Chapter 13

Vectors and Vector-Valued Functions (I)

Shuwei Chen

swchen@swjtu.edu.cn

13.1

Vectors in the Plane

Basic Vector Operations

Vectors: quantities that have both *length* (or *magnitude*) and *direction*.

Scalars: quantities that have magnitude, but no direction One exception is the zero vector, denoted **0**: It has length 0 and no direction.

Scalar Multiplication

DEFINITION Scalar Multiples and Parallel Vectors

Given a scalar c and a vector \mathbf{v} , the **scalar multiple** $c\mathbf{v}$ is a vector whose magnitude is |c| multiplied by the magnitude of \mathbf{v} . If c>0, then $c\mathbf{v}$ has the same direction as \mathbf{v} . If c<0, then $c\mathbf{v}$ and \mathbf{v} point in opposite directions. Two vectors are **parallel** if they are scalar multiples of each other.

Zero vector is parallel to all vectors.

EXAMPLE 1 Parallel vectors Using Figure 6a, write the following vectors in terms of **u** or **v**.

- a. \overrightarrow{PQ} b. \overrightarrow{QP} c. \overrightarrow{QR}
- **d.** \overrightarrow{RS}

Vector Addition and Subtraction

Two ways to form the vector sum of two nonzero vectors u and v geometrically: Triangle Rule and Parallelogram Rule.

Difference u - v is defined to be the sum u + (-v).

Finding $\mathbf{u} - \mathbf{v} = \mathbf{u} + (-\mathbf{v})$ by Triangle Rule

(a)

Finding $\mathbf{u} - \mathbf{v}$ directly

(b)

EXAMPLE 2 Vector operations Use Figure 10 to write the following vectors as sums of scalar multiples of \mathbf{v} and \mathbf{w} .

- a. \overrightarrow{OP} b. \overrightarrow{OQ} c. \overrightarrow{QR}

Vector Components

DEFINITION Position Vectors and Vector Components

A vector \mathbf{v} with its tail at the origin and head at the point (v_1, v_2) is called a **position** vector (or is said to be in **standard position**) and is written $\langle v_1, v_2 \rangle$. The real numbers v_1 and v_2 are the x- and y-components of \mathbf{v} , respectively. The position vectors $\mathbf{u} = \langle u_1, u_2 \rangle$ and $\mathbf{v} = \langle v_1, v_2 \rangle$ are **equal** if and only if $u_1 = v_1$ and $u_2 = v_2$.

For vector \overrightarrow{PQ} equal to v, but not in standard position

Magnitude

DEFINITION Magnitude of a Vector

Given the points $P(x_1, y_1)$ and $Q(x_2, y_2)$, the **magnitude**, or **length**, of

 $\overrightarrow{PQ} = \langle x_2 - x_1, y_2 - y_1 \rangle$, denoted $|\overrightarrow{PQ}|$, is the distance between P and Q:

$$|\overrightarrow{PQ}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$

The magnitude of the position vector $\mathbf{v} = \langle v_1, v_2 \rangle$ is $|\mathbf{v}| = \sqrt{v_1^2 + v_2^2}$.

EXAMPLE 3 Calculating components and magnitude Given the points O(0, 0), P(-3, 4), and Q(6, 5), find the components and magnitude of the following vectors.

a.
$$\overrightarrow{OP}$$
 b. \overrightarrow{PQ}

Vector Operations in Terms of Components

DEFINITION Vector Operations in \mathbb{R}^2

Suppose
$$c$$
 is a scalar, $\mathbf{u} = \langle u_1, u_2 \rangle$, and $\mathbf{v} = \langle v_1, v_2 \rangle$.

$$\mathbf{u} + \mathbf{v} = \langle u_1 + v_1, u_2 + v_2 \rangle \quad \text{Vector addition}$$

$$\mathbf{u} - \mathbf{v} = \langle u_1 - v_1, u_2 - v_2 \rangle \quad \text{Vector subtraction}$$

$$c\mathbf{u} = \langle cu_1, cu_2 \rangle \quad \text{Scalar multiplication}$$

EXAMPLE 4 Vector operations Let $\mathbf{u} = \langle -1, 2 \rangle$ and $\mathbf{v} = \langle 2, 3 \rangle$.

