Exploring Proximity-Induced Ferromagnetism in Graphene/Cr₂Ge₂Te₆ Heterostructures

Aaron Sharpe, Wenmin Yang, Menyoung Lee, Kenji Watanabe, Takashi Taniguchi, David Goldhaber-Gordon

March Meeting 2017

Van der Waals (VdW) Heterostructures

Geim et al, Nature (2013)

hBN: Superlattice

hBN: Superlattice $|R_{xy}|$ (k Ω) a 0 10 20 10-3 100 103 106 30 25 20 0.8 € 15 Ø 0.6 10 0.4 5 0.2 40 -5 -4 -3 -2 -1 0 1 2 3 4 5 $V_{g}(V)$ Cory Dean et al, *Nat.* 2013 WS₂: Enhanced spin-orbit 0 $\Delta\sigma$ (e²/h) 8 K 4 K 0 1.6 K □ 0.25 K 0 2

B (mT) Zhe Wang et al, *Nat. Comm.* 2015

YIG: Anomalous Hall

hBN: Superlattice R_{xx} (k Ω)

WS₂: Enhanced spin-orbit

YIG: Anomalous Hall

EuS: Zeeman Spin Hall

Peng Wei et al, *Nat. Mat.* 2016

Tunable Ferromagnetism

Cr₂Ge₂Te₆ (CGT)

- Cleavable
- Ferromagnetic Insulator T_C = 61 K

Alegria et al, APL 2014

Cr₂Ge₂Te₆ (CGT)

- Cleavable
- Ferromagnetic Insulator $T_c = 61 \text{ K}$
- Soft Ferromagnet
- Easy axis out of plane

Alegria et al, APL 2014

Cr₂Ge₂Te₆ (CGT)

- Cleavable
- Ferromagnetic Insulator $T_c = 61 \text{ K}$
- Soft Ferromagnet
- Easy axis out of plane
- AHE with Bi₂Te₃

Alegria et al, APL 2014

Clean Quantum Hall

Splitting in Longitudinal Resistance Peaks

CGT Sensitive to Air

Tian et al, IOP Science 2016

CGT Sensitive to Air

Basic Characterization

Field Dependence of non-local signal

Field Dependence of non-local signal

Field Dependence of non-local signal

CGT/Graphene

EuS/Graphene

Peng Wei et al, Nat. Mat. 2016

Non-Local Peak Persists to High T

Conclusions

- See signs of ferromagnetism in graphene/CGT heterostructures
 - Splitting of longitudinal resistance peak
 - Substantial Zeeman spin Hall peak
- Potentially enhanced ferromagnetism

Open Questions

- Temperature dependence
- In-plane magnetic field
- Shoulder in Zeeman spin Hall peaks
- Field asymmetry

Contributions

Wenmin Yang IOP

Menyoung Lee Cornell

David Goldhaber-Gordon Stanford

Kenji Watanabe NIMS

Takashi Taniguchi NIMS

Acknowledgments

Jason Petta and Bob Cava

Princeton