Задачи за второ контролно по линейна алгебра

Задача 1. Нека $F = \{(x, y, z) \in \mathbb{Q}^3 \mid x + y = z\}$ и $G = \{(a - b, a + b, a - 3b) \mid a, b \in \mathbb{Q}\}$. Докажете, че F и G са подпространства на \mathbb{Q}^3 и намерете базис на сечението $F \cap G$.

Задача 2. Нека $U = l(a_1, a_2, a_3)$, където $a_1 = (1, 2, 3, 4)$, $a_2 = (4, 3, 2, 1)$, $a_3 = (3, 1, -1, -3)$. Нека W е пространството от решенията на хомогенната система

$$\begin{cases} x_1 - x_2 + x_3 - x_4 = 0 \\ x_1 - x_2 - x_3 + x_4 = 0 \end{cases}$$

Намерете базиси на пространствата $U, W, U \cap W$ и U + W.

Задача 3. * Нека $\mathcal{F} = \{f \mid f : \mathbb{R} \to \mathbb{R}\}$ е линейното пространство от всички реални функции относно поточковите операции. Нека $V = \{f \in \mathcal{F} \mid \forall x : f(x) = f(0)\}$ е множеството от константните функции, а $U = \{f \in \mathcal{F} \mid f(0) = 0\}$ е множеството от функциите, анулиращи се за x = 0. Да се докаже, че V и U са линейни пространства и $\mathcal{F} = V \oplus U$.

Задача 4. Нека $A = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$ и $B = \begin{pmatrix} -2 & -1 \\ 3 & 0 \end{pmatrix}$. Разглеждаме $\varphi : M_2(\mathbb{Q}) \to M_2(\mathbb{Q})$, определено с равенството $\varphi(X) = AX + XB$. Покажете, че φ е линеен оператор и намерете матрицата му спрямо стандартния базис E_{11} , E_{12} , E_{21} и E_{22} .

Задача 5. Линейният оператор φ има матрица $A=\begin{pmatrix} -1 & -2 & -3 & -2\\ 1 & 2 & 3 & 2\\ -1 & -2 & -2 & 1\\ 1 & 2 & 2 & 1 \end{pmatrix}$ спрямо стан-

дартния базис на \mathbb{R}^4 . Намерете базиси на пространствата $\ker \varphi$, $Im \varphi$, $\ker \varphi \cap Im \varphi$ и $\ker \varphi + Im \varphi$.

Задача 6. * Нека V е линейно пространство над \mathbb{R} и π – линеен оператор във V. До-кажете, че $\pi^2 = \pi$ тогава и само тогава когато има подпространства V_1 и V_2 на V, такива че: $V = V_1 \oplus V_2$; $\pi \upharpoonright_{V_1} = \varepsilon_{V_1}$ и $\pi \upharpoonright_{V_2} = \mathbf{0}_{V_2}$.

Задача 7. Пресметнете степента $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}^n$, $n \in \mathbb{N}$.

Задача 8. $Hamepeme \begin{pmatrix} -3 & 2 & 2 \\ 2 & -1 & 1 \\ 1 & 0 & 3 \end{pmatrix}^{-1}$.

Задача 9. Решете уравнението $X \begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 3 \\ 4 & 3 & 2 \\ 1 & -2 & 5 \end{pmatrix}.$

Задача 10. Нека U е линейно пространство c базис e_1, e_2, e_3, V - линейно пространство c базис f_1, f_2 .

Hека $\varphi:U\to V$ изпълнява $\varphi(x_1e_1+x_2e_2+x_3e_3)=(x_1+x_2+3x_3)f_1+(x_1-2x_2+x_3)f_2.$

Нека $e'_1 = e_1 + 2e_2 + e_3$, $e'_2 = -e_1 + e_2$, $e'_3 = e_1 + e_2 + e_3$.

Hera $f_1' = 5f_1 + 4f_2$ u $f_2' = 4f_1 + 3f_2$.

Покажете, че $e_1', e_2'e_3'$ - базис на U, f_1', f_2' - базис на V и намерете матрицата на φ спрямо тези базиси на U и V.

Задача 11. Нека e_1, e_2, e_3 образуват базис на линейно пространство V.

 $Heкa\ a_1 = 5e_1 + e_2 - 5e_3,\ a_2 = 3e_1 - 3e_2 + 2e_3,\ a_3 = e_1 - 2e_2 + e_3.$

 $He \kappa a \ b_1 = -8e_1 - 5e_2 - 2e_3, \ b_2 = 3e_1 + 9e_2 + 15e_3, \ b_3 = 0.$

Покажете, че a_1, a_2, a_3 образуват базис на V и намерете матрицата на линейния оператор φ определен с $\varphi(a_i)=b_i,\ i=1,2,3$ спрямо базиса $e_1,e_2,e_3.$

Задача 12. Нека $a_1=(1,0,-1)$, $a_2=(1,1,1)$ и $a_3=(2,2,0)$. Докажете, че a_1,a_2,a_3 образуват базис на \mathbb{R}^3 . Намерете дуален базис на a_1,a_2,a_3 .