1.1 映射

1.1.1 映射的概念

定义 1.1.1: 映射定义

设 X,Y 是两个非空集合, 如果**存在**一个<mark>法则 f</mark>, 使得对 X 中**每个元素** x, 按法则 f, 在 Y 中有**唯一确定的元素** y 与之对应, 那么称 f 为从 X 到 Y 的映射, 记作

$$f: X \to Y$$

其中 y 称为元素 x(在映射 f 下) 的像, 并记住 f(x), 即

$$y = f(x)$$

而元素 x 称为元素 y(在映射 f 下) 对一个原像;

需要注意的是,从映射的概念可以看出,映射法则 f 可以有多个,但是只要有一个满足即可.

1.1.2 逆映射和复合映射

定义 1.1.2: 逆映射的定义

设 f 是 X 到 Y 的单射,则由定义,对每个 $g \in R_f$,有唯一的 $x \in X$,适合 f(x) = g,于 是,我们可定义一个从 R_f 到 X 的新映射 g,即

$$g:R_f\to X$$

对每个 $y \in R_f$, 规定 g(y) = x, 这个 x 满足 f(x) = y. 这个映射 g 称为 f 的逆映射, 记作 f^{-1} , 其定义域为 $D_{f^{-1}} = R_f$, 值域 $R_{f^{-1}} = X$. 根据上述定义可知,只有单射才存在逆映射.

定义 1.1.3: 复合映射的定义

设有两个映射

$$g: X \to Y_1$$
 $f: Y_2 \to Z$

其中 $Y_1 \subset Y_2$,则由映射 g 和 f 可以定出一个从 X 到 Z 的对应法则,它将每个 $x \in X$ 映成 $f[g(x)] \in Z$. 显然,这个对应法则确定了一个从 X 到 Z 的映射,这个映射称为映射 g 和 f 构成的复合映射,记作 $f \circ g$,即

$$f \circ g : X \to Z, (f \circ g)(x) = f[g(x)], x \in X.$$

由复合映射的定义可知, 映射 g 和 f 构成复合映射的条件是:g 的值域 R_g , 必须包含在 f 的定义域内,即 $R_g \subset D_f$. 否则, 不能构成复合映射. 由此可以知道, 映射 g 和 f 复合是有顺序的.

1.1.3 映射的分类

- 设 f 是从集合 X 到集合 Y 的映射, 若 $R_f = Y$, 即 Y 中任一元素 Y 都是 X 中某元素 的像, 则称 f 为 X 到 Y 上的映射或满射;
- 若对 X 中任意两个不同元素 $x_1 \neq x_2$, 它们的像 $f(x_1) \neq f(x_2)$, 则称 f 为 X 到 Y 的单射;
- 若映射 f 既是单射, 又是满射, 则称 f 为——映射 (或双射)

1.2 函数的基本概念与特性

1.2.1 函数的概念

定义 1.2.1: 函数定义

设**数集** $D \subset \mathbb{R}$, 则称映射 $f: D \to \mathbb{R}$ 为定义在 D 上的函数, 通常简记为

$$y = f(x), x \in D$$
,

其中 x 称为自变量,y 称为因变量,D 称为定义域,记作 D_f ,即 $D_f = D$.

函数的定义中, 对**每个** $x \in D$, 按对应法则 f, 总有**唯一确定**的值 g 与之对应, 这个值称为函数 f 在 x 处的函数值, 记作 f(x), 即 g = f(x). 因变量 g = g 与自变量 g = g 之间的这种依赖关系, 通常称为函数关系. 函数值 g = g 的全体所构成的集合称为函数 g = g 的值域, 记作 g = g 即:

$$R_f=f(D)=\{y|y=f(x), x\in D\}$$

定义 1.2.2: 自然定义域

约定函数的定义域是使算式有意义的一切实数组成的集合。

例如: 函数 $y=\frac{1}{x-1}$,即使没有指出函数的定义域是多少,但是通过分析可得,函数的自然定义域是 $(-\infty,1)\cup(1,\infty)$ 。同理对于函数 $y=\sqrt[2]{1-x^2}$,其自然定义域是 (-1,1)。

注 1.2.1: 单值函数与多值函数

事实上上述定义的函数为**单值函数**, 若给定一个 x_1 , 对应一个 y_1 。给另外一个 x_2 , 对应 另外一个 y_2 , 即"一对一". 其图像如下图所示

若给定 x_1 和 x_2 , 且他们对应同一个 y, 则称"多对一".

