Personalități din Domeniul Informaticii

Larisa-

Cât de vechi este domeniul informaticii?

Răspuns: Originile informaticii datează încă din preistorie (deoarece informatica este puternic corelată cu matematica).

Preistorie

Pentru a susține în mod corespunzător ritualurile de fertilitate și pentru recoltă din perioada primăverii sau a toamnei, şamanii triburilor aveau nevoie de metode de a măsura trecerea timpului. Din tradiția șamanistă, omul a dezvoltat primele mecanisme primitive de numărare: cu betele sau desene rupestre etc...

Counting: The Shaman

 Man started off by counting on his digits. He needed ways to measure the months and the seasons in order to perform religious festivals and ceremonies at the correct time.

Abacul, primul "calculator automat"

Apărut pe vremea Babilonului (cca. 2700-2300 î.Hr.).

The Abacus: The First "Automatic" Computer The abacus, the most common of which comes from China, was man's first attempt at automating the counting process. The abacus is not really an automatic machine; it is more a machine which allows the user to remember his current state of calculation while performing more complex mathematical operations than could be performed on hands and feet alone.

Mecanismul de la Antikythera

Este considerat a fi un calculator mecanic antic realizat pentru determinarea pozițiilor astronomice.

Antichitate

Grecii antici au inventat numeroase formule și teoreme matematice, dar toate trebuiau lucrate manual.

Forefathers of the Modern Computer

Gottfried Wilhelmvon Leibniz (1646 – 1716)

Charles Babbage (1812 - 1833)

Blaise Pascal (1623-1662)

Three early individuals who pioneered the concepts which made modern day computing possible.

Blaise Pascal (19 Iunie 1623 - 19 August 1662)

AaBbCcDdEeFfGgHhliJjKkLlMmNn

Pascal's Gear System

A one-tooth gear engages its single tooth with a ten-teeth gear once every time it revolves; the result will be that it must make ten revolutions in order to rotate the ten-teeth gear once.

This is the way that an odometer works for counting kilometers. The one-tooth gear is large enough so that it only engages the next size gear after 1 km has passed.

Charles Babbage (26 Dec 1791 - 18 Oct 1871)

A realizat că multe dintre calculele complexe constau în operații care se repetau în mod frecvent.

Motorul Diferențial

Calculează funcțiile polinomiale.

Modul de funcționare al Mașinii Diferențiale

$$n^2+n+41$$

Şirul rezultat: 41, 43, 47, 53, 61...

Diferența dintre termenii consecutivi: 2, 4, 6, 8... Diferența dintre termenii șirului superior: 2, 2, 2, 2...

Input pentru Mașina Diferențială: 2, 0, 41

Primul șir generat de mașină: 2, (0+2), [41+(0+2)]; adică 2, 2, 43.

Mașina Analitică

Este înaintașul computerului electric modern, fiind Turing echivalentă.

Augusta Ada King (Byron), Contesă Lovelace (10 Dec 1815 - 27 Nov 1852)

