Diego Blood Group System

Number of antigens 22

Low prevalence Di^a, Wr^a, Wd^a, Rb^a, WARR, ELO, Wu, Bp^a, Mo^a,

Hg^a, Vg^a, Sw^a, BOW, NFLD, Jn^a, KREP, Tr^a, Fr^a,

SW1

High prevalence Di^b, Wr^b, DISK

Terminology

ISBT symbol (number) DI (010) CD number CD233

History Named after the producer of the first anti-Di^a,

discovered during the investigation of a case of HDFN in a Venezuelan family. Diego was described in 1955 by Layrisse et al; it had been mentioned

briefly by Levine et al. in 1954.

Expression

Tissues Intercalated cells of the distal and collecting tubules

of the kidney

An isoform of band 3 is expressed in the distal

nephron of the kidney

Gene

Chromosome 17q21.31

Name DI (SLC4A1, AE1, EPB3)

Organization 20 exons distributed over 20 kbp of gDNA Product Band 3 (Anion Exchanger 1; Anion Transport

Protein)

Database accession numbers

GenBank NM_000342 (mRNA); M27819 (mRNA)

Entrez Gene ID 6521

Molecular bases of Diego phenotypes¹

Reference allele *DI*02* or *DI*B* (Accession number NM_000342) encodes Di^b (DI2), DI4, DI22. Nucleotide differences, and amino acids affected, are given.

Allele encodes	Allele name	Exon	Nucleotide	Restriction enzyme	Amino acid	Ethnicity (prevalence)
Di(a+b-) or DI:1,-2	DI*01 or DI*A	19	2561C>T	Mspl-	Pro854Leu	South Americans, Native Americans, Japanese, Chinese, Poles (Many)
Wr(a+b-) or DI:3,-4	DI*02.03	16	1972G>A		Glu658Lys	(Many)
Wd(a+) or DI:5	DI*02.05	14	1669G>A	MsII+	Val557Met	Hutterites, Namibians (Rare)
Rb(a+) or DI:6	DI*02.06	14	1643C>T	EcoNI+	Pro548Leu	Caucasians (Rare)
WARR+ or DI:7	DI*02.07	14	1654C>T	Bbsl –	Thr552lle	Native Americans (Rare)
ELO+ or DI:8	DI*02.08	12	1294C>T	Mspl –	Arg432Trp	Caucasians (Rare)
Wu+, DISK- or DI:9,-22	DI*02.09	14	1694G>C	Apal –	Gly565Ala	Scandinavians, Dutch, Blacks, Irish (Several)
Bp(a+) or DI:10	DI*02.10	14	1707C>A	Tth2 –	Asn569Lys	English, Italians (Rare)
Mo(a+) or DI:11	DI*02.11	16	1967G>A	Msml+	Arg656His	Belgians, Norwegians (Rare)
Hg(a+) or DI:12	DI*02.12	16	1966C>T	Cac8I+	Arg656Cys	Welsh, Australians (Rare)
(Continued)						

(Continued)						
Allele encodes	Allele name	Exon	Nucleotide	Restriction enzyme	Amino acid	Ethnicity (prevalence)
Vg(a+) or DI:13	DI*02.13	14	1663T>C	DrallI+	Tyr555His	Australians (Rare)
Sw(a+) or DI:14	DI*02.14	16	1937G>A		Arg646Gln	Caucasians (Rare)
BOW+ or DI:15	DI*02.15	14	1681C>T	Banl – BstEIII+	Pro561Ser	Caucasians (Rare)
NFLD+ or DI:16	DI*02.16	12; 14	1287A>T 1681C>G		Glu429Asp Pro561Ala	French Canadians, Japanese (Few)
Jn(a+) or DI:17	DI*02.17	14	1696C>T		Pro566Ser	Poles, Slovaks (Rare)
KREP+ or DI:18	DI*02.18	14	1696C>G		Pro566Ala	Poles (Rare)
Tr(a+) or DI:19	DI*02.19	14	1653G>C	Bbsl –	Lys551Asn	English (Rare)
Fr(a+) or DI:20	DI*02.20	13	1438G>A	Bsal – BsmAl –	Glu480Lys	Mennonites (Several)
SW1 or DI:21	DI*02.21	16	1936C>T		Arg646Trp	Caucasians (Rare)

Molecular basis for silencing of DI

The nucleotide difference from DI*02 reference allele (Accession number NM_000342), and the amino acid affected, are given.

Allele name	Exon	Nucleotide	Restriction enzyme	Amino acid	Ethnicity (prevalence)
DI*02N.01	13	1462G>A	NlaIII+	Val488Met ¹	Portuguese (Rare)

Amino acid sequence

MEELQDDYED	MMEENLEQEE	YEDPDIPESQ	MEEPAAHDTE	ATATDYHTTS	50
HPGTHKVYVE	LQELVMDEKN	QELRWMEAAR	WVQLEENLGE	NGAWGRPHLS	100
HLTFWSLLEL	RRVFTKGTVL	LDLQETSLAG	VANQLLDRFI	FEDQIRPQDR	150
EELLRALLLK	HSHAGELEAL	GGVKPAVLTR	SGDPSQPLLP	QHSSLETQLF	200
CEQGDGGTEG	HSPSGILEKI	PPDSEATLVL	VGRADFLEQP	VLGFVRLQEA	250
AELEAVELPV	PIRFLFVLLG	PEAPHIDYTQ	LGRAAATLMS	ERVFRIDAYM	300
AQSRGELLHS	LEGFLDCSLV	LPPTDAPSEQ	ALLSLVPVQR	ELLRRRYQSS	350
PAKPDSSFYK	GLDLNGGPDD	PLQQTGQLFG	GLVRDIRRRY	PYYLSDITDA	400
FSPQVLAAVI	FIYFAALSPA	ITFGGLLGEK	TRNQMGVSEL	LISTAVQGIL	450
FALLGAQPLL	VVGFSGPLLV	FEEAFFSFCE	TNGLEYIVGR	VWIGFWLILL	500
VVLVVAFEGS	FLVRFISRYT	QEIFSFLISL	IFIYETFSKL	IKIFQDHPLQ	550
KTYNYNVLMV	PKPQGPLPNT	ALLSLVLMAG	TFFFAMMLRK	FKNSSYFPGK	600
LRRVIGDFGV	PISILIMVLV	DFFIQDTYTQ	KLSVPDGFKV	SNSSARGWVI	650
HPLGLRSEFP	IWMMFASALP	ALLVFILIFL	ESQITTLIVS	KPERKMVKGS	700
GFHLDLLLVV	GMGGVAALFG	MPWLSATTVR	SVTHANALTV	MGKASTPGAA	750
AQIQEVKEQR	ISGLLVAVLV	GLSILMEPIL	SRIPLAVLFG	IFLYMGVTSL	800
SGIQLFDRIL	LLFKPPKYHP	DVPYVKRVKT	WRMHLFTGIQ	IICLAVLWVV	850
KSTPASLALP	FVLILTVPLR	RVLLPLIFRN	VELQCLDADD	AKATFDEEEG	900
RDEYDEVAMP	V				911

