ANGLE OF MINIMUM DEVIATION

Aim: To determine the angle of minimum deviation for a given glass prism by plotting graph between angle of incidence and the angle of deviation.

Apparatus: Drawing board, prism, drawing pins, and white paper.

Principle:

A ray of light incident on one of the refracting surface of prism of angle A and refractive index n, it will deviate while passing through prism as shown in figure-1. The deviation is given by

 $d = (i_1 + i_2) - A$ where i_1 and i_2 are angle of incident and angle of emergence.

As the angle of incidence is gradually increased, the angle of deviation first decreases reaches a minimum value (d_m) and then increases as shown in graph. When the angle of incidence is equal to the angle of emergence, the deviation is minimum.

Procedure:

- 1. A straight line XY is drawn on the sheet of white paper fixed on the drawing board.
- 2. The points O_1 , O_2 , O_3 ... are marked on line XY.
- 3. A normal N_1O_1 is drawn to XY at O_1 and straight line D_1O_1 is drawn to represent ray of incidence which makes an angle 45^0 with N_1O_1 .
- 4. The prism ABC is placed on the paper as shown in the figure and its boundary is drawn.
- 5. Two pins P_1 and Q_1 are vertically fixed about 5cm apart on the ray of incidence D_1O_1 .
- 6. While seeing the images of the pins P_1 and Q_1 through the other refracting surface BC of the prism, two more pins R_1 and S_1 are fixed on the side of AC so that R_1, S_1 and the images of the pins P_1 and Q_1 will be collinear.
- 7. Pins are removed and their pricks are marked. A straight line is drawn through the pin pricks of R_1 and S_1 to obtain the ray of emergence.
- 8. The ray of incidence and emergence are extended as shown in the figure 2 to find the angle of deviation (d).
- 9. The experiment is repeated for different value of angle of incidence and to find the corresponding angle of deviation.
- 10. A graph of angle of incidence (i) versus angle of deviation (d) is drawn and angle of minimum deviation d_m is found from the graph.

Diagram:

Figure – 2

Where:

 $ABC-Prism, $$P_1Q_1R_1S_1, P_2Q_2R_2S_2...$-pins, $$i_1i_2\&i_3-different angle of incidence, $d_1d_2\&d_3-angle of deviation$

Observations:

S.N	Angle of incidence	Angle of deviation
О	i	d
1		
2		
3		
4		
5		
6		
7		

$$\mu = \frac{\sin\left(\frac{A+D_m}{2}\right)}{\sin\left(\frac{A}{2}\right)}$$

Calculations:

From graph

Angle of minimum deviation $d_m = \dots$

Result: The angle of minimum deviation, $d_m = \dots$

Precautions:

- 1. The angle of incidence should lie between $35^{0} 60^{0}$
- 2. The pins should be fixed vertically
- 3. The distance between the two pins should not be less than 10mm.
- 4. Arrow heads should be marked to represent incident and emergent rays.
- 5. The same angle of prism should be used for all observations.

Sources of error:

- 1. Pin pricks may be thick.
- 2. Measurement of angles may be wrong.