# Computational Finance FIN-472 Transform methods for pricing I

Sergio Pulido
Swiss Finance Institute @ EPFL
Lausanne, Switzerland



### Outline

Fourier Transform - Characteristic Function

2 Pricing with the Characteristic Function

### Table of contents

Fourier Transform - Characteristic Function

2 Pricing with the Characteristic Function

## Definitions: Fourier Transform and Characteristic function

• Given  $f \in L^1(\mathbb{R}^n)$ , i.e. f is an integrable function, we denote by  $\widehat{f}$  the Fourier transform of f, defined by

$$\widehat{f}(\nu) \triangleq \int_{\mathbb{R}^n} \exp(i\langle \nu, x \rangle) f(x) \, dx \tag{1}$$

• For a real random variable  $X \in \mathbb{R}^n$  with distribution  $\mu$ , we denote by  $\phi_X$ , the Characteristic Function of X, defined by

$$\phi_X(\nu) \triangleq \mathbb{E}[\exp(i\langle \nu, X \rangle)] = \int_{\mathbb{R}^n} \exp(i\langle \nu, x \rangle) \mu(dx)$$
 (2)

• Observation: If  $\mu$  has density function f, i.e.  $\mu(dx) = f(x)dx$ , then  $f \in L^1(\mathbb{R}^n)$  and

$$\phi_X = \hat{f}$$

## Example - From space to frequency domain

### Suppose that

$$f(x) = \cos(6\pi x) \exp(-\pi x^2)$$



Figure: f oscillates 3 times per sec

## Example - From space to frequency domain (cont.)

In this case the integrand in the Fourier transform takes the form

$$g(x,\nu) = \cos(6\pi x)\exp(-\pi x^2 + ix\nu)$$



Figure:  $Re(g(x, \nu))$  for different frequencies  $\nu$ 

Real part of Fourier Transform of f

## Example - From space to frequency domain (cont.)

0.5



Figure: Graph of  $Re(\widehat{f})$ . Notice that the peaks occur at  $-6\pi$  and  $6\pi$ . This is exactly when f(x) and  $\exp(i\nu x)$  are "synced"

## The Inversion Formula

#### Theorem 1

Suppose that  $f, \widehat{f}$  belong to  $L^1(\mathbb{R}^n)$ . Then the equality

$$f(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \exp(-i\langle \nu, x \rangle) \widehat{f}(\nu) \, d\nu \tag{3}$$

holds for almost all  $x \in \mathbb{R}^n$ 

**Remark:** If  $f \in L^1(\mathbb{R})$  is piecewise smooth and  $\widehat{f} \in L^1(\mathbb{R})$  then

$$\frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \exp(-i\langle \nu, x \rangle) \widehat{f}(\nu) \, d\nu = \frac{1}{2} (f(x-) + f(x+))$$

where f(x-) and f(x+) are the limits from the left and from the right, respectively

## Plancherel - Parseval's Theorem

#### Theorem 2

If  $f,g \in L^2(\mathbb{R}^n)$  then

$$\int_{\mathbb{R}^n} f(x)\overline{g(x)} \, dx = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \widehat{f}(\nu) \overline{\widehat{g}(\nu)} \, d\nu \tag{4}$$

where the Fourier transform for functions in  $L^2(\mathbb{R}^n)$  is interpreted in an extended sense

**Remark:** Formally one can connect this to the inversion formula. Take  $g(x) = \delta_{x_0}(x)$  (the delta function concentrated at  $x_0$ ). Then  $\widehat{g}(\nu) = \exp(i\langle x_0, \nu \rangle)$  and  $\overline{\widehat{g}(\nu)} = \exp(-i\langle x_0, \nu \rangle)$ . Hence,

$$f(x_0) = \int_{\mathbb{R}^n} f(x)\delta_{x_0}(x) dx = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \exp(-i\langle \nu, x_0 \rangle) \widehat{f}(\nu) d\nu$$

