m21 rt

Joanna Morris

2025-06-20

Setup

Load libraries

1. Set ggplot2 parameters

Load Files and Format Files

Load Files

```
rt_1 <- read_csv("rt_data_chrt1.csv")
rt_2 <- read_csv("rt_data_chrt2.csv")
frq_w <- read_csv("stimuli_cw_frq.csv")
frq_nw <- read_csv("frq_nw.csv")
dmg <- read_csv("demo_lang_vsl_pca.csv")</pre>
```

Format Files

```
# Concatenate datasets
rt <- bind_rows(Hampshire = rt_1,
                 Providence =rt_2,
                 .id = "location")
rt_dmg<- right_join(dmg, rt, join_by(SubjID == subject_nr))  # Join Participant Demographic and Lang Data
rt_dmg <- rt_dmg |> mutate(target = tolower(target))
rt_dmg_cor <- rt_dmg |> filter(correct == 1)
\# Divide into Experimental and Filler Items
rt_fill <- rt_dmg_cor |> filter(str_detect(targ_type, "^FILL"))
rt_exp <- rt_dmg_cor |> filter(!str_detect(targ_type, "^FILL"))
# Define Factors and Conditions
rt_exp_cln <- rt_exp |>
  separate(targ_type, into = c("trial_type", "family_size", "complexity"), sep = "_",
           remove = TRUE,
extra = "drop",
fill = "right")
\# Divide into Words and Nonwords
rt_words <- rt_exp_cln |> filter(trial_type == "CW") |> select(- complexity)
rt_nwords <- rt_exp_cln |> filter(trial_type == "NW")
# Join Stimulus Frequency Data
rt_words_frq <- left_join(rt_words, frq_w, join_by(target)) |>
  select(-cond_trig.y, -word_trig.y) |>
  rename(cond_trig = cond_trig.x, word_trig = word_trig.x) # remove duplicate columns
rt_nwords_frq <- left_join(rt_nwords, frq_nw, join_by(target==word))
# Create a median-split factor for base frequency
rt_words_frq$BF_MedianSplit <- ifelse(</pre>
 rt_words_frq$Log10BF <= median(rt_words_frq$Log10BF, na.rm = TRUE),
  "Low", "High")
rt_words_frq$BF_MedianSplit <- factor(rt_words_frq$BF_MedianSplit, levels = c("Low", "High"))
rt_words_frq$FS_Split <- factor(rt_words_frq$FS_Split)
rt_nwords_frq$BF_Split <- factor(rt_nwords_frq$BF_Split)
rt_nwords_frq$FS_Split <- factor(rt_nwords_frq$FS_Split)
```

```
# Divide into cohorts
rt_words_1 <- rt_words_frq |> filter(location == "Hampshire") |> select(- location) rt_words_2 <- rt_words_frq |> filter(location == "Providence") |> select(- location)
rt_nwords_1 <- rt_nwords_frq |> filter(location == "Hampshire") |> select(- location)
rt_nwords_2 <- rt_nwords_frq |> filter(location == "Providence") |> select(- location)
# str(rt_words_1)
```

Analyse Data

Plot RT distributions

Is Base Frequency Skewed

. .

ANOVA Words

Use complete.cases() to find which rows had missing data in the model-relevant variables:

Standardize the predictors

```
rt_words_1_cmpl$Log10BF_std <- as.numeric(scale(rt_words_1_cmpl$Log10BF, center = TRUE, scale = TRUE))
rt_words_1_cmpl$FS_std <- as.numeric(scale(rt_words_1_cmpl$FS, center = TRUE, scale = TRUE))
rt_words_1_cmpl$Log10WF_std <- as.numeric(scale(rt_words_1_cmpl$Log10WF, center = TRUE, scale = TRUE))
rt_words_1_cmpl$Dim.2_std <- as.numeric(scale(rt_words_1_cmpl$Dim.2, center = TRUE, scale = TRUE))
```

