Optimization Algorithms Assignment 002

NGUYEN QUAN BA HONG*

Students at Faculty of Math and Computer Science, Ho Chi Minh University of Science, Vietnam

email. nguyenquanbahong@gmail.com $\label{eq:blog} {\tt blog.} \quad {\tt www.nguyenquanbahong.com} \ ^\dagger$

June 21, 2018

Abstract

This assignment aims at solving some selected problems for the final exam of the course $Optimization\ Algorithms.$

^{*}Student ID: 1411103

 $^{^{\}dagger}$ Copyright © 2016-2018 by Nguyen Quan Ba Hong, Student at Ho Chi Minh University of Science, Vietnam. This document may be copied freely for the purposes of education and non-commercial research. Visit my site www.nguyenquanbahong.com to get more.

Contents

1 Problems 3

1 Problems

Problem 1.1. Let $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = \frac{1}{2}(x^2 + 5y^2) + x + y. \tag{1.1}$$

- 1. Prove that f is convex.
- 2. Find minimizer (x^*, y^*) of f in \mathbb{R}^2 .
- 3. By the steepest descent method with exact linesearches, start at the point $(x_0, y_0) = (0, 0)$ and present the first iteration.
- 4. By the steepest descent method with exact linesearches, starting at the point $(x_0, y_0) = (0, 0)$, we obtain a sequence $\{(x_n, y_n)\}_{n \ge 0}$. Find the smallest n such that

$$f(x_n, y_n) - f(x^*, y^*) \le 10^{-2}.$$
 (1.2)

SOLUTION.

1. The gradient and the Hessian matrix of f are given by

$$\nabla f(x,y) = \begin{bmatrix} x+1\\5y+1 \end{bmatrix}, \quad \nabla^2 f(x,y) = \begin{bmatrix} 1 & 0\\0 & 5 \end{bmatrix}, \tag{1.3}$$

for all $(x,y) \in \mathbb{R}^2$. The eigenvalues of $\nabla^2 f(x,y)$ are $\lambda_1 = 1$ and $\lambda_2 = 5$. Hence $\nabla^2 f(x,y)$ is positive definite for all $(x,y) \in \mathbb{R}^2$ and thus f is strictly convex.

- 2. Since f is convex, (x^*, y^*) is (global) minimizer of f if and only if $\nabla f(x^*, y^*) = 0$. Solving the equation $\nabla f(x, y) = 0$ yields that $(x^*, y^*) = (-1, -\frac{1}{5})$ is the unique minimizer of f in \mathbb{R}^2 .
- 3. We choose the starting descent direction as

$$d_0 = -\nabla f(x_0, y_0) = -\nabla f(0, 0) = \begin{bmatrix} -1 \\ -1 \end{bmatrix}.$$
 (1.4)

We will find a step size $t_0 > 0$ such that $f((x_0, y_0) + t_0 d_0)$ attains its minimizer, i.e., $t_0 = \arg\min_{t>0} f((x_0, y_0) + t d_0)$. This is equivalent to $t_0 = \arg\min_{t>0} \left(3t^2 - 2t\right)$, which gives us $t_0 = \frac{1}{3}$. Thus, we obtain, in the first iteration of the steepest descent method with exact linesearches,

$$(x_1, y_1) = (x_0, y_0) + t_0 d_0 = \left(-\frac{1}{3}, -\frac{1}{3}\right).$$
 (1.5)

4. Similarly, for any $n \in \mathbb{Z}_+$, the nth descent direction is given by

$$d_n = -\nabla f(x_n, y_n) = -\begin{bmatrix} x_n + 1 \\ 5y_n + 1 \end{bmatrix}. \tag{1.6}$$

It will be proved, after choosing a sequence t_n 's, that $(x_n, y_n) \neq \left(-1, -\frac{1}{5}\right)$ for all $n \in \mathbb{N}$. We also find a *n*th step size $t_n > 0$ as

$$t_n = \arg\min_{t>0} f\left((x_n, y_n) + td_n\right) \tag{1.7}$$

$$= \arg\min_{t>0} f(x_n - t(x_n + 1), y_n - t(5y_n + 1))$$
 (1.8)

$$=\arg\min_{t>0}g_{n}\left(t\right) ,\tag{1.9}$$

where

$$g_n(t) = \frac{1}{2} \left((x_n + 1)^2 + 5(5y_n + 1)^2 \right) t^2$$
 (1.10)

$$-\left(\left(x_{n}+1\right)^{2}+\left(5y_{n}+1\right)^{2}\right)t+\frac{1}{2}\left(x_{n}^{2}+5y_{n}^{2}\right)+x_{n}+y_{n}. \quad (1.11)$$

Consider the behavior of this quadratic function with respect to the variable t, it is easy to verify that

$$t_n = \frac{(x_n + 1)^2 + (5y_n + 1)^2}{(x_n + 1)^2 + 5(5y_n + 1)^2}.$$
 (1.12)

Hence, the iterations in the steepest descent method with exact linesearches have the following form

$$(x_{n+1}, y_{n+1}) = (x_n, y_n) - \frac{(x_n + 1)^2 + (5y_n + 1)^2}{(x_n + 1)^2 + 5(5y_n + 1)^2} (x_n + 1, 5y_n + 1),$$
(1.13)

for all $n \in \mathbb{N}$, or equivalently,

$$x_{n+1} = x_n - \frac{(x_n+1)^2 + (5y_n+1)^2}{(x_n+1)^2 + 5(5y_n+1)^2} (x_n+1), \qquad (1.14)$$

$$y_{n+1} = y_n - \frac{(x_n + 1)^2 + (5y_n + 1)^2}{(x_n + 1)^2 + 5(5y_n + 1)^2} (5y_n + 1).$$
 (1.15)

Define $a_n := x_n + 1$, $b_n := 5y_n + 1$ for all $n \in \mathbb{N}$, then f can be rewritten

$$f(x_n, y_n) = \frac{5a_n^2 + b_n^2}{10} - \frac{3}{5}, \text{ for all } n \in \mathbb{N},$$
 (1.16)

and (1.14)-(1.15) becomes

$$a_{n+1} = \frac{4a_n b_n^2}{a_n^2 + 5b_n^2},\tag{1.17}$$

$$b_{n+1} = -\frac{4a_n^2 b_n}{a_n^2 + 5b_n^2}. (1.18)$$

Since $(a_0, b_0) = (1, 1)$, (1.17)-(1.18) implies that $(a_n, b_n) \neq (0, 0)$ for all $n \in \mathbb{N}$, i.e., $(x_n, y_n) \neq (-1, -\frac{1}{5})$ for all $n \in \mathbb{N}$ as stated above. Hence, (1.12) make a sense and $t_n > 0$ for all $n \in \mathbb{N}$.

Run the following MATLAB script

```
 f = @(x,y) (x.^2 + 5*y.^2)/2 + x + y; \\ d = @(x,y) -[x + 1; 5*y + 1]; \\ t = @(x,y) ((x+1).^2 + (5*y+1).^2)/((x+1).^2 + 5*(5*y+1).^2); \\ X = [0;0]; % X_n := (x_n,y_n) \\ n = 0; \\ while (abs(f(X(1),X(2)) - f(-1,-1/5)) > 1e-2) \\ Xtemp = X; \\ X = X + t(X(1),X(2))*d(X(1),X(2)); \\ n = n + 1; \\ end \\ n
```

yields that n=6 is the smallest positive integer such that (1.2) holds. \square

Problem 1.2. Let $f: \mathbb{R}^3 \to \mathbb{R}$ be a mapping defined by $f(x) = \frac{1}{2}x^TAx - c^Tx$, where A = diag(1, 5, 25) and $c = [-1, -1, -1]^T$.

- 1. Prove that f is convex.
- 2. Find the minimizer x^* of f in \mathbb{R}^3 .
- 3. By the steepest descent method with exact linesearches, starting at the point $x_0 = (0, 0, 0)$, present the first iteration.

SOLUTION.

- 1. The eigenvalues of $\nabla^2 f(x)$ are $\lambda_1 = 1$, $\lambda_2 = 5$, and $\lambda_3 = 25$. Hence $\nabla^2 f(x)$ is positive definite for all $x \in \mathbb{R}^3$ and thus f is strictly convex.
- 2. Since f is strictly convex, x^* is the unique minimizer of f if and only if $\nabla f(x^*) = 0$. Solving the equation $\nabla f(x) = 0$ yields that $x^* = \left(-1, -\frac{1}{5}, -\frac{1}{25}\right)$ is the unique minimizer of f in \mathbb{R}^3 .
- 3. We choose the starting descent direction as $d_0 = -\nabla f(x_0) = [-1, -1, -1]^T$. The starting step size t_0 is chosen as

$$t_0 := \arg\min_{t>0} f(x_0 + td_0) = \arg\min_{t>0} \left(\frac{31}{2}t^2 - 3t\right) = \frac{3}{31}.$$
 (1.19)

Thus, we obtain, in the first iteration of the steepest descent method with exact linesearches, $x_1 = x_0 + t_0 d_0 = \left[-\frac{3}{31}, -\frac{3}{31}, -\frac{3}{31} \right]^T$.

