- In QuickSilver, the verifier only needs to access K[a], K[b], K[c]
- Where $K[a] = \mathbf{r}_a^T \cdot K[\mathbf{x}]$, etc. (**x** is the witness)
- lacksquare Recall that with SoftSpokenOT, $K[\mathbf{x}] = W' [0||C] \cdot diag(\Delta)$
- C is the main communication cost (randomness alignment)
- Therefore, we can let the prover send $c_a = \mathbf{r}_a^T \cdot [0||C]$ directly and prove its correctness using sumcheck.

Let \tilde{r} , \tilde{C} be the multi-linear extension of \mathbf{r}_a and C

$$\sum_{b_1,...,b_m} \tilde{r}(\mathbf{b}) \cdot \tilde{C}(\mathbf{b}) = c_a$$

Accept if
$$ilde{W}'(lpha) - [0 \| ilde{\mathcal{C}}(lpha)] \cdot \mathsf{diag}(\Delta) = \hat{\mathsf{v}} + [1 \, ... \, 1] \cdot \hat{u} \cdot \mathsf{diag}(\Delta)$$

Steady improvement in the semi-honest world

Textbook	P&P	GRR3	GRR2	Free-XOR	FleXOR	Half-Gates	Three-Halves
[Yao86]	[BMR90]	[NPS99]	[PSSW90]	[KSO8]	[KMR14]	[ZRE15]	[RR21]
XOR: 8κ	XOR: 4κ	XOR: 3κ	XOR: 2κ	XOR: 0	$\{0, 1, 2\}\kappa$	2κ	$1.5\kappa + 5$
			AND: 2κ				

Steady improvement in the semi-honest world

Textbook	P&P	GRR3	GRR2	Free-XOR	FleXOR	Half-Gates	Three-Halves
[Yao86]	[BMR90]	[NPS99]	[PSSW90]	[KSO8]	[KMR14]	[ZRE15]	[RR21]
XOR: 8κ	XOR: 4κ	XOR: 3κ	XOR: 2κ	XOR: 0	$\{0, 1, 2\}\kappa$	2κ	$1.5\kappa + 5$
AND: 8κ	AND: 4κ	AND: 3κ	AND: 2κ	AND: 3κ			

What about the malicious world?

Cut-and-Choose [LP07,NO09,HKE13,NST17,...]

$$O(\rho\kappa)$$
 or $O(\frac{\rho\kappa}{\log C})$

Steady improvement in the semi-honest world

Textbook	P&P	GRR3	GRR2	Free-XOR	FleXOR	Half-Gates	Three-Halves
[Yao86]	[BMR90]	[NPS99]	[PSSW90]	[KSO8]	[KMR14]	[ZRE15]	[RR21]
XOR: 8κ	XOR: 4κ	XOR: 3κ	XOR: 2κ	XOR: 0	$\{0, 1, 2\}\kappa$	2κ	$1.5\kappa + 5$
AND: 8κ	AND: 4κ	AND: 3κ	AND: 2κ	AND: 3κ			

What about the malicious world?

Cut-and-Choose Authenticated Garbling [LP07,NO09,HKE13,NST17,...] [WRK17,KRRW18] $O(\rho\kappa) \text{ or } O(\frac{\rho\kappa}{\log C}) \qquad \Pi_{\text{pre}} : 13\kappa + 8\rho \\ \Pi_{\text{online}} : 2\kappa + 1$

Steady improvement in the semi-honest world

	Textbook	P&P	GRR3	GRR2	Free-XOR	FleXOR	Half-Gates	Three-Halves
	[Yao86]	[BMR90]	[NPS99]	[PSSW90]	[KSO8]	[KMR14]	[ZRE15]	[RR21]
_	XOR: 8κ	XOR: 4κ	XOR: 3κ	XOR: 2κ	XOR: 0	$\{0, 1, 2\}\kappa$	2κ	$1.5\kappa + 5$
	AND: 8κ	AND: 4κ	AND: 3κ	AND: 2κ	AND: 3κ			

What about the malicious world?

Cut-and-Choose	Authenticated Garbling	PCGs	
[LP07,N009,HKE13,NST17,]	[WRK17,KRRW18]	[BCG+19,	
$O(ho\kappa)$ or $O(rac{ ho\kappa}{\log C})$	$\Pi_{pre} : 13\kappa + 8\rho$	YWL+20,	
(i) (log C)	$\Pi_{online}: 2\kappa + 1$	CRR21,]	

Steady improvement in the semi-honest world

Textbook	P&P	GRR3	GRR2	Free-XOR	FleXOR	Half-Gates	Three-Halves
		_	[PSSW90]	_			
XOR: 8κ	XOR: 4κ	XOR: 3κ	XOR: 2κ	XOR: 0	$\{0, 1, 2\}\kappa$	2κ	$1.5\kappa + 5$
AND: 8κ	AND: 4κ	AND: 3κ	AND: 2κ	AND: 3κ			

What about the malicious world?

