Introduction to Data Structures and Algorithms

As part of Units 1 and 2
CC4 Data Structures and Algorithms
Christine Gonzales

Table of Contents

- Concepts on algorithms and data structures
- Data types and structures
- Data structures
- Array address calculations

Basic terminologies | Parts of a programming language | Concepts in algorithms and data structures

Basic Terminologies

- Algorithm
- Data structure
- Programming language

Basic Terminologies – Algorithm

- Finite structure of well-defined instructions
- Used to solve a problem
- Typically independent of the programming language
- Can be expressed in:
 - Formal language (English, Filipino, etc.)
 - Flowcharting
 - Pseudocode
 - Programming language

Basic Terminologies – Data Structure

- Process of organizing data in a computer for more efficient use
- Looks into:
 - Collection of data values
 - Relationships amongst data values,
 - Functions and operations applied to the data
- Expressed as an algorithm
 - All data structures are algorithms, but not all algorithms are data structures

Basic Terminologies – Programming Language

- Set of commands used to create a software program
- Used to properly illustrate the concepts in an algorithm and data structure

In this course, **Java** shall be used as the programming language to express the algorithms .and data structures.

Parts of a Programming Language

- Data types and objects (int, float, boolean, String)
- Expressions (assignment, printing)
- Operations (arithmetic, conditional, logical)
- Decision control structures (if, else if, else, switch)
- Iterative control structures (while, for, do-while)
- Arrays (one-dimensional, multi-dimensional)
- Methods (user-defined, parameters, return type)

Parts of a Programming Language

- Other parts:
 - Input
 - Classes and objects

- Data
- Data type
- Basic operations

Data

A data must have the following characteristics:

- Atomic Define a single concept
- <u>Traceable</u> Be able to be mapped to some data element
- Accurate Should be unambiguous
- Clear and Concise Should be understandable

Data Type

- Classifies various types of data which help:
 - Determine the values that can be used
 - Type of operations that can be performed

Basic Operations

- Data in data structures are processed by operations
- Largely depends on the frequency of the operation that needs to be performed
- Examples:
 - Search
 - Insertion
 - Deletion
 - Sorting
 - Merging

Data Types and Structures

What is a Data Type? | What is a Data Structure? | Forms of Data Structures

What is a Data Type?

- Attribute of data that tells the compiler / interpreter how the data is intended to be used
- Looks into what kind of data can be placed inside of the variable
- Types of data types:
 - Built-in
 - Derived
 - Data object represents an object having a data (i.e. String)

What is a Data Type?

Built-in Data Type

- Programming language has built-in support
- Examples:
 - Integers
 - Boolean (true, false)
 - Floating (Decimal numbers)
 - Character and Strings

What is a Data Type?

Derived Data Type

- Implementation independent
- Normally built by the combination of primary or built-in data types and associated operations on them
- Examples (based on the one-dimensional array):
 - List
 - Array
 - Stack
 - Queue

What is a Data Structure?

- Collection of data type values
- Process of organizing data in a computer for more efficient use
- Looks into:
 - Collection of data values
 - Relationships amongst data values,
 - Functions and operations applied to the data
 - Expressed as an algorithm

- Linear
- Tree
- Hash
- Graphs

Linear

- Structure where the elements are stored sequentially
- Elements are connected to the previous and the next element
- As the elements are stored sequentially, so it can be traversed or accessed in a single run
- Examples:
 - Array
 - List

Tree

- Represent a hierarchical tree structure
- Contains a root value and subtrees of children (with a parent node)
- Represented as a set of linked nodes

Hash Table

- Data structure capable of mapping keys to values
 - Key labels the pair; used to pertain to the pair
 - Value data stored as the pair to the key
- Typically abstracted and enhanced with additional behaviors
- Example:
 - Dictionary (Python)

Graph

- Abstract data type that follows the principles of graph theory
- Structure is non-linear
- Consists of:
 - Nodes / Vertices points on the graph
 - Edges lines connecting each node

