Группы преобразований

Напоминание. Отображение $\varphi \colon X \to Y$ из множества X в множество Y называется *взаимно одно-значным* (или *биекцией*), если для каждого элемента $y \in Y$ существует ровно один элемент x такой, что $\varphi(x) = y$.

Преобразование ψ называется тождественным, если для каждого $x \in X$ выполнено равенство $\psi(x) = x$. Обозначение: $\psi = \mathrm{id}_X$.

Отображение $\varphi\colon X\to Y$ называется обратным для отображения $\psi\colon Y\to X$, если справедливы равенства $\varphi\circ\psi=\mathrm{id}_Y$ и $\psi\circ\varphi=\mathrm{id}_X$. Обозначение: $\varphi=\psi^{-1}$

Количество элементов во множестве X обозначается через |X| или #X.

Определение 1. Преобразованием множества X называется любая биекция $\varphi \colon X \to X$. Для множества всех преобразований X зарезервировано обозначение S(X).

Определение 2. $\Gamma pynnoй npeoбразований множества <math>X$ называется всякая непустая совокупность его преобразований G, удовлетворяющая следующим свойствам:

- (i) G замкнута относительно композиции, то есть для всех $q, h \in G$ верно: $q \circ h \in G$;
- (ii) G замкнута относительно взятия обратного преобразования, то есть для всех $g \in G$ преобразование g^{-1} лежит в G.

Задача 1. Докажите, что группа преобразований любого множества содержит тождественное преобразование.

Задача 2. Пусть множество X — это квадрат ABCD. Обозначим через s_{ac} , s_{bd} , s_H и s_V симметрии относительно диагонали AC, диагонали BD, горизонтали и вертикали квадрата соответственно. Далее, обозначим через r_0 , r_1 , r_2 и r_3 повороты вокруг центра квадрата на 0° , 90° , 180° и 270° соответственно.

- а) Докажите, что $G = \{s_{ac}, s_{bd}, s_H, s_V, r_0, r_1, r_2, r_3\}$ образует группу преобразований квадрата.
- б) Выпишите таблицу умножения в этой группе.
- в) Придумайте группу преобразований квадрата, состоящую из четырёх преобразований.

Задача 3.

- а) Докажите, что для любого множества X множество S(X) является группой;
- **б)** Пусть X конечно, причём |X| = n. Найдите |S(X)|.

Замечание 1. В условиях задачи 36) группа S(X) называется симметрической группой и обозначается S_n .

Задача 4. а) Опишите все преобразования правильного треугольника, сохраняющие расстояния между любыми двумя его точками.

б) Докажите, что эти преобразования образуют группу.

Определение 3. Порядком элемента g группы преобразований G называется наименьшее натуральное k такое, что $g^k = \underbrace{g \circ \cdots \circ g}_{l} = \mathrm{id}$. Обозначение: $\mathrm{ord}(g)$.

Определение 4. Порядком группы G называется количество элементов в G. Обозначение: |G| или #G.

Задача 5. Найдите порядок каждого элемента групп из задач 2 и 4.

Задача 6. Пусть множество X является подмножеством прямой, плоскости или пространства. Рассмотрим множество $\mathrm{Isom}(X) = \{ \varphi \in S(X) \mid \varphi \text{ сохраняет расстояния} \}$. Докажите, что вне зависимости от X множество преобразований $\mathrm{Isom}(X)$ является группой. Эта группа называется группой движений X.

Задача 7. Перечислите все элементы и их порядки в группах движений следующих множеств:

а) прямоугольник; б) правильный m-угольник; в) правильный тетраэдр; г) куб; д)* октаэдр; е)* икосаэдр; ж)* додекаэдр.

(Как связаны между собой куб и октаэдр? Тот же вопрос для икосаэдра и додекаэдра. : $\mathrm{saxsangon}$)

Замечание 2. Группа из задачи 76) называется группой диэдра и обозначается D_m .

1	2 a	2 6	2 B	3 a	3 6	4 a	4 6	5	6	7 a	7 б	7 В	7 г	7 д	7 e	7 ж

Определение 5. *Орбитой* элемента $x \in X$ при действии группы преобразований G называется множество $\{g(x) \mid g \in G\} \subset X$. **Обозначение** Gx.

Задача 8. Найдите орбиту каждой точки при действии группы движений

- **а)** квадрата; **б)** куба; **в)** правильного m-угольника.
- Задача 9. а) Опишите группу движений единичного круга; б) Найдите орбиту каждой точки при действии этой группы; в) Найдите преобразование, не имеющее конечного порядка.
- **Задача 10.** Докажите, что любые две орбиты либо совпадают, либо не пересекаются. Следует ли отсюда, что всё множество X есть объединение непересекающихся орбит?
- **Задача 11.** Докажите, что для любых двух элементов одной орбиты $a, b \in Gx$ найдётся элемент $g \in G$, такой что g(a) = b.

Определение 6. Стабилизатором элемента $x \in X$ при действии группы преобразований G называется множество $\{g \mid g(x) = x\} \subset G$. **Обозначение:** G_x .

Задача 12. Найдите стабилизаторы каждой из точек следующих множеств при действии их групп движений: **a)** квадрата; **б)** куба; **в)** правильного *m*-угольника.

Задача 13. Рассмотрим группу движений куба G. Эта группа также является группой преобразований следующих множеств: **a)** множества вершин куба; **б)** множества диагоналей куба; **в)** множества граней куба; **г)*** множества пар вершин куба. Опишите орбиты и стабилизаторы во всех случаях.

Задача 14. Пусть задана группа преобразований G множества X. Докажите, что стабилизатор любого элемента $x \in X$ также является группой преобразований множества X.

Задача 15. Пусть группа G конечна. Докажите, что для любых двух элементов одной орбиты $a,b\in Gx$ выполнено $|G_a|=|G_b|$.

Задача 16. Пусть группа G конечна. Докажите, что для любого $x \in X$ верно $|G| = |Gx| \cdot |G_x|$.

Задача 17. Пусть p — простое число. Рассмотрим множество \mathbb{Z}_p остатков по модулю p и группу G, состоящую из ненулевых остатков, действующих на \mathbb{Z}_p домножениями (т.е. $G = \{1, 2, \dots, p-1\}$ и $g(x) = x \cdot g$).

- а) Найдите орбиты действия этой группы;
- **б)** (малая теорема Ферма) Докажите, что $a^{p-1} \equiv 1 \pmod{p}$.

Определение 7. Функция, равная количеству натуральных чисел, меньших n и взаимно простых с ним, называется функцией Эйлера и обозначается через $\varphi(n)$.

Задача 18. Пусть n — произвольное число. Рассмотрим множество \mathbb{Z}_n остатков по модулю n, и группу G, состоящую из остатков, взаимно простых с n, действующих на \mathbb{Z}_n домножениями.

- а) Докажите, что такое множество преобразований образует группу;
- б) Найдите орбиты действия этой группы;
- в) ($meopema\ \Im inepa$) Докажите, что если числа a и n взаимно просты, то $a^{\varphi(n)} \equiv 1 \pmod{n}$.

Задача 19. Образует ли группу множество преобразований плоскости, переводящих прямые в прямые? Что это за преобразования?

8 a	8 6	8 B	9 a	9 6	9 B	10	11	12 a	12 б	12 B	13 a	13 6	13 B	13 Г	14	15	16	17 a	17 б	18 a	18 б	18 B	19