Applicazioni lineari

Andrea Canale

January 4, 2025

Contents

1			2
	1.1	Funzioni note non lineari	2
	1.2	Funzioni note lineari	2
2	Nuc	eo e immagine 2 Nucleo	
	2.1	Nucleo	2
	2.2	Immagine	3
3	Mat	rice associata all'applicazione lineare	4
4	Teo	rema della dimensione	4
5	Classificazioni		5
6	Isomorfismi		5
7	Mat	rice del cambiamento di base	5
8	Con	aposizione di applicazioni lineari	6
9	End	omorfismi	6
10	Mat	rici simili	7

1 Applicazioni lineari

Dati due spazi vettoriali V e W sullo stesso campo \mathbb{K} , un'applicazione lineare è una funzione $f:V\to W$ tale che valgono i seguenti assiomi:

- f(0) = 0
- $f(v+w) = f(v) + f(w) \ \forall v, w \in V$
- $f(\lambda v) = \lambda f(v) \ \forall \lambda \in \mathbb{K} \ \forall v \in V$

Osserviamo che se $v = \lambda_1 v_1 + ... + \lambda_n v_n$, osserviamo che:

$$f(v) = f(\lambda_1 v_1) + \ldots + f(\lambda_n v_n) = \lambda_1 f(v_1) + \ldots + \lambda_n f(v_n)$$

E quindi possiamo unire le proprietà insieme.

1.1 Funzioni note non lineari

- Funzioni che hanno un grado maggiore di 1, ad esempio: $f \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 2a^2 + b \\ a 2b \end{pmatrix}$
- Funzioni che hanno termini noti, ad esempio: $f \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a+2 \\ a-b-1 \end{pmatrix}$

1.2 Funzioni note lineari

- La funzione nulla(composta da soli zeri)
- La funzione identità(1 sulla diagonale)

2 Nucleo e immagine

2.1 Nucleo

Il nucleo di una funzione $f:V\to W$ è definito come:

$$ker(f) = \{v \in V | f(v) = 0_w\}$$

Sappiamo inoltre che il nucleo è sempre sottospazio di V
 perchè contiene l'origine 0 e i vettori $v \in V$

La funzione f è iniettiva se e solo se $ker(f) = \{0\}$

Per trovare il nucleo bisogna risolvere il sistema f(v) = 0

Esempio:

$$f: \mathbb{R}^2 \to \mathbb{R}^3$$
 definita come: $f\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x + y \\ x - y \\ 3x + 2y \end{pmatrix}$

Dobbiamo risolvere il sistema $\begin{pmatrix} 2 & 1 & 0 \\ 1 & -1 & 0 \\ 3 & 2 & 0 \end{pmatrix}$ e, in questo caso, avrebbe 0 soluzioni cioè il nucleo

è vuoto.

Inoltre la dimensione del nucleo può essere calcolata come: n - rk(A) dove n è il numero di incognite del sistema lineare.

2.2 Immagine

L'immagine di una funzione $f:V\to W$ è definita come:

$$Im = \{w \in W | \exists v \in V \text{ tale che } f(v) = w\}$$

L'immagine è sempre sottospazio di W perchè contiene l'origine 0 e i vettori $w \in W$ Inoltre sappiamo che la funzione f è suriettiva se e solo se Im(f) = W

L'immagine può essere trovata calcolando lo Span delle colonne della matrice associata all'applicazione lineare.

Esempio:

$$f: \mathbb{R}^2 \to \mathbb{R}^3$$
 definita come: $f\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x+y \\ x-y \\ 3x+2y \end{pmatrix}$

Rispetto alla base canonica.

Dobbiamo risolvere controllare che le colonne della matrice associata(in questo caso alla base canonica) generino uno Span. In questo caso abbiamo \mathbb{R}^2 e quindi otteniamo la matrice

$$\begin{pmatrix} 2 & 1 \\ 1 & -1 \\ 3 & 2 \end{pmatrix}$$

. Notiamo che le colonne sono indipendenti tra loro e quindi $Span = \{ \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \}$ Un ulteriore prova di ciò può essere fatto trovando dim(Im(f)) = rk(f) = 2

3 Matrice associata all'applicazione lineare

Sia $f: V \to W$ un'applicazione lineare, $B = \{v_1, ..., v_n\}$ una base di V e $C = \{w_1, ..., w_n\}$ una base di W, possiamo rappresentare qualsiasi vettore di V come combinazione lineare di C. Questo ci permette di rappresentare una funzione lineare come matrice. è denotata come: $[f]_C^B$

