ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/244409396

Polyoxoanion-Supported Catalyst Precursors. Synthesis and Characterization of the Iridium(I) and Rhodium(I) Precatalysts [(nC4H9)4N]5Na3[(1,5COD)M.cntdot.P2W15Nb3O62] (M = Ir, Rh)

Impact Factor: 4.76 · DOI: 10.1021/ic00110a020

READS

CITATIONS

95 15

5 AUTHORS, INCLUDING:

Kenji Nomiya

Kanagawa University

168 PUBLICATIONS 4,015 CITATIONS

SEE PROFILE

Polyoxoanion-Supported Catalyst Precursors. Synthesis and Characterization of the Iridium(I) and Rhodium(I) Precatalysts $[(n-C_4H_9)_4N]_5Na_3[(1,5-COD)M\cdot P_2W_{15}Nb_3O_{62}]$ (M = Ir, Rh)

Matthias Pohl, la David K. Lyon, lb Noritaka Mizuno, lc Kenji Nomiya, ld and Richard G. Finke*, le

Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523

Received August 11, 1994®

The reaction of the triniobium-substituted polyoxometalate $[(n-C_4H_9)_4N]_9P_2W_{15}Nb_3O_{62}$ with an equimolar amount of $[Ir(1,5\text{-COD})(CH_3CN)_2]BF_4$ or $[Rh(1,5\text{-COD})(CH_3CN)_2]BF_4$ (1,5-COD = 1,5-cyclooctadiene) leads to the formation of the air-sensitive polyoxometalate-supported organometallic complexes $[(1,5\text{-COD})IrP_2W_{15}Nb_3O_{62}]^{8-}$, 1, and $[(1,5\text{-COD})RhP_2W_{15}Nb_3O_{62}]^{8-}$, 2. These complexes were isolated as their mixed $5[(n-C_4H_9)_4N]^+/3Na^+$ salts and have been characterized by 1H , ^{13}C , ^{31}P , and ^{183}W NMR spectroscopy as well as IR spectroscopy, sedimentation-equilibrium molecular-weight measurements, and complete elemental analyses. Additional studies of 1 by ^{17}O NMR demonstrate that the iridium binds in overall average $C_{3\nu}$ (pseudo) symmetry to the "Nb₃O₉^{3-"} minisurface (pseudo due to the 2-fold axis in 1,5-COD and thus the local C_5 symmetry at iridium). For 2, the results of the ^{17}O NMR studies are definitive in showing that 2 can also be successfully ^{17}O -enriched in the niobium—oxygen sites. However, the ^{17}O NMR data subsequently acquired for 2 require the formulation of two or more (possibly rapidly interconverting) support-site isomers in solution. These ^{17}O NMR results provide direct evidence for the M—ONb₂ bonding between $[(1,5\text{-COD})M]^+$ (M = Ir, Rh) and $P_2W_{15}Nb_3O_{62}^{9-}$ in solution, where catalysis beginning with 1 and 2 as a precatalyst has been demonstrated.

Introduction

Polyoxometalates² are soluble-oxide compounds that resemble discrete fragments³ of the solid metal—oxide component of heterogeneous insoluble⁴ catalysts. Because of this resemblance, polyoxometalates are of considerable interest as catalyst-support materials. One goal is to provide a correlation between atomic-level structure and function for catalysis by oxide-supported metals, a level of understanding that is virtually unavailable for heterogeneous insoluble catalysts. Polyoxometalate-supported organometallics also have potential as spectroscopic models and as systems where rational catalyst design and molecular fine-tuning would be possible. Perhaps most importantly, polyoxometalate-supported organometallics should also

provide completely new types of catalyst materials with their own potentially unique reactivity⁵ and chemistry. Because of these possibilities, the area of polyoxometalate-supported organometallic complexes has been active over the past 12

Abstract published in Advance ACS Abstracts, February 1, 1995.
 (1) (a) Department of Chemistry, University of Oregon, Eugene, OR 97403. (b) Bend Research, Inc., 64550 Research Rd., Bend, OR 97701.
 (c) Present address: Institute of Industrial Science Univ. of Tokyo 7-22-1 Roppongi, Minato-ku Tokyo, Japan. (d) Department of Materials Science, Kanagawa University, Hiratsuka, Kanagawa 259-12 Japan (e) Colorado State University

Japan. (e) Colorado State University.
 (a) Pope, M. T. Heteropoly and Isopoly Oxometalates; Springer-Verlag: New York, 1983. (b) Day, V. W.; Klemperer, W. G. Science 1985, 228, 533. (c) Pope, M. T.; Müller, A. Angew. Chem., Int. Ed. Engl. 1991, 30, 34. (d) Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity; Proceedings of the July 15-17, 1992, Meeting at the Center for Interdisciplinary Research in Bielefeld, Germany; Müller, A., Pope, M. T., Eds.; Kluwer Publishers: Dordrecht, The Netherlands, 1992.

⁽³⁾ This resemblance was first noted by: Baker, L. C. W. In Advances in the Chemistry of Coordination Compounds; Kirschner, S., Ed.; Macmillan: New York, 1961; p 604.

⁽⁴⁾ Schwartz (Acc. Chem. Res. 1985, 18, 302) has proposed definitions that limit a homogeneous catalyst to one with a single, chemically unique active (i.e., homogeneous) site and a heterogeneous catalyst as one with multiple, chemically different (i.e., heterogeneous), catalytically active sites. Schwartz further suggests the addition of the suffix -soluble or -insoluble for single-phase or multiphase systems, respectively. Within this context it is, therefore, homogeneous-soluble and homogeneous-insoluble catalysts that are of greatest current interest due to the expectation that they will exhibit the more selective catalytic chemistries.

^{(5) (}a) Various systems have been researched as soluble (non-polyoxometalate) "oxo-type" homogeneous analogs for heterogeneousinsoluble, solid oxide-supported catalysts: metal carbonyl clusters, 50 metal alkoxide compounds, 5c Kläui's ligand {(C3H5)CoP[(O)(OR)2]3,5d and Feher and co-workers' siloxide-bound organometallic fragments. Se More recently, Tanke and Crabtree have used Grim's triso⁵⁶ ligand, C(Ph2PO)3-, to prepare iridium, rhodium, and ruthenium complexes with the metals in an oxygen-donor ligand environment.3g (b) Muetterties, E. L. Catal. Rev.—Sci. Eng. 1981, 23, 69 and references therein. Evans, J. Chem. Soc. Rev. 1981, 159 and references therein. Smith, A. K.; Basset, J. M. J. Mol. Catal. 1977, 2, 229. (c) Chisholm, M. H.; Eichom, B. W.; Folting, K.; Huffman, J. C. Organometallics 1989, 8, 49. Chisholm, M. H.; Eichorn, B. W.; Huffman, J. C. Organometallics 1989, 8, 67. Chisholm, M. H.; Eichorn, B. W.; Huffman, J. C. Organometallics 1989, 8, 80. Toth, R. T.; Stephan, D. W. Can. J. Chem. 1991, 69, 172. (d) Kläui, W. Angew. Chem., Int. Ed. Engl. 1990, 29, 627. Lenders, B.; Kläui, W. Chem. Ber. 1990, 123, 2233. Kläui, W.; Huhn, M.; Herbst-Irmer, R. J. Organomet. Chem. 1991, 415, 133. Wedler, M.; Gilje, J. W.; Noltemeyer, M.; Edelmann, F. T. J. Organomet. Chem. 1991, 411, 271. Thomas, J. A.; Davison, A. *Inorg. Chem.* 1992, 31, 1976. (e) Feher, F. J. J. Am. Chem. Soc. 1986, 108, 3850. Feher, F. J.; Gonzales, S. A.; Ziller, J. W. Inorg. Chem. 1988, 27, 3440. Feher, F. J.; Budzichowski, T. A. J. Organomet. Chem. 1989, 373, 153. Feher, F. J.; Newman, D. A.; Walzer, J. F. J. Am. Chem. Soc. 1989, 111, 1741 and references therein. Feher, F. J.; Liu, J.; Wilson, S. R.; Shapley, J. R. Inorg. Chem. 1990, 29, 5138. Feher, F. J.; Weller, K. J. Organometallics 1990, 9, 2638. Feher, F. J.; Walzer, J. F. Inorg. Chem. 1991, 30, 1689. Budzichowski, T. A.; Chacon, S. T.; Chisholm, M. H.; Feher, F. J.; Streib, W. J. Am. Chem. Soc. 1991, 113, 689. Feher, F. J.; Budzichowski, T. A. Organometallics 1991, 10, 812. Winkhofer, N.; Roesky, H. W.; Noltemeyer, M.; Robinson, W. T. Angew. Chem., Int. Ed. Engl. 1992, 31, 599. Feher, F. J.; Blanski, R. L. J. Chem. Soc., Chem. Commun. 1990, 1614. Feher, F. J.; Walzer, J. F.; Blanski, R. L. J. Am. Chem. Soc. 1991, 113, 3618. Feher, F. J.; Taijima, T. L. J. Am. Chem. Soc. 1994, 116, 2145. (f) Grim, S. O.; Sangokoya, S. A.; Colquhoun, I. J.; McFarlane, W.; Khanna, R. K. Inorg. Chem. 1986, 25, 2699. (g) Tanke, R. S.; Crabtree, R. H. J. Chem. Soc., Chem. Commun. 1990, 1056. Tanke, R. S.; Crabtree, R. H. J. Am. Chem. Soc. 1990, 112, 7984. Tanke, R. S.; Crabtree, R. H. Organometallics 1991, 10, 415. Tanke, R. S.; Holt, E. M.; Crabtree, R. H. Inorg. Chem. 1991, 30, 1714.

years. 6-8 However, and despite such potential, polyoxometalatesupported catalysis has not been previously described until our recent reports.9-12

Our approach to developing a polyoxometalate-supported organometallic catalyst began from the key conceptual point

- (6) Besecker, C. J.; Klemperer, W. G. J. Am. Chem. Soc. 1980, 102, 7600. (a) Besecker, C. J.; Day, V. W.; Klemperer, W. G. Organometallics 1985, 4, 564. (b) Day, V. W.; Fredrich, M. F.; Thompson, M. R.; Klemperer, W. G.; Liu, R.-S.; Shum, W. J. Am. Chem. Soc. 1981, 103, 3597. (c) Besecker, C. J.; Day, V. W.; Klemperer, W. G.; Thompson, M. R. J. Am. Chem. Soc. 1984, 106, 4125. (d) Besecker. C. J.; Day, V. W.; Klemperer, W. G.; Thompson, M. R. *Inorg. Chem.* 1985, 24, 44. (e) Besecker, C. J.; Klemperer, W. G.; Day, V. W. J. Am. Chem. Soc. 1982, 104, 6158. (f) Klemperer, W. G.; Yagasaki, A. Chem. Lett. 1989, 2041. (g) Main, D. J. Dissertation, University of Illinois, 1987. (h) Klemperer, D. J.; Main, D. J. Inorg. Chem. 1990, 29, 2355. (i) Day, V. W.; Klemperer, W. G.; Main, D. J. Inorg. Chem. 1990, 29, 2345. (j) Day, V. W.; Klemperer, W. G.; Yagasaki, A. Chem. Lett. 1990, 1267.
- (8) (a) Edlund, D. J.; Saxton, R. J.; Lyon, D. K.; Finke, R. G. Organometallics 1988, 7, 1692. (b) Finke, R. G.; Droege, M. W. J. Am. Chem. Soc. 1984, 106, 7274. (c) Finke, R. G.; Rapko, B.; Domaille, P. J. Organometallics 1986, 5, 175. (d) Droege, M. W. Dissertation, University of Oregon, 1984. (e) Rapko, B. Dissertation, University of Oregon, 1986. (f) Finke, R. G.; Green, C. A.; Rapko, B. Inorg. Synth. 1990, 27, 128. (g) Finke, R. G.; Lyon, D. K.; Nomiya, K.; Weakley, T. J. R. Acta Crystallogr. 1990, C46, 1592. (h) Lin, Y.; Nomiya, K.; Finke, R. G. Inorg. Chem. 1993, 32, 6040. (i) Pohl, M.; Lin, Y.; Weakley, T. J. R.; Nomiya, K.; Kaneko, M.; Weiner, H.; Finke, R. G. *Inorg. Chem.* 1995, 34, 767. (j) Nomiya, K.; Mizuno, N.; Lyon, D. K.; Pohl, M.; Finke, R. G. Inorg. Synth., in press. (k) Nomiya, K.; Kaneko, M.; Kasuga, N.; Finke, R. G., Pohl, M. Inorg. Chem. 1994, 33, 1469. (I) Finke, R. G.; Nomiya, K.; Green, C. A.; Droege, M. W. In *Inorganic Syntheses*; Grimes, R. N., Ed.; Wiley & Sons: New York, 1992; Vol. 29, p 239.

 (9) (a) Preliminary communications and dissertations describing the
- synthesis 90.4.4 and characterization of 1 and mechanistic 90-00 studies starting from 1 are available. (b) Finke, R. G.; Lyon, D. K.; Nomiya, K.; Sur., S.; Mizuno, N. Inorg. Chem. 1990, 29, 1784. The spectroscopic characterization therein is updated by the work reported herein. (c) Lyon, D. K.; Finke, R. G. Inorg. Chem. 1990, 29, 1787. (d) Lyon, D. K. Dissertation, University of Oregon, 1990. (e) Lin, Y. Dissertation, University of Oregon, March 1994. (f) Pohl, M.; Finke, R. G. Unpublished results. (g) For additional discussion, including experimental details, of the characterization of 1 by 170 NMR spectroscopy, see: Pohl, M.; Finke, R. G. Organometallics 1993, 12, 1453. (h) Lin, Y.; Finke, R. G. J. Am. Chem. Soc. 1994, 116, 8335. (i) Nomiya, K.; Pohl, M.; Mizuno, N.; Lyon, D. K.; Finke, R. G. Inorg. Synth., in
- (10) (a) An initial study by our group concerning the catalytic oxygenation of cyclohexene by O_2 using either $[(n-C_4H_9)_4N]_4Na_3[(1,5-COD)]_4P_2W_15-Nb_3O_{62}]$, $[(n-C_4H_9)_4N]_4Na_3[(1,5-COD)Rh-P_2W_15Nb_3O_{62}]$ or $[(n-C_4H_9)_4N]_4Na_3[(C_6H_6)Ru-P_2W_15Nb_3O_{62}]$ has been published. (b) Mizuno, N.; Lyon, D. K.; Finke, R. G. J. Catal. 1991, 128, 84. (c) Weiner, H.; Trovarelli, A.; Finke, R. G. Manuscript in preparation. (d) Mizuno, N.; Lyon, D. K.; Finke, R. G. U.S. Patent 5,250,739, issued Oct 5. 1993. (e) An elegant crystallographic study of the stoichiometric reaction of [(1,5-COD)Ir-P₃O₉]² with O₂ has been reported: Day, V. W.; Klemperer, W. G.; Lockledge, S. P.; Main, D. J. J. Am. Chem. Soc. 1990, 112, 2031.
- (11) (a) Initial catalytic hydrogenation studies using a partially oxidized form of "[(n-CH9)µN]₇[(1,5-COD)][rSiW₉Nb₃O₄₀]" have been reported." A novel iridium—catalyst complex was demonstrated starting from this material, the nature of which is almost surely the polyoxoanion-stabilized Ir⁰_x nanoclusters that we recently reported elsewhere. (b) Edlund, D. J.; Finke, R. G.; Saxton, R. J. U.S. Patent 5,116,796, issued May 29, 1992 (Chem. Abstr. 1989, 110, 97553h). (c) Edlund, D. J. Dissertation, University of Oregon, 1987. (d) Edlund, D. J.; Finke, R. G.; Saxton, R. J. U.S. Patent 5,116,796, issued May 29, 1992.
- (12) (a) Other reports have appeared 12b-c of catalysis by mixtures containing certain types of polyoxoanions and organotransition metal complexes. However, in each case the active catalyst, although quite interesting, is clearly not a tightly supported transition metal-polyoxoanion complex either by design or due to the use of polyoxoanions with negligible or insufficient surface-oxygen charge density. (b) Urabe, K.; Tanaka, Y.; Izumi, Y. Chem. Lett. 1985, 1595. (c) Che, T. M. U.S. Patent 4,590,298, assigned to Celanese Corp., May 20, 1986. (d) Siedle, A. R.; Markell, C. G.; Lyon, P. A.; Hodgson, K. O.; Roe, A. L. Inorg. Chem. 1987, 26, 219. (e) Siedle, A. R.; Newmark, R. A.; Gleason, W. B.; Skarjune, R. P.; Hodgson, K. O.; Roe, A. L.; Day, V. W. Solid State Ionics 1988, 26, 109.

. La sensa el la librario de la servicio de la compansió de la compansión de la compansión de la compansión de

POLYOXOANION-SUPPORTED CATALYST PRECURSORS AND THEIR CATALYSIS

SIMULTANEOUSEFFORT IN THE ABOVE 4 AREAS WAS REQUIRED

Figure 1. Central components of the effort aimed at developing a paradigm for polyoxoanion-supported catalysts.

Figure 2. (A) Ball and stick representation of α-1,2,3-P₂W₁₅Nb₃O₆₂9 as determined by a single crystal X-ray diffraction structural analysis.85 The hatched circles show the position of the three Nb atoms. (B) Polyhedral representation of α-1,2,3-P₂W₁₅Nb₃O₆₂9-. The three niobiums are represented by the hatched octahedra in the 1, 2, and 3 positions. The WO6 octahedra occupy positions 4-18, and the PO4 groups are shown as the two internal black tetrahedra.

that catalysis is a wholly kinetic phenomenon, 13 accomplished by intermediates and other transients, but not generally by isolable complexes. Hence, the development of isolable-but reactive-polyoxometalate-supported organometallic catalyst precursors that are characterizable at the atomic level has been a key focus of our work. The development of a useful polyoxometalate-supported catalyst precursor has required simultaneous efforts in four areas, Figure 1: synthesis of the ML_x-polyoxometalate^{q-} catalyst precursor, its unequivocal characterization (often the slowest and most difficult step),8,9 stoichiometric studies that demonstrate reactivity at the metalligand bonds without rupture of the metal-polyoxometalate bonds, 9c-e and detailed mechanistic studies probing whether or not the polyoxometalate-metal bonding is retained during catalysis. 10c

The choice of [(1,5-COD)M]+ as the organometallic component of $[(1,5\text{-COD})M\cdot P_2W_{15}Nb_3O_{62}]^{8-}$ was based on the literature;14 the decision of which polyoxometalate to employ, $[(n-C_4H_9)_4N]_9P_2W_{15}Nb_3O_{62}$ (Figure 2), was based on our recent synthesis9 and preliminary experiments demonstrating that this combination yields a superior system, in terms of both characterization and its subsequent reactivity.

There are two key variables to be probed in polyoxoanionsupported catalysts. The first is the effect of changing the poly-

⁽¹³⁾ Halpern, J. Inorg. Chim. Acta 1981, 50, 11.

