

Contents

Preface	ix
WELCOME ADDRESSES	1
A.J. Baer Solar high-temperature technologies – fact and fiction	2
S.F. Garriba Prospects for international collaboration on energy technology and role of the IEA	4
INTRODUCTION	19
P. Kesselring The 1990 Symposium on Solar High-Temperature Technologies – a survey	20
C.-J. Winter High-temperature solar energy utilization after 15 years R&D: kick-off for the third generation of technologies	26
B.P. Gupta and J.V. Anderson Solar detoxification of hazardous waste – an overview of the U.S. Department of Energy program	40
G.W. Braun, A. Suchard and J. Martin Hydrogen and electricity as carriers of solar and wind energy for the 1990s and beyond	62
ELECTRICITY GENERATION	77
Plenum Papers	
P. DeLaquil Prospects for solar thermal electricity generation – an introduction	78
W. Grasse PHOEBUS – international 30 MW _e solar tower plant	82

W. Meinecke, M. Kiera and P. Wehowsky	
30 MW _e PHOEBUS feasibility study: results of system engineering	95
G.W. Braun, D. Kearney and D.S. Shugar	
Comparison of bulk power solar peaking options in the 1990s	108
M. Kiera, W. Meinecke and H. Klaiss	
Energetic comparison of solar thermal power plants	121
P.C. Klimas, R.B. Diver and J.M. Chavez	
United States Department of Energy solar receiver technology development	136
P. DeLaquil, B. Kelly and R. Lessley	
Solar One Conversion Project	151
P.C. Klimas and M. Becker	
Status of second-generation central receiver technologies	162
J.M. Chavez and C. Chaza	
Testing of a porous ceramic absorber for a volumetric air receiver	172
M. Böhmer and C. Chaza	
The ceramic foil volumetric receiver	182
T. Menigault, G. Flamant and B. Rivoire	
Advanced high-temperature two-slab selective volumetric receiver	192
M. Posnansky and T. Pylkkänen	
Development and testing of a volumetric gas receiver for high-temperature applications	204
F. Miller and R. Koenigsdorff	
Theoretical analysis of a high-temperature small-particle solar receiver	210
M. Müller	
Test loop for research on direct steam generation in parabolic trough power plants	222
J. Kleih	
Dish-Stirling test facility	231
ELECTRICITY GENERATION	
Forum Papers	239
A. Glück, R. Tamme, H. Kalfa and C. Streuber	
Investigation of high temperature storage materials in a technical scale test facility	240
H.W. Fricker	
High-temperature heat storage using natural rock	249
A. Meier, C. Winkler and D. Wuillemin	
Experiment for modeling high temperature rock bed storage	255

M. Epstein, D. Liebermann, M. Rosh and A.J. Shor	
Solar testing of 2 MW _{th} water/steam receiver at the Weizmann Institute solar tower	265
R. Koenigsdorff and P. Kienzle	
Results of and prospects for research on direct-absorption fluidized bed solar receivers	279
F. Reale, G. Ruocco, A. Carotenuto, U. Nocera and F. Bonomo	
Final design of a multi cavity volumetric solar receiver	284
R. Pitz-Paal, J. Morhenne and M. Fiebig	
A new concept of a selective solar receiver for high temperature applications	293
D.J. Alpert, T.R. Mancini, R.M. Houser, J.W. Grossman, P. Schissel, M. Carasso, G. Jorgensen and M. Scheve	
Solar concentrator development in the United States	307
M. Romero, E. Conejero and M. Sanchez	
Recent experiences on reflectant module components for innovative heliostats	320
W. Durisch, J. Keller, B. Hofer, W. Bulgheroni, M. Brack and H. Riegraf	
Ground- and satellite-based meteo-data for solar thermal power stations in Jordan	333
A. Roy	
Standards for solar power systems – performance reporting	348
SOLAR DRIVEN CHEMISTRY	363
Plenum Papers	
R. Sizmann	
Solar chemistry – an introduction	364
K.-H. Funken	
Solar chemistry: classification, criteria, and identification of R & D deficits	370
R. Tamme, U. Taut, C. Streuber and H. Kalfa	
Energy storage development for solar thermal processes	386
R. Emmenegger, H.R. Oswald and A. Reller	
UV/VIS/IR-induced heterogeneous processes of transition metal carbonates and transition metal oxides	397
M. Tanaka and T. Sakakura	
Homogeneous catalysis for direct functionalization of hydrocarbons under irradiation	406
C. Etiévant	
Solar high-temperature direct water splitting – a review of experiments in France	413
M. Böhmer, U. Langnickel and M. Sanchez	
Solar steam reforming of methane	441

