A high-quality chromosome-level genome assembly of rohu carp, Labeo rohita, and discovery of SNP markers

This manuscript (<u>permalink</u>) was automatically generated from <u>IGBB/rohu-genome@ac1ca5b</u> on February 7, 2022.

Authors

Mark A. Arick II¹, Chuan-Yu Hsu¹, Zenaida Magbanua¹, Corrinne E. Grover², Emma R. Miller², Olga Pechanova¹, Adam Thrash¹, Ramey C. Youngblood¹, Lauren Ezzell¹, Samsul Alam³, John Benzie³, Matthew Hamilton³, Attila Karsi³, Mark L. Lawrence³, Daniel G. Peterson¹

Abstract

Introduction

Methods & Materials

Genome Sequencing & Flowcytometry

ALAM - Rohu blood collection

Flow cytometry

The genome size of *Labeo rohita* was estimated for five samples via flow cytometry using trout erythrocyte nuclei (TENs; https://www.biosure.com/tens.html) as a standard (genome size=6.5pg). For each sample, nuclei were stabilized in 200 ul of LB01-propidium iodide (PI) buffer as per [1], and two drops of TENs standard were used per 50ul of fish blood. Each sample was measured twice, totaling 10 runs overall. Only measurements with greater than 5,000 nuclei and a coefficient of variation (CV) of less than 3% were retained [1].

Illumina short-read sequencing

A total of 2 µg of extracted genomic DNA was used for DNA-Seq library preparation using Illumina TruSeq DNA PCR-free Library Prep Kit (Illumina, San Diego, CA, USA). The final DNA-Seq library with the insert size range of 350 bp to 450 bp was submitted to Novogene company (www.en.novogene.com) for total of 2 lanes of PE150 Illumina HiSeq X-Ten (Illumina, San Diego, CA, USA) sequencing.

Oxford Nanopore sequencing

For each Nanopore sequencing run, 2 to 2.5 µg of genomic DNA was used in the library preparation with Nanopore Genomic DNA Ligation Sequencing Kit SQK-LSK 109 (Oxford Nanopore Technologies, Oxford, UK). The final library (about 700 to 750 ng) was loaded on a Nanopore Flow Cell R9.4.1 (Oxford Nanopore Technologies, Oxford, UK) and sequenced on GridION sequencer (Oxford Nanopore

Technologies, Oxford, UK) for 48 hours. A total of 10 flow cell runs were conducted for the genome assembly.

Hi-C sequencing

One hundred µl of fish blood was subjected to the Hi-C library preparation using the Proximo Hi-C Animal Kit (Phase Genomics, Seattle, WA, USA). The final DNA-Seq library was submitted to Novogene (www.en.novogene.com) for 1 lane of PE150 Illumina HiSeq X-Ten (Illumina, San Diego, CA, USA) sequencing.

Bionano

Assembly & Annotation

Jellyfish (v2.2.10) [2] and GenomeScope (v1.0) [3] estimated the genome size using the Illumina paired reads digested into 50-mers.

Nanopore data was filtered to remove the control lambda-phage and sequences shorter than 1000 bases using the nanopack tool suite (v1.0.1) [4]. Trimmomatic (v0.32) [5] removed adapters, trimmed low quality bases, and filtered reads shorter than 85bp. The filtered nanopore data was assembled into contigs using wtdbg2 (v2.4) [6]. The contigs were polished using the two iterations of racon (v1.4.0) [7] with minimap2 (v2.17) ([8]) mapping the nanopore reads. The contigs were further polished using pilon (v1.23) [9] with bwa (v0.7.10) [10] mapping the Illumina paired reads. The contigs were scaffolded using Bionano Solve (Solve3.4.1_09262019) [[11]/) and SALSA (v2.3) [12]. That scaffolds larger than 10Mb were linked and oriented based on the Onychostoma macrolepis genome [13], the most similar chromosome assembly available on NCBI, using ragtag (v1.1.1) [14].

RepeatModeler (v2.0.1) [15] and RepeatMasker (v4.1.1) [repeatmasker?] were used to create a species-specific repeat database, and mask those repeats in the genome. All available RNA-seq libraries for L. rohita [1] were downloaded from NCBI and mapped to the masked genome using hisat2 (v2.1.0) [16]. These alignments were used in the mikado (v2.0rc2) [17] and braker2 (v2.1.5) [18] pipelines. Mikado uses the putative transcripts assembled from the RNA-seq alignments generated via stringtie (v2.1.2) [19], cufflinks (v2.2.1) [20], and trinity (v2.11.0) [21]; along with the junction site prediction from portcullis (v1.2.2) [22], the alignments of the putative transcripts with UniprotKB Swiss-Prot (v2021.03) [uniprot?], and the ORFs from prodigal (v2.6.3) [23] to select the best representative for each locus. Braker2 uses the RNA-seq alignments and the gene prediction from GeneMark-ES (v4.61) [24] to train a species-specific Augustus (v3.3.3) [25] model. Maker2 (v2.31.10) [26] predicts genes based on the new Augustus, GeneMark, and SNAP models; modifying the predictions based on the available RNA and protein evidence from the Cyprinidae family in the NCBI RefSeq database. Any predicted genes with an AED above 0.47 were removed from further analysis. The surviving genes were functionally annotated using InterProScan (v5.47-82.0) [27] and BLAST+ (v2.9.0) [28] alignments against the UniprotKB Swiss-Prot database. Busco (v5.2.2) [29] was used to verify the completeness of both the genome and annotations against the actinopterygii_odb10 database. Lastly, genes spanning large gaps or completely contained within another gene on the opposite strand were removed using a custom perl script (GITHUB).

Table 1: List of SRA accessions used in annotation pipeline. A table of all metadata available for these accessions can be found here .

BioProject	BioSample	Run	Instrument	sex	Tissue
PRJNA401304	SAMN07602342	SRR6003546	Illumina HiSeq 2000	female	Brain
PRJNA401304	SAMN07602341	SRR6003547	Illumina HiSeq 2000	female	Brain

BioProject	BioSample	Run	Instrument	sex	Tissue
PRJNA401304	SAMN07602344	SRR6003548	Illumina HiSeq 2000	female	Pituitary
PRJNA401304	SAMN07602343	SRR6003549	Illumina HiSeq 2000	female	Pituitary
PRJNA401304	SAMN07602346	SRR6003550	Illumina HiSeq 2000	female	Gonad
PRJNA401304	SAMN07602345	SRR6003551	Illumina HiSeq 2000	female	Gonad
PRJNA401304	SAMN07602348	SRR6003552	Illumina HiSeq 2000	female	Liver
PRJNA401304	SAMN07602347	SRR6003553	Illumina HiSeq 2000	female	Liver
PRJNA449818	SAMN08918388	SRR6987066	NextSeq 500	female	Pooled tissue
PRJNA449818	SAMN08918389	SRR6987067	NextSeq 500	male	Pooled tissue
PRJNA449818	SAMN08918390	SRR6987068	NextSeq 500	female	whole body
PRJNA528865	SAMN11246839	SRR8816555	Illumina HiSeq 2500	not applicable	Liver
PRJNA528865	SAMN11246841	SRR8816556	Illumina HiSeq 2500	not applicable	Liver
PRJNA528865	SAMN11246840	SRR8816557	Illumina HiSeq 2500	not applicable	Liver
PRJNA450719	SAMN08944450	SRR7027730	NextSeq 500	female	Pooled tissue
PRJNA450719	SAMN08944449	SRR7027731	NextSeq 500	male	Pooled tissue
PRJNA450719	SAMN08944451	SRR7027732	NextSeq 500	male	Whole body

ddRAD-Seq & SNP Discovery

WORLDFISH - Fin clipping collection

ZENAIDA – ddRAD-Seq method

CORRINNE - SNP Discovery, population analyses, interested in using the gender, which contigs associated with sex

Data Availability

The data used for the *L. rohita* genome and annotation are available at NCBI under the BioProject PRJNA650519. The assembled genome sequence and annotations are available at GenBank under accessions JACTAM000000000. The raw data is available at the SRA (Sequence Read Archive) under accessions SRR12580210 – SRR12580221.

