SBML Model Report

Model name: "Maeda2006_MyosinPhosphorylation"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 1 format. This model was created by the following two authors: Harish Dharuri¹ and Hiroshi Kobayashi² at September 30th 2006 at 5:25 p. m. and last time modified at April eighth 2016 at 3:36 p. m. Table 1 shows an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	3
species types	0	species	105
events	1	constraints	0
reactions	110	function definitions	0
global parameters	0	unit definitions	6
rules	0	initial assignments	0

Model Notes

The model reproduces Fig 2B, D, F, and 2H. The dynamics correspond to a stimulus of 1 U/ml of thrombin which is equal to 0.01 uM. Phosphorylated MLC is the sum of pMLC (s359) and ppMLC (s360). A slight discrepancy in peak values of species between the figure in the paper and simulation result might be due to different initial conditions in the two sets. The model was

¹California Institute of Technology, hdharuri@cds.caltech.edu

²University of Tokyo, mrna@mwe.biglobe.ne.jp

successfully tested on MathSBML. It is possible to simulate the model on other software that do not support "Events,, at this time by removing the "listOfEvents,, and substituting a value of 0.01 for thrombin (s2). This does not change the model very much. With the latter format, the model was also successfully tested on Copasi.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it, commercially or not, in a restricted way or not.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of ten unit definitions of which four are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Name micromoles

Definition µmol

2.2 Unit microMolar

Name microMolar

Definition $\mu mol \cdot l^{-1}$

2.3 Unit per_uM_per_sec

Name per_uM_per_sec

Definition $\mu mol^{-1} \cdot l \cdot s^{-1}$

2.4 Unit per_sec

Name per_sec

Definition s^{-1}

2.5 Unit per_uM2_per_sec

Name per_uM2_per_sec

Definition $\mu mol^{-2} \cdot l^2 \cdot s^{-1}$

2.6 Unit per_uM3_per_sec

Name per_uM3_per_sec

Definition $\mu mol^{-3} \cdot l^3 \cdot s^{-1}$

2.7 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.8 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.9 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.10 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartments

This model contains three compartments.

Table 2: Properties of all compartments.

		14010	z. rroperties o		p 44. 41.1.	• • • • • • • • • • • • • • • • • • • •	
Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
c0	Default		3	1	litre	Ø	
c1	cytosol		3	1	litre		c0
c2	ER		3	0.1	1		c1

3.1 Compartment c0

This is a three dimensional compartment with a constant size of one litre.

Name Default

3.2 Compartment c1

This is a three dimensional compartment with a constant size of one litre, which is surrounded by c0 (Default).

Name cytosol

3.3 Compartment c2

This is a three dimensional compartment with a constant size of 0.1 litre, which is surrounded by c1 (cytosol).

Name ER

4 Species

This model contains 105 species. The boundary condition of five of these species is set to true so that these species' amount cannot be changed by any reaction. Section 7 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
s2	thrombin	c0	μ mol·l ⁻¹	\Box	
s174	thrombin_R	c1	$\mu mol \cdot l^{-1}$		
s130	pro_thrombinR	c1	$\mu mol \cdot l^{-1}$		
s4	thrombin_ligand	c0	$\mu mol \cdot l^{-1}$		
s57	thrombinR active	c1	$\mu mol \cdot l^{-1}$		
s93	RGS	c1	$\mu mol \cdot l^{-1}$		
s165	Inositol	c1	$\mu mol \cdot l^{-1}$		
s183	sa40_degraded	c1	$\mu mol \cdot l^{-1}$		
s55	thrombinR	c1	$\mu mol \cdot l^{-1}$		
s184	RGS	c1	$\mu mol \cdot l^{-1}$		
s48	GTP	c1	$\mu mol \cdot l^{-1}$		\square
s187	G_sub_q_endsubalphaGTP	c1	$\mu mol \cdot l^{-1}$		
s50	GDP	c1	$\mu mol \cdot l^{-1}$		
s171	IP3R	c1	$\mu mol \cdot l^{-1}$		
s173	3IP3.IP3R	c1	$\mu mol \cdot l^{-1}$		
s98	p115RhoGEF	c1	$\mu mol \cdot l^{-1}$		
s124	Rho-kinase	c1	$\mu mol \cdot l^{-1}$		
s118	RhoGAP	c1	$\mu mol \cdot l^{-1}$		
s153	DAG	c1	$\mu mol \cdot l^{-1}$		
s152	IP3	c1	$\mu mol \cdot l^{-1}$		
s213	Rho_GAP	c1	$\mu mol \cdot l^{-1}$		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
s214	Rho.GTP	c1	μ mol·l ⁻¹		\Box
s151	PIP2	c1	μ mol·l ⁻¹		
s164	PC	c1	μ mol·l ⁻¹		
s231	Rho.GDP	c1	μ mol·l ⁻¹		
s233	Rho_GEF	c1	$\mu mol \cdot l^{-1}$		
s245	Rho_GEF_active	c1	μ mol·l ⁻¹		
s252	Rho.GTP.Rho-kinase	c1	μ mol · l ⁻¹	\Box	\Box
s277	Ca_super_2_plusendsuperCaM	c1	μ mol · l ⁻¹		\Box
s278	2Ca_super_2_plusendsuperCaM	c1	μ mol · l ⁻¹		\Box
s279	3Ca_super_2_plusendsuperCaM	c1	$\mu mol \cdot l^{-1}$	\Box	\Box
s280	4Ca_super_2_plusendsuperCaM	c1	$\mu mol \cdot l^{-1}$	\Box	\Box
s289	MLCK	c1	$\mu mol \cdot l^{-1}$		\Box
s292	MLCK.Ca_super_2_plusendsuperCaM	c1	μ mol · l ⁻¹		\Box
s293	MLCK.2Ca_super_2_plusendsuper- CaM	c1	$\mu \text{mol} \cdot l^{-1}$		
s294	MLCK.3Ca_super_2_plusendsuper- CaM	c1	$\mu \text{mol} \cdot l^{-1}$		
s295	MLCK.4Ca_super_2_plusendsuper- CaM	c1	$\mu mol \cdot l^{-1}$		
s309	PKC	c1	μ mol · l ⁻¹		\Box
s310	PKC active1	c1	μ mol · l ⁻¹	\Box	\Box
s311	PKC.DAG	c1	μ mol · l ⁻¹		\Box
s314	PKC active_2	c1	$\mu mol \cdot l^{-1}$	\Box	\Box
s324	PKC active_3	c1	$\mu mol \cdot l^{-1}$		
s329	csa39_degraded	c1	$\mu mol \cdot l^{-1}$		
s330	csa36_degraded	c1	$\mu mol \cdot l^{-1}$		
s331	csa35_degraded	c1	μ mol·l ⁻¹	\Box	

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
s332	PKC active_1.CPI	c1	μ mol·l ⁻¹	\Box	\Box
s335	PKC active_2.CPI	c1	μ mol·l ⁻¹		
s338	PKC active_3.CPI	c1	μ mol·l ⁻¹		
s352	CPI-17.MYPT1_PPase	c1	$\mu mol \cdot l^{-1}$		
s355	CPI-17.MYPT1_PPase	c1	μ mol \cdot l $^{-1}$		
s349	CPI-17	c1	$\mu mol \cdot l^{-1}$	\Box	\Box
s360	MLC	c1	μ mol \cdot l ⁻¹		\Box
s358	MLC	c1	μ mol \cdot l ⁻¹		\Box
s361	Rho-kinase.MLC	c1	μ mol \cdot l ⁻¹		\Box
s362	Rho-kinase.MLC	c1	$\mu mol \cdot l^{-1}$		
s350	CPI-17	c1	$\mu mol \cdot l^{-1}$	\Box	\Box
s135	Ca_super_2_plusendsuper_	c1	$\mu mol \cdot l^{-1}$	\Box	\Box
s276	CaM	c1	μ mol · l ⁻¹	\Box	
s172	Ca_super_2_plusendsuper_ store	c2	μ mol · l ⁻¹	\Box	\Box
s410	G_betagamma1	c1	μ mol · l ⁻¹	\Box	
s421	G_beta_gamma_2	c1	μ mol \cdot l ⁻¹		
s424	PLC_beta_	c1	μ mol \cdot l $^{-1}$		
s430	Ca_super_2_plusendsuper_ trunsp	c1	$\mu mol \cdot l^{-1}$	\Box	\Box
s432	Ca_super_2_plusendsuper_ pump	c1	$\mu mol \cdot l^{-1}$	\Box	\Box
s435	G_sub_12_endsubalphabetagamma _thrombinR active	c1	$\mu mol \cdot l^{-1}$		
s436	p115RhoGEF.GTP_alpha_	c1	$\mu mol \cdot l^{-1}$		
s437	G_sub_12_endsubalphabetagamma_	c1	μ mol·l ⁻¹		
s438	G_sub_12_endsubalphaGDP	c1	μ mol·l ⁻¹		
s439	G_sub_12_endsubalphaGTP	c1	μ mol·l ⁻¹		
s440	G_sub_q_endsubalphaGDP	c1	$\mu \text{mol} \cdot 1^{-1}$		

∞	Id	Name	Compartment	Derived Unit		Boundary Condi- tion
	s441	G_sub_q_endsubalphabetagammathrombinR active	c1	$\mu mol \cdot l^{-1}$	В	
	s442	G_sub_q_endsubalphabetagamma_	c1	$\mu mol \cdot l^{-1}$		
	s443	PLC_betaG_sub_q_endsubalphaGTP	c1	$\mu mol \cdot l^{-1}$		
	s444	2Ca_super_2_plusendsuperCa_super_2_plusendsuper_ trunsp	c1	$\mu mol \cdot l^{-1}$		
	s446	Ca_super_2_plusendsuper_ pump.Ca- _super_2_plusendsuper_	c1	$\mu mol \cdot l^{-1}$		
Prc	s449	Rho.GTP.Rho-kinase.MLC	c1	$\mu \text{mol} \cdot l^{-1}$		\Box
du	s456	Rho.GTP.Rho-kinase.MLC	c1	μ mol·l ⁻¹		
Produced by SBML2PTEX	s359	MLC	c1	μ mol·l ⁻¹		
by	s463	MYPT1.Rho-kinase	c1	$\mu mol \cdot l^{-1}$		\Box
88	s467	MYPT1.MLC	c1	μ mol·l ⁻¹		\Box
\leq	s470	MYPT1.MLC	c1	μ mol·l ⁻¹		
Ä	s477	MYPT1.MLC	c1	$\mu mol \cdot l^{-1}$		
Ψ.	s480	MYPT1.MLC	c1	$\mu mol \cdot l^{-1}$		
	s491	MLCK.MLC	c1	$\mu \mathrm{mol} \cdot \mathrm{l}^{-1}$		
	s487	MLCK.MLC	c1	$\mu \mathrm{mol} \cdot \mathrm{l}^{-1}$		
	s496	MYPT1.Rho-kinase	c1	μ mol·l ⁻¹		
	s506	MLCK.4Ca_super_2_plusendsuper- CaM.MLC	c1	$\mu mol \cdot l^{-1}$		
	s512	MLCK.3Ca_super_2_plusendsuper- CaM.MLC	c1	$\mu mol \cdot l^{-1}$		
	s513	MLCK.4Ca_super_2_plusendsuper- CaM.MLC	c1	$\mu mol \cdot l^{-1}$		
	s520	MLCK.3Ca_super_2_plusendsuper- CaM.MLC	c1	$\mu mol \cdot l^{-1}$		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
s526	MLCK.2Ca_super_2_plusendsuper- CaM.MLC	c1	μmol·l ^{−1}	В	
s539	MLCK.2Ca_super_2_plusendsuper- CaM.MLC	c1	$\mu ext{mol} \cdot l^{-1}$		
s546	MLCK.Ca_super_2_plusendsuper- CaM.MLC	c1	$\mu ext{mol} \cdot l^{-1}$		
s551	MLCK.Ca_super_2_plusendsuper- CaM.MLC	c1	$\mu mol \cdot l^{-1}$		
s556	Ca_super_2_plusendsuper_ ext leak	c1	μ mol · l ⁻¹		
s267	Ca_super_2_plusendsuper_ ext	c0	μ mol·l ⁻¹	$\overline{\mathbf{Z}}$	
s557	Ca_super_2_plusendsuper_ int leak	c1	$\mu \mathrm{mol} \cdot \mathrm{l}^{-1}$	$\overline{\mathscr{L}}$	
s564	PLC_betaG_sub_q_endsubalpha- GTP.Ca_super_2_plusendsuper_	c1	$\mu \mathrm{mol} \cdot \mathrm{l}^{-1}$		
s565	PKC.Ca_super_2_plusendsuperDAG	c1	μ mol · l ⁻¹		
s566	PKC.Ca_super_2_plusendsuper_	c1	μ mol·l ⁻¹		\Box
s567	PLC_betaG_sub_q_endsub- GTP.Ca.PIP2	c1	$\mu \mathrm{mol} \cdot \mathrm{l}^{-1}$		
s568	PLC_betaCa.PIP2	c1	$\mu mol \cdot l^{-1}$		
s569	PLC_betaCa_super_2_plusendsuper_	c1	μ mol·l ⁻¹		
s351	MYPT1_PPase	c1	μ mol·l ⁻¹		\Box
s570	MYPT1_PPase	c1	μ mol·l ⁻¹	\Box	\Box

5 Event

This is an overview of one event. Each event is initiated whenever its trigger condition switches from false to true. A delay function postpones the effects of an event to a later time point. At the time of execution, an event can assign values to species, parameters or compartments if these are not set to constant.

5.1 Event event_0000001

Trigger condition $t \ge 300 \tag{1} \label{eq:total_problem}$

6 Reactions

This model contains 110 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 4: Overview of all reactions

N₀	Id	Name	Reaction Equation	SBO
1	re1	A2-1.1	$s2 + s130 \Longrightarrow s174$	
2	re12	A1-2	$s48 + s435 \longrightarrow s439 + s410 + s50 + s55$	
3	re14	A1-5.1	$s55 \longrightarrow s183$	
4	re15	A1-3	$s442 + s57 \Longrightarrow s441$	
5	re16	A1-4	$s441 + s48 \longrightarrow s187 + s55 + s50 + s421$	
6	re17	A1-6	$s439 \longrightarrow s438$	
7	re19	A1-7	$s410 + s438 \longrightarrow s437$	
8	re20	A2-2.1	$s93 + s187 \Longrightarrow s184$	
9	re22	A1-9	$s421 + s440 \longrightarrow s442$	
10	re23	B1-1	$s439 + s98 \Longrightarrow s436$	
11	re24	B2-1.1	$s231 \xrightarrow{s436} s214$	
12	re26	B2-2.1	$s98 + s231 \Longrightarrow s233$	
13	re28	B2-3.1	$s118 + s214 \Longrightarrow s213$	
14	re32	B2-1.2	$s233 \longrightarrow s214 + s98$	
15	re33	B2-3.2	$s213 \longrightarrow s231 + s118$	
16	re34	A2-2.2	$s184 \longrightarrow s440 + s93$	
17	re37	B1-2	$s436 \longrightarrow s438 + s98$	
18	re38	B1-3	$s214 \longrightarrow s231$	
19	re39	B1-4	$s124 + s214 \Longrightarrow s252$	
20	re40	A2-1.2	$s174 \longrightarrow s57 + s4 + s2$	
21	re43	A1-1	$s437 + s57 \Longrightarrow s435$	
22	re44	A1-8	$s187 \longrightarrow s440$	

$N_{\bar{0}}$	Id	Name	Reaction Equation	SBO
23	re45	A1-5.2	s57 → s183	
24	re47	C1-2	$s187 + s569 \Longrightarrow s564$	
25	re48	C1-3	$s424 + s187 \Longrightarrow s443$	
26	re51	C1-4	$s135 + s443 \Longrightarrow s564$	
27	re52	C1-1	$s424 + s135 \Longrightarrow s569$	
28	re54	C1-5	$s564 \longrightarrow s569 + s440$	
29	re55	C2-1.1	$s569 + s151 \Longrightarrow s568$	
30	re56	C2-2.1	$s564 + s151 \Longrightarrow s567$	
31	re57	C2-1.2	$s568 \longrightarrow s152 + s153 + s569$	
32	re58	C2-2.2	$s567 \longrightarrow s153 + s152 + s564$	
33	re59	C1-6	$s153 \longrightarrow s164$	
34	re60	C1-7	$s152 \longrightarrow s165$	
35	re68	C1-8	$s171 + 3 s152 \Longrightarrow s173$	
36	re73	D3-1	$s172 \stackrel{\underline{s173}}{\longleftarrow} s135$	
37	re85	D1-2	$s444 \longrightarrow 2 s172 + s430$	
38	re86	D1-3	$s276 + s135 \Longrightarrow s277$	
39	re87	D1-4	$s277 + s135 \Longrightarrow s278$	
40	re88	D1-6	$s279 + s135 \Longrightarrow s280$	
41	re89	D1-5	$s278 + s135 \Longrightarrow s279$	
42	re90	D1-10	$s280 + s289 \Longrightarrow s295$	
43	re91	D1-9	$s279 + s289 \Longrightarrow s294$	
44	re92	D1-8	$s278 + s289 \Longrightarrow s293$	
45	re93	D1-7	$s277 + s289 \Longrightarrow s292$	
46	re94	E1-1	s309 <u>⇒</u> s310	
47	re95	E1-3	$s309 + s153 \Longrightarrow s311$	
48	re96	E1-5	s566 ← s314	
49	re97	E1-4	$s309 + s135 \Longrightarrow s566$	
50	re98	D2-1.2	$s446 \longrightarrow s432 + s267$	