所以函数可以一对一,也可以多对一,统称为单值函数.

但是, 如果一个 x 对应一个 y_1 , 同时对应另一个 y_2 , 也就是一对多, 这叫做多值函数.(高等数学中研究对象主要是单值函数)

1.2.2 函数的表示

表格

x	1	2	3	4	5	6
y = 2x	2	4	6	8	10	12

图像

图 1.1: 对数函数图像

解析式

y = 2x

1.2.3 反函数

定义 1.2.3: 反函数定义

设函数 y=f(x) 的定义域为 D, 值域为 R. 如果对于每一个 $y\in R$, 必存在唯一的 $x\in D$ 使得 y=f(x) 成立, 则由此定义了一个新的函数 $x=\varphi(y)$, 这个函数称为函数 y=f(x) 的**反函数**, 一般记作 $x=f^{-1}(y)$, 它的定义域为 R, 值域为 D. 相对于反函数来说, 原来的函数也被称为**直接函数**.

一般地, $y = f(x), x \in D$ 的反函数记成 $y = f^{-1}(x), x \in f(D)$

注 1.2.2: 解释

以函数 y = 2x + 1 为例:

y = 2x + 1	自变量:x:[1,2]	
	因变量:y:[3,5]	
$x = \frac{y-1}{2}$	自变量:y:[3,5]	变量
	因变量:x:[1,2]	改变
$y = \frac{x-1}{2}$	自变量:x:[3,5]	方程
	因变量:y:[1,2]	改变

5

定义 1.2.4: 反函数的性质

- $f^{-1}f(x) = x$
- 严格单调函数必有反函数, 但是有反函数的函数不一定是单调函数. 如函数 f(x) = x

x < 0, 其函数图像为

图 1.2: 分段函数 f(x) 图像

- 若函数 f(x) 有反函数,则 f(x) 与任意水平线有且仅有一个交点.
- 若把 $x = f^{-1}(y)$ 与 y = f(x) 的图形画在同一坐标系中, 则它们完全重合. 只有 把 y = f(x) 的反函数 $x = f^{-1}(y)$ 写成 $y = f^{-1}(x)$ 后,它们的图形才关于 y = x**对称**. 这是因为在 $x = f^{-1}(y)$ 中 y 是自变量而 x 是因变量, 而在 y = f(x) 中恰恰 相反(这个时候的图像应该一个是 x-y 坐标系函数图像, 一个是 y-x 坐标系函数图 像), 因此如果此时不交换变量, 那么其域没有变化, 画在一起会重合, 只有交换了 变量之后才不会重合.

题目 1. 求函数 $y = f(x) = \ln(x + \sqrt{x^2 + 1})$ 的反函数的表达式以及定义域

题目 1 的注记. 在上面的例子中,函数 $f(x) = \ln(x + \sqrt{x^2 + 1})$ 为反双曲正弦函数,其反函数为双曲正弦函数. 除此之外,函数 $y = \frac{e^x + e^{-x}}{2}$ 是双曲余弦函数. 上述两个函数的图像为图 1.2,图 1.3.

解答. 已知 $y = f(x) = \ln(x + \sqrt{x^2 + 1})$, 则 $-y = \ln \frac{1}{x + \sqrt{x^2 + 1}} = \ln(\sqrt{x^2 + 1} - x)$ 对两边可以进行如下操作

$$e^{-y} = \sqrt{x^2 + 1} - x$$

 $e^y = \sqrt{x^2 + 1} + x$

那么可以得到 $x=\frac{1}{2}(e^y-e^{-y})$ 交换之后可以得到函数 f(x) 的反函数, 即 $y=f^{-1}(x)=\frac{1}{2}(e^x-e^{-x})$

1.2.4 复合函数

设函数 y = f(u) 的定义域为 D_1 , 函数 u = g(x) 在 D 上有定义, 且 $g(D) \subset D_1$, 则由

$$y = f[g(x)](x \in D)$$

确定的函数, 称为由函数 u = g(x) 和函数 y = f(u) 构成的**复合函数**, 它的定义域为 D,u 称为中间变量. 内层函数的值域是外层函数的子集.

