PMSEVFR_EL1, Sampling Event Filter Register

The PMSEVFR EL1 characteristics are:

Purpose

Controls sample filtering by events. The overall filter is the logical AND of these filters. For example, if PMSEVFR_EL1.E[3] and PMSEVFR_EL1.E[5] are both set to 1, only samples that have both event 3 (Level 1 unified or data cache refill) and event 5 (TLB walk) set to 1 are recorded.

Configuration

This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to PMSEVFR EL1 are undefined.

Attributes

PMSEVFR EL1 is a 64-bit register.

Field descriptions

63	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48	47	46
E[63]	E[62]	E[61]	E[60]	E[59]	E[58]	E[57]	E[56]	E[55]	E[54]	E[53]	E[52]	E[51]	E[50]	E[49]	E[48]		
E[31]	E[30]	E[29]	E[28]	E[27]	E[26]	E[25]	E[24]	E[23]	E[22]	E[21]	E[20]	E[19]	E[18]	E[17]	E[16]	E[15]	E[14]E
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14

E[<x>], bit [x], for x = 63 to 48, 31 to 24, 15 to 12

E[<x>] is the event filter for event <x>. If event <x> is not implemented, or filtering on event <x> is not supported, the corresponding bit is RAZ/WI.

E[<x>]</x>	Meaning
0b0	Event <x> is ignored.</x>
0b1	Do not record samples that have event $\langle x \rangle == 0$.

An implementation defined event might be recorded as a multi-bit field. In this case, if the corresponding bits of PMSEVFR_EL1 define an implementation defined filter for the event.

This field is ignored by the PE when \underline{PMSFCR} $\underline{EL1}$.FE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Bits [47:32]

Reserved, RAZ/WI.

E[23], bit [23]

When FEAT SPEv1p4 is implemented and event 23 is implemented:

Data snooped.

E[23]	Meaning
0b0	Data snooped event is ignored.
0b1	Do not record samples that have the Data snooped event == 0.

This field is ignored by the PE when <u>PMSFCR EL1</u>.FE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, RAZ/WI.

E[22], bit [22]

When FEAT_SPEv1p4 is implemented and event 22 is implemented:

Recently fetched.

E[22]	Meaning
0b0	Recently fetched event is
	ignored.
0b1	Do not record samples that have
	the Recently fetched event $== 0$.

This field is ignored by the PE when PMSFCR EL1.FE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, RAZ/WI.

E[21], bit [21]

When FEAT_SPEv1p4 is implemented and event 21 is implemented:

Cache data modified.

E[21]	Meaning
0b0	Cache data modified event is
	ignored.
0b1	Do not record samples that have
	the Cache data modified event
	== 0.

This field is ignored by the PE when \underline{PMSFCR} $\underline{EL1}$. $\underline{FE} == 0$.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, RAZ/WI.

E[20], bit [20]

When FEAT SPEv1p4 is implemented and event 20 is implemented:

Level 2 data cache miss.

E[20]	Meaning
0b0	Level 2 data cache miss event is
	ignored.
0b1	Do not record samples that have
	the Level 2 data cache miss
	event == 0.

This field is ignored by the PE when <u>PMSFCR EL1</u>.FE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, RAZ/WI.

E[19], bit [19]

When FEAT_SPEv1p4 is implemented and event 19 is implemented:

Level 2 data cache access.

E[19]	Meaning
0b0	Level 2 data cache access event
	is ignored.
0b1	Do not record samples that have
	the Level 2 data cache access
	event $== 0$.

This field is ignored by the PE when \underline{PMSFCR} $\underline{EL1}$. $\underline{FE} == 0$.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, RAZ/WI.

E[18], bit [18]

When FEAT SPEv1p1 is implemented and FEAT SVE is implemented:

Empty predicate.

E[18]	Meaning
0b0	Empty predicate event is ignored.
0b1	Do not record samples that have the Empty predicate event == 0.

This bit is ignored by the PE when PMSFCR EL1.FE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, RAZ/WI.

E[17], bit [17]

When FEAT SPEv1p1 is implemented and FEAT SVE is implemented:

Partial predicate.

E[17]	Meaning
0b0	Partial predicate event is
	ignored.
0b1	Do not record samples that have
UDI	the Partial predicate event == 0.

This bit is ignored by the PE when PMSFCR EL1.FE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, RAZ/WI.

E[16], bit [16] When FEAT TME is implemented:

Transactional

E[16]	Meaning
0b0	Transactional event is ignored.
0b1	Do not record samples that have
	the Transactional event $== 0$.

This bit is ignored by the PE when PMSFCR EL1.FE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, RAZ/WI.

E[11], bit [11] When FEAT_SPEv1p1 is implemented:

Alignment.

E[11]	Meaning
0b0	Alignment event is ignored.
0b1	Do not record samples that have the Alignment event $== 0$.

This bit is ignored by the PE when \underline{PMSFCR} $\underline{EL1}$. $\underline{FE} == 0$.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, RAZ/WI.

E[10], bit [10]

When (FEAT_SPEv1p4 is implemented or filtering on event 10 is optionally supported) and event 10 is implemented:

Remote access.

E[10]	Meaning
0b0	Remote access event is ignored.
0b1	Do not record samples that have
	the Remote access event $== 0$.

This field is ignored by the PE when <u>PMSFCR EL1</u>.FE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, RAZ/WI.

E[9], bit [9]

When (FEAT_SPEv1p4 is implemented or filtering on event 9 is optionally supported) and event 9 is implemented:

Last Level cache miss.

E[9]	Meaning		
0b0	Last Level cache miss event is		
	ignored.		
0b1	Do not record samples that have		
	the Last Level cache miss event		
	== 0.		

This field is ignored by the PE when <u>PMSFCR EL1</u>.FE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, RAZ/WI.

E[8], bit [8]

When (FEAT_SPEv1p4 is implemented or filtering on event 8 is optionally supported) and event 8 is implemented:

Last Level cache access.

E[8]	Meaning
0b0	Last Level cache access event is
	ignored.
0b1	Do not record samples that have
	the Last Level cache access event
	== 0.

This field is ignored by the PE when \underline{PMSFCR} $\underline{EL1}$. $\underline{FE} == 0$.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, RAZ/WI.

E[7], bit [7]

Mispredicted.

E[7]	Meaning		
0b0	Mispredicted event is ignored.		
0b1	Do not record samples that have		
	the Mispredicted event $== 0$.		

This bit is ignored by the PE when <u>PMSFCR EL1</u>.FE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

E[6], bit [6] When FEAT_SPEv1p2 is implemented:

Not taken.

E[6]	Meaning	
------	---------	--

0b0	Not taken event is ignored.	
0b1	Do not record samples that have	
	the Not taken event $== 0$.	

This field is ignored by the PE when <u>PMSFCR EL1</u>.FE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, RAZ/WI.

E[5], bit [5]

TLB walk.

E[5]	Meaning	
0b0	TLB walk event is ignored.	
0b1	Do not record samples that have the TLB walk event == 0.	

This bit is ignored by the PE when <u>PMSFCR EL1</u>.FE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

E[4], bit [4] When FEAT_SPEv1p4 is implemented or filtering on event 4 is optionally supported:

TLB access.

E[4]	Meaning	
0b0	TLB access event is ignored.	
0b1	Do not record samples that have the TLB access event == 0.	

This field is ignored by the PE when <u>PMSFCR EL1</u>.FE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, RAZ/WI.

E[3], bit [3]

Level 1 data or unified cache refill.

E[3]	Meaning		
0d0	Level 1 data or unified cache refill		
	event is ignored.		
0b1	Do not record samples that have		
	the Level 1 data or unified cache		
	refill event $== 0$.		

This bit is ignored by the PE when $\underline{PMSFCR\ EL1}$.FE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

E[2], bit [2]

When FEAT_SPEv1p4 is implemented or filtering on event 2 is optionally supported:

Level 1 data cache access.

E[2]	Meaning		
0d0	Level 1 data cache access event is ignored.		
0b1	Do not record samples that have the Level 1 data cache access event == 0.		

This field is ignored by the PE when <u>PMSFCR EL1</u>.FE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, RAZ/WI.

E[1], bit [1]

When the PE supports sampling of speculative instructions:

Architecturally executed.

When the PE supports sampling of speculative instructions:

E[1]	Meaning
0d0	Architecturally executed event is ignored.
0b1	Do not record samples that have the Architecturally executed event == 0.

This bit is ignored by the PE when PMSFCR EL1.FE == 0.

If the PE does not support the sampling of speculative instructions, or always discards the sample record for speculative instructions, this bit reads as an unknown value and the PE ignores its value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, unknown.

Bit [0]

Reserved, RAZ/WI.

Accessing PMSEVFR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMSEVFR_EL1

op0	op1	CRn	CRm	op2
0b11	0b000	0b1001	0b1001	0b101

```
if PSTATE.EL == EL0 then
      UNDEFINED;
elsif PSTATE.EL == EL1 then
      if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
      && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' ||
MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE !=
SCR_EL3.NSE)) then
      UNDEFINED;
```

```
elsif EL2Enabled() &&
IsFeatureImplemented(FEAT FGT) && (!HaveEL(EL3) | |
SCR EL3.FGTEn == '1') && HDFGRTR EL2.PMSEVFR EL1 ==
'1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' |
MDCR EL3.NSPB[1] != SCR_EL3.NS |
(IsFeatureImplemented(FEAT RME) && MDCR EL3.NSPBE !=
SCR_EL3.NSE)) then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV> == '11'
then
        X[t, 64] = NVMem[0x830];
    else
        X[t, 64] = PMSEVFR EL1;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' | | MDCR_EL3.NSPB[1] != SCR_EL3.NS | |
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE !=
SCR_EL3.NSE)) then
        UNDEFINED;
    elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' |
MDCR_EL3.NSPB[1] != SCR_EL3.NS |
(IsFeatureImplemented(FEAT RME) && MDCR EL3.NSPBE !=
SCR_EL3.NSE)) then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        X[t, 64] = PMSEVFR EL1;
elsif PSTATE.EL == EL3 then
    X[t, 64] = PMSEVFR\_EL1;
```

MSR PMSEVFR EL1, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b000	0b1001	0b1001	0b101

```
if PSTATE.EL == EL0 then
     UNDEFINED;
elsif PSTATE.EL == EL1 then
     if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
     && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' |
MDCR_EL3.NSPB[1] != SCR_EL3.NS |
```

```
(IsFeatureImplemented(FEAT RME) && MDCR EL3.NSPBE !=
SCR EL3.NSE)) then
        UNDEFINED;
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) | |
SCR EL3.FGTEn == '1') && HDFGWTR EL2.PMSEVFR EL1 ==
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' |
MDCR_EL3.NSPB[1] != SCR_EL3.NS |
(IsFeatureImplemented(FEAT RME) && MDCR EL3.NSPBE !=
SCR EL3.NSE)) then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif EL2Enabled() && HCR EL2.<NV2,NV> == '11'
then
        NVMem[0x830] = X[t, 64];
    else
        PMSEVFR\_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' |
MDCR EL3.NSPB[1] != SCR EL3.NS |
(IsFeatureImplemented(FEAT RME) && MDCR EL3.NSPBE !=
SCR EL3.NSE)) then
        UNDEFINED;
    elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' |
MDCR_EL3.NSPB[1] != SCR_EL3.NS |
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE !=
SCR EL3.NSE)) then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        PMSEVFR\_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
    PMSEVFR\_EL1 = X[t, 64];
```

AArch32 Registers AArch64 Registers AArch32 Instructions AArch64 Instructions Index by Encoding External Registers