第十一章 胺 (1)

主要内容

- 胺的制备方法: 伯、仲、叔胺的制备, 芳香 胺的制备
- Hofmann降解反应及在制备伯胺的应用
- 胺类化合物的碱性和亲核性
- 胺的酰基化反应,与HN02的反应,芳环上的反应 氧化反应

一. 胺类化合物 (Amine)

■类型

季铵盐(四级铵盐)

R=烷基: 脂肪胺

芳基: 芳香胺

■胺类化合物的命名

■胺类化合物的结构

脂肪胺N原子一般为sp³杂化

二. 胺类化合物的制备方法

- 1. 脂肪族伯胺的制备
- 氨的烷基化(卤代烷的取代, S_N2 机理)

- > 有多取代产物,分离有难度
- ▶ 2°或 3°R-X 可能有消除产物

■腈、酰胺、肟、腙的还原

■醛酮的还原氨化

NH₃ 过量 → 伯胺

NH₃:醛酮=1:2 → 对称仲胺

■ Gabriel 伯胺合成法(请结合上章内容学习)

$$KOH$$
 or K_2CO_3 $N-K$ $R-X$ 或 $R-OTs$ S_N2 机理

邻苯二甲酰亚胺

■酰胺的 Hofmann 降解(Hofmann重排)(复习)

➤Hofmann 降解机理

$$R - C - NH \longrightarrow R - C - N-Br \longrightarrow R - C - N-Br \longrightarrow OH^{\Theta}$$

$$OH^{\Theta}$$

$$OH^{\Theta}$$

未完,接下张ppt

接上张Hofmann 降解机理

缺电子中心

■ Curtius (柯蒂斯) 反应和Schmidt (斯密特) 反应

Schmidt 反应

小理
$$\rightarrow$$
 N=N \rightarrow N=N \rightarrow O=C=N—R + N₂ \rightarrow H₂O \rightarrow H₂N—R + CO₂

- 2. 脂肪族仲胺的制备 (一些方法与伯胺的制备类似)
- ■伯胺的烷基化(卤代烷的取代)

此方法在合成上的 主要问题是什么?

■ 醛酮的还原胺化(亚胺的还原)

■ N-取代酰胺的还原

$$R - C - NHR' \xrightarrow{(1) \text{LiAlH}_4} RCH_2NHR'$$

$$(2) H_2O$$

3. 脂肪族叔胺的制备

■仲胺的烷基化

■醛酮的还原胺化(亚胺的还原)--了解

$$RCH_2$$
 $C=0$ $HNR"_2$ H^+ $C-NR"_2$ H_2 RCH_2 $CH-NR"_2$ H_2 $CH-NR"_2$ H_2 $CH-NR"_2$ H_2 $CH-NR"_2$ H_2 $CH-NR"_2$ H_2 H_2

4. 芳香胺的制备

■硝基的还原

■ 芳香族卤代物的取代(复习)

■ 酰胺的 Hofmann 降级反应

$$Ar$$
 NH_2 X_2 / NaOH Ar Ar NH_2 + CO_2 制备芳香伯胺

例:

三. 胺类化合物的性质

1、结构

- (1) 芳香胺中的N是不等性的 sp³杂化,未共用电子对占据的sp³杂化轨道有更多p轨道性质。
 - (2) 随着N上连接基团的不同, 键角大小会有改变。

■结构分析

1. 胺类化合物的碱性

(1) 产生碱性的原因: N上的孤对电子

(2) 判别碱性的方法: 碱的p/kb; 其共轭酸的p/ka; 形成铵正离子的稳定性。

(3) 影响碱性强弱的因素:

电子效应: 3°胺 > 2°胺 > 1°胺

空间效应: 1°胺 > 2°胺 > 3°胺

溶剂化效应: NH₃ > 1°胺 > 2°胺 > 3°胺

对于溶剂化效应来说,N上的H越多,溶剂化效应越大,形成的铵正离子就越稳定。不同溶剂的溶剂化效应是不同的。

综合上述因素:

非水溶液 或气相中: (CH₃)₃N > (CH₃)₂NH > CH₃NH₂ > NH₃

水溶液中: $(CH_3)_2NH > CH_3NH_2 > (CH_3)_3N > NH_3$

溶剂化作用, 位阻作用

(4) 芳香胺碱性强弱的分析

 pk_b

电子效应
$$P^{k_b}$$
 9.30 NH^2 NH^2

取代基对芳胺碱性的影响,与其对酚的酸性的影响刚好相反。 在芳胺分子中,当取代基处于氨基的对位时,+I基团使碱 ↑, 而-I基团使碱性 ↓ 。如:

$$NH_2$$
 NH_2 NO_2 NO_2

- 2. 胺类化合物的亲核性(胺作为亲核试剂)
 - ■与卤代烃的亲核取代反应(胺的烷基化)(复习)

$$R\ddot{N}H_2$$
 + $R'-X$ \longrightarrow $RNH-R'$ + HX
 $R_2\ddot{N}H$ + $R'-X$ \longrightarrow R_2N-R' + HX
 $R_3\ddot{N}$ + $R'-X$ \longrightarrow $R_3\ddot{N}$ X 季铵盐

