1. Data Loading and Overview*

```
import seaborn as sns
# This Python 3 environment comes with many helpful analytics libraries installed
# It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python
# For example, here's several helpful packages to load
import numpy as np # linear algebra import pandas as pd # data
processing, CSV file I/O (e.g. pd.read csv)
# Input data files are available in the read-only "../input/" directory # For example, running this (by clicking
run or pressing Shift+Enter) will list all files under the input directory
import os for dirname, _, filenames in
os.walk('/kaggle/input'):
    for filename in filenames:
        print(os.path.join(dirname, filename))
# You can write up to 20GB to the current directory (/kaqqle/working/) that gets preserved as output when you create a version us
\# You can also write temporary files to \frac{\text{kaggle/temp/}}{\text{kempole}}, but they won't be saved outside of the current session
df=pd.read_csv('/kaggle/input/loan-dataset/loan-train.csv')
df2=pd.read_csv('/kaggle/input/loan-dataset/loan-test.csv')
*2. Data Exploration*
df.shape
₹ (614, 13)
df2.shape
```

₹ (367, 12)

df.isnull().sum()

→ Loan_ID Gender 13 Married Dependents 15 Education Self Employed 32 ApplicantIncome 0 CoapplicantIncome LoanAmount 22 Loan Amount Term 14 Credit History Property_Area 0 Loan_Status 0 dtype: int64

Double-click (or enter) to edit

df.describe()

Data Visulaizing /(EDA)

df['LoanAmount'].hist(bins=20)

df['LoanAmount_log']=np.log(df['LoanAmount'])
df.sample(5)

_ _		Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amou
	263	LP001871	Female	No	0	Graduate	No	7200	0.0	120.0	
	308	LP001996	Male	No	0	Graduate	No	20233	0.0	480.0	
	184	LP001639	Female	Yes	0	Graduate	No	3625	0.0	108.0	
	552	LP002785	Male	Yes	1	Graduate	No	3333	3250.0	158.0	
	371	LP002197	Male	Yes	2	Graduate	No	5185	0.0	155.0	
	4										

Start coding or generate with AI.

3. Data Cleaning (Handling Missing Values)

350	LP002139	Male	Yes	0	Graduate	No	9083	0.0	228.0	
270	LP001888	Female	No	0	Graduate	No	3237	0.0	30.0	
299	LP001963	Male	Yes	1	Graduate	No	2014	2925.0	113.0	
582	LP002894	Female	Yes	0	Graduate	No	3166	0.0	36.0	
580	LP002892	Male	Yes	2	Graduate	No	6540	0.0	205.0	
365	LP002181	Male	No	0	Not Graduate	No	6216	0.0	133.0	
584	LP002911	Male	Yes	1	Graduate	No	2787	1917.0	146.0	
506	LP002624	Male	Yes	0	Graduate	No	20833	6667.0	480.0	
377	LP002223	Male	Yes	0	Graduate	No	4310	0.0	130.0	

```
df.isnull().sum()
```

```
₹ Loan_ID
                      0
   Gender
   Married
                      0
   Dependents
   Education
                       0
   __mproyed 32
ApplicantIncome 0
Coappli
   CoapplicantIncome 0
   LoanAmount
                      22
   Loan_Amount_Term
                       14
   Credit_History
                      0
   Property_Area
   Loan Status
                        0
   LoanAmount_log
                       22
   dtype: int64
```

df['Self_Employed'].fillna(df['Self_Employed'].mode()[0],inplace=True)

Double-click (or enter) to edit

```
df['LoanAmount'].fillna(df['LoanAmount'].mean(),inplace=True)
df['LoanAmount_log'].fillna(df['LoanAmount_log'].mean(),inplace=True)
```

Double-click (or enter) to edit

```
df['Loan_Amount_Term'].fillna(df['Loan_Amount_Term'].mode()[0],inplace=True)
df['Credit_History'].fillna(df['Credit_History'].mode()[0],inplace=True)
df.isnull().sum()
```

```
→ Loan_ID
                     0
   Gender
   Married
   Dependents
   Education
                    0
   Self_Employed
   ApplicantIncome
   CoapplicantIncome
                     0
   LoanAmount
   Loan Amount Term
   Credit_History
                   0
   Property_Area
   Loan Status
   LoanAmount_log
                     0
   dtype: int64
```

4. Feature Engineering

```
df['Total_Income']=df['ApplicantIncome']+df['CoapplicantIncome']
df['Total_Income'].hist()
```



```
df['Total_Income_Log']=np.log(df['Total_Income'])
df['Total_Income_Log'].hist()
```


df.isnull().sum()

