I Equation réduite d'une droite

1) Rappels sur les fonctions affines

<u>Définition</u>: Une fonction affine f est une fonction définie pour tout nombre réel x par f(x) = ax + b où a et b sont des réels donnés.

a est appelé coefficient directeur, b est appelé ordonnée à l'origine.

Propriété: La représentation graphique d'une fonction affine est une droite

2) Equation réduite d'une droite et coefficient directeur d'une droite

<u>Propriété</u>: Dans un repère (O; \overrightarrow{i} , \overrightarrow{j}) toute droite (d) non parallèle à l'axe des ordonnées est la représentation graphique d'une fonction affine.

Elle admet donc une équation de la forme y = m x + p où m et p sont des nombres réels

m est appelé coefficient directeur de la droite et p est appelé ordonnée à l'origine.

Démonstration

La droite (d) n'étant pas parallèle à l'axe des ordonnées, elle le coupe en un point A.

Elle coupe aussi la parallèle à l'axe des ordonnées passant par le point I(1; 0). On note B le point d'intersection.

On a donc A(0; p) et B(1; q)

Soit f la fonction affine définie par f(x) = (q - p)x + p

On a
$$f(0) = p$$
 et $f(1) = q$

La représentation graphique de f est donc la droite (AB) et donc y = mx + p est l'équation de la droite (d).

<u>Propriété</u>: Dans un repère (O; \overrightarrow{i} , \overrightarrow{j}) **toute droite (d) parallèle à l'axe des ordonnées** admet une équation de la forme $\mathcal{X} = C$ où c est un nombre réel.

<u>Démonstration</u>

La droite (d) est parallèle à l'axe des ordonnées donc elle coupe l'axe des abscisses en un point A(c; 0).

Un point M appartient à (d) si et seulement si son abscisse est égale à celle de A.

La droite (d) admet donc comme équation x = c.

3) Coefficient directeur d'une droite

Propriété: Dans un repère (O; \vec{i} , \vec{j}) soient $A(x_A; y_A)$ et $B(x_B; y_B)$ avec $x_A \neq x_B$. Le coefficient directeur de la droite (AB) est donné par la relation: $m = \frac{y_B - y_A}{x_B - x_A}$

Démonstration

 $x_A \neq x_B$ donc (AB) n'est pas parallèle à l'axe des ordonnées donc elle admet une équation de la forme y = mx + p. On a $y_A = m$ $x_A + p$ et $y_B = m$ $x_B + p$ donc :

$$\frac{y_{B} - y_{A}}{x_{B} - x_{A}} = \frac{m x_{B} + p - (m x_{A} + p)}{x_{B} - x_{A}} = \frac{m x_{B} + p - m x_{A} - p}{x_{B} - x_{A}} = \frac{m (x_{B} - x_{A})}{x_{B} - x_{A}} = m$$

4) Applications

Dans un repère (O; \overrightarrow{i} , \overrightarrow{j}) on considère les points A(1; 2) et B(4; -2)

On cherche à déterminer l'équation réduite de la droite (AB).

On remarque que $x_A \neq x_B$ donc la droite (AB) a une équation de la forme y = mx + p

 \bullet On détermine le coefficient directeur m:

$$m = \frac{y_B - y_A}{x_B - x_A} = \frac{-2 - 2}{4 - 1} = -\frac{4}{3}$$

ullet On détermine l'ordonnée à l'origine p :

On a
$$y_A = m x_A + p$$
 donc $2 = \frac{-4}{3} \times 1 + p$ car A (1; 2)

on en déduit
$$p = 2 + \frac{4}{3} = \frac{10}{3}$$

Ainsi la droite (AB) a pour équation réduite $y = \frac{-4}{3}x + \frac{10}{3}$

5) Positions relatives de deux droites

Théorème: Dans un repère (0; \overrightarrow{i} , \overrightarrow{j}) soient (d) et (d') deux droites d'équations y = m x + p et y = m' x + p'. (d) et (d') sont parallèles si et seulement si m = m'

II Vecteurs directeurs et équations cartésiennes d'une droite

1) Vecteurs directeurs

Définition

On appelle **vecteur directeur** d'une droite d tout représentant du vecteur \overrightarrow{AB} où A et B sont deux points quelconques distincts de la droite d.

