

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-048820

(43) Date of publication of application: 18.02.2000

(51)Int.CI.

H01M 4/62 H01M 4/02 H01M 4/04 H01M 4/58 H01M 10/40

(21)Application number: 10-227665

(22)Date of filing:

27.07.1998

(71)Applicant: SANYO ELECTRIC CO LTD

(72)Inventor: YOSHIDA TOMOKAZU

KIDA YOSHINORI OSHITA RYUJI NOMA TOSHIYUKI

NISHIO KOJI

(54) LITHIUM SECONDARY BATTERY

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a lithium secondary battery having an satisfactory

charging/discharging cycle characteristics.

SOLUTION: This lithium secondary battery comprises a positive electrode that positive electrode active material powder consists of complex particles, a negative electrode and a nonaqueous electrolyte consisting of a lithium salt and an organic solvent. The complex particle is composed of a base particle consisting of at least one kind of oxide of transition elements selected from among the group of Co, Ni, Mn and Fe containing lithium, and a conductive layer consisted of at least one kind of metals selected from among the group of In, Mg, Al, Ba, Sr, Ca, Zn, Sn, Bi, Ce and Yb. The conductive layer covers a part of or the entire surface of the base particle.

LEGAL STATUS

[Date of request for examination]

28.12.2001

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than

the examiner's decision of rejection or application converted registration]
[Date of final disposal for application]

[Patent number]

3573971

[Date of registration]

09.07.2004

[Number of appeal against examiner's decision of

rejection]

[Date of requesting appeal against examiner's

decision of rejection]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-48820 (P2000-48820A)

(43)公開日 平成12年2月18日(2000.2.18)

弁理士 松尾 智弘

(51) Int.Cl.'		識別記号	FI	· · · · · · · · · · · · · · · · · · ·	ァーマコート*(参考)
H01M	4/62		H01M	4/62	Z 5H003
	4/02			4/02	C 5H014
•	4/04			4/04	A 5H029
•	4/58			4/58	• • • • • • •
1	0/40		1	0/40	Z
	_		審査請求	未請求 請求項の数:	3 FD (全 7 頁)
(21)出願番号	4	寺顧平10-227665	(71)出顧人		
(22)出顧日	7	平成10年7月27日(1998.7.27)		三洋電機株式会社 大阪府守口市京阪本選	重2丁目5番5号
•			(72)発明者	吉田 智一 大阪府守口市京阪本通 羊電機株式会社内	12丁目5番5号 三
·			(72)発明者	喜田 佳典 大阪府守口市京阪本通 洋電機株式会社内	12丁目5番5号 三
			(74)代理人	100095762	

最終頁に続く

(54) 【発明の名称】 リチウム二次電池

(57)【要約】

【課題解決手段】正極活物質粉末が複合体粒子からなる正極と、負極と、リチウム塩及び有機溶媒からなる非水電解液とを備え、前記複合体粒子が、リチウムを含有するCo、Ni、Mn及びFeよりなる群から選ばれた少なくとも一種の遷移元素の酸化物からなる基体粒子と、当該基体粒子の表面の一部又は全部を被覆する、In、Mg、Al、Ba、Sr、Ca、Zn、Sn、Bi、Ce及びYbよりなる群から選ばれた少なくとも一種の金属からなる導電層とからなる。

【効果】充放電サイクル特性の良いリチウム二次電池が 提供される。

【特許請求の範囲】

【請求項1】正極活物質粉末が複合体粒子からなる正極と、負極と、リチウム塩及び有機溶媒からなる非水電解液とを備えるリチウム二次電池において、前記複合体粒子が、リチウムを含有するCo、Ni、Mn及びFeよりなる群から選ばれた少なくとも一種の遷移元素の酸化物からなる基体粒子と、当該基体粒子の表面の一部又は全部を被覆する、In、Mg、Al、Ba、Sr、Ca、Zn、Sn、Bi、Ce及びYbよりなる群から選ばれた少なくとも一種の金属からなる導電層とからなることを特徴とするリチウム二次電池。

【請求項3】前記有機溶媒が、環状炭酸エステルと鎖状 20 炭酸エステルの体積比1:4~4:1の混合溶媒である 請求項1記載のリチウム二次電池。

【発明の詳細な説明】

[0001]

【発明が属する技術分野】本発明は、正極活物質粉末が 複合体粒子からなる正極と、負極と、リチウム塩及び有 機溶媒からなる非水電解液とを備えるリチウム二次電池 に係わり、詳しくは、この種の二次電池の充放電サイク ル特性を改善することを目的とした、正極の改良に関す る。

[0002]

