Introduction

Chanathip Namprempre

Computer Science Reed College

Agenda: Symmetric Encryption

- ► Caesar cipher: what is it
- ▶ One-time Pad (OTP): what is it
- Symmetric encryption schemes: what is it (syntax and correctness condition)
 - Examples
 - Non-examples
- ► Perfect secrecy
 - OTP provides perfect secrecy

Caesar cipher

$$cat \Rightarrow fdw$$

We can analyze the frequency of letters (and digrams and trigrams) to break substitution ciphers.

One-Time Pad (OTP)

Suppose K = 00101000.

$$00011101 \Rightarrow 00011101 \oplus K$$

 $\Rightarrow 00011101 \oplus 00101000$
 $\Rightarrow 00110101$

One-time Pad (OTP)

A stateful, deterministic encryption scheme

idea

- To encrypt M with a key K, just do M ⊕ K
 [but we also need to know which key bits in the key stream we have used so far.]
- To decrypt C with a key K, just do C ⊕ K [using the right bits in the key stream.]

More formally

Symmetric Encryption

For simplicity, we assume here that plaintexts, ciphertexts, and keys are bitstrings.

Syntax

A symmetric encryption scheme $\mathcal{SE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ is a triple of algorithms.

alg	input	output	notation	maybe randomized?	maybe stateful?
κ	-	key K	$K \stackrel{\$}{\leftarrow} K$	yes	no
\mathcal{E}	$K \in Keys(\mathcal{SE})$ $M \in \{0,1\}^*$	ciphertext $C \in \{0, 1\}^* \cup \{\bot\}$	$C \stackrel{\$}{\leftarrow} \mathcal{E}_K(M)$	yes	yes
\mathcal{D}	$K \in Keys(\mathcal{SE})$ $C \in \{0,1\}^*$	plaintext $M \in \{0,1\}^* \cup \{\bot\}$	$M \leftarrow \mathcal{D}_K(C)$	no	no

Correctness

For all $K \in Keys(\mathcal{SE})$ and all $M \in \{0,1\}^*$,

$$\Pr\left[C = \bot \text{ OR } \mathcal{D}_K(C) = M : C \stackrel{\$}{\leftarrow} \mathcal{E}_K(M) \right] = 1$$

Symmetric Encryption

For simplicity, we assume here that plaintexts, ciphertexts, and keys are bitstrings.

Syntax

A symmetric encryption scheme $\mathcal{SE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ is a triple of algorithms.

alg	input	output	notation	maybe randomized?	maybe stateful?
K	-	key K	$K \stackrel{\$}{\leftarrow} K$	yes	no
ε	$K \in Keys(\mathcal{SE})$ $M \in \{0, 1\}^*$	ciphertext $C \in \{0, 1\}^* \cup \{\bot\}$	$C \stackrel{\$}{\leftarrow} \mathcal{E}_K(M)$	yes	yes
\mathcal{D}	$K \in Keys(SE)$ $C \in \{0,1\}^*$	plaintext $M \in \{0,1\}^* \cup \{\bot\}$	$M \leftarrow \mathcal{D}_K(C)$	no	no

Correctness

For all $K \in \mathit{Keys}(\mathcal{SE})$ and all $M \in \{0,1\}^*$,

$$\mathsf{Pr}\left[\ C = \bot \ \mathsf{OR} \ \mathcal{D}_{\mathcal{K}}(C) = M \ : \ C \stackrel{\$}{\leftarrow} \mathcal{E}_{\mathcal{K}}(M) \ \right] = 1 \ .$$

Symmetric Encryption

- ► Secret key *K* is somehow shared a priori.
- ► Sender and receiver do not share states.
- ► The term "randomized/stateful" symmetric encryption refers to the property of the encryption algorithm only.
- "plaintext space" = set of messages that $\mathcal E$ will encrypt [i.e. $\mathcal E$ won't return \bot]
- $ightharpoonup \mathcal{E}$ returns \perp when
 - M ∉ plaintext space or
 - say, a counter reaches the maximum value

We'll look at some encryption schemes. All are correct but may or may not be secure.

One-time Pad: definition

Let $n \in \mathbb{N}$ be the parameter of the scheme. Hereafter, we assume that the key stream is of length exactly n bits.

Try encrypting M=101 with K=010 and decrypting the resulting ciphertext.

One-time Pad: limitation

Key bits cannot be reused if one wants to maintain security!

Non-Examples

Non-example 1

Let (E, D) be the following functions:

$$\forall x \in \mathbf{N}, E(x) = x^2$$
$$\forall y \in \mathbf{N}, D(y) = y^{\frac{1}{2}}.$$

There are many problems with this!

Non-Examples (cont.)

Non-example 2

Let $n \in \mathbf{N}$ be the parameter of the scheme.

$$\begin{array}{c} \mathcal{K}: \mathcal{K} \overset{\$}{\leftarrow} \{0,1\}^n \text{ ; return } \mathcal{K} \\ \\ \mathcal{E}_{\mathcal{K}}(M): \\ \text{ If } M = 0^n \text{ then return } 1^n \\ \text{ If } |M| \neq n \text{ then return } \bot \\ \mathcal{C} \leftarrow M \oplus \mathcal{K} \\ \text{ return } \mathcal{C} \end{array} \right| \begin{array}{c} \mathcal{D}_{\mathcal{K}}(\mathcal{C}): \\ \text{ If } \mathcal{C} = 1^n \text{ then return } 0^n \\ \text{ If } |\mathcal{C}| \neq n \text{ then return } \bot \\ M \leftarrow \mathcal{C} \oplus \mathcal{K} \\ \text{ return } M \end{array}$$

Try decrypting 1^n .

Perfect Secrecy

Definition

Let $n \in \mathbf{Z}^+$.

Let K be a shared secret chosen at random from $\{0,1\}^n$ (for simplicity).

Let M be a random variable denoting a plaintext chosen according to some public distribution.

Let C be a random variable denoting a ciphertext obtained from M and K.

A symmetric encryption scheme provides **perfect secrecy** iff, for any $a,b\in\{0,1\}^n$,

$$Pr[M = a \mid C = b] = Pr[M = a]$$
.

Theorem

OTP provides perfect secrecy.

Proof: OTP provides perfect secrecy

$$\Pr[M = a \mid C = b] = \frac{\Pr[M = a \land C = b]}{\Pr[C = b]}$$

$$= \frac{\Pr[M = a \land C = b]}{\sum_{x \in \{0,1\}^n} \Pr[M = x \land C = b]}$$

$$= \frac{\Pr[M = a \land K = (a \oplus b)]}{\sum_{x \in \{0,1\}^n} \Pr[M = x \land C = b]}$$

$$= \frac{\Pr[M = a] \cdot \Pr[K = (a \oplus b)]}{\sum_{x \in \{0,1\}^n} \Pr[M = x \land C = b]}$$

$$= \frac{\Pr[M = a] \cdot 2^{-n}}{\sum_{x \in \{0,1\}^n} \Pr[M = x \land C = b]}$$

Proof: OTP provides perfect secrecy (cont.)

$$\Pr[M = a \mid C = b] = \frac{\Pr[M = a] \cdot 2^{-n}}{\sum_{x \in \{0,1\}^n} \Pr[M = x \land C = b]}$$

$$= \frac{\Pr[M = a] \cdot 2^{-n}}{\sum_{x \in \{0,1\}^n} \Pr[M = x] \cdot 2^{-n}}$$

$$= \frac{\Pr[M = a] \cdot 2^{-n}}{2^{-n} \cdot \sum_{x \in \{0,1\}^n} \Pr[M = x]}$$

$$= \frac{\Pr[M = a] \cdot 2^{-n}}{2^{-n} \cdot 1}$$

$$= \Pr[M = a] \cdot 2^{-n}$$

$$= \Pr[M = a] \cdot 2^{-n}$$

$$= \Pr[M = a] \cdot 2^{-n}$$

That's nice. But what does it actually say again?

Definition

... A symmetric encryption scheme provides **perfect secrecy** iff, for any $a,b\in\{0,1\}^n$,

$$Pr[M=a \mid C=b] = Pr[M=a]$$
.

Consider the following scheme.

Key generation: Choose one at random from $\{0,1\}^{16}$ Encryption of M with key K: Return MDecryption of C with key K: Return C

Suppose the message space is $\{0,1\}^{16}$, and the samples follow the uniform distribution. Does this scheme provide perfect secrecy?

- ► What is $Pr[M = 0^{16} \mid C = 1^{16}]$?
- ► What is $Pr[M = 0^{16}]$?
 ► What is $Pr[M = 0^{16}]$?

And just to make sure you understand the notation and the RVs

Consider the following scheme.

Key generation:	Choose one at random from $\{0,1\}^{64}$
Encryption of <i>M</i> with key <i>K</i> :	Return $M \oplus K$
Decryption of C with key K:	Return $C \oplus M$

Suppose we know that $\Pr\left[M=0^{64}\right]=\Pr\left[M=1^{64}\right]=0.5$ and no other values of M are possible.

- $\blacktriangleright \text{ What is Pr} \left[M = 01^{63} \right]?$
- ▶ What is $Pr[C = 0^{64}]$?
- ▶ What is $Pr[C = 0^{60}1^4]$?