55

Solution: Apply Gaussian elimination to the augmented matrix [A|b] as shown:

Because a row of the form $(0 \ 0 \ \cdots \ 0 \ | \ \alpha)$ with $\alpha \neq 0$ never emerges, the system is consistent. We might also observe that **b** is a nonbasic column in $[\mathbf{A}|\mathbf{b}]$ so that $rank[\mathbf{A}|\mathbf{b}] = rank(\mathbf{A})$. Finally, by completely reducing **A** to $\mathbf{E}_{\mathbf{A}}$, it is possible to verify that **b** is indeed a combination of the basic columns $\{\mathbf{A}_{*1}, \mathbf{A}_{*2}, \mathbf{A}_{*5}\}$.

Exercises for section 2.3

2.3.1. Determine which of the following systems are consistent.

$$x + 2y + z = 2,$$
(a) $2x + 4y = 2,$
 $3x + 6y + z = 4.$
(b) $3x + 2y + 5z = 0,$
 $4x + 2y + 6z = 0.$

$$x - y + z = 1,$$
 $x - y - z = 2,$
 $x + y - z = 3,$
 $x + y + z = 4.$
(d) $x - y - z = 2,$
 $x + y - z = 3,$
 $x + y + z = 4.$
(e)
$$2w + x + 3y + 5z = 1,$$
 $4w + 4y + 8z = 0,$
 $w + x + 2y + 3z = 0,$
 $x + y + z = 0.$
(f)
$$2x + 2y + 4z = 0,$$
 $x - y + z = 0.$

$$x - y + z = 1,$$
 $x - y - z = 2,$
 $x + y - z = 3,$
 $x + y + z = 2.$

$$x + y + z = 3.$$

- **2.3.2.** Construct a 3×4 matrix **A** and 3×1 columns **b** and **c** such that $[\mathbf{A}|\mathbf{b}]$ is the augmented matrix for an inconsistent system, but $[\mathbf{A}|\mathbf{c}]$ is the augmented matrix for a consistent system.
- **2.3.3.** If **A** is an $m \times n$ matrix with $rank(\mathbf{A}) = m$, explain why the system $[\mathbf{A}|\mathbf{b}]$ must be consistent for every right-hand side **b**.

- **2.3.4.** Consider two consistent systems whose augmented matrices are of the form [A|b] and [A|c]. That is, they differ only on the right-hand side. Is the system associated with $[A \mid b+c]$ also consistent? Explain why.
- **2.3.5.** Is it possible for a parabola whose equation has the form $y = \alpha + \beta x + \gamma x^2$ to pass through the four points (0,1), (1,3), (2,15), and (3,37)? Why?
- **2.3.6.** Consider using floating-point arithmetic (without scaling) to solve the following system:

$$.835x + .667y = .168,$$

 $.333x + .266y = .067.$

- (a) Is the system consistent when 5-digit arithmetic is used?
- (b) What happens when 6-digit arithmetic is used?
- 2.3.7. In order to grow a certain crop, it is recommended that each square foot of ground be treated with 10 units of phosphorous, 9 units of potassium, and 19 units of nitrogen. Suppose that there are three brands of fertilizer on the market— say brand \(\mathcal{X} \), brand \(\mathcal{Y} \), and brand \(\mathcal{Z} \). One pound of brand \(\mathcal{X} \) contains 2 units of phosphorous, 3 units of potassium, and 5 units of nitrogen. One pound of brand \(\mathcal{Y} \) contains 1 unit of phosphorous, 3 units of potassium, and 4 units of nitrogen. One pound of brand \(\mathcal{Z} \) contains only 1 unit of phosphorous and 1 unit of nitrogen. Determine whether or not it is possible to meet exactly the recommendation by applying some combination of the three brands of fertilizer.
- **2.3.8.** Suppose that an augmented matrix [A|b] is reduced by means of Gaussian elimination to a row echelon form [E|c]. If a row of the form

$$(0 \ 0 \ \cdots \ 0 \ | \ \alpha), \ \alpha \neq 0$$

does not appear in [E|c], is it possible that rows of this form could have appeared at earlier stages in the reduction process? Why?