Results & Discussion

Sequencing & Assembly

The C-value of *L. rohita* was previously reported as 1.99 pg (\sim 1.95Gb) using Feulgen densitometry [30] or 1.5Gb using k-mer estimation [31]. However, the flow cytometry results (Table [2]) show a C-value of 0.99 pg (\sim 0.97Gb) with a standard deviation of 0.02 across all measurements. The smaller C-value is also closer to the genome estimate produced by GenomeScope (0.97Gb) and the final genome assembly size of 0.95 Gb.

Table 2: Flow cytometry results for 5 *L. rohita* blood samples, measured twice. 1) Trout erythrocyte nuclei: Genome size = 5.19pg. 2) Genome estimate calculated as (average sample fluorescence/ average standard fluorescence * standard

Specimen Name	Number of Sample nuclei	Average sample fluorescence	Number of standard nuclei	Average standard fluorescence	Estimated Genome size ²	HAPLOI D
Fish 1 Sample 1	16020	27350	2065	69247	2.049857756	1.02492 8878
Fish 2 Sample 1	13082	25929	6570	66671	2.018441451	1.00922 07255
Fish 2 Sample 2	15402	25665	4354	67489	1.973674969	0.98683 74845
Fish 3 Sample 1	15124	25798	4442	68195	1.963364176	0.98168 2088
Fish 3 Sample 2	14923	25763	4823	68837	1.942414254	0.97120 7127
Fish 4 Sample 1	13320	26346	5913	69665	1.962760927	0.98138 04635
Fish 4 Sample 2	5624	26612	4097	68876	2.005288925	1.00264 44625
Fish 5 Sample 1	6771	25761	3080	68825	1.942602107	0.97130 10535
Fish 5 Sample 2	15926	26369	3352	68832	1.988248344	0.99412 4172
Standard only ¹	3	25258	3311	64331	NA	
				Average	1.982961434	0.99148 07172
				Standard Deviation	0.03607582	0.01803 790999

A total of 130.5 Gb of Nanopore long reads from 44.7 million read, and 261 Gb of Illumina short reads from 870 million pairs were produced, along with 382 million pairs (114 Gb) for the Hi-C library. The initial *de novo* assembly consisted of 4999 contigs with an N50 of 1.28 Mb. After the Bionano and HiC data was incorporated, the total number of sequences dropped to 2899 and the N50 increased to 29.9 Mb. The final assembly consisted of 25 chromosome length scaffolds and 2844 unplaced scaffolds, ranging in size from 1,479bp to 7.18 Mb. Table [3] contains a common assembly statistics for each step. The final genome size is 97.9% of the estimated genome size. The annotation pipeline produced 51,079 primary transcripts, 31,274 surviving the AED, gap, and overlapping filters. BUSCO analysis show the genome completely contains 98.1% of the 3640 orthologs in the actinopterygii_odb10 database with 37 (1%) duplicated; while, the filtered transcriptome contains 84.5% of the total orthologs complete with 74 duplicated. A complete comparison of the BUSCO analyses can be found in Table [4].

Table 3: Assembly statistics for each stage of the assembly

n	n:500	L50	min	N75	N50	N25	E-size	max	sum	name
4999	4999	202	1348	514919	1281850	2395030	1727184	7832582	9.43E+08	wtdbg2
3709	3706	15	1479	1.13E+07	2.65E+07	3.08E+07	2.20E+07	3.79E+07	9.46E+08	bionano
2899	2896	14	1479	2.64E+07	2.99E+07	3.43E+07	2.69E+07	4.45E+07	9.46E+08	hic
2872	2869	13	1479	2.88E+07	3.25E+07	3.61E+07	3.00E+07	4.53E+07	9.46E+08	ragtag

Table 4: BUSCO analysis for the genome and transcriptome, before and after AED filtering.

