

LABORATORIO DI RETI DI CALCOLATORI

Gestione client multipli: struttura server

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

1/10

Bibliografia

- slide della docente
- testo di supporto: D. Maggiorini, "Introduzione alla programmazione client-server", Pearson Ed., 2009
 cap.1 (tutto)

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

Client vs. server

- lato server:
 - □ mette a disposizione risorse (file, computazione, hardware...)
 - □ sempre in attesa di clienti: indirizzo "ben noto"
 - □ deve: controllare sicurezza (AAA)

gestire efficientemente più clienti contemporanei

□ server farm / mirror

- lato client:
 - usa risorse → inizia la comunicazione
 - □ indirizzo qualsiasi (serve solo per la risposta)
 - se termina inaspettatamente: server deve continuare ad operare

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

3/18

Server iterativo

- se il server è libero → il client può entrare in servizio immediatamente
- ❖ se il server è occupato →
 - (a) c'è spazio in coda e il client può mettersi in attesa
 - (b) la coda è piena e il servizio viene rifiutato

es. un risparmiatore e uno sportello bancomat

- Problemi
 - gestione coda; lunga attesa (starvation); attacchi Denial of Service (DoS)

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

Server concorrente

- ❖ La concorrenza dell'erogazione è un apparente parallelismo nel mantenere i rapporti (time sharing), non nell'inviare o ricevere
- es. la segretaria di un'azienda e gli impiegati che ci lavorano

server sfrutta tempi morti di un client (I/O bound) per servirne altri

- * Problemi
 - ☐ gestione difficile: il server deve accentrare su di sé tutti i canali di comunicazione aperti con i client → non scalabile
 - □ e se i canali finiscono?

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

conn-oriented con server concorrente

- su socket con associazione parzialmente definita si possono accettare altre richieste di connessione
- server monitora tutti i suoi canali (socket)

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

9/18

Server multi-processo

- Più server entrano in gioco contemporaneamente
 - □ entità distinte e contemporaneamente attive
 - □ più flussi esecutivi paralleli per la fornitura del servizio (processi / thread)
 - □ parallelismo reale?
 - scheduling CPU...

es. un correntista e la sua banca • ogni cliente è delegato ad un diverso sportello

Server principale Server dedicato Client Ortello

- Problemi
 - gestione limitatezza e carico computazionale di ciascun processo/thread
 - ogni thread gestisce la coda in modo iterativo o concorrente

Elena Pagani

LABORATORIO di Reti di Calcolatori – A.A. 2023/2024

server: confronti

- server iterativo vs. concorrente:
 - □ se interazione client-server è di solo un messaggio → sono comparabili
 - □ altrimenti: interleaving tra interazioni con client diversi
- server concorrente vs. multi-processo:
 - □ concorrente sfrutta tempi morti di un client per servirne altri
 - □ multi-processo: gestisce parallelamente diversi client in funzione di politica di scheduling
 - processi: hanno spazi di memoria separati
 - □ thread: condividono spazio di indirizzamento
 - meccanismi di gestione accessi concorrenti
 - ☐ in C si preferiscono *processi*, in Java si preferiscono *thread*

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

15/18

Confronto modelli servizio

- cosa succede se interazione con server è di 1 messaggio?
 - □ server iterativo è molto simile a quello concorrente
 - □ allora: scelta server può dipendere da modalità interazione
- concorrenza di server multi-processo è reale?
 - □ beh... con una sola CPU... ^③
 - server figli gestiscono unico client, quindi non sono né iterativi né concorrenti!
- server concorrente è il più difficile da implementare
 - in ogni istante può ricevere messaggi di qualunque tipo
 - ... si vede negli automi!

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

Server iterativo: ASF

- esce da Idle quando riceve service. Req
- quando vi entra, ne esce immediatamente se esistono altre service. Req in coda
 - □ cioè in attesa all'interfaccia con livello inferiore
- ❖ lo ASF del client è sempre uguale → esercizio!

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024

17/18

Server concorrente: ASF

- ◆ serve ancora la coda? beh, è quella con livello inferiore → Sì
- abbiamo messo tutte le transizioni possibili?
 - può ricevere service. Req mentre Idle? dipende... ritrasmissioni, messaggi in ritardo... forse sì!
 - □ attenzione a gestire anche situazioni "anomale" dovute a caratteristiche livelli inferiori → gestione eccezioni (o segmentation fault!)

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2023/2024