











#### INA210, INA211, INA212, INA213, INA214, INA215

SBOS437J-MAY 2008-REVISED FEBRUARY 2017

# INA21x Voltage Output, Low- or High-Side Measurement, Bidirectional, Zero-Drift Series, Current-Shunt Monitors

#### 1 Features

- Wide Common-Mode Range: –0.3 V to 26 V
- Offset Voltage: ±35 μV (Maximum, INA210) (Enables Shunt Drops of 10-mV Full-Scale)
- Accuracy:
  - Gain Error (Maximum Over Temperature):
    - ±0.5% (Version C)
    - ±1% (Versions A and B)
  - 0.5-µV/°C Offset Drift (Maximum)
  - 10-ppm/°C Gain Drift (Maximum)
- Choice of Gains:
  - INA210: 200 V/V
  - INA211: 500 V/V
  - INA212: 1000 V/V
  - INA213: 50 V/V
  - INA214: 100 V/V
  - INA215: 75 V/V
- Quiescent Current: 100 μA (Maximum)
- SC70 and Thin UQFN Packages: All Models

# 2 Applications

- Notebook Computers
- Cell Phones
- Telecom Equipment
- Power Management
- Battery Chargers

# 3 Description

INA21x The voltage-output, are current-shunt monitors (also called current-sense amplifiers) that commonly used for overcurrent protection, precision-current measurement for system optimization, or in closed-loop feedback circuits. This series of devices can sense drops across shunts at common-mode voltages from -0.3 V to 26 V, independent of the supply voltage. Six fixed gains are available: 50 V/V, 75 V/V, 100 V/V, 200 V/V, 500 V/V, or 1000 V/V. The low offset of the zero-drift architecture enables current sensing with maximum drops across the shunt as low as 10-mV full-scale.

These devices operate from a single 2.7-V to 26-V power supply, drawing a maximum of 100  $\mu$ A of supply current. All versions are specified over the extended operating temperature range (-40°C to +125°C), and offered in SC70 and UQFN packages.

#### Device Information<sup>(1)</sup>

| PART NUMBER | PACKAGE   | BODY SIZE (NOM)   |
|-------------|-----------|-------------------|
| INIAGA      | SC70 (6)  | 2.00 mm × 1.25 mm |
| INA21x      | UQFN (10) | 1.80 mm × 1.40 mm |

For all available packages, see the orderable addendum at the end of the data sheet.

#### **Simplified Schematic**



 $V_{OUT} = (I_{LOAD} \times R_{SHUNT}) Gain + V_{REF}$ 

Copyright © 2017, Texas Instruments Incorporated



# **Table of Contents**

| 1 | Features 1                           | 8  | Application and Implementation                   | 2              |
|---|--------------------------------------|----|--------------------------------------------------|----------------|
| 2 | Applications 1                       |    | 8.1 Application Information                      | 22             |
| 3 | Description 1                        |    | 8.2 Typical Applications                         | 22             |
| 4 | Revision History2                    | 9  | Power Supply Recommendations                     | 2              |
| 5 | Pin Configurations and Functions5    | 10 | Layout                                           | 25             |
| 6 | Specifications6                      |    | 10.1 Layout Guidelines                           | 2              |
|   | 6.1 Absolute Maximum Ratings 6       |    | 10.2 Layout Example                              | 20             |
|   | 6.2 ESD Ratings                      | 11 | Device and Documentation Support                 | 27             |
|   | 6.3 Recommended Operating Conditions |    | 11.1 Documentation Support                       | 2              |
|   | 6.4 Thermal Information              |    | 11.2 Related Links                               | 2              |
|   | 6.5 Electrical Characteristics 8     |    | 11.3 Receiving Notification of Documentation Upo | dates 2        |
|   | 6.6 Typical Characteristics          |    | 11.4 Community Resources                         | 2              |
| 7 | Detailed Description 14              |    | 11.5 Trademarks                                  | 2 <sup>-</sup> |
| • | 7.1 Overview                         |    | 11.6 Electrostatic Discharge Caution             | 2              |
|   | 7.2 Functional Block Diagram         |    | 11.7 Glossary                                    | 2              |
|   | 7.3 Feature Description              | 12 | Mechanical, Packaging, and Orderable             |                |
|   | 7.4 Device Functional Modes          |    | Information                                      | 28             |

# 4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

| Cł       | hanges from Revision I (September 2016) to Revision J                                                     | Page          |
|----------|-----------------------------------------------------------------------------------------------------------|---------------|
| •        | Added 2017 copyright to front page graphic                                                                | 1             |
| •        | Deleted Device Options table                                                                              | 5             |
| •        | Added Common-mode analog inputs (Versions B and C) to Absolute Maximum Ratings table                      | 6             |
| •        | Changed HBM ESD value (Version A) from 4000 to 2000 V in ESD Ratings table                                | 6             |
| •        | Changed formatting of Thermal Information table note                                                      | 7             |
| <u>•</u> | Deleted static literature number from document reference in Related Documentation section                 | 27            |
| Cł       | hanges from Revision H (June 2016) to Revision I                                                          | Page          |
| •        | Deleted all notes regarding preview devices throughout data sheet; all devices now active                 | 1             |
| Cł       | hanges from Revision G (July 2014) to Revision H                                                          | Page          |
| •        | Changed Features section: deleted last bullet, changed packages bullet                                    | 1             |
| •        | Deleted last Applications bullet                                                                          | 1             |
| •        | Changed Description section                                                                               | 1             |
| •        | Changed Device Information table                                                                          | 1             |
| •        | Moved storage temperature to Absolute Maximum Ratings table                                               | 6             |
| •        | Changed ESD Ratings table: changed title, changed format to current standards                             | 6             |
| •        | Deleted both Machine Model rows from ESD Ratings table                                                    | 6             |
| •        | Changed first sentence referencing Equation 1 in Input Filtering section: replaced seen with measured     | 16            |
| •        | Changed second sentence referencing Equation 1 in Input Filtering section                                 | 17            |
| •        | Corrected punctuation and added clarity to first and second paragraphs in Shutting Down the INA21x Series | es section 18 |
| •        | Changed impressed to present in fourth paragraph of Shutting Down the INA21x Series section               | 18            |



| CI | hanges from Revision F (June 2014) to Revision G                                                                                                                                                                                                                                                      | Page |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| •  | Changed Simplified Schematic: added equation below gain table                                                                                                                                                                                                                                         | 1    |
| •  | Changed V <sub>(ESD)</sub> HBM specifications for version A in Handling Ratings table                                                                                                                                                                                                                 | 6    |
|    |                                                                                                                                                                                                                                                                                                       |      |
| CI | hanges from Revision E (June 2013) to Revision F                                                                                                                                                                                                                                                      | Page |
| •  | Changed format to meet latest data sheet standards; added Pin Functions, Recommended Operating Conditions, and Thermal Information tables, <i>Overview, Functional Block Diagram, Application Information, Power Supply Recommendations</i> , and <i>Layout</i> sections, and moved existing sections | 1    |
| •  | Added INA215 to document                                                                                                                                                                                                                                                                              |      |
| •  | Added INA215 sub-bullet to fourth Features bullet                                                                                                                                                                                                                                                     | 1    |
| •  | Added INA215 to simplified schematic table                                                                                                                                                                                                                                                            | 1    |
| •  | Added Thermal Information table                                                                                                                                                                                                                                                                       | 6    |
| •  | Added INA215 to Figure 7                                                                                                                                                                                                                                                                              | 10   |
| •  | Added INA215 to Figure 15                                                                                                                                                                                                                                                                             | 11   |
| •  | Added INA215 to Figure 25                                                                                                                                                                                                                                                                             | 18   |
| _  |                                                                                                                                                                                                                                                                                                       |      |
| CI | hanges from Revision D (November 2012) to Revision E                                                                                                                                                                                                                                                  | Page |
| =  |                                                                                                                                                                                                                                                                                                       |      |
| CI | hanges from Revision C (August 2012) to Revision D                                                                                                                                                                                                                                                    | Page |
| •  | Changed Frequency Response, Bandwidth parameter in Electrical Characteristics table                                                                                                                                                                                                                   | 6    |
| _  |                                                                                                                                                                                                                                                                                                       |      |
| CI | hanges from Revision B (June 2009) to Revision C                                                                                                                                                                                                                                                      | Page |
| •  | Added silicon version B row to Input, Common-Mode Input Range parameter in Electrical Characteristics table                                                                                                                                                                                           |      |
|    | Added silicon version B ESD ratings to Abs Max table                                                                                                                                                                                                                                                  |      |
| •  | Corrected typo in Figure 9                                                                                                                                                                                                                                                                            |      |
| •  | Updated Figure 12                                                                                                                                                                                                                                                                                     |      |
|    | Changed Input Filtering section                                                                                                                                                                                                                                                                       |      |
| •  | Added Improving Transient Robustness section                                                                                                                                                                                                                                                          |      |
| _  | - Naded Improving Transient Nobustriess section                                                                                                                                                                                                                                                       | 21   |
| CI | hanges from Revision A (June 2008) to Revision B                                                                                                                                                                                                                                                      | Page |
| •  | Added RSW package to device photo                                                                                                                                                                                                                                                                     |      |
| •  | Added UQFN package to Features list                                                                                                                                                                                                                                                                   |      |
| •  | Updated front page graphic                                                                                                                                                                                                                                                                            |      |
| •  | Added RSW package pin out drawing                                                                                                                                                                                                                                                                     |      |
| •  | Added footnote 3 to Electrical Characteristics table                                                                                                                                                                                                                                                  |      |
| •  | Added UQFN package information to <i>Temperature Range</i> section of <i>Electrical Characteristics</i> table                                                                                                                                                                                         |      |
| •  | Changed Figure 2 to reflect operating temperature range                                                                                                                                                                                                                                               |      |
| •  | Changed Figure 4 to reflect operating temperature range                                                                                                                                                                                                                                               |      |
| •  | Changed Figure 6 to reflect operating temperature range                                                                                                                                                                                                                                               |      |
| •  | Changed Figure 13 to reflect operating temperature range                                                                                                                                                                                                                                              |      |
| •  | Changed Figure 14 to reflect operating temperature range                                                                                                                                                                                                                                              |      |
| •  | Added RSW description to the <i>Basic Connections</i> section                                                                                                                                                                                                                                         |      |
| •  | Changed 60 μV to 100 μV in last sentence of the Selecting RS section                                                                                                                                                                                                                                  |      |
|    |                                                                                                                                                                                                                                                                                                       |      |

# INA210, INA211, INA212, INA213, INA214, INA215



SBOS437J-MAY 2008-REVISED FEBRUARY 2017

www.ti.com

| CI | hanges from Original (May 2008) to Revision A              | Pag | j€ |
|----|------------------------------------------------------------|-----|----|
| •  | Deleted first footnote of Electrical Characteristics table |     | 6  |
| •  | Changed Figure 7                                           | 1   | (  |
| •  | Changed Figure 15                                          | 1   | 1  |



# 5 Pin Configurations and Functions



#### RSW Package 10-Pin Thin UQFN Top View



 NC denotes no internal connection. These pins can be left floating or connected to any voltage between V- and V+.

