Asymptotic Analysis

1. Definitions

- · Algorithm: A sequence of steps to produce a solution to a problem, given a set of inputs
- · Data Structure: A representation of data in the computer's main memory (so that it can be used efficiently)
- Abstract Data Type (ADT): A collection of data and a set of operations that can be performed on the collection so that the data behave in a well-defined way

2. Suppose we have a collection of people at a concert. How are we going to find a specific person, given their name?

```
T(n) = Running time

n = input size
```

- * The input size is indicated with the number n; sometimes there can be multiple inputs.
- Ask them to stand up and wave: T(n) = 60
- Ask everyone in the audience, one at a time, if their name is the same as the given: T(n) = 7n + 4

3. Asymptotic Analysis

There are different metrics of algorithms:

- Time complexity: How long does it take to complete the given task?
- Space complexicity: How much memory does it take to execute the task?

Running time is a function of n such as:

- T(n) = 4n + 5
- T(n) = 0.5nlogn 2n + 7
- $T(n) = 2^n + n^3 + 3n$

O-Notation (Classification for running time)

 $T(n) \in O(f(n))$ if there are constants c and n_0 such that $T(n) \le c \cdot f(n)$ for all $n \ge n_0$

- T(n) is bounded from above by c-f(n)
- i.e. the growth of T(n) is no faster than f(n)

 $T(n) \in \Omega(f(n)) \text{ if there are constants d and } n_0 \text{ such that } T(n) \leq d \cdot f(n) \text{ for all } n \geq n_0$

- T(n) is bounded from below by $d \cdot f(n)$
- i.e. the growth of T(n) is no slower than f(n)

 $T(n) \in \Theta(f(n))$ if $T(n) \in O(f(n))$ and $T(n) \in \Omega(f(n))$

- T(n) is bounded from above and below by f(n)
- i.e. T(n) grows at the same rate as f(n)

Asymptotic Analysis hacks:

Eliminate low order terms, and then constant coefficients.

T(n)	Eliminate low order	f(n)
4n + 5	4n	n
0.5nlogn - 2n + 7	0.5nlogn	nlogn
$2^{n} + n^{3} + 3n$	2 ⁿ	2 ⁿ
nlog(n²) T(n)	2nlogn Eliminate low order	nlogn f(n)

Examples:

- $10,000n^2 + 25n \in \Theta(n^2)$
- $10^{-10}n^2 \in \Theta(n^2)$
- $nlogn \in O(n^2)$
- $nlogn \in \Omega(n)$
- $n^3 + 4 \in O(n^4)$, but not $\Theta(n^4)$
- $n^3 + 4 \in \Omega(n^2)$, but not $\Theta(n^2)$

Typical growth rates in order

Name	Big-O Notation	Remarks
Constant	O(1)	
Logarithmic	O(logn)	$log_k n, log(n^2) \in O(logn)$
Poly-log	O((logn) ^k)	
Sublinear	O(n ^c)	c is a constant, 0 < c < 1
Linear	O(n)	
Log-linear	O(nlogn)	
Superlinear	O(n ^{1 + c})	c is a constant, 0 < c < 1
Quadratic	O(n ²)	
Cubic	O(n ³)	
Polynomial	O(n ^k)	k is a constant; "tractable"
Exponential	O(cn)	c is a constant > 0; "intractable"

Dominance

We can look at the dominant term to guess at a big-O growth rate.

e.g.
$$T(n) = 2n^2 + 600n + 60000$$

- Up to n = 100, the constant term dominates
- Between n = 100 and n = 300, the linear term dominates
- Beyond n = 300, the quadratic term dominates, $T(n) \in O(n^2)$

Analyzing Code

Types of analysis

- Bound flavour
 - Upper bound (O)
 - Lower bound (Ω)
 - Asymptotically tight (Θ)
- · Analysis case
 - Worst case (adversary)
 - o Average case
 - o Best case / "lucky" case
 - o "common" case
- Analysis quality
 - Loose bound (any true analysis)
 - Tight boud (no better "meaningful" bound that is asymptotically different)