

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification : Not classified	A2	(11) International Publication Number: WO 99/22574
		(43) International Publication Date: 14 May 1999 (14.05.99)
<p>(21) International Application Number: PCT/SE98/01974</p> <p>(22) International Filing Date: 30 October 1998 (30.10.98)</p> <p>(30) Priority Data: 9704019-0 4 November 1997 (04.11.97) SE</p> <p>(71) Applicant (<i>for all designated States except US</i>): TELIA AB (publ) [SE/SE]; Mårbackagatan 11, S-123 86 Farsta (SE).</p> <p>(72) Inventor; and</p> <p>(75) Inventor/Applicant (<i>for US only</i>): NAZARI, Ala [SE/SE]; Dalarövägen 8, S-136 45 Haninge (SE).</p> <p>(74) Agent: PRAGSTEN, Rolf; Telia Research AB, Vitsandsgatan 9, S-123 86 Farsta (SE).</p>		(81) Designated States: EE, JP, LT, LV, NO, US, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
<p>Published <i>Without international search report and to be republished upon receipt of that report.</i></p>		

(54) Title: IMPROVEMENTS IN, OR RELATING TO, ATM TELECOMMUNICATION SYSTEMS

(57) Abstract

The invention provides an IP/ATM network including an ATM transmission system, adapted for the transmission of IP data and including a core network of ATM switches. The ATM transmission system is adapted to handle inter-subnet communications and the core network includes access IP/ATM nodes (AINs) and core IP/ATM nodes (CINs) for handling said inter-subnet communications. Each AIN is attached to an ATM switch of the core network through an ATM User-Network Interface (UNI) and is adapted to perform IP data flow classification and labelling for facilitating mapping of IP data flows to ATM VCs, and to communicate with IP/ATM hosts and routers. Each CIN is attached to an ATM switch of the core network through an ATM UNI and is adapted to perform routing and labelling. The AINs and CINs are interconnected through Virtual Path Connections (VCPs), and permanent VCPs are set-up between adjacent CINs. The AINs are adapted to communicate with non-ATM hosts using, for example, Ethernet. The inter-subnet communications are effected on a hop-by-hop basis, and the ATM transmission system is adapted to map each IP data flow into an ATM Virtual Circuit (VC) for each hop, between nodes, on the communication path towards a destination subset.

FIGURE 1

2/4

FIGURE 5

FIGURE 2

FIGURE 3

4/4

(A)

(B)

FIGURE 4

PTO/PCT Rec'd 04 MAY 2000

- 1 -

Improvements in, or relating to, ATM Telecommunication Systems

The present invention relates to an ATM telecommunication system adapted for the transmission of IP data over ATM, and to a simple IP/ATM method (SIAM) for the transportation of IP data over an ATM transmission system.

The Internet Engineering Task Force (IETF) has proposed different methods for the transportation of IP (Internet Protocol) over ATM (Asynchronous Transfer Mode). For example, Classical IP over ATM is the name of a protocol supporting automatic address resolution of IP addresses (see M. Laubach, Classical IP and ARP over ATM, RFC 1577, January 1994). This protocol introduces the notion of LIS (Logical IP Subnet) consisting of a group of IP nodes (IP hosts, or routers), members of the same IP subnet and connected to a single ATM network. Each LIS supports a single ATM ARP server (Address Resolution Server) that resolves the IP addresses of the LIS. Any packet for a destination outside the LIS is sent to a default router. This approach is very simple but has a significant drawback because it needs a conventional router to interconnect different LISs although the source and destination attach to the same ATM network. This hop-by-hop routing approach implies throughput and latency problems.

At the present time, IETF is working on a new protocol called NHRP (Next Hop Resolution Protocol) that solves the hop-by-hop problem by allowing short-cut routing. In place of ARP servers, NHRP servers (NHSs) are used where each maintains the IP to ATM address mappings of all nodes associated with that NHS as well as the learned mappings. When a host needs to transmit a packet across the ATM network, it resolves the IP destination address by asking its NHS which resolves the address, or forwards the resolution request to the next NHS on the path to the destination. When the destination address is resolved, the sender sets up a direct SVC (Switched Virtual Connection) to that destination so that short-cut routing is achieved. One significant drawback of the NHRP approach is that looping may occur in some cases. Furthermore, it scales badly because no aggregation of user data flows is supported, leading to the consumption of a large number of SVCs.

At the present time, the ATM Forum is working on MPOA (Multi-Protocol Over

- 2 -

ATM) for the transport of IP and other Internet-working protocols over ATM (see ATM Forum, Multi-Protocol over ATM, straw ballot, str-mpoa-mpoa-01.00, February 1997). MPOA supports virtual private networking regardless of physical location. In addition, MPOA:

5

- defines a high performance and low-latency method to support IP across an ATM network based on short-cut routing; and
- makes use of LAN emulation for intra-subnet communication and NHRP for intersubnet communication; but
- suffers from the same drawbacks as NHRP.

MPOA is also very complex and requires the use of ATM Forum's LAN emulation at the MPOA clients.

A number of industrial IP/ATM approaches have recently been defined. Some examples of these approaches are:

20

- IP switching from Ipsilon (see P Newman et al, Transmission of Flow Labelled Ipv4 on ATM Data Links, IETF RFC 1954, May 1996);
- Tag Switching from Cisco (see Y Rekhter et al, tag Switching Architecture Extensions for ATM: Overview, <draft-rekhter-tagswitch-arch-00.txt>, January 25 1997); and
- Cell Switch Router from Toshiba (see Y Katsume et al, Toshiba's Router Architecture Extensions for ATM: Overview, IETF RFC 2098, February 1997).

30

These approaches combine the speed and simplicity of ATM with the scalability and control of the IP layer. The major difference between these approaches, compared to existing ones, lies in the degree to which IP is integrated with ATM.

- 3 -

Two major changes in the Internet have also contributed to the birth of new paradigms. The first one is the knowledge of the nature of the applications at the IP level, and the second one is the relaxation of the connectionless nature of IP.

5 A common feature of all the aforementioned approaches is the use of IP flows which are classified and mapped into ATM virtual channels (labelling) achieving high performance and low latency through bypassing the hop-by-hop IP processing. Also, each of the aforementioned approaches makes use of a control protocol that performs labelling and announces the result of that to its neighbouring nodes (label distribution). However, SIAM has a simpler architecture because it does not require the use of the label distribution protocols which characterise the existing methods, for example, IP Switching (Ipsilon Flow Management Protocol), Cell Switch Router (Flow Attribute Notification Protocol) and Tag Switching (Tag Distribution Protocol (Cisco)).

10 It is an object of the present invention to provide a simple IP/ATM method (SIAM) that bypasses hop-by-hop IP processing by mapping IP flows into ATM VCs (Virtual Circuits).

15 According to one aspect of the present invention, there is provided, an ATM transmission system, adapted for the transmission of IP data and including a core network of ATM switches, said ATM transmission system being adapted to handle inter-subnet communications, characterised in that said core network includes access IP/ATM nodes (AINs) and core IP/ATM nodes (CINs) for handling said inter-subnet communications, in that each AIN is attached to an ATM switch of the core network 20 through an ATM User-Network Interface (UNI) and is adapted to perform IP data flow classification and labelling for facilitating mapping of IP data flows to ATM VCs, and to communicate with IP/ATM hosts and routers, in that each CIN is attached to an ATM switch of the core network through an ATM UNI and is adapted to perform routing and labelling, in that said AINs and CINs are interconnected through Virtual Path Connections (VCPs), and in that permanent VCPs are set-up between adjacent CINs. 25 The AINs may be adapted to communicate with non-ATM hosts using, for example, Ethernet. The inter-subnet communications may be effected on a hop-by-hop basis, in which case, the ATM transmission system may be adapted to map each IP data flow into 30

- 4 -

an ATM Virtual Circuit (VC) for each hop, between nodes, on the communication path towards a destination subset. In which case, the ATM VC for each hop between nodes will be a VCI selected from a VPC connecting the two nodes.

- 5 Each AIN may be adapted, on receipt of an IP data packet from an IP/ATM host for transmission to a destination subnet, to reassemble the IP data packet, decrement a TTL (Time To Live) timer, discarding the IP data packet if the timer reaches zero, compute the IP data packet header checksum, and check whether the destination subnet is supported by the AIN and, if so, send the IP data packet on that subnet. Each AIN may include, and be adapted to maintain, a labelling table and a standard IP forwarding table, the entries of which are completed by an IP routing protocol. With this arrangement, each entry in the labelling table includes a subnet address, the outgoing VC (VPI/VCI) to reach the subnet, and a timer for the VC, and the timer is adapted to be started whenever IP packets are sent on the VC. In the event that the destination subnet is not supported by the AIN, it may be adapted to identify an existing ATM VC towards said destination subset and to send the IP data packet on an identified existing ATM VC. In the event that an existing ATM VC is not identified, the AIN may be adapted to identify the next hop on the path to the destination subnet, by consulting its forwarding table, and to chose, and send the IP packet on, a free VCI from the VPC to the next hop.
- 10 In which case, the AIN is adapted to update its labelling table by making an entry containing the destination subnet address and the chosen VC, and to restart the entry's timer, said timer having a lifetime value for the VC. The next hop on the path to the destination subnet may be a CIN.
- 15 Each AIN may be adapted to listen to the VPCs to which it is set up, to reassemble the cells coming from the core network into IP packets, to perform computations on TTL and header checksum, and to route valid packets towards ATM hosts/routers attached to an access network.
- 20 Each CIN may be adapted to listen to the VPCs to which it is set up, retrieve an IP packet from a cell received on a VCI of one of said VPCs, decrement a TTL and compute the IP packet header checksum, consult its labelling table to determine if there is an outgoing VC already in existence to a destination subnet to which the IP packet is

- 5 -

to be sent and, if an existing outgoing VC is identified, send the IP packet on that VC and restart the VC's timer. In the event that an existing outgoing VC is not identified, said CIN may be adapted to identify the next hop on the path towards the destination subnet by consulting its IP forwarding table, and to chose a free VCI from the VPC to the next hop. In which case, the CIN is adapted to update its labelling table by making an entry containing the destination subnet address, the incoming VC, the outgoing VC and the free VCI chosen from the VPC to the next hop, and to set the VC timer for the newly created entry in said labelling table, send the IP packet on the outgoing VC and cross-connect the VC incoming to, and the VC outgoing from, its ATM switch. Thereafter, all cells received on said incoming VC are forwarded to the outgoing VC within said ATM switch. The CIN may be adapted to control said cross-connection using Switchlets, an Ariel interface being provided between said ATM switch and said CIN for cross-connecting said incoming and outgoing VCs of said ATM switch. The cross-connected VCs may be the VCIs of the incoming and outgoing Virtual Path (VP) links between said CIN's ATM switch and its two neighbouring ATM switches, one on an input side of, and the other on an output side of, said CIN's ATM switch.