Array Address Calculations

Address calculations | Row major system | Column major system

Review: Multidimensional Array

One-Dimensional Array

- Also known as a list or just array
- A set of elements stored sequentially
- Uses the index as a pointer

Two-Dimensional Array

- Also known as a matrix
- Stored sequentially in two dimensions
- Data is stored "row and column wise"

Three-Dimensional Array

Think as a collection of 2D arrays

Address Calculation

Two Ways:

- Row major system
 - All elements of the row are stored consecutively
- Column major system
 - All elements of the column are stored consecutively

	U	2/ 1/	2
)	5	6	2
1	7	0	-3
2	4	1	3

Row	5	6	2	7	0	-3	4	1	3
-----	---	---	---	---	---	----	---	---	---

 Col
 5
 7
 4
 6
 0
 1
 2
 -3
 3

Row Major System

- All elements of the same rows are stored consecutively
- Formula:

Address of A[i][j] = baseAddress + w * (i * c + j)

- which means:
 - baseAddress = assigned address to A[0][0]
 - w = storage size of one element stored in the array
 - i = row index
 - c = number of columns
 - j = column index

Row Major System - Example

Address of A[i][j] = baseAddress + w * (i * c + j)

	0	1	2	3	4
0	50	55	60	65	70
1	7 5	80	85	90	95
2	100	105	110	* 115	120
3	125	130	135	140	145

B = 50
W = 5

$$i = 2$$

 $j = 3$
 $50 + 5 (2 * 5 + 3)$
 $50 + 5 (10 + 3)$
 $50 + 5 (13)$
 $50 + 65$
Address of [2][3] = 115

Column Major System

- All elements of the same columns are stored consecutively
- Formula:

Address of A[i][j] = baseAddress + w * (i + r * j)

- where:
 - baseAddress = assigned address of A[0][0]
 - w = storage size of one element stored in the array
 - i = row index
 - r = number of rows
 - j = column index

Column Major System - Example

Address of A[i][j] = baseAddress + w * (i + r * j)

	0	1	2	3	4
0	50	70	90	110	130
1	55	75	95	115	135
2	60	80	100	* 120	140
3	65	85	105	125	145

B = 50
W = 5

$$i = 2$$

 $j = 3$
 $50 + 5(2 + 4 * 3)$
 $50 + 5(2 + 12)$
 $50 + 5(14)$
 $50 + 70$
Address of [2][3] = 120

Stacks and Queues

Unit 3
CC4 Data Structures and Algorithms
Lovey Jenn A. Reformado

Table of Contents

- Introduction to stacks and queues
- Stacks
 - Insertion
 - Deletion
- Queues
 - Insertion
 - Deletion

Introduction to Stacks and Queues

Importance of Stacks and Queues | Applying Stacks and Queues | Stacks v. Queues

Importance of Stacks and Queues

- Both stacks and queues are an example of data structures
- Most common way to arrange data in different algorithms of the same data type
 - Expressions (infix, prefix, postfix)
 - Binary search trees
 - AVL trees
 - Graphs
 - Searching algorithms
 - Sorting algorithms

Applying Stacks and Queues

- Usually implemented in a one-dimensional array
 - Can use other variations: list, linked list, etc.
 - Possible to use for any programming language
- Can also be used in multidimensional arrays
 - Not recommended
 - Increases the time complexity and the space required

Stacks and Queues

Stack

- Last-in first-out policy
- First element is at the bottom
- Last element is at the topmost part
- Examples: pancakes, Pringles can, stack of books, etc.

