UMB/750 Diskrétní matematika

6. přednáška

8. listopadu 2024

Teorie grafů - ochutnávka problémů

Problém o třech domech a třech studnách. V daleké zemi stály tři pěkné domy, a tři blízké studny jim dávaly čistou chladnou vodu. Všichni tam žili spokojeně, až jednoho dne vypukl spor, a nikdo jej nedokázal rozsoudit. Od každého domu chtěli mít tři cesty, jednu ke každé ze tří studen, a nejen to, s jejich cestami že se nesmí křížit žádná z cest jejich sousedů.

Může někdo někdy najít takové cesty?

Kdyby byly studny jenom dvě, řešení by bylo snadné:

Ale pro tři studny není žádná naděje (pokud by ti zatvrzelci nepřistoupili na chození po mostě nebo tunelem).

Uměli byste úlohu zformulovat jako matematický problém, a třeba dokonce ukázat, proč je neřešitelný?

Jednotažky. Dá se následující obrázek nakreslit jedním tahem, aniž bychom zvedli tužku z papíru, a aniž bychom některou z čar obtáhli vícekrát?

A co tenhle obrázek?

Jestli ne, tak proč? Je nějaký jednoduchý způsob, jak odlišit obrázky, které jdou tak nakreslit, od těch, které nejdou?

Ochutnávka problémů - pokračování

K následující sérii problémů si nakreslíme 8 puntíků tak, aby žádné 3 neležely na přímce (číslo 8 je celkem libovolné, obecně bychom mohli uvažovat n takových puntíků). Spojíme některé dvojice puntíků úsečkami, například takto:

Ochutnávka problémů - pokračování

Kolik nanejvýš lze do obrázku s 8 puntíky nakreslit spojnic, když nesmí vzniknout žádný trojúhelník s vrcholy v puntících?

Zde je obrázek se 13 spojnicemi:

Dovedete pro 8 puntíků nakreslit větší počet spojnic? Asi ano. Ale uměli byste dokázat, že váš počet už nejde zlepšit?

Ochutnávka problémů - pokračování

Teď pro změnu chceme nakreslit nějaké spojnice (úsečky) tak, aby se mezi každými dvěma puntíky dalo přejít po cestě, sestávající z nakreslených úseček. Taková cesta nesmí zatáčet mimo puntíky, v místech, kde se úsečky jen kříží. Tedy levý obrázek je správné řešení, zatímco pravý nikoliv:

Jaký je nejmenší počet úseček, které je třeba nakreslit?

A kolik existuje různých řešení s tímto minimálním počtem úseček?

A jak bychom našli řešení, pro něž je celková délka nakreslených úseček co nejmenší?

Všechny uvedené úlohy jsou populární verze jednoduchých základních otázek *teorie* grafů.

Snadno nahlédneme, že u problému s osmi puntíky, tedy až na ten poslední, nezáleží na tom, jak jsou puntíky rozmístěny. Tyto otázky totiž nejsou v podstatě geometrické, ačkoli si je můžeme geometricky znázornit.

Naopak úloha o domu a o studnách **je** geometrická. Podstatnou roli zde totiž hraje to, že cesty se mají vytičit v rovině. Na planetě ve tvaru duše pneumatiky by se požadované cesty daly navrhnout:

Pojem grafu

Mnoho situací v matematice, v informatice i v rozličných prakticky motivovaných úlohách lze vystihnout pomocí schématu sestávajícího hlavně ze dvou věcí:

- (konečné) množiny bodů
- a spojnic mezi některými dvojicemi bodů.

Body mohou reprezentovat třeba účastníky nějakého večírku a spojnice ty dvojice účastníků, kteří se navzájem znají.

Nebo mohou body odpovídat křižovatkám ve městě a spojnice ulicím mezi nimi.

Podobný charakter mají mnohy i elektrotechnická schémata.

Body v takovém typu schémat je zvykem nazývat *vrcholy* (nebo též *uzly*) a příslušné spojnice *hrany*.

Matematickou abstrakcí podobných schémat je pojem grafu.

Definice grafu

Graf (obšírněji obyčejný neorientovaný graf) G je uspořádaná dvojice (V, E), kde V je nějaká neprázdná množina a E je množina dvoubodových podmnožin množiny V.

