Durée: 1 heure.

Consignes:

- Veuillez ne pas répondre sur le sujet, mais sur le Formulaire Outlook prévu à cet effet.
- Les questions peuvent présenter une ou plusieurs réponses valides.
- Une mauvaise réponse enlève des points, une absence de réponse n'a pas d'incidence.
- A la fin du QCM la dernière question sur le formulaire vous proposera de valider vos réponses. Attention le choix sera définitif et vous ne pourrez plus revenir sur vos réponses.

Bon courage!

1. Parmi les matrices suivantes, laquelle est associée à la rotation d'angle $\theta = \frac{\pi}{c}$?

$$(1)^{\square} \quad \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix} \quad (2)^{\square} \quad \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix} \quad (3)^{\square} \quad \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \quad (4)^{\square} \quad \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$$

$$(5)^{\square} \quad \text{aucune des réponses précédentes n'est correcte.}$$

2. Soit f l'application de \mathbb{R}^4 dans \mathbb{R}^3 dont la matrice relative aux bases canoniques de \mathbb{R}^4 et \mathbb{R}^3 est la matrice A suivante : $\begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 2 & 1 & 0 \end{bmatrix}.$

- L'application f est injective.
- (2) La matrice A est inversible.
- $f([0\ 0\ 0\ 0]^T) = [0\ 1\ 0]^T$ $f([0\ 0\ 0\ 0]^T) \neq [0\ 0\ 0]^T$
- aucune des réponses précédentes n'est correcte.
- 3. Soit f et q deux applications linéaires d'un espace vectoriel E. Cocher la(es) affirmation(s) correcte(s):
 - $f \circ g = Id_E \Longrightarrow g = f^{-1}$
 - $(f+g)^2 = f^2 + 2f \circ g + g^2$

 - $\begin{array}{ll} (3) \square & (f-g) \circ (f+g) = f-g \circ f + g \\ (4) \square & (f-3Id_E) \circ (f-2Id_E) = (f-2Id_E) \circ (f-3Id_E) = f^2 5f + 6Id_E \\ \end{array}$
 - (5) aucune des réponses précédentes n'est correcte.
- 4. Soit $f \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^3)$ définie par $[x, y] \mapsto [x + y, 2x y, x 3y]$ et $g \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^2)$ définie par $[x, y, z] \mapsto [2x + y, -x - z]$. Cocher la(les) affirmation(s) correcte(s).
 - \Box $g \circ f$ et $f \circ g$ sont toutes les deux définies et on a $g \circ f = f \circ g$
 - $g\circ f$ et $f\circ g$ ne sont pas toutes les deux définies, seule $f\circ g$ l'est (2)
 - $f \circ g([x, y, z]) = [x + y z, 5x + 2y + z, 5x + y + 3z]$ \square
 - $f \circ g([x,y]) = [5x + y, x 3y]$ (4)
 - $_{(5)}\square$ aucune des réponses précédentes n'est correcte.

5	5. Dans \mathbb{R}^4 : (1) Toute famille libre de 4 vecteurs est une base.										
	₍₂₎ □	Toute famille génératrice de 4 vecteurs est une base.									
	(3)	Toute famille de trois vecteurs non nuls est génératrice.									
	(4) ^[]	Un système compatible associé à une famille génératrice de 5 vecteurs a une infinité de solution									
	$_{(5)}\square$ aucune des réponses précédentes n'est correcte.										
6.	Dans \mathbb{R}^3 , on considère (u_1, u_2, u_3) avec $u_1 = [1, 0, 2], u_2 = [1, 2, 3]$ et $u_3 = [1, -2, 1]$. Que peut-on dire de la famille constituée par ces 3 vecteurs?										
	$ \begin{array}{c} (1) \\ (2) \\ (3) \\ (4) \\ (5) \end{array} $	Elle est liée. Elle est génératrice. Elle est libre. C'est une base de \mathbb{R}^3 . aucune des réponses précédentes n'est correcte.									
7.	7. On considère l'application linéaire $f \in \mathcal{L}(\mathbb{R}^3)$: $f([x,y,z]) = [x+y,2y,y-z]$, on reprend les vecto (u_1,u_2,u_3) avec $u_1 = [1,0,2], u_2 = [1,2,3]$ et $u_3 = [1,-2,1]$. Que peut-on dire de la famille constit par $(f(u_1),f(u_2),f(u_3))$?										
	$ \begin{array}{c} (1) \\ (2) \\ (3) \\ (4) \\ (5) \end{array} $	Elle est liée. Elle est génératrice. Elle est libre. C'est une base de \mathbb{R}^3 . aucune des réponses précédentes n'est correcte.									
8.	Parmi les é $ \begin{array}{c c} (1) \\ (2) \\ (3) \\ (4) \\ (5) \\ \end{array} $	quations suivantes, cocher celles linéaires en x,y,z : $x=y=z$ $a^2x+b^2y=c^2$, avec $a,b\in\mathbb{R}$ $x+\ln(\pi)y+\sqrt{\pi}z=2$ $\sin(x)+\sin(y)+\sin(z)=2$ $ x =2$									
9.	Dans un es	espace vectoriel E de dimension $n \in \mathbb{N}^*$, toute famille génératrice a									
	(1)	au moins n éléments (2) au plus n éléments (3) exactement n éléments									
	(4)□	un nombre fini d'éléments $_{(5)}\square$ aucune des réponses précédentes n'est correcte.									
10.	Dans un es	pace vectoriel E de dimension $n \in \mathbb{N}^*$, toute famille libre a									
	₍₁₎ □	au moins n éléments (2) au plus n éléments (3) exactement n éléments									
	(4)□	un nombre fini d'éléments $_{(5)}\square$ aucune des réponses précédentes n'est correcte.									
11.	Parmi les a	pplications suivantes, cocher celles qui sont linéaires.									
	$_{(1)}\square f\left([x,y]\right)=[3x+2y] \qquad _{(2)}\square f\left([x,y,z]\right)=[1,x-y,0] \qquad _{(3)}\square f\left([x,y]\right)=[0,x-6y,0]$										
	$_{(4)}\square$	$f\left([x,y,z]\right) = [3x+2y,xy] \qquad \ \ \text{(5)} \square \text{aucune des réponses précédentes n'est correcte}.$									

