Belief network inference

Three main approaches to determine posterior distributions in belief networks:

- Exploiting the structure of the network to eliminate (sum out) the non-observed, non-query variables one at a time.
- Search-based approaches that enumerate some of the possible worlds, and estimate posterior probabilities from the worlds generated.
- > Stochastic simulation where random cases are generated according to the probability distributions.

Summing out a variable: intuition

Suppose B is Boolean (B = true is b and B = false is $\neg b$)

$$P(C|A)$$

$$= P(C \land b|A) + P(C \land \neg b|A)$$

$$= P(C|b \land A)P(b|A) + P(C|\neg b \land A)P(\neg b|A)$$

$$= P(C|b)P(b|A) + P(C|\neg b)P(\neg b|A)$$

$$= \sum_{B} P(C|B)P(B|A)$$
We can compute the probability of some of the

We can compute the probability of some of the variables by summing out the other variables.

Factors

A factor is a representation of a function from a tuple of random variables into a number.

We will write factor f on variables X_1, \ldots, X_j as $f(X_1, \ldots, X_i)$.

We can assign some or all of the variables of a factor:

- $f(X_1 = v_1, X_2, ..., X_j)$, where $v_1 \in dom(X_1)$, is a factor on $X_2, ..., X_j$.
- $f(X_1 = v_1, X_2 = v_2, ..., X_j = v_j)$ is a number that is the value of f when each X_i has value v_i .

The former is also written as $f(X_1, X_2, ..., X_j)_{X_1 = v_1}$, etc.

			Exa	amp	le factors
	X	Y	Z	val	
	t	t	t	0.1	
	t	t	f	0.1 0.9 0.2	r(X=t, Y, Z):
	t	f	t	0.2	
r(X, Y, Z):	t	f	f	0.8	

t
t
f
f

	l		l
	t	t	0.1
r(X=t, Y, Z):	t	f	0.9
	f	t	0.2
	f	f	0.8
		Y	val
r(X=t, Y, Z=t)	= f):	t	0.9
		f	0.8

val

	C	•	0.7
t	f	t	0.2
t	f	f	0.8
f	t	t	0.4
f	t	f	0.6
f	f	t	0.3
f	f	f	0.7

Multiplying factors

The product of factor $f_1(\overline{X}, \overline{Y})$ and $f_2(\overline{Y}, \overline{Z})$, where \overline{Y} are the variables in common, is the factor $(f_1 \times f_2)(\overline{X}, \overline{Y}, \overline{Z})$ defined by:

$$(f_1 \times f_2)(\overline{X}, \overline{Y}, \overline{Z}) = f_1(\overline{X}, \overline{Y})f_2(\overline{Y}, \overline{Z}).$$

Multiplying factors example

	\boldsymbol{A}	\boldsymbol{B}	val
	t	t	0.1
f_1 :	t	f	0.9
	f	t	0.2
	f	f	0.8

	B	\boldsymbol{C}	val
	t	t	0.3
<i>f</i> ₂ :	t	f	0.7
	f	t	0.6
	f	f	0.4

	A	В	C	val
	t	t	t	0.03
	t	t	f	0.07
	t	f	t	0.54
$f_1 \times f_2$:	t	f	f	0.36
	f	t	t	0.06
	f	t	f	0.14
	f	f	t	0.48
	f	f	f	0.32

Summing out variables

We can sum out a variable, say X_1 with domain $\{v_1, \ldots, v_k\}$, from factor $f(X_1, \ldots, X_j)$, resulting in a factor on X_2, \ldots, X_j defined by:

$$(\sum_{X_1} f)(X_2, \dots, X_j)$$

= $f(X_1 = v_1, \dots, X_j) + \dots + f(X_1 = v_k, \dots, X_j)$

Multiplying factors example

A	В	C	val
t	t	t	0.03
t	t	f	0.07
t	f	t	0.54
t	f	f	0.36
f	t	t	0.06
f	t	f	0.14
f	f	t	0.48
f	f	f	0.32

*f*₃:

	A	\boldsymbol{C}	val
	t	t	0.57
$\sum_{B} f_3$:	t	f	0.43
	f	t	0.54
	f	f	0.46

Evidence

If we want to compute the posterior probability of Z given evidence $Y_1 = v_1 \land \ldots \land Y_i = v_i$:

$$P(Z|Y_1 = v_1, ..., Y_j = v_j)$$

$$= \frac{P(Z, Y_1 = v_1, ..., Y_j = v_j)}{P(Y_1 = v_1, ..., Y_j = v_j)}$$

$$= \frac{P(Z, Y_1 = v_1, ..., Y_j = v_j)}{\sum_{Z} P(Z, Y_1 = v_1, ..., Y_j = v_j)}.$$

So the computation reduces to the probability of $P(Z, Y_1 = v_1, ..., Y_i = v_i)$.

We normalize at the end.

Probability of a conjunction

Suppose the variables of the belief network are X_1, \ldots, X_n .

To compute $P(Z, Y_1 = v_1, ..., Y_j = v_j)$, we sum out the other variables, $Z_1, ..., Z_k = \{X_1, ..., X_n\} - \{Z\} - \{Y_1, ..., Y_j\}$.

We order the Z_i into an elimination ordering.

$$P(Z, Y_1 = v_1, ..., Y_j = v_j)$$

$$= \sum_{T} \cdots \sum_{T} P(X_1, ..., X_n) Y_1 = v_1, ..., Y_j = v_j.$$

$$= \sum_{Z_k} \cdots \sum_{Z_1} \prod_{i=1}^n P(X_i | \pi_{X_i})_{Y_1 = v_1, \dots, Y_j = v_j}.$$

Computation in belief networks reduces to computing the sums of products.

 \blacktriangleright How can we compute ab + ac efficiently?

Computation in belief networks reduces to computing the sums of products.

- \blacktriangleright How can we compute ab + ac efficiently?
- \blacktriangleright Distribute out the a giving a(b+c)

Computation in belief networks reduces to computing the sums of products.

- \blacktriangleright How can we compute ab + ac efficiently?
- \blacktriangleright Distribute out the a giving a(b+c)
- \triangleright How can we compute $\sum_{Z_1} \prod_{i=1}^n P(X_i | \pi_{X_i})$ efficiently?

Computation in belief networks reduces to computing the sums of products.

- \blacktriangleright How can we compute ab + ac efficiently?
- \triangleright Distribute out the a giving a(b+c)
- \triangleright How can we compute $\sum_{Z_1} \prod_{i=1}^n P(X_i | \pi_{X_i})$ efficiently?
- \triangleright Distribute out those factors that don't involve Z_1 .

Variable elimination algorithm

To compute $P(Z|Y_1 = v_1 \land \ldots \land Y_j = v_j)$:

- Construct a factor for each conditional probability.
- > Set the observed variables to their observed values.
- Sum out each of the other variables (the $\{Z_1, \ldots, Z_k\}$) according to some elimination ordering.
- Multiply the remaining factors. Normalize by dividing the resulting factor f(Z) by $\sum_{Z} f(Z)$.

Summing out a variable

To sum out a variable Z_j from a product f_1, \ldots, f_k of factors:

$$\rightarrow$$
 those that don't contain Z_i , say f_1, \ldots, f_i ,

$$\rightarrow$$
 those that contain Z_j , say f_{i+1}, \ldots, f_k

We know:

$$\sum_{Z_i} f_1 \times \cdots \times f_k = f_1 \times \cdots \times f_i \times \left(\sum_{Z_i} f_{i+1} \times \cdots \times f_k \right).$$

Explicitly construct a representation of the rightmost factor. Replace the factors f_{i+1}, \ldots, f_k by the new factor.

Variable elimination example

