問題 1. $S^{-1}A$ は Noetherian 整域であり,

$$\dim S^{-1}A \le \dim A = 1$$

なので, $\dim S^{-1}A = 0$ または $\dim S^{-1}A = 1$ である.

- (1) $\dim S^{-1}A = 0$ のとき、 $S^{-1}A$ は体であって、 $A \subseteq S^{-1}A \subseteq K$ なので、K が A を含む最小の体であることから、 $S^{-1}A = K$ である.
- (2) $\dim S^{-1}A=1$ のとき, $S^{-1}A$ が整閉であることを示せば十分である. ここで, A は整閉なので, (5.12) と $S^{-1}A$ の商体が K であることから, $S^{-1}A$ は整閉である.

以上より、 $S^{-1}A$ はデデキント整域または A の商体である.

 $H_A=H,\,H_{S^1A}=H'$ とする。まず, $I_A\to I_{S^{-1}A}$ が全射であることを示す。 $M_{S^{-1}A}\in I_{S^{-1}A}$ について, M_{S^1A} は $S^{-1}A$ であって,A は特に Noetherian なので, $S^{-1}A$ も Noetherian であり,ゆえに, $M_{S^{-1}A}$ は有限生成である。したがって,ある $m_i/s_i\in M_{S^{-1}A}$ が存在して,

$$M_{S^{-1}A} = \sum_{i=1}^{n} (S^{-1}A)(m_i/s_i)$$

と表せる.ここで, $(S^{-1}A)(m_i/s_i)=(S^{-1}A)(m_i/1)$ であることに注意する.これは $Am_i\in I_A$ の拡大である.これより, $M=\sum_{i=1}^n Am_i\in I_A$ の拡大は $M_{S^{-1}A}\in I_{S^{-1}A}$ となる.したがって,イデアルの拡大によって, $I_A\to I_{S^{-1}A}$ は全射である.さらに, $N,M\in I_A$ に対して,

$$S^{-1}(NM) = (S^{-1}N)(S^{-1}M)$$

も成り立つ. 以上より、イデアルの拡大によって、全射群準同型 $I_A \to I_{S^{-1}A}$ が存在する. また、 I_A における単項分数イデアルはイデアルの拡大によって、 $I_{S^{-1}A}$ の単項分数イデアルに移るので、全射群準同型 $H_A \to H_{S^{-1}A}$ が誘導される.

問題 2. $c(fg)\subseteq c(f)c(g)$ は常に成り立つので、逆を示せばよい、 つまり、任意の $\mathfrak{m}\in \operatorname{Max} A$ について、 $c(fg)_{\mathfrak{m}}=c(f)_{\mathfrak{m}}c(g)_{\mathfrak{m}}$ を示せばよい.

$$f(X) = \sum_{i=0}^{n} a_i X^i$$
 $g(X) = \sum_{i=0}^{m} b_i X^i$

とする. $A_{\mathfrak{m}}$ は次数 1 の Noetherian 局所整域かつ, DVR なので, (9.2) より, ある $x \in A_{\mathfrak{m}}$ が存在して, すべての a_i,b_j について, ある $k_{f,i},k_{g,j}$ が存在して, $(a_i)_{\mathfrak{m}}=(x^{k_{f,i}}),$ $(b_j)_{\mathfrak{m}}=(x^{k_{g,j}})$ が成り立つ. ゆえに, $k_f=\min_i k_{f,i},$ $k_g=\min_j k_{g,j}$ とすれば,

$$c(f)_{\mathfrak{m}} = (a_0, \dots, a_n)_{\mathfrak{m}} = (x^{k_f})$$

$$c(g)_{\mathfrak{m}} = (b_0, \dots, b_m)_{\mathfrak{m}} = (x^{k_g})$$

が成り立つ. このとき,

$$(a_ib_j)_{\mathfrak{m}}=(a_i)_{\mathfrak{m}}(b_j)_{\mathfrak{m}}=(x^{k_{f,i}+k_{g,j}})$$

となるので,

$$c(fg)_{\mathfrak{f}} = (x^{\min_{i,j} k_{f,i}, k_{g,j}}) = (x^{k_f + k_g}) = c(f)_{\mathfrak{m}} c(g)_{\mathfrak{f}}$$

が従う. これより, c(fg) = c(f)c(g) が示された.

