

B V RAJU INSTITUTE OF TECHNOLOGY

(UGC Autonomous) Vishnupur, Narsapur, Medak District

Department of Computer Science and Engineering

Mini Project – Zeroth Review

Title: REAL TIME THINGS IDENTIFICATION USING YOLOv8 AND FLASK

By:

23215A0531: V.Jathin

Guided By:

D. Nagasudha, MTech(Phd) Assistant Professor

- · Literature Survey
- Existing System
- · Problem Statement
- · Objectives
- · Tentative Proposed Model
- · Abstract
- · References

Year	Author Name	Title	Journal Name	Research Design	Conceptual / Theoretical framework	Proposed Framework	Major theme in paper	Future Ideas
2024	Preethi G., Shambavi Naik, Siri M. Kenchol, Shanta P. Jakalannanavar, Rachana M. S.	Object Detection Using FasterRCNN, YOLOv7 & YOLOv8	Indiana Journal of Multidisciplinary Research (Ind J Multi Res), Vol. 4, Issue 3	Comparative analysis of object detection algorithms, focusing on performance metrics like accuracy, speed, and usability.	Explores strengths and limitations of Faster R-CNN, YOLOv7, and YOLOv8 for different computer vision tasks	Development of a Flask-based frontend with authentication for secure, user-friendly testing of these models	Enhancing object detection efficiency and usability through advanced algorithm optimization and dataset preprocessing	Integrating real-time detection on diverse platforms, refining dataset techniques, and expanding to specific domains like medical imaging and environmental monitoring
2023	Moahaimen Talib, Ahmed H. Y. Al- Noori, Jameelah Suad	YOLOv8-CAB: Improved YOLOv8 for Real-time Object Detection	Karbala International Journal of Modern Science	Enhances YOLOv8 using Context Attention Block (CAB) and improved spatial attention techniques	Focuses on better feature extraction for small-object detection and multi-scale utilization	Introduced CAB for weak feature detection and a Coarse-to-Fine (C2F) strategy for improved accuracy	Real-time and precise object detection in challenging scenarios	Explore further optimization and real-world applications of YOLOv8 enhancements

Year	Author Name	Title	Journal Name	Research Design	Conceptual / Theoretical framework	Proposed Framework	Major theme in paper	Future Ideas
2023	Zhengxia Zou, Keyan Chen, Zhenwei Shi, Yuhong Guo, and Jieping Ye	Object Detection in 20 Years: A Survey	IEEE	Comprehensive literature survey	Categorization of object detection approaches into traditional and deep learning-based methods	No new framework, but a structured analysis of historical progress and state- of-the-art techniques	Trends in object detection, including real-time systems, precision-focused applications, and large-scale datasets	Exploration of zero- shot learning, domain adaptation, and integration with broader AI systems like robotics and AR
2022	Tausif Diwan, G. Anirudh, and Jitendra V. Tembhurne	Object detection using YOLO: challenges, architectural successors, datasets and applications	Multimedia Tools and Applications	Comparative analysis of single-stage versus two-stage object detectors	Highlights YOLO's architecture evolution and performance metrics	Discusses advancements in YOLO versions and their practical applications	Speed and efficiency of YOLO models compared to other architectures, with a focus on real- world adoption.	Suggestions for improving detection accuracy, expanding applications, and integrating with newer deep learning techniques

Year	Author Name	Title	Journal Name	Research Design	Conceptual / Theoretical framework	Proposed Framework	Major theme in paper	Future Ideas
2022	Abhinandan Tripathi,Manis h Kumar Gupta	Object Detection using YOLO: A Survey	International Conference on Contemporary Computing and Informatics	Survey of YOLO's evolution and applications	YOLO's object detection capabilities, focusing on speed, accuracy, and use in real-time applications.	Discussion of various YOLO adaptations for specific tasks like blood cell counting and traffic surveillance	The paper emphasizes YOLO's rapid advancements, its real-time detection speed, and various specialized applications	Potential improvements in detection accuracy, speed optimization, and broader applicability in diverse domains
2021	Abhishek Sarda; Shubhra Dixit	Object Detection for Autonomous Driving using YOLO Algorithm	IEEE Conference on Intelligent Engineering and Management (ICIEM)	Custom YOLO model designed for autonomous vehicle object detection	Focused on low-cost computation for real-time object detection in autonomous systems	Utilized YOLO for object detection using a specialized dataset for autonomous driving	Improving safety and efficiency in autonomous driving via object detection	Explore enhancements for scalability and adaptability in various environments

Year	Author Name	Title	Journal Name	Research Design	Conceptual / Theoretical framework	Proposed Framework	Major theme in paper	Future Ideas
2021	Shasha Li, Yongjun Li, Yao Li, Mengjun Li, and Xiaorong Xu.	YOLO-FIRI: Improved YOLOv5 for Infrared Image Object Detection	IEEE Access	focuses on improving infrared image object detection using an enhanced version of YOLOv5, called YOLO-FIRI	multiscale detection to improve accuracy and efficiency	proposed framework integrates optimizations like channel compression, a new attention module	enhancing detection performance in challenging infrared environments	exploring image fusion methods to further improve detection accuracy by merging infrared and visible images
2019	Wei Fang,Lin Wang	Tinier-YOLO: A Real-Time Object Detection Method for Constrained Environments	IEEE Access	focuses on developing a lightweight version of the YOLO model, called Tinier-YOLO	integration of fire modules and dense connections to enhance feature propagation	combines YOLO's object detection approach with network compression techniques	detection accuracy and computational efficiency, with potential applications in real-time systems	enhancements to detection accuracy, particularly for small objects

Year	Author Name	Title	Journal Name	Research Design	Conceptual / Theoretical framework	Proposed Framework	Major theme in paper	Future Ideas
2020	Tanvir Ahmad, Yinglong Ma, Muhammad Yahya, Belal Ahmad, Shah Nazir, Amin ul Haq	Object Detection through Modified YOLO Neural Network	Scientific Programming	Modified YOLOv1 neural network with enhanced loss function and detection algorithms	Focused on improving feature recognition and object localization	Developed a refined loss function to enhance detection accuracy	Improving YOLOv1 for more efficient object detection	Further enhancement of detection capabilities for real-time applications
2018	Lv Chao, Wang Jiaan, and Deng Tianyuan	Object Detection Based on YOLO Network	Information Technology and Mechatronics Engineering Conference (ITOEC)	YOLO's capabilities to overcome challenges like image noise, blurring, and jitter	particularly focusing on its use for improving detection of traffic signs in various real-world conditions	integrates traditional image processing with deep learning to handle these issues more effectively	enhancing detection accuracy by training YOLO on degraded image	refining the integration of YOLO with additional image enhancement techniques

Existing System

Commercial solutions like Amazon Recognition, Google Cloud Video Intelligence, and Microsoft Azure Cognitive Services offer scalable, pre-trained models but can be costly and complex. Open-source frameworks such as TensorFlow, OpenCV, and Detectron2 provide flexibility but require significant expertise to implement. In contrast, the proposed Flask web app stands out for its user-friendly interface, YOLOv8 integration for speed and accuracy, and support for diverse input options like images and video streams. By offering on-premise deployment and potential model customization, it addresses user needs for accessibility, data control, and flexibility, setting it apart from existing solutions.

Problem Statement

Current object detection and pose estimation solutions are either complex to implement or not easily accessible. There is a need for a user-friendly platform that offers real-time processing of images, videos, and streams. This project aims to develop a web application using YOLOv8 for fast, accurate detection and pose estimation. The platform will provide customization options and intuitive outputs for diverse users and applications.

Objectives

Develop a User-Friendly Web Application for Real-time Object Detection:

- Create an intuitive interface for users to interact with object detection features.
- Ensure easy uploading of images and selection of video sources.
- Provide straightforward controls for adjusting confidence thresholds.

Leverage YOLOv8 for Efficient and Accurate Object Detection:

- Utilize the YOLOv8 deep learning model for fast and precise object identification.
- Harness the power of YOLOv8 to achieve reliable detection results within images or video frames.

Enable Real-time Object Detection Across Various Media Sources:

- Implement functionality to handle diverse input sources seamlessly.
- Enable real-time object detection on static images, live webcam feeds, RTSP streams, and YouTube videos.
- Ensure the application's versatility in processing different types of media for object detection tasks.

Tentative Proposed Model

Real-time Processing: Users can view detections and pose estimates in real-time, leveraging YOLOv8's efficiency and speed.

Customization: Users can adjust parameters like confidence thresholds and object classes, allowing fine-tuning of the detection process.

Detection Results Overlay: The system will overlay bounding boxes around detected objects and skeletons for pose estimation on the media.

User Interface: The website will feature an intuitive interface for easy interactions with the model, allowing users to upload or stream media and customize settings.

Output Management: Users can download or share processed outputs in various formats.

The platform's proposed model emphasizes user accessibility and customization, with YOLOv8's robust object detection capabilities enabling real-time applications in fields such as security, robotics, and augmented reality.

Abstract

Abstract

This project focuses on developing a user-friendly web platform powered by the YOLOv8 model for advanced image classification, object detection, and human pose estimation. The platform allows users to upload images and videos or specify video sources such as YouTube links, RTSP streams, or webcam feeds for real-time processing. YOLOv8, a state-of-the-art algorithm known for its speed, accuracy, and efficiency, will be integrated to detect and localize objects and estimate human poses within media content. Key features include customizable detection parameters, such as confidence thresholds and object classes, with results displayed as annotated overlays on the media. Users will have options to download or share the processed outputs. The platform's intuitive interface and robust functionality make it suitable for applications in surveillance, security, robotics, augmented reality, and human-computer interaction. This project aims to provide a powerful yet accessible tool that leverages YOLOv8's capabilities to meet diverse real-world needs in computer vision.

References

- [1] P. G., S. Naik, S. M. Kenchol, S. P. Jakalannanavar, and R. M. S., "Object Detection Using FasterRCNN, YOLOv7 & YOLOv8," *Indiana Journal of Multidisciplinary Research*, vol. 4, no. 3, pp. 136-141, 2024. doi: 10.5281/zenodo.12674762
- [2] **M. Talib, A. H. Y. Al-Noori, and J. Suad**, "YOLOv8-CAB: Improved YOLOv8 for Real-time Object Detection," *Karbala International Journal of Modern Science*, vol. 10, no. 3, pp. 34-45, 2024. doi: 10.33640/2405-609X.3339.
- [3] **Z. Zou, K. Chen, Z. Shi, Y. Guo, and J. Y**e, "Object Detection in 20 Years: A Survey," *Proceedings of the IEEE*, vol. 111, no. 3, pp. 257-276, Mar. 2023, doi: 10.1109/JPROC.2023.3238524.
- [4] **T. Diwan, G. Anirudh, and J. V. Tembhurne**, "Object detection using YOLO: challenges, architectural successors, datasets and applications," *Multimedia Tools and Applications*, vol. 82, no. 13, pp. 14823–14855, 2022. doi: 10.1007/s11042-022-13644-y
- [5] **T. Ahmad, Y. Ma, M. Yahya, B. Ahmad, S. Nazir, and A. ul Haq**, "Object Detection through Modified YOLO Neural Network," *Scientific Programming*, vol. 2020, Article ID 8403262, 9 pages, 2020. doi: 10.1155/2020/8403262.
- [6] **Abhinandan Tripathi, Manish Kumar Gupta**, "Object Detection using YOLO: A Survey," in Proceedings of the 2022 5th International Conference on Contemporary Computing and Informatics (IC3I), 2022, pp. xx-xx. doi: 10.1109/IC3I56241.2022.10073281.
- [7] **Abhishek Sarda; Shubhra Dixit**, "Object Detection for Autonomous Driving using YOLO algorithm," in Proc. IEEE Int. Conf. on Intelligent Engineering and Management (ICIEM), 2021.doi: 10.1109/ICIEM51511.2021.9445365
- [8] S. Li, Y. Li, Y. Li, M. Li, and X. Xu, "YOLO-FIRI: Improved YOLOv5 for Infrared Image Object Detection," *IEEE Access*, vol. 9, pp. 141861-141875, 2021. doi: 10.1109/ACCESS.2021.3120870.
- [9] Fang, W., Li, Y., Wang, Z., & Xu, X. (2019). Tinier-YOLO: A Real-Time Object Detection Method for Constrained Environments. *IEEE Access*, 7, 158719–158728. https://doi.org/10.1109/ACCESS.2019.2961959
- [10] L. Chao, W. Jiaan, and D. Tianyuan, "Object Detection Based on YOLO Network," Proc. IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC), 2018, pp. 157-162. doi: 10.1109/ITOEC.2018.8740604.

Thank You