Formelsammlung zur Vorlesung Grundlagen der Testtheorie im WS 2020/21

Klassische Testtheorie					
Grundgleichung	Additive Varianzzerlegung		Reliabilität		
$y_{ij} = \tau_{ij} + \varepsilon_{ij}$	$Var(Y_j) = Var(\tau_j) + Var(\varepsilon_j)$		$Rel(Y_j) = \frac{Var(\tau_j)}{Var(Y_j)}$		
KTT Schwierigkeitsindex bei	KTT Schwierigkeitsindex bei		KTT Schwierigkeitsindex bei		
Speedtests	Powertests ohne Ratekorrektur		Powertests mit Ratekorrektur		
$P_i = \frac{n_r}{n_b} \cdot 100$	$P_i = \frac{n_r}{n} \cdot 100$		$P_i = \frac{n_r - \frac{n_F}{k - 1}}{n} \cdot 100$		
Item Response Theorie		_			
Modellgleichung Rasch-Modell		Allgemeine Formulierung Rasch-Modell			
$P(u_{ij} = 1 \theta_i, \beta_j) = \frac{e^{\theta_i - \beta_j}}{1 + e^{\theta_i - \beta_j}}$		$P(U_{ij} = u_{ij} \theta_i, \beta_j) = \frac{e^{u_{ij} \cdot (\theta_i - \beta_j)}}{1 + e^{\theta_i - \beta_j}}$			
Lokale stochastische Unabhängigkeit		Standardmessfehler IRT			
$P(U_1 = u_1,, U_m = u_m \theta_i) = \prod_{j=1}^m P(U_j = u_j \theta_i)$		$s_e(\theta) = \frac{1}{\sqrt{I(\theta)}}$			
Iteminformation		Wald-Test Prüfgröße			
$I_j(\theta_i) = p(u_{ij} = 1) \cdot (1 - p(u_{ij} = 1))$ Testinformation		$W_{j} = \frac{(\hat{\beta}_{j,1} - \hat{\beta}_{j,2})^{2}}{\hat{\sigma}_{j,1}^{2} + \hat{\sigma}_{j,2}^{2}}$			
		$T = sign(\hat{\beta}_{i,1} - \hat{\beta}_{i,2}) \sqrt{W_i}$			
$I(\theta_i) = \sum_{j=1}^m I_j(\theta_i)$		$i = \operatorname{sign}(\mathcal{P}_{j,1} \mathcal{P}_{j,2}) \mathbf{V}^{\mathbf{V}\mathbf{V}_{j}}$			
Faktorenanalyse					
Fundamentaltheorem		Hauptkomponentenanalyse			
$z_{y_{ij}} = \lambda_{j1} \cdot F_{i1} + \lambda_{j2} \cdot F_{i2} + \ldots + \lambda_{jq} \cdot F_{iq} + \varepsilon_{ij}$		$z_{y_{ij}} = \lambda_{j1} \cdot H_{i1} + \lambda_{j2} \cdot H_{i2} + + \lambda_{jq} \cdot H_{iq}$			
Kommunalität	Eigenwert	Eigenwert		Einzigartigkeit	
$h_j^2 = \lambda_{j1}^2 + \lambda_{j2}^2 + \dots + \lambda_{jq}^2$	Eigenwert =			$u^2 = 1 - h^2$	
Kaiser-Meyer-Olkin Koeffizient					

$$KMO = \frac{\sum \sum r_{ij}^{2}}{\sum \sum r_{ij}^{2} + \sum \sum r_{ij,z}^{2}}, i \neq j$$

Objektivität

Cohens Kappa

$$\kappa = \frac{p_0 - p_e}{1 - p_e}$$
 oder $\kappa = \frac{f_0 - f_e}{N - f_e}$

Maximalwert Cohens Kappa

$$\kappa_{max} = \frac{p_{0,r} - p_e}{1 - p_e}$$

Intraklassenkorrelation

$$ICC(1,k) = \frac{\hat{\sigma}_{zw}^{2} - \hat{\sigma}_{inn}^{2}}{\hat{\sigma}_{zw}^{2}}$$

$$\hat{\sigma}_{zw}^2 = \frac{QS_{zw}}{J-1} \qquad \qquad \hat{\sigma}_{inn}^2 = \frac{QS_{inn}}{n-J}$$

$$\hat{\sigma}_{inn}^2 = \frac{QS_{inn}}{n-J}$$

Reliabilität

Spearman-Brown-Formel	bei Testhalbierungen
-----------------------	----------------------

$$Rel\left(x_{vollst\"{a}ndig}\right) = \frac{2 \cdot Corr(x_p, x_q)}{1 + Corr(x_p, x_q)} = \ \frac{2 \cdot Rel(x_{halb})}{1 + Rel(x_{halb})}$$

$$Rel(x_{vollst\"{a}ndig}) = \frac{2 \cdot Corr(x_p, x_q)}{1 + Corr(x_p, x_q)} = \frac{2 \cdot Rel(x_{halb})}{1 + Rel(x_{halb})}$$

$$\operatorname{Rel}(x) = \alpha = \frac{m}{m-1} \cdot \left(1 - \frac{\sum_{j=1}^{m} Var(x_j)}{Var(x)} \right)$$

Allgemeine Spearman-Brown-Formeln

$$\operatorname{Rel}_{k}^{*} = \frac{k \cdot \operatorname{Rel}}{1 + (k - 1) \cdot \operatorname{Rel}} \qquad k = \frac{\operatorname{Rel}^{*} \cdot (1 - \operatorname{Rel})}{\operatorname{Rel} \cdot (1 - \operatorname{Rel}^{*})}$$

$$k = \frac{\text{Rel}^* \cdot (1 - \text{Rel})}{\text{Rel} \cdot (1 - \text{Rel}^*)}$$

$$KI = X \pm z_{\alpha/2} \cdot s_e$$

$$s_e = s_x \cdot \sqrt{1 - \text{Rel}(x)}$$

Normierung

Prozentrangnorm

T-Werte

$$PR_v = 100 \cdot \frac{freq_{cum}(X_v)}{N} \qquad T_v = 50 + 10 \cdot Z_v \qquad IQ_v = 100 + 15 \cdot Z_v \qquad S_v \approx 5 + 2 \cdot Z_v$$

$$S_v \approx 5 + 2 \cdot z_v$$