

Chapter 2 Network Models

1-1 PROTOCOLS AND STANDARDS

In this section, we define two widely used terms: protocols and standards. First, we define *protocol*, which is synonymous with "rule." Then we discuss *standards*, which are agreed-upon rules.

protocols define format, order of messages sent and received among network entities, and actions taken on message transmission, receipt

1-2 STANDARDS ORGANIZATION

Standards are developed through the cooperation of standards creation committees, forums, and government regulatory agencies.

An Internet standard is a thoroughly tested specification that is useful to and adhered to by those who work with the Internet. It is a formalized regulation that must be followed. There is a strict procedure by which a specification attains Internet standard status. A specification begins as an Internet draft. An Internet draft is a working document with no official status and a six-month lifetime.

1-2 STANDARDS ORGANIZATION

Standards are developed through the cooperation of standards creation committees, forums, and government regulatory agencies.

Internet Engineering Task Force (IETF)

- Based on working groups that focus on specific issues
- Produces "Request For Comments" (RFCs)
- IETF Web site is http://www.ietf.org
- RFCs archived at http://www.rfc-editor.org

2-2 PROTOCOL LAYERS

We discussed that a protocol is required when two entities need to communicate. When communication is not simple, we may divide the complex task of communication into several layers. In this case, we may need several protocols, one for each layer.

Let us use a scenario in communication in which the role of protocol layering may be better understood. We use two examples. In the first example, communication is so simple that it can occur in only one layer.

Assume Maria and Ann are neighbors with a lot of common ideas. However, Maria speaks only Spanish, and Ann speaks only English. Since both have learned the sign language in their childhood, they enjoy meeting in a cafe a couple of days per week and exchange their ideas using signs. Occasionally, they also use a bilingual dictionary. Communication is face to face and Happens in one layer as shown in Figure 2.1.

Figure 2.1 Example 2.1

Now assume that Ann has to move to another town because of her job. Before she moves, the two meet for the last time in the same cafe. Although both are sad, Maria surprises Ann when she opens a packet that contains two small machines. The first machine can scan and transform a letter in English to a secret code or vice versa. The other machine can scan and translate a letter in Spanish to the same secret code or vice versa. Ann takes the first machine; Maria keeps the second one. The two friends can still communicate using the secret code, as shown in Figure 2.2.

Figure 2.1 Tasks involved in sending a letter

2-2 THE OSI MODEL

Established in 1947, the International Standards Organization (ISO) is a multinational body dedicated to worldwide agreement on international standards. An ISO standard that covers all aspects of network communications is the Open Systems Interconnection (OSI) model. It was first introduced in the late 1970s.

Topics discussed in this section:

Layered Architecture Peer-to-Peer Processes Encapsulation

ISO is the organization. OSI is the model.

Figure 2.2 Seven layers of the OSI model

Figure 2.3 The interaction between layers in the OSI model

Figure 2.4 An exchange using the OSI model

2-3 LAYERS IN THE OSI MODEL

In this section we briefly describe the functions of each layer in the OSI model.

Topics discussed in this section:

Physical Layer
Data Link Layer
Network Layer
Transport Layer
Session Layer
Presentation Layer
Application Layer

Figure 2.5 Physical layer

Note

The physical layer is responsible for movements of individual bits from one hop (node) to the next.

Figure 2.6 Data link layer

Note

The data link layer is responsible for moving frames from one hop (node) to the next.

Figure 2.7 Hop-to-hop delivery

Figure 2.8 Network layer

Note

The network layer is responsible for the delivery of individual packets from the source host to the destination host.

Figure 2.9 Source-to-destination delivery

Figure 2.10 Transport layer

Note

The transport layer is responsible for the delivery of a message from one process to another.

Figure 2.11 Reliable process-to-process delivery of a message

Figure 2.12 Session layer

Note

The session layer is responsible for dialog control and synchronization.

Figure 2.13 Presentation layer

Note

The presentation layer is responsible for translation, compression, and encryption.

Figure 2.14 Application layer

Note

The application layer is responsible for providing services to the user.

Figure 2.15 Summary of layers

2-4 TCP/IP PROTOCOL SUITE

The layers in the TCP/IP protocol suite do not exactly match those in the OSI model. The original TCP/IP protocol suite was defined as having four layers: host-to-network, internet, transport, and application. However, when TCP/IP is compared to OSI, we can say that the TCP/IP protocol suite is made of five layers: physical, data link, network, transport, and application.

Topics discussed in this section:

Physical and Data Link Layers Network Layer Transport Layer Application Layer

Figure 2.16 TCP/IP and OSI model

2-5 ADDRESSING

Four levels of addresses are used in an internet employing the TCP/IP protocols: physical, logical, port, and specific.

Topics discussed in this section:

Physical Addresses Logical Addresses Port Addresses Specific Addresses

Figure 2.17 Addresses in TCP/IP

Figure 2.18 Relationship of layers and addresses in TCP/IP

-

Example 2.1

In Figure 2.19 a node with physical address 10 sends a frame to a node with physical address 87. The two nodes are connected by a link (bus topology LAN). As the figure shows, the computer with physical address 10 is the sender, and the computer with physical address 87 is the receiver.

Figure 2.19 Physical addresses

Most local-area networks use a 48-bit (6-byte) physical address written as 12 hexadecimal digits; every byte (2 hexadecimal digits) is separated by a colon, as shown below:

07:01:02:01:2C:4B

A 6-byte (12 hexadecimal digits) physical address.

Figure 2.20 shows a part of an internet with two routers connecting three LANs. Each device (computer or router) has a pair of addresses (logical and physical) for each connection. In this case, each computer is connected to only one link and therefore has only one pair of addresses. Each router, however, is connected to three networks (only two are shown in the figure). So each router has three pairs of addresses, one for each connection.

Figure 2.20 IP addresses

Figure 2.21 shows two computers communicating via the Internet. The sending computer is running three processes at this time with port addresses a, b, and c. The receiving computer is running two processes at this time with port addresses j and k. Process a in the sending computer needs to communicate with process j in the receiving computer. Note that although physical addresses change from hop to hop, logical and port addresses remain the same from the source to destination.

Figure 2.21 Port addresses

Note

The physical addresses will change from hop to hop, but the logical addresses usually remain the same.

A port address is a 16-bit address represented by one decimal number as shown.

753

A 16-bit port address represented as one single number.