HIGH-VOLTAGE MIXED-SIGNAL IC

240RGB x 320 TFT LCD Controller-Driver w/ 18-bit per RGB On-Chip SRAM

PP Specifications Revision 0.8

June 30, 2009

Specifications and information herein are subject to change without notice.

TABLE OF CONTENT

INTRODUCTION	3
MAIN APPLICATIONS	3
ORDERING INFORMATION	5
BLOCK DIAGRAM	6
PIN DESCRIPTION	7
CONTROL REGISTERS	9
COMMAND TABLE	17
COMMAND DESCRIPTION	19
HI-V GENERATOR AND BIAS REFERENCE CIRCUIT	49
INTERFACES	50
INTERFACE SPECIFICATION	50
HOST INTERFACE	51
POWER MANAGEMENT	73
ABSOLUTE MAXIMUM RATINGS	78
SPECIFICATIONS	79
AC CHARACTERISTICS	80
PHYSICAL DIMENSIONS	84
ALIGNMENT MARK INFORMATION	85
PAD COORDINATES	86
TRAY INFORMATION	92
DEVISION HISTORY	03

UC8230s

Single-Chip, Ultra-Low Power 240RGB x 320 Gate Matrix Active Color LCD Controller-Driver

INTRODUCTION

The UC8230s handles 262,144 TFT colors and can drive a TFT color liquid crystal display of 240 RGB x 320 dots with an incorporated RAM compliant to graphics display of 240 RGB x 320 dots at maximum, and a 720-channel source driver outputs. The UC8230s incorporates a gate driver and a power circuit for driving liquid crystal display to drive a TFT panel with a single chip.

The UC8230s' bit-operation functions, 8/9/16/18-bit high-speed bus interface, and high-speed RAM-write functions enable efficient transfer of data and high-speed data update on a graphics RAM. The UC8230s' 6/16/18-bit RGB interface (VSYNC, HSYNC, DOTCLK, ENABLE, and DB17 to 0) and VSYNC interface (system interface + VSYNC) provide an interface for moving picture display.

With a window address function that facilitates the moving picture display in an arbitrary area and enables simultaneous display of moving pictures and the contents of the internal RAM, the UC8230s enables moving picture display not constrained by the still picture area. Accordingly, the data transmission is reduced to minimum, thereby saving power consumed by a system as a whole when displaying moving pictures.

The UC8230s supports power-saving operation up to the power supply voltage of 2.5V with a voltage follower circuit that generate voltage to drive liquid crystal. The UC8230s also incorporates 8-color display and standby functions that allow precise power control by software.

These features make this LSI the ideal solution for any medium or small-sized portable battery-driven products such as digital cellular phones supporting WWW browsers or small PDA, where long battery life and board size are major concern.

MAIN APPLICATIONS

 Cellular Phones and other battery operated hand held devices or portable Instruments.

FEATURE HIGHLIGHTS

- Liquid crystal controller/driver for 262,144 TFT-color 240RGB x 320-dot graphics display
- Single chip solution for a TFT display panel
- System interface
 - 8-/9-/16-/18-bit high-speed bus interface
 - Serial Peripheral Interface (SPI)
 - 8-bit transmission x 3 times (262k/65k color modes)
- · Interface for moving picture display
 - 6-/16-/18-bit RGB interface (VSYNC, HSYNC, DOTCLK, ENABLE, DB17-0)
 - VSYNC interface (System interface + VSYNC)
- Window address function to write data to the rectangular area of RAM specified by the window address
 - Interface to facilitate moving picture display in an arbitrary area
 - Reduce data transmission by transmitting only the data for the moving picture display area
 - Simultaneous display of moving pictures and the contents of the internal RAM
- Functions for controlling abundant color displays
 - Simultaneous availability of 262,144 colors with v-correction function
 - Line-unit vertical scrolling

- Low-power architecture: features for lowpower operation
 - $V_{cc} = 2.5 \sim 3.3 \text{ V}$ (internal logic regulator power supply
 - $I/OV_{CC} = 1.65 \sim 3.3V$ (reference voltage for interface pin input)
 - $V_{D4} = 4.2 \sim 5.2 \text{ V}$ (Source/COMH/P16V-Pump drive voltage)
 - Power saving function (standby mode etc.)
 - Partial liquid crystal drive to display two screens at arbitrary positions
 - Voltage followers for liquid crystal drive power circuit to fend off the direct current from bleeder-resistors

- Step-up circuit generating liquid crystal drive voltage up to 6-time scale
- 172,800-byte internal RAM
- Incorporated liquid crystal display driver with 720 source outputs and 320 gate outputs
- n-raster-row liquid crystal AC drive, enabling polarity inversion by every arbitrary number of raster-rows
- Internal oscillation and hardware reset
- Reversible direction of signals between RAM and source driver
- Exclusive for Cst structure

ORDERING INFORMATION

Gold Bumped Die

Part Number	MTP	Description
UC8230sGAB	Yes	Gold bumped die, with MTP function.

General Notes

APPLICATION INFORMATION

For improved readability, the specification contains many application data points. When application information is given, it is advisory and does not form part of the specification for the device.

BARE DIE DISCLAIMER

All die are tested and are guaranteed to comply with all data sheet limits up to the point of wafer sawing. There is no post waffle saw/pack testing performed on individual die. Although the latest processes are utilized for wafer sawing and die pick-&-place into waffle pack carriers, UltraChip has no control of third party procedures in the handling, packing or assembly of the die. Accordingly, it is the responsibility of the customer to test and qualify their applications in which the die is to be used. UltraChip assumes no liability for device functionality or performance of the die or systems after handling, packing or assembly of the die.

MTP LIGHT & ESD SENSITIVITY

The MTP memory cell is sensitive to photon excitation and ESD. Under extended exposure to strong ambient light, or when TST4 pin is exposed to ESD strikes, the MTP cells can lose its content before the specified memory retention time span. The system designer is advised to provide proper light & ESD shields to realize full MTP content retention performance.

LIFE SUPPORT APPLICATIONS

These devices are not designed for use in life support appliances, or systems where malfunction of these products can reasonably be expected to result in personal injuries. Customer using or selling these products for use in such applications do so at their own risk.

CONTENT DISCLAIMER

UltraChip believes the information contained in this document to be accurate and reliable. However, it is subject to change without notice. The information and data provided herein is for reference only. No responsibility is assumed by UltraChip for the use of information contained in this datasheet. Always contact UltraChip for commit to mass production for the latest product information and operation parameters.

CONTACT INFORMATION

UltraChip Inc. (Headquarter) 2F, No. 70, Chowtze Street, Nei Hu District, Taipei 114, Taiwan, R. O. C. Tel: +886 (2) 8797-8947
Fax: +886 (2) 8797-8910
Sales e-mail: sales@ultrachip.com
Web site: http://www.ultrachip.com

BLOCK DIAGRAM

PIN DESCRIPTION

Name	Туре	Pads	Description					
	Power							
Vcc	I	18	VD1-regulator / BGR / LVD power supply - external power supply. Range: 2.5v~3.3v					
IOV _{CC}	I	6	Interface pin power supply - external power supply. Range: 1.65~3.3					
V _{SS}	GND	13	Chip ground					
V _{S2}	GND	8	Pump ground					
V_{D1}	0	11	Logic/memory power supply - connected internally to V_{D1} regulator output. 1.8V					
V_{D2}	0	3	V _{D2} output pin					
$V_{D1_ON} \ V_{D2_ON}$	0	1 1	VD1 test pin (For Ultrachip test only) VD2 test pin (For Ultrachip test only)					
V_{D4}	0	6	Source/comH/VCCH-pump/VCCL-pump Voltage: V _{D2} x 2					
V _{CC} H	0	6	Gate high power supply. Voltage: V _{D2} x 4,5,6					
VccL	0	10	Gate low power supply. Voltage: V _{D2} x -3,-4,-5					
V_{SN}	0	5	comL power supply. Voltage: V _{D2} x (-1)					
			MPU-IF					
IM3~0	I	4	Select MPU-IF mode IM[3:0] Bus Mode DB Pin 0010 8080 / 16-bit DB17-10,DB8-1 0011 8080 / 8-bit DB17-10 010,ID SPI DB1~0 011* Setting disabled 1010 8080 / 18-bit DB17~0 1011 8080 / 9-bit DB17-9 11*** Setting disabled					
CSb	I	1	Chip select, 500nS filter, R=25K(HR-Poly), C=20pF connect to V _{D1}					
RS	I	1	Select IR/SR (RS_) or CRs (RS)					
WR_SCL	I	1	80-system: write_; SPI: sync clock					
RDb	I	1	80-system: read_; SPI: fixed to V _{D1} or V _{SS}					
DB17~0	I/O	18	MPU data bus					
SDI, SDO	I, O	1, 1	SDI : Serial Data Input. SDO : Serial Data Output					
RESETb	I	2	Initialize chip					

Name	Туре	Pads	Description		
			DISPLAY-IF		
VSYNC	I	1	Frame synchronization signal		
HSYNC	I	1	Line synchronization signal		
DOTCLK	I	1	Dot clock		
ENABLE	I	1	Enable signal in RGB-mode		
FMARK	0	1	Frame head pulse with amplitude between GND and IOV _{CC} . Use when writing data to RAM in synchronization with FMARK. Leave open when not used.		
			REF/OSC		
VREG1	I/O	3	Reference voltage for generating gamma curve		
		EXTERN	IAL PUMPING CAPACITOR		
C11+, C11-	I/O	5, 5	Connect to external pumping capacitor C11		
C12+, C12-	I/O	5, 5	Connect to external pumping capacitor C12		
C13+, C13-	I/O	4, 4	Connect to external pumping capacitor C13		
C21+, C21-	I/O	7, 7	Connect to external pumping capacitor C21		
C22+, C22-	I/O	7, 7	Connect to external pumping capacitor C22		
			Соммон		
СОМ	0	7	TFT common electrode		
COM_TEST	0	1	TFT common electrode test pin		
VcomH	0	6	High level of Vcom		
VcomL	0	4	Low level of Vcom		
			Source		
S1~S720	0	720	TFT source electrode		
VGS	I	2	Adjust gamma curve to match different panel		
			GATE		
G1~G320	0	320	TFT gate electrode		
			Misc.		
DUMMY	0	46	Dummy		
OSC	I	1	Input pin for external clock input.		
SRC_TEST	0	1	Source output test pin		

CONTROL REGISTERS

UC8230s contains registers which control the chip operation. These registers can be modified by commands. The following table is a summary of the control registers, their meanings and their default values. Commands supported by UC8230s will be described in the next two sections. First, a summary table, followed by a detailed instruction-by-instruction description.

Name: The Symbolic reference of the register.

Note that, some symbol name refers to bits (flags) within another register.

Default: Numbers shown in **Bold** font are default values after Power-Up-Reset and System-Reset.

Name	Bits	Default	Description				
ID7-0	8	00h	Specifies index (R00h to RFFh) of the control register				
	_						
OS	1	0h	"1": Start power-up sequence,				
AOF	1	0h	"1": Auto power-off (Display off).				
TE	1	0h	MTP Write Control 0: Data-write End 1: Data-write Start				
MTPS	1	0h	MTP Succeed				
MAN	1	1h	1 : Enable power setup & display sequence MANual mode				
DID	16	8230h	Device ID, = 8230h.				
SS	1	0h	Shift direction of Source order: 0: S1 to S720 1: S720 to S1 Rewrite the RAM data when change SS bit SS=0 DB[17:0] = {S(3n), S(3n+1), S(3n+2)}, n=0240 SS=1 DB[17:0] = {S(3n+2), S(3n+1), S(3n)}, n=2400				
SM	1	0h	Specifies the scan order of gate driver, 0 : progressive 1 : interlace				
EOR	1	0h	When "1", polarity inversion of a C-pattern waveform (B/C=1) occur by applying an EOR to an odd/even frame select signal and an N-line inversion signal.				
BC0	1	0h	0 : select frame inversion 1 : select n-line inversion, and n-line =1				
АМ	1	0h	0 : horizontally write to GRAM 1 : vertically write to GRAM				
I/D	2	3h	Address counter increment / decrement by 1 after write to GRAM /D1 : Vertical.				
ORG	1	0h	Moves the origin address according to the ID setting when a window address area is made. ORG = 0 : The origin address is not moved. ORG = 1 : The origin address "h00000" is moved according to the I/D[1:0] setting.				
BGR	1	0h	Reverses the order of RGB dots to BGR for the 18-bit data written to the internal GRAM				
			BGR=0 S(3n): red S(3n+1): green S(3n+2): blue				
			BGR=1 S(3n): blue S(3n+1): green S(3n+2): red				

Name	Bits	Default	Descrip	tion					
DFM	1	0h	0:262	Specifies the Data Format when TRI=1 and using 8-bit or SPI interface 0 : 262k mode (6,6,6 transfer) 1 : 65k mode (5,6,5 transfer)					
TRI	1	0h		M write o		pixel are transferred 3 times through the 8-bits			
RSZ	2	0h	00b : 1	ts the res No resizi Setting in		or. 01b : x 1/2 11b : x 1/4			
RCH	2	0h		sizing a) pixel		made as the remainder in horizontal direction 01b: 1 pixel 11b: 3 pixels			
RCV	2	0h	when re 00b : 0	Sets the number of pixels made as the remainder in vertical directive when resizing a picture. 00b: 0 pixel 10b: 2 pixels 11b: 3 pixels					
D	2	0h	00b:s 01b:s 10b:r	D1=1, display-on D1=0, display-off 00b : src=vss, internal-display/gate-cntl halt 01b : src=vss, internal-display/gate-cntl operate 10b : non-split display, internal-display/gate-cntl operate 11b : display, internal-display/gate-cntl operate					
COL	1	0h	0:262	k-color r	node	1 : 8-color mode			
GON/DTE	2	0h			tput of gat				
				ON, DTE Output of gate line					
			0xb		VCCL (G	GON=0, the Vcom level = Vss)			
			10b 11b			· VCCL, depending on display			
VON	4	01		. \/COM					
VON	1	0h	APE	AP[1:0]		_, VCOM amplitude signal output.			
			0	*	*				
			1			GND			
			1 0		1	Setting disabled			
			1	1 1~3 0		GND			
			1	1~3	1	VCOMH/VCOML			
BASEE	1	0h	1 : A b	ase imag		ayed on the screen.			
PTDE	2	0h	_		-	bit of partial image 1.			
			PTDE[1] : displa	y enable b	oit of partial image 2.			

Name	Bits	Default	Description	Description					
BP FP	4	8h 8h	BP specifie	BP specifies the number of scan line for back porch, BP \geq 2. FP specifies the number of scan line for front porch, FP \geq 2. $4 \leq (BP+FP) \leq 16$					
			0000b	Setting Disabled		1000b	8 lines		
			0001b	Setting Disabled		1000b	9 lines		
			0010b	2 lines		1010b	10 lines		
			0011b	3 lines		1011b	11 lines		
				4 lines		1100b	12 lines		
				5 lines		1101b	13 lines		
			0110b	6 lines		1110b	14 lines		
			0111b	7 lines		1111b	Setting Disabled		
ISC	4	0h	Specifies t	he scan cycle time	e of gate	driver in r	non-display area.		
			-	0 frame		1000b	17 frames		
			0001b	3 frames		1001b	19 frames		
			0010b	5 frames		1010b	21 frames		
			0011b	7 frames		1011b	23 frames		
			0100b	9 frames		1100b	25 frames		
			0101b	11 frames		1101b	27 frames		
			0110b	13 frames		1110b	29 frames		
			0111b	15 frames		1111b	31 frames		
PTG PTS	3	0h 0h	comV will I 00b : nor 10b : inte	be based on PT sermal drive erval scan mode	etting.	01b : fixed 11b : settir	VCCL ng disable (=10b) when Partial Display is		
			ON.	0 0					
			PTS	Source Output					
			000b	Positive V63	Nega V0	tive			
			000b	Disabled	Disab	lod			
				Vss		nea			
			010b	Hi-Z	Vss Hi-Z				
			011b 100b	V63	V0				
						امما			
			101b	Disabled	Disab	iea			
			110b	Vss	Vss				
FMI	3	0h	Sets the output interval of FMARK signal according to the display date rewrite cycle and data transfer rate. 000: 1 frame 001: 2 frames 011: 4 frames 101: 6 frames						
FMARKOE	1	0h		ARKOE = 1, the U			outting FMARK signal from II[2:0] bits.		

Name	Bits	Default	Descrip	tion					
RIM	2	0h	00b:1 01b:1 10b:6	1 8-bit bus 6-bit bus 6-bit bus F	s mode of RGB interface s RGB interface mode s RGB interface mode RGB interface mode sable (=00b)				
DM	2	Oh	internal 00b : I	Specifies the Display operation Mode. DM allows switching between internal clock operation and the external display interface mode. 00b : Internal clock operation 10b : VSYNC interface 11b : Setting disabled (=00b)					
RM	1	0h			ess interface of GRAMC interface 1:	1. RGB interface			
ENC	3	0h			ite cycle via RGB inter to indicate 1~8 frames,				
FMP	9	000h	Sets the		osition of frame cycle s				
			9"h000		0th line				
			9"h001		1st line				
			9"h002		2nd lines				
			9"h14E		334th lines				
			9"h14F		335th lines				
			9"h150	~1FF	Setting disabled				
DPL	1	0h	0 : inpu	ut data or	olarity of DOTCLK pin. In the rising edge of DO In the falling edge of DC	TCLK			
EPL	1	0h	Sets the	signal p	olarity of ENABLE pin.				
			EPL	ENABL	E = 0	ENABLE = 1			
			0	Writes	data DB17-0	Disables data write operation			
			1	Disable: operation	s data write on	Writes data DB17-0			
HSPL	1	0h		signal power signa	olarity of HSYNC pin. 1 :	High active			
VSPL	1	0h		signal power signa	olarity of VSYNC pin. 1 :	High active			
SLP	1	0h	1 : Ent	er Sleep	mode, all operations st	top except oscillator.			
DSTB	1	0h	1 : Ent	er Standt	by mode, all operations	s stop.			
AP	2	1h	1 : Enter Standby mode, all operations stop. Adjusts the bias current of amplifier in COMMON driver to increase / decrease driving capability. 00b : Stop 10b : TBD 11b : TBD						
APE	1	0h			wer supply enable bit. S starting up the liquid cr	Set APE = 1 and follow the ystal power supply.			

