Math 121: Hodge Theory

Sair Shaikh

May 14, 2025

Problem 1.

- 1. Let X be a compact hermitian manifold and let $E \to X$ be a holomorphic vector bundle of rank d endowed with a Hermitian metric h. Prove that the cohomology groups $H^q(X, E)$ are finite-dimensional vector spaces. In particular, the vector space of holomorphic sections of E is finite dimensional. (Hint provided).
- 2. Let M be a differentiable manifold, $E, F, G \to M$ differentiable vector bundle and $P: \mathcal{C}^{\infty}(E) \to \mathcal{C}^{\infty}(F)$ and $Q: \mathcal{C}^{\infty}(F) \to \mathcal{C}^{\infty}(G)$ be differential operators. Show that the symbol of $Q \circ P$ is equal to $\sigma_Q \circ \sigma_P$ and compute its degree in terms of the degrees of P and Q.
- 3. Show that a form α is privitive if and only if $\Lambda \alpha = 0$, where Λ is the adjoint of the Lefschetz operator.
- 4. Let ω_{FS} the Fubini-Study metric on $\mathbb{P}^n\mathbb{C}$. Show that $\int_{\mathbb{P}^n\mathbb{C}} \omega_{FS}^n = 1$. (Hint provided.)
- 5. Conclude that $H^{2k}(\mathbb{P}^n\mathbb{C},\mathbb{Z})=\mathbb{Z}[\omega_{FS}^k]$.
- 6. Solve Exercise 2, Chapter 5 of Voisin.

Solution. Noting down ideas here.

1. First note that we have the decomposition:

$$H^{k}(X, E) = \bigoplus_{p+q=k} H^{p,q}(X, E)$$

Thus, it suffices to show that $H^{p,q}(X, E)$ is finite dimensional. This is the cohomology of the Dobault complex.

2. First, trivialize the bundles E, F, G over U. Then, locally for coordinates (x_1, \ldots, x_n) on M, and $(\alpha_1, \cdots, \alpha_p)$ on $\Gamma(X, E)$, we have:

Problem 2. Let X be a Kahler compact manifold and ω a differential form which is ∂ and $\overline{\partial}$ closed. Prove that if ω is either d, ∂ , or $\overline{\partial}$ exact, then there exists a differential form χ such that $\omega = \partial \overline{\partial} \chi$.

Solution.

Problem x..

Solution.