

Mémoire présenté en vue de l'obtention du diplôme de Master en Sciences Physiques

ÉTUDE DE SPECTRES INFRAROUGES D'ÉTOILES GÉANTES ROUGES ÉVOLUÉES

DÉPARTEMENT DE PHYSIQUE INSTITUT D'ASTRONOMIE ET D'ASTROPHYSIQUE

> réalisé par Margaux VANDERERVEN

> > supervisé par Sophie VAN ECK

ÉTUDE DE SPECTRES INFRAROUGES D'ÉTOILES GÉANTES ROUGES ÉVOLUÉES

Institut d'Astronomie	ET D'ASTROPHYSIQUE
-----------------------	--------------------

Margaux Vandererven

Abstract

La poussière

Contents

1	INTRODUCTION	2
2	Débroussailler	2
3	Molécules	2
4	TS	2
5	Minimisation χ^2	2
6	Macroturbulence	2
7	ABONDANCE CNO	2
8	Métallicité	3
9	Teff	3
10	logg	5
11	vitesse de micro	6
12	NLTE	6
13	abondance d'éléments lourds	6
14	détermination d'abondance	6
A	Table	8

1 Introduction

2 DÉBROUSSAILLER

3 Molécules

Synthèse avec modèle :

Modèle	$T_{\rm eff}$ (K)	$\log g \ (\text{cm } s^{-2})$	[Fe/H] (dex)	$\mathrm{Mass}\;(\mathrm{M}_{\odot})$	[s/Fe] (dex)
A	4000	1.00	-0.50	1.0	+0.00

Notes. 4000g1.0z-0.50m1.0t02a+0.20c+0.346n+0.00o+0.20r+0.00s+0.00

Table 1. Modèles de MARCS utilisés pour les synthèses.

TODO: parler des modèles MARCS et de la grille de modèles.

Les listes de raies nous ont été fournies par Thomas Masseron, la provenance détaillée est donnée en Table 2. Les listes de raies atomiques ont la forme suivante :

longeur d'onde (Å) - excitation (eV) - log gf - log gf - fdamp - gup

on garde du coup 3 listes de raies atomiques et 14 listes de raies moléculaires.

4 TS

5 Minimisation χ^2

$$\chi^2 = \sum \frac{\text{(synth\'etique - observ\'e)}}{\text{observ\'e}}$$

on fait passer une fonction quadratique sur les valeurs de chi2 et on regarde le minimum. si deux valeurs, on interpole une grille et on regarde le minimum. TODO: mettre plot pour expliquer la minimisation.

6 Macroturbulence

Nous commençons par déterminer la macroturbulence à l'aide de raies propres dans le bande H et K. Nous effectuons des synthèses avec le modèle A de la Table 1 et les abondances CNO et paramètres stellaires de la littérature Shetye et al. 2018. Nous procédons par minimisation χ^2 sur différentes raies propres avec comme paramètre libre l'abondance de l'élément et la macroturubulence. Les autres abondances sont scale à partir de Asplund et al. 2007.

7 ABONDANCE CNO

il n'y a pas de raies atomiques de C, N, O dans l'infrarouge, donc nous regarderons les molécules de OH pour l'abondance d'oxygène, de CO pour l'abondance de carbone et de CN pour l'abondance de carbone.

Nous partons des paramètres stellaires de la littérature. [C/Fe]=0.35, [N/Fe]=-0.1, C/O=0.75 $\log(\text{C/O}) = \log \epsilon_C - \log \epsilon_O$

si on prend abu solaire de Magg 2022, [X/Fe] = $\log \epsilon_*$ - $\log \epsilon_{sun}$ - [Fe/H] $\log \epsilon_*$ = [X/Fe] + $\log \epsilon_{sun}$ + [Fe/H] = -0.1 + 7.98 -0.3 = 7.58 pour azote $\log \epsilon_{sun_N}$ = 7.98 $\log \epsilon_{sun_O}$ = 8.77 $\log \epsilon_{sun_C}$ = 8.56 $\log \epsilon_*$ pour C = 0.35 + 8.56 - 0.3

Abondance d'oxygène avec raie de OH, Cabu=8.44 (litt) et Nabu=7.38 (litt) Asplund et al. 2007 avec un ratio de 12C/13C à 40 (valeur standard pour géantes) Données d'entrée : 0.35 + 8.39 - 0.3 = 8.44 pour C -0.1 + 7.78 - 0.3 = 7.38 pour N Paramètres variables : Oabu macro 8.6

-> Oabu = 8.60 ± 0.01 voir Table ??.

