Killstreak Predictor: League of Legends 2024

```
In [ ]: import numpy as np
                         import pandas as pd
                         data = pd.read_csv("LOL_matchdata_2024.csv")
In [6]:
                         data = data.iloc[:, :-1]
                         data = data.dropna()
                         data = data.drop(columns=['DateTime UTC','Items', 'CS', 'DamageToChampions', 'CS', 'CS', 'DamageToChampions', 'CS', 'CS', 'CS', 'DamageToChampions', 'CS', 'C
In [7]: data['BaronDifference'] = np.where(
                                      data['Team'] == data['Team1'],
                                      data['Team1Barons'] - data['Team2Barons'],
                                      np.where(
                                                  data['Team'] == data['Team2'],
                                                  data['Team2Barons'] - data['Team1Barons'], np.nan))
                         data['TowerDifference'] = np.where(
                                      data['Team'] == data['Team1'],
                                      data['Team1Towers'] - data['Team2Towers'],
                                      np.where(
                                                  data['Team'] == data['Team2'],
                                                  data['Team2Towers'] - data['Team1Towers'],
                                                  np.nan))
                          data.drop(columns=['Team1Barons', 'Team2Barons', 'Team1Towers', 'Team2Towers',
In [8]:
                         import seaborn as sns
                         import matplotlib.pyplot as plt
                         numeric data = data.select dtypes(include=np.number)
                         correlation matrix = numeric data.corr()
                         plt.figure(figsize=(9, 7))
                          sns.heatmap(correlation_matrix, annot=True, cmap='flare')
                         plt.show()
```



```
import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize=(10, 6))
sns.boxplot(x=data['Role'], y=data['Kills'], palette='flare')
plt.title('Kills Distribution by Role')
plt.xlabel('Role')
plt.ylabel('Kills')
plt.show()
```

<ipython-input-9-2d0f8a95ca8b>:4: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.boxplot(x=data['Role'], y=data['Kills'], palette='flare')

Kills Distribution by Role


```
In [10]: import pandas as pd
         from sklearn.compose import ColumnTransformer
         from sklearn.preprocessing import OneHotEncoder, StandardScaler
         from sklearn.model selection import train test split
         import statsmodels.api as sm
         # Separate features (X) and target (y)
         target = 'Kills'
         X = data.drop(columns=[target])
         y = data[target]
         # Identify categorical and numeric columns
         categorical_features = X.select_dtypes(include=['object']).columns
         numeric_features = X.select_dtypes(include=['int64', 'float64']).columns
         # Preprocessing: One-hot encoding for categorical and scaling for numeric
         preprocessor = ColumnTransformer(
             transformers=[
                 ('num', StandardScaler(), numeric_features),
                 ('cat', OneHotEncoder(handle_unknown='ignore', drop ='first'), categor
             ]
         # Apply preprocessing
         X_processed = preprocessor.fit_transform(X)
         # Check if the result is sparse, and convert to dense if necessary
         if hasattr(X_processed, "toarray"): # If it's sparse
             X_processed = X_processed.toarray()
         # Get column names for the transformed data
         # Numeric columns remain unchanged
         numeric_columns = numeric_features.tolist()
```

```
# For the one-hot encoded columns, get feature names from OneHotEncoder
categorical columns = preprocessor.transformers [1][1].get feature names out(categorical)
# Combine the column names
column_names = numeric_columns + categorical_columns
# Convert the result to a DataFrame
X_processed_df = pd.DataFrame(X_processed, columns=column_names)
# Ensure the indices of X_processed_df and y are aligned
X processed df = X processed df.reset index(drop=True)
y = y.reset_index(drop=True)
# Add constant to X_processed for OLS
X processed with const = sm.add constant(X processed df)
# Split data into training and test sets
X_train, X_test, y_train, y_test = train_test_split(X_processed_with_const, y,
# Ensure that the indices of X_train and y_train are aligned
X_train = X_train.reset_index(drop=True)
y_train = y_train.reset_index(drop=True)
# Linear regression using statsmodels
model = sm.OLS(y_train, X_train)
results = model.fit()
# Display the summary
print(results.summary())
```

