Санкт-Петербургский Национальный Исследовательский Университет ИТМО

Факультет программной инженерии и компьютерной техники

Лабораторная работа №6

По "Основы профессиональной деятельности"
Вариант 14718

Выполнила:

Брель Мария Владимировна Р3107

Преподаватель:

Вербовой Александр Александрович

Оглавление

Задание	. 3
·· Основные этапы вычисления	
1.1 Программа на ассемблере	
1.3 Область допустимых значений	
1.4 Расположение данных в памяти	
1.5 Методика проверки программы	. 7
Вывод	. 9

Задание

Лабораторная работа №6

По выданному преподавателем варианту разработать и исследовать работу комплекса программ обмена данными в режиме прерывания программы. Основная программа должна изменять содержимое заданной ячейки памяти (X), которое должно быть представлено как знаковое число. Область допустимых значений изменения Х должна быть ограничена заданной функцией F(X) и конструктивными особенностями регистра данных ВУ (8-ми битное знаковое представление). Программа обработки прерывания должна выводить на ВУ модифицированное значение Х в соответствии с вариантом задания, а также игнорировать все необрабатываемые прерывания.

Введите номер варианта 14718

- 1. Основная программа должна декрементировать содержимое X (ячейки памяти с адресом 04F₁₆) в цикле.
- 2. Обработчик прерывания должен по нажатию кнопки готовности ВУ-1 осуществлять вывод результата вычисления функции F(X)=-6X-4 на данное ВУ, а по нажатию кнопки готовности ВУ-2 выполнить операцию побитового 'И-НЕ' содержимого РД данного ВУ и Х, результат записать в Х
- 3. Если X оказывается вне ОДЗ при выполнении любой операции по его изменению, то необходимо в X записать максимальное по ОДЗ число.

1.1 Программа на ассемблере


```
ΕI
; Основная программа
main: DI
  LD X
  ΕI
  DEC
  CALL check
  DΙ
  ST X
  ΕI
 JUMP main
; Обработка прерывания ВУ-1
int1: CALL check
  PUSH
  NOP ; Отладочная точка останова
  ASL
  ASL
  ASL
  NEG
  SUB #0x4
  OUT 0x2
 NOP ; Отладочная точка останова
  POP
  IRET
; Обработка прерывания ВУ-2
int2: CALL check
  PUSH
 NOP ; Отладочная точка останова
  CLA
  IN 0x4
  SXTB
  NOP ; Отладочная точка останова
  AND (SP + 0)
  NOT
```

```
NOP ; Отладочная точка останова

CALL check

ST (SP + 0)

NOP ; Отладочная точка останова

POP
IRET

check:
check_min: CMP min

BGE check_max

LD max

JUMP return

check_max: CMP max

BLT return

LD max

return: RET
```

1.2 Область представления

- •Х, min, max знаковое 16-разрядное целое число
- •DR (регистр данных) ВУ-1 и ВУ-2 знаковое 8-разрядное целое число

1.3 Область допустимых значений

```
-128 \le -6X - 4 \le 127
-124 \le -6X \le 131
-22 \le X \le 21
-22 = 1111 \ 1111 \ 1110 \ 1010 = FFEA
21 = 0000 \ 0000 \ 0001 \ 0101 = 003D
Значит X \in [-22; 21]
```

1.4 Расположение данных в памяти

Вектора прерываний: 0х000 - 0х00F

Переменные: 0x04F - 0x051

Основная программа: 0x062 - 0x06А

Подпрограмма обработки прерываний с ВУ-1: 0х06В - 0х076

1.5 Методика проверки программы

Проверка обработки прерываний:

- 1. Загрузить комплекс программ в память БЭВМ
- 2. Во всех точках останова заменить NOP на HLT
- 3. Запустить БЭВМ в режиме РАБОТА
- 4. Ввести в регистр данных ВУ-2 тестовые данные
- 5. Установить готовность ВУ-2
- 6. Дождаться остановки программы
- 7. Запомнить текущее значени АС (считаем что это X)
- 8. Нажать кнопку ПРОДОЛЖЕНИЕ
- 9. Дождаться остановки программы
- 10. Сверить значение в аккумуляторе со значением введенным на ВУ-2
- 11. Нажать кнопку ПРОДОЛЖЕНИЕ
- 12. Дождаться остановки программы
- 13.Записать значение из акумулятора, сравнив его с регистром данных ВУ-2
- 14. Нажать кнопку ПРОДОЛЖЕНИЕ
- 15. Дождаться остановки программы
- 16. Рассчитать ожидаемы результат вычисления выражения NOT((DR BУ-2) AND X) и сравнить его с полученным в аккумуляторе
- 17. Нажать кнопку ПРОДОЛЖЕНИЕ
- 18. Дождаться остановки программы
- 19. Проверить корректность приведения вычисленного значения в ОДЗ
- 20. Нажать кнопку ПРОДОЛЖЕНИЕ
- 21. Установить готовность ВУ-1
- 22. Дожаться остановки программы
- 23. Записать значение переменной X из аккумулятора
- 24. Нажать кнопку ПРОДОЛЖЕНИЕ
- 25. Дождаться остановки программы
- 26. Рассчитать ожидаемый результат вычисления функции F(X) и сравнить его с полученным в аккумуляторе и на ВУ-1

- 1. Загрузить комплекс программы в память БЭВМ
- 2. Запустить БЭВМ в режиме РАБОТА
- 3. Дождаться достижения крайних значений аккумулятора для проверки корректности приведения к ОДЗ

Прерывание в ВУ-2					
DR BY-2	Х до	Х без одз	Х после	Х ожидаемое	
10(16)	000A(10)	FFFF(-1)	FFFF(-1)	FFFF(-1)	
34(52)	FFFE(-2)	FFCB(-34)	0015(21)	0015(21)	
7F(127)	0010(16)	FFEF(-10)	FFEF(-10)	FFEF(-10)	

Прерывание в ВУ-1					
Х	F(X) ожидаемое	F(X) полученное	DR BY-1		
000A(10)	FFAC(-64)	FFAC(-64)	AC(-64)		
FFFC(-3)	001C(28)	001C(28)	001C(28)		
0014(20)	FF5C(-92)	FF5C(-92)	5C(-92)		

Основная программа					
АС до	АС ожидаемая	АС после			
FFEA(-22)	0015(21)	0015(21)			
0014(20)	0013(19)	0013(19)			
0000(0)	FFFF(-1)	FFFF(-1)			

Вывод

В ходе работы я изучила организацию процесса прерывания программы и исследовала порядок функционирования БЭВМ при обмене данными с внешними устройствами в режиме прерывания программы