The CIN may be adapted to periodically monitor the cross-connected VCs in order to disconnect any VC found to be idle. An Ariel interface may be provided between said CIN and its ATM switch, in which case, the CIN would be adapted to use the Ariel interface to periodically monitor the cross connected VCs.

In the event that an incoming VC is found to be inactive, said CIN may be adapted to purge the corresponding outgoing VC from its labelling table, the corresponding incoming VC being cross-connected back to the CIN via a VP link on the CIN/ATM switch interface, and to re-enter the purged outgoing VC into its labelling table as a free VC.

Each entry in a CINs labelling table may contains a list of all incoming, merged, VCs, the outgoing VC towards a destination subnet, said outgoing VC being used by the CIN during the merging of new incoming VCs and is established when a new entry is created in the labelling table, the destination subnet address, and VC timers, one for each incoming VC.

- 6 -

5 Each CIN may be adapted to merge a new incoming VC with an outgoing VC, in which case, each CIN may be adapted to listen to the VPCs to which it is set up and to retrieve an IP packet received on a VCI of one of said VPCs, decrement the TTL and compute the IP packet header checksum, consult its labelling table to determine if there is an outgoing VC already in existence to the destination subnet to which the retrieved IP packet is to be sent, if an existing outgoing VC is identified, send the IP packet on that VC to the destination subnet, the CIN merging the incoming VC to the outgoing VC to the subnet and, in the event that the incoming VC is not included in the list of incoming VCs in its labelling table, add it to said labelling table. In the event that an existing outgoing VC is not identified, each CIN may be adapted to find the next hop on the path towards the destination subnet by consulting its IP forwarding table and to chose a free VCI from the VPC to the next hop. In which case, said CIN may be adapted to update its labelling table by making an entry containing the destination subnet address, the incoming VC (first in the VC list), the outgoing VC and the free VCI chosen from the VPC to the next hop, and to send the IP packet on the outgoing VC, to merge the incoming VC to the outgoing VCs using a CIN/ATM switch interface and to start a timer for the incoming VC. Thereafter, all cells received on said incoming VC are forwarded to the outgoing VC within said ATM switch.

20

25 Each CIN may be adapted to periodically monitor the cross-connected/merged VCs in order to disconnect any VC found to be idle. In the event that an incoming VC is found to be inactive, said CIN may be adapted to purge the corresponding outgoing VC from its labelling table, the incoming VC being cross-connected back to the CIN via a VP link on the CIN/ATM switch interface. In the event that the VC list becomes empty, said CIN may be adapted to return the purged outgoing VC to its labelling table, and to delete the entry for the subnet from the labelling table.

25

30 In the event of rerouting of an IP packet, the CIN may be adapted to assign new VCs to the affected subnet addresses in its labelling table, based on new routes for the IP packet, the old VCs, after being timed out, being re-entered in the labelling table as free VCs.

- 7 -

The ATM transmission system of the present invention may be adapted to provide Quality of Service (QoS) support by setting up CBR VPCs in parallel to UBR VPCs. With this arrangement, each AIN may be adapted to assign service classes to data flows and give an indication of the data rate assigned to each flow using the type of service field in the IP packet header, and each CIN may be adapted, on receipt of an IP packet on a CBR VC, to first find a free outgoing CBR VC towards the destination subnet, allocate a required data rate based on the type of service value, send the IP packet on the free outgoing CBR VC, and finally, cross-connect the incoming and outgoing VCs at its ATM switch.

According to another aspect of the present invention, there is provided, a method of transmitting IP data over an ATM transmission system having a core network including a number of ATM switches, said method being adapted to handle inter-subnet communications, on a hop-by-hop basis, and characterised by the steps of said inter-subnet communications being effected using access IP/ATM nodes (AINs) and core IP/ATM nodes (CINs) of said core network; each AIN communicating with an IP/ATM host and performing IP data flow classification and labelling; an AIN, on receipt of an IP data packet from an IP/ATM host, for transmission to a destination subnet, reassembling the IP data packet; decrementing a TTL (Time To Live) timer by 1 and discarding the IP data packet if the timer reaches zero; computing the IP data packet header checksum; and checking whether the destination subnet is supported by the AIN and, if so, sending the IP data packet on that subnet. The method may be further characterised by said AIN maintaining a labelling table and a standard IP forwarding table filled by an IP routing protocol. The labelling table may include a subnet address, the outgoing VC (VPI/VCI) to reach the subnet, and a timer for the VC, the timer being started whenever IP packets are sent on the VC. The method may be further characterised by the steps of, in the event that the destination subnet is not supported by the AIN, consulting the labelling table of said AIN to determine if there is an ATM VC already in existence towards the destination subnet to which the packet is to be sent; and, if an existing ATM VC is identified, said AIN hashes on the subnet address; sends the packet on the identified VC; and restarts the timer. The method may be further characterised by the steps of consulting the forwarding table of said AIN, in the event that an existing ATM VC is not identified, to find the next hop on the path to the

- 8 -

destination subnet; finding a free VCI from the VPC to the next hop (may be a CIN); sending the IP packet on a chosen VCI; creating, in the labelling table of said AIN, an entry containing the destination subnet address and the VC; and restarting the entry's timer, said timer having a lifetime value for the VC.

5

The method may be characterised by the step of using VC multiplexing (null encapsulation) of IETF RFC 1483 to encapsulate IP packets sent on said ATM VCs

The method may be characterised by the steps of purging a VC entry from the labelling table of an AIN, in the event that a corresponding VC timer times out, the purged VC being cached for a period of time before becoming available for use; forcing all downstream VCs, in the path to the destination subnet, to be timed out; and, if rerouting occurs to new routes, the affected subnet addresses found in the labelling table are assigned new VCs, based on the new routes, the old VCs becoming free after being timed out.

The method may be characterised by the steps of listening to the VPCs set up to an AIN; reassembling the cells coming from the core network into IP packets; performing computations on TTL and header checksum; and routing valid packets towards ATM hosts/routers attached to an access network.

20

The method may be characterised by the steps of listening to the VPCs set up to a CIN; reassembling a cell, received by the CIN on a VCI of one of said VPCs, to retrieve an IP packet; decrementing the TTL and computing the IP packet header checksum; consulting a labelling table of the CIN to determine if there is an outgoing VC already in existence to a destination subnet to which the IP packet is to be sent; and, if an existing outgoing VC is identified, the CIN sends the IP packet on that VC and restarts its timer. The method may be further characterised by the steps of consulting an IP forwarding table of the CIN, in the event that an existing outgoing VC is not identified, to find the next hop on the path towards the destination subnet; finding a free VCI from the VPC to the next hop; creating, in the labelling table of said CIN, an entry containing the destination subnet address, the incoming VC, and the outgoing VC, the free VCI chosen from the VPC to the next hop; setting the VC timer for the newly

25

30

- 9 -

created entry in the CIN's labelling table; sending the IP packet on the outgoing VC; and cross-connecting the incoming and outgoing VCs of the CIN's ATM switch, all cells thereafter received on said incoming VC being forwarded to said outgoing VC within said ATM switch. The method may be further characterised by the step of cross-connecting
5 said incoming and outgoing VCs of said ATM switch using an Ariel interface between said switch and said CIN. The method may be further characterised by said cross-connected VCs being the VCIs of the incoming and outgoing Virtual Path (VP) links between the CIN's ATM switch and its two neighbouring ATM switches, one on an input side of, and the other on an output side of, said CIN's ATM switch.

The method may be characterised by said CIN periodically monitoring the cross connected VCs in order to disconnect any VC found to be idle. The method may be further characterised by using an Ariel interface between said CIN and its ATM switch to periodically monitoring the cross connected VCs. The method may be further characterised by the steps of, in the event that an incoming VC is found to be inactive, the corresponding outgoing VC is purged from the CIN's labelling table; the outgoing VC is put back into the labelling table as a free VC; and the incoming VC is cross-connected back to the CIN via a VP link on the CIN/ATM switch interface. Each entry in a CIN's labelling table may contain a list of all incoming, merged, VCs, the outgoing VC towards
20 a destination subnet, said outgoing VC being used by the CIN during the merging of new incoming VCs and is established when a new entry is created in the labelling table, the destination subnet address, and VC timers, one for each incoming VC.