Туре	Genome	Unfiltered Transcriptome	Filtered Transcriptome
Complete BUSCOs (C)	3571	3139	3078
Complete and single-copy BUSCOs (S)	3534	3064	3001
Complete and duplicated BUSCOs (D)	37	75	74
Fragmented BUSCOs (F)	23	192	170
Missing BUSCOs (M)	46	309	392
Total BUSCO groups searched	3640	3640	3640

file name: Rohu.genome.fa sequences:

total length: 1128029156 bp (945637473 bp excl N/X-runs)

GC level: 36.05 %

	65289941 bp	•			
	======= umber of lements*		percent	age	
Retroelements	123482	53424977	bp	4.74	%
SINEs:	0	0	bp	0.00	%
Penelope	0	0	bp	0.00	%
LINEs:	29838	13842585	bp	1.23	%
CRE/SLACS	0	0	bp	0.00	%
L2/CR1/Rex	15537	8265099	bp	0.73	%
R1/LOA/Jock	ey 981	643697	bp	0.06	%
R2/R4/NeSL	936	732043	bp	0.06	%
RTE/Bov-B	271	181676	bp	0.02	%
L1/CIN4	7978	1801119	bp	0.16	%
LTR elements:	93644	39582392	bp	3.51	%
BEL/Pao	1287	1138420	bp	0.10	%
Ty1/Copia	221	110739	bp	0.01	%
Gypsy/DIRS1	32714	19073624	bp	1.69	%
Retrovira	l 2443	1815904	bp	0.16	%
DNA transposons	79815	22485920	bp	1.99	%
hobo-Activato	r 2242	639067	bp	0.06	%
Tc1-IS630-Pog	49209	16661924	bp	1.48	%
En-Spm	0	0	bp	0.00	%
MuDR-IS905	0	0	bp	0.00	%
PiggyBac	0	0	bp	0.00	%
Tourist/Harbi	nger 1794	259934	bp	0.02	%
Other (Mirage P-element, T		209002	bp	0.02	%
Rolling-circles	196	71055	bp	0.01	%
Unclassified:	1774260	361869982	2 bp	32.08	3 %
Total interspers	ed repeats:	437780879	bp 3	8.81	%
Small RNA:	0	0	bp	0.00	%

1

267 bp 0.00 %

0.32 %

504151 23839806 bp 2.11 %

58354 3597934 bp

Satellites:

Simple repeats: Low complexity: * most repeats fragmented by insertions or deletions have been counted as one element

RepeatMasker version 4.1.1 , default mode

run with rmblastn version 2.10.0+ The query was compared to classified sequences in "Rohu-families.fa"

Comparative genomics

So, I might recommend doing some sort of comparative genomics here or throughout. This becomes relevant when suggesting this genome is an improvement. BUSCO comparison, number of genes predicted, orthogroup analysis, synteny, etc.

SNP discovery and population similarities among rohu fisheries

Labeo rohita is an important aquaculture fish in many areas of south Asia [I don't know how to put in this reference FAO (2019) Food and Agricultural Organization. Yearbook of Fishery and Aquaculture Statistics 2017].

The high fecundity and relative ease of cultivation has made rohu successful in breeding programs, leading to the generation of a fast-growing strain called Jayanti Historically, rohu breeding and research has relied on low-throughput information, such as cloning individual genes of interest (reviewed in [32]) or microsatellite-based selective breeding [33]; however, recent years have seen increased interest in applying high-throughput methods to rohu breeding, such as SNP panels [34] [35], genotyping-by-sequencing [36], transcriptomics [34] [37], and degradomics [38]. Recently, a draft genome was published for L. rohita along with pooled resequencing from three individuals in 10 populations [39]; however, genetic diversity and divergence among the populations was not reported.

