Linear and discret optimization

Made by http://hwdong.com Notes from Friedrich Eisenbrand

Feasible solutions

A point $x \in \mathbb{R}^n$ is called *feasible*, if x satisfies all linear inequalities. If there are feasible solutions of a linear program, then the linear program is called *feasible*.

Optimal solutions

A feasible $x \in \mathbb{R}^n$ is an *optimal solution* of the linear program if $c^T x \ge c^T y$ for all feasible $y \in \mathbb{R}^n$.

Bounded linear program

A linear program is *bounded* if there exists a constant $M \in \mathbb{R}$ such that $c^T x \leq M$ holds for all feasible $x \in \mathbb{R}^n$.

Quiz

The linear program

max
$$x_1$$

s.t.: $x_1 + x_2 \le 1$
 $x_1 \ge 1$

- ► is infeasible
- is feasible
- ▶ is bounded unbounded

$$\forall k \ge 1$$
: $(k, -k+1)$ is fins.
 $H \in IR$ $k = \max \{M+1, 1\}$
 $k \ge 1$ and
 $(k, -k+1)$ is fins.
 g

Quiz

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. The linear program

$$\max\{c^Tx: x \in \mathbb{R}^n, Ax = b\}$$

is feasible and unbounded if

▶
$$b \in im(A)$$

$$\bigcirc b \in \operatorname{im}(A) \text{ and } c \in \ker(A) \setminus \{0\}$$

56 cm(A) =>
$$\exists x^* \in \mathbb{R}^n$$

5.1. A· $x^* = b$
A· $(x^* + \lambda \cdot c) = A·x^* + \lambda \cdot A·c = b$
 $\in \mathbb{R}$
TI $\in \mathbb{R}$:
 $cT(x^* + \lambda \cdot c)$
 $= cT.x^* + \lambda \cdot CT.C$
 $= cT.x^* + \lambda \cdot CT.C$

$$\Rightarrow ct.c + ct.x^{x} > \pi$$
 $\Rightarrow \frac{\pi - ct.x^{x}}{ct.c}$

Fitting a line

$$\min \sum_{i=1}^{n} |y_i - ax_i - b|$$

$$a, b \in \mathbb{R}$$

Idea: Model absolute value $|y_i - ax_i - b|$ as smallest h_i satisfying

$$h_i \geqslant y_i - ax_i - b$$

 $h_i \geqslant -(y_i - ax_i - b)$

min
$$\sum_{i=1}^{n} \underline{h_i}$$
s.t.: $h_i \ge y_i - \underline{a}x_i - \underline{b}$, $i = 1, ..., n$

$$h_i \ge -y_i + ax_i + b$$
, $i = 1, ..., n$

Polyhedra

A set P of vectors in \mathbb{R}^n is a polyhedron if $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ for some matrix A and some vector b.

Example:

$$P = \emptyset$$

acientos, BEIR

dx ∈ 12n: at.x= β3 holf space dx∈ 12n: at.x= β3 hyperplane

$$\mathcal{O} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

 $2x \in \mathbb{R}^n : 0^T x \leq -1 \quad 3 = 6$

Valid and active inequalities

An inequality $a^Tx \leq \beta$ is *valid* for a polyhedron P if each $x^* \in P$ satisfies $a^Tx^* \leq \beta$. An inequality $a^Tx \leq \beta$ is *active* at $x^* \in \mathbb{R}^n$ if $a^Tx^* = \beta$.

Vertices

A point $x^* \in P$ is a *vertex* of P if there exists an inequality $a^T x \leq \beta$ such that

- $a^T x \leq \beta$ is valid for P and
- $a^T x \leq \beta$ is active at x^* and not active at any other point in P.

X* EP is a vertex (=> I C = 12" S.f.

X* is unique optimal solution of the

leview program max YCT. X: X = P3

Alternative characterization of vertices: Intuition

$$\bar{A} \times = \bar{b}$$

rank $(\bar{A}) = NL$ Go columns of \bar{A} are binearly independent

Basic solutions

, not messarily florible

Consider polyhedron $P = \{x \in \mathbb{R}^n : Ax \leq b\}$. A point $x^* \in \mathbb{R}^n$ is a basic solution if $\operatorname{rank}(A_I) = n$.

If $x^* \in P$, then x^* is basic feasible solution.

Example:
$$P = \{x \in \mathbb{R}^3 : Ax \le b\}, A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}, b = \begin{pmatrix} 3 \\ 1 \\ 4 \\ 2 \end{pmatrix}, x_1^* = \begin{pmatrix} -1/2 \\ 3/2 \\ 5/2 \end{pmatrix}, x_2^* = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$$

AIXEDA

Xx infrosible

Az X = bz

$$Az = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
, $renh(Az) = 3$

X2 flos. basic from be solution

Vertices and basic feasible solutions

Theorem

if and only if

Let $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ and $x^* \in P$. Then x^* is vertex of P iff x^* is basic feasible solution.

=> " X*EP verkx, assume not a busic feas. sol.

Ax \(\) b \(\) \

rank (An) < VI for Kernel (An) 2 203

Yde12" 3820 s.th. Az(x*+ 8.d) < b2

Let d & Ker (A1) 1203

A1 (x* ± 8.d) = | b1

An(x=te.d)

3 CERR S. S. Xx emple apt ad. of the LP max tcT.x: xEP3

cT.xx > cT(xx+E.d.) => 0 > E.cT.d.

cT.xx > cT(xx-E.d.) => 0 > - E cT.d.

Vertices and basic feasible solutions

Theorem

Let $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ and $x^* \in P$. Then x^* is vertex of P iff x^* is basic feasible

Optimality of vertices

Theorem

If a linear program $\max\{c^Tx\colon x\in\mathbb{R}^n,\, Ax\leqslant b\}$ is feasible and bounded and if $\operatorname{rank}(A)=n$, then the LP has an optimal solution that is a vertex.

