MATH 602(HOMEWORK 3)

HIDENORI SHINOHARA

1. Exercises

Exercise. (Exercise 1) The ideal generated by the three polynomials contains $-yz^4 + yz^2 + y = (xy^2 - xz + y) - y(xy - z^2) + z(x - yz^4)$. However, its leading term $-yz^4$ is not in the ideal generated by the leading terms of the three polynomials.

Exercise. (Exercise 2) Remainder = $-y^{15} + y^{14} + 7y^{13} - 7y^{12} - 21y^{11} + 21y^{10} + 35y^9 - 35y^8 - 35y^7 + 35y^6 + 21y^5 - 21y^4 - 7y^3 + 7y^2 + y - 1$, $q_1 = x^6y^{14} - 6x^6y^{12} + 15x^6y^{10} - 20x^6y^8 + 15x^6y^6 - 6x^6y^4 + x^6y^2 + x^2y^{14} - 6x^2y^{12} + 15x^2y^{10} - 20x^2y^8 + 15x^2y^6 - 6x^2y^4 + x^2y^2$, $q_2 = 0$ Remainder = $y^{23} + y^{11} - y + 1$, $q_1 = x^6y^2 + x^5y^5 + x^4y^8 + x^3y^{11} + x^2y^{14} + x^2y^2 + xy^{17} + xy^5 + y^{20} + y^8$, $q_2 = 0$

Exercise. (Exercise 3) $z^3 - x^2 = (y - x^2) - (y - z^3)$ is in the ideal generated by the two polynomials, but the leading term is not in the ideal generated by the two polynomials.

Exercise. (Exercise 4) $0 \in \sqrt{0}$, $a, b \in \sqrt{0} \implies (a+b)^{m+n-1} = \sum_{i=0}^{m+n-1} {m+n-1 \choose i} a^i b^{m+n-1-i} = 0$, and $\forall a \in \sqrt{0}, \forall x \in R, (ax)^n = a^n x^n = 0$, so $\sqrt{0}$ is an ideal.

Exercise. (Exercise 5)

Solve this.

Exercise. (Exercise 6) Tensoring an exact sequence with $M \otimes_A N$ is the same as tensoring it with M first and tensoring the resulting sequence with N later.

Exercise. (Exercise 7) Since $0 \to I \xrightarrow{i} R \xrightarrow{q} R/I \to 0$ is exact, $I \otimes M \to R \otimes M \to (R/I) \otimes M \to 0$ is exact.

$$(R/I) \otimes M = \operatorname{im}(q \otimes \operatorname{Id})$$

 $\cong R \otimes M / \ker(q \otimes \operatorname{Id})$
 $\cong R \otimes M / \operatorname{im}(i \otimes \operatorname{Id})$
 $\cong R \otimes M / I \otimes M.$

Now consider $\phi: R \otimes M \to M/IM$ that is the composition of $R \otimes M \to M: x \otimes y \mapsto xy$ and $M \to M/IM: x \mapsto x + IM$. In other words, ϕ is $x \otimes y \mapsto xy + IM$. Because the two maps are both surjective, ϕ must be surjective. The kernel of ϕ is $I \otimes M$ because

- For any $x \otimes y \in I \otimes M$, $\phi(x \otimes y) = xy + IM = 0$ since $xy \in IM$.
- If $\phi(x \otimes y) = 0$, then $xy \in IM$. In other words, xy = x'y' for some $x' \in I$ and $y' \in M$. Then $x \otimes y = 1 \otimes xy = 1 \otimes x'y' = x' \otimes y' \in I \otimes M$.

Therefore, $M/IM \cong (R \otimes M)/(I \otimes M) \cong (R/I) \otimes M$.

Exercise. (Exercise 8) Let pa+qb=1 for some $p,q\in\mathbb{Z}$. Then $1\otimes 1=(pa+qb)\otimes (pa+qb)=pa\otimes pa+pa\otimes qb+qb\otimes pa+qb\otimes qb=0+0+0+0=0$.

Exercise. (Exercise 9) Let T be a \mathbb{Z} -module and $f: \mathbb{Q} \times \mathbb{Q} \to T$ be a bilinear map. Then f(a/b, c/d) = acf(1/b, 1/d) = acbf(1/b, 1/bd) = acf(1, 1/bd) = f(1, ac/bd). Define a bilinear map $h: \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}$ by $(a, b) \mapsto ab$ and a linear map $g: \mathbb{Q} \to T$ by $a/b \mapsto f(1, a/b)$. Then $f = g \circ h$. The universal property of a tensor product is satisfied by \mathbb{Q} , so $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} \cong \mathbb{Q}$.

Exercise. (Exercise 10) Let $a_1, \dots, a_n, b_1, \dots, b_m$ generate M' and M'', respectively. Let $x_1, \dots, x_n, y_1, \dots, y_m \in M$ be chosen such that x_i is the image of a_i and the image of y_j is b_j . We claim that x_i, y_j generate M. Let $x \in M$ be given. Then $q(x) = d_1b_1 + \dots + d_mb_m$ for some $d_i \in M$, and thus $q(x - d_1y_1 - \dots - d_my_m) = 0$. Therefore, $x - d_1y_1 - \dots - d_my_m = i(c_1a_1 + \dots + c_na_n) = c_1x_1 + \dots + c_nx_n$, so $x = c_1x_1 + \dots + c_nx_n + d_1y_1 + \dots + d_my_m$.

Exercise. (Exercise 11) This statement is not true. When $R = \mathbb{Z}$ and I = (0), $I \otimes_{\mathbb{Z}} \mathbb{Q} = 0$. However, the statement is true if $I \neq 0$. Let $u \in I$ be a nonzero element.

Define $h: I \times K \to K$ by $(a, x/y) \mapsto ax/y$. Let $f \in \text{Hom}(I \times K, T)$ be given.

Define $g: K \to T$ by $x/y \mapsto f(u, x/uy)$. Then

$$(g \circ h)(a, x/y) = g(h(a, x/y))$$

$$= g(ax/y)$$

$$= f(u, \frac{ax}{yu})$$

$$= af(u, \frac{x}{yu})$$

$$= f(au, \frac{x}{yu})$$

$$= uf(a, \frac{x}{yu})$$

$$= f(a, \frac{xu}{yu})$$

$$= f(a, x/y).$$

Thus f, g, h commute and thus $K \cong I \otimes K$.