Vamos a calcular $1469^{-1} \mod 4620$

Vamos a calcular 1469^{-1} mód 4620

En primer lugar, calculamos el máximo común divisor de 4620 y 1469 por el algoritmo de Euclides.

Vamos a calcular 1469^{-1} mód 4620

En primer lugar, calculamos el máximo común divisor de 4620 y 1469 por el algoritmo de Euclides.

Dividimos 4620 entre 1469.

Vamos a calcular 1469^{-1} mód 4620

En primer lugar, calculamos el máximo común divisor de 4620 y 1469 por el algoritmo de Euclides.

Dividimos 4620 entre 1469.

$$4620 = 1469 \cdot 3 + 213$$

Vamos a calcular 1469^{-1} mód 4620

En primer lugar, calculamos el máximo común divisor de 4620 y 1469 por el algoritmo de Euclides.

Ahora 1469 entre 213.

$$4620 = 1469 \cdot 3 + 213$$

Vamos a calcular 1469^{-1} mód 4620

En primer lugar, calculamos el máximo común divisor de 4620 y 1469 por el algoritmo de Euclides.

Ahora 1469 entre 213.

$$4620 = 1469 \cdot 3 + 213$$
$$1469 = 213 \cdot 6 + 191$$

Vamos a calcular 1469^{-1} mód 4620

En primer lugar, calculamos el máximo común divisor de 4620 y 1469 por el algoritmo de Euclides.

Ahora 213 entre 191.

$$4620 = 1469 \cdot 3 + 213$$
$$1469 = 213 \cdot 6 + 191$$

Vamos a calcular 1469^{-1} mód 4620

En primer lugar, calculamos el máximo común divisor de 4620 y 1469 por el algoritmo de Euclides.

Ahora 213 entre 191.

$$4620 = 1469 \cdot 3 + 213$$
$$1469 = 213 \cdot 6 + 191$$
$$213 = 191 \cdot 1 + 22$$

Vamos a calcular 1469^{-1} mód 4620

En primer lugar, calculamos el máximo común divisor de 4620 y 1469 por el algoritmo de Euclides.

Ahora 191 entre 22.

$$4620 = 1469 \cdot 3 + 213$$
$$1469 = 213 \cdot 6 + 191$$
$$213 = 191 \cdot 1 + 22$$

Vamos a calcular 1469^{-1} mód 4620

En primer lugar, calculamos el máximo común divisor de 4620 y 1469 por el algoritmo de Euclides.

Ahora 191 entre 22.

$$4620 = 1469 \cdot 3 + 213$$
$$1469 = 213 \cdot 6 + 191$$
$$213 = 191 \cdot 1 + 22$$
$$191 = 22 \cdot 8 + 15$$

Vamos a calcular 1469^{-1} mód 4620

En primer lugar, calculamos el máximo común divisor de 4620 y 1469 por el algoritmo de Euclides.

Ahora 22 entre 15.

$$4620 = 1469 \cdot 3 + 213$$
$$1469 = 213 \cdot 6 + 191$$
$$213 = 191 \cdot 1 + 22$$
$$191 = 22 \cdot 8 + 15$$

Vamos a calcular 1469^{-1} mód 4620

En primer lugar, calculamos el máximo común divisor de 4620 y 1469 por el algoritmo de Euclides.

Ahora 22 entre 15.

$$4620 = 1469 \cdot 3 + 213$$

$$1469 = 213 \cdot 6 + 191$$

$$213 = 191 \cdot 1 + 22$$

$$191 = 22 \cdot 8 + 15$$

$$22 = 15 \cdot 1 + 7$$

Vamos a calcular 1469^{-1} mód 4620

En primer lugar, calculamos el máximo común divisor de 4620 y 1469 por el algoritmo de Euclides.

Ahora 15 entre 7.

$$4620 = 1469 \cdot 3 + 213$$

$$1469 = 213 \cdot 6 + 191$$

$$213 = 191 \cdot 1 + 22$$

$$191 = 22 \cdot 8 + 15$$

$$22 = 15 \cdot 1 + 7$$

Vamos a calcular 1469^{-1} mód 4620

En primer lugar, calculamos el máximo común divisor de 4620 y 1469 por el algoritmo de Euclides.

Ahora 15 entre 7.

$$4620 = 1469 \cdot 3 + 213$$

$$1469 = 213 \cdot 6 + 191$$

$$213 = 191 \cdot 1 + 22$$

$$191 = 22 \cdot 8 + 15$$

$$22 = 15 \cdot 1 + 7$$

$$15 = 7 \cdot 2 + 1$$

Vamos a calcular 1469^{-1} mód 4620

En primer lugar, calculamos el máximo común divisor de 4620 y 1469 por el algoritmo de Euclides.

Puesto que el resto es 1, sabemos que mcd(4620, 1469) = 1.

$$4620 = 1469 \cdot 3 + 213$$

$$1469 = 213 \cdot 6 + 191$$

$$213 = 191 \cdot 1 + 22$$

$$191 = 22 \cdot 8 + 15$$

$$22 = 15 \cdot 1 + 7$$

$$15 = 7 \cdot 2 + 1$$

Vamos a calcular 1469^{-1} mód 4620

En primer lugar, calculamos el máximo común divisor de 4620 y 1469 por el algoritmo de Euclides.

