Suspicious event hijacks Amazon traffic for 2 hours, steals cryptocurrency

Almost 1,300 addresses for Amazon Route 53 rerouted for two hours.

DAN GOODIN - 4/24/2018, 2:00 PM

University Security

86% of Education Industry Experienced DNS

Attack in Past Year

BIZ & IT -

"Suspicious" event routes traffic for bigname sites through Russia

Google, Facebook, Apple, and Microsoft all affected by "intentional" BGP mishap.

DAN GOODIN - 12/13/2017, 4:43 PM

BIZ & IT —

Russian-controlled telecom hijacks financial services' Internet traffic

Visa, MasterCard, and Symantec among dozens affected by "suspicious" BGP mishap. 542

BIZ & IT

TECH

SCIENCE

CY C

GAMING & CI

UNCATEGORIZED

Insecure routing redirects YouTube to Pakistan

A black hole route to implement Pakistan's ban on YouTube got out into the ...

ILJITSCH VAN BEIJNUM - 2/25/2008, 3:31 AM

'Carpet-bombing' DDoS attack takes down South African ISP for an entire day

Carpet bombing - the DDoS technique that's just perfect for attacking ISPs, cloud services, and data centers.

By Catalin Cimpanu for Zero Day | September 24, 2019 -- 19:30 GMT (12:30 PDT) | Topic: Security

CS 642

UW Madison

Earlence Fernandes

UW Madison CS 642 2

128.105.37.141

We don't want to have to remember IP addresses

Early days of ARPANET:

manually managed hosts.txt served from single computer at SRI

128.105.37.141

We don't want to have to remember IP addresses

```
user@box:~$ cat /etc/hosts
127.0.0.1 localhost
127.0.1.1 box.localdomain box
127.0.0.1 zoobar.org
127.0.0.1 www.zoobar.org
127.0.0.1 zoomail.org
# The following lines are desirable for IPv6 capable hosts
::1 localhost ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
ff02::3 ip6-allhosts
```

Early days of ARPANET: manually managed hosts.txt served from single computer at SRI

Hierarchical domain namespace

max 63 characters

Internet-wide namespace

 ICANN (Internet Corporation for Assigned Names and Numbers)

- DNS Servers
 - DNS resolver
 - root nameservers 13 of them worldwide A through M
 - authoritative nameservers authorized to provide IP for a (sub)domain / hostname
- Zone: a contiguous portion of domain namespace
 - A subtree

```
A.ROOT-SERVERS.NET. IN A 198.41.0.4
B.ROOT-SERVERS.NET. IN A 192.228.79.201
C.ROOT-SERVERS.NET. IN A 192.33.4.12
...
M.ROOT-SERVERS.NET. IN A 202.12.27.33
```

.NET referrals

```
/* Authority section */
NET. IN NS A.GTLD-SERVERS.NET.
IN NS B.GTLD-SERVERS.NET.
IN NS C.GTLD-SERVERS.NET.
IN NS M.GTLD-SERVERS.NET.

/* Additional section - "glue" records */
A.GTLD-SERVERS.net. IN A 192.5.6.30
B.GTLD-SERVERS.net. IN A 192.33.14.30
C.GTLD-SERVERS.net. IN A 192.26.92.30
...
M.GTLD-SERVERS.net. IN A 192.55.83.30
```


Resolving names

From: http://en.wikipedia.org/wiki/File:An_example_of_theoretical_DNS_recursion.svg

Example DNS record (and query) types

А	Address mapping record (get me an IPv4 address)				
AAAA	Same for IPv6 address				
NS	name server, the DNS zone				
TXT	machine readable text data, has been used for many things, including encryption mechanisms, policy				
MX	mail exchange (SMTP mail server for the domain)				
CNAME	Canonical name, alias of a domain				

Caching

- DNS servers will cache responses
 - Both negative and positive responses
 - Speeds up queries
 - periodically times out. TTL set by data owner

