2022 年 5 月 13 日

复变函数

强基数学 002

吴天阳

2204210460

第五章

2. 求下列级数的收敛范围:

(1)
$$\sum_{n=1}^{\infty} \frac{\cos nz}{n^2}$$
; (2) $\sum_{n=1}^{\infty} \frac{z^n}{1-z^n}$.

解答. (1) 当 $z \in \mathbb{R}$ 时, 设 $0 < \delta < \pi$, $\forall x \in [\delta, 2\pi - \delta]$, 则有

$$\sum_{k=1}^{n} e^{ikx} = \left| \frac{e^{ix}(1 - e^{inx})}{1 - e^{ix}} \right| \leqslant \frac{2}{|1 - e^{ix}|} = \frac{2}{|e^{i\frac{x}{2}} - e^{-i\frac{x}{2}}|} = \frac{1}{|\sin\frac{x}{2}|} \leqslant \frac{1}{|\sin\frac{\delta}{2}|},$$

由于 $\frac{1}{n^2}$ 单调趋于 0, 由 Dirichlet 判别法知, $\sum_{n=1}^{\infty} \frac{\cos nx}{n^2}$ 收敛.

当 $z \in \mathbb{C} - \mathbb{R}$ 时, 令 z = iy, 当 $n \to \infty$ 时, 通项 $\frac{\cos nz}{n^2} = \frac{e^{-ny} + e^{ny}}{n^2} \to \infty$, 所以级数发散. 综上, 该级数的收敛范围为 \mathbb{R} .

(2) 由于级数收敛的充分条件为通项趋于 0, $\frac{z^n}{1-z^n}=1-\frac{1}{1-z^n}\to 0 \Rightarrow z^n\to 0 \Rightarrow |z|<1$, 又由于当 |z|<1 时, 有

$$\sum_{k=n+1}^{n+p} \frac{z^n}{1-z^n} = n+p-\frac{1}{1-z^n+1}-\cdots-\frac{1}{1-z^{n+p}} \leqslant n+p-\frac{n+p}{1-z^n} = (n+p)(1-\frac{1}{1-z^n}) \to 0.$$

所以该级数的收敛范围为 |z| < 1.

3. 证明: 级数 $\sum_{n=1}^{\infty} (-1)^n \left(\frac{1}{z-n} + \frac{1}{n} \right)$ 在不包含正整数的任意有界闭集上一致收敛.

证明. 令 K 为 $\mathbb C$ 中满足题意的任意紧集, 则存在 $R \in \mathbb R$ 使得 |z| < R 包住 K, 取 N > R, 于是 $\forall n > N$, 有

$$\left| (-1)^n \left(\frac{1}{z-n} + \frac{1}{n} \right) \right| = \left| \frac{z}{n(z-n)} \right| \leqslant \frac{M}{n^2 - Mn} = \frac{1}{n-M} - \frac{1}{n},$$

其中 $M = \left[\sup_{z \in K} |z|\right] + 1$, 上式中不等号的原因是

$$|z - n| \geqslant n - \operatorname{Re} z \geqslant n - M.$$

由于级数 $\sum_{k=M+1}^{n} \left(\frac{1}{k-M} - \frac{1}{k} \right) = \sum_{k=1}^{M} \frac{1}{k} - \sum_{k=n-m+1}^{n} \frac{1}{k}$, 当 $n \to \infty$ 时,极限存在,由 M-判别 法可知, 级数在 K 上一致收敛.

4. 证明: 级数 $\sum_{j=1}^{\infty} \frac{(-1)^{n-1}}{z+n}$ 在不包含负整数的任意有界闭集上一致收敛.