## **Pin Functions**

|      | PIN |      | 1/0              | DECORIDATION                                                   |  |
|------|-----|------|------------------|----------------------------------------------------------------|--|
| NAME | DCK | RSW  | 1/0              | DESCRIPTION                                                    |  |
| GND  | 2   | 9    | Analog           | Ground                                                         |  |
| IN-  | 5   | 4, 5 | Analog<br>input  | Connect to load side of shunt resistor                         |  |
| IN+  | 4   | 2, 3 | Analog<br>input  | Connect to supply side of shunt resistor                       |  |
| NC   | _   | 1, 7 | _                | Not internally connected. Leave floating or connect to ground. |  |
| OUT  | 6   | 10   | Analog<br>output | Output voltage                                                 |  |
| REF  | 1   | 8    | Analog<br>input  | Reference voltage, 0 V to V+                                   |  |
| V+   | 3   | 6    | Analog           | Power supply, 2.7 V to 26 V                                    |  |



## 6 Specifications

## 6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)<sup>(1)</sup>

|                                                                   |                                                        | MIN         | MAX                                                                                                            | UNIT |
|-------------------------------------------------------------------|--------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------|------|
| Supply voltage, V <sub>S</sub>                                    |                                                        |             | 26                                                                                                             | V    |
| Analog inputs, V <sub>IN+</sub> , V <sub>IN-</sub> <sup>(2)</sup> | Differential (V <sub>IN+</sub> ) – (V <sub>IN</sub> –) | -26         | 26                                                                                                             | V    |
| Analan innuta                                                     | Common-mode (Version A) <sup>(3)</sup>                 | 26 V        | V                                                                                                              |      |
| Analog inputs, $v_{\text{IN+}}$ , $v_{\text{IN-}}$                | Common-mode (Version B) <sup>(3)</sup>                 | GND - 0.1   | 26                                                                                                             | V    |
|                                                                   | Common-mode (Version C) <sup>(3)</sup>                 | GND - 0.1   | GND - 0.1 26 V<br>GND - 0.1 26 V<br>GND - 0.3 (V <sub>S</sub> ) + 0.3 V<br>GND - 0.3 (V <sub>S</sub> ) + 0.3 V |      |
| REF input                                                         |                                                        | GND - 0.3   | $(V_S) + 0.3$                                                                                                  | V    |
| Output <sup>(3)</sup>                                             |                                                        | GND - 0.3   | $(V_S) + 0.3$                                                                                                  | V    |
| Input current into any terminal (3)                               |                                                        |             | 5                                                                                                              | mA   |
| Operating temperature                                             |                                                        | <b>-</b> 55 | 150                                                                                                            | °C   |
| Junction temperature                                              |                                                        |             | 150                                                                                                            | °C   |
| Storage temperature, T <sub>stg</sub>                             |                                                        | -65         | 150                                                                                                            | °C   |

<sup>(1)</sup> Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  $V_{\text{IN+}}$  and  $V_{\text{IN-}}$  are the voltages at the IN+ and IN- pins, respectively.

## 6.2 ESD Ratings

|                                            |                         |                                                                     | VALUE | UNIT |  |
|--------------------------------------------|-------------------------|---------------------------------------------------------------------|-------|------|--|
| INA21x,                                    | (VERSION A)             |                                                                     |       |      |  |
| V                                          | Floatroatatia diaabaraa | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)              | ±2000 | .,   |  |
| V <sub>(ESD)</sub> Electrostatic discharge |                         | Charged-device model (CDM), per JEDEC specification JESD22-C101 (2) |       | v    |  |
| INA21x,                                    | (VERSIONS B AND C)      |                                                                     |       |      |  |
| V                                          | Floatroatatia diaabaraa | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)              | ±3500 | .,   |  |
| V <sub>(ESD)</sub>                         | Electrostatic discharge | Charged-device model (CDM), per JEDEC specification JESD22-C101 (2) | ±1000 | V    |  |

<sup>(1)</sup> JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

#### 6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

|          |                                | MIN | NOM | MAX | UNIT |
|----------|--------------------------------|-----|-----|-----|------|
| $V_{CM}$ | Common-mode input voltage      |     | 12  |     | V    |
| Vs       | Operating supply voltage       |     | 5   |     | V    |
| $T_A$    | Operating free-air temperature | -40 |     | 125 | °C   |

Submit Documentation Feedback

Input voltage at any terminal may exceed the voltage shown if the current at that pin is limited to 5 mA.

<sup>(2)</sup> JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.



## 6.4 Thermal Information

|                        |                                              | INA        |            |      |
|------------------------|----------------------------------------------|------------|------------|------|
|                        | THERMAL METRIC <sup>(1)</sup>                | DCK (SC70) | RSW (UQFN) | UNIT |
|                        |                                              | 6 PINS     | 10 PINS    |      |
| $R_{\theta JA}$        | Junction-to-ambient thermal resistance       | 227.3      | 107.3      | °C/W |
| $R_{\theta JC(top)}$   | Junction-to-case (top) thermal resistance    | 79.5       | 56.5       | °C/W |
| $R_{\theta JB}$        | Junction-to-board thermal resistance         | 72.1       | 18.7       | °C/W |
| ΨЈТ                    | Junction-to-top characterization parameter   | 3.6        | 1.1        | °C/W |
| ΨЈВ                    | Junction-to-board characterization parameter | 70.4       | 18.7       | °C/W |
| R <sub>0</sub> JC(bot) | Junction-to-case (bottom) thermal resistance | N/A        | N/A        | °C/W |

<sup>(1)</sup> For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.



#### 6.5 Electrical Characteristics

at  $T_A$  = 25°C,  $V_{SENSE}$  =  $V_{IN+}$  –  $V_{IN-}$  INA210, INA213, INA214, and INA215:  $V_S$  = 5 V,  $V_{IN+}$  = 12 V, and  $V_{REF}$  =  $V_S$  / 2, unless otherwise noted INA211 and INA212:  $V_S$  = 12 V,  $V_{IN+}$  = 12 V, and  $V_{REF}$  =  $V_S$  / 2, unless otherwise noted

