Data Science Capstone Project Report

"Predicting the outcome of SpaceX Falcon9 first stage landing"

Juan Francisco Velázquez Vadillo

SPACE Y

Data Scientist

November 2022

This capstone project of the IBM Data Science Professional Certificate takes us to a crucial crossroads:

We are prepared to get and produce a huge amount of information... now what?

First things first: Enjoy the ride!

Second: Do not be afraid of the number of slides necessary to display all the technical details required to complete the tasks in this course.

Third: Go get them! Prepare a *"compelling and easy to understand story of all your data science journey in this project"... That's it!

^{*} From the **Submission Overview and Instructions** section of this capstone project

To prepare this presentation I followed the instructions provided in the **Submission Overview and Instructions** section of this capstone project:

"...the **final task** of this capstone project is to create a **presentation based on the outcomes of all tasks** in previous modules and labs. Your presentation will develop into a **story of all your data science journey** in this project, and it should be **compelling** and **easy to understand**."

"...this **presentation** will be prepared **for your peer-data-scientists** whom are **eager to understand every technical detail** of this project."

"...this **presentation will be much more detailed and technical** than regular high-level and abstracted presentation for your executive team."

"...it should be straightforward for you to <u>abstract it into a high-level deck for</u> your executive team and/or stakeholders."

Thanks for your patience.

I hope you will find this information useful.

EXECUTIVE SUMMARY

Executive Summary

- **The race to make space travel affordable for every one is here.**
- Some providers advertise a cost upward of **165 million dollars**.
- SpaceX advertises Falcon 9 rocket launches with a cost of 62 million dollars.

This **reduced cost** is mainly due to the fact that **SpaceX reuses the first stage** of Falcon 9 rocket.

Through the use of **Data Science** and **Machine Learning** tools we developed models that predict the outcome (success vs failure) of Falcon9 first stage landing.

This information allows us to **estimate the cost** of a Falcon9 launch.

Knowing the price of each Falcon9 launch will guide our strategies to bid against SpaceX

Table of Contents	Slide
1 Cover page	1
2 From the author	2
3 Executive summary	7
4 Table of contents	11
5 Introduction	
Scenario	15
Goal	16
Strategy	17
6 Capstone project overview	18

Table of Contents	Slide
7 Methodology	
Jupyter Notebooks generated in this work	20
Data collection SpaceX REST API	24
Data collection Web scraping	25
Data cleaning an wrangling	26
Exploratory Data Analysis with SQL	27
Exploratory Data Analysis with visualization	28
Feature engineering	29
Interactive Visual Analytics, Folium map	30
Interactive Visual Analytics, Dashboard	31
Predictive Analysis	32

Table of Contents	Slide
8 Results	
Data wrangling	36
Data Collection from SpaceX REST API	39
Data collection, Web scraping	40
Exploratory Data Analysis using SQL	41
Interactive Visual Analysis using Folium	53
Interactive Visual Analysis using Plotly Dash	69
Predictive Analysis	81

Table of Contents	Slide
9 Discussion	88
10 Conclusion	110
11 Appendix (Methodology in more detail)	112
12 Acknowledgments	124

Introduction

Scenario

- Our company, SpaceY, wants to lead the race to make space travel
 affordable for every one.
- Virgin Galactic, Rocket Lab, Blue Origin and SpaceX are heavily investing in making space travel affordable for every one.
- By reusing the "first stage" of the Falcon9 rocket **SpaceX** can offer the "cheapest" ticket to space.

Introduction

Goal

Accurately predict SpaceX Falcon9 first stage landing outcome

Introduction

Strategy

Using Data Science and Machine Learning tools
we developed models that accurately predict
the outcome (success vs failure) of the
Falcon9 first stage landing

Capstone Project overview

Methodology

Jupyter Notebooks generated in this work

For detailed description of the work done in **Data collection** and **Data Wrangling** please view the following notebooks:

*When uploaded to GitHub some figures may not be displayed in the notebook. Therefore, I uploaded the githublink onto **nbviewer** to have all figures seen when accessing the link.

Complete the Data Collection API Lab

https://nbviewer.org/github/VVJF/Coursera-IBM-Capstone-Project-2022/blob/main/jupyter-labs-spacex-data-collection-api.ipynb

Complete the Data Collection with Web Scraping lab

https://nbviewer.org/github/VVJF/Coursera-IBM-Capstone-Project-2022/blob/main/jupyter-labs-webscraping.ipynb

Data Wrangling Lab

https://nbviewer.org/github/VVJF/Coursera-IBM-Capstone-Project-2022/blob/main/IBM-DS0321EN-SkillsNetwork labs module 1 L3 labs-jupyter-spacex-data wrangling jupyterlite.jupyt

For detailed description of the work done in **Exploratory Data Analysis Using SQL** and **Exploring and Preparing Data for EDA viz** please view the following notebooks:

*When uploaded to GitHub some figures may not be displayed in the notebook. Therefore, I uploaded the githublink onto **nbviewer** to have all figures seen when accessing the link.