证明. 令 K 为 $\mathbb C$ 中满足题意的任意紧集, 则存在充分大的 N 使得 $N>|z|+1,\ (z\in K)$, 不妨令 N 为奇数, 对于任意 n>N, 由于

$$\left| \sum_{k=N}^{2n} \frac{(-1)^{k-1}}{z+k} \right| \leqslant \left| \frac{1}{z+N} - \frac{1}{z+N+1} \right| + \dots + \left| \frac{1}{z+2n-1} - \frac{1}{z+2n} \right|$$

$$= \left| \frac{1}{(z+N)(z+N+1)} \right| + \dots + \left| \frac{1}{(z+2n-1)(z+2n)} \right|$$

$$= \frac{1}{|z+N||z+N+1|} + \dots + \frac{1}{|z+2n-1||z+2n|}$$

$$\leqslant \frac{1}{N' \cdot (N'+1)} + \dots + \frac{1}{(2n-1)(2n)}$$

$$= \frac{1}{N'} - \frac{1}{N'+1} + \dots + \frac{1}{2n-1} - \frac{1}{2n}$$

$$= \sum_{x=N'}^{2n} \frac{(-1)^{n-1}}{n} \to 0, \quad (N' \to \infty)$$
(1)

其中 $N' = [N - |z|], [\cdot]$ 表示向下取整, 由于 N > |z| + 1, 则 $N' \ge 1$. (1) 式的不等号是因为

$$|z + N + k| \ge \text{Re } z + N + k \ge N - |z| + k \ge [N - |z|] + k = N' + k.$$

由 Leibniz 判别法可知 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ 收敛, 所以上式最后一项当 $N \to \infty$ 时, 有 $N' \to \infty$ 该数项级数趋于 0, 由 Cauchy 收敛原理知 S_{2n} 一致收敛, 又由于 $S_{2n+1} \leqslant S_{2n} + \frac{1}{|z+2n+1|}$, 同理可证 S_{2n+1} 一致收敛. 综上, 级数在 K 上一致收敛.

6. 设幂级数 $\sum_{n=0}^{\infty} c_n z^n$ 的收敛半径 R > 0, 和函数为 f(z). 证明: 当 0 < r < R 时,

(1)
$$\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta = \sum_{n=0}^{\infty} |c_n|^2 r^{2n};$$

(2) 若 f(z) 在圆 |z| < R 内有界, 可设为 $|f(z)| \le M$, 则 $\sum_{n=0}^{\infty} |c_n|^2 R^{2n} \le M^2$.

证明. (1)

$$\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta = \frac{1}{2\pi} \int_0^{2\pi} \left| \sum_{n=0}^{\infty} c_n r e^{in\theta} \right|^2 d\theta = \frac{1}{2\pi} \int_0^{2\pi} \left(\sum_{n=0}^{\infty} c_n r^n e^{in\theta} \right) \left(\sum_{m=0}^{\infty} \bar{c}_m r^m e^{-im\theta} \right) d\theta,$$

由于 $\sum_{n=0}^{\infty} c_n r^n e^{in\theta}$, $\sum_{m=0}^{\infty} \bar{c}_m r^m e^{-im\theta}$ 在圆 $|z| \leq r$ 内均一致收敛, 则两级数之积也一致收敛, 则可逐项积分, 当 $n \neq m$ 时, 有

$$\frac{1}{2\pi} \int_0^{2\pi} c_n \bar{c}_m r^{n+m} e^{i(n-m)\theta} d\theta = \frac{c_n \bar{c}_m r^{n+1}}{2\pi i (n-m)} e^{i(n-m)\theta} \Big|_0^{2\pi} = 0,$$

所以

$$\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta = \sum_{n=0}^{\infty} \frac{1}{2\pi} \int_0^{2\pi} c_n \bar{c}_n r^{2n} d\theta = \sum_{n=0}^{\infty} |c_n|^2 r^{2n}.$$
(2) 由 (1) 可得 $\sum_{n=0}^{\infty} |c_n|^2 r^{2n} = \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta \leqslant \frac{1}{2\pi} \int_0^{2\pi} M^2 d\theta = M^2, \Leftrightarrow r \to R$ 得证.

