EXPERIMENT

PHASOR ANALYSIS FOR DIFFERENT

R-L-C CIRCUITS

TASKS

1. R-C Series

a. Implement the circuit shown in figure 1 on **Breadboard**.

Figure 1.

b. Case I (R=(1/Xc))

Set R=10k and C=1uF.

Measure V_R , V_C , I_R and I_C using CRO. Express the before said voltages and currents as phasors with respect to the input voltage V1.

c. Case II (R>(1/Xc))

Set R=33k and C=1uF.

Measure V_R , V_C , I_R and I_C using CRO. Express the before said voltages and currents as phasors with respect to the input voltage V1.

d. Case III (R<(1/Xc))

Set R=1k and C=1uF.

Measure V_R , V_C , I_R and I_C using CRO. Express the before said voltages and currents as phasors with respect to the input voltage V1.

- e. Implement the circuit shown in figure 1 in **LTSpice** and repeat steps 1(b),(c) and(d).
- f. Do the **hand analysis** for the circuit shown in figure 1 and perform steps 1(b),(c) and(d).

2. **R-C parallel**

a. Implement the circuit shown in figure 2 on **Breadboard**.

Figure 2.

- b. Set R=10k and C=1uF.
- c. Measure V_R , V_C , I_R and I_C using CRO. Express the before said voltages and currents as phasors with respect to the input voltage V1.
- d. Implement the circuit shown in figure 2 in **LTSpice** and repeat steps 2(c).
- e. Do the **hand analysis** for the circuit shown in figure 2 and perform steps 2(c).

3. R-L Series

a. Implement the circuit shown in figure 3 in **LTSpice**.

Figure3

- b. Measure V_R , V_C , I_R and I_C . Express the before said voltages and currents as phasors with respect to the input voltage V1.
- c. Do the **hand analysis** for the circuit shown in figure 2 and perform steps 3(b).

4. R-L Parallel

a. Implement the circuit shown in figure 4 in LTSpice.

Figure 4

- b. Measure V_R , V_C , I_R and I_C . Express the before said voltages and currents as phasors with respect to the input voltage V1.
- c. Do the **hand analysis** for the circuit shown in figure 4 and perform steps 4(b).
- 5. Implement the circuit shown in figure 5 on Breadboard.

Figure 5

- a. Find out V_{R1} , V_{R2} , V_{C1} , V_{C2} , I_1 and I_2 using CRO as phasors with respect to the input voltage V1.
- b. Implement the circuit shown in figure 5 in **LTSpice** and repeat steps 5(a).
- c. Do the **hand analysis** for the circuit shown in figure 5 and perform steps 5(a).
- 6. Implement the circuit shown in figure 6 in **LTSpice**.

Figure 6

- a. Find voltage across and current through all the components and express them as phasors with respect to the input voltage V1.
- b. Do the **hand analysis** for the circuit shown in figure 6 and perform steps 6(a).

7. Implement the circuit shown in figure 7 in **LTSpice**.

Figure 7

- a. Find voltage across and current through all the components and express them as phasors with respect to the input voltage 1.2Cos4000t.
- b. Do the **hand analysis** for the circuit shown in figure 7 and perform steps 6(a).

END