Acknowledgements

ISU Office of Biotechnology Flow Cytometry Facility

ResearchIT Iowa State University

References

1. The application of flow cytometry for estimating genome size and ploidy level in plants.

Jaume Pellicer, Ilia J Leitch

Methods in molecular biology (Clifton, N.J.) (2014)

https://www.ncbi.nlm.nih.gov/pubmed/24415480

DOI: 10.1007/978-1-62703-767-9 14 · PMID: 24415480

2. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers

Guillaume Marçais, Carl Kingsford

Bioinformatics (2011-03-15) https://doi.org/b7gkd6

DOI: 10.1093/bioinformatics/btr011 · PMID: 21217122 · PMCID: PMC3051319

3. GenomeScope: fast reference-free genome profiling from short reads

Gregory W Vurture, Fritz J Sedlazeck, Maria Nattestad, Charles J Underwood, Han Fang, James Gurtowski, Michael C Schatz

Bioinformatics (Oxford, England) (2017-07-15)

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5870704/

DOI: 10.1093/bioinformatics/btx153 · PMID: 28369201 · PMCID: PMC5870704

4. NanoPack: visualizing and processing long-read sequencing data

Wouter De Coster, Svenn D'Hert, Darrin T Schultz, Marc Cruts, Christine Van Broeckhoven *Bioinformatics* (2018-08-01) https://doi.org/gf38cx

DOI: 10.1093/bioinformatics/bty149 · PMID: 29547981 · PMCID: PMC6061794

5. Trimmomatic: a flexible trimmer for Illumina sequence data

Anthony M Bolger, Marc Lohse, Bjoern Usadel

Bioinformatics (2014-08-01) https://doi.org/f6cj5w

DOI: 10.1093/bioinformatics/btu170 · PMID: 24695404 · PMCID: PMC4103590

6. Fast and accurate long-read assembly with wtdbg2

Jue Ruan, Heng Li

Nature Methods (2020-02) https://doi.org/ggd8j9

DOI: 10.1038/s41592-019-0669-3 · PMID: 31819265 · PMCID: PMC7004874

7. Fast and accurate de novo genome assembly from long uncorrected reads

Robert Vaser, Ivan Sović, Niranjan Nagarajan, Mile Šikić

Genome Research (2017-05) https://doi.org/gfkmzr

DOI: <u>10.1101/gr.214270.116</u> · PMID: <u>28100585</u> · PMCID: <u>PMC5411768</u>

8. Minimap2: pairwise alignment for nucleotide sequences

Heng Li

Bioinformatics (2018-09-15) https://doi.org/gdhbqt

DOI: 10.1093/bioinformatics/bty191 · PMID: 29750242 · PMCID: PMC6137996

9. Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement

Bruce J Walker, Thomas Abeel, Terrance Shea, Margaret Priest, Amr Abouelliel, Sharadha Sakthikumar, Christina A Cuomo, Qiandong Zeng, Jennifer Wortman, Sarah K Young, Ashlee M Earl

PLoS ONE (2014-11-19) https://doi.org/gfkmz5

DOI: <u>10.1371/journal.pone.0112963</u> · PMID: <u>25409509</u> · PMCID: <u>PMC4237348</u>

10. Fast and accurate short read alignment with Burrows-Wheeler transform

H Li, R Durbin

Bioinformatics (2009-07-15) https://doi.org/dqt59j

DOI: 10.1093/bioinformatics/btp324 · PMID: 19451168 · PMCID: PMC2705234

11. Bionano Access Software

Bionano Genomics

https://bionanogenomics.com/support-page/bionano-access-software/

12. Integrating Hi-C links with assembly graphs for chromosome-scale assembly

Jay Ghurye, Arang Rhie, Brian P Walenz, Anthony Schmitt, Siddarth Selvaraj, Mihai Pop, Adam M Phillippy, Sergey Koren

