# CIS 351 - Computer Organization & Assembly Language

Nathan Bowman

Images taken from Harris & Harris book

**Using Binary Numbers** 

A recurring theme in this course is going to be the question of how much information can be stored with a certain number of bits

We will not always think of binary numbers as "numbers"

A single bit allows us to differentiate between two "things", such as:

- left/right
- high/low
- odd/even

For example, in some application we might store a value where 0 indicates "left" and 1 indicates "right"

We only need one bit to keep that information

# What if we want to distinguish between north (N), south (S), east (E), and west (W)?

Let's assign each one a bit value:

• N: 00

• E: 01

• S: 10

• W: 11

So, to distinguish between four things, two bits is enough

### In general, each bit gives us an additional factor of 2

- 1 bit: 2 things
- 2 bits: 4 things (= 2 \* 2)
- 3 bits: 8 things (= 2 \* 2 \* 2)
- 4 bits: 16 things (= 2 \* 2 \* 2 \* 2)

With n bits, we can distinguish between 2^n different things

That is exponential growth, which means that what we can store goes up very, very quickly as a function of n



#### 2^8 = 256

If we think of our byte as a number, the easiest way is as the values from 0 - 255

They could also be the values from -128 - 127 -- we would just need to change how we interpret them

Or, they could represent 256 different characters (a-z, A-Z, punctuation, etc.)

### You don't need to memorize them, but some handy rules of thumb:

- 2<sup>1</sup>0 is approximately 1,000 (1024)
- 2^20 is approximately 1,000,000 (1,048,576)
- 2<sup>30</sup> is approximately 1,000,000,000 (1,073,741,824)

### The inverse of an exponential is a logarithm

Because we are working with exponentials of the form 2^X, we should work with the base-2 logarithm (log\_2) to get the inverse

Logarithms turn enormous numbers into manageable ones, which is why computer scientists love them

For example, we just saw that 2^30 is approximately one billion. That means log\_2(one billion) is approximately 30

Because they are the inverse, logarithms help us answer the opposite question of the one we have been asking:

Given X things to represent, how many bits do I need?

The answer: log\_2(X) (rounding up)

If I want to represent 6 different sports (e.g., hockey, soccer, tennis, baseball, football, golf), how many bits would it take to do so?

 $log_2(6) = 2.58...$ , which rounds up to 3

Or, if you like: 2^2 < 6 < 2^3, so it takes 3 bits to store the 6 sports

# Since there is no particular ordering among the sports, any encoding will do. For example:

- 000: hockey
- 001: soccer
- 010: tennis
- 011: baseball
- 100: football
- 101: golf
- 110: [not used]
- 111: [not used]

# It is important to keep in mind those two questions throughout the course:

- how many bits would I need to store X things?
- how many things could I store with Y bits?

### These same ideas hold true for other bases, but we will not often use them

#### In base Z:

- we need log\_Z(X) digits to store X things
- we can represent Z^Y things using Y digits

Try to think about the case where Z = 10 to get some intuition for this

Essentially, you just need to be able to count to the number of things you want to store