EXEMPLE

Dans l'image ci-contre, les vecteurs $\overrightarrow{AB}(2;1)$, $\overrightarrow{u}(-2;-1)$ et $\overrightarrow{v}(4;2)$ sont des vecteurs directeurs de la droite d.

2) Equations cartésiennes d'une droite

Théorème

Dans un repère orthonormé, les coordonnées de l'ensemble des points $M(x\,;y)$ d'une droite vérifient une relation ax+by+c=0, où a, b et c sont des nombres réels.

Soient $P(x_p; y_p)$ et $Q(x_Q; y_Q)$ deux points de d.

Alors, pour tout point M(x; y) appartenant à d:

$$\overrightarrow{\mathrm{PM}}(x-x_{\mathrm{p}}\,;y-y_{\mathrm{p}})$$
 et $\overrightarrow{\mathrm{PQ}}(x_{\mathrm{o}}-x_{\mathrm{p}}\,;y_{\mathrm{o}}-y_{\mathrm{p}})$ sont colinéaires.

On a donc $\det(\overrightarrow{PM}; \overrightarrow{PQ}) = 0$

c'est-à-dire $(x-x_{\rm p})(y_{\rm O}-y_{\rm p})-(y-y_{\rm p})(x_{\rm O}-x_{\rm p})=0$.

Donc
$$x(y_Q - y_P) - x_P(y_Q - y_P) - y(x_Q - x_P) + y_P(x_Q - x_P) = 0$$
.

Donc $(y_Q - y_P)x + (x_P - x_Q)y + (y_P x_Q - x_P y_Q) = 0$.

En posant $a=y_{\rm Q}-y_{\rm P}$, $b=x_{\rm P}-x_{\rm Q}$ et $c=x_{\rm Q}y_{\rm P}-x_{\rm P}y_{\rm Q}$, on a donc ax+by+c=0.

Définition

La relation ax + by + c = 0 s'appelle **équation cartésienne** de la droite d.

Propriété

Le vecteur (-b; a) est un vecteur directeur de la droite d'équation ax + by + c = 0.

EXEMPLE

La droite (AB) a pour équation 5x+4y-11=0 et le vecteur $\overrightarrow{AB}(-4;5)$ est un vecteur directeur.

3) Application

Dans un repère (0; \overrightarrow{i} , \overrightarrow{j}) on considère les points A(1; 2) et B(4; -2)

On cherche à déterminer une équation cartésienne de la droite (AB).

Soit M(x; y) un point de la droite (AB). On a
$$\overrightarrow{AM}$$
 $\begin{pmatrix} x-1 \\ y-2 \end{pmatrix}$ et \overrightarrow{AB} $\begin{pmatrix} 3 \\ -4 \end{pmatrix}$

 $M \in (AB)$ si et seulement si \overrightarrow{AM} et \overrightarrow{AB} sont colinéaires c'est-à-dire si et seulement si det (\overrightarrow{AM} ; \overrightarrow{AB}) = 0

$$-4 \times (x - 1) - 3 \times (y - 2) = 0$$

$$-4x+4-3y+6=0$$

- 4x - 3y + 10 = 0 est une équation cartésienne de la droite (AB)

Remarque: on peut en déduire l'équation réduite de la droite (AB):

$$-4x - 3y + 10 = 0$$

$$-3y = 4x - 10$$

$$3y = -4x + 10$$

 $y = \frac{-4}{3}x + \frac{10}{3}$ et on retrouve le résultat obtenu dans l'application du paragraphe I

III Systèmes linéaires de deux équations à deux inconnues

1) Définition

Soient a, b, c, a', b' et c' des nombres réels donnés.

Résoudre le système linéaire (5) : $\begin{cases} a \ x + b \ y = c \\ a'x + b'y = c' \end{cases}$ c'est trouver tous les couples de réels (x; y) appelé solutions du système qui vérifient les deux équations.

Exemple: On considère le système (S): $\begin{cases} 3x - 2y = 7 \\ x + 3y = -5 \end{cases}$

Le couple (1 ; - 2) est une solution de (5) car 3×1 - $2\times(-2)$ = 3 + 4 = 7 et 1 + $3\times(-2)$ = 1 - 6 = -5

2) Interprétation graphique

Soit (S): $\begin{cases} a \ x + b \ y = c \\ a'x + b'y = c' \end{cases}$ où a, b, c, a', b' et c' sont des nombres réels donnés avec $b \neq 0$ et $b' \neq 0$.

