UFS Land-DA Workflow

- Day 2: Structure and Features -

Chan-Hoo Jeon, Gillian Petro, Jong Kim, Eddie Snyder, Kris Booker

(Key stakeholder groups: NOAA EMC, PSL, GSL, NESDIS, NCAR)

NOAA Earth Prediction Innovation Center (NOAA/EPIC)

Contents

- Components of land-DA workflow
- Structure of land-DA workflow
- Tasks of land-DA workflow
- Workflow manager: Rocoto
- Configuration of land-DA workflow
- Log files

Key Components of Land-DA Workflow

- Land: UFS (Unified Forecast System) Weather Model
 - Coupled model: atmosphere (FV3+CCPP), ocean (MOM6/HYCOM), ice (CICE), land (Noah-MP), air quality
 (CMAQ), atmospheric data (DATM), wave (WaveWatch III)
 - Coupling options available in UFS land-DA workflow:
 - Option 1 (APP=LND): land (Noah-MP) + atmospheric data (DATM)
 - Option 2 (APP=ATML): land (Noah-MP) + atmosphere (FV3+CCPP)
- **DA**: JCSDA JEDI (**J**oint **E**ffort for **D**ata-assimilation **I**ntegration)
 - External component: built separately with JEDI-bundle for efficiency (not included in workflow repo.)
 - Algorithms: 3D-Var, LETKF (Local Ensemble Transform Kalman Filter)
 - o IODA (Interface for Observation Data Access) converters
 - Snow observation data options: GHCN, IMS, SFCSNO
- Workflow: Pre-processing / Post-processing Tools
 - JCB (JEDI Configuration Builder), tile2tile_converter, IODA converting scripts, and python scripts

Github Repository of UFS Land-DA Workflow

Executables (submodules) of Workflow

The Git submodules point to the specific commits of other external repositories.

MAN WALLEY TO THE MENT OF THE PARTY OF THE P

Structure of Workflow

- The UFS land-DA workflow follows the NOAA
 NCEP operational standards (NCO standards).
- According to the NCO standards:
 - The job card (submission script) is to set job scheduler environment and submit a job.
 - Each job (task) is associated with a single J-job.
 - The J-job sets up the environment and calls an ex-script.
 - Any sub-scripts to the ex-script will be located in the 'ush' directory.
- The UFS land-DA workflow uses Rocoto as a workflow manager, but ecFlow is not available yet.
- In Rocoto, job cards are not necessary, but a Rocoto XML file plays the same role.

Vertical Directory Structure of Workflow

UFS land-DA workflow

Workflow Tasks

Tasks of UFS land-DA workflow:

Task name	Description	Application	
JCB	Generate JEDI configuration YAML file	LND / ATML	
PREP_DATA	Prepare observation / DATM forcing data files	LND / ATML	
PRE_ANAL	Transfer snow depth data from restart files to surface data files	LND	
ANALYSIS	Run JEDI and add increment to surface data files	LND / ATML	
POST_ANAL	Transfer snow depth data from surface data files to restart files	LND / ATML	
FORECAST	Run forecast model	LND / ATML	
PLOT_STATS	Plot results of ANALYSIS and FORECAST	LND / ATML	
FCST_IC	Generate initial condition (IC) files only for APP = ATML & cold-start	ATML	

Task: JCB (JEDI Configuration Builder)

- Generate a JEDI input YAML file.
- Components
 - JCB: python package
 - JCB-algorithms: collection of JEDI DA algorithms
 - 3dvar (for 3D-Var)
 - letkf (for LETKF)
 - etc.
 - JCB-gdas: items for each analysis
 - Snow
 - Marine
 - Atmosphere
- In the UFS land-DA workflow, two JEDI algorithms of '3dvar' and 'letkf' are available only for snow analysis.

DATM Forcing Data / Snow Observation Data in 'PREP_DATA'

- DATM forcing data in case of APP=LND (for UFS weather model)
 - **ERA5** (ECMWF Re-Analysis v5): can be downloaded from Climate Data Store (CDS). (European Centre for Medium-range Weather Forecasts)
 - o **GSWP3** (Global Soil Wetness Project phase 3): Available only for 1901-2010.
- Snow observation data (for JEDI; available in JCB)
 - GHCN (Global Historical Climatology Network): can be created from the raw data files within the UFS land-DA workflow.
 - IMS (Interactive Multisensor Snow and Ice Mapping System): The raw data ASCII files can be obtained from GDAS/GFS (NOAA/EMC).
 - o **SFCSNO** (Global Telecommunication System data): can be obtained from GDAS/GFS.
- Will be discussed in detail on Day 3 (pre/post-processing)

Flow of Data/Restart Files by Workflow Tasks

 The surface data ('sfc_data') and restart files play an important role in running both the UFS weather model and JEDI over cycles.

Workflow Manager: Rocoto

- Rocoto is a workflow management tool developed by NOAA/GSL.
- The workflow environment variables, tasks, and their dependencies are defined in the Rocoto XML file 'land_analysis.xml'.
- Rocoto submits the workflow tasks when their dependencies are satisfied and tracks the progress of the workflow tasks.
- The YAML template of the Rocoto XML file is in the 'parm/templates' directory.
- In the UFS land-DA workflow, the Rocoto run/stat commands can be launch by the script 'launch_rocoto_wflow.sh' created in the experimental case directory by the setup script.
- If 'cron' is available on a machine, the submission can be automated by the launch script.

Rocoto XML File: Configuration

Configuration YAML file 'land_analysis.yaml' for Rocoto XML file

```
workflow:
                         attrs:
                                                                            Group name
                           realtime: false
                           scheduler: slurm
                           cyclethrottle: 24
                           taskthrottle: 24
   Group name
                        cycledef:
                           - attrs:
                               group: cycled
                             spec: 202501190000 202501200000 24:00:00
                           - attrs:
                               group: first_cycle
                             spec: 202501190000 202501190000 24:09:00
                           - attrs:
                               group: cycled_from_second
                             spec: 202501200000 202501200000 24:00:00
                         entities:
                           ACCOUNT: "epic"
                           APP: "LND"
                           ATM_IO_LAYOUT_X: "1"
                           ATM_IO_LAYOUT_Y: "1"
                           NPZ: "127"
   All environment
                           nnodes_forecast: "1"
parameters used in
                           nprocs_forecast: "26"
the workflow tasks
                           nprocs_forecast_atm: "12"
must be defined in
                           nprocs_forecast_lnd: "12"
the 'entities' group
                           nprocs_per_node: "26"
                           OBSDIR: ""
                           OBS_GHCN_SNOW: "NO"
                           OBS IMS SNOW: "YES"
```

```
Task name
task icb:
  attrs:
  envars:
    ACCOUNT: "&ACCOUNT:"
    COMROOT: "&COMROOT:"
    DATAROOT: "&DATAROOT:"
   DATE_CYCLE_FREQ_HR: "&DATE_CYCLE_FREQ_HR;"
    FRAC_GRID: "&FRAC_GRID:"
                                                       Environment
    HOMElandda: "&HOMElandda:"
                                                       parameters
    JEDI_ALGORITHM: "&JEDI_ALGORITHM:"
    KEEPDATA: "&KEEPDATA;"
                                                       used in this
    MACHINE: "&MACHINE;"
                                                       task.
    model_ver: "&model_ver:"
    NPZ: "&NPZ;"
    OBS_GHCN_SNOW: "&OBS_GHCN_SNOW;"
    OBS_IMS_SNOW: "&OBS_IMS_SNOW: '
   OBS_SFCSNO: "&OBS_SFCSNO;"
```

- The Rocoto XML file is generated from this YAML file by the python package 'uwtools'.
- The configuration YAML file is generated from the workflow configuration file by the setup script.

https://epic.noaa.gov/

Configuration of Workflow

- The XML file of the workflow manager 'Rocoto' can be generated by the setup python script 'setup_wflow_env.py' in 'land-DA_workflow/parm'.
- All parameters, which are necessary for the Rocoto XML file and workflow scripts, are defined in this setup script with the default values.
- These default values are replaced with those specified in the configuration file 'config.yaml'. This means that users do not have to modify the setup script for their experiments. They can add any parameters they want to change to the 'config.yaml' file.
- This setup script finally generates a Rocoto XML file by the python package 'uwtools' within a new experimental case directory.

Configuration Script 'config.yaml'

Sample Configurations

- Sample configuration files for CADRE DA-training:
 - land-DA_workflow/parm/config_samples/samples_cadre/

	Filename prefix	Арр	DATM forcing	JEDI algorithm	Observation	Cold/Warm start	Number of cycles	Note
	cadre0	LND	ERA5	LETKF	GHCN	Cold start	2	To prepare restart files for CADRE1
-	cadre1	LND	ERA5	3D-Var	IMS + SFCSNO	Warm start	7	Benchmark case (01/19/25-01/25/25)
	cadre2	LND	GSWP3	LETKF	GHCN	Warm start	2	Another forcing and observation options
	cadre3	ATML N/A 3E		3D-Var	GHCN	Cold start	2	Option 2: Noah-MP + FV3ATM
	cadre4	LND	ERA5	3D-Var	GHCN	Warm start	7	Same as CADRE1 but for GHCN stand-alone
	cadre5	LND	ERA5	3D-Var	IMS	Warm start	7	Same as CADRE1 but for IMS stand-alone

Six Tiles in Input / Output

 Some input / output files such as 'sfc_data' and 'restart' files have six tiles. This is because the FV3 dynamical core of the UFS weather model uses the cubed-sphere grid that represents the globe with six tiles.

Cubed-sphere grid of FV3 (NOAA/GFDL) (gfdl.noaa.gov/fv3/fv3-grids/)

How to Check Log Files

ptmp/{envir}/com

- The log files of the workflow tasks can be found in 'com/output/logs/'.
- Some log files generated by executables are in the work directory of each workflow task under the 'tmp' directory: task name cycle date job id (queue number)

```
[Chan-hoo.Jeon@hfe10 tmp_dir]$ ls.
analysis.2000020200.10255800 forecast.2000020200.10256023 jcb.2000020300.10255309
analysis.2000020300.10256549 forecast.2000020300.10256983 plot_stats.2000020200.10256289
DATA_SHARE jcb.2000020200.10255306 plot_stats.2000020300.10257011
```

 For users' convenience, the symbolic links to the above log/work directories are provided in the experimental case directory:

Status of Workflow Tasks in Log File

APP='LND'; warm-start

Log file: log.rocoto_launch

CYCLE	TASK	JOBID	STATE	EXIT STATUS	TRIES	DURATION
202501190000	jcb	10256999	SUCCEEDED	0	1	11.0
202501190000	prep_data	10256998	SUCCEEDED	0	1	66.0
202501190000	pre_anal	10257000	SUCCEEDED	0	1	13.0
202501190000	analysis	10257028	SUCCEEDED	0	1	150.0
202501190000	post_anal	10257121	SUCCEEDED	0	1	10.0
202501190000	forecast	10257199	SUCCEEDED	0	1	106.0
202501190000	plot_stats	10257229	SUCCEEDED	0	1	90.0
202501200000	jcb	10257001	SUCCEEDED	0	1	11.0
202501200000	prep_data	10257226	SUCCEEDED	0	1	35.0
02501200000	pre_anal	10257222	SUCCEEDED	0	1	6.0
202501200000	analysis	10257408	SUCCEEDED	0	1	105.0
202501200000	post_anal	10257507	SUCCEEDED	0	1	9.0
02501200000	forecast	10257523	SUCCEEDED	0	1	104.0
202501200000	plot_stats	10257686	SUCCEEDED	0	1	83.0

APP='ATML'; cold-start

CYCLE	TASK	JOBID	STATE	EXIT STATUS	TRIES	DURATION
202212210000	prep_data	10263602	SUCCEEDED	0	1	15.0
202212210000	fcst_ic	10263603	SUCCEEDED	0	1	110.0
202212210000	forecast	10263819	SUCCEEDED	0	1	561.0
202212220000	jcb	10263604	SUCCEEDED	0	1	10.0
202212220000	prep_data	10263605	SUCCEEDED	0	1	307.0
202212220000	analysis	10264158	SUCCEEDED	0	1	139.0
202212220000	post_anal	10264305	SUCCEEDED	0	1	9.0
202212220000	forecast	10264306	SUCCEEDED	0	1	558.0
202212220000	plot_stats	10264610	SUCCEEDED	0	1	70.0

