五 三、Euler方程
$$a_{n}x^{n}y^{(n)} + a_{n-1}x^{n-1}y^{(n-1)} + \dots + a_{1}xy' + a_{0}y = f(x) \quad (3.1)$$

工 其中 $a_n, a_{n-1}, \dots, a_1, a_0$ 是实常数且 $a_n \neq 0$

假设
$$x \neq 0$$
 我们只考虑 $x > 0$,
当 $x < 0$ 时,只需令 $t = -x$ 即可
$$a_n t^n \frac{d^n y}{dt^n} + a_{n-1} t^{n-1} \frac{d^{n-1} y}{dt^{n-1}} + \dots + a_1 t \frac{dy}{dt} + a_0 y = f(-t)$$
 $(t > 0)$ 求出它的解,再用 $-x$ 代换 t 就得方程(3.1)关于 $x < 0$ 的解

$$\frac{dy}{dx} = \frac{dy}{d\tau} \cdot \frac{d\tau}{dx} = \frac{1}{x} \frac{dy}{d\tau}$$

$$\frac{y}{2} = \frac{1}{x^2} \left(\frac{d^2 y}{d\tau^2} - \frac{dy}{d\tau} \right)$$

$$\frac{d^3y}{dx^3} = \frac{1}{x^3} \left(\frac{d^3y}{d\tau^3} - 3\frac{d^2y}{d\tau^2} + 2\frac{dy}{d\tau} \right)$$

作自变量变换
$$\tau = \ln x$$
 ,则 $x = e^{\tau}$

$$\frac{dy}{dx} = \frac{dy}{d\tau} \cdot \frac{d\tau}{dx} = \frac{1}{x} \frac{dy}{d\tau}$$

$$\frac{d^2y}{dx^2} = \frac{1}{x^2} (\frac{d^2y}{d\tau^2} - \frac{dy}{d\tau})$$

$$\frac{d^3y}{dx^3} = \frac{1}{x^3} (\frac{d^3y}{d\tau^3} - 3\frac{d^2y}{d\tau^2} + 2\frac{dy}{d\tau})$$
—般地
$$\frac{d^ky}{dx^k} = \frac{1}{x^k} (\frac{d^ky}{d\tau^k} - b_{k-1} \frac{d^{k-1}y}{d\tau^{k-1}} + \dots + b_1 \frac{dy}{d\tau})$$

例 1: 解方程 $x^2y'' + 3xy' + y = 0$

解: 令
$$\tau = \ln x$$
,原方程化为 $\frac{d^2y}{d\tau^2} + 2\frac{dy}{d\tau} + y = 0$
特征方程 $\lambda^2 + 2\lambda + 1 = 0$ $\therefore \lambda_{1,2} = -1$
通解 $y = (c_1 + c_2\tau)e^{-\tau} = (c_1 + c_2\ln x)x^{-1}$ 。
例 2: 解方程 $x^2y'' - 3xy' + 3y = 2x^4e^x$ $(x > 0)$
解: 令 $\tau = \ln x$,方程化为 $\frac{d^2y}{d\tau^2} - 4\frac{dy}{d\tau} + 3y = 2e^{4\tau}e^{e^{\tau}}$

例 2: 解方程
$$x^2y'' - 3xy' + 3y = 2x^4e^x$$
 $(x > 0)$

$$\frac{1}{4} \frac{d^2y}{d\tau^2} - 4 \frac{dy}{d\tau} + 3y = 2e^{4\tau}e^{e^{\tau}}$$

特征方程:
$$\lambda^2 - 4\lambda + 3 = 0 \implies \lambda_1 = 1, \lambda_2 = 3$$

 $y_p(\tau) = \int_0^{\tau} K(\tau - s) f(s) ds = \int_0^{\tau} \frac{1}{2} (e^{3(\tau - s)} - e^{(\tau - s)}) \cdot 2e^{4s} e^{e^s} ds$

