Modélisation conjointe de données longitudinales et de temps d'événements sous R

Joint modeling of longitudinal and time-to-event data in R

Cécile Proust-Lima joint works with Viviane Philipps, Tiphaine Saulnier, Anthony Devaux, Robin Genuer

INSERM U1219, Bordeaux Population Health Research Center, Bordeaux, France
Univ. Bordeaux, ISPED, Bordeaux, France
cecile.proust-lima@inserm.fr

10ème rencontres R - Vannes - June 12, 2024

BORDEAUX POPULATION

Rencontres R - Vannes 2024

Epidemiological studies

Overal cohort design:

- Target population:
 - Whole population in a certain window of age
 - ★ 3-City Study: elderly ELFE: young children CONSTANCES: adults
 - Population with a certain diagnosis (e.g., cancer, Multiple System Atrophy)
 - ★ Clinical prospective cohort: monitoring the population for prognosis
 - ★ Clinical trial: testing an intervention in randomized groups
- Available data
 - at baseline (exposures, confounders, participant characteristics)
 - over follow-up (exposures, health indicators, events)

Progression of health phenomena studied through

 repeated measures of marker (e.g., blood biomarker, MRI features, PRO / QoL scales) or exposure (e.g., blood pressure, BMI)

 time to health outcome (e.g., death, diagnosis, progression, dropout)

provide inter-related information that need to be analyzed together (jointly)

The endogenous nature of time-varying variables

- Marker/Exposure data are measures of an underlying process:
 - measured with error
 - measured at sparse and irregular times
 - influenced by the event occurence: endogenous / internal

The endogenous nature of time-varying variables

- Marker/Exposure data are measures of an underlying process:
 - measured with error
 - measured at sparse and irregular times
 - influenced by the event occurence: endogenous / internal

- Dedicated biostatistical model = mixed models / random-effect models
- ► Underlying process of interest $Y^*(t)$ defined at any time $t \in \mathbb{R}$ $Y_i^*(t) = X_i(t)^{\top} \boldsymbol{\beta} + Z_i(t)^{\top} \boldsymbol{b}_i$ with $\boldsymbol{b}_i \sim \mathcal{N}(0, \boldsymbol{B})$
- ▶ Observations Y_{ii} at sparse times t_{ii}
 - ★ with generally truncation at the event time: $\max(t_{ij}) < T_i$
 - ★ with random measurement error: $Y_{ij} = Y_i^*(t_{ij}) + \varepsilon_{ij}$ with $\varepsilon_{ij} \underset{iid}{\sim} \mathscr{D}$

Estimation in R: Ime (nlme), Imer (lme4), hlme (lcmm),

Joint modelling principle

Simultaneous modelling of correlated longitudinal and survival data

(Classical) Research Questions addressed by joint models

- quantify the association of a endogenous marker with the risk of event
- predict the risk of clinical endpoint using the biomarker information
 - individual dynamic prediction and screening optimization
- describe the trajectory of the biomarker stopped by the clinical progression
 - and evaluate its determinants
- explore/understand the association between the two processes
 - variability / heterogeneity in the disease progression

Joint latent class models (JLCM) (Proust-Lima, 2014)

• Latent class
$$c_i$$
: $P(c_i = g) = \pi_{ig} = \frac{e^{\xi_{0g} + X_{Ci}^{\top} \xi_{1g}}}{\sum_{l=1}^{G} e^{\xi_{0l} + X_{Ci}^{\top} \xi_{1l}}}$ (with $\xi_{0G} = 0 \& \xi_{1G} = 0$)

 Class-specific linear mixed model for the biomarker trajectory:

$$\begin{aligned} Y_{ij} \mid_{\boldsymbol{c}_i = \boldsymbol{g}} &= Y_{i\boldsymbol{g}}^*(t_{ij}) + \epsilon_{ij} \\ &= Z_i(t_{ij})^T b_i \mid_{\boldsymbol{c}_i = \boldsymbol{g}} + X_{Li}(t_{ij})^\top \beta_{\boldsymbol{g}} + \epsilon_{ij} \\ b_i \mid_{\boldsymbol{c}_i = \boldsymbol{g}} &\sim \mathcal{N}\left(\mu_{\boldsymbol{g}}, B_{\boldsymbol{g}}\right), \; \epsilon_{ij} \sim \mathcal{N}\left(0, \sigma_{\epsilon}^2\right) \end{aligned}$$

proportional hazard model for the event:

$$\lambda_i(t \mid c_i = g) = \lambda_{0g}(t) \exp(X_{Ti}(t)\delta_g)$$

Joint latent class models (JLCM) (Proust-Lima, 2014)