Puesto que el resto es 1, sabemos que mcd(4620, 1469) = 1. Luego existe el inverso que queremos calcular.

$$4620 = 1469 \cdot 3 + 213$$

$$1469 = 213 \cdot 6 + 191$$

$$213 = 191 \cdot 1 + 22$$

$$191 = 22 \cdot 8 + 15$$

$$22 = 15 \cdot 1 + 7$$

$$15 = 7 \cdot 2 + 1$$

Vamos a calcular 1469^{-1} mód 4620

En primer lugar, calculamos el máximo común divisor de 4620 y 1469 por el algoritmo de Euclides.

Con los cocientes y los restos, rellenamos la siguiente tabla:

$$4620 = 1469 \cdot 3 + 213$$

$$1469 = 213 \cdot 6 + 191$$

$$213 = 191 \cdot 1 + 22$$

$$191 = 22 \cdot 8 + 15$$

$$22 = 15 \cdot 1 + 7$$

$$15 = 7 \cdot 2 + 1$$

Vamos a calcular 1469^{-1} mód 4620

En primer lugar, calculamos el máximo común divisor de 4620 y 1469 por el algoritmo de Euclides.

Con los cocientes y los restos, rellenamos la siguiente tabla:

```
r c
4620
1469
213 3
191 6
22 1
15 8
7 1
1 2
```

$$4620 = 1469 \cdot 3 + 213$$

$$1469 = 213 \cdot 6 + 191$$

$$213 = 191 \cdot 1 + 22$$

$$191 = 22 \cdot 8 + 15$$

$$22 = 15 \cdot 1 + 7$$

$$15 = 7 \cdot 2 + 1$$

Vamos a calcular 1469^{-1} mód 4620

En primer lugar, calculamos el máximo común divisor de 4620 y 1469 por el algoritmo de Euclides.

Con los cocientes y los restos, rellenamos la siguiente tabla:

$$4620 = 1469 \cdot 3 + 213$$

$$1469 = 213 \cdot 6 + 191$$

$$213 = 191 \cdot 1 + 22$$

$$191 = 22 \cdot 8 + 15$$

$$22 = 15 \cdot 1 + 7$$

$$15 = 7 \cdot 2 + 1$$

Vamos a calcular 1469^{-1} mód 4620

En primer lugar, calculamos el máximo común divisor de 4620 y 1469 por el algoritmo de Euclides.

Con los cocientes y los restos, rellenamos la siguiente tabla:

$$4620 = 1469 \cdot 3 + 213$$

$$1469 = 213 \cdot 6 + 191$$

$$213 = 191 \cdot 1 + 22$$

$$191 = 22 \cdot 8 + 15$$

$$22 = 15 \cdot 1 + 7$$

$$15 = 7 \cdot 2 + 1$$

$$r_i = r_{i-2} - c_i \cdot r_{i-1}$$

Vamos a calcular 1469^{-1} mód 4620

En primer lugar, calculamos el máximo común divisor de 4620 y 1469 por el algoritmo de Euclides.

Con los cocientes y los restos, rellenamos la siguiente tabla:

$$4620 = 1469 \cdot 3 + 213$$

$$1469 = 213 \cdot 6 + 191$$

$$213 = 191 \cdot 1 + 22$$

$$191 = 22 \cdot 8 + 15$$

$$22 = 15 \cdot 1 + 7$$

$$15 = 7 \cdot 2 + 1$$

$$r_i = r_{i-2} - c_i \cdot r_{i-1}$$

Vamos a calcular 1469^{-1} mód 4620

En primer lugar, calculamos el máximo común divisor de 4620 y 1469 por el algoritmo de Euclides.

Con los cocientes y los restos, rellenamos la siguiente tabla:

$$4620 = 1469 \cdot 3 + 213$$

$$1469 = 213 \cdot 6 + 191$$

$$213 = 191 \cdot 1 + 22$$

$$191 = 22 \cdot 8 + 15$$

$$22 = 15 \cdot 1 + 7$$

$$15 = 7 \cdot 2 + 1$$

$$r_i = r_{i-2} - c_i \cdot r_{i-1}$$

Vamos a calcular 1469^{-1} mód 4620

En primer lugar, calculamos el máximo común divisor de 4620 y 1469 por el algoritmo de Euclides.

Con los cocientes y los restos, rellenamos la siguiente tabla:

$$4620 = 1469 \cdot 3 + 213$$

$$1469 = 213 \cdot 6 + 191$$

$$213 = 191 \cdot 1 + 22$$

$$191 = 22 \cdot 8 + 15$$

$$22 = 15 \cdot 1 + 7$$

$$15 = 7 \cdot 2 + 1$$

$$r_i = r_{i-2} - c_i \cdot r_{i-1}$$

Vamos a calcular 1469^{-1} mód 4620

En primer lugar, calculamos el máximo común divisor de 4620 y 1469 por el algoritmo de Euclides.

Con los cocientes y los restos, rellenamos la siguiente tabla:

$$4620 = 1469 \cdot 3 + 213$$

$$1469 = 213 \cdot 6 + 191$$

$$213 = 191 \cdot 1 + 22$$

$$191 = 22 \cdot 8 + 15$$

$$22 = 15 \cdot 1 + 7$$

$$15 = 7 \cdot 2 + 1$$

$$r_i = r_{i-2} - c_i \cdot r_{i-1}$$

Vamos a calcular 1469^{-1} mód 4620

En primer lugar, calculamos el máximo común divisor de 4620 y 1469 por el algoritmo de Euclides.

