Riemannian classification of EEG signals with missing values

Alexandre Hippert-Ferrer¹, Ammar Mian², Florent Bouchard¹, Frédéric Pascal¹

¹Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des signaux et systèmes
²Laboratoire d'Informatique, Systèmes, Traitement de l'Information et la Connaissance (LISTIC), Annecy, France

July 2022

What is electroencephalography?

- Electroencephalography (EEG): recording the brain activity
- Non-invasive neuroimagery modality
- Used in Brain Computer Interface (BCI) e.g., exoskeleton control, help mechanical ventilation, games, etc.

- BCI boils down to a classification task of brain signals at hand e.g., recognize a mental task, exposition to a stimulus, etc.
 - ⇒ Here we focus on the minimum distance to Riemannian mean
 [Barachant et al., 2011]

Advantages low-cost high temporal resolution

Drawbacks low spatial resolution low SNR

 EEG data also contains faulty measurements due to impedence change, electrode popping or artifacts...

 \Rightarrow Leads to missing data \Leftarrow

Advantages low-cost high temporal resolution

Drawbacks low spatial resolution low SNR

 EEG data also contains faulty measurements due to impedence change, electrode popping or artifacts...

 \Rightarrow Leads to missing data \Leftarrow

Advantages low-cost high temporal resolution

Drawbacks low spatial resolution low SNR

 EEG data also contains faulty measurements due to impedence change, electrode popping or artifacts...

 \Rightarrow Leads to missing data \Leftarrow

Advantages low-cost high temporal resolution

Drawbackslow spatial resolution low SNR

 EEG data also contains faulty measurements due to impedence change, electrode popping or artifacts...

 \Rightarrow Leads to missing data \Leftarrow

 \Rightarrow Need to propose new classification methods that handle missing data for BCI applications.

Data representation and feature extraction

 \Rightarrow EEG recordings are usually represented by trials.

- Data: $\boldsymbol{X} = [x_1, \dots, x_n] \in \mathbb{R}^{p \times n}$
- Common hypothesis: $\mathbf{X} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$
- Spatial covariance matrices are used as features

$$\mathbf{\Sigma} = \frac{1}{n} \mathbf{X} \mathbf{X}^{\top}$$

1 trial = 1 covariance matrix to classify !

Minimum distance to Riemannian mean [Barachant et al., 2011]

 Affine invariant distance based on the geometry of the space of SPD matrices:

$$\delta_{\mathcal{AF}}(\mathbf{\Sigma}_1,\mathbf{\Sigma}_2) = \left\|\log\left(\mathbf{\Sigma}_1^{-1/2}\mathbf{\Sigma}_2\mathbf{\Sigma}_1^{-1/2}
ight)
ight\|_{\mathrm{F}}.$$

Minimum distance to Riemannian mean [Barachant et al., 2011]

 Affine invariant distance based on the geometry of the space of SPD matrices:

$$\delta_{\mathcal{A}\mathcal{F}}(\mathbf{\Sigma}_1,\mathbf{\Sigma}_2) = \left\|\log\left(\mathbf{\Sigma}_1^{-1/2}\mathbf{\Sigma}_2\mathbf{\Sigma}_1^{-1/2}
ight)
ight\|_{\mathrm{F}}.$$

Given a Z-classes classification problem, with training data $(\Sigma_{\ell}, y_{\ell})_{1 \leq \ell \leq L}$:

Training

Compute the mean of each class

$$\{\overline{\Sigma}^{(z)}:z\in\{1,\ldots,Z\}\}:$$

$$\overline{\boldsymbol{\Sigma}}^{(z)} = \arg\min_{\boldsymbol{\Sigma} \in S_o^{z+}} \sum_{\ell=1}^L \delta_{\mathcal{A}\mathcal{F}}^2(\boldsymbol{\Sigma}, \boldsymbol{\Sigma}_\ell)$$

 Affine invariant distance based on the geometry of the space of SPD matrices:

$$\delta_{\mathcal{A}\mathcal{F}}(\mathbf{\Sigma}_1,\mathbf{\Sigma}_2) = \left\|\log\left(\mathbf{\Sigma}_1^{-1/2}\mathbf{\Sigma}_2\mathbf{\Sigma}_1^{-1/2}
ight)
ight\|_{\mathrm{F}}.$$

Given a Z-classes classification problem, with training data $(\Sigma_{\ell}, y_{\ell})_{1 < \ell < L}$:

