Programming Languages and Computation

Week 8: Reasoning with Derivations

1 Semantic Equivalence

** 1. Suppose that $S_1, S_2, S_3 \in \mathcal{S}$ are statements. Prove that the statement $\{S_1; S_2\}$; S_3 is semantically equivalent to the statement S_1 ; $\{S_2; S_3\}$. That is, prove that for, any two states $\sigma, \sigma' \in \mathsf{State}$, $\{S_1; S_2\}$; $S_3, \sigma \Downarrow \sigma'$ if, and only if, S_1 ; $\{S_2; S_3\}$, $\sigma \Downarrow \sigma'$.

Solution

• First, we will prove the forward direction and assume that $\{S_1; S_2\}$; S_3 , $\sigma \downarrow \sigma'$. By inversion, we can see that this judgement must of come from a derivation of the form:

$$\frac{S_1, \sigma \Downarrow \sigma_1 \quad S_2, \sigma_1 \Downarrow \sigma_2}{\{S_1; S_2\}, \sigma \Downarrow \sigma_2 \quad S_3, \sigma_2 \Downarrow \sigma'}$$
$$\{S_1; S_2\}; S_3, \sigma \Downarrow \sigma'$$

for some unknown σ_1 , $\sigma_2 \in State$.

Using this, we may construct the derivation:

$$\underbrace{\frac{S_2, \sigma_1 \Downarrow \sigma_2 \quad S_3, \sigma_2 \Downarrow \sigma'}{\{S_2; S_3\}, \sigma_1 \Downarrow \sigma'}}_{S_1; \{S_2; S_3\}, \sigma \Downarrow \sigma'}$$

and thus conclude that S_1 ; $\{S_2, S_3\}$, $\sigma \downarrow \sigma'$ as required.

• In the converse direction, we assume that S_1 ; $\{S_2; S_3\}$, $\sigma \downarrow \sigma'$ holds for some σ and σ' and may again apply the inversion principle to see that there exists a derivation of the form:

$$\frac{S_2, \sigma_1 \Downarrow \sigma_2 \quad S_3, \sigma_2 \Downarrow \sigma'}{S_1, \sigma \Downarrow \sigma_1} \frac{S_2, S_3\}, \sigma_1 \Downarrow \sigma'}{S_1; \{S_2; S_3\}, \sigma \Downarrow \sigma'}$$

for some σ_1 and σ_2 .

Using this, we may construct the derivation:

$$\frac{S_{1}, \sigma \Downarrow \sigma_{1} \quad S_{2}, \sigma_{1} \Downarrow \sigma_{2}}{\{S_{1}; S_{2}\}, \sigma \Downarrow \sigma_{2} \qquad S_{3}, \sigma_{2} \Downarrow \sigma'}$$
$$\{S_{1}; S_{2}\}; S_{3}, \sigma \Downarrow \sigma'$$

and thus conclude that $\{S_1; S_2\}; S_3, \sigma \downarrow \sigma'$ as required.

** 2.

- (a) Suppose that $e \in \mathcal{A}$ is an arithmetic expression that is semantically equivalent to the arithmetic expression $x \in \mathcal{A}$. Prove that the statement $x \leftarrow e$ is semantically equivalent to the statement skip.
- (b) Find an expression $e \in A$ that is *not* semantically equivalent to x but where the statement $y \leftarrow 0$; $x \leftarrow e$ is semantically equivalent to $y \leftarrow 0$.

Solution

- (a) We have been given that $[e]_A(\sigma) = \sigma(x)$ for any state $\sigma \in \text{State}$. Now let us prove that $x \leftarrow e$ is semantically equivalent to skip.
 - First, suppose $x \leftarrow e, \sigma \Downarrow \sigma'$. By inversion, we have that $\sigma' = \sigma[x \mapsto \llbracket e \rrbracket_{\mathcal{A}}(\sigma)]$. However, our assumption tells us that $\llbracket e \rrbracket_{\mathcal{A}}(\sigma) = \sigma(x)$. Therefore, $\sigma' = \sigma[x \mapsto \sigma(x)] = \sigma$. We thus may conclude that skip, $\sigma \Downarrow \sigma'$ as required.
 - In the converse direction, suppose skip, $\sigma \Downarrow \sigma'$. We know that $\sigma = \sigma'$ by inversion. Therefore, we must show that $x \leftarrow e$, $\sigma \Downarrow \sigma$. By definition, we have that $x \leftarrow e$, $\sigma \Downarrow \sigma \llbracket e \rrbracket_{\mathcal{A}}(\sigma) \rrbracket$. However, as in the previous case, our assumption about the equivalence of e and x tells us that $\sigma \llbracket x \mapsto \llbracket e \rrbracket_{\mathcal{A}}(\sigma) \rrbracket = \sigma$. And thus $x \leftarrow e$, $\sigma \Downarrow \sigma$ as required.
- (b) In this question, our expression e cannot be semantically equivalent to x, i.e. differs in some state, but must evaluate to x in any state where $y \mapsto 0$. Therefore, we can take x + y as the expression.

