Ve203 Discrete Mathematics

Sample Exercises for the First Midterm Exam

The following exercises are sample exercises of a difficulty comparable to those found the actual first midterm exam. The exam will usually include of 4 to 5 such exercises to be completed in 100 minutes.

Exercise 1. Find $x, y \in \mathbb{Z}$ such that $24x + 138y = \gcd(24, 138)$. (1 Mark)

Solution. We apply the Euclidean algorithm:

$$138 = 5 \cdot 24 + 18$$
$$24 = 1 \cdot 18 + 6$$
$$18 = 3 \cdot 6$$

so gcd(24, 138) = 6. Furthermore,

$$6 = 24 - 1 \cdot 18$$
$$= 24 - (138 - 5 \cdot 24)$$
$$= 6 \cdot 24 - 1 \cdot 138$$

and we have x = 6, y = -1.

Exercise 2. Find all solutions of $140x \equiv 133 \pmod{301}$. (2 Marks)

Solution. Since $140 = 2^2 \cdot 5 \cdot 7$ and $301 = 7 \cdot 43$, we see that gcd(140, 301) = 7. Since $133 = 7 \cdot 19$, there exists seven solutions. We reduce the problem by dividing by 7, yielding,

$$20x \equiv 19 \pmod{43}$$

We now find an inverse of 20 modulo 43. using the Euclidean algorithm,

$$43 = 2 \cdot 20 + 3,$$

$$20 = 6 \cdot 3 + 2,$$

$$3 = 1 \cdot 2 + 1,$$

$$1 = 1 \cdot 1.$$

We now find an inverse of 20 modulo 43. Using the Euclidean algorithm,

$$1 = 3 - 1 \cdot 2$$

$$= 3 - (20 - 6 \cdot 3)$$

$$= -20 + 7 \cdot (43 - 2 \cdot 20)$$

$$= 7 \cdot 43 - 15 \cdot 20$$

so -15 is the inverse. We then find

$$x \equiv (-15) \cdot 19 \equiv -285 \equiv 16 \pmod{43}$$

so 16 is the unique solution modulo 43. All solutions are given by

16, 59, 102, 145, 188, 231, 274.

Exercise 3. Calculate $3^{20} \mod 99$. (3 Marks)

Solution. We have $20 = 2^4 + 2^2$, so we calculate

$$3^2 \mod 99 = 9 \mod 99,$$

 $3^4 \mod 99 = 81 \mod 99,$
 $3^8 \mod 99 = 6561 \mod 99 = 27 \mod 99,$
 $3^{16} \mod 99 = 729 \mod 99 = 36 \mod 99.$

Then

 $3^{20} \mod 99 = (3^{16} \mod 99)(3^4 \mod 99) \mod 99 = 36 \cdot 81 \mod 99 = 2916 \mod 99 = 45 \mod 99.$

Exercise 4. Find all solutions of $140x \equiv 133 \pmod{301}$. (2 Marks)

Exercise 5. Let A, B, C be statements. Are the following tautologies:

$$((A \Rightarrow B) \Rightarrow C) \Leftrightarrow (A \Rightarrow (B \Rightarrow C)),$$
$$((A \Rightarrow B) \land (C \Rightarrow \neg B)) \Rightarrow (A \Rightarrow \neg C)?$$

Give proofs or counterexamples!

(2+2 Marks)

Exercise 6. Let A, B, C, D, E be statements. Prove that the argument

$$A \Rightarrow C$$

$$D \lor E$$

$$\neg E \Rightarrow \neg B$$

$$(\neg B \land D) \Rightarrow A$$

$$\neg E$$

$$C$$

is valid by succesively applying known rules of inference. (3 Marks)

Solution. We reduce the argument to syllogisms (1/2 Mark):

(1/2 Mark) Furthermore,

$$\begin{array}{c}
D \lor E \\
\neg E \\
\hline
D.
\end{array}$$

(1/2 Mark) Finally,

$$\begin{array}{c}
\neg B \\
D \\
\neg B \wedge D
\end{array}$$

(1/2 Mark) Finally,

$$(\neg B \land D) \Rightarrow A$$

$$\neg B \land D$$

$$A$$

(1/2 Mark) Finally,

$$\begin{array}{c}
A \Rightarrow C \\
A \\
\hline
C
\end{array}$$

(1/2 Mark) and the argument is complete.

Exercise 7. Prove the following statement using induction in n:

$$\sum_{j=1}^{n} x^{n-j} y^{j-1} = \frac{x^n - y^n}{x - y}, \qquad x, y \in \mathbb{R}, \ x \neq y, \ n \ge 1.$$

(4 Marks)

Solution. Award 1/2 Mark for checking that the statement is true for n=1:

$$A(n=1)$$
:
$$\sum_{j=1}^{1} x^{1-j} y^{j-1} = x^0 y^0 = 1 = \frac{x^1 - y^1}{x - y}$$

Award 1/2 Mark for saying that "Assuming the statement is true for n, we now show that it is true for n + 1" or some equivalent remark. Award 2 Marks for then successfully proving this as follows:

$$A(n) \Rightarrow A(n+1)$$
:

$$\sum_{j=1}^{n+1} x^{n+1-j} y^{j-1} = x \sum_{j=1}^{n+1} x^{n-j} y^{j-1} = x \left(x^{-1} y^n + \sum_{j=1}^n x^{n-j} y^{j-1} \right)$$
$$= y^n + x \frac{x^n - y^n}{x - y} = \frac{y^n (x - y) + x^{n+1} - x y^n}{x - y} = \frac{x^{n+1} - y^{n+1}}{x - y}$$

Exercise 8. We define the set $S \subset \mathbb{Z}^2$ by the following properties

- $(3,5) \in S$
- $(x,y) \in S \Rightarrow (x+2,y) \in S$
- $(x,y) \in S \Rightarrow (-x,y) \in S$
- $(x,y) \in S \Rightarrow (y,x) \in S$

Show that S = T, where

$$T = \{(x,y) \in \mathbb{Z}^2 : \exists_{m,n \in \mathbb{Z}} : (x,y) = (2m+1,2n+1)\}.$$

Hint: show that $S \subset T$ and $T \subset S$.

(6 Marks)

Solution. i) We first show that $S \subset T$ by structural induction. In particular, we show that if $(x,y) \in S$, then there exist m,n such that (x,y) = (2m+1,2n+1). (1 Mark)

For (x,y)=(3,5) we choose m=1, n=2. (1/2 Mark) Next, assume that (x,y)=(2m+1,2n+1) for $m,n\in\mathbb{Z}$. Then

- a) (x+2,y) = (2(m+1)+1,2n+1),
- b) (-x,y) = (2(-m-1)+1,2n+1),
- c) (y,x) = (2n+1, 2m+1).

Thus we can find $m', n' \in \mathbb{Z}$ such that (x+2,y), (-x,y) and (y,x) can be written as (2m'+1, 2n'+1). This shows that $S \subset T$. (3/2 Marks)

ii) We first show that for any $m \in \mathbb{N}$, $(x, y) = (2m + 1, 5) \in T$ is also in S. First, we show that $(1, 5) \in S$. For this, we start with (3, 5), apply step b) above, followed twice by step a):

$$(3,5) \in S \Rightarrow (-3,5) \in S \Rightarrow (-1,5) \in S \Rightarrow (1,5) \in S.$$

Next, assume that $(2m+1,5) \in S$. Then, by Step a), $(2(m+1)+1,5) = (2m+1+2,5) \in S$. This shows that $(2m+1,5) \in S$ for $m \in \mathbb{N}$. By Step b), we obtain $(2m+1,5) \in S$ for $m \in \mathbb{Z}$. (1 Mark)

We now claim that for any $n \in \mathbb{N}$ and for any $m \in \mathbb{Z}$, $(2n+1,2m+1) \in S$. We prove this by induction in n. For n=0, we need to show that $(1,2m+1) \in S$ for any $m \in \mathbb{Z}$. By our previous result and Step c), we know that $(5,2m+1) \in S$ for any m. Applying Step b) followed by Step a) three times, we see that $(1,2m+1) \in S$ for any $m \in \mathbb{Z}$. (1/2 Mark)

Next, if $(2n+1,2m+1) \in S$ for any $m \in \mathbb{Z}$, we see that $(2(n+1)+1,2m+1) = (2n+1+2,2m+1) \in S$ for any $m \in \mathbb{Z}$ by applying Step a). This establishes that for any $n \in \mathbb{N}$ and for any $m \in \mathbb{Z}$, $(2n+1,2m+1) \in S$. (1 Mark)

By Step b), we finally have $(2m+1,2n+1) \in S$ for $m,n \in \mathbb{Z}$. This proves $T \subset S$. (1/2 Mark)

Exercise 9.

i) Solve the system of congruences

$$x \equiv 2 \mod 3,$$
 $x \equiv 5 \mod 7,$ $x \equiv 6 \mod 8.$

ii) Solve the congruence $x^2 \equiv 29 \mod 35$.

