Знаходження скінченного автомата еквівалентного граматиці.

```
G = (N, T, P, S) , N = \{A, B, S\} , T = \{a, b\} , S — початковий символ, P = \{S \to aA, A \to aA, A \to a, S \to \varepsilon, S \to bB, B \to a\} .
```

Побудуємо скінченний автомат, еквівалентний граматиці. Множину термінальних символів зробимо вхідним алфавітом автомата $\Sigma = \{a,b\}$. Множині нетермінальних символів $N = \{A,B,S\}$ поставимо у відповідність множину станів $Q = \{q_1,q_2,q_0,q_3\}$, для чого правила вигляду $A \to a$ замінимо на два правила: $A \to aF$, $F \to \varepsilon$, де F — новий додатково введений нетермінал, $N = \{A,B,S,F\}$. Початковий символ S зробимо відповідним початковому стану q_0 , зробимо заключним стан q_3 , він відповідає нетерміналові F, для якого задано ε — правило $F \to \varepsilon$. Продукціям граматики поставимо у відповідність переходи автомата, враховуючи, що q_1 відповідає нетерміналові A,q_2 — нетерміналові B.

$$\Delta = \{\langle q_0, a, q_1 \rangle, \langle q_1, a, q_1 \rangle, \langle q_1, a, q_3 \rangle, \langle q_0, \varepsilon, q_3 \rangle, \langle q_0, b, q_2 \rangle, \langle q_2, a, q_3 \rangle\}.$$

Знаходження скінченного автомата еквівалентного граматиці. Приклад:

Знаходження скінченного автомата еквівалентного граматиці. Приклад:

Знаходження скінченного автомата еквівалентного граматиці та формування на його основі автомату з однобуквеними переходами. Приклад:

