Applied Linear Algebra in Data Analysis Introduction to Constrained Optimization

Siyakumar Balasubramanian

Department of Bioengineering Christian Medical College, Bagayam Vellore 632002

▶ A general optimization problem can be formulated as the following,

minimize
$$f(\mathbf{x})$$

subject to $\mathbf{g}(\mathbf{x}) \leq \mathbf{0}$, $\mathbf{g}(\mathbf{x}) = \begin{bmatrix} g_1(\mathbf{x}) & g_2(\mathbf{x}) & \cdots & g_p(\mathbf{x}) \end{bmatrix}^{\top}$
 $\mathbf{h}(\mathbf{x}) = \mathbf{0}$, $\mathbf{h}(\mathbf{x}) = \begin{bmatrix} h_1(\mathbf{x}) & h_2(\mathbf{x}) & \cdots & h_q(\mathbf{x}) \end{bmatrix}^{\top}$

where, $f(\mathbf{x})$ is the **objective function** and $\mathbf{g}(\mathbf{x})$ represents the set of **inquality constaints** and $\mathbf{h}(\mathbf{x})$ represents the set of **equality constraints**.

The set of all values of \mathbf{x} that satisfy the constraints is called the **feasible set** and is denoted by \mathcal{F} .

$$\mathcal{F} = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{g}(\mathbf{x}) \le \mathbf{0} \text{ and } \mathbf{h}(\mathbf{x}) = \mathbf{0} \}$$

Whatever the form, with constrained optimization the search for the minimizer of the function $f(\mathbf{x})$ is restricted to the feasible set \mathcal{F} .

Feasible direction - A direction **d** is said to be a feasible direction at the point $\mathbf{x} \in \mathcal{F}$ if there exists $\alpha_0 > 0$ such that $\mathbf{x} + \alpha \mathbf{d} \in \mathcal{F}$ for all $\alpha \in [0, \alpha_0]$.

The conditions for a point to be a minimizer in the constrained optimization case are different from the unconstrained case.

First Order Necessary Condition. Let $\mathcal{F} \in \mathbb{R}^n$, and let $f : \mathcal{F} \to \mathbb{R}$ be a differentiable function (at least once). If \mathbf{x}^* is a local minimizer of the function f over the set \mathcal{F} , then for any feasible direction \mathbf{d} at the point \mathbf{x}^* , we have,

$$\mathbf{d}^{\top} \nabla f\left(\mathbf{x}^{\star}\right) \ge 0$$

This above conditions applies for both points at the boundary and interior to the set \mathcal{F} .

For interior points, all directions are feasible, and so the above condition becomes,

$$\nabla f\left(\mathbf{x}^{\star}\right) = 0$$

which is the same as the unconstrained case.

Second Order Necessary Condition. Let $\mathcal{F} \in \mathbb{R}^n$, and let $f : \mathcal{F} \to \mathbb{R}$ be a differentiable function (at least twice), \mathbf{x}^* is a local minimizer of f over \mathcal{F} , and \mathbf{d} is a feasible direction at \mathbf{x}^* . If $\mathbf{d}^\top \nabla f(\mathbf{x}) = 0$, then

$$\mathbf{d}^{\top}\mathbf{H}\left(\mathbf{x}^{\star}\right)\mathbf{d}\geq0$$

where $\mathbf{H}(\mathbf{x})$ is the Hessian of f at \mathbf{x} .

Consider the following optimization problem with only equality constraints,

minimize
$$f(\mathbf{x})$$

subject to $\mathbf{h}(\mathbf{x}) = \mathbf{0}$

where, $\mathbf{h}(\mathbf{x}) = \begin{bmatrix} h_1(\mathbf{x}) & h_2(\mathbf{x}) & \cdots & h_q(\mathbf{x}) \end{bmatrix}^{\top}$, and we assume that each one of these constraint function is differentiable.

The feasible set for this problem is,

$$\mathcal{F} = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{h}(\mathbf{x}) = \mathbf{0} \}$$

Note that the feasiblity set forms a n-q dimensional surface oer manifold in \mathbb{R}^n .

Regular point – A point $\mathbf{x}^* \in \mathcal{F}$ is said to be a regular point if the gradients of the equality constraints are linearly independent at the point \mathbf{x}^* .