|                      | PARAMETER                          | <b>t</b>                                     | TEST CONDITIONS                                                                                                            | MIN TYP             | MAX                        | UNIT   |
|----------------------|------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------|--------|
| INPUT                |                                    |                                              |                                                                                                                            |                     |                            |        |
| V                    | Common-mode input r                | rango                                        | Version A $T_A = -40$ °C to +125°C                                                                                         | -0.3                | 26                         | V      |
| V <sub>CM</sub>      | Common-mode input i                | ange                                         | Versions B and C<br>$T_A = -40$ °C to +125°C                                                                               | -0.1                | 26                         | V      |
| CMRR                 | Common-mode                        | INA210, INA211,<br>INA212, INA214,<br>INA215 | $V_{IN+} = 0 \text{ V to 26 V V}_{SENSE} = 0 \text{ mV}$<br>$T_A = -40^{\circ}\text{C to +125^{\circ}\text{C}}$            | 105 140             |                            | dB     |
|                      | rejection ratio                    | INA213                                       | $V_{IN+} = 0 \text{ V to } 26 \text{ V } V_{SENSE} = 0 \text{ mV}$<br>$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$ | 100 120             |                            |        |
| Vo Offset            | 40                                 | INA210, INA211,<br>INA212                    | V <sub>SENSE</sub> = 0 mV                                                                                                  | ±0.55               | ±35                        |        |
| Vo                   | Offset voltage, RTI <sup>(1)</sup> | INA213                                       | V <sub>SENSE</sub> = 0 mV                                                                                                  | ±5                  | ±100                       | μV     |
|                      |                                    | INA214, INA215                               | V <sub>SENSE</sub> = 0 mV                                                                                                  | ±1                  | ±60                        |        |
| dV <sub>OS</sub> /dT | RTI vs temperature                 |                                              | $V_{SENSE} = 0 \text{ mV}$<br>$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$                                         | 0.1                 | 0.5                        | μV/°C  |
| PSRR                 | RTI vs power supply ratio          |                                              | $V_S = 2.7 \text{ V to } 18 \text{ V}$<br>$V_{IN+} = 18 \text{ V}$<br>$V_{SENSE} = 0 \text{ mV}$                           | ±0.1                | ±10                        | μV/V   |
| I <sub>IB</sub>      | Input bias current                 |                                              | V <sub>SENSE</sub> = 0 mV                                                                                                  | 15 28               | 35                         | μΑ     |
| I <sub>IO</sub>      | Input offset current               |                                              | V <sub>SENSE</sub> = 0 mV                                                                                                  | ±0.02               |                            | μA     |
| OUTPUT               |                                    |                                              |                                                                                                                            |                     |                            |        |
|                      |                                    | INA210                                       |                                                                                                                            | 200                 |                            |        |
|                      | Gain                               | INA211                                       |                                                                                                                            | 500                 |                            | V/V    |
| G                    |                                    | INA212                                       |                                                                                                                            | 1000                |                            |        |
|                      | Cam                                | INA213                                       |                                                                                                                            | 50                  |                            | 0,0    |
|                      |                                    | INA214                                       |                                                                                                                            | 100                 |                            |        |
|                      |                                    | INA215                                       |                                                                                                                            | 75                  |                            |        |
| E <sub>G</sub>       | Gain error                         |                                              | $V_{SENSE}$ = -5 mV to 5 mV<br>$T_A$ = -40°C to +125°C<br>(Versions A and B)                                               | ±0.02%              | ±1%                        |        |
| ∟ <sub>G</sub>       | Gain enoi                          |                                              | $V_{SENSE}$ = -5 mV to 5 mV<br>$T_A$ = -40°C to +125°C<br>(Version C)                                                      | ±0.02%              | ±0.5%                      |        |
|                      | Gain error vs temperat             | ture                                         | $T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$                                                                       | 3                   | 10                         | ppm/°C |
|                      | Nonlinearity error                 |                                              | $V_{SENSE} = -5 \text{ mV to } 5 \text{ mV}$                                                                               | ±0.01%              |                            |        |
|                      | Maximum capacitive lo              | oad                                          | No sustained oscillation                                                                                                   | 1                   |                            | nF     |
| VOLTAGI              | E OUTPUT <sup>(2)</sup>            |                                              |                                                                                                                            |                     |                            |        |
|                      | Swing to V+ power-su               | pply rail                                    | $R_L = 10 \text{ k}\Omega \text{ to GND}$<br>$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$                          | (V+) - 0.05         | (V+) - 0.2                 | V      |
|                      | Swing to GND                       |                                              | $R_L = 10 \text{ k}\Omega \text{ to GND}$<br>$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$                          | $(V_{GND}) + 0.005$ | (V <sub>GND</sub> ) + 0.05 | V      |
| FREQUE               | NCY RESPONSE                       |                                              |                                                                                                                            |                     |                            |        |
|                      |                                    |                                              | C <sub>LOAD</sub> = 10 pF, INA210                                                                                          | 14                  |                            |        |
|                      |                                    |                                              | C <sub>LOAD</sub> = 10 pF, INA211                                                                                          | 7                   |                            |        |
| BW                   | Bandwidth                          |                                              | C <sub>LOAD</sub> = 10 pF, INA212                                                                                          | 4                   |                            | kHz    |
| _ V V                | Danuwiutt                          |                                              | C <sub>LOAD</sub> = 10 pF, INA213                                                                                          | 80                  |                            | NI IZ  |
|                      |                                    |                                              | C <sub>LOAD</sub> = 10 pF, INA214                                                                                          | 30                  |                            |        |
|                      |                                    |                                              | C <sub>LOAD</sub> = 10 pF, INA215                                                                                          | 40                  |                            |        |
| SR                   | Slew rate                          |                                              |                                                                                                                            | 0.4                 |                            | V/µs   |
| NOISE, R             |                                    |                                              |                                                                                                                            |                     |                            |        |

<sup>(1)</sup> RTI = referred-to-input.

See Typical Characteristic curve, Output Voltage Swing vs Output Current (Figure 10). (2)



## **Electrical Characteristics (continued)**

at  $T_A$  = 25°C,  $V_{SENSE}$  =  $V_{IN+}$  –  $V_{IN-}$  INA210, INA213, INA214, and INA215:  $V_S$  = 5 V,  $V_{IN+}$  = 12 V, and  $V_{REF}$  =  $V_S$  / 2, unless otherwise noted INA211 and INA212:  $V_S$  = 12 V,  $V_{IN+}$  = 12 V, and  $V_{REF}$  =  $V_S$  / 2, unless otherwise noted

|                  | PARAMETER                       | ł         | TEST CONDITIONS                                      | MIN | TYP | MAX | UNIT |
|------------------|---------------------------------|-----------|------------------------------------------------------|-----|-----|-----|------|
| POWER            | R SUPPLY                        |           |                                                      |     |     |     |      |
| Vs               | Operating voltage rang          | ge        | $T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$ | 2.7 |     | 26  | V    |
| $I_Q$            | Quiescent current               |           | V <sub>SENSE</sub> = 0 mV                            |     | 65  | 100 | μΑ   |
|                  | I <sub>Q</sub> over temperature |           | $T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$ |     |     | 115 | μΑ   |
| TEMPE            | RATURE RANGE                    |           |                                                      |     |     |     |      |
|                  | Specified range                 |           |                                                      | -40 |     | 125 | °C   |
|                  | Operating range                 |           |                                                      | -55 |     | 150 | °C   |
| SC70             |                                 | SC70      |                                                      |     | 250 |     | °C/W |
| $	heta_{\sf JA}$ | Thermal resistance              | Thin UQFN |                                                      |     | 80  |     | °C/W |

Submit Documentation Feedback



#### 6.6 Typical Characteristics

The INA210 is used for typical characteristics at  $T_A = 25$ °C,  $V_S = 5$  V,  $V_{IN+} = 12$  V, and  $V_{REF} = V_S / 2$ , unless otherwise noted.





# **Typical Characteristics (continued)**

The INA210 is used for typical characteristics at  $T_A = 25$ °C,  $V_S = 5$  V,  $V_{IN+} = 12$  V, and  $V_{REF} = V_S / 2$ , unless otherwise noted.



(dB) 140 Power-Supply Rejection Ratio 120 100 80 60 40 20 10 100 10k 100k 1k Frequency (Hz)  $V_S = 5 V + 250$ -mV sine disturbance  $V_{CM} = 0 V$  $V_{REF} = 2.5 V$  $V_{DIF}$  = shorted

Figure 7. Gain vs Frequency

Figure 8. Power-Supply Rejection Ratio vs Frequency





Figure 9. Common-Mode Rejection Ratio vs Frequency

Figure 10. Output Voltage Swing vs Output Current





Figure 11. Input Bias Current vs Common-Mode Voltage With Supply Voltage = 5 V

Figure 12. Input Bias Current vs Common-Mode Voltage With Supply Voltage = 0 V (Shutdown)

## TEXAS INSTRUMENTS

## **Typical Characteristics (continued)**







Figure 13. Input Bias Current vs Temperature

Figure 14. Quiescent Current vs Temperature





Figure 15. Input-Referred Voltage Noise vs Frequency

Figure 16. 0.1-Hz to 10-Hz Voltage Noise (Referred-To-Input)





Figure 17. Step Response (10-mV<sub>PP</sub> Input Step)

Figure 18. Common-Mode Voltage Transient Response



# **Typical Characteristics (continued)**

The INA210 is used for typical characteristics at  $T_A = 25$ °C,  $V_S = 5$  V,  $V_{IN+} = 12$  V, and  $V_{REF} = V_S / 2$ , unless otherwise noted.





## 7 Detailed Description

#### 7.1 Overview

The INA21x are 26-V, common-mode, zero-drift topology, current-sensing amplifiers that can be used in both low-side and high-side configurations. These specially-designed, current-sensing amplifiers are able to accurately measure voltages developed across current-sensing resistors on common-mode voltages that far exceed the supply voltage powering the device. Current can be measured on input voltage rails as high as 26 V while the device can be powered from supply voltages as low as 2.7 V.

The zero-drift topology enables high-precision measurements with maximum input offset voltages as low as  $35~\mu V$  with a maximum temperature contribution of  $0.5~\mu V/^{\circ}C$  over the full temperature range of  $-40^{\circ}C$  to  $+125^{\circ}C$ .

#### 7.2 Functional Block Diagram



Copyright © 2017, Texas Instruments Incorporated



#### 7.3 Feature Description

#### 7.3.1 Basic Connections

Figure 23 shows the basic connections of the INA21x. Connect the input pins (IN+ and IN-) as closely as possible to the shunt resistor to minimize any resistance in series with the shunt resistor.



Copyright © 2017, Texas Instruments Incorporated

Figure 23. Typical Application

Power-supply bypass capacitors are required for stability. Applications with noisy or high-impedance power supplies may require additional decoupling capacitors to reject power-supply noise. Connect bypass capacitors close to the device pins.

On the RSW package options, two pins are provided for each input. Tie these pins together (that is, tie IN+ to IN+ and tie IN- to IN-).

#### 7.3.2 Selecting R<sub>S</sub>

The zero-drift offset performance of the INA21x offers several benefits. Most often, the primary advantage of the low offset characteristic enables lower full-scale drops across the shunt. For example, non-zero-drift current shunt monitors typically require a full-scale range of 100 mV.

The INA21x series gives equivalent accuracy at a full-scale range on the order of 10 mV. This accuracy reduces shunt dissipation by an order of magnitude with many additional benefits.

Alternatively, there are applications that must measure current over a wide dynamic range that can take advantage of the low offset on the low end of the measurement. Most often, these applications can use the lower gains of the INA213, INA214, or INA215 to accommodate larger shunt drops on the upper end of the scale. For instance, an INA213 operating on a 3.3-V supply can easily handle a full-scale shunt drop of 60 mV, with only  $100~\mu V$  of offset.