• Latent class
$$c_i$$
: $P(c_i = g) = \pi_{ig} = \frac{e^{\xi_{0g} + X_{Ci}^{\top} \xi_{1g}}}{\sum_{l=1}^{G} e^{\xi_{0l} + X_{Ci}^{\top} \xi_{1l}}}$ (with $\xi_{0G} = 0$ & $\xi_{1G} = 0$)

 Class-specific linear mixed model for the biomarker trajectory:

$$\begin{aligned} Y_{ij} \mid_{\boldsymbol{c}_i = \boldsymbol{g}} &= Y_{ig}^*(t_{ij}) + \epsilon_{ij} \\ &= Z_i(t_{ij})^T b_i \mid_{\boldsymbol{c}_i = \boldsymbol{g}} + X_{Li}(t_{ij})^\top \beta_{\boldsymbol{g}} + \epsilon_{ij} \\ b_i \mid_{\boldsymbol{c}_i = \boldsymbol{g}} &\sim \mathcal{N}(\mu_{\boldsymbol{g}}, B_{\boldsymbol{g}}), \; \epsilon_{ij} \sim \mathcal{N}\left(0, \sigma_{\epsilon}^2\right) \end{aligned}$$

proportional hazard model for the event:

$$\lambda_i(t \mid c_i = g) = \lambda_{0g}(t) \exp(X_{Ti}(t)\delta_g)$$

- → describes the processes as made of homogenous subgroups
- → descriptive approach appropriate for *a priori* heterogenous populations

JLCM Illustration in Prostate Cancer (Proust-Lima, SMMR 2014)

- Four patterns of PSA trajectory and risk of any clinical recurrence
 - ► N=459 men from the University of Michigan Hospital Cohort
 - after a radiation therapy (EBRT)

Illustration in Prostate Cancer (Proust-Lima, SMMR 2014)

- Very close to the observations:
 - high discrimination (mean probability of latent class membership > 92%)
 - excellent fit to the data compared to other joint models

Estimation in lcmm R package (Proust-Lima, JSS 2017)

Maximum Likelihood Estimates

$$\mathcal{L}_i(\boldsymbol{\theta}) = \sum_{g=1}^G f(Y_i \mid c_i = g; \boldsymbol{\theta}) \ f(T_i \mid c_i = g; \boldsymbol{\theta}) \ P(c_i = g; \boldsymbol{\theta})$$

- Optimization algorithm: Marquardt-Levenberg Algorithm with marqLevAlg R package (Philipps R Journal 2022)
 - Newton-like optimization
 - Strict convergence criteria (parameter stability, likelihood stability, first and second derivatives)
 - Parallel numerical computations of the derivatives
- Management of local maxima
 - Grid search = B estimations from random initial values
- Variance-covariance matrix given by the inverse of the Hessian matrix

lcmm in practice: jlcmm or Jointlcmm function

```
# G=1
m1 < - jlcmm (fixed = logPSA \sim I((time + 1)^(-1.5)) + time,
              random =\sim I((time + 1) ^{(-1.5)}) + time, subject = "ID",
              survival = Surv(tsurv,event) ~ tstage2 + tstage34,
              hazard = "splines",
              data = cohort)
 # G=4
m4 < -
      ilcmm (fixed = logPSA ~ I((time + 1)^(-1.5)) + time,
              random =\sim I((time + 1) ^{(-1.5)}) + time, subject="ID",
              mixture = \sim I((time + 1)^{(-1.5)}) + time
              survival = Surv(tsurv, event) ~ tstage2 + tstage34,
              hazard = "splines", hazardtype = "PH",
              ng = 4, data = cohort, B = random(m1))
```

lcmm in practice: jlcmm or Jointlcmm function

```
# G=1
m1 < - jlcmm (fixed = logPSA \sim I((time + 1)^(-1.5)) + time,
              random =\sim I((time + 1) ^{(-1.5)}) + time, subject = "ID",
              survival = Surv(tsurv,event) ~ tstage2 + tstage34,
              hazard = "splines",
              data = cohort)
 # G=4
m4 <- gridsearch(
      ilcmm (fixed = logPSA ~ I((time + 1)^(-1.5)) + time,
              random =\sim I((time + 1) ^{(-1.5)}) + time, subject="ID",
              mixture = \sim I((time + 1)^{(-1.5)}) + time
              survival = Surv(tsurv,event) ~ tstage2 + tstage34,
              hazard = "splines", hazardtype = "PH",
              ng = 4, data = cohort,
              rep = 100, maxiter = 30, minit = m1, cl = 10)
```

