The bound for the number of iterations for the Bisection method assumes that the calculations are performed using infinite-digit arithmetic. When implementing the method on a computer, we need to consider the effects of round-off error. For example, the computation of the midpoint of the interval $[a_n, b_n]$ should be found from the equation

$$p_n = a_n + \frac{b_n - a_n}{2}$$
 instead of $p_n = \frac{a_n + b_n}{2}$.

The first equation adds a small correction, $(b_n - a_n)/2$, to the known value a_n . When $b_n - a_n$ is near the maximum precision of the machine, this correction might be in error, but the error would not significantly affect the computed value of p_n . However, when $b_n - a_n$ is near the maximum precision of the machine, it is possible for $(a_n + b_n)/2$ to return a midpoint that is not even in the interval $[a_n, b_n]$.

As a final remark, to determine which subinterval of $[a_n, b_n]$ contains a root of f, it is better to make use of the **signum** function, which is defined as

$$sgn(x) = \begin{cases} -1, & \text{if } x < 0, \\ 0, & \text{if } x = 0, \\ 1, & \text{if } x > 0. \end{cases}$$

The test

$$\operatorname{sgn}(f(a_n))\operatorname{sgn}(f(p_n)) < 0$$
 instead of $f(a_n)f(p_n) < 0$

gives the same result but avoids the possibility of overflow or underflow in the multiplication of $f(a_n)$ and $f(p_n)$.

EXERCISE SET 2.1

The Latin word signum means

number is 0).

"token" or "sign". So the signum function quite naturally returns the sign of a number (unless the

- 1. Use the Bisection method to find p_3 for $f(x) = \sqrt{x} \cos x$ on [0, 1].
- 2. Let $f(x) = 3(x+1)(x-\frac{1}{2})(x-1)$. Use the Bisection method on the following intervals to find p_3 .
 - **a.** [-2, 1.5] **b.** [-1.25, 2.5]
- 3. Use the Bisection method to find solutions accurate to within 10^{-2} for $x^3 7x^2 + 14x 6 = 0$ on each interval.
 - **a.** [0,1] **b.** [1,3.2] **c.** [3.2,4]
- **4.** Use the Bisection method to find solutions accurate to within 10^{-2} for $x^4 2x^3 4x^2 + 4x + 4 = 0$ on each interval.
 - **a.** [-2,-1] **b.** [0,2] **c.** [2,3] **d.** [-1,0]
- 5. Use the Bisection method to find solutions accurate to within 10^{-5} for the following problems.
 - **a.** $x 2^{-x} = 0$ for 0 < x < 1
 - **b.** $e^x x^2 + 3x 2 = 0$ for $0 \le x \le 1$
 - **c.** $2x\cos(2x) (x+1)^2 = 0$ for $-3 \le x \le -2$ and $-1 \le x \le 0$
 - **d.** $x \cos x 2x^2 + 3x 1 = 0$ for $0.2 \le x \le 0.3$ and $1.2 \le x \le 1.3$
- **6.** Use the Bisection method to find solutions, accurate to within 10^{-5} for the following problems.
 - **a.** $3x e^x = 0$ for $1 \le x \le 2$
 - **b.** $2x + 3\cos x e^x = 0$ for 0 < x < 1
 - **c.** $x^2 4x + 4 \ln x = 0$ for $1 \le x \le 2$ and $2 \le x \le 4$
 - **d.** $x + 1 2\sin \pi x = 0$ for $0 \le x \le 0.5$ and $0.5 \le x \le 1$

- 7. a. Sketch the graphs of y = x and $y = 2 \sin x$.
 - **b.** Use the Bisection method to find an approximation to within 10^{-5} to the first positive value of x with $x = 2 \sin x$.
- **8.** a. Sketch the graphs of y = x and $y = \tan x$.
 - **b.** Use the Bisection method to find an approximation to within 10^{-5} to the first positive value of x with $x = \tan x$.
- **9.** a. Sketch the graphs of $y = e^x 2$ and $y = \cos(e^x 2)$.
 - b. Use the Bisection method to find an approximation to within 10^{-5} to a value in [0.5, 1.5] with $e^x 2 = \cos(e^x 2)$.
- 10. Let $f(x) = (x+2)(x+1)^2x(x-1)^3(x-2)$. To which zero of f does the Bisection method converge when applied on the following intervals?
 - **a.** [-1.5, 2.5]
- **b.** [-0.5, 2.4]
- **c.** [-0.5, 3]
- **d.** [-3, -0.5]
- 11. Let $f(x) = (x+2)(x+1)x(x-1)^3(x-2)$. To which zero of f does the Bisection method converge when applied on the following intervals?
 - **a.** [-3, 2.5]
- **b.** [-2.5, 3]
- **c.** [-1.75, 1.5]
- **d.** [-1.5, 1.75]
- 12. Find an approximation to $\sqrt{3}$ correct to within 10^{-4} using the Bisection Algorithm. [*Hint:* Consider $f(x) = x^2 3$.]
- 13. Find an approximation to $\sqrt[3]{25}$ correct to within 10^{-4} using the Bisection Algorithm.
- 14. Use Theorem 2.1 to find a bound for the number of iterations needed to achieve an approximation with accuracy 10^{-3} to the solution of $x^3 + x 4 = 0$ lying in the interval [1, 4]. Find an approximation to the root with this degree of accuracy.
- 15. Use Theorem 2.1 to find a bound for the number of iterations needed to achieve an approximation with accuracy 10^{-4} to the solution of $x^3 x 1 = 0$ lying in the interval [1, 2]. Find an approximation to the root with this degree of accuracy.
- **16.** Let $f(x) = (x-1)^{10}$, p = 1, and $p_n = 1 + 1/n$. Show that $|f(p_n)| < 10^{-3}$ whenever n > 1 but that $|p p_n| < 10^{-3}$ requires that n > 1000.
- 17. Let $\{p_n\}$ be the sequence defined by $p_n = \sum_{k=1}^n \frac{1}{k}$. Show that $\{p_n\}$ diverges even though $\lim_{n\to\infty} (p_n p_{n-1}) = 0$.
- 18. The function defined by $f(x) = \sin \pi x$ has zeros at every integer. Show that when -1 < a < 0 and 2 < b < 3, the Bisection method converges to
 - **a.** 0, if a + b < 2
- **b.** 2, if a + b > 2
- **c.** 1, if a + b = 2
- 19. A trough of length L has a cross section in the shape of a semicircle with radius r. (See the accompanying figure.) When filled with water to within a distance h of the top, the volume V of water is

$$V = L \left[0.5\pi r^2 - r^2 \arcsin(h/r) - h(r^2 - h^2)^{1/2} \right].$$

Suppose L = 10 ft, r = 1 ft, and V = 12.4 ft³. Find the depth of water in the trough to within 0.01 ft.

20. A particle starts at rest on a smooth inclined plane whose angle θ is changing at a constant rate

$$\frac{d\theta}{dt} = \omega < 0.$$