

CS 135

Problem I

Show that the following are logically equivalent.

$$\neg \forall x(F(x) \Rightarrow G(x))$$
$$\exists x(F(x) \land \neg G(x))$$

Problem I Answer Key

$\neg \forall x(F(x) \Rightarrow G(x))$	Given
$\neg \forall x (\neg F(x) \lor G(x))$	Conditional ID
$\exists x(\neg(\neg F(x) \lor G(x)))$	De Morgan's
$\exists x(\neg \neg F(x) \land \neg G(x))$	De Morgan's
$\exists x(F(x) \land \neg G(x))$	Double Negation

*note that you can also go from the second logical expression to the first

How many subsets in the following power sets? What are the power sets of the following?

- **a.** $P(\{a, b, c\})$
- **b.** P(∅)
- C. $P(\{\emptyset\})$

Problem 2 Answer Key

- a. P({a, b, c}) ={∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}
- **b.** P(∅) = {∅}
- **C.** $P(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}$

Name	Identities		
Idempotent laws	A u A = A	$A \cap A = A$	
Associative laws	(A u B) u C = A u (B u C)	(A n B) n C = A n (B n C)	
Commutative laws	A u B = B u A	$A \cap B = B \cap A$	
Distributive laws	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	
Identity laws	A u Ø = A	$A \cap U = A$	
Domination laws	A n Ø = Ø	A u <i>U</i> = <i>U</i>	
Double complement law	$\overline{\overline{A}}=A$		
Complement laws	$A \cap \overline{A} = \emptyset$ $\overline{U} = \emptyset$	$A \underbrace{\cup \overline{A}}_{\varnothing} = U$	
De Morgan's laws	$\overline{A \cup B} = \overline{A} \cap \overline{B}$	$\overline{A \cap B} = \overline{A} \cup \overline{B}$	
Absorption laws	A ∪ (A ∩ B) = A	A ∩ (A ∪ B) = A	

Notice anything familiar?

Let A, B, and C be pre-defined sets. Use the set identities to show that

 $(AUB) \cap (BUC) \cap (AUC) =$ ANBOC

Name	Identities		
Idempotent laws	A u A = A	A n A = A	
Associative laws	(A ∪ B) ∪ C = A ∪ (B ∪ C)	(A n B) n C = A n (B n C)	
Commutative laws	A u B = B u A	A n B = B n A	
Distributive laws	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	
Identity laws	A ∪ Ø = A	A n <i>U</i> = A	
Domination laws	A n Ø = Ø	A u <i>U</i> = <i>U</i>	
Double complement law	$\overline{\overline{A}} = A$		
Complement laws	$ \begin{array}{c} A \cap \overline{A} = \emptyset \\ \overline{U} = \emptyset \end{array} $	$ \begin{array}{c} A \cup \overline{A} = U \\ \overline{\varnothing} = U \end{array} $	
De Morgan's laws	$\overline{A \cup B} = \overline{A} \cap \overline{B}$	$\overline{A \cap B} = \overline{A} \cup \overline{B}$	
Absorption laws	A ∪ (A ∩ B) = A	A n (A u B) = A	

Problem 3 Answer Key

1.	(AUB	<u>, (</u>	BUC	$) \cap ($	(AUC)	Given
2.	(Ā N B					De Morgan's ×3
3.	ĀNB	\wedge	BNC	\cap	ĀNĒ	Associative ×3
4.	$(\overline{A} \cap \overline{A})$	n (1	3∩B)	n (i	$\bar{c} \cap \bar{c})$	Commutative/Associative
5 .	Ā	\cap	B	\cap	ō	Idempotent x3

For each of these relations on the set {1, 2, 3, 4}, determine if it's reflexive, symmetric, transitive, or neither.

- a. $\{(2, 4), (4, 2)\}$
- b. $\{(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)\}$
- c. $\{(1, 2), (2, 3), (3, 4)\}$

For each of these relations on the set {1, 2, 3, 4}, determine if it's reflexive, symmetric, transitive, or neither.

- a. Symmetric
- b. Transitive
- c. None