Lecture 3 Forward price

David Sovich
University of Kentucky
Spring 2020

Where does the forward price come from?

> WTI CRUDE FUTURE	rebzo comaty	WEI	etatea ranetions r	icha v	✓ Mess	age ★▼	□ * ☆ * ?
P <go> to Open</go>	in Launchpa	ad					r [©]
News - Settings -					World Equity Index Futures		
Americas		2Day	Last	Net Chg	Time	High	Lo
) Dow Jones mini	Mar20 DMH0	dmy	28856.00	+79.00	12:08	28907.00	28775.0
2) S&P 500 mini	Mar20 ESH0	d ~~~	3282.75	+18.00	12:08	3283.00	3265.5
NASDAQ 100 mini	Mar20 NQH0	d my m	9060.75	+82.50	12:08	9064.75	8979.0
) S&P/TSX 60	Mar20 PTH0	d MM	1024.40	+0.00	11:58	1026.60	1021.8
) MEX IPC	Mar20 ISH0	d // /	45150.00	-4.00	11:54	45445.00	45125.0
i) IBOVESPA	Feb20 BZG0	d my 1	117530	+1804	12:03	117610	11612
EMEA							
EURO STOXX 50	Mar20 VGH0	d my	3769.00	-11.00	12:03	3788.00	3756.0
) FTSE 100	Mar20 Z HO	d Tyn M	7556.0	+26.5	12:08	7572.0	7516
8) CAC 40	Jan20 CFF0	d my -	6034.00	-1.50	12:02	6058.00	6017.0
) DAX	Mar20 GXH0	d mm	13452.50	-38.50	12:03	13527.00	13398.5
) IBEX 35	Jan20 IBF0	d www by	9556.0	-24.0	12:03	9583.0	9501
) FTSE MIB	Mar20 STH0	d vm m	23825	-106	12:02 c	23965	2372
) AEX	Jan20 EOF0	d my	609.45	-0.96	12:03	611.35	606.3
OMX STKH30	Jan20 QCF0	dhowy	1789.00	+4.00	11:59 c	1798.25	1780.2
) SWISS MKT	Mar20 SMH0	d myn My	10530.00	-26.00	12:02	10583.00	10493.0
Asia/Pacific							
) NIKKEI 225 (OSE)	Mar20 NKH0	d∖	23670	-130	15:30	23830	2367
) HANG SENG	Jan20 HIF0	d′	29072	+110	12:03	29073	2888
S) CSI 300	Jan20 IFBF0	اله سي الم	4197.40 s	+30.20	02:00 c	4212.60	4149.6
) S&P/ASX 200	Mar20 XPH0	d ~	6853.0	+12.0	12:08	6860.0	6825

Roadmap: the forward price

- 1. No-arbitrage and the LoP.
- 2. Forward price.
- 3. Synthetic positions.
- 4. Value of off-market forwards.
- 5. Summary

Arbitrage

- ► A portfolio is a collection of securities.
- ► An arbitrage is a portfolio that either:
 - 1. Costs nothing today, never yields negative cash flows, and sometimes yields positive cash flows.
 - 2. Costs a negative amount today (you get paid to buy it) and never yields negative cash flows.

Illustrating arbitrage with no uncertainty

- ▶ Let V_0 denote the price of a portfolio today.
- Let V_T denote the value of the portfolio in the future.
- ▶ Suppose that V_T is known today i.e., no uncertainty.
- ▶ When is the portfolio *V* an arbitrage?

A portfolio with no uncertainty

Arbitrage conditions with no uncertainty

- ▶ With no uncertainty, *V* is an arbitrage if either:
 - 1. $V_0 = 0$ and $V_T > 0$.
 - 2. $V_0 < 0$ and $V_T \ge 0$.
- ▶ The first case is "get something for paying nothing".
- The second case is "get paid to potentially get something".

Practice problem

Consider two securities X and Y. Security X has a price of $X_0=1$ and a certain payoff of $X_T=3$. Security Y has a price of $Y_0=1$ and a payoff of $Y_T=2$. Is there an arbitrage? If so, construct a portfolio to capitalize upon it.