Note. A=(k[X,Y])[Z] とし、f=X、g=Y と定めれば、 $c(fg)=(XY)\neq (X)(Y)=c(f)c(g)$ となる.

問題 3. A を体ではない付値環とする.

Noetherian \Rightarrow DVR A が Noetherian であると仮定する. 5.28 より, A のイデアルは全順序であることと, Noetherian 環のイデアルは有限生成であることから, A は PID である. 付値環が局所環であることに 注意すれば, A は Noetherian 局所整域なので, $\dim A = 1$ を示せば, 9.2 より, A が離散付値環であることが従う.

 \mathfrak{m} を A の極大イデアルとする. $\mathfrak{p} \in \operatorname{Spec} A$ を $\mathfrak{p} \subseteq \mathfrak{m}$ となるようなものとしてとる. A が PID であることから, $\mathfrak{p} = (p), \mathfrak{m} = (m)$ となり,したがって,ある $a \in A$ が存在して,p = am と表せる. このとき, $am \in \mathfrak{p}$ なので, $a \in \mathfrak{p}$ または $m \in \mathfrak{p}$ が成り立つ.後者の場合は $\mathfrak{p} = \mathfrak{m}$ となる.全射の場合,ある $b \in A$ が存在して,a = pb となるので,

$$p = am = pbm$$

より, p(1-bm)=0 が成り立つ. しかし, m は単元でないので, p=0. つまり, $\mathfrak{p}=0$ となるので, $\dim A=1$ となる. したがって, 9.2 より, A は離散付値環である.

DVR ⇒ Noetherian \mathfrak{a} を A の任意のイデアルとする. $v(0) = \infty$ としておくと、任意の $x \in A$ に対して、 $v(x) \leq 0$ となるので、 $k = \min\{v(x) \mid x \in \mathfrak{a}\}$ が存在する. $v(x_k) = k$ として、 \mathfrak{a} を \mathfrak{a}_k と表す.このとき、任意の $x \in \mathfrak{a}_k$ に対して、 $v(x) - v(x_k) \leq 0$ なので、 $xx_k^{-1} \in A$ が成り立つ.ゆえに、 $x = xx_k^{-1}x_k \in (x_k)$ となるので、 $\mathfrak{a}_k \subseteq (x_k)$.逆は明らかに成り立つので、A は PID であり、特に A は Noetherian である.

Note. k[X,Y] は次元が 2 なので、DVR ではないが、Notherian である.

問題 4. \mathfrak{a} を A のイデアルとする. $a \in \mathfrak{a}$ に対して、ある k が存在して、 \mathfrak{m}^k subseteq(a) かつ $\mathfrak{m}^{k+1} \subseteq (a)$ が 成り立つ. $m^{k+1} = ra$ とする. r が単元でないと仮定すると、A が局所環であることから、 $r \in \mathfrak{m}$ であり、ある $l \in A$ が存在して、r = lm となる. このとき、

$$m^{k+1} = ra = lma$$

より, $m(m^k - la) = 0$ となる. A が整域であることから, $m^k = la$ が成り立つが, これは \mathfrak{m}^k $\sharp ubseteq(a)$ に反する. したがって, r は単元であり, $(a) = (m^{k+1})$ が成り立つ. これより, A は Noetherian である.

次に、 $\mathfrak{p} \subseteq \mathfrak{m}$ とすれば、任意の $p \in \mathfrak{p}$ に対して、ある q が存在して、 $qm = p \in \mathfrak{p}$ となる.ここで、 $m \in \mathfrak{p}$ ならば、 $\mathfrak{p} = \mathfrak{m}$ であり、 $q \in \mathfrak{p} \subseteq \mathfrak{m}$ ならば、ある r が存在して、rm = q となる.このとき、

$$p = qm = rm^2 = \cdots$$

と続けることができるので, $q \in \bigcap_k \mathfrak{m}^k = 0$ となる. したがって, $\dim A = 1$ が成り立つ. これらと (9.2) より, A は DVR である.

問題 5. 3.13 と 7.17 より,任意の極大イデアル $\mathfrak A$ に対して, $M_{\mathfrak m}$ が自由加群であることと,ねじれなしなことが同値であることを示せばよいが,A がデデキント整域であることから, $A_{\mathfrak m}$ は DVR であり,特に PID なので,これは成り立つ.

Note ・ 平坦ならばねじれなしは常に成り立つ。k[X,Y] 上の加群 (X,Y) はねじれなしであるが、平坦ではない。実際、 $\phi: k[X,Y]/(X) \to k[X,Y]/(X)$ を Y をかける写像とすれば、これは明らかに単射であり、 $k[X,Y]/(X) \otimes (X,Y) = (X,Y)/X(X,Y)$ 中で $1 \otimes X$ は非零であるが、 $(\phi \otimes 1)(1 \otimes X) = Y \otimes X$ となり、これは (X,Y)/X(X,Y) において、零になる。つまり、単射を保存しないので、特に (X,Y) は平坦ではない。

問題 6. 任意の $\mathfrak{p} \in \operatorname{Spec} A \setminus \{0\}$ について, $A_{\mathfrak{p}}$ は DVR なので, 特に PID である. さらに, $\dim A_{\mathfrak{p}} = 1$ であって, Notherian 局所整域なので, (9.2) より, すべての非自明なイデアルは \mathfrak{p} のべきで表せる. ゆえに, $M_{\mathfrak{p}} \neq 0$ ならば, PID 上の有限生成加群の構造定理より, ある k_i が存在して,

$$M_{\mathfrak{p}} = \bigoplus_{i=1}^{n} A_{\mathfrak{p}}/\mathfrak{p}^{k_i} A_{\mathfrak{p}}$$

が成り立つ. ここで, T(M)=M より, $k_i\geq 1$ であることに注意する. 素イデアル $\mathfrak{q}\in\operatorname{Spec} A$ を $\mathfrak{q}\subseteq\mathfrak{p}^{k_i}$ を満たすものと仮定すれば, $\mathfrak{p}\subseteq\mathfrak{q}$ となるので, A がデデキント整域であることから, $\mathfrak{p}=\mathfrak{q}$ が成り立つ. したがって, A/\mathfrak{p}^{k_i} は \mathfrak{p} を極大イデアルとする局所環である. これより,

$$M_{\mathfrak{p}} = \bigoplus_{i=1}^{n} A/\mathfrak{p}^{k_i}$$

となる.

ここで、 $\operatorname{Ann} M \not\subseteq \mathfrak{p}$ ならば、 $M_{\mathfrak{p}} = 0$ であることに注意する。 $\operatorname{Ann} M \subseteq \mathfrak{p}$ なる素イデアルが有限個であることを示す。M が有限生成であることから、 $M = \sum_{i=1}^k Am_i$ と表せるが、T(M) = M より、 $\operatorname{Ann}(m_i) \neq 0$ である。したがって、(9.4) より、 $\operatorname{Ann}(m_i) = \prod_i \mathfrak{p}$ と表せる。ここで、

$$\operatorname{Ann} M = \sum \operatorname{Ann}(m_i) = \sum \prod \mathfrak{p}$$

であって、ここに現れる $\mathfrak p$ は零ではないので、 $\operatorname{Ann} M \neq 0$ となる.したがって、 $\dim A/\operatorname{Ann} M = 0$ である. $A/\operatorname{Ann} M$ は Notherian なので、(8.5) より、 Artin 環である.ゆえに、(8.3) より、 $A/\operatorname{Ann} M$ の極大イデアルは有限個となり、 $\operatorname{Ann} M$ を含む素イデアルは有限個であることが示された.

最後に, $M \to \bigoplus_{\mathfrak{p} \neq 0} M_{\mathfrak{p}}$ が同型であることを示す.これは局所化によって, 各 \mathfrak{p} について同型であることがわかるので, すぐに同型であることが従う.

問題 7. $\mathfrak{a}\subseteq A$ をイデアルとする. \mathfrak{a} が準素イデアルならば, A がデデキント整域であることから, 素イデアルのべきで表せて, $A/\mathfrak{a}=A/\mathfrak{p}^n=A_\mathfrak{p}/\mathfrak{p}^nA_\mathfrak{p}$ なので, この場合は DVR なので, 特に PID となる.

次に、 \mathfrak{a} が準素イデアルでない場合を考える. A はデデキント整域なので、(9.4) より、 $\mathfrak{a} = \prod_i \mathfrak{p}_i$ となり、

$$A/\mathfrak{a}=A/\prod_i\mathfrak{p}_i=\prod_iA/\mathfrak{p}_i$$

となる. ここで、PID の直積は PID なので、主張は成り立つ.

最後に、A のイデアルは高々二つの元によって生成されることを示す。 $\mathfrak{b} \subseteq A$ が単項イデアルでないと仮定する。このとき、ある $x \in \mathfrak{b} \setminus \{0\}$ が存在して、 $\mathfrak{b} \neq Ax$ となる。しかし、 $(x)/\mathfrak{b}$ は A/\mathfrak{b} のイデアルなので、単項生成。したがって、その生成元の代表元と x は A において、 \mathfrak{b} を生成する。

Note . $\mathbb{Z}[\sqrt{5}]$ はデデキント整域であり, $(2,1+\sqrt{5})$ は単項イデアルではないので, PID ではない.

問題 8. 両方の式について、証明は全く同じなので、上の方について示す。 $\mathfrak{p} \in \operatorname{Spec} A$ を任意にとる。このとき、 $(\mathfrak{a} \cap (\mathfrak{b} + \mathfrak{c}))_{\mathfrak{p}} = ((\mathfrak{a} \cap \mathfrak{b}) + (\mathfrak{a} \cap \mathfrak{c}))_{\mathfrak{p}}$ が成り立つことを示せば十分である。A がデデキント整域であることから、 $A_{\mathfrak{p}}$ は DVR である。ゆえに、ある $x \in A_{\mathfrak{p}}$ が存在して、任意の $A_{\mathfrak{p}}$ のイデアル \mathfrak{a} に対して、ある n が存在して、 $\mathfrak{a} = (x^n)$ が成り立つ。また、局所化と和、局所化と共通部分はそれぞれ可換なので、

$$\begin{split} (\mathfrak{a} \cap (\mathfrak{b} + \mathfrak{c}))_{\mathfrak{p}} &= (x^{\max(n_a, \min(n_b, n_c))}) \\ &= (x^{\min(\max(n_1, n_b), \min(n_a, n_c))}) \\ &= ((x^{n_a}) \cap (x^{n_b})) + ((x^{n_a}) \cap (x^{n_c})) \\ &= ((\mathfrak{a} \cap \mathfrak{b}) + (\mathfrak{a} \cap \mathfrak{c}))_{\mathfrak{p}} \end{split}$$

となり, 等式が従う.

問題 9. 任意の p に対して,

$$A_{\mathfrak{p}} \longrightarrow \bigoplus_{i=1}^n A_{\mathfrak{p}}/\mathfrak{a}_i A_{\mathfrak{p}} \longrightarrow \bigoplus_{i=1}^n A_{\mathfrak{p}}/(\mathfrak{a}_i+\mathfrak{a}_j) A_{\mathfrak{p}}$$

が成り立つことを示せば十分である.ここで, $A_{\mathfrak{p}}$ は特に VR なので,i < j ならば $\mathfrak{a}_i \supseteq \mathfrak{a}_j$ としてよい.このとき, (x_1, \ldots, x_n) を i < j のときに $x_i - x_j \in \mathfrak{a}_i + \mathfrak{a}_j = \mathfrak{a}_i$ なるものとすれば, $A_{\mathfrak{p}}/\mathfrak{a}_i A_{\mathfrak{p}}$ において, $x_i = x_n$ なので.

$$x_n \longmapsto (x_1, \dots, x_n)$$

が成り立つ.