## **Step 1: Import necessary Python libraries.**

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

# Step 2: Load the dataset into a DataFrame.

```
In [2]: # Read the csv file using pandas read_csv
restaurent_df = pd.read_csv(r"Dataset .csv")
restaurent_df
```

|     | Restaurant<br>ID | Restaurant<br>Name             | Country<br>Code | City                | Address                                                    | Locality                                             | Locality<br>Verbose                                     |
|-----|------------------|--------------------------------|-----------------|---------------------|------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|
|     | <b>0</b> 6317637 | Le Petit<br>Souffle            | 162             | Makati City         | Third Floor,<br>Century City<br>Mall, Kalayaan<br>Avenu    | Century City<br>Mall, Poblacion,<br>Makati City      | Century City<br>Mall, Poblacion<br>Makati City<br>Mak   |
|     | <b>1</b> 6304287 | Izakaya<br>Kikufuji            | 162             | Makati City         | Little Tokyo,<br>2277 Chino<br>Roces Avenue,<br>Legaspi    | Little Tokyo,<br>Legaspi Village,<br>Makati City     | Little Tokyo<br>Legaspi Village<br>Makati City<br>Ma    |
| ;   | <b>2</b> 6300002 | Heat - Edsa<br>Shangri-La      | 162             | Mandaluyong<br>City | Edsa Shangri-La,<br>1 Garden Way,<br>Ortigas,<br>Mandal    | Edsa Shangri-<br>La, Ortigas,<br>Mandaluyong<br>City | Edsa Shangri-La<br>Ortigas<br>Mandaluyong<br>City, Ma   |
| :   | <b>3</b> 6318506 | Ooma                           | 162             | Mandaluyong<br>City | Third Floor,<br>Mega Fashion<br>Hall, SM<br>Megamall, O    | SM Megamall,<br>Ortigas,<br>Mandaluyong<br>City      | SM Megamall<br>Ortigas<br>Mandaluyong<br>City, Mandal   |
|     | <b>4</b> 6314302 | Sambo<br>Kojin                 | 162             | Mandaluyong<br>City | Third Floor,<br>Mega Atrium,<br>SM Megamall,<br>Ortigas    | SM Megamall,<br>Ortigas,<br>Mandaluyong<br>City      | SM Megamall,<br>Ortigas,<br>Mandaluyong<br>City, Mandal |
| •   |                  |                                |                 |                     | <b></b>                                                    |                                                      |                                                         |
| 954 | <b>6</b> 5915730 | Namll<br>Gurme                 | 208             | <b>� �</b> stanbul  | Kemanke��<br>Karamustafa<br>Pa��a<br>Mahallesi,<br>Rìhtìm  | Karak <b>∳</b> _y                                    | Karak <b>∳</b> _y.<br><b>��</b> stanbu                  |
| 954 | <b>7</b> 5908749 | Ceviz<br>A��acl                | 208             | <b>��</b> stanbul   | Ko��uyolu<br>Mahallesi,<br>Muhittin<br>��st�_nda��<br>Cadd | Ko��uyolu                                            | Ko��uyolu<br>��stanbu                                   |
| 954 | <b>8</b> 5915807 | Huqqa                          | 208             | <b>��</b> stanbul   | Kuru�_e��me<br>Mahallesi,<br>Muallim Naci<br>Caddesi, N    | Kuru�_e��me                                          | Kuru�_e��me,<br>��stanbu                                |
| 954 | <b>9</b> 5916112 | A���k<br>Kahve                 | 208             | <b>� �</b> stanbul  | Kuru�_e��me<br>Mahallesi,<br>Muallim Naci<br>Caddesi, N    | Kuru <b>�</b> _e��me                                 | Kuru�_e��me<br>��stanbu                                 |
| 955 | <b>5</b> 927402  | Walter's<br>Coffee<br>Roastery | 208             | <b>� �</b> stanbul  | Cafea��a<br>Mahallesi,<br>Bademaltl<br>Sokak, No 21/B,<br> | Moda                                                 | Moda,<br>��stanbu                                       |