Con los cocientes y los restos, rellenamos la siguiente tabla:

$$4620 = 1469 \cdot 3 + 213$$

$$1469 = 213 \cdot 6 + 191$$

$$213 = 191 \cdot 1 + 22$$

$$191 = 22 \cdot 8 + 15$$

$$22 = 15 \cdot 1 + 7$$

$$15 = 7 \cdot 2 + 1$$

$$r_i = r_{i-2} - c_i \cdot r_{i-1}$$

Vamos a calcular 1469^{-1} mód 4620

En primer lugar, calculamos el máximo común divisor de 4620 y 1469 por el algoritmo de Euclides.

Con los cocientes y los restos, rellenamos la siguiente tabla:

$$4620 = 1469 \cdot 3 + 213$$

$$1469 = 213 \cdot 6 + 191$$

$$213 = 191 \cdot 1 + 22$$

$$191 = 22 \cdot 8 + 15$$

$$22 = 15 \cdot 1 + 7$$

$$15 = 7 \cdot 2 + 1$$

$$r_i = r_{i-2} - c_i \cdot r_{i-1}$$

Vamos a calcular 1469^{-1} mód 4620

En primer lugar, calculamos el máximo común divisor de 4620 y 1469 por el algoritmo de Euclides.

Con los cocientes y los restos, rellenamos la siguiente tabla:

$$4620 = 1469 \cdot 3 + 213$$

$$1469 = 213 \cdot 6 + 191$$

$$213 = 191 \cdot 1 + 22$$

$$191 = 22 \cdot 8 + 15$$

$$22 = 15 \cdot 1 + 7$$

$$15 = 7 \cdot 2 + 1$$

Podemos observar que se tiene la siguiente relación entre los elementos de la tabla:

$$r_i = r_{i-2} - c_i \cdot r_{i-1}$$

Añadimos una nueva columna v, cuyos dos primeros elementos son 0 y 1.

Vamos a calcular 1469^{-1} mód 4620

En primer lugar, calculamos el máximo común divisor de 4620 y 1469 por el algoritmo de Euclides.

Con los cocientes y los restos, rellenamos la siguiente tabla:

r	C	٧
4620		0
1469		1
213	3	
191	6	
22	1	
15	8	
7	1	
1	2	

$$4620 = 1469 \cdot 3 + 213$$

$$1469 = 213 \cdot 6 + 191$$

$$213 = 191 \cdot 1 + 22$$

$$191 = 22 \cdot 8 + 15$$

$$22 = 15 \cdot 1 + 7$$

$$15 = 7 \cdot 2 + 1$$

Podemos observar que se tiene la siguiente relación entre los elementos de la tabla:

$$r_i = r_{i-2} - c_i \cdot r_{i-1}$$

Añadimos una nueva columna v, cuyos dos primeros elementos son 0 y 1.

Vamos a calcular 1469^{-1} mód 4620

En primer lugar, calculamos el máximo común divisor de 4620 y 1469 por el algoritmo de Euclides.

Con los cocientes y los restos, rellenamos la siguiente tabla:

r	C	١
4620		(
1469		1
213	3	
191	6	
22	1	
15	8	
7	1	
1	2	

$$4620 = 1469 \cdot 3 + 213$$

$$1469 = 213 \cdot 6 + 191$$

$$213 = 191 \cdot 1 + 22$$

$$191 = 22 \cdot 8 + 15$$

$$22 = 15 \cdot 1 + 7$$

$$15 = 7 \cdot 2 + 1$$

Podemos observar que se tiene la siguiente relación entre los elementos de la tabla:

$$r_i = r_{i-2} - c_i \cdot r_{i-1}$$

$$v_i = v_{i-2} - c_i \cdot v_{i-1}$$

Vamos a calcular 1469^{-1} mód 4620

En primer lugar, calculamos el máximo común divisor de 4620 y 1469 por el algoritmo de Euclides.

Con los cocientes y los restos, rellenamos la siguiente tabla:

r	C	V	
4620		0	
1469		1	
213	3		$0 - 3 \cdot 1 = -3$
191	6		
22	1		
15	8		
7	1		
1	2		

$$4620 = 1469 \cdot 3 + 213$$

$$1469 = 213 \cdot 6 + 191$$

$$213 = 191 \cdot 1 + 22$$

$$191 = 22 \cdot 8 + 15$$

$$22 = 15 \cdot 1 + 7$$

$$15 = 7 \cdot 2 + 1$$

Podemos observar que se tiene la siguiente relación entre los elementos de la tabla:

$$r_i = r_{i-2} - c_i \cdot r_{i-1}$$

$$v_i = v_{i-2} - c_i \cdot v_{i-1} \quad \blacksquare$$

Vamos a calcular 1469^{-1} mód 4620

En primer lugar, calculamos el máximo común divisor de 4620 y 1469 por el algoritmo de Euclides.

Con los cocientes y los restos, rellenamos la siguiente tabla:

$$4620 = 1469 \cdot 3 + 213$$

$$1469 = 213 \cdot 6 + 191$$

$$213 = 191 \cdot 1 + 22$$

$$191 = 22 \cdot 8 + 15$$

$$22 = 15 \cdot 1 + 7$$

$$15 = 7 \cdot 2 + 1$$

Podemos observar que se tiene la siguiente relación entre los elementos de la tabla:

$$r_i = r_{i-2} - c_i \cdot r_{i-1}$$

$$v_i = v_{i-2} - c_i \cdot v_{i-1}$$

Vamos a calcular 1469^{-1} mód 4620

En primer lugar, calculamos el máximo común divisor de 4620 y 1469 por el algoritmo de Euclides.

