RISTIAN LACEY

\$\cup (347) 861-2405 | \$\square\$ clacey@princeton.edu | \$\textit{\alpha}\$ cristianlacey.github.io | \$\vec{\textit{\mathbb{m}}}\$ cristian-lacey

Education

Princeton University

Ph.D. in Mechanical and Aerospace Engineering, Advisor: Michael E. Mueller, GPA: 4.00/4.00

Expected May 2023

New York, NY

May 2018

The Cooper Union

B.E. IN MECHANICAL ENGINEERING, GPA: 3.98/4.00

Honors

2019	Sayre Award for Academic Excellence , Highest-ranking graduate student after first year.	Princeton University
2019	Daniel and Florence Guggenheim Foundation Fellowship , Competitive second-year fellowship.	Princeton University
2018	Gordon Y. S. Wu Fellowship in Engineering, Competitive first-year fellowship.	Princeton University
2018	Henri D. Dickinson Award, Highest cumulative ranking upon graduation.	The Cooper Union
2018	Alexander C. Grove Memorial Prize, For scholarship, personal integrity, and professional promise.	The Cooper Union
2018	The Mechanical Engineering Design Prize, For excellence in mechanical design.	The Cooper Union
2016	Tyler G. Hicks Mechanical Engineering Prize, For academic achievement during the first two years.	The Cooper Union
2015	Howard Silfin Mechanical Engineering Internship Award, For ability to conduct quality research.	The Cooper Union
2014	Half-tuition scholarship, Merit scholarship for all four years.	The Cooper Union

Peer-Reviewed Publications _____

- Lacey, C.E., Novoselov, A.G., Mueller, M.E., In-Situ Adaptive Manifolds: Enabling computationally efficient simulations of complex turbulent reacting flows, Proceedings of the Combustion Institute 38 (2019) submitted.
- Novoselov, A.G., Lacey, C.E., Mueller, M.E., Large Eddy Simulation of a turbulent lifted flame using multi-modal manifold-based models: Feasibility and interpretability, Proceedings of the Combustion Institute 38 (2019) submitted.

Conference Papers & Presentations ______

- Lacey, C.E., Novoselov, A.G., Mueller, M.E., In-Situ Adaptive Manifolds: Enabling simulations of complex turbulent reacting flows, 72nd Annual Meeting of the APS Division of Fluid Dynamics, Seattle, WA, November 23-26, 2019.
- Novoselov, A.G., Lacey, C.E., Mueller, M.E., Large Eddy Simulations of turbulent flames using two-dimensional reduced-order manifold models, 72nd Annual Meeting of the APS Division of Fluid Dynamics, Seattle, WA, November 23-26, 2019.
- Wei, H., Bianco, V., Lacey, C.E., Trubatch, A.D., Yecko, P.A., Experimental quantification of volume loss rate and flow dynamics due to a magnetically localized fluid region in a laboratory model blood vessel flow (Poster), 12th International Conference on the Scientific and Clinical Applications of Magnetic Carriers, Copenhagen, DK, May 22-26, 2018.

Research _____

High-Fidelity Manifold Modeling of Turbulent Combustion

Princeton, NJ

PRINCETON UNIVERSITY

Jan. 2019 - Present · Integrating In-Situ Adaptive Tabulation (ISAT) algorithm into multi-modal manifold modeling code, enabling more efficient on-the-fly lookups and less computationally expensive turbulent combustion simulations.

- · Simulating multiple nonpremixed and partially premixed jet configurations to determine regimes of applicability
- of different physically-derived reduced-order (PDRs) manifold models.
- Conducting performance assessment of ISAT implementation.
- Validating results through comparison with experimental measurements.

Magnetic Nanoparticle Feedback Control System

New York, NY

THE COOPER UNION Sept. 2017 - May 2018

- Investigated using a magnetic control system to direct drug-coated magnetic nanoparticles to disease targets, increasing the effectiveness of treatments like chemotherapy while decreasing the side-effects.
- Designed and constructed an experimental setup comprising a closed-loop flow channel, nanoparticle cluster, webcam, stepper motors, and electromagnets on rails.
- Wrote a Python program using OpenCV to track the location of a nanoparticle cluster in real-time.
- Programmed an Arduino to actuate stepper motors and vary electromagnet strength in feedback control loop.

Employment _____

ENGINEERING INTERN

Smith Engineering, PLLC New York, NY

• Trained predictive models in Microsoft Azure Machine Learning Studio.

- Integrated machine learning models with a local PI database using Python and API requests.
- Prepared screens in PI Vision for real-time data visualization.
- Wrote Python programs to scrape data using API requests and WebDrivers.
- Built Con Edison electric and steam rate structures in MATLAB.

Projects _____

Genetic Algorithm for Structural Design and Topological Optimization

Princeton, NJ

May 2017 - Apr. 2018

PRINCETON UNIVERSITY Nov. 2018 - Jan. 2019

- Developed a Python package that employs a genetic algorithm to optimize truss structures.
- Versioned with Git and coordinated with team to proactively avoid merge conflicts.
- Leveraged Coveralls and Codacy for code coverage evaluations and linting.
- Generated automatic documentation with Sphinx and Read the Docs.

Analysis and Design of a Wind Turbine Tower

New York, NY

Oct. 2017 - Nov. 2017

• Designed wind turbine tower to satisfy strength and deflection specifications.

- Modeled tower geometry in SolidWorks.
- Meshed solid geometry in ANSYS Meshing.
- Simulated design in ANSYS APDL and Workbench.
- Documented results in final report and delivered presentation.

CFD Analysis and Design of a Turbojet Compressor

New York, NY

THE COOPER UNION

THE COOPER UNION

• Designed compressor stage of a turbojet engine to satisfy pressure and compression ratio specifications.

- Modeled compressor geometry in BladeGen and SolidWorks.
- Meshed solid geometry in HyperMesh and ANSYS Meshing.
- Simulated design transiently in ANSYS Fluent and performed post-processing in CFD-Post.
- Documented results in final report and delivered presentation.

Skills

Software ANSYS Fluent, ANSYS APDL, HyperMesh, SolidWorks, AutoCAD, MATLAB.

Languages Python, C, Fortran.

Tools Make, Git, Mercurial, UNIX command-line, ET_FX.

IoT Raspberry Pi, Arduino.

Memberships _____

Honor Societies Tau Beta Pi. **Professional Associations** APS DFD, ASME.

Apr. 2017 - May 2017