

Section Summary

- Partial Orderings and Partially-ordered Sets
- Lexicographic Orderings
- Hasse Diagrams
- Lattices (not currently in overheads)
- Topological Sorting (not currently in overheads)

Partial Orderings

Definition 1: A relation *R* on a set S is called a *partial* ordering, or partial order, if it is reflexive, antisymmetric, and transitive. A set together with a partial ordering *R* is called a *partially* ordered set, or poset, and is denoted by (*S*, *R*). Members of *S* are called *elements* of the poset.

Partial Orderings (continued)

Example 1: Show that the "greater than or equal" relation (\geq) is a partial ordering on the set of integers.

- *Reflexivity*: $a \ge a$ for every integer a.
- Antisymmetry: If $a \ge b$ and $b \ge a$, then a = b.
- *Transitivity*: If $a \ge b$ and $b \ge c$, then $a \ge c$.

These properties all follow from the order axioms for the integers. (*See Appendix* 1).

Partial Orderings (continued)

Example 2: Show that the divisibility relation (|) is a partial ordering on the set of integers.

- Reflexivity: a | a for all integers a. (see Example 9 in Section 9.1)
- Antisymmetry: If a and b are positive integers with $a \mid b$ and $b \mid a$, then a = b. (see Example 12 in Section 9.1)
- *Transitivity*: Suppose that a divides b and b divides c. Then there are positive integers k and l such that b = ak and c = bl. Hence, c = a(kl), so a divides c. Therefore, the relation is transitive.
- (**Z**⁺, |) is a poset.

Partial Orderings (continued)

Example 3: Show that the inclusion relation (\subseteq) is a partial ordering on the power set of a set *S*.

- *Reflexivity*: $A \subseteq A$ whenever A is a subset of S.
- Antisymmetry: If A and B are positive integers with $A \subseteq B$ and $B \subseteq A$, then A = B.
- *Transitivity*: If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

The properties all follow from the definition of set inclusion.

Comparability

Definition 2: The elements a and b of a poset (S, \leq) are *comparable* if either $a \leq b$ or $b \leq a$. When a and b are elements of S so that neither $a \leq b$ nor $b \leq a$, then a and b are called incomparable.

The symbol \leq is used to denote the relation in any poset.

Definition 3: If (S, \le) is a poset and every two elements of S are comparable, S is called a *totally ordered* or *linearly ordered set*, and \le is called a *total order* or a *linear order*. A totally ordered set is also called a *chain*.

Definition 4: (S, \le) is a well-ordered set if it is a poset such that \le is a total ordering and every nonempty subset of S has a least element.

Lexicographic Order

Definition: Given two posets (A_1, \leq_1) and (A_2, \leq_2) , the *lexicographic ordering* on $A_1 \times A_2$ is defined by specifying that (a_1, a_2) is less than (b_1, b_2) , that is,

$$(a_1, a_2) \prec (b_1, b_2),$$

either if $a_1 \prec_1 b_1$ or if $a_1 = b_1$ and $a_2 \prec_2 b_2$.

 This definition can be easily extended to a lexicographic ordering on strings (see text).

Example: Consider strings of lowercase English letters. A lexicographic ordering can be defined using the ordering of the letters in the alphabet. This is the same ordering as that used in dictionaries.

- discreet < discrete, because these strings differ in the seventh position and e < t.
- discreet < discreetness, because the first eight letters agree, but the second string is longer.

Hasse Diagrams

Definition: A *Hasse diagram* is a visual representation of a partial ordering that leaves out edges that must be present because of the reflexive and transitive properties.

A partial ordering is shown in (a) of the figure above. The loops due to the reflexive property are deleted in (b). The edges that must be present due to the transitive property are deleted in (c). The Hasse diagram for the partial ordering (a), is depicted in (c).

Procedure for Constructing a Hasse Diagram

- To represent a finite poset (S,≤) using a Hasse diagram, start with the directed graph of the relation:
 - Remove the loops (*a*, *a*) present at every vertex due to the reflexive property.
 - Remove all edges (x, y) for which there is an element $z \in S$ such that x < z and z < y. These are the edges that must be present due to the transitive property.
 - Arrange each edge so that its initial vertex is below the terminal vertex. Remove all the arrows, because all edges point upwards toward their terminal vertex.