Problem 1.3. Let $f, g : \mathbb{R}^2 \to \mathbb{R}$ be two mappings defined by

$$f(x,y) = (x-y+1)^{2} + (2x-y)^{2}, (1.20)$$

$$g(x,y) = (x+y)^{2} + (y-2x+1)^{2}.$$
 (1.21)

- 1. Prove that f, g are convex.
- 2. Find the minima of f and g in \mathbb{R}^2 .
- 3. By the steepest descent method with exact linesearches, starting at the point $(x_0, y_0) = (0, 0)$, which the values of f or g will converge to the optimal values faster?

SOLUTION.

1. The gradients and the Hessian matrices of f and g are given by

$$\nabla f(x,y) = \begin{bmatrix} 10x - 6y + 2 \\ 4y - 6x - 2 \end{bmatrix}, \quad \nabla^2 f(x,y) = \begin{bmatrix} 10 & -6 \\ -6 & 4 \end{bmatrix}, \quad (1.22)$$

$$\nabla g(x,y) = \begin{bmatrix} 10x - 2y - 4 \\ 4y - 2x + 2 \end{bmatrix}, \quad \nabla^2 g(x,y) = \begin{bmatrix} 10 & -2 \\ -2 & 4 \end{bmatrix}, \quad (1.23)$$

$$\nabla g(x,y) = \begin{bmatrix} 10x - 2y - 4 \\ 4y - 2x + 2 \end{bmatrix}, \quad \nabla^2 g(x,y) = \begin{bmatrix} 10 & -2 \\ -2 & 4 \end{bmatrix}, \quad (1.23)$$

for all $(x,y) \in \mathbb{R}^2$, respectively. The eigenvalues of f and g are $\lambda_{f,1} =$ $7 - 3\sqrt{5}$, $\lambda_{f,2} = 7 + 3\sqrt{5}$ and $\lambda_{g,1} = 7 - \sqrt{13}$, $\lambda_{g,2} = 7 + \sqrt{13}$, respectively. Hence, both $\nabla^2 f(x,y)$ and $\nabla^2 g(x,y)$ are positive definite for $(x,y) \in \mathbb{R}^2$ and thus f and q are strictly convex.

- 2. Since f and g are strictly convex, $x_{f,\star}, x_{g,\star}$ are their unique minima if and only if $\nabla f(x_{f,*}) = 0$ and $\nabla g(x_{g,*}) = 0$, respectively. Solving the equations $\nabla f(x,y) = 0$, $\nabla g(x,y) = 0$ yields that $x_{f,\star} = (1,2)$ and $x_{g,\star} = (1,2)$ $(\frac{1}{3}, -\frac{1}{3})$ are the minima of f and g in \mathbb{R}^2 , respectively.
- 3. Since $f,\ g$ are of class $C^{2}\left(\mathbb{R}^{2}\right)$ and $\nabla^{2}f\left(x_{f,*}\right),\ \nabla^{2}g\left(x_{g,*}\right)$ are positive definite, we suppose that the sequences $\{x_{f,n}\}_{n\geq 0}$, $\{x_{g,n}\}_{n\geq 0}$ generated by the steepest descent method with exact linesearches converge to $x_{f,\star}$ and $x_{g,\star}$, respectively. Applying Theorem 3.2.1, [2], p. 31 to f and g

$$|f(x_{f,n+1}) - f(x_{f,*})| \le \left(\frac{\lambda_{f,2} - \lambda_{f,1}}{\lambda_{f,2} + \lambda_{f,1}}\right)^2 |f(x_{f,n}) - f(x_{f,*})|$$
 (1.24)

$$= \frac{45}{49} |f(x_{f,n}) - f(x_{f,*})|, \qquad (1.25)$$

$$|g(x_{g,n+1}) - g(x_{g,*})| \le \left(\frac{\lambda_{g,2} - \lambda_{g,1}}{\lambda_{g,2} + \lambda_{g,1}}\right)^2 |g(x_{g,n}) - g(x_{g,*})|$$
 (1.26)

$$= \frac{13}{49} |g(x_{g,n}) - f(x_{g,*})|, \qquad (1.27)$$

i.e., the rates of convergence of the gradient method with exact linesearches for f and g are $\frac{45}{49}$ and $\frac{13}{49}$, respectively. Theoretically, we predict that the values of g will converge to its optimal value faster than those of f.

Problem 1.4. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a mapping defined by

$$f(x,y) = \frac{1}{2}x^2 + \frac{a}{2}y^2, \tag{1.28}$$

where $a \geq 1$. By the steepest descent method with exact linesearches, starting at the point $(x_0, y_0) = (a, 1)$, prove by induction that the nth iteration is

$$(x_n, y_n) = \left(\frac{a-1}{a+1}\right)^n (a, (-1)^n).$$
 (1.29)

Proof. The gradient and the Hessian matrix of f are given by

$$\nabla f(x,y) = \begin{bmatrix} x \\ ay \end{bmatrix}, \quad \nabla^2 f(x,y) = \begin{bmatrix} 1 & 0 \\ 0 & a \end{bmatrix}, \tag{1.30}$$

for all $(x,y) \in \mathbb{R}^2$.

For arbitrary $n \in \mathbb{N}$, the *n*th descent direction is chosen as

$$d_{n} = -\nabla f(x_{n}, y_{n}) = \begin{bmatrix} -x_{n} \\ -ay_{n} \end{bmatrix}, \qquad (1.31)$$

and the step size t_n is chosen as

$$t_n = \arg\min_{t>0} f\left((x_n, y_n) + td_n\right) \tag{1.32}$$

$$= \arg\min_{t>0} \left(\frac{1}{2} \left(x_n^2 + a^3 y_n^2 \right) t^2 - \left(x_n^2 + a^2 y_n^2 \right) t + \frac{1}{2} \left(x_n^2 + a y_n^2 \right) \right)$$
 (1.33)

$$=\frac{x_n^2 + a^2 y_n^2}{x_n^2 + a^3 y_n^2},\tag{1.34}$$

where we will prove that $(x_n, y_n) \neq (0, 0)$ for all $n \in \mathbb{N}$. With the chosen t_n 's, the iterations of the steepest descent method with exact linesearches are

$$(x_{n+1}, y_{n+1}) = (x_n, y_n) + \frac{x_n^2 + a^2 y_n^2}{x_n^2 + a^3 y_n^2} (-x_n, -ay_n), \text{ for all } n \in \mathbb{N},$$
 (1.35)

which is equivalent to

$$x_{n+1} = \frac{a^2 (a-1) x_n y_n^2}{x_n^2 + a^3 y_n^2},$$
(1.36)

$$y_{n+1} = \frac{(1-a)x_n^2 y_n}{x_n^2 + a^3 y_n^2},\tag{1.37}$$

for all $n \in \mathbb{N}$. Combining the fact that $(x_0, y_0) = (a, 1) \neq (0, 0)$ with (1.36)-(1.37) yields that $(x_n, y_n) \neq (0, 0)$ for all $n \in \mathbb{N}$. Thus t_n defined by (1.34) makes sense and $t_n > 0$ for all $n \in \mathbb{N}$.

We now prove (1.29) by induction. The case n=0 is the given starting point. Assume that (1.29) holds for some $n \geq 0$, we have

$$(x_{n+1}, y_{n+1}) = (x_n, y_n) + \frac{x_n^2 + a^2 y_n^2}{x_n^2 + a^3 y_n^2} (-x_n, -ay_n)$$
(1.38)

$$= \left(\frac{a-1}{a+1}\right)^n \left[(a, (-1)^n) + \frac{2a}{1+a} \left(-a, a(-1)^{n+1} \right) \right]$$
 (1.39)

$$= \left(\frac{a-1}{a+1}\right)^n \left(a - \frac{2a}{1+a}, \frac{2a}{1+a}(-1)^{n+1} - (-1)^{n+1}\right)$$
 (1.40)

$$= \left(\frac{a-1}{a+1}\right)^{n+1} \left(a, (-1)^{n+1}\right). \tag{1.41}$$

By the principle of mathematical induction, we deduce that (1.29) holds for all $n \in \mathbb{N}$.

Problem 1.5. Let $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = \frac{1}{2}(y - 2x)^2 + y^4.$$
 (1.42)

Determine the Newton direction of f at the point $x_0 = (1, 2)$.

Solution. The gradient and the Hessian matrix of f are given by

$$\nabla f\left(x,y\right) = \begin{bmatrix} 4x - 2y \\ 4y^3 + y - 2x \end{bmatrix}, \quad \nabla^2 f\left(x,y\right) = \begin{bmatrix} 4 & -2 \\ -2 & 12y^2 + 1 \end{bmatrix}, \qquad (1.43)$$

for all $(x, y) \in \mathbb{R}^2$.