特征 万程:
$$\lambda - 4\lambda + 3 = 0$$
 $\Rightarrow \lambda_1 = 1, \lambda_2 = 3$

$$y_p(\tau) = \int_0^\tau K(\tau - s) f(s) ds = \int_0^\tau \frac{1}{2} (e^{3(\tau - s)} - e^{(\tau - s)}) \cdot 2e^{4s} e^{e^s} ds$$

$$= e^{3\tau} \int_0^\tau e^s e^{e^s} ds - e^\tau \int_0^\tau e^{3s} e^{e^s} ds$$

$$= e^{3\tau} (e^{e^\tau} - e) - e^\tau \left[(e^{2\tau} - 2e^\tau + 2)e^{e^\tau} - e \right]$$

$$= 2(e^{2\tau} - e^\tau) e^{e^\tau} - e \cdot e^{3\tau} + e \cdot e^\tau$$
通解:
$$y = c_1 e^{3\tau} + c_2 e^\tau + 2(e^{2\tau} - e^\tau) e^{e^\tau}$$

$$= c_1 x^3 + c_2 x + 2(x^2 - x) e^x$$

例 3: 解方程 $x^2y'' + xy' + y = 2\sin \ln x$ (x > 0)

例 3: 解方程
$$x^2y'' + xy' + y = 2\sin\ln x$$
 (x)
解: 令 $\tau = \ln x$, 方程化为 $\frac{d^2y}{d\tau^2} + y = 2\sin\tau$
特征方程 $\lambda^2 + 1 = 0$ $\Rightarrow \lambda_1 = i, \lambda_2 = -i$
设特解为 $y_p(\tau) = (A\cos\tau + B\sin\tau)\tau$, 代入方程 $A = -1, B = 0$
故通解为: $y = c_1\cos\tau + c_2\sin\tau - \tau\cos\tau$ $= c_1\cos\ln x + c_2\sin\ln x - (\ln x)\cos\ln x$

特征方程
$$\lambda^2 + 1 = 0 \implies \lambda_1 = i, \lambda_2 = -i$$

• 设特解为 $y_p(\tau) = (A\cos\tau + B\sin\tau)\tau$, 代入方程得

$$A=-1,B=0$$

$$y = c_1 \cos \tau + c_2 \sin \tau - \tau \cos \tau$$

$$= c_1 \cos \ln x + c_2 \sin \ln x - (\ln x) \cos \ln x$$

二例 4: 解方程 $x^3y''' - x^2y'' + 2xy' - 2y = x^3 + 3x$ (x > 0)

$$\frac{d^{2}y}{dt} = \ln x$$
 , 万程化为 $\frac{d^{2}y}{dt} + 5\frac{dy}{dt} - 2y = e^{3\tau} + 3e^{3\tau}$

解: 令
$$\tau = \ln x$$
, 方程化为
$$\frac{d^3y}{d\tau^3} - 4\frac{d^2y}{d\tau^2} + 5\frac{dy}{d\tau} - 2y = e^{3\tau} + 3e^{\tau}$$
 特征方程是 $\lambda^3 - 4\lambda^2 + 5\lambda - 2 = 0$ $\therefore \lambda_1 = \lambda_2 = 1, \lambda_3 = 2$

$$v = d^2v + 3n - 2 - 0 \dots n_1 - n_2 - 1, n_3 - 2$$

求
$$\frac{d^3y}{d\tau^3} - 4\frac{d^2y}{d\tau^2} + 5\frac{dy}{d\tau} - 2y = e^{3\tau}$$
 的特解 $y_{p1}(\tau)$ 设 $y_{p1}(\tau) = Ae^{3\tau}$ 代入方程解得 $A = \frac{1}{4}$

求 $\frac{d^3y}{d\tau^3} - 4\frac{d^2y}{d\tau^2} + 5\frac{dy}{d\tau} - 2y = 3e^{\tau}$ 的特解 $y_{p2}(\tau)$ 设 $y_{p2}(\tau) = B\tau^2 e^{\tau}$ 代入方程得 $B = -\frac{3}{2}$ ∴ 通解 $y = c_1 e^{\tau} + c_2 \tau e^{\tau} + c_3 e^{2\tau} + \frac{1}{4} e^{3\tau} - \frac{3}{2} \tau^2 e^{\tau}$ $= c_1 x + c_2 x \ln x + c_3 x^2 + \frac{1}{4} x^3 - \frac{3}{2} x \ln^2 x$

设
$$y_{p2}(\tau) = B \tau^2 e^{\tau}$$
 代入方程得 $B = -\frac{3}{2}$

$$1x + c_2 x \ln x + c_3 x^2 + \frac{1}{4} x^3 - \frac{3}{2} x \ln^2 x$$

四、高阶微分方程的降阶

4.1 不显含未知函数的方程

$$F(x, y', y'', \dots, y^{(n)}) = 0$$

令
$$p = y'$$
, 则方程化为 $F(x, p, p', \dots p^{(n-1)}) = 0$

n-1阶方程

$$F(x, y^{(k)}, \dots, y^{(n)}) = 0$$

令
$$p = y^{(k)}$$
, 则方程化为 $F(x, p, p', \dots p^{(n-k)}) = 0$

n-k阶方程

例 1: 解方程:
$$y''' - \frac{1}{x}y'' = 0$$
解: $\Rightarrow p = y''$, 方程化为 $p' - \frac{1}{x}p = 0$
其通解为 $p = cx$, 即 $y'' = cx$
两次积分得 $y = c_1 x^3 + c_2 x + c_3$ 。