证明有点不太明白!

Consequence: Restrict to vertices

Bounded MAX CT.X AC 18 mxn Rondr (A) = VZ Axeb XEIRN Important consequence: => 3 weeks that is also opt. sol. CAN BE SOLVED BY enumerating all vertices and X is vertex => 3 B = d1...., m3, s.th., 1B1=n by picking the best one. Xx is unique solution of AB. X = bB Enumerak all BE fl., m), 1B) = n - If AB is non-singular, AB- be Froston -> Store it;

Quiz

Consider

$$\begin{array}{rcl}
\max & x_1 + x_2 \\
x_1 + x_2 & \leq & 1 \\
x_1 & \leq & 1 \\
x_2 & \leq & 1
\end{array}$$

Which of the following statements are true?

- Each optimal solution is a vertex.
- There exists an optimal solution that is a vertex.
- There are infinitely many optimal solutions.

Algorithm for bounded LPs with vertices

```
!! INEFFICIENT
```

```
Solve \max\{c^Tx: x \in \mathbb{R}^n, Ax \leq b\}
                                  - BOUNDED
                                  - vontra)=n
S := \emptyset
for each B \in {[m] \choose n}
             if A_B is invertible and x_B = A_B^{-1}b_B feasible
                 S := S \cup \{x_B\}
if S = \emptyset
    LP not feasible
else
   return x \in S with largest obj. value c^T x
```

Existence of optimal solutions

Theorem

A feasible and bounded linear program $\max\{c^Tx: x \in \mathbb{R}^n, Ax \leq b\}$ has an optimal solution.

proof:
$$\max_{X \in ID} CT(2-y)$$
 $AX \leq D$
 $X \in ID^{n}$
 $T = \begin{pmatrix} A & -I \\ I & -A \end{pmatrix}$
 $A' = \begin{pmatrix} A & -I \\ I & -A \end{pmatrix}$
 $A' = \begin{pmatrix} A & -A \\ -I & 0 \\ 0 & -I \end{pmatrix}$
 $A' = A' = A' = A'$
 $A' = A'$
 A'

An inefficient algorithm for linear programming

Goal: Solve bounded linear program

$$\max\{c^T x : x \in \mathbb{R}^n, Ax \leq b\}.$$

Transform into equivalent linear program

$$\max\{c^T(x_1-x_2): x_1, x_2 \in \mathbb{R}^n, A(x_1-x_2) \le b, x_1 \ge 0, x_2 \ge 0\}.$$

- Enumerate all basic solutions.
- If all basic solutions are infeasible, assert LP infeasible.
- Otherwise, output feasible basic solution with largest objective value.

The projection mapping

The *projection mapping* is the function $\pi: \mathbb{R}^n \to \mathbb{R}^{n-1}$ with

$$\pi(x_1,\ldots,x_n)=(x_1,\ldots,x_{n-1}).$$

For $S \subseteq \mathbb{R}^n$ the projection of S is the set $\pi(S) = {\pi(x) : x \in S}$.

Completing a point in the projection

- ▶ Suppose we want to know whether $(x_1^*, \ldots, x_{n-1}^*)$ is in $\pi(P)$ where $P = \{x \in \mathbb{R}^n \colon Ax \le b\}.$ In=di: ain 703
- ▶ Re-write each constraint $\sum_{i=1}^{n} a_{ij}x_i \leq b_i$ as

$$a_{in}x_n \leqslant -\sum_{j=1}^{n-1} a_{ij}x_j + b_i \qquad \left(\frac{1}{a_{in}} \right)$$

▶ If $a_{in} \neq 0$ divide both sides by a_{in} . With $\bar{x} = (x_1, \dots, x_{n-1})$ we obtain an equivalent representation of P

$$x_n^* \leqslant d_i + f_i^T \overline{x}^* \quad i \in I_> \text{MIN}$$
 $x_n \geqslant d_j + f_j^T \overline{x}^* \quad j \in J_< \text{ max}$
 $0 \leqslant d_k + f_k^T \overline{x}^* \quad k \in K$

The projection of a polyhedron

If $P \subseteq \mathbb{R}^n$ is represented by

$$x_n \leqslant \underbrace{d_i + f_i^T \overline{x}}_{x_n \geqslant \underbrace{d_j + f_j^T \overline{x}}_{j \in J_{<}}}_{0 \leqslant d_k + f_k^T \overline{x}} \quad i \in I_{>}$$

$$dj + f_j^T \cdot X^* \leq X_m^* = X_n^* \leq di + f_i^T \cdot X^*$$

$$Z^* = (X_n^*, \dots, X_{n-\alpha}^*) \text{ sot } (1).$$

then $\pi(P)$ is represented by

$$\frac{d_j + f_j^T \overline{x}}{\longrightarrow} \leqslant \underbrace{d_i + f_i^T \overline{x}}_{l_i} \quad i \in I_>, j \in J_<$$

$$\longrightarrow 0 \leqslant d_k + f_k^T \overline{x} \quad k \in K$$

Describes Polyhedron EIRM

The projection of a polyhedron (cont.)

Corollary

If $P \subseteq \mathbb{R}^n$ is a polyhedron, then $\pi(P)$ is a polyhedron.

