PROJECT DEVELOPMENT PHASE

$\underline{DELIVERY\ OF\ SPRINT-3}$

Date	08 November 2022
Team ID	PNT2022TMID31072
Project Name	IoT Based Safety Gadget for Child Safety Monitoring & Notification

The Smart Mom architecture thus eases their work and helps them in
taking care of the child It is also assumed that this system is useful
for children between ages five to fifteen years.
for emidien between ages five to fifteen years.

Since, children below five years are years delicate to be taken of	care
of by an autonomous system and children above fifteen years a	ıre
grown up enough to be taken care of by their mothers pervasive	ely.

Smart Mom architecture is divided into two domains namely-the
cloud environment and the home environment. Each domain is
subdivided into a number of modules depending upon the
application system.

Notification module

The notification is responsible for sending notifications to the
computing devices either at home or outside. The computing device
can be wired or wireless and may belong to either the child, the
governess,doctor or the mother of the child depending upon the
needed application.

Python Serial Loopback Test

import serial

#initialize serial

connectiondef init_serial():

COMNUM = 9 #set you COM port # here

global ser #must be declared in each fxn

usedser = serial.Serial()

ser.baudrate = 9600

ser.port = COMNUM - 1 #starts at 0, so subtract

```
1#ser.port = '/dev/ttyUSB0' #uncomment for linux
#you must specify a timeout (in seconds) so that the# serial port doesn't hang
ser.timeout = 1
ser.open() #open the serial
port # print port open or
closedif ser.isOpen():
print 'Open: ' + ser.portstr
#this is a good spot to run your initializationsinit_serial()
while 1:
#prints what is sent in on the serial port
temp = raw_input('Type what you want to send, hit enter:\n\r')
ser.write(temp) #write to the serial port
bytes = ser.readline() #reads in bytes followed by a newline print
'You sent: ' + bytes #print to the console
break #jump out of loop
#hit ctr-c to close python window
```

```
#adjust these values based on your location and m
TRX = -105.1621  #top right longitude
TRY = 40.0868  #top right latitude
BLX = -105.2898  #bottom left longitude
BLY = 40.0010  #bottom left latitude
```

Run the program by typing:

High-level language software design has long stayed in use for surrounded-systems growth.
Though, assemblage programming still overwhelms, mostly for digital-signal processor (DSP) based systems.
DSPs are frequency systems automatic in assembly language by computer operator who

know the processor building inside out. The key incentive for this practice is

performance, even with the disadvantages of assembly software design when linked to high level programming.