Olimpiada de matematică, etapa județeană și a municipiului București, 12 Martie 2011

Barem de corectare, clasa a X-a

Problema 1. Fie a, b, c numere reale strict pozitive. Arătați că ecuația $a^x + b^x = c^x$ are cel mult o soluție.

Gazeta Matematică

2p

1p

Soluție. Ecuația se reduce la $f(x) := \left(\frac{a}{c}\right)^x + \left(\frac{b}{c}\right)^x = 1$.

Dacă una dintre fracțiile precedente este ≥ 1 și cealaltă este ≤ 1 , atunci ecuația nu are nici soluții pozitive, nici soluții negative.

Dacă a > c și b > c, sau dacă a < c și b < c, atunci funcția f este strict monotonă, deci ecuația f(x) = 1 are cel mult o soluție.

Problema 2. a) Arătați că, dacă z_1, z_2, z_3, z_4 sunt numere complexe distincte, cu modulele egale și cu suma nulă, atunci patrulaterul cu vârfurile de afixe z_1, z_2, z_3, z_4 este dreptunghi.

b) Arătaţi că, dacă numerele reale x, y, z, t îndeplinesc relaţiile $\sin x + \sin y + \sin z + \sin t = 0$ şi $\cos x + \cos y + \cos z + \cos t = 0$, atunci pentru orice număr întreg n,

$$\sin(2n+1)x + \sin(2n+1)y + \sin(2n+1)z + \sin(2n+1)t = 0.$$

Soluție. a) Din ipoteză, $\sum \bar{z}_1 = 0$ și numerele nu sunt nule, deci $\sum \frac{1}{z_1} = 0$ (1). **2p** Dacă $z_1 + z_2 \neq 0$, ipoteza și relația (1) duc la $z_1 + z_2 = -z_3 + z_4$ și $z_1 z_2 = z_3 z_4$, ceea ce implică $\{z_1, z_2\} = \{-z_3, -z_4\}$, iar dacă $z_1 + z_2 = 0$, atunci $z_3 + z_4 = 0$; în ambele cazuri, numerele z_1, z_2, z_3, z_4 sunt două câte două opuse, de unde concluzia. **2p**

b) Dacă $z_1 = \cos x + i \sin x$ și analoagele, atunci $\sum z_1 = 0$.

De asemenea, $|z_1| = |z_2| = |z_3| = |z_4| = 1$.

Din a), z_1, z_2, z_3, z_4 sunt opuse două câte două, de unde reiese imediat cerința. **1p**

Problema 3. Fie a,b două numere complexe. Arătați că următoarele afirmații sunt echivalente:

 A_1) Modulele rădăcinilor complexe ale ecuației $x^2 - ax + b = 0$ sunt respectiv egale cu modulele rădăcinilor ecuației $x^2 - bx + a = 0$.

A₂) $a^3 = b^3 \text{ sau } b = \bar{a}$.

Soluție. Dacă $|x_1| = |x_3|, |x_2| = |x_4|$ (1), atunci $|a| = |x_3x_4| = |x_1x_2| = |b|$.

Deducem $|x_1 + x_2| = |x_3 + x_4|$ (2). Din (1) şi (2) reiese că există $k \in \mathbb{C}$ astfel încât $x_2 = kx_1, x_4 = kx_3$ sau există $k \in \mathbb{C}$ astfel încât $x_2 = kx_1, x_4 = \overline{k}x_3$.

În primul caz avem $a = kx_3^2 = (1+k)x_1$ și $b = kx_1^2 = (1+k)x_3$, ceea ce implică $a^3 = k(1+k)^2x_1^2x_3^2 = b^3$.

În al doilea caz avem $a = \overline{k}x_3^2 = (1+k)x_1$ şi $b = kx_1^2 = (1+\overline{k})x_3$, de unde $x_1^2\overline{x}_1 = x_3\overline{x}_3^2$, deci $x_1 = \overline{x}_3$ sau a = b = 0, apoi $x_2 = \overline{x}_4$, deci $a = \overline{b}$.