Cut-and-Choose	Authenticated Garbling	PCGs	AG from PCG
[LP07,NO09,HKE13,NST17,]	[WRK17,KRRW18]	[BCG+19,	[DILO22]
$O(\rho\kappa)$ or $O(\frac{\rho\kappa}{\log C})$	$\Pi_{pre} : 13\kappa + 8\rho$	YWL+20,	\mathcal{F}_{VOLE} -hyb. $2\kappa + 8\rho$
	$\Pi_{online} : 2\kappa + 1$	CRR21,]	\mathcal{F}_{DAMT} -hyb. $2\kappa + 4 ho$

Can we close the gap?

Our Contributions

Authenticated garbling with one-way comm. as small as semi-honest half-gates

2PC	Ro	ounds	Communication per AND gate			
_ . •	Prep.	Online	one-way (bits)	two-way (bits)		
Half-gates	1	2	2κ	2κ		
HSS-PCG	8	2	$8\kappa+11$ (4.04 $ imes$)	$16\kappa+22$ (8.09 $ imes$)		
KRRW-PCG	4	4	$5\kappa + 7$ (2.53×)	$8\kappa+14$ (4.05 $ imes$)		
DILO	7	2	$2\kappa + 8 ho + 1$ (2.25 $ imes$)	$2\kappa+8 ho+5$ (2.27 $ imes$)		
This work	8	3	$2\kappa + 5$ ($pprox 1 imes$)	$4\kappa+10$ (2.04 $ imes$)		
This work+DILO	8	2	$2\kappa + 3\rho + 2$ (1.48×)	$2\kappa + 3\rho + 4 (\approx 1.48 \times)$		

Contribution 1: Π_{cpre} with 2-bit comm. per AND gate

Contribution 2: Consistency checking via dual execution

۸ _i	۸	Masked $L_{k, \Lambda_{k}}$
0 0 1 1	0 1 0 1	$L_{k,0} \oplus (\lambda_i \cdot \lambda_j \oplus \lambda_k) \Delta_A$ $L_{k,0} \oplus (\lambda_i \cdot \bar{\lambda}_j \oplus \lambda_k) \Delta_A$ $L_{k,0} \oplus (\bar{\lambda}_i \cdot \lambda_j \oplus \lambda_k) \Delta_A$ $L_{k,0} \oplus (\bar{\lambda}_i \cdot \bar{\lambda}_j \oplus \lambda_k) \Delta_A$

- controls garbling so it can \blacksquare selective-failure on $\Lambda := z \oplus \lambda \Rightarrow$ Secret share $\lambda := a \oplus b$
 - \blacksquare garble different logic \Rightarrow Add IT-MAC, equality check, etc.

۸ _i	۸		Masked $L_{k, \Lambda_{k}}$
0	0	1	$L_{k,0} \oplus (\lambda_i \cdot \lambda_j \oplus \lambda_k) \Delta_A$
0	1		$L_{k,0} \oplus (\lambda_i \cdot \bar{\lambda}_i \oplus \lambda_k) \Delta_A$
1	0		$L_{k,0} \oplus (\bar{\lambda}_i \cdot \lambda_j \oplus \lambda_k) \Delta_A$
1	1		$L_{k,0} \oplus (\bar{\lambda}_i \cdot \bar{\lambda}_j \oplus \lambda_k) \Delta_A$

controls garbling so it can
$$\blacksquare$$
 selective-failure on $\Lambda := z \oplus \lambda \Rightarrow$ Secret share $\lambda := a \oplus b$

- garble different logic \Rightarrow Add IT-MAC, equality check, etc.
- We need preprocessing information to complete garbling

۸ _i	۸	Masked $L_{k, \Lambda_{k}}$
0 0 1 1	0 1 0 1	$ \begin{array}{c} L_{k,0} \oplus (\lambda_{i} \cdot \lambda_{j} \oplus \lambda_{k}) \Delta_{A} \\ L_{k,0} \oplus (\lambda_{i} \cdot \bar{\lambda}_{j} \oplus \lambda_{k}) \Delta_{A} \\ L_{k,0} \oplus (\bar{\lambda}_{i} \cdot \lambda_{j} \oplus \lambda_{k}) \Delta_{A} \\ L_{k,0} \oplus (\bar{\lambda}_{i} \cdot \bar{\lambda}_{i} \oplus \lambda_{k}) \Delta_{A} \end{array} $

