

Towards the Definition of a Language-Independent Mapping Template for Knowledge Graph Creation

Oscar Corcho, Ontology Engineering Group Universidad Politécnica de Madrid, Spain Ana Iglesias-Molina, David Chaves-Fraga and Freddy Priyatna, OEG - UPM

ocorcho@fi.upm.es

@ocorcho

19/11/2019

SciKnow 2019

Creating Knowledge Graphs?

Source Data

Knowledge Graph

People				
ID Name Birthdate Sport				
1	Emily Scarrat	19900208	2	
2	Jonah Lomu	19751118	2	

Sports			
ID Sport			
1 Ice Skating			
2 Rugby			

Creating Knowledge Graphs?

Source Data

Knowledge Graph

People					
ID Name Birthdate Sport					
1	Emily Scarrat	19900208	2		
2	Jonah Lomu	19751118	2		

Sports				
ID Sport				
1	1 Ice Skating			
2 Rugby				

Declarative Mappings

- Establish relationships between ontology and data
- Several languages:

Easy way to create and choose among them?

Knowledge Graph Creation

Mapping structure (RML)

```
<PERSON>
rml:logicalSource [
  rml:source "/home/user/data/people.csv";
  rml:referenceFormulation gl:CSV;
rr:subjectMap [
  rr:class ex:Person:
  rr:template "http://ex.com/Person/{ID}";
rr:predicateObjectMap [
  rr:predicateMap [rr:constant ex:name];
  rr:objectMap [ rml:reference "Name" ];
rr:predicateObjectMap [
  rr:predicateMap [rr:constant ex:birthdate];
  rr:objectMap [rml:reference "Birthdate"];
```

Triples Map

	people.csv				
ID	Name	Birthdate	SportID		
1	Emily Scarrat	19900208	2		
2	Jonah Lomu	19751118	2		

Mapping structure (RML)

```
<PERSON>
 rml:logicalSource [
  rml:source "/home/user/data/people.csv";
  rml:referenceFormulation ql:CSV;
 rr:subjectMap [
  rr:class ex:Person:
  rr:template "http://ex.com/Person/{ID}";
 rr:predicateObjectMap [
  rr:predicateMap [rr:constant ex:name];
  rr:objectMap [rml:reference "Name"];
 rr:predicateObjectMap [
  rr:predicateMap [rr:constant ex:birthdate];
  rr:objectMap [rml:reference "Birthdate"];
 rr:predicateObjectMap [
  rr:predicateMap [ rr:constant ex:sport ];
  rr:objectMap [ rr:parentTriplesMap < SPORT >;
    rr:joinCondition [ rr:child "sport id"; rr:parent "id"; ];
```

people.csv				
ID Name Birthdate Sport				
1	Emily Scarrat	19900208	2	
2	Jonah Lomu	19751118	2	

S	sports.csv			
ID Sport				
1 Ice Skating				
2	2 Rugby			

```
<SPORT>
rml:logicalSource [
    rml:source "/home/user/data/sports.csv";
    rml:referenceFormulation ql:CSV;
];
rr:subjectMap [
    rr:class ex:Sport;
    rr:template "http://ex.com/Sport/{sport}";
];
rr:predicateObjectMap [
    rr:predicateMap [ rr:constant ex:name ];
    rr:objectMap [ rml:reference "sport"];
];
```

Join condition

Mapping structure (RML)

Spreadsheets as mappings

- Gathering and declaration of mapping rules in spreadsheets
- Each sheet contains an essential element describing the data:
 - Prefixes
 - Source data
 - Subject
 - Predicate-Object
 - Functions

Spreadsheets as mappings

- Objective: language-independent, no need to know a mapping language
- Target user: Non mapping experts
- Advantages: Improves rule visualization, enables using functions of spreadsheets, guides the writing

Spreadsheet design

Prefix sheet

Prefix	URI
ex	http://ex.com/
sql	http://w3.org/ns/sql#

Subject sheet

ID	Class	URI
PERSON	ex:Person	http://ex.com/Person/{ID}
SPORT	ex:Sport	http://ex.com/Sport/{ID}

Source sheet

ID	Feature	Value
PERSON	source	data/people.csv
PERSON	format	CSV
SPORT	source	data/sports.csv
SPORT	format	CSV

Spreadsheet design

Predicate-Object sheet

Predicate	Object	DataType	ReferenceID	InnerRef	OurterRef	ID
ex:name	{name}	string				PERSON
ex:birthdate	{birthdate}	date				PERSON
ex:sport			SPORT	{SportID}	{ID}	PERSON
ex:name	{sport}	string				SPORT
ex:code	{ID}	integer				SPORT
ex:comment	<fun1></fun1>					SPORT

Function sheet

FunctionID	Function	Params	
<fun1></fun1>	sql:concat	{ID}, <fun2></fun2>	
<fun2></fun2>	sql:upper	{sport}	

Mapeathor

 Once the mapping rules are declared, they are translated into the most suitable language

https://github.com/oeg-upm/Mapeathor

Conclusions and Future Work

Conclusions:

- Spreadsheet design to capture scientific knowledge from experts improving KG creations
- Mapeathor: from spreadsheets to any mapping language
- Used in projects like H2020-Bimmer and Bio2RDF

Future work:

- Improve spreadsheet design towards actual language-independence
- Develop Mapeathor with the spreadsheet
- Widen the language translation

Towards the Definition of a Language-Independent Mapping Template for Knowledge Graph Creation

Oscar Corcho, Ontology Engineering Group Universidad Politécnica de Madrid, Spain Ana Iglesias-Molina, David Chaves-Fraga and Freddy Priyatna, OEG - UPM

