МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИ

«РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ

ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ им. А. И. ГЕРЦЕНА»

Институт компьютерных наук и технологического образования

Кафедра компьютерных технологий и электронного обучения

КУРСОВАЯ РАБОТА

ВЫЧИСЛИТЕЛЬНЫЙ ЭКСПЕРИМЕНТ ПО ИЗУЧЕНИЮ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ МАТЕРИАЛЬНОЙ ТОЧКИ

Направление подготовки: «Информатика и вычислительная техника»

Руководитель: кандидат педагогических наук, доцент,

С.В. Гончарова

« 25» декабря 2018 г.

Автор работы студент группы

1.2 Е.Г. Шеховнова

« 25» декабря 2018 г.

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	3
ГЛАВА 1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ	3
ГЛАВА 2. ПРАКТИЧЕСКАЯ ЧАСТЬ	6
ЧАСТЬ 2.1. ЗАДАЧА НА РАВНОМЕРНОЕ ДВИЖЕНИЕ	6
ЧАСТЬ 2.2. НАХОЖДЕНИЕ ЗАВИСИМОСТИ ПЕРИОДА ВРАЩЕНИЯ ОТ РАДИУСА ОКРУЖНОСТИ	7
ЧАСТЬ 2.3. ЗАДАЧА НА РАВНОУСКОРЕННОЕ ДВИЖЕНИЕ	8
ЧАСТЬ 2.4. НАХОЖДЕНИЕ ЗАВИСИМОСТИ ПОЛНОГО УСКОРЕНИЯ ТОЧКИ ОТ РАДИУСА ОКРУЖНОСТІ	И.
	10
ЗАКЛЮЧЕНИЕ	12
ЛИТЕРАТУРА	12
ПРИЛОЖЕНИЕ	14

ВВЕДЕНИЕ

Эта работа посвящена проведению вычислительного эксперимента по изучению вращательного движения материальной точки по окружности. В ней будут рассмотрены равномерное и равноускоренное движение. Для каждого вида движения будет решена задача и найдена зависимость. Для равномерного движения — зависимость периода от радиуса окружности; для равноускоренного — полного ускорения от радиуса окружности. На основании полученных данных будут построены графики зависимостей. С помощью программы MS Excel 2010 будут реализованы задачи, закономерности, построены графики.

ГЛАВА 1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Криволинейное движение – движение по траектории, представляющей кривую линию

Криволинейное движение – всегда ускоренное движение, так как ускорение состоит из двух компонент – тангенциального и нормального. Нормальная составляющая отвечает за изменение вектора скорости по направлению. Тангенциальная – за изменение модуля скорости.

$$a = \sqrt{a_n^2 + a_\tau^2}$$

Если модуль скорости не изменяется, то движение равномерное. Если скорость изменяется как по направлению, так и по модулю.

Криволинейное движение – всегда ускоренное движение.

В данной работе мы будем рассматривать частный случай криволинейного движения – движение по окружности. Для описания этого движения удобно использовать следующие характеристики.

Угловая скорость – скорость изменения угла поворота, является векторной величиной, направленной вдоль оси вращения. Для определения направления вектора угловой скорости необходимо воспользоваться правилом буравчика (правого ходового винта), где направление вращения головки винта совпадает с направлением вращения материальной точки, а поступательное движение винта совпадает с направлением вектора угловой скорости. Измеряется в рад/с.

Частота вращения – количество оборотов за единицу времени. Измеряется в c^{-1} .

Угловое ускорение — величина, характеризующая изменение угловой скорости, векторная величина. Если движение является равноускоренным, вектор углового ускорения совпадает с направлением вектора угловой скорости, если движение равнозамедленное, то вектор углового ускорения направлен противоположно вектору угловой скорости. Измеряется в рад/с².

Период - время, за которое точка совершает полный оборот. Измеряется в с.

В этой работе будут рассматриваться только случаи равномерного и равноускоренного движения.

Равномерное вращение — движение, при котором угловая скорость остается постоянной. При этом углы поворота за любые равные интервалы времени одинаковые. При этом тангенциальная составляющая ускорения равна нулю, а нормальная составляющая постоянна.

$$\omega = const = \frac{2\pi}{T} = 2\pi \nu$$

$$T = \frac{\Delta t}{N} = \frac{1}{\nu}$$

$$\nu = \frac{N}{\Delta t'}$$

где N – количество оборотов за единицу времени

Значение угла поворота в любой точке времени можно вычислить по формуле:

$$\varphi = \varphi_0 + \omega t$$

где φ_0 - угол поворота в начальный момент времени.

