P - 41 - 2015

분진 폭발방지를 위한 폭연 방출구 설치방법에 관한 기술지침

2015. 11

한국산업안전보건공단

안전보건기술지침의 개요

o 작성자 : 유 철 진

개정자 : 산업안전보건연구원 안전연구실 최상원

o 제·개정 경과

- 1999년 4월 화학안전분야 기준제정위원회 심의
- 1999년 5월 총괄기준제정위원회 심의
- 2010년 10월 화학안전분야 제정위원회 심의(개정)
- 2012년 7월 총괄 제정위원회 심의(개정, 법규개정조항 반영)
- 2015년 11월 화학안전분야 제정위원회 심의(개정)

o 관련규격 및 규격

- NFPA, "Explosion Protection by Deflagration Venting", 2007.
- 한국화재보험협회 KFS 720 : 폭발벤팅 기준
- KOSHA Guide E-99-2013, "분진폭발위험장소 설정에 관한 기술지침"

o 기술지침의 적용 및 문의

- 이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지 (www.kosha.or.kr)의 안전보건기술지침 소관분야별 문의처 안내를 참고하시기 바랍니다.
- 동 지침 내에서 인용된 관련규격 및 자료, 법규 등에 관하여 최근 개정본이 있을 경우에는 해당 개정본의 내용을 참고하시기 바랍니다.

공표일자 : 2015년 12월 7일

제 정 자 : 한국산업안전보건공단 이사장

분진 폭발방지를 위한 폭연방출구 설치방법에 관한 기술지침

1. 목 적

이 지침은 가연성 분진의 폭발로 인한 피해를 최소화하는데 필요한 폭연방출구의 설치에 필요한 사항을 제시하는 데 그 목적이 있다.

2. 적용범위

- (1) 이 지침은 밀폐공간내에서 가연성 분진의 발화에 의한 폭발 시에 폭발압력을 신속히 설비외부로 방출시켜 주기 위하여 설치하는 분진폭발압력방출구(이하 "방출구"라 한다) 의 설치 방법에 적용한다.
- (2) 다만 폭주반응용 비상벤트와 압력용기 및 저장탱크 등에 설치된 압력방출 장치에는 적용하지 않는다.

3. 용어의 정의

- (1) 이 지침에서 사용하는 용어의 정의는 다음과 같다.
 - (가) "분진"이라 함은 직경 500 @ 이하의 미세한 고체상의 분말을 말한다.
 - (나) "가연성 분진"이라 함은 크기와 모양과 관계없이 적절한 비율로 공기와 혼합되거나 기타 산화물 매개체와 일정 농도이상으로 혼합되어 화재나 폭연의 위험성을 갖는 가연성 분말을 말한다.
 - (다) "폭연 (Deflagration)"이라 함은 연소 속도가 음속보다 느리게 전파하는 폭발을 말한다.
 - (라) "폭연지수 (Deflagration Index, K)"이라 함은 밀폐공간(체적,V)내에서 연소로 인하여 상승되는 최고 압력상승율($\frac{dP}{dt}$) $_{max}$ 로부터 계산되며, 가연성 분진의 폭연지수는 K_{st} 로 나타낸다.

P - 41 - 2015

- (다) "밀폐공간 (Enclosure)"이라 함은 전체가 밀폐되거나 또는 부분적으로 밀폐된 공간(체적)을 가진 밀폐 작업장, 용기, 탱크, 배관, 덕트 등을 말한다. 이하 "밀폐공간 등"라 한다.
- (라) "폭연방출구 (Deflagration vent)"라 함은 폭연이 발생 시 연소가스와 압력을 신속히 밀폐공간 등으로부터 안전한 외부로 방출시키기 위하여 설치하는 개방된 통기문, 페쇄된 창문, 판넬 등을 말한다.
- (마) "복합 혼합물 (Hybrid mixture)"라 함은 가연성 가스와 가연성 분진의 혼합물을 말한다. 가연성 가스는 해당 가스 폭발하한계의 10 % 이상으로 포함한 것을 말한다.
- (바) "최대압력 (Maximum pressure, P_{max})"라 함은 최적의 혼합물이 밀폐공간 등에서 폭연이 발생한 경우 최대로 상승할 수 있는 압력을 말한다.
- (사) "저감압력 (Reduced pressure, P_{red})"라 함은 폭연이 방출되는 동안 방출설비내에 상승될 수 있는 최대 압력을 말한다.
- (아) "방출구 개방압력 (Static activation pressure, P_{stat})"라 함은 압력이 서서히(압력 증가율이 10 kPa/min 이하) 증가할 때 방출구 뚜껑이 열리는 압력을 말한다.
- (자) "저강도 설비 (Low strength enclosure)"라 함은 10 kPa(0.1 bar)이하의 압력을 견딜 수 있는 밀폐공간 등을 말한다.
- (차) "고강도 설비(High strength enclosure)"라 함은 10 kPa(0.1 bar)를 초과하는 압력을 견딜 수 있는 밀폐공간 등을 말한다.
- (2) 이 지침에서 사용하는 용어의 정의는 특별한 규정이 있는 경우를 제외하고는 산업 안전보건법, 같은 법 시행령, 시행규칙 및 안전보건규칙에서 정하는 바에 따른다.