【従来の技術及び発明が解決しようとする課題】リチウム二次電池の正極活物質としては、 $LiMnO_2$ 、 $LiMn_2$ O₄、 $LiCo_2$ 、 $LiNiO_2$ 、 $LiCo_2$ Ni_{1-x} O₂ (0 < x < 1) 及び $LiFeO_2$ などの、リチウムを含有する Co_1 Ni、MnD びFe よりなる群から選ばれた少なくとも一種の遷移元素の酸化物が、良く知られている。

【0003】しかしながら、これらの酸化物は反応活性が高いために、非水電解液と反応して劣化し易く、また 40粒子表面の導電性が悪いことに起因して活物質利用率が低いために、劣化が局所的に進行し易い。

【0004】LiCoO2のLiの一部を水素で置換して導電性の高いCoOOHとし、活物質の粒子内部に導電性ネットワークを形成することにより、高率放電時の活物質利用率の低下を抑制したリチウム二次電池が、提案されている(特開平4-301366号公報参照)。しかし、このリチウム二次電池も、充放電を繰り返したときの放電容量の減少は、さほど小さくないことが分かった。

【0005】従来のリチウム二次電池に於ける上述した 課題を解決するべく鋭意研究した結果、本発明者らは、 反応活性が高い特定の酸化物からなる基体粒子の表面の 一部又は全部を特定の金属からなる導電層で被覆してな る複合体粒子からなる正極活物質粉末を使用することに より、充放電を繰り返したどきの放電容量の減少が有効 に抑制されるとの知見を得た。

【0006】本発明は、かかる知見に基づいてなされたものであり、充放電サイクル特性が良いリチウム二次電池を提供することを目的とする。

[0007]

【課題を解決するための手段】本発明に係るリチウム二次電池(本発明電池)は、正極活物質粉末が複合体粒子からなる正極と、負極と、リチウム塩及び有機溶媒からなる非水電解液とを備え、前記複合体粒子が、リチウムを含有するCo、Ni、Mn及びFeよりなる群から選ばれた少なくとも一種の遷移元素の酸化物からなる基体粒子と、当該基体粒子の表面の一部又は全部を被覆する、In、Mg、Al、Ba、Sr、Ca、Zn、Sn、Bi、Ce及びYbよりなる群から選ばれた少なくとも一種の金属からなる導電層とからなる。

【0008】本発明電池においては、反応活性が高い基体粒子の表面の一部又は全部が導電性の高い特定の金属で被覆されているので、基体粒子と非水電解液との反応が抑制される。また、複合体粒子の粒子表面の導電性が高いことから、活物質が均一に充放電に関与することができるので、基体粒子の局所的な劣化が進行しにくい。従って、本発明電池においては、充放電の繰り返しに伴う放電容量の減少が小さい。

30 【0009】正極活物質粉末は、例えば、上記のリチウム含有遷移元素酸化物と、上記の金属との混合物を、焼成した後、粉砕することにより作製することができる。焼成は、400~800°Cの温度で行うことが好ましい。焼成温度がこの範囲を外れると、充放電サイクル特性が良いリチウム二次電池を与える正極活物質粉末を得ることが困難になる。

【0010】本発明は、正極の改良に関する。それゆえ、他の電池部材については、リチウム二次電池用として従来公知の種々の材料を使用することができる。負極40 材料としては、リチウムイオンを電気化学的に吸蔵及び放出することが可能な物質及び金属リチウムが例示される。リチウムイオンを電気化学的に吸蔵及び放出することが可能な物質としては、黒鉛(天然黒鉛及び人造黒鉛)、コークス、有機物焼成体等の炭素材料、リチウムーアルミニウム合金、リチウムーマグネシウム合金、リチウムーインジウム合金、リチウムー場合金、リチウムービスマス合金等のリチウム合金、並びに錫、チタン、鉄、モリブデン、ニオブ、バナジウム及び亜鉛の少なくとも一種の元素を含有する金属酸化物(SnO2、SnO、Ti

4

O2、Nb2O3など)及び金属硫化物が例示される。また、非水電解液の溶質として使用するリチウム塩としては、LiClO4、LiCF3SO3、LiPF6、LiN(CF3SO2)2、LiN(C2F6SO2)2、LiBF4、LiSbF6及びLiAsF6が例示され、リチウム塩を溶かすために使用する有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ビニレンカーボネート、プチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等の鎖状炭酸エステルとの混合溶媒が例示される。充放電サイクル特性が極めて良いリチウム二次電池を得るためには、環状炭酸エステルと鎖状炭酸エステルとの体積比が1:4~4:1の混合溶媒を使用することが好ましい。

