Vyhodnocování IR a RA spekter

Osnova

Osnova

Kvalitativní analýza

Rozdělení oblastí spekter

Důležité oblasti v MIR spektru

Charakteristické frekvence

Organické sloučeniny

Aromatické sloučeniny

Halogenované sloučeniny

Anorganické sloučeniny

Základní pravidla pro interpretaci vibračních spekter

Vodíkové vazby

Izotopická substituce

NIR

Charakteristické frekvence v NIR

Ramanova spektroskopie

Studium struktury grafenu

Databáze spekter

Kvantitativní analýza

Stanovení koncentrace kofeinu v roztoku

Literatura a odkazy

Rozdělení oblastí spekter

- NIR (0,7 2,5 μm; 14 000 4 000 cm⁻¹) infračervená spektroskopie v blízké oblasti – převážně overtony a kombinační vibrace. Intenzita pásů je nižší než v MIR oblasti a pásy se často překrývají.
- MIR (2,5 25 μm; 4 000 400 cm⁻¹) infračervená spektroskopie ve střední oblasti – základní vibrace molekul.
- ► FIR (25 1000 μm; 400 10 cm⁻¹) infračervená spektroskopie ve vzdálené oblasti – vibrace vazeb kov-halogen, deformační vibrace skeletu molekul.

Důležité oblasti v MIR spektru

- ▶ 4000-2500 cm⁻¹ oblast valenčních vibrací X-H
- ▶ 2500-2000 cm⁻¹ oblast trojných vazeb
- ▶ 2000-1500 cm⁻¹ oblast dvojných vazeb
- ▶ 1500-600 cm⁻¹ oblast otisku prstu (fingerprint)

Sloučenina	Skupina	Vlnočet [cm ⁻¹]	
Alkany	C-H	2850-3000	
	C-C	800-1000	
Aromáty	C-H	3000-3100	
	C=C	1450-1600	
Alkeny	C-H	3080-3140	
	C=C	1630-1670	
Alkyny	C-H	3300-3320	
	C≣C	2100-2140	
Alleabalte	O-H	3300-3600	
Alkoholy	C-O	1050-1200	
Alkyny	C-H	3300-3320	
	C≡C	2100-2140	
Aldehydy	C=O	1720-1740	
	C-H	2700-2900	
Karboxylové kyseliny	C=O	1700-1725	
	O-H	2500-3300	
	C-0	1100-1300	

Vibrace	Vlnočet [cm ⁻¹]
C-H valenční	3100-3000
Kombinační, overtony	2000-1700
C=C	1650-1430
C–H deformační v rovině kruhu	1275-1000
C–H deformační mimo rovinu kruhu	900-690

- ► Se vzrůstající hmotností halogenu klesá hodnota vlnočtu vazby C−X.
- ▶ V tabulce jsou shrnuty vibrace vazeb C-X u alifatických uhlovodíků.

Vazba	Vlnočet [cm ⁻¹]
C-F	1150-1000
C-CI	800-700
C-Br	700-600
C–I	600-500

Ion	Vlnočet [cm ⁻¹]
CO ₃ ²⁻	1450-1410
	880-800
SO ₄ ²⁻	1130-1080
	680-610
NO_3^-	1410-1340
	860-800
PO ₄ ³⁻ SiO ₄ ²⁻	1100-950
SiO ₄ ²⁻	1100-900
NH ₄	3335-3030
1111 ₄	1485-1390
MnO^4	920-890
	850-840
М-Н	2250-1700
	800-600
M-X	750-100
M=O	1010-850
M=N	1020-875

- Spektra anorganických sloučenin zpravidla obsahují méně pásů, ty jsou širší a nalézáme je i na nižších vlnočtech, často až ve FIR oblasti.
- Látky obsahující pouze iontovou vazbu, např. NaCl, neposkytují IR spektrum v MIR oblasti. Pozorovatelné jsou pouze mřížkové vibrace.
- Stupeň hydratace sloučeniny ovlivňuje vzhled spektra.

Základní pravidla pro interpretaci vibračních spekter

- 1. Nejprve se podívejte na oblast vyšších vlnočtů ($>1500~{\rm cm}^{-1}$) a hledejte výrazné pásy.
- 2. Pro každý významný pás si připravte seznam možných přiřazení.
- 3. Oblast nižších vlnočtů použijte pro potvrzení nebo vyvrácení přítomnosti funkčních skupin.
- 4. Nesnažte se přiřadit každý pás ve spektru.
- 5. Pokud je to možné, hledejte pro každou funkční skupinu více pásů, např. aldehydy by měly mít pás okolo 1730 cm⁻¹ a zároveň i pás v oblasti 2900-2700 cm⁻¹. Pokud některý z pásů chybí, skupina pravděpodobně ve struktuře přítomna není.
- 6. Intenzity pásů berte v úvahu pouze orientačně.
- V závislosti na technice měření a stavu vzorku (kapalný, pevný, roztok) může docházet k malým změnám v poloze pásů.
- 8. Pozor na pásy náležející rozpouštědlu.

