

ABSTRACT

The present invention relates to a cutting tool insert having a substrate and a coating, the coating is composed of one or more layers of refractory compounds of which at least one layer includes a precipitation hardened $(Ti_yAl_xMe_{1-x-y})N$ based layer,
5 where Me is one of the elements: Zr, Hf, V, Nb, Ta, Cr, Mo, W or Si, and:

- x is between 0.50 and 0.80;
- the ratio, $R=x/(x+y)$, is between 0.50 and 0.85;
- the sum of Ti and Al subscripts, $S=x+y$, is between 0.7 and 1.0;
- the ratio of the peak width, $F_{10/90}$, (FW10% M or FW90% M meaning Full
10 Width at 10% and 90% of the maximum peak value reduced with the background) measured on the 200 peak at approximately $43^\circ 2\theta$ (using Cu K α radiation) of the $(Ti_yAl_xMe_{1-x-y})N$ coating, according to Fig 4, is higher than 7.5;
- the ratio between the area of the h-AlN (100) peak at approximately $33^\circ 2\theta$ ($=A(h\text{-AlN})_{100}$) and the c-($Ti_yAl_xMe_{1-x-y}N$) (200) peak at approximately $43^\circ 2\theta$ ($=A(c\text{-(Ti,Al,Me)N})_{200}$) called K, i.e. $K=A(h\text{-AlN})_{100}/ A(c\text{-(Ti,Al,Me)N})_{200}$ K is
15 between 0 and 0.3; and
- the layer a single $(Ti_yAl_xMe_{1-x-y})N$ (200) peak without several maxima.