Anova with Continuous Log10BF

```
anova_model_1 <- mixed(
   InvRT ~ Log10BF_std * FS_Split * lang_type_ortho + (1 | SubjID),
   data = rt_words_1_cmpl,
   method = "KR"
)
anova_model_1</pre>
```

```
|| Mixed Model Anova Table (Type 3 tests, KR-method)
ш
|| Model: InvRT ~ Log10BF_std * FS_Split * lang_type_ortho + (1 | SubjID)
|| Data: rt_words_1_cmpl
                                                  df
||
|| 1
                                   Effect
                                                             F p.value
                              Log10BF_std 1, 5792.69 41.88 ***
                                                                  < .001
                                 FS_Split 1, 5792.31 23.20 ***
11 2
                                                                  < .001
|| 3
                                                          2.40
                          lang_type_ortho 1, 64.02
                                                                   .127
11 4
                     Log10BF_std:FS_Split 1, 5792.52
                                                          0.03
                                                                   .854
              Log10BF_std:lang_type_ortho 1, 5792.69
11 5
                                                         4.76 *
                                                                   .029
                 FS_Split:lang_type_ortho 1, 5792.31
                                                          1.00
                                                                   .318
|| 7 Log10BF_std:FS_Split:lang_type_ortho 1, 5792.52
                                                          0.24
                                                                   .623
|| Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
summary(anova_model_1)
```

```
|| Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
|| Formula: InvRT ~ Log10BF_std * FS_Split * lang_type_ortho + (1 | SubjID)
|| Data: data
```

```
|| REML criterion at convergence: -75938.7
\Pi
  Scaled residuals:
            1Q Median
                          3Q
     Min
                                Max
  -4.265 -0.536 -0.017 0.527 38.870
11
11
| | Random effects:
  Groups
           Name
                       Variance Std.Dev.
11
            (Intercept) 7.771e-08 0.0002788
   SubjID
11
                       1.293e-07 0.0003596
   Residual
  Number of obs: 5864, groups: SubjID, 66
  Fixed effects:
\Pi
                                         Estimate Std. Error
                                                                    df t value Pr(>|t|)
                                        1.734e-03 3.504e-05 6.390e+01 49.479 < 2e-16 ***
  (Intercept)
|| Log10BF_std
                                                  4.950e-06 5.793e+03
                                        3.204e-05
                                                                        6.472 1.05e-10 ***
                                                             5.792e+03
                                                                        4.816 1.50e-06 ***
|| FS_Split1
                                        2.301e-05
                                                  4.777e-06
|| lang_type_ortho1
                                        5.423e-05
                                                  3.504e-05
                                                             6.390e+01
                                                                        1.548
                                                                                0.1266
|| Log10BF_std:FS_Split1
                                        9.119e-07
                                                  4.948e-06
                                                             5.792e+03
                                                                        0.184
                                                                                0.8538
|| Log10BF_std:lang_type_ortho1
                                        1.079e-05
                                                  4.950e-06
                                                             5.793e+03
                                                                        2.181
                                                                                0.0293
|| FS_Split1:lang_type_ortho1
                                       -4.767e-06 4.777e-06 5.792e+03
                                                                       -0.998
                                                                                0.3183
0.492
                                                                                0.6227
|| Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
|| Correlation of Fixed Effects:
                (Intr) Lg10BF_ FS_Sp1 lng__1 Lg10BF_:FS_S1 L10BF_:_ FS_S1:
|| Log10BF_std
                -0.003
|| FS_Split1
                0.001 -0.079
|| lng_typ_rt1
                0.152 0.000
                               0.002
|| Lg10BF_:FS_S1 -0.011 0.249
                              -0.020 -0.002
|| Lg10BF_:__1
                0.000 0.188
                              -0.013 -0.003 0.068
|| FS_Spl1:__1
                0.002 -0.013
                               0.160 0.001 -0.004
                                                        -0.079
|| L10BF_:FS_S1: -0.002  0.068
                              -0.004 -0.011 0.188
                                                         0.249
                                                                -0.020
```

Main Findings:

Effect	df	F	p.value
Log10BF_std FS_Split	1, 5792.69 1, 5792.31	41.88 *** 23.20 ***	<.001 <.001
Log10BF_std:lang_type_ortho	1,5792.69	4.76 *	.029

Data show that as Log10BF increases (e.g., more frequent or predictable words), processing becomes faster (inverse RT goes up \rightarrow RT goes down).

