FUNDAMENTOS DE TEORÍA DE LA COMPUTACIÓN 2025 Trabajo Práctico Nro 6

Comentario: Hacer por lo menos los ejercicios 1 al 4. El ejercicio restante es un poco más difícil, pero de todos modos intentar resolverlo.

Ejercicio 1. Responder breve y claramente:

- a. Dar un esquema de prueba de la transitividad de las reducciones polinomiales. Ayuda: en clase hicimos lo propio con las reducciones generales.
- b. ¿Cuándo un lenguaje es NP-difícil y cuándo es NP-completo?
- c. ¿Por qué si P ≠ NP, un lenguaje NP-completo no pertenece a P?
- d. Enunciar el esquema visto en clase para agregar un lenguaje a la clase NPC.
- e. ¿Cuándo se sospecha que un lenguaje de NP está en NPI?

Ejercicio 2. Probar:

- a. Si $L_1 \in NPC$ y $L_2 \in NPC$, entonces $L_1 \leq_P L_2$ y $L_2 \leq_P L_1$.
- b. Si $L_1 \leq_P L_2$, $L_2 \leq_P L_1$, y $L_1 \in NPC$, entonces $L_2 \in NPC$.

Ayuda: recurrir directamente a la definición de NPC.

Ejercicio 3. Un lenguaje es CO-NP-completo sii todos los lenguajes de CO-NP se reducen polinomialmente a él. Probar que SAT^C es CO-NP-completo. Ayuda: $L_1 \le L_2$ sii $L_1^C \le L_2^C$.

Ejercicio 4. Sean los lenguajes A y B, tales que A $\neq \emptyset$, A $\neq \Sigma^*$, y B \in P. Probar: (A \cap B) \leq_P A. Ayuda: intentar con una reducción polinomial que, dada una cadena w, lo primero que haga sea chequear si w \in B, teniendo en cuenta que existe un elemento e que no está en A.

Ejercicio 5. Sea el lenguaje SH-s-t = $\{(G, s, t) \mid G \text{ es un grafo no dirigido y tiene un camino de Hamilton del vértice s al vértice t}. Un grafo <math>G = (V, E)$ tiene un camino de Hamilton del vértice s al vértice t sii G tiene un camino entre s y t que recorre todos los vértices restantes una sola vez. Probar que SH-s-t es NP-completo. *Ayuda:* se sabe que CH, el lenguaje correspondiente al problema del circuito hamiltoniano, es NP-completo.