 ^{(14) (}a) Green, M.; Kuc, T. A.; Taylor, S. H. J. Chem. Soc. A 1971, 2334.
 (b) Schrock, R. R.; Osborne, J. A. J. Am. Chem. Soc. 1971, 93, 3089.

oxoanion (e.g., P₂W₁₅Nb₃O₆₂⁹⁻ vs SiW₉Nb₃O₄₀⁷⁻); such polyoxoanion variation studies are reported elsewhere.8h The second key variable is the supported transition metal¹⁵ (e.g., Ir¹ vs Rh¹), and for this reason we have simultaneously pursued the synthesis and characterization of both the Ir and the Rh analogs, [(n- $C_4H_9)_4N]_5Na_3[(1,5-COD)M\cdot P_2W_{15}Nb_3O_{62}]^{16}$ (M = Ir, 1; M = Rh, 2). The reaction of the $[(1,5-COD)M\cdot P_2W_{15}Nb_3O_{62}]^{8-}$ (M = Ir, Rh) complexes with CO to form the corresponding [(OC)₂M^LP₂W₁₅Nb₃O₆₂]⁸⁻ have also been investigated.⁹⁴ These bis(carbonyls), and here especially the rhodium complex [(OC)₂Rh·P₂W₁₅Nb₃O₆₂]⁸⁻, have potential as much needed EXAFS spectroscopic models for (OC)₂Rh-solid oxides.¹⁷

An important piece of background structural information is the report of the atomic-level structural characterization of 8g P₂W₁₅Nb₃O₆₂⁹⁻ and its supported [(C₅Me₅)Rh^{III}]²⁺ organometallic derivative [(C₅Me₅)Rh·P₂W₁₅Nb₃O₆₂]⁷⁻, Figure 3,8i by X-ray crystallography, the first (and to date only) crystallographically determined structure of a Dawson-type polyoxoanion-supported organometallic complex. Significant for the present work, the crystal structure of [(C₅Me₅)Rh·P₂W₁₅Nb₃O₆₂]⁷⁻ demonstrates that [(C5Me5)RhIII]2+ is supported rigidly on the $C_{3\nu}$ support site (i.e., directly over the C_3 axis) via three bridging Nb-O-Nb oxygens.8i

The Ir congener, $[(n-C_4H_9)_4N]_5Na_3[(1,5-COD)IrP_2W_{15}-$ Nb₃O₆₂], is of special interest since most of our catalytic studies to date emphasize it. Separate reports describe the oxidative and reductive catalysis derived from the Ir complex 1.9.10 That work has provided both the first bona-fide polyoxoanionsupported (oxidation) catalyst 10b-d and, under H2, a novel Ir~300 polyoxoanion nanocluster catalyst for reductions with H₂.9e.h Those catalytic results emphasize the importance of reporting herein the full details of the synthesis and characterization of $[(1,5\text{-COD})M \cdot P_2W_{15}Nb_3O_{62}]^{8-}$ (M = Ir, Rh). An overview of our work emphasizing [(1,5-COD)IrP2W15-Nb₃O₆₂]⁸⁻ in homogenous catalysis is also available to the interested reader.2d

(15) Anticipated differences between second- and third-row transition metals include the following: second-row transition metals generally form weaker bonds than third-row transition metals; 15a second-row transition metals also show an increased stability in lower oxidation states in comparison to third-row metals; 15b and second-row metals show a lower tendency to be pentacoordinated in comparison to third-row transition metals. ^{15c} (a) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry; University Science: Mill Valley, CA, 1987; p 239. (b) Marks, T. Bonding Energetics in Organometallic Compounds; ACS Symposium Series; American Chemical Society: Washington, DC, 1990; p 428. Huheey, J. E. Inorganic Chemistry: Principles of Structure and Reactivity; Harper: San Francisco, CA, 1983. (c) Louw, W. J.; Hepner, C. E. Inorg. Chem. 1980, 19, 7. Mestroni, G.; Camus, A. Inorg. Nucl. Chem. Lett. 1973, 9, 261. Mestroni, G.; Camus, A.; Zassinovich, G. J. Organomet. Chem. 1974, 65, 119.

(16) The systematic names for 1 and 2 are (i) trisodium pentakis-(tetrabutylammonium) [[(1,2,5,6-η)-1,5-cyclooctadiene]iridate][heptacosa-µ-oxopentadecaoxo[µ9-[phosphato(3-)-0:0:0':0'':0 O''':O'']]pentatungstate]hexa-μ-oxotri-μ₃-oxotrioxo[μ₉-[phosphato(3-)-O:O:O':O'':O'':O''']]triniobate(8-), 1, and (ii) trisodium pentakis(tetrabutylammonium) [[(1,2,5,6-η)-1,5-cyclooctadiene]rhodate][heptacosa- μ -oxopentadecaoxo[μ 9-[phosphato(3-)-O:O:O:O:O: O":O":O":)pentatungstate]hexa-\u03c4-oxotri-\u03c43-oxotrioxo[\u03c40-[phosphato-(3-)-O:O:O':O'':O''':O''']]triniobate(8-), 2. We thank Dr. Tom Sloan of Chemical Abstracts Service for his help in deriving these systematic names.

(17) Lead references (see also the references therein): (a) van't Blik, H. F. J.; van Zon, J. B. A. D.; Huizinga, T.; Vis, J. C.; Koningsberger, D. C.; Prins, R. J. Am. Chem. Soc. 1985, 107, 3139. (b) Frederick, B. G.; Apai, G.; Rhodin, T. N. J. Am. Chem. Soc. 1987, 109, 4797. (c) Binsted, N.; Evans, J.; Greaves, G. N.; Price, R. J. Organometallics 1989, 8, 613. (d) Herrero, J.; Blanco, C.; Gonzalez-Elipe, A. R.; Espinós, F. P.; Oro, L. A. J. Mol. Catal. 1990, 62, 171. (e) Basu, P.; Panayotov, D.; Yates, J. T., Jr. J. Am. Chem. Soc. 1988, 110, 2074. (f) Buchanan, D. A.; Hernandez, E., Solymosi, F., White, J. M. J. Catal. 1990, 125, 456.

Figure 3. Crystallographically determined structure of [(C₅Me₅)-Rh-P2W15Nb3O62]7-8i The Nb and W3 atoms each are composite, Nb_{0.5}W_{0.5}, because the anion adopts two equally-weighted orientations related by the mirror plane of a 3/m (D_{3h}) crystallographic site. The C_3Me_5 group lies in a plane normal to the anion C_3 axis and is disordered because of the incompatibility of its 5-fold symmetry with that axis.84

Herein we report the full details of the synthesis and especially the characterization of [(1,5-COD)IrP2W15Nb3O62]8-, 1, and of its previously unreported Rh analog, [(1,5-COD)Rh-P2W15-Nb₃O₆₂]⁸⁻, 2, including an improved synthesis of the underlying polyoxometalate support system, [(n-C₄H₉)₄N]₉P₂W₁₅Nb₃O₆₂, that is the result of more than 40 preparations by four of us. Characterization of the title compounds was accomplished in solution (where catalysis has been reported; vide infra) by a multitude of techniques. A somewhat larger scale, Inorganic Synthesis version of these preparations has been submitted for publication, 8j and the synthesis and characterization of the watersoluble, all-Na⁺ salt, Na₉P₂W₁₅Nb₃O₆₂, are also available elsewhere.8k

Results and Discussion

Synthesis of [(1,5-COD)M·P₂W₁₅Nb₃O₆₂]⁸⁻. The synthesis of [(1,5-COD)Ir $P_2W_{15}Nb_3O_{62}]^{8-}$, 1, and of [(1,5-COD)Rh P_2W_{15-} Nb₃O₆₂]⁸⁻, 2, in greater than 95% purity follows the conceptually straightforward route outlined in eq 1a, provided that the

$$[(n-C_4H_9)_4N]_9P_2W_{15}Nb_3O_{62} + \\ [M(1,5-COD)(CH_3CN)_2]BF_4 \xrightarrow{dry CH_3CN \atop \le 1 \text{ ppm }O_2} \\ [(n-C_4H_9)_4N]_8[(1,5-COD)M\cdot P_2W_{15}Nb_3O_{62}] + \\ [(n-C_4H_0)_4N]BF_4 (1a)$$

synthesis is carried out under strict O2-free conditions (less than 1 ppm¹⁸) in an inert-atmosphere drybox. It has not proven possible to isolate either 1 or 2 as its pure octakis(tetrabutylammonium) salt (i.e., in its all- $[(n-C_4H_9)_4N]^+$ form) in any

^{(18) &}lt;sup>31</sup>P NMR spectra of 1 that has been prepared in a glovebag in the presence of an estimated 20-50 ppm of O₂ show approximately 30-50% of unidentified impurities: Nomiya, K.; Finke, R. G. Unpublished results.

Scheme 1. Seven-Step Synthesis of [(n-C₄H₉)₄N]₉P₂W₁₅Nb₃O₆₂

$$2 \ PO_4^{3-} + 18 \ WO_4^{2-} \xrightarrow{H^+} \alpha / \beta - P_2 W_{18} O_{62}^{6-} \\ 10 \% \ KHCO_3$$

$$[\alpha_2 - P_2 W_{17} O_{61}^{10-} WO_4^{2-}]$$

$$10 \% \ KHCO_3$$

$$[\alpha_2 - P_2 W_{17} O_{61}^{10-} WO_4^{2-}]$$

$$10 \% \ KHCO_3$$

$$10 \% \ KHCO_3$$

$$10 \% \ KHCO_3$$

$$10 \% \ MHCI$$

reasonable yield.¹⁹ It did prove possible, however, to obtain 1 and 2 as analytically pure, homogeneous, bright yellow solids by employing our mixed-cation method^{8j,9b} ([(n-C₄H₉)₄N]⁺/Na⁺) followed by at least two ethyl acetate reprecipitations of paper-filtered solutions, eq 1b. (The multiple countercations associated

with polyoxometalate polyanions provide great flexibility in controlling their solubility properties by altering which cations are present. However, discovering which cation combinations give the desired properties is often experimentally tedious.²⁰)

It is worth mentioning that, to the best of our knowledge, the synthesis of $[(1,5\text{-COD})M\text{-}P_2W_{15}Nb_3O_{62}]^{8-}$, M=Ir and Rh, constitutes a record in terms of complexity and number of synthetic steps (eight steps) involved in a polyoxoanion synthesis. Seven of the eight steps are involved in the underlying synthesis of the $P_2W_{15}Nb_3O_{62}^{9-}$ support system, Scheme 1. Note that the ca. 95% purity of the lacunary, polyoxoanion synthon, $P_2W_{15}O_{56}^{12-}$, as a noncrystalline powder is a key to the purity of the final product ($\geq 95\%$); see the supplementary material for a ³¹P NMR spectrum of $P_2W_{15}O_{56}^{12-}$ demonstrating its $\geq 95\%$ purity.

Compositional Characterization of 1 and 2. The molecular formulas of 1 and 2 are established by elemental analyses (all elements, including oxygen; see the Experimental Section and the supplementary material, Tables A and B, where alternative formulations are ruled out). The C, H, and N analyses require the formulation of pentakis(tetrabutylammonium) trisodium salts and are inconsistent with formulations with even one more (or less) [(n-C₄H₉)₄N]⁺ or Na⁺. Ultracentrifugation sedimentation-

equilibrium molecular-weight experiments demonstrate that these compounds are unaggregated monomers under the conditions of the experiment. [1: $\bar{M}_{\rm w}({\rm calc})=5670$, $\bar{M}_{\rm w}({\rm found})=5600\pm600$ (supplementary material, Figure A). 2: ($\bar{M}_{\rm w}({\rm calc})=5584$, $\bar{M}_{\rm w}({\rm found})$ 5910 \pm 600 (supplementary material, Figure B). ($\bar{M}_{\rm w}=$ weight-average molecular weight)].²¹ Consistent with these solution MW measurements, the fast-atom-bombardment mass spectra (FAB-MS) also support unaggregated, monomeric formulations for 1 and 2 and reveal no peaks at higher mass. However, neither the positive nor the negative ion FAB-MS of 1 or 2 show any signal due to the parent ion. (A detailed analysis of the FAB-MS spectrum of 1 has appeared elsewhere; ²² the positive and negative ion FAB-MS spectra of 2 are available in the supplementary material, Figures C and D, respectively.)

Infrared measurements for 1 and 2 (supplementary material, Figure E) confirm that the Dawson-type "P₂M₁₈O₆₂^{n-"} heteropolytungstate framework remains intact under the conditions of the synthesis, consistent with formulation of both complexes as containing intact P₂W₁₅Nb₃O₆₂⁹⁻ with [(1,5-COD)M]⁺ supported upon its surface. Moreover, a careful examination of the IR spectra reveals a lack of bands corresponding to coordinated CH₃CN. The only plausible inner-sphere ligands for [(1,5-COD)M]⁺, then, are the surface oxygens of P₂-W₁₅Nb₃O₆₂⁹⁻, a result confirmed by the ion-exchange experiments and NMR spectroscopic characterization which follow.

Chemical Evidence for Inner-Sphere M¹-to-Polyoxoanion Binding. Evidence for the covalent, inner-sphere bonding of [(1,5-COD)M]⁺ to P₂W₁₅Nb₃O₆₂⁹⁻ (rather than an [(1,5-COD)M(CH₃CN)₂]⁺ ion-paired complex) is provided by ion-exchange experiments (as well as IR and ¹H and ³¹P NMR spectra; vide infra), specifically experiments with ion-exchange resins which demonstrate the nonexchangeability in acetonitrile of the cationic [(1,5-COD)M]⁺ complexes bonded to the P₂W₁₅Nb₃O₆₂⁹⁻ polyoxoanion.

As detailed in the Experimental Section, in two separate experiments acetonitrile solutions of [(n-C4H9)4N]5Na3[(1,5-COD)M·P₂W₁₅Nb₃O₆₂] (M = Ir, Rh) were loaded (in an inert atmosphere drybox) onto a cation-exchange column in the [(n- $C_4H_9)_4N]^+$ form, P-SO₃⁻[(n-C₄H₉)₄N⁺] (P = macroreticular polymer), and then slowly eluted down the column. No retention of the colored, anionic [(1,5-COD)M-P₂W₁₅Nb₃O₆₂]⁸ was observed. A ³¹P NMR spectrum of each of the individual eluants showed the familiar two-line spectrum confirming the integrity of the eluted parent complexes, 1 and 2. In a second series of experiments [(n-C₄H₉)₄N]₅Na₃[(1,5-COD)M·P₂W₁₅-Nb₃O₆₂] was loaded onto an anion-exchange column in its Cl⁻ form, P-NR₃+Cl- (P = macroreticular polymer). Here the colored, anionic [(1,5-COD)M·P₂W₁₅Nb₃O₆₂]⁸⁻ was retained on the column. As a control in separate experiments, a solution of [(1,5-COD)M(CH3CN)2]BF4 in acetonitrile was loaded onto the same cation- and anion-exchange columns. As expected, in the control experiment the cationic, colored [(1,5-COD)M-(CH3CN)2]+ is retained on a cation-exchange column but passes

⁽¹⁹⁾ Attempts to perform EtOAc reprecipitations on nearly saturated CH₃-CN solutions of the mixture of [(n-C₄H₉)₄N]₈[(1,5-COD)M·P₂W₁₅-N)₃O₆₂] plus 1 equiv of [(n-C₄H₉)₄N]BF₄ lead to intolerably low yields of less than 10%.

⁽²⁰⁾ See footnote 8 in ref 8a.

⁽²¹⁾ In the determination of the molecular weight, the absorbance of the solution is measured in the UV region (335 nm), where both the heteropolyoxoanion and the [(1,5-COD)M]⁺ absorb. In the strictest sense ultracentrifugation shows only that the polyoxoanion portion of 1 and 2 is unaggregated. Ideally one would also check the molecular weight by following the absorbance in a region characteristic only of [(1,5-COD)M]⁺. However, attempts to follow the absorbance at wavelengths above 400 nm, a region where the polyoxoanion portion does not absorb, were unsuccessful, due to low absorbance of the sample solution in this wavelength range. The next logical experiment, increasing the sample concentration, is not feasible experimentally, as sedimentation equilibrium cannot be attained for concentrated solutions.

⁽²²⁾ Trovarelli, A.; Finke, R. G. Inorg. Chem. 1993, 32, 6034.

Figure 4. ³¹P NMR spectrum of 1 in DMSO-d₆ (top; A) without Kryptofix 2.2.2. added and (bottom; B) with 3 equiv of Kryptofix 2.2.2. added showing that the initially observed, excessive line widths are caused by Na+...P2W15Nb3O629- ion pairing.

through (presumably as [(1,5-COD)MCl]2) when applied to the anion-exchange column. In summary, even by themselves, these simple ion-exchange experiments provide good evidence for inner-sphere bonding of the [(1,5-COD)M]+ fragments to P2W15Nb3O629-.

Multinuclear (31P, 183W) NMR Characterization. Further characterization of 1 and 2 in solution, the medium of greatest interest for catalytic reactivity, relied heavily on multinuclear NMR, especially ³¹P and ¹⁸³W NMR spectroscopy. ³¹P and ¹⁸³W NMR are useful in characterizing the heteropolyoxoanion support's purity and framework, respectively (recall Figure 2) and provide additional evidence for the binding of [(1,5- $COD)M]^+$ to $P_2W_{15}Nb_3O_{62}^{9-}$.

³¹P NMR spectroscopy of 1 in DMSO-d₆ showed primarily two lines of approximately equal intensity, Figure 4, consistent with the presence of a single isomer. However, in DMSO the phosphorus resonance (δ -8.2) assigned to the "north" PO₄³ group that is closer to the "Nb₃O₉³⁻" cap in the P₂W₁₅Nb₃O₆₂⁹⁻ moiety becomes flanked by two smaller peaks at δ -7.5 and -9.2, Figure 4A. Since $Na^+ \cdot \cdot \cdot P_2W_{15}Nb_3O_{62}^{9-}$ ion pairing (vide supra) was suspected as the source of the extra peaks in the ³¹P NMR spectrum obtained in DMSO, 3 equiv of the cryptand Kryptofix 2.2.2. (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo-[8.8.8]hexacosane) were added to the DMSO- d_6 NMR solution in the drybox, and the ³¹P NMR spectrum was remeasured. The smaller peaks collapsed into the center, -8.2 ppm, resonance and the half-width of this resonance was reduced 10-fold to their normal $\Delta v_{1/2} = 4-6$ Hz values. A ³¹P NMR spectrum of 2 in DMSO-d₆ (Figure 5) also showed, following addition of 3 equiv of Kryptofix 2.2.2., a primarily two-line spectrum (δ -8.2, -14.1) as observed above for $[(1,5-COD)IrP_2W_{15}Nb_3O_{62}]^{8-}$, 1. ³¹P NMR spectra of 1 and 2 collected in CD₃CN (and in the presence of 3 equiv of Kryptofix 2.2.2.) also exhibit two lines of approximately equal intensity and are available in the supplementary material, Figures F and G.