The Newton direction of f at the point $(x,y) \in \mathbb{R}^2$ can be obtained by solving the equation

$$\nabla^2 f(x, y) d(x, y) = -\nabla f(x, y). \tag{1.44}$$

Solving (1.44) yields that $d(x,y) = \left(-x + \frac{y}{3}, -\frac{y}{3}\right)$ is the Newton direction of f at the point (x,y). In particular, $d(1,2) = \left(-\frac{1}{3}, \frac{2}{3}\right)$.

Problem 1.6. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a mapping defined by

$$f(x,y) = (x-y)^{2} + (2x+y-3)^{2}.$$
 (1.45)

- 1. Prove that f is convex.
- 2. Find the minimizer (x^*, y^*) of f in \mathbb{R}^2 .
- 3. By the pure Newton method, starting at the point $(x_0, y_0) = (0, 0)$, present the first iteration. Comment about the point (x_1, y_1) .

SOLUTION.

1. The gradient and the Hessian matrix of f are given by

$$\nabla f(x,y) = \begin{bmatrix} 10x + 2y - 12 \\ 2x + 4y - 6 \end{bmatrix}, \quad \nabla^2 f(x,y) = \begin{bmatrix} 10 & 2 \\ 2 & 4 \end{bmatrix}, \quad (1.46)$$

for all $(x,y) \in \mathbb{R}^2$.

The eigenvalues of $\nabla^2 f(x,y)$ are $\lambda_1=7-\sqrt{13}$, $\lambda_2=7+\sqrt{13}$. Hence $\nabla^2 f(x,y)$ is positive definite for all $(x,y)\in\mathbb{R}^2$ and thus f is strictly convex.

- 2. Since f is strictly convex, (x^*, y^*) is the unique minimizer of f in \mathbb{R}^2 if and only if $\nabla f(x^*, y^*) = 0$. Solving the equation $\nabla f(x, y) = 0$ yields that $(x^*, y^*) = (1, 1)$ is the unique (global) minimizer of f in \mathbb{R}^2 .
- 3. The Newton direction of f at the point $(x,y) \in \mathbb{R}^2$ can be obtained by solving the equation

$$\nabla^2 f(x, y) d(x, y) = -\nabla f(x, y). \tag{1.47}$$

Solving (1.47) yields that d(x,y) = (1-x,1-y) is the Newton direction of f at the point (x,y). In particular, d(0,0) = (1,1). Then the first iteration of the pure Newton method is

$$(x_1, y_1) = (x_0, y_0) + d(x_0, y_0) = (1, 1) = (x^*, y^*).$$
 (1.48)

Thus, we need only one iteration of the pure Newton method to obtain the minimizer. $\hfill\Box$

Problem 1.7. By the pure Newton method, select the starting point and build an iterated sequence $\{x_n\}_{n\in\mathbb{N}}$ to approximate the minimizer of the following minimization problem

Min
$$f(x)$$
 s.t. $x \in \mathbb{R}$ with $f(x) = \frac{1}{4}x^4$. (1.49)

Does the sequence x_n 's converge quadratically to the minimizer?

Solution. The first and second derivatives of f are $f'(x) = x^3$, $f''(x) = x^3$ $3x^2 \geq 0$ for all $x \in \mathbb{R}$. Hence, f is convex, and its unique minimizer is $x^* = 0$ obviously. The Newton direction at an arbitrary point $x \in \mathbb{R}$ can be obtained by solving the equation f''(x) d(x) = -f'(x). Solving the last equation gives us $d(x) = -\frac{x}{3}$. Starting at a point $x_0 \in \mathbb{R}$, the iterations of the pure Newton method are

$$x_{n+1} = x_n + d(x_n) = x_n - \frac{x_n}{3} = \frac{2}{3}x_n$$
, for all $n \in \mathbb{N}$. (1.50)

We consider the following cases depending on the starting value x_0 .

- Case $x_0 = 0$. In this case, (1.50) gives us $x_n = 0$ for all $n \in \mathbb{N}$. Hence, the sequence x_n 's converge quadratically to x^* in this case.
- Case $x_0 \neq 0$. In this case, (1.50) gives us the general formula of x_n as $x_n = \left(\frac{2}{3}\right)^n x_0$ for all $n \in \mathbb{N}$. Then

$$\frac{|x_{n+1} - x^{\star}|}{|x_n - x^{\star}|^2} = \frac{\left(\frac{2}{3}\right)^{n+1} |x_0|}{\left(\frac{2}{3}\right)^{2n} x_0^2} = \left(\frac{2}{3}\right)^{1-n} |x_0|^{-1} \to +\infty \tag{1.51}$$

as $n \to +\infty$. As a consequence, x_n 's does not converge quadratically to the minimizer x^* of f in this case. However, x_n 's converges linearly to x^* since $|x_{n+1} - x^*| = \frac{2}{3} |x_n - x^*|$ for all $n \in \mathbb{N}$.

Problem 1.8. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a mapping defined by

$$f(x,y) = 2x^2 + y^2 - 2xy + 2x^3 + x^4. (1.52)$$

- 1. Find all the stationary points of f in \mathbb{R}^2 .
- 2. By the pure Newton method, starting at the point $(x_0, y_0) = (-1, 0)$, present the first iteration to obtain (x_1, y_1) .

SOLUTION.

1. The gradient and the Hessian matrix of f are given by

$$\nabla f(x,y) = \begin{bmatrix} 4x^3 + 6x^2 + 4x - 2y \\ 2y - 2x \end{bmatrix},$$

$$\nabla^2 f(x,y) = \begin{bmatrix} 12x^2 + 12x + 4 & -2 \\ -2 & 2 \end{bmatrix},$$
(1.53)

$$\nabla^2 f(x,y) = \begin{bmatrix} 12x^2 + 12x + 4 & -2 \\ -2 & 2 \end{bmatrix}, \tag{1.54}$$

for all $(x, y) \in \mathbb{R}^2$. Solving the equation $\nabla f(x, y) = 0$ yields that (-1, -1), $\left(-\frac{1}{2},-\frac{1}{2}\right)$, and (0,0) are the only stationary points of f in \mathbb{R}^2 .

¹ "Stationary points", see [2], or "critical points", see [1].

2. Given $(x, y) \in \mathbb{R}^2$ arbitrarily, the Newton direction of f at the point (x, y) can be obtained by solving the equation $\nabla^2 f(x, y) d(x, y) = -\nabla f(x, y)$. Solving the last equation yields that

$$d(x,y) = -\frac{1}{6x^2 + 6x + 1} \begin{bmatrix} x(2x^2 + 3x + 1) \\ y + 6xy + 6x^2y - 3x^2 - 4x^3 \end{bmatrix}.$$
 (1.55)

Starting at the point $(x_0, y_0) = (-1, 0)$, the first iteration of the pure Newton method is

$$(x_1, y_1) = (x_0, y_0) + d(x_0, y_0) = (-1, -1),$$
 (1.56)

which is one of the stationary points of f.

Problem 1.9. Consider the following problem

(P) Min
$$x_1^2 + x_2^2$$
 s.t. $2x_1 - x_2 - 1 \le 0$. (1.57)

- 1. Prove that (P) is a convex problem and the Slater condition is satisfied.
- 2. Use the KKT conditions (Karush-Kuhn-Tucker conditions), find optimal solution x^* of (P).
- 3. Establish a barrier approximation problem for (P), find the optimal value $x^*(t)$ of that barrier approximation problem. Prove that $x^*(t) \to x^*$ as $t \to 0^+$.

SOLUTION.

1. Set $f(x_1, x_2) = x_1^2 + x_2^2$ and $g(x_1, x_2) = 2x_1 - x_2 - 1$ for all $(x_1, x_2) \in \mathbb{R}^2$, the gradients and the Hessian matrices of f and g are given by

$$\nabla f(x_1, x_2) = \begin{bmatrix} 2x_1 \\ 2x_2 \end{bmatrix}, \quad \nabla^2 f(x_1, x_2) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, \tag{1.58}$$

$$\nabla g(x_1, x_2) = \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \quad \nabla^2 g(x_1, x_2) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \tag{1.59}$$

for all $(x_1, x_2) \in \mathbb{R}^2$, respectively. It is clear that $\nabla^2 f(x_1, x_2)$ and $\nabla^2 g(x_1, x_2)$ are positive definite and semi-positive definite matrices, respectively. Thus f is strictly convex and g is convex. Consequently, (P) is a convex problem.

Since g(0,0) = -1 < 0, the Slater condition is satisfied.

