Weather and Income: Lessons from the main European regions

David García-León

Dept. Fundamentos del Análisis Económico Universidad de Alicante

June 27, 2015 21st EAERE Annual Conference, Helsinki

- Motivation
- 2 Data

- Motivation
- 2 Data
- 3 Long-term

- Motivation
- 2 Data
- 3 Long-term
- 4 Short-term

- Motivation
- 2 Data
- 3 Long-term
- 4 Short-term
- Conclusion

• (Successful?) Eco-economic decoupling

David García-León

- (Successful?) Eco-economic decoupling
- Unprecedented increase in mean air temperatures since 1960
 - More is yet to come! (various IPCC Assessment Reports)

- (Successful?) Eco-economic decoupling
- Unprecedented increase in mean air temperatures since 1960
 - More is yet to come! (various IPCC Assessment Reports)
- Degree of exposure to environmental conditions

- (Successful?) Eco-economic decoupling
- Unprecedented increase in mean air temperatures since 1960
 - More is yet to come! (various IPCC Assessment Reports)
- Degree of exposure to environmental conditions
- Important implications: cost of climate change

Historical behaviour

Recent developments

Source: WMO

 Quantify the relationship between temperature and aggregate economic activity

- Quantify the relationship between temperature and aggregate economic activity
- ullet Hedonic (Ricardian) approach \Longrightarrow long-term relationship
 - Dell et al. (2009) find a negative relationship between income and temperature
 - Sub-national data for a sample of 12 countries in the Americas
 - National income falls 8.5% per degree Celsius

- Quantify the relationship between temperature and aggregate economic activity
- ullet Hedonic (Ricardian) approach \Longrightarrow long-term relationship
 - Dell et al. (2009) find a negative relationship between income and temperature
 - Sub-national data for a sample of 12 countries in the Americas
 - National income falls 8.5% per degree Celsius
- ullet Panel data approach (year-to-year fluctuations) \Longrightarrow short-term relationship
 - Dell et al. (2012):
 - increasing temperatures hamper only poor countries
 - Sample of 150 countries

Improvements on Dell et al.

• Apply both methodologies (short- and long-term) to the same sample

Improvements on Dell et al.

- Apply both methodologies (short- and long-term) to the same sample
- Corroborate their findings for a sample of developed economies

Improvements on Dell et al.

- Apply both methodologies (short- and long-term) to the same sample
- Corroborate their findings for a sample of developed economies
- Account for heterogeneity within country using disaggregated economic and weather data

Improvements on Dell et al.

- Apply both methodologies (short- and long-term) to the same sample
- Corroborate their findings for a sample of developed economies
- Account for heterogeneity within country using disaggregated economic and weather data
- Weather data collected from actual weather stations

Main Results

Main Results

- In the cross-section (long-term) analysis, we find:
 - significant, negative, tempered relationship between temperatures and income within our sample
 - This relationship is amplified in poor regions
 - Precipitation and geographic variables: null or residual importance
 - Quantitatively and qualitatively similar to Deryugina and Hsiang (2014) for the US

Main Results

- In the cross-section (long-term) analysis, we find:
 - significant, negative, tempered relationship between temperatures and income within our sample
 - This relationship is amplified in poor regions
 - Precipitation and geographic variables: null or residual importance
 - Quantitatively and qualitatively similar to Deryugina and Hsiang (2014) for the US
- On the panel dimension (short-term):
 - 1ºC rise in temperatures will decrease growth rates in all regions within our sample
 - Effect exacerbated in poor regions
 - First evidence, together with Colacito et al. (2014), suggesting a negative relationship between rising temperatures and economic growth in the context of developed economies

EAERE 2015

Data NUTS classification

- 5 largest countries in the EU: UK, Germany, France, Italy and Spain
- NUTS: 161 regions
 - Combine NUTS 2-3 according to adequacy and data availability
- Weather data collected directly from national weather agencies
 - Avoid problems with gridded data
- Economic data from national statistical offices

Table: NUTS summary

country	NUTS 2			NUTS 3			
	area	population	regions	area	population	regions	
France	24340	2455	22	6328	638	100	
Germany	9398	2165	39	867	200	412	
Italy	14352	2829	22	2740	541	110	
Spain	26631	2362	18	8576	761	51	
United Kingdom	6574	1648	37	1750	438	139	

Table: Data sources

country	economic variables	period	weather variables	period
France	INSEE	1990-2012	Meteo France	1949-2013
Germany	DESTATIS	1992-2013	DWD	1900-2014
Italy	ISTAT	1995-2012	METEOAM	1995-2013
Spain	INE	1980-2013	AEMET	1948-2014
United Kingdom	ONS	1995-2012	Met Office (UKCP09)	1981-2012

• Mean air temperature (°C). Year 2000

• Mean air temperature (°C). Year 2000

• Precipitations (mm/year). Year 2000

Long-term

Empirical approach

$$V_i = \int \left[\sum P_j Q_{ij}(X_{ik}, Z_i) - \sum M_k X_{ik} \right] e^{-\varphi t} dt$$

ullet V_i can be expressed as a function of only exogenous variables

$$V_i = f(Z_i)$$

We estimate the linear regression

$$LOGY_r = \alpha_r + \beta_1 TEMP_r + \beta_2 PRECIP_r + X'_r \gamma + \varepsilon_r$$

 Analogous to Dell et al. (2009). Further examples of this methodology for Europe are mainly focused on agricultural output: van Passel et al. (2012), Lippert et al. (2009) or Kurukulasuriya and Mendelsohn (2008)

Long-term Basic Results

Table: Long-term Relationship. All Regions

	(1)	(2)	(3)	(4)	(5)	(6)
***********	-0.022***	-0.022***	-0.023***	-0.021**	-0.031***	-0.016*
temperature	(0.006)	(0.007)	(800.0)	(0.010)	(0.009)	(0.009)
temperature x poor regions						-0.022***
temperature x poor regions						(0.004)
precipitations				0.002	0.005	0.000
precipitations				(0.007)	(0.005)	(0.003)
Geographic variables	No	No	Yes	Yes	Yes	Yes
Country FE	No	No	No	No	Yes	Yes
Observations	168	168	168	168	168	168
Number of clusters	-	59	59	59	59	59
R-squared	0.085	0.085	0.196	0.197	0.599	0.712
Temp. effect on poor Nuts						-0.038***
Temp. enect on poor Nuts						(0.010)

Year 2000. Dependent variable: GDP pc. Errors clustered by NUTS 1 level. Poor regions defined as having below-median per-capita GDP.

14 / 18

Short-term

Empirical approach

- Panel data structure
- We benefit from exogenous stochastic variation in weather variables
- Effect of weather fluctuation in the economic activity
- We consider the simple economy specification from Bond et al. (2010)

$$Y_{it} = e^{\beta T_{it}} A_{it} L_{it}$$

Taking logs and differencing wrt time

$$g_{it} = \theta_i + \theta_{rt} + \sum_{j=0}^{L} \rho_j T_{it-j} + \varepsilon_{it}$$

Short-term

Empirical approach

• Temperature variation (\triangle °C) in period 1990-2012

Short-term

Basic Results

Table: Short-term Relationship. All Regions

	(1)	(2)	(3)	(4)
	0.178**	-0.064***	-0.034*	-0.022
temperature	(0.038)	(0.023)	(0.019)	(0.017)
temperature x poor regions			-0.052**	-0.058**
temperature x poor regions			(0.026)	(0.026)
precipitations				0.036
precipitations				(0.028)
Country FE	No	Yes	Yes	Yes
Observations	3246	3246	3246	3241
Number of clusters	59	59	59	59
R-squared	0.029	0.469	0.469	0.470
Temp. effect on poor Nuts			-0.086***	-0.080***
Temp. enect on poor Nuts			(0.029)	(0.026)

Sample: 1990-2012. Dependent variable: GDP pc. Errors clustered by NUTS 1 level. Poor regions defined as having below-median per-capita GDP.

Conclusion

- Negative (modest), significant statistical relationship between temperatures and income within European regions
- Amplified in poor regions: prone to suffering more from ongoing rising temperatures
- First piece of evidence suggesting a negative relation between rising temperatures and income growth in developed economies
 - Together with Deryugina and Hsiang (2014) and Colacito et al. (2014) for the US
- Follow-up when new vintages available