Problem Set 2

Data Analysis and Interpretation (EE 223)

Instructor: Prof. Prasanna Chaporkar EE Department, IIT Bombay

- 1. Let X_1, X_2, \ldots, X_n be i.i.d. random variables with probability density function $f_{\vec{\theta}}(\cdot)$. Find the sufficient statistic in the following cases:
 - (a) $f_{\theta}(x) = e^{\theta x}$ for $x > \theta$ and 0 otherwise.
 - (b) $f_{\theta}(x) = 1/(2\theta)$ for $x \in [1 \theta, 1 + \theta]$ and 0 otherwise.
 - (c) $f_{\theta}(x) = 1/\theta$ for $x \in [0, \theta]$ and 0 otherwise.
 - (d) $f_{\theta}(x) = c(\theta)x^{-\theta}$ for $x \ge 1$ and 0 otherwise. Here, $\theta \ge 2$ and $c(\theta)$ is a normalization constant depending on θ .
- 2. Let X_1, X_2, \ldots, X_n be i.i.d. random variables with probability density function $f_{\vec{\theta}}(\cdot)$. Define,

$$k(\vec{x}, \vec{y}, \vec{\theta}) = \frac{f_{\vec{\theta}}(\vec{x})}{f_{\vec{\theta}}(\vec{y})}.$$

A sufficient statistic T is called minimal if the following holds: $k(\vec{x}, \vec{y}, \vec{\theta})$ does not depend on $\vec{\theta}$ if and only if $T(\vec{x}) = T(\vec{y})$. Show that

- (a) if $X_1 \sim G(\mu, 1)$, then $T(\vec{x}) = \sum_{k=1}^n x_k$ is minimal sufficient. Also, $\tilde{T}(\vec{x}) = (\sum_{k=1}^n x_k, \sum_{k=1}^n x_k^2)$ is not minimal.
- (b) Verify that all the sufficient statistics found in Question 1 are minimal.
- 3. Let $X \sim \text{Poisson}(\lambda)$, the parameter $\lambda \in (0, \infty)$, and $\psi(\lambda) = 1/\lambda$. Find an unbiased estimator for ψ .
- 4. You need to aid a physicist in estimating the rate at which a radio active material emits gamma particles. It is known that the interval between the two consecutive emissions is an exponential random variable with parameter λ . Moreover, inter-emission periods are independent. You choose to put the radio active material with a photographic plate in a lead container for T time units. At the end of this period, you take out the plate and measure the number of marks on the plate.
 - (a) Show that only noting the number of marks on the photographic plate is sufficient to estimate the rate
 - (b) Give an unbiased estimator for λ
- 5. You are tasked with approximating the number of tigers in a tiger reserve. You install sensors near a water body that can uniquely identify a tiger that comes close to the water body. Information from the locals allows you to believe that each tiger visits the water body with probability 0.1 independent of other tigers.
 - (a) Show that counting the number of unique tigers that visited the water body is sufficient to estimate the number of tigers
 - (b) Provide an unbiased estimator
- 6. Consider random variables X and Y with joint probability density function $f_{XY}(x, y)$, and marginals $f_X(x)$ and $f_Y(y)$. Let Z = E[X|Y] be a random variable from $(\Re, \mathcal{B}(\Re))$ to $(\Re, \mathcal{B}(\Re))$ defined as follows: for $y \in \Re$, Z(y) = E[X|Y = y]. Argue that

(a)

$$Z = \frac{1}{f_Y(Y)} \int_{-\infty}^{\infty} x f_{XY}(x, Y) dx$$

(b) Find E[Z].

- 7. Let X_1, X_2, \ldots, X_n be i.i.d. random variables with probability density function $f_{\vec{\theta}}(\cdot)$. Define $X = X_1$ and $Y = \sum_{k=1}^{n} X_k$.
 - (a) For n=3 and let the density function be exponential with parameter $\lambda>0$. Find E[X|Y]. Do explicit calculations.
 - (b) Find E[X|Y] for the general density function.
- 8. Let X_1, X_2, \ldots, X_n be i.i.d. random variables with probability density function $f_{\vec{\theta}}(\cdot)$. Let T be a sufficient statistic and let δ be any unbiased estimate of the given function ψ . Show that $E_{\theta}[\delta|T]$ is also an unbiased estimate of ψ .
- 9. Show that the sample variance is an unbiased estimator for the variance.
- 10. Find unbiased estimate for $\sigma > 0$, where samples are drawn from $G(\sigma, \sigma)$.