

CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation

Xingran Zhou¹, Bo Zhang², Ting Zhang², Pan Zhang⁴, Jianmin Bao², Dong Chen², Zhongfei Zhang³, Fang Wen²

1 Zhejiang University 2 Microsoft Research Asia 3 Binghamton University 4 USTC

Image-to-image translation

old photos restoration

semantic editing

virtual try-on

Exemplar-based translation

Exemplar-based translation

- Pros
 - Flexible user control
 - Improved generation quality
- Cons
 - Significant artifacts for complex scenes
 - Lack of fine-grained style controllability
 - Lack of using fine textures from exemplar

Cross-domain correspondence learning with image synthesis

Full resolution attention is computationally inhibitive

Full resolution attention is computationally inhibitive

Full resolution attention is computationally inhibitive

How can we compute the correspondence on high resolution?

Coarse-to-fine strategy

Coarse level guides the finer levels

Coarse-to-fine strategy

Coarse level guides the finer levels

1) Calculate at lower level

1) Calculate at lower level

Coarse-to-fine strategy

Coarse level guides the finer levels

2) Initialization for finer levels

- Coarse-to-fine strategy
 - Coarse level guides the finer levels

How can we make use of the initialization from the lower level?

PatchMatch

Global **Local**: PatchMatch

PatchMatch searches from the **neighborhood** rather than searching **globally**.

Differentiable PatchMatch

 \square Our supervision comes from the image warping, i. e.,

$$y_B(H(p))$$
 where, $H(p) = rg \min_q ||f_x(p) - f_y(q)||$

Differentiable PatchMatch

 \Box Our supervision comes from the image warping, i. e.,

$$y_B(H(p))$$
 where, $H(p) = rg \min_q ||f_x(p) - f_y(q)||$

■ To make it differentiable, we consider the K possible matchings. Now the warping becomes:

$$w^{y o x}(p) = \sum_{k=1}^K softmax\{ \underbrace{S(p;k)}_{ extcolor{black}} \underbrace{y_B(H(p;k))}_{ extcolor{black}} \}$$
 confidence \mathbf{k}^{th} matching

Differentiable PatchMatch

- PatchMatch implicitly assume local smoothness, which is true to natural images
- However, this is violated because deep features are not well-trained at the beginning

warped image (only PatchMatch propagation)

ConvGRU-assisted PatchMatch

- PatchMatch only considers the adjacent patches
- Conv makes the propagation consider the distant patches
- The gradient can be propagated to more locations

Receptive field of ConvGRU-assist propagation

Warped images via different variants of our method.

CoCosNet v2 produces the most faithful warped image.

only PatchMatch propagation

only ConvGRU

PatchMatch propagation with Conv

CoCosNet v2

ConvGRU-assisted Patch Match

Propagation from neighborhood

ConvGRU-assisted PatchMatch interation at level L

Multi-level Domain Alignment Feature Extraction

Hierarchical ConvGRU-assisted Patch Match

Translation Network

Pose-to-body

Pose

Exemplar

Synthesis

Pose-to-body

Exemplar

Synthesis

Pose-to-body

Exemplar

Synthesis

Edge-to-face

Edge

MetFaces dataset (1024x1024 resolution)

Edge-to-face

Edge

Exemplar

Synthesis

Mask-to-image

Segmentation

Exemplar

Synthesis

Quantitative comparison

Quantitative comparison

Application

Exemplar

Photos of real person

Synthesis

Synthesis

Application

Exemplar

Photos of real person

Synthesis

Thank you!

