

Kontes Terbuka Olimpiade Matematika Kontes Oktober 2019

25 Oktober – 28 Oktober 2019

Berkas Soal

Definisi dan Notasi

Berikut ini adalah daftar definisi yang digunakan di dokumen soal ini.

- 1. Notasi \mathbb{N} menyatakan himpunan semua bilangan asli, yaitu $\{1, 2, \dots\}$.
- 2. Notasi \mathbb{Z} menyatakan himpunan semua bilangan bulat, yaitu $\{\ldots, -1, 0, 1, 2, \ldots\}$.
- 3. Bilangan rasional adalah bilangan yang dapat dinyatakan dalam bentuk $\frac{a}{b}$ dengan a, b adalah bilangan bulat dan $b \neq 0$. Notasi \mathbb{Q} menyatakan himpunan semua bilangan rasional.
- 4. Bilangan real yang tidak rasional disebut sebagai bilangan irasional. Notasi \mathbb{R} menyatakan himpunan semua bilangan real.
- 5. Jika n adalah sebuah bilangan bulat positif, n! (dibaca n faktorial) bernilai $1 \times 2 \times \cdots \times n$. Contohnya, $4! = 1 \times 2 \times 3 \times 4 = 24$. Selain itu, 0! didefinisikan sebagai 1.
- 6. Untuk setiap bilangan real x, notasi $\lfloor x \rfloor$ menyatakan bilangan bulat terbesar yang lebih kecil atau sama dengan x. Sebagai contoh, $\lfloor 2.3 \rfloor = 2$, $\lfloor \pi \rfloor = 3$, $\lfloor -2.89 \rfloor = -3$, dan $\lfloor 4 \rfloor = 4$.
- 7. Untuk setiap bilangan real x, notasi $\lceil x \rceil$ menyatakan bilangan bulat terkecil yang lebih besar atau sama dengan x. Sebagai contoh, $\lceil 2.3 \rceil = 3$, $\lceil \pi \rceil = 4$, $\lceil -2.89 \rceil = -2$, dan $\lceil 4 \rceil = 4$.
- 8. Untuk setiap bilangan real x, notasi $\{x\}$ menyatakan bagian pecahan dari x. Dengan kata lain, $\{x\} = x \lfloor x \rfloor$. Sebagai contoh, $\{2.3\} = 0.3$, $\{9.99\} = 0.99$, $\{-2.89\} = 0.11$, dan $\{4\} = 4$.
- 9. Notasi $a \mid b$ menyatakan a habis membagi b (atau b habis dibagi a). Notasi $a \nmid b$ menyatakan a tidak habis membagi b.
- 10. $a \equiv b \pmod{c}$ jika dan hanya jika c membagi |a b|.
- 11. Dua bilangan bulat a dan b disebut relatif prima bila fpb(a, b) = 1.
- 12. Fungsi Euler-phi (atau fungsi Euler), biasa didefinisikan sebagai $\varphi(n)$, menyatakan banyaknya bilangan bulat dari 1 sampai n yang relatif prima dengan n.
- 13. Notasi $\binom{n}{k}$ menyatakan nilai $\frac{n!}{k!(n-k)!}$.
- 14. Pada $\triangle ABC$:
 - (a) Garis berat dari titik A adalah garis yang melewati titik A dan membagi garis BC menjadi dua bagian yang sama panjang.
 - (b) Garis bagi $\angle A$ adalah garis yang melewati titik A dan membagi $\angle BAC$ menjadi dua bagian yang sama besar.
 - (c) Garis tinggi dari titik A adalah garis yang melewati titik A dan tegak lurus dengan garis BC.
 - (d) Titik berat $\triangle ABC$ adalah perpotongan garis berat dari titik A, garis berat dari titik B, dan garis berat dari titik C.

