ФГБОУ ВО "Чувашский государственный университет им. И. Н. Ульянова"

Факультет: ИВТ

Кафедра: Вычислительной техники

Предмет: Структуры и алгоритмы обработки данных

Лабораторная работа № 5. ИСССЛЕДОВАНИЕ МЕТОДОВ СОРТИРОВКИ

Вариант 7

Выполнил: студент группы ИВТ-41-20

Галкин Дмитрий Сергеевич

Проверил:

доцент

Павлов Леонид Александрович

<u>**Цель работы:**</u> Ознакомление с методами сортировки, получение практических навыков программирования задач сортировки, получение навыков экспериментальных исследований алгоритмов.

№ вари анта	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
1	+	+			+	+		+			+	+		+		+	
2	+		+		+		+		+	+			+		+	+	
3		+		+		+	+	+		+			+	+			+
4			+	+			+	+	+		+	+			+		+
5	+	+			+	+	+			+		+			+	+	
6	+		+		+			+	+		+		+		+		+
7		+		+	+	+		+		+			+	+			+
8			+	+	+		+		+		+	+		+		+	
9	+	+				+	+	+		+		+		+			+
10	+		+				+	+	+		+		+		+	+	
11		+		+	+	+	+				+		+	+		+	
12			+	+	+			+	+	+		+			+		+

Номера столбцов соответствуют следующим алгоритмам поиска:

- 1. Простая сортировка вставками.
- 2. Сортировка бинарными вставками.
- 3. Сортировка вставками в связанный список.
- 4. Сортировка Шелла.
- 5. Пузырьковая сортировка.
- 6. Шейкер-сортировка.
- 7. Быстрая сортировка (рекурсивный вариант).
- 8. Быстрая сортировка (итерационный вариант).
- 9. Цифровая обменная сортировка.

10. Простая сортировка выбором.

- 11. Пирамидальная сортировка.
- 12. Сортировка подсчетом (перечислением).
- 13. Сортировка распределяющим подсчетом.
- 14. Сортировка естественным двухпутевым слиянием.
- 15. Сортировка простым двухпутевым слиянием.
- 16. Сортировка слиянием списков для естественного двухпутевого слияния.
- 17. Сортировка слиянием списков для простого двухпутевого слияния.

2. Сортировка бинарными вставками

```
size := arr.length
for i := 1 to i + 1 {
  if arr[i] < arr[i - 1] {
    temp := arr[i];
    j := i - 1;
    // Начало с индекса 0
    low := 0;
    // Конец предыдущего значения
    high := i - 1;
    // Поиск пополам, эффективно сок
    while (low <= high) {
       mid := (low + high) / 2;
       if temp < arr[mid] {</pre>
         high := mid - 1;
       } else {
         low := mid + 1;
       }
       countCompare++;
    }
  }
  for to j - 1 {
    arr[j + 1] := arr[j];
    transport++;
  arr[high + 1] := temp;
  transport++;
}
10. Простая сортировка выбором
n = arr.length
for i := 0 to I + 1 {
  minIndex := min(arr, i, n - 1);
  swap(values, i, minIndex);
  transport++;
}
PROCEDURE min(int[] arr, int begin, int end) {
    minVal := arr[begin];
    minIndex := begin;
    for i := begin + 1 to i + 1 {
       countCompare++;
       if arr[i] < minVal {</pre>
         minVal := arr[i];
         minIndex := i;
       }
    }
```

```
return minIndex;
  }
13. Сортировка распределяющим подсчетом
max := arr[0]
min := arr[0]
for i := 1 to i + 1 {
  if arr[i] < min {
    countCompare++;
    min := arr[i];
  }
  if arr[i] > max {
    countCompare++;
    max := arr[i];
  }
}
contingSort(arr, min, max);
PROCEDURE contingSort(int[] arr, int min, int max) {
  int[] count := new int[max - min + 1] // Массив счетчиков
  // Кол-во раз встречается каждое число
  for i := 0 to i + 1) {
    countCompare++
    count[arr[i] - min]++;
  }
  index := 0
  // Пробегаем по всем счетчикам
  for i := 0 to i + 1) {
    transport++
    for j := 0 to j + 1) {
      arr[index++] := i + min;
      transport++;
    }
  }
}
```

14. Сортировка естественным двухпутевым слиянием

```
s := false
do
```

```
{
         if(s = 0) then
         {
                    i := 1
                    j := N
                    k := N + 1
                    I := 2N
         }
          else
         {
                    i := N + 1
                    j := 2N
                    k := 1
                    l := N
          }
d := 1
f := 1
doAgain{
          if(K[i] > K[j]) then
         {
                    R[k] := R[j]
                    k := k + d
                    Dec(j)
                   \mathsf{if}(\mathsf{K}[\mathsf{j+1}] \mathrel{<=} \mathsf{K}[\mathsf{j}])
                             go to doAgain
                    do
                   {
                             R[k] := R[i]
                             k := k + d
                             Inc(i)
                   } while(K[i-1] <= K[i])
          }
         else
          {
                   if(i=j) then
                   {
                             R[k] := R[i]
                             if(f=0) then
                             {
                                       s := 1 - s
                                       go to doAgain
                             }
                             else break
```

```
}
                 R[k] := R[i]
                 k := k + d
                 if(K[i-1] <= K[i]) then go to doAgain
                 do
                 {
                         R[k] := R[j]
                         K := k + d
                         Dec(j)
                 } while(K[j+1] <= K[i])</pre>
        }
        f := 0
        d := !d
        k <-> l
        go to doAgain
} while(f)
if(s = 0) then (R[1],...,R[2N]) \leftarrow (R[N+1],...,R[2N])
16. Сортировка слиянием списков для естественного двухпутевого слияния
Function Merger(a, low, p,l)
{
        for i := low to low+1
                 x1[i-low] := a[i]
        for i := 0 to p-1
                 x2[i] := a[i+l+low]
        s := (x1[1]=(x2[p-1]=(a[low+l-1]>a[p-1])?
        (a[low+l-1]+1):(s[p-1]+1)))
        i=(j=0)
        k := low
        while(x1[i] < s \mid \mid x2[j] < s) do
        {
                 if(x1[i] < x2[j] then a[k] := x1[i++]
                 else
a[k] := x2[j++]
k++
                 }
                 return a
}
Smerger(a, m, n)
```

```
{
        l := 1
        while ( I <= (n-m)) do
        {
                low := m
                p := m - 1
                while(l+p < n) do
                {
                        p := (low +2*l-1 < n)?(low2*l-1):n
                        Merger(s, low, up, l)
                        low := p - 1
                }
I*=2
}
return a
}
```

Поиск?	I	1000		- 1		2000		- 1		5000	
	[Срав		Пересылка		Срав		Пересылка		Срав		Пересылка
					19120						6250511
Шелла.	13667		8645		32336						
Пузырьк.					1997041		998887		12492672		
Шейкер.	499501				1999005		998888		12497528		6245546
	11002		7117						71131		
Прост выбор.	499500				1999001				12497506		
Расп подсчет.	1011		2996		2013		5996				14996
			8117		15842						56725
	1 29928										

Вывод: в ходе данной лабораторной работы я ознакомился с методами сортировки, получил практические навыки программирования задач сортировки и навыки экспериментальных исследований алгоритмов.