Con los cocientes y los restos, rellenamos la siguiente tabla:

r c
$$V$$
4620 0
1469 1
213 3 -3 0 - 3 · 1 = -3
191 6 1 - 6 · (-3) = 19
22 1
15 8
7 1
1 2

$$4620 = 1469 \cdot 3 + 213$$

$$1469 = 213 \cdot 6 + 191$$

$$213 = 191 \cdot 1 + 22$$

$$191 = 22 \cdot 8 + 15$$

$$22 = 15 \cdot 1 + 7$$

$$15 = 7 \cdot 2 + 1$$

Podemos observar que se tiene la siguiente relación entre los elementos de la tabla:

$$r_i = r_{i-2} - c_i \cdot r_{i-1}$$

$$v_i = v_{i-2} - c_i \cdot v_{i-1}$$

Vamos a calcular 1469^{-1} mód 4620

En primer lugar, calculamos el máximo común divisor de 4620 y 1469 por el algoritmo de Euclides.

Con los cocientes y los restos, rellenamos la siguiente tabla:

r c
$$V$$
4620 0
1469 1
213 3 -3 0 - 3 · 1 = -3
191 6 19 1 - 6 · (-3) = 19
22 1
15 8
7 1
1 2

$$4620 = 1469 \cdot 3 + 213$$

$$1469 = 213 \cdot 6 + 191$$

$$213 = 191 \cdot 1 + 22$$

$$191 = 22 \cdot 8 + 15$$

$$22 = 15 \cdot 1 + 7$$

$$15 = 7 \cdot 2 + 1$$

Podemos observar que se tiene la siguiente relación entre los elementos de la tabla:

$$r_i = r_{i-2} - c_i \cdot r_{i-1}$$

$$v_i = v_{i-2} - c_i \cdot v_{i-1}$$

Vamos a calcular 1469^{-1} mód 4620

En primer lugar, calculamos el máximo común divisor de 4620 y 1469 por el algoritmo de Euclides.

Con los cocientes y los restos, rellenamos la siguiente tabla:

r c v

$$4620$$
 0 0
 1469 1 1 $= -3$
 191 6 $= 19$ 1 $= 6 \cdot (-3) = 19$
 22 1 $= -3 - 1 \cdot 19 = -22$
 15 8 7 1 1 2

$$4620 = 1469 \cdot 3 + 213$$

$$1469 = 213 \cdot 6 + 191$$

$$213 = 191 \cdot 1 + 22$$

$$191 = 22 \cdot 8 + 15$$

$$22 = 15 \cdot 1 + 7$$

$$15 = 7 \cdot 2 + 1$$

Podemos observar que se tiene la siguiente relación entre los elementos de la tabla:

$$r_i = r_{i-2} - c_i \cdot r_{i-1}$$

Vamos a calcular 1469^{-1} mód 4620

En primer lugar, calculamos el máximo común divisor de 4620 y 1469 por el algoritmo de Euclides.

Con los cocientes y los restos, rellenamos la siguiente tabla:

$$4620 = 1469 \cdot 3 + 213$$

$$1469 = 213 \cdot 6 + 191$$

$$213 = 191 \cdot 1 + 22$$

$$191 = 22 \cdot 8 + 15$$

$$22 = 15 \cdot 1 + 7$$

$$15 = 7 \cdot 2 + 1$$

Podemos observar que se tiene la siguiente relación entre los elementos de la tabla:

$$r_i = r_{i-2} - c_i \cdot r_{i-1}$$

Vamos a calcular 1469^{-1} mód 4620

En primer lugar, calculamos el máximo común divisor de 4620 y 1469 por el algoritmo de Euclides.

Con los cocientes y los restos, rellenamos la siguiente tabla:

r c v

$$4620$$
 0 0
 1469 1 1
 213 3 -3 0 - 3 · 1 = -3
 191 6 19 1 - 6 · (-3) = 19
 22 1 -22 -3 - 1 · 19 = -22
 15 8 19 - 8 · (-22) = 195
7 1
1 2

$$4620 = 1469 \cdot 3 + 213$$

$$1469 = 213 \cdot 6 + 191$$

$$213 = 191 \cdot 1 + 22$$

$$191 = 22 \cdot 8 + 15$$

$$22 = 15 \cdot 1 + 7$$

$$15 = 7 \cdot 2 + 1$$

Podemos observar que se tiene la siguiente relación entre los elementos de la tabla:

$$r_i = r_{i-2} - c_i \cdot r_{i-1}$$

Vamos a calcular 1469^{-1} mód 4620

En primer lugar, calculamos el máximo común divisor de 4620 y 1469 por el algoritmo de Euclides.

Con los cocientes y los restos, rellenamos la siguiente tabla:

r c v

$$4620$$
 0 0
 1469 1 1
 213 3 -3 0 - 3 · 1 = -3
 191 6 19 1 - 6 · (-3) = 19
 22 1 -22 -3 - 1 · 19 = -22
 15 8 195 19 - 8 · (-22) = 195
7 1
1 2

$$4620 = 1469 \cdot 3 + 213$$

$$1469 = 213 \cdot 6 + 191$$

$$213 = 191 \cdot 1 + 22$$

$$191 = 22 \cdot 8 + 15$$

$$22 = 15 \cdot 1 + 7$$

$$15 = 7 \cdot 2 + 1$$

Podemos observar que se tiene la siguiente relación entre los elementos de la tabla:

$$r_i = r_{i-2} - c_i \cdot r_{i-1}$$

Vamos a calcular 1469^{-1} mód 4620

En primer lugar, calculamos el máximo común divisor de 4620 y 1469 por el algoritmo de Euclides.

