Introduction to Machine Learning

Fall Semester

Homework 2: October 27, 2021

Due: November 10, 2021

Theory Questions

1. (14 points) PAC in Expectation. Consider learning in the realizable case. We say an hypothesis class \mathcal{H} is PAC learnable in expectation if there exists a learning algorithm A and a function $N(a):(0,1)\to\mathbb{N}$ such that $\forall a\in(0,1)$ and for any distribution P, given a sample set S, such that $|S|\geq N(a)$ it holds that,

$$\mathbb{E}\left[e_P(A(S))\right] \le a$$

Show that \mathcal{H} is PAC learnable if and only if \mathcal{H} is PAC learnable in expectation (Hint: On one directions, use the law of total expectation. On the other direction, use Markov's inequality). You can assume that the loss function is bounded between 0 and 1.

- 2. (14 points) Union Of Intervals. Determine the VC-dimension of the subsets of the real line formed by the union of k intervals (see question 1 of the programming assignment for a formal definition of \mathcal{H}).
- 3. (14 points) Axis-aligned Rectangles. Fix $d \in \mathbb{N}$. Given two vectors $\mathbf{a} = (a_1, ..., a_d) \in \mathbb{R}^d$ and $\mathbf{b} = (b_1, ..., b_d) \in \mathbb{R}^d$, define

$$h_{\mathbf{a},\mathbf{b}}(\mathbf{x}) = \begin{cases} 1 & \forall i \in [d]: & a_i \leq x_i \leq b_i \\ 0 & \text{otherwise} \end{cases}$$
.

Determine the VD-dimension of $\mathcal{H} = \{h_{\mathbf{a},\mathbf{b}} \mid \mathbf{a}, \mathbf{b} \in \mathbb{R}^d\}.$

- 4. Growth function (18 points). Fix two hypothesis classes $\mathcal{H}_1, \mathcal{H}_2$.
 - (a) Show that for any n,

$$\Pi_{\mathcal{H}_1 \cup \mathcal{H}_2}(n) \le \Pi_{\mathcal{H}_1}(n) + \Pi_{\mathcal{H}_2}(n).$$

(b) Denote $\mathcal{H}_1 \otimes \mathcal{H}_2 = \{x \mapsto h_1(x) \cdot h_2(x) \mid h_1 \in \mathcal{H}_1, h_2 \in \mathcal{H}_2\}$, where h_i return 0-1 labels $(h_i(x) \in \{0, 1\})$. Show that for any n,

$$\Pi_{\mathcal{H}_1 \otimes \mathcal{H}_2}(n) \leq \Pi_{\mathcal{H}_1}(n) \cdot \Pi_{\mathcal{H}_2}(n).$$

Programming Assignment

1. Union Of Intervals. In this question, we will study the hypothesis class of a finite union of disjoint intervals, and the properties of the ERM algorithm for this class.

To review, let the sample space be $\mathcal{X} = [0, 1]$ and assume we study a binary classification problem, i.e. $\mathcal{Y} = \{0, 1\}$. We will try to learn using an hypothesis class that consists of k intervals. More explicitly, let $I = \{[l_1, u_1], \ldots, [l_k, u_k]\}$ be k disjoint intervals, such that $0 \le l_1 \le u_1 \le l_2 \le u_2 \le \ldots \le u_k \le 1$. For each such k disjoint intervals, define the corresponding hypothesis as

$$h_I(x) = \begin{cases} 1 & \text{if } x \in [l_1, u_1], \dots, [l_k, u_k] \\ 0 & \text{otherwise} \end{cases}$$

Finally, define \mathcal{H}_k as the hypothesis class that consists of all hypotheses that correspond to k disjoint intervals:

$$\mathcal{H}_k = \{h_I | I = \{[l_1, u_1], \dots, [l_k, u_k]\}, 0 \le l_1 \le u_1 < l_2 \le u_2 < \dots \le u_k \le 1\}$$

Submission Guidelines:

- Download the files skeleton.py and intervals.py from Moodle. You should implement only the missing code in skeleton.py, as specified in the following questions. In every method description, you will find specific details on its input and return values.
- Your code should be written with python 3.
- Your submission should include exactly two files: assignment2.py, intervals.py.

Explanation on intervals.py:

The file intervals.py includes a function that implements an ERM algorithm for \mathcal{H}_k . Given a sorted list $xs = [x_1, \dots, x_n]$, the respective labeling $ys = [y_1, \dots, y_n]$ and k, the given function find_best_interval returns a list of up to k intervals and their error count on the given sample. These intervals have the smallest empirical error count possible from all choices of k intervals or less.

Note that in sections (c)-(e) you will need to use this function for large values of n. Execution in these cases could take time (more than 10 minutes for experiment), so plan ahead.

(a) (8 points) Assume that the true distribution $P[x, y] = P[y|x] \cdot P[x]$ is: x is distributed uniformly on the interval [0, 1], and

$$P[y=1|x] = \begin{cases} 0.8 & \text{if } x \in [0,0.2] \cup [0.4,0.6] \cup [0.8,1] \\ 0.1 & \text{if } x \in (0.2,0.4) \cup (0.6,0.8) \end{cases}$$

and P[y=0|x]=1-P[y=1|x]. Since we know the true distribution P, we can calculate $e_P(h)$ precisely for any hypothesis $h \in \mathcal{H}_k$. What is the hypothesis in \mathcal{H}_{10} with the smallest error (i.e., $\arg\min_{h\in\mathcal{H}_{10}}e_P(h)$)?

- (b) (8 points) Write a function that, given a list of intervals I, calculates the true error $e_P(h_I)$. Then, for $k=3, n=10,15,20,\ldots,100$, perform the following experiment T=100 times: (i) Draw a sample of size n and run the ERM algorithm on it; (ii) Calculate the empirical error for the returned hypothesis; (iii) Calculate the true error for the returned hypothesis. Plot the average empirical and true errors, averaged across the T runs, as a function of n. Discuss the results. Do the empirical and true error decrease or increase in n? Why?
- (c) (8 points) Draw a data set of n = 1500 samples. Find the best ERM hypothesis for k = 1, 2, ..., 10, and plot the empirical and true errors as a function of k. How does the error behave? Define k^* to be the k with the smallest empirical error for ERM. Does this mean the hypothesis with k^* intervals is a good choice?
- (d) (8 points) Now we will use the principle of structural risk minimization (SRM), to search for a k that gives good test error. Let $\delta = 0.1$:
 - Use to following penalty function:

$$2\sqrt{\frac{\operatorname{VCdim}(\mathcal{H}_k) + \ln\frac{2}{\delta}}{n}}$$

- Draw a data set of m = 1500 samples, run the experiment in (c) again, but now plot two additional lines as a function of k: 1) the penalty for the best ERM hypothesis and 2) the sum of penalty and empirical error.
- What is the best value for k in each case? is it better than the one you chose in (c)?
- (e) (8 points) Here we will use holdout-validation to search for a $k \in \{1, ..., 10\}$ that gives good test error. Draw a data set of n = 1500 samples and use 20% for a holdout-validation. Choose the best hypothesis and discuss how close this gets you to finding the hypothesis with optimal true error.