N⁰	Id	Name	Reaction Equation	SBO
51	re100	D1-1	$s430 + 2 s135 \Longrightarrow s444$	
52	re101	E1-7	$s566 + s153 \Longrightarrow s565$	
53	re102	E1-8	s565 ⇒ s324	
54	re106	E1-9	$s324 \longrightarrow s329$	
55	re107	E1-6	$s314 \longrightarrow s330$	
56	re108	E1-2	$s310 \longrightarrow s331$	
57	re109	D2-1.1	$s432 + s135 \Longrightarrow s446$	
58	re110	E2-1.1.3	$s324 + s349 \Longrightarrow s338$	
59	re111	E2-1.1.2	$s314 + s349 \Longrightarrow s335$	
60	re112	E2-1.1.1	$s310 + s349 \Longrightarrow s332$	
61	re113	E2-1.2.3	$s338 \longrightarrow s324 + s350$	
62	re114	E2-1.2.2	$s335 \longrightarrow s314 + s350$	
63	re115	E2-1.2.1	$s332 \longrightarrow s310 + s350$	
64	re116	E1-10	$s350 \longrightarrow s349$	
65	re117	E1-11	$s351 + s350 \Longrightarrow s352$	
66	re118	E1-12	$s351 + s349 \Longrightarrow s355$	
67	re119	E1-13	$s352 \longrightarrow s355$	
68	re120	F2-1.1	$s124 + s358 \Longrightarrow s361$	
69	re121	F2-2.1	$s124 + s359 \Longrightarrow s362$	
70	re123	F2-1.2	$s361 \longrightarrow s359 + s124$	
71	re124	F2-2.2	$s362 \longrightarrow s360 + s124$	
72	re125	F2-3.1	$s252 + s358 \Longrightarrow s456$	
73	re126	F2-4.1	$s252 + s359 \longrightarrow s449$	
74	re127	F2-3.2	$s456 \longrightarrow s252 + s359$	
75	re128	F2-4.2	$s449 \longrightarrow s252 + s360$	
76	re129	F2-14.1	$s124 + s351 \Longrightarrow s463$	
77	re130	F2-14.2	$s463 \longrightarrow s124 + s570$	
78	re131	F2-13.1	$s252 + s351 \Longrightarrow s496$	
79	re132	F2-13.2	$s496 \longrightarrow s252 + s570$	

No	Id	Name	Reaction Equation	SBO
80	re133	F2-11.1	$s360 + s570 \Longrightarrow s467$	
81	re134	F2-9.1	$s360 + s351 \Longrightarrow s470$	
82	re135	F2-12.1	$s359 + s570 \Longrightarrow s477$	
83	re136	F2-10.1	$s359 + s351 \Longrightarrow s480$	
84	re137	F2-11.2	$s467 \longrightarrow s359 + s570$	
85	re138	F2-9.2	$s470 \longrightarrow s359 + s351$	
86	re139	F2-12.2	$s477 \longrightarrow s358 + s570$	
87	re140	F2-10.2	$s480 \longrightarrow s358 + s351$	
88	re141	F1-1	$s570 \longrightarrow s351$	
89	re154	F2-7.1	$s358 + s289 \Longrightarrow s487$	
90	re155	F2-8.1	$s359 + s289 \Longrightarrow s491$	
91	re156	F2-7.2	$s487 \longrightarrow s359 + s289$	
92	re157	F2-8.2	$s491 \longrightarrow s360 + s289$	
93	re158	F2-5.1.1	$s358 + s292 \Longrightarrow s551$	
94	re159	F2-5.2.1	$s358 + s293 \Longrightarrow s539$	
95	re160	F2-5.3.1	$s358 + s294 \Longrightarrow s520$	
96	re161	F2-5.4.1	$s358 + s295 \Longrightarrow s513$	
97	re162	F2-6.1.1	$s359 + s292 \Longrightarrow s546$	
98	re163	F2-6.2.1	$s359 + s293 \Longrightarrow s526$	
99	re164	F2-6.3.1	$s359 + s294 \Longrightarrow s512$	
100	re165	F2-6.4.1	$s359 + s295 \Longrightarrow s506$	
101	re166	F2-6.4.2	$s506 \longrightarrow s360 + s295$	
102	re167	F2-5.4.2	$s513 \longrightarrow s359 + s295$	
103	re168	F2-6.3.2	$s512 \longrightarrow s360 + s294$	
104	re169	F2-5.3.2	$s520 \longrightarrow s359 + s294$	
105	re170	F2-6.2.2	$s526 \longrightarrow s360 + s293$	
106	re171	F2-5.2.2	$s539 \longrightarrow s359 + s293$	
107	re172	F2-6.1.2	$s546 \longrightarrow s360 + s292$	
108	re173	F2-5.1.2	$s551 \longrightarrow s359 + s292$	

N⁰	Id	Name	Reaction Equation	SBO
109	re174	D3-3	$s267 \stackrel{\underline{s556}}{\longleftarrow} s135$	
110	re175	D3-2	$s172 \stackrel{\underline{s557}}{\longleftarrow} s135$	

6.1 Reaction re1

This is a reversible reaction of two reactants forming one product.

Name A2-1.1

Reaction equation

$$s2 + s130 \Longrightarrow s174$$
 (3)

Reactants

Table 5: Properties of each reactant.

Id	Name	SBO
s2	thrombin	
s130	pro_thrombinR	

Product

Table 6: Properties of each product.

Id	Name	SBO
s174	thrombin_R	

Kinetic Law

Derived unit contains undeclared units

$$v_1 = \text{vol}(c1) \cdot \left(\frac{(1 + \text{ratio}) \cdot \text{Vmax} \cdot [\text{s}130] \cdot [\text{s}2]}{\text{Km}} - \text{Vmax} \cdot \text{ratio} \cdot [\text{s}174]\right)$$
(4)

Table 7: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Km ratio Vmax	Km ratio Vmax		5.0 4.0 15.0	$\begin{array}{c} \mu mol \cdot l^{-1} \\ dimensionless \\ s^{-1} \end{array}$	✓ ✓

6.2 Reaction re12

This is an irreversible reaction of two reactants forming four products.

Name A1-2

Reaction equation

$$s48 + s435 \longrightarrow s439 + s410 + s50 + s55$$
 (5)

Reactants

Table 8: Properties of each reactant.

Id	Name	SBO
2 10	GTP G_sub_12_endsubalphabetagammathrombinR active	

Products

Table 9: Properties of each product.

O

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_2 = \text{vol}(c1) \cdot \text{kf} \cdot [s48] \cdot [s435] \tag{6}$$

Table 10: Properties of each parameter.

Id	Name	SBO Value	Unit	Constant
kf	kf	0.01	$\mu mol^{-1} \cdot l \cdot s^{-1}$	

6.3 Reaction re14

This is an irreversible reaction of one reactant forming one product.

Name A1-5.1

Reaction equation

$$s55 \longrightarrow s183$$
 (7)

Reactant

Table 11: Properties of each reactant.

Id	Name	SBO
s55	thrombinR	

Product

Table 12: Properties of each product.

Id	Name	SBO
s183	sa40_degraded	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_3 = \text{vol}(c1) \cdot \text{kf} \cdot [s55] \tag{8}$$

Table 13: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
kf	kf	$0.002 s^{-1}$	

6.4 Reaction re15

This is a reversible reaction of two reactants forming one product.

Name A1-3

Reaction equation

$$s442 + s57 \Longrightarrow s441 \tag{9}$$

Reactants

Table 14: Properties of each reactant.

	THE I THE POTTING OF THE IT TOUGHT	
Id	Name	SBO
s442 s57	G_sub_q_endsubalphabetagamma_ thrombinR active	

Product

Table 15: Properties of each product.

Id	Name	SBO
s441	G_sub_q_endsubalphabetagammathrombinR active	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_4 = \text{vol}(c1) \cdot (\text{kf} \cdot [\text{s442}] \cdot [\text{s57}] - \text{kb} \cdot [\text{s441}]) \tag{10}$$

Table 16: Properties of each parameter.

Id	Name	SBO Value	Unit	Constant
kf kb	kf kb	1.000 0.006		

6.5 Reaction re16

This is an irreversible reaction of two reactants forming four products.

Name A1-4

Reaction equation

$$s441 + s48 \longrightarrow s187 + s55 + s50 + s421$$
 (11)

Reactants

Table 17: Properties of each reactant.

Id	Name	SBO
s441 s48	G_sub_q_endsubalphabetagammathrombinR active GTP	

Products

Table 18: Properties of each product.

Id	Name	SBO
s187	$G_sub_q_endsub_alpha_GTP$	
s55	thrombinR	
s 50	GDP	
s421	G_beta_gamma_2	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_5 = \text{vol}(c1) \cdot \text{kf} \cdot [s48] \cdot [s441] \tag{12}$$

Table 19: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kf	kf		0.01	$\mu mol^{-1} \cdot l \cdot s^{-1}$	

6.6 Reaction re17

This is an irreversible reaction of one reactant forming one product.

Name A1-6

Reaction equation

$$s439 \longrightarrow s438$$
 (13)

Reactant

Table 20: Properties of each reactant.

Id	Name	SBO
s439	G_sub_12_endsubalphaGTP	

Product

Table 21: Properties of each product.

	Name	SBO
s438	G_sub_12_endsubalphaGDP	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_6 = \text{vol}(c1) \cdot \text{kf} \cdot [s439] \tag{14}$$

Table 22: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
kf	kf	$0.013 s^{-1}$	

6.7 Reaction re19

This is an irreversible reaction of two reactants forming one product.

Name A1-7

Reaction equation

$$s410 + s438 \longrightarrow s437 \tag{15}$$

Reactants

Table 23: Properties of each reactant.

Id	Name	SBO
	G_betagamma1 G_sub_12_endsubalphaGDP	

Product

Table 24: Properties of each product.

	radic 2 Troperties of each product.	
Id	Name	SBO
s437	G_sub_12_endsubalphabetagamma_	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_7 = \text{vol}(c1) \cdot \text{kf} \cdot [\text{s410}] \cdot [\text{s438}] \tag{16}$$

Table 25: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kf	kf		0.01	$\mu mol^{-1} \cdot l \cdot s^{-1}$	

6.8 Reaction re20

This is a reversible reaction of two reactants forming one product.

Name A2-2.1

Reaction equation

$$s93 + s187 \Longrightarrow s184 \tag{17}$$

Reactants

Table 26: Properties of each reactant.

Id	Name	SBO
s93 s187	RGS G_sub_q_endsubalphaGTP	

Table 27: Properties of each product.

Id	Name	SBO
s184	RGS	

Derived unit contains undeclared units

$$v_8 = \text{vol}(c1) \cdot \left(\frac{(1 + \text{ratio}) \cdot \text{Vmax} \cdot [\text{s}187] \cdot [\text{s}93]}{\text{Km}} - \text{ratio} \cdot \text{Vmax} \cdot [\text{s}184]\right)$$
(18)

Table 28: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Km ratio Vmax	Km ratio Vmax			$\begin{array}{c} \mu mol \cdot l^{-1} \\ dimensionless \\ s^{-1} \end{array}$	☑ ☑ ☑

6.9 Reaction re22

This is an irreversible reaction of two reactants forming one product.

Name A1-9

Reaction equation

$$s421 + s440 \longrightarrow s442 \tag{19}$$

Reactants

Table 29: Properties of each reactant.

Id	Name	SBO
	G_betagamma2 G_sub_q_endsubalphaGDP	

Table 30: Properties of each product.

Id	Name	SBO
s442	$G_sub_q_endsub__alpha__beta__gamma_$	

Derived unit $s^{-1} \cdot \mu mol$

$$v_9 = \text{vol}(c1) \cdot \text{kf} \cdot [\text{s421}] \cdot [\text{s440}] \tag{20}$$

Table 31: Properties of each parameter.

Id	Name	SBO Value Uni	it Constant
kf	kf	0.01 μm	$\operatorname{tol}^{-1} \cdot 1 \cdot \operatorname{s}^{-1} \qquad \qquad \boxed{\square}$

6.10 Reaction re23

This is a reversible reaction of two reactants forming one product.

Name B1-1

Reaction equation

$$s439 + s98 \Longrightarrow s436 \tag{21}$$

Reactants

Table 32: Properties of each reactant.

Id	Name	SBO
s439 s98	G_sub_12_endsubalphaGTP p115RhoGEF	

Table 33: Properties of each product.

Id	Name	SBO
s436	p115RhoGEF.GTP_alpha_	

Derived unit $s^{-1} \cdot \mu mol$

$$v_{10} = \text{vol}(c1) \cdot (\text{kf} \cdot [\text{s439}] \cdot [\text{s98}] - \text{kb} \cdot [\text{s436}])$$
 (22)

Table 34: Properties of each parameter.

Id	Name	SBO Value	e Unit	Constant
kf	kf	20.0	$\mu mol^{-1} \cdot l \cdot s^{-1}$	\square
kb	kb	0.1	s^{-1}	\square

6.11 Reaction re24

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name B2-1.1

Reaction equation

$$s231 \xrightarrow{s436} s214$$
 (23)

Reactant

Table 35: Properties of each reactant.

Id	Name	SBO
s231	Rho.GDP	

Modifier

Table 36: Properties of each modifier.

Id	Name	SBO
s436	p115RhoGEF.GTP_alpha_	

Table 37: Properties of each product.

Id	Name	SBO
s214	Rho.GTP	

Derived unit $s^{-1} \cdot 10^{-6} \text{ mol}$

$$v_{11} = \text{vol}(c1) \cdot \frac{\text{Vmax} \cdot [\text{s231}] \cdot [\text{s436}]}{\text{Km} + [\text{s214}]}$$
 (24)

Table 38: Properties of each parameter.

Id	Name	SBO Value	Unit	Constant
Km Vmax	Km Vmax	0.015 0.052		⊿

6.12 Reaction re26

This is a reversible reaction of two reactants forming one product.

Name B2-2.1

Reaction equation

$$s98 + s231 \Longrightarrow s233 \tag{25}$$

Reactants

Table 39: Properties of each reactant.

Id	Name	SBO
s98 s231	p115RhoGEF Rho.GDP	

Table 40: Properties of each product.

Id	Name	SBO
s233	Rho_GEF	

Derived unit contains undeclared units

$$v_{12} = vol(c1) \cdot \left(\frac{(1 + ratio) \cdot Vmax \cdot [s98] \cdot [s231]}{Km} - Vmax \cdot ratio \cdot [s233]\right)$$
 (26)

Table 41: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Km ratio Vmax	Km ratio Vmax		2.00 4.00 0.04	$\begin{array}{c} \mu mol \cdot l^{-1} \\ dimensionless \\ s^{-1} \end{array}$	V V

6.13 Reaction re28

This is a reversible reaction of two reactants forming one product.

Name B2-3.1

Reaction equation

$$s118 + s214 \Longrightarrow s213 \tag{27}$$

Reactants

Table 42: Properties of each reactant.

Id	Name	SBO
s118	RhoGAP	
s214	Rho.GTP	

Table 43: Properties of each product.

Id	Name	SBO
s213	Rho_GAP	

Derived unit contains undeclared units

$$v_{13} = vol(c1) \cdot \left(\frac{(1 + ratio) \cdot Vmax \cdot [s118] \cdot [s214]}{Km} - Vmax \cdot ratio \cdot [s213]\right)$$
(28)

Table 44: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Km ratio Vmax	Km ratio Vmax			μ mol·l ⁻¹ dimensionless s ⁻¹	

6.14 Reaction re32

This is an irreversible reaction of one reactant forming two products.

Name B2-1.2

Reaction equation

$$s233 \longrightarrow s214 + s98 \tag{29}$$

Reactant

Table 45: Properties of each reactant.

Id	Name	SBO
s233	Rho_GEF	

Table 46: Properties of each product.

Id	Name	SBO
s214	Rho.GTP	
s98	p115RhoGEF	

Derived unit $s^{-1} \cdot \mu mol$

$$v_{14} = \text{vol}(c1) \cdot \text{Vmax} \cdot [\text{s233}] \tag{30}$$

Table 47: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vmax	Vmax	$0.04 s^{-1}$	

6.15 Reaction re33

This is an irreversible reaction of one reactant forming two products.

Name B2-3.2

Reaction equation

$$s213 \longrightarrow s231 + s118 \tag{31}$$

Reactant

Table 48: Properties of each reactant.

Id	Name	SBO
s213	Rho_GAP	

Table 49: Properties of each product.

