

Soziologisches Institut

Data Analysis – Advanced Statistics with Python

Dr. Julia Jerke

jerke@soziologie.uzh.ch

Thursday, 12.15pm – 13.45pm, AND 2.46

Session 3 – Linear regression

Agenda

- 1. Linear regression basics
- 2. Linear regression with *Python*
- 3. Hands on

1.	Linear	regression	basics
----	--------	------------	--------

Motivation

- In many situations we are interested in the relationship between two or more variables
- Correlational analysis can help to determine the strength of these relationships
- If we have an idea about the direction of the dependency between the variables, regression methods can be applied
- The two main objectives of regression analyses:
 - 1. **Description**: what is the relationship between two or more variables
 - ➤ E.g., can we explain the relationship between someone's income and someone's education, social origin, gender, etc.?
 - 2. Prediction: predicting an outcome based on various variables
 - ➤ E.g., can we predict the income of someone if we know their education, social origin, gender, etc.?

Classic linear model

- Specifying a linear relationship between a continuous dependent variable Y and one or more explanatory variables $X_1, X_2, X_3, ...$
 - Simple linear regression: one explanatory variable X_1
 - Multiple linear regression: two or more explanatory variables $X_1, X_2, ..., X_p$:
- The regression model is then given as:

$$y_i = \beta_0 + \beta_1 * x_{i1} + \beta_2 * x_{i2} + \dots + \beta_p * x_{ip} + \epsilon_i, \qquad i = 1, \dots, n$$

whereas:

- β_0 is the constant (i.e., the predicted value if $x_{i1}, ..., x_{ip} = 0$)
- $\beta_1, ..., \beta_p$ are the regression coefficients (i.e., the effect of a one unit change in $X_1, X_2, ..., X_p$, ceteris paribus)
- ϵ_i is the individual error term (i.e., the difference between the true value y_i and the predicted value \hat{y}_i)
- The coefficients $\beta_0, \beta_1, ..., \beta_p$ are estimated in such way that they fit the data best and produce the smallest total error

Two key questions

- 1. What is the best regression model to fit the data?
- 2. How good is the best regression model?

What is the best regression model to fit the data?

But... what means best?

- Convention: ordinary least squares (OLS)
- The line that minimizes the *Total Squared Error* for all data points
- We, therefore, have an optimization problem:

$$\sum_{i=1}^{n} \epsilon_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \longrightarrow \min$$

How good is the best regression model?

Variance that is explained by the regression model:

Variance that remains unexplained:

$$\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

 $\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$

$$R^{2} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \bar{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

Coefficient of determination

(R squared):

07.10.2021

Requirements for the linear regression

Requirement	How does it look like if the requirement is not met?
Linearity: The relationship between Y and X_1, X_2, \dots, X_p can be described with a linear function	0 10 20 30 Istat
Normal distribution: The error terms follows a normal distribution with mean 0	
Homoscedasticity: The error terms have a constant variance	
Independence: The error terms do not correlate with each other or with the variables in the model	

Linear regression with dummy variables

- In the classic case, the dependent and independent variables are continuous
- However, the independent variables can also be dummy or categorical variables
 - ➤ In the example of the test performance and the preparation time we could, for instance, also include the effect of the gender (*)
- Assume we have a binary variable D
- The interpretation of the coefficient for the dummy variable can be expressed as follows:

$\widehat{y} = b_0 + b_1 * x + b_2 * d$	d = 0	d=1
$\widehat{y} =$	$b_0 + b_1 * x$	$(\boldsymbol{b}_0 + \boldsymbol{b}_2) + \boldsymbol{b}_1 * \boldsymbol{x}$

 \triangleright b_0 is the expected difference in Y between the two values of D (ceteris paribus)

^(*) This serves just as a simplistic example. Today, gender is rightfully no longer asked in a binary way in most surveys.

Linear regression with interaction variables

- What if the relationship between Y and X differs in different groups
 - In the example of the test performance and the preparation time we could, for instance, also analyse whether the effect of the preparation time is different for female and male students
- We can include an interaction term X * D into the regression model
- The interpretation of the coefficient for the dummy variable can be expressed as follows:

$\widehat{y} = b_0 + b_1 * x + b_2 * d + b_3 * x \cdot d$	d = 0	d = 1
$\widehat{y} =$	$\boldsymbol{b_0} + \boldsymbol{b_1} * \boldsymbol{x}$	$(b_0 + b_2) + (b_1 + b_3) * x$

- \triangleright b_3 is the expected difference in the effect of X on Y between the two values of D (ceteris paribus)
- \triangleright b_2 is the expected difference in the intercept between the two values of D

2.	Linear	regress	ion in	Python	

Libraries

- There are various ways to run a regression in Python
- Several libraries have implemented regression modelling import statsmodels.formula.api as smf
- For instance, one such library is *statsmodel*:
 - Linear models
 - Non-linear models
 - Time series analysis
 - Event history analysis
 - Prediction and diagnostic
- Major advantage: enables the formula-style of R (income ~ education + age + gender)
- Extensive documentation for the library: https://www.statsmodels.org/stable/index.html

Even in statsmodel there are various modules and ways to run a regression. One way is by importing the following module:

import statsmodels.formula.api as smf

Running a regression in *statsmodel*

- 1. Use the model class to describe the model
- 2. Fit the model using a class method
- 3. Inspect the results using a summary method

```
In [151]: model = smf.ols("score ~ gdp", data = happy) # Describing the model
In [152]: results = model.fit() # Fitting the model
In [153]: print(results.summary()) # Summarizing the model
```

OLS Regression Results							
Dep. Variable:		S	core	R-squ	uared:		0.630
Model:			OLS	Adj.	R-squared:		0.628
Method:		Least Squ	ares	F-sta	atistic:		262.5
Date:	Т	hu, 07 Oct	2021	Prob	(F-statistic):		4.32e-35
Time:		10:4	5:53	Log-I	_ikelihood:		-159.97
No. Observatio	ns:		156	AIC:			323.9
Df Residuals:			154	BIC:			330.0
Df Model:			1				
Covariance Typ	e:	nonro	bust				
	=======		=====			======	
	coef	std err		t	P> t	[0.025	0.975]
Intercept	3.3993	0.135	25	5.120	0.000	3.132	3.667
gdp	2.2181	0.137	16	5.202	0.000	1.948	2.489
Omnibus:		1	.139	Durb	in-Watson:		1.378
Prob(Omnibus):		0	.566	Jarqu	ue-Bera (JB):		1.244
Skew:		-0	.177	Prob	(JB):		0.537
Kurtosis:		2	.742	Cond	. No.		4.77
							========

Predictions and confidence intervals

• With results = model.fit() we create an object that contains several attributes such as the estimated parameters, the r square, but also the predicted values and the error terms (hint: type dir(results) to see a full list of all attributes)

```
In [169]: predict = results.fittedvalues # accessing the predicted values y_hat
In [170]: residual = results.resid # accessing the error terms
```

Accessing confidence and prediction intervals is a bit more complicated but also easily possible

```
# Call a more comprehensive prediction summary
prediction = results.get_prediction()

# Confidencde interval
# Access the lower value of the CI
ci_lower = prediction.summary_frame()["mean_ci_lower"]
# Access the upper value of the CI
ci_upper = prediction.summary_frame()["mean_ci_upper"]

# Prediction interval
# Access the lower value of the CI
pred_lower = prediction.summary_frame()["obs_ci_lower"]
# Access the upper value of the CI
pred_upper = prediction.summary_frame()["obs_ci_upper"]
```

3. Hands on

... Open Session_3_linear_regression.py