2. The feasible set of (P) is given by

$$C := \{(x_1, x_2) \in \mathbb{R}^2; g(x_1, x_2) = 2x_1 - x_2 - 1 \le 0\}.$$
 (1.60)

The constraint qualification hypothesis $T_C(x^*) = L_C(x^*)$ is guaranteed by (CQ1) or (CQ2) (since g is convex and affine, see, e.g., [2], pp. 89-90). Combining this with the convexity of (P), applying Theorem 8.2.1, [2], p. 89, and Theorem 8.2.2, [2], p. 91 yields that x^* is an optimal solution of

(P) if and only if the vectors (x^*, λ^*) satisfy the KKT conditions. The KKT conditions for (P) are given by

$$(KKT) \begin{cases} \nabla f(x^{\star}) + \lambda^{\star} \nabla g(x^{\star}) = 0, \\ \lambda^{\star} g(x^{\star}) = 0, \\ \lambda^{\star} \geq 0, \\ g(x^{\star}) \leq 0, \end{cases}$$
(1.61)

which is equivalent to

$$2x_1^* + 2\lambda^* = 0, (1.62)$$

$$2x_2^{\star} - \lambda^{\star} = 0, \tag{1.63}$$

$$\lambda^{\star} \left(2x_1^{\star} - x_2^{\star} - 1 \right) = 0, \tag{1.64}$$

$$\lambda^* \ge 0, \tag{1.65}$$

$$\lambda^{\hat{}} \ge 0,$$
 (1.65)
 $2x_1^{\star} - x_2^{\star} - 1 \le 0.$ (1.66)

Solving the first two equations in this system yields $(x_1^*, x_2^*) = \left(-\lambda^*, \frac{\lambda^*}{2}\right)$. Substituting these into the others gives us

$$\lambda^* \left(-\frac{5\lambda^*}{2} - 1 \right) = 0, \tag{1.67}$$

$$\lambda^* \ge 0,\tag{1.68}$$

$$\lambda^* \ge 0, \tag{1.68}$$

$$\frac{5\lambda^*}{2} + 1 \ge 0, \tag{1.69}$$

which has the unique root $\lambda = 0$. Then $x^* = (x_1^*, x_2^*) = (0, 0)$ is the unique optimal solution of (P).

3. The logarithmic barrier function of (P) is

$$B(x_1, x_2, t) := f(x_1, x_2) - t \log(-g(x_1, x_2))$$
(1.70)

$$= x_1^2 + x_2^2 - t \log (1 + x_2 - 2x_1), \qquad (1.71)$$

for all $(x_1, x_2) \in C_B$ and t > 0, where C_B is the feasible set of B and is given by

$$C_B := \{(x_1, x_2) \in \mathbb{R}^2 : g(x_1, x_2) = 2x_1 - x_2 - 1 < 0\}.$$
 (1.72)

We now prove that B is convex.

- * First proof of the convexity of B. We use the following two well-known properties of convex function calculus²:
 - The sum of convex functions is a convex function.
 - If F is concave and G is convex and non-increasing over a univariate domain, then $G \circ F$ is convex.

Applying the former for f and $h := -t \log(-g)$, and the later for F := -gand $G = -t \log x$ yields that B is convex for all t > 0.

 $^{^2\}mathrm{See},\,\mathrm{e.g.},\,\mathrm{https://en.wikipedia.org/wiki/Convex_function}.$

 \star Second proof of the convexity of B. The spatial gradient and the spatial Hessian matrix of B are given by

$$\nabla_x B(x_1, x_2, t) = \begin{bmatrix} 2x_1 + \frac{2t}{x_2 - 2x_1 + 1} \\ 2x_2 - \frac{t}{x_2 - 2x_1 + 1} \end{bmatrix}, \tag{1.73}$$

$$\nabla_x^2 B(x_1, x_2, t) = \begin{bmatrix} 2 + \frac{4t}{(x_2 - 2x_1 + 1)^2} & -\frac{2t}{(x_2 - 2x_1 + 1)^2} \\ -\frac{2t}{(x_2 - 2x_1 + 1)^2} & 2 + \frac{t}{(x_2 - 2x_1 + 1)^2} \end{bmatrix}, \quad (1.74)$$

for all $(x_1, x_2) \in C_B$ and t > 0. The eigenvalues of $\nabla_x^2 B(x_1, x_2, t)$ are $\lambda_1 = 2$ and $\lambda_2 = 2 + \frac{5t}{(y-2x+1)^2}$. Hence, $\nabla_x^2 B(x_1, x_2, t)$ is positive definite for all $(x_1, x_2) \in C_B$ and thus B is strictly convex for all t > 0. \triangle

Since B is strictly convex, x^* is the unique minimizer of B in C_B if and only if $g\left(x^*\right) < 0$ and $\nabla_x B\left(x^*,t\right) = 0$. The roots of the equation $\nabla_x B\left(x_1,x_2,t\right) = 0$ are $\left(\frac{1-\sqrt{10t+1}}{5},\frac{-1+\sqrt{10t+1}}{10}\right)$ and $\left(\frac{1+\sqrt{10t+1}}{5},-\frac{1+\sqrt{10t+1}}{10}\right)$. The former is taken and the later is omitted since

$$g\left(\frac{1-\sqrt{10t+1}}{5}, \frac{-1+\sqrt{10t+1}}{10}\right) = \frac{1-\sqrt{10t+1}}{2} - 1 < 0, \quad (1.75)$$

$$g\left(\frac{1+\sqrt{10t+1}}{5}, -\frac{1+\sqrt{10t+1}}{10}\right) = \frac{1+\sqrt{10t+1}}{2} - 1 > 0, \quad (1.76)$$

for all t > 0. Thus, $x^*(t) = \left(\frac{1 - \sqrt{10t + 1}}{5}, \frac{-1 + \sqrt{10t + 1}}{10}\right)$ is the optimal solution of the barrier approximation problem for all t > 0. It is evident that $x^*(t) \to x^*$ as $t \to 0^+$.

Problem 1.10. Consider the following problem

(P) Min
$$x_1 - x_2$$
 s.t. $x_1^2 + x_2^2 \le 1$. (1.77)

- 1. Prove that (P) is a convex problem, and the Slater condition is satisfied.
- 2. Use the KKT conditions, find the optimal solution x^* of (P).
- 3. Establish the barrier approximation problem for (P), find the optimal solution $x^*(t)$ of that barrier approximation problem. Prove that $x^*(t) \to x^*$ as $t \to 0^+$.

SOLUTION.

1. Set $f(x_1, x_2) = x_1 - x_2$, $g(x_1, x_2) = x_1^2 + x_2^2 - 1$ for all $(x_1, x_2) \in \mathbb{R}^2$, the gradients and the Hessian matrices of f and g are given by

$$\nabla f(x_1, x_2) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \quad \nabla^2 f(x_1, x_2) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \tag{1.78}$$

$$\nabla g(x_1, x_2) = \begin{bmatrix} 2x_1 \\ 2x_2 \end{bmatrix}, \quad \nabla^2 g(x_1, x_2) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix},$$
 (1.79)

for all $(x_1, x_2) \in \mathbb{R}^2$, respectively. It is clear that $\nabla^2 f(x_1, x_2)$ and $\nabla^2 g(x_1, x_2)$ are semi-positive definite and positive definite matrices, respectively. Thus, f is convex and g is strictly convex. Consequently, (P) is a convex problem.

Since g(0,0) = -1 < 0, the Slater condition is satisfied.

2. The feasible set of (P) is given by

$$C := \{(x_1, x_2) \in \mathbb{R}^2; g(x_1, x_2) = x_1^2 + x_2^2 - 1 \le 0\}.$$
 (1.80)

The constraint qualification hypothesis $T_C(x^*) = L_C(x^*)$ is guaranteed by the Slater constraint qualification (CQ2). Combining this with the convexity of (P), applying Theorem 8.2.1, and Theorem 8.2.2, [2], yields that x^* is an optimal solution of (P) if and only if the vectors (x^*, λ^*) satisfy the KKT conditions. The KKT conditions for (P) are given by (1.61), i.e.,

$$2\lambda^{\star} x_1^{\star} + 1 = 0, \tag{1.81}$$

$$2\lambda^* x_2^* - 1 = 0, (1.82)$$

$$\lambda^{\star} \left(\left(x_1^{\star} \right)^2 + \left(x_2^{\star} \right)^2 - 1 \right) = 0,$$
 (1.83)

$$\lambda^* \ge 0, \tag{1.84}$$

$$(x_1^*)^2 + (x_2^*)^2 - 1 \le 0.$$
 (1.85)

The first equation guarantees that $\lambda^{\star} \neq 0$. Solving the first two equations in this system yields $(x_1^{\star}, x_2^{\star}) = \left(-\frac{1}{2\lambda^{\star}}, \frac{1}{2\lambda^{\star}}\right)$. Plugging these into the others gives us

$$\lambda^{\star} \left(\frac{1}{2(\lambda^{\star})^2} - 1 \right) = 0, \tag{1.86}$$

$$\lambda^{\star} \ge 0, \tag{1.87}$$

$$\lambda^* \ge 0, \tag{1.87}$$

$$\frac{1}{2(\lambda^*)^2} \le 1, \tag{1.88}$$

which has the unique root $\lambda^* = \frac{1}{\sqrt{2}}$. Then $(x_1^*, x_2^*) = \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ is the unique optimal solution of (P).

