Assignment Project Exam Help Reducionities https://powcoder.com

Co-hosted by Paul https://powcoder.com

Alien-Computability

• We saw A-computable, A-c.e. (given any set A: Alien)

Assignment Project Exam Help

• P_e^A , Φ_e^A , W_e^A (everything can be relativized)

Add WeChat powcoder

• We can have: A- Σ_n and A- Π_n (written as Σ_n^A , Π_n^A)

- A function f is A-p.c. iff for some $e \in \mathbb{N}$, $f = \mathbf{\Phi}_e^A$. We can say f is A-p.c. via $\mathbf{\Phi}_e$
- A function f is A-computable if f for some f is total. We also write $f \leq_T A$.

 https://powcoder.com
- A set B is A-c.e. iff for same we have $Bp\overline{o}wW^A_{O}$ der
- A set B is A-computable iff I_B is A-computable. We write $B \leq_T A$
- We can also write $f \leq_T g$ for functions f,g

Turing Degrees **D**

- If $S \leq_T B$ and $S \geq_T B$, then we write $S \equiv_T B$ and say they are Turing equivalent Assignment Project Exam Help
- \equiv_T is an equivalence relation powcoder.com

 Add WeChat powcoder
- The equivalence classes are called Turing degrees
- Also called degrees of unsolvability

Partial Order

• Let S be a set and R be a binary relation on S (i.e. $R \subseteq S \times S$) R is said to be a partial order (non-strict) can S if I is said to be a partial order (non-strict).

https://powcoder.com

- 1. $(\forall a \in S)[R(a, a)]$
- 3. $(\forall a \in S)(\forall b \in S)(\forall c \in S)[R(a,b) \& R(b,c) \rightarrow R(a,c)]$

Total Order

4. $(\forall a \in S)(\forall b \in S)[R(a,b) \text{ or } R(b,a)]$ Every two elements are comparable ject Exam Help

https://powcoder.com

Every total order is a partial order, but not the converse

Examples

• Partial order: $P(\mathbb{N})$ and the relation \subseteq

Assignment Project Exam Help

• Total order: \mathbb{N} and \leq

https://powcoder.com

Structures

A set equipped with relations and functions

Assignment Project Exam Help

- (\mathbb{N}, \leq) is a partial order structure https://powcoder.com
- We know also it is a total order structure

(\mathcal{D}, \leq)

• The set of Turing degrees can be equipped with a partial order

Assignment Project Exam Help

- This partial order is obtained by defining Turing reducibility on ${\cal D}$ https://powcoder.com
- Note that, so far \leq_T is defined on T (N) we coder
- Recall that, an element from \mathcal{D} is an equivalence class (set of sets) This makes $\mathcal{D} \subseteq P(P(\mathbb{N}))$

Lifting \leq_T to $\boldsymbol{\mathcal{D}}$

• For $a, b \in \mathcal{D}$, we write $a \leq b$ if:

for some and
$$B_j \in \mathbf{b}_{EXE}$$
 have $A \leq_T B$

https://powcoder.com

• Is this well-defined?

In other words, if $A \leq_T B$ for some $A \in \mathbf{b}$ and $B \in \mathbf{b}$, does this mean that $A \leq_T B$ for all $A \in \mathbf{a}$ and $B \in \mathbf{b}$?

 For the definition to make sense, you want the behavior of a degree to be the same as any of its sets

- One can show that (\mathcal{D}, \leq) is a partial order structure
- One can also show that it is NOT total order

Assignment Project Exam Help

• Note: I made a mistake last lecture when I said that $(P(\mathbb{N}), \leq_T)$ is a partial order. Why?

