PREDICTING BIKE RENTALS

Introduction to Machine Learning Project

GROUP 10

MEET THE TEAM

Jenna Ferguson

Sankalp Kulkarni

Santhosh Ramkumar

Vishal Gupta

Meenal Gaba

Raghav Vaidya

Introduction and Objectives

Introduction

- There are over 500 bike rental systems across the world
- Demand of bikes on any particular day could vary depending upon many factors like:
 - Working day / Holiday
 - Time of the day
 - Weather on the day
 - o
- Predicting the demand for any bike rental service would help them better manage their resources and meet the demand more effectively

Objective

- Objective is to predict the hourly demand of bikes based on historical data of demand
- Our dataset contains hourly rental data from the Capital Bikeshare program in Washington DC, spanning a 2-year period
- We will test different models like linear regression and Trees to determine the best possible predictions
- Based on the predictions we will lay down some key recommendations for the service provider

Deep-Dive into the Dataset

Data Snapshot

datetime sea	son Tholic	iay 🕶 worl	cingday weath	er 🔻	temp 🕶	atemp 🕶	humidity -	windspeed 🕶	casual 🕶 r	egistered 🕶	count
1/1/2011 0:00	1	0	0	1	9.84	14.395	81	0	3	13	16
1/1/2011 1:00	1	0	0	1	9.02	13.635	80	0	8	32	40
1/1/2011 2:00	1	0	0	1	9.02	13.635	80	0	5	27	32
1/1/2011 3:00	1	0	0	1	9.84	14.395	75	0	3	10	13
1/1/2011 4:00	1	0	0	1	9.84	14.395	75	0	0	1	1
1/1/2011 5:00	1	0	0	2	9.84	12.88	75	6.0032	0	1	1
1/1/2011 6:00	1	0	0	1	9.02	13.635	80	0	2	0	2
1/1/2011 7:00	1	0	0	1	8.2	12.88	86	0	1	2	3
1/1/2011 8:00	1	0	0	1	9.84	14.395	75	0	1	7	8
1/1/2011 9:00	1	0	0	1	13.12	17.425	76	0	8	6	14
1/1/2011 10:00	1	0	0	1	15.58	19.695	76	16.9979	12	24	36
1/1/2011 11:00	1	0	0	1	14.76	16.665	81	19.0012	26	30	56
1/1/2011 12:00	1	0	0	1	17.22	21.21	77	19.0012	29	55	84
1/1/2011 13:00	1	0	0	2	18.86	22.725	72	19.9995	47	47	94
1/1/2011 14:00	1	0	0	2	18.86	22.725	72	19.0012	35	71	106
1/1/2011 15:00	1	0	0	2	18.04	21.97	77	19.9995	40	70	110
1/1/2011 16:00	1	0	0	2	17.22	21.21	82	19.9995	41	52	93
1/1/2011 17:00	1	0	0	2	18.04	21.97	82	19.0012	15	52	67
1/1/2011 18:00	1	0	0	3	17.22	21.21	88	16.9979	9	26	35
1/1/2011 19:00	1	0	0	3	17.22	21.21	88	16.9979	6	31	37
1/1/2011 20:00	1	0	0	2	16.4	20.455	87	16.9979	11	25	36
1/1/2011 21:00	1	0	0	2	16.4	20.455	87	12.998	3	31	34
1/1/2011 22:00	1	0	0	2	16.4	20.455	94	15.0013	11	17	28
1/1/2011 23:00	1	0	0	2	18.86	22.725	88	19.9995	15	24	39

Note:

- Casual and registered columns are a split of the count column depicting non-registered vs registered user rentals. Hence, we will likely not use them as input variables.
- Datetime will have to be split into four parts Hour, Day, Month and Year

Data Dictionary

Variable Name	Description		
datetime	hourly date + timestamp		
season	1 = spring, 2 = summer, 3 = fall, 4 = winter		
holiday	whether the day is considered a holiday		
workingday	whether the day is neither a weekend nor holiday		
	1: Clear, Few clouds, Partly cloudy, Partly cloudy		
	2: Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist		
weather	3: Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light Rain + Scattered clouds		
	4: Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog		
temp	temperature in Celsius		
atemp	feels like temperature in Celsius		
humidity	relative humidity		
windspeed	wind speed		
casual	number of non-registered user rentals initiated		
registered	number of registered user rentals initiated		
Bike count	number of total rentals		

Exploratory Data Analysis – Numeric Variables

Key Takeaways

- Temp and Atemp have a high positive correlation among themselves and with the bike count.
- Humidity has a small negative correlation with bike count
- Windspeed has a very small correlation with the bike count
- Casual and Registered are highly correlated with bike_count because of the reason discussed earlier that they are components of the target variable (causal + registered = bike_count)

Exploratory Data Analysis – Categorical Variables (1/2)

Clearer the weather, higher is the bike rental counts

Higher counts during summer and fall, lower counts during winter and spring

Peak counts during rush office hours, low counts during night, medium counts during rest of the day

Key Takeaway

Distribution of total # of bikes

Very low counts on holidays

rented varies quite a bit by each of the categorical variables. This needs to be validated by checking the average # of bikes

rented per hour vs each of the variables.