Con los cocientes y los restos, rellenamos la siguiente tabla:

r	C	V	
4620		0	
1469		1	
213	3	-3	$0 - 3 \cdot 1 = -3$
191	6	19	$1 - 6 \cdot (-3) = 19$
22	1	-22	$-3 - 1 \cdot 19 = -22$
15	8	195	$19 - 8 \cdot (-22) = 195$
7	1		$-22 - 1 \cdot 195 = -217$
1	2		

$$4620 = 1469 \cdot 3 + 213$$

$$1469 = 213 \cdot 6 + 191$$

$$213 = 191 \cdot 1 + 22$$

$$191 = 22 \cdot 8 + 15$$

$$22 = 15 \cdot 1 + 7$$

$$15 = 7 \cdot 2 + 1$$

Podemos observar que se tiene la siguiente relación entre los elementos de la tabla:

$$r_i = r_{i-2} - c_i \cdot r_{i-1}$$

$$v_i = v_{i-2} - c_i \cdot v_{i-1}$$

Vamos a calcular 1469^{-1} mód 4620

En primer lugar, calculamos el máximo común divisor de 4620 y 1469 por el algoritmo de Euclides.

Con los cocientes y los restos, rellenamos la siguiente tabla:

r	C	V	
4620		0	
1469		1	
213	3	-3	$0 - 3 \cdot 1 = -3$
191	6	19	$1 - 6 \cdot (-3) = 19$
22	1	-22	$-3 - 1 \cdot 19 = -22$
15	8	195	$19 - 8 \cdot (-22) = 195$
7	1	-217	$-22 - 1 \cdot 195 = -217$
1	2		

$$4620 = 1469 \cdot 3 + 213$$

$$1469 = 213 \cdot 6 + 191$$

$$213 = 191 \cdot 1 + 22$$

$$191 = 22 \cdot 8 + 15$$

$$22 = 15 \cdot 1 + 7$$

$$15 = 7 \cdot 2 + 1$$

Podemos observar que se tiene la siguiente relación entre los elementos de la tabla:

$$r_i = r_{i-2} - c_i \cdot r_{i-1}$$

Vamos a calcular 1469^{-1} mód 4620

En primer lugar, calculamos el máximo común divisor de 4620 y 1469 por el algoritmo de Euclides.

Con los cocientes y los restos, rellenamos la siquiente tabla:

r	C	V	
4620		0	
1469		1	
213	3	-3	$0 - 3 \cdot 1 = -3$
191	6	19	$1 - 6 \cdot (-3) = 19$
22	1	-22	$-3 - 1 \cdot 19 = -22$
15	8	195	$19 - 8 \cdot (-22) = 195$
7	1	-217	$-22 - 1 \cdot 195 = -217$
1	2		$195 - 2 \cdot (-217) = 629$

$$4620 = 1469 \cdot 3 + 213$$

$$1469 = 213 \cdot 6 + 191$$

$$213 = 191 \cdot 1 + 22$$

$$191 = 22 \cdot 8 + 15$$

$$22 = 15 \cdot 1 + 7$$

$$15 = 7 \cdot 2 + 1$$

Podemos observar que se tiene la siguiente relación entre los elementos de la tabla:

$$r_i = r_{i-2} - c_i \cdot r_{i-1}$$

Vamos a calcular 1469^{-1} mód 4620

En primer lugar, calculamos el máximo común divisor de 4620 y 1469 por el algoritmo de Euclides.

Con los cocientes y los restos, rellenamos la siquiente tabla:

r	C	V	
4620		0	
1469		1	
213	3	-3	$0 - 3 \cdot 1 = -3$
191	6	19	$1 - 6 \cdot (-3) = 19$
22	1	-22	$-3 - 1 \cdot 19 = -22$
15	8	195	$19 - 8 \cdot (-22) = 195$
7	1	-217	$-22 - 1 \cdot 195 = -217$
1	2	629	$195 - 2 \cdot (-217) = 629$

$$4620 = 1469 \cdot 3 + 213$$

$$1469 = 213 \cdot 6 + 191$$

$$213 = 191 \cdot 1 + 22$$

$$191 = 22 \cdot 8 + 15$$

$$22 = 15 \cdot 1 + 7$$

$$15 = 7 \cdot 2 + 1$$

Podemos observar que se tiene la siguiente relación entre los elementos de la tabla:

$$r_i = r_{i-2} - c_i \cdot r_{i-1}$$

Añadimos una nueva columna v, cuyos dos primeros elementos son 0 y 1. Y la completamos siguiendo la regla

 $v_i = v_{i-2} - c_i \cdot v_{i-1}$

Vamos a calcular 1469^{-1} mód 4620

Con esto tenemos que $1469^{-1} \mod 4620 = 629$.

r	C	V
4620		0
1469		1
213	3	-3
191	6	19
22	1	-22
15	8	195
7	1	-217
1	2	629

Vamos a calcular 1469^{-1} mód 4620

Con esto tenemos que 1469^{-1} mód 4620 = 629.

Vamos a comprobarlo.

r	C	V
4620		0
1469		1
213	3	-3
191	6	19
22	1	-22
15	8	195
7	1	-217
1	2	629

 $1469 \cdot 629 = 924001$

Vamos a calcular $1469^{-1} \mod 4620$

Con esto tenemos que $1469^{-1} \mod 4620 = 629$.

Vamos a comprobarlo.

r	C	V
4620		0
1469		1
213	3	-3
191	6	19
22	1	-22
15	8	195
7	1	-217
1	2	629

Vamos a calcular $1469^{-1} \mod 4620$

Con esto tenemos que 1469^{-1} mód 4620 = 629.

