

EXERCICE D'ORAL

ELECTROMAGNETISME

-EXERCICE 27.6-

• ENONCE :

« Champ au voisinage de l'axe d'un solénoïde »

On considère une distribution de courants cylindriques autour d'un axe Oz telle que tout plan (P) contenant Oz est plan **d'antisymétrie** de cette distribution; en outre, on suppose **connu** le champ **sur l'axe** Oz : on peut prendre pour exemple la spire, le solénoïde de longueur finie, le cône etc ...

En notant $\vec{B}_0(z)$ le champ sur l'axe, déterminer le champ $\vec{B}(M)$ en un point M « proche » de l'axe.

Rq: on envisagera une approximation du 1^{er} ordre, puis du 2^{ème} ordre.

ELECTROMAGNETISME

EXERCICE D'ORAL

• CORRIGE:

- « Champ au voisinage de l'axe d'un solénoïde »
- Si tout plan (P) contenant Oz est plan d'antisymétrie, alors le champ sur l'axe est porté par Oz et donc : $\vec{B}_0(z) = B_0(z)\vec{e}_z$; par ailleurs, si l'on considère un point M n'appartenant pas à l'axe, le plan MOz est également d'antisymétrie $\Rightarrow \vec{B}(M) \in \text{ce plan} \Rightarrow \boxed{B_\theta(M) = 0}$ (coord.cylind.)
 - ♦ Nous allons donc développer les composantes du champ au voisinage de r=0 :

$$B_r(r,z) = B_r(0,z) + r \frac{\partial B_r}{\partial r} \bigg|_{r=0} + \frac{r^2}{2} \frac{\partial^2 B_r}{\partial r^2} \bigg|_{r=0} + o(r^2)$$

$$B_z(r,z) = B_z(0,z) + r \frac{\partial B_z}{\partial r} \bigg|_{r=0} + \frac{r^2}{2} \frac{\partial^2 B_z}{\partial r^2} \bigg|_{r=0} + o(r^2)$$

Nous savons déjà que $B_r(0,z)=0$ (sur l'axe, le champ n'a pas de composante radiale) ; de plus, en choisissant un point M' symétrique de M par rapport à un plan (P) contenant l'axe Oz, on a :

 $\vec{B}(M') = sym\{\vec{B}(M)\}/(P)$, puisque (P) est un plan d'antisymétrie des courants et \vec{B} un pseudo-vecteur. Dire que : $\vec{B}(M') = sym\{\vec{B}(M)\}/(P) \Leftrightarrow B_z(M') = B_z(M)$ et : $B_r(M') = -B_r(M)$ Enfin, passer de M à M' revient à changer r en -r, on peut donc en conclure :

 $B_z(r,z)$ = fonction PAIRE de r et : $B_r(r,z)$ = fonction IMPAIRE de r ; il vient alors :

$$B_r(r,z) = r \frac{\partial B_r}{\partial r} \bigg|_{r=0} + o(r^2) \quad \text{et:} \quad B_z(r,z) = B_0(z) + \frac{r^2}{2} \frac{\partial^2 B_z}{\partial r^2} \bigg|_{r=0} + o(r^2)$$

- lacktriangle Pour le calcul de $B_r(r,z)$, nous proposons deux méthodes :
- 1) L'opérateur « div » est donné en coordonnées cylindriques :

$$\begin{aligned} div\vec{B} = 0 \Rightarrow \frac{1}{r}\frac{\partial}{\partial r}(rB_r) + \frac{\partial B_z}{\partial z} &= 0 \Rightarrow \frac{1}{r}\frac{\partial}{\partial r}\{r\times r\frac{\partial B_r}{\partial r}\bigg|_{r=0}\} + \frac{\partial B_z}{\partial z} &= 0 \Rightarrow \frac{\partial B_r}{\partial r}\bigg|_{r=0} = -\frac{1}{2}\frac{\partial B_z}{\partial z} \;\;; \;\; \text{d'où} \; : \\ & B_r(r,z) = -\frac{r}{2}\frac{\partial B_z}{\partial z} &= -\frac{r}{2}\frac{dB_0(z)}{dz} \end{aligned} \tag{1}$$

(en négligeant le terme du 3^{ème} ordre en r obtenu si l'on tenait compte de $\frac{r^2}{2} \frac{\partial^2 B_z}{\partial r^2}$

Rq: il est très important ici de distinguer si un terme dépend ou non de telle ou telle variable; par exemple: $\frac{\partial B_r}{\partial r}\Big|_{r=0}$ n'est plus une fonction de $\mathbf{r} \Rightarrow \frac{\partial}{\partial r}(r^2\frac{\partial B_r}{\partial r}\Big|_{r=0}) = 2r\frac{\partial B_r}{\partial r}\Big|_{r=0}$

- 2) On ne connaît pas la divergence en coordonnées cylindriques : on traduit alors la nullité du flux de \vec{B} à travers une surface **fermée** judicieusement choisie. Cette dernière sera l'enveloppe d'un cylindre d'axe Oz, de rayon r et de longueur dz ; on peut remarquer que :
- la surface latérale du cylindre est orientée par un vecteur $d\vec{S}$ radial \Rightarrow pour calculer le flux $\iint_{surf.lat} \vec{B} \cdot d\vec{S}$, il suffira de considérer la composante B_r du champ.

ELECTROMAGNETISME

EXERCICE D'ORAL

• les surfaces de base du cylindre sont orientées par \vec{e}_z en z+dz et par $(-\vec{e}_z)$ en z \Rightarrow pour calculer le flux à travers ces surfaces, il suffira de prendre en compte la composante B_z ; d'où :

$$\lim[r\frac{B_z(r,z)\big|_{z+dz}-B_z(r,z)\big|_z}{dz}\,]\,=r\frac{\partial B_z}{\partial z}=-2B_r(r,z)=r\frac{dB_0(z)}{dz}\,\text{, toujours en négligeant le terme du}$$

$$3^{
m eme}$$
 ordre dû à $\left. rac{r^2}{2} rac{\partial^2 B_z}{\partial r^2} \right|_{r=0} \Rightarrow$ on retrouve bien : $B_r(r,z) = -rac{r}{2} rac{dB_0(z)}{dz}$

• Si l'on travaille au second ordre en r, il faut calculer $\frac{r^2}{2} \frac{\partial^2 B_z}{\partial r^2}\Big|_{r=0}$; dans le **vide** :

$$\overrightarrow{rotB} = \overrightarrow{0} \Rightarrow \text{ pour la 2ème composante: } \frac{\partial B_r}{\partial z} = \frac{\partial B_z}{\partial r} = -\frac{r}{2} \frac{d^2 B_0(z)}{dz^2} \Rightarrow \frac{\partial^2 B_z}{\partial r^2} = -\frac{1}{2} \frac{d^2 B_0(z)}{dz^2}$$

$$\Rightarrow B_z(r, z) = B_0(z) - \frac{r^2}{4} \frac{d^2 B_0(z)}{dz^2} \qquad (2)$$

Page 3 Christian MAIRE © EduKlub S.A.