■与醛酮的亲核加成反应(复习)

3. 胺的酰基化和磺酰化

(1) 胺的酰基化 产物酰胺均为固体,可用于鉴定胺类。

由于芳胺容易被氧化,酰基化反应常用于氨基的保护。

(2) 磺酰化---兴斯堡反应

Hinsberg试验——用于鉴定胺的类型

兴斯堡反应的反应式

RNH₂ + CH₃—SO₂Cl NaOH-H₂O
$$CH_3$$
—SO₂NHR NaOH
$$H^+$$
 CH₃—SO₂NR Na⁺

$$R_2NH + CH_3$$
 \longrightarrow SO_2Cl \longrightarrow CH_3 \longrightarrow $SO_2\ddot{N}R_2$ \longrightarrow $+ NaCl$

■ 磺胺类抗菌素(补充)

$$H_2N$$
— SO_2NHR

$$H_2N - SO_2NH_2$$

S.N., 对氨基苯磺酰胺

$$H_2N - SO_2 - NH - N$$

S.D., 磺胺嘧啶

$$\begin{array}{c} & \text{NH} \\ \text{II} \\ \text{H}_2\text{N} - & \text{SO}_2 - \text{NH} - \text{C} - \text{NH}_2 \end{array}$$

S.G.,磺胺胍, 治肠炎

$$H_2N - SO_2 - NH - CH_3$$

S.I.Z.,磺胺异恶唑

4. 胺类化合物与 HNO2 的反应

(1) 脂肪胺与 HNO₂ 的反应

有机分析中用于 区分胺的类型

(2) 芳香胺与 HNO2 的反应

第12章:重氮盐及其在合成上的应用

$$NHR$$
 NO_2 NHR NO_2 NR NO R R $和狀物$

$$NR_2$$
 NR_2 NR_2

有机分析中用作区分芳香胺的类型

脂肪胺, 芳香胺与亚硝酸的反应对比

分类	脂肪胺与亚硝酸的反应	芳香胺与亚硝酸的反应
1º胺	RNH_2 $\xrightarrow{NaNO_2, HC1}$ $[R-N=N]^+C1$ $\xrightarrow{-N_2}$ R^+ \longrightarrow 醇、烯、卤代烃等的混合物	ArNH ₂ NaNO ₂ , HC1 Ar-N≡N C1- 0-5°C 发生取代反应制备ArX, ArCN, ArOH, ArSH, ArH, Ar-Ar
2°胺	R ₂ NH NaNO ₂ , HC1 [R ₂ N-N=0] N-亚硝基二级胺 黄色油状物	与脂肪胺类似
3°胺	$R_3N + HNO_2$ \longrightarrow $[R_3NH] + NO_2$	$N(CH_3)_2 + HNO_2 \longrightarrow N(CH_3)_2$
现象	1°胺放出气体。 2°胺出现黄色油状物。 3°胺发生成盐反应,无特殊现象。	1∘胺放出气体。 2∘胺出现黄色油 状物。 3∘胺出现绿色晶体。

5. 芳环上亲电取代

(1) 卤代:苯胺与溴水反应生成2,4,6-三溴苯胺,白色固体,很灵敏,用于检验。如果要求一溴代产物,需使苯环钝化,或低温CS2作溶剂。

(2) 硝化: 芳伯胺直接硝化易被硝酸氧化,必须先把氨基保护起来(乙酰化或成盐),然后再进行硝化。

(3) 磺化反应

 NH_2 H_2SO_4 DH_3 DH_3 DH_3 DH_4 DH_4 DH_5 DH_5 DH_5 DH_5 DH_6 $DH_$

内盐:呈弱酸性

6. 胺的氧化

脂肪族胺类在常温下比较稳定, 芳香伯胺及仲胺较易氧化, 在空气中放置, 颜色会变深。

本次课小结:

- > 胺的类型
- > 各类胺的制备方法
- Hofmann降解
- ▶ 胺类化合物的基本化学性质: 碱性、亲核性.
- ▶胺的酰基化反应,与HNO2的反应, 芳环上的反应
- ▶氧化反应