4. (Exercises 2.3) Indicate which of the following Boolean functions of 3 input variables can be realized by a single threshold element with weighted connections to the input.

- (1). x_1
- (2). $x_1x_2x_3$
- (3). x_1+x_2
- (4). $(x_1x_2x_3) + (\bar{x}_1\bar{x}_2\bar{x}_3)$
- (5). 1

Solution:

(1) yes.

 X_2

(3).
$$x_1+x_2$$
 (**Yes**.)

(4).
$$(x_1x_2x_3) + (\bar{x}_1\bar{x}_2\bar{x}_3)$$
 (**No**.)

5. Learning of A Single TLU

• TLU:

• Relation function:

$$f = 1$$
 if $(w_1x_1 + w_2x_2 - \theta) \ge 0$
= 0 otherwise

• Training set:

	\mathbf{x}_1	x_2	d
e_1	5	1	0
e_2	2	1	0
e_3	1	1	1
e_4	3	3	1
e_5	4	2	0
e ₆	2	3	1

• To learn: w_1, w_2, θ

Solution 1:

(1)

$$x_0 = 1$$

$$x_1$$

$$x_2$$

$$w_0 = -\theta$$

$$0$$

$$w_2$$

$$\begin{split} f &= 1 \quad \text{if} \quad \left(w0x_0 + w_1x_1 + w_2x_2 \quad \right) \geq 0 \\ &= 0 \quad \text{otherwise} \end{split}$$

$$W^{new} = W^{old} + c (d - f) X$$

(3) Take c = 1 and the initial weight values to be 0.

Iteration		$W^{old} = (w_0, w_1, w_2)$	$X = (x_0, x_1, x_2)$	d	Σ	f	d= f?	$W^{\text{new}} = (w_0, w_1, w_2)$
1	e_1	(0,0,0)	(1, 5, 1)	0	0	1	no	(-1, -5, -1)
2	e_2	(-1, -5, -1)	(1, 2, 1)	0	-12	0	yes	(-1, -5, -1)
3	e_3	(-1, -5, -1)	(1, 1, 1)	1	-7	0	no	(0, -4, 0)
4	e_4	(0, -4, 0)	(1,3,3)	1	-12	0	no	(1, -1, 3)
5	e_5	(1, -1, 3)	(1, 4, 2)	0	3	1	no	(0, -5, 1)
6	e_6	(0, -5, 1)	(1, 2, 3)	1	-7	0	no	(1, -3, 4)
7	e_1	(1, -3, 4)	(1, 5, 1)	0	-10	0	yes	(1, -3, 4)
8	e_2	(1, -3, 4)	(1, 2, 1)	0	-1	0	yes	(1, -3, 4)
9	e_3	(1, -3, 4)	(1, 1, 1)	1	2	1	yes	(1, -3, 4)
10	e_4	(1, -3, 4)	(1,3,3)	1	4	1	yes	(1, -3, 4)
11	e_5	(1, -3, 4)	(1, 4, 2)	0	-3	0	yes	(1, -3, 4)
12	e_6	(1, -3, 4)	(1, 2, 3)	1	7	1	yes	(1, -3, 4)

(4). Stable. So we have:

 $w_0 = 1$;

 $w_1 = -3$;

 $w_2 = 4$;

Since w_0 = - θ , We got θ = -1. The boundary line is: -3 x_1 + 4 x_2 + 1 = 0.

Solution 2:

- (1)(2) are same with above.
- (3) Take c=0.5 and the initial weight values: $w_0 = 0$, $w_1 = 1$, $w_2 = 1$

Iteration		$W^{old} = (w_0, w_1, w_2)$	$X = (x_0, x_1, x_2)$	d	Σ	f	d=f?	$W^{\text{new}} = (w_0, w_1, w_2)$
1	E_1	(0, 1, 1)	(1, 5, 1)	0	6	1	no	(-0.5, -1.5, 0.5)
2	E_2	(-0.5, -1.5, 0.5)	(1, 2, 1)	0	-3	0	yes	(-0.5, -1.5, 0.5)
3	E_3	(-0.5, -1.5, 0.5)	(1, 1, 1)	1	-1.5	0	no	(0, -1, 1)
4	E_4	(0, -1, 1)	(1,3,3)	1	0	1	yes	(0, -1, 1)
5	E_5	(0, -1, 1)	(1, 4, 2)	0	-2	0	yes	(0, -1, 1)
6	E_6	(0, -1, 1)	(1, 2, 3)	1	1	1	yes	(0, -1, 1)
7	E_1	(0, -1, 1)	(1, 5, 1)	0	-4	0	yes	(0, -1, 1)
8	e_2	(0, -1, 1)	(1, 2, 1)	0	-1	0	yes	(0, -1, 1)
9	e_3	(0, -1, 1)	(1, 1, 1)	1	0	1	yes	(0, -1, 1)

Stable. So we have another set of weights:

$$w_0 = 0,$$

 $w_1 = -1,$

 $w_2 = 1$

then $\theta = 0$ and the boundary is: $-x_1 + x_2 = 0$

- If a training set of examples is linerly separable, then applying the preceptron weight updating rule can always converge to some solution (i.e., a set of weights) in a *finite number* of steps for any initial choice of weights.
- The exact number of steps needed depends on:
 - ✓ Initial weight values
 - ✓ Learning rate in weight updating rule
 - ✓ Order of presentation of traing examples