Учреждение образования «БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ» Кафедра информатики

Отчет по лабораторной работе №5 Вычисление собственных значений и векторов

Выполнил: студент группы 153503 Щиров П.Д.

Руководитель: доцент Анисимов В.Я.

Содержание

1.	Цель работы	3
	Теоретические сведения	
3.	Программная реализация	7
4.	Выводы	11

1. Цель работы

1)Освоить метод вращений Якоби для вычисления собственных значений и собственных векторов вещественной симметричной матрицы, а также степенной метод поиска максимального по модулю собственного значения и соответствующего ему собственного вектора.

2. Теоретические сведения

Итеративные алгоритмы решают задачу вычисления собственных значений путём построения последовательностей, сходящихся к собственным значениям. Некоторые алгоритмы дают также последовательности векторов, сходящихся к собственным векторам. Чаще всего последовательности собственных значений выражаются через последовательности подобных матриц, которые сходятся к треугольной или диагональной форме, что позволяет затем просто получить собственные значения. Последовательности собственных векторов выражаются через соответствующие матрицы подобия.

Метод	Применим к матрицам	Результат	Цена за один шаг	Сходимость	Описание	
Степенной метод	общего вида	наибольшее собственное значения и соответствующий вектор	$O(n^2)$	Линейная	Многократное умножение матрицы на произвольно выбранный начальный вектор с последующей нормализацией.	

Метод Якоби вещоственная симметричная	все собственные значения	$O(n^3)$	кварратичная	Использует поворот Гиеенса в польтке избавиться от недиагональных элементов. Польтка не удаётся, но усиливает диагональ.
--	--------------------------	----------	--------------	---

Метод Якоби (вращений) использует итерационный процесс, который приводит исходную симметрическую матрицу A к диагональному виду с помощью последовательности элементарных ортогональных преобразований (в дальнейшем называемых вращениями Якоби или плоскими вращениями). Процедура построена таким образом, что на (k+1)-ом шаге осуществляется преобразование вида

$$A^{(k)} \rightarrow A^{(k+1)} = V^{(k)*} A^{(k)} V^{(k)} = V^{(k)*} \dots V^{(0)*} A^{(0)} V^{(0)} \dots V^{(k)}, k=0,1,2...,$$
 (5.1)

где $A^{(0)} = A$, $V^{(k)} = V^{(k)}_{ij} (\varphi)$ — ортогональная матрица, отличающаяся от единичной матрицы только элементами

$$v_{ii} = v_{jj} = \cos \varphi, \quad v_{ij} = -v_{ji} = -\sin \varphi , \qquad (5.2)$$

значение φ выбирается при этом таким образом, чтобы обратить в 0 наибольший по модулю недиагональный элемент матрицы $A^{(k)}$. Итерационный процесс постепенно приводит к матрице со значениями недиагональных элементов, которыми можно пренебречь, т.е. матрица $A^{(k)}$ все более похожа на диагональную, а диагональная матрица A является пределом последовательности $A^{(k)}$ при $k \to \infty$.

Алгоритм метода вращений.

1) В матрице $A^{(k)}$ (k=0,1,2,...) среди всех недиагональных элементов выбираем максимальный по абсолютной величине элемент, стоящий выше главной диагонали; определяем его номера i и j строки и столбца, в которых он стоит (если максимальных элементов несколько, можно взять любой из них);

2) По формулам

$$\begin{split} \cos \phi_k &= \cos \left(\frac{1}{2} \cdot \operatorname{arctg} P_k \right), \\ \sin \phi_k &= \sin \left(\frac{1}{2} \cdot \operatorname{arctg} P_k \right), \\ \operatorname{echu} a_{ii}^{(k)} &= a_{jj}^{(k)} \\ \frac{2 \, a_{ij}^{(k)}}{a_{ii}^{(k)} - a_{jj}^{(k)}}, \quad \operatorname{uhaue} \end{split}$$

вычисляем $\cos \varphi_k$ и $\sin \varphi_k$, получаем матрицу $V^{(k)} = V^{(k)}_{ij} (\varphi_k)$

3) По формуле

$$A^{(k+1)} = V^{(k)T} \cdot A^{(k)} \cdot V^{(k)}$$

находим матрицу $A^{(k+1)}$.

