SGupta_S540_Exam1_v1

Quarto

Quarto enables you to weave together content and executable code into a finished document. To learn more about Quarto see https://quarto.org.

Running Code

When you click the **Render** button a document will be generated that includes both content and the output of embedded code. You can embed code like this:

```
# ---- 1. Likelihood and Graphical Assessment ----
# Load libraries and data
library(dplyr)

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':
    filter, lag

The following objects are masked from 'package:base':
    intersect, setdiff, setequal, union

data("storms")

# Filter data to hurricanes (wind speed >= 65 knots, non-missing category)
storms <- storms %>% filter(!is.na(category) & wind >= 65)
head(storms)
```

```
# A tibble: 6 x 13
                         day hour
 name
          year month
                                     lat long status category wind pressure
  <chr>
           <dbl> <dbl> <dbl> <fct>
                                                            <dbl> <int>
                                                                           <int>
1 Blanche 1975
                    7
                         27
                                6 35.9 -70
                                                                1
                                                                     65
                                                                             987
                                              hurricane
                    7
                                                                     70
2 Blanche 1975
                         27
                                12 36.9 -69
                                              hurricane
                                                                1
                                                                             984
3 Blanche 1975
                          27
                                18 37.9 -68
                                                                     75
                                                                             981
                                              hurricane
                                                                1
4 Blanche 1975
                    7
                         28
                                0 39.3 -67.2 hurricane
                                                                1
                                                                     75
                                                                             980
5 Blanche 1975
                    7
                          28
                                 6 41.2 -66.4 hurricane
                                                                1
                                                                     70
                                                                             980
6 Caroline 1975
                         30
                                 0 23.3 -94.2 hurricane
                                                                     65
                                                                             990
# i 2 more variables: tropicalstorm_force_diameter <int>,
    hurricane_force_diameter <int>
# Create unique storm identifier and compute max wind speed and storm year
storms <- storms %>% mutate(storm_id = paste0(name, "_", year))
storm_summary <- storms %>%
  group_by(storm_id) %>%
  summarize(year_storm = min(year), mxspd = max(wind)) %>%
 ungroup()
# Compute annual hurricane counts
year_counts <- storm_summary %>%
 group_by(year_storm) %>%
 summarize(cnt = n()) %>%
 ungroup() %>%
 rename(year = year_storm)
# Split into periods:
  Period1: 1975-1999, Period2: 2000-2021
storm_summary <- storm_summary %>%
 mutate(period = ifelse(year_storm < 2000, "Period1", "Period2"))</pre>
year_counts <- year_counts %>%
 mutate(period = ifelse(year < 2000, "Period1", "Period2"))</pre>
# (a) Maximum wind speed:
    We treat mxspd as continuous. Visualize raw mxspd and its log-transform.
par(mfrow = c(2,2))
for(p in c("Period1", "Period2")) {
 raw_data <- storm_summary %>% filter(period == p) %>% pull(mxspd)
 log_data <- log(raw_data)</pre>
```

Plot histogram and QQ plot of raw data

hist(raw_data, main = paste("Histogram of mxspd", p),

```
xlab = "Max Wind Speed (knots)", col = "lightblue", breaks = 20)
  qqnorm(raw_data, main = paste("QQ Plot of mxspd", p)); qqline(raw_data, col = "red", lwd =
  # Plot histogram and QQ plot of log-transformed data
 hist(log_data, main = paste("Histogram of log(mxspd)", p),
       xlab = "log(mxspd)", col = "lightgreen", breaks = 20)
  qqnorm(log_data, main = paste("QQ Plot of log(mxspd)", p)); qqline(log_data, col = "red", i
}
```

Histogram of mxspd Period1

Max Wind Speed (knots)

QQ Plot of mxspd Period1

Theoretical Quantiles

QQ Plot of log(mxspd) Period1

Theoretical Quantiles

QQ Plot of mxspd Period2

Theoretical Quantiles

Histogram of log(mxspd) Period elements of log(mxspd) Period eleme

log(mxspd)

QQ Plot of log(mxspd) Period2

Theoretical Quantiles

Annual Hurricane Counts

You can add options to executable code like this

```
# 2. Conjugate Uninformative Prior Distributions
# For Maximum Wind Speed (log-transformed):
   Likelihood: log(mxspd_i) ~ N(, 2)
#
#
#
   Priors (vague, conjugate):
       | ^{2} ~ N( , ^{2}/ ) where = mean(all_log_mxspd), = 0.001
#
      ^{2} ~ Inverse-Gamma( , ) with = 0.001, = 0.001
#
# For Hurricane Counts:
   Likelihood: Y ~ Poisson()
#
#
   Prior:
       \sim Gamma(a, b) with a = 0.01 and b = 0.01
# Create log-transformed mxspd variable for analysis
storm_summary <- storm_summary %>% mutate(log_mxspd = log(mxspd))
```

```
all_log_mxspd <- storm_summary$log_mxspd
mu0 <- mean(all_log_mxspd)
tau0 <- 0.001;
alpha0 <- 0.001
beta0 <- 0.001
a0_pois <- 0.01;
b0_pois <- 0.01</pre>
```

You can add options to executable code like this

```
# -----
# 3. Posterior Summaries and Testing for Difference Between Periods
# For log(mxspd):
   Posterior (conjugate for Normal likelihood):
       = + n
        = ( + n \cdot \bar{x})/(+n)
#
       = + n/2
       = +0.5*(n-1)*s^{2} + (\cdot n*(\bar{x}-)^{2})/(2*(+n))
# We compute posterior samples for Period1 and Period2 and then derive the difference.
# For Hurricane Counts:
  Posterior:
       | Y \sim Gamma(a + \Sigma Y, b + n)
# We similarly derive posterior samples for each period and compute the difference.
# Function to compute posterior parameters for Normal model (log(mxspd))
compute_posterior <- function(data, mu0, tau0, alpha0, beta0) {</pre>
  n <- length(data)</pre>
  sample_mean <- mean(data)</pre>
  sample_var <- var(data)</pre>
  tau_n \leftarrow tau0 + n
  mu_n \leftarrow (tau0 * mu0 + n * sample_mean) / tau_n
  alpha_n \leftarrow alpha0 + n/2
  beta_n <- beta0 + 0.5*(n - 1)*sample_var + (tau0 * n * (sample_mean - mu0)^2) / (2 * tau_n)
  list(mu_n = mu_n, tau_n = tau_n, alpha_n = alpha_n, beta_n = beta_n, n = n)
}
```

```
posterior_p1 <- compute_posterior(</pre>
  storm_summary %>% filter(period == "Period1") %>% pull(log_mxspd),
  mu0, tau0, alpha0, beta0)
posterior_p2 <- compute_posterior(</pre>
  storm_summary %>% filter(period == "Period2") %>% pull(log_mxspd),
  mu0, tau0, alpha0, beta0)
# Draw posterior samples (Gibbs-style sampling)
set.seed(123)
n_{samples} \leftarrow 10000
samples_p1 <- numeric(n_samples)</pre>
samples_p2 <- numeric(n_samples)</pre>
for (i in 1:n_samples) {
  sigma2_p1 <- 1 / rgamma(1, shape = posterior_p1$alpha_n, rate = posterior_p1$beta_n)</pre>
  samples_p1[i] <- rnorm(1, mean = posterior_p1$mu_n, sd = sqrt(sigma2_p1 / posterior_p1$tau</pre>
  sigma2_p2 <- 1 / rgamma(1, shape = posterior_p2$alpha_n, rate = posterior_p2$beta_n)</pre>
  samples_p2[i] <- rnorm(1, mean = posterior_p2$mu_n, sd = sqrt(sigma2_p2 / posterior_p2$tau</pre>
}
# Posterior difference for log(mxspd)
diff_samples <- samples_p2 - samples_p1
point_estimate_diff <- mean(diff_samples)</pre>
std_error_diff <- sd(diff_samples)</pre>
cat("Posterior difference in mean log(mxspd) (Period2 - Period1):", point_estimate_diff, "\n
Posterior difference in mean log(mxspd) (Period2 - Period1): 0.04846583
cat("Standard error:", std_error_diff, "\n")
Standard error: 0.02797023
# Layman's interpretation (example): "On average, storms in Period2 have a higher log wind s
# Plot histogram of the posterior difference (log(mxspd))
hist(diff_samples, breaks = 50, main = "Posterior Diff in log(mxspd) (Period2 - Period1)",
     xlab = "Difference (log scale)", col = "lightgray")
abline(v = 0, col = "red", lwd = 2)
```

Compute posterior parameters for each period for log(mxspd)

