Half-Positional Determinacy of Infinite Games

Eryk Kopczyński

May 25, 2006

Games

Eve wins iff the greatest number appearing infinitely often during an infinite play is even.

Games

Game = arena + winning condition

Arena:

$$G = (\operatorname{Pos}_{\mathcal{A}}, \operatorname{Pos}_{\mathcal{E}}, \mathcal{C}, \operatorname{Mov})$$
 where $\operatorname{Pos} = \operatorname{Pos}_{\mathcal{A}} \cup \operatorname{Pos}_{\mathcal{E}}$, $\operatorname{Mov} \subseteq \operatorname{Pos} \times \operatorname{Pos} \times \mathcal{C}$

Winning condition:

Subset $W \subseteq C^{\omega}$; we assume that it is prefix independent, i.e. $u \in W \iff cu \in W$

Plays and strategies

A play π is a sequence of moves such that source $(\pi_{n+1}) = \operatorname{target}(\pi_n)$.

A strategy for Eve (Adam) is a partial function $s: \operatorname{Pos} \cup \operatorname{Mov}^* \to \operatorname{Mov}$ which tells Eve (Adam) what they should do in a given situation (the current position, moves so far).

A strategy s is winning for X if each play consistent with s is winning for X.

A strategy s is positional if $s(\pi)$ depends only on $target(\pi)$.

Determinacy

Definition

A game (G, W) is determined if for each starting position one of players has a winning strategy. (Not all games are determined.) If the game is determined, we have $\operatorname{Pos} = \operatorname{Win}_E \cup \operatorname{Win}_A$ and strategies s_E and s_A such that each play π with $\operatorname{source}(\pi) \in \operatorname{Win}_X$ and consistent with s_X is winning for X.

Determinacy types

Definition

A determinacy type is given by three parameters:

- admissible strategies for Eve (positional, arbitrary)
- admissible strategies for Adam (positional, arbitrary)
- admissible arenas (finite, infinite)

Definition

A winning condition W is (α, β, γ) -determined, if for each γ -arena G the game (G, W) is (α, β) -determined, i.e. for each starting position either Eve has a winning α -strategy or Adam has a winning β -strategy.

Half-positional conditions

For short, we call (positional, arbitrary, infinite)-determined conditions half-positional, and (positional, arbitrary, finite)-determined conditions finitely half-positional.

We will focus on half-positional and finitely half-positional winning conditions, but first we will present some facts about all determinacy types.

Facts about *D*-determinacy

Let D be a determinacy type.

Theorem

Let $W \subseteq C^{\omega}$ be a winning condition such that for each nonempty D-arena G over C exists a nonempty set $M \subseteq G$ such that in the game (G, W) one of the players has a D-strategy winning from M (i.e. from each starting position in M). Then W is D-determined.

Facts about *D*-determinacy

Let D be a determinacy type.

Theorem

Let $W \subseteq C^{\omega}$ be a winning condition such that for each nonempty D-arena G over C exists a nonempty set $M \subseteq G$ such that in the game (G,W) one of the players has a D-strategy winning from M (i.e. from each starting position in M). Then W is D-determined.

Theorem

Let $W \subseteq C^{\omega}$ be a D-determined winning condition, and $S \subseteq C$. Then $W \cup (C^*S)^{\omega}$ also is a D-determined winning condition.

Union

Problem

Let W be a (finite, countable) family of (finitely) half-positional conditions. Is $\bigcup W$ also a half-positional winning condition?

Union

Problem

Let W be a (finite, countable) family of (finitely) half-positional conditions. Is $\bigcup W$ also a half-positional winning condition?

We know already that a union of any half-positional condition and $(C^*S)^{\omega}$ is half-positional.

There is a subclass of half-positional conditions called positional/suspendable conditions. A countable union of such winning conditions is also positional/suspendable.

Uncountable union

A union of an uncountable family of half-positional conditions need not be half-positional — even for Büchi conditions:

Uncountable union

A union of an uncountable family of half-positional conditions need not be half-positional — even for Büchi conditions:

Arena: One Eve's position E and ω Adam's positions (A_n) In E Eve chooses n and moves to A_n . In A_n Adam chooses r and returns to E. This move is colored with (n,r).

For each $f:\omega\to\omega$, W_f is the Büchi condition given by $S_f=\{(n,f(n)):n\in\omega\}$: Eve wins W_f if Adam uses moves colored with S_f infinitely many times.