- 4) Итерационный процесс останавливаем, когда в пределах принятой точности суммой квадратов всех недиагональных элементов матрицы $A^{(k+1)}$ можно пренебречь.
- 5) В качестве собственных значений матрицы A берем диагональные элементы матрицы $A^{(k+1)}$, в качестве собственных векторов соответствующие столбцы матрицы

$$V = V^{(0)}V^{(1)}...V^{(k)}$$

Основное достоинство метода Якоби заключается в том, что при выполнении каждого плоского вращения уменьшается сумма квадратов недиагональных элементов; сходимость этой суммы к нулю по мере увеличения числа шагов гарантирует сходимость процесса диагонализации.

Степенной метод или метод степенных итераций — итерационный алгоритм поиска собственного значения с максимальной абсолютной величиной и одного из соответствующих собственных векторов для произвольной матрицы.

Алгоритм прост и сходится со скоростью геометрической прогрессии если все максимальные по модулю собственные значения совпадают, в противном случае сходимости нет.

В начале алгоритма генерируется случайный вектор r_0 . Далее проводятся последовательные вычисления по итеративной формуле:

$$r_{k+1} = rac{Ar_k}{\|Ar_k\|}$$

Последовательность

$$\mu_k = rac{r_k^T A r_k}{r_k^T r_k}$$

при указанном выше условии сходится к максимальному по модулю собственному значению, а вектор r_k образует соответствующий собственный вектор.

3. Программная реализация

Тестовый пример 1

Вычислить с точностью 0.0001 собственные значения и собственные векторы матрицы ${\bf A}=$

[1 0] [0 2]

Ответ:

O I De I .				
Тип алгоритма	Вращений Якоби	Степенной		
Собственные значения:	$\lambda = [1.0000, 2.0000]$	$\lambda_{max} = 2.0000$		
Собственные векторы:	$X_1 = [1.0000, 0.0000]^T$ $X_2 = [0.0000, 1.0000]^T$	$X_{\text{max}} = \begin{bmatrix} 0.0005 \\ 1.0000 \end{bmatrix}$		
Количество итераций:	1	11		

Тестовый пример 2

Вычислить с точностью 0.0001 собственные значения и собственные векторы матрицы ${\bf A}=$

[1 0] [0 20]

Ответ:

0.1241.				
Тип алгоритма	Вращений Якоби	Степенной		
Собственные значения:	$\lambda = [1.0000, 20.0000]$	$\lambda_{max} = 20.0000$		
Собственные векторы:	$X_1 = [1.0000, 0.0000]^T$ $X_2 = [0.0000, 1.0000]^T$	$X_{\text{max}} = \begin{bmatrix} 0.0000 \\ 1.0000 \end{bmatrix}$		
Количество итераций:	1	4		

Тестовый пример 3

Вычислить с точностью 0.0001 собственные значения и собственные векторы матрицы ${\bf A}=$

[1 0.001] [0 2]

Ответ:

Тип алгоритма	Вращений Якоби	Степенной
Собственные значения:	Ошибка	$\lambda_{\text{max}} = 2.0000$
Собственные векторы:	Ошибка: Матрица не симметрична	$X_{max} = \begin{bmatrix} 0.0012 \\ 1.0000 \end{bmatrix}$
Количество итераций:	-	12

Тестовый пример 4

Вычислить с точностью 0.0001 собственные значения и собственные векторы матрицы ${\bf A}=$

 $\begin{bmatrix}
 0 & 1 & 0 & 1 \\
 1 & 0 & 1 & 1 \\
 0 & 1 & 0 & 1
 \end{bmatrix}$

Ответ:

Тип алгоритма	Вращений Якоби	Степенной	
Собственные значения:	$\lambda = [-1.4142, 0.0000, 1.4142]$	$\lambda_{max} = 1.3333$	
Собственные векторы:	$X_1 = [0.5001, -0.7070, 0.5001]^T$ $X_2 = [0.7071, 0.0000, -0.7071]^T$ $X_3 = [0.4999, 0.7072, 0.4999]^T$	$X_{\text{max}} = \begin{bmatrix} 0.4082 \\ [0.8165] \\ [0.4082] \end{bmatrix}$	
Количество итераций:	7	1	

