Common Features of the Conformations of Antigen-Binding Loops in Immunoglobulins and Application to Modeling Loop Conformations

Anna Tramontano¹ and Arthur M. Lesk²

¹Istituto di Ricerche di Biologia Molecolare, 00040 Pomezia, Roma, Italy and ²Department of Haematology, University of Cambridge Clinical School, MRC Centre, Cambridge CB2 2QH, England

ABSTRACT Using database screening techniques we have examined the relationship between antigen-binding loops in immunoglobulins, and regions of similar conformation in other protein families. The conformations of most antigen-binding loops are not unique to immunoglobulins. But in many cases, the geometrical relationship between the loop and the peptides flanking it differs between the immunoglobulins and other structures with the same loop. We assess model building by data base screening, compared with that based on canonical structures. © 1992 Wiley-Liss, Inc.

Key words: protein structure, modeling, immunoglobulins, loops, data base screening

INTRODUCTION

We are interested in understanding the molecular basis of the immune response, and, more particularly, in relating sequence to structure in the antigen-binding sites of immunoglobulins. A test and application of this understanding is how well we can predict the structures of antigen-binding domains. From overall sequence divergence we can estimate the similarity of the frameworks of immunoglobulin variable domains. 1-2 Predictions of loop conformations could be based on general sequence-structure relationships in loops³⁻⁷ and features specific to antigen-binding loops, 6,8-11 or alternatively we could try to import nonhomologous loops, using techniques developed by Jones and Thirup. 12 The goals of this study are first, to understand the relationship between the conformation, structural context, and stabilizing interactions of antigen-binding loops and loops of similar conformation in other protein families and, second, to see to what extent loops of similar conformation in other protein families can be identified and used in modeling antigen-binding sites.

Immunoglobulins (Igs) are composed of four chains containing variants of a basic folding unit (Fig. 1A). In IgGs the light chain contains a variable domain (V_L) and a constant domain (C_L) , and the heavy chain contains a variable domain (V_H) and

three constant domains (C_{H^1} , C_{H^2} , and C_{H^3}). The domains contain two β -sheets packed face to face, and the V_L and V_H domains pack together similarly in different IgGs. ^{13,14} The V_L and V_H domains contain six hypervariable loops, clustered together in space to form the antigen-binding site (Fig. 1B). Variations in sequence and structure of these regions give antibodies their great range of specificity and affinity.

Four of the antigen-binding loops—L2, L3, H2, and H3—are hairpins. L1 and H1 join one sheet of either domain to the other. For five of the six loops, there is a limited repertoire of "canonical structures," each stabilized by specific packing interactions, hydrogen bonding, or ability to assume special conformations, of a few particular residues.^{6,8–11}

For database screening to be a useful tool for modeling antigen-binding loops, it must be shown, first that the loop conformations occur in other known protein structures, and second, that the relationship between the loop and the flanking peptides is similar in immunoglobulins and other proteins. In this work we studied the uniqueness to immunoglobulins of the conformations of the antigen-binding loops L1, L2, L3, H1, and H2, and of the relationship of the loops to their stems (the regions flanking the loop.) Where loops of similar conformation appear in immunoglobulins and other proteins, we compared their structural contexts and the interactions that stabilize their conformations. We also compared the loops identified by data base screening with the classification of loops according to canonical structures.

Many, but not all, of the loop conformations can be found in other proteins and, in some cases, the best-fitting regions come from structures other than immunoglobulins. In some cases we picked up standard hairpins, ³⁻⁷ but in others, the same loop appears in quite different structural contexts. However, there is great variability in the relationship of the loop to the stem.

Received February 26, 1991; revision accepted June 26, 1991.

Address reprint requests to Dr. Anna Tramontano, Istituto di Richerche di Biologia Molecolare, Via Pontina Km 30.600, 00400 Pomezia, Roma, Italy.

Fig. 1. (A) The structure of an immunoglobulin V domain (KOL V_L). Strands of β -sheet appear as ribbons. L1, L2, and L3 are the hypervariable loops. V_H domains and their hypervariable regions,

H1, H2, and H3 have homologous structures. **(B)** A schematic representation of the hypervariable loops in antigen-binding sites of immunoglobulins, looking into the antigen-binding site.

MATERIALS AND METHODS

Protein structures used were distributed by the Protein Data Bank in the September 1990 release. ¹⁵ We studied immunoglobulin variable domains in the data bank solved at 2.7 Å resolution or better (see Table I). Table II contains the definitions of the loops, with residues in each light chain numbered sequentially from 1 and the residues in each heavy chain numbered sequentially from 301. A conversion to the residue numbering of Kabat et al. ²⁴ appears in Table II.

The programs used²⁵ offer the following facilities: The user may specify within a selected structure one, two, or more regions of consecutive residues. If more than one region is specified, the length of the gap(s) between them must be specified; these need not be the same lengths as the gaps in the original structure. The program searches in the data base for regions in other structures matching the selected regions, with gaps of the specified lengths. The criterion for matching is a threshold on the value of the root mean square (rms) deviation Δ after optimal superposition. Optionally, the program will fit α -carbons only, main chain atoms, or all atoms (rarely a useful facility). The user may assign different weights to different residues. The algorithm is described in the appendix. The program reports the best fits found within a specified threshold of rms deviation Δ , sorted in order of increasing Δ . (If no fit within the threshold exists, the program reports the best fit found.)

We applied these search techniques in three ways.

1. To search for loops, we specified the main chain N, C_{α} , and C atoms of one of the antigen-binding

TABLE I. Immunoglobulin Variable Domains of Known Atomic Structure in the Protein Data Bank, ¹⁵ September 1990 Release, Determined at a Resolution of 2.7 Å or Better

		nain ype	Reference	Protein Data Bank designation
Molecule	L	H		
Fab'NEWM	λI	γII	16	3FAB
Fab KOL	λI	γIII	17	2FB4
V_{τ} RHE	λI	•	18	2RHE
Fab McPC603	к	γIII	19	1MCP
Fab J539	κ	γIII	20	2FBJ
Fab HyHEL-5	κ	γII	21	$2 \mathrm{HFL}$
Fab 4-4-20	κ	γII	22	4FAB
V_L REI	κ	•	23	1REI

loops in a known structure. Given the short length (3 residues) of the L2 loop, in this case we included one residue on either side of the loop and searched for five-residue fragments.

2. To study the relationship between the loop and its "stem," we specified two sets of residues, one starting from the residue preceding a loop and extending "backwards" for N residues, and the other starting from the residue following the loop and extending "forward" for N residues. This search identified regions from the data base that matched the stems of the loops in structure and spacing in the sequence, even if the intervening region (corresponding to the loop itself) did not match in structure.

In the stem searches we used C_{α} atoms only, and tested different possible values of the parameters: we used 3 and 4 for the length N of the flanking regions and assigned each residue a weight according to its distance from the loop: a residue adjacent to the loop has weight 1.0, the next residue has weight x, the next x^2 etc., where we explored x=0.3, 0.5, 0.8, and 1.0 (x=1.0 corresponds to uniform weights.) The search with four-residue flanking regions and a ratio of x=0.8 gave the best results.

