

AJUSTE DE UMA RETA

$$\sum \Bigl(Y_i - \hat{Y_i}\,\Bigr)$$

3

MINIMIZAÇÃO DOS DESVIOS ABSOLUTOS

$$\sum \left| Y_i - \hat{Y}_i \right|$$

EXEMPLO 1

Considere o seguinte conjunto de pontos

Χ	Y
1	1
2	1
3	2
4	2
5	4

5

RETAS DE AJUSTE

$$Y = 0.5 + 0.5X$$

R3
$$Y=-0.7+0.9X$$

RETAS

R1	R2	R3
0.6	1	0.2
1.3	1.5	1.1
2	2	2
2.7	2.5	2.9
3.4	3	3.8

7

DESVIOS

Desv1	Desv2	Desv3
0.4	0	0.8
-0.3	-0.5	-0.1
0	0	0
-0.7	-0.5	-0.9
0.6	1	0.2
0	0	0

DESVIOS ABSOLUTOS

Desv1	Desv2	Desv3
0.4	0	0.8
0.3	0.5	0.1
0	0	0
0.7	0.5	0.9
0.6	1	0.2
2	2	2

QUADRADO DOS DESVIOS

(Desv1) ²	(Desv2) ²	(Desv3) ²
0.16	0	0.64
0.09	0.25	0.01
0	0	0
0.49	0.25	0.81
0.36	1	0.04
1.10	1.50	1.50

11

EXEMPLO 2

Comprimento alar (cm) em função da idade (dias) para andorinhas

Dias	Comp.
3	1,4
4	1,5
5	2,1
6	2,4
8	3,1
9	3,2
10	3,3

DPS 12

EXEMPLO 2 (SPSS)

DPS 13

EXEMPLO 2

DPS 14

Models (curve estimation algorithms)

Previous (Next

CURVEFIT allows the user to specify a model with or without a constant term designated by \mathcal{A}_0 . If this constant term is excluded, simply set it zero or one depending upon whether it appears in an additive or multiplicative manner in the models listed below.

 $E(Y_t) = \exp(\beta_0 + \beta_1/t)$

$$\begin{split} & (9) \text{ Growth} & \mathcal{B}(\ Y_t) = \exp(\ \mathcal{B}_0 + \mathcal{B}_1\ t) \\ & (10) \text{ Exponential} & \mathcal{B}(\ Y_t) = \mathcal{B}_0\ \mathcal{P}^{\mathcal{B}_1\ t} \end{split}$$

(8) S

(11) Logistic $B(Y_t) = \left(\frac{1}{u} + \beta_0 \beta_1^t\right)^{-1}$

DPS 15

Variable Processing Summary

		variables		
		Dependent	Independent	
		Comprimento	Idade	
Number of Positive Values		7	7	
Number of Zeros	0	0		
Number of Negative Values	0	0		
Number of Missing	User-Missing	0	0	
Values	System-Missing	0	0	

Model Summary and Parameter Estimates Dependent Variable: Comprimento

		Mo	del Summary	Parameter Estimates					
Equation	R Square	F	F df1	df2	Sig.	Constant	b1	b2	b3
Linear	0,964	132,174	1	5	0,000	0,515	0,298		
Logarithmic	0,971	165,753	1	5	0,000	-0,727	1,772		
Inverse	0,915	53,833	1	5	0,001	4,087	-9,026		
Quadratic	0,980	99,685	2	4	0,000	-0,274	0,579	-0,021	
Cubic	0,991	106,896	3	3	0,002	1,471	-0,387	0,141	-0,008
Power	0,968	149,638	1	5	0,000	0,563	0,792		
Growth	0,931	67,190	1	5	0,000	-0,006	0,131		
Exponential	0,931	67,190	1	5	0,000	0,994	0,131		

17

EXEMPLO 2

DPS 18

RECTA DE MÍNIMOS QUADRADOS

※ 〇

RESÍDUOS

Estimadores

$$Y_i = \beta_0 + \beta_1 \cdot (X_i - \overline{X}) + \varepsilon_i \quad i = 1,...,n$$

$$\hat{\beta}_0 = \frac{1}{n} \sum_i Y_i = \overline{Y}$$

$$\beta_1 = \frac{\sum_i (X_i - X) \cdot (Y_i - Y)}{\sum_i (X_i - \overline{X})^2} = \frac{s_{XY}}{s_{xx}}$$

$$\sigma^{2} \qquad s^{2} = \frac{1}{n-2} \sum_{i} \hat{e}_{i}^{2} = \frac{1}{n-2} \sum_{i} \left\{ Y_{i} - \left[\hat{\beta}_{0} + \hat{\beta}_{1} \cdot \left(X_{i} - \overline{X} \right) \right] \right\}^{2}$$

