Newton Solver Reference

François Faure and Matthieu Nesme

January 30, 2015

Abstract

Detailing the non-linear time-stepping scheme implemented in the Compliant NLI mplicit Solver component.

1 Notations

- x: positions
- v: velocities
- f(x, v, t): forces for given positions and velocities at time t
- *h*: time step
- (.)⁻, (.)⁺: a state at, respectively, the beginning and the end of the time step
- $\Delta x = x^+ x^-$: variation of position during the time step
- $\Delta v = v^+ v^-$: variation of velocity during the time step
- α , β : blending parameters such as $f^* = \alpha f^+ + (1-\alpha)f^-$ and $v^* = \beta v^+ + (1-\beta)v^-$. Corresponding Data are called implicitVelocity and implicitPosition.
- \bullet M: mass

2 Euler Integration

$$\begin{cases} \Delta x &= hv^* \\ M\Delta v &= hf^* \end{cases}$$

from explicit $\alpha=\beta=0$ to implicit $\alpha=\beta=1$.

3 Non-linear Solver

The method computes the next velocity v^+ , such that $e \equiv M\Delta v - hf^*$ is satisfied. (Note that other time discretizations are implemented to rather compute the new acceleration or Δv , similar development can be done being careful of the time step scaling.)

Based on the Newton's method, an approximate solution is iteratively improved by solving a linear equation system based on the Jacobian of the residual of the equation to satisfy. A first guess is computed with the regular, linearized system (cf the linear time-stepping scheme in the Compliant plugin doc).

Stating that

$$e \equiv M(v^+ - v^-) - h(\alpha f^+ + (1 - \alpha)f^-)$$

we obtain the jacobian

$$\frac{\partial e}{\partial v^+} = M - h\alpha \frac{\partial f^+}{\partial v^+}$$

A first order approximation of the Taylor serie of $f^+ = f(x^+, v^+, t+h)$ gives

$$\begin{array}{lcl} f^+ & = & f(x^-,v^-,t) + \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial v} \Delta v \\ & = & f^- + K \Delta x + B \Delta v \\ & = & f^- + K (h(\beta v^+ + (1-\beta)v^-)) + B(v^+ - v^-) \end{array}$$

with $K = \frac{\partial f}{\partial x}$ the stiffness matrix and $B = \frac{\partial f}{\partial v}$ the damping matrix.

So

$$\frac{\partial f^+}{\partial v^+} = h\beta K + B$$

and

$$\frac{\partial e}{\partial v^{+}} = M - h\alpha B - h^{2}\alpha\beta K$$

4 Constraints

Bilateral, holonomic constraint $\phi(x)=0$, combined with the ODE leads to Jv=0 with $J=\frac{\partial \phi}{\partial x}$, the constraint forces are $-J^T\lambda^+$ with λ the Lagrange multipliers.

The error becomes

$$e \equiv M(v^+ - v^-) - h(\alpha(f^+ - J^T\lambda^+) + (1 - \alpha)f^-)$$

For compliant constraints $C\lambda = -\phi$,

$$e \equiv M(v^+ - v^-) - h(\alpha(f^+ - J^T\lambda^+) + (1 - \alpha)f^-) - \sum_{i \in iterations} (Ch\lambda_i^+ - \phi_i^+)$$

Note the tricky correction accumulation all along the iterations for compliant constraints.

Unilateral constraints $\phi(x) >= 0$ are handled the same way, expect they participate to the error only when they are violated (i.e. when then generate a force λ).

5 Newton Step Length

Two different strategies are implemented:

- naïve sub-step approach: a predefinied portion (Data 0<newtonStepLength<1) of the correction is applied successively while the error is decreasing.
- Backtracking algorithm (Data newtonStepLength=1): try to find the maximum amount of correction to apply that decreased "sufficiently" the error. The line search described in *Numerical Recipies* (chapter Globally Convergent Methods for Nonlinear Systems of Equations) is employed.