- (e) Titik tinggi $\triangle ABC$ adalah perpotongan garis tinggi dari titik A, garis tinggi dari titik B, dan garis tinggi dari titik C.
- (f) Lingkaran luar $\triangle ABC$ adalah lingkaran yang melewati titik A, B, dan C.
- (g) Lingkaran dalam $\triangle ABC$ adalah lingkaran di dalam $\triangle ABC$ yang menyinggung segmen BC, CA, dan AB.
- 15. Luas dari sebuah segi-n dibungkus dengan kurung siku, yakni [dan]. Contohnya, [ABC] dan [DEFG] masing-masing menyatakan luas segitiga ABC dan luas segiempat DEFG.
- 16. Suatu barisan $\{a_n\}$ disebut barisan aritmetika bila $a_{i-1} a_i$ bernilai konstan (bisa jadi 0) untuk setiap i. Contohnya, $3, 5, 7, 9, \ldots$ dan 2, 2, 2 merupakan barisan aritmetika.
- 17. Suatu barisan $\{a_n\}$ disebut barisan geometrik bila $\frac{a_{i+1}}{a_i}$ bernilai konstan taknol (bisa jadi 1) untuk setiap i. Contohnya, 4, 6, 9 dan 5, 5, 5, 5, 5, ... merupakan barisan geometrik.
- 18. Rata-rata aritmetik dari dua bilangan real a dan b adalah $\frac{a+b}{2}$.
- 19. Rata-rata geometrik dari dua bilangan real a dan b adalah \sqrt{ab} .
- 20. Rata-rata harmonik dari dua bilangan real a dan b adalah $\frac{2}{\frac{1}{a} + \frac{1}{b}}$.
- 21. Rata-rata kuadratik dari dua bilangan real a dan b adalah $\sqrt{\frac{a^2+b^2}{2}}$.

Bagian A

Untuk setiap soal, tuliskan saja jawaban akhirnya. Setiap soal bernilai 1 angka. Tidak ada pengurangan nilai untuk jawaban yang salah atau dikosongkan. Jawaban soal-soal bagian A dipastikan merupakan bilangan bulat.

- 1. Selamat datang di KTO Matematika Oktober 2019! KTO kedatangan anggota baru , yaitu si Mawang. Untuk menyambut Mawang, tim KTO membuat barisan baru dengan hanya menggunakan angka 1, 2, 3, 4, 5, 6, 7, 8, 9 untuk tiap suku dimana tiap digit digunakan setidaknya sekali dalam 20 suku pertama. Untuk $n \geq 21$, digit ke n ditentukan dengan mengalikan semua angka sebelumnya dalam modulo 10. Tentukan suku ke 2019 barisan tersebut.
- 2. Tentukanlah banyak kuarduplet bilangan real positif (k, t, o, m) sehingga keempat persamaan kuadrat $kx^2 + tx + o = 0$, $tx^2 + ox + m = 0$, $ox^2 + mx + k = 0$ dan $mx^2 + kx + t = 0$ keempatnya memiliki masing-masing dua akar real yang berbeda. (Boleh saja ada akar l yang merupakan akar dari lebih dari satu persamaan kuadrat di soal).
- 3. Valen ingin pergi jalan-jalan. Valen dapat memilih untuk memakai 2 jaket, 5 kaos, 3 celana, 4 sepatu dan 3 topi. Berapa banyak tampilan berbeda Valen yang mungkin? (Valen wajib memakai kaos, celana dan sepatu).
- 4. Dalam sebuah koordinat kartesius, bidak Bejo berada pada titik (0,0). Definisikan jalur rute sebagai jalur terpendek antar dua titik. Bejo menggerakkan bidaknya melalui jalur rute dari titik $(n-1,\frac{(n-1)n}{2})$ ke titik $(n,\frac{n(n+1)}{2})$ secara bertahap, dimulai dari n=1 hingga n=20. Akibatnya, bidak Bejo membagi persegi panjang dengan titik sudut (0,0), (20,0), (20,210), dan (0,210) menjadi dua bagian. Tentukan selisih dari luas dua bagian tersebut.
- 5. Diberikan sebuah fungsi $f: \mathbb{R}_{\leq 1014} \to \mathbb{R}_{\leq 1014}$ sedemikian sehingga untuk semua bilangan rill $x \neq y$, maka berlaku

$$f(x) + f(y) = x + y$$

Tentukan jumlah semua nilai yang mungkin dari f(1014).

