

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD

E900539
(2)
NWC TP 8851

AD-A164 494

Characterization of Aluminum Nitride/Aluminum Oxide Reactively Sputtered Antireflection Coatings

by
L. G. Koshigoe
Engineering Department

and

L. F. Johnson
T. M. Donovan
C. D. Marrs
Research Department

SEPTEMBER 1985

NAVAL WEAPONS CENTER CHINA LAKE, CA 93555-6001

Approved for public release; distribution is unlimited.

UTIC FILE COPY

Naval Weapons Center

FOREWORD

The work described in this report was performed by the Naval Weapons Center, China Lake, Calif., under Arpa Order 3343. This report is a preliminary study of the multilayer system AlN/Al $_2$ O $_3$ and its resistance to certain environmental conditions. The work described was carried out during FY 1984.

The report has been reviewed for technical accuracy by A. D. Baer and J. L. Stanford.

Approved by D. J. RUSSELL, Head Engineering Department 24 September 1985 Under Authority of K. A. DICKERSON Capt., U.S. Navy Commander

Released for publication by B. W. HAYS Technical Director

NWC Technical Publication 6651

Published by	Engineering Departme	nt
Collation	Cover, 19 leav	es
First Printing	250 unnumbered copi	es

			الإعادات عادد والمدارات المانات)-A164				
			REPORT DOCU					
	SSIFIED	IFICATION		16 RESTRICTIVE	MARKINGS			
	CLASSIFICATION	N AUTHORITY		3 DISTRIBUTION	N/AVAILABILITY	OF REPORT		
DECLASSIF	CATION / DOW	INGRADING SCHEDU	LE	A Statem	ent			
. PERFORMIN	IG ORGANIZAT	ON REPORT NUMBE	R(S)	5. MONITORING	ORGANIZATION	N REPORT NUMB	ER(S)	
NWC TP								
	PERFORMING (leapons Cel	ORGANIZATION	6b OFFICE SYMBOL (If applicable)	7a. NAME OF N	IONITORING OR	IGANIZATION		
	(City, State, and	عراده والمراجع والم		76. ADDRESS (C	ity. State, and i	ZIP Code)		
	ake, CA 9					•		
ORGANIZ/	funding/spo Ation leapons Cei		8b OFFICE SYMBOL (If applicable)	9. PROCUREMEN	IT INSTRUMENT	IDENTIFICATION	NUMBER	
C. ADDRESS	(City, State, and	ZP Code)		10. SOURCE OF				
China L	.ake, CA 9	3555-6001		PROGRAM ELEMENT NO.	PROJECT NO.	NO. Arp.		UNIT
13a. TYPE OF Final 16 SUPPLEM	REPORT	136 TIME C		14 DATE OF REPO	ORT (Year, Mont mber		GE COUNT 36	
17.	GROUP		18. SUBJECT TERMS (•	• •		•
FIELD	GROOP	SUB-GROUP	A1N/A1 ₂ 0 ₃ Mu1	•		• •		
			Beam Irradiat		e Exposure	, Humidity,	Laser D	amage
(U) being d stable two- an niques films h film ha films t irradia microsc (EDX), coating	Aluminum eveloped i and scrat d three-la utilized, ave been de o various tion, and opy (SAM), X-ray photompositi	nitride/alum for use on last ch resistant yer coatings as well as the leposited on a environmental humidity are scanning elector spe on and stoicl	inum oxide mul- ser windows. The thus demonstrated and the resulting tra- fused quartz and fused quartz is conditions incompresented. Sur- sectron microscopectroscopy (XPS) infometry. Preli- mage at defects	tilayer protesse material ating their it the wavele insmission spicalcium flusubstrate. luding laser face analysicy (SEM), enclaiminary measiminary measimesse material and market measiminary measimesse material and market measiminary	ls have bed applicable ength of Operating are coride subset of the coride subset of the coride are	en shown to lity for the second strates, and the resister, fluorine, we such as resive X-ray copy were to the laser	be relation be related to the design of thed	stivel Bot tech -laye -laye thes on bea alysi examin
DIMCLAS	SIFIEDAUNLIMIT	ILITY OF ABSTRACT	RPT ØDTIC USERS		sified			
Les1	of responsible le G. Kosh	igoe		(619) 939-		ede) 22c OFFICE 39		
DD FORM 1	472 94440	23 A	PR edition may be used ur	all and a case of		TY CLASSIFICATIO		

	UNCLASSIFIED
	SECURITY CLASSIFICATION OF THIS PAGE
_	

UNCLASSIFIED

CONTENTS

Introduction	3
Multilayer Designs Two-Layer Design Three-Layer Design	4
Sample Preparation	11
Film Structure	16
Results Laser Radiation Fluorine Exposure Electron Beam Irradiation Humidity	
Conclusions	26
References	27
Appendix: Computer Program ANTIREF for Calculating Three-layer. Antireflection Coating Solutions.	31
Figures:	
 Two-layer Design Configuration	Design 6 Design 9 n stz For
with Fused Quartz as Substrate	er 3 🗂
Design with Fused Quartz as Substrate 8. Experimental Transmittance of Three-layer Design with Fused Quartz as Substrate 9a. Topography of AlN Single Layer	15
9b. Cross Section of AlN Single Layer	
1	Availability Codes

Avail and/or special Dist

10a.	Topography of Al ₂ O ₃ Single Layer
10b.	Cross Section of Al ₂ O ₃ Single Layer
11a.	Topography of AlN/Al ₂ O ₃ /AlN Multilayer
11b.	Cross Section of Aln/Al ₂ O ₃ /Aln Multilayer
	Enlargened Top View of All Single Layer Defect18
12b.	Enlargened Top View of Al ₂ O ₃ Single Layer Defect
12c.	Enlargened Top View of AlN/Al ₂ O ₃ /AlN Multilayer Defect18
13a.	Damage Site 1 Showing Small Damage Craters
	Amongst Defects20
13b.	Damage Site 2 Showing More and Larger Damage Craters
	Amongst Defects (than Site 1)20
13c.	Damage Site 3 Showing a Reduced Number of Apparent
	Defects and More Damage Craters (than Site 2)20
13d.	Damage Site 4 Showing Agglomeration of Damage Craters20
13e.	Damage Site 5 Showing Small Pitmarks and
	Loss of Much of Outer Film20
	AES Spectrum of Smooth Film Portion of Site 222
	AES Spectrum Taken Within Damage Crater of Site 222
	AES Spectrum of Smooth Film Portion of Site 4
	AES Profile of AlN Single Layer Exposed to Fluorine25
100.	AES Profile of Al ₂ O ₃ Single Layer Exposed to Fluorine25
Tables:	
1.	Information on Samples Prepared in dc Magnetron System12
2.	Information on Samples Prepared in rf Diode System13
3.	Purities of Materials Used in Sample Depositions
4.	Laser Energy Densities for the Five Damage Sites21

ACK NOWLEDGMENT

The authors would like to gratefully acknowledge the technical contributions of E. J. Ashley, A. D. Baer, R. Z. Dalbey, W. N. Faith, A. K. Green, J. L. Stanford, and R. W. Woolever. The authors would also like to thank P. J. Jaime for preparation of the manuscript. And lastly, the authors would like to acknowledge the Defense Advanced Research Projects Association (DARPA) for their partial support of this work.

INTRODUCTION

New multilayer antireflective coatings are being developed for protective use on laser windows. These coatings consist of alternating layers of aluminum nitride and aluminum oxide, which are stable and scratch resistant. Both materials have large bandgaps and are highly transparent from the ultraviolet to the infrared, thus making them ideal for use with many laser systems.

Both two- and three-layer designs have been developed for use at certain wavelengths. The two-layer design was based upon the work of Cox and Hass (Reference 1) and uses aluminum oxide as the outer material. This is particularly desirable since ${\rm Al}_2{\rm O}_3$ is resistant to moisture as well as to fluorine. The three-layer design was developed by applying the works of Baer and Mouchart who have determined techniques which allow for much design flexibility (References 2 and 3, respectively). This flexibility is the result of an extra degree of freedom which may be used to optimize the design with respect to low absorption, large bandwidth, good adherence, or ease of fabrication (Reference 4).