Extensions to more complex data structure: longitudinal / competing causes

Class-and-marker-specific mixed model (Proust-Lima, Stat Med 2023)

cause-and-class proportional hazard model (Proust-Lima, Stat Med 2016)

estimation in R: mpilcmm function in package lcmm

Example in Multiple System Atrophy (MSA)

13/33

Example in Multiple System Atrophy (MSA)

Actual structure of mpjlcmm R function

(Proust-Lima, Stat Med 2023)

- Latent process mixed model with latent classes
- Marker-specific measurement model

5 latent classes identified

(Classical) Research Questions addressed by joint models

quantify the association of a endogenous marker with the risk of event

$$\lambda_i(t) = \lambda_0(t) \exp(Y^*(t) \eta)$$

- predict the risk of clinical endpoint using the biomarker information
 - individual dynamic prediction and screening optimization
- describe the trajectory of the biomarker stopped by the clinical progression
 - and evaluate its determinants
- explore/understand the association between the two processes
 - variability / heterogeneity in the disease progression

Shared Random-Effect Models (SREM) (Rizopoulos, 2012)

• Shared random-effects *b_i* distribution:

• linear mixed model for the biomarker trajectory:

$$\begin{aligned} Y_{ij} \mid_{\boldsymbol{b}_i} &= Y_i^*(t_{ij}) + \epsilon_{ij} \\ &= X_{Li}(t_{ij})^{\top} \boldsymbol{\beta} + \boldsymbol{Z}_i(t_{ij})^{\top} \boldsymbol{b}_i + \epsilon_{ij} \quad \epsilon_{ij} \sim \mathcal{N}(0, \sigma_{\epsilon}^2) \end{aligned}$$

• proportional hazard model for the event:

$$\lambda_i(t; \boldsymbol{b}_i) = \lambda_0(t) \exp\left(\boldsymbol{X}_{Ti}(t)^{\top} \boldsymbol{\delta} + \boldsymbol{Y}_i^*(t) \boldsymbol{\eta}\right)$$

Shared Random-Effect Models (SREM) (Rizopoulos, 2012)

• Shared random-effects *b_i* distribution:

linear mixed model for the biomarker trajectory:

$$\begin{aligned} Y_{ij} \mid_{\boldsymbol{b}_{i}} &= Y_{i}^{*}(t_{ij}) + \epsilon_{ij} \\ &= X_{Li}(t_{ij})^{\top} \boldsymbol{\beta} + Z_{i}(t_{ij})^{\top} \boldsymbol{b}_{i} + \epsilon_{ij} \quad \epsilon_{ij} \sim \mathcal{N}(0, \sigma_{\epsilon}^{2}) \end{aligned}$$

• proportional hazard model for the event:

$$\lambda_i(t; \pmb{b}_i) = \lambda_0(t) \exp\left(\pmb{X}_{Ti}(t)^\top \pmb{\delta} + \pmb{f} \ (t, \pmb{b}_i, \ldots) \ \pmb{\eta}\right)$$

- $\rightarrow \eta$ quantifies the effect of the biomarker on the risk of event
- → biomarker trajectory corrected for the informative truncation by the event

Joint models with multivariate longitudinal / survival data

Joint models with multivariate longitudinal / survival data

- K different linear mixed models
 - ▶ a big vector of random effects:
 b_i = (b_{i1},...,b_{ik},...,b_{iK})
- P cause-specific survival models

$$\lambda_{ip}(t; \boldsymbol{b}_i) = \lambda_{0p}(t) \times \exp\left(\boldsymbol{X}_T(t)\boldsymbol{\delta}_p + \sum_{k=1}^K \boldsymbol{f}_k \left(t, \boldsymbol{b}_{ik}, \dots\right) \boldsymbol{\eta}_{kp}\right)$$

