MATH 221: Introduction to Linear Algebra

This detailed course description provides information about course topics & content. It is not a course syllabus. Summer 2013 course syllabi are updated in the spring, and may not be available until summer classes begin.

Instructor Information

Instructor	Email	Course Format	Number of Credits
Kalman Nanes	knanes@umbc.edu	Lecture	3

General Information

Delivery Format

In-Person

Prerequisite /Co-requisite:

MATH 141 or MATH 151 or MATH 380 (C or better for any of the above)

Course Materials

Currently Used Materials

• Linear Algebra and its Applications, David Lay, 4th Edition

Course Objectives/Learning Outcomes:

Solve and interpret solutions of systems of equations by row-reducing matrices.

Make basic arguments using matrix algebra.

Calculate the inverse of a matrix, and make conclusions about the nature of a matrix that are equivalent to its invertibility.

Use the concepts of bases and dimension to describe and work with common vector spaces and subspaces.

Calculate and interpret the determinant of a matrix.

Find and interpret eigenvalues, eigenvectors, and diagonalizations of a matrix.

Identify and manipulate properties of vectors, such as lengths, angles, and orthogonality. Make use of orthogonal projections.

Begin to learn to use theory - denitions, properties, theorems, and so on - to craft rigorous mathematical arguments.

Develop analytic and problem-solving skills, including the ability to break a complicated task into reasonable steps.

Begin to develop the framework of structured, logical thinking, upon which rests the study of advanced mathematics.

Improve mathematical maturity and mathematical self-condence.

Potential Topics Covered:

Systems of linear equations, row-reduction of matrices (Gauss-Jordan elimination), linear transformations, matrix algebra, vector spaces, properties of common subspaces, eigenvalues and eigenvectors, diagonalization of matrices, physical properties of vectors, dot products, orthogonal projections