Lista de Exercícios Cálculo I

Seção 7.1: Integração por Partes

Lista Referente à Seção 7.1 da 6^a ed. do livro de James Stewart, Cálculo - Volume 1.

Enunciado para as questões 1, 2: Calcule a integral usando integração por partes com as escolhas de u e dv indicadas:

1. $\int x^2 \ln x dx$; $u = \ln x$ $dv = x^2 dx$.

2. $\int \theta \cos \theta d\theta$; $u = \theta$ $dv = \cos \theta d\theta$.

Enunciado para as questões 4, 32: Calcule a integral.

4. $\int xe^{-x}dx$;

8. $\int x^2 \sin ax dx$;

10. $\int \sin^{-1} x dx$;

14. $\int s2^s ds$;

15. $\int (\ln x)^2 dx;$

17. $\int e^{2\theta} \sin 3\theta d\theta$;

20. $\int_0^1 (x^2+1)e^{-x}dx$;

29. $\int \cos x \ln(\sin x) dx$;

 $32. \int_0^t e^s \sin(t-s) ds;$

Enunciado para as questões 34, 38: Primeiro faça uma substituição e então use integração por partes para calcular a integral.

34. $\int t^3 e^{-t^2} dt$;

38. $\int \sin(\ln x) dx$;

62. Um foguete acelera pela queima de combustível a bordo; assim, sua massa diminui com o tempo. Suponha que a massa inicial do foguete no lançamento (incluindo o combustível) seja m, que o conbustível seja consumido a uma taxa r e que os gases de exaustão sejam ejetados a uma velocidade constante v_e (relativa ao foguete). Um modelo para a velocidade do foguete no instante t é dado pela seguinte equação:

$$v(t) = -gt - v_e \ln \frac{m - rt}{m}$$

em que g é a aceleração da gravidade e t é não muito grande. Se $g=9,8~m/s^2,~m=30000kg,~r=160kg/s$ e $v_e=3000\text{m/s},$ encontre a altitude do foguete 1 minuto após o lançamento.

63. Uma partícula que se move ao longo de uma reta tem velocidade igual a $v(t) = t^2 e^{-t}$ metros por segundo após t segundos. Qual a distância que esta partícula percorrerá durante os primeiros t segundos?

65. Suponha que $f(1)=2,\ f(4)=7,\ f'(1)=5,\ f'(4)=3$ e que f'' seja contínua. Determine o valor de $\int_1^4 x f''(x) dx$.

Gabarito

1.
$$a. \frac{x^3}{3} \ln x - \frac{x^3}{9} + C.$$
 $b. \theta \sin \theta + \cos \theta + C.$

$$2.-e^{-x}(x+1) + C;$$

4.
$$-\frac{x^2\cos ax}{a} + \frac{2x\sin ax}{a^2} + \frac{2\cos ax}{a^3} + C;$$

8.
$$x\sin^{-1}x - \sqrt{1-x^2} + C$$
;

10.
$$\frac{2^s s}{\ln 2} - \frac{2^s}{\ln^2 2} + C;$$

14.
$$x \ln^2 x - 2x \ln x + 2x + C$$
;

15.
$$\frac{1}{13}e^{2\theta}(2\sin 3\theta - 3\cos 3\theta) + C;$$

17.
$$-6e^{-1} + 3$$
;

20.
$$\sin(x)(\ln(\sin x) - 1) + C$$
;

29.
$$\frac{1}{2}[e^t - \sin(t) - \cos(t)] + C;$$

32. a.
$$\frac{1}{2}e^{-t^2}(-t^2-1)+C$$
;

34.
$$\frac{1}{2}(x\sin(\ln x) - x\cos(\ln x)) + C;$$

38. A altura do foguete é dada pela integral de v(t) de t=0 à $t=60s;~h\simeq 14,84$ km.

62. A distância é dada pela integral de v(t) de 0 à t: $2 - e^{-t}(t^2 + 2t + 2)$;

65. 2.