For comparison, the P₂W₁₅Nb₃O₆₂⁹ heteropolyoxoanion support shows two lines of equal intensity in the ³¹P NMR spectrum in either DMSO- d_6 [δ -7.2 ($\Delta v_{1/2} = 3.5 \pm 0.3$ Hz), $-14.2 (\Delta v_{1/2} = 4.6 \pm 0.3 \text{ Hz})$] or CD₃CN [δ -7.2 ($\Delta v_{1/2} = 3.1$ ± 0.3 Hz), -14.3 ($\Delta v_{1/2} = 4.6 \pm 0.3$ Hz)]. Hence, upon binding of the organometallic fragment to form 1 or 2, the resonance for the phosphorus closer to the triniobium cap is shifted

Figure 5. 31P NMR spectra of [(n-C4H9)4N]5Na3[(1,5-COD)Rh-P2W15-Nb₃O₆₂], 2, in DMSO-d₆ with 3 equiv of Kryptofix 2.2.2. added (top) and without Kryptofix 2.2.2. added (bottom). These spectra show the effect of added Na+-binding Kryptofix 2.2.2. (top vs bottom) and the relatively high homogeneity and purity (≥95%) for the polyoxoanionsupported [(1,5-COD)Rh]+.

markedly to higher field (from δ -7.2 to -8.2). This upfield shift is much more pronounced than that seen for the "south" phosphorus, that is, the phosphorus closer to the tritungsten cap, which does not shift within experimental error (from δ -14.3 \pm 0.2 to -14.1 ± 0.2). This observation is in accord with, and actually prima facie evidence for, preferential binding of [1,5-COD)M]⁺ to the more basic "Nb₃O₉³⁻" cap in solution. The observed line widths, $\Delta v_{1/2} = 5-6$ Hz, for the two resonances of 1 and 2 in the ³¹P NMR spectrum are comparable to those observed for the unsupported polyoxoanion, P2W15-Nb₃O₆₂9-, which showed values for $\Delta \nu_{1/2}$ of 3-5 Hz.

These ³¹P NMR results demonstrate that 1 and 2 are obtained as at least 95% of a single (possibly time-averaged) isomer, a nontrivial result in comparison to all prior, non-P₂W₁₅Nb₃O₆₂⁹ polyoxoanion-supported organometallic complexes. 6.7

The 183 W NMR spectrum of [(1,5-COD)IrP₂W₁₅Nb₃O_{62]}8-, 1, in DMSO-d₆, Figure 6, exhibited the expected three peaks,

Figure 6. The 1:2:2 relative intensity three-line ¹⁸³W NMR spectra (DMSO- d_6) (A): 0.09 M 1 after 10 000 scans collected over 5 h, S/N = 12/1, δ (no. of W, $\Delta v_{1/2}$) -125.0 (3 W, 14.9 \pm 1.0 Hz), -150.3 (6 W, 13.7 \pm 0.7 Hz), -194.0 (6 W, 25.5 \pm 1.5 Hz]); (B) 0.09 M 1, with 3 equiv of Kryptofix 2.2.2., added after 10 000 scans collected over 5 h, S/N = 25/1, δ (no. of W, $\Delta v_{1/2}$) -128.1 (3 W, 12.0 \pm 0.3 Hz), -152.2 (6 W, -13.9 \pm 0.2 Hz), -191.4 (6 W, 11.1 \pm 0.2 Hz). The ¹⁸³W NMR spectrum (referenced to 2 M Na₂WO₄ in 1:1 D₂O/H₂O by the external substitution method) shows a 2-fold increase in S/N upon addition of Kryptofix 2.2.2., which removes the ion-pairing effects. ⁵⁹

suggesting either that [(1,5-COD)IrP2W15Nb3O6218- is of C3v (average) symmetry on the ¹⁸³W NMR time scale (¹⁷O NMR studies demonstrate this to be the case for 1) or that any perturbations away from the inherent $C_{3\nu}$ symmetry of P₂W₁₅Nb₃O₆₂9- are not detectable by ¹⁸³W NMR. The integrated intensities for the three peaks are 1:2:2, as expected for the presence of two tungsten belts consisting of six WO6 octahedra each and a tungsten cap consisting of three WO6 octahedra. Addition of 3 equiv of Kryptofix 2.2.2. increases the signal-to-noise (S/N) 2-fold (Figure 6A vs Figure 6B). (The increased S/N is, again, readily explained by the removal of the Na+···P₂W₁₅Nb₃O₆₂9- ion-pairing and thus the increased concentration of a single form of 1.) A similar 183W NMR spectrum (Figure 7) was observed in DMSO-d6 for 2, once again exhibiting three peaks with intensities of 1:2:2. However, as we will see in the ¹⁷O NMR studies of [(1,5-COD)Rh·P₂W₁₅-Nb₃O₆₂₁8-, 2, the ¹⁸³W NMR is unable to detect deviations from the polyoxoanion's inherent $C_{3\nu}$ symmetry which occur via the presence of two or more support-site isomers for 2.

¹H and ¹³C NMR Studies. The ¹H NMR of the coordinated 1,5-COD in 1 in DMSO- d_6 consists of three broad resonances at δ 1.82, 2.28, and 3.99 (intensities 4:4:4) over the temperature range 25–95 °C. In the case of 2, the ¹H NMR spectrum in DMSO- d_6 (supplementary material, Figure H) showed the presence of three peaks (δ 1.89, 2.42, 4.29) which also integrated to 4 H each. In no case were peaks attributable to free 1,5-COD detected; hence, neither dissociation of 1,5-COD from Ir or Rh nor decomposition of 1 or 2 in room temperature DMSO is seen. The ¹³C{¹H} NMR spectra of 1 and 2 in DMSO- d_6 (supplementary material, Figure I) show two resonances each. Interestingly, the ¹H NMR spectra of 1 and 2 are solvent-dependent (e.g., in CD₃CN and acetone- d_6 , supplementary

Figure 7. ¹⁸³W NMR spectrum of [(n-C₄H₉)₄N]₅Na₃[(1,5-COD)Rh-P₂W₁₅-Nb₃O₆₂] in DMSO-d₆ with 3 equiv of Kryptofix 2.2.2. added, showing

Nb₃O₆₂] in DMSO- a_6 with 3 equiv of Kryptonx 2.2.2. added, showing three peaks suggesting that $[(1,5\text{-COD})\text{Rh·P}_2\text{W}_{15}\text{Nb}_3\text{O}_{62}]^8$ has $C_{3\nu}$ (average) symmetry on the ¹⁸³W time scale (or that any perturbations away from the inherent $C_{3\nu}$ symmetry of $P_2\text{W}_{15}\text{Nb}_3\text{O}_{62}^9$ are not detectable by ¹⁸³W NMR spectroscopy; see the text for further discussions of this point).

material, Figures J and K), a fact that we were unable to clarify further (e.g., even by variable temperature NMR studies; see the Experimental Section for further details).

Overall, the observed two-line ¹³C{¹H} and three-line ¹H NMR spectra for 1 and 2 in DMSO-d₆ are consistent with a five-coordinate metal-to-polyoxoanion complex (coordination by two olefinic C=C bonds of the cyclooctadiene ligand plus three oxygens of the heteropolyoxoanion). Klemperer and coworkers have reported similar spectra in CH₂Cl₂ for the five-coordinate iridium-polyanion complexes^{7i.f} (1,5-COD)IrP₃O₉²⁻ and (1,5-COD)Ir(C₃Me₃TiW₃O₁₈). (A detailed comparison of tabulated ¹H and ¹³C NMR shifts for polyoxoanion-supported complexes of [(1,5-COD)Ir]+ is available elsewhere.^{8h}) Furthermore, Kläui has also reported²³ a three-line ¹H NMR spectrum for (1,5-COD)Rh⁻[(C₃H₅)Co{P(O)(OC₂H₅)₂)₃] in which rhodium is also five-coordinate (coordinated by two olefinic C=C bonds of the cyclooctadiene ligand plus three oxygens of the support).

¹⁷O NMR Spectroscopy of P₂W₁₅Nb₃O₆₂⁹⁻ and of [(1,5-COD)Ir-P₂W₁₅Nb₃O₆₂]⁸⁻, 1.^{9s} Direct Detection of an Ir-O-Nb₂ Bond. First, the needed control and reference point for the ¹⁷O NMR studies²⁴ was achieved by selectively enriching^{24k} the parent polyoxoanion, P₂W₁₃Nb₃O₆₂⁹⁻, in only its terminal Nb-O and bridging Nb₂-O oxygens (i.e., selective enrichment in six oxygens of the "Nb₃O₉3-" minisurface).²⁵ This was accomplished by stirring P₂W₁₅Nb₃O₆₂⁹⁻ for 1 week at 22

(23) Scotti, M.; Valderrama, M.; Rojas, S.; Kläui, W. J. Organomet. Chem. 1986, 301, 369.

⁽²⁴⁾ References for seminal ¹⁷O NMR methodologies and chemical shift data, which provide the needed background for the present work, are as follows (see also the table of ¹⁷O NMR data presented elsewhere⁹s): (a) Klemperer, W. G. Angew. Chem., Int. Ed. Engl. 1978, 17, 246. (b) Filowitz, M.; Ho, R. K. C.; Klemperer, W. G.; Shum, W. Inorg. Chem. 1979, 18, 93. (c) Besecker, C. J.; Klemperer, W. G.; Maltibie, D. J.; Wright, D. A. Inorg. Chem. 1985, 24, 1027. (d) Klemperer, W. G.; Main, D. J. Inorg. Chem. 1990, 29, 2355. (e) Besecker, C. J.; Day, V. W.; Klemperer, W. G.; Thompson, M. R. Inorg. Chem. 1985, 24, 44. (f) Day, V. W.; Klemperer, W. G.; Shum, W. J. Am. Chem. Soc. 1978, 100, 4891. (h) Besecker, C. J.; Klemperer, W. G. J. Am. Chem. Soc. 1980, 102, 7598. (i) Besecker, C. J.; Day, V. W.; Klemperer, W. G.; Schwartz, C. J., Am. 106, 4125. (j) Day, V. W.; Klemperer, W. G.; Schwartz, C. J. Am. Chem. Soc. 1987, 109, 6030. (k) Stirring CH₃CN solutions of polyoxoanions in the presence of ¹⁷O-enriched H₂O is reported by Klemperer and co-workers to enrich only the terminal (Nb-O) and bridging (Nb₂-O) niobium oxygens of Nb₂W₄O₁₉⁴⁻⁻ within <10 min. After 24 h, they find that enrichment of the NbWO positions is possible but that enrichment of the W₂O and WO positions (not observed under the above mild conditions) is possible for Nb₂W₄O₁₉⁴⁻⁻ only after stirring a slurry of the polyoxoanion in ¹⁷O-enriched H₂O with base catalysis ([(n-C₄H₉)₄N]OH) and at elevated temperature (95 °C). ²⁴b

Figure 8. (A) Spectrum of $[(n-C_4H_9)_4N]_{9-x}H_xP_2W_{15}Nb_3O_{62}$ following enrichment with 10% $H_2^{17}O$ for 1 week. ¹⁷O NMR (48.967 MHz, CD₃-CN, 22 °C), δ (no. of O, assignment, $\Delta \nu_{1/2}$): 180 (s, 1 O, Nb₂-OH⁺, 230 ± 30 Hz), 512 (s, 3 ± 1 O, Nb₂O, 260 ± 10 Hz), 752 (s, 3 ± 1 O, NbO, 990 \pm 170 Hz). (B) Spectrum of $[(n-C_4H_9)_4N]_5Na_3[(1.5-$ COD)Ir-P2W15Nb317O6O56], which was prepared from preformed 1 by enrichment with 10% H₂¹⁷O over a (shorter) period of 36 h. ¹⁷O NMR (48.967 MHz, CD₃CN, 22 °C, 3 equiv of Kryptofix 2.2.2. added), δ (no. of O, assignment, $\Delta v_{1/2}$): 680 (s, 3 ± 1 O, NbO, 440 ± 140 Hz), 333 (s, 3 \pm 1 O, Nb₂-OIr, 510 \pm 110 Hz). Plausible reasons for the lower S/N observed in the bottom spectrum (all other instrument and acquisition parameters were the same for the top and bottom spectra): the shorter enrichment time (36 h vs I week) for the sample in the bottom spectrum, plus coordination of the [(1,5-COD)Ir]+ fragment which should slow 17OH2 exchange into 1.

°C in a basic mixture (basic due to the P₂W₁₅Nb₃O₆₂9polyoxoanion's strong basicity) of 2 mL of acetonitrile/1 mL of 10% enriched ¹⁷OH₂, eq 2. Two resonances of approximately

$$[(n-C_4H_9)_4N]_9P_2W_{15}Nb_3O_{62} \xrightarrow{\stackrel{2.1 \text{ week/22 °C}}{1.\text{ CH}_3\text{CN/H}_2\text{''O}}} [(n-C_4H_9)_4N]_{9-x}H_xP_2W_{15}Nb_3^{17}O_6O_{56} (2)$$

equally integrated intensities at δ 750 (Nb-O, 3 oxygens) and δ 510 (Nb₂-O, 3 oxygens) appear in the ¹⁷O NMR, Figure 8. These chemical shift assignments as Nb-O and Nb2-O oxygens are made with confidence by comparison to similar environments in related, structurally characterized polyoxoanions, in particular to those of the seminal ¹⁷O NMR work of Klemperer and co-workers.²⁴ The assignments made are also consistent with the established relative rates of oxygen enrichment: Nb-O $> Nb_2O >> NbWO >>> W-O-W \approx WO \approx PO \approx 0.24k$

$$[(1.5-COD)IrP_2W_{15}Nb_3O_{62}]^{8^-} = (1.5-COD)Ir(solv)_2^+ + P_2W_{15}Nb_3O_{62}^{9^-} (i)$$

$$P_2W_{15}Nb_3O_{62}^{9-} + 6^{17}OH_2 = 6H_2O + P_2W_{15}Nb_3^{17}O_6O_{61}^{9-}$$
 (ii)

$$P_2W_{15}Nb_3^{17}O_6O_{61}^{9-} + (1.5\text{-COD})Ir(solv)_2^+ \rightleftharpoons [(1.5\text{-COD})IrP_2W_{15}Nb_3^{17}O_6O_{66}]^{8-}$$
 (iii)

INDESCRIPTION AND ADDRESS.

out the second control of the second second

The "O NMR assignments are further secured by a careful inspection of the relative line widths of the observed peaks. For example, the resonance assigned to Nb-O terminal oxygens in P₂W₁₅Nb₃O₆₂9- has a line width more than triple of that assigned to the Nb2-O bridging oxygens, as expected on the basis of the literature. 98 A high-field resonance observed at δ 180 is assigned to Nb₂-O-H⁺ by comparison to the literature. This assignment is further supported by titration experiments in which 0.6 equiv of [(n-C₄H₉)₄N]+OH⁻ resulted in the almost complete loss of this resonance. Hence the enrichment procedure in eq 2 in fact yields the protonated H₂P₂W₁₅Nb₃¹⁷O₆O₅₆^{x-9} (a result which suggests that P₂W₁₅Nb₃O₆₂⁹ may be able to deprotonate H₂O and, therefore, has a basicity approaching that of OH-; an alternative explanation is that a small amount of Nb5+/W6+ polyoxoanion impurity hydrolyzes to give 5-6 H+). The above ¹⁷O enrichment procedure for P₂W₁₅Nb₃O₆₂9- has been repeated more than 10 times throughout these studies with identical results each time.

Unfortunately, the use of pre-enriched H_zP₂W₁₅Nb₃¹⁷O₆O₅₆r-9 (obtained as in eq 2 above) failed to give clean samples of enriched 1, but not unexpectedly due to the presence of protons in Nb₂O-H⁺ which apparently block the iridium-support site. The successful, empirically discovered ¹⁷O enrichment method⁹⁸ involved, instead, stirring preformed 1 in a mixture of 2 mL of acetonitrile/1 mL of 10% enriched $^{17}\text{OH}_2$ for 36 h at 22 \pm 2 °C (eq 3). (The use of shorter, selective enrichment times is crucial,

$$\begin{array}{c} [(n\text{-}C_4H_9)_4N]_5Na_3[(1,5\text{-}COD)IrP_2W_{15}Nb_3O_{62}] \\ \underline{\hspace{0.5cm} ^{1.}\text{CH}_3\text{CN/H}_2\text{TO}} \\ \underline{\hspace{0.5cm} ^{2.36}\text{ M22 °C}} \end{array}$$

$$[(n-C_4H_9)_4N]_5Na_3[(1,5-COD)IrP_2W_{15}Nb_3^{17}O_6O_{56}]$$
 (3)

since longer enrichment times lead to almost complete decomposition of 1.9g) A 31P NMR spectrum of the enriched product taken after the ¹⁷O NMR cited next was acquired (supplementary material, Figure N) indicates two important points: (i) that the enrichment has proceeded cleanly to yield primarily 1 and (ii) that 1 is still intact after the 170 NMR spectrum has been acquired. The ¹⁷O NMR spectrum (Figure 8) of the resultant, enriched "Nb₃O₉3-" minisurface in [(n-C₄H₉)₄N]₅Na₃[(1,5-COD)IrP2W15Nb317O6O56] shows only the expected terminal Nb-O (δ 680) and Nb₂-O-Ir oxygen resonances (δ 330), assigned again by analogy to the literature.24 (Three equivalents of Kryptofix 2.2.2. was added to the sample to eliminate the peak broadening due to the Na+···P₂W₁₅Nb₃O₆₂9- ion-pairing interactions established previously.) The ratio of integrated peak intensities is unity, within experimental error, reflecting once again the presence of equal numbers of the two types of magnetically inequivalent oxygens, and demonstrating that three Nb2O-Ir bonds are present within experimental error. This experiment has been repeated three times with identical results so long as the ³¹P NMR of the enriched 1 shows it to be largely undecomposed (Figure O, supplementary material, shows the results of the two identical repeat experiments).

The observed two-line 17O NMR spectrum for [(1,5-COD)IrP2W15Nb3O62]8-, 1, is definitive in requiring average $C_{3\nu}$ (pseudo) symmetry in 1 (pseudo, as the local 2-fold axis at Ir limits the maximum symmetry in 1 to C_s , rigorously speaking). Assuming a static structure, it would also require that the polyoxoanion serves as a tripodal support (i.e., that iridium is five-coordinate, with [(1,5-COD)Ir]+ bound to three Nb2-O bridging oxygens). [However, one should note the possibility that the two-line spectrum of [(1,5-COD)Ir-P2W15-Nb₃O₆₂]⁸⁻ might also be accounted for by some group of fluxional structures that average to effective $C_{3\nu}$ symmetry around

^{(25) (}a) Although ¹⁷O NMR is a powerful structural tool, little discussed potential problems with this method that one needs to be aware of include (i) the possibility of selective, nonstatistical exchange of ¹⁷OH₂ (i.e., ideally, the exchange kinetics and mechanism should be known), (ii) the possibility of intermolecular exchange, and (iii) the possibility of intramolecular exchange or fluxional processes. (b) Although unproven, in the present case we suspect a low-level, prior-equilibrium dissociation of (1,5-COD)Ir(solv)₂⁺ as a key to the enrichment process:

Figure 9. (A) Ball and stick representation of the proposed average C_{3r} (pseudo) symmetry structure for the $[(1,5\text{-COD})\text{Ir}]^+$ fragment supported on the "Nb₃O₉³⁻" face of $[(n\text{-C}_4\text{H}_9)_4\text{N}]_9[P_2\text{W}_{15}\text{Nb}_3\text{O}_{62}]$ serving as a stereochemically rigid tripodal ligand. This figure, generated from the crystal structure parameters for Na₉P₂W₁₅Nb₃O₆₂ and modified using Chem 3-D, does not emphasize the expected for two short plus one elongated iridium-to-ONb₂ bonds which make the rigorous, static symmetry C_r , for the structure shown (see the discussion of this point in the text). (B) Space-filling representation, where the black circles represent terminal oxygens, the white circles are bridging oxygens, the gray circles are terminal Nb-O oxygens, and the hatched circles are the 3 Nb-O-Nb oxygens.

the C_3 axis of 1; a detailed discussion of such a possible fluxionality in 1 is presented elsewhere. ⁹⁸ In short, the ¹⁷O NMR results require the C_3 , average-symmetry structure shown in Figure 9.