Name	Bits	Default	Descri	Description					
ВТ	3	0h	Switche	es the output fact	tor for V _{CC} H	_pump and	d V _{CC} L_pump circuits.		
			BT	V _{D4} _pump	V _{CC} H_p	oump	V _{CC} L_pump		
			000	V _{D2} x 2	V _{D2} x 4		V _{D2} x (-3)		
			001	V _{D2} x 2	V _{D2} x 4		V _{D2} x (-4)		
			010	V _{D2} x 2	$V_{D2} \times 5$		V _{D2} x (-3)		
			011	V _{D2} x 2	$V_{D2} \times 5$		V _{D2} x (-4)		
			100	V _{D2} x 2	V _{D2} x 5		V _{D2} x (-5)		
			101	V _{D2} x 2	V _{D2} x 6		V _{D2} x (-3)		
			110	V _{D2} x 2	V _{D2} x 6		V _{D2} x (-4)		
			111	V _{D2} x 2	V _{D2} x 6		V _{D2} x (-5)		
SAP	1	0h	1 : Gra When s operation	O: The grayscale voltage generating circuit is halted 1: Grayscale voltages are generated. When starting the operation of LCD power supply circuit in Power ON operation and so on, make sure SAP = 0. Set SAP = 1, after starting up the LCD power supply circuit.					
LVDTEN	1	0h	1 : Lo	w-V _{CC} detection	control Enat	oled			
VC	3	7h	Sets the	e Vref voltage.					
DC0	2	2h	Sets the operating frequency of V _{D4} _pump and V _{SS} N_pump. 00b : sclk/2 10b : sclk/8 11b : sclk/16				/4		
DC1	2	2h	Sets op	eration frequenc	cy of V _{CC} H_p	oump and \	V _{CC} L_pump.		
				sclk/16 sclk/64		01b : sclk/ 11b : sclk/	-		
VRH	4	Fh	Sets the	e Vreg1 voltage.					
PON1	1	1h	0 : V _D	₄ _pump OFF		1 : V _{D4} _pt	ımp ON		
PON2	1	1h		CH_pump and Vo					
PON4	1	1h	0 : Vss	N_pump OFF		1 : V _{SS} N_	pump ON		
PDC1	1	0h	1 : dis	charge V _{D4} _pum	ıp				
PDC2	1	0h	1: disc	charge V _{CC} H_pu	mp and V _{cc} l	pump			
PDC4	1	0h	1: disc	charge V _{SS} N_pur	mp				
P5VMD	1	0h		mp mode. gle mode.		1: Dual m	ode		
VcomG	1	0h	Set VcomL voltage. 0: set VcomL to ground 1: Set VcomL to (VcomH-VcomA)				omL to (VcomH-VcomA)		
VCM	6	37h	Sets Vo	Sets VcomH voltage.					
VDV	6	28h	Sets VcomA voltage.						
AD	8	00h	Set GRAM address to address counter						
AD	9	000h	Set GR	Set GRAM address to address counter					
WD	18	0000h	Transfo	orm the data into	18-bit befor	e write to 0	GRAM		
RD	18	0000h	Read 1	8-bit data from G	BRAM				

Name	Bits	Default	Descr	iption								
Name PKP0~5 PFP1~2 PRP0~1 VRP0~1 PKN0~5 PFN1~2 PRN0~1 VRN0~1 VRN0~1 HAS, HEA VSA, VEA	3x5 2x2 3x2 5x2 3x5 2x2 3x2 5x2 8 8	Oh OOh OOh	Fine-ti Specif Gradie Amplit Fine-ti Specif Gradie Amplit Specif	une V1 iy PKP ent adj ude ac une V1 ent adj iy PKN ent adj ude ac iies the iies the SM=0,	I, V6, \ 1, PKF ustmer djustme I, V6,V I1, PKN ustmer djustme	P4 gray nt: V8, ent: V0 8, V10 N4 gray nt: V8, ent: V0 contal S cal Star starting SM=1,	7-level V55 , V63 , V12, 7-level V55 , V63 Start / End J positio SM=1,	V20, V ⁴ Ind positio	13, V51,	V53, V5	55, and V 55, and V 55, and V 65, and V	
			6'h01	G9	G312		G304	6'h15	G169	G152	G18	G303
			6'h02	G17	G304	G33	G288	6'h16	G177	G144	G34	G287
			6'h03		G296	G49	G272	6'h17	G185	G136	G50	G271
			6'h04 6'h05	G33 G41	G288 G280	G65 G81	G256 G240	6'h18 6'h19	G193 G201	G128 G120	G66 G82	G255 G239
			6'h06	G41	G272		G224	6'h1A	G201	G120	G98	G239
			6'h07				G208	6'h1B	G217	G104	G114	G207
			6'h08	G65			G192	6'h1C	G225	G96	G130	G191
			6'h09				G176	6'h1D	G233	G88	G146	G175
			6'h0A				G160	6'h1E	G241	G80	G162	G159
			6'h0B	G89			G144	6'h1F	G249	G72	G178	G143
			6'h0C	G97		G193		6'h20	G257	G64	G194	G127
			6'h0D	G105	G216	G209	G112	6'h21	G265	G56	G210	G111
			6'h0E	G113	G208	G225	G96	6'h22	G273	G48	G226	G95
			6'h0F	G121	G200	G241	G80	6'h23	G281	G40	G242	G79
			6'h10	G129	G192	G257	G64	6'h24	G289	G32	G258	G63
			6'h11	G137	G184	G273	G48	6'h25	G297	G24	G274	G47
			6'h12	G145	G176	G289	G32	6'h26	G305	G16	G290	G31
			6'h13	G153	G168	G305	G16			G8 Setting I disabled		G15 Setting I disabled
NL	6	00h	Sets tl	ne nun	nber of	lines t	o drive	the LC	D at an	interval	of 8 lines	S
GS	1	0h	Sets tl	ne dire	ection o	f scan	by the	gate dr	iver.			
REV	1	0h	Enable	es the	graysc	ale inv	ersion	of the i	mage by	setting	REV = 1	
VLE	1	0h	Vertica 0 :Fi		ll displa	ay ena	ble	1:1	Enable s	scrolling		
NDL	1	0h	Non-d	isplay	area:		el in n	on-lit di	splay ar			
			ND		Positive				Negati	ive		
			0		63				V0			
			1	V	0				V63			

Name	Bits	Default	Description	on	
VL	9	000h	Specifies	the numbe	er of scrolling lines.
			000h	0 line	ű
			001h	1 line	
			002h	2 lines	
			13dh	317 lines	
			13eh	318 lines	
			13fh	319 lines	
PTDP0	9	000h	Sets the d	lisplay pos	ition of partial image 1.
PTDP1	9	000h			ition of partial image 2.
PTSA0 PTEA0	9 9	000h 000h			nd end line addresses of the RAM area, respectively 1. Ensure that PTSA0 ≤ PTEA0.
PTSA1 PTEA1	9 9	000h 000h			nd end line addresses of the RAM area, respectively 2. In setting, make sure that PTSA1 ≤ PTEA1.
FSEL	1	0h	FSEL: Set	ts OSC Fre	equency.
			0 : OSC	= 376 kHz	1 : OSC = 600 kHz
RTNI	5	10h	Sets perio	d H (line).	
			00000b~1	10000b	16 clock cycles
			10001b		17 clock cycles
			10010b		18 clock cycles
			11101b		29 clock cycles
			11110b		30 clock cycles
			11111b		31 clock cycles
DIVI	2	0h		livision rati	o of the internal clock frequency.
			DIVI	Frequen	ncy
			00b	f-sclk/1	
			01b	f-sclk/2	
			10b	f-sclk/4	
			11b	f-sclk/8	
NOWI	3	0h	Sets the n	on-overlar	period of adjacent gate outputs.
			000b	0 interna	l clock
			001b	1 internal	clock
			110b	6 internal	clock
			111b	7 internal	clock
MPCI	3	0h	Sets the s reference		out timing by the number of internal clock from the
			000b	0 interna	l clock
			001b	1 internal	clock
			110b	6 internal	clock
			111b	7 internal	clock

Name	Bits	Default	Description		
VEQWI	2	0h	Set VCOM equalize period.		
			0 0 clock		
			1 1 clock		
			2 2 clock		
			3 3 clock		
RTNE	6	1Eh	Setting is enabled in display operation via RGB interface.		
DIVE	2	0h	Set the division ratio of DTOCLK frequency.		
NOWE	4	0h	Sets the non-overlap period of adjacent gate outputs. The setting is enabled in display operation via RGB interface.		
MCPE	3	0h	Sets the source output timing by the number of internal clock from the reference point. The setting is enabled in display operation via RGB interface.		
MTPC[1:0]	2	0h	MTP Command.		
			00b : Halt 01b : Data-write		
			10b : Erase data 11b : Read MTP Cell		
MTPEN	1	0h	1 : Enable MTP function.		
MTPIGN	1	0h	0 : Disable MTP Function 1 : Enable MTP Function		
MATCH	1	0h	if Read-out data do not match Program data if Read-out data match Program data		
RD_TIMER[7:0]	8	00h	MTP Timing setting		
WR_TIMER[15:7]	8	00h	MTP Timing setting		
MVDV[5:0]	6	00h	MTP for VDV		
MVCM[6:0]	7	00h	MTP for VCM		
MTP ID	2	0h	MTP ID		
DAE	1	0h	DAta checksum engine Enable. 0 : Disabled 1 : enabled		
IRE	1	0h	IR checksum engine Enable. 0 : Disabled 1 : Enabled		
IRCK	8	00h	IR cheCKsum		
DACK	16	0000h	DAta cheCKsum.		

COMMAND TABLE

The following is a list of host commands supported by UC8230s: R/W: \underline{R} ead Cycle / \underline{W} rite Cycle RS: 0: Index/ \underline{S} tatus / 1: Control \underline{R} egister

		1																			
	Command	Reg.	R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Default
1.	Index	IR	W	0	0	0	0	0	0	0	0	0				ID[7	7: 0]				
2.	Status	SR	R	0	0	0	0	0	0	0	0	0	0	TE	MTPS	0	0	0	0	0	
3.	Set Display Enable	R00H	W	1	0	0	0	0	0	0	0	0	0	0	0	0	0	AOF	MAN	OS	
4.	Device Code Read	R00H	R	1	1	0	0	0	0	0	1	0	0	0	1	1	0	0	0	0	
5.	Drive Output Control	R01H	W	1	0	0	0	0	0	SM	0	SS	0	0	0	0	0	0	0	0	0000H
6.	LCD Drive Waveform Control	R02H	W	1	0	0	0	0	0	1	BC0	EOR	0	0	0	0	0	0	0	0	0400H
7.	Entry Mode	R03H	W	1	TRI	DFM	0	BGR	0	0	0	0	ORG	0	ID1	ID0	AM	0	0	0	0030H
8.	Resize Control	R04H	W	1	0	0	0	0	0	0	RCV	,	0	0	RCI	H[1:0]	0	0	RSZ	[1:0]	0000H
9.	Display Control (1)	R07H	W	1	0	0	PTDE	[1:0]	0	0	0	BASE E	0	VON	GON	DTE	COL	0	D1	D0	
10	Display Control (2)	R08H	W	1	0	0	0	0		FP[3.01	_	0	0	0	0		BP[3·N1		0808H
	Display Control (3)	R09H	W	1	0	0	0	0	0	I 0	PTS	[1:0]	0	0		G[1:0]		ISC			0000H
																	FMAR	· ·			000011
12.	Display Control (4)	R0AH	W	1	0	0	0	0	0	0	0	0	0	0	0	0	KOE	1	FMI[2:0]		
13.	Ext. Display Interface Ctrl 1	R0CH	W	1	0	E	NC[2:	0]	0	0	0	RM	0	0	DM	1[1:0]	0	0	RIM[[1:0]	0000H
14.	Frame Marker Control	R0DH	W	1	0	0	0	0	0	0	0					FMP[8:0)]				0000H
15.	Ext. Display Interface Ctrl 2	R0FH	W	1	0	0	0	0	0	0	0	0	0	0	0	VSPL	HSPL	0	EPL	DPL	H0000
	Power Control (1)	R10H	W	1	0	0	0	SAP	0		BT[2:0]		APE	0		[1:0]	0	DSTB		0	0000H
	Power Control (2)	R11H	W	1	0	0	0	0	0	0	DC1	[1:0]	0	0	DC	0[1:0]	0		VC[2:0]		0000H
16.	Power Control (3)	R12H	W	1	P5V	0	0	0	0	PDC4	PDC2	PDC1	1	PON	PON2	PON1		VRH	[3:0]		00F0H
	. ,		-		MD VCO						<u> </u>	Щ		4	<u> </u>	<u> </u>	<u> </u>				
	Power Control (4)	R13H	W	1	MG	0			VD۱	/[5:0]			0	0			VCM[5:0]			
17.	Setting Disable	R17H	W	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	PSE	
	RAM Address Set - Horizontal	R20H	W	1	0	0	0	0	0	0	0	0			_ •		[7:0]			. 02	
	RAM Address Set - Vertical	R21H	W	1	0	0	0	0	0	0	0					AD[16:8	<u> </u>				
20	RAM Data Write / Read	DOOL	W	1								1	WR17-0)		•					
20.	RAW Data Write / Read	R22H	R	1									RD17-0								
	γ- Control (1)	R30H	W	1	0	0	0	0	0	Р	KN1[2:0)]	0	0	0	0	0	Р	KN0[2:0	0]	00H
	y- Control (2)	R31H	W	1	0	0	0	0	0		KN3[2:0		0	0	0	0	0		KN2[2:0		00H
	γ- Control (3)	R32H	W	1	0	0	0	0	0		KN5[2:0		0	0	0	0	0		KN4[2:0	_	00H
	γ- Control (4)	R33H	W	1	0	0	0	0	0	0	PFP ⁻	· ·	0	0	0	0	0	0	0	0	00H
	γ- Control (5)	R34H	W	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	PFP2		00H
	γ- Control (6)	R35H	W	1	0	0	0	0	0		RP1[2:0)]	0	0	0	0	0		RP0[2:0)]	00H
21.	γ- Control (7)	R36H R37H	W	1	0	0	0	0	0	/RP1[4:	•	\1	0	0	0	0	0	P0[4:0]	•	11	00H 00H
	γ- Control (8) v- Control (9)	R38H	W	1	0	0	0	0	0		KP1[2:0 KP3[2:0		0	0	0	0	0		KP0[2:0 PKP2[2:0		00H
	γ- Control (9) ν- Control (10)	R39H	W	1	0	0	0	0	0		KP5[2:		0	0	0	0	0		PKP4[2:0		00H
	y- Control (11)	R3AH	W	1	0	0	0	0	0	0	PFN		0	0	0	0	0	0	0	0	00H
	y- Control (12)	R3BH	W	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	PFN2	2[1:0]	00H
	y- Control (13)	R3CH	W	1	0	0	0	0	0	Р	RN1[2:	0]	0	0	0	0	0	P	PRN0[2:		00H
	γ- Control (14)	R3DH	W	1	0	0	0		V	'RN1[4:	:0]		0	0	0		VR	N0[4:0]		00H
22.	Checksum Control	R41H	W	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DAE	IRE	H0000
23.	IR Checksum	R42H	W	1	0	0	0	0	0	0	0	0				IRC	< [7:0]				0000H
24.	DT Checksum	R43H	W	1	L								ACK[15	:0]							0000H
25.	Windows Horizontal Start Addr.	R50H	W	1	0	0	0	0	0	0	0	0					\[7:0]				
26.	Windows Horizontal End Addr.	R51H	W	1	0	0	0	0	0	0	0	0	I				A[7:0]				
27.	Windows Vertical Start Addr.	R52H R53H	W	1	0	0	0	0	0	0	0					VSA[8:0 VEA[8:0					
	Windows Vertical End Addr. Driver Output Control	R60H	W	1	GS	0	U	U		[5:0]	U	<u> </u>	0	0	l	v⊏A[ŏ:U	SCN[5:01			—
	Base Image Display Control	R61H	W	1	0	0	0	0	0	0.0]	0	0	0	0	0	0	0 0	NDL	VLE	RF\/	
	Vertical Scroll Control	R6AH		1	0	0	0	0	0	0	0	U	U	U	U	VL[8:0]	_	NDL	VLL	IVE A	
	Partial Image 1 Display Position	R80H	W	1	0	0	0	0	0	0	0				F	PTDP0[8:					
	Partial Image 1 Start RAM Addr.	R81H	W	1	0	0	0	0	0	0	0					PTSA0[8:					
	Partial Image 1 End RAM Addr.	R82H	W	1	0	0	0	0	0	0	0					PTEA0[8:					
	Partial Image 2 Display Position	R83H	W	1	0	0	0	0	0	0	0					PTDP1[8:					
	Partial Image 2 Start RAM Addr.	R84H	W	1	0	0	0	0	0	0	0					TSA1[8:	•				
	Partial Image 2 End RAM Addr.	R85H	W	1	0	0	0	0	0	0	0					PTEA1[8	0]				
	Panel Interface Control 1	R90H	W	1	0	0	0	0	FSEL	0	DIVI		0	0	0			NI[4:0]			
	Panel Interface Control 2	R92H	W	1	0	0	0	0	0		OWI[2:0	_	0	0	0	0	0	0	0	0	
38.	Panel Interface Control 3	R93H	W	1	0	0	0	0	0	0	0	0	0	0	0	0	0		/CPI[2:0)]	
JU.	Panel Interface Control 4	R95H	W	1	0	0	0	0	0	0	DIVE	[1:0]	0	0			RTNE	_			
	Panel Interface Control 5	R97H	W	1	0	0	0	0		NOW			0	0	0	0	0	0	0	0	<u> </u>
ш	Panel Interface Control 6	R98H	W	1	0	0	0	0	0	0	0	0	0	0	0	0	0	M	ICPE[2:0	Uj	

High-Voltage Mixed-Signal IC ©1999 ~ 2009

	Command	Reg.	R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Default
39	. MTP Register	R46H	W	1	-	1	-	1	1	1		MAT CH		-	MP1	MP0	1		MTPig n	MTP_ EN	
40	. MTP Timer	RC9H	W	1				WR	TIMER							RDTI	MER				
41	. MTP Cell	RCAH	W	1		PID :0]			MVD	V[5:0]							MV	CM[5:0)]		

COMMAND DESCRIPTION

(1) INDEX (IR)

٧	V/R	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
,	W	0	0	0	0	0	0	0	0	0				ID[7:0]			

The index register specifies the index R00h to RFFh of the control register or RAM control to be accessed using a binary number from "0000_0000" to "1111_1111". The access to the register and instruction bits in it is prohibited unless the index is specified in the index register.

(2) STATUS READ (SR)

١	W/R	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
	R	0	0	0	0	0	0	0	0	0	0	TE	MTPS	0	0	0	0	0

MTPS: MTP succeed
TE: MTP write control
0: Data write end
1: Data write Start

(3) SET DISPLAY ENABLE (R00H)

I	W/R	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
	W	1	0	0	0	0	0	0	0	0	0	0	0	0	0	AOF	MAN	os

OS: 1 - Start power-up sequence.

MAN: Manual mode.

0b : Auto mode 1b : Manual mode power setup & display sequence.

AOF: "1" - Auto Power Off (Display OFF).

(4) DRIVE CODE READ (R00H)

W/R	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
R	1	1	0	0	0	0	0	1	0	0	0	1	1	0	0	0	0

The device code "8230"H is read out when reading out this register forcibly.

(5) DRIVE OUTPUT CONTROL (R01H)

١	W/R	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
	W	1	0	0	0	0	0	SM	0	SS	0	0	0	0	0	0	0	0

SS: Sets the shift direction of output from the source driver.

When SS = "0", the source driver output shift from S1 to S720.

When SS = "1", the source driver output shift from S720 to S1.

The combination of SS and BGR settings determines the RGB assignment to the source driver pins S1 \sim S720.

When SS = "0" and BGR = "0", RGB dots are assigned one to one from S1 to S720. When SS = "1" and BGR = "1", RGB dots are assigned one to one from S720 to S1.

When changing the SS and BGR bits, RAM data must be rewritten.

SM: Controls the scan mode in combination with GS setting. See "Scan mode setting".

(6) LCD DRIVE WAVEFORM CONTROL (R02H)

W/R	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1	0	0	0	0	0	1	BC0	EOR	0	0	0	0	0	0	0	0

EOR: Enables liquid-crystal line-inversion drive when EOR = 1 and BC0 = 1.

BC0: Selects the liquid crystal drive waveform VCOM.

BC = 0: frame inversion waveform is selected.

BC = 1: line inversion, line inverted=1

In either liquid crystal drive method; the polarity inversion is halted in blank period (back and front porch periods).

(7) ENTRY MODE (R03H)

W/R	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1	TRI	DFM	0	BGR	0	0	0	0	ORG	0	ID1	ID0	AM	0	0	0

The entry mode register includes instruction bits for setting how to write data from the microcomputer to the internal GRAM of the UC8230s.

AM: Sets either horizontal or vertical direction in updating the address counter automatically as the UC8230s writes data to the internal GRAM.

AM = "0", sets the horizontal direction.

AM = "1", sets the vertical direction.

When making a window address area, the data is written only within the area in the direction determined by I/D1-0, AM bits.

I/D[1:0]: Either increase (+1) or decrease (-1) the address counter (AC) automatically as the data is written to the GRAM. The I/DI0I bit sets either increment or decrement in horizontal direction (updates the address AD[7:0]). The I/D[1] bit sets either increment or decrement in vertical direction (updates the address AD[8:16]). The AM bit sets either horizontal or vertical direction in updating RAM address counter automatically when writing data to the internal RAM.

ORG: Moves the origin address according to the ID setting when a window address area is made. This function is enabled when writing data within the window address area using high-speed RAM write function. Also see Figure 1 and Figure 2.

- ORG = 0: The origin address is not moved. In this case, specify the address to start write operation according to the GRAM address map within the window address area.
- ORG = 1: The origin address "h00000" is moved according to the I/D[1:0] setting.

