IN THE CLAIMS:

1. (Currently Amended) A compound of the formula I or II

$$R^4$$
 NH_2
 NH_2
 NH_2
 $N=R^1$
 R^4
 $N=R^1$
 R^4

in which

R¹ is hydrogen, or branched and unbranched C₁-C₆-alkyl, it also being possible for one C atom

of the alkyl radical to carry OR^{11} or a group R^5 , where R^{11} is hydrogen or C_1 - C_4 -alkyl, and

R² is hydrogen, chlorine, bromine, iodine, fluorine, CF3 CF₃, nitro, NHCOR²¹, NR²²R²³, OH, O-C₁-C₄-alkyl, O-C₁-C₄-alkylphenyl, NH₂, CN, a straight or branched C₁, C₆ C₁-C₆-alkyl, OR²¹ or phenyl, it also being possible for the phenyl rings to be substituted by at most two radicals R²⁴, and

 R^{21} and R^{22} independently of one another are hydrogen or $C_1\text{-}C_4\text{-alkyl},$ and R^{23} is OH, $C_1\text{-}C_6\text{-}$

alkyl, O-C₁-C₄-alkyl, chlorine, bromine, iodine, fluorine, CF₃, nitro or NH₂, and

x may be 0, 1 or 2 and

 R^3 is -O-(CH₂)_o (CHR³¹)_m-(CH₂)-G, where R^{31} is hydrogen, OH, C₁-C₄ alkyl, or O-C₁-C₄alkyl, m and o are, independently of one another, 0, 1 or 2 and n is 1, 2, 3 or 4,

$$-N$$
 R^{32}
 R^{32}
 R^{32}
 R^{32}
 R^{32}

-D- $(F^1)_p$ - $(E)_q$,- $(F^2)_r$, -G, where p, q and r may not simultaneously be 0, or is -E- $(D)_u$ - $(F^2)_8$ - $(G)_v$, it also being possible for the radical E to be substituted by one or two radicals A, and if v = 0, E is imidazole, pyrrole, pyridine, pyrimidine, piperazine, pyrazine, pyrrolidine or piperidine, or R^3 is B and

- R^4 is hydrogen, chlorine, fluorine, bromine, iodine, branched and unbranched C_1 - C_6 -alkyl, OH, nitro, CF_3 , CN, $NR^{41}R^{42}$, NH-CO- R^{43} , or O- C_1 - C_4 -alkyl, where R^{41} and R^{42} independently of one another are hydrogen or C_1 - C_4 -alkyl
- and R⁴³ is hydrogen, C₁-C₄-alkyl, C₁-C₄-alkylphenyl or phenyl, and
- D is S or θ O
- E is phenyl, imidazole, pyrrole, thiophene, pyridine, pyrimidine, piperazine, pyrazine, furan, thiazole, isoxazolc, pyrrolidine. pipendine, or trihydroazepine and
- F¹ is a chain of 1 to 8 carbon atoms, it, also being possible for one carbon atom of the chain to carry an OH or O-C₁-C₄-alkyl group and
- F^2 is a chain of $\frac{1}{1}$ to 8 carbon atoms, it also being possible for one carbon atom of the chain to carry an OH or O-C₁-C₄-alkyl group and
- p may be 0 or 1
- q may be 0 or 1, and
- r may be 0 or 1 and
- s may be 0 or 1
- u may be 0 or I
- v may be 0 or 1
- G may be NR⁵¹ R⁵² or

where

R⁵¹ is hydrogen or branched. and unbranched C₁-C₆-alkyl, or (CH₂),-K and

R⁵² is hydrogen, branched and unbranched C₁-C₆-alkyl, phenyl, <u>COCH₃</u>, <u>COCF₃</u>,

in which

may be branched or unbranched O-C₁-C₆-alkyl, phenyl, or branched or unbranched C₁-C₄-alkylphenyl, where in the case of R⁵² and R⁵³, independently of one another, one hydrogen of the C₁-C₆-alkyl radical may be substituted by one of the following radicals: OH, O-C₁-C₄-alkyl, cyclohexyl, cyclopentyl, tetrahydronaphthyl, cyclopropyl, cyclobutyl, cycloheptyl, naphthyl and phenyl, it also being possible for the carbocycles of the radicals R⁵² and R⁵³ independently of one another to carry one or two of the following radicals: branched or unbranched C₁-C₆-alkyl, branched or unbranched O-C₁-C₄-alkyl,

OH, F, Cl, Br, I I, CF₃, NO₂ NO₂, NH₂ CN, COOH, COOC₁,-C₄-alkyl, C₁-C₄ alkylarnino, CC1₃, C₁,-C₄ C₁-C₄-dialkylamino, SO₂-C₁-C₄- alkyl, SO₂phenyl, CONH₂, CONH-C₁-C₄-alkyl, CONHphenyl, CONH-

