```
In [1]: # imports

import numpy as np
import pandas as pd

from sklearn.metrics import accuracy_score
from sklearn.cross_validation import train_test_split
from sklearn.cross_validation import cross_val_score
from sklearn import metrics
```

/Users/thp/anaconda3/lib/python3.6/site-packages/sklearn/cross_validati on.py:41: DeprecationWarning: This module was deprecated in version 0.1 8 in favor of the model_selection module into which all the refactored classes and functions are moved. Also note that the interface of the ne w CV iterators are different from that of this module. This module will be removed in 0.20.

"This module will be removed in 0.20.", DeprecationWarning)

Import the training dataset and start preprocessing the data

```
In [73]: # import the dataset and check
    taxi = pd.read_csv('/Users/thp/Documents/CSULA/5661 Data Science/Projec
    t/train.csv')
    print(taxi.shape)
    taxi.head()
```

(1458644, 11)

Out[73]:

	id	vendor_id	pickup_datetime	dropoff_datetime	passenger_count	pickup_lo
C	id2875421	2	2016-03-14 17:24:55	2016-03-14 17:32:30	1	-73.98215
1	id2377394	1	2016-06-12 00:43:35	2016-06-12 00:54:38	1	-73.98041
2	id3858529	2	2016-01-19 11:35:24	2016-01-19 12:10:48	1	-73.97902
3	id3504673	2	2016-04-06 19:32:31	2016-04-06 19:39:40	1	-74.010040
4	id2181028	2	2016-03-26 13:30:55	2016-03-26 13:38:10	1	-73.97305

in this data set, we found out that some columns are not necessary for the prediction.

For example, "id" and "vendor_id" and "store_and_fwd_flag" column, so we first drop those.

Out[74]:

	pickup_datetime	dropoff_datetime	passenger_count	pickup_longitude	pickup_latituc
0	2016-03-14 17:24:55	2016-03-14 17:32:30	1	-73.982155	40.767937
1	2016-06-12 00:43:35	2016-06-12 00:54:38	1	-73.980415	40.738564
2	2016-01-19 11:35:24	2016-01-19 12:10:48	1	-73.979027	40.763939
3	2016-04-06 19:32:31	2016-04-06 19:39:40	1	-74.010040	40.719971
4	2016-03-26 13:30:55	2016-03-26 13:38:10	1	-73.973053	40.793209

In further observation, we found that Pick-up time - Drop-off time = trip duration,

so if we just need to find out what time the taxi pick people up, we can omit the drop-off column.

To easily capture the hour results, use the following code:

```
In [75]: taxi_new_h = pd.to_datetime(taxi_new["pickup_datetime"])
  taxi_new['hour'] = taxi_new_h.map(lambda x: x.hour)
  taxi_new.head()
```

Out[75]:

	pickup_datetime	dropoff_datetime	passenger_count	pickup_longitude	pickup_latituc
0	2016-03-14 17:24:55	2016-03-14 17:32:30	1	-73.982155	40.767937
1	2016-06-12 00:43:35	2016-06-12 00:54:38	1	-73.980415	40.738564
2	2016-01-19 11:35:24	2016-01-19 12:10:48	1	-73.979027	40.763939
3	2016-04-06 19:32:31	2016-04-06 19:39:40	1	-74.010040	40.719971
4	2016-03-26 13:30:55	2016-03-26 13:38:10	1	-73.973053	40.793209

we can see that we have a column 'hour' that captures the hour of the day when the taxi picks up the customer.

we believe that this timing of the ride is very important.

To avoid numeric relationship, we categorize the hour of a day by 5 differnt time zones:

```
In [14]: def cateHours(x):
    if 0 <= x <= 4:
        return "EM"  # Early Morning
    elif 5<= x <= 11:
        return "MP"  # Morning Peak, when everybody is driving to work
and school
    elif 12 <= x <= 14:
        return "AF"  # Afternoon chill time
    elif 15 <= x <= 20:
        return "AP"  # AFternoon Peak, when people are going home from
    work and school
    elif 21 <= x <= 24:
        return "LN"  # Late Night</pre>
```

Then we apply this function to the dataset to change the 'hour' column to discrete values:

```
In [15]: taxi_new['hour'] = taxi_new['hour'].apply(cateHours)
taxi_new.head()
```

Out[15]:

	pickup_datetime	dropoff_datetime	passenger_count	pickup_longitude	pickup_latituc
0	2016-03-14 17:24:55	2016-03-14 17:32:30	1	-73.982155	40.767937
1	2016-06-12 00:43:35	2016-06-12 00:54:38	1	-73.980415	40.738564
2	2016-01-19 11:35:24	2016-01-19 12:10:48	1	-73.979027	40.763939
3	2016-04-06 19:32:31	2016-04-06 19:39:40	1	-74.010040	40.719971
4	2016-03-26 13:30:55	2016-03-26 13:38:10	1	-73.973053	40.793209

Then we use OneHot Encoding for column 'hour'

```
In [64]: # One hot encoding
    taxi_new_onehotHour = pd.get_dummies(taxi_new['hour'])
    taxi_new_onehotHour.head()
```

Out[64]:

	0	1	2	3	4	5	6	7	8	9		14	15	16	17	18	19	20	21	22	23
0	0	0	0	0	0	0	0	0	0	0		0	0	0	1	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	1	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	:	0	0	0	0	0	0	0	0	0	0

 $5 \text{ rows} \times 24 \text{ columns}$

```
In [65]: # put this into the dataset
    taxi_new = pd.concat([taxi_new,taxi_new_onehotHour], axis=1)
    taxi_new.head()
```

Out[65]:

		pickup_datetime	dropoff_datetime	passenger_count	pickup_longitude	pickup_latituc
(0	2016-03-14 17:24:55	2016-03-14 17:32:30	1	-73.982155	40.767937
-	1	2016-06-12 00:43:35	2016-06-12 00:54:38	1	-73.980415	40.738564
2	2	2016-01-19 11:35:24	2016-01-19 12:10:48	1	-73.979027	40.763939
(3	2016-04-06 19:32:31	2016-04-06 19:39:40	1	-74.010040	40.719971
4	4	2016-03-26 13:30:55	2016-03-26 13:38:10	1	-73.973053	40.793209

5 rows × 33 columns

After getting the pick-up time zone, we can drop the pickup_datetime and dropoff_datetime

but before we do that, let make the Label first.

```
In [66]: label = taxi_new['trip_duration']
label.shape
Out[66]: (1458644,)
```

then drop all unnecessary columns, and make the feature matrix

Out[76]:

	passenger_count	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitud
0	1	-73.982155	40.767937	-73.964630	40.765602
1	1	-73.980415	40.738564	-73.999481	40.731152
2	1	-73.979027	40.763939	-74.005333	40.710087
3	1	-74.010040	40.719971	-74.012268	40.706718
4	1	-73.973053	40.793209	-73.972923	40.782520

Scaling may help to normalize the data:

```
In [32]: from sklearn import preprocessing
    taxi_scaled = preprocessing.scale(taxi_new)
    taxi_new = pd.DataFrame(taxi_scaled)
    taxi_new.head()
```

Out[32]:

	0	1	2	3	4	5	6	7
0	-0.505637	-0.122261	0.517494	0.124369	0.384575	-0.418775	1.433246	-0.404068
1	-0.505637	-0.097727	-0.375819	-0.368970	-0.575303	-0.418775	-0.697717	2.474831
2	-0.505637	-0.078143	0.395910	-0.451805	-1.162220	-0.418775	-0.697717	-0.404068
3	-0.505637	-0.515558	-0.941274	-0.549976	-1.256071	-0.418775	1.433246	-0.404068
4	-0.505637	0.006112	1.286091	0.006974	0.855957	2.387919	-0.697717	-0.404068

Algorithm selection:

We select Linear Regression, Lasso, ElasticNet, and Ridge to perform regression, and compare them together

```
In [36]: # Frist define the RMSE method.

def RMSE(y_test,y_predict):
    # Calculating "Mean Square Error" (MSE):
    mse = metrics.mean_squared_error(y_test, y_predict)
    # Using numpy sqrt function to take the square root and calculate "R
    oot Mean Square Error" (RMSE)
    rmse = np.sqrt(mse)
    return(rmse)
```

```
In [42]: # Define a method to run all 4 regression at the same time:
         def Regressions(feature, label):
             # split the dataset into training and testing sets by 80-20 ratio
             X_train, X_test, y_train, y_test = train_test_split(feature, label,
         test_size=0.2, random_state=3)
             #linear
             from sklearn.linear_model import LinearRegression
             myLinearReg = LinearRegression()
             myLinearReg.fit(X_train,y_train)
             y predict = myLinearReq.predict(X test)
             print('Linear ',RMSE(y_test,y_predict))
             y predict = myLinearReg.predict(X train)
             print('Linear Train',RMSE(y_train,y_predict),'\n') ## Output the
          RMSE on the Training set.
             #Ridge
             from sklearn.linear_model import Ridge
             myRidge = Ridge()
             myRidge.fit(X_train,y_train)
             y_predict = myRidge.predict(X_test)
             print('Ridge ', RMSE(y_test,y_predict))
             y_predict = myRidge.predict(X_train)
             print('Ridge Train', RMSE(y train,y predict),'\n') ## Output the
          RMSE on the Training set.
             #ElasticNet
             from sklearn.linear_model import ElasticNet
             myENet = ElasticNet()
             myENet.fit(X_train,y_train)
             y predict = myENet.predict(X test)
             print('ElasticNet ', RMSE(y_test,y_predict))
             y predict = myENet.predict(X train)
             print('ElasticNet Train', RMSE(y_train,y_predict),'\n')
             from sklearn.linear model import Lasso
             myLasso = Lasso()
             myLasso.fit(X train,y train)
             y predict = myLasso.predict(X test)
             print('Lasso ', RMSE(y_test,y_predict))
             y predict = myLasso.predict(X train)
             print('Lasso Train', RMSE(y_train,y_predict),'\n')
             # 10-fold Cross validation:
             rmse list = cross val score(myLasso, X train, y train, cv=10, scorin
         g='neg mean_squared_error')
             #print(rmse list)
```

```
# Notice that "cross_val_score" by default provides "negative" value
s for "mse" to clarify that mse is error.
    # in order to calculate root mean square error (rmse), we have to ma
ke them positive!
    mse_list_positive = -rmse_list

# using numpy sqrt function to calculate rmse:
    rmse_list = np.sqrt(mse_list_positive)
    #print(rmse_list)

print('cross-validation',rmse_list.mean())
```

Also, in order to reduce work load and compare result, we create a method to split the dataset

Split the dataset to make it smaller:

```
In [61]: # use spliting 5 times as example.

taxi_reduced, label_reduced = shrinkDataSet (taxi_new,label,5,0.5) #
    split 5 times, into half

print('original: ',taxi_new.shape)
print('After: ',taxi_reduced.shape)

original: (1458644, 10)
After: (45582, 10)
```

start predicting:

First, Define a method for easy comparing:

```
In [77]: def Run_compare(k): # K = how many times to split
             taxi_reduced, label_reduced = shrinkDataSet (taxi_new,label, k ,0.5)
         # split k times, into half
             print('Original shape: ',taxi_new.shape)
             print('After shape: ',taxi_reduced.shape,'\n')
             Regressions(taxi reduced, label reduced)
In [78]: # with k=8
         k=8
         Run_compare(k)
         Original shape: (1458644, 6)
         After shape: (5697, 6)
         Linear 1781.51831131
         Linear Train 2877.84713674
         Ridge 1784.69808899
         Ridge Train 2878.11171685
         ElasticNet 1837.5547643
         ElasticNet Train 2892.35522215
         Lasso 1788.45754825
         Lasso Train 2878.39847003
         cross-validation 2132.3395566
In [79]: \# with k=5
         k=5
         Run_compare(k)
         Original shape: (1458644, 6)
         After shape: (45582, 6)
         Linear 2404.81766244
         Linear Train 3173.99831691
         Ridge 2404.76544278
         Ridge Train 3173.99949758
         ElasticNet 2409.92230982
         ElasticNet Train 3177.59270167
         Lasso 2404.79612419
         Lasso Train 3174.20953396
         cross-validation 3201.01362113
```

```
In [80]: # with k=3
         k=3
         Run_compare(k)
         Original shape: (1458644, 6)
         After shape: (182330, 6)
         Linear 3156.34673057
         Linear Train 3031.27338788
         Ridge 3156.3498263
         Ridge Train 3031.27348151
         ElasticNet 3164.61795738
         ElasticNet Train 3037.9264342
         Lasso 3157.00275639
         Lasso Train 3031.50439215
         cross-validation 3020.4657568
In [81]: # with k=1
         k=1
         Run_compare(k)
         Original shape: (1458644, 6)
         After shape: (729322, 6)
         Linear 3164.22500312
         Linear Train 6845.44324993
         Ridge 3164.22268921
         Ridge Train 6845.44325583
         ElasticNet 3172.01889884
         ElasticNet Train 6849.21676245
         Lasso 3164.36450035
         Lasso Train 6845.64709536
         cross-validation 5315.64243849
```

```
In [82]: # with k=0 , not spliting at all
    k=0
    Run_compare(k)

Original shape: (1458644, 6)
After shape: (1458644, 6)

Linear 4792.48485427
Linear Train 5337.21470879

Ridge 4792.48477267
Ridge Train 5337.21470982

ElasticNet 4795.97657707
ElasticNet Train 5341.76515078

Lasso 4792.57522921
Lasso Train 5337.38714826

cross-validation 4483.48686124
```

From article, if we compare the RMSE from the Predicted RMSE and the Training RMSE, and if they are similar, it's good.

RMSE doesn't have a specific threadhold to say "below xxx is good".

Therefore, we can see that at k=3, the RMSE of predicted and training are the closest.

In this case, I can say that when we split the dataset into 3 times, providing about 180k rows of data, the model is trained to the best fit.