Prova scritta di Logica Matematica 6 settembre 2019

Cognome Nome Matricola

Indicate su ogni foglio che consegnate cognome, nome e numero di matricola.

Nella prima parte ogni riposta corretta vale 1, ogni risposta sbagliata -1, ogni risposta non data 0. Il punteggio minimo per superare questa parte è 6. Il punteggio che eccede 6 viene sommato al risultato della seconda parte per ottenere il voto dello scritto.

Nella seconda parte per ogni esercizio è indicato il relativo punteggio.

	I was	
	PRIMA PARTE	
	Barrate la risposta che ritenete corretta. Non dovete giustificare la risposta.	
a.	$(p \to q) \land \neg (p \land q \land r) \to \neg (r \to p \lor q) \equiv$	
	$(\neg q \land (p \lor \neg (r \to p))) \lor \neg (r \to \neg p \lor \neg q).$	$\overline{\mathbf{V}[\mathbf{F}]}$
b.		$\overline{\mathbf{V} \mathbf{F} }$
c.	Ogni letterale è una formula atomica.	$\overline{ m V} [m F]$
$\mathbf{d}.$	Esiste un insieme di Hintikka che contiene le formule $p \vee \neg q$ e	
	$\neg (q \lor \neg r \to p \lor \neg r).$	$\mathbf{V} \left \mathbf{F} \right $
e.	Quante delle seguenti formule sono γ -formule? $\forall x r(x, a) \to p(a)$,	
	$\neg \forall x (r(x, a) \to p(a)), \ \forall x \ \exists y (r(x, y) \land p(y)), \ \neg \exists y \ p(y) \lor \forall x \ q(f(x)) $ $\boxed{0 \ 1 \ 2}$	3 4
f.	Sia I l'interpretazione con $D^I = \{0, 1, 2, 3\}, f^I(0) = 1, f^I(1) = 3, f^I(2) = 0, f^I(3)$)=2,
	$p^{I} = \{0, 2\}, e r^{I} = \{(0, 0), (0, 2), (0, 3), (1, 1), (2, 1), (2, 3), (3, 2)\}.$	
	Allora $I \models \forall x (\neg p(x) \lor p(f(x)) \lor \exists y (p(f(y)) \land r(f(x), y))).$	V F
	$\forall x F \to p(y) \equiv \exists x (F \to p(y)), \text{ qualunque sia la formula } F.$	$\mathbf{V} \left[\mathbf{F} \right]$
h.	Se φ è un omomorfismo forte di K in I , x è l'unica variabile libera di G	
•		$\mathbf{V} \mathbf{F}$
1.	Se un tableau per la formula proposizionale F è chiuso, allora F è insoddisfacibile.	V E
•	<u> </u>	V F
J.	Questo albero rappresenta una deduzione naturale corretta:	V F
	$\frac{\exists x p(f(x))}{p(f(x))} \frac{\forall x (p(x) \to q(x))}{p(f(x)) \to q(f(x))}$ $q(f(x))$	
	$p(f(x)) \qquad p(f(x)) \to q(f(x))$	
	q(f(x))	
	$\forall x q(f(x))$	
k.	Nel riquadro scrivete l'enunciato del Lemma di Hintikka.	

SECONDA PARTE

Usate il retro del foglio per svolgere tutti gli esercizi salvo il numero 2.

1. Usando l'algoritmo di Fitting mettete in forma normale disgiuntiva la formula

2pt

$$(p \to \neg q \lor r) \lor \neg (s \to \neg t) \to u \land (\neg v \to w).$$

2. Sia $\mathcal{L} = \{c, d, p, b, a, =\}$ un linguaggio con uguaglianza dove c e d sono simboli di costante, p è un simbolo di funzione unario e b e a sono simboli di relazione binari. Interpretando c come "Cloe", d come "Davide", p(x) come "il padre di x", b(x, y) come "x è più basso di y" e a(x, y) come "x è amico di y", traducete la frase:

Almeno due amici di Cloe sono più bassi di tutti gli amici del padre di Davide.

3pt

3. Usando il metodo dei tableaux stabilite se

3pt

$$p \to r \vee \neg s, r \to q, s \vee \neg (p \to r) \vDash \neg p \vee q.$$

Se la conseguenza logica non vale definite una valutazione che lo testimoni.

4. Mettete in forma prenessa l'enunciato

2pt

$$\forall x \neg \forall y \neg r(x, y) \rightarrow \exists x \neg \exists y \, r(x, f(y)) \land \exists x \, \forall y \, r(f(x), f(y)).$$

Se riuscite, usate il minimo numero di quantificatori possibili.

