#### Princípios Básicos

O suporte físico ou hardware
Chama-se hardware o conjunto de dispositivos
que formam o computador: dispositivos de
entrada, de processamento, de
armazenamento e de saída de informação.
Todos eles compõem o suporte físico necessário
para a execução dos diversos programas,
denominados, genericamente, de software.

#### Princípios Básicos

Computador é uma invenção recente, mas já mudou tanto! É só olhar para quem não troca de micro há quatro anos para ver como essas máquinas rapidamente viram peças de museu. O primeiro computador parecido a esses que a gente tem em casa ou na escola apareceu em 1977. Era o Apple II, criado por um norteamericano chamado Steven Jobs, dono da empresa Apple (que faz toda a linha de computadores Macintosh).



#### Princípios Básicos



#### Princípios Básicos

Quem inventou o chip foi a Intel, uma empresa que existe até hoje e é uma das mais poderosas do mercado de informática. Um de seus fundadores, Gordon Moore, criou uma regra que ainda é válida: os chips de computadores dobram sua capacidade de processar informação a cada 18 meses. É por isso que um computador antigo acaba virando velharia: porque sempre tem outro mais rápido nas lojas. Ou sendo inventado.

#### Princípios Básicos A Memória

O computador não mantém toda a informação em sua unidade central. Ele armazena muitas delas na memória e seleciona o que precisa a cada momento. Uma pequena parte da memória contém permanentemente as instruções do fabricante e se chama memória ROM. A maior parte dela, porém, destina-se a armazenar as informações do usuário e chama-se memória RAM.

### Memórias:

Núcleos Magnéticos

Anel de Ferro Magnetizável

Bit



Fios de Cobre

### Memória de Núcleos Magnéticos





## Memórias Integradas



### Memórias Integradas

#### RAM (Random Access Memory)

- É a memória de trabalho do usuário.
- É nesta memória que se pode armazenar dados e programas.
- É volátil, ou seja, quando se desliga o computador seu conteúdo é perdido (apagado).
- Capacidades: de 32 Mbytes a 1 Gbytes

#### ROM (Read Only Memory)

- É a memória onde o fabricante grava partes do sistema operacional.
- Nela o usuário não pode gravar nada, somente ler.
- Não é volátil, ou seja, mesmo desligando o computador, seu conteúdo não é perdido.
- Capacidades: 256 Kbytes a 16 Mbytes

### Tipos de ROM

- ROM (Read Only Memory)
  - é gravada uma única vez, na fábrica, durante o processo de fabricação.
- PROM (Programmable ROM)
  - só pode ser gravada uma vez, porém fora da fábrica, usando um gravador de PROM.
- EPROM (Erasable PROM)
  - similar a PROM, porém seu conteúdo pode ser apagado, através da emissão de luz ultravioleta na "janela" superior, sendo feita a regravação tal como na PROM.
- EEPROM (Electrically EPROM) e
- EAROM (Electrically Alterable ROM)
  - similares à EPROM, porém o processo de apagamento se faz através da aplicação de uma tensão em um dos pinos. O apagamento é instantâneo



#### Tipos de Memórias Atuais nos Micros

- Registradores
- Expandida (Expansão qualquer)
- Estendida (Extensão aos 640K do DOS)
- Flash
- Cache
  - –Nível 1 (interno UCP)
  - -Nível 2 (externo à UCP)
- Virtual (Paginação e Segmentação)

### Registradores

 Registrador é uma área de memória onde são colocados os dados, para que as Unidades Aritmética e Lógica possam fazer suas operações e comparações.

### Memória Expandida

 É toda área de memória que é adicionada à memória original do computador.

### Memória Estendida

 É toda memória que ultrapassa os 640 KB originais concebidos para o DOS.

#### Memória Flash

 É um tipo de memória similar a uma ROM em que se pode regravar os dados, até cerca de 1000 vezes. É usada para armazenar dados em "cartões de memória".

#### Memória Cache

- É uma memória de acesso privilegiado e rapidíssimo, onde são colocados os dados mais frequentemente acessados. Tem características similares aos Registradores.
- Há 2 níveis de Cache:
  - Cache L1 (Level 1): fica dentro do próprio processador (tamanho pequeno)
  - Cache L2 (level 2): fica na placa mãe (tamanho maior)

#### Memória Flash

















#### Memória Flash







#### Memória Virtual

- É uma área de disco rígido que é usada como se fosse uma memória RAM.
  - A <u>vantagem</u> é que não é necessário adicionar chips de memória para aumentar a capacidade. A <u>desvantagem</u> é que o tempo de acesso é bem mais lento.
- Na memória virtual geralmente se armazena programas grandes, ficando nela o programa dividido em partes, sendo cada parte levada à memória RAM, quando necessário executar aquela parte.