When well-fitting stems were identified, we fit intervening residues using all main chain atoms—N, C_{α} , C, O—with equal weights.

3. To search for loop and stem together, we defined a region by extending the loop three or four residues in both directions.

RESULTS

The structures of 41 hypervariable regions from eight different proteins are known from crystal structures solved to a resolution of 2.7 Å or better (see Tables I and II). The Fab fragments have six loops except for NEWM, from which L2 is deleted; the Bence–Jones proteins V_L REI, and V_L RHE contain light chains only.

Searches for Loop Regions

Table III shows the results of the searches for the hypervariable loops. We report the five best fits to the loop within the family of immunoglobulins and the five best fits in nonimmunoglobulin structures. In most cases many other regions of comparable rms deviation were also found. We also found fits to non-homologous regions in immunoglobulin structures, but will not discuss these here.

In most cases, the best fit is to the homologous region of another immunoglobulin. However, in some cases no homolog of a loop with the same length exists in other immunoglobulins of known structure. As more and more immunoglobulin structures are determined, such cases will become rarer. In all but three cases, a loop of similar conformation exists in a protein foreign to the immunoglobulin family. The three exceptional cases are the L1 loops of McPC603 and 4-4-20, which are unusually long, and the L1 loop of NEWM.

Searches for Regions Flanking Loops, or Stems

Table IV contains the results of the searches for the stems. In a few cases, a low value of Δ for the stem is associated with a low value of Δ for the intervening region; for example, for L3 of NEWM, residues $259{-}264$ of penicillopepsin (2APP) fit with $\Delta_{\rm stem}=0.4$ Å and $\Delta_{\rm loop}=0.7$ Å. In other cases, there is a good fit to the stem but a poor fit to the loop; for example, for L3 of McPC603, residues $258{-}271$ of pepsinogen (1PSG) fit with $\Delta_{\rm stem}=0.5$ Å, but $\Delta_{\rm loop}=4.4$ Å.

DISCUSSION

Uniqueness of Hypervariable Loops to the Immunoglobulin Family

The conformations of short hairpins tend to follow general rules based on the sequences of residues in the loop. $^{3-7}$ These observations and the results of Jones and Thirup 11 suggest that the hairpin loops in immunoglobulins, except when unusually long, ought not to be expected to be unique. The cases of V_κ , L3 loops, V_H H1 loops and H3 from HyHEL-5 were described in ref. 10. However, it was not clear whether L1 and H1 would be unique to β -sheet proteins with the immunoglobulin topology.

V_λ L1 loops

The L1 loops of V_{λ} domains have the unusual feature, among regions bridging the sheets of parallel double- β -sheet proteins, of penetrating deeply between the sheets. ²⁶ A large hydrophobic sidechain at position 30 points into the core of the molecule, and is packed in a cavity formed by framework residues 25, 33, and 71.

The cytochrome subunit of the photoreaction center from *Rhodopseudomonas viridis* is a primarily

Kabat numbering²⁴

						•			
				Re	sidues len	gth			
		L1			L2			L3	
NEWM	25	34	10		deleted		86	91	6
KOL	25	33	9	51	53	3	92	99	8
RHE	25	33	9	51	53	3	92	99	8
McPC603	26	38	13	56	58	3	97	102	6
J539	26	31	6	49	51	3	90	95	6
HyHEL-5	26	31	6	49	51	3	90	94	5
4-4-20	26	37	12	55	57	3	96	101	6
REI	26	32	7	50	52	3	91	96	6
Kabat numbering ²⁴	26	32		50	52		91	98	
		H1			H2			Н3	
NEWM	326	332	7	353	355	3	399	405	7
KOL	326	332	7	352	357	6	400	414	15
McPC603	326	332	7	353	358	6	402	410	9
J539	326	332	7	353	356	4	400	406	7
HyHEL-5	326	332	7	353	356	4	399	403	3
4-4-20	336	332	7	353	358	6	402	406	5

52a

55

TABLE II. Residues Defining Antigen-Binding Loops, and Their Lengths

 α -helical protein containing four heme groups. ²⁷ A region of this subunit is similar in conformation to the V_{λ} L1 loops of RHE and KOL. The rms deviation of all N, C_{α} , C, O atoms is 0.8 Å. Figure 2A shows the superposition of the L1 loop of RHE with this region of the reaction center cytochrome. Corresponding to the deeply packed residue Ile-30 in RHE there is an inward-pointing Phe side chain in the cytochrome. Figure 2B shows the structural role of the region in the reaction centre cytochrome. It is part of a long turn arching over an α -helix, not entirely unlike a bracket holding a pipe against a wall. This helix is bound to the heme group.

26

32

These loops are members of a general class of loop, characterized by rather long end-to-end distances, stabilized by packing of a large, hydrophobic, inward-pointing residue.¹⁰

The H1 loops of V_{γ} domains also connect two different β -sheets. The similarity of the most common H1 conformation to a region in *Chironomus* erythrocruorin was described in ref. 10. The H1 loops of NEWM and HyHEL-10 have a distorted version of this conformation. Figure 3A shows the superposition of H1 from NEWM (residues 326–332) with residues 42–48 of actinoxanthin (1ACX). However, the structural context is completely different: in actinoxanthin this region is a rather extended bridge between two domains (Fig. 3B).

Two of the H2 loops present interesting features. Figure 4A shows the superposition of McPC603 H2 with residues 276–281 of Alcaligenes denitrificans azurin (2AZA).²⁹ The conformation of this loop is unusual because it is long: in McPC603 it is part of a 10-residue hairpin. In McPC603 Lys 357 is in a $\phi > 0$, $\psi > 0$ conformation. (It is interesting that this Lys arises by somatic mutation from a germ-line

gene that codes for a Gly at this position.) In this azurin loop the corresponding residue, Asp-280, is also in a $\phi > 0$, $\psi > 0$ conformation, but so are 276 Gly and 281 Tyr. These regions of similar structure in McPC603 and azurin both contain a tyrosine in the last position. In both structures the ring of the tyrosine is approximately parallel to the plane of a peptide, a juxtaposition of polarizable unsaturated groups that might provide a favourable stacking interaction (Fig. 4B and C).

100

95

Figure 5 shows the superposition of HyHEL-5 H2 and residues 167–172 of garden pea lectin (2LTN). In the middle residues of these turns, HyHEL-5 has the sequence Pro-Gly-Ser-Gly. This region adopts a conformation quite close to that expected for a four-residue X-X-X-G turn. Pea lectin has the sequence Ala-Ala-Tyr-Asn, with the asparagine in a $\varphi>0, \psi>0$ conformation. This example shows that the presence of a glycine at a particular position is not an essential requirement for a conformation of a loop in which a residue has the α_L conformation (see also ref. 31). This makes it more difficult to use sequence cues to select loops of proper conformation from a set of choices spanning equivalent endpoints.

