## RMarkdown Basics

## Recap

- Reproducibility across all sciences is a huge issue!
- We need to be able to reproduce scientific findings
  - This means the data & code from a given paper must be easy to access and human readable
- When it comes to programming in R, using **RMarkdown** can help us make sure that other humans can understand our analyses



# **Anatomy of RNotebook**

The anatomy of all .Rmd files (RNotebook or RMarkdown):

1. Document Information

2. Formatted Text

3. Code Chunks

# **Anatomy of RNotebook**

The anatomy of all . Rmd files (RNotebook or RMarkdown):

1. Document Information

2. Formatted Text

3. Code Chunks

## **Document Information**

- Title
- Subtitle
- Date
- Author
- Output type

\_\_\_

title: "Making Pretty Code"
subtitle: "with RMarkdown"
author: "Shelly Cooper"
output: html\_document

\_\_\_

This is sometimes called a YAML header.

### **Document Information**

- Title
- Subtitle
- Date
- Author
- Output type

```
title: "Making Pretty Code"
author: "Shelly Cooper"
subtitle: with RMarkdown
output:
   pdf_document: default
   html_document: default
---
```

IMPORTANT: Do NOT change any of the tabs/indents in the YAML header. If you copy something from the internet, pay attention to this!

# **Anatomy of RNotebook**

The anatomy of all . Rmd files (RNotebook or RMarkdown):

1. Document Information

2. Formatted Text

3. Code Chunks

## **Formatted Text**

You need to tell R how you want your text to be formatted:

- Headers
- Bolded text
- Italicized text
- Hyperlinks
- Bullet/numbered lists

## Headers

The number of # indicates what size and level your header should be.

# Header 1

**Header 1** 

## Header 2

**Header 2** 

### Header 3

**Header 3** 

#### Header 4

**Header 4** 

##### Header 5

**Header 5** 

## Headers

```
# Introduction
Background information goes here.
# Methods
### Participant Demographics
The current study looked at a sample of healthy adults (ages 18-80) across the
lifespan.
### Statistical Analyses
We first looked at descriptive statistics. Then we ran a multiple regression to look
at how three independent variables impacted a dependent variable.
# Results
### Descriptive Results
Go here
### Multiple Regression Results
Go here
# Discussion
Our study was better than yours. This paper has been accepted without needing any
revisions!
```

10 / 25

## **Headers**

### Introduction

Background information goes here.

### Methods

#### **Participant Demographics**

The current study looked at a sample of healthy adults (ages 18-80) across the lifespan.

#### Statistical Analyses

We first looked at descriptive statistics. Then we ran a multiple regression to look at how three independent variables impacted a dependent variable.

### Results

#### **Descriptive Results**

Go here

#### Multiple Regression Results

Go here

### **Discussion**

## **Bold & Italics**

#### **Bold text**

- \*\*bold text \*\*
- \_bold text \_ (2 underscores)

#### Italicized text

- \* italicized text \*
- \_ italicized text \_

To *combine*, pick \* for one and \_ for the other

- \*\*\_combine\_\*\*
- \_\*\*combine\*\*\_
- \*\_combine\_\_\*
- \_\_\*combine\*\_\_

# **Hyperlinks**

- The word(s) you want to be the link go inside square brackets [ ]
- Immediately after, it's a pair of parentheses ( ) that contains the actual link.

[Google](www.google.com) is my friend!

Google is my friend!

## **Bullet Lists - Unordered**

- First line must end with a : (colon)
- Must have an empty line
- Must have a space after the bullet

#### **Unformatted**

#### **Brazilian States:**

- Rio Grande do Sul
- Parana
- Rio de Janeiro

#### **Formatted**

#### **Brazilian States:**

- Rio Grande do Sul
- Parana
- Rio de Janeiro

Bullets can be – (dashes), + (plus), or  $\star$  (asterisk), but all come out looking like what you see here.

## **Bullet Lists - Ordered**

Same thing, but now with numbers

#### **Unformatted**

#### **Brazilian States:**

- 1. Rio Grande do Sul
- 2. Parana
- 3. Rio de Janeiro

#### **Formatted**

#### **Brazilian States:**

- 1. Rio Grande do Sul
- 2. Parana
- 3. Rio de Janeiro

## **Bullet Lists - Nested**

You can have organized, nested lists. Go to the next line, and press **2 spaces**. Then put your new bullet symbol.