- \leq_T is a partial order on degrees, not on sets.
- $(P(\mathbb{N}), \leq_T)$ is just a preorder, also called quasiorder (reflexive and transitive binary relation)

Sad thing about Turing Reducibility

• It does not distinguish between C.e. sets and Co-c.e. sets

Assignment Project Exam Help

• This is because for any set A, A and its complement \bar{A} are both of the same Turing degree https://powcoder.com

Add WeChat powcoder

• It is possible to have $A \leq_T B$ where we can computably enumerate B but can't enumerate A

m-reducibility: A stronger reducibility

• $A \leq_m B$, A is many-one reducible to B if there is a computable function f such that:

Assignment Project Exam Help For all $x \in \mathbb{N}$, $x \in A$ iff $f(x) \in B$ https://powcoder.com

- Again, \leq_m is a preorder Add M(M) has high M is a preorder M and M is a preorder M is a preor
- If f is injective, we write $A \leq_1 B$ and say A is 1-reducible to B

• \leq_1 implies \leq_m implies \leq_T

Assignment Project Exam Help

- Exercise: Find examples that the converse implications fail https://powcoder.com
- If $C \leq_m B$ and B is A-c.e., then C is also A-c.e.
- If $B \in \Sigma_n^A$ (or Π_n^A), and $C \leq_m B$, then $C \in \Sigma_n^A$ (or Π_n^A)

Assignment Project Exam Help
Break
https://powcoder.com

How many elements in ??

Example 1

- $K_0 = \{\langle e, x \rangle : \varphi_e(x) \downarrow \}$ is in Σ_1
- For every A in Σ_1 , A ssignment Project Exam Help https://powcoder.com

Indeed, we know that $A \neq W_e$ for f is computable, and f is f is computable, and f is f is computable, and f is f is computable.

• Note that f is also injective, and so $A \leq_1 K_0$

C-complete

- The example we gave shows that the set K_0 is Σ_1 -complete
- More generally, given so is C-complete work say that a set B is C-complete work soder.com
- 1. $B \in \mathbf{C}$
- 2. $C \leq_r B$ for every $C \in \mathcal{C}^{Add}$ WeChat powcoder
- If 1. isn't happening, we say B is C-hard
- When we don't specify the reducibility, we mean it is m-reducibility

Σ_n -completeness (and Π_n -completeness)

- When we say Σ_n -complete, without a reducibility specified, we mean with respect to 1-reducibility Assignment Project Exam Help
- Equivalently in this case, m-reducibility

 Add WeChat powcoder
- $\emptyset^{(n)}$ is Σ_n -complete
- $\overline{\emptyset^{(n)}}$ is Π_n -complete

Examples 2

• Consider the set $\mathbf{Tot} = \{e : \varphi_e \text{ is total}\}\$

Assignment Project Exam Help

• **Tot** is in Π_2

https://powcoder.com

• For every A in Π_2 , $A \leq_m^{\mathbf{Add}} \mathbf{WeChat}$ powcoder

• This means that **Tot** is Π_2 -complete

Proof:

• A in Π_2 means that there exists a computable relation R such that

Assignment Project Exam Help
$$x \in A \Leftrightarrow (\forall y)(\exists z)R(x, y, z)$$
 https://powcoder.com

• Consider the following Add Chat powcoder

$$\gamma(x,u) = \begin{cases} 0 & \text{if } (\forall y \le u)(\exists z)R(x,y,z) \\ \uparrow & o.w. \end{cases}$$

- $\gamma(x, u)$ is clearly p.c.
- There exists computable f such that $\gamma(x,u)=\varphi_{f(x)}(u)$

Assignment Project Exam Help

- This follows from the s-m-n theorem https://powcoder.com
- Now observe the followingdd WeChat powcoder

$$x \in A \Longrightarrow \varphi_{f(x)}$$
 is total

$$x \in \bar{A} \Longrightarrow \varphi_{f(x)}$$
 is NOT total

• This means that:

Assignment Project Exam Help $x \in A \Leftrightarrow f(x) \in \mathbf{Tot}$ https://powcoder.com

Add WeChat powcoder

Q.E.D

• Remark: f could be chosen injective

Example 3

• Consider the set **Fin** = $\{e: W_e \text{ is finite}\}$

Assignment Project Exam Help

• **Fin** is Σ_2

https://powcoder.com

- Actually, Fin is $\Sigma_?$ -complete
- Because in the proof of Example 2, we have that when $x \in \overline{A}$, the domain of $\varphi_{f(x)}$ is finite

So, we have

• Let A be an arbitrary set from Σ_2

Assignment Project Exam Help

• Then $\overline{A} \in \Pi_2$, and so by the proof of Example 2, there is a computable (can be chosen injective) funch that:

Add WeChat powcoder

$$x \in \bar{A} \Longrightarrow \varphi_{f(x)}$$
 is total $\iff W_{f(x)} = \mathbb{N}$ which is infinite $x \in A \Longrightarrow W_{f(x)}$ is finite

• In other words, $x \in A \iff f(x) \in \mathbf{Fin}$

Facts:

- B is c.e. in A iff $B \leq_1 A'$
- If $B \leq_T A$ then $B' \leq_1^A A$ spignment Project Exam Help

https://powcoder.com

• A' is c.e. in A

- If B is c.e. in A then B is c.e. in \bar{A}
- $\Sigma_n^{\emptyset^{(m)}} = \Sigma_{m+n}$

Assignment Project Exam Help
Break
https://powcoder.com

Some cool stuff: Kolmogorov Complexity

• Consider the following function: $K(x) = \mu e(\varphi_e(0) = x)$

Assignment Project Exam Help

• In some sense, this function gives the shortest program that can output x https://powcoder.com

Add WeChat powcoder

• This output can be regarded as the shortest description of the string $gn^{-1}(x)$

• We say a string s is **random**, if $K(gn(s)) \ge gn(s)$

Useful stuff

- Let A, B be two sets (very general)
- We denote the set of functions from A to B by B https://powcoder.com
- This notation is a cool connection with combinatorics. What is $|B^A|$?
- P(A) can be identified with $\{0,1\}^A$ (the set of characteristic functions of subsets of A)
- $|P(A)| = |\{0,1\}|^{|A|}$

Computability and real numbers

- A real number $r \in \mathbb{R}$ is computable if when given any $n \in \mathbb{N}$ one can compute a rational number $q \in \mathbb{Q}$ such that $|r-q| \leq 2^{-n}$ Assignment Project Exam Help
- \mathbb{R} can be viewed as $\{0,1\}^{\text{https://powcoder.com}}$

- $\{0,1\}^{\mathbb{N}}$ this is known as the Cantor space
- The word space is related to topology

Assignment Project Exam Help https://powcoder.com

Remember H10?

• A set A is Diophantine if there exists a polynomial $P_A(x,y_1,\ldots,y_n)$ such that

$$a \in A$$
 Assignment Project (Exam, Help) = 0

https://powcoder.com

- A is clearly Σ_1 , i.e. C.E.
 - Add WeChat powcoder
- Every set from Σ_1 is Diophantine
- One can show that a set of positive integers is Diophantine iff it is the range of a polynomial function

Simple examples of Diophantine sets

•
$$\leq$$
 = { (x, y) : $(\exists z) x + z - y = 0$ }

Assignment Project Exam Help

- The set of prime numbers is the range of a polynomial function https://powcoder.com
- The record for the lowest degree of such a polynomial is 5 (with 42 variables)

• The record for fewest variables is 10 with degree about 1.6×10^4

The key result for H10

• The exponential function $h(x, y) = x^y$ is Diophantine.

We mean by that Assignment Project Exam Help

https://powcoder.com

is Diophantine Add WeChat powcoder

Open Problem

• Hilbert 10th over \mathbb{Q}

Assignment Project Exam Help

 Lots of number theory, rings and fields stuff https://powcoder.com

Assignment Project Exam Help
OSIC
https://poweder.com

Theories and Axioms

- You saw the partial order definition
- They form a set of senters (10g Capitor Thurst Without free variables)

https://powcoder.com
 Such a collection of sentences is called a *theory*

- A set of axioms is just a theory. Usually it is picked so they describe the basic facts about the theory without redundancy
- By describing basic facts I mean one can deduce the whole theory from the axioms by a proof

Proof system

- A list of formulas such that each formula is either an axiom, or comes from previous formulas by a rule of inference Assignment Project Exam Help
- Example of a rule of inference! Woods ponens

$$P \rightarrow Q$$

$$----$$

$$Q$$

Logic: Theorems

• A theorem is a sentence that can be the end of a proof

Assignment Project Exam Help

- A theorem is also called a *consequence* https://powcoder.com
- Example: Let PO denote the set of partial order axioms.

We have

PO
$$\vdash$$
 $(\forall x)(\forall y)(\forall z)(\forall w)[x \le y \& y \le z \& z \le w \to x \le w]$
(\vdash is the verb "proves")

Theories and Computability

 A set Ax axiomatizes a theory T if every sentence in T is provable from Ax
 Assignment Project Exam Help

• It is of interest sometimes to look for Ax which is computable, or c.e. Add WeChat powcoder

• Fact: The set of consequences (theorems) of a c.e. set of axioms is c.e.

 Craig's Theorem: A c.e. theory has a computable set of axioms (primitive recursive actually)

Consistency

• A theory is consistent if it has a model

• Examples: The structure $(\mathbb{N}, \leq) \models PO$ (\models is the verb "models") $(\mathcal{D}, \leq_T) \models PO$ https://powcoder.com

Add WeChat powcoder

• A theory T is inconsistent if it can prove a sentence and its negations $\mathsf{T} \vdash \varphi \& \neg \varphi$

• This also means that for **any** sentence φ , T $\vdash \varphi$

Soundness

• Suppose you have a theory T and a sentence φ such that T $\vdash \varphi$

Assignment Project Exam Help

• Soundness of the proof system means that for every model *M*, https://powcoder.com

Add WeChat powcoder

• The last line is usually abbreviated as $T \vDash \varphi$ (semantic implication)

• So basically, soundness of a proof system is: If $T \vdash \varphi$ then $T \vDash \varphi$

Completeness

• Completeness of a proof system is: If $T \vDash \varphi$ then $T \vdash \varphi$

Assignment Project Exam Help

• Gödel completeness theorem: For any first order theory T, and any sentence φ (in the language of the theory). If $T \models \varphi$ then $T \vdash \varphi$

Add WeChat powcoder

A theory T is complete if for every sentence φ its language,
 either T ⊢ φ or T ⊢ ¬φ

Axiom Independence

• Suppose you have a consistent list of axioms A1,A2,A3,A4

Assignment Project Exam Help

- What does it mean that, say, A2 is independent from the rest? https://powcoder.com
- This means {A1,A3,A4} Add WeChat powcoder
- This also means that: There is a model M1 \models {A1,A2,A3,A4} and there is also a model M2 \models {A1, \neg A2,A3,A4}

Example

```
A1: (\forall a)[R(a,a)]
A2: (\forall a)(\forall b)[R(a,b)\&R(b,a) \rightarrow a = b]
```

A3: $(\forall a)(\forall b)(\forall c)[R(aAb)sign(men)t-Brajact)$ Exam Help

Add WeChat powcoder

A2 is independent of A1, A3 because

$$(\mathcal{D}, \leq_T) \vDash \{A1,A2,A3\} \text{ and } (P(\mathbb{N}), \leq_T) \vDash \{A1, \neg A2,A3\}$$

Pre is clearly an example of an incomplete theory since

Pre
$$\not\vdash$$
 A2 and Pre $\not\vdash$ \neg A2

Theory of Arithmetic

 The theory Th(N) of all the facts about the structure of natural numbers is LIFE

Assignment Project Exam Help

- Naturally there is a desirate sapture it through a manageable set of axioms
- By manageable I mean finite, or just computable
- By capture I mean axiomatize
- Sadly, this isn't possible (Gödel's Incompleteness Theorem)

Gödel's First Incompleteness

• Within the language of PA, Gödel used his numbering tricks to make sentences speak about themselves (self reference)

Assignment Project Exam Help

• The idea is to create a formula P(x, y) using $0,+,x,(,),s,\rightarrow,\neg$, ... such that y is the Gödel number of a proof in PAOF the sentence whose Gödel number is x

- Look now at this sentence: $\neg \exists y P(e, y)$ where $e = gn(\neg \exists y P(e, y))$
- It says e (myself), not provable
- We see (as outsiders) that it is true in the model $(\mathbb{N}, 0, +, \times, s)$

Gödel's Second Incompleteness

- Gödel decided to play more with his numbering trick and created a sentence that speaks about PA (about the system from within the system)
 Assignment Project Exam Help
- The sentence said: PA is consistent wooder.com
- Consis(PA): $\neg \exists y P(gn(0 \not= 0), y)$ (there is no proof of $0 \neq 0$)
- In other words, PA cannot prove its own consistency

Generalizability of the Incompleteness Theorems

- All those proofs of Gödel just required that the system is powerful enough to express arithmetic Assignment Project Exam Help
- So, he was able to prove similar facts about, e.g., set theory Add WeChat powcoder
- $\emptyset = 0, \{\emptyset\} = 1, \{\emptyset, \{\emptyset\}\} = 2, ..., n = \{0, 1, ..., n 1\}$

In philosophical terms

https://powcoder.com

• Imagine yourself creating a manageable (finite or computable) list of rules (laws) from which everything in your system of interest should follow.

• Unless your system is very weak, you can't

Factory Analogy

Imagine you have a factory that creates machines

Assignment Project Exam Help

• You want to create a machine which can test **every** machine in the factory https://powcoder.com

Add WeChat powcoder

It can test everything except itself

 It might be able to test certain aspects of itself, but not all of itself without external interference

Camera analogy

• A camera can't take a picture of itself

Assignment Project Exam Help

• Maybe with the aid of an **external** system of mirrors https://powcoder.com

Peano Arithmetic (example of axiomatization)

 The structure of natural numbers could be described (axiomatized) by the following set of axioms PA:

Assignment Project Exam Help

- 1. Natural numbers not empty
- 2. They can be built from a profile parts of the successor)
- 3. So, for every x, if x is a natural Warbeattpervs(x) details o a natural
- 4. For every x, s(x) is not 0
- 5. m=n iff s(m)=s(n)
- 6. If a = b, and a is natural, then b is natural
- 7. If 0 has a property P, and for every n, if n has P then s(n) has P, then P applies to all natural numbers

Structure of arithmetic

We have a structure $\mathbb{N} = (\mathbb{N}, 0, +, \times, s)$ which satisfies:

- 1. $\forall x \ 0 \neq s(x)$ Assignment Project Exam Help 2. $\forall x \forall y \ (s(x) = s(y) \rightarrow x = y)$
- https://powcoder.com 3. $\forall x \ 0 \neq s(x)$
- 4. For each formula $\varphi(x, \overline{y})$ in the language of Peano Arithmetic: $\forall \overline{y} \ [\varphi(0, \overline{y}) \& \forall x (\varphi(x, \overline{y}) \to \varphi(s(x), \overline{y})) \to \forall x \ \varphi(x, \overline{y})]$

That last axiom is actually an axiom schema. It unfolds into an infinite set of axioms

+, X

- $\forall x \ x + 0 = x$ Assignment Project Exam Help
- $\forall x \forall y \ (x + s(y) \rightarrow s(x + y))$ https://powcoder.com