Queue

- First-in first-out policy
- First element is at the beginning / front
- Last element is at the end of the queue
- Examples: lines at the supermarket or jeepney

Stacks

Introduction to Stacks | Inserting Elements in Stacks | Deleting Elements in Stacks | Example

Stacks

- Container based on the last-in-first-out (LIFO) policy
 - New data is inserted at the last index (push)
 - Data to be deleted starts off with the last index (pop)
- Uses only one (1) pointer
 - Starts off at array[-1]: empty
- Maximum number of elements is the limit of the array
- Practical examples:
 - Pringles can
 - Pancake stack
 - Stack of clothing

Inserting Elements in Stacks (Push)

- Create a one-dimensional array
 - Pointer is at -1
- Place value to be inserted in another variable
- Locate the pointer
- Iterate the value of the pointer
- Place value to the array where is the index is pointer (array[pointer])

Deleting Elements in Stacks (Pop)

- Locate the pointer
- Assign the value of the pointer to the index of the array
- Remove the value at array[pointer]
- Decrement the value of the pointer by 1

Stacks - Example

Values: 8, -1, 5, 7, 2, 6, 3, 4, 9, 10

Pointer:

Values – push:

Values – pop:

Queues

Introduction to Queues | Inserting Elements in Queues | Deleting Elements in Queues | Queues as a Circular Structure | Examples

in Information Technology

Queues

- Container based on the first-in-first-out (FIFO) policy
 - New data is inserted at the last index
 - Data to be deleted starts off with the first index
- Uses two (2) pointers
 - One pointer is for the first element in the array
 - Another pointer is for the space after the last element in the array
- Maximum number of elements is array.length-1
 - Queue is considered empty if both pointers are on the same position
 - Arrays can be considered circular
- Practical examples:
 - People queuing on a line

Inserting Elements in Queues (Enqueue)

- Create a one-dimensional array
- Place the value to be inserted into a variable
- Locate the value of the second pointer (position of the index number after the last element that was placed)
- Place value to the array where is the index is the second pointer (array[pointer_two])
- Iterate the second pointer

Deleting Elements in Queues (Dequeue)

- Locate where the first pointer is (pointer that shows the earliest element inserted)
- Remove the value at array[pointer_one]
- Iterate first pointer

Queues as a Circular Structure

- In theory, the elements of the queue does not change positions
 - Index numbers don't change if the first element is deleted
- Queue is a circular tape structure
 - Elements may be placed at earlier indices provided that they are empty, and the last index of the array was occupied
 - Done to maximize the array
 - Pointers would go back to [0] after array.length-1

Queues - Example

0	1	2	3	4	5	6	7

Values: 8, -1, 5, 7, 2, 6, 3, 4, 9, 10

Pointer1:

Pointer2:

Values – insert:

Values – delete:

Introduction to Expressions

As part of Week 3, Unit 3
CC4 Data Structures and Algorithms
Lovely Jenn A. Reformado

Table of Contents

- Introduction to expressions
- Infix expressions
- Importance of prefix and postfix expressions
- Postfix expressions
- Prefix expressions

Introduction to Expressions

What are expressions? | Parts of an expression | Expressions in this unit

What are Expressions?

- A combination of symbols used to express portions of mathematical equations
- Symbols can be:
 - Numbers (positive / negative, absolute / decimal)
 - Variables (expressed in letters)
 - Operators (arithmetic or comparison)
 - Punctuations (groupings)
- Mathematical expressions can be:
 - Arithmetic (numbers only)
 - Algebraic (numbers and constants)
- College & Comparison (uses comparison symbols)
 Information Technology
 and Computer Science

Parts of an Expression

Operator

- Symbol(s) that decide(s) which operation is to be performed
- Arithmetic (+, -, *, /, %)
- Comparison (<, >, ==, <=, >=)

Operand

- Symbol(s) that represents an entity on which the operation is performed
- Numbers (0, -1, 1.2)
- Variables (a, b, x)
- Constants (log, e)

CENTER OF EXCELLENCE

Expressions in this Unit

- Limited to binary expressions
 - Utilizes operations that would require two operands
 - Arithmetic and comparison operations may be used
 - Increment and decrement operations are not to be used
 - Unary / ternary operators are possible for use in expressions
- Limited to arithmetic operations
 - Comparison operations may be used, and may appear in activities
 - All examples will be limited to arithmetic operations and the equal sign (=)

Infix Expressions

What is an infix expression? | Examples of infix expressions | Precedence and associativity | Importance of prefix and postfix expressions

What is an Infix Expression?

