What is claimed is:

A probe apparatus for testing a circuit chip, said probe opparatus comprising a probe group having two or more probes for independently conductively contacting a single terminal of said circuit chip.

5 1

2

3

4

The probe apparatus of claim 1, further comprising 2. an electronic circuit capable of recognizing a test path resistance and correspondingly compensating a voltage drop of an operational signal passing through at least one of said probes.

5 6

2

3

4

The probe apparatus of claim 2, wherein said probe group comprises three probes and said electronic circuitry is capable of recognizing

5 6

7

first path resistance / of said a) resistance condition between said first and said second contacting means along said single test terminal;

9

second path reśistance of b) a said resistance conditión between said first and said third contacting means along said single test terminal;

11 12

10

c) a third path resistance οf said resistance condition between said second and said third contacting means along

13 14

said single test terminal; and

15

16

wherein said electronic circuitry is capable

17 18

compensating said voltage individually and in correspondence to one,

:	19	
	20	
,	21	
	1	
	2	
	2 3 4	
	4	
	5	
	6 1 2	
	1	
	2	
	,3	
	1	
.₫ .ਹੈ <i>\</i>	,2	
	/ 3	
1	\n_C)
1)
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\)
	1 2)
	1 2 3)
	1 2 3 1)
	1 2 3 1 2)
	1 2 3 1 2 3)
	1 2 3 1 2 3 1	ו
)
	1	7
	1 2	
	1 2 3	7
	1 2 3 4	7
	1 2 3 4 5	7

two or three operational signal paths related to said probes.

- 4. The probe apparatus of claim 2, wherein said probe group comprises four probes and said electronic circuitry is capable of recognizing said test path resistance according to 4-Wire Ohm's Measurement.
- 5. The probe apparatus of claim 1, wherein at least one of said two or more probes is a buckling beam.
- 6. The probe apparatus of claim 1, wherein said probe group is bundled in a single perforation of a sheath being part of said probe apparatus.
 - 7. The probe apparatus of claim 6, wherein said single perforation is a long hole.
 - 8. The probe apparatus of claim 6, wherein said single perforation is a circular hole.
- 9. The probe apparatus of claim 1, wherein said two or more probes have probe tips essentially concentrically arranged in correspondence to a rotation axis of said single terminal having a rotationally symmetric and non planar contact surface such that said two or more probes contact said single terminal in a self centering fashion.
 - 10. The probe apparatus of claim 9, wherein said probe tips are essentially spherical.

1

2

11. A method for compensating a voltage drop of an operational signal passing through an operational signal path having a constant resistance and a variable resistance related to a contact quality of a probe and a terminal of said operational signal path, said method comprising the steps of:

- a) contacting said terminal with a group of two or more of said probes;
- b) recognizing a path resistance along said probes of said group, said terminal and interfaces between said probes and said terminal;
- c) deriving an operational signal path resistance from said path resistance; and
- d) compensating said voltage drop in correspondence to said operational signal path resistance.
 - 12. The method of claim 5, wherein said contacting is provided by said group including a first, a second and a third of said probes, wherein said recognizing includes recognizing a first, second and a third path resistance corresponding to said first, second and said third of said probes, and wherein said deriving includes deriving an absolute value of a first, second and third operational signal path resistance corresponding to said first, second and said third path resistance.

PRO-128