Dense

Sibo WANG

1 Motivation

Dense is a crucial concept in topology and analysis. Several related theorems will be discussed.

2 Separable

Theorem 2.1. If a normed vector space has a schauder basis, then it is separable.

Proof: Given a normed vector space $(X, \|\cdot\|_X)$ on field \mathbb{F} , we have to construct a subtle subspace $(Y, \|\cdot\|_X)$ and show that $Y \subset X$ is countable and dense.

We use $\{e_n\}$ to denote the schauder basis of $(X, \|\cdot\|_X)$. It is true that there exists a dense and countable subset $\mathbb{G} \subset \mathbb{F}$.

Given basis $\{e_n\}$, we define the subset Y

$$Y = \bigcup_{n \in \mathbb{N}} \{ y_n \mid y_n = \sum_{k=1}^n g_k e_k \text{ and } g_k \in \mathbb{G} \}$$

The function $\bigcup_{n\in\mathbb{N}}G^n\to Y$ is bijective and G^n is countable for all $n\in\mathbb{N}$. Thus Y is countable.

Next, it suffices to show Y is dense.

Due to schauder basis $\{e_n\}$, for each $x \in X$ and $\varepsilon > 0$, there exist $N_1(\varepsilon)$ and $\{f_k(\varepsilon)\}$ such that $\|x - \sum_{k=1}^n f_k e_k\|_X < \varepsilon$ and $f_k \in \mathbb{F}$ if $n > N_1(\varepsilon)$ for n.

Moreover, because \mathbb{G} is dense, for each $f_k \in \mathbb{F}$, $k \in \mathbb{N}$ and $\varepsilon > 0$, there exists $g_k(\varepsilon) \in \mathbb{G}$ such that $|f_k - g_k| < \varepsilon$.

Given x and $\{e_n\}$, for each $\varepsilon > 0$, there exist $N_1(\frac{\varepsilon}{2})$, $\{\frac{\varepsilon}{2N_1(\frac{\varepsilon}{2})||e_k||_X}\}$ and $\{f_k(\frac{\varepsilon}{2})\}$ such that

$$||x - \sum_{k=1}^{n} g_k e_k||_X = ||x - \sum_{k=1}^{n} f_k e_k + \sum_{k=1}^{n} f_k e_k - \sum_{k=1}^{n} g_k e_k||_X$$

$$\leq ||x - \sum_{k=1}^{n} f_k e_k||_X + ||\sum_{k=1}^{n} f_k e_k - \sum_{k=1}^{n} g_k e_k||_X$$

$$< \frac{\varepsilon}{2} + \sum_{k=1}^{n} |f_k - g_k|||e_k||_X$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

if $n > N_1(\frac{\varepsilon}{2})$ and $|f_k - g_k| < \frac{\varepsilon}{2N_1(\frac{\varepsilon}{2})||e_k||_X}$ for n and $\{g_k\}$. Therefore Y is a dense and countable subset and $(X, \|\cdot\|_X)$ is separable.

Warning 2.2. The above normed vector space $(X, \|\cdot\|_X)$ is not necessary to be *complete*.

Example 2.3. Given a normed vector space $(X, \|\cdot\|_X)$, $X = C^0[0, 1]$ and $\|f\|_X = \|f\|_2 = (\int_0^1 f(t)^2 dt)^{\frac{1}{2}}$. Then $(X, \|\cdot\|_X)$ is not complete.

Proof: We have the sequence $\{f_n\} \subset X$

$$f_n(x) = \begin{cases} 0 & x \in [0, \frac{1}{2} - \frac{1}{2^n}) \\ (x - \frac{1}{2})2^{n-1} + \frac{1}{2} & x \in [\frac{1}{2} - \frac{1}{2^n}, \frac{1}{2} + \frac{1}{2^n}] \\ 1 & x \in (\frac{1}{2^n} + 2^{-n}, 1] \end{cases}$$

It is obvious that $\{f_n\}$ is convergent to f

$$f(x) = \begin{cases} 0 & x \in [0, \frac{1}{2}) \\ \frac{1}{2} & x = \frac{1}{2} \\ 1 & x \in (\frac{1}{2}, 1] \end{cases}$$

and $f \notin X$.