PLOS Computational Biology (2019-08-21) https://doi.org/gf74qw

DOI: <u>10.1371/journal.pcbi.1007273</u> · PMID: <u>31433799</u> · PMCID: <u>PMC6719893</u>

13. Chromosome-level genome assembly of a cyprinid fish <i>Onychostoma macrolepis</i>by integration of nanopore sequencing, Bionano and Hi-C technology

Lina Sun, Tian Gao, Feilong Wang, Zuliang Qin, Longxia Yan, Wenjing Tao, Minghui Li, Canbiao Jin, Li Ma, Thomas D Kocher, Deshou Wang

Molecular Ecology Resources (2020-09) https://doi.org/gmx33w

DOI: 10.1111/1755-0998.13190 · PMID: 32419357

14. RaGOO: fast and accurate reference-guided scaffolding of draft genomes

Michael Alonge, Sebastian Soyk, Srividya Ramakrishnan, Xingang Wang, Sara Goodwin, Fritz J Sedlazeck, Zachary B Lippman, Michael C Schatz

Genome Biology (2019-12) https://doi.org/ggctnf

DOI: <u>10.1186/s13059-019-1829-6</u> · PMID: <u>31661016</u> · PMCID: <u>PMC6816165</u>

15. RepeatModeler2 for automated genomic discovery of transposable element families

Jullien M Flynn, Robert Hubley, Clément Goubert, Jeb Rosen, Andrew G Clark, Cédric Feschotte, Arian F Smit

Proceedings of the National Academy of Sciences (2020-04-28) https://doi.org/ggsnv2

DOI: <u>10.1073/pnas.1921046117</u> · PMID: <u>32300014</u> · PMCID: <u>PMC7196820</u>

16. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype

Daehwan Kim, Joseph M Paggi, Chanhee Park, Christopher Bennett, Steven L Salzberg *Nature Biotechnology* (2019-08) https://doi.org/gf5395

DOI: 10.1038/s41587-019-0201-4 · PMID: 31375807 · PMCID: PMC7605509

17. Leveraging multiple transcriptome assembly methods for improved gene structure annotation

Luca Venturini, Shabhonam Caim, Gemy George Kaithakottil, Daniel Lee Mapleson, David Swarbreck

GigaScience (2018-08-01) https://doi.org/gmx7k4

DOI: <u>10.1093/gigascience/giy093</u> · PMID: <u>30052957</u> · PMCID: <u>PMC6105091</u>

18. BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database

Tomáš Brůna, Katharina J Hoff, Alexandre Lomsadze, Mario Stanke, Mark Borodovsky *NAR Genomics and Bioinformatics* (2021-01-06) https://doi.org/gmx7k6

DOI: <u>10.1093/nargab/lqaa108</u> · PMID: <u>33575650</u> · PMCID: <u>PMC7787252</u>

19. Transcriptome assembly from long-read RNA-seq alignments with StringTie2

Sam Kovaka, Aleksey V Zimin, Geo M Pertea, Roham Razaghi, Steven L Salzberg, Mihaela Pertea *Genome Biology* (2019-12) https://doi.org/ghrk2k

DOI: <u>10.1186/s13059-019-1910-1</u> · PMID: <u>31842956</u> · PMCID: <u>PMC6912988</u>

20. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks

Cole Trapnell, Adam Roberts, Loyal Goff, Geo Pertea, Daehwan Kim, David R Kelley, Harold Pimentel, Steven L Salzberg, John L Rinn, Lior Pachter

Nature Protocols (2012-03) https://doi.org/f4pbzd

DOI: <u>10.1038/nprot.2012.016</u> · PMID: <u>22383036</u> · PMCID: <u>PMC3334321</u>

21. Full-length transcriptome assembly from RNA-Seq data without a reference genome

Manfred G Grabherr, Brian J Haas, Moran Yassour, Joshua Z Levin, Dawn A Thompson, Ido Amit, Xian Adiconis, Lin Fan, Raktima Raychowdhury, Qiandong Zeng, ... Aviv Regev *Nature Biotechnology* (2011-07) https://doi.org/b2bctj

