above and in the figures are hereby incorporated by reference in their entirety. Walker et al., *Nature*, 402:313-320, is incorporated by reference in its entirety, including Figs. 1-7.

	nt statistics	
	and retineme	
the state of the state of	termination	-
	structure as	-
	Table 1 Data collection, structure determination and refinement statistics	-
	Table 1 Da	

Presculation Presculation Presculation Presculation Presculation Presculation Presculation Protein alone Pro									
1, 2, 4 144,97427,485 97,280,69 8.5 146,151 1.5 1.7	Data set	Resolution (Å)	Observations/ unique reflections	Completeness (last shell) (%)	R _{merga} ‡‡	(I/a)	No. of sites	Phasing power!!!	R_{em} §§
1	Nalive*11	2.4	144,973/37,485	97.2 (90.6)	8.5	16.0 (3.1)	-		:
13 3 4 3 3 4 3 3 4 3 3	IC. 1+°	2.2	191,292/49,599	95.5 (93.3)	9.5	14.3 (1.1)	7		
des§11 3.0 71/26/19.196 97.9(7.1) 45 15.6(7.3) 8 1.9 2 4 900000000000000000000000000000000000	1Gb-2111	35	43,038/12,484	99.7 (98.2)	8.5	11.3 (3.4)	· c:		0.48
1 27 94,90075,889 92 6(60.2) 48 17.0 (57) 5 0 8 0 8 1 10.2511728.856 932 6(7.1) 60 136 (14) 9 0 8 1 1 10.2511728.856 932 6(7.1) 60 136 (14) 9 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	anthanides611	30	71,426/19,180	97.9 (97.1)	4.5	156(2.3)	οα	n c	9 0
1	ATMIH+	2.7	94,900/25,688	92 6 (60 2)	4 8	170(57)	o ko	n a	520
Rescoular Protein atoms Waters Rough Rescoular Rescoula	odine [[1]	26	102,511/28,856	93.2 (67.1)	0.9	136(14)	000		0.21
Passdulon Protein alons Waters Royal Ra. # Rm. & d. from totalityes Royal Rm. & d. from totalityes Royal Rm. & d. from totalityes Royal Ro	Refinement statistics								:
250-22 6.813 89 0.25 0.00 (5.4) 0.013Å 17 250-26 6.954 14 0.26 0.33 (5.6) 0.003 Å 17 250-26 6.895 26 0.28 (5.6) 0.005 Å 12	Jata set	Resolution (Å)	Protein alons	Waters	Acrystar III	R _{k∞} ¶¶ (% data)	R	s d from ideality	* 0
250-22 6813 89 0.25 0.30(5.4) 0.0134 17* 250-26 6.9594 14 0.25 0.33(5.9) 0.005A 11* 250-26 6.837 26 0.25 0.35(5.9) 0.005A							Bonds	Angles	Dihedrals
25.0-2.6 6,837 26 0.26 0.32 (5.6) 0.005Å 1.2°			6,813 6,954	89	0.25	0.30 (5.4)	0.013Å 0.005Å	1 7°	23°
	An#	25.0-2.6	6,837	26	0.26	0.32 (5.6)	0.005Å	1.2°	21°

Overall figure of merit 0 45

rom LuCly-1.

The native crystal was socked in 2.6 mM insp., 1.0 mM ATP and 10 mM MgCk for 1 h. Although this was the native crystal for heavy-atom phaseby, the final high-resolution structure refinament used data.

unnsunder Loyal was saaked in 20mM LuCl, and 125mM ATP to 11 40mm.
LLUCl, Coyala was saaked in 20mM LuCl, and 125mM Fin 40mm. Fin 40mm, and LuCl, and LuCl, with 126mM ATP and 1 mM EMIS. Stambuldes coyala was saaked for 41 in a find and 1 mM EMIS. Stambuldes coyala was saaked for 41 in a find and 1 mM EMIS.

HATTHE OFFICE AND ADMINISTRATION OF THE OFFICE ADMIN ATM crystal was soaked for 22 h in 10 mM sodium aurothiomalate. tyrosine iodination was seen in the resulting structure.

Mn crystal contained 1.4 mM ATP and 14 mM MnCb. Data were collected at ESRF beamline ID2b.

11 Data were collected at ESRF beamline ID14-4.

The places part where the structure of the runs, value of the leasy along structure factor amplitudes and the runs, value of the lack-of-closure error. If the places proving is defined by the runs, value of the lack-of-closure error. If the superior is the superior of the structure and Runs and Runs and superior factor and superior factors and engits in regard to Engh and Ruhar parameters. $\begin{array}{ll} + R_{trupp} &= \Sigma_{sM} \Sigma [I]_t (\mathrm{trid}) - \{ (\mathrm{Tik}) \} I \Sigma_{sM} \Sigma I_t (\mathrm{Tik}). \\ & \S S R_{so} &= \Sigma [I]_t c_{ant} | - I_t r_{sin} | I / \Sigma I_t r_{sin} |. \end{array}$