1pt

5. Dimostrate che

4pt

$$\forall x(p(x) \to \neg p(f(x))), \forall y(q(f(y)) \to p(y)) \vDash \forall x(p(x) \to \neg q(f(f(x)))).$$

6. Dimostrate che l'insieme di enunciati

4pt

- $\{\forall x(p(x) \to \exists y(r(x,y) \land \neg p(y))), \forall x(\neg p(x) \to \exists y(r(x,y) \land p(y))), \forall x \, \forall y(\neg r(x,y) \lor \neg r(y,x))\}$ è soddisfacibile.
- 7. Sia $\mathcal{L} = \{f, p, q\}$ un linguaggio in cui f è un simbolo di funzione unario e p e q sono 3pt simboli di relazione unari. Sia I l'interpretazione per \mathcal{L} definita da

 $D^{I} = \{0, 1, 2, 3, 4, 5, 6, 7\}; p^{I} = \{0, 3, 7\}; q^{I} = \{7\}; f^{I}(0) = 4; f^{I}(1) = 5;$ $f^{I}(2) = 2; f^{I}(3) = 6; f^{I}(4) = 7; f^{I}(5) = 2; f^{I}(6) = 7; f^{I}(7) = 1.$

Definite una relazione di congruenza \sim su I che abbia quattro classi d'equivalenza, giustificando la vostra risposta. Descrivete l'interpretazione quoziente I/\sim .

8. Usando il metodo dei tableaux dimostrate che

4pt

$$\exists x (q(c,x) \lor r(x,x)), \forall y (\exists x \, r(x,y) \to q(y,a)) \vDash \exists x \, \exists y \, q(x,y).$$

9. Dimostrate, usando solo le regole della deduzione naturale predicativa (comprese le sei regole derivate) che

5pt

$$\forall x (\exists y \, r(y, x) \to \neg p(x)), \forall u (p(u) \lor \forall v \, \neg r(v, u)) \rhd \neg \exists z \, r(z, f(z)).$$

Soluzioni

- a. V come si verifica per esempio con le tavole di verità.
- **b.** V se v è un'interpretazione tale che $v(F) = \mathbf{V}$ allora si ha $v(G \to H) = \mathbf{V}$ per ipotesi. Se si ha anche $v(G) = \mathbf{V}$ otteniamo $v(H) = \mathbf{V}$.
- c. F perché i letterali possono essere anche negazioni di formule atomiche.
- **d. F** se \mathcal{H} è un insieme di Hintikka tale che $\neg(q \lor \neg r \to p \lor \neg r) \in \mathcal{H}$ si ha $q \lor \neg r \in \mathcal{H}$ e $\neg(p \lor \neg r) \in \mathcal{H}$. Quest'ultima condizione implica $\neg p \in \mathcal{H}$ e $\neg \neg r \in \mathcal{H}$, da cui $r \in \mathcal{H}$. Allora $\neg r \notin \mathcal{H}$ e quindi deve essere $q \in \mathcal{H}$. Ma allora $p \lor \neg q \in \mathcal{H}$, che implica $p \in \mathcal{H}$ oppure $\neg q \in \mathcal{H}$, è impossibile.
- e. 1 la prima e la quarta formula sono β formule, la seconda formula è una δ formula e solo la terza formula è una γ -formula.
- **f.** F perché si ha $I, \sigma[x/0] \nvDash \neg p(x) \lor p(f(x)) \lor \exists y (p(f(y)) \land r(f(x), y)).$
- g. V per il Lemma 7.69 delle dispense.
- **h.** F se K e I sono le interpretazioni dell'esempio 9.6 delle dispense si ha $K \vDash \forall x \, p(x)$ ma $I \nvDash \forall x \, p(x)$.
- i. V è il teorema di correttezza (Teorema 4.21 delle dispense).
- j. F perché la regola $(\exists i)$ non si comporta affatto come in questo albero.
- k. ogni insieme di Hintikka è soddisfacibile.
- 1. Utilizziamo l'Algoritmo 3.22 delle dispense, adottando le semplificazioni suggerite nella Nota 3.30:

$$\begin{split} \left[\left\langle \left(p \to \neg q \vee r \right) \vee \neg \left(s \to \neg t \right) \to u \wedge \left(\neg v \to w \right) \right\rangle \right] \\ \left[\left\langle \neg \left(\left(p \to \neg q \vee r \right) \vee \neg \left(s \to \neg t \right) \right) \right\rangle, \left\langle u \wedge \left(\neg v \to w \right) \right\rangle \right] \\ \left[\left\langle \neg \left(p \to \neg q \vee r \right), s \to \neg t \right\rangle, \left\langle u, \neg v \to w \right\rangle \right] \\ \left[\left\langle p, \neg \left(\neg q \vee r \right), s \to \neg t \right\rangle, \left\langle u, v \right\rangle, \left\langle u, w \right\rangle \right] \\ \left[\left\langle p, q, \neg r, s \to \neg t \right\rangle, \left\langle u, v \right\rangle, \left\langle u, w \right\rangle \right] \\ \left[\left\langle p, q, \neg r, \neg s \right\rangle, \left\langle p, q, \neg r, \neg t \right\rangle, \left\langle u, v \right\rangle, \left\langle u, w \right\rangle \right] \end{split}$$

La formula in forma normale disgiuntiva ottenuta è

$$(p \land q \land \neg r \land \neg s) \lor (p \land q \land \neg r \land \neg t) \lor (u \land v) \lor (u \land w).$$

2. $\exists x \exists y (x \neq y \land a(x,c) \land a(y,c) \land \forall z (a(z,p(d)) \rightarrow b(x,z) \land b(y,z))).$

3. Per stabilire se la formula è conseguenza logica vale applichiamo l'Algoritmo 4.40 delle dispense, partendo dalle formule a sinistra del simbolo di conseguenza logica e dalla negazione di quella a destra. In ogni passaggio sottolineiamo la formula su cui agiamo.

$$p \rightarrow r \vee \neg s, r \rightarrow q, s \vee \neg (p \rightarrow r), \underline{\neg (\neg p \vee q)}$$

$$p \rightarrow r \vee \neg s, \underline{r} \rightarrow q, s \vee \neg (p \rightarrow r), p, \neg q$$

$$p \rightarrow r \vee \neg s, \neg r, s \vee \neg (p \rightarrow r), p, \neg q$$

$$p \rightarrow r \vee \neg s, \neg r, s \vee \neg (p \rightarrow r), p, \neg q$$

$$p \rightarrow r \vee \neg s, \neg r, s \vee \neg (p \rightarrow r), p, \neg q$$

$$r, \neg r, s \vee \neg (p \rightarrow r), p, \neg q$$

$$r, \neg r, s \vee \neg (p \rightarrow r), p, \neg q$$

$$r, \neg r, s \vee \neg (p \rightarrow r), p, \neg q$$

$$r, \neg r, s, p, \neg q$$

$$r, \neg r, s, p, \neg q$$

$$r, \neg r, r, p, \neg r, p, \neg q$$

Il tableau è aperto e quindi la conseguenza logica non vale e la foglia aperta ci permette di definire un'interpretazione che lo testimonia: $v(p) = \mathbf{V}, \ v(q) = \mathbf{F}, \ v(r) = \mathbf{F}, \ v(s) = \mathbf{F}.$

4. Una soluzione in cui si usa il minimo numero di quantificatori è:

$$\forall x \neg \forall y \neg r(x,y) \rightarrow \exists x \neg \exists y \, r(x,f(y)) \land \exists x \, \forall y \, r(f(x),f(y))$$

$$\forall x \, \exists y \, r(x,y) \rightarrow \exists x \, \forall y \, \neg r(x,f(y)) \land \exists z \, \forall y \, r(f(z),f(y))$$

$$\forall x \, \exists y \, r(x,y) \rightarrow \exists x \, \exists z (\forall y \, \neg r(x,f(y)) \land \forall y \, r(f(z),f(y)))$$

$$\exists x \, (\exists y \, r(x,y) \rightarrow \exists z \, \forall y (\neg r(x,f(y)) \land r(f(z),f(y)))$$

$$\exists x \, \exists z \, \forall y \, (\exists y \, r(x,y) \rightarrow \neg r(x,f(y)) \land r(f(z),f(y)))$$

$$\exists x \, \exists z \, \forall y \, \forall w \, (r(x,w) \rightarrow \neg r(x,f(y)) \land r(f(z),f(y)))$$

5. Dobbiamo mostrare che ogni interpretazione I che soddisfa gli enunciati a sinistra di \models _, che indichiamo con F e G, soddisfa anche quello a destra, che chiamiamo H. Supponiamo per assurdo che I sia un'interpretazione tale che $I \models F, G$ ma $I \not\models H$.