Exploratory Data Analysis – Categorical Variables (2/2)

Clearer the weather, higher is the bike rentals per hour

Higher bike rentals per hour during summer and fall, lower during winter and spring

Peak counts during rush office hours, low counts during night, medium counts during rest of the day

Holidays seem to have very little impact on bike rentals per hour

Working / Non-working days seem to have very little impact on bike rentals per hour

Key Takeaway

day, all other variables seem to have impact on the target variable, i.e., bikes rented per hour

Data Preparation

Identifying And Excluding Outliers

It is clear that there are a **few outliers** in the target variable. We will **remove** records that fall outside of mean +/
3 SD confidence interval for the purpose of modelling.

Original Distribution After Log Tranformation Output After Log Tranformation After Log Tranformation Output Outp

The distribution of target variable is **right-skewed.** To correct the right-skew we apply **logarithmic transformation**. The distribution looks much better after the transformation.

One Hot Encoding of Categorical Variables

Scaling Numeric Variables

Bike Counts

In one hot encoding, we convert each categorical value of a variable into a **new categorical column and assign a binary value of 1 or 0** to those columns. See example to the right:

Season		Spring	Summer	Fall
Spring	One Hot Encoding	1	0	0
Summer		0	1	0
Fall		0	0	1

800

Bike Counts

Finally, we scaled the numeric variables as per: (x - min(x))/Range(x)

ANOVA Testing for Categorical Variables

```
Analysis of Variance Table
Response: log_bike_count
                             Sum Sq Mean Sq
                                              F value
                                                         Pr(>F)
seasonSpring
                             1054.4 1054.43 2654.7093 < 2.2e-16
                                               8.7013
seasonSummer
seasonFall
                                      46.51
                                             117.0952 < 2.2e-16
weatherClear
                              120.8 120.78
                                             304.0739 < 2.2e-16
weatherCloud Mist
                              178.6 178.56 449.5640 < 2.2e-16 ***
holidayHoliday
                                       0.03
                                               0.0859 0.769503
workingdayWorking_day
                               17.0
                                      16.99
                                              42.7742 6.425e-11
                         23 16827.1
                                     731.61 1841.9558 < 2.2e-16
hour
                               13.8
                                       0.76
                                               1.9255
                                                       0.010523 *
day
                              205.5
                                      25.69
                                              64.6683 < 2.2e-16
month
                              734.7
                                     734.69 1849.7092 < 2.2e-16 ***
vear
Residuals
                      10680 4242.0
                                       0.40
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Key Takeaways

- Variables on season, weather, workingday, hour, day, month and year have very low pvalues indicating that they are all significantly associated with the target variable log_bike_count
- On the other hand, variable holiday
 has slightly higher p-value, suggesting that they
 may not be statistically significant in
 explaining the variance of log_bike_count
- For Month, the degree of freedom should have been 11 instead of 8 (Due to singularities). Hence, we decided to drop it, to avoid confusion

Modeling Results – Linear Regression

Step No.	Step Description	Key Metrics	Key Takeaways		
1	Base Linear Model - Throw in all variables to create a base linear model	 Residual standard error: 0.626 Multiple R-squared: 0.821 Adjusted R-squared: 0.820 	 Days variables show up as not significant in explaining the target variable VIF indicates strong collinearity between temp and atemp – Dropping atemp 		
2	Lasso and Ridge Regression – to regulate the existing variables	Lambda_Lasso: 0.00096Lambda_Ridge: 0.054	For both Lasso and Ridge, we see similar results: while Lasso was not able to reduce coefficient of any variable to exactly 0, Ridge too did not severely punish coefficient of any variable		
3	2nd linear model – to predict without using the insignificant variables identified in the above two steps	 Residual standard error: 0.627 Multiple R-squared: 0.821 Adjusted R-squared: 0.820 	While residual std. error deteriorated marginally, multiple R ² and adjusted R ² remained unchanged However, there is not much difference from the base model		
4	Forward and Backward Regression – to identify the best set of predictors and to check if it helps in better estimation	 AIC: -9941.06 Multiple R-squared: 0.821 Adjusted R-squared: 0.820 	The best AIC is achieved when ALL the variables (other than those excluded above) are included Multiple R ² and adjusted R ² are the same as achieved in the previous step		

Overall, linear model does not seem to be the ideal solution for this problem as the model barely improves through various iterations

Modeling Results – Regression Trees

Metric	Value
Big tree size	341
Optimal tree size (After pruning)	139
CP value (Optimal)	0.0002
Loss (out of sample)	0.515

Modeling Results – Random forest and Boosting

The best out of sample mean square error (0.358) is achieved through boosting when the parameters are:

- Depth = 10
- # trees = 1000
- Shrinkage factor = 0.02

Recommendations and Conclusion

Key Takeaways

- Bikes should be highly stocked at 8-9AM and 4-7PM, which are peak commuting hours, and the times we expect the most bike rentals.
- People are more likely to rent bikes during moderate temperatures and clear weather. Service providers should expect higher demand during these days, and lower during the spring season.
- Working day status is a strong predictor of bike rentals, even though in EDA, we
 didn't find it to be of significance as a stand-alone predictor. This is because of the
 interactions that working day status has with other variables.
- Findings are limited to DC, as other cities may not be as walkable or have the same seasons