Exploratory Data Analysis using SQL

https://nbviewer.org/github/VVJF/Coursera-IBM-Capstone-Project-2022/blob/main/jupyter-labs-eda-sql-coursera_sqllite.ipynb

Exploring and Preparing Data for EDA viz

https://nbviewer.org/github/VVJF/Coursera-IBM-Capstone-Project-2022/blob/main/IBM-DS0321EN-SkillsNetwork labs module 2 jupyter-labs-eda-dataviz.ipynb.jupyterlite.ipynb

For detailed description of the work done in Interactive Visual Analytics Using Folium and Make a Dashboard with PlotlyDash please view the following notebooks:

*When uploaded to GitHub some figures may not be displayed in the notebook. Therefore, I uploaded the githublink onto **nbviewer** to have all figures seen when accessing the link.

Launch Sites Locations Analysis with Folium

https://nbviewer.org/github/VVJF/Coursera-IBM-Capstone-Project-2022/blob/main/IBM-DS0321EN-SkillsNetwork labs module 3 lab jupyter launch site location.jupyterlite%20%281%29.ipynb

Make a Dashboard with PlotlyDash

https://nbviewer.org/github/VVJF/Coursera-IBM-Capstone-Project-2022/blob/main/spacex_dash.py

For detailed description of the work done in **Machine Learning Prediction lab** please view the following notebooks:

*When uploaded to GitHub some figures may not be displayed in the notebook. Therefore, I uploaded the githublink onto **nbviewer** to have all figures seen when accessing the link.

Machine Learning Prediction lab

Assignment: Machine Learning Prediction

https://nbviewer.org/github/VVJF/Coursera-IBM-Capstone-Project-2022/blob/main/IBM-DS0321EN-SkillsNetwork labs module 4 SpaceX Machine Learning Prediction Part 5.jupyterlite.ipynb

Data collection SpaceX REST API

Information from past launch data was obtained from

Open Source SpaceX REST API

(https://api.spacexdata.com/v4/launches/past)

Dataframes built: df, data_falcon9

Dataframe was filtered to only include Falcon 9 launches.

The LandingPad column retains None values.

Other missing np.nan values in the PayloaMass column

were replaced with the mean of this column.

Data collection Web scraping

Data was collected using the package Beautiful Soap from the Wikipedia page titled "List of Falcon 9 and Falcon Heavy launches"

https://en.wikipedia.org/wiki/List of Falcon 9 and Falcon Heavy launches

A dataframe was created by parsing the launch HTML tables.

Data cleaning and wrangling

As described in the jupyter notebooks "Data Collection from SpaceX REST API", "Data Collection from Wikipedia", and "Data Wrangling":

- We went through the process of fixing or eliminating incorrect, corrupted, incorrectly formatted, duplicate, or incomplete data within the datasets downloaded from SpaceX REST API and Wikipedia page "List of Falcon 9 and Falcon Heavy launches".
- We found patterns in the data that helped determine what would be the label and relevant variables for training Machine Learning supervised models.

Exploratory Data Analysis with SQL

Goal: to **identify attributes** that can be used to determine if the first stage can be reused.

We created the **SPACEXDATASET** in **DB2** database.

We wrote an executed **SQL queries** to gain information from this dataset.

Exploratory Data Analysis with Visualization

Goal: to identify variables that can be used to determine if the first stage can be reused.

We used the **SpaceX** dataset provided by the IBM team and generated the corresponding **dataframe**.

Through **scatter point charts** we analyzed the effect of several variables on the launch outcome.

Exploratory Data Analysis: Feature engineering

Goal: create a **clean dataframe** containing those **variables** that can be used **to determine if the first stage can be reused**.

We created the **features** dataframe with variables that affect the first stage success rate landing.

We applied the **get_dummies()** function on the categorical columns of **features** dataframe.

We cast all **numeric columns** to float64.

Interactive Visual Analytics:

Launch Sites Locations Analysis with Folium

Goal: to create, using Folium, an **interactive map** that facilitates the identification of **relevant factors** involved in finding an **optimal location** for **building a launch site**.

Interactive Visual Analytics: Build a Dashboard Application with Plotly Dash

Goal: to build a **Plotly Dash application** for users to perform **interactive visual analytics** on SpaceX launch data in real-time.

The dataset, provided by the IBM team, is the csv document

"spacex_launch_dash.csv"

Predictive Analysis:

Goal: to build a machine learning pipeline to predict if the first stage of the Falcon 9 lands successfully.

Data was standardized and split into training and testing data.

Grid Search was performed on the trained data to find the **hyperparameters** that allow a given Machine Learning model to perform best.

Predictive Analysis:

Machine Learning supervised learning techniques used:

Logistic Regression

Support Vector Machine

Decision Trees

K nearest neighbors

Predictive Analysis:

We **output the confusion matrix** and determined which model best predicts the outcome of each Falcon9 launch.