Preparations of the films have been achieved by numerous techniques including reactive sputtering and evaporation, chemical vapor deposition, ion plating, activated decomposition of organometallic compound vapors, aluminum anodization, and laser-assisted deposition during electron beam evaporation (References 5 through 36). In this study, the methods of dc magnetron, ion beam, and rf diode sputtering have been used to deposit single layers and multilayers. Films prepared by these techniques have typically been shown to be stoichiometric and of high packing density.

Studies on the reactions of the multilayer materials with fluorine, electron beam irradiation, and humidity as well as on their damage by laser radiation will be discussed. The main techniques used for analysis and characterization of the films after exposure to the above environments are scanning Auger microscopy (SAM), scanning electron microscopy (SEM), energy dispersive X-ray microanalysis (EDX), X-ray photoelectron spectroscopy (XPS), and Nomarski microscopy.

MULTILAYER DESIGNS

The choice of materials, AlN and Al $_20_3$, necessitate the use of multiple-layer design techniques for obtaining zero reflectance. Both materials have high transmittances at the wavelength of interest (i.e., $0.500\mu m$), but by themselves cannot accomplish the reflectance requirement. These materials have been prepared with indices of refraction which allow for production of zero reflectance coatings.

Since quarter-wave designs which produce zero reflectance are not possible, general solutions to the two- and three-layer cases must be used. These solutions allow flexibility in the choices of layer thicknesses, which is very desirable from the standpoints of absorption in the layers and film preparation.

Absorption in the layers is a problem which normally must be accounted for when designing multilayer systems, but the design techniques utilized in this study do not include this factor. Thus, an indirect approach should be used such as optimizing the solution through manipulations of layer thicknesses (Reference 2).

TWO-LAYER DESIGN

As discussed by Cox and Hass (Reference 1), for zero reflectance, when the multilayer consists of two layers whose thicknesses are not related by integral multiples of each other, one obtains:

$$\frac{\tan\phi_1}{\tan\phi_2} = -\frac{r_1-r_3+r_2(1-r_1r_3)}{r_1-r_3-r_2(1-r_1r_3)}$$
(1)

and
$$\tan \phi_1 \tan \phi_2 = \frac{r_1 + r_3 + r_2(1 + r_1 r_3)}{r_1 + r_3 - r_2(1 + r_1 r_3)}$$
, (2)

where
$$\phi_{j} = \frac{2\pi n_{j}l_{j}}{\lambda} \equiv 2\pi X_{j}$$
,

and
$$r_j = \frac{n_{j-1} - n_j}{n_{j-1} + n_j}$$
.

Note that n_j is the index of refraction of the jth layer, l_j is its thickness, and λ is the design wavelength.

Equations (1) and (2) may be written in the form:

$$X_1 = \frac{1}{2\pi} \tan^{-1} \left[\pm \left(\frac{n_1^2 (n_3 - n_0) (n_2^2 - n_0 n_3)}{(n_1^2 n_3 - n_2^2 n_0) (n_0 n_3 - n_1^2)} \right)^{1/2} \right] + \frac{m_1}{2}$$
 (3)

and
$$X_2 = \frac{1}{2\pi} \tan^{-1} \left[\pm \left(\frac{n_2^2(n_3 - n_0)(n_0 n_3 - n_1^2)}{(n_1^2 n_3 - n_2^2 n_0)(n_2^2 - n_0 n_3)} \right)^{1/2} \right] + \frac{m_2}{2}$$
, (4)

where

$$m_1 = 0, \pm 1, \pm 2, \ldots,$$

and

$$m_2 = 0, \pm 1, \pm 2, \ldots$$

Thus, one may obtain a series of X_1 's and X_2 's and hence a series of physical thicknesses, 1_1 's and 1_2 's. Note that equations (3) and (4) imply four possible pairs of solutions for each m_1 and m_2 set, but in actuality only two of these pairs will satisfy equations (1) and (2).

Applying equations (3) and (4) to the present case of interest, where $n_0\!=\!1.00,\ n_1\!=\!1.60,\ n_2\!=\!2.00,\ n_3\!=\!1.46$ (these are the incident medium, outer aluminum oxide layer, inner aluminum nitride layer, and fused quartz substrate indices of refraction, respectively), and $\lambda\!=\!0.500\,\mu\text{m},\ a$ zero reflectance choice of thicknesses is then given by $l_1\!=\!0.0631\,\mu\text{m}$ and $l_2\!=\!0.0832\,\mu\text{m}$. This configuration is shown in Figure 1. From this information, and assuming no absorption in the layers, normal light incidence, and constant indices of refraction for the wavelength region 0.3 to $0.9\,\mu\text{m}$, the transmission spectrum has been determined using a program developed by Loomis (Reference 37).

This spectrum is shown in Figure 2 as a function of wavelength. As can be seen, there is 100% transmission at $0.500\mu m$ and a bandwidth of approximately $0.06\mu m$ with a reflectance loss of 0.5% or less. The normalized electric field intensity as a function of depth into the layers is shown in Figure 3 and was determined by Elson (Reference 38). It is apparent that the electric field minimum occurs in the thicker aluminum nitride layer. This is advantageous from the standpoint that the aluminum nitride layer is the more absorbing material as shown by preliminary absorption measurements.

FIGURE 1. Two-layer Design Configuration.

FIGURE 2. Theoretical Transmittance of Two-layer Design.

FIGURE 3. Normalized Electric Field Intensity of Two-layer Design.

THREE-LAYER DESIGN

Based upon the works of Baer and Mouchart (References 2 and 3, respectively), an analytic solution for a general three-layer antireflective coating has been utilized. According to Baer, Smith's theorem may be used when determining what conditions must be applied to obtain zero reflectance. These conditions indicate that both the real and imaginary components of the Fresnel coefficients must vanish. Then, as discussed by Baer, one obtains:

$$X_1 = \pm \frac{1}{4\pi} \cos^{-1} \left[\frac{r_2^2 + r_1^2 - |r_b|^2 (1 + r_2^2 r_1^2)}{2r_2 r_1 (|r_b|^2 - 1)} \right] + \frac{m_1}{2}, \quad (5)$$

and

The second measure the second of the formation of the second of the seco

$$X_2 = \frac{1}{4\pi} (\delta_a + \delta_b) + \frac{m}{2},$$
 (6)

where

$$r_{a} = \frac{r_{2} + r_{1} \exp(-4\pi X_{1}i)}{1 + r_{2}r_{1} \exp(-4\pi X_{1}i)},$$
 (7)

$$r_b = \frac{r_3 + r_4 \exp(-4\pi X_3 i)}{1 + r_3 r_4 \exp(-4\pi X_3 i)},$$
 (8)

and

$$X_{j} = \frac{n_{j}l_{j}}{\lambda}, \qquad (9)$$

$$m_1 = 0, \pm 1, \pm 2, \ldots,$$

$$m_2 = 0, \pm 1, \pm 2, \dots$$

Note that δ_a and δ_b refer to the phases of r_a and r_b respectively and that the X_j and r_j are as defined earlier. Hence, for a choice of X_3 , and given the indices of refraction of the layers, one may obtain a series of solutions. Note that there are two series of solutions for each X_3 .

A computer program in the language of Fortran has been written which calculates and then plots the solutions of X_1 and X_2 as functions of X_3 given the indices of refraction and design wavelength. A listing of this program may be found in the Appendix.

Figure 4a shows a plot of X_1 and X_2 as functions of X_3 for λ =0.500 μ m, n_0 =1.00, n_1 =2.00, n_2 =1.60, n_3 =2.00, and n_4 =1.46. Figure 4b shows a similar plot with λ =0.500 μ m, n_0 =1.00, n_1 =2.00, n_2 =1.60, n_3 =2.00, and n_4 =1.44. These indices of refraction correspond to the incident medium, aluminum nitride layer, aluminum oxide layer, aluminum nitride layer, and fused quartz substrate (Figure 4a) or calcium fluoride substrate (Figure 4b), respectively. Note that the solid curves correspond to the first solution and the dashed to the second.

