>>> Spectral Unmixing >>> GRSS Summer School

Name: Mathieu Fauvel (UMR Dynafor)

Date: [2017-04-26 Wed 13:30]-[2017-04-26 Wed 16:30]

1. Motivations

2. Spectral mixture models

Linear models

Non linear model

3. Subspace and Endmember extraction

Subspace extraction
Endmember extraction
Endmember extraction in action

4. Linear unmixing

Abundance estimation
Advanced abundance estimation

5. References

[~]\$ _

1. Motivations

2. Spectral mixture mode

Non linear models

3. Subspace and Endmember extraction

Subspace extraction
Endmember extraction
Endmember extraction in action

4. Linear unmixing

Abundance estimation
Advanced abundance estimation

>>> Spectral mixing

- * When a pixel contains several materials: all these materials contribute to the collected reflectance [MLC16]
- * It is called a *mixel* or *mixed spectra* and pure contributions are termed *endmembers*

>>> Applications

- ★ Conventional mapping applications [Bio+12]:
 - ★ Mineral proportions
 - ⋆ Vegetation covers
- * Multisource fusion:
 - ★ Sources of various spatial resolution
 - * Sources of various spectral resolution
- ⋆ Misc:
 - * Post-improvement of classification maps
 - * Clouds reconstruction of multi-temporal HI

[1. Motivations]\$ _ [6/43]

>>> Unmixing processing chain

- 1. Athmospheric correction
- 2. Dimensionality reduction
- 3. Find endmembers
 - * Hyperspectral library
 - * Unsupervised
- 4. Find abundances

>>> Outline

1. Motivation

2. Spectral mixture models

Linear models Non linear model

Subspace and Endmember extraction

Subspace extraction
Endmember extraction
Endmember extraction in action

4. Linear unmixing

Abundance estimation
Advanced abundance estimation

1. Motivations

2. Spectral mixture models

Linear models

Non linear mode

3. Subspace and Endmember extraction

Subspace extraction

Endmember extraction

Endmember extraction in action

4. Linear unmixing

Abundance estimation

Advanced abundance estimation

* Each pixel is a convex linear combination of endmenbers (pure spectra):

$$\mathbf{x} = \sum_{j=1}^{p} \alpha_j \mathbf{m}_j + \mathbf{e}$$

- \star \mathbf{m}_j is the j^{th} endmember,
- $\star \ \alpha_j$ is the abundance of endmember j,
- * e is the modelling error.
- * The abundances are subject to the following constraints:
 - ★ Non negativity: $\alpha_j \ge 0, \forall j = 1, \ldots, p$
 - * Sum to one: $\sum_{j=1}^{p} \alpha_j = 1$.
- * Matricial formulation:

$$x = M\alpha + e$$

where
$$\mathbf{M} = \left[\mathbf{m}_1, \dots, \mathbf{m}_p\right]$$
.

- \star If endmembers are affinely independent, hyperspectral pixels live in the convex hull C generated by the endmembers
- * $C := \left\{ \mathbf{x} = \mathbf{M} \boldsymbol{\alpha} | \sum_{j=1}^{p} \alpha_j = 1, \ \alpha_j \ge 0, \forall j = 1, \dots, p \right\}$

1. Motivations

2. Spectral mixture models

Linear models

Non linear model

3. Subspace and Endmember extraction

Subspace extraction

Endmember extraction

Endmember extraction in action

4. Linear unmixing

Abundance estimation

Advanced abundance estimation

★ Consider multiple reflections [HPG14]

★ The model

$$\mathbf{x} = \sum_{j=1}^{p} \alpha_j \mathbf{m}_j + \sum_{j,k=1}^{p} \beta_{j,k} \mathbf{m}_j \odot \mathbf{m}_j$$

 \star Several possible constraints on α and β

>>> Other models

- ⋆ Physics based model: Intimate mixture (e.g., Hapke model)
- ⋆ Computer graphics: ray tracing
- ★ Kernel methods:
 - ★ "kernelized" linear models
 - ★ Construct "smart" kernels

[2. Spectral mixture models]\$ _ [14/43]

