WHAT IS CLAIMED IS:

1	1 A method for converting serial data to paral	llel data, the method			
2	2 comprising:				
3	3 serially loading bits of data into a first register in re	esponse to a first periodic			
4 .	4 signal;				
5	5 parallel loading bytes of the data from the first regi	ster into a second register in			
6	response to a second periodic signal; and	to a second periodic signal; and			
7	7 changing boundaries between the data bytes in resp	changing boundaries between the data bytes in response to a third signal.			
1	1 2. The method of claim 1 wherein changing the	e boundaries between the data			
2	bytes in response to a the third signal further comprises changing	in response to a the third signal further comprises changing the phase of the second			
3	periodic signal in response to the third signal, wherein the change in the phase of the second				
4	periodic signal causes one of the bits of the data stored in the first register to be discarded.				
1	1 3. The method of claim 1 further comprising:				
2	parallel loading the data bytes from the second reg	ister into a third register.			
1	1 4. The method of claim 3 further comprising:				
2	generating fourth and fifth periodic signals, wherei	generating fourth and fifth periodic signals, wherein the third register			
3	3 synchronizes the data bytes to the fourth periodic signal in respon	ynchronizes the data bytes to the fourth periodic signal in response to the fifth periodic signal,			
4	and wherein the fourth periodic signal is used as a clock signal by core circuitry that receives the				
5	5 data from the third register.				
1	The method of claim 3 further comprising:	•			
2	parallel loading the data bytes from the third register into core circuitry of a				
3	3 programmable logic device.				
1	1 6. The method of claim 1 further comprising:				
2	generating the first periodic signal using a phase lock loop; and				
3	providing the first periodic signal to an input of a f	irst counter, wherein the first			
4	counter generates the second periodic signal.				
1	The method of claim 6 further comprising:				

2	parallel loading the data bytes from the second register into a third register; and			
3	providing the first clock signal to an input of a second counter, wherein the			
4	second counter generates a fourth periodic signal that controls when the data bytes are loaded			
5	into the third register.			
1 ·	8. The method of claim 1 further comprising:			
2	disabling the third signal to prevent the boundaries between the data bytes from			
3	changing.			
1	9. The method of claim 1 wherein changing the boundaries between the data			
2	bytes in response to the third signal further comprises realigning a data boundary between bytes			
3	of the data bytes by one bit in response to the second periodic signal.			
1	10. The method of claim 9 wherein changing the boundaries between the data			
2	bytes in response to the third signal further comprises realigning a data boundary between bytes			
3	of the data bytes by two bits in response to the second periodic signal.			
1	11. A serial-to-parallel data conversion circuit comprising:			
2	a first register coupled to receive serial data;			
3	a second register coupled to receive parallel data bytes from the first register; and			
4	a first counter circuit providing a first periodic signal that controls when the			
5	parallel data bytes are transferred from the first register to the second register, the first periodic			
6	signal causing boundaries between the parallel data bytes to change in response to a second			
7	signal.			
1	12. The serial-to-parallel data conversion circuit of claim 11 further			
2	comprising:			
3	a phase locked loop circuit that provides a third periodic signal to the first and			
4	second registers and to the first counter, wherein data is shifted through the first and second			
5	registers in response to the third periodic signal.			
1	13. The serial-to-parallel data conversion circuit of claim 11 further			
2	comprising.			

3		a third	d register coupled to receive the parallel data bytes from the second register;	
4	and			
5		a second counter circuit providing a third periodic signal that controls when the		
6	parallel data bytes are transferred from the second register into the third register.			
1 ·		14.	The serial-to-parallel data conversion circuit of claim 13 wherein the third	
2	register synch	gister synchronizes the parallel data to a fourth periodic signal generated by the second		
3	counter.			
1		15.	The serial-to-parallel data conversion circuit of claim 13 further	
2	comprising:			
3	a fourth register coupled between the first counter and the second register; and			
4	a fifth register coupled between the second counter and the third register.			
1		16.	The serial-to-parallel data conversion circuit of claim 11 further	
2	comprising:			
3		a third	I register coupled to the first counter, the third register generating the second	
4	signal, wherei	signal, wherein an input of the third register is coupled to receive a fourth signal that blocks the		
5	second signal.			
1		17.	A method for converting serial data to parallel data, the method	
2	comprising:	17.	Trinicinod for converting serial data to paramer data, the method	
	comprising.	1 1'		
3	loading bits of the serial data into a first data storage circuit in response to a first			
4	periodic signal;			
5	,	loadin	ng the bits from the first data storage circuit into a second data storage circuit	
6	as parallel data bytes in response to a second periodic signal, wherein boundaries between the			
7	parallel data bytes are determined by the second periodic signal; and			
8	•	shifting the boundaries between the parallel data bytes in response to a third		
9	signal.		-	
1		18.	The method of claim 17 wherein shifting the boundaries between the	
2	parallel data b	ytes in	response to the third signal further comprises increasing the period of the	
3	second periodic signal in response to the third signal.			

1	19. The method of claim 17 further comprising:				
2	loading the parallel data bytes from the second data storage circuit into a third				
3	data storage circuit; and				
4	generating a fourth periodic signal that controls when the data bytes are loaded				
5 .	into the third data storage circuit.				
1	20. The method of claim 17 further comprising:				
1					
2	generating the first periodic signal using a phase lock loop; and				
3	providing the first periodic signal to an input of a first counter, wherein the first				
4	counter generates the second periodic signal.				
1	21. The method of claim 17 further comprising:				
2	disabling the third signal to prevent the boundary between parallel data bytes from				
3	shifting.				
1	22. A serial-to-parallel data converter comprising:				
2	means for storing bits of serial data in a first storage circuit;				
3	•				
	means for storing the bits as parallel data bytes in a second storage circuit;				
4	means for providing a first periodic signal that controls when the bits are				
5	transferred from the first storage circuit to the second storage circuit; and				
6	means for providing a second signal to the means for providing the first periodic				
7	signal, wherein the first periodic signal causes a boundary between the parallel data bytes to				
8	change by at least one bit in response to the second signal.				
1	23. The serial-to-parallel converter of claim 22 further comprising:				
2	means for storing the parallel data bytes in a third storage circuit; and				
3	means for providing a third periodic signal that controls when the parallel data				
4	bytes are transferred from the second storage circuit to the third storage circuit.				
1	24. The serial-to-parallel converter of claim 22 further comprising:				
2	means for generating a third periodic signal using a phase locked loop, wherein				
3	the third periodic signal is provided to the first and the second storage circuits and to the means				
4	for providing the first periodic signal.				