Note that the gradient of the equality constraints is a matrix of size $q \times n$.

$$\nabla_{\mathbf{x}} \mathbf{h} \left(\mathbf{x} \right) = \begin{bmatrix} \nabla_{\mathbf{x}} h_1 \left(\mathbf{x} \right) \\ \nabla_{\mathbf{x}} h_2 \left(\mathbf{x} \right) \\ \vdots \\ \nabla_{\mathbf{x}} h_q \left(\mathbf{x} \right) \end{bmatrix} \in \mathbb{R}^{q \times n}$$

The gradient $\nabla \mathbf{h}(\mathbf{x})$ has full rank at a regular point.

The **tangent space** of a surface is the higher dimensional equivalent of a tagent line to a one dimensional curve.

The **tangent space** at a point $\mathbf{x}^* \in \mathcal{F}$ is defined as the following set,

$$T\left(\mathbf{x}^{\star}\right) = \left\{\mathbf{y} \in \mathbb{R}^{n} \mid \nabla \mathbf{h}\left(\mathbf{x}\right)\mathbf{y} = \mathbf{0}\right\} = \mathcal{N}\left(\nabla \mathbf{h}\left(\mathbf{x}\right)\right)$$

The tangent plane at the point \mathbf{x}^* on the surface \mathcal{F} is defined as,

$$TP(\mathbf{x}^{\star}) = T(\mathbf{x}^{\star}) + \mathbf{x}^{\star} = \{\mathbf{x} + \mathbf{x}^{\star} \mid \mathbf{x} \in T(\mathbf{x}^{\star})\}$$

The **normal space** of a surface is the orthogonal complement of the tangent space.

The **normal space** at a point $\mathbf{x}^* \in \mathcal{F}$ is defined as the following set,

$$N\left(\mathbf{x}^{\star}\right) = \left\{ \nabla \mathbf{h}\left(\mathbf{x}\right)^{\top} \mathbf{y} \mid \mathbf{y} \in \mathbb{R}^{q} \right\} = \mathcal{R}\left(\nabla \mathbf{h}\left(\mathbf{x}\right)^{\top}\right)$$

The **normal plane** at the point \mathbf{x}^* on the surface \mathcal{F} is defined as,

$$NP\left(\mathbf{x}^{\star}\right) = N\left(\mathbf{x}^{\star}\right) + \mathbf{x}^{\star} = \left\{\mathbf{x} + \mathbf{x}^{\star} \mid \mathbf{x} \in N\left(\mathbf{x}^{\star}\right)\right\}$$

Lagrange theorem: Let \mathbf{x}^* be a local minimizer (or maximizer) of the function $f: \mathbb{R}^n \to \mathbb{R}$, subject to $\mathbf{h}(\mathbf{x}) = \mathbf{0}$, $\mathbf{h}: \mathbb{R}^n \to \mathbb{R}^q$, $q \leq n$. Assume that \mathbf{x}^* is a regular point of the equality constraints. Then there exists a vector $\boldsymbol{\lambda}^* \in \mathbb{R}^q$ such that,

$$abla f\left(\mathbf{x}^{\star}\right) +
abla \mathbf{h} \left(\mathbf{x}^{\star}\right)^{\top} \boldsymbol{\lambda}^{\star} = \mathbf{0}$$

where, λ^* is called the Lagrange multiplier vector.

This theorem states that extremum of this constrained optimization problem occurs when the gradient of f is in the normal space of the surface \mathcal{F} , i.e. $\nabla f(\mathbf{x})$ is a linear combination of the gradients of the individual equality constraints $\nabla h_i(\mathbf{x})$, $1 \leq i \leq q$.

This is also equivalent to saying $\nabla f(\mathbf{x}) \in T(\mathbf{x})^{\perp}$ or $\nabla f(\mathbf{x}) \in N(\mathbf{x})$

It is convenient to introduce the **Lagrange function**: $l: \mathbb{R}^n \times \mathbb{R}^q \to \mathbb{R}$,

$$l(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) + \boldsymbol{\lambda}^{\top} \mathbf{f}(\mathbf{x})$$

The Lagrange condition for \mathbf{x}^* to be a local minimizer is the following,

$$\nabla l\left(\mathbf{x}^{\star}, \boldsymbol{\lambda}^{\star}\right) = \mathbf{0}$$

for some λ^* , where the gradient is with respect to the combined argument $\begin{bmatrix} \mathbf{x}^\top & \boldsymbol{\lambda}^\top \end{bmatrix}$. This is equivalent to the first order necessary condition for the unconstrained optimization problem with respect to $\begin{bmatrix} \mathbf{x}^\top & \boldsymbol{\lambda}^\top \end{bmatrix}$. This condition is necessary but not sufficient.