- controls garbling so it can \blacksquare selective-failure on $\Lambda := z \oplus \lambda \Rightarrow$ Secret share $\lambda := a \oplus b$
 - garble different logic \Rightarrow Add IT-MAC, equality check, etc.
 - We need preprocessing information to complete garbling

$$\Lambda_{k} \cdot \Delta_{A} := \lambda_{k} \cdot \Delta_{A} \oplus (\Lambda_{i} \oplus \lambda_{i}) \cdot (\Lambda_{j} \oplus \lambda_{j}) \cdot \Delta_{A}$$
$$= \lambda_{k} \cdot \Delta_{A} \oplus ... \oplus (\hat{a}_{k} \oplus \hat{b}_{k}) \cdot \Delta_{A}$$

Free-XOR GC
$$\Rightarrow$$
 $|\Delta_{\mathsf{A}}| = \kappa pprox 128$

۸ _i	۸	Masked $L_{k, \Lambda_{k}}$
0	0	$L_{k,0} \oplus (\lambda_i \cdot \lambda_j \oplus \lambda_k) \Delta_A$
0	1	$L_{k,0} \oplus (\lambda_i \cdot \bar{\lambda}_i \oplus \lambda_k) \Delta_A$
1	0	$L_{k,0} \oplus (\bar{\lambda}_i \cdot \lambda_j \oplus \lambda_k) \Delta_A$
1	1	$L_{k,0} \oplus (\bar{\lambda}_i \cdot \bar{\lambda}_j \oplus \lambda_k) \Delta_A$

- controls garbling so it can \blacksquare selective-failure on $\Lambda := z \oplus \lambda \Rightarrow$ Secret share $\lambda := a \oplus b$
 - garble different logic \Rightarrow Add IT-MAC, equality check, etc.
 - We need preprocessing information to complete garbling

۸ _i	۸	Alice's GC	Bob's GC
0	0	$L_{k,0} \oplus K[\Lambda_{00}]$	$M[\Lambda_{00}]$
0	1	$L_{k,0} \oplus K[\Lambda_{01}]$	$M[\Lambda_{01}]$
1	0	$L_{k,0} \oplus K[\Lambda_{10}]$	$M[\Lambda_{10}]$
1	1	$L_{k,0} \oplus K[\Lambda_{11}]$	$M[\Lambda_{11}]$

Free-XOR GC
$$\Rightarrow$$
 $|\Delta_{\mathsf{A}}| = \kappa \approx 128$

$$\Lambda_{k} \cdot \Delta_{A} := \lambda_{k} \cdot \Delta_{A} \oplus (\Lambda_{i} \oplus \lambda_{i}) \cdot (\Lambda_{j} \oplus \lambda_{j}) \cdot \Delta_{A}$$
$$= \lambda_{k} \cdot \Delta_{A} \oplus ... \oplus (\hat{a}_{k} \oplus \hat{b}_{k}) \cdot \Delta_{A}$$

$$\Lambda_{k} \cdot \Delta_{B} := \lambda_{k} \cdot \Delta_{B} \oplus (\Lambda_{i} \oplus \lambda_{i}) \cdot (\Lambda_{j} \oplus \lambda_{j}) \cdot \Delta_{B}$$
$$= \lambda_{k} \cdot \Delta_{B} \oplus ... \oplus (\hat{a}_{k} \oplus \hat{b}_{k}) \cdot \Delta_{B}$$

۸ _i	۸	Alice's AuthGC	Bob's AuthGC
0 0 1 1	0 1 0 1	$\begin{array}{c} L_{k,0} \oplus M[\Lambda_{00}] \\ L_{k,0} \oplus M[\Lambda_{01}] \\ L_{k,0} \oplus M[\Lambda_{10}] \\ L_{k,0} \oplus M[\Lambda_{11}] \end{array}$	$\begin{array}{c c} K[\Lambda_{00}] \\ K[\Lambda_{01}] \\ K[\Lambda_{10}] \\ K[\Lambda_{11}] \end{array}$

IT-MAC Soundness
$$\Rightarrow$$
 $|\Delta_{\mathsf{B}}| = \rho \approx 40$

KRRW18: Distributed Half-Gates Garbling + Equality Checking

■ Distributed half-gates garbling is fully compatible with \mathcal{F}_{pre}

$$\begin{split} \Lambda_k \cdot \Delta_\mathsf{A} &:= \lambda_k \cdot \Delta_\mathsf{A} \oplus (\Lambda_i \oplus \lambda_i) \cdot (\Lambda_j \oplus \lambda_j) \cdot \Delta_\mathsf{A} \\ &= \underbrace{(\lambda_k \oplus \lambda_i \lambda_j) \cdot \Delta_\mathsf{A}}_{\text{already shared}} \oplus \underbrace{\Lambda_i \lambda_j \cdot \Delta_\mathsf{A}}_{G_{k,0}} \oplus \underbrace{\Lambda_j (\Lambda_i \oplus \lambda_i) \cdot \Delta_\mathsf{A}}_{G_{k,1}} \end{split}$$

