Il ciclo Carbonio-Azoto-Ossigeno (CNO)

Manuel Deodato

1. Le reazioni chimiche del ciclo

Le reazioni che avvengono nel ciclo sono:

$${}^{12}C + {}^{1}H \rightarrow {}^{13}N + \gamma + 1.95 \,MeV$$

$${}^{13}N \rightarrow {}^{13}C + e^{+} + v_{e} + 1.20 \,MeV$$

$${}^{13}C + {}^{1}H \rightarrow {}^{14}N + \gamma + 7.54 \,MeV$$

$${}^{14}N + {}^{1}H \rightarrow {}^{15}O + \gamma + 7.35 \,MeV$$

$${}^{15}O \rightarrow {}^{15}N + e^{+} + v_{e} + 1.73 \,MeV$$

$${}^{15}N + {}^{1}H \rightarrow {}^{12}C + {}^{4}He + 4.96 \,MeV$$

Il ciclo inizia con protone (nucleo di idrogeno) catturato da un nucleo di carbonio-12, reazione che forma un nucleo di azoto-13; quest'ultimo produce carbonio-13 a seguito di un successivo decadimento β . Il carbonio-13 prodotto dal decadimento β interagisce con un altro protone, producendo un nucleo di azoto-14, il quale può reagire con un altro protone a formare un nucleo di ossigeno-15; questo, a seguito di un decadimento β , produce azoto-15. Il ciclo si conclude con il nucleo di azoto-15 che cattura un protone, formando carbonio-12 e liberando un nucleo di elio-4, insieme ad un carbonio-12, che permette di ripetere il ciclo. I Q-valori dei decadimenti β^+ sono stati calcolati tenendo conto della massa del positrone emesso e dell'elettrone in più nel nucleo prodotto, che lo rende negativamente carico. In realtà, quello che si verifica è che questi due reagiscono successivamente annichilandosi nella reazione $e^+ + e^- \rightarrow 2\gamma$, quindi l'energia rimossa nel Q-valore viene recuperata.

1.1. Esempio di calcolo di un Q-valore

Per calcolare il Q-valore, si calcola differenza di massa in uma tra reagenti e prodotti e si moltiplica il tutto per il fattore di conversione 1 $u.m.a. = 931.494 \ MeV/c^2$, ottenuto sostituendo in, $E = mc^2$, $m = m(^{12}C)/12$ e facendo uso della conversione 1 $eV \approx 1.60 \times 10^{-19} \ J$.

Considerando la prima reazione ${}^{12}C + {}^{1}H \rightarrow {}^{13}N$, si ha $m({}^{12}C) \equiv 12$, $m({}^{1}H) = 1.00782503223$, $m({}^{13}N) = 13.005738609$. Si ha $\Delta m = m({}^{12}C) + m({}^{1}H) - m({}^{13}N)$, quindi il Q-valore è:

$$Q = \Delta m \cdot 931.494 \ MeV \approx 1.95 \ MeV$$

1.2. Caratterizzazione delle reazioni

Nella seguente tabella sono riportate le reazioni e le interazioni che le rendono possibili, comprensive dei tempi caratteristici.

Reazione	Tipo di reazione - interazione	Q-valore (MeV)	Tempo di reazione (s)
$^{12}C + ^1H \rightarrow ^{13}N + \gamma$	Fusione nucleare - forza forte + em	1.95	circa 10 ⁶
$^{13}N \rightarrow ^{13}C + e^+ + \nu_e$	Decadimento $oldsymbol{eta}^+$ - forza debole	1.20	circa 800
$^{13}C + ^1H \rightarrow ^{14}N + \gamma$	Fusione nucleare - forza forte + em	7.54	circa 10 ⁶
$^{14}N + ^1H \rightarrow ^{15}O + \gamma$	Fusione nucleare - forza forte + em	7.35	circa 10 ⁶
$^{15}O \rightarrow ^{15}N + e^+ + \gamma$	Decadimento β^+ - forza debole	1.73	circa 170
$^{15}N + ^{1}H \rightarrow ^{12}C + ^{4}He$	Fusione nucleare - forza forte	4.96	circa 10 ⁶