Class 14: RNA-seq analysis mini project

Ashley Allen (PID: A14633373)

Table of contents

Background	1
Section 1. Differential Expression Analysis	2
Section 2. Pathway Analysis	2
Section 3. Gene Ontology (GO)	9
Section 4. Reactome Analysis	20
Section 5. GO online (OPTIONAL)	21

Background

The data for for hands-on session comes from GEO entry: GSE37704, which is associated with the following publication:

Trapnell C, Hendrickson DG, Sauvageau M, Goff L et al. "Differential analysis of gene regulation at transcript resolution with RNA-seq". Nat Biotechnol 2013 Jan;31(1):46-53. PMID: 23222703

The authors report on differential analysis of lung fibroblasts in response to loss of the developmental transcription factor HOXA1. Their results and others indicate that HOXA1 is required for lung fibroblast and HeLa cell cycle progression. In particular their analysis show that "loss of HOXA1 results in significant expression level changes in thousands of individual transcripts, along with isoform switching events in key regulators of the cell cycle". For our session we have used their Sailfish gene-level estimated counts and hence are restricted to protein-coding genes only.

Section 1. Differential Expression Analysis

Data Import

```
counts <- read.csv("GSE37704_featurecounts.csv", row.names =1)
colData <- read.csv("GSE37704_metadata.csv")</pre>
```

Inspect and tidy data

Does the counts columns match the colData rows?

head(counts)

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR4933	371				
ENSG00000186092		0				
ENSG00000279928		0				
ENSG00000279457		46				
ENSG00000278566		0				
ENSG00000273547		0				
ENSG00000187634	2	258				

head(colData)

```
id condition
1 SRR493366 control_sirna
2 SRR493367 control_sirna
3 SRR493368 control_sirna
4 SRR493369 hoxa1_kd
5 SRR493370 hoxa1_kd
6 SRR493371 hoxa1_kd
```

Q. Complete the code below to remove the troublesome first column from count-Data

```
countData <- counts[,-1]
head(countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

```
colnames(countData) == colData$id
```

[1] TRUE TRUE TRUE TRUE TRUE TRUE

Q. How many genes in this dataset.

```
nrow(countData)
```

[1] 19808

Q. Complete the code below to filter countData to exclude genes (i.e. rows) where we have 0 read count across all samples (i.e. columns).

```
to.keep.inds <- rowSums(countData) >0
new.counts <- countData[to.keep.inds,]
nrow(new.counts)</pre>
```

[1] 15975

Set up for DESeq

```
#/ message: false
library(DESeq2)
```

Warning: package 'DESeq2' was built under R version 4.3.3

Loading required package: S4Vectors

Loading required package: stats4

Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

findMatches

The following objects are masked from 'package:base':

expand.grid, I, unname

Loading required package: IRanges

Attaching package: 'IRanges'

The following object is masked from 'package:grDevices':

windows

Loading required package: GenomicRanges

Loading required package: GenomeInfoDb

Warning: package 'GenomeInfoDb' was built under R version 4.3.3

Loading required package: SummarizedExperiment

Loading required package: MatrixGenerics

Loading required package: matrixStats

Warning: package 'matrixStats' was built under R version 4.3.3

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedSds, rowWeightedVars

Loading required package: Biobase

```
Welcome to Bioconductor
```

```
Vignettes contain introductory material; view with
  'browseVignettes()'. To cite Bioconductor, see
  'citation("Biobase")', and for packages 'citation("pkgname")'.

Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':
   rowMedians

The following objects are masked from 'package:matrixStats':
   anyMissing, rowMedians
```

design = ~condition)

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

Run DESeq

```
dds <- DESeq(dds)
```

estimating size factors

Setup input object for DESeq

estimating dispersions

gene-wise dispersion estimates

mean-dispersion relationship

final dispersion estimates

fitting model and testing

