Db2 12 for z/OS Migration Planning and Experiences Part 2

John Campbell

Distinguished Engineer
Db2 for z/OS Development
Email: campbelj@uk.ibm.com

IBM Data and AI

Data and AI on IBM Z

Objectives

- Share lessons learned, surprises, pitfalls
- Provide hints and tips
- Address some myths
- Provide additional planning information
- Provide usage guidelines and positioning on new enhancements
- Help customers migrate as fast as possible, but safely

Data and AI on IBM Z

Agenda

- Part 1
 - Db2 11 for z/OS prerequisites for migration to Db2 12 for z/OS
 - Db2 12 for z/OS Migration Quick Hits
 - Maintenance recommendations for early adopters of Db2 12 for z/OS
 - Db2 12 for z/OS Risk Mitigation
 - Understand Continuous Delivery starting with Db2 12 for z/OS
 - Understanding new function levels
 - Db2 12 for z/OS Greatest Hits
 - Fast Un-clustered INSERT
 - RTS enhancements
 - JC Recipe for successful migration
- Summary

Agenda ...

- Part 2
 - Db2 12 for z/OS Greatest Hits
 - Fast Un-clustered INSERT
 - RTS enhancements
 - Fast Index Traversal
 - Data dependent vs. numeric based pagination syntax
 - Increase in log record size after converting BSDS in Db2 11 and entry to Db2 12
 - Dynamic Plan Stability
 - More granular global commit LSN and global read LSN
 - SQLCODE -109 Issue
 - Enhanced SQL MERGE
 - UTS Relative Page Number (RPN)
 - INSERT Partition
 - Asynchronous CF Lock structure duplexing
 - Setting initial Statistics Profile
- Summary

Db2 12 for z/OS Greatest Hits

- Performance
 - REBIND with APREUSE(ERROR|WARN)
 - Dynamic Prefetch Scheduling Avoidance
 - Fast Index Traversal (FTB) ***
 - Dynamic Plan Stability
 - Granular global commit LSN and read LSN
 - LOB compression
 - REORG (and LOAD) use of statistics profiles
- Application Development
 - SQL improvements
 - Pagination syntax LIMIT / OFFSET
 - Enhanced MERGE
 - Piece-wise DELETE
 - Native REST services

Db2 12 for z/OS Greatest Hits ...

- Availability
 - Insert Partition
 - Larger size active log datasets
 - Partition by Range RPN
 - Online ALTER to increase DSSIZE
 - Lifting partition size limit (1 TB)
 - Asynch CF lock Duplexing
- Security
 - TRANSFER OWNERSHIP

- Insert workloads are amongst the most prevalent and performance critical
- Performance bottleneck will vary across different insert workloads
 - Index maintenance?
 - Log write I/O?
 - Data space search (space map and page contention, false leads)
 - · Format write during dataset extend
 - PPRC disk mirroring
 - Network latency
 - etc
- Common that index maintenance and/or log write IO wait may dominate and mask any insert speed bottleneck on table space

- Officially referred to as "Insert Algorithm 2 (IAG2)"
- Sometimes referred to as "Smart Insert" or even "Fast Insert"
- Potentially delivers significant improvement for un-clustered inserts (e.g., journal table pattern)
 where both
 - Heavy <u>concurrent</u> insert activity (many concurrent threads)
 - Space search and false leads on data is the constraint on overall insert throughput
- Applies to any UTS table space defined with MEMBER CLUSTER
 - Applies to both tables defined as APPEND YES or NO
- Implemented advanced new insert algorithm to streamline space search and space utilisation
 - Eliminates page contention and false leads
 - · Space is preallocated/preassigned in order to fill up pipes which are pulled from
 - Set of pipes per pageset/partition per Db2 member
 - Space allocation occurs at pageset open and real time when there is space shortage in each individual pipe
 - Default is to use the new fast insert algorithm for qualifying table spaces
 - DEFAULT_INSERT_ALGORITHM system parameter can change the default
 - INSERT ALGORITHM table space attribute can override system parameter
- It is NOT a replacement for the existing insert algorithm (IAG1)!

