Recap.

XNN[h, or], or known, X+ 242 or 100 (100)-1. et for his

fivot: Z= X-h ~ N(01).

in the last of the lower in the last of th

sample side formula:

٠

p il tmy > tays, n. 1 Lery domains 1 60 ×/2 that ~ runker try dist NUX: If N (1-4) X grantle y is profe. Need to verify that: courses pros. of this Se (X) (X-M) = tx/2,n+ Result: CI for  $\mu$ :  $\overline{X} \pm (t_{\alpha/2,n-1})S/\sqrt{n}$ L kns density X-tayes S LM & X + taye, n + S X-M ~ tn-1 for all (M, er) - kyz, n- 5( - KAP111-1 Proof:limb.

- The t critical points are tabulated in the t-table. Alternatively, we can use qt function in R.
- Sample size calculation now becomes complicated than before because S needs to be known before data are collected.
- conservative (guess a larger value of S so that n larger than One option is to make an intelligent guess about S and be necessary is chosen).

compare mean time between keystrokes of the user trying to log in with that of the account owner. The intrusion is detected if keystrokes (in seconds) were recorded when a user typed the with the correct username and password (stolen or cracked), there is a noticeable difference. The following times between Ex: If an unauthorized person accesses a computer account can this intrusion be detected? One way to do this is to username and password:

0.46, 0.38, 0.31, 0.24, 0.20, 0.31, 0.34, 0.42, 0.09, 0.18, 0.46, 0.21

Find a 95% CI for mean time between keystrokes for the user trying to log in. Assume a normal distribution for the times.

X+ toping is > t-internal. X ~ N[H, 62] > untenom time SIN Keystrake for when truying to who in



Cimy to the switter

Table A5. Table of Student's T-distribution

 $t_{lpha};$  critical values, such that  $\mathbf{P}\left\{ t>t_{lpha}
ight\}$  =

