An Integer Programming Solver for The Wicker Rod Optimization Problem

May 3, 2022

1 Requirements

To manufacture a rattan box, 1 piece of length 35, 1 piece of length 30 and 1 piece of length 20 are needed. For that, pieces of length 330 are provided. The goal of the producer is to find a batch size and the "recipe" that will allow the production of that batch while minimizing the absolute wicker waste.

2 Formalization of the problem

We start with a little bit of notation:

- We will call l_1, l_2, l_3 to the three lengths of the rods, sorted descending.
- Let l be the total length of the provided rods.
- Each "recipe" will amount giving to describing the ways of cutting the provided rods of length l; formally $p = (l^1 \dots, l^k)$ where $l^1 + \dots + l^k = l$.

In order to formalize the problem, we define the notion of optimal partition as a partition (l^1, \ldots, l^r) where $l^1 \geq \cdots \geq l^{r-1} > l^r$ y $l^1, \ldots, l^{r-1} \in \{l_1, l_2, l_3\}$. The sorting condition is non-essential and it only simplifies the later development (and the clarify of presentation for the manufacturer), the important thing is that all pieces corresponds to lengths in l_1, l_2, l_3 and that there will be only one clipping piece, which won't be possible to use.

Let P be the set of all partitions, and let \hat{P} the set of just the optimal ones. It will become clear that it's possible to compute easily the set \hat{P} ; so we will be able to write $\hat{P} = (p^1, \dots, p^k)$, where k is the total quantity of optimal partitions for the parameters (l, l_1, l_2, l_3) .

For each partition p, we consider for integer quantities:

- 1. $N_1(p), N_2(p)$ y $N_3(p)$ that amount to the multiplicities of l_1 , l_2 and l_3 respectively in the partition p.
- 2. $C(p) = l^r$ si $p = (l^1, \ldots, l^r)$. That is, C(p) is the clipping length of partition p.

We will finally introduce multiplicities m_1, m_2, m_3 that correspond to the quantities needed for manufacturing a production unit. In the requirement for the rattan box, we trivially have $m_1 = m_2 = m_3 = 1$, but this seems just like an accidental fact and also there are no great difficulties in taking $m_1, m_2, m_3 \in \mathbb{N}$ as wished.

All that said, we state the optimization problem:

Find $(n_1,...,n_k) \in \mathbb{N}^k$ that minimizes $\sum_{i=1}^n C(p_i) \times n_i$, sujebject to the constrains

1.
$$n_1 + \cdots + n_k < n_{tope}$$

2.
$$m_{j_0} \times (\sum_{i=1}^k N_{j_1}(p^i) \times n_i) = m_{j_1} \times (\sum_{i=1}^k N_{j_0}(p^i)) \times n_i) \, \forall j_0, j_1 \in \{1, 2, 3\}$$

being n_{bound} the maximum admissible amount for the batch.

3 Tackling the problem using IP

What we see next is that, if fixing $n < n_{bound}$, we can find an equivalent IP problem for the original problem.

We start by defining the matrix $A \in \mathbb{N}^{2 \times k}$ as:

$$\begin{pmatrix} m_2 N_1(p_1) - m_1 N_2(p_1) & \cdots & m_2 N_1(p_k) - m_1 N_2(p_k) \\ m_3 N_2(p_1) - m_2 N_3(p_1) & \cdots & m_3 N_2(p_k) - m_2 N_3(p_k) \\ 1 & \cdots & 1 \end{pmatrix}$$
(1)

y el vector $\vec{c} \in \mathbb{N}^k$

$$\begin{pmatrix} C(p_1) \\ \vdots \\ C(p_k) \end{pmatrix} \tag{2}$$

We can state the following problem as a classic IP problem:

Find $\vec{n} \in \mathbb{Z}^k$ that minimizes $\vec{c} \cdot \vec{n}$, subject of the constrains:

1.
$$A\vec{n} = (0, 0, n_0)^t$$

2.
$$\vec{n} \ge \vec{0}$$

It's clear that:

- 1. Restriction 2. makes $\vec{n} \in \mathbb{N}^k$
- 2. It is clear that

$$(A\vec{n})_0 = 0 \iff \sum_{i=1}^k (m_2 N_1(p_i) - m_1 N_2(p_i)) \times n_i = 0$$

$$\iff m_2(\sum_{i=1}^k N_1(p_i) \times n_i) = m_1(\sum_{i=1}^k N_2(p_i) \times n_i)$$

Similarly, $(A\vec{n})_1 \iff m_2(\sum_{i=1}^k N_1(p_i) \times n_i) = m_1(\sum_{i=1}^k N_2(p_i) \times n_i).$

Finally, we get the restriction 1. of the original problem on $j_0 = 1, j_1 = 3$ for free:

• By multiplying the first equality by m_3 we get

$$m_3 m_2 (\sum_{i=1}^k N_1(p_i) \times n_i) = m_3 m_1 (\sum_{i=1}^k N_2(p_i) \times n_i)$$

• By multiplying the second equality by m_1 we get

$$m_1 m_3 (\sum_{i=1}^k N_2(p_i) \times n_i) = m_1 m_2 (\sum_{i=1}^k N_3(p_i) \times n_i)$$

• By transitivity and cancelling out m_2 , we get

$$m_3(\sum_{i=1}^k N_1(p_i) \times n_i) = m_1(\sum_{i=1}^k N_3(p_i) \times n_i)$$

which implies restriction 1. of the original problem.

This completes the equivalence for condition 1.

3. It's clear that $(A\vec{n})_2 = n_0$ implies $n_1 + \cdots + n_k = n_0 < n_{bound}$, which amount to restriction 1. of the original problem.

Finally, we conclude that for each $n_0 < n_{bound}$, the problem we just presented is within the restrictions of the original problem and that the minimum of the obtained solution by varying $n < n_{bound}$ will give us the solution to the original problem.

4 Implementación