Carrier molecule^{2,3}

A multipass glycoprotein.

Band 3 on intact RBCs is cleaved by α -chymotrypsin at residues 553 and 555 in the third extracellular loop.

 $M_{\rm r}$ (SDS-PAGE) 95,000–105,000

CHO: N-glycan One (Asn642) in the 4th extracellular loop (carries

more than half the ABH antigens on the RBC)

Copies per RBC 1,000,000

Function

Band 3 makes up 20% of the RBC membrane proteins; it has two functionally independent domains and numerous roles.

N-terminus cytoplasmic domain (residues 1–359):

Anchored to the membrane skeleton via ankyrin and protein 4.2, and contributes to maintaining the structural integrity of the RBC; interacts with several glycolytic enzymes, hemoglobin, catalase, and hemichromes (the oxidation products of denatured hemoglobin).

C-terminus membrane domain (residues 360–911):

Anion exchange (HCO₃⁻ and Cl⁻) across the RBC membrane; contributes to the stability of the lipid bilayer through interaction with adjacent phospholipid molecules.

Band 3 may be involved in the removal of senescent or defective RBCs from the circulation and sequestration of RBCs infected with *Plasmodium falciparum*.

Disease association²

A severely hydropic baby, who lacked band 3 and protein 4.2, had to be resuscitated and kept alive by transfusions.

Products of variant alleles of band 3 have been implicated in the pathogenesis of South East Asian ovalocytosis, congenital acanthocytosis, hereditary spherocytosis, and distal renal tubular acidosis.

Band 3 has a role in the attachment of malarial parasites to the surface of RBCs, and in the adhesion of parasitized cells to the vascular epithelium.

Phenotypes (% occurrence)

Phenotype	Caucasians	Blacks	Asians	South American Indians
Di(a+b-)	<0.01	<0.01	< 0.01	<0.1
Di(a-b+)	>99.9	>99.9	90	64
Di(a+b+)	<0.1	<0.1	10	36

Null: Di(a-b-) in one, transfusion-dependent case

Unusual: Weak Di(b+)

Comments

Band 3 and glycophorin A (GPA) interact during biosynthesis and within the RBC membrane: GPA appears to be a chaperone to aid the correct folding and efficient transport of band 3 to the RBC membrane. Lack of GPA in the RBC membrane results in failure to express Wr^b (**DI4**) antigen. An altered form of band 3 present in South East Asian ovalocytes is due to a deletion of amino acid residues 400 to 408⁴.

References

- ¹ Zelinski, T., 1998. Erythrocyte band 3 antigens and the Diego blood group system. Transfus Med Rev 12, 36–45.
- ² Bruce, L.J., Tanner, M.J., 1999. Erythroid band 3 variants and disease. Baillieres Best Pract Res Clin Haematol 12, 637–654.
- ³ Schofield, A.E., et al., 1994. The structure of the human red blood cell anion exchanger (EPB3, AE1, band 3) gene. Blood 84, 2000–2012.
- ⁴ Tanner, M.J., 1993. Molecular and cellular biology of the erythrocyte anion exchanger (AE1). Semin Hematol 30, 34–57.

Dia Antigen

Terminology

ISBT symbol (number) DI1 (010001 or 10.1)

Obsolete name Diego

History Named after Mrs. Diego, producer of the first

example of anti-Di^a; reported in detail in 1955;

identified as a result of HDFN.

Occurrence

Most populations 0.01%

South American Indians From 2% in Caracas Indians to 54% in Kainganges

Indians

Japanese 12% Chippewa Indians 11%

(Canada)

Chinese 5% Hispanics 1% Poles 0.47%

Antithetical antigen

Di^b (**DI2**)

Expression

Cord RBCs Expressed

Molecular basis associated with Dia antigen1

Amino acid Leu854

Nucleotide T at bp 2561 in exon19

Di^a is predominantly associated with band 3 Memphis variant II, which has a mutation of Lys56 to Glu in the cytoplasmic domain. RBCs with the band 3 Memphis variant II bind stilbene disulfonate (H₂DIDS) more readily than do RBCs with Memphis variant I or common type band 3. Di^a with Lys56 has been found in Amazonian Indians², but is not associated with antigen expression.

Effect of enzymes and chemicals on Dia antigen on intact RBCs

 $\begin{array}{lll} Ficin/Papain & Resistant \\ Trypsin & Resistant \\ \alpha\text{-Chymotrypsin} & Resistant \\ DTT~200\,\text{mM} & Resistant \\ Acid & Resistant \end{array}$

In vitro characteristics of alloanti-Dia

Optimal technique IAT Complement binding Some

Clinical significance of alloanti-Dia

Transfusion Reaction None to severe/delayed

HDFN Mild to severe

Comments

In contrast to many of the Diego system antibodies, anti-Di^a is usually found as a single specificity; only occasionally does it occur in sera containing multiple antibodies to low-prevalence antigens. Examples of agglutinating anti-Di^a and naturally-occurring anti-Di^a exist, but are rare.

