Review session

Intro Statistics: Life Sciences

Descriptive and inferential statistics

Descriptive Statistics: describe the sample of data we have

• i.e., describe the shadows

Inferential Statistics: use the sample to make claims about properties of the population/process

• i.e., try to use the data to get at the Truth

π, μ, σ, ρ, β

Population: all individuals/objects of interest

Sample: A subset of the population

Sampling

Simple random sample: each member in the population is equally likely to be in the sample

• This is called *random selection*

Soup analogy!

Why is it useful to use simple random sampling?

Outliers...

What do we do when we have outliers?

Basic hypothesis test logic

A statistical test uses data from a sample to assess a claim about a population

We start with a claim about a population parameter

• E.g., μ

This claim implies we should get a certain distribution of statistics

If our observed statistic is highly unlikely, we reject the claim

Five steps of hypothesis testing

- 1. State H₀ and H_A
 - Assume Gorgias (H₀) was right
- 2. Calculate the actual observed statistic $= \sqrt{10.82}$

- 3. Create a distribution of what statistics would look like if Gorgias is right
 - Create the null distribution (that is consistent with H₀)
- 4. Get the probability we would get a statistic more than the observed statistic from the null distribution
 - p-value

- 5. Make a judgement
 - Assess whether the results are statistically significant

One test to rule them all

There is only one <u>hypothesis test!</u>!

Five steps of hypothesis testing

- 1. State H_0 and H_{Δ}
 - Examples: H_0 : $\pi = .5$ H_0 : $\mu_1 \mu_2 = 0$

$$H_0$$
: $\mu_1 - \mu_2 = 0$

$$H_0$$
: $\mu_1 = \mu_2 = ... = \mu_k$

- 2. Calculate the actual observed statistic
 - Examples: $\hat{p} = .37$ $\overline{x}_1 \overline{x}_2 = 2.27$

$$\overline{X}_1 - \overline{X}_2 = 2.27$$

$$F = 3.1$$

- 3. Create a distribution of what statistics would look like if Gorgias is right
 - We can get a null distribution using:
 - 1. Randomization methods
 - 2. Parametric density functions
- 4. Get the probability we would get a statistic more than the observed statistic from the null distribution
 - p-value
- 5. Make a judgement (if using the Neyman-Pearson paradigm)

Randomization null distributions (step 3)

For proportions, i.e., testing H_0 : $\pi = \pi_0$ null_distribution <- rbinom(num_sims, size, prob)

Experimental design

Take a group of participant and *randomly assign*:

- Half to a treatment group where they get the pill
- Half in a control group where they get a fake pill (placebo)
- See if there is more improvement in the treatment group compared to the control group

3. Create the null distribution!

One null distribution statistic: $\overline{X}_{Shuff_Treatment}$ - $\overline{X}_{Shuff_control}$

Randomization null distributions (step 3)

For comparing means, i.e., testing H_0 : $\mu_1 - \mu_2 = 0$

```
combo_data <- c(group_data_1, group_data_2)</pre>
 n1 <- length(group_1)
tot <- length(combo_data)</pre>
 null_distribution <- NULL</pre>
for (i in 1:10000) {
          shuff_data <- sample(combo_data)</pre>
          shuff_group_1 <- shuff_data[1:n1]</pre>
          shuff_group_2 <- shuff_data[(n1 + 1):tot]</pre>
          null_distribution[i] <-</pre>
              mean(shuff_group_1) -
```

Null distribution


```
# one sided p-value
p val <- c(null distribution >= obs stat)
```

Parametric null distributions (step 3)

For proportions, i.e., testing H_0 : $\pi = \pi_0$

$$Pr(X = k) = \binom{n}{k} \pi^k (1 - \pi)^{n-k}$$

null_distribution <- dbinom(x_range, size, prob)/size</pre>


```
Pr(X \ge obs\_stat \mid H_0)
```

$$Pr(X \ge obs_stat \mid n, \pi = \pi_0)$$

```
# one sided p-value
p_value <- pbinom(obs_num, size, prob)</pre>
```