Puis on repasse sur les raies de CO pour checker C avec donc Oabu = 8.59 et Nabu = 7.38 (litt) tjrs ratio 12C/13C.

Molécules	Auteur
¹⁶ OH	Brooke
$^{56}\mathrm{FeH}$	Dulick + Hargreaves
$^{28}{ m SiO}$	Barton exomol
$^{28}{ m SiH}$	Yurchenko2017(EXOMOL)
HCl	HITRAN
$^{12}\mathrm{CH}$	Masseron2014
$^{13}\mathrm{CH}$	Masseron2014
AlH	Yurchenko 2018(EXOMOL)
$^{12}{\rm C}^{14}{\rm N}$	Sneden web
$^{13}\mathrm{C}^{14}\mathrm{N}$	Sneden web
YO	HITRAN
$_{ m HF}$	PGopher
$^{12}\mathrm{C}^{16}\mathrm{O}$	HITRAN (Li 2018)
$^{13}\mathrm{C}^{17}\mathrm{O}$	HITRAN (Li 2018)
$^{48}\mathrm{TiO}$	toto Exomol
${ m H}^{12}{ m CN}$	Exomol
${ m H}^{13}{ m CN}$	Exomol
$^{52}\mathrm{CrH}$	Burrows 2002
ZrO	toto Exomol
$^{13}\mathrm{C}^{13}\mathrm{C}$	EXOMOL
$^{12}\mathrm{C}^{13}\mathrm{C}$	EXOMOL
$^{12}\mathrm{C}^{12}\mathrm{C}$	EXOMOL
MgH	Yadin (EXOMOL)
C_2H_2	HITRAN
VO	VOMYT
$^{14}{ m NH}$	Brooke edited by EXOMOL
${\rm H_2O}$	Barber & Tennyson
$^{20}\mathrm{CaH}$	Yadin (EXOMOL)

Table 2. Provenance détaillée des listes de raies moléculaires.

Notes.

8 Métallicité

 $\log\,\varepsilon_{\rm Fe}=7.21$ solaire 7.45 donc [Fe/H] = -0.24 à l'ETL en 16198.56 frot blendée, on l'élimine. 16645.874 pareil, on l'élimine.

9 Teff

pente de quasi 0 donc 4000K bonne Teff à l'ETL

Notes. Variation de la gravité de surface de l'étoile.

Notes. Abondance de Fe en fonction de la longueur d'onde. Dispersion forte, on regarde en détail les raies de Fe I.

Molécules	Bande H	Bande K	Cat.	Molécules	Bande H	Bande K	C
$^{12}{ m C}^{14}{ m N}$	55.14 %	44.35 %	I	²⁸ SiH	< 0.01 %	0.02 %	I
$^{13}\mathrm{C}^{14}\mathrm{N}$	32.00~%	14.51~%	I	$^{28}\mathrm{SiO}$	< 0.01 $%$	0.04~%	I
$^{12}\mathrm{C}^{16}\mathrm{O}$	75.33~%	72.01~%	I	VO	0.03~%	< 0.01 $%$	Ι
$^{13}\mathrm{C}^{17}\mathrm{O}$	0.04~%	1.96~%	II	YO	< 0.01 $%$	< 0.01 $%$	Ι
$^{16}\mathrm{OH}$	59.68~%	31.59~%	I	$^{48}\mathrm{TiO}$	0.06~%	< 0.01 $%$	Ι
$^{56}{ m FeH}$	3.12~%	0.08~%	II	$^{24}{ m MgH}$	< 0.01 $%$	< 0.01 $%$	Ι
$_{ m HF}$	17.79~%	57.16~%	I	AlH	< 0.01 $%$	< 0.01 $%$	I
$^{12}\mathrm{CH}$	4.68~%	10.68~%	I	$^{52}\mathrm{CrH}$	< 0.01 $%$	0.00~%	I
$^{13}\mathrm{CH}$	0.15~%	0.39~%	III	${ m H}^{12}{ m CN}$	< 0.01 $%$	< 0.01 $%$	Ι
$^{14}{ m NH}$	1.57~%	1.23~%	II	${ m H}^{13}{ m CN}$	< 0.01 $%$	< 0.01 $%$	Ι
$^{12}\mathrm{C}^{12}\mathrm{C}$	32.97~%	30.73~%	I	$^{90}{ m ZrO}$	0.02~%	< 0.01 %	I
$^{12}\mathrm{C}^{13}\mathrm{C}$	14.12~%	12.26~%	I	$^{91}{ m ZrO}$	< 0.01 %	< 0.01 %	I
$^{13}\mathrm{C}^{13}\mathrm{C}$	0.38~%	0.25~%	III	$^{92}{ m ZrO}$	< 0.01 %	< 0.01 %	I
C_2H_2	0.00~%	0.00~%	III	$^{93}{ m ZrO}$	0.00~%	0.00~%	I
HCl	0.64~%	0.50~%	III	$^{94}{ m ZrO}$	< 0.01 $%$	< 0.01 %	I
${\rm H_2O}$	1.75~%	6.80~%	II	$^{96}{ m ZrO}$	< 0.01 %	< 0.01 %]
$^{20}\mathrm{CaH}$	< 0.01 %	< 0.01 %	III				