7. 若幂级数 $\sum_{n=0}^{\infty} c_n z^n$ 在单位元 |z| < 1 内收敛到有界函数 f(z), 证明 $\lim_{n \to \infty} c_n = 0$.

证明. 由 6.(2) 可知, 令 $|f(z)| \leq M$, 则 $\sum_{n=0}^{\infty} |c_n|^2 \leq M^2$, 由于收敛级数通项恒正, 所以通项趋于 0, 即 $\lim_{n\to\infty} c_n = 0$.

8. 设 $\sum_{n=0}^{\infty} c_n z^n$ 在 $|z| \leq R$ 上收敛 $(0 < R < +\infty)$,求证 $\varphi(z) = \sum_{n=0}^{\infty} \frac{c_n}{n!} z^n$ 在 \mathbb{C} 上解析,且 $|\varphi(z)| \leq M \mathrm{e}^{|z|/R}$.

证明. 由收敛半径计算公式知 $\overline{\lim}_{n\to\infty}\sqrt[n]{|c_n|}=\frac{1}{R}$,则 $\overline{\lim}_{n\to\infty}\sqrt[n]{\frac{|c_n|}{n!}}=0$,因此 $\sum_0^\infty \frac{c_n}{n!}z^n$ 的收敛半径为 $+\infty$,所以 $\varphi(z)$ 在 $\mathbb C$ 上解析. 由于 $\sum_{n=0}^\infty c_n z^n$ 收敛,则一般项趋于 0,存在 M>0 使得 $|c_n z^n| \leqslant M$,令 $z\to R$,得 $|c_n|R^n\leqslant M$,则

$$|\varphi(z)| = \left| \sum_{n=0}^{\infty} \frac{c_n}{n!} z^n \right| \leqslant \sum_{n=0}^{\infty} \frac{|c_n|}{n!} |z|^n \leqslant \sum_{n=0}^{\infty} \frac{|c_n| R^n}{n!} \frac{|z|^n}{R^n} \leqslant M \sum_{n=0}^{\infty} \frac{1}{n!} \frac{|z|^n}{R^n} = M e^{|z|/R}.$$

9. 证明: (1) 对任意的复数 z, $|e^z - 1| \le e^{|z|} - 1 \le |z|e^{|z|}$;

(2)
$$\stackrel{.}{=}$$
 $0 < |z| < 1$ $\stackrel{.}{=}$ 1 , $\frac{1}{4}|z| < |e^z - 1| < \frac{7}{4}|z|$.

证明. (1)
$$|\mathbf{e}^{z} - 1| = \left| \sum_{n=1}^{\infty} \frac{z^{n}}{n!} \right| \leqslant \sum_{n=1}^{\infty} \frac{|z|^{n}}{n!} = \mathbf{e}^{|z|} - 1 \leqslant (1 + |z|)(e^{|z|} - 1) = (1 + |z|)\mathbf{e}^{|z|} - |z| - 1$$

$$\leqslant (1 + |z|)\mathbf{e}^{|z|} - \mathbf{e}^{|z|} = |z|\mathbf{e}^{|z|}.$$

(2) 由最大模原理可知, $\left|\frac{e^z-1}{z}\right|$ 的最大值在 |z|=0 或 |z|=1 上取到,当 |z|=0 时, $\left|\frac{e^z-1}{z}\right|=|e^z|=1$,满足题意.

