Poisson Process

11) Renewal Process:

- Def: i) Y= Etn]n31 is simple point process. St.

 0 < ti < ti ···· < tn < ··· , tn → ∞ (n → ∞).
 - ii) [Net) } tzo is counting process. St.

 Net) = max [n | tn st].

Rmk: Xn = tn - the is not interval time.

Def: A point process $V = [t_n]_{n \in \mathbb{Z}^+}$ is renewal process

if $(X_n)_n = (t_n - t_{n-1})_n$ is i.i.d.

7hm. For renewal process 4 = Ita3nez. We have:

{ lim Nots/6 = 1. W.P. 1. where 1 = 1/Ecxns.

lim Ec Nots/6 = 1.

Pf: 11) By SLLN: \(\Sigma\times\) \(\times\) \(\times\)

2') prove: N(t)/t is u.i.

Truncate: $\hat{X}_n = a I \S X_n \ge a \S \le X_n$. $\hat{N}_{(n)} \ge N(t)$ Where a is choosen: $p(X_n \ge a) \triangleq p \in (0,1)$ Note: Arrival occur only at $na. n \in \mathbb{Z}^{\frac{1}{2}}$.

Penote k_n is pumber of arrivals at na.

(i.e. Contain the arrival spent time < a)

: $f_n \sim Geocp)$.

(Times spent for success = prival times)

: $N(t) \times \widehat{N}(t) \times \widehat{\Sigma} f_n = S(t)$. E(S(t)) = O(t).

: $E(N(t)) / t^* I_{N(t) > t < 1}$) $\times E(S(t)) / t^*$) $P(\frac{N(t)}{t} \ge 0)$ $\times \frac{A}{C^*} \rightarrow 0$. (Chebyshev)

(2) Poisson Point Process:

Pef: Poisson process with rate $\lambda \in (0, m)$ is a remember $\frac{1}{2}$ process $\psi = 2 t n 3 n t z^{+}$. St. $\chi_{n} = E \times p \in \lambda$).

O Exponential Dist.:

i) It's memoraless: $P(X > n+b \mid X > n) = P(X > b)$ for $n.b \ge 0$.

Thm. Nonnegative. non Acquaerated r.v. X is memoryless \iff X — Exp(X).

Pf: Set $g(x) = P(x \cdot x)$. g(x+y) = g(x)g(y) g(n) = g(n). $g(\frac{-n}{n}) = g(\frac{-n}{n})^{-1} = g(n)^{\frac{n}{n}}$ Approxi. $g(\frac{-n}{n}) = g(x) = g(x)$

Amk: For Liserate case: $p(X) = p(X) + k \mid X > k \mid = p(X) = p(X) \mid \cdot \mid + p(X) \mid + p(X) \mid \cdot \mid + p(X) \mid + p$

$$\frac{7hm}{X_{n}} \times K_{n} \leftarrow Geo(p_{n}) \cdot \lim_{n} hp_{n} = \lambda \cdot \Rightarrow x_{n}/n \longrightarrow_{X} \times (-Exp(\lambda)) \cdot \frac{p_{f}}{1 - (1 - p_{n})e^{it/n}}$$

$$= \frac{P_{n}}{(1 - e^{it/n})/y_{n} + np_{n}e^{it/n}} \xrightarrow{\lambda} \frac{\lambda}{\lambda - it}$$

$$\frac{7hm}{t} = \frac{\pi}{2} \times k - hamma (n. \lambda) \cdot if \times k - Exp(\lambda) \cdot i \cdot i \cdot d.$$

$$Pf: f = \lambda e^{-\lambda t} \cdot f^{*n} = \lambda e^{-\lambda t} \frac{(\lambda t)^{n}}{(n-1)!}$$

iv) Combination:

prop. For $X_1 \sim Exp(\lambda_1) \cdot X_2 \sim Exp(\lambda_2) \cdot Z = min(x_1, y_2)$.

(A) $Z \sim Exp(x_1+\lambda_2)$

- (b) Z | X1 < X ~ Z | X1 > X2 Z.
- (c) p(X. > X-) = \(\langle (\lambda, + \lambda \cdot) \). P(X1 < X_2) = \(\lambda \lambda (\lambda, + \lambda \cdot) \)

RMK: Z means X1. X2 work simutanuously.