19	Soit a	_ [1 2]	un voctour	$do \mathbb{P}^2 Co$	woctour	peut s'écrire	commo com	hingieon	linósiro d	ما
14.	\mathfrak{D} on u	j = [1, 2]	un vecteur	de 1≤ Ce	vecteur	peut s'ecrire	comme com	lomaison	imeaire d	ıе

- 13. Parmi les familles suivantes, cocher celles qui sont libres dans \mathbb{R}^3 .
 - u = [1, 2, 3], v = [-1, 4, 6]
 - u = [1, 2, -1], v = [1, 0, 1], w = [0, 0, 1]
 - u = [1, 2, -1], v = [1, 0, 1], w = [-1, 2, -3]
 - $\underbrace{u = [1, 2, 3, 4]}_{(4)}, \ v = [5, 6, 7, 8], \ w = [9, 10, 11, 12], \ z = [13, 14, 15, 16]$
 - $_{(5)}\square$ aucune des réponses précédentes n'est correcte.
- 14. Si on considère une famille libre de 4 vecteurs (e_1, e_2, e_3, e_4) , cocher la(les) famille(s) libre(s) parmi celles données.

$$(1)$$
 \Box $(e_1, 2e_2, e_3)$ (2) \Box (e_1, e_3) (3) \Box $(e_1, 2e_1 + e_4, e_3 + e_4)$

$$(2e_1+e_2,e_1-2e_2,e_4,7e_1-4e_2) \qquad \text{(5)} \square \quad \text{aucune des réponses précédentes n'est correcte.}$$

- 15. Soit E un espace vectoriel sur \mathbb{R} . Soit (v_1, v_2, v_3) une base de E. Parmi les affirmations suivantes, cocher les réponses correctes.
 - $_{(1)}\Box$ Il existe une famille de 4 vecteurs, liée et génératrice de E.
 - $_{(2)}\square$ Il existe une famille de 3 vecteurs, liée et génératrice de E.
 - $_{(3)}\square$ Il existe une famille de 2 vecteurs, libre et génératrice de E.

 - aucune des réponses précédentes n'est correcte.
- 16. On considère l'application linéaire f définie de \mathbb{R}^3 dans \mathbb{R}^2 par

$$f([x, y, z]) = [2x + y + 8z, 3x - y]$$

Quelle est la matrice de f dans les bases canoniques de \mathbb{R}^3 et \mathbb{R}^2 ?

17. Soient E, F et G des espaces vectoriels de bases respectives B_1, B_2 et B_3 .

On considère les applications linéaires $g: E \to F$ et $f: F \to G$.

Soit M la matrice de l'application g dans les bases B_1 et B_2 et soit N la matrice de l'application f dans les bases B_2 et B_3 . Alors la matrice de l'application $f \circ g$ dans les bases B_1 et B_3 est

- $_{(1)}\square$ MN
- (2) \square NM
- (3)□ La matrice identité
- $_{(4)}\square$ M+N
- $_{(5)}\square$ aucune des réponses précédentes n'est correcte.
- 18. On considère les vecteurs a = [1, 0, 1] et b = [-1, -1, 2] dans la base canonique de \mathbb{R}^3 . Trouver parmi les vecteurs proposés le vecteur c tel que (a, b, c) soit une base de \mathbb{R}^3 .

$$(1)$$
 \square $[-2, -2, 4]$ (2) \square $[-2, 1, -2]$ (3) \square $[3, 1, 3]$ (4) \square $[3, 0, 3]$

(5)□ aucune des réponses précédentes n'est correcte.

19. Parmi les applications linéaires, laquelle ou lesquelles est ou sont définie(s) dans \mathbb{R}^3 à valeurs dans \mathbb{R}^2 ?

20. Parmi les vecteurs suivants, y en a-t-il qui n'est ou ne sont pas vecteur(s) de la base canonique de \mathbb{R}^4 ?