

COPIE INTERNE 21/08/2025

Dr FARINELLA ELEONORA CHU St-Pierre

Centre d'Anatomie Pathologique H.U.B.

Rue Meylemeersch 90 - 1070 Anderlecht Mijlemeerschstraat 90 – 1070 Anderlecht

> **Directrice de Service** Pr Myriam Remmelink

Equipe Médicale

Dr Nicolas de Ŝaint Aubain
Pr Nicky D'Haene
Dr Maria Gomez Galdon
Dr Chirine Khaled
Pr Denis Larsimont
Pr Laetitia Lebrun
Dr Calliope Maris
Pr Jean-Christophe Noël
Dr Anne-Laure Trépant
Dr Marie Van Eycken
Pr Laurine Verset

Consultant (e) s

Dr Sarah Bouri Dr Xavier Catteau Dr Roland de Wind Dr Marie-Lucie Racu Dr Valérie Segers Dr Anne Theunis Dr Marie-Paule Van Craynest

Secrétariat Médical T +32 (0)2 541 73 23

T. +32 (0)2 541 73 23 +32 (0)2 555 33 35

SecMed.AnaPath@hubruxelles.be

Secrétariat Direction T. +32 (0)2 555 31 15

Mme Kathia El Yassini Kathia.elyassini@hubruxelles.be

Mme Véronique Millecamps veronique.millecamps@hubruxelles.be

PATIENT:

ID:

Réf. Externe : 25BB03729 EXAMEN : **25EM01128**

Prélevé le 10/03/2025 à 10/03/2025 17:00 Prescripteur : Dr FARINELLA ELEONORA

Reçu le 20/03/2025

RECHERCHE PAR « NEXT GENERATION SEQUENCING » DE VARIANTS DANS 39 GENES IMPLIQUES DANS LES GLIOMES ET RECHERCHE DE CO-DELETION 1p19q

(CLINICAL GLIOMA PANEL V2)

HUB – Centre d'Anatomie Pathologique – est accrédité par BELAC sous le numéro de certificat B-727 MED

I. Renseignements anatomopathologiques

N° du prélèvement : 25BB03729-01

Date du prélèvement : 10/03/2025

Origine du prélèvement : Saint Pierre

Type de prélèvement : Glioblastome

II. Evaluation de l'échantillon

- % de cellules tumorales : 50%
- Qualité du séquençage : Optimale (coverage moyen > 1000x)

Les exons à considérer comme non contributifs sont détaillés dans le tableau ci-dessous (point III).

- Commentaires : Nous attirons votre attention sur le fait que le délai de fixation est supérieur à 1h et que ceci pourrait éventuellement avoir un impact sur les résultats.

III. Méthodologie (effectué par : NADN, MAGU)

- Extraction ADN à partir de coupes paraffinées après macrodissection des zones tumorales ou à partir de frottis.
- Détection par « Next Generation Sequencing » (sur Ion Gene Studio S5, Ion Torrent avec Kit AmpliSeq) de variants dans 39 gènes liés aux tumeurs cérébrales :

Gène	RefSeq	Exons testés	Exons Non Contributifs (coverage <250x)*
ACVR1	NM_001105	6-11	7
ATRX	NM 00489	1-35 (whole CDS)	9,15,28,29
BRAF	NM_004333	7, 10, 11, 12, 15	
CDK4	NM_000075	1-8 (whole CDS)	7
CDK6	NM_001259	2-8 (whole CDS)	
CDKN2A	NM_000077	1-3 (whole CDS)	1
CDKN2B	NM_004936 et NM_078487	1-2 (whole CDS)	
EGFR	NM_005228	1-28 (whole CDS)	
FGFR1	NM_23110	12, 14-16	15
FGFR2	NM_000141	5-7, 9-10, 12, 14	
FGFR3	NM_00142	7, 9, 10, 13-16	
H3F3A (=H3.3)	NM_002107	2	
Н3F3B	NM_005324	2-4 (whole CDS)	
HIST1H3B (=H3C2)	NM_003537	1	
HIST1H3C (=H3C3)	NM_003531	1	
HRAS	NM_005343	2-4 (whole CDS)	
IDH1	NM_005896	4	
IDH2	NM 002168	4	
KRAS	NM_033360	2-4 (whole CDS)	
MDM2	NM_002392	1-11 (whole CDS)	1

Gène	RefSeq	Exons testés	Exons Non Contributifs (coverage <250x)*
MDM4	NM_002393	2-11 (whole CDS)	2
MYCN	NM 1293228	2-3 (whole CDS)	2
NF1	NM_001042492	1-58 (whole CDS)	7
NF2	NM_00268	1-16 (whole CDS)	15
NRAS	NM_002524	2-4 (whole CDS)	
PDGFRA	NM_006206	5-12, 14-15, 18, 21-23	
PIK3CA	NM 006218	1-20 (whole CDS)	
PIK3R1	NM_181523	2-16 (whole CDS)	
POLD1	NM_001256849	1-27 (whole CDS)	20,22,24
POLE	NM_006231	1-49 (whole CDS)	36
PPM1D	NM_003620	1-6 (whole CDS)	1
PRKCA	NM-002737	1-17 (whole CDS)	
PTEN	NM_00314	1-9 (whole CDS)	
PTPN11	NM_02834	1-15 (whole CDS)	
RB1	NM_00321	1-27 (whole CDS)	1,15,16,22
TERT	NM_001193376	Promoteur	
TP53	NM_00546	1-11 (whole CDS)	4,9
TSC1	NM 000368	3-23 (whole CDS)	
TSC2	NM_000548	2-42 (whole CDS)	6,14,31,34

^{*} Un coverage < 250x induit une perte de sensibilité et de spécificité de la méthode.

- Sensibilité : Seuls les variants avec une fréquence supérieure à 5% et un variant coverage >30x (sauf promoteur de TERT : variant coverage >20x) sont rapportés.
- Détection par « Next Generation Sequencing » (Ion Gene Studio S5, Ion Torrent avec Kit AmpliSeq) d'une perte d'hétérozygotie (LOH) 1p et 19q, sur base de 30 SNP sur le chromosome 1 et 25 SNP sur le chromosome 19. Sensibilité : la technique utilisée détecte la LOH 1p et 19q si l'échantillon contient > 40% de cellules tumorales.

IV. Résultats

a. Liste des variants détectés :

Variants pathogéniques ou présumés pathogéniques :

Gène	Exon	Variant	Coverage	% d'ADN muté
Variants avec impact clinique potentiel				
TERT	Promoteur	chr5:1295228C>T (C228T)	161	14%

Variants de significations biologiques et cliniques indéterminées :

Gène	Exon	Variant	Coverage	% d'ADN muté
TSC1	3	p.P17R	1998	58%

Les données de coverage suggèrent la présence d'une amplification du gène PDGFRA. En effet le coverage moyen de l'ensemble des 1305 amplicons est de1821 et les 27 amplicons couvrant le gène PDGFRA présentent un coverage moyen de 9984. Néanmoins cette méthode n'est pas validée pour la détection des amplifications. Ces données doivent donc être confirmées par une technique d'hybridation *in situ*.

b. Statut 1p19q:

Qualité de l'échantillon : optimale

Résultat : Pas de perte d'hétérozygotie (LOH) des chromosomes 1p et 19q

V. Discussion

Les mutations au niveau du promoteur de TERT sont fréquentes dans les oligodendrogliomes et les glioblastomes. Leur impact pronostique est controversé.

Les amplifications du gène PDGFRA sont décrites dans les glioblastomes. Leur impact clinique est indéterminé. Il existe des essais cliniques avec des thérapies ciblant PDGFRA. Leur efficacité n'est cependant pas encore avérée.

www.clinicaltrials.gov

VI. Conclusion : (MAGU le 27/03/2025)

Absence de variant détecté dans les gènes IDH1, IDH2, BRAF et H3F3A. Présence d'une mutation dans le promoteur du gène TERT.

Présence d'un variant de signification biologique et clinique indéterminée dans le gène TSC1.

Les données de coverage suggèrent la présence d'une amplification du gène PDGFRA (voir résultats). Cependant ce résultat doit être confirmé par une technique d'hybridation *in situ*.

Pas de co-délétion des chromosomes 1p19q détectée.

Pour toute information complémentaire, veuillez nous contacter au 02/555.85.08 ou par mail : Biomol.AnaPath@erasme.ulb.ac.be

Suite de l'examen N° 25EM01128 concernant le patient

N.B. Pour les prélèvements d'histologie et de cytologie ainsi que pour les examens complémentaires de biologie moléculaire, merci d'utiliser les nouvelles prescriptions disponibles sur le site internet du HTR.

https://www.hubruxelles.be/sites/default/files/2024-03-04_demande%20analyse%20anapath%20cytologie%20v3.pdf https://www.hubruxelles.be/sites/default/files/FO-HUB-BM-11%20Demande%20de%20biologie%20mol%C3%A9culaire-IPD%20v1.doc

Dr N D'HAENE

Dr REMMELINK MYRIAM