3. The logarithmic barrier function of (P) is

$$B(x_1, x_2, t) := f(x_1, x_2) - t \log(-g(x_1, x_2))$$
(1.89)

$$= x_1 - x_2 - t \log \left(1 - x_1^2 - x_2^2\right), \tag{1.90}$$

for all $(x_1, x_2) \in C_B$ and t > 0, where C_B is the feasible set of B and is given by

$$C_B := \{(x_1, x_2) \in \mathbb{R}^2; g(x_1, x_2) = x_1^2 + x_2^2 - 1 < 0\}.$$
 (1.91)

We now prove that B is convex in C_B .

- * First proof of the convexity of B. As in the proof of Problem 1.9, the convexity of f, g and $-\log x$ yields the that of B.
- \star Second proof of the convexity of B. The spatial gradient and the spatial Hessian matrix of B are given by

$$\nabla_x B(x_1, x_2, t) = \begin{bmatrix} 1 - \frac{2tx_1}{x_1^2 + x_2^2 - 1} \\ -1 - \frac{2tx_2}{x_1^2 + x_2^2 - 1} \end{bmatrix},$$
 (1.92)

and

$$\nabla_x^2 B(x_1, x_2, t) = \frac{2t}{(x_1^2 + x_2^2 - 1)^2} \begin{bmatrix} x_1^2 - x_2^2 + 1 & 2x_1 x_2 \\ 2x_1 x_2 & x_2^2 - x_1^2 + 1 \end{bmatrix}, \quad (1.93)$$

for all $(x_1, x_2) \in C_B$ and t > 0. The eigenvalues of $\nabla_x^2 B(x_1, x_2, t)$ are

$$\lambda_1 = \frac{2t\left(x_1^2 + x_2^2 + 1\right)}{\left(x_1^2 + x_2^2 - 1\right)^2},\tag{1.94}$$

$$\lambda_2 = -\frac{2t}{x_1^2 + x_2^2 - 1},\tag{1.95}$$

which are positive for all $(x_1, x_2) \in C_B$ and t > 0. Hence, $\nabla_x^2 B(x_1, x_2, t)$ is positive definite for all $(x_1, x_2) \in C_B$ and t > 0, and thus B is strictly convex for all t > 0.

Since B is strictly convex, x^* is the unique minimizer of B in C_B if and only if $g\left(x^*\right) < 0$ and $\nabla_x B\left(x^*, t\right) = 0$. The roots of the equation $\nabla_x B\left(x, t\right) = 0$ are $\left(\frac{t - \sqrt{t^2 + 2}}{2}, -\frac{t - \sqrt{t^2 + 2}}{2}\right)$, $\left(\frac{t + \sqrt{t^2 + 2}}{2}, -\frac{t + \sqrt{t^2 + 2}}{2}\right)$. The former is taken and the later is omitted since

$$g\left(\frac{t - \sqrt{t^2 + 2}}{2}, -\frac{t - \sqrt{t^2 + 2}}{2}\right) = \frac{2t\left(t - \sqrt{t^2 + 2}\right)}{2} < 0, \tag{1.96}$$

$$g\left(\frac{t+\sqrt{t^2+2}}{2}, -\frac{t+\sqrt{t^2+2}}{2}\right) = \frac{2t\left(t+\sqrt{t^2+2}\right)}{2} > 0, \tag{1.97}$$

for all t>0. Thus, $x^{\star}\left(t\right)=\left(\frac{t-\sqrt{t^{2}+2}}{2},-\frac{t-\sqrt{t^{2}+2}}{2}\right)$ is the optimal solution of the barrier approximation problem for all t>0. It is evident that $x^{\star}\left(t\right)\to x^{\star}$ as $t\to0^{+}$.

Problem 1.11. Consider the following problem

(P) Min
$$x$$
 s.t. $0 \le x \le 1$. (1.98)

- 1. Prove that (P) is a convex problem and the Slater condition is satisfied.
- 2. Use the KKT conditions, find the optimal solution x^* of (P).
- 3. Establish the barrier approximation problem for (P), find the optimal solution $x^*(t)$ of the barrier approximation problem. Prove that $x^*(t) \to x^*$ as $t \to 0^+$.

SOLUTION.

1. Set f(x) = x, $g_1(x) = -x$, and $g_2(x) = x - 1$ for all $(x_1, x_2) \in \mathbb{R}^2$, the first and second derivatives of f, g_1 , and g_2 are given by $f'(x) = g_2'(x) = 1$, $g_1'(x) = -1$, $f''(x) = g_1''(x) = g_2''(x) = 0$. Hence, these functions are convex and thus (P) is a convex problem.

Since $g_1\left(\frac{1}{2}\right) = g_2\left(\frac{1}{2}\right) = -\frac{1}{2} < 0$, the Slater condition is satisfied.

2. The feasible set of (P) is given by

$$C := \{x \in \mathbb{R}; g_i(x) \le 0, i = 1, 2\} = [0, 1].$$
 (1.99)

The constraint qualification hypothesis $T_C(x^*) = L_C(x^*)$ is guaranteed by (CQ1) or (CQ2) since g_1 , g_2 are convex and affine. Combining this with the convexity of (P), applying Theorem 8.2.1 and Theorem 8.2.2, [2] yields that x^* is an optimal solution of (P) if and only if the vector (x^*, λ^*) satisfy the KKT conditions. The KKT conditions for (P) are given by

$$(KKT) \begin{cases} f'(x^{\star}) + \lambda_{1}^{\star}g_{1}'(x^{\star}) + \lambda_{2}^{\star}g_{2}'(x^{\star}) = 0, \\ \lambda_{1}^{\star}g_{1}(x^{\star}) = \lambda_{2}^{\star}g_{2}(x^{\star}) = 0, \\ \lambda_{1}^{\star} \geq 0, \ \lambda_{2}^{\star} \geq 0, \\ g_{1}(x^{\star}) \leq 0, \ g_{2}(x^{\star}) \leq 0, \end{cases}$$
(1.100)

which is equivalent to

$$1 - \lambda_1^* + \lambda_2^* = 0, \tag{1.101}$$

$$\lambda_1^* x^* = \lambda_2^* (x^* - 1) = 0, \tag{1.102}$$

$$\lambda_1^* \ge 0, \lambda_2^* \ge 0, \tag{1.103}$$

$$0 \le x^* \le 1,\tag{1.104}$$

We have $\lambda_1 = 1 + \lambda_2 \ge 1 > 0$, thus the second equation gives us $x^* = 0$ and then $\lambda_2 = 0$, $\lambda_1 = 1$. Thus, $x^* = 0$ is the optimal solution of (P).

3. The logarithmic barrier function of (P) is

$$B(x,t) := f(x) - t\log(-g_1(x)) - t\log(-g_2(x))$$
(1.105)

$$= x - t \log(x(1-x)) \tag{1.106}$$

for all $x \in C_B$ and t > 0, where C_B is the feasible set of B and is given by

$$C_B := \{ x \in \mathbb{R}; g_i(x) < 0, \ i = 1, 2 \} = (0, 1).$$
 (1.107)

We now prove that B is convex in C_B .

- * First proof of the convexity of B. As in the proof of Problem 1.9, the convexity of f, g_1 , g_2 and $-\log x$ yields that of B.
- \star Second proof of the convexity of B. The first and second x-derivatives of B are given by

$$\frac{\partial B}{\partial x}(x,t) = 1 + \frac{t(2x-1)}{x(1-x)}, \ \frac{\partial^2 B}{\partial x^2}(x,t) = t\left(\frac{1}{x^2} + \frac{1}{(1-x)^2}\right), \quad (1.108)$$

for all $x \in (0,1)$ and t>0. Thus, B is strictly convex for all t>0. \triangle Since B is strictly convex, x^\star is the unique minimizer of B in C_B if and only if $\frac{\partial B}{\partial x}\left(x^\star,t\right)=0$ and $x^\star\in(0,1)$. The roots of the equation $\frac{\partial B}{\partial x}\left(x,t\right)=0$ are $x_1=\frac{1}{2}\left(2t+1-\sqrt{4t^2+1}\right),\ x_2=\frac{1}{2}\left(2t+1+\sqrt{4t^2+1}\right)$. The former is taken and the later is omitted since $x_2>1$ and $x_1\in(0,1)$:

$$\frac{2t+1-\sqrt{4t^2+4t+1}}{2} \le \frac{2t+1-\sqrt{4t^2+1}}{2} \le \frac{2t+1-2t}{2}, \quad (1.109)$$

for all t > 0. Thus $x^{\star}(t) = \frac{1}{2} \left(2t + 1 - \sqrt{4t^2 + 1} \right)$ is the optimal solution of the barrier approximation problem for all t > 0. It is evident that $x^{\star}(t) \to x^{\star}$ as $t \to 0^+$.

Problem 1.12. Consider the following problem

(P) Min
$$\left(x_1 + \frac{3}{2}\right)^2 + \left(x_2 - \frac{3}{2}\right)^2$$
 s.t. $x_1 \ge -1$ and $x_2 \ge 1$. (1.110)

- 1. Use the methods presented in [2], find the optimal solution x^* of (P).
- 2. Establish the barrier approximation problem for (P), find the optimal solution $x^*(t)$ of that barrier approximation problem. Prove that $x^*(t) \to x^*$ as $t \to 0^+$.

