

From Regression to Deep Learning Practice LESS Deep Learning Learn - Experiment - Share - Seek

Barathi Ganesh HB

Centre for Excellence in Computational Engineering and Networking (CEN)
Amrita School of Engineering, Coimbatore
Amrita Vishwa Vidyapeetham, India
email: barathiganesh.hb@gmail.com

Outline

ML Introduction

Regression to Deep Learning

Need of Deep Learning

Matrix Representation

Machine Learning Introduction

Amrita Vishwa Vidyapeetham

About 31,00,00,000 results (0.50 seconds)

Machine learning - Wikipedia

https://en.wikipedia.org/wiki/Machine_learning ▼

Machine learning is a field of computer science that gives computers the ability to learn without being explicitly programmed. Arthur Samuel, an American pioneer in the field of computer gaming and artificial intelligence, coined the term "Machine Learning" in 1959 while at IBM.

Machine learning · Machine Learning (journal) · Timeline of machine learning · H2O

- Reducing human/machine efforts required to perform a task (time optimization).
- Increasing the performance of a task (efficiency optimization).

Steps in Machine Learning

- Collecting data
- Preparing the data
- Training a model
- Evaluating the model
- Improving the performance

Supervised Learning

source: www.allprogrammingtutorials.com/tutorials/introduction-to-machine-learning.php

source: https://medium.com/@ali_88273/regression-vs-classification-87c224350d69

Common Supervised Learning Algorithms

- Linear Regression
- Logistic Regression
- Support Vector Machines
- Support Vector Regression
- Decision Trees
- Random Forest Tree
- Naive Bayes

Unsupervised Learning

source: www.allprogrammingtutorials.com/tutorials/introduction-to-machine-learning.php

Clustering

source: https://towardsdatascience.com/clustering-unsupervised-learning-788b215b074b

Dimensionality Reduction

source: http:

//spie.org/newsroom/3560-dimensionality-reduction-of-multidimensional-satellite-imagery?SS0=1

Common Unsupervised Learning Algorithms

- K-means
- Affinity Propagation
- Singluar Value Decomposition
- Non-negative matrix factorization

?

$$2x = 6 \tag{1}$$

$$(2x - 6) = 0 (2)$$

$$x = ? (3)$$

$$2x = 6 \tag{4}$$

$$(2x - 6) = 0 (5)$$

$$x = ? (6)$$

$$x = 6/2 = 3 \tag{7}$$

$$2(3) - 6 = 0 \tag{8}$$

$$2a + b + c = 4 \tag{9}$$

$$a + 3b + 2c = 5 (10)$$

$$a = 6 \tag{11}$$

$$\begin{bmatrix} 2 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$$
 (12)

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 0 & 0 \end{bmatrix}, x = \begin{bmatrix} a \\ b \\ c \end{bmatrix}, b = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$$
 (13)

$$\begin{bmatrix} 2 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$$
 (14)

$$Ax = b \tag{15}$$

$$(Ax - b) = ? \tag{16}$$

$$\begin{bmatrix} 2 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$$
 (17)

$$Ax = b \tag{18}$$

$$(Ax - b) = 0 (19)$$

$$x = \begin{bmatrix} a \\ b \\ c \end{bmatrix} = ? \tag{20}$$

What is Regression

Regression?

What is Regression

$$x + y = z$$

Solving Ax=b

$$\begin{bmatrix} 2 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$$
 (21)

$$X W = Y \tag{22}$$

$$(X W - Y) = 0 \tag{23}$$

$$W = \begin{bmatrix} a \\ b \\ c \end{bmatrix} = ? \tag{24}$$

$$X^{\dagger} X W = X^{\dagger} Y \tag{25}$$

$$I W = X^{\dagger} Y \tag{26}$$

$$W = X^{\dagger} Y \tag{27}$$

Decimal Value Prediction

ID	digit1	digit2	digit3	value
1	0	0	0	0
2	0	0	1	1
3	0	1	0	2
4	0	1	1	3
5	1	0	0	4
6	1	0	1	5
7	1	1	0	6
8	1	1	1	7