Угловое ускорение равно нулю

$$\varepsilon = 0$$

Равноускоренное вращение — движение по окружности, при котором угловая скорость изменяется за равные интервалы времени на одну и ту же величину. Изменяется как нормальное, так и тангенциальное ускорение.

Из того, что движение равноускоренное следует, что угловое ускорение постоянно

$$\varepsilon = const = \ddot{\varphi}$$

Угловая скорость изменяется по следующей формуле:

$$\omega = \omega_0 + \varepsilon t$$
,

где ω_0 – угловая скорость в начальный момент времени

Значение угла поворота в любой момент времени можно вычислить по формуле:

$$\varphi = \varphi_0 + \omega_0 t + \frac{\varepsilon t^2}{2},$$

где φ_0 и ω_0 - значения в начальный момент времени угла поворота и угловой скорости

ГЛАВА 2. ПРАКТИЧЕСКАЯ ЧАСТЬ

В этой работе будут найдены некоторые зависимости и также решены задачи для равномерного и равноускоренного движения.

ЧАСТЬ 2.1. ЗАДАЧА НА РАВНОМЕРНОЕ ДВИЖЕНИЕ

Условие:

Шарик вращается по окружности радиусом 50 см с постоянной скоростью и за 4 минуты совершает 600 оборотов. Найти частоту вращения шарика, его скорость и период полного вращения.

Ход решения:

Сначала необходимо записать исходные данные задачи и искомые величины. Если это необходимо, то перевести значения величин в СИ.

$$r = 50 \text{ cm} = 0.5 \text{ m}$$

$$t = 4 \text{ MUH} = 240 \text{ c}$$

$$N = 600 \text{ of.}$$

η - ?

v - ?

T - ?

Затем можно приступить непосредственно к решению задачи:

Так как период и частота вращения взаимно обратные величины, то достаточно вычислить одну из них, а оставшуюся найти путем деления единицы на найденную величину. Например, сначала найдем частоту вращения по формуле

$$\eta = \frac{N}{t} = \frac{600}{240} = 2.5 \text{ c}^{-1}$$

Из этого можно найти период обращения:

$$T = \frac{1}{\eta} = \frac{1}{2.5} = 0.4 \text{ c}$$

Затем найдем скорость вращения шарика, используя найденное ранее значения частоты вращения

$$v = 2\pi r \eta = 2 * 3,14 * 0,5 * 2,5 \approx 7,85 \text{ m/c}$$

Получено приблизительное значение скорости, так как число π взято с точностью двух знаков после запятой

Реализация задачи в программе Excel

Сначала необходимо ввести исходные данные:

В ячейку Е3 ввести значение N, равное 600, в ячейку F3 ввести формулу "=50/100" – значение радиуса окружности, переведенное в СИ, в ячейку G3 ввести формулу "=4*60" – значение времени, переведенное в СИ. Полученный результат отображен на рисунке 1.

Затем нужно произвести расчеты:

В ячейку А3 ввести формулу "=E3/G3" — рассчитывается значение частоты вращения, в ячейку В3 ввести формулу "= $2*\Pi U()*F3*A3$ " — рассчитывается значение скорости шарика, в ячейку С3 ввести формулу "=1/A3" — рассчитывается значение периода вращения. Полученный результат отображен на рисунке 2.

ЧАСТЬ 2.2. НАХОЖДЕНИЕ ЗАВИСИМОСТИ ПЕРИОДА ВРАЩЕНИЯ ОТ РАДИУСА ОКРУЖНОСТИ

Найти зависимость периода вращения от радиуса окружности, скорость взять равной 4 м/с. Построить график этой зависимости.

Ход решения:

Период вращения найти по формуле:

$$T = \frac{2\pi r}{v}$$

Начальное значение г изменять от 0.1 м до 5 м

Реализация задачи и построение графика в программе Excel

В ячейку D2 ввести значение v-4 м/с. В ячейки A2 и A3 ввести значения 0,1 и 0,2 соответственно. Выделить ячейки A2-A3 и растянуть их до достижения радиусом значения в 5 м. В ячейку B2 ввести формулу "=2*ПИ()*A2/\$D\$2", ссылку на ячейку D2 сделать постоянной, так как по условию скорость не изменяется. Растянуть формулу в ячейке B2 до ячейки B51. Полученный результат отображен на рисунке 3.

Выделить диапазон ячеек A2:В51 и построить точечную диаграмму с гладкими кривыми. Сделать необходимые подписи осей, название графика и т.д. Полученный результат отображен на рисунке 4.

ЧАСТЬ 2.3. ЗАДАЧА НА РАВНОУСКОРЕННОЕ ДВИЖЕНИЕ

Условие:

Диск вращается вокруг неподвижной оси так, что зависимость угла поворота радиуса от времени задается уравнением

$$\varphi = At^2$$

где A=0,1 рад/ c^2 . Определите полное ускорение а точки на ободе диска к концу второй секунды после начала движения, если линейная скорость этой точки в этот момент равна 0,4 м/с.

Ход решения:

Сначала необходимо записать исходные данные задачи и искомые величины. Если это необходимо, то перевести значения величин в СИ.

$$A = 0,1 \text{ рад/c}^2$$

t = 2 c

$$v = 0.4 \text{ m/c}$$

a - ?

Затем можно приступить непосредственно к решению задачи:

Сначала необходимо определить формулу нахождения полного ускорения:

$$a = \sqrt{a_n^2 + a_\tau^2}$$

Т.е. для нахождения полного ускорения необходимо найти тангенциальное и нормальное ускорения. Значение тангенциального ускорения можно найти по формуле:

$$a_{\tau}=\varepsilon r$$
,

Значение нормального ускорения – по формуле

$$a_n = \frac{v^2}{r}$$

Таким образом, для того чтобы вычислить полное ускорение, сначала необходимо найти угловое ускорение и радиус диска.

Угловое ускорение можно вычислить по формуле:

$$\varepsilon = \ddot{\varphi} = (\ddot{A}\dot{t}^2) = 2 * A = 0.2 \text{ рад/c}^2$$

Чтобы рассчитать найдем значение угловой скорости

$$\omega = \dot{\varphi} = (A\dot{t}^2) = 2 * A * t = 0,4$$
 рад/с

Радиус рассчитывается по формуле:

$$r = \frac{\varepsilon}{\omega^2} = \frac{0.2}{0.4^2} = 1.25 \text{ M}$$

Подставляем полученные значения в формулы и получаем:

$$a_{\tau} = \varepsilon r = 0.2 * 1.25 = 0.25 \text{ m/c}^2$$

$$a_n = \frac{v^2}{r} = \frac{0.4^2}{1.25} = 0.128 \text{ m/c}^2$$

Вычисляем значение полного ускорения:

$$a = \sqrt{a_n^2 + a_\tau^2} = \sqrt{0.128^2 + 0.25^2} \approx 0.280863 \text{ m/c}^2$$

Реализация задачи в программе Excel

Сначала необходимо ввести исходные данные:

В ячейку Н3 ввести 0,1 – значение A, в ячейку I3 ввести 2 – значение t, в ячейку J3 ввести 0,4 – значение v. Полученный результат отображен на рисунке 5.

Затем нужно произвести расчеты:

В ячейку F3 ввести формулу "=2*H3" – рассчитывается значение углового ускорения, в ячейку E3 ввести формулу "=2*H3*I3" – рассчитывается значение угловой скорости, в ячейку D3 ввести формулу "=F3/(E3*E3)" – рассчитывается значение радиуса диска, в ячейку C3 ввести формулу "=D3*F3" – рассчитывается значение тангенциального ускорения, в ячейку B3 ввести формулу "=J3*J3/D3" – рассчитывается значение нормального ускорения. В ячейку A3 ввести формулу "=KOPEHb(B3*B3+C3*C3)" – рассчитывается значение полного ускорения. Полученный результат отображен на рисунке 6.

ЧАСТЬ 2.4. НАХОЖДЕНИЕ ЗАВИСИМОСТИ ПОЛНОГО УСКОРЕНИЯ ТОЧКИ ОТ РАДИУСА ОКРУЖНОСТИ.

Найти зависимость полного ускорения точки от радиуса окружности через 10, 30 и 60 секунд после начала движения, принимая угловое ускорение равным 0,4 рад/ c^2 , начальную угловую скорость равной нулю.

Угловую скорость для каждого времени можно рассчитать по формуле:

$$\omega = \omega_0 + \varepsilon t$$

Полное ускорение рассчитывается по формуле:

$$a = \sqrt{a_\tau^2 + a_n^2} = \sqrt{(\omega^2 r)^2 + (\varepsilon r)^2} = \sqrt{\omega^4 r^2 + \varepsilon^2 r^2} = r \sqrt{\omega^4 + \varepsilon^2}$$

Значение г изменять от 0.1 м до 5 м

Реализация задачи и построение графика в программе Excel

В ячейку G2 ввести значение углового ускорения — 0,4 рад/ c^2 , в ячейки I2, I3, I4 ввести значения времени — 10, 30, 60 секунд. В ячейку H2 ввести "=G\$2*I2", в ячейку H3 — "=G\$2*I3", в ячейку H4 — "=G\$2*I4" — рассчитывается значение угловой скорости для каждого промежутка времени. Полученный результат отображен на рисунке 7.

В ячейки A2 и A3 вводятся значения 0,1 и 0,2, затем эти ячейки выделяются и растягиваются на столбец A до достижения 5 м. В ячейку B2, C2, D2 вводятся формулы

- "=\$A2*КОРЕНЬ(\$G\$2*\$G\$2+\$H\$2*\$H\$2*\$H\$2*\$H\$2)",
- "=\$A2*KOPEHЬ(\$G\$2*\$G\$2+\$H\$3*\$H\$3*\$H\$3)",
- "=\$A2*КОРЕНЬ(\$G\$2*\$G\$2+\$H\$4*\$H\$4*\$H\$4)" и растягиваются до В51, С51, D51.

Выделяются ячейки A2:D51 и строится точечная диаграмма с гладкими кривыми. Сделать необходимые подписи осей, название графика и т.д. Полученный результат отображен на рисунке 8.

ЗАКЛЮЧЕНИЕ

В результате исследования были выявлены прямо пропорциональные зависимости периода вращения материальной точки от радиуса окружности при равномерном движении и полного ускорения от радиуса при равноускоренном. С помощью инструментов для построения графиков, ссылок, абсолютных ссылок и функций были реализованы поставленные задачи в программе MS Excel 2010. Для построения графиков были выбраны точечные диаграммы с гладкими кривыми. Расчеты проводились с точностью 10^{-6} . В процессе исследования были использованы материалы электронных библиотек как университетского, так и школьного курса.

ЛИТЕРАТУРА

- Яковенко В. А.: Общая физика : механика: учебник / Яковенко В. А. , Заборовский Г.
 А. , Яковенко С. В. Минск: Вышэйшая школа, 2015
- 2. Гладышева Ю. А.: Практикум по самостоятельному решению задач с методическими указаниями: учебное пособие, Ч. 1. Механика / Гладышева Ю. А., Гуньков В. В. Оренбург.: ОГУ, 2016
- 3. Основы технической механики: учебник / Мовнин М. С. , Израелит А. Б. , Рубашкин А. Г. СПб: Политехника, 2011
- 4. Изергин Э. Т.: Физика : учебник для 8 класса общеобразовательных учреждений / Изергин Э. Т. М.: Русское слово, 2013
- 5. Ташлыкова-Бушкевич И. И.: Физика: учебник: в 2 ч., Ч. 1. Механика. Молекулярная физика и термодинамика. Электричество и магнетизм / Ташлыкова-Бушкевич И. И. Минск: Вышэйшая школа, 2014
- 6. Никеров В. А.: Физика для вузов : механика и молекулярная физика: учебник / Никеров В. А. – М.: Издательско-торговая корпорация «Дашков и К°», 2017
- 7. Воробьева Ф. И.: Информатика. MS Excel 2010: учебное пособие / Воробьева Ф. И., Воробьев Е. С. / Казань: Издательство КНИТУ, 2014
- 8. Кудасова С. В.: Курс лекций по общей физике: учебное пособие для бакалавров, Ч. 1. Механика. Молекулярная физика и термодинамика / Кудасова С. В., Солодихина М. В. Москва, Берлин: Директ-Медиа, 2016
- 9. Алешкевич В. А.: Курс общей физики. Механика: учебник / Алешкевич В. А., Деденко Л. Г., Караваев В. А. Москва: Физматлит, 2011

ПРИЛОЖЕНИЕ

Рисунок 1

η, c ⁻¹	v, m/c	T, c
2.5	7.853982	0.4

Рисунок 2

Рисунок 3

Рисунок 4

A, рад∕с²	t, c	v, m/c
0.1	2	0.4

Рисунок 5

а, м/с ²	а _п , м/с ²	а _т м/с ²	г, м	ω, рад/с	ε, рад/c ²
0.280863	0.128	0.25	1.25	0.4	0.2

Рисунок 6

ε, рад∕с2	ω, рад/с	t, c
0.4	4	10
	12	30
	24	60

Рисунок 7

Рисунок 8