Réduction des endomorphismes

$$\alpha 4 - MP^*$$

1 Généralités

1.1 Éléments propres

 $E \text{ un } \mathbb{K} - \text{ev}, u \in \mathcal{L}(E)$

- $x \in E$ est un vecteur propre de u si $x \neq 0$ et si $\exists \lambda \in \mathbb{K}/u(x) = \lambda x$. Dans ce cas λ est unique et on l'appelle valeur propre de u associée à x.
- $\lambda \in \mathbb{K}$ est valeur propre de u si $\exists x \in E, x \neq 0$ tel que $u(x) = \lambda x$. On dit que x est un vecteur propre associé à λ .
- Soit $\lambda \in \mathbb{K}$, on pose $E_{\lambda} = \ker(u \lambda Id)$. λ est valeur propre de u ssi $E_{\lambda} \neq 0$. E_{λ} est le sous-espace vectoriel propre associé à λ .
- L'ensemble des valeurs propres s'appelle le spectre de u, noté Sp(u).

1.2 Théorème d'indépendance linéaire

E un ev, $u \in \mathcal{L}(E)$ et \mathcal{I} ensemble d'indice éventuellement fini.

- Si $(\lambda_i)_{i\in\mathcal{I}}$ est une famille de scalaires 2 à 2 différents, alors les E_{λ_i} sont en somme directe.
- Si $(x_i)_{i\in\mathcal{I}}$ est une famille de vecteurs propres associés à des valeurs propres 2 à 2 différentes, alors cette famille est libre.

Corollaire: si E est de dimension finie n, alors card $\operatorname{Sp}(u) \leq n$.

1.3 Diagonalisabilité

E de dimension finie, $u \in \mathcal{L}(E)$. On dit que u est diagonalisable si $\exists \mathcal{B}$ base de E telle que $M_{\mathcal{B}}u$ soit diagonale.

- 1. u est diagonalisable ssi
- 2. $\exists (a_i)_{i \in \mathcal{I}}$ une famille de scalaires telle que $E = \bigoplus_{i \in \mathcal{I}} E_{a_i}$ ssi
- 3. $E = \bigoplus_{\lambda \in Sp(u)} E_{\lambda}$.

Remarque : $(1.) \iff (2.)$ est vrai même en dimension infinie.

Soit $M \in \mathfrak{M}_n(\mathbb{K})$, $u \in \mathcal{L}(\mathbb{K}^n)$ telle que $u : X \longmapsto MX$, X est un vecteur propre de M ssi X est un vecteur propre de u; de même pour les valeurs propres, les sous-espaces propres.

M est diagonalisable ssi M est semblable à une matrice diagonale, c'est-à-dire : M est diagonalisable ssi $\exists D$ diagonale, $\exists P \in GL_n(\mathbb{K})$ telles que $M = PDP^{-1}$.

2 Le polynôme caractéristique

2.1 Définition de χ_u

E un ev de dimension $n, u \in \mathcal{L}(E)$. $\chi_u : \mathbb{K} \longrightarrow \mathbb{K}$. χ_u est une fonction polynômiale de degré n de la forme : $\lambda \longmapsto \det(u - \lambda Id)$

$$\gamma_n = (-1)^n (X^n - \operatorname{tr}(u) X^{n-1} + \dots + (-1)^n \det u).$$

Propriété: les valeurs propres de u sont les zéros de χ_u .

 λ est une valeur propre de multiplicité p si c'est un zéro p-uple de χ_n .

On dit que u est scindé si χ_u l'est. Dans ces conditions, soit $\operatorname{Sp}(u) = \{\lambda_1, \dots, \lambda_k\}$, m_i la multiplicité de la valeur propre λ_i , on a $\operatorname{tr} u = \sum_{i=1}^k m_i \lambda_i$ et $\det u = \prod_{i=1}^k \lambda_i^{m_i}$.

2.2 Lien entre χ_{ν} et les sous-espaces propres

E un ev de dimension $n, u \in \mathcal{L}(E)$, si λ est un zéro p-uple de χ_n alors $1 \leq \dim E_{\lambda} \leq p$.