```
res <- results(dds)</pre>
```

Q. Call the summary() function on your results to get a sense of how many genes are up or down-regulated at the default 0.1 p-value cutoff.

summary(res)

out of 15975 with nonzero total read count

adjusted p-value < 0.1

LFC > 0 (up) : 4349, 27% LFC < 0 (down) : 4396, 28% outliers [1] : 0, 0%

low counts [2] : 1237, 7.7%

(mean count < 0)

[1] see 'cooksCutoff' argument of ?results

[2] see 'independentFiltering' argument of ?results

head(res)

log2 fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 6 columns

	baseMean	log2FoldChange	lfcSE	stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSG00000279457	29.9136	0.1792571	0.3248216	0.551863	5.81042e-01
ENSG00000187634	183.2296	0.4264571	0.1402658	3.040350	2.36304e-03
ENSG00000188976	1651.1881	-0.6927205	0.0548465	-12.630158	1.43990e-36
ENSG00000187961	209.6379	0.7297556	0.1318599	5.534326	3.12428e-08
ENSG00000187583	47.2551	0.0405765	0.2718928	0.149237	8.81366e-01
ENSG00000187642	11.9798	0.5428105	0.5215598	1.040744	2.97994e-01

padj

<numeric>

ENSG00000279457 6.86555e-01 ENSG00000187634 5.15718e-03 ENSG00000188976 1.76549e-35 ENSG00000187961 1.13413e-07

```
ENSG00000187583 9.19031e-01
ENSG00000187642 4.03379e-01
```

Volcano plot of results

```
plot( res$log2FoldChange, -log(res$padj) )
```


Q. Improve this plot by completing the below code, which adds color and axis labels

```
mycols <- rep("gray", nrow(res) )

# Color red the genes with absolute fold change above 2
mycols[ abs(res$log2FoldChange) > 2 ] <- "red"

# Color blue those with adjusted p-value less than 0.01

# and absolute fold change more than 2
inds <- (res$padj < 0.01) & (abs(res$log2FoldChange) > 2 )
mycols[ inds ] <- "blue"

plot( res$log2FoldChange, -log(res$padj), col=mycols, xlab="Log2(FoldChange)", ylab="-Log(P-res*padj)", ylab="-Log(P-res*
```


library(ggplot2)

Warning: package 'ggplot2' was built under R version 4.3.3

```
ggplot(res) +
aes(log2FoldChange, -log(padj)) +
geom_point() +
geom_vline(xintercept = c(-2,2), col="grey") +
geom_hline(yintercept = 0.05)
```

Warning: Removed 1237 rows containing missing values or values outside the scale range (`geom_point()`) .

Gene annotation

```
library(AnnotationDbi)
library(org.Hs.eg.db)
```

columns(org.Hs.eg.db)

```
[1] "ACCNUM"
                     "ALIAS"
                                     "ENSEMBL"
                                                     "ENSEMBLPROT"
                                                                     "ENSEMBLTRANS"
                     "ENZYME"
 [6] "ENTREZID"
                                     "EVIDENCE"
                                                     "EVIDENCEALL"
                                                                     "GENENAME"
[11] "GENETYPE"
                     "GO"
                                     "GOALL"
                                                     "IPI"
                                                                     "MAP"
[16] "OMIM"
                     "ONTOLOGY"
                                     "ONTOLOGYALL"
                                                     "PATH"
                                                                     "PFAM"
[21] "PMID"
                                                                     "UCSCKG"
                     "PROSITE"
                                     "REFSEQ"
                                                     "SYMBOL"
[26] "UNIPROT"
```

Q. Use the mapIDs() function multiple times to add SYMBOL, ENTREZID and GENENAME annotation to our results by completing the code below.

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

head(res)

 $\log 2$ fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 9 columns

	pvalue	stat	lfcSE	og2FoldChange	baseMean 1	
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	
	5.81042e-01	0.551863	0.3248216	0.1792571	29.9136	ENSG00000279457
	2.36304e-03	3.040350	0.1402658	0.4264571	183.2296	ENSG00000187634
	1.43990e-36	-12.630158	0.0548465	-0.6927205	1651.1881	ENSG00000188976
	3.12428e-08	5.534326	0.1318599	0.7297556	209.6379	ENSG00000187961
	8.81366e-01	0.149237	0.2718928	0.0405765	47.2551	ENSG00000187583
	2.97994e-01	1.040744	0.5215598	0.5428105	11.9798	ENSG00000187642
е	nam		entrez	symbol	padj	
>	<character< td=""><td></td><td><character></character></td><td><character></character></td><td><numeric></numeric></td><td></td></character<>		<character></character>	<character></character>	<numeric></numeric>	
Α	N		NA	NA	6.86555e-01	ENSG00000279457
	lpha motif .	sterile a	148398	SAMD11	5.15718e-03	ENSG00000187634
	nucleolar .	NOC2 like	26155	NOC2L	1.76549e-35	ENSG00000188976
	e family me.	kelch lik	339451	KLHL17	1.13413e-07	ENSG00000187961
	n homology .	pleckstri	84069	PLEKHN1	9.19031e-01	ENSG00000187583
	nd ESRR ind.	PPARGC1 a	84808	PERM1	4.03379e-01	ENSG00000187642

Q. Finally for this section let's reorder these results by adjusted p-value and save them to a CSV file in your current project directory.