References

- ¹ Bruce, L.J., et al., 1994. Band 3 Memphis variant II. Altered stilbene disulfonate binding and the Diego (Di^a) blood group antigen are associated with the human erythrocyte band 3 mutation Pro⁸⁵⁴-- > Leu. J Biol Chem 269, 16155–16158.
- ² Baleotti Jr., W., et al., 2003. A novel DI *A allele without the Band 3-Memphis mutation in Amazonian Indians. Vox Sang 84, 326–330.

Di^b Antigen

Terminology

ISBT symbol (number) DI2 (010002; 10.2)

Obsolete name Luebano

History Anti-Di^b identified in 1967; detected an antigen of

high prevalence that is antithetical to Dia.

Occurrence

Most populations 100% Native Americans 99%

Antithetical antigen

Dia (**DI1**)

Expression

Cord RBCs Expressed

Altered Weak on South East Asian ovalocytes, and on

the Di(a-b+) and Di(a+b+) RBCs of some

Hispanic-Americans

Molecular basis associated with Dib antigen1

Amino acid Pro854

Nucleotide C at bp 2561 in exon 19

Effect of enzymes and chemicals on Dib antigen on intact RBCs

 $\begin{array}{lll} \mbox{Ficin/Papain} & \mbox{Resistant} \\ \mbox{Trypsin} & \mbox{Resistant} \\ \mbox{α-Chymotrypsin} & \mbox{Resistant} \\ \mbox{DTT 200 mM} & \mbox{Resistant} \\ \mbox{Acid} & \mbox{Resistant} \end{array}$

In vitro characteristics of alloanti-Dib

Immunoglobulin class IgG Optimal technique IAT Complement binding No

Clinical significance of alloanti-Dib

Transfusion reaction None to moderate/delayed

HDFN Mild

Autoanti-Dib

Comments

Anti-Di^b demonstrates dosage, reacting more strongly with Di(a-b+) than with Di(a+b+) RBCs.

Siblings of patients with anti-Di^b should be tested for compatibility, and the patient urged to donate blood for cryogenic storage when his/her clinical state permits.

Reference

¹ Bruce, L.J., et al., 1994. Band 3 Memphis variant II. Altered stilbene disulfonate binding and the Diego (Di^a) blood group antigen are associated with the human erythrocyte band 3 mutation Pro⁸⁵⁴--> Leu. J Biol Chem 269, 16155–16158.

Wra Antigen

Terminology

ISBT symbol (number) DI3 (010003 or 10.3) Obsolete names Wright; 700001; 211001

History Identified in 1953 as the cause of HDFN in the

Wright family; assigned to the Diego blood group

system in 1995.

Occurrence

All populations <0.01%

Antithetical antigen

Wr^b (**DI4**)

Expression

Cord RBCs Expressed

Molecular basis associated with Wra antigen1

Amino acid Lys658

Nucleotide A at bp 1972 in exon 16

Effect of enzymes and chemicals on Wr^a antigen on intact RBCs

 $\begin{array}{lll} Ficin/Papain & Resistant \\ Trypsin & Resistant \\ \alpha\text{-Chymotrypsin} & Resistant \\ DTT~200\,\text{mM} & Resistant \\ Acid & Resistant \end{array}$

In vitro characteristics of alloanti-Wra

Immunoglobulin class IgM; IgG Optimal technique RT; IAT

Clinical significance of alloanti-Wra

Transfusion reaction None to severe/immediate or delayed/hemolytic

HDFN Mild to severe

Comments

Alloanti-Wr^a is often an apparent naturally-occurring antibody and is found in the serum of 1% to 2% of blood donors. It is frequently found in multispecific sera and is a common specificity in patients with AIHA.

Reference

¹ Bruce, L.J., et al., 1995. Changes in the blood group Wright antigens are associated with a mutation at amino acid 658 in human erythrocyte band 3: a site of interaction between band 3 and glycophorin A under certain conditions. Blood 85, 541–547.

Wr^b Antigen

Terminology

ISBT symbol (number) DI4 (010004 or 10.4)

Obsolete names Fritz; MF; 901010; 900024; 211002

History Anti-Wr^b identified in 1971; detected an antigen

of high prevalence antithetical to Wra; assigned to

Diego blood group system in 1995.

Occurrence

All populations 100%

Antithetical antigen

Wr^a (**DI3**)

Expression

Cord RBCs Expressed

Altered On ENEP- (HAG+), ENAV- $(MARS+)^1$, and

ENEV-RBCs²

Molecular basis associated with Wrb antigen3

Amino acid Glu658

Nucleotide G at bp 1972 in exon 16

For expression, Wr^b antigen requires the presence of amino acid residues 78 (previously 59) to 95 (previously 76) of GPA⁴.

Effect of enzymes and chemicals on Wrb antigen on intact RBCs

Ficin/Papain Resistant (one example); sensitive (one example)⁵

 $\begin{array}{lll} Trypsin & Resistant \\ \alpha\text{-Chymotrypsin} & Resistant \\ DTT~200\,\text{mM} & Resistant \\ Acid & Resistant \end{array}$

In vitro characteristics of alloanti-Wrb

Immunoglobulin class IgM plus IgG

Optimal technique IAT

Clinical significance of alloanti-Wrb

Transfusion reaction Not known because only three individuals with

Wr(a+b-) RBCs and alloanti-Wr^b have been described, but chemiluminescence assay suggests that anti-Wr^b may cause accelerated destruction of

transfused incompatible RBCs1

HDFN Positive DAT but not clinical HDFN

Autoanti-Wrb

Yes; fairly common specificity in patients with AIHA. Some autoanti-Wr^b appear to be benign while others are not: in two cases autoanti-Wr^b, reactive at 37°C, resulted in fatal intravascular hemolysis.

Comments

Alloanti-Wr^b can be a component in the plasma of immunized En(a–) people. RBCs that lack GPA, i.e., with the En(a–) or M^kM^k phenotype, type as Wr(a–b–). Some hybrid glycophorin molecules, e.g., En^a.UK, GP.Mur, GP.Hop, GP.Hil, GP.Bun, GP.HF, GP.JL, GP.SAT, GP.TK or GP.Dantu do not express Wr^b. All these hybrids have glutamic acid at residue 658 of band 3, but lack the required amino acids from GPA⁶. GP.HAG [Gln82 (previously 63) Lys of GPA], GP.MARS [Ala84 (previously 65) Pro of GPA], and GP.ENEV [Val81 (previously 62) Gly of GPA] have an altered expression of Wr^b.