2.3 Premières conditions de diagonalisabilité

E de dimension $n, u \in \mathcal{L}(E)$; on a les conditions suivantes pour que u soit diagonalisable :

- C.N :u scindé
- 2. C.S: χ_n possède n racines (χ_n est séparablement scindé)
- 3. C.N.S : u est scindé et $\forall \lambda \in \text{Sp}(u), \dim E_{\lambda} = \text{mult}(\lambda)$

2.4 Réduction des endomorphismes monogènes

E ev de dimension $n, u \in \mathcal{L}(E)$. u est dit monogène si $\exists x \in E/\mathcal{B} = (x, u(x), u^2(x), \dots, u^{n-1}(x))$ base de E. Soit alors

$$M = \mathcal{M}_{\mathcal{B}} u = \begin{pmatrix} 0 & & & \alpha_0 \\ 1 & \ddots & & & \alpha_1 \\ & \ddots & \ddots & & \vdots \\ & & \ddots & 0 & \vdots \\ & & 1 & \alpha_{n-1} \end{pmatrix}$$
 où $\alpha_0, \dots, \alpha_{n-1} \in \mathbb{K}$. Soit $P = X^n - \sum_{i=0}^{n-1} \alpha_i X^i \in \mathbb{K}[X]$, alors $\chi_u = (-1)^n P$. M est

appelée matrice-compagnon du polynôme P.

- Si u est monogène, $\forall \lambda \in \operatorname{Sp}(u)$, $\dim E_{\lambda} = 1$.
- Dans ce cas, u est diagonalisable ssi v_u est séparablement scindé

2.5 Remarques

En toute généralité, $\forall M \in \mathfrak{M}_n(\mathbb{K}), \chi_M = \chi_{t_M}$ et $\forall (M, N) \in (\mathfrak{M}_n(\mathbb{K}))^2, \chi_{MN} = \chi_{NM}$.

3 Réduction des endomorphismes autoadjoints

3.1 Endomorphismes autoadjoints (ou symétriques)

Soit E ev réel euclidien, $u \in \mathcal{L}(E)$. u est symétrique si $\forall (x,y) \in E^2$, $(u(x) \mid y) = (x \mid u(y))$. Propriété : \mathcal{B} une BON, u est symétrique si $M_{\mathcal{B}}u$ est une matrice symétrique.

3.2 Lemmes

- 1. Soit E euclidien, $u \in \mathcal{L}(E)$ symétrique. Soit F sev de E stable par u ($u(F) \subset F$); alors F^{\perp} est stable par u.
- 2. Soit E un \mathbb{R} ev de dimension finie n et $u \in \mathcal{L}(E)$. Alors il existe un sev F de E non nul de dimension ≤ 2 stable par u.
- 3. Soit E un ev euclidien, $u \in \mathcal{L}(E)$ symétrique. Alors χ_u possède au moins un zéro réel

3.3 Le théorème spectral

E ev euclidien, $u \in \mathcal{L}(E)$ symétrique. Alors :

- u est scindé
- 2. plus précisément, u est diagonalisable
- 3. $\exists B$ BON telle que $M_{\mathcal{B}}u$ soit diagonale

Corollaires:

- Les sous-espaces propres associés à des valeurs propres 2 à 2 différentes sont 2 à 2 orthogonaux
- Si $M \in \mathfrak{M}_n(\mathbb{R})$ est symétrique, alors :
 - 1. M est scindé
 - 2. M est diagonalisable
 - 3. $\exists P \in \mathcal{O}_n(\mathbb{R})/P^{-1}MP$ soit diagonale.

Applications de la diagonalisation

4.1 Première méthode de calcul de puissance

Soit $M \in \mathfrak{M}_n(\mathbb{K})$. Si M est diagonalisable, on construit $P \in GL_n(\mathbb{K})$, $D \in \mathfrak{M}_n(\mathbb{K})$ diagonale telles que $M = PDP^{-1}$. Alors $\forall k \in \mathbb{N}, M^k = PD^kP^{-1}$ (voire $k \in \mathbb{Z}$ si M est inversible.)

