Идентификация заряженных частиц в эксперименте LHCb

Евгений Елтышев

Кафедра Анализа данных Факультет инноваций и высоких технологий Московский физико-технический институт

День Х

План

- Введение
 - Большой адронный коллайдер
 - Детектор LHCb
- Описание задачи
 - Постановка задачи
 - Существующие решения
 - Данные и измерение качества
- В Результаты
 - Анализ особенностей данных
 - Новые модели
 - Будущие исследования

Большой адронный коллайдер

БАК - кольцо длиной 27км по которому циркулируют пучки протонов

Детектор LHCb

Последовательность слоев:

- Вершинный субдетектор (VELO)
- Черенковские счетчики (RICH-1, RICH-2)
- Трековый субдетектор (TT, T1-T3)
- Калориметры (ECAL, HCAL)
- Мюонная камера (M1-M5)

Постановка задачи

По характеристикам трека определить вид частицы:

- Ghost
- Электрон
- Мюон
- Пион
- Каон
- Протон

Существующие решения

Delta log-likelihood models (DLL)

Строится 6 вероятностных моделей на основе характеристик каждой из частиц с точки зрения физики. Выбор вида частицы производится по максимуму правдоподобия

ProbNN

- Специализированная библиотека для анализа данных в физике ТМVА
- Перцептрон с одним скрытым слоем, 6 моделей "один против всех"
- Включает в себя как DLL-признаки, так и низкоуровневую информацию

<u>МФТИ</u>.

анные

77 признаков

- Характеристики трека: импульс, заряд и т.д.
- Правдоподобия от различных слоев: CaloDLL, RichDLL, MuonLL, CombDLL
- Геометрическая информация: положение исходной вершины
- Флаги прохождения частицы через слои: через RICH, CALO, Muon

Выборки

- train 1.2 млн треков (стандартные пропорции классов)
- test 1 млн треков (стандартные пропорции классов)
- equal mix 300 тыс. треков (сбалансированные классы)

/\ **МФТИ**

Измерение качества

Базовое решение

Базовое решение имеет вид 6 моделей "один против всех". Его качество измерялось как 6 значений ROC AUC.

Мои исследования

Рассматривались не только "один против всех"модели, но и многоклассовые.

- ROC AUC "один против всех"
- Log Loss как целевая функция для многоклассовых моделей

Проделанная работа

Проанализированы и устранены особенности данных

- Несбалансированность классов
- Длинные хвосты распределений
- Пропуски в данных

<u>Использованы</u> новые модели

- Логистическая регрессия
- XGBoost
- Нейросети Keras
- Специальная архитектура нейросети

<u> МФТИ</u>.

Несбалансированность классов

- Классы крайне несбалансированы
- Градиентные методы плохо настраиваются на маленькие классы
- Как исправить:
 взвешивание выборки,
 downsampling

Длинные хвосты распределений

Длинные хвосты распределений плохо влияют на линейные методы Для "сглаживания" распределений можно применить $sign(x) \log(1+|x|)$

∫ МФТИ

Пропуски в данных

- В данных много пропусков, причем они заменены на -999
- Не мешает методам, основаным на деревьях
- Мешает линейным методам
- Для линейных методов: заменим пропуски на среднее значение в колонке, добавим бинарный признак "был ли пропуск"

Логистическая регрессия

Обычная логистическая регрессия из пакета scikit-learn с L1-регуляризацией

Частица	Baseline	Логистическая	
		регрессия	
Ghost	5.2	5.64	
Электрон	1.73	1.88	
Мюон	1.21	1.14	
Пион	6.65	6.56	
Каон	8.48	9.57	
Протон	8.39	10.23	

Ошибка: (1-AUC)*100

<u>МФТИ</u>.

XGBoost

- Мощная библиотека, реализующая градиентный бустинг над деревьями
- Многоклассовая классификация вместо стратегии "один против всех"

Частица	Baseline	XGBoost
Ghost	5.2	4.4
Электрон	1.73	1.2
Мюон	1.21	0.6
Пион	6.65	4.8
Каон	8.48	7.1
Протон	8.39	7.4

Ошибка: (1-AUC)<u>*100</u>

Нейросети Keras

- Библиотека для нейросетей, основанная на Theano
- Однослойный перцептрон, скрытых узлов 1.5*количество фичей

Частица	Baseline	Keras	
Ghost	5.2	N/A	
Электрон	1.73	N/A	
Мюон	1.21	N/A	
Пион	6.65	N/A	
Каон	8.48	N/A	
Протон	8.39	N/A	

Ошибка: (1-AUC)*100

<u>МФТИ</u>,

Специальная структура нейросети

Картинка с архитектурой

Специальная структура нейросети

Частица	Baseline	BlockNN	
Ghost	5.2	N/A	
Электрон	1.73	N/A	
Мюон	1.21	N/A	
Пион	6.65	N/A	
Каон	8.48	N/A	
Протон	8.39	N/A	

Ошибка: (1-AUC)*100

Сравнение моделей

Частица	Baseline	Логистическая регрессия	XGBoost	KerasNN	BlockNN
Ghost	5.2	5.64	4.4	N/A	N/A
Электрон	1.73	1.88	1.2	N/A	N/A
Мюон	1.21	1.14	0.6	N/A	N/A
Пион	6.65	6.56	4.8	N/A	N/A
Каон	8.48	9.57	7.1	N/A	N/A
Протон	8.39	10.23	7.4	N/A	N/A

Ошибка: (1-AUC)*100

<u>МФТИ</u>.

Будущие исследования

Равномерность модели

Физическая постановка задачи накладывает ограничение равномерности на модель: качество модели должно быть примерно одинаковое при всех значениях одной из переменных - импульса - и при низких, и при высоких.

Онлайн\Оффлайн предсказания

Идентификация частиц используется, грубо говоря, в двух режимах:

- Онлайн для отсева событий "на лету". Ограничения 10-20 мс на предсказание
- Оффлайн при постобработке результатов, скорость не так сильно важна. Важно качество

<u>МФТИ</u>,

Результаты, выносимые на защиту

Произведена работа с данными

- Сбалансированы классы
- Сглажены распределения некоторых признаков
- Устранены пропуски в данных

Повышено качество предсказаний

- XGBoost ошибка снизилась в среднем на 25%
- Нейросети Keras ошибка снизилась в среднем на X %

Хороший фундамент для будущих исследований

- Модель XGBoost может использоваться в оффлайн предсказаниях для достижения высокого качества
- Нейронные сети могут использоваться в онлайн предсказаниях из-за крайне высокого быстродействия