1. General concepts

WoSIS - World Soil Information Service.

Database to safeguard Soil data (point, polygon and raster) and distribute standardized soil data.

WFS - Web Feature Service, OGC (Open Geospatial Consortium) standard, allows request for geographical (vectorial) features across the web, server – client (desktop or web application).

WCS - Web Coverage Service. Allows request for raster (grid data) across the web.

WMS - Web Map Service. Allows request for tiles (like Google map does) across the web.

2. Set up a base layer

For that we need to install the 'QuickMapServices' plugin.

Go to '**Plugins**' → '**Manage and Install Plugins...**' → Type '**QuickMapServices**' in the search box → Select it and hit '**Install plugin**'. 'Point sampling tool' and 'Value tool' are other interesting plugins.

Load the base layer by going to 'Web' → 'QuickMapServices' and choose one of the base maps available. We will use **OSM Satandard**. In order to see all continents select the layer on the left (**OSM Satandard**) and right click on it and choose first option, 'Zoom to Layer'.

3. Accessing WoSIS from QGIS using WFS

To open and view WoSIS Soil profile data in QGIS, you first need to create a WFS connection. To do this press '**Layer**' → '**Add Layer**' → '**Add WFS layer...**' (There is also a direct button).

Then press 'New', under name, you can put the name you want, for example, 'WoSIS' and in the URL field put http://data.isric.org/geoserver/wosis_latest/wfs/. No authentication is needed here, so leave blank the 'User name' and 'Password' boxes. Press the OK button.

Press 'Connect' and all available layers will appear on screen.

Next, **select the layer** of interest listed under 'Title' and press '**Add**' button. Note that it may take some time until you fetch all points for the global coverage. Be aware that you are working online and that some layers have over half a million records. So probably a more efficient approach would be to request only the points for a specific area. In this case, first zoom to the area of interest and then make sure that '**Only request features overlapping the current view extent**' is ticked when you are adding the WFS layer.

3.1. Check all the available profiles sites

Press 'Add WFS layer' then 'Connect' and add layer 'profiles'.

3.2 Filter the data before download it from the server

Let's load the layer '**Organic Carbon** (g/kg)' only for the Netherlands. For that, after selecting the layer, click on the '**Build query**' button. Then a new windows will open (SQL query composer) in order to make a SQL query to the server. Click in the box '**Where**', in order to place the courser there, then click in '**Columns**' → select column '...country_name'. You will see that the selected column now appears in the Where box. Now lets just add in front of the column "= '**Netherlands**' ", it should look like this "wosis_latest_orgc_country_name = '**Netherlands**'". See image below.

Then press ' $\mathbf{OK}' \rightarrow '\mathbf{Add}'$ and in the map you will have the layer Organic Carbon (g/kg) only for the Netherlands.

Next, open the attribute table to have a look to the data.

3.3 Export data

To save the data and have it available locally, not depending on an Internet connection, **right click over the layer** and press '**Save as...**'. As you will see there are multiple formats available to export.

4. Use GDAL to fech WoSIS layers

Install this tools from https://trac.osgeo.org/osgeo4w/.

Execute on the console the lines in *italic* (although you may see it in more than one line, it is one line!). In green is the output. We will use the tools *ogr2ogr* and *ogrinfo*. For more information please visit the official website (http://www.gdal.org/ogr_utilities.html).

4.1. Listing available layers in the WFS service.

ogrinfo -ro WFS:http://data.isric.org/geoserver/wosis_latest/wfs/

```
INFO: Open of `WFS:http://data.isric.org/geoserver/wosis latest/wfs/'
   using driver `WFS' successful.
1: wosis latest:wosis latest bdfi33 (Point)
2: wosis_latest:wosis_latest_bdfiad (Point)
3: wosis_latest:wosis_latest_bdfifm (Point)
4: wosis latest:wosis latest bdfins (Point)
5: wosis_latest:wosis_latest_bdfiod (Point)
6: wosis latest:wosis latest bdws33 (Point)
7: wosis_latest:wosis_latest_bdwsns (Point)
8: wosis_latest:wosis_latest_bdwsod (Point)
9: wosis_latest:wosis_latest_tceq (Point)
10: wosis_latest:wosis_latest_cecnsp (Point)
11: wosis latest:wosis latest cecph7 (Point)
12: wosis latest:wosis latest cecph8 (Point)
13: wosis latest:wosis latest clay (Point)
14: wosis latest:wosis_latest_cfgr (Point)
15: wosis latest:wosis latest cfvo (Point)
16: wosis latest:wosis latest ecec (Point)
17: wosis_latest:wosis_latest_elco1x (Point)
18: wosis_latest:wosis_latest_elcons (Point)
19: wosis latest:wosis latest elcosp (Point)
20: wosis_latest:wosis_latest_orgc (Point)
21: wosis latest:wosis latest phpbyi (Point)
22: wosis_latest:wosis_latest_phpmh3 (Point)
23: wosis_latest:wosis_latest_phpols (Point)
24: wosis_latest:wosis_latest_phprtn (Point)
25: wosis_latest:wosis_latest_phptot (Point)
26: wosis_latest:wosis_latest_phpwsl (Point)
27: wosis_latest:wosis_latest_sand (Point)
28: wosis_latest:wosis_latest_silt (Point)
29: wosis latest:wosis latest totc (Point)
30: wosis latest:wosis latest nitkid (Point)
31: wosis latest: wosis latest wg0010 (Point)
32: wosis latest:wosis latest wg0100 (Point)
33: wosis_latest:wosis_latest_wg1500 (Point)
34: wosis_latest:wosis_latest_wg0200 (Point)
35: wosis_latest:wosis_latest_wg0033 (Point)
```

