STAT 420: Methods of Applied Statistics

Simple Linear Regression

Ruoqing Zhu, Ph.D. <rqzhu@illinois.edu>

Course website: https://sites.google.com/site/teazrq/teaching/STAT420

University of Illinois at Urbana-Champaign January 23, 2017

 Let's look at a simplified version of a linear model — with only one predictor.

$$Y = \beta_0 + \beta_1 X + \epsilon$$

- X is the predictor, Y is the outcome, and ϵ is a random error.
- β_0 and β_1 are unknown regression coefficients that we want to estimate.
- Suppose that a researcher can set the value of X, and perform experiments to observe Y. Repeatedly perform such experiments on different values of X will allow us to collect a set of data.

Skin cancer mortality rate per 10 million (1950s) by state latitude.

- What is the optimal line (with intercept $\widehat{\beta}_0$ and slope $\widehat{\beta}_1$) that describes this relationship based on the observed data?
- There are n observations, and for each $i \in 1, ... n$, we have
 - $-y_i$ the observed mortality rate for state i
 - $-x_i$ the latitude for state i
- Usually this is obtained by minimizing the sum of squared errors:

SSE =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

• Interpretation: $y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i$ measures the (vertical) distance between the observed point and the fitted line.

Skin cancer mortality rate per 10 million (1950s) by state latitude.

Minimizing the SSE

How to minimize the sum of squared errors (SSE)?

$$\begin{split} (\widehat{\beta}_0, \widehat{\beta}_1) =& \underset{\beta_0, \beta_1}{\arg\min} \ \mathsf{SSE} \\ =& \underset{\beta_0, \beta_1}{\arg\min} \ \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2 \end{split}$$

- It is usually believed that the technique was first discovered around 1805 by Adrien Marie Legendre (1752-1833).
- This is a quadratic function of both β_0 and β_1 , hence is convex about its argument
- Take the derivative with respect to the parameters and set to zero:

$$\frac{\partial \text{SSE}}{\partial \beta_0} = 0 \quad \text{and} \quad \frac{\partial \text{SSE}}{\partial \beta_1} = 0$$

Legendre (left) and Fourier (right).

Minimizing the SSE

$$\begin{split} \text{SSE} &= \sum_{i=1} (y_i - \beta_0 - \beta_1 x_i)^2 \\ \frac{\partial \text{SSE}}{\partial \beta_0} &= 2 \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) \stackrel{\text{set}}{=} 0 \\ \frac{\partial \text{SSE}}{\partial \beta_1} &= 2 \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) x_i \stackrel{\text{set}}{=} 0 \\ \\ \Longrightarrow & \widehat{\beta}_0 &= \bar{y} - \widehat{\beta}_1 \bar{x} \\ \widehat{\beta}_1 &= \frac{\sum_{i=1}^n (y_i - \bar{y}) (x_i - \bar{x})}{\sum_{i=1}^n (x_i - \bar{x})^2} = r_{xy} \frac{s_y}{s_x} \end{split}$$

where r_{xy} is the sample correlation coefficient, and s_y and s_x are the sample standard error.

Suppose we observe 8 sample points:

$$\mathbf{x} = (0.7, -0.1, 0.4, 0.3, -2.2, -2.5, -0.4, -1.3)^\mathsf{T},$$

 $\mathbf{y} = (2.2, -1.0, -0.5, 2.8, -2.8, -3.4, 0.1, -2.1)^\mathsf{T}.$

Find the optimal simple linear regression line that describes the data.

Suppose we observe 8 sample points:

$$\mathbf{x} = (0.7, -0.1, 0.4, 0.3, -2.2, -2.5, -0.4, -1.3)^\mathsf{T},$$

 $\mathbf{y} = (2.2, -1.0, -0.5, 2.8, -2.8, -3.4, 0.1, -2.1)^\mathsf{T}.$

Find the optimal simple linear regression line that describes the data.

- First we calculate $\bar{x}=-0.6375,\,s_x=1.221167,\,\bar{y}=-0.5875,$ and $s_y=2.235709.$
- Calculate $\widehat{\beta}_1 = r_{xy} \frac{s_y}{s_x} = 1.593462$
- Calculate $\widehat{\beta}_0 = \bar{y} \widehat{\beta}_1 \bar{x} = 0.4283319$

```
1 # input the data
|x| > x = c(0.7, -0.1, 0.4, 0.3, -2.2, -2.5, -0.4, -1.3)
  > v = c(2.2, -1.0, -0.5, 2.8, -2.8, -3.4, 0.1, -2.1)
5 # calculate the means
| > ybar = mean(y)
_{7} > xbar = mean(x)
8
9 # calculate \beta_1
|sum((x - xbar)*(y - ybar))/sum((x - xbar)^2)
11 [1] 1.593462
12
_{13} # calculate \beta_0
14 > ybar - beta1 *xbar
15 [1] 0.4283319
16
_{17} # another way to calculate eta_1 using the correlation coefficient
|x| > cor(x, y) * sd(y) / sd(x)
19 [1] 1.593462
```

```
# validate the result using the build—in function Im()
> Im(y~x)

Call:
Im(formula = y ~ x)

Coefficients:
(Intercept) x
0.4283 1.5935
```

Suppose a researcher wants to perform a linear regression on the samples he collected. However, the original data was lost, and he has only the access to some summary statistics

$$\bar{x} = 0.2875, \qquad \bar{y} = 0.0075,$$

$$\sum_{i=1}^{n} x_i y_i = 1.5941, \qquad s_x = 0.5460704.$$

Can you still figure out the regression line based on these available information?

Suppose a researcher wants to perform a linear regression on the samples he collected. However, the original data was lost, and he has only the access to some summary statistics

$$\bar{x} = 0.2875,$$
 $\bar{y} = 0.0075,$
$$\sum_{i=1}^{n} x_i y_i = 1.5941,$$
 $s_x = 0.5460704.$

Can you still figure out the regression line based on these available information?

$$\widehat{\beta}_1 = \frac{\sum_{i=1}^n (y_i - \bar{y})(x_i - \bar{x})}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{\sum_{i=1}^n x_i y_i - n\bar{x}\bar{y}}{(n-1)s_x^2} = 0.7554315$$

$$\widehat{\beta}_0 = \bar{y} - \widehat{\beta}_1 \bar{x} = -0.2096866$$

Suppose a researcher wants to perform a linear regression on the samples he collected. However, the original data was lost, and he has only the access to some summary statistics

$$\bar{x} = 0.2875, \qquad \bar{y} = 0.0075,$$

$$\sum_{i=1}^{n} x_i y_i = 1.5941, \qquad s_x = 0.5460704.$$

Can you still figure out the regression line based on these available information?

$$\widehat{\beta}_1 = \frac{\sum_{i=1}^n (y_i - \bar{y})(x_i - \bar{x})}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{\sum_{i=1}^n x_i y_i - n\bar{x}\bar{y}}{(n-1)s_x^2} = 0.7554315$$

$$\widehat{\beta}_0 = \bar{y} - \widehat{\beta}_1 \bar{x} = -0.2096866$$

To perform linear regressions, the original data is not necessary as long as some key statistics are calculated.