```
res = res[order(res$pvalue),]
write.csv(res, file="deseq_results.csv")
```

Section 2. Pathway Analysis

```
library(gage)
```

```
library(pathview)
```

Pathview is an open source software package distributed under GNU General Public License version 3 (GPLv3). Details of GPLv3 is available at http://www.gnu.org/licenses/gpl-3.0.html. Particullary, users are required to formally cite the original Pathview paper (not just mention it) in publications or products. For details, do citation("pathview") within R.

The pathview downloads and uses KEGG data. Non-academic uses may require a KEGG license agreement (details at http://www.kegg.jp/kegg/legal.html).

library(gageData)

```
data(kegg.sets.hs)
data(sigmet.idx.hs)

# Focus on signaling and metabolic pathways only
kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]

# Examine the first 3 pathways
head(kegg.sets.hs, 3)
```

```
$`hsa00232 Caffeine metabolism`
[1] "10"  "1544" "1548" "1549" "1553" "7498" "9"
$`hsa00983 Drug metabolism - other enzymes`
```

```
[1] "10"
               "1066"
                         "10720"
                                  "10941"
                                            "151531" "1548"
                                                                "1549"
                                                                          "1551"
 [9] "1553"
               "1576"
                         "1577"
                                  "1806"
                                            "1807"
                                                      "1890"
                                                                "221223" "2990"
[17] "3251"
                                            "51733"
                         "3615"
                                  "3704"
                                                                "54575"
               "3614"
                                                      "54490"
                                                                         "54576"
[25] "54577"
               "54578"
                         "54579"
                                  "54600"
                                            "54657"
                                                      "54658"
                                                                "54659"
                                                                         "54963"
                                            "7172"
[33] "574537"
               "64816"
                         "7083"
                                  "7084"
                                                      "7363"
                                                                "7364"
                                                                          "7365"
[41] "7366"
               "7367"
                         "7371"
                                  "7372"
                                            "7378"
                                                      "7498"
                                                                "79799"
                                                                         "83549"
[49] "8824"
               "8833"
                         "9"
                                  "978"
$`hsa00230 Purine metabolism`
  [1] "100"
                "10201"
                          "10606"
                                             "10622"
                                                       "10623"
                                                                 "107"
                                                                           "10714"
                                   "10621"
  [9] "108"
                "10846"
                          "109"
                                    "111"
                                             "11128"
                                                       "11164"
                                                                 "112"
                                                                           "113"
 [17] "114"
                "115"
                          "122481" "122622" "124583" "132"
                                                                 "158"
                                                                           "159"
 [25] "1633"
                "171568" "1716"
                                    "196883"
                                             "203"
                                                       "204"
                                                                 "205"
                                                                           "221823"
                          "23649"
                                                                           "270"
 [33] "2272"
                "22978"
                                   "246721" "25885"
                                                       "2618"
                                                                 "26289"
 [41] "271"
                "27115"
                          "272"
                                    "2766"
                                             "2977"
                                                       "2982"
                                                                 "2983"
                                                                           "2984"
                "2987"
                                                                 "318"
 [49] "2986"
                          "29922"
                                    "3000"
                                             "30833"
                                                       "30834"
                                                                           "3251"
 [57] "353"
                "3614"
                          "3615"
                                    "3704"
                                             "377841" "471"
                                                                 "4830"
                                                                           "4831"
                "4833"
                          "4860"
                                             "4882"
                                                       "4907"
                                                                           "50940"
 [65] "4832"
                                    "4881"
                                                                 "50484"
 [73] "51082"
                "51251"
                          "51292"
                                   "5136"
                                             "5137"
                                                       "5138"
                                                                 "5139"
                                                                           "5140"
                "5142"
 [81] "5141"
                          "5143"
                                    "5144"
                                             "5145"
                                                       "5146"
                                                                 "5147"
                                                                           "5148"
 [89] "5149"
                                    "5152"
                "5150"
                          "5151"
                                             "5153"
                                                       "5158"
                                                                 "5167"
                                                                           "5169"
 [97] "51728"
                "5198"
                          "5236"
                                    "5313"
                                             "5315"
                                                       "53343"
                                                                 "54107"
                                                                           "5422"
                "5425"
                                    "5427"
                                                                 "5432"
                                                                           "5433"
[105] "5424"
                          "5426"
                                             "5430"
                                                       "5431"
[113] "5434"
                "5435"
                          "5436"
                                    "5437"
                                             "5438"
                                                       "5439"
                                                                 "5440"
                                                                           "5441"
[121] "5471"
                "548644" "55276"
                                    "5557"
                                             "5558"
                                                       "55703"
                                                                 "55811"
                                                                           "55821"
[129] "5631"
                "5634"
                          "56655"
                                    "56953"
                                             "56985"
                                                       "57804"
                                                                 "58497"
                                                                           "6240"
[137] "6241"
                "64425"
                          "646625" "654364"
                                             "661"
                                                       "7498"
                                                                 "8382"
                                                                           "84172"
[145] "84265"
                "84284"
                                   "8622"
                                             "8654"
                                                       "87178"
                                                                 "8833"
                                                                           "9060"
                          "84618"
                          "953"
                                             "954"
                                                       "955"
                                                                 "956"
                                                                           "957"
[153] "9061"
                "93034"
                                    "9533"
[161] "9583"
                "9615"
foldchanges = res$log2FoldChange
names(foldchanges) = res$entrez
head(foldchanges)
```

