

A. Course Handout (Student & Faculty)

Institute/School/College Name	Chitkara University Institute of	Chitkara University Institute of Engineering & Technology			
Department/Centre Name	Department of Applied Science	es			
Programme Name	Bachelor of Engineering (B.E.),	Bachelor of Engineering (B.E.), Computer Science & Engineering			
Course Name	Differential Equations and Transformation	Session	2022 - 2023		
Course Code	22AS002	Semester/Batch	2 nd /2022		
Lecture/Tutorial (Per Week)	6-0-0	Course Credit	4		
Course Coordinator Name	Dr. Krishan Dutt Sharma	Dr. Krishan Dutt Sharma			

1. Scope & Objective of the Course:

- To provide the ability to apply mathematics for the solution of complex engineering and real life problems.
- To Identify, formulate and analyze the engineering problems.
- To arrive at substantiated conclusions using principles of mathematics are covered.

The main objectives of the courses are:

- To introduce and develop the Fourier series, half range sine and cosine series on arbitrary intervals for different problems.
- To find solution of second and higher order ordinary linear differential equations along with its applications in RLC circuits.
- To understand the requirement of Laplace transform, Inverse Laplace transform, properties and its application for the solution of differential equations.
- To be familiar with formation of partial differential equations and their solutions.
- To solve the Laplace, heat and wave equations for a variety of boundary conditions in domains of simple geometry and with simple boundary conditions; the techniques available will include separation of variables, Laplace and Fourier Transform methods.
- To determine continuity/differentiability/analyticity of a complex function; understand complex

2. Course Learning Outcome:

	Course Outcome	POs	CL	KC	Sessions
CLO01	Students will be able to analyze and correlate many real life problems mathematically and find the appropriate solutions for them using Fourier series and Transforms (Fourier and Laplace transform).	PO1,PO2,PO3,PO4,PO12	K2	Factual Conceptual	3
CLO02	Students will be able to solve various problems arisingin physical phenomenon involving rate of change of variables and various processes in Science and Engineering governed by ordinary differential equations.	PO1,PO2,PO4,PO10,PO12	К3	Conceptual Procedural	8
CLO03	Students will be able to recognize and find families of solutions for most physical processes such as heat transfer, elasticity, quantum mechanics, water flow and other practical problems in Science and Engineering, which are governed by ordinary and partial differential equations.	PO1,PO3,PO4,PO5, PO10,PO12	К3	Conceptual Procedural	10

CLO04	Student will be able to analyze functions of complex variables, evaluate complex integrals and	PO1,PO2,PO3,PO12	К3	Factual Conceptual	3
	compute integrals over complex domains.				
Total Sessions .					

co ↓	PO -	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		Н	н	М									Н
CO2		Н	н		М						L		М
CO3		Н		Н	Н	М					М		L
CO4		Н	Н		Н								М

3. ERISE Grid Mapping

Feature Enablement	Level(1-5, 5 being highest)
Entrepreneurship	3
Research	4
Innovation	3
Skills	5
Employability	4

4. Recommended Books (Reference Books/Text Books):

- B01:Advanced Engineering Mathematics, R.K. Jain and S.R.K. Iyengar, Alpha Science International Ltd., 2014.
- B02: The Engineering Mathematics, 2nd Edition, Chitkara University Publication, Vol. II. 2013.
- B03: A text book of Engineering Mathematics, N. P. Bali and Manish Goyal, Laxmi Publications, 2010.
- B04:Advanced Engineering Mathematics, Erwin Kreyszig, 10th ed., Wiley India Pvt. Ltd.2011.
- B05: Engineering Mathematics, Srimanta Pal & Subodh C. Bhunia, Edition 2015, Oxford University Press, 2015.
- B06: Calculus, by Howard Anton, IrlBivens Stephens Davis.

