Exam 1 Notes Name: Cooper Morris

C1S1:

Population: the entire set of all potential measurement

Sample: any subset of a population

Simple Random Sample: A sample of size n taken in such a way that any group of size n has the same chance of being selected

Sampling Variability: different samples from the same population can lead to differences

Stratified Random Sampling: the population is broken into groups based off a characteristic. Then a SRS is taken from each group

Cluster Sampling: target population has many groups, groups are selected by SRS of the groups. All elements of each group are selected

Systematic Sample: A listing is generated over time, every k^{th} member is included in the sample. Tangible Population: A population composed of members/individuals that exist.

Conceptual Population: A population composed of all values that can potentially be observed. They do not necessarily exist at any point in time. **Observations:** The measurement, or set of measurements recorded from any individual in a sample.

Variables: The characteristics being observed from individuals.

Quanitative Variables: Possible values that represent quantiles of something. Numbers of things. Ratio Variables: Inherent zero value and ratios between values make sense.

Interval Variables: No meaningful ratios and arbitrary zero

Qualitative: A variable that takes a category of possible values.

Nominal: Ordering of categories makes sense.

Ordinal: No inherent ranking in categories.

Observational Study: Observe a sample from a population with minimal interaction.

Experimental Study: A study performed where the environment of subjects is strictly controlled.

Response Variable(s): The variable(s) of interest in a study.

Explanatory Variable: Variables to explain changes in the response variable.

Confounding Variable(s): Variables unaccounted for i a study that may explain changes in the response variable.

C1S2:

Measures of Central Tendency: Values that represent where the "center" of a dataset is located. Measures of Variability: Values that indicate how spread out the data are.

Mode: The measurement that occurs most often. Median: The middle value in an ordered set.

Mean: The sum of all measurements divided by the total number of measurements.

p% Trimmed Mean: The p% lowest values and p% of the highest values are removed from data, mean is taken.

pth percentile: Value such that p% of observations are at or below and (100-p)% are above.

Range: difference between largest and smallest data points.

Five Number Summary: Min, Max, Median, Q1, and Q3

More <u>relative</u> variation is higher CV, less <u>relative</u> variation is lower CV.

C1S3:

Histogram: Number of classes should be smallest whole number K that makes $2^K \ge \text{number of measurements}$. For large data sets either $\log_2(n)$ or $2n^{1/3}$

Unimodal: One major peak Bimodal: Two major peaks Symmetric: Symmetric

Right Skewed: Long right tail, short left tail **Boxplots:** Outliers are outside $1.5 \times IQR$. Box goes from Q_1 to Q_3 , horizontal line at median, whiskers to largest data point inside $1.5 \times IQR$, X's for outliers

C2S1:

Probability: the chance that something happens. Experiment: A process with an uncertain outcome

Sample Space (S): The set of all possible outcomes in an experiment.

Outcome: Each individual and non-reducible element of a sample space

Event: A set of 1 or more outcomes

Union: For events A and B the union is all outcomes in A, B, or Both. $A \cup B$

Intersection: The set of outcomes that are in both A and B. $A \cap B$

Complement: The set of outcomes in the sample space not in A. A^C

Mutually Exclusive Events: Events that share no outcomes in common.

C2S3:

Conditional Probability: The probability of event A, given that event B has occurred P(A|B) **Independent Events:** If two events don't affect

each other

Two events are independent if and only if: P(A|B)= P(A)

Exhaustive set of events: A set of events is exhaustive of the sample space if their union is equivalent to the whole sample space.

Bayes' Theorem:

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A) \cdot P(A)}{P(B)}$$

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B|A) \cdot P(A) + P(B|A^C) \cdot P(A^C)}$$

$$P(A_i|B) = \frac{P(B|A_i) \cdot (P(A_i))}{\sum_{j=1}^{n} P(B|A_j) \cdot P(A_j)}$$

Sample Mean: $\bar{y} = \frac{\sum_{i=1}^{n} y_i}{n}$

First Quartile: $Q_1 = y_{25\%}$ Second Quartile: $Q_2 = \text{median}$

Third Quartile: $Q_3 = y_{75\%}$

Interquartile Range: $IQR = Q_3 - Q_1$

Sample Variance: $s^2 = \frac{\sum_{i=1}^{n} (y_i - \bar{y})^2}{n-1}$

Sample Variance: $s^2 = \frac{\sum_{i=1}^n y_i - \frac{(\sum y_i)^2}{n}}{n-1}$

Sample Standard Deviation: $s = \sqrt{s^2}$

Coefficient of Variation: $CV = \frac{\sigma}{|u|}$

Histogram Classes: $2^K >$ Measurements

Histogram Large Set Classes: $\log_2(n)$ or $2n^{1/3}$

Histogram Class Length: $\frac{Max-Min}{\nu}$

P(S) = 1

0 < P(A) < 1

If A & B are mutually exclusive:

 $P(A \cup B) = P(A) + P(B)$

 $P(A^{C}) = 1 - P(A)$

 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

For k operations with n_i ways the sequence of k operations:

$$\prod_{i=1}^{k} n_i$$

Permutation of n objects: n!

Permutation of k objects from n objects: $\frac{n!}{(n-k)!}$

Combinations of k objects from n objects: $\frac{n!}{k!(n-k)!}$ Combinations of groups with n objects, r groups,

and group sizes k_i : $\frac{n!}{k_1! \cdot k_2! \cdot k_3! \dots k_r!}$ N total outcomes and n_a outcomes for event A has probability: $P(A) = \frac{n_a}{N}$

 $P(A|B) = \frac{P(A \cap B)}{B}$ $P(B|A) = \frac{P(A \cap B)}{A}$ $P(A \cap B) = P(A|B) \cdot P(B) = P(B|A) \cdot P(A)$

Independent Events:

 $P(A|B) = P(A) \leftrightarrow P(B|A) = P(B)$

Multiplication Rule for Independent Events:

 $P(A \cap B) = P(A) \cdot P(B)$

 A_1, A_2, \ldots, A_N are a set of mutually exclusive events exhaustive of a sample space:

$$P(B) = \sum_{i=1}^{n} P(A_i \cap B)$$

If $P(A_i) \neq 0$ for each A_i

$$P(B) = \sum_{i=1}^{n} P(B|A_i) \cdot P(A_i)$$