```
1266 54855 1465 51232 2034 2317
```

-2.422719

```
keggres = gage(foldchanges, gsets=kegg.sets.hs)
```

3.201955 -2.313738 -2.059631 -1.888019 -1.649792

attributes(keggres)

\$names

[1] "greater" "less" "stats"

head(keggres\$less)

		p.geomean	stat.mean	p.val
hsa04110	Cell cycle	8.995727e-06	-4.378644	8.995727e-06
hsa03030	DNA replication	9.424076e-05	-3.951803	9.424076e-05
hsa03013	RNA transport	1.375901e-03	-3.028500	1.375901e-03
hsa03440	Homologous recombination	3.066756e-03	-2.852899	3.066756e-03
hsa04114	Oocyte meiosis	3.784520e-03	-2.698128	3.784520e-03
hsa00010	Glycolysis / Gluconeogenesis	8.961413e-03	-2.405398	8.961413e-03
		q.val	set.size	exp1
hsa04110	Cell cycle	0.001448312	121 8	.995727e-06
hsa03030	DNA replication	0.007586381	36 9	.424076e-05
hsa03013	RNA transport	0.073840037	144 1	.375901e-03
hsa03440	Homologous recombination	0.121861535	28 3	.066756e-03
has0/11/	0	0.121861535	100 3	.784520e-03
115404114	Oocyte meiosis	0.121001555	102 3	.7045206-05

Cell cycle figure

pathview(foldchanges, pathway.id="hsa04110")

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/allen/OneDrive/Desktop/BIMM 143/class/class14

Info: Writing image file hsa04110.pathview.png

pathview(gene.data=foldchanges, pathway.id="hsa04110", kegg.native=FALSE)

'select()' returned 1:1 mapping between keys and columns

Warning: reconcile groups sharing member nodes!

[,1] [,2] [1,] "9" "300" [2,] "9" "306"

Info: Working in directory C:/Users/allen/OneDrive/Desktop/BIMM 143/class/class14

Info: Writing image file hsa04110.pathview.pdf

```
keggrespathways <- rownames(keggres$greater)[1:5]

# Extract the 8 character long IDs part of each string
keggresids = substr(keggrespathways, start=1, stop=8)
keggresids</pre>
```

[1] "hsa04640" "hsa04630" "hsa00140" "hsa04142" "hsa04330"

pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa")

```
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/allen/OneDrive/Desktop/BIMM 143/class/class14
Info: Writing image file hsa04640.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/allen/OneDrive/Desktop/BIMM 143/class/class14
Info: Writing image file hsa04630.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/allen/OneDrive/Desktop/BIMM 143/class/class14
Info: Writing image file hsa00140.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/allen/OneDrive/Desktop/BIMM 143/class/class14
Info: Writing image file hsa04142.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/allen/OneDrive/Desktop/BIMM 143/class/class14
```

Info: Writing image file hsa04330.pathview.png

Section 3. Gene Ontology (GO)

GO:0048285 organelle fission

GO:0007059 chromosome segregation

GO:0000280 nuclear division

GO:0007067 mitosis

