

United International University (UIU)

Dept. of Computer Science & Engineering (CSE)
Midterm Year: 2017 Trimester: Spring
Course: CSI 217 Data Structures, Marks: 30, Time: 2 hours

There are FOUR questions. Answer any THREE. Figures in the right-hand margin indicate full marks.

1.	a)	Define data Structure. Discuss the importance of data structure in computer applications.	2.0
	b)	For searching a string from an array of strings which searching method will perform	2.0
		better and why?	
	c)	Suggest a data structure for Binary Search. Show the simulation of Binary Search	4.0
		algorithm to find 80 and 85 using your data structure for the following data:	
		32, 39, 45, 48, 56, 68, 71, 72, 78, 81, 83, 85, 90, 95	2.0
	d)	Explain the working mechanism of Selection Sort with an example.	2.0
2.	a)	When Bubble Sort algorithm can perform better than Quick Sort algorithm?	1.0
	b)	Write an algorithm for Quick Sort to sort the data in descending order.	3.0
	c)	Execute ascending order Quick Sort Algorithm up to second partitioning elements.	3.0
		8, 18, 11, 9, 22, -5, -9, -11, 28, 11	
	d)	Design a recursive algorithm for Insertion Sort.	2.0
	e)	What are the differences between replacement and bubble sort?	
3.	a)	Declare a variable for the linked list data structure in programming language C	4.0
		Student(name, id, marks, next)	
		Where, name is a string field	
		id is an integer field	
		marks is a float field	
		next field contains the address of the next node in the linked list	
		Write an algorithm to insert an element in any place of the list.	
	b)	Design a code segment to implement the linear search algorithm using linked list.	3.0
	c)	Implement a linear linked list of integer elements and add the elements of the list.	3.0