Illustrating arbitrage with uncertainty

- Now suppose there is uncertainty about the payoff V_T .
- Specifically, two possible states of the world in the future:
 - State u ("up") with payoff $V_T(u)$.
 - State d ("down") with payoff $V_T(d)$.
- \triangleright When is the portfolio V an arbitrage?

A portfolio with uncertainty

Arbitrage conditions with uncertainty

- ▶ With uncertainty over state $\{u, d\}$, V is an arbitrage if either:
 - 1. $V_0 = 0$ and either:
 - a. $V_T(u) > 0$ and $V_T(d) \ge 0$.
 - b. $V_T(u) \ge 0$ and $V_T(d) > 0$.
 - 2. $V_0 < 0$ and both $V_T(u) \ge 0$ and $V_T(d) \ge 0$.

Practice problem

Consider two securities: X and Y. Security X has a price of $X_0=1$ and payoffs $X_T(u)=3$ and $X_T(d)=0$. Security Y has a price of $Y_0=1$ and payoffs $Y_T(u)=2$ and $Y_T(d)=0$. Is there an arbitrage? If so, construct a portfolio to capitalize upon it.

Practice problem

Consider two securities: X and Y. Security X has a price of $X_0=1$ and payoffs $X_T(u)=3$ and $X_T(d)=0$. Security Y has a price of $Y_0=2$ and payoffs $Y_T(u)=0$ and $Y_T(d)=3$. The probability of the "up" state occurring is $\Pr(u)=0.5$. The probability of the "down" state occurring is $\Pr(d)=0.5$. Is there an arbitrage? If so, construct a portfolio to capitalize upon it.

No-arbitrage

- ▶ What happens if a portfolio is an arbitrage?
- ► Free money is on the table! Arbitrageurs buy low and sell high.
- ▶ Demand will be infinite; markets will not clear.
- ► No-arbitrage means that market prices preclude arbitrage.

The law of one price (LoP)

- ► The law of one price (LoP) states that portfolios with the same payoffs (or terminal values) must have the same price.
- ► The LoP is directly implied by no-arbitrage.
- The LoP is the fundamental concept behind all derivatives pricing. We will use it to derive forward and options prices.

Practice problem

Security X has a price of $X_0=10$ and payoffs $X_T(u)=20$ and $X_T(d)=5$. Assume there is no arbitrage.

- 1. What is the price of a security Y with payoffs $Y_T(u) = 20$ and $Y_T(d) = 5$?
- 2. What is the price of a security Z with payoffs $Z_T(u) = 10$ and $Z_T(d) = 2.5$?
- 3. What is the price of a security W with payoffs $W_T(u)=40$ and $W_T(d)=10$?

Roadmap: the forward price

- 1. No-arbitrage and the LoP.
- 2. Forward price.
- 3. Synthetic positions.
- 4. Value of off-market forwards.
- 5. Summary

Back to cocoa

- ► Setup:
 - 1. Two dates: 0 and T.
 - 2. C.c. risk-free interest rate of $r \ge 0$.
 - 3. Cocoa spot price at date t of S_t .
- Consider the payoff to a long forward:

$$X_T = S_T - F_{0,T}$$

▶ What other portfolio has this same payoff?

Replicating portfolio

- ► Form the following portfolio at date 0:
 - 1. Long one unit of cocoa at cost S_0 .
 - 2. Short a risk-free bond with face-value of $F_{0,T}$.
- ▶ The payoff to the portfolio at date *T* is:

$$Y_T = S_T - F_{0,T}$$

This is the same payoff as the long forward!

Example of state-by-state replication

The forward price today

- ► Apply LoP: value of forward today=value of replicating portfolio.
- ▶ Value of forward today is zero by construction:

$$X_0 = 0.$$

Value of long cocoa, short bond portfolio today is:

$$Y_0 = S_0 - F_{0,T}e^{-rT}$$
.

▶ Equating $X_0 = Y_0$ and solving for the forward price yields:

$$F_{0,T}=S_0e^{rT}.$$

Practice problem

The spot price of cocoa is $S_0 = \$2,500$. The c.c. risk-free interest rate is 0.05. Assume there is no arbitrage. What is the one-year forward price of cocoa? Demonstrate that payoffs to the long forward and the replicating portfolio are equivalent at date T.

