2/2

2/2

2/2

2/2

0/2

0/2

 \Box $L(e) \subseteq L(f)$

plifier $e^*(e+f)^*f^*$.

QCM T	THLR 2
Nom et prénom, lisibles :	Identifiant (de haut en bas) :
CHATIPSAUR	
Robin	2 0 □1 □2 □3 □4 □5 □6 □7 □8 □9
olus restrictive (par exemple s'il est demandé si 0 es	
Q.2 Pour toute expression rationnelle e , on a $\emptyset e \equiv e\emptyset \equiv \emptyset$.	$ \Box e+f^* \qquad \Box e^*f^* \qquad \boxtimes (e+f)^* $ $ \Box e^*+f \qquad e^*+f^* $
🗌 faux 👹 vrai	Q.8 Soit Σ un alphabet. Pour tout $a \in \Sigma$, $L_1, L_2 \subseteq$
Q.3 Pour toute expression rationnelle e , on a $e +$	Σ^* , on a $L_1^* = L_2^* \Longrightarrow L_1 = L_2$.
$ \emptyset \equiv \emptyset + e \equiv e. $ faux vrai	□ vrai 🛛 faux
Q.4 Pour toutes expressions rationnelles e, f , on a $(ef)^*e \equiv e(ef)^*$.	Q.9 L'expression Perl '[-+]?[0-9A-F]+([-+/*][-+]?[0-9A-F]+)*' n'engendre pas :
🗆 vrai 🐲 faux	☐ '-42-42' × '42+(42*42)'
Q.5 À quoi est équivalent ∅*?	
□ Ø □ Øε □ εØ 🛚 ε	Q.10 \wedge Soit <i>A, L, M</i> trois langages. Parmi les pro-
Q.6 Pour $e = (a+b)^*$, $f = a^*b^*$:	positions suivantes, lesquelles sont suffisantes pour garantir $L = M$?
$\Box L(e) = L(f) \qquad \Box L(e) \not\subseteq L(f)$	$AI = AM \qquad \text{(a)} \cdot I = \{a\} \cdot M$

Fin de l'épreuve.

 $L(e) \supseteq L(f)$

 $\textbf{Q.7} \quad \text{ Pour toutes expressions rationnelles } \textit{e, f}, \text{sim-}$

☐ Aucune de ces réponses n'est correcte.

-1/2