- **a.** Evaluate $|\mathbf{u} + \mathbf{v}|$.
- **b.** Simplify $2\mathbf{u} 3\mathbf{v}$.
- **c.** Find two vectors half as long as **u** and parallel to **u**.

Unit Vectors

A unit vector is any vector with length 1 Coordinate unit vectors $i = \langle 1,0 \rangle$ and $j = \langle 0,1 \rangle$

In general, the vector $\boldsymbol{v} = \langle v_1, v_2 \rangle = v_1 \boldsymbol{i} + v_2 \boldsymbol{j}$

Construct a new vector parallel to v of a specified length, e.g., 1.

$$u = \frac{v}{|v|}$$

u is a unit vector with the same direction as v. $-u = -\frac{v}{|v|}$ is also a unit vector with the opposite direction

Similarly, form the vector $\frac{cv}{|v|}$

$$\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|}$$
 and $-\mathbf{u} = -\frac{\mathbf{v}}{|\mathbf{v}|}$ have length 1.

EXAMPLE 5 Magnitude and unit vectors Consider the points P(1, -2) and Q(6, 10).

- **a.** Find \overrightarrow{PQ} and two unit vectors parallel to \overrightarrow{PQ} .
- **b.** Find two vectors of length 2 parallel to \overrightarrow{PQ} .

Properties of Vector Operations

SUMMARY **Properties of Vector Operations**

Suppose **u**, **v**, and **w** are vectors and a and c are scalars. Then the following properties hold (for vectors in any number of dimensions).

1.
$$u + v = v + u$$

Commutative property of addition

2.
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$
 Associative property of addition

3.
$$v + 0 = v$$

Additive identity

4.
$$\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$$

Additive inverse

$$5. c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$

Distributive property 1

6.
$$(a + c)\mathbf{v} = a\mathbf{v} + c\mathbf{v}$$

Distributive property 2

7.
$$0v = 0$$

Multiplication by zero scalar

8.
$$c0 = 0$$

Multiplication by zero vector

9.
$$1v = v$$

Multiplicative identity

10.
$$a(c\mathbf{v}) = (ac)\mathbf{v}$$

Associative property of scalar multiplication

Velocity Vectors

EXAMPLE 6 Speed of a boat in a current Suppose the water in a river moves southwest (45° west of south) at 4 mi/hr and a motorboat travels due east at 15 mi/hr relative to the shore. Determine the speed of the boat and its heading relative to the moving water

Force Vectors

EXAMPLE 7 Finding force vectors A child pulls a wagon (Figure 21) with a force of $|\mathbf{F}| = 20$ lb at an angle of $\theta = 30^{\circ}$ to the horizontal. Find the force vector \mathbf{F} .

EXAMPLE 8 Balancing forces A 400-lb engine is suspended from two chains that form 60° angles with a horizontal ceiling (Figure 23). How much weight does each chain support?

13.2

Vectors in Three Dimensions

The xyz-Coordinate System

Three-dimensional rectangular coordinate system or the *xyz*-coordinate system.

Right-handed coordinate system:

Slide 3 - 26

EXAMPLE 1 Plotting points in xyz-space Plot the following points.

b.
$$(-2, -3, 5)$$

Equations of Simple Planes

EXAMPLE 2 Parallel planes Determine the equation of the plane parallel to the xz-plane passing through the point (2, -3, 7).

Distances in *xyz***-Space**

Distance Formula in xyz-Space

The distance between the points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ is

$$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$$
.