### Particionamento de Programas

- Dois métodos podem ser usados pelo Sistema Operacional:
  - Segmentação
  - Paginação
- Segmentação: O programa é dividido em partes funcionais, chamadas "Segmentos", sendo o tamanho destas partes variável, de acordo com o conteúdo a ser armazenado;
- Paginação: O programa é dividido em partes de igual tamanho, chamadas de "Páginas", mesmo que determinada parte funcional tenha que ocupar várias páginas, ou que numa página caibam várias partes funcionais.

### Memórias (continuação)

- RAM
- DRAM (Dynamic RAM)
  - -EDO
  - -SDRAM
  - -RDRAM
- SRAM (Static RAM) Cache
- VRAM (Video RAM)
- WRAM
- SIMM
- DIMM

#### Memória RAM

- Pode ser de dois tipos:
  - DRAM (Dynamic RAM)
  - SRAM (Static RAM)
- DRAM: Memória que não fica energizada todo o tempo, economizando energia. Há um capacitor que mantém a carga por certo período, após o que deve ser recarregado ("refresh").
   Tem maior capacidade e menor custo.
- SRAM Memória mais rápida que a DRAM, e mais cara.

### DRAM - EDO (Extended Data Output)

 Memória tipo DRAM, mais rápida, que recebe um bloco de memória por vez em sua cache interna, enquanto o processador processa este bloco, recebe outro bloco; DRAM normal recebe um byte por vez.

### SDRAM (Synchronous DRAM)

- SDRAM- Transfere dados a cada ciclo da máquina.
- DDR-SDRAM (Double Data Rate): É uma SDRAM que transfere dados 2 vezes por ciclo.

#### RDRAM (Rambus DRAM)

 Transfere dados a taxa de 1,6 GBps, enquanto as DRAM comuns transferem a 800 MBps.

### DRAM - EDO (Extended Data Output)

#### VRAM (Video RAM)

 Memória específica para armazenar o conteúdo do que é mostrado no vídeo. Dela depende a resolução (nº PIXELS) e o nº de cores que pode ser exibido.

#### WRAM (Window RAM)

 Similar a VRAM, porém dispõe de um "buffer" da próxima imagem que será mostrada. Isto diminui o efeito de "flicker" na tela.

É uma criação da Samsumg.

#### Módulos SIMM e DIMM

 SIMM (Single In-Line Memory Module) 1 30

 Módulo de memória em que os chips estão dispostos numa placa com um fileira única.

30, 72 e 100 pinos

 DIMM (Dual In-Line Memory Module) 1 36 37 72

 Módulo de memória em que os chips estão dispostos em fileira dupla.

72, 144, 168 e 184 pinos



#### Meios e Dispositivos de Entrada, Saída (E/S) e Armazenamento

- Cartão
- Fita de Papel
- Papel Impresso
- Fita Magnética
- Disco Magnético
- Outros



### Cartão Perfurado



Cartão de Hollerith - 1900 a 1928 Furos redondos 45 colunas x 12 alturas

#### Cartão Perfurado - 90 colunas



#### Modelos de cartões especiais



#### Cartão Perfurado (1928-hoje)



# Cartão de 96 colunas do IBM/3 (usado nas loterias brasileiras)



#### Perfuradora de cartões manual



### Perfuradora de Cartões



#### Port-a-Punch (usado nas eleições americanas)



### Picote cortado pelo Port-a-Punch



# Fita de Papel Perfurado







# Leitora de Fita de Papel



#### Perfuradora manual de Fita de Papel



## Papel Impresso

- Papel Sanfonado ou Formulário Contínuo
- É organizado em linhas e colunas
- Pode ter uma ou mais vias
- Pode ser pautado ou liso

#### Tamanhos de formulários

- Standard (132 colunas x 66 linhas) [ 14"x 11" ]
- US Letter (80 colunas x 66 linhas) [8,5"x 11"]