References

- ¹ Poole, J., 2000. Red cell antigens on band 3 and glycophorin A. Blood Rev 14, 31–43.
- ² Velliquette, R.W., et al., 2010. Novel single nucleotide change in *GYP*A* in a person who made an alloantibody to a new high prevalence MNS antigen called ENEV. Transfusion 50, 856–860.
- ³ Bruce, L.J., et al., 1995. Changes in the blood group Wright antigens are associated with a mutation at amino acid 658 in human erythrocyte band 3: a site of interaction between band 3 and glycophorin A under certain conditions. Blood 85, 541–547.

- ⁴ Reid, M.E., 1999. Contribution of MNS to the study of glycophorin A and glycophorin B. Immunohematology 15, 5–9.
- ⁵ Storry, J.R., et al., 2001. A new Wr(a-b-) proband with anti-Wr^b recognizing a ficin sensitive antigen [abstract]. Transfusion 41 (Suppl.), 23S.
- ⁶ Huang, C.-H., et al., 1996. Human red blood cell Wright antigens: a genetic and evolutionary perspective on glycophorin A-band 3 interaction. Blood 87, 3942–3947.

Wd^a Antigen

Terminology

ISBT symbol (number) DI5 (010005 or 10.5) Obsolete names Waldner; 700030

History Reported in 1983; first described in the Waldner

family; identified when RBCs were being typed with a serum known to contain anti-Fr^a; assigned to

Diego blood group system in 1996.

Occurrence

Found only in two Schmiedeleut Hutterite families, one family in Holland with probable Hutterite connections, and two Namibian sisters.

Expression

Cord RBCs Expressed

Molecular basis associated with Wda antigen^{1,2}

Amino acid Met557

Nucleotide A at bp 1669 in exon 14 Wd(a–) (wild type) Val557 and G at bp 1669

Effect of enzymes and chemicals on Wd^a antigen on intact RBCs

 $\begin{array}{lll} Ficin/Papain & Resistant \\ Trypsin & Resistant \\ \alpha\text{-Chymotrypsin} & Sensitive \\ DTT~200\,\text{mM} & Resistant \\ Acid & Resistant \end{array}$

In vitro characteristics of alloanti-Wda

Immunoglobulin class IgM; IgG (at least one IgG example reported)

Optimal technique RT; IAT

Clinical significance of alloanti-Wda

Anti-Wd^a was not made by any of six Wd(a–) women, who between them gave birth to 30 Wd(a+) children³. In the same study, anti-Wd^a was found in the serum of 1 of 358 pregnant women. No other data are available.

Comments

Anti-Wda is a common specificity in multispecific sera.

References

- ¹ Bruce, L.J., et al., 1996. The low-incidence blood group antigen, Wd^a, is associated with the substitution Val₅₅₇--> Met in human erythrocyte band 3 (AE1). Vox Sang 71, 118–120.
- ² Jarolim, P., et al., 1997. Blood group antigens Rb^a, Tr^a, and Wd^a are located in the third ectoplasmic loop of erythroid band 3. Transfusion 37, 607–615.
- ³ Lewis, M., Kaita, H., 1981. A "new" low incidence "Hutterite" blood group antigen Waldner (Wda). Am J Hum Genet 33, 418–420.

Rb^a Antigen

Terminology

ISBT symbol (number) DI6 (010006 or 10.6) Obsolete names Redelberger; 700027

History Reported in 1978; found on the RBCs of Mr.

Redelberger, a donor and donor recruiter; assigned

to Diego blood group system in 1996.

Occurrence

Found in three families.

Expression

Cord RBCs Expressed

Molecular basis associated with Rba antigen1

Amino acid Leu548

Nucleotide T at bp 1643 in exon 14 Rb(a–) (wild type) Pro548 and C at bp 1643

Effect of enzymes and chemicals on Rba antigen on intact RBCs

In vitro characteristics of alloanti-Rba

Immunoglobulin class IgM (predominantly); IgG from the original report

Optimal technique RT, IAT

Clinical significance of alloanti-Rba

Five Rb(a–) women, who gave birth to Rb(a+) children, did not make anti-Rb^a. No other data are available.

Comments

Common specificity in multispecific sera.

Reference

¹ Jarolim, P., et al., 1997. Blood group antigens Rb^a, Tr^a, and Wd^a are located in the third ectoplasmic loop of erythroid band 3. Transfusion 37, 607–615.

WARR Antigen

Terminology

ISBT symbol (number) DI7 (010007 or 10.7) Obsolete names Warrior; 700055

History Identified in 1991 as a result of HDFN in the

Warrior family; assigned to Diego blood group

system in 1996.

Occurrence

Found in two kindred, both with Native American heritage. The eldest WARR+ member in the Warrior kindred was of Absentee Shawnee ancestry¹.

Expression

Cord RBCs Expressed

Molecular basis associated with WARR antigen²

Amino acid Ile552

Nucleotide T at bp 1654 in exon 14 WARR- (wild type) Thr552 and C at bp 1654

Effect of enzymes and chemicals on WARR antigen on intact RBCs

Ficin/Papain Resistant Trypsin Resistant $\begin{array}{lll} \alpha\text{-Chymotrypsin} & Sensitive \\ Pronase & Sensitive \\ DTT~200~\text{mM} & Resistant \end{array}$

In vitro characteristics of alloanti-WARR

Immunoglobulin class IgG Optimal technique IAT

Clinical significance of alloanti-WARR

Transfusion reaction No data are available

HDFN Mild

Comments

It is a common specificity in multispecific sera and immune anti-WARR exists.

References

- ¹ Coghlan, G., et al., 1995. A "new" low-incidence red cell antigen, WARR: unique to native Americans? Vox Sang 68, 187–190.
- ² Jarolim, P., et al., 1997. A Thr₅₅₂--> Ile substitution in erythroid band 3 gives rise to the warrior blood group antigen. Transfusion 37, 398–405.