Parametric null distributions (step 3)

For comparing means, i.e., testing H_0 : $\mu_1 - \mu_2 = 0$

$$f(x,\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

y_vals <- dnorm(x_range, mu, sigma)</pre>

We usually use a t-statistic (t-test) for comparing means $t = \frac{\overline{x}_1 - x_2}{\sqrt{\frac{s_1^2}{1 + \frac{s_2^2}{2}}}}$

$$Pr(T \ge t_stat \mid H_0)$$

$$Pr(T \ge t_stat \mid df)$$

one sided p-value p value <- pt(t stat, df)</pre>

$$df = min(n_1, n_2) - 1$$

$$t = \frac{\overline{x}_{1} - \overline{x}_{2}}{\sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}}}$$

Parametric test for comparing more than one mean: One-way ANOVA

An Analysis of Variance (ANOVA) is a test that can be used to examine if a set of means are all the same

- H_0 : $\mu_1 = \mu_2 = ... = \mu_k$
- $\mu_i \neq \mu_j$ for some i, j

The statistic we use for a one-way ANOVA is the F-statistic

$$F = \frac{\text{between-group variability}}{\text{within-group variability}} = \frac{\frac{1}{K-1} \sum_{i=1}^{K} n_i (\bar{x}_i - \bar{x}_{tot})^2}{\frac{1}{N-K} \sum_{i=1}^{K} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)^2}$$

Any remaining questions about hypothesis tests?

Confidence Intervals

For a **confidence level** of 95%...

95% of the **confidence intervals** will have the *parameter* in them

Common form of a confidence interval:

statistic $\pm q^* \cdot \hat{SE}$

There is a <u>tradeoff</u> between the **confidence level** (percent of times we capture the parameter) and the **confidence interval size**

Review: sampling distribution illustration

Sampling distribution! A sampling distribution is a distribution of statistics

Sampling distributions

For a sampling distribution that is a normal distribution, 95% of *statistics* lie within 2 standard deviations (SE) for the population mean?

If we had a statistic value and the value of the SE could we compute a confidence interval using:

$$CI = stat \pm q^* SE$$

Bootstrap distribution

Sample with replacement!

Bootstrap distribution! Notice there is no 9's in the bootstrap samples

Bootstrap code

```
my sample
bootstrap dist <- NULL
for (i in 1:10000) {
      boot_sample <- sample(my_sample, replace = TRUE)</pre>
      bootstrap_dist[i] <- mean(boot_sample)</pre>
boot SE <- sd(bootstrap dis)
```

Parametric formula for the standard error of the mean

As you likely learned in intro statistics class, there is formula the standard error of the mean (SEM) which is:

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$
 $s_{\bar{x}} = \frac{s}{\sqrt{n}}$

Where:

- σ is population standard deviation parameter
- n is the sample size
- s is the sample standard deviation

Confidence interval for μ : \bar{x} \pm $t^* \cdot s_{\bar{x}}$

sampling distribution

Parametric formula for the standard error of a proportion

Likewise, there is a formula for **standard error of a proportion** which is:

$$\sigma_{\hat{p}} = \sqrt{\frac{\pi \cdot (1-\pi)}{n}} \qquad s_{\hat{p}} = \sqrt{\frac{\hat{p} \cdot (1-\hat{p})}{n}}$$

Where:

- $\hat{\pi}$ is the population proportion parameter
- n is the sample size
- p̂ is the sample proportion statistic

sampling distribution

Two theories of hypothesis testing

Null-hypothesis significance testing (NHST) is a hybrid of two theories:

- 1. Significance testing of Ronald Fisher
- 2. Hypothesis testing of Jezy Neyman and Egon Pearson

Fisher (1890-1962)

Neyman (1894-1981)

Pearson (1895-1980)

Problems with the NP hypothesis tests

<u>Problem 1</u>: we are interested in the results of a specific experiment, not whether we are right most of the time

<u>Problem 2</u>: Arbitrary thresholds for alpha levels

<u>Problem 3</u>: running many tests can give rise to a high number of type 1 errors

