

Дифракция Френеля

ЛЕКЦИЯ 5

Дифракция на плоских объектах

Принцип Гюйгенса-Френеля

Световое поле от малого участка волнового фронта (площадью dS) представляет собой сферическую волну:

$$dE_P = K(\alpha)A_0 \frac{e^{ik\rho}}{\rho} dS$$

Суммарное световое поле в точке P:

$$E_P = \int_S K(\alpha) A_0 \frac{e^{ik\rho}}{\rho} dS$$

Коэффициент:
$$K(\alpha) = \frac{1+\cos\alpha}{2i\lambda}$$

Дифракция на объектах с осевой симметрией. Зоны Френеля

Разность хода до границы m-й зоны:

$$\Delta L = \sqrt{L^2 + r_m^2} - L \approx \frac{r_m^2}{2L} = m\frac{\lambda}{2}$$

Радиус зон Френеля:

$$r_m = \sqrt{m\lambda L}$$
, $m = 1,2,3...$

Площадь зон Френеля:

$$S_m = \pi (r_m^2 - r_{m-1}^2) = \pi \lambda L$$

Поле в точке Р:

$$E_P = E_1 + E_2 + E_3 + \dots$$

Зоны Френеля при дифракции на круглом отверстии

Радиус зон Френеля:

$$r_m = r_1 \sqrt{m}, \quad m = 2,3 \dots$$

Площадь зон Френеля:

$$S_m = \pi \lambda L = \text{const}$$

Зоны Френеля при освещении объекта расходящейся световой волной

Разность хода до границы m-й зоны:

$$\Delta L = \frac{r_m^2}{2L} + \frac{r_m^2}{2a} = m\frac{\lambda}{2}$$

Радиус зон Френеля:

$$r_m = \sqrt{m\lambda \frac{aL}{a+L}}, \qquad m = 1,2,3 \dots$$

Площадь зон Френеля:

$$S_m = \pi (r_m^2 - r_{m-1}^2) = \pi \lambda \frac{aL}{a+L}$$

Зоны Френеля при освещении объекта сходящейся световой волной

Разность хода до границы m-й зоны:

$$\Delta L = \frac{r_m^2}{2L} - \frac{r_m^2}{2a} = m\frac{\lambda}{2}$$

Радиус зон Френеля:

$$r_m = \sqrt{m\lambda \frac{aL}{a-L}}, \qquad m = 1,2,3 \dots$$

Площадь зон Френеля:

$$S_m = \pi (r_m^2 - r_{m-1}^2) = \pi \lambda \frac{aL}{a-L}$$

Разбиение зон Френеля на подзоны

Разность хода от границ подзоны:

$$\delta L = \delta \left(rac{r^2}{2L}
ight) = rac{r \delta r}{L} = rac{\lambda}{2N}$$
, где N - число подзон

Разность фаз: $\delta \varphi = k \delta L = \pi/N$

Площадь подзон: $\delta S = 2\pi r \delta r = \pi \lambda L/N$

Поле в точке Р:

$$E_P = E_1 \int \delta \varphi$$

1-я и 2-я зоны

Спираль Френеля

Число подзон $N \to \infty$ Поле в точке P:

Если все зоны открыты, то $E_P=E_0$, где E_0 - поле в отсутствие экрана

 $E_1 = 2E_0$ $E_1 = E_2 = E_3 = \cdots$

Сжатие спирали происходит за счет коэффициента $K(\alpha)$ в формуле для поля E_P в точке P (слайд 3)

Дифракция Френеля на круглом отверстии в параксиальном приближении

$$ho^2=r^2+L^2\Rightarrow
ho d
ho=r dr$$
 $ho_{
m max}=L+R^2/2L$, где $R=D/2$

Суммарное световое поле в точке P:

$$E_P = \int_S K(\alpha) E_0 \frac{e^{ik\rho}}{\rho} dS$$

В параксиальном приближении $K(\alpha) \approx K(0) = \frac{1}{i\lambda}$:

$$E_P = \frac{E_0}{i\lambda} \int_{S} \frac{e^{ik\rho}}{\rho} 2\pi r dr = \frac{2\pi E_0}{i\lambda} \int_{L}^{\rho_{\text{max}}} e^{ik\rho} d\rho$$

$$E_P = E_0 \left(e^{ikL} - e^{ik\rho_{\text{max}}} \right)$$

Интенсивность света в точке P:

$$I_P = 2I_0[1 - \cos(kL - k\rho_{\text{max}})]$$

$$I_P = 4I_0 \sin^2\left(\frac{\pi R^2}{2\lambda L}\right)$$

Дифракция Френеля на круглом диске. Пятно Пуассона

Открыты все зоны, кроме

нескольких первых: $E_P \approx E_0$

Зонные пластинки

Радиусы зон Френеля:

$$r_m = r_1 \sqrt{m}$$
, $m = 2,3 \dots$
 $r_1 = \sqrt{\lambda F}$

Фокусирующее свойство зонной пластинки:

Фокусное расстояние:

$$F = \frac{r_1^2}{\lambda}$$

Световое поле в фокусе:

$$E_P = 2E_0 \frac{m}{2} = E_0 m$$
, где $m = \frac{D^2}{4r_1^2}$

Зоны Френеля совпадают с зонами зонной пластинки:

$$r_m = \sqrt{m\lambda \frac{ab}{a+b}} = \sqrt{m\lambda F} \implies \frac{1}{a} + \frac{1}{b} = \frac{1}{F}$$

Линза Френеля (фазовая зонная пластинка)

Излучение от всех зон Френеля складывается в фазе

Высота ступеньки:

$$h(n-1) = \frac{\lambda}{2}$$

Световое поле в фокусе:

$$E_P = 2E_0 m$$
, где $m = \frac{D^2}{4r_1^2}$

Интенсивность света в фокусе:

$$I_P = I_0 \, \frac{D^4}{4r_1^4} \sim D^4$$

Линза Френеля на маяках

Линза Френеля маяка Сплит-Рок в гавани Миннесоты

Линза на маяке Сескар в Ленинградской области

Каждая зона Френеля собирается из отдельных пластин

Сферическая линза в рамках дифракции Френеля

Световое поле без линзы:

Световое поле с линзой (все лучи

приходят в одной фазе):-

Световое поле в фокусе:
$$E_P=\pi E_0 m$$
, где $m=\frac{D^2}{4\lambda F}$

Интенсивность света в фокусе:
$$I_P = I_0 \left(\frac{\pi D^2}{4\lambda F}\right)^2 \sim D^4$$

Дифракция на одномерных объектах. Зоны Шустера

Щелевая диафрагма

Разность хода до границы

$$m$$
-й зоны: $\Delta L = \frac{r_m^2}{2L} = m\frac{\lambda}{2}$

Радиус зон Шустера:

$$r_m = \sqrt{m\lambda L}$$
, $m = 1,2,3...$

Площадь зон Шустера зависит от номера m

Спираль Корню

Если все зоны открыты, то $E_P=E_0$, где E_0 - поле в отсутствие экрана

Щелевая диафрагма открывает 1-ю зону Шустера: $E_P = E_1$

Дифракция на краю экрана

