МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Инженерная школа природных ресурсов Направление подготовки 18.04.01 «Химическая технология» Образовательная программа «Химическая технология подготовки нефти и газа»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 1

По дисциплине	
РҮТНО N ДЛЯ ЗАДАЧ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ	

Студент

Группа	ФИО	Подпись	Дата	
2ДМ22	Лукьянов Д.М.	My	11.11.2023	

Руководитель

	Должность	ФИО Ученая степень, звание		Подпись	Дата
Į	цоцент ОХИ ИШПР	Чузлов В.А.	к.т.н.		13.11.2023

ЗАДАНИЕ 1

Используя исходные данные из примера, рассчитайте, реализовав соответствующие функции:

1. Состав потока в мольных долях:

$$\chi_i = \frac{\frac{\omega_i}{M_i}}{\sum_{i=1}^n \frac{\omega_i}{M_i}}$$

где χ_i — мольная доля i-го компонента;

 ω_i – массовая доля i-го компонента;

 M_i — молярная масса i-го компонента;

n — число компонента в системе;

i – индекс компонента в системе.

2. Плонтость потока:

$$\rho = \frac{1}{\sum_{i=1}^{n} \frac{\omega_i}{\rho_i}}$$

где ρ – плоность потока;

 ω_i – массовая доля i-го помпонента;

 ho_i – плотность i-го компонента;

n — число компонента в системе;

i – индекс компонента в системе.

3. Средняя молекурялная масса потока:

$$m = \frac{1}{\sum_{i=1}^{n} \frac{\omega_i}{M_i}}$$

где m — средняя молекулярная масса потока;

 ω_i – массовая доля i-го помпонента;

 M_i – молярная масса i-го компонента;

n — число компонента в системе;

i – индекс компонента в системе.

РЕШЕНИЕ 1

Програмная реализация:

```
def calc_mole_fracs(
    mass_fractions: list[float],
    densities: list[float],
    mms: list[float]
) -> list[float]:
    mass_frac_by_mms = [mf / mm for mf, mm in zip(mass_fractions, mms)]
    s = sum(mass frac by mms)
    return [x / s for x in mass_frac_by_mms]
def calc_dens(
    mass_fractions: list[float],
    densities: list[float]
) -> list[float]:
    return 1/sum([mf / dens for mf, dens in zip(mass_fractions, densities)])
def calc_mm_mix(
    mass_fractions: list[float],
    mms: list[float]
) -> list[float]:
    return 1/sum([mf / mm for mf, mm in zip(mass_fractions, mms)])
```

```
mf = [.1, .1, .1, .4, .2, .05, .03, .02]
rho = [.416, .546, .585, .5510, .6, .616, .6262, .6594]
mms = [16, 30, 44, 58, 58, 72, 72, 86]

mole_fracs = calc_mole_fracs(mf, rho, mms)

print('Мольные доли:')
for mole_frac in mole_fracs:
    print(f'{mole_frac:.4f}')
print(f'Cymma = {sum(mole_fracs):.4f}')
```

```
dens_mix = calc_dens(mf, rho)
print(f'Плотность {dens_mix:.4f} кг/м3')

mm_mix = calc_mm_mix(mf, mms)
print(f'Молекулярная масса = {mm_mix:.2f} г/моль')
```

Мольные доли:

0.2655

0.1416

0.0965

0.2929

0.1465

0.0295

0.0177

0.0099

Сумма = 1.0000

Плотность 0.5515 кг/м3

Молекулярная масса = 42.47 г/моль

ЗАДАНИЕ 2

Пусть на смешение поступают материальные потоки следующего состава (массовые доли):

Поток	\mathcal{C}_1	\mathcal{C}_2	\mathcal{C}_3	iC_4	nC_4	iC_5	nC_5	C_6
1	0.1	0.1	0.1	0.4	0.2	0.05	0.03	0.02
2	0.1	0.2	0.1	0.3	0.1	0.15	0.03	0.02
3	0.1	0.1	0.15	0.35	0.1	0.05	0.08	0.07

Расходы потоков 200, 250 и 120 кг/ч, соответственно. Необходимо рассчитать состав итогового потока в массовых долях, реализовав соответствующую функцию.