ELO Antigen

Terminology

ISBT symbol (number) DI8 (010008 or 10.8)

Obsolete name 700051

History Antigen recognized in 1979; reported in detail in

1993; named after the first name of the original proband; assigned to Diego blood group system in

1998.

Occurrence

All populations <0.01%

Expression

Cord RBCs Expressed

Molecular basis associated with ELO antigen¹

Amino acid Trp432

Nucleotide T at bp 1294 in exon 12 ELO– (wild type) Arg432 and C at bp 1294

Effect of enzymes and chemicals on ELO antigen on intact RBCs

 $\begin{array}{lll} Ficin/Papain & Resistant \\ Trypsin & Resistant \\ \alpha\text{-Chymotrypsin} & Variable \\ Pronase & Variable \\ DTT~200\,\text{mM} & Resistant \end{array}$

In vitro characteristics of alloanti-ELO

Immunoglobulin class IgG Optimal technique IAT

Clinical significance of alloanti-ELO

Transfusion reaction No data are available HDFN Mild to severe

Comments

Several examples of immune monospecific anti-ELO exist and it is often found in multispecific sera.

Reference

¹ Zelinski, T., 1998. Erythrocyte band 3 antigens and the Diego blood group system. Transfus Med Rev 12, 36–45.

Wu Antigen

Terminology

ISBT symbol (number) DI9 (010009 or 10.9)

Obsolete names Wulfsberg (700013); Hov (700038); Haakestad History Identified in 1967; named after the original Wu+

donor; assigned to Diego blood group system in

1998.

Occurrence

Less than 0.01% (Dutch, Danish, and Norwegian ancestry; also in one Irish and one Black proband).

Antithetical antigen

DISK (DI22)

Expression

Cord RBCs Expressed

Molecular basis associated with Wu antigen¹

Amino acid Ala565

Nucleotide C at bp 1694 in exon 14

Effect of enzymes and chemicals on Wu antigen on intact RBCs

 $\begin{array}{lll} Ficin/Papain & Resistant \\ Trypsin & Resistant \\ \alpha\text{-Chymotrypsin} & Sensitive \\ Pronase & Sensitive \\ DTT 200\,\text{mM} & Resistant \end{array}$

In vitro characteristics of alloanti-Wu

Optimal technique RT; IAT

Clinical significance of alloanti-Wu

No data are available.

Comments

Anti-Wu is often found in multispecific sera and may be naturally-occurring. Several members in one family of Dutch descent are likely to be homozygous for Wu, and an Irish woman homozygous for Wu (DI*02.09 allele) was reported. The serological relationship with NFLD and BOW² cannot (yet) be explained by the molecular knowledge.

References

- ¹ Zelinski, T., 1998. Erythrocyte band 3 antigens and the Diego blood group system. Transfus Med Rev 12, 36–45.
- ² Kaita, H., et al., 1992. A serologic relationship among the NFLD, BOW, and Wu red cell antigens. Transfusion 32, 845–847.

Bp^a Antigen

Terminology

ISBT symbol (number) DI10 (010010 or 10.10)

Obsolete names Bishop; 700010

History Antigen discovered in 1964 on the RBCs of

Mr. Bishop; assigned to Diego blood group system

in 1998.

Occurrence

There are two probands (English and Italian).

Expression

Cord RBCs Presumed expressed

Molecular basis associated with Bp^a antigen¹

Amino acid Lys569

Nucleotide A at bp 1707 in exon 14 Bp(a–) (wild type) Asn569 and C at bp 1707

Effect of enzymes and chemicals on Bp^a antigen on intact RBCs²

DTT 200 mM Presumed resistant

In vitro characteristics of alloanti-Bpa

Immunoglobulin class IgM Optimal technique RT

Clinical significance of alloanti-Bpa

Transfusion reaction No data are available

HDFN No

Comments

Alloanti-Bp^a is often found in sera containing multiple naturally-occurring antibodies (including anti-Wr^a), and in sera from patients with AIHA. The band 3 amino acid substitution associated with expression of Bp^a antigen is likely to be located within the RBC lipid bilayer; thus, the enzyme sensitivity of Bp^a is somewhat surprising and may indicate the interaction with another enzyme sensitive component in the formation of the Bp^a epitope.

References

- ¹ Zelinski, T., 1998. Erythrocyte band 3 antigens and the Diego blood group system. Transfus Med Rev 12, 36–45.
- ² Jarolim, P., et al., 1998. Characterization of seven low incidence blood group antigens carried by erythrocyte band 3 protein. Blood 92, 4836–4843.

Mo^a Antigen

Terminology

ISBT symbol (number) DI11 (010011 or 10.11)

Obsolete names Moen; 700022

History Antigen found in 1972 when random donors were

screened for Jn^a; assigned to Diego blood group

system in 1998.

Occurrence

Three probands have been reported: one from Norway and two from Belgium.

Antithetical antigen

 Hg^a (DI12)

Expression

Cord RBCs Presumed expressed

Molecular basis associated with Mo^a antigen¹

Amino acid His656

Nucleotide A at bp 1967 in exon 16 Mo(a–) (wild type) Arg656 and G at bp 1967

Effect of enzymes and chemicals on Mo^a antigen on intact RBCs

 $\begin{array}{lll} Ficin/Papain & Resistant \\ Trypsin & Resistant \\ \alpha\text{-Chymotrypsin} & Resistant \\ Pronase & Resistant \\ DTT~200\,\text{mM} & Resistant \\ \end{array}$

In vitro characteristics of alloanti-Moa

Immunoglobulin class IgM; IgG Optimal technique RT; IAT

Clinical significance of alloanti-Mo^a

No data are available because the antigen is rare.

Comments

Anti-Mo^a may be naturally-occurring, and is found in multispecific sera.

Reference

¹ Zelinski, T., 1998. Erythrocyte band 3 antigens and the Diego blood group system. Transfus Med Rev 12, 36–45.