Prvky množiny V se jmenují vrcholy (sg. vertex, pl. verteces) grafu G a prvky množiny E hrany (edges) grafu G.

píšeme G = (V, E);

$$V = V(G)$$

$$E=E(G)\subset \binom{V}{2}$$
 ... množina všech dvouprvkových podmnožin množiny V

znázorňujeme kreslením do roviny:

- vrcholům grafu se přiřadí body roviny (vyznačené zpravidla puntíky)
- hrany se vyjádří rovnými nebo všelijak zakřivenými čarami
- spojnice se smějí případně křížit, ale nesmějí procházet jinými vrcholy

(samotný název graf pochází od možnosti takového znázornění)

Například:

Obrázek grafu má pomocnou úlohu (např. v paměti počítače se samozřejmě obrázkem nereprezentuje) a jeden graf lze nakreslit i mnoha různými způsoby. Zdůrazněme ještě, že pojem grafu a jeho obrázku je zde užíván v jiném smyslu než "graf funkce".

Pozorování:

první dva obrázky znázorňují stejný graf s vrcholy $\{1,2,3,4,5\}$ a hranami $\{1,2\}$, $\{2,3\}$, $\{3,4\}$, $\{4,5\}$, $\{5,1\}$

pro přehlednost znázornění je dobré, aby se spojnice vrcholů odpovídající hranám co nejméně křížily (v některých aplikacích je toto dokonce nepřípustné!)

Důležité grafy

Úplný (kompletní) graf K_n , kde $n \ge 1$:

$$V = \{1, 2, \dots, n\}, \quad E = \begin{pmatrix} V \\ 2 \end{pmatrix}$$

Kružnice (cyklus) C_n , kde $n \ge 3$:

$$V = \{1, 2, \dots, n\}, \quad E = \{\{i, i+1\} \, : \, i = 1, \dots, n-1\} \cup \{\{1, n\}\}$$

Důležité grafy

Cesta P_n , kde $n \ge 0$:

$$V = \{0, 1, \dots, n\}, \quad E = \{\{i - 1, i\}; i = 1, \dots, n\}$$

Úplný bipartitní ("dvoučásťový") graf $K_{n,m}$, kde $n, m \ge 1$:

$$V = \{u_1, \dots, u_n\} \cup \{v_1, \dots, v_m\} \quad E = \{\{u_i, v_j\} \ : \ i = 1, 2, \dots, n, \ j = 1, 2, \dots, m\}$$

Isomorfismus grafů

Dva grafy G a G' pokládáme za stejné, jestliže mají totožné množiny vrcholů a hran; tedy G=G' znamená V(G)=V(G') a E(G)=E(G').

Mnoho grafů se však liší "pouze" označením svých vrcholů a hran.

To vystihuje pojem isomorfismu.

Definice

Dva grafy G=(V,E) a G'=(V',E') nazveme *isomorfní*, jestliže existuje vzájemně jednoznačné zobrazení $f:V\to V'$ tak, že platí

$$\{x,y\} \in E$$
 právě když $\{f(x),f(y)\} \in E'$.

Zobrazení f nazýváme isomorfismus grafů G a G'. Fakt, že grafy G a G' jsou isomorfní, vyznačujeme zápisem $G \cong G'$.

isomorfismus je tedy vlastně "přejmenování vrcholů" grafu

Příklad

Následující 3 obrázky znázorňují isomorfní grafy. Najděte příslušné isomorfismy.

Příklad - řešení

Všechny tři grafy jsou isomorfní $K_{3,3}$. Isomorfismus (a) \rightarrow (b): například $1 \mapsto a$, $2 \mapsto d$, $3 \mapsto b$, $4 \mapsto e$, $5 \mapsto c$, $6 \mapsto f$ (existuje víc možností!).

Zbytek přenecháváme jako cvičení.

Poznámka: Pro malé obrázky není zpravidla těžké rozhodnout, jestli odpovídají isomorfním grafům nebo ne. Úloha rozhodnout, zda dané dva grafy jsou isomorfní, je obecně obtížná, a není pro ni znám žádný efektivní algoritmus (dokonce se soudí, že ani žádný efektivní algoritmus neexistuje).

Podgrafy

Řekneme, že graf H je podgrafem grafu G, jestliže $V(H) \subset V(G)$ a $E(H) \subset E(G)$. Řekneme, že graf H je indukovaným podgrafem grafu G, jestliže

$$V(H) \subset V(G)$$
 a $E(H) = E(G) \cap \begin{pmatrix} V(H) \\ 2 \end{pmatrix}$.

Indukovaný podgraf grafu G vznikne vymazáním některých vrcholů G a všech hran vymazané vrcholy obsahujících. Pro podgraf můžeme ještě navíc vymazat některé další hrany, i když nevymažeme žádný z jejich koncových vrcholů.

Na obrázku (a) níže je nakreslen graf, a v něm je silně vytažen podgraf isomorfní cestě P_4 . Tento podgraf není indukovaný (kvůli hraně $\{a,b\}$). Obrázek (b) ukazuje indukovaný podgraf (isomorfní kružnici C_5); ten je ovšem zároveň podgrafem.