Statistical models were fit using inverse response time (1/RT) to capture processing speed, but all reported means and figures are back-transformed to milliseconds for interpretability.

Plots Plotting Processing Efficiency

Plotting Latency To plot predicted values in milliseconds (RT) instead of inverse RT, you must:

- 1. Predict inverse RT values from the model
- 2. Back-transform to milliseconds with RT_ms = 1000 / InvRT
- 3. Plot the transformed values

When using ggeffects (or emmeans) with models fit using afex::mixed(). The mixed() function wraps lmer() from lme4, but the result isn't always fully compatible with tools like ggeffects because of the extra layers (especially when using Kenward-Roger or parametric bootstrap methods for inference).

Because we are only using mixed() for the Kenward-Roger p-values but don't need it for prediction, refit our model with lmer():

Option 1: Collapsed across Family Size ...

Option 2: LogBR x Language Type as a function of FS $\,\dots$

Option 3: LogBR x Language Type as a function of FS (Faceted Plot) ...

Predicted RT by Language Type and FS Split

Interpret Interactions

```
# Marginal trends (i.e., slopes of Log10BF for each language group)
emtrends(anova_model_1, ~ lang_type_ortho, var = "Log10BF_std")
```

```
Contrast Slopes
    lang_type_ortho Log10BF_std.trend
                                                  SE df lower.CL upper.CL
                                  4.28e-05 7.63e-06 5793 2.79e-05 5.78e-05
    High Orthographic
П
    Low Orthographic
                                  2.12e-05 6.31e-06 5793 8.88e-06 3.36e-05
\Pi
|\ |\ | Results are averaged over the levels of: FS_Split
|| Degrees-of-freedom method: kenward-roger
|| Confidence level used: 0.95
# Formal contrast of slopes
emtrends(anova_model_1, pairwise ~ lang_type_ortho, var = "Log10BF_std")
|| $emtrends
SE df lower.CL upper.CL
                                  4.28e-05 7.63e-06 5793 2.79e-05 5.78e-05
    High Orthographic
                                  2.12e-05 6.31e-06 5793 8.88e-06 3.36e-05
   Low Orthographic
ш
|| Results are averaged over the levels of: FS_Split
|| Degrees-of-freedom method: kenward-roger
|| Confidence level used: 0.95
11
|| $contrasts
                                                            SE df t.ratio p.value
    contrast
                                             estimate
   High Orthographic - Low Orthographic 2.16e-05 9.9e-06 5793 2.181 0.0293
11
\ensuremath{\mid}\ensuremath{\mid} Results are averaged over the levels of: FS_Split
|| Degrees-of-freedom method: kenward-roger
library(emmeans)
# Estimate inverse RT at mean frequency for each group
emm <- emmeans(anova_model_lmer, ~ lang_type_ortho, at = list(Log10BF_std = 0))</pre>
emm_df <- as.data.frame(emm)
\# Back-transform to ms
emm_df$RT_ms <- 1 / emm_df$emmean
print(emm_df)
```