例 2: 解方程 $(1+x^2)y'' + y'^2 + 1 = 0$
解: $\Rightarrow y' = p$,原方程化为 $(1+x^2)\frac{dp}{dp}$

解: 令 y' = p, 原方程化为 $(1+x^2)\frac{dp}{dx} + p^2 + 1 = 0$

$$\Rightarrow \frac{dp}{1+p^{2}} = -\frac{dx}{1+x^{2}}$$

$$\arctan p = -\arctan x + \frac{c}{c_{1}}$$

$$p = \frac{\tan c_{1} - x}{1+x \tan c_{1}} = \frac{c_{1} - x}{1+c_{1}x}$$

$$\Rightarrow c_{1} \neq 0 \text{ pd},$$

$$y = \int p dx = \int \frac{c_{1} - x}{1+c_{1}x} dx = \frac{1+c_{1}^{2}}{c_{1}^{2}} \ln(1+c_{1}x) - \frac{1}{c_{1}}x + c_{2}$$

· J

例 3: 解初值问题

$$\begin{cases} y'' = \frac{y'}{x} + \frac{x^2}{y'} \\ y(2) = 0, y'(2) = 4 \end{cases}$$

解: 令
$$p = y'$$
 方程化为
$$\begin{cases} \frac{dp}{dx} = \frac{p}{x} + \frac{x^2}{p} \\ p(2) = 4 \end{cases}$$

令
$$z = p^2$$
 方程化为
$$\begin{cases} \frac{dz}{dx} = \frac{2}{x}z + 2x^2\\ z(2) = 16 \end{cases}$$

由常数变易公式

由常数变易公式
$$z = e^{\int_{x}^{2} dx} (c + \int 2x^{2}e^{-\int_{x}^{2} dx} dx) = cx^{2} + 2x^{3}$$

$$16 = c \cdot 2^{2} + 2 \cdot 2^{3} \quad \therefore c = 0$$

$$p^{2} = 2x^{3} \quad \therefore p = \pm \sqrt{2}x^{\frac{3}{2}}$$

$$\left\{ \frac{dy}{dx} = \sqrt{2}x^{\frac{3}{2}} \right\}$$

$$y(2) = 0$$

$$\therefore \text{ If } y = \frac{2}{5}\sqrt{2}x^{\frac{5}{2}} - \frac{16}{5}$$

$$16 = c \cdot 2^2 + 2 \cdot 2^3 \qquad \therefore c = 0$$

$$p^2 = 2x^3 \quad \therefore p = \pm \sqrt{2}x^{\frac{3}{2}} \qquad (负号舍去)$$

$$\begin{cases} \frac{dy}{dx} = \sqrt{2}x^{\frac{3}{2}} \\ y(2) = 0 \end{cases}$$

$$\therefore 解 \quad y = \frac{2}{5}\sqrt{2}x^{\frac{5}{2}} - \frac{16}{5}$$

4.2 不显含自变量 x的方程

$$F(y,y',\cdots,y^{(n)})=0$$

令
$$p = y'$$
, 并把 p 看作 y 的函数,则
$$y' = p$$

$$y'' = \frac{dp}{dx} = \frac{dp}{dy} \cdot \frac{dy}{dx} = p \frac{dp}{dy}$$

$$y''' = \frac{d}{dx}(p\frac{dp}{dy}) = \frac{d}{dy}(p\frac{dp}{dy})\frac{dy}{dx} = p^2\frac{d^2p}{dy^2} + p(\frac{dp}{dy})^2$$

用数学归纳法不难证明 $y^{(k)}$ 可以用 $p, \frac{dp}{dy}, \cdots, \frac{d^{k-1}p}{dy^{k-1}}$ 表示,得到: $G(y, p, \frac{dp}{dy}, \cdots, \frac{d^{n-1}p}{dy^{n-1}}) = 0$ n-1阶方程

