MAS205 Complex Variables 2005-2006

Exercises 2

Exercise 5: Using Euler's formula $e^{i\theta} = \cos \theta + i \sin \theta$ for $\theta \in \mathbb{R}$, show that

- (a) $e^{i\theta} = e^{i(\theta + 2n\pi)}$ for $\theta \in \mathbb{R}$ and $n \in \mathbb{Z}$
- (b) $e^{i\theta}e^{i\phi} = e^{i(\theta+\phi)}$ for $\theta, \phi \in \mathbb{R}$
- (c) $1/e^{i\theta} = e^{-i\theta}$ for $\theta \in \mathbb{R}$

Using (b) and mathematical induction, show that

(d) $(e^{i\theta})^n = e^{in\theta}$ for $\theta \in \mathbb{R}$ and $n \in \mathbb{Z}$

Exercise 6: Find all complex solutions of the following equations:

- (a) $e^z = i$ (b) $e^{2z} = 1$ (c) $\sinh z = 0$ (d) $\cos z = 0$

Exercise 7: Consider the transformation

$$z \mapsto w = (z-1)^2$$
.

- (a) Find the equation of the image of the line $\Re(z) = 0$ and sketch the image.
- (b) What is the image of the upper half plane?

(a) Find the region in the w-plane which is the image of the upper half of the z-plane under the transformation

$$w = 1 + 1/z$$

(b) Find the regions in the z-plane which map to the left half of the w-plane under the transformation

$$w = z^4$$