Data-intensive computing systems

Modalità d'esame

University of Verona Computer Science Department

Damiano Carra

Modalità d'esame

- ☐ Progetto + Discussione orale
 - Fase 1: si concorda il progetto
 - Fase 2: si esegue il progetto e si consegna codice + relazione
 - Fase 3: il progetto viene valutato
 - Fase 4: discussione orale sul progetto e su tutto il programma
- ☐ I progetti possono essere svolti da soli o in coppia
- ☐ Non ci sono tempi predefiniti per la consegna
 - Gli appelli servono solo per la verbalizzazione
- ☐ Valutazione «one-shot»
 - In caso di rifiuto del voto, si deve sviluppare un nuovo progetto

Fase 1 - Scelta del progetto

- ☐ Nelle prossime slide segue una lista con esempi
 - Si può scegliere uno qualsiasi dei progetti proposti
 - Anche se altri studenti hanno già scelto lo stesso progetto
 - Si assume che gli studenti siano sufficientemente maturi per non "copiare"
 - in ogni caso bisogna consegnare codice e relazione, su cui viene fatto un controllo
 - Gli studenti possono proporre in autonomia un progetto diverso da quelli elencati
- ☐ I dettagli vanno concordati con il docente

3

Progetti / 1

■ Inverted indexing

- Cap 4 del libro di Jimmy Lin
- Implementazione completa dell'algoritmo e test su un sottoinsieme di pagine di Wikipedia
 - L'output deve contenere, per ogni parola, la lista di pagine di wikipedia che contengono quella parola

☐ Full PageRank

- Cap. 5 del libro di Jimmy Lin
- Implementazione completa dell'algoritmo di page rank
 - include il jump factor (bisogna prima calcolare il numero totale di nodi)
 - include la gestione dei nodi-sink
 - Test basato su grafi con diverse caratteristiche (small world, random, regular)

Progetti / 2

- ☐ Implementazione di algoritmi descritti nel libro "Mining Massive Datasets"
 - Frequent Itemset
 - Sez. 6.4.4: The SON Algorithm and Map-Reduce
 - Counting Triangles in Social Graphs
 - Sez. 10.6.4: Finding Triangles Using Map-Reduce
- ☐ Confronto prestazioni tra Pig e MapReduce
 - Implementare l'analisi di un dataset (ad es., arrivi e partenze negli aeroporti) in Pig e MapReduce e confrontare le prestazioni

101-57(J) 101-57(J) 101-17(J) 101-17

ŗ

Progetti / 3

- ☐ Use case con tool BigData non visti a lezione:
 - Flink, Storm, Samza, Flume, ...
- □ Progetti interdisciplinari
 - Se state seguendo altri corsi e volete applicare ciò che avete visto in questo corso, proponete pure!
 - Es: Metodi di calcolo non convenzionale: il progetto è parallelizzabile?
 - Analisi varie su grafi
 - In collaborazione con altri docenti del Dipartimento
 - Esempi: Graph matching, Graph Centrality, Graph Clustering

Fase 2 - Sviluppo e consegna

- ☐ Si terrà conto dell'autonomia nella fase di sviluppo
 - Considerando le comunicazioni con il docente nella risoluzione dei problemi
- ☐ L'output del progetto dovrà essere:
 - Una relazione, che spiega nel dettaglio l'implementazione fatta e riporta i risultati dello studio di performance
 - Il codice sviluppato

7

Fase 3 e 4 - Valutazione e discussione

- ☐ Una volta valutato il progetto, seguirà un colloquio
 - Discussione sul progetto stesso (ad esempio, scelte implementative)
 - Discussione sulla connessione tra il progetto e le tematiche svolte nel corso
 - Domande aperte sui temi svolti durante il corso