DNS packet on wire

We'll walk through the example from Friedl's document (on Canvas)

www.unixwiz.net

Query ID is 16-bit value

- 32 bits ----hlen TOS pkt len ver flg fragment offset identification header cksum ·IP Header protocol TTL Source IP address Destination IP address Destination port Source port -UDP Header UDP length UDP cksum Q Opcode A T R R Query ID rcode Ouestion count Answer count Authority count Addl. Record count -DNS Data DNS question or answer data

From Friedl explanation of DNS cache poisoning, as are following diagrams

Query from resolver to NS

11

Reply from NS to Resolver

Query to Second NS

	← 32 bits →							
	vei	r hlen	TOS	pkt len				
	identification			flg	fragment of	fset		
IP		TTL	protocol	header cksum				
	src IP = 64.170.162.98							
	dst IP = 68.94.156.1							
ЭР	src port = 53 dst port = 579					798		
n	UDP length UDP cksum							
		QID =	43562	1 Op	•o 1 7 8 0 Z	rc=ok		
	, 0	• Question count = 1			Answer count =	1 •		
	Authority count = 2 Addl				il. Record cou	nt=2		
	\Qu	What is	A record for	: WWW	.unixwiz.net?			
	An	www.uni	xwiz.net A =	8.7.	25.94	1 hr		
×	Au	Au unixwiz.net NS = linux.unixwiz.net				2 dy		
	Au	Au unixwiz.net NS = cs.unixwiz.net				2 dy		
-	Ad	Ad linux.unixwiz.net A = 64.170.162.98 1				1 hr		
	Ad	cs.unix	wiz.net A	= 8.	7.25.94	1 hr		

Reply from Second NS to Resolver

linux.unixwiz.net
dnsr1.sbcglobal.net

___QR=1 − this is a response

AA=1 - Authoritative!

— RA=0 - recursion unavailable

Caching is the key

- DNS servers are queried trillions of times, though they seem fast, doing it again and again could
 - burden the network
 - slowdown everything
- Therefore, authoritative responses are cached for limited amount of time
 - Both NS and A records are cached
 - TTL how long to keep the DNS record in cache
- bailiwick checking response is cached if it is within the same domain of query
 - i.e. ns.a.com cannot set NS for b.com

Attacks against DNS?

- Corrupted nameservers
- Intercept & manipulate requests
- DDoS
- Cache poisoning
- Phishing / typo squatting / piggy-backing

DDoS against DNS

- Denial of Service
 - take down DNS server, clients can't use Internet
 - Attack against root servers:
- DoD purportedly has interesting response:

"In the event of a massive cyberattack against the country that was perceived as originating from a foreign source, the United States would consider launching a counterattack or bombing the source of the cyberattack, Hall said. But he noted the preferred route would be warning the source to shut down the attack before a military response."

http://www.computerworld.com/s/article/9010921/RSA_U.S._cyber_counterattack_Bomb_one_way_or_the_other

Massive DDoS Attack Hit DNS Root Servers

By Ryan Naraine,

Posted October 23, 2002

Data Centre ► Networks

Internet's root servers take hit in DDoS attack

Who's testing the limits of the DNS system?

By Kieren McCarthy in San Francisco 8 Dec 2015 at 23:10

🚚 27

SHARE ▼

DNS cache poisoning

How might an attacker do this?
Assume DNS server uses predictable UDP port

How to predict the query ID?

Another idea (Dan Kaminsky's attack):

- Poison cache for NS record instead
- Now can take over all of second level domain

How many tries does this require?

