Recap: Markov Chain

 $ightharpoonup X_n, \ n=0,1,\cdots$, (with X_i discrete) is a Markov chain if

$$Pr[X_{n+1} = x_{n+1} | X_n = x_n, X_{n-1} = x_{n-1} \cdots X_0 = x_0] = Pr[X_{n+1} = x_{n+1} | X_n = x_n]$$

Recap: Markov Chain

 $lacksquare X_n, \ n=0,1,\cdots$, (with X_i discrete) is a Markov chain if

 $Pr[X_{n+1} = x_{n+1} | X_n = x_n, X_{n-1} = x_{n-1} \cdots X_0 = x_0] = Pr[X_{n+1} = x_{n+1} | X_n = x_n]$

► We can write it as

$$f_{X_{n+1}|X_n,\cdots X_0}(x_{n+1}|x_n,\cdots,x_0) = f_{X_{n+1}|X_n}(x_{n+1}|x_n), \ \forall x_i$$

Recap: Markov Chain

 $ightharpoonup X_n, \ n=0,1,\cdots$, (with X_i discrete) is a Markov chain if

$$Pr[X_{n+1} = x_{n+1} | X_n = x_n, X_{n-1} = x_{n-1} \cdots X_0 = x_0] = Pr[X_{n+1} = x_{n+1} | X_n = x_n]$$

We can write it as

$$f_{X_{n+1}|X_n,\cdots X_0}(x_{n+1}|x_n,\cdots,x_0) = f_{X_{n+1}|X_n}(x_{n+1}|x_n), \ \forall x_i$$

► For a Markov chain, given the current state, the future evolution is independent of the history of how you reached the current state

▶ Transition probabilities: $P(x,y) = Pr[X_{n+1} = y | X_n = x]$

► Transition probabilities: $P(x,y) = Pr[X_{n+1} = y | X_n = x]$ Chain is homogeneous if $Pr[X_{n+1} = y | X_n = x] = Pr[X_1 = y | X_0 = x], \ \forall n$

- ► Transition probabilities: $P(x,y) = Pr[X_{n+1} = y | X_n = x]$ Chain is homogeneous if $Pr[X_{n+1} = y | X_n = x] = Pr[X_1 = y | X_0 = x], \ \forall n$
- P satisfies
 - $P(x,y) \ge 0, \ \forall x,y \in S$
 - $\triangleright \sum_{y \in S} P(x, y) = 1, \forall x \in S$

- ► Transition probabilities: $P(x,y) = Pr[X_{n+1} = y | X_n = x]$ Chain is homogeneous if $Pr[X_{n+1} = y | X_n = x] = Pr[X_1 = y | X_0 = x], \ \forall n$
- P satisfies
 - $P(x,y) \ge 0, \ \forall x,y \in S$
- ightharpoonup If S is finite then P can be represented as a matrix

▶ Initial state probabilities $\pi_0: S \to [0, 1]$

$$\pi_0(x) = \Pr[X_0 = x]$$

▶ Initial state probabilities $\pi_0: S \to [0, 1]$

$$\pi_0(x) = \Pr[X_0 = x]$$

It satisfies

 $\pi_0(x) \ge 0, \ \forall x \in S$

▶ Initial state probabilities $\pi_0: S \to [0, 1]$

$$\pi_0(x) = Pr[X_0 = x]$$

- \blacktriangleright $\pi_0(x) \geq 0, \ \forall x \in S$
- $\sum_{x \in S} \pi_0(x) = 1$

▶ Initial state probabilities $\pi_0: S \to [0, 1]$

$$\pi_0(x) = \Pr[X_0 = x]$$

- \blacktriangleright $\pi_0(x) \geq 0, \ \forall x \in S$
- $\sum_{x \in S} \pi_0(x) = 1$
- ▶ The P and π_0 together determine all joint distributions

▶ Initial state probabilities $\pi_0: S \to [0, 1]$

$$\pi_0(x) = \Pr[X_0 = x]$$

- \blacktriangleright $\pi_0(x) \geq 0, \ \forall x \in S$
- $\sum_{x \in S} \pi_0(x) = 1$
- ▶ The P and π_0 together determine all joint distributions
- ightharpoonup Similarly, $\pi_n(x) = Pr[X_n = x]$

▶ Initial state probabilities $\pi_0: S \to [0, 1]$

$$\pi_0(x) = Pr[X_0 = x]$$

- \blacktriangleright $\pi_0(x) \geq 0, \ \forall x \in S$
- $\sum_{x \in S} \pi_0(x) = 1$
- ▶ The P and π_0 together determine all joint distributions
- ightharpoonup Similarly, $\pi_n(x) = Pr[X_n = x]$

$$\pi_{n+1}(y) = \sum \pi_n(x) P(x, y)$$

Recap: Chapman-Kolmogorov Equations

► *n*-step transition probabilities:

$$P^n(x,y) = Pr[X_n = y | X_0 = x]$$

Recap: Chapman-Kolmogorov Equations

- ► *n*-step transition probabilities: $P^n(x, y) = Pr[X_n = y | X_0 = x]$
- ► These satisfy Chapman-Kolmogorov equations:

$$P^{m+n}(x,y) = \sum_{x} P^m(x,z)P^n(z,y)$$

Recap: Chapman-Kolmogorov Equations

- ▶ *n*-step transition probabilities: $P^n(x, y) = Pr[X_n = y | X_0 = x]$
- ► These satisfy Chapman-Kolmogorov equations:

$$P^{m+n}(x,y) = \sum_{z} P^{m}(x,z)P^{n}(z,y)$$

For a finite chain, the n-step transition probability matrix is n-fold product of the (1-step) transition probability matrix

 $\qquad \qquad \text{Hitting time for } y \text{:} \quad T_y = \min\{n > 0 \ : \ X_n = y\}$

- ▶ Hitting time for y: $T_y = \min\{n > 0 : X_n = y\}$
- ▶ We have

$$P_x(T_y = m) = \sum_{z \neq y} P(x, z) P_z(T_y = m - 1)$$

- ▶ Hitting time for y: $T_y = \min\{n > 0 : X_n = y\}$
- ► We have

$$P_x(T_y = m) = \sum_{z \neq y} P(x, z) P_z(T_y = m - 1)$$

$$P^{n}(x,y) = \sum_{m=1}^{n} P_{x}(T_{y} = m)P^{n-m}(y,y)$$

- ▶ Hitting time for y: $T_y = \min\{n > 0 : X_n = y\}$
- ▶ We have

$$P_x(T_y = m) = \sum_{z \neq y} P(x, z) P_z(T_y = m - 1)$$

$$P^{n}(x,y) = \sum_{m=1}^{n} P_{x}(T_{y} = m)P^{n-m}(y,y)$$

(Notation:
$$P_z(A) = Pr[A|X_0 = z]$$
)

▶ Define $\rho_{xy} = P_x(T_y < \infty)$.

- ▶ Define $\rho_{xy} = P_x(T_y < \infty)$.
- Note that

$$\rho_{xy} = \lim_{n \to \infty} P_x(T_y < n) = \sum_{n=1}^{\infty} P_x(T_y = n)$$

- ▶ Define $\rho_{xy} = P_x(T_y < \infty)$.
- Note that

$$\rho_{xy} = \lim_{n \to \infty} P_x(T_y < n) = \sum_{n=1}^{\infty} P_x(T_y = n)$$

A state y is called transient if $\rho_{yy} < 1$; it is called recurrent if $\rho_{uy} = 1$.

- ▶ Define $\rho_{xy} = P_x(T_y < \infty)$.
- Note that

$$\rho_{xy} = \lim_{n \to \infty} P_x(T_y < n) = \sum_{n=1}^{\infty} P_x(T_y = n)$$

- A state y is called transient if $\rho_{yy} < 1$; it is called recurrent if $\rho_{uy} = 1$.
- ► Intuitively, all transient states would be visited only finitely many times while recurrent states are visited infinitely often.

▶ $I_y(X_n)$ is indicator rv of $[X_n = y]$

- ▶ $I_y(X_n)$ is indicator rv of $[X_n = y]$
- ▶ The total number of visits to y: $N(y) = \sum_{n=1}^{\infty} I_y(X_n)$

- ▶ $I_y(X_n)$ is indicator rv of $[X_n = y]$
- ▶ The total number of visits to y: $N(y) = \sum_{n=1}^{\infty} I_y(X_n)$
- ightharpoonup Distribution of N(y):

$$P_x(N(y) = m) = \rho_{xy} \rho_{yy}^{m-1} (1 - \rho_{yy}), \ m \ge 1$$

and
$$P_x(N(y) = 0) = 1 - \rho_{xy}$$

- ▶ $I_y(X_n)$ is indicator rv of $[X_n = y]$
- ▶ The total number of visits to y: $N(y) = \sum_{n=1}^{\infty} I_y(X_n)$
- ightharpoonup Distribution of N(y):

$$P_x(N(y) = m) = \rho_{xy} \ \rho_{yy}^{m-1} (1 - \rho_{yy}), \ m \ge 1$$

and
$$P_x(N(y) = 0) = 1 - \rho_{xy}$$

Expected number of visits:

$$G(x,y) \triangleq E_x[N(y)] = \sum_{i=1}^{\infty} P^n(x,y)$$

(Notation:
$$E_x[Z] = E[Z|X_0 = x]$$
)

Theorem:

Theorem:

(i). Let y be transient. Then

$$P_x(N(y)<\infty)=1, \ \forall x \ \ \text{and} \ \ G(x,y)=\frac{\rho_{xy}}{1-\rho_{yy}}<\infty, \ \forall x$$

Theorem:

(i). Let y be transient. Then

$$P_x(N(y)<\infty)=1,\; \forall x\;\; {\rm and}\;\; G(x,y)=rac{
ho_{xy}}{1-
ho_{yy}}<\infty,\; \forall x$$

(ii) Let y be recurrent. Then

$$P_y[N(y) = \infty] = 1$$
, and $G(y, y) = E_y[N(y)] = \infty$

Theorem:

(i). Let y be transient. Then

$$P_x(N(y) < \infty) = 1, \ \forall x \ \text{ and } \ G(x,y) = \frac{\rho_{xy}}{1 - \rho_{yy}} < \infty, \ \forall x$$

(ii) Let y be recurrent. Then

$$P_y[N(y)=\infty]=1, \ \ \text{and} \ \ G(y,y)=E_y[N(y)]=\infty$$

$$P_x[N(y) = \infty] = \rho_{xy}, \text{ and } G(x,y) = \begin{cases} 0 & \text{if } \rho_{xy} = 0 \\ \infty & \text{if } \rho_{xy} > 0 \end{cases}$$

► Transient states are visited only finitely many times while recurrent states are visited infinitely often

- ► Transient states are visited only finitely many times while recurrent states are visited infinitely often
- ▶ A finite chain should have at least one recurrent state

- ► Transient states are visited only finitely many times while recurrent states are visited infinitely often
- ▶ A finite chain should have at least one recurrent state
- ▶ We say, x leads to y if $\rho_{xy} > 0$

- ► Transient states are visited only finitely many times while recurrent states are visited infinitely often
- ▶ A finite chain should have at least one recurrent state
- ▶ We say, x leads to y if $\rho_{xy} > 0$ Theorem: If x is recurrent and x leads to y then y is recurrent and $\rho_{xy} = \rho_{yx} = 1$.