(S) équivaut à
$$\begin{cases} y = \frac{-a}{6}x + \frac{c}{6} \\ y = \frac{-a'}{6}x + \frac{c'}{6} \end{cases}$$

Soit (d) la droite d'équation : $y = \frac{-a}{b}x + \frac{c}{b}$ et (d') celle d'équation : $y = \frac{-a'}{b'}x + \frac{c'}{b'}$

Premier cas:

Si les droites (d) et (d') n'ont pas le même coefficient directeur c'est-à-dire lorsque $ab' - a'b \neq 0$ alors elles sont sécantes en un unique point M dont le couple de coordonnées $(x_{\rm M}; y_{\rm M})$ est l'unique couple solution du système (S)

Deuxième cas :

Si les droites (d) et (d') ont le même coefficient directeur c'est-à-dire lorsque ab' - a'b = 0 alors elles sont :

- soient strictement parallèles et dans ce cas le système n'admet pas de solutions.
- soient confondues et dans ce cas le système admet une infinité de solutions qui sont les couples de coordonnées des points de la droite d'équation $y = \frac{-a}{b}x + \frac{c}{b}$

<u>Remarque</u>: Si δ = 0 où δ ' = 0 on peut raisonner de manière analogue en utilisant des droites parallèles à l'axe des ordonnées.

Exemple: Soit (S):
$$\begin{cases} 2x + y = 1 \\ -2x + y = -3 \end{cases}$$

 $ab' - a'b = 2 \times 1 - (-2) \times 1 = 4 \neq 0$ donc le système admet un unique couple solution.

On considère les droites (d) d'équation y = 1 - 2x

et (d') d'équation y = 2x - 3

On lit graphiquement les coordonnées du point d'intersection $M:(1\;;\;$ - 1)

$$2 \times 1 - 1 = 1$$
 et $-2 \times 1 - 1 = -3$

Le couple (1 ; - 1) est donc la solution du système (S).

On vérifie que (1 ; - 1) est bien solution du système :

3) Méthodes de résolution

a) Par substitution

On utilise cette méthode lorsqu'une inconnue s'exprime très facilement en fonction de l'autre.

Exemple:

(5):
$$\begin{cases} x - 3y = -13 \\ 8x - 5y = -9 \end{cases}$$

 $ab' - a'b = 1 \times (-5) - 8 \times (-3) = 19 \neq 0$ donc le système admet une unique solution.

On remarque que dans l'équation de la première ligne x s'exprime facilement en fonction de y.

$$(5) \Leftrightarrow \begin{cases} x = 3y - 13 \\ 8x - 5y = -9 \end{cases}$$

On remplace x par 3y - 13 dans l'équation de la deuxième ligne.

(5)
$$\Leftrightarrow$$
 $\begin{cases} x = 3y - 13 \\ 8(3y - 13) - 5y = -9 \end{cases} \Leftrightarrow \begin{cases} x = 3y - 13 \\ 19y - 104 = -9 \end{cases}$

La deuxième inconnue est une équation à une inconnue. On la résout en déterminant y.

(5)
$$\Leftrightarrow$$
 $\begin{cases} x = 3y - 13 \\ 19y = 95 \end{cases} \Leftrightarrow \begin{cases} x = 3y - 13 \\ y = \frac{95}{19} = 5 \end{cases}$

On détermine x à l'aide de la première équation en remplaçant y par la valeur trouvée.

$$(5) \Leftrightarrow \begin{cases} x = 3 \times 5 - 13 = 2 \\ y = 5 \end{cases}$$

Le couple (2; 5) est l'unique solution de (S)

vérification : 2 -
$$3\times5$$
 = 2 - 15 = - 13 et 8×2 - 5×5 = - 16 - 25 = - 9

Application:

Résoudre (S):
$$\begin{cases} 3x - 2y = -12 \\ 2x + y = -1 \end{cases}$$

b) Par combinaison linéaire

Cette méthode est à privilégier dans la majorité des situations...

Exemple:

Soit (S):
$$\begin{cases} 2x - 3y = 8 & (L_1) \\ 5x + 4y = -3 & (L_2) \end{cases}$$

 $ab' - a'b = 2 \times 4 - 5 \times (-3) = 23 \neq 0$ donc le système admet une unique solution.

On multiplie la première équation par 5 et la deuxième par - 2 de manière à obtenir des coefficients de x opposés.