4. 분진폭발에 영향을 주는 인자

4.1 입경 및 입자의 분포

- (1) 입경이 500 # 이상의 입자라도 설비 중에서 입자가 부서져서 분진이 발생 될 수 있다.
- (2) 입자의 분포도 또한 폭발에 영향을 미치며 500 μ m 이하의 분진이 30 % 이상 존재하는 경우에는 폭발이 발생할 수 있다.

4.2 연소한계

분진의 연소하한계는 분진의 크기 및 분포에 따라 다르나 대략 20~60 g/m³ 정도이다.

4.3 최소점화에너지

- (1) 분진의 최소점화에너지는 분진의 크기에 따라 다르나 보통 100 mJ 미만이다.
- (2) 최소점화에너지는 시스템의 온도와 압력에 따라 영향을 받는다.

4.4 최대압력 및 최대압력상승율

- (1) 밀폐용기에서의 분진폭발은 급격한 압력상승을 초래한다.
- (2) 분진폭발의 최대압력 및 최대압력상승율은 분진의 크기가 작을수록 증가한다.

4.5 초기온도 및 압력

- (1) 분진폭발은 밀폐공간내 초기온도 및 압력에 따라 폭발압력이 달라진다.
- (2) 주어진 초기압력에서 초기온도가 상승하면 최대압력상승률이 감소된다.
- (3) 주어진 초기온도에서 초기압력이 상승하면 최대압력상승률이 증가된다.

4.6 습도 및 수분

- (1) 대기의 습도는 분진폭발에 크게 영향을 주지 않는다.
- (2) 분진의 수분함량이 많을수록 발화온도를 상승시킨다.

4.7 불활성 물질

- (1) 불활성분체는 열흡수에 의하여 분진의 연소능력을 저하시키지만 분진폭발을 방지하기 위해서는 $40\sim80$ %를 유지해야 하기 때문에 적용이 어렵다.
- (2) 불활성 가스는 산화제의 농도를 희석시키므로 유용한 분진폭발 방지조치가 될 수 있다.

4.8 발화온도

- (1) 분진의 발화온도는 분진의 입경, 모양과 부유상태 또는 퇴적상태에 따라 다르다.
- (2) 부유상태의 분진의 경우에는 열의 손실이 많아 퇴적상태보다 발화온도가 높다.
- (3) 퇴적상태의 분진은 발화온도보다 낮은 온도에서 열분해하여 자연발화를 할 수 있다.

5. 분진폭발에 대한 안전대책

5.1 분진의 퇴적방지

- (1) 일반적으로 분진의 퇴적층 높이가 6 mm 이상이면 2차폭발의 위험성이 크다.
- (2) 작업장내의 부유분진의 영향으로 가시거리가 영향을 받으면 작업장내의 분진은 연소한계 이내에 있다고 판단한다.
- (3) 분진이송은 가능한 한 원통형 덕트를 사용하며, 수평면을 피하고 경사를 유지한다.

5.2 폭발의 봉쇄

내부의 폭발압력에 견딜 수 있도록 장치를 설계하는 방법이다.

5.3 폭발압력의 방출

폭발압력을 장치의 설계압력 이하에서 외부로 안전하게 방출하는 방법이다.

5.4 불활성 분위기 조성

분진이 존재하는 설비에 불활성가스를 봉입하여 연소를 위한 최소산소농도이하로 줄이는 방법이다.

5.5 폭발억제장치의 설치

(1) 압력파를 감지하여 자동적으로 억제제를 투입하는 방법과 불꽃감지에 의한 불꽃제압 방법이 있다.

