LECTURE 2

September 8, 2023

1. Equivalence Relations

In the previous lecture, we started talking about the equivalence relations.

DEFINITION 1.1. Let X be a nonempty set. A binary relation " \sim " on X is called an *equivalence relation* if the following properties hold:

- (Reflexivity) For all $x \in X$, $x \sim x$.
- (Symmetry) For all $x, y \in X$, if $x \sim y$, then $y \sim x$.
- (Transitivity) For all $x, y, z \in X$, if $x \sim y$ and $y \sim z$, then $x \sim z$.

EXAMPLE 1.2. Let $n \in \mathbb{N}$ and let $x, y \in \mathbb{Z}$. We say that x is congruent to y modulo n and write $x \equiv y \mod n$ if x - y is an integer multiple of n, i.e. $n \mid x - y$, or there exists an integer $k \in \mathbb{Z}$ such that x - y = kn.

For example, if we consider $7 \equiv 17 \mod 5$, then this congruence is true since $7 - 17 = -10 = (-2) \cdot 5$.

Using Definition 1.1 we will show that $x \equiv y \mod n$ is an equivalence relation.

First, showing reflexivity, let $x \in \mathbb{Z}$ be arbitrary. Then

$$x - x = 0 \cdot n \Rightarrow x \equiv x \mod n$$

Therefore, congruence modulo n is reflexive.

Next, showing symmetry, let $x,y\in\mathbb{Z}$ be arbitrary. Then there exists a $k\in\mathbb{Z}$ such that

$$x - y = kn \Rightarrow y - x = -k \cdot n \Rightarrow y \equiv x \mod n$$

Therefore, congruence modulo n is symmetric.

Finally, showing transitivity, since $x \equiv y \mod n$, there exists an integer $k_0 \in \mathbb{Z}$ such that $x - y = k_0 n$. Similarly, since $y \equiv z \mod n$, there exists an integer $k_1 \in \mathbb{Z}$ such that $y - z = k_1 n$. Now adding the two equations above, we have

$$x - z = k_0 n + k_1 n = (k_0 + k_1)n \Rightarrow x \equiv z \mod n$$

Therefore, congruence modulo n is transitive, and hence, congruence modulo n is an equivalence relation.

EXAMPLE 1.3. Consider the set $X = \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$. Define " \sim " on X as follows: If $(p,q), (r,s) \in X$, then $(p,q) \sim (r,s)$ if ps = qr. This is an equivalence relation.

For example, consider $(3,2) \sim (9,6)$. Then these are equivalent since $3 \cdot 6 = 2 \cdot 9 = 18$.

As an exercise, show that \sim is reflexive and symmetric. We will show that \sim is transitive.

Consider three pairs $(p,q), (r,s), (u,v) \in X$ such that $(p,q) \sim (r,s)$ and $(r,s) \sim (u,v)$. Then this implies that ps = qr and rv = su. We want to show that $(p,q) \sim (u,v)$, that is, pv = qu. Let us multiply the first equation by v. Then we would have that pvs = qvr. Here now, we can replace rv = su and so pvs = qsu and since $s \neq 0$, then we would obtain that pv = qu and therefore, $(p,q) \sim (u,v)$.

2. Equivalence Classes

DEFINITION 2.1. Let X be a nonempty set, and let \sim denote an equivalence relation on X. For $x \in X$, we define the *equivalence class* of x as follows:

$$[x] = \{ y \in X : x \sim y \}$$

EXAMPLE 2.2. Take \mathbb{Z} with congruence modulo 5. Say we take $3 \in \mathbb{Z}$, then

[3] =
$$\{3, 8, 13, 18, \dots, -2, -7, \dots\}$$

= $\{k \in \mathbb{Z} : 3 + 5k\}$

EXAMPLE 2.3. Take $X = \mathbb{Z} \setminus (\mathbb{Z} \setminus \{0\})$ with the defined \sim in Example 1.3. Then say we take (2,3). We have

$$\begin{split} [(2,3)] &= \{(2,3), (-2,-3), (4,6), (-4,-6), \ldots\} \\ &= \{k \in \mathbb{Z} : (2k,3k)\} \\ &= \left\{ \text{all pairs } (p,q) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\}) \text{ such that } \frac{p}{q} = \frac{2}{3} \right\} \end{split}$$

Theorem 2.4. Let \sim be an equivalence relation on a set X. Then the equivalence classes of \sim form a partition of X. That is,

- 1. $X = \bigcup_{x \in X} [x]$, i.e. the collection of equivalence classes covers the set X.
- 2. If $x, y \in X$, then either [x] = [y] or $[x] \cap [y] = \emptyset$.

PROOF. (i) Let $x, \in X$ be arbitrary. Then $[x] \subset X$ implies that $\bigcup_{x \in X} [x] \subset X$. We also show $X \subset \bigcup_{x \in X} [x]$. Let $x_0 \in X$ be arbitrary. Then $x_0 \sim x_0$ implies that $x_0 \in [x_0] \subset \bigcup_{x \in X} [x]$ implies that $X \subset \bigcup_{x \in X} [x]$, and hence $X = \bigcup_{x \in X} [x]$.

(ii) Let $x, y \in X$ be arbitrary. If $[x] \cap [y] = \emptyset$, there is nothing to prove. Otherwise, assume that there exists a point $z_0 \in [x] \cap [y]$. We will show that [x] = [y], that is, $[x] \subset [y]$ and $[y] \subset [x]$. To see that $[x] \subset [y]$, let $w \in [x]$ be arbitrary. Then this implies that $x \sim w$. But $z_0 \in [x]$ as well, and so $x \sim z_0$. By these two relations, $w \sim z_0$ by transitivity. Furthermore, $z_0 \in [y]$ as well

and hence, $y \sim z_0$ and hence $w \sim y$ by transitivity once again, implying to $w \in [y]$, as desired.

Example 2.5. Let $X = \mathbb{Z}$ be equipped with the congruence modulo 5. Consider the following equivalence classes:

$$[0] = \{..., -10, -5, 0, 5, 10, ...\}$$

$$[1] = \{..., -9, -4, 1, 6, 11, ...\}$$

$$[2] = \{..., -8, -3, 2, 7, 12, ...\}$$

$$[3] = \{..., -7, -2, 3, 8, 13, ...\}$$

$$[4] = \{..., -6, -1, 4, 9, 14, ...\}$$

We can see that all of these sets are disjoint from each other.

3. The Integers: Mathematical Induction

Let S(n) be a statement about some integers that is either True or False for each n.

Example 3.1. For example,

- $S(n) := \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ S(n) := n is odd

Theorem 3.2 (Principal of Mathematical Induction). Let S(n) be a statement about integers. Assume

- There exists an integer $k_0 \in \mathbb{Z}$ such that $S(k_0)$ is true.
- For any $k \ge k_0$ if S(k) is true, then S(k+1) must also be true.

Then S(n) must be true for all $n \geq k_0$.