- Usual way on how humans express mathematical expressions
- Notation where the operators are placed in-between the operands
- Requires specific precedence and associativity rules

Examples of Infix Expressions

•
$$c + d * 2$$

•
$$3 - e + 1$$

•
$$(x + y) * (z - 5)$$

Precedence and Associativity

Precedence

- Determines the order of what operation must be performed first in comparison to other operations
- Parenthesis, Multiplication and Division, Addition and Subtraction
- Example: c + d * 2, (x + y) * (z 5)

Precedence and Associativity

Associativity

- Determines the order of what operation must be performed if they are in the same precedence
- Left to right precedence
- Example: 3 e + 1

Prefix and Postfix Expressions

- Infix expressions are easily understood for humans, but not for machines
 - There are a lot of rules and regulations that cannot be easily translated into machine code
- Prefix and postfix expressions are notations that are understood better by machines
 - All rules on precedence and associativity are removed
 - All symbols can be placed on a stack
 - Increases overall efficiency of the code
 - Less understood by humans

Postfix Expressions

What is a postfix expression? | Steps – infix to postfix | Postfix expression – examples

in Information Technology

What is a Postfix Expression?

- Notation for expressions where:
 - Operators are placed on the right side (after)
 - Operands are placed on the left side (before)
- Order of evaluation of expressions is always left to right
- Brackets cannot be used to change the order
- More commonly used for machine code
 - Translation from infix expression is much easier

Steps – Infix to Postfix

- Determine the order of operations using the rules from infix expressions
- First operands that must be evaluated are placed at the leftmost portion of the notation
- First operator that must be evaluated are placed after the operands
- Next operators and/or operands are placed at the left side of the notation
- Last operator must be at the rightmost side of the notation

Postfix Expression - Examples

•
$$a + b = ab +$$

•
$$c + d * 2 = c d 2 * +$$

•
$$3 - e + 1 = 3 e - 1 +$$

•
$$(x + y) * (z - 5) = x y + z 5 -*$$

Prefix Expressions

What is a prefix expression? | Steps – infix to prefix | Prefix expression – examples

What is a Prefix Expression?

- Notation where the operators are written before the operands
- Operators act on the two nearest values on the right
 - Technically evaluated from left to right
 - The order changes depending whether or not elements to the right would be used

Steps – Infix to Prefix

- Determine the order of operations using the rules from infix expressions
- First operands that must be evaluated are placed at the rightmost portion of the notation
- First operator that must be evaluated are placed before the operands
- Next operators and/or operands are placed at the right side of the notation
- Last operator must be at the leftmost side of the notation

Prefix Expression - Examples

•
$$a + b = + a b$$

•
$$c + d * 2 = + c * d 2$$

•
$$3 - e + 1 = -3 + e1$$

•
$$(x + y) * (z - 5) = * + x y - z 5$$

Introduction to Expressions

Unit 3
CC4 Data Structures and Algorithms
Christine T. Gonzales

Table of Contents

- Infix to Prefix Conversion
- Infix to Postfix Conversion
- Infix to Postfix Using Stacks

Infix to Prefix Conversion

Infix-Prefix Example

Infix: <Operand 1> <Operator> <Operand 2>

Prefix: <Operator> <Operand 1> <Operand 2>

/84		-76	^52	-96				
*/842	_			+-961				
-*/8425			%^52+-963	1				
+*/84256		+-76%^5						
+*/84256+-76%^52+-961								

Infix-Prefix Example

Infix: <Operand 1> <Operator> <Operand 2>

Prefix: <Operator> <Operand 1> <Operand 2>

*AB %DEF

-*ABC /%DEFG

+-*ABC/%DEFG

Infix to Postfix Conversion

Infix-Postfix Example

Infix: <Operand 1> <Operator> <Operand 2>

Postfix: <Operand 1> <Operand 2> <Operator>

84/	76-	52^	96-
84/2*			96-1+
84/2*5-		52^96-1+9	%
84/2*5-6+	76-52^96-1+%+		
84/2*5-6+76-52^96-1+%++			