>>> Outline

1. Motivation

2. Spectral mixture model

Non linear models

3. Subspace and Endmember extraction

Subspace extraction
Endmember extraction
Endmember extraction in action

4. Linear unmixing

Abundance estimation
Advanced abundance estimation

>>> Outline

1. Motivations

2. Spectral mixture models

Non linear models

3. Subspace and Endmember extraction

Subspace extraction

Endmember extraction

Endmember extraction in action

4. Linear unmixing

Abundance estimation
Advanced abundance estimation

>>> Conventional methods

Find the subspace signal in order to search the endmembers:

- * Principal component analysis: find the subspace that minimizes reconstruction error
- * Minimum noise fraction: find the subspace that maximizes the SNR
- ★ HySime (hyperspectral subspace identification)
 - * Estimation of the signal and noise subspaces
 - * Find the subpace that best represents the signal subspace

>>> Outline

1. Motivations

2. Spectral mixture models

Non linear models

3. Subspace and Endmember extraction

Subspace extraction

Endmember extraction

Endmember extraction in action

4. Linear unmixing

Abundance estimation
Advanced abundance estimation

>>> Pixel Purity Index [BKG95]

- 1. Apply MNF
- 2. Project pixels onto random vector and find extreme projected pixels and store them
- 3. Pixels with the highest score are identified as the *purest one*

>>> N-FINDR [Win99]

- \star Assumes pure pixels are present
- ★ Find the pixels that maximizes the volume of the simplex

>>> Vertex component analysis [ND05]

- * Iteratively project pixels on *orthogonal direction* to the subspace spanned by previously selected endmembers
- ★ New endmember correpond to the extreme of the projection
- * Works similarly to *orthogonal subspace projection* but accounting for the noise

>>> Outline

1. Motivations

2. Spectral mixture models

Non linear models

3. Subspace and Endmember extraction

Endmember extraction
Endmember extraction in action

4. Linear unmixing

Abundance estimation
Advanced abundance estimation

>>> Outline

1. Motivation

2. Spectral mixture model

Non linear models

Subspace and Endmember extraction

Subspace extraction
Endmember extraction in action

4. Linear unmixing

Abundance estimation Advanced abundance estimation

5. References

[4. Linear unmixing]\$ _ [25/43]

1. Motivations

2. Spectral mixture models

Non linear models

3. Subspace and Endmember extraction

Subspace extraction
Endmember extraction
Endmember extraction in action

4. Linear unmixing

Abundance estimation
Advanced abundance estimation

 \star One the endmembers are estimated, abundances can be estimated by minimizing a reconstruction error Re:

$$\hat{\boldsymbol{\alpha}} = \min_{\boldsymbol{\alpha}} \left\{ Re(\mathbf{x}, \mathbf{M}\boldsymbol{\alpha}) \right\}$$

 \star Conventionally Re is chosen as the mean square square error:

$$\hat{\boldsymbol{\alpha}} = \min_{\boldsymbol{\alpha}} \|\mathbf{x} - \mathbf{M}\boldsymbol{\alpha}\|^2$$

★ Without any constraint the solution is given by

$$\hat{\boldsymbol{\alpha}} = (\mathbf{M}^{\top}\mathbf{M})^{-1}\mathbf{M}^{\top}\mathbf{x}$$

★ Positive constraints:

$$\hat{m{lpha}} = \min_{m{lpha}} \| \mathbf{x} - \mathbf{M} m{lpha} \|^2$$
 Subject to $lpha_j \geq 0, orall j = 1, \dots, p$

★ Full set of constraints

$$\hat{\pmb{\alpha}} = \min_{\pmb{\alpha}} \| \mathbf{x} - \mathbf{M} \pmb{\alpha} \|^2$$
 Subject to $\sum_{j=1}^p \alpha_j = 1, \alpha_j \geq 0, \forall j=1,\dots,p$

- * Not explicit solution! Needs to optimize a quadratic function under convex constraints.
- * This is known as non negative least squares unmixing or fully constraints least square unmixing
- * Easy trick: use only positive constraints that add manually the sum to one constraint!