Solving linear programming with Fourier-Motzkin elimination

- ► $\max\{c^Tx: x \in \mathbb{R}^n, Ax \leq b\}.$
- ► Starting with $Q = \{(x, y) \in \mathbb{R}^{n+1} : Ax \leq b, c^T x = y\}.$
- Compute

$$\pi(Q), \pi(\pi(Q)), \ldots, \pi^n(Q)$$

and the corresponding inequality representations

$$A_1 x^{(1)} \leq b_1, \dots, A^{(n)} x^{(n)} \leq b^{(n)}, \text{ where } x^{(i)} = \begin{pmatrix} y \\ x_1 \\ \vdots \\ x_{n-i} \end{pmatrix} \in \mathbb{R}^{n+1-i}.$$

- ▶ If $A^{(n)}x^{(n)} \leq b^{(n)}$ is infeasible, then LP is infeasible.
- Otherwise determine largest $x^{(n)^*} = y^*$ and from there complement to $x^{(n-1)^*}, \ldots, x^{(0)^*}$. $(\times_{1}^{*}, \ldots, \times_{n}^{*}, y^{*})$

Recap

Adjacent vertices

Two distinct vertices x_1 and x_2 of $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ are adjacent, if there exist n-1*linearly independent inequalities* of $Ax \leq b$ active at both x_1 and x_2 .

Theorem

Proof:

 $x_1 \neq x_2 \in P$ are adjacent iff there exists $c \in \mathbb{R}^n$ such that set of optimal solutions of $\max\{c^Tx\colon x\in P\} \text{ is } \{\beta x_1+(1-\beta)x_2\colon \beta\in\mathbb{R},\ 0\leqslant\beta\leqslant1\}.$

line segment spanned by X1 and X2

Similar to proof of Vartex and Basic Cessible solution are equivalent concepts.

Simplex algorithm

George Dantzig (1914 - 2005)

Basic idea:

Start with vertex x*

while x^* is not optimal

Find vertex x' adjacent to x^* with $c^Tx' > c^Tx^*$ update $x^* := x'$

Or assert that LP is unbounded.

The simplex method

- Bases and degeneracy
- Moving to a better neighbor

Bases

A subset $B \subseteq \{1, ..., m\}$ of the row-indices with |B| = n and A_B non-singular is called basis of the LP.

If in addition $A_B^{-1}b_B$ is feasible, then B is called *feasible basis*.

$$x^* \in P = l \times c + R^n : A \times = b$$
 is vertex $(=) 3 B = l \cdot l \cdot m$ $S =$

Vertices and bases

A vertex $x^* \in P$ is represented by a basis B.

A vertex x^* can be represented by several bases.

Quiz:
How many bases represent

xx 2

.

6

Degeneracy

A linear program $\max\{c^Tx: x \in \mathbb{R}^n, Ax \leq b\}$ is *degenerate* if there exists an $x^* \in \mathbb{R}^n$ such that there are more than n constraints of $Ax \leq b$ that are active at x^* .

Optimal bases

A basis B is called *optimal* if it is feasible and the unique $\mathfrak{J} \in \mathbb{R}^m$ with

$$\hat{\beta}^T A = c^T \text{ and } \hat{\beta}_i = 0, i \notin B$$

$$\lambda_B^T A = c^T \text{ and } \hat{\beta}_i = 0, i \notin B$$

$$\lambda_B^T A = c^T AB^T$$

satisfies $\mathcal{J} \geqslant 0$.

Theorem

If *B* is optimal basis, then $x^* = A_B^{-1}b_B$ is optimal solution of LP.

Quiz

Which bases are optimal?

21,23

\$\leq \lambda 1,3\rangle \text{ non-neg, lenier comb. of as ondo.}\$

\$\leq \lambda 2,3\rangle \text{ C} \rangle \text{ c}

 λ_{4n2}^T $A_{4n2} = c^T$ $\lambda_{4n2} \ngeq 0$

The non-degenerate case

mercr.x, AxEb ABX EbB while.

Theorem

Suppose the LP is non-degenerate and B is a feasible but not optimal basis, then $x^* = A_B^{-1} b_B$ is not an optimal solution.

Compute
$$d \in \mathbb{R}^{N}$$
 s.th. $A_{BNG} d = 0$, $a_{i}^{T} d = -1$ (AB non-sing)

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d = \lambda_{i} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d = \lambda_{i} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d = \lambda_{i} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d = \lambda_{i} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d = \lambda_{i} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d = \lambda_{i} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d = \lambda_{i} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d = \lambda_{i} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d = \lambda_{i} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d = \lambda_{i} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d = \lambda_{i} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d = \lambda_{i} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d = \lambda_{i} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d = \lambda_{i} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d = \lambda_{i} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d = \lambda_{i} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d = \lambda_{i} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d = \lambda_{i} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d = \lambda_{i} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d = \lambda_{i} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d = \lambda_{B}^{T} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d = \lambda_{A}^{T} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot a_{i}^{T} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot a_{i$$

Moving to a better neighbor

LP NOW - DEA.

- ▶ B not an optimal basis
- $x^* = A_B^{-1}b_B$ corresponding basic feasible solution
- $\hat{\jmath}_i < 0$ for some $i \in B$
- $a_j^T d = 0, j \in B \setminus \{i\}$ $a_i^T d = -1$
- $c^T d > 0$
- there exists $\varepsilon > 0$ such that $x^* + \varepsilon d$ feasible

 K^* $K = d \cdot 1 = e = m, a \cdot d > 0$ $CASE1: K = \emptyset$

LP UNBOUNDS

alx & b.

am. x = bm

Question: How large can ε be?

Moving to a better neighbor

- B not an optimal basis
- $x^* = A_B^{-1}b_B$ corresponding basic feasible solution
- $\beta_i < 0$ for some $i \in B$
- $a_j^T d = 0, j \in B \setminus \{i\}$ $a_i^T d = -1$
- $rac{d}{r} c^T d > 0$
- there exists ε > 0 such that x* + εd feasible

Question: How large can ε be?

Moving to a better neighbor

- B not an optimal basis
- $x^* = A_B^{-1}b_B$ corresponding basic feasible solution
- $\beta_i < 0$ for some $i \in B$
- $a_j^T d = 0, j \in B \setminus \{i\}$ $a_i^T d = -1$
- $c^T d > 0$
- there exists $\varepsilon > 0$ such that $x^* + \varepsilon d$ feasible

Question: How large can ε be?