Notes. La catégorie I concerne les molécules contribuant à plus de 10%, la catégorie II celles à moins de 10% et plus de 1% et la catégorie III celles à moins de 1%. Les valeurs dans le colonne "Bande H" et "Bande K" sont le pourcentage en absorption du plus grand extremum du tracé de la différence entre le spectre synthétique atom + mol et le spectre synthétique atomique simple. $\log \epsilon_C = 9.44$, $\log \epsilon_O = 9.56$ et $\log \epsilon_N = 8.38$, MACturb = 8.00 kms-2, MICROturb = 1.70 et z = -0.3, ratio C = , ratio C/O=0.75.

Élément	λ (Å)	λ_{\min} (Å)	$\lambda_{\rm max} \ ({\rm \AA})$	$v_{\rm macro} (kms^{-1})$	$\log \varepsilon$	χ^2
Fe I	15964.865			8.58		
Fe I	22257.107	22256.48	22257.87	8.65	7.10	0.0270
Fe I	22260.18	22259.67	22260.77	8.64	7.09	0.0132
Co I	16757.704			8.61		
Ti I	22211.22	22210.52	22211.91	8.90	4.88	0.0004
Ti I	22232.844			9.00		

Notes.

$10 \log g$

on test plusieurs log g
 avec différents modèles, +1, +2, +0, +3, +4-> best fit +1 à l'ETL sur des raies profondes principalement de Mg et Ca (à tester encore) checker avec les isochrones et les tracés évolutifs l'un suppose l'âge de l'étoile l'autre sa masse

$\log \varepsilon_{ m O}$	$\log \varepsilon_{ m C}$	$\log arepsilon_{ m N}$	$^{12}{\rm C}/^{13}{\rm C}$	Element
8.60 ± 0.01	8.44	7.38	40	$^{16}\mathrm{OH}$
8.59	7.82 ± 0.03	7.38	40	$^{12}\mathrm{C}^{16}\mathrm{O}$
8.59	7.82	7.38	20	$^{13}\mathrm{C}^{17}\mathrm{O}$
8.30 ± 0.02	7.82	7.38	20	$^{16}\mathrm{OH}$
8.30	7.89 ± 0.02	7.38	20	$^{12}\mathrm{C}^{16}\mathrm{O}$
8.33 ± 0.02	7.89	7.38	20	$^{16}\mathrm{OH}$
8.33	7.86 ± 0.03	7.38	20	$^{12}\mathrm{C}^{16}\mathrm{O}$
8.33	7.86	7.84 ± 0.02	20	$^{12}\mathrm{C}^{14}\mathrm{N}$
8.33	7.86	7.84	12	$^{13}\mathrm{C}^{14}\mathrm{N}$
8.31 ± 0.01	7.86	7.84	12	$^{16}\mathrm{OH}$
8.31	7.88 ± 0.03	7.84	12	$^{12}\mathrm{C}^{16}\mathrm{O}$
8.31	7.88	7.84 ± 0.02	12	$^{12}\mathrm{C}^{14}\mathrm{N}$

Notes. Chaque synthèse est réalisée sur des raies de l'élement se trouvant en 4ème colonne. Les paramètres fixés sont en noir et le paramètre déterminé en bleu.