Recap

- ► Transient states are visited only finitely many times while recurrent states are visited infinitely often
- ▶ A finite chain should have at least one recurrent state
- ▶ We say, x leads to y if $\rho_{xy} > 0$ Theorem: If x is recurrent and x leads to y then y is recurrent and $\rho_{xy} = \rho_{yx} = 1$.
- On the set of recurrent states, 'leads to' is an equivalence relation

 \blacktriangleright A set of states, $C\subset S$ is said to be irreducible if x leads to y for all $x,y\in C$

- A set of states, $C \subset S$ is said to be irreducible if x leads to y for all $x,y \in C$
- ▶ An irreducible set is also called a communicating class

- A set of states, $C \subset S$ is said to be irreducible if x leads to y for all $x,y \in C$
- ▶ An irreducible set is also called a communicating class
- A set of states, $C \subset S$, is said to be closed if $x \in C, \ y \notin C$ implies $\rho_{xy} = 0$.

- A set of states, $C \subset S$ is said to be irreducible if x leads to y for all $x,y \in C$
- ▶ An irreducible set is also called a communicating class
- ▶ A set of states, $C \subset S$, is said to be closed if $x \in C$, $y \notin C$ implies $\rho_{xy} = 0$.
- Once the chain visits a state in a closed set, it cannot leave that set.

Recap: Partition of state space

 $ightharpoonup S = S_T + S_R$, transient and recurrent states

Recap: Partition of state space

 $ightharpoonup S = S_T + S_R$, transient and recurrent states and

$$S_R = C_1 + C_2 + \cdots$$

where C_i are closed and irreducible

Recap: Partition of state space

 $ightharpoonup S = S_T + S_R$, transient and recurrent states and

$$S_R = C_1 + C_2 + \cdots$$

where C_i are closed and irreducible

ightharpoonup Eventually the chain spends all its time in one of the C_i

Recap: Example of partition of state space

Γ	0	1	2	3	4	5]
0	+	_		_	_	
1	+	+	+	_	_	-
2	_	+	+	+	_	+
3	_	_	_	+	+	-
4	—	_	_	_	+	+
5	_	_	_	+	_	$+ \rfloor$

- ▶ 1,2 are transient states.
- We get: $S_T = \{1, 2\}$ and $S_R = \{0\} + \{3, 4, 5\}$

► If you start the chain in a recurrent state it will stay in the corresponding closed irreducible set

- ► If you start the chain in a recurrent state it will stay in the corresponding closed irreducible set
- ▶ If you start in one of the transient states, it would eventually get 'absorbed' in one of the closed irreducible sets of recurrent states.

- ▶ If you start the chain in a recurrent state it will stay in the corresponding closed irreducible set
- ▶ If you start in one of the transient states, it would eventually get 'absorbed' in one of the closed irreducible sets of recurrent states.
- ► We want to know the probabilities of ending up in different sets.

- ▶ If you start the chain in a recurrent state it will stay in the corresponding closed irreducible set
- ▶ If you start in one of the transient states, it would eventually get 'absorbed' in one of the closed irreducible sets of recurrent states.
- ► We want to know the probabilities of ending up in different sets.
- ▶ We want to know how long you stay in transient states

- ▶ If you start the chain in a recurrent state it will stay in the corresponding closed irreducible set
- ▶ If you start in one of the transient states, it would eventually get 'absorbed' in one of the closed irreducible sets of recurrent states.
- ► We want to know the probabilities of ending up in different sets.
- ▶ We want to know how long you stay in transient states
- ▶ We want to know what is the 'steady state'?

► Let C be a closed irreducible set of recurrent states

- ▶ Let *C* be a closed irreducible set of recurrent states
- $ightharpoonup T_C$ hitting time for C.

- ▶ Let *C* be a closed irreducible set of recurrent states
- $ightharpoonup T_C$ hitting time for C.

$$T_C = \min\{n > 0 : X_n \in C\}$$

- ► Let C be a closed irreducible set of recurrent states
- $ightharpoonup T_C$ hitting time for C.

$$T_C = \min\{n > 0 : X_n \in C\}$$

It is the first time instant when the chain is in ${\cal C}$

- ► Let C be a closed irreducible set of recurrent states
- ▶ T_C hitting time for C. $T_C = \min\{n > 0 : X_n \in C\}$ It is the first time instant when the chain is in C
- ▶ Define $\rho_C(x) = P_x[T_C < \infty]$

- ▶ Let C be a closed irreducible set of recurrent states
- ▶ T_C hitting time for C. $T_C = \min\{n > 0 : X_n \in C\}$ It is the first time instant when the chain is in C
- ▶ Define $\rho_C(x) = P_x[T_C < \infty]$

If
$$x$$
 is recurrent, $\rho_C(x) = \begin{cases} 1 & \text{if } x \in C \\ 0 & \text{if } x \notin C \end{cases}$

- ► Let C be a closed irreducible set of recurrent states
- ▶ T_C hitting time for C. $T_C = \min\{n > 0 : X_n \in C\}$ It is the first time instant when the chain is in C
- ▶ Define $\rho_C(x) = P_x[T_C < \infty]$

If
$$x$$
 is recurrent, $\rho_C(x) = \begin{cases} 1 & \text{if } x \in C \\ 0 & \text{if } x \notin C \end{cases}$

- ▶ Let *C* be a closed irreducible set of recurrent states
- ▶ T_C hitting time for C. $T_C = \min\{n > 0 : X_n \in C\}$ It is the first time instant when the chain is in C
- ▶ Define $\rho_C(x) = P_x[T_C < \infty]$

If
$$x$$
 is recurrent, $\rho_C(x) = \begin{cases} 1 & \text{if } x \in C \\ 0 & \text{if } x \notin C \end{cases}$

 \triangleright Suppose x is transient. Then

- ▶ Let C be a closed irreducible set of recurrent states
- ▶ T_C hitting time for C. $T_C = \min\{n > 0 : X_n \in C\}$ It is the first time instant when the chain is in C
- ▶ Define $\rho_C(x) = P_x[T_C < \infty]$

If
$$x$$
 is recurrent, $\rho_C(x) = \begin{cases} 1 & \text{if } x \in C \\ 0 & \text{if } x \notin C \end{cases}$

 \triangleright Suppose x is transient. Then

$$\rho_C(x) = \sum_{y \in C} P(x, y) +$$

- ▶ Let *C* be a closed irreducible set of recurrent states
- ▶ T_C hitting time for C. $T_C = \min\{n > 0 : X_n \in C\}$ It is the first time instant when the chain is in C
- ▶ Define $\rho_C(x) = P_x[T_C < \infty]$

If
$$x$$
 is recurrent, $\rho_C(x) = \begin{cases} 1 & \text{if } x \in C \\ 0 & \text{if } x \notin C \end{cases}$

ightharpoonup Suppose x is transient. Then

$$\rho_C(x) = \sum_{y \in C} P(x, y) + \sum_{y \in S_T} P(x, y) \rho_C(y)$$

- ▶ Let C be a closed irreducible set of recurrent states
- $ightharpoonup T_C$ hitting time for C.

$$T_C = \min\{n > 0 : X_n \in C\}$$

It is the first time instant when the chain is in ${\cal C}$

▶ Define $\rho_C(x) = P_x[T_C < \infty]$

If
$$x$$
 is recurrent, $\rho_C(x) = \begin{cases} 1 & \text{if } x \in C \\ 0 & \text{if } x \notin C \end{cases}$

Because each x is in a closed irreducible set

ightharpoonup Suppose x is transient. Then

$$\rho_C(x) = \sum_{y \in C} P(x, y) + \sum_{y \in S_T} P(x, y) \ \rho_C(y)$$

▶ By solving this set of linear equations we can get $\rho_c(x)$, $x \in S_T$

 $ightharpoonup S_T = \{1,2\} \text{ and } C_1 = \{0\}, \ C_2 = \{3,4,5\}$

 $ightharpoonup S_T = \{1,2\} \text{ and } C_1 = \{0\}, \ C_2 = \{3,4,5\}$

$$\rho_C(x) = \sum_{y \in C} P(x, y) + \sum_{y \in S_T} P(x, y) \ \rho_C(y)$$

 $ightharpoonup S_T = \{1,2\} \text{ and } C_1 = \{0\}, C_2 = \{3,4,5\}$

$$\rho_C(x) = \sum_{y \in C} P(x, y) + \sum_{y \in S_T} P(x, y) \ \rho_C(y)$$

$$\rho_{C_1}(1) = P(1,0) + P(1,1)\rho_{C_1}(1) + P(1,2)\rho_{C_1}(2)$$

 $ightharpoonup S_T = \{1,2\} \text{ and } C_1 = \{0\}, \ C_2 = \{3,4,5\}$

$$\rho_C(x) = \sum_{y \in C} P(x, y) + \sum_{y \in S_T} P(x, y) \ \rho_C(y)$$

$$\rho_{C_1}(1) = P(1,0) + P(1,1)\rho_{C_1}(1) + P(1,2)\rho_{C_1}(2)
= 0.25 + 0.5\rho_{C_1}(1) + 0.25\rho_{C_1}(2)$$

$$ightharpoonup S_T = \{1,2\} \ {
m and} \ C_1 = \{0\}, \ C_2 = \{3,4,5\}$$

$$\rho_C(x) = \sum_{y \in C} P(x, y) + \sum_{y \in S_T} P(x, y) \rho_C(y)$$

$$\rho_{C_1}(1) = P(1,0) + P(1,1)\rho_{C_1}(1) + P(1,2)\rho_{C_1}(2)
= 0.25 + 0.5\rho_{C_1}(1) + 0.25\rho_{C_1}(2)
\rho_{C_1}(2) = 0 + 0.2\rho_{C_1}(1) + 0.4\rho_{C_1}(2)$$

$$ightharpoonup S_T = \{1,2\} \text{ and } C_1 = \{0\}, C_2 = \{3,4,5\}$$

$$\rho_C(x) = \sum_{y \in C} P(x, y) + \sum_{y \in S_T} P(x, y) \ \rho_C(y)$$

$$\rho_{C_1}(1) = P(1,0) + P(1,1)\rho_{C_1}(1) + P(1,2)\rho_{C_1}(2)
= 0.25 + 0.5\rho_{C_1}(1) + 0.25\rho_{C_1}(2)
\rho_{C_1}(2) = 0 + 0.2\rho_{C_1}(1) + 0.4\rho_{C_1}(2)$$

▶ Solving these, we get $\rho_{C_1}(1) = 0.6$, $\rho_{C_1}(2) = 0.2$

 $ightharpoonup S_T = \{1,2\} \text{ and } C_1 = \{0\}, C_2 = \{3,4,5\}$

$$\rho_C(x) = \sum_{y \in C} P(x, y) + \sum_{y \in S_T} P(x, y) \ \rho_C(y)$$

$$\rho_{C_1}(1) = P(1,0) + P(1,1)\rho_{C_1}(1) + P(1,2)\rho_{C_1}(2)
= 0.25 + 0.5\rho_{C_1}(1) + 0.25\rho_{C_1}(2)
\rho_{C_1}(2) = 0 + 0.2\rho_{C_1}(1) + 0.4\rho_{C_1}(2)$$

- ▶ Solving these, we get $\rho_{C_1}(1) = 0.6$, $\rho_{C_1}(2) = 0.2$
- ▶ What would be $\rho_{C_2}(1)$?

