Олимпиада школьников «Ломоносов» по физике 2023/2024 уч. год. Заключительный этап.

Задания, решения и критерии оценивания.

11 класс

Вариант 1.

1.4.1. Задача. Два искусственных спутника движутся в одну сторону вокруг некоторой планеты по круговым орбитам, лежащим в одной плоскости. Космонавты, находящиеся на спутниках, поддерживают связь с помощью лазерного луча, направленного от одного спутника к другому. Периодически спутники на некоторое время оказываются в «слепых» зонах, когда лазерный луч перекрывается планетой, и связь между спутниками прерывается. Найдите длительность τ пребывания спутников в одной из таких слепых зон, если радиусы орбит спутников $R_1 = 6.4 \cdot 10^4$ км и $R_2 = 10^5$ км, радиус планеты r составляет несколько тысяч километров, а ускорение свободного падения на поверхности планеты g = 9 м/с². Преломлением луча в атмосфере планеты и влиянием других небесных тел на движение спутников можно пренебречь.

Vказание. Для упрощения расчетов воспользуйтесь приближенной формулой arcsin $x \approx x$, справедливой при малых значениях аргумента x, выраженного в радианах.

1.4.1. Решение. При движении спутника массой m по круговой орбите радиуса R вокруг планеты массой M с угловой скоростью ω согласно второму закону Ньютона и закону всемирного тяготения имеем $m\omega^2 R = \frac{GMm}{R^2}$, где G – гравитационная постоянная. Отсюда угловая скорость спутника

 $\omega = \sqrt{\frac{GM}{R^3}}$. Так как ускорение свободного падения на поверхности планеты равно $g = \frac{GM}{r^2}$, то

 $\omega = r \sqrt{\frac{g}{R^3}}$. Для нахождения времени пребывания спутников в «слепой» зоне свяжем начало

вращающейся системы отсчета с центром планеты (точкой O, см. рисунок), а ее ось направим к одному из спутников, например к тому, который движется по орбите меньшего радиуса (к точке A). Проведем из точки A две касательные к поверхности планеты до пересечения с орбитой второго спутника в точках C и D. Дуга CD — это и есть «слепая» зона. Из рисунка видно, что центральный угол, опирающийся на эту дугу, $\angle COD = 2(\alpha_1 + \alpha_2)$, где $\alpha_1 = \arcsin\frac{r}{R_1}$, $\alpha_2 = \arcsin\frac{r}{R_2}$. Учитывая,

что по условию $r << R_1, R_2$, приближенно имеем $\angle COD \approx 2 \left(\frac{r}{R_1} + \frac{r}{R_2} \right)$. Пусть угловые скорости

спутников в не вращающейся системе отсчета равны ω_1 и ω_2 . Поскольку спутники движутся в одном направлении, угловая скорость второго спутника относительно первого равна $\omega_{\text{отн}} = \omega_1 - \omega_2$.

Поэтому время нахождения спутников в слепой зоне равно $\tau = \frac{2r}{\omega_1 - \omega_2} \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$. Подставляя сюда

выражения для угловых скоростей спутников, получаем окончательно, что $\tau = \frac{2(R_1 + R_2)\sqrt{R_1R_2}}{\sqrt{g}\left(R_2\sqrt{R_2} - R_1\sqrt{R_1}\right)}$

Ответ: $\tau = \frac{2(R_1 + R_2)\sqrt{R_1R_2}}{\sqrt{g\left(R_2\sqrt{R_2} - R_1\sqrt{R_1}\right)}} \approx 17923 \,\mathrm{c} \approx 298,7 \,\mathrm{мин}.$

No	11.1 Действие	Максимальный балл
1	Участник приступил к решению задачи	1
2	Сделан верный поясняющий рисунок к задаче	2
3	Записаны уравнения движения для спутников	3
4	Получены формула для ускорения свободного падения	2
5	Определены угловые скорости каждого спутника через	2
	ускорение свободного падения	
6	Показано, «слепая» зона – дуга	2
7	Верно определена длина этой дуги	3
8	Получена верная формула для времени нахождения	3
	спутников в слепой зоне	
9	Получен правильный численный ответ	2
ВСЕГО		20

2.5.1. Задача. Стеклянная трубка длиной l=1 м, герметично закрытая с одного конца, расположена вертикально открытым концом вниз и заполнена смесью воздуха и насыщенного водяного пара. Трубку медленно погружают в воду на половину ее длины. При этом поверхность воды в трубке оказывается на глубине h=0,45 м. Считая температуру газовой смеси в трубке постоянной, найдите давление $p_{\rm hac}$ насыщенных паров воды при этой температуре. Атмосферное давление $p_0=10^5$ Па, плотность воды $p_0=10^3$ кг/м 3 . Поверхностное натяжение воды можно не учитывать. Ускорение свободного падения примите равным g=10 м/с 2 .

2.5.1. Решение. Начальное давление p_0 в трубке равно сумме парциального давления p_1 сухого воздуха и парциального давления $p_{\text{нас}}$ насыщенного водяного пара, т.е. $p_0 = p_1 + p_{\text{нас}}$, откуда $p_1 = p_0 - p_{\text{нас}}$. Обозначив через p_2 давление сухого воздуха в трубке после ее частичного погружения в воду, по закону Бойля–Мариотта имеем: $p_1 l S = p_2 \left(\frac{l}{2} + h\right) S$, где S — площадь поперечного сечения трубки. Отсюда $p_2 = p_1 \frac{2l}{l+2h}$. Из условия равновесия столбика воды в трубке следует, что $p_2 + p_{\text{нас}} = \rho_0 g h + p_0$. Объединяя записанные выражения, приходим к уравнению $(p_0 - p_{\text{нас}}) \frac{2l}{l+2h} + p_{\text{нас}} = \rho_0 g h + p_0$, решая которое, получаем, что $p_{\text{нас}} = p_0 - \rho_0 g h \frac{l+2h}{l-2h}$.

Ответ: $p_{\text{Hac}} = p_0 - \rho_0 g h \frac{l+2h}{l-2h} = 14,5 \text{ кПа.}$

№	11.2 Действие	Максимальный балл
1	Участник приступил к решению задачи	1
2	Сделан верный поясняющий рисунок к задаче	1
3	Определено начальное парциальное давление сухого воздуха в трубке	4
4	Записан закон Бойля-Мариотта и получено конечное парциальное давление сухого воздуха в трубке	4
5	Записано условие равновесия столбика воды в трубке	4
6	Получена верная формула для искомой физической величины	4
7	Получен правильный численный ответ	2
ВСЕГО		20

3.10.1. Задача. Два одинаковых металлических заряженных шара радиуса r=2 см находятся на большом расстоянии друг от друга. Один из шаров расположен при этом внутри сферической проводящей заземлённой оболочки радиуса R так, что их центры совпадают. Через небольшое изолированное отверстие в этой оболочке шары соединяют тонкой длинной проволокой. В результате на шарах устанавливаются заряды $q_1 = 6 \cdot 10^{-10}$ Кл, $q_2 = 2 \cdot 10^{-10}$ Кл. Чему равен радиус оболочки R?

3.10.1. Решение. После перераспределения зарядов потенциалы шаров выровняются. Обозначим их ϕ_1 и ϕ_2 , причём $\phi_1=\phi_2$. Потенциал первого шара ϕ_1 , заключенного в оболочку, складывается из потенциала поля, созданного самим шаром на его поверхности и потенциала поля, которое создаёт оболочка в том месте, где находится шар: $\phi_1=\phi_{uu}+\phi_{ob}$. Поскольку оболочка проводящая и соединена с практически бесконечным источником зарядов, на её внутренней поверхности индуцируется заряд равный по модулю заряду шара внутри и противоположный ему по знаку. Если заряд первого шара стал равным q_1 , то заряд оболочки $-q_1$ и, следовательно, $\phi_{uu}=\frac{q_1}{4\pi\varepsilon_0 r}$ и $\phi_{ob}=\frac{q_1}{4\pi\varepsilon_0 r}$. Потенциал второго шара $\phi_2=\frac{q_2}{4\pi\varepsilon_0 r}$. Теперь мы можем записать равенство: $\frac{q_1}{4\pi\varepsilon_0 R}=\frac{q_2}{4\pi\varepsilon_0 r}$. Отсюда получаем ответ задачи $R=\frac{q_1}{q_1-q_2}\cdot r$.

Ответ:
$$R = \frac{q_1}{q_1 - q_2} \cdot r = 3$$
 см.

No	11.3 Действие	Максимальный балл
1	Участник приступил к решению задачи	1
2	Сделан верный поясняющий рисунок к задаче	2
3	Сделано утверждение о перераспределении зарядов для	2
	выравнивания их потенциалов	
4	Верно определен заряд заземленной оболочки	4
5	Верно записаны потенциалы шаров после их соединения	4
	тонкой длинной проволокой	
6	Получена верная формула для искомой физической величины	5
7	Получен правильный численный ответ	2
ВСЕГО		20

4.10.1. Задача. На верхней горизонтальной поверхности слоя жидкости расположен непрозрачный экран с маленьким круглым отверстием. На нижней границе слоя помещено плоское зеркало. Каков будет радиус освещенной области на нижней стороне экрана, если сверху отверстие осветить рассеянным светом? Толщина слоя h = 5 см, показатель преломления жидкости n = 1.5.

4.10.1. Решение. При падении на поверхность жидкости рассеянного света наибольший угол преломления будет у лучей, падающих по касательной. В результате в жидкости образуется расходящийся конус лучей света, ограниченный предельным углом, для которого $\sin \alpha = \frac{1}{n}$. При отражении от зеркала на дне угол раствора конуса не изменяется, поэтому $R = 2h \lg \alpha = \frac{2h \sin \alpha}{\sqrt{1-\sin^2 \alpha}}$

Ответ:
$$R = \frac{2h}{\sqrt{n^2 - 1}} \approx 8,94 \text{ cm.}$$

Nº	11.4 Действие	Максимальный балл
1	Участник приступил к решению задачи	1
2	Сделан верный поясняющий рисунок к задаче	3
3	Сделано утверждение о том, что рассеянный свет падает на поверхность жидкости под всеми углами	2
4	Сделано утверждение о том, наибольший угол преломления будет у лучей, падающих по касательной	4
5	Верно определен угол преломления луча, падающего по касательной	4
6	Получена верная формула для искомой физической величины	4
7	Получен правильный численный ответ	2
ВСЕГО		20

5.4.1. Задача. Колебательный контур состоит из последовательно соединённых катушки с индуктивностью L=0,3 Гн, резистора с сопротивлением R=1 Ом и конденсатора с электроёмкостью C=30 мкФ. В контуре происходят слабо затухающие колебания — потери энергии за каждый последующий период колебаний много меньше энергии, запасённой в контуре в любой момент времени. В некоторый момент времени, когда сила тока в контуре достигает локального максимального значения, напряжение на конденсаторе равно U=2 В. Какое количество теплоты Q выделится в контуре за последующий период колебаний? Число π принять равным 3,14. Результат выразите в миллиДжоулях, округлив до целых.

5.4.1. Решение. Когда сила тока в контуре достигает локального максимального значения, ЭДС самоиндукции катушки по закону Фарадея равна 0. Сила тока в этот момент времени равна $I=\frac{U}{R}$. Период слабо затухающих колебаний можно считать равным $T=2\pi\sqrt{LC}$. Действующее значение силы тока $I_{\partial}=\frac{I}{\sqrt{2}}$. Тогда количество теплоты, выделяющейся за малый интервал времени (период), можно считать равным $Q=\frac{\pi U^2\sqrt{LC}}{R}$.

Ответ:
$$Q = \frac{\pi U^2 \sqrt{LC}}{R} = 37,68 \cdot 10^{-3}$$
 Дж ≈ 38 мДж.

Nº	11.5 Действие	Максимальный балл
1	Участник приступил к решению задачи	1
2	Сделано утверждение о том, что ЭДС самоиндукции	4
	катушки по закону Фарадея равна 0, когда сила тока в	
	контуре достигает локального максимального значения	
3	Сделано утверждение о том, что период слабо	4
	затухающих колебаний можно считать равным периоду	
	собственных колебаний и приведена формула Томсона	
4	Приведена формула для тепловой мощности,	4
	выделяющейся в контуре с учетом действующих	
	значений тока или напряжения.	
5	Получена верная формула для искомой физической	5
	величины	
6	Получен правильный численный ответ	2
ВСЕГО		20

Вариант 2.

1.4.2. Задача. Отряд дальней космической разведки проводит исследование неизвестной планеты. Космонавты располагаются на двух космических кораблях, движущихся вокруг планеты по круговым орбитам навстречу друг другу. Связь между кораблями поддерживается с помощью лазерного луча, направленного от одного корабля к другому. Периодически спутники на некоторое время оказываются в «слепых» зонах, когда лазерный луч перекрывается планетой, и связь между спутниками прерывается. Найдите длительность τ пребывания кораблей в одной из таких слепых зон, если орбиты кораблей располагаются в одной плоскости, радиусы орбит $R_1 = 6.4 \cdot 10^4$ км и $R_2 = 10^5$ км, радиус планеты составляет несколько тысяч километров, а ускорение свободного падения на поверхности планеты $g = 9 \text{ m/c}^2$. Преломлением луча в атмосфере планеты и влиянием других небесных тел на движение кораблей можно пренебречь. Vказание. Для упрощения расчетов воспользуйтесь приближенной формулой $\arctan x \approx x$, справедливой при малых значениях аргумента x, выраженного в радианах.

1.4.2. Решение. При движении корабля массой m по круговой орбите радиуса R вокруг планеты массой M с угловой скоростью ω согласно второму закону Ньютона и закону всемирного тяготения имеем $m\omega^2R=\frac{GMm}{R^2}$, где G — гравитационная постоянная. Отсюда угловая скорость корабля $\omega=\sqrt{\frac{GM}{R^3}}$. Так как ускорение свободного падения на поверхности планеты равно $g=\frac{GM}{r^2}$, то $\omega=r\sqrt{\frac{g}{R^3}}$. Для нахождения времени пребывания кораблей в «слепой» зоне свяжем начало

вращающейся системы отсчета с центром планеты (точкой O, см. рисунок), а ее ось направим к

одному из кораблей, например к тому, который движется по орбите меньшего радиуса (к точке A). Проведем из точки A две касательные к поверхности планеты до пересечения с орбитой второго корабля в точках C и D. Дуга CD — это и есть «слепая» зона. Из рисунка видно, что центральный угол, опирающийся на эту дугу, $\angle COD = 2(\alpha_1 + \alpha_2)$, где

$$\alpha_1 = \arcsin \frac{r}{R_1}$$
, $\alpha_2 = \arcsin \frac{r}{R_2}$. Учитывая, что по условию $r << R_1, R_2$,

приближенно имеем
$$\angle COD \approx 2 \left(\frac{r}{R_1} + \frac{r}{R_2} \right)$$
. Пусть угловые скорости

кораблей в не вращающейся системе отсчета равны ω_1 и ω_2 . Поскольку корабли движутся навстречу другу, угловая скорость второго корабля относительно первого равна $\omega_{\text{отн}} = \omega_1 + \omega_2$. Поэтому

время нахождения кораблей в слепой зоне равно $\tau = \frac{2r}{\omega_1 + \omega_2} \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$. Подставляя сюда выражения

для угловых скоростей кораблей, получаем окончательно, что $\tau = \frac{2(R_1 + R_2)\sqrt{R_1R_2}}{\sqrt{g}\left(R_2\sqrt{R_2} + R_1\sqrt{R_1}\right)}$.

Ответ: $\tau = \frac{2(R_1 + R_2)\sqrt{R_1R_2}}{\sqrt{g\left(R_2\sqrt{R_2} + R_1\sqrt{R_1}\right)}} \approx 5785 \,\mathrm{c} \approx 96,4 \,\mathrm{мин}.$

No	11.1 Действие	Максимальный балл
1	Участник приступил к решению задачи	1
2	Сделан верный поясняющий рисунок к задаче	2
3	Записаны уравнения движения для спутников	3
4	Получены формула для ускорения свободного падения	2
5	Определены угловые скорости каждого спутника через	2
	ускорение свободного падения	
6	Показано, «слепая» зона – дуга	2
7	Верно определена длина этой дуги	3
8	Получена верная формула для времени нахождения	3
	спутников в слепой зоне	
9	Получен правильный численный ответ	2
ВСЕГО		20

2.5.2. Задача. Стеклянная трубка длиной l=1 м, герметично закрытая с одного конца, расположена вертикально открытым концом вниз и заполнена смесью воздуха и насыщенного водяного пара. Трубку медленно погружают в воду на половину ее длины. При этом поверхность воды в трубке оказывается на глубине h=0,45 м. Считая температуру газовой смеси в трубке постоянной, найдите атмосферное давление p_0 , если давление насыщенных паров воды при этой температуре $p_{\text{нас}}=14,5$ кПа. Плотность воды $p_0=10^3$ кг/м 3 . Поверхностное натяжение воды можно не учитывать. Ускорение свободного падения примите равным g=10 м/с 2 .

2.5.2. Решение. Начальное давление p_0 в трубке равно сумме парциального давления p_1 сухого воздуха и парциального давления $p_{\text{нас}}$ насыщенного водяного пара, т.е. $p_0 = p_1 + p_{\text{нас}}$, откуда $p_1 = p_0 - p_{\text{нас}}$. Обозначив через p_2 давление сухого воздуха в трубке после ее частичного погружения в воду, по закону Бойля-Мариотта имеем: $p_1 l S = p_2 \left(\frac{l}{2} + h\right) S$, где S — площадь поперечного сечения трубки. Отсюда $p_2 = p_1 \frac{2l}{l+2h}$. Из условия равновесия столбика воды в трубке следует, что $p_2 + p_{\text{нас}} = \rho_0 g h + p_0$. Объединяя записанные выражения, приходим к уравнению $(p_0 - p_{\text{нас}}) \frac{2l}{l+2h} + p_{\text{нас}} = \rho_0 g h + p_0$, решая которое, получаем, что $p_0 = p_{\text{нас}} + \rho_0 g h \frac{l+2h}{l-2h}$.

Ответ: $p_0 = p_{\text{Hac}} + \rho_0 g h \frac{l+2h}{l-2h} = 100 \text{ кПа.}$

Nº	11.2 Действие	Максимальный балл
1	Участник приступил к решению задачи	1
2	Сделан верный поясняющий рисунок к задаче	1
3	Определено начальное парциальное давление сухого воздуха в трубке	4
4	Записан закон Бойля-Мариотта и получено конечное парциальное давление сухого воздуха в трубке	4
5	Записано условие равновесия столбика воды в трубке	4
6	Получена верная формула для искомой физической величины	4
7	Получен правильный численный ответ	2
ВСЕГО		20

3.10.2. Задача. Два одинаковых металлических заряженных шара находятся на большом расстоянии друг от друга. Один из шаров расположен при этом внутри сферической проводящей заземлённой оболочки радиуса R=3 см так, что их центры совпадают. Через небольшое изолированное отверстие в этой оболочке шары соединяют тонкой длинной проволокой. В результате на шарах устанавливаются заряды $q_1=7.5\cdot 10^{-10}$ Кл, $q_2=2.5\cdot 10^{-10}$ Кл. Чему равен радиус шаров r?

3.10.2. Решение. После перераспределения зарядов потенциалы шаров выровняются. Обозначим их ϕ_1 и ϕ_2 , причём $\phi_1 = \phi_2$. Потенциал первого шара ϕ_1 , заключенного в оболочку, складывается из потенциала поля, созданного самим шаром на его поверхности и потенциала поля, которое создаёт оболочка в том месте, где находится шар: $\phi_1 = \phi_{uu} + \phi_{ob}$. Поскольку оболочка проводящая и соединена с практически бесконечным источником зарядов, на её внутренней поверхности индуцируется заряд равный по модулю заряду шара внутри и противоположный ему по знаку. Если

заряд первого шара q_1 , то заряд оболочки $-q_1$ и, следовательно, $\phi_{uu} = \frac{q_1}{4\pi\epsilon_0 r}$ и $\phi_{o\bar{o}} = \frac{-q_1}{4\pi\epsilon_0 R}$.

Потенциал второго шара $\phi_2 = \frac{q_2}{4\pi\epsilon_0 r}$. Теперь мы можем записать равенство:

$$\frac{q_1}{4\pi\epsilon_0 r} - \frac{q_1}{4\pi\epsilon_0 R} = \frac{q_2}{4\pi\epsilon_0 r} \ . \$$
 Отсюда получаем ответ задачи $r = \left(1 - \frac{q_2}{q_1}\right) \cdot R \ .$

Ответ:
$$r = \left(1 - \frac{q_2}{q_1}\right) \cdot R = 2 \text{ cm}.$$

Nº	11.3 Действие	Максимальный балл
1	Участник приступил к решению задачи	1
2	Сделан верный поясняющий рисунок к задаче	2
3	Сделано утверждение о перераспределении зарядов для выравнивания их потенциалов	2
4	Верно определен заряд заземленной оболочки	4
5	Верно записаны потенциалы шаров после их соединения тонкой длинной проволокой	4
6	Получена верная формула для искомой физической величины	5
7	Получен правильный численный ответ	2
ВСЕГО		20

4.10.2. Задача. На верхней горизонтальной поверхности слоя жидкости расположен непрозрачный экран с маленьким круглым отверстием. На нижней границе слоя помещено плоское зеркало. Когда сверху отверстие осветили рассеянным светом, на нижней стороне экрана возникла освещенная область радиусом R=8 см. Какова толщина слоя h, если показатель преломления жидкости n=1,5?

4.10.2. Решение. При падении на поверхность жидкости рассеянного света наибольший угол преломления будет у лучей, падающих по касательной. В результате в жидкости образуется расходящийся конус лучей света, ограниченный предельным углом, для которого $\sin \alpha = \frac{1}{n}$. При отражении от зеркала на дне угол раствора конуса не изменяется, поэтому $R = 2h \lg \alpha = \frac{2h \sin \alpha}{\sqrt{1-\sin^2 \alpha}}$

Ответ: $h = \frac{R}{2}\sqrt{n^2 - 1} \approx 4,47$ см.

Nº	11.4 Действие	Максимальный балл
1	Участник приступил к решению задачи	1
2	Сделан верный поясняющий рисунок к задаче	3
3	Сделано утверждение о том, что рассеянный свет падает на поверхность жидкости под всеми углами	2
4	Сделано утверждение о том, наибольший угол преломления будет у лучей, падающих по касательной	4
5	Верно определен угол преломления луча, падающего по касательной	4
6	Получена верная формула для искомой физической величины	4
7	Получен правильный численный ответ	2
ВСЕГО		20

5.4.2. Задача. Колебательный контур состоит из последовательно соединённых катушки с индуктивностью L=0,3 Гн, резистора и конденсатора с электроёмкостью C=30 мкФ. В контуре происходят слабо затухающие колебания — потери энергии за каждый последующий период колебаний много меньше энергии, запасённой в контуре в любой момент времени. В некоторый момент времени, когда сила тока в контуре достигает локального максимального значения, напряжение на конденсаторе равно U=0,2 В. Чему равно сопротивление резистора R, если в следующий за данным период колебаний в контуре выделилось количество теплоты Q=0,38 мДж? Число π принять равным 3,14. Результат выразите в Омах, округлив до целых.

5.4.2. Решение. Когда сила тока в контуре достигает локального максимального значения, ЭДС самоиндукции катушки по закону Фарадея равна 0. Сила тока в этот момент времени равна $I=\frac{U}{R}$. Действующее значение силы тока $I_{\partial}=\frac{I}{\sqrt{2}}$. Период слабо затухающих колебаний можно считать равным $T=2\pi\sqrt{LC}$. Тогда количество теплоты, выделяющейся за малый интервал времени (период), можно считать равным $Q=\frac{\pi U^2\sqrt{LC}}{R}$. Отсюда получаем ответ задачи: $R=\frac{\pi U^2\sqrt{LC}}{Q}$.

Otbet:
$$R = \frac{\pi U^2 \sqrt{LC}}{Q} = 0,992 \text{ Om } \approx 1 \text{ Om.}$$

Nº	11.5 Действие	Максимальный балл
1	Участник приступил к решению задачи	1
2	Сделано утверждение о том, что ЭДС самоиндукции катушки по закону Фарадея равна 0, когда сила тока в контуре достигает локального максимального значения	4
3	Сделано утверждение о том, что период слабо затухающих колебаний можно считать равным периоду собственных колебаний и приведена формула Томсона	4
4	Приведена формула для тепловой мощности, выделяющейся в контуре с учетом действующих значений тока или напряжения.	4
5	Получена верная формула для искомой физической величины	5
6	Получен правильный численный ответ	2
ВСЕГО		20

Вариант 3.

1.4.3. Задача. Два спутника дальней космической связи движутся в одну сторону вокруг Земли по круговым орбитам, лежащим в одной плоскости. Для контроля работоспособности установленной на них аппаратуры спутники обмениваются информацией с помощью лазерного луча, направленного от одного спутника к другому. Периодически спутники на некоторое время оказываются в «слепых» зонах, когда лазерный луч перекрывается Землей, и связь между спутниками прерывается. Найдите длительность τ пребывания спутников в одной из таких слепых зон, если радиусы орбит спутников $R_1 = 6.4 \cdot 10^4$ км и $R_2 = 10^5$ км. Радиус Земли r, ее массу M и гравитационную постоянную G примите равными соответственно $r = 6.4 \cdot 10^3$ км, $M = 6 \cdot 10^{24}$ кг, $G = 6.7 \cdot 10^{-11} \, \text{H·m}^2 \cdot \text{кг}^{-1}$. Преломлением луча в атмосфере Земли, а также влиянием Луны и других небесных тел на движение спутников можно пренебречь.

Vказание. Для упрощения расчетов воспользуйтесь приближенной формулой arcsin $x \approx x$, справедливой при малых значениях аргумента x, выраженного в радианах.

1.4.3. Решение. При движении спутника массой m по круговой орбите радиуса R вокруг планеты массой M с угловой скоростью ω согласно второму закону Ньютона и закону всемирного тяготения имеем $m\omega^2 R = \frac{GMm}{R^2}$, где G — гравитационная постоянная. Отсюда угловая скорость спутника

 $\omega = \sqrt{\frac{GM}{R^3}}$. Для нахождения времени пребывания спутников в «слепой» зоне свяжем начало

вращающейся системы отсчета с центром планеты (точкой O, см. рисунок), а ее ось направим к одному из спутников, например к тому, который движется по орбите меньшего радиуса (к точке A). Проведем из точки A две касательные к поверхности планеты до пересечения с орбитой второго спутника в точках C и D. Дуга CD — это и есть «слепая» зона. Из рисунка видно, что центральный

угол, опирающийся на эту дугу, $\angle COD = 2(\alpha_1 + \alpha_2)$, где $\alpha_1 = \arcsin \frac{r}{R_1}$, $\alpha_2 = \arcsin \frac{r}{R_2}$. Учитывая,

что по условию $r << R_1, R_2$, приближенно имеем $\angle COD \approx 2 \left(\frac{r}{R_1} + \frac{r}{R_2} \right)$. Пусть угловые скорости

спутников в не вращающейся системе отсчета равны ω_1 и ω_2 . Поскольку спутники движутся в одном направлении, угловая скорость второго спутника относительно первого равна $\omega_{\text{отн}} = \omega_1 - \omega_2$.

Поэтому время нахождения спутников в слепой зоне равно $\tau = \frac{2r}{\omega_1 - \omega_2} \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$. Подставляя сюда

выражения для угловых скоростей спутников, получаем окончательно, что

$$\tau = \frac{2r(R_1 + R_2)\sqrt{R_1R_2}}{\sqrt{GM}(R_2\sqrt{R_2} - R_1\sqrt{R_1})}.$$

Ответ: $\tau = \frac{2r(R_1 + R_2)\sqrt{R_1R_2}}{\sqrt{GM}\left(R_2\sqrt{R_2} - R_1\sqrt{R_1}\right)} \approx 17206 \,\mathrm{c} \approx 286,8 \,\mathrm{мин}.$

No	11.1 Действие	Максимальный балл
1	Участник приступил к решению задачи	1
2	Сделан верный поясняющий рисунок к задаче	2
3	Записаны уравнения движения для спутников	3
4	Получены формула для ускорения свободного падения	2
5	Определены угловые скорости каждого спутника через	2
	ускорение свободного падения	
6	Показано, «слепая» зона – дуга	2
7	Верно определена длина этой дуги	3
8	Получена верная формула для времени нахождения	3
	спутников в слепой зоне	
9	Получен правильный численный ответ	2
ВСЕГО		20

2.5.3. Задача. Стеклянная трубка, герметично закрытая с одного конца, расположена вертикально открытым концом вниз и заполнена смесью воздуха и насыщенного водяного пара. Трубку медленно погружают в воду на половину ее длины. При этом поверхность воды в трубке оказывается на глубине h = 0.45 м. Считая температуру газовой смеси в трубке постоянной, а давление насыщенных паров воды при этой температуре равным $p_{\text{нас}} = 14,5$ кПа, найдите длину трубки l. Атмосферное давление $p_0 = 10^5$ Па, плотность воды $\rho_0 = 10^3 \text{ кг/м}^3$. Поверхностное натяжение воды можно не учитывать. Ускорение свободного падения примите равным $g = 10 \text{ м/c}^2$.

2.5.3. Решение. Начальное давление p_0 в трубке равно сумме парциального давления p_1 сухого воздуха и парциального давления $p_{ ext{\tiny Hac}}$ насыщенного водяного пара, т.е. $p_0 = p_1 + p_{ ext{\tiny Hac}}$, откуда $p_1 = p_0 - p_{\text{\tiny Hac}}$. Обозначив через p_2 давление сухого воздуха в трубке после ее частичного погружения в воду, по закону Бойля–Мариотта имеем: $p_1 l S = p_2 \left(\frac{l}{2} + h \right) S$, где S – площадь поперечного сечения трубки. Отсюда $p_2 = p_1 \frac{2l}{l+2h}$. Из условия равновесия столбика воды в трубке следует, что $p_2 + p_{\text{нас}} = \rho_0 g h + p_0$. Объединяя записанные выражения, приходим к уравнению $(p_0 - p_{\text{нас}}) \frac{2l}{l+2h} + p_{\text{нас}} = \rho_0 g h + p_0$, решая которое, получаем, что $l = \frac{2h(p_0 + \rho_0 g h - p_{\text{нас}})}{p_0 - \rho_0 g h - p_{\text{наc}}}$.

Ответ:
$$l = \frac{2h(p_0 + \rho_0 gh - p_{\text{Hac}})}{p_0 - \rho_0 gh - p_{\text{Hac}}} = 1 \text{ M}.$$

Nº	11.2 Действие	Максимальный балл
1	Участник приступил к решению задачи	1
2	Сделан верный поясняющий рисунок к задаче	1
3	Определено начальное парциальное давление сухого воздуха в трубке	4
4	Записан закон Бойля-Мариотта и получено конечное парциальное давление сухого воздуха в трубке	4
5	Записано условие равновесия столбика воды в трубке	4
6	Получена верная формула для искомой физической величины	4
7	Получен правильный численный ответ	2
ВСЕГО		20

3.10.3. Задача. Два одинаковых металлических заряженных шара радиусами r=2 см находятся на большом расстоянии друг от друга. Один из шаров расположен при этом внутри сферической проводящей заземлённой оболочки радиуса R=3 см так, что их центры совпадают. Через небольшое изолированное отверстие в этой оболочке эти шары соединяют тонкой длинной проволокой. В результате на шаре, расположенном внутри оболочки, устанавливается заряд $q_1=6\cdot 10^{-10}$ Кл. Каким оказался при этом заряд q_2 другого шара?

3.10.3. Решение. После перераспределения зарядов потенциалы шаров выровняются. Обозначим их ϕ_1 и ϕ_2 , причём $\phi_1 = \phi_2$. Потенциал первого шара ϕ_1 , заключенного в оболочку, складывается из потенциала поля, созданного самим шаром на его поверхности и потенциала поля, которое создаёт оболочка в том месте, где находится шар: $\phi_1 = \phi_{uu} + \phi_{ob}$. Поскольку оболочка проводящая и соединена с практически бесконечным источником зарядов, на её внутренней поверхности индуцируется заряд равный по модулю заряду шара внутри и противоположный ему по знаку. Если

заряд первого шара стал равным q_1 , то заряд оболочки $-q_1$ и, следовательно, $\phi_{\text{ш}} = \frac{q_1}{4\pi\varepsilon_0 r}$ и ϕ_{oo}

$$= rac{-q_1}{4\pi \epsilon_0 R}$$
. Потенциал второго шара $\phi_2 = rac{q_2}{4\pi \epsilon_0 r}$. Теперь мы можем записать равенство:

$$\frac{q_1}{4\pi\varepsilon_0 r} - \frac{q_1}{4\pi\varepsilon_0 R} = \frac{q_2}{4\pi\varepsilon_0 r} \text{ . Отсюда получаем ответ задачи} \quad q_2 = \frac{R-r}{R} \cdot q_1.$$

Ответ:
$$q_2 = \frac{R-r}{R} \cdot q_1 = 2 \cdot 10^{-10} \text{ Кл.}$$

Nº	11.3 Действие	Максимальный балл
1	Участник приступил к решению задачи	1
2	Сделан верный поясняющий рисунок к задаче	2
3	Сделано утверждение о перераспределении зарядов для выравнивания их потенциалов	2
4	Верно определен заряд заземленной оболочки	4
5	Верно записаны потенциалы шаров после их соединения тонкой длинной проволокой	4
6	Получена верная формула для искомой физической величины	5
7	Получен правильный численный ответ	2
ВСЕГО		20

4.10.3. Задача. На верхней горизонтальной поверхности слоя жидкости расположен непрозрачный экран с маленьким круглым отверстием. На нижней границе слоя помещено плоское зеркало. Когда сверху отверстие осветили рассеянным светом, на нижней стороне экрана возникла освещенная область радиусом R=8 см. Каков показатель преломления жидкости n, если толщина слоя h=4 см?

4.10.3. Решение. При падении на поверхность жидкости рассеянного света наибольший угол преломления будет у лучей, падающих по касательной. В результате в жидкости образуется расходящийся конус лучей света, ограниченный предельным углом, для которого $\sin \alpha = \frac{1}{n}$. При отражении от зеркала на дне угол раствора конуса не изменяется, поэтому $R = 2h \operatorname{tg} \alpha = \frac{2h \sin \alpha}{\sqrt{1-\sin^2 \alpha}}$

Ответ: $n = \sqrt{\frac{4h^2}{R^2} + 1} \approx 1,41$.

Nº	11.4 Действие	Максимальный балл
1	Участник приступил к решению задачи	1
2	Сделан верный поясняющий рисунок к задаче	3
3	Сделано утверждение о том, что рассеянный свет падает на поверхность жидкости под всеми углами	2
4	Сделано утверждение о том, наибольший угол преломления будет у лучей, падающих по касательной	4
5	Верно определен угол преломления луча, падающего по касательной	4
6	Получена верная формула для искомой физической величины	4
7	Получен правильный численный ответ	2
ВСЕГО		20

5.4.3. Задача. Колебательный контур состоит из последовательно соединённых катушки индуктивности, резистора с сопротивлением R=0,4 Ом и конденсатора с электроёмкостью C=40 мкФ. В контуре происходят слабо затухающие колебания – потери энергии за каждый последующий период колебаний много меньше энергии, запасённой в контуре в любой момент времени. В некоторый момент времени, когда сила тока в контуре достигает локального максимального значения, напряжение на конденсаторе равно U=1 В. Чему равно индуктивность катушки L, если в следующий за данным период колебаний в контуре выделилось количество теплоты Q=31,4 мДж? Результат выразите в Генри, округлив до десятых долей.

5.4.3. Решение. Когда сила тока в контуре достигает локального максимального значения, ЭДС самоиндукции катушки по закону Фарадея равна 0. Сила тока в этот момент времени равна $I=\frac{U}{R}$. Действующее значение силы тока $I_{\partial}=\frac{I}{\sqrt{2}}$. Период слабо затухающих колебаний можно считать равным $T=2\pi\sqrt{LC}$. Тогда количество теплоты, выделяющейся за малый интервал времени (период), можно считать равным $Q=\frac{\pi U^2\sqrt{LC}}{R}$. Отсюда получаем ответ задачи: $L=\frac{Q^2R^2}{\pi^2U^4C}$.

Ответ:
$$L = \frac{Q^2 R^2}{\pi^2 U^4 C} = 0.4 \text{ Гн.}$$

Nº	11.5 Действие	Максимальный балл
1	Участник приступил к решению задачи	1
2	Сделано утверждение о том, что ЭДС самоиндукции катушки по закону Фарадея равна 0, когда сила тока в контуре достигает локального максимального значения	4
3	Сделано утверждение о том, что период слабо затухающих колебаний можно считать равным периоду собственных колебаний и приведена формула Томсона	4
4	Приведена формула для тепловой мощности, выделяющейся в контуре с учетом действующих значений тока или напряжения.	4
5	Получена верная формула для искомой физической величины	5
6	Получен правильный численный ответ	2
ВСЕГО		20