Security in Computing

0

1

FREE SAMPLE CHAPTER

SHARE WITH OTHERS

Security in Computing

FIFTH EDITION

Security in Computing

FIFTH EDITION

Charles P. Pfleeger Shari Lawrence Pfleeger Jonathan Margulies

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data

Pfleeger, Charles P., 1948-

Security in computing / Charles P. Pfleeger, Shari Lawrence Pfleeger, Jonathan Margulies.— Fifth edition.

pages cm

Includes bibliographical references and index.

ISBN 978-0-13-408504-3 (hardcover : alk. paper)—ISBN 0-13-408504-3 (hardcover : alk. paper)

1. Computer security. 2. Data protection. 3. Privacy, Right of. I. Pfleeger, Shari Lawrence. II. Margulies, Jonathan. III. Title.

OA76.9.A25P45 2015

005.8—dc23 2014038579

Copyright © 2015 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-13-408504-3

ISBN-10: 0-13-408504-3

Text printed in the United States on recycled paper at Courier in Westford, Massachusetts. First printing, January 2015

Executive Editor
Bernard Goodwin

Editorial Assistant Michelle Housley

Managing Editor
John Fuller

Project Editor Elizabeth Ryan

Copy Editor Mary Lou Nohr

Proofreader Linda Begley

Cover Designer
Alan Clements

Compositor Shepherd, Inc.

To Willis Ware, a hero of computer security and privacy.

Contents

	Foreword Preface		xix
			XXV
	Ackr	nowledgments	xxxi
	Abou	ut the Authors	xxxiii
Chapter 1	Introduction		1
	1.1	What Is Computer Security?	2
		Values of Assets	4
		The Vulnerability-Threat-Control Paradigm	5
	1.2	Threats	6
		Confidentiality	8
		Integrity	10
		Availability	11
		Types of Threats	13
		Types of Attackers	16
	1.3	Harm	21
		Risk and Common Sense	22
		Method–Opportunity–Motive	26
	1.4	Vulnerabilities	28
	1.5	Controls	28
	1.6	Conclusion	31
	1.7	What's Next?	32
	1.8	Exercises	34

Chapter 2	Toolbox: Authentication, Access Control,			
	and	Cryptography	36	
	2.1	Authentication	38	
		Identification Versus Authentication	38	
		Authentication Based on Phrases and Facts:		
		Something You Know	40	
		Authentication Based on Biometrics: Something You Are	53	
		Authentication Based on Tokens: Something You Have	65	
		Federated Identity Management	68	
		Multifactor Authentication	70	
		Secure Authentication	70	
	2.2	Access Control	72	
		Access Policies	72	
		Implementing Access Control	75	
		Procedure-Oriented Access Control	85	
		Role-Based Access Control	85	
	2.3	Cryptography	86	
		Problems Addressed by Encryption	87	
		Terminology	87	
		DES: The Data Encryption Standard	95	
		AES: Advanced Encryption System	98	
		Public Key Cryptography	100	
		Public Key Cryptography to Exchange Secret Keys	103	
		Error Detecting Codes	109	
		Trust	117	
		Certificates: Trustable Identities and Public Keys	121	
		Digital Signatures—All the Pieces	124	
	2.4	Exercises	127	
Chapter 3	Prog	grams and Programming	131	
	3.1	Unintentional (Nonmalicious) Programming Oversights	133	
		Buffer Overflow	134	
		Incomplete Mediation	152	
		Time-of-Check to Time-of-Use	155	
		Undocumented Access Point	157	
		Off-by-One Error	159	
		Integer Overflow	160	
		₹		

		Contents	ix
		Unterminated Null-Terminated String	161
		Parameter Length, Type, and Number	162
		Unsafe Utility Program	162
		Race Condition	163
	3.2	Malicious Code—Malware	166
		Malware—Viruses, Trojan Horses, and Worms	167
		Technical Details: Malicious Code	176
	3.3	Countermeasures	196
		Countermeasures for Users	197
		Countermeasures for Developers	203
		Countermeasure Specifically for Security	216
		Countermeasures that Don't Work	224
		Conclusion	229
		Exercises	229
Chapter 4	The	Web—User Side	232
	4.1	Browser Attacks	234
		Browser Attack Types	234
		How Browser Attacks Succeed: Failed Identification	
		and Authentication	240
	4.2	Web Attacks Targeting Users	245
		False or Misleading Content	246
		Malicious Web Content	253
		Protecting Against Malicious Web Pages	259
	4.3	Obtaining User or Website Data	260
		Code Within Data	261
		Website Data: A User's Problem, Too	265
		Foiling Data Attacks	266
	4.4	Email Attacks	267
		Fake Email	267
		Fake Email Messages as Spam	267
		Fake (Inaccurate) Email Header Data	273
		Phishing	274
		Protecting Against Email Attacks	275
	4.5	Conclusion	277
	4.6	Exercises	278

x Contents

Chapter 5	Oper	rating Systems	280
	5.1	Security in Operating Systems	280
		Background: Operating System Structure	281
		Security Features of Ordinary Operating Systems	282
		A Bit of History	284
		Protected Objects	286
		Operating System Tools to Implement Security Functions	292
	5.2	Security in the Design of Operating Systems	308
		Simplicity of Design	309
		Layered Design	309
		Kernelized Design	312
		Reference Monitor	313
		Correctness and Completeness	314
		Secure Design Principles	315
		Trusted Systems	316
		Trusted System Functions	319
		The Results of Trusted Systems Research	325
	5.3	Rootkit	329
		Phone Rootkit	329
		Rootkit Evades Detection	330
		Rootkit Operates Unchecked	334
		Sony XCP Rootkit	335
		TDSS Rootkits	336
		Other Rootkits	338
	5.4	Conclusion	338
	5.5	Exercises	339
Chapter 6	Netw	vorks	341
	6.1	Network Concepts	342
		Background: Network Transmission Media	343
		Background: Protocol Layers	349
		Background: Addressing and Routing	350
	Part I	—War on Networks: Network Security Attacks	353
	6.2	Threats to Network Communications	354
		Interception: Eavesdropping and Wiretapping	354
		Modification, Fabrication: Data Corruption	361
		Interruption: Loss of Service	366
		Port Scanning	369
		Vulnerability Summary	374

	Con	itents	хi	
6.3	Wireless Network Security		374	
	WiFi Background		374	
	Vulnerabilities in Wireless Networks		381	
	Failed Countermeasure: WEP (Wired Equivalent Priva	acy)	388	
	Stronger Protocol Suite: WPA (WiFi Protected Access	;)	390	
6.4	Denial of Service		396	
	Example: Massive Estonian Web Failure		396	
	How Service Is Denied		398	
	Flooding Attacks in Detail		402	
	Network Flooding Caused by Malicious Code		403	
	Network Flooding by Resource Exhaustion		407	
	Denial of Service by Addressing Failures		408	
	Traffic Redirection		413	
	DNS Attacks		414	
	Exploiting Known Vulnerabilities		419	
	Physical Disconnection		420	
6.5	Distributed Denial-of-Service		421	
	Scripted Denial-of-Service Attacks		423	
	Bots		426	
	Botnets		426	
	Malicious Autonomous Mobile Agents		430	
	Autonomous Mobile Protective Agents		430	
Part II-	-Strategic Defenses: Security Countermeasures		432	
6.6	Cryptography in Network Security		432	
	Network Encryption		433	
	Browser Encryption		437	
	Onion Routing		443	
	IP Security Protocol Suite (IPsec)		444	
	Virtual Private Networks		447	
	System Architecture		450	
6.7	Firewalls		451	
	What Is a Firewall?		452	
	Design of Firewalls		453	
	Types of Firewalls		454	
	Personal Firewalls		465	
	Comparison of Firewall Types		467	
	Example Firewall Configurations		467	
	Network Address Translation (NAT)		472	
	Data Loss Prevention		473	

xii	Contents
AII	Contents

	6.8	Intrusion Detection and Prevention Systems	474
		Types of IDSs	476
		Other Intrusion Detection Technology	481
		Intrusion Prevention Systems	482
		Intrusion Response	483
		Goals for Intrusion Detection Systems	486
		IDS Strengths and Limitations	488
	6.9	Network Management	489
		Management to Ensure Service	489
		Security Information and Event Management (SIEM)	492
	6.10	Conclusion	496
	6.11	Exercises	496
Chapter 7	Data	bases	501
	7.1	Introduction to Databases	502
		Concept of a Database	502
		Components of Databases	502
		Advantages of Using Databases	506
	7.2	Security Requirements of Databases	507
		Integrity of the Database	507
		Element Integrity	508
		Auditability	510
		Access Control	511
		User Authentication	512
		Availability	512
		Integrity/Confidentiality/Availability	512
	7.3	Reliability and Integrity	513
		Protection Features from the Operating System	513
		Two-Phase Update	514
		Redundancy/Internal Consistency	516
		Recovery	516
		Concurrency/Consistency	517
	7.4	Database Disclosure	518
		Sensitive Data	518
		Types of Disclosures	519
		Preventing Disclosure: Data Suppression and Modification	529
		Security Versus Precision	530

			Contents	xiii
	7.5	Data Mining and Big Data		535
		Data Mining		536
		Big Data		540
	7.6	Conclusion		549
		Exercises		549
Chapter 8	Clou	d Computing		551
	8.1	Cloud Computing Concepts		551
		Service Models		552
		Deployment Models		552
	8.2	Moving to the Cloud		553
		Risk Analysis		553
		Cloud Provider Assessment		554
		Switching Cloud Providers		556
		Cloud as a Security Control		<i>557</i>
	8.3	Cloud Security Tools and Techniques		560
		Data Protection in the Cloud		561
		Cloud Application Security		566
		Logging and Incident Response		<i>567</i>
	8.4	Cloud Identity Management		568
		Security Assertion Markup Language		570
		OAuth		573
		OAuth for Authentication		<i>577</i>
	8.5	Securing laaS		579
		Public laaS Versus Private Network Security		580
	8.6	Conclusion		583
		Where the Field Is Headed		584
		To Learn More		584
	8.7	Exercises		584
Chapter 9	Priva	acy		586
	9.1	Privacy Concepts		587
		Aspects of Information Privacy		587
		Computer-Related Privacy Problems		590
	9.2	Privacy Principles and Policies		596
		Fair Information Practices		596
		U.S. Privacy Laws		597
		•		

xiv Contents

	Controls on U.S. Government Websites	599
	Controls on Commercial Websites	600
	Non-U.S. Privacy Principles	603
	Individual Actions to Protect Privacy	605
	Governments and Privacy	607
	Identity Theft	609
9.3	Authentication and Privacy	610
	What Authentication Means	611
	Conclusions	615
9.4	Data Mining	616
	Government Data Mining	617
	Privacy-Preserving Data Mining	617
9.5	Privacy on the Web	619
	Understanding the Online Environment	620
	Payments on the Web	621
	Site and Portal Registrations	622
	Whose Page Is This?	622
	Precautions for Web Surfing	624
	Spyware	628
	Shopping on the Internet	630
9.6	Email Security	632
	Where Does Email Go, and Who Can Access It?	632
	Interception of Email	633
	Monitoring Email	633
	Anonymous, Pseudonymous, and Disappearing Email	634
	Spoofing and Spamming	635
	Summary	636
9.7	Privacy Impacts of Emerging Technologies	636
	Radio Frequency Identification	636
	Electronic Voting	640
	VoIP and Skype	642
	Privacy in the Cloud	642
	Conclusions on Emerging Technologies	643
9.8	Where the Field Is Headed	644
9.9	Conclusion	645
9 10	Exercises	645

			Contents	xv
Chapter 10	Mana	agement and Incidents		647
	10.1	Security Planning		647
		Organizations and Security Plans		648
		Contents of a Security Plan		649
		Security Planning Team Members		656
		Assuring Commitment to a Security Plan		656
	10.2	Business Continuity Planning		658
		Assess Business Impact		660
		Develop Strategy		660
		Develop the Plan		661
	10.3	Handling Incidents		662
		Incident Response Plans		662
		Incident Response Teams		665
	10.4	Risk Analysis		668
		The Nature of Risk		669
		Steps of a Risk Analysis		670
		Arguments For and Against Risk Analysis		684
	10.5	Dealing with Disaster		686
		Natural Disasters		686
		Power Loss		688
		Human Vandals		689
		Interception of Sensitive Information		692
		Contingency Planning		694
		Physical Security Recap		698
	10.6	Conclusion		699
	10.7	Exercises		700
Chapter 11	Legal	Issues and Ethics		702
	11.1	Protecting Programs and Data		704
		Copyrights		704
		Patents		711
		Trade Secrets		714
		Special Cases		716
	11.2	Information and the Law		717
		Information as an Object		717
		Legal Issues Relating to Information		720

XVI	Contents

		The Legal System	721
		Summary of Protection for Computer Artifacts	724
	11.3	Rights of Employees and Employers	725
		Ownership of Products	725
		Employment Contracts	727
	11.4	Redress for Software Failures	728
		Selling Correct Software	729
		Reporting Software Flaws	731
	11.5	Computer Crime	733
		Why a Separate Category for Computer Crime Is Needed	734
		Why Computer Crime Is Hard to Define	736
		Why Computer Crime Is Hard to Prosecute	736
		Examples of Statutes	737
		International Dimensions	741
		Why Computer Criminals Are Hard to Catch	742
		What Computer Crime Does Not Address	743
		Summary of Legal Issues in Computer Security	743
	11.6	Ethical Issues in Computer Security	744
		Differences Between the Law and Ethics	744
		Studying Ethics	746
		Ethical Reasoning	747
	11.7	Incident Analysis with Ethics	750
		Situation I: Use of Computer Services	750
		Situation II: Privacy Rights	752
		Situation III: Denial of Service	753
		Situation IV: Ownership of Programs	754
		Situation V: Proprietary Resources	756
		Situation VI: Fraud	757
		Situation VII: Accuracy of Information	<i>758</i>
		Situation VIII: Ethics of Hacking or Cracking	759
		Situation IX: True Representation	762
		Conclusion of Computer Ethics	764
		Conclusion	765
		Exercises	765
Chapter 12	Detai	ls of Cryptography	768
	12.1	Cryptology	769
		Cryptanalysis	769
		Cryptographic Primitives	773

		•	Contents	xvii
		One-Time Pads		775
		Statistical Analysis		776
		What Makes a "Secure" Encryption Algorithm?		777
	12.2	Symmetric Encryption Algorithms		779
		DES		779
		AES		789
		RC2, RC4, RC5, and RC6		792
	12.3	Asymmetric Encryption with RSA		795
		The RSA Algorithm		795
		Strength of the RSA Algorithm		797
	12.4	Message Digests		799
		Hash Functions		799
		One-Way Hash Functions		799
		Message Digests		800
	12.5	Digital Signatures		802
		Elliptic Curve Cryptosystems		802
		El Gamal and Digital Signature Algorithms		803
		The NSA-Cryptography Controversy of 2012		804
	12.6	Quantum Cryptography		807
		Quantum Physics		807
		Photon Reception		808
		Cryptography with Photons		808
		Implementation		811
	12.7	Conclusion		811
Chapter 13	Emerging Topics			813
	13.1	The Internet of Things		814
		Medical Devices		815
		Mobile Phones		818
		Security in the Internet of Things		820
	13.2	Economics		821
		Making a Business Case		821
		Quantifying Security		825
		Current Research and Future Directions		832
	13.3	Electronic Voting		834
		What Is Electronic Voting?		835
		What Is a Fair Election?		836
		What Are the Critical Issues?		837

xviii Contents

13.4	Cyber Warfare	841
	What Is Cyber Warfare?	842
	Possible Examples of Cyber Warfare	843
	Critical Issues	846
13.5	Conclusion	850
Biblio	85	
Index	877	

Foreword

From the authors: Willis Ware kindly wrote the foreword that we published in both the third and fourth editions of Security in Computing. In his foreword he covers some of the early days of computer security, describing concerns that are as valid today as they were in those earlier days.

Willis chose to sublimate his name and efforts to the greater good of the projects he worked on. In fact, his thoughtful analysis and persuasive leadership contributed much to the final outcome of these activities. Few people recognize Willis's name today; more people are familiar with the European Union Data Protection Directive that is a direct descendant of the report [WAR73a] from his committee for the U.S. Department of Human Services. Willis would have wanted it that way: the emphasis on the ideas and not on his name.

Unfortunately, Willis died in November 2013 at age 93. We think the lessons he wrote about in his Foreword are still important to our readers. Thus, with both respect and gratitude, we republish his words here.

In the 1950s and 1960s, the prominent conference gathering places for practitioners and users of computer technology were the twice yearly Joint Computer Conferences (JCCs)—initially called the Eastern and Western JCCs, but later renamed the Spring and Fall JCCs and even later, the annual National (AFIPS) Computer Conference. From this milieu, the topic of computer security—later to be called information system security and currently also referred to as "protection of the national information infrastructure"—moved from the world of classified defense interests into public view.

A few people—Robert L. Patrick, John P. Haverty, and myself among others—all then at The RAND Corporation (as its name was then known) had been talking about the growing dependence of the country and its institutions on computer technology. It concerned us that the installed systems might not be able to protect themselves and their data against intrusive and destructive attacks. We decided that it was time to bring the security aspect of computer systems to the attention of the technology and user communities.

The enabling event was the development within the National Security Agency (NSA) of a remote-access time-sharing system with a full set of security access controls, running on a Univac 494 machine, and serving terminals and users not only within the headquarters building at Fort George G. Meade, Maryland, but also worldwide. Fortuitously, I knew details of the system.

Persuading two others from RAND to help—Dr. Harold Peterson and Dr. Rein Turn—plus Bernard Peters of NSA, I organized a group of papers and presented it to the SJCC conference management as a ready-made additional paper session to be chaired by me. [1] The conference accepted the offer, and the session was presented at the Atlantic City (NJ) Convention Hall in 1967.

Soon thereafter and driven by a request from a defense contractor to include both defense classified and business applications concurrently in a single mainframe machine functioning in a remote-access mode, the Department of Defense, acting through the Advanced Research Projects Agency (ARPA) and later the Defense Science Board (DSB), organized a committee, which I chaired, to study the issue of security controls for computer systems. The intent was to produce a document that could be the basis for formulating a DoD policy position on the matter.

The report of the committee was initially published as a classified document and was formally presented to the sponsor (the DSB) in January 1970. It was later declassified and republished (by The RAND Corporation) in October 1979. [2] It was widely circulated and became nicknamed "the Ware report." The report and a historical introduction are available on the RAND website. [3]

Subsequently, the United States Air Force (USAF) sponsored another committee chaired by James P. Anderson. [4] Its report, published in 1972, recommended a 6-year R&D security program totaling some \$8M. [5] The USAF responded and funded several projects, three of which were to design and implement an operating system with security controls for a specific computer.

Eventually these activities led to the "Criteria and Evaluation" program sponsored by the NSA. It culminated in the "Orange Book" [6] in 1983 and subsequently its supporting array of documents, which were nicknamed "the rainbow series." [7] Later, in the 1980s and on into the 1990s, the subject became an international one leading to the ISO standard known as the "Common Criteria." [8]

It is important to understand the context in which system security was studied in the early decades. The defense establishment had a long history of protecting classified information in document form. It had evolved a very elaborate scheme for compartmenting material into groups, sub-groups and super-groups, each requiring a specific personnel clearance and need-to-know as the basis for access. [9] It also had a centuries-long legacy of encryption technology and experience for protecting classified information in transit. Finally, it understood the personnel problem and the need to establish the trustworthiness of its people. And it certainly understood the physical security matter.

Thus, *the* computer security issue, as it was understood in the 1960s and even later, was how to create in a computer system a group of access controls that would implement or emulate the processes of the prior paper world, plus the associated issues of protecting such software against unauthorized change, subversion and illicit use, and of embedding the entire system in a secure physical environment with appropriate

management oversights and operational doctrine and procedures. The poorly understood aspect of security was primarily the software issue with, however, a collateral hardware aspect; namely, the risk that it might malfunction—or be penetrated—and subvert the proper behavior of software. For the related aspects of communications, personnel, and physical security, there was a plethora of rules, regulations, doctrine and experience to cover them. It was largely a matter of merging all of it with the hardware/software aspects to yield an overall secure system and operating environment.

However, the world has now changed and in essential ways. The desk-top computer and workstation have appeared and proliferated widely. The Internet is flourishing and the reality of a World Wide Web is in place. Networking has exploded and communication among computer systems is the rule, not the exception. Many commercial transactions are now web-based; many commercial communities—the financial one in particular—have moved into a web posture. The "user" of any computer system can literally be anyone in the world. Networking among computer systems is ubiquitous; information-system outreach is the goal.

The net effect of all of this has been to expose the computer-based information system—its hardware, its software, its software processes, its databases, its communications—to an environment over which no one—not end-user, not network administrator or system owner, not even government—has control. What must be done is to provide appropriate technical, procedural, operational and environmental safeguards against threats as they might appear or be imagined, embedded in a societally acceptable legal framework.

And appear threats did—from individuals and organizations, national and international. The motivations to penetrate systems for evil purpose or to create malicious software—generally with an offensive or damaging consequence—vary from personal intellectual satisfaction to espionage, to financial reward, to revenge, to civil disobedience, and to other reasons. Information-system security has moved from a largely self-contained bounded environment interacting with a generally known and disciplined user community to one of worldwide scope with a body of users that may not be known and are not necessarily trusted. Importantly, security controls now must deal with circumstances over which there is largely no control or expectation of avoiding their impact. Computer security, as it has evolved, shares a similarity with liability insurance; they each face a threat environment that is known in a very general way and can generate attacks over a broad spectrum of possibilities; but the exact details or even time or certainty of an attack is unknown until an event has occurred.

On the other hand, the modern world thrives on information and its flows; the contemporary world, society and institutions cannot function without their computer-communication-based information systems. Hence, these systems must be protected in all dimensions—technical, procedural, operational, environmental. The system owner and its staff have become responsible for protecting the organization's information assets.

Progress has been slow, in large part because the threat has not been perceived as real or as damaging enough; but also in part because the perceived cost of comprehensive information system security is seen as too high compared to the risks—especially the financial consequences—of not doing it. Managements, whose support with appropriate funding is essential, have been slow to be convinced.

xxii Foreword

This book addresses the broad sweep of issues above: the nature of the threat and system vulnerabilities (Chapter 1); cryptography (Chapters 2 and 12); software vulnerabilities (Chapter 3); the Common Criteria (Chapter 5); the World Wide Web and Internet (Chapters 4 and 6); managing risk (Chapter 10); and legal, ethical and privacy issues (Chapter 11). The book also describes security controls that are currently available such as encryption protocols, software development practices, firewalls, and intrusion-detection systems. Overall, this book provides a broad and sound foundation for the information-system specialist who is charged with planning and/or organizing and/or managing and/or implementing a comprehensive information-system security program.

Yet to be solved are many technical aspects of information security—R&D for hardware, software, systems, and architecture; and the corresponding products. Notwithstanding, technology per se is not the long pole in the tent of progress. Organizational and management motivation and commitment to get the security job done is. Today, the collective information infrastructure of the country and of the world is slowly moving up the learning curve; every mischievous or malicious event helps to push it along. The terrorism-based events of recent times are helping to drive it. Is it far enough up the curve to have reached an appropriate balance between system safety and threat? Almost certainly, the answer is "no, not yet; there is a long way to go." [10]

—Willis H. Ware RAND Santa Monica, California

Citations

- "Security and Privacy in Computer Systems," Willis H. Ware; RAND, Santa Monica, CA; P-3544, April 1967. Also published in Proceedings of the 1967 Spring Joint Computer Conference (later renamed to AFIPS Conference Proceedings), pp 279 seq, Vol. 30, 1967.
 - "Security Considerations in a Multi-Programmed Computer System," Bernard Peters; Proceedings of the 1967 Spring Joint Computer Conference (later renamed to AFIPS Conference Proceedings), pp 283 seq, vol 30, 1967.
 - "Practical Solutions to the Privacy Problem," Willis H. Ware; RAND, Santa Monica, CA; P-3544, April 1967. Also published in Proceedings of the 1967 Spring Joint Computer Conference (later renamed to AFIPS Conference Proceedings), pp 301 seq, Vol. 30, 1967. "System Implications of Information Privacy," Harold E. Peterson and Rein Turn; RAND, Santa Monica, CA; P-3504, April 1967. Also published in Proceedings of the 1967 Spring Joint Computer Conference (later renamed to AFIPS Conference Proceedings), pp 305 seq, vol. 30, 1967.
- 2. "Security Controls for Computer Systems," (Report of the Defense Science Board Task Force on Computer Security), RAND, R-609-1-PR. Initially published in January 1970 as a classified document. Subsequently, declassified and republished October 1979.
- 3. http://rand.org/publications/R/R609.1/R609.1.html, "Security Controls for Computer Systems"; R-609.1, RAND, 1979 http://rand.org/publications/R/R609.1/intro.html, Historical setting for R-609.1
- 4. "Computer Security Technology Planning Study," James P. Anderson; ESD-TR-73-51, ESD/AFSC, Hanscom AFB, Bedford, MA; October 1972.
- 5. All of these documents are cited in the bibliography of this book. For images of these historical papers on a CDROM, see the "History of Computer Security Project, Early Papers Part 1," Professor Matt Bishop; Department of Computer Science, University of California at Davis. http://seclab.cs.ucdavis.edu/projects/history
- "DoD Trusted Computer System Evaluation Criteria," DoD Computer Security Center, National Security Agency, Ft George G. Meade, Maryland; CSC-STD-001-83; Aug 15, 1983.
- So named because the cover of each document in the series had a unique and distinctively colored cover page. For example, the "Red Book" is "Trusted Network Interpretation," National Computer Security Center, National Security Agency, Ft. George G. Meade, Maryland; NCSC-TG-005, July 31, 1987. USGPO Stock number 008-000-00486-2.
- 8. "A Retrospective on the Criteria Movement," Willis H. Ware; RAND, Santa Monica, CA; P-7949, 1995. http://rand.org/pubs/papers/P7949/
- 9. This scheme is nowhere, to my knowledge, documented explicitly. However, its complexity can be inferred by a study of Appendices A and B of R-609.1 (item [2] above).
- "The Cyberposture of the National Information Infrastructure," Willis H. Ware; RAND, Santa Monica, CA; MR-976-OSTP, 1998. Available online at: http://www.rand.org/ publications/MR/MR976/mr976.html.

Preface

ablets, smartphones, TV set-top boxes, GPS navigation devices, exercise monitors, home security stations, even washers and dryers come with Internet connections by which data from and about you go to places over which you have little visibility or control. At the same time, the list of retailers suffering massive losses of customer data continues to grow: Home Depot, Target, T.J. Maxx, P.F. Chang's, Sally Beauty. On the one hand people want the convenience and benefits that added connectivity brings, while on the other hand, people are worried, and some are seriously harmed by the impact of such incidents. Computer security brings these two threads together as technology races forward with smart products whose designers omit the basic controls that can prevent or limit catastrophes.

To some extent, people sigh and expect security failures in basic products and complex systems. But these failures do not have to be. Every computer professional can learn how such problems occur and how to counter them. Computer security has been around as a field since the 1960s, and it has developed excellent research, leading to a good understanding of the threat and how to manage it.

One factor that turns off many people is the language: Complicated terms such as polymorphic virus, advanced persistent threat, distributed denial-of-service attack, inference and aggregation, multifactor authentication, key exchange protocol, and intrusion detection system do not exactly roll off the tongue. Other terms sound intriguing but opaque, such as worm, botnet, rootkit, man in the browser, honeynet, sandbox, and script kiddie. The language of advanced mathematics or microbiology is no less confounding, and the Latin terminology of medicine and law separates those who know it from those who do not. But the terms and concepts of computer security really have straightforward, easy-to-learn meaning and uses.

The premise of computer security is quite simple: Vulnerabilities are weaknesses in products, systems, protocols, algorithms, programs, interfaces, and designs. A threat is

Vulnerability: weakness Threat: condition that exercises vulnerability Incident: vulnerability + threat Control: reduction of threat or vulnerability

xxvi Preface

a condition that could exercise a vulnerability. An incident occurs when a threat does exploit a vulnerability, causing harm. Finally, people add controls or countermeasures to prevent, deflect, diminish, detect, diagnose, and respond to threats. All of computer security is built from that simple framework. This book is about bad things that can happen with computers and ways to protect our computing.

WHY READ THIS BOOK?

Admit it. You know computing entails serious risks to the privacy of your personal data, the integrity of your data, or the operation of your computer. Risk is a fact of life: Crossing the street is risky, perhaps more so in some places than others, but you still cross the street. As a child you learned to stop and look both ways before crossing. As you became older you learned to gauge the speed of oncoming traffic and determine whether you had the time to cross. At some point you developed a sense of whether an oncoming car would slow down or yield. We hope you never had to practice this, but sometimes you have to decide whether darting into the street without looking is the best means of escaping danger. The point is all these matters depend on knowledge and experience. We want to help you develop comparable knowledge and experience with respect to the risks of secure computing.

The same thing can be said about computer security in everything from personal devices to complex commercial systems: You start with a few basic terms, principles, and concepts. Then you learn the discipline by seeing those basics reappear in numerous situations, including programs, operating systems, networks, and cloud computing. You pick up a few fundamental tools, such as authentication, access control, and encryption, and you understand how they apply in defense strategies. You start to think like an attacker, predicting the weaknesses that could be exploited, and then you shift to selecting defenses to counter those attacks. This last stage of playing both offense and defense makes computer security a creative and challenging activity.

USES FOR AND USERS OF THIS BOOK

This book is intended for people who want to learn about computer security; if you have read this far you may well be such a person. This book is intended for three groups of people: college and university students, computing professionals and managers, and users of all kinds of computer-based systems. All want to know the same thing: how to control the risk of computer security. But you may differ in how much information you need about particular topics: Some readers want a broad survey, while others want to focus on particular topics, such as networks or program development.

This book should provide the breadth and depth that most readers want. The book is organized by general area of computing, so that readers with particular interests can find information easily.

ORGANIZATION OF THIS BOOK

The chapters of this book progress in an orderly manner, from general security concerns to the particular needs of specialized applications, and then to overarching management and legal issues. Thus, this book progresses through six key areas of interest:

- 1. Introduction: threats, vulnerabilities, and controls
- **2.** The security practitioner's "toolbox": identification and authentication, access control, and encryption
- **3.** Application areas of computer security practice: programs, user–Internet interaction, operating systems, networks, data and databases, and cloud computing
- 4. Cross-cutting disciplines: privacy, management, law and ethics
- 5. Details of cryptography
- **6.** Emerging application domains

The first chapter begins like many other expositions: by laying groundwork. In Chapter 1 we introduce terms and definitions, and give some examples to justify how these terms are used. In Chapter 2 we begin the real depth of the field by introducing three concepts that form the basis of many defenses in computer security: identification and authentication, access control, and encryption. We describe different ways of implementing each of these, explore strengths and weaknesses, and tell of some recent advances in these technologies.

Then we advance through computing domains, from the individual user outward. In Chapter 3 we begin with individual programs, ones you might write and those you only use. Both kinds are subject to potential attacks, and we examine the nature of some of those attacks and how they could have been prevented. In Chapter 4 we move on to a type of program with which most users today are quite familiar: the browser, as a gateway to the Internet. The majority of attacks today are remote, carried from a distant attacker across a network, usually the Internet. Thus, it makes sense to study Internetborne malicious code. But this chapter's focus is on the harm launched remotely, not on the network infrastructure by which it travels; we defer the network concepts to Chapter 6. In Chapter 5 we consider operating systems, a strong line of defense between a user and attackers. We also consider ways to undermine the strength of the operating system itself. Chapter 6 returns to networks, but this time we do look at architecture and technology, including denial-of-service attacks that can happen only in a network. Data, their collection and protection, form the topic of Chapter 7, in which we look at database management systems and big data applications. Finally, in Chapter 8 we explore cloud computing, a relatively recent addition to the computing landscape, but one that brings its own vulnerabilities and protections.

In Chapters 9 through 11 we address what we have termed the intersecting disciplines: First, in Chapter 9 we explore privacy, a familiar topic that relates to most of the six domains from programs to clouds. Then Chapter 10 takes us to the management side of computer security: how management plans for and addresses computer security problems. Finally, Chapter 11 explores how laws and ethics help us control computer behavior.

xxviii Preface

We introduced cryptography in Chapter 2. But the field of cryptography involves entire books, courses, conferences, journals, and postgraduate programs of study. And this book needs to cover many important topics in addition to cryptography. Thus, we made two critical decisions: First, we treat cryptography as a tool, not as a field of study. An automobile mechanic does not study the design of cars, weighing such factors as aerodynamics, fuel consumption, interior appointment, and crash resistance; a mechanic accepts a car as a given and learns how to find and fix faults with the engine and other mechanical parts. Similarly, we want our readers to be able to use cryptography to quickly address security problems; hence we briefly visit popular uses of cryptography in Chapter 2. Our second critical decision was to explore the breadth of cryptography slightly more in a later chapter, Chapter 12. But as we point out, entire books have been written on cryptography, so our later chapter gives an overview of more detailed work that interested readers can find elsewhere.

Our final chapter detours to four areas having significant computer security hazards. These are rapidly advancing topics for which the computer security issues are much in progress right now. The so-called Internet of Things, the concept of connecting many devices to the Internet, raises potential security threats waiting to be explored. Economics govern many security decisions, so security professionals need to understand how economics and security relate. Convenience is raising interest in using computers to implement elections; the easy steps of collecting vote totals have been done by many jurisdictions, but the hard part of organizing fair online registration and ballot-casting have been done in only a small number of demonstration elections. And the use of computers in warfare is a growing threat. Again, a small number of modest-sized attacks on computing devices have shown the feasibility of this type of campaign, but security professionals and ordinary citizens need to understand the potential—both good and bad—of this type of attack.

HOW TO READ THIS BOOK

What background should you have to appreciate this book? The only assumption is an understanding of programming and computer systems. Someone who is an advanced undergraduate or graduate student in computing certainly has that background, as does a professional designer or developer of computer systems. A user who wants to understand more about how programs work can learn from this book, too; we provide the necessary background on concepts of operating systems or networks, for example, before we address the related security concerns.

This book can be used as a textbook in a one- or two-semester course in computer security. The book functions equally well as a reference for a computer professional or as a supplement to an intensive training course. And the index and extensive bibliography make it useful as a handbook to explain significant topics and point to key articles in the literature. The book has been used in classes throughout the world; instructors often design one-semester courses that focus on topics of particular interest to the students or that relate well to the rest of a curriculum.

WHAT IS NEW IN THIS BOOK

This is the fifth edition of *Security in Computing*, first published in 1989. Since then, the specific threats, vulnerabilities, and controls have changed, as have many of the underlying technologies to which computer security applies. However, many basic concepts have remained the same.

Most obvious to readers familiar with earlier editions will be some new chapters, specifically, on user—web interaction and cloud computing, as well as the topics we raise in the emerging topics chapter. Furthermore, pulling together the three fundamental controls in Chapter 2 is a new structure. Those are the big changes, but every chapter has had many smaller changes, as we describe new attacks or expand on points that have become more important.

One other feature some may notice is the addition of a third coauthor. Jonathan Margulies joins us as an essential member of the team that produced this revision. He is currently director of the security practice at Qmulos, a newly launched security consulting practice. He brings many years of experience with Sandia National Labs and the National Institute for Standards and Technology. His focus meshes nicely with our existing skills to extend the breadth of this book.

Acknowledgments

t is increasingly difficult to acknowledge all the people who have influenced this book. Colleagues and friends have contributed their knowledge and insight, often without knowing their impact. By arguing a point or sharing explanations of concepts, our associates have forced us to question or rethink what we know.

We thank our associates in at least two ways. First, we have tried to include references to their written works. References in the text cite specific papers relating to particular thoughts or concepts, but the bibliography also includes broader works that have played a more subtle role in shaping our approach to security. So, to all the cited authors, many of whom are friends and colleagues, we happily acknowledge your positive influence on this book.

Rather than name individuals, we thank the organizations in which we have interacted with creative, stimulating, and challenging people from whom we learned a lot. These places include Trusted Information Systems, the Contel Technology Center, the Centre for Software Reliability of the City University of London, Arca Systems, Exodus Communications, The RAND Corporation, Sandia National Lab, Cable & Wireless, the National Institute of Standards and Technology, the Institute for Information Infrastructure Protection, Qmulos, and the Editorial Board of *IEEE Security & Privacy*. If you worked with us at any of these locations, chances are high that your imprint can be found in this book. And for all the side conversations, debates, arguments, and light moments, we are grateful.

About the Authors

Charles P. Pfleeger is an internationally known expert on computer and communications security. He was originally a professor at the University of Tennessee, leaving there to join computer security research and consulting companies Trusted Information Systems and Arca Systems (later Exodus Communications and Cable and Wireless). With Trusted Information Systems he was Director of European Operations and Senior Consultant. With Cable and Wireless he was Director of Research and a member of the staff of the Chief Security Officer. He was chair of the IEEE Computer Society Technical Committee on Security and Privacy.

Shari Lawrence Pfleeger is widely known as a software engineering and computer security researcher, most recently as a Senior Computer Scientist with the Rand Corporation and as Research Director of the Institute for Information Infrastructure Protection. She is currently Editor-in-Chief of *IEEE Security & Privacy* magazine.

Jonathan Margulies is the CTO of Qmulos, a cybersecurity consulting firm. After receiving his master's degree in Computer Science from Cornell University, Mr. Margulies spent nine years at Sandia National Labs, researching and developing solutions to protect national security and critical infrastructure systems from advanced persistent threats. He then went on to NIST's National Cybersecurity Center of Excellence, where he worked with a variety of critical infrastructure companies to create industry-standard security architectures. In his free time, Mr. Margulies edits the "Building Security In" section of *IEEE Security & Privacy* magazine.

1

Introduction

In this chapter:

- Threats, vulnerabilities, and controls
- Confidentiality, integrity, and availability
- Attackers and attack types; method, opportunity, and motive
- Valuing assets

n 11 February 2013, residents of Great Falls, Montana received the following warning on their televisions [INF13]. The transmission displayed a message banner on the bottom of the screen (as depicted in Figure 1-1).

FIGURE 1-1 Emergency Broadcast Warning

And the following alert was broadcast:

2 Chapter 1 Introduction

[Beep Beep: the sound pattern of the U.S. government Emergency Alert System. The following text then scrolled across the screen:]

Civil authorities in your area have reported that the bodies of the dead are rising from their graves and attacking the living. Follow the messages on screen that will be updated as information becomes available.

Do not attempt to approach or apprehend these bodies as they are considered extremely dangerous. This warning applies to all areas receiving this broadcast.

[Beep Beep Beep]

The warning signal sounded authentic; it had the distinctive tone people recognize for warnings of serious emergencies such as hazardous weather or a natural disaster. And the text was displayed across a live broadcast television program. On the other hand, bodies rising from their graves sounds suspicious.

What would you have done?

Only four people contacted police for assurance that the warning was indeed a hoax. As you can well imagine, however, a different message could have caused thousands of people to jam the highways trying to escape. (On 30 October 1938 Orson Welles performed a radio broadcast of the H. G. Wells play *War of the Worlds* that did cause a minor panic of people believing that Martians had landed and were wreaking havoc in New Jersey.)

The perpetrator of this hoax was never caught, nor has it become clear exactly how it was done. Likely someone was able to access the system that feeds emergency broadcasts to local radio and television stations. In other words, a hacker probably broke into a computer system.

You encounter computers daily in countless situations, often in cases in which you are scarcely aware a computer is involved, like the emergency alert system for broadcast media. These computers move money, control airplanes, monitor health, lock doors, play music, heat buildings, regulate hearts, deploy airbags, tally votes, direct communications, regulate traffic, and do hundreds of other things that affect lives, health, finances, and well-being. Most of the time these computers work just as they should. But occasionally they do something horribly wrong, because of either a benign failure or a malicious attack.

This book is about the security of computers, their data, and the devices and objects to which they relate. In this book you will learn some of the ways computers can fail—or be made to fail—and how to protect against those failures. We begin that study in the way any good report does: by answering the basic questions of what, who, why, and how.

1.1 WHAT IS COMPUTER SECURITY?

Computer security is the protection of the items you value, called the **assets** of a computer or computer system. There are many types of assets, involving hardware, software, data, people, processes, or combinations of these. To determine what to protect, we must first identify what has value and to whom.

A computer device (including hardware, added components, and accessories) is certainly an asset. Because most computer hardware is pretty useless without programs, the software is also an asset. Software includes the operating system, utilities and device handlers; applications such as word processing, media players or email handlers; and even programs that you may have written yourself. Much hardware and software is *off-the-shelf*, meaning that it is commercially available (not custom-made for your purpose) and that you can easily get a replacement. The thing that makes your computer unique and important to you is its content: photos, tunes, papers, email messages, projects, calendar information, ebooks (with your annotations), contact information, code you created, and the like. Thus, data items on a computer are assets, too. Unlike most hardware and software, data can be hard—if not impossible—to recreate or replace. These assets are all shown in Figure 1-2.

These three things—hardware, software, and data—contain or express things like the design for your next new product, the photos from your recent vacation, the chapters of your new book, or the genome sequence resulting from your recent research. All of these things represent intellectual endeavor or property, and they have value that differs from one person or organization to another. It is that value that makes them assets worthy of protection, and they are the elements we want to protect. Other assets—such as access to data, quality of service, processes, human users, and network connectivity—deserve protection, too; they are affected or enabled by the hardware, software, and data. So in most cases, protecting hardware, software, and data covers these other assets as well.

In this book, unless we specifically distinguish between hardware, software, and data, we refer to all these assets as the computer system,

Computer systems—hardware, software, and data—have value and deserve security protection.

Hardware:

- Computer
- Devices (disk drives, memory, printer)
- Network gear

Software:

- · Operating system
- Utilities (antivirus)
- Commercial applications (word processing, photo editing)
- · Individual applications

Data:

- · Documents
- Photos
- · Music, videos
- Email
- Class projects

FIGURE 1-2 Computer Objects of Value

4 Chapter 1 Introduction

or sometimes as the computer. And because processors are embedded in so many devices, we also need to think about such variations as mobile phones, implanted pacemakers, heating controllers, and automobiles. Even if the primary purpose of the device is not computing, the device's embedded computer can be involved in security incidents and represents an asset worthy of protection.

Values of Assets

After identifying the assets to protect, we next determine their value. We make value-based decisions frequently, even when we are not aware of them. For example, when you go for a swim you can leave a bottle of water and a towel on the beach, but not your wallet or cell phone. The difference relates to the value of the assets.

The value of an asset depends on the asset owner's or user's perspective, and it may be independent of monetary cost, as shown in Figure 1-3. Your photo of your sister, worth only a few cents in terms of paper and ink, may have high value to you and no value to your roommate. Other items' value depends on replacement cost; some computer data are difficult or impossible to replace. For example, that photo of you and your friends at a party may have cost you nothing, but it is invaluable because there is no other copy. On the other hand, the DVD of your favorite film may have cost a signifi-

cant portion of your take-home pay, but you can buy another one if the DVD is stolen or corrupted. Similarly, timing has bearing on asset

Assets' values are personal, time dependent, and often imprecise.

FIGURE 1-3 Values of Assets

value. For example, the value of the plans for a company's new product line is very high, especially to competitors. But once the new product is released, the plans' value drops dramatically.

The Vulnerability-Threat-Control Paradigm

The goal of computer security is protecting valuable assets. To study different ways of protection, we use a framework that describes how assets may be harmed and how to counter or mitigate that harm.

A **vulnerability** is a weakness in the system, for example, in procedures, design, or implementation, that might be exploited to cause loss or harm. For instance, a particular

system may be vulnerable to unauthorized data manipulation because the system does not verify a user's identity before allowing data access.

A vulnerability is a weakness that could be exploited to cause harm.

A **threat** to a computing system

is a set of circumstances that has the potential to cause loss or harm. To see the difference between a threat and a vulnerability, consider the illustration in Figure 1-4. Here, a wall is holding water back. The water to the left of the wall is a threat to the man on the right of the wall: The water could rise, overflowing onto the man, or it could stay beneath the

height of the wall, causing the wall to collapse. So the threat of harm is the potential for the man to get wet, get hurt, or be drowned. For now, the wall is intact, so the threat to the man is unrealized

A threat is a set of circumstances that could cause harm.

FIGURE 1-4 Threat and Vulnerability

6 Chapter 1 Introduction

However, we can see a small crack in the wall—a vulnerability that threatens the man's security. If the water rises to or beyond the level of the crack, it will exploit the vulnerability and harm the man.

There are many threats to a computer system, including human-initiated and computer-initiated ones. We have all experienced the results of inadvertent human errors, hardware design flaws, and software failures. But natural disasters are threats, too; they can bring a system down when the computer room is flooded or the data center collapses from an earthquake, for example.

A human who exploits a vulnerability perpetrates an **attack** on the system. An attack can also be launched by another system, as when one system sends an overwhelming flood of messages to another, virtually shutting down the second system's ability to function. Unfortunately, we have seen this type of attack frequently, as denial-of-service attacks deluge servers with more messages than they can handle. (We take a closer look at denial of service in Chapter 6.)

How do we address these problems? We use a **control** or **countermeasure** as protection. That is, a control is an action, device, procedure, or technique that removes or reduces a vulnerability. In Figure 1-4, the man is placing his finger in the hole, control-

ling the threat of water leaks until he finds a more permanent solution to the problem. In general, we can describe the relationship between threats, controls, and vulnerabilities in this way:

Controls prevent threats from exercising vulnerabilities.

A threat is blocked by control of a vulnerability.

Before we can protect assets, we need to know the kinds of harm we have to protect them against, so now we explore threats to valuable assets.

1.2 THREATS

We can consider potential harm to assets in two ways: First, we can look at what bad things can happen to assets, and second, we can look at who or what can cause or allow those bad things to happen. These two perspectives enable us to determine how to protect assets.

Think for a moment about what makes your computer valuable to you. First, you use it as a tool for sending and receiving email, searching the web, writing papers, and performing many other tasks, and you expect it to be available for use when you want it. Without your computer these tasks would be harder, if not impossible. Second, you rely heavily on your computer's integrity. When you write a paper and save it, you trust that the paper will reload exactly as you saved it. Similarly, you expect that the photo a friend passes you on a flash drive will appear the same when you load it into your computer as when you saw it on your friend's computer. Finally, you expect the "personal" aspect of a personal computer to stay personal, meaning you want it to protect your confidentiality. For example, you want your email messages to be just between you and

your listed recipients; you don't want them broadcast to other people. And when you write an essay, you expect that no one can copy it without your permission.

These three aspects, confidentiality, integrity, and availability, make your computer valuable to you. But viewed from another perspective, they are three possible ways to make it less valuable, that is, to cause you harm. If someone steals your computer, scrambles data on your disk, or looks at your private data files, the value of your computer has been diminished or your computer use has been harmed. These characteristics are both basic security properties and the objects of security threats.

We can define these three properties as follows.

- availability: the ability of a system to ensure that an asset can be used by any authorized parties
- **integrity:** the ability of a system to ensure that an asset is modified only by authorized parties
- **confidentiality:** the ability of a system to ensure that an asset is viewed only by authorized parties

These three properties, hallmarks of solid security, appear in the literature as early as James P. Anderson's essay on computer security [AND73] and reappear frequently in more recent computer security papers and discussions. Taken together (and rearranged), the properties are called the **C-I-A triad** or the **security triad**. ISO 7498-2 [ISO89] adds to them two more properties that are desirable, particularly in communication networks:

- authentication: the ability of a system to confirm the identity of a sender
- **nonrepudiation** or **accountability:** the ability of a system to confirm that a sender cannot convincingly deny having sent something

The U.S. Department of Defense [DOD85] adds auditability: the ability of a system to trace all actions related to a given asset. The C-I-A triad forms a foundation for thinking about security. Authenticity and nonrepudiation extend security notions to network communications, and auditability is important in establishing individual accountability for computer activity. In this book we generally use the C-I-A triad as our security taxonomy so that we can frame threats, vulnerabilities, and controls in terms of the C-I-A properties affected. We high-

light one of these other properties when it is relevant to a particular threat we are describing. For now, we focus on just the three elements of the triad.

C-I-A triad: confidentiality, integrity, availability

What can happen to harm the confidentiality, integrity, or availability of computer assets? If a thief steals your computer, you no longer have access, so you have lost availability; furthermore, if the thief looks at the pictures or documents you have stored, your confidentiality is compromised. And if the thief changes the content of your music files but then gives them back with your computer, the integrity of your data has been harmed. You can envision many scenarios based around these three properties.

Chapter 1 Introduction

8

FIGURE 1-5 Four Acts to Cause Security Harm

The C-I-A triad can be viewed from a different perspective: the nature of the harm caused to assets. Harm can also be characterized by four acts: **interception**, **interruption**, **modification**, and **fabrication**. These four acts are depicted in Figure 1-5. From this point of view, confidentiality can suffer if someone intercepts data, availability is lost if someone or something interrupts a flow of data or access to a computer, and integrity can fail if someone or something modifies data or fabricates false data. Thinking of these four kinds of acts can help you determine what threats might exist against the computers you are trying to protect.

To analyze harm, we next refine the C-I-A triad, looking more closely at each of its elements.

Confidentiality

Some things obviously need confidentiality protection. For example, students' grades, financial transactions, medical records, and tax returns are sensitive. A proud student may run out of a classroom screaming "I got an A!" but the student should be the one to choose whether to reveal that grade to others. Other things, such as diplomatic and military secrets, companies' marketing and product development plans, and educators' tests, also must be carefully controlled. Sometimes, however, it is not so obvious that something is sensitive. For example, a military food order may seem like innocuous information, but a sudden increase in the order could be a sign of incipient engagement in conflict. Purchases of food, hourly changes in location, and access to books are not

things you would ordinarily consider confidential, but they can reveal something that someone wants to be kept confidential.

The definition of confidentiality is straightforward: Only authorized people or systems can access protected data. However, as we see in later chapters, ensuring confidentiality can be difficult. For example, who determines which people or systems are authorized to access the current system? By "accessing" data, do we mean that an authorized party can access a single bit? the whole collection? pieces of data out of context? Can someone who is authorized disclose data to other parties? Sometimes there is even a question of who owns the data: If you visit a web page, do you own the fact that you clicked on a link, or does the web page owner, the Internet provider, someone else, or all of you?

In spite of these complicating examples, confidentiality is the security property we understand best because its meaning is narrower than that of the other two. We also understand confidentiality well because we can relate computing examples to those of preserving confidentiality in the real world.

Confidentiality relates most obviously to data, although we can think of the confidentiality of a piece of hardware (a novel invention) or a person (the whereabouts of a wanted criminal). Here are some properties that could mean a failure of data confidentiality:

- An unauthorized person accesses a data item.
- An unauthorized process or program accesses a data item.
- A person authorized to access certain data accesses other data not authorized (which is a specialized version of "an unauthorized person accesses a data item").
- An unauthorized person accesses an approximate data value (for example, not knowing someone's exact salary but knowing that the salary falls in a particular range or exceeds a particular amount).
- An unauthorized person learns the existence of a piece of data (for example, knowing that a company is developing a certain new product or that talks are underway about the merger of two companies).

Notice the general pattern of these statements: A person, process, or program is (or is not) authorized to access a data item in a particular way. We call the person, process, or program a **subject**, the data item an **object**, the kind of access (such as read, write, or execute) an **access mode**, and the authorization a **policy**, as shown in Figure 1-6. These four terms reappear throughout this book because they are fundamental aspects of computer security.

One word that captures most aspects of confidentiality is *view*, although you should not take that term literally. A failure of confidentiality does not necessarily mean that someone sees an object and, in fact, it is virtually impossible to look at bits in any meaningful way (although you may look at their representation as characters or pictures). The word view does connote another aspect of confidentiality in computer security, through the association with viewing a movie or a painting in a museum: look but do not touch. In computer security, confidentiality usually means obtaining but not modifying. Modification is the subject of integrity, which we consider in the next section.

FIGURE 1-6 Access Control

Integrity

Examples of integrity failures are easy to find. A number of years ago a malicious macro in a Word document inserted the word "not" after some random instances of the word "is;" you can imagine the havor that ensued. Because the document was generally syntactically correct, people did not immediately detect the change. In another case, a model of the Pentium computer chip produced an incorrect result in certain circumstances of floating-point arithmetic. Although the circumstances of failure were rare, Intel decided to manufacture and replace the chips. Many of us receive mail that is misaddressed because someone typed something wrong when transcribing from a written list. A worse situation occurs when that inaccuracy is propagated to other mailing lists such that we can never seem to correct the root of the problem. Other times we find that a spreadsheet seems to be wrong, only to find that someone typed "space 123" in a cell, changing it from a numeric value to text, so the spreadsheet program misused that cell in computation. Suppose someone converted numeric data to roman numerals: One could argue that IV is the same as 4, but IV would not be useful in most applications, nor would it be obviously meaningful to someone expecting 4 as an answer. These cases show some of the breadth of examples of integrity failures.

Integrity is harder to pin down than confidentiality. As Stephen Welke and Terry Mayfield [WEL90, MAY91, NCS91a] point out, integrity means different things in different contexts. When we survey the way some people use the term, we find several

different meanings. For example, if we say that we have preserved the integrity of an item, we may mean that the item is

- precise
- · accurate
- · unmodified
- · modified only in acceptable ways
- · modified only by authorized people
- modified only by authorized processes
- · consistent
- · internally consistent
- · meaningful and usable

Integrity can also mean two or more of these properties. Welke and Mayfield recognize three particular aspects of integrity—authorized actions, separation and protection of resources, and error detection and correction. Integrity can be enforced in much the same way as can confidentiality: by rigorous control of who or what can access which resources in what ways.

Availability

A computer user's worst nightmare: You turn on the switch and the computer does nothing. Your data and programs are presumably still there, but you cannot get at them. Fortunately, few of us experience that failure. Many of us do experience overload, however: access gets slower and slower; the computer responds but not in a way we consider normal or acceptable.

Availability applies both to data and to services (that is, to information and to information processing), and it is similarly complex. As with the notion of confidentiality, different people expect availability to mean different things. For example, an object or service is thought to be available if the following are true:

- It is present in a usable form.
- It has enough capacity to meet the service's needs.
- It is making clear progress, and, if in wait mode, it has a bounded waiting time.
- The service is completed in an acceptable period of time.

We can construct an overall description of availability by combining these goals. Following are some criteria to define availability.

- There is a timely response to our request.
- Resources are allocated fairly so that some requesters are not favored over others.
- Concurrency is controlled; that is, simultaneous access, deadlock management, and exclusive access are supported as required.

- The service or system involved follows a philosophy of fault tolerance, whereby hardware or software faults lead to graceful cessation of service or to workarounds rather than to crashes and abrupt loss of information. (Cessation does mean end; whether it is graceful or not, ultimately the system is unavailable. However, with fair warning of the system's stopping, the user may be able to move to another system and continue work.)
- The service or system can be used easily and in the way it was intended to be used. (This is a characteristic of usability, but an unusable system may also cause an availability failure.)

As you can see, expectations of availability are far-reaching. In Figure 1-7 we depict some of the properties with which availability overlaps. Indeed, the security community is just beginning to understand what availability implies and how to ensure it.

A person or system can do three basic things with a data item: view it, modify it, or use it. Thus, viewing (confidentiality), modifying (integrity), and using (availability) are the basic modes of access that computer security seeks to preserve.

Computer security seeks to prevent unauthorized viewing (confidentiality) or modification (integrity) of data while preserving access (availability).

A paradigm of computer security is **access control**: To implement a policy, computer security controls all accesses by all subjects to all protected objects in all modes of access. A small, centralized control of access is fundamental to preserving confidentiality and integrity, but it is not clear that a single access control point can enforce availability. Indeed, experts on dependability will note that single points of control can become single points of failure, making it easy for an attacker to destroy availability by disabling the single control point. Much of computer security's past success has focused on confidentiality and integrity; there are models of confidentiality and integrity, for

FIGURE 1-7 Availability and Related Aspects

example, see David Bell and Leonard La Padula [BEL73, BEL76] and Kenneth Biba [BIB77]. Availability is security's next great challenge.

We have just described the C-I-A triad and the three fundamental security properties it represents. Our description of these properties was in the context of things that need protection. To motivate your understanding we gave some examples of harm and threats to cause harm. Our next step is to think about the nature of threats themselves.

Types of Threats

For some ideas of harm, look at Figure 1-8, taken from Willis Ware's report [WAR70]. Although it was written when computers were so big, so expensive, and so difficult to operate that only large organizations like universities, major corporations, or government departments would have one, Ware's discussion is still instructive today. Ware was concerned primarily with the protection of classified data, that is, preserving confidentiality. In the figure, he depicts humans such as programmers and maintenance staff gaining access to data, as well as radiation by which data can escape as signals. From the figure you can see some of the many kinds of threats to a computer system.

One way to analyze harm is to consider the cause or source. We call a potential cause of harm a threat. Harm can be caused by either nonhuman events or humans. Examples of **nonhuman** threats include natural disasters

Threats are caused both by human and other sources.

FIGURE 1-8 Computer [Network] Vulnerabilities (from [WAR70])

like fires or floods; loss of electrical power; failure of a component such as a communications cable, processor chip, or disk drive; or attack by a wild boar.

Human threats can be either benign (nonmalicious) or malicious. **Nonmalicious** kinds of harm include someone's accidentally spilling a soft drink on a laptop, unintentionally deleting text, inadvertently sending an email message to the wrong person, and carelessly typing "12" instead of "21" when entering a phone number or clicking "yes" instead of "no" to overwrite a file. These inadvertent, human errors happen to

most people; we just hope that the seriousness of harm is not too great, or if it is, that we will not repeat the mistake.

Threats can be malicious or not.

Most computer security activity relates to **malicious**, **human-caused harm**: A malicious person actually wants to cause harm, and so we often use the term *attack* for a malicious computer security event. Malicious attacks can be random or directed. In a **random attack** the attacker wants to harm any computer or user; such an attack is analogous to accosting the next pedestrian who walks down the street. An example of a random attack is malicious code posted on a website that could be visited by anybody.

In a **directed attack**, the attacker intends harm to specific computers, perhaps at one organization (think of attacks against a political organization) or belonging to a specific individual (think of trying to drain a specific person's bank account, for example, by impersonation). Another class of directed attack is against a particular product, such as any computer running a particular browser. (We do not want to split hairs about whether such an attack is directed—at that one software product—or random, against any user of that product; the point is not semantic perfection but protecting against the attacks.)

The range of possible directed attacks is practically unlimited. Different kinds of threats are shown in Figure 1-9.

Threats can be targeted or random.

Although the distinctions shown in Figure 1-9 seem clear-cut, sometimes the nature of an attack is not obvious until the attack is well underway, or perhaps even ended. A normal hardware failure can seem like a directed, malicious attack to deny access, and hackers often try to conceal their activity to look like ordinary, authorized users. As computer security experts we need to anticipate what bad things might happen, instead of waiting for the attack to happen or debating whether the attack is intentional or accidental.

Neither this book nor any checklist or method can show you *all* the kinds of harm that can happen to computer assets. There are too many ways to interfere with your use of these assets. Two retrospective lists of *known* vulnerabilities are of interest, however. The Common Vulnerabilities and Exposures (CVE) list (see http://cve.mitre.org/) is a dictionary of publicly known security vulnerabilities and exposures. CVE's common identifiers enable data exchange between security products and provide a baseline index point for evaluating coverage of security tools and services. To measure the extent of harm, the Common Vulnerability Scoring System (CVSS) (see http://nvd.nist.gov/cvss.cfm) provides a standard measurement system that allows accurate and consistent scoring of vulnerability impact.

FIGURE 1-9 Kinds of Threats

Advanced Persistent Threat

Security experts are becoming increasingly concerned about a type of threat called advanced persistent threat. A lone attacker might create a random attack that snares a few, or a few million, individuals, but the resulting impact is limited to what that single attacker can organize and manage. A collection of attackers—think, for example, of the cyber equivalent of a street gang or an organized crime squad—might work together to purloin credit card numbers or similar financial assets to fund other illegal activity. Such attackers tend to be opportunistic, picking unlucky victims' pockets and moving on to other activities.

Advanced persistent threat attacks come from organized, well financed, patient assailants. Often affiliated with governments or quasi-governmental groups, these attackers engage in long term campaigns. They carefully select their targets, crafting attacks that appeal to specifically those targets; email messages called spear phishing (described in Chapter 4) are intended to seduce their recipients. Typically the attacks are silent, avoiding any obvious impact that would alert a victim, thereby allowing the attacker to exploit the victim's access rights over a long time.

The motive of such attacks is sometimes unclear. One popular objective is economic espionage. A series of attacks, apparently organized and supported by the Chinese government, was used in 2012 and 2013 to obtain product designs from aerospace companies in the United States. There is evidence the stub of the attack code was loaded into victim machines long in advance of the attack; then, the attackers installed the more complex code and extracted the desired data. In May 2014 the Justice Department indicted five Chinese backers in absentia for these attacks.

In the summer of 2014 a series of attacks against J.P. Morgan Chase bank and up to a dozen similar financial institutions allowed the assailants access to 76 million names, phone numbers, and email addresses. The attackers—and even their country of origin—remain unknown, as does the motive. Perhaps the attackers wanted more sensitive financial data, such as account numbers or passwords, but were only able to get the less valuable contact information. It is also not known if this attack was related to an attack a year earlier that disrupted service to that bank and several others.

To imagine the full landscape of possible attacks, you may find it useful to consider the kinds of people who attack computer systems. Although potentially anyone is an attacker, certain classes of people stand out because of their backgrounds or objectives. Thus, in the following sections we look at profiles of some classes of attackers.

Types of Attackers

Who are attackers? As we have seen, their motivations range from chance to a specific target. Putting aside attacks from natural and benign causes, we can explore who the attackers are and what motivates them.

Most studies of attackers actually analyze computer criminals, that is, people who have actually been convicted of a crime, primarily because that group is easy to identify and study. The ones who got away or who carried off an attack without being detected may have characteristics different from those of the criminals who have been caught. Worse, by studying only the criminals we have caught, we may not learn how to catch attackers who know how to abuse the system without being apprehended.

What does a cyber criminal look like? In television and films the villains wore shabby clothes, looked mean and sinister, and lived in gangs somewhere out of town. By contrast, the sheriff dressed well, stood proud and tall, was known and respected by everyone in town, and struck fear in the hearts of most criminals.

To be sure, some computer criminals are mean and sinister types. But many more wear business suits, have university degrees, and appear to be pillars of their communities. Some are high school or university students. Others are middle-aged business executives. Some are mentally deranged, overtly hostile, or extremely committed to a cause, and they attack computers as a symbol. Others are ordinary people tempted by personal profit, revenge, challenge, advancement, or job security—like perpetrators of any crime, using a computer or not. Researchers have tried to find the psychological traits that distinguish attackers, as described in Sidebar 1-1. These studies are far from conclusive, however, and the traits they identify may show correlation but not necessarily causality. To appreciate this point, suppose a study found that a disproportionate number of people convicted of computer crime were left-handed. Does that result imply that all left-handed people are computer criminals or that only left-handed people are? Certainly not. No single profile captures the characteristics of a "typical" computer attacker, and the characteristics of some notorious attackers also match many people

who are not attackers. As shown in Figure 1-10, attackers look just like anybody in a crowd.

No one pattern matches all attackers.

FIGURE 1-10 Attackers

SIDEBAR 1-1 An Attacker's Psychological Profile?

Temple Grandin, a professor of animal science at Colorado State University and a sufferer from a mental disorder called Asperger syndrome (AS), thinks that Kevin Mitnick and several other widely described hackers show classic symptoms of Asperger syndrome. Although quick to point out that no research has established a link between AS and hacking, Grandin notes similar behavior traits among Mitnick, herself, and other AS sufferers. An article in *USA Today* (29 March 2001) lists the following AS traits:

- poor social skills, often associated with being loners during childhood; the classic "computer nerd"
- fidgeting, restlessness, inability to make eye contact, lack of response to cues in social interaction, such as facial expressions or body language
- · exceptional ability to remember long strings of numbers
- ability to focus on a technical problem intensely and for a long time, although easily distracted on other problems and unable to manage several tasks at once
- · deep honesty and respect for laws

(continues)

SIDEBAR 1-1 Continued

Donn Parker [PAR98] has studied hacking and computer crime for many years. He states "hackers are characterized by an immature, excessively idealistic attitude . . . They delight in presenting themselves to the media as idealistic do-gooders, champions of the underdog."

Consider the following excerpt from an interview [SHA00] with "Mixter," the German programmer who admitted he was the author of a wide-spread piece of attack software called Tribal Flood Network (TFN) and its sequel TFN2K:

- Q: Why did you write the software?
- A: I first heard about Trin00 [another piece of attack software] in July '99 and I considered it as interesting from a technical perspective, but also potentially powerful in a negative way. I knew some facts of how Trin00 worked, and since I didn't manage to get Trin00 sources or binaries at that time, I wrote my own server-client network that was capable of performing denial of service.
- Q: Were you involved . . . in any of the recent high-profile attacks?
- A: No. The fact that I authored these tools does in no way mean that I condone their active use. I must admit I was quite shocked to hear about the latest attacks. It seems that the attackers are pretty clueless people who misuse powerful resources and tools for generally harmful and senseless activities just "because they can."

Notice that from some information about denial-of-service attacks, he wrote his own server-client network and then a sophisticated attack. But he was "quite shocked" to hear they were used for harm.

More research is needed before we can define the profile of a hacker. And even more work will be needed to extend that profile to the profile of a (malicious) attacker. Not all hackers become attackers; some hackers become extremely dedicated and conscientious system administrators, developers, or security experts. But some psychologists see in AS the rudiments of a hacker's profile.

Individuals

Originally, computer attackers were individuals, acting with motives of fun, challenge, or revenge. Early attackers acted alone. Two of the most well known among them are Robert Morris Jr., the Cornell University graduate student who brought down the Internet in 1988 [SPA89], and Kevin Mitnick, the man who broke into and stole data from dozens of computers, including the San Diego Supercomputer Center [MAR95].

Organized, Worldwide Groups

More recent attacks have involved groups of people. An attack against the government of the country of Estonia (described in more detail in Chapter 13) is believed to have been an uncoordinated outburst from a loose federation of attackers from around the world. Kevin Poulsen [POU05] quotes Tim Rosenberg, a research professor at George

Washington University, warning of "multinational groups of hackers backed by organized crime" and showing the sophistication of prohibition-era mobsters. He also reports that Christopher Painter, deputy director of the U.S. Department of Justice's computer crime section, argues that cyber criminals and serious fraud artists are increasingly working in concert or are one and the same. According to Painter, loosely connected groups of criminals all over the world work together to break into systems and steal and sell information, such as credit card numbers. For instance, in October 2004, U.S. and Canadian authorities arrested 28 people from 6 countries involved in an international, organized cybercrime ring to buy and sell credit card information and identities.

Whereas early motives for computer attackers such as Morris and Mitnick were personal, such as prestige or accomplishment, recent attacks have been heavily influenced by financial gain. Security firm McAfee reports "Criminals have realized the huge financial gains to be made from the Internet with little risk. They bring the skills, knowledge, and connections needed for large scale, high-value criminal enterprise that, when combined with computer skills, expand the scope and risk of cybercrime." [MCA05]

Organized Crime

Attackers' goals include fraud, extortion, money laundering, and drug trafficking, areas in which organized crime has a well-established presence. Evidence is growing that organized crime groups are engaging in computer crime. In fact, traditional criminals are recruiting hackers to join the lucrative world of cybercrime. For example, Albert Gonzales was sentenced in March 2010 to 20 years in prison for working with a crime ring to steal 40 million credit card numbers from retailer TJMaxx and others, costing over \$200 million (*Reuters*, 26 March 2010).

Organized crime may use computer crime (such as stealing credit card numbers or bank account details) to finance other aspects of crime. Recent attacks suggest that professional criminals have discovered just how lucrative computer crime can be. Mike Danseglio, a security project manager with Microsoft, said, "In 2006, the attackers want to pay the rent. They don't want to write a worm that destroys your hardware. They want to assimilate your computers and use them to make money." [NAR06a] Mikko Hyppönen, Chief Research Officer with Finnish security company f-Secure, agrees that today's attacks often come from Russia, Asia, and Brazil; the motive is now profit, not fame [BRA06]. Ken Dunham, Director of the Rapid Response Team for VeriSign

says he is "convinced that groups of well-organized mobsters have taken control of a global billion-dollar crime network powered by skillful hackers." [NAR06b]

Organized crime groups are discovering that computer crime can be lucrative.

McAfee also describes the case of a hacker-for-hire: a businessman who hired a 16-year-old New Jersey hacker to attack the websites of his competitors. The hacker barraged the site for a five-month period and damaged not only the target companies but also their Internet service providers (ISPs) and other unrelated companies that used the same ISPs. By FBI estimates, the attacks cost all the companies over \$2 million; the FBI arrested both hacker and businessman in March 2005 [MCA05].

Brian Snow [SNO05] observes that hackers want a score or some kind of evidence to give them bragging rights. Organized crime wants a resource; such criminals want to

stay under the radar to be able to extract profit from the system over time. These different objectives lead to different approaches to computer crime: The novice hacker can use a crude attack, whereas the professional attacker wants a neat, robust, and undetectable method that can deliver rewards for a long time.

Terrorists

The link between computer security and terrorism is quite evident. We see terrorists using computers in four ways:

- Computer as target of attack: Denial-of-service attacks and website defacements are popular activities for any political organization because they attract attention to the cause and bring undesired negative attention to the object of the attack. An example is the massive denial-of-service attack launched against the country of Estonia, detailed in Chapter 13.
- Computer as method of attack: Launching offensive attacks requires the use of computers. Stuxnet, an example of malicious computer code called a worm, is known to attack automated control systems, specifically a model of control system manufactured by Siemens. Experts say the code is designed to disable machinery used in the control of nuclear reactors in Iran [MAR10]. The persons behind the attack are unknown, but the infection is believed to have spread through USB flash drives brought in by engineers maintaining the computer controllers. (We examine the Stuxnet worm in more detail in Chapters 6 and 13.)
- Computer as enabler of attack: Websites, web logs, and email lists are effective, fast, and inexpensive ways to allow many people to coordinate. According to the Council on Foreign Relations, the terrorists responsible for the November 2008 attack that killed over 200 people in Mumbai used GPS systems to guide their boats, Blackberries for their communication, and Google Earth to plot their routes.
- Computer as enhancer of attack: The Internet has proved to be an invaluable
 means for terrorists to spread propaganda and recruit agents. In October 2009
 the FBI arrested Colleen LaRose, also known as JihadJane, after she had spent
 months using email, YouTube, MySpace, and electronic message boards to
 recruit radicals in Europe and South Asia to "wage violent jihad," according to
 a federal indictment.

We cannot accurately measure the degree to which terrorists use computers, because terrorists keep secret the nature of their activities and because our definitions and measurement tools are rather weak. Still, incidents like the one described in Sidebar 1-2 provide evidence that all four of these activities are increasing.

SIDEBAR 1-2 The Terrorists, Inc., IT Department

In 2001, a reporter for the *Wall Street Journal* bought a used computer in Afghanistan. Much to his surprise, he found that the hard drive contained what appeared to be files from a senior al Qaeda operative. The reporter,

Alan Cullison [CUL04], reports that he turned the computer over to the FBI. In his story published in 2004 in *The Atlantic*, he carefully avoids revealing anything he thinks might be sensitive.

The disk contained over 1,000 documents, many of them encrypted with relatively weak encryption. Cullison found draft mission plans and white papers setting forth ideological and philosophical arguments for the attacks of 11 September 2001. Also found were copies of news stories on terrorist activities. Some of the found documents indicated that al Qaeda was not originally interested in chemical, biological, or nuclear weapons, but became interested after reading public news articles accusing al Qaeda of having those capabilities.

Perhaps most unexpected were email messages of the kind one would find in a typical office: recommendations for promotions, justifications for petty cash expenditures, and arguments concerning budgets.

The computer appears to have been used by al Qaeda from 1999 to 2001. Cullison notes that Afghanistan in late 2001 was a scene of chaos, and it is likely the laptop's owner fled quickly, leaving the computer behind, where it fell into the hands of a secondhand goods merchant who did not know its contents.

But this computer's contents illustrate an important aspect of computer security and confidentiality: We can never predict the time at which a security disaster will strike, and thus we must always be prepared to act immediately if it suddenly happens.

If someone on television sneezes, you do not worry about the possibility of catching a cold. But if someone standing next to you sneezes, you may become concerned. In the next section we examine the harm that can come from the presence of a computer security threat on your own computer systems.

1.3 HARM

The negative consequence of an actualized threat is **harm**; we protect ourselves against threats in order to reduce or eliminate harm. We have already described many examples of computer harm: a stolen computer, modified or lost file, revealed private letter, or denied access to data. These events cause harm that we want to avoid.

In our earlier discussion of assets, we noted that value depends on owner or outsider perception and need. Some aspects of value are immeasurable, such as the value of the paper you need to submit to your professor tomorrow; if you lose the paper (that is, if its availability is lost), no amount of money will compensate you for it. Items on which you place little or no value might be more valuable to someone else; for example, the group photograph taken at last night's party can reveal that your friend was not where he told his wife he would be. Even though it may be difficult to assign a specific number as the value of an asset, you can usually assign a value on a generic scale, such as moderate or minuscule or incredibly high, depending on the degree of harm that loss or damage to the object would cause. Or you can assign a value relative to other assets,

based on comparable loss: This version of the file is more valuable to you than that version.

In their 2010 global Internet threat report, security firm Symantec surveyed the kinds of goods and services offered for sale on underground web pages. The item most frequently offered in both 2009 and 2008 was credit card numbers, at prices ranging from \$0.85 to \$30.00 each. (Compare those prices to an individual's effort to deal with the effect of a stolen credit card or the potential amount lost by the issuing bank.) Second most frequent was bank account credentials, at \$15 to \$850; these were offered for sale at 19% of websites in both years. Email accounts were next at \$1 to \$20, and lists of email addresses went for \$1.70 to \$15.00 per thousand. At position 10 in 2009 were website administration credentials, costing only \$2 to \$30. These black market websites demonstrate that the market price of computer assets can be dramatically different from their value to rightful owners.

The value of many assets can change over time, so the degree of harm (and therefore the severity of a threat) can change, too. With unlimited time, money, and capability, we might try to protect against all kinds of harm. But because our resources are limited, we must prioritize our protection, safeguarding only against serious threats and the

ones we can control. Choosing the threats we try to mitigate involves a process called **risk management**, and it includes weighing the seriousness of a threat against our ability to protect.

Risk management involves choosing which threats to control and what resources to devote to protection.

Risk and Common Sense

The number and kinds of threats are practically unlimited because devising an attack requires an active imagination, determination, persistence, and time (as well as access and resources). The nature and number of threats in the computer world reflect life in general: The causes of harm are limitless and largely unpredictable. Natural disasters like volcanoes and earthquakes happen with little or no warning, as do auto accidents, heart attacks, influenza, and random acts of violence. To protect against accidents or the flu, you might decide to stay indoors, never venturing outside. But by doing so, you trade one set of risks for another; while you are inside, you are vulnerable to building collapse. There are too many possible causes of harm for us to protect ourselves—or our computers—completely against all of them.

In real life we make decisions every day about the best way to provide our security. For example, although we may choose to live in an area that is not prone to earthquakes, we cannot entirely eliminate earthquake risk. Some choices are conscious, such as deciding not to walk down a dark alley in an unsafe neighborhood; other times our subconscious guides us, from experience or expertise, to take some precaution. We evaluate the likelihood and severity of harm, and then consider ways (called countermeasures or controls) to address threats and determine the controls' effectiveness.

Computer security is similar. Because we cannot protect against everything, we prioritize: Only so much time, energy, or money is available for protection, so we address

some risks and let others slide. Or we consider alternative courses of action, such as transferring risk by purchasing insurance or even doing nothing if the side effects of the countermeasure could be worse than the possible harm. The risk that remains uncovered by controls is called **residual risk**.

A basic model of risk management involves a user's calculating the value of all assets, determining the amount of harm from all possible threats, computing the costs of protection, selecting safeguards (that is, controls or countermeasures) based on the degree of risk and on limited resources, and applying the safeguards to optimize harm averted. This approach to risk management is a logical and sensible approach to protection, but it has significant drawbacks. In reality, it is difficult to assess the value of each asset; as we have seen, value can change depending on context, timing, and a host of other characteristics. Even harder is determining the impact of all possible threats. The range of possible threats is effectively limitless, and it is difficult (if not impossible in some situations) to know the short- and long-term impacts of an action. For instance, Sidebar 1-3 describes a study of the impact of security breaches over time on corporate finances, showing that a threat must be evaluated over time, not just at a single instance.

SIDEBAR 1-3 Short- and Long-term Risks of Security Breaches

It was long assumed that security breaches would be bad for business: that customers, fearful of losing their data, would veer away from insecure businesses and toward more secure ones. But empirical studies suggest that the picture is more complicated. Early studies of the effects of security breaches, such as that of Campbell [CAM03], examined the effects of breaches on stock price. They found that a breach's impact could depend on the nature of the breach itself; the effects were higher when the breach involved unauthorized access to confidential data. Cavusoglu et al. [CAV04] discovered that a breach affects the value not only of the company experiencing the breach but also of security enterprises: On average, the breached firms lost 2.1 percent of market value within two days of the breach's disclosure, but security developers' *market* value actually *increased* 1.36 percent.

Myung Ko and Carlos Dorantes [KO06] looked at the longer-term financial effects of publicly announced breaches. Based on the Campbell et al. study, they examined data for four quarters following the announcement of unauthorized access to confidential data. Ko and Dorantes note many types of possible breach-related costs:

"Examples of short-term costs include cost of repairs, cost of replacement of the system, lost business due to the disruption of business operations, and lost productivity of employees. These are also considered tangible costs. On the other hand, long-term costs include the loss of existing customers due to loss of trust, failing to attract potential future customers due to negative reputation

(continues)

SIDEBAR 1-3 Continued

from the breach, loss of business partners due to loss of trust, and potential legal liabilities from the breach. Most of these costs are intangible costs that are difficult to calculate but extremely important in assessing the overall security breach costs to the organization."

Ko and Dorantes compared two groups of companies: one set (the treatment group) with data breaches, and the other (the control group) without a breach but matched for size and industry. Their findings were striking. Contrary to what you might suppose, the breached firms had no decrease in performance for the quarters following the breach, but their return on assets decreased in the third quarter. The comparison of treatment with control companies revealed that the control firms generally outperformed the breached firms. However, the breached firms outperformed the control firms in the fourth quarter.

These results are consonant with the results of other researchers who conclude that there is minimal long-term economic impact from a security breach. There are many reasons why this is so. For example, customers may think that all competing firms have the same vulnerabilities and threats, so changing to another vendor does not reduce the risk. Another possible explanation may be a perception that a breached company has better security since the breach forces the company to strengthen controls and thus reduce the likelihood of similar breaches. Yet another explanation may simply be the customers' short attention span; as time passes, customers forget about the breach and return to business as usual.

All these studies have limitations, including small sample sizes and lack of sufficient data. But they clearly demonstrate the difficulties of quantifying and verifying the impacts of security risks, and point out a difference between short- and long-term effects.

Although we should not apply protection haphazardly, we will necessarily protect against threats we consider most likely or most damaging. For this reason, it is essential to understand how we perceive threats and evaluate their likely occurrence and impact. Sidebar 1-4 summarizes some of the relevant research in risk perception and decision-making. Such research suggests that, for relatively rare instances such as high-impact security problems, we must take into account the ways in which people focus more on the impact than on the actual likelihood of occurrence.

SIDEBAR 1-4 Perception of the Risk of Extreme Events

When a type of adverse event happens frequently, we can calculate its likelihood and impact by examining both frequency and nature of the collective set of events. For instance, we can calculate the likelihood that it will

rain this week and take an educated guess at the number of inches of precipitation we will receive; rain is a fairly frequent occurrence. But security problems are often extreme events: They happen infrequently and under a wide variety of circumstances, so it is difficult to look at them as a group and draw general conclusions.

Paul Slovic's work on risk addresses the particular difficulties with extreme events. He points out that evaluating risk in such cases can be a political endeavor as much as a scientific one. He notes that we tend to let values, process, power, and trust influence our risk analysis [SLO99].

Beginning with Fischoff et al. [FIS78], researchers characterized extreme risk along two perception-based axes: the dread of the risk and the degree to which the risk is unknown. These feelings about risk, called *affects* by psychologists, enable researchers to discuss relative risks by placing them on a plane defined by the two perceptions as axes. A study by Loewenstein et al. [LOE01] describes how risk perceptions are influenced by association (with events already experienced) and by affect at least as much if not more than by reason. In fact, if the two influences compete, feelings usually trump reason.

This characteristic of risk analysis is reinforced by prospect theory: studies of how people make decisions by using reason and feeling. Kahneman and Tversky [KAH79] showed that people tend to overestimate the likelihood of rare, unexperienced events because their feelings of dread and the unknown usually dominate analytical reasoning about the low likelihood of occurrence. By contrast, if people experience similar outcomes and their likelihood, their feeling of dread diminishes and they can actually underestimate rare events. In other words, if the impact of a rare event is high (high dread), then people focus on the impact, regardless of the likelihood. But if the impact of a rare event is small, then they pay attention to the likelihood.

Let us look more carefully at the nature of a security threat. We have seen that one aspect—its potential harm—is the amount of damage it can cause; this aspect is the **impact** component of the risk. We also consider the magnitude of the threat's **likelihood**. A likely threat is not just one that someone might want to pull off but rather one that could actually occur. Some people might daydream about getting rich by robbing a bank; most, however, would reject that idea because of its difficulty (if not its immorality or risk). One aspect of likelihood is feasibility: Is it even possible to accomplish

the attack? If the answer is no, then the likelihood is zero, and therefore so is the risk. So a good place to start in assessing risk is to look at whether the proposed action is feasible. Three factors determine feasibility, as we describe next.

Spending for security is based on the impact and likelihood of potential harm—both of which are nearly impossible to measure precisely.

Method-Opportunity-Motive

A malicious attacker must have three things to ensure success: method, opportunity, and motive, depicted in Figure 1-11. Roughly speaking, method is the how; opportunity, the when; and motive, the why of an attack. Deny the attacker any of those three and the attack will not succeed. Let us examine these properties individually.

Method

By **method** we mean the skills, knowledge, tools, and other things with which to perpetrate the attack. Think of comic figures that want to do something, for example, to steal valuable jewelry, but the characters are so inept that their every move is doomed to fail. These people lack the capability or method to succeed, in part because there are no classes in jewel theft or books on burglary for dummies.

Anyone can find plenty of courses and books about computing, however. Knowledge of specific models of computer systems is widely available in bookstores and on

FIGURE 1-11 Method–Opportunity–Motive

the Internet. Mass-market systems (such as the Microsoft or Apple or Unix operating systems) are readily available for purchase, as are common software products, such as word processors or database management systems, so potential attackers can even get hardware and software on which to experiment and perfect an attack. Some manufacturers release detailed specifications on how the system was designed or how it operates, as guides for users and integrators who want to implement other complementary products. Various attack tools—scripts, model programs, and tools to test for weaknesses—are available from hackers' sites on the Internet, to the degree that many attacks require only the attacker's ability to download and run a program. The term **script kid-die** describes someone who downloads a complete attack code package and needs only to enter a few details to identify the target and let the script perform the attack. Often, only time and inclination limit an attacker.

Opportunity

Opportunity is the time and access to execute an attack. You hear that a fabulous apartment has just become available, so you rush to the rental agent, only to find someone else rented it five minutes earlier. You missed your opportunity.

Many computer systems present ample opportunity for attack. Systems available to the public are, by definition, accessible; often their owners take special care to make them fully available so that if one hardware component fails, the owner has spares instantly ready to be pressed into service. Other people are oblivious to the need to protect their computers, so unattended laptops and unsecured network connections give ample opportunity for attack. Some systems have private or undocumented entry points for administration or maintenance, but attackers can also find and use those entry points to attack the systems.

Motive

Finally, an attacker must have a **motive** or reason to want to attack. You probably have ample opportunity and ability to throw a rock through your neighbor's window, but you do not. Why not? Because you have no reason to want to harm your neighbor: You lack motive.

We have already described some of the motives for computer crime: money, fame, self-esteem, politics, terror. It is often difficult to determine motive for an attack. Some places are "attractive targets," meaning they are very appealing to attackers. Popular targets include law enforcement and defense department computers, perhaps because they are presumed to be well protected against attack (so they present a challenge

and a successful attack shows the attacker's prowess). Other systems are attacked because they are easy to attack. And some systems are attacked at random simply because they are there.

Method, opportunity, and motive are all necessary for an attack to succeed; deny any of these and the attack will fail.

By demonstrating feasibility, the factors of method, opportunity, and motive determine whether an attack can succeed. These factors give the advantage to the attacker because they are qualities or strengths the attacker must possess. Another factor, this time giving an advantage to the defender, determines whether an attack will succeed: The attacker needs a vulnerability, an undefended place to attack. If the defender removes vulnerabilities, the attacker cannot attack.

1.4 **VULNERABILITIES**

As we noted earlier in this chapter, a vulnerability is a weakness in the security of the computer system, for example, in procedures, design, or implementation, that might be exploited to cause loss or harm. Think of a bank, with an armed guard at the front door, bulletproof glass protecting the tellers, and a heavy metal vault requiring multiple keys for entry. To rob a bank, you would have to think of how to exploit a weakness not covered by these defenses. For example, you might bribe a teller or pose as a maintenance worker.

Computer systems have vulnerabilities, too. In this book we consider many, such as weak authentication, lack of access control, errors in programs, finite or insufficient resources, and inadequate physical protection. Paired with a credible attack, each of

these vulnerabilities can allow harm to confidentiality, integrity, or availability. Each attack vector seeks to exploit a particular vulnerability.

Vulnerabilities are weaknesses that can allow harm to occur.

Security analysts speak of a

system's attack surface, which is the system's full set of vulnerabilities—actual and potential. Thus, the attack surface includes physical hazards, malicious attacks by outsiders, stealth data theft by insiders, mistakes, and impersonations. Although such attacks range from easy to highly improbable, analysts must consider all possibilities.

Our next step is to find ways to block threats by neutralizing vulnerabilities.

1.5 **CONTROLS**

A control or countermeasure is a means to counter threats. Harm occurs when a threat is realized against a vulnerability. To protect against harm, then, we can neutralize the threat, close the vulnerability, or both. The possibility for harm to occur is called risk. We can deal with harm in several ways:

- **prevent** it, by blocking the attack or closing the vulnerability
- **deter** it, by making the attack harder but not impossible
- **deflect** it, by making another target more attractive (or this one less so)
- mitigate it, by making its impact less severe
- **detect** it, either as it happens or some time after the fact
- recover from its effects

Of course, more than one of these controls can be used simultaneously. So, for example, we might try to prevent intrusions—but if we suspect we cannot prevent all of

them, we might also install a detection device to warn of an imminent attack. And we should have in place incident-response procedures to help in the recovery in case an intrusion does succeed.

Security professionals balance the cost and effectiveness of controls with the likelihood and severity of harm.

To consider the controls or countermeasures that attempt to prevent exploiting a computing system's vulnerabilities, we begin by thinking about traditional ways to enhance physical security. In the Middle Ages, castles and fortresses were built to protect the people and valuable property inside. The fortress might have had one or more security characteristics, including

- a strong gate or door to repel invaders
- · heavy walls to withstand objects thrown or projected against them
- · a surrounding moat to control access
- arrow slits to let archers shoot at approaching enemies
- crenellations to allow inhabitants to lean out from the roof and pour hot or vile liquids on attackers
- a drawbridge to limit access to authorized people
- a portcullis to limit access beyond the drawbridge
- gatekeepers to verify that only authorized people and goods could enter

Similarly, today we use a multipronged approach to protect our homes and offices. We may combine strong locks on the doors with a burglar alarm, reinforced windows, and even a nosy neighbor to keep an eye on our valuables. In each case, we select one or more ways to deter an intruder or attacker, and we base our selection not only on the value of what we protect but also on the effort we think an attacker or intruder will expend to get inside.

Computer security has the same characteristics. We have many controls at our disposal. Some are easier than others to use or implement. Some are cheaper than others to use or implement. And some are more difficult than others for intruders to override. Figure 1-12 illustrates how we use a combination of controls to secure our valuable resources. We use one or more controls, according to what we are protecting, how the cost of protection compares with the risk of loss, and how hard we think intruders will work to get what they want.

In this section, we present an overview of the controls available to us. In the rest of this book, we examine how to use controls against specific kinds of threats.

We can group controls into three largely independent classes. The following list shows the classes and several examples of each type of control.

- Physical controls stop or block an attack by using something tangible too, such as walls and fences
 - locks

FIGURE 1-12 Effects of Controls

- (human) guards
- sprinklers and other fire extinguishers
- Procedural or administrative controls use a command or agreement that
 - requires or advises people how to act; for example,
 - laws, regulations
 - policies, procedures, guidelines
 - copyrights, patents
 - contracts, agreements
- Technical controls counter threats with technology (hardware or software), including
 - passwords
 - program or operating system access controls
 - network protocols
 - firewalls, intrusion detection systems
 - encryption
 - network traffic flow regulators

(Note that the term "logical controls" is also used, but some people use it to mean administrative controls, whereas others use it to mean technical controls. To avoid confusion, we do not use that term.)

As shown in Figure 1-13, you can think in terms of the property to be protected and the kind of threat when you are choosing appropriate types of countermeasures. None of these classes is necessarily better than or preferable to the others; they work in different ways with different kinds of results. And it can be effective to use **overlapping controls** or **defense in depth**: more than one control or more than one class of control to achieve protection.

FIGURE 1-13 Types of Countermeasures

1.6 CONCLUSION

Computer security attempts to ensure the confidentiality, integrity, and availability of computing systems and their components. Three principal parts of a computing system are subject to attacks: hardware, software, and data. These three, and the communications among them, are susceptible to computer security vulnerabilities. In turn, those people and systems interested in compromising a system can devise attacks that exploit the vulnerabilities.

In this chapter we have explained the following computer security concepts:

- Security situations arise in many everyday activities, although sometimes it can
 be difficult to distinguish between a security attack and an ordinary human or
 technological breakdown. Alas, clever attackers realize this confusion, so they
 may make their attack seem like a simple, random failure.
- A threat is an incident that could cause harm. A vulnerability is a weakness
 through which harm could occur. These two problems combine: Either without
 the other causes no harm, but a threat exercising a vulnerability means damage.
 To control such a situation, we can either block or diminish the threat, or close
 the vulnerability (or both).
- Seldom can we achieve perfect security: no viable threats and no exercisable
 vulnerabilities. Sometimes we fail to recognize a threat, or other times we may
 be unable or unwilling to close a vulnerability. Incomplete security is not a bad
 situation; rather, it demonstrates a balancing act: Control certain threats and vulnerabilities, apply countermeasures that are reasonable, and accept the risk of
 harm from uncountered cases.

32 Chapter 1 Introduction

An attacker needs three things: method—the skill and knowledge to perform
a successful attack; opportunity—time and access by which to attack; and
motive—a reason to want to attack. Alas, none of these three is in short supply,
which means attacks are inevitable.

In this chapter we have introduced the notions of threats and harm, vulnerabilities, attacks and attackers, and countermeasures. Attackers leverage threats that exploit vulnerabilities against valuable assets to cause harm, and we hope to devise countermeasures to eliminate means, opportunity, and motive. These concepts are the basis we need to study, understand, and master computer security.

Countermeasures and controls can be applied to the data, the programs, the system, the physical devices, the communications links, the environment, and the personnel. Sometimes several controls are needed to cover a single vulnerability, but sometimes one control addresses many problems at once.

1.7 WHAT'S NEXT?

The rest of this book is organized around the major aspects or pieces of computer security. As you have certainly seen in almost daily news reports, computer security incidents abound. The nature of news is that failures are often reported, but seldom successes. You almost never read a story about hackers who tried to break into the computing system of a bank but were foiled because the bank had installed strong, layered defenses. In fact, attacks repelled far outnumber those that succeed, but such good situations do not make interesting news items.

Still, we do not want to begin with examples in which security controls failed. Instead, in Chapter 2 we begin by giving you descriptions of three powerful and widely used security protection methods. We call these three our security toolkit, in part because they are effective but also because they are applicable. We refer to these techniques in probably every other chapter of this book, so we want not only to give them a prominent position up front but also to help lodge them in your brain. Our three featured tools are identification and authentication, access control, and encryption.

After presenting these three basic tools we lead into domains in which computer security applies. We begin with the simplest computer situations, individual programs, and explore the problems and protections of computer code in Chapter 3. We also consider malicious code, such as viruses and Trojan horses (defining those terms along with other types of harmful programs). As you will see in other ways, there is no magic that can make bad programs secure or turn programmers into protection gurus. We do, however, point out some vulnerabilities that show up in computer code and describe ways to counter those weaknesses, both during program development and as a program executes.

Modern computing involves networking, especially using the Internet. We focus first on how networked computing affects individuals, primarily through browsers and other basic network interactions such as email. In Chapter 4 we look at how users can be tricked by skillful writers of malicious code. These attacks tend to affect the protection of confidentiality of users' data and integrity of their programs.

Chapter 5 covers operating systems, continuing our path of moving away from things the user can see and affect directly. We see what protections operating systems can provide to users' programs and data, most often against attacks on confidentiality or integrity. We also see how the strength of operating systems can be undermined by attacks, called rootkits, that directly target operating systems and render them unable to protect themselves or their users.

In Chapter 6 we return to networks, this time looking at the whole network and its impact on users' abilities to communicate data securely across the network. We also study a type of attack called denial of service, just what its name implies, that is the first major example of a failure of availability.

We consider data, databases, and data mining in Chapter 7. The interesting cases involve large databases in which confidentiality of individuals' private data is an objective. Integrity of the data in the databases is also a significant concern.

In Chapter 8 we move even further from the individual user and study cloud computing, a technology becoming quite popular. Companies are finding it convenient and cost effective to store data "in the cloud," and individuals are doing the same to have shared access to things such as music and photos. There are security risks involved in this movement, however.

You may have noticed our structure: We organize our presentation from the user outward through programs, browsers, operating systems, networks, and the cloud, a progression from close to distant. In Chapter 9 we return to the user for a different reason: We consider privacy, a property closely related to confidentiality. Our treatment here is independent of where the data are: on an individual computer, a network, or a database. Privacy is a property we as humans deserve, and computer security can help preserve it, as we present in that chapter.

In Chapter 10 we look at several topics of management of computing as related to security. Security incidents occur, and computing installations need to be ready to respond, whether the cause is a hacker attack, software catastrophe, or fire. Managers also have to decide what controls to employ, because countermeasures cost money that must be spent wisely. Computer security protection is hard to evaluate: When it works you do not know it does. Performing risk analysis and building a case for security are important management tasks.

Some security protections are beyond the scope an individual can address. Organized crime from foreign countries is something governments must deal with, through a legal system. In Chapter 11 we consider laws affecting computer security. We also look at ethical standards, what is "right" in computing.

In Chapter 12 we return to cryptography, which we introduced in Chapter 2. Cryptography merits courses and textbooks of its own, and the topic is detailed enough that most of the real work in the field is done at the graduate level and beyond. We use Chapter 2 to introduce the concepts enough to be able to apply them. In Chapter 12 we expand upon that introduction and peek at some of the formal and mathematical underpinnings of cryptography.

Finally, in Chapter 13 we raise four topic areas. These are domains with an important need for computer security, although the areas are evolving so rapidly that computer

34 Chapter 1 Introduction

security may not be addressed as fully as it should. These areas are the so-called Internet of Things (the interconnection of network-enabled devices from toasters to automobiles and insulin pumps), computer security economics, electronic voting, and computer-assisted terrorism and warfare.

We trust this organization will help you to appreciate the richness of an important field that touches many of the things we depend on.

1.8 EXERCISES

- 1. Distinguish between vulnerability, threat, and control.
- 2. Theft usually results in some kind of harm. For example, if someone steals your car, you may suffer financial loss, inconvenience (by losing your mode of transportation), and emotional upset (because of invasion of your personal property and space). List three kinds of harm a company might experience from theft of computer equipment.
- 3. List at least three kinds of harm a company could experience from electronic espionage or unauthorized viewing of confidential company materials.
- List at least three kinds of damage a company could suffer when the integrity of a program or company data is compromised.
- 5. List at least three kinds of harm a company could encounter from loss of service, that is, failure of availability. List the product or capability to which access is lost, and explain how this loss hurts the company.
- 6. Describe a situation in which you have experienced harm as a consequence of a failure of computer security. Was the failure malicious or not? Did the attack target you specifically or was it general and you were the unfortunate victim?
- 7. Describe two examples of vulnerabilities in automobiles for which auto manufacturers have instituted controls. Tell why you think these controls are effective, somewhat effective, or ineffective.
- 8. One control against accidental software deletion is to save all old versions of a program. Of course, this control is prohibitively expensive in terms of cost of storage. Suggest a less costly control against accidental software deletion. Is your control effective against all possible causes of software deletion? If not, what threats does it not cover?
- **9.** On your personal computer, who can install programs? Who can change operating system data? Who can replace portions of the operating system? Can any of these actions be performed remotely?
- 10. Suppose a program to print paychecks secretly leaks a list of names of employees earning more than a certain amount each month. What controls could be instituted to limit the vulnerability of this leakage?
- 11. Preserving confidentiality, integrity, and availability of data is a restatement of the concern over interruption, interception, modification, and fabrication. How do the first three concepts relate to the last four? That is, is any of the four equivalent to one or more of the three? Is one of the three encompassed by one or more of the four?
- **12.** Do you think attempting to break in to (that is, obtain access to or use of) a computing system without authorization should be illegal? Why or why not?

- 13. Describe an example (other than the ones mentioned in this chapter) of data whose confidentiality has a short timeliness, say, a day or less. Describe an example of data whose confidentiality has a timeliness of more than a year.
- **14.** Do you currently use any computer security control measures? If so, what? Against what attacks are you trying to protect?
- 15. Describe an example in which absolute denial of service to a user (that is, the user gets no response from the computer) is a serious problem to that user. Describe another example where 10 percent denial of service to a user (that is, the user's computation progresses, but at a rate 10 percent slower than normal) is a serious problem to that user. Could access by unauthorized people to a computing system result in a 10 percent denial of service to the legitimate users? How?
- **16.** When you say that software is of high quality, what do you mean? How does security fit in your definition of quality? For example, can an application be insecure and still be "good"?
- 17. Developers often think of software quality in terms of faults and failures. Faults are problems (for example, loops that never terminate or misplaced commas in statements) that developers can see by looking at the code. Failures are problems, such as a system crash or the invocation of the wrong function, that are visible to the user. Thus, faults can exist in programs but never become failures, because the conditions under which a fault becomes a failure are never reached. How do software vulnerabilities fit into this scheme of faults and failures? Is every fault a vulnerability? Is every vulnerability a fault?
- **18.** Consider a program to display on your website your city's current time and temperature. Who might want to attack your program? What types of harm might they want to cause? What kinds of vulnerabilities might they exploit to cause harm?
- 19. Consider a program that allows consumers to order products from the web. Who might want to attack the program? What types of harm might they want to cause? What kinds of vulnerabilities might they exploit to cause harm?
- 20. Consider a program to accept and tabulate votes in an election. Who might want to attack the program? What types of harm might they want to cause? What kinds of vulnerabilities might they exploit to cause harm?
- 21. Consider a program that allows a surgeon in one city to assist in an operation on a patient in another city via an Internet connection. Who might want to attack the program? What types of harm might they want to cause? What kinds of vulnerabilities might they exploit to cause harm?

Index

1×1 GIF, 254, 628	policy, 9
802.11 protocols (WiFi), 376	privilege list, 82
	procedure-oriented, 85
Abstraction, in operating system, 289	propagation, 77, 83
Acceptance testing, 211	revocation, 76
Access	role-based, 85-86
blocked, 399	segmentation, 303
concurrent, 11	Access log, 74
controlled, 283	Accountability
exclusiveness, 11	for private data collection, 597
log, 74	of asset, 7
mediation, 152, 155	versus privacy, 641
mode, 72	Accumulation, of data, 613
point, promiscuous, 386	Accuracy, 55, 62, 242, 488, 531
point, undocumented, 157	authentication, 56
point, wireless, 376	data, 11, 827
rights of individuals, 603	data collection, 599
simultaneous, 11	elections, 840
theft of, 750	element, database, 513
to data, 8	risk analysis, 685
to data, as asset, 3	ACL, see Access control list
tracking, 546	Activation, process, 320
unauthorized physical, 689	Ad, third-party, 622
Access control, 12, 72, 76, 78, 815	Add subkey, in AES, 790
capability, 82	Add-in, browser, 232
directory, 76 82	Add-on, security as an, 315
ticket, 82	Address
database, 506, 508, 511	hiding, 303
device, 284	resolution, 414
failure of, 152, 155	space randomization, 210
file, 284	spoofing, 413
general object, 284	translation, page, 306
granularity of, 287, 511	translation, segment, 303
list, 80, 292	Addressing 418, 434, 446
matrix, 78	advertising routing, 410
paradigm, 292	failure of, 408
physical, 690	network, 351
privacy, 594, 608	stealth mode, 487

878 Index

Adelman, Leonard, 103, 795	Anonymization, 613, 615
Administration, of access control, 73	data, 608
Administrator, database, 502	Hadoop, 545
Administrator, system, 358	privacy, 597
Advanced Encryption Standard (AES), see AES	Antivirus tool, 191, 329
Advanced Persistent Threat, 15	AOL, 527
Advertiser, 626	Apache Hadoop, 542
Advertising, and privacy, 629	API, 211
Advertising, Internet, 622	API, 211 App store, 819
Advertising, internet, 622 Adware, 170, 629	**
	App, 819
Aerospace industry, target of attack, 15	review of, 819 signed, 819
AES (Advanced Encryption Standard), 98, 393, 439, 779,	Appended virus, 181
789, 803	* *
cycle in, 99	Apple Corp., 818
key length in, 109	iCloud, 559
speed of encryption, 103	Mac OS operating system, 291, 302
tamper detection, 113	SSL bug, 213
Agent, software, 474	Application Programming Interface (API), 211
Aggregation, 246	Application proxy firewall 459, 468
data, 640	Application whitelisting, 581
database, 526	Application-based network attack, 398
data mining, 537	Approximate value, of data, 9
personal data, 623	Architecture
privacy, 618	network, 470
AH (Authentication Header), see Authentication Header	system, 450
Al Qaeda, 20–21	tagged, 301, 305
Alarm, 691	Arithmetic inference, database, 522
Alarm, intrusion detection system, 483, 484	ARPANET, 143, 508
Aleph One, see Levy, Elias	Asia, 19
Algebraic inference, database, 525	Asperger syndrome, 17
Algorithm, encryption, 88	Aspidistra, 107
Algorithm weakness attack, against encryption, 770	Assembler language, 150
Alias, email, 632	Assessment, situation, 488
Allocation,	Asset, 2
device, 281	access as, 3
resource, 286	accountability of, 7
Alteration, digital signature, 802	auditability of, 7
Alureon, 334, 336	authenticity of, 7
Amazon GovCloud, 556	critical, 660
Amazon.com, Inc., 631	data as, 3
Ames, Stan, 312	fabrication of, 8
Analysis, of problem, 816	decision-making, 826
Analysis, risk, see Risk analysis	hardware as, 3
Analyzer, code, 150	harm to, 5, 8
Anderson, James P., 7, 75, 172, 318, 733	intellectual property as, 3
Android, 818	interception of, 8
Annenberg Public Policy Center, 631	interruption of, 8
Anomaly-based intrusion detection system, 476	modification of, 7, 8
Anonymity, 613	nonrepudiation of, 7
email, 634	property as, 3
Internet, 620	risk analysis of, 671
network, 355	software as, 3
partial, 606	timeliness of, 4
privacy, 605	use of, 7
1 2/	- / -

value of, 4, 5, 6, 21	log, 74, 292
viewing of, 7	privacy, 608
Association,	Australia, 848
hijacking, 386	Authentication, 38, 108, 240, 569, 610, 816
preferred, in wireless network, 386	attribute, 611
WiFi, 380, 383	biometrics, 53
Assurance, 76, 820	challenge-response, 461
Common Criteria, 327	computer, 241
level, 327	continuous, 245, 817
operating system design, 312	cookie, as basis for, 65
Asymmetric cryptography, 89 , 93, 795	database, 507, 512
digital signature, 114	distributed, 357
key exchange using, 105, 107	DNA for, 61
signing, 116	Extensible Authentication Protocol, 393
Attachment, of malicious code, 178	forgery in, 58–59
Attachment, virus, 188	Header, in IPsec, 445
Attack, 6	human, 240
capability, 26	incomplete, 394
data driven, 148	IPsec, 446
denial of service, see Denial of service	knowledge, as basis for, 40
directed, 14, 19, 423	MAC address, used for, 377
feasibility of, 27–28	multifactor, 70
foiled, 32	network communication, 445
malicious code, 166. See also Malicious code	nonexistent, in wireless network, 390
man-in-the-middle, 106	one-time password, 244
method, 26	operating system, 283
multistep, 148	password, 40
of honeypot, 295	physical characteristic, as basis for, 40, 53
predicting, 826	possession, as basis for, 65
random, 14	privacy aspects of, 610, 612
reason for, 16	puzzle, as basis for, 52
source of, 828	questions, as basis for, 39, 52
surface, 28	remote, 66
targeted, 14, 19, 423	replay of credentials, 364
toolkit, 166, 424	request, wireless network, 383
type, classifying, 829	something known, as basis for, 40
web site defacement, 20	something possessed, as basis for 40
zero-day, 172	strength of, 612, 817, 820
Attacker, 18	success of, 56
characteristics of, 16	token, as basis for, 65, 66
motivation of, 16	trusted path for, 323
profile of, 16, 17	versus identification, 60, 61
psychology of, 17	weak, 820
Attractive target, 27	WiFi, 380
Attribute	wireless network, 385
database, 504	Authenticity, 92 , 108, 114, 115, 117, 126
database, hidden, 528	digital signature, 802
personal, for authentication, 611	asset, 7
Attribution, of attack source, 843, 844	email, 635
Audit	Author, rights of, 705
Asset auditability, 7	Authorization, 8, 11, 574
balloting, 840	big data applications, 548
big data, 546	Authorship, 246, 705
database, 507, 510	autoexec.bat, 181

Automobile, 4	keys for, 547
Autonomous mobile agent, 430	personal data, 545
Autorun (automatically executing program), 181	prediction using, 541
Availability, 6, 7, 8, 11–13 , 75, 398	privacy, 544
as asset, 671	proprietary data, 545
data, 11	secure data storage, 546
database, 507, 512	security addition for, 548
service, 11	security monitoring, 546
voting, 834	Biham, Eli, 788
wireless network, 382	BiiN computer, 290, 302
	BIND (Berkeley Internet Name Domain), 414
Backdoor, 158, 170, 356, 787, 790, 845	Biometrics, 53
Background task, 358	disadvantages of, 55
Backup, 198, 421, 694	speed of, 59, 60
cloud, 697	template for, 59
complete, 694	BIOS (Basic I/O System), 292
offsite, 696	Birthday, 615
periodic, 694	Bitcoin, 621
revolving, 695	Black box, airline, 640
selective, 696	Black hat hacking, 759
Badge, for authentication, 66	Black-box testing, 214
Bagle, 430	Blacklisting, 431, 490
Ballot, privacy of, 641	Block cipher, see Block encryption
Bandwidth, 490	Block encryption, 93, 96, 792, 795
Bank, attack on, 16	Blocked access, denial of service, 399
Barlow, John Perry, 486	Blood vessel, for authentication, 54
Base register, 298	Boneh, Dan, 103
Base station, wireless network, 382	Book cipher, 775
Bastion host, see Application proxy firewall	Boot sector virus, 187
Battery, 817	Boot, operating system, 280
Bauer, Kenneth, 474	Bootstrap loader, 291
Beacon, WiFi, 380, 383	Bootstrap process (system initialization), 187
Bell, David, 13	Bot, 168, 170, 426
Bell-La Padula model, 13	Botmaster, 427, 429
Bellovin, Steven, 417	Botnet, 426, 429, 430
Bernstein, Mary, 143, 508	Boundary checking, 149
Best evidence rule, 735	Bounded disclosure, 520
Best practice, 824	Boxcryptor, 564
BetCRIS, 425	Branch instruction, 136
Beth-Israel-Deaconess hospital, 401	Brazil, 19, 743, 835
Biba, Kenneth, 13	Breach,
Big data, 540	data, 609
access control in, 545	notification, 740
access tracking in, 546	survey, 828
granularity, 545	Break-in, system, 668
auditing, 546	Breaking, encryption, 90, 91, 92
authentication for, 548	Britain, 89, 107, 318, 771, 835, 846
data sharing, 543	Broadcast mode, wireless network, 384
data source provenance, 547	Browser, 232
data validation for, 547	encryption in, 437
encryption for, 548	hijacker, 170
filtering for, 547	vulnerability in, 233
integrity of, 547	Brute force attack, 791
joining fields, 547	on password, 42, 48
J 10100, 0	passivora, 12, 10

DCAFE DCA	Cialan 700
BSAFE, RSA cryptographic toolkit, 807	Cipher, 769
Buckingham, Earl of, 48–49	Ciphertext, 88, 103
Buffer overflow, 134, 139, 140, 145, 149	Circuit-level gateway firewall, 462
Bug, program, 132	Civil law, 722
Business case, for security, 821	Classical probability, 676
Business continuity plan, 659 , 661	Clear GIF, 254, 627
Business failure, 658	Clear-box testing, 214
Byte substitution, in AES, 790	Clickjacking, 256
Bytecode verifier, Java, 295	Client–server network, 18
Byzantine generals problem, 430	Clipper, 805
0/ 10/10/150	Clock, controlled access to, 283
C (programming language), 131, 150	Closed mode, wireless network, 384
C++ (programming language), 131, 150	Cloud computing
CA (certification authority), 441	backup, 697
Cable, network, 343	characteristics, 551-552
Cable, optical fiber, interception from, 346	deployment models, 552
California Breach Notification Law, 609, 740	identity management, 568
Call, procedure, 136	migration, 553
CAN SPAM Act, 740	platform, 579
Canada, 19, 318, 741, 844	privacy implications, 642
Canary, stack protection, 150	processing, 817
Capability, access control mechanism, 82	provider assessment 554
Capacity	risk analysis, 553
availability attribute, 11	security controls, 554
network, 398	service models, 552
planning, 489	storage, 557, 561, 580
CAPTCHA, 237	threats, 566
Caputo, Deanna, 276	vulnerabilities 554
CartManager, 600	Code
CARVER, 675	analyzer, static, 150
Catastrophe, 659	breaking, see Encryption, breaking
Center for Democracy and Technology, 628, 629	development practices, see Program development
Central key distribution, 124	practices
CERT (Computer Emergency Response Team), U.S., see	error correction, 516
U.S. Computer Emergency Response Team	error detecting, see Error detecting code
CERT, see Incident response team	error detection, 516
Certifiability, reference monitor property, 76	hiding, 192
Certificate, public key, 121, 123, 819	
C 41C 41 41 14 100 104 441	library, 189
Certification authority, 122 , 124, 441	library, 189 modification checker, 482
Certification authority, 122, 124, 441 Chain of custody, 735	•
•	modification checker, 482
Chain of custody, 735	modification checker, 482 modification of, 148, 819
Chain of custody, 735 Chaining, in cryptography, 113, 363, 784, 786	modification checker, 482 modification of, 148, 819 program, 137
Chain of custody, 735 Chaining, in cryptography, 113, 363, 784, 786 Challenge, motive for attack, 18 Charlotte-Mecklenburg, North Carolina, Police Department, 541	modification checker, 482 modification of, 148, 819 program, 137 review, program assurance technique, 221 reviewer, 158 signed, 251
Chain of custody, 735 Chaining, in cryptography, 113, 363, 784, 786 Challenge, motive for attack, 18 Charlotte-Mecklenburg, North Carolina, Police	modification checker, 482 modification of, 148, 819 program, 137 review, program assurance technique, 221 reviewer, 158
Chain of custody, 735 Chaining, in cryptography, 113, 363, 784, 786 Challenge, motive for attack, 18 Charlotte-Mecklenburg, North Carolina, Police Department, 541	modification checker, 482 modification of, 148, 819 program, 137 review, program assurance technique, 221 reviewer, 158 signed, 251
Chain of custody, 735 Chaining, in cryptography, 113, 363, 784, 786 Challenge, motive for attack, 18 Charlotte-Mecklenburg, North Carolina, Police Department, 541 Check digit, 109	modification checker, 482 modification of, 148, 819 program, 137 review, program assurance technique, 221 reviewer, 158 signed, 251 Code Red, 172, 175, 179, 182, 209, 731
Chain of custody, 735 Chaining, in cryptography, 113, 363, 784, 786 Challenge, motive for attack, 18 Charlotte-Mecklenburg, North Carolina, Police Department, 541 Check digit, 109 Checking,	modification checker, 482 modification of, 148, 819 program, 137 review, program assurance technique, 221 reviewer, 158 signed, 251 Code Red, 172, 175, 179, 182, 209, 731 Cohesion, of software, 206
Chain of custody, 735 Chaining, in cryptography, 113, 363, 784, 786 Challenge, motive for attack, 18 Charlotte-Mecklenburg, North Carolina, Police Department, 541 Check digit, 109 Checking, access authorization, 156	modification checker, 482 modification of, 148, 819 program, 137 review, program assurance technique, 221 reviewer, 158 signed, 251 Code Red, 172, 175, 179, 182, 209, 731 Cohesion, of software, 206 Cold site, disaster recovery, 698
Chain of custody, 735 Chaining, in cryptography, 113, 363, 784, 786 Challenge, motive for attack, 18 Charlotte-Mecklenburg, North Carolina, Police Department, 541 Check digit, 109 Checking, access authorization, 156 data area boundaries, 149	modification checker, 482 modification of, 148, 819 program, 137 review, program assurance technique, 221 reviewer, 158 signed, 251 Code Red, 172, 175, 179, 182, 209, 731 Cohesion, of software, 206 Cold site, disaster recovery, 698 Cold, effect on semiconductor, 772
Chain of custody, 735 Chaining, in cryptography, 113, 363, 784, 786 Challenge, motive for attack, 18 Charlotte-Mecklenburg, North Carolina, Police Department, 541 Check digit, 109 Checking, access authorization, 156 data area boundaries, 149 Checksum, 109, 112, 113, 251, 429	modification checker, 482 modification of, 148, 819 program, 137 review, program assurance technique, 221 reviewer, 158 signed, 251 Code Red, 172, 175, 179, 182, 209, 731 Cohesion, of software, 206 Cold site, disaster recovery, 698 Cold, effect on semiconductor, 772 Collision,
Chain of custody, 735 Chaining, in cryptography, 113, 363, 784, 786 Challenge, motive for attack, 18 Charlotte-Mecklenburg, North Carolina, Police Department, 541 Check digit, 109 Checking, access authorization, 156 data area boundaries, 149 Checksum, 109, 112, 113, 251, 429 Cheswick, Bill, 295	modification checker, 482 modification of, 148, 819 program, 137 review, program assurance technique, 221 reviewer, 158 signed, 251 Code Red, 172, 175, 179, 182, 209, 731 Cohesion, of software, 206 Cold site, disaster recovery, 698 Cold, effect on semiconductor, 772 Collision, in error detection codes, 110, 800
Chain of custody, 735 Chaining, in cryptography, 113, 363, 784, 786 Challenge, motive for attack, 18 Charlotte-Mecklenburg, North Carolina, Police Department, 541 Check digit, 109 Checking, access authorization, 156 data area boundaries, 149 Checksum, 109, 112, 113, 251, 429 Cheswick, Bill, 295 China, 15, 275, 391, 444, 464, 844	modification checker, 482 modification of, 148, 819 program, 137 review, program assurance technique, 221 reviewer, 158 signed, 251 Code Red, 172, 175, 179, 182, 209, 731 Cohesion, of software, 206 Cold site, disaster recovery, 698 Cold, effect on semiconductor, 772 Collision, in error detection codes, 110, 800 stack and heap, 148
Chain of custody, 735 Chaining, in cryptography, 113, 363, 784, 786 Challenge, motive for attack, 18 Charlotte-Mecklenburg, North Carolina, Police Department, 541 Check digit, 109 Checking, access authorization, 156 data area boundaries, 149 Checksum, 109, 112, 113, 251, 429 Cheswick, Bill, 295 China, 15, 275, 391, 444, 464, 844 Chosen plaintext attack, 771	modification checker, 482 modification of, 148, 819 program, 137 review, program assurance technique, 221 reviewer, 158 signed, 251 Code Red, 172, 175, 179, 182, 209, 731 Cohesion, of software, 206 Cold site, disaster recovery, 698 Cold, effect on semiconductor, 772 Collision, in error detection codes, 110, 800 stack and heap, 148 Colorado State University, 17

Commerce, Internet, 630	U.S. Economic Espionage Act, 738
Commit, two-phase update, 514	U.S. Electronic Communications Privacy Act, 739
Common Criteria, 327	U.S. Health Insurance Portability and Accountability Act
Common Rule, 763	(HIPAA), 739
Common Vulnerabilities and Exposures (CVE), 14	U.S. Privacy Act, 738
Common Vulnerability Scoring System (CVSS), 14	U.S.A. Patriot Act, 740
Communication, email, 632	Computer emergency response team (CERT), see Incident
Communication, interprocess, see Interprocess	response team, Security Operations Center
communication	Computer Emergency Response Team, U.S., see U.S.
Community clouds, 552, 555	Computer Emergency Response Team
Compartment, access control, 80	Computer forensics, 567
Competition, employment contract, 728	Computer Fraud and Abuse Act, U.S., 620
Compiler, 201, 209	Computer security incident response team (CSIRT), see
correct code generation by, 140	Incident response team, Security operations center
role in program security, 150	Computer security, 2
Complete mediation, design principle, 217, 315	Concealment,
Completeness	data, 529–535
mediation, 217, 315	malicious code, 178, 189
operating system, 314, 320	password, 46
operating system design, 314	Concurrency, 11, 286
security requirements, 653	control of, 282
testing, 214	database, 517
Complexity,	Hadoop, 543
network, 358	Conficker, 174, 175, 179, 182, 428
operating system, 187	Confidence, in trusted system, 317
operating system design, 291	Confidentiality, 6, 7, 8–10, 109, 126, 844
program, 149	data, 518
versus security, 208	database, 512, 529
Compliance, 824	database, 529
Component failure, 420, 421	IPsec, 446
Compromise, 74	network, 441, 443
Computability, 218, 219	voting, 834
Computer,	wireless network, 381
medium of crime, 736	Configuration management, 509
security, 2	Configuration, firewall, 453 466, 472
source of attack, 20	Confinement, program development practice, 207
subject of attack, 736	Confusion, in cryptography, 774, 808
system, 3	Connection failure, physical, 420
target of attack, 20	Connection, rogue, 382
time, theft of, 750	Connectivity, network, 371, 847, 849
tool for attack, 736	Consequence, of attack, 826
Computer crime, 733	Consistency,
complexity, 736, 743	data, 11, 506, 827
criminal, 742	security requirements, 653
evidence, 736	Content, filtering, 464
evolving laws, 736. See also Computer crime laws	Context, of privacy, 601
international aspects, 736, 741	Contingency planning, 688, 694
prosecution, 736	Contract
Computer crime laws	acceptance, 723
CAN SPAM Act, 740	employment, 725, 727
Council of Europe Agreement on Cybercrime, 741	information, 724
E.U. Data Protection Act, 742	law, 723
Freedom of Information Act, 738	software, 724
U.S. Computer Fraud and Abuse Act, 738	suit involving, 725

validity, 723	Correctness,
voluntary entry, 723	data mining, 538
Control, 6 , 22, 28 , 32	data, 616
access, see Access control	operating system design, 314
administrative, 30	operating system, 317, 320
cost of, 29	program, 133, 219
ease of use, 29	proof of program, 219
logical, see Control, technical, and Control,	RFID sensor, 639
administrative	security requirements, 653
loss of, 814	software, 206
overlapping, 30	Correlation, 537, 613, 617, 622
physical, 29	Corruption, data, 361, 432
procedural, 30	Cost,
program, 149	data loss, 695
reducing vulnerability, 670	hidden, 679
risk, 668	malicious code, 179
security, 653	security, 657, 824
selection, 680	Cost-benefit analysis, 669, 681
technical, 30, 75	Council of Europe Agreement on Cybercrime, 741
Controlled access, for privacy, 608	Council of Europe, 603
Controlled sharing, 287	Counterattack, 485
Convention 108, of Council of Europe, 603	Countermeasure, 6, 22, 28, 32, see also Control
Cookie, 625, 627	Coupling, of software, 206
for authentication, 65	Coverage, testing, 214
for wireless network association, 386	Covert redirect, 577
third-party, 625	Cowan, Crispin, 150
COPPA, see U.S. Children's Online Privacy	Crack (password administration tool), 43
Protection Act	Cracking, 761
COPS (password administration tool), 43, 369	Credit card theft, 19, 22
Copying, of copyrighted material, 707	Credit card, disposable, 621
Copyright, 704	Crime, computer, see Computer crime
backup of work, 706	Crime, organized, see Organized crime
computer software,709	Criminal law, 722
copying, 707	Criminal, 16, 19, 742
device to counter piracy, 709	Crisis management, see Business continuity plan, Incident
digital object, 709	response
distribution of work, 706	Crocker, Stephen, 143, 508
employee's work, 727	Crossover, network, 363
fair use, 706	Cross-site scripting, 261
first sale principle, 708	Cryptanalysis, 90, 769
independent work, 709	brute force, 791
infringement, 709	chosen plaintext attack, 771
originality of work, 706	freezing attack, 772
ownership of, 726	frequency analysis attack, 769
personal use doctrine, 708	frequency analysis, 793
piracy, 707	full plaintext, 770
public domain, 705	implementation attack, 769
registration of, 708	in AES, 99
requirement to publish, 709	inferring the algorithm, 774
web content, 716	known plaintext, 770
work for hire, 726	pattern analysis attack, 769
works subject to, 705	plaintext and ciphertext, 770
Cornell University, 18	plaintext-only, 768
Correction, of error, 11	probable plaintext attack, 770

mahahla mlaintayt 702	CSA STAD (Cloud Sequenty Alliance Sequenty Trust and
probable plaintext, 793 RSA, 797	CSA STAR (Cloud Security Alliance Security, Trust and Assurance Registry), 555
statistical analysis, 776 Cryptographic	CSIRT, <i>see</i> Incident response team Currency, virtual, 621
*1 • 1	· · · · · · · · · · · · · · · · · · ·
algorithm, 95	CVE, see Common Vulnerabilities and Exposures
checksum, 113	CVSS, see Common Vulnerability Scoring System
side-channel attack, 566	Cyber warfare, 842
Cryptography, 86, 90, 768	Cyber weapon, 847
asymmetric, 102	Cybercrime, 19
authentication using, 817	Council of Europe Agreement on, 741
book cipher, 775	Cyberworthiness, 730
BSAFE toolkit, 807	Cycle,
chaining, 784, 786	in AES, 98
checksum using, 113	in SHA-3, 801
confusion, 774, 808	Cyclic redundancy check, 111, 516
differential cryptanalysis, 788	
diffusion, 774	Daemon, 352
Dual-EC-DBRG, 806	name, 414
El Gamal, 803	Damage control, in software design, 311
elliptic curve cryptosystem (ECC), 802	Damage, from malicious code, 179
export control, 792, 793, 794, 805	Dark Internet, 444
Keccak, 801	Darwin (computer game), 172
key escrow, 805	Data
Lucifer algorithm, 780	access to, 8
mathematical basis, 778	access to, as asset, 3
MD4, 800	access, rights of individuals, 603
MD5, 800	accuracy of, 11
network security control, 433	anonymization, for privacy, 597
one-time pad, 774	approximate value of, 9
product cipher, 782	as asset, 3, 671
public key, 100, 102	bias, 759
public scrutiny of algorithm, 779	breach law, 609
quantum, 807	consistency of, 11
RC2, 792	correctness, 616
RC4, 792	corruption of, 361
RC5, 794	critical, 281
RC6, 795	disclosure of, 8
RSA, 795	driven attack, 148
secret key, 96	error, and privacy, 608
separation using, 296	existence of, 9
SHA, 800	exposure of, 177
SHA-3, 801	integrity of, 10–11
strength of, 817	irreplaceable, 696
substitution, 774	loss, cost of, 695
Suite B, 803	meaningful, 11
symmetric, 96	misleading, 759
transposition, 774	modification of, 11, 529, 597
Vernam cipher, 775	modification, for privacy, 597
weakness in, 789, 792, 794, 806	object, 9
Cryptolocker, 565	ownership of, 8, 596, 608
Cryptology, 90	perturbation, database, 534
and NSA, 805. See also U.S. National Security Agency	precision of, 11
Cryptosystem, 87	privacy, 736
** *	* **

private, 587	aggregation, 526
protection of, 687	algebraic inference, 525
protection, and privacy, 597	arithmetic inference, 522
quality, and privacy, 596, 608	auditing, 510
replacement, 3, 4	authentication, 512
retention, limited, 597	availability, 512
retraction of, 594	bounded disclosure, 520
sensitive, 587	concurrency, 517
separation of, 11	confidentiality, 512
shared access, 287	data concealing, 529–535
storage, 546	data disclosure, 529
storage, for privacy, 608	data perturbation, 529, 534
subject, 9	data swapping, 535disclosure, 518
suppression, database, 529	element 502
swapping, database, 535	element accuracy, 513
transfer, and privacy, 603	element integrity, 508
unchecked, 153	element integrity, 513
use, government, and privacy, 607	exact disclosure, 519
use, privacy of, 590	existence disclosure, 520
use, restricted, 608	field check, 508
validation, with big data, 547	field, 502
value of, 736	granularity, 512
versus instruction, 137	hidden data, 527
Data collection,	inference, 511, 521–525
accuracy, 599	integrity, 513
consent, 591	integrity, two-phase update, 514
control of, 599	join query, 505
for specific purpose, 603	key, 512, 621
limit on, 596, 603	limited response suppression, 532
notice of, 591, 599	mean inference, 523
openness of, 597	median inference, 523
ownership, 592	negative disclosure, 520
privacy of. 590, 640	operating system protection, 513
security of, 599	performance, 511
Data mining, 246, 527, 536	probable value disclosure, 520
aggregation, 537	project operation, 504
correctness, 537	protecting data in, 721
correlation, 537	query, 504
false negative, 540	query analysis, 535
false positive, 540	query language, 504
inference, 537	random sample disclosure, 534
interoperability, 540	range disclosure, 533
mistakes, 538	record, 502
privacy, 537, 616	recovery, 516
privacy-preserving, 617	relation, 504
sensitivity, 537	reliability, 513
Data Encryption Standard, see DES	rounded disclosure, 533
Data Loss Prevention (DLP), 473	schema, 502
Data Protection Act, 742	sensitive data, 518
Database Management System (DBMS), 502	shadow field, 516
Database, 502	small sample concealment, 534
access control, 508	SQL query language, 504
administrator, 502	subschema, 502

. 11 . 500	
table, 502	ping of death, 404
tracker inference, 524	root name server, 414
tuple, 504	routing, 409, 413
user authentication, 512	scripted, 423
Data-driven attack, 189	session hijack, 415
Datagram, 407, 415	smurf, 404
DataNode, in Hadoop, 543	source routing, 413
DBMS, see Database Management System (DBMS)	SYN flood, 405
DDoS attack, <i>see</i> Distributed Denial of Service attack	teardrop, 407
DEA, encryption algorithm, 780	Tribal flood network, 424
DEA1, encryption algorithm, 780	volumetric, 399, 423
Deadlock, 11, 282	Denning, Dorothy, 530
DEC VAX computer, 290, 314, 326	Denning, Peter, 72, 292
Deception, and privacy, 600	Deontology, 749
Deception, email, 740	Department of Defense, see U.S. Department of Defense
Deceptive practice, 630	Department of Justice, <i>see</i> U.S. Department of Justice
Decidability, 190, 218, 219	Dependability, 12
Decipherment, 87 Decision–making, 25, 684, 831	DES (Data Encryption Standard), 95, 439, 779 computational limitation of, 98
	cycle in, 99
Decoding, 87 Decryption, 87	decryption, 784
Defacement, web site, <i>see</i> Web site defacement	design secrecy, 787
Defense in depth, 30 , 218, 471	differential cryptanalysis on, 788
Defense, Department of, <i>see</i> U.S. Department of	for tamper detection, 113
Defense	key length in, 96, 98, 109
Defensive programming, 222	number of cycles, 788
Defibrillator, 816	reversibility, 784
Deflection, attack countermeasure, 28	security of, 98, 787
Degauss, magnetic media, 693	speed of encryption, 103
Degradation, graceful, see Graceful degradation	strength of, 789, 805
Degraded service, network, 849	Design by contract, program design technique, 223
Delay, in access checking, 156	Design flaw, 6
Deletion, data, 134, 692, 772	Design principles, 216
Delphi method, 677, 678	Design, cryptographic algorithm, 779
Demand, network, 398	Design, layered, 309
Demilitarized zone (DMZ), firewall architecture, 470	Design, RSA, 797
Denial of service, 6, 14, 18, 20, 175, 367, 396 , 753	Design, simplicity of, 309
Denial of service (DoS) attack, 6, 20, 425, 843	Design, TCB, 321
access, blocked, 399	Detection,
address resolution, 414	attack countermeasure, 28
address spoofing, 413	avoidance, by malicious code, 191
addressing failure, 408	error, 11
distributed, see Distributed denial of service attack	malicious code, 189
DNS, 414	tamper, 151
DNS cache poisoning, 418	Detector, virus (program), see Virus detector
DNS spoofing, 409	Deterrence, attack countermeasure, 28
echo-chargen, 404	Development
flooding, 398, 402 , 407	practices, see Program development practices
hardware, 845	program, security in, 158
incident, 401	quality software, 816
insufficient resources, 402 , 407	Device
malicious, 403	access control, 284
overload, 399	allocation, 281

driver, 288	Document virus, 180
loss, 818	DoD, see U.S. Department of Defense
Dialer program, Microsoft, 135	Domain, 82
Dichotomous test, 56	execution, 286
Dictionary attack, on password, 43	name, 444
Differential cryptanalysis, 788	switching, 320
Diffie, Whitfield, 98, 101, 645, 791	DoS (Denial of Service), see Denial of service
Diffie-Hellman key exchange, 446, 803	Dot-dot-slash attack, 264
Diffusion, in cryptography, 774	Double DES, 96
Digital Millennium Copyright Act (DMCA), 704, 709	DoubleClick, 625
Digital Signature Algorithm (DSA), 804	Download substitution attack, 237
Digital signature, 109, 113–116 , 118, 121, 124 , 251, 419,	Download, and privacy, 629
428, 721, 802, 803, 819	Drive-by-download, 258
Diplomacy, 848	Dropbox, 561, 563
Direct inference, database, 521	Dropper, 170
Directed attack, 14	Drug trafficking, 19
Directive 95/46/EC, of European Union, see European	DSA, see Digital Signature Algorithm
Privacy Directive	Dual-EC-DBRG cipher suite, 806
Directory, access control, 76	Dual-homed gateway. 450
Disappearing email, 635	
Disassembler, 201	E.U. Data Protection Act, 742
Disaster, natural, see Natural disaster	Ease of use, design principle, 217, 317
Disclosure,	Easter egg, 158
bounded, 520	Eavesdrop, 243, 343, 354, 432, 808
data, 736	ECC, see Elliptic curve cryptosystem
database, 518	Echo-chargen attack, 404, 477
database, 529	Economics, of security, 821
exact, 519	Economy of mechanism, design principle, 217, 315
existence, 520	Effectiveness, of testing, 215
negative, 520	Egoism, 748
of data, 8	e-Government Act, 599
of vulnerability, 833	Egypt, 847, 849
pacemaker data, 816	El Gamal algorithm, 803, 804
probable value, 520	El Gamal, Taher, 803
vulnerability, 185	Eleanore (attack toolkit), 166
Disconnection, network 420	Election, fair, 836, 837
Discrimination, 605	Election, margin of victory, 838
Discrimination, price, 631	Electrical use, 817
Distributed denial of service (DDoS) attack, 421, 423	Electronic commerce, protection of goods in, 721
Distribution, encryption key, 93	Electronic Communications Privacy Act, U.S., 620, 739
Diversity, 558	Electronic publishing, compensation for, 721
Diversity, genetic, see Genetic diversity	Electronic voting, 835
DLP, see Data Loss Prevention	Element integrity, database, 507, 508 , 513
DMCA, see Digital Millennium Copyright Act	Element, database, 502
DMZ, see, Demilitarized Zone	Elliptic curve cryptosystem (ECC), 439, 802, 804, 806
DNA, authentication using, 61	Email 607
DNS, 414	accuracy of headers, 273
cache poisoning, 418	address, disposable, 634
lookup request, 409	alias with, 632
record, 419	authentication, 39
spoofing, 409	deceptive, 740
DNSSEC, (DNS Security extension), 419	disappearing, 635
Doctrine, of warfare, 850	exposed content of, 632

C1	TYVID 202
filtering, 560	TKIP, 393
forged, 267	weak, 388
forwarding of, 632 header data, 273	See also AES, DES, RC2, RC4, RC5, RSA End-to-end encryption, 435, 437, 438
interception of, 633	Enforcement, of integrity, 11
monitoring of, 633	Engineering, social, see Social engineering
PGP, 276	Enigma machine, 771, 774
phishing, 274	Entry point, secret, 27, 158. See also Backdoor
S/MIME, 277	Equipment failure, 420
security of, 632	Equivalence, of programs, 189, 219
spam, 740	Erasing, sensitive data, 692
spear phishing, 274	Error
Emanation, electromagnetic, 693	correction, 11
Embedded device, 4	detection, 11
Emergency alert system, 1–2	in data, 608, 617
Employee rights, 725	in encryption, 778
Employer rights, 725, 754	inadvertent, 14
Employment contract, 725, 727	nonmalicious, 133
non-compete clause, 728	off-by-one, 159
Encapsulated Security Payload, in IPsec, 445	program, 132
Encapsulation, 204	unintentional, 6
by layering, 311	Error correction code, 516. See also Error detection code
of software, 206	Error detection code, 109 , 111, 251, 516
Encipherment, 87	Escrow, encryption key, 805
Encoding, 87	ESP (Encapsulated Security Payload), see Encapsulated
Encrypted password, 46	Security Payload
Encrypted virus, 194	Espionage, 171, 668, 738
Encryption, 86, 87	Estimation technique, 676
algorithm design, 433	Estimation, Delphi method, 678
asymmetric, 89 , 93, 795	Estonia, 18, 2, 391, 396, 641, 838, 842, 843, 846
block, 93	Ethical hacking, see Penetration testing
breaking, 90, 91	Ethical system, 745
chaining, 363	Ethics, 744
end-to-end, 435 , 437, 438	analysis, 746
exhaustive key search, 395	and religion, 746
for continuous authentication, 245	consequence-based, 748
for privacy, 597	consequence-based, 749
in network, 360, 363	context of action, 753
in the cloud, 561	deontology, 749
in wireless network, 383	egoism, 748
initialization vector collision, 389	fair sharing, 753
key, 88, 126, 562	intrinsic goodness, 749
key length, 388	of privacy, 752
key management, 446	overriding principles, 748 pluralism, 746
key, private, 126 keyed, 88	privacy and, 752
keyless, 89	religion and, 746
link, 433 , 437	rule-deontology, 749
non-static key, 392	teleology, 748
protection using, 433	to justify a position, 748
speed of, 126	to make a reasoned choice, 748
static key, 388	utilitarianism, 749
stream, 93	variability, 746
symmetric, 88 , 92, 779, 786	versus law, 744
	*

Euler totient function, 797	Fake email, 267
Europe, Council of, 603	False
European Privacy Directive, 603–604 , 605, 849	acceptance, see False positive
European Union, 596, 603	accusation, 608
data breach laws, 609	alarm, 824
Even parity, 111	negative, 55 , 56, 62, 64, 488, 540
Evidence,	positive, 55 , 56, 62, 64, 488, 540, 824
authenticity, 735	reading, 55
chain of custody, 735	reject, see False negative
computer output as, 734	Farmer, Dan 369
incident, 664	Fault tolerance, 12
rule of, 734	Fault tree analysis, 673
Exact disclosure, 519	Fault, program, 132 , 136
Exchange, cryptographic key, 104	FBI, see U.S. Federal Bureau of Investigation
Exclusiveness, of access, 11	Feasibility, of attack, 27–28
Executable code, hiding, 192	Federal Bureau of Investigation, see U.S. Federal Bureau of
Executive, operating system, 280, 285	Investigation
Exfiltration, of sensitive data, 474, 845	Federal Information Processing Standard 197
Exhaustive attack, on password, 48	(FIPS 197), 99
Exhaustive key search, 395	Federal Trade Commission (FTC), 630, 635
Existence,	Federated identity management, 68, 569
disclosure, 520	FedRAMP (Federal Risk and Automation Management
of data, 9	Program), 555
Expected loss, 678	Fence, 297
Experimentation, informed consent, 763	Fence register, 298
Exploitation, vulnerability, 419	FidM, see Federated identity management
Export control, of cryptography, 562, 792, 793, 794, 805	Field check, database, 508
Exposure, risk, see Risk exposure	Field, database, 502
Extensible Authentication Protocol (EAP), 393	File, 320
Externality, 834	File access control, 284
	File sharing, peer-to-peer, 629
Fabrication, 87, 107	File tag, 528
air defense signal, 844	Filter, packet; see Packet filtering gateway
asset, 8	Filter, polarizing, 808
encrypted data, 785	Filtering, 486
network data, 361	Filtering, in big data, 547
Facebook, 526, 594, 635, 696, 762	Fingerprint,
Facial recognition, for authentication, 55	for authentication 53, 59, 60, 62, 63, 64
Factoring, in encryption, 103, 795, 797	in error detection codes, 111
Failure modes and effects analysis, 673	of malicious code, 192, 198, 200
Failure reporting, 729	Finland, 641
Failure, 2	Fire, 659, 687
business, 658	Firesheep, browser extension, 386
component, 420	Firewall, 448, 452 , 492
component, in network, 368	application proxy, 459
hardware, 6, 368, 421, 659	circuit-level gateway, 462
program, 132	demilitarized zone, 470
software, 6, 728, 816	Great Firewall of China, 464
system, 74	guard, 463
transmission, 420	packet filtering gateway, 456
Fair election, 836, 837	personal, 464
Fair Information Practices, 596	stateful inspection, 458
Fair use, 706	First sale, principle of, 708
Fairness, 11, 281	Fit for use, 730

Flaw	GOTO Fail bug, 213
design, 6	Government data use, 607
impact of, 134	Graceful degradation, 12
program, 133 , 184	Graham, Scott, 72, 292
reporting, 731	Gramm–Leach–Bliley Act, 598, 739
Floating-point error, Intel Pentium chip, 10	Grandin, Temple, 17
Flood, 686	Granularity,
Flooding attack, 479, 840	database, 512
in denial of service, 399, 479	in big data, 545
FOIA, see U.S. Freedom of Information Act	of access control, 74 , 75, 287, 297
Forensic analysis, 74, 202, 736	Great Falls, Montana, 1
Forgery,	Great Firewall of China, 464
digital signature, 802	Greece, 356
in authentication, 58–59, 65, 66	GrIDSure authentication system, 52
protection against, 116	Group, access control, 80
Formal methods, program assurance technique, 220	Guard firewall, 463
Forwarding, email, 632, 634	Guard, human, 680, 690
Frame,	Guard, Human, 660, 670
Data-link, 352	Hachette, 631
SSID in, 384	Hacker, 15, 18, 19, 759. <i>See also</i> Malicious code attack
WiFi, 379	Hacking, black hat, 759
	<u>e</u> .
Framing, web page, 258	Hacking, white hat, 759
France, 318, 846	Hadoop, 542
Fraud, 19, 22, 722, 757	anonymization for, 545
Free public WiFi, 392	concurrency, 543
Frequency	DataNode, 543
analysis, against encryption, 769, 793	map–reduce, 543
distribution, in cryptanalysis, 777	NameNode, 543
probability, 676	privacy for, 544
Front end (database management system), 502	redundancy, 543
Front-end (intrusion detection system), 480	secure mode, 548
f-Secure Corp., 19	sharing, 543
Full disclosure, of software flaws, 731, 760	trusted users, 543
Full plaintext attack, 700	Halme, Larry, 474
Function testing, 211	Halting problem, 218, 219
Functionality, in Common Criteria, 328	Hamming code, 799
	Hand geometry, for authentication, 54
Gasser, Morrie, 314	Hard problems, cryptographic, 92
Gateway, application proxy, see Application proxy firewall	Hardware,
Geer, Daniel, 209, 210	as asset, 3, 671
Genetic diversity, program environment characteristic, 209	failure, 6, 420, 398, 421, 772
Geographic diversity, 558	interface to, 282
Geography, and cyber warfare, 850	loss of, 691
Geotag, 528	malicious, 845
Germany, 107, 318, 431, 668, 771	modification of, 845
Get_root exploit, 291	Harm, 6, 13, 23, 28
Ghostery, 623	causes of, 22
Gong, Li, 295	from buffer overflow, 138
Gonzales, Albert, 19, 391	from computer attack, 21–25
Good, greatest for greatest number, 762	from malicious code, 176, 179
Goodness, program characteristic, 218	from vulnerability search, 762
	likelihood of, 22
Google, 818, 820 docs. 697	*
Street View project, 378	limitation of, 845 malicious, 14
Succeiview project, 576	mancious, 14

measurement of, 14	versus authentication, 38
potential, 764	voluntary, 638
severity of, 22	weak, 820
stopping, 845	Identity, 38, 122
to asset, 5, 8	card, for authentication, 66
types of, 14	documents, 612
Hash code, 109, 112 , 116, 125, 428, 799	group, 611
Hash function, see Hash code	linking, 606
Hastiness, in faulty error analysis, 816	management, cloud, 568
Hazard analysis, 672	management, federated, see Federated identity
Hazard and operability study, 673	management
Header, packet, 458	multiple, 606
Healthcare data, 739	non-unique, 611
Heap, 147	records confirming, 49
Heap, memory, 136, 139	theft, 609
Hellman, Martin, 96, 98, 101, 791	uniqueness of, 606
Heuristic intrusion detection system, 476	IDS (Intrusion Detection System), see, Intrusion Detection
Hiding,	System
address, 303	IEEE (Institute of Electrical and Electronics Engineers), 132
malicious code, 192	IETF (Internet Engineering Task Force), 444
Hierarchical design, 311	Iframe, web page, 258
Hijack attack, 242	IKE, see Internet Security Association Key Management
HIPAA, see U.S. Health Insurance Portability and	Protocol Key Exchange
Accountability Act	ILoveYou (malicious code), 172, 175, 179
Hoare, Anthony (C.A.R.), 149	ImageShield, authentication system, 52
Hoax, 2, 176	Immunity, from malicious code infection, 195, 200
Honan, Mat, 559	Impact,
Honeypot, 295, 668	of attack, 831
Hooking, to operating system, 288 , 337, 465	of computer failure, 660
Hop, 413	of security incident, 25
Host scanning, 566	risk, 668
Host-based firewall, see Personal firewall	Impersonation, 107, 474
Host-based intrusion detection system (HIDS),	Implantable Cardioverter Defibrillator, see ICD
476, 480	Implanting, of malicious code, 186
Hostile mobile agent, 170	Implementation weakness, against encryption, 770
Hot site, disaster recovery, 698	Implementation, TCB, 322
Hot spot, wireless, 382	In-the-clear, message, 434
HTTPS (HTTP Secure) protocol, see SSL	Incident cost, 828
Human error, in encryption, 771	Incident response, 567
Human subjects, 762	action, 662
Human, threat from, 13–14	coordination, 666
Human–computer interaction (HCI), 654	declaring an incident, 662
Hybrid clouds, 553, 555	national, 666
Hypervisor, 292	plan, 662
Hyppönen, Mikko, 19	post-incident review, 665
	taking charge, 662
IaaS (Infrastructure as a Service), 552, 558, 579, 580	team membership, 665
IBM Corp. 95, 97, 290, 779, 788, 789	team, 397, 665
ICD, 816, 817	Incident survey, 828
Iceland, 613	Incident, security, 25
Identification versus authentication, 60, 61	Incomplete mediation, 152
Identification, 38 , 243, 610, 617, 815, 816	Independence, program quality, 204
only when necessary, 603	Independent testing, 215
unique, 610	India, 743

Individual, versus identity, 611, 612	enforcement by operating system, 317
Inductance, network, 343	enforcement of, 11
Infection, malicious code, 186, 194, 430	failure from race condition, 165
Infection, spread of (malicious code), 185	failure of, 109
Inference engine, intrusion detection, 476	faulty check in wireless network, 390
Inference, database, 511, 521–525	inaccurate linking, 608
Inference	incorrect form, 608
in data mining, 537	network communications, 366
in intrusion detection system, 478	protecting, 109
Information	protection in WPA, 393
as an object, 717	stack, 151
commerce, 720	voting, 834
cost of, 718	wireless network, 381
depletion of, 718	Intel, 10
disclosure of, 739	Intellectual property, 705
hiding, of software, 204, 206	as asset, 3
replication of, 718	Intent, two-phase update, 514
transfer of, 719	Interception, 87, 236, 808, 845
value of, 719	air defense signal, 844
Informed consent, 763	asset, 8
Infowar, 486	authentication data, 243
Infrastructure	cryptographic key, 105, 107
ownership of, 849, 850	encryption, 91
shared, 566, 580	Internet, 635
virtual, 581	lawful, 355
Infringement	network, 354
copyright, 709	network, 360
patent, 712–713	pacemaker signal, 816
Initialization vector, 786, 793	personal data, 820
Injection attack, 839	signal, 344
Injection, SQL, attack, 263	WiFi communication, 364, 391
Input validation, 153	WiFi, 364
Input, unchecked, 154	Interface design, 654
Insecure APIs, 566	Interface, usability, 840
Insertion, in network communication, 364	Internal intrusion detection system, 480
Insider, 474	Internet, the
Insider threat, 357	governing, 419
Installation	international nature of, 741
malicious code, 186	payments using, 621
program, 237	privacy and, 619
testing, 211	site registration on, 622
Instruction, machine, 136	user ID, 622
Insurance, 23, 669, 688, 695	Internet access, free, see Public hot spot
Integer overflow, 160	Internet of things, 814
Integrated vulnerability assessment, 675	Internet Security Association Key Management Protocol
Integration testing, 211	Key Exchange (IKE), 446, 447
Integrity, 6, 7, 8, 117, 251, 758	Internet Service Provider, see ISP
big data, 547	Internet Society, 124
check, 109, 112	Internet-enabled product, 814
code, 151, 482	Interpreted language, 189
computation, 133	Interpreter, 189
contextual, 602	Interprocess communication, 281, 320
data 10-11, 506	Interruption,
database, 507	access, 849

network communication, 366	Join query, database, 505
of asset, 8	Join, in big data, 547
Intrusion Detection System (IDS), 474	Justice, Department of, see U.S. Department of Justice
anomaly-based, 476	Justification, with risk analysis, 684
false alarm, 824	•
front-end, 480	Kahn, David, 90, 771, 774
heuristic, 476	Kahneman, Daniel, 25
host-based (HIDS), 476, 480	Karger, Paul, 172, 219, 314
inference engine, 476	Kaspersky Labs (security research firm), 169
internal, 480	Keccak, 801
model-based, 478	Kerberos, in big data application, 548
network-based (NIDS), 476, 480	Kerckhoffs, Auguste, 227
response, 483	Kernel
signature-based, 476	operating system, 284, 312 , 334
situation assessment, 488	security, see Security kernel
state-based, 478	Kernell, David, 39
stateful protocol analysis, 479	Key
stealth mode, 487	asymmetric, 796
Intrusion Prevention System (IPS), 474, 482	change, 771
Intrusion, system, 668	cryptographic, 96, 103, 777
Invention, patent for, 711	database, 512, 621
Inverse,	deduction, against encryption, 770
of a function, 112	derivation functions, 562
of encryption, 103	distribution, 93, 124
Investigation, security, 426	encryption, 88, 789
iOS (Apple operating system), 818	encryption, sharing, 92
IP fragmentation attack, 407	escrow, encryption, 805
IPS (Intrusion Prevention System), see Intrusion Prevention	exchange, 104
System	exchange, Diffie-Hellman, 446
IPsec (IP security protocol suite), 444	exchange, with asymmetric cryptography, 105, 107
authentication header, 444	for RC4, 793, 794
security association in, 444	in big data, 547
IPv4, 444	length, 96, 97, 109, 792, 805
IPv6, 444	length, in AES, 791
Iran, 368, 444, 843, 847	management, encryption, 93, 433, 446
ISAKMP (Internet Security Association Key Management	physical, security properties of, 184
Protocol), see Internet Security Association Key	recovery, 805
Management Protocol)	search, exhaustive, 395
ISO 7489-2, 7	Keys (cryptographic), proliferation of, 102
Isolation, 204	Keystroke logger, 236, 442, 628
in operating system design, 311	Kill switch, 845, 848
malicious code countermeasure, 195	Known plaintext attack, 770
of potential malicious code, 197ISP (Internet Service	Koobface, botnet, 426
Provider), 19, 425, 633	Korea, victim of phishing attack, 275
Israel, 843, 844, 845	Krebs, Brian, 159
Iteration, in DES, 96	
	10pht computer group, 139–140
J.P. Morgan Chase, 16	La Padula, Leonard, 13
Japan, 741, 772	LAN (Local Area Network), 343
Jaschen, Sven, 430	Landau, Susan, 645
Java script attack, 262	Language,
Java, sandbox in, 294	interpreted, 189
Jet Blue, 601	programming, 150
JihadJane, 20	safe, 149

Lantan loss of 601	Lagical integrity database 507
Laptop, loss of, 691	Logical integrity, database, 507
Lastpass 564	Lookup, DNS, 409
Law,	Loss, 5
as security protection 426	data, 695
civil, 722	expected, 678
conflict between, 604	from security incident, 668
contract, 722	power, 688
court decisions, 723	service, 366
criminal, 722	Lucifer, encryption algorithm, 780, 788, 789
data breach, 609	Lyon, Barrett, 425
E.U. Data Protection, see European Privacy Directive	
security control, 426	MAC (Media Access Control), 343, 351, 377
tort, 722	MAC address, 378, 380
versus ethics, 744	changing, 385
Layered protection, 471	spoofing, 394
Layering, 310	MAC header, WiFi, 379
Leakage, data, 474, 620	Mach, 302
Least common mechanism, design principle, 217, 317	Macro, 189
Least privilege, 73, 216, 218, 316, 358	Macro virus, 10
Legal	Mafia, 769
action, 485	Magnetic media, destruction of, 692
countermeasure, 426	Magnetic remanence, 325
issue, incident, 664	Maintenance, software, 205
protection, 703	Malfunction, device, 815
Leverage, risk, 669	Malicious code, 166–196, 167
Leveson, Nancy, 815	addressing failure, 408
Levy, Elias, 145	adware, 170
License, software, 727	Alureon, 334, 336
Likelihood,	antivirus detector (program), 191
of event, 668	appended virus, 181
of exploitation, 675	attachment of, 178
of harm, 22	attack toolkit, 419, 424
of security incident, 25	backdoor, 170
Limitation on data collection, 596	Bagle, 430
Limitations of testing, 215	boot sector virus, 187
Limited privilege, 317. See also Least privilege	bot, 170
Limited response suppression, 532	browser hijacker, 170
Link encryption, 433 , 437, 447	Code Red, 172, 175, 179, 182, 209, 731
Linking, personal data, 627	concealment of, 178, 189
Linux operating system, 291	Conficker, 174, 179, 182, 428
List, access control, see Access control list	destructive, 176
Litchfield, David, 134, 174, 732	detection avoidance by, 191
LMS (Learning Management System), 570	detection of, 189
Load balancing, 431, 489, 492	disassembly of, 201
Local data, 141	DNS spoofing, 409
Location-sensing, 820	dropper, 170
Lock, physical, 680, 690	echo-chargen, 404
Log analysis see SIEM	encrypting virus, 194
Log data, see System log	encryption of, 194
Log, access, see Access log	fingerprint of, 192, 198, 200
Log, audit, see Audit log	flooding, 403, 407
Logarithm, 802	forensic analysis of, 202
Logger, keystroke, 236, 628	harm from, 176
Logic bomb, 170	hijacker, 629
	J

1: 4 6 170	T: 00 424
history of, 172	Trin00, 424
hostile mobile agent, 170	Trojan horse, 169
ILoveYou, 172, 175, 179	user-in-the-middle, 237
immunity from, 195, 200	virus, 167
implant of, 186, 760	volume of, 196
infection by, 194	Waladec, 429
isolation, as countermeasure, 195	worm, 168
keystroke logger, 236	zero-day attack, 172, 419
logic bomb, 170	Zeus, 245
malware detector (program), 191	zombie, 170
man-in-the-browser, 234	Malicious threat, 14
Melissa, 172, 175	Malicious web activity,
memory-resident virus, 188	clickjacking, 256
mobile agent, 430	cross-site scripting, 261
mobile agent, hostile, 170	dot-dot-slash, 264
Morris worm, 172, 175, 209	drive-by-download, 258
multipartite virus, 178	server-side include, 265
MyDoom, 430	SQL injection attack, 263
NIMDA, 172	web site defacement, 246
pattern matching to detect, 192, 198, 200	Malware, 10, 166–196, 167 .
pattern recognition, 192	see also Malicious code
ping of death, 404	Android phone, 819
polymorphic, 193	detector (program), 191
prevention of, 197	scanner, 465
propagation of, 180	smartphone, 818
rabbit, 170	toolkit, 196
Remote access Trojan horse (RAT), 170	Man in the middle, 460
replacement virus, 182	Management, 75
rootkit, 170, 329, 334, 336	encryption key, 93
Sasser, 431	network, 489
scareware, 170, 195	risk, see, Risk management
script kiddie, 196	security, 657
separation as countermeasure, 195	Manager, 657
session hijack, 415	Man-in-the-browser attack, 234, 442
signature, recognition by, 192, 198, 200	Man-in-the-middle attack, 106, 409, 394, 840
Slammer, 172, 175	Man-in-the-mobile attack, 245
smurf, 404	Many-to-one function, 110
SoBig, 172, 175	Map-reduce, in Hadoop, 543
source of, 845	Mash, in encryption, 792
spyware, 170, 628	Masquerading, 432
stealth, 189, 190	Matrix, access control, see Access control matrix
steganography and, 192	Mayfield, Terry, 10-11
Stuxnet, 174, 175, 368, 843	McAfee (security firm), 19
SYN flood, 405	MD4, 428
TDL-3, 334	MD5, 800
teardrop, 407	MD6, 429
TFN, 424	Mean inference, database, 523
TFN2K, 424	Measurement
time bomb, 170	harm, 14
tool, 170	security, 825
toolkit, 170, 196, 336	Mechanism,
transmission of, 180	access control, 76
trapdoor, 170	security, 75
Tribal flood network, 424	Median inference, database, 523

Mediation, complete, 154	Modification, 87
Mediation, incomplete, 152, 155	asset, 7, 8
Medical device, 815, 820	code, 819
Medical record, 613, 638, 758	data, 11, 529
Medium Access Code (MAC), see MAC	network, 361
Melissa, 172, 175	program file, 177
Memory allocation, 136	protection against, 110, 113
Memory management,	sensitive data, 820
paging, 306	Modularity,
segmentation, 303	in program design, 203, 204
virtual memory, 303	in operating system design, 312
Memory protection, 284, 297, 320, 321	in operating system implementation, 322
base/bounds, 298	Money laundering, 19
fence, 297	Monitor,
paging, 306, 307	operating system, 285
segmentation, 303	reference, see Reference monitor
tagged, 301	virtual machine, 292
virtual memory, 303	Monitoring, 474, 483, 484
Memory, system space, 138	and privacy, 620
Memory-resident virus, 188	implanted medical device, 816
Merchants, Internet, 630	real-time, 546
Merkle, Ralph, 96, 121	security, 475
Message digest, 109, 112, 125, 799	Moore's Law, 92
MD4, 428, 800	Morris Worm, 172, 175, 179, 209
MD5, 800	Morris, Robert T., Jr., 18, 172, 179
MD6, 429, 800	Morris, Robert T., Sr., 43, 172, 417
SHA, 800	Motivation, of attacker, 16, 19, 773, 837
Message, protection of, 434	Motive, 18, 19, 26, 816
Metadata, 529	Mudge, see Zatko, Peter
Method, of attack, 26	Mulligan, Deirdre, 605
Method-opportunity-motive, 26-28, 837	Multics, 80, 85, 216, 219, 290, 307, 326
Microkernel, 289	Multifactor authentication, 70
Microscope and tweezers, 202, 735	Multipartite virus, 178
Microsoft, 222, 818	Multiple remailer, 634
Microsoft Trustworthy Computing Initiative, 326	Multiplexing, network, 345, 363
Microwave signal, 346	Multiprogramming, 285
Minimality, 212	Multistep attack, 148
Minimization, data, for privacy, 608	Multitasking, 283
Misidentification, 815	Murder, by computer, 816
Missile attack, 844	Music-sharing service, 629
Mission creep, 608	Mutual authentication, 561
Mistakes, in data mining, 538	Mutual suspicion, software characteristic, 207
Misuse, system, 74	MyDoom, 430
Mitigation, attack countermeasure, 28	
Mitnick, Kevin, 17, 18	Name server, 414, 419
Mitre Corp, 14	Name, domain, 444
Mix, in encryption, 792	named (name daemon), 414
Mix columns, in AES, 790	NameNode, in Hadoop, 543
Mixmaster remailer, 634	Napster, 707
Mixter (German hacker), 18	NAT, see Network Address Translation
Mobile agent, hostile, 170, 430	National Bureau of Standards, see U.S. National Bureau of
Mobile phone, 4, 818	Standards
Mode, of access, 9, 72	National Institute of Standards and Technology, see U.S.
Model-based intrusion detection system, 478	National Institute of Standards and Technology

National Security Agency (NSA), see U.S. National	NIMDA, 172
Security Agency	Nissenbaum, Helen, 601
NATO, 845, 849	NIST (National Institute of Standards and Technology), see
Natural disaster, 6, 13, 22, 686	U.S. National Institute of Standards and Technology
building collapse, 687	Nixon, Richard, 596
fire, 687	Nmap, scanning tool, 369
flood, 686	Noise,
water, 686	for privacy, 545
weather event, 687	in communication, 109
NBS (National Bureau of Standards), see U.S. National	Nonce, 108, 278, 793
Bureau of Standards	Non-compete clause, employment contract, 728
Need to know, 739	Nonmalicious threat, 14, 420
Negative disclosure, 520	Nonrandom attack, see Targeted attack
Netherlands, 318, 641	Nonrepudiation, 7, 115
NetSky, 430	Nothing up my sleeve numbers, 806
Network, 342	Notice, privacy, 600
client–server, 18	Notification, of data breach, 609
communication, confidential, 443	Novelty, patent requirement, 712, 713
data loss prevention, 474	NSA (National Security Agency), see U.S. National
design, 401	Security Agency
interception in, 343–346	Numbering, sequence, 419
monitoring, 560	
penetration of, 844	OAuth 573
port scan, 456	Access token, 574
traffic flow, 401	Authorization server, 574
transmission media, 343	Client secret, 575
Network Address Translation (NAT), 472	Client, 574
Network attack,	Refresh token, 576
component failure, 368	Request token, 575
denial-of-service, 367	Resource owner, 574
insertion, 364	Resource server, 574
interception, 354, 355	Token, see OAuth access token
loss of service, 366	Object, 72
port scan, 369	access control, 284
replay, 364	data as, 9
routing, 367	name, 77
sequencing, 363	reuse, 325
substitution, 363	Obscurity, security through (by), 185, 226, 356, 836
Network Interface Card (NIC), 351, 376, 380	Odd parity, 111
Network management, 489	Off-by-one error, 159
addressing, 490	Offset, page, 306
bandwidth allocation, 490	Off-the-shelf, 3
blacklisting, 490	OIDC (OpenID Connect), 577
capacity planning, 489	One-time pad, 774, 807
load balancing, 489	One-time password, 52, 67, 244
rate limiting, 490	One-way hash function, 799
shunning, 490	Onion Routing, 443, 635
sinkholing, 490	Online profile, 627
tuning, 490	Open design, design principle, 217, 315
Network-based intrusion detection system (NIDS),	Open mode, wireless network, 384
476, 480	Open System Interconnection (OSI) model, see OSI
Networked storage, for backup, 697	Openness, of private data collection, 597
Neumann, Peter, 311	Operating system, 136, 279–340, 513
NIC (Network Interface Card), 351, 376, 380	abstraction in, 289

Apple iOS 302	Overflow,
Apple iOS, 302	buffer, see Buffer overflow
Apple Mac OS, 291	
Audit in, 292	data, 149
authentication by, 283	integer, 160
boot, 280	parameter, 140
complexity of design, 291	segment, 306
complexity of, 187, 309	table, 143
concurrency in, 286	Overload, denial of service, 11, 399
correctness, 314	Oversight, of data collection, 603
DEC VAX, 314	Ownership, of data, 8, 594, 596
design of, 308, 820	
device control, 283	PaaS (Platform as a Service), 552, 557
device driver, 288	Pacemaker, 4, 816
domain, 286	Packet, 351 , 415, 458, 477
DOS, 302	Packet filtering gateway, 456, 461, 467
for smartphone, 818	Packet sniffer, 343
hierarchical design in, 311	Page, offset in, 306
history, 284	Page, size of, 307
hypervisor, 292	Page-in-the-middle attack, 237
kernel, 284, 312	Paging, 306
layered design, 309	combined with segmentation, 307
Linux, 291	memory protection in, 307
loading in stages, 291	Palin, Sarah, 39, 52
Mach, 302	Parameter overflow, 140
monitor, 285	Parameter, mismatch of, 162
multiprogramming, 285	Parity, 110
multitasking, 283	check, 109
process, 286	even, 111
resource allocation, 286	odd, 111
rootkit, 329	Parker, Donn, 18
Scomp, 323	Partial plaintext attack, 770
security kernel, 312	Passenger Name Record (PNR), 604
self-protection of, 290	Password(s), 40-51, 266, 568, 610, 657, 738, 794, 844
simplicity of design, 309	attack on 42
single-user, 284	choosing, 48
smartphone, 818	common, 45
startup, 280	concealment of, 46
task, 286	database, 266
thread of execution, 286	dictionary attacks on, 43
trusted system, 316	disclosure of, 41
Unix, 291	forgotten, 42
virtualization, 292	guessing attack, 42–45
Windows, 291, 302	guessing, 761
Opportunity, of attack, 26	inference of, 41, 43
Optical fiber cable, interception from, 346	loss of, 42
Opt-in botnet, 430	manager, 564
Orange Book, see Trusted Computer System Evaluation	one-time, see One-time password
Criteria	reuse of, 266
Organized crime, 15, 19 , 177	revocation of, 42
Original work of authorship, 705	selection, 48
Originality, and copyright, 706	shared, 569
OSI (Open System Interconnection) model, 350, 433, 435,	table, 46
439, 455, 462	use of, 41
Out-of-band communication, 244	variations of, 50

weak, 568	Personal data, 820
written 50, 51	Personal firewall, 464
Patch, 419	Perturbation, data, 529, 534, 617
hasty, 816	Petmail, 240
penetrate and, See Penetrate-and-patch	PGP, 276, 633
program, 172, 184, 731, 733	Phishing, 274, 635
timeliness, 732	Phishing attack,
Patent, 711	G20 summit partners, 275
employment and, 727	Korean diplomats, 275
enforcement, 713	RSA Corp., 275
for software, 713	White House staffers, 275
infringement, 712–713	Phone, mobile, 4
invalidation of, 713	Photon
license of technology, 712	gun, 811
nonobviousness requirement, 712	orientation of, 807
novelty requirement, 712	reception of, 808
of employee's invention, 727	Physical access, 773
of RSA, 802	Physical access, unauthorized, 689
ownership of, 726	Physical connection failure, 420
prior invention, 713	Physical integrity, database, 507
registration of, 712	Physical protection, of computer, 284
RSA algorith, 802	Physical security, 447
search of previous inventions, 712	Physical security, for separation, 296
software, 713	PIN, in authentication, 40, 67, 244
tangible invention, 711	Ping of death, 404
Path, network, 359	Ping, 477
Pattern analysis, against encryption, 769	Piracy, of intellectual property, 707
Pattern, malicious code, 192, 198, 200	Plaintext, 88 , 96, 103, 434
Pattern-matching	Plaintext and ciphertext attack, 770
for intrusion detection, 477, 479	Plaintext and explicit attack, 770 Plaintext-only attack, 770
for malicious code, 192, 198, 200	Plan, incident response, <i>see</i> Incident response plan
PayPal, 621	Plan, security, see Security plan
PBKDF2, 562, 564	Planning, contingency, 694
P-box, in DES, 787	Point-to-point communication, 633
PCI DSS (Payment Card Industry Data Security	Poisoning, DNS cache, 418
Standard), 555	Polarizing filter, 808
Peer-to-peer file sharing, 629, 707	Policy, 72
Penetrate-and-patch, program assurance myth, 224, 336,	access control, 9, 12
733, 816	privacy, 600, 601, 609, 626
Penetration testing, 218	security, 453, 466, 649
Pentium chip, Intel, floating-point error, 10	Politics, and cyberwarfare, 850
People, as asset, 671	Polymorphic virus, 193
Performance testing, 211	Poor programming practice, 158
Performance, database, 511	POP (Post Office Protocol), 353, 370
Perimeter,	server, 633
network, 359	Pop-up ad, 630
security, 354, 471	Porras, Phil, 428
Permission, for data access, 596	Port, 353 , 370, 472
Permission-based, design principle, 217, 218, 316	Port scan, network, 369, 450, 456, 476
Permutation step, in DES, 96	Post Office Protocol (POP), see POP
Permutation, in cryptography, 782	Power
Persistent cross-site scripting attack, 262	consumption, 817
Persistent virus, 168	loss, 688
Personal computer, backup, 696	spike, 688
- viccina vonipatel, outlap, 070	Sp. 100

supply, uninterruptible, 688	fair market, 632
surge, 688	financial service organization, 598
Precaution, 22	government data misuse and, 607
Precision, of data, 11, 530	government surveillance and, 645
Precision, with risk analysis, 684	Gramm–Leach–Bliley Act, 739
Predictability, in Dual-EC, 806	Hadoop, 544
Prediction, from RFID sensor, 639	Internet user ID, 622
Predictive value, in authentication, 57	laws, 597, 736
Preferred association, in wireless network, 386	limited data collection, 603
Pretty Good Privacy, see PGP	limited data retention, 597
Prevalence, in authentication, 56	limited use, 597
Prevention, attack countermeasure, 28	linking of identities, 613
Price	loss of, 814
of computer objects, 833	medical data, 598, 739
on the Internet, 631	new technology and, 643
Primary Colors, 246	notice of collection, 599, 600
Privacy Act (U.S.), see U.S., Privacy Act	online profile, 627
Privacy officer, 739	ownership, data, 592
Privacy, 586	permission for access, 596
access control for, 594	policy statement of, 598
accuracy of data, 596, 599, 603, 608	RFID tag, 638
adware, 629	safeguards for, 597
affected parties, 589	security of collected data, 599
anonymity and, 605	specific purpose for use, 596, 603
anonymization, 597, 613	spyware, 629
breach notification law, 740	student records, 598
children's web access, 598	telephony, 642
cloud computing, 642	U.S. e-Government Act, 599
collection limitation, 596	U.S. government websites, 599
commerce and, 604	U.S. Privacy Act, 738
context of data use, 588, 601	versus confidentiality, 589
controlled disclosure, 587	voting, 641
cookie, 627	web bug, 628
correctness, data, 596, 599, 608	Privacy-preserving data mining, 617
data accuracy, 596, 599, 603, 608	Private cloud, 552, 555
data collection by government, 738	Private key, in cryptography, 101, 102, 109, 126
data mining, 537	Privilege, 73, 85, 158
data modification, 597	escalation, 139 , 145, 165
data ownership, 592	least, see Least privilege
data quality, 596, 599, 603, 608	list, in access control, 82
data retraction, 594	limited, 75
deception prohibited, 600	limited, in operating system, 317
determining sensitivity, 587	operating system, 139
disappearing email, 635	root, 329
disclosure, controlled, 587	rootkit, 333
E.U. Data Protection Act, 742	separation of, design principle, 217, 317
economics and, 832	Probability,
email monitoring and, 632, 633	classical, 676
email remailer, 634	frequency, 676
encryption and, 597	subjective, 676
erroneous data, 608	Probable plaintext attack, against encryption, 770, 793
ethical aspect of, 752	Probable value disclosure, 520
Europe, 603	Procedure call, 136
expectation of, 633	Procedure oriented access control, 85
-	·

Process, 286, 320	Program, resident, 188
Process activation, in operating system, 320	Program, shared access to, 287
Processor, controlled access to, 283	Program, terminate-and-stay-resident, 188
Product cipher, encryption, 782	Programmer, responsibility for program use, 758
Product failure, redress for, 728	Programming error,
Profile,	buffer overflow, 134, 139, 145
online, 627	faulty serialization, 163
protection, see Protection profile	input validation failure, 152
user, 68	off-by-one, 159
Profit, motive for attack, 19	race condition, 163
Program assurance myth,	synchronization, 163
penetrate-and-patch, 224	time-of-check to time-of-use, 159
penetration testing, 218	unchecked data, 153
security through (by) obscurity, 185, 226, 356, 836	Programming language, 150
Program assurance technique,	Programming practice, poor 158
code review, 221	Project, database operation, 504
formal methods, 220	Promiscuous access point, 386
penetration testing, 218	Proof of correctness, program assurance technique, 219
proof of correctness, 219	Propagation,
testing, 211	access right, 77, 83
validation, 221	encryption error, 778
Program complexity, 149	malicious code, 180
Program counter,	Property, as asset, 3
modification of, 136, 148, 149	Property, legal rules of, 734
protection of, 150	Proprietary software, 756
vulnerability of, 147	Prosecution, 426
Program design	Protected speech, 595
complete mediation, 217, 316	Protection, 3, 6, 75, 87
defense in depth, 218	consumer financial, 621
defensive programming, 222	cookie data, 625
Design by contract, 223	copyright, 704
ease of use, 217, 317	critical data, 281
economy of mechanism, 217, 316	data, 11
least common mechanism, 217, 317	differentiated, 305
least privilege, 216, 218, 316	for computer objects, 716, 717, 721
open design, 217, 316	inadequate, 608
permission-based, 217, 218, 317	layered, 471
separation of privilege, 217, 317	memory, 284, 321
simplicity, 217	mobile agent, 430
validate input, 217	of critical data, 281
Program development practices, 216	of data, 11
cohesion, 206	of implanted medical device, 817
encapsulation, 204, 206	Protection profile, 328
information hiding, 204, 206	Protocol, 351
_	Protocol, cryptographic key exchange, 105, 107
isolation, 203	
modularity, 203, 204	Protocol, WiFi, 376
mutual suspicion, 207	Protocol analysis, stateful, 479
Program equivalence, 189, 218, 219	Proxy, application, <i>see</i> Application proxy firewall
Program file, modification of, 177	Pseudonym
Program flaw, 184	and privacy, 606, 613
Program implementation, 150. See also Program	for email, 634
development practices	of an object, 77
Program use, responsibility for use, 758	PSOS (Provably Secure Operating System), 311, 326
Program verification, 219	Psychology, of attacker, 16–17

D.11. 1 1 772 777 774	
Public cloud, 552, 555, 561	from malicious code attack, 179
Public domain, 705, 755	system, 74
ECC in the, 802	Redirection
Public hot spot, wireless, 382, 383	browser, 237
Public key cryptography, 89 , 93, 100, 101, 102, 109, 118,	traffic, 413
795, 802	Redundancy, 421, 428
for digital signature, 114, 116, 118	backup and, 697
Public scrutiny, of cryptographic algorithm, 779	database, 506
Pull, command-and-control update, 428	Hadoop and, 543
Purpose for data use, and privacy, 597	network design, 367
Push, command-and-control update, 428	testing, 109
	Reference monitor, 76 , 155, 313 , 454
Qualitative risk analysis, 677	Reflections on Trusting Trust, 172
Quality	Register,
of data, and privacy, 608	base, 298
of service, as asset, 3	bounds, 298
of software, 733, 816	fence, 298
Quantification, of security, 825	program counter, 136
Quantitative risk analysis, 677	stack pointer, 136, 146
Quantum cryptography, 807	Registration,
Quantum physics, 807	copyright, 708
Query analysis, database, 535	patent, 712
Query language, database, 504	Regression testing, 213
Query, database, 504	Regularity, in cryptography, 774
	Regulation, 834
Rabbit, 170	Relation, database, 504
Race condition, 163, 815	Reliability, 421
RACS (Redundant Array of Cloud Storage), 557	data, 827
Radar, jamming, 844	database, 513
Radiation therapy machine, 815	software, 185
Radiation, for network interception, 343	Relocation, program, 301
Radio frequency identification, see RFID	Remailer,
Rainbow table, 47	email, 634
Randell, Brian, 296	multiple, 634
Random attack, 14	Remanence, magnetic, 325
Random number generator, 775, 786, 792, 806	Remote access Trojan horse (RAT), 170
Random sample disclosure, database, 534	Remote wipe, 559
Randomization, of address space, 210	Rent-a-bot, 429
Range disclosure, database, 533	Repetition, in cryptanalysis, 776
Ransom, 400, 425	Replacement, of data, 3, 4
Rate limiting, 490	Replacement virus, 182
Rationality, 831	Replay attack, 432
RC2, 792	authentication credentials, 365
RC4, 389, 393, 792	network communication, 364
RC5, 794	Replication, data, 697
RC6, 795	Reputation, as asset, 671
Realm discovery, 571	Requirements, security, 212, 649, 651
Rearrangement, encrypted data, 786	Resident routine, 188
Reasoning, ethical, 747	Resident virus, 168
Record, database, 502	Residual risk, 23
Record-keeping, incident, 664	Resilience, network, 847
Recovery, 198	Resolution, addressing, 414
attack countermeasure, 28	Response team, 663
database, 516	Response, timeliness of, 11
	r

Responsibility, for security implementation, 650, 653	Rogue network connection, 382
Retraction, data, 594	Rogue program, 167
Return address	Role-based access control, 85–86
spoofing (network), 406	root (Unix identity), 329
subprocedure, 139	Root name server (Internet), 414, 419
Reuse,	Rootkit, 170, 465, 474, 612
authentication data, 243	Alureon, 334, 336
digital signature, 802	detection of, 334
object, 325	eradication of, 334
serial, 287	in operating system, 329
software 206	in phone, 329
Reuters, 19	integration of, 332
Reverse engineering, 714, 817	mobile phone, 329
Review, program, 158, 819	operating system, 329
Revocation, of access, 76	Sony XCP, 335
Revolving backup, 695	stealth, 333, 335
RFID, 636	TDL-3, 334
device, 817	Round, in AES, 98
reader, 638	Rounded disclosure, 533
tag, 529, 636	Router, 351, 352, 401, 492. See also Routing
Right versus wrong, 747	Router, screening, see Packet filtering gateway
Rights of individuals to privacy, 597	Routing, 352, 355, 359, 367, 410, 413, 434, 436
Rijndael, 98, 790. See also AES	RSA Corp., 275, 439, 779, 795, 804
Ripple effect, 827	RSA encryption
Risk, 824	algorithm, 102
analysis, see Risk analysis	cryptanalysis of, 103
assumption of, 669	key selection in, 798
avoidance of, 669	speed of encryption, 103
communication of, 831	Rule of engagement, 848
data access and, 607	Rule of evidence, 734
exposure, 669	Rushby, John, 296
extreme events, 24–25	Russia, 19, 391, 397, 743, 843, 845
leverage, 669	
management, 22	S/MIME, 277, 633
perception of, 25, 831	SaaS (Software as a Service), 552, 557
residual, see Residual risk	Safe harbor, 604, 742
transfer of, 669	Safe language, 149
Risk analysis, 23, 650, 668	Safeguards, privacy, 597
accuracy of, 685	Safety, 815
benefits, 684	Salt, password table, 47
control selection, 680	Saltzer, Jerome, 75, 202, 216, 315, 735
difficulty to perform, 685	SAML (Security Assertion Markup Language), 570
disadvantages, 684	Asserting Party, see IdP
exposure, 681	Assertion, 572
lack of accuracy, 685	Authentication Request, 572
likelihood estimation, 676	Authentication Response, 572
qualitative, 677	IdP (Identity Provider), 571
quantitative, 677	Relying Party, see SP
Rivest, Ronald, 103, 107, 792, 795, 800	SP (Service Provider), 571
Rivest-Shamir-Adelman cryptographic algorithm (RSA),	Subject, 571
see RSA	Token, see Authentication Response
Robustness, network, 847	Sample size concealment, database, 534
Rogue access point, 383	Sampling, 55
Rogue host, in wireless network, 384	Sampling, statistical, 532

San Diego Supercomputer Center, 18	Security plan, 648, 668
Sandbox, 294	acceptance of, 656
Sanitization, object, 325	controls, 653
Sasser, 431	extensibility, 655
SATAN (password administration tool), 43, 369	maintenance of, 655
Satellite communication, network, 346	requirements, 653
S-box, in DES, 787, 789	responsibility for implementation, 653
Scan, port, 369, 456	risk analysis, 668
Scareware, 170, 195	team members, 656
Schaefer, Marv, 221	timetable, 655
Schell, Roger, 172, 219, 225	Segment, offset in, 304
Schema, database, 502	Segment, size of, 305, 307
Schneier, Bruce, 801	Segmentation, combined with paging, 307
Schroeder, Michael, 75, 216, 315	Segmentation, memory, 303
Scomp, 323, 326	Selective backup, 696
Scope, incident, 667	Self-protection, of operating system, 290
Screening router, see Packet filtering gateway	Sensitive data, 587
Script(ed) attack, 261, 423, 839	access from smartphone, 818
Script kiddies, 196	control of, 814
Seal, tamper detecting, 108, 112, 113	database, 518, 529
Secrecy,	disposal of, 692, 772
assurance myth, 227	exposure of, 177, 818
code, 158, 185, 846	interception of, 236, 692, 772
communication, 116	protection of, 603
encryption, 777	RFID tags and, 638
programming, 184	timeliness of, 844
security weakness of, 158, 185, 836	Sensitive information, subject to Freedom of Information
voting, 837	act, 738
Secret key encryption, <i>see</i> Symmetric encryption	Sensitivity, in authentication, 56
Secret, shared, in authentication, 243	Sensitivity, in data mining, 537
Secure Hash Standard (SHS), see SHS	Sensor, 640, 815
Secure programming, see also Program development	Separation, 72, 259, 296, 305
practices	code from data, 150
Secure Socket Layer (SSL), see SSL	controlled, 296
SecurID authentication token, 67, 244, 275	cryptographic, 296
Security	data, 11
add-on, 364	layering, 310
association, in IPsec, 444	logical, 296
	malicious code countermeasure, 195
computer, 2	
cost of, 171	physical 296, 688
designing for, 212	potential malicious code, 197
kernel, 287, 312 , 322	privilege, design principle, 217, 316
operations center (SOC), 397, 492, 666	security kernel, 312
perimeter, 354	TCB from non-TCB code, 320
physical, 447	temporal, 296
policy, 72, 466	using firewall, 452
program development, 158	virtualization, 292
quantifying, 825	Sequencing attack, 363
software design and, 310	Sequencing, TCP, 415
success of, 32	Serial reuse, 287
through (by) obscurity, 185, 226, 356, 836	Serialization flaw, 163
Security Essentials, Microsoft security tool, 250	Server, 286
Security Information and Event Management (SIEM), 492,	Server-side include, 265
493, 560, 568	Service, degradation of, 849

Service, denial of, see Denial of service	Situation assessment, by intrusion detection
Service, theft of, 750	system, 488
Session hijack attack, 386, 394, 415	Size, of ciphertext, 778
Session, wireless communication, 393	Skimmer, 324
Severity, of harm, 22	Skimming, of authentication tokens, 67
SHA, 113, 800	Skype, 642
SHA-2, 800	SLA (Service Level Agreement), 555, 567
SHA-256 564	Slammer, 172, 175
SHA-3, 801	Small sample concealment, database, 534
Shadow field, database, 516	Smart device, 814
Shakespeare, 246	Smartphone, 817
Shamir, Adi, 103, 107, 788, 795	SMTP (Simple Mail Transfer Protocol), 273
Shannon, Claude, 90, 777	SMTP server, 633
Shared data space, 141	Smurf attack, 404
Shared infrastructure, 566, 580	Snapchat, 635
Shared key, encryption, 92	Sniffer, 343, 345
Shared passwords, 569	Snow, Brian, 19
Shared secret, in authentication, 243	SoBig, 172, 175
Shared use, operating system, 285	SOC, see, Security Operations Center
Sharing, 74	Social engineering, 50, 844
controlled, 287, 296	Software,
data, 287	as asset, 3, 671
enforced, 281	as asset, 671
fair, 753	cohesion of, 206
incident response information, 667	correctness of, 206, 728, 729
programs, 287	coupling, 206
resource, 358	encapsulation of, 206
total, 296	failure, 6, 730
Shielding, blocking electronic emanation, 693	failure, 728
Shift row, in AES, 790	flaw reporting, 731
Shneiderman, Ben, 654	information hiding in, 206
Shock, electrical, 816, 817	license of, 727, 756
Shopping, on the Internet, 630	maintenance of, 205
Shredding, paper, 692	ownership of, 725, 754
SHS ((Secure Hash Standard), see SHA	patching, 731, 733
Shunning, 431, 490	proprietary, 756
SIEM, see Security Information and Event Management	quality of, 733
Signature, digital, see Digital signature	quality, 210, 221
Signature, malicious code, 192, 198, 200	reliability, 815
Signature-based intrusion detection system, 476, 494	return of defective, 730
Signed code, 251	reuse of, 206
Silent Banker, 234	shrink-wrapped, 729
Simple Mail Transfer Protocol (SMTP), see SMTP	usability, 728
Simplicity,	Software as a Service (SaaS), 552, 557
encryption process, 778	Software design, 310
program design principle, 217	damage control in, 311
program quality, 205	hierarchical, 311
Simultaneous access, 11	security kernel, 312
Simultaneous execution, 286	Software development practices, see Program development
Single point of failure, 55, 557	practices
Single sign-on, 68, 461, 569	Sony XCP rootkit, 335
Single-key encryption, <i>see</i> Symmetric encryption	Source address spoofing, 404
Single-user computer, 284	Source, in big data, 547
Sinkholing, 490	Spafford, Eugene, 761
·	- -

Spam, 431, 633, 635, 740	State machine, 479
advertising with, 270	State-based intrusion detection system, 478
fee to send, 273	Stateful inspection firewall, 458
laws, 271	Stateful protocol analysis, 479
links to malicious code sites, 271	Statistical analysis, 477
outside legal jurisdictions, 271	in cryptanalysis, 776
pattern recognition, 272	Statistical sampling, 532
pharmaceuticals, 270	Statistics, web use, 626
pump-and-dump, 270	Statute, see Law
stocks, 270	Stealth, 487
U.S. Can Spam Act, 272	mode, wireless network, 384
unreliable source address, 272	malicious code, 189, 190 428
volume limitation, 272	Steganography, 192
volume of, 268	Stoll, Cliff, 295, 667
Spear phishing, 274, 844	Storage, networked, for backup, 697
Special operations, 842	Strategy, business continuity, 660
Specificity, in authentication, 56	strcpy, string copy utility, 162
Speech. Protected, 595	Stream cipher, 793
Speed, of encryption, 126	Stream encryption, 93
Splicing,	Street View, Google, 378
cable, 344, 363	Strength, of encryption, 97, 777
code modification, 337	String copy program, 162
Spoof(ing), 844	String
address, 413, 490	length, 161
DNS, 409	null-terminated, 161
email, 635	termination, 161
source address, 404	strncpy, string copy utility, 162
Spying, 92, 845	STU-III secure telephone, 244
Spyware, 170, 628, 630	Stuxnet, 20, 174, 175, 368, 843, 847
SQL, 504	Subject, 38 , 72
SQL injection attack, 263	Subject, data, 9
Square, payment scheme, 621	Subjective probability, 676
SSH (Secure shell) encryption, 438	Subnet, 450
SSID (Security Set Identifier), 378, 381, 383	Subprocedure, 139
cloaking, 384	Subschema, database, 502
automatic connection to, 387	Substitution, 363
SSL (Secure Socket Layer) encryption, 235, 387, 438, 444,	attack, 363
561, 794	encrypted data, 786
Apple bug, 213	in AES, 98
big data applications. 548	in cryptography, 95, 103, 774
lack of diversity in implementation of, 210	step, in DES, 96
session in, 439	Subtask, 204
STaaS (Storage as a Service), see Cloud storage	Subversion, 815
Stack, 146	Suit, contract law, 725
Stack frame, 146	Suite B, cryptographic algorithms, 803
Stack frame, protection of, 150	Supervisor, operating system, 136, 280
Stack memory, 136, 139	Suppression, data, 529
Stack pointer, 136, 146	Suppression, limited response, 532
Stack pointer, protection of, 150	Surface, attack, see Attack surface
Stack smashing, 145, 148	Surfing, and privacy, 624
StackGuard (stack protection software), 150	Surge suppressor, 688
Stalker, 820	Surveillance, government, and privacy, 645
Startup (automatically executing program), 181, 189	Survey results, comparability of, 830
Startup, operating system 280, 323	Swapping, 303

database, 535	acceptance, 211
value, 618	black-box, 214
Sweeney, Latanya, 527, 615	clear-box, 214
Switching cloud providers, 556	completeness of, 214
Symmetric cipher, 789	coverage of, 214
Symmetric encryption, 88 , 92, 96, 786	effectiveness of, 215
SYN flood attack, 405	function, 211
SYN packet, 406	independent, 215
SYN-ACK, 406	installation, 211
Synchronization, 281	integration, 211
program, 163	limitations of, 215
TCP, 416	penetration, 218
Syria, 844, 845	performance, 211
System log, 567, 582	regression, 213
System, computer, 3	unit, 211
System, trusted, see Trusted system	TFN, see Tribal flood network
System, usability of, 12	TFN2K, see Tribal flood network 2000,
Syverson, Paul, 443	The Cuckoo's Egg, 668
	Theft, 689, 692, 734
Tablet computer, 818	credit card, 19, 22
Tag, RFID, 636	deterring, 692
Tagged architecture, 301, 305	identity, 609
Tamper detection, 151	Therac 25, 815
Tampering, data, 109	Third-party ad, 622
Tampering, protection against, 113	Third-party cookie, 625
Tamperproof, reference monitor property, 76	Thompson, Ken, 43, 172
Tamper-resistant seal, 840	Thread, 163, 286
Target, attractive, 27	Threat, 5 , 6 , 8, 13, 25
Target Corp., 609, 616	Threat, 6 , 8
Targeted attack, 14, 19	Advanced Persistent, see Advanced Persistent Threat
Targeting, behavioral, 626	for decision-making, 826
Task, 286	malicious, 14
background, 358	network disconnection, 849
TCP connection, 415	nonmalicious, 14 , 420
TCP/IP, 439	Threat surface, 820
TCSEC (Trusted Computer System Evaluation Criteria),	Threshold, 55
see Trusted Computer System Evaluation Criteria	Ticket, access control mechanism, 82
TDL-3 (malicious code), 334	Tiger team analysis, <i>see</i> Penetration testing
TDSS rootkit, 336	Time bomb, 170
Teardrop attack, 407	Time
Telecommuter, 449	theft of, 750
Teleology, 748	response see Response time
Telephony, privacy and, 642	value of, 824
Television, 1	wait, see Wait time
Temperature, effect on semiconductor, 772 Tempest, 693	Timeliness, 777
Template, for biometric authentication, 59, 62	data, 827 response, 11
Temporal Key Integrity Program (TKIP), 393	sensitive data, 844
Terminate-and-stay-resident routine, 188	value of asset, 4
Terms of service, 643	Time-of-check to time-of-use (TOCTTOU) error, 155
Terms of use, 592, 763	TJMaxx, data theft, 19, 391
Terrorism, 20–21	TKIP (Temporal Key Integrity Program), 393
and privacy, 607	TLS (Transport Layer Security) encryption, see SSL
Testing, 210, 221	TNO (Trust No One), 562, 564
	(1100110 0110), 002, 001

TOCTTOU error, see Time-of-check to time-of-use error Tripwire (modification detection program), 112, 165, 251, Toilet sensor, 592 Token. Trojan horse, 169, 170, 423. See also Malicious code active, 66 Trope, Roland, 730 dynamic, 67 Trust, 76, 117, 172, 288, 310, 316, 409, 412, 454, 818, 838 for authentication, 65, 66 Trusted code, 289 passive, 66 Trusted Computer System Evaluation Criteria, 318, 323, RFID, 636 327, 651 static. 66 Trusted Computing Base (TCB), 318, 319 Tolerance, fault, see Fault tolerance Trusted path, 323 Toolkit, 166, 170, 196 Trusted system, 316 Top level domain, 414 Trustworthy Computing Initiative, Microsoft, 222, 326 Topology, network, 849 Truth, 747, 762 TOR (The Onion Router), see Onion routing Tuning, network, 431, 489 Tort law, 722 Tunnel mode, in IPsec, 446 Totient function, Euler, 797 Tunnel, encrypted, 448 Tracker Tuple, database, 504 inference in database, 524 Turn, Rein, 597 web page, 623 Tversky, Amos, 25 Tracking Twitter, 595 active, 628 Two-factor authentication, 70 Internet, 254, 620, 622, 623, 627 Two-phase update, database, 514 passive, 627 RFID tag, 638 U.S. Children's Online Privacy Protection Act Tracking bug, 254 (COPPA), 598 Trade secret, 714, 720, 734 U.S. Computer Emergency Response Team (CERT), 424 U.S. Computer Fraud and Abuse Act, 738 enforcement, 714 improper access to, 714 U.S. Department of Defense, 7, 608, 694, 842 ownership of, 727 U.S. Department of Health, Education and Welfare, 596 reverse engineering, 714 U.S. Department of Justice, 15, 19, 610 secrecy of, 714 U.S. Economic Espionage Act, 738 Trademark, 717 U.S. Federal Bureau of Investigation (FBI), 19, 20, 21, Traffic redirection, 413 Transfer, of risk, 669 U.S. Federal Educational Rights and Privacy Act, 598 Transient virus, 168 U.S. Federal Trade Commission, 599, 601, 610 Translation, address, see Address translation U.S. Freedom of Information Act (FOIA), 738 Transmission U.S. Health Insurance Portability and Accountability Act error, 361 (HIPAA), 598, 739, 753 failure, 420 U.S. National Bureau of Standards (NBS) 95, 97, 779, 788. of malicious code, 180 See also U.S. National Institute of Standards and Transparency, and privacy, 629 Technology Transparent image, Internet, 629 U.S. National Institute of Standards and Technology (NIST) 14, 95, 98, 429, 789, 800, 801, 806, 811. Transport mode, in IPsec, 446 Transposition, in cryptography, 95, 103, 774 See also U.S. National Bureau of Standards Trapdoor, 158, 170, 356, 787, 790, 845 U.S. National Security Agency (NSA), 97, 781, 787, 788, Treaty, 848 794, 801, 803, 805, 806 Trespassing, 761 U.S. Privacy Act, 597, 738 Triad, C-I-A, see C-I-A triad U.S. Uniform Commercial Code (UCC), 729 Triage, incident response, 664 U.S.A. Patriot Act, 740 UCC, see U.S. Uniform Commercial Code Tribal flood network (TFN), 18, 424 Tribal flood network year 2000 edition (TFN2K), 18, 424 Ukraine, 166, 845 Trin00 (malicious software), 18, 424 Unchecked data, 153 Triple DES, 96-97, 98 Undecidability, see Decidability Undocumented access point, 27, 157. See also Backdoor Triple, access control, 78-79, 81

T	1.0
Unintentional error, 6, 420	persistent, 168
Uninterruptible power supply, 688	polymorphic, 193
Unique identity, 606	resident, 168
Unit testing, 211	transient, 168
United States, 15, 19, 211, 743, 772, 843, 846	See also Malicious code
Unix, 81, 291, 329	VM (Virtual Machine), 558, 567, 579
Unsafe code, 150	Voice over IP, see VOIP
Unterminated string, 161	VoIP, 642
Usability, 51, 75, 242	Volume-based attack, denial of service, <i>see</i> Volumetric
in the large, 51, 52	attack
in the small, 51, 52	Volumetric attack, 398, 399, 423
system 12	Voting, electronic,
voting system, 841	casting a ballot, 834
Use,	counting ballots, 836
asset, 7	privacy, 641
data, 11, 608	VPN, see Virtual private network
User, 72	Vulnerability, 5, 6, 28
User interface, 815, 840	backdoor, 158
User-in-the-middle, 237	disclosure of, 731–733, 760, 833
Utilitarianism, 749	disclosure, full, 760
Utility program, 284	disclosure, partial, 760
	electronic voting, 834
Validation, program assurance technique, 221	exploitation, 419
Value swapping, 618	finding, 760
Value, of asset, 4 , 6, 21	for decision-making, 826
Value, of data, 736	paper-based election, 834
Vandalism, 689	race condition, 163
Variability, in biometric authentication, 55, 59, 64	reporting, responsible, 732
VAX, DEC computer, 290	risk analysis, 672
Vendor lock-in, 556	scanning, 431, 482
Venema, Wietse, 369	search for, 761
Verifiability, reference monitor property, 76	toolkit, 166, 419
Verification, program, see Program verification	trapdoor, 158
Verizon Breach Report, 171	undocumented entry, 158
Vernam cipher, 775	zero-day, 172
Viewing, data, 9	Vulnerability-threat-control paradigm, 5
Viewing, asset, 7	
Virginia, 421	Wait time, 11
Virtual infrastructure, 581	Waladec, spam network, 269, 429
Virtual machine, 292, 579	War driving, network, 382
Virtual memory, 303	War of the Worlds, 2
Virtual private network (VPN), 447, 492, 633	Ware, Willis, 13, 172, 318, 596, 597
Virtualization, in operating system, 292	Warfare, conventional, 842, 846
Virus, 167, 329	Warfare, cyber, see Cyber warfare
appended, 181	Watergate burglary, 596
attachment of, 188	Watermark, digital, 710
boot sector, 187	Weak encryption, 388
destructive, 176	Weak passwords, 568
detector, 198-199, 295	Weakness, 5
document, 180	in cryptography, 806
encrypting, 194	Weapon,
hoax, 176	cyber, 847
memory-resident, 188	kinetic, 847
multipartite, 178	Web [the], see Internet

Web bug, 254, 627 content, false, 246	availability, 382 confidentiality, 381 encryption initialization vector collision, 389
hosting, 566	faulty integrity check, 390
page, fake, 117	incomplete authentication, 394
site defacement, 20, 246	integrity, 381
site, fake, 249	integrity check, 390
site, privacy of, 599, 600	integrity failure, 395
Welke, Stephen, 10–11	MAC address spoofing, 394
Welles, Orson, 2	man-in-the-middle, 394
Wells, H. G., 2	no authentication, 390
WEP (Wired Equivalent Privacy), 379, 388, 398, 794	promiscuous access point, 386
weaknesses in, 389–390	rogue host, 384
Whistle blower, 613	session hijack, 394
White Have printing of philips attack 275	short encryption key, 388
White House, victim of phishing attack, 275	static encryption key, 388
Whitelest Immed 210, 211, 214	weak encryption, 388
Whittaker, James, 210, 211, 214 WiFi	Wiretap attack, 242, 343, 344, 354, 355, 360, 628, 739, 770, 771
communication, 364, see also Wireless network	Word macro virus, 10
frame, 379	Work factor, 227
signal interception, 391	Work factor, cryptographic, 91, 97
WikiLeaks, 473, 486, 595, 620	Work for hire, 726
Wild card, in access control, 81	World Intellectual Property Organization Treaty of 1996,
Windows operating system, 291, 302, 339, 818	705
Wireless client, 364	World War II, 89, 107, 771, 772
Wireless communication, 364, 376, 816. See also WiFi	Worm, 168. See also Malicious code
communication	Worm, Morris, see Morris worm
Wireless network	WPA (WiFi Protected Access), 390, 794
association, 380	WPA attack,
authentication, 380	MAC address spoofing, 394
authentication, 385	man-in-the-middle, 394
availability in, 382	VCD C
base station, 382 broadcast mode, 384	XCP, Sony rootkit, 335
closed mode, 384	XMLDSig (XML digital signature), 572
confidentiality, 381	x-ray, 815
encryption in, 383	Yes-or-no test, in authentication, 56, 62
integrity in, 381	Yoran, Amit, 209
open mode, 384	Toran, Annt, 209
rogue access point, 383	Zatko, Peter (Mudge), 139–140
rogue host in, 384	Zero-day exploit, 172 419
stealth mode, 384	Zeus, vulnerability toolkit, 245, 419
Wireless network vulnerability,	Zip code, U.S. 615
association hijacking, 386	Zombie, 170, 423, 426
authentication, nonexistent, 390	2011010, 170, 120, 120