

## What is e-commerce?

- **E-commerce** is the activity of electronically buying or selling products on online services or over the Internet.
- Top 5 e-commerce companies in the world:











- The ones we might know and use:
  - Allegro (18th largest)
  - Etsy (20th largest)
  - Zalando (21st largest)

## Rise of ecommerce

### E-commerce share of total global retail sales from 2015 to 2021



Sources

eMarketer; Website (retailtechnews.com) © Statista 2018

Additional Information:

Worldwide; eMarketer; 2015 to 2017

## Recommendation systems

- "People don't know what they want until you show it to them" Steve Jobs
- A fix for the lack of help by the shops staff or an annoying ad?
- Most commonly evaluates users shopping history and viewing behaviour to recommend things to buy.
- Cross-selling vs upselling.

## Our Project

- Automatic methods for measuring similarity between products on multilevel dimensions
- Taxonomy
- Extracting crucial information from descriptions and titles

Janusz Tracz<sup>1</sup>, Piotr Wójcik<sup>1</sup>, Kalina Jasinska-Kobus<sup>1, 2</sup>, Riccardo Belluzzo<sup>1</sup>, Robert Mroczkowski<sup>1</sup>, Ireneusz Gawlik<sup>1, 3</sup>

<sup>1</sup> ML Research at Allegro.pl

<sup>2</sup> Poznan University of Technology

<sup>3</sup> AGH University of Science and Technology

### Generalized zero-shot multi-class classification

Categorizing instance into multiple classes, some of which have not been part of the model's training data.

### Available data

- Title
- Description
- Category
- List of attributes (attribute name, value, and unit)

## Bi-Encoder architecture

- Products are represented as text
- A previously trained transformed is applied
- A distance between embeddings is calculated as similarity between instances

Used transformer: BERT

Used distance: cosine distance



## Textual representation

Each of the products was represented as a concatenation of:

- title
- attribute values
- attribute units

Description and attribute names were omitted as they deteriorated model performance.

Additionally, an assumption was made that only products from the same category were compared.

## Similarity learning with triplet loss objective

Training data consists of triples in the form of

$$(o, p^+, p^-)$$

with the elements being the anchor, a matching product, and a non-matching product.

Then, the transformer is adjusted to minimize the following loss function:

$$\mathcal{L}(o, p^+, p^-) = \max(0, m + d(\mathcal{E}_{\theta}(o), \mathcal{E}_{\phi}(p^+)) - d(\mathcal{E}_{\theta}(o), \mathcal{E}_{\phi}(p^-)))$$

## Batch construction strategy

In the article, different strategies were considered when selecting the negative match to minimize inactive triplets:

- randomly from a category (CR)
- most similar product from the non-matching products in the sampled batch (BH)
- most similar product from the non-matching products in the entire category (CH)



(a) Active triplet fraction for HerBERT initialised model for different negative item selection strategies.

## Results

|             | Available matches | Products |
|-------------|-------------------|----------|
| CULTURE     | 300K              | 800K     |
| ELECTRONICS | 200K              | 400K     |
| BEAUTY      | 300K              | 200K     |

Table 1: Datasets used for our experiments.

|              | CULTURE | ELECTRONICS | BEAUTY |
|--------------|---------|-------------|--------|
| BOW          | 0.8863  | 0.8032      | 0.7687 |
| HerBERT-NFT  | 0.8206  | 0.6716      | 0.5542 |
| HerBERT      | 0.9550  | 0.8580      | 0.9064 |
| eComBERT-NFT | 0.8208  | 0.6755      | 0.6127 |
| eComBERT     | 0.9777  | 0.8840      | 0.9219 |

Table 2: Test accuracy per each dataset. NFT stands for non-finetuned.

## MULTILINGUAL TRANSFORMERS FOR PRODUCT MATCHING – EXPERIMENTS AND A NEW BENCHMARK IN POLISH

### A PREPRINT

Michał Możdżonek¹, № Anna Wróblewska¹, № Sergiy Tkachuk², № Szymon Łukasik²,³

<sup>1</sup>Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland Email: {michal.mozdzonek,anna.wroblewska1}@pw.edu.pl

<sup>2</sup>Systems Research Institute, Polish Academy of Sciences

ul. Newelska 6, 01-447 Warsaw, Poland

Email: {stkachuk,slukasik}@ibspan.waw.pl

<sup>3</sup>Faculty of Physics and Applied Computer Science, AGH University of Science and Technology

al. Mickiewicza 30, 30-059 Kraków, Poland

Email: slukasik@agh.edu.pl

- Product matching problem
- Transfer learning for data in different languages
- Web Data Commons dataset (4 categories, sizes: small, medium, large)
- Own Polish product matching dataset
- Running pre-trained models and perfomance comparison



Figure 2: The process of creating the Polish PM datasets. In each training set, the ratio of positive to negative samples is 1:3.