- 16 bit query id field
- If choosing randomly: 256 (birthday)
- If predictable, choose in range

Does happen in the wild

HD Moore pwned with his own DNS exploit, vulnerable AT&T DNS servers to blame

By Dancho Danchev | July 30, 2008, 8:08am PDT

Summary: A week after |)ruid and HD Moore release part 2 of DNS exploit, HD Moore's company BreakingPoint has suffered a traffic redirection to a rogue Google site, thanks to the already poisoned cache at AT&T servers to which his company was forwarding DNS traffic: "It happened on Tuesday morning, when Moore's company, BreakingPoint had some [...]

http://www.zdnet.com/blog/security/hd-moore-pwned-with-his-own-dns-exploit-vulnerable-at-t-dns-servers-to-blame/1608?tag=content;siu-container

Defenses (and attacks)

- Query ID size is fixed at 16 bits
- Repeat each query with fresh Query ID
 - (randomize)
- Randomize UDP ports: not enough randomness in query ID only
- DNSsec
 - Cryptographically sign DNS responses, verify via chain of trust from roots on down

... but DNSSec vulnerable to DDoS

 Create large amount traffic from the DNS resolvers to the victim computer/server

DNSSEC fueling new wave of DNS amplification attacks

DNS amplification attacks swelled in the second quarter of this year, with the amplified attacks spiking more than 1,000% compared with Q2 2018, according to Nexusquard.

UW Madison CS 642 25

Phishing is common problem

- Typo squatting:
 - www.qpple.com
 - www.goggle.com
 - www.nytmes.com
- Other shenanigans:
 - www.badguy.com/(256 characters of filler)/www.google.com
- Phishing attacks
 - These just trick users into thinking a malicious domain name is the real one

UW Madison CS 642 27

YOUR COMPUTER MAY BE INFECTED:

System detected (2) Potentially Malicious Viruses.
The data on your computer is **NOT SAFE!**

Your Personal & Financial Information IS NOT SAFE To Remove Viruses, Call Tech Support Now:

855-521-0242

(24/7 - Toll free- High Priority Virus & Spyware Removal Call Line for Your IP Address: 128.105.35.160)

Clean Now!

BGP and routing

Source:

http://patrickmcdaniel.org/pubs/td-5ugj33.pdf

BGP

- Policy-based routing
 - AS can set policy about how to route
 - economic, security, political considerations
- BGP routers use TCP connections to transmit routing information
- Iterative announcement of routes

BGP example

- Algorithm seems to work
 OK in practice
 - BGP does not respond well to frequent node outages

IP hijacking

- BGP is unauthenticated
 - Anyone can advertise any routes
 - False routes will be propagated
- This allows IP hijacking
 - AS announces it originates a prefix it shouldn't
 - AS announces it has shorter path to a prefix
 - AS announces more specific prefix

Malicious or misconfigurations?

- AS 7007 incident in 1997
 - "Okay, so panic ensued, and we unplugged *everything* at 12:15PM almost to the second." [sic]
 - http://www.merit.edu/mail.archives/nan og/1997-04/msg00444.html
- China Telecom hijacks large chunks of Internet in 2010
 - http://bgpmon.net/blog/?p=282

https://www.bgpmon.net

Blog

BGPmon monitors the routing of your prefixes and alerts you in case of an 'interesting' path change.

YouTube incident (2008)

- Pakistan attempts to block Youtube
 - youtube is 208.65.152.0/22
 - youtube.com = 208.65.153.238
- Pakistan ISP advertises 208.65.153.0/24
 - more specific, prefix hijacking
- Internet thinks youtube.com is in Pakistan!
- Outage resolved in 2 hours...

[D. Wetherall]

BGPsec

- Route announcements must be cryptographically signed
 - AS can only advertise as itself
 - AS cannot advertise for IP prefixes it does not own
- Requires a public-key infrastructure (PKI)

Deploy360 16 October 2017

BGPSec – A reality

Need to wait for ASes to catch up!

NOW RFC 8205

Summary: Internet Security

- Recurring themes:
 - Built without any authenticity mechanisms in mind
 - Functionality mechanisms (sequence #'s) become implicit security mechanisms
 - New attempts at (somewhat) backwards-compatible security mechanisms
 - IP -> IPsec
 - DNS -> DNSsec
 - BGP -> BGPsec