O Poisson Approxi.:

Thm. $\sum_{k=1}^{n} X_{n,k} = 1$ indept. $P(X_{n,k} = 1) = P_{n,k} \cdot P(X_{n,k} = 0) = 1 - P_{n,k}$ $S_n = \sum_{k=1}^{n} X_{n,k} \cdot \text{If} \quad \sum_{k=1}^{n} P_{n,k} \longrightarrow \lambda \in (0, \infty) \quad (n \to \infty) \cdot \text{And}$ $P_n = \sum_{k=1}^{n} X_{n,k} \cdot \text{If} \quad \sum_{k=1}^{n} P_{n,k} \longrightarrow \lambda \in (0, \infty) \quad (n \to \infty) \cdot \text{And}$ $P_n = \sum_{k=1}^{n} X_{n,k} \cdot \text{If} \quad \sum_{k=1}^{n} P_{n,k} \longrightarrow \lambda \in (0, \infty) \quad (n \to \infty) \cdot \text{And}$ $P_n = \sum_{k=1}^{n} X_{n,k} \cdot \text{If} \quad \sum_{k=1}^{n} P_{n,k} \longrightarrow \lambda \in (0, \infty) \quad (n \to \infty) \cdot \text{And}$ $P_n = \sum_{k=1}^{n} X_{n,k} \cdot \text{If} \quad \sum_{k=1}^{n} P_{n,k} \longrightarrow \lambda \in (0, \infty) \quad (n \to \infty) \cdot \text{And}$ $P_n = \sum_{k=1}^{n} X_{n,k} \cdot \text{If} \quad \sum_{k=1}^{n} P_{n,k} \longrightarrow \lambda \in (0, \infty) \quad (n \to \infty) \cdot \text{And}$ $P_n = \sum_{k=1}^{n} X_{n,k} \cdot \text{If} \quad \sum_{k=1}^{n} P_{n,k} \longrightarrow \lambda \in (0, \infty) \quad (n \to \infty) \cdot \text{And}$ $P_n = \sum_{k=1}^{n} X_{n,k} \cdot \text{If} \quad \sum_{k=1}^{n} P_{n,k} \longrightarrow \lambda \in (0, \infty) \quad (n \to \infty) \cdot \text{And}$

15: $(P_{S,n}(t)) = \overline{T}(1 + P_{N,k}(\mathcal{L}^{it}-1))$ $\lim_{n \to \infty} (P_{N,k}(\mathcal{L}^{it}-1)) = P_{N,k}(\mathcal{L}^{it}-1) + \theta_{k} |P_{N,k}(\mathcal{L}^{it}-1)|^{2}$ where $|O_{k}| \leq 1$. Since for large $n : |P_{N,k}(\mathcal{L}^{it}-1)| \leq \frac{1}{2}$ $Check = \overline{T} |n| (|T|P_{N,k}(\mathcal{L}^{it}-1)) \longrightarrow \lambda(\mathcal{L}^{it}-1)$.

Cor. For $\{X_{n,k}\}$ in lept. nonnegative. $P(X_{n,k}=1)=P_{n,k}$. $P(X_{n,k}\geqslant 2)=\Sigma_{n,k}$. $S_n=\frac{n}{k}X_{n,k}$.

If $\Sigma_{n,k}\to\lambda$. $M_{n,k}\to 0$. $\Sigma_{n,k}\to 0$. Then $S_n\to \lambda$ Poisson (λ) .

Pf: Truncate: $X_{n,k}=X_{n,k}$ $\Sigma_{n,k}=X_{n,k}$.

(3) Characterization:

- Defi i) Point process Y= Eta3 has Stationary increment if N(t+s) N(t) indept with t. but on S.
 - ii) Point process &= Stad has indept increment if

 \[
 \forall I. n Iz = \times. N(I1) indept with N(I2).
 \]
- 1) Thm. For Y= Etal point process with Net):
 - i) It's indept increment
 - ii) It's stationary increment.
 - iii) It's spaise = pc Nco. h) = 1) = thtoch). PcNco. h) 32) = och)

Then Neo.t) ~ Poissonext)

Pf: Denote $X_t = N(0,t) = \sum_{k=1}^r (X_n^{rt} - X_{n-1}^{(k)}) \stackrel{\triangle}{=} \sum_k X_{n-1}^r X_n^{rt}$ Check Prix: $X_{n-1}^r = X_n^r = X_n$

 $\frac{fmk: \text{ Pirectly. PcNet}(x, k) = P(t, k \neq t)}{= \int_{t}^{+\infty} \lambda e^{-\lambda t} \frac{(\lambda t)^{n_1}}{(n-1)!} \lambda t} = e^{-\lambda t} \frac{(\lambda t)^{n_1}}{(n-1)!} \lambda t$ if [tn] is poisson process with rate λ .

Thm. (little out))

If Ital is Poisson process. Then $P(N(t)>0)=\lambda t+0(t)$. P(N(t)>1)=0(t). $\lambda=E(N(1))$. $(t\to0)$

 $Pf. \quad P(N(t)>0) = 1 - e^{-\lambda t} = \lambda + o(t)$ $P(N(t)>1) = e^{-\lambda t} (\frac{(\lambda +)^2}{2} + \cdots) = 0 (t).$

Rmk: Check: Netts) - Net) - Nes). And by indept

of {Xn = tn-tnn}. So a Poisson process also satisfies characterization i). iii).

[Patition by arrival time [ta]. In [ta] = 2?)

D Generating Func.

Denote: $G_{Nu}(z) = E(Z^{Nit})$, $|z| \le |z|$ of N_{it}) Counting process.

Note:
$$\frac{1}{\Delta t}(G_{Pet+\Delta t}) - G_{Pet}) =$$

$$\frac{1}{\Delta t} E(Z^{Pet})(Z^{Net+\Delta t}) - Pet) - Pet)$$

$$= \frac{1}{\Delta t} E(Z^{Net+\Delta t}) - Pet)$$

$$= \frac{1}{\Delta t} E(Z^{Net+\Delta t}) - Pet)$$

$$= \frac{1}{\Delta t} E(Z^{Net})$$

$$= \frac{1}{\Delta t} E(Z^{Net}) - 1) E(Z^{Net})$$

E (Z Neat) -1) = 9 (Neat) = 0) - 1 + pc Neat) = 1) = + I pc Neat) = k32

2')
$$p \in N(\Delta t) = 1$$
) $z + \sum_{k \geq 2} p(N(\Delta t) = k) z^{k}$
 $= p(N(\Delta t) = 1) \left(z + \sum_{k \geq 2} \frac{p^{k}}{p_{i}} z^{k}\right)$
 $\left|\sum_{k \geq 2} \frac{p^{k}}{p_{i}} z^{k}\right| \leq \sum_{k \geq 2} \frac{p^{k}}{p_{i}} |z|^{k} \leq \frac{p \in N(\Delta t) \geq 2}{p(N(\Delta t) = 1)}$
 $\rightarrow 0 (\Delta t \rightarrow 0)$ by $p = N(\Delta t) = 1$

$$\Rightarrow LMS = \frac{1}{\Delta t} (e^{-\lambda \Delta t} - 1) + G_{Net} \frac{(2 + 6 \cdot \Delta t)}{\Delta t}$$

$$\rightarrow (\lambda z - \lambda) G_{Net} (z). (\Delta t \rightarrow 0)$$

i.t. We obtain:
$$G'_{NED}(E) = (\lambda 2 - \lambda) G_{NED}(E)$$
.

$$\Rightarrow G_{NED}(E) = G_{NED}(E) e^{-(\lambda + \lambda E)t} = e^{-(\lambda + \lambda E)t}.$$

$$Pmk: Gamminly. Let \lim_{\Delta t \to 0} P(NeDt) = 1)/\Delta t = \lambda.$$

Modification:

$$\overline{E} (Z) = P(\Delta N = 0) - 1 + Z P(\Delta N = 1) + \overline{L}_{k_{2}} P(\Delta N = k) Z^{K}.$$

$$ALL \quad \text{assumption: } \lim_{\Delta t \to 0} \frac{P(N(L + \Delta t) - P(L + 0) - 1}{\Delta t} = -\lambda (L).$$

$$\Rightarrow \lim_{\Delta t \to 0} P(\Delta N = 1) / \Delta t = \lambda (L). \quad \int_{0}^{\infty} (A_{N} + \lambda L) dL = C (2-1) \int_{0}^{\infty} \lambda (L) dL dL$$

ii) Ignere "Sparsity:

Assume: Pl Neat)=K)/peneat)=1) -> Pk. Pl Neat) 31) /ot -> X. Then: At Ec Z Nob. 1) = 10 Nob. 201 + PUNCATION (I PUNCATION ZK) + - A + A IPK EK

=) GALLI (Z) = & Atl Z PKZ*-1)

iii) Ignore "Indept increment":

Comilar ampound Poisson process Yt = I Xx. 1) If Xx ~ Fx. indept with N(+):

Gymes (2) = Ec Ec Z = xxx | Hoto=n)) = Ec Gxces) = P x c 4x c 21 - 15

2') To remove "indujt". Consider Yt = I Xxct. Sx) JK is r.v. the kth arrival time, which is called filtering Poisson process. Colombate its ch.f:

gyu, (2) = Eceizyus, = Ec Ec e : = = Xx + c + . Sx) | S. 5 - ... Sm . Noto = ~))

Demote: Bk (+, Sh) = Exx e eiz xk(+. Sk)

$$= E_{N} (E_{S} (\overline{H}_{S} (E_{S} (E_$$

(4) Partition:

1 Bernoulli Trails:

Consider at time to. Do a Bernoulli Trail.

Which generates object of type I with prob. p

type 2 with prob I-p indeptly in Y = Etas Poisson Process.

Than If X ~ Poisson (a). X, is number of

objects of type I. X2 is number of type

2. Then X, t X = X. X, ~ Poisson (px).

X2 ~ Poisson (CI-P) x). X, X2 indept.

Pf. To show: X, X2 are Poisson. List.

 $= \frac{C(17)^k}{k!} e^{-17} \frac{(27)^m}{m!} e^{-27}$ where q = 1 - p.

Note: POX.=k, X==m) = PCX.=k, X=k+m)

= pc X1=k | X=k+m) pc X=k+m)

Thm. Y = Etn). $\lambda - Poisson process. Yi is point process

of type i arrivals. <math>i = 1.2$. Then Y_i is $p\lambda - Poisson$ process. Y_i is $2\lambda - Poisson$ process. indept each other.

If: Y_i are poisson process by Charac. and the parameter is from $X = X_i + X_i$. Then above.

For indept. consider $(Ai)_i^n$. $(Bj)_i^m$ two collections of disjoint intervals.

Show: $(X_i < A_i) - (X_i < A_m)$ indept of $(X_i < B_i) - (X_i < B_m)$ For Ai: $(X_i < A_i \cap B_j)$ indept of $(X_i < B_j) - (X_i < B_m)$

Show: (X,(A,) ... X,(An)) indept of (X,(B,)... X,(Bn))

For Ai: X,(AinBj) indept of X2 by partition indeptly

X,(A;-Bj) indept of X2 by indept increment

⇒ X,(Ai) = X,(AinBj) + X,(Ai-Bj) indept with X.(Bj)

for Y j ∈ (1,2,...m).

3 Supersposition:

We can put $\psi_1 \sim Poi(\lambda_1)$. $\psi_2 \sim Poi(\lambda_2)$ indept processes together to obtain $\psi = \psi_1 + \psi_2$. To $N_t = N_1(t_0) + N_2(t_1)$. $\Rightarrow \psi \sim Poisson(\lambda_1 + \lambda_2)$, by Charac.

Busides, remote $\psi_1 \sim \exp(\lambda_1)$, the arrival time of type $\psi_2 = \lim_{n \to \infty} \frac{1}{n!} = \lim_{$

(5) Constract a Poisson Process:

Fix too. Consider up in u to, to. 15ksn.

- 1') Note: γ is Poisson (λ) Process. for $s \in t$: $p(t_1 \leq s \mid N(t) = 1) = \frac{p(N(t) = 1, N(t) N(t) = 0)}{p(N(t) = 1)} = \frac{s}{t}$
- 2) Recall = (UL1), -- ULm) ~ 7 = n!/tn. orker. Stat.

 $\frac{p \operatorname{vop}_{\cdot} \left(t_{1}, t_{2} - t_{n} \right) | \operatorname{Nct}_{1} = n}{f \operatorname{or} \left(y = [t_{n}] \right) | \operatorname{poisson} \left(p \operatorname{vouss}_{s} \right)}$

Pf: Note: $L ti = Si \cdot l \leq i \leq n \cdot Ncd = n$ = $L X_i = S_i, X_2 = S_2 - S_1 - \cdots \times N = S_n - S_{nd} \cdot X_{nd} > t - S_n$ where $X_i = \sum_{i \in I} P(X_i)$.

(6) Application:

Def. m/6/k is a queue model:

- i) m' menns Markovinan i.e. mokuleted by Poisson Process.
- ii) "G" means service time has general histribution.
- ii) "k" means there re k servers.

Next, consider m/h/ro: Arrivals time Ital ~ Poich).

Tervice times In ~ Gex) with mean M-1

Denote: XLt) is number of customers in system at time t.

Prof. $X(t) \sim Poisson (x(t))$, $q(t) = \int_0^t \lambda p(s) x dx$. $krk: Sinn \quad q(t) \xrightarrow{z+r} \int_0^r \lambda p(s) x dx = \lambda/m = :\ell$. $\Rightarrow \lim_{t \to r} P(X(t) = n) = e^{-\ell} e^n/n! \quad \forall n \ge 0$.

Pf: N^{2L} constoner arrives at to. Leparts at totson.

Denote D(t) is number of departs at time t. $\Rightarrow N(t) = X(t) + D(t)$ portitional in 2 types.

Suppose U is v.v. of arrival time. S is service time.

A customer Still in System at time $t \Leftarrow 0$ U + S > t. $\Leftrightarrow S > t - U$. $S_0 = p(t) = p(S > t - U)$ is partition prob.

So: xxt) = Atpus = S, t AposoxxXX.

RMK: Partition in binomial trails: Under Net)=n

X(t) = $\tilde{\Sigma}$ I 15:>t-uii) = $\tilde{\Sigma}$ I 25:>t-uil.

Consider "stay" is "1". "Apart" is "0".

Then X(t) | N(t) = n ~ B(n, p(u+5>t))