Hg^a Antigen

Terminology

ISBT symbol (number) DI12 (010012 or 10.12)

Obsolete names Hughes; 700034; Tarplee; Tarp

History The Hg^a antigen was described in 1983. Its name

was derived from the maiden name (Hughes) of the original Hg(a+) panel donor identified during routine antibody screening tests. Hg^a joined the

Diego blood group system in 1998.

Occurrence

Reported in three Welsh families and an Australian donor from New South Wales.

Antithetical antigen

Mo^a (**DI11**)

Expression

Cord RBCs Expressed

Molecular basis associated with Hg^a antigen¹

Amino acid Cys656

Nucleotide T at bp 1966 in exon 16 Hg(a–) (wild type) Arg656 and C at bp 1966

Effect of enzymes and chemicals on Hg^a antigen on intact RBCs²

 $\begin{array}{lll} \mbox{Ficin/Papain} & \mbox{Resistant} \\ \mbox{Trypsin} & \mbox{Resistant} \\ \mbox{α-Chymotrypsin} & \mbox{Resistant} \\ \mbox{Pronase} & \mbox{Resistant} \\ \end{array}$

DTT 200 mM Presumed resistant

In vitro characteristics of alloanti-Hga

Immunoglobulin class IgM; IgG Optimal technique RT; IAT

Clinical significance of alloanti-Hga

No data are available because the antigen is rare.

Comments

Anti-Hg^a is found in multispecific sera; anti-Hg^a as a single specificity has not been reported.

References

- ¹ Zelinski, T., 1998. Erythrocyte band 3 antigens and the Diego blood group system. Transfus Med Rev 12, 36–45.
- ² Jarolim, P., et al., 1998. Characterization of seven low incidence blood group antigens carried by erythrocyte band 3 protein. Blood 92, 4836–4843.

Vg^a Antigen

Terminology

ISBT symbol (number) DI13 (010013 or 10.13) Obsolete names VanVugt; 700029

History Antigen reported in 1981; found while screening

Australian donors with anti-Wu; named after the first antigen positive donor Miss Van Vugt; assigned

to Diego blood group system in 1998.

Occurrence

Only one family reported.

Expression

Cord RBCs Presumed expressed

Molecular basis associated with Vg^a antigen¹

Amino acid His555

Nucleotide C at bp 1663 in exon 14 Vg(a–) (wild type) Tyr555 and T at bp 1663

Effect of enzymes and chemicals on Vg^a antigen on intact RBCs²

 $\begin{array}{lll} Ficin/Papain & Resistant \\ Trypsin & Resistant \\ \alpha\text{-Chymotrypsin} & Sensitive \\ Pronase & Sensitive \\ \end{array}$

DTT 200 mM Presumed resistant

In vitro characteristics of alloanti-Vga

Immunoglobulin class IgM and rarely IgG

Optimal technique RT (IAT)

Clinical significance of alloanti-Vga

No data are available.

Comments

Anti-Vg^a is a relatively common antibody (11 examples of anti-Vg^a were found among 1669 donor sera), and is found in multispecific sera that frequently also contain anti-Wr^a.

References

- ¹ Zelinski, T., 1998. Erythrocyte band 3 antigens and the Diego blood group system. Transfus Med Rev 12, 36–45.
- ² Jarolim, P., et al., 1998. Characterization of seven low incidence blood group antigens carried by erythrocyte band 3 protein. Blood 92, 4836–4843.

Sw^a Antigen

Terminology

ISBT symbol (number) DI14 (010014 or 10.14)

Obsolete names Swann: 700004

History Antigen identified in 1959, when serum from an

AIHA patient was cross-matched against RBCs from donor Donald Swann; assigned to Diego blood

group system in 1998.

Occurrence

All populations <0.01%

Expression

Cord RBCs Presumed expressed

Molecular basis associated with Sw^a antigen¹

Amino acid Gln or Trp646

Nucleotide T at bp 1936 or A at bp 1937 in exon 16 Sw(a–) (wild type) Arg646 and C at bp 1936 or G at bp 1937

Effect of enzymes and chemicals on Swa antigen on intact RBCs

DTT 200 mM Presumed resistant

In vitro characteristics of alloanti-Swa

Immunoglobulin class IgM; IgG Optimal technique RT (IAT)

Clinical significance of alloanti-Sw^a

No data are available because the antigen is rare.

Comments^{2,3}

Anti-Sw^a is often found in AIHA and in multispecific sera. Anti-Sw^a and anti-Fr^a, when present in the same serum, show cross-reactivity and cannot be separated by absorption.

Anti-Sw^a also react with SW1+ (see **DI21**) RBCs: RBCs may be Sw(a+), SW1- (Gln646, the more common type) or Sw(a+) SW1+ (Trp646). Sw(a-), SW1+ RBCs have not been found.

References

BOW Antigen

Terminology

ISBT symbol (number) DI15 (010015 or 10.15)

Obsolete names Bowyer; 700046

History Antigen reported in 1988; identified on the RBCs

of a donor (Bowyer) during an incompatible crossmatch; assigned to Diego blood group system in

1998.

Occurrence

Only a few probands have been reported.

Antithetical antigen

NFLD (DI16) (at amino acid 561, see Comments).

Expression

Cord RBCs Presumed expressed

¹ Zelinski, T., et al., 2000. Distinctive Swann blood group genotypes: molecular investigations. Vox Sang 79, 215–218.

² Contreras, M., et al., 1987. Swa: a subdivision. Vox Sang 52, 115–119.

³ Lewis, M., et al., 1988. The Swann phenotype 700:4,-41: genetic studies. Vox Sang 54, 184–187.

Dieg

Molecular basis associated with BOW antigen¹

Amino acid Ser561

Nucleotide T at bp 1681 in exon 14 BOW-, NFLD- Pro561 and C at bp 1681

(wild type)

Effect of enzymes and chemicals on BOW antigen on intact RBCs

 $\begin{array}{lll} \mbox{Ficin/Papain} & \mbox{Resistant} \\ \mbox{Trypsin} & \mbox{Resistant} \\ \mbox{α-Chymotrypsin} & \mbox{Sensitive} \\ \mbox{Pronase} & \mbox{Sensitive} \\ \mbox{DTT } 200\,\mbox{mM} & \mbox{Resistant} \end{array}$

In vitro characteristics of alloanti-BOW

Immunoglobulin class IgG; some IgM

Optimal technique IAT; RT

Clinical significance of alloanti-BOW

No data are available because the antigen is rare.