Puissances d'un endomorphisme : même principe en dimension finie. Si $\mathrm{Sp}(u) = \{\lambda_1, \ldots, \lambda_r\}$, alors $\exists ! (u_1, \ldots, u_r) \in \mathcal{L}(E)^r$ tel que $\forall k \in \mathbb{N}, u^k = \sum \lambda_i^k u_i$. Si P_i est un polynôme tel que $P_i(u_j) = \delta_{i,j}$, alors $u_i = P_i(u)$. En outre, u_i est le projecteur associé

4.2 Résolution des systèmes différentiels à coefficients constants

Un système différentiel à coefficients constants est de la forme : X' = MX + A(t) où $X = \begin{pmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{pmatrix}$, $X' = \begin{pmatrix} x'_1(t) \\ \vdots \\ x'_n(t) \end{pmatrix}$,

 $A: t \in I \longrightarrow \begin{pmatrix} a_1(t) \\ \vdots \\ a_n(t) \end{pmatrix}$ où les a_i sont \mathcal{C}^0 et $M \in \mathfrak{M}_n(\mathbb{C})$. L'inconnue est la fonction $t \in I \longrightarrow X(t)$ dérivable. Si M est

diagonalisable, $N = PDP^{-1}$ et $(X' = MX + A(t)) \iff (Y' = DY + B(t))$ avec X = PY et A(t) = PB(t), plus simple à résoudre

Triangulation des endomorphismes

E ev de dimension $n, u \in \mathcal{L}(E)$ est triangulable si $\exists \mathcal{B}$ base de E telle que $M_{\mathcal{B}}(u)$ soit triangulaire.

5.1 Théorème de triangulabilité

Avec ces notations, u est triangulable ssi u est scindé

Lemme : si $u \in \mathcal{L}(E)$ est scindé et G stable par u, alors $u|_{G}^{G}$ est scindé.

5.2 Applications

- système différentiel à coefficients constants
- Si E est de dimension finie et si u est scindé, alors u est nilpotent ssi $\operatorname{Sp} u = \{0\}$

5.3 Méthodes de triangulation

• E un ev de dimension $n, u \in \mathcal{L}(E)$ scindé, $\operatorname{Sp} u = \{\lambda_1, \dots, \lambda_r\}$. Si $\underset{\lambda \in \operatorname{Sp} u}{\oplus} E_{\lambda}$ est de dimension n-1, on construit $\mathcal{B} = \mathbb{E} u$

 $(e_1, \dots, e_n) \text{ base de } E \text{ adaptée à cette somme directe (hormis } e_n \text{ choisi)}. \text{ On a alors : } M_{\mathcal{B}}(u) = \left(\begin{array}{ccc} \lambda_1 & & m_{1,n} \\ & \ddots & & \vdots \\ & & \lambda_r & \vdots \end{array}\right).$

On obtient la dernière colonne en décomposant $u(e_n) = \sum_{i=1}^{n} m_{i,n} e_i$.

- Cas où dim $E=2,\,u$ scindé non diagonalisable. u a alors une valeur propre double λ et dim $E_{\lambda}=1$. On adapte une base $\mathcal{B} = (e_1, e_2) \text{ de } E \text{ et on a } : M_{\mathcal{B}}(u) = \begin{pmatrix} \lambda & \alpha \\ 0 & \lambda \end{pmatrix} \text{ avec } \alpha \neq 0.$
- Cas où dim E=3, u scindé non diagonalisable.
 - * cas 1 : $\operatorname{Sp}(u) = \{\lambda, \mu\}$ avec $\operatorname{mult}(\lambda) = 2$, $\operatorname{mult}(\mu) = 1$. $E = \ker(u \lambda Id)^2 \oplus \ker(u \mu Id)$, $\dim E_{\lambda} = \dim E_{\mu} = 1$. Soit $E'_{\lambda} = \ker(u - \lambda Id)^2$, on choisit $e_1 \in E'_{\lambda} \setminus E_{\lambda}$, $e_2 = (u - \lambda Id)(e_1)$, $e_3 \in E_{\mu} \setminus \{0\}$, $\mathcal{B} = (e_1, e_2, e_3)$. Alors $M_{\mathcal{B}}(u) = (e_1, e_2, e_3)$. $1 \lambda 0$ $0 \quad 0 \quad \mu$

- * cas 2 : $\operatorname{Sp}(u) = \{\lambda\}$, dim $E_{\lambda} = 2$. On pose $v = u \lambda Id$. $\chi_u = (\lambda X)^3$ et $\chi_u(u) = 0$ montre que $v^3 = 0$. On choisit $e_1 \notin \ker v, e_2 = v(e_1) \in \ker v, \text{ et on complète en une base } (e_2, e_3) \text{ de } \ker v. \ \mathcal{B} = (e_1, e_2, e_3), M_{\mathcal{B}}(u) = \begin{pmatrix} \lambda & 0 & 0 \\ 1 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix}$
- * cas 3 : (mêmes notations) dim $E_{\lambda} = 1$, on suppose dim ker $v^2 = 3$. $\exists \mathcal{P}$ plan vectoriel tel que ker $v^2 = \ker v \oplus \mathcal{P}$. En posant $(\varepsilon_1, \varepsilon_2)$ base de \mathcal{P} , on aboutit à une absurdité. Donc dim ker $v^2 = 2$; on choisit $e_1 \notin \ker v$, $e_2 = v(e_1)$, $e_3 = v(e_2), \mathcal{B} = (e_1, e_2, e_3); \text{ alors } M_{\mathcal{B}}(u) = \begin{pmatrix} \lambda & 0 & 0 \\ 1 & \lambda & 0 \\ 0 & 1 & \lambda \end{pmatrix}.$

Polynômes et réduction

6.1 Théorème de Cavley-Hamilton

Soit E ev de dimension finie, $u \in \mathcal{L}(E)$, on a : $\chi_u(u) = 0$.

Soit μ_n le polynôme minimal de u, c'est-à-dire le polynôme unitaire de degré minimal tel que $\mu_n(u) = 0$. Propriété : $\chi_u \mid \mu_u^n$

6.2 Polynômes et spectre

E ev quelconque, $u \in \mathcal{L}(E)$, $P \in \mathbb{K}[X]$. Si P(u) = 0, alors les valeurs propres de u sont à chercher parmi les zéros de P: $\operatorname{Sp}(u) \subset P^{-1}(\{0\})$. En particulier, les valeurs propres de u sont les zéros de μ_u .

6.3 Polynômes et diagonalisabilité

E ev de dimension finie, $u \in \mathcal{L}(E)$, u est diagonalisable ssi μ_u est scindé à zéros simples ssi $\exists P \in \mathbb{K}|X|$ non nul scindé à zéros simples tel que P(u) = 0.

6.4 Polynômes et triangulabilité

E de dimension finie, $u \in \mathcal{L}(E)$. u est triangulable ssi u est scindé ssi μ_u est scindé ssi $\exists P \in \mathbb{K}[X]$ non nul scindé tel que

6.5 Polynômes et calcul de puissance

E ev quelconque, $u \in \mathcal{L}(E)$. On suppose connu $P \in \mathbb{K}[X]$ non nul tel que P(u) = 0. Soit $P' \in \mathbb{K}[X]$, l'identité de division euclidienne P' = PQ + R avec $(Q, R) \in (\mathbb{K}[X])^2$ et deg $R < \deg P$ montre que $P'(u) = P(u) \circ Q(u) + R(u) = R(u)$. Pour évaluer P'(u), il suffit de connaître les u^k , $1 \le k < \deg P$.

7 Sous-espaces stables

7.1 Lien avec les polynômes annulateurs

E un ev quelconque, $u \in \mathcal{L}(E)$, F un sev de E stable par $u, v = u|_{E}^{F}$, $P \in \mathbb{K}[X]$.

- Si P(u) = 0, on a aussi P(v) = 0.
- $\bullet \chi_v \mid \chi_u$.

7.2 Lien avec la diagonalisabilité

E de dimension finie, $u \in \mathcal{L}(E)$. Si u est diagonalisable et si F est un sev stable alors $u|_F^F$ est encore diagonalisable.

Corollaire: E de dimension finie, $u \in \mathcal{L}(E)$ diagonalisable, $\mathrm{Sp}(u) = \{\lambda_1, \dots, \lambda_r\}$. Un sev F de E est stable par u ssi il est de la forme $F = \bigoplus_{i=1}^{r} F_i$ où $\forall i, F_i$ est un sev de E_{λ_i} .

7.3 Lien avec la triangulation

E un ev de dimension finie, $u \in \mathcal{L}(E)$ scindé. Si F est un sev stable, alors $u|_F^F$ reste scindé et triangulable.