A particular solution from the results shown in Figure 4a is $\chi_3{=}0.250,~\chi_1{=}0.447,~$ and $\chi_2{=}0.326.~$ Hence, $l_1{=}0.112\mu\text{m},~$ $l_2{=}0.102\mu\text{m},$ and $l_3{=}0.625\mu\text{m}.$ This configuration is shown in Figure 5.

As in the two-layer case, a plot of the transmission spectrum as a function of wavelength is shown in Figure 6 (for the particular solution discussed above). Again, there is 100% transmission at $0.500\mu m$ as expected, but the bandwidth at a reflectance loss of 0.5% is reduced to approximately $0.02\mu m$. Hence, from the standpoint of bandwidth, this design is not as desirable. The normalized electric field intensity is shown in Figure 7. In this case, the electric field minimum again occurs in one of the aluminum nitride layers, with the maximum occurring in the aluminum oxide layer. Thus, as in the two-layer case, the design appears to be a favorable choice from the standpoint of absorption.

FIGURE 4. Antireflection Solutions for a Three-layer Design with Fused Quartz as Substrate. (a)

FIGURE 4. Antireflection Solutions for a Three-layer Design with Calcium Fluoride as Substrate.
(b)

 $\begin{tabular}{ll} FIGURE~5. & Three-layer~Design~Configuration \\ with~Fused~Quartz~as~Substrate. \end{tabular}$

FIGURE 6. Theoretical Transmittance of Three-layer Design with Fused Quartz as Substrate.

FIGURE 7. Normalized Electric Field Intensity of Three-layer Design with Fused Quartz as Substrate.

SAMPLE PREPARATION

Several single-layer samples and one three-layer sample were deposited onto substrates of fused quartz, calcium fluoride, or Substrate diameters were 1 inch and thicknesses were 0.063 inch, 0.058 inch, and 0.023 inch, respectively. Very thin layers of Ag/Cr/Mo, Au/Cr/Mo, or Au/Cr were deposited onto some of the substrates prior to AlN or Al $_2$ O $_3$ deposition for the purpose of aiding in eliminating charging problems during analysis. Tables 1 and 2 contain lists of the specimens prepared along with any pertinent information relating to their depositions for depositions in the dc magnetron and rf diode sputtering systems, respectively. Approximate deposition temperatures for the two systems were 160°C and 300°C, respectively. Note that samples on Si or on aiding layers were used as witnesses. Sample M-177 of Al_2O_3 , prepared in the ion beam sputtering system, was deposited on aiding layers of Au/Cr with a substrate of Si. The approximate gas pressure was 1.5 x 10^{-4} torr of Ar, deposition was at room temperature, and the estimated film thickness was 2800A. Table 3 contains information regarding the purities of the materials used (for the various depositions) and their suppliers.

Most of the samples were deposited using a dc magnetron sputtering system with a 5-inch Varian sputter gun (samples listed with a "T" before their numbers; see Table 1). Some samples were prepared in a Randex model 2400 rf diode sputtering system (samples with an "S" before their numbers; see Table 2). One sample was prepared by ion beam deposition using an Ion Technology, Inc., 2.5mm ion gun (as indicated by an "M" before the sample number above).

TABLE 1. Information on Samples Prepared in dc Magnetron System.

Sample Number	Film Material	Aiding Layers	Approximate Gas Pressure (torr)	Substrate	Estimated Film Thickness (A)
T-261S	AIN	-	3 x 10 ⁻³ N ₂	Fused Quartz	2030
T-265S	AIN	_	$1.5 \times 10^{-3} N_2$ $1.5 \times 10^{-3} Ar$	Si	2000
T-266S	AIN	Ag/Cr/Mo	3 x 10 ⁻³ N ₂	Fused Quartz	2000
T-268S	AIN	Ag/Cr/Mo	$1.5 \times 10^{-3} N_2$ $1.5 \times 10^{-3} Ar$	Fused Quartz	2000
T-270\$	A1 ₂ 0 ₃	-	$\begin{array}{c} 3 \times 10^{-4}0_{2} \\ 2.7 \times 10^{-3}N_{2} \end{array}$	Fused Quartz	2000
T-276S	ATN	-	$1.5 \times 10^{-3} N_2$ $1.5 \times 10^{-3} Ar$	CaF ₂	2000
T-281S	AIN	-	$3 \times 10^{-3} N_2$	CaF ₂	4000
T-289S	(a) A1N (outer)		(a) $3 \times 10^{-3} N_2$	Fused Quartz	(a) 1120
	(b) Al ₂ 0 ₃ (middle)	-	(b) $3 \times 10^{-4}0_2$ 2.7 × $10^{-3}N_2$		(b) 1020
	(c) AlN (inside)		(c) $3 \times 10^{-3} N_2$		(c) 625
T-290\$	ATN	Ag/Cr/Mo	3 x 10 ⁻³ N ₂	Fused Quartz	2000
T-290S	ATN	Au/Cr/Mo	3 x 10 ⁻³ N ₂	Fused Quartz	2000
T-297S	AIN	Au/Cr	3 x 10 ⁻³ N ₂	Si	2800

TABLE 2. Information on Samples Prepared in rf Diode System.

Sample Number	Film Material	Approximate Gas Pressure (torr)	Substrate	Film Thickness (A)
S-826	A1 ₂ 0 ₃	$8 \times 10^{-4}0_{2}$ 7.2 × $10^{-3}N_{2}$	Fused Quartz	2100
S-827	AIN	2 x 10 ⁻³ N ₂ 6 x 10 ⁻³ Ar	Fused Quartz	7000
S-833	A1 ₂ 0 ₃	8 x 10 ⁻⁴ 0 ₂ 7.2 x 10 ⁻³ Ar	Fused Quartz	2100
S-834	AIN	2 x 10 ⁻³ N ₂ 6 x 10 ⁻³ Ar	Fused Quartz	7000
S-835	AIN	8 x 10 ⁻⁴ N ₂ 7.2 x 10 ⁻³ Ar	Fused Quartz	7000

TABLE 3. Purities of Materials Used in Sample Depositions.

Purity (%)	Source
99.999	Specialty Metals Division of Varian
Unknown	Microelectronics Branch, NAVWPNCEN
99.999	American Smelting Company
99.999	American Smelting Company
99.996	Specialty Metals Division of Varian
	99.999 Unknown 99.999 99.999

The three-layer sample was prepared according to the $0.500\mu m$ design discussed previously (particular solution). Indices were assumed to be 2.00 and 1.60 for AlN and Al $_20_3$, respectively, and the materials were deposited until the necessary thicknesses had been obtained. Although the indices of refraction have not been accurately determined in this study, many researchers have previously determined them to range from 1.70-2.15 for AlN and 1.42-1.79 for Al $_20_3$ (References 5, 6, 16, 23, 25, 26, 28, 29, 30, 35, and 36), implying that the assumed values are realistic. Furthermore, recent laboratory studies indicate that the assumed indices are more likely.

A transmission spectrum of the three-layer sample coating over the wavelength region of 0.3 to $0.9\mu m$ was measured using a Beckman DU-7 UV/VIS spectrophotometer. This spectrum is shown in Figure 8. In comparison to the theoretical spectrum shown in Figure 6. it is apparent that the two are similar in curve shape, but some additional tuning is necessary in the experimental sample preparation to more closely approximate the theoretical curve. The experimental maximum in transmission of 98.8% occurred at $0.553\mu m$. By the use of a program written by Loomis (Reference 37), variations in the thicknesses and indices of the layers were made to attempt to determine what changes would cause a calculated transmission spectrum to approach the appearance of the experimental spectrum. It was found that the differences between the two spectra is a combination of a need to determine the actual film indices and to measure more accurately the deposition rates of the materials. At this time, efforts are being made to accomplish these tasks.

FIGURE 8. Experimental Transmittance of Three-layer Design with Fused Quartz as Substrate.

FILM STRUCTURE

Study of the structures of both single and multilayer films were made using a scanning electron microscope. The films were coated with thin layers of Au (approximately 150Å) to avoid charging problems.

Shown in Figures 9a and 9b are typical top and cross-sectional views of an AlN single layer. This film was sample number T-297S prepared in the dc magnetron system. Figures 10a and 10b show top and cross-sectional views of an Al $_2$ 0 $_3$ single layer prepared in the ion beam system (sample M-177). Figures 11a and 11b show top and cross-sectional views of the AlN/Al $_2$ 0 $_3$ /AlN multilayer (sample T-289S) prepared in the dc magnetron system. In the last case, the three layers can be distinguished.

Many defects are apparent on the surface of the AlN single and multilayer films. It is not known at this time whether the defects are growth defects of a nodular type or whether they are bubbles or splatters on the surfaces only. These defects are typically on the order of 5-10 μ m in diameter. The Al $_2$ 0 $_3$ specimen is of a much finer surface structure, although smaller defects (approximately 1 μ m in diameter) are apparent on it also. Figures 12a through 12c show magnified views of the AlN, Al $_2$ 0 $_3$, and multilayer defects, respectively.

The cross sections or side views of the AlN layers display columnar growth type structures. It has been determined by transmission electron diffraction that these films are polycrystalline. The side views of the ${\rm Al}_2{\rm O}_3$ layers show much smoother textures, with no columnar growth structures apparent at the magnifications achieved in these experiments. A pattern was not obtained from the diffraction studies for the ${\rm Al}_2{\rm O}_3$, and hence it is probably amorphous. Note that the ${\rm Al}_2{\rm O}_3$ single layer and multilayer specimens were prepared in different sputtering systems, but the texture of the ${\rm Al}_2{\rm O}_3$ still remains similar in the two cases.

From electron spectroscopy for chemical analysis (ESCA) studies, AlN materials have been determined to be 95% stoichiometric with the remainder consisting mostly of ${\rm Al}_2{\rm O}_3$. ${\rm Al}_2{\rm O}_3$ films have been shown to be 99% stoichiometric.

FIGURE 9. Topography of AlN Single Layer.
(a)

FIGURE 9. Cross Section of AlN Single Layer.
(b)

FIGURE 10. Topography of Al $_2$ 0, Single Layer. (a)

FIGURE 10. Cross Section of ${\rm Al}_{\,2}{\rm O}_{\,3}$ Single Layer. (b,

FIGURE 11. Topography of Aln/Al $_20_3$ /Aln Multilayer. FIGURE 11. Cross Section of Aln/Al $_20_3$ /Aln Multilayer. (b)

FIGURE 12. Enlargened Top View of AlN Single Layer Defect.
(a)

FIGURE 12. Enlargened Top View of Al $_2$ O $_3$ Single Layer Defect. (b)

FIGURE 12. Enlargened Top View of Aln/Al $_2$ 0 $_3$ /Aln Multilayer Defect. (c)

RESULTS

Results have been obtained on sample behavior following exposure to laser radiation, fluorine, electron beam irradiation, and humidity. The samples studied were discussed earlier, and will be referred to by their designated sample numbers. Not all samples given earlier will be discussed since some were only used for obtaining preliminary spectral information and since experimental difficulties were encountered during analysis with others which were associated with film quality and charging problems.

LASER RADIATION

The effects of laser radiation on the multilayer sample were studied with a Phi 600 scanning Auger microscopy system (after damage). The sample surface was cleaned during analysis by sputtering with Ar ions using an accelerating voltage of 4kV. For SiO_2 , an approximate removal rate has been determined to be $\mathrm{40A/min}$.

A pulsed dye laser in a triaxial configuration was utilized for damaging the film at a wavelength of 0.497 μm . The first step in the laser damage study was to scratch crosshairs onto the film on opposite sides of its center along a sample diagonal. These crosshairs were then used as index marks for locating five equally spaced sites between them. Each site was then irradiated in air with a few laser pulses of increasing energy density. The pulse shape was a 1mm diameter flat top ($\pm\,5\%$ flatness) with a duration of 0.55 μs . Film breakdown thresholds were roughly determined by observing the beginning of film changes with a video microscopy system (VIMS). Note that no attempts were made in this study to determine actual damage thresholds of the materials. The main purpose of this study was to determine the behavior of the film after exposure to laser radiation.

Table 4 lists the energy density of each shot for the five sites. Shown in Figures 13a through 13e are portions of the centers of each of the five sites. These figures in comparison to a typical undamaged site (such as that in Figure 11a) show an increasing number of damage craters with respect to defects for an increasing energy density. Site 1 shows mostly defects plus some small damage craters. Sites 2 and 3 show more and larger damage craters with a reduced number of apparent defects. Site 4 shows the beginning of damage crater agglomeration, and Site 5 shows many small pit marks which appear to lay at the centers of what were originally damage craters (the pits are at the centers of circular patterns which resemble agglomerated craters). In addition, for Site 5, it is apparent that there is a loss of much of the outer film.

FIGURE 13. Damage Site I Showing Small Damage Craters Amongst Defects.
(a)

FIGURE 13. Damage Site 2 Showing More and Larger Damage Craters Amongst Defects (than Site 1).
(b)

general properties of the prop

FIGURE 13. Damage Site 3 Showing a Reduced Number of Apparent Defects and More Damage Craters (than Site 2).

FIGURE 13. Damage Site 4 Showing Agglomeration of Damage Craters.

FIGURE 13. Damage Site 5 Showing Small Pitmarks and Loss of Much of Outer Film.

TABLE 4. Laser Energy Densities for the Five Damage Sites.

	Energy Density (J/cm²)					
	Site 1	Site 2	Site 3	Site 4	Site 5	
1st pulse	3.2	9.2	12.	20.	50.	
2nd pulse	5.9	9.2	-	-	-	
3rd pulse	9.4	-	-	-	-	

The approximate number of defects for typical portions of the film where no damage was done is 70 (see the sampling area of Figure 11a for an example). For Sites 1 and 2, the number of damage craters plus defects which did not damage are approximately 60 and 70 (in the same size sampling area), respectively. These are similar to that of the undamaged site, which implies that damage is initiating at defects. For Sites 3 through 5, the number of craters plus undamaged defects is large in comparison to the number of defects on the undamaged site, increasing in number with increasing energy density (assuming the pit marks of Site 5 are indeed the centers of what were originally damage craters), although few apparent defects remain on the sites. results support damage initiating at the defect sites, with some other possible mode(s) of damage (e.g., caused by non-observable defects) also contributing to the cratering.

Auger spectra were obtained for some of the damage sites. layers of gold were deposited on the films prior to the study and then removed by Ar ion sputtering (as discussed earlier) just until Auger peaks corresponding to the underlying film were obtained. Figures 14a and 14b show spectra obtained at Site 2. Figure 14a illustrates a portion of the damage site which appeared to be unaffected by the laser radiation (herein referred to as smooth film) and Figure 14b was taken within a damage crater. It is apparent that the smooth film consists mostly of AlN and the crater site consists of AlN plus Al_2O_3 . spectra were obtained for some of the other sites, where the spectra from the craters always showed an increase in Al₂O₃ with respect to In addition, when comparing damage sites, it is apparent that the amount of Al₂O₃ with respect to AlN increased with increasing energy density. Figure 15 shows the spectrum obtained on a smooth portion of the film at Site 4. A possible explanation for the growth of the oxide peak is the dissociation of some of the surface AlN, and then combination of the Al with oxygen to form Al_2O_3 (recall that these studies Thus, the amount of oxidation of All would were performed in air). increase with energy density. In addition, the larger oxide peaks in the craters may be explained by assuming that these are positions on the film where the energy was absorbed more, or not conducted away as quickly, hence resulting in temperature buildup and more oxidation.