_		
	Loan_ID	0
	Gender	0
	Married	0
	Dependents	0
	Education	0
	Self_Employed	0
	ApplicantIncome	0
	CoapplicantIncome	0
	LoanAmount	0
	Loan_Amount_Term	0
	Credit_History	0
	Property_Area	0
	Loan_Status	0

```
LoanAmount_log
                        0
    Total Income
                        0
    Total Income Log
                        0
    dtype: int64
X= df.iloc[:,np.r [1:5,9:11,13:15]].values
Y=df.iloc[:,12].values
🔁 array([['Male', 'No', '0', ..., 1.0, 4.857444178729352, 5849.0],
    ['Male', 'Yes', '1', ..., 1.0, 4.852030263919617, 6091.0],
          ['Male', 'Yes', '0', ..., 1.0, 4.189654742026425, 3000.0],
           ['Male', 'Yes', '1', ..., 1.0, 5.53338948872752, 8312.0],
           ['Male', 'Yes', '2', ..., 1.0, 5.231108616854587, 7583.0],
           ['Female', 'No', '0', ..., 0.0, 4.890349128221754, 4583.0]],
    dtype=object)
 'Y', 'Y', 'Y', 'N', 'N',
                                       'Y', 'N', 'Y', 'N', 'N', 'N', 'Y',
           'N',
           'Y', 'Y', 'N', 'Y', 'N', 'N', 'N', 'Y', 'N', 'Y', 'N', 'Y',
                                                                    'Y',
           'Y', 'N', 'Y', 'Y', 'Y',
                                  'Y',
                                       'Y', 'Y',
                                                 'Y', 'N', 'Y',
                                                 'Y',
                                  'N', 'Y', 'Y',
           'N', 'N', 'N', 'Y', 'Y',
                                                     'Y',
                                                          'N', 'N',
                                                                    'N'
           'N', 'N', 'Y', 'Y', 'N',
                                   'Y',
                                       'Y', 'Y',
                                                 'N',
                                                      'Y',
                                                          'N',
                                                               'N'.
                                                 'Y',
                                                     'Y',
           'N', 'Y', 'Y', 'Y', 'N', 'N', 'Y', 'Y',
                                                          'Y',
                                                                    'Y'
           'Y', 'Y', 'Y',
                         'Y', 'N',
                                  'Y', 'Y',
                                            'Y',
                                                 'Y',
                                                     'Y',
                                                          'Y',
                                                               'Y',
                                                                    'Y',
           'Y', 'Y', 'Y', 'N', 'N',
                                  'Y', 'Y', 'Y',
                                                 'N',
                                                     'Y',
                                                          'Y', 'Y',
           'Y', 'N', 'Y', 'Y', 'Y',
                                  'Y', 'Y',
                                                      'Y',
                                            'Y',
                                                           'Y',
                                                               'N',
                                                 'Y',
                                                                    'N'
           'Y', 'Y', 'Y',
                                                               'Y',
                         'Y', 'Y',
                                  'N', 'N', 'Y',
                                                 'N',
                                                     'N',
                                                          'N',
                                                                    TYT
                                                               'Y',
           'Y', 'Y', 'Y', 'Y', 'Y',
                                   'N', 'Y', 'N',
                                                 'Y',
                                                     'N',
                                                           'N',
                                                                    'Y'
           'Y', 'Y', 'Y', 'Y', 'Y',
                                  'N', 'N', 'Y',
                                                 'Y',
                                                     'Y',
                                                           'N'.
                                                               171.
                                                                    'N'
           'Y', 'Y', 'Y', 'N', 'Y',
                                  'N', 'Y', 'Y',
                                                 'N',
                                                     'Y',
                                                          'N'. 'N'.
           'Y', 'N', 'Y', 'Y', 'N',
                                  'Y', 'Y', 'Y',
                                                 'Y',
                                                     'N',
                                                                    'Y'
                                                          'N', 'Y',
           'N', 'Y', 'Y',
                        'Y', 'N',
                                   'Y', 'Y', 'N',
                                                 'Y',
                                                      'Y',
                                                               'Y',
                                                           'Y',
                                                                    171
           'Y', 'N', 'N', 'N', 'Y',
                                  'Y', 'Y', 'Y',
                                                 'N',
                                                          'N', 'Y',
                                                     'Y',
           'Y', 'Y', 'Y', 'Y', 'N', 'N', 'Y', 'Y',
                                                          'Y',
                                                               'Y',
                                                 'Y',
                                                                    'Y'
           'Y', 'Y', 'N', 'Y', 'Y',
                                   'Y', 'Y', 'N',
                                                 'Y',
                                                     'Y',
                                                          'Y',
                                                               'N',
                                                                    'Y'
           'Y', 'Y', 'Y', 'N', 'N',
                                   'Y', 'Y', 'N',
                                                               'N',
                                                                    'N',
                                                 'Y',
                                                      'N',
                                                          'N',
                                                               'Y',
                                  'Y', 'Y', 'Y',
                                                          'Y',
                                                                    TYT
           'Y', 'Y', 'N', 'Y', 'Y',
                                                 'N',
                                                     'Y',
           171, 171, 171, 171, 171,
                                   'Y', 'Y', 'N',
                                                 'Y',
                                                      171.
                                                          171.
                                                               'N'.
                                  'N', 'Y', 'N',
                                                      'Y',
           'N', 'Y', 'Y', 'Y', 'Y',
                                                 'Y',
                                                           'Y',
                                                                    'N'