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} w1 \\ w2 \\ w3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{bmatrix}$$
(28)

$$X \mathbf{w} = \mathbf{y} \tag{29}$$

$$X^{\dagger} X \mathbf{w} = X^{\dagger} \mathbf{y} \tag{30}$$

$$\mathbf{w} = X^{\dagger} \mathbf{y} \tag{31}$$

$$\mathbf{w} = X^{\dagger} \ \mathbf{y} = X^{\dagger} \begin{vmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{vmatrix} = \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} w1 \\ w2 \\ w3 \end{bmatrix}$$
 (32)

$$X \mathbf{w} = \mathbf{y} \tag{33}$$

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{bmatrix}$$
(34)

$$X \mathbf{w} = \mathbf{y}^{pre} \tag{35}$$

training error =
$$abs(\mathbf{y} - \mathbf{y}^{pre})$$
 (36)

training error =
$$sum(abs(y - y^{pre}))$$
 (37)

$$\mathbf{y} - \mathbf{y}^{pre} = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{bmatrix} - \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 7 \end{bmatrix} = sum \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = 0$$
 (38)

$$\begin{bmatrix} digit1 & digit2 & digit1 \end{bmatrix} \begin{bmatrix} w1 \\ w2 \\ w3 \end{bmatrix} = \begin{bmatrix} value \end{bmatrix}$$
 (39)

$$digit1 * w1 + digit2 * w2 + digit3 * w3 = value$$
 (40)

$$\begin{bmatrix} digit1 & digit2 & digit1 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix} = [value]$$
 (41)

$$digit1 * 4 + digit2 * 2 + digit3 * 1 = value$$
 (42)

Linear Regression

source: solutions4statistics.com

Decimal Value Prediction

ID	digit1	digit2	digit3	value	decision
1	0	0	0	0	0
2	0	0	1	1	0
3	0	1	0	2	0
4	0	1	1	3	0
5	1	0	0	4	1
6	1	0	1	5	1
7	1	1	0	6	1
8	1	1	1	7	1

$$\begin{bmatrix} digit1 & digit2 & digit3 \end{bmatrix} \begin{bmatrix} w1 \\ w2 \\ w3 \end{bmatrix} = \begin{bmatrix} value \end{bmatrix}$$
 (43)

$$digit1 * w1 + digit2 * w2 + digit3 * w3 = value$$
 (44)

$$Prediction = \begin{cases} 1 & \text{if } 4 \geqslant \text{value} \\ 0 & \text{else} \end{cases} \tag{45}$$

Logistic Regression

source: solutions4statistics.com

Logistic - Sigmoid Function

https://sebastianraschka.com/images/faq/logisticregr-neuralnet/sigmoid.png

Logistic - Sigmoid

$$\Phi(z) = \frac{1}{1 + exp^{-z}} \tag{46}$$

$$\Phi(-6) = \frac{1}{1 + \exp^{-(-6)}} = \frac{1}{1 + 403.42} = 0.0024 \tag{47}$$

$$\Phi(0) = \frac{1}{1 + exp^0} = \frac{1}{1+1} = 0.5 \tag{48}$$

$$\Phi(6) = \frac{1}{1 + exp^{-(6)}} = \frac{1}{1 + 0.0024} = 0.997 \tag{49}$$

Logistic Regression

$$\Phi(z) = \frac{1}{1 + \exp^{-z}} \tag{50}$$

$$\mathbf{y} = \Phi(X \ \mathbf{w}) = \frac{1}{1 + exp^{-(X \ \mathbf{w})}}$$
 (51)

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} w1 \\ w2 \\ w3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$
 (52)

$$X \mathbf{w} = \mathbf{y} \tag{53}$$

$$X^{\dagger} X \mathbf{w} = X^{\dagger} \mathbf{y} \tag{54}$$

$$\mathbf{w} = X^{\dagger} \mathbf{y} \tag{55}$$

$$\mathbf{w} = X^{\dagger} \ \mathbf{y} = X^{\dagger} \begin{vmatrix} 0\\0\\0\\1\\1\\1\\1 \end{vmatrix} = \begin{bmatrix} 1.24054754\\-0.11269202\\-0.11269202 \end{bmatrix} = \begin{bmatrix} w1\\w2\\w3 \end{bmatrix}$$
 (56)

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1.24054754 \\ -0.11269202 \\ -0.11269202 \end{bmatrix} = sigmoid \begin{pmatrix} 0.0 \\ -0.11269202 \\ -0.22538404 \\ 1.24054754 \\ 1.12785552 \\ 1.12785552 \\ 1.0151635 \end{bmatrix}$$
 (57)

 $X \mathbf{w} = sigmoid(\mathbf{y}^{pre})$

(58)

$$sigmoid \begin{pmatrix} \begin{bmatrix} 0.0 \\ -0.11269202 \\ -0.11269202 \\ -0.22538404 \\ 1.24054754 \\ 1.12785552 \\ 1.12785552 \\ 1.0151635 \end{bmatrix} = \begin{bmatrix} 0.5 \\ 0.47185 \\ 0.47185 \\ 0.44389 \\ 0.77565 \\ 0.75544 \\ 0.75544 \\ 0.73402 \end{bmatrix}$$
 (59)

$$X \mathbf{w} = sigmoid(\mathbf{y}^{pre}) \tag{60}$$

training error =
$$sum(abs(\mathbf{y} - sigmoid(\mathbf{y}^{pre})))$$
 (61)