11 vitesse de micro

regarder avec equuidt la largeur équivalente sinon regarder avec les synthèses et plot python

12 NLTE

faire tourner le code poiur les atomes pas possible de faire de hors etl pour les molécules, même pas pour tous les atomes

13 abondance d'éléments lourds

regarder ce que je peux identifier

Ca I, Mg I, Al I, Si I, K I, Ca I, Sc I, Ti II, Ti II, V I, Mn I, Fe I, Co I, Ni I, Cu I, Y I, Zr I, Ba I, Ce III, Ce III, Er II, Yb II.

14 détermination d'abondance

	λ	$\log gf$	$\lambda \mathrm{min}$	$\lambda \max$	χ^2	$\log \varepsilon$
Na I	19452.98	-0.65	19451.82	19453.88		
	19505.74	-1.13	19504.79	19506.51		
	19776.77	-0.39	19775.41	19777.84		
	19853.09	0.40	19851.97	19854.25		
	19862.19	-1.14	19861.22	19863.30		

Al I

References

- M. Asplund, N. Grevesse, and A. J. Sauval. The Solar Chemical Composition. Space Science Reviews, 130:105–114, June 2007. ISSN 0038-6308. doi: 10.1007/s11214-007-9173-7. URL https://ui.adsabs.harvard.edu/abs/2007SSRv..130..105G. ADS Bibcode: 2007SSRv..130..105G.
- S. Shetye, S. V. Eck, A. Jorissen, H. V. Winckel, L. Siess, S. Goriely, A. Escorza, D. Karinkuzhi, and B. Plez. S stars and s-process in the Gaia era I. Stellar parameters and chemical abundances in a sub-sample of S stars with new MARCS model atmospheres. *Astronomy & Astrophysics*, 620:A148, Dec. 2018. ISSN 0004-6361, 1432-0746. doi: 10.1051/0004-6361/201833298. URL https://www.aanda.org/articles/aa/abs/2018/12/aa33298-18/aa33298-18.html. Publisher: EDP Sciences.

A Table

14814.25 14815.41 16284.77 16284 14825.87 14826.95 16316.32 16315 14896.89 14897.82 16318.69 16318 14988.28 14989.29 16324.45 16323 15017.25 15018.10 16436.62 16436 15194.00 15194.93 16466.92 16466 15343.33 15344.26 16486.67 16486 15394.21 15395.14 16506.29 16505 15395.22 15396.31 16517.22 16516 15590.94 15591.95 16645.87 16645 15648.03 15648.96 17204.30 17203
14814.25 14815.41 16284.77 16284.27 14825.87 14826.95 16316.32 16315.78 14896.89 14897.82 16318.69 16318.0° 14988.28 14989.29 16324.45 16323.9° 15017.25 15018.10 16436.62 16436.19 15194.00 15194.93 16466.92 16466.2 15343.33 15344.26 16486.67 16486.0° 15394.21 15395.14 16506.29 16505.7° 15395.22 15396.31 16517.22 16516.6° 15590.94 15591.95 16645.87 16645.3 15648.03 15648.96 17204.30 17203.7
14825.87 14826.95 16316.32 16315.75 14896.89 14897.82 16318.69 16318.07 14988.28 14989.29 16324.45 16323.96 15017.25 15018.10 16436.62 16436.19 15194.00 15194.93 16466.92 16466.24 15343.33 15344.26 16486.67 16486.07 15394.21 15395.14 16506.29 16505.74 15395.22 15396.31 16517.22 16516.66 15590.94 15591.95 16645.87 16645.31 15648.03 15648.96 17204.30 17203.74
14896.89 14897.82 16318.69 16318.07 14988.28 14989.29 16324.45 16323.96 15017.25 15018.10 16436.62 16436.19 15194.00 15194.93 16466.92 16466.24 15343.33 15344.26 16486.67 16486.07 15394.21 15395.14 16506.29 16505.74 15395.22 15396.31 16517.22 16516.66 15590.94 15591.95 16645.87 16645.31 15648.03 15648.96 17204.30 17203.74
14988.28 14989.29 16324.45 16323.96 15017.25 15018.10 16436.62 16436.19 15194.00 15194.93 16466.92 16466.24 15343.33 15344.26 16486.67 16486.07 15394.21 15395.14 16506.29 16505.74 15395.22 15396.31 16517.22 16516.66 15590.94 15591.95 16645.87 16645.31 15648.03 15648.96 17204.30 17203.74
15017.25 15018.10 16436.62 16436.19 15194.00 15194.93 16466.92 16466.24 15343.33 15344.26 16486.67 16486.07 15394.21 15395.14 16506.29 16505.74 15395.22 15396.31 16517.22 16516.66 15590.94 15591.95 16645.87 16645.31 15648.03 15648.96 17204.30 17203.74
15194.00 15194.93 16466.92 16466.24 15343.33 15344.26 16486.67 16486.07 15394.21 15395.14 16506.29 16505.74 15395.22 15396.31 16517.22 16516.66 15590.94 15591.95 16645.87 16645.31 15648.03 15648.96 17204.30 17203.74
15343.33 15344.26 16486.67 16486.07 15394.21 15395.14 16506.29 16505.74 15395.22 15396.31 16517.22 16516.66 15590.94 15591.95 16645.87 16645.31 15648.03 15648.96 17204.30 17203.74
15394.21 15395.14 16506.29 16505.74 15395.22 15396.31 16517.22 16516.66 15590.94 15591.95 16645.87 16645.31 15648.03 15648.96 17204.30 17203.74
15395.22 15396.31 16517.22 16516.66 15590.94 15591.95 16645.87 16645.31 15648.03 15648.96 17204.30 17203.74
15590.94 15591.95 16645.87 16645.31 15648.03 15648.96 17204.30 17203.74
15648.03 15648.96 17204.30 17203.74
15723.00 15724.01 17706.62 17705.95
10,100.00
15741.43 15742.36 17721.09 17720.51
15817.57 15818.58 17721.37 17720.51
15821.21 15822.14 17771.12 17770.46
15822.30 15823.30 17932.60 17931.95
15910.82 15911.83 19923.34 19922.62
15964.27 15965.43 21238.47 21237.74
16040.17 16041.10 22257.11 22256.07
16042.18 16043.19 22260.18 22259.25
16125.45 16126.45 22392.88 22392.15
16164.40 16165.57 22419.98 22419.14
16180.44 16181.29 22832.36 22831.40