#### 7.4 Device Functional Modes

#### 7.4.1 Input Filtering

An obvious and straightforward filtering location is at the device output. However, this location negates the advantage of the low output impedance of the internal buffer. The only other filtering option is at the device input pins. This location, though, does require consideration of the ±30% tolerance of the internal resistances. Figure 24 shows a filter placed at the inputs pins.



Figure 24. Filter at Input Pins

The addition of external series resistance, however, creates an additional error in the measurement so the value of these series resistors must be kept to 10  $\Omega$  (or less, if possible) to reduce impact to accuracy. The internal bias network shown in Figure 24 present at the input pins creates a mismatch in input bias currents when a differential voltage is applied between the input pins. If additional external series filter resistors are added to the circuit, the mismatch in bias currents results in a mismatch of voltage drops across the filter resistors. This mismatch creates a differential error voltage that subtracts from the voltage developed at the shunt resistor. This error results in a voltage at the device input pins that is different than the voltage developed across the shunt resistor. Without the additional series resistance, the mismatch in input bias currents has little effect on device operation. The amount of error these external filter resistors add to the measurement can be calculated using Equation 2 where the gain error factor is calculated using Equation 1.

The amount of variance in the differential voltage present at the device input relative to the voltage developed at the shunt resistor is based both on the external series resistance value as well as the internal input resistors, R3 and R4 (or R<sub>INT</sub> as shown in Figure 24). The reduction of the shunt voltage reaching the device input pins appears as a gain error when comparing the output voltage relative to the voltage across the shunt resistor. A factor can be calculated to determine the amount of gain error that is introduced by the addition of external series resistance. The equation used to calculate the expected deviation from the shunt voltage to what is measured at the device input pins is given in Equation 1:

Gain Error Factor = 
$$\frac{(1250 \times R_{INT})}{(1250 \times R_{S}) + (1250 \times R_{INT}) + (R_{S} \times R_{INT})}$$

where:

- R<sub>INT</sub> is the internal input resistor (R3 and R4), and
- R<sub>S</sub> is the external series resistance.

(1)



#### **Device Functional Modes (continued)**

With the adjustment factor from Equation 1, including the device internal input resistance, this factor varies with each gain version, as shown in Table 1. Each individual device gain error factor is shown in Table 2.

**Table 1. Input Resistance** 

| PRODUCT | GAIN | R <sub>INT</sub> (kΩ) |
|---------|------|-----------------------|
| INA210  | 200  | 5                     |
| INA211  | 500  | 2                     |
| INA212  | 1000 | 1                     |
| INA213  | 50   | 20                    |
| INA214  | 100  | 10                    |
| INA215  | 75   | 13.3                  |

**Table 2. Device Gain Error Factor** 

| PRODUCT | SIMPLIFIED GAIN ERROR FACTOR                |
|---------|---------------------------------------------|
| INA210  | $\frac{1000}{R_{\rm S} + 1000}$             |
| INA211  | 10,000<br>(13 × R <sub>S</sub> ) + 10,000   |
| INA212  | $\frac{5000}{(9 \times R_{S}) + 5000}$      |
| INA213  | $\frac{20,000}{(17 \times R_{S}) + 20,000}$ |
| INA214  | $\frac{10,000}{(9 \times R_S) + 10,000}$    |
| INA215  | $\frac{8,000}{(7 \times R_{S}) + 8,000}$    |

The gain error that can be expected from the addition of the external series resistors can then be calculated based on Equation 2:

Gain Error (%) = 
$$100 - (100 \times Gain Error Factor)$$

(2)

For example, using an INA212 and the corresponding gain error equation from Table 2, a series resistance of 10  $\Omega$  results in a gain error factor of 0.982. The corresponding gain error is then calculated using Equation 2, resulting in a gain error of approximately 1.77% solely because of the external 10- $\Omega$  series resistors. Using an INA213 with the same 10- $\Omega$  series resistor results in a gain error factor of 0.991 and a gain error of 0.84% again solely because of these external resistors.



#### 7.4.2 Shutting Down the INA21x Series

Although the INA21x series does not have a shutdown pin, the low power consumption of the device allows the output of a logic gate or transistor switch to power the INA21x. This gate or switch turns on and turns off the INA21x power-supply quiescent current.

However, in current shunt monitoring applications, there is also a concern for how much current is drained from the shunt circuit in shutdown conditions. Evaluating this current drain involves considering the simplified schematic of the INA21x in shutdown mode, as shown in Figure 25.



Copyright © 2017, Texas Instruments Incorporated

NOTE:  $1-M\Omega$  paths from shunt inputs to reference and INA21x outputs.

Figure 25. Basic Circuit for Shutting Down The INA21x With a Grounded Reference

Note that there is typically slightly more than 1-M $\Omega$  impedance (from the combination of 1-M $\Omega$  feedback and 5-k $\Omega$  input resistors) from each input of the INA21x to the OUT pin and to the REF pin. The amount of current flowing through these pins depends on the respective ultimate connection. For example, if the REF pin is grounded, the calculation of the effect of the 1-M $\Omega$  impedance from the shunt to ground is straightforward. However, if the reference or op amp is powered while the INA21x is shut down, the calculation is direct; instead of assuming 1 M $\Omega$  to ground, however, assume 1 M $\Omega$  to the reference voltage. If the reference or op amp is also shut down, some knowledge of the reference or op amp output impedance under shutdown conditions is required. For instance, if the reference source behaves as an open circuit when not powered, little or no current flows through the 1-M $\Omega$  path.

Regarding the 1-M $\Omega$  path to the output pin, the output stage of a disabled INA21x does constitute a good path to ground. Consequently, this current is directly proportional to a shunt common-mode voltage present across a 1-M $\Omega$  resistor.

As a final note, when the device is powered up, there is an additional, nearly constant, and well-matched 25  $\mu$ A that flows in each of the inputs as long as the shunt common-mode voltage is 3 V or higher. Below 2-V common-mode, the only current effects are the result of the 1-M $\Omega$  resistors.

Submit Documentation Feedback



#### 7.4.3 REF Input Impedance Effects

As with any difference amplifier, the INA21x series common-mode rejection ratio is affected by any impedance present at the REF input. This concern is not a problem when the REF pin is connected directly to most references or power supplies. When using resistive dividers from the power supply or a reference voltage, the REF pin must be buffered by an op amp.

In systems where the INA21x output can be sensed differentially, such as by a differential input analog-to-digital converter (ADC) or by using two separate ADC inputs, the effects of external impedance on the REF input can be cancelled. Figure 26 depicts a method of taking the output from the INA21x by using the REF pin as a reference.



Figure 26. Sensing the INA21x to Cancel the Effects of Impedance on the REF Input

#### 7.4.4 Using The INA21x With Common-Mode Transients Above 26 V

With a small amount of additional circuitry, the INA21x series can be used in circuits subject to transients higher than 26 V, such as automotive applications. Use only zener diode or zener-type transient absorbers (sometimes referred to as transzorbs); any other type of transient absorber has an unacceptable time delay. Start by adding a pair of resistors as a working impedance for the zener; see Figure 27. Keeping these resistors as small as possible is preferable, typically around 10  $\Omega$ . Larger values can be used with an effect on gain that is discussed in the lnput Filtering section. Because this circuit limits only short-term transients, many applications are satisfied with a 10- $\Omega$  resistor along with conventional zener diodes of the lowest power rating that can be found. This combination uses the least amount of board space. These diodes can be found in packages as small as SOT-523 or SOD-523.

Submit Documentation Feedback





Figure 27. INA21x Transient Protection Using Dual Zener Diodes

In the event that low-power zeners do not have sufficient transient absorption capability and a higher power transzorb must be used, the most package-efficient solution then involves using a single transzorb and back-to-back diodes between the device inputs. The most space-efficient solutions are dual series-connected diodes in a single SOT-523 or SOD-523 package. This method is shown in Figure 28. In either of these examples, the total board area required by the INA21x with all protective components is less than that of an SO-8 package, and only slightly greater than that of an MSOP-8 package.



Figure 28. INA21x Transient Protection Using a Single Transzorb and Input Clamps



#### 7.4.5 Improving Transient Robustness

Applications involving large input transients with excessive dV/dt above 2 kV per microsecond present at the device input pins may cause damage to the internal ESD structures on version A devices. This potential damage is a result of the internal latching of the ESD structure to ground when this transient occurs at the input. With significant current available in most current-sensing applications, the large current flowing through the input transient-triggered, ground-shorted ESD structure quickly results in damage to the silicon. External filtering can be used to attenuate the transient signal prior to reaching the inputs to avoid the latching condition. Care must be taken to ensure that external series input resistance does not significantly impact gain error accuracy. For accuracy purposes, keep these resistances under 10  $\Omega$  if possible. Ferrite beads are recommended for this filter because of their inherently low dc ohmic value. Ferrite beads with less than 10  $\Omega$  of resistance at dc and over 600  $\Omega$  of resistance at 100 MHz to 200 MHz are recommended. The recommended capacitor values for this filter are between 0.01  $\mu F$  and 0.1  $\mu F$  to ensure adequate attenuation in the high-frequency region. This protection scheme is shown in Figure 29.



Figure 29. Transient Protection

To minimize the cost of adding these external components to protect the device in applications where large transient signals may be present, version B and C devices are now available with new ESD structures that are not susceptible to this latching condition. Version B and C devices are incapable of sustaining these damage-causing latched conditions so these devices do not have the same sensitivity to the transients that the version A devices have, thus making the version B and C devices a better fit for these applications.



## 8 Application and Implementation

#### NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

## 8.1 Application Information

The INA21x devices measure the voltage developed across a current-sensing resistor when current passes through the device. The ability to drive the reference pin to adjust the functionality of the output signal offers multiple configurations, as discussed throughout this section.