                    'Y',
                         'Y',
                             'Y',
                                            'Y',
           'N', 'N',
                                                 'N',
                                                               'Y',
                                  'Y', 'N',
                                                     'N',
                                                          'Y',
                                                                    171
                                   'Y', 'Y', 'N',
           'Y', 'Y', 'N',
                         'Y', 'Y',
                                                 'Y',
                                                      'Y',
                                                          'Y',
                                                               'Y',
                                                                    'Y'
                                  'Y', 'Y', 'Y',
           'N', 'Y', 'Y', 'N', 'Y',
                                                 'Y',
                                                      'Y',
                                                          'Y',
                                                                    'Y'
                                                               'Y',
                                  'Y', 'Y',
                                            'Y',
                                                          'Y',
           'N', 'Y', 'N',
                         'N', 'Y',
                                                 'N',
                                                     'Y',
                                                                    TYL
                                                                    'Y',
           'N', 'Y', 'N', 'Y', 'Y',
                                   'Y', 'N', 'N',
                                                 'Y',
                                                      'N',
                                                          'Y',
                                                               'Y',
           'Y', 'N', 'N', 'N', 'Y',
                                   'N', 'Y',
                                            'Y',
                                                 'Y',
                                                      'N',
                                                           'Y',
                                                                    TYT
                    'Y',
                                            'N',
                                                 'Y',
                                                      'Y',
                                                          'N',
                                                               171,
           'Y', 'N',
                         'Y', 'Y',
                                  'Y', 'Y',
                                                                    TYT
           'Y', 'Y', 'Y', 'Y', 'Y',
                                   'Y', 'N', 'Y',
                                                 'Y',
                                                      'N',
                                                          'N',
                                                               'N',
                                                                    'Y'
           'Y', 'N', 'Y', 'Y', 'Y',
                                                 'Y',
                                                          'Y',
                                   'N', 'N', 'N',
                                                     'N',
                                                               'N'.
                                                                    171
           'N', 'N', 'Y',
                         'Y', 'Y',
                                  'N', 'Y', 'N',
                                                 'Y',
                                                      'Y',
                                                          'N',
           'Y', 'Y', 'N', 'Y', 'Y',
                                  'Y', 'Y',
                                            'Y',
                                                 'Y',
                                                     'N',
                                                          'Y',
                                                               'Y',
                                                                    TYL
           171. 171.
                    'Y',
                        'Y', 'Y',
                                   'N', 'N', 'N',
                                                 'N',
                                                      'Y',
                                                          'N',
                                                               171,
                                                          'Y',
           'Y', 'Y',
                    'N',
                         'Y', 'N',
                                   'Y',
                                       'Y',
                                            'Y',
                                                 'Y',
                                                      'N',
           'Y', 'N', 'Y',
                         'N', 'Y',
                                  'Y',
                                       'Y',
                                            'Y',
                                                 'Y',
                                                          'Y',
                                                                    111
                                                      'N',
                                                               'N',
           'Y', 'Y',
                    'Y',
                         'Y', 'Y',
                                   'N',
                                       'N',
                                            'Y',
                                                 'N',
                                                     'Y',
                                                          'Y',
                                                               'Y',
                                                                    'Y'
           'N', 'Y', 'Y', 'Y', 'Y',
                                  'N', 'Y', 'Y',
                                                 'Y',
                                                      'N',
                                                          'Y',
                                                     'Y',
           'N', 'Y', 'Y', 'N', 'Y', 'Y', 'N', 'N',
                                                 'Y',
                                                          'N',
                                                               'N',
                                                                    'N'
           'Y', 'Y', 'Y', 'Y', 'N',
                                  'Y', 'Y', 'Y',
                                                 'Y',
                                                          'Y',
                                                     'Y',
                                                               'Y',
           'N', 'Y', 'Y', 'Y', 'Y', 'N', 'Y', 'Y',
                                                 'N', 'Y',
                                                          'Y', 'Y',
                                                          'Y',
           'N', 'Y', 'N', 'Y', 'N', 'Y', 'Y', 'N',
                                                     'Y',
                                                               'Y',
                                                 'N',
                                                                    171
           'Y', 'Y', 'Y', 'Y', 'Y',
                                  'N', 'Y', 'Y', 'N', 'N', 'N', 'Y',
                                                                    'N'
           'Y', 'Y', 'N'], dtype=object)
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test = train_test_split(X,Y,test_size=0.2, random_state=0)
```