RESULTS

RESULTS Data wrangling

Dataset was imported from

URL = 'https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBM-DS0321EN-SkillsNetwork/datasets/dataset_part_1.csv'.

We identified and calculated the percentage of the missing values in each attribute.

FlightNumber	0.000	
Date	0.000	
BoosterVersion	0.000	
PayloadMass	0.000	
Orbit	0.000	
LaunchSite	0.000	
Outcome	0.000	
Flights	0.000	
GridFins	0.000	
Reused	0.000	
Legs	0.000	
LandingPad	40.625	
Block	0.000	
ReusedCount	0.000	
Serial	0.000	
Longitude	0.000	
Latitude	0.000	

Data wrangling

We calculated the number of launches on each site.

CCAFS SLC 40	55
KSC LC 39A	22
VAFB SLC 4E	13

We calculated the number and occurrence of each orbit.

```
Number of each orbit: GTO
ISS
VLEO
         14
PO
LEO
550
MEO
ES-L1
HEO
50
Name: Orbit, dtype: int64
Occurrence of each orbit:
          30.000000
         23.333333
ISS
VLEO
         15.555556
         10.000000
PO
         7.777778
550
          5.555556
          3.333333
MEO
          1.111111
ES-L1
          1.111111
HEO
50
          1.111111
          1.111111
Name: Orbit, dtype: float64
```

Data wrangling

We calculated the number and occurrence of mission outcome per orbit type.

We created a landing outcome label from Outcome column.

Successful landing: 0

Failed landing: 1

We calculated the successful launch rate: 0.666

True ASDS	41
None None	19
True RTLS	14
False ASDS	6
True Ocean	5
False Ocean	2
None ASDS	2
False RTLS	1

Data Collection

Rocket launch data requested from **SpaceX REST API** with the following URL:

spacex_url=https://api.spacexdata.com/v4/launches/past

df: clean dataframe used to predict the outcome of the Falcon9 first stage landing

After data cleaning and wrangling Dataframe used in Machine Learning Prediction

	FlightNumber	Date	BoosterVersion	PayloadMass	Orbit	Launch Site	Outcome	Flights	GridFins	Reused	Legs	LandingPad	Block	ReusedCount	Serial	Longitude	Latitude	Class
0	1	2010- 06-04	Falcon 9	6104.959412	LEO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0003	-80.577366	28.561857	0
1	2	2012- 05-22	Falcon 9	525.000000	LEO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0005	-80.577366	28.561857	0
2	3	2013- 03-01	Falcon 9	677.000000	ISS	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0007	-80.577366	28.561857	0
3	4	2013- 09-29	Falcon 9	500.000000	PO	VAFB SLC 4E	False Ocean	1	False	False	False	NaN	1.0	0	B1003	-120.610829	34.632093	0
4	5	2013- 12-03	Falcon 9	3170.000000	GTO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B1004	-80.577366	28.561857	0

Data Collection

Perform web scraping to collect Falcon 9 historical launch records from a Wikipedia page "List of Falcon 9 and Falcon Heavy launches"

https://en.wikipedia.org/wiki/List of Falcon 9 and Falcon Heavy launches

Create a data frame by parsing the launch HTML tables

First five rows of dataframe df Dataframe used in Exploratory Data Analysis using SQL

ut[20]:												
ac[zo].		Flight No.	Launch site	Payload	Payload mass	Orbit	Customer	Launch outcome	Version Booster	Booster landing	Date	Time
	0	1	CCAFS	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success\n	v1.0B0003.1	Failure	4 June 2010	18:45
	1	2	CCAFS	Dragon	0	LEO	NASA (COTS)\nNRO	Success	v1.0B0004.1	Failure	8 December 2010	15:43
	2	3	CCAFS	Dragon	525 kg	LEO	NASA (COTS)	Success	v1.0B0005.1	No attempt\n	22 May 2012	07:44
	3	4	CCAFS	SpaceX CRS-1	4,700 kg	LEO	NASA (CRS)	Success\n	v1.0B0006.1	No attempt	8 October 2012	00:35
	4	5	CCAFS	SpaceX CRS-2	4,877 kg	LEO	NASA (CRS)	Success\n	v1.0B0007.1	No attempt\n	1 March 2013	15:10

- These are the type of questions that can be asked, through SQL querying to get insight from the data.
- **SPACEXTBL** table data was provided by the IBM team

1.- Display the names of the unique launch sites in the space mission:

2.- Display the number of successful and failed missions.

Number of successful and failed missions

```
%sql select count("Mission_Outcome") as "Number_of_successful_missions" from SPACEXTBL where "Mission_Outcome" like "Succ%";

* sqlite://my_data1.db
Done.

Number_of_successful_missions

100

%sql select count("Mission_Outcome") as "Number_of_failed_missions" from SPACEXTBL where "Mission_Outcome" like "Fail%";

* sqlite://my_data1.db
Done.
Number_of_failed_missions

1

Number_of_failed_missions
```

3.- Display the date of the first successful landing outcome in ground pad.