Simplex algorithm

George Dantzig (1914 - 2005)

Basic idea:

Start with vertex x*

P= XXER": AXEB3

while x^* is not optimal

Find vertex x' adjacent to x^* with $c^Tx' > c^Tx^*$ $\checkmark \neq \not$ update $x^* := x'$

Or assert that LP is unbounded.

Simplex algorithm in basis notation

```
XT.A=CT and >j=0 Yj&B
Start with feasible basis B
while B is not optimal
        Let i \in B be index with \beta_i < 0
        Compute d \in \mathbb{R}^n with a_i^T d = 0, j \in B \setminus \{i\} and a_i^T d = -1
        Determine K = \{k : 1 \le k \le m, a_k^T d > 0\}
        if K = \emptyset
            assert LP unbounded
        else
            Let k \in K index where \min_{k \in K} (b_k - a_k^T x^*) / a_k^T d is attained
            update B := B \setminus \{i\} \cup \{k\}
```

The non-degenerate case

Theorem

If the linear program is non-degenerate, then the simplex algorithm terminates.

目

Simplex algorithm: Bland's rule (Bland 1977)

LP DEGENGRATE

```
Start with feasible basis B while B is not optimal Let i \in B be smallest index with \beta_i < 0 Compute d \in \mathbb{R}^n with a_j^T d = 0, j \in B \setminus \{i\} and a_i^T d = -1 Determine K = \{k \colon 1 \leqslant k \leqslant m, \ a_k^T d > 0\} if K = \emptyset assert LP unbounded else Let k \in K be smallest index where \min_{k \in K} (b_k - a_k^T x^*)/a_k^T d is attained update B := B \setminus \{i\} \cup \{k\}
```

Bland's rule avoids cycles

x, XT.A = CT d cTd>0

Theorem

If Bland's rule is applied, the simplex algorithm terminates.

Case1,case2不太明白

Weak duality

Theorem (Weak duality)

Consider a linear program $\max\{c^Tx\colon x\in\mathbb{R}^n,\,Ax\leqslant b\}$ and its dual $\min\{b^Ty\colon y\in\mathbb{R}^m,\,A^Ty=c,\,y\geqslant 0\}$. If $x^*\in\mathbb{R}^n$ and $y^*\in\mathbb{R}^m$ are primal and dual feasible respectively, then $c^Tx^*\leqslant b^Ty^*$.

Strong duality

Theorem (Strong duality)

Consider a linear program $\max\{c^Tx\colon x\in\mathbb{R}^n,\,Ax\leqslant b\}$ and its dual $\min\{b^Ty\colon y\in\mathbb{R}^m,\,A^Ty=c,\,y\geqslant 0\}$. If the primal is feasible and bounded, then there exist a primal feasible x^* and a dual feasible y^* with $c^Tx^*=b^Ty^*$.

mex ct X The dual of the dual is the primal AXSLO min b.y 17AX - 65. 3 $A^{T} \cdot J = C \quad \approx (-)$ $J^{2} \cdot J = C \quad \approx (-)$ $-A^{T} \cdot J = C \quad \approx (-)$ $-A^{T} \cdot J = C \quad \approx (-)$ $-A^{T} \cdot J = C \quad \approx (-)$ $g_{2} \cdot (-A^{T}) \cdot J = (-)$ $g_{3} \cdot (-1) \cdot J = (-)$ $g_{3} \cdot (-1) \cdot J = (-)$ cT(y = y =) MAX CT (ge -ga) (-) HIN CT. gn - CT g2 +0T. g3 A (92-91) + 93 = b A. y1-A. g2- y3 = - b y 1. y 1 1 y 3 20 y .. y 2 . y = 20 MAX cT.y, A.y = b

Which com	binations are	possible?		
	PD	fink Opt	Unbounded	Inflesible
	Finih Opt	×	0	0
	Unbounded	0	0	×
	In frontale	0	×	possible

finite optimizaton: feasible and bound

unbound: 有feasible,但unbound

Infeasible:

Proving optimality

LP-sdver 1

fromble xxEmn

Says it's optimal

LP-solver 2

from xx . yx (P) 10:

CT. x = 5. y*

Proof of optimality

Simplex returns xx, yx

MAX CT.X

AXED

Size of x* and y* is

polynomial in six of LP.

Proving infeasibility

Farkas' Lemma

A system of inequalities $Ax \le b$ is <u>infeasible</u> if and only if there exists $\beta \ge 0$ such that $\beta^T A = 0$ and $\beta^T b = -1$.

Discret optimization

Bipartite graphs

A graph G = (V, E) is bipartite, if one can partition V into $V = A \dot{\cup} B$ such that each edge $e \in E$ satisfies $|e \cap A| = |e \cap B| = 1$.

Matchings

A *matching* is a subset $M \subseteq E$ of the edges such that each $e_1 \neq e_2 \in M$ satisfy $e_1 \cap e_2 = \emptyset$.

The edges in a matching "do not touch".

The maximum weight (bipartite) matching problem

Given a (bipartite) graph G = (V, E) and edge weights $w : E \to \mathbb{N}_0$, determine a matching $M \subseteq E$ such that

$$w(M) := \sum_{e \in M} w_e$$
 is maximal.

w-vertex covers

Let G = (V, E) be a graph with edge weights $w : E \to \mathbb{N}_0$. A *w-vertex cover* is a vector $y \in \mathbb{N}_0^{|V|}$ such that

$$\forall uv \in E: y_u + y_v \ge w_{uv}.$$

The *value* of a *w*-vertex cover *y* is $\sum_{v \in V} y_v$.

Lemma (Weak duality)

Let G = (V, E) be a graph and let $w : E \to \mathbb{N}_0$ be edge-weights. If M is a matching of G

and if y is a w-vertex cover of G, then

$$w(M) \leq \sum_{v \in V} y_v$$
.