Expected time in transient states

► We consider a simple method to get the time spent in transient states for finite chains

Expected time in transient states

- ► We consider a simple method to get the time spent in transient states for finite chains
- Let states $1, 2, \dots, t$ be the transient states

- ► We consider a simple method to get the time spent in transient states for finite chains
- Let states $1, 2, \dots, t$ be the transient states
- ▶ b_{ij} the expected number of time instants spent in state j when started in i.

- ► We consider a simple method to get the time spent in transient states for finite chains
- Let states $1, 2, \dots, t$ be the transient states
- ▶ b_{ij} the expected number of time instants spent in state j when started in i.
- ► Then we get

$$b_{ij} = \delta_{ij} + \sum_{k=1}^{t} P(i,k)b_{kj}$$

where $\delta_{ij}=1$ if i=j and is zero otherwise

- ► We consider a simple method to get the time spent in transient states for finite chains
- Let states $1, 2, \dots, t$ be the transient states
- ▶ b_{ij} the expected number of time instants spent in state j when started in i.
- ► Then we get

$$b_{ij} = \delta_{ij} + \sum_{k=1}^{t} P(i,k)b_{kj}$$

where $\delta_{ij} = 1$ if i = j and is zero otherwise

let B be the $t \times t$ matrix of b_{ij} , I be the $t \times t$ identity matrix and P_T be the submatrix (corresponding to the transient states) of P.

- ► We consider a simple method to get the time spent in transient states for finite chains
- Let states $1, 2, \dots, t$ be the transient states
- ▶ b_{ij} the expected number of time instants spent in state j when started in i.
- ► Then we get

$$b_{ij} = \delta_{ij} + \sum_{k=1}^{t} P(i,k)b_{kj}$$

where $\delta_{ij} = 1$ if i = j and is zero otherwise

- ▶ let B be the $t \times t$ matrix of b_{ij} , I be the $t \times t$ identity matrix and P_T be the submatrix (corresponding to the transient states) of P.
- ▶ Then the above in Matrix notation is

$$B = I + P_T B$$

- ► We consider a simple method to get the time spent in transient states for finite chains
- Let states $1, 2, \dots, t$ be the transient states
- ▶ b_{ij} the expected number of time instants spent in state j when started in i.
- ► Then we get

$$b_{ij} = \delta_{ij} + \sum_{k=1}^{t} P(i,k)b_{kj}$$

where $\delta_{ij} = 1$ if i = j and is zero otherwise

- ▶ let B be the $t \times t$ matrix of b_{ij} , I be the $t \times t$ identity matrix and P_T be the submatrix (corresponding to the transient states) of P.
- ► Then the above in Matrix notation is

$$B = I + P_T B$$
 or $B = (I - P_T)^{-1}$

▶ $\pi: S \to [0, \ 1]$ is a probability distribution (mass function) over S if $\pi(x) \geq 0$, $\forall x$ and $\sum_{x \in S} \pi(x) = 1$

- ▶ $\pi: S \to [0, \ 1]$ is a probability distribution (mass function) over S if $\pi(x) \geq 0$, $\forall x$ and $\sum_{x \in S} \pi(x) = 1$
- ▶ A probability distribution, π , over S, is said to be a stationary distribution for the Markov chain with transition probabilities P if

$$\pi(y) = \sum_{x \in S} \pi(x) P(x, y), \ \forall y \in S$$

- ▶ $\pi: S \to [0, \ 1]$ is a probability distribution (mass function) over S if $\pi(x) \geq 0$, $\forall x$ and $\sum_{x \in S} \pi(x) = 1$
- ▶ A probability distribution, π , over S, is said to be a stationary distribution for the Markov chain with transition probabilities P if

$$\pi(y) = \sum_{x \in S} \pi(x) P(x, y), \ \forall y \in S$$

ightharpoonup Suppose S is finite.

- ▶ $\pi: S \to [0, \ 1]$ is a probability distribution (mass function) over S if $\pi(x) \geq 0$, $\forall x$ and $\sum_{x \in S} \pi(x) = 1$
- ▶ A probability distribution, π , over S, is said to be a stationary distribution for the Markov chain with transition probabilities P if

$$\pi(y) = \sum_{x \in S} \pi(x) P(x, y), \ \forall y \in S$$

Suppose S is finite.
 Then π can be represented by a vector.

- ▶ $\pi: S \to [0, \ 1]$ is a probability distribution (mass function) over S if $\pi(x) \geq 0$, $\forall x$ and $\sum_{x \in S} \pi(x) = 1$
- ▶ A probability distribution, π , over S, is said to be a stationary distribution for the Markov chain with transition probabilities P if

$$\pi(y) = \sum_{x \in S} \pi(x) P(x, y), \ \forall y \in S$$

- Suppose S is finite.
 Then π can be represented by a vector.
- ightharpoonup The π is stationary if

$$\pi^T = \pi^T P$$

- ▶ $\pi: S \to [0, \ 1]$ is a probability distribution (mass function) over S if $\pi(x) \geq 0$, $\forall x$ and $\sum_{x \in S} \pi(x) = 1$
- A probability distribution, π , over S, is said to be a stationary distribution for the Markov chain with transition probabilities P if

$$\pi(y) = \sum_{x \in S} \pi(x) P(x, y), \ \forall y \in S$$

- Suppose S is finite.
 Then π can be represented by a vector.
- ightharpoonup The π is stationary if

$$\pi^T = \pi^T P$$
 or $P^T \pi = \pi$

$$\pi(y) = \sum_{x \in S} \pi(x) P(x, y), \ \forall y \in S$$

$$\pi(y) = \sum_{x \in S} \pi(x) P(x, y), \ \forall y \in S$$

▶ Recall $\pi_n(x) \triangleq Pr[X_n = x]$

$$\pi(y) = \sum_{x \in S} \pi(x) P(x, y), \ \forall y \in S$$

▶ Recall $\pi_n(x) \triangleq Pr[X_n = x]$ satisfies

$$\pi_{n+1}(y) = \sum Pr[X_{n+1} = y | X_n = x] Pr[X_n = x]$$

$$\pi(y) = \sum_{x \in S} \pi(x) P(x, y), \ \forall y \in S$$

▶ Recall $\pi_n(x) \triangleq Pr[X_n = x]$ satisfies

$$\pi_{n+1}(y) = \sum Pr[X_{n+1} = y | X_n = x] Pr[X_n = x] = \sum \pi_n(x) P(x, y)$$

$$\pi(y) = \sum_{x \in S} \pi(x) P(x, y), \ \forall y \in S$$

▶ Recall $\pi_n(x) \triangleq Pr[X_n = x]$ satisfies

$$\pi_{n+1}(y) = \sum_{x \in S} \Pr[X_{n+1} = y | X_n = x] \Pr[X_n = x] = \sum_{x \in S} \pi_n(x) \Pr[X, y]$$

▶ Hence, if $\pi_0 = \pi$ then $\pi_1 = \pi$

$$\pi(y) = \sum_{x \in S} \pi(x) P(x, y), \ \forall y \in S$$

▶ Recall $\pi_n(x) \triangleq Pr[X_n = x]$ satisfies

$$\pi_{n+1}(y) = \sum_{x \in S} \Pr[X_{n+1} = y | X_n = x] \Pr[X_n = x] = \sum_{x \in S} \pi_n(x) P(x, y)$$

► Hence, if $\pi_0 = \pi$ then $\pi_1 = \pi$ and hence $\pi_n = \pi$, $\forall n$

$$\pi(y) = \sum_{x \in S} \pi(x) P(x, y), \ \forall y \in S$$

▶ Recall $\pi_n(x) \triangleq Pr[X_n = x]$ satisfies

$$\pi_{n+1}(y) = \sum_{x \in S} \Pr[X_{n+1} = y | X_n = x] \Pr[X_n = x] = \sum_{x \in S} \pi_n(x) P(x, y)$$

- ► Hence, if $\pi_0 = \pi$ then $\pi_1 = \pi$ and hence $\pi_n = \pi$. $\forall n$
- ▶ Hence the name, stationary distribution.

$$\pi(y) = \sum_{x \in S} \pi(x) P(x, y), \ \forall y \in S$$

▶ Recall $\pi_n(x) \triangleq Pr[X_n = x]$ satisfies

$$\pi_{n+1}(y) = \sum_{x \in S} \Pr[X_{n+1} = y | X_n = x] \Pr[X_n = x] = \sum_{x \in S} \pi_n(x) P(x, y)$$

- ► Hence, if $\pi_0 = \pi$ then $\pi_1 = \pi$ and hence $\pi_n = \pi$, $\forall n$
- ▶ Hence the name, stationary distribution.
- ▶ It is also called the invariant distribution or the invariant measure

▶ If the chain is started in stationary distribution then the distribution of X_n is not a function of time, as we saw.

- ▶ If the chain is started in stationary distribution then the distribution of X_n is not a function of time, as we saw.
- Suppose for a chain, distribution of X_n is not dependent on n. Then the chain must be in a stationary distribution.

- ▶ If the chain is started in stationary distribution then the distribution of X_n is not a function of time, as we saw.
- ▶ Suppose for a chain, distribution of X_n is not dependent on n. Then the chain must be in a stationary distribution.
- Suppose $\pi = \pi_0 = \pi_1 = \cdots = \pi_n = \cdots$. Then

- ▶ If the chain is started in stationary distribution then the distribution of X_n is not a function of time, as we saw.
- ▶ Suppose for a chain, distribution of X_n is not dependent on n. Then the chain must be in a stationary distribution.
- Suppose $\pi=\pi_0=\pi_1=\cdots=\pi_n=\cdots$. Then

$$\pi(y) = \pi_1(y)$$

- ▶ If the chain is started in stationary distribution then the distribution of X_n is not a function of time, as we saw.
- Suppose for a chain, distribution of X_n is not dependent on n. Then the chain must be in a stationary distribution.
- Suppose $\pi = \pi_0 = \pi_1 = \cdots = \pi_n = \cdots$. Then

$$\pi(y) = \pi_1(y) = \sum_{x \in S} \pi_0(x) P(x, y)$$

- ▶ If the chain is started in stationary distribution then the distribution of X_n is not a function of time, as we saw.
- Suppose for a chain, distribution of X_n is not dependent on n. Then the chain must be in a stationary distribution.
- Suppose $\pi=\pi_0=\pi_1=\cdots=\pi_n=\cdots$. Then

$$\pi(y) = \pi_1(y) = \sum_{x \in S} \pi_0(x) P(x, y) = \sum_{x \in S} \pi(x) P(x, y)$$

- ▶ If the chain is started in stationary distribution then the distribution of X_n is not a function of time, as we saw.
- Suppose for a chain, distribution of X_n is not dependent on n. Then the chain must be in a stationary distribution.
- Suppose $\pi=\pi_0=\pi_1=\cdots=\pi_n=\cdots$. Then

$$\pi(y) = \pi_1(y) = \sum_{x \in S} \pi_0(x) P(x, y) = \sum_{x \in S} \pi(x) P(x, y)$$

which shows π is a stationary distribution

Suppose S is finite. Then π can be represented by a vector

- Suppose S is finite. Then π can be represented by a vector
- ▶ Then π is a stationary distribution if

$$P^T\pi = \pi$$

- Suppose S is finite. Then π can be represented by a vector
- ▶ Then π is a stationary distribution if

$$P^T \pi = \pi$$
 or $(P^T - I) \pi = 0$

- Suppose S is finite. Then π can be represented by a vector
- ▶ Then π is a stationary distribution if

$$P^T\pi=\pi$$
 or (P^T-I) $\pi=0$

Note that each column of P^T sums to 1.