Date of the first successful landing outcome in ground pad

4.- Display 5 records where launch sites begin with the string 'CCA':

```
[11]: %sql select "Launch_Site" from SPACEXTBL where "Launch_Site" like 'CCA%' limit 5;
    * sqlite:///my_data1.db
    Done.
[11]: Launch_Site
    CCAFS LC-40
    CCAFS LC-40
    CCAFS LC-40
    CCAFS LC-40
    CCAFS LC-40
```

5.- Display the total payload mass carried by boosters launched by NASA (CRS):

6.- Display average payload mass carried by booster version F9 v1.1

7.- List the date when the first successful landing outcome in ground pad was achieved.

8.- List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000 kg

9.- List the total number of successful and failure mission outcomes.

```
[18]: %sql select count("Mission_Outcome") as "Number_of_successful_missions" from SPACEXTBL where "Mission_Outcome" like "Succ%";

* sqlite://my_data1.db
Done.

[18]: Number_of_successful_missions

100

[19]: %sql select count("Mission_Outcome") as "Number_of_failed_missions" from SPACEXTBL where "Mission_Outcome" like "Fail%";

* sqlite:///my_data1.db
Done.

[19]: Number_of_failed_missions
```

10.- List the names of the booster_versions which have carried the maximum payload mass. Use a subquery.

20]:	%sql select "Bo	oster_Version", "PAYLOAD_MASSKG_	s "Carrying_maximum_payload_mass_kg" from SPACEXTBL where "PAYLOAD_MASS_
	4		
201	* sqlite:///my Done.		
20]:	Booster_Version	Carrying_maximum_payload_mass_kg	
	F9 B5 B1048.4	15600	
	F9 B5 B1049.4	15600	
	F9 B5 B1051.3	15600	
	F9 B5 B1056.4	15600	
	F9 B5 B1048.5	15600	
	F9 B5 B1051.4	15600	
	F9 B5 B1049.5	15600	
	F9 B5 B1060.2	15600	
	F9 B5 B1058.3	15600	
	F9 B5 B1051.6	15600	
	F9 B5 B1060.3	15600	
	F9 B5 B1049.7	15600	

11.- List the records which will display the month names, failure landing_outcomes in drone ship, booster versions, launch_site for the months in year 2015.

12.- Rank the count of successful landing_outcomes between the date 04-06-2010 and 20-03-2017 in descending order.

- 1.- Download and read the `spacex_launch_geo.csv`(Provided by the IBM team)
- 2.- Generate the corresponding spacex_df dataframe
- 3.- See the attributes

4													
	Flight Number	Date	Time (UTC)	Booster Version	Launch Site	Payload	Payload Mass (kg)	Orbit	Customer	Landing Outcome	class	Lat	Long
0	1	2010- 06-04	18:45:00	F9 v1.0 B0003	CCAFS LC-40	Dragon Spacecraft Qualification Unit	0.0	LEO	SpaceX	Failure (parachute)	0	28.562302	-80.577356
1	2	2010- 12-08	15:43:00	F9 v1.0 B0004	CCAFS LC-40	Dragon demo flight C1, two CubeSats, barrel o	0.0	LEO (ISS)	NASA (COTS) NRO	Failure (parachute)	0	28.562302	-80.577356
2	3	2012- 05-22	7:44:00	F9 v1.0 B0005	CCAFS LC-40	Dragon demo flight C2+	525.0	LEO (ISS)	NASA (COTS)	No attempt	0	28.562302	-80.577356
3	4	2012- 10-08	0:35:00	F9 v1.0 B0006	CCAFS LC-40	SpaceX CRS-1	500.0	LEO (ISS)	NASA (CRS)	No attempt	0	28.562302	-80.577356
4	5	2013-	15:10:00	F9 v1.0 B0007	CCAFS LC-40	SpaceX CRS-2	677.0	LEO (ISS)	NASA (CRS)	No attempt	0	28.562302	-80.577356

Get the coordinates of each launch site.

Data about the success/failed launches for each launch site on the

Folium map.

Class 1 = sussessful launch

Class **0** = failed launch

	Launch Site	Lat	Long	class
46	KSC LC-39A	28.573255	-80.646895	1
47	KSC LC-39A	28.573255	-80.646895	1
48	KSC LC-39A	28.573255	-80.646895	1
49	CCAFS SLC-40	28.563197	-80.576820	1
50	CCAFS SLC-40	28.563197	-80.576820	1
51	CCAFS SLC-40	28.563197	-80.576820	0
52	CCAFS SLC-40	28.563197	-80.576820	0
53	CCAFS SLC-40	28.563197	-80.576820	0
54	CCAFS SLC-40	28.563197	-80.576820	1
55	CCAFS SLC-40	28.563197	-80.576820	0

Preparing data to add a marker color to the Folium map to identify successful launch (class 1, Green) or failed launch (class 0, red)

