然五周作业

1. 设AEMn(C). 证明:

(1) $C^n \ge C(A) \ge C(A^2) \ge \cdots \ge C(A^k) \ge \cdots$

($\Xi: C(A) = \{A\vec{x} \mid \vec{x} \in C^n\}$)

(2) 存在 $k_0 \ge 1$, $C(A^{k_0}) = C(A^{k_0+1})$

(提示: 类似于广义特征子空间的 八分,又的刻刻)

2. 设工: $C^n \rightarrow C^n$ 定义为 $T(\vec{\chi}) = A\vec{\chi}$, 令 $G_{\lambda_0}(T)$

是下关于入。的广义特征子空间。证明:

(1) 若A可逆,则 $G_{\lambda_o}(T) = G_{\lambda_o}(T')$

(2)设从(T)是关于入的特征子空间,若对于任意特征值入, G、(T)=以(T), 则下可对角化.

(3)应用(2)证明若凡=A,则下环摘化.

(注: 丁可对角化⇔存在 C"-组基, 丁关于基矩阵 是对角阵 ←⇒ A 相似于对角阵) 3. 设 $A \in M_n(C)$, A的所有特征值为O, MA=0. (注: 逆命题也对).

4. 说 $A \in M_n(C)$, 且 $\exists k > 1$, $A^k = 0$, 证明: 对于 $\forall l > 1$, $tr(A^l) = 0$.

(注:逆命题也对,证明较难).

5.设A, B是3阶方阵, A³=B³=Q₃,但A²+Q₃, B²+O_{3×3},问:A, B是否相似?

(提示: $A^3 = 0$, $A^2 = 0$, 则A相似于($^{\circ}$), 使用循环基).

6. 设 $A \in M_n(\mathbb{C})$, 存在K > 1, $A^{K-1} \neq O_{n \times n}$, $A^{K} = O_{n \times n}$. 证明: $(I_n A)$ 可逆 并求 $I_n - A$ 的逆和 $det(I_n - A)$.

7. $i = 0, A^{n-1} = 0$

证明: 不存在BEMn(C), $B^2 = A$.

(提示: A,B均幂零, Aⁿ⁻¹ + O ⇒ r(A) = n-1, dim N(A)=1).