Uniqueness to the Immunoglobulin Family of the Relationship Between Loop and Stem

The use of database searches for model building will produce acceptable structures only if there is good structural similarity for the entire region spanning the loop and the stem. We searched the data bank for structures consisting of the mainchain atoms (N, C_{α} , C; carbonyl oxygens omitted) of the antigen-binding loops (Table II) extended by four residues at both ends. Good fits to these extended loops are common among the homologous regions

Fig. 2. Superposition of L1 hypervariable regions from V_{λ} RHE, and a region of similar conformation from the cytochrome from the reaction center of *Rhodopseudomonas virdis* (1PRC). Recall that L1 is not a hairpin but links strands from different sheets within a domain. (A) Superposition of the backbones,

showing the corresponding inward-pointing side chains of that stabilize the conformations of the regions: V_{λ} RHE, residues 25–33 (solid lines); cytochrome, residues 189–197 (broken lines). **(B)** Structural context of this region in the reaction center cytochrome. Backbone, and heme group, drawn in bolder lines.

Fig. 3. **(A)** Superposition of the H1 loop of NEWM (solid) and residues 42–48 of actinoxanthin (1ACX) (broken). **(B)** The residues flanking the regions of similar conformation, showing how the structures diverge outside the limited region.

TABLE III. Best Fits to Hypervariable Loops in Immunoglobulins Found by Screening the Data Base*

			L1				L2				L3	
2RHE		25	SATDIGSNS			50	YYNDL			92	WNDSLDEP	
	2FB4	25	TSSNIGSST	0.24	2FB4 2FBJ 1REI 2MCP 4FAB	48 49 55	YRDAM YEISK YEASN YGAST YKVSN	0.14 0.26 0.35	2162	92	WDVSLNAY	0.58
	1PRC	C189	PFTMFLAND	0.80	2GD1 1LDX 3FXN 2ALP 8CAT	12 56 11	IDGKM VAQQS MGDEV INNAS VGPRG	0.65 0.67 0.69	4PTI 2PAB 6API 4APE 1CLA	8 212 242	YNAKAGLC LDAVRGSP HCKKLSSW SSSSVGGY FHQETETF	0.46 0.46 0.50
2FB4		25	TSSNIGSST			50	YRDAM			92	WDVSLNAY	
	2RHE	25	SATDIGSNS	0.24	2FBJ 2RHE 1REI 4FAB 2MCP	50 49 54	YEISK YYDNL YEASN YKVSN YGAST	0.14 0.24 0.32	2RHE	92	WNDSLDEP	0.64
	1PRC	C189	PFTMFLAND	0.82	2GD1 2ALP 1LDX 3P2P 3FXN	11 12 25	I DGKM I NNAS VAQQS YGCYC MGDEV	0.68 0.68	1 CLA 5 PT I 1 L Z 1 5 P E P 1 P R C	23 45 314	FHQETETF YNAKAGLC YNAGDRST FDRANNKV VDRSEHYF	0.29 0.30 0.33
1MCP		26	SQSLLNSGNQ	KNF		55	YGAST			97	DHSYPL	
					2HFL 2FB4 2RHE 2FBJ 1REI	50 50 48	YDTSK YRDAM YYNDL YEISK YEASN	0.35 0.37 0.37	3HFM 1REI 4FAB	91	SNSWPY YQSLPY STHVPW	0.37 0.40 0.62
					2GD1 3P2P 8CAT 2ALP 4I1B	25 41 11	IDGKM YGCYC VGPRG INNAS SGPYE	0.62 0.65 0.68	2TBV 1CAC 3XIA 2CPP 2CDV	131 205 85	VSSLPA VQQPDG LERPEL CPFIPR DKTKQP	0.73 0.77 0.77 0.79 0.81
3FAB		25	SSSNIGAGNH			de l	leted		2FBJ 2APP 2GRS 2APR 4PEP 1LDX	90 259 124 280 90	YDRSLR WTYPLI SISGYT EVSGKK EFQGQC QVGGIS NNAGVL	0.86 0.34 0.34 0.36 0.36
1RE I		26	SQDIIKY			49	YEASN			91	YQSLPY	
	1F19 3HFM	26	SQDISNY SQSIGNN	0.51 0.58	2FBJ 2FB4 2RHE 4FAB 2MCP	50 50 54	YEISK YRDAM YYNDL YKVSN YGAST	0.24 0.27 0.31	3HFM 1MCP 4FAB	97	SNSWPY DHSYPL STHVPW	0.23 0.40 0.57
	1PRC 1L31 3GPD 4ATC 1HMG	51 15 49	KAQYGMG GRNCNGV DEVVSDD FEASTRT SEVEGRI	0.59 0.66 0.73 0.81 0.82		300 11 9 25	IDGKM INNAS YLDTE YGCYC CKYTD	0.42 0.51 0.64 0.65	2CDV 1CAC 1FX1 3CA2 1PHH	131 95 167	DKTKQP VQQPDG SSYEYF IKTKGK LQGERP	0.66 0.72 0.75 0.75 0.77
2FBJ	2HFL		SSSVSS SSSVNY	0.48	2FB4 2RHE 1REI 4FAB 2MCP	50 50 49 54	YEISK YRDAM YYNDL YEASN YKVSN YGAST	0.10 0.19 0.28	ЗГАВ		WTYPLI YDRSLR	0.86

(continued)

TABLE III. Best Fits to Hypervariable Loops in Immunoglobulins Found by Screening the Data Base* (Continued)