[11]:		Launch Site	Lat	Long	class	marker_color
	46	KSC LC-39A	28.573255	-80.646895	1	green
	47	KSC LC-39A	28.573255	-80.646895	1	green
	48	KSC LC-39A	28.573255	-80.646895	1	green
	49	CCAFS SLC-40	28.563197	-80.576820	1	green
	50	CCAFS SLC-40	28.563197	-80.576820	1	green
	51	CCAFS SLC-40	28.563197	-80.576820	0	red
	52	CCAFS SLC-40	28.563197	-80.576820	0	red
	53	CCAFS SLC-40	28.563197	-80.576820	0	red
	54	CCAFS SLC-40	28.563197	-80.576820	1	green
	55	CCAFS SLC-40	28.563197	-80.576820	0	red

How to locate a site in a map: Create a red circle at NASA Johnson Space Center's coordinate with a popup label showing its name (NASA JSC).

Locating launch sites in a Folium map

Zoom In, visualizing launch sites

GREEN: SUCCESSFUL Falcon9 first stage landing

RED: **FAILED** Falcon9 first stage landing

Zoom In, visualizing launch sites

GREEN: SUCCESSFUL Falcon9 first stage landing

RED: **FAILED LAUNCHES** Falcon9 first stage landing

Calculating the distance between a launch site to its proximities.

Distance between **KSCLC-39A** launch site and **coast line**:

13.762 kilometers

Calculating the distance between a launch site to its proximities.

Distance between **KSCLC-39A** launch site and **train railroad**:

6.012 kilometers

Calculating the distance between a launch site to its proximities.

Distance between **KSCLC-39A** launch site and **Melbourne city**: **48.216** kilometers

Calculating the distance between a launch site to its proximities.

Distance between KSCLC-39A launch site and Kennedy Parkway North:

0.8679 kilometers

Calculating the distance between a launch site to its proximities. Distance between **VAFB SLC-4E** launch site and **Coast Line**:

1.3743 kilometers

Calculating the distance between a launch site to its proximities.

Distance between **VAFB SLC-4E** launch site and **SBSD MT1**:

1.2726 kilometers

Calculating the distance between a launch site to its proximities. Distance between VAFB SLC-4E launch site and Space Launch Complex 3: 2.2016 kilometers

Calculating the distance between a launch site to its proximities.

Distance between VAFB SLC-4E launch site and Vanderberg Air

Force Base: 11.6738 kilometers

Visualising information in an interactive Dashboard

Dataset provided by the IBM team: spacex_csv_file

Dataframe used in the Dashboard application: spacex_df

Variables used to create the Dashboard application:

Flight Number Date Time (UTC)

Booster Version Launch Site Payload Mass (kg)

Orbit Customer Landing Outcome

class Lat Long

KSC LC-39A has the **highest number of successful** Falcon9 first stage landings among all four launch sites: **41.7%**.

FT Booster version results in the highest number of successful launches (Falcon9 first stage successful landing outcome).

KSC LC-39A launch site: 76.9% rate of successful launches (Falcon9 first stage successful landing).

KSC LC-39A launch site: relationship between Payload Mass and launch success/failure (Falcon9 first stage landing outcome).

CCAFS LC-40 launch site: **26.9% rate of successful launches** (Falcon9 first stage successful landing).

CCAFS LC-40 launch site: relationship between **Payload Mass** and **launch success/failure** (Falcon9 first stage landing outcome).

VAFB SLC-4E launch site: 40% rate of successful launches (Falcon9 first stage successful landing).

VAFB SLC-4E launch site: relationship between Payload Mass and launch success/failure (Falcon9 first stage landing outcome).

CCAFS SLC-40 launch site: 42.9% rate of successful launches (Falcon9 first stage successful landing).

CCAFS SLC-40 launch site: relationship between **Payload Mass** and **launch success/failure** (Falcon9 first stage landing outcome).

* KSC LS-39A has the highest successful launch rate

	Launches	Successful launches	Successful launch rate
Launch site			
KSC LC-39A	26	20	76.9%
VAFB SLC-4E	20	8	40.0%
CCAFS LC-40	52	14	26.9%
CCAFS SLC-40	14	6	42.9%

data:

Dataframe provided by the IBM team.

Dataframe used to test the capacity of different **Machine Learning models** to accurately predict the outcome of each Falcon9 first stage landing outcome.

data.head()

	FlightNumber	Date	BoosterVersion	PayloadMass	Orbit	LaunchSite	Outcome	Flights	GridFins	Reused	Legs	LandingPad	Block	ReusedCount	Serial	Longitude	Latitude	Class
0	1	2010- 06-04	Falcon 9	6104.959412	LEO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0003	-80.577366	28.561857	0
1	2	2012- 05-22	Falcon 9	525.000000	LEO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0005	-80.577366	28.561857	0
2	3	2013- 03-01	Falcon 9	677.000000	ISS	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0007	-80.577366	28.561857	0
3	4	2013- 09-29	Falcon 9	500.000000	PO	VAFB SLC 4E	False Ocean	1	False	False	False	NaN	1.0	0	B1003	-120.610829	34.632093	0
4	5	2013- 12-03	Falcon 9	3170.000000	GTO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B1004	-80.577366	28.561857	0