## 8.2 Typical Applications

#### 8.2.1 Unidirectional Operation



Copyright © 2017, Texas Instruments Incorporated

Figure 30. Unidirectional Application Schematic

#### 8.2.1.1 Design Requirements

The device can be configured to monitor current flowing in one direction (unidirectional) or in both directions (bidirectional) depending on how the REF pin is configured. The most common case is unidirectional where the output is set to ground when no current is flowing by connecting the REF pin to ground, as shown in Figure 30. When the input signal increases, the output voltage at the OUT pin increases.

#### 8.2.1.2 Detailed Design Procedure

The linear range of the output stage is limited in how close the output voltage can approach ground under zero input conditions. In unidirectional applications where measuring very low input currents is desirable, bias the REF pin to a convenient value above 50 mV to get the output into the linear range of the device. To limit common-mode rejection errors, TI recommends buffering the reference voltage connected to the REF pin.

A less frequently-used output biasing method is to connect the REF pin to the supply voltage, V+. This method results in the output voltage saturating at 200 mV below the supply voltage when no differential input signal is present. This method is similar to the output saturated low condition with no input signal when the REF pin is connected to ground. The output voltage in this configuration only responds to negative currents that develop negative differential input voltage relative to the device IN– pin. Under these conditions, when the differential input signal increases negatively, the output voltage moves downward from the saturated supply voltage. The voltage applied to the REF pin must not exceed the device supply voltage.

Submit Documentation Feedback



## **Typical Applications (continued)**

#### 8.2.1.3 Application Curve

An example output response of a unidirectional configuration is shown in Figure 31. With the REF pin connected directly to ground, the output voltage is biased to this zero output level. The output rises above the reference voltage for positive differential input signals but cannot fall below the reference voltage for negative differential input signals because of the grounded reference voltage.



Figure 31. Unidirectional Application Output Response



#### **Typical Applications (continued)**

#### 8.2.2 Bidirectional Operation



Copyright © 2017, Texas Instruments Incorporated

Figure 32. Bidirectional Application Schematic

#### 8.2.2.1 Design Requirements

The device is a bidirectional, current-sense amplifier capable of measuring currents through a resistive shunt in two directions. This bidirectional monitoring is common in applications that include charging and discharging operations where the current flow-through resistor can change directions.

#### 8.2.2.2 Detailed Design Procedure

The ability to measure this current flowing in both directions is enabled by applying a voltage to the REF pin, as shown in Figure 32. The voltage applied to REF ( $V_{REF}$ ) sets the output state that corresponds to the zero-input level state. The output then responds by increasing above  $V_{REF}$  for positive differential signals (relative to the IN–pin) and responds by decreasing below  $V_{REF}$  for negative differential signals. This reference voltage applied to the REF pin can be set anywhere between 0 V to V+. For bidirectional applications,  $V_{REF}$  is typically set at midscale for equal signal range in both current directions. In some cases, however,  $V_{REF}$  is set at a voltage other than midscale when the bidirectional current and corresponding output signal do not need to be symmetrical.

## 8.2.2.3 Application Curve

An example output response of a bidirectional configuration is shown in Figure 33. With the REF pin connected to a reference voltage (2.5 V in this case) the output voltage is biased upwards by this reference level. The output rises above the reference voltage for positive differential input signals and falls below the reference voltage for negative differential input signals.

Submit Documentation Feedback



# **Typical Applications (continued)**



Figure 33. Bidirectional Application Output Response

## 9 Power Supply Recommendations

The input circuitry of the INA21x can accurately measure beyond the power-supply voltage, V+. For example, the V+ power supply can be 5 V, whereas the load power-supply voltage can be as high as 26 V. However, the output voltage range of the OUT pin is limited by the voltages on the power-supply pin. Note also that the INA21x can withstand the full input signal range up to 26 V at the input pins, regardless of whether the device has power applied or not.

## 10 Layout

#### 10.1 Layout Guidelines

- Connect the input pins to the sensing resistor using a Kelvin or 4-wire connection. This connection technique
  ensures that only the current-sensing resistor impedance is detected between the input pins. Poor routing of
  the current-sensing resistor commonly results in additional resistance present between the input pins. Given
  the very low ohmic value of the current resistor, any additional high-current carrying impedance can cause
  significant measurement errors.
- Place the power-supply bypass capacitor as closely as possible to the supply and ground pins. The recommended value of this bypass capacitor is 0.1 μF. Additional decoupling capacitance can be added to compensate for noisy or high-impedance power supplies.



# 10.2 Layout Example



Copyright © 2017, Texas Instruments Incorporated

Figure 34. Recommended Layout

Click here

Click here

Click here

Click here

Click here

SUPPORT &

COMMUNITY

Click here

Click here

Click here

Click here

Click here

Click here



# 11 Device and Documentation Support

#### 11.1 Documentation Support

#### 11.1.1 Related Documentation

For related documentation see the following:

INA210-215EVM User's Guide

#### 11.2 Related Links

**PARTS** 

INA210

**INA211** 

INA212

**INA213** 

**INA214** 

**INA215** 

Table 3 lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Click here

Click here

Click here

Click here

Click here

**TECHNICAL TOOLS &** ORDER NOW **DOCUMENTS SOFTWARE** Click here Click here Click here

Click here

Click here

Click here

Click here

Click here

**Table 3. Related Links** 

# 11.3 Receiving Notification of Documentation Updates

PRODUCT FOLDER

Click here

Click here

Click here

Click here

Click here

Click here

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

## 11.4 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

#### 11.5 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

#### **Electrostatic Discharge Caution**



This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

#### 11.7 Glossary

SLYZ022 — TI Glossarv.

This glossary lists and explains terms, acronyms, and definitions.



# 12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Submit Documentation Feedback





26-Feb-2017

## **PACKAGING INFORMATION**

| Orderable Device | Status | Package Type |         | Pins |      | Eco Plan                   | Lead/Ball Finish | MSL Peak Temp       | Op Temp (°C) | Device Marking | Samples |
|------------------|--------|--------------|---------|------|------|----------------------------|------------------|---------------------|--------------|----------------|---------|
|                  | (1)    |              | Drawing |      | Qty  | (2)                        | (6)              | (3)                 |              | (4/5)          |         |
| INA210AIDCKR     | ACTIVE | SC70         | DCK     | 6    | 3000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR | -40 to 125   | CET            | Samples |
| INA210AIDCKT     | ACTIVE | SC70         | DCK     | 6    | 250  | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR | -40 to 125   | CET            | Samples |
| INA210AIRSWR     | ACTIVE | UQFN         | RSW     | 10   | 3000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM  | -40 to 125   | KNJ            | Samples |
| INA210AIRSWT     | ACTIVE | UQFN         | RSW     | 10   | 250  | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM  | -40 to 125   | (KNJ ~ NSJ)    | Samples |
| INA210BIDCKR     | ACTIVE | SC70         | DCK     | 6    | 3000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR | -40 to 125   | SED            | Samples |
| INA210BIDCKT     | ACTIVE | SC70         | DCK     | 6    | 250  | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR | -40 to 125   | SED            | Samples |
| INA210BIRSWR     | ACTIVE | UQFN         | RSW     | 10   | 3000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM  | -40 to 125   | SHQ            | Samples |
| INA210BIRSWT     | ACTIVE | UQFN         | RSW     | 10   | 250  | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM  | -40 to 125   | SHQ            | Samples |
| INA210CIDCKR     | ACTIVE | SC70         | DCK     | 6    | 3000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR | -40 to 125   | 16B            | Samples |
| INA210CIDCKT     | ACTIVE | SC70         | DCK     | 6    | 250  | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR | -40 to 125   | 16B            | Samples |
| INA210CIRSWR     | ACTIVE | UQFN         | RSW     | 10   | 3000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM  | -40 to 125   | 16C            | Samples |
| INA210CIRSWT     | ACTIVE | UQFN         | RSW     | 10   | 250  | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM  | -40 to 125   | 16C            | Samples |
| INA211AIDCKR     | ACTIVE | SC70         | DCK     | 6    | 3000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR | -40 to 125   | CEU            | Samples |
| INA211AIDCKT     | ACTIVE | SC70         | DCK     | 6    | 250  | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR | -40 to 125   | CEU            | Samples |
| INA211BIDCKR     | ACTIVE | SC70         | DCK     | 6    | 3000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR | -40 to 125   | SEE            | Samples |
| INA211BIDCKT     | ACTIVE | SC70         | DCK     | 6    | 250  | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR | -40 to 125   | SEE            | Samples |
| INA211BIRSWR     | ACTIVE | UQFN         | RSW     | 10   | 3000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM  | -40 to 125   | 13Q            | Samples |