		Variables receiving results.	Indication of change in the value on any Variable.	Statement of Results.	Data.				Working Variables.										Result Variables.			
Number of Operation.	Variables acted upon.				1V ₁ 00 0 0 1	1V ₂ O 0 0 2	1V ₃ 0 0 4 1	° 00000	°V4 00000	°V.6 ○ 0 0 0 0	°V,	\$ 0000 C	°V, 0000	°V ₁₀ O O O O O O O	ov ₁₁ ○ ○ 0 0 0		⁶ V ₁₂ ○ 0 0 0 0	∘γ ₁₃	B, in a decimal O. i. A. fraction.	B ₃ in a Og Greenmal Og Greenmal Og Greenmal Og Greenman Og Green	B in a decimal Out	OV 21 O O O O O O
1 × 2 - 3 + 4 + 5 + 6 - 7 -	$^{1}V_{4} - ^{1}V_{1}$ $^{1}V_{5} + ^{1}V_{1}$ $^{2}V_{5} + ^{2}V_{4}$ $^{1}V_{11} + ^{1}V_{2}$ $^{0}V_{13} - ^{2}V_{11}$	1000	$ \begin{cases} 1V_2 = 1V_2 \\ 1V_3 = 1V_3 \\ 1V_4 = 2V_4 \\ 1V_1 = 1V_1 \\ 1V_5 = 2V_5 \\ 1V_1 = 1V_1 \\ 2V_5 = 9V_5 \\ 2V_4 = 9V_4 \\ 1V_1 = 2V_1 \\ 1V_2 = 1V_2 \\ 2V_{11} = 9V_{11} \\ 9V_{12} = 1V_1 \\ 1V_1 = 1V_1 \\ 1V_2 = 1V_1 \\ 1V_3 = 1V_1 \\ 1V_1 = 1V_1 \\ 1V_2 = 1V_1 \\ 1V_3 = 1V_1 \\ 1V_1 = 1V_1 \\ 1V_2 = 1V_1 \\ 1V_3 = 1V_1 \\ 1V_1 = 1V_1 \\ 1V_1 = 1V_1 \\ 1V_2 = 1V_1 \\ 1V_3 = 1V_1 \\ 1V_1 = 1V_1 \\ 1V_1 = 1V_1 \\ 1V_2 = 1V_1 \\ 1V_3 = 1V_1 \\ 1V_1 = 1V_1 \\ 1V_1 = 1V_1 \\ 1V_2 = 1V_1 \\ 1V_3 = 1V_1 \\ 1V_1 = 1V_1 \\ 1V_1 = 1V_1 \\ 1V_2 = 1V_1 \\ 1V_3 = 1V_1 \\ 1V_1 = 1V_1 \\ 1V_2 = 1V_1 \\ 1V_3 = 1V_1 \\ 1V_1 = 1V_1 \\ 1V_2 = 1V_1 \\ 1V_3 = 1V_1 \\ 1V_1 = 1V_1 \\ 1V_2 = 1V_1 \\ 1V_3 = 1V_1 \\ 1V_3 = 1V_1 \\ 1V_3 = 1V_1 \\ 1V_3 = 1V_1 \\ 1V_4 = 1V_1 \\ 1V_1 = 1V_1 \\ 1V_1 = 1V_1 \\ 1V_2 = 1V_1 \\ 1V_3 = 1V_1 \\ 1V_1 = 1V_1 \\ 1V_2 = 1V_1 \\ 1V_3 = 1V_1 \\ 1V_3 = 1V_1 \\ 1V_1 = 1V_1 \\ 1V_2 = 1V_1 \\ 1V_3 = 1V_1 \\ 1V_3 = 1V_1 \\ 1V_3 = 1V_1 \\ 1V_4 = 1V_1 \\ 1V_1 = 1V_1 \\ 1V_1 = 1V_1 \\ 1V_2 = 1V_1 \\ 1V_3 = 1V_1 \\ 1V_1 = 1V_1 \\ 1V_1 = 1V_1 \\ 1V_2 = 1V_1 \\ 1V_3 = 1V_1 \\ 1V_1 = 1V_1 \\ 1V_2 = 1V_1 \\ 1V_3 = 1V_1 \\ 1V_1 = 1V_1 \\ 1V_2 = 1V_1 \\ 1V_3 = 1V_1 \\ 1V_1 = 1V_1 \\ 1V_2 = 1V_1 \\ 1V_3 = 1V_1 \\ 1V_1 = 1V_1 \\ 1V_2 = 1V_1 \\ 1V_1 = 1V_1 \\ 1V_1 = 1V_1 \\ 1V_1 = 1V_1 \\ 1V_1 = 1V_1 \\ 1V_2 = 1V_1 \\ 1V_1 = 1V_1 \\ 1V$	= 2n $ = 2n + 1 $ $ = 2n +$	 1 	2 2	n	2 n 2 n - 1 0	2 n 2 n + 1 0	2 n				 	$\begin{array}{c} 2n-1 \\ 2n+1 \\ 1 \\ 2n-1 \\ 2 \\ 2n+1 \\ 0 \end{array}$			$-\frac{1}{2}\cdot\frac{2n-1}{2n+1}=\Lambda_0$				