Comments

Several examples of immune monospecific anti-BOW exist and it is often found in multispecific sera. Molecular analysis showed that both BOW and NFLD are associated with a substitution at amino acid residue 561: serine is present when BOW is expressed and alanine is present when NFLD is expressed. Thus, BOW and NFLD can be considered antithetical, even though NFLD has a second mutation of Glu429Asp.

The serological relationship to Wu² cannot be explained by the molecular knowledge, although the critical residue (565Ala) for Wu is relatively close to residue 561 of band 3.

References

- ¹ McManus, K., et al., 2000. Amino acid substitutions in human erythroid protein band 3 account for the low-incidence antigens NFLD and BOW. Transfusion 40, 325–329.
- ² Kaita, H., et al., 1992. A serologic relationship among the NFLD, BOW, and Wu red cell antigens. Transfusion 32, 845–847.

NFLD Antigen

Terminology

ISBT symbol (number) DI16 (010016 or 10.16) Obsolete names Newfoundland; 700037

History Antigen reported in 1984; was found on the RBCs

of a French Canadian in Newfoundland; assigned to

Diego system in 1998.

Occurrence

Only a few probands (two French Canadian and two Japanese families) have been reported.

Antithetical antigen

BOW (DI15) (at amino acid 561, see Comments).

Expression

Cord RBCs Presumed expressed

Molecular basis associated with NFLD antigen¹

Amino acid Asp429 and Ala561

Nucleotide T at bp 1287 in exon 12 and G at bp 1681 in exon 14

NFLD-, BOW- (wild type) Glu429 with A at bp 1287, and Pro561 with C at

bp 1681

Effect of enzymes and chemicals on NFLD antigen on intact RBCs

 $\begin{array}{lll} Ficin/Papain & Resistant \\ Trypsin & Resistant \\ \alpha\text{-Chymotrypsin} & Sensitive \\ Pronase & Sensitive \\ DTT~200\,\text{mM} & Resistant \end{array}$

Acid Presumed resistant

In vitro characteristics of alloanti-NFLD

Immunoglobulin class IgM and IgG

Optimal technique RT (with albumin); IAT

Clinical significance of alloanti-NFLD

A Japanese NFLD- woman gave birth to three NFLD+ children without making anti-NFLD. No other data are available.

Comments

Anti-NFLD is found in multispecific sera. Molecular analysis showed that both NFLD and BOW are associated with a substitution at amino acid residue 561: alanine is present when NFLD is expressed and serine is present when BOW is expressed. Thus, NFLD and BOW can be considered antithetical at this residue. However, NFLD has a second mutation of Glu429Asp. The epitope defining NFLD may be created through an association and/or interaction between the first (residue 429) and third (residue 561) extracellular loops of band 3.

The serological relationship to Wu² cannot be explained by the molecular knowledge although the critical residue (565Ala) for expression of Wu is relatively close to residue 561 of band 3.

References

- ¹ McManus, K., et al., 2000. Amino acid substitutions in human erythroid protein band 3 account for the low-incidence antigens NFLD and BOW. Transfusion 40, 325–329.
- ² Kaita, H., et al., 1992. A serologic relationship among the NFLD, BOW, and Wu red cell antigens. Transfusion 32, 845–847.

Jn^a Antigen

Terminology

ISBT symbol (number) DI17 (010017 or 10.17) Obsolete names Nunhart; JN; 700014

History Antigen described in 1967; identified on the RBCs

of Mr. J.N. during a study of the incidence of Wr^a in the Prague population; assigned to Diego blood

group system in 1998.

Occurrence

Two probands (one of Polish, the other of Slovakian descent)¹.

Antithetical antigen

KREP (DI18)

Expression

Cord RBCs Presumed expressed

Molecular basis associated with Jna antigen1

Amino acid Ser566

Nucleotide T at bp 1696 in exon 14 Jn(a–) (wild type) Pro566 and C at bp 1696

Effect of enzymes and chemicals on Jna antigen on intact RBCs

 $\begin{array}{lll} Ficin/Papain & Resistant \\ Trypsin & Resistant \\ \alpha\text{-Chymotrypsin} & Sensitive \\ DTT~200\,\text{mM} & Resistant \end{array}$

In vitro characteristics of alloanti-Jn^a

Immunoglobulin class IgM (no data regarding presence of an IgG

component)

Optimal technique RT

Clinical significance of alloanti-Jn^a

No data are available because the antigen is rare.

Comments

Anti-Jn^a is found in multispecific sera that also contain anti-KREP. The majority are naturally-occurring.

Reference

KREP Antigen

Terminology

ISBT symbol (number) DI18 (010018 or 10.18)

Obsolete name IK

History Found in 1997 during investigation of the second

Jn(a+) proband; named after the antigen-positive donor; assigned to Diego blood group system in

1998.

Occurrence

One Polish proband $(IK)^1$.

Antithetical antigen

Jn^a (**DI17**)

Expression

Cord RBCs Presumed expressed

¹ Poole, J., 1999. The Diego blood group system – an update. Immunohematology 15, 135–143.

Molecular basis associated with KREP antigen¹

Amino acid Ala566

Nucleotide G at bp 1696 in exon 14 KREP– (wild type) Pro566 and C at bp 1696

Effect of enzymes and chemicals on KREP antigen on intact RBCs

 $\begin{array}{lll} Ficin/Papain & Resistant \\ Trypsin & Resistant \\ \alpha\text{-Chymotrypsin} & Sensitive \\ DTT~200\,\text{mM} & Resistant \end{array}$

In vitro characteristics of alloanti-KREP

Immunoglobulin class IgM (no data regarding presence of an IgG

component)

Optimal technique RT

Clinical significance of alloanti-KREP

No data are available, but unlikely because anti-KREP have been naturally-occurring.

