

ogy on $\prod X_{\alpha}$ has as basis all sets of the form $\prod U_{\alpha}$, where U_{α} is open in X_{α} for each α . The product topology on $\prod X_{\alpha}$ has as basis all sets of the form $\prod U_{\alpha}$, where
U_{α} is open in X_{α} for each α and U_{α} equals X_{α} except for finitely many values of α . Two things are immediately clear First, for finite products $\prod_{\alpha=1}^{n} X_{\alpha}$ the two
topologies are precisely the same. Second, the box topology is in general finer than
the product topology.
This one is really important.
Contex examples a the number of proofs are dune with the product topday.
Whenever we consider the product $\prod X_{\alpha}$, we shall assume it is given the product topology unless we specifically state otherwise.
Theorem 19,2 (basis for both spaces):
suppose for each space X2 there is a basis
Pa.
the Collection:
The is busis for the box
det and product topology
Wha:
p rod . box.
where Bd & Ba, for where Bd & Ba, Fd
finitely many indices d,
and Ba = Xa for all
the remaining indices -

Theorem 19.3. Let A_{α} be a subspace of X_{α} , for each $\alpha \in J$. Then $\prod A_{\alpha}$ is a subspace of $\prod X_{\alpha}$ if both products are given the box topology, or if both products are given the product topology.	
Theorem 19.4. If each space X_{α} is a Hausdorff space, then $\prod X_{\alpha}$ is a Hausdorff space in both the box and product topologies.	
Theorem 19.5. Let $\{X_{\alpha}\}$ be an indexed family of spaces; let $A_{\alpha} \subset X_{\alpha}$ for each α . If X_{α} is given either the product or the box topology, then	
$\prod \bar{A}_{\alpha} = \overline{\prod A_{\alpha}}.$	
Theorem 19.6. Let $f: A \to \prod_{\alpha \in J} X_{\alpha}$ be given by the equation	
$f(a) = (f_{\alpha}(a))_{\alpha \in J},$	
where $f_{\alpha}: A \to X_{\alpha}$ for each α . Let $\prod X_{\alpha}$ have the product topology. Then the function f is continuous if and only if each function f_{α} is continuous.	
csto es présicante une frais	
phranétrica.	