OLS Regression Results

Dep. Variable: Model: Method:		Kill: 0L9 Least Squares Mon, 30 Dec 2024 20:59:48 624 562 63	R-squared: Adj. R-squared F-statistic: Prob (F-statis Log-Likelihood AIC: BIC:	Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood: AIC:	
				=======	
		 0.975]	coef	std err	t
const			4.6045	0.887	5.191
	2.862 h Number	6.347	-1.8007	0.139	-12.996
0.000 Deaths	-2.073	-1.529	0.4314	0.081	5.336
	0.273	0.590	-0.4018		
0.000	-0.585	-0.219			
Gold 0.000		3.753	3.4273		
VisionSco 0.004	0.136	0.721	0.4281		2.874
BaronDiff 0.027	erence -0.438	-0.026	-0.2322	0.105	-2.215
Role_Jung 0.051	le -0.004	1.192	0.5942	0.304	1.952
Role_Mid 0.071		0.043	-0.5079	0.281	-1.810
Role_Supp			1.1903	0.475	2.504
Role_Top			-0.1367	0.302	-0.452
Team_Bili	-0.731 bili Gamin		1.3749	1.288	1.067
0.286 Team_Dplu		3.905	-1.6927	1.227	-1.380
0.168 Team_FlyQ	-4.102 uest	0.717	0.1675	0.654	0.256
0.798 Team_Fnat	-1.117	1.452	-0.9076	1.300	-0.698
0.485	-3.460	1.645 nk HAWKS gaming	1.0517		
0.213	-0.604	2.707			
Team_G2 E 0.010	-3.300	-0.460	-1.8798		
Team_GAM 0.001	Esports -2.113	-0.556	-1.3348		
Team_Gen. 0.293		0.569	-0.6553	0.623	-1.052
	ha Life Es		0.0910	0.902	0.101
Team_LNG 0.239	Esports		1.4003	1.189	1.178
	-0.935 Lions KOI	3.736	-0.7997	1.192	-0.671

Killstreak_Predictor_League	_oi_Legends_2024		
0.502 -3.140 1.541	1 2026	0.701	1 700
Team_Movistar R7 0.078 -2.728 0.143	-1.2926	0.731	-1.768
0.078 -2.728 0.143 Team_PSG Talon	-1.2188	0.435	-2.803
0.005 -2.073 -0.365	112100	01433	21005
Team_T1	-0.7398	0.617	-1.199
0.231 -1.952 0.472			
Team_Team Liquid	0.3451	0.660	0.523
0.601 -0.951 1.642	4 0405	4 200	0 074
Team_Top Esports	1.2425	1.280	0.971
0.332 -1.272 3.757 Team_Vikings Esports (2023 Vietnamese Team)	-0.5049	0.418	-1.209
0.227 -1.325 0.316	-0.3049	0.410	-1.209
Team_Weibo Gaming	1.6832	1.342	1.254
0.210 -0.954 4.320	1.0052	113.2	1123
Team_paiN Gaming	-0.1288	0.732	-0.176
0.860 -1.567 1.309			
PlayerWin_Yes	1.5343	0.260	5.899
0.000 1.023 2.045			
KeystoneRune_Arcane Comet	-0.6086	0.328	-1 . 857
0.064 -1.252 0.035	0 5000		0.440
KeystoneRune_Conqueror	-0.5802	0.275	-2.113
0.035 -1.119 -0.041	0 1702	a 200	0 462
<pre>KeystoneRune_Electrocute 0.644 -0.582 0.940</pre>	0.1792	0.388	0.462
KeystoneRune_First Strike	-1.1139	0.485	-2.298
0.022 -2.066 -0.162	111133	01403	21230
KeystoneRune_Fleet Footwork	-0.8656	0.331	-2.611
0.009 -1.517 -0.215			
KeystoneRune_Glacial Augment	-0.7360	0.624	-1.179
0.239 -1.962 0.490			
KeystoneRune_Grasp of the Undying	-0.6768	0.339	-1.997
0.046 -1.342 -0.011			
KeystoneRune_Guardian	-0.5173	0.301	-1.720
0.086 -1.108 0.074	0 2056	0 411	0 720
<pre>KeystoneRune_Hail of Blades 0.472 -1.102 0.511</pre>	-0.2956	0.411	-0.720
KeystoneRune Lethal Tempo	-1.5247	0.596	-2.560
0.011 -2.695 -0.355	113217	0.550	2.300
KeystoneRune_Phase Rush	-0.5758	0.379	-1.521
0.129 -1.320 0.168			
KeystoneRune_Press the Attack	-1.2073	0.350	-3.446
0.001 -1.896 -0.519			
KeystoneRune_Summon Aery	0.2359	0.364	0.648
0.517 -0.479 0.951	1 0044	4 004	4 000
KeystoneRune_Unsealed Spellbook	-1.0941	1.091	-1.003
0.317 -3.238 1.049 Country_Australia	2 2700	1 012	2 245
0.025 -4.258 -0.284	-2.2709	1.012	-2.245
Country_Belgium	-3.0504	1.029	-2.966
0.003 -5.071 -1.030	510501		
Country_Brazil	-2.6805	0.816	-3.286
0.001 -4.283 -1.078			
Country_Canada	-0.5823	1.094	-0.532
0.595 -2.732 1.567			
Country_China	-4.0360	1.290	-3.128
0.002 -6.571 -1.502	0 0007	1 475	0 (1)
Country_Czech Republic	-0.9027	1.475	-0.612
0.541 -3.800 1.995 Country_Denmark	0.0225	0.455	0.049
Country_Definial K	V: VZZJ	0.433	0.043