5. Data Preprocessing (Encoding Categorical Variables)

```
from sklearn.preprocessing import LabelEncoder
labelencoder_X=LabelEncoder() Start coding or

generate with AI.

for i in range(5):
    X_train[:,i]= labelencoder_X.fit_transform(X_train[:,i])
    i

X_train [:,7] = labelencoder_X.fit_transform(X_train[:,7])

for i in range(5):
    X_test[:,i]= labelencoder_X.fit_transform(X_test[:,i])

X_test [:,7] = labelencoder_X.fit_transform(X_test[:,7])

labelencoder_y=LabelEncoder()
y_train=labelencoder_y.fit_transform(y_train)

labelencoder_y=LabelEncoder()
y_test=labelencoder_y.fit_transform(y_test)
```

Feature Scaling

```
from sklearn.preprocessing import StandardScaler
ss=StandardScaler()
X_train=ss.fit_transform(X_train)
X_test=ss.fit_transform(X_test)
```

Model Training (Decision Tree)

```
from sklearn.tree import DecisionTreeClassifier
DTClassifier= DecisionTreeClassifier (criterion='entropy', random_state=0)
DTClassifier.fit(X_train,y_train)

The property of the propert
```

```
from sklearn import metrics
print('The accuracy of decision tree is:', metrics.accuracy_score(y_pred,y_test))
```

Model Training (Naive Bayes)

y pred= DTClassifier.predict(X test)

The accuracy of decision tree is: 0.7073170731707317

Test Data Preprocessing and Predictions*

testdata=pd.read_csv('/kaggle/input/loan-dataset/loan-test.csv')
testdata.shape

```
₹ (367, 12)
```

```
testdata['Gender'].fillna(testdata['Gender'].mode()[0], inplace=True)
testdata['Dependents'].fillna (testdata['Dependents'].mode()[0], inplace=True)
testdata['Self_Employed'].fillna(testdata['Self_Employed'].mode()[0], inplace=True)
testdata['Loan_Amount_Term'].fillna(testdata['Loan_Amount_Term'].mode()[0], inplace=True)
testdata['Credit_History'].fillna(testdata['Credit_History'].mode()[0], inplace=True)
```

testdata.LoanAmount= testdata.LoanAmount.fillna(testdata.LoanAmount.mean())

testdata['LoanAmount_log']=np.log(testdata['LoanAmount'])
testdata.isnull().sum()

_	
Loan_ID	0
Gender	0
Married	0
Dependents	0
Education	0
Self_Employed	0
ApplicantIncome	0
CoapplicantIncome	0
LoanAmount	0
Loan_Amount_Term	0
Credit_History	0
Property_Area	0
LoanAmount_log	0
dtype: int64	

testdata['TotalIncome'] = testdata['ApplicantIncome']+testdata['CoapplicantIncome']
testdata['TotalIncome_log'] = np.log(testdata['TotalIncome'])

testdata.head()

₹		_	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount
	0	LP001015	Male	Yes	0	Graduate	No	5720	0	110.0	
	1	LP001022	Male	Yes	1	Graduate	No	3076	1500	126.0	
	2	LP001031	Male	Yes	2	Graduate	No	5000	1800	208.0	
	3	LP001035	Male	Yes	2	Graduate	No	2340	2546	100.0	
	4	LP001051	Male	No	0	Not Graduate	No	3276	0	78.0	

testdata.info()