### Impressoras

- Impacto:
  - linha:
    - cilindro
    - cadeia
  - caractere:
    - matricial
    - margarida
    - esfera
- Não Impacto:
  - térmica
  - jato de tinta
  - laser



### Impressoras de Impacto: Matricial





### Impressoras de Impacto: Matricial

["#\$%&'()\*+,-,/0123456789: ; <=>?@ABCDEFGHIJKLMNOPQRST UVWXYZ[\]^\_\abcdefghijklmn 正?"," "," = - THŠ, c:? \(\tilde{\psi}\) | c:E \(\psi\) \(\psi\) | G \(\psi\) 《一图》生28/4912》从1982首角角角首首在C eééÉ i f i i onococococoululuy pra áádiáce eéé i í i iðhóóóó i tau uüüsbi

8-Pin Matrix Windows CP-1252 character set - Copyright @ Matchfonts.com



### Jato de Tinta



## Impressora Laser



### Impressora Laser



#### Outras tecnologias de Impressão:

- Jato de Tinta Sólida (Phase Change)
  - densidade: 300 a 700 dpi
  - marcas: Canon, Apple, HP, Epson
  - custo: US\$ 300 a 500
- Transferência Térmica de Cera (Thermal-Wax Transfer)
  - marcas: Tektronics, Seiko
- Sublimação de Tintura (Dye Sublimation)
  - marcas: Kodak
  - densidade: 300 dpi

unidade de densidade: dpi: Dots Per Inch

#### Impressora Jato de Tinta Sólida





# Impressora de Sublimação de Tintura (Dye Sublimation)



#### Transferência Térmica de Cera

(Thermal-Wax Transfer)





### Impressora Térmica









### Impressoras mais populares para PCs

- Matricial (Dot Matrix)
  - velocidades típicas: 100 a 800 cps
  - custo: US\$ 70 a US\$ 700
- Jato de tinta (Ink Jet)
  - velocidades típicas: 1 a 8 ppm
  - custo: US\$ 80 a US\$ 1.200

Laser

- velocidades típicas: 1 a 16 ppm
- custo: US\$ 300 a 3.000

Unidades para velocidades:

cps: Characters Per Second

ppm: Pages Per Minute

# Tipos de Fitas Magnéticas:

- Rolo (Reel)
- Cassette
- Cartucho (Cartdrige)
- "Streamer"
- DAT (Digital Audio Tape)

### Fita Magnética - Rolo





Figure 79. Tape Reel cartridge operation

### Fita Magnética - Cassette



#### Fita Magnética - Cartucho (Cartdrige)



#### Fita Magnética - Streamer



#### Fita Magnética - DAT / DDS





### Fitas Magnéticas

- Grande capacidade de armazenamento graças ao conceito de Densidade de Gravação.
- Densidade de Gravação:
  - É a quantidade de bytes gravados por unidade de comprimento (polegada).
     É medida em B.P.I (Bytes Per Inch)
    - 0V: 200 FEC 900 1 600 2 200 6 22 000
  - ex; 200, 556, 800, 1.600, 3.200 e 22.000 BPI



#### Paridade

- Conceito que garante que as informações gravadas em uma Fita Magnética (ou em um Disco Magnético) serão lidas exatamente como gravadas.
- Paridade Ímpar (mais usada)
  - É gravado um bit adicional ao byte, que será magnetizado se a contagem de bits ao longo do byte for um número par (para que fique ímpar), se já é ímpar, não magnetiza.
  - O bit adicional é chamado de Bit de Paridade e é gravado (nas fitas magnéticas) na Trilha de Paridade

#### Bit de Paridade



Toda vez que a quantidade de bits magnetizados ao longo do byte for "par", se magnetiza o bit de paridade, para que a contagem ao longo de uma coluna seja sempre ímpar.

## Disco Magnético



### Tipos de Discos Magnéticos:

#### Fixos:

- H.P.T. (Head Per Track)
- Rígido (Winchester ou Hard Disk)

#### Removíveis:

- Cartucho (Cartdrige)
- Panela (Pack)
- Flexível (Diskette ou Floppy)
- Óptico
- Opto-Magnético

#### Disco Magnético - HPT (Head Per Track)



### Introdução à Informática

# Discos rígidos Cabeças de leitura e escrita



Os circuitos da memória RAM precisam de alimentação elétrica, por isso os dados ali armazenados se perdem quando o computador é desligado. Portanto, antes disso, é preciso transferi-los para outros dispositivos de armazenamento que não sejam elétricos. O disco rígido é formado por um conjunto de discos magnéticos instalados permanentemente no interior do computador.

