UTFPR – UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DAELT – DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA

Disciplina: ET7BK - Noções de Telecomunicações

Professor: Glauber Brante

Lista de Exercícios

- 1. Projete um enlace de transmissão digital via rádio operando na frequência de $2\,\mathrm{GHz}$. A distância entre transmissor e receptor é de $1\,\mathrm{km}$. Considere o modelo de propagação em espaço livre. O enlace deve transmitir simultaneamente $10\,\mathrm{canais}$ de áudio digital e $10\,\mathrm{canais}$ de dados. Cada canal de áudio é amostrado a $44,1\,\mathrm{kHz}$ e quantizado com $16\,\mathrm{bits}$. Cada canal de dado é de $1\,\mathrm{Mbps}$. A densidade espectral de potência unilateral do ruído é $N_0 = 10^{-20}\,\mathrm{W/Hz}$.
 - (a) Considerando a utilização de modulação M-PSK, determine o menor valor de M a ser utilizado, bem como a potência do transmissor em dBm para este caso, para BER $< 10^{-5}$. A largura de banda disponível para transmissão é de $B=4{,}264$ MHz. Considere que a largura de banda deve ser pelo menos igual à taxa de símbolos.
 - (b) E se fosse M-QAM? E usando o modelo log-distância, com n=3?

Figura 1: BER versus E_b/N_0 para M-PSK.

Figura 2: BER versus E_b/N_0 para M-QAM.

2. Um sistema de comunicação sem fio está sujeito a um path-loss do tipo:

$$PL(dB) = -50 + 10\log_{10} f_c + 30\log_{10} d$$

onde d é a distância entre TX e RX e $f_c=1$ GHz. Os ganhos das antenas são $G_t=G_r=0$ dB, a figura de ruído é F=4 dB, $N_0=-174$ dBm/Hz, a banda é B=1 MHz, e o valor de SNR requerido é de $\frac{E_s}{N_0}=10$ dB. Determine:

- (a) A sensibilidade do receptor (mínima potência recebida requerida).
- (b) Assumindo que a potência de transmissão é $P_T = 1$ W, qual é o alcance (d) do sistema?
- (c) Qual o valor de P_T que seria necessário se o alcance desejado fosse de d=2 km?
- (d) Para um dado valor de P_T , de quanto o alcance aumenta se a taxa de símbolos é reduzida para $R_s=100~{\rm k~símbolos/s?}$

3. Qual dos dois sistemas abaixo requer mais potência de transmissão?

Dados	Sistema A	Sistema B
Ganho Antena TX	0 dB	0 dB
Perda de Percurso	110 dB	110 dB
Taxa	10 kbps	1 Mbps
Ganho Antena RX	2,3 dB	2,3 dB
N_0	$-195~\mathrm{dB/Hz}$	$-195~\mathrm{dB/Hz}$
Modulação	8-PSK	QPSK
BER Máxima	0,001	0,01
Margem	10 dB	10 dB

- 4. Neste exercício vamos comparar dois rádios compatíveis com o padrão IEEE 802.15.4 (base do protocolo Zigbee), um da Texas Instruments CC2420 e outro da Atmel AT86RF231. O CC2420 tem máxima potência de transmissão de 0 dBm, sensibilidade de –95 dBm e taxa de 250 kbps. O AT86RF231 tem máxima potência de transmissão de 3 dBm, sensibilidade de –101 dBm a uma taxa de 250 kbps. A frequência de portadora em ambos é de 2,4 GHz.
 - (a) Compare o alcance dos dois rádios considerando o espaço livre.
 - (b) Compare o alcance dos dois rádios considerando o modelo log-distância com expoente de perda de percurso n=4 e $d_0=1$ m.
 - (c) Como dois rádios que seguem o mesmo padrão podem ter alcances tão diferentes?
 - (d) Procure nos datasheets dos dois rádios outras diferenças relevantes entre eles.
 - (e) Ambas as empresas (além de outras empresas) possuem outros rádios no padrão 802.15.4. Como escolher o rádio mais apropriado?