

Traballo Fin de Grao

Resolución numérica del problema no lineal de mínimos cuadrados. Aplicaciones a la estimación de parámetros de modelos matemáticos.

Dídac Blanco Morros

Curso Académico

UNIVERSIDADE DE SANTIAGO DE COMPOSTELA

GRAO DE MATEMÁTICAS

Traballo Fin de Grao

Resolución numérica del problema no lineal de mínimos cuadrados. Aplicaciones a la estimación de parámetros de modelos matemáticos.

Dídac Blanco Morros

Febrero, 2022

UNIVERSIDADE DE SANTIAGO DE COMPOSTELA

Trabajo propuesto

Área de Coñecemento:
Título:
Breve descrición do contido
Recomendacións
Outras observacións

Índice

\mathbf{R}_{0}	esumen	VII
In	atroducción	IX
1.	Título del Capítulo 1	1
	1.1. Fundamentos de la optimización sin restricciones	 1
	1.2. Generalidades de los algoritmos	 2
	1.2.1. Búsqueda de línea	 2
	1.2.2. Región de confianza	 2
I.	Título del Anexo I	5
II.	. Título del Anexo II	7
Ri	ibliografía	9

Resumen

Abstract

Introducción

X INTRODUCCIÓN

Capítulo 1

Título del Capítulo 1

1.1. Fundamentos de la optimización sin restricciones

El problema de los mínimos cuadrados es un caso particular de optimización sin restricciones, y es por ello que comenzaremos introduciendo sus fundamentos. Ya que el problema de mínimos cuadrados es usado en multitud de campos para estimar parámetros, este es de los más utilizados dentro de los problemas de optimización sin restricciones.

Un problema de optimización sin restricciones tiene la forma

$$\min_{x} f(x) \tag{1.1}$$

donde $x \in \mathbb{R}^n$ y $f : \mathbb{R}^n \to \mathbb{R}$ es continuamente diferenciable, la llamamos función objetivo. La dificultad de un problema como este viene de no conocer el comportamiento global de f, normalmente solo disponemos de la evaluación de f en algunos puntos, y a lo mejor de algunas de sus derivadas. El trabajo de los algoritmos de optimización es identificar la solución sin usar demasiado tiempo ni almacenamiento computacional.

Notar que podemos usar la formulación (1.1) para referirnos tanto a los problemas de minimización como de maximización, basta sustituir f por -f.

Tenemos dos tipos de solución. Un punto x^* se dice **mínimo global** si $f(x^*) \leq f(x)$ para todo $x \in \mathbb{R}^n$. Como no se suele tener un conocimiento a gran escala de f debido a su coste, la mayoría de algoritmos solo encuentran mínimos locales, lo cual es suficiente para muchos casos prácticos. Un punto x^* se dice **mínimo local** si existe una vecinidad \mathcal{V} de x^* tal que $f(x^*) \leq f(x)$ para todo $x \in \mathcal{V}$.

Aún así, los algoritmos para encontrar mínimos globales se suelen construír a partir de una secuencia de otros algoritmos de optimización local. También podemos aprovechar características

fáciles de detectar en la función objetivo, como la convexidad, que nos asegura que un mínimo local será también global.

1.2. Generalidades de los algoritmos

Todo algoritmo de optimización sin restricciones comienza con un punto de partida, denotado normalmente como x_0 . Aunque generalmente el usuario introduce una estimación razonable, el punto puede ser elegido por el algoritmo, tanto de forma sistemática como aleatoria. El algoritmo itera sobre x_0 , creando una sucesión $\{x_k\}_{k=0}^n$ la cual termina cuando no pueda continuar o cuando ya se haya acercado razonablemente a la solución. Para decidir como se avanza de un x_k al siguiente, los algoritmos utilizan información sobre $f(x_k)$ o incluso en los puntos anteriores $x_0, x_1, \ldots, x_{k-1}$ con el objetivo de que $f(x_{k+1}) < f(x_k)$. Hablaremos de las dos estrategias fundamentales que se utilizan para avanzar de x_k a x_{k+1} , búsqueda de línea y región de confianza.

1.2.1. Búsqueda de línea

En este caso el algoritmo tiene dos tareas a partir de cada iteración, primero elige una dirección d_k y tomando el punto de partida busca en esa dirección el nuevo valor. Es decir, dado x_k

$$x_{k+1} = x_k + \alpha_k d_k \tag{1.2}$$

para un d_k elegido previamente, y un paso α_k obtenido solucionando otro problema de minimización más simple por ser unidimensional:

$$\min_{\alpha_k > 0} f\left(x_k + \alpha_k d_k\right). \tag{1.3}$$

Si se toma el α_k óptimo se le llama búsqueda de línea exacta u óptima. Para evitar el gran coste computacional que puede llegar a tomar, lo más común es tomar un α_k que aporte un descenso aceptable, en cuyo caso se le llama búsqueda de línea inexacta o aproximada. Desde el nuevo punto se busca otra dirección y paso para repetir el proceso.

1.2.2. Región de confianza

Esta estrategia enfoca el problema de otro modo, primero se fija una distancia máxima Δ_k para definir la región, que generalmente es de la forma

$$\Omega_k = \{x : ||x - x_k|| \le \Delta_k\} \tag{1.4}$$

y luego ya se busca la dirección y paso. A partir de la información conocida de f, para cada x_k se modela una función m_k que se comporte de manera similar a f cerca de este punto. Generalmente se utiliza el modelo cuadrático de la forma

$$m_k := q^{(k)}(p) = f(x_k) + g_k^T p + \frac{1}{2} p^T G_k p,$$
 (1.5)

donde $g_k = \nabla f(x_k)$ y $G_k = \nabla^2 f(x_k)$. Este modelo cuadrático es utilizado en los llamados métodos de Newton para elegir la dirección (son del tipo búsqueda de línea). Los métodos de región de confianza aprovechan la eficacia de usar este modelo, pero evitando algunas limitaciones y obteniendo la convergencia global. En cada iteración, una vez elegido Δ_k se resuelve el siguiente problema:

$$\min_{p} q^{(k)}(p) = f(x_k) + g_k^T p + \frac{1}{2} p^T B_k p$$
s.a. $||p|| \le \Delta_k$. (1.6)

Como vemos, en el modelo se escribe B_k en lugar de G_k , pues no siempre se usa esta última. Debido al coste computacional, a veces se prefiere aproximar de alguna manera más o menos eficiente, e incluso puede ser aceptable tomar la matriz 0.

También se puede variar qué norma define la región de confianza, variando así la forma de esta y ofreciendo distintos resultados, aunque generalmente se utiliza la bola definida por $||p||_2 \le \Delta$

Anexo I

Título del Anexo I

Anexo II

Título del Anexo II

Bibliografía

- [1] Nocedal, J., & Wright, S. (2006). Numerical Optimization (2nd ed.). Springer.
- [2] Sun, W., & Yuan, Y.-X. (2006). Optimization theory and methods: Nonlinear programming (2006th ed.). Springer.