MPLS - Introducción

WALC 2010

MPLS

Multi Protocol Label Switching

Es un encapsulamiento (o tunel) entre extremos de la red

Muy eficiente

Las etiquetas se agregan como cabecera a los paquetes IP

Se puede transportar IP y tramas nivel 2

Evolución

Se buscaba una simplificación en el ruteo, escalabilidad (topologia en lugar de flujo IP).

Se comenzó a utilizar en otros Servicios y no por las ventajas de **Switching**

TAG Switching (Cisco)

MPLS Group **IETF**

Equipos con tag switching

MPLS VPN

MPLS TE

Uso Masivo

1997 | ➡ | 1998 | ➡ | 1999 | ➡ | 2000 | ➡ | 2001 | ➡ | 2002 |

Servicios Sobre MPLS

Acrónimos

Acrónimo	Inglés	Descripción		
PE	Provider Edge	Equipo de Borde o Acceso		
LER	Label Edge Router	Equipo de Borde o Acceso		
Р	Provider Core	Router Central		
LSR	Label Switch Router	Router Central		
CE	Customer Edge	Equipo de Cliente		
ASBR	AS Border Router	Router de Borde		
RR	Route Reflector	Route Reflector		
TE	Traffic Engineering	Ing. De Tráfico (Balanceos)		
PWE3	Pseudo Wire Emulation Edge to Edge	Emulación cables de extremo a extremo		
VPN	Virtual Private Networks	Red Privada		
LSP	Label Switched Path	Tunel o camino Etiquetado		
VRF	Virtual Routing and Forwarding	Tabla de rutas de VPNs		

Cabecera de la Etiqueta

0	20	23	32
Etiqueta	Exp	EoS	TTL

Etiqueta

• 20 bits

Exp

- 3 bits
- (Clases de Servicio)

EoS

- I bit
- End of Stack
- Ultima Etiqueta

TTL

- 8 bits
- (Time To Live)

Etiquetas

Se pueden apilar

Solo info de Forwarding

Solo I word (32 bits)

Forwarding

FEC (Forwarding Equivalent Clases)

El "ruteo o switching" se hará mirando la etiqueta

Para eso los equipos deben mantener tablas de etiquetas para el ruteo de paquetes

FEC

Prefijos de la tabla de ruteo

Grupos de Prefijos de una VPN

Circuitos L2

Túneles TE

Forwarding

Edge

- Se colocan las etiquetas por FEC para los paquetes salientes
- Se extraen las etiquetas para los entrantes

Core

- Se decide la interface de salida según la etiqueta del paquete
- Se reemplaza la etiqueta y se envia el paquete

Distribución de Etiquetas

TDP

- Propietario de Cisco
- Anterior al LDP

LDP

- Evolución de BGP
- Puede ser aguas arriba o aguas abajo
- Utiliza la información del IGP

RSVP-TE

- Se utiliza para Traffic Engineering
- Tiene información de BW

BGP

Se utiliza para VPNs

Control vs Forwarding

Control

- "Información" de Ruteo
- Distribuye etiquetas
- BGP, LDP, RSVP

Forwarding

- Label Swaping
- Basado en los LSP

VPN Nivel 2

Utiliza una etiqueta por circuito

La etiqueta se negocia entre PEs

Se encapsulan tramas (FR, ATM, etc)

Circuitos Punto a Punto (Attachment Circuits)

Soporta QoS

ATM AAL5, FR DLCI, PPP, Ethernet punto a punto

VPN Nivel 3

Cada sitio de cliente conectado a un port del PE

Todos se ven con todos

Las rutas de cada sitio las conoce y anuncia el proveedor a los otros sitios

Tablas de rutas separadas de la global

- VRF (Virtual Routing and Forwarding)
- Usa BPG para distribuir la info

Mas escalable

MPLS-TE

Mejor aprovechamiento de enlaces

Se usa cuando existen diversos caminos

El objetivo es enviar el tráfico apropiado por cada camino

Recuperación rápida por fallas (Fast Reroute)

La decición de ruteo no será solo Shortest Path

El IGP debe ser link state (IS-IS o OSPF)

Control de Admisión

QoS

3 Bits Disponibles

Similar a IP Prec

Generalmente se copian automáticamente

Si se usa Diff Serv se puede mapear

Los algoritmos de colas (Ej WRED) miran Exp