

Satellite tracking

There are more and more satellites that orbit the Earth. Tracking satellites in realtime is important for defense and monitoring the sky, as well as to obtain good astronomical data.

In this lecture/project, we will learn:

- > Search for the satellite's orbit in the database and their visibility.
- > Take consecutive images of the satellite.
- Calculate the orbital elements.

Objects around the Earth

- Natural objects:
 - Asteroids, Comets ...

- Artificial objects:
 - ➤ Active/Inactive satellites
 - ➤ Rocket booster
 - ➤ Debris from explosions/collisions in space

What is the satellite?

Artificial satellite:

- > Man-made.
- Reconnaissance, mapping, weather forecast, ocean/forest monitoring, communication, navigation...

Orbital type:

- ➤ LEO/MEO/GEO/HEO
- Constellation

Orbital elements

Element	Sign	Definition
1. Inclination	i	Angle between the orbital plane and plane of reference
2. Longitude of ascending node	Ω	horizontally orients the ascending node of the ellipse with respect to the reference direction $\boldsymbol{\Upsilon}$
3. Argument of periapsis	ω	the orientation of the ellipse in the orbital plane
4. Semi-major axis	а	half the distance between the apoapsis and periapsis
5. Eccentricity	e	shape of the ellipse
6. True anomaly	ν	the position of the orbiting body along the ellipse at a specific time

Two-line element set

This is a data format encoding a list of orbital elements of an Earth-orbiting object for a given point in time.

www.celestrak.com, www.n2yo.com

Two-line element set

Line 1						
Column	Description					
01	Line Number of Element Data					
03-07	Satellite Number					
08	Classification (U=Unclassified)					
10-11	International Designator (Last two digits of launch year)					
12-14	International Designator (Launch number of the year)					
15-17	International Designator (Piece of the launch)					
19-20	Epoch Year (Last two digits of year)					
21-32	Epoch (Day of the year and fractional portion of the day)					
34-43	First Time Derivative of the Mean Motion					
45-52	Second Time Derivative of Mean Motion (Leading decimal point assumed)					
54-61	BSTAR drag term (Leading decimal point assumed)					
63	Ephemeris type					
65-68	Element number					
69	Checksum (Modulo 10) (Letters, blanks, periods, plus signs = 0; minus signs = 1)					

	Line 2					
Column	Description					
01	Line Number of Element Data					
03-07	Satellite Number					
09-16	Inclination [Degrees]					
18-25	Right Ascension of the Ascending Node [Degrees]					
27-33	Eccentricity (Leading decimal point assumed)					
35-42	Argument of Perigee [Degrees]					
44-51	Mean Anomaly [Degrees]					
53-63	Mean Motion [Revs per day]					
64-68	Revolution number at epoch [Revs]					
69	Checksum (Modulo 10)					

Information obtained:

> Azimuth, altitude

Observation conditions:

- ➤ At dusk, at a certain angle to the sun
- ➤ Obscured by clouds, interference from ambient light

Observation ability:

- > Even distant orbits
- Small objects

Cost:

> Low

Prediction of Space Station appearance in next few days.

Start		Max altitude			End		All passes	
Date, Local time	Az	Local time	Az	El	Local time	Az	Mag	Info
27-Jul 22:43	NW 307°	22:48	SW 237°	26°	22:53	SSE 164°	-	Map and details
28-Jul 10:26	S 179°	10:30	SE 125°	11°	10:34	ENE 71°	+0.2	Map and details
28-Jul 12:02	SW 238°	12:07	NW 309°	25°	12:11	NNE 20°	-0.8	Map and details
28-Jul 21:54	NW 319°	22:00	SW 225°	66°	22:05	SE 148°	-	Map and details
29-Jul 11:13	SW 223°	11:18	NW 312°	60°	11:23	NE 32°	-2.1	Map and details
29-Jul 21:06	NNW 331°	21:11	NE 47°	46°	21:16	SE 133°	+1.3	Map and details
30-Jul 10:24	SSW 208°	10:29	SE 132°	51°	10:34	NE 44°	-1.9	Map and details
30-Jul 20:17	NNW 343°	20:22	NE 51°	20°	20:27	ESE 117°	+0.7	Map and details
30-Jul 21:54	WNW 294°	21:59	SW 235°	14°	22:03	S 178°	-	Map and details

 Legend:
 Not visible
 Marginal
 Good
 Excellent

- ➤ Wide field of view telescope with digital camera/CCD
- ➤ Digital camera with long focal length lens
- ➤ Computerized telescope mount

Get the proper focus by using the Bahtinov mask with a bright star.

Standard interface with telescopes

The ASCOM standard interface is used to control multiple observatory devices simultaneously, such as telescopes, domes, focusers, CCDs, filters, etc.

ASCOM is a widely used standard interface in both professional and amateur astronomy. With this standard interface, users can develop many more applications to expand the working capabilities of the observatory, telescopes, ... on many programming languages such as C++, C#, Java...