Insert Algorithm 1 concepts

Insert Algorithm 2 concepts

- Your mileage will vary
 - Many insert workloads will see no improvement and is to be expected
 - Will probably not see much difference/improvement when only one insert per commit scope
 - Some specific insert workloads may see significant improvement
 - Less benefit as more indexes are added to the respective table
- Will shift the bottleneck to the next constraining factor
- LOAD SHRLEVEL CHANGE can also use Fast Un-clustered INSERT
- Fast Un-clustered INSERT will be disabled when lock escalation occurs or use of SQL LOCK TABLE
- Available after new function activation (FL=V12R1M500)

- APAR PH02052 (Closed) implements automatic re-enablement with retry logic
- Current JC point-in-time recommendation
 - One size probably does not fit all tablespaces
 - Change system wide default set system parameter DEFAULT_INSERT_ALGORITHM = 1 (old basic insert algorithm)
 - Use INSERT ALGORITHM 2 (new fast insert algorithm) selectively at individual table space level to override system wide default
 - Additional benefit with CICS and DRDA thread reuse coupled with packages bound with RELEASE(DEALLOCATE)

Fast Un-clustered INSERT – Shifting The Bottleneck ...

Insert Algorithm 2

Fast Un-clustered INSERT - Db2 11 for z/OS PMR Recreate ...

UTS PBG with MEMBER CLUSTER, RLL, with 400 bytes per row, one index, 800 concurrent threads, 10 insert per commit

RTS enhancements

New messages DSNT535I and DSNT536I e.g.,

DSNT535I =D2E1 DSNIRTST 2 ATTEMPTS TO EXTERNALIZE IN-MEMORY STATISTICS TO REAL-TIME STATISTICS TABLES FAILED DURING THE PAST 30 MINUTES 'BECAUSE A RESOURCE WAS UNAVAILABLE: TYPE 00000304 NAME DSNDB06 .SYSTSISS.X'0000650D'.X'07'

- New column GETPAGES added to both SYSIBM.SYSTABLESPACESTATS & SYSIBM.SYSINDEXSPACESTATS
 - Very valuable
 - Records number of getpage requests since release migration, last REORG, last LOAD REPLACE or since object creation
 - Do not rely on the value whilst running in mixed release coexistence
- Temporal (system-period data versioning)
 - Requires FL=V12R1M5nn
 - SQL DDL changes performed by CATMAINT
 - Activated by ALTER TABLE ... ADD VERSIONING clause -> SYSIBM.SYSTABLESPACESTATS & SYSIBM.SYSINDEXSPACESTATS
 - No indexes provided must RYO to speed up your SQL queries
 - MAXPART 1 is 'hard wired' for history tables
 - Must develop procedures for cleanup of history tables and associated housekeeping

- In memory index performance optimisation
- One of the most important performance features in Db2 12 for z/OS
- Used for fast index lookup by avoiding expensive index B-tree traversal
- Access must be random (index traversal) pattern to benefit
- SELECT, INSERT, DELETE, UPDATE, ... can all benefit
- Separate Fast Traversal Block (FTB) memory area allocated outside of bufferpool
 - Uses a concatenated structure, containing copy of non-leaf pages only, uses relative structure
- Does not use bufferpool
 - Non-leaf pages (except root page) are not fixed in the bufferpool
 - Pages are eligible for stealing and can be LRUed out of the bufferpool when the non-leaf pages are stored in FTB memory
- Improved performance
 - Fast traverse block is L2 cache aware B-Tree like structure
 - Each page is equal to one cache line in size (256 bytes)
- ESP customer example with 9.1% CPU reduction with 3 level index, 22.9% CPU reduction with 4 level index
- Your mileage in terms of CPU reduction will vary
- Be aggressive in applying preventative service e.g., apply PTF for PE resolution APAR PH07545

- zparm INDEX_MEMORY_CONTROL = <u>AUTO</u>, DISABLE, x (MB)
 - AUTO = 20% of total allocated bufferpool size (min 10 MB)
 - Subject to maximum limit of 10000 FTBs (one FTB per index partition)
 - Limit with x (MB) is 200,000 MB
- Each Db2 member will determine independently the good candidate indexes (daemon)
 - Index must be unique
 - INCLUDE COLUMNS supported
 - Index entry length (key + additional columns) has maximum size of 64 bytes
 - Re-evaluates every 2 minutes and adjusts priority queue
 - Index traversal (+)
 - Index only access (++)
 - Index leaf page splits (/2)
 - Index lookaside (-)
 - Internal threshold then applied
- Control by SYSIBM.SYSINDEXCONTROL
 - Indicate preference for specific indexes
 - Disable for specific indexes

