NuevasExploraciones

Juan C. Correa

3/18/2021

1. Introducción

Pantaleon ha hecho un gran esfuerzo por aumentar la producción de caña y azúcar en el último año y los datos nos alegran al mostrar el comportamiento estadístico logrado en la gestión de los últimos 12 meses. En este informe, nos concentramos en presentar algunos hechos relevantes de la producción en Pantaleon a partir del siguiente pool de variables:

- TCH (Toneladas de Caña por Hectárea)
- TERCIO
- rendimiento
- Madurante
- Cuadrante
- grup_var
- Premadurante

```
library(readxl)
AOV <- read_excel("Documents/GitHub/Pantaleon/PantaleonData4.xlsx")</pre>
```

```
## New names:
## * TOTAL -> TOTAL...23
## * CONTAR -> CONTAR...24
## * edad -> edad...33
## * edad -> edad...39
## * TOTAL -> TOTAL...88
## * ...
DATOS \leftarrow AOV[c(7, 10, 19, 42, 43, 54, 67, 68)]
variable.names(DATOS)
## [1] "TCH"
                       "rendimiento"
                                       "Cuadrante"
                                                        "grup_var"
                                                                        "Status"
## [6] "TERCIO"
                       "Madurante"
                                       "Premadurante"
```

2. Toneladas de Caña por Hectárea (TCH)

Una de las variable clave de la producción en Pantaleon es el total de toneladas de caña por hectárea que se produce en cada fina o lote. Acá mostramos cómo fue el comportamiento estadístico de TCH en general. La producción mínima observada fue de 50.97, la máxima fue de 181.81 y la producción promedio alcanzó un total de 102.91 toneladas por hectárea.

```
summary(DATOS$TCH)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 50.97 88.69 102.50 102.91 116.83 181.81
```

Histogram of DATOS\$TCH

La variable TCH se comportó de manera diferente según el cuadrante en el que se cosechó. La siguiente gráfica nos presenta este comportamiento diferencial.

```
library(ggplot2)
library(ggridges)
ggplot(DATOS,
aes(x=TCH, y=Cuadrante)) +
geom_density_ridges(fill="green", alpha = 0.4) +
ylab("Cuadrante") + xlab("TCH") +
theme(axis.text.y = element_text(family="Arial", face="bold", colour="black", size=rel(1))) +
theme(axis.text.x = element_text(family="Arial", face="bold", colour="black", size=rel(1))) +
theme_light()
```

Picking joint bandwidth of 6.27

library(psych)

```
##
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
##
## %+%, alpha
describeBy(DATOS$TCH, group = DATOS$Cuadrante, mat = TRUE, digits =0)
## item group1 vars n mean sd median trimmed mad min max
## X11 1 CENTRO ALTO 1 229 98 20 98 98 18 52 161
```

##		item	g	roup1	vars	n	mean	sd	median	trimmed	mad	min	max
##	X11	1	CENTRO	ALTO	1	229	98	20	98	98	18	52	161
##	X12	2	CENTRO	BAJO	1	296	106	19	106	106	19	53	162
##	X13	3	CENTRO ESTE	ALTO	1	136	99	19	99	99	19	61	156
##	X14	4	CENTRO ESTE LI	TORAL	1	51	125	20	124	125	19	81	177
##	X15	5	CENTRO ESTE I	MEDIO	1	65	93	22	93	93	25	51	145
##	X16	6	CENTRO LI	TORAL	1	109	113	20	111	112	18	61	168
##	X17	7	CENTRO I	MEDIO	1	337	98	18	98	98	16	52	170
##	X18	8	CENTRO OESTE	BAJO	1	159	100	21	100	100	23	51	155
##	X19	9 (CENTRO OESTE LI	TORAL	1	18	124	12	122	124	12	98	141
##	X110	10	CENTRO OESTE I	MEDIO	1	91	100	20	100	100	17	52	157
##	X111	11	ESTE LI	TORAL	1	39	130	16	130	129	16	97	182
##	range skew kurtosis se												
##	X11	109	0 0	1									
##	X12	109	0 0	1									
##	X13	95	0 0	2									
##	X14	96	0 0	3									

```
## X15
            94
                           -1
                                2
## X16
          106
                  0
                            0
## X17
                            1
          118
                  1
                                1
## X18
                                2
           104
                  0
                           -1
## X19
            42
                  0
                           -1
                                3
## X110
          105
                  0
                            0
                                2
## X111
            85
                            1
```

Resulta evidente que el total de TCH muestra una distribución estadística diferente según su cuadrante. Sin embargo, desde el punto de vista estadístico estas diferencias resultan ser estadísticamente significativas (F = 25.77, df = 10, p < 2e-16); dicho de otra manera, las diferencias observadas en el TCH por cuadrante son importantes o meritorias de mayor rigor en términos de calidad o volumen de producción.

```
modelo1 <- aov(DATOS$TCH ~ DATOS$Cuadrante)</pre>
summary(modelo1)
##
                     Df Sum Sq Mean Sq F value Pr(>F)
                     10 96062
                                  9606
                                         25.77 <2e-16 ***
## DATOS$Cuadrante
## Residuals
                   1519 566178
                                   373
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
library(e1071)
skewness(modelo1$residuals)
## [1] 0.2450868
kurtosis(modelo1$residuals)
## [1] 0.2615575
```

[1] 0.2511583

skewness(DATOS\$TCH)