Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

нумерации

ность

продуктивные множества

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

26 февраля 2024 г.

Лекция Сб Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерациі

нумераци

Равно мер ность

Продуктив ные множества Пусть ν — нумерация семейства $\mathcal{S} \subseteq \mathcal{P}(\omega^k)$.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

нумераци

Равномер

Продуктивные множества Пусть ν — нумерация семейства $\mathcal{S} \subseteq \mathcal{P}(\omega^k)$.

Обозначение С6.1.

$$\Gamma_{\nu}^* \leftrightharpoons \{\langle n, m_1, m_2, \ldots, m_k \rangle \mid \langle m_1, m_2, \ldots, m_k \rangle \in \nu(n)\}.$$

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

Равномер-

Продуктив-

Пусть ν — нумерация семейства $\mathcal{S} \subseteq \mathcal{P}(\omega^k)$.

Обозначение С6.1.

$$\Gamma_{\nu}^* \leftrightharpoons \{\langle n, m_1, m_2, \ldots, m_k \rangle \mid \langle m_1, m_2, \ldots, m_k \rangle \in \nu(n)\}.$$

Определение С6.1.

Нумерация ν называется **вычислимой**, если Γ^*_{ν} в.п. Семейство ${\cal S}$ называется **вычислимым**, если оно имеет хотя бы одну вычислимую нумерацию.

Лекция Сб Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

Равномерность

Продуктивные Пусть ν — нумерация семейства $\mathcal{S} \subseteq \mathcal{P}(\omega^k)$.

Обозначение С6.1.

$$\Gamma_{\nu}^* \leftrightharpoons \{\langle n, m_1, m_2, \ldots, m_k \rangle \mid \langle m_1, m_2, \ldots, m_k \rangle \in \nu(n)\}.$$

Определение С6.1.

Нумерация ν называется **вычислимой**, если Γ^*_{ν} в.п. Семейство $\mathcal S$ называется **вычислимым**, если оно имеет хотя бы одну вычислимую нумерацию.

Определение С6.2.

Пусть \mathcal{S} — семейство n-арных частичных функций. Тогда нумерация ν называется **вычислимой**, если нумерация $(\Gamma \nu)(x) \leftrightarrows \Gamma \nu(x)$ вычислима.

Лекция С6 Нумерации и вычислимость, III

> Вадим Пузаренко

Вычислимые семейства

Главные нумераци:

нумераци

Равномер-

Продуктивные множества

Предложение С6.1.

Пусть \mathcal{S} — семейство \emph{n} -арных частичных функций. Нумерация ν вычислима, если и только если функция

 $F_{\nu}(x_0, x_1, \dots, x_n) \leftrightharpoons \nu(x_0)(x_1, \dots, x_n)$ частично вычислима.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

нумерации

Равномер-

Продуктивные

Предложение С6.1.

Пусть \mathcal{S} — семейство n-арных частичных функций. Нумерация ν вычислима, если и только если функция $F_{\nu}(x_0,x_1,\ldots,x_n) \leftrightharpoons \nu(x_0)(x_1,\ldots,x_n)$ частично вычислима.

Доказательство.

Действительно, $\Gamma_{\nu}^{*}=\Gamma_{F_{\nu}}.$ Остаётся применить теорему С3.5 о графике.

Лекция Сб Нумерации и вычислимость. ІІІ

Вадим

Вычислимые семейства

Равномер-

Предложение С6.1.

Пусть $\mathcal{S}-$ семейство \emph{n} -арных частичных функций. Нумерация \emph{v} вычислима, если и только если функция

 $F_{\nu}(x_0, x_1, \dots, x_n) \leftrightharpoons \nu(x_0)(x_1, \dots, x_n)$ частично вычислима.

Доказательство.

Действительно, $\Gamma_{\nu}^* = \Gamma_{F_{\nu}}$. Остаётся применить теорему С3.5 о графике.

Примеры Сб.1.

Семейство СЕР₁ вычислимо.

Лекция Сб Нумерации и вычислимость. ІІІ

Вадим

Вычислимые семей ст ва

Равномер-

Предложение С6.1.

Пусть $\mathcal{S}-$ семейство \emph{n} -арных частичных функций. Нумерация \emph{v} вычислима, если и только если функция $F_{\nu}(x_0, x_1, \dots, x_n) \leftrightharpoons \nu(x_0)(x_1, \dots, x_n)$ частично вычислима.

Доказательство.

Действительно, $\Gamma_{\nu}^* = \Gamma_{F_{\nu}}$. Остаётся применить теорему С3.5 о графике.

Примеры Сб.1.

- Семейство СЕР₁ вычислимо.
- Семейство всех конечных множеств вычислимо.

Лекция Сб Нумерации и вычислимость. ІІІ

Вадим

Вычислимые семей ст ва

Равномер-

Предложение С6.1.

Пусть $\mathcal{S}-$ семейство \emph{n} -арных частичных функций. Нумерация \emph{v} вычислима, если и только если функция

 $F_{\nu}(x_0, x_1, \dots, x_n) = \nu(x_0)(x_1, \dots, x_n)$ частично вычислима.

Доказательство.

Действительно, $\Gamma_{\nu}^* = \Gamma_{F_{\nu}}$. Остаётся применить теорему С3.5 о графике.

Примеры Сб.1.

- Семейство СЕР₁ вычислимо.
- Семейство всех конечных множеств вычислимо.
- Семейство всех вычислимых множеств вычислимо.

Лекция С6 Нумерации и вычислимость, III

> Вадим Пузаренко

Вычислимые семейства

Главные нумерации

.., жерации Равномерность

Продуктивные множества

Предложение С6.1.

Пусть S — семейство n-арных частичных функций. Нумерация ν вычислима, если и только если функция $F_{\nu}(x_0,x_1,\ldots,x_n) \leftrightharpoons \nu(x_0)(x_1,\ldots,x_n)$ частично вычислима.

Доказательство.

Действительно, $\Gamma_{\nu}^{*}=\Gamma_{F_{\nu}}.$ Остаётся применить теорему С3.5 о графике.

Примеры С6.1.

- О Семейство СЕР₁ вычислимо.
- Семейство всех конечных множеств вычислимо.
- Оемейство всех вычислимых множеств вычислимо.
- Семейство всех унарных частично вычислимых функций вычислимо.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

нумерации

Равномерность

Продуктивные множества

Следствие Сб.1.

Семейство всех унарных вычислимых функций не вычислимо.

Лекция Сб Нумерации и вычислимость. ІІІ

Вадим

Вычислимые семейства

Равномер-

Следствие Сб.1.

Семейство всех унарных вычислимых функций не вычислимо.

Теорема Сб.1.

Семейство всех бесконечных вычислимо перечислимых (вычислимых) множеств не вычислимо.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

Равномер-

Продуктивные

Следствие С6.1.

Семейство всех унарных вычислимых функций не вычислимо.

Теорема Сб.1.

Семейство всех бесконечных вычислимо перечислимых (вычислимых) множеств не вычислимо.

Доказательство.

Докажем следующее: если ν — вычислимая нумерация некоторого подсемейства $\mathcal S$ бесконечных впм, то существует бесконечное вычислимое множество $A \notin \mathcal S$. Используя сильную аппроксимацию Γ_{ν}^* , будем строить строго возрастающую вф f, для которой будет выполняться $\rho f \neq \nu(n)$ для всех $n \in \omega$. Пусть $\{B_{n,s}\}_{n,s\in\omega}$ — сильно вычислимая последовательность такая, что $\varnothing = B_{n,0} \subseteq B_{n,1} \subseteq \ldots \subseteq B_{n,s} \subseteq \ldots \subseteq \cup_s B_{n,s} = \nu(n)$ для всех $n \in \omega$.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

Равномер-

Продуктивные

Доказательство (продолжение)

Кроме того, дополнительно будем предполагать, что $|B_{n,s+1}-B_{n,s}|\leqslant 1$, где $n,s\in\omega$. **КОНСТРУКЦИЯ**.

ШАГ 0. Находим шаг $t_0=\mu t[B_{0,t}\neq\varnothing]$; возьмём m_0 , для которого $B_{0,t_0}=\{m_0\}$; тогда положим $f(0)=m_0+1$. ШАГ n+1. Считаем, что f(0), f(1), ..., f(n) уже определены. Находим шаг $t_{n+1}=\mu t(\exists m[(m\in B_{n+1,t})\wedge (m>f(n))])$; возьмём m_{n+1} , для которого $B_{n+1,t_{n+1}}\setminus B_{n+1,t_{n+1}-1}=\{m_{n+1}\}$; тогда положим $f(n+1)=m_{n+1}+1$.

ЗАВЕРШЕНИЕ КОНСТРУКЦИИ.

Из эффективности конструкции заключаем, что f вычислима. Так как f строго монотонная, приходим к выводу (см. предложение C3.2(1)), что ρf — бесконечное вм. Далее, непосредственно из определения следует, что $f(n)-1\in B_{n,t_n}\subseteq \nu(n)$, но $f(n)-1\not\in \rho f$, поэтому $\rho f\neq \nu(n)$.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации Равномер-

Равномерность

Продуктивные множества

Упражнения С6.1.

- Докажите, что семейство всех кобесконечных впм не является вычислимым.
- ② Докажите, что семейство всех унарных частичных вычислимых функций, имеющих тотальное вычислимое продолжение, вычислимо.
- **③** Докажите, что пара впм $\{n|\varphi_n(0)\downarrow=0\}$ и $\{n|\varphi_n(0)\downarrow=1\}$ неотделима, где φ универсальная чвф.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации Равномер-

Равномерность

Продуктивные множества

Упражнения Сб.1.

- Докажите, что семейство всех кобесконечных впм не является вычислимым.
- Докажите, что семейство всех унарных частичных вычислимых функций, имеющих тотальное вычислимое продолжение, вычислимо.
- ② Докажите, что пара впм $\{n|\varphi_n(0)\downarrow=0\}$ и $\{n|\varphi_n(0)\downarrow=1\}$ неотделима, где φ универсальная чвф.

Упражнение С6.2.

Докажите, что семейство всех кобесконечных вычислимых множеств вычислимо.

Идеал

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

Равномер-

ность Продуктир

Продуктивные множества

Предложение С6.2.

- ① Если u_0 и u_1 вычислимые нумерации, то $u_0 \oplus
 u_1$ также вычислима;
- $oldsymbol{0}$ если u вычислимая нумерация и $u'\leqslant
 u$, то u' будет также вычислимой нумерацией.

Доказательство.

- 1) Пусть $\Gamma_{\nu_0}^*$ и $\Gamma_{\nu_1}^*$ впм, тогда $\Gamma_{\nu_0\oplus\nu_1}^*=\{\langle 2k,m\rangle|m\in\nu_0(k)\}\cup\{\langle 2k+1,m\rangle|m\in\nu_1(k)\}$ также будет впм.
- 2) Пусть Γ_{ν}^{*} впм и пусть вф f такова, что $\nu' = \nu f$. Тогда $\Gamma_{\nu'}^{*} = \{\langle n, m \rangle | m \in \nu'(n) \} = \{\langle n, m \rangle | m \in \nu f(n) \} = \{\langle n, m \rangle | \Gamma_{\nu}^{*}(f(n), m) \}$ и, следовательно, $\Gamma_{\nu'}^{*}$ также будет впм.

Идеал

Лекция Сб Нумерации и вычислимость. ІІІ

Вычислимые семейства

Равномер-

Обозначения С6.2.

Пусть S — вычислимое семейство. Тогда через $N^0(S)$ обозначим множество всех вычислимых нумераций и, в свою очередь, через $\mathrm{L}^0(\mathcal{S})$ — множество всех классов эквивалентности вычислимых нумераций семейства S.

Идеал

Лекция Сб Нумерации и вычислимость. ІІІ

Вадим

Вычислимые семей ст ва

Равномер-

Обозначения С6.2.

Пусть S — вычислимое семейство. Тогда через $N^0(S)$ обозначим множество всех вычислимых нумераций и, в свою очередь, через $\mathrm{L}^0(\mathcal{S})$ — множество всех классов эквивалентности вычислимых нумераций семейства S.

Следствие С6.2.

Пусть S — вычислимое семейство; тогда $L^0(S) \triangleleft L(S)$.

Главные нумерации: основное понятие

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

нумерации Равномер-

Продуктивные

Определение С6.3.

Вычислимая нумерация ν семейства ${\cal S}$ называется **главной**, если любая вычислимая нумерация ν_0 семейства ${\cal S}$ сводится к ν .

Главные нумерации: основное понятие

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

нумерации Равномер-

Продуктивные

Определение С6.3.

Вычислимая нумерация ν семейства $\mathcal S$ называется **главной**, если любая вычислимая нумерация ν_0 семейства $\mathcal S$ сводится к ν .

Лемма Сб.1.

Если ν — главная вычислимая нумерация \mathcal{S} и ν_0 — вычислимая нумерация $\mathcal{S}_0 \subseteq \mathcal{S}$, то $\nu_0 \leqslant \nu$.

Главные нумерации: основное понятие

Лекция Сб Нумерации и вычислимость. ІІІ

Вадим

Вычислимые

Главные нумерации

Равномер-

Определение С6.3.

Вычислимая нумерация ν семейства $\mathcal S$ называется главной, если любая вычислимая нумерация u_0 семейства $\mathcal S$ сводится к u.

Лемма Сб.1.

Если u — главная вычислимая нумерация $\mathcal S$ и u_0 — вычислимая нумерация $S_0 \subseteq S$, то $\nu_0 \leqslant \nu$.

Доказательство.

Пусть ν_0 — вычислимая нумерация $S_0 \subseteq S$; тогда $\nu_0 \oplus \nu$ будет вычислимой нумерацией \mathcal{S} . Следовательно, $\nu_0 \oplus \nu = \nu f$ для некоторой вф f. Положим $g(n) \leftrightharpoons f(2n)$; далее, имеем $\nu_0(n) = (\nu_0 \oplus \nu)(2n) =$ $= \nu(f(2n)) = \nu g(n)$. Таким образом, вф g сводит ν_0 к ν .