Let f and \mathbf{h} be both twice continuously differentiable,

$$l(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) + \boldsymbol{\lambda}^{\top} \mathbf{f}(\mathbf{x})$$

= $f(\mathbf{x}) + \lambda_1 h_1(\mathbf{x}) + \lambda_2 h_2(\mathbf{x}) + \dots + \lambda_q h_q(\mathbf{x})$

Taking the Hessian on both sides,

$$\mathbf{H}_{l}\left(\mathbf{x}\right) = \mathbf{H}_{f}\left(\mathbf{x}\right) + \sum_{i=1}^{q} \lambda_{i} \mathbf{H}_{h_{i}}\left(\mathbf{x}\right)$$

where \mathbf{H}_l is the Hessian of $l(\mathbf{x}, \boldsymbol{\lambda})$ with respect to \mathbf{x} , and \mathbf{H}_{h_i} is the Hessian of the function $h_i(\mathbf{x})$ with respect to \mathbf{x} .

Second Order Necessary Condition. Let \mathbf{x}^* be a local minimizer of f subject to the equality constraints $\mathbf{h}(\mathbf{x}) = \mathbf{0}$, $\mathbf{h}: \mathbb{R}^n \to \mathbb{R}^q$, $q \le n$, and f, \mathbf{h} are twice differentiable, and \mathbf{x}^* is a regular point. Then, there exists a vector $\mathbf{\lambda}^* \in \mathbb{R}^q$ such that,

- 1. $\nabla f(\mathbf{x}^*) + \boldsymbol{\lambda}^{*\top} \nabla \mathbf{h}(\mathbf{x}) = \mathbf{0}$
- 2. For all $\mathbf{y} \in T(\mathbf{x}^*)$, we have $\mathbf{y}^{\top} \mathbf{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*) \mathbf{y} \geq 0$.

Second Order Sufficient Condition. \mathbf{x}^* is strict local minimizer of f subject to the equality constraints $\mathbf{h}(\mathbf{x}) = \mathbf{0}$, $\mathbf{h}: \mathbb{R}^n \to \mathbb{R}^q$,

- 1. $\nabla f(\mathbf{x}^*) + \boldsymbol{\lambda}^{*\top} \nabla \mathbf{h}(\mathbf{x}) = \mathbf{0}$
- 2. For all $\mathbf{y} \in T(\mathbf{x}^*)$, we have $\mathbf{y}^{\top} \mathbf{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*) \mathbf{y} > 0$.

minimize
$$f(\mathbf{x})$$

subject to $\mathbf{g}(\mathbf{x}) \leq \mathbf{0}$, $\mathbf{g}(\mathbf{x}) = \begin{bmatrix} g_1(\mathbf{x}) & g_2(\mathbf{x}) & \cdots & g_p(\mathbf{x}) \end{bmatrix}^{\top}$
 $\mathbf{h}(\mathbf{x}) = \mathbf{0}$, $\mathbf{h}(\mathbf{x}) = \begin{bmatrix} h_1(\mathbf{x}) & h_2(\mathbf{x}) & \cdots & h_q(\mathbf{x}) \end{bmatrix}^{\top}$

where, $f(\mathbf{x})$ is the **objective function** and $\mathbf{g}(\mathbf{x})$ represents the set of **inquality** constaints and $\mathbf{h}(\mathbf{x})$ represents the set of **equality constraints**.

An inequality constraint $g_i(\mathbf{x}) \leq 0$ is said to be **active** at a point \mathbf{x}^* if $g_i(\mathbf{x}^*) = 0$. It is **inactive** at \mathbf{x}^* if $g_i(\mathbf{x}^*) < 0$.

Regular point Let the point \mathbf{x}^* satisfy $\mathbf{h}(\mathbf{x}^*) = \mathbf{0}$, $\mathbf{g}(\mathbf{x}^*) \leq \mathbf{0}$, and let $J(\mathbf{x}^*)$ be the index set of active inequality constraints,

$$J\left(\mathbf{x}^{\star}\right) = \left\{j \mid g_{j}\left(\mathbf{x}^{\star}\right) = 0\right\}$$

We say the point \mathbf{x}^* is a **regular point** if the following vectors form a linearly independent set.

$$\nabla h_i(\mathbf{x}^{\star}), \nabla g_j(\mathbf{x}^{\star}), 1 \leq i \leq q, j \in J(\mathbf{x}^{\star})$$

Karush-Kuhn-Tucker Theorem. Let f, \mathbf{h} , \mathbf{g} be differentiable at least once, and let \mathbf{x}^* be a regular point and a local minimizer of the problem. Then, there exists $\boldsymbol{\lambda}^* \in \mathbb{R}^q$ and $\boldsymbol{\mu}^* \in \mathbb{R}^p$ such that,

