ECE 4750 PSET 4

Tim Yao (ty252)

Nov 25, 2015

Worked with Gautam Ramaswamy, Gaurab Bhattacharya, and Sacheth Hegde.

1 Tree Network Topologies

1.a Baseline I3L Microarchitecture

Cycle:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
mul r1, r2, r3	F	D	Ι	Y0	Y1	Y2	Y 3	W																					
mul r4, r1, r5		F	D	Ι	Ι	Ι	Ι	Y0	Y1	Y2	Y3	W																	
div r6, r7, r8			F	D	D	D	D	I	Z	Z	Z	Z	W																
div r9, r10, r11				F	F	F	F	D	I	Ι	I	Ι	Z	\mathbf{Z}	Z	Z	W												
div r12, r13, r14								F	D	D	D	D	Ι	Ι	Ι	Ι	Z	Z	Z	Z	W								
mul r15, r12, r16									F	F	F	F	D	D	D	D	Ι	Ι	Ι	Ι	Y0	Y1	Y2	Y3	W				
mul r17, r15, r18													F	F	F	F	D	D	D	D	Ι	Ι	Ι	Ι	Y0	Y1	Y2	Y3	W

Figure 1: Pipeline Diagram for Baseline I3L Architecture

The total issue to commit cycle count is 27.

1.b Schedule Oldest Ready Instruction First on IO2L Microarchitecture

Cycle:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
mul r1, r2, r3	Ι	Y0	Y1	Y2	Y3	W	С																	
mul r4, r1, r5					Ι	Y0	Y1	Y2	Y3	W	С													
div r6, r7, r8		Ι	Z	Z	Z	Z	W	r	r	r	r	С												
div r9, r10, r11						Ι	Z	Z	Z	Z	W	r	С											
div r12, r13, r14										Ι	Z	Z	Z	\mathbf{Z}	W	С								
mul r15, r12, r16														Ι	Y0	Y1	Y2	Y3	W	С				
mul r17, r15, r18																		I	Y 0	Y1	Y2	Y 3	W	С

Figure 2: Pipeline Diagram for IO2L Architecture

The total issue to commit cycle count is 24.

1.c Optimal Scheduling on IO2L Microarchitecture

Cycle:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
mul r1, r2, r3		Ι	Y0	Y1	Y2	Y3	W	С										
mul r4, r1, r5						Ι	Y0	Y1	Y2	Y3	W	С						
div r6, r7, r8					Ι	Z	Z	Z	Z	W	r	r	С					
div r9, r10, r11									Ι	Z	Z	Z	Z	W	С			
div r12, r13, r14	Ι	Z	Z	Z	Z	W	r	r	r	r	r	r	r	r	r	С		
mul r15, r12, r16							I	Y0	Y1	Y2	Y3	W	r	r	r	r	С	
mul r17, r15, r18											Ι	Y0	Y1	Y2	Y3	W	r	С

Figure 3: Pipeline Diagram for IO2L Architecture

The total issue to commit cycle count is 18.

1.d Scheduling Comparison

TODO!

2 Register Renaming

2.a Architectural RAW, WAW, and WAR Dependencies

```
1 mul r1, r2, r3
2 mul r4, r1, r5
3 addu r6, r7, r8
4 mul r1, r2, r5
5 addu r6, r6, r9
```

2.b Pipeline Diagram with Register Renaming

Cycle:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
mul r1, r2, r3	F	D	Ι	Y0	Y1	Y2	Y3	W	С							
mul r4, r1, r5		F	D	i	i	i	I	Y0	Y1	Y2	Y3	W	С			
addu r6, r7, r8			F	D	I	X	W	r	r	r	r	r	r	С		
mul r1, r2, r5				F	D	I	Y0	Y1	Y2	Y3	W	r	r	r	С	
addu r6, r6, r9					F	D	i	I	X	W	r	r	r	r	r	С