(S)
$$\Leftrightarrow$$

$$\begin{cases} 10x - 15y = 40 & 5 \times (L_1) \\ -10x - 8y = 6 & -2 \times (L_2) \end{cases}$$

On additionne les deux équations membres à membres de manière à éliminer l'inconnue x et on « garde » dans le système l'une des équations.

$$(5) \Leftrightarrow \begin{cases} -23y = 46 \\ 2x - 3y = 8 \end{cases}$$

On termine la résolution en déterminant y puis x.

$$(5) \Leftrightarrow \begin{cases} y = \frac{46}{-23} = -2 \\ -10x - 8 \times (-2) = 6 \end{cases} \Leftrightarrow \begin{cases} y = -2 \\ -10x + 16 = 6 \end{cases} \Leftrightarrow \begin{cases} y = -2 \\ -10x = -10 \end{cases} \Leftrightarrow \begin{cases} y = -2 \\ x = \frac{-10}{-10} = 1 \end{cases}$$

Le couple (1 ; - 2) est la solution du système.

vérification :
$$2 \times 1 - 3 \times (-2) = 2 + 6 = 8$$
 et $5 \times 1 + 4 \times (-2) = 5 - 8 = -3$

Application:

Résoudre (S) :
$$\begin{cases} 3x - 2y = 5 \\ 5x + 3y = 2 \end{cases}$$

c) Cas particuliers

• Système n'admettant pas de solutions :

Soit (S):
$$\begin{cases} -2x + y = 4 \\ 4x - 2y = 2 \end{cases}$$

On a $ab' - a'b = -2 \times (-2) - 4 \times 1 = 0$ donc soit le système n'admet pas de solutions soit il admet une infinité de solutions.

(5)
$$\Leftrightarrow$$
 $\begin{cases} y = 2x + 4 \\ 4x - 2(4 + 2x) = 2 \end{cases} \Leftrightarrow \begin{cases} y = 2x + 4 \\ -8 = 2 \text{ impossible} \end{cases}$ (5) n'admet donc pas de solutions.

Graphiquement cette situation se traduit par des droites parallèles.

• Système admettant une infinité de solutions :

Soit (S):
$$\begin{cases} -2x + y = 4 \\ 4x - 2y = -8 \end{cases}$$

On a $ab' - a'b = -2 \times (-2) - 4 \times 1 = 0$ donc soit le système n'admet pas de solutions soit il admet une infinité de solutions.

(5)
$$\Leftrightarrow$$
 $\begin{cases} y = 2x + 4 \\ 4x - 2(4 + 2x) = -8 \end{cases} \Leftrightarrow \begin{cases} y = 2x + 4 \\ -8 = -8 \end{cases}$ (5) admet donc une infinité de solutions qui sont les couples de coordonnées des points de la droite d'équation $y = 2x + 4$

Graphiquement cette situation se traduit par deux droites confondues.

Exercice 1 : Résoudre ces systèmes :

$$a) \begin{cases} x + y = 5 \\ x - y = 1 \end{cases}$$

b)
$$\begin{cases} 3x + 4y = 24 \\ x + 5y = 19 \end{cases}$$

c)
$$\begin{cases} 3x + 4y = 9 \\ 5x + 6y = 14 \end{cases}$$

a)
$$\begin{cases} x + y = 5 \\ x - y = 1 \end{cases}$$
 b) $\begin{cases} 3x + 4y = 24 \\ x + 5y = 19 \end{cases}$ c) $\begin{cases} 3x + 4y = 9 \\ 5x + 6y = 14 \end{cases}$ d) $\begin{cases} 2x + 3y = -11 \\ 3x - 5y = 12 \end{cases}$

Exercice 2:

1) Résoudre le système suivant :
$$\begin{cases} 2x + 3y = 30 \\ x - y = 5 \end{cases}$$

2) Le CDI d'un collège a acheté deux exemplaires d'une même bande dessinée et trois exemplaires du même livre de poche pour la somme de 30 euros.

Une bande dessinée coûte 5 euros de plus qu'un livre de poche.

Quel est le prix en euros d'une bande dessinée?

Quel est le prix en euros d'un livre de poche?

Exercice 3:

Une personne dispose de 8 euros ; elle peut dépenser cette somme soit en achetant 10 croissants et un cake, soit en achetant 4 croissants et 2 cakes.

Calculer le prix d'un croissant et celui d'un cake.