9551 rows × 21 columns

# **Step 3: Basic Inspection on given dataset**

• Top 5 rows - using head

In [3]: restaurent\_df.head()

Out[3]:

|     | Restaurant<br>ID | Restaurant<br>Name        | Country<br>Code | City                | Address                                                           | Locality                                             | Locality<br>Verbose                                           | Longitude  |
|-----|------------------|---------------------------|-----------------|---------------------|-------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|------------|
| 0   | 6317637          | Le Petit<br>Souffle       | 162             | Makati City         | Third<br>Floor,<br>Century<br>City Mall,<br>Kalayaan<br>Avenu     | Century City<br>Mall,<br>Poblacion,<br>Makati City   | Century City<br>Mall,<br>Poblacion,<br>Makati City,<br>Mak    | 121.027535 |
| 1   | 6304287          | Izakaya<br>Kikufuji       | 162             | Makati City         | Little<br>Tokyo,<br>2277<br>Chino<br>Roces<br>Avenue,<br>Legaspi  | Little Tokyo,<br>Legaspi<br>Village,<br>Makati City  | Little Tokyo,<br>Legaspi<br>Village,<br>Makati City,<br>Ma    | 121.014101 |
| 2   | 6300002          | Heat - Edsa<br>Shangri-La | 162             | Mandaluyong<br>City | Edsa<br>Shangri-<br>La, 1<br>Garden<br>Way,<br>Ortigas,<br>Mandal | Edsa Shangri-<br>La, Ortigas,<br>Mandaluyong<br>City | Edsa Shangri-<br>La, Ortigas,<br>Mandaluyong<br>City, Ma      | 121.056831 |
| 3   | 6318506          | Ooma                      | 162             | Mandaluyong<br>City | Third<br>Floor,<br>Mega<br>Fashion<br>Hall, SM<br>Megamall,<br>O  | SM<br>Megamall,<br>Ortigas,<br>Mandaluyong<br>City   | SM<br>Megamall,<br>Ortigas,<br>Mandaluyong<br>City,<br>Mandal | 121.056475 |
| 4   | 6314302          | Sambo<br>Kojin            | 162             | Mandaluyong<br>City | Third<br>Floor,<br>Mega<br>Atrium,<br>SM<br>Megamall,<br>Ortigas  | SM<br>Megamall,<br>Ortigas,<br>Mandaluyong<br>City   | SM<br>Megamall,<br>Ortigas,<br>Mandaluyong<br>City,<br>Mandal | 121.057508 |
| 5 r | ows x 21 coli    | ımnç                      |                 |                     |                                                                   |                                                      |                                                               |            |

5 rows × 21 columns

•

• bottom 5 rows using tail

n [4]: restaurent\_df.tail()

| •    | Restaurant<br>ID | Restaurant<br>Name             | Country<br>Code | City               | Address                                                    | Locality             | Locality<br>Verbose       |
|------|------------------|--------------------------------|-----------------|--------------------|------------------------------------------------------------|----------------------|---------------------------|
| 9546 | 5915730          | Namll<br>Gurme                 | 208             | <b>♦</b> ♦stanbul  | Kemanke��<br>Karamustafa<br>Pa��a<br>Mahallesi,<br>R\ht\m  | Karak <b>∳</b> _y    | Karak�_y,<br>��stanbul    |
| 9547 | 5908749          | Ceviz<br>A��acl                | 208             | <b>♦ ♦</b> stanbul | Ko��uyolu<br>Mahallesi,<br>Muhittin<br>��st�_nda��<br>Cadd | Ko��uyolu            | Ko��uyolu,<br>��stanbul   |
| 9548 | 5915807          | Huqqa                          | 208             | <b>♦ ♦</b> stanbul | Kuru�_e��me<br>Mahallesi,<br>Muallim Naci<br>Caddesi, N    | Kuru <b>�</b> _e��me | Kuru�_e��me,<br>��stanbul |
| 9549 | 5916112          | A���k<br>Kahve                 | 208             | <b>♦ ♦</b> stanbul | Kuru�_e��me<br>Mahallesi,<br>Muallim Naci<br>Caddesi, N    | Kuru <b>�</b> _e��me | Kuru�_e��me,<br>��stanbul |
| 9550 | 5927402          | Walter's<br>Coffee<br>Roastery | 208             | <b>� �</b> stanbul | Cafea��a<br>Mahallesi,<br>Bademaltl<br>Sokak, No 21/B,<br> | Moda                 | Moda,<br>��stanbul        |