Id	Name	SBO
s231	Rho.GDP	
s118	RhoGAP	

Derived unit $s^{-1} \cdot \mu mol$

$$v_{15} = \text{vol}(c1) \cdot \text{Vmax} \cdot [\text{s213}] \tag{32}$$

Table 50: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vmax	Vmax	$0.993 s^{-1}$	

6.16 Reaction re34

This is an irreversible reaction of one reactant forming two products.

Name A2-2.2

Reaction equation

$$s184 \longrightarrow s440 + s93 \tag{33}$$

Reactant

Table 51: Properties of each reactant.

Id	Name	SBO
s184	RGS	

Products

Table 52: Properties of each product.

Id	Name	SBO
s440 s93	G_sub_q_endsubalphaGDP RGS	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{16} = \text{vol}(c1) \cdot \text{Vmax} \cdot [\text{s}184] \tag{34}$$

Table 53: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vmax	Vmax	$0.010 s^{-1}$	

6.17 Reaction re37

This is an irreversible reaction of one reactant forming two products.

Name B1-2

Reaction equation

$$s436 \longrightarrow s438 + s98 \tag{35}$$

Reactant

Table 54: Properties of each reactant.

Id	Name	SBO
s436	p115RhoGEF.GTP_alpha_	

Products

Table 55: Properties of each product.

Id	Name	SBO
s438 s98	G_sub_12_endsubalphaGDP p115RhoGEF	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{17} = \text{vol}(c1) \cdot \text{kf} \cdot [\text{s436}] \tag{36}$$

Table 56: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
kf	kf	$0.012 s^{-1}$	\mathbf{Z}

6.18 Reaction re38

This is an irreversible reaction of one reactant forming one product.

Name B1-3

Reaction equation

$$s214 \longrightarrow s231$$
 (37)

Reactant

Table 57: Properties of each reactant.

Id	Name	SBO
s214	Rho.GTP	

Product

Table 58: Properties of each product.

Id	Name	SBO
s231	Rho.GDP	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{18} = \text{vol}(c1) \cdot \text{kf} \cdot [\text{s}214] \tag{38}$$

Table 59: Properties of each parameter.

Id	Name	SBO Value	Unit	Constant
kf	kf	$3.667 \cdot 10^{-4}$	s^{-1}	

6.19 Reaction re39

This is a reversible reaction of two reactants forming one product.

Name B1-4

Reaction equation

$$s124 + s214 \Longrightarrow s252 \tag{39}$$

Reactants

Table 60: Properties of each reactant.

Id	Name	SBO
	Rho-kinase Rho.GTP	

Product

Table 61: Properties of each product.

Id	Name	SBO
s252	Rho.GTP.Rho-kinase	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{19} = \text{vol}(c1) \cdot (\text{kf} \cdot [s124] \cdot [s214] - \text{kb} \cdot [s252])$$
 (40)

Table 62: Properties of each parameter.

Id	Name	SBO Value	Unit	Constant
kf kb	kf kb			✓

6.20 Reaction re40

This is an irreversible reaction of one reactant forming three products.

Name A2-1.2

Reaction equation

$$s174 \longrightarrow s57 + s4 + s2 \tag{41}$$

Reactant

Table 63: Properties of each reactant.

Id	Name	SBO
s174	thrombin_R	

Products

Table 64: Properties of each product.

Id	Name	SBO
s57	thrombinR active	
s4	thrombin_ligand	
s2	thrombin	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{20} = \text{vol}(c1) \cdot \text{Vmax} \cdot [\text{s}174] \tag{42}$$

Table 65: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vmax	Vmax	$15.0 s^{-1}$	

6.21 Reaction re43

This is a reversible reaction of two reactants forming one product.

Name A1-1

Reaction equation

$$s437 + s57 \Longrightarrow s435 \tag{43}$$

Reactants

Table 66: Properties of each reactant.

Table 66. I repetites of each reactain.			
Id	Name	SBO	
s437 s57	G_sub_12_endsubalphabetagamma_ thrombinR active		

Product

Table 67: Properties of each product.

Id	Name	SBO
s435	G_sub_12_endsubalphabetagammathrombinR active	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{21} = \text{vol}(c1) \cdot (\text{kf} \cdot [\text{s437}] \cdot [\text{s57}] - \text{kb} \cdot [\text{s435}])$$
 (44)

Table 68: Properties of each parameter.

Id	Name	SBO '	Value	Unit	Constant
kf kb	kf kb		1.000		✓

6.22 Reaction re44

This is an irreversible reaction of one reactant forming one product.

Name A1-8

Reaction equation

$$s187 \longrightarrow s440$$
 (45)

Reactant

Table 69: Properties of each reactant.

Id Name SBO		
Iu	Name	300
s187	$G_sub_q_endsub__alpha\GTP$	

Product

Table 70: Properties of each product.

	Name	SBO
s440	G_sub_q_endsubalphaGDP	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{22} = \text{vol}(c1) \cdot \text{kf} \cdot [\text{s}187] \tag{46}$$

Table 71: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
kf	kf	$0.013 s^{-1}$	Ø

6.23 Reaction re45

This is an irreversible reaction of one reactant forming one product.

Name A1-5.2

Reaction equation

$$s57 \longrightarrow s183$$
 (47)

Reactant

Table 72: Properties of each reactant.

Id	Name	SBO
s57	thrombinR active	

Table 73: Properties of each product.

Id	Name	SBO
s183	sa40_degraded	

Id	Name	SBO

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{23} = \text{vol}(c1) \cdot \text{kf} \cdot [s57] \tag{48}$$

Table 74: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
kf	kf	$0.002 s^{-1}$	Ø

6.24 Reaction re47

This is a reversible reaction of two reactants forming one product.

Name C1-2

Reaction equation

$$s187 + s569 \rightleftharpoons s564 \tag{49}$$

Reactants

Table 75: Properties of each reactant.

	racio 18. Freperios er caem reactant.	
Id	Name	SBO
	G_sub_q_endsubalphaGTP PLC_betaCa_super_2_plusendsuper_	

Product

Table 76: Properties of each product.

Id	Name	SBO
s564	$PLC_beta\G_sub_q_endsub__alpha\GTP.Ca_super_2_plus__endsuper_$	

Kinetic Law

$$v_{24} = \text{vol}(c1) \cdot (\text{kf} \cdot [s187] \cdot [s569] - \text{kb} \cdot [s564])$$
 (50)

Table 77: Properties of each parameter.

Id	Name	SBO Valu	ie Unit	Constant
kf kb	kf kb		01 $\mu \text{mol}^{-1} \cdot 1 \cdot \text{s}^{-1}$ 00 s^{-1}	✓

6.25 Reaction re48

This is a reversible reaction of two reactants forming one product.

Name C1-3

Reaction equation

$$s424 + s187 \Longrightarrow s443 \tag{51}$$

Reactants

Table 78: Properties of each reactant.

Id	Name	SBO
s424	PLC_beta_	
s187	$G_sub_q_endsub__alpha\GTP$	

Product

Table 79: Properties of each product.

Id	Name	SBO
s443	PLC_betaG_sub_q_endsubalphaGTP	

Kinetic Law

$$v_{25} = \text{vol}(c1) \cdot (\text{kf} \cdot [\text{s424}] \cdot [\text{s187}] - \text{kb} \cdot [\text{s443}])$$
 (52)

Table 80: Properties of each parameter.

Id	Name	SBO Value	Unit	Constant
kf	kf	2.520 1.000	$\mu \text{mol}^{-1} \cdot 1 \cdot \text{s}^{-1}$	
kb	Kb	1.000	S	\checkmark

6.26 Reaction re51

This is a reversible reaction of two reactants forming one product.

Name C1-4

Reaction equation

$$s135 + s443 \Longrightarrow s564 \tag{53}$$

Reactants

Table 81: Properties of each reactant.

	rable of Troperties of each reactain.			
Id	Name	SBO		
	Ca_super_2_plusendsuper_			
8443	PLC_betaG_sub_q_endsubalphaGTP			

Product

Table 82: Properties of each product.

Id	Name	SBO
s564	PLC_betaG_sub_q_endsubalphaGTP.Ca_super_2_plusendsuper_	

Kinetic Law

$$v_{26} = \text{vol}(c1) \cdot (\text{kf} \cdot [s135] \cdot [s443] - \text{kb} \cdot [s564])$$
 (54)

Table 83: Properties of each parameter.

Id	Name	SBO Valu	ue Unit	Constant
kf kb	kf kb	30. 1.	$\begin{array}{ll} 0 & \mu \text{mol}^{-1} \cdot 1 \cdot s^{-1} \\ 0 & s^{-1} \end{array}$	✓

6.27 Reaction re52

This is a reversible reaction of two reactants forming one product.

Name C1-1

Reaction equation

$$s424 + s135 \rightleftharpoons s569 \tag{55}$$

Reactants

Table 84: Properties of each reactant.

Id	Name	SBO
	PLC_beta_ Ca_super_2_plusendsuper_	

Product

Table 85: Properties of each product.

Id	Name	SBO
s569	PLC_betaCa_super_2_plusendsuper_	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{27} = \text{vol}(c1) \cdot (\text{kf} \cdot [\text{s424}] \cdot [\text{s135}] - \text{kb} \cdot [\text{s569}])$$
 (56)

Table 86: Properties of each parameter.

Id	Name	SBO Val	lue Unit	Constant
kf	kf	3.0	$0 \qquad \mu \text{mol}^{-1} \cdot l \cdot s^{-1}$	
kb	kb	1.9	$0 s^{-1}$	\square

6.28 Reaction re54

This is an irreversible reaction of one reactant forming two products.

Name C1-5

Reaction equation

$$s564 \longrightarrow s569 + s440 \tag{57}$$

Reactant

Table 87: Properties of each reactant.

Id	Name	SBO
s564	PLC_betaG_sub_q_endsubalphaGTP.Ca_super_2_plusendsuper_	

Products

Table 88: Properties of each product.

Id	Name	SBO
	PLC_betaCa_super_2_plusendsuper_ G_sub_q_endsubalphaGDP	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{28} = \text{vol}(c1) \cdot \text{kf} \cdot [\text{s}564] \tag{58}$$

Table 89: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
kf	kf	$0.013 s^{-1}$	

6.29 Reaction re55

This is a reversible reaction of two reactants forming one product.

Name C2-1.1

Reaction equation

$$s569 + s151 \Longrightarrow s568 \tag{59}$$

Table 90: Properties of each reactant.

Id	Name	SBO
s569 s151	PLC_betaCa_super_2_plusendsuper_ PIP2	

Table 91: Properties of each product.

		1
Id	Name	SBO
s568	PLC_betaCa.PIP2	

Kinetic Law

Derived unit contains undeclared units

$$v_{29} = \text{vol}(c1) \cdot \left(\frac{(1 + \text{ratio}) \cdot \text{Vmax} \cdot [\text{s}569] \cdot [\text{s}151]}{\text{Km}} - \text{ratio} \cdot \text{Vmax} \cdot [\text{s}568]\right)$$
(60)

Table 92: Properties of each parameter.

		1	1		
Id	Name	SBO	Value	Unit	Constant
Km	Km			μmol·l ⁻¹	
ratio Vmax	ratio Vmax		10.000	dimensionless s ⁻¹	⊿ ⊿

6.30 Reaction re56

This is a reversible reaction of two reactants forming one product.

Name C2-2.1

Reaction equation

$$s564 + s151 \Longrightarrow s567 \tag{61}$$

Table 93: Properties of each reactant.

Id	Name	SBO
	PLC_betaG_sub_q_endsubalphaGTP.Ca_super_2_plusendsuper_PIP2	

Table 94: Properties of each product.

Id	Name	SBO
s567	PLC_betaG_sub_q_endsubGTP.Ca.PIP2	

Kinetic Law

Derived unit contains undeclared units

$$v_{30} = \text{vol}(c1) \cdot \left(\frac{(1 + \text{ratio}) \cdot \text{Vmax} \cdot [\text{s}564] \cdot [\text{s}151]}{\text{Km}} - \text{ratio} \cdot \text{Vmax} \cdot [\text{s}567]\right)$$
(62)

Table 95: Properties of each parameter.

Id Name SBO Value Unit	Constant
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Z Z Z

6.31 Reaction re57

This is an irreversible reaction of one reactant forming three products.

Name C2-1.2

Reaction equation

$$s568 \longrightarrow s152 + s153 + s569 \tag{63}$$

Table 96: Properties of each reactant.

	Name	SBO
s568	PLC_betaCa.PIP2	

Table 97: Properties of each product.

	T	
Id	Name	SBO
s152	IP3	
s153	DAG	
s569	PLC_betaCa_super_2_plusendsuper_	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{31} = \text{vol}(c1) \cdot \text{Vmax} \cdot [\text{s}568] \tag{64}$$

Table 98: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vmax	Vmax	$10.0 s^{-1}$	Ø

6.32 Reaction re58

This is an irreversible reaction of one reactant forming three products.

Name C2-2.2

Reaction equation

$$s567 \longrightarrow s153 + s152 + s564$$
 (65)

Table 99: Properties of each reactant.

Id	Name	SBO
s567	PLC_betaG_sub_q_endsubGTP.Ca.PIP2	

Table 100: Properties of each product.

Id	Name	SBO
s153	DAG	
s152	IP3	
s564	$PLC_beta\G_sub_q_endsub__alpha\GTP.Ca_super_2_plus_endsuper_$	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{32} = \text{vol}(c1) \cdot \text{Vmax} \cdot [\text{s}567] \tag{66}$$

Table 101: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vmax	Vmax	$48.0 s^{-1}$	Ø

6.33 Reaction re59

This is an irreversible reaction of one reactant forming one product.

Name C1-6

Reaction equation

$$s153 \longrightarrow s164$$
 (67)

Reactant

Table 102: Properties of each reactant.

Id	Name	SBO
s153	DAG	

Product

Table 103: Properties of each product.

Id	Name	SBO
s164	PC	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{33} = \text{vol}(c1) \cdot \text{kf} \cdot [s153] \tag{68}$$

Table 104: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
kf	kf	$0.15 s^{-1}$	

6.34 Reaction re60

This is an irreversible reaction of one reactant forming one product.

Name C1-7

Reaction equation

$$s152 \longrightarrow s165$$
 (69)

Reactant

Table 105: Properties of each reactant.

Id	Name	SBO
s152	IP3	

Product

Table 106: Properties of each product.

Id	Name	SBO
s165	Inositol	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{34} = \text{vol}(c1) \cdot \text{kf} \cdot [\text{s}152] \tag{70}$$

Table 107: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
kf	kf	$2.5 s^{-1}$	

6.35 Reaction re68

This is a reversible reaction of two reactants forming one product.

Name C1-8

Reaction equation

$$s171 + 3s152 \Longrightarrow s173 \tag{71}$$

Reactants

Table 108: Properties of each reactant.

Id	Name	SBO
s171	IP3R	
s152	IP3	

Product

Table 109: Properties of each product.

Id	Name	SBO
s173	3IP3.IP3R	

Kinetic Law

$$v_{35} = \text{vol}(c1) \cdot (\text{kf} \cdot [\text{s}152] \cdot [\text{s}152] \cdot [\text{s}152] \cdot [\text{s}171] - \text{kb} \cdot [\text{s}173])$$
(72)

Table 110: Properties of each parameter.

Id	Name	SBO Va	lue Unit	Constant
kf	kf kb		0.1 $\mu \text{mol}^{-3} \cdot 1^3 \cdot \text{s}^{-1}$	
kb	Kb	10	$0.0 ext{ s}^{-1}$	\checkmark

6.36 Reaction re73

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name D3-1

Reaction equation

$$s172 \stackrel{\underline{s173}}{=\!\!\!=\!\!\!=} s135 \tag{73}$$

Reactant

Table 111: Properties of each reactant.

Id	Name	SBO
s172	Ca_super_2_plusendsuper_ store	

Modifier

Table 112: Properties of each modifier.

Id	Name	SBO
s173	3IP3.IP3R	

Product

Table 113: Properties of each product.

Id	Name	SBO
s135	Ca_super_2_plusendsuper_	

Kinetic Law

$$v_{36} = \text{vol}(c1) \cdot g \cdot [s173] \cdot ([s172] - [s135])$$
 (74)

Table 114: Properties of each parameter.

Id	Name	SBO V	/alue	Unit	Constant
g	g	1	50.0	$\mu mol^{-1} \cdot l \cdot s^{-1}$	

6.37 Reaction re85

This is an irreversible reaction of one reactant forming two products.

Name D1-2

Reaction equation

$$s444 \longrightarrow 2 s172 + s430 \tag{75}$$

Reactant

Table 115: Properties of each reactant.

Id	Name	SBO
s444	2Ca_super_2_plusendsuperCa_super_2_plusendsuper_ trunsp	

Products

Table 116: Properties of each product.

Id	Name	SBO
s172	Ca_super_2_plusendsuper_ store	
s430	$Ca_super_2_plus__endsuper_\ trunsp$	

Kinetic Law

$$v_{37} = \text{vol}(c1) \cdot \text{kf} \cdot [\text{s444}] \tag{76}$$

Table 117: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
kf	kf	$1.0 s^{-1}$	

6.38 Reaction re86

This is a reversible reaction of two reactants forming one product.