Base* (Cont	inued)										
		L1				L2				L3	
2GP 1GC 2PK 8CA 3RP	R 19 A 57 T 172	SAPSAD SSDCPN FENENT HLKDPD RKAEST	0.31 0.40 0.51 0.56 0.57	2GD1 2ALP 1LDX 4FAB 3P2P	11 12 155	IDGKM INNAS VAQQS IDGSE YGCYC	0.49 0.61 0.68 0.70 0.71	1 CMS 3BCL	417 278 99	KSGTSA TLGNST QDQGFC AVGSFA QHGRLF	0.50 0.51 0.53 0.55
2HFL 2FB		SSSVNY	0.48	2MCP 2FB4 2RHE 2FBJ 1F19	55 50 50 48	YDTSK YGAST YRDAM YYNDL YEISK YYTSR	0.22 0.36 0.38 0.40 0.41		90	WGRNP	
2GC 2GC 2RS 2GP 2PK	R 106 P 22 D 118	SSDHSN TEDCSS SHPVKQ SAPSAD FENENT	0.27 0.41 0.42 0.44 0.50	3P2P 8CAT 1PRC 4I1B 2GD1	25 41 H6 21	YGCYC VGPRG LAQHL SGPYE IDGKM	0.55 0.60 0.61 0.62 0.66	1HKG 2TAA 1LYM	209 389 53	SGIVS FGSGV DDTTI YGILQ TGAEY	0.28 0.36 0.53 0.56
4FAB	26	SQSLVHS	QGNTY	2FBJ 1REI 2FB4 2RHE 2MCP	48 49 50 50	YKVSN YEISK YEASN YRDAM YYNDL YGAST	0.28 0.31 0.32 0.37 0.45	3HFM 1REI 1MCP	91 91	STHVPW SNSWPY YQSLPY DHWYPL	0.57
				2GD1 2ALP 5PEP 7CAT 3P2P	11 9 41	IDGKM IINAS YLDTE VGPRG YGCYC	0.38 0.58 0.62 0.69 0.70	5LDH 1FX1	219 95 703	VQQPDG DNDSEN SSYEYF EQLEHG KNLSGC	0.73 0.73 0.75
		H1				H2		_			
1MCP 2HF 2FB 2FB 4FA 3FA	326 J 326 4 326 3 326	GFTFSDF GYTFSDY GFDFSKY GFIFSSY GFGFSDY GTSFDDY	0.34 0.37 0.50	4FAB		NKGNKY NKPYNY	0.78				
1EC 1ET 2GD 2ME 1GO	J 161 I 196 J 109	HTDFAGA DFPGDDT ARAAAES KQDYSFC LTLKNFE	0.64 0.65 0.67	3WGA	H188 133 C177	GLAQDY SIRYGN GGDAGG AKYTAY MMYGGM	0.65 0.67 0.69				
3FAB 2FB 2FB 2HF 1AC 1PR 1FD 1ET	326 4 326 326 42 C C186 H 160 J 161	GTSFDDY GFDFSKY GFIFSSY GYTFSDY ACNPATA NYDPFTM KVNVEDA DFPGDDT ASPLEKV	0.62 0.68 0.71 0.60 0.61 0.63 0.64	2FBJ 3HFM 2FB4 20V0 3WGA 1TGS 2ALP 2CYP	352 352 352 25 148 250 149	FYHGT HPDSG SYSGS WDDGS GSDNK SAGGS GTDGI TSAGQ SKSGY	0.60 0.68 0.68 0.15 0.15 0.16 0.17				
2FBJ 2FB- 2MCI 4FAI 2HFI 3FA:	326 326 326 326	GFDFSKY GFIFSSY GFTFSDF GFTFSDY GYTFSDY GTSFDDY	0.32 0.41 0.46	2FB4		HPDSGT WDDGSD	0.29				

(continued)

TABLE III. Best Fits to Hypervariable Loops in Immunoglobulins Found by Screening the Data Base* (Continued)

		, 						
		H1				H2		
1 2 2	ETU 1: YHX 1: MEV 1	11 HTDFAGA 61 DFPGDDT 63 ?KLISAM 09 KQDYSFC 09 GTDSKES	0.58 0.59 0.60	3SGB 3FXN 1CMS	44 7 158	KEDLRS NSARTT SGTGNT DRNGQE NSIGRA	0.51 0.51 0.54	
2HFL	3	26 GYTFSDY			352	LPGSGS		
2 2 4	FBJ 3 FB4 3 FAB 3	26 GFTFSDF 26 GFDFSKY 26 GFIFSSY 26 GFTFSDY 26 GTSFDDY	0.46 0.47 0.53			NKPYNY NKGKNY		
1 1 2	ETU 1 ECN 1 MEV 1	95 GRGAAQN 61 DFFGDDT 11 HTDFAGA 09 KQDYSFC 78 LTLKNFE	0.63 0.65 0.61	3PEP 1TGN 1TRM	314 76 95	NAATHV DRAHNK NSNTLN DRKTLN DVSLNA	0.33 0.34 0.36	
2FB4	3	26 GFIFSSY			352	WDDGSD		
2 4	MCP 3 FAB 3	26 GFDFSKY 26 GFTFSDF 26 GFTFSDY 26 GYTFSDY	0.34			HPDSGT NWDGDY		
1 1 2	ECN 1 GOX 1 MEV 1	09 GTDSKES 11 HTDFAGA 78 LTLKNFE 09 KQDYSFC 97 NPPAHGA	0.58 0.58 0.60	3FXN 1FX1 3HLA	7 9 127	NSARTT SGTGNT STTGNT KEDLRS TGACQH	0.54 0.60 0.64	
4FAB	3	26 GFTFSDY			353	NKPYNY		
2 2	MCP 3: FB4 3:	26 GFDFSKY 26 GFTFSDF 26 GFIFSSY 26 GYTFSDY	0.42			NKGNKY LPGSGS		
2 1 2	GD1 1: ETU 1: YHX 1:	09 KQDYSFC 96 ARAAAES 51 DFPGDDT 63 ?KLISAM 24 MCDVDEL	0.61 0.61 0.62	1AZA 2PLV 2APP	67 577 239	GEQGSN GLAQDY VDYLLG DSNAGG KRLSGG	0.35 0.44 0.55	

*For each loop, the initial residue number and sequence of the parent loop are given; underneath them we list up to five homologous loops of similar conformation in other immunoglobulin structures, then up to five homologous loops of similar conformation from proteins of other families. For each loop found, the initial residue, the sequence, and the root mean square deviation in atomic position of N, C_a , and C atoms are given.

within the immunoglobulin family, but otherwise appear to be rare, except for the short L2 and H2 hairpin loops. Two examples from unrelated proteins are J539(2FBJ) L3 (residues 87–98) and residues 13–24 of α-amylase inhibitor (1HOE)³¹ and HyHEL-5 (2HFL) L3 (residues 87–97) and residues 369–379 of glutathione reductase (3GRS).³² The case of a good fit of the stem but a poor fit of the loop occurs in a number of entries in Table IV, including J539 L3—1MCP L3 and KOL H2—HyHEL-5 H2 for examples involving homologous loops within the immunoglobulin family and McPC603 H2—2GCR for an immunoglobulin loop and a loop from another protein family.

Applications to Model Building

The entries in Table IV confirm results of Jones and Thirup¹² and others that there is not a secure correlation between a low rms deviation of the stem and a low rms deviation of the loop. Therefore we cannot identify the best-fitting loop from the best-fitting stem. This applies both to homologous loops within the immunoglobulin family and the regions from other families.

