Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No

Faculty of Engineering End Sem Examination May-2023 EC3CO14 Fiber Optic Communications

Programme: B.Tech. Branch/Specialisation: EC

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d. Assume suitable data if necessary. Notations and symbols have their usual meaning.

ary. N	otations and symbols have their usual meaning.	
i.	Multimode fibre has core refractive index n1=1.480 and cladding index 1.460 then NA will be	1
	(a) 0.424 (b) 0.242 (c) 0.121 (d) None of these	
ii.	Second optical window spectrum in wavelength (nm) for an OFC	1
	is	
	(a)1260 (b) 1310 (c) 1550 (d)1035	
iii.	A permanent join in fiber is called-	1
	(a) Connector (b) Splice (c) Butt joint (d) Tapered sleeve	
iv.	Scattering losses are due to-	1
	(a) Compositional fluctuations	
	(b) Structural inhomogeneities	
	(c) Atomic defects	
	(d) All of these	
v.	In a laser structure, the existence of standing waves is possible at	1
	frequencies for which the distance between the mirrors is an	
	integral number of	
	(a) $\lambda / 2$ (b) $\lambda / 4$ (c) $\lambda / 6$ (d) $\lambda / 8$	
vi.	The frequency response of an LED depends on-	1
	(a) Doping level in the active region	
	(b) Injected carrier lifetime in the recombination region	
	(c) Parasitic capacitance of the LED	
	(d) All of these	
	i. ii. iiv.	 index 1.460 then NA will be (a) 0.424 (b) 0.242 (c) 0.121 (d) None of these ii. Second optical window spectrum in wavelength (nm) for an OFC is (a)1260 (b) 1310 (c) 1550 (d)1035 iii. A permanent join in fiber is called- (a) Connector (b) Splice (c) Butt joint (d) Tapered sleeve iv. Scattering losses are due to- (a) Compositional fluctuations (b) Structural inhomogeneities (c) Atomic defects (d) All of these v. In a laser structure, the existence of standing waves is possible at frequencies for which the distance between the mirrors is an integral number of (a) λ/2 (b) λ/4 (c) λ/6 (d) λ/8 vi. The frequency response of an LED depends on- (a) Doping level in the active region (b) Injected carrier lifetime in the recombination region (c) Parasitic capacitance of the LED

P.T.O.

	vii.	is fully depleted by employing electric fields.		
		(a) Avalanche photodiode	(b) P-I-N diode	
		(c) Varactor diode	(d) P-n diode	
	viii.	The fraction of incident pho	otons generated by photodiode of	1
		electrons generated collected a	at detector is known as-	
		(a) Quantum efficiency	(b) Absorption coefficient	
		(c) Responsivity	(d) Anger recombination	
	ix.	WDM is very similar to-		1
		(a) FDM (b) TDM	(c) STDM (d) ATDM	
	х.	A device which is made of it	isolators and follows a closed loop	1
		path is called as a		
		(a) Circulator (b) Gyrator	(c) Attenuator (d) Connector	
Q.2	i.	Differentiate between step ind	ex and Graded index fiber.	2
	ii.	•	core refractive index of 1.5 and a	3
		•	of 1.47.Determine the Numerical	
		aperture, acceptance angle and	I critical angle in air for the fiber.	
	iii.	What is PREFORM? Expla	in MCVD method of PREFORM	5
		Fabrication in brief.		
OR	iv.		s of an optical fiber having diameter 46 and wavelength 'λ' is 820 nm.	5
Q.3	i.	Distinguish intrinsic and extri	nsic absorption.	2
	ii.	Explain different type of scatte	ering occur in FOC.	8
OR	iii.	Classify dispersion in fiber	optic. Derive the expression for	8
		material dispersion.		
Q.4	i.	What is meant by hetero junct	ion? Mention its advantages.	3
~ ··	ii.	•	ngth 4cm with a refractive index of	7
			elength from the device is 0.55 pm.	-
		-	ngitudinal modes & their frequency	
		separation.		
OR	iii.	•	vity model of LASER to calculate	7
		number of longitudinal modes	•	
		Ž	-	
Q.5	i.	Define any two-photo detector	characteristic.	4

	ii.	Explain the structure & the working of APD with the help of suitable diagram' Write advantages & disadvantages of APD over PIN diode.	6
OR	iii.	Explain the structure features & working principle of PIN photodiode. What is the functional significance of intrinsic Layer inserted in between the P&N Layer?	6
Q.6	i.	Attempt any two: What is WDM? Explain its architecture for fiber optic communication.	5
	ii.	What are the components of isolator, how it is work explain with diagram.	5
	iii.	Explain optical sensors and its application.	5

Marking Scheme EC3CO14 Fiber Optic Communications

Q.1	i)	b)0.242	1
	ii)	b) 1310	1
	iii)	b) Splice	1
	iv)	d)All of the above	1
	v)	a) λ/2	1
	vi)	d) All of the above	1
	vii)	b) P-I-N diode	1
	viii)	a) Quantum efficiency	1
	ix)	a) FDM	1
	x)	a) Circulator	1
Q.2	i.	Differentiate between step index and Graded index fiber	2
	ii.	A silica optical fiber has a core refractive index of 1.5 and a cladding refractive index of 1.47. Determine the Numerical	1+1+1
	iii.	aperture, acceptance angle and critical angle in air for the fiber. What is PREFORM? Explain MCVD method of preform Fabrication in brief. [1- preform 2 Marks.	1+4
OR	iv.	Diagram MCVD 2 Marks Calculate the number of modes of an optical fiber having diameter of $50\mu m$, $n1=1.48$ and $n2=1.46$ and wavelength ' λ '	2+3
		is 820 nm V no – 2 Marks No of modes – 3 Marks	
Q.3	i.	Distinguish intrinsic and extrinsic absorption. Minimum 2 key differences	2

	ii.	Explain different type of scattering occur in FOC.	4+4
OR	iii.	Classify dispersion in fiber optic. Derive the expression for material dispersion. Scattering types 2+2 with diagram Subtype 2+2 with diagram	4+4
Q.4	i.	What is meant by hetero junction? Mention its advantages.	1+1+1
	ii.	Definition, Diagram and advantages. A Laser Contains a crystal Length 4cm with a Refractive Index of 1.78. The peak emission wavelength from the device is 0.55 pm Determine the number of longitudinal modes & their frequency separation?	4+3
OR	iii.	Derive the expression for cavity model of LASER to calculate number of longitudinal modes 4 Marks. & their frequency separation? 3 Marks.	4+3
Q.5	i.	Define any two-photo detector characteristic 2 key char with Diagram	2+2
	ii.	Explain the structure 2 Marks. & the working of APD 2 Marks. with the help of suitable diagram' Write advantages 0 1 Marks & disadvantages 0 1 Marks of APD over PIN diode	4+2
OR	iii.	Explain the structure features 2 Marks. & working principle 2 Marks. of PIN photodiode. What is the functional significance of intrinsic Layer inserted in between the P&N Layer? 2 Marks	4+2
Q.6		Attempt any two:	
	i.	What is WDM? 1 Marks Explain it's architecture 2 Marks for fiber optic communication. And explanation 2 Marks	1+4

ii. What are the components 1 Marks of isolator, how it is work explain with diagram 2 Marks.

Explanation 2 Marks

iii. Explain optical sensors and its application. Definition – 2 Marks

Application (any key 3 application) 3 Marks
