

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

	Т Т	ы управления»		
КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»				
		Отчёт		
		OTACI		
	по лабора:	горной работе №	18	
	•	•		
Название: Ф	ормирование эфф	рективных программ	на Prolog	
Цисциплина:	Функционально	е и логическое програ	аммирование	
Студент	<u>ИУ7-65Б</u>		Д.В. Сусликов	
		.—		
	(Группа)	(Подпись, дата)	(И.О. Фамилия)	

(Подпись, дата)

(И.О. Фамилия)

Задание

Используя хвостовую рекурсию, разработать программу, позволяющую найти

- 1. n!
- 2. п-е число Фибоначчи

Убедиться в правильности результатов.

Для одного из вариантов вопроса и каждого задания составить таблицу, отражающую конкретный порядок работы системы

Листинг факториала:

```
fact(integer, integer).

clauses

fact(1, R, R) :- !.

fact(N, Acc, R):-

New_N = N - 1,

New_Acc = Acc * N,

fact(New_N, New_Acc, R).

goal

fact(3, 1, Result).
```

Листинг фибоначчи:

```
predicates

fibb(integer, integer, integer)

clauses

fibb(1, _, Res, Res):- !.

fibb(I, Last, Cur, Res):-

NI = I - 1,

NLast = Cur,

NCur = Last + Cur,

fibb(NI, NLast, NCur, Res).

goal

fibb(5, 0, 1, R).
```

Результаты работы:

Result=6 1 Solution

Пример fac

R=5 1 Solution

Пример fibb

Приведем таблицу для нахождения факториала.

fact(3, 1, R)

№	Состояние резольвенты	Для каких термов запускается	
шага	и вывод	алгоритм унификации и	Дальнейшие действия
шага	и вывод	каков результат	
0	fact(3, 1, R)		
		T1 = fact(3, 1, R)	Пороход и одолизомоги
1	fact(3, 1, R)	$T2 = fact(1, _, R).$	Переход к следующему
		Неудача. Не унифицируемы	заголовку БЗ
	fact(3, 1, R)	T1 = fact(3, 1, R)	
		T2 = fact(N, Acc, R)	
2		Успех. Унифицируемы.	Замена на тело
۷			предложения
		Подстановка:	
		$\{N = 3, Acc = 1, R = R\}$	
3	New_N = $3 - 1$,	New_N = 3 - 1	Замена на тело
	$New_Acc = 1 * 3,$		предложения
	fact(New_N, New_Acc, R).	New_N = 2	(пустое)
	New_Acc = 1 * 3, fact(2, New_Acc, R).	New_Acc = 1 * 3	Замена на тело
4		$New_Acc = 1 * 3$ $New_Acc = 3$	предложения
			(пустое)
		T1 = fact(2, 3, R)	Пороход к ододующому
5	fact(2, 3, R).	$T2 = fact(1, _, R).$	Переход к следующему
		Неудача. Не унифицируемы.	заголовку БЗ
6	fact(2, 3, R).	T1 = fact(2, 3, R)	
		T2 = fact(N, Acc, R)	
		Успех. Унифицируемы.	Замена на тело
			предложения
		Подстановка:	
		$\{N = 2, Acc = 3, R = R\}$	

7	New_N = 2 - 1, New_Acc = 3 * 2, fact(New_N, New_Acc, R).	New_N = 2 - 1 New_N = 1	Замена на тело предложения (пустое)
8	New_Acc = 3 * 2, fact(1, New_Acc, R).	New_Acc = 3 * 2 New_Acc = 6	Замена на тело предложения (пустое)
9	fact(1, 6, R)	T1 = fact(1, 6, R) T2 = fact(1, _, R) Успех. Унифицируемы. Подстановка: {1 = 1, R = 6, R = R}	Замена на тело предложения
10	!	! Истина	Замена на тело предложения (пустое)
11	Вывод $R = 6$ Резольвента пуста		Откат.
12	!	! Завершение процедуры	Замена на тело предложения (пустое)
13	Резольвента пуста		Завершение работы программы

Приведем таблицу для нахождения числа полследовательности Фибоначчи.

fibb(3, 0, 1, Res)