Vale la seguente proprietà: $[f(v)]_C = [f]_C^B \cdot [v]_B$

4 Teorema della dimensione

Sia $f:V\to W$ una funzione lineare. Se V ha dimensione finita n, allora:

$$dimKerf + dimImf = n$$

Nel caso di un applicazione lineare $L_a:\mathbb{K}^n\to\mathbb{K}^n$, abbiamo che:

$$kerL_a = \{x \in \mathbb{K}^n | Ax = 0\} = S$$

Ciò è lo spazio delle soluzioni del sistema Ax = 0. Per calcolare la dimensione di questo spazio,

possiamo usare il teorema di Rouchè-Capelli:

$$dimS = n - rk(A)$$

5 Classificazioni

- Se $dimKer(f) \neq 0$, allora f è iniettiva
- Se $dimIm(f) \ge dimW$, allora f è suriettiva
- Se dimW = dimV, allora f è iniettiva

6 Isomorfismi

Un isomorfismo è un applicazione lineare biettiva. Due spazi vettoriali V, W sono isomorfi se esiste un isomorfismo $f:V\to W$. Inoltre dato che l'isomorfismo è biettivo, esisterà anche una funzione inversa.

Quindi due spazi vettoriali W,V sono isomorfi, se e solo se, dimW = dimV.

Da ciò deduciamo che tutti gli spazi vettoriali su $\mathbb K$ sono isomorfi rispetto a $\mathbb K^n$

7 Matrice del cambiamento di base

Sia V uno spazio vettoriale, B e C due basi di V. La matrice del cambiamento di base da B in C è definita come: $A = [id_v]_C^B$

Questa matrice contiene nella sua j-esima colonna, le coordinate di v_j rispetto alla base C.

La matrice del cambiamento di base quindi codifica nella sue colonne le coordinate di ciascun elemento rispetto a B.

Per calcolare la matrice del cambiamento di base ci sono due tecniche:

- Scrivere un sistema lineare dove cerchiamo eguagliamo i vettori di C a quelli di B e troviamo i coefficienti adatti a rendere vera l'uguaglianza
- Usare la base canonica.

Il metodo che utilizzeremo prevederà l'utilizzo della base canonica.

Esempio:

Dato l'endomorfismo
$$T=id:\mathbb{R}^2\to\mathbb{R}^2$$
, scrivere la matrice associata rispetto alle base $B=\{\begin{pmatrix}2\\4\end{pmatrix},\begin{pmatrix}4\\2\end{pmatrix}\}$ e $C=\{\begin{pmatrix}2\\0\end{pmatrix},\begin{pmatrix}0\\-2\end{pmatrix}\}$ Data la base canonica $E=\{e_1,e_2\}$, i vettori in base canonica saranno:

$$[id]_E^B = \begin{pmatrix} 2 & 4 \\ 4 & 2 \end{pmatrix}$$

е

$$[id]_E^C = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$$

Adesso la matrice del cambiamento di base si può ottenere facendo:

$$[id]_{C}^{B} = [id]_{E}^{B} \cdot [id]_{C}^{E} = [id]_{E}^{B} \cdot ([id]_{E}^{C})^{-1} \cdot A$$

Dove A è la matrice associata all'applicazione lineare(in questo caso I_2 quindi la omettiamo)

Ed otteniamo

$$\begin{pmatrix} 2 & 4 \\ 4 & 2 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} 1 & -2 \\ 2 & -1 \end{pmatrix}$$

8 Composizione di applicazioni lineari

Se due funzioni f e g sono lineari, la loro composizione sarà lineare.

Inoltre vale la seguente proprietà: $L_a \cdot L_b = L_{ab}$

Endomorfismi 9

Sia V uno spazio vettoriale, un endomorfismo è un'applicazione lineare $f: V \to V$.

Da ciò ne ricaviamo che la matrice associata ad f con B una base di V è $[f]_B^B$

10 Matrici simili

Due matrici A, B sono simili se esiste una matrice invertibile tale che $A=M^{-1}\cdot B\cdot M.$ Se due matrici sono simili allora:

- $\bullet\,$ Il loro rango è uguale
- Il loro terminante è uguale

Inoltre se A è invertibile anche B è invertibile.