DARLINGTON ARRAYS

- EIGHT DARLINGTONS PER PACKAGE
- OUTPUT CURRENT 400 mA PER DRIVER (500 mA PEAK)
- OUTPUT VOLTAGE 90 V (V_{CE (sus))} = 70 V)
- INTEGRAL SUPPRESSION DIODES FOR INDUCTIVE LOADS
- OUTPUTS CAN BE PARALLELED FOR HIGHER CURRENT
- TTL / CMOS / PMOS / DTL COMPATIBLE INPUTS
- INPUTS PINNED OPPOSITE OUTPUTS TO SIMPLIFY LAYOUT

The four versions interface to all common logic families:

L601	General purpose
L602	14 - 25 V PMOS
L603	5 V TTL
L604	6 - 15 V CMOS

These versatile devices are useful for driving a wide range of loads, including solenoids, relays DC motors, LED displays, filament lamps, thermal printheads and high power buffers.

DESCRIPTION

The L601, L602, L603 and L604 are high voltage, high current darlington arrays each containing eight open collector darlington pairs with common emitters. Each channel is rated at 400 mA and can with stand peak currents of 500 mA. Suppression diodes are included for inductive load driving and the inputs are pinned opposite the outputs to simplify board layout.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CEX}	Collector Emitter Voltage (input open)	90	V
lc	Collector Current	0.4	Α
I _C	Collector Peak Current	0.5	Α
V_{i}	Input Voltage (for L602 L603 and L604)	30	
l _i	Input Current (for L601 only)	25	mA
P _{tot}	Total Power Dissipation a T _{amb} = 25°C	1.8	W
T _{op}	Operating Junction Temperature	-25 to 150	°C

October 1991 1/5

PIN CONNECTION (top view)

SCHEMATIC DIAGRAMS

L601

L602

L603

L604

THERMAL DATA

Symbol	Parameter	Value	Unit
R _{th-j-amb}	Thermal resistance Junction-ambient Max	70	°C/W

ELECTRICAL CHARACTERISTICS ($T_{amb} = 25 \, ^{\circ}C$, unless otherwise specified)

Symbol	Parameter	Test con	ditions	Min.	Тур.	Max.	Unit
I _{CEX}	Output Leakage Current	V _{CE} = 90 V				10	μΑ
VCE (sat)	Collector Emitter Saturation Voltage	I _C = 300 mA I _C = 200 mA I _C = 100 mA	$I_B = 500 \mu\text{A}$ $I_B = \mu\text{A}$ $I_B = 250 \mu\text{A}$			2 1.7 1.2	>>>
h _{FE}	DC Forward Current Gain (L601 only)	V _{CE} = 3 V	I _C = 300 mA	1000			-
Vi	Minimum Input Voltage (ON condition)	V _{CE} = 3V for L602 for L603 for L604	I _C = 300 mA			11.5 2.5 5	V V V
Vi	Maximum Input Voltage (OFF condition)	V _{CE} = 90 V for L601 for L602 for L603 for L604	Ι _C = 25 μΑ	0.55 7 0.75 1			V V V
IR	Clamp Diode Reverse Current	V _R = 90 V				50	μΑ
V _F	Clamp Diode Forward Voltage	I _F = 300 mA			2	2.4	V
t _{on}	Turn-on Delay	0.5 V _i to 0.5 V _o			0.4		μs
t _{off}	Turn-off Delay	0.5 V _i to 0.5 V _o			0.4		μs

DIP18 PACKAGE MECHANICAL DATA

DIM.	mm			inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
a1	0.254			0.010			
В	1.39		1.65	0.055		0.065	
b		0.46			0.018		
b1		0.25			0.010		
D			23.24			0.915	
E		8.5			0.335		
е		2.54			0.100		
e3		20.32			0.800		
F			7.1			0.280	
I			3.93			0.155	
L		3.3			0.130		
Z		1.27	1.59		0.050	0.063	

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.