$$4\kappa$$
 bits/AND \Rightarrow $2\kappa + 1$ bits/AND KRRW18

KRRW18: Distributed Half-Gates Garbling + Equality Checking

■ Distributed half-gates garbling is fully compatible with \mathcal{F}_{pre}

$$\begin{split} \Lambda_k \cdot \Delta_\mathsf{A} &:= \lambda_k \cdot \Delta_\mathsf{A} \oplus (\Lambda_i \oplus \lambda_i) \cdot (\Lambda_j \oplus \lambda_j) \cdot \Delta_\mathsf{A} \\ &= \underbrace{(\lambda_k \oplus \lambda_i \lambda_j) \cdot \Delta_\mathsf{A}}_{\text{already shared}} \oplus \underbrace{\Lambda_i \lambda_j \cdot \Delta_\mathsf{A}}_{G_{k,0}} \oplus \underbrace{\Lambda_j (\Lambda_i \oplus \lambda_i) \cdot \Delta_\mathsf{A}}_{G_{k,1}} \end{split}$$

$$4\kappa$$
 bits/AND \Rightarrow $2\kappa + 1$ bits/AND KRRW18

■ **b**-mask removes selective failure, now only need to check correct AND correlation

Check:

- **Evaluator sends** $\{\Lambda_w\}$ for all AND gates
- The checking equation reduces to equality check
- Use random linear combination to reduce comm.

$$\begin{array}{c} 4\rho \text{ bits/AND} \\ \text{WRK17} \end{array} \Rightarrow \begin{array}{c} 0 \text{ bits/AND} \\ \text{KRRW18} \end{array}$$

- Efficient protocol for \mathcal{F}_{COT} , \mathcal{F}_{sVOLE} with sublinear comm. and linear comp. from LPN [YWL+20,CRR21,...]
- We refer the $\mathbb{F}_p=\mathbb{F}_2$ variant of $\mathcal{F}_{\mathsf{sVOLE}}$ as $\mathcal{F}_{\mathsf{COT}}$

- Efficient protocol for \mathcal{F}_{COT} , \mathcal{F}_{sVOLE} with sublinear comm. and linear comp. from LPN [YWL+20,CRR21,...]
- lacksquare We refer the $\mathbb{F}_p=\mathbb{F}_2$ variant of $\mathcal{F}_{\mathsf{sVOLE}}$ as $\mathcal{F}_{\mathsf{COT}}$

- Efficient protocol for \mathcal{F}_{COT} , \mathcal{F}_{sVOLE} with sublinear comm. and linear comp. from LPN [YWL+20,CRR21,...]
- lacksquare We refer the $\mathbb{F}_p=\mathbb{F}_2$ variant of $\mathcal{F}_{\mathsf{sVOLE}}$ as $\mathcal{F}_{\mathsf{COT}}$

■ Efficient proof for deg-d relations on **u** [DIO21, YSWW21, ...]

- Efficient protocol for \mathcal{F}_{COT} , \mathcal{F}_{sVOLE} with sublinear comm. and linear comp. from LPN [YWL+20,CRR21,...]
- We refer the $\mathbb{F}_p=\mathbb{F}_2$ variant of $\mathcal{F}_{\mathsf{sVOLE}}$ as $\mathcal{F}_{\mathsf{COT}}$

■ Efficient proof for deg-d relations on **u** [DIO21, YSWW21, ...]

- In DILO, those PCG correlations are called "simple correlations"
- \blacksquare Unfortunately, we still don't have an efficient direct $\mathcal{F}_{\mathsf{pre}}$ PCG construction
- \blacksquare The closest is the $\mathcal{F}_{\mathsf{DAMT}}$ correlation generated from Ring-LPN, but with ρ -time overhead

Prior Art: DILO

- Garbler can only guess once
- If **b** is uniformly random, then guessing leaks no information
- If #Guess is too large, then abort happens overwhelmingly, if #Guess is too little, then we don't require much entropy from **b**

Prior Art: DILO

- Garbler can only guess once
- If b is uniformly random, then guessing leaks no information
- If #Guess is too large, then abort happens overwhelmingly, if #Guess is too little, then we don't require much entropy from **b**

DILO Oberservation 1

It suffices for **b** to be ρ -wise independent

- \blacksquare #Guess $\leq \rho$: Abort is input-independent
- **\blacksquare** #Guess $> \rho$: Abort is overwhelming

Prior Art: DILO

- Garbler can only guess once
- If b is uniformly random, then guessing leaks no information
- If #Guess is too large, then abort happens overwhelmingly, if #Guess is too little, then we don't require much entropy from **b**

DILO Oberservation 1

It suffices for **b** to be ρ -wise independent

- \blacksquare #Guess $\leq \rho$: Abort is input-independent
- \blacksquare #Guess $> \rho$: Abort is overwhelming

DILO Oberservation 2

We can construct ρ -wise independent **b** by linear expansion

$$oldsymbol{b}^* = oldsymbol{\mathsf{M}} oldsymbol{\mathsf{X}}^*$$

- For $L = O(\rho \cdot \log(\frac{n}{\rho}))$, a uniformly random **M** suffices
- We can encode \mathbf{b}^* in \mathcal{F}_{COT} global keys

DILO Implementation of $\mathcal{F}_{\mathsf{cpre}}$: Encoding \mathbf{b}^* as Global Keys

$$\mathcal{F}_{\mathsf{pre}}$$

samples
$$[\mathbf{a}], [\hat{\mathbf{a}}], [\mathbf{b}], [\hat{\mathbf{b}}]$$
 $\Delta_{\mathsf{A}}, \Delta_{\mathsf{B}}$

s.t.
$$\hat{a}_k \oplus \hat{b}_k = (a_i \oplus b_i) \cdot (a_j \oplus b_j)$$

= $a_i a_j \oplus a_i b_j \oplus a_j b_i \oplus b_i b_j$

DILO Compression:

$$\mathbf{b} = \mathbf{M} \cdot \mathbf{b}^*, \mathbf{b}^* \in \mathbb{F}_2^L$$

suffices to compute $\mathbf{a} \otimes \mathbf{b}^*$

DILO Implementation of \mathcal{F}_{cpre} : Encoding \mathbf{b}^* as Global Keys

COT can be extended to block COT, preserving PCG efficiency

 $\mathcal{F}_{\mathsf{DVZK}}$) Verify mult. correlations

Define
$$[\tilde{b}_k]_{\Delta_{\mathrm{B}}} := [\hat{a}_k \oplus a_i a_j \oplus a_i b_j \oplus a_j b_i]_{\Delta_{\mathrm{B}}}$$

$$lacksquare$$
 $[\mathsf{a}]_{b_j^*\Delta_\mathsf{B}}\equiv [\mathsf{a}b_j^*]_{\Delta_\mathsf{B}}$

By linearity on IT-MAC, we can get $[a_ib_j]_{\Delta_B}$ for any i,j

$$\frac{\operatorname{Fix}(\Delta_{\mathsf{A}})}{\mathsf{Verify}\;\mathbf{b}^*\cdot\Delta_{\mathsf{B}}\;\mathsf{correlation}\;\left(\mathcal{F}_{\mathsf{DVZK}}\right)}$$

Define
$$[\tilde{b}_k]_{\Delta_{\mathrm{B}}} := [\hat{a}_k \oplus a_i a_j \oplus a_i b_j \oplus a_j b_i]_{\Delta_{\mathrm{B}}}$$

$$m_{k,1} := \tilde{b}_k$$

$$ilde{b}_k := (ilde{b}_k \oplus ilde{b}_k) \cdot \Delta_{\mathsf{B}}^{-1}$$

$$\hat{b}_k = b_i b_j \oplus \tilde{b}_k$$

DILO Implementation of $\mathcal{F}_{\mathsf{cpre}}$: Authenticating \hat{b}_k (Under Δ_{A})

lacksquare It suffices to compute $ilde{b}_k$ since $[\hat{b}_k]_{\Delta_\mathsf{A}}=[ilde{b}_k]_{\Delta_\mathsf{A}}\oplus[b_ib_j]_{\Delta_\mathsf{A}}$

 $\bullet \tilde{b}_k = \hat{a}_k \oplus a_i a_j \oplus a_i b_j \oplus a_j b_i$

 $\tilde{b}_k \oplus \tilde{b}_k = (\hat{a}_k \oplus a_i a_j \oplus a_i b_j \oplus a_j b_i) \cdot \Delta_A$

Verify mult. correlation $\mathcal{F}_{\mathsf{DVZK}}$

DILO Implementation of $\mathcal{F}_{\mathsf{cpre}}$: Authenticating \hat{b}_k (Under Δ_{A})

It suffices to compute \tilde{b}_k since $[\hat{b}_k]_{\Delta_A} = [\tilde{b}_k]_{\Delta_A} \oplus [b_i b_i]_{\Delta_A}$

- $\bullet \tilde{b}_k = \hat{a}_k \oplus a_i a_j \oplus a_i b_i \oplus a_i b_i$
- $\tilde{b}_{k} \oplus \tilde{b}_{k} = (\hat{a}_{k} \oplus a_{i}a_{j} \oplus a_{i}b_{j} \oplus a_{j}b_{i}) \cdot \Delta_{A}$

