6. МЕТОДЫ ОДНОМЕРНОЙ ОПТИМИЗАЦИИ

ЦЕЛЬ РАБОТЫ

Исследование методов общего поиска и золотого сечения решения задачи одномерной оптимизации. Анализ влияния начальной длины интервала неопределенности и параметра останова итерационной процедуры на точность (количество итераций) определения оптимального значения проектного параметра.

ПОСТАНОВКА ЗАДАЧИ

Найти оптимальное значение x_* проектного параметра x, при котором целевая функция u(x), $x \in [a, b]$ имеет экстремальное значение.

Вид целевой функции:

1)
$$u(x) = x^2 20x + 720$$
, $x_{*1} = 10,0000$;
2) $u(x) = x^2 - 3x - 2\exp(0,3x)$, $x_{*1} = 2,0559$, $x_{*2} = b$;
3) $u(x) = x^2 + x - 2$, $x_{*1} = -0,5000$;
4) $u(x) = x^4 - 4,7x^3 + 7,4x^2 - 4,3x + 1$, $x_{*1} = 0,4805$, $x_{*2} = 1,8054$;
5) $u(x) = x^4 - 43x^3 + 625x^2 - 3350x + 20000$, $x_{*1} = 4,4194$, $x_{*2} = 15,9476$;
6) $u(x) = 0,5\sin(2,5x)\exp(-0,4x) + 2$, $x_{*1} = 1,8215$, $x_{*2} = 4,3348$, $x_{*3} = 6,8480$, $x_{*4} = 9,3613$, $x_{*5} = 11,8746$;
7) $u(x) = 0,5 + \sin(0,15x - \sqrt{x})$, $x_{*1} = 6,4205$, $x_{*2} = 17,0780$, $x_{*3} = 97,1133$;

8)
$$u(x) = -0.5(5x^3 - 3x)$$
, $x_{*1} = -0.4472$;
9) $u(x) = 2.45 \exp(-3x)(1 - 18x + 54x^2 - 36x^3)$, $x_{*1} = 0.1794$, $x_{*2} = 1.6728$;
10) $u(x) = -4x^3 + 3x$, $x_{*1} = -0.5000$;
11) $u(x) = -8x^3 + 15x^2 + 16x$, $x_{*1} = -0.4000$;
12) $u(x) = 2 - \sin(0.1x^2)$, $x_{*1} = 3.9630$;
13) $u(x) = 0.8 + \cos(0.5x - 2\sqrt{x})$, $x_{*1} = 4.0000$;
14) $u(x) = 44 \exp(-0.5x)\cos(0.5x)$, $x_{*1} = 4.7122$;
15) $u(x) = 13\cos(0.3x)\cos(0.1x)$, $x_{*1} = 9.1170$;
16) $u(x) = 3x^4 - 48x^3 + 19x^2 - 3x + 0.25$, $x_{*1} = 11.731$;
17) $u(x) = 10x^4 - 48x^2$, $x_{*1} = 1.5450$;
18) $u(x) = 6.85x^2 - 128x + 19.75$, $x_{*1} = 9.3440$;
19) $u(x) = 2\sin(0.2x)\cos(0.5x)$, $x_{*1} = 6.5041$;
20) $u(x) = -15x^3 \exp(-0.8x)$, $x_{*1} = 3.7500$.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. Ознакомиться с описанием работы. Уяснить цель и смысл задачи согласно варианту. Открыть выполняемый файл «М10».

Метод золотого сечения

- 2. Определить значение проектного параметра, при котором целевая функция имеет экстремум, положив DK=2 (параметр DK задает начальную длину интервала неопределенности $\delta_0=b-a$ в виде $b=x_*DK$, $a=x_*$ / DK) и значение параметра останова $\epsilon=0,001$.
- 3. Исследовать влияние начальной длины интервала неопределенности (параметр DK изменять от $DK_{\min} = 2$ до $DK_{\max} = 5$ через

- HDK = 0,5) на количество итераций и погрешность алгоритма $(\epsilon = 0,001)$.
- 4. Исследовать влияние параметра останова ε (изменять ε от $\varepsilon_{\min}=1,0e^{-8}$ до $\varepsilon_{\max}=1,0e^{-1}$ в виде $\varepsilon_{(i+1)}=10\varepsilon_i$) на погрешность алгоритма и количество итераций (DK=2)

Метод общего поиска

- 5. Повторить п. 2 для метода общего поиска с разовым уменьшением интервала неопределенности, задав коэффициент дробления $\rho = \epsilon = 0,001$. Зафиксировать количество вычислительных операций, приведенных в файле данных.
- 6. Выполнить поиск экстремума методом общего поиска с последовательным уменьшением интервала неопределенности, задав коэффициент дробления $\rho=0,1$ при $\epsilon=0,001$. Зафиксировать количество вычислительных операций, приведенных в файле данных, сравнить результаты пп. 5 и 6.
 - 7. Оформить отчет.