P - 41 - 2015

(2) 폭발억제장치를 설치하는 경우에는 폭발압 배출장치를 병행하여 설치하는 것이 일반적이다.

5.6 소화설비

- (1) 소화설비 설치의 목적은 화재 억제 및 진압에 있다.
- (2) 분진이 항시 존재하는 백 필터의 경우에는 스프링클러 설비, 물분무 설비 등을 설치한다.
- (3) 물을 사용하는 소화설비가 설치된 경우에는 방사된 물이 적절하게 배수될 수 있도록 하여 소화수 집적에 의한 전도 및 타 장치 손상 등을 피하도록 하여야 한다.

6. 분진 폭연방출구의 설계시 유의사항

- (1) 방출구의 면적이 클수록 또한 덮개가 있는 방출구보다 개방형 방출구가 압력상승 경감에 효과적이다.
- (2) 방출구 면적은 가능한 한 균형이 있고 대칭적으로 분포하여야 한다.
- (3) 방출구의 면적은 폭발허용최대압력을 미리 설정한 안전수준 이하로 제한할 수 있어야한다.
- (4) 시간이 경과함에 따른 강도의 변화, 내부하중, 부식, 외부손상 등을 고려하여야 한다.
- (5) 배출되는 물질로 인한 인명피해와 재산손실을 최소화하기 위하여 방출구는 안전한 위치에 설치하여야 한다.
- (6) 방출구의 위치는 가능한 한 설비 상부에 높이 설치하고 주위에 장애물이 없어야 한다. 다만 분진집진기(백필터 등)는 중간 이하 또는 하부에 설치한다.
- (7) 방출구의 주위에는 경고할 수 있는 적절한 표지판을 설치하여야 한다.

7. 분진 폭연방출구의 설계방법

7.1 설계변수

- (1) 폭연지수 (K)는 밀폐공간 등(체적,V)에서 연소 시 생성되는 최고 압력상승율로부터 다음과 같이 계산된다. 폭연지수와 최대압력 (P_{max}) 는 방출구 크기 설계에 활용된다.
 - (가) 분진 폭연지수 (K_{ST}) 를 구하는 식은 <식 1>과 같다.

$$K_{ST} = \left(\frac{dP}{dt}\right)_{\text{max}} \times V^{\frac{1}{3}} \tag{식 1}$$

 K_{ST} : 분진폭연지수 [bar·m/sec]

(dP/dt)_{max} : 최고압력상승률(Maximum rate of pressure)[bar/sec]

V : 밀폐공간 등(용기) 체적[m³]

- (나) 농산물, 탄소질 분진, 금속 또는 화학물질 분진의 폭연지수는 폭연지수와 최대압력 (P_{max}) 은 적어도 20L용량의 원형 압력용기내에서 연소실험을 통하여 결정된다. 각 분진별 특성치는 <별표 <math>1>과 같다.[1]
- (다) Ksr는 <표 1>과 같이 3개 그룹으로 나누어진다.

<표 1> 분진폭연 위험등급의 분류

위험등급	K_{ST} [bar · m/sec]	P _{max} [bar gauge]
ST-1	0초과 200이하	≤10
ST-2	200초과 300이하	≤10
ST-3	300 초과	≤12

<출처> NFPA 68, ASTM E 1226, Standard Test Method for Pressure and Rate of Pressure Rise for Combustible Dusts.

- (2) 저감압력 (P_{red})은 취급 밀폐공간 등의 극한강도 (Ultimate stress, 변형이 일어나지 않는 허용 강도)의 2/3를 초과하지 않아야 한다.
- (3) 변형이 허용되지 않을 경우에는 저감압력 (P_{red})은 취급 밀폐공간 등의 항복 응력 (Yield strength)의 2/3를 초과하지 말아야 한다.
- (4) 밀폐공간 등의 설계는 압력용기 설계 규정 등을 활용하며, 계산에 의하여 최고허용 압력 (P_{mawp}, Maximum allowable working pressure)으로 설계한다.
 - (가) 파열되지는 않으나, 영구변형으로 허용 가능한 밀폐공간 등을 위한 P_{red} 와 P_{mawp} 는 <식2>으로 나타냈다.

