HW\_3 (Robética) João Vitor Softh Veigo, 2017170653 Miguel Mundes Silva, 2017257766

|   | <b>(1)</b> |     |    |    |      |     |     |
|---|------------|-----|----|----|------|-----|-----|
|   | TO THE     | 0i  | di | Qi | di   | off |     |
|   | 0-1        | Tha | da | 0  | 17/2 | 0   |     |
|   | 132        | Oa. | 0  | 0  | Ty   | Tya | 1   |
|   | 2 >3       | 0   | d3 | P  | -T/2 | 0   | 1   |
|   | 3→4        | 04  | 0  | 0  | 17/2 | 0   | 1   |
|   | 436        | 05  | 5  | 0  | 0    | 0   | 1   |
| đ |            |     |    |    |      |     | 100 |





| 9)  |   |             |    |       |     |   |
|-----|---|-------------|----|-------|-----|---|
| J = | 0 | 0           | 0  | 0     | O   |   |
|     | 0 | -5B24-d3 B2 | Co | -5824 | A   |   |
|     | 1 | 5C29+ 03 C2 | 52 | 5 C24 | 0   | 1 |
|     | 0 | 1           | 0  | 1     | ٥   |   |
|     | 0 | 0           | 0  | 0     | CZA |   |
|     | 0 | 0_          | 0  | 0     | 524 |   |



Só podem haver singularidades (quando as componentes das relocidades se anulam) em:

$$\begin{cases} \Delta_{y} = \dot{\theta}_{a}(-5\Delta_{a}-d_{3}\Delta_{2}) + \dot{d}_{3}(C_{2}) + \dot{\theta}_{4}(-5\Delta_{24}) \\ \omega_{1} = \dot{\theta}_{5}(C_{24}) \end{cases}$$

$$\omega_{2} = \dot{\theta}_{5}(\Delta_{24})$$

$$\omega_{3} = \dot{\theta}_{5}(\Delta_{24})$$

10y= 02 (-5821-d382)+d3 (2+04(-5821)=0

$$(\omega_{y} = \cos(\theta_{2} + \theta_{4}) = 0 \Rightarrow \theta_{2} + \theta_{4} = \pm \pi/2 \Rightarrow \theta_{2} = \pm \pi - \theta_{4}$$

$$\begin{array}{lll}
(9x = 0) \\
($$

$$\omega_{\gamma} = \Theta_{S}(C_{2A}) \rightarrow \omega_{\gamma} = 0 \Rightarrow \Theta_{\omega} + \Theta_{A} = \pm \pi / 2$$

$$\omega_{z} = \Theta_{S}(J_{2A}) \rightarrow \omega_{z} = 0 \Rightarrow \Theta_{z} + \Theta_{A} = \pm \pi$$

$$\Theta_{z} = \Theta_{z}(J_{2A}) \rightarrow \omega_{z} = 0 \Rightarrow \Theta_{z} + \Theta_{A} = \pm \pi$$



extas forcas extas conha as Juntas. logo, so atuam contra a resistência de material. Portante mão é mesessario que existe uma compersação do motor pla estática



Melhor revalização através da simulação do MATLAB:
"HW3-ExTEORICO-1"

1 0 
$$^{4}F = \begin{bmatrix} ^{4}R & O_{3x3} \\ O_{3x3} & ^{4}R \end{bmatrix}$$

$$q^{T} = [10 \ 0 \ 10 \ 0 \ 0]$$

$$\frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1}$$

$$\frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1}$$

$$\frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1}$$



| *     | O.    | di | ai  | di    | ott |
|-------|-------|----|-----|-------|-----|
| B-1   | 0     | di | 0   | -11/2 | 25  |
| 1-2   | ( Oa  | 0  | 200 | 0     | 0   |
| 2 - I | 03    | 0  | 0   | 17/2  | 0   |
| 13G   | -TT/2 | 25 | 0   | 10    | 0   |

a) 
$$Tf = \begin{cases} Aim(25) & Coo(25) \cdot C_{23} \cdot Coo(25) \cdot A_{23} \\ -Cos(25) & Aim(25) \cdot C_{23} \cdot Aim(25) \cdot A_{23} \\ -Cos(25) & Aim(25) \cdot C_{23} \cdot Aim(25) \cdot A_{23} \cdot A_{23} \cdot A_{23} \\ -C_{23} & C_{23} \cdot A_{1} \cdot A_{25} \cdot A_{23} \cdot A_{25} \cdot A_{25}$$

b) Se utilizando do script de matlab (anexo), obtivemes o segunt revultado p1 o BJ (13:

C) 108x = 10 m/s

$$\begin{bmatrix} \dot{d}_1 \\ \dot{\theta}_2 \end{bmatrix} = 3 Jac^2 \begin{bmatrix} \dot{\theta}_2 \\ \dot{\theta}_2 \end{bmatrix} = pin (Jac) \begin{bmatrix} \dot{\theta}_0 \\ \dot{\theta}_0 \end{bmatrix}$$

$$\dot{q} = \begin{bmatrix} \dot{d}_1 \\ \dot{\Theta}_2 \\ \dot{\Theta}_3 \end{bmatrix} = \begin{bmatrix} -1002/\delta_2 \\ -1/20\delta_2 \\ 1/20\delta_2 \end{bmatrix}$$



|       | ta          |
|-------|-------------|
|       | 47 × 125    |
|       | day for JET |
|       | 13 25       |
|       | 2 Pag       |
| 20    | 73 d3       |
| 217   | . **        |
| xi-   | X26 , 122   |
| Xo da |             |

| - 1  | Oi ]  | di  | ai | di    | off   |   |
|------|-------|-----|----|-------|-------|---|
| 1000 |       |     |    |       |       |   |
| 1+2  | θı    | . 0 | 0  | -TT/2 | 0     |   |
| 2+3  | 0     | dz  | 0  | 11/2  | 0     |   |
| 3+4  | 0     | da  | 0  | -11/4 | 0     | į |
| 4+5  | 04    | 1   | 0  | 11/2  | -TT/2 | l |
| 5-I  | 105   | 0   | 0  | +T/2  | 0     | 1 |
| L+6  | 1-1/2 | 1   | 0  | 0     | 10    | 1 |

$$T_{L}(:,:,1) = \begin{bmatrix} C_{L} & O & -S_{1} & O \\ S_{L} & -1 & C_{1} & O \\ O & O & O & O \\ O & O & O & 1 \end{bmatrix}$$

$$T(:,:,4) = \begin{vmatrix} 54 & 0 & -C_4 \\ -C_4 & 0 & -S_4 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{vmatrix}$$

$$T(:,:,2) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & d_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T(:,:,5) = \begin{bmatrix} C & 0 & S & 0 \\ 5 & 0 & -C & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T(:,:,3) = \begin{cases} 1 & 0 & 0 & 0 \\ 0 & \frac{12}{2}, & \frac{12}{2}, & 0 \\ 0 & -\frac{12}{2}, & \frac{12}{2}, & d_3 \\ 0 & 0 & 0 & 1 \end{cases}$$

$$-C_1^2(d_2+\frac{7}{2})+b_1^2(d_2+\frac{7}{2})=0$$

$$da = -\frac{\pi}{2}$$
  
 $da = -\frac{\pi}{2}$   
 $da = -\frac{\pi}{2}$ 