Equation of a Sphere

Spheres and Balls

A **sphere** centered at (a, b, c) with radius r is the set of points satisfying the equation

$$(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2$$
.

A **ball** centered at (a, b, c) with radius r is the set of points satisfying the inequality

$$(x-a)^2 + (y-b)^2 + (z-c)^2 \le r^2$$
.

Vectors in \mathbb{R}^3

DEFINITION Vector Operations in \mathbb{R}^3

Let
$$c$$
 be a scalar, $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$, and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$.

$$\mathbf{u} + \mathbf{v} = \langle u_1 + v_1, u_2 + v_2, u_3 + v_3 \rangle \quad \text{Vector addition}$$

$$\mathbf{u} - \mathbf{v} = \langle u_1 - v_1, u_2 - v_2, u_3 - v_3 \rangle \quad \text{Vector subtraction}$$

$$c\mathbf{u} = \langle cu_1, cu_2, cu_3 \rangle \quad \text{Scalar multiplication}$$

Magnitude and Unit Vectors

DEFINITION Magnitude of a Vector

The **magnitude** (or **length**) of the vector $\overrightarrow{PQ} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$ is the distance from $P(x_1, y_1, z_1)$ to $Q(x_2, y_2, z_2)$:

$$|\overrightarrow{PQ}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}.$$

Coordinate unit vectors $i = \langle 1,0,0 \rangle$, $j = \langle 0,1,0 \rangle$ and $k = \langle 0,0,1 \rangle$

In general, $\boldsymbol{v} = \langle v_1, v_2, v_3 \rangle = v_1 \boldsymbol{i} + v_2 \boldsymbol{j} + v_3 \boldsymbol{k}$

EXAMPLE 6 Magnitudes and unit vectors Consider the points P(5, 3, 1) and Q(-7, 8, 1).

- **a.** Express \overrightarrow{PQ} in terms of the unit vectors **i**, **j**, and **k**.
- **b.** Find the magnitude of \overrightarrow{PQ} .
- **c.** Find the position vector of magnitude 10 in the direction of \overrightarrow{PQ} .

EXAMPLE 7 Flight in crosswinds A plane is flying horizontally due north in calm air at 300 mi/hr when it encounters a horizontal crosswind blowing southeast at 40 mi/hr and a downdraft blowing vertically downward at 30 mi/hr. What are the resulting speed and direction of the plane relative to the ground?

13.3

Dot Products

Two Forms of the Dot Product

Dot product, to determine the *angle* between two vectors, and calculate *projections*.

DEFINITION Dot Product

Given two nonzero vectors **u** and **v** in two or three dimensions, their **dot product** is

$$\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta,$$

where θ is the angle between \mathbf{u} and \mathbf{v} with $0 \le \theta \le \pi$ (Figure 44). If $\mathbf{u} = \mathbf{0}$ or $\mathbf{v} = \mathbf{0}$, then $\mathbf{u} \cdot \mathbf{v} = 0$, and θ is undefined.

Cauchy–Schwarz Inequality The definition $\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta$ implies that $|\mathbf{u} \cdot \mathbf{v}| \le |\mathbf{u}| |\mathbf{v}|$ (because $|\cos \theta| \le 1$). This inequality, known as the Cauchy–Schwarz Inequality, holds in any number of dimensions and has many consequences.

$$\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}||\mathbf{v}|\cos \theta > 0$$

Two special cases:

- \boldsymbol{u} and \boldsymbol{v} are parallel ($\theta = 0$ or $\theta = \pi$) if and only if $\boldsymbol{u} \cdot \boldsymbol{v} = \pm |\boldsymbol{u}| |\boldsymbol{v}|$
- \boldsymbol{u} and \boldsymbol{v} are perpendicular ($\theta = \pi/2$) if and only if $\boldsymbol{u} \cdot \boldsymbol{v} = 0$

DEFINITION Orthogonal Vectors

Two vectors \mathbf{u} and \mathbf{v} are **orthogonal** if and only if $\mathbf{u} \cdot \mathbf{v} = 0$. The zero vector is orthogonal to all vectors. In two or three dimensions, two nonzero orthogonal vectors are perpendicular to each other.