Exploiting arbitrage opportunities: "buy low, sell high"

- ▶ What would you do if $F_{0,T} > S_0 e^{rT}$?
 - 1. Enter short forward contract.
 - 2. Purchase synthetic forward: long cocoa and short bond.
- ▶ What would you do if $F_{0,T} < S_0 e^{rT}$?
 - 1. Enter long forward contract.
 - 2. Sell synthetic forward: short cocoa and long bond.

Practice problem

The spot price of cocoa is $S_0 = \$2,500$. The c.c. risk-free interest rate is 0.05. Suppose the one year forward price is $F_{0,1} = \$2,700$. Is there an arbitrage? If so, construct a strategy to capitalize upon it.

What is the meaning of $F_{0,T} = S_0 e^{rI}$?

▶ Is the forward price = expected future spot price? No! Instead:

$$F_{0,T} = S_0 + \text{cost of carry}.$$

► The cost of carry is the net cash flow associated with holding a long position in the underlying. In our setting:

cost of carry =
$$S_0 \left(e^{rT} - 1\right)$$
 interest foregone by long

Roadmap: the forward price

- 1. No-arbitrage and the LoP.
- 2. Forward price.
- 3. Synthetic positions.
- 4. Value of off-market forwards.
- 5. Summary

Synthetic positions

- Replication can be used to create synthetic positions:
 - 1. Forward = stock bond.
 - 2. Stock = forward + bond.
 - 3. Bond = stock forward.
- ► Synthetics are the most basic form of financial engineering.

Recall synthetics drove commodity futures growth

Open Interest for Select Commodity Futures By Month

Roadmap: the forward price

- 1. No-arbitrage and the LoP.
- 2. Forward price.
- 3. Synthetic positions.
- 4. Value of off-market forwards.
- 5. Summary

The forward price changes over time

▶ What is the value of your original long forward at date τ ?

<u>origination</u> <u>tomorrow</u> <u>the future</u>

 $F_{0,T}$ $F_{\tau,T}$ $F_{\tau,T} = S_T$

Value of off-market forward

▶ The value of your original long forward at date τ is:

$$(F_{\tau,T}-F_{0,T})e^{-r(T-\tau)}$$
.

- ► Intuition:
 - You can lock-in a payoff by shorting a new forward.
 - Because the payoff is risk-free, we discount with rate r.
 - If the forward price has risen, we have made a profit.

Practice problem

Suppose the spot price of the S&P 500 index is $S_0 = \$3,300$ and risk-free interest rate is r = 0.10. At date 0, you enter into a long, three-year forward contract on the S&P 500 index. One year passes and the S&P index has risen to $S_1 = \$3,500$. What is the value of your forward contract at date $\tau = 1$?

Roadmap: the forward price

- 1. No-arbitrage and the LoP.
- 2. Forward price.
- 3. Synthetic positions.
- 4. Value of off-market forwards.
- 5. Summary

Summary

- ► The law of one price states that portfolios with the same payoffs must have the same prices. This is true if no-arbitrage holds.
- No-arbitrage forward price = spot price + cost of carry:

$$F_{0,T} = S_0 e^{rT}$$

▶ Value of off-market forward at date $\tau \in (0, T)$ is:

$$V_{\tau} = (F_{\tau,T} - F_{0,T}) e^{-r(T-\tau)}.$$

References

- ► Textbook chapters 5.1, 5.2, and 5.3.
- ▶ Equity index forward prices are from Bloomberg.
- Slides are created using code on my Github.

Why is $F_{0,T} \neq$ expected future spot price?

▶ If the underlying has a positive risk premium, then the forward price must be a downward biased predictor of future spot price:

$$F_{0,T} < \mathbb{E}(S_T)$$
.

- Rationale:
 - Despite no investment, forward retains risks of underlying.
 - To bear this risk, buyer must earn at least the risk premium.
 - This can only occur if $X_T = S_T F_{0,T} > 0$, on average.