得到:
$$G(y, p, \frac{dp}{dv}, \dots, \frac{d^{n-1}p}{dv^{n-1}}) = 0$$

例 3: 求 $2yy'' = y'^2 + y^2$ 的通解。

解: 令
$$p = y'$$
 方程化为 $2yp \frac{dp}{dy} = p^2 + y^2$

解得 $z = c_1 y + y^2$

$$p^2 = c_1 y + y^2 \Longrightarrow y' = \pm \sqrt{c_1 y + y^2}$$

积分可得,
$$\ln(y + \frac{c_1}{2} + \sqrt{y^2 + c_1 y}) = \pm x + c_2$$
。

例 4: 解初值问题 $\begin{cases} y'' = e^{2y} \\ y(0) = 0, y'(0) = 1 \end{cases}$ 解: 令 p = y':,方程化为 $p \frac{dp}{dy} = e^{2y}$ $\frac{1}{2}(p^2 - 1) = \frac{1}{2}(e^{2y} - 1)$ $\therefore p = \pm e^y \qquad (负号舍去)$ 由 $\frac{dy}{dx} = e^y$ 解得 $-e^{-y} = x + c$,
代入初始条件 y(0) = 0 $\therefore c = -1$

解: 令
$$p = y'$$
:, 方程化为 $p \frac{dp}{dy} = e^{2y}$, $p(0) = 1$

由
$$\frac{dy}{dx} = e^y$$
 解 得 $-e^{-y} = x + c$

代入初始条件
$$y(0) = 0$$
 $\therefore c = -1 \Rightarrow y = -\ln |1 - x|$ 。

$\frac{1}{1}$

4.3 齐次方程

若对任意 $\lambda \neq 0$ $F(x,\lambda y,\lambda y',\dots,\lambda y^{(n)}) = \lambda^m F(x,y,y',\dots y^{(n)})$ 则称微分方程 $F(x,y,y',\dots y^{(n)}) = 0$ 是齐次方程.

如果取
$$\lambda = \frac{1}{y}$$
,则

$$F(x,y,y',\cdots y^{(n)}) = y^m F(x,1,\frac{y'}{y},\cdots,\frac{y^{(n)}}{y})$$

引入新的未知条件: $z = \frac{1}{y}y'$, 从 y' = yz 有

$$y'' = y'z + yz' = y(z^2 + z')$$

于是
$$\frac{1}{y}y''=z'+z^2$$

用数学归纳法可以证明 $\frac{1}{y}y^{(k)}$ 能够用 $z,z',\cdots z^{(k-1)}$ 表

示,方程化为以z为未知函数的n-1阶方程。

例 5: 解方程
$$x^2yy'' = (y - xy')^2$$

解: 当
$$y=0$$
时,它是一个解 $y=0$

当
$$y \neq 0$$
 时,令 $z = \frac{1}{y} y'$,则

$$y' = yz$$
, $y'' = y(z' + z^2)$

原方程化为
$$x^2z'+2xz=1$$

其解为
$$z = \frac{1}{x} + \frac{c_1}{x^2}$$
。

得通解
$$y = e^{\int z dx} = e^{\ln|x| - \frac{c_1}{x} + \ln c_2} = c_2 x e^{-\frac{c_1}{x}}$$
(它包含了解 $y = 0$)

4.4 全微分方程

若存在函数G, 使得

$$F(x, y, y', \dots, y^{(n)}) = \frac{d}{dx}G(x, y, y', \dots y^{(n-1)})$$

则称方程 $F(x,y,y',\cdots y^{(n)})=0$ 是全微分方程.

化为
$$n-1$$
阶方程 $G(x,y,y',\cdots y^{(n-1)})=c_1$

若存在某个函数 $\mu(x, y, y', \dots y^{(n-1)})$ 能使 $\mu(x, y, y', \dots y^{(n-1)})$ $F(x, y, y', \dots y^{(n)}) = 0$ 成为全微分方程,此时称函数 μ 是积分因子。

例 6: 解方程
$$(1+y^2)y''-2y(y')^2=0$$

解: 首先 y = 0 是一个特解;

当
$$y \neq 0$$
 时,取 $\mu = \frac{1}{(1+y^2)y'}$,有 $\frac{y''}{y'} - \frac{2yy'}{1+y^2} = 0$

即
$$\frac{d}{dx} (\ln |y'| - \ln(1 + y^2)) = 0$$

于是 $\ln |y'| - \ln(1 + y^2) = \ln c_1$

$$\Rightarrow y' = c_1(1 + y^2)$$

积分可得
$$y = tan(c_1x + c_2)$$
。