Verify mult. correlation $|\mathcal{F}_{\mathsf{DVZK}}|$

$$\mathcal{F}_{\mathsf{DVZK}}$$

$$\mathcal{F}_{bCOT}$$
Fix $\left\{ \begin{array}{l} \{a_i a_j \Delta_A\} \\ \{\hat{a}_k \Delta_A\} \\ \mathbf{a} \Delta_A \end{array} \right\}$
Generate mask $\hat{a}_{k,2} \in \mathbb{F}_{2^\rho}$

Locally comptue $[v_k]_{\Delta_B} := [\tilde{b}_k \cdot \Delta_A \oplus \hat{a}_{k,2}]_{\Delta_B}$

DILO Implementation of $\mathcal{F}_{\mathsf{cpre}}$: Authenticating \hat{b}_k (Under Δ_{A})

It suffices to compute \tilde{b}_k since $[\hat{b}_k]_{\Delta_A} = [\tilde{b}_k]_{\Delta_A} \oplus [b_i b_i]_{\Delta_A}$

 $\mathbf{b}_k = \hat{a}_k \oplus a_i a_i \oplus a_i b_i \oplus a_i b_i$

 $\tilde{b}_{k} \oplus \tilde{b}_{k} = (\hat{a}_{k} \oplus a_{i}a_{j} \oplus a_{i}b_{j} \oplus a_{j}b_{i}) \cdot \Delta_{A}$

Verify mult. correlation $|\mathcal{F}_{\mathsf{DVZK}}|$

$$\mathcal{F}_{\mathsf{DVZK}}$$

Locally comptue $[v_k]_{\Delta_{\mathsf{R}}} := [\tilde{b}_k \cdot \Delta_{\mathsf{A}} \oplus \hat{a}_{k,2}]_{\Delta_{\mathsf{R}}}$

$$\hat{b}_k = \tilde{b}_k \oplus b_i b_j$$

KRRW Check:

- Evaluator sends $\{\Lambda_w\}$ for all AND gates
- The checking equation reduces to equality check
- Use random linear combination to reduce comm.

KRRW Check:

- Evaluator sends $\{\Lambda_w\}$ for all AND gates \bigwedge
- The checking equation reduces to equality check
- Use random linear combination to reduce comm.

KRRW Check:

- Evaluator sends $\{\Lambda_w\}$ for all AND gates \bigwedge
- The checking equation reduces to equality check
- Use random linear combination to reduce comm.

DILO-WRK Check

$$egin{aligned} \Lambda_k \cdot \Delta_{\mathsf{B}} &:= \lambda_k \cdot \Delta_{\mathsf{B}} \oplus (\Lambda_i \oplus \lambda_i) \cdot (\Lambda_j \oplus \lambda_j) \cdot \Delta_{\mathsf{B}} \ &= \lambda_k \cdot \Delta_{\mathsf{B}} \oplus \Lambda_i \Lambda_j \cdot \Delta_{\mathsf{B}} \oplus \Lambda_i \lambda_j \cdot \Delta_{\mathsf{B}} \oplus \Lambda_j \lambda_i \cdot \Delta_{\mathsf{B}} \oplus (\hat{a}_k \oplus \hat{b}_k) \cdot \Delta_{\mathsf{B}} \end{aligned}$$

KRRW Check:

- **Evaluator** sends $\{\Lambda_w\}$ for all AND gates \bigwedge
- The checking equation reduces to equality check
- Use random linear combination to reduce comm.

DILO-WRK Check

$$\Lambda_k \cdot \Delta_{\mathsf{B}} := \lambda_k \cdot \Delta_{\mathsf{B}} \oplus (\Lambda_i \oplus \lambda_i) \cdot (\Lambda_j \oplus \lambda_j) \cdot \Delta_{\mathsf{B}} \quad \underbrace{\Lambda_i(a_j \oplus b_j)\Delta_{\mathsf{B}} = \Lambda_i b_j \Delta_{\mathsf{B}} \oplus \Lambda_i \mathsf{K}[a_j] \oplus \Lambda_i \mathsf{M}[a_j]}_{\mathsf{A}_{\mathsf{B}} \oplus \mathsf{A}_{\mathsf{B}} \oplus \mathsf{$$

$$=\lambda_k\cdot\Delta_{\mathsf{B}}\oplus \Lambda_i\Lambda_j\cdot\Delta_{\mathsf{B}}\oplus \Lambda_i\lambda_j\cdot\Delta_{\mathsf{B}}\oplus \Lambda_j\lambda_i\cdot\Delta_{\mathsf{B}}\oplus (\hat{a}_k\oplus\hat{b}_k)\cdot\Delta_{\mathsf{B}}$$

KRRW Check:

- **Evaluator** sends $\{\Lambda_w\}$ for all AND gates \bigwedge
- The checking equation reduces to equality check
- Use random linear combination to reduce comm.

