Newton's 2nd Law: The acceleration of an object depends on the net fine it is feeling and its mass. more net force=more acceleration more mass = less acceleration

$$F_{net} = M \cdot \alpha$$

If you know	You can find	By using	Units
M (kg), M M	Fret	F=M·A	(+direction)
F (N), a (m/s2)	M	$M = \frac{F}{A}$	kg
F(N), $M(kg)$	0	$Q = \frac{F}{M}$	m/s2 (+direction)

Mr. Begar pushes an elephant with 224.8 N of fore. The elephant is 3,221 kg. How quickly will it accelerate?

$$\bigcirc$$
 \bigcirc

$$3$$
 $\alpha = \frac{F}{M}$

$$4) \quad \alpha = \frac{224.8}{3221} = 0.07$$

RGM Measurements (today & Nednesday)

1. Do not work on the construction

2. If necessary, pick one part of your RGM to measure

3. Attach an arduino + breadboard + LED + piezo sensor to your RGM - make sure it functions!

4. Use your computer to measure the output from the piezo (serial monitor)

5. If everything works, modify the breadboard to be more complicated

6. Attach a Bree sensor to your computer and use it to determine the force of RGM