Within the immunoglobulin family, this conclusion illuminates the relationship between variations in the structure of the framework and the canonical structure of the loops. The choice of canonical structure

TABLE IV. Results of Screening the Data Base for the Stems of Hypervariable Loops of Immunoglobulins*, †

		L1					L2					L3		
2RHE	2FB4	21-37	0.16	0.28	2RHE	IREI	46-56	0.32	0.28	2RHE	2FB4	88-103	0.40	0.75
(21-37)					(47-57)	2MCP	52-62	0.39	0.96	(88-103)				
						1F19	45 - 56		0.90					
						2FB4	47–57		0.12					
						4FAB	51–61	0.43	0.51					
	1HLA	202–218				2SNS	80-90		1.17		3CNA	24-39		2.61
	2PAB	6-22		4.06		5CHA	372-382	0.76			1GP1	152-167	0.57	
	2PLV 2TAA	817–833 407–423				1RHD 2RHV	214-224 435-445	0.78	0.15CA		2CNA	50-65 1028-1043	0.59	1.53
	4MDH					1GD1		0.86			5LDH	289-304		2.51
2FB4	2RHE	21-37	0.16	0.28	2FB4	2RHE	47–57		0.12	2FB4	2RHE	88-103	0.40	0.74
(21-37)					(47–57)	1MCP	52-62		0.94	(88–103)				
						1REI	46-56		0.22					
						4FAB 3HFM	51–61 46–56		0.47 0.95					
	1HLA	202-218	0.64	4.21		2SNS	80-90	0.61	1.14		5LDH	289-304	0.43	2.36
	2PAB	6-22	0.80	4.08		1GD1	444 - 454				2PAZ	5-20	0.59	1.75
	2TAA	407-423				1RHD		0.81			3DFR	141–156	0.60	2.19
	2PLV	817-833		4.36		2RHV					1GP1	5-20		1.26
	4MDH	787–803	0.94	4.30		5CHA	135-145	0.97	2.77		4SGB	312–327	0.74	4.16
3FAB						Not pre	esent			3FAB	2FBJ	86-99		0.99
(21-38)										(82-95)	1REI	87–100	0.60	
											1F19 1MCP	87–100 93–106		1.71 2.25
											4FAB	92–105	0.68	
	1PSG	287-304									2APP	255-268	0.36	0.68
	2STV	161–178	0.96								1PHH	138-151		1.07
	5TLN	121–138	0.99	3.86							1SN3	37–50		0.92
											3GRS 8CAT	252–265 679–692		1.20 1.42
2FBJ	2HFL	22-35	0.28	0.54	2FBJ	2HFL	45-55	0.25	0.92	2FBJ	1MCP	93-106	0.22	1.96
(22-35)					(45-55)	1REI	46-56	0.28	0.20	(86-99)	1REI	87-100	0.23	1.88
						1MCP	52 - 62		0.97		1 F 19	87-100	0.28	1.56
						3HFM 4FAB	$46-56 \\ 51-61$		0.94 0.43		3HFM 4FAB	87–100 92–105	0.28 0.33	
	1CMS	287-300	0.86	1.83		2SNS	80-90	0.74			1PSG	258-271		1.03
						1GD1	44 - 54		1.29		1SN3	37-50		1.19
						5CHA	135 - 145	0.87			1NXB	26 - 39		1.11
						1CPB	35-45		1.53		1GCR	132–145		1.41
						2RHV					1ETU	66-79	0.58	1.02
1MCP (22-42)					1MCP (52–62)	1RE1	153-163			1MCP	2FBJ	86-99		1.96
(22-42)					(32–62)	4FAB 2FBJ	51–61 45–55	0.33	1.03	(93–106)	1REI 4FAB	87–100 92–105	0.29	3.79 3.82
						3HFM	46-56	0.37			1F19	92–103 87–100		3.56
						2RHE	47-57		0.95		3HFM	87–100		0.45
	1TNF	317-337	0.64	3.22		1GD1	444-454	0.65	0.70		1PSG	258-271	0.53	4.37
	4RHV	712–732				2SNS	80-90	0.66	1.12		1GCR	43-56		4.16
	2PAB	118-138				1RHD	214-224	0.84			1SN3	37-50	0.61	4.42
	3APR	104-124				2RHV	435-445				1NXB	26 - 39	0.62	4.54
	2GLS	30-50	0.82	3.80		5CHA	135–145	0.91	2.71		1HOE	12–25	0.63	4.37
2HFL	2FBJ	22-35	0.28	0.54	2HFL	2FBJ	45-55	0.95	0.92	2HFL				
(22-35)		- 55			(45-55)		46-56	0.26		2HFL (86–98)				
						знғм	46-56		0.82	(00-20)				
						1MCP	52-62		0.25					
						4FAB	51-61	0.51	0.97					

(continued)

TABLE IV. Results of Screening the Data Base for the Stems of Hypervariable Loops of Immunoglobulins *,† (Continued)

		L1					L2					L3		
	1CMS	287-300	0.92	2.04		2SNS	80-90	0.78	1.21		4APE	313-325	0.63	0.63
	1CTX		0.94			1GD1	444-454		0.73		3BCL	11-23	0.64	
	2PLV	897-910	0.99	2.58		2RHV	435-445	0.92	1.20		6ACN	321-333	0.64	2.30
						5CHA	372-382	0.93	2.75		3CPP	53 - 65	0.64	1.7
						1RHD	214-224	0.95	0.92		3GRS	368-380	0.69	0.99
4FAB		_			4FAB	1REI	46-56	0.24	0.40	4FAB	2MCP	93-106	0.31	0.89
22-41					(51-61)	3HFM	46 - 56	0.32	1.06	(92-105)	2FBJ	86-99	0.33	2.0
						1MCP	52-62	0.33	1.03		1REI	87-100	0.37	0.9
						1F19	46-56	0.42	1.04		3HFM	87-100	0.38	0.90
						2RHE	47–57	0.43	0.51		1F19	87–100	0.42	1.41
	2PLV	137-156	0.90	5.13		2SNS	80-90	0.46	1.31		1NXB	26 - 39	0.53	2.02
	3DFR	5-24	0.97	2.55		1RHD	214 - 224	0.69	1.48		2TBV	193-206	0.55	2.15
	2SOD	82-101	0.98	5.64		2GD1	44-54	0.73	1.31		1PSG	258-271	0.56	2.04
						2RHV	435 - 445	0.85	1.46		1SN3	37-50	0.59	1.99
						1ALP	115-125	0.98	1.69		1ACX	32-45	0.61	2.10
1REI	3HFM	22-36	0.29	1.08	1REI	4FAB	51-61	0.29	0.40	1REI	2FBJ	86-99	0.23	1.88
(22-36)	1F19	22 - 36	0.68	0.81	(46-56)	3HFM	45-56	0.30	0.92	(87–100)	1F19	(87-100)	0.24	1.52
						2FBJ	45 - 55	0.31	0.20		1MCP	93-106	0.29	0.42
						2RHE	47-57	0.32	0.28		3HFM	87-100	0.34	0.28
						1MCP	52-62	0.32	0.94		4FAB	92 - 105	0.40	0.91
	2MEV	130-144	0.64	2.38		2SNS	80-90	0.55	1.13		1PSG	258-271	0.56	1.96
	1HOE	22 - 36	0.74	2.24		1GD1	44-54	0.78	1.22		1NXB	26 - 39	0.60	1.89
	4TLN	102-116	0.82	2.48		1RHD	214-224	0.78	1.38		1GCR	43-56	0.63	1.89
	2RS3	133-147	0.86	1.66		1RHV	438-448	0.82	1.31		1SN3	37-50	0.63	1.96
	2AIT	22–36	0.86	2.09		2PLV	578-588	0.90	1.45		1HOE	12-25	0.64	1.82
		H1					H2							
2FB4	2FBJ	322-336	0.23	0.23	2FB4	2HFL	348-361	0.25	2.05					
(322-336)	1MCP	322 - 336	0.37	0.44	(348-361)	2FBJ	348-361	0.28	0.32					
	3HFM	322-336	0.44	1.31		1F19	348 - 361	0.61	2.17					
	2HFL													
	3FAB	322–336	0.58	0.95										
		672 - 686				2BCL	80-93		2.18					
		818-832				2CNA	113-126		1.84					
		646-660				3PEP	310-323		1.95					
	2TAA	408-422	0.86	2.83		3HLA	100-113		1.32					
						IBMV	1029-1042	0.35	1.87					
3FAB		322–336			3FAB		_							
(322-336)		322–336			(349 - 359)									
	1F19	322–336												
	2FBJ	322–336												
	4FAB	322–336	0.57	0.98										
	2TBV	64 - 78	0.54	2.69		2GD1	297-307	0.38	1.33					
	1RHV	646-660	0.67	3.01		2APP	72-82		0.26					
	2HLA	325-339	0.70	2.26		1THI	91–101	0.57	1.22					
	2TAA	408-422	0.84	2.75		1DPI	372–382		0.41CA					
	1PTE	165–179	0.96	3.43CA		2CNA	146–156	0.63	0.69					
2FBJ	2FB4	322-326	0.23	0.23	2FBJ	2FB4	349-360	0.31	0.23					
(332-336)	2MCP	322 - 326	0.26	0.42	(349-360)	2HFL	349-360	0.46	2.03					
		322-326				1F19	349 - 360	0.59	1.65					
	4FAB	322-326	0.49	0.56										
	3FAB	322 - 326	0.52	0.87										
	2TBV	672-686				1BMV	1030-1041	0.28	1.66					
		646-660				2LTN	164-175	0.29						
	11/11/	515 500				1CMS	308-319	0.46						
						2RUB	72-83		2.59					
						6HIR	28-39	บ.53	1.38				(conti	nued