8 + 9 + 0 × 1 + 2 -	V ₂ + °V ₇ V ₆ + ¹V ₇ V ₂₁ × °V ₁₁ V ₁₂ + ¹V ₁₂	¹ V ₇ ² V ₁₁	$ \begin{cases} 1V_2 = 1V_2 \\ 0V_7 = 1V_7 \\ 1V_6 = 1V_6 \\ 0V_{11} = 3V_{11} \\ 1V_{21} = 1V_{21} \\ 3V_{11} = 3V_{11} \\ 1V_{12} = 0V_{12} \\ 1V_{13} = 2V_{13} \\ 1V_{10} = 2V_{10} \\ 1V_{1} = 1V_{1} \\ \end{cases} $			2				2n	2 2		-	 n – 2	$\frac{2n}{2} = \Lambda_1$ $\frac{2n}{2} = \Lambda_1$ \dots	В1.	$\frac{2 n}{2} = B_1 A_1$	$\left\{-\frac{1}{2} \cdot \frac{2n-1}{2n+1} + B_1 \cdot \frac{2n}{2}\right\}$	B ₁			
5 -1 -1 -1 -1 -1 -1 -1 -	1V9 ×4V1	⁴ V ₁₁	$\begin{cases} 1V_6 = 2V_6 \\ 1V_1 = 1V_1 \\ 1V_1 = 1V_1 \\ 1V_7 = 2V_7 \\ 2V_6 = 2V_6 \\ 2V_7 = 3V_7 \\ 1V_8 = 9V_8 \\ 3V_{11} = 4V_{11} \\ 2V_6 = 3V_6 \\ 1V_1 = 1V_1 \\ 2V_7 = 3V_7 \\ 1V_1 = 1V_1 \\ 3V_6 = 3V_6 \\ 3V_7 = 3V_7 \\ 1V_9 = 9V_9 \\ 4V_{11} = 5V_1 \\ 4V_{12} = 2V_1 \\ 1V_{22} = 1V_{22} \\ 1V_{23} = V_{22} \end{cases}$	n 2n 2n-1 2n-2 p	1 1 1 1 					2 n - 1 2 n - 1 2 n - 2 2 n - 2	4	2n-1 3 0	$ \begin{array}{c} \dots \\ \hline 2n-2 \\ \hline 4 \\ 0 \end{array} $		$\begin{cases} \frac{2n}{2}, \frac{2n-1}{3} \\ \frac{2n}{3}, \frac{2n-1}{3}, \frac{2n-2}{3} \\ \frac{2n}{3}, \frac{2n-1}{3}, \frac{2n-2}{3} \end{cases}$					19)		
3 -	2V ₁₀ -1V ₁	3V ₁₃	$\begin{cases} \circ V_{12}^{12} = 2V_{12}^{12} \\ \circ V_{12}^{12} = 0V_{12} \\ \circ V_{13} = 0V_{13} \\ \circ V_{13} = 3V_{13} \\ \circ V_{14} = 1V_{1} \end{cases}$ $\cdot \begin{cases} ^{4}V_{13} = ^{0}V_{13} \\ \circ V_{24} = 1V_{24} \\ \circ V_{24} = 1V_{24} \\ \circ V_{14} = 1V_{14} \\ \circ V_{24} = 0V_{14} \\ \circ V_{25} = 0V_{15} \end{cases}$	$= A_0 + B_1 A_1 + B_3 A_3 \dots$ $= n - 3 (= 1) \dots$				Iere foll	 ows a re	petition		ations t	hirteen	 n - 3			B ₃ A ₃ 0	$\left\{ A_{3} + B_{1} \Lambda_{1} + B_{2} \Lambda_{3} \right\}$		B ₃		

Întrebări?

Mulțumesc pentru Atenție!

Pentru Contact sau Posibile Întrebări: