Auslander-Reiten theory

Xiaoxiang Zhou

Universität Bonn

March 10, 2023

Jan Schröer's lecture notes should be a perfect reference.

In this talk, we dive into the huge forest of Auslander–Reiten theory.

	Last time	This time
Central concepts	quiver rep	ind rep & AR quiver
Proofs	relative easy	most skipped
Goal	comprehend	enjoy

Review

Exercise

$$I = (ab - cd)$$

Definition

$$\underline{\dim} M := (\dim_K M_i)_{i \in v(Q)}$$

for
$$M \in \operatorname{mod}(KQ/I)$$

Process

- Find more representations.
 - knitting process
 - introduction to root system
 - relations among indecomposable representations (Compute Hom, ker, coker in a fancy way)
 - starting function
- From Dynkin quiver to affine quiver.
 - knitting process
 - new root system
 - tube
 - other cases

E.g. $A_5 \qquad 1 \xrightarrow{a} 2 \xrightarrow{b} 3 \xleftarrow{c} 4 \xrightarrow{d} 5$

Exercise

 $a\colon i\to j\Longrightarrow f^a\colon P(j)\to P(i)$ is unique up to (nonzero) scalar.

E.g. $A_5 \qquad 1 \xrightarrow{a} 2 \xrightarrow{b} 3 \xleftarrow{c} 4 \xrightarrow{d} 5$

E.g. A_5 $1 \xrightarrow{a} 2 \xrightarrow{b} 3 \xleftarrow{c} 4 \xrightarrow{d} 5$

(Initial case)

$$\begin{array}{ll} 0 \longrightarrow 00001 \xrightarrow{f^d} 00111 & \longrightarrow \operatorname{coker} f^d \longrightarrow 0 \\ 0 \longrightarrow 00100 \xrightarrow{\left(f^b\right)} 01100 \oplus 00111 & \longrightarrow \operatorname{coker} \left(f^b_{f^c}\right) \longrightarrow 0 \end{array}$$

E.g. $A_5 \qquad 1 \xrightarrow{a} 2 \xrightarrow{b} 3 \xleftarrow{c} 4 \xrightarrow{d} 5$

E.g. A_5 $1 \xrightarrow{a} 2 \xrightarrow{b} 3 \xleftarrow{c} 4 \xrightarrow{d} 5$

The constructed quiver is called the **Auslander–Reiten quiver**, and the process is called the **knitting algorithm**.

→□→ →□→ → □→ □ → ○Q ○

Another example: D_4

For other examples, see here.

Questions

- How many indecomposable representations are there?
- Do those dimension vectors follow any patterns?
- Where are those irreducible/projective/injective representations?

