Introduction to Electricity/ Electronics

Example of a circuit

What's an Electrical Circuit?

- Every circuit requires these three things:
 - Power Source
 - Load
 - Conductor

 Optionally, a circuit may include a "control device" such as a switch

Three Main Invisible Quantities

- Voltage Provides the "push"
 symbol V, units Volts
- Current,
- Flow of Electrons
- Amount of Current is dependent on Voltage and Resistance

symbol - I, units - Amperes (Amps) $1 \text{ Amp} = 6.24 \times 10^{18} \text{ electrons} \text{ move through a wire}$ every second

- Resistance
- Limits the amount of current
- Represents the "load" of the circuit
 symbol R, units Ohms (S)

Unit Name	Unit Symbol	Quantity	
Ampere	Α	Electric current (I)	
(amp)		1 Amp = 6.24 x 10 ¹⁸ electrons move through a wire every second	
Volt	V	Voltage	
Ohm	Ω	Resistance (R)	
Farad	F	Capacitance (F)	

Ohm's Law

"Current (I) is proportional to Voltage (V) and inversely proportional to Resistance (R)"

$$I = \frac{V}{R} \qquad V = I \times R \qquad R = \frac{V}{I}$$

Prefix	Prefix	Prefix	Example
	Symbol	factor	
nano	n	10-9	$1nF = 10^{-9}F$
micro	μ	10-6	$1\mu A = 10^{-6}A$
milli	m	10-3	$1mA = 10^{-3}A$
kilo	k	10 ³	$1k\Omega = 1000\Omega$
mega	M	10 ⁶	$1MHz = 10^6Hz$
giga	G	10 ⁹	$1GHz = 10^9Hz$

Waterfall Analogy

- The voltage is equivalent to the water pressure, the current is equivalent to the flow rate, and the resistance is like the pipe size.
- Water = Charge
- Pressure = Voltage
- Flow = Current

Types of Electricity

Direct Current (DC)

• Batteries, fuel cells and solar cells all produce something called **direct current** (DC).

 The positive and negative terminals of a battery are always, respectively, positive and negative.

 Current always flows in the same direction between those two terminals.

Voltage Can Be Provided From...

A battery - DC (Direct Current)

Alternating Current (AC)

• The power that comes from a power plant, on the other hand, is called **alternating current** (AC).

The direction of the current reverses, or alternates, 60 times per second

 The power that is available at a wall socket in Canada is 120-volt, 60-cycle AC power

AC Cont'd

 Home and office outlets are almost always AC because generating and transporting AC across long distances is easy (using transformers)

capable of powering electric motors
 (converting electrical energy into mechanical energy) – useful for dishwashers and refrigerators which run on AC

Voltage Can Be Provided From...

 Computer Power Supply or Electrical Point on the wall – AC (Alternating Current)

•Red: 5V

•Yellow: 12V

·Black: Ground

Current

- ...is simply the flow of electrons
- Direction depends on convention

- •Electron flow is
 from (-) to (+) (flow
 of electrons)
- •Conventional flow is from (+) to (-) (hole flow)

Resistors – Basic Specs

- Can be rated by...
 - Resistance (Ohms, Ω)
 - Tolerance (% of nominal value)
 - Power Rating (Watts)

Resistors – Types

Fixed

Variable (Potentiometer, Rheostat)

Resistors - Types LDR (Light Dependant Resistor)

•The resistance changes as intensity of light changes

Cadmium Sulphide Track

Capacitors

- Capacitors store charge,
- Pass high frequencies, and
- Block DC

Measured in Farads, Usually in microfarads

SYMBOL

Diodes

- restricts current in one direction
- Some give out light (LED)
- Others maintain fix voltage

Light Emitting Diodes

- A type of diode designed to emit light
- Can be visible or IR
- 2 V voltage drop
- Typically draws 20 mA (0.020 A)
- Schematic Symbol...

Grounding Circuits

 Ground in the power-distribution grid is literally "the ground" that's all around you when you are walking outside.

 Remember, all circuits must complete the path by returning to the positive side of the source.

 A ground completes all circuits by "grounding" the flow of electrons after they have done their job.

RESISTORS - COLOUR CODES

Color	Digit	Multiplier	Tolerance (%)
Black	0	10 ⁰ (1)	
Brown	1	10 ¹	1
Red	2	10 ²	2
Orange	3	10 ³	
Yellow	4	10 ⁴	
Green	5	10 ⁵	0.5
Blue	6	10 ⁶	0.25
Violet	7	10 ⁷	0.1
Grey	8	10 ⁸	
White	9	10 ⁹	
Gold		10 ⁻¹	5
Silver		10 ⁻²	10
(none)			20

RESISTORS EXAMPLE

 1^{st} band: orange = 3

 2^{nd} band: orange = 3

 3^{rd} band: red = 2 (i.e. 10^2)

4th band: gold = 5%

 33×10^{2} = 3300 Ω
= 3.3 kΩ

Work on the Resistor Worksheet handout 20 questions in total