当 |z|=1 时,

$$\begin{aligned} \max_{|z|=1} \left| \frac{e^z - 1}{z} \right| &= \max_{|z|=1} |e^z - 1| \leqslant e - 1 < \frac{7}{4}, \\ \min_{|z|=1} \left| \frac{e^z - 1}{z} \right| &= \min_{|z|=1} |e^z - 1| = \min_{|z|=1} \left| 1 + \frac{z}{2!} + \frac{z^2}{3!} + \dots + \frac{z^n}{(n+1)!} + \dots \right| \\ &\geqslant 1 - \frac{1}{2!} - \frac{1}{3!} - \dots = 1 - (e-2) = 3 - e > \frac{1}{4}. \end{aligned}$$

10. 设 f(z) = u(z) + iv(z) 在 |z| < 1 内解析, 0 < r < 1. 证明

$$(1) \int_{|z|=r} \frac{\overline{f(z)}}{z^{n+1}} dz = 0 \quad (n \geqslant 1);$$

(2) 设
$$f(z) = \sum_{n=0}^{\infty} c_n z^n$$
, 则 $c_n = \frac{1}{\pi i} \int_{|z|=r} \frac{u(z)}{z^{n+1}} dz$;

(3) 若
$$\operatorname{Re} f(z) = u(z) \ge 0$$
, $f(0) = 1$, 则 $|c_n| \le 2$;

(4)
$$\overline{f(0)} = \frac{1}{2\pi i} \int_{|\xi|=r} \frac{\overline{f(\xi)}}{\xi - z} d\xi, \ |z| < r;$$

(5)
$$f(z) = \frac{1}{2\pi i} \int_{|\xi|=r} \frac{\xi + z}{\xi - z} u(\xi) \frac{d\xi}{\xi} + i \text{Im} f(0)$$

= $\frac{1}{2\pi i} \int_{|\xi|=r} \frac{\xi + z}{\xi - z} u(\xi) d\theta + i \text{Im} f(0) \quad (\xi = re^{i\theta}).$

证明. (1) 由于 f(z) 在 |z| < 1 内解析, 设 $f(z) = \sum_{k=0}^{\infty} c_k z^k$, 则 $\overline{f(z)} = \sum_{k=0}^{\infty} \overline{c}_k \overline{z}^k$, 所以

$$\int_{|z|=r} \frac{\overline{f(z)}}{z^{n+1}} dz \xrightarrow{\underline{\mathfrak{S}\mathfrak{I}\mathfrak{A}\mathfrak{I}\mathfrak{B}}} \sum_{k=0}^{\infty} \overline{c}_k \int_{|z|=r} \frac{\overline{z}^k}{z^{n+1}} dz = \sum_{k=0}^{\infty} \overline{c}_k \int_{|z|=r} \frac{|z|^{2k}}{z^{k+n+1}} dz \xrightarrow{\underline{\mathrm{Cauchy}} \ \Delta \overrightarrow{x}} 0.$$

$$(2) c_n = \frac{f^{(n)}(0)}{n!} = \frac{1}{2\pi i} \int_{|z|=r} \frac{f(z)}{z^{n+1}} dz \xrightarrow{\underline{(1)}} \frac{1}{2\pi i} \int_{|z|=r} \frac{f(z) + \overline{f(z)}}{z^{n+1}} dz = \frac{1}{\pi i} \int_{|z|=r} \frac{u(z)}{z^{n+1}} dz.$$

(3)
$$|c_n| = \left| \frac{1}{\pi i} \int_{|z|=r} \frac{u(z)}{z^{n+1}} dz \right| \leqslant \frac{2}{r^n} \left| \frac{1}{2\pi i} \int_{|z|=r} \frac{u(z)}{z} dz \right| = \frac{2u(0)}{r^n} = \frac{2}{r^n} = 2, \quad (r \to 1)$$

(4) 令
$$f(z) = \frac{1}{\xi - z}$$
, 则 $f^{(k)}(z) = k!(\xi - z)^{-(k+1)}$, 所以

$$\frac{1}{\xi - z} = f(z) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} (z - 0)^k = \sum_{k=0}^{\infty} \frac{z^k}{\xi^{(k+1)}},$$

