Image Analysis

(SE3IA11 + SEMIP12)

Lectured by

Dr Hong Wei (HW) and Prof. James Ferryman (JMF)
h.wei@reading.ac.uk; j.m.ferryman@reading.ac.uk
Room 145 (HW) and Room 123 (JMF)
the SSE Building

Autumn-term 2015

SE3IA11+SEMIP12 Image Analysis

Reference books

- Rafael Gonzalez & Richard Woods, *Digital Image Processing*, 2nd edition, Prentice Hall, 2002
- S G Hoggar, Mathematics of Digital Images Creation, Compression, Restoration, Recognition, Cambridge Univ. Press, 2006
- Anil K. Jain, Fundamentals of Digital Image Processing, Prentice Hall, 1989
- Milan Sonka, Vaclav Hlavac, and Roger Boyle, *Image Processing, Analysis, and Machine Vision*, Thomson Learning, 2007

Autumn-term 2015

SE3IA11+SEMIP12 Image Analysis

Recommended Journals

- IEEE Transaction on Image Processing
- Image and Vision Computing
- IEEE Transaction on Pattern Analysis and Machine Intelligence (PAMI)
- Many conference proceedings, e.g.
 - International Conference of Image Processing (ICIP)
 - International Conference of Pattern Recognition (ICPR)
 - International Conference of Computer Vision (ICCV)
 - Computer Vision and Pattern Recognition (CVPR)British Machine Vision Conference (BMVC)
 - More

Autumn-term 2015

•		
•		
,		

2

Arrangements for the module

- This is a 10 credit module running through the autumn term. Two lectures a week.
 - 14:00-16:00 Fridays for 10 weeks (HARB164)
 - Week 3 is used for a tutorial in a lab (SSE G21)
 - Week 11 is for a demonstration in a lab (SSE G21)
- Two pieces of coursework associated with lab practicals (unsupervised)
 - Assignment 1: image enhancement (15% assessment)
 - Assignment 2: image compression (15% assessment)
- One 2-hour written examination in May/June 2016. It counts 70% of the final assessment.

Autumn-term 201

SE3IA11+SEMIP12 Image Analysis

Contents covered in this module

- Fundamentals of digital images
- · Image enhancement
- Colour image processing
- Image compression
- Mathematical morphology in image processing
- Image segmentation

Autumn-term 2015

SE3IA11+SEMIP12 Image Analysis

Detailed scheduling

Week	Topic	Lecturer
Week 1 (2 nd October)	Fundamentals of Image Analysis	HW
Week 2 (9th October)	Image Enhancement (Spatial)	JMF
Week 3 (16th October)	Tutorial (MatLab+OpenCV)	HW
Week 4 (23th October)	Image Enhancement (Frequency)	JMF
Week 5 (30st October)	Colour Image Processing	HW
Week 7 (13th November)	Image Compression (IC)	JMF
Week 8 (20th November)	IC2 / Symbolic Feature Extraction	JMF
Week 9 (27th November)	Morphological Image Processing	HW
Week 10 (4th December)	Image Segmentation	HW
Week 11 (11th December)	Compression coursework assessment	HW&JMF

Autumn-term 2015

Lectured by HW(Rm 145,
h.wei@reading.ac.uk) and JMF (Rm 123,
.m.ferryman@reading.ac.uk)

	-
	-
	_
	-

Digital image analysis

- Questions to be answered in this module
 - What is digital image?
 - How is a digital image formed mathematically?
 - Are there any applications where image analysis is required?
 - How to make the applications feasible?
 - Various techniques and processes

Autumn-term 2015

SE3IA11+SEMIP12 Image Analysis

Applications of image analysis (1)

• Medical and biomedical images

(a) Gastric body from endoscope

(b) Hip joints from X-ray

(c) Cells from microscope

Autumn-term 2015

SE3IA11+SEMIP12 Image Analysis

Applications of image analysis (2)

• Further medical images

(a) MRI of human spine

(b) Ultrasound image of a baby

Autumn-term 2015

Applications of image analysis (3)

• Remotely sensed data in climate and environment research – observation

(a) Multispectral image of hurricane (from GEO Satellite)

(b) SAR image: surface of Venus (from Magellan probe)

(c) LIDAR data (from airborne laser scanning)

Autumn-term 201

SE3IA11+SEMIP12 Image Analysis

Applications of image analysis (4)

· Image-based document analysis

Applications of image analysis (5)

- Security (CCTV): visual surveillance
- Webcam application: looking after elders through mobile phones
- London congestion control: automatic number plate recognition (ANPR)
- Biometrics: face images, finger prints, iris images,...
- Information retrieve in the Internet: image based information search (Google Goggles).
- The Google Book Search project unveiled in late 2004 aims to make all the world's books discoverable online.
- And more

Autumn-term 2015 SE3IA11+SEMIP12 Image Analysis

Typical processes in image analysis

(from perception to cognition)

- Image acquisition
- Image enhancement and restoration
- Image compression
- Morphological processing
- Image segmentation and description
- Recognition: understanding and interpretation (intelligent?)

Autumn-term 2015

SE3IA11+SEMIP12 Image Analysis

13

A computer imaging system Al algorithms Image analysis Pattern recognition Machine learning 3D reconstruction Display model Display screen Cameral Camera2 Interface Computer Mass storage Autumn-term 2015 SE3IA11+SEMIP12 Image Analysis

Image acquisition: lighting (electromagnetic radiation – EMR)

- "Light" in imaging covers a part of the electromagnetic spectrum beyond the visible spectrum (wavelength 380-760 nm).
- Light has two forms of energy: electricity and magnetism which are transmitted together as EMR in the speed of 2.998×108m/s.
- The electromagnetic spectrum can be expressed in terms of wavelength, frequency (or energy), and speed as

$$\lambda = \frac{c}{v}$$
 and energy $E = hv$ with h a constant.

where λ is wavelength, ν frequency, and c speed.

Autumn-term 2015

Image acquisition: sensors (1)

- Imaging is a process in which the reflected energy from illuminated scenes is received (or collected) by sensing elements or materials, called sensors.
- Four components: light source, scene, sensors, and lens optical systems.
- Sensors must be responsive to light sources, *e.g.* X-ray, infrared, visible lights, etc. by using different sensing materials (*e.g.* different CCD or CMOS).
- Sensing: transform incoming illumination energy (reflected from scene) into a voltage by sensors, from which the output voltage is digitised to generate a value of a pixel in a digital image.

Autumn-term 2015	SE3IA11+SEMIP12 Image Analysis

Image acquisition: sensors (2)

- Three principal sensor arrangements
 - Single sensor: sensor moving, e.g. raster scanning
 - Line sensor: sensor strip in linear motion
 - *Sensor arrays*: popularly used in normal digital cameras and cam-recorders.
- Outputs of all the above different sensors could be arranged to a 2D array reflecting illumination energy of a scene.

Autumn-term 2015	SE3IA11+SEMIP12 Image Analysis	18

Image acquisition: optical systems

• An optical system (lens) plays the role to refract an observed scene onto an imaging plane (i.e. a focal plane in the pin-hole model).

C is the optical centre of the lens.

Autumn-term 2015

SE3IA11+SEMIP12 Image Analysis

PSF and MTF in an optical system

- PSF: the *point spread function* indicates an optical system response to an impulse $\delta(x,y)$.
 - All physical optical systems blur (spread) a point of light to some degree. After an optical system, $\delta(x,y)$ becomes to $h(x,\alpha,y,\beta)=H[\delta(x-\alpha,y-\beta)]$, mathematically called convolution, where α and β are parameters related with the optical system.
- MTF: the modulation transfer function is defined as

$$MTF(f_s) = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}$$

where I_{\max} and I_{\min} are maximum and minimum grey values of pixels in an image, respectively. *MTF* is a function of spatial frequency f_s . It is affected by the arrangement of sensor arrays.

Autumn-term 2015

SE3IA11+SEMIP12 Image Analysis

Representation of digital images

- A digital image is normally represented by a two-dimensional (2D) array, *e.g.* f(x,y), where x=1,2...M and y=1,2...N, representing the size of the image.
- Each element in the array is a real number, called a **pixel** and represented by a finite number of bits.
- A matrix denotes a digital image in the formal mathematic term.

Autumn-term 2015

SE3IA11+SEMIP12 Image Analysis

21

Image sampling and quantisation (1)

- Image sampling deals with issues of how many pixels are used to represent a scene.
 - Digitising the coordinate values: the Nyquist sampling theorem is applied.
 - The Nyquist states that the minimum sampling frequency is twice as high as the signal frequency.
- Image quantisation regards issues of how many bits used for one pixel.
 - Digitising the amplitude values of illumination energy: the visual quality should be satisfied.

Autumn-term 2015

SE3IA11+SEMIP12 Image Analysis

23

Image sampling and quantisation (2) A scan line of A to B Digitised pixel array of AB Sampling and quantisation Sampling and quantisation 24

Example of image sampling (1) • Sampling black and white bars with 100 lines/inch. (a) 100 dpi (0.5 Nyquist-Shannon sampling rate) (b) 200 dpi (with Nyquist-Shannon sampling rate) (c) 300 dpi (1.5 Nyquist-Shannon sampling rate) (d) 600 dpi (3 Nyquist-Shannon sampling rate) - where dpi stands for "dots per inch".

Example of image sampling (2) • Pink rose in colours: details are lost in (c). (a) 599×812×3 uint8 (b) 82×111×3 uint8 (c) The image in (b) re-sampled into 599×812. (a) (b) (c) Autumn-term 2015 SE3IA11+SEMIP12 Image Analysis 26

Image resizing

- Shrinking digital images: operation of undersampling, *e.g.* 512×512

 ⇒ 256×256
- Enlarge digital images: operation of oversampling, *e.g.* 256×256 ⇒ 512×512
- Two main steps in the operations
 - Creation of new pixel locations
 - Assignment of grey levels to those new locations
- Techniques used in the image resizing operation
 - Nearest neighbour interpolation (NNI)
 - Bilinear interpolation (BLI)

Autumn-term 201

SE3IA11+SEMIP12 Image Analysis

28

Image resizing: interpolation (NNI)

Shrinking g1(x',y')

- For NNI: g1(x',y')=g(x,y); g2(x',y')=g(x+1,y+1)
- How about g1 and g2 based on the BLI algorithm?

http://www.cambridgeincolour.com/tutorials/image-interpolation.htm

Autumn-term 2015

SE3IA11+SEMIP12 Image Analysis

Image resizing: interpolation (BLI)

- Bilinear interpolation considers the closest 2×2 neighbourhood of known pixel values surrounding the unknown pixel.
- It takes a weighted average of these 4 pixels to arrive at its final interpolated value.
- This algorithm results in much smoother looking images than NNI.

Autumn-term 2015

SE3IA11+SEMIP12 Image Analysis

30

Lectured by HW(Rm 145, h.wei@reading.ac.uk) and JMF (Rm 123, j.m.ferryman@reading.ac.uk)

Relationships between pixels (1)

- Neighbours of a pixel p(x,y)
 - -4-neighbours $N_4(p)$: (x-1,y), (x+1,y), (x,y-1), (x,y+1)
 - Four diagonal neighbours $N_D(p)$: (x-1,y-1), (x-1,y+1), (x+1,y-1), (x+1,y+1)

Autumn-term 2015

SE3IA11+SEMIP12 Image Analysis

Relationships between pixels (2)

- Regions and boundaries: binary images have two sets {1} and {0}
 - Connectivity: two pixels are neighboured, but they are connected only if they both belong to set {1} or set {0}.
 - Connected components: for any pixel p in set S, the set of pixels are connected to p in S is called a connected component in S.

S{1}: blue

 $S{0}$: white

32

Autumn-term 2015

SE3IA11+SEMIP12 Image Analysis

Relationships between pixels (3)

- Distance between pixels $p(x_1,y_1)$ and $q(x_2,y_2)$
 - The Euclidean distance

$$D_e = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

- The D_4 distance: $D_4 = |x_1 - x_2| + |y_1 - y_2|$

- The D_8 distance: $D_8 = \max(|x_1 - x_2|, |y_1 - y_2|)$

- Image operations on a pixel basis
 - Each pixel represents an element in a matrix.
 - Image operations follow operations among matrices.

Autumn-term 2015

SE3IA11+SEMIP12 Image Analysis

Image quality evaluation

- Two types of criteria for image evaluation: subjective and quantitative.
- Quantitative evaluation of image f(x,y):
 - A reference image f'(x,y) is needed.
 - The average mean square error is used for the evaluation as

$$\sigma^2 = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \left| f(x,y) - f'(x,y) \right|^2$$

- · Image fidelity criteria are useful for
 - Measuring image quality
 - Rating the performance of a processing techniques.

Autumn-term 2015

SE3IA11+SEMIP12 Image Analysis

34

Questions for further thinking

- How to express a digital image mathematically?
- Issues of digital image visualisation (sampling and quantisation)
- Based on the concept of image resizing, work out how to deal with image rotation (matrix rotation) and shape distortion.
- Image quality evaluation: try to think about more efficient measures for the purpose. Do we need benchmarks for the purpose? If so, how to establish the benchmarks (with assumptions)?

Autumn-term 2015

SE3IA11+SEMIP12 Image Analysis

35

End of the first two lectures

- Summary of what you have learned in the two lectures.
- Revision on matrix operations

Autumn-term 2015

SE3IA11+SEMIP12 Image Analysis