We note, however, that the static $C_{3\nu}$ average symmetry structure shown in Figure 9 is almost surely somewhat fluxional, given the following precedent. Klemperer and Dayth have shown that the three iridium-oxygen bonds in [(1,5-COD)-IrP₃O₉|²⁻ are of different lengths (in the solid-state, and by X-ray crystallography), giving rise to a square-pyramidal Ir atom (with one long Ir-O bond, 2.70 Å, in the apical position and two shorter Ir-O bonds, 2.15 and 2.20 Å). However, in solution their complex is fluxional by a process that makes the Ir-O bonds all equivalent on the NMR time scale even down to -75 °C.24d Hence, there is every reason to expect that fivecoordinate Ir in 1 will also have these same two short and one long Ir-ONb2 bonds in an instantaneous static and C3 symmetry picture. But, these three Ir-ONb2 bonds should similarly24d be fluxional in solution, becoming equivalent on the ¹⁷O NMR time scale via a dynamic elongation and shortening such that the average effective ¹⁷O, ³¹P, and ¹⁸³W NMR-determined symmetry of 1 is (pseudo) $C_{3\nu}$. This type of precedented fluxionality, 24d.26 plus the line width effect of supporting the inherently C_s symmetry $[(1,5-COD)Ir]^+$ on the inherently $C_{3\nu}$ symmetry P₂W₁₅Nb₃O₆₂9-, readily explains the small residual line widths of ca. 1-2 Hz observed in the ³¹P NMR spectra of $[(1,5\text{-COD})\text{Ir}P_2W_{15}\text{Nb}_3O_{62}]^{8-}$ (i.e., in comparison to the ³¹P NMR spectra of the parent P₂W₁₅Nb₃O₆₂⁹⁻).

Finally, before leaving this section on the ¹⁷O NMR studies of 1, it will prove relevant to the ¹⁷O NMR studies of 2 which follow to describe a control experiment which was also done for 1, but which was originally designed for the Rh complex 2 (vide infra). The purpose of this control experiment was to provide a further and independent check on whether or not the P₂W₁₅Nb₃O₆₂⁹⁻ polyoxoanion in 1 had been cleanly enriched with ¹⁷O in only the Nb-O and Nb₂-O oxygens and with little decomposition of 1. In this control experiment, a large excess of [(n-C₄H₉)₄N]Cl was added to a solution of ¹⁷O-enriched Ir complex 1 to effect the deliberate cleavage of the [(1,5-COD)-Ir]+ moiety from the heteropolyoxoanion support (i.e., cleavage ideally as the well-known [(1,5-COD)IrCl]2). Note that this control experiment is not trivial, as it tests the results of the unknown kinetics and mechanism of the ¹⁷O enrichment process involving preformed, supported [(1,5-COD)Ir]+, 1. 170 NMR spectroscopy (supplementary material, Figure W) of the resultant Cl⁻ cleavage product showed primarily two resonances of approximately equal intensities at δ 720 and 500, that is, within experimental error of the resonances for H_xP₂W₁₅Nb₃O₆₂^{x-8} (δ 750 and 510), given the width of these peaks and the unavoidably somewhat different experimental conditions (e.g., the large amount of [(n-C4H9)4N]Cl and lack of H2O/H+ in the Clcleavage sample). In addition, the sharp resonance assigned to Nb₂O-Ir at δ 330 is, as anticipated, nearly completely absent following the addition of Cl-. Hence, this Cl- cleavage control (i) confirms that the ¹⁷O NMR enrichment of preformed 1 has worked as desired (i.e., enriching just the 3 Nb-O and 3 Nb₂O oxygens in 1), (ii) provides confirming evidence that the assignment of the & 330 resonance as a Nb₂O-Ir oxygen is correct, and (iii) demonstrates that the Cl- cleavage control reaction works largely as anticipated. Lastly, a 183W NMR spectrum of the Cl⁻ cleavage experiment shows a low S/N but primarily three-line, C3, symmetry type spectrum (supplementary material, Figure X), as expected if the P2W15Nb3O629polyoxoanion is largely intact following the sequence of ¹⁷O enrichment and then Cl⁻ cleavage of its supported-organometallic fragment.

¹⁷O NMR Spectroscopy of [(1,5-COD)Rh·P₂W₁₅Nb₃O₆₂]⁸⁻ 2. Direct Detection of Rh-ONb, Bonds. In three repeats of the same experiment, the Rh complex 2 was enriched in ¹⁷O in the same manner as its Ir congener 1. The clean two-line 31P NMR spectrum (supplementary material, Figure Y) of the 17Oenriched product demonstrates that the enrichment reliably produces clean and undecomposed 2. Unexpectedly, however, the ¹⁷O NMR spectrum (Figure 10, top) contains a new, strong resonance at $\delta \approx 500$ in addition to the two peaks at δ 680 and 330 seen for the Ir congener. Hence, in a control experiment, the organometallic moiety, [(1,5-COD)Rh]+, of 2 was removed from the heteropolyoxoanion support, P2W15Nb3O629-, by addition of a large excess of [(n-C₄H₉)₄N]Cl (see the Experimental Section for a detailed account). A 17O NMR spectrum collected afterward (Figure 10, bottom) showed two lines at δ 740 and 500 (relative intensities of 1:1), confirming that 2 had, as desired, successfully been enriched in only the three terminal (NbO) and three bridging (Nb2O) niobium-oxygen sites, exactly analogous to the Ir complex [(1,5-COD)IrP2W15Nb3O62]8-.

Returning to the ^{17}O NMR spectrum of 2, the δ 330 resonance provides direct evidence for a Rh-ONb₂ bond by comparison to chemical shift data reported for similar heteropolyoxoanion-supported transition metal complexes (cf. Table C, supplementary material) and by analogy to the δ 330 resonance seen for the iridium congener, 1. However, the presence of a resonance at approximateley δ 500 can be attributed only to a Nb₂-O or a Nb-O-Rh oxygen (based on the ^{17}O NMR assignments for

⁽²⁶⁾ Lead references to the fluxionality of d⁸, five-coordinate Ir(I) and related species: (a) Shapley, J. R.; Osborn, J. A. Acc. Chem. Res. 1973, 6, 305. (b) Rodman, G. S.; Mann, K. R. J. Organomet. Chem. 1989, 378, 255. Adams, H.; Bailey, N. A.; Mann, B. E.; Taylor, B. F.; White, C.; Yavari, P. J. Chem. Soc., Dalton Trans. 1987, 1947. (c) For a study of the fluxionality of four-coordinate Ir(1,5-COD)-(Tripod) BF4+, where Tripod = HC(Ph2)3, see: El-Amouri, H.; Bahsoun, A. A.; Osborn, J. A. Polyhedron 1988, 7, 2035. (d) Computational studies: Koga, N.; Jin, S. Q.; Morokuma, K. J. Am. Chem. Soc. 1988, 110, 3417. (e) Stereochemically rigid five-coordinate Ir(I) species are also known: Lundquist, E. G.; Folting, K.; Streib, W. E.; Huffman, J. C.; Eisenstein, O.; Caulton, K. G. J. Am. Chem. Soc. 1990, 112, 855. Rhodes, L. F.; Caulton, K. G. J. Am. Chem. Soc. 1985, 107, 259. Lundquist, E. G.; Huffman, J. C.; Folting, K.; Caulton, K. G. Angew. Chem., Int. Ed. Engl. 1988, 27, 1165.

Figure 10. (A) Top: 17 O NMR spectrum of $[(n-C_4H_9)_4N]_5Na_3[(1,5-1)_4N]_5Na_5[(1,5-1)_5N]_5Na_5[(1,5-1)_5N]_5$ COD)Rh-P2W13Nb317O6O56], which was prepared from preformed 2 by enrichment with 10% H₂¹⁷O over a period of 36 h (repeat experiment). ¹⁷O NMR (20 °C, 90 mM, CD₃CN, 3 equiv of Kryptofix 2.2.2. added), δ (no. of O, $\Delta v_{1/2}$): 750 (1 \pm 0.5, 2300 \pm 850 Hz), 500 (2.5 \pm 1, 700 $Hz \pm 100 Hz$), 330 (4.3 \pm 1, 1600 \pm 300 Hz). (B) Bottom: ¹⁷O NMR spectrum (90 mM, CD₃CN, 25 °C, with 3 equiv of Kryptofix 2.2.2.) collected after cleavage (by addition of 20 equiv of [(n-C₄H₉)₄N]Cl) of the [(1,5-COD)Rh]⁺ moiety from the support-heteropolyoxoanion of ¹⁷O-enriched 2. Two lines at 5 740 and 500 of approximately equal intensities are assigned to niobium-terminal and -bridging oxygens, respectively. The peak at & 330 can be attributed to a residual Nb2-O-Rh (i.e., a residual $[(1,5-COD)Rh(Cl)-O-Nb(P_2W_{15}Nb_2O_{61})]^{8-}$ species in possible equilibrium with P2W15Nb3O629- and [(1,5-COD)-RhCl]2). These spectra were collected on a Bruker AM500 NMR instrument at Colorado State University. Instrumental parameters differ from those reported in the main text and are as follows: 170 NMR (67.80 MHz); pulse width 13 µs; acquisition time 16 ms; sweep width ±125 000 Hz.

related niobium-containing polyoxometalates; cf. supplementary material, Table C). This in turn demands some form of an off-C3 axis isomer, such as the C, symmetry isomer shown in Figure 12. Restated, either a Nb-O-Rh or a (Rh free) Nb₂O oxygen resonance (ca. δ 500), a Nb₂-O-Rh (δ 330) resonance, and a Nb-O (δ 750) resonance are just the types of ¹⁷O NMR resonances expected for the C, symmetry isomer of 2, Figure 11.27

Figure 11. Ball and stick representation of an instantaneous C, symmetry isomer for [(1,5-COD)Rh]+ supported on the "Nb₃O₉3-" face of [(n-C4H9)4N]9P2W15Nb3O62, this time via two bridging Nb2O oxygens plus one terminal Nb-O oxygen. This figure, generated from the crystal structure parameters of Na₂P₂W₁₅Nb₃O₆₂ and modified using Chem 3-D, does illustrate the expected two short rhodium-to-ONb2 bonds plus the one significantly longer rhodium-to-ONb (terminal oxygen) bond in this static C, symmetry structure.

Attempted Crystallographic Characterization of [(1,5-COD)M·P₂W₁₅Nb₃O₆₂]⁸⁻. All of our many attempts to date at the nontrivial growth of crystals of [(1,5-COD)M·P₂W₁₅- Nb_3O_{62}]⁸⁻, M = Ir and Rh, suitable for X-ray diffraction have been unsuccessful (see the Experimental Section and the supplementary material),28 although we are still engaged in a final, extensive, and broad search to find other cation combinations that will yield diffracting crystals of 1 and 2.

However, recall that we were able to obtain the structure8g shown as part of Figure 2 for the nonasodium salt of the parent heteropolytungstate, P2W15Nb3O629-, which corroborates the solution structure we previously deduced from solution NMR studies.8a The previously unpublished packing diagram for $Na_9P_2W_{15}Nb_3O_{62}$ shows $Na^{+\cdots}P_2W_{15}Nb_3O_{62}^{9-}$ solid-state "ion-pairing" interactions, with $Na^{+\cdots}O-M$ (M = Nb, W) distances of 2.3-2.5 Å, which form a Na+ cloud around the polyoxometalate as shown in Figure 12. Such ion-pairing²⁹ persists in solution, causing the initially puzzling extra peaks and line

⁽²⁷⁾ That is not to say that the ¹⁷O NMR for 2 is fully understood. A static C_s symmetry isomer of 2 should show four ¹⁷O NMR resonances (integrals, assignments, and anticipated chemical shifts): 2 Nb-O, ca. 750 ppm; 1 Nb₂O, ca. 500 ppm; 1 Nb-O-Rh, ca. 500 ppm; 2 Nb₂-O-Rh, ca. 330 ppm. Instead, only three ¹⁷O NMR resonances $[\delta = 750 \text{ (ca. 1)}, 500 \text{ (ca. 2.5)}, 330 \text{ (ca. 4)}]$ are observed (note that their approximate, quantitatively unreliable integrations given above in parentheses are of little use). Because a $C_{1\nu}$ structure (cf. Figure 9) has two ¹⁷O NMR resonances (Nb-O, $\phi \approx 750$; Nb₂-O-Rh, $\phi \approx 750$; Nb₂-O-Rh 330) and the C_1 symmetry structure should have four, the observation of three 17 O NMR peaks for 2 suggests some fluxional process (albeit none we can write gives three peaks, unless the peaks near δ 500 are superimposed and unresolved, a hypothesis not supported by the fact that a single lorentzian fits the δ 500 peak in Figure 10A reasonably well, save the shoulders on both left and right sides of the peak). Lowtemperature ¹⁷O NMR studies (to attempt to freeze out any fluxional processes) proved nonfeasible (only broad, nondiscernible peaks are en) due to the expected severe quadrapolar line broadening of the 170 NMR resonances at lower temperatures.

⁽²⁸⁾ Small (ca. 0.3 mm \times 0.1 mm \times 0.1 mm) yellow needles (in \approx 5% yield) of, presumably, the $[(n-C_4H_9)_4N]^+_3$ salt of $[(1,5-COD)IrP_2W_{15}-(1,5$ Nb₃O₆₂)⁸⁻² were fortuitously obtained from an approximately 4:1 CD₃-CN:H₂O solution that had been prepared for the ¹⁷O NMR study of 1. These small, fragile, air-sensitive crystals rapidly desolvated, making their placement in a capillary extremely difficult. The few crystals that were ultimately placed in capillaries diffracted only weakly, precluding even the determination of a unit cell. (In response to a referee's query, low-temperature mounting of the crystals using a liquid N2 stream was not tried, as low-temperature crystallography was not available at the time at Oregon.)

^{(29) (}a) Ion-pairing effects in aqueous polyoxometalate chemistry have been reported; 296-c hence, it follows that they should also exist in organic solvents with a lower dielectric constant. (b) Clare, B. W.; Kepert, D. L.; Watts, D. W. J. Chem. Soc., Dalton Trans. 1973, 2481. (c) Druskovich, D. M.; Kepert, D. L. J. Chem. Soc., Dalton Trans. 1975, 947. (d) Druskovich, D. M.; Kepert, D. L. Aust. J. Chem. 1975, 28, 2365. (e) Kepert, D. L.; Kyle, J. H. J. Chem. Soc., Dalton Trans. 1978, 137. (f) Chorglade, G. S.; Pope, M. T. J. Am. Chem. Soc. 1987, 109, 5134. (g) In organic solvents, Na⁺ to P₂W₁₅Nb₃O₆₂⁹⁻ ion-pairing effects are reminiscent of the multiple sites of H+ attachment and slow proton mobility (tautomerism) first observed in polyoxoanion chemistry in the SiW₉V₃O₄₀⁷⁻ system: Finke, R. G.; Rapko, B.; Saxton, R. J.; Domaille, P. J. J. Am. Chem. Soc. 1986, 108, 2947.

broadening observed in the solution ³¹P and ¹⁸³W NMR spectra of 1 (vide supra).

Structural Conclusions for $[(1,5\text{-COD})\text{IrP}_2W_{15}\text{Nb}_3O_{62}]^{8-}$, 1. From the above data it is apparent that (i) the iridium—bis-(olefin) complex, 1, is supported on the "Nb₃O₉3-" minisurface of the heteropolyoxoanion support P₂W₁₅Nb₃O₆₂9- in such a way that overall average $C_{3\nu}$ (pseudo) symmetry results, (ii) at least 95% of a single isomer of 1 has been obtained (and in a 1:1 Ir:polyoxoanion, unaggregated complex), (iii) ¹⁷O NMR is the preferred, direct structural method for characterizing the binding of the iridium—bis(olefin) complex to the heteropolyoxoanion support in solution, and (iv) the ¹⁷O NMR studies are definitive in revealing that $[(1,5\text{-COD})\text{Ir}]^+$ binds via Ir—ONb₂ bonds 100% of the time within experimental error.

'The structural characterization of 1 achieves our goal of atomic-level structural characterization of an oxide-supported catalyst; it also demonstrates the need for, and both the power of and the limitations to, the spectroscopic handles available in 1. It furthermore highlights the importance of the seminal efforts of Day, Klemperer, and co-workers on smaller, less charged polyoxoanions where X-ray diffraction studies of supported organometallics (including supported [(1,5-COD)Ir]+) have successfully been carried out^{7,24} and where the solid-state data have been correlated with ¹⁷O NMR data for the solution species.

Structural Conclusions for $[(1,5\text{-}COD)Rh\text{-}P_2W_{15}Nb_3O_{62}]^{8^-}$, 2. The analytical, MW, IR, ion-exchange, and ^{31}P and ^{183}W NMR spectroscopic evidence cited earlier demonstrate that 2 is obtained as an analytically pure, homogeneous solid with the $P_2W_{15}Nb_3O_{62}^{9^-}$ framework being intact and with $[(1,5\text{-}COD)\text{-}Rh]^+$ attached to the "Nb₃O₉³⁻" cap of a $P_2W_{15}Nb_3O_{62}^{9^-}$. However, the results of the ^{17}O NMR studies for 2 (vide supra), and the distinctively different ^{17}O NMR spectra obtained for 2 when compared to 1, require 2 to differ structurally from its Ir congener, 1. Two or more $C_{3\nu}$ and C_s support-site isomers $^{9}E_{30}$ are implied. The ^{183}W NMR spectrum nominally suggests a structure with $C_{3\nu}$ (average) symmetry, but ^{183}W NMR spectroscopy is apparently insensitive to the exact symmetry of 2 and/or the fluxional processes of $[(1,5\text{-}COD)Rh]^+$ on the "Nb₃O₉³⁻" oxygen surface in 2.