0.961		0.916				
Country_Fr				-0.8118	0.484	-1.677
0.094		0.139				
Country_Germany		4 040		0.0950	0.467	0.203
0.839		1.013		4 7674	4 046	4 740
Country_Ir				-1.7671	1.016	-1.740
0.082		0.228		2 2224	4 000	0.047
Country_Ja		0 470		-2.8921	1.232	-2 . 347
0.019		-0.472		4 4074	0.700	4 677
Country_Pe				-1.1871	0.708	-1.677
0.094		0.204				
Country_Po		4 0 4 0		-3.1012	1.050	-2 . 955
0.003		-1.040				4 605
Country_Sl				-0.6975	0.434	-1.605
0.109		0.156		2 222		2 522
Country_So		0 070		-2.2039	0.624	-3.532
0.000		-0.978		1 1622	4 270	0.044
Country_Spain			-1.1633	1.379	-0.844	
0.399		1.545				4 040
Country_Sw		0 450		-0.4880	0.482	-1.013
0.312		0.458		4 2422	0 405	2 222
Country_Taiwan				-1.2188	0.435	-2.803
0.005		-0.365		2 2224		2 522
	ited States			-2.2031	0.881	-2.502
	-3.933	-0.473		1 0207	0 500	2 440
Country_Vi				-1.8397	0.586	-3.140
	-2.990	-0.689				
Omnibus:		======	======== 10.308	 Durbin-Watson:		1.998
Prob(Omnibus):		0.006	Jarque-Bera (JB):		13.361	
Skew:			Prob(JB):		0.00126	
Kurtosis:			3.624	Cond. No.		1.50e+16
				CONG. NO.		

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correct ly specified.
- [2] The smallest eigenvalue is 6.26e-30. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

```
In [11]: def LR_OSR2(model, X_test, y_test, y_train):
    y_pred = model.predict(X_test)
    SSE = np.sum((y_test - y_pred)**2) # Sum of Squared Errors
    SST = np.sum((y_test - np.mean(y_train))**2) # Total Sum of Squares
    return (1 - SSE/SST)

# Calculate OSR2 for Linear Regression
lr_osr2 = LR_OSR2(results, X_test, y_test, y_train)

# Print the OSR2 for the Linear Regression model
print(f"OSR2 for the Linear Regression model: {lr_osr2:.4f}")
```

OSR² for the Linear Regression model: 0.6752

```
In [12]: # calculate Variance Inflation Factor for each explanatory variable
import statsmodels.api as sm
from statsmodels.stats.outliers_influence import variance_inflation_factor

def VIF(df, columns):
    values = sm.add_constant(df[columns]).values
```

```
num_columns = len(columns)+1
vif = [variance_inflation_factor(values, i) for i in range(num_columns)]
return pd.Series(vif[1:], index=columns)

VIF(X, numeric_features)
```

Out[12]:

 Gamelength Number
 3.518042

 Deaths
 1.498649

 Assists
 1.579354

 Gold
 3.544281

 VisionScore
 2.337927

 BaronDifference
 1.675623

0

dtype: float64

```
In [13]: from sklearn.tree import DecisionTreeRegressor
         from sklearn.model_selection import GridSearchCV
         import numpy as np
         grid_values = {'ccp_alpha': np.linspace(0, 0.10, 201),
                         'min samples leaf': [5],
                         'min_samples_split': [20],
                         'max_depth': [30],
                         'random state': [2024]}
         dtr = DecisionTreeRegressor()
         dtr_cv_nmse = GridSearchCV(dtr, param_grid = grid_values,
                                     scoring='neg_mean_squared_error', cv=10, verbose=1)
         dtr_cv_nmse.fit(X_train, y_train)
         import matplotlib.pyplot as plt
         from sklearn.tree import plot_tree
         print('Node count =', dtr_cv_nmse.best_estimator_.tree_.node_count)
         plt.figure(figsize=(40,20))
         plot tree(dtr cv nmse.best estimator,
                    feature names=X train.columns,
                    class_names=['0','1'],
                    filled=True,
                    impurity=False,
                    rounded=True.
                    fontsize=12,
                   max depth=4)
         plt.show()
```

Fitting 10 folds for each of 201 candidates, totalling 2010 fits Node count = 25


```
In [14]: # CART OSR^2 Calculation
def CART_OSR2(model, X_test, y_test, y_train):
    y_pred = model.predict(X_test)
    SSE = np.sum((y_test - y_pred)**2)
    SST = np.sum((y_test - np.mean(y_train))**2)
    return (1 - SSE/SST)
    cart_osr2 = CART_OSR2(dtr_cv_nmse, X_test, y_test, y_train)
    print('The OSR^2 for the tree regression model is: ', cart_osr2)
```

The OSR^2 for the tree regression model is: 0.537184386710543

```
from sklearn.ensemble import RandomForestRegressor
In [15]:
         from sklearn.metrics import mean_squared_error, r2_score
         # Split data into training and testing sets
         X_train_rf, X_test_rf, y_train_rf, y_test_rf = train_test_split(
             X_processed_df, y, test_size=0.2, random_state=42
         # Initialize Random Forest Regressor with fixed parameters
         rf regressor = RandomForestRegressor(
             n_estimators=100,
             max_depth=10,
             min samples split=5,
             min_samples_leaf=2,
             random state=2024
         # Fit the model
         rf regressor.fit(X train rf, y train rf)
         # Predictions
         y_pred_rf = rf_regressor.predict(X_test_rf)
         # Evaluation
         mse = mean_squared_error(y_test_rf, y_pred_rf)
         r2 = r2 score(y test rf, y pred rf)
         print("\nRandom Forest Regression Results:")
         print(f"Mean Squared Error (MSE): {mse:.4f}")
         print(f"R-squared (R2): {r2:.4f}")
         # Feature Importance
         importances = rf_regressor.feature_importances_
         feature_importances = pd.DataFrame({
```

```
'Feature': X_train_rf.columns,
              'Importance': importances
         }).sort values(by='Importance', ascending=False)
         print("\nTop 10 Feature Importances:")
         print(feature importances.head(10))
         Random Forest Regression Results:
         Mean Squared Error (MSE): 2.6335
         R-squared (R^2): 0.6487
         Top 10 Feature Importances:
                               Feature Importance
         3
                                  Gold
                                          0.604208
         0
                     Gamelength Number
                                          0.154622
         29
                         PlayerWin_Yes
                                          0.053638
         4
                           VisionScore
                                          0.044177
         2
                               Assists
                                          0.028694
         1
                                Deaths
                                          0.023243
         5
                       BaronDifference
                                          0.010760
         32 KeystoneRune_Electrocute
                                          0.006668
                              Role_Top
                                          0.005393
         58
                   Country_South Korea
                                          0.005054
In [16]: # OSR^2 Calculation (out-of-sample R^2)
         def RF_OSR2(model, X_test, y_test, y_train):
              y_pred = model.predict(X_test)
              SSE = np.sum((y_test - y_pred)**2)
              SST = np.sum((y_test - np.mean(y_train))**2)
              return (1 - SSE/SST)
          rf_osr2 = RF_0SR2(rf_regressor, X_test_rf, y_test_rf, y_train_rf)
         print(f"OSR2 for the Random Forest model: {rf osr2:.4f}")
         OSR<sup>2</sup> for the Random Forest model: 0.6530
         Comparison = pd.DataFrame({
In [17]:
              "Model": ["Linear", "CART", "Random Forest"],
              "OSR^2": [lr osr2, r2, rf osr2]
         })
          Comparison
                   Model
                           OSR<sup>2</sup>
Out[17]:
         0
                   Linear 0.675186
                   CART 0.648695
         2 Random Forest 0.652968
```