Field kinematics

Basic conventions					
Minkowski metric tensor	Totally antisymmetric tensor	Momentum	Norm	Frame	
$\eta_{\mu \nu}$	$\epsilon \eta_{\mu \nu ho \sigma}$	k^{μ}	$k^2 == k_\mu k^\mu$	$n^{\mu} == \frac{k^{\mu}}{k}$	

Fundamental fields

Fundamental field	Symmetries	Decomposition in SO(3) irreps	Source
$\omega_{lphaeta\chi}$	Symmetry[3, $\omega^{\bullet 1 \bullet 2 \bullet 3}$, $\{\bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b, \bullet 3 \rightarrow -c\}$, StrongGenSet[{1, 2}, GenSet[-(1,2)]]]	$ \begin{vmatrix} -\frac{1}{2} \eta_{\beta\chi} \ \omega_{1^{-}\alpha}^{\#1} + \frac{1}{2} \eta_{\alpha\chi} \ \omega_{1^{-}\beta}^{\#1} + \frac{4}{3} \ \omega_{2^{-}\alpha\beta\chi}^{\#1} + \frac{1}{3} \eta_{\beta\chi} \ \omega_{0^{+}}^{\#1} \ n_{\alpha} + \omega_{1^{+}\beta\chi}^{\#1} \ n_{\alpha} + \omega_{2^{+}\beta\chi}^{\#1} \ n_{\alpha}^{-\frac{1}{3}} \eta_{\alpha\chi} \ \omega_{0^{+}}^{\#1} \ n_{\beta}^{-} \ \omega_{1^{+}\alpha\chi}^{\#1} \ n_{\beta}^{-} \\ \omega_{2^{+}\alpha\chi}^{\#1} \ n_{\beta}^{+} \ \omega_{1^{+}\alpha\beta}^{\#2} \ n_{\chi}^{-\frac{1}{2}} \ \omega_{1^{-}\beta}^{\#1} \ n_{\alpha} \ n_{\chi}^{-} \ \omega_{1^{-}\beta}^{\#2} \ n_{\alpha} \ n_{\chi}^{+\frac{1}{2}} \ \omega_{1^{-}\alpha}^{\#1} \ n_{\beta} \ n_{\chi}^{+} \ \omega_{1^{-}\alpha}^{\#2} \ n_{\beta} \ n_{\chi}^{-\frac{1}{6}} \ \epsilon \eta_{\alpha\beta\chi\delta} \ \omega_{0^{-}}^{\#1} \ n^{\delta} $	$\sigma_{lphaeta\chi}$

SO(3) irreps

SO(3) irrep	Symmetries	Expansion in terms of the fundamental field	Source
$\omega_{0}^{#1}$	Symmetry[0, $\omega_{0^+}^{\sharp 1}$, {}, StrongGenSet[{}, GenSet[]]]	$\omega_{\alpha\beta}^{\beta} n^{\alpha}$	$\sigma_{0}^{\#1}$
$\overline{\omega_0^{\sharp 1}}$	Symmetry[0, $\omega_0^{\sharp 1}$, {}, StrongGenSet[{}, GenSet[]]]	$-\epsilon \eta_{\alpha\beta\chi\delta} \omega^{\beta\chi\delta} n^{\alpha}$	$\sigma_0^{\#1}$
$\omega_{1}^{\tilde{+}}\alpha\beta$	Symmetry[2, $\omega_{1^{+}}^{\#1} \bullet 1 \bullet 2$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$-(1,2)$]]]	$-\frac{1}{2} \omega_{\alpha\chi\beta} n^{\chi} + \frac{1}{2} \omega_{\beta\chi\alpha} n^{\chi} - \frac{1}{2} \omega_{\beta\chi\delta} n_{\alpha} n^{\chi} n^{\delta} + \frac{1}{2} \omega_{\alpha\chi\delta} n_{\beta} n^{\chi} n^{\delta}$	$\sigma_{1}^{\#1}{}_{lphaeta}$
$\omega_{1}^{\#2}{}_{lphaeta}$	Symmetry[2, $\omega_{1^+}^{\#2} \bullet 1 \bullet 2$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$-(1,2)$]]]	$\omega_{\alpha\beta\chi} \ n^{\chi} + \ \omega_{\beta\chi\delta} \ n_{\alpha} \ n^{\chi} \ n^{\delta} - \ \omega_{\alpha\chi\delta} \ n_{\beta} \ n^{\chi} \ n^{\delta}$	$\sigma_{1}^{\#2}{}_{lphaeta}$
$\omega_{1}^{\#1}{}_{lpha}$	Symmetry[1, $\omega_1^{\#_1 \bullet 1}$, $\{ \bullet 1 \rightarrow -a \}$, StrongGenSet[$\{ \}$, GenSet[]]]	$-\omega_{\alpha\beta}^{\beta} + \omega_{\beta\chi}^{\chi} n_{\alpha} n^{\beta} + \omega_{\alpha\beta\chi} n^{\beta} n^{\chi}$	$\sigma_{1-lpha}^{\#1}$
$\omega_{1}^{\#2}{}_{\alpha}$	Symmetry[1, $\omega_1^{\#2} \bullet 1$, $\{ \bullet 1 \rightarrow -a \}$, StrongGenSet[$\{ \}$, GenSet[]]]	$\omega_{\alpha\beta\chi} n^{\beta} n^{\chi}$	$\sigma_{1-\alpha}^{\#2}$
$\omega_{2}^{\#1}{}_{lphaeta}$	Symmetry[2, $\omega_{2^{+}}^{\#1} \bullet 1 \bullet 2$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$(1, 2)$]]]	$-\frac{1}{2} \omega_{\alpha\chi\beta} n^{\chi} - \frac{1}{2} \omega_{\beta\chi\alpha} n^{\chi} - \frac{1}{3} \eta_{\alpha\beta} \omega_{\chi\delta}^{\delta} n^{\chi} + \frac{1}{3} \omega_{\chi\delta}^{\delta} n_{\alpha} n_{\beta} n^{\chi} + \frac{1}{2} \omega_{\beta\chi\delta} n_{\alpha} n^{\chi} n^{\delta} + \frac{1}{2} \omega_{\alpha\chi\delta} n_{\beta} n^{\chi} n^{\delta}$	$\sigma_{2}^{\#1}{}_{lphaeta}$
$\omega_{2}^{\#1}{}_{\alpha\beta\chi}$	Symmetry[3, $\omega_2^{\#1} \bullet 1 \bullet 2 \bullet 3$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b, \bullet 3 \rightarrow -c \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$-(1,2)$]]]	$\begin{vmatrix} \frac{1}{2} \ \omega_{\alpha\beta\chi} + \frac{1}{4} \ \omega_{\alpha\chi\beta} - \frac{3}{8} \ \eta_{\beta\chi} \ \omega_{\alpha}^{\ \delta} - \frac{1}{4} \ \omega_{\beta\chi\alpha} + \frac{3}{8} \ \eta_{\alpha\chi} \ \omega_{\beta}^{\ \delta} - \frac{3}{8} \ \omega_{\beta}^{\ \delta} \ n_{\alpha} \ n_{\chi} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\beta} \ n_{\chi} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\beta} \ n_{\chi} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\beta} \ n_{\chi} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\beta} \ n_{\chi} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\beta} \ n_{\chi} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\beta} \ n_{\chi} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\beta} \ n_{\chi} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\beta} \ n_{\chi} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\beta} \ n_{\chi} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\beta} \ n_{\chi} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\beta} \ n_{\chi} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\beta} \ n_{\chi} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\beta} \ n_{\chi} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\beta} \ n_{\chi} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\beta} \ n_{\chi} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\beta} \ n_{\chi} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\beta} \ n_{\chi} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\beta} \ n_{\chi} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\beta} \ n_{\chi} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\beta} \ n_{\chi} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\beta} \ n_{\chi} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\beta} \ n_{\chi} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\beta} \ n_{\chi} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\beta} \ n_{\chi} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\beta} \ n_{\chi} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\beta} \ n_{\chi} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\beta} \ n_{\chi} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\beta} \ n_{\chi} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\beta} \ n_{\chi} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\beta} \ n_{\chi} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\beta} \ n_{\gamma} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\beta} \ n_{\gamma} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\beta} \ n_{\gamma} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\beta} \ n_{\gamma} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\beta} \ n_{\gamma} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\beta} \ n_{\gamma} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\beta} \ n_{\gamma} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\beta} \ n_{\gamma} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\beta} \ n_{\gamma} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\beta} \ n_{\gamma} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\beta} \ n_{\gamma} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\beta} \ n_{\gamma} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\beta} \ n_{\gamma} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\beta} \ n_{\gamma} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\gamma} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\gamma} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta} \ n_{\gamma} + \frac{3}{8} \ \omega_{\alpha}^{\ \delta$	$\sigma_{2}^{\#1}{}_{lphaeta\chi}$