Homework4 Solutions

PROBLEM 6.1

Using the method of joints, determine the force in each member of the truss shown. State whether each member is in tension or compression.

SOLUTION

Free body: Entire truss:

$$+ \sum F_y = 0$$
: $B_y = 0$ $\mathbf{B}_y = 0$
 $+ \sum M_C = 0$: $-B_x (16 \text{ in.}) - (240 \text{ lb})(36 \text{ in.}) = 0$
 $B_x = -540 \text{ kN}$ $\mathbf{B}_x = 540 \text{ lb}$
 $+ \sum F_x = 0$: $C - 540 \text{ lb} + 240 \text{ lb} = 0$
 $C = 300 \text{ lb}$ $\mathbf{C} = 300 \text{ lb}$

Free body: Joint B:

$$F_{AB} = 900 \text{ lb}$$
 T

$$F_{BC} = 720 \text{ lb}$$
 $T \blacktriangleleft$

Free body: Joint C:

$$\frac{F_{AC}}{13} = \frac{F_{BC}}{12} = \frac{300 \text{ lb}}{5}$$

$$F_{AC} = 780 \text{ lb}$$
 $C \blacktriangleleft$

$$F_{BC} = 720 \text{ lb}$$
 (checks)

Using the method of joints, determine the force in each member of the truss shown. State whether each member is in tension or compression.

SOLUTION

Reactions:

+)
$$\Sigma M_D = 0$$
: $F_y(3 \text{ m}) - (24 \text{ kN} + 8 \text{ kN})(1.5 \text{ m}) - (7 \text{ kN})(3 \text{ m}) = 0$

$$\mathbf{F}_{v} = 23.0 \,\mathrm{kN}^{\uparrow}$$

$$\Sigma F_x = 0$$
: $\mathbf{F}_x = 0$

$$+ \sum F_y = 0$$
: $D - (7 + 24 + 8 + 7) + 23 = 0$

$$\mathbf{D} = 23.0 \text{ kN}$$

Joint A:

$$\Sigma F_x = 0$$
: $F_{AB} = 0$

$$F_{AB} = 0$$

$$F_{AD} = -7 \text{ kN}$$

$$F_{AD} = 7.00 \text{ kN}$$
 C

Joint D:

$$+ \uparrow \Sigma F_y = 0: -7 + 23.0 + \frac{8}{17} F_{BD} = 0$$

$$F_{BD} = -34.0 \text{ kN}$$

$$F_{BD} = 34.0 \text{ kN}$$
 C

$$\pm$$
 Σ $F_x = 0$: $\frac{15}{17}$ (-34.0) + F_{DE} = 0
 F_{DE} = +30.0 kN F_{DE} = 30.0 kN T ◀

Joint E:

$$+$$
 $\Sigma F_y = 0$: $F_{BE} - 8 = 0$
$$F_{BE} = +8.00 \text{ kN}$$

$$F_{BE} = 8.00 \text{ kN}$$
 $T \blacktriangleleft$

Truss and loading symmetrical about 4.

Using the method of joints, determine the force in each member of the truss shown. State whether each member is in tension or compression.

SOLUTION

Free body: Entire truss:

Free body: Joint A:

$$\frac{F_{AB}}{4} = \frac{F_{AD}}{\sqrt{17}} = \frac{5 \text{ kN}}{1}$$

$$F_{AB} = 20.0 \text{ kN}$$
 T

$$F_{AD} = 20.6 \text{ kN}$$
 C

Free body: Joint B:

$$F_{BD} = 20 \text{ kN} \qquad \xrightarrow{+} \Sigma F_x = 0: \quad 5 \text{ kN} + \frac{1}{\sqrt{5}} F_{BD} = 0$$

$$F_{BD} = -5\sqrt{5} \text{ kN} \qquad F_{BD} = 11.18 \text{ kN} \quad C \blacktriangleleft$$

$$F_{BC} = +30 \text{ kN} \qquad F_{BC} = 30.0 \text{ kN} \quad T \blacktriangleleft$$

Free body: Joint C:

$$C_x = 10 \text{ kN}$$
 $F_{BC} = 30 \text{ kN}$
 $F_{CD} = 10 \text{ kN} = 0$
 $F_{CD} = 10 \text{ kN}$
 $F_{CD} = 10.00 \text{ kN}$

Determine the force in each member of the Howe roof truss shown. State whether each member is in tension or compression.

