

2 Noise/Noise Removal

(a) • The filter [-101] coversponds to (twice)
the first obvivative along the horizontal
obvietion: x (forgive me if I am using
the usual Cartesian motortion:-)

•
$$W(x) = \int_{-\infty}^{\infty} W(f) e^{i2\pi fx} df$$

$$\frac{dw}{dx} = \int_{-\infty}^{\infty} W(f) \frac{d}{dx} e^{i2\pi fx} df$$

$$V(x) = \int_{-\infty}^{\infty} W(f) i2\pi f e^{i2\pi fx} df$$

•
$$|V(f)|^2 = 4\pi^2 f^2 |W(f)|^2$$

- $W(X) = moise \rightarrow \langle |V(f)|^2 \rangle = 4\pi^2 f^2 \langle |W(f)|^2 \rangle^2$
- V(x) = violet moise!
- (b) The simplest lossless predictive cooling:

Preoliet:
$$\bar{f}_m = f_{m-1}$$

Tromsmit:
$$lm = fm - \bar{f}m$$

= $fm - fm - 1$
What is this?

- · This is the first derivortive orlong the horizontal direction!
- Same answer as in (a): violet moise!

• Which mathematical operation does so

[runnimbering that differentiation multiplies

W(f) by f]? Integration!

• $W(x) = \int_{-\infty}^{\infty} W(f) e^{i2\pi f x} df$

 $\int W(x) dx = \int W(f) \int_{\ell}^{i2\pi f x} dx df$ $= \int W(f) \frac{1}{i2\pi f} \ell^{i2\pi f x} df$ $= \int W(f) \frac{1}{i2\pi f} \ell^{i2\pi f x} df$

• More rigorously,
$$\pi(x) = \int w(x) dx$$
 is true Φ apart from a constount:

if
$$w(x) = \frac{dr}{dx}$$
, then $\pi(x) = \int w(x)dx + C$

· C com be written as:

$$C = C \int_{-\infty}^{\infty} S(f) \ell^{i2\pi f \times} df$$

$$R(f) = \frac{W(f)}{i 2\pi f} + CS(f)$$

But S(f) = 0 for all f except f = 0, ound this frequency value is singular since the Fourier power spectrum of red moise $(\propto 1/f^2)$ is not defined there!!

(d) What is the most appropriate transform, given the functional form of m (t)?

The Fourier transform!

$$N(f) = \frac{1}{2} \alpha \left[S(f-f_0) + S(f+f_0) \right] + \frac{1}{2} e \left[S(f-3f_0) + S(f+3f_0) \right]$$

- X(f) how four spikes: at f= ± fo and f= ± 3 fo
- Set such coefficients to zero!!

 And inverse Fourier transform...
 - * Do we need to zero-poud?

 No, becouse such a (notch) filter how infinitesimal sine!
 - * Anything else to worry about?

(e) Doesn't this problem remind you of 6 One of the Exams in 2010/2011: 1(e)

discussed in the class?

- So what is the most appropriate transform? The fast wavelet transform!
- · Don't let me help you too much!
 Try instead to understand the following:
 - * Choose the wavelet ...
 - * Choose the level ---
 - * FWT x(t) at level l
 - * Compute $\sigma_{\ell} = \frac{1}{0.6745} MAD \{D\ell\}$
 - * Compute Te = V2 ln N Te
 - * Compute $T_{m-1} = \frac{1}{2} T_m$ for m = l, l-1, ---, 2
 - * Set to zero the obtail earthicients that are ABOVE the thrusholds!
 - * IFWT-Q-