- Examples:
 - Effect of a marker/exposure adjusted for other time-varying variables
 - Prediction of the event based on all the information available

Estimation in R (not exhaustive list!)

	inference	algorithm	integration	distributions	multiple markers
JM	Freq	EM/optim/MLA	paGH	Gaussian	X
JMbayes	Bayes	MCMC		Exp. family	\checkmark
JMbayes2	Bayes	MCMC		Exp. family	\checkmark
joineR	Freq	EM	GH	Gaussian	X
joineRML	Freq	MCEM	qMC	Gaussian	\checkmark
rstanArm	Bayes	STAN		Exp. Family	✓
INLAJoint	Bayes	INLA		Gauss. process	√
JLPM	Freq	MLA	qMC	Bin/ord/curvi	X / <
frailtyPack	Freq	MLA	aGH	Gaussian	X
JMBordo	Freq	MLA	qMC	Exp. Family	\checkmark
		and saemix	x, BeQut and	others	

qMC = quasi Monte Carlo; (p)aGH = (pseudo) adaptive Gauss Hermite

→ Various specifications: mixed models, survival models, dependence structure, data nature, ...

Example with JMbayes2

Structure common to packages of Rizopoulos's group: JM, JMbayes, JMbayes2

```
library("JMbayes2")
# specification of the longitudinal model(s)
LongModel <- lme(log(serBilir) ~ year * sex, data = pbc2, random = ~ year | id)
# specification of the survival model
CoxModel <- coxph(Surv(years, status2) ~ sex, data = pbc2.id)
# estimation of the joint model (by default, current value)
jointFit1 <- jm(CoxModel, LongModel, time_var = "year")</pre>
```

Log-likelihood computation becomes rapidly untractable (huge numerical integration)

$$\mathcal{L}_i(\boldsymbol{\theta}) = \int_{\boldsymbol{b}_i} f(Y_i \mid \boldsymbol{b}_i; \boldsymbol{\theta}) \ f(T_i \mid \boldsymbol{b}_i; \boldsymbol{\theta}) \ f(\boldsymbol{b}_i; \boldsymbol{\theta}) \ d\boldsymbol{b}_i$$

Solutions:

- (quasi) Monte Carlo integration
- ► Bayesian inference (e.g., MCMC, INLA)

Log-likelihood computation becomes rapidly untractable (huge numerical integration)

$$\mathcal{L}_i(\boldsymbol{\theta}) = \int_{\boldsymbol{b}_i} f(Y_i \mid \boldsymbol{b}_i; \boldsymbol{\theta}) \ f(T_i \mid \boldsymbol{b}_i; \boldsymbol{\theta}) \ f(\boldsymbol{b}_i; \boldsymbol{\theta}) \ d\boldsymbol{b}_i$$

Solutions:

- (quasi) Monte Carlo integration
- ► Bayesian inference (e.g., MCMC, INLA)
- ② Large number of predictors in the survival model with $\sum_{k=1}^K f_k$ ($t, b_{ik}, ...$) η_{kp}

Solutions:

 Regularization in the survival model - Lasso - (e.g., Andrinopoulou and Rizopoulos SiM 2012, Chen and Wang SiM 2017)

Log-likelihood computation becomes rapidly untractable (huge numerical integration)

$$\mathcal{L}_i(\boldsymbol{\theta}) = \int_{\boldsymbol{b}_i} f(Y_i \mid \boldsymbol{b}_i; \boldsymbol{\theta}) \ f(T_i \mid \boldsymbol{b}_i; \boldsymbol{\theta}) \ f(\boldsymbol{b}_i; \boldsymbol{\theta}) \ d\boldsymbol{b}_i$$

Solutions:

- (quasi) Monte Carlo integration
- ► Bayesian inference (e.g., MCMC, INLA)
- ② Large number of predictors in the survival model with $\sum_{k=1}^{K} f_k$ ($t, b_{ik}, ...$) η_{kp}

Solutions:

- Regularization in the survival model Lasso (e.g., Andrinopoulou and Rizopoulos SiM 2012, Chen and Wang SiM 2017)
- lacktriangle Too high number of parameters for simultaneous estimation (for K long. + P surv. regressions)

Solutions:

2-step methods / regression calibration (Ye et al., 2008, Signorelli et al., 2021, Mauff et al. 2020)

Log-likelihood computation becomes rapidly untractable (huge numerical integration)

$$\mathcal{L}_i(\boldsymbol{\theta}) = \int_{\boldsymbol{b}_i} f(Y_i \mid \boldsymbol{b}_i; \boldsymbol{\theta}) \ f(T_i \mid \boldsymbol{b}_i; \boldsymbol{\theta}) \ f(\boldsymbol{b}_i; \boldsymbol{\theta}) \ d\boldsymbol{b}_i$$

Solutions

- (quasi) Monte Carlo integration
- Bayesian inference (e.g., MCMC, INLA)
- 2 Large number of predictors in the survival model with $\sum_{k=1}^{K} f_k(t, b_{ik}, ...) \eta_{kp}$

Solutions:

- Regularization in the survival model Lasso (e.g., Andrinopoulou and Rizopoulos SiM 2012, Chen and Wang SiM 2017)
- Too high number of parameters for simultaneous estimation (for K long. + P surv. regressions)

Solutions:

► 2-step methods / regression calibration (Ye et al., 2008, Signorelli et al., 2021, Mauff et al. 2020)

What about totally changing the framework and use random forests?

- Random survival forest principle (Ishwaran et al. 2008, 2014)
 - ► Ensemble of decision trees that partition the subjects into homogeneous leaves regarding survival

- Random survival forest principle (Ishwaran et al. 2008, 2014)
 - ► Ensemble of decision trees that partition the subjects into homogeneous leaves regarding survival

- Random survival forest principle (Ishwaran et al. 2008, 2014)
 - Ensemble of decision trees that partition the subjects into homogeneous leaves regarding survival
- Pros:
 - Useful for individual prediction
 - Designed for high-dimensional data (i.e., large number of predictors)
 - Handle complex relationship between predictors and event
- Cons:
 - ↑ Limited to time-independent predictors

- Random survival forest principle (Ishwaran et al. 2008, 2014)
 - Ensemble of decision trees that partition the subjects into homogeneous leaves regarding survival

Pros:

- Useful for individual prediction
 - Designed for high-dimensional data (i.e., large number of predictors)
- Handle complex relationship between predictors and event

Cons:

∧ Limited to time-independent predictors

- Our solution: DynForest
 - Incorporate time-dependent predictors in the tree building process

Splitting rule in random survival forests

Find two groups of subjects which maximize the difference in event probability:

- Randomly draw mtry predictors
- Build two groups from each predictor's values
- Compute the statistic to quantify the distance (e.g. Fine & Gray for the event probability)

Splitting rule in random survival forests

Find two groups of subjects which maximize the difference in event probability:

- Randomly draw mtry predictors
- Build two groups from each predictor's values
- Compute the statistic to quantify the distance (e.g. Fine & Gray for the event probability)

Splitting rule in random survival forests

Find two groups of subjects which maximize the difference in event probability:

- Randomly draw mtry predictors
- Build two groups from each predictor's values
- Compute the statistic to quantify the distance (e.g. Fine & Gray for the event probability)

Splitting rule in random survival forests

Find two groups of subjects which maximize the difference in event probability:

- Randomly draw mtry predictors
- Build two groups from each predictor's values
- Compute the statistic to quantify the distance (e.g. Fine & Gray for the event probability)

How to incorporate time-dependent predictors?

At each node, transform time-dependent predictors Y_k into time-fixed features :

 \bullet Model Y_k trajectory using mixed models:

$$Y_{ik}(t_{ijk}) = \mathbf{Z}_{ik}(t_{ijk})^{\top} (\boldsymbol{\beta}_k + \boldsymbol{b}_{ik}) + \epsilon_{ijk}$$

How to incorporate time-dependent predictors?

At each node, transform time-dependent predictors Y_k into time-fixed features :

lacktriangle Model Y_k trajectory using mixed models:

$$Y_{ik}(t_{ijk}) = \mathbf{Z}_{ik}(t_{ijk})^{\top} (\boldsymbol{\beta}_k + \boldsymbol{b}_{ik}) + \epsilon_{ijk}$$

2 Compute individual random-effects:

$$\hat{\boldsymbol{b}}_{ik} = \mathbb{E}(\boldsymbol{b}_{ik}|\boldsymbol{Y}_i)$$

How to incorporate time-dependent predictors?

