1. Fungsi Logaritma

Fungsi Logaritma adalah fungsi invers dari fungsi eksponen. Jadi, jika fungsi eksponen dinyatakan dengan f(x) = ax, a > 0, $a \ne 1$, maka invers dari f(x) ditulis dengan $f^{-1}(x) = a \log x$ atau $f(x) = a \log x$, a > 0, $a \ne 1$.

Secara umum bila y = ax, maka $x = a \log y$.

- Bila $f(x) = a \log x$, dengan a > 1, x > 0, $x \in R$, maka f(x) dikatakan fungsi
- Bila $f(x) = a \log x$, dengan $0 \ 0$, $x \in R$, maka f(x) dikatakan fungsi naik.

Grafik fungsi logaritma selalu melalui titik (1,0) dan selalu berada di sebelah kanan sumbu Y.

Untuk a > 1

- Bila $a \log f(x)^3 \in a \log g(x)$, maka $f(x)^3 \in g(x)$, dengan syarat f(x) dan g(x) > 0
- Bila $a \log f(x) \in a \log g(x)$, maka $f(x) \in g(x)$, dengan syarat f(x) dan g(x) > 0

2. Fungsi Eksponensial

Bilangan e adalah bilangan real positif yang nilainya, e = 2,718281828459...

Rumus Bilangan e:

$$\bullet \quad \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e$$

$$\bullet \quad \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{-n} = e$$

$$\bullet \quad \lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$$

Rumus turunan:

•
$$y = e^x \rightarrow y' = e^x$$

•
$$y = e^{g(x)} \rightarrow y' = e^{g(x)} \times g'(x)$$

•
$$y = a^x \rightarrow y' = a^x \times lna$$
; $a > 0$; $a \neq 1$

•
$$y = a^{g(x)} \rightarrow y' = a^{g(x)} \times g'(x)$$
. lna; $a > 0$; $a \ne 1$

3. Fungsi Implisit

Fungsi yang antara variabel bebas dan variabel tak bebasnya terpisah pada ruas yang berbeda.

Untuk fungsi satu variabel:y = f(x), x variabel bebas dan y variabel tak bebas:

•
$$y = x^2 - 2x + 10$$

$$v = x \sin x - e^{2x} + 5$$

Untuk fungsi 2 variabel:

•
$$z = 2x^3y + 3x - 4y^2 + 5$$

Untuk fungsi 3 variabel, $y = f(x_1, x_2, x_3)$

4. Turunan kedua dan turunan tingkat tinggi

Turunan kedua dari fungsi f(x) didapatkan dengan menurunkan sekali lagi bentuk turunan pertama. Demikian seterusnya untuk turunan ke-n didapatkan dari penurunan bentuk turunan ke-(n-1).

- Turunan pertama : $f'(x) = \frac{df(x)}{dx}$
- Turunan kedua : $f''(x) = \frac{d^2 f(x)}{dx^2}$
- Turunan ketiga : $f'''(x) = \frac{d^3 f(x)}{dx^3}$
- Turunan ke-n : $f^{(n)}(x) = \frac{d^n f(x)}{dx^n}$