【実施例】本発明を実施例に基づいてさらに詳細に説明するが、本発明は下記実施例に何ら限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能なものである。

【0012】(実験1) この実験では、本発明電池と比 20 較電池を作製し、各電池の1サイクル目に対する200 サイクル目の容量維持率を求めて、充放電サイクル特性を比較した。

【0013】(実施例1~11)

[0011]

【正極の作製】平均粒径10μmのLiNio。Co
 15Mno。602粉末と、平均粒径1μmのインジウム
 (In)、マグネシウム(Mg)、A1(アルミニウム)、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)、亜鉛(Zn)、錫(Sn)、ピスマス(Bi)、セリウム(Ce)又はイッテルピウム(Y30b)の各粉末とを、重量比95:5で混合し、不活性ガス雰囲気下にて、600°Cで8時間焼成した後、篩にかけて分級して、LiNio。Coo.15Mno.0502粒子(基体粒子)の表面に、インジウム等の金属からなる導電層が形成された複合体粒子からなる平均粒径10μmの11種の正極活物質粉末を得た。

【0014】上記の各正極活物質粉末90重量部と、導電剤としての人造黒鉛粉末5重量部と、ポリフッ化ビニリデン粉末5重量部をNMP(N-メチル-2-ピロリドン)に溶かして得た結着剤溶液とを混練してスラリー 40を調製し、このスラリーを集電体としてのアルミニウム箔の両面にドクターブレード法により塗布し、真空中にて150°Cで2時間乾燥して、11種の正極を作製した。

【0015】〔負極の作製〕天然黒鉛95重量部と、ポリフッ化ビニリデン粉末5重量部をNMPに溶かして得た結着剤溶液とを混練してスラリーを調製し、このスラリーを集電体としての銅箔の両面にドクターブレード法により塗布し、真空中にて150°Cで2時間乾燥して、負極を作製した。

【0016】〔非水電解液の調製〕エチレンカーボネート(EC)とジエチルカーボネート(DEC)との体積比1:1の混合溶媒に、LiPF。を1モル/リットル溶かして非水電解液を調製した。

【0017】〔リチウム二次電池の作製〕上記の正極、 負極及び非水電解液を使用して、常法によりAAサイズ (単3型) のリチウム二次電池 (本発明電池) (A1) ~ (A11) を作製した。セパレータには、イオン透過 性のポリプロピレンフィルムを使用した。また、正極と 負極の容量比を1:1.1とし、電池容量が正極容量に より規制されるようにした。以下の電池も正極と負極の 容量比を全て1:1.1とした。図1は、ここで作製し たリチウム二次電池 (A) の断面図であり、図示のリチ ウム二次電池 (A) は、正極 (1) 、負極 (2) 、これ らを離間するセパレータ(3)、正極リード(4)、負 極リード(5)、正極蓋(6)、負極缶(7)などから なる。正極(1)及び負極(2)は、電解液が注液され たセパレータ (3) を介して、渦巻き状に巻き取られた 状態で負極缶 (7) 内に収納されており、正極 (1) は 正極リード(4)を介して正極蓋(6)に、負極(2) は負極リード(5)を介して負極缶(7)にそれぞれ接 続され、電池内部に生じた化学エネルギーを電気エネル ギーとして外部へ取り出し得るようになっている。

【0018】(比較例1)正極活物質粉末として、平均 粒径10μmのLiNi。。Co。15Mn。0502粉末 を使用したこと以外は実施例1~11と同様にして、比 較電池(B1)を作製した。

【0019】(比較例2) 平均粒径10μmのLiNi。。Coo.15Mn。。502 粉末と、平均粒径1μmのA1(アルミニウム) 粉末との重量比95:5の混合物90重量部と、導電剤としての人造黒鉛粉末5重量部と、ポリフッ化ビニリデン粉末5重量部をNMPに溶かして得た結着剤溶液とを混練してスラリーを調製し、このスラリーを集電体としてのアルミニウム箔の両面にドクターブレード法により塗布し、真空中にて150°Cで2時間乾燥して、正極を作製した。次いで、この正極を使用したこと以外は実施例1~11と同様にして、比較電池(B2)を作製した。

【0020】(比較例3) 平均粒径10μmのLiCoO2粉末50gを、0.1Nの硝酸300mlに3時間浸漬し、水洗し、乾燥して、正極活物質粉末を作製した。次いで、この正極活物質粉末を使用したこと以外は実施例1~11と同様にして、比較電池(B3)を作製した。この比較電池(B3)は、特開平4-301366号公報に開示の方法に準拠して作製したリチウム二次電池である。