Name D1-3

Reaction equation

$$s276 + s135 \Longrightarrow s277 \tag{77}$$

Reactants

Table 118: Properties of each reactant.

Id	Name	SBO
s276	CaM	
s135	Ca_super_2_plusendsuper_	

Product

Table 119: Properties of each product.

Id	Name	SBO
s277	Ca_super_2_plusendsuperCaM	

Kinetic Law

$$v_{38} = \text{vol}(c1) \cdot (\text{kf} \cdot [\text{s}276] \cdot [\text{s}135] - \text{kb} \cdot [\text{s}277])$$
 (78)

Table 120: Properties of each parameter.

Id	Name	SBO Value	Unit	Constant
kf kb	kf kb		$\begin{array}{c} \mu mol^{-1} \cdot l \cdot s^{-1} \\ s^{-1} \end{array}$	Ø

6.39 Reaction re87

This is a reversible reaction of two reactants forming one product.

Name D1-4

Reaction equation

$$s277 + s135 \rightleftharpoons s278 \tag{79}$$

Reactants

Table 121: Properties of each reactant.

Id	Name	SBO
s277	Ca_super_2_plusendsuperCaM	
s135	Ca_super_2_plusendsuper_	

Product

Table 122: Properties of each product.

Id	Name	SBO
s278	2Ca_super_2_plusendsuperCaM	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{39} = \text{vol}(c1) \cdot (\text{kf} \cdot [\text{s}277] \cdot [\text{s}135] - \text{kb} \cdot [\text{s}278])$$
 (80)

Table 123: Properties of each parameter.

Id	Name	SBO Va	lue Unit	Constant
kf	kf	10	$0.0 \mu \text{mol}^{-1} \cdot l \cdot s^{-1}$	\square
kb	kb	45	$5.0 s^{-1}$	

6.40 Reaction re88

This is a reversible reaction of two reactants forming one product.

Name D1-6

Reaction equation

$$s279 + s135 \Longrightarrow s280 \tag{81}$$

Reactants

Table 124: Properties of each reactant.

Id	Name	SBO
s279	3Ca_super_2_plusendsuperCaM	
s135	Ca_super_2_plusendsuper_	

Product

Table 125: Properties of each product.

Id	Name	SBO
s280	4Ca_super_2_plusendsuperCaM	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{40} = \text{vol}(c1) \cdot (\text{kf} \cdot [\text{s}279] \cdot [\text{s}135] - \text{kb} \cdot [\text{s}280])$$
 (82)

Table 126: Properties of each parameter.

Id	Name	SBO Value	Unit	Constant
kf kb	kf kb	10.0 500.0	$\underset{s^{-1}}{\mu mol^{-1} \cdot l \cdot s^{-1}}$	Z

6.41 Reaction re89

This is a reversible reaction of two reactants forming one product.

Name D1-5

Reaction equation

$$s278 + s135 \Longrightarrow s279 \tag{83}$$

Reactants

Table 127: Properties of each reactant.

Id	Name	SBO
	2Ca_super_2_plusendsuperCaM Ca_super_2_plusendsuper_	

Product

Table 128: Properties of each product.

Id	Name	SBO
s279	3Ca_super_2_plusendsuperCaM	

Kinetic Law

Derived unit $\,s^{-1}\cdot \mu mol\,$

$$v_{41} = \text{vol}(c1) \cdot (\text{kf} \cdot [\text{s}278] \cdot [\text{s}135] - \text{kb} \cdot [\text{s}279])$$
 (84)

Table 129: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kf kb	kf kb		10.0 170.0		Ø

6.42 Reaction re90

This is a reversible reaction of two reactants forming one product.

Name D1-10

Reaction equation

$$s280 + s289 \Longrightarrow s295 \tag{85}$$

Table 130: Properties of each reactant.

Id	Name	SBO
	4Ca_super_2_plusendsuperCaM MLCK	

Table 131: Properties of each product.

Id	Name	SBO
s295	MLCK.4Ca_super_2_plusendsuperCaM	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{42} = \text{vol}(c1) \cdot (\text{kf} \cdot [s280] \cdot [s289] - \text{kb} \cdot [s295])$$
 (86)

Table 132: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kf kb	kf kb		10.00 0.01		✓

6.43 Reaction re91

This is a reversible reaction of two reactants forming one product.

Name D1-9

Reaction equation

$$s279 + s289 \Longrightarrow s294 \tag{87}$$

Table 133: Properties of each reactant.

Id	Name	SBO
s279	3Ca_super_2_plusendsuperCaM	

Id	Name	SBO
s289	MLCK	

Table 134: Properties of each product.

Id	Name	SBO
s294	MLCK.3Ca_super_2_plusendsuperCaM	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{43} = \text{vol}(c1) \cdot (\text{kf} \cdot [s279] \cdot [s289] - \text{kb} \cdot [s294])$$
 (88)

Table 135: Properties of each parameter.

Id	Name	SBO Value	e Unit	Constant
kf	kf	10.00	$\mu mol^{-1} \cdot l \cdot s^{-1}$	\square
kb	kb	0.01	s^{-1}	\square

6.44 Reaction re92

This is a reversible reaction of two reactants forming one product.

Name D1-8

Reaction equation

$$s278 + s289 \Longrightarrow s293 \tag{89}$$

Table 136: Properties of each reactant.

Id	Name	SBO
	2Ca_super_2_plusendsuperCaM MLCK	
s289	MLCK	

Table 137: Properties of each product.

Id	Name	SBO
s293	MLCK.2Ca_super_2_plusendsuperCaM	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{44} = \text{vol}(c1) \cdot (\text{kf} \cdot [\text{s}278] \cdot [\text{s}289] - \text{kb} \cdot [\text{s}293])$$
 (90)

Table 138: Properties of each parameter.

Id	Name	SBO V	Value	Unit	Constant
kf kb	kf kb		0.10 0.45		✓

6.45 Reaction re93

This is a reversible reaction of two reactants forming one product.

Name D1-7

Reaction equation

$$s277 + s289 \Longrightarrow s292 \tag{91}$$

Reactants

Table 139: Properties of each reactant.

Id	Name	SBO
s277	Ca_super_2_plusendsuperCaM	
s289	MLCK	

Product

Table 140: Properties of each product.

Id	Name	SBO
s292	MLCK.Ca_super_2_plusendsuperCaM	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{45} = \text{vol}(c1) \cdot (\text{kf} \cdot [\text{s}277] \cdot [\text{s}289] - \text{kb} \cdot [\text{s}292])$$
 (92)

Table 141: Properties of each parameter.

Id	Name	SBO Val	lue Unit	Constant
kf kb	kf kb	0. 0.	_ 1	✓

6.46 Reaction re94

This is a reversible reaction of one reactant forming one product.

Name E1-1

Reaction equation

$$s309 \rightleftharpoons s310$$
 (93)

Reactant

Table 142: Properties of each reactant.

Id	Name	SBO
s309	PKC	

Product

Table 143: Properties of each product.

Id	Name	SBO
s310	PKC active1	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{46} = \text{vol}(c1) \cdot (\text{kf} \cdot [\text{s}309] - \text{kb} \cdot [\text{s}310])$$
 (94)

Table 144: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
kf	kf	$1.0 s^{-1}$	\checkmark
kb	kb	$50.0 s^{-1}$	

6.47 Reaction re95

This is a reversible reaction of two reactants forming one product.

Name E1-3

Reaction equation

$$s309 + s153 \rightleftharpoons s311 \tag{95}$$

Reactants

Table 145: Properties of each reactant.

Id	Name	SBO
s309	PKC	
s153	DAG	

Product

Table 146: Properties of each product.

Id	Name	SBO
s311	PKC.DAG	

Kinetic Law

$$v_{47} = \text{vol}(c1) \cdot (\text{kf} \cdot [s309] \cdot [s153] - \text{kb} \cdot [s311])$$
 (96)

Table 147: Properties of each parameter.

Id	Name	SBO Value	Unit	Constant
kf	kf		$ \mu \text{mol}^{-1} \cdot 1 \cdot \text{s}^{-1} $	Ø
kb	kb	0.100	s^{-1}	$ \overline{\checkmark} $

6.48 Reaction re96

This is a reversible reaction of one reactant forming one product.

Name E1-5

Reaction equation

$$s566 \rightleftharpoons s314$$
 (97)

Reactant

Table 148: Properties of each reactant.

Id	Name	SBO
s566	PKC.Ca_super_2_plusendsuper_	

Product

Table 149: Properties of each product.

Id	Name	SBO
s314	PKC active_2	

Kinetic Law

$$v_{48} = \text{vol}(c1) \cdot (\text{kf} \cdot [\text{s}566] - \text{kb} \cdot [\text{s}314])$$
 (98)

Table 150: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
kf kb	kf kb	$\begin{array}{ccc} 1.271 & s^{-1} \\ 3.503 & s^{-1} \end{array}$	

6.49 Reaction re97

This is a reversible reaction of two reactants forming one product.

Name E1-4

Reaction equation

$$s309 + s135 \rightleftharpoons s566 \tag{99}$$

Reactants

Table 151: Properties of each reactant.

	r	
Id	Name	SBO
s309	PKC	
s135	Ca_super_2_plusendsuper_	

Product

Table 152: Properties of each product.

Id	Name	SBO
s566	PKC.Ca_super_2_plusendsuper_	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{49} = \text{vol}(c1) \cdot (\text{kf} \cdot [s309] \cdot [s135] - \text{kb} \cdot [s566])$$
 (100)

Table 153: Properties of each parameter.

Id	Name	SBO Va	alue Unit	Constant
kf	kf	(0.3 $\mu \text{mol}^{-1} \cdot \mathbf{l} \cdot \mathbf{s}^{-1}$	
kb	kb	($0.5 s^{-1}$	

6.50 Reaction re98

This is an irreversible reaction of one reactant forming two products.

Name D2-1.2

Reaction equation

$$s446 \longrightarrow s432 + s267 \tag{101}$$

Reactant

Table 154: Properties of each reactant.

Id	Name	SBO
s446	Ca_super_2_plusendsuper_ pump.Ca_super_2_plusendsuper_	

Products

Table 155: Properties of each product.

Id	Name	SBO
s432	Ca_super_2_plusendsuper_ pump	
s267	Ca_super_2_plusendsuper_ ext	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{50} = \text{vol}(c1) \cdot \text{Vmax} \cdot [\text{s446}] \tag{102}$$

Table 156: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vmax	Vmax	$4.9 s^{-1}$	

6.51 Reaction re100

This is a reversible reaction of two reactants forming one product.

Name D1-1

Reaction equation

$$s430 + 2s135 \Longrightarrow s444 \tag{103}$$

Table 157: Properties of each reactant.

Id	Name	SBO	
	Ca_super_2_plusendsuper_ trunsp Ca_super_2_plusendsuper_		

Table 158: Properties of each product.

Id	Name	SBO
s444	2Ca_super_2_plusendsuperCa_super_2_plusendsuper_ trunsp	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{51} = \text{vol}(c1) \cdot (\text{kf} \cdot [s135] \cdot [s135] \cdot [s430] - \text{kb} \cdot [s444])$$
 (104)

Table 159: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kf kb	kf kb		30.0 3.0		✓

6.52 Reaction re101

This is a reversible reaction of two reactants forming one product.

Name E1-7

Reaction equation

$$s566 + s153 \Longrightarrow s565 \tag{105}$$

Table 160: Properties of each reactant.

	*	
Id	Name	SBO
s566	PKC.Ca_super_2_plusendsuper_	

Id	Name	SBO
s153	DAG	

Table 161: Properties of each product.

	Tueste Testi Treperines er euen producti	
Id	Name	SBO
s565	PKC.Ca_super_2_plusendsuperDAG	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{52} = \text{vol}(c1) \cdot (\text{kf} \cdot [\text{s}566] \cdot [\text{s}153] - \text{kb} \cdot [\text{s}565])$$
 (106)

Table 162: Properties of each parameter.

Id	Name	SBO Value	Unit	Constant
kf	kf	0.004	$\mu mol^{-1} \cdot l \cdot s^{-1}$	
kb	kb	8.635	s^{-1}	\checkmark

6.53 Reaction re102

This is a reversible reaction of one reactant forming one product.

Name E1-8

Reaction equation

$$s565 \rightleftharpoons s324$$
 (107)

Reactant

Table 163: Properties of each reactant.

Id	Name	SBO
s565	PKC.Ca_super_2_plusendsuperDAG	

Product

Table 164: Properties of each product.

Id	Name	SBO
s324	PKC active_3	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{53} = \text{vol}(c1) \cdot (\text{kf} \cdot [\text{s}565] - \text{kb} \cdot [\text{s}324])$$
 (108)

Table 165: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
kf kb	kf kb	$\begin{array}{ccc} 1.0 & s^{-1} \\ 0.1 & s^{-1} \end{array}$	

6.54 Reaction re106

This is an irreversible reaction of one reactant forming one product.

Name E1-9

Reaction equation

$$s324 \longrightarrow s329 \tag{109}$$

Reactant

Table 166: Properties of each reactant.

Id	Name	SBO
s324	PKC active_3	_

Product

Table 167: Properties of each product.

Id	Name	SBO
s329	csa39_degraded	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{54} = \text{vol}(c1) \cdot \text{kf} \cdot [s324] \tag{110}$$

Table 168: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kf	kf	4.	$63 \cdot 10^{-5}$	s^{-1}	

6.55 Reaction re107

This is an irreversible reaction of one reactant forming one product.

Name E1-6

Reaction equation

$$s314 \longrightarrow s330$$
 (111)

Reactant

Table 169: Properties of each reactant.

Id	Name	SBO
s314	PKC active_2	

Product

Table 170: Properties of each product.

Id	Name	SBO
s330	csa36_degraded	

Kinetic Law

$$v_{55} = \text{vol}(c1) \cdot \text{kf} \cdot [\text{s}314] \tag{112}$$

Table 171: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kf	kf		$4.63 \cdot 10^{-5}$	s^{-1}	

6.56 Reaction re108

This is an irreversible reaction of one reactant forming one product.

Name E1-2

Reaction equation

$$s310 \longrightarrow s331$$
 (113)

Reactant

Table 172: Properties of each reactant.

Id	Name	SBO
s310	PKC active1	

Product

Table 173: Properties of each product.

Id	Name	SBO
s331	csa35_degraded	

Kinetic Law

$$v_{56} = \text{vol}(c1) \cdot \text{kf} \cdot [\text{s}310] \tag{114}$$

Table 174: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kf	kf		$4.63 \cdot 10^{-5}$	s^{-1}	

6.57 Reaction re109

This is a reversible reaction of two reactants forming one product.

Name D2-1.1

Reaction equation

$$s432 + s135 \Longrightarrow s446 \tag{115}$$

Reactants

Table 175: Properties of each reactant.

Id	Name	SBO
	Ca_super_2_plusendsuper_ pump Ca_super_2_plusendsuper_	

Product

Table 176: Properties of each product.

Id	Name	SBO
s446	Ca_super_2_plusendsuper_ pump.Ca_super_2_plusendsuper_	

Kinetic Law

$$v_{57} = \text{vol}(c1) \cdot \left(\frac{(1 + \text{ratio}) \cdot \text{Vmax} \cdot [\text{s432}] \cdot [\text{s135}]}{\text{Km}} - \text{Vmax} \cdot \text{ratio} \cdot [\text{s446}]\right)$$
(116)

Table 177: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Km ratio Vmax	Km ratio Vmax		0.04 4.00 4.90	μmol·l ⁻¹ dimensionless s ⁻¹	✓ ✓ ✓

6.58 Reaction re110

This is a reversible reaction of two reactants forming one product.

Name E2-1.1.3

Reaction equation

$$s324 + s349 \Longrightarrow s338 \tag{117}$$

Reactants

Table 178: Properties of each reactant.

Id	Name	SBO
s324	PKC active_3	
s349	CPI-17	

Product

Table 179: Properties of each product.

Id	Name	SBO
s338	PKC active_3.CPI	

Kinetic Law

$$v_{58} = vol(c1) \cdot \left(\frac{(1 + ratio) \cdot Vmax \cdot [s324] \cdot [s349]}{Km} - Vmax \cdot ratio \cdot [s338]\right) \quad (118)$$

Table 180: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Km ratio Vmax	Km ratio Vmax		0.001 4.000 3.940	dimensionless	V V V

6.59 Reaction re111

This is a reversible reaction of two reactants forming one product.

Name E2-1.1.2

Reaction equation

$$s314 + s349 \Longrightarrow s335 \tag{119}$$

Reactants

Table 181: Properties of each reactant.

Id	Name	SBO
s314	PKC active_2	
s349	CPI-17	

Product

Table 182: Properties of each product.

