Distance-Based Localization

Robot tracking with EKF and optimization

Problem

Relative measurements

Equivalent formulation

The math

Graph: $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

Positions: $x_i \in \mathbf{R}^2$

Measurements: $y_i \in \mathbf{R}$

Weights: $w_{ij} \in \mathbf{R}$

Objective: $\min_{x_1,...,x_n} S(x_1,...,x_n) = \sum_{(i,j)\in\mathcal{E}} \frac{w_{ij}}{2} (||x_i - x_i||_2 - y_i)^2$

Kruskal's algorithm

- Simple
- Essentially gradient descent
- Smart choice of step sizes

Kruskal's algorithm

Kruskal's algorithm

Pipeline Move Measure Good **Predict** Optimize initial guess

Update

Riemannian Elevator

- Developed at prof. Schwager's lab
- Doesn't need an initial guess
- Solves a higher-dimensional relaxations
- Optimizes over edge directions and vertex positions

Riemannian Elevator

Riemannian Elevator

Total pipeline (m = 18, n = 6)

Total pipeline (m = 18, n = 6)

Total pipeline (m = 105, n = 15)

Total pipeline (m = 105, n = 15)

Next steps

- Periodic resetting with Riemannian Elevator
- Replace Kruskal