Of course, this is only a heuristic argument

### The moments

#### Moments via the characteristic function:

- Assume that n=1.
- The existence of moments is related to differentiability at 0 of the characteristic function

$$\mathbb{E}[X^n] = i^{-n} \phi_X^{(n)}(0) \tag{5}$$

In particular

$$\mathbb{E}[X] = -i\phi_X'(0)$$

• Also, if  $Y = X - \mathbb{E}[X]$ 

$$\phi_Y(\nu) = \exp(-\nu \phi_X'(0))\phi_X(\nu)$$

# Analyticity of the characteristic function

Suppose that

$$\mathbb{E}[\exp(-\alpha X)] < \infty$$

for 
$$\alpha = a, b$$
 with  $a < b$ 

• In this case it can be shown that the characteristic function  $\phi_X$  is analytic on the open strip

$$\{\nu = \lambda + i\mu : \mu \in (a, b), \lambda \in \mathbb{R}\} \subset \mathbb{C}$$

and well-defined and continuous on the closure of the strip



Figure: Region of analyticity of  $\phi_X$ 

## Real valued functions

### Proposition 1

Suppose that n=1 and f is a real-valued function. Then  $Re(\widehat{f}(\nu))$  for  $\nu \in \mathbb{R}$  is an even function and  $Im(\widehat{f}(\nu))$  for  $\nu \in \mathbb{R}$  is an odd function. In particular, if  $\widehat{f} \in L^1(\mathbb{R})$ , the following inversion formula holds

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \widehat{f}(\nu) \exp(-i\nu x) d\nu$$

$$= \frac{1}{\pi} \int_{0}^{\infty} Re\left(\widehat{f}(\nu) \exp(-i\nu x)\right) d\nu$$
(6)

# Real valued functions (cont.)

Sketch of the proof: If  $\nu = \lambda + i\mu$  with  $\lambda, \mu \in \mathbb{R}$ 

$$\widehat{f}(\nu) = \int_{\mathbb{R}} f(x) \exp(-\mu x + ix\lambda) dx$$

$$= \int_{\mathbb{R}} f(x) \exp(-\mu x) \cos \lambda x dx + i \int_{\mathbb{R}} f(x) \exp(-\mu x) \sin \lambda x dx$$

Therefore

$$Re(\widehat{f}(\nu)) = \int_{\mathbb{R}} f(x) \exp(-\mu x) \cos \lambda x \, dx$$
$$Im(\widehat{f}(\nu)) = \int_{\mathbb{R}} f(x) \exp(-\mu x) \sin \lambda x \, dx$$

If  $\mu=0$  ( $\nu=\lambda$ ), we see that the real part is even and the imaginary part is odd in  $\lambda$ . Equation (6) follows

### Convolution

ullet Given  $f,g\in L^1(\mathbb{R}^n)$  one defines their convolution by the formula

$$(f * g)(y) = \int_{\mathbb{R}^n} f(x)g(y - x) dx \tag{7}$$

• From convolution to multiplication: We have that

$$\widehat{f * g}(\nu) = \widehat{f}(\nu)\widehat{g}(\nu) \tag{8}$$

## Some complex analysis

### Theorem 3 (Cauchy's integral theorem)

Suppose that f is a complex-function that is analytic on a domain D. Let  $\gamma$  be a closed-contour in D (start and end points of  $\gamma$  are the same). Then

$$\oint_{\gamma} f(z) \, dz = 0 \tag{9}$$

**Remark:** Suppose that f,g are analytic complex functions on a domain D such that

$$q' = f$$

Let  $\gamma$  be a path in D with start point  $\omega_1$  and end point  $\omega_2$ . Then

$$\int_{\gamma} f(z) dz = g(\omega_2) - g(\omega_1) \tag{10}$$

**The exponential distribution:** In this case the Probability Density Function (PDF) is of the form

$$f(x) = \lambda \exp(-\lambda x); \quad x \ge 0 \tag{11}$$

Then

$$\widehat{f}(\nu) = \lambda \int_0^\infty \exp((-\lambda + i\nu)x) \, dx$$

$$= \frac{\lambda}{\lambda - i\nu}$$
(12)

**The one-dimensional standard normal distribution:** In this case the PDF is of the form

$$f(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) \tag{13}$$

Hence,

$$\widehat{f}(\nu) = \frac{\exp(-\nu^2/2)}{\sqrt{2\pi}} \int_{\mathbb{R}} \exp\left(-\frac{(x-i\nu)^2}{2}\right) dx$$

$$= \exp\left(-\frac{\nu^2}{2}\right)$$
(14)

**Remark:** In the last integral we used Cauchy's integral theorem and the fact that

$$\int_{\mathbb{R}} \exp\left(-\frac{z^2}{2}\right) \, dz = \sqrt{2\pi}$$



Figure: Contour used with  $R \to \infty$ 

The normal distribution: If  $X \sim N(\mu, \sigma)$ , then

$$X \stackrel{d}{=} \mu + \sigma Z$$

with  $Z \sim N(0,1)$ . Hence,

$$\phi_X(\nu) = \exp(i\nu\mu)\mathbb{E}[\exp(i\sigma\nu Z)]$$

$$= \exp\left(i\mu\nu - \frac{\sigma^2\nu^2}{2}\right)$$
(15)

Let

$$F_{\alpha}(x) = \exp(-\alpha x)F(x), \quad x \in \mathbb{R}$$

with  $F(x) = Pr(X \le x)$  the Cumulative Distribution Function (CDF) of a one-dimensional r.v. X

### Proposition 2

Suppose that  $\alpha > 0$  and  $\mathbb{E}[\exp(-\alpha X)] < \infty$ . Then  $F_{\alpha} \in L^{1}(\mathbb{R})$ ,  $\widehat{F_{\alpha}}(\nu)$  is well-defined for all  $\nu \in \mathbb{R}$  and

$$\widehat{F_{\alpha}}(\nu) = \frac{\phi_X(\nu + i\alpha)}{\alpha - i\nu} \tag{16}$$

If in addition  $\widehat{F_{\alpha}} \in L^1(\mathbb{R})$  then

$$F(x) = \frac{\exp(\alpha x)}{\pi} \int_0^\infty Re\left(\frac{\phi_X(\nu + i\alpha)}{\alpha - i\nu} \exp(-i\nu x)\right) d\nu \qquad (17)$$

- ullet This is the first example when we see the need to introduce a damping factor lpha
- $\bullet$  Notice that without the damping factor  $F\not\in L^1(\mathbb{R})$  and  $\widehat{F}$  would not necessarily be well-defined
- As we will see, this is related to a change of integration contour and the saddle point method
- The advantage of the calculation made in (18) is that it allows to express F in (17) using only one integration

**Sketch of the proof:** Let  $\mu$  be the distribution of X. We have that

$$\widehat{F_{\alpha}}(\nu) = \int_{\mathbb{R}} \exp((i\nu - \alpha)x)F(x) dx$$

$$= \int_{\mathbb{R}} \int_{-\infty}^{x} \exp((i\nu - \alpha)x)\mu(dy) dx$$

$$= \int_{\mathbb{R}} \left( \int_{y}^{\infty} \exp((i\nu - \alpha)x) dx \right) \mu(dy)$$

$$= \frac{1}{\alpha - i\nu} \int_{\mathbb{R}} \exp(i(\nu + i\alpha)y)\mu(dy)$$

$$= \frac{\phi_{X}(\nu + i\alpha)}{\alpha - i\nu}$$
(18)

Formula (17) thus follows from (6) and (18)

An alternative heuristic derivation: Suppose that there is a Probability Density Function (PDF) f. We can write

$$F(x) = \int_{-\infty}^{x} f(y) \, dy$$
$$= \frac{1}{2\pi} \int_{-\infty}^{x} \int_{\mathbb{R}} \exp(-i\nu y) \widehat{f}(\nu) \, d\nu \, dy$$
$$= \frac{1}{2\pi} \int_{-\infty}^{x} G(y) \, dy$$

with

$$G(y) \triangleq \int_{\mathbb{R}} \exp(-i\nu y) \widehat{f}(\nu) d\nu$$

An alternative heuristic derivation (cont.): A change in integration contour allows to replace G(y) by

$$\int_{\mathbb{R}} \exp(-i(\nu + i\alpha)y) \widehat{f}(\nu + i\alpha) d\nu = \int_{\mathbb{R}} \exp((\alpha - i\nu)y) \widehat{f}(\nu + i\alpha) d\nu$$

Hence,

$$F(x) = \frac{1}{2\pi} \int_{-\infty}^{x} \int_{\mathbb{R}} \exp((\alpha - i\nu)y) \widehat{f}(\nu + i\alpha) \, d\nu \, dy$$
$$= \frac{1}{2\pi} \int_{\mathbb{R}} \frac{\exp((\alpha - i\nu)x) \widehat{f}(\nu + i\alpha)}{\alpha - i\nu} \, d\nu$$

which corresponds to (17)

Fourier Transform Pricing with the Ch. funct.

# An illustrating example - CDF from Fourier Transform (cont.)

Another derivation: As in Rogers and Zane (1999) we can write

$$F(x) = \lim_{\epsilon \to 0} \int_{-\infty}^{\infty} \exp(\epsilon(y - x)) 1_{\{y \le x\}} f(y) \, dy \tag{19}$$

#### Then

- Use Plancherel's Theorem and
- change the contour of integration to deduce (17)

### The choice of $\alpha$

- The identity (17) holds for all  $\alpha>0$  that satisfy the hypotheses of Proposition 2
- However, the behaviour of the integrand

$$Re\left(\frac{\phi_X(\nu+i\alpha)}{\alpha-i\nu}\exp(-i\nu x)\right)$$
 (20)

is different for different values of  $\alpha$ 

• If the integral in (17) is computed numerically the results depend on the choice of  $\alpha$ 

## Example: Probabilities of a standard normal

In this case  $\phi_X(\nu) = \exp(-\nu^2/2)$ 



Figure: Plots of the integrand (20)

## Example: Probabilities for a standard normal (cont.)

|          | x=0         |            |             |
|----------|-------------|------------|-------------|
| $\alpha$ | L=1         | L=2        | L=3         |
| 0.1      | 0.4808      | 0.4979     | 0.4999      |
| 1        | 0.4006      | 0.4956     | 0.5002      |
| 10       | -3.6724e+18 | 1.4872e+18 | -1.5466e+17 |
|          | x=1         |            |             |
| $\alpha$ | L=1         | L=2        | L=3         |
| 0.1      | 0.7503      | 0.8371     | 0.8415      |
| 1        | 0.9187      | 0.8674     | 0.8407      |
| 10       | -1.9849e+23 | 1.6048e+22 | 2.9270e+21  |

Table: Approximated probabilities using formula (17). L denotes the truncation bound in the numerical integration. Exact values for x=0 and x=1 are 0.5 and 0.8413, respectively

## Table of contents

Fourier Transform - Characteristic Function

2 Pricing with the Characteristic Function

## Carr-Madan formula

### **Notation and assumptions:**

- Suppose that  $S_t = \exp(X_t)$  and that  $\mathbb{E}[S_T^{\alpha+1}] < \infty$  with  $\alpha > 0$
- Let  $\phi := \phi_{X_T}$  be the characteristic function of  $X_T$  (under the risk neutral measure)
- Let  $k = \log K$
- Define C(k) as the price at time 0 of a call option with expiration T and strike  $K=\mathrm{e}^k$ , and let

$$C_{\alpha}(k) := \exp(\alpha k)C(k)$$

## A common simplification

• The call option's price C(k) can be written as

$$C(k) = e^{-rT} \mathbb{E}[(S_T - K)_+]$$

$$= e^{-rT} S_0 \mathbb{E}[(S_T / S_0 - K / S_0)_+]$$

$$= S_0 e^{-rT} \mathbb{E}[(e^{X_T - X_0} - e^{k - X_0})_+]$$

$$= S_0 \widetilde{C}(k - X_0)$$

where  $\widetilde{C}(k-X_0)$  is the price of a call option with log strike  $k-X_0$  and maturity T in a model with log returns  $\widetilde{X}=(X_t-X_0)_{0\leq t\leq T}$ 

ullet  $\widetilde{X}$  has the same dynamics as X and

$$\phi_{\widetilde{X}_T}(\nu) = e^{-i\nu X_0} \phi_X(\nu)$$

- The fact that  $\widetilde{X}_0=0$  simplifies a lot of the formulas that will be discussed later. This explains why often for the implementations one calculates  $\widetilde{C}(k-X_0)$
- ullet In our presentation, to simplify notation, we keep working with the original log returns X

# Carr-Madan formula (cont.)

### Theorem 4

The characteristic function of  $C_{\alpha}$  is well-defined on the real line and has the form

$$\widehat{C}_{\alpha}(\nu) = e^{-rT} \frac{\phi(\nu - i(\alpha + 1))}{\alpha^2 + \alpha - \nu^2 + i\nu(2\alpha + 1)}$$
(21)

Moreover, we have the following representation of the call price

$$C(k) = \frac{e^{-rT - \alpha k}}{\pi} \int_0^\infty Re\left(\frac{\phi(\nu - i(\alpha + 1))}{\alpha^2 + \alpha - \nu^2 + i\nu(2\alpha + 1)}e^{-i\nu k}\right) d\nu \quad (22)$$

