# COGS260 Image Recognition Instructor: Prof. Zhuowen Tu

A spatiotemporal model with visual attention for video classification

Mo Shan

Department of Electrical and Computer Engineering

June 7, 2017

## Outline

Motivation

Proposed model

Experiment

Conclusion

### Motivation

#### Video classification

- Semantic understanding of sequential visual input is important for robots in localization and object detection.
- ▶ Eg, search for a cat in a living room, instead of in a gym.



Source: Harvey M., Five video classification methods

## Motivation

#### Rotation and scale

- Existing benchmark contains videos of daily scenes.
- Objects in real world could be rotated and scaled.



### Motivation

#### Visual attention

Attention mechanism reduces complexity and avoids cluttering. This makes it easier to deal with rotated and scaled images.



Source: cs231n, Stanford

## Proposed model

#### Architecture

- The proposed model concatenates CNN to RNN.
- ► The CNN stage is augmented with attention modules.



# Proposed model

#### Attention modules

- ► Spatial transformer network learns a global affine transformation.
- Deformable convolutional networks learns offsets locally and densely.



# **Experiment**

**Dataset** 

Moving MNIST is augmented with rotation and scaling (Demo).

| 03 | 03 | <b>a</b> s | <b>&amp;</b>   | ક  | g  |
|----|----|------------|----------------|----|----|
| 8  | 8  | ď          | o <sup>c</sup> | 04 | 04 |
| v  | D  | ъ          | ъ              | ð  | ð  |
| 20 | ,0 | 30         | 9              | 9  | 0  |

# **Experiment**

## Quantitative analysis

▶ DCN-LSTM consistently performs the best in all cases.

TABLE I: Comparison of cross entropy loss and test accuracy for the proposed model and baseline.

| Moving MNIST     | - | LeNet-LSTM  | STN-LSTM    | DCN-LSTM    |
|------------------|---|-------------|-------------|-------------|
| Normal           | Ī | 1.39, 98.2% | 2.07, 84.9% | 1.27, 99.7% |
| Rotation         |   | 1.32,99.3%  | 1.85, 92.2% | 1.15,99.8%  |
| Scaling          | 1 | 1.51, 97.5% | 1.96, 89.8% | 1.23,99.2%  |
| Rotation+Scaling | Ī | 1.64,95.8%  | 2.04, 88.2% | 1.23,99.2%  |

# **Experiment**

Qualitative analysis

▶ STN could not attend to each digit individually.



# Conclusion

#### Key insights

- ▶ DCN-LSTM achieves high accuracy compared to baseline.
- Attention modules are useful to deal with rotation and scale changes.
- ► STN-LSTM does not perform well due to global transformation.
- How to train the entire model end to end remains a future work.