TABLE IV. Results of Screening the Data Base for the Stems of Hypervariable Loops of Immunoglobulins*,† (Continued)

		H1					H2		
IMCP	2FBJ	322-336	0.28	0.42	1MCP	4FAB	349-362	0.51	1.11
(322 - 336)	3FAB	322-336	0.35	1.02	(349 - 362)				
	2FB4	322-336	0.37	0.44					
	3HFM	322-336	0.41	1.16					
	2HFL	322 - 336	0.44	0.30					
	2TBV	64-78	0.57	2.92		2GCR	4-17	0.25	2.00
		646-660	0.73	2.87		2ENL	20-33	0.28	1.76CA
		408-422				1NXB	26 - 39	0.31	1.72
						1CHG	131-144	0.32	2.94
						2PAB	212-225	0.33	1.93
HFL	1F19	322-336	0.31	1.25	2HFL	2FB4	349-360	0.32	2.03
(322-336)	3FAB	322-336	0.38	1.00	(349 - 360)	2FBJ	349 - 360	0.46	2.00
	1MCP	322-336	0.44	0.30		1F19	349 - 360	0.46	1.68
	2FB4	322-336	0.56	0.57					
	2FBJ	322-336	0.58	0.56					
	2TBV	64-78	0.58	2.99		2LTN	164-175	0.55	0.69
	1RHV	646-660	0.67	2.87		1BMV	1030-1041	0.55	0.84
	2TAA	408-422	0.85	2.97		5HIR	28 - 39	0.56	1.64
						451C	51-62	0.57	1.58
						3CNA	52 - 63	0.61	0.89
IFAB	2MCP	322-336	0.49	0.62	4FAB	1MCP	349-362	0.51	1.11
(322 - 336)	2FBJ	322-336	0.49	0.56	(349-362)				
	3HFM	322-336	0.51	1.46					
	3FAB	322-336	0.57	0.98					
	2FB4	322-336	0.62	0.54					
	2HLA	325-339	0.75	2.11		2MEV	314-327	0.23	2.30
	2TBV	64 - 78	0.76	2.82		3BCL	248 - 261	0.24	1.75
	1RHV	646-660	0.83	3.14CA		1HMG	1323-1336	0.26	1.65
	2TAA	408-422	1.00	2.87		4SBV	446 - 459	0.27	2.21
						6API	317-330	0.38	1.76

^{*}For each loop, the limits given in parentheses under the name of the parent molecule include the four flanking residues on the N-terminal side of the loop, the loop itself, and the four flanking residues on the C-terminal side of the loop. The searches probed the data base with C_{α} atoms of the eight flanking residues, assigning on each side the weight 1.0 to the residue closest to the loop, 0.8 to the next residue, 0.64 to the next, and 0.512 to the fourth residue, farthest from the loop.

ture depends on the presence of specific amino acids at specific positions in the sequences of the loop and the framework. If the framework were constant in structure, the structure of the stem would be entirely noncommittal about the canonical structure of the loop. However, because the framework residues that form the stems of the loops do vary in structure to some extent, one *might* observe a correlation between the details of the structures of the stems and the conformation of the loop.

The results in Table IV do not reveal any such correlation, however. For V_{κ} L3 loops, there are three known canonical structures.⁹ The "stem" searches for the L3 loops of McPC603, J539, and REI identified an immunoglobulin with a different canonical structure of L3 as the best stem fit. For 4—

4-20, the correct canonical structure was identified. In most cases the weighted rms deviations of the stems are rather similar in value. The stem searches do not reliably indicate the correct canonical structure. Conversely, a canonical structure of an antigen-binding loop does not induce—or require—a specific adjustment of the mainchain of the framework.

For H2 the situation is similar. Four canonical structures are known.⁹ For McPC603, J539, and 4–4–20, an immunoglobulin with the correct canonical structure has the best stem fit, but for KOL and HyHEL-5, an immunoglobulin with a different canonical structure has the best stem fit.

There have now been a number of studies aimed at predicting the structure of loops by first generat-

^{*}For each structure with structural similarity in the stems, we report the residue range identified, including flanking and intervening residues, the weighted root mean square deviation of the C_{α} atoms of the stem residues, and the root mean square deviation of the mainchain atoms N, C_{α} , C, O of the loop residues themselves. For example, the residues flanking the L1 loop of 2RHE, 21–25 and 34–37 have a weighted rms deviation of 0.16 Å from the residues 21–25 and 34–37 of 2FB4. For the loops themselves, residues 26–33, the rms deviation of all mainchain atoms N, C_{α} , C, O is 0.28 Å.

Fig. 4. **(A)** Superposition of McPC603 H2 (solid) with residues 276–281 of *Alcaligenes denitrificans* azurin (2AZA) (broken). **(B)** H2 loop of McPC603. **(C)** Region of similar conformation in azurin.

ing a set of candidate loops and then attempting to select one, on the basis of conformational energy estimates and/or accessible surface area. $^{33-38}$ The candidate loops may be generated by saturating confor-

mational space or by data base searching. The results presented here show that, although in most cases loops of the desired conformation exist in non-homologous proteins, it will not in general be possi-

Fig. 5. Superposition of HyHEI-5 H2 (solid) and residues 167-172 of garden pea lectin (2LTN) (broken).

ble to identify them soley by data base screening for the local region. This is because of the differences in conformation in the flanking residues, or, if one remains within the set of homologous immunoglobulin loops, because the stems do not distinguish the correct canonical structure.