Logistic Regression model Accuracy: 0.8333333333333333

Support Vector Machine model Accuracy: 0.9444444444444444

Decision Tree model

Accuracy: 0.72222222222222

K Nearest Neighbors model

Accuracy: 0.9444444444444444

Confusion Matrix: summary

	<u>TP</u>	TN	FP	FN	Total	Accuracy
Machine Learning model						
Logistic Regression	3	12	3	0	18	0.833333333
Support Vector Machine	5	12	1	0	18	0.94444444
Decision Tree	2	11	4	1	18	0.72222222
K Nearest Neighbors	5	12	1	0	18	0.94444444
			TP: True positives FP: False positives			TN: True negatives FN: False negatives

DISCUSSION

Data Science Capstone Project Report:

"Predicting the outcome of SpaceX Falcon9 first stage landing"

Scenario

- Our company SpaceY wants to compete with SpaceX in the race to make space travel affordable for every one.
- SpaceX advertises Falcon 9 rocket launches with a cost of 62 million dollars.
- Low cost is due to the fact that SpaceX reuses the first stage of Falcon9 rocket.

Goal

Our goal is to accurately predict SpaceX Falcon9 first stage landing outcome. Knowing the price of each Falcon9 launch will guide our strategies to bid against SpaceX.

Strategy

We used **Data Science** and **Machine Learning tools** to develope **models** that **accurately predict the outcome** (success vs failure) of the Falcon9 first stage landing.

Data collection

Data about past launches of SpaceX Falcon9 rocket was collected from the **SpaceX site**, **Wikipedia** and also provided by the **Data Science IBM team**.

Cleaned data was used to **identify factors relevant** to the successful landing of the first stage of Falcon9.

Exploratory Data Analysis using SQL

We collected information about past launches:

- Names of the unique launch sites in the space mission.
- Records about specific launch sites.
- The number of launches in each SpaceX launch sites.
- The number and occurrence of each orbit.
- The number and occurrence of mission outcome per orbit type.

Exploratory Data Analysis using SQL

- Total payload mass carried by specific boosters.
- Date when the first successful landing outcome in ground pad.
- Names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000.
- Total number of successful and failure mission outcomes.
- Names of the booster_versions which have carried the maximum payload mass.

Exploratory Data Analysis using SQL

We collected the following information about:

- Records which will display the month names, failure landing_outcomes in drone ship, booster versions, launch_site for the months in year 2015.
- The count of successful landing_outcomes between the date 04-06-2010 and 20-03-2017 in descending order.
- We created a landing outcome label from Outcome column.

Exploratory Data Analysis with visualization

We identified attributes relevant to the Falcon9 first stage landing outcome.

• We visualized the relationship between:

Flight Number and Launch Site
Payload and Launch Site
Success rate and orbit type
FlightNumber and Orbit type
Payload and Orbit type
Launch success and year trend

- We created dummy variables to categorical columns.
- We cast all numeric columns to float64.

Interactive Visual Analytics with Folium map

We identified some of the characteristics of proximities relevant for finding an optimal location to build a launch site.

We used **Folium** to create an interactive map where:

We marked all launch sites.

We marked the success/failed launches for each site.

We calculated the distances between a launch site to its proximities.

Build a Dashboard Application with Plotly Dash

We successfully built a dashboard for users to perform interactive visual analytics on SpaceX launch data in real-time.

Example

KSC LC-39A launch site:

- 1.- The FT Booster version has the highest number of successful launches when Payload Mass is below 5,500kg.
- 2.- All launches with FT, B4 and B5 are successful when PayloadMass is below 5,5000 kg.

KSC LC-39A launch site:

- 1.- The FT Booster version has the highest number of successful launches when Payload Mass is below 5,500kg.
- 2.- All launches with FT, B4 and B5 are successful when PayloadMass is below 5,5000 kg.

Predictive Analysis

We successfully built a machine learning pipeline to predict if the first stage of the Falcon 9 lands successfully.

Preprocessing permitted us to standardize the data, and **train_test_split** permitted us to split the data into training and testing data.

We trained the model and performed Grid Search to find the hyperparameters that allow a given algorithm to perform best.

With the **best hyperparameter values** we determined the **model** with the **best** accuracy using the training data.

We used different machine learning supervised learning techniques to analyze data and predict the outcome of each Falcon 9 launch:

Logistic Regression Support Vector Machine

K nearest neighbors Decision Tree

Briefly:

Logistic regression is the right algorithm to start with classification algorithms; it has the **advantage** to be an easy, fast and simple classification method.

Support Vector machine is a type of Machine Learning technique that can be used for both classification and regression.

Decision tree is a tree based algorithm used to solve regression and classification problems; it can provide understandable explanation over the prediction.

K-nearest neighbors is a non-parametric method used for classification and regression; in **KNN**, we look for k neighbors and come up with the prediction.

