

Data Management, Warehousing and Analytics

Jaskaran Singh
MACS
B00948857

js356337@dal.ca

Assignment 1

PROBLEM 1

Gitlab Repository link:

https://git.cs.dal.ca/singh16/csci5408_s23_b00948857_jaskaran_singh.git

Problem 1

Step 1: Resources

S.No.	Name	URL	Description
1	BBCanada	https://m.bbcanada.com/	Information
			about entities
			involved.
2	BNBFinder	https://www.bnbfinder.com/	Services offered
			in bed and
			breakfast hotels.
3	Vrbo	https://www.vrbo.com/travel/campaign/bedandbreakfast-	Information
		<u>vrbo</u>	about entities
			and attributes
			involved.
4	Breakfast &	https://breakfastandabed.com/	Payments
	Bed		
5	White Stone	https://www.whitestonemarketing.com/best-bed-and-	Importance of
	Marketing	<u>breakfast-websites</u>	feedback from
			guests in hotels
6	NS Bed &	https://www.nsbedandbreakfast.com/	Local services
	Breakfast		and facilities
			provided in NS
			region.
7	Expedia	https://www.expedia.ca/aa/BedAndBreakfast	Related to Meals
			offered.
8	Booking.com	https://www.booking.com/bed-and-breakfast/index.en-	Information
		gb.html	about entities
			involved.

Step 2: Entities

Following are the entities related to the problem statement:

1. Hotel

- This entity contains details of the hotel like name, address, phone number, etc.
- It is a strong entity as it has hotel id as primary key to uniquely identify itself.

2. Room

- It contains detail of the room in the hotel like room number, room type, availability.
- As it depends on the hotel for its identification, it is a weak entity.

3. Staff

- It contains detail of the employees working for the hotel.
- Since every employee can be uniquely identified by itself based on employee id, it is a strong entity.

4. Meal

- This entity contains information of the meals provided by the hotel.
- It is a strong entity as every meal can be uniquely identified by meal id.

5. Amenities

- It contains details of the amenities provided by the hotel.
- It is a strong entity as it can be uniquely identified based on amenity id.

6. Booking

- This entity contains detail of the booking.
- It is a strong entity as every booking has booking id as primary key for its identification.

7. Coupons

- This entity contains detail of the coupons provided by the hotels for facilities and services around the hotel.
- It is a strong entity as it has coupon id for its unique identification.

8. Payment

- It contains detail of the payment for the booking done by the customer.
- It is a strong entity as it has payment id as primary key for its identification.

9. Customer

- It contains detail of the customer who is booking the hotel.
- It is a strong entity as it has customer id as primary key for its unique identification.

10. Feedback

- This entity contains detail of the review and rating provided by the customer for the hotel.
- It is a weak entity as it depends on customer and hotel for its unique identification.

Step 3 & 4: Conceptual ERD using Chen's model

- Following ERD has been prepared using https://draw.io/.
- All entities and relationships between them have been mentioned with cardinality.
- Entities are mentioned using light pink color.
- Attributes are mentioned in blue color.
- Relationships are mentioned in green color with cardinality.
- Primary key, weak entities, partial key, derived attribute, strong participation, etc. have been mentioned in the ERD using standard symbols and shapes for Chen model.
- Also, no fan trap or chasm trap has been found in the following conceptual data model.
- Hence, it is the final conceptual model with no design issue.

Figure 1 – ERD using Chen model

Step 5 & 6: Logical model and normalization

Now, considering each entity of the data model as a table, now amenities table can be normalized as below:

Amenties(<u>ID</u>, name, hotels(), rooms()) <u>1NF</u> Amenity (ID, name)

Hotel(ID, name,...,amenities())

Amenties_in_hotel (amenity ID, hotel_ld)

Room(ID, hoteIID,...,amenities())

Amenties_in_room (amenity ID, hotel_Id, room_id)

Hotel(ID, name,...)

Room(ID, hoteIID,..)

Since Room and Hotel tables have n:m cardinality relationships with amenities, it has been normalized into the above 5 tables.

Similarly, normalization has been performed in below tables:

Meals(<u>ID</u> , name, booking()) <u>1NF</u> Meal (ID, name, price)

Booking(ID,.., Meals()) Meals_in_booking (booking ID, Meal ID)

Booking(ID,..)

Coupons(ID , description, validity, type, bookings()) 1NF Coupon (ID, description, validity, type)

Booking(ID,.., Coupons()) Coupons_in_booking (booking ID,coupon ID)

Booking(ID,....)

Rooms(ID, hotel ID,..., bookings()) 1NF Rooms (ID, hotel ID,...)

Booking(ID,.., Rooms()) Rooms_in_booking (booking ID, ID, hotel ID)

Booking(ID,....)

After performing normalization, below are the final tables with attributes and their dependencies.

Table 1: Hotel

Hotel	
Hotel ID (PK)	
Name	
Phone	
Email	
Street name	
City	
Country	
Zip	

- 1. Hotel ID is the primary key
- 2. Name, phone, email, street name, city, country and zip are dependent on hotel ID.

Table 2: Room

Room
Hotel ID, Room ID
(PK)
Room number
Availability
Room type
Description
Price
Staff_ID(FK)

- 1. Hotel ID and Room ID both make primary key for the room table.
- 2. Room number, availability, room type, description and price are dependent on the primary key.
- 3. Staff_ID is the foreign key which reference staff table.

Table 3: Amenity

Amenity
ID (PK)
Name
Staff_ID(FK)

- 1. ID is the primary key for the meal table.
- 2. Staff_ID is the foreign key which reference staff table.

Table 4: Amenties_in_hotel

Amenties_in_hotel
Amenity_ID, hotel_Id
(PK)

1. Amenity ID and hotel Id makes the composite key for the table.

Table 5: Amenties_in_room

Amenties_in_room
Amenity_ID,
hotel_ID, room_ID
(PK)

1. Amenity ID, room_ID and hotel_ID makes the composite key for the table.

Table 6: Staff

Staff	
Staff ID (PK)	
Designation	
Email	
Phone	
Role	
Manager ID	
Hotel_ID(FK)	

- 1. Staff ID is the primary key for the table.
- 2. Designation, email, phone, role and price are dependent on the primary key.
- 2. Manager ID attribute has been defined for self-relationship of staff.
- 3. Hotel_ID is the foreign key which references Hotel table.

Table 7: Meal

Meal
ID (PK)
Name
Price
Staff_ID(FK)

- 1. ID is the primary key for the meal table.
- 2. Name and price are dependent on the primary key.
- 3. Staff_ID is the foreign key which reference staff table.

Table 8: Meals_in_booking

Meals_in_booking
booking ID, meal ID
(PK)

1. Booking ID and meal_ID makes the composite key for the table.

Table 9: Booking

Booking
ID (PK)
Check_in_date
Check_out_date
No_of_guests
Status
Hotel_ID (FK)
Room_ID (FK)
Customer_ID (FK)

- 1. ID is the primary key for the booking table.
- 2. Check_in_date, check_out_date, status and no_of_guests are dependent on the primary key.
- 3. Hotel_ID is the foreign key which reference hotel table, similarly Room_ID references room table and customer_id references customer table.

Table 10: Coupon

Coupon	
ID (PK)	
description	
validity	
type	

- 1. ID is the primary key for the coupon table.
- 2. Description, validity and type are dependent on the primary key.

Table 11: Coupons_in_booking

Coupons_in_booking
Booking ID, Coupon
ID (PK)

1. Booking ID and coupon ID makes the composite key for the table.

Table 12: Payment

Payment
ID (PK)
Method
Price
Status
Booking_ID(FK)
Customer_ID (FK)

- 1. ID is the primary key for the payment table.
- 2. Method, price and status are dependent on the primary key.
- 3. Booking_ID and customer_ID are foreign keys referencing booking and customer table respectively.

Table 13: Customer

Customer	
ID (PK)	
Name	
Phone	
Email	

- 1. ID is the primary key for the customer table.
- 2. Name, phone and email are dependent on the primary key.

Table 14: Feedback

Feedback
ID, Customer_id,
Hotel_id (PK)
Rating
Description

- 1. ID, customer_id and hotel_id makes the primary key for the feedback table.
- 2. Rating and description are dependent on the primary key.

Table 15: Rooms_in_booking

Rooms_in_booking
ID, Room ID,
Hotel_ID (PK)

1. ID, Room_ID and Hotel_ID makes the primary key for the table.

Step 7 & 8: Physical model

'BedBreakfast' database has been created and DDL queries have been attached in the 'bed_breakfast_queries' file.

Figure 2: Tables created after executing queries in bed_breakfast_queries file.

References:

• Draw.io, ERD Tool Link: https://draw.io/

• ERD with draw.io

Link: https://drawio-app.com/blog/entity-relationship-diagrams-with-draw-io/

• Chen and Crow's Foot notation, Gleek

Link: https://www.gleek.io/er-diagrams