Implementing Fast Multipole Methods with High Level Interpreted Languages

Srinath Kailasa

Department of Physics & Astronomy University College London

September 9, 2020

Table of Contents

Fast Multipole Methods (FMMs)

PyExaFMM

Research Context

Table of Contents

Fast Multipole Methods (FMMs)
Motivation
Analytic FMM
Kernel Independent FMM

PyExaFMM

Research Context

Motivation - the N Body Problem

- e.g. Electrostatics, Gravitation
- $\{x_i\}_{i=1,...,N}$ Source Particles
- $\{y_j\}_{j=1,..,M}$ Target Particles

$$\Phi(y_j) = \sum_{i=1}^N K(x_i, y_j) q_i, \qquad (1)$$

where,
$$K(x, y) = \frac{1}{\|x - y\|}$$
 (2)

■ FMM reduces complexity from $O(N^2)$ to O(N)

Motivation - Intuition

Motivation - Intuition

Motivation - Three Step Procedure

Analytic FMM - Concept

Idea: Use compressed representations of far field potentials to reduce complexity, in a recursive fashion

Analytic FMM - Multipole Expansion

Analytic FMM - Local Expansion

- For 3D Laplace kernel, can write multipole and local expansions using sph. harmonics, these can be truncated to required accuracy
- Exact operators exist for this kernel to shift between multipole and local expansion coefficients
- Exact bounds on error also exist, with respect to direct computation [1]

Analytic FMM - Motivating Problem

- Consider 2D Problem
- Domain, $\Omega = [0,1] \times [0,1]$
- Partition into recursively defined Quadtree
- Each level, *I*, partitioned into 4^{*I*} boxes
- Source and Target particles taken to be the same

Analytic FMM - Shifting Multipole Expansion

Analytic FMM - Shifting Local Expansion

Analytic FMM - Implementation Issues

- Representing problem with efficient data structures:
 Quad/Octrees
- Computing and storing new expansions for each kernel, may require new software implementations

Kernel Independent FMM

- KIFMM only requires kernel evaluations
- Works by matching potential generated by particles with that generated by an equivalent density in the far field

Adapted from [2]

Adapted from [2]

- Check Surface x^{B,u}
- Equivalent Surface y^{B,u}
- **Equivalent Density** $\phi^{B,u}$
- Check Potential $q^{B,u}$
- Indices of source points I_s^B
- Source densities ϕ_i

$$\int_{\mathsf{y}^{B,u}} K(\mathsf{x},\mathsf{y}) \phi^{B,u} d\mathsf{y} = \sum_{i \in I_s^B} K(\mathsf{x},\mathsf{y}) \phi_i = q^{B,u} \text{ for any } \mathsf{x} \in \mathsf{x}^{B,u} \quad (3)$$

$$K_A \phi^A = K_B \phi^B$$

$$\phi^A = (\alpha I + K_A^* K_A)^{-1} K_B \phi^B$$
(4)

$$\phi^{A} = (\alpha I + K_{\Delta}^{*} K_{A})^{-1} K_{B} \phi^{B}$$
(5)

- Check Surface $x^{B,u}$
- Downward Equivalent Surface y^{B,d}
- Upward Equivalent Surface y^{A,u}
- Downward Equivalent Density $\phi^{B,d}$
- Upward Equivalent Density $\phi^{A,u}$

$$\int_{\mathsf{Y}^{A,u}} K(\mathsf{x},\mathsf{y}) \phi^{A,u} d\mathsf{y} = \int_{\mathsf{Y}^{B,d}} K(\mathsf{x},\mathsf{y}) \phi^{B,d} d\mathsf{y}, \ \text{for any } \mathsf{x} \in \mathsf{x}^{B,d} \quad \text{(6)}$$

Kernel Independent FMM - Implementation Issues

- No need for new software implementation for large class of compatible Kernels
- Can built singly, extensible, and optimisable software implementation

Table of Contents

Fast Multipole Methods (FMMs)

PyExaFMM Motivation Goals Outcomes

Research Context

Motivation

- Python has emerged as a standard in scientific and data intensive computing
- Desire a high quality software implementation which is also highly performant and easily portable
- Tradeoff performance of compiled languages for engineering ease, and portability

Goals

- Create a performant 3D Python implementation of the KIFMM
- Write software in an extensible and well tested way
- Take advantage of distributed and parallel computing concepts as much as possible

Outcomes - Vectorised Data Structures

Outcomes - JIT Compilation

Outcomes - Multiprocessing

Outcomes - Low-Rank SVD Compression

Outcomes - Extensible Software Design

Table of Contents

Fast Multipole Methods (FMMs)

PyExaFMM

Research Context

Modern Architectures

Randomised SVD Compression

Modern Architectures

Randomised SVD Compression

References I

- L Greengard and V Rokhlin.
 A fast algorithm for particle simulations.
 Journal of Computational Physics, 73(2):325 348, 1987.
- [2] Denis Zorin Lexing Ying, George Biros.
 A kernel-independent adaptive fast multipole algorithm in two and three dimensions.

196(2):591-626, 2004.