- How does an index partition come into FTB area?
 - Daemon task
 - zIIP eligible
 - Runs every 2 minutes
 - System agent correlation identifier: 014.IFTOMK00

```
DSNV497I
          -DB2A SYSTEM THREADS -
DB2 ACTIVE
         ST A
                REQ ID
NAME
                                  AUTHID
                                                    ASID TOKEN
                                           PLAN
DB2A
                  0 014.RTSTST00 SYSOPR
                                                    004C
                                                             0
V490-SUSPENDED 17081-10:05:25.83 DSNB1TMR +00000EBF UI38562
DB2A
                  O 014.IDAEMKOO SYSOPR
                                                    004C
V490-SUSPENDED 17081-10:01:16.95 DSNB1TMR +00000EBF UI38562
                  O 014.IFTOMKOO SYSOPR
DB2A
                                                    004C
V490-SUSPENDED 17081-10:05:22.32 DSNB1TMR +00000EBF UI38562
                  0 010.PM2PCP01 SYSOPR
DB2A
                                                    004C
                                                             0
V490-SUSPENDED 17081-10:05:26.51 DSNB1TMR +00000EBF UI38562
```


- Monitor
 - -DISPLAY STATS(IMU) or -DISPLAY STATS(INDEXMEMORYUSAGE) LIMIT(*) command

DSNT783I		-DB2A					
DBID	PSID	DBNAME	CREATOR	INDEXNAME	LEVEL	PART	SIZE(KB)
0256	0005	SZI10D	§ § § § § § §	SZI10X	0002	00001	00000025
0261	0005	SZI20D	A2345678901234	SZI20X	0002	00001	00000025
0262	0005	SZI30D	SYSADM	X2345678901234	0002	00001	00000025
0263	0005	SZI40D	SYSADM	SZI40X	0002	00001	00000025
****** DISPLAY OF STATS TERMINATED **********************							
DSN9022I -DB2A DSNTDSTS 'DISPLAY STATS' NORMAL COMPLETION							

- Trace
 - -START TRACE (PERFM) DEST(SMF) IFCID(477)
 - -START TRACE (STAT) DEST(SMF) CLASS(8) IFCID(389)

Data and AI on IBM Z

- Free FTB area for an index
 - Pageset close
 - SQL mass delete
 - ALTER INDEX, RECOVER INDEX, REBUILD INDEX
 - Trick: ALTER INDEX from COPY YES to COPY NO (and the other way around)

• Data Sharing considerations – high level picture

- Migration
 - Available in mixed release coexistence (Db2 11 and Db2 12 for z/OS) or Db2 12 for z/OS before new function activation (V12R1M100)
 - FTB only used while index object is not GBP-dependent
 - If index object becomes GBP-dependent, the FTB content will be deleted/bypassed
 - After new function activation (V12R1M500)
 - FTB can now also be used when index object is GBP-dependent

Data dependent vs. numeric based pagination syntax

- Data dependent pagination syntax e.g., SELECT ... FROM ... WHERE (LASTNAME, FIRSTNAME) >= (:lname, :fname)
 - Performance advantage predicated on correct index design and ORDER BY
 - · Can go directly to the needed rows
 - Exploits range-list index scan (ACCESSTYPE='NR')
- Numeric based pagination syntax e.g., SELECT ... FROM ... OFFSET 10 ROWS FETCH FIRST :hv ROWS ONLY
 - Will have to skip through the unneeded rows
 - If rows are deleted/inserted from other applications in between
 - May see the same rows twice or not see the rows at all
- Many static scrollable cursors can be replaced by SQL pagination
 - Result set is no longer materialized
 - Read-only applications will not create long running unit of recoveries
 - Performance can be improved
- Requires APPLCOMPAT(V12R1M500)
- Works very well as advertised

Increase on log record size after converting BSDS in Db2 11 & entry to Db2 12

- About 50 byte increase after converting BSDS under Db2 11 for z/OS NFM
- Further increase in log record size in Db2 12 for z/OS because of larger 7-byte RID values
 - Increase is about 20 bytes for table space and about 28 bytes for index

Dynamic Plan Stability

- Welcome new feature that will bring some relief in the area of performance management of dynamic SQL
 - Goal is to provide consistent, more reliable performance
 - Sweet spot is short running SQL that is executed 1000s of times
 - · Helps with high "turnover" periods in dynamic statement cache
- In Db2 11 for z/OS a miss in dynamic statement cache requires a new full prepare e.g.,
 - Db2 subsystem recycle
 - Release migration
 - RUNSTATS
- In Db2 12 for z/OS can stabilize a query statement from the dynamic statement cache
 - No new full prepare needed
 - Statement is loaded into the dynamic statement cache from the Catalog
 - Statement is invalidated by SQL DDL like a static SQL package
- Can stabilize
 - Specific dynamic query statement
 - · Dynamic query statements with more than a certain amount of executions

Dynamic Plan Stability ...

- Change of APPLCOMPAT and/or special registers (DEGREE, OPTHINT, etc) will cause cache miss
- No REBIND capability to "repair" after invalidations
 - Need to wait for new stabilization
- Restrictions
 - Display command has only local scope
 - No support for concentrated statements
 - No support for query statements against temporal and transparent archive
- FREE stabilized dynamic query STBLGRP(x)
 - Will also invalidate the statements in the dynamic statement cache
 - May result in a "storm" of full prepares
- Stabilized dynamic query statements do consume more CPU than the equivalent static query statement

More granular global commit LSN and global read LSN

- Db2 for z/OS does not actually track "more current" value for each individual object
- Each member maintains two global lists of the 500 objects that have the oldest CLSN and read-LSN values
- Global lists built by a system task that wakes every 2 seconds (subject to change)
- Rebuilds its own list
- Merges it with every other member's list to create the global list
- When it comes time to pick up an object's CLSN or read-LSN value
 - Check the appropriate global list for the object
 - If it is on there, then we know what its LSN is
 - If not, then use as an "alternate" LSN for the newest object (as object's LSN cannot be worse than this value)
 - Either way Db2 will compare the LSN picked up with the old global value (from SCA), and use that if it is better
- Very nice enhancement that has great potential to improve lock avoidance and/or space reuse on LOB insert when the inevitable long running reader-UR is in play

LOB compression

- Requires zEDC hardware feature
 - Will decompress existing compressed LOB if zEDC not available
 - Will not compress a LOB if zEDC not available
- Inline LOB is completely separate from LOB compression
 - LOB compression only applies to the the out-of-line portion
 - Split and compressed independently
- Aimed at textual
 - Not video and audio as these are already heavily compressed outside of Db2 for z/OS e.g., MP3 or MP4

SQLCODE -109 Issue

- Problem:
 - Non-documented and illegal use of SELECT ... INTO ... UNION ALL syntax
 - Customer complaints, can produce wrong results, defect
- Solution:
 - Loophole closed in Db2 12 for z/OS
 - Retrofitted back to Db2 11 for z/OS with APAR PI67611
 - New zparm: DISALLOW_SEL_INTO_UNION
 - NO (Db2 11 for z/OS default)
 - · Allows usage of this illegal SQL syntax when such usage is encountered during execution of a BIND or REBIND command
 - Db2 will write an incompatibility trace record to IFCID 376
 - · Use these trace records to identify and correct applications that are using the illegal SQL syntax
 - YES (Db2 12 for z/OS default)
 - Disallow usage of this illegal SQL syntax
 - Statements that include syntax will fail with SQLCODE -109
 - Running IFCID 376 <u>under Db2 11 for z/OS</u> will help identify problem applications
 - Need to deal with this potential issue before migration to Db2 12 for z/OS or change the Db2 12 for z/OS
 default

Enhanced SQL MERGE

- Db2 12 for z/OS delivers ANSI compliant MERGE capability
- SQL MERGE is now very powerful
 - Source can now include TABLE, VIEW and full Select
 - Additional predicates on MATCHED/NOT MATCHED
 - Can do DELETE
 - Can do multiple UPDATE, INSERT and DELETE phrases
 - But not on same row
 - Can accept SIGNAL and IGNORE
- Benefits
 - Development productivity
 - Improved performance
 - Application porting to Db2 for z/OS
- Requires APPLCOMPAT(V12R1M500)

Enhanced SQL MERGE ...

- But SQL MERGE is now so powerful ...
 - Input can be a SELECT (JOIN) returning many rows (millions, billions)
 - # UPDATEs, INSERTs and DELETEs could explode
 - Considerations
 - No intermediate commit points
 - Long rollback time
 - Lock escalation and impact on concurrency
 - No SQL pagination support

UTS PBR Relative Page Number (RPN)

- Motivation
 - Tremendous improvement in terms of availability and usability
 - DSSIZE can vary for different partitions
 - DSSIZE can now be increased for an individual partition with zero application impact
 - Immediate alter and no REORG required to increase DSSIZE
 - Note: A decrease in DSSIZE is still a pending alter and requires a full table space level REORG
 - Scalability
 - Maximum partition size increases to 1 TB
 - Maximum table size increases to 4 PB
 - Maximum number of rows in a table increases from 1.1 Tn to 280 Tn

UTS PBR Relative Page Number (RPN) ...

- Migration possible from either classic partitioned and UTS Partition By Range (PBR) table spaces
 - Steps for conversion
 - 1. ALTER TABLESPACE ... SEGSIZE n
 - If starting from classic partitioned
 - 2. ALTER TABLESPACE ... PAGENUM RELATIVE
 - Table space put into AREOR state
 - 3. REORG TABLESPACE ...
 - Base and XML table spaces can be migrated separately
 - Can "coexist" running with mixed RELATIVE/ABSOLUTE attributes
 - One-way ticket no fallback to absolute page numbering (PAGENUM ABSOLUTE)
 - Extended Addressability (EA) must be used for UTS PBR RPN datasets
 - DASD space for large datasets can lead to problems (e.g. running out of volumes)
 - Datasets can only be spread across 59 volumes
 - For example, a 1 TB dataset will require 3390 Model 27 or above
- Requires APPLCOMPAT(V12R1M500)

UTS PBR Relative Page Number (RPN) ...

- Migration issues
 - Cannot convert to RPN or even create new RPN tablespace because cannot REORG them when inline partlevel image copies (forced) go to tape
 - New TAPEUNITS option will be made available with APAR PI75518 (open)
 - Pre-V6 range partitioned tablespaces with limit key values truncated at 40 bytes cannot be converted over
 - · Should only affect a small number of customers
 - Problem is fenced and the conversion will not succeed
 - ALTER TABLESPACE PAGENUM RELATIVE fails with SQLCODE -650 RC 39
 - No target date at present time for providing relief

Data and AI on IBM Z

UTS PBR Relative Page Number (RPN) ...

- Other considerations
 - Indexes will increase in size because of larger 7-byte RID values
 - Recommend the index COPY/RECOVER for XXXL size NPIs
 - Note: can no longer identify the partition number from the page number

Insert Partition

- Insert Partition "in the middle" where it is required
- UTS PBR only, BUT no requirement for RPN
- Restriction: no LOB or XML
- ALTER ... ADD PART ENDING AT (...) is a pending alter
- Necessary REORG can be limited to a minimum subset of partitions (only affected partitions)
- Be aware that logical partition numbers have to be translated to physical partition numbers
 - New physical partition is added at the end i.e., A00n+1
 - New logical partition is added in the middle and logical partitions are appropriately renumbered
 - Awkward consideration with utilities range of parts as it is based on physical partition numbers
- Do not have to take care of adjacent partitions which possibly reach their space limit
- Once you determine the limit key for the new inserted partition, the procedure for handling "partition full" conditions is very easy to automate
 - Add new partition
 - Run REORG against the new and adjacent partitions
- Requires APPLCOMPAT(V12R1M500)

System Managed Duplexing (SMD) of CF Lock Structure – Challenges

- Required for highest availability in Db2 for z/OS data sharing environments
 - Single and Multi-site z/OS Parallel Sysplex environments with no failure isolated CFs or external CFs
 - Without SMD, the failure of the 'wrong CF' may result in a group-wide outage
 - LOCK1 or SCA can only be dynamically rebuilt into an alternate CF if all the Db2 for z/OS members survive the failure
- Existing synchronous SMD of LOCK1 structure can be expensive in terms of increased host CPU resource consumption, degraded application elapsed time performance, and aggravated global lock contention
 - All types of requests are duplexed
 - Duplexed request can consume 3x-4x host CPU cost vs. simplex structure
 - Synchronous lock requests are converted to asynchronous requests to limit host CPU penalty
 - CF service times will increase which will elongate transaction response times and batch processing elapsed time, and possibly aggravate global lock contention
 - Performance impact will vary
 - Dependent on locking intensity of respective application workload
 - Stretched distance for Multi-site data sharing group

Synchronous CF lock structure duplexing – how it works today

Asynchronous CF Lock structure duplexing new in Db2 12 for z/OS

- Reduces overhead for system managed duplexing of CF LOCK1
- Secondary structure updates are performed asynchronously with respect to primary updates
- Db2 for z/OS will sync up with z/OS to ensure data integrity i.e., all modify locks have been "hardened" in the secondary lock structure before the corresponding undo/redo record for the update is written to the Db2 for z/OS active log on DASD
- The physical log writer performs the "synch" call to query the secondary, and it happens whenever log records get physically written to DASD which can be earlier than commit
- Increases the practical distance for multi-site sysplex operations while duplexing of CF LOCK1 structure
- Requirements:
 - IRLM V2R3 Function Level 40 with PTFs
 - Db2 12 for z/OS FL=V12R1M100 with PTF for APAR PI66689
 - IRLM V2R3 with PTF for APAR PI68378
 - CFCC firmware support for CFLEVEL 21 Service Level 02.16 (z13)
 - z/OS V2R2 SPE with PTFs for APARs OA47796 and OA49148
 - CF to CF connectivity via coupling links

Asynchronous CF lock structure duplexing – how it works

^{*} Requires CF on z13 GA2

Asynchronous CF Lock structure duplexing new in Db2 12 for z/OS ...

- Benefits
 - Cost of lock structure duplexing is significantly lower than before
 - Host CPU for lock requests decreases
 - IRLMs receive responses sooner
 - Existing sites using synchronous SMD should see lower host CPU cost and better elapsed times
 - More environments can now achieve higher availability in all-ICF configurations with SMD
 - Reduce risk with asynchronous SMD and lower cost all round
 - Hardware maintenance
 - · Capital cost for extra frames
 - Processor technology refresh applies to both host GCP and ICF engines
- But it is not free
 - Will have to acquire ICF engines and coupling links for CF to CF connectivity
 - CF Utilisation is significantly higher for async SMD relative to simplex case, but it is much less than sync SMD
 - Expected to be higher than simplex because there is simply more work for the CF to do

Data and AI on IBM Z

Asynchronous CF Lock structure duplexing new in Db2 12 for z/OS ...

- Performance Summary comparing async SMD relative to simplex
 - ITR degraded by 7.5%
 - Response time and ETR are comparable
 - z/OS host CPU resource consumption is higher
 - CF CPU resource consumption is significantly higher

Setting initial STATISTICS PROFILE

- It is important to clean up any (SYSCOLDIST) statistics that you do not intend to regularly collect before first BIND/REBIND, PREPARE or EXPLAIN after entry to Db2 12 for z/OS
- These statistics could be stale or inconsistent today because they are not being regularly collected
- Statistics profile is created on first BIND/REBIND/PREPARE/EXPLAIN after entry to Db2 12 for z/OS
- After the initial create, cannot tell from the subject statistics profile what statistics are the ones that were the older/inconsistent statistics

Setting initial STATISTICS PROFILE ...

 Use the following sample query to identify the inconsistent statistics

```
SELECT TYPE, NUMCOLUMNS, TBOWNER, TBNAME, NAME
, MIN(STATSTIME), COUNT(*)
FROM SYSIBM.SYSCOLDIST CD
WHERE STATSTIME < CURRENT TIMESTAMP - 1 MONTH
AND (TYPE IN ('C', 'H') OR NUMCOLUMNS > 1
  OR STATSTIME < CURRENT TIMESTAMP - 1 YEAR)
AND NOT EXISTS
(SELECT 1
FROM SYSIBM.SYSINDEXES I
WHERE I.TBCREATOR = CD.TBOWNER
      I.TBNAME = CD.TBNAME
AND
AND
      CD.STATSTIME BETWEEN I.STATSTIME - 8 DAYS
                       AND I.STATSTIME + 8 DAYS)
AND NOT EXISTS
(SELECT 1
FROM SYSIBM.SYSTABLES T
WHERE T.CREATOR = CD.TBOWNER
AND
      T.NAME = CD.TBNAME
AND
      CD.STATSTIME BETWEEN T.STATSTIME - 8 DAYS
                       AND T.STATSTIME + 8 DAYS)
GROUP BY TYPE, NUMCOLUMNS, TBOWNER, TBNAME, NAME
ORDER BY TYPE, NUMCOLUMNS, TBOWNER, TBNAME, NAME
WITH UR;
```

Data and AI on IBM Z

Summary

- Share lessons learned, surprises, pitfalls
- Provide hints and tips
- Address some myths
- Provide additional planning information
- Provide usage guidelines and positioning on new enhancements
- Help customers migrate as fast as possible, but safely

Top DB2z Social Media Channels

#DB2z

- Join the World of DB2 www.worldofdb2.com
- Follow @IBMDB2 on Twitter https://twitter.com/IBMDB2

• Join DB2z LinkedIn Group

https://www.youtube.com/user/IBMDB2forzOS

- DB2z on <u>Facebook</u>
 - https://www.facebook.com/IBMDB2forzOS/

Now ... Live Q&A with John Campbell