Состав смесевого потока можно найти следующим образом:

$$\omega_i = \frac{\sum_{j=1}^n G_j \cdot \omega_{i,j}}{\sum_{j=1}^n G_j}$$

где ω_i — массовая доля i-го компонента в смесевом потоке; $\omega_{i,j}$ — массовая доля i-го компонента в j-ом потоке; G_j — массовый расход j-го потока; j — индекс потока; i — индекс компонента в системе; n — число потоков, подаваемых на смешение;

РЕШЕНИЕ 2

Програмная реализация:

```
comp_flows = [[0.1, 0.1, 0.1, 0.4, 0.2, 0.05, 0.03, 0.02],
     [0.1, 0.2, 0.1, 0.3, 0.1, 0.15, 0.03, 0.02],
     [0.1, 0.1, 0.15, 0.35, 0.1, 0.05, 0.08, 0.07]]

flows = [200, 250, 120]

mix_comp = calc_mix_comp(comp_flows, flows)
```

```
print('Массовые доли компонентов в смеси:')
for comp in mix_comp:
    print(f'{comp:.4f}')
print(f'Сумма = {sum(mix comp):.4f}')
```

Массовые доли компонентов в смеси:

- 0.1000
- 0.1439
- 0.1105
- 0.3456
- 0.1351
- 0.0939
- 0.0405
- 0.0305

Cymma = 1.0000

ЗАДАНИЕ 3

Абсолютная плотность газов и паров [кг/м³] вычисляет по формуле:

$$\rho = \frac{M}{22.4} \cdot \frac{T_0 \cdot P}{T \cdot P_0}$$

где M — молярня масса газа или пара, [кг/кмоль];

 $T_0 = 273.15$ – нормальная температура, [K];

T — температура, при которой определяется плотность, [K];

 $P_0 = 101325$ — нормальное давление, [Па];

P — давление, при котором определяется плотность, [Па].

Необходимо реализовать функцию для определения плотности метана (CH_4) при P=200 кПа и температуре $T\in[200;\,500]$ с шагом h=50 [K].

РЕШЕНИЕ 3

Програмная реализация:

```
def calc_rho_in_t_range(
    gas_mole_mass: float,
    press: float,
    t_range: list[float],
    t_step: float
) -> float:
    tn = 273.15
    pn = 101325
    rho_list = []
    t_calc_range = []
    dens = []
    t_calc_range.append(t_range[0])
    number_intervals = int((t_range[1] - t_range[0]) / t_step)
    for i in range(number_intervals):
        t_calc_range.append(t_step + t_calc_range[-1])
    if t_calc_range[-1] < t_range[1]:</pre>
        t_calc_range.append(t_range[1])
    for t in t calc range:
        rho = gas_mole_mass / 22.4 * tn * press / pn / t
        dens.append(rho)
    return t_calc_range, dens, number_intervals
```

```
methane_mm = 16
press = 200 * 1000
t_range = [200, 500]
h = 50

t_points, dens_points, nn = calc_rho_in_t_range(methane_mm, press, t_range, h)
for i in range(len(t_points)):
    print(f'T = {t_points[i]:.1f} K\tПлотность = {dens_points[i]:.3f} кг/м3')
```

$$T = 200.0 \text{ K}$$
 Плотность = 1.926 кг/м^3 $T = 250.0 \text{ K}$ Плотность = 1.540 кг/м^3 $T = 300.0 \text{ K}$ Плотность = 1.284 кг/м^3 $T = 350.0 \text{ K}$ Плотность = 1.100 кг/м^3 $T = 400.0 \text{ K}$ Плотность = 0.963 кг/м^3 $T = 450.0 \text{ K}$ Плотность = 0.856 кг/м^3 $T = 500.0 \text{ K}$ Плотность = 0.770 кг/м^3

ЗАДАНИЕ 4

Коэффициент сжимаемости учитывает отклонение реального газа от уравнения состояния идеального газа. При точных расчетах коэффициент сжимаемости определяют по формуле:

$$z = 1 + \frac{P_r}{T_r} \cdot \left(0.144 + 0.073 \cdot \omega - \frac{0.33 - 0.46 \cdot \omega}{T_r} - \frac{0.138 + 0.5 \cdot \omega}{T_r^2} - \frac{0.012 + 0.097 \cdot \omega}{T_r^3} - \frac{0.0073 \cdot \omega}{T_r^8} \right)$$

где ω – ацентрический фактор, вычисляемый по уравнению:

$$\omega = \frac{3}{7} \cdot \left(\frac{\lg(P_r) - 5}{\frac{T}{T_r \cdot T_b} - 1} \right) - 1$$

где T_r – приведення температура: $T_r = \frac{T}{T_c}$

 P_r – приведенное давление;

 $T_b = 272.65$ – температура кипения, [K];

 $T_c = 425.15$, [K].

