

Escuela Profesional de Ciencia de la Computación

ICC Fase 1

Bioinformatics

Sequence alignment - Dinamic programming

MSc. Vicente Machaca Arceda

Universidad Nacional de San Agustín de Arequipa

June 7, 2020

Table of Contents

- 1 Introduction
 - Objectives
- Sequence alignment
 - Definition
 - Example
 - Maths

Table of Contents

- IntroductionObjectives
- Sequence alignment
- Definition
 - Example
 - Maths

Introduction

Objectives

• Understand the importance of sequence alignment in Bioinformatics.

Objectives

- Understand the importance of sequence alignment in Bioinformatics.
- Understand and implement the Needleman–Wunsch algorithm.

Table of Contents

- IntroductionObjectives
- Sequence alignment
 - Definition
 - Example
 - Maths

Definition

How can we determine the similarity between two sequences?

Definition

Sequence Alignment in Biology

The purpose of a sequence alignment is to line up all residues in the inputted sequence(s) for maximal level of similarity, in the sense of their functional or evolutionary relationship.

Pairwise sequence alignment

Visit <u>EMBOSS</u>, use the sample sequences and evaluate with BLOSUM62 matrix (no more that 62% of similarity).

Figure: Tool for pairwise sequence alignment.

Pairwise sequence alignment

```
# Aligned seguences: 2
# 1: HBA HUMAN
# 2: HBA MOUSE
# Matrix: EBLOSUM62
# Gap penalty: 10.0
# Extend penalty: 0.5
# Length: 142
# Identity:
              122/142 (85.9%)
# Similarity:
              131/142 (92.3%)
# Gaps:
                0/142 ( 0.0%)
 Score: 648.0
 _____
HBA HUMAN
                 1 MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLS
                                                                    50
HBA MOUSE
                 1 MVLSGEDKSNIKAAWGKIGGHGAEYGAEALERMFASFPTTKTYFPHFDVS
                                                                    50
HBA HUMAN
                51 HGSAOVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFK
                                                                   100
                   HBA MOUSE
                51 HGSAOVKGHGKKVADALASAAGHLDDLPGALSALSDLHAHKLRVDPVNFK
                                                                   100
HBA HUMAN
               101 LLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR
                                                            142
HBA MOUSE
               101 LLSHCLLVTLASHHPADFTPAVHASLDKFLASVSTVLTSKYR
                                                            142
```

Figure: Alignment: "|" stands for equality, ":" for similarity and "." for non-similarity.

Pairwise Sequence Alignment

in Maths

Input data:

• Two sequences S_1 and S_2

Parameters:

A scoring function f for substitutions and gaps.

Output:

 The optimal alignment of S₁ and S₂, which has the maximal score. in Maths

There are too many possible solution for sequence alignment.

$$\binom{2n}{n} = \frac{(2n)!}{(n!)^2}$$

Pairwise Sequence Alignment

in Maths

if
$$n = 300$$

$$\binom{2n}{n} = \frac{(2n)!}{(n!)^2} = \frac{2*300}{(300!)^2} \approx 7*10^{88}$$

The visible universe is estimated to contain $10^{78} \sim 10^{80}$ atoms.

Pairwise Sequence Alignment

Dynamic Programming

Dynamic Programming

Dynamic Programming solves problems by combining the solutions to sub-problems.

- Break the problem into smaller sub-problems.
- Solve these sub-problems optimally recursively.
- Use these optimal solutions to construct an optimal solution for the original problem.

Example

Figure: How we could divide the problem into sub-problems.

Example

$$F\left(0,0\right) = 0$$

$$F\left(i,j\right) = \max \begin{cases} F\left(i-1,j-1\right) + s\left(x_{i},y_{j}\right) & x_{i} \text{ aligned to } y_{j} \\ F\left(i-1,j\right) + d & x_{i} \text{ aligned to } a \text{ } gap \\ F\left(i,j-1\right) + d & y_{j} \text{ aligned to } a \text{ } gap \end{cases}$$

Example

Scoring Nucleotide

A nucleotide substitution matrix:

	Α	С	G	Т		
Α	2	-7	-5	-7		
С	-7	2	-7	-5		
G	-5	-7	2	-7		
Т	-7	-5	-7	2		

Figure: Example of $s(x_i, y_i)$.

Example

Input Sequence 1: AAG
Input Sequence 2: AGC

	Α	С	G	T
А	2	-7	-5	-7
С	-7	2	-7	-5
G	-5	-7	2	-7
Т	-7	-5	-7	2

For simplicity, let's set (i.e. linear gap penalty)
gap OPEN (d) = gap EXTEND (e) = -5
GAC - AT
C - ACAT
(-7) + (-5) + (-7) + (-5) + 2 + 2 = -20

vmachacaa@unsa.edu.pe

Dynamic Programming

Example

	Α	С	G	Т
Α	2	-7	-5	-7
С	-7	2	-7	-5
G	-5	-7	2	-7
Т	-7	-5	-7	2

$$F(0,0) = 0$$

$$F(i, j) = \max \begin{cases} F(i-1, j-1) + s(x_i, y_j) \\ F(i-1, j) + d \\ F(i, j-1) + d \end{cases}$$

Find the optimal alignment of AAG and AGC. Use a linear gap penalty of d=-5.

	, , , , , , ,	А	А	G
	0			
А				
G				
С				

De

Dynamic Programming

Example

	Α	С	G	Т
Α	2	-7	-5	-7
С	-7	2	-7	-5
G	-5	-7	2	-7
Т	-7	-5	-7	2

Find the optimal alignment of AAG and AGC. Use a linear gap penalty of d=-5.

Δ

Α

G

	G	-5	-7	2	-7							, ,		Ü	
	Т	-7	-5	-7	2			0	→	-5	\rightarrow	-10	\rightarrow	-15	
F ((i-1,	. j – 1)		F	(i, j-1)	А	-5 ↓							_
_			1	x_i, y_j)	d	G	-10)						
F	(i – 1	, j) -	-	d —	E	F(i, j)	С	-15	5						

vmachacaa@unsa.edu.pe

Dynamic Programming

Example

	Α	С	G	Т
Α	2	-7	-5	-7
С	-7	2	-7	-5
G	-5	-7	2	-7
T	-7	-5	-7	2

$$F(i-1, j-1) \xrightarrow{s(x_i, y_j)} d \xrightarrow{d} F(i, j-1)$$

$$F(i-1, j) \longrightarrow d \longrightarrow F(i, j)$$

Find the optimal alignment of AAG and AGC. Use a linear gap penalty of d=-5.

			Α	
	0	→	-5	
А	-5		+	2

$$-5 + (-5) = -10$$

 $0 + 2 = 2$
 $-5 + (-5) = -10$

wmachacaa@unsa.edu.pe

Dynamic Programming

Example

	Α	С	G	Т
Α	2	-7	-5	-7
С	-7	2	-7	-5
G	-5	-7	2	-7
Т	-7	-5	-7	2

Find the optimal alignment of AAG and AGC.
Use a linear gap penalty of d=-5.

Example

Trace back to the upper left. Each arrow introduces one symbol at the end of each aligned sequence.

Questions?