[4. Linear unmixing]\$ _ [28/43]

>>> NNLS

```
from scipy import optimize
import scipy as sp

# Load endmembers
M = sp.loadtxt(".../Unmixing/figures/endmembers.csv",delimiter=',')[:,1:]
x = 0.2*M[:,0] + 0.7*M[:,1] + 0.1*M[:,2]

# NNLS
res = optimize.nnls(M,x)
print res[0]

[ 0.2  0.7  0.1]
```

[4. Linear unmixing]\$ _ [29/43]

```
>>> FCLS 1/2
from scipy import optimize
import scipy as sp
# Loss
def loss(alpha,x,M):
    e = x-sp.dot(M,alpha)
    return (e**2).sum()
def jac(alpha,x,M):
    e = x-sp.dot(M,alpha)
    return -2*sp.dot(M.T,e)
cons = {'type':'eq','fun':lambda alpha: 1-alpha.sum(),'jac':lambda alpha: -alpha}
bnds = ((0, None), (0, None), (0, None,))
# Load endmembers
M = sp.loadtxt("../Unmixing/figures/endmembers.csv",delimiter=',')[:,1:]
x = 0.2*M[:.0] + 0.7*M[:.1] + 0.1*M[:.2]
# Optimize
alpha0 = sp.ones((3,))/3.0
res = optimize.minimize(loss, alpha0, args=(x,M,), jac=jac,constraints=cons, method='SLSQP',
                        bounds=bnds.)
print res['x']
[ 0.16441937  0.67116125  0.16441937]
```

[4. Linear unmixing]\$ _ [30/43]

[4. Linear unmixing]\$ _


```
import scipy as sp
import rasterTools as rt
import pysptools.eea as eea
# Number of endmembers
NE = 3
# Load images
im,GeoT,Proj = rt.open_data('../Data/Moffett_full.tif')
 [h,w,b]=im.shape
wave = sp.loadtxt('../Data/wave_moffett.csv',delimiter=',')
# Compute endmenbers
nfindr = eea.NFINDR()
M = nfindr.extract(im.astype(float), NE, normalize=False).T
abundances = sp.empty((h,w,NE))
for h in xrange(h):
    for w_ in xrange(w):
        x = im[h, w,:]
        res = optimize.nnls(M,x)
        a = res[0]
         abundances[h ,w ,:] = (a/a.sum())
# Write the image
rt.write_data("../Data/Moffett_abundances.tif",abundances,GeoT,Proj)
[4. Linear unmixing]$
```

>>> Abundance maps 1/4
from scipy import optimize

[4. Linear unmixing]\$ _ [34/43]

[4. Linear unmixing]\$ _ [35/43]

1. Motivations

2. Spectral mixture models

Non linear models

3. Subspace and Endmember extraction

Subspace extraction
Endmember extraction
Endmember extraction in action

4. Linear unmixing

Abundance estimation

Advanced abundance estimation

- * When the number of endmembers are large (e.g. selected from spectral library), the observed spectral vector is usually a combination of few ones.
- * Add *sparsity* constraints in the optimization problem such as

$$\min_{\boldsymbol{\alpha}} \|\boldsymbol{\alpha}\|_0$$

Subject to
$$\|\mathbf{x} - \mathbf{M}\boldsymbol{\alpha}\|^2 \le \delta, \alpha_j \ge 0, \forall j = 1, \dots, p$$

- * However, this problem is NP-hard: no straightforward solution
- ★ Use convex formulation from sparse regression (LASSO):

$$\min_{\alpha} \|\mathbf{x} - \mathbf{M}\alpha\|^2 + \lambda \|\alpha\|_1$$

Subject to $\alpha_i \geq 0, \forall j = 1, \dots, p$

[4. Linear unmixing]\$ __ [37/43]

