Experiment No. 4

Apply Random Forest Algorithm on Adult Census Income

Dataset and analyze the performance of the model

Date of Performance: 14-08-23

Date of Submission: 22-08-23

Department of Computer Engineering

Aim: Apply Random Forest Algorithm on Adult Census Income Dataset and analyze the performance of the model.

Objective: Able to perform various feature engineering tasks, apply Random Forest Algorithm on the given dataset and maximize the accuracy, Precision, Recall, F1 score.

Theory:

Random Forest is a popular machine learning algorithm that belongs to the supervised learning technique. It can be used for both Classification and Regression problems in ML. It is based on the concept of ensemble learning, which is a process of combining multiple classifiers to solve a complex problem and to improve the performance of the model.

As the name suggests, "Random Forest is a classifier that contains a number of decision trees on various subsets of the given dataset and takes the average to improve the predictive accuracy of that dataset." Instead of relying on one decision tree, the random forest takes the prediction from each tree and based on the majority votes of predictions, and it predicts the final output.

The greater number of trees in the forest leads to higher accuracy and prevents the problem of overfitting.

The below diagram explains the working of the Random Forest algorithm:

Department of Computer Engineering

Dataset:

Predict whether income exceeds \$50K/yr based on census data. Also known as "Adult" dataset.

Attribute Information:

Listing of attributes:

>50K, <=50K. age:

continuous.

workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked. fnlwgt: continuous.

education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool.

Department of Computer Engineering

education-num: continuous.

marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Marriedspouse-absent, Married-AF-spouse.

occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspet, Adm-clerical, Farming-fishing, Transportmoving, Priv-house-serv, Protective-serv, Armed-Forces.

relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried.

race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black.

sex: Female, Male.

capital-gain: continuous. capital-

loss: continuous. hours-per-week:

continuous.

native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, OutlyingUS(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad &Tobago, Peru, Hong, Holand-Netherlands.

Code:

Department of Computer Engineering

Conclusion:

1. Findings from the Correlation Heat Map: The correlation heat map is a helpful tool for figuring out how various features in the dataset are related to one another. This is an important point to consider while, The "relationship" and "sex" features show an association in the correlation heatmap, as can be seen.

2. Performance Measurements

The confusion matrix describes true/false predictions, precision concentrates on accurate positive classifications, recall finds pertinent instances, and F1-Score balances precision and recall, which is essential for imbalanced classes. Accuracy measures overall accuracy. Precision concentrates on accurate positive classifications.

confusion [[732 [191 43	767]	rix			
		precision	recall	f1-score	support
	0	0.79	0.49	0.60	1499
	1	0.85	0.96	0.90	4529
accui	racy			0.84	6028
macro	avg	0.82	0.72	0.75	6028
weighted	avg	0.84	0.84	0.83	6028

1. Comparison with Decision Tree Algorithm:

Result obtain using decision tree were:

Both the Decision Tree and Random Forest models achieved an accuracy of approximately 84%, indicating that they correctly predicted income levels for most individuals. However, they exhibited lower recall for the higher income class (1), indicating a tendency to miss some individuals with incomes over 50K, despite having good precision for the lower income class (0).

Vidyavardhini's College of Engineering & Technology Department of Computer Engineering

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

df = pd.read_csv("adult.csv")
df.head()
```

\Box		age	workclass	fnlwgt	education	educat	ion.num	marital.s	tatus	occupation	relatio
	0	90	?	77053	HS-grad		9	Wic	dowed	?	Not-in-
					1 82	Private	: 132870F	HS-grad	9	Exec- Widowed managerial	Not-in-
					Some- college	2 66	?	18606110	Wio	dowed ?	Unm
						3 54	Private	e 1403597th-	8th 4	Machine- Divorced op-inspct	Unm
	4	41	Private	264663	Some- college		10	Sepa	arated	Prof- specialty	Ow
	4										>

df.info()

<class 'pandas.core.frame.DataFrame'>