EXAMPLE 1 Dot products Compute the dot products of the following vectors.

$$\mathbf{a.} \ \mathbf{u} = 2\mathbf{i} - 6\mathbf{j} \text{ and } \mathbf{v} = 12\mathbf{k}$$

b.
$$\mathbf{u} = \langle \sqrt{3}, 1 \rangle$$
 and $\mathbf{v} = \langle 0, 1 \rangle$

THEOREM 1 Dot Product

Given two vectors $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$, $\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3.$

Proof: Apply the Law of Cosines to \boldsymbol{u} and \boldsymbol{v} , where $\boldsymbol{\theta}$ is the angle between them.

$$|u - v|^2 = |u|^2 + |v|^2 - 2|u||v|\cos\theta$$

$$c^2 = a^2 + b^2 - 2ab\cos\theta$$

a

This new representation of $u \cdot v$ has two immediate consequences

1. Combining it with the definition of dot product gives

$$\boldsymbol{u} \cdot \boldsymbol{v} = u_1 v_1 + u_2 v_2 + u_3 v_3 = |\boldsymbol{u}| |\boldsymbol{v}| \cos \theta$$

A way to compute θ , given nonzero u and v:

$$\cos \theta = \frac{u_1 v_1 + u_2 v_2 + u_3 v_3}{|u||v|} = \frac{u \cdot v}{|u||v|}$$

2. A relationship between the dot product and the magnitude of a vector:

$$|u| = \sqrt{u \cdot u} \text{ or } |u|^2 = u \cdot u = u_1^2 + u_2^2 + u_3^2$$

EXAMPLE 2 Dot products and angles Let $\mathbf{u} = \langle \sqrt{3}, 1, 0 \rangle$, $\mathbf{v} = \langle 1, \sqrt{3}, 0 \rangle$, and $\mathbf{w} = \langle 1, \sqrt{3}, 2\sqrt{3} \rangle$.

- **a.** Compute $\mathbf{u} \cdot \mathbf{v}$.
- **b.** Find the angle between **u** and **v**.
- **c.** Find the angle between **u** and **w**.

Based on Cauchy-Schwarz Inequality, we have

Triangle Inequality Given vectors
$$u$$
, v , and $u + v$, $|u + v| \le |u| + |v|$

Algebra Inequality

$$(u_1 + u_2 + u_3)^2 \le 3(u_1^2 + u_2^2 + u_3^2)$$

Properties of Dot Product

2 Properties of the Dot Product THEOREM

Suppose \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors and let c be a scalar.

1.
$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$

Commutative property

2.
$$c(\mathbf{u} \cdot \mathbf{v}) = (c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v})$$
 Associative property

3.
$$\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$$
 Distributive property

Orthogonal Projections

The vector $\mathbf{proj}_{\boldsymbol{v}}\boldsymbol{u}$, is the *orthogonal projection* of \boldsymbol{u} onto \boldsymbol{v}

1. If $0 \le \theta < \pi/2$, then $\text{proj}_{\boldsymbol{v}}\boldsymbol{u}$ has length $|\boldsymbol{u}|\cos\theta$ and points in the direction of the unit vector $\boldsymbol{v}/|\boldsymbol{v}|$. Therefore

$$\operatorname{proj}_{\mathbf{v}}\mathbf{u} = \underbrace{|\mathbf{u}|\cos\theta}_{\text{length}}\underbrace{\left(\frac{\mathbf{v}}{|\mathbf{v}|}\right)}_{\text{direction}}.$$

