Taming Past LTL & Flat Counter Systems

Stéphane Demri

NYU & CNRS - Marie Curie Fellow

Joint work with A. Dhar & A. Sangnier (LIAFA, France)

Counter Systems

$$S = (Q, C_n, \triangle, I)$$

Guards: Boolean combinations of linear constraints

$$\Sigma_i \ a_i \cdot x_i \sim b$$

 $(a_i \in \mathbb{Z}, \ b \in \mathbb{N}, \ \sim \in \{=, \leq, \geq, <, >\})$

Updates: $\mathbf{u} \in \mathbb{Z}^n$.

Runs in Counter Systems

$$\langle q_0, \mathbf{v}_0 \rangle \xrightarrow{\delta_0} \langle q_1, \mathbf{v}_1 \rangle \xrightarrow{\delta_1} \langle q_2, \mathbf{v}_2 \rangle \xrightarrow{\delta_2} \langle q_3, \mathbf{v}_3 \rangle \xrightarrow{\delta_3} \cdots$$

- For all $i \in \mathbb{N}$, $\mathbf{v}_i \in \mathbb{N}^n$ represents the counter values.
- $\delta_i = \langle q_i, guard(\delta_i), update(\delta_i), q_{i+1} \rangle$.
- For all $i \in \mathbb{N}$, $\mathbf{v}_i \models guard(\delta_i) \& \mathbf{v}_{i+1} = \mathbf{v}_i + update(\delta_i)$.

Well-known that counter systems are Turing-complete and therefore most of verification problems are undecidable.

Past LTL with Arithmetical Constraints: PLTL[C]

- Arithmetical constraints ≈ guards.
- Formulae:

$$\phi ::= p \mid g \mid \neg \phi \mid \phi \land \phi \mid \phi \lor \phi \mid X \phi \mid \phi U \phi \mid X^{-1} \phi \mid \phi S \phi$$

- For model-checking, X⁻¹ and S do not add expressive power but help to express properties succinctly.
- Models for PLTL[C] are runs from counter systems.

Satisfaction Relation

• Models are ω -sequences of the form

$$\sigma: \mathbb{N} \to \mathbf{2}^{\mathrm{AT}} \times \mathbb{N}^{\mathrm{C}}$$

- $\sigma = \langle Z_0, v_0 \rangle, \langle Z_1, v_1 \rangle, \langle Z_2, v_2 \rangle, \cdots$
- $\sigma, i \models p \stackrel{\text{def}}{\Leftrightarrow} p \in Z_i$ $\sigma, i \models g \stackrel{\text{def}}{\Leftrightarrow} v_i \models_{PA} g$
- $\sigma, i \models \mathsf{X}\phi \stackrel{\mathsf{def}}{\Leftrightarrow} \sigma, i + 1 \models \phi$
- $\sigma, i \models \phi_1 S \phi_2 \stackrel{\text{def}}{\Leftrightarrow} \sigma, j \models \phi_2$ for some $0 \le j \le i$ such that $\sigma, k \models \phi_1$, for all $j < k \le i$.

etc.

Existential Model-Checking Problem

• MC(L, C):

Input: A counter system $S \in C$, a configuration c_0 and a formula $\phi \in L$;

Output: Is there a run ρ from c_0 in S such that ρ , $0 \models \phi$?

• When $\mathcal C$ is the full class of counter systems, the problem is known to be undecidable.

- Restrictions have been designed to regain decidability while being general enough.
- E.g., reversal-boundedness, flatness, no guard, etc.
- In this work, we study flat counter systems.

Flat Counter Systems

- Every state of the control graph belongs to at most one simple cycle.
- Simple cycles can be organized as a DAG: an edge between two cycles means that there is a path from a state of the first cycle to a state of the second cycle.

Flatness May Lead to Effective Semilinearity

- Relational flat counter systems have reachability sets that are effectively Presburger-definable [Comon & Jurski, CAV'98]. Guards/updates: conjunctions of formulae of the form either $x \sim y + c$ or $x \sim c$, with $x, y \in \{x_1, \dots, x_n, x'_1, \dots, x'_n\}$, $c \in \mathbb{Z}$ and $\infty \in \{\geq, \leq, =, >, <\}$.
- Flat counter systems with affine functions satisfying finite monoid property have also reachability sets that are effectively Presburger-definable [Finkel & Leroux, FTS&TCS'02]. (more general than the class of flat CS herein)
- See also generalizations in [Bozga et al., CAV'10] and the tool FLATA developed at VERIMAG.