5. Other readings & relevant websites:

S.No.	Link of Journals, Magazines, websites and Research Papers:	LectureNo.
Link 1	https://www.math.psu.edu/tseng/class/Math251/Notes-PDE%20pt2.pdf	1
Link 2	http://www.thefouriertransform.com/ppt	5
Link 3	https://www.math.psu.edu/tseng/class/Math251/Notes-LT1.pdf	16
Link 4	http://www.robots.ox.ac.uk/~jmb/lectures/pdelecture1.pdf	20
Link 5	https://home.iitm.ac.in/jaikrishnan/teaching/MA5360/files/2functions-complex-	24

6. Course Plan:

a. Lecture Plan

Session No.	Topics	Recommended Book
1	Fourier Series: Introduction,	B01
2	Fourier Series on Arbitrary Intervals	B01
3	Half-range cosine and sine series	B01
4	Ordinary Differential Equations: Exact differential equations, Reducible to Exact differential equations.	B02
	FA1 (17 th April, 2022)	
5	Equation solvable for p, y and x, Clairaut's equation	B02
6	Applications to orthogonal trajectories.	B02
7	Second and higher order ordinary linear differential equations with constant coefficients: Complimentary function	B03
8	Particular integrals (standard types), Differential Operator Method	B03
9	Variation of parameters, Method of Undetermined Coefficients.	B05
10	Cauchy-Euler differential equation, Simultaneous linear differential equations (two variables) with constant coefficients.	B04
11	Application to RLC circuit	B05
	ST-I (29 th April, 2023)	
12	Laplace Transform, Linearity and Shifting Property	B02
13	Inverse transforms properties,	B02
14	Transforms of derivatives and integrals,	B02
15	Unit step function, Dirac's delta function	B02
16	Applications to differential equations.	B02
17	Partial Differential equations: Equation of first order, Lagrange's Linear equation.	В03
18	Standard types of first order non-linear partial differential equations	В03
	Solutions of second order linear partial differential equations in two variables with constant coefficients by finding complementary function and particular integral	В03
20	Classification of PDE of second order – parabolic, elliptic and hyperbolic equations, Solution by separation of variables	В03

21	Solution of one-dimensional wave equation, Solution of two-dimensional Laplace equation using Fourier series	В03				
	*ST-II (20 th May, 2022)					
22	Functions of Complex Variables: Analytic Function, Cauchy-Riemann equations.	B05				
23	Harmonic functions	В06				
24	Conformal mapping.	B01				
	END TERM – FULL SYLLABUS					

7. <u>Delivery/Instructional Resources:</u>

Lecture No.	Topics	PPT (link of ppts on the central server)	Industry Expert Session	Web References	Audio-Video
1-3	Fourier Series and Transforms:Introduction, Fourier Series on Arbitrary Intervals, Half-range cosine and sine series.	https://drive.g oogle.com/dri ve/folders/1X m0uHsBuXIZA nPhEJ8PO9 P Tk- jLxzh7?usp=sh aring	NA	https://npte l.ac.in/cours es/122/104/ 122104018/	https://www.yout ube.com/watch?v =r18Gi8lSkfM
4-11	Ordinary Differential Equations: Exact differential equations, Equation solvable for p, y and x, Clairaut's equation, Applications to orthogonal trajectories, Second and higher order ordinary linear differential equations with constant coefficients: Complimentary function, Particular integrals (standard types), Differential Operator Method, Variation of parameters, Method of Undetermined Coefficients, Cauchy-Euler differential equation, Simultaneous linear differential equations (two variables) with constant coefficients, Application to RLC circuit.	https://drive.g oogle.com/dri ve/folders/1X m0uHsBuXIZA nPhEJ8PO9_P Tk- jLxzh7?usp=sh aring	NA	https://ww w.digimat.in /nptel/cours es/video/11 1108081/L0 1.html	https://www.yout ube.com/watch?v =OET0qwat15o&li st=PLdM- WZokR4tbGKbeK8 fDIdEN0NEcvAQIC

12-16	Laplace Transform:Laplace Transform, Linearity and Shifting Property, Inverse transforms properties, Transforms of derivatives and integrals, Unit step function, Dirac's delta function, Applications to differential equations.	https://drive.g oogle.com/dri ve/folders/1X m0uHsBuXIZA nPhEJ8PO9_P Tk- jLxzh7?usp=sh aring	NA	https://ww w.youtube.c om/watch?v =OAEjSiFGd hQ	https://www.khan academy.org/mat h/differential- equations/laplace- transform
17-21	equations: Equation of first order, Lagrange's Linear equation, Standard types of first order non-linear partial differential equations, Solutions of second order linear partial differential equations in two variables with constant coefficients by finding complementary function and particular integral, Classification of PDE of second order – parabolic, elliptic and hyperbolic equations, Solution by separation of variables, Solution of one-dimensional wave equation, Solution of two-dimensional Laplace equation using Fourier series.	https://drive.g oogle.com/dri ve/folders/1X m0uHsBuXIZA nPhEJ8PO9_P Tk- jLxzh7?usp=sh aring	NA	https://npte l.ac.in/cours es/111/107/ 111107108/	https://www.yout ube.com/watch?v =vZEN4NXhmag
22- 24	Functions of Complex Variables: Analytic Function, Cauchy-Riemann equations, Harmonic functions, conformal mapping,	https://drive.g oogle.com/dri ve/folders/1X m0uHsBuXIZA nPhEJ8PO9_P Tk- jLxzh7?usp=sh aring	NA	https://npte I.ac.in/cours es/1111030 70	https://www.slide serve.com/ashton /complex- variables