5 rows × 21 columns



## • Inspecting Column Names and Data Types

In [5]: restaurent\_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9551 entries, 0 to 9550
Data columns (total 21 columns):

| #    | Column                | Non-Null Count | Dtype   |
|------|-----------------------|----------------|---------|
|      |                       |                |         |
| 0    | Restaurant ID         | 9551 non-null  | int64   |
| 1    | Restaurant Name       | 9551 non-null  | object  |
| 2    | Country Code          | 9551 non-null  | int64   |
| 3    | City                  | 9551 non-null  | object  |
| 4    | Address               | 9551 non-null  | object  |
| 5    | Locality              | 9551 non-null  | object  |
| 6    | Locality Verbose      | 9551 non-null  | object  |
| 7    | Longitude             | 9551 non-null  | float64 |
| 8    | Latitude              | 9551 non-null  | float64 |
| 9    | Cuisines              | 9542 non-null  | object  |
| 10   | Average Cost for two  | 9551 non-null  | int64   |
| 11   | Currency              | 9551 non-null  | object  |
| 12   | Has Table booking     | 9551 non-null  | object  |
| 13   | Has Online delivery   | 9551 non-null  | object  |
| 14   | Is delivering now     | 9551 non-null  | object  |
| 15   | Switch to order menu  | 9551 non-null  | object  |
| 16   | Price range           | 9551 non-null  | int64   |
| 17   | Aggregate rating      | 9551 non-null  | float64 |
| 18   | Rating color          | 9551 non-null  | object  |
| 19   | Rating text           | 9551 non-null  | object  |
| 20   | Votes                 | 9551 non-null  | int64   |
| d+vn | os: float64(3) int64( | 5) object(13)  |         |

dtypes: float64(3), int64(5), object(13)

memory usage: 1.5+ MB

### • Checking for Missing Values

```
In [6]: restaurent_df.isnull().sum()
```

```
Out[6]: Restaurant ID
                                 0
                                 0
         Restaurant Name
         Country Code
                                 0
         City
                                 0
         Address
                                 0
         Locality
         Locality Verbose
                                 0
         Longitude
         Latitude
         Cuisines
         Average Cost for two
                                 0
                                 0
         Currency
         Has Table booking
         Has Online delivery
                                 0
         Is delivering now
         Switch to order menu
                                 0
         Price range
                                 0
         Aggregate rating
         Rating color
                                 0
         Rating text
                                 0
         Votes
         dtype: int64
```

