NIO

Tutorial 10: From MLPs to CNNs

Duc Duy Pham, M.Sc.

Raum: BC 410

Tel.: 0203-379-3734

Email: duc.duy.pham@uni-due.de

What we've got so far...

MLP consisting of multiple hidden layers

• Yes!

Yes! Just treat each Pixel as input node!

MxN resolution image is treated as (M*N)x1 input

Yes! Just treat each Pixel as input node!

MxN resolution image is treated as (M*N)x1 input

Practical remarks

 The transformation from a MxN image to a (M*N)x1 vector is often called flattening

Practical remarks

- The transformation from a MxN image to a (M*N)x1 vector is often called flattening
- Flattening is sometimes necessary to feed an image into a MLP (depending on the framework)

Practical remarks

- The transformation from a MxN image to a (M*N)x1 vector is often called flattening
- Flattening is sometimes necessary to feed an image into a MLP (depending on the framework)

Images usually have a very high resolution

- Images usually have a very high resolution
- MxN image input to a hidden layer with L neurons would result in a weight matrix of size (M*N+1)xL

- Images usually have a very high resolution
- MxN image input to a hidden layer with L neurons would result in a weight matrix of size (M*N+1)xL
- Example: 128x128 image and 1024 hidden neurons
- => (128*128+1)x1024 weight matrix, i.e. 16778240 weights that need to be learnt

- Images usually have a very high resolution
- MxN image input to a hidden layer with L neurons would result in a weight matrix of size (M*N+1)xL
- Example: 128x128 image and 1024 hidden neurons
- => (128*128+1)x1024 weight matrix, i.e. 16778240 weights that need to be learnt
- only for the first layer!!!

- Images usually have a very high resolution
- MxN image input to a hidden layer with L neurons would result in a weight matrix of size (M*N+1)xL
- Example: 128x128 image and 1024 hidden neurons
- => (128*128+1)x1024 weight matrix, i.e. 16778240 weights that need to be learnt
- only for the first layer!!!
- Alternative approach: Convolutional Neural Networks

Convolutional Neural Networks (CNNs)

Just like MLPs CNNs have a layer-wise architecture

Convolutional Neural Networks (CNNs)

- Just like MLPs CNNs have a layer-wise architecture
- CNNs are usually just a stack various layers

Convolutional Neural Networks (CNNs)

- Just like MLPs CNNs have a layer-wise architecture
- CNNs are usually just a stack various layers
 - Convolutional Layer
 - Activation Layer (sometimes included in Convolutional Layer and not considered separately)
 - Pooling Layer
 - Fully Connected Layer

• Consists of a fixed number of kernels

- Consists of a fixed number of kernels
- The input of this layer is convolved with each of the kernels,

- Consists of a fixed number of kernels
- The input of this layer is convolved with each of the kernels, i.e.
 - "slide each kernel over the image spatially, computing dot products"

- Consists of a fixed number of kernels
- The input of this layer is convolved with each of the kernels, i.e.
 - "slide each kernel over the image spatially, computing dot products"
- The results of the convolutions are called *feature maps*

- Consists of a fixed number of kernels
- The input of this layer is convolved with each of the kernels, i.e.
 - "slide each kernel over the image spatially, computing dot products"
- The results of the convolutions are called feature maps
- Parameters:
 - Number of kernels
 - Size of kernel
 - "Padding"
 - "Stride" = step size during "sliding"

3	3	3	9	9	9	9
3	3	3	9	9	9	9
3	3	3	9	9	9	9
3	3	3	9	9	9	9
3	3	3	9	9	9	9
3	3	3	9	9	9	9
3	3	3	9	9	9	9

-1	0	1
-2	0	2
-1	0	1

-1	0	1
-2	0	2
-1	0	1

?	?	?					
?	3	3	3	9	9	9	9
?	3	3	3	9	9	9	9
	3	3	3	9	9	9	9
	3	3	3	9	9	9	9
	3	3	3	9	9	9	9
	3	3	3	9	9	9	9
	3	3	3	9	9	9	9

-1	0	1
-2	0	2
-1	0	1

0	0	0	0	0	0	0	0	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	0	0	0	0	0	0	0	0

-1	0	1
-2	0	2
-1	0	1

0	0	0	0	0	0	0	0	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	0	0	0	0	0	0	0	0

Zero-Padding to keep image size for feature map (otherwise feature map would be smaller)

-1	0	1
-2	0	2
-1	0	1

0	0	0	0	0	0	0	0	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	0	0	0	0	0	0	0	0

-1	0	1
-2	0	2
-1	0	1

NR: 0*(-1)+0*0+0*1+...