于是

$$\frac{1}{2\pi\mathrm{i}}\int_{|\xi|=r}\frac{\overline{f(\xi)}}{\xi-z}\,\mathrm{d}\xi = \frac{1}{2\pi\mathrm{i}}\sum_{k=0}^{\infty}z^k\int_{|z|=r}\frac{\overline{f(\xi)}}{\xi^{(k+1)}}\,\mathrm{d}\xi \xrightarrow{\underline{(1)}}\frac{1}{2\pi\mathrm{i}}\int_{|\xi|=r}\frac{\overline{f(\xi)}}{\xi}\,\mathrm{d}\xi = \overline{f(0)}.$$

$$(5) f(z) \xrightarrow{\underline{\text{Cauchy } \triangle \mathbb{R}}} \frac{1}{2\pi i} \int_{|\xi|=r} \frac{f(\xi)}{\xi - z} d\xi = \frac{1}{2\pi i} \int_{|\xi|=r} \frac{u(\xi) + iv(\xi)}{\xi - z} d\xi$$

$$= \frac{1}{2\pi i} \int_{|\xi|=r} \frac{2u(\xi) - (u(\xi) - iv(\xi))}{\xi - z} d\xi$$

$$= \frac{1}{2\pi i} \int_{|\xi|=r} \frac{2}{\xi - z} u(\xi) d\xi - \frac{1}{2\pi i} \int_{|\xi|=r} \frac{\overline{f(\xi)}}{\xi - z} d\xi$$

$$= \frac{1}{2\pi i} \int_{|\xi|=r} \frac{2}{\xi - z} u(\xi) d\xi - \overline{f(0)}$$

$$= \frac{1}{2\pi i} \int_{|\xi|=r} \frac{2}{\xi - z} u(\xi) d\xi - u(0) + iv(0)$$

$$\xrightarrow{\underline{\text{Cauchy } \triangle \mathbb{R}}} \frac{1}{2\pi i} \int_{|\xi|=r} \left(\frac{2}{\xi - z} - \frac{1}{\xi} \right) u(\xi) d\xi + iv(0)$$

$$= \frac{1}{2\pi i} \int_{|\xi|=r} \frac{\xi + z}{\xi - z} u(\xi) \frac{d\xi}{\xi} + i \operatorname{Im} f(0)$$

$$\xrightarrow{\underline{\xi = re^{i\theta}}} \frac{1}{2\pi i} \int_{|\xi|=r} \frac{\xi + z}{\xi - z} u(\xi) d\theta + i \operatorname{Im} f(0).$$

- 12. 设 f(z) 在 |z| < 1 内解析, 在 $|z| \le 1$ 上连续, 则 f(z) 在 $|z| \le 1$ 上可用多项式一直逼近. 证明. 设 0 < r < 1,则 f(rz) 在 $|z| < \frac{1}{r}$ 内解析, 由 Taylor 展式可知, $f(rz) = \sum_{n=0}^{\infty} c_n (rz)^n$,取 $r \to 1$,由于 f(z) 在 V(0;1) 上连续, 则 $f(z) = \sum_{n=0}^{\infty} c_n z^n$,所以 f(z) 在 $|z| \le 1$ 上可用多项式一直逼近.
- 13. 将下列函数在指定域内展为 Laurent 级数.

$$(1) \ \frac{3z}{(2-z)(2z-1)}, \qquad \frac{1}{2} < |z| < 2;$$

(2)
$$\frac{1}{z^2(z-i)}$$
, $0 < |z-i| < 1$;

(3)
$$\frac{z^2-1}{(z+2)(z+3)}$$
, $2<|z|<3$, $3<|z|<+\infty$;

(4)
$$\frac{\sin \alpha z}{z^3 \sin \beta z}$$
 ($\beta > \alpha > 0$), $0 < |z| < \frac{\pi}{\beta}$ (要求解出负幂项).

