Probability & Statistics. Assignment 10

- 1. Let X_1, \ldots, X_6 be a sample from a uniform distribution on $[0, \theta]$, where $\theta \in [1, 2]$ is an unknown parameter. Find an unbiased estimator for θ of variance less than 1/10.
- 2. Consider the linear regression model

 $Y_i=lpha+eta x_i+\epsilon_i$, $\epsilon_i\sim N(0,\sigma^2)$, $i=1,\ldots,n$, where x_1,\ldots,x_n are known, with $\sum_{i=1}^n x_i=0$, and where $lpha,eta\in\mathbb{R}$ and $\sigma^2\in(0,+\infty)$ are unknown. Find the maximum likelihood estimators $\widehat{lpha},\widehat{eta},\widehat{\sigma}^2$ and write down their distributions.

Consider the following data:

x_i	-3	-2	-1	0	1	2	3
Y_i	-5	0	3	4	3	0	-5

Fit the linear regression model and comment on its appropriateness.

3. The independent observations X_1, X_2 are distributed as Poisson random variables, with means μ_1, μ_2 respectively, where

$$ln \mu_1 = \alpha$$

$$ln \mu_2 = \alpha + \beta$$
,

with α and β unknown parameters. Write down $l(\alpha, \beta)$, the log-likelihood function, and hence find the following:

(a)
$$\frac{\partial^2 l}{\partial \alpha^2}$$
, $\frac{\partial^2 l}{\partial \alpha \partial \beta}$, $\frac{\partial^2 l}{\partial \beta^2}$;

- (b) $\widehat{\beta}$, the maximum likelihood estimator of β .
- 4. Consider the model

 $y_i=eta_0+eta_1x_i+eta_2x_i^2+\epsilon_i$, for $1\leq i\leq n$, where x_1,\ldots,x_n are given values, with $\sum_i x_i=0$, and where $\epsilon_1,\ldots,\epsilon_n$ are independent normal errors, each with zero mean and unknown variance σ^2 .

- (a) Obtain equations for $(\widehat{\beta_0}, \widehat{\beta_1}, \widehat{\beta_2})$, the MLE of $(\beta_0, \beta_1, \beta_2)$. Do not attempt to solve these equations.
- (b) Obtain an expression for $\widehat{eta_1^*}$, the MLE of eta_1 in the reduced model

$$H_0:\ y_i=eta_0+eta_1x_i+\epsilon_i$$
, $1\leq i\leq n$ with $\sum_i x_i=0$, and $\epsilon_1,\ldots,\epsilon_n$ distributed as above.

- 5. Let (x_1, \ldots, x_n) be a random sample from the normal PDF with mean μ and variance σ^2 . (a) Write down the log-likelihood function $l(\mu, \sigma^2)$.
 - (b) Find a pair of sufficient statistics, for the unknown parameters (μ, σ^2) , carefully quoting the relevant heorem.
 - (c) Find $(\widehat{\mu}, \widehat{\sigma}^2)$, the MLE of (μ, σ^2) . Quoting carefully any standard distributional results required, show how to construct a 95% confidence interval for μ .
- 6. X_1, \ldots, X_n form a random sample from a uniform distribution on the interval $(-\theta, 2\theta)$, where the value of the positive parameter θ is unknown. Determine the maximum likelihood estimator of the parameter θ .

- 7. (a) Aerial observations x_1, x_2, x_3, x_4 are made of the interior angles $\theta_1, \theta_2, \theta_3, \theta_4$ of a quadrilateral on the ground. If these observations are subject to small independent errors with zero means and common variance σ^2 , determine the least squares estimator of $\theta_1, \theta_2, \theta_3, \theta_4$.
 - (b) Obtain an unbiased estimator of σ^2 in the situation described in part (a).
 - (c) Suppose now that the quadrilateral is known to be a parallelogram with $\theta_1=\theta_3$ and $\theta_2=\theta_4$. What now are the least squares estimates of its angles? Obtain an unbiased estimator of σ^2 in this case.
- 8. Let X_1, X_2, \ldots, X_n be a random sample from the $N(\mu, \sigma^2)$ -distribution. Prove that the random variables \overline{X} (sample mean) and $\sum_{i=1}^n (X_i \overline{X})^2$ (sample variance times (n-1)) are independent and determine their distributions.
- 9. (a) Explain what is meant by constructing a confidence interval for an unknown parameter θ from a given sample x_1, \ldots, x_n . Let a family of PDFs $f(x; \theta), -\infty < \theta < \infty$, be given by

$$f(x; heta) = \left\{egin{aligned} e^{-(x- heta)}, & x \geq heta, \ 0, & x < heta. \end{aligned}
ight.$$

Suppose that n=4 and $x_1=-1,\ x_2=1.5,\ x_3=0.5,\ x_4=1.$ Construct a 95% confidence interval for θ .

- (b) Let $f(x; \mu, \sigma^2)$ be a family of normal PDFs with an unknown mean μ and an unknown variance $\sigma^2 > 0$. Explain how to construct a 95% confidence interval for μ from a sample x_1, \ldots, x_n . Justify the claims about the distributions you use in your construction.
- 10. (a) State and prove the factorisation criterion for sufficient statistics, in the case of discrete random variables.
 - (b) A linear function y=Ax+B with unknown coefficients A and B is repeatedly measured at distinct points x_1,\ldots,x_k : first n_1 times at x_1 , then n_2 times at x_2 and so on; and finally n_k times at x_k . The result of the i-th measurement series is a sample $y_{i1},\ldots,y_{in_i},\,i=1,\ldots,k$. The errors of all measurements are independent normal variables, with mean zero and variance 1. You are asked to estimate A and B from the whole sample $y_{ij},\,1\leq j\leq n_i,\,1\leq i\leq k$. Prove that the maximum likelihood and the least squares estimators of (A,B) coincide and find these.

Denote by \widehat{A} the maximum likelihood estimator of A and by \widehat{B} the maximum likelihood estimator of B. Find the distribution of $(\widehat{A},\widehat{B})$.

11. (a) Let x_1,\ldots,x_n be a random sample from the PDF $f(x;\theta)$. What is meant by saying that $t(x_1,\ldots,x_n)$ is sufficient for θ ? Let

$$f(x; heta) = \left\{egin{aligned} e^{-(x- heta)}, & x \geq heta, \ 0, & x < heta. \end{aligned}
ight.$$

and suppose n=3. Let $y_1 < y_2 < y_3$ be ordered values of x_1, x_2, x_3 . Show that y_1 is sufficient for θ .

(b) Show that the distribution of $Y_1 - \theta$ is exponential of parameter 3. Your client suggests the following possibilities as estimators of θ :

$$egin{array}{lcl} \overline{ heta_1} &=& x_3-1, \ \overline{ heta_2} &=& y_1, \ \overline{ heta_1} &=& rac{1}{3}(x_1+x_2+x_3)-1. \end{array}$$

How would you advise him?

12. (a) Derive the form of the MLEs of α , β and σ^2 in the linear model

$$Y_i=lpha+eta x_i+\epsilon_i$$
 , $1\leq i\leq n$, where $\epsilon_i\sim N(0,\sigma^2)$ and $\sum_{i=1}^n x_i=0$.

- (b) What is the joint distribution of the maximum likelihood estimators $\widehat{\alpha}, \widehat{\beta}, \widehat{\sigma}^2$? Construct 95% confidence intervals for:
 - $\circ \sigma^2$,
 - $\circ \alpha + \beta$.