Uncountable union

A union of an uncountable family of half-positional conditions need not be half-positional — even for Büchi conditions:

Arena: One Eve's position E and ω Adam's positions (A_n) In E Eve chooses n and moves to A_n . In A_n Adam chooses r and returns to E. This move is colored with (n,r).

For each $f: \omega \to \omega$, W_f is the Büchi condition given by $S_f = \{(n, f(n)) : n \in \omega\}$: Eve wins W_f if Adam uses moves colored with S_f infinitely many times.

Eve can win $\bigcup_{f:\omega\to\omega}W_f$, but only if she uses a non-positional strategy.

Examples of half-positional winning conditions

Definition

A winning condition W is convex if for all sequences of words (u_n) , $u_n \in C^*$, if

- $u_1u_3u_5u_7... \in W$,
- $u_2u_4u_6u_8... \in W$,

then $u_1u_2u_3u_4\ldots\in W$.

A winning condition is concave if its complement is convex.

Theorem

Concave winning conditions are finitely half-positional.

Theorem

Concave winning conditions are finitely half-positional.

Example

The parity conditions are both concave and convex.

Theorem

Concave winning conditions are finitely half-positional.

Example

The parity conditions are both concave and convex.

Example

Concave conditions are closed under union.

Theorem

Concave winning conditions are finitely half-positional.

Example

The parity conditions are both concave and convex.

Example

Concave conditions are closed under union.

Not all half-positional conditions are concave.

Geometrical conditions

Let $C = [0,1]^n$. For $u \in C^+$, let P(u) be the average color of u, i.e.

$$P(u) = \frac{1}{|u|} \sum_{k=1}^{|u|} u_k. \tag{1}$$

For $w \in C^{\omega}$, let $P_n(w) = P(w_{|n})$.

Let A be a subset of C. Let $WF(A) \subset C^{\omega}$ be a set of w such that each cluster point of $(P_n(w))$ is an element of A, and WF'(A) be a set of w such that at least one cluster point of $(P_n(w))$ is an element of A.

Half-positional determinacy vs geometry

For which A's WF(A) and WF'(A) are half-positional?

Half-positional determinacy vs geometry

For which A's WF(A) and WF'(A) are half-positional?

No.	Α	condition	finite	infinite	concavity
0	trivial	WF'(A) or $WF(A)$	yes	yes	yes
1	not co-convex	WF'(A) or $WF(A)$	no	no	no
2	co-convex	WF'(A)	yes	no	yes
3	co-convex, not oper	WF(A)	yes?	no	weak only
4	co-convex, open	WF(A)	yes?	yes?	weak only
5	open half-space	WF(A)	yes	yes	weak only

Consider the languages: $C^*a^nC^*$, $C^*a^{n-1}bC^*$, $C^*ba^{n-1}C^*$ over $C = \{a, b, c\}$.

Consider the languages: $C^*a^nC^*$, $C^*a^{n-1}bC^*$, $C^*ba^{n-1}C^*$ over $C = \{a, b, c\}$.

They can be recognized by a deterministic finite automaton

Consider the languages: $C^*a^nC^*$, $C^*a^{n-1}bC^*$, $C^*ba^{n-1}C^*$ over $C=\{a,b,c\}$.

They can be recognized by a deterministic finite automaton satisfying the following special conditions:

- The set of states $Q = \{0, \dots, n\}$;
- 0 is the initial state, *n* is the only accepting state;
- The transition function σ is monotonic, i.e. $q \ge q'$ implies $\sigma(q,c) \ge \sigma(q',c)$.

We call such an automaton a monotonic automaton $A = (n, \sigma)$ over C.

Let A be a monotonic automaton. We call the set $WM_A = C^\omega - L_A^\omega$ a monotonic condition.

Let A be a monotonic automaton. We call the set $WM_A = C^\omega - L_A^\omega$ a monotonic condition.

Theorem

Monotonic conditions are positional/suspendable.

Let A be a monotonic automaton. We call the set $WM_A = C^\omega - L_A^\omega$ a monotonic condition.

$\mathsf{Theorem}$

Monotonic conditions are positional/suspendable.

For $L_A=C^*a^2C^*$ the resulting WM_A is not concave: $(babab)^{\omega}$ is a combination of $(bbbaa)^{\omega}$ and $(aabbb)^{\omega}$. (However, monotonic conditions are weakly concave.)

thank you