Get ms estimates

```
|| lang type ortho
                                         SE
                                               df
                                                     lower.CL
                                                               upper.CL
                         emmean
   High Orthographic 0.001788147 5.318219e-05 64.02 0.001681904 0.001894390 559.2381
|| Low Orthographic 0.001679678 4.564910e-05 64.01 0.001588483 0.001770872 595.3523
|| Results are averaged over the levels of: FS_Split
|| Degrees-of-freedom method: kenward-roger
|| Confidence level used: 0.95
Other ANOVA Models
# Anova with Continuous Log10BF AND Continous FS
anova_model_2 <- mixed(
 InvRT ~ Log10BF_std * FS * lang_type_ortho + (1 | SubjID),
  data = rt_words_1_cmpl,
 method = "KR"
)
anova_model_2
|| Mixed Model Anova Table (Type 3 tests, KR-method)
|| Model: InvRT ~ Log10BF_std * FS * lang_type_ortho + (1 | SubjID)
|| Data: rt_words_1_cmpl
                                                    F p.value
                            Effect
                                          df
                       Log10BF_std 1, 5792.43 13.78 ***
11 1
                                                        <.001
11 2
                              FS 1, 5792.32 9.15 **
                                                         .003
11 3
                   lang_type_ortho 1, 70.20
                                               2.97 +
                                                         .089
|| 4
                   Log10BF_std:FS 1, 5792.35
                                                 0.02
                                                         .902
|| 5
      Log10BF_std:lang_type_ortho 1, 5792.43
                                                 0.32
                                                         .570
               FS:lang_type_ortho 1, 5792.32
                                                 1.07
                                                         .300
|| 7 Log10BF_std:FS:lang_type_ortho 1, 5792.35
                                                 0.53
                                                         .469
|| Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
summary(anova_model_2)
|| Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
|| Formula: InvRT ~ Log10BF_std * FS * lang_type_ortho + (1 | SubjID)
     Data: data
11
|| REML criterion at convergence: -75909.6
11
|| Scaled residuals:
    Min 10 Median
                         30
  -4.289 -0.536 -0.012 0.525 38.796
\Pi
|| Random effects:
  Groups Name Variance Std.Dev.
SubjID (Intercept) 7.778e-08 0.0002789
|| Residual
                       1.296e-07 0.0003601
|| Number of obs: 5864, groups: SubjID, 66
|| Fixed effects:
                                   Estimate Std. Error
                                                             df t value Pr(>|t|)
|| (Intercept)
                                  1.711e-03 3.588e-05 7.008e+01 47.676 < 2e-16 ***
  Log10BF_std
                                  3.266e-05 8.798e-06 5.792e+03 3.712 0.000207 ***
|| FS
                                  2.250e-06 7.440e-07 5.792e+03 3.024 0.002503 **
|| lang_type_ortho1
                                  6.185e-05 3.588e-05 7.008e+01
                                                                  1.724 0.089165
|| Log10BF_std:FS
                                 -1.068e-07 8.677e-07 5.792e+03 -0.123 0.902013
|| Log10BF_std:lang_type_ortho1
                                  5.003e-06 8.798e-06 5.792e+03 0.569 0.569624
                                 -7.705e-07 7.440e-07 5.792e+03 -1.036 0.300396
|| FS:lang_type_ortho1
|| Log10BF_std:FS:lang_type_ortho1 6.288e-07 8.677e-07 5.792e+03
                                                                 0.725 0.468733
|| Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
|| Correlation of Fixed Effects:
             (Intr) Lg10BF_ FS
                                   lng__1 Lg10BF_:FS L10BF_:_ FS:__1
|| Log10BF_std -0.010
|| FS
            -0.212 0.122
|| Lg10BF_s:FS  0.029 -0.837 -0.223  0.005
|| Lg10BF_:__1 -0.002 0.170 0.019 -0.010 -0.142
0.122
                                                    -0.837
# Anova with Categorical Log10BF and Categorial Log10BF
anova_model_2 <- mixed(
 InvRT ~ BF_MedianSplit * FS_Split * lang_type_ortho + (1 | SubjID),
  data = rt_words_1_cmpl,
 method = "KR"
```