FIGURE 14. AES Spectrum of Smooth Film Portion of Site 2. (a)

FIGURE 14. AES Spectrum Taken Within Damage Crater of Site 2. $\mbox{\mbox{(b)}}$

FIGURE 15. AES Spectrum of Smooth Film Portion of Site 4.

FLUORINE EXPOSURE

Single layer samples T-297S and M-177 of AlN and Al $_2$ 0 $_3$, respectively, were exposed to 10% HF in Ar for 1 hour, and were then examined for fluorine penetration.

EDX was initially used to detect the fluorine. Since this technique examines the constituents of the materials to a much greater depth (on the order of a micron) than a technique such as AES, any severe fluorine penetration should be detected. Fluorine was not detected in either the AlN or ${\rm Al}_2{\rm O}_3$. Hence, either the fluorine had not penetrated the material to a very great depth, or the fluorine concentration was low (low atomic number materials have low X-ray intensities due to low fluorescence yield and high sample absorption; see Reference 39).

AES and XPS were then used to analyze the film makeup since the results of the EDX had indicated no great depth penetration of the fluorine in either film. With these techniques, fluorine was observed. Figures 16a and 16b display AES profiles of the AlN and Al $_2$ 0 $_3$ films, respectively. Note that the AES system used in this case is a Physical Electronics 548 Auger/ESCA system, which employed a 1kV beam of Ar ions for sputter removal. For SiO $_2$, a removal rate of 15A/min. is typical. Assuming this rate for AlN and Al $_2$ 0 $_3$ yields approximate depth penetrations of 30-45A for both films, although the fluorine appears to drop off (with depth) at a slightly higher rate in the Al $_2$ 0 $_3$ film.

ELECTRON BEAM IRRADIATION

During surface studies such as SEM and SAM, physical changes of the AlN and ${\rm Al}_2{\rm O}_3$ films were observed. Dark spots indicating changes in electron yields were observed at positions on the films where the electron beams were concentrated. At this time it is uncertain whether these changes were temporary (i.e., caused by contaminants being deposited on or removed from the film surfaces) or permanent. It is important to note that, as discussed earlier, it was necessary to coat the films with thin layers of a conducting material such as Au to avoid charging problems.

HUMIDITY

Single layer samples T-297S and M-177 of AlN and Al $_2$ 0 $_3$, respectively (several sister samples were produced, resulting in the availability of a "fresh" sample for each study), were exposed to 95% relative humidity at 60°C for 24 hours. With the use of a Nomarski microscope, no change in the Al $_2$ 0 $_3$ sample was observed although the AlN showed signs of degradation.

FIGURE 16. AES Profile of AlM Single Layer Exposed to Fluorine.
(a)

FIGURE 16. AES Profile of Al $_2$ 0 $_3$ Single Layer Exposed to Fluorine. (b)

CONCLUSIONS

The theoretical aspects of the AlN/Al $_2$ 0 $_3$ multilayer designs indicate that perhaps the two-layer case may be more useful because of its bandwidth. At a reflectance loss of 0.5%, it has a bandwidth three times the size of that of the three-layer design. Although is has not been discussed in this study, simple calculations show that a two-layer quarter wave design is possible with a low reflectance (less than 0.005). This may be a more practical design. In this study, a film corresponding to the three-layer design was prepared and transmission results indicated a need to determine more accurately the indices of refraction and deposition rates of the materials.

Film structure studies indicate that defects are apparent on both the AlN, Al $_20_3$, and AlN/Al $_20_3$ /AlN multilayer samples. The defects on the Al $_20_3$ appear to be smaller (approximately 1 μ m in diameter as compared with 5-10 μ m for the AlN single and multilayer films). The growth structure of the AlN is columnar, whereas that of the Al $_20_3$ is much smoother (no structure is observed at the SEM magnifications used in this study).

Laser damage studies indicate that multilayer damage initiates predominately at defect sites. In addition, SAM studies indicate that the AlN outer layer of the multilayer oxidizes upon exposure to laser radiation in air. The amount of oxidation increases with increasing laser energy density and is also greater within damage craters than on portions of the film which appear to be unaffected by the laser radiation.

Fluorine exposure studies show depth penetrations of approximately 30-45Å (assuming the same sputter removal rate of AlN and Al $_2$ 0 $_3$ as Si0 $_2$) in both films with the fluorine dropping off with depth at a slightly higher rate in the Al $_2$ 0 $_3$.

Surface analysis techniques such as SEM and SAM indicate a sensitivity of the films to the electron beams. It is not certain whether the film changes after electron beam exposure are permanent.

After exposure to humidity, an Al_2O_3 single-layer film underwent no observable change, although a AlN single-layer film exposed to the same condition degraded.

Most importantly, it is apparent that the use of an AlN/Al $_20_3$ multilayer in the environments described above dictates that Al $_20_3$ should be the outer material.

Overall, both films appear to be durable and relatively easy to prepare as a multilayer system. These studies are continuing and clean room techniques are being applied to achieve films with fewer defects.

REFERENCES

- 1. J. T. Cox and G. Hass. "Antireflection Coating for Optical and Infrared Optical Materials," in Physics of Thin Films, Vol. 2, ed. by G. Hass and R. E. Thun. New York, Academic Press, 1964. Pp. 239-304.
- 2. A. D. Baer. "Design of Three-Layer Antireflection Coatings," presented at Laser Induced Damage in Optical Materials: _976, Boulder, Co., 13-15 July 1976, in NBS Spec. Publ. 462, ed. by A. J. Glass and A. H. Guenther. December 1976. Pp. 221-229.
- 3. J. Mouchart. "Thin Film Optical Coatings. 2: Three-Layer Antireflection Coating Theory," Applied Optics, Vol. 16, No. 10 (October 1977), pp. 2722-2728.
- 4. Hughes Research Laboratories. Exploratory Development on Antireflective Coating for 2 to 6 Micrometers for Fluorine Windows, by J. E. Rudisill. Malibu, Calif., Hughes Research Laboratories, March 1978. 78 pp. (Hughes Research Laboratories AFML-TR-78-19.)
- 5. J. Duchene. "Radiofrequency Reactive Sputtering for Deposition of Aluminum Nitride Thin Films," Thin Solid Films, Vol. 8 (1971), pp. 69-79.
- 6. United Aircraft Corporation Research Laboratories. Sputtered Thin Film Research, by A. J. Shuskus, D. J. Quinn, E. L. Paradis, J. M. Berak, and D. E. Cullen. East Hartford, Ct., United Aircraft Corporation Research Laboratories, October 1973. 59 pp. (United Aircraft Corporation Research Laboratories M951337-9, AD-769972.)

- 7. United Aircraft Corporation Research Laboratories. Sputtered Thin Film Research, by A. J. Shuskus, D. J. Quinn, E. L. Paradis, J. M. Berak, D. E. Cullen, and T. M. Reeder. East Hartford, Ct., United Aircraft Corporation Research Laboratories, November 1974. 211 pp. (United Aircraft Corporation Research Laboratories N921337-15, AD/A-003005.)
- 8. N. Lieske and R. Hezel. "Formation of Al-Nitride Films at Room Temperature by Nitrogen Ion Implantation Into Aluminum," J. Appl. Phys., Vol. 52, No. 9 (September 1981), pp. 5806-5810.
- 9. J. J. Hantzpergue, Y. Pauleau, J. C. Remy, O. Roptin, and M. Coiller. "Electrical Properties of Sputtered AlN Films and Interface Analyses by Auger Electron Spectroscopy," Thin Solid Films, Vol. 75 (1981), pp. 167-176.