Flattable Systems

- Flat counter systems are not always directly available.
- A relaxed version of flatness: reachability can be captured by a flat unfolding of the system.
- $\langle S, \langle q, \mathbf{x} \rangle \rangle$ is flattable whenever there is a partial unfolding of $\langle S, \langle q, \mathbf{x} \rangle \rangle$ that is flat and has the same reachability set as $\langle S, \langle q, \mathbf{x} \rangle \rangle$.
- $\Sigma = \triangle$; let L be a finite union of languages of the form

$$u_1(v_1)^*u_2(v_2)^*\cdots(v_k)^*u_{k+1}$$

• $\langle S, \langle q, \mathbf{x} \rangle \rangle$ is initially flattable iff there is some L of the above form such that

$$\{\langle q', \mathbf{x}' \rangle : \langle q, \mathbf{x} \rangle \xrightarrow{*} \langle q', \mathbf{x}' \rangle\} = \{\langle q', \mathbf{x}' \rangle : \langle q, \mathbf{x} \rangle \xrightarrow{u} \langle q', \mathbf{x}' \rangle, u \in L\}$$

More on Flattening

• S is globally flattable $\stackrel{\text{def}}{\Leftrightarrow}$ there is a finite union of bounded languages L such that

$$\stackrel{*}{\rightarrow} = \{ \langle \langle q, \mathbf{x} \rangle, \langle q', \mathbf{x}' \rangle \rangle : \langle q, \mathbf{x} \rangle \xrightarrow{u} \langle q', \mathbf{x}' \rangle, u \in L \}$$

• Flattable counter systems are everywhere.

[Leroux & Sutre, ATVA'05]

- Reversal-bounded initialized counter automata are initially flattable.
- Initialized gainy counter automata are initially flattable.
- Etc.
- In the general case, flat unfolding of a counter system provides less runs but can be used as an underapproximation method.

This work

- Optimal upper bound for model-checking flat counter systems with PLTL[c].
- Decidability known with CTL* (extension of PLTL[C]).
 [Demri et al., ATVA'06]
 (deciding properties richer than simple reachability)
- Complexity in 4EXPTIME by an exponential translation into satisfiability for Presburger Arithmetic.
- Model-checking flat Kripke structures with LTL[∅] (no past-time operators) is NP-complete.

 $\label{eq:Khutz & Finkbeiner, CONCUR'11]} \mbox{(Kripke structure} \approx \mbox{counter system without counters)}$

Path Schemas

 Path schemas: alternation of non-loop and loop segments, ending by a loop, and representing a potentially infinite set of infinite runs.

• Path schema = ω -regular expression of the form $p_1 l_1^+ p_2 l_2^+ \dots p_k l_k^\omega$ over alphabet \triangle .

Minimal Path Schemas

- Path schema $p_1 l_1^+ p_2 l_2^+ \dots p_k l_k^{\omega}$ is minimal whenever
 - $\mathbf{0}$ $p_1 \cdots p_k$ is either empty or a simple non-loop segment,
 - $2 l_1, \ldots, l_k$ are loops with disjoint sets of transitions.
- In a flat counter system, the number of minimal path schemas is bounded by $\operatorname{card}(\Delta)^{(2 \times \operatorname{card}(\Delta))}$.
- Every infinite run in a flat counter system respects a minimal path schema.
- A run ρ respecting a path schema $p_1 l_1^+ p_2 l_2^+ \dots p_k l_k^{\omega}$ can be represented by its initial configuration and a tuple in \mathbb{N}^{k-1} encoding how many times loops l_1, \dots, l_{k-1} are visited.

Main Ingredients

- An algorithm in NP for MC(PLTL[c], CFS) may start first by guessing a minimal path schema.
- Ingredients of the proof below aim at bounding the numbers of times loops are visited.
 - 1 Stuttering Theorem for Past LTL.
 - · · · or how to solve the problem when there is no counter.
 - 2 Representing the set of runs respecting a path schema by a quantifier-free Presburger formula.
 - \cdots or how to bound the numbers of times loops are visited when guards are conjunctions of linear constraints.
 - 3 Eliminating disjunctions in guards.
 - · · · or how to flatten multiple loops with identical updates.
 - Combining 1, 2 and 3.
- At least, loops may have to be visited an exponential number of times.