36: wosis_latest:wosis_latest_wg0500 (Point)
37: wosis_latest:wosis_latest_wg0006 (Point)
38: wosis_latest:wosis_latest_wv0010 (Point)
39: wosis_latest:wosis_latest_wv0100 (Point)
40: wosis_latest:wosis_latest_wv1500 (Point)
41: wosis_latest:wosis_latest_wv0200 (Point)
42: wosis_latest:wosis_latest_wv0033 (Point)
43: wosis_latest:wosis_latest_wv0500 (Point)

```
44: wosis_latest:wosis_latest_wv0006 (Point)
45: wosis_latest:wosis_latest_phca (Point)
46: wosis_latest:wosis_latest_phaq (Point)
47: wosis_latest:wosis_latest_phkc (Point)
48: wosis_latest:wosis_latest_phnf (Point)
49: wosis_latest:wosis_latest_profiles (Point)
```

INFO: Open of `WFS:http://data.isric.org/geoserver/wosis latest/wfs/'

4.2. Display layer properties.

ogrinfo -so -noextent WFS:http://data.isric.org/geoserver/wosis_latest/wfs/ wosis_latest_bdfi33

```
using driver `WFS' successful.
Layer name: wosis_latest:wosis_latest_bdfi33
Metadata:
 ABSTRACT=Bulk density of the fine earth fraction < 2 mm, equilibrated at 33 kPa
 KEYWORD_1=features
 KEYWORD 2=wosis latest bdfi33
 TITLE=Bulk density fine earth - 33 kPa (kg/dm³)
Geometry: Point
Feature Count: 76728
Extent: (-171.927505, -77.848663) - (161.600617, 76.228333)
Layer SRS WKT:
GEOGCS["WGS 84",
  DATUM["WGS_1984",
    SPHEROID["WGS 84",6378137,298.257223563,
      AUTHORITY["EPSG","7030"]],
    AUTHORITY["EPSG","6326"]],
  PRIMEM["Greenwich",0,
    AUTHORITY["EPSG","8901"]],
  UNIT["degree",0.0174532925199433,
    AUTHORITY["EPSG","9122"]],
  AUTHORITY["EPSG","4326"]]
Geometry Column = geom
gml_id: String (0.0) NOT NULL
profile id: Integer (0.0)
country name: String (0.0)
upper depth: Integer(Int16) (0.0)
lower depth: Integer(Int16) (0.0)
layer_name: String (0.0)
bdfi33_value: String (0.0)
bdfi33_value_avg: Real(Float32) (0.0)
bdfi33 method: String (0.0)
bdfi33_date: String (0.0)
bdfi33_dataset_id: String (0.0)
bdfi33 profile code: String (0.0)
bdfi33_license: String (0.0)
```

4.3. Listing all the points attributes of the layer wosis_latest_bdfi33, with a spatial filter (xmin ymin xmax ymax).

ogrinfo -ro -noextent WFS:http://data.isric.org/geoserver/wosis_latest/wfs/ wosis_latest_bdfi33 -spat 0.0 0.0 2961766.25 3798856.75

(...)

4.4. Retrieving the features where country_name = 'Albania' AND lower_depth < 30

ogrinfo -ro -noextent -where "country_name = 'Albania' AND lower_depth < 30" WFS:http://data.isric.org/geoserver/wosis_latest/wfs/ wosis_latest_bdfi33

