CADEIRA DE RODAS MOTORIZADA CONTROLADA POR ELETRO-OCULOGRAFIA UTILIZANDO REDES NEURAIS

Douglas Jovenil Castilhos dos Santos (ITI-A/CNPq)

Marilda Machado Spindola (Orientador(a))

INTRODUÇÃO & OBJETIVOS

A pesquisa teve seu foco no tratamento de sinais de eletro-oculografia. A aquisição dos sinais foi realizada por eletrodos posicionados na região ocular do usuário da cadeira de rodas. Os eletrodos, em número de quatro, foram colocados na parte lateral, inferior e superior do olho, indicando a posição que o usuário direcionava o deslocamento da cadeira: esquerda, direita, para cima e para baixo.

METODOLOGIA

O tratamento foi realizado utilizando o algoritmo MultiLayer Perceptron, baseado no neurônio biológico. Os dendritos recebem os impulsos elétricos, passando pelo núcleo, onde o sinal é transmitido para outros neurônios através do axon, formando assim uma rede neural biológica. O neurônio artificial possui camadas de entradas (dendritos), núcleo (valor acumulado) e saída (axon). Os valores iniciais da rede são randômicos, ao utilizar algoritmos de aprendizagem (Backpropagation) a rede construirá associações entre os dados de entradas e saídas, gerando assim uma classificação de sinais.

RESULTADOS

O algoritmo implementado utilizando o framework TensorFlow da Google conseguiu atiginir uma precisão de 93% de acertos em um conjunto de testes com 272 amostras. Como segue na Confusion Matrix, a coluna possui o valor previsto pela rede e na linha o valor esperado. As células em azul indicam os valores que a rede previu corretamente e em vermelho mostram o que a rede errou.

	PREVISTO				
ESPERADO	POSIÇÃO	ESQUERDA	DIREITA	CIMA	BAIXO
	ESQUERDA	68	2	3	0
	DIREITA	1	71	0	5
	CIMA	0	0	64	0
	BAIXO	1	4	2	52

DISCUSSÃO

Os dados de entradas utilizados foram relativos a direção apontada pelo olho do usuário da cadeira. No caso desta pesquisa, constatou-se muita variação entre sinais de mesma posição ocular, porém de diferentes pessoas.

O problema relativo a diferença de padrões de sinais entre diferentes pessoas é que a rede não consegue estabelecer um sinal comum para comandar o controle dos atuadores da cadeira. A rede neural foi utilizada com o intuito de gerar um limiar onde o sinal fosse classificado com maior precisão, evitando erros no controle da cadeira por diferentes usuários.

CONSIDERAÇÕES

Como a aquisição dos dados de entradas da rede foram realizados somente em uma pessoa e em pequena escala, é possível que a rede neural possa estar "viciada". O "sistema aprendeu" os padrões cerebrais relativos a essa única pessoa e assim, a comparação com novas aquisições advindas da mesma pessoa, torna o sistema muito mais confiável.

Para que aconteça um aprimoramento na rede neural seria necessário um banco de dados que fosse alimentado constantemente com sinais de diversas pessoas e em grande escala, para que a rede pudesse aprender um padrão cerebral generalizado, isto é, fazer previsões corretamente de qualquer indivíduo em qualquer estado emocional.

REFERÊNCIAS

CARVALHO, André Carlos Ponce de Leon Ferreira et al. Inteligência Artificial: Uma Abordagem de Aprendizado de Máquina. 1. ed. [S.l.]: LCT Editora, 2011. 396 p.

HAKIN, Simon. Redes Neurais: Princípios e prática. 2. ed. [S.l.]: Bookman, 2017. 908 p.

RASHID, Tariq. Make Your Own Neural Network: A gentle journey through the mathematics of neural networks, and making your own using the Python computer language. 1. ed. [S.l.]: Createspace Independent Publishing Platform, 2016. 224 p.

