EE25BTECH11033 - Kavin

Question:

Find the points on the line x+y=4 which lie at a unit distance from the line 4x+3y=10.

Solution:

According to the question,

Equation of line
$$L_1$$
: $\begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 4$ (1)

and

Equation of line
$$L_2$$
: $\begin{pmatrix} 4 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 10$ (2)

Any point **P** on line L_1 is given by,

$$\mathbf{P} = \begin{pmatrix} k \\ 4 - k \end{pmatrix} \tag{3}$$

The distance λ of a vector **P** from the line $\mathbf{n}^{\mathsf{T}}\mathbf{x} = c$ is given by,

$$\lambda = \frac{\left| \mathbf{n}^{\mathsf{T}} \mathbf{P} - c \right|}{\|\mathbf{n}\|} \tag{4}$$

where,

$$\mathbf{n}^{\mathsf{T}} = \begin{pmatrix} 4 & 3 \end{pmatrix}$$
, $c = 10$ and $\lambda = 1$

$$\implies \lambda \|\mathbf{n}\| = \left|\mathbf{n}^{\mathsf{T}}\mathbf{P} - c\right| \tag{5}$$

Also,

$$\|\mathbf{n}\| = \sqrt{\mathbf{n}^{\mathsf{T}}\mathbf{n}} = \sqrt{25} = 5 \tag{6}$$

$$\mathbf{n}^{\mathsf{T}}\mathbf{P} = k + 12\tag{7}$$

$$\implies 5 = |k + 12 - 10| \tag{8}$$

$$\implies 5 = |k+2| \tag{9}$$

$$\implies k = 3, -7 \tag{10}$$

Therefore the points on \mathcal{L}_1 which lie at a unit distance from the line \mathcal{L}_2 are ,

$$\begin{pmatrix} 3 \\ 1 \end{pmatrix}$$
 and $\begin{pmatrix} -7 \\ 11 \end{pmatrix}$

