

Photon 2022

Quantum key distribution with a bright telecom wavelength quantum dot single-photon source Frederik Brooke Barnes

Heriot-Watt University

Christopher L. Morrison

Francesco Graffitti

Zhe Xian Koong

Alessandro Fedrizzi

Brian D. Geradot

Quantum Dot Fabrication

Nick G. Stoltz

Materials Department, University of California at Santa Barbara

Dirk Bouwmeester

Huygens-Kamerlingh Onnes Laboratory, Leiden University Department of Physics, University of California at Santa Barbara

QKD Theory

Roberto G. Pousa John Jeffers Daniel K. L. Oi

University of Strathclyde, Glasgow

Direct emission at 1550 nm

Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors

<u>Kazuya Takemoto, Yoshihiro Nambu, Toshiyuki Miyazawa, Yoshiki Sakuma, Tsuyoshi Yamamoto, Shinichi</u> <u>Yorozu & Yasuhiko Arakawa</u>

ARTICLE OPEN

Quantum teleportation using highly coherent emission from telecom C-band quantum dots

M. Anderson^{1,2}, T. Müller ¹, J. Huwer¹, J. Skiba-Szymanska¹, A. B. Krysa ³, R. M. Stevenson¹, J. Heffernan⁴, D. A. Ritchie ³ and A. J. Shields¹

 $\label{eq:higher emission} \mbox{ High emission rate from a Purcell-enhanced, triggered source of pure single photons in the telecom C-band }$

Cornelius Nawrath, ^{1,*} Raphael Joos, ^{1,†} Sascha Kolatschek, ¹ Stephanie Bauer, ¹ Pascal Pruy, ¹ Florian Hornung, ¹ Julius Fischer, ^{1,2} Jiasheng Huang, ¹ Ponraj Vijayan, ¹ Robert Sittig, ¹ Michael Jetter, ¹ Simone Luca Portalupi, ¹ and Peter Michler ¹

Bright, low-noise, OR coherent at 1550 nm

Frequency conversion to 1550 nm

Quantum interference between independent solid-state single-photon sources separated by 300 km fiber

Xiang You^{1,2,*}, Ming-Yang Zheng^{3,*}, Si Chen^{1,2,*}, Run-Ze Liu^{1,2,*}, Jian Qin^{1,2}, M.-C.
Xu^{1,2}, Z.-X. Ge^{1,2}, T.-H. Chung^{1,2}, Y.-K. Qiao^{1,2}, Y.-F. Jiang³, H.-S. Zhong^{1,2}, M.-C.
Chen^{1,2}, H. Wang^{1,2}, Y.-M. He^{1,2}, X.-P. Xie³, H. Li⁴, L.-X. You⁴, C. Schneider^{5,6}, J.
Yin^{1,2}, T.-Y. Chen^{1,2}, M. Benyoucef⁷, Yong-Heng Huo^{1,2}, S. Höfling⁵, Qiang Zhang^{1,2,3},
Chao-Yang Lu^{1,2}, Jian-Wei Pan^{1,2}

A bright and fast source of coherent single photons

Natasha Tomm, Alisa Javadi [□], Nadia Olympia Antoniadis, Daniel Najer, Matthias Christian Löbl, Alexander Rolf Korsch, Rüdiger Schott, Sascha René Valentin, Andreas Dirk Wieck, Arne Ludwig & Richard John Warburton

Nature Nanotechnology 16, 399–403 (2021) Cite this article

Bright, low-noise, AND coherent at 900 nm

Quantum Dot

Device

- InGaAs/GaAs self-assembled QD
- $Q = 4.4 \times 10^4$
- Purcell factor ≈ 4

Performance

- Quasi-resonant excitation
- 5 MHz counts at 160 MHz excitation rate
- 940 nm
- $g^2(0) = 2.0\%$
- $V_{HOM} = 88\%$

Micropillar cavity

23 period top pdoped DBR

Oxide Aperture GaAs

32 period bottom n-doped DBR

▲ InGaAs QD

Quantum Frequency Conversion

Type 0 DFG

- 942 nm to 1550 nm
- 57% internal efficiency
- 40% end to end efficiency
- Coherence maintaining

QKD

200 km spooled fibre

0.19 dB/km

Dark counts: 12 Hz

Time-gated -

QBER: 1%

Asymptotic Key Rates

GLLP

[Quant. Inf. Comput. 5, 325 (2004)]

$$AKR = p_{click} \left[A \left(1 - H \left(\frac{e_X}{A} \right) \right) - f_{EC}(e_Z) H(e_Z) \right]$$

GLLP

[Quant. Inf. Comput. 5, 325 (2004)]

Cai and Scarani [NJP, 11, 045024 (2009)] •

$$AKR = p_{click} \left[A \left(1 - H \left(\frac{e_X}{A} \right) \right) - f_{EC}(e_Z) H(e_Z) \right]$$

New analysis

GLLP

[Quant. Inf. Comput. 5, 325 (2004)]

Cai and Scarani [NJP, 11, 045024 (2009)] •

$$AKR = p_{click} \left[A \left(1 - H \left(\frac{e_X}{A} \right) \right) - f_{EC}(e_Z) H(e_Z) \right]$$

$$\mathrm{FKR} = \frac{1}{N_S} \left[\underbrace{\mathbf{N}_{R,nmp}^X}_{\mathbf{R}} (1 - H(\bar{\phi}^X)) - \lambda_{EC} - 2\log_2\frac{1}{2\varepsilon_{PA}} - \log_2\frac{2}{\varepsilon_{cor}} \right] \quad \text{Yin et al.} \quad \text{[Scientific Reports 10, I (2020)]}$$

New analysis

GLLP [Quant. Inf. Comput. 5, 325 (2004)]

Cai and Scarani [NJP, 11, 045024 (2009)] •

Want a 1kbit key in 1 second?

 $l \text{ km} \rightarrow l 25 \text{ km}$

Want 100 kbit/s over 50km?

I hour → I second

Time required to reach 90%

AKR at 125 km?

10,000 years → I hour

$$AKR = p_{click} \left[A \left(1 - H \left(\frac{e_X}{A} \right) \right) - f_{EC}(e_Z) H(e_Z) \right]$$

$$\mathrm{FKR} = \frac{1}{N_S} \left[\underbrace{\mathbf{N}_{R,nmp}^X}_{\mathbf{N}} \left(1 - \underbrace{H\left(\bar{\phi}^X\right)}_{\mathbf{V}} \right) - \lambda_{EC} - 2\log_2\frac{1}{2\varepsilon_{PA}} - \log_2\frac{2}{\varepsilon_{cor}} \right] \quad \text{Yin et al.} \quad \text{[Scientific Reports 10, I (2020)]}$$

Summary

- QD + DFG as a source for telecom quantum networks
- Importance of finite key analysis
- Significantly enhanced performance of single photon QKD

Outlook

- The future is bright (quantum dots)
- Practical QKD with single photons

Photon 2022

Thank you

Engineering and Physical Sciences Research Council