# Carr-Madan formula (cont.)

**Sketch of the proof:** Let  $\mu$  be the distribution of  $X_T$ . Then

$$C_{\alpha}(k) = e^{\alpha k} C(k)$$

$$= e^{-rT + \alpha k} \mathbb{E}[(S_T - K)_+]$$

$$= e^{-rT + \alpha k} \mathbb{E}[(e^{X_T} - e^k)_+]$$

$$= e^{-rT} \int_k^{\infty} (e^{x + \alpha k} - e^{(\alpha + 1)k}) \mu(dx)$$

## Carr-Madan formula (cont.)

### Sketch of the proof (cont.): We have then

$$\widehat{C_{\alpha}}(\nu) = \int_{\mathbb{R}} C_{\alpha}(k) e^{ik\nu} dk$$

$$= e^{-rT} \int_{\mathbb{R}} \int_{k}^{\infty} (e^{x+\alpha k} - e^{(\alpha+1)k}) e^{ik\nu} \mu(dx) dk$$

$$= e^{-rT} \int_{\mathbb{R}} \mu(dx) \int_{-\infty}^{x} (e^{x+\alpha k} - e^{(\alpha+1)k}) e^{ik\nu} dk$$

$$= e^{-rT} \int_{\mathbb{R}} \left( \frac{e^{ix(\nu - i(\alpha+1))}}{\alpha + i\nu} - \frac{e^{ix(\nu - i(\alpha+1))}}{(\alpha+1) + i\nu} \right) \mu(dx)$$

$$= e^{-rT} \phi(\nu - i(\alpha+1)) \left( \frac{1}{\alpha + i\nu} - \frac{1}{(\alpha+1) + i\nu} \right)$$

$$= e^{-rT} \frac{\phi(\nu - i(\alpha+1))}{\alpha^2 + \alpha - \nu^2 + i\nu(2\alpha+1)}$$

## Carr-Madan (cont.)

#### Remarks:

- Once again this computation has the advantage that it involves only one integration
- It is possible to write the call price in terms of tails probabilities. Formula (22) can be derived in a similar manner as (17)
- Alternatively, one can use Plancherel's theorem to derive this formula

## Example: The choice of $\alpha$

- As before the behavior of the integrand in (22) depends on the choice of  $\alpha$
- For the Heston model with parameters  $(\kappa, \theta, \sigma, \rho)$ , we have that

$$\phi(u) = \mathbb{E}[\exp(iu\ln(S_t))]$$

$$= \frac{\exp\left(iu\ln S_0 + iurt + \frac{\kappa\theta t(\kappa - i\rho\sigma u)}{\sigma^2}\right)}{\left(\cosh\frac{\gamma t}{2} + \frac{\kappa - i\rho\sigma u}{\gamma}\sinh\frac{\gamma t}{2}\right)^{\frac{2\kappa\theta}{\sigma^2}}} \exp\left(\frac{-(u^2 + iu)V_0}{\gamma\coth\frac{\gamma t}{2} + \kappa - i\rho\sigma u}\right)$$
(23)

where  $\gamma = \sqrt{\sigma^2(u^2 + iu) + (\kappa - i\rho\sigma u)^2}$ , r is the risk free rate and,  $S_0$  and  $V_0$  are the initial values of the price process and the volatility process

## Example: The choice of $\alpha$ - The Integrand

Let

$$\psi(\nu) = \frac{e^{-rT - \alpha k}}{\pi} Re \left( \frac{\phi(\nu - i(\alpha + 1))}{\alpha^2 + \alpha - \nu^2 + i\nu(2\alpha + 1)} e^{-i\nu k} \right)$$



Figure: Plots of the integrand  $\psi$  for different values of  $\alpha$ . Here  $\kappa=2$ ,  $\theta=V_0=0.04$ ,  $\sigma=0.5$ ,  $\rho=-0.7$ , r=0.03,  $S_0=100$ , K=90, T=0.5

## Example: The choice of $\alpha$ - Prices

We truncate the integral in (22) at a level L

$$C(k) \approx \frac{\mathrm{e}^{-rT - \alpha k}}{\pi} \int_0^L Re\left(\frac{\phi(\nu - i(\alpha + 1))}{\alpha^2 + \alpha - \nu^2 + i\nu(2\alpha + 1)} \mathrm{e}^{-i\nu k}\right) d\nu$$

| $\alpha$ | L=5    | L=10   | L=50       |
|----------|--------|--------|------------|
| 0.1      | 0.0328 | 0.0282 | 1.4322e-05 |
| 1        | 0.0341 | 0.0404 | 2.1461e-05 |
| 20       | 1.4324 | 1.1903 | 0.0010     |

Table: Relative error of call option prices for different values of  $\alpha$  and L. The parameters are the same as in the previous figure. True price  $\approx 13.2023$