SOLUTION

Free body: Truss:

$$\Sigma F_x = 0$$
: $\mathbf{H}_x = 0$

Because of the symmetry of the truss and loading,

$$A = H_y = \frac{1}{2}$$
 total load

$$\mathbf{A} = \mathbf{H}_y = 1200 \text{ lb}^{\dagger}$$

Free body: Joint A:

$$\frac{F_{AB}}{5} = \frac{F_{AC}}{4} = \frac{900 \text{ lb}}{3}$$

$$\mathbf{F}_{AB} = 1500 \text{ lb}$$
 $C \blacktriangleleft$

$$\mathbf{F}_{AC} = 1200 \text{ lb}$$
 $T \blacktriangleleft$

Free body: Joint C:

BC is a zero-force member.

$$\mathbf{F}_{BC} = 0$$

$$\mathbf{F}_{CE} = 1200 \text{ lb}$$
 $T \blacktriangleleft$

Free body: Joint B:

$$\pm \Sigma F_x = 0: \quad \frac{4}{5}F_{BD} + \frac{4}{5}F_{BC} + \frac{4}{5}(1500 \text{ lb}) = 0$$

$$= 0: \quad \frac{4}{5}F_{BD} + \frac{4}{5}F_{BC} + \frac{4}{5}(1500 \text{ lb}) = 0$$

$$= 0: \quad \frac{4}{5}F_{BD} + \frac{4}{5}F_{BC} + \frac{4}{5}(1500 \text{ lb}) = 0$$

or
$$F_{BD} + F_{BE} = -1500 \text{ lb}$$
 (1)

$$+ \sum F_y = 0$$
: $\frac{3}{5}F_{BD} - \frac{3}{5}F_{BE} + \frac{3}{5}(1500 \text{ lb}) - 600 \text{ lb} = 0$

or
$$F_{BD} - F_{BE} = -500 \text{ lb}$$
 (2)

Add Eqs. (1) and (2): $2F_{BD} = -2000 \text{ lb}$ $F_{BD} = 1000 \text{ lb}$ $C \blacktriangleleft$

Subtract Eq. (2) from Eq. (1): $2F_{BE} = -1000 \text{ lb} \qquad F_{BE} = 500 \text{ lb} \quad C \blacktriangleleft$

Free Body: Joint D:

Because of the symmetry of the truss and loading, we deduce that

$$F_{EF} = F_{BE} \hspace{1cm} F_{EF} = 500 \; \text{lb} \hspace{0.5cm} C \; \blacktriangleleft \label{eq:effective}$$

$$F_{EG} = F_{CE}$$
 $F_{EG} = 1200 \text{ lb}$ $T \blacktriangleleft$

$$F_{FG} = F_{BC} F_{FG} = 0 \blacktriangleleft$$

$$F_{FH} = F_{AB}$$
 $F_{FH} = 1500 \text{ lb}$ C

$$F_{GH} = F_{AC} \hspace{1cm} F_{GH} = 1200 \; \text{lb} \hspace{3mm} T \; \blacktriangleleft \label{eq:fight}$$

Determine the force in members BD and CD of the truss shown

SOLUTION

Reactions from Free body of entire truss:

$$\mathbf{A} = \mathbf{A}_y = 27 \text{ kips}^{\dagger} \triangleleft$$

$$\mathbf{H} = 45 \text{ kips}^{\dagger} \triangleleft$$

We pass a section through members *BD*, *CD*, and *CE* and use the <u>free body shown</u>.

+)
$$\Sigma M_C = 0$$
: $-F_{BD}(7.5 \text{ ft}) - (27 \text{ kips})(10 \text{ ft}) = 0$

$$F_{BD} = -36.0 \text{ kips}$$
 $F_{BD} = 36.0 \text{ kips}$ $C \blacktriangleleft$

$$+ \uparrow \Sigma F_y = 0$$
: 27 kips $+ \left(\frac{3}{5}\right) F_{CD} = 0$

Determine the force in members DG and FI of the truss shown. (Hint: Use section aa.)

SOLUTION

+)
$$\Sigma M_F = 0$$
: $F_{DG}(4 \text{ m}) - (5 \text{ kN})(3 \text{ m}) = 0$
 $F_{DG} = +3.75 \text{ kN}$ $F_{DG} = 3.75 \text{ kN}$ T ◀
+ $\uparrow \Sigma F_y = 0$: $-3.75 \text{ kN} - F_{FI} = 0$

$$F_{DG} = +3.75 \text{ kN}$$

$$F_{DG} = 3.75 \text{ kN}$$
 T

$$+ \sum F_v = 0$$
: $-3.75 \text{ kN} - F_{FI} = 0$

$$F_{FI} = -3.75 \text{ kN}$$

$$F_{FI} = -3.75 \text{ kN}$$
 $F_{FI} = 3.75 \text{ kN}$ C

Determine the force in members *EH* and *GI* of the truss shown. (*Hint:* Use section *aa.*)

SOLUTION

Reactions:

$$\Sigma F_x = 0$$
: $A_x = 0$

+)
$$\Sigma M_P = 0$$
: 12 kips(45 ft) +12 kips(30 ft) +12 kips(15 ft) - A_V (90 ft) = 0

$$\mathbf{A}_{y} = 12 \text{ kips} \dagger$$

$$+ \sum F_y = 0$$
: 12 kips - 12 kips - 12 kips - 12 kips + $P = 0$ **P** = 24 kips

+)
$$\Sigma M_G = 0$$
: $-(12 \text{ kips})(30 \text{ ft}) - F_{EH}(16 \text{ ft}) = 0$

$$F_{EH} = -22.5 \text{ kips}$$
 $F_{EH} = 22.5 \text{ kips}$ $C \blacktriangleleft$

$$+$$
 $\Sigma F_x = 0$: $F_{GI} - 22.5 \text{ kips} = 0$ $F_{GI} = 22.5 \text{ kips}$ T

Determine the force in member BD and the components of the reaction at C

SOLUTION

We note that BD is a two-force member. The force it exerts on ABC, therefore, is directed along line BD. Free body: ABC:

$$BD = \sqrt{(24)^2 + (10)^2} = 26 \text{ in.}$$

+)
$$\Sigma M_C = 0$$
: (160 lb)(30 in.) $-\left(\frac{10}{26}F_{BD}\right)$ (16 in.) = 0

$$F_{BD} = +780 \text{ lb}$$
 $F_{BD} = 780 \text{ lb}$ $T \blacktriangleleft$

$$\pm \Sigma M_x = 0$$
: $C_x + \frac{24}{26} (780 \text{ lb}) = 0$

$$C = -720 \text{ lb}$$
 $C = 720 \text{ lb}$

$$+ \int \Sigma F_y = 0$$
: $C_y - 160 \text{ lb} + \frac{10}{26} (780 \text{ lb}) = 0$

$$C_y = -140.0 \text{ lb}$$
 $C_y = 140.0 \text{ lb}$

For the frame and loading shown, determine the force acting on member ABC(a) at B, (b) at C.

SOLUTION

FBD ABC:

Note: BD is two-force member

(a)
$$\left(\sum M_C = 0: (0.09 \text{ m})(200 \text{ N}) - (2.4 \text{ m}) \left(\frac{3}{5} F_{BD}\right) = 0$$

$$\mathbf{F}_{BD} = 125.0 \text{ N} \ge 36.9^{\circ} \blacktriangleleft$$

Determine the components of the reactions at A and E if a 750-N force directed vertically downward is applied (a) at B, (b) at D.

SOLUTION

Free body: Entire frame:

The following analysis is valid for both parts (a) and (b) since position of load on its line of action is immaterial.

+)
$$\Sigma M_E = 0$$
: $-(750 \text{ N})(80 \text{ mm}) - A_x(200 \text{ mm}) = 0$
 $A_x = -300 \text{ N}$ $A_x = 300 \text{ N}$ \longrightarrow
 $+ \Sigma F_x = 0$: $E_x - 300 \text{ N} = 0$ $E_x = 300 \text{ N}$ \longrightarrow

Load applied at B. (a)

Free body: Member CE:

CE is a two-force member. Thus, the reaction at E must be directed along CE.

$$\frac{E_y}{300 \text{ N}} = \frac{75 \text{ mm}}{250 \text{ mm}}$$
 $E_y = 90 \text{ N}$

$$\frac{E_y}{300 \text{ N}} = \frac{75 \text{ mm}}{250 \text{ mm}} \quad E_y = 90 \text{ N}^{\dagger}$$
 From Eq. (1): $A_y + 90 \text{ N} - 750 \text{ N} = 0$ $A_y = 660 \text{ N}^{\dagger}$

Thus, reactions are

$$\mathbf{A}_x = 300 \text{ N} \leftarrow, \mathbf{A}_y = 660 \text{ N}$$

$$\mathbf{E}_{x} = 300 \,\mathrm{N} \longrightarrow, \,\mathbf{E}_{y} = 90.0 \,\mathrm{N}^{\dagger} \blacktriangleleft$$

Load applied at D. (b)

Free body: Member AC:

AC is a two-force member. Thus, the reaction at A must be directed along AC.

$$\frac{A_y}{300 \text{ N}} = \frac{125 \text{ mm}}{250 \text{ mm}}$$
 $A_y = 150 \text{ N}^{\dagger}$

From Eq. (1):
$$A_y + E_y - 750 \text{ N} = 0$$

$$150 \text{ N} + E_y - 750 \text{ N} = 0$$

$$E_y = 600 \text{ N}$$
 $\mathbf{E}_y = 600 \text{ N}$

Thus, reactions are

$$\mathbf{A}_x = 300 \text{ N} \leftarrow, \mathbf{A}_y = 150.0 \text{ N}^{\dagger} \blacktriangleleft$$

$$\mathbf{E}_x = 300 \text{ N} \longrightarrow, \quad \mathbf{E}_y = 600 \text{ N}^{\dagger} \blacktriangleleft$$