Id	Name	SBO
s335	PKC active_2.CPI	

Kinetic Law

$$v_{59} = \text{vol}(c1) \cdot \left(\frac{(1 + \text{ratio}) \cdot \text{Vmax} \cdot [\text{s}314] \cdot [\text{s}349]}{\text{Km}} - \text{ratio} \cdot \text{Vmax} \cdot [\text{s}335]\right) \quad (120)$$

Table 183: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Km ratio Vmax	Km ratio Vmax		0.001 4.000 3.940	dimensionless	V V V

6.60 Reaction re112

This is a reversible reaction of two reactants forming one product.

Name E2-1.1.1

Reaction equation

$$s310 + s349 \Longrightarrow s332 \tag{121}$$

Reactants

Table 184: Properties of each reactant.

Id	Name	SBO
2020	PKC active1 CPI-17	

Product

Table 185: Properties of each product.

Id	Name	SBO
s332	PKC active_1.CPI	

Kinetic Law

$$v_{60} = \text{vol}(c1) \cdot \left(\frac{(1 + \text{ratio}) \cdot \text{Vmax} \cdot [\text{s}310] \cdot [\text{s}349]}{\text{Km}} - \text{Vmax} \cdot \text{ratio} \cdot [\text{s}332]\right)$$
 (122)

Table 186: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Km ratio Vmax	Km ratio Vmax		0.001 4.000 3.940	dimensionless	V V V

6.61 Reaction re113

This is an irreversible reaction of one reactant forming two products.

Name E2-1.2.3

Reaction equation

$$s338 \longrightarrow s324 + s350 \tag{123}$$

Reactant

Table 187: Properties of each reactant.

Id	Name	SBO
s338	PKC active_3.CPI	

Products

Table 188: Properties of each product.

Id	Name	SBO
s324	PKC active_3	
s350	CPI-17	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{61} = \text{vol}(c1) \cdot \text{Vmax} \cdot [\text{s338}] \tag{124}$$

Table 189: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vmax	Vmax	$3.94 s^{-1}$	

6.62 Reaction re114

This is an irreversible reaction of one reactant forming two products.

Name E2-1.2.2

Reaction equation

$$s335 \longrightarrow s314 + s350 \tag{125}$$

Reactant

Table 190: Properties of each reactant.

Id	Name	SBO
s335	PKC active_2.CPI	

Products

Table 191: Properties of each product.

Id	Name	SBO
s314	PKC active_2	
s350	CPI-17	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{62} = \text{vol}(c1) \cdot \text{Vmax} \cdot [\text{s}335] \tag{126}$$

Table 192: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vmax	Vmax	$3.94 s^{-1}$	

6.63 Reaction re115

This is an irreversible reaction of one reactant forming two products.

Name E2-1.2.1

Reaction equation

$$s332 \longrightarrow s310 + s350 \tag{127}$$

Table 193: Properties of each reactant.

Id	Name	SBO
s332	PKC active_1.CPI	

Products

Table 194: Properties of each product.

Id	Name	SBO
s310 s350	PKC active1 CPI-17	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{63} = \text{vol}(c1) \cdot \text{Vmax} \cdot [\text{s332}] \tag{128}$$

Table 195: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Vmax	Vmax		3.94	s^{-1}	\blacksquare

6.64 Reaction re116

This is an irreversible reaction of one reactant forming one product.

Name E1-10

Reaction equation

$$s350 \longrightarrow s349 \tag{129}$$

Reactant

Table 196: Properties of each reactant.

Id	Name	SBO
s350	CPI-17	

Product

Table 197: Properties of each product.

Id	Name	SBO
s349	CPI-17	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{64} = \text{vol}(c1) \cdot \text{kf} \cdot [\text{s}350] \tag{130}$$

Table 198: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
kf	kf	$0.5 s^{-1}$	Ø

6.65 Reaction re117

This is a reversible reaction of two reactants forming one product.

Name E1-11

Reaction equation

$$s351 + s350 \Longrightarrow s352 \tag{131}$$

Reactants

Table 199: Properties of each reactant.

Id	Name	SBO
s351	MYPT1_PPase	
s350	CPI-17	

Product

Table 200: Properties of each product.

Id	Name	SBO
s352	CPI-17.MYPT1_PPase	

Derived unit $s^{-1} \cdot \mu mol$

$$v_{65} = \text{vol}(c1) \cdot (\text{kf} \cdot [\text{s351}] \cdot [\text{s350}] - \text{kb} \cdot [\text{s352}])$$
 (132)

Table 201: Properties of each parameter.

Id	Name	SBO Value	e Unit	Constant
kf kb	kf kb		$ \begin{array}{ccc} 0 & \mu \text{mol}^{-1} \cdot 1 \cdot \text{s}^{-1} \\ 2 & \text{s}^{-1} \end{array} $	

6.66 Reaction re118

This is a reversible reaction of two reactants forming one product.

Name E1-12

Reaction equation

$$s351 + s349 \Longrightarrow s355 \tag{133}$$

Reactants

Table 202: Properties of each reactant.

Id	Name	SBO
s351	MYPT1_PPase	
s349	CPI-17	

Product

Table 203: Properties of each product.

Tuble 203. Troperties of each product.			
Id	Name	SBO	
s355	CPI-17.MYPT1_PPase		

Derived unit $s^{-1} \cdot \mu mol$

$$v_{66} = \text{vol}(c1) \cdot (\text{kf} \cdot [s351] \cdot [s349] - \text{kb} \cdot [s355])$$
 (134)

Table 204: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kf kb	kf kb		0.01 0.10		✓

6.67 Reaction re119

This is an irreversible reaction of one reactant forming one product.

Name E1-13

Reaction equation

$$s352 \longrightarrow s355$$
 (135)

Reactant

Table 205: Properties of each reactant.

Id	Name	SBO
s352	CPI-17.MYPT1_PPase	

Product

Table 206: Properties of each product.

Id	Name	SBO
s355	CPI-17.MYPT1_PPase	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{67} = \text{vol}(c1) \cdot \text{kf} \cdot [\text{s352}] \tag{136}$$

Table 207: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
kf	kf	$0.5 s^{-1}$	

6.68 Reaction re120

This is a reversible reaction of two reactants forming one product.

Name F2-1.1

Reaction equation

$$s124 + s358 \Longrightarrow s361 \tag{137}$$

Reactants

Table 208: Properties of each reactant.

Id	Name	SBO
s124	Rho-kinase	
s358	MLC	

Product

Table 209: Properties of each product.

Id	Name	SBO
s361	Rho-kinase.MLC	

Kinetic Law

$$v_{68} = \text{vol}(c1) \cdot \left(\frac{(1 + \text{ratio}) \cdot \text{Vmax} \cdot [\text{s}124] \cdot [\text{s}358]}{\text{Km}} - \text{Vmax} \cdot \text{ratio} \cdot [\text{s}361]\right) \quad (138)$$

Table 210: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Km	Km		4.510	$\mu mol \cdot l^{-1}$	\overline{Z}

Id	Name	SBO	Value	Unit	Constant
ratio Vmax	ratio Vmax		16.617 1.280	$\begin{array}{c} \text{dimensionless} \\ s^{-1} \end{array}$	✓

6.69 Reaction re121

This is a reversible reaction of two reactants forming one product.

Name F2-2.1

Reaction equation

$$s124 + s359 \Longrightarrow s362 \tag{139}$$

Reactants

Table 211: Properties of each reactant.

Id	Name	SBO
s124	Rho-kinase	
s359	MLC	

Product

Table 212: Properties of each product.

Id	Name	SBO
s362	Rho-kinase.MLC	

Kinetic Law

$$v_{69} = \text{vol}(c1) \cdot \left(\frac{(1 + \text{ratio}) \cdot \text{Vmax} \cdot [\text{s}124] \cdot [\text{s}359]}{\text{Km}} - \text{Vmax} \cdot \text{ratio} \cdot [\text{s}362]\right)$$
(140)

Table 213: Properties of each parameter.

Id	Name	SBO Value	Unit	Constant
Km ratio	Km ratio		μ mol·l ⁻¹ dimensionless	
Vmax	Vmax		s^{-1}	☑ ☑

6.70 Reaction re123

This is an irreversible reaction of one reactant forming two products.

Name F2-1.2

Reaction equation

$$s361 \longrightarrow s359 + s124 \tag{141}$$

Reactant

Table 214: Properties of each reactant.

Id	Name	SBO
s361	Rho-kinase.MLC	

Products

Table 215: Properties of each product.

Id	Name	SBO
s359	MLC	
s124	Rho-kinase	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{70} = \text{vol}(c1) \cdot \text{Vmax} \cdot [\text{s}361] \tag{142}$$

Table 216: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vmax	Vmax	$1.28 s^{-1}$	

6.71 Reaction re124

This is an irreversible reaction of one reactant forming two products.

Name F2-2.2

Reaction equation

$$s362 \longrightarrow s360 + s124 \tag{143}$$

Reactant

Table 217: Properties of each reactant.

Id Name		SBO
s362	Rho-kinase.MLC	

Products

Table 218: Properties of each product.

Id	Name	SBO
s360	MLC	
s124	Rho-kinase	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{71} = \text{vol}(c1) \cdot \text{Vmax} \cdot [\text{s}362] \tag{144}$$

Table 219: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vmax	Vmax	$1.28 s^{-1}$	

6.72 Reaction re125

This is a reversible reaction of two reactants forming one product.

Name F2-3.1

Reaction equation

$$s252 + s358 \Longrightarrow s456 \tag{145}$$

Reactants

Table 220: Properties of each reactant.

14010 2	Tuble 220. I roperties of each reactant.				
Id	Name	SBO			
	Rho.GTP.Rho-kinase MLC				

Product

Table 221: Properties of each product.

Id	Name	SBO
s456	Rho.GTP.Rho-kinase.MLC	

Kinetic Law

Derived unit contains undeclared units

$$v_{72} = \text{vol}(c1) \cdot \left(\frac{(1 + \text{ratio}) \cdot \text{Vmax} \cdot [\text{s252}] \cdot [\text{s358}]}{\text{Km}} - \text{Vmax} \cdot \text{ratio} \cdot [\text{s456}]\right) \quad (146)$$

Table 222: Properties of each parameter.

		· · · · · · · · · · · · · · · · · · ·	F	
Id	Name	SBO Value	e Unit	Constant
Km ratio Vmax	Km ratio Vmax	0.426	μ	Ø
VIIIAA	v iiiax	8.000	, 8	$ \overline{\mathcal{L}} $

6.73 Reaction re126

This is an irreversible reaction of two reactants forming one product.

Name F2-4.1

Reaction equation

$$s252 + s359 \longrightarrow s449 \tag{147}$$

Reactants

Table 223: Properties of each reactant.

	Tueste ==e+11epestises es euron seuretunion				
Id	Name	SBO			
	Rho.GTP.Rho-kinase MLC				

Product

Table 224: Properties of each product.

Id	Name	SBO
s449	Rho.GTP.Rho-kinase.MLC	

Kinetic Law

Derived unit contains undeclared units

$$v_{73} = \text{vol}(c1) \cdot \left(\frac{(1 + \text{ratio}) \cdot \text{Vmax} \cdot [\text{s252}] \cdot [\text{s359}]}{\text{Km}} - \text{Vmax} \cdot \text{ratio} \cdot [\text{s449}]\right)$$
 (148)

Table 225: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Km ratio Vmax	Km ratio Vmax			$\begin{array}{c} \mu mol \cdot l^{-1} \\ dimensionless \\ s^{-1} \end{array}$	V V V

6.74 Reaction re127

This is an irreversible reaction of one reactant forming two products.

Name F2-3.2

Reaction equation

$$s456 \longrightarrow s252 + s359 \tag{149}$$

Reactant

Table 226: Properties of each reactant.

Id	Name	SBO
s456	Rho.GTP.Rho-kinase.MLC	

Products

Table 227: Properties of each product.

Id	Name	SBO
s252	Rho.GTP.Rho-kinase	
s359	MLC	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{74} = \text{vol}(c1) \cdot \text{Vmax} \cdot [\text{s}456] \tag{150}$$

Table 228: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Vmax	Vmax		8.66	s^{-1}	

6.75 Reaction re128

This is an irreversible reaction of one reactant forming two products.

Name F2-4.2

Reaction equation

$$s449 \longrightarrow s252 + s360 \tag{151}$$

Reactant

Table 229: Properties of each reactant.

Id	Name	SBO
s449	Rho.GTP.Rho-kinase.MLC	

Products

Table 230: Properties of each product.

Id	Name	SBO
	Rho.GTP.Rho-kinase MLC	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{75} = \text{vol}(c1) \cdot \text{Vmax} \cdot [\text{s449}] \tag{152}$$

Table 231: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vmax	Vmax	$8.66 s^{-1}$	

6.76 Reaction re129

This is a reversible reaction of two reactants forming one product.

Name F2-14.1

Reaction equation

$$s124 + s351 \Longrightarrow s463 \tag{153}$$

Reactants

Table 232: Properties of each reactant.

Id	Name	SBO
s124	Rho-kinase	
s351	MYPT1_PPase	

Product

Table 233: Properties of each product.

Id	Name	SBO
s463	MYPT1.Rho-kinase	

Derived unit contains undeclared units

$$v_{76} = \text{vol}(c1) \cdot \left(\frac{(1 + \text{ratio}) \cdot \text{Vmax} \cdot [\text{s}124] \cdot [\text{s}351]}{\text{Km}} - \text{Vmax} \cdot \text{ratio} \cdot [\text{s}463]\right)$$
 (154)

Table 234: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Km ratio Vmax	Km ratio Vmax			$\begin{array}{c} \mu mol \cdot l^{-1} \\ dimensionless \\ s^{-1} \end{array}$	✓ ✓ ✓

6.77 Reaction re130

This is an irreversible reaction of one reactant forming two products.

Name F2-14.2

Reaction equation

$$s463 \longrightarrow s124 + s570 \tag{155}$$

Reactant

Table 235: Properties of each reactant.

Id	Name	SBO
s463	MYPT1.Rho-kinase	

Products

Table 236: Properties of each product.

Id	Name	SBO
s124	Rho-kinase MYPT1 PPase	

Derived unit $s^{-1} \cdot \mu mol$

$$v_{77} = \text{vol}(c1) \cdot \text{Vmax} \cdot [\text{s463}] \tag{156}$$

Table 237: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vmax	Vmax	$1.46 s^{-1}$	

6.78 Reaction re131

This is a reversible reaction of two reactants forming one product.

Name F2-13.1

Reaction equation

$$s252 + s351 \Longrightarrow s496 \tag{157}$$

Reactants

Table 238: Properties of each reactant.

Id	Name	SBO
	Rho.GTP.Rho-kinase MYPT1_PPase	

Product

Table 239: Properties of each product.

Id	Name	SBO
s496	MYPT1.Rho-kinase	

Derived unit contains undeclared units

$$v_{78} = \text{vol}(c1) \cdot \left(\frac{(1 + \text{ratio}) \cdot \text{Vmax} \cdot [\text{s252}] \cdot [\text{s351}]}{\text{Km}} - \text{Vmax} \cdot \text{ratio} \cdot [\text{s496}]\right) \quad (158)$$

Table 240: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Km	Km		0.100	$\mu mol \cdot l^{-1}$	
ratio	ratio		0.028	dimensionless	
Vmax	Vmax		17.505	s^{-1}	

6.79 Reaction re132

This is an irreversible reaction of one reactant forming two products.

Name F2-13.2

Reaction equation

$$s496 \longrightarrow s252 + s570 \tag{159}$$

Reactant

Table 241: Properties of each reactant.

Id	Name	SBO
s496	MYPT1.Rho-kinase	

Products

Table 242: Properties of each product.

Id	Name	SBO
s252	Rho.GTP.Rho-kinase	
s570	MYPT1_PPase	

Derived unit $s^{-1} \cdot \mu mol$

$$v_{79} = \text{vol}(c1) \cdot \text{Vmax} \cdot [\text{s496}] \tag{160}$$

Table 243: Properties of each parameter.

Id	Name	SBO Value	Unit	Constant
Vmax	Vmax	17.505	s^{-1}	

6.80 Reaction re133

This is a reversible reaction of two reactants forming one product.

Name F2-11.1

Reaction equation

$$s360 + s570 \Longrightarrow s467 \tag{161}$$

Reactants

Table 244: Properties of each reactant.

Id	Name	SBO
s360	MLC	
s 570	MYPT1_PPase	

Product

Table 245: Properties of each product.

Id	Name	SBO
s467	MYPT1.MLC	

Kinetic Law

$$v_{80} = vol(c1) \cdot \left(\frac{(1 + ratio) \cdot Vmax \cdot [s360] \cdot [s570]}{Km} - Vmax \cdot ratio \cdot [s467]\right) \quad (162)$$

Table 246: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Km	Km			$\mu mol \cdot l^{-1}$	
ratio	ratio		28.795	dimensionless	\square
Vmax	Vmax		1.950	s^{-1}	\square

6.81 Reaction re134

This is a reversible reaction of two reactants forming one product.

Name F2-9.1

Reaction equation

$$s360 + s351 \Longrightarrow s470 \tag{163}$$

Reactants

Table 247: Properties of each reactant.

Id	Name	SBO
s360	MLC	
s351	MYPT1_PPase	

Product

Table 248: Properties of each product.