P - 41 - 2015

$$P_{\text{red}} \leq (\frac{2}{3}) \cdot F_{\text{u}} \cdot P_{\text{mawp}}$$
 (식 2)

(나) 영구변형으로도 허용이 가능하지 않는 밀폐공간 등을 위한 P_{red} 와 P_{mawp} 는 <식 3>으로 나타냈다.

$$P_{\text{red}} \le (\frac{2}{3}) \cdot F_{y} \cdot P_{\text{mawp}}$$
 (4) 3)

P_{red} = 방출되는 설비내의 최대 압력(bar)

F₁₁ = ASME압력용기설계 기준에서 용기의 최고 강도와 용기의 허용강도 비율

P_{mawp} = ASME압력용기설계 기준에 따른 설비의 설계압력(bar)

 $F_v = ASME$ 압력용기설계 기준에서 설비제작 재료의 허용강도와 항복응력의 비율

(다) 주철과 같이 부서지기 쉬운 재질의 경우에는 특별한 보강을 하여야 한다. 보강조치를 하지 않을 경우에는 최고허용설계 강도는 극한강도의 25 %를 초과하지 말아야 한다.

7.2 분진폭연방출구 면적 계산 방법

(1) 밀폐공간 등의 내부 초기압력이 0.2 barg 이하인 경우 최소 방출면적은 <식 4>에 따라 계산한다.[2]

$$A_{\text{vo}} = 1 \times 10^{-4}.(1 + 1.54. \text{ P}_{\text{stat}}^{4/3}) \text{K}_{\text{St}} \cdot \text{V}^{3/4} \cdot \sqrt{Pmax/Pred - 1}$$
 (4) 4)

Avo = 최소 방출구 면적(m²)

 P_{stat} = 방출구 개방압력(bar)

 K_{ST} : 분진폭연지수 [bar·m/sec]

V : 밀폐공간 등(용기) 체적[m³]

P_{max} = 폭연의 최대압력(bar)

P_{red} = 방출되는 설비내의 최대 압력(bar)

- (2) <식 4>는 다음 각호의 제한하에 적용할 수 있으며, L/D가 \leq 2이어야 한다. 여기서 L은 밀폐공간 등의 길이이며, D는 직경이다.
 - (가) 5 bar \leq Pmax \leq 12 bar
 - (나) 10 bar-m/sec $\leq K_{St} \leq 800$ bar-m/sec
 - (다) $0.1 \text{ m}^3 \leq V \leq 10.000 \text{ m}^3$
 - (라) P_{stat} ≤. 0.75 bar

P - 41 - 2015

(마) V_{axial} , $V_{tan} \leq 20 m/sec$ 여기서

 V_{axial} = 밀폐공간내의 축방향의 공기흐름 평균속도

 V_{tan} = 밀폐공간내의수직방향의 공기흐름 평균속도

(3) (2) 조건하에서 L/D가 ≥ 2인 경우에는 <식 5>에 따라 계산한다. 이 식은 사이로, 호퍼 등 상부가 넓은 설비에 사용이 가능하고, L/D가 ≤ 8까지 활용할 수 있다.[2]

$$A_{v1} = A_{vo} \times [1 + 0.6(\frac{L}{D} - 2)^{0.75} \times \exp(-0.95 \times P_{red}^{2})]$$
 (4) 5)

 A_{v1} = L/D가 \leq 2인 경우의 최소 방출구 면적(m^i) $\exp(A) = e^A$

- (4) <식 5>를 그래프를 활용하여 방출구 최소면적 구할 수 있다. 그래프를 활용한 방출구 면적을 구하는 방법은 <부록 1>과 <부록 2>에서와 같다.
- (5) V_{axial} 또는 V_{tan} ≥ 20m/sec 인 경우에는 <식 6>과 같이 계산한다.[3],[4]

$$A_{v2} = A_{v1} \times \left[1 + \frac{max(Vaxial, Vtan) - 20}{36} \times 0.7\right]$$
 (4) 6)

max(A, B)는 V_{axial} 또는 V_{tan} 중 큰 숫치를 적용한다.

(6) 분진 취급 작업장(건물)내에서 분진폭발을 방지하기 위한 방출구 면적은 <식 7>에 따라 계산하다.[3],[4]

$$A_{v2} = 1.7 \times A_{v1} \tag{4} 7$$

7.3 뚜껑의 무게

방출구 뚜껑의 무게는 K_{st}가 250 bar-m/sec이하인 경우 40 kg/m² 이하로 한다.