- 10. Y. Murayama, K. Kashiwagi, M. Kikuchi. "Aluminum Nitride Films by rf Reactive Ion Plating," J. Vac. Sci. Technol., Vol. 17, No. 4 (July/August 1980), pp. 796-799.
- 11. RCA Laboratories. Piezoelectric Aluminum Nitride Films, by M. T. Duffy and C. C. Wang. Princeton, NJ, RCA Laboratories, October 1974. 139 pp. (RCA Laboratories PRRL-74-CR-65, AD-A007657.)
- 12. J. K. Liu, K. M. Lakin, and K. L. Wang. "Growth Morphology and Surface-Acoustic-Wave Measurements of AlN Films on Sapphire," J. Appl. Phys., Vol. 46, No. 9 (September 1975), pp. 3703-3706.
- 13. K. M. Lakin, J. K. Liu, and K. L. Wang. "Abstract: Growth Morphology and Surface-Acoustic-Wave Measurements of AlN Films on Sapphire," J. Vac. Sci. Technol., Vol. 13, No. 1 (January/February 1976), pp. 37-38.
- 14. University of Southern California, Electronic Sciences Laboratory. Aluminum Nitride for Surface Acoustic Waves, by K. M. Lakin. Los Angeles, Calif., University of Southern California, Electronic Sciences Laboratory, August 1974. 37 pp. (AD/A-002138.)
- 15. F. Takeda, T. Mori, and T. Takahashi. "Effect on Hydrogen Gas on c-Axis Oriented AlN Films Prepared by Reactive Magnetron Sputtering," Japanese J. Appl. Phys., Vol. 20, No. 3 (March 1981), pp. L169-L172.
- 16. E. V. Gerova, N. A. Ivanov, and K. I. Kirov. "Deposition of AlN Thin Films by Magnetron Reactive Sputtering," Thin Solid Films, Vol. 81 (1981), pp. 201-206.
- 17. K. M. Lakin, J. S. Wang, and A. R. Landin. "Aluminum Nitride Thin Film and Composite Bulk Wave Resonators," in 36th Annual Frequency Control Symposium, 1982. Pp. 517-524. (AD P001565.)
- 18. A. Fathimulla and A. A. Lakhani. "Reactively rf Magnetron Sputtered AlN Films as Gate Dielectric," J. Appl. Phys., Vol. 54, No. 8 (August 1983), pp. 4586-4589.
- 19. J. R. Rairden. "Aluminum Nitride Thin Films Deposited by Reactive Evaporation," in Thin Film Dielectrics Symposium, ed. by F. Yranty. New York, NY, Electrochem. Soc., Inc., 1969. Pp. 279-285.
- H. Yamashita, K. Fukui, S. Misawa, and S. Yoshida. "Optical Properties of AlN Epitaxial Thin Films in the Vacuum Ultraviolet Region," J. Appl. Phys., Vol. 50, No. 2 (February 1979), pp. 896-898.

- 21. S. Winsztal, B. Wnuk, H. Majewska-Minor, T. Niemyski. "Aluminum Nitride Thin Films and Their Properties," Thin Solid Films, Vol. 32 (1976), pp. 251-254.
- 22. S. Mirsch and H. Reimer. "Preparation and Electrical Properties of Al-AlN-Si Structures," Phys. Stat. Sol.(a), Vol. 11 (1972), pp. 631-635.
- 23. N. Puychevrier and M. Menoret. "Synthesis of III-V Semiconductor Nitrides by Reactive Cathodic Sputtering," Thin Solid Films, Vol. 36 (1976), pp. 141-145.
- 24. A. J. Noreika and M. H. Francombe. "Structural, Optical and Dielectric Properties of Reactively Sputtered Films in the System AlN-BN," J. Vac. Sci. Technol., Vol. 6, No. 4 (July 1969), pp. 722-726.
- 25. J. Bauer, L. Biste, and D. Bolze. "Optical Properties of Aluminum Nitride Prepared by Chemical and Plasmachemical Vapour Deposition," Phys. Stat. Sol.(a), Vol. 39 (1977), pp. 173-181.
- 26. M. T. Duffy and W. Kern. "Chemical Vapor Deposition of Aluminum Oxide Films from Organo-Aluminum Compounds," RCA Review, Vol. 31, No. 4 (December 1970), pp. 754-770.
- 27. V. J. Silvestri, C. M. Osburn, and D. W. Ormond. "Properties of Al $_2$ O $_3$ Films Deposited from the AlCl $_3$, CO $_2$, and H $_2$ System," J. Electrochem. Soc.: Solid-State Science and Technology, Vol. 125, No. 6 (June 1978), pp. 902-907.
- 28. E. Ferrieu and B. Pruniaux. "Preliminary Investigations of Reactively Evaporated Aluminum Oxide Films on Silicon," J. Electrochem. Soc.: Solid State Science, Vol. 116, No. 7 (July 1969), pp. 1008-1013.
- 29. C. A. T. Salama. "RF Sputtered Aluminum Oxide Films on Silicon," J. Electrochem. Soc.: Solid State Science, Vol. 117, No. 7 (July 1970), pp. 913-917.
- 30. M. G. Mier and E. A. Buvinger. "A Comparative Study of Anodized, Evaporated, and Sputtered Aluminum Oxide Thin Films," J. Vac. Sci. Technol., Vol. 6, No. 4 (1969), pp. 727-730.
- 31. S. O. Kanstad and P. E. Nordal. "Infrared Photoacoustic Spectroscopy of Solids and Liquids," Infrared Physics, Vol. 19, No. 3-4 (August 1979). pp. 413-422.

- 32. R. R. Hart, F. W. Reuter III, H. P. Smith Jr., and J. M. Khan. "Oxygen K-shell X-ray Production in Thin Films of Aluminum Oxide by 20- to 100- keV Photons," Physical Review, Vol. 179, No. 1 (5 March 1969), pp. 4-9.
- 33. C. H. Chen and J. Silcox. "Surface Guided Modes in an Aluminum Oxide Thin Film," Solid State Communications, Vol. 17 (1975), pp. 273-275.
- 34. A. Ya. Vyatskin and V. V. Trunev. "The Interaction of Electrons with Thin Films of Dielectrics," Radiotekh. Elektron, Vol. 17, No. 9 (1972), pp. 1899-1905.
- 35. V. F. Korzo. "Preparation of Thin Layers of Aluminum Oxide by Pyroactivated Decomposition of Organic Compounds," Zhurnal Prikladnoi Khimii, Vol. 49, No. 1 (January 1975), pp. 74-77.
- 36. Northrop Research and Technology Center. Laser-Assisted Deposition Coatings, by J. M. Rowe. Palos Verdes Peninsula, Calif., Northrop Research and Technology Center, September 1983. 76 pp. (Northrop Research and Technology Center AFWL-TR-83-34.)
- 37. Air Force Weapons Laboratory. Computing the Optical Properties of Multilayer Coatings, by J. S. Loomis. Kirtland Air Force Base, NM, Air Force Weapons Laboratory, September 1975, 30 pp. (Air Force Weapons Laboratory AFWL-TR-75-202.)
- 38. The calculation of field dependence was performed by J. M. Elson.
- 39. Princeton Gamma-Technology, Inc. Electron Probe Microanalysis Using Energy Dispersive X-ray Spectroscopy, by N. C. Barbi. Princeton, NJ., Princeton Gamma-Technology, Inc.

APPENDIX

COMPUTER PROGRAM ANTIREF FOR CALCULATING THREE-LAYER ANTIREFLECTION COATING SOLUTIONS

The following program calculates the thickness solutions for zero reflectance from a three-layer thin film system (based upon the work of Baer; reference 2).