- Do NOT press tab. For whatever reason, R doesn't like it for Markdown.
- If you still are stuck, try 4 spaces -- that should work

#### **Unformatted**

#### Brazilian States & Capitals:

- 1. Rio Grande do Sul
  - \* Porto Alegre
    - This is the best!
- 2. Parana
  - \* Curitiba
- 3. Rio de Janeiro
  - \* Rio de Janeiro

#### **Formatted**

#### Brazilian States & Capitals:

- 1. Rio Grande do Sul
  - Porto Alegre
    - This is the best!
- 2. Parana
  - Curitiba
- 3. Rio de Janeiro
  - Rio de Janeiro

# **Anatomy of RNotebook**

The anatomy of all . Rmd files (RNotebook or RMarkdown):

1. Document Information

2. Formatted Text

3. Code Chunks

## **Code Chunks**

- This is what makes RMarkdown so cool!
- Type your code directly into a code chunk and work with it just like you would a .R script file
- When you're done, click knit at the top to generate your pretty report
  - All code chunks will be executed (unless you say otherwise...see next lecture)

## **Code Chunks**

```
```{r}
# code goes here
answer <- 1 + 2
```</pre>
```

#### Each code chunk:

- Starts and ends with three backticks
  - o if you don't have the ending 3, you're gonna have a bad time
- Has {r} at top next to the first 3 backticks
- Has gray background
- Looks like normal code
- Runs like normal code

# **Making Code Chunks**

#### To make a code chunk:

- Use the insert button
- Manually type the backticks & {r}
- Keyboard shortcuts
  - PCs: ctrl + alt + i
  - Macs: cmd + opt + i



# A finished product

```
# Step 1: Data Preparation
Let's first get our data ready for an analysis
```{r}
# load the packages
library(knitr)
library(psych)
library(applot2)
# set the working directory
setwd("~/Desktop/rSkillLab/")
# import data
midus <- read.csv("midus.csv")</pre>
# Step 2: Analysis
Now let's get the mean of the age variable.
```{r}
mean_age <- mean(midus$age, na.rm = TRUE)</pre>
```

### **Step 1: Data Preparation**

Let's first get our data ready for an analysis

```
# load the packages
library(knitr)
library(psych)
library(ggplot2)

##
## Attaching package: 'ggplot2'

## The following objects are masked from 'package:psych':
##
## %+%, alpha

# set the working directory
setwd("~/Desktop/rSkillLab/")

# import data
midus <- read.csv("midus.csv")</pre>
```

### Step 2: Analysis

Now let's get the mean of the age variable.

```
mean_age <- mean(midus$age, na.rm = TRUE)</pre>
```

## **Code Chunks**

#### All code will run in a code chunk

- It's very literal!
- We can't see midus or mean\_age
  - These are stored as objects
  - o If you want to see them, you need to tell R to show them to you
- We needed to import midus
  - If it was in your Environment before knitting the file AND you did not import your data, it would fail
  - Whatever data you use, you need to import it!

## Viewing data.frames

To help make data.frames readable for humans, use the kable() function

• comes from the knitr package, although surprisingly, you don't need to manually load this one

### 1. Data Preparation

Let's first get our data ready for an analysis

```
# load the packages
library(knitr)
library(psych)
library(ggplot2)

# set working directory
setwd("~/Box Sync/Brazil 2019/")

# import data
midus <- read.csv("midus.csv")

# view the first 6 rows of the midus dataset
# head(midus) gets the first 6 rows
# kable() makes the output pretty
kable(x = head(midus), caption = "Midus Dataset")</pre>
```

#### Midus Dataset

| ID    | sex    | age | ВМІ    | physical_health_self | mental_health_self | self_esteem | life_satisfaction | hostility | heart_self | heart_father |
|-------|--------|-----|--------|----------------------|--------------------|-------------|-------------------|-----------|------------|--------------|
| 10001 | Male   | 61  | 26.263 | 2                    | 4                  | 42          | 7.750             | 5.5       | No         | No           |
| 10002 | Male   | 69  | 24.077 | 5                    | 5                  | 34          | 8.250             | 6.0       | No         | Yes          |
| 10005 | Female | 80  | NA     | 4                    | 4                  | 49          | 9.333             | 4.0       | No         | No           |
| 10006 | Female | 60  | NA     | 3                    | 3                  | NA          | NA                | NA        | No         | Yes          |
| 10010 | Male   | 55  | NA     | 4                    | 3                  | 28          | 8.250             | 8.0       | No         | Yes          |
| 10011 | Female | 52  | 25.991 | 5                    | 4                  | 41          | 7.000             | 5.5       | No         | No           |

## Next up

Chaning parameters in the YAML header and in code chunks to make the output just right.