2. If $\pi/2 < \theta \le \pi$, then $\text{proj}_{\boldsymbol{v}} \boldsymbol{u}$ has length $-|\boldsymbol{u}| \cos \theta$ and points in the direction of $-\boldsymbol{v}/|\boldsymbol{v}|$. Therefore

$$\operatorname{proj}_{\mathbf{v}}\mathbf{u} = -|\mathbf{u}|\cos\theta\left(-\frac{\mathbf{v}}{|\mathbf{v}|}\right) = |\mathbf{u}|\cos\theta\left(\frac{\mathbf{v}}{|\mathbf{v}|}\right)$$

$$\underbrace{\operatorname{length}}_{\operatorname{direction}}$$

DEFINITION (Orthogonal) Projection of u onto v

The **orthogonal projection of u onto v**, denoted $proj_v u$, where $v \neq 0$, is

$$\operatorname{proj}_{\mathbf{v}}\mathbf{u} = |\mathbf{u}| \cos \theta \left(\frac{\mathbf{v}}{|\mathbf{v}|}\right).$$

The orthogonal projection may also be computed with the formulas

$$\operatorname{proj}_{\mathbf{v}}\mathbf{u} = \operatorname{scal}_{\mathbf{v}}\mathbf{u}\left(\frac{\mathbf{v}}{|\mathbf{v}|}\right) = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right)\mathbf{v},$$

where the scalar component of u in the direction of v is

$$\operatorname{scal}_{\mathbf{v}}\mathbf{u} = |\mathbf{u}| \cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|}.$$

EXAMPLE 3 Orthogonal projections Find proj_vu and scal_vu for the following vectors and illustrate each result.

a.
$$u = \langle 4, 1 \rangle, v = \langle 3, 4 \rangle$$

b.
$$\mathbf{u} = \langle -4, -3 \rangle, \mathbf{v} = \langle 1, -1 \rangle$$

Applications of Dot Products

Work and force

DEFINITION Work

Let a constant force \mathbf{F} be applied to an object, producing a displacement \mathbf{d} . If the angle between \mathbf{F} and \mathbf{d} is θ , then the **work** done by the force is

$$W = |\mathbf{F}| |\mathbf{d}| \cos \theta = \mathbf{F} \cdot \mathbf{d}.$$

EXAMPLE 4 Calculating work A force $\mathbf{F} = \langle 3, 3, 2 \rangle$ (in newtons) moves an object along a line segment from P(1, 1, 0) to Q(6, 6, 0) (in meters). What is the work done by the force? Interpret the result.

Parallel and normal forces

Components of a force A 10-lb block rests on a plane that is inclined **EXAMPLE 5** at 30° below the horizontal. Find the components of the gravitational force parallel and normal (perpendicular) to the plane.

13.4

Cross Products

The Cross Product

Cross product (or vector product), combines two vectors in \mathbb{R}^3 to produce a vector result.

DEFINITION Cross Product

Given two nonzero vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^3 , the **cross product** $\mathbf{u} \times \mathbf{v}$ is a vector with magnitude

$$|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}| |\mathbf{v}| \sin \theta,$$

where $0 \le \theta \le \pi$ is the angle between **u** and **v**. The direction of **u** \times **v** is given by the **right-hand rule**: When you put the vectors tail to tail and let the fingers of your right hand curl from **u** to **v**, the direction of **u** \times **v** is the direction of your thumb, orthogonal to both **u** and **v** (Figure 56). When **u** \times **v** = **0**, the direction of **u** \times **v** is undefined.

THEOREM 3 Geometry of the Cross Product

Let **u** and **v** be two nonzero vectors in \mathbb{R}^3 .

- **1.** The vectors **u** and **v** are parallel ($\theta = 0$ or $\theta = \pi$) if and only if $\mathbf{u} \times \mathbf{v} = \mathbf{0}$.
- 2. If **u** and **v** are two sides of a parallelogram (Figure 11.57), then the area of the parallelogram is

$$|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}| |\mathbf{v}| \sin \theta.$$

EXAMPLE 1 A cross product Find the magnitude and direction of $\mathbf{u} \times \mathbf{v}$, where $\mathbf{u} = \langle 1, 1, 0 \rangle$ and $\mathbf{v} = \langle 1, 1, \sqrt{2} \rangle$.