Главные нумерации для чвф

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

нумерации

ность ПродуктивТеорема Сб.2.

Семейство PCF_n всех n-арных частично вычислимых функций имеет главную вычислимую нумерацию.

Главные нумерации для чвф

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерациі

нумерации

Равномерность

Продуктивные

Теорема Сб.2.

Семейство PCF_n всех n-арных частично вычислимых функций имеет главную вычислимую нумерацию.

Скобки Мальцева.

Введём бинарную функцию [ullet,ullet] следующим образом (здесь $x,y\in\omega$): $[x,y]\leftrightharpoons c(lx,c(rx,y)).$

Эта функция примитивно рекурсивна и осуществляет взаимно однозначное соответствие между парами натуральных чисел и натуральными числами.

Главные нумерации для чвф

Лекция Сб Нумерации и вычислимость. ІІІ

Вадим Пузаренко

Главные нумерации

Равномер-

Скобки Мальцева.

Функции c и $[\bullet, \bullet]$ связаны следующим тождеством:

$$[c(x_0,x_1),x_2]=c(x_0,c(x_1,x_2)). (1)$$

Для любого n > 2 определим функцию $\lambda x_1 \lambda x_2 \dots \lambda x_n [x_1, x_2, \dots, x_n]$ следующим образом:

 $\lambda x_1 \lambda x_2 \dots \lambda x_n [x_1, x_2, \dots, x_n] = \lambda x_1 \lambda x_2 \dots \lambda x_n [\dots [[x_1, x_2], x_3], \dots, x_n].$ Нетрудно проверить, что эти функции определяются индукцией по n > 2 следующим образом:

$$\lambda x_1 \lambda x_2 \dots \lambda x_n \lambda x_{n+1} [x_1, x_2, \dots, x_{n+1}] \leftrightharpoons$$

$$= \lambda x_1 \lambda x_2 \dots \lambda x_n \lambda x_{n+1} [[x_1, x_2 \dots, x_n], x_{n+1}].$$

Существует n унарных примитивно рекурсивных функций $[\bullet]_{n,i}$, $1 \leqslant i \leqslant n$, для которых имеют место

$$[[x]_{n,1},[x]_{n,2},\ldots,[x]_{n,n}]=x;\ [[x_1,x_2,\ldots,x_n]]_{n,i}=x_i$$

для всех $X_1, X_2, \ldots, X_n \in \omega$.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

нумерации Равномер-

Равномерность

Продуктивные множества

Доказательство теоремы С6.2.

Пусть $T^2(x,y)$ — произвольная бинарная универсальная чвф; положим $K^2 \leftrightharpoons \lambda x_0 \lambda x_1 T^2(lx_0,c(rx_0,x_1));$

 $K^{n+1} = \lambda x_0 \lambda x_1 \dots \lambda x_n K^n([x_0, x_1], x_2, \dots, x_n), \ n \geqslant 2.$

Функции K^2 , K^3 , ..., K^n , ... называются **клиниевскими**

универсальными функциями. Для них справедливо следующее утверждение:

Для любого n>0 частично вычислимая функция K^{n+1} универсальна. Для проверки данного утверждения определим функции T^{n+1} , n>1, следующим соотношением:

 $T^{n+1} \leftrightharpoons \lambda x_0 \lambda x_1 \lambda x_2 \dots \lambda x_n T^2(x_0, c^n(x_1, x_2, \dots, x_n)).$

По лемме С2.11, чвф T^{n+1} универсальна. Заметим, что справедливо следующее соотношение:

$$T^{k+n+1}(x_0, x_1, \ldots, x_k, x_{k+1}, \ldots, x_{k+n}) =$$

$$T^{n+2}(x_0, c^k(x_1, \ldots, x_k), x_{k+1}, \ldots, x_{k+n})$$

Проверим, что справедливо следующее соотношение (индукцией по n): $K^{n+1}(c(x_0,x_1),x_2,\ldots,x_{n+1})=T^{n+2}(x_0,x_1,x_2,\ldots,x_{n+1}), n\geqslant 1.$

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

нумерации

Равномерность

Продуктивные множества Доказательство теоремы Сб.2 (продолжение).

В самом деле,

$$K^2(c(x_0,x_1),x_2)=T^2(x_0,c(x_1,x_2))=T^3(x_0,x_1,x_2);$$
 $K^{n+1}(c(x_0,x_1),x_2,\dots,x_{n+1})=K^n([c(x_0,x_1),x_2],x_3,\dots,x_{n+1})=K^n(c(x_0,c(x_1,x_2)),x_3,\dots,x_{n+1})=T^{n+2}(x_0,c(x_1,x_2)),x_3,\dots,x_{n+1})=T^{n+2}(x_0,x_1,x_2,\dots,x_{n+1}).$ Теперь перейдём к доказательству того, что K^{n+1} универсальна. Пусть $g(x_1,x_2,\dots,x_n)$ — чвф и пусть $m\in\omega$ таково, что $\lambda x_0\lambda x_1\lambda x_2\dots\lambda x_n g(x_1,x_2,\dots,x_n)=\lambda x_0\lambda x_1\lambda x_2\dots\lambda x_n T^{n+2}(m,x_0,x_1,x_2,\dots,x_n).$ Тогда $K^{n+1}(c(m,m),x_1,\dots,x_n)=T^{n+2}(m,m,x_1,x_2,\dots,x_n)$. Клиниевская универсальная функция $K^{n+1}(c(m,m),x_1,\dots,x_n)$. Клиниевская универсальная функция $K^{n+1}(c(m,m),x_1,\dots,x_n)$. Клорую также будем называть **клиниевской** $(n\geqslant 1)$. Покажем, что эта нумерация главная.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

нумераци

Равномерность

Продуктивные множества

Доказательство теоремы Сб.2 (окончание).

Пусть ν — произвольная вычислимая нумерация семейства PCF_n и пусть $F_{\nu}(x_0,x_1,x_2,\ldots,x_n)$ — соответствующая ей универсальная чвф. Пусть также $m\in\omega$ таково, что $F_{\nu}(x_0,x_1,x_2,\ldots,x_n)=T^{n+2}(m,x_0,x_1,x_2,\ldots,x_n)$. Тогда, положив $h=\lambda x c(m,x)$, получаем, что $\nu(x)(y_1,y_2,\ldots,y_n)=F_{\nu}(x,y_1,y_2,\ldots,y_n)=T^{n+2}(m,x,y_1,y_2,\ldots,y_n)=K^{n+1}(c(m,x),y_1,y_2,\ldots,y_n)=K^{n+1}(h(x),y_1,y_2,\ldots,y_n)=x^n(h(x))(y_1,y_2,\ldots,y_n)$; таким образом, $\nu x=\varkappa^n h(x)$ или $\nu=\varkappa^n h$.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

нумерации Равномер-

ность Провужения

Продуктивные множества

Доказательство теоремы Сб.2 (окончание).

Пусть ν — произвольная вычислимая нумерация семейства PCF_n и пусть $F_{\nu}(x_0,x_1,x_2,\ldots,x_n)$ — соответствующая ей универсальная чвф. Пусть также $m\in\omega$ таково, что $F_{\nu}(x_0,x_1,x_2,\ldots,x_n)=T^{n+2}(m,x_0,x_1,x_2,\ldots,x_n).$ Тогда, положив $h = \lambda x c(m,x)$, получаем, что $\nu(x)(y_1,y_2,\ldots,y_n)=F_{\nu}(x,y_1,y_2,\ldots,y_n)=T^{n+2}(m,x,y_1,y_2,\ldots,y_n)=K^{n+1}(c(m,x),y_1,y_2,\ldots,y_n)=K^{n+1}(h(x),y_1,y_2,\ldots,y_n)=\mathcal{K}^n(h(x))(y_1,y_2,\ldots,y_n);$ таким образом, $\nu x = \varkappa^n h(x)$ или $\nu = \varkappa^n h$.

Замечание С6.1.

Функция $h(x) = \lambda x c(m,x)$ в доказательстве теоремы не только примитивно рекурсивна, но и инъективна, поэтому $\nu \leqslant_1 \varkappa^n$.

Лекция Сб Нумерации и вычислимость. ІІІ

Вычислимые

Главные

нумерации

Соглашение С6.1.

Если n=1, то верхний символ клиниевской нумерации будем опускать и использовать обозначение \varkappa вместо \varkappa^1 . Кроме того, часто вместо $\varkappa^n(m)$ будем писать \varkappa_m^n .

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

Равномер-

Продуктивные

Соглашение Сб.1.

Если n=1, то верхний символ клиниевской нумерации будем опускать и использовать обозначение \varkappa вместо \varkappa^1 . Кроме того, часто вместо $\varkappa^n(m)$ будем писать \varkappa^n_m .

s - m - n-Теорема C6.3.

Для любых $n,m\geqslant 1$ существует m+1-местная инъективная вычислимая (даже примитивно рекурсивная) функция s_n^m такая, что $\varkappa_e^{m+n}(y_1,y_2,\ldots,y_m,x_1,x_2,\ldots,x_n)=\varkappa_{s_n^m(e,y_1,y_2,\ldots,y_m)}^n(x_1,x_2,\ldots,x_n)$ для всех $e,\ x_1,\ x_2,\ \ldots,\ x_n,\ y_1,\ y_2,\ \ldots,\ y_m\in\omega.$

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

Равномер-

Продуктивные

Соглашение Сб.1.

Если n=1, то верхний символ клиниевской нумерации будем опускать и использовать обозначение \varkappa вместо \varkappa^1 . Кроме того, часто вместо $\varkappa^n(m)$ будем писать \varkappa^n_m .

s - m - n-Теорема С6.3.

Для любых $n,m\geqslant 1$ существует m+1-местная инъективная вычислимая (даже примитивно рекурсивная) функция s_n^m такая, что $\varkappa_e^{m+n}(y_1,y_2,\ldots,y_m,x_1,x_2,\ldots,x_n)=\varkappa_{s_n^m(e,y_1,y_2,\ldots,y_m)}^n(x_1,x_2,\ldots,x_n)$ для всех $e, x_1, x_2,\ldots,x_n, y_1, y_2,\ldots,y_m\in\omega$.

Доказательство.

 $\mathrm{Bcex}\ x \in \omega.$

Определим $\nu:\omega\to \mathrm{PCF}_n$ следующим образом: $\nu(x)\leftrightharpoons\varkappa_{c_{m+1,1}(x)}^{m+n}(c_{m+1,2}(x),c_{m+1,3}(x),\ldots,c_{m+1,m+1}(x),x_1,x_2,\ldots,x_n).$ Тогда существует инъективная вф h(x) такая, что $\nu(x)=\varkappa_{h(x)}^n$ для

Теорема Клини о неподвижной точке

Лекция Сб Нумерации и вычислимость. ІІІ

Вадим Пузаренко

Вычислимые

Главные нумерации

Равномер-

Положив, что
$$x=c^{m+1}(e,y_1,y_2,\ldots,y_m)$$
 и $s_n^m(e,y_1,y_2,\ldots,y_m)=h(c^{m+1}(e,y_1,y_2,\ldots,y_m)),$ получим, что $\varkappa_e^{m+n}(y_1,y_2,\ldots,y_m,x_1,x_2,\ldots,x_n)=$ $\varkappa_{c_{m+1,1}(x)}^{m+n}(c_{m+1,2}(x),c_{m+1,3}(x),\ldots,c_{m+1,m+1}(x),x_1,x_2,\ldots,x_n)=$ $\nu(x)(x_1,x_2,\ldots,x_n)=\varkappa_{h(x)}^n(x_1,x_2,\ldots,x_n)=$ $\varkappa_{h(c_{m+1}(e,y_1,y_2,\ldots,y_m))}^n(x_1,x_2,\ldots,x_n)=$ $\varkappa_{h(c_{m+1}(e,y_1,y_2,\ldots,y_m))}^n(x_1,x_2,\ldots,x_n)=$

Теорема Клини о неподвижной точке

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

Равномер-

Продуктив ные Доказательство (окончание).

Положив, что
$$x=c^{m+1}(e,y_1,y_2,\ldots,y_m)$$
 и $s_n^m(e,y_1,y_2,\ldots,y_m)=h(c^{m+1}(e,y_1,y_2,\ldots,y_m)),$ получим, что $\varkappa_e^{m+n}(y_1,y_2,\ldots,y_m,x_1,x_2,\ldots,x_n)=$ $\varkappa_{c_{m+1,1}(x)}^{m+n}(c_{m+1,2}(x),c_{m+1,3}(x),\ldots,c_{m+1,m+1}(x),x_1,x_2,\ldots,x_n)=$ $\nu(x)(x_1,x_2,\ldots,x_n)=\varkappa_{h(x)}^n(x_1,x_2,\ldots,x_n)=$ $\varkappa_{h(c^{m+1}(e,y_1,y_2,\ldots,y_m))}^n(x_1,x_2,\ldots,x_n)=$ $\varkappa_{h(c^{m+1}(e,y_1,y_2,\ldots,y_m))}^n(x_1,x_2,\ldots,x_n)=$

Теорема Сб.4.

Для каждой m+1-местной частично вычислимой функции h найдётся m-местная инъективная вычислимая функция g, для которой выполняется равенство

$$\varkappa_{h(y_1,y_2,\ldots,y_m,g(y_1,y_2,\ldots,y_m))}^n(x_1,x_2,\ldots,x_n)=\varkappa_{g(y_1,y_2,\ldots,y_m)}^n(x_1,x_2,\ldots,x_n)$$
 для всех $x_1,x_2,\ldots,x_n,y_1,y_2,\ldots,y_m\in\omega$.

Теорема Клини о неподвижной точке

Лекция Сб Нумерации и вычислимость. ІІІ

Доказательство.