```
data(go.sets.hs)
data(go.subs.hs)
gobpsets = go.sets.hs[go.subs.hs$BP]
gobpres = gage(foldchanges, gsets=gobpsets, same.dir=TRUE)
lapply(gobpres, head)
```

\$greater			
		p.geomean	stat.mean p.val
GO:0007156	homophilic cell adhesion	8.519724e-05	3.824205 8.519724e-05
GD:0002009	morphogenesis of an epithelium	1.396681e-04	3.653886 1.396681e-04
GO:0048729	tissue morphogenesis	1.432451e-04	3.643242 1.432451e-04
GO:0007610	behavior	1.925222e-04	3.565432 1.925222e-04
GO:0060562	epithelial tube morphogenesis	5.932837e-04	3.261376 5.932837e-04
GO:0035295	tube development	5.953254e-04	3.253665 5.953254e-04
		q.val se	t.size exp1
GO:0007156	homophilic cell adhesion	0.1952430	113 8.519724e-05
GD:0002009	morphogenesis of an epithelium	0.1952430	339 1.396681e-04
GO:0048729	tissue morphogenesis	0.1952430	424 1.432451e-04
GO:0007610	behavior	0.1968058	426 1.925222e-04
GO:0060562	epithelial tube morphogenesis	0.3566193	257 5.932837e-04
GO:0035295	tube development	0.3566193	391 5.953254e-04
\$less			
		p.geomean	stat.mean p.val
GO:0048285	organelle fission	1.536227e-15	-8.063910 1.536227e-15
GD:0000280	nuclear division	4.286961e-15	-7.939217 4.286961e-15
GD:0007067	mitosis	4.286961e-15	-7.939217 4.286961e-15
GD:0000087	M phase of mitotic cell cycle	1.169934e-14	-7.797496 1.169934e-14
GO:0007059	chromosome segregation	2.028624e-11	-6.878340 2.028624e-11
GD:0000236	mitotic prometaphase	1.729553e-10	-6.695966 1.729553e-10
		q.val	set.size exp1

GD:0000087 M phase of mitotic cell cycle 1.195965e-11

5.843127e-12

5.843127e-12

5.843127e-12

1.659009e-08

376 1.536227e-15

352 4.286961e-15

352 4.286961e-15

362 1.169934e-14

142 2.028624e-11

```
GO:0000236 mitotic prometaphase
                                         1.178690e-07
                                                            84 1.729553e-10
$stats
                                          stat.mean
                                                        exp1
GO:0007156 homophilic cell adhesion
                                           3.824205 3.824205
GO:0002009 morphogenesis of an epithelium 3.653886 3.653886
GO:0048729 tissue morphogenesis
                                           3.643242 3.643242
GD:0007610 behavior
                                           3.565432 3.565432
GO:0060562 epithelial tube morphogenesis 3.261376 3.261376
GO:0035295 tube development
                                           3.253665 3.253665
```

head(gobpres\$less)

```
p.geomean stat.mean
                                                                       p.val
GO:0048285 organelle fission
                                         1.536227e-15 -8.063910 1.536227e-15
GO:0000280 nuclear division
                                         4.286961e-15 -7.939217 4.286961e-15
GO:0007067 mitosis
                                         4.286961e-15 -7.939217 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.169934e-14 -7.797496 1.169934e-14
                                         2.028624e-11 -6.878340 2.028624e-11
GO:0007059 chromosome segregation
GO:0000236 mitotic prometaphase
                                         1.729553e-10 -6.695966 1.729553e-10
                                                q.val set.size
                                                                       exp1
GO:0048285 organelle fission
                                         5.843127e-12
                                                           376 1.536227e-15
GO:0000280 nuclear division
                                         5.843127e-12
                                                           352 4.286961e-15
GD:0007067 mitosis
                                         5.843127e-12
                                                           352 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.195965e-11
                                                           362 1.169934e-14
GO:0007059 chromosome segregation
                                         1.659009e-08
                                                           142 2.028624e-11
GO:0000236 mitotic prometaphase
                                                            84 1.729553e-10
                                         1.178690e-07
```

Section 4. Reactome Analysis

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
print(paste("Total number of significant genes:", length(sig_genes)))</pre>
```

[1] "Total number of significant genes: 8147"

```
write.table(sig_genes, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, quote
```

Q: What pathway has the most significant "Entities p-value"? Do the most significant pathways listed match your previous KEGG results? What factors could cause differences between the two methods?

The cell cycle pathway has the most significant "Entities p-value." The most significant pathways do match. I think that there could be errors when setting up our data for analysis.

Section 5. GO online (OPTIONAL)

Q: What pathway has the most significant "Entities p-value"? Do the most significant pathways listed match your previous KEGG results? What factors could cause differences between the two methods?

Trachea formation is the most significant for this result. This GO online is significantly different than the other two. Again I think differences would arise in setting up our data for analysis that could cause differences among results.