Properties of the Cross Product

THEOREM 4 Properties of the Cross Product

Let **u**, **v**, and **w** be nonzero vectors in \mathbb{R}^3 , and let *a* and *b* be scalars.

1.
$$\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$$
 Anticommutative property

2.
$$(a\mathbf{u}) \times (b\mathbf{v}) = ab(\mathbf{u} \times \mathbf{v})$$
 Associative property

3.
$$\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) + (\mathbf{u} \times \mathbf{w})$$
 Distributive property

4.
$$(\mathbf{u} + \mathbf{v}) \times \mathbf{w} = (\mathbf{u} \times \mathbf{w}) + (\mathbf{v} \times \mathbf{w})$$
 Distributive property

EXAMPLE 2 Cross products of unit vectors Evaluate all the cross products among the coordinate unit vectors **i**, **j**, and **k**.

THEOREM 5 Cross Products of Coordinate Unit Vectors

$$\mathbf{i} \times \mathbf{j} = -(\mathbf{j} \times \mathbf{i}) = \mathbf{k}$$
 $\mathbf{j} \times \mathbf{k} = -(\mathbf{k} \times \mathbf{j}) = \mathbf{i}$ $\mathbf{k} \times \mathbf{i} = -(\mathbf{i} \times \mathbf{k}) = \mathbf{j}$ $\mathbf{i} \times \mathbf{i} = \mathbf{j} \times \mathbf{j} = \mathbf{k} \times \mathbf{k} = \mathbf{0}$

THEOREM 6 Evaluating the Cross Product

Let
$$\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k}$$
 and $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$. Then

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \mathbf{k}.$$

$$\mathbf{u} \times \mathbf{v} = (u_{1}\mathbf{i} + u_{2}\mathbf{j} + u_{3}\mathbf{k}) \times (v_{1}\mathbf{i} + v_{2}\mathbf{j} + v_{3}\mathbf{k})$$

$$= u_{1}v_{1} \underbrace{(\mathbf{i} \times \mathbf{i}) + u_{1}v_{2} \underbrace{(\mathbf{i} \times \mathbf{j}) + u_{1}v_{3} \underbrace{(\mathbf{i} \times \mathbf{k})}_{-\mathbf{j}}}_{\mathbf{j}}$$

$$+ u_{2}v_{1} \underbrace{(\mathbf{j} \times \mathbf{i}) + u_{2}v_{2} \underbrace{(\mathbf{j} \times \mathbf{j}) + u_{2}v_{3} \underbrace{(\mathbf{j} \times \mathbf{k})}_{\mathbf{i}}}_{\mathbf{i}}$$

$$+ u_{3}v_{1} \underbrace{(\mathbf{k} \times \mathbf{i}) + u_{3}v_{2} \underbrace{(\mathbf{k} \times \mathbf{j}) + u_{3}v_{3} \underbrace{(\mathbf{k} \times \mathbf{k})}_{\mathbf{i}}}_{\mathbf{0}}.$$

EXAMPLE 3 Area of a triangle Find the area of the triangle with vertices O(0, 0, 0), P(2, 3, 4), and Q(3, 2, 0)

Area of triangle $= \frac{1}{2} |\overrightarrow{OP} \times \overrightarrow{OQ}|.$

EXAMPLE 4 Vector orthogonal to two vectors Find a vector orthogonal to the two vectors $\mathbf{u} = -\mathbf{i} + 6\mathbf{k}$ and $\mathbf{v} = 2\mathbf{i} - 5\mathbf{j} - 3\mathbf{k}$.

Applications of the Cross Product

Torque A force F is applied to the point P at the head of a vector $\mathbf{r} = \overrightarrow{OP}$. The torque, or twisting effect, produced by the force about the point \mathbf{O} is given by $\mathbf{\tau} = \mathbf{r} \times \mathbf{F}$

Magnitude of torque vector $|\tau| = |r \times F| = |r||F| \sin \theta$

Direction of the torque is given by the right-hand rule; Orthogonal to both r and F

EXAMPLE 5 Tightening a bolt A force of 20 N is applied to a wrench attached to a bolt in a direction perpendicular to the bolt (Figure 63). Which produces more torque: applying the force at an angle of 60° on a wrench that is 0.15 m long or applying the force at an angle of 135° on a wrench that is 0.25 m long? In each case, what is the direction of the torque?

Magnetic force on a moving charge

An isolated charge q, v: its velocity, B: the magnetic field The force: $F = q(v \times B)$. The magnitude of the force is $|F| = |q||v \times B| = |q||v||B| \sin \theta$

 θ : the angle between \boldsymbol{v} and \boldsymbol{B}

The sign of the charge determines the direction of the force.

EXAMPLE 6 Force on a proton A proton with a mass of 1.7×10^{-27} kg and a charge of $q = +1.6 \times 10^{-19}$ coulombs (C) moves along the x-axis with a speed of $|\mathbf{v}| = 9 \times 10^5$ m/s. When it reaches (0, 0, 0), a uniform magnetic field is turned on.

The field has a constant strength of 1 tesla (1 T) and is directed along the negative z-axis **a.** Find the magnitude and direction of the force on the proton at the instant it enters the

magnetic field.

b. Assume that the *force* with magniradius *R*. Find th

The force $\mathbf{F} = q\mathbf{v} \times \mathbf{B}$ is orthogonal to \mathbf{v} and \mathbf{B} at all points and holds the proton in a circular trajectory.

s as a *centripetal* rcular orbit of

13.5

Lines and Curves in Space

Vector-Valued Functions

- A function of the form $r(t) = \langle x(t), y(t), z(t) \rangle$ may be viewed in two ways.
- A set of three parametric equations that describe a curve in space.
- A *vector-valued function*, meaning the three dependent variables x, y, z are the components of r, and each component varies with respect to a single independent variable t (time).

Lines in Space

Two ways to determine a line in \mathbb{R}^3

Two distinct points & One point and a direction

Equation of a Line

An **equation of the line** passing through the point $P_0(x_0, y_0, z_0)$ in the direction of the vector $\mathbf{v} = \langle a, b, c \rangle$ is $\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}$, or

$$\langle x, y, z \rangle = \langle x_0, y_0, z_0 \rangle + t \langle a, b, c \rangle$$
, for $-\infty < t < \infty$.

Equivalently, the corresponding parametric equations of the line are

$$x = x_0 + at$$
, $y = y_0 + bt$, $z = z_0 + ct$, for $-\infty < t < \infty$.

EXAMPLE 1 Equations of lines Find an equation of the line ℓ that passes through the point $P_0(1, 2, 4)$ in the direction of $\mathbf{v} = \langle 5, -3, 1 \rangle$.

EXAMPLE 2 Equations of lines Let ℓ be the line that passes through the points $P_0(-3, 5, 8)$ and $P_1(4, 2, -1)$.

- **a.** Find an equation of ℓ .
- **b.** Find equations of the projections of ℓ on the xy- and xz-planes. Then graph those projection lines.

EXAMPLE 3 Equation of a line segment Find an equation of the line segment that extends from $P_0(3, -1, 4)$ to $P_1(0, 5, 2)$.

