MATH 3200 - Homework #5

posted October 23, 2024; due at the start of class on October 31, 2024

Assignments are expected to be **neat** and **stapled**. **Illegible work may not be marked**. Assume — unless explicitly told otherwise — that **you are expected to include clear and concise explanations of your reasoning**, expressed in complete sentences.

- 1. Recall that \emptyset denotes the empty set. How many elements are there in the set $\mathbf{Z} \times \emptyset$? Explain your answer.
- 2. Which of the following are TRUE or FALSE? No justification necessary.
 - (a) $\{\text{red}\}\subseteq \{\text{red}, \text{green}, \text{blue}\},$
 - (b) $\{\text{red}\}\subseteq\{\{\text{red},\text{green}\},\text{blue}\},$
 - (c) $\{\text{red}\}\in\mathcal{P}(\{\text{red},\text{green},\text{blue}\}),$
 - (d) $\{\text{red}\}\subseteq \mathcal{P}(\{\text{red}, \text{green}, \text{blue}\}),$
 - (e) $\emptyset \in \{\text{red}, \text{green}, \text{blue}\},\$
- 3. Write each of the following sets in the form $\{\cdots\}$, where \cdots is a complete list of elements. No justification necessary.
 - (a) the powerset of \emptyset ,
 - (b) the powerset of $\{\emptyset\}$,
 - (c) $\mathcal{P}(\mathcal{P}(\{\emptyset\}))$.
 - (d) $\mathcal{P}(\{a,b\} \times \{0\})$.
- 4. (a) Let A and B be any two sets. Show that if $U \subseteq A$ and $V \subseteq B$, then $U \times V$ is a subset of $A \times B$.
 - (b) Now let $A = \{1, 2\}$ and $B = \{\text{red}, \text{blue}, \text{green}\}$. Write down a subset of $A \times B$ that **cannot** be expressed as $U \times V$ with U a subset of A and V a subset of B. Explain fully (that is, prove!) that your subset cannot be written in that way.
- 5. Suppose $A \neq \emptyset$. Prove that $A \times B \subseteq A \times C$ if and only if $B \subseteq C$. Remember that an "if and only if" claim requires a proof for both directions. That is, you must to prove that if $A \times B \subseteq A \times C$, then $B \subseteq C$, and vice versa.
- 6. Prove that for any two sets A and B,

$$\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$$
.

- 7. We showed in class that $\mathcal{P}(A) = \mathcal{P}(B)$ if and only if A = B. Prove or disprove: For every pair of sets A and B, we have $\mathcal{P}(A) \subseteq \mathcal{P}(B)$ if and only if $A \subseteq B$.
- 8. (a) Prove that if $A \subseteq \mathcal{P}(A)$, then $\mathcal{P}(A) \subseteq \mathcal{P}(\mathcal{P}(A))$.
 - (b) Give an example of a nonempty set A for which $A \subseteq \mathcal{P}(A)$.
 - (c) Is there an example of a set A with |A| > 2024 and $A \subseteq \mathcal{P}(A)$? Justify your answer.

9. Recall from class that $\mathsf{MULT}_n = \{m \in \mathbf{Z} : n \mid m\}$. That is, MULT_n is the collection of all integer multiples of n. Prove that

$$\bigcup_{n \in \mathbf{N}} \mathsf{MULT}_n = \mathbf{Z}$$

and that

$$\bigcap_{n \in \mathbf{N}} \mathsf{MULT}_n = \{0\}.$$

Suggestion. You may assume the following fact. If a and b are integers with $b \neq 0$, and $a \mid b$, then $|a| \leq |b|$. Here $|\cdot|$ denotes absolute value.

10. (Extra challenge problem; not to turn in!) Let a, b, c, d be elements of some universal set U. Prove that if $\{\{a\}, \{a, b\}\} = \{\{c\}, \{c, d\}\}\}$, then a = c and b = d. In courses on set theory, the ordered pair (a, b) is sometimes **defined** as the set $\{\{a\}, \{a, b\}\}$.

Hint: Here is a way to get started. First consider the case when a=b. Argue that $\{\{a\},\{a,b\}\}$ then has a single element, namely $\{\{a\}\}$. Deduce from $\{\{a\},\{a,b\}\}=\{\{c\},\{c,d\}\}$ that c=d, and then argue that a=c. Conclude that a=b=c=d in this case, which confirms the claim in the problem (in this situation). Next, try the case when $a\neq b$ If you get stuck, feel free to discuss this at office hours!