AUTOTUNING UNDER TIGHT BUDGET CONSTRAINTS: A TRANSPARENT DESIGN OF EXPERIMENTS APPROACH

Pedro Bruel, Steven Quinito Masnada, Brice Videau, Arnaud Legrand, Jean-Marc Vincent, Alfredo Goldman

Autotuning: Optimizing Program Configurations

- How to write efficient code for each of these?
- ► We can use autotuning: the process of automatically finding a configuration of a program that optimizes an objective

Strategies for Exploring Search Spaces

System	Domain	Approach
ATLAS	Dense Linear Algebra	Exhaustive
INSIEME	Compiler	Genetic Algorithm
Active Harmony	Runtime	Nelder-Mead
ParamILS	Domain-Agnostic	Stochastic Local Search
OPAL	Domain-Agnostic	Direct Search
OpenTuner	Domain-Agnostic	Ensemble
MILEPOST GCC		Machine Learning
Apollo	GPU kernels	Decision Trees

Exhaustive, Meta-Heuristics, Machine Learning

- ► These approaches need a large number of function evaluations, assuming seach space "smoothness", and that good solutions are reachable
- After optimizing, we learn "nothing" about the search space, and can't explain why optimizations work

Design of Experiments: Exploration under a Budget

A Plackett-Burman design for 7 2-level factors

Experiment results can be used to identify relevant parameters and to fit a linear regression model

Exploration of a search space using a fixed budget of 50 points, the red "+" represents the best point found by each strategy

Autotuning: Search Spaces are Hard to Explore

Unrolling, blocking and Mflops/s for matrix multiplication Seymour K, You H, Dongarra J. A comparison of search heuristics for empirical code optimization. InCLUSTER 2008 Oct 1 (pp. 421-429)

- ► Represent the effect of all possible configurations on the objectives, can be difficult to explore, with multiple local optima and undefined regions
- Main issues are exponential growth, geometry, & measurement time

A Transparent Design of Experiments Approach

- An initial model is provided by the user (steps 1 & 2)
- Design of Experiments (DoE) guides exploration (steps 3 & 4)
- ► Significant factors are identified by Analysis of Variance (ANOVA) (steps 5 & 6)
- New fitted model predicts best value for significant factors (steps 7 & 8)

Transparent: factor and level selections based on ANOVA Parsimonious: DoE decreases measurements

A Motivating Result on a GPU Kernel

Kernel factors:

Factor	Levels	Short Description
vector_length	$2^0, \dots, 2^4$	Size of support
load_overlap	true, false	arrays Load overlaps in vectorization
temporary_size	2,4	Byte size of tem-
elements_number	$1,\ldots,24$	porary data Size of equal data splits
y_component_number	$1,\ldots,6$	Loop tile size
threads_number	$2^5, \dots, 2^{10}$	Size of thread
lws_y	$2^0, \dots, 2^{10}$	groups Block size in y di- mension

Initial performance model:

This simple case had known valid search space and global optimum, and fixed budget

Our approach (DLMT) was always within 1% of the optimum

Extensive Evaluation on the SPAPT Benchmark

- \blacktriangleright SPAPT is an autotuning benchmark for CPU kernels, with search space sizes between 10^7 and 10^{36}
- ► We evaluated DLMT on 11 kernels (3 shown below) using the same initial performance model, and fixed budget

Our approach (DLMT) achieved good speedups using a smaller budget, while exploring better configurations