Notes:

- 1. When ORG = 1, only the origin address "h00000" can be set in the RAM address set registers (R20h, R21h).
- 2. In RAM read operation, make sure to set ORG = 0.

BGR: Reverses the order from RGB to BGR in writing 18-bit pixel data in the GRAM.

BGR = 0: Write data in the order of RGB to the GRAM.

BGR = 1: Reverse the order from RGB to BGR in writing data to the GRAM.

	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
BGR = 0	R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B5	B4	B3	B2	B1	B0
BGR = 1	B5	B4	В3	B2	B1	B0	G5	G4	G3	G2	G1	G0	R5	R4	R3	R2	R1	R0

DFM: In combination with the TRIREG setting, sets the format to develop 16-/8-bit data to 18-bit data when using either 16-bit or 8-bit bus interface. Make sure to set DFM = 0 when not transferring data via 16-bit or 8bit interface.

TRIREG: Selects the format to transfer data bits via 16-bit or 8-bit interface.

In 8-bit interface operation,

TRIREG = 0: 16-bit RAM data is transferred in two transfers.

TRIREG = 1: 18-bit RAM data is transferred in three transfers.

In 16-bit bus interface operation,

TRIREG = 0: 16-bit RAM data is transferred in one transfer.

TRIREG = 1: 18-bit RAM data is transferred in two transfers.

Make sure TRIREG = 0 when not transferring data via 16-bit or 8-bit interface. Also, set TRIREG = 0 during read operation.

Figure 1 Automatic address update (ORG = 0, AM, ID)

Note:

When writing data within the window address area with ORG = 0, any address within the window address area can be designated as the starting point of RAM write operation.

Figure 2 Automatic address update (ORG = 1, AM, ID)

Notes:

- 1. When ORG = 1, make sure to set the address "h00000" in the RAM address set registers (R210h, R21h). Setting other addresses is inhibited.
- 2. When ORG = 1, the starting point of writing data within the window address area can be set at either corner of the window address area ("S" in circle in the above figure).

(8) RESIZE CONTROL (R04H)

W	/R	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
١	٧	1	0	0	0	0	0	0	RCV	/[1:0]	0	0	RCH	[1:0]	0	0	RSZ	[1:0]

RSZ[1:0]: Sets the resizing factor. When the RSZ bits are set for resizing, the UC8230s writes the data according to the resizing factor so that the original image is displayed in horizontal and vertical dimensions contracted according to the factor. See "Resizing function".

RCH[1:0]: Sets the number of pixels made as the remainder in horizontal direction when resizing a picture. By specifying the number of remainder pixels with RCH bits, the data can be transferred without taking the reminder pixels into consideration. Make sure that RCH = 2'h0 when not using the resizing function (RSZ = 2'h0) or there are no remainder pixels.

RCV[1:0]: Sets the number of pixels made as the remainder in vertical direction when resizing a picture. By specifying the number of remainder pixels with the RCV bits, the data can be transferred without taking the reminder pixels into consideration. Make sure that RCV = 2'h0 when not using the resizing function (RSZ = 2'h0) or there are no remainder pixels.

Table 1 Resizing factor (RSR)

50511.01	
RSZ [1:0]	Resizing Scale
2'b0	No resizing (x1)
2'b1	x 1/2
2'b2	Setting inhibited
2'b3	x 1/4

Table 2 Remainder Pixels in Horizontal Direction (RCH)

RCH [1:0]	Number of remainder Pixels in Horizontal Direction
2'b0	0 pixel
2'b1	1 pixel
2'b2	2 pixels
2'b3	3 pixels

Table 3 Remainder Pixels in Vertical Direction (RCV)

RCV [1:0]	Number of remainder Pixels in Vertical Direction
2'b0	0 pixel
2'b1	1 pixel
2'b2	2 pixels
2'b3	3 pixels

Note: 1 pixel = 1RGB

(9) DISPLAY CONTROL 1 (R07H)

W/R	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1	0	0	PTDE	[1:0]	0	0	0	BASE E	0	VON	GON	DTE	COL	0	D[1	:0]

D[1:0]: A graphics display is turned on when writing D1 = "1", and is turned off when writing D1 = "0". When writing D1 = "0", the graphics display data is retained in the internal GRAM and the UC8230s displays the data when writing D1 = "1". When D1 = "0", i.e. while no display is shown on the panel, all source outputs becomes the GND level to reduce charging/discharging current, which is generated within the LCD while driving liquid crystal with AC voltage.

When the display is turned off by setting D1-0 = 2'b01, the UC8230s continues internal display operation. When the display is turned off by setting D1-0 = 2'b00, the UC8230s' internal display operation is halted completely. In combination with the GON setting, the D[1:0] setting controls display ON/OFF. For details, see "Instruction Setting".

Table 4 Source output level and display operation

D[1:0]	BASEE	Source Output (S1-720)	FMARK signal	Internal Operation
2'h0	*	GND	Halt	Halt
2'h1	*	GND	Operation	Operation
2'h2	*	Non-lit display	Operation	Operation
2'h3	0	Non-lit display	Operation	Operation
2113	1	Base-image display	Operation	Operation

Notes:

- 1: The data write operation from the microcomputer is not affected by the D[1:0] setting.
- 2: The PTS bits set the source output level for "Non-lit display".
- 3: The LCD drive level during non-lit display period is determined by NDL setting.

COL: When COL = 1, 62 grayscale amplifiers other than V0 and V63 halt to display using less power. When setting 8-color display mode, follow the sequence of 8-color display mode setting.

Table 5

COL	Operating amplifier	Display color
0	32	262,144
1	2	8

Note: When COL = 1, do not write the data corresponding to the grayscales, for which the operation of amplifier is halted.

GON, DTE: The combination of GON and DTE settings set the output level form gate lines (G1 ~ G320). When GON = 0, the VCOM output level becomes the GND level.

Table 6

APE	GON	DTE	G1~G320
0	*	*	VGL (= GND)
	0	0	VGH
1	0	1	VGH
	1	0	VGL
	1	1	VGH/VGL

VON: Controls VCOMH, VCOML, VCOM amplitude signal output.

Table 7

APE	AP[1:0]	VON	VCOM output
0	*	*	GND
	0	0	GND
1	0	1	Setting disabled
•	1 ~ 3	0	GND
	1~3	1	VCOMH/VCOML

BASEE: Base image display enable bit.

BASEE = 0: No base image is displayed. The UC8230s drives liquid crystal with non-lit display level or drives only partial image display areas.

BASEE = 1: A base image is displayed on the screen.

The D[1:0] setting has precedence over the BASEE setting.

PTDE[1:0]: PTDE[0] is the display enable bit of partial image 1. PTDE[1] is the display enable bit of partial image 2. When PTDE1/0 = 0, the partial image is turned off and only base image is displayed on the screen. When PTDE1/0 = 1, the partial image is displayed on the screen. In this case, turn off the base image by setting BASEE = 0.

(10) DISPLAY CONTROL 2 (R08H)

W/R	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1	0	0	0	0		FP[3:0]		0	0	0	0		BP[3:0]	

FP [3:0]: Sets the number of lines for a front porch period (a blank period following the end of display).BP [3:0]: Sets the number of lines for a back porch period (a blank period made before the beginning of display).

In external display interface operation, a back porch (BP) period starts on the falling edge of the VSYNC signal and the display operation starts after the back porch period. A blank period will start after a front porch (FP) period and it will continue until next VSYNC input is detected.

Note to Setting BP and FP: Set the BP and FP bits as follows in respective operation modes.

Table 8 BP and FP Settings

3				
Internal clock operation mode	BP ≥ 2 lines	FP ≥ 2 lines	FP + BP ≤ 16 lines	
RGB interface operation	BP ≥ 2 lines	FP ≥ 2 lines	FP + BP ≤ 16 lines	
VSYNC interface operation	BP ≥ 2 lines	FP ≥ 2 lines	FP + BP = 16 lines	

Table 9 Front and Back Porch period (Line periods)

FP[3:0] BP[3:0]	Front and Back Porch period (Line periods)
4'h0	Setting inhibited
4'h1	Setting inhibited
4'h2	2 lines
4'h3	3 lines
4'h4	4 lines
4'h5	5 lines
4'h6	6 lines
4'h7	7 lines
4'h8	8 lines
4'h9	9 lines
4'hA	10 lines
4'hB	11 lines
4'hC	12 lines
4'hD	13 lines
4'hE	14 lines
4'hF	Setting inhibited

Note: The output timing to the LCD panel is delayed by two line periods from the synchronous signal (VSYNC) input timing.

Figure 3 Front and Back Porch periods

(11) DISPLAY CONTROL 3 (R09H)

W/R	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1	0	0	0	0	0	0	PTS	[1:0]	0	0	PTG	[1:0]		ISC[[3:0]	

ISC [3:0]: Set the scan cycle when PTG[1:0] selects interval scan in non-display area drive period. The scan cycle is defined by n frame periods, where n is an odd number from 3 to 31. The polarity of liquid crystal drive voltage from the gate driver is inverted in the same timing as the interval scan cycle.

Table 10

ISC[3:0]	Scan cycle	Time for interval when (fFLM) = 60Hz	ISC[3:0]	Scan cycle	Time for interval when (fFLM) = 60Hz
4'h0	Setting disabled	-	4'h8	17 frames	284mS
4'h1	3 frames	50mS	4'h9	19 frames	317mS
4'h2	5 frames	84mS	4'hA	21 frames	351mS
4'h3	7 frames	117mS	4'hB	23 frames	384mS
4'h4	9 frames	150mS	4'hC	25 frames	418mS
4'h5	11 frames	184mS	4'hD	27 frames	451mS
4'h6	13 frames	217mS	4'hE	29 frames	484mS
4'h7	15 frames	251mS	4'hF	31 frames	518mS

PTG[1:0]: Sets the scan mode in non-display area. The scan mode selected by PTG[1:0] bits is applied in the non-display area when the base image is turned off and the non-display area other than the first and second partial display areas.

Table 11

PTG[1]	PTG[0]	Scan mode in non-display area	Source output level in non-display area	VCOM output
0	0	Normal scan	PTS[2:0] setting	VCOMH/VCOML amplitude
0	1	Setting disabled	-	•
1	0	Interval scan	PTS[2:0] setting	VCOMH/VCOML amplitude
1	1	Setting disabled	-	-

Note: Select frame-inversion AC drive when interval scan is selected.

PTS[2:0]: Sets the source output level in non-display area drive period. When PTS[2] = 1, the operation of amplifiers which generates the grayscales other than V0 and V63 are halted and the step-up clock frequency becomes half the normal frequency in non-display drive period in order to reduce power consumption.

Table 12 Source output level and voltage generating operation in non-display drive period

PTS[2:0]	Source output le	evel	Grayscale amplifier	Step-up clock frequency
1 10[2.0]	Pos. polarity	Neg. polarity	in operation	Step-up clock frequency
3'h0	V63	V0	V0 to V63	Register setting (DC0, DC1)
3'h1	Setting inhibited	Setting inhibited	-	-
3'h2	GND	GND	V0 to V63	Register setting (DC0, DC1)
3'h3	Hi-Z	Hi-Z	V0 to V63	Register setting (DC0, DC1)
3'h4	V63	V0	V0 and V63	1/2 the frequency set by DC0, DC1
3'h5	Setting inhibited	Setting inhibited	-	-
3'h6	GND	GND	V0 and V63	1/2 the frequency set by DC0, DC1
3'h7	Hi-Z	Hi-Z	V0 and V63	1/2 the frequency set by DC0, DC1

Notes: 1. The power efficiency improved by halting grayscale amplifiers and slowing down the step-up clock frequency can be obtained in non-display drive period.

2. The gate output level in non-display drive period is controlled by the PTG setting (off-scan mode).

(12) DISPLAY CONTROL 4 (ROAH)

W/R	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1	0	0	0	0	0	0	0	0	0	0	0	0	FMAR KOE		FMI[2:0]	

FMI[2:0]: Sets the output interval of FMARK signal according to the display data rewrite cycle and data transfer rate.

Table 13

FMI[2]	FMI[1]	FMI[0]	Output interval
0	0	0	1 frame
0	0	1	2 frames
0	1	1	4 frames
1	0	1	6 frames
Other so	ettinas		Setting disabled

FMARKOE: When FMARKOE = 1, the UC8230s starts outputting FMARK signal from the FMARK pin in the output interval set by FMI[2:0] bits.

(13) EXTERNAL DISPLAY INTERFACE CONTROL 1 (R0CH)

W/R	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1	0	E	ENC[2:0]	0	0	0	RM	0	0	DM[[1:0]	0	0	RIM	[1:0]

RIM[1:0]: Sets the interface format when RGB interface is selected by RM and DM bits. Set RIM[1:0] bits before starting display operation via RGB interface. Do not change the setting while the UC8230s performs display operation.

Table 14 RGB interface operation

RIM[1:0]	RGB Interface operation	Colors
2'h0	18-bit RGB interface (1 transfer/pixel) via DB17-0	262,144
2'h1	16-bit RGB interface (1 transfer/pixel) via DB17-13 and DB11-1	65,536
2'h2	6-bit RGB interface (3 transfers/pixel) via DB17-12	262,144
2'h3	Setting inhibited	

Notes: 1: Instruction bits are set via system interface.

2: Transfer the RGB dot data one by one in synchronization with DOTCLK in 6-bit RGB interface operation.

DM[1:0]: Selects the interface for the display operation. The DM[1:0] setting allows switching between internal clock operation mode and external display interface operation mode. However, switching between the RGB interface operation mode and the VSYNC interface operation mode is prohibited.

Table 15 Display Interface

DM[1:0]	Display Interface
2'h0	Internal clock operations
2'h1	RGB interface
2'h2	VSYNC interface
2'h3	Setting inhibited

RM: Selects the interface for RAM access operation. RAM access is possible only via the interface selected by the RM bit. Set RM = 1 when writing display data via RGB interface. When RM = 0, it is possible to write data via system interface while performing display operation via RGB interface.

Table 16 RAM Access Interface

RM	RAM Access Interface
0	System interface/VSYNC interface
1	RGB interface

ENC[2:0]: Sets the RAM write cycle via RGB interface.

Table 17 RAM Write Cycle

	· · · · y · · ·		
ENC[2:0]	RAM Write Cycle (frame periods)	ENC[2:0]	RAM Write Cycle (frame periods)
3'h0	1 frame	3'h4	5 frames
3'h1	2 frames	3'h5	6 frames
3'h2	3 frames	3'h6	7 frames
3'h3	4 frames	3'h7	8 frames

(14) FRAME MARKER CONTROL (RODH)

٧	V/R	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
	W	1	0	0	0	0	0	0	0				ı	-MP[8:0]			

FMP[8:0]: Sets the output position of frame cycle signal (frame marker). When FMP[8:0] = 9'h000, a high-active pulse FMARK is outputted at the start of back porch period for 1H period (IOVCC-IOGND amplitude signal). FMARK can be used as the trigger signal for frame synchronous write operation. See "FMARK" for details.

Make sure the setting restriction $9^{\circ}h000 \le FMP \le BP+NL+FP$.

Table 18

FMP[8:0]	FMARK output position
9' h000	0th line
9' h001	1st line
9' h002	2nd line
:	
9' h14E	334th line
9' h14F	335th line
9' h150~1FF	Setting disabled

(15) EXTERNAL DISPLAY INTERFACE CONTROL 2 (R0FH)

W/R	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1	0	0	0	0	0	0	0	0	0	0	0	VSPL	HSPL	0	EPL	DPL

DPL: Sets the signal polarity of DOTCLK pin.

DPL = 0: input data on the rising edge of DOTCLK

DPL = 1: input data on the falling edge of DOTCLK

EPL: Sets the signal polarity of ENABLE pin.

EPL = 0: writes data DB17-0 when ENABLE = "0" and

disables data write operation when ENABLE = "1".

EPL = 1: writes data DB17-0 when ENABLE = "1" and disables data write operation when ENABLE = "0".

HSPL: Sets the signal polarity of HSYNC pin.

HSPL = 0: low active HSPL = 1: high active

VSPL: Sets the signal polarity of VSYNC pin.

VSPL = 0: low active VSPL = 1: high active

W/R	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1	LVDT EN	0	0	SAP	0		BT[2:0]		APE	0	AP[1:0]		0	DSTB	SLP	0
W	1	0	0	0	0	0	0	0 DC1 [1:0]		0	0	DC0[1:0]		0	VC[2:0]		
W	1	P5VM D	0	0	0	0	PDC4	PDC2	PDC1	1	PON4	PON2	PON1	VRH[3:0]			
W	1	VCOM G	0			VDV	/[5:0]			0	0			VCM	/ [5:0]		

(16) POWER CONTROL 1~4 (R10H ~ R13H)

SLP: When SLP = 1, the UC8230s enters the sleep mode. In sleep mode, the internal display operation except RC oscillation is halted to reduce power consumption. No change to the GRAM data and instruction setting is accepted and he GRAM data and the instruction setting are maintained in sleep mode.

DSTB: When DSTB = 1, the UC8230s enters the deep standby mode. In deep standby mode, the internal logic power supply is turned off to reduce power consumption. The GRAM data and instruction setting are not maintained when the UC8230s enters the deep standby mode, and they must be reset after exiting deep standby mode.

AP[1:0]: Adjusts the constant current in the operational amplifier circuit in the LCD power supply circuit. The larger constant current enhances the drivability of the LCD, but it also increases the current consumption. Adjust the constant current taking the trade-off into account between the display quality and the current consumption. In no-display period, set AP1-0 = 2'h0 to halt the operational amplifier circuits and the step-up circuits to reduce current consumption.

Table 19 Constant current in amplifier in LCD power supply, grayscale voltage generating circuits

AP[1:0]	LCD power supply circuits	Grayscale voltage generating circuit
2'h0	Halt operation	Halt operation
2'h1	0.5	0.62
2'h2	0.75	0.71
2'h3	1	1

Note: In this table, the constant current in operational amplifiers is the ratio to the constant current when AP[1:0] is set to 2'h3.

APE: Liquid crystal power supply enable bit. Set APE = 1 and follow the sequence when starting up the liquid crystal power supply.

Table 20

APE	Liquid crystal power supply circuit	Grayscale voltage generating circuit
0	Halt	Halt
1	Operate	Operate

BT[3:0]: Sets the factor used in the step-up circuits. Select the optimal step-up factor for the operating voltage. To reduce power consumption, set a smaller factor.

BT	V _{D4} _pump	vcch_pump	vccl_pump
000	VD2 x 2	VD2 x 4	VD2 x (-3)
001	VD2 x 2	VD2 x 4	VD2 x (-4)
010	VD2 x 2	VD2 x 5	VD2 x (-3)
011	VD2 x 2	VD2 x 5	VD2 x (-4)
100	VD2 x 2	VD2 x 5	VD2 x (-5)
101	VD2 x 2	VD2 x 6	VD2 x (-3)
110	VD2 x 2	VD2 x 6	VD2 x (-4)
111	VD2 x 2	VD2 x 6	VD2 x (-5)

SAP: The grayscale voltage generating circuit is halted by setting SAP = 0. Grayscale voltages are generated when SAP = 1. When starting the operation of LCD power supply circuit in Power ON operation and so on, make sure SAP = 0. Set SAP = 1, after starting up the LCD power supply circuit. **LVDTEN:** "1" - Low-VCC detection control Enabled.

VC[2:0]:

VC	VD4	VD2	VSN
7	5.5V	2.75V	- 2.75V
6	5.4V	2.7V	-2.7V
5	5.3V	2.65V	-2.65V
4	5.2V	2.6V	-2.6V
3	5.1V	2.55V	-2.55V
2	5.0V	2.5V	-2.5V
1	4.9V	2.45V	-2.45V
0	4.8V	2.4V	-2.4V

DC0[1:0]:

Table 21 Step-up V_{D4} and VssN

DC0[1:0]	Frequency
3'h0	sclk/2
3'h1	sclk/4
3'h2	sclk/8
3'h3	sclk/16

DC1[1:0]:

Table 22 Step-up VccH and VccL

DC1[1:0]	Frequency
3'h0	sclk/16
3'h1	sclk/32
3'h2	sclk/64
3'h3	sclk/128

Note: set operation frequency of VccH_pump and VccL_pump

VRH[3:0]: Sets the factor to generate VREG1OUT from VCILVL.