- Suppose S is finite. Then π can be represented by a vector
- ▶ Then π is a stationary distribution if

$$P^T\pi=\pi$$
 or (P^T-I) $\pi=0$

- Note that each column of P^T sums to 1.
- ▶ Hence, $(P^T I)$ would be singular

- Suppose S is finite. Then π can be represented by a vector
- ▶ Then π is a stationary distribution if

$$P^T\pi=\pi$$
 or (P^T-I) $\pi=0$

- Note that each column of P^T sums to 1.
- ▶ Hence, $(P^T I)$ would be singular (1 is always an eigen value for a column stochastic matrix)

- Suppose S is finite. Then π can be represented by a vector
- ▶ Then π is a stationary distribution if

$$P^T \pi = \pi \quad \text{or} \quad \left(P^T - I\right) \ \pi = 0$$

- Note that each column of P^T sums to 1.
- ▶ Hence, $(P^T I)$ would be singular (1 is always an eigen value for a column stochastic matrix)
- A stationary distribution always exists for a finite chain.

- Suppose S is finite. Then π can be represented by a vector
- ▶ Then π is a stationary distribution if

$$P^T\pi=\pi$$
 or (P^T-I) $\pi=0$

- Note that each column of P^T sums to 1.
- ► Hence, $(P^T I)$ would be singular (1 is always an eigen value for a column stochastic matrix)
- A stationary distribution always exists for a finite chain.
- ▶ But it may or may not be unique.

- Suppose S is finite. Then π can be represented by a vector
- ▶ Then π is a stationary distribution if

$$P^T \pi = \pi \quad \text{or} \quad \left(P^T - I\right) \ \pi = 0$$

- Note that each column of P^T sums to 1.
- ► Hence, $(P^T I)$ would be singular (1 is always an eigen value for a column stochastic matrix)
- A stationary distribution always exists for a finite chain.
- ▶ But it may or may not be unique.
- ► What about infinite chains?

► The stationary distribution has to satisfy

$$\pi(y) = \sum_{x \in S} \pi(x) P(x, y), \ \forall y \in S$$

The stationary distribution has to satisfy

$$\pi(y) = \sum_{x \in S} \pi(x) P(x, y), \ \forall y \in S$$

► The stationary distribution has to satisfy

$$\pi(y) = \sum_{x \in S} \pi(x) P(x, y), \ \forall y \in S$$

$$0.75\pi(0) + 0.5\pi(1) = \pi(0)$$

The stationary distribution has to satisfy

$$\pi(y) = \sum_{x \in S} \pi(x) P(x, y), \ \forall y \in S$$

$$0.75\pi(0) + 0.5\pi(1) = \pi(0)$$

$$0.25\pi(0) + 0.75\pi(2) = \pi(1)$$

The stationary distribution has to satisfy

$$\pi(y) = \sum_{x \in S} \pi(x) P(x, y), \ \forall y \in S$$

$$0.75\pi(0) + 0.5\pi(1) = \pi(0)$$

$$0.25\pi(0) + 0.75\pi(2) = \pi(1)$$

$$0.5\pi(1) + 0.25\pi(2) = \pi(2)$$

The stationary distribution has to satisfy

$$\pi(y) = \sum_{x \in S} \pi(x) P(x, y), \ \forall y \in S$$

$$0.75\pi(0) + 0.5\pi(1) = \pi(0)$$

$$0.25\pi(0) + 0.75\pi(2) = \pi(1)$$

$$0.5\pi(1) + 0.25\pi(2) = \pi(2)$$

in addition,
$$\pi(0) + \pi(1) + \pi(2) = 1$$

 \blacktriangleright We can also write the equations for π as

$$\left[\begin{array}{ccc} \pi(0) & \pi(1) & \pi(2) \end{array} \right] \left[\begin{array}{ccc} 0.75 & 0.25 & 0 \\ 0.5 & 0 & 0.5 \\ 0 & 0.75 & 0.25 \end{array} \right] = \left[\begin{array}{ccc} \pi(0) & \pi(1) & \pi(2) \end{array} \right]$$

 \blacktriangleright We can also write the equations for π as

$$\begin{bmatrix} \pi(0) & \pi(1) & \pi(2) \end{bmatrix} \begin{bmatrix} 0.75 & 0.25 & 0 \\ 0.5 & 0 & 0.5 \\ 0 & 0.75 & 0.25 \end{bmatrix} = \begin{bmatrix} \pi(0) & \pi(1) & \pi(2) \end{bmatrix}$$

$$0.75\pi(0) + 0.5\pi(1) = \pi(0)$$

$$0.25\pi(0) + 0.75\pi(2) = \pi(1)$$

 $0.5\pi(1) + 0.25\pi(2) = \pi(2)$

 \blacktriangleright We can also write the equations for π as

$$\left[\begin{array}{ccc} \pi(0) & \pi(1) & \pi(2) \end{array} \right] \left[\begin{array}{ccc} 0.75 & 0.25 & 0 \\ 0.5 & 0 & 0.5 \\ 0 & 0.75 & 0.25 \end{array} \right] = \left[\begin{array}{ccc} \pi(0) & \pi(1) & \pi(2) \end{array} \right]$$

$$0.75\pi(0) + 0.5\pi(1) = \pi(0)$$

$$0.25\pi(0) + 0.75\pi(2) = \pi(1)$$

$$0.5\pi(1) + 0.25\pi(2) = \pi(2)$$

▶ We have to solve these along with $\pi(0) + \pi(1) + \pi(2) = 1$

$$0.75$$
 0.5
 0.5
 0.25
 0.75
 0.25

$$0.75\pi(0) + 0.5\pi(1) = \pi(0)$$

$$0.25\pi(0) + 0.75\pi(2) = \pi(1)$$

$$0.5\pi(1) + 0.25\pi(2) = \pi(2)$$

$$\pi(0) + \pi(1) + \pi(2) = 1$$

$$0.75\pi(0) + 0.5\pi(1) = \pi(0) \Rightarrow \pi(1) = \frac{1}{2}\pi(0)$$

$$0.25\pi(0) + 0.75\pi(2) = \pi(1)$$

$$0.5\pi(1) + 0.25\pi(2) = \pi(2)$$

$$\pi(0) + \pi(1) + \pi(2) = 1$$

$$0.75\pi(0) + 0.5\pi(1) = \pi(0) \Rightarrow \pi(1) = \frac{1}{2}\pi(0)$$

$$0.25\pi(0) + 0.75\pi(2) = \pi(1) \Rightarrow \pi(2) = \frac{1}{3}\pi(0)$$

$$0.5\pi(1) + 0.25\pi(2) = \pi(2)$$

$$\pi(0) + \pi(1) + \pi(2) = 1$$

$$0.75$$
 0.5
 0.5
 0.25
 0.75
 0.25

$$0.75\pi(0) + 0.5\pi(1) = \pi(0) \Rightarrow \pi(1) = \frac{1}{2}\pi(0)$$
$$0.25\pi(0) + 0.75\pi(2) = \pi(1) \Rightarrow \pi(2) = \frac{1}{2}\pi(0)$$

$$0.5\pi(1) + 0.25\pi(2) = \pi(2)$$

$$\pi(0) + \pi(1) + \pi(2) = 1 \Rightarrow \pi(0) \left(1 + \frac{1}{2} + \frac{1}{3}\right) = 1$$

$$0.75\pi(0) + 0.5\pi(1) = \pi(0) \Rightarrow \pi(1) = \frac{1}{2}\pi(0)$$

$$0.25\pi(0) + 0.75\pi(2) = \pi(1) \Rightarrow \pi(2) = \frac{1}{3}\pi(0)$$

$$0.5\pi(1) + 0.25\pi(2) = \pi(2)$$

$$\pi(0) + \pi(1) + \pi(2) = 1 \Rightarrow \pi(0)\left(1 + \frac{1}{2} + \frac{1}{3}\right) = 1$$

Now,
$$\pi(0)\left(1+\frac{1}{2}+\frac{1}{3}\right)=1$$
 gives $\pi(0)=\frac{6}{11}$

$$0.75\pi(0) + 0.5\pi(1) = \pi(0) \Rightarrow \pi(1) = \frac{1}{2}\pi(0)$$

$$0.25\pi(0) + 0.75\pi(2) = \pi(1) \Rightarrow \pi(2) = \frac{1}{3}\pi(0)$$

$$0.5\pi(1) + 0.25\pi(2) = \pi(2)$$

$$\pi(0) + \pi(1) + \pi(2) = 1 \Rightarrow \pi(0) \left(1 + \frac{1}{2} + \frac{1}{3}\right) = 1$$

- Now, $\pi(0) \left(1 + \frac{1}{2} + \frac{1}{2}\right) = 1$ gives $\pi(0) = \frac{6}{11}$
- ▶ We get a unique solution: $\begin{bmatrix} \frac{6}{11} & \frac{3}{11} & \frac{2}{11} \end{bmatrix}$

The stationary distribution has to satisfy

$$\begin{bmatrix} \pi(0) & \pi(1) & \pi(2) \end{bmatrix} \begin{bmatrix} 1.0 & 0 & 0 \\ 0.5 & 0 & 0.5 \\ 0 & 0 & 1.0 \end{bmatrix} = \begin{bmatrix} \pi(0) & \pi(1) & \pi(2) \end{bmatrix}$$

The stationary distribution has to satisfy

$$\left[\begin{array}{ccc} \pi(0) & \pi(1) & \pi(2) \end{array} \right] \left[\begin{array}{cccc} 1.0 & 0 & 0 \\ 0.5 & 0 & 0.5 \\ 0 & 0 & 1.0 \end{array} \right] = \left[\begin{array}{cccc} \pi(0) & \pi(1) & \pi(2) \end{array} \right]$$

▶ We also have to add the equation $\pi(0) + \pi(1) + \pi(2) = 1$

The stationary distribution has to satisfy

$$\left[\begin{array}{ccc} \pi(0) & \pi(1) & \pi(2) \end{array} \right] \left[\begin{array}{cccc} 1.0 & 0 & 0 \\ 0.5 & 0 & 0.5 \\ 0 & 0 & 1.0 \end{array} \right] = \left[\begin{array}{cccc} \pi(0) & \pi(1) & \pi(2) \end{array} \right]$$

- ▶ We also have to add the equation $\pi(0) + \pi(1) + \pi(2) = 1$
- We now do not have a unique stationary distribution

$$\pi(0) + 0.5\pi(1) = \pi(0)$$

$$\pi(0) + 0.5\pi(1) = \pi(0)$$

$$0.5\pi(1) + \pi(2) = \pi(2)$$

$$\pi(0) + 0.5\pi(1) = \pi(0)$$

$$0.5\pi(1) + \pi(2) = \pi(2)$$

$$\pi(0) + \pi(1) + \pi(2) = 1$$

$$\pi(0) + 0.5\pi(1) = \pi(0) \Rightarrow \pi(1) = 0$$

$$0.5\pi(1) + \pi(2) = \pi(2)$$

$$\pi(0) + \pi(1) + \pi(2) = 1$$

$$\pi(0) + 0.5\pi(1) = \pi(0) \Rightarrow \pi(1) = 0$$

$$0.5\pi(1) + \pi(2) = \pi(2) \Rightarrow \pi(1) = 0$$

$$\pi(0) + \pi(1) + \pi(2) = 1$$

$$\pi(0) + 0.5\pi(1) = \pi(0) \Rightarrow \pi(1) = 0$$

$$0.5\pi(1) + \pi(2) = \pi(2) \Rightarrow \pi(1) = 0$$

$$\pi(0) + \pi(1) + \pi(2) = 1 \Rightarrow \pi(0) = 1 - \pi(2)$$

We get the following linear equations

$$\pi(0) + 0.5\pi(1) = \pi(0) \Rightarrow \pi(1) = 0$$

$$0.5\pi(1) + \pi(2) = \pi(2) \Rightarrow \pi(1) = 0$$

$$\pi(0) + \pi(1) + \pi(2) = 1 \Rightarrow \pi(0) = 1 - \pi(2)$$

Now there are infinitely many solutions.

$$\pi(0) + 0.5\pi(1) = \pi(0) \Rightarrow \pi(1) = 0$$

$$0.5\pi(1) + \pi(2) = \pi(2) \Rightarrow \pi(1) = 0$$

$$\pi(0) + \pi(1) + \pi(2) = 1 \Rightarrow \pi(0) = 1 - \pi(2)$$

- Now there are infinitely many solutions.
- Any distribution $[a \ 0 \ 1-a]$ with $0 \le a \le 1$ is a stationary distribution

$$\pi(0) + 0.5\pi(1) = \pi(0) \Rightarrow \pi(1) = 0$$

$$0.5\pi(1) + \pi(2) = \pi(2) \Rightarrow \pi(1) = 0$$

$$\pi(0) + \pi(1) + \pi(2) = 1 \Rightarrow \pi(0) = 1 - \pi(2)$$

- Now there are infinitely many solutions.
- Any distribution $[a \ 0 \ 1-a]$ with $0 \le a \le 1$ is a stationary distribution
- This chain is not irreducible; the previous one is irreducible

We now explore conditions for existence and uniqueness of stationary distributions

- We now explore conditions for existence and uniqueness of stationary distributions
- For finite chains stationary distribution always exists.

- We now explore conditions for existence and uniqueness of stationary distributions
- ► For finite chains stationary distribution always exists.
- For finite irreducible chains it is unique.

- We now explore conditions for existence and uniqueness of stationary distributions
- ► For finite chains stationary distribution always exists.
- For finite irreducible chains it is unique.
- ▶ But for infinite chains, it is possible that stationary distribution does not exist.

- We now explore conditions for existence and uniqueness of stationary distributions
- ► For finite chains stationary distribution always exists.
- ► For finite irreducible chains it is unique.
- ▶ But for infinite chains, it is possible that stationary distribution does not exist.
- ► The stationary distribution, when it exists, is related to expected fraction of time spent in different states.

- We now explore conditions for existence and uniqueness of stationary distributions
- For finite chains stationary distribution always exists.
- For finite irreducible chains it is unique.
- But for infinite chains, it is possible that stationary distribution does not exist.
- ► The stationary distribution, when it exists, is related to expected fraction of time spent in different states.
- Nhen the stationary distribution is unique, we also want to know if the chain converges to that distribution starting with any π_0 .

▶ Let $I_y(X_n)$ be indicator of $[X_n = y]$

- ▶ Let $I_y(X_n)$ be indicator of $[X_n = y]$
- Number of visits to y till n: $N_n(y) = \sum_{m=1}^n I_y(X_n)$

- ▶ Let $I_y(X_n)$ be indicator of $[X_n = y]$
- Number of visits to y till n: $N_n(y) = \sum_{m=1}^n I_y(X_n)$
- lacktriangle The expected number of visits to y till n is

- ▶ Let $I_y(X_n)$ be indicator of $[X_n = y]$
- Number of visits to y till n: $N_n(y) = \sum_{m=1}^n I_y(X_n)$
- ightharpoonup The expected number of visits to y till n is

$$G_n(x,y) \triangleq E_x[N_n(y)] = \sum_{n=1}^n E_x[I_y(X_n)]$$

- ▶ Let $I_v(X_n)$ be indicator of $[X_n = y]$
- Number of visits to y till n: $N_n(y) = \sum_{m=1}^n I_y(X_n)$
- ightharpoonup The expected number of visits to y till n is

$$G_n(x,y) \triangleq E_x[N_n(y)] = \sum_{m=1}^n E_x[I_y(X_n)] = \sum_{m=1}^n P^m(x,y)$$

- ▶ Let $I_y(X_n)$ be indicator of $[X_n = y]$
- Number of visits to y till n: $N_n(y) = \sum_{m=1}^n I_y(X_n)$
- ightharpoonup The expected number of visits to y till n is

$$G_n(x,y) \triangleq E_x[N_n(y)] = \sum_{m=1}^n E_x[I_y(X_n)] = \sum_{m=1}^n P^m(x,y)$$

ightharpoonup Expected fraction of time spent in y till n is

$$\frac{G_n(x,y)}{n} = \frac{1}{n} \sum_{n=1}^{n} P^m(x,y)$$

- ▶ Let $I_y(X_n)$ be indicator of $[X_n = y]$
- Number of visits to y till n: $N_n(y) = \sum_{m=1}^n I_y(X_n)$
- ightharpoonup The expected number of visits to y till n is

$$G_n(x,y) \triangleq E_x[N_n(y)] = \sum_{m=1}^n E_x[I_y(X_n)] = \sum_{m=1}^n P^m(x,y)$$

ightharpoonup Expected fraction of time spent in y till n is

$$\frac{G_n(x,y)}{n} = \frac{1}{n} \sum_{i=1}^{n} P^m(x,y)$$

ightharpoonup We will first establish a limit for the above as $n \to \infty$

ightharpoonup Suppose y is transient. Then we have

ightharpoonup Suppose y is transient. Then we have

$$\lim_{n\to\infty} N_n(y) = N(y)$$

 \triangleright Suppose y is transient. Then we have

$$\lim_{n\to\infty}N_n(y)=N(y)$$
 and
$$Pr[N(y)<\infty]=1 \quad \lim_{n\to\infty}G_n(x,y)=G(x,y)<\infty$$

 \triangleright Suppose y is transient. Then we have

$$\lim_{n\to\infty} N_n(y) = N(y)$$
 and
$$Pr[N(y) < \infty] = 1 \quad \lim_{n\to\infty} G_n(x,y) = G(x,y) < \infty$$

$$\Rightarrow \quad \lim_{n\to\infty} \frac{N_n(y)}{n} = 0 \; (w.p.1) \quad \text{and} \quad \lim_{n\to\infty} \frac{G_n(x,y)}{n} = 0$$

► Suppose *y* is transient. Then we have

$$\begin{split} &\lim_{n\to\infty}N_n(y)=N(y)\\ \text{and} &⪻[N(y)<\infty]=1 \quad \lim_{n\to\infty}G_n(x,y)=G(x,y)<\infty\\ \Rightarrow &&\lim_{n\to\infty}\frac{N_n(y)}{n}=0\;(w.p.1)\quad\text{and}\quad \lim_{n\to\infty}\frac{G_n(x,y)}{n}=0 \end{split}$$

► The expected fraction of time spent in a transient state is zero.

ightharpoonup Suppose y is transient. Then we have

$$\begin{split} &\lim_{n\to\infty}N_n(y)=N(y)\\ \text{and} &⪻[N(y)<\infty]=1 \quad \lim_{n\to\infty}G_n(x,y)=G(x,y)<\infty\\ \Rightarrow &&\lim_{n\to\infty}\frac{N_n(y)}{n}=0\;(w.p.1)\quad\text{and}\quad \lim_{n\to\infty}\frac{G_n(x,y)}{n}=0 \end{split}$$

- ► The expected fraction of time spent in a transient state is zero.
- ► This is intuitively obvious

ightharpoonup Now, let y be recurrent

- ▶ Now, let *y* be recurrent
- ▶ Then, $P_y[T_y < \infty] = 1$

- ▶ Now, let *y* be recurrent
- ▶ Then, $P_y[T_y < \infty] = 1$
- ▶ Define $m_y = E_y[T_y]$

- ▶ Now, let *y* be recurrent
- ▶ Then, $P_y[T_y < \infty] = 1$
- ▶ Define $m_y = E_y[T_y]$
- $ightharpoonup m_y$ is mean return time to y

- ▶ Now, let *y* be recurrent
- ▶ Then, $P_v[T_v < \infty] = 1$
- ▶ Define $m_y = E_y[T_y]$
- $ightharpoonup m_y$ is mean return time to y
- ▶ We will show that $\frac{N_n(y)}{n}$ converges to $\frac{1}{m_y}$ if the chain starts in y.

- ▶ Now, let *y* be recurrent
- ▶ Then, $P_y[T_y < \infty] = 1$
- ▶ Define $m_y = E_y[T_y]$
- $ightharpoonup m_y$ is mean return time to y
- ▶ We will show that $\frac{N_n(y)}{n}$ converges to $\frac{1}{m_y}$ if the chain starts in y.
- ► Convergence would be with probability one.

ightharpoonup Consider a chain started in y

- Consider a chain started in y
- $\blacktriangleright \ \ \text{let} \ T_y^r \ \text{be time of} \ r^{th} \ \text{visit to} \ y \text{,} \ r \geq 1$

- Consider a chain started in y
- ▶ let T_y^r be time of r^{th} visit to y, $r \ge 1$

$$T_y^r = \min\{n \ge 1 : N_n(y) = r\}$$

- Consider a chain started in y
- ▶ let T_y^r be time of r^{th} visit to y, $r \ge 1$

$$T_y^r = \min\{n \ge 1 : N_n(y) = r\}$$

▶ Define $W_y^1 = T_y^1 = T_y$ and $W_y^r = T_y^r - T_y^{r-1}, r > 1$

- Consider a chain started in y
- let T_u^r be time of r^{th} visit to y, $r \ge 1$

$$T_y^r = \min\{n \ge 1 : N_n(y) = r\}$$

- ▶ Define $W_y^1 = T_y^1 = T_y$ and $W_y^r = T_y^r T_y^{r-1}, r > 1$
- Note that $E_y[W_y^1] = E_y[T_y] = m_y$

- Consider a chain started in y
- let T_y^r be time of r^{th} visit to y, $r \ge 1$

$$T_y^r = \min\{n \ge 1 : N_n(y) = r\}$$

- ▶ Define $W_y^1 = T_y^1 = T_y$ and $W_y^r = T_y^r T_y^{r-1}, r > 1$
- lacksquare Note that $E_y[W_y^1]=E_y[T_y]=m_y$
- ightharpoonup Also, $T_y^r = W_y^1 + \cdots + W_y^r$

- Consider a chain started in y
- let T_y^r be time of r^{th} visit to y, $r \ge 1$

$$T_y^r = \min\{n \ge 1 : N_n(y) = r\}$$

- ▶ Define $W_y^1 = T_y^1 = T_y$ and $W_y^r = T_y^r T_y^{r-1}, r > 1$
- Note that $E_y[W_y^1] = E_y[T_y] = m_y$
- $\blacktriangleright \text{ Also, } T_y^r = W_y^1 + \dots + W_y^r$
- $ightharpoonup W_u^r$ are the "waiting times"

- Consider a chain started in y
- let T_y^r be time of r^{th} visit to y, $r \ge 1$

$$T_y^r = \min\{n \ge 1 : N_n(y) = r\}$$

- ▶ Define $W_y^1 = T_y^1 = T_y$ and $W_y^r = T_y^r T_y^{r-1}, r > 1$
- lacksquare Note that $E_y[W_y^1]=E_y[T_y]=m_y$
- $\blacktriangleright \text{ Also, } T_y^r = W_y^1 + \dots + W_y^r$
- $ightharpoonup W_{u}^{r}$ are the "waiting times"
- ▶ By Markovian property we should expect them to be iid

- Consider a chain started in y
- let T_y^r be time of r^{th} visit to y, $r \ge 1$

$$T_y^r = \min\{n \ge 1 : N_n(y) = r\}$$

- ▶ Define $W_y^1 = T_y^1 = T_y$ and $W_y^r = T_y^r T_y^{r-1}, r > 1$
- Note that $E_y[W_y^1] = E_y[T_y] = m_y$
- ightharpoonup Also, $T_y^r = W_y^1 + \cdots + W_y^r$
- $ightharpoonup W_u^r$ are the "waiting times"
- ▶ By Markovian property we should expect them to be iid
- ► We will prove this.