Notes.

¹⁶ OH	$\log gf$	λ_{\min}	$\lambda_{ m max}$	$\log \varepsilon_{O_1}$	χ_1^2
14661.14	-5.99	14660.60	14661.59	8.61	0.015
15002.15	-5.65	15001.67	15002.67	8.62	0.002
15003.12	-5.65	15002.67	15003.64	8.61	0.002
15130.92	-5.57	15130.32	15131.53	8.62	0.002
15266.17	-5.50	15265.54	15266.76	8.61	0.002
15278.52	-5.45	15278.03	15279.16	8.59	0.009
15391.20	-5.51	15390.49	15391.93	8.60	0.001
15409.17	-5.43	15408.47	15409.77	8.60	0.002
15428.40	-5.42	15427.96	15429.06	8.61	0.001
15429.69	-5.15	15429.03	15430.13	8.60	0.001
15505.75	-5.38	15504.80	15506.66	8.59	0.005
15568.78	-5.34	15568.17	15569.43	8.60	0.005
15651.90	-5.20	15651.33	15652.41	8.59	0.003
15719.69	-5.32	15719.09	15720.36	8.60	0.001
15755.52	-5.17	15754.86	15756.04	8.57	0.005
15756.53	-5.17	15756.06	15757.10	8.58	0.003
16052.77	-4.98	16052.15	16053.29	8.58	0.006
16247.88	-5.18	16247.50	16248.78	8.57	0.006
16312.92	-5.08	16311.80	16313.42	8.58	0.003
16347.49	-5.00	16347.12	16348.07	8.62	0.001
16368.14	-4.86	16367.51	16368.76	8.59	0.004
16662.20	-5.07	16661.77	16662.85	8.61	0.001
16729.78	-4.79	16729.47	16730.32	8.58	0.004
16904.28	-4.71	16903.62	16904.82	8.59	0.005
17322.25	-4.63	17321.83	17322.84	8.62	0.003
17423.86	-4.50	17423.35	17424.43	8.59	0.004

$^{12}{\rm C}^{16}{\rm O}$	λ_{\min}	$\lambda_{ m max}$
15780.09	15779.54	15780.63
16237.90	16237.36	16238.29
16314.39	16313.89	16314.89
17026.00	17025.60	17026.45
17081.80	17081.37	17082.30
17129.35	17128.77	17129.85
23073.90	23073.11	23074.49
23109.40	23108.55	23110.21

$^{12}{ m C}^{14}{ m N}$	λ_{\min}	$\lambda_{ m max}$	
14744.25	14743.77	14744.54	