Outline

Introduction

The hidden secret of machine learning

The algorithm

Pr k Nearest Neighbours Extensions and parameters

Activities

% Created 2023-09-26 Di 08:17 % Intended LaTeX compiler: pdflatex [presentation] beamer [utf8] in putenc [T1] fontenc graphicx grifile longtable wrapfig rotating [normalem] ulem amsmath textcomp amssymb capt-of hyperref $\{\{\{\mathbb{E}\}\}\}\}$ $\{\{\{\mathbb{I}\}\}\}$ #1 $\{\{\{\mathbb{F}\}\}\}\}$ * arg max * arg min $\triangleq\}\mathbb{R}\}$ Pr Θ } Pr θ } [] beamerthemedefault $\{\text{pdfauthor}=\{\text{Christos Dimitrakakis}\}, \text{pdftitle}=\{\text{Nearest Neighbour Algorithms}\}, \text{pdfkeywords}=\{\}, \text{pdfsubject}=\{\}, \text{pdfcreator}=\{\text{Emacs 26.3 (Org mode 9.1.9)}\}, \text{pdflang}=\{\text{English}\}\}$

Nearest Neighbour Algorithms

Christos Dimitrakakis

October 10, 2023

Outline

Introduction

The hidden secret of machine learning

The algorithm

Pr k Nearest Neighbours Extensions and parameters

Activities

Supervised learning

- ▶ Given labelled training examples $Pr(x_1, y_1), ...(x_T, y_T)$ where
- $ightharpoonup \Pr x_t \in
 ightharpoonup \operatorname{are features}$
- $ightharpoonup \Pr y_t \in Y \text{ are labels}$

Classification

 $ightharpoonup \Pr Y = \{1, \dots, m\}$ are discrete labels

Regression

 $ightharpoonup \Pr Y = ^m \text{ are continuous values}$

The kNN algorithm idea

- Assume an unknown example is similar to its neighbours
- Smoothness allows us to make predictions
- Lots of other algortihms

Performance of KNN on image classification

- ► Really simple!
- ► Can outperform really complex models!

The Nearest Neighbour algorithm

Pseudocode

- ▶ Input: Data $Pr(x_t, y_t)_{t=1}^T$, test point Prx, distance Prd
- ▶ $\Pr t^* =_t d(x_t, x) / \text{How do we implement this?}$
- ightharpoonup Return $\Pr{\hat{y}_t = y_{t^*}}$

Classification

$$\Pr \hat{y}_t \in [m] \equiv \{1, \dots, m\}$$

Regression

$$\Pr \hat{y}_t \in {}^m$$

The k-Nearest Neighbour algorithm

Pseudocode

- ► Input: Data $Pr(x_t, y_t)_{t=1}^T$, test point Prx, distance Prd, neighbours Prk
- ► Calculate $Pr h_t = d(x_t, x)$ for all Pr t.
- ▶ Get sorted indices $\Pr s = \operatorname{argsort}(h)$ so that $\Pr d(x_{s_i}, x) \leq d(x_{s_{i+1}}, x)$ for all $\Pr i$. (How?)
- ightharpoonup Return $\Pr \sum_{i=1}^k y_{s_i}/k$.

Classification

- ▶ It is not convenient to work with discrete labels.
- ► We use a one-hot encoding (0, ..., 0, 1, 0, ..., 0)\$.
- ▶ $\Pr y_t \in \{0,1\}^m$ with $\Pr \|y_t\|_1 = 1$, so that the class of the $\Pr t$ -th example is $\Pr j$ iff $\Pr y_{t,j} = 1$.

Regression

 \triangleright Pr $y_t \in {}^m$, so we need do nothing

The number of neighbours

Pr k = 1

- How does it perform on the training data?
- How might it perform on unseen data?

Pr k = T

- How does it perform on the training data?
- How might it perform on unseen data?

Distance function

For data in Prⁿ, Pr p-norm

$$d(x,y) = ||x - y||_p$$

Scaled norms

When features having varying scales:

$$d(x,y) = \|Sx - Sy\|_p$$

Or pre-scale the data

Complex data

- Manifold distances
- Graph distance

Distances

A distance $\Pr d(\cdot, \cdot)$:

- ldentity Pr d(x,x) = 0.
- Positivity Pr d(x, y) > 0 if $Pr x \neq y$.
- Symmetry Pr d(y,x) = d(x,y).
- ▶ Triangle inequality $\Pr d(x,y) \le d(x,z) + d(z,y)$.

For data in Prⁿ, \$p\$-norm

$$d(x,y) = \|x - y\|_p$$

Norms;

A norm $Pr \| \cdot \|$

- ightharpoonup Zero element Pr ||0|| = 0.
- ► Homogeneity $\Pr \|cx\| = c\|x\|$ for any scalar $\Pr a$.
- ► Triangle inequality $Pr ||x + y|| \le ||x|| + ||y||$.

\$p\$-norm

$$||z||_p = \left(\sum_i z_i^p\right)^{\frac{1/p}{p}}$$

Neighbourhood calculation

If we have Pr T datapoints

Sort and top Pr K.

► Requires Pr O(T In T) time

Use the Cover-Tree or KD-Tree algorithm

- ► Requires Pr O(cK In T) time.
- Pr c depends on the data distribution.

Class data

Fill in the class data

Figure: Link to spreadsheet

KNN activity

- ► Implement nearest neighbours
- ► Introduction to scikitlearn nearest neighbours