Vamos a comprobarlo.

r	C	V
4620		0
1469		1
213	3	-3
191	6	19
22	1	-22
15	8	195
7	1	-217
1	2	629

 $1469 \cdot 629 = 924001$ $924001 \mod 4620 = 1$

Vamos a calcular 1469^{-1} mód 4620

Con esto tenemos que 1469^{-1} mód 4620 = 629.

Vamos a comprobarlo.

r	C	V
4620		0
1469		1
213	3	-3
191	6	19
22	1	-22
15	8	195
7	1	-217
1	2	629

 $1469 \cdot 629 = 924001$ $924001 \mod 4620 = 1$

Ya que

Vamos a calcular 1469^{-1} mód 4620

Con esto tenemos que 1469^{-1} mód 4620 = 629.

Vamos a comprobarlo.

	C	V
4620		0
1469		1
213	3	-3
191	6	19
22	1	-22
15	8	195
7	1	-217
1	2	629

$$1469 \cdot 629 = 924001$$

 $924001 \mod 4620 = 1$

Ya que $924001 = 4620 \cdot 200 + 1$

Vamos a calcular 1469^{-1} mód 4620

Con esto tenemos que 1469^{-1} mód 4620 = 629.

Vamos a comprobarlo.

r	C	V
4620		0
1469		1
213	3	-3
191	6	19
22	1	-22
15	8	195
7	1	-217
1	2	629

$$1469 \cdot 629 = 924001$$

 $924001 \mod 4620 = 1$

Ya que
$$924001 = 4620 \cdot 200 + 1$$

Vamos a comprobar cuál es el significado de cada coeficiente v_i que hemos ido obteniendo.

r	C	V
4620		0
1469		1
213	3	-3
191	6	19
22	1	-22
15	8	195
7	1	-217
1	2	629

r	C	V	
4620		0	
1469		1	$1469 \cdot 1 \mod 4620 = 1469$
213	3	-3	
191	6	19	
22	1	-22	
15	8	195	
7	1	-217	
1	2	629	

r	C	V	
4620		0	
1469		1	$1469 \cdot 1 \mod 4620 = 1469$
213	3	-3	$1469 \cdot (-3) \mod 4620 =$
191	6	19	
22	1	-22	
15	8	195	
7	1	-217	
1	2	629	

r	C	V	
4620		0	
1469		1	$1469 \cdot 1 \mod 4620 = 1469$
213	3	-3	$1469 \cdot (-3) \mod 4620 = -4407 \mod 4620 =$
191	6	19	
22	1	-22	
15	8	195	
7	1	-217	
1	2	629	

Vamos a comprobar cuál es el significado de cada coeficiente v_i que hemos ido obteniendo. Para eso, calculamos 1469 · v_i mód 4620.

Vamos a comprobar cuál es el significado de cada coeficiente v_i que hemos ido obteniendo. Para eso, calculamos 1469 · v_i mód 4620.

r	C	V	
4620		0	
1469		1	$1469 \cdot 1 \mod 4620 = 1469$
213	3	-3	$1469 \cdot (-3) \mod 4620 = -4407 \mod 4620 = 213$
191	6	19	$1469 \cdot 19 \mod 4620 =$
22	1	-22	
15	8	195	
7	1	-217	
1	2	629	

Vamos a comprobar cuál es el significado de cada coeficiente v_i que hemos ido obteniendo. Para eso, calculamos 1469 · v_i mód 4620.

r	C	V	
4620		0	
1469		1	$1469 \cdot 1 \mod 4620 = 1469$
213	3	-3	$1469 \cdot (-3) \mod 4620 = -4407 \mod 4620 = 213$
191	6	19	$1469 \cdot 19 \mod 4620 = 27911 \mod 4620 =$
22	1	-22	
15	8	195	
7	1	-217	
1	2	629	

Vamos a comprobar cuál es el significado de cada coeficiente v_i que hemos ido obteniendo. Para eso, calculamos 1469 · v_i mód 4620.

r	C	V	
4620		0	
1469		1	$1469 \cdot 1 \mod 4620 = 1469$
213	3	-3	$1469 \cdot (-3) \mod 4620 = -4407 \mod 4620 = 213$
191	6	19	$1469 \cdot 19 \mod 4620 = 27911 \mod 4620 = 191$
22	1	-22	
15	8	195	
7	1	-217	
1	2	629	

Vamos a comprobar cuál es el significado de cada coeficiente v_i que hemos ido obteniendo. Para eso, calculamos 1469 · v_i mód 4620.

r	C	V	
4620		0	
1469		1	$1469 \cdot 1 \mod 4620 = 1469$
213	3	-3	$1469 \cdot (-3) \mod 4620 = -4407 \mod 4620 = 213$
191	6	19	$1469 \cdot 19 \mod 4620 = 27911 \mod 4620 = 191$
22	1	-22	$1469 \cdot (-22) \mod 4620 =$
15	8	195	
7	1	-217	
1	2	629	

Vamos a comprobar cuál es el significado de cada coeficiente v_i que hemos ido obteniendo. Para eso, calculamos 1469 $\cdot v_i$ mód 4620.

r	C	V	
4620		0	
1469		1	$1469 \cdot 1 \mod 4620 = 1469$
213	3	-3	$1469 \cdot (-3) \mod 4620 = -4407 \mod 4620 = 213$
191	6	19	$1469 \cdot 19 \mod 4620 = 27911 \mod 4620 = 191$
22	1	-22	$1469 \cdot (-22) \mod 4620 = -32318 \mod 4620 =$
15	8	195	
7	1	-217	
1	2	629	