| ar                            | 0.0=+0         | 00000          | 100            | 0.10:-         | 1 0==:-        |                | 00.5:-         | 07             |                | 1          |
|-------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|------------|
| 687.E<br>617.E                | 3.340<br>3.290 | 181.8<br>060.8 | 888.2<br>708.2 | 2.576<br>2.576 | 2.345<br>2.326 | ₹90.2          | 096.1          | 1.645          | 282.1          | ∞          |
| 198.8                         | 068.8          | 471.8          | 178.2          | 2.626<br>2.601 | 2.364          | 180.2<br>790.2 | ₽86.I<br>279.I | 099.I<br>E39.I | 1.290<br>1.286 | 700<br>100 |
| 878.8                         | 3.402          | 881.8          | 878.2          | 263.2          | 2.368          | 1.084          | 786.I          | 1.662          | 162.1          | 06         |
| 668.E                         | 314.E          | 3.195          | 788.2          | 2.639          | 2.374          | 2.088          | 066.1          | 499.I          | 262.I          | 08         |
|                               |                |                |                | 000 0          | , = 0          | 0000           | 000 ,          | ,,,,           | 000 1          | "          |
| 926.8                         | 3.435          | 3.211          | 2.899          | 846.2          | 185.2          | 2.093          | ₽66.I          | 799.I          | ₽6Z.I.         | 04         |
| 3.96.5                        | 3.460          | 3.232          | 2.915          | 099.2          | 2.390          | 2.099          | 2.000          | 179.1          | 1.296          | 09         |
| 389.5                         | 97₽.ε          | 3.245          | 2.925          | 899.2          | 868.2          | 2.10₫          | 2.00₫          | £79.1          | 762.1          | 25         |
| 4.014                         | 96⊅.ε          | 3.261          | 786.2          | 876.2          | 2.403          | 2.109          | 600.2          | 979.I          | 1.299          | 20         |
| 640.4                         | 3.520          | 182.8          | 2.952          | 069.2          | 2.412          | 2.115          | 2.014          | 678.I          | 108.1          | 97         |
| ₹60°₽                         | 133.8          | 708.8          | 176.2          | ₽07.2          | £24.2          | 2.123          | 120.2          | ₽89.I          | 1.303          | 0₹         |
| 4.115                         | 3.566          | 918.8          | 2.980          | 217.2          | 624.2          | 721.2          | 2.024          | 989.I          | 1.304          | 38         |
| 041.4                         | 3.582          | 888.8          | 2.990          | 617.2          | 454.2          | 2.131          | 820.2          | 888.I          | 90E.1          | 98         |
| 891.4                         | 105.8          | 84£.£          | 3.002          | 827.2          | 2.441          | 2.136          | 2.032          | 169.1          | 70E.I          | 34         |
| 861.4                         | 3.622          | 3.365          | 310.8          | 857.2          | 2.449          | 2.141          | 780.2          | 169.I          | 608.1          | 32         |
| 00 L V                        | 0000           | 200 0          | 210 6          | 864 6          | 0000           | 171 6          | 460 6          | 1091           | 1 300          | 06         |
| 4.234                         | 9₽9.8          | 3.385          | 3.030          | 037.2          | 734.2          | 711.2          | 2.042          | 469°I          | 018.1          | 30         |
| 4.254                         | 099.8          | 865.5          | 850.5          | 2.756          | 2.462          | 031.2          | 2.045          | 669.1          | 115.1          | 56         |
| 4.276                         | ₽78.ε          | 80₺.£          | 7⊉0.ε          | 2.763          | 794.2          | 2.154          | 2.048          | 1.701          | £1£.1          | 82         |
| 4.299                         | 889.8          | 124.8          | 780.5          | 2.771          | 2.473          | 2.158          | 2.052          | £07.1          | 418.1          | 7.2        |
| 4.324                         | 707.8          | 3.435          | 790.8          | 2.779          | 67₽.Ω          | 2.162          | 2.056          | 907.I          | 315.1          | 56         |
| 4.352                         | 327.8          | 3.450          | 870.8          | 787.2          | 2.485          | 791.2          | 2.060          | 807.1          | 1.316          | 52         |
| 288.4                         | 3.745          | 794.E          | 160.8          | 797.2          | 2.492          | 271.2          | 2.064          | 117.1          | 818.1          | 24         |
| 914.4                         | 897.8          | 384.8          | 3.104          | 708.2          | 2.500          | 271.2          | 2.069          | 417.I          | 818.I          | 23         |
| 234.4                         | 267.E          | 3.505          | 911.8          | 208.2          |                |                |                |                |                |            |
| 26p.p                         | 618.8          |                |                |                | 2.508          | 2.183          | £70.2          | 717.I          | 1.321          | 22         |
| 60V V                         | 9.819          | 723.5          | 3.135          | 188.2          | 2.518          | 2.189          | 2.080          | 127.1          | 1.323          | 12         |
| 4.539                         | 3.850          | 3.552          | 831.8          | 2.845          | 2.528          | 761.2          | 2.086          | 1.725          | 1.325          | 50         |
| ₫.590                         | 888.8          | 643.E          | ₽7Ι.ε          | 138.2          | 983.2          | 2.205          | 2.093          | 1.729          | 1.328          | 61         |
| 849.4                         | 3.922          | 3.610          | 3.197          | 878.2          | 2.552          | 2.214          | 2.101          | ₽87.I          | 1.330          | 81         |
| 4.715                         | 3.965          | 3.646          | 3.222          | 868.2          | 793.2          | 2,224          | 2.110          | 047.I          | 1.333          | 4T         |
| 067.₽                         | \$10.4         | 888.8          | 3.252          | 126.2          | 2.583          | 2.235          | 2.120          | 977.I          | 788.I          | 91         |
| 000:1-                        | €70.₽          | 00110          | 002:0          | 15017          | 700:7          | 01.717         | TOTIM          | 00117          | ****           | 0.7        |
| 088.4                         | 041.4          | 887.8          | 3.286          | 746.2          | 209.2          | 6₽2.2          | 151.2          | 1.753          | 148.1          | 12         |
| 386.₽                         |                | 787.8          | 3.326          | 776.2          | 2.624          | 2.264          | 2.145          | 197.1          | 1.345          | ÞΙ         |
| 111.3                         | 4.221          | 3.852          | 275.8          | 3.012          | 039.2          | 282.2          | 2.160          | 177.1          | 1.350          | 13         |
| 5.263                         | 815.4          | 3.930          | 824.8          | 3.055          | 189.2          | 2.303          | 2.179          | 1.782          | 936.1          | 12         |
| 5.453                         | ፕይፉ.ፉ          | 4.025          | 764.€          | 3.106          | 817.2          | 826.2          | (105.5)        | 967.I          | 1.363          | II         |
| ₽69°9                         | 783.₽          | 4.144          | 186.8          | 891.8          | ₽97.2          | 2:329          | 822.2          | 218.1          | 278.1          | 01         |
| 600.9                         | 187.₽          | 762.₽          | 3.690          | 3.250          | 128.2          | 2.398          | 2.262          | ££8.1          | £8£.1          | 6          |
| 2442                          | I40.8          | 108.4          | 888.8          | 3.325          | 968.2          | 2.449          | 2.306          | 098.I          | 798.1          | 8          |
| ₽90.7                         | 80⊅.3          | 4.785          | 4.029          | 66⊅.€          | 866.2          | 2.517          | 2.365          | 368.I          | 314.1          | Ž          |
| 8.023                         | 626.3          | 802.3          | 4.317          | 707.8          | 3.143          | 2.612          | 744.2          | £₽6.1          | 044.I          | 9          |
| 01010                         | 00010          | F0010          | 01.17          | #00:*          | 00015          | 10             | T. 1.0         | 0.7.0          | 0.1            |            |
| 949.6                         | 698.9          | ₽68.3          | £77.4          | 4.032          | 3.365          | 737.2          | 173.2          | 2.015          | 97⊉.I          | 2          |
| 13.04                         | 019.8          | 571.7          | 863.3          | \$09.p         | 747.8          | 2.999          | 2.776          | 251.2          | 1.533          | ₽          |
| 22.20                         | 12.92          | 12.01          | 884.7          | I18.8          | 14.541         | 384.8          | 3.182          | 2,353          | 868.1          | 3          |
| 17.07                         | 00.18          | 22.33          | 60.₽1          | 626.6          | 396.9          | 6₽8.₽          | 4.303          | 2.920          | 988.I          | 7          |
| 3182                          | 9.989          | 8.818          | 5.721          | 99.69          | 28.18          | 68.31          | 12.706         | \$1E.8         | 870.8          | I          |
| 1000.                         | 3000.          | 100.           | 8200.          | 300.           | 10.            | 20.            | 620.           | ā0.            | 01.            | (.r.p)     |
| 1000                          | 0000           | 100            | 3600           | 300            | 10             | GU             | 200            | 30             | υı             | (.1.b)     |
| α, the right-tail probability |                |                |                |                |                |                |                |                |                | Л          |
| vtilidadora liat-talair əat   |                |                |                |                |                |                |                |                |                |            |

## Hore: X ~ some distribution with mean M.

## Large sample CI for mean $\mu$

**Recall:** When n is large, an approximate  $100(1-\alpha)\%$  CI for mean  $\mu$  of any population is  $(x + 2\mu \sqrt{n})$ 

X - don't know the wistn. but 1235 => luga-sample CI. of the execution times were evaluated as 230 ms and 14 ms, >-> respectively. Find a 95% CI for the true mean execution time  $\mu$ . inputs, and the sample mean and the sample standard deviation program. The program was run 35 times on randomly selected Ex: We wish to estimate the mean execution time of a

The same of the sa x + 20/2 = 230 + 1.96 14 Exectation thing of the program

## Large sample CI for success proportion p

**Population**:  $X \sim \text{Bernoulli }(p)$ , where p = proportion ofsuccesses in population; p = E(X).

**Sample data**:  $X_1, \ldots, X_n$ . (Note: they are 0s and 1s).

age sample **Recall:** Estimator for  $p = \hat{p} = \text{proportion of successes in the}$ sample.

Also: Estimated var(X) = estimate of p(1-p) =

**Result:** An approximate CI for p:  $\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ 

X + Zah St(K)

(Merry



Ex: From a large population of RAM chips, a random sample of (50) is taken and a test carried out on each to see whether they

perform correctly. Find a 95% CI for p, the true proportion of " perform correctly. In the test, only 20 chips are found to ghips that perform correctly.

Indicator of this purposence ( 11 m '0') X ~ Bernoulle (+),

(9.0) (h.0) 1 96.1 7 ha

## Choosing the sample size n

- Width of  $CI = \left( \frac{2}{3} \frac{24}{24} \right) \left( \frac{p(1-\frac{3}{2})}{p(1-\frac{3}{2})} \right) = W$
- Let  $w = \text{desired CI width for } 1 \alpha \text{ confidence.}$
- Margin of error = w/2
- Set CI width = desired width and solve for n to get



- This formula involves  $\hat{p}$ , which is not known before the experiment.
- when  $\hat{p} = 0.5$ . This strategy will yield a conservative values • One alternative: take  $\hat{p}=0.5$  because  $\hat{p}(1-\hat{p})$  is maximum of n. (The sample size will be larger than necessary.)



proportion of American who approve of President Obama's job.
We would like our estimate to be within (3%) of the true proportion with (95%) confidence. How much sample size should Ex: Suppose we are planning a survey to estimate the

we take?

Are these samples independent in "paired"? Charlew was rets grent 2 1 Y ~ fo2 (2) The Endy, samples) one-sample problem. Two-sample 1  $\chi \sim f_{g_i}(\infty)$ The Aro Groups Lave different projen ( Two dright. Fisttis NAM

Samples Frage. 11 Palme Swapere

Design &: Paired design