#### 多目标规划



多目标规划研究变量在满足给 定约束条件下,如何使多个目 标函数同时极小化的问题

min 
$$\mathbf{f}(\mathbf{x}) = (f_1(\mathbf{x}), f_2(\mathbf{x}), \mathsf{L}, f_p(\mathbf{x}))^{\mathsf{T}}$$
  
(MOP) s.t.  $\mathbf{g}_i(\mathbf{x}) \ge \mathbf{0}, i = 1, \mathsf{L}, s,$ 

$$\mathbf{h}_{j}(\mathbf{x}) = \mathbf{0}, j = 1, L, t.$$



Vilfredo Federico Damaso Pareto (1848-1923) 意大利经济学家



#### 解的类型



- $\mathcal{L} \mathbf{X}^* \in S$ 
  - 若对任意  $\mathbf{x} \in S$ ,  $f_k(\mathbf{x}^*) \le f_k(\mathbf{x})$ , k = 1, L, p, 则称  $\mathbf{x}^*$ 为 (MOP) 的绝对最优解
  - 若不存在  $\mathbf{x} \in S$ ,使得  $f_k(\mathbf{x}) \leq f_k(\mathbf{x}^*), k = 1, L, p$  ,且至少存在某个  $k, f_k(\mathbf{x}) < f_k(\mathbf{x}^*)$ ,则称  $\mathbf{x}^*$ 为(MOP)的Pareto 最优解
  - 若不存在  $\mathbf{x} \in S$ ,使得  $f_k(\mathbf{x}) < f_k(\mathbf{x}^*), k = 1, L, p$ ,则称  $\mathbf{x}^*$ 为(MOP)的弱Pareto最优解
- (MOP) 的所有绝对最优解,Pareto最优解,弱 Pareto最优解的集合分别记作  $S_a, S_p$ 和  $S_{wp}$



# 解的关系



#### 数学建模

记 S<sup>i</sup> 为单目标
 规划 min f<sub>i</sub>(x)的
 最优解,则

$$S_a = \prod_{i=1}^p S^i$$

$$S^i \subseteq S_{wp}$$







#### 解的关系



- $S_a \subseteq S_p \subseteq S_{wp} \subseteq S$ 
  - 若  $\mathbf{x}^* \in S_a$ ,但  $\mathbf{x}^* \notin S_p$ ,则存在  $\overline{\mathbf{x}} \in S$  和某个k,使得 $f_k(\overline{\mathbf{x}}) < f_k(\mathbf{x}^*), f_l(\overline{\mathbf{x}}) \le f_l(\mathbf{x}^*), l \ne k$ ,与  $\mathbf{x}^* \in S_a$  矛盾
  - 若  $\mathbf{x}^* \in S_p$  ,但  $\mathbf{x}^* \notin S_{wp}$  ,则存在  $\overline{\mathbf{x}} \in S$  ,使得  $f_k(\overline{\mathbf{x}}) < f_k(\mathbf{x}^*), k = 1, L$  ,p ,与  $\mathbf{x}^* \in S_p$ 矛盾
- 若  $S_a \neq \emptyset$ ,则  $S_a = S_p$ 
  - 若  $\mathbf{x}^* \in S_p$ ,但  $\mathbf{x}^* \notin S_a$ ,由于  $S_a \neq \emptyset$ ,存在  $\overline{\mathbf{x}} \in S_a$ ,使得  $f_k(\overline{\mathbf{x}}) \leq f_k(\mathbf{x}^*), k = 1, L, p$ ,由于  $\mathbf{x}^* \neq \overline{\mathbf{x}}$ ,存在某个  $k, f_k(\overline{\mathbf{x}}) \neq f_k(\mathbf{x}^*)$ , $f_k(\overline{\mathbf{x}}) < f_k(\mathbf{x}^*)$ ,与  $\mathbf{x}^* \in S_p$  矛盾



# 多目标问题解法



- · 求(MOP)所有的Pareto最优解或弱Pareto最优解
- 加权法
  - $\Leftrightarrow \Lambda = \{\lambda \mid \lambda > 0, \sum_{k=1}^{p} \lambda_{k} = 1\}$
  - 线性加权和法 $(SP_{\lambda})$   $\min_{\mathbf{x} \in S} \sum_{k=1}^{p} \lambda_{k} f_{k}(\mathbf{x})$  极小化极大法 $(P_{\lambda})$   $\min_{\mathbf{x} \in S} \max_{1 \le k \le p} \lambda_{k} f_{k}(\mathbf{x})$

  - 对任意  $\lambda \in \Lambda$ ,  $(SP_{\lambda})$  的最优解必是(MOP)的Pareto最 优解, $(P_{\lambda})$ 的最优解必是(MOP)的弱Pareto最优解



# 多目标问题解法



- 分层排序法
  - 将目标按重要程度排序,在前一个目标的最优解集中,寻找后一个目标的最优解集,并把最后一个目标的最优解作为(MOP)的解
  - · 分层排序法得到的解必为(MOP)的Pareto最 优解
- 带宽容值的分层排序法



#### 多目标问题解法



#### • 主要目标法

• 确定一个目标函数,如 $f_1(x)$ ,为主要目标,对其余 p-1个目标函数  $f_k(x)$ ,选定一定的界限值  $u_k, k = 2, L, p$ ,求解单目标规划

min 
$$f_1(\mathbf{x})$$

$$(SP) \quad s.t. \quad f_k(\mathbf{x}) \leq u_k, k = 2, L, p,$$

$$\mathbf{x} \in S$$

• (SP)的最优解都是(MOP)的弱Pareto最优解



