la couche vectorielle des quartiers de paris (format SHP ou CSV)

Fonctions: write.csv et write_sf

4 Pour aller plus loin:

A l'aide des données de voiries de Paris disponible ici, peut-on établir un lien entre le genre des arbres et leur distance à la voirie la plus proche ?

4.1 Regressions linéaires

4.1.1 regression

Réaliser une regression linéaire entre la hauteur et le diamètre de tronc des arbres. Quelles opérations de filtrage pourraient améliorer les résults de la regression

Fonctions: 1m pour réaliser une régression linéaire

4.1.2 regression par espèce

Réaliser des regressions linéaires entre la hauteur et le diamètre de tronc des arbres pour chaque espèce d'arbres. Cela améliore-t-il les résultats ?

4.1.3 Cartographie des résidus

Réaliser une cartographie des résidus du modèle linéaire