DILO-WRK Check

$$\Lambda_{k} \cdot \Delta_{\mathsf{B}} := \lambda_{k} \cdot \Delta_{\mathsf{B}} \oplus (\Lambda_{i} \oplus \lambda_{i}) \cdot (\Lambda_{j} \oplus \lambda_{j}) \cdot \Delta_{\mathsf{B}} \quad \boxed{\Lambda_{i}(a_{j} \oplus b_{j})\Delta_{\mathsf{B}} = \Lambda_{i}b_{j}\Delta_{\mathsf{B}} \oplus \Lambda_{i}\mathsf{K}[a_{j}] \oplus \Lambda_{i}\mathsf{M}[a_{j}]}$$

$$= \lambda_{k} \cdot \Delta_{\mathsf{B}} \oplus \Lambda_{i}\Lambda_{j} \cdot \Delta_{\mathsf{B}} \oplus \Lambda_{i}\lambda_{j} \cdot \Delta_{\mathsf{B}} \oplus \Lambda_{j}\lambda_{i} \cdot \Delta_{\mathsf{B}} \oplus (\hat{a}_{k} \oplus \hat{b}_{k}) \cdot \Delta_{\mathsf{B}}$$

 2κ bits/AND

 3ρ bits/AND

Optimizing the Compressed Preprocessing Protocol

The overhead of DILO is $5\rho + 2$ bits per AND gate

The overhead of DILO is $5\rho + 2$ bits per AND gate

- Why not call $Fix(\tilde{b}_k)$ directly?
 - We need to detect against dishonest Fix() input

The overhead of DILO is $5\rho + 2$ bits per AND gate

- Why not call $Fix(\tilde{b}_k)$ directly?
- We need to detect against dishonest Fix() input
- $lackbox{$

- lacksquare $\mathsf{M}[\mathsf{a}\Delta_\mathsf{A}] \oplus \mathsf{K}[\mathsf{a}\Delta_\mathsf{A}] = \mathsf{a}\overline{\Delta_\mathsf{A}\Delta_\mathsf{B}}$
- We denote it as $\langle \mathbf{a} \rangle$

The overhead of DILO is $5\rho + 2$ bits per AND gate

- Why not call $Fix(\tilde{b}_k)$ directly?
- We need to detect against dishonest Fix() input
- lacksquare lacksquare
 - $\mathsf{M}[\mathsf{a}\Delta_\mathsf{A}] \oplus \mathsf{K}[\mathsf{a}\Delta_\mathsf{A}] = \mathsf{a}\overline{\Delta_\mathsf{A}\Delta_\mathsf{B}}$
 - We denote it as $\langle \mathbf{a} \rangle$
 - Suppose we generate $\langle \tilde{b}_k \rangle$ and $\langle r \rangle$, $[r]_B$ (mask for $\stackrel{\bullet}{\bullet}$)

The overhead of DILO is $5\rho + 2$ bits per AND gate

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

- Why not call $Fix(\tilde{b}_k)$ directly?
- We need to detect against dishonest Fix() input
- lacksquare lacksquare

- lacksquare $\mathsf{M}[\mathsf{a}\Delta_\mathsf{A}] \oplus \mathsf{K}[\mathsf{a}\Delta_\mathsf{A}] = \mathsf{a}\overline{\Delta_\mathsf{A}\Delta_\mathsf{B}}$
- We denote it as $\langle \mathbf{a} \rangle$
- Suppose we generate $\langle \tilde{b}_k \rangle$ and $\langle r \rangle$, $[r]_B$ (mask for)

an open $y := \sum_k \chi^k \cdot \tilde{b}_k \oplus r$ and convince

alls Fix (\tilde{b}_k) and checks $\sum_k \chi^k[\tilde{b}_k] \oplus [r] \oplus y = 0$

If so we can reduce 4ρ bits to 1 bit

Our goal is to generate $\langle \tilde{b}_k \rangle := \langle \hat{a}_k \rangle \oplus \langle a_i a_j \rangle \oplus \langle a_i b_i \rangle \oplus \langle a_i b_i \rangle$

The compression technique allows encoding **b** in \mathcal{F}_{bCOT} global keys

The compression technique allows encoding **b** in \mathcal{F}_{bCOT} global keys

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} \hat{\mathbf{a}} \end{aligned} + egin{aligned} \hat{\mathbf{a}} \end{aligned} imes [eta_0, \Delta_{\mathrm{B}}] \end{aligned}$$

The compression technique allows encoding **b** in \mathcal{F}_{bCOT} global keys

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} \hat{f a} \end{aligned} + egin{aligned} \hat{f a} \end{aligned} imes [eta_0, \Delta_{
m B}] \end{aligned}$$

The compression technique allows encoding **b** in \mathcal{F}_{bCOT} global keys