0	0	0	0	0	0	0	0	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	0	0	0	0	0	0	0	0

-1_	0	1
-2	0	2
-1	0	1

NR: 0*(-1)+0*0+0*1+...

0	0	0	0	0	0	0	0	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	0	0	0	0	0	0	0	0

NR: 0*(-1)+0*0+0*1+... 0*(-2)+3*0+3*2+...

0	0	0	0	0	0	0	0	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	0	0	0	0	0	0	0	0

NR: 0*(-1)+0*0+0*1+... 0*(-2)+3*0+3*2+...

0	0	0	0	0	0	0	0	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	0	0	0	0	0	0	0	0

NR: 0*(-1)+0*0+0*1+... 0*(-2)+3*0+3*2+... 0*(-1)+3*0+3*1

0	0	0	0	0	0	0	0	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	0	0	0	0	0	0	0	0

NR: [0*(-1)+0*0+0*1+... 0*(-2)+3*0+3*2+... 0*(-1)+3*0+3*1]... *1/9

0	0	0	0	0	0	0	0	0
0	3	3	3	9	9	9	9	0
0	3	-3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	0	0	0	0	0	0	0	0

NR: [0*(-1)+0*0+0*1+... 0*(-2)+3*0+3*2+... 0*(-1)+3*0+3*1]... *1/9

0	0	0	0	0	0	0	0	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	0	0	0	0	0	0	0	0

-1	0	1
-2	0	2
-1	0	1

Slide kernel 1 Pixel to the right => step size = 1, i.e. stride = 1.

0	0	0	0	0	0	0	0	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	0	0	0	0	0	0	0	0

-1	0	1
-2	0	2
-1	0	1

0	0	0	0	0	0	0	0	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	0	0	0	0	0	0	0	0

-1	0	1
-2	0	2
-1	0	1

0	0	0	0	0	0	0	0	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	0	0	0	0	0	0	0	0

-1	0	1
-2	0	2
-1	0	1

9	0	18		

0	0	0	0	0	0	0	0	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	0	0	0	0	0	0	0	0

-1	0	1
-2	0	2
-1	0	1

9	0	18	18		

0	0	0	0	0	0	0	0	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	0	0	0	0	0	0	0	0

-1	0	1
-2	0	2
-1	0	1

9	0	18	18	0	

0	0	0	0	0	0	0	0	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	0	0	0	0	0	0	0	0

9	0	18	2	0	0	-27
12	0	24	24	0	0	-36
12	0	24	24	0	0	-36
12	0	24	24	0	0	-36
12	0	24	24	0	0	-36
12	0	24	24	0	0	-36
9	0	18	2	0	0	-27

0	0	0	0	0	0	0	0	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	3	3	3	9	9	9	9	0
0	0	0	0	0	0	0	0	0

9	0	18	2	0	0	-27
12	0	24	24	0	0	-36
12	0	24	24	0	0	-36
12	0	24	24	0	0	-36
12	0	24	24	0	0	-36
12	0	24	24	0	0	-36
9	0	18	2	0	0	-27

- What we've seen in the previous slides is actually not a convolution – but a correlation!
- It has become accustomed to refer to this operation as convolution

- What we've seen in the previous slides is actually not a convolution – but a correlation!
- It has become accustomed to refer to this operation as convolution
- The resulting feature map is always dependent on the used kernel

- What we've seen in the previous slides is actually not a convolution – but a correlation!
- It has become accustomed to refer to this operation as convolution
- The resulting feature map is always dependent on the used kernel
- => Many different kernels result in many different feature maps!

