Tinkoff Generation 2019-2020. A. СПБ. Строки 3 Санкт-Петербург, Дом, 25 апреля 2020

Задача А. Палиндромчики

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Необходимо для каждого префикса данной строки найти количество различных ее подстрок-палиндромов.

Формат входных данных

Дана строка s $(1 \leqslant |s| \leqslant 10^5)$.

Формат выходных данных

Выведите |s| чисел, i-е из которых равно количеству различных подстрок-палиндромов префикса строки s длины i.

Пример

стандартный ввод	стандартный вывод
aba	1 2 3

Задача В. Помогите, спасите!

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дана строка. Найдите для каждого её префикса количество различных подстрок в нём.

Формат входных данных

В единственной строке входных данных содержится непустая строка S, состоящая из N ($1 \le N \le 2 \cdot 10^5$) маленьких букв английского алфавита.

Формат выходных данных

Выведите N строк, в i-й строке должно содержаться количество различных подстрок в i-м префиксе строки S.

Примеры

стандартный ввод	стандартный вывод
aabab	1
	2
	5
	8
	11
atari	1
	3
	5
	9
	14

Задача С. Ненокку

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Очень известный автор не менее известной книги решил написать продолжение своего произведения. Он писал все свои книги на компьютере, подключенном к интернету. Из-за такой неосторожности мальчику Ненокку удалось получить доступ к еще ненаписанной книге. Каждый вечер мальчик залазил на компьютер писателя и записывал на свой компьютер новые записи. Ненокку, записав на свой компьютер очередную главу, заинтересовался, а использовал ли хоть раз писатель слово "книга". Но он не любит читать книги (он лучше полазает в интернете), и поэтому он просит вас узнать есть ли то или иное слово в тексте произведения. Но естественно его интересует не только одно слово, а достаточно много.

Формат входных данных

В каждой строчке входного файла записана одна из двух записей.

- 1. ? <слово> >то набор не более 50 латинских символов): запрос проверки существования подстроки <слово> в произведении;
- 2. А **<текст>** (<текст> это набор не более 10^5 латинских символов): добавление в произведение <текст>.

Писатель только начал работать над произведением, поэтому он не мог написать более 10^5 символов. Суммарная длина всех запросов не превосходит 15 мегабайт плюс 12140 байт.

Формат выходных данных

Выведите на каждую строчку типа 1 "YES", если существует подстрока <слово>, и "NO" в противном случае. Не следует различать регистр букв.

Пример

стандартный ввод	стандартный вывод
? love	NO
? is	NO
A Loveis	YES
? love	NO
? WHO	YES
A Whoareyou	
? is	

Задача D. Рефрен HARD

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 0.5 секунд Ограничение по памяти: 256 мегабайт

Рассмотрим последовательность n целых чисел от 1 до m. Подпоследовательность подряд идущих чисел называется рефреном, если произведение ее длины на количество вхождений в последовательность максимально.

По заданной последовательности требуется найти ее рефрен.

Формат входных данных

Первая строка входного файла содержит два целых числа: n и m ($1 \le n \le 750\,000, 1 \le m \le 10$). Вторая строка содержит n целых чисел от 1 до m.

Формат выходных данных

Первая строка выходного файла должна содержать произведение длины рефрена на количество ее вхождений. Вторая строка должна содержать длину рефрена. Третья строка должна содержать последовательность которая является рефреном.

Пример

стандартный вывод
9
3
1 2 1

Задача Е. Циклический сдвиг

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мегабайт

Дана строка s, состоящая из маленьких латинских букв.

Назовем строку $t=t_1t_2\dots t_m\ (m>0)$ хорошей относительно строки s, если строка t и ее левый циклический сдвиг $t'=t_2\dots t_mt_1$ являются подстроками строки s.

Вам необходимо найти количество различных хороших строк t относительное заданной строки s.

Формат входных данных

В единственной строке входных данных записана строка s, состоящая из n ($1 \le n \le 300\,000$) маленьких латинских букв.

Формат выходных данных

Выведите единственное число — количество хороших строк t относительно заданной строки s.

Примеры

стандартный ввод	стандартный вывод
abaac	7
aaa	3

Замечание

В первом примере хорошими строками являются следующие: a, b, c, aa, ab, ba, aba.

Во втором примере хорошими являются только три строки: а, аа, ааа.