Różnice, nie różniczki

Grzegorz Dłużewski

16 lipca 2020

Definicja 1. Dla funkcji f(x) wprowadźmy następujące definicje:

$$f_1(x) = f(x+1) - f(x)$$

$$f_{m+1}(x) = f_m(x+1) - f_m(x)$$

Zadanie 1. Czy jeśli $f_k(x) \equiv 0$ dla pewnego k, to czy z tego wynika, że f jest wielomianem?

Zadanie 2. Jak wygląda wzór na $f_l(x)$ (zapisany wyłącznie przy użyciu funkcji f)?

Zadanie 3. Jak wyglądają różnice ciągów 2^n i λ^n ?

Zadanie 4. Ile wynosi

$$\sum_{j=0}^{m} (-1)^{m-j} \binom{m}{j} F_{n+j}$$

gdzie F_n to n-ty wyraz ciągu Fibonacciego?

Zadanie 5. Dany jest wielomian f(x) o współczynnikach całkowitych. Udowodnić, że $p \mid f_m(x)$ dla $m \ge p$, $x \in \mathbb{Z}_+$.

Zadanie 6. Dana jest nieparzysta liczba pierwsza p. Udowodnić, że $p \mid F_{n+p} - F_n - F_p$.

Bonus:

Zadanie 1. Udowodnij, że wielomian przyjmuje na wartościach całkowitych wartości całkowite wtedy i tylko wtedy, gdy jest postaci $a_k \binom{x}{k} + a_{k-1} \binom{x}{k-1} + \ldots + a_0$.

Zadanie 2. Wprowadźmy oznaczenie $\Delta_h f(x) := f(x+h) - f(x).$ Udowodnić, że

$$\Delta_{2^{k-1}}\Delta_{2^{k-2}}\dots\Delta_1 f(x) = \sum_{j=0}^{2^k-1} (-1)^{s_2(j)} f(x + (2^k - j))$$

gdzie $s_2(x)$ oznacza liczbę jedynek w zapisie binarnym x.

Zadanie 3. Udowodnić, że dla każdej liczby całkowitej dodatniej k istnieje liczba całkowita dodatnia N taka, że liczby $1^k, 2^k, \ldots, N^k$ da się podzielić na dwie grupy o równych sumach.