Vamos a comprobar cuál es el significado de cada coeficiente v_i que hemos ido obteniendo. Para eso, calculamos 1469 $\cdot v_i$ mód 4620.

r	C	V	
4620		0	
1469		1	$1469 \cdot 1 \mod 4620 = 1469$
213	3	-3	$1469 \cdot (-3) \mod 4620 = -4407 \mod 4620 = 213$
191	6	19	$1469 \cdot 19 \mod 4620 = 27911 \mod 4620 = 191$
22	1	-22	$1469 \cdot (-22) \mod 4620 = -32318 \mod 4620 = \frac{22}{3}$
15	8	195	
7	1	-217	
1	2	629	

Vamos a comprobar cuál es el significado de cada coeficiente v_i que hemos ido obteniendo. Para eso, calculamos 1469 $\cdot v_i$ mód 4620.

r	C	V	
4620		0	
1469		1	$1469 \cdot 1 \mod 4620 = 1469$
213	3	-3	$1469 \cdot (-3) \mod 4620 = -4407 \mod 4620 = 213$
191	6	19	$1469 \cdot 19 \mod 4620 = 27911 \mod 4620 = 191$
22	1	-22	$1469 \cdot (-22) \mod 4620 = -32318 \mod 4620 = 22$
15	8	195	$1469 \cdot 195 \mod 4620 =$
7	1	-217	
1	2	629	

Vamos a comprobar cuál es el significado de cada coeficiente v_i que hemos ido obteniendo. Para eso, calculamos 1469 $\cdot v_i$ mód 4620.

r	C	V	
4620		0	
1469		1	$1469 \cdot 1 \mod 4620 = 1469$
213	3	-3	$1469 \cdot (-3) \mod 4620 = -4407 \mod 4620 = 213$
191	6	19	$1469 \cdot 19 \mod 4620 = 27911 \mod 4620 = 191$
22	1	-22	$1469 \cdot (-22) \mod 4620 = -32318 \mod 4620 = 22$
15	8	195	$1469 \cdot 195 \mod 4620 = 286455 \mod 4620 =$
7	1	-217	
1	2	629	

Vamos a comprobar cuál es el significado de cada coeficiente v_i que hemos ido obteniendo. Para eso, calculamos 1469 · v_i mód 4620.

r	C	V	
4620		0	
1469		1	$1469 \cdot 1 \mod 4620 = 1469$
213	3	-3	$1469 \cdot (-3) \mod 4620 = -4407 \mod 4620 = 213$
191	6	19	$1469 \cdot 19 \mod 4620 = 27911 \mod 4620 = 191$
22	1	-22	$1469 \cdot (-22) \mod 4620 = -32318 \mod 4620 = 22$
15	8	195	$1469 \cdot 195 \mod 4620 = 286455 \mod 4620 = 15$
7	1	-217	
1	2	629	

Vamos a comprobar cuál es el significado de cada coeficiente v_i que hemos ido obteniendo. Para eso, calculamos 1469 · v_i mód 4620.

C	V	
	0	
	1	$1469 \cdot 1 \mod 4620 = 1469$
3	-3	$1469 \cdot (-3) \mod 4620 = -4407 \mod 4620 = 213$
6	19	$1469 \cdot 19 \mod 4620 = 27911 \mod 4620 = 191$
1	-22	$1469 \cdot (-22) \mod 4620 = -32318 \mod 4620 = 22$
8	195	$1469 \cdot 195 \mod 4620 = 286455 \mod 4620 = 15$
1	-217	$1469 \cdot (-217) \mod 4620 =$
2	629	
	6 1 8	0 1 3 -3 6 19 1 -22 8 195 1 -217

Vamos a comprobar cuál es el significado de cada coeficiente v_i que hemos ido obteniendo. Para eso, calculamos 1469 · v_i mód 4620.

r	C	V	
4620		0	
1469		1	$1469 \cdot 1 \mod 4620 = 1469$
213	3	-3	$1469 \cdot (-3) \mod 4620 = -4407 \mod 4620 = 213$
191	6	19	$1469 \cdot 19 \mod 4620 = 27911 \mod 4620 = 191$
22	1	-22	$1469 \cdot (-22) \mod 4620 = -32318 \mod 4620 = 22$
15	8	195	$1469 \cdot 195 \mod 4620 = 286455 \mod 4620 = 15$
7	1	-217	$1469 \cdot (-217) \mod 4620 = -318773 \mod 4620 =$
1	2	629	

Vamos a comprobar cuál es el significado de cada coeficiente v_i que hemos ido obteniendo. Para eso, calculamos 1469 · v_i mód 4620.

r	C	V	
4620		0	
1469		1	$1469 \cdot 1 \mod 4620 = 1469$
213	3	-3	$1469 \cdot (-3) \mod 4620 = -4407 \mod 4620 = 213$
191	6	19	$1469 \cdot 19 \mod 4620 = 27911 \mod 4620 = 191$
22	1	-22	$1469 \cdot (-22) \mod 4620 = -32318 \mod 4620 = 22$
15	8	195	$1469 \cdot 195 \mod 4620 = 286455 \mod 4620 = 15$
7	1	-217	$1469 \cdot (-217) \mod 4620 = -318773 \mod 4620 = 7$
1	2	629	