The proposed structure or structures for 2 are generally in accord with the structures established for the related complexes (NBD)RhrP₃O₉^{2-7a} (NBD \equiv norbornadiene) and (1,5-COD)-Rh-{(C₅H₅)Co{P(O)(OC₂H₅)₂}₃],²³ where it has been unequivocally shown that the organometallic fragment binds to three oxygens. For both of these systems, the support provides a

$$\begin{split} n[(1,5\text{-COD})Rh\text{-}P_2W_{15}Nb_3O_{62}]^{8^-} &= \{[(1,5\text{-COD})Rh]_n^* \\ & [P_2W_{15}Nb_3O_{62}]_n\}^{8n^-} \text{ (iv)} \end{split}$$

(especially given the inherent differences between second- and thirdrow transition metals¹⁵).] But, as shown for five-coordinated, d⁸ iridium(I) in [(1.5-COD)IrP₂W₁₅Nb₃O₆₂]⁸⁻ and for five-coordinated, d⁶ rhodium(III) (as determined by single-crystal X-ray crystallography)⁸ⁱ in [(C₅Me₅)RlrP₂W₁₅Nb₃O₆₂]⁷⁻, the polyoxoanion P₂W₁₅Nb₃O₆₂⁹⁻ prefers to act as a tridentate ligand. Therefore, proposed structures in which the rhodium binds to three surface oxygens of "Nb₃O₉³⁻" are implied, consistent both with the literature precedent and with our own findings.

Figure 12. Packing diagram for the single-crystal X-ray structure⁸s of α -1,2,3-P₂W₁₅Nb₃O₆₂9⁻. This diagram clearly shows the Na⁺ "cloud" that surrounds each heteropolytung tate, with the Na⁺ 2.3-2.5 Å from the terminal O··M (M = Nb, W) positions.

similar surface-oxygen arrangement (three basic oxygen sites) as provided by the "Nb₃O₉³⁻ⁿ oxygen surface of P₂W₁₅Nb₃O₆₂⁹⁻. In contrast, four-coordination of rhodium³⁰ (the rhodium binds to two oxygens of the support plus two bonds to the norbornadiene ligand) is observed in [(NBD)Rh]₅[Nb₂W₄O₁₉]₂^{3-,7e} Here, however, only two niobium-bridging oxygens with sufficient basicity (i.e., to bind the cationic organometallic fragment) are present. Taken together, these examples suggest that four vs five-coordination of heteropolyoxoanion-supported rhodium is not just an inherent property of the metal (i.e. of Ir vs Rh)¹⁵ but also depends strongly upon the support.

Summary

The synthesis and characterization of [(n-C₄H₉)₄N]₅Na₃[(1,5-COD)M·P₂W₁₅Nb₃O₆₂] (M = Ir, Rh) provides an entry into 1:1 metal to polyoxometalate-supported organometallic precatalysts. The results demonstrate, in a general sense, the level of compositional and structural characterization that can be achieved for this size and type of inorganic-organometallic material—as well as the problems therein—through the use of complete elemental analyses, solution molecular-weight measurements, and extensive solution spectroscopy, especially the 1H. 13C, 17O, 31P, and 183W NMR handles available for 1 and 2. Overall, the full details of the synthesis and characterization of the $[(1,5\text{-COD})M\cdot P_2W_{15}Nb_3O_{62}]^{8-}$ (M: Ir, 1; Rh, 2) complexes provided herein are important in comparison to all the existent polyoxoanion literature in that the precatalyst 1 leads to a polyoxometalate-supported oxidation catalyst using dioxygen^{10b-d} and to a novel Ir~300 polyoxoanion nanocluster hydrogenation catalyst.9h The Rh congener 2 is similarly an effective precatalyst for oxidative 10b-d and reductive 9h.11 catalysis, and the evidence presently available from our continuing mechanistic studies indicates analogous polyoxoanion-supported oxidation and Rh_x-polyoxoanion nanocluster reductive catalysts.

Experimental Section

Materials. All commercially obtained compounds were Baker reagent grade unless otherwise specified. Nitrogen gas was obtained from the boil-off of the house liquid nitrogen container and purified by passing over 4 Å molecular sieves (Linde) and a R3 11 catalyst (BASF) in the reduced (black) form. Acetonitrile (from CaH_2) and ethyl acetate (from anhydrous K_2CO_3) were distilled under N_2 and dispensed into glassware that had been thoroughly cleansed, dried at

Control of the contro

⁽³⁰⁾ Note also that the presence of aggregates of the type {{(1.5-COD)-Rh]_n·{P₂W₁₅Nb₃O₆₂]_e}⁸ⁿ⁻, where the rhodium is four-coordinated, was also considered, but these are apparently not present. [The solution molecular-weight data for 2 demonstrate a monomeric formulation under the conditions of the sedimentation-equilibrium experiment, but these molecular-weight determinations are typically carried out at concentrations of 10⁻⁵ M (and in the presence of 0.1 M [(n-C₄H₉)₄N]-PF₆), whereas ¹⁷O and ¹⁸³W NMR data are typically collected at concentrations of 0.09 M. At this higher concentration, a precedented equilibrium as described by eq iv cannot be unequivocally ruled out

250 °C, and allowed to cool under a N2 flow. Anhydrous diethyl ether (Aldrich, HPLC grade, glass distilled under N2 and filtered through 0.5 µm filters by the manufacturer) was used without further purification. 1,5-Cyclooctadiene (1,5-COD) was stirred over Brockman activity I basic alumina (Fisher) and purged for 1 h with N₂ prior to use. Obtained from Aldrich and used as received were NaBF4, AgBF4, 4,7,-13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane [Kryptofix 2.2.2.], 2-propanol, 95% ethanol, tetrahydrofuran (THF), benzene, NaHSO₃, (CH₃)₄NCl, 30% H₂O₂, 37% HCl, RhCl₃xH₂O (x = 2-3), and Amberlyst ion-exchange resins. Similarly, [(n-C₄H₉)₄N]Br, (n-C4Ho)4N]Cl (Fluka), and (NH4)3IrCl6 (Johnson-Mathey) were used as received. Deuterated NMR solvents (acetone-d₆, DMSO-d₆, CD₃CN; Cambridge Isotope Laboratories) were used as received. If the NMR sample was to be prepared in the drybox, the deuterated solvent was degassed by purging either with the drybox atmosphere or with argon (outside the box) for 0.5 h. Aqueous [(n-C₄H₉)₄N]OH solutions were prepared according to the literature31 and titrated with 0.1 M HCl to the methyl red and phenolphthalein end points (i.e., for both amine and total base content) immediately prior to use. Isomerically pure α-K₆P₂W₁₈O₆₂³² and the hexaniobate K₇HNb₆O₁₉³³ were prepared as previously described.

Instrumentation/Analytical Procedures. Elemental analyses were obtained from Mikroanalytisches Labor Pascher (Remagen, Germany). Oxygen- and moisture-sensitive samples were routinely manipulated under an inert atmosphere in a Vacuum Atmospheres Inert "Dry" Box. O2 levels were maintained at less than 1.0 ppm and monitored by use of a Vacuum Atmospheres O2 level monitor. Infrared spectra were obtained on a Nicolet 5DX as KBr disks.

All nuclear magnetic resonance (NMR) spectra of routine samples were obtained as CDCl3, CD3CN, acetone-d6, or DMSO-d6 solutions in Spectra Tech or Wilmad NMR tubes. Air-sensitive samples were prepared in the drybox, and the solution was placed in an NMR tube equipped with a J. Young airtight valve (Wilmad). 'H NMR (300.15 MHz) and ¹³C NMR (75.0 MHz) spectra were recorded in 5 mm o.d. tubes on a General Electric QE-300 spectrometer, at 21 °C unless otherwise noted, and were referenced to the residual impurity in the deuterated solvent (1H NMR) or to the deuterated solvent itself (13C NMR). Chemical shifts are reported on the ô scale and resonances downfield of (CH₃)₄Si (ô 0) are reported as positive. Spectral parameters for ¹H include pulse width 3.0 μ s, acquisition time 1.36 s, repetition rate 2.35 s, and sweep width ±6024 Hz, while spectral parameters for 13 C NMR include pulse width $15.0 \,\mu s$, acquisition time 819.2 ms, repetition rate 1.31 s, and sweep width $\pm 20\,000\,Hz$. All 1H and ¹³C NMR spectra of [(n-C₄H₉)₄N]⁺ salts of the polyoxometalates have the characteristic resonances [1H NMR & 1.04, 1.56, 1.72, 3.35; ¹³C NMR δ 14.0, 19.8, 23.7, 58.1] associated with the cation; hence these resonances are not reported for individual compounds. ³¹P NMR (146.16 MHz) and ¹⁸³W NMR (15.04 MHz) obtained at the University of Oregon were recorded on a Nicolet NT-360 NMR spectrometer, at 30 °C unless otherwise noted, in 12 mm o.d. or 10 mm o.d. NMR tubes. 31P NMR spectra were referenced externally by the substitution method to 85% H₃PO₄ (i.e., the chemical shifts reported are uncorrected for the volumic diamagnetic susceptibility34), and 183W NMR spectra were referenced externally by the substitution method to 2 M Na₂-WO₄/D₂O (pD 8.0). Spectral parameters for ³¹P NMR include pulse width 28 μ s, acquisition time 409.65 ms, repetition rate 2.41 s, and sweep width ±10 000 Hz. Spectral parameters for ¹⁸³W NMR include pulse width 70 ms, acquisition time 754.03 ms, repetition rate 1.25 s, and sweep width ± 5000 Hz. A 5 Hz (³¹P NMR), 5 Hz (¹⁸³W NMR), or 0.5 Hz (1H and 13C NMR) exponential apodization of the FID was used on all spectra but was removed for any line widths reported herein. More recently, ³¹P and ¹⁸³W NMR spectra were collected at Colorado State University (CSU) on Bruker 300 (31P) and Bruker AM500 (183W)

機能統領域のDevent (Program of the American Companies Compan

NMR instruments employing 5 mm (31P) or 10 mm (183W) o.d. NMR tubes. ³¹P NMR spectra were referenced externally³⁴ to 85% H₃PO₄ using a sealed capillary. 183W NMR spectra were referenced externally by the substitution method to 2 M Na₂WO₄/D₂O. Spectral parameters differ from those listed above and are as follows. 170 NMR (67.80 MHz): pulse width 30 μ s; acquisition time 16 ms; sweep width $\pm 62\,500$ Hz. ³¹P NMR (121.50 MHz): pulse width 5 μ s; acquisition time 819 ms; sweep width ±20 000 Hz. 183W NMR (20.838 MHz): pulse width 30 μ s; acquisition time 1114 ms; sweep width \pm 14 705 Hz. A 2 Hz (³¹P NMR), 10 Hz (¹⁸³W NMR), or 100 Hz (¹⁷O) exponential apodization of the FID was used on all spectra but was removed for any line widths reported herein. Spectra collected at CSU are marked as such.

The extreme air sensitivity of 1 and 2 necessitated the following control experiments. In the first control experiment, a ca. 1 mM solution (i.e., 30 times more dilute than any of the NMR samples) of the very air-sensitive, deep blue Co(I) compound Co(CO){C2(DO)-(DOH)_m}³⁵ was prepared in the drybox and placed in a 5 mm J. Young valve NMR tube. The tube was then brought out of the drybox and left to sit on the laboratory bench for I week, during which time no perceptible change in color was observed. Deliberate exposure of the NMR solution to air resulted in a rapid (less than 5 s) loss of the blue color. In a second control experiment, a fresh 30 mM solution of 1 in CD₃CN was prepared with an added 3 equiv of Kryptofix 2.2.2. (added to minimize any line broadening due to Na+ ion-pairing effects) and placed in a 5 mm NMR tube equipped with a J. Young airtight valve. An initial ¹H NMR spectrum was recorded within 15 min. This same, sealed NMR tube was then purposely stored outside the drybox for I week. A second 'H NMR spectrum was then obtained. No new line broadening was observed, demonstrating that O2-induced line

footnote 12 therein).
(35) Finke, R. G.; Smith, B. L.; McKenna, W. A.; Christian, P. A. Inorg. Chem. 1981, 20, 687.

⁽a) Cundiff, R. H.; Markunas, P. C. Anal. Chem. 1958, 30, 1447. (b) Cundiff, R. H.; Markunas, P. C. Anal. Chem. 1958, 30, 1450. (c) Cundiff, R. H.; Markunas, P. C. Anal. Chem. 1956, 28, 792.

⁽³²⁾ Finke, R. G.; Droege, M. W.; Domaille, P. J. Inorg. Chem. 1987, 26, 3886

 ^{(33) (}a) Flynn, C. M.; Stucky, G. D. Inorg. Chem. 1969, 8, 178. (b) Flynn,
 C. M.; Stucky, G. D. Inorg. Chem. 1969, 8, 335. (c) Filowitz, M.;
 Ho, R. K. C.; Klemperer, W. G.; Shum, W. Inorg. Chem. 1979, 18,

^{(34) (}a) It is well-known in the ³¹P NMR literature that chemical shift data reliable to, say, ±0.2 ppm or better require referencing to an *internal*, not external, standard³⁴⁵ so that the solvent's diamagnetic susceptibility is removed from the reported chemical shift. When using an external standard, either in a sealed capillary or by the substitution method, we often find larger variations, ±0.5 ppm or more, in chemical shift. For example, just using a 5 mm (rather than a 10 mm) NMR tube, along with an 85% H₃PO₄ external standard, yields chemical shifts that are offset ca. +0.5 ppm (i.e., vs those in the 10 mm tube) due presumably to the differing magnitudes of the volume diamagnetic susceptibility of the solvent.³⁴⁰ (b) Thus, and despite the fact that corrections for the volume diamagnetic susceptibility of the solvent are virtually never reported in the polyoxoanion literature, we conclude that they should be, and we are engaged in a search for suitable nonreactive internal standards. 34c (c) See for example: Brevard, C.; Granger, P. Handbook of High Resolution Multinuclear NMR; Wiley: New York, 1981; pp 39-46. Mason, J., Ed. Multinuclear NMR; Plenum Press: New York, 1987; p 370 and references therein. (d) Domaille, P. J.; Watunya, G. Inorg. Chem. 1986, 25, 1239-1242 (see footnote 12 therein). (e) Harrison, A. T.; Howarth, O. W. J. Chem. Soc., Dalton Trans. 1985, 1173 (volume diamagnetic susceptibility effects on polyoxovanadates in ⁵¹V NMR; bottom lines, first column, p 1173). (d) Under acidic conditions, possible internal (so-called secondary) reference standards^{24b} might include PW₁₂O₄₀³⁻ or P₂W₁₈O₆₂⁶⁻. Under neutral to basic conditions, P₂W₁₅Nb₃O₆₂⁹⁻ might be a useful internal, secondary-reference standard. This compound seems particularly well-suited as an internal, secondary standard for the measurement of ³¹P NMR chemical shift data of polyoxoanions under higher pH conditions for several reasons: (i) its ³¹P NMR resonances are observed in a chemical shift range typical of most polyoxoanions, (ii) it is available both in an organic solvent-soluble formulation (as its [(n-C4H9)4N]9 salt) and in a water-soluble formulation (as its Nao salt), and (iii) it is relatively stable in organic and in higher-pH-controlled aqueous solutions. (The basicity and nucleophilic reactivity of the "Nb₃O₉³" end of this polyoxoanion means that it will not be suitable for more acidic or electrophilic reagent conditions.) (e) A related problem exists when chemical shifts uncorrected for the volume diamagnetic susceptibility of the solvent that are measured on older Fe core magnets (i.e., with horizontal fields perpendicular to the sample axis) are compared to uncorrected chemical shifts measured on superconducting magnets (i.e., with vertical fields parallel to the sample axis); see p 41 of ref 34c (first citation) and Domaille's treatment of this in the specific case of a polyoxoanion sample: Domaille, P. J.; Watunya, G. *Inorg. Chem.* 1986, 25, 1239–1242 (see

broadening does not occur during the NMR experiments reported herein (i.e., no paramagnetic impurities due to Ir(I) oxidation are present).

Molecular-weight data were collected as previously described by the sedimentation equilibrium method.36 All molecular weights are weight-average molecular weights (M_w) . As a control against air leakage into the molecular-weight cell during data collection on airsensitive samples, an approximately 1×10^{-6} M solution of the very air-sensitive Co(CO){C₂(DO)(DOH)_{pa}}³⁵ (vide supra) in 0.1 M [(n-C₄H₉)₄N]PF₆/CH₃CN was syringed into the molecular-weight cell in the drybox. This cell was then placed under the experimental conditions (hard vacuum at 20 000 rpm for 24 h) and then placed (unopened) on the laboratory bench for 48 h. During this 72 h period (more than 3 times the length of the molecular-weight experiment) no visual loss of the deep blue color was noted, demonstrating that no significant leakage of O2 into the cell occurred over the course of a typical molecularweight experiment. Molecular-weight measurements obtained in CH3-CN were monitored in the ultraviolet region between 280 and 335 nm (the absorbance associated with the polyoxometalate framework).

Fast-atom-bombardment mass spectra were obtained on a Kratos MS-50 mass spectrometer at Oregon State University. Samples were dissolved in the FAB matrices on the stainless steel probe. The matrix was either dithiothreitol/dithioerythritol (5:1) or 3-nitrobenzyl alcohol and was not deoxygenated even for air-sensitive 1 and 2. (In the case of 1 and 2, earlier FAB-MS spectra recorded at Princeton University, with the assistance of Professor Jeffrey Schwartz, employed a sampleadmitting apparatus which allowed the rigorous exclusion of O2. However, the resultant FAB-MS still did not exhibit parent peaks containing the [Ir(1,5-COD)]+ moiety. Hence, the better S/N spectra obtained at Oregon State and which were obtained without the exclusion of O2 are presented herein.) Analyses were carried out at a mass resolution of 1000, using raw data (integrated multichannel averaging) or centroided data collection. Scan rates were 30 or 100 s/decade. Xenon gas was used to generate the primary ionizing beam from an Ion-Tech FAB gun operated at 7-8 keV. Molecular weights and isotope abundance patterns were calculated using Kratos DS-90 software.

[(1,5-COD)IrCl]2. The 1,5-cyclooctadienyliridium chloride dimer is prepared by following literature methods, 83.37 but with slight modifications. Despite an early report³⁸ that the iridium dimer is air stable, the complex has been shown to react with O2 and, therefore, is treated as mildly air-sensitive. 39 Our treatment includes collecting and drying the material under a N2 flow and storing the compound in an inert atmosphere box. The spectroscopic properties of the bright-orange powder were consistent with those reported in the literature, and the product was used without further purification. A detailed experimental procedure follows.

H₂O (20 mL), 2-propanol (7 mL), and 1,5-cyclooctadiene (3.6 mL, 29.3 mmol, excess) were placed in a 50 mL round-bottomed flask. This biphasic mixture was then bubbled with N2 for 1 h. (NH4)3IrCl6 (4.0 g, 8.72 mmol) was added, and the mixture was refluxed for 8-19 h under a N2 flow (somewhat higher yields have been seen at longer reflux times). After 1-2 h, the reaction mixture turned brick-red. The flask was allowed to cool to room temperature, and the reddish precipitate was collected on a medium frit. The precipitate was washed with 25 mL of 5 °C H₂O and 50 mL of 5 °C 95% EtOH, both of which had been bubbled with N2 for at least 1 h prior to use. The reddish-orange powder was then dried under a N2 flow on the frit for

(36) (a) Chervenka, C. H. A Manual of Methods for the Analytical Ultracentrifuge; Spinco Division of Beckman Instruments: Palo Alto, CA, 1969. (b) Schachman, H. K. Methods in Enzymology; Colowick, S. P., Kaplan, N. O., Eds.; Academic: New York, 1957; Vol. 4, p 65. (c) Sethuraman, P. R.; Leparulo, M. A.; Pope, M. T.; Zonnevijille, F.; Brevard, C.; Lemerle, J. J. Am. Chem. Soc. 1981, 103, 7665. (d)

Reference 8d, Appendix A.