1.2.5 函数的四种特性及重要结论

有界性

有界性分为三种情况,一种是有上界,一种是有下界,一种是有界。有界包含了有上界和 有下界。

定义 1.2.5: 有上界的定义

设函数 f(x) 的定义域为 D, 数集 $X \in D$ 。如果存在数 K_1 , 使得

$$f(x) \leq K_1$$

对任一 $x \in X$ 都成立, 那么称函数 f(x) 上有上界, 而 K_1 称为函数 f(x) 在 X 上都一个上界。

定义 1.2.6: 有下界的定义

设函数 f(x) 的定义域为 D, 数集 $X \in D$ 。如果存在数 K_2 , 使得

$$f(x) \ge K_2$$

对任一 $x \in X$ 都成立, 那么称函数 f(x) 上有下界, 而 K_1 称为函数 f(x) 在 X 上都一个下界。

定义 1.2.7: 有界性的定义

设 f(x) 的定义域为 D, 数集 $I \subset D$. 如果存在某个正数 M, 使对任一 $x \in I$, 有 $|f(x)| \le M$, 则称 f(z) 在 I 上有界; 如果这样的 M 不存在, 则称 f(x) 在 I 上无界.

- 有界是指,同时有上界和下界
- 从几何上看, 如果在给定的区间, 函数 y = f(x) 的图形能够被直线 y = -M 和 y = M" 完全包起来", 则为有界; 从定义上说, 找到某个正数 M, 使得 $|f(z)| \leq M$, 则为有界.
- **在讨论有界还是无界的时候首先要指明区间**, 如果没指名区间, 则无法讨论有界性. 如函数 $y = \frac{1}{n}$ 则 $(2, +\infty)$ 上有界, 但是在 (0, 2) 上无界.
- 事实上, 只要在区间 I 上或其端点处存在点 x_0 , 使得 $\lim_{x\to x_0} f(x)$ 的值为无穷大, 则没有任何两条直线 y=-M 和 y=M 可以把 I 上的 f(x) 也起来", 这就叫无界.

单调性

定义 1.2.8

设 f(x) 的定义域为 D, 区间 $I \subset D$. 如果对于区间上任意两点 x_1, x_2 当 $x_1 < x_2$ 时, 恒 有 $f(x_1) < f(x_2)$, 则称 f(x) 在区间 I 上**单调增加**. 如果对于区间 I 上任意两点 x_1, x_2 当 $x_1 < x_2$, 时, 恒有 $f(x_1) > f(x_2)$, 则称 f(x) 在区间 I 上**单调减少**.

虽然单调性的证明一般用求导, 但是定义法也需要掌握.

对任意 $x_1, x_2 \in D, x_1 \neq x_2,$ 有

$$f(x)$$
是单调增函数 $\Leftrightarrow (x_1 - x_2) \Big[f(x_1) - f(x_2) \Big] > 0;$ $f(x)$ 是单调减函数. $\Leftrightarrow (x_1 - x_2) \Big[f(x_1) - f(x_2) \Big] < 0;$ $f(x)$ 是单调不减函数 $\Leftrightarrow (x_1 - x_2) [f(x_1) - f(x_2)] \ge 0;$ $f(x)$ 是单调不增函数 $\Leftrightarrow (x_1 - x_2) [f(x_1) - f(x_2)] \le 0.$

奇偶性

定义 1.2.9

设 f(x) 的定义域 D 关于原点对称 (即若 $x \in D$, 则 -xinD). 如果对于任一 $x \in D$, 恒 有 f(-x) = f(x), 则称 f(x) 为偶函数. 如果对于任一 $x \in D$, 恒有 f(-x) = -f(x), 则称 f(x) 为奇函数.偶函数的图形关于 y 轴对称, 奇函数的图形关于原点对称.

推论 1.2.3

设 f(x) 是定义在 [-l,l] 上的任意函数,则

$$F_1(x) = f(x) - f(-x)$$
必为奇函数; $F_2(x) = f(x) + f(-x)$ 必为偶函数

图 1.3: 双曲正弦函数 $y = \frac{e^x - e^{-x}}{2}$

图 1.4: 双曲余弦函数 $y = \frac{e^x + e^{-x}}{2}$

可以看到上面两个函数可以很好的解释推论 1.2.1, 并给出一个直观的图像, 以下为证明过程.

证明. 已知 f(x) 是任意函数,-1 带入可得, $F_1(-x)=f(-x)-f(x)=-F_1(x)$,同理可证 F_2 成立.

