

U.S. DEPARTMENT OF COMMERCE
PATENT AND TRADEMARK OFFICE

INFORMATION DISCLOSURE STATEMENT		Docket Number: 11245/46607	
Application Number To Be Assigned	Filing Date Herewith	Examiner To Be Assigned	Art Unit To Be Assigned
Invention Title KDEL RECEPTOR INHIBITORS		Inventor(s) ROTHMAN, et al.	

Address to:

Mail Stop Patent Application
Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

1. In accordance with the duty of disclosure under 37 C.F.R. § 1.56 and in conformance with the procedures of 37 C.F.R. §§ 1.97 and 1.98 and M.P.E.P. § 609, attorneys for Applicants hereby bring the attached references to the attention of the Examiner. These references are listed on the attached modified PTO Form No. 1449. It is respectfully requested that the information be expressly considered during the prosecution of this application, and that the references be made of record therein and appear among the "References Cited" on any patent to issue therefrom.
2. Except as otherwise indicated, copies of the references are not enclosed since they were previously cited by or submitted to the Patent Office in prior patent application Serial No. 09/696,872, filed October 26, 2000, which is relied upon for an earlier filing date under 35 U.S.C. 120.

Dated: March 31, 2004

By:

Joseph A. Coppola (Reg. No. 38,413)

KENYON & KENYON
One Broadway
New York, New York 10004
(212) 425-7200 (Telephone)
(212) 425-5288 (Facsimile)
CUSTOMER NO. 26646

INFORMATION DISCLOSURE STATEMENT BY APPLICANTS PTO FORM 1449	Atty. Docket No. 11746/46607	Serial No. To Be Assigned
	Applicant(s) ROTHMAN, et al.	
	Filing Date Herewith	Group To Be Assigned

U. S. PATENT DOCUMENTS

EXAMINER'S INITIALS	PATENT NUMBER	PATENT DATE	NAME	CLASS	SUBCLASS	FILING DATE
	5,824,500	October 20, 1998	Bandman et al.			

FOREIGN PATENT DOCUMENTS

EXAMINER'S INITIALS	DOCUMENT NUMBER	DATE	COUNTRY	CLASS	SUB-CLASS	TRANSLATION	
						YES	NO
	WO 97/06828	2/27/97	PCT				
	WO 98/18943	5/7/98	PCT				

OTHER DOCUMENTS

EXAMINER'S INITIALS	AUTHOR, TITLE, DATE, PERTINENT PAGES, ETC.
	Kim et al., "Noninvasive measurement of the pH of the endoplasmic reticulum at rest and during calcium release", Proc. Nat'l. Acad. Sci, USA, (March 1998) vol. 95, pp. 2997-3002
	Wilson et al., "pH-dependent Binding of KDEL to Its Receptor <i>in Vitro</i> ", Journal of Biol. Chem. (1993), vol. 268, no. 10, pp. 7465-7468
	Townsley et al., "Mutational analysis of the human KDEL receptor: distinct structural requirements for Golgi retention, ligand binding and retrograde transport" EMBO Journal (1993) vol. 12, no. 7, pp. 2821-2829
	Lewis et al., :Ligand-Induced Redistribution of a Human KDEL Receptor from the Golgi Complex to the Endoplasmic Reticulum" Cell (1992), vol. 68, pp. 353-364
	McCoy et al., "Hydrophobic side-chain size is a determinant of the three-dimensional structure of the p53 oligomerization domain" EMBO Journal (1997), vol. 16, pp. 6230-6236
	Hüttelmaier et al., "Characterization of two F-actin-binding and oligomerization sites in the cell-contact protein vinculin", Eur. Journal Biochem. (1997), vol. 247, no. 3, pp. 1136-1142
	Song et al., Mutational Analysis of the Properties of Caveolin-1, Journal of Biological Chem. (1997), vol. 272, no. 7, pp. 4398-4403
	Jousset et al, "A domain of TEL conserved in a subset of ETA proteins defines a specific oligomerization interface essential to the mitogenic properties of the TEL-PDGFR β oncprotein", EMBO Journal (1997) vol. 16, no. 1, pp. 69-82
	Orlinick et al, "Separate domains of the human Fas Ligand dictate self-association and receptor binding", J. Biol. Chem (December 19, 1997), vol. 272, no. 51, pp. 32221-32229
	Efimov et al, "The thrombospondin-like chains of cartilage ologomeric matrix protein are assembled by a five-stranded α -helical bundle between residues 20 and 83
	Terskikh et al, "Peptabody": A new type of high avidity binding protein", Proc. Natl. Acad. Sci. USA (March 1997) vol. 94, pp. 1663-1668

