

BMSC1101/BMSN1601

Anatomy of Urinary System

Guilherme RBC Fonseca, Assistant Lecturer gfonseca@hku.hk
2022/2023

Learning Outcomes

By the end of this lecture, you should be able to:

- 1. Understand the general organization of the urinary system
- 2. Describe the structure and function of the kidneys, ureters, urinary bladder and urethra
- 3. Relate the anatomy of the urinary system to relevant developmental, functional and clinical features

Main references:

- Saladin K. Human Anatomy
- Drake R. Gray's Anatomy for Students

For any questions:

gfonseca@hku.hk with subject Nurse / TCM

1. Overview of the Urinary System

1. Overview of the Urinary System

A) Structures and functions

- 1. Kidney
 - Excretion of metabolic wastes, drugs and toxic substances
 - Regulation of blood volume, pressure and ionic composition
 - Synthesis of hormones (erythropoietin, calcitriol, renin) and glucose (via gluconeogenesis)
- 2. Ureter
 - Transportation of urine
- 3. Bladder
 - Storage of urine
- 4. Urethra
 - · Excretion of urine

2. Kidney

B) Position and relationships of kidney

- Retroperitoneal organs in abdominal cavity
- Levels of vertebrae T12-L3
- Superior pole of left kidney at level of 11th rib
- Superior pole of right kidney at level of 12th rib

B) Position and relationships of kidney

- Both kidneys are anterior to diaphragm, muscles of posterior abdominal wall and inferior to adrenal glands
- Right kidney is posterior to hepatic colic flexure, liver, duodenum, coils of small intestine and is lateral to inferior vena cava
- Left kidney is posterior to splenic colic flexure, stomach, tail of pancreas, spleen, coils of small intestine and is lateral to aorta

HKU Med

D) Internal anatomy of kidney

- i. Renal cortex = outer layer of renal parenchyma
- ii. Renal medulla = inner layer of renal parenchyma
 - Renal column
 - Renal pyramid
 - · Renal papilla
- iii. Renal lobe = pyramid + adjacent cortex

2. Kidney

D) Internal anatomy of kidney

- iv. Urine drainage system = ducts that drain urine from nephrons to ureter
 - Collecting duct
 - Papillary duct
 - Minor calyx
 - Major calyx
 - · Renal pelvis

HKU Med

E) Microstructure of kidney

- Nephron = basic microscopic and multicellular functional unit of the kidney (~1 million per kidney)
 - 1. Renal corpuscle
 - 2. Renal tubule
- ii. Duct system
 - 3. Collecting duct
 - 4. Papillary duct
 - Minor calyx

2. Kidney

E) Microstructure of kidney

- iii. Parts of nephron
 - 1. Afferent arteriole (c)
 - 2. Glomerulus (c)
 - 3. Efferent arteriole (c)
 - 4. Bowman's capsule (c)
 - 5. Proximal convoluted tubule (t)
 - 6. Limbs of loop of Henle (t)
 - 7. Distal convoluted tubule (t)
- Juxtaglomerular apparatus → group of cells that monitor and adjust the activity of the nephron
- Filtration membrane → transmits most blood components (exceptions: blood cells and large proteins)

HKU Med

E) Microstructure of kidney

- iv. Functions of nephron
 - 1. Glomerular filtration
 - 2. Tubular reabsorption
 - 3. Tubular secretion

Urinalysis

П	60	0 0	To interlobular veins
		Filtrate	→ Urine
		Rest of the nephron	
ш		Bowman capsule Glomerular capillaries	Renal corpuscle
	Efferent arteriole		
	Afferent arteriole		

Substance	Plasma	Daily volume Filtrate	Urine	Urine Concentration/ Plasma Concentration
Water (L)	180	180	1.4	
Organic molecules (mg/100 mL)				
Protein	3900-5000	6-11	O [†]	0
Glucose	100	100	0	0
Urea	26	26	1820	70
Uric acid	3	3	42	14
Creatinine	1.1	1.1	196	180
ons (mEq/L)				
Na ⁺	142	142	128	0.9
K+	5	5	60	12.0
CI-	103	103	134	1.3
HCO ₁ -	28	28	14	0.5

2. Kidney

F) Vasculature

- 1. Abdominal aorta
- 2. Common iliac a
- 3. Internal iliac a
- 4. External iliac a
- 5. Renal a
- 6. Inferior vena cava
- 7. Common iliac v
- 8. Internal iliac v
- 9. External iliac v
- 10. Renal v

F) Vasculature

Kidney transplant

3. Ureters, Bladder and Urethra

HKU Med

3. Ureters, Bladder and Urethra

A) Description of ureters: tube-shaped mucosal-lined organ of the urinary system with thick walls of smooth muscle

B) Position and relationships of ureters

- i) Emerge from renal pelvis
- ii) Retroperitoneal descent in posterior abdominal wall
- iii) Cross pelvic inlet and iliac vessels to enter pelvic cavity
- iv) Open onto posterior bladder

Oblique entry of ureter to bladder forms a physiologic valve

3. Ureters, Bladder and Urethra

C) Description of bladder: mucosal-lined and distensible reservoir of urine with walls of smooth muscle (detrusor). Pyramid-shaped when empty. Oval when full

D) Position and relationships of bladder

- i. Infraperitoneal organ in pelvic cavity
- Female bladder is posterior to pubis, anterior to vagina, inferior to uterus, superior to pelvic diaphragm
- Male bladder is posterior to pubis, anterior to rectum and seminal vesicles, superior to prostate

3. Ureters, Bladder and Urethra

- F) Description of urethra: mucosal-lined tube with walls of smooth muscle that propel urine (and semen) to the exterior
- G) Position and relationships of urethra: female urethra is shorter whereas the longer male urethra is divided into 3 parts

Some problems...

- 1. A 19-year-old man was examined in the emergency department and found to have a bleeding stab wound in his left flank. A urine specimen revealed blood. Of the organs listed, which one is least likely to be damaged in this patient?
- A. Stomach D. Left suprarenal gland
- B. Spleen E. Coils of jejunum
- C. Inferior vena cava F. Pancreas

- 2. A reflex is an automatic motor response by the nervous system to a specific stimulus. The micturition reflex (voiding) is triggered when urine fills the bladder and stretches its walls. Which response occurs in this reflex?
- A. Contraction of muscles of pelvic diaphragm and perineum
- B. Contraction of external urethral sphincter
- C. Inhibition of detrusor muscle
- D. Inhibition of internal urethral sphincter
- 3. A 42-year-old man was suffering from postoperative retention of urine after an appendectomy. Because the patient was in considerable discomfort, a catheter was placed. Which statement is incorrect?
- A. Because the external urethral orifice is the narrowest part of the urethra, once the tip of the catheter has passed this point, further passage should be easy.
- B. The membranous part of the urethra is the widest part of the urethra and should cause no resistance.
- C. The prostatic part of the urethra is wide enough to allow the catheter to pass without major difficulty.
- D. Near the posterior end of the navicular fossa, a mucosal fold may catch the end of the catheter.

Some solutions...

1 Inferior vena cava
2 aorta
3 common iliac artery
4 ureter
5 external iliac artery
6 bladder
7 diaphragm
8 renal pyramid
9 renal column

МСQ 3 : С С С З : В В В

8 descending colon

Label the images (slide 26)

Label the images

Label the images (slide 28)

inferior vena cava

7 pancreas 8 diaphragm

4 spleen 5 duodenum 6 sigmoid colon

2 gallbladder 3 stomach 1 Ureter 2 renal pelvis 3 major calyx 4 minor calyx 5 renal artery 6 renal vein

Label the images (slide 25)
1 Greater omentum (peritoneal fold)
2 coils of jejunum
3 coils of ileum
4 cecum / ascending colon

transverse colon

6 stomach