### Introdução à Informática

# Discos rígidos

O preço do disco rígido é inferior ao dos chips de memória e ele pode armazenar maior quantidade de informação, mas funciona com maior lentidão: a unidade central demora mais para ter acesso a um dado armazenado em um disco do que a um dado armazenado na memória.

#### Disco Magnético Pack (Panela)



#### Disco Magnético - Winchester







### Disco Magnético Cartucho (Cartdrige)





# Introdução à Informática



#### Os disquetes

Para transferir a informação de um computador para outro, costumam-se utilizar discos magnéticos de pequeno porte que são colocados e retirados do computador. Eles são utilizados também para fazer cópias de segurança que são guardadas fora do computador.

#### Capacidades dos Diskettes



#### Densidades dos discos

- Densidade Linear de Gravação
  - É a quantidade de bytes gravados ao longo de um arco de comprimento (polegada). É medida em B.P.I. Similar à Densidade de Gravação das fitas, porém a trilha dos discos é em forma de arco.
  - ex. 556, 800, 1600, 3200 BPI
- Densidade Radial de Gravação
  - É a quantidade de trilhas que cabe em uma unidade de raio (polegada). É medida em T.P.I. (Tracks Per Inch)
  - ex. 40, 80 e 135 TPI

#### Densidade Radial de Gravação



# Discos Magnéticos Removíveis de Alta Capacidade

- Zip Drive
  - Capacidade: 100 Mbytes
  - -Custo da Unidade: US\$ 100-200
  - -Custo do Disco: US\$ 10
  - Atualmente substitui nos micros, o espaço antes ocupado pelo drive de 5,25"

# Introdução à Informática



#### Os discos ópticos

Também é possível armazenar informação num CD (disco compacto). Para isso, se emprega um raio laser que pode ser direcionado com grande precisão para um determinado ponto do disco. Devido à avançada tecnologia que incorporam, os CDs têm maior capacidade de armazenamento e são mais resistentes que os discos magnéticos, mas seu funcionamento é mais lento.

# Discos Ópticos



# Discos Ópticos

- CD-ROM
  - tecnologia similar à do CD de som
  - capacidade: 650 Mb
- CD-R (CD Recordable)
  - CD Gravável uma única vez
- CD-WORM (CD-Write Once Read Many)
  - similar ao CD-ROM, porém gravável (uma única vez, para muitas leituras.
- CD-RW (CD-ReWrite)
  - similar ao CD-WORM, porém regravável várias vezes.
- DVD (Digital Versatile Disc)
  - Disco digital que grava Som, Imagem e Dados
- Blu-ray

### CDR-R e CDR-RW



# CD-R disc lens lens prism photoelectrical œll laser

#### DVD

- Digital Versatile Disc
- Discos com capacidade de 4.7 GB até 17 GB
- Tipos de DVD
  - DVD-RAM: disco definido pelo DVD Forum (Matsushita, Toshiba e Time Warner); é o padrão de maior presença no mercado; filmes gravados neste padrão não são compatíveis com a maior parte dos DVD players. (Capacidade: 4,7 ou 9,4 Gb- 1 ou 2 faces)
  - DVD-R: DVD gravável uma única vez (Capacidade: 4,7 Gb)
  - <u>DVD+RW</u>: DVD regravável desenvolvido pela Sony, HP, Philips e Yamaha, que formam a DVD+RW Alliance; é compatível com a maioria dos DVD players. (Capacidade: 4,7 Gb)
  - <u>DVD-RW</u>: padrão de DVD regravável definido pela Apple e Compaq. (Capacidade: 4,7 Gb)
  - VCD: Video Compact Disc. Formato que grava até 80 minutos de vídeo com qualidade similar à das fitas VHS. Pode ser executado nos drives de CD-ROM e DVD players. (MPEG1)

## Blue-ray

- Capacidade: 50Gb (200Gb)
- Resolução: 1080x1920
- Tempo : 12 h video
- Custo:
  - Aparelho: R\$ 300 a R\$ 2.000
  - Mídia: R\$ 70 a R\$ 100





#### Trilhas nos CD/DVD x Discos Magnéticos



#### Outros

- Traçador Gráfico (Plotter)
  - usado para fazer desenhos de plantas, gráficos, figuras....