EXAMINER'S INITIALS		AUTHOR, TITLE, DATE, PERTINENT PAGES, ETC.
		Srivastava et al, "Heat shock protein-peptide complexes in cancer immunotherapy", Current Bio. Ltd. (1994) vol. 6, pp. 728-732
		Blachere et al, "Heat shock protein-based cancer vaccines and related thoughts on immunogenicity of human tumors", Acad. Press Ltd. (1995) vol. 6, pp. 349-355
		Little et al., 1994, <i>The Glucose-Regulated Proteins (GRP78 and GRP94): Functions, Gene Regulation, and Applications</i> , Crit. Rev. Eukaryot. Gene Expr. 4:1-18.
		Udono et al., "Comparison of Tumor-Specific Immunogenecities of Stress-Induced Proteins gp96, hsp90, and hsp70 ¹ ", <i>Journal of Immunology</i> , 5398-5403
		Srivastava, "Peptide-Binding heat shock proteins in the endoplasmic reticulum: role in immune response to cancer and in antigen presentation", Acad. Press Inc. (1993), vol. 62, pp.153-177
		DeNagel and Pierce, et al., 1993, "Heat Shock Proteins in Immune Responses", Critical Reviews in Immunology 13:71-81.
		Wang, "Tumor antigens discovery: perspectives for cancer therapy", Mol. Med. (November 1997), vol. 3, no. 11, pp. 716-731
		Van den Eynde et al, "T cell defined tumor antigens", Current Biol. Ltd (October 1997), vol. 9, no. 5, pp. 684-693
		Slingluff, "Tumor antigens and tumor vaccines: peptides as immunogens", Sem. In Surg. Oncol. (1996) , vol. 12, pp. 446-453
		Arap et al., "Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model", Science (1998), vol. 279, pp. 377-380
		Ausubel, "Protein Expression", Current Protocols in Molecular Biology (1997) John Wiley Press, Inc. NY, Chapter 16 Introduction
		Balicki et al., "Gene therapy of human disease", Medicine (2002), vol. 81, pp. 69-86
		Benaroudj et al., "Self Association of the Molecular Chaperone HSC70", Biochemistry (1995), vol. 34, pp. 15282-15290
		Bole et al. "Posttranslational association of immunoglobulin heavy chain binding protein with nascent heavy chains in nonsecreting and secreting hybridomas", J. Cell. Biol. (1986), vol. 102, pp. 1558-1566
		Bornstein, "Thrombospondins: structure and regulation of expression",FASEB J. (1992), vol. 6, pp. 3290-3299
		Cohen et al., "HIV-AIDS in 1998 - Gaining the Upper Hand?", JAMA (1998), vol. 280, no. 1. pp. 87-88
		Edgington, "Therapeutic applications of heat shock proteins", Bio/Technology (Dec. 1995), vol. 13, pp. 1442-1444
		Feldweg et al., "Molecular heterogeneity of tumor rejection antigen/heat shock protein GP96", Int. J. Cancer (1995), vol. 63, pp. 310-314
		Flynn et al., "Peptide-binding specificity of the molecular chaperone BiP", Nature (1991), vol. 353, pp. 726-730
		Flynn et al., "Peptide binding and release by proteins implicated as catalysts of protein assembly", Science (1989), vol. 245, pp. 385-390
		Freeman et al., "The human cytosolic molecular chaperones hsp90, hsp70 (hsc70) and hdj-1 have distinct roles in recognition of a non-native protein and protein refolding", EMBO J. (1996), vol. 15, pp. 2969-2979
		Hartl, "Molecular chaperones in cellular protein folding", Nature (1996), vol. 381, pp. 571-580
		Hendrick et al., "Molecular chaperone functions of heat-shock protein", Annu. Rev. Biochem (1993), vol. 62, pp. 349-384
		Lammert et al., "Protein disulfide isomerase is the dominant acceptor for peptides translocated into the endoplasmic reticulum", Eur. J. Immunol. (1997), vol. 27, pp. 1685-1690
		Leamon et al., "Delivery of macromolecules into living cells: A method that exploits folate receptor endocytosis", Proc. Nat'l. Acad. Sci. (1991), vol. 88, pp. 5572-5576
		Lewis and Pelham, "Sequence of a Second Human KDEL Receptor", J. Mol. Biol. (1992), vol. 226, pp. 913-916