R. Buck, J.F. Muir, R.E. Hogan and R.D. Skocypc Carbon dioxide reforming of methane in a solar volumetric receiver/reactor: the CAESAR project	449
R. Levitan, M. Levy, H. Rosin and R. Rubin Closed-loop operation of a solar chemical heat pipe at the Weizmann Institute solar furnace	464
G. Ingel, M. Levy and J. Gordon Gasification of oil shales by solar energy	478
C. Sasse Optical properties of single particles for solar heated fluidized beds	490
W.E.C. Pitzkow Pressure loaded volumetric ceramic receiver	498
W. Durisch Some physical and chemical experiments under concentrated solar radiation and some thermodynamic considerations	508
C. Revilliod, A.J. McEvoy and M. Grätzel High intensity simulated solar irradiation: effect on the kinetics of a methanation reaction	522
J.V. Anderson, H. Link, M. Bohn and B.P. Gupta Development of solar detoxification technology in the USA – an introduction	538
A. Lewandowski, C. Bingham, J. O'Gallagher, R. Winston and D. Sagie Performance characterization of the SERI High-Flux Solar Furnace	550
D. Bahnemann, D. Bockelmann and R. Goslich Mechanistic studies of water detoxification in illuminated TiO_2 suspensions	564
D.M. Blake, J. Webb, C. Turchi and K. Magrini Kinetic and mechanistic overview of TiO_2 -photocatalyzed oxidation reactions in aqueous solution	584
D.J. Alpert, J.L. Sprung, J.E. Pacheco, M.R. Prairie, H.E. Reilly, T.A. Milne and M.R. Nimlos Sandia National Laboratories' work in solar detoxification of hazardous wastes	594
E. Zarza, J.I. Ajona, J. León, A. Gregorzewski and K. Gentner Solar thermal desalination project at the Plataforma Solar de Almeria	608
SOLAR HIGH-TEMPERATURE TECHNOLOGY IN RUSSIA	623
Introductory note by the organizing committee	624
T.T. Riskiev and S.K.H. Suleimanov Double mirror polyheliostat solar furnace of 1000 kW thermal power	625

V.I. Anikeev and V.A. Kirillov	
Basic design principles and some methods of investigation of catalytic reactors-receivers of solar radiation	633
SOLAR DRIVEN CHEMISTRY	647
Forum Papers	
H. Klaiss, J. Meyer, M. Kiera, W. Meinecke and F. Staiss	
Costs and revenues of renewable electricity production systems	648
G.C. Glatzmaier, T.A. Milne, C. Tyner and J. Sprung	
Innovative solar technologies for treatment of concentrated organic wastes	672
O. Weinmann, K.-H. Funken, K.F. Knoche and R. Sizmann	
Thermal recovery of waste sulfuric acid with concentrated solar radiation	674
M. Sanchez and A. Sevilla Portillo	
Review of PSA activities in the area of solar thermal energy conversion	683
K. Huder	
Investigation of methane reforming with energy supplied by direct absorption of concentrated radiation	696
M. Romero, F. Sobrón and L.F. Puebla	
Performance of a CRS with stretched membrane heliostats for steam reforming of methane	707
P. Heller	
Optimization of windows for closed receivers and receiver-reactors: enhancement of optical performance	720
A. Segal and M. Levy	
Computer modelling of a solar chemical reactor	725
A. Imhof	
The cyclone reactor – an atmospheric open solar reactor	733
P. Kuhn and A. Hunt	
A new solar simulator to study high temperature solid-state reactions with highly concentrated radiation	742
A.J. Vázquez, G.P. Rodriguez and J. de Damborenea	
Surface treatment of steels by solar energy	751
EVALUATION	761
P. Kesselring	
Symposium results – outcoming of evaluation sessions	762
Address list of authors and coauthors	769
Author index	777