Степенной метод даёт неточный ответ, так как существует несколько максимальных по модулю собственных значений

Тестовый пример 5

Вычислить с точностью 0.0001 собственные значения и собственные векторы матрицы ${\bf A}=$

Ответ:

Тип алгоритма	Врашении Якоби		Степенной	
Собственные значения:	$\lambda = [-334.1564, -209.0250, 9.0295, 523.4670,$	$\lambda_{max} =$	990.6850	

	990.6850]		
Собственные векторы:	$ \begin{aligned} X_1 &= [\ 0.0462 \ \ 0.0148 \ \ 0.0536 \ \ 0.9974 \ \ 0.0017] ^T \\ X_2 &= [-0.9927 \ \ 0.1014 \ \ 0.0442 \ \ 0.0420 \ \ 0.0228] ^T \\ X_3 &= [-0.0407 \ \ 0.0131 \ \ -0.9975 \ \ \ 0.0553 \ \ -0.0013] ^T \\ X_4 &= [-0.1011 \ \ -0.9947 \ \ -0.0079 \ \ \ 0.0199 \ \ \ 0.0006] ^T \\ X_5 &= [-0.0225 \ \ 0.0017 \ \ \ 0.0024 \ \ \ 0.0026 \ \ -0.9997] ^T \end{aligned} $	$X_{max} = \begin{bmatrix} -0.0017 \\ [-0.0228] \\ [0.0013] \\ [-0.0006] \\ [0.9997] \end{bmatrix}$	
Количество итераций:	20	17	

ЗАДАНИЕ

Вариант 15

Вычислить с точностью 0.0001 собственные значения и собственные векторы матрицы ${\bf A}=$

```
[ 5.33 0.81 3.67 0.92 -0.53 ]
[ 0.81 5.33 0.81 3.67 0.92 ]
[ 3.67 0.81 5.33 0.81 3.92 ]
[ 0.92 3.67 0.81 5.33 -0.53 ]
[ -0.53 0.92 3.92 -0.53 5.33 ]
```

Ответ:

Метод вращений Якоби
Собственные значения: $\lambda = [-0.4373., 1.6271, 5.7931, 8.2050, 11.4620]$
Собственные векторы: $X_1 = \begin{bmatrix} 0.4656, \ 0.2236, \ 0.7334, \ 0.0599, \ 0.4379 \end{bmatrix}^{\mathrm{T}} \\ X_2 = \begin{bmatrix} -0.1698, \ 0.6703, \ -0.2989, \ -0.5148, \ 0.4092 \end{bmatrix}^{\mathrm{T}} \\ X_3 = \begin{bmatrix} -0.6610, \ -0.2058, \ 0.0891, \ 0.3806, \ 0.6066 \end{bmatrix}^{\mathrm{T}} \\ X_4 = \begin{bmatrix} 0.1758, \ -0.6769, \ -0.0688, \ -0.6149, \ 0.3579 \end{bmatrix}^{\mathrm{T}} \\ X_5 = \begin{bmatrix} 0.5353, \ -0.0136, \ -0.6001, \ 0.4565, \ 0.3804 \end{bmatrix}^{\mathrm{T}}$
Количество итераций = 29

Степенной метод			
Собственное значение:	$\lambda_{max} =$	11.4620	
Собственный вектор	X _{max} =	[0.4379] [0.4095] [0.6064] [0.3582] [0.3802]	
Количество итераций		16	

4. Выводы

Таким образом, в ходе выполнения лабораторной работы были освоены метод вращений Якоби для вычисления собственных значений и собственных векторов вещественной симметричной матрицы, а также степенной метод поиска максимального по модулю собственного значения и соответствующего ему собственного вектора. Составлена компьютерная программа, на тестовых примерах проверена правильность её работы, с заданной точностью вычислены собственные значения и векторы матрицы заданного варианта.