Ch5. Quadratic Forms

5.1 Quadratic Form x'Ax

Let $extbf{x} \sim extbf{N}(\mu, oldsymbol{\Sigma})$ and assume $extbf{ extit{A}}$ symmetric, then m.g.f. of $extbf{ extit{x}}' extbf{ extit{A}} extbf{ extit{x}}$ is

$$M_{m{x}'m{A}m{x}}(t) = |m{I} - 2tm{A}m{\Sigma}|^{-\frac{1}{2}} \cdot e^{\{-\frac{1}{2}\mu'[m{I} - (m{I} - 2tm{A}m{\Sigma})^{-1}]m{\Sigma}^{-1}\mu\}}$$

Ch 5.1 Quadratic Form x'Ax

- \blacksquare $\mathsf{E}(x'Ax) = \mathsf{tr}(A\Sigma) + \mu'A\mu$
- $Var(x'Ax) = 2tr[(A\Sigma)^2] + 4\mu'A\Sigma A\mu$

Ch 5.2 Non-Central χ^2 , F and t distributions

- I. Non-Central χ^2
 - Let $\mathbf{x} \sim N(\mathbf{0}, \mathbf{I}_n)$, then $\mathbf{x}'\mathbf{x} \sim \chi^2_{(n)}$;
 - Let $\mathbf{x} \sim N(\boldsymbol{\mu}, \mathbf{I}_n)$, then

$$u = \mathbf{x}'\mathbf{x} \sim \chi^2_{(n, \lambda)}$$

where $\lambda =$ non-centered parameter $= \frac{1}{2} \mu' \mu$;

■ Density is

$$f(u) = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} \frac{u^{\frac{n}{2} + k - 1} e^{-\frac{u}{2}}}{2^{\frac{n}{2} + k} \Gamma(\frac{n}{2} + k)}, \qquad \mu > 0, \lambda \ge 0$$

Note : Define $\lambda^k = 1$ when $\lambda = 0$, k = 0, density function of $u \sim \chi^2_{(n,0)}$ is

$$f(u) = \frac{u^{\frac{n}{2}-1}e^{-\frac{u}{2}}}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}.$$

Ch 5.2 Non-Central χ^2 , F and t distributions

I. Non-Central χ^2

 \blacksquare m g f of $u \sim \chi^2_{(n,\lambda)}$ is

$$(1-2t)^{-\frac{n}{2}}e^{-\lambda[1-(1-2t)^{-1}]}.$$

Note : for
$$\lambda=0$$
, $\Rightarrow M_u(t)=(1-2t)^{-\frac{n}{2}}$ which is m.g.f of $\chi^2_{(p)}$

- \blacksquare E(u) = $n + 2\lambda$ and Var(u) = $2n + 8\lambda$;
- If $u_i \sim \chi^2_{(n_i, \lambda_i)}$ independently for i = 1, ..., k, then

$$\sum_{i=1}^k u_i \sim \chi^2_{\left(\sum_{i=1}^k n_i, \sum_{i=1}^k \lambda_i\right)}.$$

Ch 5.2 Non-Central χ^2 , F and t distributions

II. Non-Central F

Let $u_1 \sim \chi^2_{(p_1,\lambda)}$, $u_2 \sim \chi^2_{(p_2,0)}$, and Let u_1 be independent of u_2 ,

then

$$w = \frac{u_1/p_1}{u_2/p_2} \sim F_{(p_1,p_2,\lambda)}$$

and

$$\mathsf{E}(w) = \frac{p_2}{p_2 - 2} \left(1 + \frac{2\lambda}{p_1} \right).$$

Ch 5.2 Non-Central χ^2 , F and t distributions

III. Non-Central t

Let
$$z\sim N(\mu,1), u\sim \chi^2_{(n)}, \ z$$
 is independent of u , then
$$t=\frac{z}{\sqrt{u/n}} \sim \ \text{non-centered} \ t \ \text{distribution}.$$

Ch 5.2 Non-Central χ^2 , F and t distributions

Theorem 5.1 Let $x_{p\times 1}\sim N(\mu, \Sigma)$ and ${\bf A}$ be symmetric, then $q=x'{\bf A}x\sim \chi^2_{(r,\ \lambda)}$ where r denoting the rank of ${\bf A}$ and $\lambda=\frac{\mu'{\bf A}\mu}{2}$ if and only if ${\bf A}\Sigma$ is idempotent.

Ch 5.2 Non-Central χ^2 , F and t distributions

Corollaries

- If $x \sim N(0, 1)$, then x'Ax is χ_r^2 if and only if A is idempotent of rank r.
- If $x \sim N(0, \Sigma)$, then x'Ax is χ_r^2 if and only if $A\Sigma$ is idempotent of rank r.
- If \mathbf{x} is $N(\boldsymbol{\mu}, \sigma^2 \mathbf{I})$, then $\frac{\mathbf{x}'\mathbf{x}}{\sigma^2}$ is $\chi^2_{(n, \frac{1}{2}\frac{\boldsymbol{\mu}'\boldsymbol{\mu}}{\sigma^2})}$.
- If $\mathbf{x} \sim N(\boldsymbol{\mu}, \mathbf{I})$, then $\mathbf{x}'\mathbf{A}\mathbf{x}$ is $\chi^2_{(r, \frac{1}{2}\boldsymbol{\mu}'\mathbf{A}\boldsymbol{\mu})}$ if and only if \mathbf{A} is idempotent of rank r.

Ch 5.3 Independence

Theorem 5.2 When $x \sim N_n(\mu, \Sigma)$ and A is symmetric, then x'Ax and Bx are distributed independently if and only if $B\Sigma A = 0$.

Ch 5.3 Independence

Theorem 5.3 Let $x \sim N(\mu, \Sigma)$, **A** and **B** are symmetric, then x'Ax and x'Bx are distributed independently if and only if $A\Sigma B = 0$ (or equivalently $B\Sigma A = 0$).

Ch 5.4 Additional results and examples

Let the $n \times 1$ vector $\mathbf{x} = (x_1, ..., x_n)' \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Let $q_1 = \mathbf{x}' \mathbf{A}_1 \mathbf{x}$, $q_2 = \mathbf{x}' \mathbf{A}_2 \mathbf{x}$ and $\mathbf{T} = \mathbf{B} \mathbf{x}$ where \mathbf{B} is $r \times n$ and $\mathbf{A}_1, \mathbf{A}_2$ are symmetric.

- $\blacksquare E(q_1) = tr(\mathbf{A}_1 \mathbf{\Sigma}) + \boldsymbol{\mu}' \mathbf{A}_1 \boldsymbol{\mu}.$

- \blacksquare Cov(\mathbf{x}, q_1) = 2 $\Sigma \mathbf{A}_1 \boldsymbol{\mu}$.
- \blacksquare Cov(\mathbf{T}, q_1) = 2 $\mathbf{B} \mathbf{\Sigma} \mathbf{A}_1 \boldsymbol{\mu}$.

Ch 5.4 Additional results and examples

Example 5.1 Let the $n \times 1$ vector $\mathbf{Y} = (Y_1, ..., Y_n)' \sim N(\alpha \mathbf{1}, \sigma^2 \mathbf{I})$. Define $U = \sum_{i=1}^n (Y_i - \overline{Y})^2 / \sigma^2$ and $V = n(\overline{Y} - \alpha)^2 / \sigma^2$. Find the distributions of U and V and show that these two random variables are independent.

Ch 5.4 Additional results and examples

Example 5.2 Let the $n \times 1$ vector $\mathbf{Y} = (Y_1, ..., Y_n)' \sim \mathcal{N}(\mu \mathbf{1}, \sigma^2 \mathbf{I})$. Let

$$\overline{Y} = \frac{\sum_{i=1}^{n} Y_i}{n}$$

$$Q_1 = n\overline{Y}^2$$

$$Q_2 = \sum_{i=1}^{n} (Y_i - \overline{Y})^2$$

- 1 Prove that \overline{Y} and Q_2 are independent.
- 2 Prove that Q_1 and Q_2 are independent.
- 3 Find the distributions of Q_1 and Q_2 .

Ch 5.4 Additional results and examples

Example 5.3 Suppose \mathbf{y} is $N_3(\boldsymbol{\mu}, \sigma^2 \mathbf{I})$ and let $\boldsymbol{\mu}' = (3, -2, 1)$ and

$$\mathbf{A} = \frac{1}{3} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$
$$\mathbf{B} = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \end{pmatrix}$$

- 1 Find the distribution of $\mathbf{y}' \mathbf{A} \mathbf{y} / \sigma^2$.
- 2 Are y'Ay and By independent?
- 3 Are $\mathbf{y}' \mathbf{A} \mathbf{y}$ and $y_1 + y_2 + y_3$ independent?

Ch 5.4 Additional results and examples

Example 5.4 Suppose **y** is $N_n(\mu \mathbf{1}, \mathbf{\Sigma})$ where

$$\mathbf{\Sigma} = \sigma^2 \left(egin{array}{cccc} 1 &
ho & \cdots &
ho \\
ho & 1 & \cdots &
ho \\ \cdot & \cdot & & \cdot \\
ho &
ho & \cdots & 1 \end{array}
ight).$$

Derive the distribution of

$$\frac{\sum_{i=1}^{n}(y_i-\bar{y})^2}{\sigma^2(1-\rho)}.$$