VRH	VREG1 (V)
15	5.250
14	5.100
13	4.950
12	4.800
11	4.650
10	4.500
9	4.350
8	4.200
7	4.050
6	3.900
5	3.750
4	3.600
3	3.450
2	3.300
1	3.150
0	3.000

PON:

PON1=0: V_{D4}_pump OFF PON1=1: V_{D4}_pump ON

PON2=0 : V_{CCH} pump and V_{CCL} pump OFF PON2=1 : V_{CCH} pump and V_{CCL} pump ON

PON4=1: V_{SSN}_pump ON PON4=0: V_{SSN}_pump OFF

PDC:

PDC1=1 : discharge V_{D4}_pump PDC2=1 : discharge V_{CCH}_pump

PDC4=1 : discharge V_{SSN}_pump

P5VMD: P5V pump mode.

0 : Single mode 1 : Dual mode

VCM[5:0]: set VcomH voltage,

VCOMG: set VcomL voltage

0 : set VcomL to ground 1 : set VcomL to (VcomH – VcomA)

VDV[4:0]: set VcomA voltage (VcomA = VcomH-VcomL).

VCM:

VCM[5:0]	VCOMH	VCM[5:0]	VCOMH	VCM[5:0]	VCOMH	VCM[5:0]	VCOMH
0	2.500	16	3.300	32	4.100	48	4.900
1	2.550	17	3.350	33	4.150	49	4.950
2	2.600	18	3.400	34	4.200	50	5.000
3	2.650	19	3.450	35	4.250	51	5.050
4	2.700	20	3.500	36	4.300	52	5.100
5	2.750	21	3.550	37	4.350	53	5.150
6	2.800	22	3.600	38	4.400	54	5.200
7	2.850	23	3.650	39	4.450	55	5.250
8	2.900	24	3.700	40	4.500	56	5.250
9	2.950	25	3.750	41	4.550	57	5.250
10	3.000	26	3.800	42	4.600	58	5.250
11	3.050	27	3.850	43	4.650	59	5.250
12	3.100	28	3.900	44	4.700	60	5.250
13	3.150	29	3.950	45	4.750	61	5.250
14	3.200	30	4.000	46	4.800	62	5.250
15	3.250	31	4.050	47	4.850	63	5.250

Table 23 VDV Setting

VDV[5:0]	VCOMA	VDV[5:0]	VCOMA	VDV[5:0]	VCOMA	VDV[5:0]	VCOMA
0	4.000	16	4.800	32	5.600	48	6.000
1	4.050	17	4.850	33	5.650	49	6.000
2	4.100	18	4.900	34	5.700	50	6.000
3	4.150	19	4.950	35	5.750	51	6.000
4	4.200	20	5.000	36	5.800	52	6.000
5	4.250	21	5.050	37	5.850	53	6.000
6	4.300	22	5.100	38	5.900	54	6.000
7	4.350	23	5.150	39	5.950	55	6.000
8	4.400	24	5.200	40	6.000	56	6.000
9	4.450	25	5.250	41	6.000	57	6.000
10	4.500	26	5.300	42	6.000	58	6.000
11	4.550	27	5.350	43	6.000	59	6.000
12	4.600	28	5.400	44	6.000	60	6.000
13	4.650	29	5.450	45	6.000	61	6.000
14	4.700	30	5.500	46	6.000	62	6.000
15	4.750	31	5.550	47	6.000	63	6.000

Note: Set VDV[4:0] so that VCOM amplitude becomes 6.0V or less.

(17) SETTING DISABLE (R17H)

High-Voltage Mixed-Signal IC

W/R	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	PSE

PSE: Power supply startup enable bit.

- PSE = 1: The UC8230s' power supply is started by setting PON1, PON2, and PON4 when PSE =1. When completing the power supply generating operation, PSE is set to 0.
- PSE = 0: Power supply sequencer is reset. When halting the operating power supply sequencer, set PSE = 0. When starting up power supply without power supply sequencer, set PSE = 0. The power sequencer enables the register settings sequentially at the designated timing and order.

(18) RAM ADDRESS SET - HORIZONTAL (R20H)

(19) RAM ADDRESS SET - VERTICAL (R21H)

	W/R	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
	W	1	0	0	0	0	0	0	0	0	AD[7:0]							
Ī	W	1	0	0	0	0	0	0	0		AD[16:8]							

AD[16:0]: A GRAM address set initially in the AC (Address Counter). The address in the AC is automatically updated according to the combination of AM, I/D[1:0] settings as the UC8230s writes data to the internal GRAM so that data can be written consecutively without resetting the address in the AC. The address is not automatically updated when reading data from the internal GRAM.

- Note: 1. In RGB interface operation (RM = "1"), the address AD16-0 is set in the address counter every frame on the falling edge of VSYNC.
 - 2: In internal clock operation and VSYNC interface operation (RM = "0"), the address AD16-0 is set when executing the instruction.

Table 24 GRAM Address setting range

AD[16:0]	GRAM Data Setting
17'h00000 - 17'h000EF	Bitmap data on the first line
17'h00100 - 17'h001EF	Bitmap data on the second line
17'h00200 - 17'h002EF	Bitmap data on the third line
17'h00300 - 17'h003EF	Bitmap data on the fourth line
17'h00400 - 17'h004EF	Bitmap data on the fifth line
:	:
17'h13600 - 17'h13CEF	Bitmap data on the 317th line
17'h13700 - 17'h13DEF	Bitmap data on the 318th line
17'h13800 - 17'h13EEF	Bitmap data on the 319th line
17'h13900 - 17'h13FEF	Bitmap data on the 320th line

(20) RAM DATA WRITE/READ (R22H)

W/R	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1		WD[17:0]														
R	1	RD[17:0]															

WD[17:0]: The UC8230s develops data into 18 bits internally in write operation. The format to develop data into 18 bits is different in different interface operation.

The GRAM data represents the grayscale level. The UC8230s automatically updates the address according to AM and I/D[1:0] settings as it writes data in the GRAM. The DFM bit sets the format to develop 16-bit data into the 18-bit data in 16-bit or 8-bit interface operation.

18-bit Interface (262,144 Colors)

One Pixed

16-bit Interface (65,536 Colors)

One Pixed

9-bit Interface (262,144 Colors)

One Pixed

8-bit Interface (65,536 Colors) TRI=0

One Pixed

8-bit Interface (65,536 Colors) TRI=1

18-bit RGB Interface (262,144 Colors)

16-bit RGB Interface (65,536 Colors)

6-bit RGB Interface (262,144 Colors)

Note: When writing data in the GRAM via system interface while using the RGB interface, make sure that write operations via two interfaces do not conflict one another.

Table 25 Example of VREG1=5 Volt

	Grayscale									
Display Data	Negative	polarity	Positive Polarity							
	Formula	Effect. Volt.	Formula	Effect. Volt.						
0	V0	4.783	V63	0.652						
1	V1	4.212	V62	1.114						
2	V2	3.995	V61	1.352						
3	V3	3.850	V60	1.510						
4	V4	3.723	V59	1.649						
5	V5	3.614	V58	1.768						
6	V6	3.524	V57	1.867						
7	V7	3.433	V56	1.966						

	Grayscale									
Display	Negative	polarity	Positive Polarity							
Data	Formula	Effect. Volt.	Formula	Effect. Volt.						
32	V32	2.690	V31	2.717						
33	V33	2.663	V30	2.745						
34	V34	2.636	V29	2.772						
35	V35	2.609	V28	2.799						
36	V36	2.582	V27	2.826						
37	V37	2.554	V26	2.853						
38	V38	2.527	V25	2.880						
39	V39	2.500	V24	2.908						

	Grayscale	;					Grayscale					
Display	Negative	polarity	Positive Polarity			Display	Negative	polarity	Positive Polarity			
Data	Formula	Effect. Volt.	Formula	Effect. Volt.		Data	Formula	Effect. Volt.	Formula	Effect. Volt.		
8	V8	3.342	V55	2.065		40	V40	2.473	V23	2.935		
9	V9	3.315	V54	2.092		41	V41	2.446	V22	2.962		
10	V10	3.288	V53	2.120		42	V42	2.418	V21	2.989		
11	V11	3.261	V52	2.147		43	V43	2.391	V20	3.016		
12	V12	3.234	V51	2.174		44	V44	2.364	V19	3.043		
13	V13	3.207	V50	2.201		45	V45	2.337	V18	3.071		
14	V14	3.179	V49	2.228		46	V46	2.310	V17	3.098		
15	V15	3.152	V48	2.255		47	V47	2.283	V16	3.125		
16	V16	3.125	V47	2.283		48	V48	2.255	V15	3.152		
17	V17	3.098	V46	2.310		49	V49	2.228	V14	3.179		
18	V18	3.071	V45	2.337		50	V50	2.201	V13	3.207		
19	V19	3.043	V44	2.364		51	V51	2.174	V12	3.234		
20	V20	3.016	V43	2.391		52	V52	2.147	V11	3.261		
21	V21	2.989	V42	2.418		53	V53	2.120	V10	3.288		
22	V22	2.962	V41	2.446		54	V54	2.092	V9	3.315		
23	V23	2.935	V40	2.473		55	V55	2.065	V8	3.342		
24	V24	2.908	V39	2.500		56	V56	1.966	V7	3.433		
25	V25	2.880	V38	2.527		57	V57	1.867	V6	3.524		
26	V26	2.853	V37	2.554		58	V58	1.768	V5	3.614		
27	V27	2.826	V36	2.582		59	V59	1.649	V4	3.723		
28	V28	2.799	V35	2.609		60	V60	1.510	V3	3.850		
29	V29	2.772	V34	2.636		61	V61	1.352	V2	3.995		
30	V30	2.745	V33	2.663		62	V62	1.114	V1	4.212		
31	V31	2.717	V32	2.690		63	V63	0.652	V0	4.783		

RD [17:0]: Read 18-bit data from GRAM. The bit assignment for the data that are read out from GRAM is different according to the interface.

When data are read out from GRAM to the microcomputer, the first word read immediately after GRAM address set are latched in the internal read-data latch, and thereby the data in the data bus (DB17-0) are nullified. The second word is read as valid data. When the UC8230s performs an internal bit processing, such as logical operation, the data latched in the read-data latch are used to complete it by single read out operation. The data are expanded internally into 18 bits before going through the logical operation. When the 8-/16-bit interfaces are selected, GRAM data in the LSB of R and B pixels are not read out. This function is not available in the RGB interface mode.

18-bit Interface

16-bit Interface

9-bit Interface

8-bit Interface / SPI

Read data from GRAM

Figure 4. GRAM read sequence

(21) GAMMA CONTROL 1~10 (R30H~R3DH)

W/R	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1	0	0	0	0	0	I	PKN1[2:0]	0	0	0	0	0		PKN0[2:0]
W	1	0	0	0	0	0	ı	PKN3[2:0]	0	0	0	0	0		PKN2[2:0]
W	1	0	0	0	0	0		PKN5[2:0]	0	0	0	0	0		PKN4[2:0]
W	1	0	0	0	0	0	0	PFP'	1[1:0]	0	0	0	0	0	0	0	0
W	1	0	0	0	0	0	0	0 0 0			0	0	0	0	0	PFP2	2[1:0]
W	1	0	0	0	0	0	ı	PRP1[2:0]	0	0	0	0	0		PRP0[2:0]
W	1	0	0	0		,	VRP1[4:0]		0	0	0		,	VRP0[4:0)]	
W	1	0	0	0	0	0	!	PKP1[2:0]	0	0	0	0	0		PKP0[2:0	
W	1	0	0	0	0	0		PKP3[2:0]	0	0	0	0	0		PKP2[2:0	
W	1	0	0	0	0	0	!	PKP5[2:0]	0	0	0	0	0		PKP4[2:0	
W	1	0	0	0	0	0	0	PFN ²	1[1:0]	0	0	0	0	0	0	0	0
W	1	0	0	0	0	0	0 0 0			0	0	0	0	0	0	PFN2	2[1:0]
W	1	0	0	0	0	0		PRN1[2:0]	0	0	0	0	0		PRN0[2:0]
W	1	0	0	0		,	VRN1[4:0]		0	0	0		,	VRN0[4:0)]	

PKP0 fine-tune V1

PKP1 fine-tune V6, V8, V10 or V12 depending on PFP1

PKP2 fine-tune V20

PKP3 fine-tune V43

PKP4 fine-tune V57, V55, V53 or V51 depending on PFP2

PKP5 fine-tune V55

PFP1 Specify PKP1 graylevel ('b00 : V6, 'b01:V8, 'b10 : V10, 'b11 : V12)
PFP2 Specify PKP4 graylevel ('b00 : V57, 'b01 : V55, 'b10 : V53, 'b11 : V51)

PRP0 Gradient adjustment: V8 Variable resistance
PRP1 Gradient adjustment: V55 Variable resistance
VRP0 Amplitude adjustment: V0 Variable resistance
VRP1 Amplitude adjustment: V63 Variable resistance

PKN0 fine-tune V1

PKN1 fine-tune V6,V8, V10 or V12 depending on PFN1

PKN2 fine-tune V20

PKN3 fine-tune V43

PKN4 fine-tune V57, V55, V53 or V51 depending on PFN2

PKN5 fine-tune V55

PFN1 Specify PKN1 graylevel ('b00 : V6, 'b01 : V8, 'b10 : V10, 'b11 : V12)
PFN2 Specify PKN4 graylevel ('b00 : V57, 'b01 : V55, 'b10 : V53, 'b11 : V51)

PRN0 Gradient adjustment: V8 Variable resistance
PRN1 Gradient adjustment: V55 Variable resistance
VRN0 Amplitude adjustment: V0 Variable resistance
VRN1 Amplitude adjustment: V63 Variable resistance

(22) CHECKSUM CONTROL (R41H)

(23) IR CHECKSUM (R42H)

High-Voltage Mixed-Signal IC

(24) DT CHECKSUM (R43H)

W/R	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0			
W	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DAE	IRE			
W	1	0	0	0	0	0	0	0	0	IRCK[7:0]										
W	1		DACK[15:0]																	

IRE: Enable of the checksum engine for the Index

0 = off, checksum engine disabled.

1 = on, enable the checksum.

DAE: Enable of the checksum engine for the register content

0 = off, checksum engine disabled.

1 = on, enable the checksum.

IRCK: Checksum for the IR index

IRCK_new = IR XOR IRCK_old

This register is read-only for host and will be self cleared after read by user.

DACK: Checksum for the Register content write

DTCK_new = (Register Content Write) XOR DTCK_old

This register is read-only for host and will be self cleared after read by user.

- (25) WINDOWS HORIZONTAL START ADDRESS (R50H)
- (26) WINDOWS HORIZONTAL END ADDRESS (R51H)
- (27) WINDOWS VERTICAL START ADDRESS (R52H)
- (28) WINDOWS VERTICAL END ADDRESS (R53H)

W/R	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0		
W	1	0	0	0	0	0	0	0	0				HSA	[7:0]					
W	1	0	0	0	0	0	0	0	0	HEA[7:0]									
W	1	0	0	0	0	0	0	0		VSA[8:0]									
W	1	0	0	0	0	0	0	0	VEA[8:0]										

HSA[7:0], **HEA[7:0]**: HSA[7:0] and HEA[7:0] are the start and end addresses of the window address area in horizontal direction, respectively. HSA[7:0] and HEA[7:0] specify the horizontal range to write data.

Set HSA[7:0] and HEA[7:0] before starting RAM write operation. In setting, make sure that $8'h00 \le HAS < HEA \le 8'hEF$ and $8'h04 \le HEA - HSA$.

VSA[8:0], **VEA[8:0]**: VSA[8:0] and VEA[8:0] are the start and end addresses of the window address area in vertical direction, respectively. VSA[8:0] and VEA[8:0] specify the vertical range to write data. Set VSA[8:0] and VEA[8:0] before starting RAM write operation. In setting, make sure that $9^{\circ}h000 \le VSA < VEA \le 9^{\circ}h13F$.

Window address setting range: 00H \leq HAS[7:0] \leq HEA[7:0] \leq EFH 00H \leq VAS[8:0] \leq VEA[8:0] \leq 13FH

Figure 5 GRAM Address Map and Window Address Area

(29) DRIVER OUTPUT CONTROL (R60H)

W/R	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1	GS	0			NL[5:0]			0	0			SCN	[5:0]		

SCN[5:0]: Specifies the gate line where the gate driver starts scan.

NL[5:0]: Sets the number of lines to drive the LCD at an interval of 8 lines. The GRAM address mapping is not affected by the number of lines set by NL[5:0]. The number of lines must be the same or more than the number of lines necessary for the size of the liquid crystal panel.

GS: Sets the direction of scan by the gate driver. Set GS bit in combination with SM and SS bits for the convenience of the display module configuration and the display direction.

(30) BASE IMAGE DISPLAY CONTROL (R61H)

W/R	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1	0	0	0	0	0	0	0	0	0	0	0	0	0	NDL	VLE	REV

REV: Enables the grayscale inversion of the image by setting REV = 1. This enables the UC8230s to display the same image from the same set of data whether the liquid crystal panel is normally black or white. The source output level during front, back porch periods and blank periods is determined by register setting (PTS).

Table 26 GRAM Data-grayscale level inversion

REV	GRAM Data	Source Output Level in	Display Area
		Positive Polarity	Negative Polarity
0	18'h00000	V63	V0
	:	:	:
	18'h3FFFFF	V0	V63
1	18'h00000	V0	V63
	:	;	;
	18'h3FFFFF	V63	V0

VLE: Vertical scroll display enable bit. When VLE = 1, the UC8230s starts displaying the base image from the line (of the physical display) determined by VL[8:0] bits. VL[8:0] sets the amount of scrolling, which is the number of lines to shift the start line of the display from the first line of the physical display.

Note that the partial image display position is not affected by the base image scrolling.

The vertical scrolling is not available in external display interface operation. In this case, make sure to set VLE = "0".

Table 27

VLE	Base image
0	Fixed
1	Enable scrolling

NDL: Sets the source output level in non-lit display area. NDL bit can keep the non-display area lit on.

Table 28

NDI	Non-disp	lay area
NDL	Positive	Negative
0	V63	V0
1	V0	V63

(31) VERTICAL SCROLL CONTROL (R6AH)

W/R	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1	0	0	0	0	0	0	0					VL[8:0]				

VL[8:0]: Sets the amount of scrolling of the base image. The base image is scrolled in vertical direction and displayed from the line which is determined by VL[8:0]. Make sure $VL[8:0] \le 320$.