Id	Name	SBO
s470	MYPT1.MLC	

Kinetic Law

$$v_{81} = \text{vol}(c1) \cdot \left(\frac{(1 + \text{ratio}) \cdot \text{Vmax} \cdot [\text{s}360] \cdot [\text{s}351]}{\text{Km}} - \text{Vmax} \cdot \text{ratio} \cdot [\text{s}470]\right)$$
 (164)

Table 249: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Km ratio Vmax	Km ratio Vmax			μ mol·l ⁻¹ dimensionless s ⁻¹	

6.82 Reaction re135

This is a reversible reaction of two reactants forming one product.

Name F2-12.1

Reaction equation

$$s359 + s570 \Longrightarrow s477 \tag{165}$$

Reactants

Table 250: Properties of each reactant.

Id	Name	SBO
s359	MLC	
s570	MYPT1_PPase	

Product

Table 251: Properties of each product.

Id	Name	SBO
s477	MYPT1.MLC	

Kinetic Law

$$v_{82} = \text{vol}(c1) \cdot \left(\frac{(1 + \text{ratio}) \cdot \text{Vmax} \cdot [\text{s359}] \cdot [\text{s570}]}{\text{Km}} - \text{Vmax} \cdot \text{ratio} \cdot [\text{s477}]\right) \quad (166)$$

Table 252: Properties of each parameter.

Id Name SBO Value Unit	Constant
iu ivanic SDO value Unit	Constant

6.83 Reaction re136

This is a reversible reaction of two reactants forming one product.

Name F2-10.1

Reaction equation

$$s359 + s351 \Longrightarrow s480 \tag{167}$$

Reactants

Table 253: Properties of each reactant.

Id	Name	SBO
s359	MLC	
s351	MYPT1_PPase	

Product

Table 254: Properties of each product.

Id	Name	SBO
s480	MYPT1.MLC	

Kinetic Law

$$v_{83} = \text{vol}(c1) \cdot \left(\frac{(1 + \text{ratio}) \cdot \text{Vmax} \cdot [\text{s351}] \cdot [\text{s359}]}{\text{Km}} - \text{Vmax} \cdot \text{ratio} \cdot [\text{s480}]\right)$$
 (168)

Table 255: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Km ratio Vmax	Km ratio Vmax			μ mol·l ⁻¹ dimensionless s ⁻¹	

6.84 Reaction re137

This is an irreversible reaction of one reactant forming two products.

Name F2-11.2

Reaction equation

$$s467 \longrightarrow s359 + s570 \tag{169}$$

Reactant

Table 256: Properties of each reactant.

Id	Name	SBO
s467	MYPT1.MLC	

Products

Table 257: Properties of each product.

Id	Name	SBO
s359	MLC	
s570	MYPT1_PPase	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{84} = \text{vol}(c1) \cdot \text{Vmax} \cdot [\text{s467}] \tag{170}$$

Table 258: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vmax	Vmax	$1.95 s^{-1}$	

6.85 Reaction re138

This is an irreversible reaction of one reactant forming two products.

Name F2-9.2

Reaction equation

$$s470 \longrightarrow s359 + s351 \tag{171}$$

Reactant

Table 259: Properties of each reactant.

Id	Name	SBO
s470	MYPT1.MLC	

Products

Table 260: Properties of each product.

Id	Name	SBO
s359	MLC	
s351	MYPT1_PPase	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{85} = \text{vol}(c1) \cdot \text{Vmax} \cdot [\text{s}470] \tag{172}$$

Table 261: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vmax	Vmax	$9.317 s^{-1}$	\mathbf{Z}

6.86 Reaction re139

This is an irreversible reaction of one reactant forming two products.

Name F2-12.2

Reaction equation

$$s477 \longrightarrow s358 + s570 \tag{173}$$

Reactant

Table 262: Properties of each reactant.

Id	Name	SBO
s477	MYPT1.MLC	

Products

Table 263: Properties of each product.

Id	Name	SBO
s358	MLC	
s570	MYPT1_PPase	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{86} = \text{vol}(c1) \cdot \text{Vmax} \cdot [\text{s477}] \tag{174}$$

Table 264: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vmax	Vmax	1.95 s^{-1}	

6.87 Reaction re140

This is an irreversible reaction of one reactant forming two products.

Name F2-10.2

Reaction equation

$$s480 \longrightarrow s358 + s351 \tag{175}$$

Reactant

Table 265: Properties of each reactant.

Id	Name	SBO
s480	MYPT1.MLC	

Products

Table 266: Properties of each product.

Id	Name	SBO
s358	MLC	
s351	MYPT1_PPase	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{87} = \text{vol}(c1) \cdot \text{Vmax} \cdot [\text{s}480] \tag{176}$$

Table 267: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vmax	Vmax	$9.317 s^{-1}$	

6.88 Reaction re141

This is an irreversible reaction of one reactant forming one product.

Name F1-1

Reaction equation

$$s570 \longrightarrow s351$$
 (177)

Reactant

Table 268: Properties of each reactant.

Id	Name	SBO
s570	MYPT1_PPase	

Product

Table 269: Properties of each product.

Id	Name	SBO
s351	MYPT1_PPase	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{88} = \text{vol}(c1) \cdot \text{kf} \cdot [\text{s}570] \tag{178}$$

Table 270: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
kf	kf	$0.2 s^{-1}$	

6.89 Reaction re154

This is a reversible reaction of two reactants forming one product.

Name F2-7.1

Reaction equation

$$s358 + s289 \Longrightarrow s487 \tag{179}$$

Reactants

Table 271: Properties of each reactant.

Id	Name	SBO
======================================	MLC	
s289	MLCK	

Product

Table 272: Properties of each product.

Id	Name	SBO
s487	MLCK.MLC	

Kinetic Law

Derived unit contains undeclared units

$$v_{89} = vol\left(c1\right) \cdot \left(\frac{(1 + ratio) \cdot Vmax \cdot [s289] \cdot [s358]}{Km} - Vmax \cdot ratio \cdot [s487]\right) \quad (180)$$

Table 273: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Km ratio Vmax	Km ratio Vmax		39.349	$\begin{array}{c} \mu mol \cdot l^{-1} \\ dimensionless \\ s^{-1} \end{array}$	

6.90 Reaction re155

This is a reversible reaction of two reactants forming one product.

Name F2-8.1

Reaction equation

$$s359 + s289 \Longrightarrow s491 \tag{181}$$

Reactants

Table 274: Properties of each reactant.

Id	Name	SBO
s359	MLC	
s289	MLCK	

Product

Table 275: Properties of each product.

Id	Name	SBO
s491	MLCK.MLC	

Derived unit contains undeclared units

$$v_{90} = \text{vol}(c1) \cdot \left(\frac{(1 + \text{ratio}) \cdot \text{Vmax} \cdot [\text{s289}] \cdot [\text{s359}]}{\text{Km}} - \text{Vmax} \cdot \text{ratio} \cdot [\text{s491}]\right)$$
(182)

Table 276: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Km ratio Vmax	Km ratio Vmax		39.349	$\begin{array}{c} \mu mol \cdot l^{-1} \\ dimensionless \\ s^{-1} \end{array}$	✓ ✓ ✓

6.91 Reaction re156

This is an irreversible reaction of one reactant forming two products.

Name F2-7.2

Reaction equation

$$s487 \longrightarrow s359 + s289 \tag{183}$$

Reactant

Table 277: Properties of each reactant.

Id	Name	SBO
s487	MLCK.MLC	

Products

Table 278: Properties of each product.

Id	Name	SBO
s359	MLC	
s289	MLCK	

Derived unit $s^{-1} \cdot \mu mol$

$$v_{91} = \text{vol}(c1) \cdot \text{Vmax} \cdot [\text{s487}] \tag{184}$$

Table 279: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vmax	Vmax	$3.67 s^{-1}$	

6.92 Reaction re157

This is an irreversible reaction of one reactant forming two products.

Name F2-8.2

Reaction equation

$$s491 \longrightarrow s360 + s289 \tag{185}$$

Reactant

Table 280: Properties of each reactant.

Id	Name	SBO
s491	MLCK.MLC	

Products

Table 281: Properties of each product.

Id	Name	SBO
s360	MLC	
s289	MLCK	

Derived unit $s^{-1} \cdot \mu mol$

$$v_{92} = \text{vol}(c1) \cdot \text{Vmax} \cdot [\text{s491}] \tag{186}$$

Table 282: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vmax	Vmax	$3.67 s^{-1}$	

6.93 Reaction re158

This is a reversible reaction of two reactants forming one product.

Name F2-5.1.1

Reaction equation

$$s358 + s292 \Longrightarrow s551 \tag{187}$$

Reactants

Table 283: Properties of each reactant.

Id	Name	SBO
s358	MLC	
s292	MLCK.Ca_super_2_plusendsuperCaM	

Product

Table 284: Properties of each product.

Id	Name	SBO
s551	MLCK.Ca_super_2_plusendsuperCaM.MLC	7

Kinetic Law

$$v_{93} = vol(c1) \cdot \left(\frac{(1 + ratio) \cdot Vmax \cdot [s292] \cdot [s358]}{Km} - Vmax \cdot ratio \cdot [s551]\right) \quad (188)$$

Table 285: Properties of each parameter.

Id	Name	SBO '	Value	Unit	Constant
Km	Km	1	0.019	$\mu mol \cdot l^{-1}$	
ratio	ratio		1.730	dimensionless	\square
${\tt Vmax}$	Vmax		3.670	s^{-1}	

6.94 Reaction re159

This is a reversible reaction of two reactants forming one product.

Name F2-5.2.1

Reaction equation

$$s358 + s293 \Longrightarrow s539 \tag{189}$$

Reactants

Table 286: Properties of each reactant.

Id	Name	SBO
	MLC MLCK.2Ca_super_2_plusendsuperCaM	

Product

Table 287: Properties of each product.

Id	Name	SBO
s539	MLCK.2Ca_super_2_plusendsuperCaM.MLC	

Kinetic Law

$$v_{94} = \text{vol}(c1) \cdot \left(\frac{(1 + \text{ratio}) \cdot \text{Vmax} \cdot [\text{s}293] \cdot [\text{s}358]}{\text{Km}} - \text{Vmax} \cdot \text{ratio} \cdot [\text{s}539]\right)$$
(190)

Table 288: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Km ratio Vmax	Km ratio Vmax	1		μmol·l ⁻¹ dimensionless s ⁻¹	

6.95 Reaction re160

This is a reversible reaction of two reactants forming one product.

Name F2-5.3.1

Reaction equation

$$s358 + s294 \Longrightarrow s520 \tag{191}$$

Reactants

Table 289: Properties of each reactant.

Id	Name	SBO
	MLC MLCK.3Ca_super_2_plusendsuperCaM	

Product

Table 290: Properties of each product.

Id	Name	SBO
s520	MLCK.3Ca_super_2_plusendsuperCaM.MLC	

Kinetic Law

$$v_{95} = \text{vol}(c1) \cdot \left(\frac{(1 + \text{ratio}) \cdot \text{Vmax} \cdot [\text{s}294] \cdot [\text{s}358]}{\text{Km}} - \text{Vmax} \cdot \text{ratio} \cdot [\text{s}520]\right)$$
(192)

Table 291: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Km ratio Vmax	Km ratio Vmax	1		μmol·l ⁻¹ dimensionless s ⁻¹	

6.96 Reaction re161

This is a reversible reaction of two reactants forming one product.

Name F2-5.4.1

Reaction equation

$$s358 + s295 \Longrightarrow s513 \tag{193}$$

Reactants

Table 292: Properties of each reactant.

Id	Name	SBO
	MLC	
s295	MLCK.4Ca_super_2_plusendsuperCaM	

Product

Table 293: Properties of each product.

Id	Name	SBO
s513	MLCK.4Ca_super_2_plusendsuperCaM.MLC	

Kinetic Law

$$v_{96} = \text{vol}(c1) \cdot \left(\frac{(1 + \text{ratio}) \cdot \text{Vmax} \cdot [\text{s}295] \cdot [\text{s}358]}{\text{Km}} - \text{Vmax} \cdot \text{ratio} \cdot [\text{s}513]\right)$$
(194)

Table 294: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Km ratio Vmax	Km ratio Vmax	1		μmol·l ⁻¹ dimensionless s ⁻¹	

6.97 Reaction re162

This is a reversible reaction of two reactants forming one product.

Name F2-6.1.1

Reaction equation

$$s359 + s292 \rightleftharpoons s546 \tag{195}$$

Reactants

Table 295: Properties of each reactant.

	rable 233. I roporties of each reactant.	
Id	Name	SBO
s359	MLC	
s292	$MLCK.Ca_super_2_plus__endsuper\CaM$	

Product

Table 296: Properties of each product.

Id	Name	SBO
s546	MLCK.Ca_super_2_plusendsuperCaM.MLC	

Kinetic Law

$$v_{97} = \text{vol}(c1) \cdot \left(\frac{(1 + \text{ratio}) \cdot \text{Vmax} \cdot [\text{s292}] \cdot [\text{s359}]}{\text{Km}} - \text{Vmax} \cdot \text{ratio} \cdot [\text{s546}]\right)$$
(196)

Table 297: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Km ratio Vmax	Km ratio Vmax	1		μmol·l ⁻¹ dimensionless s ⁻¹	

6.98 Reaction re163

This is a reversible reaction of two reactants forming one product.

Name F2-6.2.1

Reaction equation

$$s359 + s293 \Longrightarrow s526 \tag{197}$$

Reactants

Table 298: Properties of each reactant.

	Tueste 25 et l'imperities et euchi reuntaine.	
Id	Name	SBO
2000	MLC MLCK.2Ca_super_2_plusendsuperCaM	

Product

Table 299: Properties of each product.

Id	Name	SBO
s526	MLCK.2Ca_super_2_plusendsuperCaM.MLC	

Kinetic Law

$$v_{98} = \text{vol}(c1) \cdot \left(\frac{(1 + \text{ratio}) \cdot \text{Vmax} \cdot [\text{s293}] \cdot [\text{s359}]}{\text{Km}} - \text{Vmax} \cdot \text{ratio} \cdot [\text{s526}]\right)$$
(198)

Table 300: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Km ratio Vmax	Km ratio Vmax			μmol·l ⁻¹ dimensionless s ⁻¹	

6.99 Reaction re164

This is a reversible reaction of two reactants forming one product.

Name F2-6.3.1

Reaction equation

$$s359 + s294 \Longrightarrow s512 \tag{199}$$

Reactants

Table 301: Properties of each reactant.

Id	Name	SBO
2000	MLC MLCK.3Ca_super_2_plusendsuperCaM	

Product

Table 302: Properties of each product.

Id	Name	SBO
s512	MLCK.3Ca_super_2_plusendsuperCaM.MLC	

Kinetic Law

$$v_{99} = \text{vol}(c1) \cdot \left(\frac{(1 + \text{ratio}) \cdot \text{Vmax} \cdot [\text{s}294] \cdot [\text{s}359]}{\text{Km}} - \text{Vmax} \cdot \text{ratio} \cdot [\text{s}512]\right)$$
(200)

Table 303: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Km ratio Vmax	Km ratio Vmax			μmol·l ⁻¹ dimensionless s ⁻¹	

6.100 Reaction re165

This is a reversible reaction of two reactants forming one product.

Name F2-6.4.1

Reaction equation

$$s359 + s295 \Longrightarrow s506 \tag{201}$$

Reactants

Table 304: Properties of each reactant.

Name	SBO
MLC MLCK.4Ca_super_2_plusendsuperCaM	

Product

Table 305: Properties of each product.

Id	Name	SBO
s506	MLCK.4Ca_super_2_plusendsuperCaM.MLC	

Kinetic Law

$$v_{100} = \text{vol}(c1) \cdot \left(\frac{(1 + \text{ratio}) \cdot \text{Vmax} \cdot [\text{s295}] \cdot [\text{s359}]}{\text{Km}} - \text{Vmax} \cdot \text{ratio} \cdot [\text{s506}]\right) \quad (202)$$

Table 306: Properties of each parameter.

Id	Name	SBO Va	alue Unit	Constant
Km	Km	10	$0.019 \mu \text{mol} \cdot l^{-1}$	
ratio	ratio	1	.730 dimensionless	s 🗹
${\tt Vmax}$	Vmax	3	$8.670 ext{ s}^{-1}$	

6.101 Reaction re166

This is an irreversible reaction of one reactant forming two products.

Name F2-6.4.2

Reaction equation

$$s506 \longrightarrow s360 + s295 \tag{203}$$

Reactant

Table 307: Properties of each reactant.

Id	Name	SBO
s506	MLCK.4Ca_super_2_plusendsuperCaM.MLC	

Products

Table 308: Properties of each product.

	F F	
Id	Name	SBO
s360	MLC	
s295	MLCK.4Ca_super_2_plusendsuperCaM	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{101} = \text{vol}(c1) \cdot \text{Vmax} \cdot [\text{s}506] \tag{204}$$

Table 309: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vmax	Vmax	$3.67 s^{-1}$	

6.102 Reaction re167

This is an irreversible reaction of one reactant forming two products.

