Glossy Buckthorn Population Management Using Reinforcement Learning

Problem Definition

Controlling the population of Glossy Buckthorns in New England

Interpretations	
Natural Resource	Computer Science
 studying the growth cycle finding effective ways of killing them estimating the costs of each method 	 making the simulator → samples incorporating multiple actions in MDP cost function to run RL methods

What has been done?

- ✓ Simulator \rightarrow Do we need a simpler one?
- ✓ Problem formulation, in terms of MDPs
- ✓ MDP solvers (LSPI, Fast Feature Selection, State Aggregation)
- ✓ Optimal policy benchmarks
- Initial approximated optimal policies
- Optimal policy

What do we need to solve our MDP?

- ▶ A known optimal policy that acts as our benchmark to evaluate different methods with it
- ▶ How we can find some optimal policies? Some **extreme** cases:
 - ► Always Do Nothing: When the cost of treatment is huge in compared with the cost of presence
 - ▶ Always Do Something: When the cost of presence is very large in compared with the cost of treatment
- But, does it make sense?

Experiments

Assume two different cost functions:

$$R(s) = \begin{cases} C_{treatment} = 5 \times i \\ C_{presence} = 10 \end{cases}$$

$$R(s) = \begin{cases} C_{treatment} = 10\\ C_{presence} = 5 \times i \end{cases}$$

Some good results

Thank You!