Detección de Riesgo de Abandono Escolar

Descripción de un Estudio y Análisis del Algoritmo

Matilde Cabrera González Alejandro Nuñez Perez

Bibliografía y Agradecimientos

Programa "Data Science for Social Good", Universidad de Chicago: http://www.dssgfellowship.org/

CHICAGO

Entrada del blog de Ana Valdivia donde se comenta el caso:

https://valdilab.wordpress.com/2018/10/03/datos-para-el-bien-comun/

Descripción del Proyecto:

http://www.dssqfellowship.org/project/ident ifying-factors-driving-school-dropout-and-i mproving-the-impact-of-social-programs-in -el-salvador/

Código fuente del Proyecto:

https://github.com/dssg/el-salvador-minedpublic

Descripción del Estudio: Dropouts in El Salvador

Conjunto de Datos de Orígen

- Datos gubernamentales:
 - Encuestas
 - Matrículas
- Diferentes conjuntos:
 - Colegios
 - Profesores
 - Alumnos
 - Programas Sociales

Preprocesamiento de los Datos

- Los datos de partida presentaban muchos defectos:
 - Repartidos en múltiples archivos
 - Formato irregular entre años
- Requirió un preprocesamiento extenso:
 - o Combinación de diferentes fuentes
 - o Etiquetado manual de columnas

Desarrollo de los Modelos

- Diferentes clasificadores:
 - Árboles de decisión
 - Regresión logística
 - Máquinas de soporte vectorial
- Características usadas:
 - Personales
 - Eventuales
 - Colegiales

Figure 5: Feature importance for the best model.

Resultados del Estudio

Con tan solo un **25%** de la población total y datos comprendidos entre los años **2011** y **2015**, se logró identificar, a casi **el triple** de lo que ya lograba identificar el gobierno de *El Salvador*.

Esto es una diferencia significante al modelo anterior, un buen resultado.

Effectiveness of DSSG and MINED model

Number of students that were correctly labeled as dropouts, taking the 4%, 10% and 25% of total population.

Análisis del Algoritmo: ExtraTrees Classifier

Classification And Regression Trees (CART)

- Versátil:
 - o En clasificación: etiqueta moda
 - o En regresión: media de los árboles
- Clasificación en regiones:
 - Condición
 - o Rama
 - Etiqueta
- Muy susceptible a mal ajuste:
 - Early stopping
 - Pruning

Random Decision Forest

- Construye varios CART:
 - Conocimiento reducido
 - Elementos de bootstrapping
- Esquiva el mal ajuste de los CART:
 - Bajo bias
 - Baja variance
- Búsqueda del split óptimo:
 - o Picos en la precisión
 - Alto coste computacional

Ext<u>r</u>aTrees

- Construye varios CART:
 - Conocimiento reducido
 - Split aleatorizado
- Construye sobre Random Forest:
 - Bajo bias
 - Bajo variance
- Mejores tiempos.
 - o Split aleatorio, no óptimo
- Precisión suavizada.
 - Más aleatorizado

Extremely randomized trees

Pierre Geurts · Damien Ernst · Louis Wehenkel

Split_a_node(S)

Input: the local learning subset S corresponding to the node we want to split

Output: a split $[a < a_c]$ or nothing

- If **Stop_split**(S) is TRUE then return nothing.
- Otherwise select K attributes $\{a_1, \ldots, a_K\}$ among all non constant (in S) candidate attributes;
- Draw K splits $\{s_1, \ldots, s_K\}$, where $s_i = \mathbf{Pick_a_random_split}(S, a_i), \forall i = 1, \ldots, K$;
- Return a split s_* such that $Score(s_*, S) = \max_{i=1,...,K} Score(s_i, S)$.

Pick_a_random_split(S,a)

Inputs: a subset S and an attribute a

Output: a split

- Let a_{max}^S and a_{min}^S denote the maximal and minimal value of a in S;
- Draw a random cut-point a_c uniformly in $[a_{\min}^S, a_{\max}^S]$;
- Return the split $[a < a_c]$.

Stop_split(S)

Input: a subset S

Output: a boolean

- If $|S| < n_{\min}$, then return TRUE;
- If all attributes are constant in S, then return TRUE;
- If the output is constant in S, then return TRUE;
- Otherwise, return FALSE.

ExtraTrees (Extremely Randomized Trees)