Comments

Anti-KREP is naturally-occurring and is present in multispecific sera. Among 13 sera tested, 12 contained anti-Jn^a and anti-KREP, and only one serum contained anti-KREP without anti-Jn^a.

Reference

Tra Antigen

Terminology

ISBT symbol (number) DI19 (010019 or 10.19)
Obsolete names Traversu; Lanthois; 700008

History Antigen found in the 1960s during random testing

of English blood donors with a multispecific serum, that also contained anti-Wr^a; named after the first

positive donor, Traversu.

Occurrence

Only found in two English probands.

¹ Poole, J., 1999. The Diego blood group system – an update. Immunohematology 15, 135–143.

Expression

Cord RBCs Presumed expressed

Molecular basis associated with Tra antigen1

Amino acid Asn551

Nucleotide G at bp 1653 in exon 14 Tr(a–) (wild type) Lys551 and C at bp 1653

Effect of enzymes and chemicals on Tra antigen on intact RBCs

Ficin/Papain Resistant Trypsin Resistant α -Chymotrypsin Sensitive

DTT 200 mM Presumed resistant

In vitro characteristics of alloanti-Tra

Immunoglobulin class IgM and IgG Optimal technique RT; IAT

Clinical significance of alloanti-Tr^a

No data are available because the antigen is rare.

Comments

Anti-Tr^a was found as a separable specificity in 12 of 18 plasma samples that contained anti-Wr^a.

Anti-Tr^a is found in multispecific sera and in plasma from patients with AIHA.

Reference

Fra Antigen

Terminology

ISBT symbol (number) DI20 (010020 or 10.20)

Obsolete names Froese; 700026

History Reported in 1978; named after the family (Froese)

in which it was first recognized; assigned to Diego

blood group system in 2000.

Occurrence

The reported Fr(a+) probands originate from three Mennonite kindred in Manitoba, Canada.

¹ Jarolim, P., et al., 1997. Blood group antigens Rb^a, Tr^a, and Wd^a are located in the third ectoplasmic loop of erythroid band 3. Transfusion 37, 607–615.

Expression

Cord RBCs Expressed

Molecular basis associated with Fr^a antigen¹

Amino acid Lys480

Nucleotide A at bp 1438 in exon 13 Fr(a–) (wild type) Glu480 and G at bp 1438

Effect of enzymes and chemicals on Fra antigen on intact RBCs

Ficin/Papain Resistant

 $\begin{array}{lll} \text{Trypsin} & \text{Presumed resistant} \\ \alpha\text{-Chymotrypsin} & \text{Presumed resistant} \\ \text{DTT } 200\,\text{mM} & \text{Presumed resistant} \end{array}$

In vitro characteristics of alloanti-Fra

Optimal technique IAT; RT

Clinical significance of alloanti-Fra

Transfusion reaction No data are available

HDFN Positive DAT, but no clinical HDFN

Comments

Several examples of immune monospecific anti-Fr^a exist, and it is often found in multispecific sera. Anti-Fr^a and anti-Sw^a, when present in the same serum show cross-reactivity and cannot be separated by absorption².

References

SW1 Antigen

Terminology

ISBT symbol (number) DI21 (010021 or 10.21)

Obsolete name 700041

History SW1 was documented in 1987; revealed by

heterogeneity among sera containing anti-Sw^a; assigned to Diego blood group system in 2000.

McManus, K., et al., 2000. An amino acid substitution in the putative second extracellular loop of RBC band 3 accounts for the Froese blood group polymorphism. Transfusion 40, 1246–1249.

² Contreras, M., et al., 1987. Swa: a subdivision. Vox Sang 52, 115–119.

Occurrence

Most populations <0.01%

Expression

Cord RBCs Presumed expressed

Molecular basis associated with SW1 antigen¹

Amino acid Trp646

Nucleotide T at bp 1936 in exon 16 SW1-, Sw(a+) Gln646 and A at bp 1936 SW1-, Sw(a-) (wild type) Arg646 and C at bp 1936

Effect of enzymes and chemicals on SW1 antigen on intact RBCs

DTT 200 mM Presumed resistant

In vitro characteristics of alloanti-SW1

Immunoglobulin class IgM; IgG Optimal technique RT; IAT

Clinical significance of alloanti-SW1

No data are available because the antigen is rare.

Comments

Examples of anti-SW1 exist that do not react with Sw(a+) RBCs, but all anti-Sw^a react with SW1+ RBCs¹. See Sw^a (**DI14**) for more details.

Reference

DISK Antigen

Terminology

ISBT symbol (number) DI22 (010022 or 10.22)

History Named in 2010 when an antibody to a high

prevalence ficin-resistant, α -chymotrypsin-sensitive antigen was found in an untransfused Irish female

and shown to be antithetical to Wu.

¹ Zelinski, T., et al., 2000. Distinctive Swann blood group genotypes: molecular investigations. Vox Sang 79, 215–218.

Occurrence

One Irish DISK- proband has been reported, and members of the Dutch family suspected to express a double dose of Wu antigen are also anticipated to be DISK-

Antithetical antigen

Wu (**DI9**)

Expression

Cord RBCs Expressed

Molecular basis associated with DISK antigen¹

Amino acid Gly565

Nucleotide G at bp 1694 in exon 14

Effect of enzymes and chemicals on DISK antigen on intact RBCs

Ficin/Papain Resistant Trypsin Resistant α -Chymotrypsin Sensitive

DTT 200 mM Presumed resistant

In vitro characteristics of alloanti-DISK

Immunoglobulin class IgM; IgG Optimal technique RT; 37C; IAT

Clinical significance of alloanti-DISK

No data. However, serological characteristics of the only anti-DISK suggest a highly clinically significant antibody.

Comment

RBCs from the proband's brother reacted more weakly with anti-DISK, suggesting that the antibody exhibits dosage.

Siblings of patients with anti-DISK should be tested for compatibility, and the patient urged to donate blood for cryogenic storage when his/her clinical state permits.

Reference

¹ Poole, J., et al., 2010. Novel high incidence antigen in the Diego blood group system (DISK) and clinical significance of anti-DISK. Vox Sang 99 (Suppl. 1), 54–55.