```
RangeIndex: 32561 entries, 0 to 32560
Data columns (total 15 columns):
# Column
                 Non-Null Count Dtype
                  -----
              32561 non-null int64
0 age
1workclass
              32561 non-null object
2 fnlwgt
              32561 non-null int64
             32561 non-null object
3 education
4 education.num 32561 non-null int64
5 marital.status 32561 non-null object
6 occupation 32561 non-null object
7 relationship
              32561 non-null object
8 race
               32561 non-null object
9 sex
               32561 non-null object
   capital.gain 32561 non-null int64
10
11
      capital.loss 32561 non-null int64
      hours.per.week 32561 non-null int64
12
      native.country 32561 non-null object 14 income
13
                                                           32561 non-null
object dtypes: int64(6), object(9) memory usage: 3.7+ MB
```

age	fnlwgt	education.num	capital.gain	capital.loss	hours.per.w
-----	--------	---------------	--------------	--------------	-------------

count	32561.000000	3.256100e+04	32561.000000	32561.000000	32561.000000	32561.000
mean	38.581647	1.897784e+05	10.080679	1077.648844	87.303830	40.437
std	13.640433	1.055500e+05	2.572720	7385.292085	402.960219	12.347
min	17.000000	1.228500e+04	1.000000	0.000000	0.000000	1.000
25%	28.000000	1.178270e+05	9.000000	0.000000	0.000000	40.000
50%	37.000000	1.783560e+05	10.000000	0.000000	0.000000	40.000
75%	48.000000	2.370510e+05	12.000000	0.000000	0.000000	45.000
max	90.000000	1.484705e+06	16.000000	99999.000000	4356.000000	99.000

[#] Info for categorical features
df.describe(include=['0'])

W	orkclass	education	marital.status	occupation	relationship	race	sex	na

	count	32561	32561	32561	32561	32561	32561	32561	
	unique	9	16	7	15	6	5	2	
	top	Private	HS-grad	Married- civspouse	Profspecialty	Husband	White	Male	
	freq	22696	10501	14976	4140	13193	27816	21790	
dupli	cated_rows	= df.dupl	icated()						
any_d	uplicates	= duplicat	ed_rows.any()						

print("Duplicated Rows:")
df[duplicated_rows] Duplicated Rows:

age workclass fnlwgt education education.num marital.status occupation rel

N	Craft-repair	Never-married	13	Bachelors	308144	Private	25	8453
NI	Other-	Nover married	40	Some-	E2296	Drivete	00	9645
N	service	Never-married	10	college	52386	Private	90	8645
	Prof-	Never-married	10	Some-	250051	Private	0.01	12202
	specialty	Never-mameu	10	college	250051	Private	2	12202

ne- Tech-

08/10/23, 2:52 PM	D : 1	407050	11_M	IL_Exp4 - Colaboratory			N.1
14346 20	Private	107658	college	10	Never-married	support	Ν
15603 25	Private	195994	1st-4th	2	Never-married	Priv-house-	N
17344 21	Private	243368	Preschool	1	Never-married	Farming- fishing	N
19067 46					Married-civ- Private grad 9 spouse	173243HS- Craft-repair	
20388 30	Private	144593	HS-grad	9	Never-married	Other- service	N
20507 19	Private	97261	HS-grad	9	Never-married	Farming- fishing	N
			Some-			Adm-	
22783 19	Private	138153	college	10	Never-married	clerical	
			Some-			Exec-	
22934 19			Private man	14667910 agerial	Never-married coll	ege	
22934 19 23276 49					Married-civ- Private 4 spouse	ege 31267 7th-t Craft-repair	8th
	Private	195994			Married-civ- Private 4	31267 7th-	8th N
23276 49		195994 367749	man	agerial	Married-civ- Private 4 spouse	31267 7th-6 Craft-repair Priv-house-	
23276 49 23660 25 23720 44		367749	man	agerial 2	Married-civ- Private 4 spouse Never-married	31267 7th-1 Craft-repair Priv-house- serv Prof- specialty	N
23276 49 23660 25	Private		1st-4th Bachelors	agerial 2	Married-civ- Private 4 spouse Never-married	31267 7th-6 Craft-repair Priv-house- serv Prof-	N
23276 49 23660 25 23720 44	Private Self-emp- not-inc	367749	1st-4th Bachelors Some-	agerial 2	Married-civ- Private 4 spouse Never-married Married-civ-	31267 7th-1 Craft-repair Priv-house- serv Prof- specialty	N
23276 49 23660 25 23720 44 23827 49	Private Self-emp- not-inc Private	367749 43479	1st-4th Bachelors Some- college	agerial 2 13	Married-civ- Private 4 spouse Never-married Married-civ- spouse	31267 7th-6 Craft-repair Priv-house- serv Prof- specialty Craft-repair Handlers-	N