- 奇函数 y = f(x) 的图形关于坐标原点对称, 当 f(x) 在 x = 0 处有定义时, 必有 f(0) = 0.
- 偶函数 y = f(x) 的图形关于 y 轴对称, 且当 f(0) 存在时, 必有 f'(0) = 0.

周期性

定义 1.2.10

设 f(x) 的定义域为 D, 如果存在一个正数 T, 使得对于任一 $x \in D$, 有 $x \pm T \in D$, 且 f(x+T) = f(x), 则称 f(x) 为周期函数,T 称为 f(x) 的周期. 从几何图形上看, 在周期函数的定义域内, 相邻两个长度为 T 的区间上, 函数的图形完全一样.

需要注意的是函数的周期性只与 x 的参数有关, 比如若函数 f(x) 以 T 为周期, 则 f(ax+b) 以 $\frac{T}{|a|}$ 为周期. 可以观察到其周期只与 x 的系数有关

重要结论

f'(x) 和 $\int_a^x f(t) dt$ 的性质是重点, 提前总结如下:

- 若 f(x) 是可导的偶函数,则 f'(x) 是奇函数.
- 若 f(x) 是可导的周期为 T 的周期函数, 则 f'(x) 也是以 T 为周期的周期函数.
- 连续的奇函数的一切原函数都是偶函数
- 连续的偶函数的原函数中仅有一个原函数是奇函数
- 若连续函数 f(x) 以 T 为周期且 $\int_0^T f(x) dx = 0$, 则 f(x) 的一切原函数也以 T 为周期.
- 若 f(x) 在 (a,b) 内可导且 f'(x) 有界, 则 f(x) 在 (a,b) 内有界.

1.2.6 三种特殊函数

符号函数

$$y = \operatorname{sgn} x = \begin{cases} -1, & x < 0, \\ 0, & x = 0, \\ 1, & x > 0 \end{cases}$$

图 1.5: 符号函数 sgn x 图像

取整函数

$$y = [x]$$

函数值向左移, **现实生活中其实就是年龄**, 即 $x-1 < [x] \le x$

图 1.6: 取整函数 [x] 图像

狄利克雷函数

$$D\left(x\right) = \begin{cases} 1, & x \in \mathbf{Q}, \\ 0, & x \in \mathbf{Q}^{c}. \end{cases}$$

1.3 函数图像

1.3.1 常数函数

y = A, A 为常数, 其图形为平行于 x 轴的水平直线

图 1.7: 常数函数图像

1.3.2 幂函数

$$y = x^{\mu}(\mu$$
是实数)

图 1.8: 常数函数图像

推论 1.3.1: 幂函数常用推论

- 当 x > 0 时, 由 y = x 与 $y = \sqrt{x}, y = \sqrt[3]{x}, y = \ln x$ 具有相同的单调性, 因此可以利用这一特性来研究最值
- 见到 \sqrt{u} , $\sqrt[3]{u}$ 时, 可用 u 来研究最值
- 见到 | u | 时,由 | u |= $\sqrt{u^2}$,可用 u^2 来研究最值
- 见到 $u_1,u_2,u_3,\ln(u_1+u_2+u_3)=\ln u_1+\ln u_2+\ln u_3$ 来研究最值
- 见到 $\frac{1}{u}$ 时, 可用 u 来研究最值 (结论相反), 即 $\frac{1}{u}$ 与 u 的最大值点、最小值点相反

1.3.3 指数函数

$$y = a^x (a > 0, a \neq 1)$$

图 1.9: 指数函数图像

注 1.3.2: 指数函数相关性质

- 定义域: $(-\infty, +\infty)$. 值域: $(0, +\infty)$.
- 单调性: 常用的指数函数 $y = e^x$
- 极限: $\lim_{x\to-\infty} e^x = 0$, $\lim_{x\to+\infty} e^x = +\infty$ (由于极限的唯一性,因此在趋于不同的无穷时,极限值的不同).
- 特殊函数值: $a^0 = 1$, $e^0 = 1$

1.3.4 对数函数

$$y = \log_a x (a > 0, a \neq 1)$$

图 1.10: 对数函数图像

注 1.3.3: 对数函数相关性质

- 定义域: $(0,+\infty)$. 值域: $(-\infty,+\infty)$.
- 单调性: 当 a>1 时, $y=log_a x$ 单调增加; 当 0< a<1 时, $y=log_a x$ 单调减少;
- 常用对数函数: $y = \ln x$
- 特殊函数值: $\log_a 1 = 0$, $\log_a = 1$, $\ln 1 = 0$, $\ln e = 1$
- 极限 $\lim_{x\to 0^+} x = -\infty, \lim_{x\to +\infty} x = +\infty.$
- 常用公式: $x = e^{\ln x} (x > 0), u^{\upsilon} = e^{\ln u^{\upsilon}} = e^{\upsilon \ln u} (u > 0)$