Vamos a comprobar cuál es el significado de cada coeficiente v_i que hemos ido obteniendo. Para eso, calculamos 1469 $\cdot v_i$ mód 4620.

r	C	V	
4620		0	
1469		1	$1469 \cdot 1 \mod 4620 = 1469$
213	3	-3	$1469 \cdot (-3) \mod 4620 = -4407 \mod 4620 = 213$
191	6	19	$1469 \cdot 19 \mod 4620 = 27911 \mod 4620 = 191$
22	1	-22	$1469 \cdot (-22) \mod 4620 = -32318 \mod 4620 = 22$
15	8	195	$1469 \cdot 195 \mod 4620 = 286455 \mod 4620 = 15$
7	1	-217	$1469 \cdot (-217) \mod 4620 = -318773 \mod 4620 = 7$
1	2	629	$1469 \cdot 629 \mod 4620 =$

Vamos a comprobar cuál es el significado de cada coeficiente v_i que hemos ido obteniendo. Para eso, calculamos 1469 $\cdot v_i$ mód 4620.

r	C	V	
4620		0	
1469		1	$1469 \cdot 1 \mod 4620 = 1469$
213	3	-3	$1469 \cdot (-3) \mod 4620 = -4407 \mod 4620 = 213$
191	6	19	$1469 \cdot 19 \mod 4620 = 27911 \mod 4620 = 191$
22	1	-22	$1469 \cdot (-22) \mod 4620 = -32318 \mod 4620 = 22$
15	8	195	$1469 \cdot 195 \mod 4620 = 286455 \mod 4620 = 15$
7	1	-217	$1469 \cdot (-217) \mod 4620 = -318773 \mod 4620 = 7$
1	2	629	$1469 \cdot 629 \mod 4620 = 924001 \mod 4620 =$

Vamos a comprobar cuál es el significado de cada coeficiente v_i que hemos ido obteniendo. Para eso, calculamos 1469 $\cdot v_i$ mód 4620.

r	C	V	
4620		0	
1469		1	$1469 \cdot 1 \mod 4620 = 1469$
213	3	-3	$1469 \cdot (-3) \mod 4620 = -4407 \mod 4620 = 213$
191	6	19	$1469 \cdot 19 \mod 4620 = 27911 \mod 4620 = 191$
22	1	-22	$1469 \cdot (-22) \mod 4620 = -32318 \mod 4620 = 22$
15	8	195	$1469 \cdot 195 \mod 4620 = 286455 \mod 4620 = 15$
7	1	-217	$1469 \cdot (-217) \mod 4620 = -318773 \mod 4620 = 7$
1	2	629	$1469 \cdot 629 \mod 4620 = 924001 \mod 4620 = 1$

Vamos a comprobar cuál es el significado de cada coeficiente v_i que hemos ido obteniendo. Para eso, calculamos 1469 $\cdot v_i$ mód 4620.

r	C	V	
4620		0	
1469		1	$1469 \cdot 1 \mod 4620 = 1469$
213	3	-3	$1469 \cdot (-3) \mod 4620 = -4407 \mod 4620 = 213$
191	6	19	$1469 \cdot 19 \mod 4620 = 27911 \mod 4620 = 191$
22	1	-22	$1469 \cdot (-22) \mod 4620 = -32318 \mod 4620 = 22$
15	8	195	$1469 \cdot 195 \mod 4620 = 286455 \mod 4620 = 15$
7	1	-217	$1469 \cdot (-217) \mod 4620 = -318773 \mod 4620 = 7$
1	2	629	$1469 \cdot 629 \mod 4620 = 924001 \mod 4620 = 1$

Vamos a comprobar cuál es el significado de cada coeficiente v_i que hemos ido obteniendo. Para eso, calculamos 1469 · v_i mód 4620.

r	C	V	
4620		0	
1469		1	$1469 \cdot 1 \mod 4620 = 1469$
213	3	-3	$1469 \cdot (-3) \mod 4620 = -4407 \mod 4620 = 213$
191	6	19	$1469 \cdot 19 \mod 4620 = 27911 \mod 4620 = 191$
22	1	-22	$1469 \cdot (-22) \mod 4620 = -32318 \mod 4620 = 22$
15	8	195	$1469 \cdot 195 \mod 4620 = 286455 \mod 4620 = 15$
7	1	-217	$1469 \cdot (-217) \mod 4620 = -318773 \mod 4620 = 7$
1	2	629	$1469 \cdot 629 \mod 4620 = 924001 \mod 4620 = 1$

Y vemos cómo se tiene la relación:

Vamos a comprobar cuál es el significado de cada coeficiente v_i que hemos ido obteniendo. Para eso, calculamos 1469 · v_i mód 4620.

C	V	
	0	
	1	$1469 \cdot 1 \mod 4620 = 1469$
3	-3	$1469 \cdot (-3) \mod 4620 = -4407 \mod 4620 = 213$
6	19	$1469 \cdot 19 \mod 4620 = 27911 \mod 4620 = 191$
1	-22	$1469 \cdot (-22) \mod 4620 = -32318 \mod 4620 = 22$
8	195	$1469 \cdot 195 \mod 4620 = 286455 \mod 4620 = 15$
1	-217	$1469 \cdot (-217) \mod 4620 = -318773 \mod 4620 = 7$
2	629	$1469 \cdot 629 \mod 4620 = 924001 \mod 4620 = 1$
	3 6 1 8	0 1 3 -3 6 19 1 -22 8 195 1 -217

Y vemos cómo se tiene la relación:

$$1469 \cdot v_i \mod 4620 = r_i$$

