# DSO 552: SQL Databases for Business Analysts

Homework 5 (Due 11:59pm PST November 16th, 2020)

## Trojan Entertainment Agency Database

This database manages entertainers, agents, customers, and bookings. Check Figure 1 (on the last page) for more details on the database structure.



Figure 1: Trojan Entertainment Schema

1. (2 points) Provide a count of customers and the number of engagements they have placed where the contract price is in the top quartile of all contract prices.

#### **Expected Result:**

| customerid | top_ | _quartile_ | _engagements |
|------------|------|------------|--------------|
| 10001      |      |            | 3            |
| 10002      |      |            | 4            |
| 10003      |      |            | 1            |
| 10004      |      |            | 3            |
| 10005      |      |            | 3            |
| 10006      |      |            | 5            |
| 10009      |      |            | 1            |
| 10012      |      |            | 2            |
| 10013      |      |            | 2            |
| 10014      |      |            | 4            |
| 10015      |      |            | 3            |

2. (2 points) Whenever entertainers in our agency complete their 10th engagement, a blog post is written about the entertainers and the members. We also give their contractprice for the engagement a 10% bonus. Please list the details of the 10th engagement for each entertainer and the adjusted contracted price.

Expected:

| engagementnumber | startdate  | enddate    | starttime | $\mathbf{stoptime}$ | contractprice | $\mathbf{customerid}$ | agentid |
|------------------|------------|------------|-----------|---------------------|---------------|-----------------------|---------|
| 87               | 2018-01-05 | 2018-01-07 | 16:00:00  | 19:00:00            | 275           | 10007                 | 6       |
| 110              | 2018-02-12 | 2018-02-20 | 15:00:00  | 19:00:00            | 1670          | 10006                 | 8       |
| 115              | 2018-02-20 | 2018-02-23 | 12:00:00  | 18:00:00            | 1490          | 10007                 | 5       |
| 126              | 2018-02-25 | 2018-03-04 | 18:00:00  | 20:00:00            | 1010          | 10009                 | 6       |
| 131              | 2018-03-04 | 2018-03-13 | 15:00:00  | 17:00:00            | 1850          | 10014                 | 1       |

3. (2 points) Show the total revenue generated by our agency at the end of each month. Note that the revenue generated is not the contract price. It is 10% for all engagements typically. However, for entertainers who have at least 10 bookings with us, it is 8% of the contract price.

```
(SELECT * FROM top_entertainers) THEN contractprice * .08

ELSE contractprice * .10 END

AS agency_revers

SUM(CASE

WHEN entertainerid IN (SELECT * FROM top_entertainers)

THEN contractprice * .08

ELSE contractprice * .10 END) OVER

(ORDER BY startdate, engagementnumber) AS running_total

FROM engagements e
```

4. (2 points) Produce a report that lists the top five agents and the top five musical styles in terms of number of engagements. Hint: You'll likely use a UNION in this problem. First find the query to get the top five agents and their counts, then a query to get the top five musical styles and their counts.

```
SELECT 'category' AS type, *
FROM (SELECT ms.stylename AS name,
      COUNT(DISTINCT e.engagementnumber) AS num_engagements
      FROM engagements e
               JOIN entertainer_styles es ON es.entertainerid = e.entertainerid
               JOIN musical_styles ms ON ms.styleid = es.styleid
      GROUP BY 1
      ORDER BY 2 DESC
      LIMIT 5) t1
UNION
SELECT 'agent' AS type, *
FROM (SELECT a.agtfirstname | | ' ' | | a.agtlastname AS agent_name,
COUNT(DISTINCT e.engagementnumber) AS num_engagements
      FROM engagements e
               JOIN agents a ON a.agentid = e.agentid
      GROUP BY 1
      ORDER BY 2 DESC
      LIMIT 5) t2
ORDER BY 3 DESC
```

#### **Expected Result:**

| type     | name             | num_engagements |
|----------|------------------|-----------------|
| category | 60's Music       | 25              |
| category | Country          | 23              |
| category | Contemporary     | 22              |
| category | Standards        | 20              |
| agent    | Carol Viescas    | 19              |
| category | Show Tunes       | 19              |
| agent    | Marianne Wier    | 18              |
| agent    | Karen Smith      | 17              |
| agent    | William Thompson | 16              |
| agent    | Maria Patterson  | 15              |

5. (2 points) We use the first two digits after the area code of a phone number to determine if the number is a landline or a mobile phone number. For example, if a phone number is 234-2191, then the type block to consider is 21. If the type block is greater than 25, it will be a landline phone number. If it is 25 or less, it is a mobile phone number. Classify all agents and customers phone numbers and count the number of landline and mobile numbers.

Hint - First extract the type block from the phone number. With a phone number 827-8102, then mobile block is 81. You'll likely need a UNION here to combine the results from the agents and customers. Finally, the type block you extract may be a text data type. You can cast it to an integer using type\_block::INTEGER.

```
WITH agents_with_area_code AS (
    SELECT LEFT(RIGHT(a.agtphonenumber,
   POSITION('-' IN a.agtphonenumber)), 2) AS type_block
   FROM agents a),
     customers with area code AS (
         SELECT LEFT(RIGHT(c.custphonenumber,
         POSITION('-' IN c.custphonenumber)), 2) AS type_block
         FROM customers c
     )
SELECT CASE WHEN type_block::INT > 25 THEN 'landline' ELSE 'mobile'
END AS phone_types, COUNT(*) AS num_phone_numbers
FROM (
         SELECT *
         FROM agents_with_area_code
         UNION ALL
         SELECT *
         FROM customers_with_area_code) t1
GROUP BY 1
```

#### Expected Result:

| phone_types | num_phone_numbers |
|-------------|-------------------|
| landline    | 10                |
| mobile      | 14                |

6. (2 points) We use the first two digits after the area code of a phone number to determine if the number is a landline or a mobile phone number. For example, if a phone number is 234-2191, then the type block to consider is 21. If the type block is greater than 25, it will be a landline phone number. If it is 25 or less, it is a mobile phone number. Classify all agents and customers phone numbers and count the number of landline and mobile numbers.

Hint - First extract the type block from the phone number. With a phone number 827-8102, then mobile block is 81. You'll likely need a UNION here to combine the results from the agents and customers. Finally, the type block you extract may be a text data type. You can cast it to an integer using type block::INTEGER.

```
SELECT *,

CASE WHEN agentid IN (SELECT * FROM high_performer_agents)

THEN .10 ELSE 0 END AS high_performer_bonus

FROM agent_compensation)

SELECT *, (salary + commission) * (1 + high_performer_bonus)

AS final_compensation

FROM agent_compensation_raw;
```

### **Expected Result**:

| agentid | salary | commission | high_performer_bonus | ${f final\_compensation}$ |
|---------|--------|------------|----------------------|---------------------------|
| 4       | 22000  | 1022.725   | 0.1                  | 25325.00                  |
| 6       | 33000  | 1466.100   | 0.0                  | 34466.10                  |
| 2       | 27000  | 268.800    | 0.0                  | 27268.80                  |
| 7       | 22100  | 372.575    | 0.0                  | 22472.58                  |
| 3       | 30000  | 1240.000   | 0.1                  | 34364.00                  |
| 1       | 35000  | 795.800    | 0.1                  | 39375.38                  |
| 5       | 24500  | 1018.575   | 0.1                  | 28070.43                  |
| 8       | 30000  | 513.000    | 0.0                  | 30513.00                  |