 $M = \{e_1, e_2, \dots, e_k\}$
 $e_1 \quad We_1$
 $e_2 \quad We_2$
 $e_3 \quad We_4$
 $e_4 \quad We_4$
 $e_4 \quad We_5$
 $e_5 \quad We_6$
 $e_7 \quad We_7$
 $e_7 \quad$

Proof.

An integer programming formulation of max-weight matching

An IP formulation of min. w-vertex cover

$$\min \sum_{v \in V} y_v$$

$$uv \in E: \quad y_u + y_v \ge w_{uv}$$

$$v \in V: \quad y_v \ge 0$$

$$\mathbf{y} \in \mathbb{Z}^{|V|}.$$

Towards a second proof of weak duality via LP-duality

Idea

Describe *characteristic* vectors χ^M of matchings by linear constraints and the *integrality* constraint.

The description

For $v \in V$ we denote the set of edges *incident* to v by

$$\delta(v) = \{e \in E \colon v \in e\}.$$

The set $\{\chi^M : M \text{ matching } \text{ of } G\}$ is the set of *feasible solutions of*

$$v \in V$$
: $\sum_{e \in \delta(v)} x_e \le 1$
 $e \in E$: $x_e \in \{0, 1\}$.

Proving weak duality via LP duality

Theorem

The max. weight of a matching is at most the min. value of a w-vertex cover.

$$\max \sum_{e \in E} w_e \cdot x_e \qquad \max \sum_{e \in E} w_e \cdot x_e \qquad = \qquad \min \sum_{v \in V} y_v \qquad \angle \qquad \min \sum_{v \in V} y_v$$

$$v \in V: \sum_{e \in \delta(v)} x_e \leqslant 1 \qquad v \in V: \sum_{e \in \delta(v)} x_e \leqslant 1 \qquad uv \in E: \quad y_u + y_v \geqslant w_{uv} \qquad uv \in E: \quad y_u + y_v \geqslant w_{uv}$$

$$v \in V: \quad y_v \geqslant 0 \qquad v \in V: \quad y_v \geqslant 0$$

$$v \in V: \quad y_v \geqslant 0 \qquad v \in V: \quad y_v \geqslant 0$$

$$\mathbf{y} \in \mathbb{R}^{|V|}. \qquad \mathbf{y} \in \mathbb{Z}^{|V|}.$$

$$\mathbf{MAX} \quad \mathsf{MATCHING}$$

$$\mathsf{MAX} \quad \mathsf{MATCHING}$$

Proving weak duality via LP duality (cont.)

$$\max \sum_{e \in E} w_e \cdot x_e$$

$$v \in V$$
:
$$\sum_{e \in \delta(v)} x_e \le 1$$
 $e \in E$: $x_e \ge 0$

$$e \in E$$
: $x_e \ge 0$

$$\mathbf{x} \in \mathbb{R}^{|\mathbf{E}|}$$
.

 $\max w^T x$

$$Ax \le 1$$
$$x \ge 0$$

$$\min \sum_{v \in V} y_v$$

$$uv \in E$$
: $y_u + y_v \ge w_{uv}$

$$v \in V$$
: $y_v \ge 0$

$$y \in \mathbb{R}^{|V|}$$
.

$$\min \mathbf{1}^T y$$

$$\begin{array}{c}
A^{T} y \geqslant w \\
y \geqslant 0
\end{array}$$

The node-edge incidence matrix

Let G=(V,E) be a graph and suppose the nodes and edges are ordered as v_1,\ldots,v_n and e_1,\ldots,e_m . The matrix $A^G\in\{0,1\}^{n\times m}$ with

$$A_{i,j}^G = \begin{cases} 1 & \text{if } v_i \in e_j, \\ 0 & \text{otherwise} \end{cases}$$

is the *node-edge incidence* matrix of *G*.

		1	2	3	4	5	6	7	8
A G =	4	1	1	1	0	0	0	0	0
	2	0	0	Λ	1	0	0	D	1
	3	1	D	O	1	7	1	0	0
	4	0	Λ	0	0	1	0	1	1
	5	0	0	0	0	0	1	1	0

Proving weak duality via LP duality (cont.)

$$\max \sum_{e \in E} w_e \cdot x_e$$

$$\min \sum_{v \in V} y_v$$

$$v \in V: \sum_{e \in \delta(v)} x_e \le 1$$

$$e \in E: x_e \ge 0$$

$$e \in E$$
: $x_e \geqslant 0$

$$y \in \mathbb{R}^{|V|}$$
.

$$x \in \mathbb{R}^{|E|}$$
.

$$\max w^T x$$

$$\min \mathbf{1}^T \mathbf{y}$$

$$A^G x \le \mathbf{1}$$
$$x \ge 0$$

$$(A^G)^T y \ge w$$
$$y \ge 0$$

Weak duality via LP duality

Lemma (Weak duality)

Let G = (V, E) be a graph and let $w : E \to \mathbb{N}_0$ be edge-weights. If M is a matching of G and if y is a w-vertex cover of G, then

$$w(M) \leq \sum_{v \in V} y_v.$$

Strong duality for bipartite graphs

- Totally unimodular matrices
- Proving strong duality in the bipartite case

Totally unimodular matrices

mxn

A matrix $A \in \{0, \pm 1\}$ is *totally unimodular*, if the determinant of each square sub-matrix of A is equal to $0, \pm 1$.

Node-edge incidence matrices of bipartite graphs

Theorem

Let G = (V, E) be a bipartite graph. The node-edge incidence matrix A^G of G is totally unimodular.

Node-edge incidence matrices of bipartite graphs

Theorem

Let G = (V, E) be a bipartite graph. The node-edge incidence matrix A^G of G is totally unimodular.

