EECS 151/251A Homework 8

Due Friday, Nov 8th, 2019

Problem 1: Buffer Chain

Assume that we have the situation shown below with an inverter chain used to drive a large capacitive load (F = 1000) with minimal delay. How many buffers (inverter stages) would be optimal (or near optimal) in this case? What should be the fanout, f, be at each stage?

Problem 2: Transition Activity

Consider a 3-input NAND gate constructed from 2-input AND and NAND gates, as shown below. Assume that $C_2 = \frac{C_1}{4} = C$ and that there are no other capacitances in the circuit. The circuit is driven by supply V_{DD} and frequency f. Each input has a probability of being high denoted P_X where X is G, H, I for the corresponding inputs.

- a) Calculate the total power dissipation in terms of V_{DD} , f, P_G , P_H , P_I , and C.
- b) What is the total power dissipation (in μW) of the circuit for $P_G = 0.7$, $P_H = 0.2$, $P_I = 0.5$? Assume that $V_{DD} = 1$, f = 1GHz, and C = 10pF.
- c) For the same probabilities as part (b), suggest a more energy-efficient way of organizing the inputs. What is the power dissipation in this case?

Problem 3: Elmore Delay

For the following problem, $C_G = C_D = 2fF/\mu m$, the minimum sized (1x) inverter has $L = 0.1\mu m$, $W_p = 1\mu m$, $W_n = 1\mu m$ and for this technology $R_{n,on} = R_{p,on} = 10k\Omega/\Box$ (i.e. the on resistance of

Version: 1 - 2019-11-05 07:18:02-08:00

a transistor with width W and length L is equal to $10k\Omega \frac{L}{W}$. Note that a 4x inverter has 4 times the width of a 1x inverter.

The wire has resistance $R_{wire} = 0.1\Omega/\Box$, parallel plate capacitance $C_{pp} = 20aF/\mu m^2$ and the fringing capacitance per side of the wire is $C_{fr} = 14aF/\mu m$. The wire widths and lengths are shown in the diagram.

- a) Using the π wire model, draw the equivalent RC model. What is the propagation delay from a step at V_{in} to V_a, V_b , and V_c .
- b) What is the skew between pairs of V_a , V_b , and V_c ? (i.e. what is the difference in arrival time between V_a and V_b , V_a and V_c , V_b and V_c ?)

Problem 4: Arithmetic

- a) Explain the functionality of the circuit shown above. (FA stands for full-adder, HA stands for half-adder)
- b) What is the critical path of the circuit? You may assume that each of the FA, HA and XOR blocks have a delay equal to t_{gate} . Show the critical path on the schematic.
- c) Design a circuit with exactly the same functionality but shorter critical path. You are allowed to use FA, HA and XOR blocks.