SOLUTION.

1. Set $f(x_1, x_2) = (x_1 + \frac{3}{2})^2 + (x_2 - \frac{3}{2})^2$, $g_1(x_1, x_2) = -1 - x_1$, and $g_2(x_1, x_2) = 1 - x_2$ for all $(x_1, x_2) \in \mathbb{R}^2$, the gradients the Hessian matrices of f, g_1 , and g_2 are given by

$$\nabla f(x_1, x_2) = \begin{bmatrix} 2x_1 + 3 \\ 2x_2 - 3 \end{bmatrix}, \ \nabla^2 f(x_1, x_2) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, \tag{1.111}$$

and

$$\nabla g_1(x_1, x_2) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \ \nabla^2 g_1(x_1, x_2) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix},$$
 (1.112)

$$\nabla g_2(x_1, x_2) = \begin{bmatrix} 0 \\ -1 \end{bmatrix}, \ \nabla^2 g_1(x_1, x_2) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \tag{1.113}$$

for all $(x_1, x_2) \in \mathbb{R}^2$, respectively. It is clear that $\nabla^2 f(x_1, x_2)$ is positive definite and $\nabla^2 g_i(x_1, x_2)$, for i = 1, 2, are semi-positive definite. Thus, f is strictly convex, and g_i , i = 1, 2, are convex. Consequently, (P) is a convex problem.

Since $g_1(0,2) = g_2(0,2) = -1$, the Slater condition is satisfied.

The feasible set of (P) is given by

$$C := \{(x_1, x_2) \in \mathbb{R}^2; g_i(x_1, x_2) \le 0, \ i = 1, 2\} = [-1, +\infty) \times [1, +\infty).$$
(1.114)

The constraint qualification hypothesis $T_C(x^*) = L_C(x^*)$ is guaranteed by (CQ1) or (CQ2) since g_1 , g_2 are convex and affine. Combining this with the convexity of (P), applying Theorem 8.2.1 and Theorem 8.2.2, [2] yields that x^* is an optimal solution of (P) if and only if the vectors (x^*, λ^*) satisfy the KKT conditions. The KKT conditions for (P) are given by

$$(KKT) \begin{cases} \nabla f(x^{\star}) + \lambda_{1}^{\star} \nabla g_{1}(x^{\star}) + \lambda_{2}^{\star} \nabla g_{2}(x^{\star}) = 0, \\ \lambda_{1}^{\star} g_{1}(x^{\star}) = \lambda_{2}^{\star} g_{2}(x^{\star}) = 0, \\ \lambda_{1}^{\star} \geq 0, \lambda_{2}^{\star} \geq 0, \\ g_{1}(x^{\star}) \leq 0, g_{2}(x^{\star}) \leq 0, \end{cases}$$

$$(1.115)$$

which is equivalent to

$$2x_1^* + 3 - \lambda_1^* = 0, \tag{1.116}$$

$$2x_2^* - 3 - \lambda_2^* = 0, (1.117)$$

$$\lambda_1^{\star} (1 + x_1^{\star}) = 0, \tag{1.118}$$

$$\lambda_2^{\star} \left(1 - x_2^{\star} \right) = 0, \tag{1.119}$$

$$\lambda_1^{\star} \ge 0, \ \lambda_2^{\star} \ge 0, \tag{1.120}$$

$$x_1^* \ge -1, \ x_2^* \ge 1.$$
 (1.121)

Solving the first two equations gives us $x_1^* = \frac{\lambda_1^* - 3}{2}$, $x_2^* = \frac{\lambda_2^* + 3}{2}$. Substituting these into the others yields

$$\lambda_1^{\star} (\lambda_1^{\star} - 1) = 0, \tag{1.122}$$

$$\lambda_2^{\star} \left(\lambda_2^{\star} + 1 \right) = 0, \tag{1.123}$$

$$\lambda_1^{\star} \ge 0, \lambda_2^{\star} \ge 0, \tag{1.124}$$

$$\lambda_1^{\star} \ge 1, \lambda_2^{\star} \ge -1. \tag{1.125}$$

which implies $\lambda_1^* = 1$, $\lambda_2^* = 0$. Thus $x^* = (x_1^*, x_2^*) = \left(-1, \frac{3}{2}\right)$ is the unique optimal solution of (P).

2. The logarithmic barrier function of (P) is

$$B(x_1, x_2, t) := f(x_1, x_2) - t \log (g_1(x_1, x_2) g_2(x_1, x_2))$$

$$= \left(x_1 + \frac{3}{2}\right)^2 + \left(x_2 - \frac{3}{2}\right)^2 - t \log ((1 + x_1)(x_2 - 1)),$$
(1.126)

(1.127)

for all $(x_1, x_2) \in C_B$ and t > 0, where C_B is the feasible set of B and is given by

$$C_B := \{(x_1, x_2) \in \mathbb{R}^2; g_i(x_1, x_2) < 0, \ i = 1, 2\} = (-1, +\infty) \times (1, +\infty).$$

$$(1.128)$$

We now prove that B is convex in C_B .

- * First proof of the convexity of B. As in the proof of Problem 1.9, the convexity of f, g_1 , g_2 and $-\log x$ yields that of B.
- \star Second proof of the convexity of B. The spatial gradient and the spatial Hessian matrix of B are given by

$$\nabla_x B(x_1, x_2, t) = \begin{bmatrix} 2x_1 + 3 - \frac{t}{x_1 + 1} \\ 2x_2 - 3 - \frac{t}{x_2 - 1} \end{bmatrix}, \tag{1.129}$$

$$\nabla_x^2 B(x_1, x_2, t) = \begin{bmatrix} 2 + \frac{t}{(x_1 + 1)^2} & 0\\ 0 & 2 + \frac{t}{(x_2 - 1)^2} \end{bmatrix}, \tag{1.130}$$

for all $(x_1, x_2) \in C_B$ and t > 0. It is evident that $\nabla_x^2 B(x_1, x_2, t)$ is positive definite and thus B is strictly convex for all t > 0.

Since B is strictly convex, x^* is the unique minimizer of B in C_B if and only if $\nabla_x B(x^*,t) = 0$ and $x^* \in C_B$. The four roots of the equation $\nabla_x B(x,t) = 0$ are

$$(x_1, x_2) = \left\{ \left(\frac{-5 \pm \sqrt{8t+1}}{4}, \frac{5 \pm \sqrt{8t+1}}{4} \right) \right\}. \tag{1.131}$$

The only solution belonging to C_B is $\left(\frac{-5+\sqrt{8t+1}}{4}, \frac{5+\sqrt{8t+1}}{4}\right)$. Thus $x^*(t) = \left(\frac{-5+\sqrt{8t+1}}{4}, \frac{5+\sqrt{8t+1}}{4}\right)$ is the optimal solution of the barrier approximation problem for all t > 0. It is evident that $x^*(t) \to x^*$ as $t \to 0^+$.

Problem 1.13. Consider the following problem

(P) Min
$$x_1 + x_2$$
 s.t. $-x_1^2 + x_2 \ge 0$ and $x_1 \ge 0$. (1.132)

- 1. Use the methods presented in [2], find the optimal solution x^* of (P).
- 2. Establish the barrier approximation problem for (P), find the optimal solution $x^*(t)$ of that barrier approximation problem. Prove that $x^*(t) \to x^*$ as $t \to 0^+$.

SOLUTION.

1. Set $f(x_1, x_2) = x_1 + x_2$, $g_1(x_1, x_2) = x_1^2 - x_2$, and $g_2(x_1, x_2) = -x_1$ for all $(x_1, x_2) \in \mathbb{R}^2$, the gradients and the Hessian matrices of f, g_1 , and g_2 are given by

$$\nabla f(x_1, x_2) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \nabla^2 f(x_1, x_2) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \tag{1.133}$$

and

$$\nabla g_1(x_1, x_2) = \begin{bmatrix} 2x_1 \\ -1 \end{bmatrix}, \quad \nabla^2 g_1(x_1, x_2) = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}, \tag{1.134}$$

$$\nabla g_2(x_1, x_2) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \quad \nabla^2 g_2(x_1, x_2) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad (1.135)$$

for all $(x_1, x_2) \in \mathbb{R}^2$, respectively. It is clear that these three Hessian matrices are semi-positive definite. Thus, f, g_1 , and g_2 are convex. Consequently, (P) is a convex problem.

Since $g_1(1,2) = g_2(1,2) = -1 < 0$, the Slater condition is satisfied.