解答.

$$(1) \frac{3z}{(2-z)(2z-1)} = \frac{1}{2z-1} + \frac{2}{2-z} = \frac{1}{2z} \frac{1}{1-\frac{1}{2z}} + \frac{1}{1-\frac{z}{2}} = \frac{1}{2z} \sum_{n=0}^{\infty} \frac{1}{(2z)^n} + \sum_{n=0}^{\infty} \frac{z^n}{2^n}$$

$$= \sum_{n=1}^{\infty} 2^{-n} z^{-n} + \sum_{n=0}^{\infty} 2^{-n} z^n = \sum_{n=-\infty}^{\infty} 2^{-|n|} z^n,$$

$$(2) \frac{1}{z^2(z-i)} = \frac{1}{-iz^2(1-\frac{z}{i})} = iz^{-2} \sum_{n=0}^{\infty} \frac{z^n}{i^n} = \sum_{n=0}^{\infty} i^{1-n} z^{n-2},$$

$$(3) \frac{z^2 - 1}{(z+2)(z+3)} = (z^2 - 1) \left(\frac{1}{z+2} - \frac{1}{z+3}\right), \ \stackrel{\triangle}{=} \ 2 < |z| < 3 \text{ B}f$$

$$\mathbb{R} \stackrel{\wedge}{=} (z^2 - 1) \left(\frac{1}{z} \frac{1}{1 + \frac{2}{z}} - \frac{1}{3} \frac{1}{1 + \frac{z}{3}}\right) = (z^2 - 1) \left(\frac{1}{z} \sum_{n=0}^{\infty} \frac{(-2)^n}{z^n} - \frac{1}{3} \sum_{n=0}^{\infty} \frac{(-z)^n}{3^n}\right)$$

$$= (z^2 - 1) \left(\sum_{n=0}^{\infty} (-2)^n z^{-n-1} + \sum_{n=0}^{\infty} (-3)^{-n-1} z^n\right)$$

$$= \sum_{n=0}^{\infty} (-2)^n z^{-n+1} + \sum_{n=0}^{\infty} (-3)^{-n-1} z^{n+2} - \sum_{n=0}^{\infty} (-2)^n z^{-n-1} - \sum_{n=0}^{\infty} (-3)^{-n-1} z^n$$

$$= \sum_{n=0}^{\infty} \left((-2)^{n+2} - (-2)^n\right) z^{-n-1} + z - 2 + \sum_{n=0}^{\infty} \left((-3)^{-n-1} - (-3)^{-n-3}\right) z^{n+2} + \frac{1}{3} - \frac{z}{9}$$

$$= 3 \sum_{n=0}^{\infty} (-2)^n z^{-n-1} + 8 \sum_{n=0}^{\infty} (-3)^{-n-3} z^{n+2} - \frac{5}{3} + \frac{8}{9} z$$

$$= 3 \sum_{n=0}^{\infty} (-2)^n z^{-n-1} + 8 \sum_{n=1}^{\infty} (-3)^{-n-1} z^n - \frac{5}{3},$$

当 $3 < |z| < +\infty$ 时

原式 =
$$\frac{z^2 - 1}{z} \left(\frac{1}{1 + \frac{2}{z}} - \frac{1}{1 + \frac{3}{z}} \right) = \frac{z^2 - 1}{z} \left(\sum_{n=0}^{\infty} \frac{(-2)^n}{z^n} - \sum_{n=0}^{\infty} \frac{(-3)^n}{z^n} \right)$$

$$= (z - z^{-1}) \left(\sum_{n=0}^{\infty} (-2)^n z^{-n} - \sum_{n=0}^{\infty} (-3)^n z^{-n} \right)$$