- Consider a chain started in y
- let T_u^r be time of r^{th} visit to y, $r \ge 1$

$$T_y^r = \min\{n \ge 1 : N_n(y) = r\}$$

- ▶ Define $W_y^1 = T_y^1 = T_y$ and $W_y^r = T_y^r T_y^{r-1}, r > 1$
- Note that $E_y[W_y^1] = E_y[T_y] = m_y$
- ightharpoonup Also, $T_y^r = W_y^1 + \cdots + W_y^r$
- $ightharpoonup W_u^r$ are the "waiting times"
- ▶ By Markovian property we should expect them to be iid
- ► We will prove this.
- ▶ Then T_u^r/r converges to m_y by law of large umbers

We have

► We have

$$Pr[W_y^3 = k_3 | W_y^2 = k_2, W_y^1 = k_1] =$$

We have

$$Pr[W_y^3 = k_3 | W_y^2 = k_2, W_y^1 = k_1] = \\ Pr[X_{k_1+k_2+j} \neq y, \ 1 \leq j \leq k_3 - 1, \ X_{k_1+k_2+k_3} = y \mid B] \\ \text{where } B = [X_{k_1+k_2} = y, \ X_{k_1} = y, \ X_j \neq y, j < k_1 + k_2, j \neq k_1]$$

► We have

$$\begin{split} Pr[W_y^3 = k_3 | W_y^2 = k_2, W_y^1 = k_1] &= \\ Pr[X_{k_1 + k_2 + j} \neq y, \ 1 \leq j \leq k_3 - 1, \ X_{k_1 + k_2 + k_3} = y \mid B] \end{split}$$
 where $B = [X_{k_1 + k_2} = y, \ X_{k_1} = y, \ X_j \neq y, j < k_1 + k_2, j \neq k_1]$

Using the Markovian property, we get

► We have

$$\begin{split} Pr[W_y^3 = k_3|W_y^2 = k_2, W_y^1 = k_1] &= \\ Pr[X_{k_1+k_2+j} \neq y, \ 1 \leq j \leq k_3-1, \ X_{k_1+k_2+k_3} = y \mid B] \end{split}$$
 where $B = [X_{k_1+k_2} = y, \ X_{k_1} = y, \ X_j \neq y, j < k_1 + k_2, j \neq k_1]$

Using the Markovian property, we get

$$Pr[W_y^3 = k_3 | W_y^2 = k_2, W_y^1 = k_1] =$$

$$Pr[X_{k_1+k_2+j} \neq y, \ 1 \leq j \leq k_3 - 1, \ X_{k_1+k_2+k_3} = y \mid X_{k_1+k_2} = y]$$

We have

$$\begin{split} Pr[W_y^3 = k_3 | W_y^2 = k_2, W_y^1 = k_1] &= \\ Pr[X_{k_1 + k_2 + j} \neq y, \ 1 \leq j \leq k_3 - 1, \ X_{k_1 + k_2 + k_3} = y \mid B] \\ \text{where} \ B = [X_{k_1 + k_2} = y, \ X_{k_1} = y, \ X_j \neq y, j < k_1 + k_2, j \neq k_1] \end{split}$$

▶ Using the Markovian property, we get

$$Pr[W_y^3 = k_3 | W_y^2 = k_2, W_y^1 = k_1] =$$

$$Pr[X_{k_1+k_2+j} \neq y, \ 1 \leq j \leq k_3 - 1, \ X_{k_1+k_2+k_3} = y \mid X_{k_1+k_2} = y]$$

$$= Pr[X_j \neq y, \ 1 \leq j \leq k_3 - 1, \ X_{k_3} = y \mid X_0 = y]$$

► We have

$$\begin{split} Pr[W_y^3 = k_3|W_y^2 = k_2, W_y^1 = k_1] &= \\ Pr[X_{k_1+k_2+j} \neq y, \ 1 \leq j \leq k_3-1, \ X_{k_1+k_2+k_3} = y \mid B] \end{split}$$
 where $B = [X_{k_1+k_2} = y, \ X_{k_1} = y, \ X_j \neq y, j < k_1 + k_2, j \neq k_1]$

▶ Using the Markovian property, we get

$$Pr[W_y^3 = k_3 | W_y^2 = k_2, W_y^1 = k_1] =$$

$$Pr[X_{k_1+k_2+j} \neq y, \ 1 \leq j \leq k_3 - 1, \ X_{k_1+k_2+k_3} = y \mid X_{k_1+k_2} = y]$$

$$= Pr[X_j \neq y, \ 1 \leq j \leq k_3 - 1, \ X_{k_3} = y \mid X_0 = y]$$

$$= P_y[W_y^1 = k_3]$$

We have

$$\begin{split} Pr[W_y^3 = k_3|W_y^2 = k_2, W_y^1 = k_1] &= \\ Pr[X_{k_1+k_2+j} \neq y, \ 1 \leq j \leq k_3-1, \ X_{k_1+k_2+k_3} = y \mid B] \end{split}$$
 where $B = [X_{k_1+k_2} = y, \ X_{k_1} = y, \ X_j \neq y, j < k_1+k_2, j \neq k_1]$

▶ Using the Markovian property, we get

$$Pr[W_y^3 = k_3 | W_y^2 = k_2, W_y^1 = k_1] =$$

$$Pr[X_{k_1+k_2+j} \neq y, \ 1 \leq j \leq k_3 - 1, \ X_{k_1+k_2+k_3} = y \mid X_{k_1+k_2} = y]$$

$$= Pr[X_j \neq y, \ 1 \leq j \leq k_3 - 1, \ X_{k_3} = y \mid X_0 = y]$$

$$= P_y[W_y^1 = k_3]$$

▶ In general, we get

$$Pr[W_y^r = k_r \mid W_y^{r-1} = k_{r-1}, \cdots, W_y^1 = k_1] = P_y[W_y^1 = k_r]$$

$$P_y[W_y^2 = k_2] = \sum_{i} P_y[W_y^2 = k_2 \mid W_y^1 = k_1] P_y[W_y^1 = k_1]$$

$$P_y[W_y^2 = k_2] = \sum_{k_1} P_y[W_y^2 = k_2 \mid W_y^1 = k_1] P_y[W_y^1 = k_1]$$
$$= \sum_{k_1} P_y[W_y^1 = k_2] P_y[W_y^1 = k_1]$$

$$\begin{split} P_y[W_y^2 = k_2] &= \sum_{k_1} P_y[W_y^2 = k_2 \mid W_y^1 = k_1] \; P_y[W_y^1 = k_1] \\ &= \sum_{k_1} P_y[W_y^1 = k_2] \; P_y[W_y^1 = k_1] \\ &= P_y[W_y^1 = k_2] \end{split}$$

$$\begin{split} P_y[W_y^2 = k_2] &= \sum_{k_1} P_y[W_y^2 = k_2 \mid W_y^1 = k_1] \; P_y[W_y^1 = k_1] \\ &= \sum_{k_1} P_y[W_y^1 = k_2] \; P_y[W_y^1 = k_1] \\ &= P_y[W_y^1 = k_2] \end{split}$$

$$\begin{split} P_y[W_y^2 = k_2] &= \sum_{k_1} P_y[W_y^2 = k_2 \mid W_y^1 = k_1] \; P_y[W_y^1 = k_1] \\ &= \sum_{k_1} P_y[W_y^1 = k_2] \; P_y[W_y^1 = k_1] \\ &= P_y[W_y^1 = k_2] \end{split}$$

$$P_y[W_y^2 = k_2, W_y^1 = k_1] = P_y[W_y^2 = k_2 \mid W_y^1 = k_1]P_y[W_y^1 = k_1]$$

$$\begin{split} P_y[W_y^2 = k_2] &= \sum_{k_1} P_y[W_y^2 = k_2 \mid W_y^1 = k_1] \; P_y[W_y^1 = k_1] \\ &= \sum_{k_1} P_y[W_y^1 = k_2] \; P_y[W_y^1 = k_1] \\ &= P_y[W_y^1 = k_2] \end{split}$$

$$\begin{split} P_y[W_y^2 = k_2, \ W_y^1 = k_1] &= P_y[W_y^2 = k_2 \mid W_y^1 = k_1] P_y[W_y^1 = k_1] \\ &= P_y[W_y^1 = k_2] \ P_y[W_y^1 = k_1] \end{split}$$

$$\begin{split} P_y[W_y^2 = k_2] &= \sum_{k_1} P_y[W_y^2 = k_2 \mid W_y^1 = k_1] \; P_y[W_y^1 = k_1] \\ &= \sum_{k_1} P_y[W_y^1 = k_2] \; P_y[W_y^1 = k_1] \\ &= P_y[W_y^1 = k_2] \end{split}$$

$$P_{y}[W_{y}^{2} = k_{2}, W_{y}^{1} = k_{1}] = P_{y}[W_{y}^{2} = k_{2} \mid W_{y}^{1} = k_{1}]P_{y}[W_{y}^{1} = k_{1}]$$

$$= P_{y}[W_{y}^{1} = k_{2}] P_{y}[W_{y}^{1} = k_{1}]$$

$$= P_{y}[W_{y}^{2} = k_{2}] P_{y}[W_{y}^{1} = k_{1}]$$

$$\begin{split} P_y[W_y^2 = k_2] &= \sum_{k_1} P_y[W_y^2 = k_2 \mid W_y^1 = k_1] \; P_y[W_y^1 = k_1] \\ &= \sum_{k_1} P_y[W_y^1 = k_2] \; P_y[W_y^1 = k_1] \\ &= P_y[W_y^1 = k_2] \end{split}$$

⇒ identically distributed

$$P_{y}[W_{y}^{2} = k_{2}, W_{y}^{1} = k_{1}] = P_{y}[W_{y}^{2} = k_{2} | W_{y}^{1} = k_{1}]P_{y}[W_{y}^{1} = k_{1}]$$

$$= P_{y}[W_{y}^{1} = k_{2}] P_{y}[W_{y}^{1} = k_{1}]$$

$$= P_{y}[W_{y}^{2} = k_{2}] P_{y}[W_{y}^{1} = k_{1}]$$

 \Rightarrow independent

▶ We have shown W_y^r , $r = 1, 2, \cdots$ are iid

- ▶ We have shown W_u^r , $r = 1, 2, \cdots$ are iid
- ▶ Since $E[W_y^1] = m_y$, by strong law of large numbers,

$$\lim_{k \to \infty} \frac{T_y^k}{k} = \lim_{k \to \infty} \frac{1}{k} \sum_{r=1}^k W_y^r = m_y, \quad (w.p.1)$$

