投稿類別:工程技術類

篇名: BCD 加法器的實現與優化

作者:

何承泰。市立楊梅高中。電子二甲

指導老師:

簡樹桐 老師

### 壹、前言

#### 一、研究動機

高二上學期的數位邏輯實習課程中,有些單元與我們日常生活息息相關,其中 BCD 碼加法器實習最令我感到興趣。既然是加法的運算為何還要多「BCD」三個字呢?然而人類習慣使用 10 進制,不同於電腦世界的 0 與 1 的 2 進制,為了要讓一般的加法運算結果,能即時顯示給人類知道此運算結果。在 BCD 的加法電路演算法中,加入了修正的邏輯電路,來滿足人類對此訊息的閱讀需求。

在進行這單元的實習時,會常常因為被加數、加數、運算結果三者的四位元顯示 LED 燈的擺置順序方式,讓使用者無法馬上理解運算的結果。有鑑於此,想來改善此一缺點,考慮結合七段顯示器元件將目前2進位碼的值,以10進制的數值顯示,方便我們閱讀,這也是我想要寫這篇小論文的主要動機。

### 二、研究方法

- (一)利用 Tina 電路模擬軟體模擬 BCD 加法器,並加入七段解碼器與七段顯示器元件電路,進行運算模擬。
- (二)利用麵包板實作實現在 Tina 軟體中所模擬的電路設計,以驗證設計無誤。
- (三)利用 Altium Designer 專業電路板繪圖軟體,繪製該 BCD 加法器與顯示電路,並透過 PCB 佈線的相關功能,完成此電路的元件面與佈線面的佈局設計。
- (四)透過 Altium Designer 輸出該電路所需的電腦輔助製造的相關雕刻與鑽孔參數,並將這些參數送至雕刻機,進行電路板雕刻。
- (五)經雕刻機雕刻後產出電路 PCB 板,對此 PCB 板進行所有元件的焊接,以驗證電路的完整性和可行性。

#### 三、研究流程



## 貳、正文

## 一、BCD 加法器功能介紹與問題解析

本電路的主要功能為設計一兩位數的加法電路,被加數與加數都是一位數, 運算結果為兩位數。BCD 加法器電路運算的數值範圍為:最小值的運算 0+0=0, 最大值的運算 9+9=18。被加數與加數的數值用指撥開關設定。

原 BCD 加法器電路中主加法器處理負責加數和被加數運算,進位與超九鑑別電路用來判斷運算結果是否超過九,如果有超過九或是有進位輸出,校正加法器就會加六給鑑別電路,而最後的結果由校正加法器和鑑別電路分別輸出。

本論文研究最主要優化被加數、加數、運算結果的數值,將原本二進位表示的數值,透過七段顯示器與解碼器,顯示對應的數值,方便使用者觀看結果。其電路系統方塊圖如圖(一)所示。



圖(一) BCD 加法器過程自繪圖

#### 二、電路系統方塊圖各功能介紹

#### (一) 主加法器功能介紹

主加法器是由 7483 這顆數位 IC 所組成,7483 數位 IC 本身是 TTL 的 IC,而運算的過程都是以四位元的二進制數(從 0000 到 1001)來完成,A4 A3 A2 A1 端負責被加數的部分,B4 B3 B2 B1 端是負責加數的部分。

不過當運算的結果超過 9 時,在 7483 數位 IC 的 C4 端就會輸出 1,而 C4 端也就是判斷電路是否該進位,當 C4=0 時,整體電路不進位,C4=1 時,電路就會採取進位的動作,這也是 BCD 碼的特別之處,之後再搭配後面的相關電路,完成運算的結果。而主加法器的 C0 端,是接上前級的進位輸入。Vcc 端基本上接+5 伏特,超過+5 伏特會有整個電路燒壞的可能。GND 端接地。

### (二)校正加法器功能介紹

校正加法器也是運用 7483 這顆數位 IC,當運算值超過九時,也就是二進制的 1001 時,校正加法器就會在主加法器的輸出結果再加上六(0110)。反之,校正加法器只會加上零(0000),而主加法器的輸出是接到校正加法器的 B4 B3 B2 B1 腳,A3 和 A2 端則是接到超九鑑別電路的進位輸出腳。A4 和 A1 則是直接接地,而校正加法器的 C4 端不採取進位的動作,C0、GND 端接地,校正加法器主要的功能是輔助整個電路的完整性。



