DHANAMANJURI UNIVERSITY **DECEMBER-2022**

B.A/B.Sc. Mathematics (Honours) Name of Programme

3rd Semester

: Core - V (Theory) Paper Type

: CMA-205 Paper Code

Theory of Real Functions Paper Title

Full Marks: 100

Duration: 3 Hours Pass Marks: 40

The figures in the margin indicate full marks for the questions Answer all the questions:

1. Give the definitions of the limits:

- a) $\lim_{x \to c} f(x) = l$ and
- b) $\lim_{x\to\infty} f(x) = l$
- 2. Using $\varepsilon \delta$ definition, show that $\lim_{x \to 0} x \sin \frac{1}{x} = 0$.
- 4 3. Show that $\lim_{x\to 4} \frac{1}{(x-4)^2} = \infty$
- 4. Prove that the function $f(x) = \sin x$ is uniformly continuous on 4 $[0, \infty]$
- 5. Prove that a function which is uniformly continuous on an interval is 4 continuous on that interval.

4

6. Using Taylor's Theorem with n=2, approximate $\sqrt[3]{1+x}$, x>-1. Expand the function $\sin x$ in powers of x in a finite series with Lagrange form of remainder. . Show that the function f defined on R by $f(x) = \begin{cases} 1, & \text{when } x \text{ is irrational} \\ -1, & \text{when } x \text{ is rational} \end{cases}$ is discontinuous at every point. 6 8. Let $f: I \to \mathbb{R}$ be differentiable on the interval I. Then, prove that f is increasing on I if and only if $f'(x) \ge 0$ for all $x \in I$. 6 2 State Cauchy's necessary and sufficient condition for the existence of a limit. Hence, show that $\lim_{x\to 0} \sin \frac{1}{x}$ does not exist. 8 10. If a function f is continuous on a closed interval [a, b] and f(a) and f(b) are of opposite signs, then prove that there exists at least one point $\alpha \in]a, b[$ such that $f(\alpha) = 0$. 8 Or Prove that if a function is continuous in a closed interval, then it is bounded therein. 8 11. Prove that a function f defined on an interval I is continuous at a point $c \in I$ iff forevery sequence $\{c_n\}$ in I converging to c, $\lim_{n\to\infty}f(c_n)=f(c).$ 12. State and prove Caratheodory's Theorem. 13. State and prove Rolle's Theorem. Also, write the geometrical interpretation of the theorem. 8

- 14. Let $I \subseteq \mathbb{R}$ be an interval, let $f: I \to \mathbb{R}$, let $c \in I$, and assume that f has a derivative at c. Then, prove that:
 - a) If f'(c) > 0, then there is a number $\delta > 0$ such that f(x) > f(c) for $x \in I$ such that $c < x < c + \delta$.
 - b) If f'(c) < 0, then there is a number $\delta > 0$ such that f(x) > f(c) for $x \in I$ such that $c \delta < x < c$.

Or

State and prove Darboux's Theorem.

- 15. State and prove Taylor's Theorem in finite form with Lagrange form of remainder.
- 16. Let I be an open interval and let $f: I \to \mathbb{R}$, have a second derivative on I. Then, prove that f is a convex function on I if and only if $f''(x) \ge 0$ for all $x \in I$.
