Academic – Graduate Studies and Research Division SECOND SEMESTER 2019-2020

(COURSE HANDOUT PART II)

Date: 06.01.2020

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : **CS G524**

Course Title : Advanced Computer Architecture

Instructor-in-Charge : **Prof. G Geethakumari**

Course Description:

Basics of Parallelism, Instruction Level Parallelism, Simultaneous Multi-Threading, Design and Optimization Techniques for Cache and DRAM; Pipelining and Super-scalar Techniques, Multiprocessor and Multi-core architecture, Shared Memory and Cache Coherence Issues; Multi-vector and SIMD computers, Performance evaluation methods, Interconnect Design Techniques.

1. Scope and Objective of the Course:

The scope of the course includes advanced concepts in SISD environment, designing and using high performance SIMD and MIMD computers, system resources such as memory technology and I/O subsystem performance, case studies on multiprocessor and multicore architectures, Hands-on exposure to multi-core programming and TLP.

The main objective of this course is to give the students exposure to

- Instruction level parallelism
- Data level parallelism and vector processors
- Thread level parallelism
- Performance from memory hierarchy perspective
- Multicore programming

2.Textbooks:

(T1): Computer Architecture: A Quantitative Approach, J.L Hennessy & D.A.Patterson, Morgan Kaufmann, 6thEdition, 2017.

3.Reference books

R1: Computer Organization and Architecture: Designing for Performance, William Stallings, 10th Edition, Pearson, 2016. R2: Parallel Computer Architecture: A Hardware / Software Approach, David E Culler & Jaswinder Pal Singh., Morgan Kauffmann, 2011.

R3: Advanced Computer Architecture, Kai Hwang, Tata McGraw Hill, 2008.

R4:Computer Architecture & Parallel Processing, Hwang & Briggs, McGraw Hill, 2012.

4.Course Plan:

Lecture No.	Learning Objectives	Topics To be covered	Chapter in the Text Book
1	To understand about the importance of	Fundamentals of Quantitative Design and Analysis - Introduction	Ch.1
2-3	quantitative aspects of computer design	Dependability, Quantitative principles of Computer Design	Ch.1
4-5	To learn about ILP, practical challenges of	Instruction Level Parallelism and its exploitation – concepts and challenges	Ch.3, Appendix A, Appendix C
6-7	implementing ILP	Basic compiler techniques for exposing ILP, reducing branch costs with advanced branch prediction	Ch.3
8		Overcoming branch hazards with dynamic scheduling	Ch.3
9-11		Dynamic scheduling, examples and algorithm, hardware-based speculation	Ch.3
12-13		Exploiting ILP using Multiple issue and static scheduling, advanced techniques for instruction delivery and speculation	Ch.3, Appendix H(online)
14	To understand data level	Data Level Parallelism -introduction	Ch.4
15-17	parallelism, GPUs	Vector Architecture, SIMD Instruction Set Extensions for Multimedia	Ch.4
18-19		Graphics Processing Units, detecting and enhancing loop level parallelism	Ch.4
20-23	To explore and understand TLP	Thread Level Parallelism – centralized shared memory architectures, symmetric shared memory architectures	Ch.5
24-26		Distributed shared memory and directory based coherence, synchronization	Ch.5
27 - 29		Models of memory consistency, multiprocessors and their performance	Ch.5, Appendix I(online)
30	To know about the organization of memroy	Memory Hierarchy Design - Introduction	Ch.2, Appendix B
31 - 33	hierarchy and learn various optimization	Memory Organization – advanced optimizations of cache performance	Ch.2
34 - 35	techniques at each level Virtual Memory and virtual machine		Ch.2
36-37	To study the performance aspects of storage systems	Storage Systems- Introduction, Reliability, Availability & RAID	Appendix D (online appendix)
38 - 42	To get an insight into the latest architectures	Introduction to multi-core architectures, code optimization for multi-core	Latest reference material, Recent research publications

5.Evaluation Scheme:

EC No.	Evaluation Component	Duration (Min)	Weightage (%)	Date& Time	Nature of Component
1	Mid Sem Test	90	20	3/3 , 3.30 - 5.00 PM	Closed Book
2	Quizzes/Term Paper		15		Open Book
3	Term Project/Lab Exercises		25		Open Book/Take home
4	Comprehensive	180	40	08/05 - AN	Closed Book

- **6. Chamber Consultation Hour:** To be announced in the class
- **7. Notices:** Notices regarding the course will be put up on the CSIS notice board and in CMS.
- **8**. **Makeup Policy:** No makeup exam allowed without prior permission. For Open Book/Take home component, there is no makeup.
- **9**. **Academic Honesty and Integrity Policy**: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

INSTRUCTOR-IN-CHARGE CS G524