物理量 (非平衡)

大上由人

2024年12月6日

1 物理量の分類

ゆらぐ系の熱力学においては、基本的に以下の三種類の物理量が考えられる。

Def.state quantity/jump quantity/path quantity -

state quantity \hat{f} は、状態 j に対して、値 f_j をとる物理量である。また、この期待値は、

$$\left\langle \hat{f} \right\rangle_{\mathbf{p}} = \sum_{j} f_{j} p_{j} \tag{1.1}$$

で定義される。

jump quantity \hat{g} は、状態 j から状態 k に遷移するとき、値 $g_{j\to k}$ をとる物理量である。また、この期待値は、

$$\langle \hat{g} \rangle_{\mathbf{p},R} = \sum_{j,k} R_{kj} p_j g_{j \to k}$$
 (1.2)

で定義される。

path quantity $\hat{\hat{F}}$ は、経路 Γ に対して、値 $F(\Gamma)$ をとる物理量である。また、この期待値は、

$$\left\langle \hat{F} \right\rangle_{\Gamma} = \int d\Gamma P(\Gamma) F(\Gamma)$$
 (1.3)

で定義される。

2 物理量の関係

2.1 state quantity と path quantity の関係

時間に依存する state quantity $\hat{f}(t)$ について、対応する path quantity を考えることができる。 対応する path quantity $\hat{f}(t)$ は、経路 Γ に対して、値

$$f(\Gamma, t) = f_{\Gamma(t)} = \sum_{m=0}^{n} f_{j_m}(t) \chi[t \in [t_m, t_{m+1}]]$$
(2.1)

をとる物理量である。このとき、以下が成り立つ。

- Prop:state quantity と path quantity の関係 -

state quantity $\hat{f}(t)$ と対応する path quantity $\hat{\hat{f}}(t)$ について、以下が成り立つ。

$$\left\langle \hat{f}(t) \right\rangle_{\mathbf{p}(t)} = \left\langle \hat{f}(t) \right\rangle_{\Gamma}$$
 (2.2)

Prf.