DOI: 10.1038/nbt.1883 · PMID: 21572440 · PMCID: PMC3571712

22. Efficient and accurate detection of splice junctions from RNA-seq with Portcullis

Daniel Mapleson, Luca Venturini, Gemy Kaithakottil, David Swarbreck *GigaScience* (2018-12-01) https://doi.org/gkzg5r

DOI: 10.1093/gigascience/giy131 · PMID: 30418570 · PMCID: PMC6302956

23. Prodigal: prokaryotic gene recognition and translation initiation site identification

Doug Hyatt, Gwo-Liang Chen, Philip F LoCascio, Miriam L Land, Frank W Larimer, Loren J Hauser *BMC Bioinformatics* (2010-12) https://doi.org/cktxnm

DOI: 10.1186/1471-2105-11-119 · PMID: 20211023 · PMCID: PMC2848648

24. Eukaryotic Gene Prediction Using GeneMark.hmm-E and GeneMark-ES

Mark Borodovsky, Alex Lomsadze

Current Protocols in Bioinformatics (2011-09) https://doi.org/b75r2g

DOI: 10.1002/0471250953.bi0406s35 · PMID: 21901742 · PMCID: PMC3204378

25. Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources

Mario Stanke, Oliver Schöffmann, Burkhard Morgenstern, Stephan Waack *BMC Bioinformatics* (2006-12) https://doi.org/cv8xsn

DOI: <u>10.1186/1471-2105-7-62</u> · PMID: <u>16469098</u> · PMCID: <u>PMC1409804</u>

26. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects

Carson Holt, Mark Yandell

BMC Bioinformatics (2011-12) https://doi.org/fz39nj

DOI: <u>10.1186/1471-2105-12-491</u> · PMID: <u>22192575</u> · PMCID: <u>PMC3280279</u>

27. InterProScan 5: genome-scale protein function classification

P Jones, D Binns, H-Y Chang, M Fraser, W Li, C McAnulla, H McWilliam, J Maslen, A Mitchell, G Nuka, ... S Hunter

Bioinformatics (2014-05-01) https://doi.org/f53532

DOI: <u>10.1093/bioinformatics/btu031</u> · PMID: <u>24451626</u> · PMCID: <u>PMC3998142</u>

28. **BLAST+: architecture and applications**

Christiam Camacho, George Coulouris, Vahram Avagyan, Ning Ma, Jason Papadopoulos, Kevin Bealer, Thomas L Madden

BMC Bioinformatics (2009-12) https://doi.org/cnjxgz

DOI: 10.1186/1471-2105-10-421 · PMID: 20003500 · PMCID: PMC2803857

29. BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes Mosè Manni, Matthew R Berkeley, Mathieu Seppey, Felipe A Simão, Evgeny M Zdobnov

Molecular Biology and Evolution (2021-09-27) https://doi.org/gmgv52
DOI: 10.1093/molbev/msab199 · PMID: 34320186 · PMCID: PMCID: PMC8476166

30. http://zotero.org/users/local/gVY292am/items/GYK6YE2I

31. <i>De novo</i> Assembly and Genome-Wide SNP Discovery in Rohu Carp, <i>Labeo rohita</i>

Paramananda Das, Lakshman Sahoo, Sofia P Das, Amrita Bit, Chaitanya G Joshi, Basdeo Kushwaha, Dinesh Kumar, Tejas M Shah, Ankit T Hinsu, Namrata Patel, ... Joykrushna Jena *Frontiers in genetics* (2020-04-21) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7186481/
DOI: 10.3389/fgene.2020.00386 · PMID: 23773166 · PMCID: PMCID: PMCID: 10.3389/fgene.2020.00386 · PMID: 23773166 · PMCID: PMCID: PMCID: 10.3389/fgene.2020.00386 · PMID: 23773166 · PMCID: <a hr