Table 29

NL[5:0]	Number of Lines	NL[5:0]	Number of Lines	NL[5:0]	Number of Lines
6'h00	Setting inhibited	6'h0E	Setting inhibited	6'h1C	Setting inhibited
6'h01	Setting inhibited	6'h0F	Setting inhibited	6'h1D	240 (lines)
6'h02	Setting inhibited	6'h10	Setting inhibited	6'h1E	248
6'h03	Setting inhibited	6'h11	Setting inhibited	6'h1F	256
6'h04	Setting inhibited	6'h12	Setting inhibited	6'h20	264
6'h05	Setting inhibited	6'h13	Setting inhibited	6'h21	272
6'h06	Setting inhibited	6'h14	Setting inhibited	6'h22	280
6'h07	Setting inhibited	6'h15	176 lines	6'h23	288
6'h08	Setting inhibited	6'h16	Setting inhibited	6'h24	296
6'h09	Setting inhibited	6'h17	Setting inhibited	6'h25	304
6'h0A	Setting inhibited	6'h18	Setting inhibited	6'h26	312
6'h0B	Setting inhibited	6'h19	Setting inhibited	6'h27	320
6'h0C	Setting inhibited	6'h1A	Setting inhibited	6'h28-6'h3F	Setting inhibited
6'h0D	Setting inhibited	6'h1B	Setting inhibited		

Table 30

2011	Gate Li		·· \ 0		2011	Gate Lir		١.٥	
SCN	_ `	start posi	tion) See	e note.	SCN	-	art positio		ite.
[5:0]	SM=0		SM=1		[5:0]	SM=0		SM=1	
	GS=0	GS=1	GS=0	GS=1		GS=0	GS=1	GS=0	GS=1
6'h00	G1	G320	G1	G320	6'h15	G169	G152	G18	G303
6'h01	G9	G312	G17	G304	6'h16	G177	G144	G34	G287
6'h02	G17	G304	G33	G288	6'h17	G185	G136	G50	G271
6'h03	G25	G296	G49	G272	6'h18	G193	G128	G66	G255
6'h04	G33	G288	G65	G256	6'h19	G201	G120	G82	G239
6'h05	G41	G280	G81	G240	6'h1A	G209	G112	G98	G223
6'h06	G49	G272	G97	G224	6'h1B	G217	G104	G114	G207
6'h07	G57	G264	G113	G208	6'h1C	G225	G96	G130	G191
6'h08	G65	G256	G129	G192	6'h1D	G233	G88	G146	G175
6'h09	G73	G248	G145	G176	6'h1E	G241	G80	G162	G159
6'h0A	G81	G240	G161	G160	6'h1F	G249	G72	G178	G143
6'h0B	G89	G232	G177	G144	6'h20	G257	G64	G194	G127
6'h0C	G97	G224	G193	G128	6'h21	G265	G56	G210	G111
6'h0D	G105	G216	G209	G112	6'h22	G273	G48	G226	G95
6'h0E	G113	G208	G225	G96	6'h23	G281	G40	G242	G79
6'h0F	G121	G200	G241	G80	6'h24	G289	G32	G258	G63
6'h10	G129	G192	G257	G64	6'h25	G297	G24	G274	G47
6'h11	G137	G184	G273	G48	6'h26	G305	G16	G290	G31
6'h12	G145	G176	G289	G32	6'h27	G313	G8	G306	G15
6'h13	G153	G168	G305	G16	6'h28-	Setting	Setting	Setting	Setting
6'h14	G161	G160	G2	G319	6'h3F	disabled	disabled	disabled	disabled

Note: Make sure that number of scan start position + number of scan end position is 320 lines or less.

(32) PARTIAL IMAGE 1 DISPLAY POSITION (R80H)

W/R	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1	0	0	0	0	0	0	0				P.	TDP0[8:	0]			

PTDP0[8:0]: Sets the display position of partial image 1. PTDP1[8:0]: Sets the display position of partial image 2.

The display areas of the partial images 1 and 2 must not overlap each another. In setting, make sure that Partial image 1 display area < Partial image 2 display area, and

Coordinates of partial image 1 display position: (PTDP0, PTDP0 + (PTEA0 - PTSA0)) Coordinates of partial image 2 display position: (PTDP1, PTDP1 + (PTEA1 – PTSA1))

If PTDP0 = "9'h000", the partial image 1 is displayed from the first line of the base image.

PTSA0[8:0] and PTEA0[8:0]: Sets the start line and end line addresses of the RAM area, respectively for the partial image 1. In setting, make sure that PTSA0 ≤ PTEA0.

PTSA1[8:0] and PTEA1[8:0]: Sets the start line and end line addresses of the RAM area, respectively for the partial image 2. In setting, make sure that PTSA1 ≤ PTEA1.

(33) PARTIAL IMAGE 1 START RAM ADDRESS (R81H)

(34) Partial Image 1 End RAM Address (R82h)

W/R	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1	0	0	0	0	0	0	0	PTSA0[8:0]								
W	1	0	0	0	0	0	0	0	PTEA0[8:0]								

(35) PARTIAL IMAGE 2 DISPLAY POSITION (R83H)

	W/R	RS	D15	D14	D13	D12	D11	D10	D9	D8 D7	D6	D5	D4	D3	D2	D1	D0
Ī	W	1	0	0	0	0	0	0	0			P	TDP1[8:	0]			

(36) Partial Image 2 Start RAM Address (R84H)

(37) PARTIAL IMAGE 2 END RAM ADDRESS (R85H)

W/R	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1	0	0	0	0	0	0	0				P	TSA1[8:	0]			
W	1	0	0	0	0	0	0	0				Р	TEA1[8:	0]			

W/R	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1	0	0	0	0	FSEL	0	DIVI	[1:0]	0	0	0			RTNI[4:0]]	
W	1	0	0	0	0	0	N	IOWI[2:0	0]	0	0	0	0	0	0	0	0
W	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	MCPI[2:0]
W	1	0	0	0	0	0	0	DIVE	[1:0]	0	0			RTN	E[5:0]		
W	1	0	0	0	0		NOW	E[3:0]		0	0	0	0	0	0	0	0
W	1	0	0	0	0	0	0	0	0	0	0	0	0	0	N	MCPE[2:0)]

(38) PANEL INTERFACE CONTROL 1 ~ 6 (R90H, R92H, R93H, R95, R97H, R98H)

RTNI[4:0]: Sets 1H (line) period. This setting is enabled while the UC8230s' display operation is synchronized with internal clock.

DIVI[1:0]: Sets the division ratio of the internal clock frequency. The UC8230s' internal operation is synchronized with the frequency divided internal clock. When DIVI[1:0] setting is changed, the width of the reference clock for liquid crystal panel control signals is changed.

The frame frequency can be adjusted by register setting (RTNI and DIVI bits). When changing the number of lines to drive the liquid crystal panel, adjust the frame frequency too. For details, see "Frame-Frequency Adjustment Function". The setting in DIVI[1:0] is disabled in RGB interface operation.

Frame Frequency Calculation

Frame frequency =
$$\frac{fosc}{Clocks per line x division ratio x (line + BP + FP)}$$
 [Hz]

where, fosc: RC oscillation frequency

Line: Number of lines to drive the LCD (NL bits)

Division ratio: DIVI Clocks per line: RTNI

Table 31 clocks per line (internal clock operation: 1 clock = 1 OSC)

RTNI[4:0]	Clocks per Line	RTNI[4:0]	Clocks per Line	RTNI[4:0]	Clocks per Line
5'h00-5'h0F	Setting inhibited	5'h15	21 clocks	5'h1B	27 clocks
5'h10	16 clocks	5'h16	22 clocks	5'h1C	28 clocks
5'h11	17 clocks	5'h17	23 clocks	5'h1D	29 clocks
5'h12	18 clocks	5'h18	24 clocks	5'h1E	30 clocks
5'h13	19 clocks	5'h19	25 clocks	5'h1F	31 clocks
5'h11	20 clocks	5'h1Δ	26 clocks		

Table 32 Division ratio of the internal clock

DIVI[1:0]	Division Ratio	Internal operation clock unit
2'h0	1/1	1 OSC
2'h1	1/2	2 OSC
2'h2	1/4	4 OSC
2'h3	1/8	8 OSC

FSEL: Sets OSC Frequency.

0 : OSC = 376 kHz

1: OSC = 600 kHz

NOWI[2:0]: Sets the non-overlap period of adjacent gate outputs. The setting is enabled in display operation synchronizing with the internal clock.

Table 33

NOWI[2:0]	Non-overlap period	NOWI[2:0]	Non-overlap period
3'h0	0 (internal clock *see note)	3'h4	4 (internal clock *see note)
3'h1	1	3'h5	5
3'h2	2	3'h6	6
3'h3	3	3'h7	7

Note: The internal clock is the frequency divided clock, which is set by DIVI[[1:0] bits.

MCPI[2:0]: Sets the source output timing by the number of internal clock from the reference point. The setting is enabled in display operation synchronizing with the internal clock.

Table 34

MCPI[2:0]	Source output position	MCPI[2:0]	Source output position
3'h0	0 (internal clock *see note)	3'h4	4 (internal clock)
3'h1	1	3'h5	5
3'h2	2	3'h6	6
3'h3	3	3'h7	7

Note: The internal clock is the frequency divided clock, which is set by DIVI[[1:0] bits. The source output position is measured from the reference point by the number of internal clock cycle.

RTNE[5:0]: Sets RTNE[5:0] and DIVE[1:0] bits so that the number of DOTCLK calculated from the following formula becomes the number of DOTCLK which should be inputted in 1H period. The RTNE[5:0] setting is enabled in display operation via RGB interface.

DIVE[1:0] (division ratio) x RTNE[5:0] (Number of DOTCLK) ≤ Number of DOTCLK in 1H period

DIVE[1:0]: Sets the division ratio of DOTCLK frequency. The R61505U's internal operation is synchronized with the frequency divided DOTCLK. The setting in DIVE[1:0] is enabled in RGB interface operation.

Table 35 Division ratio of DOTCLK

DIVE	D D .:	Internal operation clock unit (DOTCLK)							
[1:0]	Division Ratio	18-bit, 1 transfer RGB interface	DOTCLK = 5 MHz	8-bit, 3 transfers RGB interface	DOTCLK = 15 MHz				
2'h0	Setting disabled	Setting disabled	-	Setting disabled	-				
2'h1	1/4	4 DOTCLKs	0.8µs	12 DOTCLKs	0.8µs				
2'h2	1/8	8 DOTCLKs	1.6µs	24 DOTCLKs	1.6µs				
2'h3	1/16	16 DOTCLKs	3.2µs	48 DOTCLKs	3.2µs				

Table 36 DOTCLK per line (1H period)

RTNE[5:0]	DOTCLK per line (1H)	RTNE[5:0]	DOTCLK per line (1H)
6'h00	Setting disabled	6'h20	32 clocks
6'h01	Setting disabled	6'h21	33 clocks
6'h02	Setting disabled	6'h22	34 clocks
6'h03	Setting disabled	6'h23	35 clocks
6'h04	Setting disabled	6'h24	36 clocks
6'h05	Setting disabled	6'h25	37 clocks
6'h06	Setting disabled	6'h26	38 clocks
6'h07	Setting disabled	6'h27	39 clocks
6'h08	Setting disabled	6'h28	40 clocks
6'h09	Setting disabled	6'h29	41 clocks
6'h0A	Setting disabled	6'h2A	42 clocks
6'h0B	Setting disabled	6'h2B	43 clocks
6'h0C	Setting disabled	6'h2C	44 clocks
6'h0D	Setting disabled	6'h2D	45 clocks
6'h0E	Setting disabled	6'h2E	46 clocks
6'h0F	Setting disabled	6'h2F	47 clocks
6'h10	16 clocks	6'h30	48 clocks
6'h11	17 clocks	6'h31	49 clocks
6'h12	18 clocks	6'h32	50 clocks
6'h13	19 clocks	6'h33	51 clocks
6'h14	20 clocks	6'h34	52 clocks
6'h15	21 clocks	6'h35	53 clocks
6'h16	22 clocks	6'h36	54 clocks
6'h17	23 clocks	6'h37	55 clocks
6'h18	24 clocks	6'h38	56 clocks
6'h19	25 clocks	6'h39	57 clocks
6'h1A	26 clocks	6'h3A	58 clocks
6'h1B	27 clocks	6'h3B	59 clocks
6'h1C	28 clocks	6'h3C	60 clocks
6'h1D	29 clocks	6'h3D	61 clocks
6'h1E	30 clocks	6'h3E	62 clocks
6'h1F	31 clocks	6'h3F	63 clocks

NOWE[3:0]: Sets the non-overlap period of adjacent gate outputs. The setting is enabled in display operation via RGB interface.

Table 37

NOWE[3:0]	Non-overlap period	NOWE[3:0]	Non-overlap period
4'h0	0 (clock *see note)	4'h8	8 (clocks *see note)
4'h1	1	4'h9	9
4'h2	2	4'hA	10
4'h3	3	4'hB	11
4'h4	4	4'hC	12
4'h5	5	4'hD	13
4'h6	6	4'hE	14
4'h7	7	4'hF	15

Note: 1 clock = (Number of data transfers/pixel) x DIVE (division ratio) [DOTCLK].

MCPE[2:0]: Sets the source output timing by the number of internal clock from the reference point. The setting is enabled in display operation via RGB interface.

Table 38

MCPE[2:0]	Source output position	MCPE[2:0]	Source output position
3'h0	Setting Disabled	3'h4	4 (clocks *see note)
3'h1	1 clock	3'h5	5
3'h2	2	3'h6	6
3'h3	3	3'h7	7

Note: 1 clock = (Number of data transfers/pixel) x DIVE (division ratio) [DOTCLK].

- (39) MTP REGISTER (R46H)
- (40) MTP TIMER (RC9H)
- (41) MTP CELL (RCAH)

W/R	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1	_	_	-	-	_	_	_	MATC H	_	_	MP1	MP0	-	_	MTP ign	MTP_E N
W	1	WR TIMER	RD TIMER	RD TIMER	RD TIMER	RD TIMER	RD TIMER	RD TIMER	RD	RD TIMER							
W	1	MTP ID1	MTP ID0	MVDV 5	MVDV 4	MVDV 3	MVDV 2	MVDV 1	MVDV 0	_	ı	MVCM 5	MVCM 4	MVCM 3	MVCM 2	MVCM 1	MVCM 0

MTP_EN: MTP Write Control

0 : Data-write End 1 : Data-write Start

MTPign

0 : Disable MTP Function 1 : Enable MTP Function

MP [1:0]: will be cleared to 0 by the display driver after MTP operation

00 : Halt01 : Data write10 : Erase data11 : Read MTP Cell

MATCH

0 : Read-out data do not match Program data 1 : Read-out data match Program data

RD_TIMER: Set MTP Read timing WR_TIMER: Set MTP write timing

MVCM [5:0] : Set VCM MVDV [5:0] : Set VDV MTPID [1:0] : Set MTP ID

HI-V GENERATOR AND BIAS REFERENCE CIRCUIT

FIGURE 6: Sample circuit using internal Hi-V generator circuit

Note:

Sample component values: (The illustrated circuit and component values are for reference only. Please optimize for specific requirements of each application.)

1 μ F/25V : CVD1, CVD2, C11, C21, C21, C22, C13, CVD4, CVSSN, CVCCL, CVCCH, CVOMH, CVOMH, CVREG1

Schottky diode (VF<0.4V/20mA at 25℃, VR ≥30V) : D1, D2

INTERFACES

INTERFACE SPECIFICATION

High-Voltage Mixed-Signal IC

The UC8230s incorporates a system interface, which is used to set instructions, and an external display interface, which is used to display motion pictures. Selecting these interfaces to match the screen data (motion picture or still picture) enables efficient transfer of data for display.

The external display interface includes RGB interface and VSYNC interface. This allows flickerfree screen update.

When RGB interface is selected, the synchronization signals (VSYNC, HSYNC, and DOTCLK) are available for use in operating the display. The data for display (DB17-0) is written according to the values of the data enable signal (ENABLE) and data valid signal (VLD), in synchronization with the VSYNC, HSYNC, and DOTCLK signals. In addition, using the window address function enables rewriting only to the internal RAM area to display motion pictures. Using this function also enables simultaneously display of the motion picture area and the RAM data that was written.

While displaying motion pictures, the data for display should be written in high-speed write mode, which achieves both low power consumption and high-speed access via RGB interface or VSYNC interface

The internal display operation is synchronized with the frame synchronization signal (VSYNC) in VSYNC interface mode. When writing to the internal RAM is done within the required time after the falling edge of VSYNC, motion pictures can be displayed via the conventional interface. There are some limitations on the timing and methods of writing to RAM. See the section on the external display interface.

The UC8230s has four operation modes for each display state. These settings are specified by control instructions for external display interface. Transitions between modes should follow the transition flow.

RAM Access Selection and Display Operation Mode

Operation Mode	RAM Access Selection (RM)	Display Operation Mode (DM1-0)				
Internal Clock Operation (Displaying still picture)	System interface (RM=0)	internal clock operation (DM1-0=00)				
RGB interface(1) - (Display motion picture)	RGB interface (RM=1)	RGB interface (DM1-0=01)				
RGB interface(2) - (Rewriting still picture while display motion picture)	System interface (RM=0)	RGB interface (DM1-0=01)				
VSYNC interface (Displaying motion pictures)	System interface (RM=0)	VSYNC interface (DM1-0=10)				

Note: 1) Set instruction registers only via system interface.

- 2) Do not use RGB interface and VSYNC interface at the same time.
- 3) Do not set RGB interface mode during operation.
- 4) For mode transitions, see the section on the external display interface.

HOST INTERFACE

As summarized in the table below, UC8230s supports two parallel bus protocols, in any of 18/16/9/8-bit bus width, and bus protocols.

Designers can either use parallel buses to achieve high data transfer rate, or use serial buses to create compact LCD modules.

			Bus Type												
		8080													
	Width	18-bit	16-bit	9-bit	8-bit	Serial									
A															
"	IM[3:0]	1010	0010	1011	0011	010[ID]									
Pins	CS			Chip Select											
Data	RS			Index / Register											
∞ర	WR0	WR -													
Control	WR1	VR1 RD													
	DATA	DB[17:0]	DB[17:10], [8:1]	DB[17:9]	DB[17:10]	SDI, SDO									

^{*} Connect unused control pins and data bus pins to V_{D1} or V_{SS}

Table 39: Host interfaces Summary

High-Voltage Mixed-Signal IC ©1999 ~ 2009

Parallel Interface

8080 18-BIT BUS INTERFACE

Setting the IM3/2/1/0 to the IOV_{CC}/GND/IOV_{CC}/GND level allows 80-system 18-bit parallel data transfer.

Instruction format for 18-bit

RAM Data Write format for 18-bit interface

8080 16-BIT BUS INTERFACE

Setting the IM3/2/1/0 to the $V_{SS}/V_{SS}/IOV_{CC}/V_{SS}$ level allows 80-system 16-bit parallel data transfer.

Instruction format for 16-bit

Figure 7. RAM Data Write format for 16-bit interface

8080 9-BIT BUS INTERFACE

Setting the IM3/2/1/0 to be $IOV_{CC}/V_{SS}/IOV_{CC}/IOV_{CC}$ level allows 80-system 9-bit parallel data transfer. The 16-bit instructions and RAM data are divided into nine upper/lower bits and the transfer starts from the upper nine bits. Fix unused pins DB8–DB0 to the IOV_{CC} or V_{SS} level. Note that the upper bytes must also be written when the index register is written.

Instruction format for 9-bit

RAM Data Write format for 9-bit interface

The UC8230s supports the transfer synchronization function, which resets the upper/lower counter to count upper/lower 9-bit data transfer in the 9-bit bus interface. Noise causing transfer mismatch between the nine upper and lower bits can be corrected by a reset triggered by consecutively writing a "00"H instruction four times. The next transfer starts from the upper nine bits. Executing synchronization function periodically can recover any runaway in the display system.

High-Voltage Mixed-Signal IC ©1999 ~ 2009

8080 8-BIT BUS INTERFACE

Setting the IM3/2/1/0 to the $V_{SS}/V_{SS}/IOV_{CC}/IOV_{CC}$ level allows 80-system 8-bit parallel data transfer. The 16-bit instructions and RAM data are divided into eight upper/lower bits and the transfer starts from the upper eight bits. Fix unused pins DB9–DB0 to the IOV_{CC} or V_{SS} level. Note that the upper bytes must also be written when the index register is written.

Instruction format for 8-bit

RAM Data Write format for 8-bit interface

The UC8230s supports the transfer synchronization function, which resets the upper/lower counter to count upper/lower 8-bit data transfer in the 8-bit bus interface. Noise causing transfer mismatch between the eight upper and lower bits can be corrected by a reset triggered by consecutively writing a "00"H instruction four times. The next transfer starts from the upper eight bits. Executing synchronization function periodically can recover any runaway in the display system

Serial Interface

Setting the IM3 pin to the V_{SS} level allows serial peripheral interface (SPI) transfer, using the chip select line (CS*), serial transfer clock line (SCL), serial input data (SDI), and serial output data (SDO). For a serial interface, the IM0/ID pin function uses an ID pin. If the chip is set up for serial interface, the DB17-2 pins that are not used must be fixed at IOV $_{CC}$ or V_{SS} .

The UC8230s initiates serial data transfer by transferring the start byte at the falling edge of CSB input. It ends serial data transfer at the rising edge of CSB input. The UC8230s is selected when the 6-bit chip address in the start byte matches the 6-bit device identification code that is assigned to the UC8230s. When selected, the UC8230s receives the subsequent data string. The LSB of the identification code can be determined by the ID pin. The five upper bits must be 01110.