Proof: (by induction on b, Bir lekk sub-matix of AG)

k=1 B= 0, th => du+(B) = 0, th

&>1: CASE 1: B has column with exactly one "1":

Node-edge incidence matrices of bipartite graphs

CASE2: Each column of B contains exactly 2 "1"s:

ORDER ROWS OF B such that Vartices V = AiC from

bi-pontition Age on top. (possibly multiplying det by-1)

Totally unimodular matrices and integer programs

Max dct.x: Axeb, x30, x elen 3 = max dct.x: Axeb, x20, x e72n3

Theorem

If $A \in \mathbb{Z}^{m \times n}$ is totally unimodular and $b \in \mathbb{Z}^m$, then every vertex of the polyhedron

$$P = \{x \in \mathbb{R}^n : Ax \le b, x \ge 0\} \text{ is integral.}$$

$$\begin{pmatrix} A \\ -I \end{pmatrix} \times \leq \begin{pmatrix} b \\ 0 \end{pmatrix}$$

$$B = B_A \cup B_Z$$
 $A_1 \cap A_1 \cap A_2 \cap A_3 \cap A_4 \cap A_4 \cap A_4 \cap A_4 \cap A_4 \cap A_5 \cap$

Totally unimodular matrices and integer programs Using the matrix inversion formule A-1= (duta) adj(\tilde{A}) = $\begin{pmatrix} dit(\tilde{A}_{11}) & -dit(\tilde{A}_{21}) & ... \\ -dit(\tilde{A}_{12}) & dit(\tilde{A}_{22}) & ... \end{pmatrix}$ in kgr matrx $x_{\overline{1}}^* = (\overline{A}, \overline{A}) = (\overline{A},$

Totally unimodular matrices and integer programs (cont.)

Corollary

If $A \in \mathbb{Z}^{m \times n}$ is totally unimodular, $b \in \mathbb{Z}^m$, and if $\max\{c^T x : x \in \mathbb{R}^n, Ax \leq b, x \geq 0\}$ is bounded, then

$$\max\{c^Tx\colon x\in\mathbb{R}^\mathbf{n},\,Ax\leqslant b,\,x\geqslant 0\}=\max\{c^Tx\colon x\in\mathbb{Z}^\mathbf{n},\,Ax\leqslant b,\,x\geqslant 0\}.$$

Proof:

Strong duality in the bipartite case

Theorem (Egerváry 1931)

Let G = (V, E) be a bipartite graph and let $w : E \to \mathbb{N}_0$ be edge-weights. The maximum weight of a matching is equal to the minimum value of a w-vertex cover.

König's theorem

A *vertex cover* of a graph G = (V, E) is a subset $U \subseteq V$ such that $e \cap U \neq \emptyset$ for each $e \in E$.

Theorem (König 1931)

Let G = (V, E) be a bipartite graph. The maximum cardinality of a matching of G is equal to the minimum cardinality of a vertex cover of G.

Paths and Cycles

- Directed graphs
- Shortest (unweighted) paths
- Breadth-First-Search

Directed graphs

A <u>directed graph</u> is a tuple D = (V, A), where V is a finite set of <u>vertices</u> or <u>nodes</u> and $A \subseteq (V \times V)$ is the set of <u>arcs</u> or <u>directed edges</u> of G.

We denote a directed edge by its defining tuple $(u, v) \in A$. The nodes u and v are called *tail* and *head* of (u, v) respectively.

Unweighted distance

The *distance* d(s,t) between two nodes $s,t \in V$ is the smallest $k \in \mathbb{N}_0$ such that there exists a path $s = v_0, \ldots, v_k = t$. (Possibly ∞). d(s,t) is the length of the *shortest path* connecting s and t.

Quiz

What is the largest possible length of a path a directed graph D = (V, A) with |V| = n?

Which of the following are upper bounds for the number of directed paths of length n-1 in directed graph with n nodes?

- ► 2ⁿ
- ▶ n

Distance labels

For $i \in \mathbb{N}_0$, $V_i \subseteq V$ denotes the set of vertices that have distance i from s. Notice that $V_0 = \{s\}$.

Proposition

For i = 1, ..., n-1, the set V_i is equal to the set of vertices $v \in V \setminus (V_0 \cup \cdots \cup V_{i-1})$ such that there exists an arc $(u, v) \in A$ with $u \in V_{i-1}$.

Analysis

Cheet: I grove unit of ARRAYS.

With this chilidelization O(IVI +/AI)

Theorem

The Breadth-First-Search algorithm runs in time O(|A|). It is thus a linear time algorithm.

18 (m)

while $Q \neq \emptyset$ u := head(Q)**for** each $v \in \delta^+(u)$ if $(D[v] = \infty)$ $\pi[v] := u$ D[v] := D[u] + 1enqueue(Q, v)dequeue(Q)

Iteration u: At most $c_1 \cdot |\delta^+(u)| + c_2$ elementary operations.

> C1. 18+ (M) 1+ C2 C1. 18+ (M) 1+C2 C2. 1A1+C2 | Vread. From: = O(1A1)
> elementar op. Crows

Directed trees

A directed tree is a directed graph T = (V, A) with |A| = |V| - 1 and there exists a node $f \in T$ such that there exists a path from f to all other nodes of f.

Paths and Cycles

- Maximum cardinality bipartite matchings
- Augmenting paths
- ▶ An $O(m \cdot n)$ algorithm

Exposed and matched nodes

Let G = (V, E) be an <u>undirected bipartite</u> graph. We are interested in a matching of max. cardinality.

Let $M \subseteq E$ be a matching.

- A vertex that is an endpoint of an edge in M is matched.
- A non-matched vertex is exposed

Alternating paths

An alternating path with respect to a matching M is a path that alternates between edges in M and edges in $E \setminus M$.

Augmenting paths

An alternating path that starts and ends at exposed nodes is a augmenting path.

Augmenting paths

An alternating path that starts and ends at exposed nodes is a augmenting path.