Training

Compute the mean of each class $\{\overline{\mathbf{\Sigma}}^{(z)}: z \in \{1,\ldots,Z\}\}:$

$$\overline{\boldsymbol{\Sigma}}^{(z)} = \arg\min_{\boldsymbol{\Sigma} \in \mathcal{S}_o^{z+}} \sum_{\ell=1}^L \delta_{\mathcal{A}\mathcal{F}}^2(\boldsymbol{\Sigma}, \boldsymbol{\Sigma}_\ell)$$

Testing

Prediction of a label y^* on a new sample Σ :

$$y^* = \underset{z \in \{1,...,Z\}}{\arg \min} \delta_{\mathcal{AF}}(\mathbf{\Sigma}, \overline{\mathbf{\Sigma}}^{(z)})$$

⇒ assignation to the closest mean

EEG classification with missing values

Strategies to classify incomplete data using the covariance matrix

- Impute the data, then classify e.g., k-nearest neighbors (KNN)

 [Troyanskaya et al., 2001]
- MDRM with incomplete data: masked minimum to Riemannian mean
 [Yger et al., 2020]
- Expectation-Maximization (EM) algorithm \Rightarrow handy iterative procedure to find $\widehat{\Sigma}_{ML}$. [Hippert-Ferrer et al., 2022]

In what follows, let us consider:

- Complete data $\{y_i\}_{i=1}^n \in \mathbb{R}^p$ and $y_i = \{y_i^o, y_i^m\}$
- Unknown parameter of interest $\theta \in \Omega$: in our case $\Sigma \in S_p^{++}$
- A probabilistic model of the data $p(y|\theta)$
- Maximum likelihood (ML): $\hat{\theta}_{ML} = \arg \max_{\theta \in \Omega} p(\{y_i^o\} | \theta)$

Data transformation:

$$\widetilde{\mathbf{y}}_i = \mathbf{P}_i \mathbf{y}_i = \begin{pmatrix} \mathbf{y}_i^o \\ \mathbf{y}_i^m \end{pmatrix}, i \in [1, n]$$

 $\{\boldsymbol{P}_i\}_{i=1}^n \in \mathbb{R}^{p \times p}$: set of npermutation matrix.

• Example: n = p = 3

$oldsymbol{y}_1$	$oldsymbol{y}_2$	y_3		$ ilde{m{y}}_1$	$ ilde{m{y}}_2$	$ ilde{m{y}}_3$
y_{11}	y_{21}	y_{31}	$ ilde{oldsymbol{y}}_i = oldsymbol{P}_i oldsymbol{y}_i$	y_{12}	y_{23}	y_{31}
y_{12}	y_{22}	y_{32}		y_{13}	y_{21}	y_{33}
y_{13}	y_{23}	y_{33}		y_{11}	y_{22}	y_{32}

Data transformation:

$$\widetilde{m{y}}_i = m{P}_i m{y}_i = \begin{pmatrix} m{y}_i^o \ m{y}_i^m \end{pmatrix}, i \in [1, n]$$

 $\{\boldsymbol{P}_i\}_{i=1}^n \in \mathbb{R}^{p \times p}$: set of n permutation matrix.

• Example: n = p = 3

$oldsymbol{y}_1$	$oldsymbol{y}_2$	y_3		$ ilde{m{y}}_1$	$ ilde{m{y}}_2$	$ ilde{m{y}}_3$
y_{11}	y_{21}	y_{31}	$ ilde{oldsymbol{y}}_i = oldsymbol{P}_i oldsymbol{y}_i$	y_{12}	y_{23}	y_{31}
y_{12}	y_{22}	y_{32}	\	y_{13}	y_{21}	y_{33}
y_{13}	y_{23}	y_{33}		y_{11}	y_{22}	y_{32}

Covariance matrix:

$$\widetilde{oldsymbol{\Sigma}}_i = egin{pmatrix} \widetilde{oldsymbol{\Sigma}}_{i,oo} & \widetilde{oldsymbol{\Sigma}}_{i,mo} \ \widetilde{oldsymbol{\Sigma}}_{i,om} & \widetilde{oldsymbol{\Sigma}}_{i,mm} \end{pmatrix} = oldsymbol{P}_i oldsymbol{\Sigma} oldsymbol{P}_i^{ op}$$

 $\widetilde{\Sigma}_{i,mm}$, $\widetilde{\Sigma}_{i,mo}$, $\widetilde{\Sigma}_{i,oo}$ are the block CM of y_i^m , y_i^m and y_i^o , and y_i^o .