Infix-Postfix Example

Infix: <Operand 1> <Operator> <Operand 2>

Postfix: <Operand 1> <Operand 2> <Operator>

			DE^		
AB*			DE^F	%	
AB*C- DE		DE^F	%G/		
AB*C- DE^F%G/+					

Infix to Postfix Using Stacks

Precedence Rule | Conversion

Precedence Rule

IN-Stack Priority

The priority if the operator as an element of the stack

IN-Coming Priority

• The priority of the operator as current token

SYMBOL	ISP	ICP	
)			
٨	3	4	
*, /, %	2	2	
+, -	1	1	
(0	4	

Precedence Rule

Rule:

 Operators are taken out of the stack (POP) as long as the ISP is greater than or equal to the ICP of the new operator

Example: $8/4*2-5+6+(7-6+5^2\%(9-6+1))$

Token	Stack	Output
		-
8	#	8
/	#/	8
4	#/	84
*	#*	84/
2	#*	84/2 84/2*
-	#-	
5	#-	84/2*5
I	1	1

+	#+	84/2*5-
6	#+	84/2*5-6
+	#+	84/2*5-6+
(#+(84/2*5-6+
7	#+(84/2*5-6+7
-	#+(-	84/2*5-6+7
6	#+(-	84/2*5-6+76
+	#+(+	84/2*5-6+76-

1		
5	#+(+	84/2*5-6+76-5
٨	#+(+^	84/2*5-6+76-5
2	#+(+^	84/2*5-6+76-52
%	#+(+%	84/2*5-6+76-52^
(#+(+%(84/2*5-6+76-52^
9	#+(+%(84/2*5-6+76-52^9
_	#+(+%(-	84/2*5-6+76-52^9
6	#+(+%(-	84/2*5-6+76-52^96

+	#+(+%(+	84/2*5-6+76-52^96-
1	#+(+%(+	84/2*5-6+76-52^96-1
)	#+(+%	84/2*5-6+76-52^96-1+

Introduction to Algorithms

As part of Unit 1
CC4 Data Structures and Algorithms
Christine T. Gonzales

Table of Contents

- Priori and posteriori estimates
- Asymptotic notation
- Frequency count and Big-O notation

Priori and Posteriori Estimates

Priori analysis | Posteriori testing

Priori and Posteriori Estimates

- Originally used for statistics and partial differential equations
- In computer science, they are used to analyze algorithms and test their effectiveness
 - Priori estimate / priori analysis analysis of algorithms
 - Posteriori estimate / posteriori testing testing of program codes

Priori Analysis

- Focuses on analyzing an algorithm
 - Determine the efficiency of the algorithm
 - Determine the time and space
 - Done before it is coded into a program
- Independent of language
 - Usually expressed in pseudocode
- Independent on hardware
 - Worst case scenario is usually measured

Posteriori Testing

- Done on a program
 - Usually focuses on testing the efficiency of the program
 - Also looks into watch time and bytes
 - There are other factors that can change the efficiency
- Dependent on the:
 - Language
 - Hardware (usually space)
 - Operating system

Asymptotic Notation

What is asymptotic notation? | Types of asymptotic notations

What is Asymptotic Notation?

- Languages that analyzes an algorithm's running time
- Done by identifying its behavior as the input size for the algorithm increases
- Usually used to measure time, but can also measure space

Types of Asymptotic Notations

- Big-O notation (O)
 - Identifies the worst case scenario complexity of an algorithm
- Omega notation (Ω)
 - Identifies the best case scenario complexity of an algorithm
- Theta notation (Θ)
 - Identifies the average case scenario complexity of an algorithm

Frequency Count and Big-O Notation

What is the Frequency Count method? | Examples of frequency count method | What is the Big-O Notation? | Complexity chart | Examples of Big-O Notation

What is the Frequency Count Method?

- Method to determine the time (usually) and space of an algorithm
- Can be known by assigning one unit of time / space for each statement
- If any statement is repeating, then the frequency is calculated and the time taken is computed

Example - Frequency Count Method

```
Frequency Count

K = 500;

for (j=1; j<=K; j++)

x = x+1;

n=200;

Substituting actual value for k.

Freq. count. = 1504

= 0(1)
```

What is the Big O Notation?