(4+4 Marks)

Solution.

i) We set $m = 3 \cdot 7 \cdot 8 = 168$, $M_1 = 56$, $M_2 = 24$, $M_3 = 21$. An inverse of 56 mod 3 is given by $y_1 = 2$, of 24 mod 7 by $y_2 = 5$ and of 21 mod 8 by $y_3 = 5$. Thus the solution is

$$2 \cdot 56 \cdot 2 + 5 \cdot 24 \cdot 5 + 6 \cdot 21 \cdot 5 = 224 + 600 + 630 = 1454 \mod 168 = 110 \mod 168$$

(4 Marks)

ii) Note that

$$x^2 \equiv 29 \mod 35$$
 \Leftrightarrow $x^2 \equiv 29 \mod 5$ \land $x^2 \equiv 29 \mod 7$

We first solve $x^2 \equiv 29 \mod 7 = 1 \mod 7$ giving $x = \pm 1 \mod 7$, so $x_1 = 1$ and $x_2 = 6$. Then, we solve $x^2 \equiv 29 \mod 5 = 4 \mod 5$, giving $x = \pm 2 \mod 5$, so $x_1 = 2$, $x_2 = 3$. We then have x determined through the following congruences:

$$x \equiv 1 \mod 7,$$
 $x \equiv 2 \mod 5$

giving $x = 22 \mod 35$;

$$x \equiv 6 \mod 7,$$
 $x \equiv 2 \mod 5$

yielding $x \equiv 62 \mod 35 = 27 \mod 35$;

$$x \equiv 1 \mod 7,$$
 $x \equiv 3 \mod 5$

giving $x \equiv 8 \mod 35$;

$$x \equiv 6 \mod 7,$$
 $x \equiv 3 \mod 5$

yielding $x \equiv 48 \mod 35 = 13 \mod 35$. We hence have the four roots

$$x_1 \equiv 8 \mod 35$$
, $x_2 \equiv 13 \mod 35$, $x_3 \equiv 22 \mod 35$, $x_4 \equiv 27 \mod 35$.

(1 Mark for each root)

Exercise 10. Let M_q be an integer of the form $a^q - 1$, where a and q are natural numbers. M_q is called a *Mersenne number*. When M_q is prime and a = 2, M_q is called a *Mersenne prime*.

- i) Prove that $(a-1) | (a^q 1)$.
- ii) Conclude that if M_q is prime then a=2 or q=1.
- iii) Prove that if M_q is a Mersenne prime, then q is prime.

(2+2+3 Marks)

Solution.

i) Let a and q be two natural integers. Then

$$a^{q} - 1 = (a - 1)(a^{q-1} + a^{q-2} + \dots + a^{2} + a + 1)$$

Since both a-1 and $\sum_{i=0}^{q-1} a^i$ are integers, a-1 divides a^q-1 .

ii) Suppose that $M_q = a^q - 1$ is prime.

From the previous question we know that a-1 divides M_q , therefore if M_q is prime, then either $a-1=a^q-1$ or a-1=1.

In the first case $a-1=a^q-1$, that is $a=a^q$. This is only possible if $a \in \{0,1\}$ or q=1. However if $a \in \{0,1\}$, then $M_q \in \{-1,0\}$ and M_q is not prime. Thus q=1.

In the second case a - 1 = 1 yields a = 2.

iii) Let $M_q = 2^q - 1$ be a Mersenne prime and a, b > 1 be two integers such that q = ab is composite. Then from the first question we have

$$2^{q} - 1 = 2^{ab} - 1$$

$$= (2^{a})^{b} - 1$$

$$= (2^{a} - 1) ((2^{a})^{b-1} + (2^{a})^{b-2} + \dots + 2^{2a} + 2^{a} + 1)$$

This non-trivial factorisation of M_q contradicts its primality. Therefore q must be prime.