Cesty, sledy a kružnice

Podgraf grafu G isomorfní nějaké cestě P_t se nazývá cesta v grafu G (viz obr. (a) na předchozím slidu).

Cestu v grafu G můžeme též chápat jako posloupnost

$$(v_0, e_1, v_1, \ldots, e_t, v_t),$$

kde v_0, v_1, \ldots, v_t jsou navzájem různé vrcholy grafu G, a pro každé $i=1,2,\ldots,t$ je $e_i=\{v_{i-1},v_i\}\in E(G)$. Obšírněji se cesta $(v_0,e_1,v_1,\ldots,e_t,v_t)$ nazývá cesta z v_0 do v_t délky t. Přitom připouštíme t=0, tj. cestu délky 0.

Sled (z v_0 do v_t délky t) v grafu G je posloupnost

$$(v_0,e_1,v_1,\ldots,e_t,v_t)$$

kde v_0, v_1, \ldots, v_t jsou $NE \ NUTN \check{E} \ r \mathring{u}zn \acute{e}$ vrcholy grafu G. Vrcholy i hrany se mohou opakovat (trasa bloudícího poutníka).

Cesty, sledy a kružnice

Podgraf grafu G isomorfní nějaké kružnici C_t $(t \ge 3)$ se nazývá kružnice v grafu G (viz obr. (b) výše). Je to posloupnost

$$(v_0, e_1, v_1, \ldots, e_{t-1}, v_{t-1}, e_t, v_0)$$

(počáteční a koncový vrchol jsou tedy shodné), kde $v_0, v_1, \ldots, v_{t-1}$ jsou navzájem různé vrcholy grafu G, a $e_i = \{v_{i-1}, v_i\} \in E(G)$ pro $i = 1, 2, \ldots, t-1$, a také $e_t = \{v_{t-1}, v_0\} \in E(G)$.

Číslo t je délka kružnice.

Souvislost grafu

Řekneme, že graf G je souvislý, jestliže pro každé dva jeho vrcholy x a y v něm existuje cesta z x do y.

Poznámka: Pojem souvislost lze definovat také jinak, a to pomocí relace \sim na množině V(G) definované vztahem

 $x \sim y$ právě když v grafu G existuje cesta z x do y.

O této relaci se dá ukázat, že je to ekvivalence (viz Základy matematické logiky).

Souvislost grafu

Na levém obrázku je příklad souvislého grafu, zatímco na pravém je příklad grafu nesouvislého.

Rozhodnout, zda graf G je souvislý, popřípadě najít všechny jeho komponenty není obtížné. Příslušné algoritmy lze je najít v mnoha učebnicích informatiky (zpravidla jako algoritmy na prohledávání grafu, např. prohledávání do hloubky).

Reprezentace grafů

Při studiu grafů se kromě geometrických prostředků (tj. kreslení grafů) používá i matic a jiných algebraických způsobů reprezentace. To je důležité např. jestliže chceme zadat graf počítači.

Definice

Nechť G = (V, E) je graf s n vrcholy. Označme vrcholy v_1, \ldots, v_n (v libovolném pořadí). $Matice\ sousednosti$ grafu G je čtvercová matice $A_G = (a_{ij})_{i,j=1}^n$ definovaná předpisem

$$a_{ij} = \left\{ egin{array}{ll} 1 & \quad \mbox{pro } \{v_i,v_j\} \in E, \\ 0 & \quad \mbox{jinak}. \end{array} \right.$$

Tedy matice sousednosti A_G je vždy symetrická čtvercová matice, jejímiž prvky jsou 0 nebo 1, na hlavní diagonále jsou 0.

Příklad

Pro graf G

je matice sousednosti

$$A_G = \left(\begin{array}{cccccc} 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{array}\right)$$

Poznámky

Matice sousednosti závisí na zvoleném očíslování vrcholů grafu.

Matice sousednosti není vždy nejvhodnější způsob reprezentace grafu v paměti počítače.

Např. pokud má graf málo hran (podstatně méně než $\binom{n}{2}$), je výhodnější např. pro každý vrchol zadat seznam jeho sousedů.

Pro urychlení některých složitějších algoritmů se používají ještě další reprezentace.

Stupeň vrcholu

Nechť G je graf, v jeho vrchol. Symbolem $\deg_G(v)$ označme počet hran grafu G obsahujících vrchol v. Číslo $\deg_G(v)$ nazveme stupněm vrcholu v v grafu G.

Cvičení.

Dokažte, že na večírku s 51 účastníky je vždy osoba, která zná sudý počet lidí.

(Předpokládáme, že známost je vždy vzájemná. Na večírku mohou být také lidé, kteří nikoho neznají. V takovém případě je ovšem tvrzení pravdivé, neboť tato osoba zná sudý počet lidí - 0.)