muito usado por engenheiros, arquitetos e projetistas de indústrias

 dispositivos que desenham com canetas especiais de diversas cores e/ou espessuras, em papel com dimensões que variam entre o tamanho A4 até A0

# Tinta Magnética

- Tinta Magnética (Magnetic Ink)
  - usado nos cheques bancários
  - consiste na impressão de números com tinta magnética (tinta com partículas magnéticas em suspensão)
  - há dois sistemas importantes:
    - CMC-7 (Character Magnetization Code
      - 7 digits)
    - MICR (Magnetic Ink Character Recognition)



#### CMC-7 e MICR

 CMC-7- Usado no Brasil, México, França, Espanha

Letter To Type: 0 1 2 3 4 5 6 7 8 9 A B C D E CMC-7 Output: 0 3 2 3 4 5 6 7 8 9 M M M M M

MICR - Usado nos Estados Unidos, Canada,
 Porto Rico, Panamá e Inglaterra

Letter to Type: 0 1 2 3 4 5 6 7 8 9 A B C D

MICR Output: [] 1 2 3 4 5 6 7 8 9 11 11 11 11

# Código de Barras (Bar Code)

- usado para automação comercial em supermercados e lojas comerciais em geral
- existem 2 sistemas importantes:
  - UPC (Universal Product Code) usado nos EUA, tem 12 dígitos
  - EAN (European Article Numbering) usado na Europa e adotado no Brasil, tem 13 dígitos











UPC-A

EAN-8

**UPC-E** 

# Código EAN - Brasil



Pais

Empresa

**Produto** 

DC

789 - Brasil

7502 - Charrua

10300 - Água Mineral 500ml

0 - Dígito de Controle

SOMA=(7+9+5+2+0+0) + (8+7+0+1+3+0)\*3) DC=CEILING(SOMA;10)-SOMA=CEILING(80;10)-80=0

#### Código de Barras bidimensional

- QR Code
  - Capacidades: 7089 caracteres numéricos
  - 4296 caracteres alfanuméricos



### OCR (Optical Character Recognition)

- Reconhecimento Óptico de Caracteres (OCR)
  - usado pelos Correios e outros serviços que precisam reconhecer caracteres manuscritos ou impressos e transcrevê-los para o computador



#### Scanner

serve para capturar imagens, fotos, textos e transportá-los para o computador

uma vez transportados, pode-se editar a imagem retirando, inserindo ou alterando partes da imagem; pode-se mudar as cores, os tons e matizes, bem como alterar o tamanho da imagem em relação ao original

# Mesa Digitalizadora

 permite criar e manipular imagens com auxílio de um tipo especial de caneta conectada à mesa.

A imagem ou desenho criado sobre a mesa é digitalizado



#### Folha Óptica

- usada para marcações à lápis ou caneta de marcas em espaços pré-determinados
- é usado em concursos públicos, vestibulares, pesquisas de mercado e nos volantes da Loto, Sena, etc.

#### Cartão Magnético

 é usado por bancos, cartões de crédito e lojas comercais para identificar numa tarja magnética, dados do cliente

#### "Smart Card"

- É um cartão similar ao cartão magnético, porém não tem tarja magnética e sim um chip interno.
- É usado como "dinheiro eletrônico", para pagamento de serviços e produtos, tal como se usa o cartão magnético.
  - Ex.: Cartão usado na free-way (2004-2008) e Cartão TRI (2008).







# Smart Card - Exemplos

























# Smart Label (I-Code)

- •Etiqueta Inteligente, que contém chips I-Code.
- •O chip não necessita alimentação; quando passa por sensores é energizado e emite sinal de identificação.
- •Pode ser usado para sistemas anti-furto, como débito automático no check-out, bem como controle de estoques.



Biblioteca Nacional de Singapura, com 100.000 livros, 6.200 CD-ROM. 6.000 fitas VHS

#### RF-ID

- Transmissão de dados através de Rádio Fequência.
- Usado em passaportes, produtos em estoque, pagamento de pedágio (Free-way e Shoppings).





# Apontadores

- Joystick (mais indicado para jogos)
- Paddle (usado em jogos e equipamentos especiais)
- Mouse (usado em todos os ambientes gráficos, orientados à janelas/menus, como o Windows e Mac-OS