Московский государственный технический университет им. Н.Э. Баумана Кафедра «Системы обработки информации и управления»

Лабораторная работа №1 по дисциплине «Технологии машинного обучения» на тему «Разведочный анализ данных. Исследование и визуализация данных»

Выполнила: студент группы ИУ5-64б Подопригорова С. С.

0.0.1. Залание

- Выбрать набор данных (датасет). Вы можете найти список свободно распространяемых датасетов здесь.
- Для первой лабораторной работы рекомендуется использовать датасет без пропусков в данных, например из Scikit-learn.
- Пример преобразования датасетов Scikit-learn в Pandas Dataframe можно посмотреть здесь. Для лабораторных работ не рекомендуется выбирать датасеты большого размера.
- Создать ноутбук, который содержит следующие разделы:
 - 1. Текстовое описание выбранного Вами набора данных.
 - 2. Основные характеристики датасета.
 - 3. Визуальное исследование датасета.
 - 4. Информация о корреляции признаков.
- Сформировать отчет и разместить его в своем репозитории на github.

1. Дома в Бостоне

```
[25]: import numpy as np
      import pandas as pd
      import seaborn as sns
      import matplotlib.pyplot as plt
      %matplotlib inline
[26]:
     from sklearn.datasets import load boston
[27]: data = load boston()
 [5]: for x in data:
          print(x)
     data
     target
     feature_names
     DESCR
     filename
 [6]: X, y = data['data'], data['target']
 [7]: print(data['DESCR'])
     .. _boston_dataset:
     Boston house prices dataset
```

Data Set Characteristics:

:Number of Instances: 506

:Number of Attributes: 13 numeric/categorical predictive. Median Value (attribute 14) is usually the target.

:Attribute Information (in order):

- CRIM per capita crime rate by town
- ZN proportion of residential land zoned for lots over 25,000 sq.ft.
 - INDUS proportion of non-retail business acres per town
- CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
 - NOX nitric oxides concentration (parts per 10 million)
 - RM average number of rooms per dwelling
 - AGE proportion of owner-occupied units built prior to 1940
 DIS weighted distances to five Boston employment centres
 - RAD index of accessibility to radial highways
 TAX full-value property-tax rate per \$10,000
 - PTRATIO pupil-teacher ratio by town
 - B 1000(Bk 0.63)^2 where Bk is the proportion of blacks by

town

- LSTAT % lower status of the population
- MEDV Median value of owner-occupied homes in \$1000's

:Missing Attribute Values: None

:Creator: Harrison, D. and Rubinfeld, D.L.

This is a copy of UCI ML housing dataset.

https://archive.ics.uci.edu/ml/machine-learning-databases/housing/

Mellon University.

The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic prices and the demand for clean air', J. Environ. Economics & Management, vol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, 'Regression diagnostics ...', Wiley, 1980. N.B. Various transformations are used in the table on pages 244-261 of the latter.

The Boston house-price data has been used in many machine learning papers that address regression problems.

.. topic:: References

- Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data and Sources of Collinearity', Wiley, 1980. 244-261.
- Quinlan,R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth International Conference of Machine Learning, □ →236-243,

University of Massachusetts, Amherst. Morgan Kaufmann.

```
25 000 .
 INDUS
                                                                                )
                CHAS Charles River (= 1,
                                                                ; 0
                    NOX (
                                 10
                                           1940 .
- DIS
                                         10 000
                       PTRATIO
- B 1000 (Bk - 0,63) ^{\circ} 2,
                                Bk -
- LSTAT%
- MEDV
                               1000
```