CONCLUSIONS

We have elucidated the structural relationships between antigen-binding loops L1, L2, L3, H1, and H2 and regions of similar conformation in other proteins. Most but not all of the antigen-binding loops appear in other protein families, even some with very unusual structural features such as the L1 loop of V_{λ} domains. However, the structural contexts of the regions of similar structure are often quite different. A good fit of an antigen-binding loop usually does not extend to the residues flanking the loops, and vice versa. This precludes there being any simple and general way to apply data base search methods to modeling antigen-binding loops in immunoglobulins of unknown structure.

ACKNOWLEDGMENTS

A.M.L. thanks the Kay Kendall Foundation for generous support.

REFERENCES

- Lesk, A.M., Chothia, C. The response of protein structures to amino acid sequence changes. Phil. Trans. R. Soc. (London) 317:345-356, 1986.
- Chothia, C., Lesk, A.M. Relationship between the divergence of sequence and structure in proteins. EMBO J. 5: 823-826, 1986.
- Sibanda, B.L., Thornton, J.M. β-Hairpin families in globular proteins. Nature (London) 316:170-174, 1985.
 Efimov, A.V. Standard conformations of polypeptides.
- Efimov, A.V. Standard conformations of polypeptide chains in irregular regions of proteins. Mol. Biol. (USSR) 20:208-216, 1986.
- Milner-White, E.J., Poet, R. Four classes of β-hairpins in proteins. Biochem. J. 240:289–292, 1986.

- Chothia, C., Lesk, A.M. Canonical structures for the hypervariable regions of immunoglobulins. J. Mol. Biol. 196: 901–918, 1987.
- Wilmot, C.M., Thornton, J.M. Analysis and prediction of the different types of β-turns in proteins. J. Mol. Biol. 203: 221–232, 1988.
- Chothia, C., Lesk, A.M., Levitt, M., Amit, A.G., Mariuzza, R.A., Phillips, S.E.V., Poljak, R. The predicted structure of immunoglobulin D1.3 and its comparison with the crystal structure. Science 233:755-758, 1986.
- Chothia, C., Lesk, A.M., Tramontano, A., Levitt, M., Smith-Gill, S.J., Air, G., Sheriff, S., Padlan, E.A., Davies, D., Tulip, W.R., Colman, P.M., Spinelli, S., Alzari, P.M., Poljak, R.J. The conformations of immunoglobulin hypervariable regions. Nature (London) 342: 877–883, 1989.
- Tramontano, A., Chothia, C., Lesk, A.M. Structure determinants of the conformations of medium-sized loops. Proteins 6:382-394, 1989.
- Tramontano, A., Chothia, C., Lesk, A.M. Framework residue 71 is a major determinant of the position and conformation of the second hypervariable region in the V_H domains of immunoglobulins. J. Mol. Biol. 215:175–182, 1990.
- Jones, T.A., Thirup, S. Using known substructures in protein model building and crystallography. EMBO J. 5:819– 822, 1986.
- Poljak, R.J., Amzel, L.M., Chen, B.L., Phizackerley, R.P., Saul, F. Structural basis for the association of heavy and light chains and the relation of subgroups to the conformation of the active site of immunoglobulins. Immunogenetics 2:393-394, 1975.
- Chothia, C., Novotny, J., Bruccoleri, R., Karplus, M. Domain association in immunoglobulin molecules: The packing of variable domains. J. Mol. Biol. 186:651-663, 1985.
- Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F., Jr., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T., Tasumi, M. The protein databank: A computerbased archival file for macromolecular structure. J. Mol. Biol. 112:535-542, 1977.
- Saul, F.A., Amzel, L.M., Poljak, R.J. Preliminary refinement and structural analysis of the Fab fragment from the human immunoglobulin New at 2.0 Å. J. Biol. Chem. 253: 585-597, 1978.
- Marquart, M., Deisenhofer, J., Huber, R., Palm, W. Crystallographic refinement and atomic models of the intact immunoglobulin molecule Kol and its antigen-binding fragment at 3.0 Å and 1.9 Å resolution. J. Mol. Biol. 141: 369-391, 1980.
- Furey, W., Jr., Wang, B.C., Yoo, C.S., Sax, M. Structure of a novel Bence-Jones protein (Rhe) fragment at 1.6 Å resolution. J. Mol. Biol. 167:661-692, 1983.

- Segal, D.M., Padlan, E.A., Cohen, G.H., Rudikoff, S., Potter, M., Davies, D.R. The three dimensional structure of a phosphocholine-binding mouse immunoglobulin Fab and the nature of the antigen binding site. Proc. Natl. Acad. Sci. U.S.A. 71:4298-4302, 1974.
- Suh, S.W., Bhat, T.N., Navia, M.A., Cohen, G.H., Rao, D.N., Rudikov, S., Davies, D.R. The galactan-binding immunoglobulin FabJ539: An x-ray diffraction study at 2.6 Å resolution. Proteins 1:74-79, 1986.
- Sheriff, S., Silverton, E.W., Padlan, E.A., Cohen, G.H., Smith-Gill, S.J., Finzel, B.C., Davies, D.R. Three-dimensional structure of an antibody-antigen complex. Proc. Natl. Acad. Sci. U.S.A. 84:8075-8079, 1987.
- Herron, J.N., He, X., Mason, M.L., Voss, E.W., Jr., Edmundson, A.B. Three-dimensional structure of a fluorescein-Fab complex crystallized in 2-methyl-2,4-pentanediol. Proteins 5:271-280, 1989.
- 23. Epp, O., Lattman, E.E., Schiffer, M., Huber, R., Palm, W. The molecular structure of a dimer composed of the variable portions of the Bence-Jones protein REI refined at 2.0 Å resolution. Biochemistry 14:4943-4952.
- 24. Kabat, E.A., Wu, T.T., Reid-Miller, M., Perry, H.M., Gottesman, K.S. "Sequences of Proteins of Immunological Interest," 4th ed. Bethesda, MD: National Institutes of Health, 1987.
- 25. Lesk, A.M. Integrated access to sequence and structural data. In: "Biosciences: Perspectives and User Services in Europe." Saccone, C. ed. Bruxelles: EEC, 1986:23-28, and references contained therein.
- Lesk, A.M., Chothia, C. The evolution of proteins formed by β-sheets. II. The core of the immunoglobulin domains. J. Mol. Biol. 160:325–342, 1982.
- Deisenhofer, J., Epp, O., Miki, K., Huber, R., Michel, H. Structure of the protein subunits in the photosynthetic region centre of Rhodopseudomonas viridis at 3 angstroms resolution. Nature (London) 318:618-624, 1985.
- Pletnev, V.Z., Kuzin, A.P., Trakhanov, S.D., Kostetsky, P.V. Three-dimensional structure of actinoxanthin IV. A 2.5-angstrom resolution. Biopolymers 21:287-300, 1982.
- Baker, E.N. Structure of azurin from Alcaligenes dentrificans. Refinement at 1.8 angstroms resolution and comparison of the two crystallographically independent molecules. J. Mol. Biol. 203:1071-1095, 1988.
- Einspahr, H., Parks, E.H., Suguna, K., Subramanian, E., Suddath, F.L. The crystal structure of pea lectin at 3.0angstroms resolution. J. Biol. Chem. 261:16518-16527, 1986.
- Pflugrath, J.W., Wiegand, G., Huber, R., Vertesy, L. Crystal structure determination, refinement and the molecular model of the alpha-amylase inhibitor HOE-467A. J. Mol. Biol. 189:383–386, 1986.
- Karplus, P.A., Schulz, G.E. Refined structure of glutathione reductase at 1.54 angstroms resolution. J. Mol. Biol. 195:701-729, 1987.
- 33. de la Paz, P., Sutton, B.J., Darsley, M.J., Rees, A.R. Modeling of the combining sites of three antilysozyme monoclonal antibodies and of the complex between one of the antibodies and its epitope. EMBO J. 5:415-425, 1986.
- 34. Moult, J., James, M.N.G. An algorithm for determining the conformation of polypeptide segments in proteins by systematic search. Proteins 1:146-163, 1986.
- Fine, R.M., Wang, H., Shenkin, P.S., Yarmush, D.L., Levinthal, C. Predicting antibody hypervariable loop conformations. II. Minimizing and molecular dynamics studies of McPC603 from many randomly generated loop conformations. Proteins 1:342–362, 1986.
- 36. Bruccoleri, R.E., Haber, E., Novotny, J. Structure of antibody hypervariable loops reproduced by a conformational
- search algorithm. Nature (London) 335:564-568, 1988.