```
08/10/23, 2:52 PM
                                                  11 ML Exp4 - Colaboratory
           28796 27
                          Private 255582
                                            HS-grad
                                                                        Never-married
                                                                                                     Ν
                                                                                         op-inspct
                                              Some-
                                                                          Married-civ-
                                                                                            Prof-
           29051 42
                                 204235
                                                                 10
                          Private
                                             college
                                                                              spouse
                                                                                         specialty
           29334 39
                          Private
                                   30916
                                            HS-grad
                                                                                         Craft-repair
                                                                               § Married
                                                                                civspou
                                                                                    se
                                                                                Married
                                                                                civspou
   df = df.drop duplicates29604 38Private() 207202
                                                        HS-grad
                                                                                    se
                                                    Some-
                                                                                           Machineop-
                                                                                Divorce
           31060 46
                          Private 133616
                                                                                           inspct
   # Correction of target value using a mapcollege income_map =
                                                                                     d
   {'<=50K': 1, '>50K': 0}
                                                                                          Admcleri
                                                                                               cal
   df['income'32065] = df19
                                                                               Never-
                                              ['income'Private].map251
                                             579(income_map Some-)
                                                                              1 married
                                                                                              Otherser
                                                                                             vice
                                             college
                                                                                    Divor
                                                                                              Otherser
           32419 35
                          Private 379959
                                            HS-grad
                                                                               Ć
                                                                                    ced
                                                                                             vice
        <ipython-input-47-00c8c2884cd1>:3: SettingWithCopyWarning:
        A value is trying to be set on a copy of a slice from a DataFrame.
        Try using .loc[row indexer,col indexer] = value instead
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user
        df['income'] = df['income'].map(income map)
   df['income'] = df['income'].astype('int')
        <ipython-input-48-c88e10f6120e>:1: SettingWithCopyWarning:
        A value is trying to be set on a copy of a slice from a DataFrame.
        Try using .loc[row_indexer,col_indexer] = value instead
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user
        df['income'] = df['income'].astype('int')
   categorical = [col for col in df.columns if df[col].dtype == 'object' ]
   numerical = [col for col in df.columns if df[col].dtype != 'object' ]
   df[numerical].hist(bins=25, figsize=(7, 7))
   plt.show()
```


sns.histplot(df, x='age', hue='income', bins= 32)

<Axes: xlabel='age', ylabel='Count'>

Missing Values

df_missing = (df=='?').sum()
print(df_missing)

age	0	
workclass	1836	
fnlwgt	0	
education	0	
education.num	0	
marital.status	0	
occupation	1843	
relationship	0	
race	0	sex
0 capital.gain		0
capital.loss	0	

```
hours.per.week 0 native.country 582 income 0
```

dtype: int64

df.head

#droping row having missing values from dataset

```
df = df[df['workclass'] !='?']
df = df[df['occupation'] !='?']
df = df[df['native.country'] !='?']
```

		race	sex	capital.gain	capital.loss	hours.per.week	native.country	income	
()	У	White	Female	0	4356	18	United-States	1	
		White	Female	0	3900	40	United-States	1	
		White	Female	0	3900	40	United-States	1	
		White	Female	0	3770	45	United-States	1	
		White	Male	0	3770	40	United-States	1	

```
print(df_missing)
                        0
     age
     workclass
                        0
     fnlwgt
     education
     education.num
                        0
     marital.status
                        0
     occupation
                        0
     relationship
                        0
                        0
     race
     sex
                        0
     capital.gain
                        0
     capital.loss
     hours.per.week
                        0
     native.country
                        0
     income
                        0
```

dtype: int64

df missing = (df=='?').sum()

Data Preparation

