Am25S10

Four-Bit Shifter with Three-State Outputs

DISTINCTIVE CHARACTERISTICS

- Shifts 4-bits of data to 0, 1, 2 or 3 places under control of two select lines.
- Three-state outputs for bus organized systems.
- 6.5ns typical data propagation delay
- Alternate source is 54S/74S350

GENERAL DESCRIPTION

The Am25S10 is a combinatorial logic circuit that accepts a four-bit data word and shifts the word 0, 1, 2 or 3 places. The number of places to be shifted is determined by a two-bit select field S_0 and S_1 . An active-LOW enable controls the three-state outputs. This feature allows expansion of shifting over a larger number of places with one delay.

By suitable interconnection, the Am25S10 can be used to shift any number of bits any number of places up or down. Shifting can be logical, with logic zeroes pulled in at either or both ends of the shifting field; arithmetic, where the sign bit is repeated during a shift down; or end around, where the data word forms a continuous loop.

BLOCK DIAGRAM

RELATED PRODUCTS

Part No.	Description
Am2901	Bit Slice ALU
Am2903	Superslice
Am29501	Multiport Pipeline Processor

03611B

CONNECTION DIAGRAM Top View

L-20-1

Note: Pin 1 is marked for orientation

Device type 4-Bit Shifter with Three-State Outputs

METALLIZATION AND PAD LAYOUT

ORDERING INFORMATION

AMD products are available in several packages and operating ranges. The order number is formed by a combination of the following: Device number, speed option (if applicable), package type, operating range and screening option (if desired).

Valid Combinations

PC
DC, DM
LC, LM
FM
XC, XM

Valid Combinations

Consult the AMD sales office in your area to determine if a device is currently available in the combination you wish.

PIN DESCRIPTION

Pin No.	Name	1/0	Description
	li	1	The seven data inputs of the shifter.
13	ŌĒ		Enable. When the enable is HIGH, the four outputs are in the high impedance state. When the enable is LOW, the selected I_i inputs are present at the outputs.
10, 9	S ₀ , S ₁	1	Select inputs. Controls the number of places the inputs are shifted.
11, 12,	Yi	0	The four outputs of the shifter.

LOADING RULES (In Unit Loads)

				Fan-	out	
	Pin	Input Unit Load	Out		Output LOW	
Input/Output	Nos.	(Note 1)	XM	ХC		
1-3	1	1		-		
1-2	2	1.5	_	-		
I-1	3	1.5		_		
lo	4	1.5	-	-		
11	5	1.5		_		
12	6	1.5	T		-	
lg	7	1	-	_	_	
GND	8	_	T -	-		
S ₁	9	1	T			
S ₀	10	1	T -	<u> </u>	_	
Y ₃	11	-	40	130	10	
Y ₂	12	-	40	130	10	
OE .	13	1	Τ-	-	-	
Y ₁	14	-	40	130	10	
Yo	15	-	40	130	10	
Vcc	16		T -	-		

A Schottky TTL Unit Load is defined as $50\mu A$ at 2.7V at the HIGH and -2.0mA at 0.5V at the LOW.

Note 1. The fan-in on L_2 , L_1 , l_0 , l_1 and l_2 will not exceed 1.5 Unit Loads when measured at $V_{\parallel L}$ = 0.5V. As $V_{\parallel L}$ is decreased to a 0V, the input current $l_{\parallel L}$ MAX. increases to -4, -6, -8, -6 and -4mA respectively due to the decrease in current sharing with the internal select buffer outputs.

LOGIC EQUATIONS

$$\begin{split} &Y_0 = \overline{S}_0 \overline{S}_1 I_0 + S_0 \overline{S}_1 I_{-1} + \overline{S}_0 S_1 \ I_{-2} + S_0 S_1 I_{-3} \\ &Y_1 = \overline{S}_0 \overline{S}_1 I_1 + S_0 \overline{S}_1 I_0 + \overline{S}_0 S_1 \ I_{-1} + S_0 S_1 I_{-2} \\ &Y_2 = \overline{S}_0 \overline{S}_1 I_2 + S_0 \overline{S}_1 I_1 + \overline{S}_0 S_1 \ I_0 + S_0 S_1 I_{-1} \\ &Y_3 = \overline{S}_0 \overline{S}_1 I_3 + S_0 \overline{S}_1 I_2 + \overline{S}_0 S_1 \ I_1 + S_0 S_1 I_0 \end{split}$$

TRUTH TABLE

ſ	ŌĒ	S ₁	So	l ₃	l ₂	11	lo	1.1	1.2	L3	Y ₃	Y ₂	Y ₁	Yo
Γ	I	×	X	x	х	х	х	Х	Х	Х	Z	Z	Z	Z
ı	i''	î	Ĺ	Da	Do	D1	Dο	х	Х	X	D ₃	D_2	D ₁	D ₀
١	1	lι	н	l x	D٥	D١	D_0	D ₋₁	Х	X	D ₂	D ₁	Dο	D ₋₁
1	L	Н	L	Ιx	Х	D ₁	D ₀	D. ₁	D.2	X	D ₁	D_0	D. ₁	D-2
ļ	L	н	н	×	Х	X	D_0	D ₋₁	D.2	D.3	D ₀	D ₋₁	D.2	D.3

H = HIGH X = Don't Care L = LOW Z = High Impedance State

 D_n at input I_n may be either HIGH or LOW and output Y_m will follow the selected D_n input level.

16-Bit Shift-Up 0, 1, 2, or 3 Places.

8-Bit End Around Shift 0, 1, 2, 3, 4, 5, 6, 7 Places

13-Bit 2's Complement Scaler

ABSOLUTE MAXIMUM RATINGS

Storage Temperature65°C to +150°C
(Ambient) Temperature Under Bias55°C to +125°C
Supply Voltage to Ground Potential
Continuous0.5V to +7.0V
DC Voltage Applied to Outputs For
High Output State0.5V to +V _{CC} max
DC Input Voltage0.5V to +5.5V
DC Output Current, Into Outputs30mA
DC Input Current30mA to +5.0mA

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices	
Temperature	0°C to +/0°C
Supply Voltage	+4.75V to +5.25V
Military (M) Devices	
Temperature	55°C to +125°C
Supply Voltage	+4.5V to +5.5V
Operating ranges define those limit	's over which the function-
ality of the device is guaranteed.	

DC CHARACTERISTICS over operating range unless otherwise specified

Parameters	Description	Test Condi	tions (Note 2)	Min	Typ (Note 1)	Мах	Units
			XM IOH = -2mA	2.4	3.4		
Voн	Output HIGH Voltage	V _{CC} = MIN. V _{IN} = V _{IH} or V _{IL}	XC 1 _{OH} = -6.5mA	2.4	3.2		Volts
V _{OL}	Output LOW Voltage	V _{CC} = MIN., I _{OL} = 20mA V _{IN} = V _{IH} or V _{IL}				0.5	Volts
ViH	Input HIGH Level	Guaranteed input logic voltage for all inputs	al HIGH	2.0			Volts
VIL	Input LOW Level	Guaranteed input logic voltage for all inputs	al LOW			0.8	Volts
VI	Input Clamp Voltage	V _{CC} = MIN., I _{IN} = -18r	nA	ļ	<u> </u>	-1.2	Volts
I _{IL} (Note 3)	Unit Load Input LOW Current	V _{CC} = MAX., V _{IN} = 0.5	v	ļ		-2.0	mA
I _{IH} (Note 3)	Unit Load Input HIGH Current	$V_{CC} = MAX., V_{IN} = 2.7$				50	μА
· · · · · · · · · · · · · · · · · · ·	au out allist Impedance)		V _O = 2.4V	ļ		50	μΑ.
lo	Off State (High Impedance) Output Current	V _{CC} = MAX.	V _O = 0.5V	1		-50	
11	Input HIGH Current	V _{CC} = MAX., V _{IN} = 5.5V				1.0	mA
Isc	Output Short Circuit Current (Note 4)	V _{CC} = MAX., V _{OUT} = 0.0V				- 100	mA
loc	Power Supply Current	V _{CC} = MAX., All outpu All inputs = GND	uts open,		60	85	mA

Notes: 1. Typical limits are at V_{CC} = 5.0V, 25°C ambient and maximum loading.
2. For conditions shown as MIN. or MAX., use the appropriate value specified under Operating Ranges for the applicable device type.
3. Actual input currents = Unit Load Current x Input Load Factor (See Loading Rules).
4. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

PERFORMANCE CURVES SWITCHING CHARACTERISTICS

(Typical) 13.5 PROPAGATION DELAY 13.0 12.5 75 -50 -25 0 25 50 TA - AMBIENT TEMPERATURE -- °C

Select to Output

03611B

OP001400

SWITCHING CHARACTERISTICS (TA = +25°C)

Parameters	Description	Test Conditions	Min	Тур	Max	Units
t _{PLH}		V _{CC} = 5.0V, C _L = 15pF, R _L = 280Ω		5	7.5	
tPHL'	Data Input to Output			8	12	ns
1PLH	Select to Output			11	17	
t _{PHL}				13	20	ns
					19.5	
tzH	Output Control OE to Output				21	ns
tzL		$V_{CC} = 5V$, $C_L = 5pF$, $R_L = 280\Omega$		5	8	
t _{LZ}	Output Control OE to Output			10	15	ns

SCHOTTKY INPUT/OUTPUT CURRENT INTERFACE CONDITIONS

Note: Actual current flow direction shown.

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.