Consumer Complaint Classification

Muhammed Cifci, Ellie Thieu, Ryan Wood, Sang Yup Han

The Erdos Institute, May 2022 Data Science Bootcamp

Overview: The Problem

Navigating the loan market can be a treacherous task

How can consumers accurately assess loan companies and the problems they may face when taking out a loan from them?

How can loan companies improve their service based on the complaint that they've received?

Overview: The Solution

Apply natural language processing to data categorized by issue

Allow categorization of past complaints that haven't been categorized

Give lenders and consumers a clearer picture of what problems customers face

Stakeholders: Lenders looking for actionable directions for improvement, consumers who are concerned about specific issues

The Data

Data from the Consumer Financial Protection Bureau

Data includes the text of the complaint, as well as a classification of the issue and the loan company.

Preparing the Data:

- Remove missing values
- Clear duplicate values

The Plan

Exploring The Data

	Date received	Sub-product	Issue	Consumer complaint narrative	Company public response	Company	State	ZIP code	Tags	Consumer consent provided?	Company response to consumer	Timely response?	
0	2022-03-04	Conventional home mortgage	Struggling to pay mortgage	I can prove that XXXX XXXX lied about my inten	NaN	Rhode Island Housing and Mortgage Finance Corp	RI	2904.0	NaN	Consent provided	Closed with explanation	Yes	NaN
1	2022-02-15	Conventional home mortgage	Trouble during payment process	Bank of America did not make the County proper	Company has responded to the consumer and the	BANK OF AMERICA, NATIONAL ASSOCIATION	PA	19365.0	Servicemember	Consent provided	Closed with non- monetary relief	Yes	NaN
2	2022-02-23	Home equity loan or line of credit (HELOC)	Struggling to pay mortgage	I have an equity-line- of -credit with M & T ba	Company has responded to the consumer and the	M&T BANK CORPORATION	MD	20854.0	Older American, Servicemember	Consent provided	Closed with explanation	Yes	NaN

Mortgage Complaint Issues

Closed with explanation

Closed

Untimely response

Mortgage Company

Responses (Percentage)

0.6

0.8

Fitting Initial Models for Supervised Learning

Questions: What percentage of the data should we use to fit our model?

BERT vs RoBERTa vs. XLNET - Which NLP model works best for our data?

Comparing Different Models

After comparison, we arrived at this model

Fitted with 10% of data, using RoBERTa

Micro F1 Score - .69

		precision	recall	f1-score	support
	0	0.17	0.12	0.14	8
	1	0.60	0.64	0.62	102
	2	0.59	0.46	0.52	76
	3	0.00	0.00	0.00	4
	4	0.00	0.00	0.00	2
	5	0.00	0.00	0.00	1
	6	0.30	0.62	0.40	13
	7	0.36	0.17	0.24	23
	8	0.44	0.50	0.47	40
	9	1.00	0.12	0.22	8
	11	0.00	0.00	0.00	5
	12	0.71	0.74	0.73	231
	13	0.77	0.80	0.79	403
	14	0.00	0.00	0.00	2
accura	есу			0.69	918
macro a	vg	0.35	0.30	0.29	918
weighted a	avg	0.68	0.69	0.68	918

Directions for Future Work

Finer Hyperparameter tuning

Create dashboard for companies to categorize and explore complaints

Explore data beyond mortgages