

多旋翼飞行器设计与控制实践

第一讲 课程介绍

全权 副教授 qq_buaa@buaa.edu.cn 自动化科学与电气工程学院 北京航空航天大学

大纲

- 1. 多旋翼
- 2. 教育的新需求
- 3. 实验平台
- 4. 课程设置
- 5. 总结

多旋翼

口常见无人机分类

(a)固定翼

(b)直升机

(1) 固定翼

优点:续航时间最长、飞行效

率最高、载荷最大

候必须要滑行

(2) 直升机

优点:垂直起降

缺点:续航时间没有优势,

缺点:必须要助跑,降落的时 机械结构复杂、维护成本高

(c)多旋翼

(3) 多旋翼

优点:垂直起降、机械结构简单、

易维护

缺点: 载重和续航时间都更差

多旋翼

□ 四旋翼的操控

(1) 升降运动

(2) 前后运动

(3) 左右运动

(4) 偏航运动

多旋翼

口 无人机的评价

刚性体验

		固定翼	直升机	多旋翼
+	易用性	+	+	+++
	可靠性	+++	+	+++
	勤务性	++	+	+++
	续航性	+++	++	+
	承载性	+++	++	+

运动相互解耦 无机械磨损

结构简单、模块化

刚性体验让人们选择了多旋翼,无人机教育从多旋翼入手

口传统和新形势人才对比

人员多

分工细

经验多

资源多

传统

人一经资少姚少少

新形势

- 多旋翼全栈式工程师具备多旋翼开发所需的技术、语言和系统工程概念等知识
- "全栈式"指的是完成一个工程所需的各种技能,每个组件都是一个堆栈。

7六级听力满分攻略 1小时突破听力困境

8月8日20:00直播

名师专栏

喜户端

首页 > 全部课程 > 工学

□新形势人才需求

理论

- 构型和结构设计
- 动力系统设计
- 控制模型建立
- 状态估计
- 控制器设计
- 路径规划决策逻辑
- 健康评估、失效保护

第2次开课 ^ 9月01日~2019年11月30日 第1次开课 第2次开课 已有934人参加

立即参加

系统与控制纵横 All About Systems and Control

忆许国志先生

多旋翼飞行器 控制实践的试金石

口 新形势人才需求(技术能力)

口 理论

- 构型和结构设计
- 动力系统设计
- 控制模型建立
- 状态估计
- 控制器设计
- 路径规划决策逻辑
- 健康评估、失效保护
- • • • •

《多旋翼设计与控制》课程

知行合一

口 实践

- 开发工具
- 操作系统
- 软件编写
- 代码调试
- · 试飞
- •••••

????

如何降低学习门槛?:新工具+新教程

具备电子工程背景的人

全栈式工程师

如何降低学习门槛?:新工具+新教程

实验平台

Pixhawk:

微小型飞行器用得最广 泛的自驾仪 硬件

Matlab:

自动化专业 用得最广泛 的语言之一

多旋翼:

航空领域用 得最多的飞 行器

基于模型开发

基于PixHawk和MATLAB的多旋翼

控制算法快速平台

实验平台

实验平台

实物图

UDP通讯网络

飞控#2

分布式集群控制仿真框图

飞控#5

实时仿真程

序#1

□实验内容和框架设计

- 动力系统设计
- 动态建模
- 传感器标定
- 滤波器设计
- 姿态控制器设计
- 定点位置控制器设计
- 半自主控制模式设计
- 失效保护逻辑设计

- 本平台提供的例程可以保证每个实验或者每个版块的实验可 以被单独完成
- 为了使任务目标有差异化, 我们课程可以按照一种递进的结构完成。递进路线可以分为:
 - (1) 设计和建模实验 -> 控制实验
 - (2) 设计和建模实验 -> 控制实验-> 决策实验
 - (3) 设计和建模实验 ->估计实验->控制实验->决策实验
- 需要设计不同的飞行器,这样将会使模型各不相同,而且建模方法也可以各不相同,控制实验的设计也各不相同。
- 教师还可以自行增加附加实验

- 本平台提供的例程可以保证每个实验或者每个版块的实验可 以被单独完成
- 为了使任务目标有差异化,我们课程可以按照一种递进的结构完成。递进路线可以分为:
 - (1) 设计和建模实验 -> 控制实验
 - (2) 设计和建模实验 -> 控制实验-> 决策实验
- (3) 设计和建模实验 ->估计实验->控制实验->决策实验
- 需要设计不同的飞行器,这样将会使模型各不相同,而且建模方法也可以各不相同,控制实验的设计也各不相同。
- 教师还可以自行增加附加实验

www.flyeval.com

口实验步骤设计

□实验步骤设计

基础实验

打开例程,阅读并 运行程序代码,然 后观察并记录分析 数据。

分析实验

指导读者修改例程, 运行修改后的程序 并收集和分析数据。

设计实验

在上述两个实验的 基础上,针对给定 的任务,进行独立 的设计。

□实验步骤设计

•基础实验

9.2.1 实验目标

- (1) 已知
 - 1) 硬件: Pixhawk 自驾仪系统, 多旋翼硬件系统:
 - 2) 软件:MATLAB 2017b 及以上版本,基于 Simulink 的控制器设计与仿真平台,硬件在 环仿真平台,实验指导包"e5.1"(https://flyeval.com/course)。
- (2) 目标
 - 1) 复现四旋翼飞行器的 Simulink 仿真,分析控制分配器的作用;
 - 2) 记录姿态的阶跃响应,并对开环姿态控制系统进行扫频以绘制 Bode 图,分析闭环姿态控制系统的稳定裕度;
 - 3) 完成四旋翼硬件在环仿真。

口实验步骤设计

•分析实验

(2) 目标

- 1) 调节 PID 控制器的相关参数以改善控制性能并记录超调量和调节时间,试得到一组 恰当的参数;
- 2) 使用调试后的参数后,对系统进行扫频以绘制 Bode 图,观察系统幅频响应、相频响应曲线,分析其稳定裕度。

•设计实验

(2) 目标

- 1)建立姿态控制通道的传递函数模型,设计校正控制器,使得姿态角速度环稳态误差 $e_{rss} \leq 0.01$,相位裕度 >65°,截至频率 >10rad/s。姿态角度环截至频率 >5rad/s,相位 裕度 >60°;
- 2) 使用自己设计的控制器进行软件在环仿真实验和硬件在环仿真实验;
- 3) 使用自己设计的控制器进行实飞实验。

所有代码均在实际飞行测试中实施

手动模式切换

失效保护

表. 实验类型、目标和内容

目标	基础实验	分析实验	设计实验
熟悉开发平台	√		√
熟悉分析过程	×	✓	✓
熟悉设计方法	×	×	✓
进行软件在环仿真	✓	✓	✓
进行硬件在环仿真	✓	✓	✓
实际实验测试	×	×	

□教学设计

□修改动力系统设计实验和建模实验的目标

□增加新实验

Reference
Generator

Controller

Dist. est.
State est.
Rejector

The Enforced Plant:

External
Disturbance

Output

Dist. Total
Disturbance
Estimator

预测控制

自抗扰控制

总结

No.	问题
Q1	给定负载重量和悬停时间要求,如何设计多旋翼动力系统?
Q2	给定一个Pixhawk自驾仪,如何校准其加速度计和磁力计,以及如何设计滤波器来估计状态?
Q3	基于设计的多旋翼动力系统和机架飞机生产系统和机身布局,如何建立多旋翼动态模型?
Q4	基于建立的动态模型,如何设计电机控制器,控制分配器和姿态控制器?
Q5	基于设计的姿态控制器,如何设计定点位置控制器?
Q6	基于设计的姿态控制器和定点位置控制器,如何设计半自主模式控制器?
Q7	基于半自主模式控制器,如何为设计的多旋翼设计失效保护逻辑?
Q8	给定一个算法,如何基于模型的设计来实现它?
Q9	如何基于平台开发新功能,例如健康评估或基于视觉的自主飞行?
Q10	如何高效地组织一群工程师进行飞控开发?

BUAA Reliable Flight Control Group

总结

飞行测试

软件在环仿真

硬件在环仿真

2020/4/8

谢谢!