ANTIREF.FOR

LESLIE G. KUSHIGGE

APRIL 9, 1984

THIS PROGRAM CALCULATES THE THICKNESS SOLUTIONS FOR ZERO REFLECTANCE FROM A THREE LAYER THIN FILM SYSTEM BASED UPON THE MORE OF A.D. BAER (REPORT ON MULTILAYER FILM PROGRAM FOR JULY, 1976 - SEPT., 1977; NAVAL WEAPONS CENTER, CHINA LAKE, CALIFORNIA). THE FILM IS ASSUMED TO BE LOSSLESS AND CERTAIN INPUT PARAMETERS ARE REQUIRED (MAYELENGTH OF RADIATION AND INDICES OF REFPACTION):

THE OPTICAL THICKNESSES FOR LAYERS ONE AND TWO COUTER AND MICDLE LAYERS, RESPECTIVELY) ARE PLOTTEC AGAINST THAT FOR THE THIRD LAYER (ON SUBSTRATE). THUS, THE USER MAY CHOOSE A DESIRABLE THIRD LAYER THICKNESS AND READ OFF THE THICKNESSES NECESSAPY FOR THE OTHER LAYERS. NOTE THAT THERE ARE TWO SOLUTIONS FOR THE FIRST AND SECOND LAYER THICKNESSES FOR EVERY THIRD LAYER THICKNESS (WHERE A SOLUTION IS POSSIBLE). THESE SOLUTIONS ARE DISTINGUISHED BY SOLID AND DASHED LINES. ALSO NOTE THAT SOLUTIONS EXIST FOR EVERY MULTIPLE OF A HALF-WAVE FOR THE OPTICAL THICKNESSES.

THE PHYSICAL THICKNESSES ARE NOT CALCULATED IN THIS PROGRAM, ALTHOUGH THEY MAY BE DETERMINED FROM: $TI = (XI \pm WVLGTH)/NI$,

WHERE TI DENOTES THE THICKNESS OF LAYER I, XI DENOTES THE OPTICAL THICKNESS OF LAYER I, WYLGTH DENOTES THE WAVELENGTH OF THE INCIDENT RADIATON, AND NI DENOTES THE INDEX OF REFRACTION OF LAYER I.


```
DEFINITON OF PARAMETERS:
              WYLGTH = WAYELENGTH OF IMPINGENT RACIATION (FREE SPACE).
                           MICRONS.
              NO = INCEX OF REFRACTION OF ATMOSPHERE,
N1 = INCEX OF REFPACTION OF LAYER 1,
N2 = INCEX OF REFRACTION OF LAYER 2,
N3 = INDEX OF REFRACTION OF LAYER 3,
              NA = INDEX OF REPRACTION OF SUSSTRATE.
              R4 = INDEX LF KETHALIJA UF SUDSIKATE.

R10 = FRESNEL COEFFICIENT SETMEEN LAYER 1 AND ATMOSPHERE.

R21 = FRESNEL COEFFICIENT BETWEEN LAYERS 2 AND 1.

R23 = FRESNEL COEFFICIENT BETWEEN LAYERS 3 AND 4.

R34 = FRESNEL COEFFICIENT BETWEEN LAYERS 3 AND 4.
              RA = FPESNEL COEFFICIENT BASED ON SMITH'S THEOREM.
              RE = FRESNEL COEFFICIENT BASED ON SMITH'S THEOREM.
              REMAS = MAGNITUDE OF RB.
              DELPA = PHASE OF RA (SOLID SOLUTION),
DELMA = PHASE OF RA (DASHED SOLUTION),
              DELP = PHASE OF RB,
XT = VALUES OF THE THIRD LAYER THICKNESS FOR WHICH
                     CHECKS ON THE EXISTANCE OF SOLUTIONS ARE MADE.
             XIPOS = LAYER 1 OPTICAL THICKNESS (SOLID SOLUTION), XINEG = LAYER 1 OPTICAL THICKNESS (DASHED SCLUTION),
              X2PCS = LAYER 2 OPTICAL THICKNESS (SOLID SOLUTION), X2NES = LAYER 2 OPTICAL THICKNESS (DASHED SOLUTION),
              X3 = LAYER 3 OPTICAL THICKNESS.
        DIMENSION X3(500), X1PCS(500), X1NEG(500), X2POS(500)
        DIMENSION X2NES(500)
        REAL#4 NO. 11. N2. N3. N4
        CHARACTER#50 HEAD1
        READ IN INPUT PARAMETERS. THE WAVELENGTH (MICRONS) AND INDICES OF REFRACTION SHOULD BE STORED IN THE FILE "INDEX.DAT" PRIOR TO
        EXECUTION.
        SPEN(UNIT=10, FIL == "ANTIREF. DAT", ACCESS = "SEQUENTIAL",
               FORM= "FORMATTED", STATUS="NEW")
        SPENCUNIT=11.FILF="INDEX-DAT".ACCESS="SEQUENTIAL",
               FORM= "FORMATTED", STATUS="DLD")
        RENIWO 11
        REAC(11.10) WVLGTH
    10 FORMAT(F5.2)
         READ(11,20) NO
        RE40(11,20) N1
        RE43(11,20) N2
        READ(11.20) N3
        READ(11,20) N4
    20 FORMAT(F6.4)
        CALCULATION OF FRESNEL COEFFICIENTS AT THE VARIOUS INTERFACES.
C
        R1G=(N1-N0)/(N1+N0)
        R21=(N2-N1)/(N2+N1)
        R23=(N2-N2)/(N2+N2)
         R24=(N3-N4)/(N3+N4)
        PI=3.1415926535
```

```
CALCULATION OF THE SOLUTIONS (OR OF THE X1 AND X2 VALUES)
      FOR EACH X3 VALUE.
      J=1
      XI=C.
      DC 40 I=1,501
REMAS=(SQP*((F?3+K23##2#P34#(CDS(4.#PI#XT))+R34#COS(4.#PI#XT)
     #+R23#f34##2)##?+?34##2#(SIN(4.#PI#XT))##2#(R23##2-1.)##2))/
     #(1.+2. #R23#R24#CD5(4.#P!#XT)+P23##2#R34##2)
C
      FUNC = (R21##2+R10m#2-REMAS##2#(1.+P21##2#R10##2))/(2.#R21#R10#
     # ( R of 45 * #2 - 1 . ) )
      DETERMINATION OF WHETHER A SOLUTION EXISTS FOR THE PRESENT XT
      VALUE. IF THERE IS NO SCLUTION. THEN AT IS INCREMENTED UP BY
      0.001.
      IF (ABS (FUNC) . GT. 1.) THEN
      GO TO 30
C
      A SCLUTION EXISTS SO X3 IS SET EQUAL TO KT. AND THE X1 AND X2
      VALUES ARE CALCULATES.
C
      X3(J)=XT
      X1PGS(J)=(1./(4.#PI))#ACDS(FUNC)
      X1NEG(J)=-X1PCS(J)
      DETERMINES THE CUADRENT THAT PHASE ANGLE DELPA IS IN.
      DELNUM=(-R10#STN(4.*PI#X1POS(J)))+(1.-R21##2)
      DELDEN=#21+P21+#2#R10#(COS(4.#PI#X1POS(J)))+R10
     **COS(4.*PI*X1POS(J))*P21*R10**2
      IF(DELDEN.EC.O.) GO TO 900
      DELPA=ATAN(ABS(DELNUM/DELDEN))
      IFCDELNUM.GT.O.) THEN
         IF(DELDEN.GT.O.) GO TO 2000
      END IF
      IF(DELNUM.GT.O.) THEN '
         IF(DELDEN.LT.C.) GC TC 1000
      END IF
      IF(CELNUM-LT.O.) THEN
         IF(DELDEN.LT.O.) 50 TO 1100
      IFCDELNUM.LT.O.) THEN
         IF(DELDEN.GT.O.) GD TO 1200
      IFCDELNUM-EQ.O.) THEN
         IF(DELDEN.GT.D.) GO TD 1300
         IF(DELDEN.LT.G.) GO TO 1400
      END IF
  900 IF(DELDEN.EC.O.) THEN
         IF(DELNUM.GT.O.) GD TC 1500
      ELSE
         IF(DELNÚM.LT.G.) GO TO 1600
END IF
1000 DELPA=PI-DELPA
      GC TO 2000
1100 SELPA=PI+DELPA
      GC T3 2000
1200 DELPA=2.#PI-DELPA
      GO TO 2000
1300 DELPA=0.
      GD TO 2000
1400 DELPA=PI
      GC TO 2000
1500 DELF4=PI/2.
GD TO 2000
1600 DELP4=(7.#PI)/2.
```

The section of the se

```
DETERMINES THE QUADRENT THAT PHASE ANGLE DELB IS IN-
2000 DELNUM=(-934#5IN(4.#PI#X3(J)))#(1.-R23##2)
      DELTEN = (223+023+023+024034+(COS(4.401+X3(J)))+234+COS(4.401+
     #X3(J))+R23#R34##2)
      IF (DELDEN.EC.C.) GD TO 2900
      DELB=ATANCABSCDELNUM/DELDEN))
      IF(DELNUM.GT.O.) THEN
        I=(DELDEN.GT.D.) GD TO 4000
      END IF
      IF(DELNUM.GT.O.) THEN
         IF(DELCEN.LT.O.) GC TO 3000
      IF(CELNUM.LT.O.) THEN
         IF(DELDEN.LT.O.) GD TD 3100
      ENT IC
      IF(CELNUM.LT.O.) THEN
         IF(DELDEN.GT.O.) GD TO 3200
      END IF IF(DELNUM-EC.O.) THEN
         IF(CELDEN.GT.O.) 30 TO 3300
         IF(DELDEN.LT.O.) SC TO 3400
      END IF
 2900 IF(DELDEN.EC.O.) THEN
         IF(DELNUM.GT.O.) GO TO 3500
      čLSE
         IF(DELNUM.LT.O.) GD TO 3600
      END IF
 3000 DELE=PI-DELE
      GC TO 4000
 3100 SELE=PI+DELE
      68 TO 4000
 3200 DELB=2.#PI-DELB
      GC TC 4000
 3500 DELP=0.
      GD TO 4000
 3400 DEL3=FI
      GC T2 4000
 3500 CELP=PI/2.
      SD TO 4000
 3600 CEL5=(3.#PI)/2.
 4000 X2PCS(J)=(1./(4.#PI))#(DELFA+DEL9)
С
      DETERMINES THE QUADRENT THAT PHASE ANGLE DELNA IS IN-
C.
      DELNUM=(-R10±SIN(4.±PI±X1NEG(J)))+(1.-R21±#2)
      DELDEN=(P21+P21++2+P10+(CD5(4.+PI+X1NE3(J)))+R10+CDS(4.+PI+
     #X1NES(J)2+921#910##2)
      IF(DELDEN.EQ.0.) GO TO 4900
      DELNA=ATAN(45S(CELNUM/DELDEN))
      IFCDELNUM.GT.C.) THEN
         IF(DELDEN.GT.0.) 30 TJ 6000
      END IF
      IF(SELNUM.GT.O.) THEN
         IF(SELDEN.LT.O.) CO TO 5000
      END IF IF (DELNUMLLI.G.) THEN
         IF(DELDEN.LT.O.) GO TO 5100
      IF(CELULM.LT.O.) THEN
         IF(DELDEN.ST.O.) GC TO 5200
      END IF
      IF(CELNUM.EC.O.) THEN
         If(DELDEN.GT.O.) GO TO 5200
      ELSE
        IF(DELDEN.LT.O.) GD TG 5400
      END IF
```

```
4900 IF(BELDEN.EC.O.) THEN
          IF(DELNUM.GT.O.) GD TO 5500
       ELSE
          IF(DELNUM.LT.D.) GD TC 5600
       END IF
 5000 DELNA=PI-DELNA
       SO TO 6000
 5100 DELNA=PI+DELNA
       G5 T0 6000
 5200 DELNA=2.*PI-DELNA
       GG TO 6000
 5300 DELNA=0.
       GC TJ 6000
 5400 DELNA=PI
      50 TO 6090
 5500 DELNA=PI/2.
       GD TO 6000
 5600 DELNA=(3.*PI)/2.
 6000 X2NEG(J)=(1./(4.#PI))#(DELNA+DELE)
   30 XT=XT+0.001
   40 CONTINUE
       DS 42 I=1.J-1
       X1NEG(I)=X1NEG(I)+0.5
       X2PSS(I)=X2PCS(I)-0.5
   42 CONTINUE
       THE OPTICAL THICKNESSES ARE WRITTEN TO THE FILE "ANTIREF-DAT".
C
     WRITE(10,43)WVLGTH,N0,N1,N2,N3,N4
FORMAT(1X,"WAVELENGTH = ",F5.2,"MICRONS",/,1X,"N0 = ",F6.4,/,
*1X,"N1 = ",F6.4,/,1X,"N2 = ",F6.4,/,1X,"N3 = ",F6.4,/,1X,"N4 = ",
43
      #F6.4,///)
       WRITE(10,45)
   45 FORMAT(3x, Tx3", 5x, Tx1PCS", 3x, Tx1NEG", 3x, Tx2PCS", 3x, Tx2NEG",/)
   WRITE(10,50)(X3(I),X1PS(I),X1NEG(I),X2PS(I),X2NEG(I),I=1,J-1)
50 FCRMAT(1X,F7,4,1X,F7,4,1X,F7,4,1X,F7,4)
C
       PLUTTING SECTION. (USES DISSPLA GRAPHICS.)
      CALL COMPRS
       CALL FAGE(9.5,11.0)
      CALL SWISSM
CALL SHECHF(90.,1,0.01,1)
       CALL AREAZD(5.,5.)
       CALL FRAME
       WRITES AXIS LABELS AND THE PLOT MEACING.
      CALL RESET("MIXALF")
      CALL XNAME("X3 (()wavelengths)$",100)
      CALL YMAME("X1 and X2 (()wavelengths)$",100)
CALL MIXALF("L/CGREEK")
       WRITE (MEADI, 60) WVLGTH
60
       FDRMAT("Antireflectance Coating (()", F4-2, "(M)m)$")
       CALL HEADINCRREF(HEADI), 100, 1.5, 1)
```

```
PLITS *1 AND X2 VS. X3. A SPLINE CURVE FITTING ROUTINE IS USED TO: FITTING THE DATA.

CALL GRAF(0.,0.1,0.5,0.,0.1,0.5)

CALL THEORY(0.03)

CALL SCURY(0.03,0.2)

CALL CURVE(X3,X1POS,J-1,0)

CALL CURVE(X3,X2POS,J-1,0)

CALL CURVE(X3,X1NEG,J-1,0)

CALL CURVE(X3,X2NEG,J-1,0)

CALL CURVE(X3,X2NEG,J-1,0)

CALL CURVE(X3,X2NEG,J-1,0)

CALL CURVE(X3,X2NEG,J-1,0)

CALL SSET(*DASM*)

CALL DONTPL

END
```

INITIAL DISTRIBUTION

- 2 Naval Air Systems Command (AIR-723)
- 2 Naval Sea Systems Command (SEA-09B312)
- 1 Commander in Chief, U.S. Pacific Fleet (Code 325)
- 1 Commander, Third Fleet, Pearl Harbor
- 1 Commander, Seventh Fleet, San Francisco
- 2 Naval Academy, Annapolis (Director of Research)
- 3 Naval Ship Weapon Systems Engineering Station, Port Hueneme Code 5711, Repository (2) Code 5712 (1)
- 1 Naval War College, Newport
- 1 Army Materials and Mechanics Research Center, Watertown (T. V. Hynes)
- I Air Force Intelligence Service, Bolling Air Force Base (AFIS/INTAW, Maj. R. Lecklider)
- 12 Defense Technical Information Center
- 1 Battelle Pacific Northwest Laboratories, Richland, WA (W. T. Pawlewicz)
- 1 Burleigh Northwest Optical, Inc., Fishers, NY (D. R. Sigler)
- 1 Coherent Medical Group, Palo Alto, CA (E. A. Nevis)
- 1 Martin Marietta Aerospace, Albuquerque, NM (T. Raj)
- 1 Northrop Research and Technology Center, Palos Verdes Peninsula, CA (S. J. Holmes)
- 1 University of Missouri, Columbia, MO (R. M. O'Connell)

F MF