Предсказываем среднюю стоимость частных домов в тысячах долларов.

```
[9]: data.feature names
[9]: array(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD',
             'TAX', 'PTRATIO', 'B', 'LSTAT'], dtype='<U7')
[10]: X_df = pd.DataFrame(data = X, columns=data.feature_names)
     y_df = pd.Series(y)
[31]: data = X_df.merge(y_df.rename('MEDV'), left_index=True, right_index=True)
[32]: data.head()
[32]:
           CRIM
                   ZN
                       INDUS
                             CHAS
                                      NOX
                                              RM
                                                   AGE
                                                           DIS
                                                                RAD
                                                                       TAX
        0.00632
                 18.0
                        2.31
                               0.0 0.538
                                           6.575
                                                  65.2 4.0900
                                                               1.0
                                                                     296.0
     1 0.02731
                  0.0
                        7.07
                               0.0 0.469
                                           6.421
                                                  78.9 4.9671
                                                                2.0 242.0
     2 0.02729
                  0.0
                        7.07
                               0.0 0.469
                                           7.185
                                                  61.1 4.9671
                                                                2.0 242.0
                  0.0
                        2.18
                               0.0 0.458
                                           6.998
                                                  45.8
                                                        6.0622
                                                                3.0 222.0
     3 0.03237
     4 0.06905
                  0.0
                        2.18
                               0.0 0.458 7.147
                                                  54.2 6.0622 3.0 222.0
                      B LSTAT
        PTRATIO
                                MEDV
     0
           15.3
                396.90
                          4.98
                                24.0
           17.8
                396.90
                          9.14
                                21.6
     1
     2
           17.8 392.83
                          4.03
                                34.7
     3
           18.7
                 394.63
                          2.94
                                33.4
     4
           18.7 396.90
                          5.33
                               36.2
```

[33]: data.shape

[33]: (506, 14)

[34]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	CRIM	506 non-null	float64
1	ZN	506 non-null	float64
2	INDUS	506 non-null	float64
3	CHAS	506 non-null	float64
4	NOX	506 non-null	float64
5	RM	506 non-null	float64
6	AGE	506 non-null	float64
7	DIS	506 non-null	float64
8	RAD	506 non-null	float64
9	TAX	506 non-null	float64
10	PTRATIO	506 non-null	float64
11	В	506 non-null	float64
12	LSTAT	506 non-null	float64
13	MEDV	506 non-null	float64
_		()	

dtypes: float64(14)
memory usage: 55.5 KB

Все столбцы ненулевые.

[35]: data.describe()

[35]:	⇔RM	CRIM	ZN	INDUS	CHAS	NOX	Ц
	count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000
	mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634
	std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617
	min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000
	25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500
	50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500
	75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500
	max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000
	⇔B	AGE	DIS	RAD	TAX	PTRATIO	ш
	count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000
	mean	68.574901	3.795043	9.549407	408.237154	18.455534	356.674032
	std	28.148861	2.105710	8.707259	168.537116	2.164946	91.294864
	min	2.900000	1.129600	1.000000	187.000000	12.600000	0.320000
	25%	45.025000	2.100175	4.000000	279.000000	17.400000	375.377500
	50%	77.500000	3.207450	5.000000	330.000000	19.050000	391.440000

```
75%
       94.075000
                    5.188425
                               24.000000 666.000000
                                                       20.200000
                                                                 396.225000
       100.000000
                   12.126500
                               24.000000 711.000000
                                                       22.000000
                                                                 396.900000
max
           LSTAT
                        MEDV
count 506.000000
                  506.000000
       12.653063
                   22.532806
mean
std
        7.141062
                    9.197104
        1.730000
                   5.000000
min
25%
        6.950000
                   17.025000
50%
       11.360000
                   21.200000
75%
       16.955000
                   25.000000
       37.970000
max
                   50.000000
```

2. Визуальное исследование датасета

```
[46]: fig, ax = plt.subplots(figsize=(10,10))
sns.distplot(data['RM'])
```

[46]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff5730d15b0>

[47]: sns.boxplot(y=data['RM'])

[47]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff5726400d0>

[48]: sns.violinplot(y=data['RM'])

[48]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff5727529d0>

Количество комнат в домах в Бостоне распределено нормально, в среднем комнат 6

[39]: sns.pairplot(data)

[39]: <seaborn.axisgrid.PairGrid at 0x7ff582c10250>

[50]: sns.jointplot(x='RM', y='MEDV', data=data)