Вадим

Вычислимые

Главные нумерации

Равномер-

Пузаренко

Применяя к чвф
$$\varkappa_e^{n+n+1}(z,y_1,y_2,\ldots,y_m,x_1,x_2,\ldots,x_n)$$
 $s-m-n$ -теорему, получим равную ей чвф $\varkappa_{s_n^{m+1}(e,z,y_1,y_2,\ldots,y_m)}^n(x_1,x_2,\ldots,x_n)$. Рассмотрим теперь вспомогательную чвф $\varkappa_{h(y_1,y_2,\ldots,y_m,s_n^{m+1}(z,z,y_1,y_2,\ldots,y_m))}^n(x_1,x_2,\ldots,x_n)$. Эта функция имеет $m+n+1$ аргументов, поэтому найдётся $a\in\omega$ такое, что $\varkappa_a^{m+n+1}(z,y_1,y_2,\ldots,y_m,x_1,x_2,\ldots,x_n)=$ $\varkappa_{h(y_1,y_2,\ldots,y_m,s_n^{m+1}(z,z,y_1,y_2,\ldots,y_m))}^n(x_1,x_2,\ldots,x_n)$. Тогда $\varkappa_{h(y_1,y_2,\ldots,y_m,s_n^{m+1}(a,a,y_1,y_2,\ldots,y_m))}^n(x_1,x_2,\ldots,x_n)=$ $\varkappa_a^{m+n+1}(a,y_1,y_2,\ldots,y_m,x_1,x_2,\ldots,x_n)=$ $\varkappa_a^{m+n+1}(a,y_1,y_2,\ldots,y_m,x_1,x_2,\ldots,x_n)=$

Остаётся положить $g(y_1, y_2, \dots, y_m) = s_n^{m+1}(a, a, y_1, y_2, \dots, y_m).$

Теорема Клини о неподвижной точке

Лекция Сб Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

Равномер-

Продуктивные Применяя к чвф $\varkappa_e^{m+n+1}(z,y_1,y_2,\ldots,y_m,x_1,x_2,\ldots,x_n)$ s-m-n-теорему, получим равную ей чвф $\varkappa_{s_n^{m+1}(e,z,y_1,y_2,\ldots,y_m)}^n(x_1,x_2,\ldots,x_n)$. Рассмотрим теперь вспомогательную чвф $\varkappa_{h(y_1,y_2,\ldots,y_m,s_n^{m+1}(z,z,y_1,y_2,\ldots,y_m))}^n(x_1,x_2,\ldots,x_n)$. Эта функция имеет m+n+1 аргументов, поэтому найдётся $a\in\omega$ такое, что $\varkappa_a^{m+n+1}(z,y_1,y_2,\ldots,y_m,x_1,x_2,\ldots,x_n)=$ $\varkappa_{h(y_1,y_2,\ldots,y_m,s_n^{m+1}(z,z,y_1,y_2,\ldots,y_m))}^n(x_1,x_2,\ldots,x_n)$. Тогда $\varkappa_{h(y_1,y_2,\ldots,y_m,s_n^{m+1}(z,z,y_1,y_2,\ldots,y_m))}^n(x_1,x_2,\ldots,x_n)=$

 $\varkappa_{a}^{m+n+1}(a, y_{1}, y_{2}, \ldots, y_{m}, x_{1}, x_{2}, \ldots, x_{n}) = \varkappa_{s_{n}^{m+1}(a, a, y_{1}, y_{2}, \ldots, y_{m})}^{n}(x_{1}, x_{2}, \ldots, x_{n}).$

Остаётся положить $g(y_1, y_2, \dots, y_m) = s_n^{m+1}(a, a, y_1, y_2, \dots, y_m)$.

Следствие С6.3.

Доказательство.

Для любой унарной частично вычислимой функции h найдётся число a такое, что $\varkappa_a^n(x_1,x_2,\ldots,x_n)=\varkappa_{h(a)}^n(x_1,x_2,\ldots,x_n)$ для всех $x_1,x_2,\ldots,x_n\in\omega$.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

нумерации

Равномер-

Продуктивные множества

Теорема Сб.5.

Семейство ${\rm CEP}_n$ обладает главной вычислимой нумерацией для любого $n\geqslant 1$.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

Равномер-

Продуктив-

Теорема Сб.5.

Семейство ${\rm CEP}_n$ обладает главной вычислимой нумерацией для любого $n\geqslant 1$.

Доказательство.

Определим нумерацию π^n семейства ${\rm CEP}_n$ следующим образом: $\pi^n(x) \leftrightharpoons \delta \varkappa^n(x)$ для всех $x \in \omega$. Отношение

 $\langle y_1,y_2,\ldots,y_n\rangle\in\pi^n(x)\Leftrightarrow\exists z[K^{n+1}(x,y_1,y_2,\ldots,y_n)=z]$ вп, поэтому π^n — вычислимая нумерация семейства CEP_n . Пусть $\nu:\omega\to\mathrm{CEP}_n$ — произвольная вычислимая нумерация.

Определим n+1-арную частичную функцию g следующим образом:

 $g(x,y_1,y_2,\ldots,y_n) \leftrightharpoons egin{cases} 0, & \mathsf{если} \ \langle y_1,y_2,\ldots,y_n \rangle \in
u(x); \ \uparrow & \mathsf{в противном случае}. \end{cases}$

График $\Gamma_g = \{\langle x, y_1, y_2, \dots, y_n, 0 \rangle \mid \langle y_1, y_2, \dots, y_n \rangle \in \nu(x) \}$ вп и, по теореме C3.5 о графике, g частично вычислима.

Лекция Сб Нумерации и вычислимость. ІІІ

Вадим Пузаренко

Вычислимые

Главные нумерации

Равномер-

Доказательство (окончание).

Пусть $m \in \omega$ таково, что $g(x, y_1, y_2, \dots, y_n) = T^{n+2}(m, x, y_1, y_2, \dots, y_n)$ для всех $x, y_1, y_2, \ldots, y_n \in \omega$; тогда для $h \leftrightharpoons \lambda x c(m, x)$ имеем: $[\varkappa^n h(x)](y_1, y_2, \dots, y_n) = K^{n+1}(h(x), y_1, y_2, \dots, y_n) =$ $K^{n+1}(c(m,x), y_1, y_2, \dots, y_n) = T^{n+2}(m, x, y_1, y_2, \dots, y_n) =$ $g(x, y_1, y_2, \ldots, y_n)$ и $\pi^n h(x) = \delta \varkappa^n h(x) = \delta(\lambda y_1, y_2, \dots, y_n, g(x, y_1, y_2, \dots, y_n))$ для всех $x \in \omega$. Заметив, что $\delta(\lambda y_1, y_2, \dots, y_n. g(x, y_1, y_2, \dots, y_n)) = \nu(x)$, получаем $\nu=\pi^n h$. Таким образом, $\nu\leqslant\pi^n$ и π^n — главная нумерация семейства CEP_n .

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

нумерации Равномер-

Продуктивные

Доказательство (окончание).

Пусть $m \in \omega$ таково, что $g(x,y_1,y_2,\ldots,y_n) = T^{n+2}(m,x,y_1,y_2,\ldots,y_n)$ для всех $x,y_1,y_2,\ldots,y_n \in \omega$; тогда для $h \leftrightharpoons \lambda x c(m,x)$ имеем: $[\varkappa^n h(x)](y_1,y_2,\ldots,y_n) = K^{n+1}(h(x),y_1,y_2,\ldots,y_n) = K^{n+1}(c(m,x),y_1,y_2,\ldots,y_n) = T^{n+2}(m,x,y_1,y_2,\ldots,y_n) = g(x,y_1,y_2,\ldots,y_n)$ и $\pi^n h(x) = \delta \varkappa^n h(x) = \delta (\lambda y_1,y_2,\ldots,y_n g(x,y_1,y_2,\ldots,y_n))$ для всех $x \in \omega$. Заметив, что $\delta(\lambda y_1,y_2,\ldots,y_n g(x,y_1,y_2,\ldots,y_n)) = \nu(x)$, получаем $\nu = \pi^n h$. Таким образом, $\nu \leqslant \pi^n$ и $\pi^n -$ главная нумерация семейства CEP_n .

Замечание С6.2.

Функция $h(x) = \lambda x c(m,x)$ в доказательстве теоремы не только примитивно рекурсивна, но и инъективна, поэтому $\nu \leqslant_1 \pi^n$. Нумерацию π^n будем называть **постовской**.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

нумерации

Равномер-

Продуктивные множества

Соглашение С6.2.

Если n=1, то верхний символ постовской нумерации будем опускать и использовать обозначение π вместо π^1 . Кроме того, часто вместо $\pi^n(m)$ будем писать π^n_m .

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

Равномер-

Продуктивные

Соглашение С6.2.

Если n=1, то верхний символ постовской нумерации будем опускать и использовать обозначение π вместо π^1 . Кроме того, часто вместо $\pi^n(m)$ будем писать π^n_m .

Предложение С6.3.

Пусть $\psi(x)$ — частично вычислимая функция. Тогда существует вычислимая функция f(x), для которой выполняется следующее:

$$[\varkappa(f(x))](y) = \begin{cases} [\varkappa(\psi(x))](y), & \text{если } \psi(x) \downarrow; \\ \lambda y. \uparrow, & \text{если } \psi(x) \uparrow; \end{cases}$$

$$\pi(f(x)) = \begin{cases} \pi(\psi(x)), & \text{если } \psi(x) \downarrow; \\ \varnothing, & \text{если } \psi(x) \uparrow. \end{cases}$$

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

нумерации Равномер-

Продуктивные

Соглашение С6.2.

Если n=1, то верхний символ постовской нумерации будем опускать и использовать обозначение π вместо π^1 . Кроме того, часто вместо $\pi^n(m)$ будем писать π^n_m .

Предложение С6.3.

Пусть $\psi(x)$ — частично вычислимая функция. Тогда существует вычислимая функция f(x), для которой выполняется следующее:

$$[\varkappa(f(x))](y) = \begin{cases} [\varkappa(\psi(x))](y), & \text{если } \psi(x) \downarrow; \\ \lambda y. \uparrow, & \text{если } \psi(x) \uparrow; \end{cases}$$

$$\pi(f(x)) = \begin{cases} \pi(\psi(x)), & \text{если } \psi(x) \downarrow; \\ \varnothing, & \text{если } \psi(x) \uparrow. \end{cases}$$

Доказательство.

Достаточно построить вф f для \varkappa , поскольку $\pi(x)=\delta \varkappa(x)$ для всех $x\in\omega$.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

нумерации Равномер-

ность

Продуктивные множества

Доказательство (окончание).

Определим нумерацию ν частичных функций, удовлетворяющую следующим условиям:

$$[\nu(x)](y) = \begin{cases} [\varkappa(\psi(x))](y), & \text{если } \psi(x) \downarrow; \\ \lambda y. \uparrow, & \text{если } \psi(x) \uparrow. \end{cases}$$

Нумерация ν является вычислимой, поскольку $F_{\nu}(x,y)=K^2(\psi(x),y)$ — чвф. Так как \varkappa — главная нумерация, существует вф f(x) такая, что $\nu(x)=\varkappa(f(x))$. Отсюда вытекает утверждение. \square

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

нумерации Равномер-

Продуктив-

Валии

Доказательство (окончание).

Определим нумерацию ν частичных функций, удовлетворяющую следующим условиям:

$$[\nu(x)](y) = \begin{cases} [\varkappa(\psi(x))](y), & \text{если } \psi(x) \downarrow; \\ \lambda y. \uparrow, & \text{если } \psi(x) \uparrow. \end{cases}$$

Нумерация ν является вычислимой, поскольку $F_{\nu}(x,y)=$ $=K^2(\psi(x),y)-$ чвф. Так как $\varkappa-$ главная нумерация, существует вф f(x) такая, что $\nu(x)=\varkappa(f(x))$. Отсюда вытекает утверждение.

Замечание С6.3.

Нигде не определённая функция и пустое множество играют роль особых элементов нумераций \varkappa и π . При этом они являются полными нумерациями. Нумерация ν семейства $\mathcal{S} \cup \{\bot\}$ называется **полной**, если для любой чвф $\psi(x)$ существует вф f такая, что

$$\nu(f(x)) = \begin{cases} \nu(\psi(x)), & \text{если } \psi(x) \downarrow; \\ \bot, & \text{если } \psi(x) \uparrow. \end{cases}$$

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

нумерации

Равномерность

Продуктивные множества Обозначение С6.2.

Пусть $M\subseteq \omega$ и $x\in \omega$. Положим $M\upharpoonright x\leftrightharpoons M\cap \{0,1,\ldots,x\}$.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

Равномер-

Продуктивные

Обозначение С6.2.

Пусть $M\subseteq \omega$ и $x\in \omega$. Положим $M\upharpoonright x\leftrightharpoons M\cap \{0,1,\ldots,x\}$.

Пусть ν и μ — две вычислимые нумерации семейств \mathcal{S} , $\mathcal{S}' \subseteq \text{CEP}_1$, а $\{H_{s,s}|x,s \in \omega\}$ и $\{M_{s,s}|x,s \in \omega\}$ — двойные сильные последовательности конечных множеств такие, что $\{H_{\mathsf{x}_0,s}|s\in\omega\}$ и $\{M_{\mathsf{x}_0,s}|s\in\omega\}$ — сильные аппроксимации $\nu(\mathsf{x}_0)$ и $\mu(x_0)$ соответственно, $x_0 \in \omega$. Пусть g — унарная частично вычислимая функция, а $\{G_s\}_{s\in\omega}$ — сильная аппроксимация Γ_{σ} . Через g_s будем обозначать функцию, графиком которой является G_s , $s \in \omega$. Определим теперь одноместную функцию F, которую назовём **счётчиком**. Полагаем $f(s) \leftrightharpoons \sup\{x \leqslant s \mid \forall y \leqslant x[(y \in \delta g_s) \land (H_{y,s} \upharpoonright x = M_{g(y),s} \upharpoonright x)]\}$ (полагая $\sup \emptyset = 0$); F(0) = 0, $F(s+1) = \max\{F(s), f(s+1)\}$. Из определения функции F легко видеть, что F — монотонная (т.е. $F(x) \leqslant F(x+1)$ для $x \in \omega$) вычислимая функция.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

нумерации

Равномер-

Продуктивные множества Предложение С6.4.

 $\lim_{\substack{s \to \infty \ \text{если}}} F(s) = \infty$ (т.е. функция F не ограничена), если и только если g вычислима и $\nu = \mu g$.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

нумерации Равномер-

Продуктивные

Предложение С6.4.

 $\lim_{\substack{s \to \infty \ \text{если } g}} F(s) = \infty$ (т.е. функция F не ограничена), если и только если g вычислима и $\nu = \mu g$.

Доказательство.

(\Leftarrow) Пусть вф g такова, что $\nu=\mu g$, и $x\in\omega$. Так как g всюду определена и $\Gamma_g=\cup_{s\in\omega}G_s$, имеем $\{0,1,\ldots,x\}\subseteq\delta g_{s_0}$ для некоторого s_0 . Пусть s_1 таково, что $H_{y,s_1}\upharpoonright x=\nu(y)\upharpoonright x$ для всех $y\leqslant x$, а s_2 таково, что $M_{g(y),s_2}\upharpoonright x=\mu(g(y))\upharpoonright x$ для всех $y\leqslant x$. Тогда для $s\leftrightarrows\max\{s_0,s_1,s_2\}+1$ имеем $f(s)\geqslant x$ и, тем более, $F(s)\geqslant x$. Так как x произвольно, F не ограничена.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

нумерации Варианая

Равномерность

Продуктивные

Доказательство (окончание).

 (\Rightarrow) Пусть g — чвф, но не вф, или g — вф, но $\nu \neq \mu g$. Если g не всюду определена, то $x \notin \delta g$ для некоторого x, поэтому $f(s) \leqslant x$ для всех s; тогда $F(s) \leqslant x$ для всех x, т.е. F ограничена. Пусть теперь вф g такова, что $\nu \neq \mu g$. Тогда $\nu(x_0) \neq \mu(g(x_0))$ для некоторого x_0 . Тогда найдётся $x_1 \in (\nu(x_0) \cup \mu(g(x_0))) \setminus (\nu(x_0) \cap \mu(g(x_0)))$. Пусть s_0 таково, что $x_1 \in H_{x_0,s_0} \cup M_{g(x_0),s_0}$. Тогда для $s \geqslant s_1 \leftrightharpoons \max\{s_0,x_0,x_1\}$ имеем $f(s) \leqslant \max\{x_0,x_1\}$ и $F(s) = F(s_1)$. Таким образом, F ограничена.

В дальнейшем будут использоваться и счётчики с параметрами, когда вместо одной нумерации ν , одной нумерации μ и одной функции g будут вычислимые последовательности нумераций и функций. Однако в основе использования счётчиков будут лежать идеи, использованные в доказательстве предложения.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

нумерации

Продуктив

Определение С6.4.

Семейство $\mathcal{S}\subseteq \mathrm{CEP}_1$ называется главным, если оно обладает главной вычислимой нумерацией.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

нумерации Равномер-

Продуктив-

Определение С6.4.

Семейство $\mathcal{S}\subseteq \mathrm{CEP}_1$ называется главным, если оно обладает главной вычислимой нумерацией.

Укажем одно из наиболее общих и полезных необходимых условий.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренка

Вычислимы семейства

Главные нумерации

нумерации Равномер-

Продуктив

Определение С6.4.

Семейство $\mathcal{S} \subseteq \mathrm{CEP}_1$ называется **главным**, если оно обладает главной вычислимой нумерацией.

Укажем одно из наиболее общих и полезных необходимых условий.

Теорема Сб.б.

Если $\mathcal{S}\subseteq \mathrm{CEP}_1$ — главное семейство, $\nu:\omega\to\mathcal{S}'\subseteq\mathcal{S}$ — вычислимая нумерация некоторого подсемейства \mathcal{S}' такая, что $\nu(0)\subseteq\nu(1)\subseteq\ldots\subseteq\nu(n)\subseteq\nu(n+1)\subseteq\ldots$, то множество $R \leftrightharpoons \bigcup_{n\in\omega}\nu(n)$ принадлежит \mathcal{S} . Другими словами, главное семейство замкнуто относительно объединения возрастающих

вычислимых последовательностей своих элементов.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

Равномер-

Продуктивные

Доказательство.

Предположим противное. Пусть ν — такая вычислимая нумерация $\mathcal{S}'\subseteq\mathcal{S}$, что $\nu(0)\subseteq\nu(1)\subseteq\ldots\subseteq\nu(n)\subseteq\nu(n+1)\subseteq\ldots$ и $R\leftrightharpoons\bigcup\nu(n)\not\in\mathcal{S}$. Пусть μ — произвольная вычислимая нумерация \mathcal{S} .

Построим некоторую вычислимую нумерацию θ подсемейства \mathcal{S}' такую, что для всякой вф f будет выполняться $\theta \neq \mu f$. Отсюда по лемме $\mathsf{C6.1}$, нумерация μ не может быть главной. Пусть $\{M_{n,t}\}_{n,t\in\omega}$ и $\{H_{n,t}\}_{n,t\in\omega}$ — двойные сильные последовательности конечных множеств такие, что $\{M_{n_0,t}\}_{t\in\omega}$ и $\{H_{n_0,t}\}_{t\in\omega}$ — сильные аппроксимации $\mu(n_0)$ и $\nu(n_0)$ соответственно, $n_0\in\omega$. Пусть $\{\Gamma_{n,t}\}_{n,t\in\omega}$ — двойная сильная последовательность конечных множеств такая, что $\{\Gamma_{n_0,t}\}_{t\in\omega}$ — сильная аппроксимация $\Gamma_{\varkappa_{n_0}}$, $n_0\in\omega$. Функцию, графиком которой является $\Gamma_{n,t}$, будем обозначать через $\varkappa_{n,t}$. Нумерация θ будет определена с помощью построения некоторой двойной сильной последовательности $\{R_{n,t}\}_{n,t\in\omega}$ такой, что $\{R_{n_0,t}\}_{t\in\omega}$ будет сильной аппроксимацией множества $\theta(n_0)$.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

Равномер-

Продуктивные

Доказательство (продолжение).

Для построения $R_{n,t}$ определим счётчик F следующим образом: $f(s,k) \leftrightharpoons \sup\{x \leqslant s \mid \forall y \leqslant x((y \in \delta\varkappa_{k,s}) \land (R_{y,s} \upharpoonright x = M_{\varkappa_k(y),s} \upharpoonright x))\}; F(0,k) \leftrightharpoons 0, F(s+1,k) \leftrightharpoons \max\{F(s,k),f(s+1,k)\}.$ Заметим, что для вычисления F(s,k) необходимо только знание множеств $R_{n,t}$ для $t \leqslant s$.

Полагаем $R_{n,0}\leftrightharpoons\varnothing$, $R_{n,s+1}\leftrightharpoons\bigcup_{k\leqslant F(s,n)}H_{k,s+1}$ для всех $n,s\in\omega$.

Из монотонности F по s и свойства $H_{k,s}\subseteq H_{k,s+1}$ следует, что $R_{n,s}\subseteq R_{n,s+1}$ для всех $n,k\in\omega$. Покажем, что $\lim_{t\to\infty}F(t,n)<\infty$ для любого $n\in\omega$. Действительно, в противном случае по предложению C6.4, имеет место, что \varkappa_n — вф и $\theta=\mu\varkappa_n$; в частности, $\theta(n)=R_n=\mu\varkappa_n(n)\in\mathcal{S}$, но из определения R_n видно, что в этом случае $R_n=\bigcup_{t,k\in\omega}H_{k,t}=\bigcup_{k\in\omega}\nu(k)\not\in\mathcal{S}$. Следовательно,

 $\lim_{t \to \infty} F(t,n) < \infty$ для любого $n \in \omega$; обозначим этот предел через f(n).

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

нумерации Равномер-

ность ПродуктивДоказательство (окончание).

Из определения $R_{n,t}$ видно, что $R_{n,t}\subseteq \bigcup\limits_{k\leqslant f(n)}H_k=H_{f(n)}$ для всех

t. С другой стороны, если $t_0>0$ таково, что $F(t_0,n)=f(n)$, то $H_{f(n),t}\subseteq R_{n,t}$ для всех $t\geqslant t_0$. Следовательно, $R_n=\nu(f(n))\in\mathcal{S}'$ для любого $n\in\omega$. Итак, θ — вычислимая нумерация некоторого подсемейства \mathcal{S}' , а по предложению C6.4, $\theta\neq\mu f$ для любой вф f, т.е. $\theta\nleq\mu$.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

Равномер-

Продуктивные

Доказательство (окончание).

Из определения $R_{n,t}$ видно, что $R_{n,t}\subseteq \bigcup\limits_{k\leqslant f(n)}H_k=H_{f(n)}$ для всех

t. С другой стороны, если $t_0>0$ таково, что $F(t_0,n)=f(n)$, то $H_{f(n),t}\subseteq R_{n,t}$ для всех $t\geqslant t_0$. Следовательно, $R_n=\nu(f(n))\in\mathcal{S}'$ для любого $n\in\omega$. Итак, θ — вычислимая нумерация некоторого подсемейства \mathcal{S}' , а по предложению C6.4, $\theta\neq\mu f$ для любой вф f, т.е. $\theta\nleq\mu$.

Следствие С6.4.

- Семейство всех конечных множеств не является главным.
- ullet Семейство $\operatorname{CEP}_1 \setminus \{\omega\}$ не является главным.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренк

Вычислимые семейства

Главные нумерации

нумерации

Равномер-

Продуктивные

Доказательство.

Нумерация γ является вычислимой нумерацией семейства всех конечных множеств, поэтому данное семейство вычислимо. Далее, функция $f(n)=2^n-1$ вычислима и $\gamma(f(n))=\{x\mid x< n\}$. Кроме того, $\omega=\bigcup_{n\in\omega}\gamma(f(n))$ не является конечным множеством, поэтому семейство всех конечных множеств не является главным, по теореме C6.6.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

нумерации

ность Продуктив Упражнение Сб.3.

Докажите следствие С6.4(2).

Лекция Сб Нумерации и вычислимость. ІІІ

Вадим Пузаренко

Вычислимые

Главные

нумерации

Равномер-

Упражнение С6.3.

Докажите следствие С6.4(2).

Упражнение С6.4.

- $oldsymbol{O}$ Докажите, что семейство $\mathrm{CF} \cup \{\omega\}$ не является вычислимым, где CF — семейство всех графиков вычислимых функций.
- $oldsymbol{Q}$ Докажите, что любое вычислимое семейство $\mathcal{S} \subseteq \mathrm{CF}$, имеющее предельную точку (функция $g \in \mathcal{S}$ называется **предельной** для S, если для любого $n \in \omega$ существует функция $f_n \in \mathcal{S}$ такая, что $g \neq f_n$ и $g \upharpoonright \{0,1,\ldots,n\} = f_n \upharpoonright \{0,1,\ldots,n\}$), то семейство $\mathcal S$ не является главным

Лекция Сб Нумерации и вычислимость. ІІІ

Вычислимые

Главные

нумерации

Равномер-

Определение С6.5.

Множество $A\subseteq\omega$ называется \varkappa -индексным, если

$$[(x \in A) \land (\varkappa_x = \varkappa_y)] \Rightarrow (y \in A)$$
, для всех $x, y \in \omega$.

Лекция Сб Нумерации и вычислимость. ІІІ

Вадим

Вычислимые

Главные нумерации

Равномер-

Определение С6.5.

Множество $A\subseteq\omega$ называется \varkappa -индексным, если

$$[(x \in A) \land (\varkappa_x = \varkappa_y)] \Rightarrow (y \in A)$$
, для всех $x, y \in \omega$.

Обозначение С6.3.

$$K = \{x \mid \varkappa_x(x) \downarrow\} = \{x \mid x \in \pi_x\}.$$

$$K_0 = \{c(x,y) \mid \varkappa_x(y) \downarrow\} = \{c(x,y) \mid y \in \pi_x\}.$$

Лекция Сб Нумерации и вычислимость. ІІІ

Вадим

Вычислимые

Главные

нумерации

Равномер-

Определение С6.5.

Множество $A\subseteq\omega$ называется \varkappa -индексным, если

$$[(x \in A) \land (\varkappa_x = \varkappa_y)] \Rightarrow (y \in A)$$
, для всех $x, y \in \omega$.

Обозначение С6.3.

$$K = \{x \mid \varkappa_x(x) \downarrow\} = \{x \mid x \in \pi_x\}.$$

$$K_0 = \{c(x,y) \mid \varkappa_x(y) \downarrow\} = \{c(x,y) \mid y \in \pi_x\}.$$

Теорема Сб.7.

Если A — нетривиальное индексное множество, т.е. $A \neq \emptyset, \omega$, то $K \leqslant_1 A$ или $K \leqslant_1 A$.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

нумерации Равномер-

Продуктивные

Определение С6.5.

Множество $A\subseteq\omega$ называется \varkappa -индексным, если

$$[(x \in A) \land (\varkappa_x = \varkappa_y)] \Rightarrow (y \in A)$$
, для всех $x, y \in \omega$.

Обозначение С6.3.

$$K = \{x \mid \varkappa_x(x) \downarrow\} = \{x \mid x \in \pi_x\}.$$

$$K_0 = \{c(x,y) \mid \varkappa_x(y) \downarrow\} = \{c(x,y) \mid y \in \pi_x\}.$$

Теорема Сб.7.

Если A — нетривиальное индексное множество, т.е. $A \neq \varnothing, \omega$, то $K \leqslant_1 A$ или $K \leqslant_1 \overline{A}$.

<u>Док</u>азательство.

Выберем e_0 такое, что $\varkappa_{e_0}=\lambda y$. \uparrow . Докажем, что если $e_0\in\overline{A}$, то $K\leqslant_1 A$ (если $e_0\in A$, то $K\leqslant_1\overline{A}$ доказывается аналогично). Так как $A\neq\varnothing$, найдётся $e_1\in A$.

Лекция Сб Нумерации и вычислимость. ІІІ

Вадим Пузаренко

Вычислимые

Главные нумерации

Равномер-

Доказательство (окончание).

Далее, $\varkappa_{e_1} \neq \varkappa_{e_0}$, поскольку A является индексным. По s-m-n-теореме C6.3, существует инъективная вф f такая, что

$$\varkappa_{f(x)}(y) = \begin{cases} \varkappa_{e_1}(y), & \text{если } x \in K; \\ \uparrow, & \text{если } x \notin K. \end{cases}$$

Теперь

$$x \in K \Rightarrow \varkappa_{f(x)} = \varkappa_{e_1} \Rightarrow f(x) \in A$$
,

$$x \in \overline{K} \Rightarrow \varkappa_{f(x)} = \varkappa_{e_0} \Rightarrow f(x) \in \overline{A}$$
.

Последняя импликация в каждой строке выполняется, поскольку A — индексное множество.

Главные нумерации

нумерациі

Равномер-

Продуктивные

Доказательство (окончание).

Далее, $\varkappa_{e_1} \neq \varkappa_{e_0}$, поскольку A является индексным. По s-m-n-теореме C6.3, существует инъективная вф f такая, что $\varkappa_{f(x)}(y) = \begin{cases} \varkappa_{e_1}(y), & \text{если } x \in K; \\ \uparrow, & \text{если } x \not\in K. \end{cases}$

Теперь

$$x \in K \Rightarrow \varkappa_{f(x)} = \varkappa_{e_1} \Rightarrow f(x) \in A$$
,

$$x \in \overline{K} \Rightarrow \varkappa_{f(x)} = \varkappa_{e_0} \Rightarrow f(x) \in \overline{A}$$
.

Последняя импликация в каждой строке выполняется, поскольку A — индексное множество.

Теорема Сб.8 Райса

Пусть \mathcal{C} — произвольный класс частично вычислимых функций. Тогда множество $\{n:\varkappa_n\in\mathcal{C}\}$ вычислимо, если и только если либо $\mathcal{C}=\varnothing$, либо \mathcal{C} — класс всех частично вычислимых функций.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

нумерации

Равномерность

Продуктивные множества

Примеры С6.2.

- **1** $K_1 = \{x : \pi_x \neq \emptyset\};$
- **②** Fin = $\{x : \pi_x \text{ конечно}\};$

- **5** $Con = \{x : \varkappa_x \text{ вычислима и постоянна}\};$
- **②** $Cof = \{x : \pi_x \text{ коконечно}\};$
- \bigcirc Comp = $\{x : \pi_x \text{ вычислимо}\};$
- \bullet Ext = $\{x : \varkappa_x \text{ имеет тотальное продолжение}\}.$

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

нумерации

Равномер-

Продуктивные

Примеры С6.2.

- **1** $K_1 = \{x : \pi_x \neq \emptyset\};$
- **②** Fin = $\{x : \pi_x \text{ конечно}\};$
- **③** Inf = ω − Fin = {x : $π_x$ бесконечно};
- **⑤** $Con = {x : \varkappa_x \text{ вычислима и постоянна};}$
- **②** $Cof = \{x : \pi_x \text{ коконечно}\};$
- **②** Comp = $\{x : \pi_x \text{ вычислимо}\};$
- \bullet Ext = $\{x : \varkappa_x \text{ имеет тотальное продолжение}\}.$

Пример С6.3.

 $K\leqslant_1 \mathrm{Fin}$ и $K\leqslant_1 \overline{\mathrm{Fin}}$. Действительно, если $\varkappa_{e_0}=\lambda y$. \uparrow , то $e_0\in \mathrm{Fin}$, поэтому $K\leqslant_1 \overline{\mathrm{Fin}}$ (см. доказательство теоремы C6.7).

Главные нумерации

нумерации Равномер-

поств ПродуктивПример Сб.3 (продолжение).

Докажем теперь, что $K \leqslant_1 \mathrm{Fin}$. Пусть K_s — сильная аппроксимация множества K. Определим функцию $\psi(x,y)$ так:

$$\psi(x,y) = \begin{cases} 0, & \text{если } x \notin K_y; \\ \uparrow, & \text{если } x \in K_y. \end{cases}$$

По s-m – n-теореме C6.3, существует инъективная вф f такая, что $\varkappa_{f(x)}=\lambda y.\psi(x,y).$

Теперь

$$x \notin K \Rightarrow \varkappa_{f(x)} = \lambda y.0 \Rightarrow \pi_{f(x)} = \omega \Rightarrow f(x) \in \overline{\text{Fin}}.$$

Пусть $x \in K$; тогда находим наименьшее y_x такое, что $x \in K_{y_x}$. В этом случае функция $\psi(x,y)$ определяется как

$$\psi(x,y) = \begin{cases} 0, & \text{если } y < y_x; \\ \uparrow, & \text{если } y \geqslant y_x. \end{cases}$$

Далее,

$$x \in K \Rightarrow \pi_{f(x)} = \delta \varkappa_{f(x)} = \{z : z < y_x\} \Rightarrow f(x) \in \text{Fin.}$$

Индексы и равномерность

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

Равномерность

Продуктив-

Определение С6.6.

- **①** Говорят, что e является **слабым**, **вычислимо перечислимым** (в.п.) или Σ_1 -индексом вычислимо перечислимого множества A, если $A=\pi_e$.
- ② Говорят, что c(e,i) является вычислимым (в.) или Δ_1 -индексом вычислимого множества A, если $A = \pi_e$ и $\overline{A} = \pi_i$.
- ② Говорят, что e является характеристическим или Δ_0 -индексом вычислимого множества A, если $\chi_A = \varkappa_e$.
- lacktriangle Говорят, что e является **сильным** или γ -**индексом** конечного множества A, если $A=\gamma_e$.

Индексы и равномерность

Лекция Сб Нумерации и вычислимость. ІІІ

Вадим

Вычислимые

Равномерность

Определение С6.6.

- Говорят, что е является слабым, вычислимо перечислимым (в.п.) или Σ_1 -индексом вычислимо перечислимого множества A, если $A=\pi_e$.
- **2** Говорят, что c(e,i) является вычислимым (в.) или Δ_1 -индексом вычислимого множества A, если $A=\pi_e$ и $A=\pi_i$.
- ullet Говорят, что e является характеристическим или Δ_0 -индексом вычислимого множества A, если $\chi_A = \varkappa_e$.
- lacktriangle Говорят, что e является **сильным** или γ -индексом конечного множества A, если $A = \gamma_e$.

Теперь перейдём к обсуждению проблемы существования эффективного перехода от одних индексов к другим.

Лекция Сб Нумерации и вычислимость. ІІІ

Вадим

Равномерность

Определение С6.6.

- Говорят, что е является слабым, вычислимо перечислимым (в.п.) или Σ_1 -индексом вычислимо перечислимого множества A, если $A=\pi_e$.
- **2** Говорят, что c(e,i) является вычислимым (в.) или Δ_1 -индексом вычислимого множества A, если $A=\pi_e$ и $A=\pi_i$.
- lacktriangle Говорят, что e является характеристическим или Δ_0 -индексом вычислимого множества A, если $\chi_A = \varkappa_e$.
- lacktriangle Говорят, что e является **сильным** или γ -индексом конечного множества A, если $A = \gamma_e$.

Теперь перейдём к обсуждению проблемы существования эффективного перехода от одних индексов к другим.

Предложение Сб.5.

$$\gamma \xrightarrow{(1)} \Delta_0 \stackrel{(2)}{\Longleftrightarrow} \Delta_1 \xrightarrow{(4)} \Sigma_1.$$

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

I лавные нумерации

Равномерность

Продуктивные

Доказательство.

(1) Так как $\gamma(n)$ — сильно вычислимая последовательность, множество $B = \{\langle n,m \rangle | m \in \gamma(n) \}$ вычислимо. Поэтому существует m_0 такое, что $[\varkappa^2_{m_0}](x,y) = \chi_B(x,y)$. По s-m-n-теореме C6.3, найдётся инъективная вф f такая, что $\varkappa_{f(e)}(y) = \chi_B(e,y)$. Тем самым, если e — сильный индекс конечного множества A, то $f(e) - \Delta_0$ -индекс данного множества.

Лекция С6 Нумерации и вычислимость. III

Вадим Пузаренко

Вычислимые семейства

I лавные нумерациі

Равномер-

Равномерность

Продуктивные множества

Доказательство.

(1) Так как $\gamma(n)$ — сильно вычислимая последовательность, множество $B = \{\langle n, m \rangle | m \in \gamma(n) \}$ вычислимо. Поэтому существует m_0 такое, что $[\varkappa_{m_0}^2](x,y) = \chi_B(x,y)$. По s-m-n-теореме C6.3, найдётся инъективная вф f такая, что $\varkappa_{f(e)}(y) = \chi_B(e,y)$. Тем самым, если e — сильный индекс конечного множества A, то $f(e) - \Delta_0$ -индекс данного множества. (2) Определим две частично вычислимые функции $\psi_0(e,x) = \mu_Y[\varkappa_e(x) = 0] \text{ if } \psi_1(e,x) = \mu_Y[\varkappa_e(x) = 1]. \text{ По}$ s-m-n-теореме C6.3, найдутся инъективные вф g_0 и g_1 такие, что $\varkappa_{g_i(e)}(x) = \psi_i(e,x), i = 0,1$. Далее, если $e - \Delta_0$ -индекс вычислимого множества A, то $\pi(g_0(e))=\delta arkappa_{g_0(e)}=A$ и $\pi(g_1(e)) = \delta \varkappa_{g_1(e)} = \overline{A}$, а следовательно, $f(e) \leftrightharpoons c(g_0(e), g_1(e))$ его Δ_1 -индекс.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

Равномер-

Равномерность

Продуктивные множества

Доказательство.

множество $B = \{\langle n, m \rangle | m \in \gamma(n) \}$ вычислимо. Поэтому существует m_0 такое, что $[\varkappa_{m_0}^2](x,y) = \chi_B(x,y)$. По s-m-n-теореме C6.3, найдётся инъективная вф f такая, что $\varkappa_{f(e)}(y) = \chi_B(e,y)$. Тем самым, если e — сильный индекс конечного множества A, то $f(e) - \Delta_0$ -индекс данного множества. (2) Определим две частично вычислимые функции $\psi_0(e,x) = \mu_Y[\varkappa_e(x) = 0] \text{ if } \psi_1(e,x) = \mu_Y[\varkappa_e(x) = 1]. \text{ По}$ s-m-n-теореме C6.3, найдутся инъективные вф g_0 и g_1 такие, что $\varkappa_{g_i(e)}(x) = \psi_i(e,x), i = 0,1$. Далее, если $e - \Delta_0$ -индекс вычислимого множества A, то $\pi(g_0(e))=\delta arkappa_{g_0(e)}=A$ и $\pi(g_1(e)) = \delta \varkappa_{g_1(e)} = \overline{A}$, а следовательно, $f(e) \leftrightharpoons c(g_0(e), g_1(e))$ его Δ_1 -индекс.

(1) Так как $\gamma(n)$ — сильно вычислимая последовательность,

(4) Пусть $c(e,i) - \Delta_1$ -индекс вычислимого множества A; тогда $e = lc(e,i) - \Sigma_1$ -индекс множества A.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

I лавные нумерации

Равномер-

Пролуктия

Продуктивные множества

Доказательство (продолжение)

(3) Пусть $\{W_{n,s}\}_{n,s\in\omega}$ — двойная сильно вычислимая последовательность такая, что $\{W_{n_0,s}\}_{s\in\omega}$ — сильная аппроксимация множества $\pi(n_0), n_0 \in \omega$; положим $B \leftrightharpoons \{\langle n,s,k\rangle | k \in W_{n,s}\}$. Определим чвф $\psi(n,m,x) \leftrightharpoons \mu s[(x \in W_{n,s}) \lor (x \in W_{m,s})]$ и $\varphi(n,m,x) \leftrightharpoons \chi_B(n,\psi(n,m,x),x)$. По s-m-n-теореме C6.3, существует вф f такая, что $\varkappa_{f(n,m)}(x) = \varphi(n,m,x)$. Далее, пусть $c(e,i) - \Delta_1$ -индекс вычислимого множества A; покажем, что $f(e,i) - \Delta_0$ -индекс данного множества. Действительно, функция $\lambda x.\psi(e,i,x)$ вычислима и, следовательно, вф $\varphi(e,i,x) = \chi_B(e,\psi(e,i,x),x)$ является характеристической функцией множества A. Таким образом, $f(e,i) - \Delta_0$ -индекс множества A.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные

Равномер-

ность

Продуктивные множества

Доказательство (продолжение)

(3) Пусть $\{W_{n,s}\}_{n,s\in\omega}$ — двойная сильно вычислимая последовательность такая, что $\{W_{n_0,s}\}_{s\in\omega}$ — сильная аппроксимация множества $\pi(n_0), n_0 \in \omega;$ положим $B \leftrightharpoons \{\langle n,s,k\rangle | k \in W_{n,s}\}.$ Определим чвф $\psi(n,m,x) \leftrightharpoons \mu s[(x \in W_{n,s}) \lor (x \in W_{m,s})]$ и $\varphi(n,m,x) \leftrightharpoons \chi_B(n,\psi(n,m,x),x).$ По s-m-n-теореме C6.3, существует вф f такая, что $\varkappa_{f(n,m)}(x) = \varphi(n,m,x).$ Далее, пусть $c(e,i)-\Delta_1$ -индекс вычислимого множества A; покажем, что $f(e,i)-\Delta_0$ -индекс данного множества. Действительно, функция $\lambda x.\psi(e,i,x)$ вычислима и, следовательно, вф $\varphi(e,i,x) = \chi_B(e,\psi(e,i,x),x)$ является характеристической функцией множества A. Таким образом, $f(e,i)-\Delta_0$ -индекс множества A.

Предложение С6.6.

Не существует частично вычислимой функции $\psi(x)$ такой, что если A — конечное множество и $\chi_A = \varkappa_e$, то $\psi(e) \downarrow$ и $\gamma(\psi(e)) = A$.

Лекция Сб Нумерации и вычислимость. ІІІ

Вадим Пузаренко

Вычислимые

Равномер-

ность

Допустим, что такая функция $\psi(x)$ существует. Пусть K — множество, определённое выше, и пусть $\{K_s\}_{s\in\omega}$ — сильная аппроксимация множества K. Так как $\{K_s\}_{s\in\omega}$ — сильно вычислимая последовательность, множество $\{\langle x,s\rangle\mid x\in K_s\}$ вычислимо.

Определим нумерацию ν следующим образом:

$$u(x) \leftrightharpoons \begin{cases} \{s_0\}, & \text{если } x \in K \land s_0 = \mu s[x \in K_s]; \\ \varnothing, & \text{если } x \notin K. \end{cases}$$

Тогда $y \in \nu(x) \Leftrightarrow (x \in K_y) \land (x \notin K_{v-1})$; в частности, Γ_{ν}^* — вм. Далее, пусть m_0 таково, что $\varkappa_{m_0}^2(x,y) = \chi_{\Gamma^*}(x,y)$. По s-m-n-теореме Сб.3, существует вф f(x), для которой имеет место $\varkappa_{f(x)}(y)=\varkappa_{m_0}^2(x,y)$. Теперь

 $x \in K \Rightarrow [\gamma(\psi(f(x))) = {\mu s[x \in K_s]}] \Rightarrow \psi(f(x)) > 0 \Rightarrow sg(\psi(f(x))) = 1,$

 $x \notin K \Rightarrow [\gamma(\psi(f(x))) = \varnothing] \Rightarrow \operatorname{sg}(\psi(f(x))) = \psi(f(x)) = 0.$

Справедливость последних импликаций противоречит тому, что K не является вм.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

нумерациі

Равномерность

Продуктивные множества Предложение С6.7.

Не существует частично вычислимой функции $\psi(x)$ такой, что если $A=\pi_e$ — вычислимое множество, то $\psi(e)\downarrow$ и $\pi_{\psi(e)}=\overline{A}$.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

нумерации Равномер-

ность

Продуктивные множества

Предложение С6.7.

Не существует частично вычислимой функции $\psi(x)$ такой, что если $A=\pi_e$ — вычислимое множество, то $\psi(e)\downarrow$ и $\pi_{\psi(e)}=\overline{A}$.

Доказательство.

Определим сначала чвф $\varphi(x,y)=0(K^2(x,x))$. По s-m-n-теореме C6.3, существует вф f такая, что $\varkappa_{f(x)}(y)=\varphi(x,y)$. Тогда

$$\pi_{f(x)} = \begin{cases} \omega, & \text{если } x \in K; \\ \varnothing, & \text{если } x \notin K. \end{cases}$$

Допустим теперь, что функция $\psi(x)$ из условия существует. В этом случае имеем

$$x \in K \Rightarrow \pi_{f(x)} = \omega \Rightarrow \pi_{\psi(f(x))} = \varnothing,$$

$$x \notin K \Rightarrow \pi_{f(x)} = \emptyset \Rightarrow \pi_{\psi(f(x))} = \omega.$$

Тем самым, $x \in \overline{K} \Leftrightarrow \pi_{\psi(f(x))} \neq \emptyset \Leftrightarrow \exists y[y \in \pi_{\psi(f(x))}]$, поэтому \overline{K} в.п., по теореме C6.5, леммам C3.7 и C3.9, противоречие.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

нумерации

Равномерность

Продуктивные

Предложение С6.8

Существуют инъективные вычислимые функции $f_0(x,y)$ и $f_1(x,y)$ такие, что справедливо следующее:

$$i) \ \pi_{f_0(x,y)} = \pi_x \cup \pi_y;$$

$$u) \ \pi_{f_1(x,y)} = \pi_x \cap \pi_y.$$

Лекция Сб Нумерации и вычислимость. ІІІ

Вадим Пузаренко

Вычислимые

Равномер-

ность

Предложение С6.8

Существуют инъективные вычислимые функции $f_0(x,y)$ и $f_1(x,y)$ такие, что справедливо следующее:

- i) $\pi_{f_0(x,y)} = \pi_x \cup \pi_y$;
- $\pi_{f_1(x,y)} = \pi_x \cap \pi_y$

Доказательство.

- i) Пусть Q(x,z,t) вычислимый предикат такой, что $z \in \pi_x \Leftrightarrow \exists t Q(x,z,t)$. Тогда $z \in \pi_x \cup \pi_y \Leftrightarrow \exists t (Q(x,z,t) \lor Q(y,z,t))$ и,
- следовательно, $\pi_x \cup \pi_y = \delta \lambda z. \psi(x, y, z)$, где
- $\psi(x,y,z) = \mu t(Q(x,z,t) \vee Q(y,z,t))$. По s-m-n-теореме C6.3,
- существует инъективная вф $f_0(x,y)$ такая, что $\varkappa_{f_0(x,y)}(z)=\psi(x,y,z)$. В конечном итоге, $\pi_{\mathsf{x}} \cup \pi_{\mathsf{y}} = \delta \varkappa_{f_0(\mathsf{x},\mathsf{y})} = \pi_{f_0(\mathsf{x},\mathsf{y})}$.
- $\imath\imath$) Определим функцию $\psi(x,y,z) \leftrightharpoons \varkappa_x(z) + \varkappa_y(z)$. По s-m-n-теореме,
- найдётся инъективная вф $f_1(x,y)$ такая, что $\varkappa_{f_1(x,y)}(z)=\psi(x,y,z)$.
- Далее, $\pi_{f_1(x,y)} = \delta \varkappa_{f_1(x,y)} = \delta(\lambda z.\psi(x,y,z)) = \delta \varkappa_x \cap \delta \varkappa_y = \pi_x \cap \pi_y$.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

нумерации Равномер-

Продуктив

Продуктивные

Следствие С6.5.

Класс вычислимых множеств замкнут относительно операций объединения, пересечения и дополнения. Более того, все операции, приведённые выше, равномерны относительно Δ_1 -индексов.

Лекция Сб Нумерации и вычислимость. ІІІ

Вадим Пузаренко

Вычислимые

Равномерность

Следствие С6.5.

Класс вычислимых множеств замкнут относительно операций объединения, пересечения и дополнения. Более того, все операции, приведённые выше, равномерны относительно Δ_1 -индексов.

Доказательство.

Пусть f_0 и f_1 — вычислимые функции из предложения C6.8. Пусть также e_0 и $e_1 - \Delta_1$ -индексы вычислимых множеств A_0 и A_1 .

- \cup Тогда $c(f_0(I(e_0),I(e_1)),f_1(r(e_0),r(e_1))) \Delta_1$ -индекс вм $A_0 \cup A_1$.
- \cap Тогда $c(f_1(I(e_0), I(e_1)), f_0(r(e_0), r(e_1))) \Delta_1$ -индекс вм $A_0 \cap A_1$.
- \bullet Тогда $c(r(e_0), I(e_0)) \Delta_1$ -индекс вм A_0 .

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

нумераци

Равномерность

Продуктивные множества

Теорема Сб.9.

Для каждого вычислимо перечислимого предиката $P\subseteq \omega^{m+1}$ найдётся m-арная инъективная вычислимая функция h такая, что $P(x,y_1,y_2,\ldots,y_m)\Leftrightarrow x\in \pi(h(y_1,y_2,\ldots,y_m)).$

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

нумерации Равномер-

ность Продуктив-

Теорема Сб.9.

Для каждого вычислимо перечислимого предиката $P\subseteq \omega^{m+1}$ найдётся m-арная инъективная вычислимая функция h такая, что $P(x,y_1,y_2,\ldots,y_m) \Leftrightarrow x\in \pi(h(y_1,y_2,\ldots,y_m)).$

Доказательство.

Так как предикат P вычислимо перечислим, имеем $P(x,y_1,y_2,\ldots,y_m)\Leftrightarrow [\varkappa^{m+1}(a)](y_1,y_2,\ldots,y_m,x)\downarrow$ для подходящего $a\in\omega$. По s-m-n-теореме C6.3, существует инъективная вф $h(y_1,y_2,\ldots,y_m)$ такая, что выполняется $[\varkappa^{m+1}(a)](y_1,y_2,\ldots,y_m,x)=\varkappa_{h(y_1,y_2,\ldots,y_m)}(x)$. Далее, $P(x,y_1,y_2,\ldots,y_m)\Leftrightarrow \langle y_1,y_2,\ldots,y_m,x\rangle\in\delta\varkappa_a^{m+1}=\pi_a^{m+1}\Leftrightarrow x\in\delta\varkappa_{h(y_1,y_2,\ldots,y_m)}=\pi_{h(y_1,y_2,\ldots,y_m)}$.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

нумерации Равномер-

ность ПродуктивТеорема Сб.10.

Для каждого вычислимо перечислимого предиката $P\subseteq \omega^{m+2}$ найдётся m-арная инъективная вычислимая функция g такая, что

$$P(x, y_1, y_2, \ldots, y_m, g(y_1, y_2, \ldots, y_m)) \Leftrightarrow x \in \pi(g(y_1, y_2, \ldots, y_m)).$$

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимы семейства

Главные нумерации

нумерации Равномерность

Продуктивные

Теорема Сб.10.

Для каждого вычислимо перечислимого предиката $P\subseteq \omega^{m+2}$ найдётся m-арная инъективная вычислимая функция g такая, что

$$P(x, y_1, y_2, \ldots, y_m, g(y_1, y_2, \ldots, y_m)) \Leftrightarrow x \in \pi(g(y_1, y_2, \ldots, y_m)).$$

Доказательство.

По теореме Сб.9, имеем

 $P(x, y_1, y_2, ..., y_m, z) \Leftrightarrow x \in \pi(h(y_1, y_2, ..., y_m, z))$ для подходящей инъективной вф h. По теореме C6.4,

 $\varkappa_{h(y_1,y_2,...,y_m,g(y_1,y_2,...,y_m))}(x)=\varkappa_{g(y_1,y_2,...,y_m)}(x)$ для подходящей инъективной вф g. Далее, имеет место

$$P(x, y_1, y_2, \dots, y_m, g(y_1, y_2, \dots, y_m)) \Leftrightarrow x \in \mathcal{F}(y_1, y_2, \dots, y_m) = \mathcal{F}(y_1, y_2, \dots, y_m)$$

$$\pi(h(y_1, y_2, \dots, y_m, g(y_1, y_2, \dots, y_m))) =$$

$$\delta\varkappa(h(y_1,y_2,\ldots,y_m,g(y_1,y_2,\ldots,y_m)))=\delta\varkappa(g(y_1,y_2,\ldots,y_m))=$$

$$\pi(g(y_1, y_2, \ldots, y_m)).$$

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимы семейства

т лавные нумерации

Равномерность

Продуктивные множества

Теорема Сб.11.

Для любой m+1-арной частично вычислимой функции h найдётся m-арная инъективная вычислимая функция g такая, что $\pi(h(y_1,y_2,\ldots,y_m,g(y_1,y_2,\ldots,y_m)))=\pi(g(y_1,y_2,\ldots,y_m)).$ В частности, при m=0 имеем следующее: для любой унарной частично вычислимой функции h найдётся число n_0 такое, что $\pi_{n_0}=\pi_{h(n_0)}.$

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

нумерации

Равномерность

Продуктивные множества

Теорема Сб.11.

Для любой m+1-арной частично вычислимой функции h найдётся m-арная инъективная вычислимая функция g такая, что $\pi(h(y_1,y_2,\ldots,y_m,g(y_1,y_2,\ldots,y_m)))=\pi(g(y_1,y_2,\ldots,y_m)).$ В частности, при m=0 имеем следующее: для любой унарной частично вычислимой функции h найдётся число n_0 такое, что $\pi_{n_0}=\pi_{h(n_0)}.$

Определение С6.7.

Множество $A\subseteq\omega$ называется π -индексным, если $[(x\in A)\wedge(\pi_x=\pi_y)]\Rightarrow(y\in A)$, для всех $x,y\in\omega$.

Теорема Сб.12 Райса.

Пусть C — класс вычислимо перечислимых множеств. Тогда множество $I = \{n : \pi_n \in C\}$ вычислимо, если и только если $C \in \{\emptyset, \text{CEP}_1\}$.

Лекция Сб Нумерации и вычислимость. ІІІ

Вычислимые

Равномерность

Доказательство.

Допустим противное, т.е. I вычислимо и $I \neq \varnothing, \omega$. Пусть

$$u(n) \leftrightharpoons \begin{cases} \pi_{\mathsf{a}}, & \mathsf{если} \ n \in I; \\ \pi_{\mathsf{b}}, & \mathsf{если} \ n \not\in I; \end{cases}$$

где $a \in \omega \setminus I$ и $b \in I$. Поскольку ν — вычислимая нумерация, а π главная вычислимая нумерация семейства ${\rm CEP_1}$, существует вф h такая, что $\nu(x) = \pi(h(x))$ для всех $x \in \omega$. По теореме о неподвижной точке (теорема C6.11), найдётся $n_0 \in \omega$, для которого $\pi_{n_0} = \pi_{h(n_0)}$.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные

Равномерность

Продуктивные

Доказательство.

Допустим противное, т.е. I вычислимо и $I \neq \varnothing, \omega$. Пусть

$$u(n) \leftrightharpoons egin{cases} \pi_{m{a}}, & ext{если } n \in I; \ \pi_{m{b}}, & ext{если } n
otin I; \end{cases}$$

где $a \in \omega \setminus I$ и $b \in I$. Поскольку ν — вычислимая нумерация, а π — главная вычислимая нумерация семейства $\mathrm{CEP_1}$, существует вф h такая, что $\nu(x) = \pi(h(x))$ для всех $x \in \omega$. По теореме о неподвижной точке (теорема $\mathsf{C6.11}$), найдётся $n_0 \in \omega$, для которого $\pi_{n_0} = \pi_{h(n_0)}$. Далее, $n_0 \in I \Leftrightarrow \pi_{h(n_0)} \not\in \mathcal{C} \Leftrightarrow \pi_{n_0} \not\in \mathcal{C} \Leftrightarrow n_0 \not\in I$, противоречие.

Лемма С6.2.

Пусть h — частично вычислимая функция. Тогда

- ① существует вычислимая фунция g_0 такая, что $\pi(g_0(x)) = h^{-1}(\pi(x))$ для всех $x \in \omega$;
- ullet существует вычислимая фунция g_1 такая, что $\pi(g_1(x))=h(\pi(x))$ для всех $x\in\omega$.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

Равномерность

Продуктив ные

Доказательство.

1) Определим нумерацию ν так: $\nu(x) \leftrightharpoons h^{-1}(\pi(x))$ для всех $x \in \omega$. Тогда $\langle x,y \rangle \in \Gamma^*_{\nu}(\Leftrightarrow y \in \nu(x)) \Leftrightarrow [h(y) \in \pi(x)]$, поэтому ν — вычислимая нумерация семейства $\mathcal{S} \subseteq \mathrm{CEP}_1$ и, следовательно, $\nu(x) = \pi(g_0(x))$ для подходящей вф g_0 , поскольку вычислимая нумерация π главная.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

главные нумерации

Равномерность

Продуктивные

Доказательство.

- 1) Определим нумерацию ν так: $\nu(x) \leftrightharpoons h^{-1}(\pi(x))$ для всех $x \in \omega$. Тогда $\langle x,y \rangle \in \Gamma^*_{\nu}(\Leftrightarrow y \in \nu(x)) \Leftrightarrow [h(y) \in \pi(x)]$, поэтому ν вычислимая нумерация семейства $\mathcal{S} \subseteq \mathrm{CEP}_1$ и, следовательно, $\nu(x) = \pi(g_0(x))$ для подходящей вф g_0 , поскольку вычислимая нумерация π главная.
- **2)** Определим нумерацию ν так: $\nu(x) \leftrightharpoons h(\pi(x))$ для всех $x \in \omega$. Тогда $\langle x,y \rangle \in \Gamma_{\nu}^* (\Leftrightarrow y \in \nu(x)) \Leftrightarrow \exists z [(y=h(z)) \land (z \in \pi(x))]$, поэтому ν вычислимая нумерация семейства $\mathcal{S} \subseteq \mathrm{CEP}_1$ и, следовательно, $\nu(x) = \pi(g_1(x))$ для подходящей вф g_1 , поскольку вычислимая нумерация π главная.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

главные нумерации

Равномерность

Продуктивные

Доказательство.

- 1) Определим нумерацию ν так: $\nu(x) \leftrightharpoons h^{-1}(\pi(x))$ для всех $x \in \omega$. Тогда $\langle x,y \rangle \in \Gamma^*_{\nu}(\Leftrightarrow y \in \nu(x)) \Leftrightarrow [h(y) \in \pi(x)]$, поэтому ν вычислимая нумерация семейства $\mathcal{S} \subseteq \mathrm{CEP}_1$ и, следовательно, $\nu(x) = \pi(g_0(x))$ для подходящей вф g_0 , поскольку вычислимая нумерация π главная.
- **2)** Определим нумерацию ν так: $\nu(x) \leftrightharpoons h(\pi(x))$ для всех $x \in \omega$. Тогда $\langle x,y \rangle \in \Gamma^*_{\nu}(\Leftrightarrow y \in \nu(x)) \Leftrightarrow \exists z [(y=h(z)) \land (z \in \pi(x))]$, поэтому ν вычислимая нумерация семейства $\mathcal{S} \subseteq \mathrm{CEP}_1$ и, следовательно, $\nu(x) = \pi(g_1(x))$ для подходящей вф g_1 , поскольку вычислимая нумерация π главная.

Лемма С6.3.

Существует вычислимая функция f такая, что $\gamma(x)=\pi(f(x))$ для всех $x\in\omega$.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

нумерации

Равномерность

Продуктивные множества

Доказательство.

Нумерация γ вычислима, поскольку $\Gamma_{\gamma}^* = \{\langle x,y \rangle : y \in \gamma(x)\}$ вп (даже в; см. предложение C3.1(4 \Rightarrow 1)). Следовательно, $\gamma(x) = \pi(f(x))$ для подходящей вф f, поскольку вычислимая нумерация π главная.

Лекция Сб Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

т лавные нумерации

Равномерность

Продуктивные

Доказательство.

Нумерация γ вычислима, поскольку $\Gamma_{\gamma}^* = \{\langle x,y \rangle : y \in \gamma(x)\}$ вп (даже в; см. предложение C3.1(4 \Rightarrow 1)). Следовательно, $\gamma(x) = \pi(f(x))$ для подходящей вф f, поскольку вычислимая нумерация π главная.

Лемма С6.4.

Для любых вычислимо перечислимого множества M и частично вычислимой функции f найдётся инъективная вычислимая функция g такая, что $\dot{}$

$$\pi(g(x)) = egin{cases} \{fg(x)\}, & ext{если } x \in M; \ \varnothing & ext{в противном случае.} \end{cases}$$

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные

Равномерность

Продуктивные Доказательство.

Нумерация γ вычислима, поскольку $\Gamma_{\gamma}^* = \{\langle x,y \rangle : y \in \gamma(x)\}$ вп (даже в; см. предложение C3.1(4 \Rightarrow 1)). Следовательно, $\gamma(x) = \pi(f(x))$ для подходящей вф f, поскольку вычислимая нумерация π главная.

Лемма С6.4.

Для любых вычислимо перечислимого множества M и частично вычислимой функции f найдётся инъективная вычислимая функция g такая, что

$$\pi(g(x)) = \begin{cases} \{fg(x)\}, & \text{если } x \in M; \\ \emptyset & \text{в противном случае.} \end{cases}$$

Доказательство.

Пусть вп предикат $P \subseteq \omega^3$ определён так: $P(z,x,y) \Leftrightarrow \Leftrightarrow [(x \in M) \land (z = f(y))]$. По теореме C6.11, имеем $P(z,x,g(x)) \Leftrightarrow \Leftrightarrow [z \in \pi(g(x))] \Leftrightarrow [(x \in M) \land (z = fg(x))]$ для подходящей вф g.

Лекция Сб Нумерации и вычислимость. ІІІ

Вадим

Вычислимые

Равномер-

ность

Теорема Сб.13.

Индексное множество I семейства $\mathcal A$ вычислимо перечислимых множеств вычислимо перечислимо, если и только если существует вычислимо перечислимое множество W, для которого имеет место $\pi(x) \in \mathcal{A} \Leftrightarrow \exists y [(y \in W) \land (\gamma(y) \subseteq \pi(x))].$

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренк

Вычислимы семейства

Главные

Равномер-

ность Продуктир

Продуктивные множества

Теорема Сб.13.

Индексное множество I семейства $\mathcal A$ вычислимо перечислимых множеств вычислимо перечислимо, если и только если существует вычислимо перечислимое множество W, для которого имеет место $\pi(x) \in \mathcal A \Leftrightarrow \exists y[(y \in W) \land (\gamma(y) \subseteq \pi(x))].$

Доказательство.

 (\Leftarrow) Для того, чтобы доказать, что I вп, достаточно доказать, что $\{\langle x,y\rangle:\gamma(y)\subseteq\pi(x)\}$ является вп (см. леммы СЗ.4, СЗ.7). В самом деле.

$$\gamma(y) \subseteq \pi(x) \Leftrightarrow \forall i[(i \in \gamma(y)) \to (i \in \pi(x))] \Leftrightarrow \forall i < y[(i \in \gamma(y)) \to (i \in \pi(x))].$$

 (\Rightarrow) Пусть индексное множество I семейства ${\mathcal A}$ вычислимо перечислимо.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

Равномерность

Продуктив-

Лемма Сб.13А.

Если B вычислимо перечислимо и $A\subseteq B$ для некоторого $A\in \mathcal{A}$, то $B\in \mathcal{A}$.

Лекция Сб Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные

Равномер-

ность

Продуктивные множества

Лемма Сб.13А.

Если B вычислимо перечислимо и $A\subseteq B$ для некоторого $A\in \mathcal{A}$, то $B\in \mathcal{A}$.

Доказательство леммы С6.13А.

Определим нумерацию u так:

$$u(x) \leftrightharpoons \begin{cases} A, & \text{если } x \notin I; \\ B, & \text{если } x \in I. \end{cases}$$

Так как $\dot{\Gamma}^*_{\nu}(x,y)\Leftrightarrow [(y\in A)\vee((x\in I)\wedge(y\in B))]$, предикат Γ^*_{ν} вп, поэтому ν — вычислимая нумерация. Следовательно, существует вф g такая, что $\nu(x)=\pi(g(x))$ для всех $x\in\omega$, поскольку π — главная нумерация.

По теореме C6.11 о неподвижной точке для впм, найдётся $n_0 \in \omega$ такое, что $\pi(g(n_0)) = \pi n_0$. Так как $n_0 \not\in I \Rightarrow \pi(g(n_0)) \in \mathcal{A} \Rightarrow g(n_0) \in I \Rightarrow n_0 \in I$,

заключаем, что
$$n_0 \in I$$
. Значит, и $g(n_0) \in I$. Но $n_0 \in I$ влечёт $\pi(g(n_0)) = B = \pi n_0$. Таким образом, $B \in \mathcal{A}$.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерациі

Равномер-

ность

Продуктивные . Лемма C6.13B.

Если $A \in \mathcal{A}$, то и некоторое конечное подмножество A также принадлежит \mathcal{A} .

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные

Равномер-

ность

Продуктивные

Лемма Сб.13В.

Если $A \in \mathcal{A}$, то и некоторое конечное подмножество A также принадлежит \mathcal{A} .

Доказательство леммы С6.13В.

Пусть $\{I_t\}_{t\in\omega}$ и $\{A_t\}_{t\in\omega}$ — сильные аппроксимации множеств I и A соответственно. Определим нумерацию ν так:

$$u(x) \leftrightharpoons \begin{cases} A, & \text{если } x \not\in I; \\ A_{t_X}, & \text{если } x \in I; \end{cases}$$

где t_x — наименьший шаг в перечислении I такой, что $x \in I_t$. В частности, A_{t_x} есть конечное множество элементов A, перечисленных в A к шагу t_x .

Далее, $\Gamma^*_{
u}(x,y)\Leftrightarrow \exists t[(x
ot\in I_t)\wedge (y\in A_{t+1})]$ и предикат $\Gamma^*_{
u}$ вп, поэтому u —

вычислимая нумерация. Следовательно, существует вф g такая, что $\nu(x)=\pi(g(x))$ для всех $x\in\omega$, поскольку π — главная нумерация.

По теореме C6.11 о неподвижной точке для впм, найдётся $a\in\omega$ такое, что $\pi(g(a))=\pi a$. Так как

 $\pi(g(a)) = \pi a$. Tak kak $a \notin I \Rightarrow \pi(g(a)) \in A \Rightarrow g(a) \in I \Rightarrow a \in I$.

заключаем, что $a\in I$. Значит, и $g(a)\in I$. Но $a\in I$ влечёт $\pi(g(a))=A_{t_a}=\pi a$. Таким

образом, $A_t \in \mathcal{A}$ для подходящего $t \in \omega$.

Лекция Сб Нумерации и вычислимость. ІІІ

Вадим

Вычислимые

Равномерность

Доказательство теоремы Сб.13 (окончание).

Пусть вф h такова, что $\gamma(x)=\pi(h(x))$ для всех $x\in\omega$ (см. лемму C6.3); положим $D = h^{-1}(I)$. Множество D вп как прообраз впм относительно чвф h (см. лемму C3.9). Покажем, что семейство $\mathcal{B} \leftrightharpoons \{\pi_{\mathsf{x}} : \exists \mathsf{y}[(\mathsf{y} \in \mathsf{D}) \land (\gamma(\mathsf{y}) \subseteq \pi_{\mathsf{x}})]\}$ совпадает с \mathcal{A} .

(C) Имеем $\pi_v \in \mathcal{B} \stackrel{(1)}{\Longrightarrow} \exists v [(v \in D) \land (\gamma(v) \subseteq \pi_v)] \stackrel{(2)}{\Longrightarrow} h(v_0) \in$

 $I \stackrel{(3)}{\Longrightarrow} \gamma(y_0) = \pi(h(y_0)) \in \mathcal{A}$ (здесь (1) следует из определения \mathcal{B} ; (2) y_0 — некоторое фиксированное число, удовлетворяющее условию $[(y_0 \in D) \land (\gamma(y_0) \subseteq \pi_x)]; (3)$ следует из определения D). Далее, $\gamma(y_0) \subseteq \pi_x$, поэтому $\pi_x \in \mathcal{A}$, по лемме C6.13A. Значит, $\mathcal{B} \subseteq \mathcal{A}$.

(\supseteq) Пусть теперь $\pi_x \in \mathcal{A}$; по лемме C6.13B некоторое конечное подмножество π_{x} , скажем $\gamma(n)$, принадлежит \mathcal{A} . Следовательно, $h(n) \in I$ и $n \in D$. Так как $\gamma(n) \subseteq \pi_{\mathsf{x}}$, имеем $\pi_{\mathsf{x}} \in \mathcal{B}$. Таким образом, $\mathcal{A} \subseteq \mathcal{B}$.

Снова полные множества

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

пумерации Равномер-

Продуктивные множества Теорема Сб.14.

Множества K, K_0 и K_1 являются 1-полными.

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

нумерации Равномер-

Продуктивные множества Теорема Сб.14.

Множества K, K_0 и K_1 являются 1-полными.

Доказательство.

Каждое из этих множеств вп. Более того, множество K_0 является 1-полным (см. пример С5.2). Пусть W — произвольное вп множество. Определим нумерацию ν так:

$$u(x) \leftrightharpoons \begin{cases} \omega, & \text{если } x \in W; \\ \varnothing & \text{иначе.} \end{cases}$$

Так как $\Gamma^*_{\nu}(x,y)\Leftrightarrow x\in W$, нумерация ν вычислима, поэтому существует инъективная вф f такая, что $\nu(x)=\pi(f(x))$ для всех $x\in\omega$ (последнее вытекает из того, что π — главная вычислимая нумерация).

Теперь, если $x \in W$, то $\pi(f(x)) = \omega$ и $f(x) \in K \cap K_1$; если же $x \in \overline{W}$, то $\pi(f(x)) = \emptyset$ и $f(x) \notin K \cup K_1$. Таким образом, $W \leqslant_1 K$ и $W \leqslant_1 K_1$ посредством функции f.

Лекция Сб Нумерации и вычислимость. ІІІ

Вычислимые

Равномер-

Продуктивмножества

Определение С6.7.

Множество P называется **продуктивным**, если существует такая частично вычислимая функция $\psi(x)$, называемая **продуктивной** ϕ ункцией для P, что

$$\forall x [(\pi_x \subseteq P) \Rightarrow (\psi(x) \downarrow \land (\psi(x) \in P - \pi_x))].$$

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

Равномер-

Продуктивные множества

Определение С6.7.

Множество P называется **продуктивным**, если существует такая частично вычислимая функция $\psi(x)$, называемая **продуктивной** функцией для P, что

$$\forall x [(\pi_x \subseteq P) \Rightarrow (\psi(x) \downarrow \land (\psi(x) \in P - \pi_x))].$$

Определение С6.8.

Вычислимо перечислимое множество C называется **творческим**, если \overline{C} продуктивно.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

Равномер-

Продуктивные множества

Определение С6.7.

Множество P называется **продуктивным**, если существует такая частично вычислимая функция $\psi(x)$, называемая **продуктивной** функцией для P, что

$$\forall x [(\pi_x \subseteq P) \Rightarrow (\psi(x) \downarrow \land (\psi(x) \in P - \pi_x))].$$

Определение С6.8.

Вычислимо перечислимое множество C называется **творческим**, если \overline{C} продуктивно.

Пример С6.4.

Множество K творческое, поскольку \overline{K} — продуктивное множество с тождественной продуктивной функцией $\psi(x)=x$: $x\in\overline{K}\Rightarrow x\not\in\pi_x\Rightarrow x\in\overline{K}\land x\not\in\pi_x$.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

нумерации Равномер-

Продуктивные множества

Теорема Сб.15.

Для любого продуктивного множества P существует инъективная вычислимая функция p, продуктивная для P.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

.., жериции Равномер-

Продуктивные множества

Теорема Сб.15.

Для любого продуктивного множества P существует инъективная вычислимая функция p, продуктивная для P.

Доказательство.

Пусть множество P продуктивно с продуктивной функцией ψ . Сначала определим вф q, продуктивную для P. По предложению C6.3, существует вф g такая, что

$$\pi(g(x)) = \begin{cases} \pi(x), & \text{если } \psi(x) \downarrow; \\ \varnothing, & \text{если } \psi(x) \uparrow. \end{cases}$$

В качестве функции q(x) возьмём чвф, униформизующую вп предикат $\Gamma_{\psi} \cup \Gamma_{\psi \circ g}$ (см. теорему C3.3). Далее, если $\psi(x) \downarrow$, то и $q(x) \downarrow$; если же $\psi(x) \uparrow$, то $\pi(g(x)) = \varnothing \subseteq P$ и, следовательно, $\psi(g(x)) \downarrow \Rightarrow q(x) \downarrow$. Тем самым, q(x) всюду определена. Имеем $\pi_x \subseteq P \Rightarrow \psi(x) \downarrow \land [\pi(x) = \pi(g(x))] \Rightarrow \{\psi(x), \psi(g(x))\} \subseteq P - \pi(x) \Rightarrow q(x) \in P - \pi(x)$.

Лекция Сб Нумерации и вычислимость. ІІІ

Вадим Пузаренко

Вычислимые

Равномер-

Продуктивмножества

Доказательство (продолжение).

Теперь преобразуем продуктивную функцию q в инъективную вф p, продуктивную для P. По предложению C6.8(i) и теореме C6.9, возьмём инъективную вф h так, чтобы $\pi(h(x)) = \pi_x \cup \{q(x)\}.$ Заметим, что справедливо

$$\pi_x \subseteq P \Longrightarrow \pi(h(x)) \subseteq P \land (\pi(x) \subsetneq \pi(h(x))).$$
 (2)

Определим вспомогательные функции F(x, y) и G(x, y, z) так:

$$\begin{bmatrix} F(x,0) &\leftrightharpoons & x, \\ F(x,y+1) &\leftrightharpoons & hF(x,y); \\ G(x,y) &\leftrightharpoons \mu t [\exists u < t(F(x,u) = F(x,t)) \lor (F(x,t) > y)]. \\ \text{Перейдём теперь к заданию функции } p(x) \text{ так:} \\ p(0) &\leftrightharpoons q(0), \\ p(x+1) &\leftrightharpoons \begin{cases} qF(s(x),G(s(x),p(x))), \\ \text{если } qF(s(x),G(s(x),p(x))) > p(x); \\ s(p(x)), \text{ иначе.} \end{cases}$$

Лекция Сб Нумерации и вычислимость. ІІІ

Вычислимые

Равномер-

Продуктивмножества

Доказательство (окончание).

Докажем, что строго возрастающая вф p(x) продуктивна для P. В самом деле, $\pi_0 \subseteq P \Rightarrow p(0) = q(0) \in P - \pi_0$. Далее, пусть $\pi_{x+1} \subseteq P$; тогда не может выполняться $qF(s(x), G(s(x), p(x))) \leqslant p(x)$, поскольку в противном случае F(s(x), G(s(x), p(x))) = F(s(x), u) для некоторого u < G(s(x), p(x));противоречие с (2). Следовательно, qF(s(x), G(s(x), p(x))) > p(x) и $p(x+1) = qF(x+1, G(x+1, p(x))) \in P - \pi(x+1)$, no (2).

Лекция Сб Нумерации и вычислимость. ІІІ

Вадим

Вычислимые

Равномер-

Продуктивмножества

Доказательство (окончание).

Докажем, что строго возрастающая вф p(x) продуктивна для P. В самом деле, $\pi_0 \subseteq P \Rightarrow p(0) = q(0) \in P - \pi_0$. Далее, пусть $\pi_{x+1} \subseteq P$; тогда не может выполняться $qF(s(x),G(s(x),p(x)))\leqslant p(x)$, поскольку в противном случае F(s(x), G(s(x), p(x))) = F(s(x), u) для некоторого u < G(s(x), p(x));противоречие с (2). Следовательно, qF(s(x), G(s(x), p(x))) > p(x) и $p(x+1) = qF(x+1, G(x+1, p(x))) \in P - \pi(x+1)$, no (2).

Теорема C6.16.

Пусть P — продуктивное множество. Тогда

- Р не вычислимо перечислимо;
- Р содержит в качестве подмножества бесконечное вычислимо перечислимое множество;
- \bigcirc если $P \leq_m A$, то A также продуктивно.

Лекция Сб Нумерации и вычислимость. ІІІ

Вычислимые

Продуктивмножества

Доказательство.

Пусть р — инъективная вф, продуктивная для Р.

- 1) Допустим, что P вп; тогда $P=\pi(n_0)$ и, следовательно,
- $\pi(n_0) \subseteq P \Rightarrow p(n_0) \in P \pi(n_0) = \emptyset$, противоречие.

Лекция Сб Нумерации и вычислимость. ІІІ

Вадим

Равномер-

множества

Продуктив-

```
Доказательство.
```

Пусть p — инъективная вф, продуктивная для P.

- 1) Допустим, что P вп; тогда $P=\pi(n_0)$ и, следовательно,
- $\pi(n_0) \subseteq P \Rightarrow p(n_0) \in P \pi(n_0) = \emptyset$, противоречие.
- 2) Пусть число n_1 и вф h таковы, что $\pi(n_1) = \emptyset$ и $\pi(h(x)) = \pi(x) \cup \{p(x)\}$ (по
- предложению С6.8(1) и теореме С6.9). Справедлива импликация $\pi(x) \subseteq P \Rightarrow \pi(h(x)) \subseteq P$

Определим
$$W = \rho(p \circ F)$$
, где F — сплинтер функции h в точке n_1 :

 $F(0) = n_1$

$$F(t+1)=hF(t).$$

 $\vec{\mathsf{N}}$ ндукцией по t доказывается, что $p(F(t)) \in P$:

$$\pi(n_1) = \varnothing \subseteq P \Rightarrow p(F(0)) = p(n_1) \in P - \pi(n_1) = P$$

$$\pi(n_1) \subseteq P \stackrel{(**)}{\Longrightarrow} \pi(F(t)) \subseteq P \Rightarrow p(F(t)) \in P - \pi(F(t)) \subseteq P.$$

(**)

Доказательство.

Лекция Сб Нумерации и вычислимость. ІІІ

Вадим

Вычислимые

Равномер-

Продуктивмножества

```
Пусть р — инъективная вф, продуктивная для Р.
1) Допустим, что P вп; тогда P = \pi(n_0) и, следовательно,
\pi(n_0) \subseteq P \Rightarrow p(n_0) \in P - \pi(n_0) = \emptyset, противоречие.
2) Пусть число n_1 и вф h таковы, что \pi(n_1) = \emptyset и \pi(h(x)) = \pi(x) \cup \{p(x)\} (по
предложению С6.8(1) и теореме С6.9). Справедлива импликация
\pi(x) \subseteq P \Rightarrow \pi(h(x)) \subseteq P
                                                                                                   (**)
Определим W = \rho(p \circ F), где F — сплинтер функции h в точке n_1:
   F(0) = n_1
  F(t+1) = hF(t).
\vec{\mathsf{N}}ндукцией по t доказывается, что p(F(t)) \in P:
\pi(n_1) = \varnothing \subset P \Rightarrow p(F(0)) = p(n_1) \in P - \pi(n_1) = P
```

3) Пусть $P \leq_m A$ посредством вф f, а вф h такова, что $\pi(h(x)) = f^{-1}(\pi(x))$. Тогда

 $\pi(h(x)) = f^{-1}(\pi(x)) \subseteq f^{-1}(A) = P \Rightarrow ph(x) \in P - \pi(h(x)) \Rightarrow fph(x) \in f(P) \subseteq A \land fph(x) \notin P$

 $\pi(n_1) \subset P \stackrel{(**)}{\Longrightarrow} \pi(F(t)) \subset P \Rightarrow p(F(t)) \in P - \pi(F(t)) \subset P.$

 $f(\pi(h(x))) = f(f^{-1}(\pi_x)) = \pi_x \cap \rho f \Rightarrow fph(x) \in A - \pi(x).$

fph — продуктивная функция для $A: \pi_x \subseteq A \Rightarrow$

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

Равномер-

Продуктивные множества

Теорема Сб.17.

- **①** Если множество P продуктивно, то $\overline{K} \leqslant_1 P$.
- $oldsymbol{\circ}$ Если множество C творческое, то C 1-полно и, в частности, $C \approx K$.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимы семейства

главные нумерации

Равномерность

Продуктивные множества

Теорема Сб.17.

- **②** Если множество P продуктивно, то $\overline{K} \leqslant_1 P$.
- $oldsymbol{\circ}$ Если множество C творческое, то C 1-полно и, в частности, C pprox K.

Доказательство.

1) Пусть p — инъективная вф, продуктивная для P. По лемме Сб.4, существует инъективная вф g такая, что

$$\pi(g(y)) = egin{cases} \{p(g(y))\}, & ext{ если } y \in K; \ arnothing & ext{в противном случае.} \end{cases}$$

Далее, имеем

$$y \in K \Rightarrow \pi(g(y)) = \{p(g(y))\} \xrightarrow{(1)} \pi(g(y)) \nsubseteq P \Rightarrow p(g(y)) \in \overline{P},$$

$$y \in \overline{K} \Rightarrow \pi(g(y)) = \varnothing \Rightarrow \pi(g(y)) \subseteq P \Rightarrow p(g(y)) \in P.$$

(1) Действительно, если бы $\pi(g(y))\subseteq P$, то

$$p(g(y)) \in P - \pi(g(y)) = P - \{p(g(y))\}$$
, противоречие.

2) Следует из первого утверждения и теоремы С5.3 Майхилла.

Лекция Сб Нумерации и вычислимость. ІІІ

Вычислимые

Продуктивмножества

Следствие С6.5.

Для множества $P\subseteq\omega$ следующие утверждения эквивалентны:

- Р продуктивно;
- \bullet $\overline{K} \leq_m P$.

Лекция Сб Нумерации и вычислимость. ІІІ

Вычислимые

Равномер-

Продуктивмножества

Следствие С6.5.

Для множества $P\subseteq\omega$ следующие утверждения эквивалентны:

- Р продуктивно;
- \bullet $\overline{K} \leqslant_1 P$;
- \bullet $\overline{K} \leq_m P$.

Следствие С6.6.

Для множества $C\subseteq\omega$ следующие утверждения эквивалентны:

- С творческое;
- С 1-полно;
- С т-полно.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренк

Вычислимь семейства

Главные

нумерации Равномер-

Продуктивные множества Следствие С6.5.

Для множества $P\subseteq\omega$ следующие утверждения эквивалентны:

- P продуктивно;
- \bullet $\overline{K} \leqslant_m P$.

Следствие С6.6.

Для множества $C\subseteq\omega$ следующие утверждения эквивалентны:

- С творческое;
- С 1-полно;
- С т-полно.

Упражнение С6.5.

Пусть $A \neq \omega$ — впм. Докажите, что A творческое, если и только если \forall вп $B[A \cap B = \varnothing \Rightarrow A \approx A \cup B]$.

Лекция С6 Нумерации и вычислимость, III

Вадим Пузаренко

Вычислимые семейства

Главные нумерации

нумерации Варианая

Продуктивные множества

Спасибо за внимание.