Figure 4: Pipeline Diagram with Register Renaming

2.c Register Renaming with Pointers in the IQ/ROB

		St	age]	RT						
Cycle	D	Ι	W	\mathbf{C}	r1	$\mathbf{r2}$	r3	r4	r5	r6	r7	r 8	r 9	Free List	\mathbf{IQ}
0					p0	p1	p2	р3	p4	p5	p6	p7	p8	p9,pA,pB,pC,pD	
1	1				:	:	:	:	:	:	:	:	:	p9,pA,pB,pC,pD	
2	2	1			p9*	:	:	:	:	:	:	:	:	$_{\mathrm{pA,pB,pC,pD}}$	p9/p1/p2
3	3				:	:	:	pA*	:	:	:	:	:	$_{ m pB,pC,pD}$	pA/p9*/p4
4	4	3			:	:	:	:	:	pB*	:	:	:	pC,pD	pB/p6/p7
5	5	4			pC*	:	:	:	:	:	:	:	:	pD	pC/p1/p4
6		2	3		:	:	:	:	:	pD^*	:	:	:		pD/pB*/p8
7		5	1		:	:	:	:	:	:	:	:	:		
8				1	:	:	:	:	:	:	:	:	:		
9			5		:	:	:	:	:	:	:	:	:	p0	
10			4		:	:	:	:	:	pD	:	:	:	p0	
11			2		pC	:	:	:	:	:	:	:	:	p0	
12				2	:	:	:	pΑ	:	:	:	:	:	p0	
13				3	:	:	:	:	:	:	:	:	:	p0,p3	
14				4	:	:	:	:	:	:	:	:	:	p0,p3,p5	
15				5	:	:	:	:	:	:	:	:	:	p0,p3,p5,p9	
16					:	:	:	:	:	:	:	:	:	p0,p3,p5,p9,pB	

Figure 5: Microarchitectural State (RT/FL/IQ) for Reg Renaming with Pointers in the IQ/ROB

			ROB		
Cycle	0	1	2	3	4
0					
1					
2	p9*/r1/p0				
3		pA*/r4/p3			
4			pB*/r6/p5		
5				$pC^*/r1/p9^*$	
6					$pD^*/r6/pB^*$
7			$\mathrm{pB/r6/p5}$		pD*/r6/pB
8	p9/r1/p0			pC*/r1/p9	
9					
10					$\mathrm{pD/r6/pB}$
11				pC/r1/p9	
12		pA/r4/p3			
13			•		
14				•	
15					•

Figure 6: Microarchitectural State (ROB) for Reg Renaming with Pointers in the IQ/ROB

2.d Register Renaming with Values in the IQ/ROB

		\mathbf{St}	age						RT								RO	ЭB		
\mathbf{Cycle}	D	Ι	W	$\overline{\mathbf{C}}$	r1	r2	r3	r4	r5	r6	r7	r 8	r9	IQ	0	1	2	2	3	4
0																				
1	1																			
2	2	1			p0*									p0/r2/r3	p0*/r1					
3	3							p1*						p1/p0*/r5		p1*/r4				
4	4	3								p2*				p2/r7/r8			p2*	7r6		
5	5	4			p3*									p3/r2/r5					p3*/r1	
6		2	3							p4*				p4/p2*/r9						p4*/r6
7		5	1														p2,	$/\mathrm{r}6$		
8				1											p0/r1					
9			5																	
10			4							p4										p4/r6
11			2		р3														p3/r1	
12				2												p1/r4				
13				3																
14				4													(•		
15				5															•	
16										•										•

Figure 7: Microarchitectural State for Reg Renaming with Values in the IQ/ROB

3 In-Order vs. Out-of-Order Superscalar Processors

3.a Performance of In-Order Dual-Issue Processor

Cycle:	0	1	2	3	4	5	6	7	8	9	10	11	12	13
lw r1 , 0(r2)	F	D	Ι	L0	L1	W	С							
mul r3, r1, r4	F	D	Ι	I	Ι	Y0	Y1	Y2	Y3	W	С			
sw r3, 0(r5)		F	D	D	D	D	D	D	Ι	S	W	С		
addiu r2, r2, 4		F	D	D	D	D	D	D	Ι	A	W	С		
addiu r5, r5, 4			F	F	F	F	F	F	D	Ι	A	W	С	
addiu r6, r6, -1			F	F	F	F	F	F	D	Ι	В	W	С	
bne r6, r0, loop									F	D	Ι	A	W	С
opA									F	*	*	*	*	*

Figure 8: Pipeline Diagram for In-Order Dual-Issue Processor

As shown by the bold vertical lines, during steady state, each loop takes 9 cycles to execute. The W stage of the lw instruction is included because during looping, the W stages causes an extra cycle of "delay" between the last commit of the previous iteration and the first commit of the current iteration.

Therefore, the total number of cycles it takes to execute 64 iterations is 9*64 = 576 cycles.

3.b Performance of Out-of-Order Dual-Issue Processor

Cycle:	0	1	2	3	4	5	6	7	8	9	10	11	12	13
lw r1 , 0(r2)	F	D	Ι	L0	L1	W	С							
mul r3, r1, r4	F	D	Ι	Ι	Ι	Y0	Y1	Y2	Y3	W	С			
sw r3, $0(r5)$		F	D	D	D	D	D	D	Ι	S	W	С		
addiu r2, r2, 4		F	D	D	D	D	D	D	Ι	A	W	С		
addiu r5, r5, 4			F	F	F	F	F	F	D	Ι	Α	W	С	
addiu r6, r6, -1			F	F	F	F	F	F	D	Ι	В	W	С	
bne r6, r0, loop									F	D	Ι	Α	W	С
opA									F	*	*	*	*	*

Figure 9: Pipeline Diagram for Out-of-Order Dual-Issue Processor

As shown by the bold vertical lines, during steady state, each loop takes 9 cycles to execute. The W stage of the lw instruction is included because during looping, the W stages causes an extra cycle of "delay" between the last commit of the previous iteration and the first commit of the current iteration.

Therefore, the total number of cycles it takes to execute 64 iterations is 9*64 = 576 cycles.

3.c Instruction Level Parallelism

Figure 10: Instruction Dependency Graph for Single Iteration

Figure 11: Instruction Dependency Graph for Three Iterations

4 Branch Prediction

4.a Two-Bit Saturating Counter Branch History Table

		Bra	nch B	80	Bra	nch B	1	Bran	ch B	2
i	src[i]	BHT	P	\mathbf{A}	BHT	P	$\overline{\mathbf{A}}$	BHT	P	\mathbf{A}
0	0	WT	Т	Т	WT	Т	Т	WT	Т	Т
1	0	ST	Т	Т	ST	Τ	Τ	ST	Τ	Т
2	12	ST	Т	NT	ST	Τ	NT	ST	Τ	Т
3	15	WT	Τ	NT	WT	Τ	NT	ST	Τ	Т
4	0	WNT	NT	Т	WNT	NT	Τ	ST	Τ	Т
5	0	WT	Т	Т	WT	Τ	Τ	ST	Τ	Т
6	11	ST	Т	NT	ST	Τ	NT	ST	Τ	Т
7	17	WT	Т	NT	WT	Τ	NT	ST	Τ	Т
8	0	WNT	NT	Т	WNT	NT	Τ	ST	Τ	Т
9	0	WT	Т	Т	WT	Τ	Т	ST	Τ	Т
10	11	ST	Т	NT	ST	Τ	NT	ST	Т	Т
11	13	WT	Т	NT	WT	Т	NT	ST	Т	Т
12	9	WNT	NT	Т	WNT	NT	NT	ST	Т	Т
13	0	WT	Т	Т	SNT	NT	Т	ST	Т	Т
$\overline{14}$	12	ST	Т	NT	WNT	NT	NT	ST	Т	Т
15	15	WT	Т	NT	SNT	NT	NT	ST	Т	Т
16	0	WNT	NT	Т	SNT	NT	Т	ST	Т	Т
17	8	WT	Т	Т	WNT	NT	NT	ST	Τ	Т
18	12	ST	Т	NT	SNT	NT	NT	ST	Τ	Т
19	18	WT	Τ	NT	SNT	NT	NT	ST	Τ	NT

Figure 12: Two-Bit Saturating Counter BHT Execution

4.b Two-Level Adaptive Branch Predictor to Exploit Temporal Correlation

		B	ranch I	30		В	ranch I	31		Bra	anch B	2	
i	src[i]	BHSRT	BHT	P	\mathbf{A}	BHSRT	BHT	P	\mathbf{A}	BHSRT	BHT	P	\mathbf{A}
0	0	000	WT	Т	Т	000	WT	Т	Т	000	WT	Т	Т
1	0	001	WT	Т	Т	001	WT	Т	Т	001	WT	Т	Т
2	12	011	WT	Т	NT	011	WT	Т	NT	011	WT	Т	Т
3	15	110	WT	Т	NT	110	WT	Т	NT	111	WT	Т	Т
4	0	100	WT	Т	Τ	100	WT	Τ	Т	111	ST	Τ	Т
5	0	101	WT	Τ	Τ	101	WT	Τ	Τ	111	ST	Т	Т
6	11	011	WNT	NT	NT	011	WNT	NT	NT	111	ST	Т	Т
7	17	110	WNT	NT	NT	110	WNT	NT	NT	111	ST	Т	Т
8	0	100	ST	Τ	Τ	100	ST	Τ	Τ	111	ST	Τ	Т
9	0	101	ST	Τ	Τ	101	ST	Τ	Τ	111	ST	Т	Т
10	11	011	SNT	NT	NT	011	SNT	NT	NT	111	ST	Т	T
11	13	110	SNT	NT	NT	110	SNT	NT	NT	111	ST	Т	T
$\overline{12}$	9	100	ST	Τ	Τ	100	ST	Τ	NT	111	ST	Т	T
13	0	101	ST	Т	Τ	000	ST	Τ	Τ	111	ST	Т	\overline{T}
$\overline{14}$	12	011	SNT	NT	NT	001	ST	Т	NT	111	ST	Т	Т
$\overline{15}$	15	110	SNT	NT	NT	010	WT	Т	NT	111	ST	Т	Т
16	0	100	ST	Τ	Τ	100	WT	Τ	Τ	111	ST	Т	Т
$\overline{17}$	8	101	ST	Τ	Τ	001	WT	Τ	NT	111	ST	Т	Т
18	12	011	SNT	NT	NT	010	WNT	NT	NT	111	ST	Τ	T
19	18	110	SNT	NT	NT	100	ST	Т	NT	111	ST	Τ	NT

Figure 13: Two-Level BHT for Temporal Correlation Execution

4.c Two-Level Adaptive Branch Predictor to Exploit Spatial Correlation

		В	ranch	B0		В	ranch	B1		Br	anch E	32	
i	src[i]	BHSR	BHT	P	\mathbf{A}	BHSR	BHT	P	$\overline{\mathbf{A}}$	BHSR	BHT	P	$\overline{\mathbf{A}}$
0	0	0	WT	Τ	Τ	1	WT	Τ	Τ	1	WT	Τ	$\overline{\mathrm{T}}$
1	0	1	WT	Т	Т	1	ST	Τ	Τ	1	ST	Т	$\overline{\mathrm{T}}$
2	12	1	ST	Т	NT	0	WT	Τ	NT	0	WT	Т	Τ
3	15	1	WT	Т	NT	0	WNT	NT	NT	0	ST	Т	Т
4	0	1	WNT	NT	Т	1	ST	Т	Т	1	ST	Τ	Т
5	0	1	WT	Τ	Τ	1	ST	Τ	Τ	1	ST	Т	Т
6	11	1	ST	Т	NT	0	SNT	NT	NT	0	ST	Т	Т
7	17	1	WT	Τ	NT	0	SNT	NT	NT	0	ST	Т	Т
8	0	1	WNT	NT	Τ	1	ST	Τ	Τ	1	ST	Τ	T
9	0	1	WT	Τ	Τ	1	ST	Τ	Τ	1	ST	Τ	Τ
10	11	1	ST	Τ	NT	0	SNT	NT	NT	0	ST	\mathbf{T}	Т
11	13	1	WT	Τ	NT	0	SNT	NT	NT	0	ST	\mathbf{T}	Τ
12	9	1	WNT	NT	Τ	1	ST	Τ	NT	0	ST	Τ	Τ
13	0	1	WT	Τ	Τ	1	WT	Τ	Τ	1	ST	Τ	Τ
14	12	1	ST	Τ	NT	0	SNT	NT	NT	0	ST	Τ	Т
15	15	1	WT	Τ	NT	0	SNT	NT	NT	0	ST	Т	Т
16	0	1	WNT	NT	Τ	1	ST	Τ	Τ	1	ST	Τ	Т
17	8	1	WT	Т	Т	1	ST	Т	NT	0	ST	Т	Т
18	12	1	ST	Т	NT	0	SNT	NT	NT	0	ST	Τ	Т
19	18	1	WT	Т	NT	0	SNT	NT	NT	0	ST	Т	NT

Figure 14: Two-Level BHT for Spatial Correlation Execution

4.d Branch Predictor Comparison

	Two-Bit FSM	Two-Level Temporal	Two-Level Spatial
	Accuracy	Accuracy	Accuracy
Branch B0	30%	90%	30%
Branch B1	50%	65%	85%
Branch B2	95%	95%	95%
All Branches	58%	83%	70%

Figure 15: Summary of Branch Predictor Accuracies