- 1. $\mu^* \ge 0$
- 2. $\nabla f(\mathbf{x}^*) + \nabla \mathbf{h}(\mathbf{x}^*)^\top \boldsymbol{\lambda}^* + \nabla \mathbf{g}(\mathbf{x}^*)^\top \boldsymbol{\mu}^* = \mathbf{0}$
- 3. $\boldsymbol{\mu}^{\star \top} \mathbf{g} \left(\mathbf{x}^{\star} \right) = 0$

The vector λ^* is called the **Lagrange multiplier vector** and μ^* is called the **Karush-Kuhn-Tucker (KKT) multiplier vector**.

Tangent space: The tangent space at a point \mathbf{x}^* is defined as,

$$T\left(\mathbf{x}^{\star}\right) = \left\{\mathbf{y} \in \mathbb{R}^{n} \mid \nabla \mathbf{h}\left(\mathbf{x}^{\star}\right)\mathbf{y} = \mathbf{0}, \nabla g_{j}\left(\mathbf{x}^{\star}\right)^{\top}\mathbf{y} = 0, \ j \in J\left(\mathbf{x}^{\star}\right)\right\}$$

Second order necessary condition. Let \mathbf{x}^* be a local minimizer of $f(\mathbf{x})$ subject to $\mathbf{h}(\mathbf{x}^*) = \mathbf{0}$ and $\mathbf{g}(\mathbf{x}) \leq \mathbf{0}$. Let $f, \mathbf{h}, \mathbf{g}$ be at least twice differentiableThen, there exists $\boldsymbol{\lambda}^* \in \mathbb{R}^q$ and $\boldsymbol{\mu}^* \in \mathbb{R}^p$ such that,

- 1. $\nabla f(\mathbf{x}^{\star}) + \nabla \mathbf{h}(\mathbf{x}^{\star})^{\top} \boldsymbol{\lambda}^{\star} + \nabla \mathbf{g}(\mathbf{x}^{\star})^{\top} \boldsymbol{\mu}^{\star} = \mathbf{0}$
- 2. For all $\mathbf{y} \in T(\mathbf{x}^{\star})$, we have $\mathbf{y}^{\top}\mathbf{H}(\mathbf{x}^{\star}, \boldsymbol{\lambda}^{\star}, \boldsymbol{\mu}^{\star})\,\mathbf{y} \geq 0$.

where,

$$\mathbf{H}\left(\mathbf{x}\right) = \mathbf{H}_{f}\left(\mathbf{x}\right) + \sum_{i=1}^{p} \mu_{i} \mathbf{H}_{g_{i}}\left(\mathbf{x}\right) + \sum_{i=1}^{q} \lambda_{i} \mathbf{H}_{h_{i}}\left(\mathbf{x}\right)$$

Second order sufficient condition. Let \mathbf{x}^* be a local minimizer of $f(\mathbf{x})$ subject to $\mathbf{h}(\mathbf{x}^*) = \mathbf{0}$ and $\mathbf{g}(\mathbf{x}) \leq \mathbf{0}$. Let $f, \mathbf{h}, \mathbf{g}$ be at least twice differentiableThen, there exists $\lambda^* \in \mathbb{R}^q$ and $\mu^* \in \mathbb{R}^p$ such that,

- 1. $\nabla f(\mathbf{x}^*) + \nabla \mathbf{h}(\mathbf{x}^*)^\top \boldsymbol{\lambda}^* + \nabla \mathbf{g}(\mathbf{x}^*)^\top \boldsymbol{\mu}^* = \mathbf{0}$
- 2. For all $\mathbf{y} \in \tilde{T}(\mathbf{x}^*)$, we have $\mathbf{y}^{\top} \mathbf{H}(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) \mathbf{y} \geq 0$.

where,

$$\mathbf{H}(\mathbf{x}) = \mathbf{H}_f(\mathbf{x}) + \sum_{i=1}^p \mu_i \mathbf{H}_{g_i}(\mathbf{x}) + \sum_{i=1}^q \lambda_i \mathbf{H}_{h_i}(\mathbf{x})$$

and,

$$\tilde{T}(\mathbf{x}^{\star}) = \{\}$$

 \mathbf{x}^{\star} is a strict local minimizer of $f(\mathbf{x})$ subject to $\mathbf{h}(x) = \mathbf{0}$ and $\mathbf{g}(\mathbf{x}) \leq \mathbf{0}$.

Applied Linear Algebra in Data Analysis

Sivakumar Balasubramanian