№ шага	Состояние резольвенты и вывод	Для каких термов запускается алгоритм унификации и каков результат	Дальнейшие действия
0	fibb(3, 0, 1, Res)		
1	fibb(3, 0, 1, Res)	T1 = fibb(3, 0, 1, Res) T2 = fibb(1, _, Res, Res) Неудача. Не унифицируемы	Переход к следующему заголовку БЗ
		T1 = fibb(3, 0, 1, Res) T2 = fibb(I, Last, Cur, Res)	Замена на тело
2	fibb(3, 0, 1, Res)	Успех. Унифицируемы.	предложения
		Подстановка: $\{I = 3, Last = 0, Cur = 1, Res = Res\}$	
3	NI = 3 - 1, NLast = 1, NCur = 0 + 1, fibb(NI, NLast, NCur, Res).	NI = 3 - 1 NI = 2	Замена на тело предложения (пустое)
4	NLast = 1, $NCur = 0 + 1,$ $fibb(2, NLast, NCur, Res)$	NLast = 1	Замена на тело предложения (пустое)
5	NCur = 0 + 1, $fibb(2, 1, NCur, Res)$	NCur = 0 + 1 NCur = 1	Замена на тело предложения (пустое)
6	fibb(2, 1, 1, Res)	T1 = fibb(2, 1, 1, Res) T2 = fibb(1, _, Res, Res) Неудача. Не унифицируемы.	Переход к следующему заголовку БЗ

T1 = fibb(2, 1, 1, Res) T2 = fibb(I, Last, Cur, Res) Успех. Унифицируемы. Замена на т предложени	
7 fibb(2, 1, 1, Res) Успех. Унифицируемы. Замена на т	
7 fibb(2, 1, 1, Res)	уд по
предложени	
Подотоморую	IN
Подстановка: (I = 2 Lest = 1 Cur = 1 Pos = Pos)	
$\{I = 2, Last = 1, Cur = 1, Res = Res\}$	
NI = 2 - 1, NI = 2 - 1 NI = 2 - 1	ело
8 NLast = 1,	я
$NCur = 1 + 1, \qquad NI = 1 $ (пустое)	
fibb(NI, NLast, NCur, Res).	
NLast = 1, 3amena на т	
9 NCur = 1 + 1,	ІЯ
fibb(1, NLast, NCur, Res). (пустое)	
NCur = 1 + 1, NCur = 1 + 1	ело
10 предложени npeдложени NCur = 2	я
(пустое)	
T1 = fib(1, 1, 2, Res)	
$T2 = fib(1, _, Res, Res)$	
11 fibb(1, 1, 2, Res) Успех. Унифицируемы. Замена на т	ело
предложени	я
Подстановка:	
{1 = 1, _ = 1, Res = 2, Res = Res}	
Замена на т	ело
12 ! предложени Истина	я
(пустое)	
Вывод	
13 Res = 2 Откат	
Резольвента пуста	
Замена на т	ело
14 ! предложени Завершение процедуры	я п
Завершение процедуры (пустое)	
15 Резольвента пуста Завершение	е работы
программы	

Вывод

Эффективность работы системы может быть достигнута за счет хвостовой рекурсии и использования отсечения в тех случаях, где заведомо известна единственность ответа на вопрос.

Ответы на вопросы

1) Что такое рекурсия? Как организуется хвостовая рекурсия в Prolog? Как организовать выход из рекурсии в Prolog?

Рекурсия – определение объекта через ссылку на самого себя. Один из способов организации повторных вычислений. Для организации хвостовой рекурсии необходимо, чтобы рекурсивный вызов был последним в теле рекурсивного правила, и не оставалось других точек выбора. Выход из рекурсии осуществляется либо достижением базиса рекурсии, либо условием в теле правила.

2) Какое первое состояние резольвенты?

Исходная резольвента содержит вопрос.

3) В каком случае система запускает алгоритм унификации? (Как эту необходимость на формальном уровне распознает система?)

Система запускает алгоритм унификации, когда резольвента не пуста.

4) В каких пределах программы уникальны переменные?

Именованные переменные уникальны в рамках предложения, анонимные - уникальны везде.

5) Как применяется подстановка, полученная с помощью алгоритма унификации?

В результате подстановки связываются переменные, которые еще не были связаны. После связывания всех утверждений, будет напечатано значение связанных переменных.

6) Как формируется новое состояние резольвенты?

Резольвента меняется в 2 этапа:

- Редукция (замена вопроса на тело правила, заголовок которого был успешно унифицирован);
- Применение подстановки.

7) В каких случаях запускается механизм отката?

В случае, когда унификация на текущем шаге завершается тупиковой ситуацией, или был получен ответ «да».