Reciproc, dacă $b = \overline{a}$, atunci $x_1 + x_2 = \overline{x}_3 + \overline{x}_4$, $x_1x_2 = \overline{x}_3\overline{x}_4$, ceea ce arată că $\{x_1, x_2\} = \{\overline{x}_3, \overline{x}_4\}$, iar dacă $a^3 = b^3$, atunci $a = \varepsilon b$, $\varepsilon^3 = 1$ și rădăcinile verifică relațiile $x_1 + x_2 = \varepsilon(x_3 + x_4)$, $x_1x_2 = \varepsilon^2 x_3 x_4$; în ambele cazuri, $\{|x_1|, |x_2|\} = \{|x_3|, |x_4|\}$. **2p**

Problema 4. a) Arătați că, dacă a, b > 1 sunt numere reale distincte, atunci $\log_a(\log_a b) > \log_b(\log_a b)$.

b) Arătați că, dacă $n \in \mathbb{N}, n \ge 2$ şi $a_1 > a_2 > \ldots > a_n > 1$ sunt numere reale, atunci $\log_{a_1}(\log_{a_1} a_2) + \log_{a_2}(\log_{a_2} a_3) + \ldots + \log_{a_{n-1}}(\log_{a_{n-1}} a_n) + \log_{a_n}(\log_{a_n} a_1) > 0$.

$$\begin{split} \log_{a_1}(\log_{a_1}a_2) + \log_{a_2}(\log_{a_2}a_3) + \ldots + \log_{a_{n-1}}(\log_{a_{n-1}}a_n) + \log_{a_n}(\log_{a_n}a_1) &> 0. \\ Soluţie. \ a) \ \mathrm{Dacă} \ a &< b \ \mathrm{atunci} \ \log_a(\log_a b) = (\log_a b)(\log_b(\log_a b)) &> \log_b(\log_a b) \ \mathrm{pentru} \\ \mathrm{c\check{a}} \ \log_b(\log_a b) &> 0 \ \mathrm{s\check{i}} \ \log_a b &> 1. \end{split}$$

Dacă a > b, atunci concluzia reiese din $\log_b(\log_a b) < 0$ și $\log_a b < 1$.

b) Raţionăm inductiv. Pentru n=2,

$$\log_{a_1}(\log_{a_1} a_2) + \log_{a_2}(\log_{a_2} a_1) > \log_{a_2}(\log_{a_1} a_2) + \log_{a_2}(\log_{a_2} a_1) = \log_{a_2} 1 = 0.$$
 1p Pentru pasul de inducție: dacă $a_1 > a_2 > \ldots > a_{n+1} > 1$, atunci

$$\log_{a_1}(\log_{a_1} a_2) + \log_{a_2}(\log_{a_2} a_3) + \dots + \log_{a_n}(\log_{a_n} a_{n+1}) + \log_{a_{n+1}}(\log_{a_{n+1}} a_1) =$$

$$= \log_{a_1}(\log_{a_1} a_2) + \dots + \log_{a_{n-1}}(\log_{a_{n-1}} a_n) + \log_{a_n}(\log_{a_n} a_1) + \log_{a_n}(\log_{a_n} a_{n+1}) +$$

$$+ \log_{a_{n+1}}(\log_{a_{n+1}} a_1) - \log_{a_n}(\log_{a_n} a_1) >$$

$$> \log_{a_{n+1}}(\log_{a_n} a_{n+1}) + \log_{a_{n+1}}(\log_{a_{n+1}} a_1) - \log_{a_n}(\log_{a_n} a_1) =$$

$$= \log_{a_{n+1}}(\log_{a_n} a_1) - \log_{a_n}(\log_{a_n} a_1) > 0,$$

deoarece $\log_{a_n} a_1 > 0$ şi $a_{n+1} < a_n$.

2p