 37. Martin, A.C.R., Cheetham, J., Rees, A.R. Modeling antibody hypervariable loops: A combined algorithm. Proc. Natl. Acad. Sci. U.S.A. 86:9628-9272, 1989.
- Summers, N.L., Karplus, M. Modeling of globular proteins. A distance-based data search procedure for the construction of insertion/deletion regions and Pro
 on-Promutations. J. Mol. Biol. 296:991-1016, 1990.
- Lesk, A.M. Detection of three-dimensional patterns of atoms in chemical structures. Commun. Assoc. Comp. Mach. 22:219-224, 1979.

APPENDIX: SCREENING DATABASES OF STRUCTURES FOR PRESCRIBED COMBINATIONS OF SEGMENTS

We describe a procedure for efficient searching for structures similar to prescribed oligopeptides in a database of protein structures. Given an oligopeptide S, with S(i), i=1,...,n representing the mainchain (or C_{α}) coordinates of the ith residue; $w_i > 0$ a set of weighting coefficients and a data bank of coordinates of protein structures P_j , with $P_j(i)$ representing the mainchain (or C_{α}) coordinates of the ith residue of protein j; we wish to identify proteins containing sets of consecutive residues $P_j(i)$, i=k, ..., k+n such that the root mean square deviation after optimal superposition:

$$\Delta = \underset{\text{translations } t}{\text{Rotations } R} \qquad \{ \sum_i w_i \, | \, S(i) - [R \, P_j \, (k + i - 1) \, - \, t] |^2 \}^{1/2}$$

is small. Here R is a proper rotation matrix, t a translation vector, and the quantity minimized is the weighted sum of the deviations of corresponding atoms (\mathbf{C}_{α} or all mainchain atoms) after the rotation and translation have been applied to the atoms in the protein P_j . (A generalization to weighting schemes in which different atom types are given different weights—for example, to lower the weight associated with the main chain oxygen atoms—presents no difficulties.)

We note that if all weights $w_i=1$, the task corresponds to searching the data bank for segments similar to a given set of consecutive residues without gaps. If the sequence of weights contain stretches of zeros—e.g., $w_i=1,1,1,1,0,0,0,0,1,1,1,1$ —the task is that of finding a 12-residue segment in the data bank such that the first four and last four residues match the structure of a protein in the data bank, but the middle four residues do not enter the calculation and indeed need not even be specified in the probe structure S. It is this case that is useful in trying to build a loop spanning a gap in the probe structure.

Although the individual superposition calculations are straightforward, it is useful to try to improve the efficiency of the method by a prescreening of the database so that no superposition calculations are performed unless there is a good chance that Δ will be low. Jones and Thirup 12 did this by creating a separate representation of the structures in terms of inter-C $_{\alpha}$ distances (compare Lesk 39). Here we suggest an alternative, which is convenient because it does not require a separate representation of the data base, and gives adequate performance.

To simplify the notation, suppose we wish to superpose two sets of atoms: x_i , i=1,...,n and y_i , i=1,...,n. To each pair of corresponding atoms we assign a weight $w_i \geq 0$. We assume without loss of generality that the (weighted) mean positions of the two sets of atoms coincide so that the translation vector t in the optimal superposition is zero.

Let
$$y_i^{'} = Ry_i$$
 and $\Delta^2 = \sum_i w_i |x_i - y_i^{'}|^2$.

We are willing to set a threshold D>0 such that we wish to identify segments only if $\Delta \leq D$. Given D, how can we decide quickly whether a given pair of sets of atoms, such as x_i and y_i , can be superposed with $\Delta < D$, or equivalently of course, that $\Delta^2 \leq D^2$? Observe that

$$\Delta^{2} = \sum_{i} w_{i} | x_{i} - y'_{i} |^{2}$$

$$= \sum_{i} w_{i} [|x_{i}|^{2} + |y'_{i}|^{2} - 2 x_{i} \cdot y'_{i}]$$

$$\geq \sum_{i} w_{i} [|x_{i}|^{2} + |y'_{i}|^{2} - 2|x_{i}| |y'_{i}|]$$

But $|y_i'| = |Ry_i| = |y_i|$ because R is an orthogonal matrix.

Therefore

$$\Delta^2 \geq \sum_i \, w_i \, [|x_i|^2 \, + \, |y_i|^2 \, - \, 2|x_i| \, |y_i|] \, = \, \sum_i \, w_i \, [|x_i| \, - \, |y_i|]^2.$$

Note that the lower bound to Δ is independent of R. This inequality provides the basis for a screening method. We accumulate successive terms in the sum on the right hand side. If for any i the partial sum exceeds D^2 , we reject y_i as a potential "fit" to x_i with $\Delta \leq D$.

Obviously, the power of this procedure depends on the value of the threshold we impose. In our calculations of loop and stem fits presented in this paper, we set a threshold of $D=0.75~{\rm \AA}$ rms deviation. Under these conditions, the prescreening procedure rejected 99% of the possible oligopeptides.