

How Ideal Lattices unlocked Fully Homomorphic Encryption

Francisco José VIAL PRADO

December 10, 2014

Ph.D. advisor: Louis GOUBIN

This talk

- Introduction
- Gentry's Ideal Lattices scheme
- Further advances, others schemes and open problems

Fully Homomorphic Encryption

Question: "Is it possible to compute blindfolded?"

Fully Homomorphic Encryption

Question: "Is it possible to compute blindfolded?"

Example : A public-key cryptosystem \mathcal{E} verifying : $\forall a,b\in\mathcal{P}(\mathcal{E})$,

$$a + b = D_{\mathcal{E}}(E_{\mathcal{E}}(a) + E_{\mathcal{E}}(b)),$$

$$a \times b = D_{\mathcal{E}}(\mathsf{E}_{\mathcal{E}}(a) \times \mathsf{E}_{\mathcal{E}}(b)).$$

Formal definition

Def. 1 : A **homomorphic scheme** is a public-key scheme $\mathcal E$ with four PPT algorithms :

- KeyGen: $\lambda \mapsto (sk, pk)$;
- Enc: $(m, pk) \mapsto c$;
- Dec: $(c, sk) \mapsto m$;
- Eval: $(C, c_1, \ldots, c_n, pk) \mapsto m$.

Formal definition

Def. 1 : A **homomorphic scheme** is a public-key scheme $\mathcal E$ with four PPT algorithms :

- KeyGen: $\lambda \mapsto (\mathtt{sk}, \mathtt{pk});$
- Enc: $(m, pk) \mapsto c$;
- Dec: $(c, sk) \mapsto m$;
- Eval: $(C, c_1, \ldots, c_n, pk) \mapsto m$.

Def. 2: A homomorphic scheme is *correct* for a set of circuits \mathcal{C} if, for every circuit in \mathcal{C} ,

$$\psi \leftarrow \mathtt{Eval}(\mathcal{C}, \psi_1, \dots, \psi_n, \mathtt{pk}) \Rightarrow \mathtt{Dec}(\psi, \mathtt{sk}) = \mathcal{C}(\pi_1, \dots, \pi_n)$$

where $\psi_i = \text{Enc}(\pi_i, pk), i = 1, \dots, n$.

Introduction Gentry's IL scheme Other FHE schemes Open questions

A **Fully Homomorphic Scheme** is a homomorphic scheme that is correct for all circuits.

Starting point

- Let I be an ideal of some ring R,
- $m \in R$ the message.

Starting point

- Let I be an ideal of some ring R,
- $m \in R$ the message.

Encryption : Enc(m) = m + xI for some $x \in R$.

Search an ideal / that allows

• Random sampling from $\alpha + I, \alpha \in R$.

Search an ideal I that allows

- Random sampling from $\alpha + I, \alpha \in R$.
- Noise annihilation $m + xI \mapsto m$.

Search an ideal I that allows

- Random sampling from $\alpha + I, \alpha \in R$.
- Noise annihilation $m + xI \mapsto m$.

And strong security properties.

Let $R = \mathbb{Z}[X]/(X^n + 1)$ where n is a power of 2, and consider the mapping $\alpha : R \to \mathbb{Z}^n$,

$$\alpha(v_0 + v_1X + \cdots + v_{n-1}X^{n-1}) = (v_0, v_1, \cdots, v_{n-1})$$

Let I = (P(X)) be a principal ideal of R:

Let $R = \mathbb{Z}[X]/(X^n + 1)$ where n is a power of 2, and consider the mapping $\alpha : R \to \mathbb{Z}^n$,

$$\alpha(v_0 + v_1X + \cdots + v_{n-1}X^{n-1}) = (v_0, v_1, \cdots, v_{n-1})$$

Let I = (P(X)) be a principal ideal of R:

An **ideal lattice** is the image of a principal ideal of R by α , i.e. $L = \alpha(I)$.

Let $R = \mathbb{Z}[X]/(X^n + 1)$ where n is a power of 2, and consider the mapping $\alpha : R \to \mathbb{Z}^n$,

$$\alpha(v_0 + v_1X + \cdots + v_{n-1}X^{n-1}) = (v_0, v_1, \cdots, v_{n-1})$$

Let I = (P(X)) be a principal ideal of R:

An **ideal lattice** is the image of a principal ideal of R by α , i.e. $L = \alpha(I)$.

For instance, if n = 3, $\alpha((2 + X))$ is generated by

$$\langle \alpha(2+X), \alpha(X(2+X)), \alpha(X^2(2+X)) \rangle$$
.

Let $R = \mathbb{Z}[X]/(X^n + 1)$ where n is a power of 2, and consider the mapping $\alpha : R \to \mathbb{Z}^n$,

$$\alpha(v_0 + v_1X + \cdots + v_{n-1}X^{n-1}) = (v_0, v_1, \cdots, v_{n-1})$$

Let I = (P(X)) be a principal ideal of R:

An **ideal lattice** is the image of a principal ideal of R by α , i.e. $L = \alpha(I)$.

For instance, if n = 3, $\alpha((2 + X))$ is generated by

$$\langle \alpha(2+X), \alpha(X(2+X)), \alpha(X^2(2+X)) \rangle$$
.

I.e., the columns of
$$\begin{pmatrix} 2 & 0 & -1 \\ 1 & 2 & 0 \\ 0 & 1 & 2 \end{pmatrix}.$$

Let L be an ideal lattice with base $\mathbf{B}_L = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$. Define

$$P(\mathbf{B}_L) = \left\{ \sum_{i \leq n} x_i \mathbf{b}_i \in \mathbb{R}^n ; \ x_i \in [-1/2, 1/2) \right\}.$$

Let L be an ideal lattice with base $\mathbf{B}_L = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$. Define

$$P(\mathbf{B}_L) = \left\{ \sum_{i \leq n} x_i \mathbf{b}_i \in \mathbb{R}^n \; ; \; x_i \in [-1/2, 1/2) \right\}.$$

• Base reduction in \mathbb{Z}^n : $x \mod \mathbf{B}_L = x - \mathbf{B}_L \lfloor \mathbf{B}_L^{-1} x \rceil \in \mathcal{P}(\mathbf{B}_L)$

Let L be an ideal lattice with base $\mathbf{B}_L = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$. Define

$$P(\mathbf{B}_L) = \left\{ \sum_{i \leq n} x_i \mathbf{b}_i \in \mathbb{R}^n \; ; \; x_i \in [-1/2, 1/2) \right\}.$$

- Base reduction in \mathbb{Z}^n : $x \mod \mathbf{B}_L = x \mathbf{B}_L \lfloor \mathbf{B}_L^{-1} x \rceil \in \mathcal{P}(\mathbf{B}_L)$
- Addition in \mathbb{Z}^n : $(\mathbf{x}, \mathbf{y}) \mapsto \mathbf{x} + \mathbf{y}$

Let L be an ideal lattice with base $\mathbf{B}_L = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$. Define

$$P(\mathbf{B}_L) = \left\{ \sum_{i \leq n} x_i \mathbf{b}_i \in \mathbb{R}^n \; ; \; x_i \in [-1/2, 1/2) \right\}.$$

- Base reduction in \mathbb{Z}^n : $x \mod \mathbf{B}_L = x \mathbf{B}_L \lfloor \mathbf{B}_L^{-1} x \rceil \in \mathcal{P}(\mathbf{B}_L)$
- Addition in \mathbb{Z}^n : $(\mathbf{x}, \mathbf{y}) \mapsto \mathbf{x} + \mathbf{y}$
- Product in \mathbb{Z}^n : $(\mathbf{x}, \mathbf{y}) \mapsto \alpha(\mathbf{x}(X) \times \mathbf{y}(X))$

- Let J be an ideal lattice, generated by two bases $\mathbf{B}_J^{\mathbf{sk}}, \mathbf{B}_J^{\mathbf{pk}}$.
- $m{\bullet}$ $\mathcal{P}\subseteq\{0,1\}^n$, $\mathtt{pk}=\{\mathbf{B}_J^{\mathtt{pk}}\}$, $\mathtt{sk}=\{\mathbf{B}_J^{\mathtt{sk}}\}$
- Let Samp (π) be a (bounded) random algorithm that samples from $\pi + 2\mathbb{Z}^n$.

Encryption:

$$\vec{\pi} \xrightarrow{\mathtt{Samp}} \vec{\pi} {+} 2\vec{e}$$

Encryption:

$$\vec{\pi} \xrightarrow{\mathtt{Samp}} \vec{\pi} + 2\vec{e} \xrightarrow{\mathsf{mod}} \mathbf{B}^{pk}_{\jmath} \xrightarrow{\vec{\pi} + 2\vec{e} + \vec{i}}.$$

Encryption:

$$\vec{\pi} \xrightarrow{\mathtt{Samp}} \vec{\pi} + 2\vec{e} \xrightarrow{\mathsf{mod}} \mathbf{B}^{pk}_{\jmath} \xrightarrow{\vec{\pi} + 2\vec{e} + \vec{i}}.$$

Decryption:

$$\vec{\psi} \xrightarrow{\mathsf{mod} \, \boldsymbol{B}_J^{\mathbf{S} \mathbf{k}}} \vec{\psi} - \vec{i}'$$

Encryption:

$$\vec{\pi} \xrightarrow{\mathtt{Samp}} \vec{\pi} + 2\vec{e} \xrightarrow{\mathsf{mod}} \mathbf{B}^{\mathrm{pk}}_{J} \xrightarrow{\vec{\pi}} + 2\vec{e} + \vec{i}.$$

Decryption:

$$\vec{\psi} \xrightarrow{\mathsf{mod}\, \mathbf{B}_J^{\mathbf{S}\mathbf{k}}} \vec{\psi} - \vec{i}' \xrightarrow{\mathsf{mod}\, 2} \vec{\pi} - \vec{i}' - \vec{2}e'.$$

Homomorphic properties

$$\psi = \vec{\pi} + 2\vec{e} + i, \ \psi' = \vec{\pi}' + 2\vec{e}' + i'$$

Homomorphic properties

$$\psi = \vec{\pi} + 2\vec{e} + i, \ \psi' = \vec{\pi}' + 2\vec{e}' + i'$$

$$\psi + \psi' = (\vec{\pi} + \pi') + 2(\vec{e} + \vec{e}') + i''$$

$$\psi \times \psi' = (\vec{\pi} \times \pi') + 4\vec{e} \times \vec{e}' + i'''$$

Homomorphic properties

Theorem:

$$\psi = \vec{\pi} + 2\vec{e} + i, \ \psi' = \vec{\pi}' + 2\vec{e}' + i'$$

$$\psi + \psi' = (\vec{\pi} + \pi') + 2(\vec{e} + \vec{e}') + i''$$

$$\psi \times \psi' = (\vec{\pi} \times \pi') + 4\vec{e} \times \vec{e}' + i'''$$

$$d_{\text{max}} = \log \log ||\vec{v}_{\text{Sk}}||_2 - \log \log (\sqrt{n} \cdot l_{\text{Samp}})$$

Ground-breaking idea

Bootstrapping: Capability of refreshing a high-noise message.

Ground-breaking idea

Bootstrapping: Capability of refreshing a high-noise message.

• The scheme has to verify : $D_{\mathcal{E}} \in C_{\mathcal{E}}$.

Ground-breaking idea

Bootstrapping: Capability of refreshing a high-noise message.

- The scheme has to verify : $D_{\mathcal{E}} \in C_{\mathcal{E}}$.
- Introduces "circular security" issues.

Introduction Gentry's IL scheme Other FHE schemes Open questions

Bootstrapping theorem : Let $\mathcal E$ be a homomorphic encryption scheme that is correct for circuits in $\mathcal C$. If $\mathrm{Dec}_{\mathcal E} \in \mathcal C$, then $\mathcal E$ is bootstrappable.

Introduction Gentry's IL scheme Other FHE schemes Open questions

Bootstrapping theorem : Let $\mathcal E$ be a homomorphic encryption scheme that is correct for circuits in $\mathcal C$. If $\mathrm{Dec}_{\mathcal E} \in \mathcal C$, then $\mathcal E$ is bootstrappable.

For reasonable parameters, the I.L. scheme as presented is **not** bootstrappable.

Bootstrapping theorem : Let $\mathcal E$ be a homomorphic encryption scheme that is correct for circuits in $\mathcal C$. If $\mathrm{Dec}_{\mathcal E} \in \mathcal C$, then $\mathcal E$ is bootstrappable.

For reasonable parameters, the I.L. scheme as presented is **not** bootstrappable.

Gentry reduces the degree of the decryption circuit and achieves bootstrapping.

New security issues

Circular security: Is it safe to send Key-Dependent messages? If so; is this provable?

New security issues

Circular security: Is it safe to send Key-Dependent messages? If so; is this provable?

The Sparse Subset Sum Vector Problem : Given an upper bound for θ , distinguish between

$$\{\vec{t}_1,\ldots,\vec{t}_\Theta\}\subset^R\mathbb{Q}^n \text{ and } \{\vec{t}_1,\ldots,\vec{t}_\Theta\in\mathbb{Q}^n; \sum_{i\in S}\vec{t}_i=0\}.$$

Other FHE schemes

van Dijk, Gentry, Halevi, Vaikuntanathan. – A FHE scheme over Z.

Brakerski, Vaikuntanathan.— (i) FHE from LWE (ii) FHE with proved circular security

Multikey FHE

- Ciphertexts are to be decrypted jointly by a set of secret-key holders
- Allows Multiparty Computation Protocols in the cloud

Multikey FHE

- Ciphertexts are to be decrypted jointly by a set of secret-key holders
- Allows Multiparty Computation Protocols in the cloud

Figure: Single Key FHE scenario

MPC on the cloud

MPC on the cloud

- The cloud computes the homomorphic evaluation as for in the single key setting.
- The decryption is the joint computation of the function

$$Dec(C, sk_A, sk_B).$$

MPC on the cloud

- The cloud computes the homomorphic evaluation as for in the single key setting.
- The decryption is the joint computation of the function

$$Dec(C, sk_A, sk_B).$$

 Reduction of general MPC to a particular MPC!

2013 : The approximate eigenvector problem :

2013: The approximate eigenvector problem:

$$C \vec{v} = \mu \vec{v} + \vec{e}$$

- Ciphertexts are matrices
- Security comes from LWE
- Assymptotically faster

2013: The approximate eigenvector problem:

$$C \vec{v} = \mu \vec{v} + \vec{e}$$

- Ciphertexts are matrices
- Security comes from LWE
- Assymptotically faster
- They provide a compiler to convert any LWE-FHE scheme into an attribute based scheme

2013: The approximate eigenvector problem:

$$C \vec{v} = \mu \vec{v} + \vec{e}$$

- Ciphertexts are matrices
- Security comes from LWE
- Assymptotically faster
- They provide a compiler to convert any LWE-FHE scheme into an attribute based scheme
- or into a (hierarchical) identity based scheme.

Figure: A polytree.

$$\implies \mathbf{1}_{s_k}, \mathbf{1}_{s_k}, \mathbf{1}_{s_k}, \mathbf{1}_{s_k} \in \frac{\mathbb{Z}_{\mathbf{q}}[X]}{(X^n + 1)}$$

$$\Longrightarrow \int_{s_k}^{\infty} \int_{s_k}^{\infty} \int_{s_k}^{\infty} \int_{s_k}^{\infty} \int_{s_k}^{\infty} \left(\frac{\mathbb{Z}_{q[X]}}{(X^n + 1)} \right)^{-1} dx$$

$$\Rightarrow \mathbf{1}_{pk} \mathbf{1}_{pk} \mathbf{1}_{pk}$$

 A high level user can "merge" all subordinate keys into a single one

- Changes can be done in the tree in real time
- Two distant users can collaborate regardless of the authority level

(Work in progress...)

• FHE + equality test ?

- FHE + equality test ?
- "Targeted" FHE: allow only a class of public computations.

- FHE + equality test ?
- "Targeted" FHE: allow only a class of public computations.
- Is it possible to exploit the "graph structure" on ciphertexts via C + E(0) or $C \times E(1)$?

Introduction Gentry's IL scheme Other FHE schemes Open questions

Thank you!