anova_model_2

```
|| Mixed Model Anova Table (Type 3 tests, KR-method)
  Model: InvRT ~ BF_MedianSplit * FS_Split * lang_type_ortho + (1 | SubjID)
\Pi
|| Data: rt_words_1_cmpl
                                                df
                                                         F p.value
                                  Effect
11
11 1
                           BF_MedianSplit 1, 5792.35 34.10 ***
                                                             < .001
                                FS_Split 1, 5792.32 27.80 ***
11 2
                                                              <.001
11.3
                          lang type ortho 1, 64.00
                                                       2.43
                                                              .124
                   BF_MedianSplit:FS_Split 1, 5792.32
                                                     4.69 *
                                                               .030
11 4
                                                     1.38
II 5
            BF_MedianSplit:lang_type_ortho 1, 5792.35
                                                              .239
                 FS_Split:lang_type_ortho 1, 5792.32
                                                       0.70
116
                                                               .404
|| 7 BF_MedianSplit:FS_Split:lang_type_ortho 1, 5792.32
                                                       0.33
                                                               .566
|| Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
summary(anova_model_2)
|| Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
|| Formula: InvRT ~ BF_MedianSplit * FS_Split * lang_type_ortho + (1 | SubjID)
П
     Data: data
|| REML criterion at convergence: -75932.5
|| Scaled residuals:
    Min 10 Median
                         30
  -4.245 -0.535 -0.007 0.526 38.831
11
\Pi
| | Random effects:
                      Variance Std.Dev.
11
  Groups Name
   SubjID (Intercept) 7.741e-08 0.0002782
                      1.295e-07 0.0003598
  Residual
|| Number of obs: 5864, groups: SubjID, 66
II Fixed effects:
11
                                           Estimate Std. Error
                                                                    df t value Pr(>|t|)
                                          1.734e-03 3.498e-05 6.389e+01 49.586 < 2e-16 ***
| | (Intercept)
|| BF_MedianSplit1
                                          -2.782e-05 4.765e-06 5.792e+03 -5.839 5.52e-09 ***
                                          2.512e-05 4.765e-06 5.792e+03 5.272 1.40e-07 ***
|| FS Split1
                                          5.450e-05 3.498e-05 6.389e+01
|| lang_type_ortho1
                                                                         1.558 0.1241
|| BF_MedianSplit1:FS_Split1
                                          1.031e-05 4.765e-06 5.792e+03 2.165
                                                                                 0.0305 >
|| BF_MedianSplit1:lang_type_ortho1
                                         -5.607e-06 4.765e-06
                                                              5.792e+03 -1.177
                                                                                 0.2393
|| FS_Split1:lang_type_ortho1
                                         -3.976e-06 4.765e-06 5.792e+03 -0.835
                                                                                 0.4040
|| BF_MedianSplit1:FS_Split1:lang_type_ortho1 2.738e-06 4.765e-06 5.792e+03
                                                                         0.575
                                                                                 0.5656
|| Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
|| Correlation of Fixed Effects:
               (Intr) BF_MdS1 FS_Sp1 lng__1 BF_MdS1:FS_S1 BF_MS1:_ FS_S1:
|| BF_MdnSplt1
               -0.001
|| FS_Split1
               0.001 0.007
|| lng_typ_rt1
                0.152 -0.001
                             0.002
0.007
0.006
                                                              -0.011
```

ANOVA Non-Words

Use complete.cases() to find which rows had missing data in the model-relevant variables:

Standardize the predictors

```
rt_nwords_1_cmpl$LogBF_std <- as.numeric(scale(rt_nwords_1_cmpl$LogBF, center = TRUE, scale = TRUE))
rt_nwords_1_cmpl$FS_std <- as.numeric(scale(rt_nwords_1_cmpl$FS, center = TRUE, scale = TRUE))
rt_nwords_1_cmpl$BF_std <- as.numeric(scale(rt_nwords_1_cmpl$BF, center = TRUE, scale = TRUE))
rt_nwords_1_cmpl$Dim.2_std <- as.numeric(scale(rt_nwords_1_cmpl$Dim.2, center = TRUE, scale = TRUE))</pre>
```