(37) Crabtree, R. H.; Quirk, J. M.; Felkin, H.; Fillebun-Khan, T. Synth.

React. Inorg. Met.-Org. Chem. 1982, 12, 407.

(38) Herde, J. L.; Lambert, J. C.; Senoff, C. V. Inorg. Synth. 1974, 15, 18.

(39) (a) Atlay, M. T.; Preece, M.; Strukul, G.; James, B. R. Can. J. Chem. 1983, 61, 1332. This reference reports the uptake of about 0.65 equiv of O₂/1 equiv of [(1,5-COD)IrCl]₂ in benzene or toluene solution. (b) Cotton, F. A.; Laheurta, P.; Sanau, M.; Schwotzer, W. Inorg. Chim. Acta 1986, 120, 153. This reference reports the air oxidation of [(1,5-COD)IrCl]₂ (ruby form) to form crystalline (1,5-COD)(Cl)Ir(μ -OH)₂-(μ -O)Ir(Cl)(1,5-COD) in low (10-15%) yield. 1 h and then at room temperature under vacuum for 12 h. Yield: 1.74-2.00 g, 2.59-2.98 mmol, 60-68%. The slightly air-sensitive compound was stored in an inert atmosphere box. IR (KBr disks, cm⁻¹): 905, 971, 977, 1001. Literature³⁷ (Nujol, cm⁻¹): 907, 970, 980, 1002. ¹H NMR (CDCl₃): 8 1.51-1.54, 2.24-2.27, 4.23. ¹H NMR (CD₃-CN): δ1.54-1.57, 2.16-2.21, 3.95. Literature³⁷ (CDCl₃): δ4.3 (vinyl protons). ¹³C{¹H} NMR (CDCl₃): δ 31.8, 62.2. Literature⁴⁰ (solvent unreported): & 62.1 (vinyl carbons).

[(1,5-COD)RhCl]₂. This compound was prepared by the following slight modification of the literature.41 In particular, the solvent used for the reaction (ethanol/water vs ethanol), the reaction conditions (refluxing under N2), and the isolation procedure are different.

Into a 500 mL round-bottomed flask with a sidearm were placed water (40 mL), ethanol (120 mL), and 1,5-COD (6 mL, 0.083 mol, excess; treated for 1-2 h over Al₂O₃ prior to usage). This mixture was purged with N2 for 1 h. Then, 3 g of RhCl3xH2O was added. After refluxing under N₂ for 5 h, the solution was allowed to cool to room temperature. The bright-orange product was collected on a medium glass frit under a N2 stream, washed with 30 mL of cold water (if this step is omitted, the precipitate contains a small amount of black powder, presumably unreacted RhCl3-xH2O), and then washed with 45 mL of cold ethanol, both of which had been purged well with N2. The solid was allowed to dry under a N2 stream on the glass frit for 1 h and then further dried overnight under vacuum. The bright-orange powder was stored in the drybox. Yield: 2.3 g (4.67 mmol, 77%). IR (KBr disks, cm⁻¹): 1323, 1299, 1228, 1212, 1171, 1152, 1079, 994, 960, 877, 865, 830, 814, 795, 773. Literature⁴¹ (cm⁻¹): 1325, 1301, 1227, 1210, 1171, 1153, 1076, 993, 961, 878, 866, 831, 817, 795, 771. 'H (CDCl₃) NMR: δ 1.73, 2.47, 4.21. ¹³C{¹H} NMR: δ 30.86 (CH₂), 78.68 (CH).

 $Na_{12}P_2W_{15}O_{56}$ 18H₂O.^{8j} The trilacunary heteropolytungstate was prepared identically to our modification⁴² of the original French literature. 43 A 31P NMR spectrum of a saturated solution of the lacunary heteropolytungstate in an acetate buffer containing LiCl (supplementary material, Figure M) shows that a freshly prepared solution of Na₁₂P₂W₁₅O₅₆ contains more than 95% of a single compound, a result which confirms Contant's findings.44 [Previously, we had been unable to spectroscopically characterize this compound due to its decomposition in solution. However, it is obviously not true that this material is impure (it was previously thought to contain both "P2W15" and "P2W16" or "P₂W₁₇" species, ⁴³ since subsequent substitution chemistry has been reported to lead to both " $P_2W_{16}M_2$ " (M = V^{5+})⁴⁵ and " $P_2W_{15}M_3$ " (M = V5+,46 Mo6+47) type compounds.] Further monitoring of this solution shows that the trilacunary P2W15O5612- polyoxometalate is unstable in solution; within 2 h it decomposes to compounds which include the monolacunary species $\alpha_2\text{-}P_2W_{17}O_{61}^{10\text{--}}$ (by ^{31}P NMR). Hence, the lacunary P2W15O5612- is sufficiently pure and stable in solution to allow the synthesis of >95% pure P2W15Nb3O629- if the solid polyoxometalate is added to a solution of the Nb5+ heterometal (i.e., not the reverse order of addition).

 $[(CH_3)_4N]_{12}H_4P_4W_{30}Nb_6O_{123}^{-1}6H_2O_{3j}^{-8j}$ The tetramethylammonium salt of P4W36Nb6O12316- is prepared according to our literature8a with some improvements. Key changes in the preparation include the following: (i) The finely-powdered Na₁₂P₂W₁₅O₅₆ must be added in a single step. If the trilacunary species is added when it has not been finely powdered, (i.e., it will not rapidly go into solution) or if the trilacunary heteropolytungstate is added in successive portions over more than 2 h, at least two unidentified species are observed in the ³¹P NMR spectrum of the final product in addition to the desired triniobium

(41) Chatt, J.; Venanzi, L. M. J. Chem. Soc. 1957, 4735.

⁽⁴⁰⁾ Mann, B. E.; Taylor, B. F. 13C NMR Data for Organometallic Compounds; Academic: New York, 1981; p 190.

⁽⁴²⁾ Finke, R. G.; Droege, M. W.; Domaille, P. J. Inorg. Chem. 1987, 26,

⁽⁴³⁾ Contant, R.; Ciabrini, J. P. J. Chem. Res., Synop. 1977, 222; J. Chem. Res., Miniprint 1977, 2601.

 ⁽⁴⁴⁾ Contant, R. Inorg. Synth. 1990, 27, 104.
 (45) Mossoba, M. M.; O'Connor, C. J.; Pope, M. T.; Sinn, E.; Hervé, G.; Tézé, A. J. Am. Chem. Soc. 1980, 102, 6864.

⁽⁴⁶⁾ Finke, R. G.; Rapko, B.; Saxton, R. J.; Domaille, P. J. J. Am. Chem. Soc. 1986, 108, 2947.

⁽⁴⁷⁾ Acerete, R.; Hammer, C. F.; Baker, L. C. W. Inorg. Chem. 1984, 23, 1478.

compound, [(n-C₄H₉)₄N]₉P₂W₁₅Nb₃O₆₂. (ii) Excess solvent is added to dissolve the [(CH₃)₄N]₁₂H₄P₄W₃₀Nb₆O₁₂₃ initially, since it is kinetically insoluble in unbuffered pH 4.6 H2O, but then this excess solvent must be removed. Typically, this requires reducing the solution from 400-500 mL (the amount of unbuffered pH 4.6 H₂O that the compound initially dissolves in) to 150 mL for the first reprecipitation and to 75 mL for the second reprecipitation. A detailed experimental procedure

A pale yellow solution was prepared by dissolving 2.95 g (2.15 mmol) of K7HNb6O19-13H2O in 325 mL of 0.5 M H2O2. HCl (29 mL of 1 M, 29 mmol, excess) was added. The solution turned bright yellow. Immediately, 18.25 g (4.21 mmol) of finely powdered Na₁₂P₂W₁₅O₅₆·19H₂O was added in a single step, resulting in a clear colorless solution. [Note: If the Na₁₂P₂W₁₅O₅₆·19H₂O is added slowly (over 2 h), at least six lines are observed in the ³¹P NMR]. Caution: The following step is a vigorous reaction in which SO2 is evolved. Proceed with caution in a well-ventilated fume hood. NaHSO3 (25 g, 240.2 mmol, excess) was gradually added to the solution over 10-15 min, destroying the excess peroxides. The solution was stirred for 1-2 h until it had cooled to room temperature. (CH₃)₄NCl (10 g, 91.2 mmol, excess) was added to the solution in a single step, causing the immediate formation of a white precipitate. The white precipitate was collected and reprecipitated twice from a homogeneous solution of .90 °C unbuffered pH 4.6 H₂O. After the compound was dissolved in the hot pH 4.6 water, the volume of the solution was reduced to 150 and 75 mL for the first and second precipitations, respectively, and cooled in an ice bath. The product was collected and dried under vacuum overnight. Yield: 12-14 g (1.28-1.50 mmol, 61-71%). This reaction was productively scaled up as much as 5-fold, which resulted in a yield of 78 g (16.6 mmol, 79%) of product. Characterization of this compound prepared by this improved procedure demonstrates that it is identical to that described in our first report.82

 $[(n-C_4H_9)_4N]_{12}H_4P_4W_{30}Nb_6O_{123}$ and $[(n-C_4H_9)_4N]_9P_2W_{15}Nb_3O_{62}.^{8j}$ These preparations are again based on our literature, sa but with an improvement in the collection and washing of [(n-C₄H₉)₄N]₁₂H₄P₄W₃₀-Nb₆O₁₂₃, which results in a reproducible procedure yielding at least 95% pure material when cleaved/deprotonated with [(n-C4H9)4N]OH to form the desired [(n-C4H₉)₄N]₉P₂W₁₅Nb₃O₆₂. (This modified preparation is the result of more than 40 preparations by four people and represents our best effort to date with this synthesis, in terms of both the purity of the final compound and the speed of collection. However, we are presently investigating an even further improvement of this procedure, in an attempt to avoid the [(CH₃)₄N]⁺ salt of P₄W₃₀Nb₆O₁₂₃¹⁶⁻ completely.⁴⁸) The key changes in what follows are in the collection and washing of the precipitated [(n-C4H9)4N]12H4P4W30-Nb₆O₁₂₃. Briefly, the procedure involves placing the precipitate and the supernatant on a coarse glass frit for 1 h with no aspiration, during which time three layers form. The uppermost layer and half of the middle layer are removed by pipet and discarded. Water is then added to the frit, taking care not to disturb the material that has been collected. Three layers again form; the above process is then repeated three or four additional times. Approximately 1 L of water is then used to wash the material on the frit with aspiration, again taking care not to disturb the material on the frit. The purified white solid is then dried at 60 °C on a large weighing dish. The material obtained in this manner is analytically pure, with spectroscopic properties consistent with our previous formulation as [(n-C₄H₉)₄N]₁₂H₄P₄W₃₀Nb₆O₁₂₃, and reproducibly gives [(n-C₄H₉)₄N]₉P₂W₁₅Nb₃O₆₂ [as determined by ³¹P NMR and 183W NMR (vide infra)] when cleaved/deprotonated with 6 equiv of [(n-C₄H₉)₄N]OH. A detailed experimental procedure follows.

[(CH₃)₄N]₁₂H₄P₄W₃₀Nb₆O₁₂₃·16H₂O (15 g, 1.60 mmol) was dissolved in 500 mL of 90 °C unbuffered pH 4.6 H₂O. The homogeneous solution was allowed to cool to room temperature. [(n-C₄H₉)₄N]Br (7 g, 21.7 mmol, excess) was added in a single step to give a white precipitate. The precipitate was collected on a coarse frit as follows: (1) The solution was placed on a coarse glass frit for 1 h with no aspiration, during which time three layers appeared. (2) The uppermost layer was removed completely by pipet, and half of the middle layer was also removed. (3) A 100-200 mL portion of H₂O was then added to the

frit, taking care not to disturb the material on the frit. (4) Steps 1-3 were repeated three or four times. (5) One liter (3 x 350 mL) H₂O was then used to wash the material on the frit with aspiration (again without disturbing the sample). This step usually takes 1-2 h to complete. The sample was spread on a large weighing dish and dried at 60 °C overnight. Yield: 8.4-10.0 g (0.76-0.90 mmol, 47-56%). Anal.49 Calcd (found): C, 20.82 (20.41); H, 3.97 (3.98); N, 1.52 (1.48); P. 0.99 (0.99). This procedure has been productively scaled up 5-fold to yield 45 g (4.06 mmol, 51%).94 Characterization of this compound by ³¹P NMR (DMSO- d_6 [δ -7.2 ($\Delta v_{1/2}$ = 3.5 ± 0.3 Hz), -14.2 ($\Delta v_{1/2}$ = 4.6 \pm 0.3 Hz); CD₃CN [δ -7.2 ($\Delta \nu_{1/2}$ = 3.1 \pm 0.3 Hz), -14.3 $(\Delta \nu_{12} = 4.6 \pm 0.3 \text{ Hz})$] and IR demonstrate that this material is identical to that described in our previous report.84

 $[(n-C_4H_9)_4N]_{12}H_4P_4W_{30}Nb_6O_{123}$ (10.0 g, 0.903 mmol) was dissolved in 33 mL of CH3CN in a 100 mL round-bottomed flask that contained a 1-in. magnetic stir bar. An aqueous solution of [(n-C₄H₉)₄N]OH (13.1 mL of 0.415 M, 5.44 mmol, 6 equiv) was added to the polyoxometalate solution, and the resulting clear solution was stirred for 0.5 h at room temperature. A quantitative yield of solid [(n-C4H9)4N]9P2W15Nb3O62 was obtained by removal of the solvent under vacuum overnight. ³¹P NMR (DMSO- d_6): δ -7.1, -14.2.514 The residual colorless material, in a 100 mL round-bottomed flask under vacuum, was taken into the drybox for use in the next preparation. (The IR band reported84 at 660-665 cm⁻¹ in the spectrum of the product has proved somewhat variable in intensity and appears to depend on the amount of H₂O

 $[(n-C_4H_9)_4N]_5Na_3[(1,5-COD)IrP_2W_{15}Nb_3O_{62}], 1.89$ All solids used in this preparation were dried at room temperature under vacuum for 24 h and then transferred into the drybox. All manipulations were performed in the drybox. Freshly prepared [(n-C₄H₉)₄N]₉P₂W₁₅Nb₃O₆₂ (6.78 g, 1.08 mmol) was placed in a 100 mL round-bottomed flask and dissolved in 20 mL CH₃CN. (If this solution is cloudy or contains a white precipitate, the yield is lower.) This solution was filtered through Whatman No. 2 paper into a 200 mL round-bottomed flask. The filter paper was washed with 5 mL of CH₃CN, and the washings were combined with the original filtrate. In a separate disposable 18 × 150 mm culture tube, [(1,5-COD)IrCl]₂ (0.364 g, 0.542 mmol) was slurried in 4 mL of CH₃CN. Solid AgBF₄ (0.212 g, 1.09 mmol, 2.01 equiv relative to [(1,5-COD)IrCl]2) was added to the slurry, causing an immediate AgCl precipitate. The mixture was stirred for 30 min. The AgCl precipitate was removed by gravity filtration through Whatman No. 2 paper and the filtrate introduced directly into the clear, vigorously stirred CH₃CN solution of [(n-C₄H₉)₄N]₉P₂W₁₅Nb₃O₆₂. The filter paper was then washed with an additional 5 mL of CH3CN. The clear, colorless heteropolytungstate solution changed from clear to orange-red upon addition of the in situ generated [Ir(1,5-COD)(CH3-CN)2]BF4 solution. The homogeneous iridium-heteropolytungstate solution was stirred for 30 min. Solid NaBF4 (0.3578 g, 3.259 mmol, 3.01 equiv relative to $[(n-C_4H_9)_4N]_9P_2W_{15}Nb_3O_{62})$ was added to the orange-red solution. The 18 × 150 mm disposable culture tube that had contained the NaBF4 was rinsed with 3 mL of CH3CN, and this mixture was added to the iridium-heteropolytungstate solution. This mixture was stirred for approximately 45 min, during which time the NaBF4 dissolved. (Note: NaBF4 is only minimally soluble in CH3CN but has increased solubility in the presence of the heteropolytungstate.) The dark red-orange solution was then evacuated to dryness, and the residue was dried under vacuum for 4 h.

Purification of $[(n-C_4H_9)_4N]_5Na_3[(1,5-COD)IrP_2W_{15}Nb_3O_{62}]$ (i.e., removal of the 4 equiv of [(n-C₄H₉)₄N]BF₄) was accomplished by dissolving the deep orange-red solid in 5 mL of CH3CN and then transferring the solution to a 600 mL beaker. EtOAc (400 mL) was added in 40 mL portions over 15 min, precipitating a light-yellow powder. This powder was collected on a medium frit, washed with 40 mL of diethyl ether, and dried on the frit for 30 min. The filtrate was light-yellow and cloudy. The reprecipitation was performed a

⁽⁴⁸⁾ Weiner, H.; Aiken, J. D., III; Finke, R. G. Unpublished results and experiments in progress.

