Enzymes

王春光

chunguangwang@tongji.edu.cn

2020-10-16

Think about your food

If eaten, digested in hours;

If not eaten, stay for years.....

Enzymes are biological <u>catalysts</u>.

酶是生物催化剂。

Enzymes affect reaction rates, not equilibria.

酶只影响反应速度, 而不影响反应平衡。

$$k_{cat} = 39 \text{ s}^{-1} \implies 25 \times 10^{-3} \text{ second}$$

$$k_{non} = 2.8 \times 10^{-16} \text{ s}^{-1} \implies 78 \times 10^6 \text{ year}$$

$$k_{cat} / k_{non} = 1.4 \times 10^{17}$$

Why do people study enzymes?

Science & Technology

Enzyme-inhibitor examples

Lipase inhibitor;

Anti-AIDS cock-tail therapy;

Acetylcholinesterase inhibitor.乙酰胆碱酯酶抑制剂

acetylcholine

acetylcholinesterase

1 Indian curare

- ② Organophosphorus
- 3 AD-treating medicine

How do enzymes work?

(PDB 7GCH)

Active site 活性位点

Catalytic triad: Ser195, His57, Asp102. Inhibitor 抑制剂

(juang.bst.ntu.edu.tw/BCbasics/Animation1.htm)

Chymotrypsin (free enzyme)

Gly¹⁹³

His 57

Ser 195

O-(Ser 195

C-CH-NH-AA,

Active site

Oxyanion hole

Substrate (a polypeptide)

When substrate binds, the side chain of the residue adjacent to the peptide bond to be cleaved nestles in a hydrophobic pocket on the enzyme, positioning the peptide bond for attack.

Interaction of Ser¹⁹⁵ and His⁵⁷ generates a strongly nucleophilic alkoxide ion on Ser¹⁹⁵; the ion attacks the peptide carbonyl group, forming a tetrahedral acyl-

enzyme. This is accompanied by formation of a short-lived negative charge on the carbonyl oxygen of the substrate, which is stabilized by hydrogen bonding in the oxyanion hole.

ES complex

Product 1

 AA_n —C—CH—NHH

Short-lived intermediate (acylation) Instability of the negative charge on the substrate carbonyl oxygen leads to collapse of the tetrahedral intermediate; re-formation of a double bond with carbon displaces the bond between carbon and the amino group of the peptide linkage, breaking the peptide

bond. The amino leaving group is protonated by His⁵⁷, facilitating its displacement.

Acyl-enzyme intermediate

Enzyme-product

intermediate

Ho—(Ser¹⁹⁵ HO—C—CH—NH—AA_n HO—Ser¹⁹⁵ HO—Ser¹⁹⁵

Acyl-enzyme intermediate

An incoming water molecule is deprotonated by general base catalysis, generating a strongly nucleophilic hydroxide ion. Attack of hydroxide on the ester linkage of the acylenzyme generates a second tetrahedral intermediate, with oxygen in the oxyanion hole again taking on a negative charge.

Short-lived intermediate (deacylation)

of the tetrahedral intermediate forms the second product, a carboxylate anion, and displaces Ser¹⁹⁵.

Collapse

(juang.bst.ntu.edu.tw/BCbasics/Animation1.htm)

International classification of enzymes

No.	Class	Type of reaction catalyzed	
1	Oxidoreductase	Transfer of electrons	
	氧化还原酶		
2	Transferase 转移酶	Group transfer reaction	
3	Hydrolase 水解酶	Hydrolysis reaction	
4	Lyase 裂合酶	Addition of groups to double bonds, or formation of double bonds by removal of groups	
5	Isomerase 异构酶	Transfer of groups within molecules to yield isomeric forms	
6	Ligase 连接酶	Bond formation coupled with ATP hydrolysis	
Serine endopeptidase:		Chymotrypsin Trypsin Subtilisin	EC 3.4.21.1 EC 3.4.21.4 EC 3.4.21.62

.

$$A \rightarrow P$$

$$v = k[A]$$

Zero order reaction

$$v = k$$

$$A + B \rightarrow P$$

Second order reaction

$$v = k[A][B]$$

$A \rightarrow P$

$$v = -\frac{d[A]}{dt} = \frac{d[P]}{dt}$$

$$v : \frac{Mol}{L \cdot s}$$

$$= k[A]$$

$$k : \frac{1}{s}$$

$$\frac{d[A]}{[A]} = -k dt$$

$$\ln[A] = -kt + a = -kt + \ln[A]_0$$

$$[A] = [A]_0 \cdot e^{-kt}$$

$A \rightarrow P$

$$v = -\frac{d[A]}{dt} = k[A]$$

When $[A] = [A]_0$, $v = V_0$

V₀: initial velocity/rate(初速度)

When [A] = $[A]_0/2$, t = $t_{1/2}$

t_{1/2}: half-life time(半衰期)

Radioactive isotope decomposition:

 $^{32}\text{P t}_{1/2} \approx 14 \text{ days}; \quad ^{125}\text{I t}_{1/2} \approx 60 \text{ days}.$

$$A \rightarrow P$$

$$A \xrightarrow{Enzyme} P$$

$$v = \frac{d[P]}{dt} = k[A]$$

$$v = \frac{d[P]}{dt} = ??[A]$$

Next time:

Michaelis-Menten Equation.