The statements $y \leftarrow 0$, $x \leftarrow x + y$ is clearly equivalent to $y \leftarrow 0$ but x + y is not equivalent to x.

** 3.

- (a) Prove that the statements if e then S_1 ; S_3 else S_2 ; S_3 and the statement {if e then S_1 else S_2 }; S_3 are semantically equivalent for any Boolean expression $e \in \mathcal{B}$ and statements S_1 , S_2 , $S_3 \in \mathcal{S}$.
- (b) Find an instance where a statement of the form if e then S_1 ; S_2 else S_1 ; S_3 and the related statement S_1 ; {if e then S_2 else S_3 } are not semantically equivalent for some Boolean expression $e \in \mathcal{B}$ and statements S_1 , S_2 , $S_3 \in \mathcal{S}$.

Solution

- (a) Let $e \in \mathcal{B}$ be a Boolean expression and let $S_1, S_2, S_3 \in \mathcal{S}$ be statements.
 - Suppose that if e then S_1 ; S_3 else S_2 ; S_3 , $\sigma \Downarrow \sigma'$ for some states σ , $\sigma' \in \mathsf{State}$. By inversion, there are two cases we must consider:
 - Suppose $\llbracket e \rrbracket_{\mathcal{B}}(\sigma) = \top$. In this case, we have that S_1 ; S_3 , $\sigma \Downarrow \sigma'$. By inversion again, we can see that S_1 , $\sigma \Downarrow \sigma_1$ and S_3 , $\sigma_1 \Downarrow \sigma'$ for some intermediate state $\sigma_1 \in \mathsf{State}$.

In this case, we have the following derivation:

$$\frac{S_1, \, \sigma \Downarrow \sigma_1}{\text{if e then S_1 else S_2, $\sigma \Downarrow \sigma_1$}} \quad S_3, \, \sigma_1 \Downarrow \sigma'}{\{\text{if e then S_1 else S_2}\}; \, S_3, \, \sigma \Downarrow \sigma'}$$

- The case where $[e]_{\mathcal{B}}(\sigma) = \bot$ is analogous.
- Now suppose that {if e then S_1 else S_2 }; S_3 , $\sigma \Downarrow \sigma'$. By inversion, we have that if e then S_1 else S_2 , $\sigma \Downarrow \sigma_1$ and S_3 , $\sigma_1 \Downarrow \sigma'$ for some intermediate state $\sigma_1 \in \mathsf{State}$. Then we have two cases to consider:
 - If $\llbracket e \rrbracket_{\mathcal{B}}(\sigma) = \top$, then we have that S_1 , $\sigma \Downarrow \sigma_1$ by inversion. In this case, we have the following derivation:

$$\frac{S_1, \sigma \Downarrow \sigma_1 \quad S_3, \sigma_1 \Downarrow \sigma'}{S_1; S_3, \sigma \Downarrow \sigma'}$$
if e then $S_1; S_3$ else $S_2; S_3, \sigma \Downarrow \sigma'$

- The case where $[e]_{\mathcal{B}}(\sigma) = \bot$ is analogous.
- (b) An example can be constructed by considering some statements S_2 and S_3 are not semantically equivalent. For example, $y \leftarrow 2$ and $y \leftarrow 3$. Then if we take S_1 to be $x \leftarrow 0$ and consider the branch expression $1 \le x$. Then we have that S_1 ; {if e then S_2 else S_3 }, $[x \mapsto 1] \Downarrow [x \mapsto 1, y \mapsto 3]$ whereas if e then S_1 ; S_2 else S_3 ; S_3 , $[x \mapsto 1, y \mapsto 2]$. As statements are functional, this is sufficient to show that the two statements are not equivalent.
- *** 4. Suppose that $e_1 \in \mathcal{A}$ and $e_2 \in \mathcal{A}$ are arithmetic expressions such that $x \notin \mathsf{FV}(e_2)$ and $y \notin \mathsf{FV}(e_1)$. Prove that the statement $x \leftarrow e_1$; $y \leftarrow e_2$ and statement $y \leftarrow e_2$; $x \leftarrow e_1$ are semantically equivalent. You may use the following result about the denotation of arithmetic expressions:

if
$$\forall x \in \mathsf{FV}(e)$$
. $\sigma(x) = \sigma'(x)$ then $[e]_{\mathcal{A}}(\sigma) = [e]_{\mathcal{A}}(\sigma')$

Solution

Let $e_1 \in \mathcal{A}$ and $e_2 \in \mathcal{A}$ be arithmetic expressions such that $x \notin \mathsf{FV}(e_2)$ and $y \notin \mathsf{FV}(e_1)$.

