Supervised Learning – Predictive Model

- Input→Predicative Model→Target(s)
 - Inputs Independent variables Predictors
 - Targets Dependent Variable Classes
- Goals
 - Known answer exists
 - Type Estimation
 - Continuous value output
 - Data needs to be numeric
 - No missing data
 - Ex. What is the price we expect apple stock to be tomorrow?
 - Algorithms
 - Linear Regression primary model for estimation
 - knn, neural net, trees can also perform as regression but not as common
 - Type Classification
 - Discrete (Y/N) or Multivalue decision
 - Binary
 - Ex. Is the transaction fraudulent?
 - Algorithms
 - Decision Trees
 - Perform splits based on best variable at each decision node
 - Easy to interpret
 - Pitfalls
 - Greedy-never look back
 - Unstable small changes can produce large change in tree
 - Less accurate than NN
 - Logistic Regression
 - Predicts the log of the odds of the outcome
 - Target variable is binomial (0/1)
 - Creates linear decision boundaries
 - Only represents main effects
 - Adding combinations causes explosion of data
 - Can use decision trees as input to logistic regression for combo effect management
 - Neural Networks
 - Any real value function can be approximated perfectly
 - Very flexible decision boundary formation
 - Slow good models take many times

- Can't have missing data
- Nearest Neighbor
 - Needs numbers
 - Select number of neighbors
 - Should use normalized input for same scale
 - Uses Euclidian distances squared
- Bayes Classifier
 - Uses quadratic boundaries
 - o For normally distributed data
 - Uses covariance not just distances
- Naïve Bayes Classifier
 - Simple version of Bayes
 - O Assumes all inputs are independent of one another
 - o Fast, single pass algorithm
 - Susceptible to redundant features
 - Requires categorical data
- Support Vector Machines (SVM)
 - Uses support vectors to determine boundaries
 - Accurate but slow to train
 - Data size is not an issue
 - Creates non-linear decision boundaries

UnSupervised Learning – Descriptive Model

- Input→Descriptive Model
 - Inputs Independent variables Predictors
 - Output clusters, groups, segments
- Goals
 - o Discover groupings or clusters in data or patterns that exist quite frequently
 - Segmentation/Clustering
 - What types of products sell well with the stores highest paying customers
 - K-means clustering
 - Finds groupings of data points that are closest together
 - No targets defined
 - Euclidian is the common distance used
 - Needs numeric data
 - Data should be normalized
 - No missing data
 - Summarization/Association Rules
 - Which products tend to be sold together
 - Association Rules
 - In form conclusion ← condition1 [and condition2 and...]

- Number of records (percentage) that match condition and conclusion
- If buy bread how many buy milk?
- Basic methodology is to count records
- Wants strings vs numbers

Model Ensembles

- Accurate
- Single models provide insufficient accuracy
- Different algorithms achieve same level of accuracy but for different cases
- Combine outputs from multiple models into a single decision
- Models can be created using the same algorithm or different algorithms
 - Model(s) \rightarrow Decision Logic \rightarrow Ensemble Prediction
- Kinds of Ensembles
 - Bagging Methods Variance Reduction
 - Bagging
 - Create many datasets by bootstrapping
 - Create one decision tree for each dataset
 - Combine decision trees by averaging final decisions
 - Reduces model variance rather than bias
 - Results are on average better than individual tree
 - Random Forests
 - Exact same as bagging with exception
 - At each split, rather than using entire set of candidate inputs, use a random subset of candidate input
 - Generates diversity of samples and inputs (splits)
 - On average, better than individual tree, bagging or boosting
 - Boosting Methods Bias Reduction
 - Boosting (Adaboost)
 - Create tree using training dataset
 - Score each data point indicating when each incorrect decision is made (errors)
 - Retrain giving rows with incorrect decisions more weight and repeat
 - Final prediction is weighted average of all models
 - Often used with trees or naïve bayes
 - Usually better than individual tree or bagging
 - Heterogeneous
 - Average prediction from multiple algorithms
 - Model diversity obtained by using different algorithms
 - Tree, nn, regression, knn
 - Combining 3-5 models seems best
 - Reduces variance but not bias