总分:95

最后一题计算置信区间有问题, 信区间有问题, 给出的function需要使用的se.fit才 能计算正确

《国际关系定量分析基础》2020 程使用的se.fit才

第四次作业 (共计 100 分)

赵佳鹏 2017010454

截止时间: 2020 年 11 月 30 日 11: 59 am

注意事项:

- 作业在网络学堂提交
- 请将 Chunk 中的 eval=FALSE 改为 eval=TRUE 再 knit
- 请将文件解压缩后,直接在 R Markdown 文件中完成本次作业
- 学生可以互相讨论作业,但作业必须是自己本人独立完成
- 提交作业的文件名需以 HW-4-YourName.Rmd,HW-4-YourName.pdf 或者 HW-4-YourName.html, 请将 YourName 替换为你的姓名。(若 R Markdown 出现无法 knit 为 pdf 情况,则使用 bookdown::html_document2: 会生成为 html)
- 请显示每道题的 R Code 于 pdf 中,注重 Code 的整洁性和可读性,可参考Google's R Style Guide

本次作业需要的数据已经提供,请将数据与 HW-4-YourName.Rmd 放在同一工作路径的文件夹内

load("HW-4.RData")

本次作业的 HW-4.RData 数据包括 broz_et_al 和 map 两个数据,其中数据 broz_et_al 来自于 J. Lawrence Broz, Zhiwen Zhang 以及 Gaoyang Wang 发表于《国际组织》2020 年第 2 期的复制数据 (见 J. Lawrence Broz, Zhiwen Zhang, and Gaoyang Wang, "Explaining Foreign Support for China's Global Economic Leadership," *International Organization*, Vol. 74, Summer 2020, pp. 417–52)。该文章检验了世界各国对中国一带一路峰会态度的影响因素。

其中部分变量如下:

- countryname: The Correlates of War (COW) country name
- attendance: "DV=Attendance" (1= Yes; 0 otherwise)
- obor nations: "One Belt, One Road Position" (1= Yes; 0 otherwise)
- ftas: "FTA with China" (1= Yes; 0 otherwise)

数据可视化 2

- bits: "BIT with China" (1= Yes; 0 otherwise)
- fc_dummy_cumcount_bank_s1_9016: "Financial Crises"
- ka_open_sd9016: "Variability of Capital Account Policy"
- mean_portfolio_vol: "Volatility of Portfolio Outflows"
- imf_dummy_unrest_index_sum_9017: "Social Unrest During IMF Programs"
- wto_cases_cumulcount9516: "WTO Complaints Against The U.S."
- imf_governance_deficit_usd_2015: "IMF Governance Deficit"

表-1 统计了部分变量的统计分布特征。请利用 broz_et_al 数据完成以下各题。

Statistic	N	Mean	Median	Max	Min	St. Dev.
attendance	192	0.151	0	1	0	0.359
obor_nations	192	0.349	0	1	0	0.478
ftas	192	0.125	0	1	0	0.332
bits	192	0.547	1	1	0	0.499
fc_dummy_cumcount_bank_s1_9016	162	4.358	0.000	27.000	0.000	6.475
ka_open_sd9016	178	0.140	0.116	0.431	0.000	0.105
mean_portfolio_vol	93	0.162	0.011	7.324	0.00002	0.797
$imf_dummy_unrest_index_sum_9017$	192	13.625	2	188	0	26.984
$wto_cases_cumulcount9516$	192	0.651	0	17	0	2.246
$imf_governance_deficit_usd_2015$	184	0.066	0.052	1.924	-7.653	0.630

表 1: 变量的描述性统计

数据可视化

1.(20 分) 利用 map 数据和 ggplot 绘制一幅各国参加一带一路峰会的地图(提示:参与国家的变量为 attendance)。根据地图,你发现参与国家的地理分布有何模式和特征?

数据可视化 3

图 1: Countries attended BRI Submit

根据地图,我们发现参与国家地理分布不均,主要分布在以下地区:

- 南美洲南部(如阿根廷、智利);
- 东南亚(如印度尼西亚、菲律宾);
- 中东欧(如白俄罗斯、俄罗斯);
- 地中海北岸(如西班牙、意大利);

• 东非(如埃塞俄比亚、肯尼亚)。

其它地区亦有少量参与一带一路峰会的国家,如中亚的哈萨克斯坦、南亚的巴基斯坦、大洋洲的斐济等。大部分参与一带一路峰会的国家都是沿海国家。

估计二分类因变量模型

2.(15 分)利用线性概率模型(linear probability model)估计以下模型,将其命名为 m1, 并制作一个回归表格。根据回归表格,解读对应的回归系数 β_1 。

LPM:

$$attendance = \beta_0 + \beta_1 * \text{One Belt, One Road Position+}$$

$$\beta_2 * \text{FTA with China+}$$

$$\beta_3 * \text{BIT with China} + \epsilon$$

```
m1 <- lm(attendance ~ obor_nations + ftas + bits, data = broz_et_al)
library(stargazer)
# 报告回归结果,并设定置信区间水平为 95%
stargazer(m1, single.row = TRUE, ci = TRUE, ci.level=0.95, type = "latex",
header = FALSE, title = " 线性概率模型回归统计结果")
```

表 2: 线性概率模型回归统计结果

	Dependent variable:		
	attendance		
obor_nations	$0.129^{**} (0.021, 0.238)$		
ftas	$0.304^{***} \ (0.159, \ 0.450)$		
bits	$0.126^{**} \ (0.026, \ 0.226)$		
Constant	$-0.001 \ (-0.070, \ 0.068)$		
Observations	192		
\mathbb{R}^2	0.212		
Adjusted \mathbb{R}^2	0.200		
Residual Std. Error	0.321 (df = 188)		
F Statistic	$16.906^{***} (df = 3; 188)$		
Note:	*p<0.1; **p<0.05; ***p<0.0		

本回归模型中,自变量 obor_nations 的回归系数 β_1 为 0.129。它在 95% 置信水平上是显著的。这意味着在此水平下,在其它变量不变的情况下,位于被中国划定为优先进行基础设施投资的商路 沿线的国家相比于不位于其沿线的国家而言,参加一带一路峰会的概率平均高出 12.9%。

3.(15 分)利用 Logit 回归估计以下模型,将其命名为 m2, 并制作一个回归表格。根据回归表格,解读对应的回归系数 β_1 和 β_2 。

Logit Model:

```
\begin{split} P(attendance = 1) = & \beta_0 + \beta_1 * \text{Financial Crises} + \\ & \beta_2 * \text{Variability of Capital Account Policy} + \\ & \beta_3 * \text{Volatility of Portfolio Outflows} + \\ & \beta_4 * \text{Social Unrest During IMF Programs} + \\ & \beta_5 * \text{WTO Complaints Against The U.S.} + \\ & \beta_6 * \text{IMF Governance Deficit} + \epsilon \end{split}
```

本回归模型中,自变量 fc_dummy_cumcount_bank_s1_9016、ka_open_sd9016 的回归系数 β_1 、 β_2 分别为 0.037、2.044,均大于 0。这意味着在此水平下,在其它变量不变的情况下:

- 一国的标准化 Chinn-Ito 指数的标准差每增加 1,它参加一带一路峰会概率的 log-odds 值平均增加 2.044。这将会使参加一带一路峰会的概率上升。

然而,它们在90%置信水平上都不显著。这影响了模型的可靠性。

注: 自变量 fc_dummy_cumcount_bank_s1_9016 不是二分变量,它统计了 1990 年至 2016 年间一 国发生重大金融危机的总次数,参见论文原文。

4. (20 分)利用线性概率模型 (linear probability model)、Logit 和 Probit 分别估计以下模型,将 其命名为 m3, m4, m5,同时制作一个回归系数图。

表 3: Logit 模型回归统计结果

	Dependent variable:	
	attendance	
fc_dummy_cumcount_bank_s1_9016	$0.037 \; (-0.057, 0.131)$	
ka_open_sd9016	$2.044 \ (-3.020, \ 7.108)$	
mean_portfolio_vol	0.517 (-0.314, 1.347)	
$imf_dummy_unrest_index_sum_9017$	$0.014 \ (-0.006, \ 0.033)$	
wto_cases_cumulcount9516	-0.109 (-0.368, 0.149)	
$imf_governance_deficit_usd_2015$	0.144 (-0.825, 1.114)	
Constant	-2.023^{***} $(-3.192, -0.855)$	
Observations	85	
Log Likelihood	-41.836	
Akaike Inf. Crit.	97.671	
Note:	*n <0 1. **n <0 05. ***n <0 01	

Note:

*p<0.1; **p<0.05; ***p<0.01

```
P(attendance = 1) = \beta_0 + \beta_1 * \text{One Belt, One Road Position+} \beta_2 * \text{FTA with China+} \beta_3 * \text{BIT with China+} \beta_4 * \text{Financial Crises+} \beta_5 * \text{Variability of Capital Account Policy+} \beta_6 * \text{Volatility of Portfolio Outflows+} \beta_7 * \text{Social Unrest During IMF Programs+} \beta_8 * \text{WTO Complaints Against The U.S.+} \beta_9 * \text{IMF Governance Deficit} + \epsilon
```

```
data = broz_et_al)
#probit
m4 <- glm(attendance ~ obor_nations + ftas + bits +
            fc_dummy_cumcount_bank_s1_9016 +
            ka_open_sd9016 + mean_portfolio_vol +
            imf_dummy_unrest_index_sum_9017 +
            wto_cases_cumulcount9516 + imf_governance_deficit_usd_2015,
         data = broz_et_al, family = binomial(link = "probit"))
#logit
m5 <- glm(attendance ~ obor_nations + ftas + bits +
            fc_dummy_cumcount_bank_s1_9016 +
            ka_open_sd9016 + mean_portfolio_vol +
            imf_dummy_unrest_index_sum_9017 +
            wto_cases_cumulcount9516 + imf_governance_deficit_usd_2015,
         data = broz_et_al, family = binomial(link = "logit"))
library(dotwhisker)
# 作图报告回归系数,并设定置信区间水平为 95%
dwplot(list(m3, m4, m5), conf.level = .95, show_intercept = TRUE) +
 theme_bw() +
 ggtitle("Coefficient Plot")
```


8

图 2: Coefficient Plots

5. (30 分)根据 broz_et_al 数据和 Logit 模型 5, 计算澳大利亚 (Australia)、法国 (France)和印度 (India)支持中国经济领导的概率 (包括 95% 置信区间)。(提示:根据模型 5 结果以及这三国对应变量取值,计算预测概率及其置信区间)

这里的x不是fit ,是 se.fit

表 4: 三国支持中国经济领导的概率

Country	Predicted_possibility	Upper_value	Lower_value
Australia	0.215	0.636	-0.206
France	0.028	0.083	-0.027
India	0.333	0.987	-0.320

[-5pt]

没有转化为概率形式