Stuttering Theorem for Past LTL

- Stuttering of finite words or single letters have been instrumental to show results about the expressive power of fragments of Past LTL.
- Stuttering Theorem for LTL done in [Kučera and Strejček Acta Informatica'05].
- From [Gabbay, TLS'87], elimination of past-time operators is possible but this may cause an exponential blow-up.
- We can show that model-checking flat Kripke structures with Past LTL is in NP thanks to the property below.
- Let $\sigma = \sigma_1 s^M \sigma_2$ and $\sigma' = \sigma_1 s^{M'} \sigma_2$ with $M, M' \ge 2N + 1$ and $N \ge 2$. Then, for every Past LTL formula ϕ of temporal depth at most N, we have $\sigma, 0 \models \phi$ iff $\sigma', 0 \models \phi$.

Idea of the Proof

- Binary relation between positions $\langle \sigma, i \rangle \approx_N \langle \sigma', i' \rangle$.
- $\langle \sigma, i \rangle \approx_N \langle \sigma', i' \rangle$ implies that for every ϕ of temporal depth at most N, we have $\sigma, i \models \phi$ iff $\sigma', i' \models \phi$.
- Proof by structural induction.
- $s = \square \blacksquare$, N = 3: σ_1 σ_2 σ_2

 Alternative proof can use Ehrenfeucht-Fraïssé games as defined in [Etessami & Wilke, IC 00].

On Visiting Loops a Linear Amount of Times

- Path schema $P = p_1 I_1^+ p_2 I_2^+ \dots p_k I_k^{\omega}$ from a flat Kripke structure and ϕ in Past LTL of temporal depth N.
- Equivalence between the propositions below:
 - 1 There exist $n_1, \ldots, n_{k-1} \in \mathbb{N}^+$ such that $p_1 l_1^{n_1} p_2 l_2^{n_2} \ldots p_{k-1} l_{k-1}^{n_{k-1}} p_k l_k^{\omega} \models \phi$.
 - 2 There exist $n_1, \ldots, n_{k-1} \in [1, 2N+5]$ such that $p_1 l_1^{n_1} p_2 l_2^{n_2} \ldots p_{k-1} l_{k-1}^{n_{k-1}} p_k l_k^{l_k} \models \phi$.
- Model-checking flat Kripke structures with Past LTL in NP. (model-checking $u \cdot v^{\omega}$ with Past LTL formulae ψ can be done in time in $\mathcal{O}(\text{len}(uv) \times \text{len}(\psi)^2)$

[Laroussinie & Markey & Schnoebelen, LICS'02])

NP-hardness is inherited from LTL.

[Khutz & Finkbeiner, CONCUR'11]

Constraint Systems

 Given P = p₁I₁⁺p₂I₂⁺...p_kI_k^ω and configuration c₀, iter_P(c₀) ⊆ N^{k-1} is defined s.t. (1) and (2) are equivalent:

 $(n_1,\ldots,n_{k-1})\in iter_P(c_0)$

- 2 there is a run ρ starting from c_0 respecting the ω -sequence of transitions $p_1 l_1^{n_1} p_2 l_2^{n_2} \dots p_{k-1} l_{k-1}^{n_{k-1}} p_k l_k^{\omega}$
- iter_P(c₀) can be characterized by a conjunction of linear constraints in which each loop has a dedicated variable when P has no disjunctions.
- $iter_P(c_0) = \emptyset$ whenever one condition below is falsified:
 - 1 effect(l_k) \geq 0 where effect($\delta_1 \cdots \delta_N$) $\stackrel{\text{def}}{=}$ update(δ_1) + \cdots + update(δ_N).
 - 2 For each guard in I_k of the form $\sum_i a_i x_i \sim b$ with $\sim \in \{\leq, <\}$, we have $\sum_i a_i \times effect(I_k)[i] \leq 0$.
 - 3 For each guard in I_k of the form $\sum_i a_i x_i = b$, we have $\sum_i a_i \times effect(I_k)[i] = 0$.
 - 4 For each guard in l_k of the form $\sum_i a_i x_i \sim b$ with $\sim \in \{\geq, >\}$, we have $\sum_i a_i \times effect(l_k)[i] > 0$.

Example of Conjuncts

$$P = (\delta_0)(\delta_1\delta_2)^+(\delta_1'\delta_3)(\delta_4\delta_3)^{\omega}$$

- Each internal loop is visited at least once: $y_1 \ge 1$.
- Counter values are non-negative.
 - $\mathbf{v_0}[i] + effect(\delta_0)[i] \ge 0$;
 - $\mathbf{v_0}[i] + effect(\delta_0)[i] + (\mathbf{y_1} 1)effect(\delta_1\delta_2)[i] \ge 0$;
 - **v**₀[*i*] + effect(δ₀)[*i*] + effect(δ₁)[*i*] ≥ 0;
 - $\mathbf{v_0}[i] + effect(\delta_0)[i] + (\mathbf{y_1} 1)effect(\delta_1\delta_2)[i] + effect(\delta_1)[i] \ge 0$;
 - etc.
- + similar constraints to guarantee that counter values satisfy the guards.
- Sufficient by convexity.

Characterization

- Path schema $P = p_1 l_1^+ p_2 l_2^+ \dots p_k l_k^{\omega}$ without disjunctions in guards.
- Initial configuration c₀.
- \bullet One can compute a constraint system ${\mathcal E}$ in polynomial-time such that
 - the set of solutions of \mathcal{E} is equal to $iter_P(c_0)$,
 - \mathcal{E} has k-1 variables.
 - E has a polynomial number of conjuncts,
 - the size of the greatest absolute value from constants in ${\mathcal E}$ is polynomial.
 - (this can be done also symbolically by replacing counter values from c₀ by variables).

Small Run Property

- [Borosh & Treybig, AMS 76]
 - $\mathcal{M} \in [-M, M]^{U \times V}$, $\mathbf{b} \in [-M, M]^{U}$, where $U, V, M \in \mathbb{N}$.
 - If $(\mathbf{x} \in \mathbb{N}^V \text{ and } \mathcal{M}\mathbf{x} \ge \mathbf{b})$, then there is $\mathbf{y} \in [0, (\max\{V, M\})^{GU}]^V$ such that $\mathcal{M}\mathbf{y} \ge \mathbf{b}$.

- Thanks to existence of £, existence of small runs too:
 - Path schema $P = p_1 l_1^+ p_2 l_2^+ \dots p_k l_k^{\omega}$ without disjunctions.
 - Initial configuration c₀.
 - Equivalence between the propositions below:
 - 1 There is a run ρ from c_0 respecting P.
 - 2 There is a run ρ from c_0 respecting P such that each internal loop is visited at most an exponential number of times.
- Entails NP upper bound for the reachability problem in flat counter systems with no disjunction in guards.

Algorithm in NP: a First Attempt

- **1** Guess a minimal path schema $P = p_1 l_1^+ p_2 l_2^+ \dots p_k l_k^{\omega}$.
- 2 Build \mathcal{E} form P and c_0 .
- **3** Guess a small solution $\langle n_1, \ldots, n_{k-1} \rangle$ for \mathcal{E} .
- 4 Check whether ρ , $0 \models \phi$ where ρ is the unique run respecting $p_1 l_1^{n_1} p_2 l_2^{n_2} \dots p_{k-1} l_{k-1}^{n_{k-1}} p_k l_k^{\omega}$.
 - **Pb. I** $\rho = \rho_1 \cdot \rho_2$, ρ_1 respects $p_1 l_1^{n_1} p_2 l_2^+ \dots p_{k-1} l_{k-1}^{n_{k-1}} p_k$. ρ_1 can be of exponential length. (problem to guarantee algorithm in NP).
 - **Pb. II** How to know which arithmetical constraints hold? (two passes on the same loop may differ w.r.t. the satisfaction of arithmetical contraints)

Towards a Solution

- **Idea I** Replace each n_i by $\min(n_i, 2td(\phi) + 5) = m_i$ and check $p_1 l_1^{m_1} p_2 l_2^{m_2} \dots p_{k-1} l_{k-1}^{m_{k-1}} p_k l_k^{\omega}, 0 \models \phi$.
- **Idea II** Enrich states with information about interpretation of terms Σ_i $a_i \cdot x_i \sim b$ so that satisfaction of guards is easy to check. (see e.g., regions for timed automata)
- Maybe, no run respects $p_1 l_1^{m_1} p_2 l_2^{m_2} \dots p_{k-1} l_{k-1}^{m_{k-1}} p_k l_k^{\omega}$.
- Exponential amount of maps with profile

$$T = \{t_1, \dots, t_{\alpha}\} \to I$$

$$I = \{(-\infty, b_1 - 1], [b_1, b_1], [b_1 + 1, b_2 - 1], \dots, [b_m, b_m], [b_m + 1, \infty)\} \setminus \{\emptyset\}$$

• We need to deal with disjunctions in guards at some stage.

A Few More Definitions

- With constants in $B = \{b_1, \dots, b_m\}$, the set I as at most 2m + 1 intervals.
- Term map $\mathbf{m}: T \to I$ where T is a finite set of terms.
- Footprint ft w.r.t. resource R = ⟨X, T, B⟩ is a map ft : N → 2^X × I^T.
- Every run ρ can be *abstracted* by its footprint $\mathrm{ft}(\rho)$ so that $\rho, i \models \phi$ iff $\mathrm{ft}(\rho), i \models_{\mathsf{symb}} \phi$.
- For instance, ft, $i \models_{\mathsf{symb}} \mathsf{t} \geq b \overset{\mathsf{def}}{\Leftrightarrow} \overbrace{\pi_2(\mathsf{ft}(i))}^{\mathsf{term map}}(\mathsf{t}) \subseteq [b, +\infty).$

The Case with a Single Loop

- Run $\rho = \langle q, \mathbf{v_0} \rangle \langle r, \mathbf{v_1} \rangle \langle q, \mathbf{v_2} \rangle \cdots$ with footprint $\mathrm{ft}(\rho) = \langle \mathbf{I}(q), \mathbf{m_0} \rangle \langle \mathbf{I}(r), \mathbf{m_1} \rangle \langle \mathbf{I}(q), \mathbf{m_2} \rangle \langle \mathbf{I}(r), \mathbf{m_3} \rangle \cdots$
- • H: set of (even) positions j at q starting a new pair of term maps ⟨m_i, m_{i+1}⟩:

$$\mathcal{H} = \{0\} \cup \{2i : i \in \mathbb{N}^+, \ \langle \mathbf{m}_{2i-2}, \mathbf{m}_{2i-1} \rangle \neq \langle \mathbf{m}_{2i}, \mathbf{m}_{2i+1} \rangle \}$$

card(H) ≤ card(T) × (2card(B) + 1).
 (even though the number of term maps is exponential)

Unfolding the loop

- g_m is a conjunction of linear constraints enforcing that next interpretation of terms is compatible with m (depends also on the update).
- Remove of guards g₁ and g₂: their satisfaction can be checked off-line.
- For sake of simplicity, we assumed that $\mathcal{H}=i_0< i_1<\cdots< i_K$ and $i_k-i_{k-1}\geq 4$ for all k. (otherwise production of unfoldings with less regular alternations of non-loop segments and loops)

Elimination of Disjunctions

- Different initial counter values \mathbf{v}_0' or \mathbf{v}_0'' may lead to different unfoldings but their length would still be polynomial.
- Y_P: set of path schemas obtained by unfolding each loop from P in all possible ways (while respecting the maximal length of each unfolding and the resources T and B).
- "Unfolding" of non-loop segments is also required but it amounts to add term maps in states.
- No path schema in Y_P has disjunction in guards.
- Footprints can be computed from the control states.
- There is a run ρ respecting P with footprint ft iff there exist P' in Y_P and run ρ' respecting P' with footprint ft.

Main Algorithm in NP

- 1 Guess a minimal path schema P.
- 2 Guess a path schema $P' = p_1 l_1^+ p_2 l_2^+ \dots p_k l_k^{\omega}$ from Y_P .
- **3** Guess a tuple $(n_1, \ldots, n_{k-1}) \in [1, 2^{P(N)}]^{k-1}$.
- **4** $m_i := \text{Min}(n_i, 2td(\phi) + 5)$ for all $i \in [1, k 1]$.
- **5** Check $p_1 l_1^{m_1} p_2 l_2^{m_2} \dots p_{k-1} l_{k-1}^{m_{k-1}} p_k l_k^{\omega}, 0 \models_{\text{symb}} \phi$.
- **6** Build \mathcal{E} form P' and c_0 .
- **7** Check that $\langle n_1, \ldots, n_{k-1} \rangle \models \mathcal{E}$.

(polynom $P(\cdot)$ is built using [Borosh & Treybig, AMS'76])

Bounding the Number of Loops

- For a fixed n ≥ 1, model-checking path schemas with at most n loops with Past LTL formulae can be done in polynomial-time.
 (direct consequence of the Stuttering Theorem)
- Model-checking path schemas with at most 2 loops with PLTL[C] formulae is NP-hard. (requires a first-class reduction)
- Model-checking path schemas with one loop with PLTL[C] formulae is in PTIME.
 (algorithm deterministically unfolds the single loop)

Summary

Classes of Systems	Past LTL	PLTL[C]	Reachability
KPS	NP-complete		РТіме
CPS	NP-complete	NP-complete	NP-complete
$\mathcal{KPS}(n)$	РТіме		РТіме
$\mathcal{CPS}(n), n > 1$??	NP-complete	??
$\mathcal{CPS}(1)$	РТіме	РТіме	РТіме
\mathcal{KFS}	NP-complete		РТіме
CFS	NP-complete	NP-complete	NP-complete