Method of calculating orbital elements

- To determine the orbit of a flying object, at least three observations are required, at times t1, t2, t3.
- The star coordinates determination algorithm analyzes the image and calculates the satellite coordinates (plate solving algorithm).
- Other algorithms are used to calculate the set of six orbit parameters of the object.

Three observations for one satellite. Right: at different locations Left: at different times

How to take consecutive images

With the time of appearance in the sky at a specific time and location, we divide it into segments. Each segment will have coordinates and times corresponding to each starting point of that segment. This segment must be long enough so that after taking a long exposure photo, there is still time for the telescope (and dome, if there is one) to move to the new point and stabilize.

Support software

Satellite appearances

ISS appearance within the next three days

```
ATLAS CENTAUR R/B (06155): Thu 18/Jul/2024 03:00:02 --> 03:03:50 - 228
          Azi = 13.79. Alt = 16.218
          Max: Azi = 42.367. Alt = 15.463
          Azi = 64.709, Alt = 10.068
          All points: 5
             03:00:02 --> 03:00:06 Azi = 13.79 At = 16.218
             03:00:52 -> 03:00:56. Azi = 26.506. Alt = 16.691
             03:01:42 -> 03:01:46. Azi = 39.038. Alt = 15.891
             03:02:32 -> 03:02:36. Azi = 50.39. At = 14.049
             03:03:22 -> 03:03:26. Azi = 60.056. Alt = 11.581
      SL-16 R/B (23405): Thu 18/Jul/2024 03:00:02 --> 03:05:10 - 308s
      H-2A R/B (27601): Thu 18/Jul/2024 03:00:02 --> 03:02:36 - 154s
      SL-16 R/B (31793): Thu 18/Jul/2024 03:03:50 --> 03:13:40 - 590s
      KORONAS-FOTON (33504): Thu 18/Jul/2024 03:05:26 --> 03:12:28 - 422s
      SL-8 R/B (21876): Thu 18/Jul/2024 03:12:12 --> 03:24:00 - 708s
      SL-16 R/B (23705): Thu 18/Jul/2024 03:23:00 -> 03:32:14 - 554s
      SL-3 R/B (14208): Thu 18/Jul/2024 03:31:50 --> 03:37:58 - 368s
      COSMOS 2219 (22219): Thu 18/Jul/2024 03:48:22 --> 03:58:58 - 636s
   SL-16 R/B (25407): Thu 18/Jul/2024 03:50:04 --> 04:00:26 - 622s
      SL-14 R/B (18153): Thu 18/Jul/2024 04:03:26 --> 04:10:18 - 412s
      SL-16 R/B (22803): Thu 18/Jul/2024 04:15:58 -> 04:26:56 - 658s
SL-16 R/B (24298): Thu 18/Jul/2024 04:18:52 --> 04:30:08 - 676s
   OAO 2 (03597): Thu 18/Jul/2024 04:22:02 --> 04:28:14 - 372s
    SAOCOM 1B (46265): Thu 18/Jul/2024 04:28:28 --> 04:32:40 - 252s
      SL-8 R/B (05730): Thu 18/Jul/2024 04:36:20 -> 04:49:12 - 772s
```

Tonight mode for all satellite in selected category

Observation log

Site: ExploraScience

Longitude: 109.212927798986, Latitude: 13.7184543262769, Altitude: 0

Telecsope: Celestron Nexstar+ SLT 5.31

Captured device: EOS1

FoV: 5.1° x 3.4°

Satellite name: H-2AR_B-27601 Satellite NORAD ID: 27601

Satellite TLE:

1 27601U 02056E 22128.82045977 .00000131 00000+0 61908-4 0 9998 2 27601 98.1778 137.7203 0072500 20.5947 152.0765 14.32060210 13483

Segments count: 4 Shot per segment: 2

Exposed: 4

Number of images: 8

Saved directory: E:\0Satellite images\20220506\H-2AR_B-27601 09May20221840 Images info:

No	Name = Time	Alt	Azi
1	09May2022-184028	11.973	236.273
2	09May2022-184033	11.973	236.273
3	09May2022-184124	13.833	247.971
4	09May2022-184129	13.833	247.971
5	09May2022-184220	14.522	260.8
6	09May2022-184225	14.522	260.8
7	09May2022-184316	13.882	273.674
8	09May2022-184321	13.882	273.674

Satellite images

Satellite images

Stars and satellite track coordinates

Stars and satellite track coordinates

Satellite observing network

- Current telescopes devoting time to LEOsat observations are located in Chile, Spain, Vietnam and South Korea.
- Measure any orbitalattitude aspect to satellite brightness for different geographical locations.
- Measure TLE
 accuracy as a
 function of longitude
 (time zone), to aid
 satellite visibility
 forecasting.

