NAME: Jianfeng Zhao, Email: jzhao65@ucsc.edu

February 2, 2018

Qustion 1

Question 2

2.1

According to the Amdahl's Law, f(e) = 0.25, Speedup(e) = 20, hence, the over all speedup is:

$$Speedup_{all} = \frac{1}{(1 - f(e)) + \frac{f(e)}{Speedup(e)}}$$

$$= \frac{1}{(1 - 0.25) + \frac{0.25}{20}}$$

$$= \frac{80}{61}$$

According to Amdahl's Law, the maximum possible theoretical speedup is:

$$MaxSpeedup = \frac{1}{1 - f(x)}$$

According the the question, f(x) = 0.4, Hence,

$$MaxSpeedup = \frac{1}{1 - 0.4} = \frac{5}{3}$$

2.3

According to the question, $Speedup_{gpu_cpu} = \frac{80}{61}$ and Vector can improve 20% code which means f(e) = 0.2, Hence, According to Amdahl's Law:

$$Speedup_{max} = \frac{1}{1 - f(x)} = \frac{5}{4} = 1.25$$

But $Speedup_{gpu_cpu} = \frac{80}{61} = 1.31$, which is greater than 1.25. Which means this configuration will never reach the configuration of GPU-CPU configuration.

Hence, Vector to match the overall speedup of the GPU+CPU configuration in the part one is impossible.

Question 3

According to the question, instruction run like below:

1	add	a3,a5,32	F0 F1 D0 X0 W0					
2	lw	a4,0(a5)	F0 F1 D0 X0 X1 X2 W0					
3	addw	a1,a1,a4	F0 F1 D0 D0 D0 X0 W0					
4	add	a5,a5,4	F0 F1 F1 D0 X0 W0					
5	bne	a5,a3,.L2	F0 F0 F1 D0 X0 W0					
6	lw	a4,0(a5)	/ / / / F0 F1 D0 X0 X1 X2 W0					
7	addw	a1,a1,a4	F0 F1 D0 D0 D0 X0 W0					
8	add	a5,a5,4	F0 F1 F1 F1 D0 X0 W0					
9	bne	a5,a3,.L2	F0 F0 F1 D0 X0 W0					
10) lui	a0,%hi(.I	(C1) / / / F0 F1 D0 X0 W0					

Because Load instruction need to takes 3 cycle. Line 2 need 3 cycles to excute load word.

Also, this data hazerd can be solute by data forwarding. Hence, line 3 need to wait in Instruction Decode for 2 cycles. line 4, 5 also need to wait 2 cycles in F1 and F0 individually.

As well as RISCV ISA don't have delay slot, therefor, in line 6, CPU must stall for 5 cycles to wait the answer of instruction BNE.

BNE will one taken instruction. So, we loop one time.

Finally, cycle of every instruction as below:

Instruc	tion	F	D	X	W
add	a3,a5,32	1, 3	3, 4	4, 5	5, 6
lw	a4,0(a5)	2, 4	4, 5	5, 8	8, 9
addw	a1,a1,a4	3, 5	5, 8	8, 9	9, 10
add	a5,a5,4	4, 8	8, 9	9, 10	10, 11
bne	a5,a3,.L2	5, 9	9, 10	10, 11	11, 12
lw	a4,0(a5)	11, 13	13, 14	14, 17	17, 18
addw	a1,a1,a4	12, 14	14, 17	17, 18	18, 19
add	a5,a5,4	13, 17	17, 18	18, 19	19,20
bne	a5,a3,.L2	14, 18	18, 19	19, 20	20, 21
lui	a0,%hi(.LC1)	20, 22	22, 23	23, 24	24, 25