- 6. Diberikan barisan bilangan asli $\{a_n\}_{n\geq 1}$ yang terdiri dari semua bilangan asli kecuali bilangan kuadrat sempurna dan bilangan kubik sempurna dengan $a_i < a_{i+1}$ untuk setiap $i \in \mathbb{N}$. Tentukan nilai dari m sehingga $a_m = 2019$.
- 7. Diberikan segiempat ABCD dimana AB dan CD saling sejajar, $\angle ACD = 30^{\circ}$, $AB = 3\sqrt{7}$, $AC = \sqrt{21}$, serta $CD = \sqrt{7}$. Misalkan lingkaran luar segitiga BCD memiliki titik pusat O. Jika x menyatakan panjang segmen garis OA, tentukan nilai dari x^2 .
- 8. Tentukan bilangan asli terkecil yang bisa dibagi oleh tepat 44 bilangan asli berbeda.
- 9. Diberikan polinomial

$$P(x) = x^4 + 20x^3 - 210x^2 - 540x + t$$

memiliki 4 akar real yang membentuk barisan geometri dengan rasio bilangan rasional. Jika a, b, c, d merukapan akar-akar dari P(x) dengan a < b < c < d, tentukan nilai dari t + |a||b| - |c||d|.

- 10. Budi memiliki 100 koin adil dan 300 koin yang memiliki kemungkinan mengeluarkan gambar sebanyak $\frac{1}{6}$. Budi mengetos 400 koin miliknya dan menghitung banyak gambar yang muncul. Misalkan t ialah kemungkinan banyak gambar yang muncul ialah genap. Berapakah nilai dari |1000t|?
- 11. Titik A, B, C terletak pada satu garis dengan AB = 114, BC = 76 dan B terletak diantara A dan C. Misalkan ω_1, ω_2 dan Ω berturut-turut merupakan lingkaran dengan diameter AB, BC dan AC dengan pusat O_1, O_2 dan O. Misalkan pula lingkaran ω_3 merupakan lingkaran dengan pusat O_3 yang menyinggung dengan ω_1, ω_2 di luar dan menyinggung Ω di dalam. Misalkan P adalah titik singgung antara ω_3 dengan Ω . Garis singgung lingkaran Ω di P memotong garis AC di Q. Jika QO_3 adalah $a\sqrt{b}$ dengan a, b bilangan asli dan b tidak dapat dibagi dengan sembarang bilangan kudrat sempuna selain 1. Tentukan nilai dari a+b.
- 12. Diketahui sebuah barisan bilangan asli $\{a_n\}$ dan $\{b_n\}$, $n \in \mathbb{N}$ yang memiliki karakteristik: $a_n \in \{1, 3, 5, 7, 9, 11, 13\}$ dan $b_n \equiv a_n^n \mod 13$ dengan syarat b_n bernilai minimum. Jika $b_1 + b_2 + b_3 + \ldots + b_n = 102019$. Tentukan nilai minimum dari n.
- 13. Diberikan himpunan $S = \{1, 2, 3, ..., n\}$. Untuk setiap k = 0, 1, 2, ..., n, misalkan M merupakan subset dari S dengan k elemen. Jika $M = \{a_1, a_2, a_3, ..., a_k\}$ dengan $a_1 > a_2 > a_3 > \cdots > a_k$, didefinisikan $jumlah \ bolak-balik$ dari subset M adalah $a_1-a_2+a_3-a_4+\cdots+a_k(-1)^k$. Sebagai contoh, $jumlah \ bolak-balik$ dari $\{1,3,4,7,20\}$ adalah 20-7+4-3+1=15 dan $jumlah \ bolak-balik$ dari $\{12\}$ adalah 12. Jika T adalah jumlah dari $jumlah \ bolak-balik$ dari semua subset dari $\{1,2,3,\ldots,2019\}$, tentukan 3 digit terakhir dari T.

Catatan: Jumlah bolak-balik dari himpunan kosong adalah 0.

- 14. Carilah jumlah dari semua n tiga digit yang memenuhi $\tau(n) + \tau(2n) + \tau(n+1) = 17$. $(\tau(n))$ melambangkan banyak faktor positif dari n. Contohnya, $\tau(36) = 9$).
- 15. Diberikan segitiga ABC dengan AB = BC = 5 dan CA = 6. Misalkan M dan N terletak di BC sehingga AM dan AN berturut-turut merupakan garis berat dan garis bagi dari segitiga ABC. Misalkan pula garis l diperoleh dari refleksi garis AM terhadap garis AN dan memotong lingkaran luar ABC di X ($X \neq A$). Jika nilai dari AX adalah $\frac{a}{b}\sqrt{c}$ dengan a,b,c bilangan asli, FPB(a,b)=1 dan c tidak dapat dibagi dengan sembarang bilangan kudrat sempuna selain 1. Tentukan nilai dari a+b+c.
- 16. Diketahui fungsi