 $C_1\text{-}C_4\text{-}alkylphenyl, \, NHSO_2\text{-}C_1\text{-}C_4\text{-}alkyl, \, NHSO_2phenyl, \, S\text{-}C_1\text{-}C_4\text{-}alkyl, \, NHSO_2phenyl, \, S\text{-}C_1\text{-}C_4\text{-}alkyl, \, S\text{-}C_1\text{-}C_2\text{-}alkyl, \, S\text{-}C_1\text{-}C_2\text{-$

$$C_1$$
- C_4 -alkyl, C_0 C_4 - alkylphenyl,

CHO, CH₂-O-C₁-C₄-alkyl, -CH₂O-C₁-C₄-alkylphenyl, -CH₂OH, -SO-C₁-C₄-alkyl, -SO-C₁-C₄-alkylphenyl, -SO₂NH₂, -SO₂NH- C₁-C₄-alkyl or two radicals form a bridge -O-(CH₂)_{1,2}-O-,

B may be

$$R^7$$
 R^7
 R^7
 R^7
 R^8
 R^7
 R^8
 R^7
 R^7

and

- A may be hydrogen, chlorine, bromine, iodine, fluorine, CF₃, nitro, OH, O-C₁-C₄-alkyl, O-C₁-C₄-alkylphenyl, NH₂, branched and unbranched C₁-C₆-alkyl, CN, or NH-CO-R³³, where R³³ is hydrogen, C₁-C₄-alkyl or phenyl and
- t is 0, 1, 2, 3 or 4 and
- is phenyl, NR^{k1}R^{k2} where R^{k1} and R^{k2} are as defined for R⁴¹ and R⁴² respectively, NH-C₁-C₄-alkylphenyl, pyrrolidine, piperidine, 1, 2, 5, 6-tetrahydropyridine, morpholine, trihydroazepine, piperazine, which may also be substituted by an alkyl radical C₁-C₆-alkyl, or homopiperazine, which may also be substituted by an alkyl radical C₁-C₆-alkyl, and C₄-alkylphenyl, pyrrolidine, piperidine, 1,2, 5, 6-tetrahydropyridine, morpholine, trihydroazepine, piperazine, which may also be substituted by an alkyl radical C₁-C₆-alkyl, or homopiperazine, which may also be substituted by an alkyl radical C₁-C₆-alkyl, and
- R⁵ may be hydrogen, C₁-C₆-alkyl, or NR⁷R⁹ and

and

- R⁷ is hydrogen, C1-C₆-alkyl, C1-C₄-alkylphenyl, or phenyl, it also being possible for the rings to be substituted by up to two radicals R⁷¹, and
- R⁷¹ is OH, C₁-C₆-alkyl, O-C₁-C₄-alkyl, chlorine, bromine, iodine, fluorine, CF₃, nitro, or NH₂, and
- R⁸ is hydrogen, C_1 - C_6 -alkyl, phenyl, or C_1 - C_4 C_1 - C_4 -alkylphenyl, it also being possible for the ring to be substituted by up to two radicals R⁸¹, and
- R⁸¹ is OH, C₁-C₆-alkyl, O-C₁-C₄-alkyl, chlorine, bromine, iodine, fluorine, CF₃, nitro, or NH₂ and
- is hydrogen, COCH₃, CO-O-C₁-C₄-alkyl, COCF₃, branched and unbranched C₁-C₆-alkyl, it being possible for one or two hydrogens of the C₁-C₆-alky radical to be substituted in each case by one of the following radicals: OH, O-C₁-C₄-alkyl and phenyl, and for the phenyl ring also to carry one or two of the following radicals: iodine, chlorine, bromine, fluorine, branched and unbranched C₁-C₆-alkyl, nitro, amino, C₁-C₄-alkylamino, C₄-C4 C₁-C₄-dialkylamino, OH, O-C₁-C₄-alkyl, CN, CF₃, or SO₂-C₁-C₄-alkyl,

or a tautomeric form, a possible enantiomeric or disasteriomeric form, a prodrug or pharmacologically tolerated salt thereof.

- 2. (Currently Amended) A compound of the formula I or II as claimed in claim 1 in which
- R¹ is hydrogen, branched and unbranched CI-C6 C₁-C₆-alkyl, it also being possible for

one C atom of the alkyl radical to carry OR¹¹ or a group R⁵, where

R¹¹ is hydrogen or C₁-C₄-alkyl, and

 R^2 is hydrogen, chlorine, fluorine, bromine, iodine, branched and unbranched C_1 - C_6 -alkyl, nitro, CF_3 , CN, $NR^{22}R^{23}$, NH-CO- R^{21} , OR^{21} , where

R²¹ is hydrogen or C₁-C₄-alkyl, and

 R^3 is -O-(CH₂)_o-(CHR³¹)_m-(CH₂)_n-G, where

R³¹ is hydrogen, OH or O-C₁-C₄-alkyl,

m, o are, independently of one another, 0, 1 or 2, and

n is 1, 2, 3 or 4 and

 R^4 is hydrogen, branched and unbranched C_1 - C_6 -alkyl, chlorine, bromine, fluorine, nitro, cyano, $NR^{41}R^{42}$, NH-CO- R^{43} , OR^{41} where

 R^{41} and R^{42} are, independently of one another, hydrogen or $C_1\text{-}C_4\text{-alkyl}$, and

 R^{43} is C1-C4 C_1 - C_4 -alkyl or phenyl, and

G is NR⁵¹R⁵² or one of the following radicals

where

R⁵¹ is hydrogen or branched and unbranched C₁-C₆ alkyl, and

R⁵² is hydrogen, branched and unbranched C₁-C₆-alkyl phenyl,

$$R^{53}$$
, -SO₂ R^{53} , in which

 R^{53} is branched or unbranched O-C₁-C₆-alkyl, phenyl, branched or unbranched C₁-C₄-alkylphenyl, where one hydrogen in the C₁-C₆-alkyl radical in R^{52} and R^{53} are,

independently of one another, optionally substituted by one of the following radicals: OH, O-C₁-C₄-alkyl, cyclohexyl, cyclopentyl, tetrahydronaphthyl, cyclopropyl, cyclobutyl, cycloheptyl, napthyl and phenyl, where the carbocycles of the R⁵² and R⁵³ radicals may also, independently of one another, carry one or two of the following radicals: branched or unbranched C₁-C₆-alkyl, branched or unbranched O-C₁-C₄-alkyl, OH, F, C₁, Br, 1, CF₃, NO₂, Cl, Br, I, CF₃, NO₂, NH₂, CN, COOH, COOC₁-C₄-alkyl, C₁-C₄-alkylamino, CCl₃, C₁-C₄-dialkylamino, SO₂-C₁-C₄-alkyl, SO₂ phenyl, CONH₂, CONH-C₁-C₄ alkyl, CONHphenyl, CONH-C₁-C₄-alkyl, NHSO₂-C₁-C₄-alkyl, NHSO₂-C₁-C₄-alkyl, NHSO₂-C₁-C₄-alkyl, NHSO₂-C₁-C₄-alkyl,

$$C_1-C_4-alkyl, ---O$$

$$C_0-C_4-alkylphenyl,$$

CHO, CH_2 -O- C_1 -C₄-alkyl, -CH₂O- C_1 -C₄-alkyl-phenyl, -CH₂OH, -SO- C_1 -C₄-alkyl, -SO- C_1 -C₄-alkyl-phenyl, SO₂NH₂, -SO₂NH-C₁-C₄-alkyl or two radicals form a bridge -O- $(CH_2)_{1,2}$ -O -,

or a tautomeric form, a possible enantiomeric or. disasteriomeric form, a prodrug or pharmacologically tolerated salt thereof.

- 3. (Currently Amended) A compound of the formula I or II as claimed in claim 1 in which
- R¹ is hydrogen, branched and unbranched C₁-C₆-alkyl, it also being possible for one C atom of the alkyl radical to carry OR¹¹ or a group R⁵, where
- R^{11} is hydrogen or C_1 - C_4 -alkyl, and
- R² is hydrogen, chlorine, fluorine, bromine, iodine, branched and unbranched C₁-C₆-alkyl, nitro, CF₃, CN, NR²²R²³, NH-CO-R²¹, OR²¹, where
- R²¹ and R²² independently of one another are is hydrogen or

R²³— is hydrogen, C₁-C₄-alkyl or phenyl

R³ is

$$-N$$
 or $-N$ N $-R^{52}$

and

R³² is hydrogen and -(CH₂)_o-(CHR³¹)_m-(CH₂)_n-G where R³¹ is hydrogen, C₁-C₄-alkyl, OH and O-C₁-C₄-alkyl, m, o independently of one another are $\frac{0}{2}$, 1 or 2 and n is 1, 2, 3 or 4, and

R⁴ is hydrogen, branched and unbranched C₁-C₆-alkyl, chlorine, bromine, fluorine, nitro, cyano, NR⁴¹R⁴², NH-CO-R⁴³, OR⁴¹, where

R⁴¹ and R⁴² independently of one another are hydrogen or C₁-C₄-alkyl and

R⁴³ is C₁-C₄-alkyl or phenyl, and,

G is NR⁵¹R⁵² or one of the radicals below

where

R⁵¹ is hydrogen and branched and unbranched and C₁-C₆-alkyl and

is hydrogen, COCH₃, CO-O-C₁-C₄-alkyl, COCF₃, branched and unbranched C₁-C₆-alkyl, it being possible for one hydrogen of the C₁-C₆-alkyl radical to be substituted by one of the following radicals: OH, O-C₁-C₄-alkyl and phenyl and for the phenyl ring also to carry one or two of the following radicals: chlorine, bromine, fluorine, branched and unbranched C₁-C₄-alkyl, nitro, amino, C₁-C₄-alkylamino, C₁-C₄-dialkylamino, OH, O-C₁-C₄-alkyl, CN, SO₂-C₁-C₄-alkyl,

or a tautomeric form, a possible enantiomeric or disasteriomeric form, a prodrug or

pharmacologically tolerated salt thereof.

- 4. (Previously Presented) A compound as claimed in claim 1 where R^2 is in position 3 and R^3 is in position 4 or R^2 is in position 4 and R^3 is in position 3 relative to the benzimidazole ring.
- 5. (Previously Presented) A compound as claimed in claim 1, where R¹ and R⁴ are hydrogen.
- 6. (Previously Presented) A compound as claimed in claim 1, where
- R² is hydrogen, branched or unbranched C₁-C₆-alkyl, nitro, CN, NH₂, or O-C₁-C₄-alkyl.
- 7. (Previously Presented) A compound as claimed in claim 1, where
- (i) for R^3 being

 R^{31} is hydrogen or $-(CH_2)_w$ - $G \underline{F}$, where

w is 1 or 2 and

(ii) for R³ being

 R^{31} is hydrogen or -(CH₂)_p-G, where

p is 1 or 2

and and (iii) for R³

being

where R_{52} , is hydrogen, branched and unbranched C_1 - C_6 -alkyl, where one hydrogen of the C_1 - C_6 -alkyl radical may be substituted by one of the following radicals: OH, O- C_1 - C_4 -alkyl and phenyl, and where the phenyl ring may also carry one or two of the following radicals: chlorine, bromine, flourine, branched and unbranched C_1 - C_4 -alkyl, nitro, amino, C_1 - C_4 -alkylamino, C_1 - C_4 -dialkylamino, OH, O- C_1 - C_4 -alkyl, CN, SO₂- C_1 - C_4 -alkyl.

- 8. (Previously Presented) A compound as claimed in claim 1, where R^3 is $-D(F^1)_p$ - $(E)_q$ - $(F^2)_r$ -G where D is O, F^1 is a C_1 - C_4 carbon chain, p is 1, q is 0 and r is 0.
- 9. (Currently Amended) A compound as claimed in claim 1, where \mathbb{R}^5 is \mathbb{R}^5 is a 6-membered ring and \mathbb{R}^{52} is an optionally substituted phenyl ring.
- 10 (Previously Presented) A drug comprising besides conventional vehicles and ancillary substances a compound as claimed in claim 1.
- 11. (Previously Presented) A method for treating a disorder in which pathologically elevated PARP activities occur, said method comprising administering an effective amount of a compound of the formula I as claimed in claim 1 to a mammal suffering from said disorder.
- 12. (Previously Presented) The method as claimed in claim 11 wherein the disorder is a neurodegenerative disease or involves neuronal damage.
- 13. (Original) The method as claimed in claim 12, wherein the neurodegenerative disease or neuronal damage is induced by ischemia, trauma or massive bleeding.
- 14. (Currently Amended) The method as claimed in claim 11 wherein the disorder is stroke of and craniocerebral trauma.

- 15. (Original) The method as claimed in claim 11 wherein the disorder is Alzheimer's disease and Huntington's disease.
- 16. (Original) The method as claimed in claim 11 wherein the disorder is damage due to ischemia.
- 17. (Original) The method as claimed in claim 11 wherein the disorder is epilepsy.
- 18. (Original) The method as claimed in claim 11 wherein the disorder is damage to the kidneys after renal ischemia, damage caused by drug therapy or damage resulting after kidney transplants.
- 19. (Original) The method as claimed in claim 11 wherein the disorder is damage to the heart after cardiac ischemia.
- 20. (Original) The method as claimed in claim 11 wherein the disorder a microinfarct.
- 21. (Original) The method as claimed in claim 11 wherein the disorder is under vascularization of critically narrowed coronary arteries.
- 22. (Original) The method as claimed in claim 11 wherein the disorder is an acute myocardial infarct and damage during and after medical or mechanical lysis thereof.
- 23. (Currently Amended) The method as claimed in claim 11 wherein the disorder is a tumor or metastasis I thereof.
- 24. (Original) The method as claimed in claim 11 wherein the disorder is sepsis of multiorgan failure.
- 25. (Original) The method as claimed in claim 11 wherein the disorder is an immunological disease.
- 26. (Original) The method as claimed in claim 11 wherein the disorder is diabetes mellitus.

 Claims 27-38 (Canceled)