8. Action plan for different types of learners:

Slow Learners	Average Learners	Fast Learners	
Extra Class on Saturday, Doubt	Doubt-sessions	Doubt Sessions	
sessions.			

9. Evaluation Scheme & Components:

Evaluation	Type of Component	No. of	Weightage of	Mode of
Component		Assessments	Component	Assessment

Component 1	Formative Assessments(FAs)	01	10%	offline
Component 2	Sessional Tests (ST's)	02*	30%	offline
Component 3 End Term Examinations		01	60%	offline
Total			100%	

^{*} Out of 2 ST's the ERP system automatically picks the best 01 ST mark for evaluation.

Details of Evaluation Components:

Evaluation Component	Description	Syllabus Covered (%)	Timeline of Examination	Weightage (%)
Component 01	ST 01	Upto 40%	As defined in Academic Calendar	
	ST 02	41% - 80%	As defined in Academic Calendar	40%
Component 02	mponent 02 End Term Examination* 100% At the end of the semester		60%	
	Total	1		100%

^{*}As per Academic Guidelines minimum 75% attendance is required to become eligible for appearing in the End Semester Examination.

Evaluation Components of Sessional Test and End Term Examination

Type of	Time of Conduction	Total		Question Paper Format			
Assessment		Marks	1 Mark MCQ	2 Mark Subjective	3 Mark Subjective	5 Mark Subjective	10 Mark Subjective
Sessional Test 1	1-11 Sessions	40	5	0	5	2	1
Sessional Test 2	12–21 Sessions	40	5	0	5	2	1
End Term Examination		60	0	10	0	8	0

10. Syllabus of theCourse:

Name of the Course: Differential Equations and Transformations	Course Code: AM122		
Contents		No. of Lectures	Weightage (%)
Unit1 Fourier Series and Transforms :Introduction, Fourier Series on Arbitrary Intervals, Half-range cosine and sine series.		3	12.5

Unit 2 Ordinary Differential Equations: Exact differential equations, Equation solvable for p, y and x, Clairaut's equation, Applications to orthogonal trajectories, Second and higher order ordinary linear differential equations with constant coefficients: Complimentary function, Particular integrals (standard types), Differential Operator Method, Variation of parameters, Method of Undetermined Coefficients, Cauchy-Euler differential equation, Simultaneous linear differential equations (two variables) with constant coefficients, Application to RLC circuit. Laplace Transform:Laplace Transform, Linearity and Shifting Property, Inverse transforms properties, Transforms of derivatives and integrals, Unit step function, Dirac's delta function, Applications to differential equations.	8	33.3
Unit 3 Partial Differential equations: Equation of first order, Lagrange's Linear equation, Charpit's method, Standard types of first order non-linear partial differential equations, Solutions of second order linear partial differential equations in two variables with constant coefficients by finding complementary function and particular integral, Classification of PDE of second order — parabolic, elliptic and hyperbolic equations, Solution by separation of variables, Solution of one-dimensional wave equation, Solution of two-dimensional Laplace equation using Fourier series.	10	41.6
Unit 4 Functions of Complex Variables: Analytic Function, Cauchy-Riemann equations, Harmonic functions, conformal mapping,	3	12.5

11. Academic Honesty policy:

Chitkara University ensures the implementation of the highest level of academic integrity in all the documents being prepared/adopted by its Faculty members and students. Any breach of the same will be tantamount to severe academic penalties.

This Document is approved by:

Designation	Name	Signature
Course Coordinator	Dr. Krishan Dutt Sharma	
Program Head	Dr. Reetu Malhotra	
Dean	Dr. Mohit Kumar Kakkar	
Date (DD/MM/YYYY)	28 th March 2023	