

Departamento de Matemática, Universidade de Aveiro

Cálculo I - C — Mini-teste 1 Modelo

Duração: 25 min

N.° Mec.:	Nome:
Declaro que desisto	:
	A cotação a atribuir a cada resposta é a seguinte: Resposta correta: 4 valores Resposta errada: -1 valores Ausência de resposta ou resposta nula: 0 valores
1. Seja f a funç CD_f , são dad	ão dada por $f(x) = \operatorname{arccotg}(\ln(3x-1))$. O domínio de f , D_f , e o contradomínio de f , los por:
$D_f =]\frac{1}{3},$ $D_f =]\frac{1}{3},$ $D_f =] -$ $D_f =] -$	$+\infty[e CD_f =] - \frac{\pi}{2}, \frac{\pi}{2}[\\ +\infty[e CD_f =]0, \pi[\\ \frac{1}{3}, +\infty[e CD_f =]0, \pi[\\ \frac{1}{3}, +\infty[e CD_f =] - \frac{\pi}{2}, \frac{\pi}{2}[$
2. Seja $g(x) = a$	$\arccos(x-2)+\sin(3-x)$, com $x\in[2,3]$. O Teorema de Lagrange permite concluir que enos um ponto $c\in[2,3[$ tal que:
3. Seja <i>h</i> uma fuzeros de <i>h</i> ? 1 2 3 4	unção diferenciável tal que $h'(x)=1-e^{x^2-4},$ com $x\in\mathbb{R}.$ Qual o número máximo de
4. $\lim_{x \to 0} \frac{\operatorname{tg} x - \operatorname{se}}{x^2}$	$\frac{\ln x}{}$ é igual a:
	inómio de MacLaurin de ordem 2 de $f(x)=\cos x, T_0^2(f(x)),$ podemos concluir que um ado de $\cos(\frac{1}{2})$ é igual a: