ESTRUCTURAS ALGEBRAICAS

1.1. LEY DE COMPOSICIÓN INTERNA

Definición 1.1.1. Sea E un conjunto, * se llama "ley de composición interna en E" si y sólo si

$$a*b=c\in E,\ \forall\,a,b\in E.$$

Observación 1.1.1.

- 1. * también se llama "operación binaria interna en <math>E.
- 2. Podemos decir que el conjunto E está cerrado para *.
- 3. * es ley de composición interna en E si y sólo si * : $E \times E \rightarrow E$ es función.

Ejemplo 1.1.1.

- 1. La adición es ley de composición interna en \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} .
- 2. * definida en \mathbb{Z} por a * b = a b + ab es ley de composición interna en \mathbb{Z} .
- 3. Si A es un conjunto y $P(A) = \{X \mid X \subseteq A\}$ entonces, la operación \cup definida en P(A) es ley de composición interna en P(A).

Proposición 1.1.1. Sea * ley de composición interna en E y $a, b \in E$, entonces

- a) $a = b \Rightarrow a * c = b * c$, $\forall c \in E$.
- b) $a = b \Rightarrow c * a = c * b$, $\forall c \in E$.

Demostración.

- a) $a = b \Rightarrow (a, c) = (b, c) \Rightarrow *(a, c) = *(b, c)$ es decir a * c = b * c.
- b) Análogo.

1.1.1. Asociatividad

Definición 1.1.2. Sea * ley de composición interna en E, decimos que * es asociativa si y sólo si a*(b*c)=(a*b)*c, $\forall a,b,c\in E$.

Ejemplo 1.1.2.

- 1. La adición en \mathbb{Z} es asociativa.
- 2. La multiplicación es asociativa en N, Z, Q, R.
- 3. * definida en \mathbb{R} por a*b=a+b+2ab es asociativa ya que

$$a*(b*c) = a*(b+c+2bc)$$

= $a+(b+c+2bc)+2a(b+c+2bc)$
= $a+b+c+2bc+2ab+2ac+4abc$.

Por otro lado

$$(a*b)*c = (a+b+2ab)*c$$

= $(a+b+2ab)+c+2(a+b+2ab)c$
= $a+b+2ab+c+2ac+2bc+4abc$

 $Como\ a*(b*c)=(a*b)*c\ entonces*es\ asociativa.$

4. * definida en \mathbb{R} por a * b = a + 2b no es asociativa ya que, por ejemplo,

$$2*(5*3) = 2*(5+2\cdot3)$$

$$= 2*(5+6)$$

$$= 2*11 = 2+2\cdot11$$

$$= 24$$

no es igual a

$$(2*5)*3 = (2+2\cdot5)*3$$

$$= (2+10)*3$$

$$= 12*3$$

$$= 12+2\cdot3$$

$$= 18.$$

5. Si A es un conjunto y $P(A) = \{X \mid X \subseteq A\}$ entonces la operación \cup , \cap definida en P(A) es asociativa.

1.1.2. Distributividad

Definición 1.1.3. Sean $*, \nabla$ dos leyes de composición interna en el conjunto E,

a) Se dice que * distribuye por la izquierda sobre ∇ si y sólo si

$$a * (b\nabla c) = (a * b)\nabla(a * c), \ \forall a, b, c \in E.$$

b) Se dice que * distribuye por la derecha sobre ∇ si y sólo si

$$(b\nabla c)*a = (b*a)\nabla(c*a), \forall a,b,c \in E.$$

c) Se dice que * es distributiva sobre ∇ si y sólo si cumple a) y b).

Ejemplo 1.1.3.

1. La multiplicación es distributiva con respecto de la adición en \mathbb{R} ya que

$$a \cdot (b+c) = a \cdot b + a \cdot c, \ \forall a, b, c \in \mathbb{R}$$

y

$$(a+b) \cdot c = a \cdot c + b \cdot c, \ \forall a, b, c \in \mathbb{R}.$$

2. La adición no es distributiva con respecto de la multiplicación en \mathbb{R} ya que, por ejemplo, $2 + (5 \cdot 4) \neq (2 + 5) \cdot (2 + 4)$.

Ejemplo 1.1.4. Sean $*: \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^+$ tal que $a*b = b^a$ y $\nabla: \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^+$ tal que $a \nabla b = a \cdot b$ dos leyes de composición interna.

- a) Pruebe que * es distributiva por la izquierda con respecto de ∇ .
- b) Pruebe que * no es distributiva por la derecha con respecto de ∇ .

Solución.

a) Debemos demostrar que $a*(b\nabla c)=(a*b)\nabla(a*c), \forall a,b,c\in\mathbb{R}^+,$

$$a * (b\nabla c) = a * (b \cdot c)$$

$$= (b \cdot c)^{a}$$

$$= b^{a} \cdot c^{a}$$

$$= (a * b)\nabla(a * c).$$

b) Como $(a\nabla b)*c = (a\cdot b)*c = c^{a\cdot b}$ y $(a*c)\nabla(b*c) = c^a\nabla c^b = c^{a+b}$ y dado que $c^{a\cdot b} \neq c^{a+b}$ concluimos que * no es distributiva por la derecha con respecto de ∇ .

1.1.3. Elemento Neutro

Definición 1.1.4. Sea * ley de composición interna en $E, e \in E$ se llama elemento neutro para * si y sólo si e * a = a * e = a, $\forall a \in E$.

Ejemplo 1.1.5.

- 1. $0 \in \mathbb{R}$ es neutro para la adición en los números reales.
- 2. $1 \in \mathbb{R}$ es neutro para la multiplicación en los números reales.
- 3. $\cap: P(X) \times P(X) \to P(X)$ donde X es un conjunto y P(X) es el conjunto potencia de X tiene neutro e = X ya que $A \cap X = X \cap A = A$, $\forall A \in P(X)$.

Proposición 1.1.2. Sea * ley de composición interna en E entonces, si existe elemento neutro, éste es único.

Demostración. Sean e, e_1 dos neutros para *, debemos demostrar que $e = e_1$; tenemos, $e * e_1 = e_1$ ya que e es neutro, por otro lado $e * e_1 = e$ ya que e_1 es neutro, así, $e = e_1$. \square

1.1.4. Conmutatividad

Definición 1.1.5. Sea * ley de composición interna en E, * es conmutativa en E si y sólo si

$$a * b = b * a, \forall a, b \in E.$$

Ejemplo 1.1.6.

- 1. La adición y la multiplicación son operaciones conmutativas en \mathbb{Z} , \mathbb{Q} , \mathbb{R} .
- 2. La unión y la intersección de conjuntos son operaciones conmutativas en el conjunto potencia del conjunto A.
- 3. La operación * definida en \mathbb{R} tal que a*b=a+2b no es conmutativa, ya que, por ejemplo, $3*2=7\neq 2*3=8$.

1.1.5. Elemento Inverso

Definición 1.1.6. Sea * ley de composición interna en E tal que existe elemento neutro $e \in E$ con respecto de *; se llama elemento inverso de $a \in E$ con respecto de * al elemento $\bar{a} \in E$ tal que $a * \bar{a} = \bar{a} * a = e$, $\forall a \in E$.

Ejemplo 1.1.7. Considere la operación * definida en \mathbb{R} por a*b=a+b+2ab tal que es asociativa y con neutro e=0. ¿Qué elementos $a\in\mathbb{R}$ tienen inverso \bar{a} ?.

Solución. Imponiendo la condición de inverso, se debe cumplir que $a * \bar{a} = e$, así,

$$a * \bar{a} = e \implies a + \bar{a} + 2a\bar{a} = 0$$

 $\Rightarrow \bar{a}(1 + 2a) = -a$
 $\Rightarrow \bar{a} = \frac{-a}{2a + 1}$

donde $a \neq -\frac{1}{2}$, por otro lado,

$$\bar{a} * a = \frac{-a}{2a+1} * a$$

$$= \frac{-a}{2a+1} + a + 2a \frac{-a}{2a+1}$$

$$= a + \frac{-a - 2a\bar{a}}{2a+1}$$

$$= 0$$

de donde $\forall a \in \mathbb{R} - \left\{-\frac{1}{2}\right\}$ existe $\bar{a} \in \mathbb{R}$ tal que $\bar{a} = \frac{-a}{2a+1}$.

Proposición 1.1.3. Sea * ley de composición interna en E tal que * es asociativa y con elemento neutro e entonces, si $a \in E$ tiene inverso, este es único.

Demostración. Sean $\overline{x_1}, \overline{x_2}$ dos inversos de x entonces se cumple $\overline{x_1} * x = x * \overline{x_1} = e$ y además $\overline{x_2} * x = x * \overline{x_2} = e$, $\forall x \in E$; debemos demostrar que $\overline{x_1} = \overline{x_2}$, veámoslo,

$$\overline{x_1} = \overline{x_1} * e$$

$$= \overline{x_1} * (x * \overline{x_2})$$

$$= (\overline{x_1} * x) * \overline{x_2}$$

$$= e * \overline{x_2}$$

$$= \overline{x_2}.$$

Proposición 1.1.4. Sea * ley de composición interna en E tal que * es asociativa y con elemento neutro e tal que $a, b \in E$ tienen elemento inverso \bar{a}, \bar{b} , entonces,

$$a) \ \overline{(\bar{a})} = a.$$

$$b)\ \overline{(a*b)} = \bar{b}*\bar{a}.$$

Demostración.

b) Si demostramos que $c = \bar{b} * \bar{a}$ es tal que (a * b) * c = e y c * (a * b) = e, habremos demostrado que c es inverso de a * b; veámoslo,

$$(a*b)*c = (a*b)*(\bar{b}*\bar{a})$$

$$= a*[b*(\bar{b}*\bar{a})]$$

$$= a*[(b*\bar{b})*\bar{a}]$$

$$= a*[e*\bar{a}]$$

$$= a*\bar{a}$$

$$= e.$$

Análogamente, c*(a*b)=e, así, el inverso de a*b es $\bar{b}*\bar{a}$ de donde se cumple $\overline{(a*b)}=\bar{b}*\bar{a}.$

Ejemplo 1.1.8. Considere la operación * definida en \mathbb{R} por a*b=a+b+2ab tal que es asociativa, con neutro e=0 y $\bar{a}=\frac{-a}{2a+1}$ con $a\neq -\frac{1}{2}$.

- a) Resuelva la ecuación $\overline{(2*\bar{x})} = 3$.
- b) Resuelva la inecuación $\overline{(-2*\bar{x})} \le 2$.

Solución. Conviene aplicar la propiedad $\overline{(a*b)} = \overline{b}*\overline{a}$, tenemos,

a)

$$\overline{(2*\overline{x})} = 3 \quad \Rightarrow \quad x*\overline{2} = 3$$

$$\Rightarrow \quad x*\frac{-2}{2\cdot 2 + 1} = 3$$

$$\Rightarrow \quad x*-\frac{2}{5} = 3$$

$$\Rightarrow \quad x - \frac{2}{5} + 2\left(-\frac{2}{5}\right)x = 3$$

$$\Rightarrow \quad \frac{1}{5}x = \frac{17}{5}$$

de donde x = 17.

b)

$$\overline{(-2*\overline{x})} \le 2 \quad \Rightarrow \quad x*\overline{-2} \le 2$$

$$\Rightarrow \quad x*\frac{-(-2)}{2(-2)+1} \le 2$$

$$\Rightarrow \quad x*-\frac{2}{3} \le 2$$

$$\Rightarrow \quad x-\frac{2}{3}+2\left(-\frac{2}{3}\right)x \le 2$$

$$\Rightarrow \quad -\frac{1}{3}x \le \frac{8}{3}$$

$$\Rightarrow \quad x \ge -8.$$

П

La solución es $[-8, \infty[-\{-\frac{1}{2}\}]$.

1.2. ESTRUCTURAS ALGEBRAICAS

Cuando dotamos a un conjunto de una o más leyes de composición es que estamos dando a dicho conjunto cierta *estructura*. Una estructura, por consiguiente, queda definida por los axiomas que rigen las relaciones y las operaciones de las que está dotada. En lo que sigue estudiaremos, brevemente, las estructuras fundamentales del álgebra: grupos, anillos, cuerpos y espacios vectoriales.

1.2.1. Grupo

Definición 1.2.1. Un grupo es un par (G, *) donde,

- 1. G es un conjunto.
- 2. * es ley de composición interna en G tal que,
 - a) $a * (b * c) = (a * b) * c, \forall a, b, c \in G.$
 - b) Existe $e \in G$ tal que a * e = e * a = a, $\forall a \in G$.
 - c) Si $a \in G$ entonces existe $\bar{a} \in G$ tal que $a * \bar{a} = \bar{a} * a = e$.

Observación 1.2.1. Decimos que el grupo (G,*) es conmutativo si la operación * es conmutativa.

Ejemplo 1.2.1. 1. (Z, +) es grupo conmutativo.

- 2. $(\mathbb{R} \{0\}, \cdot)$ es un grupo conmutativo.
- 3. $(\mathbb{Q}^+,*)$ tal que $a*b=\frac{ab}{2}$ es grupo conmutativo.

Proposición 1.2.1. Sea (G, *) un grupo entonces, $a * c = b * c \Leftrightarrow a = b, a, b, c \in G$.

Demostración.

 \Rightarrow) Si a*c=b*c debemos demostrar que a=b.

$$a*c = b*c \implies (a*c)*\bar{c} = (b*c)*\bar{c}$$

$$\Rightarrow a*(c*\bar{c}) = b*(c*\bar{c})$$

$$\Rightarrow a*e = b*e$$

$$\Rightarrow a = b.$$

←) Propuesto.

Proposición 1.2.2. Sea (G,*) un grupo, $a,b \in G$ entonces, la ecuación a*x = b tiene solución única en G.

Demostración.

$$a*x = b \implies \bar{a}*(a*x) = \bar{a}*b$$

$$\Rightarrow (\bar{a}*a)*x = \bar{a}*b$$

$$\Rightarrow e*x = \bar{a}*b$$

$$\Rightarrow x = \bar{a}*b.$$

Es claro que $\bar{a} * b$ es solución y única.

Ejemplo 1.2.2.

- 1. (C,+) donde $C = \{(a,b) / a, b \in \mathbb{R}\}$ es el conjunto de los números complejos y la adición esta definida por $(a,b) + (c,d) = (a+c,b+d), \ \forall (a,b), (c,d) \in \mathbb{C}$, es un grupo conmutativo.
- 2. $(M(2,\mathbb{R}),+)$ donde $M(2,\mathbb{R})=\{(\begin{smallmatrix} a & c \\ b & d \end{smallmatrix}) / a,b,c,d\in\mathbb{R}\}$ es el conjunto de las matrices cuadradas de tamaño 2 en \mathbb{R} y la suma se define por:

$$\begin{pmatrix} a & c \\ b & d \end{pmatrix} + \begin{pmatrix} e & g \\ f & h \end{pmatrix} = \begin{pmatrix} a+e & c+g \\ b+f & d+h \end{pmatrix}$$

es un grupo conmutativo donde

$$\begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} e & g \\ f & h \end{pmatrix} \Leftrightarrow (a = e, c = g, b = f, d = h).$$

Ejemplo 1.2.3. Demuestre que las dos funciones; f(x) = x, $g(x) = \frac{1}{x}$, $x \in \mathbb{Q} - \{0\}$, tienen estructura de grupo bajo la composición de funciones.

Solución. Como

$$(f \circ g)(x) = f(g(x)) = f(\frac{1}{x}) = \frac{1}{x} = g(x)$$

$$(g \circ f)(x) = g(f(x)) = g(x) = \frac{1}{x} = g(x)$$

$$(g \circ g)(x) = g(g(x)) = g(\frac{1}{x}) = x = f(x)$$

$$(f \circ f)(x) = f(f(x)) = f(x) = x = f(x),$$

entonces la composición es ley de composición interna en $A = \{f(x), g(x)\}.$

Estos resultados podemos escribirlos es la siguiente tabla de doble entrada

0	f(x)	g(x)
f(x)	f(x)	g(x)
g(x)	g(x)	f(x)

Es inmediato que,

El elemento neutro es e = f(x).

El elemento inverso de f(x) es f(x); el elemento inverso de g(x) es g(x).

La asociatividad la puede probar Ud.

Así, (A, \circ) es grupo; además es grupo conmutativo.

Ejemplo 1.2.4. Sea $(\mathbb{Z},*)$ tal que a*b=a+b-2, $a,b\in\mathbb{Z}$. Demuestre que $(\mathbb{Z},*)$ es grupo.

Solución. Claramente * es ley de composición interna en \mathbb{Z} . Debemos demostrar que * es asociativa, posee neutro e inverso en \mathbb{Z} .

i)

$$a*(b*c) = a*(b+c-2)$$

= $a+(b+c-2)-2$
= $a+b+c-4$.

$$(a*b)*c = (a+b-2)*c$$

= $(a+b-2)+c-2$
= $a+b+c-4$.

así,
$$a * (b * c) = (a * b) * c, \forall a, b, c \in \mathbb{Z}$$
.

ii) Debemos probar que existe neutro e tal que $a*e=e*a=a, \forall a\in\mathbb{Z}$. Imponiendo la condición a*e=a tenemos,

$$a * e = a \Rightarrow a + e - 2 = a \Rightarrow e = 2.$$

Ahora debemos verificar que el neutro opera por la derecha. Tenemos,

$$e * a = 2 * a = 2 + a - 2 = a;$$

así, el neutro es e=2.

iii) Debemos demostrar que, para todo $a \in \mathbb{Z}$ existe $\bar{a} \in \mathbb{Z}$ tal que $\bar{a} * a = a * \bar{a} = 2$. Imponiendo la condición $\bar{a} * a = 2$ tenemos,

$$\bar{a} * a = 2 \Rightarrow \bar{a} + a - 2 = 2 \Rightarrow \bar{a} = 4 - a.$$

Por otro lado, como $a * \bar{a} = a * (4 - a) = a + (4 - a) - 2 = 2$ entonces $\bar{a} = 4 - a$. Concluimos que $(\mathbb{Z}, *)$ es grupo. **Ejemplo 1.2.5.** Sea $A = \{a, b\}$ y (A, *) un grupo. Demuestre que el grupo es conmutativo.

Solución. Debemos demostrar que a * b = b * a. Como (A,*) es grupo entonces debe poseer neutro e; supongamos que e = b entonces

$$a * b = a * e = a = e * a = b * a.$$

Ejemplo 1.2.6. Sea * una ley de composición interna definida en $\mathbb{Q} \times \mathbb{Q}$ tal que (a,b) * (c,d) = (ac,bc+d). Se sabe que (A,*) es grupo donde $A = \{(1,x) / x \in \mathbb{Q}\}$; determine el neutro e en A.

Solución. Sea $e=(1,p)\in A$ tal elemento neutro; imponiendo la condición de neutro debe cumplir, $(1,x)*(1,p)=(1,p)*(1,x)=(1,x), \ \forall (1,x)\in A\times A.$

De (1, x) * (1, p) = (1, x) tenemos (1, x + p) = (1, x), de aquí concluimos x + p = x, de donde p = 0, así, el neutro lateral derecho es e = (1, 0).

Ahora debemos verificar que es neutro lateral izquierdo, tenemos, $e * (1, x) = (1, 0) * (1, x) = (1, 0 + x) = (1, x), \forall (1, x) \in A$, luego, e = (1, 0).

Ejemplo 1.2.7. Sea $\{x,y\} \subseteq \mathbb{Z}_3$. Pruebe que $(x+y)^3 = x^3 + y^3$.

Solución.

$$(x+y)^3 = (x+y)(x+y)(x+y)$$

= $x^3 + 3x^2y + 3xy^2 + x^3$
= $x^3 + y^3$,

ya que $3 \equiv 0 \pmod{3}$.

1.2.2. Anillo

Definición 1.2.2. El trío $(A, +, \cdot)$ se llama anillo si y sólo si

- a) (A, +) es grupo conmutativo.
- b) \cdot es ley de composición interna en A.
- c) · es asociativa.
- d) · es distributiva con respecto de +.

Definición 1.2.3. Sea $(A, +, \cdot)$ un anillo, entonces,

- a) $(A, +, \cdot)$ es conmutativo si y sólo si · es conmutativa.
- b) $(A, +, \cdot)$ es un Anillo con unidad si y sólo si existe elemento neutro para \cdot .

Ejemplo 1.2.8.

- 1. $(Z, +, \cdot)$ es anillo.
- 2. $(E, +, \cdot)$ es anillo, donde $E = \{x \in \mathbb{Z} \mid x \text{ es un número par}\}.$
- 3. $(Z, +, \otimes)$ donde $a \otimes b = 2ab$ es anillo.
- 4. $(\mathbb{R} \times \mathbb{R}, +, \cdot)$ tal que (a, b) + (c, d) = (a + c, b + d) y $(a, b) \cdot (c, d) = (ac, bd)$ es anillo.
- 5. $(C, +, \cdot)$ tal que $C = \mathbb{R} \times \mathbb{R}$, (a, b) + (c, d) = (a + c, b + d), $(a, b) \cdot (c, d) = (ac bd, ad + bc)$ es un anillo.
- 6. $(\mathbb{Z}_4, +, \cdot)$ es anillo.
- 7. $(M(2,\mathbb{R}),+,\cdot)$ es anillo donde

$$\begin{pmatrix} a & c \\ b & d \end{pmatrix} \cdot \begin{pmatrix} x & z \\ y & w \end{pmatrix} = \begin{pmatrix} ax + cy & az + cw \\ bx + dy & bz + dw \end{pmatrix}.$$

Proposición 1.2.3. Sea $(A, +, \cdot)$ un anillo con neutro aditivo 0 e inverso aditivo de a el elemento -a. Se cumple,

a)
$$a \cdot 0 = 0 \cdot a = 0$$
, $\forall a \in A$.

b)
$$(-a) \cdot b = a \cdot (-b) = -(a \cdot b), \forall a, b \in A.$$

Demostración.

a)

$$a \cdot 0 = 0 + a \cdot 0 = [-(a \cdot a) + (a \cdot a)] + a \cdot 0$$

$$= -(a \cdot a) + [a \cdot a + a \cdot 0]$$

$$= -(a \cdot a) + a(a + 0)$$

$$= -(a \cdot a) + a \cdot a$$

$$= 0.$$

Análogamente se demuestra que $0 \cdot a = 0$.

b) Demostraremos que $(-a) \cdot b$ y $-(a \cdot b)$ son inversos aditivos de $a \cdot b$, entonces, por la unicidad del inverso concluiremos que

$$(-a) \cdot b = -(a \cdot b)$$

$$= (-a) \cdot b + a \cdot b$$

$$= (-a+a) \cdot b$$

$$= 0 \cdot b$$

$$= 0,$$

así, $(-a) \cdot b$ es inverso aditivo de $a \cdot b$.

Por otro lado, es inmediato que $-(a \cdot b)$ es inverso aditivo de $a \cdot b$. De manera análoga se demuestra que $a \cdot (-b) = -(a \cdot b)$.

Corolario 1.2.1. Si $(A, +, \cdot)$ es un anillo entonces $a \cdot b \neq 0 \Rightarrow a \neq 0 \land b \neq 0, \forall a, b \in A$. En efecto, usando la contrapositiva y la parte a) de la proposición anterior tenemos, $(a = 0 \lor b = 0) \Rightarrow a \cdot b = 0$.

Observación 1.2.2. El recíproco del corolario no se cumple, ya que, por ejemplo

a) En el anillo $(M(2,\mathbb{R}),+,\cdot)$ se tiene

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

1. En el anillo $(\mathbb{Z}_4, +, \cdot)$ se tiene $\bar{2} \cdot \bar{2} = \bar{0}$.

Definición 1.2.4. Un anillo conmutativo es un triple $(A, +, \cdot)$ tal que

- a) $(A, +, \cdot)$ es anillo.
- b) · es conmutativa.

Ejemplo 1.2.9.

- 1. $(Z, +, \cdot)$ es anillo conmutativo.
- 2. El anillo $(M(2,\mathbb{R}),+,\cdot)$ no es conmutativo.
- 3. En general $(\mathbb{Z}_m, +, \cdot)$ es anillo conmutativo.
- 4. El anillo $(M(2,\mathbb{R}),+,\cdot)$ no es conmutativo ya que por ejemplo,

$$\begin{pmatrix}1&0\\2&3\end{pmatrix}\cdot\begin{pmatrix}1&1\\1&0\end{pmatrix}=\begin{pmatrix}1&1\\5&2\end{pmatrix}\neq\begin{pmatrix}1&1\\1&0\end{pmatrix}\cdot\begin{pmatrix}1&0\\2&3\end{pmatrix}=\begin{pmatrix}3&3\\1&0\end{pmatrix}.$$

Definición 1.2.5. Un anillo con identidad es un triple $(A, +, \cdot)$ tal que

- a) $(A, +, \cdot)$ es anillo.
- b) Existe $1 \in A$ tal que $1 \cdot a = a \cdot 1 = a$, $\forall a \in A$.

Ejemplo 1.2.10.

1. $(\mathbb{Z}, +, \cdot)$ es anillo con unidad.

- 2. $(M(2,\mathbb{R}),+,\cdot)$ es anillo con $1=(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix})$.
- 3. $(\mathbb{R} \times \mathbb{R}, +, *)$ tal que (a, b) + (c, d) = (a + c, b + d) y (a, b) * (c, d) = (ac, bd) es anillo con unidad 1 = (1, 1).
- 4. $(C, +, \cdot)$ tal que $C = \mathbb{R} \times \mathbb{R}$, (a, b) + (c, d) = (a + c, b + d), (a, b) * (c, d) = (ac bd, ad + bc) es un anillo con unidad 1 = (1, 0).
- 5. $(\mathbb{Z}_4, +, \cdot)$ es anillo conmutativo con unidad.

1.2.3. Dominio de Integridad

Una de las formas para solucionar una ecuación de segundo grado es factorizar, allí usamos la proposición $(a \cdot b = 0) \Leftrightarrow (a = 0 \lor b = 0)$, sin embargo existen algunos conjuntos donde esto no ocurre, por ejemplo, en \mathbb{Z}_4 tenemos $\bar{2} \cdot \bar{2} = \bar{0}$.

Definición 1.2.6. Sea $(A, +, \cdot)$ un anillo. Si $a, b \in A$ son no nulos tal que $a \cdot b = 0$ con 0 el neutro para + entonces, $a \cdot b$ se llaman divisores del cero.

Ejemplo 1.2.11.

- 1. $(\mathbb{Z}_6, +, \cdot)$ es anillo con divisores del cero.
- 2. $(M(2,\mathbb{R}),+,\cdot)$ es anillo con divisores del cero.

Teorema 1.2.1. Un anillo $(A, +, \cdot)$ no tiene divisores del cero si y sólo si es válida la ley de cancelación para la multiplicación.

Demostración.

 \Rightarrow) Sea $(A, +, \cdot)$ un anillo sin divisores del cero y $a, b, c \in A$ tal que $c \neq 0$, debemos demostrar que si $a \cdot c = b \cdot c$ entonces a = b, veámoslo,

$$a \cdot c = b \cdot c \Rightarrow a \cdot c - b \cdot c = 0 \Rightarrow (a - b) \cdot c = 0;$$

como $(A, +, \cdot)$ es un anillo sin divisores del cero y $c \neq 0$ entonces a - b = 0, de donde, a = b.

 \Leftarrow) Supongamos que se cumple la cancelación para la multiplicación, debemos demostrar que $a \cdot b = 0 \Rightarrow (a = 0 \lor b = 0)$. Si $a \neq 0$ entonces

$$a \cdot b = 0 \Rightarrow a \cdot b = a \cdot 0$$

de donde b = 0.

Definición 1.2.7. Un dominio de integridad es un triple $(A, +, \cdot)$ tal que

a) $(A, +, \cdot)$ es anillo conmutativo con identidad.

b) $(a \neq 0 \land b \neq 0) \Rightarrow a \cdot b \neq 0)$ donde el neutro para + es 0.

Observación 1.2.3. Sea $(A, +, \cdot)$ un dominio de integridad, entonces,

- a) $(a \cdot c = b \cdot c) \Rightarrow a = b, \forall a, b, c \in A, c \neq 0.$
- b) La ecuación $a \cdot x = b$, $a \neq 0$ tiene solución única.
- c) $a \cdot b = 0 \Rightarrow (a = 0 \lor b = 0)$.

Ejemplo 1.2.12.

- 1. $(\mathbb{Z}_5, +, \cdot)$ es dominio de integridad.
- 2. $(C, +, \cdot)$ tal que $C = \mathbb{R} \times \mathbb{R}$, (a, b) + (c, d) = (a + c, b + d), $(a, b) \cdot (c, d) = (ac bd, ad + bc)$ es dominio de integridad.

Observación 1.2.4. En el anillo $(\mathbb{Z}_4, +, \cdot)$, la ecuación $2 \cdot x = 0$ tiene dos soluciones, naturalmente que nos interesa una estructura tal que una ecuación del tipo $a \cdot x = b$ tiene solución única; en la estructura de *cuerpo* una ecuación del tipo $a \cdot x = b$ tiene solución y es única.

1.2.4. Cuerpo

Definición 1.2.8. El triple $(A, +, \cdot)$ es un *cuerpo* si y sólo si

- a) $(A, +, \cdot)$ es anillo conmutativo con unidad 1.
- b) $\forall a \in A \{0\} \ \exists a^{-1} \in A \ \text{tal que } a \cdot a^{-1} = 1.$

Ejemplo 1.2.13.

- 1. $(\mathbb{Z}_3, +, \cdot)$ es cuerpo.
- 2. $(C, +, \cdot)$ tal que $C = \mathbb{R} \times \mathbb{R}$; (a, b) + (c, d) = (a + c, b + d), (a, b) * (c, d) = (ac bd, ad + bc) es cuerpo donde $(a, b)^{-1} = \left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right)$.

Observación 1.2.5.

- a) Si $(A, +, \cdot)$ es un cuerpo entonces $(A, +, \cdot)$ es dominio de integridad; en efecto, sólo falta demostrar que $(a \neq 0 \land b \neq 0) \Rightarrow a \cdot b \neq 0$; lo demostraremos usando la contrapositiva $(a \cdot b = 0) \Rightarrow (a = 0 \lor b = 0)$.
 - Supongamos que $a \cdot b = 0$ y que $b \neq 0$, entonces $(a \cdot b) \cdot b^{-1} = 0 \cdot b^{-1}$, de aquí deducimos que a = 0, lo que constituye una contradicción.
- 1. El recíproco no es cierto, es decir, $(A, +, \cdot)$ dominio de integridad no implica que $(A, +, \cdot)$ sea un cuerpo, ya que, por ejemplo, $(Z, +, \cdot)$ es dominio de integridad y sin embargo no es un cuerpo.

1.3. EJERCICIOS PROPUESTOS

Ejercicio 1.1. Decida si las siguientes operaciones son o no ley de composición interna en el conjunto declarado.

- a) $*: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ tal que a * b = ab + 2.
- b) * definida en $\mathbb{Z} \{0\}$ tal que $x * y = \frac{x}{y} + 2$.
- c) \circ definida en \mathbb{Z} tal que $a \circ b = (a+b)^2$.
- d) * definida en \mathbb{Z} tal que $a * b = \frac{a+b-2}{3}$.
- e) * definida en \mathbb{Q} tal que $a * b = \frac{a+b-2}{3}$.
- f) La multiplicación usual definida en $A = \{1,0,2\}; B = \{0,1\}; C = \{2,4,6,\ldots\}.$
- g) $\cup : P(A) \times P(A) \to P(A)$ donde A es un conjunto y P(A) es la potencia de A.

Ejercicio 1.2. Sea * ley de composición interna definida en el conjunto E, demuestre que

- a) $(a = b) \Rightarrow a * c = b * c, \forall a, b, c \in E$.
- b) $(a = b) \Rightarrow c * a = c * b, \forall a, b, c \in E$.

Ejercicio 1.3. Decida cuáles de las siguientes "leyes de composición internas" son asociativas.

- a) * definida en \mathbb{R} tal que a * b = a + b + ab.
- b) * definida en \mathbb{R} tal que a * b = a + 2b.
- c) La unión de conjuntos, $\cup : P(A) \times P(A) \to P(A)$.

Ejercicio 1.4. Decida cuáles de las siguientes "leyes de composición internas" tienen neutro *e* para la operación binaria interna definida.

- a) $\cap: P(A) \times P(A) \to P(A)$ tal que $(P,R) \to P \cap R$, donde A es un conjunto y P(A) es la potencia de A.
- b) * definida en \mathbb{Q}^+ tal que $a * b = \frac{ab}{2}$.
- c) * definida en \mathbb{R} tal que a * b = a + b + 1.
- d) * definida en \mathbb{R} tal que x * y = xy + x.

Ejercicio 1.5. Sea * una ley de composición interna en el conjunto E. Demuestre que, si existe elemento neutro para *, éste elemento es único.

Ejercicio 1.6. Decida cuales de las siguientes "leyes de composición internas" son conmutativas para la operación binaria interna definida.

- a) * definida en \mathbb{R} tal que a * b = a + b + 3ab.
- b) * definida en \mathbb{R} tal que a * b = a b + 2ab.

Ejercicio 1.7. Determine la tabla de multiplicar para * definida en el conjunto $E = \{1, 2, 3, 4\}$ tal que $a * b = \max\{a, b\}$.

Ejercicio 1.8. Sea * ley de composición interna definida en el conjunto E tal que la operación es asociativa y tiene neutro e. Demuestre que, si $x \in E$ tiene inverso \bar{x} entonces éste es único.

Ejercicio 1.9. En T se define la ley de composición interna * por a*b=a+b-ab. Estudie la asociatividad, conmutatividad, elemento neutro y elemento inverso.

Ejercicio 1.10. En \mathbb{Z} se define la operación binaria interna * tal que $a*b=a+b^2$. Estudie la asociatividad, conmutatividad, elemento neutro y elemento inverso.

Ejercicio 1.11. En $\mathbb{Q} \times \mathbb{Q}$ se define \oplus por $(a,b) \oplus (c,d) = (ac,ad+b)$. Estudie la asociatividad, conmutatividad, elemento neutro y elemento inverso.

Ejercicio 1.12. En el conjunto $S = \{a, b, c\}$ se define * por la siguiente tabla,

*	a	b	c
a	a	b	c
b	b	a	c
c	c	c	c

Estudie la asociatividad, conmutatividad, elemento neutro y elemento inverso.

Ejercicio 1.13. En \mathbb{Z} se definen las operaciones binarias internas * y \circ por a*b=a+b+1 y $a \circ b=a+b+ab$.

- a) ¿Es el par $(\mathbb{Z}, *)$ un grupo?.
- b) ¿Es el par (\mathbb{Z}, \circ) un grupo?.
- c) ¿Es * distributiva con respecto de o?.
- d) ¿ Es o distributiva con respecto de *?.

Ejercicio 1.14. Sea $A = \{a, b\}$ y (A, *) un grupo. Demuestre que el grupo es conmutativo.

Ejercicio 1.15. Sea (G,*) un grupo, demuestre que,

- a) $a * c = b * c \Leftrightarrow a = b, \forall a, b, c \in G$.
- b) La ecuación a * x = b tiene solución única en G.

Ejercicio 1.16. Demuestre que (C, +) es un grupo si $C = \{(x, y) / x, y \in \mathbb{R}\}$ es el conjunto de los números complejos donde (a, b) + (c, d) = (a + c, b + d).

Ejercicio 1.17. Demuestre que $(M(2,\mathbb{R}),+)$ donde $M(2,\mathbb{R})=\{\begin{pmatrix} a & c \\ b & d \end{pmatrix} / a, b, c, d \in \mathbb{R}\}$ es el conjunto de las matrices cuadradas de tamaño 2 en \mathbb{R} y

$$\begin{pmatrix} a & c \\ b & d \end{pmatrix} + \begin{pmatrix} e & g \\ f & h \end{pmatrix} = \begin{pmatrix} a+e & c+g \\ b+f & d+h \end{pmatrix},$$

es un grupo, donde $\begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} e & g \\ f & h \end{pmatrix}$ si y sólo si a = e, b = f, c = g, d = h.

Ejercicio 1.18. En \mathbb{R}^+ definimos las operaciones binarias internas * y \circ tal que $a*b=b^a$ y $a\circ b=ab$. Demuestre que * distribuye por la izquierda a \circ pero que no lo hace por la derecha.

Ejercicio 1.19. Demuestre que el par $(\mathbb{R} - \{-1\}, *)$ es un grupo donde a * b = a + b + ab. Resuelva la ecuación 2 * x * 6 = 18.

Ejercicio 1.20. Demuestre que el trío $(Z, +, \otimes)$ es un anillo donde + es la suma usual y $a \oplus b = 2ab$.

Ejercicio 1.21. Demuestre que el trío $(M(2,\mathbb{R}),+,\cdot)$ con las características dadas en el Ejercicio 1.17 y

$$\begin{pmatrix} a & c \\ b & d \end{pmatrix} \cdot \begin{pmatrix} e & g \\ f & h \end{pmatrix} = \begin{pmatrix} ae + cf & ag + ch \\ be + df & bg + dh \end{pmatrix}$$

es un anillo.

Ejercicio 1.22. Demuestre que el trío $(C, +, \cdot)$ con las características del Ejercicio 1.16 y donde $(a, b) \cdot (c, d) = (ac - bd, ad + bc)$ es un anillo.

Ejercicio 1.23. Demuestre que $(\mathbb{Z}_4, +, \cdot)$ es un anillo.

Ejercicio 1.24. Sea $(A, +, \cdot)$ un anillo con neutro aditivo 0 y opuesto aditivo de $a \in A$ el elemento -a. Demuestre que,

a)
$$a \cdot 0 = 0 \cdot a = 0, \forall a \in A$$
.

b)
$$(-a)b = a(-b) = -(ab), \forall a, b \in A.$$

Ejercicio 1.25. ¿Los anillos de los Ejercicios 1.21 y 1.22 son dominio de integridad?.

Ejercicio 1.26. Demuestre que, un anillo $(A, +, \cdot)$ no tiene divisores del cero si y sólo si es valida la ley de cancelación para la multiplicación.