- Type of asymptotic notation
- Used to determine the efficiency and complexity of an algorithm:
 - Average
 - Best
 - Worst case usually used
- Looks into the complexity in terms of the input size
- Used for priori analysis
- Frequency count method must be done first to properly identify the complexity

General Rules to Determine:

- Ignore constants
- Certain terms dominate others:

$$O(1) < O(\log n) < O(n) < O(n \log n) < O(n2) < O(n2) < O(n1)$$

 Ignore low-order terms when the high-order terms are present

Big-O Complexity Chart

Big O Measure of Efficiency

Measure of efficiency for n = 10,000

Efficiency	Big-O	Iterations	Estimated Time
Logarithmic	O(logn)	14	Microsecond
Linear	O(n)	10,000	Seconds
Linear Logarithmic	O(nlogn)	140,000	Seconds
Quadratic	$O(n^2)$	10,0002	Minutes
Polynomial	$O(n^k)$	10,000k	Hours
Exponential	$O(c^n)$	210,000	Intractable
Factorial	O(n!)	10,000!	Intractable

- Looks into the time that is taken to finish a set of operations
- Usually states the efficiency of the algorithm
 - "Horrible" notations can be faster depending on the number of operations
 - "Good" notations are usually better on shorter operations, but worse at larger ones

- Constant time
- Linear time
- Quadratic time

Constant Time

- Independent of input size
- It doesn't matter what the operation is, it will have the same complexity
- Notation(s): O(1)
- Sample operations:
 - Assignment to a variable
 - Printing

Linear Time

- The more operations, the slower the time
- Better for shorter operations
- Notation(s): O(log N), O(N), O(N log N)
- Sample operations:
 - Decision control structures
 - One-layered iterative control structures

Quadratic Time

- The more operations, the shorter the time
- Better for longer operations
- Notation(s): O(N2), O(2N), O(N!)
- Sample operations:
 - Nested iterative control structures
 - Recursive loops
 - Permutations

- · O(1)
 - Constant; most instructions are executed once or at most only a few times
- O(log n)
 - Program slightly slower as N grows; normally in programs that solve a big problem by transforming it into a small problem, cutting the size by some constant factor
- O(n)
 - Linear; proportional to the size of N

- O(n log n)
 - Occurs in algorithms that solve a problem by breaking it up into smaller sub-problems, solve them independently and then combining the solution
- $\cdot \circ (n^2)$
 - Quadratic; can be seen in algorithms that process all pairs of data items.
- $\cdot \circ (n^k)$
 - Polynomial; algorithms that process polynomial of data items.

- $\cdot \circ (2^n)$
 - Exponential; brute-force situation
- O(n!)
 - Factorial

Example: given 2 algorithms performing the same task on N inputs, which is faster and efficient?

$$\frac{P1}{10n}$$
 $\frac{P2}{n^2/2}$ O(n) O(n^2)

<u>N</u>	<u>P1</u>	<u>P2</u>
1		
5		
10		
15		
20		
20 30		
		

Substitute values in N and determine which among the two algorithms is more efficient and faster.

CENTER OF EXCELLENCE

<u>P1</u>	<u>P2</u>
10	0.5
50	12.5
100	50
150	112.5
200	200
300	450
	10 50 100 150 200

P2 is faster and more efficient for $N \le 20$, but for $N \ge 20$, P1 proves to be faster than P2.

Example - Big O Notation

```
public static int returnSum (int a[], n){
    int s = 0;
    for (int i = 0; i < n; i++) {
         s = s + a[i];
    return s;
```


Example – Big O Notation

```
for(j=1; j<=n; j++) {
    for(k=1; k<=n; k++) {
        c[j][k] = 0;
        for(l=1; l<=n; l++) {
            c[j][k] = c[j][k] * b[l][k];
        }
    }
}</pre>
```