Chapitre 6 - Exercices

Corrections

Exercice 4 page 160

Mouvement de la Lune autour de la Terre • Référentiel lié au sol

Mouvement d'une nageuse dans une piscine • Référentiel lié au centre de la Terre

Exercice 7 page 160

La modélisation du skieur par un point entraine une perte d'information. Le point C passe à côté de la porte donc, avec ce modèle, il n'y a aucun problème car on ne prend pas en compte les bras du skieur.

Exercice 9 page 161

- 1. La personne sur le tapis roulant est immobile dans le référentiel lié au tapis roulant.
- 2. La personne sur le tapis roulant est en mouvement dans le référentiel :
 - lié au sol :
 - lié au banc :
 - lié à la personne qui marche.
- 3. Le mouvement d'un système dépend du référentiel choisi!

Exercice 12 page 161

Cf. correction page 312.

Exercice 13 page 161

Caractéristique du vecteur vitesse représenté sur le schéma :

- direction : horizontale;
- sens : vers la droite :
- norme : $v = 40 \,\mathrm{km/h}$.
- (point d'origine : le centre du bus.)

Exercice 14 page 161

- (a) Mouvement rectiligne et uniforme.
- (b) Mouvement curviligne accéléré (première moitié du mouvement) puis décéléré (deuxième moitié du mouvement).
- (c) Mouvement rectiligne et accéléré.

Exercice 19 page 162

1. Il faut déterminer la longueur des vecteur à tracer compte tenu de la norme de \vec{v}_1 et \vec{v}_2 et de l'échelle indiquée dans l'énoncé. Pour \vec{v}_1 par exemple :

La longueur l_1 du vecteur à tracer sera pour \vec{v}_1 :

$$l_1 = \frac{1 \times 3.0}{2} = 1.5 \,\mathrm{cm}.$$

De même pour \vec{v}_2 , on trouve l_2 = 2,5 cm.

2. Le mouvement est rectiligne et accéléré.

Exercice 21 page 162

- 1. Le système étudié est le passager du manège. Le référentiel d'étude est le référentiel lié au sol.
- 2. Le mouvement est circulaire et uniforme.
- 3. La vitesse du passager est $60\,\mathrm{km/h}$. Compte tenu de l'échelle utilisée pour représenter les vecteurs vitesse, il faudra tracer des vecteur de $3\,\mathrm{cm}$ de long.

4. La direction et le sens du vecteur vitesse changent au cours du temps (ainsi que son point de départ) mais la norme reste constante.

Exercice 22 page 163

- 1. (a) Les radars tronçon permettent de mesurer la vitesse moyenne d'un véhicule. Les autres radars permettent de mesurer la vitesse instantanée.
 - (b) Ces vitesses sont mesurées dans le référentiel lié au sol.
- 2. Dans le document 2, on lit :
 - $d = 6 \text{km} = 6000 \text{ m} = 6 \times 10^3 \text{ m}$;
 - 14h 28min 50s 14h 25min 50s = 3 min : $\Delta t = 3 \min = 180 \text{ s}.$ $v = \frac{d}{\Delta t} = \frac{6000}{180} \approx 33.3 \text{ m/s}.$

La vitesse moyenne de l'automobiliste sur le tronçon concerné est $v = 33.3 \,\mathrm{m/s}$.

- 3. Pour répondre à cette question, il faut exprimer la vitesse de l'automobiliste en km/h :
 - Méthode 1 : en calculant directement la vitesse en km/h.

$$\Delta t = 3 \min = \frac{3}{60} h = 0.05 h$$
 car il y a 60 minnutes dans une heure

donc

$$v = \frac{d}{\Delta t} = \frac{6 \text{ km}}{0.05 \text{ h}} = 120 \text{ km/h}.$$

• Méthode 2 : en convertissant la vitesse trouvée précédemment en km/h.

$$v = 33.3 \,\text{m/s} \xrightarrow{\times 3600} 120000 \,\text{m/h} \xrightarrow{\div 1000} 120 \,\text{km/h}$$

La vitesse de l'automobiliste est donc $120\,\mathrm{km/h}$ ce qui est en dessous de la limitation de vitesse sur autoroute par temps sec $(130\,\mathrm{km/h})$. L'automobiliste n'est pas verbalisable par ce radar tronçon.

Exercice 31 page 165

- 1. La direction et le sens du vecteur vitesse ne changent pas mais sa norme augmente (et le point de départ se déplace avec le système).
- 2. C'est un mouvement rectiligne accéléré.
- 3. On veut déterminer la valeur de la vitesse en M_5 , c'est-à-dire la norme du vecteur \vec{v}_5 . Sur le schéma on mesure la longueur du vecteur \vec{v}_5 et on trouve 6mm. L'échelle des vecteurs vitesse nous indique que 4mm correspondent à $20\,\mathrm{m/s}$.

$$\frac{4 \,\text{mm}}{6 \,\text{mm}} \frac{20 \,\text{m/s}}{v_5}$$
 $v_5 = \frac{6 \times 20}{4} = 30 \,\text{m/s}$

On convertit cette valeur en km/h :

$$v = 30 \,\mathrm{m/s} \xrightarrow{\times 3600} 108\,000 \,\mathrm{m/h} \xrightarrow{\div 1000} 108 \,\mathrm{km/h}.$$

La vitesse en M_5 est plus petite que $122\,\mathrm{km/h}$ mais le plongeur a encore plus de $20\,\mathrm{m}$ à parcourir avant de toucher l'eau, pendant lesquels il continue d'accélérer. Il est donc normal de trouver en M_5 un valeur de vitesse plus faible que celle indiquée dans l'article.