Clase 2 (Práctica 2) - Análisis 1 - Geometría en \mathbb{R}^2 y \mathbb{R}^3 - Aplicaciones

1. Encontrar todos los valores de k tales que el ángulo entre los vectores $\vec{v}=(2,-1,1)$ y $\vec{w}=(1,k,0)$ es $\pi/6$.

Solución: Recordemos que si $\theta \in [0, \pi)$ es el ángulo entre dos vectores entonces

$$\cos(\theta) = \frac{\langle \vec{v}, \vec{w} \rangle}{\|\vec{v}\| \|\vec{w}\|}.$$

En este caso, tenemos

$$\frac{\sqrt{3}}{2} = \cos(\pi/6) = \frac{\langle \vec{v}, \vec{w} \rangle}{\|\vec{v}\| \|\vec{w}\|} = \frac{\langle (2, -1, 1), (1, k, 0) \rangle}{\sqrt{6}\sqrt{1 + k^2}} = \frac{2 - k}{\sqrt{6}\sqrt{1 + k^2}}.$$

Luego,

$$\sqrt{18}\sqrt{1+k^2} = 2(2-k)$$

Elevando al cuadrado ambos lados de la igualdad anterior nos queda

$$9(1+k^2) = 2(4-4k+k^2)$$

Aplicando la propiedad distributiva y agrupando los terminos de igual grado obtenemos la ecuación cuadrática:

$$7k^2 + 8k + 1 = 0$$

cuyas soluciones se pueden calcular usando la resolvente:

$$k = \frac{-8 \pm \sqrt{64 - 28}}{14} = \frac{-8 \pm 6}{14} \quad \Leftrightarrow \quad k = -1 \text{ ó } k = -\frac{1}{7}$$

y estos son los valores de k buscados.

2. Hallar todos los vectores de \mathbb{R}^2 que son perpendiculares a $\vec{v} = (-1, 2)$. ¿Qué conjunto forman? ¿cuántas direcciones perpendiculares a \vec{v} hay?

Solución: Si (a, b) es un vector perpendicular a \vec{v} entonces debe cumplir que $\langle (a, b), (-1, 2) \rangle = 0$, es decir,

$$-a + 2b = 0 \Leftrightarrow a = 2b$$
.

Entonces, todos los vectores perpendiculares a \vec{v} son de la forma

$$(2b, b) = b(2, 1), \quad \text{con } b \in \mathbb{R}.$$

y conforman una recta que pasa por el origen y sigue la dirección del vector (2,1).

Hay una sola dirección perpendicular a \vec{v} que está determinada por la recta que pasa por el origen y tiene vector director (2,1).

- 3. Sean $\vec{v} = (4, -1, 1)$ y $\vec{w} = (2, 1, -3)$ dos vectores en \mathbb{R}^3 .
 - (a) Hallar todos los vectores perpendiculares a \vec{v} . ¿Qué conjunto forman? ¿Cuántas direcciones perpendiculares a \vec{v} hay?
 - (b) Hallar todos los vectores en \mathbb{R}^3 que son perpendiculares a \vec{v} y \vec{w} simultáneamente. ¿Qué conjunto forman? ¿Cuántas direcciones perpendiculares a \vec{v} hay?

Solución:

(a) Un vector $\vec{u} = (a, b, c) \in \mathbb{R}^3$ es perpendicular a \vec{v} si y solo si

$$\langle \vec{u}, \vec{v} \rangle = \langle (a, b, c), (4, -1, 1) \rangle = 4a - b + c = 0 \quad \Leftrightarrow \quad b = 4a + c.$$

Luego, todos los vectores buscados son de la forma

$$(a, 4a + c, c) = a(1, 4, 0) + c(0, 1, 1)$$

y esto define el plano que pasa por el origen de ecuación $\Pi: s(1,4,0)+t(0,1,1)$. Hay infinitas direcciones perpendiculares a \vec{v} . Cada dirección perpendicular a \vec{v} está determinada por una única recta que pasa por el origen y está incluida en el plano $\Pi: s(1,4,0)+t(0,1,1)$.

(b) Un vector $\vec{u} = (a, b, c) \in \mathbb{R}^3$ es perpendicular a \vec{v} y \vec{w} simultáneamente si y solo si $\langle \vec{u}, \vec{v} \rangle = 0$ y $\langle \vec{u}, \vec{w} \rangle = 0$. Es decir,

$$\langle (a, b, c), (4, -1, 1) \rangle = 4a - b + c = 0$$

 $\langle (a, b, c), (2, 1, -3) \rangle = 2a + b - 3c = 0$

Despejando b de la primera ecuación tenemos que b=4a+c. Reemplazando en la segunda nos queda que 2a+4a+c-3c=0 con lo cual 6a-2c=0 y por lo tanto c=3a y b=7a. Todos los vectores perpendiculares a \vec{v} y \vec{w} simultáneamente son de la forma

$$(a,7a,3a) = a(1,7,3)$$

y determinan una recta que pasa por el origen y tiene vector director (1,7,3). Otra forma: como el producto vectorial $\vec{v} \times \vec{w}$ es un vector perpendicular a \vec{v} y \vec{w} simultáneamente, entonces todos vectores perpendiculares a \vec{v} y \vec{w} son de la forma

 $\alpha(\vec{v} \times \vec{w})$. Calculemos el producto vectorial:

$$\vec{v} \times \vec{w} = \begin{vmatrix} i & j & k \\ 4 & -1 & 1 \\ 2 & 1 & -3 \end{vmatrix} = (3-1)i - (-12-2)j + (4+2)k = (2,14,6).$$

Luego, todos los vectores perpendiculares a \vec{v} y \vec{w} son $\alpha(2, 14, 6) = 2\alpha(1, 7, 3)$. Esto es coherente con lo que obtuvimos antes.

Comentario: Con ayuda de GeoGebra reproducir los gráficos para visualizar los objetos (vectores, rectas y planos) que aparecen en la resolución del ejercicio.