The feasible set of (P) is given by

$$C := \{(x_1, x_2) \in \mathbb{R}^2; g_i(x_1, x_2) \le 0, \ i = 1, 2\}.$$
(1.136)

The constraint qualification hypothesis $T_C(x^*) = L_C(x^*)$ is guaranteed by the Slater constraint qualification (CQ2). Combining this with the convexity of (P), applying Theorem 8.2.1 and Theorem 8.2.2, [2] yields that x^* is an optimal solution of (P) if and only if the vectors (x^*, λ^*) satisfy the KKT conditions. The KKT conditions for (P) are given by (1.115), i.e.,

$$1 + 2\lambda_1^* x_1^* - \lambda_2^* = 0, \tag{1.137}$$

$$1 - \lambda_1^* = 0, \tag{1.138}$$

$$\lambda_1^{\star} \left((x_1^{\star})^2 - x_2^{\star} \right) = 0,$$
 (1.139)

$$\lambda_2^{\star} x_1^{\star} = 0, \tag{1.140}$$

$$\lambda_1^{\star} \ge 0, \ \lambda_2^{\star} \ge 0, \tag{1.141}$$

$$(x_1^{\star})^2 \le x_2^{\star}, \tag{1.142}$$

$$x_1^* \ge 0. \tag{1.143}$$

The second equation gives us $\lambda_1^* = 1$, then the third one implies that $(x_1^*)^2 = x_2^*$. Hence, we obtain

$$1 + 2x_1^* - \lambda_2^* = 0, (1.144)$$

$$\left(x_{1}^{\star}\right)^{2} = x_{2}^{\star} \tag{1.145}$$

$$\lambda_2^{\star} x_1^{\star} = 0, \tag{1.146}$$

$$\lambda_2^{\star} \ge 0, \tag{1.147}$$

$$x_1^* \ge 0. \tag{1.148}$$

The first equation and the last one implies that $\lambda_2^* = 1 + 2x_1^* \ge 1$. Combining this with the third equation yields that $x_1^* = 0$, then $x_2^* = 0$ and $\lambda_2^* = 1$. Thus $x^* = (x_1^*, x_2^*) = (0, 0)$ is the unique optimal solution of (P).

2. The logarithmic barrier function of (P) is

$$B(x_1, x_2, t) := f(x_1, x_2) - t \log(g_1(x_1, x_2) g_2(x_1, x_2))$$
(1.149)

$$= x_1 + x_2 - t \log \left(x_1 \left(x_2 - x_1^2 \right) \right), \tag{1.150}$$

for all $(x_1, x_2) \in C_B$ and t > 0, where C_B is the feasible set of B and is given by

$$C_B := \{(x_1, x_2) \in \mathbb{R}^2; g_i(x_1, x_2) < 0, i = 1, 2\}.$$
 (1.151)

We now prove that B is convex in C_B .

- * First proof of the convexity of B. As in the proof of Problem 1.9, the convexity of f, g_1 , g_2 and $-\log x$ yields that of B.
- \star Second proof the convexity of B. The spatial gradient and the spatial Hessian matrix of B are given by

$$\nabla_x B(x_1, x_2, t) = \begin{bmatrix} 1 - \frac{t(x_2 - 3x_1^2)}{x_1(x_2 - x_1^2)} \\ 1 - \frac{t}{x_2 - x_1^2} \end{bmatrix},$$
(1.152)

$$\nabla_x^2 B(x_1, x_2, t) = \frac{1}{(x_2 - x_1^2)^2} \begin{bmatrix} \frac{t(3x_1^4 + x_2^2)}{x_1^2} & -2tx_1 \\ -2tx_1 & t \end{bmatrix}, \quad (1.153)$$

for all $(x_1, x_2) \in C_B$ and t > 0. The eigenvalues of $\nabla_x^2 B(x_1, x_2, t)$, denoted by λ_1 and λ_2 satisfy

$$\lambda_1 + \lambda_2 = \operatorname{trace}\left(\nabla_x^2 B\left(x_1, x_2, t\right)\right) = \frac{t\left(3x_1^4 + x_1^2 + x_2^2\right)}{x_1^2 (x_2 - x_1^2)^2} > 0, \quad (1.154)$$

$$\lambda_1 \lambda_2 = \det \left(\nabla_x^2 B(x_1, x_2, t) \right) = \frac{t^2 \left(x_1^2 + x_2 \right)}{x_1^2 (x_2 - x_1^2)^3} > 0.$$
 (1.155)

This implies that λ_1 and λ_2 are positive, and thus $\nabla_x^2 B(x_1, x_2, t)$ is positive definite for all $(x_1, x_2) \in C_B$ and t > 0. Consequently, B is strictly convex in C_B for all t > 0.

Since B is strictly convex, x^* is the unique minimizer of B in C_B if and only if $\nabla_x B\left(x^*,t\right)=0$ and $x^*\in C_B$. The roots of the equation $\nabla_x B\left(x,t\right)=0$ are $\left(\frac{-1-\sqrt{8t+1}}{4},\frac{12t+1+\sqrt{8t+1}}{8}\right)$, $\left(\frac{-1+\sqrt{8t+1}}{4},\frac{12t+1-\sqrt{8t+1}}{8}\right)$. The former is omitted and the later is taken since $\frac{-1-\sqrt{8t+1}}{4}<0$ and $\frac{-1+\sqrt{8t+1}}{4}>0$ for all t>0. Thus $x^*\left(t\right)=\left(\frac{-1+\sqrt{8t+1}}{4},\frac{12t+1-\sqrt{8t+1}}{8}\right)$ is the optimal solution of the barrier approximation problem for all t>0. It is evident that $x^*\left(t\right)\to x^*$ as $t\to 0^+$.

Problem 1.14. Consider the following problem

(P) Min
$$x^2 + xy + \frac{1}{2}y^2$$
 s.t. $1 - x^2 - xy = 0$. (1.156)

- 1. Prove that the Mangasarian-Fromovitz constraint qualification is satisfied.
- 2. Solve the KKT system, find candidate solutions.
- 3. Find the optimal solution of (P).

SOLUTION.

1. Set $f(x,y) = x^2 + xy + \frac{1}{2}y^2$, $h(x,y) = 1 - x^2 - xy$ for all $(x,y) \in \mathbb{R}^2$, the gradients and the Hessian matrices of f and h are given by

$$\nabla f(x,y) = \begin{bmatrix} 2x+y \\ x+y \end{bmatrix}, \quad \nabla^2 f(x,y) = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}, \tag{1.157}$$

$$\nabla h\left(x,y\right) = \begin{bmatrix} -2x - y \\ -x \end{bmatrix}, \quad \nabla^{2}h\left(x,y\right) = \begin{bmatrix} -2 & -1 \\ -1 & 0 \end{bmatrix}, \tag{1.158}$$

for all $(x,y) \in \mathbb{R}^2$. The feasible set of (P) is given by

$$C := \{(x, y) \in \mathbb{R}^2; h(x, y) = 1 - x^2 - xy = 0\}. \tag{1.159}$$

We check the validity of the Mangasarian-Fromovitz constraint qualification for (P). Suppose that $a\nabla h\left(x,y\right)=0$. Since $(x,y)\in C$, we have $x\neq 0$ (otherwise, $h\left(0,y\right)=1$). Thus $\nabla h\left(x,y\right)\neq (0,0)$, and the given linear equation implies that a=0, i.e., $\{\nabla h\left(x,y\right)\}$ is linearly independent for all $(x,y)\in C$. Moreover, $\nabla h(x,y)^T\left(0,0\right)=0$ for all $(x,y)\in C$. In particular, $\{\nabla h\left(x^\star,y^\star\right)\}$ is linearly independent and $\nabla h(x^\star,y^\star)^T\left(0,0\right)=0$ for any local minimizer of (P), i.e., the Mangasarian-Fromovitz constraint qualification is satisfied.

2. Consider the KKT conditions

$$(KKT) \begin{cases} \nabla f(x^*, y^*) + \mu^* \nabla h(x^*, y^*) = 0, \\ h(x^*, y^*) = 0, \end{cases}$$
(1.160)

i.e.,

$$(1 - \mu^*)(2x^* + y^*) = 0, (1.161)$$

$$(1 - \mu^*) x^* + y^* = 0, \tag{1.162}$$

$$(x^*)^2 + x^*y^* = 1, (1.163)$$

If $\mu^* = 1$, the second equation gives us $y^* = 0$ and then the third one implies that $x^* = \pm 1$. If $\mu^* = -1$, the first two equations gives $2x^* + y^* = 0$. Plugging $y^* = -2x^*$ into the third ones yields $(x^*)^2 = -1$, which is absurd for $x^* \in \mathbb{R}$. If $\mu \neq \pm 1$, solving the first two equations yields that $(x^*, y^*) = (0, 0)$, but this contradicts the third one.