7.4 폭연방출구의 시공 상세

분진폭연방출구의 시공 방법은 KOSHA GUIDE에 따른다.

<별표 1>

각종 가연성 분진의 특성치

<별표 1. a>

<u>농산물 분진</u>

물질	중간크기직경[µm]	최소연소농도[g/m³]	Pmax [bar gauge]	Kst [bar-m/sec]	위험등급
셀룰로우스	33	60	9.7	229	2
셀룰로우스, 펄프	42	30	9.9	62	1
코르크	42	30	9.6	202	2
옥수수	28	60	9.4	75	1
분유	83	60	5.8	28	1
콩	20	200	9.2	110	1
전분, 옥수수	7	_	10.3	202	2
전분, 쌀	18	60	9.2	101	1
전분, 밀	22	30	9.9	115	1
설탕	30	200	8.5	138	1
사탕수수	29	60	8.2	59	1
톱밥	29	_	10.5	205	2

<별표 1. b>

탄소질 분진

물질	중간크기직경[µm]	최소연소농도[g/m³]	Pmax [bar gauge]	Kst [bar-m/sec]	위험등급
활성탄	28	60	7.7	14	1
목탄	14	60	9.0	10	1
유연탄	24	60	9.2	129	1
석유코크스	15	125	7.6	47	1
갈탄	32	60	10.0	151	1
니탄	_	125	84	67	1

<별표 1. c>

화학물질 분진

물질	중간크기직경[µm]	최소연소농도[g/m³]	Pmax [bar gauge]	Kst [bar-m/sec]	위험등급
아디핀산	⟨10	60	0.8	97	1
안트라퀴논	<10	_	10.6	364	3
아스코르빈산	39	60	9.0	111	1
초산 칼슘	92	500	5.2	9	1
스테아린산 칼슘	12	30	9.1	132	1
카복시메틸 셀룰로우스	24	125	9.2	136	1
덱스트린	41	60	8.8	106	1
락토우스	23	60	7.7	81	1
스테아린산 납	12	30	9.2	152	1
메틸셀룰로우스	75	60	9.5	134	1
포름알데히드	23	60	9.9	178	1
아스코르빈산 나트륨	23	60	8.4	119	1
스테아린산 나트륨	22	30	8.8	123	1
폴리아크릴마이드	10	250	5.9	12	1
폴리아크릴로니트릴	25	_	8.5	121	1
고밀도폴리에틸렌	⟨10	30	8.0	156	1
폴리프로필렌	25	30	8.4	101	1
요소	13	60	10.2	136	1
폴리비닐아세테이트	32	30	8.6	119	1
폴리비닐알코올	26	60	8.9	128	1
폴리염화비닐	107	200	7.6	46	1

<별표 1. d>

금속 분진

물질	중간크기직경[µm]	최소연소농도[g/m³]	Pmax [bar gauge]	Kst [bar-m/sec]	위험등급
황	20	30	6.8	151	1
알루미늄	29	30	12.4	415	3
황동	18	750	4.1	31	1
카보닐 철	⟨10	125	6.1	111	1
마그네슘	28	30	17.5	508	3
아연	10	250	6.7	125	1

<출처> NFPA 68, Explosion Protection by Deflagration Venting, 2007 Ed. PP 63에서 PP 65까지

<부 록1>

그래프에 의한 폭연방출구 면적 산출 방법

1. 폭연방출구 면적 (A_v) 를 본문 <식 5>를 기반으로 하여 부록 <그림 1>부터 부록 <그림 4>까지를 활용하여 Factor $A \cdot$ Factor $B \cdot$ Factor $C \cdot$ Factor D를 구하여 방출구 면적을 결정할 수 있다.

폭연방출구 면적 (A_v) 은 다음과 같이 각 Factor의 곱으로 구한다.

 $A_v(m^2)$ = Factor A · Factor B · Factor C · Factor D

2. 각 Factor 결정 방법

2.1 Factor A 결정

<그림 1>에서의 Factor A를 구한다. X좌표 K_{st} 값에 따라 도표 상의 P_{stat} 선과 만나는 점에서 Y좌표의 Factor A를 읽으면 된다.

2.2 Factor B 결정

<그림 2>에서 Factor B를 구한다. X좌표는 밀폐공간 등의 체적이며, 체적과 도표상의 선과 만나는 점에서 Y좌표의 Factor B를 읽으면 된다.