1.3.5 三角函数

正弦和余弦函数

图 1.11: 正余弦函数图像

正切和余切函数

图 1.12: 正余切函数图像

正割和余割函数

图 1.13: 正余割函数图像

反三角函数

反正弦和反余弦函数

图 1.14: 反正余弦函数图像

由于这两个函数分别是 $\sin x$ 和 $\cos x$ 的反函数, 因此可以知道的是, $\sin x$ 的值域是 $\arcsin x$ 的定义域. 因此可以得到下面的结论

注 1.3.4: 反正余弦函数相关性质

- 定义域 $[-1,1],y = \arcsin x$ 值域 $[-\frac{\pi}{2},\frac{\pi}{2}],y = \arccos x$ 值域 $[0,\pi]$
- 性质: $\arcsin x + \arccos x = \frac{\pi}{2} ($ 求导后可以发现导数为 0)

反正切和反余切函数

图 1.15: 反正余切函数图像

注 1.3.5: 反正余切函数相关性质

- 定义域 $[-\infty,+\infty],y=\arctan x$ 值域 $(-\frac{\pi}{2},\frac{\pi}{2}),y=\arccos x$ 值域 $(0,\pi)$
- 性质: $\arctan x + \operatorname{arccot} x = \frac{\pi}{2}($ 求导后可以发现导数为 0)

1.3.6 图像绘制

极坐标下的图像

- 用描点法绘制函数图像: 就是把每一个点求出来, 然后连接起来即可, 但是需要点足够多
- 用直角坐标系观点画极坐标系的图像, 以函数 $r = 2(1 + \cos \theta)$ 为例.

图 1.16: 函数 $r = 2(1 + \cos \theta)$ 图像

可以看到 $\theta-r$ 的坐标系的关键点为 $(0,4),(\frac{\pi}{2},2),(\pi,0),(\frac{3}{2}\pi,2),(2\pi,4)$ 这五个点, 那么在极坐标系下可以绘制出这些点, 比如在 x=4 时, $\theta=0,x=2$ 时, $\theta=\frac{\pi}{2},x=0$ 时, $\theta=\pi$.

参数方程

通过第三个变量即参数来表示别的两个变量.

摆线参数方程:

$$\left\{ \begin{array}{l} x=r\left(t-\sin t\right)\\ y=r\left(1-\cos t\right). \end{array} \right.$$

星型线参数方程:

$$\begin{cases} x = r \cos^3 t \\ y = r \sin^3 t \end{cases}$$

1.4 常用函数知识

1.4.1 数列

等差数列

首项为 a_1 , 公差为 $d(d \neq 0)$ 的数列 $a_1, a_1 + d, a_1 + 2d, \dots, a_1 + (n-1)d, \dots$

注 1.4.1: 等差数列相关性质

- 通项公式 $a_n = a_1 + (n-1)d$
- 前 n 项的和 $S_n=\frac{n}{2}[2a_1+(n-1)d]=\frac{n}{2}(a_1+a_n)$

等比数列

首项为 a_1 , 公比为 $r(r \neq 0)$ 的数列 $a_1, a_1r, a_2r^2, ..., a_1r^{n-1}, ...$

注 1.4.2: 等比数列相关性质

- 通项公式 $a_n = a_1 r^{n-1}$
- 前 n 项的和 $S_n = \begin{cases} na_1, & r = 1, \\ \frac{a_1(1-r^n)}{1-r}, & r \neq 1. \end{cases}$
- $1 + r + r^2 + \dots + r^{n-1} = \frac{1-r^n}{1-r} (r \neq 1)$.

