How do conventions emerge in group communication?

Veronica Boyce

CogSci seminar

1

How do conventions emerge in group communication?

Veronica Boyce

CogSci seminar

How do conventions emerge in group communication?

Veronica Boyce

CogSci seminar

Communication occurs in many contexts

Communication occurs in many contexts

Ranging from one-on-one to small group to large group to broadcast

Communication occurs in many contexts

Ranging from one-on-one to small group to large group to broadcast

In all cases, need to efficiently establish reference.

All right, the next one looks like a person who's ice skating, except, they're sticking two arms out in front.

3

- All right, the next one looks like a person who's ice skating, except, they're sticking two arms out in front.
- Um, the next one's the person ice skating that has two arms?

- All right, the next one looks like a person who's ice skating, except, they're sticking two arms out in front.
- Um, the next one's the person ice skating that has two arms?
- The fourth one is the person ice skating, with two arms.

- All right, the next one looks like a person who's ice skating, except, they're sticking two arms out in front.
- Um, the next one's the person ice skating that has two arms?
- The fourth one is the person ice skating, with two arms.
- The next one's the ice skater.

- All right, the next one looks like a person who's ice skating, except, they're sticking two arms out in front.
- Um, the next one's the person ice skating that has two arms?
- The fourth one is the person ice skating, with two arms.
- 4 The next one's the ice skater.
- The fourth one's the ice skater.

- All right, the next one looks like a person who's ice skating, except, they're sticking two arms out in front.
- Um, the next one's the person ice skating that has two arms?
- The fourth one is the person ice skating, with two arms.
- The next one's the ice skater.
- 5 The fourth one's the ice skater.
- 6 The ice skater.

3

Clark & Wilkes-Gibbs 1986: Reduction

Clark & Wilkes-Gibbs 1986: Reduction

Ubiquitous phenomenon Many explanations:

- Common ground (Clark 1996)
- Recursive mentalistic inference (Goodman & Frank 2016)
- Interactive priming (Garrod & Pickering 2009)
 (Won't address today)

4

Hawkins, Frank, & Goodman 2020:

Scaling up via web-based experiments

- Cued version with feedback on each trial
- Message with a chat box
- After all exclusions, 83 dyads

Hawkins, Frank, & Goodman 2020: Content Analysis

Semantics converge within and diverge between groups

Dyads are well-studied in this paradigm,...

Dyads are well-studied in this paradigm,... but much real-life communication is not dyadic.

Dyads are well-studied in this paradigm,... but much real-life communication is not dyadic.

How does efficient reference work in groups?

Yoon & Brown-Schmidt 2019: Audience design

Speaker trains with some matchers
Then talks with knowledgeable and/or naive listeners

Longer, more elaborated & disfluent utterances with mixed or naive listeners

Weber & Camerer 2003: Adversarially trained listeners

Hard to accommodate listeners with different concepts

FYP: Communication in small groups

Compare groups of 2/3/4 communicators Follow paradigm of Hawkins et al

- · Rotate who the speaker is
- Different feedback

Questions we can address:

- · speed of convergence by group size
- managing multiple listeners
- use convention v new description
- where/when do conventions originate

Empirica (Almaatouq et al 2020)

Virtual Lab platform for real-time interactive experiments

Experiment Framework

Bonus: 4 points

Experiment Framework

Bonus: 0 points

Experiment Framework

Bonus: Average of listeners = (2/3) * 4 points

Recruitment

Goal: 20 games in each of 2/3/4-player conditions Each game has 6 blocks of 12 tangrams

Recruitment

Goal: 20 games in each of 2/3/4-player conditions Each game has 6 blocks of 12 tangrams

Actual recruitment (over 3 days):

- 15 2-player games (+ 4 partial)
- 18 3-player games (+ 2 partial)
- 20 4-player games (+ 1 partial)

Include all complete blocks

Results: Accuracy is high and increasing

Results: Faster in later rounds

Results: Reduction in words over time

Results: Variability in reduction rate

Most groups/tangrams reduce gradually

Results: Tangrams vary in nameability

Results: Models

Bayesian model to allow for correlated variability

- Block: -3.22 words [-4.95, -1.55]
- Player count: 1.93 words [-0.15, 4.02]
- Speaker choosing wrong on the previous block: 4.15 words [2.54, 5.79]

Example: iBaby

A(S):Looks like a letter 'i'

C: does it look like with its hand out or not

B: ^

A(S): no hand it is just a head and a body.

C: oke

A(S): more like a baby that has been swaddled in a blanket

② B(S): swaddled baby

B(S): I

B(S): i

③ C(S): the baby i

D(S): baby swaddled, looks like an i

A(S): swaddled baby

6 B(S): iBaby

Example: Skydiving ghost superman

A(S):flying man

A(S): like superman

A(S): hands in the air

A(S): like skydiving

B(S): the diver with no legs

A: ok

3 C(S): This one looks like a ghost to me, but you called it superman or skydiver

A: ok no legs?

C(S): Correct A: ok

4 A(S): ghost, superman, skydiver

B(S): sky diver, ghost

A: ok

© C(S): Skydiving ghost superman

Example: Karate kid

*

A(S): Similar to the karate kid movie

A(S): the crane kick

B: Haha! Does it look like they have dangly sleeves!

C: I don't know that one.

A(S): yes

D:yes i see, thats a good explenation.

Example: Lack of shorthand

- A(S):Diamond on top. Body with no real arms or legs. The body is shaped like a boot with the diamond on top.
 C: Is the boot pointed left or right?
- B(S): diamond on top, large body beneath it. Left is a straight line all the way down, small variations on the right to the main body
- 3 C(S): Diamond in center on top. Left side straight, right side carved out like a vase.
- D(S): Diamond head, flat topped body, straight on the left side with two triangles pointing out on the left D(S): *on the right

 D(
- S A(S): Diamond on top. Left side is straight, right side is obstructed, looks like a boot
 - B: what do you mean by obstructed?
 - A(S): The left side of the body is right, right side has bents in it
- 6 B(S): Diamond on top of a long large body/rectangle. Left side is complete, right side has bits missing

Example: Meta doesn't always help

1 ...A(S): yes, the legs are like a zig zag

C: CODE name ZIGZAG

A(S): There are no legs upwards

B(S): okay so similar to begger guy but no foot pointing up

B(S): its like a zigzag

B(S): i forgot the code name

D: zigzag yea

A: The one standing with knees bent

B(S): yeah

B(S): standing

C: Yeah zigzag

O(S): The begger with no foot coming out from the left

B: zigzag

C(S): zigzag it is

C(S): sorry i forgot

4 D(S): zigzag

A(S): zigzag

6 B(S): beggar guy

B(S): zigzag

Future analyses: Semantics

Convergence by group size

Accuracy & convergence

Geometric v metaphorical language

· Where/when are (atypical) concepts introduced?

arms in air choir singer figure flying

Future analyses: Semantics

- · Convergence by group size
- Accuracy & convergence
- Geometric v metaphorical language

Where/when are (atypical) concepts introduced?

How far does this generalize?

- · Group size
- Stimuli
- Game set ups, feedback

How far does this generalize?

- · Group size
- Stimuli
- Game set ups, feedback

What makes communication more efficient?

- Shared expertise
- Curriculum learning

How far does this generalize?

- · Group size
- Stimuli
- · Game set ups, feedback

What makes communication more efficient?

- · Shared expertise
- · Curriculum learning

Online implementation makes iterations, variations easy

Comments, Questions?

Looking for feedback on

- Analyses
- · Future data sets