### • Basic Statistical Summary

```
In [7]: restaurent_df.describe()
```

| ut[7]: |       | Restaurant<br>ID | Country<br>Code | Longitude   | Latitude    | Average Cost for two | Price range | Aggregate rating |
|--------|-------|------------------|-----------------|-------------|-------------|----------------------|-------------|------------------|
|        | count | 9.551000e+03     | 9551.000000     | 9551.000000 | 9551.000000 | 9551.000000          | 9551.000000 | 9551.000000      |
|        | mean  | 9.051128e+06     | 18.365616       | 64.126574   | 25.854381   | 1199.210763          | 1.804837    | 2.666370         |
|        | std   | 8.791521e+06     | 56.750546       | 41.467058   | 11.007935   | 16121.183073         | 0.905609    | 1.516378         |
|        | min   | 5.300000e+01     | 1.000000        | -157.948486 | -41.330428  | 0.000000             | 1.000000    | 0.000000         |
|        | 25%   | 3.019625e+05     | 1.000000        | 77.081343   | 28.478713   | 250.000000           | 1.000000    | 2.500000         |
|        | 50%   | 6.004089e+06     | 1.000000        | 77.191964   | 28.570469   | 400.000000           | 2.000000    | 3.200000         |
|        | 75%   | 1.835229e+07     | 1.000000        | 77.282006   | 28.642758   | 700.000000           | 2.000000    | 3.700000         |
|        | max   | 1.850065e+07     | 216.000000      | 174.832089  | 55.976980   | 800000.000000        | 4.000000    | 4.900000         |
|        | 4     |                  |                 |             |             |                      |             |                  |

## • Checking Unique Values

| In [8]: | restaurent_ | df.nunique() |      |  |
|---------|-------------|--------------|------|--|
| Out[8]: | Restaurant  | ID           | 9551 |  |

| Nestaurant ID        | JJJI |
|----------------------|------|
| Restaurant Name      | 7446 |
| Country Code         | 15   |
| City                 | 141  |
| Address              | 8918 |
| Locality             | 1208 |
| Locality Verbose     | 1265 |
| Longitude            | 8120 |
| Latitude             | 8677 |
| Cuisines             | 1825 |
| Average Cost for two | 140  |
| Currency             | 12   |
| Has Table booking    | 2    |
| Has Online delivery  | 2    |
| Is delivering now    | 2    |
| Switch to order menu | 1    |
| Price range          | 4    |
| Aggregate rating     | 33   |
| Rating color         | 6    |
| Rating text          | 6    |
| Votes                | 1012 |
| dtype: int64         |      |

## • Checking Shape

In [9]: restaurent\_df.shape

Out[9]: **(9551, 21)** 

# **Task 1: Top Cuisines**

• \*\*Determine the top three most

common cuisines in the dataset.\*\*

```
In [10]: # Count the occurrences of each cuisine - value_count()
    # used to reset the index of a DataFrame - reset_index()
    value_counts = restaurent_df["Cuisines"].value_counts().reset_index().head(3)
    value_counts
```

## Out[10]: Cuisines count

| 0 | North Indian          | 936 |
|---|-----------------------|-----|
| 1 | North Indian, Chinese | 511 |

2 Chinese 354

```
In [11]: plt.figure(figsize=(10,5))
    values = value_counts['Cuisines']
    labels = value_counts['count']
    plt.bar(values,labels)
    plt.title('Top three Cuisines')
    plt.xlabel('Cuisines')
    plt.ylabel("Count - Frequency")
    plt.show()
```



#### • Calculate the percentage of restaurants that serve each of the top cuisines

In [12]: # adding new column 'Percentage' and calculate the percentage of restaurants that serve each of
value\_counts['Percentage'] = round((value\_counts['count'] / len(restaurent\_df))\*100,2)
value\_counts

### Out[12]:

|   | Cuisines              | count | Percentage |
|---|-----------------------|-------|------------|
| 0 | North Indian          | 936   | 9.80       |
| 1 | North Indian, Chinese | 511   | 5.35       |
| 2 | Chinese               | 354   | 3.71       |

```
In [13]: plt.title('Percentage of restaurantrants that serve each of the top cuisines.')
   plt.pie(value_counts['Percentage'],labels=value_counts['Cuisines'],autopct='%0.2f%%',startang.
```

plt.show()

Percentage of restaurantrants that serve each of the top cuisines.



## **Task 2: City Analysis**

• \*\*Identify the city with the highest number

of restaurants in the dataset.\*\*

```
In [14]: city_restaurant_count = restaurent_df.groupby('City')['Restaurant Name'].count()

# Find the city with the highest number of restaurants
max_restaurant_city = city_restaurant_count.idxmax()
max_restaurant_count = city_restaurant_count.max()
print(f"{max_restaurant_city} has highest number of restaurants, the count of restaurants is
```

New Delhi has highest number of restaurants, the count of restaurants is 5473 restaurants.