INFO: Open of `WFS:http://data.isric.org/geoserver/wosis_latest/wfs/

POINT (19.416666 40.715557)

using driver `WFS' successful. Layer name: wosis latest:wosis latest bdfi33 Metadata: ABSTRACT=Bulk density of the fine earth fraction < 2 mm, equilibrated at 33 kPa KEYWORD 1=features KEYWORD 2=wosis latest bdfi33 TITLE=Bulk density fine earth - 33 kPa (kg/dm3) Geometry: Point Feature Count: 31 Layer SRS WKT: GEOGCS["WGS 84", DATUM["WGS 1984", SPHEROID["WGS 84",6378137,298.257223563, AUTHORITY["EPSG","7030"]], AUTHORITY["EPSG","6326"]], PRIMEM["Greenwich",0, AUTHORITY["EPSG","8901"]], UNIT["degree", 0.0174532925199433, AUTHORITY["EPSG","9122"]], AUTHORITY["EPSG","4326"]] Geometry Column = geom gml id: String (0.0) NOT NULL profile id: Integer (0.0) country name: String (0.0) upper_depth: Integer(Int16) (0.0) lower_depth: Integer(Int16) (0.0) layer name: String (0.0) bdfi33_value: String (0.0) bdfi33 value avg: Real(Float32) (0.0) bdfi33 method: String (0.0) bdfi33_date: String (0.0) bdfi33 dataset id: String (0.0) bdfi33_profile_code: String (0.0) bdfi33_license: String (0.0) OGRFeature(wosis_latest:wosis_latest_bdfi33):837045 gml_id (String) = wosis_latest_bdfi33.837045 profile_id (Integer) = 175197 country_name (String) = Albania upper depth (Integer(Int16)) = 0lower depth (Integer(Int16)) = 16layer_name (String) = Ap bdfi33 value (String) = {1:1.50,2:1.44,3:1.84} bdfi33_value_avg (Real(Float32)) = 1.59 bdfi33 method (String) = {"1:calculation = not specified, corrections = not specified, sample type = not specified, measurement condition = equilibrated at 33 kPa (\sim 1/3 bar)","2:calculation = not specified, corrections = not specified, measurement condition = equilibrated at 33 kPa (\sim 1/3 bar), sample type = clod reconstituted from < 2 mm sample formed by wetting and dessication cycles that stimulate reconsolidating by water in a field setting", "3:sample type = not specified, corrections = not specified, calculation = not specified, measurement condition = equilibrated at 33 kPa (~1/3 bar)"} bdfi33_date (String) = {1:1994-03-31,2:1994-03-31,3:1994-03-31} bdfi33_dataset_id (String) = US-NCSS bdfi33_profile_code (String) = 94P0509 bdfi33_license (String) = CC-BY

```
OGRFeature(wosis_latest:wosis_latest_bdfi33):837052
 gml id (String) = wosis latest bdfi33.837052
 profile_id (Integer) = 175198
 country name (String) = Albania
 upper depth (Integer(Int16)) = 0
 lower_depth (Integer(Int16)) = 17
 layer name (String) = Ap
 bdfi33_value (String) = {1:1.49,2:1.45,3:1.78}
 bdfi33_value_avg (Real(Float32)) = 1.57
 bdfi33_method (String) = {"1:calculation = not specified, corrections = not specified, sample type = not specified,
measurement condition = equilibrated at 33 kPa (\sim1/3 bar)","2:calculation = not specified, corrections = not specified,
measurement condition = equilibrated at 33 kPa (~1/3 bar), sample type = clod reconstituted from < 2 mm sample
formed by wetting and dessication cycles that stimulate reconsolidating by water in a field setting", "3:sample type = not
specified, corrections = not specified, calculation = not specified, measurement condition = equilibrated at 33 kPa (~1/3
 bdfi33 date (String) = {1:1994-04-01,2:1994-04-01,3:1994-04-01}
 bdfi33 dataset id (String) = US-NCSS
 bdfi33_profile_code (String) = 94P0510
 bdfi33_license (String) = CC-BY
 POINT (19.483334 40.34528)
(...)
```

4.5. Download layer in CSV format.

ogr2ogr -f "CSV" /home/user/Downloads/wosis_latest_bdfi33.csv WFS:http://data.isric.org/geoserver/wosis_latest/wfs/ wosis_latest_bdfi33

5. Load WoSIS data in R

working directory

setwd("/home/user/Downloads/")

download

download.file("ftp://public:public@ftp.isric.org/wosis_latest_orgc.tsv",
"wosis_latest_orgc.tsv")

read

orgc = read.table("wosis_latest_orgc2.tsv", sep="\t",quote = "",header=TRUE)

look

dim(orgc) colnames(orgc) orgc[1:10, 1:8]

plot

hist(log(orgc[,"orgc_value_avg"]))
plot(orgc\$longitude, orgc\$latitude)
library(leaflet)
mymap <- leaflet(orgc) %>% addProviderTiles(providers\$Stamen.Terrain) %>%
addMarkers(~longitude, ~latitude, popup = ~paste(as.character(upper_depth),
as.character(lower_depth), as.character(orgc_value_avg), sep=" | "), label =
~paste(as.character(upper_depth), as.character(lower_depth), as.character(orgc_value_avg), sep=" |
"), clusterOptions = markerClusterOptions())
mymap

Prepared by Eloi Ribeiro (eloi.ribeiro@wur.nl) for the Spring School 2018 at ISRIC – World Soil Information in Wageningen, The Netherlands.