• Let us suppose that $x \leftarrow e_1$; $y \leftarrow e_2$, $\sigma \Downarrow \sigma'$ for some states σ , $\sigma' \in State$. By inversion, we can see that this judgement is derived from a derivation of the form:

$$\frac{x \leftarrow e_1, \sigma \Downarrow \sigma[x \mapsto \llbracket e_1 \rrbracket_{\mathcal{A}}(\sigma)]}{x \leftarrow e_1, \sigma \Downarrow \sigma'} \qquad y \leftarrow e_2, \sigma[x \mapsto \llbracket e_1 \rrbracket_{\mathcal{A}}(\sigma)] \Downarrow \sigma'}$$

Let us refer to $\sigma[x \mapsto \llbracket e_1 \rrbracket_{\mathcal{A}}(\sigma)]$ as σ_1 . We have that $\sigma' = \sigma_1[y \mapsto \llbracket e_2 \rrbracket_{\mathcal{A}}(\sigma_1)]$.

By assumption, $x \notin FV(e_2)$. Therefore, $\llbracket e_2 \rrbracket_{\mathcal{A}}(\sigma_1) = \llbracket e_2 \rrbracket_{\mathcal{A}}(\sigma)$ as σ and σ_1 assign the same value to all variables other than x. We thus have that $\sigma' = \sigma[x \mapsto \llbracket e_1 \rrbracket_{\mathcal{A}}(\sigma), y \mapsto \llbracket e_2 \rrbracket_{\mathcal{A}}(\sigma)]$. This shows that the assignment to y does not depend on the assignment to x.

Let us refer to $\sigma[y \mapsto \llbracket e_1 \rrbracket_{\mathcal{A}}(\sigma)]$ as σ_2 . Now recall that $y \notin \mathsf{FV}(e_1)$. Therefore, $\llbracket e_1 \rrbracket_{\mathcal{A}}(\sigma) = \llbracket e_1 \rrbracket_{\mathcal{A}}(\sigma_2)$. It follows that $\sigma' = \sigma_2[x \mapsto \llbracket e_1 \rrbracket_{\mathcal{A}}(\sigma_2)]$ and we may construct the following derivation accordingly:

$$y \leftarrow e_2, \sigma \Downarrow \sigma[y \mapsto \llbracket e_2 \rrbracket_{\mathcal{A}}(\sigma)] \quad x \leftarrow e_1, \sigma[y \mapsto \llbracket e_2 \rrbracket_{\mathcal{A}}(\sigma)] \Downarrow \sigma'
y \leftarrow e_2; x \leftarrow e_1, \sigma \Downarrow \sigma'$$

Now let us consider the converse direction and suppose that y ← e₂; x ← e₁, σ ↓ σ' for some states σ, σ' ∈ State. By inversion, we can see that this judgement is derived from a derivation of the form:

Let us refer to $\sigma[y \mapsto \llbracket e_2 \rrbracket_{\mathcal{A}}(\sigma)]$ as σ_2 . We have that $\sigma' = \sigma_2[x \mapsto \llbracket e_1 \rrbracket_{\mathcal{A}}(\sigma_2)]$. As before, $\llbracket e_1 \rrbracket_{\mathcal{A}}(\sigma_2) = \llbracket e_1 \rrbracket_{\mathcal{A}}(\sigma)$ as $y \notin \mathsf{FV}(e_1)$. Let us write $\sigma[x \mapsto \llbracket e_2 \rrbracket_{\mathcal{A}}(\sigma)]$ as σ_1 . Additionally, as $x \notin \mathsf{FV}(e_2)$, we have that $\llbracket e_2 \rrbracket_{\mathcal{A}}(\sigma) = \llbracket e_2 \rrbracket_{\mathcal{A}}(\sigma_1)$. Therefore, $\sigma' = \sigma_1[y \mapsto \llbracket e_2 \rrbracket_{\mathcal{A}}(\sigma_1)]$ giving us the following derivation:

$$y \leftarrow e_2, \sigma \Downarrow \sigma[y \mapsto \llbracket e_2 \rrbracket_{\mathcal{A}}(\sigma)] \qquad x \leftarrow e_1, \sigma[y \mapsto \llbracket e_2 \rrbracket_{\mathcal{A}}(\sigma)] \Downarrow \sigma'
y \leftarrow e_2; x \leftarrow e_1, \sigma \Downarrow \sigma'$$