[50]: <seaborn.axisgrid.JointGrid at 0x7ff573b0ef40>

Прослеживается линейная зависимость между количеством комнат в доме и его ценой

3. Информация о корреляции признаков

data.co	rr()						
	CRIM	ZN	INDUS	CHAS	NOX	RM	ш
\hookrightarrow AGE	\						
CRIM	1.000000	-0.200469	0.406583	-0.055892	0.420972	-0.219247	0.3527
ZN	-0.200469	1.000000	-0.533828	-0.042697	-0.516604	0.311991	-0.5695
INDUS	0.406583	-0.533828	1.000000	0.062938	0.763651	-0.391676	0.6447
CHAS	-0.055892	-0.042697	0.062938	1.000000	0.091203	0.091251	0.0865
NOX	0.420972	-0.516604	0.763651	0.091203	1.000000	-0.302188	0.7314
RM	-0.219247	0.311991	-0.391676	0.091251	-0.302188	1.000000	-0.2402
AGE	0.352734	-0.569537	0.644779	0.086518	0.731470	-0.240265	1.0000
DIS	-0.379670	0.664408	-0.708027	-0.099176	-0.769230	0.205246	-0.7478
RAD	0.625505	-0.311948	0.595129	-0.007368	0.611441	-0.209847	0.4560
TAX	0.582764	-0.314563	0.720760	-0.035587	0.668023	-0.292048	0.5064
PTRATIO	0.289946	-0.391679	0.383248	-0.121515	0.188933	-0.355501	0.2615
В	-0.385064	0.175520	-0.356977	0.048788	-0.380051	0.128069	-0.2735
LSTAT	0.455621	-0.412995	0.603800	-0.053929	0.590879	-0.613808	0.6023
MEDV	-0.388305	0.360445	-0.483725	0.175260	-0.427321	0.695360	-0.3769
	DIS	RAD	TAX	PTRATIO	В	LSTAT	ME

```
CRIM
        -0.379670
                   0.625505
                              0.582764
                                         0.289946 -0.385064
                                                              0.455621 -0.388305
ZN
         0.664408 -0.311948 -0.314563 -0.391679
                                                   0.175520 - 0.412995
                                                                        0.360445
INDUS
        -0.708027
                                         0.383248 -0.356977
                    0.595129
                              0.720760
                                                              0.603800 -0.483725
CHAS
        -0.099176 -0.007368 -0.035587 -0.121515
                                                   0.048788
                                                            -0.053929
                                                                        0.175260
NOX
        -0.769230
                   0.611441
                              0.668023
                                         0.188933 -0.380051
                                                              0.590879 -0.427321
RM
         0.205246 - 0.209847 - 0.292048 - 0.355501
                                                   0.128069 -0.613808
                                                                        0.695360
        -0.747881
AGE
                    0.456022
                              0.506456
                                         0.261515 -0.273534
                                                              0.602339 -0.376955
DIS
         1.000000 -0.494588 -0.534432 -0.232471
                                                   0.291512 -0.496996
                                                                        0.249929
RAD
        -0.494588
                    1.000000
                              0.910228
                                         0.464741 -0.444413
                                                              0.488676 -0.381626
TAX
        -0.534432
                   0.910228
                              1.000000
                                         0.460853 -0.441808
                                                              0.543993 -0.468536
PTRATIO -0.232471
                    0.464741
                              0.460853
                                         1.000000 -0.177383
                                                              0.374044 - 0.507787
         0.291512 -0.444413 -0.441808 -0.177383
                                                   1.000000 -0.366087
                                                                        0.333461
LSTAT
        -0.496996
                   0.488676
                              0.543993
                                         0.374044 -0.366087
                                                              1.000000 -0.737663
MEDV
         0.249929 -0.381626 -0.468536 -0.507787
                                                   0.333461 -0.737663
                                                                        1.000000
```

[23]: sns.heatmap(data.corr())

[23]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff5999d38b0>

- Лучше всего цена дома коррелирует со статусом населения LSTAT (-0.737), количеством комнат RM (0.695) и соотношением учеников и учителей PTRATIO (0.508)
- Меньше всего на цену дома влияет наличие водоёмов CHAS (0,175) и растояние до бостонских центров занятости DIS (0,249). Эти признаки лучше исключить.

[]: