3.C EIGENVALUES

Note Title 7/7/2013

Let A be a square matrix, say nxn. A nonzero vector v is an eigenvector of A, If for some scalar)

 $A_{V} = \lambda^{V}$

The scalar a (which may be zero) is called an eigenvalue of A corresponding to (or associated with) the eigenvector v.

Note: If v is an Evê of A, then v and Av are on the same line through the origin.

Geometric Example: Find the EVAs and EVES of A=[10] geometrically.
Sol" Av=[10][x]=[x]. This is reflection about the line y=x. Av
The only vectors that remain on the 7
The only vectors that remain on the Observe: same line after reflection are the vectors along the lines y=x and y=-x
rectors along the lines y=x and y=-x
N
· Along y=x we have Av=1v, so vis _ v=/x =v=s
Along y=x we have Av=1v, so v is at EVE with EVA 1=1.
Along $y=-x$ we have $Av=(1)v$, so v is $y=x$ (except the origin) an EVE with EVA $\lambda=-1$.
The with EVA $y=-1$. Yes, $y=-x$ (except the origin
Eres with 1=-1
yex, of (except the origin
1

Computation of EVAS + EVES

Theorem: Let A be a square matrix.

1. v is an EVE of A with EVA > <=> v is a nontrivial solution of the homogeneous linear system

 $(A-\lambda I)v=0$ $(A-\lambda I)$: Characteristic

Matrix)

2. A scalar of 1s an EVA of A

det (A-AI) = 0 (Characteristic Equation)
(characteristic polynomial)

Note: If A is size nxn, then det(A-xI) is a polynomial in A of degree n. So the EVAs are the roots of the char. poly. If x has multiplicity k as a root we say that the EVA x has alsobraic multiplicity k.

R [™]
Remark The solutions x of Ax=0 is a (vector) subspace of R" (Pf x1, x2 solutions This is not true for Ax=b(40)!
This is not true for $Ax = b(40)!$
7 A(x1+x2)=0
Justification of the Theorem 1. V EVE of A. So, Av= av for some scalar a Likewik, with CX
1. V EVE of A. So Av= av for some scalar a Likewik, with CX
#
$\iff A \vee = \lambda \hat{1} \vee \longleftarrow$
⇔ Av-λIv=o ←
$(A-\lambda I)v=0$
Aν-λΙν=ο (A-λΙ)ν=υ (A-λΙ)ν=ο wis nontrivial solution of (A-λΙ)ν=ο
2. (A-xI) v=0 has nontrivial solutions (det(A-xI)=0
Note: Since the EVE' are solutions of the hom, sys. (A-xI) x = 0 if we add o by the remark above we get a subspace of IR" called the eigenspace Ex) of x. Its dimension is the geometric multiplicity of 1.
by the rowark above we get a subspace of 18" called
the eigenspace E, of a. It's dimension is the geometric multiplicity of 1

Examples
In all examples below compute the EVAs, EVEs, the alg./goon. multiplities and find bases for the eigenspaces of the given matrix A.

$$\lambda_{2}=5 \qquad \left(A-5T|0\right) = \begin{bmatrix} -4 & -1 & -1 & 0 \\ -2 & -5 & 4 & 0 \\ -2 & 6 & -7 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & V_{2} & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 Solution
$$\begin{bmatrix} -V_{2} \\ -1 \\ -2 & 6 \end{bmatrix} = \begin{bmatrix} -1 & -1 & 0 \\ -2 & 6 & -7 & 0 \end{bmatrix} \sim \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 if we don't like fraction.

• Basis
$$\begin{bmatrix} -1 & 0 & 0 & 0 \\ -2 & 6 & -7 & 0 \end{bmatrix} \sim \begin{bmatrix} -V_{2} \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

· 1225 has alg. mult. I and geom mult. I.

$$\frac{\lambda_3 = -6}{\lambda_3} = -6 \cdot \text{Likewise we get } E_{-6} = \left\{ \begin{bmatrix} \frac{7}{20} \\ -13\frac{7}{20} \end{bmatrix}, r \in \mathbb{R} \right\} = \text{Span} \left\{ \frac{1}{20} \right\} = \text{Span} \left\{ \frac{1}{20} \right\}$$

$$\frac{\lambda_3}{\lambda_3} = -6 \cdot \text{Likewise we get } E_{-6} = \left\{ \begin{bmatrix} \frac{7}{20} \\ -13\frac{7}{20} \end{bmatrix}, r \in \mathbb{R} \right\} = \text{Span} \left\{ \frac{1}{20} \right\}$$

· 13-6 has alg mult 1 and geom. mult 1,

Example 2:
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} = -X(1-\lambda)^{2} = 0 \Rightarrow \lambda_{1} = 0 \\ \lambda_{2} = \lambda_{3} = 1 \end{bmatrix} \text{ EVAP}$$

$$\lambda_{1} = 0 \quad \begin{bmatrix} A - 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \text{ Solition } \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ basis}$$

$$\lambda_{1} = 0 \quad \text{has alg. mult 1}$$

$$\lambda_{2} = \lambda_{3} = 1 \quad \begin{bmatrix} A - 1 & 1 & 0 & 1 \\ 3 & 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0$$