CPSC 340: Machine Learning and Data Mining

Kernel Methods

Admin

Assignment 3:

- Due Sunday evening
- Solutions will be posted on Thursday
- Assignments 1 and 2:
 - You can now see each other's work
- Midterm March 1
 - Past exams posted
 - Midterm covers Assignments 1-3 / lectures 1-16
 - Tutorials after break will cover practice exam questions
 - In class, 1pm-1:55pm, closed-book, 1 page double-sided "cheat sheet".

Last Time: SVMs and Kernel Trick

- We discussed the maximum margin view of SVMs:
 - Yields an L2-regularized hinge loss.

- We introduced the kernel trick:
 - Write model to only depend on inner products between features vectors.

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right)^{-1} y$$
time matrix $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right)^{-1} y$
time matrix $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right)^{-1} y$
The matrix $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right)^{-1} y$
The matrix $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right)^{-1} y$
The matrix $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right)^{-1} y$
The matrix $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right)^{-1} y$
The matrix $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right)^{-1} y$
The matrix $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right)^{-1} y$
The matrix $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right)^{-1} y$
The matrix $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right)^{-1} y$
The matrix $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right)^{-1} y$
The matrix $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right)^{-1} y$
The matrix $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right)^{-1} y$
The matrix $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right)^{-1} y$
The matrix $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right)^{-1} y$
The matrix $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right)^{-1} y$
The matrix $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right)^{-1} y$
The matrix $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right)^{-1} y$
The matrix $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right)^{-1} y$
The matrix $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right)^{-1} y$
The matrix $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right)^{-1} y$
The matrix $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right)^{-1} y$
The matrix $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right)^{-1} y$
The matrix $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right)^{-1} y$
The matrix $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right)^{-1} y$
The matrix $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right)^{-1} y$
The matrix $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right)^{-1} y$
The matrix $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right)^{-1} y$
The matrix $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right)^{-1} y$
The matrix $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right)^{-1} y$
The matrix $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right)^{-1} y$
The matrix $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right)^{-1} y$
The mat

- So everything we need to know about z_i is summarized by the z_iTz_i .
- If you have a kernel function $k(x_i,x_j)$ that computes $z_i^Tz_j$, then you don't need to compute the basis z_i explicitly.

Polynomial Kernel with Higher Degrees

Assume that I have 2 features and want to use the degree-2 basis:

$$Z_{i} = \begin{bmatrix} 1 & \sqrt{2}x_{i1} & \sqrt{2}x_{i2} & x_{i1}^{2} & \sqrt{2}x_{i1}x_{i2} & x_{i2}^{2} \end{bmatrix}^{T}$$

I can compute inner products using:

$$(1 + x_{i}^{7}x_{j})^{2} = 1 + 2x_{i}^{7}x_{j} + (x_{i}^{7}x_{j})^{2}$$

$$= 1 + 2x_{i1}x_{j1} + 2x_{i2}x_{j2} + x_{i1}^{2}x_{j1}^{2} + 2x_{i1}x_{i2}x_{j1}x_{j2} + x_{i2}^{2}x_{j2}^{2}$$

$$= \left[1 + \sqrt{2}x_{i1} + \sqrt{2}x_{i2} + x_{i1}^{2} + \sqrt{2}x_{i1}x_{i2} + x_{i2}^{2} + \sqrt{2}x_{i1}^{2} + \sqrt{2}x_{i2}^{2} + \sqrt{2}x_{i1}^{2} + \sqrt{2}x_{i2}^{2} + \sqrt{2}x_{i1}^{2} + \sqrt{2}x_{i2}^{2} + \sqrt{2}x_{i2}^{2} + \sqrt{2}x_{i2}^{2} + \sqrt{2}x_{i1}^{2} + \sqrt{2}x_{i1}^{2$$

Polynomial Kernel with Higher Degrees

To get all degree-4 "monomials" I can use:

$$Z_{i}^{T}Z_{j} = (x_{i}^{T}x_{j})^{4}$$
Equivalent to using a Z_i with weighted versions of $x_{i,j}^{4}x_{i,j}^{3}x_{i,j}^{2}x_{i,j}^{2}x_{i,j}^{3}x_{i,j}^{4}$

- To also get lower-order terms use $z_i^T z_j = (1 + x_i^T x_j)^4$
- The general degree-p polynomial kernel function:

$$k(x_i, x_j) = (1 + x_i^T x_j)^p$$

- Works for any number of features 'd'.
- But cost of computing $z_i^T z_i$ is O(d) instead of O(d^p).
- Take-home message: I can take the dot products without constructing the feature vectors themselves.

Kernel Trick

Using polynomial basis of degree 'p' with the kernel trick:

– Compute K and \widehat{K} :

$$K_{ij} = (1 + x_i^T x_j)^p \qquad K_{ij} = (1 + \hat{x}_i^T x_j)^p$$

$$test \quad L_j \quad train example$$

– Make predictions using:

Kand K:

$$K_{ij} = (1 + x_i^T x_j)^p \quad K_{ij} = (1 + x_i^T x_j)^p$$
lictions using:

$$V = K(K + \lambda I)^{-1}$$

$$V = K$$

• Training cost is only
$$O(n^2d + n^3)$$
, despite using $O(d^p)$ features.

- Testing cost is only $O(ndt)$.

 $(n^2d + n^3)$, despite using $O(d^p)$ features.

 $(n^2d + n^3)$, despite using $O(d^p)$ features.

 $(n^2d + n^3)$, despite using $O(d^p)$ features.

Linear Regression vs. Kernel Regression

Linear Regression

Training

- 1. Form basis Z from X
- 2. Compute $w=(Z^TZ+\lambda I)^{-1}(Z^Ty)$

Testing
1. Form basis
$$2$$
 from x^2
2. Compute $y = 2w$

Kernel Regression

Training

- 1. Form inner products K from X.
- 2. Compute $v=(K+\lambda I)^{-1}y$

Testing:

1. Form inner products
$$K$$
 from X and X

2. Compute $\hat{y} = Kv$

Observation: this requires all training examples $\ \odot$

Motivation: Finding Gold

- Kernel methods first came from mining engineering ('Kriging'):
 - Mining company wants to find gold.
 - Drill holes, measure gold content.
 - Build a kernel regression model (typically use RBF kernels).

Gaussian-RBF Kernel

Most common kernel is the Gaussian RBF kernel:

$$K(x_i,x_j) = exp\left(-\frac{||x_i-x_j||^2}{2\sigma^2}\right)$$

- Same formula and behaviour as RBF basis, but not equivalent:
 - Before we used RBFs as a basis, now we're using them as inner-product.
- Basis z_i giving the Gaussian RBF kernel is infinite-dimensional.
 - Not much hope of doing this without the kernel trick...
- Kernel trick lets us fit regression models without explicit features:
 - We can interpret $k(x_i,x_i)$ as a "similarity" between objects x_i and x_i .
 - We don't need z_i and z_i if we can compute 'similarity' between objects.

Kernel trick for structured data

Consider data that doesn't look like this:

$$X = \begin{bmatrix} 0.5377 & 0.3188 & 3.5784 \\ 1.8339 & -1.3077 & 2.7694 \\ -2.2588 & -0.4336 & -1.3499 \\ 0.8622 & 0.3426 & 3.0349 \end{bmatrix}, \quad y = \begin{bmatrix} +1 \\ -1 \\ -1 \\ +1 \end{bmatrix},$$

But instead looks like this:

$$X = \begin{bmatrix} \text{Do you want to go for a drink sometime?} \\ \text{J'achète du pain tous les jours.} \\ \text{Fais ce que tu veux.} \\ \text{There are inner products between sentences?} \end{bmatrix}, y = \begin{bmatrix} +1 \\ -1 \\ -1 \\ +1 \end{bmatrix}.$$

- Instead of using features, can define kernel between sentences.
 - E,g, "string kernels": weighted frequency of common subsequences.
- There are also "image kernels", "graph kernels", and so on...

Valid Kernels

• What kernel functions $k(x_i,x_i)$ can we use?

- Kernel 'k' must be an inner product in some space:
 - There must exist a mapping from x_i to some z_i such that $k(x_i, x_j) = z_i^T z_j$.
- It can be hard to show that a function satisfies this.
- But there are some simple rules for constructing valid kernels from other valid kernels (bonus slide).

Kernel Trick for Other Methods

- Besides L2-regularized least squares, when can we use kernels?
 - Methods based on Euclidean distances between examples:
 - Kernel k-nearest neighbours.
 - Kernel clustering (k-means, DBSCAN, hierarchical).
 - Kernel outlierness.
 - Kernel "Amazon Product Recommendation".
 - Kernel non-parametric regression.

$$||z_i - z_j||^2 = z_i^7 z_i - 2z_i^7 z_j + z_j^7 z_j = k(x_{ij} x_j) - 2k(x_{ij} x_j) + k(x_{jj} x_j)$$

– L2-regularized linear models ("representer theorem" -- see bonus slides):

- L2-regularized robust regression.
- L2-regularized logistic regression.
- L2-regularized support vector machines.

> With a particular implementation testing cost is reduced from

O(ndt) to O(mdt) Number of surport vector

Kernel trick continued

 Because of the support vectors, kernels are used with SVMs quite often, but much less so with logistic regression.

sklearn.svm.SVC

class sklearn.svm. **svc** (C=1.6, kernel='rbf', degree=3, gamma='auto', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape=None, random_state=None) [source]

sklearn.linear_model.LogisticRegression

class sklearn.linear_model. LogisticRegression (penalty='l2', dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='liblinear', max_iter=100, multi_class='ovr', verbose=0, warm_start=False, n_jobs=1) [source]

RBF kernel vs RBF features

- Like the RBF features, the RBF kernel...
 - can learn any decision boundary given enough data
 - as a result it is prone to overfitting, so we need to use regularization
 - $-\sigma$ parameter controls smoothness: larger σ means smoother boundaries
 - This is called "gamma" in sklearn and it's 1/σ
 - $-\lambda$ parameter controls regularization: larger λ means more regularization
 - This is called "C" in sklearn and it's 1/λ
- The RBF features are finite-dimensional (N features)
- The RBF kernel corresponds to infinitely many features
- Both are non-parametric methods

Summary

- Kernels let us use similarity between objects, rather than features.
- The RBF kernel allows us to use infinitely many features in finite computational time.

We'll spend the rest of today's class reviewing recent topics.

Bonus Slide: Features Corresponding to RBF Kernel

Guasian-RBF Kernels

The most common kernel is the Gaussian-RBF (or 'squared exponential') kernel,

$$k(x_i, x_j) = \exp\left(-\frac{\|x_i - x_j\|^2}{\sigma^2}\right).$$

- What function $\phi(x)$ would lead to this as the inner-product?
 - To simplify, assume d=1 and $\sigma=1$,

$$k(x_i, x_j) = \exp(-x_i^2 + 2x_i x_j - x_j^2)$$

= $\exp(-x_i^2) \exp(2x_i x_j) \exp(-x_j^2),$

so we need $\phi(x_i) = \exp(-x_i^2)z_i$ where $z_i z_j = \exp(2x_i x_j)$.

- For this to work for all x_i and x_j , z_i must be infinite-dimensional.
- If we use that

$$\exp(2x_i x_j) = \sum_{k=0}^{\infty} \frac{2^k x_i^k x_j^k}{k!},$$

then we obtain

$$\phi(x_i) = \exp(-x_i^2) \left[1 \quad \sqrt{\frac{2}{1!}} x_i \quad \sqrt{\frac{2^2}{2!}} x_i^2 \quad \sqrt{\frac{2^3}{3!}} x_i^3 \quad \cdots \right].$$

Bonus Slide: Designing Valid Kernel Functions

Constructing Valid Kernels

- If $k_1(x_i, x_j)$ and $k_2(x_i, x_j)$ are valid kernels, then the following are valid kernels:
 - k₁(φ(x_i), φ(x_j)).
 - $\alpha k_1(x_i, x_j) + \beta k_2(x_i, x_j)$ for $\alpha \ge 0$ and $\beta \ge 0$.
 - k₁(x_i, x_j)k₂(x_i, x_j).
 - φ(x_i)k₁(x_i, x_j)φ(x_j).
 - exp(k₁(x_i, x_j)).
- Example: Gaussian-RBF kernel:

$$k(x_i, x_j) = \exp\left(-\frac{\|x_i - x_j\|^2}{\sigma^2}\right)$$

$$= \exp\left(-\frac{\|x_i\|^2}{\sigma^2}\right) \exp\left(\underbrace{\frac{2}{\sigma^2} \underbrace{x_i^T x_j}_{\text{valid}}}_{\text{exp(valid)}}\right) \exp\left(-\frac{\|x_j\|^2}{\sigma^2}\right).$$

Bonus Slide: Kernels for Linear Model plus L2-Reg

Representer Theorem

Consider linear model differentiable with losses f_i and L2-regularization,

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \sum_{i=1}^n f_i(w^T x_i) + \frac{\lambda}{2} ||w||^2.$$

Setting the gradient equal to zero we get

$$0 = \sum_{i=1}^{n} f_i'(w^T x_i) x_i + \lambda w.$$

So any solution w* can written as a linear combination of features x_i,

$$w^* = -\frac{1}{\lambda} \sum_{i=1}^n f'_i((w^*)^T x_i) x_i = \sum_{i=1}^n z_i x_i$$

= $X^T z$.

This is called a representer theorem (true under much more general conditions).

Bonus Slide: Kernels for Linear Model plus L2-Reg

Representer Theorem

• Using representer theorem we can use $w = X^T z$ in original problem,

$$\begin{aligned} & \underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \sum_{i=1}^n f_i(w^T x_i) + \frac{\lambda}{2} \|w\|^2 \\ & = \underset{z \in \mathbb{R}^n}{\operatorname{argmin}} \sum_{i=1}^n f_i(\underbrace{z^T X x_i}_{x_i^T X^T z}) + \frac{\lambda}{2} \|X^T z\|^2 \end{aligned}$$

• Now defining $f(z) = \sum_{i=1}^n f_i(z_i)$ for a vector z we have

$$\begin{split} &= \operatorname*{argmin}_{z \in \mathbb{R}^n} f(XX^Tz) + \frac{\lambda}{2} z^T X X^Tz \\ &= \operatorname*{argmin}_{z \in \mathbb{R}^n} f(Kz) + \frac{\lambda}{2} z^T Kz. \end{split}$$

Similarly, at test time we can use the n variables z,

$$\hat{X}w = \hat{X}X^Tz = \hat{K}z$$
.