Universidad del Valle de Guatemala Facultad de Ingeniería Departamento de Ciencias de la Computación

Mini-Proyecto #3

Link del repositorio: https://github.com/alegudiel/Modelacion_MiniProyecto_3

Ejercicio 1: Función Acumulada Ponderada

Suponiendo que es simple generar variables aleatorias con función probabilidad acumulada Fi(x) para i de 1 a n, tenemos la variable aleatoria V con una función de probabilidad acumulada.

$$F(x) = \sum_{i=1}^{n} p_i F_i(x)$$

Donde pi constituye una distribución probabilística

Tasks:

Describa un algoritmo para generar V
 Consideramos variables discretas X1 y X2 que tienen funciones de probabilidad Si y Ti respectivamente.

Suponemos que deseamos generar valores de una variable aleatoria V la cual tiene una función de probabilidad la siguiente

$$P(V = i) = p_i = \alpha s_i + (1 - \alpha)t_i$$

Esto se lee así: La probabilidad que V tome el valor de i seria pi Donde s_i es la probabilidad que suceda el evento i para la variable X1 Donde t_i es la probabilidad que suceda el evento i para la variable X2 α y 1 $-\alpha$ Son las probabilidades dentro de la variable V

Se asume que debemos generar valores de X1 y X2 para generar un valor de X por lo que generamos un valor aleatorio u. Comparando este con α y si es menor generamos un valor de X1 de lo contrario uno de X2.

Luego generamos 2 valores de forma independiente: u_1 , u_2 donde u_1 será para evaluar con α y u_2 en las funciones definidas para V.

Demuestre que el algoritmo genera adecuadamente V Teniendo

i	0	1	2	3	4	5
$p_{_i}$	0.12	0.12	0.12	0.12	0.32	0.2

 $Y \alpha = 0.6$

Para i = 0, 1, 2, 3 tenemos que
$$S_i = \frac{1}{5} \text{ y } t_i = 0$$

Ya que
$$p_i = P(X = i) = 0.12 = 0.6 * \frac{1}{5} + 0.4 * 0$$

Para i = 4 tenemos que
$$S_i = \frac{1}{5}$$
 y $t_i = \frac{1}{2}$

Ya que
$$p_i = P(X = i) = 0.32 = 0.6 * \frac{1}{5} + 0.4 * \frac{1}{2}$$

Para i = 5 tenemos que
$$S_i = 0$$
 y $t_i = \frac{1}{2}$

Ya que
$$p_i = P(X = i) = 0.32 = 0.6 * 0 + 0.4 * \frac{1}{2}$$

Por lo tanto llegamos a tener

$$S_i = \frac{1}{5}$$
 para i = 0, 1, 2, 3, 4

$$t_i = \frac{1}{2}$$
 para i = 4, 5

Sea u un valor aleatorio generado independiente, si este es menor a α (0.6) generamos un valor de $X_1 = \{0, 1, 2, 3, 4\}$

Vemos que la probabilidad acumulado sería,

$$u = \sum_{i=1}^{x} \frac{1}{5} = \frac{x}{5} \implies x = 5u$$

 $u \in (0,1)$ por lo que solo consideramos la parte entera de 5u.

Si u es mayor a α (0.6) generamos un valor de $X_2 = \{4, 5\}$

Vemos que la probabilidad acumulado sería,

$$u = \sum_{i=1}^{x} \frac{1}{2} = \frac{x}{2} \Rightarrow x = 2u$$

 $u \in (0,1)$ debemos considerar la parte entera de 5u más 4 unidades para ajustar los valores resultantes sean $x \in \{4,5\}$.

Finalmente podemos generar valores de X mediante los siguientes pasos

- ullet Generar independientemente dos valores $u_{_1} y \, u_{_2}$
- Si $u_1 < 0.6$ entonces utilizamos la función $X = [5u_2]$
- Si $u_1 \ge 0.6$ entonces utilizamos la función $X = [2u_2] + 4$

Ejercicio 2: Función Acumulada Ponderada

Escriba un programa tal que, dada una función de masa de probabilidad (pi para i de 1 a n), proporcione como salida el valor de una variable aleatoria con esta función masa. Haga un histograma para alguna distribución de ejemplo.

Ejercicio 3: Valor Presente Neto

Suponga que usted es gerente de proyecto Inversiones ChilerasS.A.; y debe elegir entre dos proyectos a realizar, la construcción de un Hotel o la construcción de de un Centro Comercial. Los flujos de caja esperados para cada proyecto son los siguientes:

Tlempo	Vt	
0	-800	
1	normal(-800,50)	
2	normal(-800,100)	
3	normal(-700,150)	
4	normal(300,200)	
5	normal(400,200)	
6	normal(500,200)	
7	uniform(200,8440)	

Proyecto Centro Comercial				
Tlempo	Vt			
0	-900			
1	normal(-600,50)			
2	normal(-200,50)			
3	normal(-600,100)			
4	normal(250,150)			
5	normal(350,150)			
6	normal(400,150)			
7	uniform(1600,6000)			

Si el parámetro que quiere utilizar para comprar ambos proyectos es el Valor Presente Neto al 10% del costo de capital.

Tasks:

1. Realice tres simulaciones para determinar cuál de los proyectos es el más rentable. Utilice 100, 1,000 y 10,000 iteraciones

Simulando la rentabilidad del proyecto del Hotel

Resultados del proyecto Hotel usando 100 iteraciones El valor esperado del proyecto hotelero es: 1472.9 La desviación estándar del proyecto hotelero es: 1059.3

Resultados del proyecto Hotel usando 1000 iteraciones El valor esperado del proyecto hotelero es: 1687.97 La desviación estándar del proyecto hotelero es: 1087.64

Resultados del proyecto Hotel usando 10000 iteraciones El valor esperado del proyecto hotelero es: 1650.28 La desviación estándar del proyecto hotelero es: 1090.49

Simulando la rentabilidad del provecto del Centro Comercial

Resultados del proyecto Centro Comercial usando 100 iteraciones El valor esperado del proyecto CC es: 1457.67 La desviación estándar del proyecto CC es: 707.24

Resultados del proyecto Centro Comercial usando 1000 iteraciones El valor esperado del proyecto CC es: 1560.79 La desviación estándar del proyecto CC es: 752.84

Resultados del proyecto Centro Comercial usando 10000 iteraciones El valor esperado del proyecto CC es: 1545.99 La desviación estándar del proyecto CC es: 744.07

Ejercicio 4: Repartidor de Periódicos

Suponga que usted es un voceador de periódicos que quiere saber si le conviene más comprar diariamente 9, 10 u 11 periódicos. Además sabe que el 30% de los días le piden 9, el 40% de los días le piden 10 y el 30% de los días le piden 11 periódicos. Si usted compra los periódicos para luego venderlos, y paga \$1.50 por periódico, lo vende a \$2.50 y por cada periódico no vendido se le reembolsa \$0.50.

Tasks:

1. ¿Cuál es la cantidad que más le conviene comprar todos los días? Simule para un mes, un año y diez año?

Monte Carlo Simulation for 30 days

Monte Carlo Simulation for 365 days

Monte Carlo Simulation for 3650 days

Con las gráficas anteriores podemos observar que al voceador le conviene comprar siempre 9 periódicos diarios. De esta manera se está asegurando de que no tenga excedentes y por lo tanto, que no pierda dinero.