At each node, transform time-dependent predictors Y_k into time-fixed features :

Model Y_k trajectory using mixed models:

$$Y_{ik}(t_{ijk}) = \mathbf{Z}_{ik}(t_{ijk})^{\top} (\boldsymbol{\beta}_k + \boldsymbol{b}_{ik}) + \epsilon_{ijk}$$

Compute individual random-effects:

$$\hat{\boldsymbol{b}}_{ik} = \mathbb{E}(\boldsymbol{b}_{ik}|\boldsymbol{Y}_i)$$

Consider them as splitting variable candidates

DynForest in practice: example of call

```
library(DynForest)
Y <- list(type = "surv", Y = unique(pbc2 train[.c("id", "years", "event")]))
fixedData train <- unique(pbc2 train[,c("id","age","drug","sex")])</pre>
timeData train <- pbc2 train[.c("id","time","serBilir","SGOT","albumin","alkaline")]</pre>
# definitions of mixed models:
timeVarModel <- list(serBilir = list(fixed = serBilir ~ time, random = ~ time),
                      SGOT = list(fixed = SGOT \sim time + I(time^2). random = \sim time + I(time^2)).
                      albumin = list(fixed = albumin ~ time, random = ~ time).
                      alkaline = list(fixed = alkaline ~ time.random = ~ time))
res dyn <- DynForest(timeData = timeData train,
                      fixedData = fixedData train.
                      timeVar = "time". idVar = "id".
                      timeVarModel = timeVarModel \cdot Y = Y \cdot
                      ntree = 200. mtrv = 3. nodesize = 2. minsplit = 3.
                      cause = 2, ncores = 7, seed = 1234)
```

Application to dementia from multi-modal repeated data in 3C

Quantification of the variable importances for the prediction: 24 time-dependent predictors, 5 time-fixed predictors

Application to dementia from multi-modal repeated data (by groups

Quantification of the variable importances for the prediction by group

(Classical) Research Questions addressed by joint models

- quantify the association of a endogenous marker with the risk of event
- predict the risk of clinical endpoint using the biomarker information
 - individual dynamic prediction and screening optimization
- describe the trajectory of the biomarker stopped by the clinical progression
 - and evaluate its determinants
- explore/understand the association between the two processes
 - variability / heterogeneity in the disease progression

Dynamic prediction for a new subject ★

 Predicted probability from landmark s at horizon t:

$$\pi^{\star}(s,t) = \mathbb{P}\left(T_{\star} < s + t, \delta_{\star} = p | T_{\star} > s, \mathcal{Y}_{\star}(s), \mathcal{X}_{\star}\right)$$

Dynamic prediction for a new subject ★: joint models

- Direct posterior computation (Bayes):
 - Monte Carlo approximation of the posterior distribution
 - e.g. with dynpred function in lcmm, with predict function in JMbayes2
- Performances evaluation:
 - riskRegression R package for AUC, Brier Score (Gerds & Kattan, 2021; Blanche, 2015)
 - in lcmm, epoce function for UACV (Commenges, Bcs 2011)

Dynamic prediction for a new subject ★: joint models

- Direct posterior computation (Bayes):
 - Monte Carlo approximation of the posterior distribution
 - e.g. with dynpred function in lcmm, with predict function in JMbayes2
- Performances evaluation:
 - riskRegression R package for AUC, Brier Score (Gerds & Kattan, 2021; Blanche, 2015)
 - in lcmm, epoce function for UACV (Commenges, Bcs 2011)

5-year probability of dementia (%): 5-year probability of death (%):

at 80 years old 13.0 [7.7,21.0] 25.1 [18.1,36.5]

Dynamic prediction for a new subject ★: joint models

- Direct posterior computation (Bayes):
 - Monte Carlo approximation of the posterior distribution
 - e.g. with dynpred function in lcmm, with predict function in JMbayes2
- Performances evaluation:
 - riskRegression R package for AUC, Brier Score (Gerds & Kattan, 2021; Blanche, 2015)
 - in lcmm, epoce function for UACV (Commenges, Bcs 2011)

5-year probability of dementia (%): 5-year probability of death (%):

at 80 years old 13.0 [7.7,21.0] 25.1 [18.1,36.5]

at 85 years old 16.4 [9.1,29.4] 36.0 [25.9.46.3]