- ★ Add spatial constraints during the optimization
- \star Total variation [IBP12]: measure the spatial variation of abundances for neighboring pixels

$$TV(\alpha_i) = \sum_{j \in \mathcal{N}_i} \|\alpha_i - \alpha_j\|_1$$

★ Global optimization rather than pixel wise optimization:

$$\sum_{i=1}^{n} \|\mathbf{x}_i - \mathbf{M}\boldsymbol{\alpha}_i\|^2 + \lambda \sum_{i=1}^{n} \|\boldsymbol{\alpha}_i\|_1 + \lambda_{TV} \sum_{i=1}^{n} TV(\boldsymbol{\alpha}_i)$$
Subject to $\alpha_{i,j} \ge 0, \forall j = 1, \dots, p$ and $i = 1, \dots, n$

[4. Linear unmixing]\$ _ [38/43]

* Likelihood formulation

$$f(\mathbf{x}_i|\mathbf{M}, \boldsymbol{\alpha}_i, \sigma^2) = \left(\frac{1}{2\pi\sigma^2}\right)^{d/2} \exp\left(-\frac{\|\mathbf{x}_i - \mathbf{M}\boldsymbol{\alpha}_i\|^2}{2\sigma^2}\right)$$

- ★ Conjoint estimation of endmembers and abundances [Dob+09]
- ★ Rely in MCMC algorithm
 - ⋆ Long processing time
 - * Provide usually better results than geometric methods in critical situation (no pure pixels...)
- ⋆ Possible to add spatial dependencies [EDT11]

1. Motivation

2. Spectral mixture model

Non linear models

3. Subspace and Endmember extraction

Subspace extraction
Endmember extraction
Endmember extraction in action

4. Linear unmixing

Abundance estimation
Advanced abundance estimation

- Bioucas-Dias, J. M. et al. "Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches". In: *IEEE J. Sel. Topics Appl. Earth Observations Remote Sensing* 5.2 (Apr. 2012), pp. 354–379.
- Boardman, Joseph W., Fred A. Kruse, and Robert O. Green. *Mapping Target Signatures via Partial Unmixing of AVIRIS data*. 1995.

 Dobigeon N. et al. "Joint Bayesian endmember extraction and linear unmixing for hyperspectral imagery."
- Dobigeon, N. et al. "Joint Bayesian endmember extraction and linear unmixing for hyperspectral imagery". In: *IEEE Trans. Signal Processing* 57.11 (Nov. 2009), pp. 4355–4368.
- Eches, O., N. Dobigeon, and J.-Y. Tourneret. "Enhancing hyperspectral image unmixing with spatial correlations". In: *IEEE Trans. Geoscience and Remote Sensing* 49.11 (Nov. 2011), pp. 4239–4247.
- Heylen, R., M. Parente, and P. Gader. "A Review of Nonlinear Hyperspectral Unmixing Methods". In: *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing* 7.6 (June 2014), pp. 1844–1868. ISSN: 1939-1404. DOI: 10.1109/JSTARS.2014.2320576.
- lordache, Marian-Daniel, José M. Bioucas-Dias, and Antonio Plaza. "Total Variation Spatial Regularization for Sparse Hyperspectral Unmixing". In: *IEEE Trans. Geoscience and Remote Sensing* 50.11 (2012), pp. 4484–4502. DOI: 10.1109/TGRS.2012.2191590. URL:
 - http://dx.doi.org/10.1109/TGRS.2012.2191590.

[6. References]\$ _

>>> Bibliography II

Manolakis, D., R. Lockwood, and T. Cooley. *Hyperspectral Imaging Remote Sensing: Physics, Sensors, and Algorithms*. Cambridge University Press, 2016. ISBN: 9781316033401. URL:

https://books.google.fr/books?id=Zeg8DQAAQBAJ.

Nascimento, J. M. P. and J. M. B. Dias. "Vertex component analysis: a fast algorithm to unmix hyperspectral data". In: *IEEE Transactions on Geoscience and Remote Sensing* 43.4 (Apr. 2005), pp. 898–910. ISSN: 0196-2892. DOI: 10.1109/TGRS.2005.844293.

Winter, M. E. "N-FINDR: An algorithm for fast autonomous spectral endmember determination in hyperspectral data". In: *Image Spectrometry*. Vol. 3753. V. SPIE, 1999.

[6. References]\$ _ [42/43]

Creative Commons Attribution-ShareAlike 4.0 Unported License

