FUBIAN 04

MKQ

September 12, 2019

Contents

1	上节	课																			1
	1.1	基本性	基本性质											1							
		1.1.1	sir	1 Z (cosz	\sin	hz	cos	sh [的质	引其	月.									1
		1.1.2	这	些图	敛数	在复	!平	面	的氢	計	į										1
		1.1.3	所	有三	三角	双曲	恒	[等	式在	E复	E平	面	上	都	成	立					2
		1.1.4	这	些图	敛数	在复	!平	面	上是	是无	界	的									2
	1.2	对数函	敛数																		2
		1.2.1	栗	子																	2

1 上节课

将三角函数, e^{x} 之类的推广到了复平面,还有 sinh,cosh

1.1 基本性质

1.1.1 sin z cosz sinhz cosh 的周期

- $\sin z \cos z$: 2π
- sinhz coshz: 2π i

1.1.2 这些函数在复平面的零点

• sinz:nπ (实数轴上的)

$$e^{iz} = e^{-iz} \rightarrow e^{iz} = +/-1$$

 $e^{-y} = 1(\)e^{ix} = +/-1$

• $\cos z:(n+1/2\pi)$

- $\sinh z:n\pi$ i
- $\cosh z:(n+1/2\pi)i$
- 1.1.3 所有三角双曲恒等式在复平面上都成立
- 1.1.4 这些函数在复平面上是无界的
 - 1. 例题 cosz 的实部虚部还有模长

$$z=x+iy, cosz=\frac{e^{i(x+iy)}+e^{-i(x+iy)}}{2}$$

然后依次展开

$$cosx\frac{e^y+e^{-y}}{2}+sinx\frac{e^y+e^{-y}}{2}i$$

1.2 对数函数

$$\begin{split} e^w &= z \neq 0 \rightarrow w = Lnz \\ e^w &= z = |z|e^{iArgz} \\ Lnz &= ln|z| + iArgz \\ lnz &= ln|z| + iargz \end{split}$$

1.2.1 栗子