Dato che $I \nvDash H$ esiste $d_0 \in D^I$ tale che $I, \sigma[x/d_0] \nvDash p(x) \to \neg q(f(f(x)))$, ovvero $d_0 \in p^I$ e $f^I(f^I(d_0)) \in q^I$. Dato che $I \vDash G$ si ha in particolare che $I, \sigma[y/f^I(d_0)] \vDash q(f(y)) \to p(y)$ e quindi, dato che abbiamo $I, \sigma[y/f^I(d_0)] \vDash q(f(y))$, otteniamo $f^I(d_0) \in p^I$. Dato che $I \vDash F$ in particolare si ha $I, \sigma[x/d_0] \vDash p(x) \to \neg p(f(x))$, che, usando $I, \sigma[x/d_0] \vDash p(x)$, conduce a concludere $f^I(d_0) \notin q^I$, contraddicendo quando ottenuto in precedenza.

6. Dobbiamo definire un'interpretazione che soddisfi i tre enunciati. Due interpretazioni con queste caratteristiche sono definite da

$$\begin{split} D^I &= \{0,1,2,3\}, \quad p^I = \{0,2\}, \quad r^I = \{(0,1),(1,2),(2,3),(3,0)\}; \\ D^J &= \mathbb{N}, \quad p^I = \{n \in \mathbb{N} : n \text{ è pari}\}, \quad r^J = \left\{ \, (n,m) \in \mathbb{N}^2 \, : \, n < m \, \right\}. \end{split}$$

7. Dobbiamo partizionare D^I in quattro insiemi in modo da rispettare la Definizione 9.19 delle dispense. Osservando p^I e q^I notiamo che 0 e 3 sono gli unici elementi che appartengono al primo e non al secondo; possono quindi essere congruenti tra loro, ma non con gli altri elementi di D^I . E' anche evidente che 7 non può essere congruente a nessun elemento diverso da se stesso. Prendendo ora in considerazione f^I notiamo che $f^I(4) = f^I(6) = 7$ e quindi questi elementi non possono essere congruenti con 1, 2 e 5, che vengono mappati tra loro.

Queste osservazioni ci portano a concludere che le quattro classi di congruenza non possono che essere $\{0,3\}$ $\{1,2,5\}$, $\{4,6\}$ e $\{7\}$. Inoltre \sim così definita verifica anche la condizione che riguarda f, perché $f^I(0) \sim f^I(3)$, $f^I(1) \sim f^I(2) \sim f^I(5)$ e $f^I(4) \sim f^I(6)$.

Si ha allora

$$\begin{split} D^I/\!\!\sim &= \{[0], [1], [4], [7]\}; \\ f^{I/\!\!\sim}([0]) = [4], \quad f^{I/\!\!\sim}([1]) = [1], \quad f^{I/\!\!\sim}([4]) = [7], \quad f^{I/\!\!\sim}([7]) = [1]; \\ p^{I/\!\!\sim} &= \{[0], [7]\}, \qquad q^{I/\!\!\sim} = \{[7]\}. \end{split}$$

8. Per mostrare la conseguenza logica dobbiamo costruire (utilizzando l'Algoritmo 10.51 e le Convenzioni 10.21 e 10.23 delle dispense) un tableau chiuso con la radice etichettata dagli enunciati a sinistra del simbolo di conseguenza logica e la negazione dell'enunciato a destra. Indichiamo con F, G, H, K e L le γ -formule $\forall y(\exists x\, r(x,y) \to q(y,a))$, $\neg \exists x\, \exists y\, q(x,y), \, \neg \exists y\, q(c,y), \, \neg \exists x\, r(x,b) \, e \, \neg \exists y\, q(b,y)$. In ogni passaggio sottolineiamo le formule su cui agiamo.

Si noti l'importanza di scegliere in modo opportuno le istanze delle γ -formule (in particolare la γ -formula G va istanziata diversamente in differenti rami del tableau). Con altre scelte il tableau cresce rapidamente di dimensione.

9. Ecco una deduzione naturale che mostra quanto richiesto:

$$\underbrace{\frac{\left[r(z,f(z))\right]^2}{\exists y\,r(y,f(z))}\,\frac{\forall x(\exists y\,r(y,x)\to\neg p(x))}{\exists y\,r(y,f(z))\to\neg p(f(z))}}_{\exists y\,r(y,f(z))\to\neg p(f(z))}\underbrace{\frac{\left[\forall v\,\neg r(v,f(z))\right]^1}{\neg r(z,f(z))}}_{\neg r(z,f(z))} \underbrace{\frac{\left[\forall v\,\neg r(v,f(z))\right]^1}{\neg r(z,f(z))}}_{\bot} \underbrace{\frac{\left[\forall v\,\neg r(v,f(z))\right]^1}{\neg r$$