** 5. Let us suppose we introduce a new language construct so that statements are defined by the following grammar:

$$S \rightarrow \text{skip} \mid x \leftarrow A \mid S_1; S_2 \mid \text{if } e \text{ then } S \text{ else} \mid \cdots \mid \text{if } e \text{ then } S$$

The operational behaviour of the new construct is given by the inference rules:

$$\frac{S, \sigma \Downarrow \sigma'}{\text{if } e \text{ then } S, \sigma \Downarrow \sigma'} \llbracket e \rrbracket_{\mathcal{B}}(\sigma) = \top \quad \frac{}{\text{if } e \text{ then } S, \sigma \Downarrow \sigma} \llbracket e \rrbracket_{\mathcal{B}}(\sigma) = \bot$$

Show that the statement if e then S is semantically equivalent to the statement if e then S else skip for any statement $S \in S$ and Boolean expression $e \in B$.

Solution

- Let us suppose that if *e* then *S*, $\sigma \downarrow \sigma'$. By inversion, there are two cases to consider:
 - If $\llbracket e \rrbracket_{\mathcal{B}}(\sigma) = \top$ and $S, \sigma \Downarrow \sigma'$, then we have the following derivation:

$$\frac{S, \sigma \Downarrow \sigma'}{\text{if } e \text{ then } S \text{ else skip, } \sigma \Downarrow \sigma'}$$

as required.

- Otherwise, if $[e]_{\mathcal{B}}(\sigma) = \bot$, then $\sigma = \sigma'$ and we have the following derivation:

$$\frac{}{\mathsf{skip},\,\sigma \Downarrow \sigma}$$
if e then S else $\mathsf{skip},\,\sigma \Downarrow \sigma$

- Now let us suppose that if e then S, skip, $\sigma \Downarrow \sigma'$. By inversion, there are two cases to consider:
 - If $\llbracket e \rrbracket_{\mathcal{B}}(\sigma) = \top$ and $S, \sigma \Downarrow \sigma'$, then we have the following derivation:

$$\frac{S, \sigma \downarrow \sigma'}{\text{if } e \text{ then } S, \sigma \downarrow \sigma'}$$

as required.

- Otherwise, if $\llbracket e \rrbracket_{\mathcal{B}}(\sigma) = \bot$, then ski, $\sigma \Downarrow \sigma'$. By inversion, this implies that $\sigma = \sigma'$ and we have the following derivation:

if e then
$$S, \sigma \downarrow \sigma$$

as required.

2 Proving Termination

** 6. Consider the following While program *P*:

$$x \leftarrow y;$$

while $y + 1 \le x * x do$
 $x \leftarrow x - 1;$

- (a) Calculate the final state when executed in the initial states $[y \mapsto 4]$ and $[y \mapsto 5]$.
- (b) What function does this program compute?
- (c) Prove by induction on $\sigma(x)$ that this program terminates in any state $\sigma \in \mathsf{State}$ where $\sigma(y) \geq 0$. That is, prove that, for any state $\sigma \in \mathsf{State}$ such that $\sigma(y) \geq 0$, there exists a state $\sigma' \in \mathsf{State}$ such that $P, \sigma \downarrow \sigma'$ where P is the above program.

Solution

- (a) The final states are $[y \mapsto 4, x \mapsto 2]$ and $[y \mapsto 5, x \mapsto 2]$.
- (b) The program computes the function $\sigma \mapsto \sigma[x \mapsto \lfloor \sqrt{\sigma(x)} \rfloor]$ where $\lfloor \cdot \rfloor$ is the "floor" function, i.e. the greatest integer less than or equal to the given value.
- (c) We shall prove by this program terminates. First, the composition $x \leftarrow y$; L terminates in an initial state $\sigma(y) \ge 0$ just if L terminates in the initial state $\sigma(x) \mapsto \sigma(y)$. We shall prove that the loop L in fact terminates in any state where $\sigma(x) \ge 0$, which is satisfied by the state $\sigma(x) \mapsto \sigma(y)$ as we know that $\sigma(y) \ge 0$.
 - In the base case, we have that $[y+1 \le x * x]_{\mathcal{B}}(\sigma)$ is false as $\sigma(y)+1>0$. Therefore, the loop is not executed and the program terminates in the final state σ .
 - Let us suppose that $\sigma(x) = n + 1$ for some $n \ge 0$ and that the loop terminates in any state $\sigma' \in \mathsf{State}$ where $\sigma'(x) = n$ this is our induction hypothesis. We must find a state σ_F such that L, $\sigma \Downarrow \sigma_F$. Let us consider whether $[\![y+1 \le x*x]\!]_{\mathcal{B}}(\sigma)$ is true or false:
 - If it is false, then the loop is not executed we can take σ_F to be σ .
 - If it is true, then we must complete the following derivation:

$$\frac{\vdots}{x \leftarrow x - 1, \, \sigma \Downarrow \sigma[x \mapsto \sigma(x) - 1]} \quad L, \, \sigma[x \mapsto \sigma(x) - 1], \, \Downarrow \sigma_F$$

$$L, \, \sigma \Downarrow \sigma_F$$

for some σ_F .

In this case, we have that $\sigma(x) - 1$ is n and, therefore, we can use the induction hypothesis to conclude that there does indeed exist such a σ_F .

*** 7. Recall the strong induction principle from the previous sheet:

In order to prove $\forall n \in \mathbb{N}. P(n)$, prove:

- 1. P(0);
- 2. And, P(n+1) under the assumption that P(m) holds for all $m \le n$.

Using the strong induction principle prove the following program terminates:

while
$$1 \le x$$
 do $x \leftarrow x - 2$

when executed in any state where $\sigma(x) \ge 0$.

Solution

Let *P* be the program specified in the question. We will show that, for all $\sigma \in \mathsf{State}$ with $\sigma(x) \ge 0$, that there exists some state σ' such that $P, \sigma \Downarrow \sigma'$ by strong induction on $\sigma(x)$:

- In the base case, we have that $\sigma(x) = 0$ and, therefore, $[1 \le x]_{\mathcal{B}} = \bot$. It follows that $P, \sigma \Downarrow \sigma$ and thus the program can be seen to terminate.
- Suppose, on the other hand, that $\sigma(x) = n + 1$ for some $n \ge 0$. In this case we may assume the induction hypothesis that for any state σ' such that $n \ge \sigma'(x) \ge 0$, there exists a final state σ'' such that $P, \sigma' \downarrow \sigma''$.

First, observe that $x \leftarrow x-2$, $\sigma \Downarrow \sigma[x \mapsto \sigma(x)-2] = \sigma[x \mapsto n-1]$. Therefore, to show that P terminates in the initial state σ it suffices to show that P terminates in the initial state $\sigma[x \mapsto \sigma(x)-2]$ as the following derivation demonstrates:

$$\frac{x \leftarrow x - 2, \, \sigma \Downarrow \sigma[x \mapsto n - 1] \quad P, \, \sigma[x \mapsto n - 1] \Downarrow \sigma'}{P, \, \sigma \Downarrow \sigma'}$$

Now there are two cases to consider:

- Either n-1 < 0, in which case we have that P, $\sigma[x \mapsto n-1] \Downarrow \sigma[x \mapsto n-1]$.
- Otherwise, $n-1 \ge 0$, in which case we may apply the induction hypothesis that states that there exists a final state σ'' such that $P, \sigma' \Downarrow \sigma''$ for any σ' such that $n \ge \sigma'(x) \ge 0$. In our case, we may take σ' to be $\sigma[x \mapsto n-1]$, and we clearly have that $n \ge \sigma'(x) \ge 0$. Therefore, $P, \sigma' \Downarrow \sigma''$ for some σ'' and moreover $P, \sigma \Downarrow \sigma''$ as required.

*** 8. Consider the following While program:

while
$$1 \le x + y$$
 do
if $x \le y$
then $y \leftarrow y - 1$
else $x \leftarrow x - 1$

We wish to prove that this program will terminate.

Proof by induction need not be applied to a particular variable, but can generalised to induction over an arbitrary function $f: \mathsf{State} \to \mathbb{N}$ of the state. In such a proof, the base case consider any

state where $f(\sigma) = 0$ and the inductive case consider any state where $f(\sigma) = n + 1$ under the assumption that the property holds of $f(\sigma) = n$.

Using this principle, prove that the program terminates when executed in any state $\sigma \in \mathsf{State}$ such that $\sigma(x)$, $\sigma(y) \ge 0$ by induction over $\sigma(x) + \sigma(y)$.

