Power of Computer Vision: Image Classification Based on Regional Features of Chest CT-Scan Images

Hamidrea Rokhsati Alireza Samadifardheris

ROADMAP

1. Introduction:

- Effective COVID-19 case screening is becoming increasingly crucial
- over 312,173,462 total covid-19 cases around the world and 5,501,000 deaths
- Our goal is to develop a COVID-19 prediction model based on detected regional features using chest CT scans.

1.1. Chest CT-Scan VS. Chest X-Ray

X-Ray Scan

- → X-Ray generates 2D Images
- → It is mainly used to see bones & to detect cancers & pneumonia
- → Usage of radiation to create images

CT Scan

- → CT generates 3D Images
- → It is mainly used to diagnose conditions in bones & soft tissues
- → Takes a 360-degree image
- → It is more powerful than X-rays
- → Usage of radiation to create images

1.2. Chest CT-Scan VS. Chest X-Ray in pandemic

More precise than an X-ray and less time-consuming than RT-PCR

Automated COVID-19 prediction from chest CT scans:

- an approach to assist clinicians and radiologists

Chest CT scans show diverse symptoms of pneumonia: including covid-19 (lesions)

1.3. Chest CT-Scan:

• What information can we extract?

Normal Common pneumonia Covid-19

1.4. Critical factors:

- ✓ Associated critical factors of COVID-19 cases
- obvious differences between COVID-19 and other kinds of pneumonia(but rarely statistically significant.)
- Ground Glass Opacity (GGO) and Consolidation (C) are two forms of lesions that are linked to both diseases.
- The location (uni- vs bilateral), distribution (peripheral, diffuse), range, quantity, and attenuation of each lesion type are crucial in distinguishing between the two disorders.

Two types of Lesion Detection using Deep Learning

- 1. Straightforward (feature extractor + class logits) using ResNet, ResNeXt, DenseNet or a tailored solution (e.g. COVNet, COVNet-CT).
- 2. Feature extractor + semantic segmentation: predicted masks are concatenated with the feature maps to predict the image class.

To be concrete we are using:

MASK-RCNN

To mask lesions and predict the class of scans

COVID-CT-Mask-Net:
Prediction of COVID-19 from CT Scans Using Regional Feature
Aram Ter-Sarkisov

2.1. Mask RCNN:

Is a Convolutional Neural Network

2.2. Mask RCNN:

Is a Region-Based Convolutional Neural Network (RCNN) based on FASTER-RCNN

2.2.1. FASTER-RCNN:

- Is an improved version of R-CNN architectures with two stages:
 - **Region Proposal Network (RPN):** is simply a Neural Network that proposes multiple objects that are available within a particular image.
 - **Fast R-CNN.** This extracts features using RoIPool (Region of Interest Pooling) from each candidate box and performs classification and bounding-box regression. RoIPool is an operation for extracting a small feature map from each RoI in detection.
- Faster R-CNN advances this stream by learning the attention mechanism with a Region Proposal Network and Fast R-CNN architecture.
- The reason why "Fast R-CNN" is faster than R-CNN is that you don't have to feed 2'000 region proposals to the convolutional neural network every time. Instead, the convolution operation is done only once per image, and a feature map is generated from it.
- Furthermore, Faster R-CNN is an optimized form of R-CNN because it is built to enhance computation speed (run R-CNN much faster).
- The main difference between Fast and Faster RCNN is that that Fast R-CNN uses selective search for generating Regions of Interest, while Faster R-CNN uses a "Region Proposal Network" (RPN)

2.3. Mask RCNN:

- Is augmented on Faster-RCNN
- While Faster R-CNN has 2 outputs for each candidate object, a class label, and a bounding-box offset, Mask R-CNN is the addition of a third branch that outputs the object mask. The additional mask output is distinct from the class and box outputs, requiring the extraction of a much finer spatial layout of an object.
- The key element of Mask R-CNN is the pixel-to-pixel alignment, which is the main missing piece of Fast/Faster R-CNN.