[DIO21] gives a modular way of proving equality under independent keys

$$oxedsymbol{\Pi_{\mathsf{Samp}}}\Delta_{\mathsf{A}}, \Delta_{\mathsf{B}} \leftarrow \$ ext{ s.t. } \mathsf{lsb}(\Delta_{\mathsf{A}}\Delta_{\mathsf{B}}) = 1$$

$$ilde{b}_k = m_{k,1} \oplus \operatorname{Isb}(\mathsf{D}_\mathsf{A}[ilde{b}_k])$$

$$\mathbf{Fix}(\tilde{b}_k) \\
\mathbf{y} := r + \sum_k \chi^k \cdot \tilde{b}_k$$

- Check $\{\beta_i\}$ consistency by $Fix(\Delta'_A)$
- Check $\mathbf{b}^*\Delta_B$, $\{a_ia_j\}$, $\{b_ib_j\}$ consistency by \mathcal{F}_{DVZK}
- Check $m_{k,1}$ consistency by CheckZero($\langle y \rangle y$)
- Check Fix (\tilde{b}_k) consistency by CheckZero([y] y)

- Optimized $\mathcal{F}_{\mathsf{cpre}}$ + DILO-WRK = \longrightarrow \longrightarrow : $2\kappa + 3\rho + 2$ bits, \longrightarrow \longrightarrow : 2 bits
- How about optimizing one-way communication? Maybe dual execution?

■ Optimized \mathcal{F}_{cpre} + DILO-WRK = \longrightarrow \longrightarrow : $2\kappa + 3\rho + 2$ bits, \longrightarrow \longrightarrow : 2 bits

- Optimized \mathcal{F}_{cpre} + DILO-WRK = \longrightarrow \longrightarrow : $2\kappa + 3\rho + 2$ bits, \longrightarrow \longrightarrow : 2 bits
- How about optimizing one-way communication? Maybe dual execution?

■ [HEK12, HsV20]: Check for equality in circuit outputs

- Optimized \mathcal{F}_{cpre} + DILO-WRK = \longrightarrow \longrightarrow : $2\kappa + 3\rho + 2$ bits, \longrightarrow \longrightarrow : 2 bits
- How about optimizing one-way communication? Maybe dual execution?

■ [HEK12, HsV20]: Check for equality in circuit outputs

$$ig(\mathcal{F}_{\mathsf{cpre}}ig)$$

[a], [
$$\hat{\mathbf{a}}$$
], [$\hat{\mathbf{b}}$], Δ_{A} , $\Delta_{\mathsf{B}} \leftarrow \$$

s.t.
$$\hat{a}_k \oplus \hat{b}_k = (a_i \oplus b_i) \cdot (a_j \oplus b_j)$$

$$\{\lambda_k,\mathsf{L}_{k,0},\mathsf{L}_{k,1}\}$$

$$\{\mathsf{\Lambda}_k,\mathsf{L}_{k,\mathsf{\Lambda}_k}\}$$
 for $k\in\mathcal{W}$

$$ig(\mathcal{F}_{\mathsf{cpre}}ig)$$

$$[\mathbf{a}'], [\hat{\mathbf{a}}'], [\mathbf{b}'], [\hat{\mathbf{b}}'], \Delta_\mathsf{A}, \Delta_\mathsf{B} \leftarrow \$$$

s.t.
$$\hat{a}'_k \oplus \hat{b}'_k = (a'_i \oplus b'_i) \cdot (a'_j \oplus b'_j)$$

$$\{\Lambda_k',\mathsf{L}_{k,\Lambda_k'}'\}$$
 for $k\in\mathcal{W}$

Color bits and wire masks are authenticated for every wire

[HK21] Garbled Sharing

This enables checking equality for every wire across two executions

Conclusion

- Further optimization on the compression technique of [DILO22]
- Dual-key authentication and efficient generation
- Dual execution upon distribution garbling eliminates 1-bit leakage
- Malicious 2PC with one-way comm. of $2\kappa + 5$ bits, two way comm. of $2\kappa + 3\rho + 4$ bits

2PC	Rounds		Communication per AND gate	
	Prep.	Online	one-way (bits)	two-way (bits)
Half-gates	1	2	2κ	2κ
HSS-PCG	8	2	$8\kappa+11$ (4.04 $ imes$)	$16\kappa+22$ (8.09 $ imes$)
KRRW-PCG	4	4	$5\kappa + 7$ (2.53×)	$8\kappa+14$ (4.05 $ imes$)
DILO	7	2	$2\kappa + 8 ho + 1$ (2.25 $ imes$)	$2\kappa+8 ho+5$ (2.27 $ imes$)
This work	8	3	$2\kappa + 5$ ($pprox 1 imes$)	$4\kappa+10$ (2.04 $ imes$)
This work+DILO	8	2	$2\kappa + 3\rho + 2$ (1.48×)	$2\kappa + 3\rho + 4 (\approx 1.48 \times)$

Thanks for your listening

Merci beaucoup