\$\frac{\frac{1}{2}}{2} \text{ class 'pandas.core.frame.DataFrame'>}
RangeIndex: 367 entries, 0 to 366
Data columns (total 15 columns):

Duc	a columno (cocal 10	cordinio,.	
#	Column	Non-Null Count	Dtype
0	Loan_ID	367 non-null	object
1	Gender	367 non-null	object
2	Married	367 non-null	object
3	Dependents	367 non-null	object
4	Education	367 non-null	object
5	Self_Employed	367 non-null	object
6	ApplicantIncome	367 non-null	int64
7	CoapplicantIncome	367 non-null	int64
8	LoanAmount	367 non-null	float64
9	Loan_Amount_Term	367 non-null	float64
10	Credit_History	367 non-null	float64
11	Property_Area	367 non-null	object

```
12 LoanAmount_log 367 non-null float64

13 TotalIncome 367 non-null int64 14 TotalIncome_log 36 non-null float64 dtypes: float64(5), int64(3), object(7)

memory usage: 43.1+ KB
```

Data Visulaizing

testdata.iloc[:,[1,2,3,4,9,10,14]]
sns.histplot(testdata['Loan_Amount_Term'],)

÷	Gender	Married	Dependents	Education	Loan_Amount_Term	Credit_History	TotalIncome_log
0	Male	Yes	0	Graduate	360.0	1.0	8.651724
1	Male	Yes	1	Graduate	360.0	1.0	8.428581
2	Male	Yes	2	Graduate	360.0	1.0	8.824678
3	Male	Yes	2	Graduate	360.0	1.0	8.494129
4	Male	No	0	Not Graduate	360.0	1.0	8.094378
362	. Male	Yes	3+	Not Graduate	360.0	1.0	8.663196
363	M ale	Yes	0	Graduate	360.0	1.0	8.490233
364	Male	No	0	Graduate	360.0	1.0	8.564649
365	Male	Yes	0	Graduate	360.0	1.0	8.908289
366	i Male	No	0	Graduate	180.0	1.0	9.126959
367 ו	rows × 7 colu	mns					
4							

10. Predictions on Test Data

	Gender	Married	Dependents	Education	Loan_Amount_Term	Credit_History	TotalIncome	TotalIncome_log
0	Male	Yes	0	Graduate	360.0	1.0	5720	8.651724
1	Male	Yes	1	Graduate	360.0	1.0	4576	8.428581
2	Male	Yes	2	Graduate	360.0	1.0	6800	8.824678
3	Male	Yes	2	Graduate	360.0	1.0	4886	8.494129
4	Male	No	0	Not Graduate	360.0	1.0	3276	8.094378

test=testdata.iloc[:,np.r_[1:5,9:11, 13:15]]

test. head()

₹

for i in range(0,5):
 # print(i)
 test.iloc[:,i]=labelencoder_X.fit_transform(test.iloc[:,i])

test. head()

₹

	Gei	nder	Married	Dependents	Education	Loan_	_Amount_Ter	m Credit_	_History	TotalIncome	TotalIncome_1
0	1	1	0	0	10.0	1.0	5720	8.651	724		
1	1	1	1	0	10.0	1.0	4576	8.428	581		
2	1	1	2	0	10.0	1.0	6800	8.824	678		
3	1	1	2	0	10.0	1.0	4886	8.494	129		
4	1	0	0	1	10.0	1.0	3276	8.094	378		
4											

```
test.iloc[:,7]=labelencoder_X.fit_transform(test.iloc[:,7])
test= ss.fit transform(test)
test[0]
\Xi array([ 0.48547939, 0.75835829, -0.75822199, -0.5448117 , 0.30677633,
          0.4376739 , -0.12618159, 0.34823304])
NBClassifier.predict(test)
1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
          1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1,
         0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1,
         1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1,
         1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1,
         1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0,
         1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1,
         1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0,
         1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
         1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
         1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
         1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
         1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
    1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])
var=NBClassifier.predict([[ 0.48547939, 0.75835829, -0.75822199, -0.5448117, 0.30677633, 0.4376739, -0.12618159, 0.34823304]])
   print('Yes you\'re eligible for the loan')
   print('Sorry you\'re not eligible for the loan')
```

Final Output and Results

```
print('The accuracy of Naive Bayes is: ', metrics.accuracy_score(y_pred,y_test))
```

The accuracy of Naive Bayes is: 0.8292682926829268

Yes you're eligible for the loan