СОДЕРЖАНИЕ ОТЧЕТА

- 1. Цель работы.
- 2. Постановка задачи.
- 3. Описание алгоритмов «золотого сечения» и общего поиска.
- 4. График целевой функции u(x).
- 5. Результаты выполнения п. 2 в виде таблицы параметров и рисунка с графиками сходимостей.
- 6. Результаты исследования влияния начальной длины интервала неопределенности на погрешность определения значения проектного параметра и количество итераций (п. 3) в виде графиков $\lg E_0 = f(\lg \varepsilon)$, $K_m = f(\lg \varepsilon)$.
- 7. Результаты исследования влияния параметра останова на погрешность определения значения проектного параметра и количество итераций (п. 4) в виде графиков $\lg E_0 = f(\lg \varepsilon)$, $K_m = f(\lg \varepsilon)$.
 - 8. Выводы.

КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Метод общего поиска экстремума унимодальной целевой функции. Суть метода общего поиска, или, как его еще называют, метода перебора в том, что исходный интервал неопределенности [a,b] делится на N равных частей с шагом h = (b-a)/N и в (N+1) узлах полученной сетки вычисляются значения целевой функции $u(x_i)$, $i \in [0,N]$, как показано на рис. 6.1.

Пусть минимальным из вычисленных значений оказалось $u(x_i)$. Следовательно, оптимальный параметр $x_* \in [x_{i-1}, x_{i+1}]$ и тем самым исходный интервал неопределенности δ_0 удалось сузить до двух шагов сетки. Деление интервала неопределенности на N частей можно характеризовать коэффициентом дробления

$$\rho = \frac{2}{N+1} \, .$$

Тогда, чтобы обеспечить $\rho=0,1$ (получить $\delta=0,1\delta_0$), необходимо вычислить целевую функцию в 21 точке (N=19 и еще u(a) и u(b)), а чтобы обеспечить $\rho=0,01$ (уменьшить δ_0 в 100 раз), требуется определить 201 значение целевой функции и т. д. В результате описанный способ приводит к существенным вычислительным затратам.

Повысить эффективность метода общего поиска можно путем последовательного сужения интервала неопределенности. Осуществляет-

ся это следующим образом. Предположим, что исходный интервал неопределенности [a,b] необходимо уменьшить в 100 раз ($\rho=0,01$). Это можно проделать в два этапа. Вначале, вычислив целевую функцию в 21 точке, уменьшим [a,b] в 10 раз, а полученный новый интервал неопределенности $[x_{i-1},x_{i+1}]$ снова уменьшим в 10 раз, причем во втором случае понадобится 19 вычислений целевой функции, поскольку $u(x_{i-1})$ и $u(x_{i+1})$ уже известны. Таким образом, последовательное сужение интервала неопределенности позволило уменьшить количество вычислений целевой функции до 40 вместо 201 в рассмотренном ранее случае.

Методов одномерной оптимизации унимодальных целевых функций. Последовательное уменьшение интервала неопределенности осуществляется за счет вычисления целевой функции на каждом шаге (кроме первого) лишь в одной, выбираемой специальным образом, точке, которая называется золотым сечением. Геометрически это иллюстрирует рис. 6.2, где ищется минимум целевой функции. Пусть на нулевом шаге длина интервала неопределенности [a, b] задана в виде

 $\delta = b - a = x_{20} - x_{10}$. Внутри [a, b] выбираются две точки x_1 и x_2 и вычисляются $u(x_1)$ и $u(x_2)$. Оказывается, что $u(x_1) < u(x_2)$, следовательно,

искомый минимум располагается между $x_{11}=x_{10}$ и $x_{21}=x_2$. В полученном новом интервале неопределенности $[x_{11},x_{21}]$ длиной $\delta_1=[x_{21}-x_{11}]$ необходимо опять выбрать две точки, но одна из них x_1 уже есть, поэтому выбирается точка x_3 и вычисляется $u(x_3)< u(x_1)$. Границы нового интервала неопределенности $x_{12}=x_1$, $x_{22}=x_{21}$, а $\delta_2=x_{22}-x_{12}$.

Описанная процедура продолжается до тех пор пока, не будет выполнено соотношение

$$\delta_k = x_{2k} - x_{1k} \le \varepsilon \delta_0, \ k = 0, 1, 2, \dots$$

Точка золотого сечения выбирается из условия

$$l_2 / l = l_1 / l_2$$
,

где $l=l_1+l_2$ представляет собой длину интервала неопределенности. Проделав элементарные преобразования с приведенным выше соотношением

$$l_2^2 = l_1 l$$
, $l_2^2 = l_1 (l_1 + l_2)$, $(l_1 / l_2)^2 + l_1 / l_2 - 1 = 0$,

получим

$$l_1 = \rho_1 l$$
, $\rho_1 = (3 - \sqrt{5}) / 2 \approx 0.381966$,
 $l_2 = \rho_2 \cdot l$, $\rho_2 = (\sqrt{5} - 1) / 2 \approx 0.618034$.

- 1. Метод общего поиска.
- 2. Метод золотого сечения.
- 3. Влияние начальной длины интервала неопределенности на количество итераций и погрешность метода золотого сечения.
- 4. Влияние величины параметра останова на количество итераций и погрешность метода золотого сечения.
 - 5. Поиск экстремума неунимодальной целевой функции.