Solution

We shall prove that for all state $\sigma \in \mathsf{State}$ where $\sigma(x) + \sigma(y) \ge 0$ there exists some state σ' such that $P, \sigma \Downarrow \sigma'$ where P is the program states in the question by induction over $\sigma(x) + \sigma(y)$:

• In the base case when $\sigma(x) + \sigma(y) = 0$, the loop is not executed as $[1 \le x + y]_{\mathcal{B}}(\sigma) = \bot$. Therefore, we have the derivation:

$$P, \sigma \downarrow \sigma$$

demonstrating that the program terminates.

• Otherwise, let us suppose that $\sigma(x) + \sigma(y) = n + 1$ for some $n \ge 0$. The induction hypothesis tells us that, for any state σ' such that $\sigma'(x) + \sigma'(y) = n$, there exists some state σ'' such that $P, \sigma' \Downarrow \sigma''$.

In this case, $[1 \le x + y]_{\mathcal{B}}(\sigma) = \top$ therefore the loop is executed at least once. There are two cases to consider:

- Suppose that $[x \le y]_{\mathcal{B}}(\sigma) = \top$. In this case, to show that there exists some final state σ' such that $P, \sigma \Downarrow \sigma'$ it suffices to show that there exists some state σ'' such that $P, \sigma[y \mapsto \sigma(y) - 1] \Downarrow \sigma''$ as the following derivation demonstrates:

Consider the value of the expression x+y under the intermediate state $\sigma[y \mapsto \sigma(y)-1]$. We have that $\sigma[y \mapsto \sigma(y)-1](x) + \sigma[y \mapsto \sigma(y)-1](y) = \sigma(x) + \sigma(y) - 1 = n$. Therefore, the induction hypothesis tells us that there does indeed exist some state σ'' such that $P, \sigma[y \mapsto \sigma(y)-1] \Downarrow \sigma''$ as required.

- The case where $\llbracket x \le y \rrbracket_{\mathcal{B}}(\sigma) = \bot$ is analogous.

3 Induction over Derivation

- ** 9. Consider the non-terminating program "while true do skip".
 - (a) Re-formulate the statement $\forall \sigma \in \mathsf{State}. \not\exists \sigma' \in \mathsf{State}. \text{ while true do skip, } \sigma \not\downarrow \sigma' \text{ (i.e. the program doesn't terminate in any state) as a statement of the form <math>\forall (S, \sigma, \sigma') \in \bigcup P(S, \sigma, \sigma')$ for some predicate P.
 - (b) Using the formulation constructed in part 1, prove that the program does not terminate by structural induction. You may omit cases where the $P(S, \sigma, \sigma')$ is trivially false.

- (a) The statement that we will prove is: $\forall (S, \sigma, \sigma') \in Downarrow$. if S = while true do skip, then \bot by structural induction on \Downarrow .
- (b) As our predicate *P* assumes that the statement is *S* is of the form while true do skip each case of the induction principle is trivial exception when considering an inference of the form:

$$\frac{\text{skip, } \sigma \Downarrow \sigma}{\text{while true do skip, } \sigma \Downarrow \sigma'}$$
 while true do skip, $\sigma \Downarrow \sigma'$

However, in this case, the induction hypothesis tells us that the premise while true do skip, $\sigma \Downarrow \sigma'$ must in fact be false. As there are no other ways to derive the judgement while true do skip, $\sigma \Downarrow \sigma'$ we have shown that it is false.

** 10. Consider the loop *L* from Question 6:

while
$$y + 1 \le x * x do$$

 $x \leftarrow x - 1$;

- (a) Prove that, if $L, \sigma \Downarrow \sigma'$, then $\sigma'(x)^2 \leq \sigma(y)$ for any states $\sigma, \sigma' \in \mathsf{State}$ by structural induction over the derivation.
- (b) Using this fact, informally argue that if $x \leftarrow y$, $L, \sigma \Downarrow \sigma'$ then $\sigma'(x)$ is the *largest* integer such that $\sigma'(x)^2 \leq \sigma(y)$.