^{(49) (}a) An elemental analysis was carried out on this sample (C, H, N, and P only) to ensure that the slightly different method used to prepare and wash this sample did not result in a different TBA+/H+ ratio (an effect we have seen before for different preparations of "(TBA)5-H₄P₂W₁₅V₃O₆₂" where a "(TBA)₆H₃" salt has also been occasionally obtained (9b). (b) Finke, R. G.; Rapko, B.; Saxton, R. J.; Domaille, P. J. J. Am. Chem. Soc. 1986, 108, 2947.

second time and the light-yellow powder was collected on a medium glass frit, washed with 75 mL of diethyl ether, and dried under vacuum for 4 h. (Drying under vacuum at 60 °C for 1 week is required to remove the last traces of solvents which, otherwise, interfere with the ¹H and ¹³C NMR spectra, for example.) Infrared spectroscopy is a convenient method to establish that the contaminating [(n-C4H9)4N]-BF₄ has been removed [ν (BF₄⁻) = 1050-1090 cm⁻¹]. Yield: 4.2 g (0.74 mmol, 69%). This preparation has been successfully scaled up 2.7-fold, giving a 12 g, 2.1 mmol, 65% yield. This compound is stored in a screw-capped polyethylene bottle in the drybox, preferably doublebottled to protect it from trace amounts of oxygen. [In addition, the product may be stored over a small layer of the compound in the outer bottle topped by a layer of tissue (i.e., using some of the complex as its own, sacrificial, ideal-affinity oxygen scavenger).] Anal. Calcd (found) [and repeat analysis on an independent, earlier preparation]: C, 18.63 (18.99) [18.95]; H, 3.41 (3.52) [3.54]; N, 1.23 (1.40) [1.49]; Na, 1.22 (1.20) [1.43]; Ir, 3.39 (3.24) [2.74]; P, 1.09 (1.07) [1.09]; W, 48.6 (48.5) [48.4]; Nb, 4.91 (4.66) [4.80]; O, 17.5 (17.6) [17.0]; total, 99.98 (100.18) [99.4]. Molecular weight (sedimentation-equilibrium method, 1×10^{-5} M 1 in 0.1 M [(n-C₄H₉)₄N]PF₆/CH₃CN): \bar{M}_{w} (calc) 5670, $\bar{M}_{\rm w}$ (found) 5600 \pm 600 (supplementary material, Figure A) ($\bar{M}_{\rm w}$ = average molecular weight). An attempted molecular-weight measurement by FAB-MS did not reveal a parent peak for 1, presumably due to loss of (1,5-COD) Ir as a neutral fragment, and has been analyzed in detail elsewhere.²² Infrared spectrum (KBr disk, cm⁻¹): 766, 899, 913, 948, 1089. The IR resonances for [(1,5-COD)IrP₂W₁₅Nb₃O₆₂]⁸⁻ (in comparison to P₂W₁₈O₆₂⁶⁻⁾⁵⁰ at 948 (960), 913 (912), and 766 (780) cm⁻¹ suggest (but do not prove) the assignment of these bands as follows: the asymmetric stretching vibrations of the W-Oterminal bonds (948 cm⁻¹); the W-O-W bridges between corner-sharing octahedra (913 cm⁻¹); and the W-O-W bridges between edge-sharing octahedra (766 cm⁻¹). ³¹P NMR (DMSO- d_6), δ (no. of P, $\Delta \nu_{1/2}$): -8.2 (1 P, 54.6 ± 5.0 Hz), -14.1 (1 P, 3.9 ± 0.4 Hz) (Figure 4A). ³¹P NMR (DMSO- d_6 , with 3 equiv of Kryptofix 2.2.2. added), δ (no. of P, $\Delta v_{1/2}$): $-8.2 (1 \text{ P}, 4.7 \pm 0.4 \text{ Hz}), -14.1 (1 \text{ P}, 4.4 \pm 0.4 \text{ Hz}) (\text{Figure 4B}).$ ³¹P NMR (CD₃CN), δ (no. of P) (supplementary material, Figure F): -9.7 (1 P), -14.2 (1 P). ³¹P NMR (CD₃CN, with 3 equiv of Kryptofix 2.2.2. added), δ (no. of P): -8.3 (1 P), -14.5 (1 P). 51a.d 183W NMR (DMSO- d_6 , 0.09 M), S/N 12/1 after 10 000 scans, δ (no. of W, $\Delta v_{1/2}$) (Figure 6A): -125.0 (3 W, 14.9 ± 1.0 Hz), -150.3 (6 W, 13.7 ± 0.7 Hz), -194.0 (6 W, 25.5 ± 1.5 Hz). ¹⁸³W NMR (DMSO- d_{6} , 0.09 M, with 3 equiv of Kryptofix 2.2.2. added), S/N 25/1 after 10 000 scans, δ (no. of W, $\Delta v_{1/2}$) (Figure 6B): -128.1 (3 W, 12.0 ± 0.3 Hz), -152.2(6 W, 13.9 \pm 0.2 Hz), -191.4 (6 W, 11.1 \pm 0.2 Hz). ¹H NMR (DMSO- d_6), δ (no. of H, $\Delta v_{1/2}$): 1.87 (4.0 \pm 0.2 H, 10.5 \pm 0.6 Hz), $2.28 (3.9 \pm 0.3 \text{ H}, 8.6 \pm 1.5 \text{ Hz}), 3.99 (4.0 \pm 0.1 \text{ H}, 8.2 \pm 0.7 \text{ Hz}).$ ¹H NMR (DMSO-d₆, with 3 equiv of Kryptofix 2.2.2. added), δ: 1.89 (br, 4 H), 2.28 (br, 4 H), 4.04 (br, 4H). The temperature-varied NMR spectrum of 1 in DMSO-d₆ shows no change between 25 and 95 °C. ¹H NMR (CD₃CN), δ (multiplicity): 2.40 (br), 4.20 (br). ¹³C{¹H} NMR (DMSO- d_6), δ (assignment, $\Delta v_{1/2}$): 31.5 (CH₂, 7.2 \pm 0.5 Hz), 55.8 (CH, 8 ± 1 Hz). ¹³C{¹H} NMR (DMSO-d₆, with 3 equiv of Kryptofix 2.2.2. added), δ (assignment, $\Delta v_{1/2}$): 31.4 (CH₂, 6.5 ± 0.5 Hz), 55.8 (CH, 9.6 ± 1.5 Hz). 170 NMR (CD₃CN, 22 °C, with 3 equiv of Kryptofix 2.2.2. added) (Figure 8B), δ : 680 (s, 3 ± 1 O; Nb-O) (Δv_{12}

= 440 \pm 140 Hz); 330 (s, 3 \pm 1 O; Nb₂-O-Ir) ($\Delta v_{1/2}$ = 510 \pm 110 Hz). $[(n-C_4H_9)_4N]_5Na_3[(1,5-COD)RhrP_2W_{15}Nb_3O_{62}], 2.8j$ In the drybox, $[(n-C_4H_9)_4N]_9P_2W_{15}Nb_3O_{62}$ (10.25 g, 1.63 mmol) is placed in a 100 mL round-bottomed flask and dissolved with stirring in 30 mL of CH3-CN to yield a clear solution. This solution is filtered through a folded filter paper (Whatman No. 2). The clear filtrate is collected in a 200 mL round-bottomed flask that includes a stir bar. The filter paper is washed with a small amount of CH3CN, the washings are combined with the above filtrate, and the combined filtrate is stirred. (By this step, a total of ca. 38 mL of CH3CN has been used.) Next, ca. 15 mL of CH3CN is placed in a graduated cylinder (a portion of it is used below as a solvent for the reaction of [Rh(1,5-COD)Cl]2 with 2 equiv of AgBF4; the remaining portion is used for washing of the test tubes). About 5-6 mL of CH₃CN is put with the [Rh(1,5-COD)Cl]₂ (0.4007 g, 0.813 mmol) into a test tube, and the resulting yellowish suspension is stirred. Into this is added a homogeneous solution of AgBF₄ (0.3183 g, 1.635 mmol; dissolved in a few milliliters of CH3CN) using a pipet. The [Rh(1,5-COD)Cl]₂ dissolves completely, a white precipitate of

AgCl deposits, and a yellow mother liquor remains. The test tube that

contained the AgBF4 is washed with a few milliliters of CH3CN, and

the washings are also added to the well-stirred suspension, which now

contains [Rh(1,5-COD)(CH₃CN)₂]BF₄ and 2 equiv of AgC1.

Still in the drybox, the white precipitate of AgCl is removed by filtration with a folded filter paper, and the filtrate is directly introduced into the clear, well-stirred solution of [(n-C₄H₉)₄N]₉P₂W₁₅Nb₃O₆₂. The precipitate on the filter paper is washed several times with a small amount of CH3CN (a total of ca. 15 mL of CH3CN is used for this washing), and the washings are combined to the above stirred solution. This combined, red solution is further stirred for 15 min. The total volume in the 200 mL round-bottomed flask is ca. 68 mL. To this solution is added solid NaBF₄ (0.5354 g. 4.876 mmol, 3 equiv). The NaBF4 left on a wall of the test tube is also washed out with a few milliliters of CH3CN, and the washings are added to the red solution. The stirring is continued at room temperature until all of NaBF4 dissolves. (It takes about 20 min.) The resulting orange-red solution is filtered with a folded filter paper, and the filtrate is collected in a 200 mL round-bottomed flask, which is rotary-evaporated (using a small rotary-evaporator placed inside the drybox) to dryness and then further dried under vacuum for 5 h. The residual solid, which contains (n- $C_4H_9)_4N]_5Na_3[(1,5-COD)RhrP_2W_{15}Nb_3O_{62}]$ and 4 equiv of $[(n-C_4H_9)_4N]$ -BF4, is a darker yellow to darker orange.

To remove the contaminating three equivalents of [(n-C4H9)4N]BF4, the solid is placed into a 200 mL round-bottomed flask and dissolved in ca. 8 mL of CH₃CN (excess CH₃CN lowers the yield). The orangered solution is then transferred to a 600 mL beaker using a polyethylene pipet. The round-bottomed flask is rinsed with a small amount of CH3-CN, and the washings are combined with the solution in the beaker. (By this step, a total of ca. 15 mL of CH3CN has been used; this orangered solution is clear and homogeneous.) To this solution, while stirring with a spatula, is slowly added in 100 mL portions a total of 400 mL of EtOAc. A yellow precipitate forms. After the addition of the final portion of EtOAc, the stirring (with a magnetic stirrer and a stir bar) is continued for 15 min. The orange-yellow precipitate is collected on a 30 mL medium glass frit, washed twice with 60 mL of Et₂O, and dried for 30 min under vacuum. The filtrate is pale orange and slightly cloudy. To completely remove the contaminating [(n-C₄H₉)₄N]BF₄, reprecipitation is repeated twice more from a CH₃CN solution (ca. 15 mL; an excess lowers the yield) using 400 mL of EtOAc, followed by washing twice with 60 mL of Et2O. The final product is an orangeyellow powder, yield 7.0 g (1.25 mmol, 77%), which is stored in the drybox. [In addition, the product may be stored over a small layer of the compound in the outer bottle topped by a layer of tissue (i.e., using some of the complex as its own, sacrificial, ideal-affinity oxygen scavenger).] Drying under vacuum at 60 °C for 1 week is required to remove the last traces of solvents which, otherwise, interfere with the ¹H NMR and ¹³C NMR spectra. Anal. Calcd (found): C, 18.94 (18.50); H, 3.47 (3.50); N, 1.26 (1.52); Na, 1.24 (1.25); Rh, 1.84 (1.70); P, 1.11 (1.11); W, 49.4 (49.6); Nb, 4.95 (5.09); O, 17.8 (16.6); total, 100 (98.87).52 Molecular weight (sedimentation-equilibrium method, 1 × 10⁻⁵ M 2 in 0.1 M ([(n-C₄H₉)₄N]PF₆/CH₃CN (supplementary material,

⁽⁵⁰⁾ Rocchiccioli-Deltcheff, C.; Thouvenot, R. Spectrosc. Lett. 1979, 12, 127.

<sup>127.

(51) (</sup>a) ³¹P NMR spectra of 1 collected more recently at Colorado State University afforded the following chemical shift data: δ –7.1, –13.6.

(b) ³¹P NMR spectra of 2 collected more recently at Colorado State University afforded the following chemical shift data: δ –7.4, –13.4.

(c) ³¹P NMR spectra of [(n-C4H9)ΔN]₉P₂W₁₅Nb₃O₆₂ collected more recently at Colorado State University afforded the following chemical shift data: δ –6.6, –13.6. (d) The difference in the observed chemical shifts is attributed to (i) different sample size (5 mm o.d. vs 10 mm o.d. NMR tube) and (ii) use of an external reference standard sealed in a capillary vs an external reference by substitution (see also footnote 34). However, when P₂W₁₅Nb₃O₆₂⁹⁻ is used as an internal secondary standard, ^{51d} the observed ³¹P chemical shifts are reproducible within ±0.2 ppm. (d) ³¹P NMR chemical shifts for P₂W₁₅Nb₃O₆₂⁹⁻, referenced externally to 85% H₃PO₄, have previously been reported. ⁸³ However, no correction for the volumic susceptibility of the sample solution was applied.

whereas for 2 the solution color changed from orange to bright yellow.

immediately following the addition of [(n-C₄H₉)₄N]Cl. A ³¹P NMR spectrum of this solution acquired in the presence of 3 equiv of Kryptofix 2.2.2. showed two lines. ³¹P NMR³⁴ (25 °C, 44.5 mM, CD₃-CN, with 3 equiv of Kryptofix 2.2.2.): $\delta -7.1$, -14.1 (±0.2). The chemical shifts in the resulting ³¹P NMR spectrum are identical to those observed for P2W15Nb3O629-. Most characteristic here is the downfield shift of the phosphorus resonance closer to the "Nb3O93-" cap indicative of cleavage of [(1,5-COD)M]+ (presumably as [(1,5-COD)MCl]2) from the heteropolyoxoanion support, hence re-forming the starting material, P₂W₁₅Nb₃O₆₂9-, used in the synthesis of 1 and 2.

Addition of [(n-C4H9)4N]9P2W15Nb3O62 to a Solution of [(1,5-COD)M-P2W15Nb3O62]8-. In a control experiment designed to prove that unreacted, "free" P2W15Nb3O629- (supplementary material, Figure T) could be detected if it were present as an impurity in 1 or 2, 0.10 g (0.45 equiv, 0.016 mmol) of $[(n-C_4H_9)_4N]_9P_2W_{15}Nb_3O_{62}$ was deliberately added to a solution of 0.20 g of 1 (0.035 mmol) in DMSO-d₆. ³¹P NMR (DMSO- d_6 ; with 3 equiv of Kryptofix 2.2.2.), δ (no. of P): -7.1 (1 P), -8.1 (2 P), -14.1 (3 P) (supplementary material, Figure R). [An analogous experiment where [(n-C₄H₉)₄N]₉P₂W₁₅Nb₃O₆₂ was added to a solution of 2 in DMSO-d6 yielded similar results, supplementary material, Figure R.] Separate, clearly identified resonances at δ -7.1 and -8.1 are seen as expected for the phosphorus atoms closest to the "Nb₃O₅3-" cap in P₂W₁₅Nb₃O₆₂ and in [(1,5-COD)IrP2W15Nb3O6238-, respectively, that are closest to the "Nb3O93-" cap. The resonances for those phosphorus closest to the "WaOs" cap coincide at $\delta = 14.1$. The observation of two distinct signals (and their integrated intensities) at $\delta = 7.1$ and -8.1 rules out, at least on the ³¹P NMR time scale and under the conditions of the experiment, a dissociation/readdition mechanism ("intermolecular fluxionality") for [(1,5-COD)IrP2W15Nb3O62]8- (e.g., yielding P2W15Nb3O629- and [(1,5-COD)IrP2W15Nb3O629- and [(1, COD)Ir(DMSO-d₆)₂]⁺), followed by diffusion of the iridium moiety through solution and readdition to a different polyoxoanion. It also shows that, even in such strongly coordinating solvents as DMSO, [(1,5-COD)IrP2W15Nb3O62]8- is stable and the iridium moiety is not cleaved from the polyoxoanion support.

Experiments Demonstrating Non-Ion-Exchangeability for 1 and 2. In the inert atmosphere box, 10 g of macroreticular, strongly acidic resin, Amberlyst 15 (H+ form; P-SO₃H) was placed in a beaker together with ca. 50 mL of degassed water. The resin was swirled for ca. 1 min, followed by decanting the water. This process was repeated until the aqueous phase was clear and colorless. The resin was then packed onto a 27 cm × 1 cm (length × diameter) column. A large excess, ca. 30 mL, of degassed 40% $[(n-C_4H_9)_4N]^+OH^-/H_2O$ was diluted by ca. 1 part in 10 with distilled water and then passed dropwise through the column. When the eluant tested basic with litmus paper, distilled water was passed through the column until the eluant tested neutral with litmus paper. The resultant P-SO₃⁻[(n-C₄H₉)₄N]⁺ column was then washed with five 50 mL portions of dry acetonitrile. Still in the drybox, a solution of ca. 0.5 g of 1 or 2 in 10 mL of CH3CN was loaded onto the column. This colored solution was passed through the column dropwise with no apparent retention. The colored cluant was collected and the solvent removed by rotary evaporation under reduced pressure, again all in the drybox. The $[(1,5-COD)M-P_2W_{15}Nb_3O_{62}]^{8-}$ (M = Ir, Rh) appeared unchanged (by 31P NMR spectroscopy). An anion exchange column of identical size was packed with strongly basic resin, Amberlyst A-27 (Cl⁻ form; P-NR₃+Cl⁻) and was then washed with dry acetonitrile. A sample of 1 or 2 was loaded onto the column as described above for the cation exchange resin. All of the colored sample was retained on the resin in the upper half of the column.

¹⁷O NMR Studies of [(1,5-COD)Ir-P₂W₁₅Nb₃O₆₂]⁸⁻, 1. A detailed account of these studies, including experimental procedure and instrumental parameters, has been presented elsewhere and is available to the interested reader. The 17O-enrichment of 1 reported therein has been repeated a total of three times. In three of those experiments, collection of ¹⁷O NMR spectra yielded a two-line spectrum for ¹⁷Oenriched 1, with the data in Figure 8B proving representative. The ¹⁷O NMR spectra of two more, independent repeat experiments are also available (supplementary material, Figure O). 31P NMR spectra taken as a control after acquiring the 170 NMR spectra of 170-enriched 1 and confirming that 1 is intact are listed in the supplementary material. Figure N.