Vodíkové vazby

- Přítomnost intra- i intermolekulárních vodíkových vazeb ovlivňuje sílu vazby a tím i polohu odpovídajícího pásu ve spektru.
- ➤ Tímto způsobem může rozpouštědlo ovlivnit vzhled spektra, např. voda, diethylether, chloroform, atd.
- Se vzrůstající teplotou dochází k oslabování vodíkových vazeb a tím k posunu odpovídajících pásů k vyšším hodnotám vlnočtu.

Tabulka: Závislost vlnočtu vibrace OH skupiny fenolu na koncentraci dioxanu v ${\rm CCl_4}^1$

Konc. dioxanu [%]	νон	$ u_{OH}$ fenol-dioxan	$\Delta \nu$
0,0	3611	-	-
2,3	3612	3377	235
22,1	3610	3365	245
72,5	-	3347	263
100,0	-	3338	272

¹ J. Am. Chem. Soc., **1963**, 85 (4), 371–380

Izotopická substituce

- Izotopická substituce usnadňuje interpretaci vibračních spekter
- Nedochází ke změně geometrie molekuly, ale změní se hmotnost atomů a tím i poloha absorpčních pásů

$$\mu = \frac{m_1 m_2}{m_1 + m_2}$$

 Těžší izotop způsobuje posun pásu k nižším vlnočtům

NIR

- ▶ Oblast 700-2500 nm, tj. 14 000-4 000 cm⁻¹.
- V této oblasti jsou převážně kombinační vibrace a overtony (vyšší harmonické). Ty poskytují málo intenzivní, široké pásy, které se často překrývají.
- Výhodou je jednodušší instrumentace (lze využít skleněnou nebo křemennou optiku), citlivější detektory.
- Voda v této oblasti absorbuje relativně málo, takže ji lze použít jako rozpouštědlo.
- Využití v lékařství a zdravotní diagnostice, potravinářském a jiném průmyslu, astronomii, . . .
- Jako měřící techniky se využívají:
 - transmisní technika
 - ▶ difuzně-reflexní technika
 - ATR

NIR

NIR

NIR spektrum kapalného ethanolu

Ramanova spektroskopie

- Komplementární metoda k IR spektroskopii
- Principem je nepružný rozptyl LASERového záření na vzorku
- Vhodnější pro nepolární sloučeniny
- Lze použít vodu jako rozpouštědlo
- Zpravidla užší pásy než v IR spektrech
- Jednoduchá příprava vzorku
- Měření může komplikovat fluorescence vzorku
- Dražší hardware

Ramanova spektroskopie

- Pomocí Ramanovy spektroskopie lze studovat kvalitu grafenu a určit počet vrstev vzorku
- Pás D (1350 cm⁻¹) odpovídá poruchám ve struktuře grafenu.
- Pás G (1583 cm⁻¹) odpovídá valenčním vibracím vazeb C-C, najdeme ve všech systémech s sp² uhlíky.
- V případě nečistot nebo výskytu náboje na povrchu grafenu, najdeme v blízkosti pásu G i méně intenzivní pás D' (1620 cm⁻¹).
- ▶ Pás G' v oblasti 2500-2800 cm⁻¹ se označuje jako 2D-pás, nalezneme ho u všech systému s sp² uhlíky.

Databáze spekter

sdbs.riodb.aist.go.jp/sdbs/cgi-bin/cre_index.cgi

Databáze spekter

sdbs.riodb.aist.go.jp/sdbs/cgi-bin/cre_index.cgi

Databáze spekter

http://webbook.nist.gov/chemistry/

Databáze spekter

http://webbook.nist.gov/chemistry/

- ▶ Lambert-Beerův zákon $A_{\lambda} = \epsilon_{\lambda} Ic$
 - A_{λ} absorbance vzorku při vlnové délce λ
 - ullet ϵ_{λ} absorpční koeficient při vlnové délce λ . Je charakteristický pro každou sloučeninu.
 - ▶ I délka kyvety
 - c koncentrace vzorku
- Pro stanovení koncentrace se využívá kalibrační křivka.
- Pás zvolený pro analýzu musí splňovat několik požadavků:
 - Vysoký molární absorpční koeficient
 - Neměl by se překrývat s jinými pásy
 - Měl by být symetrický
 - Závislost absorbance na koncentraci by měla být lineární

Stanovení koncentrace kofeinu v roztoku

Stanovení koncentrace kofeinu v roztoku

Koncentrace [mg.cm ⁻³]	Absorbance při 1656 cm ⁻¹
0	0.000
5	0.105
10	0.190
15	0.265
20	0.333

Literatura a odkazy

- 1. STUART, Barbara. *Infrared spectroscopy: fundamentals and applications.* Hoboken, NJ: J. Wiley, 2004. ISBN 9780470854280.
- COATES, John. Interpretation of Infrared Spectra, A Practical Approach. Encyclopedia of Analytical Chemistry [online]. Chichester, UK: John Wiley & Sons, 2006 [cit. 2017-05-18]. DOI: 10.1002/9780470027318.a5606. ISBN 0470027312. Dostupné z: http://doi.wiley.com/10.1002/9780470027318.a5606
- Spectral Database for Organic Compounds http://sdbs.riodb.aist.go.jp/sdbs/cgi-bin/cre_index.cgi
- 4. NIST Webbook Chemistry http://webbook.nist.gov/chemistry/