Anova with Continuous Log10BF

```
anova_model_2 <- mixed(
   InvRT ~ LogBF_std * FS_Split * lang_type_ortho + (1 | SubjID),
   data = rt_nwords_1_cmpl,
   method = "KR"
)
anova_model_2</pre>
```

```
|| Mixed Model Anova Table (Type 3 tests, KR-method)
||
|| Model: InvRT ~ LogBF_std * FS_Split * lang_type_ortho + (1 | SubjID)
```

```
Effect
                                                    F p.value
                                          df
|| 1
                          LogBF std 1, 4599.88 18.20 ***
                                                        <.001
11 2
                           FS_Split 1, 4599.59
                                                 0.45
                                                         .503
|| 3
                     lang_type_ortho 1, 64.77
                                                 2.08
                                                         .154
                  LogBF_std:FS_Split 1, 4599.56
11 4
                                                2.71 +
                                                         .100
            LogBF_std:lang_type_ortho 1, 4599.88
11 5
                                                 0.00
                                                         .963
116
             FS_Split:lang_type_ortho 1, 4599.59
                                                 1.95
                                                         .163
|| 7 LogBF_std:FS_Split:lang_type_ortho 1, 4599.56
                                                 0.08
                                                         .771
|| Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
summary(anova_model_2)
|| Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
|| Formula: InvRT ~ LogBF_std * FS_Split * lang_type_ortho + (1 | SubjID)
     Data: data
П
|| REML criterion at convergence: -64447.7
П
П
  Scaled residuals:
     Min
             1Q Median
                            3Q
П
                                  Max
  -4.5501 -0.6812 -0.0551 0.6288 6.5563
ш
| | Random effects:
  Groups Name Variance 500.002165
SubjID (Intercept) 4.687e-08 0.0002165
11
                      5.428e-08 0.0002330
|| Number of obs: 4671, groups: SubjID, 66
|| Fixed effects:
                                     Estimate Std. Error
                                                              df t value Pr(>|t|)
11
                                    1.466e-03 2.729e-05 6.309e+01 53.731 < 2e-16 ***
| | (Intercept)
|| LogBF_std
                                   -1.747e-05 4.096e-06 4.598e+03
                                                                 -4.266 2.03e-05 ***
|| FS_Split1
                                    2.730e-06 4.072e-06 4.598e+03
                                                                  0.670
                                                                         0.5026
|| lang_type_ortho1
|| LogBF_std:FS_Split1
                                    3.940e-05 2.729e-05 6.309e+01
                                                                  1.443
                                                                         0.1538
                                    6.736e-06 4.093e-06 4.598e+03
                                                                  1.646
                                                                         0.0999
|| LogBF_std:lang_type_ortho1
                                                                 -0.046
                                             4.096e-06 4.598e+03
                                   -1.894e-07
                                                                         0.9631
                                    5.684e-06 4.072e-06 4.598e+03
|| FS_Split1:lang_type_ortho1
                                                                  1.396
                                                                         0.1629
0.291
                                                                         0.7709
|| Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
\Pi
|| Correlation of Fixed Effects:
             (Intr) LgBF_s FS_Sp1 lng__1 LgBF_:FS_S1 LBF_:_ FS_S1:
  LogBF_std
             -0.013
|| FS_Split1
             0.011 -0.535
|| FS_Spl1:__1 -0.001 -0.065 0.119 0.011 0.001
                                                -0.535
0.136 -0.087
Main Findings:
```

|| Data: rt nwords 1 cmpl

Effect	df	F	p.value
Log10BF_std	1, 4599.88	18.20 ***	<.001

Data show that as Log10BF increases (e.g., more frequent or predictable words), processing becomes faster (inverse RT goes up \rightarrow RT goes down).

Statistical models were fit using inverse response time (1/RT) to capture processing speed, but all reported means and figures are back-transformed to milliseconds for interpretability.