常见数列前 n 项和

$$\begin{split} \sum_{k=1}^n k &= 1+2+3+\dots+n = \frac{n(n+1)}{2}.\\ \sum_{k=1}^n k^2 &= 1^2+2^2+3^2+\dots+n^2 = \frac{n(n+1)\left(2n+1\right)}{6}.\\ \sum_{k=1}^n \frac{1}{k(k+1)} &= \frac{1}{1\times 2} + \frac{1}{2\times 3} + \frac{1}{3\times 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}. \end{split}$$

1.4.2 三角函数

三角函数基本关系

$$\cos \alpha = \frac{1}{\sin \alpha} \quad \sec \alpha = \frac{1}{\cos \alpha} \quad \cot \alpha = \frac{1}{\tan \alpha} \\
 \tan \alpha = \frac{\sin \alpha}{\cos \alpha} \quad \cot \alpha = \frac{\cos \alpha}{\sin \alpha}$$

倍角公式

$$\sin 2a = 2\sin a \cos a, \quad \cos 2a = \cos^2 a - \sin^2 a = 1 - 2\sin^2 a = 2\cos^2 a - 1$$

$$\sin 3\alpha = -4\sin^3 a + 3\sin \alpha, \quad \cos 3a = 4\cos^3 a - 3\cos a$$

$$\tan 2\alpha = \frac{2\tan \alpha}{1 - \tan^2 \alpha}, \quad \cot 2\alpha = \frac{\cot^2 \alpha - 1}{2\cot \alpha}.$$

半角公式

$$\sin^2 \frac{\alpha}{2} = \frac{1}{2} (1 - \cos \alpha), \quad \cos^2 \frac{\alpha}{2} = \frac{1}{2} (1 + \cos \alpha),$$

$$\sin \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{2}}, \quad \cos \frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos \alpha}{2}},$$

$$\tan \frac{\alpha}{2} = \frac{1 - \cos \alpha}{\sin \alpha} = \frac{\sin \alpha}{1 + \cos \alpha} = \pm \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}},$$

$$\cot \frac{\alpha}{2} = \frac{\sin \alpha}{1 - \cos \alpha} = \frac{1 + \cos \alpha}{\sin \alpha} = \pm \sqrt{\frac{1 + \cos \alpha}{1 - \cos \alpha}}.$$

和差公式

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \cos \alpha \sin \beta$$
$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$
$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$$
$$\cot(\alpha \pm \beta) = \frac{\cot \alpha \cot \beta \mp 1}{\cot \beta \pm \cot \alpha}.$$

积化和差公式

$$\begin{split} \sin\alpha\cos\beta &= \frac{1}{2}\big[\sin(\alpha+\beta) + \sin(\alpha-\beta)\big], \cos\alpha\sin\beta = & \frac{1}{2}\big[\sin(\alpha+\beta) - \sin(\alpha-\beta)\big], \\ \cos\alpha\cos\beta &= \frac{1}{2}\big[\cos(\alpha+\beta) + \cos(\alpha-\beta)\big], \sin\alpha\sin\beta = & \frac{1}{2}\big[\cos(\alpha-\beta) - \cos(\alpha+\beta)\big]. \end{split}$$

和差化积公式

$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}, \sin \alpha - \sin \beta = 2 \sin \frac{\alpha - \beta}{2} \cos \frac{\alpha + \beta}{2}$$
$$\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}, \cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}.$$

万能公式

$$\sin \alpha = \frac{2 \tan \frac{\alpha}{2}}{1 + \tan^2 \frac{\alpha}{2}}$$
$$\cos \alpha = \frac{1 - \tan^2 \frac{\alpha}{2}}{1 + \tan^2 \frac{\alpha}{2}}$$

1.4.3 指数运算法则

$$\boxed{a^a \times a^\beta = a^{a+\beta}, \quad \frac{a^a}{a^\beta} = a^{a-\beta}, \quad (a^a)^\beta = a^{a\beta}, \quad (ab)^a = a^a b^a, \quad \left(\frac{a}{b}\right)^a = \frac{a^a}{b^a}}$$

1.4.4 对数运算法则

$$\begin{aligned} \log_a(MN) &= \log_a M + \log_a N \\ \log_a \frac{M}{N} &= \log_a M - \log_a N \\ \log_a M^n &= n \log_a M. \\ \log_a \sqrt[n]{M} &= \frac{1}{n} \log_a M. \end{aligned}$$

1.4.5 一元二次方程基础

- 一元二次方程组: $ax^2 + bx + c = 0 (a \neq 0)$
- 根的公式: $x_{1,2} = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$
- 根与系数的关系: $x_1 + x_2 = -\frac{b}{a}, x_1 x_2 = \frac{c}{a}$.
- 判别式: $\Delta = b^2 4ac$
- 抛物线顶点坐标: $(-\frac{b}{2a}, c \frac{b^2}{4a})$

