→ matplotlib

- MATLAB Style Interface
- https://matplotlib.org
- https://matplotlib.org/stable/plot_types/index

```
import warnings
warnings.filterwarnings('ignore')
```

▼ 실습파일 구성

- PII.csv
- pandas Package

```
import pandas as pd
```

.read_csv()

```
url = 'https://raw.githubusercontent.com/rusita-ai/pyData/master/PII.csv'
DF = pd.read_csv(url)
DF.head()
```

	Name	Gender	Age	Grade	Picture	BloodType	Height	Weight
0	송태섭	남자	21	3	무	В	179.1	63.9
1	최유정	여자	23	1	유	Α	177.1	54.9
2	이한나	여자	20	1	무	Α	167.9	50.2
3	김소혜	여자	23	3	무	Ο	176.1	53.5
4	서태웅	남자	24	4	무	В	176.1	79.8

→ matplotlib Package

```
import matplotlib.pyplot as plt
```

▼ I. 선 그래프

• https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.plot.html#matplotlib.axes.Axes.plot

▼ II. 막대 그래프

→ 1) .bar()

 $\bullet \ \underline{https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.bar.html\#matplotlib.axes.Axes.bar}$

```
175 - 150 - 125 - 100 - 125 - 150 - 100 - 125 - 150 - 100 - 125 - 150 - 100 - 125 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 -
```


→ 2) .barh()

 $\bullet \ \underline{https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.barh.html\#matplotlib.axes.Axes.barh}$

▼ Ⅲ. 히스토그램

• https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.hist.html#matplotlib.axes.Axes.hist

▼ IV. 상자 그래프

 $\bullet \ \underline{https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.boxplot.html\#matplotlib.axes.Axes.boxplot}$

▼ 1) 전체 키 분포

▼ 2) 혈액형별 키분포

▼ V. 산점도

▼ VI. 파이 그래프

• https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.pie.html#matplotlib.axes.Axes.pie

VII. plt.subplot()

• https://matplotlib.org/stable/gallery/color/named_colors.html

→ 1) Figure

```
import matplotlib.pyplot as plt

plt.figure(figsize = (3, 3), facecolor = 'tan')
plt.title('Figure')
plt.xticks([])
plt.yticks([])
plt.plot()
```


→ 2) Axes

```
ax = plt.axes(facecolor = 'g')
ax.figure.set_size_inches(3, 3)
ax.set_title('Axes')
ax.set_xticks([])
ax.set_yticks([])
```


→ 3) 1 x 2 Subplot

```
fig. ax = plt.subplots(nrows = 1, ncols = 2, figsize = (6, 3), facecolor = 'tan')
ax[0].set_facecolor('tomato')
ax[0].set_title('Axes_1')
ax[0].set_xticks([])
ax[0].set_yticks([])
ax[1].set_facecolor('royalblue')
ax[1].set_title('Axes_2')
ax[1].set_xticks([])
plt.show()
```


→ 4) 2 x 1 Subplot

```
fig. ax = plt.subplots(nrows = 2, ncols = 1, figsize = (3, 6), facecolor = 'tan')

ax[0].plot()
ax[0].set_facecolor('limegreen')
ax[0].set_title('Axes_1')
ax[0].set_xticks([])

ax[1].plot()
ax[1].set_facecolor('plum')
ax[1].set_title('Axes_2')
ax[1].set_title('Axes_2')
ax[1].set_xticks([])
ax[1].set_yticks([])
plt.show()
```


→ 5) 2 x 2 Subplot

```
fig, ax = plt.subplots(nrows = 2, ncols = 2, figsize = (6, 6), facecolor = 'tan')
ax[0, 0].plot()
ax[0, 0].set_facecolor('tomato')
ax[0, 0].set_title('Axes_1')
ax[0, 0].set_xticks([])
ax[0, 0].set_yticks([])
ax[0, 1].plot()
ax[0, 1].set_facecolor('royalblue')
ax[0, 1].set_title('Axes_2')
ax[0, 1].set_xticks([])
ax[0, 1].set_yticks([])
ax[1, 0].plot()
ax[1, 0].set_facecolor('limegreen')
ax[1, 0].set_title('Axes_3')
ax[1, 0].set_xticks([])
ax[1, 0].set_yticks([])
ax[1, 1].plot()
ax[1, 1].set_facecolor('plum')
ax[1, 1].set_title('Axes_4')
ax[1, 1].set_xticks([])
ax[1, 1].set_yticks([])
plt.show()
```


▼ VIII. Examples

→ 2) Multiple Plots

```
fig, ax = plt.subplots(nrows = 2, ncols = 2, figsize = (15, 10))
 ax[0,\ 0].bar(DF.index,\ DF['Height'],\ width = 0.3,\ label = 'Height') \\ ax[0,\ 0].bar(DF.index + 0.3,\ DF['Weight'],\ width = 0.3,\ label = 'Weight') 
ax[0, 1].boxplot([DF.loc[DF['BloodType'] == 'A', 'Height'],
                    DF.loc[DF['BloodType'] == 'B', 'Height'],
                    DF.loc[DF['BloodType'] == '0', 'Height'],
                   DF.loc[DF['BloodType'] == 'AB', 'Height']],
labels = ['A', 'B', '0', 'AB'], patch_artist = True,
                   showmeans = True)
ax[1, 0].scatter(DF.Height, DF.Weight,
                   marker='*', s = 100, c = '#d62728')
ax[1, 1].pie(DF.BloodType.value_counts(),
               labels = DF.BloodType.value_counts().index,
               autopct = '%.1f%%', startangle = 90,
              explode = [0.0, 0.0, 0.0, 0.05])
ax[0, 0].legend()
ax[0, 0].set_title('Bar Plot')
ax[0, 1].set_title('Box Plot')
ax[1, 0].set_title('Scatter Plot')
ax[1, 1].set_title('Pie Plot')
ax[0, 0].set_xlabel('Height & Weight')
ax[0, 1].set_xlabel('Blood Type')
ax[1, 0].set_xlabel('Height')
ax[1, 1].set_xlabel('')
ax[0, 0].set_ylabel('Frequency')
ax[0, 1].set_ylabel('Height')
ax[1, 0].set_ylabel('Weight')
ax[1, 1].set_ylabel('')
plt.show()
```


The End

#

#

#