Name F2-5.4.2

Reaction equation

$$s513 \longrightarrow s359 + s295 \tag{205}$$

Reactant

Table 310: Properties of each reactant.

Id	Name	SBO
s513	MLCK.4Ca_super_2_plusendsuperCaM.MLC	

Products

Table 311: Properties of each product.

Id	Name	SBO
s359	MLC	
s295	MLCK.4Ca_super_2_plusendsuperCaM	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{102} = \text{vol}(c1) \cdot \text{Vmax} \cdot [\text{s513}] \tag{206}$$

Table 312: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vmax	Vmax	$3.67 s^{-1}$	\mathbf{Z}

6.103 Reaction re168

This is an irreversible reaction of one reactant forming two products.

Name F2-6.3.2

Reaction equation

$$s512 \longrightarrow s360 + s294 \tag{207}$$

Reactant

Table 313: Properties of each reactant.

Id	Name	SBO
s512	MLCK.3Ca_super_2_plusendsuperCaM.MLC	_

Products

Table 314: Properties of each product.

Id	Name	SBO
s360	MLC	
s294	MLCK.3Ca_super_2_plusendsuperCaM	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{103} = \text{vol}(c1) \cdot \text{Vmax} \cdot [\text{s}512] \tag{208}$$

Table 315: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vmax	Vmax	$3.67 s^{-1}$	

6.104 Reaction re169

This is an irreversible reaction of one reactant forming two products.

Name F2-5.3.2

Reaction equation

$$s520 \longrightarrow s359 + s294 \tag{209}$$

Reactant

Table 316: Properties of each reactant.

Id	Name	SBO
s520	MLCK.3Ca_super_2_plusendsuperCaM.MLC	

Products

Table 317: Properties of each product.

Id	Name	SBO
s359	MLC	
s294	MLCK.3Ca_super_2_plusendsuperCaM	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{104} = \text{vol}(c1) \cdot \text{Vmax} \cdot [\text{s}520] \tag{210}$$

Table 318: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vmax	Vmax	$3.67 s^{-1}$	

6.105 Reaction re170

This is an irreversible reaction of one reactant forming two products.

Name F2-6.2.2

Reaction equation

$$s526 \longrightarrow s360 + s293 \tag{211}$$

Reactant

Table 319: Properties of each reactant.

Id	Name	SBO
s526	MLCK.2Ca_super_2_plusendsuperCaM.MLC	

Products

Table 320: Properties of each product.

	1	
Id	Name	SBO
	MLC MLCK.2Ca_super_2_plusendsuperCaM	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{105} = \text{vol}(c1) \cdot \text{Vmax} \cdot [\text{s}526] \tag{212}$$

Table 321: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Vmax	Vmax		3.67	s^{-1}	\blacksquare

6.106 Reaction re171

This is an irreversible reaction of one reactant forming two products.

Name F2-5.2.2

Reaction equation

$$s539 \longrightarrow s359 + s293 \tag{213}$$

Reactant

Table 322: Properties of each reactant.

Id	Name	SBO
s539	MLCK.2Ca_super_2_plusendsuperCaM.MLC	

Products

Table 323: Properties of each product.

Id	Name	SBO
2000	MLC MLCK.2Ca_super_2_plusendsuperCaM	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{106} = \text{vol}(c1) \cdot \text{Vmax} \cdot [\text{s}539] \tag{214}$$

Table 324: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vmax	Vmax	$3.67 s^{-1}$	Ø

6.107 Reaction re172

This is an irreversible reaction of one reactant forming two products.

Name F2-6.1.2

Reaction equation

$$s546 \longrightarrow s360 + s292 \tag{215}$$

Reactant

Table 325: Properties of each reactant.

Id	Name	SBO
s546	MLCK.Ca_super_2_plusendsuperCaM.MLC	

Products

Table 326: Properties of each product.

Id	Name	SBO
	MLC MLCK.Ca_super_2_plusendsuperCaM	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{107} = \text{vol}(c1) \cdot \text{Vmax} \cdot [\text{s}546] \tag{216}$$

Table 327: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vmax	Vmax	$3.67 s^{-1}$	\square

6.108 Reaction re173

This is an irreversible reaction of one reactant forming two products.

Name F2-5.1.2

Reaction equation

$$s551 \longrightarrow s359 + s292 \tag{217}$$

Reactant

Table 328: Properties of each reactant.

Id	Name	SBO
s551	MLCK.Ca_super_2_plusendsuperCaM.MLC	

Products

Table 329: Properties of each product.

	1 1	
Id	Name	SBO
s359	MLC	
s292	MLCK.Ca_super_2_plusendsuperCaM	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{108} = \text{vol}(c1) \cdot \text{Vmax} \cdot [\text{s}551] \tag{218}$$

Table 330: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Vmax	Vmax	$3.67 s^{-1}$	

6.109 Reaction re174

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name D3-3

Reaction equation

$$s267 \stackrel{\$556}{\rightleftharpoons} s135 \tag{219}$$

Reactant

Table 331: Properties of each reactant.

Id	Name	SBO
s267	Ca_super_2_plusendsuper_ ext	

Modifier

Table 332: Properties of each modifier.

Id	Name	SBO
s556	Ca_super_2_plusendsuper_ ext leak	

Product

Table 333: Properties of each product.

Id	Name	SBO
s135	Ca_super_2_plusendsuper_	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{109} = \text{vol}(c1) \cdot g \cdot [s556] \cdot ([s267] - [s135])$$
 (220)

Table 334: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
g	g	$0.01 \mu \text{mol}^{-1} \cdot 1 \cdot \text{s}^{-1}$	

6.110 Reaction re175

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name D3-2

Reaction equation

$$s172 \stackrel{\underline{s557}}{=\!\!\!=\!\!\!=} s135 \tag{221}$$

Reactant

Table 335: Properties of each reactant.

	Name	SBO
s172	Ca_super_2_plusendsuper_ store	

Modifier

Table 336: Properties of each modifier.

Id	Name	SBO
s557	Ca_super_2_plusendsuper_ int leak	

Product

Table 337: Properties of each product.

Id	Name	SBO
s135	Ca_super_2_plusendsuper_	

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_{110} = \text{vol}(c1) \cdot g \cdot [s557] \cdot ([s172] - [s135])$$
 (222)

Table 338: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
g	g		0.01	$\mu mol^{-1} \cdot l \cdot s^{-1}$	

7 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

7.1 Species s2

Name thrombin

Initial concentration $0 \mu mol \cdot l^{-1}$

Charge 0

Involved in event event_0000001

This species takes part in two reactions (as a reactant in re1 and as a product in re40). Not these but one event influences the species' quantity because this species is on the boundary of the reaction system.

7.2 Species s174

Name thrombin_R

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re40 and as a product in re1).

$$\frac{\mathrm{d}}{\mathrm{d}t}s174 = v_1 - v_{20} \tag{223}$$

7.3 Species s130

Name pro_thrombinR

Initial concentration $0.42 \ \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a reactant in re1).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{s}130 = -v_1\tag{224}$$

7.4 Species s4

Name thrombin_ligand

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a product in re40).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{s}4 = v_{20} \tag{225}$$

7.5 Species s57

Name thrombinR active

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in four reactions (as a reactant in re15, re43, re45 and as a product in re40).

$$\frac{\mathrm{d}}{\mathrm{d}t}s57 = v_{20} - v_4 - v_{21} - v_{23} \tag{226}$$

7.6 Species s93

Name RGS

Initial concentration $0.2 \, \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re20 and as a product in re34).

$$\frac{d}{dt}s93 = v_{16} - v_8 \tag{227}$$

7.7 Species s165

Name Inositol

Initial concentration $0 \ \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a product in re60).

$$\frac{d}{dt}s165 = v_{34} \tag{228}$$

7.8 Species s183

Name sa40_degraded

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a product in re14, re45).

$$\frac{d}{dt}s183 = v_3 + v_{23} \tag{229}$$

7.9 Species s55

Name thrombinR

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in re14 and as a product in re12, re16).

$$\frac{d}{dt}s55 = v_2 + v_5 - v_3 \tag{230}$$

7.10 Species s184

Name RGS

Initial concentration $0 \ \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re34 and as a product in re20).

$$\frac{d}{dt}s184 = v_8 - v_{16} \tag{231}$$

7.11 Species s48

Name GTP

Initial concentration $50 \ \mu mol \cdot l^{-1}$

Charge 0

This species takes part in two reactions (as a reactant in re12, re16), which do not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{s}48 = 0\tag{232}$$

7.12 Species s187

Name G_sub_q_endsub__alpha_.GTP

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in five reactions (as a reactant in re20, re44, re47, re48 and as a product in re16).

$$\frac{\mathrm{d}}{\mathrm{d}t}s187 = v_5 - v_8 - v_{22} - v_{24} - v_{25} \tag{233}$$

7.13 Species s50

Name GDP

Initial concentration 5 µmol·l⁻¹

Charge 0

This species takes part in two reactions (as a product in re12, re16), which do not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{s}50 = 0\tag{234}$$

7.14 Species s171

Name IP3R

Initial concentration $0.008333 \, \mu \text{mol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in re68).

$$\frac{d}{dt}s171 = -v_{35} \tag{235}$$

7.15 Species s173

Name 3IP3.IP3R

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a product in re68 and as a modifier in re73).

$$\frac{d}{dt}s173 = v_{35} \tag{236}$$

7.16 Species s98

Name p115RhoGEF

Initial concentration $0.1 \ \mu mol \cdot l^{-1}$

This species takes part in four reactions (as a reactant in re23, re26 and as a product in re32, re37).

$$\frac{\mathrm{d}}{\mathrm{d}t}s98 = v_{14} + v_{17} - v_{10} - v_{12} \tag{237}$$

7.17 Species s124

Name Rho-kinase

Initial concentration $0.042 \ \mu mol \cdot l^{-1}$

This species takes part in seven reactions (as a reactant in re39, re120, re121, re129 and as a product in re123, re124, re130).

$$\frac{\mathrm{d}}{\mathrm{d}t}s124 = v_{70} + v_{71} + v_{77} - v_{19} - v_{68} - v_{69} - v_{76} \tag{238}$$

7.18 Species s118

Name RhoGAP

Initial concentration $0.1 \ \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re28 and as a product in re33).

$$\frac{\mathrm{d}}{\mathrm{d}t}s118 = v_{15} - v_{13} \tag{239}$$

7.19 Species s153

Name DAG

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in five reactions (as a reactant in re59, re95, re101 and as a product in re57, re58).

$$\frac{\mathrm{d}}{\mathrm{d}t}s153 = v_{31} + v_{32} - v_{33} - v_{47} - v_{52} \tag{240}$$

7.20 Species s152

Name IP3

Initial concentration $0.3 \ \mu mol \cdot l^{-1}$

This species takes part in four reactions (as a reactant in re60, re68 and as a product in re57, re58).

$$\frac{\mathrm{d}}{\mathrm{d}t}s152 = v_{31} + v_{32} - v_{34} - 3v_{35} \tag{241}$$

7.21 Species s213

Name Rho_GAP

Initial concentration $0 \, \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re33 and as a product in re28).

$$\frac{\mathrm{d}}{\mathrm{d}t}s213 = v_{13} - v_{15} \tag{242}$$

7.22 Species s214

Name Rho.GTP

Initial concentration $0.0050 \ \mu mol \cdot l^{-1}$

This species takes part in five reactions (as a reactant in re28, re39, re39 and as a product in re24, re32).

$$\frac{\mathrm{d}}{\mathrm{d}t}s214 = v_{11} + v_{14} - v_{13} - v_{18} - v_{19} \tag{243}$$

7.23 Species s151

Name PIP2

Initial concentration $10 \ \mu mol \cdot l^{-1}$

Charge 0

This species takes part in two reactions (as a reactant in re55, re56), which do not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{s}151 = 0\tag{244}$$

7.24 Species s164

Name PC

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a product in re59).

$$\frac{d}{dt}s164 = v_{33} \tag{245}$$

7.25 Species s231

Name Rho.GDP

Initial concentration $0.09 \ \mu mol \cdot l^{-1}$

This species takes part in four reactions (as a reactant in re24, re26 and as a product in re33, re38).

$$\frac{\mathrm{d}}{\mathrm{d}t}s231 = v_{15} + v_{18} - v_{11} - v_{12} \tag{246}$$

7.26 Species s233

Name Rho_GEF

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re32 and as a product in re26).

$$\frac{\mathrm{d}}{\mathrm{d}t}s233 = v_{12} - v_{14} \tag{247}$$

7.27 Species s245

Name Rho_GEF_active

Initial concentration $0 \mu mol \cdot l^{-1}$

This species does not take part in any reactions. Its quantity does hence not change over time:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{s}245 = 0\tag{248}$$

7.28 Species s252

Name Rho.GTP.Rho-kinase

Initial concentration $0.0050 \ \mu mol \cdot l^{-1}$

This species takes part in seven reactions (as a reactant in re125, re126, re131 and as a product in re39, re127, re128, re132).

$$\frac{\mathrm{d}}{\mathrm{d}t}s252 = v_{19} + v_{74} + v_{75} + v_{79} - v_{72} - v_{73} - v_{78} \tag{249}$$

7.29 Species s277

Name Ca_super_2_plus__endsuper_.CaM

Initial concentration $0.3 \, \mu \text{mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in re87, re93 and as a product in re86).

$$\frac{\mathrm{d}}{\mathrm{d}t}s277 = v_{38} - v_{39} - v_{45} \tag{250}$$

7.30 Species s278

Name 2Ca_super_2_plus__endsuper_.CaM

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in re89, re92 and as a product in re87).

$$\frac{\mathrm{d}}{\mathrm{d}t}s278 = v_{39} - v_{41} - v_{44} \tag{251}$$

7.31 Species s279

Name 3Ca_super_2_plus__endsuper_.CaM

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in re88, re91 and as a product in re89).

$$\frac{\mathrm{d}}{\mathrm{d}t}s279 = v_{41} - v_{40} - v_{43} \tag{252}$$

7.32 Species s280

Name 4Ca_super_2_plus__endsuper_.CaM

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re90 and as a product in re88).

$$\frac{\mathrm{d}}{\mathrm{d}t}s280 = v_{40} - v_{42} \tag{253}$$

7.33 Species s289

Name MLCK

Initial concentration $0.69 \ \mu mol \cdot l^{-1}$

This species takes part in eight reactions (as a reactant in re90, re91, re92, re93, re154, re155 and as a product in re156, re157).

$$\frac{\mathrm{d}}{\mathrm{d}t}s289 = v_{91} + v_{92} - v_{42} - v_{43} - v_{44} - v_{45} - v_{89} - v_{90}$$
 (254)

7.34 Species s292

Name MLCK.Ca_super_2_plus__endsuper_.CaM

Initial concentration $0.05 \, \mu mol \cdot l^{-1}$

This species takes part in five reactions (as a reactant in re158, re162 and as a product in re93, re172, re173).

$$\frac{\mathrm{d}}{\mathrm{d}t}s292 = v_{45} + v_{107} + v_{108} - v_{93} - v_{97} \tag{255}$$

7.35 Species s293

Name MLCK.2Ca_super_2_plus__endsuper_.CaM

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in five reactions (as a reactant in re159, re163 and as a product in re92, re170, re171).

$$\frac{\mathrm{d}}{\mathrm{d}t}s293 = v_{44} + v_{105} + v_{106} - v_{94} - v_{98} \tag{256}$$

7.36 Species s294

Name MLCK.3Ca_super_2_plus__endsuper_.CaM

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in five reactions (as a reactant in re160, re164 and as a product in re91, re168, re169).

$$\frac{\mathrm{d}}{\mathrm{d}t}s294 = v_{43} + v_{103} + v_{104} - v_{95} - v_{99} \tag{257}$$

7.37 Species s295

Name MLCK.4Ca_super_2_plus__endsuper_.CaM

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in five reactions (as a reactant in re161, re165 and as a product in re90, re166, re167).

$$\frac{\mathrm{d}}{\mathrm{d}t}s295 = v_{42} + v_{101} + v_{102} - v_{96} - v_{100} \tag{258}$$

7.38 Species s309

Name PKC

Initial concentration 2 µmol·l⁻¹

This species takes part in three reactions (as a reactant in re94, re95, re97).

$$\frac{\mathrm{d}}{\mathrm{d}t}s309 = -v_{46} - v_{47} - v_{49} \tag{259}$$

7.39 Species s310

Name PKC active1

Initial concentration 0.039823 µmol·1⁻¹

This species takes part in four reactions (as a reactant in re108, re112 and as a product in re94, re115).

$$\frac{\mathrm{d}}{\mathrm{d}t}s310 = v_{46} + v_{63} - v_{56} - v_{60} \tag{260}$$

7.40 Species s311

Name PKC.DAG

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a product in re95).

$$\frac{d}{dt}s311 = v_{47} \tag{261}$$

7.41 Species s314

Name PKC active_2

Initial concentration $0.68193 \ \mu mol \cdot l^{-1}$

This species takes part in four reactions (as a reactant in re107, re111 and as a product in re96, re114).