Solution

- (a) Suppose that $L, \sigma \Downarrow \sigma'$ for some states $\sigma, \sigma' \in \mathsf{State}$. Let us proceed by structural induction on the derivation of $L, \sigma \Downarrow \sigma'$. To be precise, we are performing structural induction with the predicate $P(S, \sigma, \sigma') := S = L \Rightarrow \sigma'(x)^2 \leq \sigma(y)$. However, as the program L is a while statement, there are only two cases to consider:
 - Suppose $[y+1 \le x * x]_{\mathcal{B}}(\sigma) = \bot$. In particular, $\sigma(y) \ge \sigma(x)^2$ In this case, we have that $\sigma' = \sigma$. Therefore, $\sigma'(x)^2 = \sigma(x)^2 \le \sigma(y)$ as required.
 - Otherwise, suppose that $[y+1 \le x * x]_{\mathcal{B}}(\sigma) = \top$ and we have a derivation of the form:

$$\frac{x \leftarrow x - 1, \, \sigma \Downarrow \sigma[x \mapsto \sigma(x) - 1]}{L, \, \sigma[x \mapsto \sigma(x) - 1], \, \Downarrow \sigma'}$$

$$L, \, \sigma \Downarrow \sigma'$$

Our induction hypothesis applies to the second premise and tells us that $\sigma'(x)^2 \le \sigma[x \mapsto \sigma(x) - 1](y)$. Note that there is no induction hypothesis regarding the first premise as it is not of the form $L, \sigma \Downarrow \sigma'$. However, we have that $\sigma'(x)^2 \le \sigma[x \mapsto \sigma(x) - 1](y) = \sigma(y)$ as required.

- (b) To show that if $x \leftarrow y$, $L, \sigma \Downarrow \sigma'$ then $\sigma'(x)$ is the largest integer n such that $n^2 \leq \sigma(y)$ we must show that:
 - If $x \leftarrow y$, $L, \sigma \Downarrow \sigma'$ then $\sigma'(x)^2 \le \sigma(y)$ as proven in the previous section.

• Now consider the behaviour of $L, \sigma \Downarrow \sigma'$ for some state σ such that $\sigma(x)^2 \leq \sigma(y)$. In such a case, we'd have that $[y+1 \leq x * x]_{\mathcal{B}}(\sigma) = \bot$ and the loop would not be executed. Therefore, $\sigma = \sigma'$.

This demonstrates, the program terminates as soon as a state is encountered where $\sigma'(x)^2 \le \sigma(y)$. Additionally, as there can be no integer n such that $n^2 \le \sigma(y)$ and $n > \sigma(y)$ it suffices to consider states where $\sigma(x) \le y$. Finally, as the loop decreases the value of x by 1 on each iteration, and it is initially assigned an upper bound, the program will terminate in a state σ' such that $\sigma'(x)$ such that $\sigma'(x)^2 \le \sigma(y)$ as required.

*** 11. Let us extend the definition of free variables to apply to statements $FV : S \to \mathcal{P}(Var)$ as follows:

$$\begin{array}{rcl} \mathsf{FV}(\mathsf{skip}) &= \emptyset \\ \mathsf{FV}(x \leftarrow e) &= \mathsf{FV}(e) \\ \mathsf{FV}(S_1; \, S_2) &= \mathsf{FV}(S_1) \cup \mathsf{FV}(S_2) \\ \mathsf{FV}(\mathsf{if} \ e \ \mathsf{then} \ S_1 \ \mathsf{else} \ S_2) &= \mathsf{FV}(e_1) \cup \mathsf{FV}(S_1) \cup \mathsf{FV}(S_2) \\ \mathsf{FV}(\mathsf{while} \ e \ \mathsf{do} \ S) &= \mathsf{FV}(e) \cup \mathsf{FV}(S) \end{array}$$

Prove the following statement by structural induction over derivations:

if
$$S$$
, $\sigma \Downarrow \sigma'$ and $x \notin FV(S)$ then S , $\sigma[x \mapsto n] \Downarrow \sigma'[x \mapsto n]$

You may use the following result about the denotation of arithmetic expressions:

if
$$\forall x \in \mathsf{FV}(e)$$
. $\sigma(x) = \sigma'(x) \Rightarrow \llbracket e \rrbracket_A(\sigma) = \llbracket e \rrbracket_A(\sigma')$

and the equivalent statement about Boolean expressions.

Solution

Suppose that S, $\sigma \Downarrow \sigma'$ where $x \notin FV(S)$ and let us proceed by structural induction over the derivation:

• If the derivation concludes with the inference:

skip,
$$\sigma \downarrow \sigma$$

then we must show that skip, $\sigma[x \mapsto n] \Downarrow \sigma[x \mapsto n]$, which is evidently true.