$$= (z - z^{-1}) \sum_{n=0}^{\infty} (-1)^n (2^n - 3^n) z^{-n}$$

$$= \sum_{n=0}^{\infty} (-1)^n (2^n + 2^{n+2} - 3^n - 3^{n+2}) z^{-n-1} + 1$$

$$= 5 \sum_{n=1}^{\infty} (-1)^n (2^n - 2 \cdot 3^n) z^{-n-1} + 1.$$

$$(4) \frac{\sin \alpha z}{z^3 \sin \beta z} = \frac{\sum_{n=1}^{\infty} \frac{(i\alpha z)^{2n-1}}{(2n-1)!}}{z^3 \sum_{n=1}^{\infty} \frac{(i\beta z)^{2n-1}}{(2n-1)!}} \xrightarrow{\text{\emptyset in } \text{\emptyset in } \text{\emptyset } z} \frac{\alpha}{\beta} z^{-3} + \frac{\alpha(\beta^2 - \alpha^2)}{6\beta} z^{-1} + \cdots$$

15. 若 f(z) 在 0 < |z - a| < R 上解析, 且 f(z) 不恒为 0, 圆环内有一点列 $z_n \to a$, $f(z_n) = 0$. 证明: a 是 f(z) 的本性奇点.

证明. 由于 a 的邻域内总存在零点, 则 $\lim_{z\to a} f(z) \neq \infty$, 所以 f(z) 不是极点. 假设 a 为 f(z) 的可去奇点, 补充 f(z) 在 a 处的定义, 使得 f(z) 在圆环 D: V(a;r), (0 < r < R) 上解析, 考虑以下两个集合

$$G_1 = \{z \in D : \exists V(z; \delta), f(z) \in V(z; \delta)$$
 内恒为0\},
 $G_2 = \{z \in D : \exists V(z; \delta), f(z) \in V^*(z; \delta)$ 内不为0\},

由 Taylor 展式可知, $D = G_1 \cup G_2$, 由于 G_1 , G_2 均为开集, 则其中至少有一个是空集, 由于 a 为零点且是极限点, 所以 $G_2 = \emptyset$, 于是 $D = G_1$, 所以 f(z) 在 D 上恒为 0, 矛盾.

综上, a 既不是可去奇点, 也不是极点, 所以只能是本性奇点.

16. 设 f(z) 在圆环 $0 < r < |z - a| < R < +\infty$ 内解析, 在闭圆环 $r \le |z - a| \le R$ 上连续, 且 $f(a + Re^{i\theta}) = 0 \ (0 \le \theta \le 2\pi)$. 证明: $f(z) \equiv 0 \ (r < |z - a| < R)$.

证明. 设 $r < \rho < R$, 考虑 f(z) 的 Laurent 系数的模

$$|c_n| = \left| \frac{1}{2\pi i} \int_{|z-a|=\rho} \frac{f(z)}{(z-a)^{n+1}} dz \right| \le \rho^{-n} |f(a+\rho e^{i\theta})| \to 0 \quad (\rho \to R)$$

所以 $c_n \equiv 0$, 则 $f(z) \equiv 0$.

17. 若函数 f(z) 在 0 < |z - a| < R 内解析, 且

$$\lim_{z \to a} (z - a)f(z) = 0.$$

证明: $a \in f(z)$ 的可去奇点.

证明. 设 g(z)=(z-a)f(z), 由题可知 $\lim_{z\to a}g(z)=0$, 所以 a 为 g(z) 的可去奇点, 补充定义使 g(z) 在 |z-a|< R 内解析, 则 g(z) 存在 Taylor 展式:

$$(z-a)f(z) = g(z) = \sum_{n=0}^{\infty} c_n(z-a)^n,$$

取 z = a, 可得 $g(a) = c_0 = 0$, 所以

$$f(z) = \frac{1}{z-a} \sum_{n=1}^{\infty} c_n (z-a)^n = \sum_{n=0}^{\infty} c_{n+1} (z-a)^n,$$

于是 f(z) 在 |z-a| < R 内解析, 则 a 为 f(z) 的可去奇点.

18. 设函数 f(z) 在 $R < |z| < +\infty$ 内解析, 且 $|\text{Re } f(z)| \le M$. 试用 $f(z) = \varphi(z) + \psi(z)$ 的主要部分 $\varphi(z)$ 为常数来证 ∞ 是 f(z) 的可去奇点.