www.ti.com

26-Feb-2017

| Orderable Device | Status | Package Type | -       | Pins | -    | Eco Plan                   | Lead/Ball Finish | MSL Peak Temp       | Op Temp (°C) | Device Marking | Samples |
|------------------|--------|--------------|---------|------|------|----------------------------|------------------|---------------------|--------------|----------------|---------|
|                  | (1)    |              | Drawing |      | Qty  | (2)                        | (6)              | (3)                 |              | (4/5)          |         |
| INA211BIRSWT     | ACTIVE | UQFN         | RSW     | 10   | 250  | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM  | -40 to 125   | 13Q            | Samples |
| INA211CIDCKR     | ACTIVE | SC70         | DCK     | 6    | 3000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR | -40 to 125   | 16D            | Samples |
| INA211CIDCKT     | ACTIVE | SC70         | DCK     | 6    | 250  | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR | -40 to 125   | 16D            | Samples |
| INA211CIRSWR     | ACTIVE | UQFN         | RSW     | 10   | 3000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM  | -40 to 125   | 16U            | Samples |
| INA211CIRSWT     | ACTIVE | UQFN         | RSW     | 10   | 250  | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM  | -40 to 125   | 16U            | Samples |
| INA212AIDCKR     | ACTIVE | SC70         | DCK     | 6    | 3000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR | -40 to 125   | CEV            | Samples |
| INA212AIDCKT     | ACTIVE | SC70         | DCK     | 6    | 250  | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR | -40 to 125   | CEV            | Samples |
| INA212BIDCKR     | ACTIVE | SC70         | DCK     | 6    | 3000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR | -40 to 125   | SEC            | Samples |
| INA212BIDCKT     | ACTIVE | SC70         | DCK     | 6    | 250  | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR | -40 to 125   | SEC            | Samples |
| INA212BIRSWR     | ACTIVE | UQFN         | RSW     | 10   | 3000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM  | -40 to 125   | 13U            | Samples |
| INA212BIRSWT     | ACTIVE | UQFN         | RSW     | 10   | 250  | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM  | -40 to 125   | 13U            | Samples |
| INA212CIDCKR     | ACTIVE | SC70         | DCK     | 6    | 3000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR | -40 to 125   | 16E            | Samples |
| INA212CIDCKT     | ACTIVE | SC70         | DCK     | 6    | 250  | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR | -40 to 125   | 16E            | Samples |
| INA212CIRSWR     | ACTIVE | UQFN         | RSW     | 10   | 3000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM  | -40 to 125   | 16V            | Samples |
| INA212CIRSWT     | ACTIVE | UQFN         | RSW     | 10   | 250  | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM  | -40 to 125   | 16V            | Samples |
| INA213AIDCKR     | ACTIVE | SC70         | DCK     | 6    | 3000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR | -40 to 125   | CFT            | Samples |
| INA213AIDCKT     | ACTIVE | SC70         | DCK     | 6    | 250  | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR | -40 to 125   | CFT            | Samples |
| INA213AIRSWR     | ACTIVE | UQFN         | RSW     | 10   | 3000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM  | -40 to 125   | KPJ            | Samples |



www.ti.com

26-Feb-2017

| Orderable Device | Status | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan                   | Lead/Ball Finish (6) | MSL Peak Temp       | Op Temp (°C) | Device Marking (4/5) | Samples |
|------------------|--------|--------------|--------------------|------|----------------|----------------------------|----------------------|---------------------|--------------|----------------------|---------|
| INA213AIRSWT     | ACTIVE | UQFN         | RSW                | 10   | 250            | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM  | -40 to 125   | KPJ                  | Samples |
| INA213BIDCKR     | ACTIVE | SC70         | DCK                | 6    | 3000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-2-260C-1 YEAR | -40 to 125   | SEF                  | Samples |
| INA213BIDCKT     | ACTIVE | SC70         | DCK                | 6    | 250            | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-2-260C-1 YEAR | -40 to 125   | SEF                  | Samples |
| INA213BIRSWR     | ACTIVE | UQFN         | RSW                | 10   | 3000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM  | -40 to 125   | SHT                  | Samples |
| INA213BIRSWT     | ACTIVE | UQFN         | RSW                | 10   | 250            | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM  | -40 to 125   | SHT                  | Samples |
| INA213CIDCKR     | ACTIVE | SC70         | DCK                | 6    | 3000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-2-260C-1 YEAR | -40 to 125   | 16F                  | Samples |
| INA213CIDCKT     | ACTIVE | SC70         | DCK                | 6    | 250            | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-2-260C-1 YEAR | -40 to 125   | 16F                  | Samples |
| INA213CIRSWR     | ACTIVE | UQFN         | RSW                | 10   | 3000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM  | -40 to 125   | 16W                  | Samples |
| INA213CIRSWT     | ACTIVE | UQFN         | RSW                | 10   | 250            | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM  | -40 to 125   | 16W                  | Samples |
| INA214AIDCKR     | ACTIVE | SC70         | DCK                | 6    | 3000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-2-260C-1 YEAR | -40 to 125   | CFV                  | Samples |
| INA214AIDCKT     | ACTIVE | SC70         | DCK                | 6    | 250            | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-2-260C-1 YEAR | -40 to 125   | CFV                  | Samples |
| INA214AIRSWR     | ACTIVE | UQFN         | RSW                | 10   | 3000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM  | -40 to 125   | KRJ                  | Samples |
| INA214AIRSWT     | ACTIVE | UQFN         | RSW                | 10   | 250            | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM  | -40 to 125   | KRJ                  | Samples |
| INA214BIDCKR     | ACTIVE | SC70         | DCK                | 6    | 3000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-2-260C-1 YEAR | -40 to 125   | SEA                  | Samples |
| INA214BIDCKT     | ACTIVE | SC70         | DCK                | 6    | 250            | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-2-260C-1 YEAR | -40 to 125   | SEA                  | Samples |
| INA214BIRSWR     | ACTIVE | UQFN         | RSW                | 10   | 3000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM  | -40 to 125   | SHU                  | Samples |
| INA214BIRSWT     | ACTIVE | UQFN         | RSW                | 10   | 250            | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM  | -40 to 125   | SHU                  | Samples |
| INA214CIDCKR     | ACTIVE | SC70         | DCK                | 6    | 3000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-2-260C-1 YEAR | -40 to 125   | 16G                  | Samples |





www.ti.com 26-Feb-2017

| Orderable Device | Status | Package Type | Package | Pins | Package | Eco Plan                   | Lead/Ball Finish | MSL Peak Temp       | Op Temp (°C) | Device Marking | Samples |
|------------------|--------|--------------|---------|------|---------|----------------------------|------------------|---------------------|--------------|----------------|---------|
|                  | (1)    |              | Drawing |      | Qty     | (2)                        | (6)              | (3)                 |              | (4/5)          |         |
| INA214CIDCKT     | ACTIVE | SC70         | DCK     | 6    | 250     | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR | -40 to 125   | 16G            | Samples |
| INA214CIRSWR     | ACTIVE | UQFN         | RSW     | 10   | 3000    | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM  | -40 to 125   | 16X            | Samples |
| INA214CIRSWT     | ACTIVE | UQFN         | RSW     | 10   | 250     | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM  | -40 to 125   | 16X            | Samples |
| INA215AIDCKR     | ACTIVE | SC70         | DCK     | 6    | 3000    | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR | -40 to 125   | SME            | Samples |
| INA215AIDCKT     | ACTIVE | SC70         | DCK     | 6    | 250     | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR | -40 to 125   | SME            | Samples |
| INA215BIDCKR     | ACTIVE | SC70         | DCK     | 6    | 3000    | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR | -40 to 125   | 13S            | Samples |
| INA215BIDCKT     | ACTIVE | SC70         | DCK     | 6    | 250     | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR | -40 to 125   | 13S            | Samples |
| INA215BIRSWR     | ACTIVE | UQFN         | RSW     | 10   | 3000    | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM  | -40 to 125   | 13R            | Samples |
| INA215BIRSWT     | ACTIVE | UQFN         | RSW     | 10   | 250     | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM  | -40 to 125   | 13R            | Samples |
| INA215CIDCKR     | ACTIVE | SC70         | DCK     | 6    | 3000    | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR | -40 to 125   | 17K            | Samples |
| INA215CIDCKT     | ACTIVE | SC70         | DCK     | 6    | 250     | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR | -40 to 125   | 17K            | Samples |
| INA215CIRSWR     | ACTIVE | UQFN         | RSW     | 10   | 3000    | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM  | -40 to 125   | 16Z            | Samples |
| INA215CIRSWT     | ACTIVE | UQFN         | RSW     | 10   | 250     | Green (RoHS<br>& no Sb/Br) | Call TI          | Level-1-260C-UNLIM  | -40 to 125   | 16Z            | Samples |

<sup>(1)</sup> The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

**PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

**TBD:** The Pb-Free/Green conversion plan has not been defined.

<sup>(2)</sup> Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.



# PACKAGE OPTION ADDENDUM

26-Feb-2017

**Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and lead-free processes.

Compatible of the component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

#### OTHER QUALIFIED VERSIONS OF INA210, INA211, INA212, INA213, INA214, INA215:

Automotive: INA210-Q1, INA211-Q1, INA212-Q1, INA213-Q1, INA214-Q1, INA215-Q1

NOTE: Qualified Version Definitions:

Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

# PACKAGE MATERIALS INFORMATION

www.ti.com 5-Feb-2017

# TAPE AND REEL INFORMATION





|    | Dimension designed to accommodate the component width     |
|----|-----------------------------------------------------------|
|    | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |

## QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



\*All dimensions are nominal

| Device       | Package<br>Type | Package<br>Drawing | Pins | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|--------------|-----------------|--------------------|------|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| INA210AIDCKR | SC70            | DCK                | 6    | 3000 | 178.0                    | 9.0                      | 2.4        | 2.5        | 1.2        | 4.0        | 8.0       | Q3               |
| INA210AIDCKR | SC70            | DCK                | 6    | 3000 | 179.0                    | 8.4                      | 2.2        | 2.5        | 1.2        | 4.0        | 8.0       | Q3               |
| INA210AIDCKT | SC70            | DCK                | 6    | 250  | 179.0                    | 8.4                      | 2.2        | 2.5        | 1.2        | 4.0        | 8.0       | Q3               |
| INA210AIDCKT | SC70            | DCK                | 6    | 250  | 178.0                    | 9.0                      | 2.4        | 2.5        | 1.2        | 4.0        | 8.0       | Q3               |
| INA210AIRSWR | UQFN            | RSW                | 10   | 3000 | 179.0                    | 8.4                      | 1.7        | 2.1        | 0.7        | 4.0        | 8.0       | Q1               |
| INA210AIRSWT | UQFN            | RSW                | 10   | 250  | 179.0                    | 8.4                      | 1.7        | 2.1        | 0.7        | 4.0        | 8.0       | Q1               |
| INA210BIDCKR | SC70            | DCK                | 6    | 3000 | 178.0                    | 9.0                      | 2.4        | 2.5        | 1.2        | 4.0        | 8.0       | Q3               |
| INA210BIDCKT | SC70            | DCK                | 6    | 250  | 178.0                    | 9.0                      | 2.4        | 2.5        | 1.2        | 4.0        | 8.0       | Q3               |
| INA210BIRSWR | UQFN            | RSW                | 10   | 3000 | 179.0                    | 8.4                      | 1.7        | 2.1        | 0.7        | 4.0        | 8.0       | Q1               |
| INA210BIRSWT | UQFN            | RSW                | 10   | 250  | 179.0                    | 8.4                      | 1.7        | 2.1        | 0.7        | 4.0        | 8.0       | Q1               |
| INA210CIDCKR | SC70            | DCK                | 6    | 3000 | 178.0                    | 9.0                      | 2.4        | 2.5        | 1.2        | 4.0        | 8.0       | Q3               |
| INA210CIDCKT | SC70            | DCK                | 6    | 250  | 178.0                    | 9.0                      | 2.4        | 2.5        | 1.2        | 4.0        | 8.0       | Q3               |
| INA211AIDCKR | SC70            | DCK                | 6    | 3000 | 180.0                    | 8.4                      | 2.47       | 2.3        | 1.25       | 4.0        | 8.0       | Q3               |
| INA211AIDCKT | SC70            | DCK                | 6    | 250  | 180.0                    | 8.4                      | 2.47       | 2.3        | 1.25       | 4.0        | 8.0       | Q3               |
| INA211AIDCKT | SC70            | DCK                | 6    | 250  | 179.0                    | 8.4                      | 2.2        | 2.5        | 1.2        | 4.0        | 8.0       | Q3               |
| INA211BIDCKR | SC70            | DCK                | 6    | 3000 | 178.0                    | 9.0                      | 2.4        | 2.5        | 1.2        | 4.0        | 8.0       | Q3               |
| INA211BIDCKT | SC70            | DCK                | 6    | 250  | 178.0                    | 9.0                      | 2.4        | 2.5        | 1.2        | 4.0        | 8.0       | Q3               |
| INA211BIRSWR | UQFN            | RSW                | 10   | 3000 | 179.0                    | 8.4                      | 1.7        | 2.1        | 0.7        | 4.0        | 8.0       | Q1               |



# **PACKAGE MATERIALS INFORMATION**

www.ti.com 5-Feb-2017

| Device       | Package<br>Type | Package<br>Drawing | Pins | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|--------------|-----------------|--------------------|------|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| INA211BIRSWT | UQFN            | RSW                | 10   | 250  | 179.0                    | 8.4                      | 1.7        | 2.1        | 0.7        | 4.0        | 8.0       | Q1               |
| INA211CIDCKR | SC70            | DCK                | 6    | 3000 | 178.0                    | 9.0                      | 2.4        | 2.5        | 1.2        | 4.0        | 8.0       | Q3               |
| INA211CIDCKT | SC70            | DCK                | 6    | 250  | 178.0                    | 9.0                      | 2.4        | 2.5        | 1.2        | 4.0        | 8.0       | Q3               |
| INA212AIDCKR | SC70            | DCK                | 6    | 3000 | 180.0                    | 8.4                      | 2.47       | 2.3        | 1.25       | 4.0        | 8.0       | Q3               |
| INA212BIDCKR | SC70            | DCK                | 6    | 3000 | 178.0                    | 9.0                      | 2.4        | 2.5        | 1.2        | 4.0        | 8.0       | Q3               |
| INA212BIDCKT | SC70            | DCK                | 6    | 250  | 178.0                    | 9.0                      | 2.4        | 2.5        | 1.2        | 4.0        | 8.0       | Q3               |
| INA212BIRSWR | UQFN            | RSW                | 10   | 3000 | 179.0                    | 8.4                      | 1.7        | 2.1        | 0.7        | 4.0        | 8.0       | Q1               |
| INA212BIRSWT | UQFN            | RSW                | 10   | 250  | 179.0                    | 8.4                      | 1.7        | 2.1        | 0.7        | 4.0        | 8.0       | Q1               |
| INA212CIDCKR | SC70            | DCK                | 6    | 3000 | 178.0                    | 9.0                      | 2.4        | 2.5        | 1.2        | 4.0        | 8.0       | Q3               |
| INA212CIDCKT | SC70            | DCK                | 6    | 250  | 178.0                    | 9.0                      | 2.4        | 2.5        | 1.2        | 4.0        | 8.0       | Q3               |
| INA213AIDCKR | SC70            | DCK                | 6    | 3000 | 178.0                    | 9.0                      | 2.4        | 2.5        | 1.2        | 4.0        | 8.0       | Q3               |
| INA213AIDCKR | SC70            | DCK                | 6    | 3000 | 179.0                    | 8.4                      | 2.2        | 2.5        | 1.2        | 4.0        | 8.0       | Q3               |
| INA213AIDCKT | SC70            | DCK                | 6    | 250  | 178.0                    | 9.0                      | 2.4        | 2.5        | 1.2        | 4.0        | 8.0       | Q3               |
| INA213AIDCKT | SC70            | DCK                | 6    | 250  | 179.0                    | 8.4                      | 2.2        | 2.5        | 1.2        | 4.0        | 8.0       | Q3               |
| INA213AIRSWR | UQFN            | RSW                | 10   | 3000 | 179.0                    | 8.4                      | 1.7        | 2.1        | 0.7        | 4.0        | 8.0       | Q1               |
| INA213AIRSWT | UQFN            | RSW                | 10   | 250  | 179.0                    | 8.4                      | 1.7        | 2.1        | 0.7        | 4.0        | 8.0       | Q1               |
| INA213BIDCKR | SC70            | DCK                | 6    | 3000 | 178.0                    | 9.0                      | 2.4        | 2.5        | 1.2        | 4.0        | 8.0       | Q3               |
| INA213BIDCKT | SC70            | DCK                | 6    | 250  | 178.0                    | 9.0                      | 2.4        | 2.5        | 1.2        | 4.0        | 8.0       | Q3               |
| INA213BIRSWR | UQFN            | RSW                | 10   | 3000 | 179.0                    | 8.4                      | 1.7        | 2.1        | 0.7        | 4.0        | 8.0       | Q1               |
| INA213BIRSWT | UQFN            | RSW                | 10   | 250  | 179.0                    | 8.4                      | 1.7        | 2.1        | 0.7        | 4.0        | 8.0       | Q1               |
| INA213CIDCKR | SC70            | DCK                | 6    | 3000 | 178.0                    | 9.0                      | 2.4        | 2.5        | 1.2        | 4.0        | 8.0       | Q3               |
| INA213CIDCKT | SC70            | DCK                | 6    | 250  | 178.0                    | 9.0                      | 2.4        | 2.5        | 1.2        | 4.0        | 8.0       | Q3               |
| INA214AIDCKR | SC70            | DCK                | 6    | 3000 | 179.0                    | 8.4                      | 2.2        | 2.5        | 1.2        | 4.0        | 8.0       | Q3               |
| INA214AIDCKR | SC70            | DCK                | 6    | 3000 | 178.0                    | 9.0                      | 2.4        | 2.5        | 1.2        | 4.0        | 8.0       | Q3               |
| INA214AIDCKT | SC70            | DCK                | 6    | 250  | 179.0                    | 8.4                      | 2.2        | 2.5        | 1.2        | 4.0        | 8.0       | Q3               |
| INA214AIDCKT | SC70            | DCK                | 6    | 250  | 178.0                    | 9.0                      | 2.4        | 2.5        | 1.2        | 4.0        | 8.0       | Q3               |
| INA214AIRSWR | UQFN            | RSW                | 10   | 3000 | 179.0                    | 8.4                      | 1.7        | 2.1        | 0.7        | 4.0        | 8.0       | Q1               |
| INA214AIRSWT | UQFN            | RSW                | 10   | 250  | 179.0                    | 8.4                      | 1.7        | 2.1        | 0.7        | 4.0        | 8.0       | Q1               |
| INA214BIDCKR | SC70            | DCK                | 6    | 3000 | 178.0                    | 9.0                      | 2.4        | 2.5        | 1.2        | 4.0        | 8.0       | Q3               |
| INA214BIDCKT | SC70            | DCK                | 6    | 250  | 178.0                    | 9.0                      | 2.4        | 2.5        | 1.2        | 4.0        | 8.0       | Q3               |
| INA214BIRSWR | UQFN            | RSW                | 10   | 3000 | 179.0                    | 8.4                      | 1.7        | 2.1        | 0.7        | 4.0        | 8.0       | Q1               |
| INA214BIRSWT | UQFN            | RSW                | 10   | 250  | 179.0                    | 8.4                      | 1.7        | 2.1        | 0.7        | 4.0        | 8.0       | Q1               |
| INA214CIDCKR | SC70            | DCK                | 6    | 3000 | 178.0                    | 9.0                      | 2.4        | 2.5        | 1.2        | 4.0        | 8.0       | Q3               |
| INA214CIDCKT | SC70            | DCK                | 6    | 250  | 178.0                    | 9.0                      | 2.4        | 2.5        | 1.2        | 4.0        | 8.0       | Q3               |
| INA215AIDCKR | SC70            | DCK                | 6    | 3000 | 178.0                    | 8.4                      | 2.4        | 2.5        | 1.2        | 4.0        | 8.0       | Q3               |
| INA215AIDCKT | SC70            | DCK                | 6    | 250  | 178.0                    | 9.0                      | 2.4        | 2.5        | 1.2        | 4.0        | 8.0       | Q3               |
| INA215BIDCKR | SC70            | DCK                | 6    | 3000 | 178.0                    | 9.0                      | 2.4        | 2.5        | 1.2        | 4.0        | 8.0       | Q3               |
| INA215BIDCKT | SC70            | DCK                | 6    | 250  | 178.0                    | 9.0                      | 2.4        | 2.5        | 1.2        | 4.0        | 8.0       | Q3               |
| INA215BIRSWR | UQFN            | RSW                | 10   | 3000 | 179.0                    | 8.4                      | 1.7        | 2.1        | 0.7        | 4.0        | 8.0       | Q1               |
| INA215BIRSWT | UQFN            | RSW                | 10   | 250  | 179.0                    | 8.4                      | 1.7        | 2.1        | 0.7        | 4.0        | 8.0       | Q1               |
| INA215CIDCKR | SC70            | DCK                | 6    | 3000 | 178.0                    | 9.0                      | 2.4        | 2.5        | 1.2        | 4.0        | 8.0       | Q3               |
| INA215CIDCKT | SC70            | DCK                | 6    | 250  | 178.0                    | 9.0                      | 2.4        | 2.5        | 1.2        | 4.0        | 8.0       | Q3               |



