Apuntes de Análisis de Algorítmos

Leonardo H. Añez Vladimirovna

Universidad Autónoma Gabriél René Moreno, Facultad de Ingeniería en Ciencias de la Computación y Telecomunicaciones, Santa Cruz de la Sierra, Bolivia

3 de junio de 2018

Estos apuntes fueron realizados durante mis clases en la materia INF210 (Programación II), acompañados de referencias de libros, fuentes y código que use a lo largo del curso, en el período I-2018 en la Facultad de Ingeniería en Ciencias de la Computación y Telecomunicaciones.

Para cualquier cambio, observación y/o sugerencia pueden enviarme un mensaje al siguiente correo:

toborochi98@outlook.com

1. Algoritmia

1.1. Conceptos

1.1.1. Algoritmo

Secuencia de pasos a seguir para resolver un problema. Un algoritmo tiene las siguientes características:

- Finitud
- Exactitud
- Sin Ambiguedades

Esquema de un algoritmo:

- Entrada: Conjunto de Datos a ser procesado. Donde la cantidad de datos es representada por: n.
- Salida: Conjunto de datos resultantes del proceso.
- Proceso: Conjunto de Instrucciones para transformar la entrada en la salida.

1.2. Tiempo de Ejecución

Denotado por:

 $T_A(n)$

Es el tiempo que le toma a un algoritmo A procesar una entrada de tamaño n. Para determinar esto es necesario diferenciar: Cantidad de Operaciones y Cantidad de Instrucciones.

1.2.1. Cantidad de Operaciones

Para entender este punto basta ver el siguiente ejemplo:

x = a + b*c;

Donde la cantidad de operaciones es de tres, estas son el producto de de b*c, esto con la suma de a forman dos operaciones la tercera operación es todo eso asignado a x.

1.2.2. Cantidad de Instrucciones

Para el mísmo ejemplo anterior:

x = a + b*c;

En este caso la cantidad de Instrucciones es de una.

1.3. Cálculo de T(n)

Para el cálculo de tiempo tendremos dos clasificaciones:

- 1. Algoritmos Iterativos: Usando tablas de conteo.
- 2. Algoritmos Recursivos: Mediante Ecuaciones de Recurrencia.

1.4. Clasificación de Algoritmos por su Grado de Complejidad

- Algoritmos Constantes
- Algoritmos Lineales
- \blacksquare Algoritmos Logarítmicos
- Algoritmos Cuadráticos

- ullet Algoritmos n-logarítmicos
- Algoritmos Cúbicos
- Algoritmos Exponenciales
- Algoritmos Factoriales

Big-O Complexity Chart

Figura 1: Gráfica que expresa el crecimiento de las operaciones para cada Grado de Complejidad.

Fuente: http://bigocheatsheet.com