```
from sklearn import preprocessing df_categorical =
df.select_dtypes(include=['object'])
df_categorical.head()
```

workclass education marital.status occupation relationship race

sex native

1	Private	HS-grad	Widowed	Execmanagerial	Not-in-family White	Female	Unit
3	Private	7th-8th	Divorced	Machineop-inspct	Unmarried White	Female	Unit
4	Private	Somecollege	Separated	Profspecialty	Own-child White	Female	Unit
5	Private	HS-grad	Divorced	Otherservice	Unmarried White	Female	Unit
6	Private	10th	Separated	Admclerical	Unmarried White	Male	Unit

```
le = preprocessing.LabelEncoder() df_categorical =
df_categorical.apply(le.fit_transform)
df_categorical.head()
```

workclass education marital.status occupation relationship race sex native.cou

1	2	11			6		3		1	4	0	
3	2 5	0	6	4	4	0						
4	2 15	5	9	3	4	0						
5	2 11	0	7	4	4	0 6	2	0	5	0		
	4	4	1									
4												•

```
df = df.drop(df_categorical.columns, axis=1)
df = pd.concat([df,df_categorical],axis=1)
df['income']=df['income'].astype('category')
df.head()
```

age fnlwgt education.num capital.gain capital.loss hours.per.week income workc

1	4 132870		9	0	4356			18	1	
		3	3 1403594	0	3900	40	1			

```
08/10/23, 2:52 PM
                                                 11 ML Exp4 - Colaboratory
                                    3 26466310
                                                        3900
               2 216864
                                      9
                                                               3770
                                                                                  45
                                                                                           1
         5
   df.info()
         6
               2 150601
                                      6
                                                    0
                                                               3770
                                                                                 40
                                                                                           1
        <class 'pandas.core.frame.DataFrame'>
        Int64Index: 30139 entries, 1 to 32560
        Data columns (total 15 columns):
                              Non-Null Count Dtype
             Column
        0
               age
                                30139 non-null category
        1
               fnlwgt
                                30139 non-null
        2
               education.num
                                30139 non-null
                                               int64
        3
               capital.gain
                                30139 non-null int64
        4
               capital.loss
                                30139 non-null int64
        5
               hours.per.week 30139 non-null int64
        6
               income
                                30139 non-null category
        7
               workclass
                                30139 non-null int64
        8
               education
                                30139 non-null int64
        9
               marital.status 30139 non-null int64
        10
               occupation
                                30139 non-null int64
        11
               relationship
                                30139 non-null int64
        12
                                30139 non-null int64
               race
        13
                                30139 non-null int64
                                                         14
               sex
        native.country 30139 non-null int64
                                                 dtypes:
        category(2), int64(13) memory usage: 3.3 MB
   Splitting dataset
   from sklearn.model selection import train test split
   X = df.drop('income',axis=1)
   X = X.drop('sex',axis=1)
   y=df['income']
   X.head()
                  age fnlwgt education.num capital.gain capital.loss hours.per.week workclass ed
              4 132870
                                                               4356
                                                                                  18
                                                                                              2
   y.head()
        1
             1
        3
             1
             1
        5
              1
             1
        Name: income, dtype: category
        Categories (2, int64): [0, 1]
   X_train , X_test , y_train , y_test = train_test_split(X,y,test_size=0.20)
   Applying RandomForest Algo
```

from sklearn.ensemble import RandomForestClassifier
dt_default = RandomForestClassifier(max_depth=5)
dt_default.fit(X_train,y_train)

RandomForestClassifier
RandomForestClassifier(max_depth=5)

from sklearn.metrics import classification report, confusion matrix, accuracy score

```
y_pred_default=dt_default.predict(X_test) print("confusion
matrix\n",confusion_matrix(y_test,y_pred_default))
print(classification_report(y_test,y_pred_default))
```

```
confusion matrix
[[ 732 767]
[ 191 4338]]
              precision
                          recall f1-score
                                               support
                   0.79
           0
                             0.49
                                        0.60
                                                  1499
1
        0.85
                  0.96
                            0.90
                                       4529
                                        0.84
                                                  6028
    accuracy
                0.82
                          0.72
                                     0.75
macro avg
                                               6028
weighted avg
                   0.84
                             0.84
                                        0.83
                                                  6028
```

print("accuracy score", accuracy_score(y_test, y_pred_default))

accuracy score 0.8410749834107498

② Os completed at 23:43 PM