Follow up analyses

```
emtrends(anova_model_2, ~1, var = "LogBF_std")
```

Report Estimated Trend (Slope) for LogBF

```
|| 1
           LogBF_std.trend
                                SE df lower.CL upper.CL
                 -1.75e-05 4.1e-06 4600 -2.55e-05 -9.44e-06
\Pi
  overall
11
|| Results are averaged over the levels of: FS_Split, lang_type_ortho
|| Degrees-of-freedom method: kenward-roger
|| Confidence level used: 0.95
```

```
# estimate the slope of LogBF at each level of FS_Split:
emtrends(anova_model_2, ~ FS_Split, var = "LogBF_std")
```

Probe the Marginal LogBF \times FS_Split Interaction

```
|| FS_Split LogBF_std.trend
                                 SE df lower.CL upper.CL
                  -1.07e-05 6.17e-06 4600 -2.28e-05 1.37e-06
|| L
                  -2.42e-05 5.38e-06 4600 -3.48e-05 -1.37e-05
II S
11
|| Results are averaged over the levels of: lang_type_ortho
|| Degrees-of-freedom method: kenward-roger
|| Confidence level used: 0.95
# compare the two trends:
emtrends(anova_model_2, pairwise ~ FS_Split, var = "LogBF_std")
|| $emtrends
                                 SE df lower.CL upper.CL
|| FS_Split LogBF_std.trend
               -1.07e-05 6.17e-06 4600 -2.28e-05 1.37e-06
II L
                  -2.42e-05 5.38e-06 4600 -3.48e-05 -1.37e-05
II S
11
|| Results are averaged over the levels of: lang_type_ortho
|| Degrees-of-freedom method: kenward-roger
|| Confidence level used: 0.95
|| $contrasts
                         SE df t.ratio p.value
|| contrast estimate
|| L - S 1.35e-05 8.19e-06 4600 1.646 0.0999
|| Results are averaged over the levels of: lang_type_ortho
|| Degrees-of-freedom method: kenward-roger
# Estimate marginal means of inverse RT at LogBF_std = 0
emm <- emmeans(anova_model_2, ~ FS_Split, at = list(LogBF_std = 0))</pre>
emm_df <- as.data.frame(emm)</pre>
# Back-transform to milliseconds
emm_df$RT_ms <- 1 / emm_df$emmean
emm_df$CI_low_ms <- 1 / emm_df$upper.CL # Note: upper bound of InvRT → lower RT
emm_df$CI_high_ms <- 1 / emm_df$lower.CL # lower bound of InvRT - upper RT
print(emm_df)
|| FS_Split
                                 SE df lower.CL upper.CL
                                                                   RT_ms CI_low_ms CI_high_ms
                 emmean
            0.001469183 2.763687e-05 68.10 0.001414036 0.001524330 680.6503 656.0258 707.1956
|| L
II S
            0.001463722 2.755216e-05 67.27 0.001408732 0.001518713 683.1896 658.4523 709.8581
|| Results are averaged over the levels of: lang_type_ortho
|| Degrees-of-freedom method: kenward-roger
|| Confidence level used: 0.95
```

Plots Plotting Processing Efficiency

Interaction: LogBF x Language Type

Plotting Latency To plot predicted values in milliseconds (RT) instead of inverse RT, you must: 1. Predict inverse RT values from the model 2. Back-transform to milliseconds with RT_ms = 1000 / InvRT 3. Plot the transformed values

When using ggeffects (or emmeans) with models fit using afex::mixed(). The mixed() function wraps lmer() from lme4, but the result isn't always fully compatible with tools like ggeffects because of the extra layers (especially when using Kenward-Roger or parametric bootstrap methods for inference).

Because we are only using mixed() for the Kenward-Roger p-values but don't need it for prediction, refit our model with lmer():

Option 1: Collapsed across Family Size

Effect of LogBF × Language Type on R

Option 2: LogBR x Language Type as a function of FS Effect of LogBF \times Language Type on RT:

Predicted RT by Language

Option 3: LogBR x Language Type as a function of FS (Faceted Plot)