【0021】〈各電池の充放電サイクル特性〉実施例1 ~11及び比較例1~3で作製した各電池について、2 00mAで4.2Vまで充電した後、200mAで2. 50 75Vまで放電する工程を1サイクルとする充放電サイ

クル試験を行い、各電池の1サイクル目及び200サイ クル目の放電容量 (mAh) を求め、1サイクル目に対 する200サイクル目の容量維持率を算出した。結果を*

*表1に示す。 [0022]

【表1】

電池	導電層を 形成する 金属	1 サイクル目 の放電容量 (mAh)	200 サイクル 目の放電容量 (mAh)	容量維持率(%)
A 1	I n	670	575	85.8
A 2	Mg	675	585	86.7
A 3	A 1	675	590	87.4
A 4	Ва	665	560	84.2
A 5	Sr	670	5 6 5	84.3
A 6	Са	665	5 5 5	83.5
A 7	Z n	670	580	86.6
A 8	Sn	675	575	85.2
A 9	Вi	675	565	83.7
A 1 0	Се	670	565	84.3
A 1 1	Υb	665	550	82.7
B 1		670	480	71.6
B 2		670	505	75. 3
В 3		630	475	75.4

【0023】表1に示すように、本発明電池 (A1) ~ (A11)の容量維持率は、比較電池 (B1)~(B 3) のそれらに比べて、明らかに高い。この結果から、 本発明により充放電サイクル特性の良いリチウム二次電 池が提供されることが分かる。

に導電層を形成する際の焼成温度と充放電サイクル特性 の関係を調べ、好適な焼成温度を求めた。

【0025】平均粒径10μmのLiNio.s Coo.15 Mno. os O2 粉末と、平均粒径1μmのA1 (アルミニ ウム)粉末とを、重量比95:5で混合し、不活性ガス 雰囲気下にて、300°C、400°C、500°C、 700°C、800°C、900°C又は1000°C※

※で8時間焼成した後、篩にかけて分級して、LiNi o. s Coo. 15Mno. o5O2 粒子 (基体粒子) の表面に、 アルミニウムからなる導電層が形成された複合体粒子か らなる平均粒径10μmの正極活物質粉末を作製した。 次いで、この正極活物質粉末を使用したこと以外は実施 【0024】(実験2)この実験では、基体粒子の表面 30 例3と同様にして本発明電池A12~A18を作製し、 実験1におけるものと同じ条件の充放電サイクル試験を 行って、各電池の1サイクル目に対する200サイクル 目の容量維持率を求めた。結果を表2に示す。表2に は、実施例3で作製した本発明電池A3の結果も、表1 より転記してある。

> [0026] 【表2】

電池	焼成温度(°C)	1 サイクル目 の 放電容量 (m A h)	200 サイクル 目の放電容量 (mAh)	容量維持率 (%)
A 1 2	300	670	5 2 0	77.6
A 1 3	400	670	5 6 5	84. 3
A 1 4	500	675	580	85.9
A 3	600	675	590	87.4
A 1 5	700	675	5 8 5	86.6
A 1 6	800	670	565	84.3
A17	900	670	5 2 5	78.4
A 1 8	1000	665	500	75. 2

【0027】表2に示すように、基体粒子の表面に導電層を形成する際の焼成温度が400~800° Cである本発明電池A3及びA13~A16は、同焼成温度が上記範囲を外れる本発明電池A12、A17及びA18に比べて、容量維持率が高い。この結果から、焼成温度としては、400~800° Cが好ましいことが分かる。【0028】(実験3)この実験では、非水電解液の有機溶媒として混合溶媒を使用する場合の混合溶媒の種類と充放電サイクル特性の関係を調べた。

【0029】エチレンカーボネート (EC) とジエチル 10 カーボネート (DEC) との体積比1:1の混合溶媒に 代えて、エチレンカーボネート (EC) とジメチルカー ボネート (DMC) との混合溶媒、エチレンカーボネー*

*ト(EC)とメチルエチルカーポネート(MEC)との混合溶媒、エチレンカーポネート(EC)と1,2ージメトキシエタン(DME)との混合溶媒又はアーブチロラクトン(アーBL)とジエチルカーポネート(DEC)との混合溶媒を使用したこと以外は実施例3と同様にして、電池A19~A22を作製し、実験1におけるものと同じ条件の充放電サイクル試験を行って、各電池の1サイクル目に対する200サイクル目の容量維持率を求めた。結果を表3に示す。表3には、実施例3で作製した本発明電池A3の結果も、表1より転記してある。

【0030】 【表3】

電池	非水電解液の 混合溶媒 (体 積比1:1)	1サイクル目 の放電容量 (mAh)	200 サイクル 目の放電容量 (mAh)	容量維持率 (%)
A 3	EC + DEC	675	590	87.4
A 1 9	EC + DMC	680	580	85. 3
A 2 0	EC + NEC	675	585	86.7
A 2 1	EC+DME	670	5 4 5	81.3
A 2 2	η -BL + DEC	660	535	81.1

| BC:エナレンカーボネート | DEC:ジエチルカーボネート | DMC:ジメチルカーボネート | MEC:メチルエチルカーボネート | DME:1, 2-ジメトキシエタン | y-BI. | y-ブチロラクトン

【0031】表3に示すように、非水電解液の有機溶媒として環状炭酸エステルと鎖状炭酸エステルとの混合溶媒を使用した電池A3、A19及びA20は、環状炭酸エステルとエーテルとの混合溶媒を使用した電池A21及びラクトンと鎖状炭酸エステルとの混合溶媒を使用した電池A22に比べて、容量維持率が高い。この結果から、充放電サイクル特性が良いリチウム二次電池を得る上で、非水電解液の有機溶媒としては、環状炭酸エステルと鎖状炭酸エステルとの混合溶媒を使用することが好ましいことが分かる。

【0032】(実験4)この実験では、非水電解液の有機溶媒として、環状炭酸エステルと鎖状炭酸エステルとの混合溶媒を使用する場合の両者の混合割合と充放電サイクル特性の関係を調べ、好適な混合割合を求めた。

【0033】エチレンカーボネート(EC)とジエチルカーボネート(DEC)との体積比1:1の混合溶媒に代えて、エチレンカーボネート(EC)単独、体積比9:1、4:1、3:2、2:3、1:4若しくは1:9の混合溶媒、又は、ジエチルカーボネート(DEC)単独を使用したこと以外は実施例3と同様にして、電池A23~A30を作製し、実験1におけるものと同じ条件の充放電サイクル試験を行って、各電池の1サイクル目に対する200サイクル目の容量維持率を求めた。結果を表4に示す。表4には、実施例3で作製した本発明電池A3の結果も、表1より転記してある。

[0034]

【表4】

電池	混合溶媒の体 積比 (EC:DEC)	1サイクル目 の放電容量 (mAh)	200 サイクル 目の放電容量 (mAh)	容量維持率 (%)
A 2 3	EC単独	665	460	69. 2
A 2 4	9:1	665	510	75. 2
A 2 5	4:1	670	565	84.3
A 2 6	3:2	675	585	86.7
A 3	1:1	675	590	87.4
A 2 7	2:3	675	5 8 5	86.7
A 2 8	1:4	670	565	84.3
A 2 9	1:9	3 4 0	200	58.8
A 3 0	DEC 単独			

【0035】表4に示すように、非水電解液の有機溶媒 として環状炭酸エステルと鎖状炭酸エステルとの体積比 が1:4~4:1の混合溶媒を使用した電池A3、A2 5~A28は、同体積比が上記の範囲を外れる混合溶媒 を使用した電池A23、A24及びA29に比べて、容 量維持率が高い。この結果から、充放電サイクル特性が 20 A リチウム二次電池 良いリチウム二次電池を得る上で、非水電解液の有機溶 媒としては、環状炭酸エステルと鎖状炭酸エステルとの 体積比が $1:4\sim4:1$ の混合溶媒を使用することが好 ましいことが分かる。なお、電池A30は、充放電がで きなかった。

[0036]

【発明の効果】充放電サイクル特性の良いリチウム二次

電池が提供される。

【図面の簡単な説明】

【図1】実施例で作製したリチウム二次電池の断面図で ある。

【符号の説明】

- - 1 正極
 - 2 負極
 - 3 セパレータ
 - 4 正極リード
 - 負極リード
 - 正極蓋
 - 負極缶

【図1】

フロントページの続き

(72)発明者 大下 竜司

大阪府守口市京阪本通2丁目5番5号 三

洋電機株式会社内

(72)発明者 能間 俊之

大阪府守口市京阪本通2丁目5番5号 三

en de la companya de la co

洋電機株式会社内

(72)発明者 西尾 晃治

大阪府守口市京阪本通2丁目5番5号 三

洋電機株式会社内

Fターム(参考) 5H003 AA04 BA01 BA03 BA04 BB05

BB14 BC05 BD01 BD03

5H014 AA02 AA04 BB00 BB01 BB06

CCO1 EE05 EE10 HH08

5H029 AJ05 AK03 AL07 AM03 AM07

BJ02 BJ14 CJ01 CJ02 CJ08

DJ07 EJ01 HJ02 HJ14