证明. 设 $R < |z| < \rho, \rho > R$, 则

$$c_{n} = \frac{1}{2\pi i} \int_{|z-a|=\rho} \frac{f(z)}{(z-a)^{n+1}} dz,$$

$$\frac{1}{2\pi i} \int_{|z-a|=\rho} \overline{f(z)} (z-a)^{-n-1} dz = \frac{1}{2\pi i} \int_{|z-a|=\rho} \sum_{k=-\infty}^{\infty} \overline{c_{k}} \overline{(z-a)^{k}} (z-a)^{-n-1} dz$$

$$= \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} \overline{c_{k}} \int_{0}^{2\pi} \rho^{k-n} e^{-i(k+n)\theta} d\theta = \overline{c_{-n}} \rho^{-2n},$$

于是 $c_n + \overline{c_{-n}}\rho^{-2n} = \frac{1}{\pi \mathrm{i}} \int_{|z-a|=\rho} \frac{\mathrm{Re}\, f(z)}{(z-a)^{n+1}} \,\mathrm{d}z$,则 $|c_n + \overline{c_{-n}}\rho^{-2n}| \leqslant 2M\rho^{-n}$, $(n\geqslant 1)$,取 $\rho\to\infty$,则 $c_n=0$, $(n\geqslant 1)$,所以 $\phi(z)=c_0$ 为常数.

19. 若函数 f(z) 在 $\mathbb{C} - \{a_1, \dots, a_n\}$ 内解析, 且有界, 证明 f(z) 为常数.

证明. 由于 f(z) 在 $\mathbb{C} - \{a_1, \dots, a_n\}$ 内有界, 则 $\{a_1, \dots, a_n\}$ 均为 f(z) 的可去奇点, 补充定义使 f(z) 在 \mathbb{C} 上解析, 又由于 f(z) 在 \mathbb{C} 上有界, 令 $|f(z)| \leq M$, 对于 $z \in \mathbb{C}$, 取 z 的邻域 V(z;R), 由 Cauchy 不等式可知

$$|f'(z)| \leqslant \frac{M}{R},$$

令 $R \to \infty$, 可得 $|f'(z)| = 0 \Rightarrow f'(z) = 0$, 所以 f(z) 为常数.

20. 若函数 f(z) 在圆 |z| < 1 内解析, f(0) = 0, 则 $\sum_{n=1}^{\infty} f(z^n)$ 在圆 |z| < 1 内收敛, 且和函数在圆 |z| < 1 内解析.

证明. 设 f(z) 的 Taylor 展式为 $\sum_{n=0}^{\infty}c_nz^n$, 取 z=0, 可得 $c_0=0$, 则 $f(z)=\sum_{n=1}^{\infty}c_nz^n$, $f(z^n)=\sum_{n=1}^{\infty}c_kz^{nk}$, 于是

$$\sum_{n=1}^{\infty} f(z^n) = \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} c_k z^{nk} = \sum_{n=1}^{\infty} \left(\sum_{d|n} c_d \right) z^n,$$

其中 d|n 表示正整数 d 能够整除 n, 由于 $\sum_{n=1}^{\infty} c_n z^n$ 的收敛半径为 1, 所以 $\overline{\lim}_{n\to\infty} \sqrt[n]{|c_n|} = 1$, 于是

$$L = \overline{\lim}_{n \to \infty} \sqrt[n]{\left| \sum_{d \mid n} c_d \right|} \leqslant \overline{\lim}_{n \to \infty} \sqrt[n]{n|c_n|} = 1 \Rightarrow R = \frac{1}{L} = 1$$

所以 $\sum_{n=1}^{\infty} f(z^n)$ 在圆 |z| < 1 内一致收敛,且和函数在圆 |z| < 1 内解析.