- ▶ We have shown W_u^r , $r = 1, 2, \cdots$ are iid
- ▶ Since $E[W_u^1] = m_y$, by strong law of large numbers,

$$\lim_{k \to \infty} \frac{T_y^k}{k} = \lim_{k \to \infty} \frac{1}{k} \sum_{r=1}^k W_y^r = m_y, \quad (w.p.1)$$

Note that this is true even if $m_y = \infty$

$$T_y^{N_n(y)} \leq n < T_y^{N_n(y)+1}$$

$$T_y^{N_n(y)} \le n < T_y^{N_n(y)+1}$$

 $ightharpoonup N_n(y)$ is the number of visits to y till time step n

$$T_y^{N_n(y)} \le n < T_y^{N_n(y)+1}$$

- $ightharpoonup N_n(y)$ is the number of visits to y till time step n
- ▶ Suppose $N_{50}(y) = 8$

$$T_y^{N_n(y)} \le n < T_y^{N_n(y)+1}$$

- $ightharpoonup N_n(y)$ is the number of visits to y till time step n
- ▶ Suppose $N_{50}(y) = 8$ Visited y 8 times till time 50.

$$T_y^{N_n(y)} \le n < T_y^{N_n(y)+1}$$

- $ightharpoonup N_n(y)$ is the number of visits to y till time step n
- ▶ Suppose $N_{50}(y) = 8$ Visited y 8 times till time 50.
- ightharpoonup So, the 8^{th} visit occurred at or before time 50.

$$T_y^{N_n(y)} \le n < T_y^{N_n(y)+1}$$

- $ightharpoonup N_n(y)$ is the number of visits to y till time step n
- ▶ Suppose $N_{50}(y) = 8$ Visited y 8 times till time 50.
- ▶ So, the 8^{th} visit occurred at or before time 50.
- ▶ The 9^{th} visit has not occurred till 50.

$$T_y^{N_n(y)} \le n < T_y^{N_n(y)+1}$$

- $ightharpoonup N_n(y)$ is the number of visits to y till time step n
- ▶ Suppose $N_{50}(y) = 8$ Visited y 8 times till time 50.
- ▶ So, the 8^{th} visit occurred at or before time 50.
- ▶ The 9^{th} visit has not occurred till 50.
- ightharpoonup So, time of 9^{th} visit is beyond 50.

$$T_y^{N_n(y)} \le n < T_y^{N_n(y)+1}$$

$$T_y^{N_n(y)} \le n < T_y^{N_n(y)+1}$$

$$\frac{T_y^{N_n(y)}}{N_n(y)} \le \frac{n}{N_n(y)} < \frac{T_y^{N_n(y)+1}}{N_n(y)}$$

$$T_y^{N_n(y)} \le n < T_y^{N_n(y)+1}$$

$$\frac{T_y^{N_n(y)}}{N_n(y)} \le \frac{n}{N_n(y)} < \frac{T_y^{N_n(y)+1}}{N_n(y)}$$

► We know that

$$T_y^{N_n(y)} \le n < T_y^{N_n(y)+1}$$

$$\frac{T_y^{N_n(y)}}{N_n(y)} \le \frac{n}{N_n(y)} < \frac{T_y^{N_n(y)+1}}{N_n(y)}$$

- ▶ We know that
 - As $n \to \infty$, $N_n(y) \to \infty$, w.p.1

$$T_y^{N_n(y)} \le n < T_y^{N_n(y)+1}$$

$$\frac{T_y^{N_n(y)}}{N_n(y)} \le \frac{n}{N_n(y)} < \frac{T_y^{N_n(y)+1}}{N_n(y)}$$

- We know that
 - ightharpoonup As $n \to \infty$, $N_n(y) \to \infty$, w.p.1
 - As $n \to \infty$, $\frac{T_y^n}{T_y^n} \to m_y$, w.p.1

$$T_y^{N_n(y)} \le n < T_y^{N_n(y)+1}$$

$$\frac{T_y^{N_n(y)}}{N_n(y)} \le \frac{n}{N_n(y)} < \frac{T_y^{N_n(y)+1}}{N_n(y)}$$

- We know that
 - ightharpoonup As $n \to \infty$, $N_n(y) \to \infty$, w.p.1
 - \blacktriangleright As $n \to \infty$, $\frac{T_y^n}{m} \to m_y$, w.p.1
- ► Hence we get

$$\lim_{n \to \infty} \frac{n}{N_n(y)} = m_y, \quad w.p.1$$

or

$$\lim_{n \to \infty} \frac{N_n(y)}{n} = \frac{1}{m_y}, \quad w.p.1$$

ightharpoonup All this is true if the chain started in y.

- ▶ All this is true if the chain started in *y*.
- ▶ That means it is true if the chain visits *y* once.

- ▶ All this is true if the chain started in *y*.
- ▶ That means it is true if the chain visits *y* once.
- ► So, we get

$$\lim_{n \to \infty} \frac{N_n(y)}{n} = \frac{I_{[T_y < \infty]}}{m_y}, \quad w.p.1$$

- ▶ All this is true if the chain started in *y*.
- ▶ That means it is true if the chain visits *y* once.
- ► So, we get

$$\lim_{n \to \infty} \frac{N_n(y)}{n} = \frac{I_{[T_y < \infty]}}{m_y}, \quad w.p.1$$

- ightharpoonup All this is true if the chain started in y.
- ▶ That means it is true if the chain visits *y* once.
- ► So, we get

$$\lim_{n \to \infty} \frac{N_n(y)}{n} = \frac{I_{[T_y < \infty]}}{m_y}, \quad w.p.1$$

$$\lim_{n \to \infty} \frac{G_n(x, y)}{n} = \lim_{n \to \infty} E_x \left[\frac{N_n(y)}{n} \right]$$

- ► All this is true if the chain started in *y*.
- ▶ That means it is true if the chain visits *y* once.
- ► So, we get

$$\lim_{n \to \infty} \frac{N_n(y)}{n} = \frac{I_{[T_y < \infty]}}{m_y}, \quad w.p.1$$

$$\lim_{n \to \infty} \frac{G_n(x, y)}{n} = \lim_{n \to \infty} E_x \left[\frac{N_n(y)}{n} \right] = \lim_{n \to \infty} \frac{P_x[T_y < \infty]}{m_y}$$

- ightharpoonup All this is true if the chain started in y.
- ▶ That means it is true if the chain visits *y* once.
- ► So, we get

$$\lim_{n \to \infty} \frac{N_n(y)}{n} = \frac{I_{[T_y < \infty]}}{m_y}, \quad w.p.1$$

$$\lim_{n \to \infty} \frac{G_n(x, y)}{n} = \lim_{n \to \infty} E_x \left[\frac{N_n(y)}{n} \right] = \lim_{n \to \infty} \frac{P_x[T_y < \infty]}{m_y} = \frac{\rho_{xy}}{m_y}$$

- ▶ All this is true if the chain started in *y*.
- ▶ That means it is true if the chain visits *y* once.
- ► So, we get

$$\lim_{n \to \infty} \frac{N_n(y)}{n} = \frac{I_{[T_y < \infty]}}{m_y}, \quad w.p.1$$

$$\lim_{n \to \infty} \frac{G_n(x, y)}{n} = \lim_{n \to \infty} E_x \left[\frac{N_n(y)}{n} \right] = \lim_{n \to \infty} \frac{P_x[T_y < \infty]}{m_y} = \frac{\rho_{xy}}{m_y}$$

► The fraction of time spent in each recurrent state is inversely proportional to the mean recurrence time

► Thus we have proved the following theorem

- ▶ Thus we have proved the following theorem
- ► **Theorem**: Let *y* be recurrent. Then

- ► Thus we have proved the following theorem
- ► Theorem:

1

$$\lim_{n \to \infty} \frac{N_n(y)}{n} = \frac{I_{[T_y < \infty]}}{m_y}, \quad w.p.1$$

- ► Thus we have proved the following theorem
- ► Theorem:

1

$$\lim_{n \to \infty} \frac{N_n(y)}{n} = \frac{I_{[T_y < \infty]}}{m_y}, \quad w.p.1$$

2

$$\lim_{n \to \infty} \frac{G_n(x, y)}{n} = \frac{\rho_{xy}}{m_y}$$

- ► Thus we have proved the following theorem
- ► Theorem:

1

$$\lim_{n \to \infty} \frac{N_n(y)}{n} = \frac{I_{[T_y < \infty]}}{m_y}, \quad w.p.1$$

2

$$\lim_{n \to \infty} \frac{G_n(x, y)}{n} = \frac{\rho_{xy}}{m_y}$$

Note that

$$\frac{1}{m_y} = \lim_{n \to \infty} \frac{G_n(y, y)}{n}$$

- ▶ Thus we have proved the following theorem
- ► Theorem:

1

$$\lim_{n \to \infty} \frac{N_n(y)}{n} = \frac{I_{[T_y < \infty]}}{m_y}, \quad w.p.1$$

2

$$\lim_{n \to \infty} \frac{G_n(x, y)}{n} = \frac{\rho_{xy}}{m_y}$$

Note that

$$\frac{1}{m_y} = \lim_{n \to \infty} \frac{G_n(y, y)}{n} = \lim_{n \to \infty} \frac{1}{n} \sum_{n=1}^{n} P^m(y, y)$$

The limiting fraction of time spent in a state is inversely proportional to m_u , the mean return time.

- The limiting fraction of time spent in a state is inversely proportional to m_y , the mean return time.
- ► Intuitively, the stationary probability of a state could be the limiting fraction of time spent in that state.

- The limiting fraction of time spent in a state is inversely proportional to m_y , the mean return time.
- ► Intuitively, the stationary probability of a state could be the limiting fraction of time spent in that state.
- ▶ Thus $\pi(y) = \frac{1}{m_y}$ is a good candidate for stationary distribution.

- The limiting fraction of time spent in a state is inversely proportional to m_y , the mean return time.
- ► Intuitively, the stationary probability of a state could be the limiting fraction of time spent in that state.
- ▶ Thus $\pi(y) = \frac{1}{m_y}$ is a good candidate for stationary distribution.
- ▶ We first note that we can have $m_y = \infty$.

- The limiting fraction of time spent in a state is inversely proportional to m_y , the mean return time.
- ► Intuitively, the stationary probability of a state could be the limiting fraction of time spent in that state.
- ▶ Thus $\pi(y) = \frac{1}{m_y}$ is a good candidate for stationary distribution.
- ▶ We first note that we can have $m_y = \infty$. Though $P_y[T_y < \infty] = 1$, we can have $E_y[T_y] = \infty$.

- The limiting fraction of time spent in a state is inversely proportional to m_u , the mean return time.
- ► Intuitively, the stationary probability of a state could be the limiting fraction of time spent in that state.
- ▶ Thus $\pi(y) = \frac{1}{m_y}$ is a good candidate for stationary distribution.
- ▶ We first note that we can have $m_y = \infty$. Though $P_u[T_u < \infty] = 1$, we can have $E_u[T_u] = \infty$.
- ▶ What if $m_y = \infty$, $\forall y$?

- The limiting fraction of time spent in a state is inversely proportional to m_y , the mean return time.
- ► Intuitively, the stationary probability of a state could be the limiting fraction of time spent in that state.
- ▶ Thus $\pi(y) = \frac{1}{m_y}$ is a good candidate for stationary distribution.
- ▶ We first note that we can have $m_y = \infty$. Though $P_u[T_u < \infty] = 1$, we can have $E_u[T_u] = \infty$.
- ▶ What if $m_y = \infty$, $\forall y$?
- ▶ Does not seem reasonable for a finite chain.

- The limiting fraction of time spent in a state is inversely proportional to m_y , the mean return time.
- ► Intuitively, the stationary probability of a state could be the limiting fraction of time spent in that state.
- ▶ Thus $\pi(y) = \frac{1}{m_y}$ is a good candidate for stationary distribution.
- ▶ We first note that we can have $m_y = \infty$. Though $P_u[T_u < \infty] = 1$, we can have $E_u[T_u] = \infty$.
- ▶ What if $m_y = \infty$, $\forall y$?
- ▶ Does not seem reasonable for a finite chain.
- ▶ But for infinite chains??

- The limiting fraction of time spent in a state is inversely proportional to m_y , the mean return time.
- ► Intuitively, the stationary probability of a state could be the limiting fraction of time spent in that state.
- ▶ Thus $\pi(y) = \frac{1}{m_y}$ is a good candidate for stationary distribution.
- ▶ We first note that we can have $m_y = \infty$. Though $P_u[T_u < \infty] = 1$, we can have $E_u[T_u] = \infty$.
- ▶ What if $m_y = \infty$, $\forall y$?
- ▶ Does not seem reasonable for a finite chain.
- ► But for infinite chains??
- ▶ Let us characterize y for which $m_y = \infty$

▶ A recurrent state y is called **null recurrent** if $m_y = \infty$.

- ▶ A recurrent state y is called **null recurrent** if $m_y = \infty$.
- ▶ y is called **positive recurrent** if $m_y < \infty$

- ▶ A recurrent state y is called **null recurrent** if $m_y = \infty$.
- ▶ y is called **positive recurrent** if $m_y < \infty$
- ► We earlier saw that the fraction of time spent in a transient state is zero.

- ▶ A recurrent state y is called **null recurrent** if $m_y = \infty$.
- ▶ y is called **positive recurrent** if $m_y < \infty$
- We earlier saw that the fraction of time spent in a transient state is zero.
- ► Suppose *y* is null recurrent. Then

$$\lim_{n \to \infty} \frac{N_n(y)}{n} = \frac{1}{m_y} = 0$$

- ▶ A recurrent state y is called **null recurrent** if $m_y = \infty$.
- ▶ y is called **positive recurrent** if $m_y < \infty$
- We earlier saw that the fraction of time spent in a transient state is zero.
- ► Suppose *y* is null recurrent. Then

$$\lim_{n \to \infty} \frac{N_n(y)}{n} = \frac{1}{m_y} = 0$$

► Thus the limiting fraction of time spent by the chain in transient and null recurrent states is zero.

► **Theorem:** Let *x* be positive recurrent and let *x* lead to *y*. Then *y* is positive recurrent.

► Theorem: Let x be positive recurrent and let x lead to y. Then y is positive recurrent.
Proof

- ► Theorem: Let x be positive recurrent and let x lead to y. Then y is positive recurrent.
 Proof
- ▶ Since x is recurrent and x leads to y we know $\exists n_0, n_1$ s.t. $P^{n_0}(x,y) > 0$, $P^{n_1}(y,x) > 0$ and

- ► Theorem: Let x be positive recurrent and let x lead to y. Then y is positive recurrent.
 Proof
- ▶ Since x is recurrent and x leads to y we know $\exists n_0, n_1$ s.t. $P^{n_0}(x,y) > 0$, $P^{n_1}(y,x) > 0$ and

$$P^{n_1+m+n_0}(y,y) \ge P^{n_1}(y,x)P^m(x,x)P^{n_0}(x,y), \ \forall m$$

- ► Theorem: Let x be positive recurrent and let x lead to y. Then y is positive recurrent.
 Proof
- ▶ Since x is recurrent and x leads to y we know $\exists n_0, n_1$ s.t. $P^{n_0}(x,y) > 0$, $P^{n_1}(y,x) > 0$ and

$$P^{n_1+m+n_0}(y,y) \ge P^{n_1}(y,x)P^m(x,x)P^{n_0}(x,y), \ \forall m$$

Summing the above for $m=1,2,\cdots n$ and dividing by n

$$\frac{1}{n} \sum_{m=1}^{n} P^{n_1+m+n_0}(y,y) \ge P^{n_1}(y,x) \quad \frac{1}{n} \sum_{m=1}^{n} P^m(x,x) \quad P^{n_0}(x,y), \ \forall n$$

- ► Theorem: Let x be positive recurrent and let x lead to y. Then y is positive recurrent.
 Proof
- ▶ Since x is recurrent and x leads to y we know $\exists n_0, n_1$ s.t. $P^{n_0}(x,y) > 0$, $P^{n_1}(y,x) > 0$ and

$$P^{n_1+m+n_0}(y,y) \ge P^{n_1}(y,x)P^m(x,x)P^{n_0}(x,y), \ \forall m$$

Summing the above for $m=1,2,\cdots n$ and dividing by n

$$\frac{1}{n} \sum_{m=1}^{n} P^{n_1+m+n_0}(y,y) \ge P^{n_1}(y,x) \quad \frac{1}{n} \sum_{m=1}^{n} P^m(x,x) \quad P^{n_0}(x,y), \ \forall n$$

If we now let $n \to \infty$, the RHS goes to $P^{n_1}(y,x) \stackrel{1}{\xrightarrow{m}} P^{n_0}(x,y) > 0$.

$$\frac{1}{n} \sum_{m=1}^{n} P^{n_1+m+n_0}(y,y) \ge P^{n_1}(y,x) \frac{1}{n} \sum_{m=1}^{n} P^m(x,x) P^{n_0}(x,y), \forall n$$

$$\frac{1}{n} \sum_{m=1}^{n} P^{n_1+m+n_0}(y,y) \ge P^{n_1}(y,x) \quad \frac{1}{n} \sum_{m=1}^{n} P^m(x,x) \quad P^{n_0}(x,y), \ \forall n$$

$$\frac{1}{n} \sum_{m=1}^{n} P^{n_1+m+n_0}(y,y) \ge P^{n_1}(y,x) \frac{1}{n} \sum_{m=1}^{n} P^m(x,x) P^{n_0}(x,y), \forall n$$

$$\frac{1}{n} \sum_{m=1}^{n} P^{n_1+m+n_0}(y,y) = \frac{1}{n} \sum_{m=1}^{n_1+n+n_0} P^m(y,y) - \frac{1}{n} \sum_{m=1}^{n_1+n_0} P^m(y,y)$$

$$\frac{1}{n} \sum_{m=1}^{n} P^{n_1+m+n_0}(y,y) \ge P^{n_1}(y,x) \frac{1}{n} \sum_{m=1}^{n} P^m(x,x) P^{n_0}(x,y), \forall n$$

$$\begin{split} \frac{1}{n} \sum_{m=1}^{n} P^{n_1 + m + n_0}(y, y) &= \frac{1}{n} \sum_{m=1}^{n_1 + n + n_0} P^m(y, y) - \frac{1}{n} \sum_{m=1}^{n_1 + n_0} P^m(y, y) \\ &= \frac{n_1 + n + n_0}{n} \frac{1}{n_1 + n + n_0} \sum_{m=1}^{n_1 + n + n_0} P^m(y, y) - \frac{1}{n} \sum_{m=1}^{n_1 + n_0} P^m(y, y) \end{split}$$

$$\frac{1}{n} \sum_{m=1}^{n} P^{n_1+m+n_0}(y,y) \ge P^{n_1}(y,x) \frac{1}{n} \sum_{m=1}^{n} P^m(x,x) P^{n_0}(x,y), \forall n$$

$$\begin{split} \frac{1}{n} \sum_{m=1}^{n} P^{n_1 + m + n_0}(y, y) &= \frac{1}{n} \sum_{m=1}^{n_1 + n + n_0} P^m(y, y) - \frac{1}{n} \sum_{m=1}^{n_1 + n_0} P^m(y, y) \\ &= \frac{n_1 + n + n_0}{n} \frac{1}{n_1 + n + n_0} \sum_{m=1}^{n_1 + n + n_0} P^m(y, y) - \frac{1}{n} \sum_{m=1}^{n_1 + n_0} P^m(y, y) \end{split}$$

$$\Rightarrow \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} P^{n_1 + m + n_0}(y, y) = \frac{1}{m_y}$$

$$\frac{1}{n} \sum_{m=1}^{n} P^{n_1+m+n_0}(y,y) \ge P^{n_1}(y,x) \quad \frac{1}{n} \sum_{m=1}^{n} P^m(x,x) \quad P^{n_0}(x,y), \ \forall n$$

$$\begin{split} \frac{1}{n} \sum_{m=1}^{n} P^{n_1 + m + n_0}(y, y) &= \frac{1}{n} \sum_{m=1}^{n_1 + n + n_0} P^m(y, y) - \frac{1}{n} \sum_{m=1}^{n_1 + n_0} P^m(y, y) \\ &= \frac{n_1 + n + n_0}{n} \frac{1}{n_1 + n + n_0} \sum_{m=1}^{n_1 + n + n_0} P^m(y, y) - \frac{1}{n} \sum_{m=1}^{n_1 + n_0} P^m(y, y) \end{split}$$

$$\Rightarrow \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} P^{n_1 + m + n_0}(y, y) = \frac{1}{m_y}$$

$$\Rightarrow \frac{1}{m_y} \ge P^{n_1}(y, x) \frac{1}{m_x} P^{n_0}(x, y) > 0$$

$$\frac{1}{n} \sum_{m=1}^{n} P^{n_1+m+n_0}(y,y) \ge P^{n_1}(y,x) \quad \frac{1}{n} \sum_{m=1}^{n} P^m(x,x) \quad P^{n_0}(x,y), \ \forall n$$

We can write the
$$LHS$$
 of above as

we can write the
$$EIID$$
 of above as

 $\frac{1}{n} \sum_{m=1}^{n} P^{n_1 + m + n_0}(y, y) = \frac{1}{n} \sum_{m=1}^{n_1 + n + n_0} P^m(y, y) - \frac{1}{n} \sum_{m=1}^{n_1 + n_0} P^m(y, y)$

 $=\frac{n_1+n+n_0}{n}\frac{1}{n_1+n+n_0}\sum_{m=1}^{n_1+n+n_0}P^m(y,y)-\frac{1}{n}\sum_{m=1}^{n_1+n_0}P^m(y,y)$

 $\Rightarrow \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} P^{n_1 + m + n_0}(y, y) = \frac{1}{m_y}$

 $\Rightarrow \frac{1}{m_y} \ge P^{n_1}(y, x) \frac{1}{m_x} P^{n_0}(x, y) > 0$

which implies y is positive recurrent P S Sastry, IISc, E1 222, Lecture 21, Aug 2021 42/43 ► Thus, in a closed irreducible set of recurrent states, if one state is positive recurrent then all are positive recurrent.

- ► Thus, in a closed irreducible set of recurrent states, if one state is positive recurrent then all are positive recurrent.
- ▶ Hence, in the partition: $S_R = C_1 + C_2 + \cdots$, each C_i is either wholly positive recurrent or wholly null recurrent.

- ► Thus, in a closed irreducible set of recurrent states, if one state is positive recurrent then all are positive recurrent.
- ▶ Hence, in the partition: $S_R = C_1 + C_2 + \cdots$, each C_i is either wholly positive recurrent or wholly null recurrent.
- We next show that a finite chain cannot have any null recurrent states.