Examen Final - 21/08/2020

Apellido y Nombre: Legajo: Carrera: Condición (Regular-Año / Libre):

1. Sea $\mathbb{R}_2[x] \times \mathbb{R}_2[x]$ el espacio vectorial de los pares ordenados de polinomios de grado a lo sumo dos, a coeficientes reales, con suma y producto habituales. Se define

$$\begin{array}{cccc} \Phi : & \mathbb{R}_2[x] \times \mathbb{R}_2[x] & \longrightarrow & \mathbb{R} \\ & (p,q) & \longrightarrow & \Phi(p,q) = p(0) \, q(0) + 2 \, p(-1) \, q(-1). \end{array}$$

Determinar si Φ es un producto interno.

- 2. Sea $H = \{(a,b,c) \in \mathbb{R}^3 : a = 2b = 3c\}$ un subespacio vectorial de \mathbb{R}^3 , con suma, producto por escalares y producto interno habituales de \mathbb{R}^3 .
 - a) Determinar una base ortonormal para H^{\perp} .
 - b) Expresar el vector v = (1, 2, -1) como la suma de un vector $h \in H$ con un vector $p \in H^{\perp}$.
- 3. Sea A una matriz simétrica y ortogonal.
 - a) Probar que $A^2 = I$.
 - b) Listar todos los posibles autovalores que puede tener A. Justificar.
 - c) La siguiente matriz A es simétrica y ortogonal.

$$A = \left[\begin{array}{cccc} 0.5 & -0.5 & -0.1 & -0.7 \\ -0.5 & 0.5 & -0.1 & -0.7 \\ -0.1 & -0.1 & 0.98 & -0.14 \\ -0.7 & -0.7 & -0.14 & 0.02 \end{array} \right].$$

Determinar los autovalores de A con su correspondiente multiplicidad algebraica y geométrica (No es necesario desarrollar el determinate de $A - \lambda I$, recordar que la traza de una matriz es igual a la suma de sus autovalores).

4. Sea n el número de páginas web en Internet. El Rank Algorithm de Google calcula un vector estocástico (entradas no negativas y que suman 1) $v^* \in \mathbb{R}^n$ cuyas componentes se usan para asignar un orden de importancia entre las mismas como respuestas a una búsqueda en la red. Dicho v^* es un autovector particular de una matriz asociada a las relaciones entre las páginas.

Supongamos que n = 4 y las páginas tienen los siguientes links:

- Página 1: links a páginas 2 y 3
- Página 2: link a página 3
- Página 3: links a páginas 1, 2 y 4
- Página 4: links a páginas 1 y 2
- a) ¿Cómo calcularía el vector v^* ? Explique el procedimiento hasta el cálculo del autovector, no es necesario obtener v^* .
- b) ¿ Qué resultado teórico nos garantiza la buena definición (existencia y unicidad) de tal v*? Justifique.
- c) Considerando que la página 2 es la que más links hacia ella tiene (3 links) ¿es de esperar que la componente v_2^* sea la mayor de la componentes de v_2^* ? Justifique.

(Continúa en la página siguiente)

- 5. Sea A una matriz $n \times m$ con todas sus columnas l.i. y las matrices Q y R, una descomposición QR de A. Sean A^i y Q^i las columnas i-ésimas de A y Q, respectivamente, y W el espacio generado por A^1 .
 - a) Probar que $Q^1 \in W$.
 - b) Probar $\{Q^i: 2 \le i \le m\}$ definen una base ortonormal de W^{\perp} . (Ayuda: observar que $Q^TA = R$).
- 6. Sean dadas A y U, dos matrices $n \times n$ tales que U es unitaria y diagonaliza a A.
 - a) ¿Cuál es la forma más sencilla de calcular los autovalores de A? ¿Cuál es la mínima cantidad de autovalores diferentes que puede tener A?
 - b) Una vez calculados los autovalores, ¿cómo calcularía A^6 ? Justifique.
 - c) ¿Es A^{23} diagonalizable por una matriz unitaria? Justifique.