Необходимо реализовать функции для рассчета фактора сжимаемости z при $T \in [200; 400]$ с шагом h = 25 [K].

РЕШЕНИЕ 4

Програмная реализация:

for i in range(len(t_points)):

```
from math import *
                        def calc_z(
                                       t_range: list[float],
                                      t_step: float
                         ) -> float:
                                       pr = 0.2634
                                       tb = 272.65
                                       tc = 425.15
                                       t_calc_range = []
                                       z_list = []
                                       t_calc_range.append(t_range[0])
                                       number_intervals = int((t_range[1] - t_range[0]) / t_step)
                                       for i in range(number_intervals):
                                                      t_calc_range.append(t_step + t_calc_range[-1])
                                       if t_calc_range[-1] < t_range[1]:</pre>
                                                      t_calc_range.append(t_range[1])
                                       for t in t calc range:
                                                      tr = t / tc
                                                      w = 3 / 7 * (log10(pr) - 5) / (t / tr / tb - 1) - 1
                                                      z = 1 + pr / tr * (0.144 + 0.073 * w - (0.33 - 0.46 * w) / tr - (0.138 + 0.46 * w) / tr - (0.144 + 0.078 * w) / tr - (0.148 + 0.078 * w) / 
0.5 * w) / tr**2 -
                                                                                                                           (0.012 + 0.097 * w) / tr**3 - 0.0073 * w / tr**8)
                                                      z_list.append(z)
                                       return t_calc_range, z_list
                        t_range = [200, 400]
                        h = 25
                        t_points, z_points= calc_z(t_range, h)
```

print(f'T = {t_points[i]:.2f} K\tz = {z_points[i]:.3f}')

$$T = 200.00 \text{ K}$$
 $z = 15.586$
 $T = 225.00 \text{ K}$ $z = 7.522$
 $T = 250.00 \text{ K}$ $z = 4.338$
 $T = 275.00 \text{ K}$ $z = 2.863$
 $T = 300.00 \text{ K}$ $z = 2.090$
 $T = 325.00 \text{ K}$ $z = 1.647$
 $T = 350.00 \text{ K}$ $z = 1.377$
 $T = 375.00 \text{ K}$ $z = 1.203$
 $T = 400.00 \text{ K}$ $z = 1.088$

Проверка:

ЗАДАНИЕ 5

Реализуйте функцию, возвращающую словарь, в котором ключами будут имена C_1 - C_5 , а значениями другой словарь, содержащий молекулярную массу, темперутару и плотность соответствующих алканов. Общая формула для алканов: C_nH_{2n+2} .

1. Температуру кипения можно определить по следующей формуле:

$$T_b = 1090 - \exp\left(6.9955 - 0.11193 \cdot N_C^{\frac{2}{3}}\right)$$

где N_C – число атом углерода в молекуле алкана.

2. Формула для вычислени плотности:

$$\rho = 1.07 - \exp(3.56073 - 2.93886 \cdot MW^{0.1})$$

где MW — молекулярная масса алкана.

РЕШЕНИЕ 5

Програмная реализация:

```
alkanes = ['C1', 'C2', 'C3', 'C4', 'C5', 'C6', 'C7']
res_dict = make_dict(alkanes)
```

res_dict

Ответ:

```
{'C1': {'MW': 16, 'Tb': 113.89515870858975, 'rho': 0.3417559246621025}, 'C2': {'MW': 30, 'Tb': 217.2579821220337, 'rho': 0.50374382536956}, 'C3': {'MW': 44, 'Tb': 309.67538982596864, 'rho': 0.5880575794529687}, 'C4': {'MW': 58, 'Tb': 392.30642644686316, 'rho': 0.6426337863150681}, 'C5': {'MW': 72, 'Tb': 466.18740171633976, 'rho': 0.6819127875116566}, 'C6': {'MW': 86, 'Tb': 532.244887256693, 'rho': 0.7120372497072657}, 'C7': {'MW': 100, 'Tb': 591.3073370957468, 'rho': 0.7361452322267332}}
```