1. Transformed data: $\widetilde{\boldsymbol{y}}_i = \boldsymbol{P}_i \boldsymbol{y}_i = \begin{pmatrix} \boldsymbol{y}_i^o \\ \boldsymbol{v}_i^m \end{pmatrix}$

- 2. Transformed CM: $\widetilde{\Sigma}_i = P_i \Sigma P_i^{\top}$
- 3. The complete loglikelihood \mathcal{L}_c :

$$\mathcal{L}_{c}(\boldsymbol{\theta}|\boldsymbol{Y}) \propto -n\log|\boldsymbol{\Sigma}| - p\sum_{i=1}^{n}\log\tau_{i} - \sum_{i=1}^{n}\widetilde{\boldsymbol{y}}_{i}^{\top}\widetilde{\boldsymbol{\Sigma}}_{i}^{-1}\widetilde{\boldsymbol{y}}_{i}$$

Numerical experiments

The EM algorithm

Parameter: $\theta = \{\Sigma\}$.

E-step: compute the expectation of \mathcal{L}_c

$$Q_i(m{ heta}(m{ heta}^{(t)}) = \mathbb{E}_{m{y}_i^m | m{y}_i^o, m{ heta}^{(t)}}ig[\mathcal{L}_{\mathsf{c}}(m{ heta}| m{y}_i^o, m{y}_i^m)ig] = \mathsf{tr}ig\{m{\mathcal{B}}_i^{(t)}\widetilde{m{\Sigma}}_i^{-1}ig\}$$

$$\text{with } \textbf{\textit{B}}_{i}^{(t)} = \begin{pmatrix} \textbf{\textit{y}}_{i}^{o} \textbf{\textit{y}}_{i}^{o\top} & \textbf{\textit{y}}_{i}^{o} \mathbb{E} \big[\textbf{\textit{y}}_{i}^{m\top} \big] \\ \mathbb{E} \big[\textbf{\textit{y}}_{i}^{m} \big] \textbf{\textit{y}}_{i}^{o\top} & \mathbb{E} \big[\textbf{\textit{y}}_{i}^{m} \textbf{\textit{y}}_{i}^{m\top} \big] \end{pmatrix}.$$

need few manipulations

Parameter: $\theta = \{\Sigma\}$.

E-step: compute the expectation of \mathcal{L}_c

$$\textit{Q}_{\textit{i}}(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)}) = \mathbb{E}_{\boldsymbol{y}_{i}^{m}|\boldsymbol{y}_{i}^{o},\boldsymbol{\theta}^{(t)}}\big[\mathcal{L}_{\mathsf{c}}(\boldsymbol{\theta}|\boldsymbol{y}_{i}^{o},\boldsymbol{y}_{i}^{m})\big] = \mathsf{tr}\big\{\boldsymbol{B}_{i}^{(t)}\widetilde{\boldsymbol{\Sigma}}_{i}^{-1}\big\}$$

$$\text{with } \textbf{\textit{B}}_{i}^{(t)} = \begin{pmatrix} \textbf{\textit{y}}_{i}^{\circ} \textbf{\textit{y}}_{i}^{\circ\top} & \textbf{\textit{y}}_{i}^{\circ} \mathbb{E} \big[\textbf{\textit{y}}_{i}^{m\top} \big] \\ \mathbb{E} \big[\textbf{\textit{y}}_{i}^{m} \big] \textbf{\textit{y}}_{i}^{\circ\top} & \mathbb{E} \big[\textbf{\textit{y}}_{i}^{m} \textbf{\textit{y}}_{i}^{m\top} \big] \end{pmatrix}.$$

M-step: obtain $\Sigma^{(t+1)}$ as the solution of the following max. problem

$$oldsymbol{ heta}^{(t+1)} = rg \max_{oldsymbol{ heta} \in \mathcal{S}_{++}^{oldsymbol{p}}} \ \sum_{i=1}^n Q_iig(oldsymbol{ heta}|oldsymbol{ heta}^{(t)}ig)$$

need few manipulations

The EM algorithm

Parameter: $\theta = \{\Sigma\}$.

E-step: compute the expectation of \mathcal{L}_c

$$Q_i(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)}) = \mathbb{E}_{\mathbf{y}_i^m|\mathbf{y}_i^o,\boldsymbol{\theta}^{(t)}} \left[\mathcal{L}_{\mathsf{c}}(\boldsymbol{\theta}|\mathbf{y}_i^o,\mathbf{y}_i^m) \right] = \mathsf{tr} \left\{ \boldsymbol{B}_i^{(t)} \widetilde{\boldsymbol{\Sigma}}_i^{-1} \right\}$$

$$\text{with } \mathbf{\textit{B}}_{i}^{(t)} = \begin{pmatrix} \mathbf{\textit{y}}_{i}^{\circ} \mathbf{\textit{y}}_{i}^{\circ\top} & \mathbf{\textit{y}}_{i}^{\circ} \mathbb{E} \big[\mathbf{\textit{y}}_{i}^{m\top} \big] \\ \mathbb{E} \big[\mathbf{\textit{y}}_{i}^{m} \big] \mathbf{\textit{y}}_{i}^{\circ\top} & \mathbb{E} \big[\mathbf{\textit{y}}_{i}^{m} \mathbf{\textit{y}}_{i}^{m\top} \big] \end{pmatrix}.$$

M-step: obtain $\Sigma^{(t+1)}$ as the solution of the following max. problem

$$oldsymbol{ heta}^{(t+1)} = rg \max_{oldsymbol{ heta} \in \mathcal{S}_{++}^{oldsymbol{p}}} \ \sum_{i=1}^n Q_iig(oldsymbol{ heta}|oldsymbol{ heta}^{(t)}ig)$$

Closed-form expression: $\mathbf{\Sigma}^{(t+1)} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{P}_{i} \mathbf{B}_{i}^{(t)^{\top}} \mathbf{P}_{i}^{\top}$

need few manipulations

Classification pipelines

Classification pipelines

Classification pipelines

Context and motivation

Moabb datasets

Considered EEG recordings are from the moabb database:

Dataset 1 - P300 Event related potentials

Potentials are triggered from target stimuli consisting of flashes.

- 10 subjects, 16 electrodes
- Binary classification problem (flash stimulus or no flash)
- L = 1728 covariance matrices to classify with p = 16 and n = 103

Moabb datasets

Considered EEG recordings are from the moabb database:

Dataset 1 – P300 Event related potentials

Potentials are triggered from target stimuli consisting of flashes.

- 10 subjects, 16 electrodes
- Binary classification problem (flash stimulus or no flash)
- L = 1728 covariance matrices to classify with p = 16 and n = 103

Dataset 2 – Motor Imagery

Imagination of movement of left hand (class 1), right hand (class 2), both feet (class 3) and tongue (class 4):

- 9 subjects, 22 electrodes
- 4-classes classification problem
- L = 576 covariance matrices to classify with p = 22 and n = 1001

Missing data scenario

- Electrode popping: multiple electrodes are entirely removed during the experiment.
- Eye blinking: multiple electrodes are removed for a short period of time (\sim 200 ms).

Results on moabb datasets

Results on moabb datasets

Electrode popping experiment

Incomplete epochs (%)

Conclusion and perspectives

- A new strategy to handle missing data in the context of EEG classification
- Relies on a simple yet powerful tool: the EM algorithm
- Works on a wider range of missing data scenario compared to KNN imputation and masked Riemannian means
- Competitive in terms of accuracy

Some interesting perspectives include...

- Consider robust estimation (M-estimators, t-distribution) instead of Gaussian estimation
- Adapt other classifiers to missing data: tangent space, common spatial filters, etc.

Barachant, A., Bonnet, S., Congedo, M., and Jutten, C. (2011).

Multiclass brain-computer interface classification by Riemannian geometry.

IEEE Transactions on Biomedical Engineering, 59(4):920–928.

Hippert-Ferrer, A., El Korso, M., Breloy, A., and Ginolhac, G. (2022).

Robust low-rank covariance matrix estimation with a general pattern of missing values. Signal Processing, 195:108460.

Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D., and Altman, R. B. (2001).

 $\label{eq:missing_policy} \mbox{Missing value estimation methods for DNA microarrays.}$

Bioinformatics, 17(6):520-525.

Yger, F., Chevallier, S., Barthélemy, Q., and Sra, S. (2020).

Geodesically-convex optimization for averaging partially observed covariance matrices.

In Proceedings of The 12th Asian Conference on Machine Learning, volume 129 of Proceedings of Machine Learning Research, pages 417–432.