Multi Variable Calculus

Mathias Balling Christiansen

Last updated: January 3, 2024

Contents

1	Fou	rier
	1.1	Fourier Series
	1.2	Fourier Transform
	1.3	Examples
		1.3.1 Example 1: Fourier Series
		1.3.2 Example 2: Fourier Transform
2	Lap	place transform 7
	2.1	General Formulas
	2.2	Examples
		2.2.1 Example 1: Laplace Transform
		2.2.2 Example 2: Transfer Function
		2.2.3 Example 3: Differential equation
3	Sev	eral-Variables 10
U	3.1	Examples
	0.1	3.1.1 Example 1: Gradient
		3.1.2 Example 2: Jacobian
		3.1.3 Example 3: Chain Rule
		3.1.4 Example 4: Substitution
		3.1.5 Example 5: Partial Differentiation
4	Doı	uble-Integrals 12
_	4.1	Riemann Sum
	4.2	Double Integrals over General domains
	4.3	Iteration of Double Integrals
	4.4	Double Integrals in Polar Coordinates
		4.4.1 Limits for Polar Coordinates
	4.5	Change of Variables in Double Integrals
	4.6	Examples
		4.6.1 Example 1: Change of Variables
		4.6.2 Example 2: Double integral
		4.6.3 Example 3: By iteration
		4.6.4 Example 4: By iteration
5	Trin	ople-Integrals 16
-	5.1	Tripple Integrals over General domains
	5.2	Change of Variables
	5.3	Cylyndrical Coordinates
		5.3.1 Limits for Cylyndrical Coordinates

	5.4	Spherical Coordinates	16
		5.4.1 Limits for Spherical Coordinates	17
	5.5	Examples	17
		5.5.1 Example 1: Tripple Integral	17
		5.5.2 Example 2: Sphereical Coordinates	17
		5.5.3 Example 3: Jacobian Transformation	18
		5.5.4 Example 4: Triple Integral	18
_		«	
6		lds-Curve	20
	6.1	Curve & Parameterization	20
	6.2	Vector Fields	20
		6.2.1 Scalar field	20
		6.2.2 Field lines	20
		6.2.3 Convervation field	20
		6.2.4 Vector field in Polar Coordinates	21
	6.3	Line Integral	21
		6.3.1 Line integral of a vector field	21
	6.4	Examples	21
		6.4.1 Example 1: Conservative vector field and potential	21
		6.4.2 Example 2: Line integral	22
		6.4.3 Example 3: Line integral	23
		6.4.4 Example 4: Line integral vector field	23
		6.4.5 Example 5: Line integral over specified curve	24
		6.4.6 Example 6: Parametrize a curve	24
7	Sur	face-Integrals	25
	7.1	Parametric Surface	25
	7.2	Surface Area	25
	7.3	Oriented Surface	25
	7.4	Flux	26
	7.5	Examples	26
		7.5.1 Example 1: Surface area	26
		7.5.2 Example 2: Flux	27
		7.5.3 Example 3: Flux (Parametrized Surface)	27
_			
8		eorems	29
	8.1	Differential Operators	29
		8.1.1 Gradient	29
		8.1.2 Divergence	29
		8.1.3 Curl	29
	8.2	Green's Theorem	29
	8.3	Stokes' Theorem	29
	8.4	Divergence Theorem	29
	8.5	Examples	30
		8.5.1 Example 1: Div and Curl	30
		8.5.2 Example 2: Green's Theorem	30
		8.5.3 Example 3: Stokes' Theorem	31
		8.5.4 Example 4: Divergence Theorem	31
9	PD	${f E}$	32
			0-
	9.1	Classification of PDEs	32
	9.1 9.2	Classification of PDEs	32
	9.1 9.2 9.3	Classification of PDEs	$\frac{32}{32}$
	9.1 9.2	Classification of PDEs	32

	9.5.1 D'Alembert's Solution of the Wave Equation	3:
9.6	Heat Equation (1D)	34
9.7	Examples	34
	9.7.1 Example 1: Type, Normal Form, and solve	34
	9.7.2 Example 2: Type, Normal Form, and solve	3

1 Fourier

1.1 Fourier Series

A periodic function with period 2L and let f(x) and f'(x) be piecewise continuous on the interval -L < x < L

$$S_N(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right) = \sum_{n=-\infty}^{\infty} c_n e^{jn\pi x/L}$$

The coefficients are given by:

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx \qquad n \ge 0$$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx \qquad n > 0$$

$$c_n = \frac{1}{2} (a_n - jb_n) \qquad n > 0$$

1.2 Fourier Transform

If h(t) is a periodic function then the Fourier transform is given by:

$$H(\omega) = \int_{-\infty}^{\infty} h(t)e^{-j\omega t} dt$$

Inverse Fourier tranformation of $H(\omega)$:

$$h(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} H(\omega) e^{j\omega t} d\omega$$

Signal	Fourier Transform
$\delta(t)$	1
u(t)	$\frac{1}{j\omega} + \pi\delta(\omega)$
$\delta(t-t_0)$	$e^{-j\omega t_0}$
$\sin(\omega_0 t)$	$-j\pi(\delta(\omega-\omega_0)-\delta(\omega+\omega_0))$
$\cos(\omega_0 t)$	$\pi(\delta(\omega-\omega_0)+\delta(\omega+\omega_0))$
1	$2\pi\delta(\omega)$

1.3 Examples

1.3.1 Example 1: Fourier Series

Find the Fourier coefficients and Fourier Series for the square wave shown below:

$$f(x) = \begin{cases} 0 & \text{for } -1 \le x \le 0\\ 1 & \text{for } 0 \le x \le 1 \end{cases}$$

and

$$f(x+2) = f(x)$$

The fourier series is given by:

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right)$$

Find the L value:

$$2L = 2 \Rightarrow L = 1$$

Find a_0 :

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx \qquad n \ge 0$$

$$a_0 = \frac{1}{L} \int_{-1}^{1} f(x) \cos\left(\frac{0\pi x}{L}\right) dx = \int_{-1}^{1} f(x) dx = \int_{-1}^{0} 0 dx + \int_{0}^{1} 1 dx = 1$$

Find a_n :

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx \qquad n \ge 0$$

$$= \frac{1}{1} \int_{-1}^{1} f(x) \cos\left(\frac{n\pi x}{1}\right) dx = \int_{-1}^{1} f(x) \cos(n\pi x) dx$$

$$= \int_{-1}^{0} 0 \cos(n\pi x) dx + \int_{0}^{1} 1 \cos(n\pi x) dx = 0 + \left[\frac{\sin(n\pi x)}{n\pi}\right]_{0}^{1} = \frac{\sin(\pi n)}{\pi n}$$

For all n:

$$\frac{\sin(\pi n)}{\pi n} = 0$$

Find b_n :

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx \qquad n > 0$$

$$b_n = \int_{-1}^{1} f(x) \sin\left(\frac{n\pi x}{1}\right) dx = \int_{-1}^{0} 0 \sin(n\pi x) dx + \int_{0}^{1} 1 \sin(n\pi x) dx$$

$$= 0 + \left[\frac{-\cos(n\pi x)}{n\pi}\right]_{0}^{1} = \frac{-\cos(n\pi 1)}{n\pi} - \frac{-\cos(n\pi 0)}{n\pi}$$

If n is even the function will cancel out, therefore $n = 1, 3, 5, \dots$ (odd):

$$=\frac{1}{n\pi}+\frac{1}{n\pi}=\frac{2}{n\pi}$$

Ans:

$$f(x) = \frac{1}{2} + \sum_{n=1,3,5} \frac{2}{n\pi} \sin(n\pi x)$$

1.3.2 Example 2: Fourier Transform

The unit step function is defined as:

$$u(t-a) = \begin{cases} 1 & \text{for } t-a > 0 \\ 0 & \text{for } t-a < 0 \end{cases}$$

is used to define the rectangular pulse function:

$$x(t) = u(t-a) - u(t-b)$$
 where $a < b$

$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$$

$$X(\omega) = \int_{-\infty}^{a} 0e^{-j\omega t} dt + \int_{a}^{b} 1e^{-j\omega t} dt + \int_{b}^{\infty} 0e^{-j\omega t} dt$$

$$X(\omega) = 0 + \left[\frac{-e^{-j\omega t}}{j\omega}\right]_{a}^{b} + 0$$

Insert the limits:

$$X(\omega) = \frac{e^{-j\omega a} - e^{-j\omega b}}{j\omega}$$

2 Laplace transform

Is a generalisation of the Fourier transform and defined as:

$$H(s) = \mathcal{L}\{h(t)\} = \int_{0^{-}}^{\infty} h(t)e^{-st} dt \qquad s \in \mathbb{C}$$

s is a complex number $s=\sigma+j\omega$ and is identical with Fourier transform, if s is set to $j\omega$. Inverse Laplace transformation:

$$h(t) = \mathcal{L}^{-1}\{H(t)\} = \frac{1}{2\pi j} \int_{\sigma_c - j\infty}^{\sigma_c + j\infty} H(s) e^{st} ds$$

Signal	Laplace Transform
1	$\frac{1}{s}$
t^n	$\frac{n!}{s^{n+1}}$
e^{at}	$\frac{1}{s-a}$
$\sin(at)$	$\frac{a}{s^2+a^2}$
$\cos(at)$	$\frac{s}{s^2+a^2}$
$\cosh(at)$	$\frac{s}{s^2-a^2}$
$\sinh(at)$	$\frac{a}{s^2-a^2}$
$e^{at}\cos(\omega t)$	$\frac{s-a}{(s-a)^2+\omega^2}$
$e^{at}\sin(\omega t)$	$\frac{\omega}{(s-a)^2+\omega^2}$

2.1 General Formulas

$$\mathcal{L}\{f(t)\} = F(s)$$

$$\mathcal{L}\{f'\} = s\mathcal{L}\{f\} - f(0)$$

$$\mathcal{L}\{f''\} = s^2\mathcal{L}\{f\} - sf(0) - f'(0)$$

$$\mathcal{L}\{f^n\} = s^n\mathcal{L}\{f\} - s^{n-1}f(0) - \dots - f^{n-1}(0)$$

2.2 Examples

${\bf 2.2.1}\quad {\bf Example~1:~Laplace~Transform}$

Using the Laplace transform, find the solution for the following equation:

$$\frac{\partial^2}{\partial t^2}y(t) + 2\frac{\partial}{\partial t}y(t) + 2y(t) = 0$$

with initial conditions y(0) = 1 and y'(0) = -1

Take laplace transform of the equation:

$$s^{2}Y(s) - sy(0) - y'(0) + 2(sY(s) - y(0)) + 2(Y(s)) = 0$$
$$s^{2}Y(s) - s + 1 + 2sY(s) - 2 + 2Y(s) = 0$$

$$s^{2}Y(s) + 2sY(s) + 2Y(s) = 1 + s$$
$$(s^{2} + 2s + 2)Y(s) = 1 + s$$
$$Y(s) = \frac{1+s}{(s^{2} + 2s + 2)} = \frac{1+s}{((s+1)^{2} + 1)}$$

From table lookup:

$$\mathcal{L}\lbrace e^{at}\cos(\omega t)\rbrace = \frac{s-a}{(s-a)^2 + \omega^2}$$
$$a = -1 \qquad \omega = 1$$
$$y(t) = e^{-t}\cos(t)$$

2.2.2 Example 2: Transfer Function

Consider a mass-spring-damper system with the following differential equation:

$$m\ddot{x} = -kx - b\dot{x} + f$$

Find the transfer function for the system with input f and output x.

$$ms^{2}X(s) = -kX(s) - bsX(s) + F(s)$$

$$ms^{2}X(s) + kX(s) + bsX(s) = F(s)$$

$$(ms^{2} + k + bs)X(s) = F(s)$$

The transfer function is:

$$\frac{X(s)}{F(s)} = \frac{1}{ms^2 + k + bs}$$

2.2.3 Example 3: Differential equation

Consider:

$$y''(t) + y'(t) = 0.5t$$

where y(0) = 0 and y'(0) = 0 Use Laplace transform to solve the equation and find y(t)

From Laplace transform table:

$$\mathcal{L}\{t\} = \frac{1}{s^2}$$

Laplace transform of given differential equation:

$$s^{2}Y(s) - sy(0) - y'(0) + Y(s) = 0.5\frac{1}{s^{2}}$$

$$(s^{2} + 1)Y(s) = \frac{0.5}{s^{2}}$$

$$Y(s) = \frac{0.5}{s^{2}(s^{2} + 1)} = \frac{A}{s} + \frac{B}{s^{2}} + \frac{Cs + D}{s^{2} + 1}$$

$$0.5 = As(s^{2} + 1) + B(s^{2} + 1) + (Cs + D)s^{2}$$

$$0.5 = As^{3} + As + Bs^{2} + B + Cs^{3} + Ds^{2}$$

$$0.5 = s^{3}(A + C) + s^{2}(B + D) + sA + B$$

$$B = 0.5$$

$$A = 0$$

$$B + D = 0 \quad \Rightarrow \quad D = -0.5$$

$$A + C = 0 \quad \Rightarrow \quad C = 0$$

Therefore the partial fractions are:

$$Y(s) = \frac{0}{s} + \frac{0.5}{s^2} + \frac{0s - 0.5}{s^2 + 1} = \frac{0.5}{s^2} + \frac{-0.5}{s^2 + 1}$$

From Laplace transform table:

$$\mathcal{L}\{\sin(at)\} = \frac{a}{s^2 + a^2}$$

The inverse laplace transform of Y(s):

$$y(s) = 0.5t - 0.5\sin(t)$$

3 Several-Variables

3.1 Examples

3.1.1 Example 1: Gradient

Find the rate of change of $f(x,y) = y^4 + 2xy^3 + x^2y^2$ at (0,1) in each of the following directions:

- 1. i + 2j
- 2. j 2i
- 3. 3**i**
- 4. i + j

3.1.2 Example 2: Jacobian

Find the Jacobian Df(1,0) for the transformation from \mathbb{R}^2 to \mathbb{R}^3 given by:

$$\mathbf{f}(x,y) = (xe^y + \cos(\pi y), x^2, x - e^y)$$

3.1.3 Example 3: Chain Rule

If $z = \sin(x^2y)$ where $x = st^2$ and $y = s^2 + \frac{1}{t}$, find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$ using chain rule.

For:

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$$
$$\frac{\partial z}{\partial x} = 2xy \cos(x^2 y)$$
$$\frac{\partial x}{\partial s} = t^2$$
$$\frac{\partial z}{\partial y} = x^2 \cos(x^2 y)$$
$$\frac{\partial y}{\partial s} = 2s$$

Find:

$$\frac{\partial z}{\partial s} = (2xy\cos(x^2y))t^2 + (x^2\cos(x^2y))2s$$

Replace x and y with $x = st^2$ and $y = s^2 + \frac{1}{t}$:

$$\frac{\partial z}{\partial s} = (4s^3t^4 + 2st^3)\cos(s^4t^4 + s^2t^3)$$

Same principal for:

$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$$

3.1.4 Example 4: Substitution

If $z = \sin(x^2y)$ where $x = st^2$ and $y = s^2 + \frac{1}{t}$ find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$ using substitution.

$$z = \sin\left((st^2)^2 s^2 + \frac{1}{t}\right) = \sin\left(s^2 t^4 (s^2 + \frac{1}{t})\right) = s^4 t^4 + s^2 t^3$$
$$\frac{\partial z}{\partial s} = \sin(s^4 t^4 + s^2 t^3) = (4s^3 t^4 + 2st^3)\cos(s^4 t^4 + s^2 t^3)$$
$$\frac{\partial z}{\partial t} = \sin(s^4 t^4 + s^2 t^3) = (s^4 4t^3 + s^2 3t^2)\cos(s^4 t^4 + s^2 t^3)$$

3.1.5 Example 5: Partial Differentiation

Calculate $f_{223}(x, y, z)$, $f_{232}(x, y, z)$, and $f_{322}(x, y, z)$ of the following function:

$$f(x, y, z) = e^{x - 2y + 3z}$$

Normal Differentiation. For $f_{223}(x, y, z)$, start with y, then y again, and then z:

$$\frac{\partial}{\partial z}\frac{\partial}{\partial y}\frac{\partial f(x,y,z)}{\partial y}$$

4 Double-Integrals

4.1 Riemann Sum

$$\sum_{i=1}^{n} f(x_i^*, y_i^*) \Delta A_i$$

$$I = \iint_D f(x,y)dA$$
 where D is a region in \mathbb{R}^2 and dA is $dxdy$

4.2 Double Integrals over General domains

If f(x,y) is defined and bounded on domain D, then $\hat{f}(x,y)$ is zero outside D.

$$\iint_D f(x,y) \, dA = \iint_R \hat{f}(x,y) \, dA$$

4.3 Iteration of Double Integrals

If f(x,y) is continuous on the bounded y-simple domain D given by $a \le x \le b$ and $c(x) \le y \le d(x)$, then:

$$\iint f(x,y) dA = \int_a^b dx \int_{c(x)}^{d(x)} f(x,y) dy$$

If f(x,y) is continuous on the bounded x-simple domain D given by $c \le x \le d$ and $a(x) \le y \le b(x)$, then:

$$\iint f(x,y) \, dA = \int_c^d dx \int_{a(x)}^{b(x)} f(x,y) dy$$

4.4 Double Integrals in Polar Coordinates

$$dA = dxdy = r drd\theta$$

$$x = r\cos(\theta) \qquad r^2 = x^2 + y^2$$

$$y = r\sin(\theta)$$
 $\tan(\theta) = \frac{y}{r}$

4.4.1 Limits for Polar Coordinates

r is the radius from origin to the point

$$r \ge 0$$

 θ is the angle in the positive direction of the xy-plane

$$0 \le \theta \le 2\pi$$

4.5 Change of Variables in Double Integrals

If x and y are given as a function of u and v:

$$x = x(u, v)$$

$$y = y(u, v)$$

These can be transformed or mapped from points (u, v) in the uv-plane to points (x, y) in the xy-plane.

The inverse transformation is given by:

$$u = u(x, y)$$
$$v = v(x, y)$$

Scaled area element:

$$dA = dxdy = \left| \frac{\partial(x,y)}{\partial(u,v)} \right| dudv$$

where the Jacobian is:

$$\left|\frac{\partial(x,y)}{\partial(u,v)}\right| = \frac{\partial x}{\partial u}\frac{\partial y}{\partial v} - \frac{\partial x}{\partial v}\frac{\partial y}{\partial u}$$

Let x(u,v) and y(u,v) be a one-to-one transformation from a domain S in the uv-plane onto a domain D xy-plane.

Suppose, that function x and y, and first partial derivatives with respect to u and v are continuous in S. If f(x,y) is integrable on D, then g(u,v) = f(x(u,v),y(u,v)) is integrable on S and:

$$\iint_D f(x,y) dA = \iint_S g(u,v) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| du dv$$

4.6 Examples

4.6.1 Example 1: Change of Variables

Evaluate the double integral:

$$\iint (x-3y)dA$$

where R is triangular region with vertices (0,0), (2,1), and (1,2) using the transformation:

$$x = 2u + v$$

$$y = u + 2v$$

As x and y are dependent on u and v the transformation of dA is given by

$$dA = dxdy = \left| \frac{\partial(x,y)}{\partial(u,v)} \right| dudv$$

Using:

$$\left| \frac{\partial(x,y)}{\partial(u,v)} \right| = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}$$

the Jacobian can be calculated:

$$\frac{\partial x}{\partial u} = 2 \quad \frac{\partial y}{\partial v} = 2$$
$$\frac{\partial x}{\partial v} = 1 \quad \frac{\partial y}{\partial u} = 1$$

$$2 \cdot 2 - 1 \cdot 1 = 3$$

Find the boundaries for the double integral

 $y_1: (0,0) \to (2,1) \text{ is } y = \frac{1}{2}x$

 $y_2: (0,0) \to (1,2) \text{ is } y = 2x$

 $y_3: (1,2) \to (2,1)$ is y=3-x

Replace x and y with their transformation:

$$u + 2v = \frac{2u+v}{2}$$
 $v = 0$
 $u + 2v = 4u + 2v$ $u = 0$
 $u + 2v = 3 - 2u - v$ $u = 1 - v$

Therefore $0 \le u \le 1 - v$ and $0 \le v \le 1$

Now transform the original function x - 3y:

$$x - 3y = 2u + v - 3(u + 2v)$$

= $2u - 3u + v - 6v$
= $-u - 5v$

$$\int_{0}^{1} \int_{0}^{1-v} (-u - 5v) \cdot 3 \, du dv = -3 \int_{0}^{1} \left[\frac{u^{2}}{2} + 5uv \right]_{0}^{1-v} dv$$

$$= -\frac{3}{2} \int_{0}^{1} \left(\frac{27v^{2}}{2} - 12v \right) dv$$

$$= \left[\frac{9v^{3}}{2} - 6v^{2} - \frac{3v}{2} \right]_{0}^{1}$$

$$= \left[-3 \right]$$

4.6.2 Example 2: Double integral

Evaluate the double integral by iteration

$$\iint_R (x^2 + y^2) \, dA$$

where R is the rectangle $0 \le x \le a, \ 0 \le y \le b$

Insert the limits and solve the integral:

$$\int_{0}^{b} \int_{0}^{a} (x^{2} + y^{2}) dx dy = \int_{0}^{b} \left[\frac{x^{3}}{3} + xy^{2} \right]_{0}^{a} dy$$
$$= \int_{0}^{b} \left(\frac{a^{3}}{3} + ay^{2} \right) dy$$
$$= \left[\frac{a^{3}b}{3} + \frac{ab^{3}}{3} \right]$$

4.6.3 Example 3: By iteration

Evaluate the double integral by iteration:

$$\iint_D x \cos y \, dA$$

where D is the finite region in the first quadrant bounded by the coordinate axes and the curve $y = 1 - x^2$.

Given the region the minimum for x and y must be 0 and for x the maximum is 1:

$$\int_{0}^{1} \int_{0}^{1-x^{2}} (x\cos(y)) dy dx = \int_{0}^{1} x \sin(1-x^{2}) dx$$

$$= \left[\frac{1}{2} \sin(1) \sin(x^{2}) + \frac{1}{2} \cos(1) \cos(x^{2})\right]_{0}^{1}$$

$$= \left[\sin^{2}\left(\frac{1}{2}\right)\right]$$

4.6.4 Example 4: By iteration

Evaluate the double integral by iteration

$$\iint_{R} xy^2 dA$$

where R is the finite region in the first quadrant bounded by the curves $y = x^2$ and $x = y^2$

$$x = \sqrt{y}$$
 $x = y^2$

Since it is bounded in the first quadrant here intercepts in (0,0) and (1,1): $0 \le y \le 1$ In this region $x = \sqrt{y} \ge x = y^2$ Solve the integral:

$$\int_{0}^{1} \int_{y^{2}}^{\sqrt{y}} xy^{2} dx dy$$

$$= \int_{0}^{1} \left[\frac{x^{2}y^{2}}{2} \right]_{y^{2}}^{\sqrt{y}} dy = \frac{1}{2} \int_{0}^{1} (\sqrt{y^{2}}y^{2}) - ((y^{2})^{2}y^{2}) dy$$

$$= \frac{1}{2} \int_{0}^{1} y^{3} - y^{6} dy = \left[\frac{y^{4}}{4} - \frac{y^{7}}{7} \right]_{0}^{1}$$

$$= \frac{1}{2} \left(\frac{1}{4} - \frac{1}{7} \right) = \frac{1}{2} \cdot \frac{7 - 4}{28} = \frac{3}{56}$$

5 Tripple-Integrals

5.1 Tripple Integrals over General domains

$$\iiint_D f(x,y,z)dxdxdz$$

5.2 Change of Variables

$$dV = dx \ dy \ dz = \left| \frac{\partial(x, y, z)}{\partial(u, v, w)} \right| du \ dv \ dw$$

$$\iiint f(x, y, z) \ dx \ dy \ dz = \iiint g(u, v, w) \left| \frac{\partial(x, y, z)}{\partial(u, v, w)} \right| \ du \ dv \ dw$$

$$\left| \frac{\partial(x, y, z)}{\partial(u, v, w)} \right| = \left| \frac{\frac{\partial x}{\partial u}}{\frac{\partial y}{\partial v}} \frac{\partial x}{\frac{\partial y}{\partial w}} \frac{\partial x}{\frac{\partial w}{\partial w}} \right|$$

$$= \frac{\partial x}{\partial u} \left(\frac{\partial y}{\partial v} \frac{\partial z}{\partial w} - \frac{\partial y}{\partial w} \frac{\partial z}{\partial v} \right) - \frac{\partial x}{\partial v} \left(\frac{\partial y}{\partial u} \frac{\partial z}{\partial w} - \frac{\partial y}{\partial w} \frac{\partial z}{\partial u} \right) + \frac{\partial x}{\partial w} \left(\frac{\partial y}{\partial u} \frac{\partial z}{\partial v} - \frac{\partial y}{\partial v} \frac{\partial z}{\partial u} \right)$$

5.3 Cylyndrical Coordinates

$$x = r\cos(\theta)$$
 $r^2 = x^2 + y^2$
 $y = r\sin(\theta)$ $\tan \theta = (\frac{y}{x})$
 $z = z$

From the Jacobian using change of variables:

$$\left| \frac{\partial(x, y, z)}{\partial(r, \theta, z)} \right| = r$$

$$dV = dx \ dy \ dz = r \ dr \ d\theta \ dz$$

5.3.1 Limits for Cylyndrical Coordinates

r is the radius from origin to the point

$$r \geq 0$$

 θ is the angle in the positive direction of the x-axis

$$0 \le \theta \le 2\pi$$

5.4 Spherical Coordinates

$$x = \rho \sin(\phi) \cos(\theta) \quad \rho^2 = x^2 + y^2 + z^2$$

$$y = \rho \sin(\phi) \sin(\theta) \quad \cos(\phi) = \frac{z}{\rho}$$

$$z = \rho \cos(\phi) \quad \tan \theta = \frac{y}{x}$$

$$dxdydz = dV = \rho^2 \sin(\phi) d\rho d\phi d\theta$$

5.4.1 Limits for Spherical Coordinates

 ρ is the distance from the origin O to the point P

$$\rho \geq 0$$

 ϕ is the angle by the radial line OP to the positive direction of the z-axis

$$0 \le \phi \le \pi$$

 θ is the angle in the positive direction of the x-axis to the point P in the xy-plane

$$0 \leq \theta \leq 2\pi$$

5.5 Examples

5.5.1 Example 1: Tripple Integral

Find $\iiint (x^2 + y^2 + z^2) dV$, where the region is bounded by $z = c\sqrt{(x^2 + y^2)}$ and $x^2 + y^2 + z^2 = a^2$

Using Cylyndrical Coordinates:

$$z = c\sqrt{r^2} = cr$$
 $r^2 + z^2 = a^2$ \Rightarrow $z = \sqrt{a^2 - r^2}$

Therefore the region is bounded by:

$$0 \le r \le a$$
 $0 \le \theta \le 2\pi$ $cr \le z \le \sqrt{a^2 - r^2}$

Convert the function:

$$x^2 + y^2 + z^2 \Rightarrow r^2 + z^2$$

$$\int_0^{2\pi} \int_0^a \int_{cr}^{\sqrt{a^2 - r^2}} (x^2 + r^2) dz dr d\theta$$

5.5.2 Example 2: Sphereical Coordinates

Find the volume of:

$$\iiint \sqrt{x^2 + y^2 + z^2} dx dy dz$$

where the region is bounded by $x^2 + y^2 + z^2 \le 1$ in spherical domain.

Transform the region:

$$\rho^2 = x^2 + y^2 + z^2 \le 1$$
 Therefore: $0 \le \rho \le 1$

For θ and ϕ we have:

$$0 \le \theta \le 2\pi$$
 $0 \le \phi \le \pi$

and for dV:

$$dV = dxdydz = \rho^2 \sin \phi d\rho d\phi d\theta$$

Transform the function:

$$\sqrt{x^2 + y^2 + z^2} = \sqrt{\rho^2} = \rho$$

Solve the integral:

$$\int_0^{2\pi} \int_0^{\pi} \int_0^1 \rho \cdot \rho^2 \sin(\phi) d\rho d\phi d\theta = \int_0^{2\pi} \int_0^{\pi} \left[\frac{1}{4} p^4 \sin(\phi) \right]_0^1 d\phi d\theta$$

$$= \int_0^{2\pi} \int_0^{\pi} \frac{\sin(\phi)}{4} d\phi d\theta$$

$$= \int_0^{2\pi} \left[-\frac{\cos(\phi)}{4} \right]_0^{\pi} d\theta$$

$$= \frac{1}{2} \int_0^{2\pi} d\theta$$

$$= \frac{1}{2} \cdot 2\pi$$

$$= \boxed{\pi}$$

5.5.3 Example 3: Jacobian Transformation

Find the Jacobian using change of variables from uv-space to xy-space when:

$$x = 2u + w$$
 $y = 2u - 2v$ $z = u + v^2 - 2w^2$

The Jacobian is:

$$\left| \frac{\partial(x,y,z)}{\partial(u,v,w)} \right| = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix}$$

$$\begin{vmatrix} 2 & 0 & 1 \\ 2u & -2v & 0 \\ 1 & 2v & -4w \end{vmatrix} = 2(-2v \cdot -4w - 0 \cdot 2v) - 0 + 1(2u \cdot 2v - 2v \cdot 1)$$

$$= 16vw + 4uv - 2v$$

5.5.4 Example 4: Triple Integral

Find the volume of solid bounded by:

$$x^2 + y^2 + z^2 = 9$$
 $x^2 + y^2 = 8z$

Using cylyndrical coordinates:

$$r^2 + z^2 = 9$$
 $r^2 = 8z$

This gives two bounds for z:

$$z = \sqrt{9 - r^2} \qquad z = \frac{r^2}{8}$$

Bounds for r is the intersection:

$$\sqrt{9-r^2} = z = \frac{r^2}{8} \quad \Rightarrow \quad r = 2\sqrt{2}$$

From the r bounds we see:

$$z = \underbrace{\sqrt{9 - r^2}}_{\text{Upper bound}} \qquad z = \underbrace{\frac{r^2}{8}}_{\text{Lower bound}}$$

And for θ :

$$0 \leq \theta \leq 2\pi$$

Setup the integral:

$$\int_{0}^{2\pi} \int_{0}^{2\sqrt{2}} \int_{r^{2}/8}^{\sqrt{9-r^{2}}} r \, dz \, dr \, d\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{2\sqrt{2}} [rz]_{r^{2}/8}^{\sqrt{9-r^{2}}} \, dr d\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{2\sqrt{2}} r\sqrt{9-r^{2}} - r^{3}/8 dr d\theta$$

$$= \int_{0}^{2\pi} \left(\int_{0}^{2\sqrt{2}} r\sqrt{9-r^{2}} dr - \int_{0}^{2\sqrt{2}} r^{3}/8 dr \right) d\theta$$

Using u substitution:

$$\int_0^{2\sqrt{2}} r\sqrt{u} dr \qquad u = 9 - r^2 \quad \Rightarrow \quad \frac{du}{dr} = -2r \quad \Rightarrow \quad dr = \frac{du}{-2r}$$

New limits:

$$r = 0: \quad u = 9 - 0^2 = 9 \qquad \qquad r = 2\sqrt{2}: \quad u = 9 - (2\sqrt{2})^2 = 1$$
$$\int_9^1 r\sqrt{u} \frac{du}{-2r} = \frac{-1}{2} \int_9^1 \sqrt{u} du = \frac{-1}{2} \left[\frac{2u^{3/2}}{3} \right]_9^1 = \frac{26}{3}$$

Solve the other integral:

$$= \int_0^{2\sqrt{2}} r^3/8 dr = \left[r^4/32\right]_0^{2\sqrt{2}} = 2$$

Insert results:

$$= \int_0^{2\pi} \frac{26}{3} - 2d\theta = \boxed{\frac{40}{3}\pi}$$

6 Fields-Curve

6.1 Curve & Parameterization

Representation of a curve in 3 space by using its position vector is given as:

$$r = r(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$$
 where $a \le t \le b$

6.2 Vector Fields

$$\mathbf{F}(x,y,z) = \underbrace{f_1(x,y,z)}_{\text{Scaler function}} \mathbf{i} + \underbrace{f_2(x,y,z)}_{\text{Scaler function}} \mathbf{j} + \underbrace{f_3(x,y,z)}_{\text{Scaler function}} \mathbf{k}$$

$$\frac{\partial f}{\partial x} = f_1 = f_x$$
 $\frac{\partial f}{\partial y} = f_2 = f_y$ $\frac{\partial f}{\partial z} = f_3 = f_z$

Position vector:

$$r = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$

Unit vector with magnitude 1:

$$r = \mathbf{i} + \mathbf{j} + \mathbf{k}$$

6.2.1 Scalar field

$$F(x, y, z) = f_1(x, y, z) + f_2(x, y, z) + f_3(x, y, z)$$

The gradient of a scalar field is a vector field:

$$\nabla f = \operatorname{grad} f(x, y, z) = f_x(x, y, z)\mathbf{i} + f_y(x, y, z)\mathbf{j} + f_z(x, y, z)\mathbf{k}$$

6.2.2 Field lines

$$\frac{dx}{f_1(x,y,z)} = \frac{dy}{f_2(x,y,z)} = \frac{dz}{f_3(x,y,z)}$$

6.2.3 Convervation field

If $\mathbf{F}(x, y, z) = \nabla \phi(x, y, z)$ in a 3d domain D, then \mathbf{F} is a conservative vector field in D and function ϕ is the potential function.

$$\mathbf{F}(x,y,z) = \nabla \phi(x,y,z) = \phi_x(x,y,z)\mathbf{i} + \phi_y(x,y,z)\mathbf{j} + \phi_z(x,y,z)\mathbf{k}$$

If the vetor field is conservative, then all the following equations are true:

$$\frac{\partial f_1}{\partial y} = \frac{\partial f_2}{\partial x}
\frac{\partial f_1}{\partial z} = \frac{\partial f_3}{\partial x}
\frac{\partial f_2}{\partial z} = \frac{\partial f_3}{\partial y}$$

If $\mathbf{F}(x,y) = \nabla \phi(x,y)$ in a 2d domain D, then \mathbf{F} is a conservative vector field in D and function ϕ is the potential function.

$$\frac{\partial f_1}{\partial y} = \frac{\partial^2 \phi}{\partial y \partial x} = \frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial f_2}{\partial x}$$

6.2.4 Vector field in Polar Coordinates

$$\mathbf{F} = f(r,\theta) = f_r(r,\theta)\hat{\mathbf{r}} + f_{\theta}(r,\theta)\hat{\theta}$$

where:

$$\hat{\mathbf{r}} = \cos(\theta)i + \sin(\theta)j$$
$$\hat{\theta} = -\sin(\theta)i + \cos(\theta)j$$

6.3 Line Integral

$$f(x,y)ds = \text{Area (tiny point)}$$

Length of $C = \int_{C} f(x,y,z) ds = \int_{a}^{b} f(r(t)) \left| \frac{dr}{dt} \right| dt$

6.3.1 Line integral of a vector field

$$W = \int_{\mathcal{C}} F.\hat{T} \, ds = \int F \, dr = \int_{\mathcal{C}} f_1(x, y, z) dx + f_2(x, y, z) dy + f_3(x, y, z) dz$$

6.4 Examples

6.4.1 Example 1: Conservative vector field and potential

Determine whether the given vector field is conservative, and find a potential function if it is:

$$\mathbf{F}(x, y, z) = (2xy - z^2)\mathbf{i} + (2yz + x^2)\mathbf{j} - (2zx - y^2)\mathbf{k}$$

The field is convervative if:

$$\begin{split} \frac{\partial f_1}{\partial y} &= \frac{\partial f_2}{\partial x} \\ \frac{\partial f_1}{\partial z} &= \frac{\partial f_3}{\partial x} \\ \frac{\partial f_2}{\partial z} &= \frac{\partial f_3}{\partial y} \\ \\ \frac{\partial (2xy - z^2)}{\partial y} &= 2x = \frac{\partial (2yz + x^2)}{\partial x} \\ \\ \frac{\partial (2xy - z^2)}{\partial z} &= -2z = \frac{\partial (-2zx + y^2)}{\partial x} \\ \\ \frac{\partial (2yz + x^2)}{\partial z} &= 2y = \frac{\partial (-2zx + y^2)}{\partial y} \end{split}$$

All equations are satisfied! The field is convervative.

Find the potential function $\phi(x, y, z)$:

$$f_{1} = \frac{\partial \phi}{\partial x} \quad \Rightarrow \quad \phi = \int f_{1} dx = x^{2}y - z^{2}x + c(y, z)$$
$$\frac{\partial \phi}{\partial y} = x^{2} + \frac{\partial c(y, z)}{\partial y}$$
$$f_{2} = \frac{\partial \phi}{\partial y} = x^{2} + \frac{\partial c(y, z)}{\partial y} = 2yz + x^{2} \quad \Rightarrow \quad \frac{\partial c(y, z)}{\partial y} = 2yz$$

This means c is a function of y and z and can be found by taking the anit-derivative

$$c(y,z) = y^2 z + c(z)$$

Insert c(y, z):

$$\phi = x^2y - z^2x + y^2z + c(z)$$

$$f_3 = \frac{\partial \phi}{\partial z} = -2zx + y^2 + \frac{\partial c(z)}{\partial z} = -2zx + y^2 \quad \Rightarrow \quad \frac{\partial c(z)}{\partial z} = 0$$

A scalar potential function of F:

$$\phi(x, y, z) = x^2y - z^2x + y^2z$$

6.4.2 Example 2: Line integral

Evaluate $\oint x^2y^2 dx + x^3y dy$ counterclockwise around the square with vertices (0,0), (1,0), (1,1), and (0,1)

Find the parameterization for each of the lines:

 c_1 : (0,0) to (1,0)

$$x(t) = t y(t) = 0 0 \le t \le 1$$

$$\frac{dx}{dt} = 1 \Rightarrow dx = dt$$

$$\frac{dy}{dt} = 0 \Rightarrow dy = 0$$

$$\int_0^1 (t^2 0^2 dt + t^3 \cdot 0 \cdot 0) = \boxed{0}$$

$$c_2$$
: (1,0) to (1,1)

$$x(t) = 1 y(t) = t 0 \le t \le 1$$

$$\frac{dx}{dt} = 0 \Rightarrow dx = 0$$

$$\frac{dy}{dt} = 1 \Rightarrow dy = dt$$

$$\int_0^1 (1^2 t^2 \cdot 0 + 1^3 \cdot t dt) = \left[\frac{t^2}{2}\right]_0^1 = \left[\frac{1}{2}\right]$$

$$c_3$$
: (1,1) to (0,1)

$$x(t) = 1 - t$$
 $y(t) = 1$ $0 \le t \le 1$
$$\frac{dx}{dt} = -1 \quad \Rightarrow \quad dx = -dt$$

$$\frac{dy}{dt} = 0 \quad \Rightarrow \quad dy = 0$$

$$\int_0^1 ((1-t)^2 1^2 (-dt) + (1-t)^3 \cdot 1 \cdot 0) = -\int_0^1 (1-t)^3 dt = \left[\frac{(1-t)^3}{3} \right]_0^1 = \boxed{-\frac{1}{3}}$$

$$c_4$$
: (0,1) to (0,0)

$$x(t) = 0$$
 $y(t) = 1 - t$ $0 \le t \le 1$
$$\frac{dx}{dt} = 0 \Rightarrow dx = 0$$

$$\frac{dy}{dt} = -1 \implies dy = -dt$$
$$\int_0^1 (0^2 (1-t)^2 0 + 0^3 \cdot (1-t)(-dt)) = \boxed{0}$$

Therefore

$$\oint x^2 y^2 \ dx + x^3 y \ dy = 0 + \frac{1}{2} - \frac{1}{3} + 0 = \frac{1}{6}$$

6.4.3 Example 3: Line integral

Evalute the line integral for $f(x,y) = x^2y^2$ along a straight line from origin to the point (2,1)

The parmeterization of arc length over t:

$$x = f(t) = t$$
 $\frac{df(t)}{dt} = 1$

$$y = g(t) = 2t$$
 $\frac{dg(t)}{dt} = 2$

Setup integral with bounds: $0 \le t \le 1$

$$\int_0^1 t^2 (2t)^2 \sqrt{f'(t)^2 + g'(t)^2} dt = \int_0^1 5t^2 \sqrt{5} dt$$
$$= \left[\frac{5t^3 \sqrt{5}}{3} \right]_0^1 = \frac{5\sqrt{5}}{3}$$

6.4.4 Example 4: Line integral vector field

Evaluate the line integral of the tangential compnent of the given vector field along the given curve:

$$F(x,y) = xy\mathbf{i} - x^2\mathbf{j}$$

For a vector field:

$$W = \int F \, dr$$

Along the line $y = x^2$: Parametrize x and y:

$$x(t) = t$$
 $y(t) = t^{2}$ $r(t) = t\mathbf{i} + t^{2}\mathbf{j}$

$$\frac{dr}{dt} = \mathbf{i} + 2t\mathbf{j} \quad \Rightarrow \quad dr = (\mathbf{i} + 2t\mathbf{j})dt$$

Setup integral with bounds: $0 \le t \le 1$

$$\int_0^1 (t^3 \mathbf{i} - t^2 \mathbf{j})(\mathbf{i} + 2t \mathbf{j}) dt = \int_0^1 t^3 - 2t^3 dt = \int_0^1 -t^3 dt$$
$$= \left[-\frac{t^4}{4} \right]_0^1 = -\frac{1}{4}$$

6.4.5 Example 5: Line integral over specified curve

Evaluate the given line integral over the specified curve $\mathcal C$

$$\int_{\mathcal{C}} (x+y)ds$$
 $\mathbf{r} = at\mathbf{i} + bt\mathbf{j} + ct\mathbf{k}$ $0 \le t \le m$

$$\int_{\mathcal{C}} f(x, y, z) ds = \int_{a}^{b} f(r(t)) \left| \frac{dr}{dt} \right| dt = \sqrt{a^{2} + b^{2} + c^{2}} dt$$
$$ds = \left| \frac{dr}{dt} \right| dt = |a\mathbf{i} + b\mathbf{j} + c\mathbf{k}| dt$$
$$f(r(t)) = at + bt$$

Solve the integral:

$$\int_0^m (at+bt)\sqrt{a^2+b^2+c^2}dt = \sqrt{a^2+b^2+c^2}\int_0^m (a+b)tdt$$
$$= \sqrt{a^2+b^2+c^2} \left[\frac{(a+b)t^2}{2} \right]_0^m = \frac{\sqrt{a^2+b^2+c^2}(a+b)m^2}{2}$$

6.4.6 Example 6: Parametrize a curve

Use t = y to parametrize the part of the line of intersection of the two planes:

Plane 1: y = 2x - 4

Plane 2: z = 3x + 1 from (2, 0, 7) to (3, 2, 10)

Find parameterization for x with y = t:

$$t = 2x - 4$$
 \Rightarrow $x(t) = \frac{t+4}{2}$

Find parameterization for z using x(t):

$$z(t) = 3\left(\frac{t+4}{2}\right) + 1 \qquad \Rightarrow \qquad \left(\frac{3t+12}{2}\right) + 1 \qquad \Rightarrow \qquad \frac{3t}{2} + 7$$

The parameterization is given by:

$$r(t) = \left(\frac{1}{2}(t+4)\right)\mathbf{i} + (t)\mathbf{j} + \left(\frac{3}{2}t+7\right)\mathbf{k}$$

7 Surface-Integrals

7.1 Parametric Surface

For curve parametrization:

$$r = r(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$$
 where $a \le t \le b$

For surface parametrization:

$$r = r(u, v) = x(u, v)\mathbf{i} + y(u, v)\mathbf{j} + z(u, v)\mathbf{k}$$
 where $a \le u \le b$, $c \le v \le d$

7.2 Surface Area

For a surface the area is given by:

$$\iint_{S} f(x, y, z) dS$$

$$dS = \left| \frac{\partial r}{\partial u} \times \frac{\partial r}{\partial v} \right| du dv = \sqrt{\left(\frac{\partial (y, z)}{\partial (u, v)} \right)^{2} + \left(\frac{\partial (z, x)}{\partial (u, v)} \right)^{2} + \left(\frac{\partial (x, y)}{\partial (u, v)} \right)^{2}} du dv$$

For a parametrized surface S given by r = r(u, v), where (u, v) is in the domain D in the uv-plane, the surface area is given by:

$$\begin{split} \iint_S f \ dS &= \iint_D f(r(u,v)) \left| \frac{\partial r}{\partial u} \times \frac{\partial r}{\partial v} \right| du dv \\ &= \iint_b f(x(u,v),y(u,v),z(u,v)) \sqrt{\left(\frac{\partial (y,z)}{\partial (u,v)}\right)^2 + \left(\frac{\partial (z,x)}{\partial (u,v)}\right)^2 + \left(\frac{\partial (x,y)}{\partial (u,v)}\right)^2} \ du \ dv \end{split}$$

For a surface S given by z = g(x, y), where (x, y) is in the domain D in the xy-plane, the surface area is given by:

$$\iint_{S} f(x,y,z)dS = \iint_{D} f(x,y,z(x,y)) \sqrt{1 + \left(\frac{\partial g(x,y)}{\partial x}\right)^{2} + \left(\frac{\partial g(x,y)}{\partial y}\right)^{2}} dxdy$$

The projection of normal vector onto the xy-plane is given by:

$$\cos(\gamma) = \frac{1}{\sqrt{1 + \left(\frac{\partial g(x,y)}{\partial x}\right)^2 + \left(\frac{\partial g(x,y)}{\partial y}\right)^2}} \quad \text{hence } dS = \frac{1}{\cos(\gamma)} dx dy$$

7.3 Oriented Surface

- A smooth surface S in 3-space is said to be orientable if there exists a unit vector field $\widehat{N}(P)$.
- $\widehat{N}(P)$ defined on S that varies continuously as P ranges over S and that is everywhere normal to S.
- Any such vector field $\widehat{N}(P)$ determines an orientation of S.
- The oriented surface must have two sides.
- $\widehat{N}(P)$ can have only one value at each point P with two sides.

7.4 Flux

$$\mathbf{F} = f_1(x, y, z)\mathbf{i} + f_2(x, y, z)\mathbf{j} + f_3(x, y, z)\mathbf{k}$$

Given any continuous vector field \mathbf{F} , flux of \mathbf{F} across the orientable surface S is integral of the normal component of \mathbf{F} over S

$$\iint_{S} \mathbf{F} \cdot dS = \iint_{S} (\mathbf{F} \cdot \widehat{\mathbf{N}}) dS$$

If the surface is closed, then the flux is given by:

$$\iint_{S} \mathbf{F} \cdot dS = \iint_{S} (\mathbf{F} \cdot \widehat{\mathbf{N}}) dS$$

If S is a parametrized surface given by r = r(u, v), where (u, v) is in the domain D in the uv-plane, then the flux is given by:

$$\iint_{S} \mathbf{F} \cdot dS = \iint_{B} \mathbf{F} \cdot \left(\frac{\partial r}{\partial u} \times \frac{\partial r}{\partial v} \right) du \, dv$$
$$= \iint_{D} \left(f_{1} \frac{\partial (y, z)}{\partial (u, v)} + f_{2} \frac{\partial (z, x)}{\partial (u, v)} + f_{3} \frac{\partial (x, y)}{\partial (u, v)} \right) du \, dv$$

For a surface S given by z = g(x, y), where (x, y) is in the domain D in the xy-plane, the flux is given by:

$$\iint_{S} \mathbf{F} \cdot dS = \iint_{D} \left(-f_{1} \frac{\partial z}{\partial x} - f_{2} \frac{\partial z}{\partial y} + f_{3} \right) dx \, dy$$

7.5 Examples

7.5.1 Example 1: Surface area

Find $\iint_{\mathcal{S}} x \, dS$ over the part of the parabolic cylinder $z = x^2/2$ that lies inside the first octant part of the cylinder $x^2 + y^2 = 1$.

Since z = g(x, y) is a function of x and y:

$$\iint_{S} f(x,y,z) dS = \iint_{D} f(x,y,z(x,y)) \sqrt{1 + \left(\frac{\partial g(x,y)}{\partial x}\right)^{2} + \left(\frac{\partial g(x,y)}{\partial y}\right)^{2}} dx dy$$

Find the length:

$$\frac{\partial}{\partial x}(x^2/2) = x$$

$$\frac{\partial}{\partial y}(x^2/2) = 0$$

$$\sqrt{1 + \left(\frac{\partial g(x,y)}{\partial x}\right)^2 + \left(\frac{\partial g(x,y)}{\partial y}\right)^2} = \sqrt{1 + (2x)^2}$$

Using $r^2 = x^2 + y^2$ we know that x and y must between 1 and 0:

$$y = \sqrt{1 - x^2}$$

Setup integral:

$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} x\sqrt{1+x^{2}} dy dx$$

$$= \int_0^1 x\sqrt{1+x^2}\sqrt{1-x^2}dx = \int_0^1 x\sqrt{1-x^4}dx$$

Using table lookup:

$$\left[\frac{1}{4}x^2\sqrt{1-x^4} - \frac{1}{4}\tan^{-1}\left(\frac{\sqrt{1-x^4}}{x^2}\right)\right]_0^1 = \frac{\pi}{8}$$

7.5.2 Example 2: Flux

Find the flux of $F = x\mathbf{i} + x\mathbf{j} + \mathbf{k}$ upward through the part of the surface $z = x^2 - y^2$ inside the cylinder $x^2 + y^2 = a^2$

For a surface S given by z = g(x, y), where (x, y) is in the domain D in the xy-plane, the flux is given by:

$$\iint_{S} \mathbf{F} \cdot dS = \iint_{D} \left(-f_{1} \frac{\partial z}{\partial x} - f_{2} \frac{\partial z}{\partial y} + f_{3} \right) dx \, dy$$
$$\frac{\partial z}{\partial x} = 2x \qquad \frac{\partial z}{\partial y} = -2y$$

Setup integral:

$$\iint (-x(2x) - x(-2y) + 1)dxdy = \iint (-2x^2 + 2yx + 1)dxdy$$

Using $r^2 = x^2 + y^2$ we know the radius is a:

$$0 \le r \le a \qquad 0 \le \theta \le 2\pi$$

$$dxdy = rdrd\theta$$

$$x = r\cos(\theta)$$

$$y = r\sin(\theta)$$

$$\int_0^{2\pi} \int_0^a (-2(r\cos(\theta))^2 + 2(r\sin(\theta))(r\cos(\theta)) + 1)rdrd\theta$$

$$= \int_0^{2\pi} -\frac{1}{2}a^4\cos^2(\theta) + \frac{1}{2}a^4\sin(\theta)\cos(\theta) + \frac{a^2}{2}d\theta$$

$$= -\frac{1}{2}\pi a^2 \left(a^2 - 2\right)$$

7.5.3 Example 3: Flux (Parametrized Surface)

Find the flux of $F = 2x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ upward through the surface $r = u^2v\mathbf{i} + uv^2\mathbf{j} + v^3\mathbf{k}$ where $(0 \le u \le 1, 0 \le v \le 1)$

If S is a parametrized surface given by r = r(u, v), where (u, v) is in the domain D in the uv-plane, then the flux is given by:

$$\iint_{S} \mathbf{F} \cdot dS = \iint_{B} \mathbf{F} \cdot \left(\frac{\partial r}{\partial u} \times \frac{\partial r}{\partial v}\right) du \, dv$$

$$= \iint_{D} \left(f_{1} \frac{\partial (y, z)}{\partial (u, v)} + f_{2} \frac{\partial (z, x)}{\partial (u, v)} + f_{3} \frac{\partial (x, y)}{\partial (u, v)} \right) du \, dv$$

$$F(r(u, v)) = 2(u^{2}v)\mathbf{i} + uv^{2}\mathbf{j} + v^{3}\mathbf{k}$$

$$\frac{\partial r}{\partial u} = 2uv\mathbf{i} + v^{2}\mathbf{j} \qquad \qquad \frac{\partial r}{\partial v} = u^{2}\mathbf{i} + 2uv\mathbf{j} + 3v^{2}\mathbf{k}$$

$$\frac{\partial r}{\partial u} \times \frac{\partial r}{\partial v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2uv & v^2 & 0 \\ u^2 & 2uv & 3v^2 \end{vmatrix} = (v^2 \cdot 3v^2 - 0 \cdot 2uv)\mathbf{i} - (2uv \cdot 3v^2 - u^2 \cdot 0)\mathbf{j} + (2uv \cdot 2uv - v^2 \cdot u^2)\mathbf{k}$$

Setup integral:

$$\begin{split} \int_0^1 \int_0^1 (2(u^2v)\mathbf{i} + uv^2\mathbf{j} + v^3\mathbf{k}) \cdot \left(3v^4\mathbf{i} - 6uv^3\mathbf{j} + 3u^2v^2\mathbf{k}\right) \, du \, dv \\ \int_0^1 \int_0^1 (6u^2v^5 - 6u^2v^5 + 3u^2v^5) \, du \, dv &= \int_0^1 \int_0^1 3u^2v^5 \, du \, dv \\ &= \int_0^1 \left[u^3v^5\right]_0^1 \, dv = \int_0^1 v^5 \, dv \\ &= \left[\frac{v^6}{6}\right]_0^1 = \boxed{\frac{1}{6}} \end{split}$$

8 Theorems

8.1 Differential Operators

8.1.1 Gradient

The gradient of a scalar field is a vector field that points in the direction of the steepest increase of the scalar field.

$$\operatorname{grad}\, f(x,y,z) = \nabla f(x,y,z) = \frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j} + \frac{\partial f}{\partial z}\mathbf{k}$$

$$\mathbf{F}(x,y,z) = f_x(x,y,z)\mathbf{i} + f_y(x,y,z)\mathbf{j} + f_z(x,y,z)\mathbf{k}$$

8.1.2 Divergence

The divergence of a velocity field represents the net flow of fluid out of a small volume in a scalar field.

div
$$\mathbf{F}(x, y, z) = \nabla \cdot \mathbf{F}(x, y, z) = \frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y} + \frac{\partial f_3}{\partial z}$$

8.1.3 Curl

The curl or field circulation of the electric field gives the rate of change of the magnetic field.

$$\operatorname{curl} \mathbf{F}(x, y, z) = \nabla \times \mathbf{F}(x, y, z) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ f_x & f_y & f_z \end{vmatrix}$$

$$(\partial f_1 & \partial f_2) \cdot (\partial f_3 & \partial f_1) \cdot (\partial f_2 & \partial f_1) \cdot (\partial f_2 - \partial f_1)$$

$$= \left(\frac{\partial f_1}{\partial y} - \frac{\partial f_2}{\partial z}\right)\mathbf{i} + \left(\frac{\partial f_3}{\partial z} - \frac{\partial f_1}{\partial x}\right)\mathbf{j} + \left(\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y}\right)\mathbf{k}$$

8.2 Green's Theorem

Let R be a regular, closed region in the xy-plane whose boundary, C, consists of one or more piecewise smooth, simple closed curves that are positively oriented (counterclock vise) with respect to R.

$$\oint_C f_1(x,y)dx + f_2(x,y)dy = \iint_R \left(\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y}\right) dA$$

8.3 Stokes' Theorem

Let S be a piecewise smooth, oriented surface in 3-space, having unit normal field \widehat{N} and boundary C consisting of one or more piecewise smooth, closed curves with orientation inherited from S.

$$\oint_C F \cdot dr = \iint_S \operatorname{curl} F \cdot \widehat{N} dS$$

8.4 Divergence Theorem

Let S, be a closed piecewise smooth surface, which is the boundary of V with normal \widehat{N} pointing outwards.

$$\iint_{S} (F \cdot \widehat{N}) dS = \iiint_{V} \operatorname{div} F dV$$

More variants:

$$\iiint_D \operatorname{curl} F dV = - \oiint_s (F \times \widehat{N}) dS$$

$$\iiint_D \operatorname{grad} \phi \, dV = \oiint_s \phi \, dS$$

8.5 Examples

8.5.1 Example 1: Div and Curl

Calculate the divergence and curl of the following vector field:

$$\mathbf{F} = \cos x \,\mathbf{i} - \sin y \,\mathbf{j} + z \,\mathbf{k}.$$

Divergence:

div
$$\mathbf{F}(x, y, z) = \nabla \cdot \mathbf{F}(x, y, z) = \frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y} + \frac{\partial f_3}{\partial z}$$

div $F = -\sin(x) - \cos(y) + 1$

Curl:

$$\operatorname{curl} F = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ f_x & f_y & f_z \end{vmatrix}$$
$$= \left(\frac{\partial f_z}{\partial y} - \frac{\partial f_y}{\partial z} \right) \mathbf{i} + \left(\frac{\partial f_x}{\partial z} - \frac{\partial f_z}{\partial x} \right) \mathbf{j} + \left(\frac{\partial f_y}{\partial x} - \frac{\partial f_x}{\partial y} \right) \mathbf{k}$$
$$= (0 - 0)i + (0 - 0)j + (0 + 0)k$$

8.5.2 Example 2: Green's Theorem

Using Green's Theorem evaluate $\oint_e (x^2y) dx + (xy^2)dy$, clockwise bounded of the region:

$$0 \le y \le \sqrt{9 - x^2}$$

$$\oint_C f_1(x,y)dx + f_2(x,y)dy = \iint_R \left(\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y}\right) dA$$

$$f_1(x,y) = x^2 y \qquad f_2 = xy^2$$

$$\frac{\partial f_1}{\partial y} = x^2 \qquad \frac{\partial f_2}{\partial x} = y^2$$

$$\iint_R (y^2 - x^2) dA$$

But since it is clockwise:

$$-\iint_{R} (y^{2} - x^{2}) dA = \iint_{R} (x^{2} - y^{2}) dA$$

Using polar coordinates:

$$y^2 = 9 - x^2 \quad \Rightarrow \quad r = 3$$

Since $y \ge 0$:

$$0 \le \theta \le \pi$$

Convert the function to polar:

$$x^{2} = (r\cos(\theta))^{2}$$
 $y^{2} = (r\sin(\theta))^{2}$

$$\int_0^{\pi} \int_0^3 (r^2 \cos^2(\theta) - r^2 \sin^2(\theta)) r dr d\theta = \int_0^{\pi} \int_0^3 r^3 (\cos^2(\theta) - \sin^2(\theta)) dr d\theta$$

$$= \int_0^{\pi} \left[\frac{1}{4} r^4 (\cos^2(\theta) - \sin^2(\theta)) \right]_0^3 d\theta$$

$$= \frac{81}{4} \int_0^{\pi} (\cos^2(\theta) - \sin^2(\theta)) d\theta = \frac{81}{4} \int_0^{\pi} \frac{1 + \cos(2\theta)}{2} - \frac{1 - \cos(2\theta)}{2} d\theta$$

$$\frac{81}{4} \int_0^{\pi} \frac{1 + \cos(2\theta)}{2} - \frac{1 - \cos(2\theta)}{2} d\theta = \frac{81}{4} \int_0^{\pi} \cos(2\theta) d\theta$$

$$= \frac{81}{4} \left[\frac{\sin(2\theta)}{2} \right]_0^{\pi} = 0 - 0 = 0$$

8.5.3 Example 3: Stokes' Theorem

Evaluate $\oint F \cdot dr$, where $F = -y^3i + x^3j - z^3k$ and C is the curve of intersection of the cylinder $x^2 + y^2 \le 1$ and the plane 2x + 2y + z = 3 oriented to have a counterclockwise projection onto the xy-plane.

8.5.4 Example 4: Divergence Theorem

Use the Divergence Theorem to calculate the flux of the given vector field out of the sphere s with equation $x^2 + y^2 + z^2 = a^2$, where a > 0 and

$$\mathbf{F} = (x^2 + y^2)\mathbf{i} + (y^2 - z^2)\mathbf{j} + z\mathbf{k}$$

9 PDE

Partial Differential Equations are equations with multiple variables and derivatives. They are used to model many physical phenomena, such as heat, sound, and light. The totality of solutions to a PDE is called its general solution, and there can be a lot.

9.1 Classification of PDEs

General representation of a PDE:

$$A\frac{\partial^{2} u}{\partial x^{2}} + B\frac{\partial^{2} u}{\partial x \partial y} + C\frac{\partial^{2} u}{\partial y^{2}} + D\frac{\partial u}{\partial x} + E\frac{\partial u}{\partial y} + Fu = G$$
$$Au_{xx} + Bu_{xy} + Cu_{yy} + Du_{x} + Eu_{y} + Fu = G$$

Conditions:

Linear: A, B, C, D, E, F are only function of x,y variables, not u.

Quasi-linear: A, B, C, D, E, F may be function of (x, y, u, u_x, u_y)

Fully non-linear: A, B, C, D, E, F may be function of $(x, y, u, u_x, u_y, u_{xx}, u_{yy}, u_{xy})$

9.2 Characteristics of PDEs

 $B^2 - 4AC > 0$ 2 real roots 2 characteristics **Hyperbolic PDE**

 $B^2 - 4AC = 0$ 1 real roots 1 characteristics **Parabolic PDE**

 $B^2 - 4AC < 0$ 0 real roots 0 characteristics Elliptic PDE

Tyoes of varius PDEs:

Wave Equation: Hyperbolic PDE

Heat Equation: Parabolic PDE

Laplace Equation: Elliptic PDE

9.3 Important Second-Order PDEs

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$
 One-dimensional wave equation

$$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$$
 One-dimensional heat equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$
 Two-dimensional Laplace equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x, y)$$
 Two-dimensional Poisson equation

$$\frac{\partial^2 u}{\partial t^2} = c^2 \bigg(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \bigg) \quad \text{Two-dimensional wave equation}$$

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$$
 Three-dimensional Laplace equation

9.4 Initial and Boundary Conditions

9.5 Wave Equation (1D)

One dimensional wave equation is given by:

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} \quad \text{where } c^2 = \left[\frac{T(x,t)}{\mu_x} \right]$$
 (1)

With two boundary conditions x = 0 and x = L:

$$u(0,t) = 0$$
 $u(L,t) = 0$ For all $t > 0$

And two initial conditions, initial displacement and initial velocity at time t = 0:

$$u(x,0) = f(x) \qquad \quad \frac{\partial u}{\partial t}(x,0) = g(x) \qquad \qquad \text{For all } 0 \leq x \leq L$$

Steps to solve:

- 1. Method of Separation of Variables u(x,t) = X(x)T(t)
- 2. Satisfy the Boundary Conditions test
- 3. Fourier Series Validation

9.5.1 D'Alembert's Solution of the Wave Equation

His solution is given by eq. (1) but extended to two variables:

$$v = (x - ct) w = (x + ct) (2)$$

I.e. u(v, w). Partial derivatives from chain rule:

$$u_x = u_v \cdot v_x + u_w \cdot w_x = u_v + u_w$$

For double derivatives:

$$u_{xx} = (u_v + u_w)_x = (u_v + u_w)_v v_x + (u_v + u_w)_w w_x = u_{vv} + 2u_{vw} + u_{ww}$$

With respect to t:

$$u_{tt} = c^2 u_{xx} = c^2 (u_{vv} + 2u_{vw} + u_{ww})$$

From eq. (1) and eq. (2):

$$u_{vw} = \frac{\partial^2 u}{\partial w \partial v} = 0$$

This can be solved by integrating with respect to v and w:

$$\frac{\partial u}{\partial v} = h(v)$$
 and $u = \int h(v) \ dv + \psi(w)$

Here, h(v) and $\psi(w)$ are arbitrary functions of v and w, respectively. The solution in term for x:

$$u = \phi(v) + \psi(w)$$

This is d'Alembert's solution, which is the general solution to the wave equation.

$$u(x,t) = \phi(x+ct) + \psi(x-ct)$$

This solution satisfies the wave equation and the initial conditions:

9.6 Heat Equation (1D)

$$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2} \tag{3}$$

Conditions:

- PDE is linear and homogeneous.
- Boundary conditions are linear and homogeneous. The two for u(x,t) is u(0,t)=0 and u(L,t)=0 for all t>0.
- One initial condition at time (t = 0): u(x, 0) = f(x).

Solve the

Solution:

$$u(x,t) = \sum_{n=1}^{\infty} B_n \sin\left(\frac{n\pi x}{L}\right) e^{-\lambda_n^2 t}$$

where

$$\lambda_n = \frac{cn\pi}{L}$$

and

$$B_n = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{n\pi x}{L}\right) dx \qquad \text{for } n = 1, 2, 3 \dots$$

9.7 Examples

9.7.1 Example 1: Type, Normal Form, and solve

Find the type, transform to normal form, and solve.

$$u_{xy} - u_{yy} = 0$$

Find A, B, C:

$$Au_{xx} + 2Bu_{xy} + Cuyy = f(x, y, u, u_x, u_y)$$

$$A = 0 2B = 1 \Rightarrow B = \frac{1}{2} C = -1$$

Find the type:

$$B^2 - 4AC = \left(\frac{1}{2}\right)^2 - 4 \cdot 0 \cdot -1 = \frac{1}{4}$$

Since $B^2 - 4AC > 0$ the PDE is hyperbolic.

Transform to normal form:

$$Ay'' - 2By' + C = 0 \quad \Rightarrow \quad -y' - 1 = 0 \quad \Rightarrow \quad y' = -1$$
$$y = \int \frac{dy}{dx} = \int -1dx = -x + c_1$$
$$c_1 = x + y$$

Transform the variables:

Only one constant, therefore v = x

$$v = x$$
 $v_x = 1$ $v_y = 0$

$$w = x + y w_x = 1 w_y = 1$$

$$u_x = u_v v_x + u_w w_x = u_v \cdot 1 + u_w \cdot 1 = u_v + u_w$$

$$u_{xy} = (u_v + u_w)_v v_y + (u_v + u_w)_w w_y = u_{xy} = (u_v + u_w)_v \cdot 0 + (u_v + u_w)_w \cdot 1 = \boxed{u_{vw} + u_{ww}}$$

$$u_y = u_v u_y + u_w w_y = u_v \cdot 0 + u_w \cdot 1 = u_w$$

$$u_{yy} = (u_w)_v v_y + (u_w)_w w_y = (u_w)_v \cdot 0 + (u_w)_w \cdot 1 = \boxed{u_{ww}}$$

The normal form is:

$$u_{vw} + u_{ww} - u_{ww} = 0 \quad \Rightarrow \quad \boxed{u_{vw} = 0}$$

Solve:

$$u_{vw} = 0 \Rightarrow u_v = h(v)$$

 $u = g(w) + \int h(v)$
 $u(v, w) = g(w) + f(v)$

Insert x, y:

$$u(x,y) = g(x+y) + f(x)$$

Where f and g er orbitrary functions.

9.7.2 Example 2: Type, Normal Form, and solve

Find the type, transform to normal form, and solve.

$$u_{xy} - u_{yy} = 0$$