STW62N65M5

Automotive-grade N-channel 650 V, 0.041 Ω typ., 46 A MDmesh™ M5 Power MOSFET in a TO-247 package

Datasheet - production data

Figure 1. Internal schematic diagram

Features

Order code	V _{DS} @ T _{Jmax}	R _{DS(on)} max	I _D
STW62N65M5	710 V	0.049 Ω	46 A

- Designed for automotive applications and AEC-Q101 qualified
- Extremely low R_{DS(on)}
- Low gate charge and input capacitance
- · Excellent switching performance
- 100% avalanche tested

Applications

· Switching applications

Description

This device is an N-channel Power MOSFET based on MDmesh™ M5 innovative vertical process technology combined with the well-known PowerMESH™ horizontal layout. The resulting product offers extremely low onresistance, making it particularly suitable for applications requiring high power and superior efficiency.

Table 1. Device summary

Order code	Marking	Package	Packaging
STW62N65M5	62N65M5	TO-247	Tube

Contents STW62N65M5

Contents

1	Electrical ratings	. 3
2	Electrical characteristics	. 4
	2.1 Electrical characteristics (curves)	. 6
3	Test circuits	. 9
4	Package mechanical data	10
5	Revision history	13

STW62N65M5 Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{GS}	Gate-source voltage	± 25	V
I _D	Drain current (continuous) at T _C = 25 °C	46	Α
I _D	Drain current (continuous) at T _C = 100 °C	26	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	184	Α
P _{TOT}	Total dissipation at T _C = 25 °C	330	W
dv/dt (2)	Peak diode recovery voltage slope	15	V/ns
dv/dt (3)	MOSFET dv/dt ruggedness	50	V/ns
T _{stg}	Storage temperature	- 55 to 150	°C
T _j	Max. operating junction temperature	150	°C

^{1.} Pulse width limited by safe operating area

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	0.38	°C/W
R _{thj-amb}	D The word recistor on it mation and high track		°C/W

Table 4. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by T_{jmax})	12	А
E _{AS}	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	1400	mJ

^{2.} $I_{SD} \leq$ 46 A, di/dt \leq 200 A/ μ s; $V_{DS peak} < V_{(BR)DSS}, V_{DD}$ =400 V

^{3.} $V_{DS} \le 520 \text{ V}$

Electrical characteristics STW62N65M5

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 5. On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0, I_D = 1 \text{ mA}$	650			V
	Zero gate voltage	$V_{GS} = 0, V_{DS} = 650 \text{ V}$			1	μΑ
I _{DSS}	drain current	$V_{GS} = 0$, $V_{DS} = 650$ V, $T_C = 125$ °C			100	μΑ
I _{GSS}	Gate-body leakage current	$V_{DS} = 0, V_{GS} = \pm 25 \text{ V}$			± 100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on-resistance	$V_{GS} = 10 \text{ V}, I_D = 23 \text{ A}$		0.041	0.049	Ω

Table 6. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	6420	-	pF
C _{oss}	Output capacitance	$V_{GS} = 0$, $V_{DS} = 100 \text{ V}$,	-	170	-	pF
C _{rss}	Reverse transfer capacitance	f = 1 MHz,	-	11	-	pF
C _{o(tr)} ⁽¹⁾	Equivalent capacitance time related	V - 0 V - 0 to 520 V	-	536	-	pF
C _{o(er)} ⁽²⁾	Equivalent capacitance energy related	$V_{GS} = 0$, $V_{DS} = 0$ to 520 V	-	146	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz, I _D = 0	-	1.2	-	Ω
Qg	Total gate charge	V _{DD} = 520 V, I _D = 23 A,	-	142	-	nC
Q _{gs}	Gate-source charge	V _{GS} = 10 V	-	34	-	nC
Q _{gd}	Gate-drain charge	(see Figure 16)	-	58	-	nC

^{1.} Time related is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

577

4/14 DocID024837 Rev 3

^{2.} Energy related is defined as a constant equivalent capacitance giving the same stored energy as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Table 7. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max	Unit
$t_{d(V)}$	Voltage delay time	V _{DD} = 400 V, I _D = 30 A,	-	101	-	ns
t _{r(V)}	Voltage rise time	$R_G = 4.7 \Omega, V_{GS} = 10 V$	-	11	-	ns
t _{c(off)}	Crossing time	(see Figure 17 and	-	14	-	ns
t _{f(i)}	Current fall time	Figure 20)	-	8	-	ns

Table 8. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		46	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)				184	Α
V _{SD} (2)	Forward on voltage	V _{GS} = 0, I _{SD} = 46 A	-		1.5	V
t _{rr}	Reverse recovery time	40.4 11/11/14/14/14	-	448		ns
Q _{rr}	Reverse recovery charge	$I_{SD} = 46 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$ $V_{DD} = 100 \text{ V (see } Figure 17)$	-	10		μC
I _{RRM}	Reverse recovery current	100 100 1 (000 1 igano 11)	-	43		Α
t _{rr}	Reverse recovery time	I _{SD} = 46 A, di/dt = 100 A/μs	-	548		ns
Q _{rr}	Reverse recovery charge	$V_{DD} = 100 \text{ V}, T_j = 150 ^{\circ}\text{C}$	-	14		μC
I _{RRM}	Reverse recovery current	(see Figure 17)	-	51		Α

^{1.} Pulse width limited by safe operating area.

^{2.} Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

Electrical characteristics STW62N65M5

Electrical characteristics (curves) 2.1

Figure 2. Safe operating area Figure 3. Thermal impedance

Figure 4. Output characteristics

Figure 5. Transfer characteristics

Figure 6. Gate charge vs gate-source voltage

Figure 7. Static drain-source on-resistance

Figure 8. Capacitance variations

Figure 9. Output capacitance stored energy Eoss (µJ) 30 Ciss 25

20 15 10 100 200 300 400 500 600 Vps(V)

Figure 10. Normalized gate threshold voltage vs temperature

Figure 11. Normalized on-resistance vs temperature

Figure 12. Source-drain diode forward characteristics

Figure 13. Normalized $V_{(BR)DSS}$ vs temperature

Electrical characteristics STW62N65M5

Figure 14. Switching losses vs gate resistance⁽¹⁾

1. Eon including reverse recovery of a SiC diode

STW62N65M5 Test circuits

3 Test circuits

Figure 15. Switching times test circuit for resistive load

Figure 16. Gate charge test circuit

Figure 17. Test circuit for inductive load switching and diode recovery times

Figure 18. Unclamped inductive load test circuit

Figure 19. Unclamped inductive waveform

Figure 20. Switching time waveform

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

HEAT-SINK PLANE

D
L2

L1

L2

BACK VIEW

0075325_G

Figure 21. TO-247 drawing

Table 9. TO-247 mechanical data

Dim.		mm.	
Dilli.	Min.	Тур.	Max.
А	4.85		5.15
A1	2.20		2.60
b	1.0		1.40
b1	2.0		2.40
b2	3.0		3.40
С	0.40		0.80
D	19.85		20.15
E	15.45		15.75
е	5.30	5.45	5.60
L	14.20		14.80
L1	3.70		4.30
L2		18.50	
ØP	3.55		3.65
ØR	4.50		5.50
S	5.30	5.50	5.70

STW62N65M5 Revision history

5 Revision history

Table 10. Document revision history

Date	Revision	Changes
19-Jun-2013	1	First release.
23-May-2014	2	Modified: Features in cover pageMinor text changes
25-Jul-2014	3	 Modified: note 2 in Table 2 Modified: symbol, parameters, t_{c(off)} and t_{f(i)} in Table 7 Minor text changes

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2014 STMicroelectronics - All rights reserved