α) i) Ο συντελεστής διεύθυνσης λ της ευθείας που διέρχεται από τα σημεία $A(3,2\alpha)$ και $B(4,\alpha)$ είναι

$$\lambda = \frac{y_B - y_A}{x_B - x_A} = \frac{\alpha - 2\alpha}{4 - 3} = \frac{-\alpha}{1} = -\alpha ,$$

οπότε η ευθεία που διέρχεται από τα σημεία Α και Β έχει εξίσωση

$$y - y_A = \lambda(x - x_A) \, \dot{\eta} \, y - 2\alpha = -\alpha(x - 3) \, \dot{\eta} \, y - 2\alpha = -\alpha x + 3\alpha \, \dot{\eta} \, y = -\alpha x + 5\alpha.$$

ii) Τα σημεία $\Gamma(\alpha+1,1-\alpha)$ και $\Delta(\alpha,1)$ ανήκουν στην ευθεία AB αν και μόνο αν οι συντεταγμένες τους επαληθεύουν την εξίσωσή της, $y=-\alpha x+5\alpha$. Έχουμε διαδοχικά

$$1 - \alpha = -\alpha(\alpha + 1) + 5\alpha \text{ \'n } 1 - \alpha = -\alpha^2 - \alpha + 5\alpha \text{ \'n } \alpha^2 - 5\alpha + 1 = 0 \text{ \'n } \alpha = \frac{5 \pm \sqrt{21}}{2},$$

επίσης
$$1 = -\alpha \cdot \alpha + 5\alpha$$
 ή $1 = -\alpha^2 + 5\alpha$ ή $\alpha^2 - 5\alpha + 1 = 0$ ή $\alpha = \frac{5 \pm \sqrt{21}}{2}$.

iii) Είναι
$$\overrightarrow{AB}=(x_B-x_A$$
 , $y_B-y_A)=(4-3$, $~\alpha-2\alpha$ $)=(1$, $-\alpha$ $)$ και

$$\overrightarrow{\Delta \Gamma} = (x_{\Gamma} - x_{\Delta}, y_{\Gamma} - y_{\Delta}) = (\alpha + 1 - \alpha, 1 - \alpha - 1) = (1, -\alpha).$$

Παρατηρούμε ότι $\overrightarrow{AB} = \overrightarrow{\Delta \Gamma} = (1, -\alpha)$. Όμως από το προηγούμενο ερώτημα προκύπτει ότι, όταν $\alpha \neq \frac{5 \pm \sqrt{21}}{2}$ τα σημεία Γ και Δ δεν ανήκουν στην ευθεία AB. Τότε, επειδή $\overrightarrow{AB} = \overrightarrow{\Delta \Gamma}$, τα ευθύγραμμα τμήματα AB και $\Delta\Gamma$ θα είναι παράλληλα, επίσης θα έχουν ίσα μήκη, οπότε το τετράπλευρο $AB\Gamma\Delta$ είναι παραλληλόγραμμο.

β) Έστω ότι το τετράπλευρο $AB\Gamma\Delta$ είναι τετράγωνο για κάποιο $\alpha\neq\frac{5\pm\sqrt{21}}{2}$. Τότε θα έχουμε $\left|\overrightarrow{AB}\right|=\left|\overrightarrow{A\Delta}\right|$. Από το προηγούμενο ερώτημα είναι $\overrightarrow{AB}=(1,-\alpha)$, άρα $\left|\overrightarrow{AB}\right|=\sqrt{1^2+(-\alpha)^2}=\sqrt{1+\alpha^2}$. Επίσης είναι $\overrightarrow{A\Delta}=(x_\Delta-x_A,y_\Delta-y_A)=(\alpha-3,1-2\alpha)$, άρα $\left|\overrightarrow{A\Delta}\right|=\sqrt{(\alpha-3)^2+(1-2\alpha)^2}=\sqrt{5\alpha^2-10\alpha+10}$.

Επομένως θα έχουμε $|\overrightarrow{AB}| = |\overrightarrow{AD}|$ ή $\sqrt{1+\alpha^2} = \sqrt{5\alpha^2 - 10\alpha + 10}$ ή $5\alpha^2 - 10\alpha + 10 = 1+\alpha^2$ ή $4\alpha^2 - 10\alpha + 9 = 0$.

Η τελευταία εξίσωση έχει διακρίνουσα $\Delta = (-10)^2 - 4 \cdot 4 \cdot 9 = -44 < 0$, άρα δεν έχει πραγματικές ρίζες. Οπότε δεν υπάρχει πραγματικός αριθμός α ώστε το τετράπλευρο $AB\Gamma\Delta$ να είναι τετράγωνο. Επομένως ο ισχυρισμός είναι ψευδής.