圖(二) 7483 數位 IC 示意圖

#### (三) 進位與超九鑑別電路

對於進位與超九鑑別電路而言,兩 BCD 碼相加的值會在 C4 S3 S2 S1 S0 端分別輸出,而其中的 C4 等於一或是 S3 S2 S1 S0 的結果大於九(1001)時,其進位與超九鑑別電路的 Y4 端會輸出為一,我們就可以依 S3 S2 S1 S0 的結果如果大於九(1001),其結果會跟 C4 端 OR 起來。而整體的電路是由一顆 7432 數位 IC 和一顆7408 數位 IC 所組成,相當於兩個 AND 閘和兩個 OR 閘。

| \$1 \$0<br>\$3 \$2 | 00 | 01 | 11 | 10 |
|--------------------|----|----|----|----|
| 0 0                | 0  | 0  | 0  | 0  |
| 0 1                | 0  | 0  | 0  | 0  |
| 1 1                | 1  | 1  | 1  | 1  |
| 1 0                | 0  | 0  | 1  | 1  |

圖(三) 進位與超九鑑別器設計真值表(自繪)



圖(四) Tina 模擬進位與超九鑑別電路(自繪)

| 輸入 |                |   |   | 等效十進制 | 輸出 |    |
|----|----------------|---|---|-------|----|----|
| C4 | C4 S3 S2 S1 S0 |   |   | S0    |    | Y4 |
| 0  | 0              | 0 | 1 | 1     | 3  | 0  |
| 0  | 0              | 1 | 1 | 1     | 7  | 0  |
| 0  | 1              | 0 | 1 | 0     | 10 | 1  |
| 0  | 1              | 1 | 0 | 0     | 12 | 1  |
| 0  | 1              | 1 | 1 | 1     | 15 | 1  |
| 1  | 0              | 0 | 0 | 0     | 16 | 1  |
| 1  | 0              | 0 | 1 | 0     | 18 | 1  |

圖(五) 進位與超九鑑別電路的輸出示意圖(自繪)

#### (四)數字顯示電路

數字顯示電路是由 7447 解碼數位 IC 和七段 LED 顯示器所完成,而 7447 解碼數位 IC 多了三個特別的輸入端,分別是燈泡測試輸入端( $\overline{LT}$ )、漣波遮沒輸入控制( $\overline{RBI}$ )和遮沒輸入/漣波遮沒輸出( $\overline{BI/RBO}$ )。當燈泡測試輸入端( $\overline{LT}$ )=0 時,電路正常動作, $a \ b \ c \ d \ e \ f \ g$  全都輸出 0,而七段 LED 顯示器正常的話,會顯示出 8,不過  $\overline{LT}$ =1 時,7447 數位 IC 的動作會由其他腳控制。

漣波遮沒輸入控制(RBI)=0 時,七段 LED 顯示器會完全空白,反之,則正常動作。遮沒輸入/漣波遮沒輸出(BI/RBO)端有強迫遮沒輸入和 0 遮沒輸出指示的動作。遮沒輸入(RBI)當輸入端輸入且輸入 0 時,不管其他輸入端輸入多少,七段 LED 顯示器都輸出為全空白。遮沒輸入/漣波遮沒輸出(BI/RBO)端不接任和信號時,可當 0 遮沒輸出指示。而當漣波遮沒輸入控制(RBI)端=0 且輸入端DCBA=0000,也就是 0 遮沒成立時,則遮沒輸入/漣波遮沒輸出(BI/RBO)端輸出為 0,反之則輸出為 1。而在 7447 解碼數位 IC 和七段 LED 顯示器之間,要接上300 歐姆左右的電阻,當作限流用,為了避免電流太大而燒壞七段 LED 顯示器。





圖(六)7447解碼數位 IC接腳圖

圖(七) 七段 LED 顯示器接腳圖

# (五) BCD 加法器運算的修正演算法說明

BCD 加法器的進位部分都要仰賴進位與超九鑑別電路,BCD 加法器進位後的數值都是採用四位元二進制,當值到 1001,也就是十進制的九,下一步的值不是直接到 1010,而是 0001 0000,跟平常的二進制是不大相同的。而 BCD 碼和二進制值的差值都差六,也就是 0110,這也就是 BCD 加法器的特別之處。

| 十進數 | BCD 碼     | 二進制       | 差值   |
|-----|-----------|-----------|------|
| 0   | 0000      | 0000      | 0    |
| 1   | 0001      | 0001      | 0    |
| 2   | 0010      | 0010      | 0    |
|     |           |           |      |
| 8   | 1000      | 1000      | 0    |
| 9   | 1001      | 1001      | 0    |
| 10  | 0001 0000 | 1010      | 0110 |
| 11  | 0001 0001 | 1011      | 0110 |
| 12  | 0001 0010 | 1100      | 0110 |
| 13  | 0001 0011 | 1101      | 0110 |
| 14  | 0001 0100 | 1110      | 0110 |
| 15  | 0001 0101 | 0000 1111 | 0110 |
| 16  | 0001 0110 | 0001 0000 | 0110 |
| 17  | 0001 0111 | 0001 0001 | 0110 |

圖(八) BCD 碼與 4 位元二進制數的差值和比較表(自繪)

#### BCD 加法器的實現與優化



圖(九) BCD 加法器示意圖

### 三、BCD 加法器實驗過程及結果呈現

## (一) PCB 電路板的設計流程

1. 利用 Altium Designer 進行電路圖繪製,在開啟新的 BCD 加法器專案後,接著掛載零件庫,選取本電路所使用到的元件擺置到圖紙上,透過 NET Lable 的網路連接方式快速做元件間的線路連接。如圖(十)所示。



圖(十) BCD 加法器完整電路圖

2. 完成電路圖繪製後,進行電路圖的編譯,檢查電路圖是否有未連接之處或有問題之處。若沒有問題的話,切換至 PCB 的操作環境,進行元件的擺置佈局。將元件擺置至適當的位置,元件的佈局的原則會以同一區域連線的元件擺置在同一區域。請參考圖(十一)元件擺置圖



圖(十一) 元件擺置圖

3. 完成元件擺置後,設定佈線規則,然後選擇自動佈線功能,完成電路板的全部佈線。完成佈線後,在 PCB 模式輸出輔助製造的參數,提供給雕刻機進行雕刻輸出 PCB 板。

## (二)實驗結果呈現

經由雕刻機製造輸出 PCB 電路板,並將電路所需的相關零件備齊,使用烙鐵將元件焊至電路板上,以下是對該電路進行實際的結果測試。如下運算式測試 9+1=10,觀測其運算結果為正確,3+5=8 也是正確無誤。請參考圖(十二)、圖(十三)的顯示結果。



圖(十二)9+1=10的運算結果



圖(十三)3+5=08的運算結果

最後我們測試最大範圍值 9+9=18 的運算,被加數和加數的數值最高可以到十進制的九,九加上九會等於十八,跟輸出的結果一樣,而且並不會產生溢位的現象,經過以上的測試結果,可以知道電路的完整性是非常的良好。如圖(十四)所示結果。



圖(十四) 9+9=18 的運算結果

圖(十五) 雕刻機拍攝圖

### 參、結論

#### 一、心得

經過這次的優化測試,發現了實作創新的重要性和發展性,兩個沒有太多相關性的電路經過這次的整合後,發展出更貼近我們生活上的實用電路。實作的結果可以一目了然,不需要在像以前一樣看著 LED 燈,心裡面還要心算一下目前的顯示結果。

在完成連接麵包板的時候,加數和被加數的輸出結果都很正常,不過經過運算之後,最終的輸出結果有時正常,有時會有些微的誤差。推測可能的因素為數位 IC 的腳位跟麵包板的連接不夠牢固。在老師的建議與指導下,利用 Altium Designer 這套軟體來設計 PCB 電路板,由雕刻機雕刻輸出 PCB 板。接著使用烙鐵將本電路的相關元件焊接到 PCB 電路板上的對應位置。使用焊接的方式完成成品,可以改善元件間接觸不良的問題,以增加電路整體的穩定性。

#### 二、學習成果

- (一)從本次寫小論文過程中,學習到利用 Tina 電路模擬軟體分析電路,先確認電路設計是否無問題。
- (二)本次的實驗過程中,學習到如何操作 Altium Designer 這套軟體,從繪圖、 元件佈局、規則設定、自動佈線、手動佈線修正等一連串的操作步驟,讓 我收穫滿滿。
- (三)從這次小論文的撰寫過程中,在實作過程遇到困難,要如何去面對問題且 找到解決的方案,雖然花了很多時間仍沒有解決,最後請益老師給予指導

#### BCD 加法器的實現與優化

協助,學習到如何找出問題的癥結點,讓問題能夠迎刃而解。

#### 三、未來方向

本次的是利用數位邏輯的基本 IC 完成可顯示數值之 BCD 加法器電路,在目前的高二下課程中,學習到電路板進階設計課程、Arduino 微控制板晶片控制實習、CPLD 邏輯設計等科目。相信未來,我可以利用這些所學的核心專業技能,設計出兩位數的被加(減)數跟加(減)數運算,除了做加法運算之外,也可做減法運算。

### 肆、引註資料

註一、蕭柱惠(2015)。數位邏輯實習。新北市:台科大圖書

註二、蕭柱惠(2015)。數位邏輯。新北市:台科大圖書

註三、徐慶堂、黃天祥(2015)。電子學Ⅰ。新北市:台科大圖書

註四、黃仲宇、梁正編著(2014)。基本電學Ⅱ。新北市:台科大圖書

註五、張義和(2013)。新例說 Altium Designer。新文京出版

註六、7483 數位 IC 接腳圖。加法器。取自 goo.gl/pNemNw

註七、七段 LED 顯示器接腳圖。Electrical。取自 goo.gl/z1a5L4

註八、BCD碼與4位元二進制數的差值和比較表。解碼器。取自goo.gl/Ei8mg4