DATABASE SYSTEMS LAB

Course Code: 30102422

Credit Hours: 1

Prerequisite: 30102421

Instructor Information

Name	:Dr. Jihad	:Dr. Jihad Nader				
Office No.	B17 F4 R8	B17 F4 R8				
Tel (Ext)	N/A					
E-mail	jihadnade	jihadnader@bau.edu.jo				
Office Hours	-					
Class Times	Building	Day	Start Time	End Time	Room No.	
	-	Sun ,Tues	11:30	14:30		
	-	Mon ,Wed	11:30	14:30		

Course Description:

This Lab. practices the concepts introduced in the Database systems course using Oracle

Database. The students are expected to implement a database project for some problem.

Course Title: Database Systems Lab

Credit Hour(1)

[Pre-req. Course Code(30102421)]

Textbook: Oracle Database 10g: SQL Fundamentals I, Volume I • Student Guide

Oracle Database 10g: SQL Fundamentals I Volume I • Student Guide D17108GC11 Edition 1.1 August 2004 D39766 ORACLE"

COURSE OBJECTIVES:

Upon completion of this course, students will have gained knowledge of the DBMS (Oracle) concepts and the ability to:

- Understand the concepts of relational databases and the Oracle Database 10g database technology.
- Use the powerful SQL programming language and its features.
- Identify features of Relational Database Management System (RDBMS).
- Categorize the main database objects
- Understand how constraints are created at the time of table creation.
- Describe each data manipulation language (DML) statement
- List the capabilities of SQL SELECT statements
- Write SELECT statements to access data from more than one table using equijoins and nonequijoins
- Employ SQL functions to generate and retrieve customized data
- Identify when a subquery can help solve a question
- Write subqueries when a query is based on unknown values
- Use a set operator to combine multiple queries into a single query

COURSE SYLLABUS

Week	Course Topic	Notes
Week 1	Creating and Managing Tables: Database Objects Naming Conventions The Create Table Statement Creating a Table by Using a Subquery Querying the Data Dictionary The Alter Table Statement Truncating a Table Adding Comments to a Table	
Week 2	Including Constraints - Defining Constraints - The Not Null Constraint - The Unique Constraint - The Primary Key Constraint - The Foreign Key Constraint - The Check Constraint - Adding a Constraint - Dropping a Constraint - Enabling and Disabling Constraints - Viewing Constraints	
Week 3 Week 4	Manipulating Data Data Manipulating Language. The Insert Statement Copying Rows from another Table The Update Statement Database Transactions Commit and Rollback Statements Writing Basic SQL Statements	
	 Selecting Specific Columns Arithmetic Expressions Concatenation Operator Using Column Aliases Eliminating Duplicate Rows 	

COURSE SYLLABUS

Week	Course Topic	Notes
Week 5	Restricting and Sorting Data - Where Clause - Comparison Operators - Special Operators	
	- Logical Operator (And, Or, Not) - Order By Clause	
Week 6	Displaying Data from Multiple Tables - Cartesian Product Types of Joins - Table Aliases.	
Week 7	Single-Row Functions - Character Functions Number Functions - Date Functions	
Week 8	Midterm Exam	Midterm Exam
Week 9	Project Proposal	
Week 10	Single-Row Functions - Conversion Functions - General Functions	

COURSE SYLLABUS

Week	Course Topic	Notes
Week 11	Aggregating Data using Group Functions - Types of Group Functions (AVG, SUM, MAX, MIN, COUNT). - Creating Groups of data: Group By Clause. - Excluding Group Results: Having Clause. - Nested Group Functions	
Week 12	Subqueries Types of Subqueries Single-Row Subqueries Multiple-Row Subqueries	
Week 13	Multiple-Column Subqueries - Column Comparisons - Null Values in a subquery - Using a subquery in the From Clause	
Week 14	Using the Set Operators - Union / Union All - Intersect - Minus	
Week 15	Project Discussion	
Week 16	Final Exam	Final Exam

Week 1

Chapter 1:

Creating and Managing Tables

USING DDL STATEMENTS TO CREATE AND MANAGE TABLES

Objectives

After completing this lesson, you should be able to do the following:

- Categorize the main database objects
- Review the table structure
- List the data types that are available for columns
- Create a simple table
- Explain how constraints are created at the time of table creation
- Describe how schema objects work

Database Objects

Object	Description
Table	Basic unit of storage; composed of rows
View	Logically represents subsets of data from one or more tables
Sequence	Generates numeric values
Index	Improves the performance of some queries
Synonym	Gives alternative names to objects

Naming Rules

Table names and column names:

- Must begin with a letter
- Must be 1–30 characters long
- Must contain only A-Z, a-z, 0-9, _, \$, and #
- Must not duplicate the name of another object owned by the same user
- Must not be an Oracle server-reserved word

CREATE TABLE Statement

- You must have:
 - CREATE TABLE privilege
 - A storage area

```
CREATE TABLE [schema.] table (column datatype [DEFAULT expr][, ...]);
```

- You specify:
 - Table name
 - Column name, column data type, and column size

Referencing Another User's Tables

- Tables belonging to other users are not in the user's schema. -
- You should use the owner's name as a prefix to those tables. -

DEFAULT Option

- Specify a default value for a column during an insert.

```
... hire_date DATE DEFAULT SYSDATE, ...
```

values.

- Another column's name or a pseudocolumn are illegal values.
- The default data type must match the column data type.

```
CREATE TABLE hire_dates

(id NUMBER(8),

hire_date DATE DEFAULT SYSDATE);

Table created.
```

Creating Tables

Create the table.

```
CREATE TABLE dept

(deptno NUMBER(2),

dname VARCHAR2(14),

loc VARCHAR2(13),

create_date DATE DEFAULT SYSDATE);

Table created.
```

- Confirm table creation.

DESCRIBE dept

Name	Null?	Туре
DEPTNO		NUMBER(2)
DNAME		VARCHAR2(14)
LOC		VARCHAR2(13)
CREATE_DATE		DATE

Data Types

Data Type	Description
VARCHAR2(size)	Variable-length character data
CHAR(size)	Fixed-length character data
NUMBER (p,s)	Variable-length numeric data
DATE	Date and time values
LONG	Variable-length character data (up to 2 GB)
CLOB	Character data (up to 4 GB)
RAW and LONG RAW	Raw binary data
BLOB	Binary data (up to 4 GB)
BFILE	Binary data stored in an external file (up to 4 GB)
ROWID	A base-64 number system representing the unique address of a row in its table

USING DDL STATEMENTS TO CREATE AND MANAGE TABLES

Objectives

After completing this lesson, you should be able to do the following:

- Categorize the main database objects
- Review the table structure
- List the data types that are available for columns
- Create a simple table
- Explain how constraints are created at the time of table creation
- Describe how schema objects work

Including Constraints

- Constraints enforce rules at the table level.
- Constraints prevent the deletion of a table if there are dependencies.
- The following constraint types are valid:
 - NOT NULL
 - UNIQUE
 - PRIMARY KEY
 - FOREIGN KEY
 - CHECK

Constraint Guidelines

- You can name a constraint, or the Oracle server generates a name by using the SYS Cn format.
- Create a constraint at either of the following times:
 - At the same time as the table is created
 - After the table has been created
- Define a constraint at the column or table level.
- View a constraint in the data dictionary.

Defining Constraints

– Syntax:

```
CREATE TABLE [schema.] table
    (column datatype [DEFAULT expr]
    [column_constraint],
    ...
    [table_constraint][,...]);
```

– Column-level constraint:

```
column [CONSTRAINT constraint_name] constraint_type,
```

- Table-level constraint:

```
column,...
[CONSTRAINT constraint_name] constraint_type
  (column, ...),
```

Defining Constraints

– Column-level constraint:

```
CREATE TABLE employees(
employee_id NUMBER(6)
CONSTRAINT emp_emp_id_pk PRIMARY KEY,
first_name VARCHAR2(20),
...);
```

– Table-level constraint:

```
CREATE TABLE employees(
employee_id NUMBER(6),
first_name VARCHAR2(20),
...
job_id VARCHAR2(10) NOT NULL,
CONSTRAINT emp_emp_id_pk
PRIMARY KEY (EMPLOYEE_ID));
```

NOT NULL Constraint

Ensures that null values are not permitted for the column:

EMPLOYEE_ID	LAST_NAME	EMAIL	PHONE_NUMBER	HIRE_DATE	JOB_ID	SALARY	DEPARTMENT_ID
100	King	SKING	515.123.4567	17-JUN-87	AD_PRES	24000	90
101	Kochhar	NKOCHHAR	515.123.4568	21-SEP-89	AD_VP	17000	90
102	De Haan	LDEHAAN	515.123.4569	13-JAN-93	AD_VP	17000	90
103	Hunold	AHUNOLD	590.423.4567	03-JAN-90	IT_PROG	9000	60
104	Ernst	BERNST	590.423.4568	21-MAY-91	IT_PROG	6000	60
178	Grant	KGRANT	011.44.1644.429263	24-MAY-99	SA_REP	7000	
200	Whalen	JWHALEN	515.123.4444	17-SEP-87	AD_ASST	4400	10

20 rows selected.

NOT NULL constraint (No row can contain a null value for this column.)

NOT NULL constraint

Absence of NOT NULL constraint (Any row can contain a null value for this column.)

UNIQUE Constraint

UNIQUE Constraint

Defined at either the table level or the column level:

PRIMARY KEY Constraint

DEPARTMENTS

DEPARTMENT_ID	DEPARTMENT_NAME	MANAGER_ID	LOCATION_ID
10	Administration	200	1700
20	Marketing	201	1800
50	Shipping	124	1500
60	IT	103	1400
80	Sales	149	2500

...

Not allowed (null value)

Public Accounting		1400
50 Finance	124	1500

Not allowed (50 already exists)

FOREIGN KEY Constraint

	DEPARTMENT_ID	DEPARTMENT_NAME	MANAGER_ID	LOCATION_ID
	10	Administration	200	1700
	20	Marketing	201	1800
	50	Shipping	124	1500
PRIMARY	60	IT	103	1400
KEY	80	Sales	149	2500

EMPLOYEES

EMPLOYEE_ID	LAST_NAME	DEPARTMENT_ID	← FOREIGN
100	King	90	KEY
101	Kochhar	90	
102	De Haan	90	
103	Hunold	60	
104	Ernst	60	
107	Lorentz	60	

200 Ford 9
201 Ford 60

Not allowed (9 does not – exist)

Allowed

FOREIGN KEY Constraint

Defined at either the table level or the column level:

```
CREATE TABLE employees (
   employee id NUMBER(6),
   last name VARCHAR2(25) NOT NULL,
   email
                 VARCHAR2 (25),
   salary
                   NUMBER (8,2),
   commission pct
                   NUMBER (2,2),
   hire date
                   DATE NOT NULL,
   department id NUMBER(4),
   CONSTRAINT emp dept fk FOREIGN KEY (department id)
     REFERENCES departments (department id),
   CONSTRAINT emp email uk UNIQUE(email));
```

FOREIGN KEY Constraint:

Keywords

- FOREIGN KEY: Defines the column in the child table at the table-constraint level
- REFERENCES: Identifies the table and column in the parent table
- ON DELETE CASCADE: Deletes the dependent rows in the child table when a row in the parent table is deleted
- ON DELETE SET NULL: Converts dependent foreign key values to null

CHECK Constraint

- Defines a condition that each row must satisfy
- The following expressions are not allowed:
 - References to CURRVAL, NEXTVAL, LEVEL, and ROWNUM pseudocolumns
 - Calls to SYSDATE, UID, USER, and USERENV functions
 - Queries that refer to other values in other rows

```
..., salary NUMBER(2)
CONSTRAINT emp_salary_min
CHECK (salary > 0),...
```

CREATE TARLE Frample

```
CREATE TABLE employees
   ( employee id
                  NUMBER (6)
      CONSTRAINT
                    emp employee id
                                   PRIMARY KEY
   , first name VARCHAR2(20)
    last name VARCHAR2 (25)
      CONSTRAINT
                    emp last name nn NOT NULL
             VARCHAR2 (25)
   , email
      CONSTRAINT
                    emp email nn
                                   NOT NULL
                   emp email uk
      CONSTRAINT
                                   UNIOUE
   , phone number VARCHAR2 (20)
   , hire date
                  DATE
      CONSTRAINT
                   emp hire date nn NOT NULL
   , job id VARCHAR2(10)
      CONSTRAINT
                   emp job nn
                                   NOT NULL
   , salary NUMBER(8,2)
                    CONSTRAINT
    commission pct NUMBER(2,2)
    manager id NUMBER(6)
   , department id NUMBER(4)
      CONSTRAINT
                    emp dept fk
                                   REFERENCES
         departments (department id));
```

Violating Constraints

```
UPDATE employees
SET department_id = 55
WHERE department_id = 110;
```

```
UPDATE employees

*

ERROR at line 1:

ORA-02291: integrity constraint (HR.EMP_DEPT_FK)

violated - parent key not found
```

Department 55 does not exist.

Violating Constraints

You cannot delete a row that contains a primary key that is used as a foreign key in another table.

```
DELETE FROM departments
WHERE department_id = 60;
```

```
DELETE FROM departments

*

ERROR at line 1:

ORA-02292: integrity constraint (HR.EMP_DEPT_FK)

violated - child record found
```

Creating a Table by Using a Subquery

- Create a table and insert rows by combining the CREATE TABLE statement and the AS subquery option.

```
CREATE TABLE table
[(column, column...)]
AS subquery;
```

- Match the number of specified columns to the number of subquery columns.
- Define columns with column names and default values.

Creating a Table by Using a Subquery

DESCRIBE dept80

Name	Null?	Туре
EMPLOYEE_ID		NUMBER(6)
LAST_NAME	NOT NULL	VARCHAR2(25)
ANNSAL		NUMBER
HIRE_DATE	NOT NULL	DATE

ALTER TABLE Statement

Use the ALTER TABLE statement to:

- Add a new column
- Modify an existing column
- Define a default value for the new column
- Drop a column

Dropping a Table

- All data and structure in the table are deleted.
- Any pending transactions are committed.
- All indexes are dropped.
- All constraints are dropped.
- You cannot roll back the DROP TABLE statement.

```
DROP TABLE dept80;
Table dropped.
```

Summary

In this lesson, you should have learned how to use the CREATE TABLE statement to create a table and include constraints.

- Categorize the main database objects
- Review the table structure
- List the data types that are available for columns
- Create a simple table
- Explain how constraints are created at the time of table creation
- Describe how schema objects work

Practice 9: Overview

This practice covers the following topics:

- Creating new tables
- Creating a new table by using the CREATE TABLE AS syntax
- Verifying that tables exist
- Dropping tables