1. More on latches

- a. Clocking the latches
 - i. Prevent the latch from changing, except at specific times as determined by the clock

2. Clocked J-K latch

- a. Like a S-R latch, except that passing in (S, R) = (1, 1) toggles/inverts Q instead of leading to undefined behavior
- b. Uses feedback from outputs to do so

3. Clocked D latch

- a. Only takes one input, ensures that inputs that cause unpredictable states don't occur
- b. Output of latch is equal to the most recent value applied to the input
 - i. When clock is 1, sample the current value of D
 - ii. Store that value in the latch
 - iii. Can retrieve the value at output Q

4. Flip-flops

- a. Circuit terminology
 - i. Level sensitive output controlled by the level of the clock input
 - ii. Edge triggered output changes only when the clock changes from one value to the other
 - 1. Positive / rising edge when clock "rises" from 0 to 1
 - 2. Negative / falling edge when clock "falls" from 1 to 0
- b. Back to flip-flops
 - i. Clocked (gated) latches are level sensitive
 - ii. Unlike latches, flip flops are edge-triggered
 - iii. Named so because they flip and flop from one stable state (0) to another (1)
- c. Advantages
 - i. Signal on input pin captured as soon as the clock changes
 - ii. Subsequent changes of the input are ignored until clock changes again
 - iii. Better timing control on complex circuits
- d. Types of flip flops

- e. Named flip flops work similarly to their latch counterparts
 - i. One new addition T flip flop
 - ii. When T is high, on next clock the output is "toggled" and is inverted
 - iii. Same as (1, 1) input on J-K flip flop and latch
- 5. Flip flop timing
 - a. Setup time t_{su} minimum time before clock arrives that inputs must be stable and unchanging to ensure first latch in flip flop is stable

- b. Hold time t_h minimum time after clock arrives that inputs must remain stable and unchanging to ensure first latch clock NAND is off
 - i. Not important for this course, but exists
- 6. Falling-edge Triggered Master-Slave D flip-flop
 - a. Master latch in front controls slave latch's output in back
 - b. Qm is the output of the master latch

- c. Timing diagram
 - i. Remember that this flip flop is falling edge triggered
 - ii. In general, will stick to rising edge
 - iii. Input needs to stay constant before the falling edge for time t_{su}
 - iv. Input needs to stay constant after the falling edge for time t_{h}

- 7. Rising-edge triggered D flip-flop
 - a. Here, th and tsu not specified explicitly but you can still see the impact on signal D

b. The second stage can be thought of as an S-R latch made of NANDs