МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа электроники, фотоники и молекулярной физики

Лабораторная работа 23 Инжекционные полупроводниковые лазеры

Салтыкова Дарья Б04-104

Цель работы

- Изучение принципов работы инжекционных полупроводниковых лазеров (ИПЛ) и светодиодов.
- Исследование ватт-ваттных характеристик излучения ИПЛ и светодиодов.
- Получение спектральных характеристик различных образцов.

Теоретическое введение

Инжекционные полупроводниковые лазеры генерируют когерентное излучение за счёт рекомбинации электронно-дырочных пар в активной области p-n-перехода. При подаче напряжения происходит инжекция носителей заряда, создающая инверсную населённость энергетических уровней. Для возникновения лазерной генерации необходимо выполнение порогового условия, которое заключается в том, что коэффициент усиления превышает суммарные потери в резонаторе, образованном торцевыми гранями кристалла.

Ключевое отличие ИПЛ от светодиодов заключается в наличии порогового тока накачки, при достижении которого происходит переход от спонтанного к вынужденному излучению. Это приводит к резкому увеличению интенсивности излучения, сужению спектральной линии и повышению направленности выходного пучка.

Основными параметрами $\Pi U \Pi$ являются пороговая мощность накачки и ширина спектральной линии излучения.

Оборудование

- Инжекционный полупроводниковый лазер
- Красный, синий и зеленые светодиоды
- Источник питания
- Фотоприемники
- Монохроматор
- Мультиметры

Экспериментальная установка

Схема экспериментальной установки изображена на рис. 1. Для подачи напряжения на исследуемые образцы использовался регулируемый источник питания, позволяющий менять ток накачки. Измерения проводились с использованием цифрового вольтметра для контроля напряжения на образце и амперметра для измерения тока через ИПЛ. Интенсивность излучения регистрировалась при помощи фотодиода. Для исследования спектральных характеристик в оптическую схему был включен монохроматор. Для каждого значения длины волны фиксировалось значение напряжения.

Рис. 1: Блок-схема экспериментальной установки

Результаты измерений

Ватт-ваттные характеристики

Измерены зависимости выходной мощности от мощности накачки для ИПЛ (рис. 2) и светодиодов: красного (рис. 3), зелёного (рис. 3) и синего (рис. 5).

Рис. 2: Ватт-ваттная характеристика ИПЛ

Рис. 3: Ватт-ваттная характеристика красного светодиода

Рис. 4: Ватт-ваттная характеристика зеленого светодиода

Рис. 5: Ватт-ваттная характеристика синего светодиода

Спектральные характеристики

На рисунках ниже представлены спектральные характеристики ИПЛ (рис. 6), красного светодиода (рис. 7), зеленого светодиода (рис. 8), синего светодиода (рис. 9). Для красного и зеленого светодиодов спектральные характеристики были измерены при двух различных токах накачки.

Рис. 6: Спектральная характеристика ИПЛ, ток накачки 11 мА

Рис. 7: Спектральные характеристики красного светодиода при различных токах накачки

Рис. 8: Спектральные характеристики зеленого светодиода при различных токах накачки

Рис. 9: Спектральная характеристика синего светодиода, ток накачки 1.4 мА

Занесем в Таблицу 1 значения ширины спектра на полувысоте для разных образцов и разных токов накачки, а также длины волн, на которых интенсивность излучения максимальна.

Таблица 1: Основные спектральные характеристики исследуемых образцов

Образец	Ток накачки, мА	λ_{max} , HM	$\Delta\lambda$, hm
Красный лазер	11.0	651	7.9
Синий светодиод	1.4	463	24.7
Зелёный светодиод	9.0	515	50.4
	0.7	530	30.2
Красный светодиод	17.5	626	36.3
	13.1	618	35.7

Выводы

В ходе работы были измерены ватт-ваттные характеристики (зависимость выходной мощности от мощности накачки) для инжекционного полупроводникового лазера и полупроводниковых светодиодов (красного, зелёного, синего). По пересечению линейного участка ватт-ваттной характеристики ИПЛ с горизонтальной осью предполагалось оцененить пороговую мощность накачки полупроводникового лазера, после которой наблюдается резкий рост выходной мощности, однако в ходе работы было снято недостаточно точек, и линейный участок достигнут не был. Светодиоды, как и ожидалось, демонстрируют зависимость без выраженного порога.

Также были исследованы спектральные характеристики образцов. Были определены характерные ширины спектральных линий полупроводникового лазера и светодиодов. Обращает на себя внимание тот факт, что у ИПЛ значительно меньшая характерная ширина спектра. Видно также, что при увеличении тока накачки спектральные линии светодиодов уширяются - вероятно, это связано с тем, что большая мощность накачки влечет за собой рост средней скорости носителей.

Приложение

Таблица 2: Экспериментальные данные BBX

Образец	Мощность накачки, Вт	Вых. мощность, у.е.
Зеленый светодиод	0.000	0.07
	0.000025	0.07
	0.00040	0.07
	0.000109	0.07
	0.000728	0.16
	0.001803	0.59
	0.006799	2.02
	0.018496	4.93
	0.024500	6.15
	0.026013	6.45
	0.030947	7.22
	0.034009	8.00
	0.037162	11.69
Красный светодиод	0.000000	0.07
	0.000031	0.07
	0.000056	0.07
	0.000091	0.07
	0.000118	0.07
	0.000185	0.07
	0.000904	0.22
	0.003517	1.12
	0.007564	2.61
	0.010865	3.71
	0.018708	6.38
	0.026793	8.91
	0.035968	11.36

Таблица 3: Экспериментальные данные BBX (продолжение)

Образец	Мощность накачки, Вт	Вых. мощность, у.е.
Синий светодиод	0.000000	0.07
	0.000026	0.07
	0.000058	0.07
	0.000079	0.07
	0.000100	0.07
	0.000133	0.07
	0.000141	0.07
	0.000180	0.07
	0.000236	0.08
	0.001373	0.90
	0.002989	2.14
	0.005349	4.25
	0.009420	6.90
	0.011497	8.14
	0.013720	9.38
	0.017837	11.18
Красный лазер	0.000000	0.07
	0.000022	0.07
	0.000117	0.07
	0.000192	0.07
	0.000346	0.07
	0.000588	0.07
	0.001386	0.16
	0.006076	0.20
	0.019652	1.09
	0.028670	3.65
	0.000000	0.00

Таблица 4: Экспериментальные данные спектральных характеристик

Красны	ій лазер	ер Синий светодиод		Зелёный светодиод	
11	мА	1,4 мА 9 мА		9 мА	
λ (HM)	P (y.e)	λ (нм)	P (y.e)	λ (нм)	P (y.e)
630	0,6	420	0,59	440	0,6
640	0,9	430	0,64	450	0,6
645	1,4	440	0,86	460	0,61
647	2,2	445	1,18	470	0,68
650	4,0	450	1,86	475	0,75
651	4,4	455	3,00	480	0,85
652	4,04	453	2,40	485	1,02
653	3,4	457	3,67	490	1,25
654	2,8	460	$4,\!55$	495	1,55
655	2,1	463	4,95	500	1,92
656	1,6	465	4,90	505	2,30
657	1,4	467	4,63	510	2,64
660	1,0	470	3,98	515	2,76
665	0,6	472	$3,\!56$	520	2,73
		475	2,93	525	2,45
		477	2,61	530	2,15
		480	2,18	535	1,77
		482	1,94	540	1,49
		485	1,64	550	1,06
		487	1,46	560	0,82
		490	$1,\!25$	570	0,71
		495	1,00	580	0,65
		500	$0,\!85$		
		510	0,69		

Таблица 5: Экспериментальные данные спектральных характеристик (продолжение)

Зелёны	й светодиод	Красны	й светодиод	Красный светодио,		
0	0,7 мА		17,5 мА		13,1 мА	
λ (HM)	P (y.e)	λ (HM)	P (y.e)	λ (нм)	P (y.e)	
495	0,59	550	0,1	550	0,05	
500	0,60	570	$0,\!35$	570	0,25	
510	0,63	585	0,9	585	0,7	
520	0,66	595	1,65	595	1,4	
530	0,68	605	2,7	605	2,4	
540	0,66	612	3,8	612	3,3	
550	$0,\!63$	618	4,9	618	3,78	
560	0,60	623	5,8	624	3,3	
		626	6,3	631	2,4	
		629	5,8	640	1,4	
		634	4,9	651	0,7	
		640	3,8	665	0,25	
		647	2,7	685	0,05	
		657	1,65			
		667	0,9			
		681	$0,\!35$			
		701	0,1			