training error =
$$sum(abs(\mathbf{y} - sigmoid(\mathbf{y}^{pre}))$$
 (62)

$$abs(\mathbf{y} - sigmoid(\mathbf{y}^{pre})) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$
(63)

training error
$$= 0$$
 (64)

$$\begin{bmatrix}
0.5 \\
0.47185 \\
0.47185 \\
0.44389 \\
0.77565 \\
0.75544 \\
0.75544 \\
0.73402
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
0 \\
1 \\
1 \\
1
\end{bmatrix}$$
(65)

$$Prediction = \begin{cases} 1 & \text{if } sigmoid(\mathbf{y}^{pre}) \geqslant 0.5 \\ 0 & \text{else} \end{cases}$$
 (66)

$$\begin{bmatrix} digit1 & digit2 & digit3 \end{bmatrix} \begin{bmatrix} 1.24054754 \\ -0.11269202 \\ -0.11269202 \end{bmatrix} = [value]$$
 (67)

$$digit1 * w1 + digit2 * w2 + digit3 * w3 = value$$
 (68)

$$sigmoid(\mathbf{y}^{pre}) = \frac{1}{1 + \exp^{-(\operatorname{digit1} * w1 + \operatorname{digit2} * w2 + \operatorname{digit3} * w3)}}$$
 (69)

$$Prediction = \begin{cases} 1 & \text{if } sigmoid(\mathbf{y}^{pre}) \ge 0.5\\ 0 & \text{else} \end{cases}$$
 (70)

Evaluating the model

Accuracy

$$Accuracy = \frac{\# \ correctly \ classified \ instances}{total\# \ instances}$$
 (71)

Evaluating the model

$$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ \end{bmatrix} = = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ \end{bmatrix} = \begin{bmatrix} False \\ True \\ \end{bmatrix}$$

(72)

Accuracy =
$$6 / 8 * 100 = 75 \%$$

Improving the performance

10 - fold 10-cross validation

Source: wikipedia

Logistic Regression as a Neuron

 $\verb|www.techmaru.com/technology/artificial-neural-networks/neural-network-elements| \\$

Neuron to Neurons

hidden layer

Amrita Vishwa Vidyapeetham

Single Layer Network

www.extremetech.com/extreme/

215170-artificial-neural-networks-are-changing-the-world-what-are-they

Multi Layer Network

Why Deep Learning?

Source: https:

 $// leonardo araujos antos. gitbooks.io/artificial-inteligence/content/linear_classification. html \\$

Why Deep Learning?

BIG DATA & DEEP LEARNING

Source: https://qph.ec.quoracdn.net/main-qimg-bf69c291005e68620a1bef39ae8f029e-c

Why now Deep Learning?

Common Deep Learning Algorithms

- Convolutional Neural Network
- Recurrent Neural Network
- Long-Short Term Memory Network
- Deep Neural Network
- Auto Encoders

Matrix Representation

Linear Equations to Matrix

$$2a + b + c = 4 (73)$$

$$a + 3b + 2c = 5 (74)$$

$$a = 6 \tag{75}$$

Linear Equations to Matrix

$$\begin{bmatrix} 2 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$$
 (76)

Linear Equations to Matrix

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 0 & 0 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$$
 (77)

Text to Matrix

- **S1:** We are in CEN.
- **S2:** CEN is in Amrita.
- S3: Amrita is in CBE.

Text to Matrix

- **\$1**: We are in CEN.
- **\$2**: CEN is in Amrita.
- S3: Amrita is in CBE.

Vocabulary = amrita, are, cen, cbe, in, is, we

Text to Matrix

Table: Text Representation

	amrita	are	cen	cbe	in	is	we
S1	0	1	1	0	1	0	1
S2	1	0	1	0	1	1	0
S 3	1	0	0	1	1	1	0

Source: blog.kleinproject.org/?p=588

Source: www.cbc.ca/news/trending

Source: http://slideplayer.com/slide/8752313/

88	82	84	88	85	83	80	93	102
88	80	78	80	80	78	73	94	100
85	79	8	78	77	74	65	91	99
38	35	40	35	39	74	77	70	65
20	25	23	28	37	69	64	60	57
22	26	22	28	40	65	64	59	34
24	28	24	30	37	60	58	56	66
21	22	23	27	38	60	67	65	67
23	22	22	25	38	59	64	67	66

Source: www1.adept.com/main/KE/DATA/ACE/AdeptSight_User/Vision_Basics_Mode.html

Value of circled element = k

Source: slideplayer.com/slide/8752313/

Thank You.

you can follow me through:

www.linkedin.com/in/barathiganeshhb https://barathiganesh-hb.github.io/ https://qithub.com/BarathiGanesh-HB/