• If the derivation concludes with the inference:

$$y \leftarrow e, \sigma \Downarrow \sigma[y \mapsto \llbracket e \rrbracket_{\mathcal{A}}(\sigma)]$$

then we must show that $y \leftarrow e$, $\sigma[x \mapsto n] \Downarrow \sigma[x \mapsto n, y \mapsto \llbracket e \rrbracket_{\mathcal{A}}(\sigma)]$. By assumption, we have that $x \notin mathsfFV(y \leftarrow e)$ and, in particular, $x \notin FV(e)$. Therefore, $\llbracket e \rrbracket_{\mathcal{A}}(\sigma) = \llbracket e \rrbracket_{\mathcal{A}}(\sigma[x \mapsto n])$.

It then follows that $y \leftarrow e$, $\sigma[x \mapsto n] \Downarrow \sigma[y \mapsto [e]]_A(\sigma)$, $x \mapsto n]$ as required.

• If the derivation concludes with the inference:

$$\frac{S_1, \, \sigma_1 \downarrow \sigma_2 \quad S_2, \, \sigma_2 \downarrow \sigma_3}{S_1; \, S_2, \, \sigma_1 \downarrow \sigma_3}$$

then we may apply the induction hypotheses to conclude that S_1 , $\sigma_1[x \mapsto n] \Downarrow \sigma_2[x \mapsto n]$ and that S_2 , $\sigma_2[x \mapsto n] \Downarrow \sigma_3[x \mapsto n]$. Then it follows that S_1 ; S_2 , $\sigma_1[x \mapsto n] \Downarrow \sigma_3[x \mapsto n]$ as required.

• If the derivation concludes with the inference:

$$\frac{S_1, \, \sigma \Downarrow \sigma'}{\text{if } e \text{ then } S_1 \text{ else } S_2, \, \sigma \Downarrow \sigma'}$$

where $\llbracket e \rrbracket_{\mathcal{B}}(\sigma) = \top$ then we may apply the induction hypothesis to conclude that S_1 , $\sigma[x \mapsto n] \Downarrow \sigma'[x \mapsto n]$. As $\mathsf{FV}(e) \subseteq \mathsf{FV}(\mathsf{if}\ e\ \mathsf{then}\ S_1\ \mathsf{else}\ S_2)$, we know that $x \notin \mathsf{FV}(e)$. Therefore, $\llbracket e \rrbracket_{\mathcal{B}}(\sigma[x \mapsto n]) = \top$ as well. It then follows that if $e\ \mathsf{then}\ S_1\ \mathsf{else}\ S_2$, $\sigma[x \mapsto n] \Downarrow \sigma'[x \mapsto n]$ as required.

• The case where the derivation concludes with the inference:

$$\frac{S_1, \sigma \Downarrow \sigma'}{\text{if } e \text{ then } S_1 \text{ else } S_2, \sigma \Downarrow \sigma'}$$

and $[e]_{\mathcal{B}}(\sigma) = \bot$ is analogous to the previous case.

• Suppose the derivation concludes with the inference:

while
$$e \operatorname{do} S$$
, $\sigma \downarrow \sigma$

where $\llbracket e \rrbracket_{\mathcal{B}}(\sigma) = \bot$. As $\mathsf{FV}(e) \subseteq \mathsf{FV}(\mathsf{while}\ e\ \mathsf{do}\ S)$, we know that $x \notin \mathsf{FV}(e)$. Therefore, $\llbracket e \rrbracket_{\mathcal{B}}(\sigma[x \mapsto n]) = \top$ as well. It then follows that while $e\ \mathsf{do}\ S$, $\sigma[x \mapsto n] \Downarrow \sigma[x \mapsto n]$ as required.

• If the derivation concludes with the inference:

$$\frac{S, \sigma_1 \Downarrow \sigma_2 \quad \text{while } e \text{ do } S, \sigma_2 \Downarrow \sigma_3}{\text{while } e \text{ do } S, \sigma_1 \Downarrow \sigma_2}$$

where $\llbracket e \rrbracket_{\mathcal{B}}(\sigma) = \top$ then we may apply the induction hypotheses to conclude that S, $\sigma_1[x \mapsto n] \Downarrow \sigma_2[x \mapsto n]$ and while e do S, $\sigma_2[x \mapsto n] \Downarrow \sigma_3[x \mapsto n]$. As $\mathsf{FV}(e) \subseteq \mathsf{FV}(\mathsf{if}\ e\ \mathsf{then}\ S_1\ \mathsf{else}\ S_2)$, we know that $x \notin \mathsf{FV}(e)$. Therefore, $\llbracket e \rrbracket_{\mathcal{B}}(\sigma[x \mapsto n]) = \top$ as well. It then follows that while e do S, $\sigma_1[x \mapsto n] \Downarrow \sigma_3[x \mapsto n]$ as required.