Curves in Space

 $r(t) = \langle f(t), g(t), h(t) \rangle = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$ The domain of r is the largest set of values of t on which all of

As parameter t varies over the interval $a \le t \le b$, each value of t produces a position vector that corresponds to a point on the curve, Starting at the initial vector r(a)Ending at the terminal vector r(b)

Orientation of Curves

The *positive orientation* is the direction in which the curve is generated as the parameter increases from a to b

The orientation of a parameterized curve and its tangent vectors are consistent

EXAMPLE 4 A helix Graph the curve described by the equation

$$\mathbf{r}(t) = 4\cos t\,\mathbf{i} + \sin t\,\mathbf{j} + \frac{t}{2\pi}\,\mathbf{k},$$

where (a) $0 \le t \le 2\pi$ and (b) $-\infty < t < \infty$.

EXAMPLE 5 Roller coaster curve Graph the curve

$$\mathbf{r}(t) = \cos t \,\mathbf{i} + \sin t \,\mathbf{j} + 0.4 \sin 2t \,\mathbf{k}, \quad \text{for } 0 \le t \le 2\pi.$$

Roller coaster curve $\mathbf{r}(t) = \cos t \, \mathbf{i} + \sin t \, \mathbf{j} + 0.4 \sin 2t \, \mathbf{k},$ for $0 \le t \le 2\pi$

EXAMPLE 6 Slinky curve Graph the curve

 $\mathbf{r}(t) = (4 + \cos 20t) \cos t \,\mathbf{i} + (4 + \cos 20t) \sin t \,\mathbf{j} + 0.4 \sin 20t \,\mathbf{k},$ for $0 \le t \le 2\pi$.

Limits and Continuity for Vector-Valued Functions

The concepts of limits, derivatives, integrals of vector-valued functions are direct extensions of what you have already learned.

DEFINITION Limit of a Vector-Valued Function

A vector-valued function \mathbf{r} approaches the limit \mathbf{L} as t approaches a, written $\lim_{t\to a} \mathbf{r}(t) = \mathbf{L}$, provided $\lim_{t\to a} |\mathbf{r}(t) - \mathbf{L}| = 0$.

Given
$$r(t) = \langle f(t), g(t), h(t) \rangle$$
, suppose that
$$\lim_{t \to a} f(t) = L_1, \lim_{t \to a} g(t) = L_2, \lim_{t \to a} h(t) = L_3$$

Then,

$$\lim_{t \to a} \mathbf{r}(t) = \left\langle \lim_{t \to a} f(t), \lim_{t \to a} g(t), \lim_{t \to a} h(t) \right\rangle = \left\langle L_1, L_2, L_3 \right\rangle$$

The limit of r(t) is determined by computing the limits of its components.

The limits laws in Chapter 2 have analogs for vector-valued functions. For example,

$$\lim_{t \to a} (\mathbf{r}(t) + \mathbf{s}(t)) = \lim_{t \to a} \mathbf{r}(t) + \lim_{t \to a} \mathbf{s}(t)$$
$$\lim_{t \to a} c\mathbf{r}(t) = c \lim_{t \to a} \mathbf{r}(t)$$

Continuity

A function r(t) = f(t)i + g(t)j + h(t)k is continuous at a provided

$$\lim_{t \to a} \mathbf{r}(t) = \mathbf{r}(a)$$

If the component functions f, g, and h of r(t) are continuous at a, then r is also continuous at a and vice versa.

The function r is continuous on an interval I if it is continuous for all t in I.

EXAMPLE 7 Limits and continuity Consider the function

$$\mathbf{r}(t) = \cos \pi t \,\mathbf{i} + \sin \pi t \,\mathbf{j} + e^{-t} \,\mathbf{k}, \quad \text{for } t \ge 0.$$

- **a.** Evaluate $\lim_{t\to 2} \mathbf{r}(t)$.
- **b.** Evaluate $\lim_{t\to\infty} \mathbf{r}(t)$.
- **c.** At what points is **r** continuous?

Chapter 13

Vectors and Vector-Valued Functions (I)

Shuwei Chen

swchen@swjtu.edu.cn