2.4. What do we expect?

2.5. Why Mask RCNN:

- **Simplicity:** Mask R-CNN is simple to train.
- **Performance:** Mask R-CNN outperforms all existing, single-model entries on every task.
- **Efficiency:** The method is very efficient and adds only a small overhead to Faster R-CNN.
- Faster R-CNN and Mask R-CNN solve the problem of detecting (predicting the bounding box + class) and segmenting each object independently, i.e., the model understands objects at the instance level rather than the image or pixel level.
 - This contrasts with image classification techniques such as ResNet and semantic (pixel-level) segmentation techniques such as UNet. Mask R-CNN can handle partial occlusion and disconnected objects instead of nameless feature maps and image-wide score maps.
- As a result, Mask R-CNN performs extremely accurate instance segmentation and prediction.

3.1. Training Mask RCNN:

3.2. Classification using Mask RCNN:

3.3. Algorithm

- 1 Set E:total number of epochs, α : learning rate, λ : weight regularization parameter.
- 2 Initialize COVID-CT-Mask-Net with the weights and anchors from the segmentation model.
- 3 for 1 to E do

Input

: Batch of CT images, sparse label vector L with C classes

- 4 Extract backbone features from the images in the batch
- 5 RPN: predict bounding boxes containing objects and their scores
- 6 RoI: extract N box coordinates predictions and their scores
- 7 Predict N masks (ignored in our implementation)

Regions Of Interest Output : Batch of N encoded boxes and their confidence scores (tensor $N \times 5$)

- Classifier Module S: accept the ranked boxes and scores, convert batch to feature vector, extract global features
 - COVID-CT-Mask-Net Output: Vector of image class predictions \$
- Binary per-class cross-entropy loss: $\mathcal{L}(\hat{\mathbf{s}}, \mathbf{L}) = -\sum_{k=1}^{C} L_k \times \log \sigma(\hat{\mathbf{s}}_k)$

10 end

11 Return the best model

DISCLAIMER

This presentation is for the Computer vision project only

DO NOT USE THIS CODE FOR SELF DIAGNOSING AND CONTACT HEALTH AUTHORITIES IF YOU HAVE ISSUES

4.1. DATA

- Where do we get data from?
- China Consortium of Chest CT Image Investigation were used to create a dataset of CT images and metadata
- All CT images are divided into three categories: new coronavirus pneumonia (NCP) related to SARS-CoV-2 virus infection, common pneumonia, and normal controls.
- A summary of data: comprising 194,922 CT slices from 3,745 patients

Images are labeled as [Class-string]_[PatientID]_[ScanNum]_[SliceNum].png

4.2. Libraries

MASK-RCNN

etc

5.1. Segmentation

Training stage: inputs are CT images and their masked versions

We used a trained model to segment our images:

Mask GGO AND C

With their BB and probability

5.2. Classification

- First stage: = Training based on a pre-trained model:
- Aim: keep training on our data to decrease loss
- In only 10 epochs: with 3000 train and 1000 validation images:
- We reached to Train loss and Validation loss respectively less than 0.01 and 0.02
- How long? 1 hour on Colab GPU

6.1. Test

- On trained model
- On 1000 test images(not used in train)

THANKS!

Any questions?

You can find us at:

Alireza Samadifardheris:

Samadifardheris.1961823@studenti.uniroma1.it

Hamidreza Rokhsati:

Rokhsati.1960699@studeni.uniroma1.it

CREDITS

- https://www.kaggle.com/hgunraj/covidxctAlex git hub
- COVID-CT-Mask-Net: Prediction of COVID-19 from CT Scans Using Regional Features Aram Ter-Sarkisov
- EDL-COVID: Ensemble Deep Learning for COVID-19 Case Detection From Chest X-Ray Images Shanjiang Tang et al
- www.worldmeter.com
- https://viso.ai/