- What we've seen in the previous slides is actually not a convolution – but a correlation!
- It has become accustomed to refer to this operation as convolution
- The resulting feature map is always dependent on the used kernel
- => Many different kernels result in many different feature maps!
- (A Convolutional Layer has many different kernels...)

Convolutional Layer

Activation Layer

 Often already part of Convolutional Layer (not regarded separately)

Activation Layer

- Often already part of Convolutional Layer (not regarded separately)
- Uses activation function such as sigmoid, tanh, ReLU, softmax on feature maps

Pooling Layer

Subsampling of activated feature maps

Pooling Layer

- Subsampling of activated feature maps
- Asserts statistical value to rectangular nonoverlapping region (e.g. max, average, min, sum, etc...)

Pooling Layer

- Subsampling of activated feature maps
- Asserts statistical value to rectangular nonoverlapping region (e.g. max, average, min, sum, etc...)
- Max-Pooling is often used (invariance to translation)

4	5	9	11	
7	6	43	4	
6	67	4	4	
4	22	3	22	

43

22

Is actually just a hidden layer of a MLP

- Is actually just a hidden layer of a MLP
- Usually flattening is required beforehand

- Is actually just a hidden layer of a MLP
- Usually flattening is required beforehand
- Is used for classification purposes

- Is actually just a hidden layer of a MLP
- Usually flattening is required beforehand
- Is used for classification purposes
- Is usually one of the final layers of a CNN

 Usually multiple Fully Connected Layer are stacked in the end of a CNN to create a MLP with enough representative capacity

- Usually multiple Fully Connected Layer are stacked in the end of a CNN to create a MLP with enough representative capacity
- The number of neurons in the final Fully Connected Layer should be the same as the number of classes

- Usually multiple Fully Connected Layer are stacked in the end of a CNN to create a MLP with enough representative capacity
- The number of neurons in the final Fully Connected Layer should be the same as the number of classes
- The activation function of the final Fully Connected Layer shoult be Softmax to achieve a propability distribution

 Usually Convolutional Layers and Max-Pooling Layers are repeated several times

- Usually Convolutional Layers and Max-Pooling Layers are repeated several times
- This is the feature extraction part of a CNN

- Usually Convolutional Layers and Max-Pooling Layers are repeated several times
- This is the feature extraction part of a CNN
- The idea is to extract low level features in the first Convolutional Layers and more abstract features in the deeper Convolutional Layers

- Usually Convolutional Layers and Max-Pooling Layers are repeated several times
- This is the feature extraction part of a CNN
- The idea is to extract low level features in the first Convolutional Layers and more abstract features in the deeper Convolutional Layers
- Deeper Convolutional Layers usually have more kernels than shallow layers (increase of representational capacity)

- Usually Convolutional Layers and Max-Pooling Layers are repeated several times
- This is the feature extraction part of a CNN
- The idea is to extract low level features in the first Convolutional Layers and more abstract features in the deeper Convolutional Layers
- Deeper Convolutional Layers usually have more kernels than shallow layers (increase of representational capacity)
- The classification part of the CNN is represented by a sequence of Fully Connected Layers

Layer 3

Layer 2

Layer 1

Learning...

 Kernels of the Convolutional Layers are considered as weights (in TF variables!)!

Learning...

- Kernels of the Convolutional Layers are considered as weights (in TF variables!)!
- Backpropagation adjusts kernels of the Convolutional Layers and weights of the Fully Connected Layers

Learning...

- Kernels of the Convolutional Layers are considered as weights (in TF variables!)!
- Backpropagation adjusts kernels of the Convolutional Layers and weights of the Fully Connected Layers
- Extracted Features are not(!) designed, but learned by Backpropagation

Machine Learning vs. Deep Learning

Example: LeNet

CNN called LeNet by Yann LeCun (1998)

Example: LeNet

Classification

Detection

Segmentation

No errors

A white teddy bear sitting in the grass

A man riding a wave on top of a surfboard

Minor errors

A man in a baseball uniform throwing a ball

A cat sitting on a suitcase on the floor

Somewhat related

A woman is holding a cat in her hand

A woman standing on a beach holding a surfboard

Jupyter Notebook

Implement a CNN to classify handwritten digits in Tensorflow