A criterion for maximal cardinality

Theorem

A matching M of a (not necessarily bipartite) graph is of maximum cardinality if and only if there are no augmenting paths with respect to M.

$$H' = M \setminus (E(P) \cap H) \cup (E(P) \setminus H) = M \triangle E(P)$$

$$= (\pi \cup E(P)) \setminus (\pi \cap E(P))$$

$$\exists \pi \cap E(P)$$

A criterion for maximal cardinality

Theorem

A matching M of a (not necessarily bipartite) graph is of maximum cardinality if and only if there are no augmenting paths with respect to M.

A criterion for maximal cardinality

Theorem

A matching M of a (not necessarily bipartite) graph is of maximum cardinality if and only if there are no augmenting paths with respect to M.

Computing augmenting paths

- ► Turn G = (A + B, E) into a directed graph D = (V, A) as follows.
- Direct an edge in the matching from A to B.
- ▶ Direct an edge in $E \setminus M$ from B to A.
- Find a path in this directed graph between two exposed nodes.

Quiz: Such a path starts with an exposed node in

and ends in an exposed

node in

Type A or B at appropriate place.

Computing augmenting paths (cont.)

Theorem

There exists an augmenting path in G for M if and only if there exists a path from an exposed node in B to an exposed node in A in the directed graph D.

Algorithm for max. cardinality bipartite matching

d(11)

Assumption: G has no isolated vertices $(\Rightarrow |E| \ge |V|/2)$.

Theorem

A maximum cardinality matching in a bipartite graph G = (V, E) can be computed in time $O(|V| \cdot |E|)$

Paths and Cycles

- Weighted directed graphs
- Shortest paths
- Bellman-Ford Algorithm

Weighted directed graphs

Let D = (V, A) be a directed graph (without self loops). Let $\ell : A \to \mathbb{R}$ be the *lengths* of the arcs. The *length* of a walk $W = v_0, \ldots, v_k$ is the sum of the lengths of its arcs:

$$\ell(W) = \sum_{i=1}^{k} \ell(v_{i-1}, v_i).$$

The *distance* between two nodes s and t is the length of a *shortest path* from s to t.

Shortest path problem

The shortest path problem (single source)

Given a directed graph with edge lengths and a designated node s, compute d(s, v) for each $v \in V$.

- Is NP-complete in general.
- Can be solved in polynomial time, if there are negative cycles.

A *cycle* is a walk v_0, v_1, \ldots, v_k with $v_0 = v_k$.

$$\ell(C) = \sum_{i=0}^{k-1} \ell(U_i, U_{i,n})$$

The Bellman-Ford method

A method to compute minimum length walks.

Given: D = (V, A) (no self-loops), $\ell : A \to \mathbb{R}$ and designated node $s \in V$

Goal: Compute shortest path distances form s to all other nodes

Assumption: Each node is reachable from s

The Bellman-Ford method (cont.)

For $k \ge 0$ and $t \in V$:

 $d_k(t) = \text{minimum length of any } s - t \text{ walk, traversing at most } k \text{ arcs. (possibly } \infty)$

Suppose $d_i(t)$ is known for each $i \le k$ and each $t \in V$.

Now: Compute $d_{k+1}(t)$: for each $t \in V$.

Case 1: The shortest walk traversing at most k + 1 arcs traverses exactly k + 1 arcs.

Case 2: The shortest walk traversing at most k + 1 arcs traverses at most k arcs.

The Bellman-Ford method (cont.)

$$d_o(s) = 0$$
, $d_0(t) = \infty$, $t \neq s$

$$k \ge 0, t \in V : d_{k+1}(t) = \min\{d_k(t), \min_{(u,t) \in A}\{d_k(u) + \ell(u,t)\}.$$

Procedure to compute the values $d_{k+1}(t)$ assuming values $d_k(t)$ are pre-computed:

for each $t \in V$:

$$d_{k+1}(t) := \underline{d_k(t)}$$

for each $(u, t) \in A$

if:
$$d_k(u) + \ell(u, t) < d_{k+1}(t)$$

 $d_{k+1}(t) := d_k(u) + \ell(u, t)$

Valid upper bounds for dun(t)

Negative cycles

Theorem

Given D = (V, A), $s \in V$, $\ell : A \to \mathbb{R}$, one has $d_n = d_{n-1}$ for n = |V| iff D does not have a cycle of negative length that is reachable from s.

Proof: => Suppose
$$U_0, U_1, U_2,$$
 U_n, U_0 is a cycle macheble from S

$$\frac{d_{n_n}(u_i) < \infty}{d_n(u_{in}) + l(u_i, u_{in})} = \frac{d_{n_n}(u_i)}{d_n(u_i)}$$

$$\frac{d_n(u_{in}) - d_n(u_i)}{d_n(u_i)} = \frac{d_{n_n}(u_i)}{d_n(u_i)}$$

$$\frac{d_n(u_i, u_{in}) - d_n(u_i)}{d_n(u_i)} = \frac{d_n(u_i)}{d_n(u_i)}$$

Negative cycles

Theorem

Given D = (V, A), $s \in V$, $\ell : A \to \mathbb{R}$, one has $d_n = d_{n-1}$ for n = |V| iff D does not have a cycle of negative length that is reachable from s.

=" Suppose dn(t) < dn- (t) = t is reachable from s <00 Wa S=Wo, Wa, ..., Wi, Winn, ... Wn = t Wi, Win, ... , Wj

length of shortest s-t well using exactly n arcs is < longth of any s-t walk using n-1 aves

Negative cycles

Theorem

Given D = (V, A), $s \in V$, $\ell : A \to \mathbb{R}$, one has $d_n = d_{n-1}$ for $n \ge |V|$ iff D does not have a cycle of negative length that is reachable from s.

$$\begin{array}{lll}
\mathcal{J}_{1} & S=W_{0}, W_{1}, \dots, W_{i}, \dots, W_{n}=t \\
\mathcal{J}_{2} & S=W_{0}, W_{1}, \dots, W_{i}, \dots, W_{n}=t \\
\mathcal{C} & W_{i}, W_{i+1}, \dots, W_{j}, \dots, W_{n}=t \\
\mathcal{C} & W_{i}, W_{i+1}, \dots, W_{j}, \dots, W_{n}=t \\
\mathcal{C} & W_{i}, W_{i+1}, \dots, W_{j}, \dots, W_{n}=t \\
\mathcal{C} & W_{i}, W_{i+1}, \dots, W_{j}, \dots, W_{n}=t \\
\mathcal{C} & W_{i}, W_{i+1}, \dots, W_{j}, \dots, W_{n}=t \\
\mathcal{C} & W_{i}, W_{i+1}, \dots, W_{j}, \dots, W_{n}=t \\
\mathcal{C} & W_{i}, W_{i+1}, \dots, W_{j}, \dots, W_{n}=t \\
\mathcal{C} & W_{i}, W_{i+1}, \dots, W_{j}, \dots, W_{n}=t \\
\mathcal{C} & W_{i}, W_{i+1}, \dots, W_{j}, \dots, W_{n}=t \\
\mathcal{C} & W_{i}, W_{i+1}, \dots, W_{j}, \dots, W_{n}=t \\
\mathcal{C} & W_{i}, W_{i+1}, \dots, W_{j}, \dots, W_{n}=t \\
\mathcal{C} & W_{i}, W_{i+1}, \dots, W_{j}, \dots, W_{n}=t \\
\mathcal{C} & W_{i}, W_{i+1}, \dots, W_{j}, \dots, W_{n}=t \\
\mathcal{C} & W_{i}, W_{i+1}, \dots, W_{j}, \dots, W_{n}=t \\
\mathcal{C} & W_{i}, W_{i+1}, \dots, W_{j}, \dots, W_{n}=t \\
\mathcal{C} & W_{i}, W_{i+1}, \dots, W_{j}, \dots, W_{n}=t \\
\mathcal{C} & W_{i}, W_{i+1}, \dots, W_{j}, \dots, W_{n}=t \\
\mathcal{C} & W_{i}, W_{i+1}, \dots, W_{n}=t \\
\mathcal{C} & W_{i}, W_{i}, \dots, W_{n}=t \\
\mathcal{$$

Shortest paths

Theorem

Given D = (V, A), $s \in V$, $\ell : A \to \mathbb{R}$, and suppose that no negative cycle is reachable from s. Then for each $t \in V$ $d_{n-1}(t)$ is the distance between s and t.

Let W be a shortest wolk from s to Lusing at most n-1 arcs and with a minimal number of arcs.

 $e(W) < e(W_2)$. = $e(W_2) + e(G)$

Computing shortest paths

Compute the values $d_{k+1}(t)$ and the predecessor $\underline{\pi_{k+1}}(t)$ assuming values $d_k(t)$ and $\underline{\pi_k}(t)$ have been pre-computed:

for each
$$t \in V$$
:
 $d_{k+1}(t) := d_k(t)$
 $\pi_{k+1}(t) := \pi_k(t)$

for each
$$(u, t) \in A$$

if: $d_k(u) + \ell(u, t) < d_{k+1}(t)$
 $d_{k+1}(t) := d_k(u) + \ell(u, t)$
 $\pi_{k+1}(t) := \bigcup$

The shortest path tree

Theorem

No mg. osche!

Let D = (V, A) be a directed graph and suppose that each node is reachable from s. The directed graph T = (V, A') with $A' = \{(\pi(u), u) : u \in V \setminus \{s\}\}$ is a directed tree with root s. The unique path from s to any vertex t in T is a shortest path from s to t in t.

Running time of Bellman-Ford

initialize
$$\forall t \in V \setminus \{s\}, d_o(t) = \infty, \ \pi_0(t) = 0 \\ d_0(s) = 0 \\ \text{for } k = 1 \text{ to } n \\ \text{for each } t \in V: \\ d_{k+1}(t) := d_k(t) \\ \pi_{k+1}(t) := \pi_k(t) \\ \text{if: } d_k(u) + \ell(u,t) < d_{k+1}(t) \\ d_{k+1}(t) := d_k(u) + \ell(u,t) \\ \text{of } t \in V \text{ with } d_n(t) < d_{n-1}(t) \\ D \text{ has negative cycle}$$

Paths and Cycles

Shortest paths and linear programming

Potentials

Let D = (V, A) be a directed graph with arc-lengths $\ell : A \to \mathbb{R}$. A function $p : V \to \mathbb{R}$ is

Existence of potentials

Theorem

D=(V,A) with $\ell:A\to\mathbb{R}$ has a potential p if and only if each directed cycle is of non-negative length.

$$\ell(C) = \sum_{i=1}^{\infty} \ell(a_i)$$

$$\geq p(u_i) - p(u_{in})$$
mod &

Computing distances with linear programming

Theorem

Let D = (V, A) be a directed graph with arc-lengths $\ell : A \to \mathbb{R}$, $s \in V$ such that each vertex in V is reachable from s and suppose that each directed cycle is non-negative. Let p be a potential with p(s) = 0 and $\sum_{v \in V} p(v)$ maximal. Then

$$\forall t \in V: \ p(t) = \mathrm{dist}_{\ell}(s,t).$$

proof: Shortest path distances are a potential

(S)—,
$$(U_1)$$
— (U_2) —, (U_3)
 (U_4) $\leq l(S_1U_4)$
 (U_4) $\leq l(U_1)$ (U_4) $+ p(U_4)$ $\leq l(U_4)$ U_2) $+ l(S_1U_4)$
 (U_4) $\leq l(U_1)$ $+ p(U_4)$ $\leq l(U_4)$ $+ p(U_4)$ $+ p(U_$