Remarque 1: décomposition de Dumford d'un endomorphisme scindé. $u \in \mathcal{L}(E)$ scindé, $\operatorname{Sp}(u) = \{\lambda_1, \ldots, \lambda_r\}$. $m_i = \operatorname{mult}(\lambda_i)$, $E'_{\lambda_i} = \ker(u - \lambda_i Id)^{m_i}$.

- 1. $\forall i, E'_{\lambda_i}$ est stable par u; on pose $v_i = u|_{E'_{\lambda_i}}^{E'_{\lambda_i}}$; alors $v_i \lambda_i Id|_{E_{\lambda_i}}$ est nilpotent.

2.
$$E = \bigoplus_{i=1}^r E'_{\lambda_i}$$
; il existe une base \mathcal{B} adaptée à cette somme directe telle que $M_{\mathcal{B}}(u)$ soit diagonale par bloc. $M_{\mathcal{B}}(u) = \operatorname{Diag}(T_1, \dots, T_r)$ où chaque T_i est de la forme $T_i = \begin{pmatrix} \lambda_i & * & \cdots & * \\ & \ddots & * & \vdots \\ & & \ddots & * \\ & & & \lambda_i \end{pmatrix}$.

Remarque 2 : Si $u \in \mathcal{L}(E)$, $\exists !(d,n) \in (\mathcal{L}(E))^2/u = d+n$ où d est diagonalisable et n est nilpotent.

7.4 Hyperplans stables

E ev de dimension finie $n, u \in \mathcal{L}(E)$. Soit \mathcal{B} base de E et \mathcal{H} hyperplan d'équation $\sum_{i=1}^{n} a_i x_i = 0$. Soit $M = M_{\mathcal{B}}(u)$, \mathcal{H} est stable

par u ssi $A = \begin{pmatrix} \vdots \\ \ddots \end{pmatrix}$ est un vecteur propre de tM . Si M est connue, on obtient ainsi tous les hyperplans stables en cherchant les vecteurs propres de tM .

Commutants d'un endomorphisme

8.1 Généralités

E de dimension quelconque, $u \in \mathcal{L}(E)$. On pose $C(u) = \{v \in \mathcal{L}(E)/v \circ u = u \circ v\}$. C(u) est une sous-algèbre de $\mathcal{L}(E)$ et $\mathbb{K}[u] \subset C(u)$. De plus, si dim E = n,

- $1 \leqslant \dim \mathbb{K}[u] \leqslant n \leqslant \dim C(u) \leqslant n^2$
- $(\dim \mathbb{K}[u] = n) \iff (\dim C(u) = n)$
- $\dim C(u) \equiv n \mod 2$
- si n = 3, dim $C(u) \in \{3, 5, 9\}$.

8.2 Lien avec la diagonalisabilité

E ev de dimension finie, $u \in \mathcal{L}(E)$ diagonalisable, $\operatorname{Sp}(u) = \{\lambda_1, \dots, \lambda_r\}$. $v \in C(u)$ ssi v laisse stable tous les E_{λ_i} .

8.3 dim E=3, $\mathbb{K}=\mathbb{R}$ ou \mathbb{C}

 $u \in \mathcal{L}(E)$ scindé non diagonalisable. On peut réduire $M_{\mathcal{B}}(u)$, \mathcal{B} bien choisie, à l'une des formes suivantes :

$$M_{\mathcal{B}}(u) = \begin{pmatrix} \lambda & 0 \\ 1 & \lambda \\ & \mu \end{pmatrix}, M_{\mathcal{B}}(u) = \begin{pmatrix} \lambda & 0 \\ 1 & \lambda \\ & & \lambda \end{pmatrix} \text{ ou } M_{\mathcal{B}}(u) = \begin{pmatrix} \lambda \\ 1 & \lambda \\ & 1 & \lambda \end{pmatrix}$$

Pour $v \in \mathcal{L}(E)$, uv = vu ssi $M_{\mathcal{B}}(u)$ et $M_{\mathcal{B}}(v)$ commutent. Chercher $M_{\mathcal{B}}(v)$ avec 9 coefficients indéterminés conduit à des calculs simples.

5