1.4.6 因式分解公式

1.4.7 阶乘与双阶乘

- $n! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot n$, 规定0! = 1.
- $(2n)!! = 2 \cdot 4 \cdot 6 \cdot \cdot \cdot (2n) = 2^n \cdot n!$
- $(2n-1)!! = 1 \cdot 3 \cdot 5 \cdot \cdot \cdot (2n-1)$

1.4.8 常用不等式

1. 设 a, b 为实数, 则 $|a+b| \le |a| + |b|$; |a| - |b| $| \leqslant |a-b|$

注 1.4.3

可以将第一个式子推广为:

离散情况: 设 $a_1, a_2, ..., a_n$ 为实数, 则 $|a_1 \pm a_2 \pm \cdots \pm a_n| \leqslant |a_1| + |a_2| + \cdots + |a_n|$ 连续情况: 设 f(x) 在 [a,b](a < b) 上可积, 则 $\left| \int_a^b f(x) \, \mathrm{d}x \right| \leqslant \int_a^b \left| f(x) \right| \mathrm{d}x$

2.
$$\sqrt{ab} \leqslant \frac{a+b}{2} \leqslant \sqrt{\frac{a^2+b^2}{2}}(a,b>0)$$

20

注 1.4.4

还有一个不等式是 $|ab| \leqslant \frac{a^2+b^2}{2}$

3.
$$\sqrt[3]{abc} \leqslant \frac{a+b+c}{3} \leqslant \sqrt{\frac{a^2+b^2+c^2}{3}}(a,b,c>0)$$

注 1.4.5

$$\label{eq:sum} \begin{subarray}{l} \begin{subarray}{l} $\preceq \end{subarray} n\pi < x < (n+1)\pi, 2n < S(x) < 2(n+1)\end{subarray}, \begin{subarray}{l} \begin{subarray}{l}$$

- 6. $\sin x < x < \tan x \left(0 < x < \frac{\pi}{2} \right)$
- 7. $\sin x < x(x > 0)$

注 1.4.6

当 $x_n > 0$ 时, $x_{n+1} = \sin x_n < x_n$, 故 x_n 单调减少

- 8. $\arctan x \leqslant x \leqslant \arcsin x (0 \leqslant x \leqslant 1)$
- 9. $e^x \geqslant x + 1(\forall x)$

注 1.4.7

当 $x_{n+1}=\mathrm{e}^{x_n}-1$ 时,由 $\mathrm{e}^{x_n}-1\geqslant x_n$,得 $x_{n+1}\geqslant x_n$,即 $\{x_n\}$ 单调不减

10. $x - 1 \ge \ln x (x > 0)$

注 1.4.8

当 $x_n>0$ 时,若 $x_{n+1}=\ln x_n+1$,由 $\ln x_n+1\leqslant x_n$,得 $x_{n+1}\leqslant x_n$,即 $\{x_n\}$ 单调不增

11. $\frac{1}{1+x} < \ln(1 + \frac{1}{x}) < \frac{1}{x}(x > 0)$

注 1.4.9

令 $f(x) = \ln x$, 并在区间 [x, x+1] 上对其使用拉格朗日中值定理, 有

$$\ln\left(1 + \frac{1}{x}\right) = \ln(1+x) - \ln x = \frac{1}{\xi}$$

其中 $0 < x < \xi < x+1$,因此对任意的 x>0,有 $\frac{1}{1+x} < \ln\left(1+\frac{1}{x}\right) = \frac{1}{\xi} < \frac{1}{x}$

12. 在处理如下数列时,可以在前面加一个减项,如 $(1+\frac{1}{2^2})(1+\frac{1}{2^{2^2}})...(1+\frac{1}{2^{2^n}})$,可化为 $(1-\frac{1}{4})(1+\frac{1}{2^2})(1+\frac{1}{2^{2^2}})...(1+\frac{1}{2^{2^n}})*\frac{4}{3}$

1.4.9 绝对值等式

$$\varphi(x) = \max \left\{ f(x), g(x) \right\} = \frac{1}{2} [f(x) + g(x) + |f(x) - g(x)|]$$

$$\psi(x) = \min \left\{ f(x), g(x) \right\} = \frac{1}{2} [f(x) + g(x) - |f(x) - g(x)|]$$