2.3 Factor C 결정

<그림 3>에서 구한다. Factor C는 Π = P_{red}/P_{max} 의 비율이다. X좌표는 계산된 Π 이며 Π 과 도표상의 선과 만나는 점에서 Y좌표의 Factor C를 읽으면 된다.

2.4 Factor D 결정

<그림 4>에서 구한다. <그림 4. a>는 X좌표 P_{red} 에 따른 적절한 L/D와 만나는 점에서 Y좌표 Factor D를 읽는다. <그림 4. b.는 X좌표 L/D에 따른 적절한 P_{red} 를 만나는 점에서 Y좌표 Factor D를 읽는다.

<그림 1. a> Factor A 결정(50≤K_{st}≤300)

<그림 1. b> Factor A 결정(300≤K_{st})

<그림 2. c> Factor B 결정(100-1,000m³)

<그림 2. d> Factor B 결정(1,000-10,000m³)

<그림 3. a> Factor C 결정(∏≤0.05)

<그림 3. b> Factor C 결정(0.05≤∏≤0.2)

<그림 4. b> Factor D 결정(선택2)

<출처> NPFA 68, Explosion Protection by Deflagration Venting, 2007 Ed.. PP70, PP71

<부 록 2>

그래프를 활용한 분진폭연방출구 결정 예

- [예제 1] 석유화학공장에서 중합프라스틱 분체를 다음과 같이 저장할 경우 해당용기 에 설치하여야 할 폭연방출구를 그래프를 활용하여 결정하기로 한다.
 - ① $P_{max} = 10 \text{ bar}$
 - ② K_{st} = 350 bar-m/sec
 - $\Im P_{\text{stat}} = 0.2 \text{ bar}$
 - $4 P_{red} = 0.6 bar$
 - \odot V = 25 m³
 - 6 L/D = 3.0

[풀 이]

- ① <그림 1>로부터 Factor A는 0.041
- ② <그림 2>로부터 Factor B는 11
- ③ Π = P_{red}/P_{max} =0.6/10=0.06이므로 <그림 3>으로부터 Factor C는 4.0
- ④ <그림 4>로부터 Factor D는 1.4
- ⑤ 따라서 필요한 폭연방출구 면적은 $A_v(m^2)$ = Factor $A \cdot$ Factor $B \cdot$ Factor $C \cdot$ Factor $D = 0.041 \times 11 \times 4.0 \times 1.4 = 2.5 m^2$ 임·
- [예제 2] 정밀화학 원료공장에서 마그네슘 분체를 다음과 같이 저장할 경우 해당용기 에 설치하여야 할 폭연방출구를 그래프를 활용하여 결정하기로 한다.
 - ① $P_{max} = 17.5 \text{ bar}$
 - ② K_{st} = 508 bar-m/sec
 - \bigcirc P_{stat} = 0.2 bar
 - $4 P_{red} = 0.6 bar$
 - ⑤ $V = 2 \text{ m}^3$
 - \bigcirc L/D = 2.5

[풀 이]

P - 41 - 2015

- ① <그림 1>로부터 Factor A는 0.06
- ② <그림 2>로부터 Factor B는 1.78
- ③ Π = P_{red}/P_{max} =0.6/17.5=0.034이므로 <그림 3>으로부터 Factor C는 5.3
- ④ <그림 4>로부터 Factor D는 1.28
- ⑤ 따라서 필요한 폭연방출구 면적은 $A_v(m^2)$ = Factor $A \cdot$ Factor $B \cdot$ Factor $C \cdot$ Factor $D = 0.06 \times 1.78 \times 5.3 \times 1.28 = 0.724 m^2$ 임.

<부록 참고문헌>

- 1. ASTM E 1226, Standard Test Method for Pressure and Rate of Pressure Rise for Combustible Dusts.
- 2. Ural, E. A. 2005. "Dust Explosion Venting through Ducts." Proc. 39th Annual Loss Prevention Symp., American Institute of Chemical Engineers, Atlanta, GA, April 10–14.
- 3. Task Group report "Zalosh-Larger Vent Area Option, 3, Draft 2."
- 4. Zalosh, R. G., "New Dust Explosion Venting Design Requirements for Turbulent Operating Conditions," presented at 6th International Symposium on the Prevention and Mitigation of Industrial Explosions, Halifax, Nova Scotia, August 2006.