1 Question de cours

Dessin de cycle équivalent à un climatiseur et de moteur. Pourquoi on n'utilise pas de climatiseur à eau ?

2 Câble coaxial

Un câble coaxial est constitué de deux cylindres C_1 et C_2 de même axe (Oz):

- l'âme C_1 est un cylindre conducteur de rayon a_1 ;
- l'armature externe, ou gaine, est un cylindre de rayon intérieur a_2 et d'épaisseur $e \ll a_2$.
- le volume entre l'âme et la gaine est rempli par un matériau isolant.

Ce câble est utilisé dans un circuit électrique : l'âme est alors parcourue par un courant I réparti uniformément dans son volume, tandis que la gaine est parcourue par un courant -I réparti sur sa surface (l'épaisseur est négligée).

- 1. Donner le vecteur densité volumique de courant dans l'âme.
- 2. Calculer le champ magnétostatique créé en tout point de l'espace par cette distribution de courant. Représenter la norme de \vec{B} .
- 3. On considère la surface verticale de hauteur h, découpée dans l'isolant $(a_1 < r < a_2)$, représentée sur la figure précédente. Calculer le flux Φ de \vec{B} à travers cette surface.
- 4. On appelle coefficient d'auto-induction la quantité $L = \frac{\Phi}{I}$. Exprimer L ainsi que le coefficient d'auto-induction par unité de longueur Λ .
- 5. On peut montrer que la capacité par unité de longueur Γ de ce câble coaxial est donné par $\Gamma = \frac{2\pi\varepsilon_0}{\ln\frac{a_2}{a_1}}.$ En déduire une propriété des caractéristiques Γ et Λ d'un tel câble.