Express Mail No. EV 332523347 US
NYO 680522

EXAMINER'S INITIALS		AUTHOR, TITLE, DATE, PERTINENT PAGES, ETC.
		Li et al., "Tumor rejection antigen gp96/grp94 is an ATPase: implications for protein folding and antigen presentation", EMBO J. (1993), vol. 12, pp. 3143-3151
		Lindquist et al., "The heat-shock proteins", Annu. Rev. Genet (1988), vol. 22, pp. 631-677
		Lowrie et al., "Mycobacterium leprae hsp65 vaccines mice against tuberculosis when expressed from the cloned gene in transplanted bone marrow cells" J. Cell. Biochem. (1995), Supp. Vol. 19b, p. 220 Abstract B6-316
		Lowrie et al., "Towards a DNA vaccine against tuberculosis", Vaccine (1994), vol. 12, pp. 1537-1540
		Lukacs et al., "Tumor cells transfected with a bacterial heat-shock gene lose tumorigenicity and induce protection against tumors", J. Exp. Med. (1993), vol. 178, pp. 343-348
		Malashkevich et al., "The crystal structure of a five stranded coiled coil in COMP: a prototype ion channel?", Science (1996), vol. 274, pp. 761-765
		Mazzarella et al., "ERp72, an abundant luminal endoplasmic reticulum protein, contains three copies of the active site sequences of protein disulfide isomerase", J. Biol. Chem. (1990), vol. 265, pp. 1094-1101
		Melnick et al., "The endoplasmic reticulum stress protein GRP94, in addition to BiP, associates with unassembled immunoglobulin chains", J. Biol. Chem. (1992), vol. 267, pp. 21303-21306
		Melnick et al., "Sequential interaction of the chaperones BiP and GRP94 with immunoglobulin chains in the endoplasmic reticulum", Nature (1994), vol. 370, pp. 373-375
		Miesenböck and Rothman, "The capacity to retrieve escaped ER proteins extends to the trans-most cisterna of the golgi stack", J. Cell. Biol. (1995), vol. 129, pp. 309-319
		Multhoff et al., "Heat shock proteins and the immune response", Ann. NY Acad. Sci. (1998), vol. 851, pp. 86-93
		Munro and Pelham, "A c-terminal signal prevents secretion of luminal ER proteins", Cell (1987), vol. 48, pp. 899-907
		Nieland et al., "Isolation of an immunodominant viral peptide that is endogenously bound to the stress protein GP96/GRP94", Proc. Natl. Acad. Sci. USA (1996), pp. 6135-6139
		Pelham, "Evidence that luminal ER proteins are sorted from secreted proteins in a post-ER compartment", EMBO J. (1988), vol. 7, pp. 913-918
		Piscitelli, "Immune-based therapies for treatment of HIV infection", The Annals of Pharmacotherapy (1996), vol. 30, pp. 62-76
		Qabar et al., "Thrombospondin 3 is a pentameric molecule held together by interchain disulfide linkage involving two cysteine residues", J. Biol. Chem. (1995), vol. 270, pp. 12725-12729
		Ramarkishnan et al., "Conformation-defective herpes simplex virus 1 glycoprotein B activates the promoter of the grp94 gene that codes for the 94-kD stress protein in the Endoplasmic reticulum", DNA and Cell Biol. (1995), vol. 14, pp. 373-384
		Retzlaff et al., "Bacterial heat shock proteins directly induce cytokine mRNA and interleukin-1 secretion in macrophage cultures", Infect. Immun. (1994), vol. 62, pp. 5689-5693
		Schaffi et al., "HLA-DR associates with specific stress proteins and is retained in the endoplasmic reticulum in invariant chain negative cells", Exp. Med. (1992), vol. 176, pp. 657-666
		Semenza and Pelham, "Changing the specificity of the sorting receptor for luminal endoplasmic reticulum proteins", J. Mol. Biol. (1992), vol. 224, pp. 1-5
		Silva et al., "A single mycobacterial protein (hsp65) expressed by a transgenic antigen-presenting cell vaccinates mice against tuberculosis", Immunology (1994), vol. 82, pp. 244-248
		Singh-Jasuja et al., "The role of heat shock proteins and their receptors in the activation of the immune system", Biol. Chem. (2001), vol. 382, pp. 629-636
		Slepushkin et al., "Sterically stabilized pH-sensitive liposomes", J. Biol. Chem. (1997), vol. 272, pp. 2382-2388
		Srivastava et al., "Stress-induced proteins in immune response to cancer", Curr. Topics Microbiol (1991), vol. 167, pp. 109-123

Express Mail No. EV 332523347 US
NY0 680522

EXAMINER'S INITIALS		AUTHOR, TITLE, DATE, PERTINENT PAGES, ETC.
		Suzuki et al. "Regulating the retention of t-cell receptor α chain variants within the endoplasmic reticulum: Ca ²⁺ -dependent association with BiP" J. Cell. Biol. (1991), vol. 114, pp. 189-205
		Verma et al. "Gene Therapy - Promises, Problems and Prospects" Nature (1997), vol. 389, pp. 239-242
		Wearsch et al., "Endoplasmic reticulum chaperone GRP94 subunit assembly is regulated through a defined oligomerization domain", Biochem. (1996), vol. 35, pp. 16760-16769
		Welsh et al. "Small Heat-shock protein family: function in health and disease", Ann NY Acad. Sci. (1998), vol. 851, pp. 28-35
		Wiech et al., "Hsp90 chaperones protein folding <i>in vitro</i> ", Nature (1992), vol. 358, pp. 169-170
		Zufferey et al., "Multiple attenuated lentiviral vector achieves efficient gene delivery <i>in vivo</i> ", Nature Biotechnology (1997), vol. 15, pp. 871-875

EXAMINER	DATE CONSIDERED
EXAMINER: Initial if citation considered, whether or not citation is in conformance with M.P.E.P. 609; draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.	

**Express Mail No. EV 332523347 US
NY0 680522**