Two different chip addresses must be assigned to a single UC8230s because the seventh bit of the start byte is used as a register select bit (RS):

that is, when RS = 0, data can be written to the index register or status can be read, and when RS = 1, an instruction can be issued or data can be written to or read from RAM. Read or write is selected according to the eighth bit of the start byte (R/W bit). The data is received when the R/W bit is 0, and is transmitted when the R/W bit is 1. After receiving the start byte, the UC8230s receives or transmits the subsequent data byte-by-byte. The data is transferred with the MSB first.

All UC8230s instructions are of 16 bits. Two bytes are received with the MSB first (DB17 to 0), then the instructions are internally executed. After the start byte has been received, the first byte is fetched as the upper eight bits of the instruction and the second byte is fetched as the lower eight bits of the instruction. Four bytes of RAM read data after the start byte are invalid. The UC8230s starts to read correct RAM data from the fifth byte.

Transfer Bit	S	1	2	3	4	5	6	7	8
	- , , ,			RS	R/W				
Start byte format	Transfer start	0	1	1	1	0	ID		

RS	RW	Function
0	0	Set Index Register
0	1	Read status
1	0	Writes instruction or RAM data
1	1	Reads instruction or RAM data

Table 40 RS and R/W Bit Function

RAM Data Write format for Serial Data Transfer

(A) Timing Data Transfar through Clock Synchronized Serial Bus Interface

(B) Timing of Consecutive Data-Transfar through Clock Synchronized Serial Bus Interface

Note:

- 1. The first byte after the start byte is always the upper eight bits.
- 2. One byte of RAM data read after the start byte are invalid.

Note: Two bytes of the RAM data read after the start byte are invalid.

HOST INTERFACE REFERENCE CIRCUIT

FIGURE 8: 8080/18-bit parallel mode example

FIGURE 9: 8080/16-bit parallel mode example

FIGURE 10: 8080/9-bit parallel mode example

FIGURE 11: 8080/8-bit parallel mode example

FIGURE 12: 4-Wires SPI serial mode example

EXTERNAL DISPLAY INTERFACE

The following interfaces are available as external display interface. It is determined by bit setting of RIM1-0. RAM accesses can be performed via the RGB interface.

RIM1	RIM0	RGB Interface	DB Pin
0	0	18-bit RGB interface	DB17 to 0
0	1	16-bit RGB interface	DB17 to 13, 11 to 1
1	0	6-bit RGB interface	DB17 to 12
1	1	Setting disabled	

1. RGB INTERFACE

The RGB interface is performed in synchronization with VSYNC, HSYNC, and DOTCLK. Combining the function of the high-speed write mode and the window address enables transfer only the screen to be updated and reduce the power consumption.

Figure 13: RGB Interface

High-Voltage Mixed-Signal IC ©1999 ~ 2009

RGB INTERFACE TIMING

Time chart for RGB interface is shown below.

VLW: The period in which VSYNC is "Low" level HLW: The period in which HSYNC is "Low" level

DTST: Set up time of data transfer

NOTE: Data for display should be written in the high-speed write mode (HWM="1") in VSYNC is in use.

DISPLAY OF MOVING PICTURE

The UC8230s incorporates RGB interface to display motion pictures and RAM to store data for display. For displaying motion pictures, the UC8230s has the following features.

- Motion picture area can only be transferred by the window address function.
- The high-speed write mode achieves both low power consumption and high-speed access.
- Motion picture area to be rewritten can only be transferred.
- Reducing the amount of data transferred enables reduce the power consumption to the whole system.
- Still picture area, such as an icon, can be updated while displaying motion pictures combining with the system interface.

RAM ACCESS VIA RGB INTERFACE AND SYSTEM INTERFACE

RAM can be accessed via the system interface when RGB interface is in use. When data is written to RAM during RGB interface mode, the ENABLE bit should be low to stop data writing via RGB interface, because RAM writing is always performed in synchronization with the DOTCLK input when ENABLE is high. After this RAM access via the system interface, a waiting time is needed for a write/read bus cycle before the next RAM access starts via RGB interface. When a RAM write conflict occurs, data writing is not guaranteed. Example of display motion picture via RGB-I/F and updating still picture via the system interface are shown below.

Figure 14: Example of Updating Still Picture Area During Display Motion Picture

18-BIT RGB INTERFACE

18-bit RGB interface can be used by setting MIF1-0 pins to 01. Display operation is synchronized with VSYNC, HSYNC, and DOTCLK signals. Data for display is transferred to the internal RAM via 6-bit RGB data bus (DB17-0).

Figure 15. 18-bit interface

GRAM Write Data format for 18-bit RGB Interface

16-BIT RGB INTERFACE

16-bit RGB interface can be used by setting RIM1-0 pins to 01. Display operation is synchronized with VSYNC, HSYNC, and DOTCLK signals. Data for display is transferred to the internal RAM via 6-bit RGB data bus (DB17-13 and 11-1). Instruction should be set via the system interface.

Figure 16: 16-bit interface

16-bit RGB Interface (65,536 Colors) Input Data DB 17 16 15 14 13 11 6 4 2 Write Data R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 В4 ВЗ B2 B1 B0 to GRAM One Pixed

GRAM Write Data format for 16-bit RGB Interface

6-BIT RGB INTERFACE

6-bit RGB interface can be used by setting RIM1-0 pins to "00". Display operation is synchronized with VSYNC, HSYNC, and DOTCLK signals. Data for display is transferred to the internal RAM via 6-bit RGB data bus (DB17 to 12), and the data enable signal (ENABLE). Unused pins must be fixed to the IOV_{CC} or GND level.

Figure 17. 6-bit interface

GRAM Write Data format for 6-bit RGB Interface

NOTE: Transfer synchronization function for an 6-bit bus interface. The UC8230s has the transfer counter to count 1st, 2nd and 3rd data transfer in the 6-bit bus interface. The transfer counter is reset on the falling edge of VSYNC and enters the 1st data transmission state. Transfer mismatch can be corrected transfer restarts correctly. In this method, when data is consecutively transferred such as displaying motion pictures, the effect of transfer mismatch will be reduced and recover normal operation.

NOTE: The internal display is operated in units of three DOTCLK. When the DOTCLK is not input in units of pixels, click mismatch occurs and the frame, which is operated, and the next frame are not display correctly.

GRAM ADDRESS AND DISPLAY PANEL POSITION (SS ="0")

SG	pin	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	: :	S709	S710	S711	S712	S713	S714	S715	S716	S717	S718	S719	S720	
								-																			
GS	GS	DE	317	20	DE	317	D0	DE	317	20	וט	317	D0		DB		В0	DB		B0	DB		DO	DB17			
=0	=1	"0	~DI	_	"0	~D		"0	~DI	_	11.0	~D	_		"0		_	"0			"0		B0	~DB0			
G1	G320		000			001		_	002			0003				0AC		_	0AD		_	0AE		"00AF"H "01AF"H			
G2	G319	_	100		_	101		_	102			103				1AC			1AD			1AE					
G3	G318		200		_	201		_	202		_	203				2AC			2AD			2AE			2AF		
G4	G317	_	300		_	301		_	302			303				3AC			3AD			3AE			3AF		
G5 G6	G316	_	400		_	401		_	402			403				4AC			4AD			4AE			4AF		
	G315	_	500		_	501	_	-	502		_	503				5AC		_	5AD			5AE		_	5AF		
G7 G8	G314 G313	_	600' 700'		_	601 701		_	602' 702')603)703				6AC 7AC			6AD 7AD			6AE' 7AE'			6AF 7AF		
G9	G313		800			801			702 802			803															
G10	G312 G311		900		_	901		_			_							"08AD"H "09AD"H				"08AE"H		"08AF"H			
G10	G310	_	A00		_	A01			"0902"H				AAC					"09AE"H "0AAE"H									
G12	G309		B00			B01		"0B02"H		_					BAC		_			"0BAE"H			"0BAF"H				
G13	G308	_	C00		_	C01		"0B02"H "0B03"H "0C03"H					CAC		"0BAD"H "0CAD"H			"0CAE"H			"0CAF"H						
G14	G307		D00			D01		_	0D02"H				DAC		"0DAD"H			"0DAE"H			"0DAF"H		-				
G15	G306	_	E00			E01		_	"0E02"H "0E03"H			"0EAC"H "0EAD"H				EAE		"0EAF"H									
G16	G305		F00			F01		_	F02		_	F03			"0FAC"H "0FAD"H			"0FAE"H		"0FAF"H							
G17	G304	_	000		_	001			002			003				0AC			0AD		"10AE"H			"10AF"H			
G18	G303		100		_	101		_	102			103				1AC			1AD			1AE		"11AF"H			
G19	G302		200			201			202			203				2AC			2AD			2AE'			2AF		
G20	G301	_	300			301		_	302		_	303				3AC			3AD			3AE'			3AF		
								<u> </u>																			
G313	G8	"0	800	"H	"0	801	"H	"0	802	Ή.	"C	803	"H		"E	8AC	"H	"E	8AD	"H	"Е	8AE	"H	"E	8AF	-"H	
G314	G7	_	900		_	901		_	902			903				9AC			9AD			9AE			9AF		
G315	G6		A00		_	A01		_	A02		_	A03				AAC			AAD			AAE			AAF		
G316	G5	_	B00		_	B01		_	B02			B03				BAC			BAD		"EBAE"H			"EBAF"H			
G317	G4	"E	C00	"H	"E	C01	"H	"E	C02	"H	"E	C03	"Н		"E	CAC	"Н	"ECAD"H			CAE		"ECAF"H				
G318	G3	"E	D00	"H	"E	D01	"H	"E	"ED02"H "ED03"			"Н		"EDAC"H "EDAD"H				"Н	"EDAE"H			"EDAF"H					
G319	G2	"E	E00	"H	"E	E01	"H	"E	E02	"H		E03			"[[(((((((((((((((((("EEAD"H			"EEAE"H			"E	"EEAF"H		
G320	G1	"E	F00	"H				"E	F02	"H		F03				FAC		"E	FAD	"H	"E	FAE	"H	"E	FAF	-"H	

Example for memory mapping: let MX = 0, MY = 0, SL = 0, LC[7:6] = 10b (RRRRR-GGGGGG-BBBBB, 64K-color), according to the data shown in the above table (R: 111111b, G: 111111b, B: 111111b): $\Rightarrow 1^{\text{st}} \text{ byte of Write data: } 11111111b$ $\Rightarrow 2^{\text{nd}} \text{ byte of Write data: } 11111111b$

Gamma-Correction Register

The Gamma-adjustment register is a group of registers to set an appropriate gray scale voltage for the gamma-characteristics of a liquid crystal panel. The register group is categorized into the ones adjusting gradient, amplitude, and fine-tuning in relation to grayscale number and grayscale voltage characteristics. Each register can make an independent setting for the positive/negative polarity. The reference value and RGB are common to both polarities.

1. Gradient adjustment registers

The gradient adjustment registers are used to adjust the gradient around the middle of the grayscale number and voltage characteristics without changing a dynamic range. To adjust a gradient, the values of the variable resistors (VRHP (N)/VRLP (N)) in the middle of the ladder resistor block for grayscale voltage generation are controlled. The registers incorporate separate registers for positive and negative polarities to be compatible with asymmetric drive.

1. Gradient adjustment resister

2. Amplitude adjustment registers

The amplitude adjustment registers are used to adjust the amplitude of the grayscale voltage. To adjust the amplitude, the values of the variable resistors (VRP(N)1/0) in the bottom of the ladder resistor block for grayscale voltage generation are adjusted. Same with the gradient registers, the amplitude adjustment registers also incorporate separate registers for positive and negative polarities.

2. Amplitude adjustment

3. Fine adjustment registers

The fine adjustment register is to fine-adjust the grayscale voltage level. To fine-adjust the grayscale voltage level, each level of 8-level reference voltages generated from the ladder registers is controlled by 8- to -1 selector. Same with the other registers, the fine-adjustment registers also incorporate separate registers for positive and negative polarities.

Gamma Correction registers

Register	Positive Polarity	Negative Polarity	set-up Contents				
Gradient adjustment	PRP0[2:0]	PRN0[2:0]	Variable resistor VRHP(N)				
Gradieni adjasinieni	PRP1[2:0]	PRN1[2:0]	Variable resistor VRLP(N)				
Reference adjustment	VRP0[3:0]	VRN0[3:0]	Variable resistor VRP(N)0				
Amplitude adjustment	VRP1[4:0]	VRN1[4:0]	Variable resistor VRP(N)1				
Micro adjustment	PKP0[2:0]	PKN0[2:0]	The Voltage of grayscale number 1 is selected by the 8 to 1 select				
	PKP1[2:0]	PKN1[2:0]	The Voltage of grayscale number 8 is selected by the 8 to 1 select				
	PKP2[2:0]	PKN2[2:0]	The Voltage of grayscale number 20 is selected by the 8 to 1 select				
	PKP3[2:0]	PKN3[2:0]	The Voltage of grayscale number 43 is selected by the 8 to 1 select				
	PKP4[2:0]	PKN4[2:0]	The Voltage of grayscale number 55 is selected by the 8 to 1 select				
	PKP5[2:0]	PKN5[2:0]	The Voltage of grayscale number 62 is selected by the 8 to 1 select				

Variable resistor

There are three kinds of variable resistors for the gradient adjustment (VRHP(N)/VRLP(N)), the amplitude adjustment (1) (VRP(N)0), and the amplitude adjustment (2) (VRP(N)1). The resistance is determined by the gradient adjustment and amplitude adjustment registers as is shown below.

ustment(1)				
Resistance value VRHP(N)				
0R				
4R				
8R				
12R				
16R				
20R				
24R				
28R				
ustment(2)				
Resistance value VRLP(N)				
0R				
4R				
8R				
12R				
16R				
20R				
24R				
28R				

Reference	e Adjustment					
Reference value VRP(N)0 [4:0]	Resistance value VRP(N)0					
00000	0R					
00001	2R					
00010	4R					
•••	•••					
•••						
11101	58R					
11110	60R					
11111	62R					
	e Adjustment					
Reference value VRP(N)1 [4:0]	Resistance value VRP(N)1					
00000	0R					
00001	1R					
00010	2R					
•••	•••					
•••	•••					
11101	29R					
11110	30R					
11111	31R					

8-to-1 Selector

The 8-to-1 selectors select a voltage level generated by the ladder resistors according to the fine adjustment registers, and output six kinds of reference voltage, VIN1 to VIN 6. The relationship between the fine adjustment register and the selected voltage is as follows.

Relationship between Micro-adjustment Register and selected Voltage

reduce to the process of the control												
		Selected voltage										
Register value PKP(N) [2:0]	VINP(N)1	VINP(N)2	VINP(N)3	VINP(N)4	VINP(N)5	VINP(N)6						
000	KVP(N)1	KVP(N)9	KVP(N)17	KVP(N)25	KVP(N)33	KVP(N)41						
001	KVP(N)2	KVP(N)10	KVP(N)18	KVP(N)26	KVP(N)34	KVP(N)42						
010	KVP(N)3	KVP(N)11	KVP(N)19	KVP(N)27	KVP(N)35	KVP(N)43						
011	KVP(N)4	KVP(N)12	KVP(N)20	KVP(N)28	KVP(N)36	KVP(N)44						
100	KVP(N)5	KVP(N)13	KVP(N)21	KVP(N)29	KVP(N)37	KVP(N)45						
101	KVP(N)6	KVP(N)14	KVP(N)22	KVP(N)30	KVP(N)38	KVP(N)46						
110	KVP(N)7	KVP(N)15	KVP(N)23	KVP(N)31	KVP(N)39	KVP(N)47						
111	KVP(N)8	KVP(N)16	KVP(N)24	KVP(N)32	KVP(N)40	KVP(N)48						

Shade #	Shade Voltage (V)	Formula
V0	3.000	VIN0
V1	2.471	VIN1
V2	2.447	VIN2+(VIN1-VIN2)*(19/24)
V3	2.428	VIN2+(VIN1-VIN2)*(15/24)
V4	2.414	VIN2+(VIN1-VIN2)*(12/24)
V5	2.400	VIN2+(VIN1-VIN2)*(9/24)
V6	2.386	VIN2+(VIN1-VIN2)*(6/24)
V7	2.372	VIN2+(VIN1-VIN2)*(3/24)
V8	2.358	VIN2
V9	2.342	VIN3+(VIN2-VIN3)*(22/24)
V10	2.326	VIN3+(VIN2-VIN3)*(20/24)
V11	2.310	VIN3+(VIN2-VIN3)*(18/24)
V12	2.294	VIN3+(VIN2-VIN3)*(16/24)
V13	2.278	VIN3+(VIN2-VIN3)*(14/24)
V14	2.262	VIN3+(VIN2-VIN3)*(12/24)
V15	2.246	VIN3+(VIN2-VIN3)*(10/24)
V16	2.230	VIN3+(VIN2-VIN3)*(8/24)
V17	2.214	VIN3+(VIN2-VIN3)*(6/24)
V18	2.198	VIN3+(VIN2-VIN3)*(4/24)
V19	2.182	VIN3+(VIN2-VIN3)*(2/24)
V20	2.166	VIN3
V21	2.155	VIN4+(VIN3-VIN4)*(22/23)
V22	2.143	VIN4+(VIN3-VIN4)*(21/23)
V23	2.132	VIN4+(VIN3-VIN4)*(20/23)
V24	2.121	VIN4+(VIN3-VIN4)*(19/23)
V25	2.110	VIN4+(VIN3-VIN4)*(18/23)
V26	2.099	VIN4+(VIN3-VIN4)*(17/23)
V27	2.088	VIN4+(VIN3-VIN4)*(16/23)
V28	2.076	VIN4+(VIN3-VIN4)*(15/23)
V29	2.065	VIN4+(VIN3-VIN4)*(14/23)
V30	2.054	VIN4+(VIN3-VIN4)*(13/23)
V31	2.043	VIN4+(VIN3-VIN4)*(12/23)

	Shade Voltage (V)	
V32	2.032	VIN4+(VIN3-VIN4)*(11/23)
V33	2.021	VIN4+(VIN3-VIN4)*(10/23)
V34	2.010	VIN4+(VIN3-VIN4)*(9/23)
V35	1.998	VIN4+(VIN3-VIN4)*(8/23)
V36	1.987	VIN4+(VIN3-VIN4)*(7/23)
V37	1.976	VIN4+(VIN3-VIN4)*(6/23)
V38	1.965	VIN4+(VIN3-VIN4)*(5/23)
V39	1.954	VIN4+(VIN3-VIN4)*(4/23)
V40	1.943	VIN4+(VIN3-VIN4)*(3/23)
V41	1.931	VIN4+(VIN3-VIN4)*(2/23)
V42	1.920	VIN4+(VIN3-VIN4)*(1/23)
V43	1.909	VIN4
V44	1.893	VIN5+(VIN4-VIN5)*(22/24)
V45	1.877	VIN5+(VIN4-VIN5)*(20/24)
V46	1.861	VIN5+(VIN4-VIN5)*(18/24)
V47	1.845	VIN5+(VIN4-VIN5)*(16/24)
V48	1.829	VIN5+(VIN4-VIN5)*(14/24)
V49	1.813	VIN5+(VIN4-VIN5)*(12/24)
V50	1.797	VIN5+(VIN4-VIN5)*(10/24)
V51	1.781	VIN5+(VIN4-VIN5)*(8/24)
V52	1.765	VIN5+(VIN4-VIN5)*(6/24)
V53	1.749	VIN5+(VIN4-VIN5)*(4/24)
V54	1.733	VIN5+(VIN4-VIN5)*(2/24)
V55	1.717	VIN5
V56	1.646	VIN6+(VIN5-VIN6)*(21/24)
V57	1.576	VIN6+(VIN5-VIN6)*(18/24)
V58	1.506	VIN6+(VIN5-VIN6)*(15/24)
V59	1.436	VIN6+(VIN5-VIN6)*(12/24)
V60	1.366	VIN6+(VIN5-VIN6)*(9/24)
V61	1.272	VIN6+(VIN5-VIN6)*(5/24)
V62	1.155	VIN6
V63	0.626	VIN7