Finally,

we output the **confusion matrix** and determined which **model best predicts the outcome** of each Falcon9 first stage landing.

What is a Machine Learning model?

It is a file that has been trained to recognize certain types of patterns.

You train a model over a set of data, providing it an algorithm that it can use to reason over and learn from those data.

Once you have trained the model, you can use it to reason over data that it hasn't seen before, and make predictions about those data.

Machine learning models at a glance

Logistic Regression: easy, fast and simple classification method.

Support Vector Machine: can be used for both classification and regression.

Decision Trees: provides understandable explanation over the prediction.

K nearest neighbors: non-parametric method used for classification and regression.

What is a **Confusion Matrix**?

It is a performance measurement for machine learning classification.

Better the effectiveness, better the performance.

It is a table with 4 different combinations of predicted and actual values.

Sarang Narkhede

https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62

Understanding Confusion Matrix

Sarang Narkhede

https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62

Understanding Confusion Matrix

True Positive:

You predicted positive and it's true.

You predicted that a woman is pregnant and she actually is.

True Negative:

You predicted negative and it's true.

You predicted that a man is not pregnant and he actually is not.

False Positive: (Type 1 Error)

You predicted positive and it's false.

You predicted that a man is pregnant but he actually is not.

False Negative: (Type 2 Error)

You predicted negative and it's false.

You predicted that a woman is not pregnant but she actually is.

Sarang Narkhede

How to Calculate a Confusion Matrix for a 2-class classification problem?

	У	y pred	output for threshold 0.6	Recall	Precision	Accuracy
	0	0.5	0			
TP	1	0.9	(1)			
	0	0.7	1			
TP	1	0.7	1	1/2	2/3	4/7
TN	1	0.3	0			
	0	0.4	0			
TN	1	0.5	0			

Accuracy =
$$\frac{\text{Total correct predictions}}{\text{Total predictions made}} * 100$$

Accuracy =
$$\frac{2 \text{ TP} + 2 \text{ TN}}{7 \text{ Total}} * 100$$

Sarang Narkhede

https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62

CONCLUSION

Predictive Analysis: Space X Falcon 9 First Stage Landing Prediction
Summary of the confusion matrices

	<u>TP</u>	TN	FP	FN	Total	Accuracy
Machine Learning model						
Logistic Regression	3	12	3	0	18	0.833333333
Support Vector Machine	5	12	1	0	18	0.94444444
Decision Tree	2	11	4	1	18	0.72222222
K Nearest Neighbors	5	12	1	0	18	0.94444444
			TP : True positives FP : False positives			TN: True negatives FN: False negatives

Predictive Analysis: Space X Falcon 9 First Stage Landing Prediction

Machine Learning models that performs best:

Support Vector Machine and K Nearest Neighbor

Accuracy: 0.9444444444

Highest number of correct predictions: True Positives (5) and True Negatives (12)

Lowest number of wrong predictions: False Positives (1)

Do not detect False Negatives predictions (0)

APPENDIX

Methodology in more detail

Data collection I

We followed the instructions given in

(Optional) Hands-on Lab: Complete the Data Collection API Lab (Capstone course Week 1)

SpaceX Falcon 9 first stage Landing Prediction

Lab 1: Collecting the data

Information from past launch data was obtained from

Open Source SpaceX REST API

(https://api.spacexdata.com/v4/launches/past)

Data collection I continued

Dataframe was filtered to only include Falcon 9 launches.

The LandingPad column retains None values.

Other missing np.nan values in the PayloaMass column were replaced with the mean of this column.

Helper functions used to to call the API and append the data to the lists:

From **rocket** column extract booster name

From **launchpad** column extract name of launch site, longitude, latitude From **payload** column extract mass and orbit

From **cores** column extract outcome of the landing, the type of the landing, number of flights with that core, whether gridfins were used, whether the core is reused, whether legs were used, the landing pad used, the block of the core, the number of times this specific core has been reused, and the serial of the core.

Requested JSON results more consistent, we used the a **static response object** for this project. We used **json_normalize** method to convert the json result into a dataframe named **data**

Data collection I continued

We kept only a subset of the features

We removed rows with multiple cores

We converted the date_utc to a datetime datatype and then extracted

the date leaving the time

Using the date we restricted the dates of the launches

The data from these requests were stored in lists and used to create a new pandas dataframe named **df**

We removed the Falcon 1 launches keeping only the Falcon 9 launches.

We filtered the data dataframe using the BoosterVersion column to only keep the Falcon 9 launches.

We reseted the FlightNumber column

We saved the data to a new dataframe named data_falcon9.

Data collection I continued

Data Wrangling

Some of the rows are missing values in our dataset.

The **LandingPad** column will retain None values to represent when landing pads were not used.

We calculated the mean for the **PayloadMass**, and replaced `np.nan` values in the data with the mean.

The result is the final version of the dataframe data_falcon9

Data collection II

We followed the instructions given in

(Optional) Hands-on Lab: Complete the Data Collection with Web Scraping lab

(Capstone course Week 1)

Space X Falcon 9 First Stage Landing Prediction

- a) Web scraping Falcon 9 and Falcon Heavy Launches Records from Wikipedia with BeautifulSoup package.
- b) Parse the table and convert it into a Pandas data frame

We performed web scraping on a Wiki page to collect a list of Falcon 9 and Falcon Heavy launches Wikipage updated on 9th June 2021

static_url =

https://en.wikipedia.org/w/index.php?title=List_of_Falcon_9_and_Falcon_Heavy_launches&oldid =1027686922

Data frame data_falcon9 was created by parsing the launch HTML tables.

Data collection II continued

- Create a landing outcome label from Outcome column
- Using the **Outcome**, we created a list where the element is **0** if the corresponding row in Outcome is in the set bad outcome; otherwise, it's **1**.
- Then we assigned it to the variable **landing_class**.
- This variable represents the classification variable that indicates the outcome of each launch.
- If the value is **0**, the first stage **did not land successfully**; **1** means the first stage **landed successfully**.

For detailed description of the work done in **Exploratory Data Analysis with SQL** please view the following notebook:

Complete the Exploratory Data Analysis with SQL Lab

https://nbviewer.org/github/VVJF/Coursera-IBM-Capstone-Project-2022/blob/main/jupyter-labs-eda-sql-coursera_sqllite.ipynb

For detailed description of the work done in **Exploratory Data Analysis with Visualization** and **Exploratory Data Analysis: Feature engineering** please view the following notebook:

Exploratory Data Analysis with Visualization Lab

https://nbviewer.org/github/VVJF/Coursera-IBM-Capstone-Project-2022/blob/main/IBM-DS0321EN-SkillsNetwork labs module 2 jupyter-labs-eda-dataviz.ipynb.jupyterlite.ipynb

*When uploaded to GitHub some figures may not appear in the notebook. Therefore, I uploaded the githublink onto **nbviewer** to have all figures seen when accessing the link.

Exploratory Data Analysis with SQL

- The goal is to identify those attributes that can be used to determine if the first stage can be reused.
- We created the SPACEXDATASET in DB2 database.
- Ensured the Date Format isDD-MM-YYYY and timestamp isDD-MM-YYYY HH:MM:SS
- Changed the PAYLOAD_MASS__KG_ datatype to INTEGER.
- We wrote an executed SQL queries to gain information described in the first part of the Exploratory Data Analysis within the Results section.

Exploratory Data Analysis with Visualization

- The goal is to identify those attributes that can be used to determine if the first stage can be reused.
- We used the **SpaceX** dataset provided by the IBM team an generated the corresponding dtaframe.
- Through scatter point charts we analyzed the effect of several attributes on the launch outcome.

Exploratory Data Analysis: Feature engineering

- The goal is create a clean dataframe containing those attributes that can be used to determine if the first stage can be reused.
- We created the **features** dataframe with variables that affect the success rate.
- We applied the **get_dummies()** function on the categorical columns of **features** dataframe.
- We cast all numeric columns to float64.

Interactive Visual Analytics:

Launch Sites Locations Analysis with Folium

• The **goal** is to create, using Folium, an interactive map that facilitates the identification of relevant factors involved in finding an optimal location for building a launch site. For a detailed description please view the following notebook:

Interactive Visual Analytics with Folium Lab

https://nbviewer.org/github/VVJF/Coursera-IBM-Capstone-Project-2022/blob/main/IBM-DS0321EN-SkillsNetwork labs module 3 lab jupyter launch site location.jupyterlite%20%281%29.ipynb

Build a Dashboard Application with Plotly Dash

- The goal is to build a Plotly Dash application for users to perform interactive visual analytics on SpaceX launch data in real-time.
- The dataset, provided by the IBM team, is the csv document "spacex_launch_dash.csv"
 For a detailed description please view the following notebook:

Build an Interactive Dashboard with Ploty Dash Lab

https://nbviewer.org/github/VVJF/Coursera-IBM-Capstone-Project-2022/blob/main/spacex dash.py

*When uploaded to GitHub some figures may not appear in the notebook. Therefore, I uploaded the github link onto **nbviewer** to have all figures seen when accessing the link.

For detailed description of the work done in **Predictive Analysis** please view the following notebook:

Machine Learning Prediction lab

https://nbviewer.org/github/VVJF/Coursera-IBM-Capstone-Project-2022/blob/main/IBM-DS0321EN-SkillsNetwork labs module 4 SpaceX Machine Learning Prediction Part 5.jupyterlite.ipynb

*When uploaded to GitHub some figures may not appear in the notebook. Therefore, I uploaded the githublink onto **nbviewer** to have all figures seen when accessing the link.

Acknowledgments

To the **IBM team** for creating this excellent Data Science Professional Certificate.

To the learners that participated in the Discussion Forums, their questions and suggestions were very helpful.

To the IBM staff for their support in the Discussion Forums.

To the "coding community" that made my life a lot, lot, lot happier!