- Selecting the title column only and concatenating it with token markers
- HuggingFace Transformers library
- Two types of models: : mBERT and XLM-RoBERTa
- Pre-trained models on Wikipedia articles in about 100 languages
- Models run on both WDC and Polish datasets

Table 7: F1 scores for models trained on English WDC datasets. Mean value and standardized error (confidence level 95%) for each dataset were calculated from **4** samples. For further information on how standardized error was calculated see Section 5.

| dataset<br>type | dataset<br>size | mBERT             | XLM-RoBERTa        | Ditto (reported in Li et al. [2020]) | WDC-Deepmatcher (reported in Peeters et al.) |
|-----------------|-----------------|-------------------|--------------------|--------------------------------------|----------------------------------------------|
| Cameras         | small           | $82.13(\pm 4.70)$ | $81.96(\pm 7.75)$  | 80.89                                | 68.59                                        |
|                 | medium          | $87.86(\pm 2.04)$ | $88.11(\pm 4.22)$  | 88.09                                | 76.53                                        |
|                 | large           | $90.88(\pm 2.28)$ | $92.36(\pm 0.76)$  | 91.23                                | 87.19                                        |
|                 | xlarge          | -                 | -                  | 93.78                                | 89.21                                        |
| Computers       | small           | $86.43(\pm 3.69)$ | $81.10(\pm 13.40)$ | 80.76                                | 70.55                                        |
|                 | medium          | $90.13(\pm 1.89)$ | $88.69(\pm 2.19)$  | 88.62                                | 77.82                                        |
|                 | large           | $92.48(\pm 2.33)$ | $93.71(\pm 0.77)$  | 91.70                                | 89.55                                        |
|                 | xlarge          | -                 | -                  | 95.45                                | 90.80                                        |
|                 | small           | $79.20(\pm 7.89)$ | $74.98(\pm 13.36)$ | 75.89                                | 73.86                                        |
| Shoes           | medium          | $84.11(\pm 3.40)$ | $81.30(\pm 8.21)$  | 82.66                                | 79.48                                        |
|                 | large           | $90.28(\pm 2.36)$ | $91.26(\pm 2.09)$  | 88.07                                | 90.39                                        |
|                 | xlarge          | -                 | -                  | 90.10                                | 92.61                                        |
| Watches         | small           | $87.31(\pm 1.64)$ | $83.78(\pm 4.38)$  | 85.12                                | 66.32                                        |
|                 | medium          | $91.17(\pm 4.21)$ | $89.50(\pm 3.69)$  | 91.12                                | 79.31                                        |
|                 | large           | $93.52(\pm 2.63)$ | $93.62(\pm 0.67)$  | 95.69                                | 91.28                                        |
|                 | xlarge          | - ′               | -                  | 96.53                                | 93.45                                        |

Table 6: F1 scores for mBERT and XLM-RoBERTa trained on Polish datasets. Mean value and standardized error (confidence level 95%) for each dataset were calculated from **4** samples. For further information on how standardized error was calculated see Section 5.

| dataset type                     | dataset size             | mBERT                                                   | XLM-RoBERTa                                                   |  |
|----------------------------------|--------------------------|---------------------------------------------------------|---------------------------------------------------------------|--|
| Household chemistry (pl. chemia) | small<br>medium<br>large | $85.73(\pm 1.89) \\ 90.78(\pm 3.03) \\ 93.25(\pm 1.77)$ | $83.15(\pm 4.15)$<br>$89.03(\pm 5.96)$<br>$92.52(\pm 1.77)$   |  |
| Drinks (pl. napoje)              | small<br>medium<br>large | $85.17(\pm 1.61) 88.98(\pm 2.63) 89.39(\pm 2.12)$       | 84.43(±7.16)<br>88.44(±2.88)<br><b>89.93</b> (± <b>3.99</b> ) |  |
| All                              | small<br>medium<br>large | $85.73(\pm 1.96) 90.78(\pm 1.13) 91.41(\pm 3.17)$       | $84.67(\pm 9.03)  88.63(\pm 2.79)  91.61(\pm 1.39)$           |  |

## Solution Concept

## Dataset

## "Web Data Commons - Training Dataset and Gold Standard for Large-Scale Product Matching"

- 16 million English-language offers sourced from a wide array of 79 thousand websites.
- Includes product categorization based on Amazon product data and TF-IDF scores for 26 product categories.
- Each offer was assigned to one of 26 categories



## Dataset

## **GOLD STANDARD**

| Category  | # positive pairs | # negative pairs | % title | % description | % brand | % price | % specTableContent |
|-----------|------------------|------------------|---------|---------------|---------|---------|--------------------|
| Computers | 300              | 800              | 100     | 82            | 42      | 11      | 22                 |
| Cameras   | 300              | 800              | 100     | 73            | 25      | 3       | 7                  |
| Watches   | 300              | 800              | 100     | 71            | 15      | 1       | 7                  |
| Shoes     | 300              | 800              | 100     | 70            | 8       | 1       | 2                  |
| AII       | 1200             | 3200             | 100     | 74            | 23      | 4       | 10                 |

## Proposed approach

### Products data processing

- Exploratory Data Analysis
- Select and/or augument product attributes that will be concatenated to create input for model.

## Implementation of modified product similarity pipeline

- Fine-tune BERT-based model (RoBERTa, DistilBERT) or different embedding model, like BGE (#1 on HF MTEB) using bi-encoder framework.
- Experiment with loss/distance functions.
- Performance tests and evaluation

## THANKYOU FOR ATTENTION