Gamma Voltage Formula

	Grayscale				
Display data	Negative polarity		Positive polarity		
	Formula	Effective Voltage	Formula	Effective Voltage	
0	V0	4.783	V63	0.652	
1	V1	4.212	V62	1.114	
2	V2	3.995	V61	1.352	
3	V3	3.850	V60	1.510	
4	V4	3.723	V59	1.649	
5	V5	3.614	V58	1.768	
6	V6	3.524	V57	1.867	
7	V7	3.433	V56	1.966	
8	V8	3.342	V55	2.065	
9	V9	3.315	V54	2.092	
10	V10	3.288	V53	2.120	
11	V11	3.261	V52	2.147	
12	V12	3.234	V51	2.174	
13	V13	3.207	V50	2.201	
14	V14	3.179	V49	2.228	
15	V15	3.152	V48	2.255	
16	V16	3.125	V47	2.283	
17	V17	3.098	V46	2.310	
18	V18	3.071	V45	2.337	
19	V19	3.043	V44	2.364	
20	V20	3.016	V43	2.391	
21	V21	2.989	V42	2.418	
22	V22	2.962	V41	2.446	
23	V23	2.935	V40	2.473	
24	V24	2.908	V39	2.500	
25	V25	2.880	V38	2.527	
26	V26	2.853	V37	2.554	
27	V27	2.826	V36	2.582	
28	V28	2.799	V35	2.609	
29	V29	2.772	V34	2.636	
30	V30	2.745	V33	2.663	
31	V31	2.717	V32	2.690	
32	V32	2.690	V31	2.717	

Display data	Grayscale					
	Negative polarity		Positive polarity			
	Formula	Effective Voltage	Formula	Effective Voltage		
33	V33	2.663	V30	2.745		
34	V34	2.636	V29	2.772		
35	V35	2.609	V28	2.799		
36	V36	2.582	V27	2.826		
37	V37	2.554	V26	2.853		
38	V38	2.527	V25	2.880		
39	V39	2.500	V24	2.908		
40	V40	2.473	V23	2.935		
41	V41	2.446	V22	2.962		
42	V42	2.418	V21	2.989		
43	V43	2.391	V20	3.016		
44	V44	2.364	V19	3.043		
45	V45	2.337	V18	3.071		
46	V46	2.310	V17	3.098		
47	V47	2.283	V16	3.125		
48	V48	2.255	V15	3.152		
49	V49	2.228	V14	3.179		
50	V50	2.201	V13	3.207		
51	V51	2.174	V12	3.234		
52	V52	2.147	V11	3.261		
53	V53	2.120	V10	3.288		
54	V54	2.092	V9	3.315		
55	V55	2.065	V8	3.342		
56	V56	1.966	V7	3.433		
57	V57	1.867	V6	3.524		
58	V58	1.768	V5	3.614		
59	V59	1.649	V4	3.723		
60	V60	1.510	V3	3.850		
61	V61	1.352	V2	3.995		
62	V62	1.114	V1	4.212		
63	V63	0.652	V0	4.783		

Relationship between RAM data and out voltage

Relationship between source output and VCOM

POWER MANAGEMENT

Sleep State

IC Control State

Power on State (Wait for 2 mS after power on pulse or pin reset released)

Standby state

Set SLP=1 Set OS=1

Set DSTB=1

MAN – 0 : automatic power-display setup

This command is for programming register DE

1 : manual power-display setup

DE -

	DSTB	SLP	os
State	Standby state	Sleep State (for temporary display turns off)	Normal State
Function	Standby	Sleep	Display On
Bus Interface	Active	Active	Active
Register	Normal	Normal	Normal
Display operation	Off	Off	Active
Clock	Off	Active	Active
Power setup	Off / drain	On	On

Normal State

For manual power-up sequence, please refer to Command Display Control 1/2.

Power-On Sequence

Power-On Sequence (Auto mode setting)

Power-On Sequence (manual setting)

V_{D4}/VGH power set up sequence -

AUTO mode $-V_{D4}$ is up first, then VGH MANUAL mode $-V_{D4}$ & VGH are set up at the same time

Display ON Flow

Display On Flow (S: Source, G: Gate, C: Com)

Power-OFF Flow

Power-OFF Flow

©1999 ~ 2009

Power-OFF Sequence

High-Voltage Mixed-Signal IC

Power-OFF Sequence

Auto Display On/Off Flow

Display On-OFF Flow

High-Voltage Mixed-Signal IC

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Min.	Max.	Unit
Vcc	LCD Generator Supply voltage	-0.3	+4.0	٧
IOV _{CC}	Interface pin power supply	-0.3	+4.0	V
V_{D4}	Analog Circuit Supply voltage	-0.3	+6.0	V
V _{CC} H - V _{CC} L	LCD Gate Driving voltage	-0.3	+27	V
V_{IN}	Digital input signal	-0.4	V _{D1} + 0.5	V
T _{OPR}	Operating temperature range	-30	+85	°C
T _{STR}			+125	°C

Note:

- 1. V_{D1} is based on $V_{SS} = 0V$.
- 2. Stress beyond ranges listed above may cause permanent damages to the device.

SPECIFICATIONS

DC CHARACTERISTICS

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Vcc	LCD Generator Supply voltage		2.5		3.3	V
IOVcc	Interface pin power supply		1.65		3.3	V
V_{D4}	V _{D4} pumpout		4		5.5	V
V _{CC} H	V _{CC} H pumpout		10		15	V
V _S N	V _S N pumpout		-2.75			V
VccL	V _{CC} L pumpout		-12		-8	V
V_{IL_H}	Input logic LOW	IOVCC=2.5V~3.3V			0.15xIOVcc	V
V_{IH_H}	Input logic HIGH	IOVCC=2.5V~3.3V	0.85xIOVcc			V
V _{IL_L}	Input logic LOW	IOVCC=1.65V~2.5V			0xIOVcc	V
V_{IH_L}	Input logic HIGH	IOVCC=1.65V~2.5V	1xIOVcc			V
V_{OL}	Output logic LOW				0.2 IOVcc	V
V _{OH}	Output logic HIGH		0.8 IOVcc			V
I _{IL}	Input leakage current				1.5	μΑ
C _{IN}	Input capacitance			5	10	PF

Note : Voltages exceeding the Max. value may still keep the IC operating properly, yet might shorten its lifetime.

POWER CONSUMPTION

IOVcc=3.3V, Vcc=3.3V, Line Inverted=1

Display Pattern	Conditions	Typ. (μA)	Max. (μA)
Black	Bus = idle	3500	5250
1-pixel checker	Bus = idle	3100	4650
Sleep mode	Into Sleep mode	<50	100

High-Voltage Mixed-Signal IC

AC CHARACTERISTICS

FIGURE 18: Parallel Bus Timing Characteristics (for 8080 MCU)

$(1.65V \le IOVCC < 2.5V, Ta = -30 \text{ to } +85^{\circ}C)$

Symbol	Signal	Description		Min.	Max.	Units
t _{AS}	RS to CS,WR,RD	Address Setup Time		10	-	nS
t _{AH}	NO 10 CO, VVIN, ND	Hold Time		10		nS
PW_{LW}	WR	Pulse Width (low-level) Wr	ite	65	-	nS
PW_{LR}	RD	Re	ad	150	_	nS
PW_{HW}	WR	Pulse Width (high-level) Wi	rite	65	_	nS
PW_{HR}	RD	Re	ad	150	_	nS
t _{WRr,} t _{WRf}	WR, RD	Write/Read Rise/Fall Time			25	nS
t _{CYCW}	WR	Bus Cycle Time Wr	ite	130	-	nS
t _{CYCR}	RD	Rea	ad	300		
t _{DSW}	WR	Write Data Setup Time		10		nS
t_{HWR}	VVIC	Hold Time		10		nS
t _{DDR}	RD	Read Data Delay Time			150	nS
t _{DHR}	עט	Hold Hime		55		nS

 $(2.5V \le V_{D1} < 3.3V, Ta = -30 \text{ to } +85^{\circ}C)$

Symbol	Signal	Description	Min.	Max.	Units
t _{AS}	RS to CS,WR,RD	Address Setup Time	10	_	nS
t _{AH}	K3 10 C3, WK, KD	Hold Time	10		nS
PW_{LW}	WR	Pulse Width (low-level) Write	60	-	nS
PW_{LR}	RD	Read	150	_	nS
PW_{HW}	WR	Pulse Width (high-level) Write	60	-	nS
PW_{HR}	RD	Read	150	_	nS
t _{WRr} , t _{WRf}	WR, RD	Write/Read Rise/Fall Time		25	nS
t _{CYCW}	WR	Bus Cycle Time Write	120	_	nS
tcycr	RD	Read	300		
t _{DSW}	DB0-DB17 WR	Write Data Setup Time	10		nS
t _{HWR}	DDO-DD17 WIX	Hold Time	10		nS
t _{DDR}	DB0-DB17 RD	Read Data Delay Time		150	nS
t _{DHR}	מא זומט-טטט	Hold Time	55		nS

FIGURE 19: Parallel Bus Timing Characteristics (for RGB Interface Mode)

 $(1.65V \le IOVcc < 2.5V, Ta = -30 to +85^{\circ}C)$

Symbol	Signal	Description	Min.	Max.	Units
t _{SYNCS}	HSYNC/	Hsync/Vsync Setup Time	0	_	nS
	VSYNC				
t _{ENS}	ENABLE	ENABLE Setup Time	10	-	nS
t _{ENH}	ENABLE	ENABLE Hold Time	10	_	nS
PWDH		Pulse Width DOTCLK (high-level)	50	_	nS
PWDL	DOTCLK	(low-level)	50	_	nS
t_{RGBR}, t_{RGBF}	DOTCER	DOTCLK Hsync/Vsync Rise/Fall Time	-	25	nS
t _{CYCD}		DOTCLK Cycle Time	100	_	nS
t _{PDS}	DATA	DATA Setup Time	10	_	nS
t _{PDH}	DATA	DATA Hold Time	40	_	nS

 $(2.5V \le IOVcc < 3.3V. Ta = -30 to +85^{\circ}C)$

2.07 < 10.00 < 0.07, 14- 00.0700 0)						
Symbol	Signal	Description	Min.	Max.	Units	
t _{SYNCS}	VSYNC/	Hsync/Vsync Setup Time	5	_	nS	
	HSYNC					
t _{ENS}	ENABLE	ENABLE Setup Time	10	-	nS	
t _{ENH}	ENABLE	ENABLE Hold Time	15	_	nS	
PWDH		Pulse Width DOTCLK (high-level)	50	-	nS	
PWDL	DOTCLK	(low-level)	50	_	nS	
t_{RGBR} , t_{RGBF}	DOTCER	DOTCLK Hsync/Vsync Rise/Rall Time	_	25	nS	
t _{CYCD}		DOTCLK Cycle Time	100	-	nS	
t _{PDS}	DATA	DATA Setup Time	15	_	nS	
t _{PDH}	DATA	DATA Hold Time	40	_	nS	

High-Voltage Mixed-Signal IC

FIGURE 20: Serial Bus Timing Characteristics

Normal Mode:

 $(1.65V \le IOVcc < 2.5V, Ta = -30 to +85^{\circ}C)$

Symbol	Signal	Description		Min.	Max.	Units
4		Serial Clock Cycle Time	Write (received)	200	_	nS
t _{SCYC}		·	Read (transmitted)	250		
4		Serial Clock High-level Pulse Width	Write (received)	100	_	nS
t _{SCH}	SCL		Read (transmitted)	125		
4		Serial Clock Low-level Pulse Width	Write (received)	100	-	nS
t _{SCL}			Read (transmitted)	125		
t _{SCR} , t _{SCF}		Serial Clock Rising/Falling Time			25	nS
t _{CSU}	CS, SCL	Chip Select Setup Time		5	_	nS
t _{CH}	C3, 3CL	Hole Time		5		nS
tsisu	SDI	Serial Input Data Setup Time		10		nS
t _{SIH}	וטפ	Hold Time		5		nS
t _{SOD}	SDO	Serial Output Data Delay Time			130	nS
tson	300	Hold Time		60		nS

 $(2.5V \le IOVcc < 3.3V, Ta = -30 to +85^{\circ}C)$

Symbol	Signal	Description		Min.	Max.	Units
tanua		Serial Clock Cycle Time	Write(received)	200	-	nS
tscyc			Read(transmitted)	250		
toou		Serial Clock High-level Pulse Width	Write(received)	100	-	nS
tsch	SCL		Read(transmitted)	125		
4		Serial Clock Low-level Pulse Width	Write(received)	100	-	nS
t _{SCL}			Read(transmitted)	125		
t _{SCR} , t _{SCF}		Serial Clock Rising/Falling time			25	nS
t _{CSU}	CS, SCL	Chip Select Setup Time		5	-	nS
t _{CH}	CS, SCL	Hold Time		5		nS
t _{SISU}	SDI	Serial Input Data Setup Time		10		nS
t _{SIH}	SDI	Hold Time		5		nS
t _{SOD}	SDO	Serial Output Data Delay Time			130	nS
t _{SOH}	300	Hold Time		60		nS

FIGURE 21: Reset Characteristics

 $(1.65V \le IOVcc < 3.3V, Ta = -30 to +85^{\circ}C)$

Symbol	Signal	Description		Max.	Units
t _{RES}	RST	Reset Low Pulse Width	1	1	mS
t _{rRES}	NOI	Reset Rise Time	1	10	μS

PHYSICAL DIMENSIONS

ALIGNMENT MARK INFORMATION

COORDINATES:

	Dowr	n Left	Down Right		
	Spider Mark (+)		Spider Mark (+)		
	X	Υ	X	Υ	
С	-8751	269	8751	269	

PAD COORDINATES

	D- d	v	V	101	
# 1	Pad	X 0040	Y 207.5	W	Н
2	DUMMY	-8610	-307.5	50	80
3	DUMMY DUMMY	-8540 -8470	-307.5 -307.5	50	80
4	DUMMY	-8400	-307.5	50	80
5	DUMMY	-8330	-307.5	50	80
6	DUMMY	-8260	-307.5	50	80
7	IMO	-8190	-307.5	50	80
8	IM1	-8120	-307.5	50	80
9	IM2	-8050	-307.5	50	80
10	IM3	-7980	-307.5	50	80
11	DUMMY	-7910	-307.5	50	80
12	DUMMY	-7840	-307.5	50	80
13	DUMMY	-7770	-307.5	50	80
14	DUMMY	-7700	-307.5	50	80
15	DUMMY	-7630	-307.5	50	80
16	DUMMY	-7560	-307.5	50	80
17	DUMMY	-7490	-307.5	50	80
18	DUMMY	-7420	-307.5	50	80
19	RESETb	-7350	-307.5	50	80
20	RESETb	-7280	-307.5	50	80
21	VSYNC	-7210	-307.5	50	80
22	HSYNC	-7140	-307.5	50	80
23 24	DOTCLK	-7070	-307.5	50	80
25	ENABLE DB17	-7000 -6905	-307.5 -307.5	50 50	80
26	DB17 DB16	-6825	-307.5	50	80
27	DB16 DB15	-6745	-307.5	50	80
28	DB13	-6665	-307.5	50	80
29	DB13	-6585	-307.5	50	80
30	DUMMY	-6495	-307.5	50	80
31	DB12	-6405	-307.5	50	80
32	DB11	-6325	-307.5	50	80
33	DB10	-6245	-307.5	50	80
34	DB9	-6165	-307.5	50	80
35	DB8	-6085	-307.5	50	80
36	DUMMY	-5990	-307.5	50	80
37	DUMMY	-5920	-307.5	50	80
38	DB7	-5825	-307.5	50	80
39	DB6	-5745	-307.5	50	80
40	DB5	-5665	-307.5	50	80
41	DB4	-5585	-307.5	50	80
42	DB3	-5505	-307.5	50	80
43	DB2	-5425 -5345	-307.5 -307.5	50	80
45	DB1 DB0	-5265	-307.5	50 50	80
46	DUMMY	-5180	-307.5	50	80
47	SDO	-5110	-307.5	50	80
48	SDI	-5040	-307.5	50	80
49	RDb	-4970	-307.5	50	80
50	WR SCL	-4900	-307.5	50	80
51	RS	-4830	-307.5	50	80
52	CSb	-4760	-307.5	50	80
53	DUMMY	-4690	-307.5	50	80
54	DUMMY	-4620	-307.5	50	80
55	FMARK	-4550	-307.5	50	80
56	DUMMY	-4480	-307.5	50	80
57	OSC	-4410	-307.5	50	80
58	VD1_on	-4340	-307.5	50	80
59	VD2_on	-4270	-307.5	50	80
60	DUMMY	-4200	-307.5	50	80
61	INIT_TEST	-4130	-307.5	50	80
62	DUMMY	-4060	-307.5	50	80
63 64	DUMMY DUMMY	-3990	-307.5	50	80
65	DUMMY	-3920 -3850	-307.5 -307.5	50 50	80
66	DUMMY	-3850	-307.5	50	80
67	IOVCC	-3710	-307.5	50	80
68	IOVCC	-3640	-307.5	50	80
69	IOVCC	-3570	-307.5	50	80
70	IOVCC	-3500	-307.5	50	80
71	IOVCC	-3430	-307.5	50	80
72	IOVCC	-3360	-307.5	50	80
73	VD1	-3290	-307.5	50	80
74	VD1	-3220	-307.5	50	80
75	VD1	-3150	-307.5	50	80
76	VD1	-3080	-307.5	50	80
77	VD1	-3010	-307.5	50	80
78	VD1	-2940	-307.5	50	80
			007.5	50	00
79 80	VD1 VD1	-2870 -2800	-307.5 -307.5	50	80

#	Pad	Х	Υ	W	Н
81	VD1	-2730	-307.5	50	80
				_	-
82	VD1	-2660	-307.5	50	80
83	VD1	-2590	-307.5	50	80
84	DUMMY	-2520	-307.5	50	80
				_	
85	VS2	-2450	-307.5	50	80
86	VS2	-2380	-307.5	50	80
87	VS2	-2310	-307.5	50	80
88	VS2	-2240	-307.5	50	80
				_	_
89	VS2	-2170	-307.5	50	80
90	VS2	-2100	-307.5	50	80
91	VS2	-2030	-307.5	50	80
92	VS2	-1960	-307.5	50	80
				_	_
93	VGS	-1890	-307.5	50	80
94	VGS	-1820	-307.5	50	80
95	VSS	-1750	-307.5	50	80
96		-1680	-307.5	50	80
	VSS			_	_
97	VSS	-1610	-307.5	50	80
98	VSS	-1540	-307.5	50	80
99	VSS	-1470	-307.5	50	80
					-
100	VSS	-1400	-307.5	50	80
101	VSS	-1330	-307.5	50	80
102	VSS	-1260	-307.5	50	80
103	VSS	-1190	-307.5	50	80
					-
104	VSS	-1120	-307.5	50	80
105	DUMMY	-1050	-307.5	50	80
106	DUMMY	-980	-307.5	50	80
				_	_
107		-910		50	80
108	COM	-840	-307.5	50	80
109	COM	-770	-307.5	50	80
110	COM	-700	-307.5	50	80
	COM			_	_
111		-630	-307.5	50	80
112	COM	-560	-307.5	50	80
113	COM	-490	-307.5	50	80
			-307.5		-
114	COM	-420		50	80
115	VCOMH	-350	-307.5	50	80
116	VCOMH	-280	-307.5	50	80
117	VCOMH	-210	-307.5	50	80
					-
118	VCOMH	-140	-307.5	50	80
119	VCOMH	-70	-307.5	50	80
120	VCOMH	0	-307.5	50	80
121	VCOML			_	
		70		50	80
122	VCOML	140	-307.5	50	80
123	VCOML	210	-307.5	50	80
124	VCOML	280	-307.5	50	80
					_
125	VREG1	350	-307.5	50	80
126	VREG1	420	-307.5	50	80
127	VREG1	490	-307.5	50	80
128	DUMMY	560	-307.5	50	80
				_	
129	DUMMY	630	-307.5	50	80
130	SRC_TEST	700	-307.5	50	80
131	VSN	770	-307.5	50	80
			-307.5		_
132	VSN	840		50	80
133	VSN	910	-307.5	50	80
134	VSN	980	-307.5	50	80
135	VSN	1050	-307.5	50	80
	VD4	1120			80
136			-307.5	50	_
137	VD4	1190	-307.5	50	80
138	VD4	1260	-307.5	50	80
139	VD4	1330	-307.5	50	80
140	VD4	1400	-307.5	50	80
_					
141	VD4	1470	-307.5	50	80
142	VD2	1540	-307.5	50	80
143	VD2	1610	-307.5	50	80
144	VD2	1680	-307.5	50	80
				_	
145	VCC	1750	-307.5	50	80
146	VCC	1820	-307.5	50	80
147	VCC	1890	-307.5	50	80
148	VCC	1960	-307.5	50	80
				_	
149	VCC	2030	-307.5	50	80
150	VCC	2100	-307.5	50	80
151	VCC	2170	-307.5	50	80
152	VCC	2240	-307.5	50	80
				_	
153	VCC	2310	-307.5	50	80
154	VCC	2380	-307.5	50	80
155	VCC	2450	-307.5	50	80
156	VCC	2520	-307.5	50	80
				_	
157	VCC	2590	-307.5	50	80
158	VCC	2660	-307.5	50	80
159	VCC	2730	-307.5	50	80
160	VCC	2800	-307.5	50	80
					, ,,,