$$f(x) = \left[\tan(\cos(\sin(x))) \right] + \left[\frac{2^x}{2^{1-x} + 2^{x-1}} \right]$$

dengan daerah asal f adalah $x \in \mathbb{R}$ dan

$$g(x) = \left| \frac{1}{x} \right| + \lfloor \log_2 x \rfloor$$

dengan daerah asal g adalah I sehingga daerah hasil f sama dengan daerah hasil g. Total panjang interval I dapat dinyatakan dalam bentuk $\frac{m}{n}$ dengan m, n bilangan asli yang relatif prima. Tentukan nilai mn.

Bagian B

Tuliskan jawaban beserta langkah pekerjaan Anda secara lengkap. Jawaban boleh diketik, difoto, ataupun di-scan. Setiap soal bernilai 7 angka. Tidak ada pengurangan nilai untuk jawaban yang salah.

- 1. Diberikan ABC ialah sebuah segitiga. D, E, F ialah titik tengah dari BC, CA, AB. Misalkan $A_1, A_2, B_1, B_2, C_1, C_2$ ialah titik berat dari AFG, AEG, BDG, BFG, CEG dan CDG.
 - a) Kita tahu bahwa AD, BE, CF bertemu di satu titik G. Buktikan bahwa, dalam titik kartesian, jika $A = (x_a, y_a), B = (x_b, y_b), C = (x_c, y_c)$, maka

$$G = \left(\frac{x_a + x_b + x_c}{3}, \frac{y_a + y_b + y_c}{3}\right).$$

(Hint: Carilah persamaan garis yang melewati titik A dan titik tengah BC, lalu carilah perpotongannya dengan titik B dan titik tengah CA. Setelah itu, buktikan bahwa titik ini ada di garis yang melewati titik C dan titik tengah AB).

- b.) Buktikanlah bahwa titik berat $A_1B_1C_1$ dan $A_2B_2C_2$ merupakan titik yang sama.
- c.) Tentukan nilai dari $\frac{A_1B_2+B_1C_2+C_1A_2}{AB+BC+CA}$ (Hint : Mungkin membantu untuk mencari hubungan dari A_1B_2 dan AB).
- d.) Apakah segitiga $A_1B_1C_1$ dan $A_2B_2C_2$ pasti sebangun? Jelaskan jawaban anda!
- 2. Otto sedang mempelajari bahasa **KTO**. Bahasa **KTO** adalah bahasa yang setiap katanya hanya terdiri dari huruf K, T, dan O. Pembentukan kata-kata dalam bahasa **KTO** ditentukan oleh beberapa aturan sebagai berikut :
 - A. Kata pertama dalam bahasa KTO adalah KT.
 - B. Jika ada kata dalam bentuk xT untuk suatu kata x, maka xTO juga kata dalam bahasa **KTO**.
 - C. Jika ada kata dalam bentuk Kx untuk suatu kata x, maka Kxx juga kata dalam bahasa **KTO**.
 - D. Jika ada kata dalam bentuk xTTTy untuk suatu kata x, y, maka xOy juga kata dalam bahasa **KTO**.
 - E. Jika ada kata dalam bentuk xOOy untuk suatu kata x, y, maka xy jgua kata dalam bahasa **KTO**.
 - F. Suatu kata ada dalam bahasa **KTO** jika dan hanya jika terbentuk menggunakan kombinasi beberapa langkah dari A sampai E.

Sebagai contoh, Otto dapat membuat KOTTO dengan menggunakan langkah sesuai dengan urutan berikut

$$A \rightarrow C \rightarrow C \rightarrow C \rightarrow D \rightarrow D$$

Dapatkah Otto membuat kata KTOTO...TO dengan TO muncul sebanyak $2^{2019}+1$ kali?

3. Misalkan a, b, c, d ialah bilangan asli sehingga $a^2 + b^2 + ab = c^2 + d^2 + cd$. Apakah mungkin a + b + c + d merupakan bilangan prima?

4. Tentukan bilangan asli k yang memaksimalkan ekspresi fungsi $f:\mathbb{N}\to\mathbb{Q}$ berikut dan tentukan nilai maksimumnya.

$$f(k) = \frac{199^{k-1} + 201^{k+1}}{(k-1)! + (k+1)!}$$