Figure B): $\bar{M}_{\rm w}$ (calc) 5584, $\bar{M}_{\rm w}$ (found) 5910 \pm 600. An attempted molecular-weight measurement by FAB-MS did not contain a parent peak for 2, presumably due to the expected loss of the (1,5-COD)Rh as a neutral fragment²² (supplementary material, Figures C and D). IR (KBr disks, cm⁻¹) (supplementary material, Figure E): 1090, 1008, 981, 949, 914, 895, 771. ³¹P NMR (DMSO- d_6), δ ($\Delta v_{1/2}$) (Figure 5): $-8.2 (18.7 \pm 0.3 \text{ Hz}), -14.1 (17.0 \pm 0.2 \text{ Hz}).$ ³¹P NMR (DMSO-d₆, with 3 equiv of Kryptofix 2.2.2.), δ (no. of P, $\Delta \nu_{1/2}$) (Figure 5): -8.6 $(1 \text{ P, } 4.1 \pm 0.2 \text{ Hz}), -14.1 (1 \text{ P, } 5.3 \pm 0.3 \text{ Hz}).$ ³¹P NMR (CD₃CN), δ (supplementary material, Figure G): -8.9, -13.9. ³¹P NMR³⁴ (CD₃-CN, with 3 equiv of Kryptofix 2.2.2.), δ (no. of P) (supplementary material, Figure G): -8.2 (1 P), -14.2 (1 P). Slad 183W NMR (DMSO d_{6} , 0.09 M, with 3 equiv of Kryptofix 2.2.2.), δ (no. of W, Δv_{12}) (Figure 7): -136.5 (3 W, 9.3 ± 3.5 Hz), -160.4 (6 W, 7.9 ± 2.0 Hz), -199.8 $(6 \text{ W}, 9.1 \pm 2.5 \text{ Hz})$. ¹⁸³W (CD₃CN, 0.09 M, with 3 equiv of Kryptofix 2.2.2.), δ (no. of W, $\Delta \nu_{1/2}$): -131.9 (3 W, 8.9 \pm 2.9 Hz), -158.94 (6 W, 8.9 ± 1.6 Hz), -196.31 (6 W, 15.0 ± 3.1 Hz). ¹H NMR (DMSOd₆, 25 °C, 3.58 mM), δ (multiplicity, no. of H, $\Delta \nu_{1/2}$) (supplementary material, Figure H): 1.89 (br, 4 H, 18.56 \pm 0.49 Hz, CH₂), 2.42 (br, 4 H, 18.59 \pm 0.82 Hz, CH₂), 4.29 (br, 4 H, 11.09 \pm 0.26 Hz, CH). 'H NMR (CD₃CN, 25 °C, 3.58 mM), & (multiplicity, no. of H) (supplementary material, Figure J): 2.44 (br, 6 H), 4.20 (br, 2 H). No resonances attributable to $[(1,5-COD)Rh(acetone-d_6)_2]^+$ are seen in the ¹H NMR spectrum of 2 using acetone-d₆ as solvent (supplementary material, Figure K). Variable-temperature 1H NMR spectroscopy of 2 in acetone-d₆ (-20 to +40 °C), CD₃CN (-20 to +60 °C) and DMSOd₆ (20-60 °C) showed the maintenance of the peaks for the polyoxoanion-bound [(1,5-COD)Rh]+ moiety with no new signals observed. ¹³C{¹H} NMR (DMSO-d₆, 25 °C, 15.7 mM), δ (multiplicity, Δν_{1/2}) (supplementary material, Figure I): 29.95 (s, 3.34 ± 0.14 Hz, CH₂), 86.04 (br, 40.16 ± 2.90 Hz, CH). ¹³C NMR (25 °C, 15.7 mM, DMSO d_6), δ (multiplicity, $^1J_{CH}$) (supplementary material, Figure L): 30.4 (t, 154 Hz), 85.8 (d, 100 Hz). This ¹³C{¹H} NMR experiment confirms the assignment for the methylene and methine carbons of 2. 170 NMR (20 °C, 90 mM, CD₃CN, 3 equiv of Kryptofix 2.2.2. added) (supplementary material, Figure P), δ (no. of O, $\Delta v_{1/2}$): 790 (2 \pm 1, 2300 \pm 850 Hz), 740-530 (5 \pm 1, estimated 7800 Hz), 350 (1 \pm 0.2, 760 \pm 220 Hz). 17O NMR (55 °C, 90 mM, CD₃CN, 3 equiv of Kryptofix 2.2.2.), δ (no. of O, $\Delta \nu_{1/2}$) (supplementary material, Figure N): 800 (2 \pm 1, 1600 \pm 480 Hz), 710 (6 \pm 1, 1650 \pm 320 Hz), 350 (1 \pm 0.2, 360 \pm 60 Hz).

¹H and ¹³C NMR Studies of [(1,5-COD)M·P₂W₁₅Nb₃O₆₂]⁸-. The collection of ¹H NMR spectra requires the use of [(n-C₄H₉)₄N]₅Na₃[(1,5- $COD)M\cdot P_2W_{15}Nb_3O_{62}$ (M = Ir, Rh) which has been thoroughly desolvated and dried, as otherwise additional peaks relating to diethyl ether, acetonitrile, and ethyl acetate (solvents used in the preparation) show up and can be misinterpreted as [(1,5-COD)M]+ resonances. Therefore, samples of 1 and 2 used in the acquisition of ¹H and ¹³C NMR spectra were rigorously dried and desolvated for 1 week in a drying pistol under vacuum at 60 °C. In CD3CN as solvent, two of the three expected resonances for the 1,5-COD ligand were observed for samples of 1 and 2; a third 1,5-COD resonance, observed at δ 1.89 in DMSO-d₆, is obscured by the residual protic impurities of the deuterated solvent used ($\delta = 1.93$ for CH₃CN). In contrast to the three peaks observed in DMSO-d₆, in acetone-d₆ no peaks assignable to COD resonances are observed. Only broad, featureless resonances are observed that cannot readily be attributed to the cyclooctadiene ligand. (An experimental limitation here is the decreased solubility of complexes 1 and 2 in acetone, when compared to CH3CN and DMSO as solvent.) Due to the even lower solubility of the mixed 5[(n- $C_4H_9)_4N]^+/3Na^+$ salt of [(1,5-COD)M-P₂W₁₅Nb₃O₆₂] (M = Ir, Rh) in nonpolar and noncoordinating solvents, no resonances for [(1,5-COD)M]+ were observable in CDCl3, even though signals for the much more abundant protons of [(n-C₄H₉)₄N]⁺ could clearly be seen.

Removal of [(1,5-COD)M]+ from 1 and 2 by Addition of Cl-. In two separate control experiments, to a solution of 0.5 g (0.09 mmol) of 1 or 2 in 2 mL of CD₃CN was added 0.49 g (1.78 mmol, 20 equiv) of [(n-C4H9)4N]Cl. No change in solution color was observed for 1,

A CONTROL OF THE CONT

⁽⁵²⁾ We note that the difference between % Ocale and % Ofound is of the same magnitude as the difference between % Σ_{found} and % Σ_{calc} Restated, if the % O_{found} is adjusted (1.1% higher) to the calculated value of 17.8%, the % Σ_{found} adds up to 100%.

Removal of [(1,5-COD)Ir]+ from 17O-Enriched 1 by Addition of CI-. This control experiment was done in order to verify the assignments of ¹⁷O NMR resonances in ¹⁷O-enriched 1.98 In the drybox, to 1.0 g (0.18 mmol) of ¹⁷O-enriched⁹\$ 1 in 2 mL of CD3CN was added 0.98 g (3.56 mmol, 20 equiv) of $[(n-C_4H_9)_4N]Cl$. One milliliter of the resulting solution was transferred into an airtight J. Young NMR tube, and ³¹P, ¹⁸³W, and ¹⁷O NMR spectral data were collected. The ³¹P NMR34 spectrum (supplementary material, Figure V) showed the two ³¹P resonances (at δ -7.1 and -14.1) of the support-polyoxoanion, confirming that the [(1,5-COD)Ir]+ has been cleaved. A 183W NMR spectrum (supplementary material, Figure X) shows primarily three lines at $\delta = 132$, -159, -203 and reflects the $C_{3\nu}$ symmetry of the P₂W₁₅Nb₃O₆₂9- polyoxoanion in solution, although, the spectrum is of relatively low signal/noise. The ¹⁷O NMR spectrum (supplementary material, Figure W) acquired after cleavage of the iridium moiety from the polyoxoanion-support shows two broad lines of approximately equal intensity at δ 720 and 500, plus a very small and broad resonance at ca. & 330. The chemical shifts of these resonances compare favorably, especially given the broad nature of the signals and the different conditions (i.e. the presence of ≈ 1 equiv of $[(n-C_4H_9)_4N]Cl)$, with those reported for niobium-terminal and -bridging oxygens in H_zP₂-W₁₅Nb₃¹⁷O₆O₅₆⁹⁻² (ô 750 and 510, respectively). Moreover, the absence of a sharper and more intense resonance at δ 330, previously g assigned by analogy to the literature to Nb2-O-Ir, lends further support to the correctness of the assignment of the δ 330 resonance.

¹⁷O NMR Studies of [(1,5-COD)Rh·P₂W₁₅Nb₃O₆₂]⁸⁻, 2. These experiments were modeled after our successful approach9 employed in deriving 17O NMR data for [(n-C4H9)4N]5Na3[(1,5-COD)IrP2W15-Nb₃O₆₂]. All manipulations were carried out in a Vacuum Atmospheres nitrogen drybox to prevent isotopic dilution of the ¹⁷O-enriched material and to protect the air-sensitive [(1,5-COD)Rh-P2W15Nb3O62]8-. In an 18 \times 150 mm disposable test tube, 1 g (0.18 mmol) of $[(n-C_4H_9)_4N]_5$ -Na₃(1,5-COD)Rh·P₂W₁₅Nb₃O₆₂] was dissolved in 2 mL of CH₃CN. To this solution was added H₂O (20% ¹⁷O-enriched, 1.0 g), resulting in a clear orange solution. After being stirred for 36 h at 22 \pm 2 °C, the solution was evacuated to dryness and the solid was redissolved in 2 mL of CD₃CN. Following addition of 3 equiv of Kryptofix 2.2.2., the solution was transferred into an NMR tube equipped with a J. Young airtight valve, transferred out of the drybox, and placed in the NMR probe. ¹⁷O NMR (20 °C, 90 mM, CD₃CN, 3 equiv of Kryptofix 2.2.2. added) (Figure 10, top), δ (no. of O, $\Delta v_{1/2}$): 750 (1 ± 0.5, 2300 ± 850 Hz), 500 (2.5 \pm 1, 700 Hz \pm 100 Hz), 330 (4.3 \pm 1, 1600 \pm 300 Hz). A ³¹P NMR spectrum (supplementary material, Figure Y) taken as a control after acquiring the ¹⁷O NMR spectra (20 °C, 90 mM, CD₃-CN, 3 equiv of Kryptofix 2.2.2.) shows the clean, characteristic twoline ^{31}P NMR spectrum for 2, δ (no. of P) -8.1 (1 P), -14.0 (1 P), confirming that the sample had not degraded.

Removal of [(1,5-COD)Rh]⁺ from ¹⁷O-Enriched 2 by Addition of Cl⁻. Given the unexpected ¹⁷O NMR spectra seen for enriched 2, this control experiment was designed to remove the [(1,5-COD)Rh]⁺ from ¹⁷O-enriched 2 and thereby to test if the unusual ¹⁷O NMR spectra are (i) a result of a problem in the enrichment procedure (i.e., in the case of rhodium-containing 2), (ii) a result of multiple support-site isomers, or (iii) a result possibly of some other conditions. If the problems are *not* in the ¹⁷O-enrichment procedure, then this control experiment should result in a clean two-line ¹⁷O NMR spectrum⁹z of P₂W₁₅Nb₃O₆₂⁹ following cleavage of {(1,5-COD)Rh]⁺ from 2 (as in fact is seen; *vide infra*).

In the drybox, to the solution of ¹⁷O-enriched 2 in CD₃CN (the exact same sample as used in above experiment) was added 20 equiv of [(n-C₄H₉)₄N]C1 (0.98 g, 3.56 mmol). The solution color immediately changed from orange to a yellow, characteristic of [(1,5-COD)RhC1]₂. The sample solution was then transferred out of the drybox, and ¹⁷O NMR and ³¹P spectra were acquired. ¹⁷O NMR (20 °C, 90 mM, CD₃-CN, 3 equiv of Kryptofix 2.2.2.), δ (no. of O, $\Delta \nu_{1/2}$) (Figure 10, bottom): 740 (2 ± 1, 2400 ± 850 Hz), 500 (5 ± 0.5, 600 ± 180 Hz), 330 (1.6 ± 0.2, 1500 ± 350 Hz). Following addition of 20 equiv of [(n-C₄H₉)₄N]Cl, the intensity of the peak at δ 330, tentatively identified previously as due to a Rh-ONb bond, is dramatically decreased. However, a residual resonance at δ 330 is still present and is presumably the result of incomplete displacement and some type of intraor intermolecular exchange process (eq v), in which a Rh-ONb bond is

$$P_2W_{15}Nb_3O_{62}^{9-} + {}^{1}/_{2}[(1,5-COD)RhCl]_{2} =$$

$$[(1,5-COD)(Cl)_{1-n}Rh\cdot P_2W_{15}Nb_3O_{62}]^{8-} + nCl^{-}(n=0,1)$$
(v)

retained. A ³¹P NMR spectrum (supplementary material, Figure AA) taken, as a control, after acquiring the ¹⁷O NMR would seem to be inconsistent with the ¹⁷O NMR spectra since it shows the clean two-line spectrum, δ (no. of P) -7.2 (1 P), -14.1 (1 P), characteristic for the free heteropolyoxoanion $P_2W_{15}Nb_3O_{62}^{9-}$, which instead suggests cleavage of the [(1,5-COD)Rh]+ from 2 by the added Cl⁻. However, we recently discovered that the peak width (and apparent peak height) of the δ -7.2 resonance in the ³¹P NMR spectrum is a measure of the reaction shown in eq v, and this will be reported elsewhere. ⁴⁸ The ¹⁸³W NMR spectrum after cleavage shows the familiar three-line spectrum, ¹⁸³W NMR (20 °C, 140 mM, CD₃CN, 3 equiv of Kryptofix 2.2.2.) (supplementary material, Figure X), δ (no. of W) (supplementary material, Figure V): -131.8 (3 W), -158.3 (6 W), -201.4 (6 W).

To summarize, the ¹⁷O NMR spectra collected after enriching 2 in a mixture of CH₃CN/H₂¹⁷O showed only broad resonances that sharpened slightly upon raising the sample temperature to 55 °C during NMR data collection. A ¹⁷O NMR spectrum collected (Figure 10, bottom) after addition of a large excess (20 equiv) of [(n-C₄H₉)₄N]Cl showed two lines at δ 770 and 510 (relative intensities of 1:1), confirming that 2 had successfully enriched in the terminal (NbO) and bridging (Nb₂O) niobium—oxygen sites.

Attempts To Grow X-ray Diffraction Quality Crystals of 1 and 2. At least 150 experiments (summarized in the supplementary material) were carried out in attempts to obtain X-ray quality crystals. In none of the cases described in the supplementary material was a crystalline material obtained. We are, nevertheless, continuing our search to find other cation combinations that will yield diffracting crystals of 1 and 2.

Acknowledgment. We thank Professor Max Deinzer, Department of Agricultural Chemistry, Oregon State University, Corvallis, OR, for making available to us the Kratos MS50 mass spectrometer and Dr. Brian Arbogast for his technical expertise in carrying out the FAB-MS measurements and spectral simulations. This work was supported by the Department of Energy, Chemical Sciences Division, Office of Basic Energy, via Grant DOE-DE-FG06-089ER13998.

Supplementary Material Available: Sedimentation-equilibrium molecular-weight plot (ln A vs r2) for 1 (Figure A), sedimentationequilibrium molecular-weight plot ($\ln A \text{ vs } r^2$) for 2 (Figure B), positive ion FAB-MS of 2 (Figure C), negative ion FAB-MS of 2 (Figure D), expanded IR of [$(n-C_4H_9)_4N]_5Na_3[(1.5-COD)Rh-P_2W_{15}Nb_3O_{62}]$ (KBr, cm⁻¹) (Figure E), ³¹P NMR spectra of [(n-C₄H₉)₄N]₅Na₃[(1,5-COD)IrP2W15Nb3O62], 1, in CD3CN (Figure F), 31P NMR spectra of $[(n-C_4H_9)_4N]_5Na_3[(1,5-COD)Rh-P_2W_{15}Nb_3O_{62}], 2, in CD_3CN (Figure$ G), 'H NMR spectrum of rigorously desolvated and dried [(n-C₄H₉)₄N]₅- $Na_3[(1,5-COD)Rh\cdot P_2W_{15}Nb_3O_{62}]$ in DMSO-d₆ (Figure H), $^{13}C\{^1H\}$ NMR spectrum of 2 in DMSO-d₆ (Figure I), ¹H NMR spectrum of [(1,5-COD)Rh·P₂W₁₅Nb₃O₆₂]⁸⁻ in CD₃CN (Figure J), ¹H NMR spectrum of [(1,5-COD)Rh-P2W15Nb3O62]8- in acetone-d6 (Figure K), 13C NMR (1H-coupled) of 2 in DMSO-d6 (Figure L), 31P NMR spectrum of freshly dissolved, metastable Na₁₂P₂W₁₅O₅₆ in 1.5 M HOAc/0.5 M NaOAc/1 M LiCl (Figure M), account of additional ¹⁷O NMR experiments of 2, ³¹P NMR spectra taken as a control after acquiring the ¹⁷O NMR spectra for ¹⁷O-enriched 1 (Figure N), ¹⁷O NMR spectra of [(n-C₄H₉)₄N]₅-Na₃[(1,5-COD)IrP₂W₁₅Nb₃¹⁷O₆O₅₆], which was prepared from preformed 1 by enrichment with 10% H217O over a period of 36 h (repeat experiments) (Figure O), 17O NMR spectra of 2 following enrichment for 36 h in a mixture of CH₃CN/H₂¹⁷O (20% oxygen 17-enriched) (Figure P), ¹⁷O NMR spectra (top) at 20 °C and (bottom) at 55 °C of 2 following cleavage of [(1,5-COD)Rh]+ from the heteropolyoxoanionsupport (Figure Q), ¹⁷O NMR spectra of 2 following enrichment for 36 h in a mixture of CH₃CN/H₂¹⁷O (10% oxygen 17-enriched) (Figure R), 170 NMR spectrum of 2 after enriching in a mixture of 2 mL of CH₃CN/1 mL of H₂¹⁷O (10% ¹⁷O enrichment) for 1 week (Figure S).

³¹P NMR spectrum of 1 and 2 (0.035 mmol; DMSO-d₆; with three equiv of Kryptofix 2.2.2. added) after deliberate addition of 0.016 mmol of [(n-C₄H₉)₄N]₉P₂W₁₅Nb₃O₆₂ (Figure T), account of attempts to grow X-ray diffraction quality crystals of 1 and 2, preliminary single-crystal X-ray structure analysis for crystals obtained by addition of Ph₄PBF₄ to 2 which was dissolved in a mixture of H₂O/CH₃CN (Figure U), ³¹P NMR spectrum of ¹⁷O-enriched 1, following cleavage of the [(1,5-COD)Ir]+ moiety from the support-heteropolyoxoanion by addition of 20 equiv of [(n-C₄H₉)₄N]Cl (Figure V), ¹⁷O NMR spectrum collected after cleavage, by addition of 20 equiv of [(n-C4H9)4N]Cl, of the [(1,5-COD)Ir]+ moiety from the support-heteropolyoxoanion of ¹⁷O-enriched 1 (Figure W), 183W NMR spectrum of 1 and 2 following cleavage, by addition of 20 equiv of [(n-C₄H₉)₄N]Cl, of the organometallic fragment [(1,5-COD)M]+ from the heteropolyoxoanion-support in ¹⁷O-enriched 1 and 2 (Figure X), ³¹P NMR spectra taken as a control after acquiring the ¹⁷O NMR spectra for ¹⁷O-enriched 2 (Figure Y), ¹⁷O NMR spectrum of [(n-C₄H₉)₄N]₅Na₃[(1,5-COD)Rh·P₂W₁₅Nb₃¹O₆O₅₆], which was prepared from preformed 2 by enrichment with 10% H₂¹⁷O over a period of 36 h (Figure Z), ³¹P NMR spectra taken as a control after cleavage (by addition of 20 equiv of [(n-C₄H₉)₄N]Cl) of the [(1,5-COD)Rh]⁺ moiety from the support-heteropolyoxoanion of ¹⁷O-enriched 2 (Figure AA), complete elemental analysis for (TBA)₅Na₃[(1,5-COD)Ir·P₂W₁₅-Nb₃O₆₂] showing the calculated percentages as a function of various countercation compositions (Table A), complete elemental analysis for (TBA)₅Na₃[(1,5-COD)Rh·P₂W₁₅Nb₃O₆₂] showing the calculated percentages as a function of various countercation compositions (Table B), ¹⁷O NMR data for niobium-containing polyoxotungstates (Table C), crystallographic information for the crystals obtained by the addition of Ph₄PBF₄ to 2 in CH₃CN/H₂O (Table D) (37 pages total). Ordering information is given on any current masthead page.

IC9409524