21

※ 〇

DISTRIBUIÇÃO DOS ERROS

DISTRIBUIÇÃO DO DECLIVE

IC e Testes de hipóteses

	IC	TH
βο	$\hat{\beta}_0 \pm t_{n-2,(\frac{\alpha}{2})} \cdot \frac{s}{\sqrt{n}}$	$\begin{aligned} H_0: \beta_0 &= b_0 \\ H_1: \beta_0 &\neq b_0, \beta_0 > b_0 \text{ ou } \beta_0 < b_0 \end{aligned}$ $ET = \frac{\hat{\beta}_0 - b_0}{s / \sqrt{n}}$ $H_0 \text{ verdadeira } \Rightarrow ET \sim t_{n-2}$
β ₀ ΄	$\left(\hat{\beta}_0 - \overline{X}.\hat{\beta}_1\right) \pm t_{n-2,(\frac{\sigma_2}{2})}.s.\sqrt{\frac{1}{n} + \frac{\overline{X}^2}{s_{XX}}}$	$\begin{aligned} H_0: \beta_0' &= b_0' \\ H_1: \beta_0' &\neq b_0', \beta_0' > b_0' \text{ ou } \beta_0' < b_0' \end{aligned}$ $ET = \frac{\left(\hat{\beta}_0 - \overline{X}.\hat{\beta}_1\right) - b_0'}{s.\sqrt{\frac{1}{n} + \frac{\overline{X}^2}{s_{XX}}}}$ $H_0 \text{ verdadeira } \Rightarrow ET \sim t_{n-2}$
β_1	$\hat{\beta}_1 \pm t_{n-2,(\frac{\alpha}{2})} \cdot \frac{s}{\sqrt{s_{XX}}}$	$H_{0}: \beta_{1} = b_{10}$ $H_{1}: \beta_{1} \neq b_{10}, \beta_{1} > b_{10} \text{ ou } \beta_{1} < b_{10}$ $ET = \frac{\hat{\beta}_{1} - b_{10}}{\frac{s}{\sum_{i}(X_{i} - \overline{X})^{2}}}$ $H_{0} \text{ verdadeira } \Rightarrow ET \sim t_{n-2}$ 25

INTERVALO DE CONFIANÇA

REGRESSÃO NÃO LINEAR

 $\hat{Y} = \beta_0 + \beta_1 \frac{1}{X}$

27

REGRESSÃO NÃO LINEAR

Modelo	Transformação
$\bullet Y_i = \alpha' + \frac{\beta}{X_i} + e_i$	$U_i = \frac{1}{X_i}$ $Y_i = \alpha' + \beta . U_i + e_i$
• $Y_i = e^{\alpha' + \beta . X_i + e_i}$	$Z_i = \ln Y_i$ $Z_i = \alpha' + \beta . X_i + e_i$
• $Y_i = e^{\alpha' + \frac{\beta}{X_i} + e_i} \operatorname{com} \alpha' > 0, \beta < 0$	$U_{i} = \frac{1}{X_{i}}$ $Z_{i} = \ln Y_{i}$ $Z_{i} = \alpha' + \beta U_{i} + e_{i}$

REGRESSÃO LINEAR E MÚLTIPLA

Um modelo de regressão linear múltipla descreve uma relação entre várias variáveis quantitativas **independentes**, X_1 , X_2 , ..., X_p , e uma variável quantitativa **dependente**, Y, nos termos seguintes:

$$Y_{i} = \beta_{0} + \beta_{1} \cdot \left(X_{1i} - \bar{X}_{1}\right) + \beta_{2} \cdot \left(X_{2i} - \bar{X}_{2}\right) + \dots + \beta_{j} \cdot \left(X_{ji} - \bar{X}_{j}\right) + \varepsilon_{i} \quad i = 1, \dots, n$$

$$j = 1, \dots, J$$

onde:

- $(X_{1i}, X_{2i}, ..., X_{Ji}, Y_i)$ i-ésima observação das variáveis $X_{1i}, X_{2i}, ..., X_{Ji}$ e Y.
- ullet $\overline{X_j}$ média aritmética das observações $X_{\scriptscriptstyle H}$
- $\beta_0,\beta_1,\beta_2,...,\beta_J$ parâmetros fixos da relação linear entre $X_{1i},X_{2i},...,X_{Ji}$ e Y
- \bullet ε_i erro aleatório associado ao valor observado Y_i

RESÍDUOS

$\underline{\mathbf{Pressupostos}\,\mathbf{para}}\,\boldsymbol{\varepsilon_{\scriptscriptstyle{i}}}$

- São mutuamente independentes;
- $\varepsilon_i \sim IN(0,\sigma^2)$

• São normalmente distribuídos.

Se estas hipóteses se verificarem então: $Y_i \sim IN(\mu_{Y_i}, \sigma^2)$

$$\hat{\beta}_0 = \frac{1}{n} \sum_i Y_i = \overline{Y}$$

$$\begin{split} s^2 &= \frac{1}{n - J - 1} \sum_{i} \hat{\varepsilon}_{i}^2 = \\ &= \frac{1}{n - J - 1} \sum_{i} \left\{ Y_i - \left[\hat{\beta}_0 + \hat{\beta}_1 \cdot \left(X_{1i} - \overline{X}_1 \right) + \hat{\beta}_2 \cdot \left(X_{2i} - \overline{X}_2 \right) + \dots + \hat{\beta}_j \cdot \left(X_{Ji} - \overline{X}_J \right) \right] \right\}^2 \end{split}$$

EXEMPLO 3

Determine a relação existente entre o calor envolvido no endurecimento, representado pela variável Y e os pesos de duas substâncias X_1 e X_2 , tendo em consideração os seguintes valores obtidos numa experiência:

Υ	78.5	74.3	104.3	87.6	95.6	109.2	102.7	72.5	93.1	115.9
X1	7	1	11	11	7	11	3	1	2	21
X2	26	29	59	31	52	55	71	31	54	47

COEFICIENTE DE CORRELAÇÃO

Coeficiente de correlação de Pearson

$$R = \frac{\sum \left(X_i - \overline{X}\right) \left(Y_i - \overline{Y}\right)}{\sqrt{\sum \left(X_i - \overline{X}\right)^2 \sum \left(Y_i - \overline{Y}\right)^2}} = \frac{s_{XY}}{\sqrt{s_{XX}} \cdot \sqrt{s_{YY}}}$$

33

TESTES DE ASSOCIAÇÃO

Unilateral à esquerda	<u>Bilateral</u>
$H_0: \rho = 0$	$H_0: \rho = 0$
$H_1: \rho < 0$	$H_1: \rho \neq 0$
	$H_0: \rho = 0$

Estatística de teste
$$t = \frac{r.\sqrt{n-2}}{\sqrt{1-r^2}}$$

Região de Rejeição:

$$t > t_{\scriptscriptstyle n-2,(\alpha)} \hspace{1cm} t < -t_{\scriptscriptstyle n-2,(\alpha)} \hspace{1cm} |\, t \,|> t_{\scriptscriptstyle n-2,(\alpha/2)}$$

EXEMPLO

- Índice de Desenvolvimento de Griffiths
 - avaliações motora e intelectual para 9 crianças com a idade de 4 anos

Motor	Intelectual
IVIOLOI	Intelectual
84	77
73	85
101	105
74	86
88	108
100	116
86	96
95	100
82	100

DIAGRAMA DE DISPERSÃO

COEFICIENTE DE DETERMINAÇÃO

<u>Coeficiente de determinação</u> (r²), representa a proporção da variação de Y que é explicada pela regressão

$$r^{2} = \frac{\hat{\beta}_{1}^{2}.s_{XX}}{s_{YY}} = \frac{\hat{\beta}_{1}^{2}.\sum_{i}(X_{i} - \overline{X})^{2}}{\sum_{i}(Y_{i} - \overline{Y})^{2}} = \frac{\text{variação de } Y \text{ explicada pela regressão}}{\text{variação total de } Y}$$