

# Deep Learning

Mohammad Reza Mohammadi 2021

### Convolution

- Sparse interactions
- Parameter sharing
- Equivariant representations
- Working with inputs of variable size



# Equivariant representations

- To say a function is equivariant means that if the input changes, the output changes in the same way
- In the case of convolution, the particular form of parameter sharing causes the layer to be equivariant to translation
- Convolution is not naturally equivariant to some other transformations, such as changes in the scale or rotation of an image  $g \cdot g$
- In some cases, we may not wish to share parameters!



$$f(g(\mathbf{x})) = g(f(\mathbf{x}))$$



# Convolution layer



#### activation map



# Convolution layer

Consider a second, green filter





# Convolution layer

• In a convolution layer, we use some separate filters







#### ConvNet

 ConvNet is a sequence of convolution layers, interspersed with activation functions





Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

• •

#### Stride

- We may want to skip over some positions of the kernel in order to reduce the computational cost
  - at the expense of not extracting our features as finely
  - we can think of this as downsampling





### Stride

- We may want to skip over some positions of the kernel in order to reduce the computational cost
  - at the expense of not extracting our features as finely
  - we can think of this as downsampling
  - this increases the receptive field