Thus, we have two candidate solutions $x_1^* = (1,0), x_2^* = (-1,0).$

3. Consider the Lagrangian function

$$L(x, y, \mu) := f(x, y) + \mu h(x, y)$$
(1.164)

$$= x^{2} + xy + \frac{1}{2}y^{2} + \mu \left(1 - x^{2} - xy\right), \qquad (1.165)$$

for all $(x, y) \in C$ and $\mu \in \mathbb{R}$. Thanks to the gradients and the Hessian matrices of f and h computed above, (spatial) those of L are given by

$$\nabla_{\mathbf{x}}L\left(x,y,\mu\right) = \begin{bmatrix} (1-\mu)(2x+y) \\ (1-\mu)x+y \end{bmatrix}, \tag{1.166}$$

$$\nabla_{\mathbf{x}}^{2} L(x, y, \mu) = \begin{bmatrix} 2(1-\mu) & 1-\mu \\ 1-\mu & 1 \end{bmatrix}, \tag{1.167}$$

for all $(x, y) \in C$ and $\mu \in \mathbb{R}$. We have that x_1^* and x_2^* are feasible (belong to C), and $\nabla_{\mathbf{x}} L(x_1^*, 1) = \nabla_{\mathbf{x}} L(x_2^*, 1) = 0$. We have

$$\nabla_{\mathbf{x}}^{2}L\left(x,y,1\right) = \begin{bmatrix} 0 & 0\\ 0 & 1 \end{bmatrix}, \tag{1.168}$$

for all $(x,y) \in \mathbb{R}^2$ and

$$T\left(x_{1}^{\star}\right):=\left\{d\in\mathbb{R}^{2};\nabla h(x_{1}^{\star})^{T}d=0\right\} \tag{1.169}$$

$$= \{ (d_1, d_2) \in \mathbb{R}^2; -2d_1 - d_2 = 0 \}$$
 (1.170)

$$= \{ (d, -2d); d \in \mathbb{R} \}, \tag{1.171}$$

$$T(x_2^*) := \left\{ d \in \mathbb{R}^2; \nabla h(x_2^*)^T d = 0 \right\}$$
 (1.172)

$$= \{ (d_1, d_2) \in \mathbb{R}^2; 2d_1 + d_2 = 0 \}$$
 (1.173)

$$= \{ (d, -2d) ; d \in \mathbb{R} \}, \tag{1.174}$$

Thus,

$$(d, -2d)^{T} \nabla_{\mathbf{x}}^{2} L(x_{1}^{\star}) (d, -2d) = (d, -2d)^{T} \nabla_{\mathbf{x}}^{2} L(x_{2}^{\star}) (d, -2d)$$
 (1.175)

$$=4d^2 > 0 \text{ for all } d \in \mathbb{R}, d \neq 0,$$
 (1.176)

and then we can apply Theorem 8.2.3 (second-order sufficient optimality conditions), [2], p. 92, to deduce that two points $(\pm 1, 0)$ are local minimizers for (P). Since f(-1,0) = f(1,0) = 1, both $(\pm 1,0)$ are the optimal solutions of (P).

Problem 1.15. Consider the following problem

(P) Min
$$xy$$
 s.t. $x^2 + y^2 \le 2$ and $x + y \ge 0$. (1.177)

- 1. Solve the systems of KKT conditions, find candidate solutions for (P).
- 2. Find the optimal solution of (P).

SOLUTION.

1. Set f(x,y) = xy, $g_1(x,y) = x^2 + y^2 - 2$, and $g_2(x,y) = -x - y$ for all $(x,y) \in \mathbb{R}^2$, the gradients and the Hessian matrices of f, g_1 , and g_2 are given by

$$\nabla f(x,y) = \begin{bmatrix} y \\ x \end{bmatrix}, \quad \nabla^2 f(x,y) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad (1.178)$$

and

$$\nabla g_1(x,y) = \begin{bmatrix} 2x \\ 2y \end{bmatrix}, \quad \nabla^2 g_1(x,y) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, \tag{1.179}$$

$$\nabla g_2(x,y) = \begin{bmatrix} -1 \\ -1 \end{bmatrix}, \quad \nabla^2 g_2(x,y) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \tag{1.180}$$

for all $(x,y) \in \mathbb{R}^2$. The feasible set of (P) is given by

$$C := \{(x, y) \in \mathbb{R}^2; g_i(x, y) \le 0, \ i = 1, 2\}. \tag{1.181}$$

We consider the KKT conditions

$$(KKT) \begin{cases} \nabla f(x^{\star}, y^{\star}) + \lambda_{1}^{\star} \nabla g_{1}(x^{\star}, y^{\star}) + \lambda_{2}^{\star} \nabla g_{2}(x^{\star}, y^{\star}) = 0, \\ \lambda_{1}^{\star} g_{1}(x^{\star}, y^{\star}) = \lambda_{2}^{\star} g_{2}(x^{\star}, y^{\star}) = 0 \\ \lambda_{1}^{\star} \geq 0, \ \lambda_{2}^{\star} \geq 0, \\ g_{1}(x^{\star}, y^{\star}) \leq 0, \ g_{2}(x^{\star}, y^{\star}) \leq 0, \end{cases}$$

$$(1.182)$$

i.e.,

$$y^* + 2\lambda_1^* x^* - \lambda_2^* = 0, \tag{1.183}$$

$$x^* + 2\lambda_1^* y^* - \lambda_2^* = 0, \tag{1.184}$$

$$\lambda_1^* \left((x^*)^2 + (y^*)^2 - 2 \right) = 0,$$
 (1.185)

$$\lambda_2^{\star} (x^{\star} + y^{\star}) = 0, \tag{1.186}$$

$$\lambda_1^{\star} \ge 0, \ \lambda_2^{\star} \ge 0, \tag{1.187}$$

$$(x^*)^2 + (y^*)^2 \le 2,$$
 (1.188)

$$x^* + y^* \ge 0. \tag{1.189}$$

The fourth equation implies that $\lambda_2^* = 0$ or $x^* = -y^*$. We consider the following cases depending on the values of λ_2^* .

• Case $\lambda_2^{\star} = 0$. The above system becomes

$$y^* + 2\lambda_1^* x^* = 0, (1.190)$$

$$x^* + 2\lambda_1^* y^* = 0, (1.191)$$

$$\lambda_1^{\star} \left((x^{\star})^2 + (y^{\star})^2 - 2 \right) = 0,$$
 (1.192)

$$\lambda_1^{\star} \ge 0, \tag{1.193}$$

$$(x^*)^2 + (y^*)^2 \le 2. \tag{1.194}$$

If $\lambda_1^{\star} = \frac{1}{2}$, solving the first three equations gives us $(x^{\star}, y^{\star}) = (-1, 1)$ or $(x^{\star}, y^{\star}) = (1, -1)$. These solutions also satisfies the others. Hence, we obtain two (in their "full forms") candidates $(x^{\star}, y^{\star}, \lambda_1^{\star}, \lambda_2^{\star}) = (-1, 1, \frac{1}{2}, 0), (x^{\star}, y^{\star}, \lambda_1^{\star}, \lambda_2^{\star}) = (1, -1, \frac{1}{2}, 0)$.

If $\lambda_1^{\star} \neq \frac{1}{2}$ and $\lambda_1^{\star} \geq 0$, solving the first two equations yields $x^{\star} = y^{\star} = 0$. This solution also satisfies the others. Hence, we obtain candidates $(x^{\star}, y^{\star}, \lambda_1^{\star}, \lambda_2^{\star}) = (0, 0, a, 0)$ for arbitrary $a \geq 0$ and $a \neq \frac{1}{2}$.

• Case $\lambda_2^{\star} > 0$. The fourth equation in the (KKT) system gives us $x^{\star} = -y^{\star}$. But, adding the first two equations in the (KKT) system yields that $2\lambda_2^{\star} = (2\lambda_1^{\star} + 1)(x^{\star} + y^{\star}) = 0$, which is absurd.

Hence, we have three candidate solutions: (-1,1), (1,-1) (with $\lambda_1^{\star} = \frac{1}{2}$ and $\lambda_2^{\star} = 0$), and (0,0) (with $\lambda_1^{\star} = a$, $\lambda_2^{\star} = 0$, where $a \geq 0$, $a \neq \frac{1}{2}$).

2. The eigenvalues of $\nabla^2 f(x,y)$ are $\lambda_1 = -1$, $\lambda_2 = 1$, i.e., f, which is a quadratic function, is nonconvex. Thus, we can not apply Theorem 8.2.2, [1] to our problem. Moreover, we have $g_2(-1,1) = g_2(1,-1) = g_2(0,0) = 0$ but $\lambda_2^* = 0$, i.e., the strict complementarity condition in Theorem 8.2.3, [1] fails for these candidate solutions. Thus, we also can not apply Theorem 8.2.3, [1] to our problem.

Here is an elementary solution for finding the optimal solution of (P).

* Elementary solution. By Cauchy inequality, we have $|xy| \leq \frac{x^2+y^2}{2} \leq 1$. Thus, $-1 \leq f(x,y) = xy \leq 1$. The equality f(x,y) = -1 holds if and only if (x,y) = (-1,1) or (x,y) = (1,-1). These points also satisfy the constraint $x+y \geq 0$. Therefore, (-1,1) and (1,-1) are the only global minimizers of (P).

THE END

References

- [1] O. Güler. Foundations of Optimization. Graduate Texts in Mathematics 258, Springer.
- [2] Strodiot, J-J. Numerical Methods in Optimization. Natural Sciences University, Ho Chi Minh City, Viet Nam, April 2007.