32. Status of genetic and genomic approaches for delineating biological information and improving aquaculture production of farmed rohu, <i>Labeo rohita</i> (Ham, 1822)

Kiran D Rasal, Jitendra Kumar Sundaray

Reviews in Aquaculture (2020-11) https://doi.org/gnj5hk

DOI: 10.1111/raq.12444

33. A molecular tool for parentage analysis in Indian major carp, Labeo rohita (Hamilton, 1822)

L Sahoo, PK Meher, K Das Mahapatra, JN Saha, P Jayasankar, P Das *Aquaculture International* (2017-06) https://doi.org/gbgqt5

DOI: <u>10.1007/s10499-016-0104-z</u>

34. A linkage map of transcribed single nucleotide polymorphisms in rohu (Labeo rohita) and QTL associated with resistance to Aeromonas hydrophila

Nicholas Robinson, Matthew Baranski, Kanta Mahapatra, Jatindra Saha, Sweta Das, Jashobanta Mishra, Paramananda Das, Matthew Kent, Mariann Arnyasi, Pramoda Sahoo *BMC Genomics* (2014) https://doi.org/gb3g4v

DOI: <u>10.1186/1471-2164-15-541</u> · PMID: <u>24984705</u> · PMCID: <u>PMC4226992</u>

35. Status and future perspectives of single nucleotide polymorphisms (SNPs) markers in farmed fishes: Way ahead using next generation sequencing

Kiran Dashrath Rasal, Vemlawada Chakrapani, Amrendra Kumar Pandey, Avinash Rambhau Rasal, Jitendra K Sundaray, Arun Ninawe, Pallipuram Jayasankar *Gene Reports* (2017-03) https://doi.org/gig4d7

DOI: 10.1016/j.genrep.2016.12.004

36. Single Nucleotide Polymorphisms (SNPs) Reveal Sibship Among Founders of a Bangladeshi Rohu (Labeo rohita) Breeding Population

Matthew Gray Hamilton, Wagdy Mekkawy, Andrzej Kilian, John AH Benzie *Frontiers in Genetics* (2019-06-19) https://doi.org/gnj5hm
DOI: 10.3389/fgene.2019.00597 · PMID: 31275363 · PMCID: PMC6593075

37. Molecular characterization, computational analysis and expression profiling of <i>Dmrt1</i> gene in Indian major carp, <i>Labeo rohita</i> (Hamilton 1822)

L Sahoo, S Sahoo, M Mohanty, M Sankar, S Dixit, P Das, KD Rasal, MA Rather, JK Sundaray *Animal Biotechnology* (2021-08-02) https://doi.org/gnj5hj

DOI: <u>10.1080/10495398.2019.1707683</u> · PMID: <u>31880491</u>

38. Revealing liver specific microRNAs linked with carbohydrate metabolism of farmed carp, Labeo rohita (Hamilton, 1822)

Kiran D Rasal, Mir Asif Iquebal, Amrendra Pandey, Parmeswari Behera, Sarika Jaiswal, Manohar Vasam, Sangita Dixit, Mustafa Raza, Lakshman Sahoo, Samiran Nandi, ... Jitendra Kumar Sundaray

Genomics (2020-01) https://doi.org/gnj5hh

DOI: <u>10.1016/j.ygeno.2019.07.010</u> · PMID: <u>31325488</u>

39. De novo Assembly and Genome-Wide SNP Discovery in Rohu Carp, Labeo rohita

Paramananda Das, Lakshman Sahoo, Sofia P Das, Amrita Bit, Chaitanya G Joshi, Basdeo Kushwaha, Dinesh Kumar, Tejas M Shah, Ankit T Hinsu, Namrata Patel, ... Joykrushna Jena *Frontiers in Genetics* (2020-04-21) https://doi.org/gnj5hn

DOI: <u>10.3389/fgene.2020.00386</u> · PMID: <u>32373166</u> · PMCID: <u>PMC7186481</u>