www.ti.com 5-Feb-2017



\*All dimensions are nominal

| Device       | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|--------------|--------------|-----------------|------|------|-------------|------------|-------------|
| INA210AIDCKR | SC70         | DCK             | 6    | 3000 | 180.0       | 180.0      | 18.0        |
| INA210AIDCKR | SC70         | DCK             | 6    | 3000 | 195.0       | 200.0      | 45.0        |
| INA210AIDCKT | SC70         | DCK             | 6    | 250  | 195.0       | 200.0      | 45.0        |
| INA210AIDCKT | SC70         | DCK             | 6    | 250  | 180.0       | 180.0      | 18.0        |
| INA210AIRSWR | UQFN         | RSW             | 10   | 3000 | 203.0       | 203.0      | 35.0        |
| INA210AIRSWT | UQFN         | RSW             | 10   | 250  | 203.0       | 203.0      | 35.0        |
| INA210BIDCKR | SC70         | DCK             | 6    | 3000 | 180.0       | 180.0      | 18.0        |
| INA210BIDCKT | SC70         | DCK             | 6    | 250  | 180.0       | 180.0      | 18.0        |
| INA210BIRSWR | UQFN         | RSW             | 10   | 3000 | 203.0       | 203.0      | 35.0        |
| INA210BIRSWT | UQFN         | RSW             | 10   | 250  | 203.0       | 203.0      | 35.0        |
| INA210CIDCKR | SC70         | DCK             | 6    | 3000 | 340.0       | 340.0      | 38.0        |
| INA210CIDCKT | SC70         | DCK             | 6    | 250  | 340.0       | 340.0      | 38.0        |
| INA211AIDCKR | SC70         | DCK             | 6    | 3000 | 223.0       | 270.0      | 35.0        |
| INA211AIDCKT | SC70         | DCK             | 6    | 250  | 223.0       | 270.0      | 35.0        |
| INA211AIDCKT | SC70         | DCK             | 6    | 250  | 195.0       | 200.0      | 45.0        |
| INA211BIDCKR | SC70         | DCK             | 6    | 3000 | 180.0       | 180.0      | 18.0        |
| INA211BIDCKT | SC70         | DCK             | 6    | 250  | 180.0       | 180.0      | 18.0        |
| INA211BIRSWR | UQFN         | RSW             | 10   | 3000 | 203.0       | 203.0      | 35.0        |
| INA211BIRSWT | UQFN         | RSW             | 10   | 250  | 203.0       | 203.0      | 35.0        |
| INA211CIDCKR | SC70         | DCK             | 6    | 3000 | 340.0       | 340.0      | 38.0        |



# **PACKAGE MATERIALS INFORMATION**

www.ti.com 5-Feb-2017

| Device       | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|--------------|--------------|-----------------|------|------|-------------|------------|-------------|
| INA211CIDCKT | SC70         | DCK             | 6    | 250  | 340.0       | 340.0      | 38.0        |
| INA212AIDCKR | SC70         | DCK             | 6    | 3000 | 223.0       | 270.0      | 35.0        |
| INA212BIDCKR | SC70         | DCK             | 6    | 3000 | 180.0       | 180.0      | 18.0        |
| INA212BIDCKT | SC70         | DCK             | 6    | 250  | 180.0       | 180.0      | 18.0        |
| INA212BIRSWR | UQFN         | RSW             | 10   | 3000 | 203.0       | 203.0      | 35.0        |
| INA212BIRSWT | UQFN         | RSW             | 10   | 250  | 203.0       | 203.0      | 35.0        |
| INA212CIDCKR | SC70         | DCK             | 6    | 3000 | 340.0       | 340.0      | 38.0        |
| INA212CIDCKT | SC70         | DCK             | 6    | 250  | 340.0       | 340.0      | 38.0        |
| INA213AIDCKR | SC70         | DCK             | 6    | 3000 | 180.0       | 180.0      | 18.0        |
| INA213AIDCKR | SC70         | DCK             | 6    | 3000 | 195.0       | 200.0      | 45.0        |
| INA213AIDCKT | SC70         | DCK             | 6    | 250  | 180.0       | 180.0      | 18.0        |
| INA213AIDCKT | SC70         | DCK             | 6    | 250  | 195.0       | 200.0      | 45.0        |
| INA213AIRSWR | UQFN         | RSW             | 10   | 3000 | 203.0       | 203.0      | 35.0        |
| INA213AIRSWT | UQFN         | RSW             | 10   | 250  | 203.0       | 203.0      | 35.0        |
| INA213BIDCKR | SC70         | DCK             | 6    | 3000 | 180.0       | 180.0      | 18.0        |
| INA213BIDCKT | SC70         | DCK             | 6    | 250  | 180.0       | 180.0      | 18.0        |
| INA213BIRSWR | UQFN         | RSW             | 10   | 3000 | 203.0       | 203.0      | 35.0        |
| INA213BIRSWT | UQFN         | RSW             | 10   | 250  | 203.0       | 203.0      | 35.0        |
| INA213CIDCKR | SC70         | DCK             | 6    | 3000 | 340.0       | 340.0      | 38.0        |
| INA213CIDCKT | SC70         | DCK             | 6    | 250  | 340.0       | 340.0      | 38.0        |
| INA214AIDCKR | SC70         | DCK             | 6    | 3000 | 195.0       | 200.0      | 45.0        |
| INA214AIDCKR | SC70         | DCK             | 6    | 3000 | 180.0       | 180.0      | 18.0        |
| INA214AIDCKT | SC70         | DCK             | 6    | 250  | 195.0       | 200.0      | 45.0        |
| INA214AIDCKT | SC70         | DCK             | 6    | 250  | 180.0       | 180.0      | 18.0        |
| INA214AIRSWR | UQFN         | RSW             | 10   | 3000 | 203.0       | 203.0      | 35.0        |
| INA214AIRSWT | UQFN         | RSW             | 10   | 250  | 203.0       | 203.0      | 35.0        |
| INA214BIDCKR | SC70         | DCK             | 6    | 3000 | 180.0       | 180.0      | 18.0        |
| INA214BIDCKT | SC70         | DCK             | 6    | 250  | 180.0       | 180.0      | 18.0        |
| INA214BIRSWR | UQFN         | RSW             | 10   | 3000 | 203.0       | 203.0      | 35.0        |
| INA214BIRSWT | UQFN         | RSW             | 10   | 250  | 203.0       | 203.0      | 35.0        |
| INA214CIDCKR | SC70         | DCK             | 6    | 3000 | 180.0       | 180.0      | 18.0        |
| INA214CIDCKT | SC70         | DCK             | 6    | 250  | 180.0       | 180.0      | 18.0        |
| INA215AIDCKR | SC70         | DCK             | 6    | 3000 | 340.0       | 340.0      | 38.0        |
| INA215AIDCKT | SC70         | DCK             | 6    | 250  | 340.0       | 340.0      | 38.0        |
| INA215BIDCKR | SC70         | DCK             | 6    | 3000 | 340.0       | 340.0      | 38.0        |
| INA215BIDCKT | SC70         | DCK             | 6    | 250  | 340.0       | 340.0      | 38.0        |
| INA215BIRSWR | UQFN         | RSW             | 10   | 3000 | 203.0       | 203.0      | 35.0        |
| INA215BIRSWT | UQFN         | RSW             | 10   | 250  | 203.0       | 203.0      | 35.0        |
| INA215CIDCKR | SC70         | DCK             | 6    | 3000 | 340.0       | 340.0      | 38.0        |
| INA215CIDCKT | SC70         | DCK             | 6    | 250  | 340.0       | 340.0      | 38.0        |

# DCK (R-PDSO-G6)

# PLASTIC SMALL-OUTLINE PACKAGE



NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-203 variation AB.



# DCK (R-PDSO-G6)

# PLASTIC SMALL OUTLINE



NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.





NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-lead) package configuration.
- This package complies to JEDEC MO-288 variation UDEE, except minimum package height.



# RSW (R-PUQFN-N10)

# PLASTIC QUAD FLATPACK NO-LEAD



- NOTES: A. All linear dimensions are in millimeters.
  - B. This drawing is subject to change without notice.
  - C. Publication IPC-7351 is recommended for alternate designs.
  - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
  - E. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.



#### IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ('TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-compliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI's standard terms for semiconductor products <a href="http://www.ti.com/sc/docs/stdterms.htm">http://www.ti.com/sc/docs/stdterms.htm</a>), evaluation modules, and samples (<a href="http://www.ti.com/sc/docs/sampterms.htm">http://www.ti.com/sc/docs/sampterms.htm</a>).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated