Dynamic Query Evaluation

Alexandre Vigny

January 18, 2024

Outline

Introduction

Setting Beyond query evaluation

Query enumeration

Definition
Examples and Existing results

What about updates?

Why/How?

Results

Structure with low degree?

Definitions and results

The algorithms

Tools and sketch

Examples

Conclusion

Introduction

Databases and Queries

Introduction

Databases and Queries

Formalization: Databases as graphs

Introduction

Formalization: Databases as graphs

R		
Paris	France	
Meudon	France	
Houston	USA	
Rome	Italy	

Formalization: Databases as graphs

- P(x) becomes $\exists w$, $Blue(w) \land B(x, w)$
- R(x,y) becomes $\exists w$, $Red(w) \land B(x,w) \land G(y,w)$
- S(x,y,z) becomes $\exists w$, $Purple(w) \land B(x,w) \land G(y,w) \land V(z,w)$
 - $\exists x \cdots \text{becomes } \exists x, \text{Orange}(x) \land \cdots$
 - $\forall x \cdots \text{ becomes } \forall x, \text{ Orange}(x) \Longrightarrow \cdots$

Query evaluation

Input:

Introduction

- → A database D
- \rightarrow A query $q(\overline{x})$

Goal:

 \rightarrow Compute q(D)

It is always possible in time $O(|\mathbf{D}|^{|q|})$

Ideally we can do $O(|\mathbf{D}| + |\mathbf{q}|) + O(\mathbf{q}(\mathbf{D}))$

Computing the whole set of solutions?

In general:

Database: ||D|| the size of the database.

Query: k the arity of the query.

Solutions: Up to $||D||^k$ solutions!

Practical problem:

A set of 50^{10} solutions is not easy to store / display!

Theoretical problem:

The time needed to compute the answer does not reflect the hardness of the problem.

Can we do anything else instead?

000

Low degree

Algorithms

Inspiration from real world

PhD thesis

Inspiration from real world

PhD thesis

around 200.000 results in 0,5 seconds

- > Here is a first solution
- > Here is a second one
- >

Introduction

- >

Ideally:

Other problems

Model-Checking: Is this true?

Input: Goal:

 \mathbf{D}, \mathbf{q} Yes or NO? $\mathbf{D} \models \mathbf{q}$? $O(\|\mathbf{D}\|)$

Testing: Is this tuple a solution?

Counting: How many solutions?

Enumeration: Enumerate the solutions

Other problems

Model-Checking: Is this true?

Testing: Is this tuple a solution?

Input: Goal:

 D,q, \overline{a} Test whether $\overline{a} \in q(D)$.

Counting: How many solutions?

Enumeration: Enumerate the solutions

Ideally:

 $O(1) \circ O(\|\mathbf{D}\|)$

Other problems

Model-Checking: Is this true?

Testing: Is this tuple a solution?

Counting: How many solutions?

Input: Goal: Ideally:

D,q Compute |q(D)| $O(\|D\|)$

Enumeration : Enumerate the solutions

Other problems

Model-Checking: Is this true?

Testing: Is this tuple a solution?

Counting: How many solutions?

Enumeration : Enumerate the solutions

Input: Goal: Ideally:

 \mathbf{D}, \mathbf{q} Compute 1^{st} sol, 2^{nd} sol, ... $O(1) \circ O(\|\mathbf{D}\|)$

Query enumeration

Input : $\|\mathbf{D}\| := n \& |\mathbf{q}| := k$ (computation with RAM)

Goal: output solutions one by one (no repetition)

Query enumeration

Input : $\|\mathbf{D}\| := n \ \& \ |\mathbf{q}| := k$ (computation with RAM)

Goal: output solutions one by one (no repetition)

STEP 1: Preprocessing

Prepare the enumeration : Database $D \longrightarrow \operatorname{Index} I$

Preprocessing time : $f(k) \cdot n \rightsquigarrow O(n)$

Query enumeration

Input : $\|\mathbf{D}\| := n \& |\mathbf{q}| := k$ (computation with RAM)

Goal: output solutions one by one (no repetition)

STEP 1: Preprocessing

Prepare the enumeration : Database $D \longrightarrow \operatorname{Index} I$

Preprocessing time : $f(k) \cdot n \rightsquigarrow O(n)$

STEP 2: Enumeration

The enumerate : Index $I \longrightarrow \overline{x_1}$, $\overline{x_2}$, $\overline{x_3}$, $\overline{x_4}$, ...

Delay: $O(f(k)) \rightsquigarrow O(1)$

Constant delay enumeration after linear preprocessing $O(1) \circ O(n)$

Properties of efficient enumeration algorithms

Mandatory:

- \rightarrow First solution computed in time $O(\|\mathbf{D}\|)$.
- → Last solution computed in time $O(\|\mathbf{D}\| + |q(\mathbf{D})|)$.
- → No repetition!

Optional:

- → Enumeration in lexicographical order.
- → Use a constant amount of memory.

 $\|D\| = |E|$

```
\rightarrow Database \mathbf{D} := \langle \{1, \dots, n\}; E \rangle
\rightarrow Query q_1(x,y) := E(x,y)
               Ε
             (1,1)
             (1,2)
             (1,6)
             (4,5)
             (4,7)
             (4,8)
             (n,n)
```

```
\rightarrow Database \mathbf{D} := \langle \{1, \dots, n\}; E \rangle
                                                                  \|\mathbf{D}\| = |E|
```

 \rightarrow Query $q_1(x,y) := E(x,y)$

Ε

(1,1)

(1,2)

(1,6)

(4,5)

(4,7)

(4,8)

(n,n)

For the enumeration problem Preprocessing: nothing Enumeration: read the list.

For the counting problem

Computation: go through the list Answering: output the result.

For the testing problem Harder than it looks!

Dichotomous research? $O(\log(\|\mathbf{D}\|))$.

→ Database
$$D := \langle \{1, \dots, n\}; E \rangle$$
 $\|\mathbf{D}\| = |E|$

 \rightarrow Query $q_2(x,y) := \neg E(x,y)$

Ε

(1,1)

(1,2)

(1,6)

(2,3)

(i,j)(i,j+1)

(i,j+3)

(n,n)

→ Database
$$D := \langle \{1, \dots, n\}; E \rangle$$
 $\|\mathbf{D}\| = |E|$

$$\rightarrow$$
 Query $q_2(x,y) := \neg E(x,y)$

→ Database
$$D := \langle \{1, \dots, n\}; E_1; E_2 \rangle$$
 $||D|| = |E_1| + |E_2| \quad (E_i \subseteq D \times D)$

$$\rightarrow$$
 Query $q(x,y) := \exists z, E_1(x,z) \land E_2(z,y)$

→ Database
$$D := \langle \{1, \dots, n\}; E_1; E_2 \rangle$$
 $||D|| = |E_1| + |E_2| \quad (E_i \subseteq D \times D)$

$$\rightarrow$$
 Query $q(x,y) := \exists z, E_1(x,z) \land E_2(z,y)$

B: Adjacency matrix of E_2

$$\left\{ \begin{array}{ccccc} E_2(1,1) & \ldots & E_2(1,y) & \ldots & E_2(1,n) \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ E_2(z,1) & \ldots & \left(E_2(z,y) & \ldots & E_2(z,n) \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ E_2(n,1) & \ldots & \left(E_2(n,y) & \ldots & E_2(n,n) \right) \end{array} \right.$$

$$\begin{pmatrix} E_{1}(1,1) & \dots & E_{1}(1,i) & \dots & E_{1}(1,n) \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ E_{1}(x,1) & \dots & E_{1}(x,z) & \dots & E_{1}(x,n) \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ E_{1}(n,1) & \dots & E_{1}(n,z) & \dots & E_{1}(n,n) \end{pmatrix} \left\{ \begin{array}{ccccc} q(1,1) & \dots & q(1,y) & \dots & q(1,n) \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ q(x,1) & \dots & q(x,y) & \dots & q(x,n) \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ q(n,1) & \dots & q(n,y) & \dots & q(n,n) \end{array} \right.$$

A: Adjacency matrix of E_1

C: Result matrix

→ Database
$$D := \langle \{1, \dots, n\}; E_1; E_2 \rangle$$
 $||D|| = |E_1| + |E_2| \quad (E_i \subseteq D \times D)$

$$\rightarrow$$
 Query $q(x,y) := \exists z, E_1(x,z) \land E_2(z,y)$

Compute the set of solutions

=

Boolean matrix multiplication

→ Database
$$D := \langle \{1, \dots, n\}; E_1; E_2 \rangle$$
 $||D|| = |E_1| + |E_2| \quad (E_i \subseteq D \times D)$

$$\rightarrow$$
 Query $q(x,y) := \exists z, E_1(x,z) \land E_2(z,y)$

- \rightarrow Linear preprocessing: $O(n^2)$
- \rightarrow Number of solutions: $O(n^2)$
- \rightarrow Total time: $O(n^2) + O(1) \times O(n^2)$
- \rightarrow Boolean matrix multiplication in $O(n^2)$

Conjecture: "There are no algorithm for the boolean matrix multiplication working in time $O(n^2)$."

$$\rightarrow$$
 Database $D := \langle \{1, \dots, n\}; \overline{E_1}; \overline{E_2} \rangle$ $||D|| = |E_1| + |E_2| \quad (E_i \subseteq D \times D)$

$$\rightarrow$$
 Query $q(x,y) := \exists z, E_1(x,z) \land E_2(z,y)$

This query cannot be enumerated with constant delay¹

We need to put restrictions on queries and/or databases.

 $^{^{1}}$ Unless there is a breakthrough with the boolean matrix multiplication.

Example 3 bis

$$\rightarrow$$
 Database $D := \langle \{1, \dots, n\}; \overline{E_1}; \overline{E_2} \rangle$ $||D|| = |E_1| + |E_2| \quad (E_i \subseteq D \times D)$

$$\rightarrow$$
 Query $q(x,y) := \exists z, E_1(x,z) \land E_2(z,y)$

and D is a tree!

- \rightarrow Database $D := \langle \{1, \dots, n\}; \overline{E_1}; \overline{E_2} \rangle$ $||D|| = |E_1| + |E_2| \quad (E_i \subseteq D \times D)$
- \rightarrow Query $q(x,y) := \exists z, E_1(x,z) \land E_2(z,y)$

and D is a tree!

Given a node x, every solutions y must be amongst: It's "grandparent", "grandchildren", or "siblings"

What kind of restrictions?

No restriction on the database part

Highly expressive queries (MSO queries)

FO queries

 \bigcup

 \downarrow

 \bigvee

Strict subset of ACQ

Trees (graphs with bounded tree width)

Nowhere dense graphs

Bagan, Durand, Grandjean Courcelle, Bagan, Segoufin, Kazana

next slide

DENSITY

Classes of graphs

Motivations

In general the database is not fixed for ever.

We want to add / remove / update information.

In the graph setting, one is allowed to:

- → create a new vertex / a new edge,
- → delete an edge / an edgeless vertex,
- → change the color of a vertex.

Data structures with updates

Data structures with updates

Data structures with updates

Data structures with updates

Existing results

No Restriction on databases!

→ Berkholz, Keppeler, Schweikardt PODS '17 & ICDT '18

For MSO queries:

- → Losemann, Martens CSL-LICS '14
- → Niewerth, Segoufin PODS '18
- \rightarrow Amarilli, Bourhis, Mengel, Niewerth $\,$ ICDT '18 & PODS '19 & ...

For FO queries:

→ Berkholz, Keppeler, Schweikardt ICDT '17

Recap: → Antoine Amarilli's habilitation. '23

"New" results 1/2

Theorem

Over classes of graphs with *bounded degree*, for every integer ℓ , there is a data structure that:

- → can be **computed** in linear time,
- → can be **updated** in constant time,
- → allows us given any FO query with quantifier-rank + arrity ≤ ℓ:
 check whether there is a solution in constant time.
 count the number of solution in constant time.
 enumerate every solution with constant delay.
 test whether a given tuple is a solution in constant time.

What's new is that the structure does not depends on the query!

"New" results 2/2

Theorem

Over classes of graphs with *low degree*, for every FO query and every $\epsilon > 0$, there is a data structure that:

- \rightarrow can be **computed** in time $O(|G|^{1+\epsilon})$, (pseudo-linear time)
- ightarrow can be **updated** in time $O(|G|^{\epsilon})$, and (pseudo-constant time)
- → allows us to:

check whether there is a solution in constant time.count the number of solution in constant time.enumerate every solution with constant delay.test whether a given tuple is a solution in constant time.

Classes of graphs with low degree

Definition

A class \mathscr{C} has low degree if:

$$\forall \epsilon > 0, \quad deg(G) \in O(|G|^{\epsilon})$$

Examples: bounded degree, degree in $O(\log(n))$ or $O(\log^{i}(n))$

Counter examples: degree in $O(n^{0,0001})$ or $O(\sqrt{n})$

Not a monotone or hereditary notion

Existing results

Model checking results: Grohe. STACS '01

Test/enumeration/counting results: Durand, Schweikardt, Segoufin PODS '13

Tools

Tools

Locality of FO and that's it!

Tools

Locality of FO and that's it!

The fact that a tuple is a solution only depends on it's neighborhood.

$$G \models q(\overline{a}) \Longleftrightarrow N_r^G(\overline{a}) \models q(\overline{a})$$

where $r = O(2^{|q|})$.

Given G, d and ℓ : let $r = 2^{\ell}$

→ The set \mathcal{H} of all graphs H of size d^r and one marked node. Up to isomorphism. There are only $O\left(2^{(d^r)^2}\right)$ such graphs.

Given G, d and ℓ : let $r = 2^{\ell}$

Given G, d and ℓ : let $r = 2^{\ell}$

Given G, d and ℓ : let $r = 2^{\ell}$

Given G, d and ℓ : let $r = 2^{\ell}$

Given G, d and ℓ : let $r = 2^{\ell}$

What happens if there is an update?

What happens if there is an update?

1) If a node is far from the update nothing changes!

What happens if there is an update?

- 1) If a node is far from the update nothing changes!
- 2) If a node is close to the update we need to recompute everything But there are few such nodes!

What happens if there is an update?

- 1) If a node is far from the update nothing changes!
- 2) If a node is close to the update we need to recompute everything But there are few such nodes!

There are only $d(G)^r$ nodes that need something to be done.

The examples queries

→
$$q_1() := \exists x, \exists y, \exists z \ E(x,y) \land E(y,z) \land E(z,x)$$

(The triangle query)

- $\rightarrow q_2(x,y) := \exists z \ E(x,z) \land E(z,y)$ (The distance two query)
- $\rightarrow q_3(x,y) := R(x) \land B(y) \land \neg q_2(x,y)$ (Red Blue nodes that are far apart)

How to use the structure 1/3

Input: *G* is now fixed, the data structure is computed:

Goal: test whether there is a triangle.

How to use the structure 1/3

Input: *G* is now fixed, the data structure is computed:

Goal: test whether there is a triangle.

Solution : Is there an $H \in \mathcal{H}$ such that:

- \rightarrow There is a triangle in H,
- $\rightarrow \#L_H > 0.$

Total time: constant time! (triply exponential in ℓ)

How to use the structure 2/3

Input: G is now fixed, the data structure is computed:

Goal : test/count/enumerate the pairs (a,b) such that $G \models q_2(a,b)$.

$$q_2(x,y) := \exists z \ E(x,z) \wedge E(z,y)$$

How to use the structure 2/3

Input: *G* is now fixed, the data structure is computed:

Goal : test/count/enumerate the pairs (a, b) such that $G \models q_2(a, b)$.

$$q_2(x,y) := \exists z \ E(x,z) \wedge E(z,y)$$

Solution (count): for all $H \in \mathcal{H}$ of:

- \rightarrow How many b in H, such that $H \models q_2(a,b)$? Where a is the marked node.
- \rightarrow Add $\#L_H \cdot \#q_2(H)$ to the total.

Total time: constant time! (triply exponential in ℓ)

How to use the structure 3/3

Input: *G* is now fixed, the data structure is computed:

Goal : test/count/enumerate the pairs (a,b) such that $G \models q_3(a,b)$.

$$q_3(x,y) := R(x) \wedge B(y) \wedge \neg q_2(x,y)$$

How to use the structure 3/3

Input: G is now fixed, the data structure is computed:

Goal : test/count/enumerate the pairs (a, b) such that $G \models q_3(a, b)$.

$$q_3(x,y) := R(x) \wedge B(y) \wedge \neg q_2(x,y)$$

Solution (enumerate):

- → Run through all a such that $G \models \exists y, q_3(a, y)$ performed by induction
- \rightarrow Run through all b in B, and don't output those that are close to a.

Constant delay ! (triply exponential in ℓ)

Recap

Theorem:

Over classes of graphs with low or bounded degree, for every FO query, there is a data structure that:

- → can be computed efficiently,
- → can be recomputed efficiently,
- → allows to answer the query in constant time / delay.

Complexity

linear preprocessing: $O(f(|\mathbf{q}|) \times |\mathbf{G}|)$

But $f(\cdot)$ is triply exponential, which is optimal.

What remains?

There are still many classes of graphs with statics results but no dynamic ones.

What remains?

There are still many classes of graphs with statics results but no dynamic ones.

What about more powerful updates?

$$R^G := q(G)$$

New directions

2) Implementable scenarios.

In general the constants factors are a tower of exponentials.

Can they be polynomial? Or even linear?

Existing results for: Document Spanners, 1,2 and for ACQ.3

¹Florenzano, Riveros, Ugarte, Vansummeren, Vrgoc ACM Trans. Database Syst. '20

²Amarilli, Bourhis, Mengel, Niewerth ACM Trans. Database Syst. '21

³Bagan, Durand, Filiot, Gauwin csl. '10

New directions

2) Implementable scenarios.

In general the constants factors are a tower of exponentials.

Can they be polynomial? Or even linear?

Existing results for: Document Spanners, 1,2 and for ACQ.3

Thank you!

¹Florenzano, Riveros, Ugarte, Vansummeren, Vrgoc ACM Trans. Database Syst. '20

²Amarilli, Bourhis, Mengel, Niewerth ACM Trans. Database Syst. '21

³Bagan, Durand, Filiot, Gauwin csl. '10