The method may be characterised by said merging of a new incoming VC with
25 the outgoing VC including the steps of each CIN listening to the VPCs set up to it, an IP packet received on a VCI of one of the VPCs being retrieved by the CIN; decrementing the TTL and computing the IP packet header checksum; consulting the CIN's labelling table to determine if there is an outgoing VC already in existence to the destination subnet to which the retrieved IP packet is to be sent; if an existing outgoing VC is identified, the CIN sends the IP packet on that VC to the destination subnet, the CIN merging the incoming VC to the outgoing VC to the subnet; and, in the event that the incoming VC is not included in the list of incoming VCs in the CIN's labelling table, it is added to the table by the CIN. The method may be further characterised by the steps
30

- 10 -

of consulting an IP forwarding table of the CIN, in the event that an existing outgoing VC is not identified, to find the next hop on the path towards the destination subnet; finding a free VCI from the VPC to the next hop; creating, in the labelling table of said CIN, an entry containing the destination subnet address, the incoming VC (first in the VC list), the outgoing VC, the free VCI chosen from the VPC to the next hop; sending the IP packet on the outgoing VC; and merging the incoming VC to the outgoing VCs using the CIN/ATM switch interface and starting a timer for the incoming VC, all cells thereafter received on said incoming VC being forwarded to the outgoing VC within said ATM switch.

The method may be characterised by said CIN periodically monitoring the cross connected/merged VCs using the CIN/ATM switch interface in order to disconnect any VC found to be idle.

The method may be characterised by the steps of, in the event that an incoming VC is found to be inactive, the corresponding outgoing VC is purged from the CIN's labelling table; the incoming VC is cross-connected back to the CIN via a VP link on the CIN/ATM switch interface; and, if the VC list becomes empty, the outgoing VC is returned as a free VC and the entry for the subnet is deleted from the CIN's labelling table.

The method may be characterised by, in the event of rerouting of an IP packet, the affected subnet addresses in the CIN's labelling table are assigned new VCs based on new routes for the packet, and the old VCs are put back as free VCs, after being timed out.

The method may be characterised by providing Quality of Service (QoS) support by setting up CBR VPCs in parallel to UBR VPCs; by each AIN assigning service classes to data flows and giving an indication of the data rate assigned to each flow using the type of service field in the IP packet header; and by a CIN, on receipt of an IP packet on a CBR VC first finding a free outgoing CBR VC towards the destination subnet; allocating the required data rate based on the type of service value; sending the IP packet on the free outgoing CBR VC; and finally, cross-connecting the incoming and

- 11 -

outgoing VCs at the CIN's ATM switch.

According to a further aspect of the present invention, there is provided, an IP/ATM network including an ATM transmission system as outlined in any of the preceding paragraphs, or using a method as outlined in any of the preceding paragraphs.

The foregoing and other features of the present invention will be better understood from the following description with reference to the accompanying drawings, in which:

Figure 1 diagrammatically illustrates, in the form of a block diagram, an example of a network scenario using the method (SIAM) of the present invention for the transportation of IP over ATM;

Figure 2 diagrammatically illustrates, in the form of a block diagram, a CIN connected to an ATM switch;

Figure 3 diagrammatically illustrates, in the form of a block diagram, an IP/ATM network in which SIAM is used for inter-subnet communication;

Figures 4 (A) and (B) diagrammatically illustrate, in block diagram form, an ATM switch before and after cross-connection of the incoming and outgoing VCs, respectively; and

Figure 5 diagrammatically illustrates, in the form of a block diagram, an ATM switch and the merging of an incoming VC with the outgoing VC.

In order to facilitate an understanding of the present invention a glossary of terms used in this patent specification is provided below:

AIN: Access IP/ATM Node

- 12 -

ARP:	Address Resolution Protocol
ATM:	Asynchronous Transfer Mode
5 CIN:	Core IP/ATM Node
CSR:	Cell Switch Router
DNS:	Domain Name System
10 FTP:	File Transfer Protocol
IETF:	Internet Engineering Task Force
15 IGMP:	Internet Group Management Protocol
IP:	Internet Protocol
20 LAN:	Local Area Network
LIS:	Logical IP Subnet
MARS:	Multicast Address Resolution Service
25 MPOA:	Multi-Protocol Over ATM
NHRP:	Next Hop Resolution Protocol
30 NHS:	NHRP server
OSPF:	Open Shortest Path First Protocol
PIM:	Protocol Independent Multicast

- 13 -

P-NNI:

	QoS:	Quality of Service
5	RFC:	Request for Comment
	RSVP:	Resource ReServation Protocol
10	SDC:	Switch Diver Controller
	SIAM:	Simple IP/ATM Method
15	SVC:	Switched Virtual Circuit
	TTL:	Time To Line
20	UBR:	Unspecified Bit Rate
	UNI:	User-Network Interface
25	VC:	Virtual Circuit
	VCI:	Virtual Channel Identifier
	VPC:	Virtual Path Connection
30	VPI:	Virtual Path Identifier

It will be seen from the subsequent description that:

- SIAM supports the aggregation of best effort flows which for the time being constitute the main source of traffic in the Internet;

- 14 -

- the flows are classified, based on destination subnets, which is sufficient for unicast best effort aggregation and which scales well in terms of the number of ATM VCs that are used;
- 5 - the flow classification and mapping is done at the edge of the network; and
- core nodes perform flow mapping only.

Unlike other methods, SIAM does not require any protocol for label distribution, hence a simpler architecture is achieved. The inspiration for SIAM came from the Broadband Data Service method specified and implemented, a few years ago, by Telia (see Nail Kavak, Kim Laraqui, Ala Nazari and Patrick Ernberg, The Design and Implementation of a Connectionless Broadband Data Service Protocol Over ATM, INTERNETWORKING '94, May 1994).

SIAM is based on the hop-by-hop subnet model where all communications to destinations outside the subnet go through a router. In other words, SIAM provides for inter-subnet communication within the IP/ATM network. For intra-subnet communication at the access part of the network, other IP/ATM methods are applied, for example, the
20 Classical IP/ATM (RFC 1577), IP/PPP/ATM, etc..

Within the core network, SIAM relies on permanent VCs for best effort and multicast traffic. Whereas SVCs are used for communication at the access. SVCs also support RSVP which is mapped on ATM at the edges.

In accordance with the present invention, an ATM network will have two types of node, namely, Access IP/ATM Nodes (AINs) and Core IP/ATM Nodes (CINs), as shown in Figure 1 of the accompanying drawings which diagrammatically illustrates, in the form of a block diagram, an example network scenario using SIAM. These nodes are used
30 for inter-subnet communication and logically segment the ATM network in the same manner as Classical IP/ATM routers. However, AINs and CINs differ from Classical IP/ATM routers in that they provide cut-through of the IP forwarding.

- 15 -

An IP host, or router, is represented in Figure 1 by a triangular block 1 and an IP/ATM host, or router, is represented by a triangular block 2. As is diagrammatically illustrated in Figure 1, the ATM network includes a core network of ATM switches and each AIN and CIN is attached to an ATM switch through an ATM User-Network Interface (ATM UNI).

The Access IP/ATM Nodes (AINs):

- perform IP flow classification and labelling, i.e. mapping IP flows to ATM VCs;
- communicate with IP/ATM hosts/routers using RFC 1577, or IP/PPP/ATM; and
- attach to the ATM network through the ATM UNI (User-Network Interface).

Non-ATM hosts can also communicate with AINs using other network technologies, for example, Ethernet.

The Core IP/ATM Nodes (CINs):

- perform routing and labelling;
- attach to the ATM network through the UNI (User-Network Interface); and
- permanent VPCs (Virtual Path Connections) are set-up between adjacent CINs.

CINs and AINs are also interconnected through VPCs. A partial mesh VPC connectivity needs to be defined for the Core.

Each flow is mapped into an ATM VC for each hop on the path towards the destination subnet. The VC for one hop between two SIAM nodes is established by selecting a free VCI from the VPC connecting the two nodes. Cut-through for one flow is achieved at a CIN via cross-connecting the flow's assigned VCs at the ATM switch to which the CIN is connected. The cross-connection is controlled by CIN and is performed

- 16 -

by using the Switchlet approach (see J E van der Merwe, I M Leslie, Switchlets and Dynamic Virtual ATM Networks, Integrated Network Management V, Proceedings of the Fifth IFIP/IEEE International Symposium on Integrated Network Management, May 1997).

5

For each CIN, a Switchlet is defined containing all the CIN's VPCs established in its ATM switch. The Switchlets of all CINs form a virtual ATM network. By using the Ariel interface the CIN cross-connects the VCIs of its VPCs. The CIN's ATM interface carries both IP traffic (not yet cross-connected) as well as the Ariel interface that terminates, as shown in Figure 2, at a SDC (Switch Divider Controller). The SDC creates the Switchlet for the CIN. It can be implemented inside, or outside, the ATM switch. The same is valid for the CIN.

A CIN connected to the ATM switch and having three VPCs, set-up to three neighbours, is diagrammatically illustrated, in the form of a block diagram, in Figure 2 of the accompanying drawings.

The AINs, as described herein, do not need Switchlets because they do not perform any cross-connection at their ATM switches. However, if the host is attached via ATM and it classifies and labels flows in the same manner as the AIN, then the AIN will function as a CIN, i.e. it will perform labelling and cross-connection through an Ariel interface (see Figure 2). This is a further development of SIAM which is not addressed by this patent specification.

25 The Switchlet approach has been chosen because of its ability to allow each ATM switch to be shared among different control protocols such as the P-NNI and IP protocols. As is diagrammatically illustrated in Figure 2, the SDC from the Switchlet is implemented within the ATM switch but could, as stated above, be implemented outside the switch. If the current version of Ipsilon's GSMP (General Switch Management Protocol) is used instead (see P Newman et al, Ipsilon's General Switch Management Protocol Specification Version 1.1, IETF RFC 1987, August 1996), it would be necessary 30 for the CIN to control all the resources of its switch which would then have to be used for IP traffic only. If future versions of GSMP allow the partition of switching resources

- 17 -

among different control architectures, then SIAM could use GSMP instead of Ariel.

As stated above, SIAM is used for inter-subnet communication. Intra-subnet communication at the access relies on other IP/ATM methods, for example, the Classical IP/ATM method (RFC 1577), IP/PPP/ATM etc.. As is diagrammatically illustrated in Figure 3 of the accompanying drawings, in the form of a blocked diagram, one of the IP routing protocols will run in the Core Network, for example, the OSPF protocol can run on the pre-configured VPCs using the point-to-multipoint interface, or the Designated Router approach.

The manner in which SIAM nodes, AIN and CIN, operate will now be described with reference to the accompanying drawings.

In the case of AINs, each AIN maintains a labelling table and a standard IP forwarding table filled by the IP routing protocol. Each entry in the labelling table includes a subnet address, the outgoing VC (VPI/VCI) to reach that subnet and a timer for the VC. The timer is restarted whenever IP packets are sent on the VC. Therefore, entries in the labelling table are maintained on a flow basis (using timeouts) rather than at a packet level.

Thus, in operation, i.e. access side to core network/access, SIAM includes the following steps:

1. An IP packet received from the IP/ATM host is reassembled. As illustrated in Figure 1, packets may also arrive through non ATM interfaces;
2. TTL (Time To Live) is decremented by 1 and the packet is discarded if the result reaches zero. The IP header checksum is computed;
3. A check is made to determine whether the destination subnet is also supported by the AIN. If it is supported by AIN, the packet is sent to that subnet. If not so supported, the method progresses to step 4;

- 18 -

4. In the event that the destination subnet is not supported by the AIN, the labelling table is consulted to find if there is an ATM VC already in existence towards the same destination subnet. If an existing ATM VC is identified, the AIN hashes on the subnet address, sends the packet on the identified VC and restarts its timer.
5. If an existing ATM VC cannot be identified, the method progresses to step 5:
5. In the event that an existing ATM VC is not identified, the IP forwarding table is consulted to find the next hop on the path to the destination subnet. The AIN then finds a free VCI from the VPC to that hop (for example, CIN). The packet will be sent on the VC (i.e. the chosen VCI from the VPC to the next hop). An entry in the labelling table is created containing the destination subnet address and the VC. The entry's timer is also started with a VC lifetime value (parameterized).

The VC multiplexing (null encapsulation) of RFC 1483 is used to encapsulate IP packets sent on the ATM VCs.

When a VC timer times out, the corresponding VC entry is purged from the labelling table. However, the VC does not become available immediately, but is cached for a while. By doing so, all the involved VCs at the path downstream are forced to time out too.

If rerouting occurs, the affected subnet addresses found in the labelling table are assigned new VCs, based on the new routes, and the old VCs become free after being timed out.

As for the core network side to access:

1. The AIN listens to the VPCs set up to it;
2. Cells coming from the core network are reassembled into IP packets;
3. Computations are performed on TTL and header checksum; and

4. Valid packets are then routed towards the hosts/routers attached to the access network.

5 In the case of CINs, each CIN also maintains a labelling table and a standard IP forwarding table. Each entry of the labelling table includes a subnet address, an outgoing ATM VC to reach that subnet and the incoming VC on which the packets arrive. A VC timer is set for each entry and it is restarted whenever packets are received on the incoming VC. When an incoming VC has not been active during its lifetime, its corresponding outgoing VC will become free and will be at the disposal of other flows. As with the AIN, the VC does not become free directly, thus forcing the VCs on the downstream hops to time out too.

10 Each CIN operates as follows:

- 15 1. The CIN listens to the VPCs set up to it. An IP packet received on a VCI of one of these VPCs is reassembled retrieving the IP packet;
- 20 2. The TTL is decremented and IP header is calculated;
- 25 3. The labelling table is consulted to determine (for example, by hashing on the incoming VC) if there is an outgoing VC already in existence to the same destination subnet. This indicates that the incoming and outgoing VCs have not yet been cross-connected (see Figure 4 (A) of the accompanying drawings). If an existing outgoing VC is identified, the CIN sends the packet on the outgoing VC and restarts its timer. If an existing outgoing VC cannot be identified, the method progresses to step 4;
- 30 4. In the event that an outgoing VC cannot be identified, the IP forwarding table is consulted to find the next hop on the path toward the destination subnet. The CIN then finds a free VCI from the VPC to that hop. An entry in the labelling table is created containing the destination subnet address, the incoming VC and the outgoing VC, i.e. the chosen VCI on the VPC to the next hop. It then sets the

- 20 -

outgoing VC timer for the newly created entry. The CIN sends the packet on the outgoing VC. It then cross-connects the incoming and the outgoing VCs through use of the Ariel interface. The VCIs of the incoming and outgoing VP links (between the CIN's switch and its two neighbours) are actually cross-connected (see Figure 4 (B) of the accompanying drawings). Thereafter, all cells received on the incoming VC are forwarded to the outgoing VC directly in the ATM switch, as shown in Figure 4 (B).

By using the Ariel interface (see Figure 2), the CIN periodically monitors its cross-connected VCs in order to disconnect the idle ones. If it finds an incoming VC that has not been active during its lifetime, the corresponding VC entry is purged from the labelling table. The outgoing VC is put back in the labelling table as a free VC and finally the incoming VC is cross-connected back to the CIN (the VP link on the CIN interface - see Figure 4 (A) of the accompanying drawings). If cells are received on one incoming VC, its timer is restarted.

If rerouting occurs, the affected subnet addresses found in the labelling table are assigned new VCs based on the new routes and the old VCs become free after being timed out.

As stated above, CINs perform flow classification based on source and destination subnet addresses. Since the AINs normally serve more than one access subnet and aggregate the traffic from all their access subnets into one VC toward one destination subnet, the classification is based on a number of access subnets and one destination subnet.

CINs can also be defined to perform flow classification based on destination subnet addresses only, achieving VC conservation and a smaller number of entries in a CIN's labelling table. For this purpose, the ATM switch must perform VC merging, i.e. multipoint-to-point, which is not, at the present time, a standard function of an ATM switch. It thus becomes a "packet switch". The operation of CINs also becomes rather complex.

- 21 -

The merging of an incoming CV of an ATM switch with the outgoing CV is diagrammatically illustrated, in the form of a block diagram, in Figure 5 of the accompanying drawings.

5 Each entry of the labelling table of the CIN contains:

- a list of all the incoming VCs, i.e. the merged VCs;
- the outgoing VC toward the destination subnet;
- the destination subnet address; and
- VC timers, one for each incoming VC.

The outgoing VC is used by the CIN during the merging process for new incoming VCs and is established when a new entry is created in the labelling table.

Each CIN operates as follows:

- 20 1. The CIN listens to the Virtual Path Connections (VPCs) set-up to it; an IP packet received on a VCI of one of these VPCs is retrieved;
2. The TTL is decremented and the IP header checksum is calculated;
- 25 3. The labelling table of the CIN is consulted to determine if there is an outgoing VC already in existence to the same destination subnet to which the IP packet has to be sent.
- 30 4. If an existing outgoing VC is identified, the CIN sends the IP packet on the identified outgoing VC for the subnet and, by using the Ariel interface, the CIN merges the incoming VC to the outgoing VC to the subnet. The CIN also adds the incoming VC (if it is not already there) to the list of incoming VCs and starts a timer for it.

- 22 -

5. In the event that there is no entry for the destination subnet, i.e. an existing outgoing VC cannot be identified, the method progresses to step 6;

5 6. In the absence of an existing outgoing VC, the CIN consults the IP forwarding table to find the next hop on the path to the destination subnet. The CIN then finds a free VCI from the VPC to that hop and an entry in the labelling table is created containing:

- 10 – the destination subnet address;
- the incoming VC (first in the VC list); and
- the outgoing VC (the chosen VCI on the VPC to the next hop).

15 7. The CIN then sends the packet on the outgoing VC. By using the Ariel interface, the CIN merges the incoming VC to the outgoing VC. It also starts a timer for the incoming VC. After this, all cells received on the incoming VC are forwarded to the outgoing VC directly in the ATM switch, as shown in Figure 5.

20

The CIN periodically monitors the incoming VCs in order to disconnect the idle ones. If it finds a VC that has not been active during its lifetime, the VC is purged from the VC list and is cross-connected back to the CIN. If the VC list becomes empty, the outgoing VC is returned as a free one and the entry for the subnet is deleted from the 25 labelling table. If cells are received on one incoming VC, its timer is restarted.

If rerouting occurs, the affected subnet addresses found in the labelling table are assigned new VCs based on the new routes and the old VCs are put back as free ones after being timed out. The incoming VCs will also be merged to the new outgoing VC.

30

Quality of Service (QoS) support for the system could be based on the use of RSVP (see R Braden, L Zhan, S Berson, S Herzog, S Jamin, Resource ReServation Protocol (RSVP) - Version 1 Functional Specification, draft-ietf-rsvp-spec-15.txt, May 27,

- 23 -

1997).

The IP-ATM service mapping, i.e. choosing the ATM service categories for the integrated service classes, and VC management, i.e. mapping RSVP sessions to ATM VCs, are performed at the AINs. RSVP merging is also implemented at the AINs. On the other hand, CINs do not support RSVP. The RSVP messages are transported and treated within the Core Network as best effort traffic. In other words, CINs are non-RSVP routers. Used this way, the scalability problem of RSVP in Core Networks is avoided.

The manner in which RSVP is implemented on SIAM is not addressed, in great detail, by this patent specification. However, for the purpose of the present invention, it should be noted that, when an AIN receives a Resv message from a host, it adds its ATM address to the message and sends it upstream toward the source. When the source's AIN receives the Resv message, it performs VC management by setting-up an SVC to the receiver's AIN using the ATM address carried by the Resv message.

As an interim solution, a simplified collection of QoS can be supported. Besides best effort, a guaranteed service class is also provided. The best effort is mapped onto the ATM UBR (Unspecified Bit Rate) extended with some packet discard mechanism, for example, early packet discard. The manner in which best effort is implemented with SIAM is outlined in the preceding description.

For the guaranteed service, CBR VPCs are set-up in parallel to UBR VPCs. AINs assign service classes to flows according to some policy control that may be based on source subnets. In case of the guaranteed service, AINs also indicate the data rate assigned to each flow by using the type of service field of the IP packet header.

A CIN, on receipt of a packet on a VC of the type CBR:

- first finds a free outgoing CBR VC toward the destination;
- allocates the required data rate based on the type of service value;

- 24 -

- sends the packet on the outgoing VC; and
- finally, cross-connects the incoming and outgoing VCs at the ATM switch.

5

As for IP multicasting, the known approaches for the access side can be implemented. In the case of Classical IP/ATM in the access, intra-LIS multicasting can be based on the MARS approach (see G Armitage, Support for Multicast over UNI 3.0/3.1 based ATM Networks, RFC 2022, November 1996). In case of using IP/PPP/ATM or other known methods, the AIN functions as a multicast router supporting IGMP (Internet Group Management Protocol).

10
15
20
25

Some CINs function as multicast routers and run PIM (Protocol Independent Multicast) of RFC 2117 (see D Estrin et al, Protocol Independent Multicast-Sparse Mode (PIM-SM): Protocol Specification, RFC 2117, June 1997). PIM is also used for inter-LIS multicast communication where the AINs become multicast routers member of the multicast groups found at the access. As a first step, multicasting within the Core Network is not supported by short-cut VCs which are introduced later. Furthermore, the multicast routers are interconnected via permanent VCs.

20

As for interworking with ATM, conventional routers and hosts, host communicate with their AINs using existing IP/ATM methods implying that SIAM is transparent for the hosts.

25

The AINs can also communicate with hosts and routers based on legacy networks, for example, Ethernet.

30

AINs and CINs interconnect with ATM switches using the UNI interface. AINs are IP/ATM routers extended with flow aggregation capabilities. The same applies to CINs that implement both flow aggregation and VC cross-connection based on, for example, the Switchlet approach that enables the ATM switches to be used also for other applications other than IP.

- 25 -

It will be seen from the foregoing description of the present invention that SIAM:

- provides an IP/ATM mechanism that requires minor changes to the current IP/ATM infrastructure;
- 5 - is independent from the IP routing protocol used;
- does not require the use of any label distribution protocol which characterizes the existing methods, for example, IP switching, Tag switching, and CSR;
- 10 - provides low latency transport of IP best effort traffic; and
- can support QoS and multicasting.

15 It will also be seen from the foregoing description that, within the Core Network, where there is a high level of traffic aggregation and less dynamic behaviour than the edges, SIAM makes use of permanent VPCs that are quite sufficient to interconnect a limited number of CINs but a high number of access subnets. As a result, the connection set-up time is minimized and there is no need for any time-consuming address resolution. At the access, where the largest number of nodes reside, for example, hosts and AINs, communication is less static and SVCs are, therefore, used 20 to make efficient use of access network resources. SVCs can also support RSVP where the IP-ATM service mapping and VC management are performed at AINs.

25 SIAM provides traffic aggregation based on destination subnet addresses and hence achieving a scalable architecture. It is both traffic driven as well as topology driven meaning that ATM VCs are set-up when they are first needed, but that VPs between CINs are set up based on topological considerations.

30 It will be readily understood by persons skilled in the art that SIAM can be used to build efficient public broadband IP/ATM networks.

SIAM follows the current trend in the industry focussing on the cut-through of the

- 26 -

IP layer processing. However, SIAM has a simpler architecture because it does not require the use of any label distribution protocol which, as stated above, characterizes existing methods.

5

10

15

20

25

30

CLAIMS

1. An ATM transmission system, adapted for the transmission of IP data and including a core network of ATM switches, said ATM transmission system being adapted to handle inter-subnet communications, characterised in that said core network includes access IP/ATM nodes (AINs) and core IP/ATM nodes (CINs) for handling said inter-subnet communications, in that each AIN is attached to an ATM switch of the core network through an ATM User-Network Interface (UNI) and is adapted to perform IP data flow classification and labelling for facilitating mapping of IP data flows to ATM VCs, and to communicate with IP/ATM hosts and routers, in that each CIN is attached to an ATM switch of the core network through an ATM UNI and is adapted to perform routing and labelling, in that said AINs and CINs are interconnected through Virtual Path Connections (VCPs), and in that permanent VCPs are set-up between adjacent CINs.

2. An ATM transmission system, as claimed in claim 1, characterised in that said AINs are adapted to communicate with non-ATM hosts.

3. An ATM transmission system, as claimed in claim 2, characterised in that said AINs are adapted to communicate with non-ATM hosts using Ethernet.

4. An ATM transmission system, as claimed in any preceding claim, characterised in that said inter-subnet communications are effected on a hop-by-hop basis, and in that said ATM transmission system is adapted to map each IP data flow into an ATM Virtual Circuit (VC) for each hop, between nodes, on the communication path towards a destination subset.

5. An ATM transmission system, as claimed in claim 4, characterised in that the ATM VC for each hop between nodes is a VCI selected from a VPC connecting the two nodes.

6. ATM transmission system, as claimed in any preceding claim, characterised in that each AIN is adapted, on receipt of an IP data packet from an IP/ATM host for transmission to a destination subnet, to reassemble the IP data packet, decrement a TTL

- 28 -

(Time To Live) timer, discarding the IP data packet if the timer reaches zero, compute the IP data packet header checksum, and check whether the destination subnet is supported by the AIN and, if so, send the IP data packet on that subnet.

5 7. An ATM transmission system, as claimed in claim 6, characterised in that each AIN includes, and is adapted to maintain, a labelling table and a standard IP forwarding table, the entries of which are completed by an IP routing protocol.

10 8. An ATM transmission system, as claimed in claim 7, characterised in that each entry in said labelling table includes a subnet address, the outgoing VC (VPI/VCI) to reach the subnet, and a timer for the VC, and in that the timer is adapted to be started whenever IP packets are sent on the VC.

15 9. An ATM transmission system, as claimed in any of claims 6 to 8, characterised in that, in the event that the destination subnet is not supported by the AIN, said AIN is adapted to identify an existing ATM VC towards said destination subset and to send the IP data packet on an identified existing ATM VC.

20 10. An ATM transmission system, as claimed in claim 9, characterised in that, in the event that an existing ATM VC is not identified, said AIN is adapted to identify the next hop on the path to the destination subnet, by consulting its forwarding table, and to chose, and send the IP packet on, a free VCI from the VPC to the next hop, and in that said AIN is adapted to update its labelling table by making an entry containing the destination subnet address and the chosen VC, and to restart the entry's timer, said 25 timer having a lifetime value for the VC.

25 11. An ATM transmission system, as claimed in claim 10, characterised in that said next hop on the path to the destination subnet is a CIN.

30 12. An ATM transmission system, as claimed in any one of the preceding claims, characterised in that each AIN is adapted to listen to the VPCs to which it is set up, to reassemble the cells coming from the core network into IP packets, to perform computations on TTL and header checksum, and to route valid packets towards ATM

- 29 -

hosts/routers attached to an access network.

13. An ATM transmission system, as claimed in any one of the preceding claims, characterised in that each CIN is adapted to:

5

- listen to the VPCs to which it is set up;
- retrieve an IP packet from a cell received on a VCI of one of said VPCs;
- decrement a TTL and compute the IP packet header checksum;
- consult its labelling table to determine if there is an outgoing VC already in existence to a destination subnet to which the IP packet is to be sent; and
- if an existing outgoing VC is identified, send the IP packet on that VC and restart the VC's timer.

10

15

20

25

14. An ATM transmission system, as claimed in claim 13, characterised in that, in the event that an existing outgoing VC is not identified, said CIN is adapted to identify the next hop on the path towards the destination subnet by consulting its IP forwarding table, and to chose a free VCI from the VPC to the next hop, in that said CIN is adapted to update its labelling table by making an entry containing the destination subnet address, the incoming VC, the outgoing VC and the free VCI chosen from the VPC to the next hop, and in that said CIN is adapted to set the VC timer for the newly created entry in said labelling table, send the IP packet on the outgoing VC and cross-connect the VC incoming to, and the VC outgoing from, its ATM switch, all cells thereafter received on said incoming VC being forwarded to said outgoing VC within said ATM switch.

30

15. An ATM transmission system, as claimed in claim 14, characterised in that said CIN is adapted to control said cross-connection using Switchlets, an Ariel interface being provided between said ATM switch and said CIN for cross-connecting said incoming and outgoing VCs of said ATM switch.

- 30 -

16. An ATM transmission system, as claimed in claim 15, characterised in that said cross-connected VCs are the VCIs of the incoming and outgoing Virtual Path (VP) links between said CIN's ATM switch and its two neighbouring ATM switches, one on an input side of, and the other on an output side of, said CIN's ATM switch.

5

17. An ATM transmission system, as claimed in any of claims 14 to 16, characterised in that said CIN is adapted to periodically monitor the cross-connected VCs in order to disconnect any VC found to be idle.

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

18. An ATM transmission system, as claimed in claim 17, characterised in that an Ariel interface is provided between said CIN and its ATM switch, and in that said CIN is adapted to use said Ariel interface to periodically monitor the cross connected VCs.

15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

19. An ATM transmission system, as claimed in claim 17, or claim 18, characterised in that, in the event that an incoming VC is found to be inactive, said CIN is adapted to purge the corresponding outgoing VC from its labelling table, the corresponding incoming VC being cross-connected back to the CIN via a VP link on the CIN/ATM switch interface, and in that said CIN is adapted to re-enter the purged outgoing VC into its labelling table as a free VC.

20

20. An ATM transmission system, as claimed in any of claims 13 to 19, characterised in that each entry in a CINs labelling table contains:

- 25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
- a list of all incoming, merged, VCs;
 - the outgoing VC towards a destination subnet, said outgoing VC being used by the CIN during the merging of new incoming VCs and is established when a new entry is created in the labelling table;
 - the destination subnet address; and
 - VC timers, one for each incoming VC.

- 31 -

21. An ATM transmission system, as claimed in claim 20, characterised in that each CIN is adapted to merge a new incoming VC with an outgoing VC, each CIN being adapted to listen to the VPCs to which it is set up and to:

- 5 - retrieve an IP packet received on a VCI of one of said VPCs
- 10 - decrement the TTL and compute the IP packet header checksum;
- 15 - consult its labelling table to determine if there is an outgoing VC already in existence to the destination subnet to which the retrieved IP packet is to be sent;
- 20 - if an existing outgoing VC is identified, send the IP packet on that VC to the destination subnet, the CIN merging the incoming VC to the outgoing VC to the subnet; and
- 25 - in the event that the incoming VC is not included in the list of incoming VCs in its labelling table, add it to said labelling table.

22. An ATM transmission system, as claimed in claim 21, characterised in that, in the event that an existing outgoing VC is not identified, each CIN is adapted to find the next hop on the path towards the destination subnet by consulting its IP forwarding table and to chose a free VCI from the VPC to the next hop, in that said CIN is adapted to update its labelling table by making an entry containing the destination subnet address, the incoming VC (first in the VC list), the outgoing VC and the free VCI chosen from the VPC to the next hop, and in that said CIN is adapted to send the IP packet on the outgoing VC, to merge the incoming VC to the outgoing VCs using a CIN/ATM switch interface and to start a timer for the incoming VC, all cells thereafter received on said incoming VC being forwarded to the outgoing VC within said ATM switch.

30 23. An ATM transmission system, as claimed in any of claims 14 to 16, characterised in that each CIN is adapted to periodically monitor the cross-connected/merged VCs in order to disconnect any VC found to be idle.

- 32 -

24. An ATM transmission system, as claimed in claim 23, characterised in that, in the event that an incoming VC is found to be inactive, said CIN is adapted to purge the corresponding outgoing VC from its labelling table, the incoming VC being cross-connected back to the CIN via a VP link on the CIN/ATM switch interface, and in that, in the event that the VC list becomes empty, said CIN is adapted to return the purged outgoing VC to its labelling table, and to delete the entry for the subnet from the labelling table.

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
9365
9370
9375
9380
9385
9390
9395
9400
9405
9410
9415
9420
9425
94

- an AIN, on receipt of an IP data packet from an IP/ATM host, for transmission to a destination subnet, reassembling the IP data packet;

5

- decrementing a TTL (Time To Live) timer by 1 and discarding the IP data packet if the timer reaches zero;

- computing the IP data packet header checksum; and

- checking whether the destination subnet is supported by the AIN and, if so, sending the IP data packet on that subnet.

28. A method, as claimed in claim 27, characterised by said AIN maintaining a labelling table and a standard IP forwarding table filled by an IP routing protocol.

15 29. A method, as claimed in claim 28, characterised by each entry in said labelling table including:

- a subnet address;

- the outgoing VC (VPI/VCI) to reach the subnet; and

- a timer for the VC, the timer being started whenever IP packets are sent on the VC.

25 30. A method, as claimed in claim 29, characterised by the steps of:

- in the event that the destination subnet is not supported by the AIN, consulting the labelling table of said AIN to determine if there is an ATM VC already in existence towards the destination subset to which the packet is to be sent; and

- if an existing ATM VC is identified, said AIN:

- 34 -

- hashes on the subnet address;
- sends the packet on the identified VC; and
- 5 - restarts the timer.

31. A method, as claimed in claim 30, characterised by the steps of:

- consulting the forwarding table of said AIN, in the event that an existing ATM VC is not identified, to find the next hop on the path to the destination subnet;
- finding a free VCI from the VPC to the next hop;
- sending the IP packet on a chosen VCI;
- creating, in the labelling table of said AIN, an entry containing the destination subnet address and the VC; and
- restarting the entry's timer, said timer having a lifetime value for the VC.

20 32. A method, as claimed in claim 31, characterised by said next hop on the path to the destination subnet being a CIN.

25 33. A method, as claimed in any of claims 30 to 32, characterised by the step of using VC multiplexing (null encapsulation) of IETF RFC 1483 to encapsulate IP packets sent on said ATM VCs

34. A method as claimed in any of claims 29 to 33, characterised by the steps of:

- 30 - purging a VC entry from the labelling table of an AIN, in the event that a corresponding VC timer times out, the purged VC being cached for a period of time before becoming available for use;

- 35 -

- forcing all downstream VCs, in the path to the destination subnet, to be timed out; and

- if rerouting occurs to new routes, the affected subnet addresses found in the labelling table are assigned new VCs, based on the new routes, the old VCs becoming free after being timed out.

5 35. A method, as claimed in any of claims 27 to 34, characterised by the steps of:

10 - listening to the VPCs set up to an AIN;

- reassembling the cells coming from the core network into IP packets;

- performing computations on TTL and header checksum; and

15 - routing valid packets towards ATM hosts/routers attached to an access network.

36. A method, as claimed in any of claims 27 to 35, characterised by the steps of:

20 - listening to the VPCs set up to a CIN;

- reassembling a cell, received by the CIN on a VCI of one of said VPCs, to retrieve an IP packet;

25 - decrementing the TTL and computing the IP packet header checksum;

- consulting a labelling table of the CIN to determine if there is an outgoing VC already in existence to a destination subnet to which the IP packet is to be sent; and

30 - if an existing outgoing VC is identified, the CIN sends the IP packet on that VC and restarts its timer.

- 36 -

37. A method, as claimed in claim 36, characterised by the steps of:
- consulting an IP forwarding table of the CIN, in the event that an existing outgoing VC is not identified, to find the next hop on the path towards the destination subnet;
 - finding a free VCI from the VPC to the next hop;
 - creating, in the labelling table of said CIN, an entry containing the:
 - destination subnet address;
 - the incoming VC;
 - the outgoing VC, the free VCI chosen from the VPC to the next hop;
 - setting the VC timer for the newly created entry in the CIN's labelling table;
 - sending the IP packet on the outgoing VC; and
 - cross-connecting the incoming and outgoing VCs of the CIN's ATM switch, all cells thereafter received on said incoming VC being forwarded to said outgoing VC within said ATM switch.
38. A method, as claimed in claim 37, characterised by the step of cross-connecting said incoming and outgoing VCs of said ATM switch using an Ariel interface between said switch and said CIN.
39. A method, as claimed in claim 38, characterised by said cross-connected VCs being the VCIs of the incoming and outgoing Virtual Path (VP) links between the CIN's ATM switch and its two neighbouring ATM switches, one on an input side of, and the other on an output side of, said CIN's ATM switch.

- 37 -

40. A method, as claimed in any of claims 37 to 39, characterised by said CIN periodically monitoring the cross connected VCs in order to disconnect any VC found to be idle.

5 41. A method, as claimed in claim 40, characterised by using an Ariel interface between said CIN and its ATM switch to periodically monitoring the cross connected VCs.

42. A method, as claimed in claim 40, or claim 41, characterised by the steps of:

- in the event that an incoming VC is found to be inactive, the corresponding outgoing VC is purged from the CINs labelling table;
- the outgoing VC is put back into the labelling table as a free VC; and
- the incoming VC is cross-connected back to the CIN via a VP link on the CIN/ATM switch interface.

43. A method, as claimed in any of claims 36 to 42, characterised by each entry in
20 a CINs labelling table containing:

- a list of all incoming, merged, VCs;
- the outgoing VC towards a destination subnet, said outgoing VC being used by
25 the CIN during the merging of new incoming VCs and is established when a new entry is created in the labelling table;
- the destination subnet address; and
- VC timers, one for each incoming VC.

30 44. A method, as claimed in claim 43, characterised by said merging of a new incoming VC with the outgoing VC including the steps of:

- 38 -

- each CIN listening to the VPCs set up to it, an IP packet received on a VCI of one of the VPCs being retrieved by the CIN;
 - decrementing the TTL and computing the IP packet header checksum;
 - consulting the CIN's labelling table to determine if there is an outgoing VC already in existence to the destination subnet to which the retrieved IP packet is to be sent;
 - if an existing outgoing VC is identified, the CIN sends the IP packet on that VC to the destination subnet, the CIN merging the incoming VC to the outgoing VC to the subnet; and
 - in the event that the incoming VC is not included in the list of incoming VCs in the CIN's labelling table, it is added to the table by the CIN.
45. A method, as claimed in claim 44, characterised by the steps of:
- consulting an IP forwarding table of the CIN, in the event that an existing outgoing VC is not identified, to find the next hop on the path towards the destination subnet;
 - finding a free VCI from the VPC to the next hop;
 - creating, in the labelling table of said CIN, an entry containing the:
 - destination subnet address;
 - incoming VC (first in the VC list);
 - outgoing VC, the free VCI chosen from the VPC to the next hop;
 - sending the IP packet on the outgoing VC; and

- merging the incoming VC to the outgoing VCs using the CIN/ATM switch interface and starting a timer for the incoming VC, all cells thereafter received on said incoming VC being forwarded to the outgoing VC within said ATM switch.

5

46. A method, as claimed in any of claims 37 to 45, characterised by said CIN periodically monitoring the cross connected/merged VCs using the CIN/ATM switch interface in order to disconnect any VC found to be idle.

10
15
20
25
30

47. A method, as claimed in claim 45, characterised by the steps of:

- in the event that an incoming VC is found to be inactive, the corresponding outgoing VC is purged from the CIN's labelling table;
- the incoming VC is cross-connected back to the CIN via a VP link on the CIN/ATM switch interface; and
- if the VC list becomes empty, the outgoing VC is returned as a free VC and the entry for the subnet is deleted from the CIN's labelling table.

20

48. A method as claimed in any of claims 36 to 47, characterised by, in the event of rerouting of an IP packet, the affected subnet addresses in the CIN's labelling table are assigned new VCs based on new routes for the packet, and the old VCs are put back as free VCs, after being timed out.

25

49. A method, as claimed in any of claims 27 to 48, characterised by providing Quality of Service (QoS) support by setting up CBR VPCs in parallel to UBR VPCs; by each AIN assigning service classes to data flows and giving an indication of the data rate assigned to each flow using the type of service field in the IP packet header; and by a CIN, on receipt of an IP packet on a CBR VC:

- first finding a free outgoing CBR VC towards the destination subnet;

- 40 -

- allocating the required data rate based on the type of service value;
- sending the IP packet on the free outgoing CBR VC; and
- 5 - finally, cross-connecting the incoming and outgoing VCs at the CIN's ATM switch.

50. An IP/ATM network including an ATM transmission system as claimed in any of claims 1 to 26, or using a method as claimed in any of claims 27 to 49.

10
15
20

25

30

PATENT COOPERATION TREATY
PCT
INTERNATIONAL PRELIMINARY EXAMINATION REPORT
(PCT Article 36 and Rule 70)

Applicant's or agent's file reference Case 634 PCT	FOR FURTHER ACTION	See Notification of Transmittal of International Preliminary Examination Report (Form PCT/IPEA/416)
International application No. PCT/SE98/01974	International filing date (<i>day/month/year</i>) 30.10.1998	Priority date (<i>day/month/year</i>) 04.11.1997
International Patent Classification (IPC) or national classification and IPC7 H 04 Q 11/04		
Applicant Telia AB et al		

<p>1. This international preliminary examination report has been prepared by this International Preliminary Examining Authority and is transmitted to the applicant according to Article 36.</p> <p>2. This REPORT consists of a total of <u>4</u> sheets, including this cover sheet.</p> <p><input type="checkbox"/> This report is also accompanied by ANNEXES, i.e., sheets of the description, claims and/or drawings which have been amended and are the basis for this report and/or sheets containing rectifications made before this Authority (see Rule 70.16 and Section 607 of the Administrative Instructions under the PCT).</p> <p>These annexes consist of a total of _____ sheets.</p> <p>3. This report contains indications relating to the following items:</p> <ul style="list-style-type: none"> I <input checked="" type="checkbox"/> Basis of the report II <input type="checkbox"/> Priority III <input type="checkbox"/> Non-establishment of opinion with regard to novelty, inventive step and industrial applicability IV <input type="checkbox"/> Lack of unity of invention V <input checked="" type="checkbox"/> Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement VI <input type="checkbox"/> Certain documents cited VII <input type="checkbox"/> Certain defects in the international application VIII <input type="checkbox"/> Certain observations on the international application
--

Date of submission of the demand 02.06.1999	Date of completion of this report 10.01.2000
Name and mailing address of the IPEA/SE Patent- och registreringsverket Box 5055 S-102 42 STOCKHOLM Facsimile No. 08-667 72 88	Authorized officer Erik Johannesson/MN Telephone No. 08-782 25 00

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No.

PCT/SE98/01974

I. Basis of the report

1. This report has been drawn on the basis of (*Replacement sheets which have been furnished to the receiving Office in response to an invitation under Article 14 are referred to in this report as "originally filed" and are not annexed to the report since they do not contain amendments.*):

 the international application as originally filed. the description, pages _____, as originally filed,
pages _____, filed with the demand,
pages _____, filed with the letter of _____,
pages _____, filed with the letter of _____ the claims, Nos. _____, as originally filed,
Nos. _____, as amended under Article 19,
Nos. _____, filed with the demand,
Nos. _____, filed with the letter of _____,
Nos. _____, filed with the letter of _____ the drawings, sheets/fig _____, as originally filed,
sheets/fig _____, filed with the demand
sheets/fig _____, filed with the letter of _____,
sheets/fig _____, filed with the letter of _____

2. The amendments have resulted in the cancellation of:

 the description, pages _____ the claims, Nos. _____ the drawings, sheets/fig _____

3. This report has been established as if (some of) the amendments had not been made, since they have been considered to go beyond the disclosure as filed, as indicated in the supplemental Box (Rule 70.2(c)).

4. Additional observations, if necessary:

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No.

PCT/SE98/01974

V. Resoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement

1. Statement

Novelty (N)	Claims Claims	<u>1-50</u>	YES NO
Inventive step (IS)	Claims Claims	<u>1-50</u>	YES NO
Industrial applicability (IA)	Claims Claims	<u>1-50</u>	YES NO

2. Citations and explanations

The claimed invention relates to an ATM transmission system adapted for transmission of IP data. The system includes a core network of ATM switches. The core network includes access IP/ATM nodes (AINs) and core IP/ATM nodes (CINs) for handling inter-subnet communications. Each AIN is attached to an ATM switch of the core network through an ATM User-Network Interface and is adapted to perform IP data flow classification and labelling for facilitating mapping of IP data flows to ATM VCs and to communicate with IP/ATM hosts and routers. Each CIN is attached to an ATM switch of the core network through an ATM User-Network Interface and is adapted to perform routing and labelling. AINs and CINs are interconnected through Virtual Path Connections. Permanent Virtual Path Connections are set-up between adjacent CINs.

Documents cited in the International Search Report:

D1: IEICE Transactions on Communications, Volume E80-B, No 3, August 1997, Shigeo Matsuzawa et al, "Architecture of Cell Switch Router and Prototype System Implementation", page 1227-1238.

D2: IEICE Transactions on Communications, Volume E78-B, No 8, August 1995, Hiroshi Esaki et al, "High Speed Datagram Delivery over Internet Using ATM Technology", page 1208-1218.

D3: IEEE Communications Magazine, Volume 35, No 1, January 1997, Peter Newman et al, "IP Switching and Gigabit Routers", page 64-69.

D4: EP 0 781 010 A2

.../...

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No.

PCT/SE98/01974

Supplemental Box

(To be used when the space in any of the preceding boxes is not sufficient)

Continuation of: V

D1 describes an architecture of a cell switch router and a prototype system implementation.

D2 relates to high-speed datagram delivery over Internet using ATM technology.

D3 describes IP switching and gigabit routers.

D4 relates to a network node apparatus and connection set-up method for setting up a cut-through connection.

In the International Search Report drawn by this Authority, documents D1, D2, D3 and D4 were found to be of particular relevance. However, this Authority has reconsidered this opinion and finds them to constitute the state of the art, since it can not be considered obvious to a person skilled in the art to obtain the claimed invention with knowledge of these documents. The invention as claimed in claims 1-50 is, with reference to D1-D4, novel and considered to involve an inventive step. The invention as claimed in claims 1-50 is considered to have industrial applicability.

PATENT COOPERATION TREATY

PCT

NOTICE INFORMING THE APPLICANT OF THE COMMUNICATION OF THE INTERNATIONAL APPLICATION TO THE DESIGNATED OFFICES

(PCT Rule 47.1(c), first sentence)

From the INTERNATIONAL BUREAU

To:

PRAGSTEN, Rolf
 Telia Research AB
 Vitsandsgatan 9
 S-123 86 Farsta
 SUÈDE

Inkom Kop
 Telia Research AB
 1999 -05- 25

Date of mailing (day/month/year) 14 May 1999 (14.05.99)			
Applicant's or agent's file reference Case 634 PCT		IMPORTANT NOTICE	
International application No. PCT/SE98/01974	International filing date (day/month/year) 30 October 1998 (30.10.98)	Priority date (day/month/year) 04 November 1997 (04.11.97)	
Applicant TELIA AB (publ) et al			

1. Notice is hereby given that the International Bureau has communicated, as provided in Article 20, the international application to the following designated Offices on the date indicated above as the date of mailing of this Notice:
EP,JP,US

In accordance with Rule 47.1(c), third sentence, those Offices will accept the present Notice as conclusive evidence that the communication of the international application has duly taken place on the date of mailing indicated above and no copy of the international application is required to be furnished by the applicant to the designated Office(s).

2. The following designated Offices have waived the requirement for such a communication at this time:
EE,LT,LV,NO

The communication will be made to those Offices only upon their request. Furthermore, those Offices do not require the applicant to furnish a copy of the international application (Rule 49.1(a-bis)).

3. Enclosed with this Notice is a copy of the international application as published by the International Bureau on 14 May 1999 (14.05.99) under No. WO 99/22574

REMINDER REGARDING CHAPTER II (Article 31(2)(a) and Rule 54.2)

If the applicant wishes to postpone entry into the national phase until 30 months (or later in some Offices) from the priority date, a demand for international preliminary examination must be filed with the competent International Preliminary Examining Authority before the expiration of 19 months from the priority date.

It is the applicant's sole responsibility to monitor the 19-month time limit.

Note that only an applicant who is a national or resident of a PCT Contracting State which is bound by Chapter II has the right to file a demand for international preliminary examination.

REMINDER REGARDING ENTRY INTO THE NATIONAL PHASE (Article 22 or 39(1))

If the applicant wishes to proceed with the international application in the national phase, he must, within 20 months or 30 months, or later in some Offices, perform the acts referred to therein before each designated or elected Office.

For further important information on the time limits and acts to be performed for entering the national phase, see the Annex to Form PCT/IB/301 (Notification of Receipt of Record Copy) and Volume II of the PCT Applicant's Guide.

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland	Authorized officer J. Zahra
Facsimile No. (41-22) 740.14.35	Telephone No. (41-22) 338.83.38

INTERNATIONAL SEARCH REPORT

International application No.

PCT/SE 98/01974

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	IEEE Communications Magazine, Volume 35, No 1, January 1997, Peter Newman et al, "IP Switching and Gigabit Routers" page 64 - page 69	1-13,20, 26-30,33-36, 48-50
A	--	14-19,21-25, 31-32,37-47
X	EP 0781010 A2 (KABUSHIKI KAISHA THOSHIBA), 25 June 1997 (25.06.97), column 6, line 55 - column 8, line 11; column 17, line 40 - column 18, line 48	1-13,20, 26-30,33-36, 48-50
A	-- -----	14-19,21-25, 31-32,37-47

INTERNATIONAL SEARCH REPORT
Information on patent family members

03/05/99

International application No.

PCT/SE 98/01974

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP 0781010 A2	25/06/97	JP	9172457 A	30/06/97

PATENT COOPERATION TREATY

PCT

NOTIFICATION OF ELECTION
(PCT Rule 61.2)

From the INTERNATIONAL BUREAU

To:

United States Patent and Trademark
Office
(Box PCT)
Crystal Plaza 2
Washington, DC 20231
ÉTATS-UNIS D'AMÉRIQUE

in its capacity as elected Office

Date of mailing (day/month/year) 23 July 1999 (23.07.99)

International application No. PCT/SE98/01974	Applicant's or agent's file reference Case 634 PCT
International filing date (day/month/year) 30 October 1998 (30.10.98)	Priority date (day/month/year) 04 November 1997 (04.11.97)

Applicant NAZARI, Ala

1. The designated Office is hereby notified of its election made:

in the demand filed with the International Preliminary Examining Authority on:

02 June 1999 (02.06.99)

in a notice effecting later election filed with the International Bureau on:

2. The election was

was not

made before the expiration of 19 months from the priority date or, where Rule 32 applies, within the time limit under Rule 32.2(b).

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland Facsimile No.: (41-22) 740.14.35	Authorized officer Jean-Marie McAdams Telephone No.: (41-22) 338.83.38
---	--

Inkom Kgp
Telia Research AB
1999-01-07

PATENT COOPERATION TREATY

PCT

NOTIFICATION CONCERNING SUBMISSION OR TRANSMITTAL OF PRIORITY DOCUMENT

(PCT Administrative Instructions, Section 411)

From the INTERNATIONAL BUREAU

To:

PRAGSTEN, Rolf
Telia Research AB
Vitsandsgatan 9
S-123 86 Farsta
SUÈDE

Date of mailing (day/month/year) 23 December 1998 (23.12.98)	
Applicant's or agent's file reference Case 634 PCT	IMPORTANT NOTIFICATION
International application No. PCT/SE98/01974	International filing date (day/month/year) 30 October 1998 (30.10.98)
International publication date (day/month/year) Not yet published	Priority date (day/month/year) 04 November 1997 (04.11.97)
Applicant TELIA AB (publ) et al	

1. The applicant is hereby notified of the date of receipt (except where the letters "NR" appear in the right-hand column) by the International Bureau of the priority document(s) relating to the earlier application(s) indicated below. Unless otherwise indicated by an asterisk appearing next to a date of receipt, or by the letters "NR", in the right-hand column, the priority document concerned was submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b).
2. This updates and replaces any previously issued notification concerning submission or transmittal of priority documents.
3. An asterisk(*) appearing next to a date of receipt, in the right-hand column, denotes a priority document submitted or transmitted to the International Bureau but not in compliance with Rule 17.1(a) or (b). In such a case, the attention of the applicant is directed to Rule 17.1(c) which provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.
4. The letters "NR" appearing in the right-hand column denote a priority document which was not received by the International Bureau or which the applicant did not request the receiving Office to prepare and transmit to the International Bureau, as provided by Rule 17.1(a) or (b), respectively. In such a case, the attention of the applicant is directed to Rule 17.1(c) which provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.

<u>Priority date</u>	<u>Priority application No.</u>	<u>Country or regional Office or PCT receiving Office</u>	<u>Date of receipt of priority document</u>
04 Nove 1997 (04.11.97)	9704019-0	SE	18 Dece 1998 (18.12.98)

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland Facsimile No. (41-22) 740.14.35	Authorized officer Juan Cruz Telephone No. (41-22) 338.83.38
--	--

PATENT COOPERATION TREATY

PCT

INTERNATIONAL SEARCH REPORT

(PCT Article 18 and Rules 43 and 44)

Applicant's or agent's file reference Case 634 PCT	FOR FURTHER ACTION	see Notification of Transmittal of International Search Report (Form PCT/ISA/220) as well as, where applicable, item 5 below.
International application No. PCT/SE 98/01974	International filing date (<i>day/month/year</i>) 30 October 1998	(Earliest) Priority Date (<i>day/month/year</i>) 4 November 1997
Applicant Telia AB et al		

This international search report has been prepared by this International Searching Authority and is transmitted to the applicant according to Article 18. A copy is being transmitted to the International Bureau.

This international search report consists of a total of 3 sheets.

It is also accompanied by a copy of each prior art document cited in this report.

1. Certain claims were found unsearchable (See Box I).
2. Unity of invention is lacking (See Box II).
3. The international application contains disclosure of a nucleotide and/or amino acid sequence listing and the international search was carried out on the basis of the sequence listing
 - filed with the international application.
 - furnished by the applicant separately from the international application,
 - but not accompanied by a statement to the effect that it did not include matter going beyond the disclosure in the international application as filed.
 - transcribed by this Authority.
4. With regard to the title, the text is approved as submitted by the applicant.
 the text has been established by this Authority to read as follows:
IP/ATM network adapted to perform IP data flow classification and labelling for facilitating mapping of IP flows to ATM virtual circuits
5. With regard to the abstract,
 - the text is approved as submitted by the applicant.
 - the text has been established, according to Rule 38.2(b), by this Authority as it appears in Box III. The applicant may, within one month from the date of mailing of this international search report, submit comments to this Authority.
6. The figure of the drawings to be published with the abstract is:
 Figure No. 1
 - as suggested by the applicant.
 - because the applicant failed to suggest a figure.
 - because this figure better characterizes the invention.

None of the figures.

INTERNATIONAL SEARCH REPORT

1

International application No.

PCT/SE 98/01974

A. CLASSIFICATION OF SUBJECT MATTER

IPC6: H04Q 11/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC6: H04Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE,DK,FI,NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	IEICE Transactions Communications, Volume E80-B, No 3, August 1997, Shigeo MATSUZAWA et al, "Architecture of Cell Switch Router and Prototype System Implementation" page 1227 - page 1238	1-13,20, 26-30,33-36, 48-50
A	--	14-19,21-25, 31-32,37-47
X	IEICE Transactions on Communications, Volume E78-B, No 8, August 1995, Hiroshi ESAKI et al, "High Speed Datagram Delivery over Internet Using ATM Technology" page 1208 - page 1218	1-13,20, 26-30,33-36, 48-50
A	--	14-19,21-25, 31-32,37-47

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents	"I"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A" document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"E" earlier document but published on or after the international filing date	"Y"	document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"&"	document member of the same patent family
"O" document referring to an oral disclosure, use, exhibition or other means		
"P" document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search

7 June 1999

Date of mailing of the international search report

15 -06 - 1999

Name and mailing address of the ISA/
Swedish Patent Office
Box 5055, S-102 42 STOCKHOLM
Facsimile No. + 46 8 666 02 86

Authorized officer

Stefan Hermanson/mj
Telephone No. + 46 8 782 25 00

INTERNATIONAL SEARCH REPORT

International application No.

PCT/SE 98/01974

A. CLASSIFICATION OF SUBJECT MATTER

IPC6: H04Q 11/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC6: H04Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE,DK,FI,NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	IEICE Transactions Communications, Volume E80-B, No 3, August 1997, Shigeo MATSUZAWA et al, "Architecture of Cell Switch Router and Prototype System Implementation" page 1227 - page 1238	1-13,20, 26-30,33-36, 48-50
A	--	14-19,21-25, 31-32,37-47
X	IEICE Transactions on Communications, Volume E78-B, No 8, August 1995, Hiroshi ESAKI et al, "High Speed Datagram Delivery over Internet Using ATM Technology" page 1208 - page 1218	1-13,20, 26-30,33-36, 48-50
A	--	14-19,21-25, 31-32,37-47

 Further documents are listed in the continuation of Box C. See patent family annex.

- * Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier document but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed
 - "I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 - "&" document member of the same patent family

Date of the actual completion of the international search

7 June 1999

Date of mailing of the international search report

15 -06 - 1999

Name and mailing address of the ISA/
Swedish Patent Office
Box 5055, S-102 42 STOCKHOLM
Facsimile No. +46 8 666 02 86

Authorized officer

Stefan Hermansson/mj
Telephone No. +46 8 782 25 00

INTERNATIONAL SEARCH REPORT

Information on patent family members

03/05/99

International application No.

PCT/SE 98/01974

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP 0781010 A2	25/06/97	JP 9172457 A	30/06/97