Dynamic prediction for a new subject ★: random forests

• Predicted probability from landmark *s* at horizon *t*:

$$\pi^{\star}(s,t) = \mathbb{P}\left(T_{\star} < s + t, \delta_{\star} = p | T_{\star} > s, \mathcal{Y}_{\star}(s), \mathcal{X}_{\star}\right)$$

- Drop down the new subject ★ into the trees using:
 - the history of time-dependent predictors $\mathscr{Y}_{\star}(s)$ up to landmark time s
 - ▶ time-fixed covariates X₊
- Average the leaf-and-tree-specific cumulative incidence functions $\hat{\pi}^{(tree,leaf)}(s,t)$ across trees:

$$\hat{\pi}_{\star}(s,t) = \frac{1}{B} \left(\hat{\pi}_{\star}^{(1,4)}(s,t) + \dots + \hat{\pi}_{\star}^{(B,7)}(s,t) \right)$$

Concluding remarks

- Joint models = central technique in health studies (and probably beyond)
 - understanding of etiology, natural history and progression
 - individual dynamic prediction
 - correct for informative dropout
- Different solutions/implementations available in R
 - latent classes /shared random effects
 - different parametric assumptions (baseline risk, distribution of outcomes)
 - numerical limitations with many longitudinal markers
- DynForest: example of promising alternative from statistical learning
 - Not a two-step approach!
 - ★ separate mixed models for the longitudinal markers at each node
 - ★ naturally handles informative censoring of biomarker data as estimated on homogeneous nodes
 - accounts for nonlinear associations, interactions, etc.
 - current extensions with FPCA tools (Segalas 2024), distances, and other splitting rules

Fundings:

Réseau de Recherche Impulsion PHDS | Public Health Data Science UNIVERSITE Bordeaux Network

References

JLCM: Proust-Lima et al (2014). JLCM for longitudinal and time-to-event data: A review. SMMR 23, 74-90

https://cecileproust-lima.github.io/lcmm/

SREM: Rizopoulos D. Joint Models for Longitudinal and Time-to-Event Data: With Applications in R. Chapman & Hall/CRC 2012 https://drizopoulos.github.io/JMbayes2

- DynForest: Devaux et al (2023). Random survival forests with multivariate longitudinal endogenous covariates. SMMR 32, 2331-2346 https://github.com/anthonydevaux/DynForest
- margLevAlg: Philipps et al (2021). Robust and Efficient Optimization Using a Marquardt-Levenberg Algorithm with R Package marqLevAlg. The R Journal 13(2), 365-379. https://github.com/VivianePhilipps/marqLevAlqParallel

Other references

Random Survival Forests:

Ishwaran et al. (2008) Annals Applied Stat, 2(3), 841-60 Ishwaran et al. (2014) Biostatistics, 15(4), 757-73. Segalas et al. (2024) arXiv

https://arxiv.org/abs/2402.10624

Regression Calibration / 2-Stage:

Signorelli et al. (2021) *Statistics in medicine*, 40(27), 6178-96 Ye et al. (2008) *Biometrics*, 64(4), 1238-46 Devaux et al. (2022) *BMC Med Res Methodol*, 22(1), 188

Error of Prediction:

Blanche et al. (2015). Biometrics, 71, 102-13. Gerds & Kattan (2021) R. Chapman & Hall/CRC

SREM:

Andrinopoulou, Rizopoulos (2016) Stat Med, 35(26), 4813-23.
Chen, Wang(2017) Stat Med, 36(24), 3820-9
Ferrer et al. (2016) Stat Med, 35(22), 3933-48
Mauff et al. (2017) Stat Med, 36(23), 3746-59
Rizopoulos (2012) CRC Press
Rouanet et al. (2016) Biometrics, 72(4), 1123-35
Rustand et al. (2023) Biostatistics, 2024, 25(2), 429-448

JLCM:

Rouanet et al. (2016) *Biometrics*, 72(4), 1123-35 Proust-Lima et al. (2016). *Statistics in Medicine*, 35(3), 382-398

Proust-Lima et al. (2017). *Journal of Statistical Software*, 78(2), 1-56

Proust-Lima et al. (2023). Statistics in Medicine, 42(22), 3996-4014