ii.		3	3	3	3
	$J(\theta) = 3\theta^2 + 4\theta + 4$. Compute at which point θ would settle in after				
	applying gradient descent.				
					4 11
9. a.i.	Compare the RBF neural network with a multi-layer perception.	7	4	3	3
ii.	Determine why curse of dimensionality affects an RBF neural network.	3	4	3	3
b.	(OR) Elucidate how different algorithms can be used to train a recurrent neural network.	10	3	3	3
30. a.	Compare and contrast the variations of SOM.	10	3	4	2
	(OR)				
b.i.	Elaborate on the stability – plasticity dilemma.	2	3	4	2
ii.	Explain how the ART network resolves stability – plasticity dilemma.	8	3	4	2

Reg. No.	ule maned	- 5	licin	-11	A PER I			ļ		n la		1	
----------	-----------	-----	-------	-----	---------	--	--	---	--	------	--	---	--

		B.Tech. DEGREE Fifth	EXA	AMINATION, MAY 2022 xth Semester				
		A - Shareton Imean I		of four Las Seem of non-service lane.			*	
		18CSE388T – ART	IFIC:	IAL NEURAL NETWORK				
Note:		(For the candidates admitted fro	m the	academic year 2018-2019 to 2019-202	0)			
(i)	Pa	rt - A should be answered in OMR er to hall invigilator at the end of 40th	sheet	within first 40 minutes and OMR she	et sho	ıld	be ha	anded
(ii)	Pa	rt - B should be answered in answer	ookle	te, et <u>angum</u> on amaldana mang et.				
Time: 2)½ H	nure			EY.			
11110. 2	2/2 110	Juis			Max.	Ma	ırks:	75
		$PART - A (25 \times 1)$	= 25	Marks)	Marks	В	L C) PO
		Answer ALL						
1.	. Nei	ıral networks		the branches but her beau	1	2	. 1	1
	(A)	Use black box approach	(B)	Learn a set of rules				
	(C)		\ /	Use classic approach				
		Humans		(G) trussel site				
- 2	Scie	entists who first performed precise	0 m 0	thematical analysis of perception		1	,	
	(A)	Frank Rosenblatt and Charless	(R)	Warren McCulloch and Walter	an i 1	01	AL.	1
	()	Wightman	(D)	Pitts	MA. C			
	(C)	•	(D)	Marvin minsky and Seymour	pa I			
		Hoff		Papert				
3.	Peri	pheral nervous system			2, 1		1	1
		Brain and spinal cord	(B)	Controls inner processes of body	0.0	-11	•	•
		Coordinates motor functions	(D)	Sends commands to organs				
	D	water to an armin						
4.		eptor cells			1	1	1	1
		Motor coordination	(B)	Part of brain				
	(C)	Perform sensory transduction	(D)	Send signals to muscle				
5	Stim	ulus only ingresses lessaithanian	1.	hera si aligna anifa at lautes e).	er bed	Ų.	ŝ,	
5.	(Δ)	ulus only increases logarithmical Skin			d'u	1	I	1
		Eyes		Ears				
	(0)	Lyes	(D)	Nose				
6.	Outp	out function of Neuron			1	2	2	- 1
	(A)	Transforms net input to	(B)	Transform outputs of other				
		activation		neurons to net input				
	(C)	Often identity function	(D)	Often constant function				
7.	Near	, the activation function of	fane	uron is particularly sensitive	1	2	2	1
	(A)	Zero value		Threshold value				
	(C)	Minimum value		Maximum value				
Q	W/hic				4. 2	X	•	
0.		ch combination stands for the sam Tanh, Fermi, Linear			1	1	2	1
	(0)	T T	(D)	Heaviside step, Fermi, Linear				

(D) Tanh, Heaviside step, Fermi

(C) Logistic, Fermi, sigmoid

(C) To choose the correct neural (D)	To test the neural network To choose the correct activation function	1	2 2	1			Self organizing maps have different spaces (A) 2 (B) 3 (C) 4 (D) 5		4 2	
		1	2 2	1			In self organizing map winner neuron has (A) Same label as example (B) Has different label than example (C) Farthest cluster centre form (D) Closest cluster center to example example	2		
Generalization refers to ability to solve (A) Unknown problems of another (B class (C) Unknown problems of same (D)	class	1	2 3	2			In neural gas (A) Neurons become flexible with (B) Neurons stiffen with time time (C) Neurons do not change with (D) There is no concept of neurons time			
class 12. For good generalization we should use (A) Training set only (B) (C) Training, test and validation (D)) Training and test sets) Any labelled dataset	1	2 3	3 2		24.	In multi-SOM, only neurons belonging to are adapted (A) Winner gas (B) Winner SOM (C) Runner-up gas (D) Runner-up SOM	1		
sets 13. Gradient vector G, points in direction of (A) Steepest ascent (C) Gentle ascent (D)		1	2 3	3 1		25.	In art model, reset UNIT (A) Compares input with cluster (B) Selects winner neuron center (C) Can inhibit a neuron if match (D) Is the input layer	1	4	2
14. For a neural network, number of outputs (A) Always one (E) (C) Equal to number of inputs (I)	is B) Equal to number of classes C) Logarithm of number of classes	1	2	3 3			is not significant $PART - B (5 \times 10 = 50 \text{ Marks})$ Answer ALL Questions	BL	СО	PO
15. In a Backpropagation algorithm the initial (A) Can be set to zero (B) (C) Can be set to 1 (D)	al values of weights 3) Can be randomly initialized Can be set to 0.5	1	2	3 3			. Compare the human brain with the computer. 5 Analyze what features of the human brain are beneficial to adapt to 5	4	1	1
16. In a radial basis function neural netwo equal to number of training examples, the (A) Has a unique solution (I)	rk, if the number of RBF neurons is	1	2	3 3	3		computer systems. (OR) Illustrate and explain electrochemical processes involved in transmission of nerve impulse.	4	1	1
17. What rule is used to adjust weighs in a (A) Delta rule	radial basis function network? 3) Hebbian rule	1	1	3	1		i. Illustrate the architecture of neural networks. 8 i. Analyze the purpose of activation function in a neural network.		2	
(C) Backpropagation (C) 18. In which network number of not dimension?	D) Resilient backpropagation arons increase exponentially with	1	2	3	2		(OR)	4	2	1
(A) Feedforward network (B) Radial basis function network D) Jordan network						i. Reason out the benefit of a bias neuron in neural networks.	4		3
()	B) Jordan network		2	3	1		ii. Discuss how the weights of a single layer perceptron can be learned. 5 ii. Evaluate the benefit of having many layers of perceptrons with linear activation, as compared to a single layer. Provide proper justification.	4	3	3
20. Recurrent neural networks are trained (A) Standard backpropagation	B) Delta rule	1	1	3	3	b	(OR) i. Discuss gradient descent procedure along with pitfalls.	3	3	3
(C) Resilient backpropagation Page 2 of 4	D) Unfolding in time	18MF5&	&618CS	E388T		Page 3	of 4	:618C	SE388	8T