• Calculate the average rating for restaurants in each city.

```
In [15]: avg_ratings_by_city = restaurent_df.groupby("City")["Aggregate rating"].mean().reset_index()
avg_ratings_by_city
```

|     | City            | Aggregate rating |
|-----|-----------------|------------------|
| 0   | Abu Dhabi       | 4.300000         |
| 1   | Agra            | 3.965000         |
| 2   | Ahmedabad       | 4.161905         |
| 3   | Albany          | 3.555000         |
| 4   | Allahabad       | 3.395000         |
| ••• |                 |                  |
| 136 | Weirton         | 3.900000         |
| 137 | Wellington City | 4.250000         |
| 138 | Winchester Bay  | 3.200000         |
| 139 | Yorkton         | 3.300000         |
| 140 |                 | 4.292857         |

141 rows × 2 columns

Out[15]:

• Determine the city with the highest average rating

4.9

## Observations

**56** Inner City

- City with the highest average rating
- **Inner** City with **4.9** as Avg Rating

## **Task 3: Price Range Distribution**

• Create a histogram or bar chart to visualize the distribution of price ranges among the restaurants.

```
In [17]: price_counts = restaurent_df['Price range'].value_counts()
   plt.figure(figsize=(10, 5))
   plt.bar(price_counts.index, price_counts.values, color=['red', 'blue', 'orange','yellow'])
   plt.xlabel('Price Range')
   plt.ylabel('Number of Restaurants')
   plt.title('Distribution of Price Ranges Among Restaurants')
   plt.show()
```

#### Distribution of Price Ranges Among Restaurants



#### **Observations**

- Distribution of price ranges among the restaurants
  - **1**
  - **2**
  - **3**
  - **4**
- Calculate the percentage of restaurants in each price range category.

```
In [18]: value_counts = restaurent_df["Price range"].value_counts().reset_index()

# Rename the columns
value_counts.columns = ['Price-Range', 'Count']
total_count = value_counts['Count'].sum()

value_counts['Percentage'] = round((value_counts['Count'] / total_count)*100,2)

# Print the result as a table
df = pd.DataFrame(value_counts)
df
```

# Out[18]: Price-Range Count Percentage 0 1 4444 46.53 1 2 3113 32.59 2 3 1408 14.74 3 4 586 6.14

#### **Observations**

• Percentage of restaurants in each price range category.

Price Range :1 Percantage : 46.53%
Price Range :2 Percentage: 32.59%
Price Range :3 Percentage: 14.74%
Price Range: 4 Percentage: 6.14%

## **Task 4: Online Delivery**

• Determine the percentage of restaurants that offer online delivery

```
In [19]: total_restaurant_count =restaurent_df.shape[0]
    online_restaurnat_count = restaurent_df[restaurent_df['Has Online delivery']=='Yes']
    online_restaurant_count= online_restaurnat_count.shape[0]

# percentage of online order taken by the restaurants
    percentage=round((online_restaurant_count/total_restaurant_count)*100,2)
    print("percentage of online order taken by the restaurants")
    print(percentage)
```

percentage of online order taken by the restaurants 25.66

#### **Observations**

- Percentage of restaurants that offer online delivery 25.66%
- Compare the average ratings of restaurants with and without online delivery.

```
# average rating of restaurant with and without online delivery
print("average rating of restaurant with and without online delivery")
restaurent_df.groupby('Has Online delivery')['Aggregate rating'].mean().round(2).reset_index(
```

average rating of restaurant with and without online delivery

## Out[20]: Has Online delivery Aggregate rating

| 0 | No  | 2.47 |
|---|-----|------|
| 1 | Yes | 3.25 |

#### **Observations**

- average ratings of restaurants with and without online delivery
  - No Online Delivery Avg Rating 2.47
  - Online Delivery Avg Rating 3.25