Posterior Diff in log(mxspd) (Period2 – Period1)


```
# For hurricane counts:
# Function to compute posterior parameters for Poisson likelihood
compute_poisson_posterior <- function(counts, a0, b0) {</pre>
  a_post <- a0 + sum(counts)</pre>
  b_post <- b0 + length(counts)</pre>
  list(a_post = a_post, b_post = b_post)
}
posterior_cnt_p1 <- compute_poisson_posterior(</pre>
  year_counts %% filter(period == "Period1") %>% pull(cnt), a0 pois, b0 pois)
posterior_cnt_p2 <- compute_poisson_posterior(</pre>
  year_counts %>% filter(period == "Period2") %>% pull(cnt), a0_pois, b0_pois)
# Draw posterior samples for
samples_lambda_p1 <- rgamma(n_samples, shape = posterior_cnt_p1$a_post, rate = posterior_cnt_
samples_lambda_p2 <- rgamma(n_samples, shape = posterior_cnt_p2$a_post, rate = posterior_cnt</pre>
# Posterior difference for hurricane counts
diff_lambda <- samples_lambda_p2 - samples_lambda_p1</pre>
point_estimate_lambda <- mean(diff_lambda)</pre>
std_error_lambda <- sd(diff_lambda)</pre>
cat("Posterior difference in (Period2 - Period1):", point_estimate_lambda, "\n")
```

Posterior difference in (Period2 - Period1): 1.920952

```
cat("Standard error:", std_error_lambda, "\n")
```

Standard error: 0.7451057

Posterior Diff in Hurricane Rate (.)

You can add options to executable code like this

```
mu0, tau0_alt, alpha0_alt, beta0_alt)
posterior_p2_alt <- compute_posterior(</pre>
  storm_summary %>% filter(period == "Period2") %>% pull(log_mxspd),
  mu0, tau0_alt, alpha0_alt, beta0_alt)
samples_p1_alt <- numeric(n_samples)</pre>
samples_p2_alt <- numeric(n_samples)</pre>
for (i in 1:n_samples) {
  sigma2_p1_alt <- 1 / rgamma(1, shape = posterior_p1_alt$alpha_n, rate = posterior_p1_alt$b
  samples_p1_alt[i] <- rnorm(1, mean = posterior_p1_alt$mu_n, sd = sqrt(sigma2_p1_alt / posterior_p1_alt$mu_n</pre>
  sigma2_p2_alt <- 1 / rgamma(1, shape = posterior_p2_alt$alpha_n, rate = posterior_p2_alt$be
  samples_p2_alt[i] <- rnorm(1, mean = posterior_p2_alt$mu_n, sd = sqrt(sigma2_p2_alt / posterior_p2_alt$mu_n</pre>
diff_samples_alt <- samples_p2_alt - samples_p1_alt
cat("Sensitivity Analysis (log(mxspd)) - Difference (Alt Prior):", mean(diff_samples_alt), "
Sensitivity Analysis (log(mxspd)) - Difference (Alt Prior): 0.04877928
cat("Sensitivity Analysis (log(mxspd)) - Std Error:", sd(diff_samples_alt), "\n")
Sensitivity Analysis (log(mxspd)) - Std Error: 0.02852238
# For hurricane counts, use alternative prior hyperparameters:
# a0_pois_alt = 0.1, b0_pois_alt = 0.1
a0_pois_alt <- 0.1; b0_pois_alt <- 0.1
posterior_cnt_p1_alt <- compute_poisson_posterior(</pre>
  year_counts %% filter(period == "Period1") %>% pull(cnt), a0_pois_alt, b0_pois_alt)
posterior_cnt_p2_alt <- compute_poisson_posterior(</pre>
  year_counts %% filter(period == "Period2") %>% pull(cnt), a0_pois_alt, b0_pois_alt)
samples_lambda_p1_alt <- rgamma(n_samples, shape = posterior_cnt_p1_alt$a_post, rate = poster</pre>
samples_lambda_p2_alt <- rgamma(n_samples, shape = posterior_cnt_p2_alt$a_post, rate = poster</pre>
diff_lambda_alt <- samples_lambda_p2_alt - samples_lambda_p1_alt
cat("Sensitivity Analysis (Hurricane Counts) - Difference (Alt Prior):", mean(diff_lambda_al
```

```
cat("Sensitivity Analysis (Hurricane Counts) - Std Error:", sd(diff_lambda_alt), "\n")
Sensitivity Analysis (Hurricane Counts) - Std Error: 0.7451008

You can add options to executable code like this
# _______
# 5. Final Technician Summary Statement and Report
# _______
```