$$\frac{\mathrm{d}}{\mathrm{d}t}s314 = v_{48} + v_{62} - v_{55} - v_{59} \tag{262}$$

7.42 Species s324

Name PKC active_3

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in four reactions (as a reactant in re106, re110 and as a product in re102, re113).

$$\frac{\mathrm{d}}{\mathrm{d}t}s324 = v_{53} + v_{61} - v_{54} - v_{58} \tag{263}$$

7.43 Species s329

Name csa39_degraded

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a product in re106).

$$\frac{d}{dt}s329 = v_{54} \tag{264}$$

7.44 Species s330

Name csa36_degraded

Initial concentration $0 \ \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a product in re107).

$$\frac{d}{dt}s330 = v_{55} \tag{265}$$

7.45 Species s331

Name csa35_degraded

Initial concentration $0 \ \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a product in re108).

$$\frac{d}{dt}s331 = v_{56} \tag{266}$$

7.46 Species s332

Name PKC active_1.CPI

Initial concentration $0 \ \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re115 and as a product in re112).

$$\frac{\mathrm{d}}{\mathrm{d}t}s332 = v_{60} - v_{63} \tag{267}$$

7.47 Species s335

Name PKC active_2.CPI

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re114 and as a product in re111).

$$\frac{\mathrm{d}}{\mathrm{d}t}s335 = v_{59} - v_{62} \tag{268}$$

7.48 Species s338

Name PKC active_3.CPI

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re113 and as a product in re110).

$$\frac{d}{dt}s338 = v_{58} - v_{61} \tag{269}$$

7.49 Species s352

Name CPI-17.MYPT1_PPase

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re119 and as a product in re117).

$$\frac{d}{dt}s352 = v_{65} - v_{67} \tag{270}$$

7.50 Species s355

Name CPI-17.MYPT1_PPase

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a product in re118, re119).

$$\frac{\mathrm{d}}{\mathrm{d}t}s355 = v_{66} + v_{67} \tag{271}$$

7.51 Species s349

Name CPI-17

Initial concentration $0.059 \, \mu \text{mol} \cdot l^{-1}$

This species takes part in five reactions (as a reactant in re110, re111, re112, re118 and as a product in re116).

$$\frac{\mathrm{d}}{\mathrm{d}t}s349 = v_{64} - v_{58} - v_{59} - v_{60} - v_{66} \tag{272}$$

7.52 Species s360

Name MLC

Initial concentration $0.1 \, \mu mol \cdot l^{-1}$

This species takes part in nine reactions (as a reactant in re133, re134 and as a product in re124, re128, re157, re166, re168, re170, re172).

$$\frac{\mathrm{d}}{\mathrm{d}t}s360 = v_{71} + v_{75} + v_{92} + v_{101} + v_{103} + v_{105} + v_{107} - v_{80} - v_{81}$$
(273)

7.53 Species s358

Name MLC

Initial concentration $4.3 \, \mu mol \cdot l^{-1}$

This species takes part in nine reactions (as a reactant in re120, re125, re154, re158, re159, re160, re161 and as a product in re139, re140).

$$\frac{\mathrm{d}}{\mathrm{d}t}s358 = v_{86} + v_{87} - v_{68} - v_{72} - v_{89} - v_{93} - v_{94} - v_{95} - v_{96} \tag{274}$$

7.54 Species s361

Name Rho-kinase.MLC

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re123 and as a product in re120).

$$\frac{\mathrm{d}}{\mathrm{d}t}s361 = v_{68} - v_{70} \tag{275}$$

7.55 Species s362

Name Rho-kinase.MLC

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re124 and as a product in re121).

$$\frac{\mathrm{d}}{\mathrm{d}t}s362 = v_{69} - v_{71} \tag{276}$$

7.56 Species s350

Name CPI-17

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in five reactions (as a reactant in re116, re117 and as a product in re113, re114, re115).

$$\frac{\mathrm{d}}{\mathrm{d}t}s350 = v_{61} + v_{62} + v_{63} - v_{64} - v_{65} \tag{277}$$

7.57 Species s135

Name Ca_super_2_plus__endsuper_

Initial concentration $0.0833 \ \mu mol \cdot l^{-1}$

This species takes part in twelve reactions (as a reactant in re51, re52, re86, re87, re88, re89, re97, re100, re109 and as a product in re73, re174, re175).

$$\frac{\mathrm{d}}{\mathrm{d}t}s135 = v_{36} + v_{109} + v_{110} - v_{26} - v_{27} - v_{38} - v_{39} - v_{40} - v_{41} - v_{49} - 2v_{51} - v_{57}$$
 (278)

7.58 Species s276

Name CaM

Initial concentration $19.65 \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a reactant in re86).

$$\frac{d}{dt}s276 = -v_{38} \tag{279}$$

7.59 Species s172

Name Ca_super_2_plus__endsuper_ store

Initial concentration 155 µmol·1⁻¹

This species takes part in three reactions (as a reactant in re73, re175 and as a product in re85).

$$\frac{\mathrm{d}}{\mathrm{d}t}s172 = 2v_{37} - v_{36} - v_{110} \tag{280}$$

7.60 Species s410

Name G_beta_gamma_1

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re19 and as a product in re12).

$$\frac{d}{dt}s410 = v_2 - v_7 \tag{281}$$

7.61 Species s421

Name G_beta_gamma_2

Initial concentration $0 \ \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re22 and as a product in re16).

$$\frac{d}{dt}s421 = v_5 - v_9 \tag{282}$$

7.62 Species s424

Name PLC_beta_

Initial concentration $0.57 \ \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re48, re52).

$$\frac{\mathrm{d}}{\mathrm{d}t}s424 = -v_{25} - v_{27} \tag{283}$$

7.63 Species s430

Name Ca_super_2_plus__endsuper_ trunsp

Initial concentration $0.5 \ \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re100 and as a product in re85).

$$\frac{\mathrm{d}}{\mathrm{d}t} s430 = v_{37} - v_{51} \tag{284}$$

7.64 Species s432

Name Ca_super_2_plus__endsuper_ pump

Initial concentration $0.1~\mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re109 and as a product in re98).

$$\frac{\mathrm{d}}{\mathrm{d}t} s432 = v_{50} - v_{57} \tag{285}$$

7.65 Species s435

Name G_sub_12_endsub__alpha__beta__gamma__thrombinR active

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re12 and as a product in re43).

$$\frac{\mathrm{d}}{\mathrm{d}t} s435 = v_{21} - v_2 \tag{286}$$

7.66 Species s436

Name p115RhoGEF.GTP_alpha_

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in re37 and as a product in re23 and as a modifier in re24).

$$\frac{\mathrm{d}}{\mathrm{d}t}s436 = v_{10} - v_{17} \tag{287}$$

7.67 Species s437

Name G_sub_12_endsub__alpha__beta__gamma_

Initial concentration $0.5 \ \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re43 and as a product in re19).

$$\frac{\mathrm{d}}{\mathrm{d}t} s437 = v_7 - v_{21} \tag{288}$$

7.68 Species s438

Name G_sub_12_endsub__alpha_.GDP

Initial concentration $0 \, \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in re19 and as a product in re17, re37).

$$\frac{\mathrm{d}}{\mathrm{d}t}s438 = v_6 + v_{17} - v_7 \tag{289}$$

7.69 Species s439

Name G_sub_12_endsub__alpha_.GTP

Initial concentration $0 \ \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in re17, re23 and as a product in re12).

$$\frac{\mathrm{d}}{\mathrm{d}t}s439 = v_2 - v_6 - v_{10} \tag{290}$$

7.70 Species s440

Name G_sub_q_endsub__alpha_.GDP

Initial concentration $0 \, \mu mol \cdot l^{-1}$

This species takes part in four reactions (as a reactant in re22 and as a product in re34, re44, re54).

$$\frac{\mathrm{d}}{\mathrm{d}t}s440 = v_{16} + v_{22} + v_{28} - v_9 \tag{291}$$

7.71 Species s441

Name G_sub_q_endsub__alpha_beta__gamma__thrombinR active

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re16 and as a product in re15).

$$\frac{d}{dt}s441 = v_4 - v_5 \tag{292}$$

7.72 Species s442

Name G_sub_q_endsub__alpha__beta__gamma_

Initial concentration $0.5 \ \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re15 and as a product in re22).

$$\frac{d}{dt}s442 = v_9 - v_4 \tag{293}$$

7.73 Species s443

Name PLC_beta_.G_sub_q_endsub__alpha_.GTP

Initial concentration $0 \ \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re51 and as a product in re48).

$$\frac{\mathrm{d}}{\mathrm{d}t} s443 = v_{25} - v_{26} \tag{294}$$

7.74 Species s444

Name 2Ca_super_2_plus__endsuper_ .Ca_super_2_plus__endsuper_ trunsp

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re85 and as a product in re100).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{s}444 = v_{51} - v_{37} \tag{295}$$

7.75 Species s446

Name Ca_super_2_plus__endsuper_ pump.Ca_super_2_plus__endsuper_

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re98 and as a product in re109).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{s}446 = v_{57} - v_{50} \tag{296}$$

7.76 Species s449

Name Rho.GTP.Rho-kinase.MLC

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re128 and as a product in re126).

$$\frac{\mathrm{d}}{\mathrm{d}t}s449 = v_{73} - v_{75} \tag{297}$$

7.77 Species s456

Name Rho.GTP.Rho-kinase.MLC

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re127 and as a product in re125).

$$\frac{\mathrm{d}}{\mathrm{d}t}s456 = v_{72} - v_{74} \tag{298}$$

7.78 Species s359

Name MLC

Initial concentration $0.6 \, \mu mol \cdot l^{-1}$

This species takes part in 18 reactions (as a reactant in re121, re126, re135, re136, re155, re162, re163, re164, re165 and as a product in re123, re127, re137, re138, re156, re167, re169, re171, re173).

$$\frac{d}{dt}s359 = v_{70} + v_{74} + v_{84} + v_{85} + v_{91} + v_{102} + v_{104} + v_{106} + v_{108} - v_{69} - v_{73} - v_{82} - v_{83} - v_{90} - v_{97} - v_{98} - v_{99} - v_{100}$$
(299)

7.79 Species s463

Name MYPT1.Rho-kinase

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re130 and as a product in re129).

$$\frac{d}{dt}s463 = v_{76} - v_{77} \tag{300}$$

7.80 Species s467

Name MYPT1.MLC

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re137 and as a product in re133).

$$\frac{d}{dt}s467 = v_{80} - v_{84} \tag{301}$$

7.81 Species s470

Name MYPT1.MLC

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re138 and as a product in re134).

$$\frac{d}{dt}s470 = v_{81} - v_{85} \tag{302}$$

7.82 Species s477

Name MYPT1.MLC

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re139 and as a product in re135).

$$\frac{\mathrm{d}}{\mathrm{d}t} s477 = v_{82} - v_{86} \tag{303}$$

7.83 Species s480

Name MYPT1.MLC

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re140 and as a product in re136).

$$\frac{\mathrm{d}}{\mathrm{d}t} s480 = v_{83} - v_{87} \tag{304}$$

7.84 Species s491

Name MLCK.MLC

Initial concentration $0 \ \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re157 and as a product in re155).

$$\frac{d}{dt}s491 = v_{90} - v_{92} \tag{305}$$

7.85 Species s487

Name MLCK.MLC

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re156 and as a product in re154).

$$\frac{d}{dt}s487 = v_{89} - v_{91} \tag{306}$$

7.86 Species s496

Name MYPT1.Rho-kinase

Initial concentration $0 \ \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re132 and as a product in re131).

$$\frac{d}{dt}s496 = v_{78} - v_{79} \tag{307}$$

7.87 Species s506

Name MLCK.4Ca_super_2_plus__endsuper_.CaM.MLC

Initial concentration $0 \ \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re166 and as a product in re165).

$$\frac{\mathrm{d}}{\mathrm{d}t}s506 = v_{100} - v_{101} \tag{308}$$

7.88 Species s512

Name MLCK.3Ca_super_2_plus__endsuper_.CaM.MLC

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re168 and as a product in re164).

$$\frac{\mathrm{d}}{\mathrm{d}t}s512 = v_{99} - v_{103} \tag{309}$$

7.89 Species s513

Name MLCK.4Ca_super_2_plus__endsuper_.CaM.MLC

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re167 and as a product in re161).

$$\frac{\mathrm{d}}{\mathrm{d}t}s513 = v_{96} - v_{102} \tag{310}$$

7.90 Species s520

Name MLCK.3Ca_super_2_plus__endsuper_.CaM.MLC

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re169 and as a product in re160).

$$\frac{\mathrm{d}}{\mathrm{d}t}s520 = v_{95} - v_{104} \tag{311}$$

7.91 Species s526

Name MLCK.2Ca_super_2_plus__endsuper_.CaM.MLC

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re170 and as a product in re163).

$$\frac{\mathrm{d}}{\mathrm{d}t}s526 = v_{98} - v_{105} \tag{312}$$

7.92 Species s539

Name MLCK.2Ca_super_2_plus__endsuper_.CaM.MLC

Initial concentration $0 \ \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re171 and as a product in re159).

$$\frac{\mathrm{d}}{\mathrm{d}t}s539 = v_{94} - v_{106} \tag{313}$$

7.93 Species s546

 $\textbf{Name} \ \ MLCK.Ca_super_2_plus_endsuper_.CaM.MLC$

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re172 and as a product in re162).

$$\frac{\mathrm{d}}{\mathrm{d}t}s546 = v_{97} - v_{107} \tag{314}$$

7.94 Species s551

Name MLCK.Ca_super_2_plus__endsuper_.CaM.MLC

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re173 and as a product in re158).

$$\frac{\mathrm{d}}{\mathrm{d}t}s551 = v_{93} - v_{108} \tag{315}$$

7.95 Species s556

Name Ca_super_2_plus__endsuper_ ext leak

Initial concentration $0.00833 \ \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a modifier in re174).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{s}556 = 0\tag{316}$$

7.96 Species s267

Name Ca_super_2_plus__endsuper_ ext

Initial concentration $4000 \ \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re174 and as a product in re98), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{s}267 = 0\tag{317}$$

7.97 Species s557

Name Ca_super_2_plus__endsuper_ int leak

Initial concentration $0.0010 \ \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a modifier in re175).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{s}557 = 0\tag{318}$$

7.98 Species s564

Name PLC_beta_.G_sub_q_endsub__alpha_.GTP.Ca_super_2_plus__endsuper_

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in five reactions (as a reactant in re54, re56 and as a product in re47, re51, re58).

$$\frac{\mathrm{d}}{\mathrm{d}t}s564 = v_{24} + v_{26} + v_{32} - v_{28} - v_{30} \tag{319}$$

7.99 Species s565

Name PKC.Ca_super_2_plus__endsuper_.DAG

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re102 and as a product in re101).

$$\frac{\mathrm{d}}{\mathrm{d}t}s565 = v_{52} - v_{53} \tag{320}$$

7.100 Species s566

Name PKC.Ca_super_2_plus__endsuper_

Initial concentration $0.094 \ \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in re96, re101 and as a product in re97).

$$\frac{\mathrm{d}}{\mathrm{d}t}s566 = v_{49} - v_{48} - v_{52} \tag{321}$$

7.101 Species s567

Name PLC_beta_.G_sub_q_endsub_.GTP.Ca.PIP2

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re58 and as a product in re56).

$$\frac{\mathrm{d}}{\mathrm{d}t}s567 = v_{30} - v_{32} \tag{322}$$

7.102 Species s568

Name PLC_beta_.Ca.PIP2

Initial concentration $0.08 \ \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in re57 and as a product in re55).

$$\frac{d}{dt}s568 = v_{29} - v_{31} \tag{323}$$

7.103 Species s569

Name PLC_beta_.Ca_super_2_plus__endsuper_

Initial concentration $0.15 \, \mu \text{mol} \cdot l^{-1}$

This species takes part in five reactions (as a reactant in re47, re55 and as a product in re52, re54, re57).

$$\frac{\mathrm{d}}{\mathrm{d}t}s569 = v_{27} + v_{28} + v_{31} - v_{24} - v_{29} \tag{324}$$

7.104 Species s351

Name MYPT1_PPase

Initial concentration $0.7 \ \mu mol \cdot l^{-1}$

This species takes part in nine reactions (as a reactant in re117, re118, re129, re131, re134, re136 and as a product in re138, re140, re141).

$$\frac{\mathrm{d}}{\mathrm{d}t}s351 = v_{85} + v_{87} + v_{88} - v_{65} - v_{66} - v_{76} - v_{78} - v_{81} - v_{83} \tag{325}$$

7.105 Species s570

Name MYPT1_PPase

Initial concentration $0.4941 \ \mu mol \cdot l^{-1}$

This species takes part in seven reactions (as a reactant in re133, re135, re141 and as a product in re130, re132, re137, re139).

$$\frac{\mathrm{d}}{\mathrm{d}t}s570 = v_{77} + v_{79} + v_{84} + v_{86} - v_{80} - v_{82} - v_{88} \tag{326}$$

 $\mathfrak{BML2}^{d}$ was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany