Musical Instrument Taxonomy Classification

Aidan Johnson and Deniz Alpay

How can we distinguish these instruments by ear?

How can we distinguish these instruments by ear?

Timbre

What is Timbre?

- Humans can perceive difference in the sound produced by different instruments at same pitch and loudness
- In music, this distinguishing characteristic is referred to as timbre—the distinguish quality/characteristic of a sound
- Measurable definition of timbre: uncertain
- Timbre is multidimensional but abstract
 - Spectral (MFCCs)
 - Temporal (ADSR envelope)

Introduction

Goal: Classify instruments in audio of a single instrument.

Feature Extraction

- Mel-frequency cepstral coefficients (MFCCs)
- Spectral shape statistics

MFCC

Data set

- IRMAS: https://www.upf.edu/web/mtg/irmas
 - 6 instruments
 - Labeled by primary instrument present and genre
 - 6705 training files, 2874 testing files
- Data decisions
 - Only used audio with a single instrument
 - Manually cleaned some of the testing data
 - Narrowed instruments to cello, saxophone, and violin
 - 395 training files, 75 testing files

Support Vector Machine (SVM)

Training:

- min (½)||w||² such that:
 - $\mathbf{y}_{i}(\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + \mathbf{b}) 1) \ge 0$ for all points
- N total training points
- Point x_i
 - D-dimensions
 - Has binary class **y**_i (either +1 or -1)
- w: normal vector of hyperplane
- b: offset
- b/||w||: perpendicular distance hyperplane to origin

Classification: SVM

Support vector machine with radial basis function kernel

	Cello	Saxophone	Violin
Accuracy	76.2%	82.2%	63.7%
Type I error (false positives)	11.2%	17.8%	3.36%
Type II error (false negatives)	12.6	0%	33.0%

Classification: SVM

Support vector machine with radial basis function kernel

	Cello	Saxophone	Violin
Misclassifications	23.8%	17.8%	36.3%
Type I error (false positives)	11.2%	17.8%	3.36%
Type II error (false negatives)	12.6	0%	33.0%
Number of support vectors	25,469	20,799	31,416

One vs all

Gaussian Mixture Model (GMM)

x: d-dimensional random vector

M: no. mixture components

c_m: component weight

b_m(x): Gaussian density function with mean mu

$$p(x|\lambda) = \sum_{m=1}^{M} c_m b_m(x)$$

$$b_m(x) = \frac{1}{2\pi^{D/2}|\Sigma^{1/2}|} \exp\left[-\frac{1}{2}(x-\mu)'\Sigma^{-1}(x-\mu)\right]$$

Classification: GMM

- GMM advantages:
 - Parametric
 - Interpretable
 - Computationally cheaper

Conclusion

- SVM:
 - Computationally expensive for complex data and more classes, but is much more effective than GMM
 - Classifies with reasonable and comparable—with respect to the literature—performance
- Broader implication of studying/quantifying timbre:
 - Human perception of sound (music, speech, etc.) using spectral and temporal acoustic features
 - Neural representation processing in human brain (auditory cortex)