#	Pad	Х	Υ	W	Н
161	VCC	2870	-307.5	50	80
162	VCC	2940	-307.5	50	80
163	DUMMY	3010	-307.5	50	80
164	DUMMY	3080	-307.5	50	80
165	C12-	3150	-307.5	50	80
166	C12-	3220	-307.5	50	80
167	C12-	3290	-307.5	50	80
168	C12-	3360	-307.5	50	80
169	C12-	3430	-307.5	50	80
170	C12+	3500	-307.5	50	80
171	C12+	3570	-307.5	50	80
172	C12+	3640	-307.5	50	80
173	C12+	3710	-307.5	50	80
174	C12+	3780	-307.5	50	80
175	C11-	3850	-307.5	50	80
176	C11-	3920	-307.5	50	80
177	C11-	3990	-307.5	50	80
178	C11-	4060	-307.5	50	80
179	C11-	4130	-307.5	50	80
180	C11+	4200	-307.5	50	80
181	C11+	4270	-307.5	50	80
182	C11+	4340	-307.5	50	80
183	C11+	4410	-307.5	50	80
184	C11+	4410	-307.5	50	80
185	VCCL	4550		50	80
	VCCL	4620	-307.5	50	
186 187			-307.5	50	80
	VCCL	4690	-307.5		•
188 189	VCCL VCCL	4760 4830	-307.5 -307.5	50 50	80
190	VCCL	4900		50	•
190		4900	-307.5	50	80
191	VCCL	5040	-307.5	50	80
193	VCCL VCCL	5110	-307.5	50	80
193			-307.5		
194	VCCL	5180	-307.5	50	80
	VSS	5250	-307.5	50	•
196	VSS	5320	-307.5	50	80
197	VSS	5390	-307.5	50	80
198	VCCH	5460	-307.5	50	80
199	VCCH	5530	-307.5	50	80
200	VCCH	5600	-307.5	50	80
201	VCCH	5670 5740	-307.5	50	80
			-307.5	50	80
203	VCCH	5810	-307.5	50	80
204	DUMMY	5880	-307.5	50	80
205	DUMMY C13-	5950 6020	-307.5	50	80
206			-307.5	50	80
207	C13- C13-	6090	-307.5	50 50	80
208	C13-	6160 6230	-307.5 -307.5		80
209	C13+	6300	-307.5	50 50	80
211	C13+	6370	-307.5	50	80
212	C13+	6440	-307.5	_	80
	C13+			50 50	-
213	C13+	6510 6580	-307.5 -307.5		80
215	C21-	6650	-307.5	50 50	80
216	C21-	6720	-307.5	50	80
217	C21-	6790	-307.5	50	80
218	C21-	6860	-307.5	50	80
219	C21-	6930	-307.5	50	80
220	C21-	7000	-307.5	50	80
221	C21+	7070	-307.5	50	80
222	C21+	7140	-307.5	50	80
223	C21+	7210	-307.5	50	80
224	C21+	7280	-307.5	50	80
225	C21+	7350	-307.5	50	80
226	C21+	7420	-307.5	50	80
227	C21+	7490	-307.5	50	80
228	C22-	7560	-307.5	50	80
229	C22-	7630	-307.5	50	80
230	C22-	7700	-307.5	50	80
231	C22-	7770	-307.5	50	80
232	C22-	7840	-307.5	50	80
233	C22-	7910	-307.5	50	80
234	C22-	7980	-307.5	50	80
235	C22+	8050	-307.5	50	80
236	C22+	8120	-307.5	50	80
237	C22+	8190	-307.5	50	80
238	C22+	8260	-307.5	_	80
230			-307.5	50 50	80
230					
239 240	C22+ C22+	8330 8400	-307.5	50	80

щ	D- d	l v	V	14/	
241	Pad C22+	X 8470	Y -307.5	W 50	H 80
241	DUMMY	8540	-307.5	50	80
243	DUMMY	8610	-307.5	50	80
244	DUMMY	8659	202.5	16	98
245	G320	8643	319.5	16	98
246	G318	8627	202.5	16	98
247	G316	8611	319.5	16	98
248	G314	8595	202.5	16	98
249	G312	8579	319.5	16	98
250	G310	8563	202.5	16	98
251	G308	8547	319.5	16	98
252 253	G306 G304	8531 8515	202.5 319.5	16 16	98 98
254	G304	8499	202.5	16	98
255	G302	8483	319.5	16	98
256	G298	8467	202.5	16	98
257	G296	8451	319.5	16	98
258	G294	8435	202.5	16	98
259	G292	8419	319.5	16	98
260	G290	8403	202.5	16	98
261	G288	8387	319.5	16	98
262	G286	8371	202.5	16	98
263	G284	8355	319.5	16	98
264	G282	8339	202.5	16	98
265 266	G280 G278	8323 8307	319.5 202.5	16 16	98 98
267	G276	8291	319.5	16	98
268	G274	8275	202.5	16	98
269	G272	8259	319.5	16	98
270	G270	8243	202.5	16	98
271	G268	8227	319.5	16	98
272	G266	8211	202.5	16	98
273	G264	8195	319.5	16	98
274	G262	8179	202.5	16	98
275	G260	8163	319.5	16	98
276 277	G258	8147 8131	202.5	16 16	98 98
278	G256 G254	8115	319.5 202.5	16	98
279	G252	8099	319.5	16	98
280	G250	8083	202.5	16	98
281	G248	8067	319.5	16	98
282	G246	8051	202.5	16	98
283	G244	8035	319.5	16	98
284	G242	8019	202.5	16	98
285	G240	8003	319.5	16	98
286	G238	7987	202.5	16	98
287	G236	7971	319.5	16	98
288 289	G234 G232	7955 7939	202.5 319.5	16 16	98 98
290	G232	7923	202.5	16	98
291	G228	7907	319.5	16	98
292	G226	7891	202.5	16	98
293	G224	7875	319.5	16	98
294	G222	7859	202.5	16	98
295	G220	7843	319.5	16	98
296	G218	7827	202.5	16	98
297	G216	7811	319.5	16	98
298	G214	7795	202.5 319.5	16	98
299 300	G212 G210	7779 7763	202.5	16 16	98 98
301	G210	7747	319.5	16	98
302	G206	7731	202.5	16	98
303	G204	7715	319.5	16	98
304	G202	7699	202.5	16	98
305	G200	7683	319.5	16	98
306	G198	7667	202.5	16	98
307	G196	7651	319.5	16	98
308	G194	7635	202.5	16	98
309	G192	7619	319.5	16	98
310 311	G190 G188	7603 7587	202.5	16 16	98 98
312	G186	7571	319.5 202.5	16	98
313	G184	7555	319.5	16	98
314	G182	7539	202.5	16	98
315	G180	7523	319.5	16	98
316	G178	7507	202.5	16	98
317	G176	7491	319.5	16	98
318	G174	7475	202.5	16	98
319	G172	7459	319.5	16	98
320	G170	7443	202.5	16	98
321	G168	7427	319.5	16	98
322	G166	7411	202.5	16	98
323	G164	7395	319.5	16	98

#	Pad	Х	Υ	W	H
324	G162	7379	202.5	16	98
325	G160	7363	319.5	16	98
326	G158	7347	202.5	16	98
327	G156	7331	319.5	16	98
328	G154	7315	202.5	16	98
329	G152	7299	319.5	16	98
330	G150	7283	202.5	16	98
331	G148	7267	319.5	16	98
332	G146	7251	202.5	16	98
333	G144	7235	319.5	16	98
334	G142	7219	202.5	16	98
335	G142	7203	319.5	16	98
336	G138	7187	202.5	16	98
337	G136	7171	319.5	16	98
338	G134	7155	202.5	16	98
339	G132	7139	319.5	16	98
340	G130	7123	202.5	16	98
341	G128	7107	319.5	16	98
342	G126	7091	202.5	16	98
343	G124	7075	319.5	16	98
344	G122	7059	202.5	16	98
345	G120	7043	319.5	16	98
346	G118	7027	202.5	16	98
347	G116	7011	319.5	16	98
348	G114	6995	202.5	16	98
349	G112	6979	319.5	16	98
350	G112	6963	202.5	16	98
			319.5		
351	G108	6947		16	98
352	G106	6931	202.5	16	98
353	G104	6915	319.5	16	98
354	G102	6899	202.5	16	98
355	G100	6883	319.5	16	98
356	G98	6867	202.5	16	98
357	G96	6851	319.5	16	98
358	G94	6835	202.5	16	98
359	G92	6819	319.5	16	98
360	G90	6803	202.5	16	98
361	G88	6787	319.5	16	98
362	G86	6771	202.5	16	98
363	G84	6755	319.5	16	98
364	G82	6739	202.5	16	98
365	G80	6723	319.5	16	98
	G78		202.5	16	98
366		6707	319.5		
367	G76	6691		16	98
368	G74	6675	202.5	16	98
369	G72	6659	319.5	16	98
370	G70	6643	202.5	16	98
371	G68	6627	319.5	16	98
372	G66	6611	202.5	16	98
373	G64	6595	319.5	16	98
374	G62	6579	202.5	16	98
375	G60	6563	319.5	16	98
376	G58	6547	202.5	16	98
377	G56	6531	319.5	16	98
378	G54	6515	202.5	16	98
379	G52	6499	319.5	16	98
380	G50	6483	202.5	16	98
381	G48	6467	319.5	16	98
382	G46	6451	202.5	16	98
383	G44	6435	319.5	16	98
384	G42	6419	202.5	16	98
385	G40	6403	319.5	16	98
386	G38	6387	202.5	16	98
387	G36	6371		16	98
			319.5		
388	G34	6355	202.5	16	98
389	G32	6339	319.5	16	98
390	G30	6323	202.5	16	98
391	G28	6307	319.5	16	98
392	G26	6291	202.5	16	98
393	G24	6275	319.5	16	98
394	G22	6259	202.5	16	98
395	G20	6243	319.5	16	98
396	G18	6227	202.5	16	98
397	G16	6211	319.5	16	98
398	G14	6195	202.5	16	98
399	G12	6179	319.5	16	98
400	G10	6163	202.5	16	98
401	G8	6147	319.5	16	98
402	G6	6131	202.5	16	98
403	G4	6115	319.5	16	98
403					
	G2 DUMMV	6099	202.5	16	98
405	DUMMY	6083	319.5	16	98
406	DUMMY	6047	319.5	16	98

ш	Ded	V	Υ	10/	
#	Pad S720	X 6031	202.5	W	H 98
408	S719	6015	319.5	16	98
409	S718	5999	202.5	16	98
410	S717	5983	319.5	16	98
411	S716	5967	202.5	16	98
412	S715	5951	319.5	16	98
413	S714	5935	202.5	16	98
414	S713	5919	319.5	16	98
415	S712	5903	202.5	16	98
416	S711	5887	319.5	16	98
417 418	S710	5871 5855	202.5 319.5	16	98
419	S709 S708	5839	202.5	16 16	98 98
420	S707	5823	319.5	16	98
421	S706	5807	202.5	16	98
422	S705	5791	319.5	16	98
423	S704	5775	202.5	16	98
424	S703	5759	319.5	16	98
425	S702	5743	202.5	16	98
426	S701	5727	319.5	16	98
427	S700	5711	202.5	16	98
428	S699	5695	319.5	16	98
429	S698	5679	202.5	16	98
430	S697	5663	319.5	16	98
431	S696	5647	202.5	16	98
432	S695 S694	5631 5615	319.5 202.5	16 16	98 98
433	S693	5599	319.5	16	98
435	S692	5583	202.5	16	98
436	S691	5567	319.5	16	98
437	S690	5551	202.5	16	98
438	S689	5535	319.5	16	98
439	S688	5519	202.5	16	98
440	S687	5503	319.5	16	98
441	S686	5487	202.5	16	98
442	S685	5471	319.5	16	98
443	S684	5455	202.5	16	98
444	S683	5439	319.5	16	98
445	S682	5423	202.5	16	98
446	S681	5407	319.5	16	98
447	S680	5391	202.5	16	98
448	S679	5375	319.5	16	98
449	S678	5359	202.5	16	98
450 451	S677	5343 5327	319.5 202.5	16 16	98 98
452	S676 S675	5311	319.5	16	98
453	S674	5295	202.5	16	98
454	S673	5279	319.5	16	98
455	S672	5263	202.5	16	98
456	S671	5247	319.5	16	98
457	S670	5231	202.5	16	98
458	S669	5215	319.5	16	98
459	S668	5199	202.5	16	98
460	S667	5183	319.5	16	98
461	S666	5167	202.5	16	98
462	S665	5151	319.5	16	98
463	S664	5135	202.5	16	98
464	S663	5119	319.5	16	98
465	S662 S661	5103 5087	202.5 319.5	16 16	98 98
466 467	S661 S660	5087	202.5	16	98
468	S659	5055	319.5	16	98
469	S658	5039	202.5	16	98
470	S657	5023	319.5	16	98
471	S656	5007	202.5	16	98
472	S655	4991	319.5	16	98
473	S654	4975	202.5	16	98
474	S653	4959	319.5	16	98
475	S652	4943	202.5	16	98
476	S651	4927	319.5	16	98
477	S650	4911	202.5	16	98
478	S649	4895	319.5	16	98
479	S648	4879	202.5	16	98
480	S647	4863	319.5	16	98
481	S646	4847	202.5	16	98
482 483	S645 S644	4831 4815	319.5 202.5	16 16	98 98
484	S643	4799	319.5	16	98
485	S642	4799	202.5	16	98
486	S641	4767	319.5	16	98
487	S640	4751	202.5	16	98
488	S639	4735	319.5	16	98
489	S638	4719	202.5	16	98
_		_	_	_	

High-Voltage Mixed-Signal IC

#	Pad	Х	Y	W	Н
490	S637	4703	319.5	16	98
491	S636	4687	202.5	16	98
492	S635	4671	319.5	16	98
493	S634	4655	202.5	16	98
494	S633	4639	319.5	16	98
495	S632	4623	202.5	16	98
496 497	S631 S630	4607 4591	319.5 202.5	16 16	98 98
498	S629	4575	319.5	16	98
499	S628	4559	202.5	16	98
500	S627	4543	319.5	16	98
501	S626	4527	202.5	16	98
502	S625	4511	319.5	16	98
503	S624	4495	202.5	16	98
504	S623	4479	319.5	16	98
505	S622	4463	202.5	16	98
506	S621	4447	319.5	16	98
507	S620	4431	202.5	16	98
508 509	S619 S618	4415 4399	319.5 202.5	16 16	98 98
510	S617	4383	319.5	16	98
511	S616	4367	202.5	16	98
512	S615	4351	319.5	16	98
513	S614	4335	202.5	16	98
514	S613	4319	319.5	16	98
515	S612	4303	202.5	16	98
516	S611	4287	319.5	16	98
517	S610	4271	202.5	16	98
518	S609	4255	319.5	16	98
519	S608	4239	202.5	16	98
520	S607	4223	319.5	16	98
521	S606	4207	202.5	16	98
522	S605	4191	319.5	16	98
523	S604	4175	202.5	16	98
524	S603	4159	319.5	16	98
525	S602	4143	202.5	16	98
526	S601	4127	319.5	16	98
527	S600	4111	202.5	16	98
528 529	S599 S598	4095 4079	319.5 202.5	16 16	98 98
530	S597	4079	319.5	16	98
531	S596	4047	202.5	16	98
532	S595	4031	319.5	16	98
533	S594	4015	202.5	16	98
534	S593	3999	319.5	16	98
535	S592	3983	202.5	16	98
536	S591	3967	319.5	16	98
537	S590	3951	202.5	16	98
538	S589	3935	319.5	16	98
539	S588	3919	202.5	16	98
540	S587	3903	319.5	16	98
541	S586	3887	202.5	16	98
542 543	S585 S584	3871	319.5 202.5	16	98
543	S584 S583	3855	202.5 319.5	16 16	98 98
545	S583 S582	3839 3823	202.5	16	98
546	S581	3807	319.5	16	98
547	\$580	3791	202.5	16	98
548	S579	3775	319.5	16	98
549	S578	3759	202.5	16	98
550	S577	3743	319.5	16	98
551	S576	3727	202.5	16	98
552	S575	3711	319.5	16	98
553	S574	3695	202.5	16	98
554	S573	3679	319.5	16	98
555	S572	3663	202.5	16	98
556	S571	3647	319.5	16	98
557	S570	3631	202.5	16	98
558	S569	3615	319.5	16	98
559 560	S568 S567	3599 3583	202.5 319.5	16 16	98 98
561	S566	3567	202.5	16	98
562	S565	3551	319.5	16	98
563	S564	3535	202.5	16	98
564	S563	3519	319.5	16	98
565	S562	3503	202.5	16	98
566	S561	3487	319.5	16	98
567	S560	3471	202.5	16	98
568	S559	3455	319.5	16	98
569	S558	3439	202.5	16	98
309					
570	S557	3423	319.5	16	98
	S557 S556 S555	3423 3407 3391	319.5 202.5 319.5	16 16	98 98 98

#	Pad	Х	Υ	W	Ŧ
573	S554	3375	202.5	16	98
574	S553	3359	319.5	16	98
575	S552	3343	202.5	16	98
576	S551	3327	319.5	16	98
577	S550	3311	202.5	16	98
578	S549	3295	319.5	16	98
579	S548	3279	202.5	16	98
580	S547	3263	319.5	16	98
581	S546	3247	202.5	16	98
582	S545	3231	319.5	16	98
583	S544	3215	202.5	16	98
584	S543	3199	319.5	16	98
585	S542	3183	202.5	16	98
586	S541	3167	319.5	16	98
587	S540	3151	202.5	16	98
588	S539	3135	319.5	16	98
589	S538	3119	202.5	16	98
590	S537	3103	319.5	16	98
591	S536	3087	202.5	16	98
592	S535	3071	319.5	16	98
593	S534	3055	202.5	16	98
594	S533	3039	319.5	16	98
595	S532	3023	202.5	16	98
596	S531	3007	319.5	16	98
597	S530	2991	202.5	16	98
598	S529	2975	319.5	16	98
599	S528	2959	202.5	16	98
600	S527	2943	319.5	16	98
601	S526	2927	202.5	16	98
602	S525	2911	319.5	16	98
603	S524	2895	202.5	16	98
604	S523	2879	319.5	16	98
605	S522	2863	202.5	16	98
606	S521	2847	319.5	16	98
607	S520	2831	202.5	16	98
608	S519	2815	319.5	16	98
609	S518	2799	202.5	16	98
610	S517	2783	319.5	16	98
611	S516	2767 2751	202.5	16	98
612	S515		319.5	16	98
613	S514	2735	202.5	16	98
614	S513	2719	319.5	16	98
615	S512	2703	202.5	16	98
616	S511	2687	319.5	16	98
617	S510	2671	202.5	16	98
618	S509	2655	319.5	16	98
619	S508	2639	202.5	16	98
620	S507	2623	319.5	16	98
621	S506	2607	202.5	16	98
622	S505	2591	319.5	16	98
623	S504	2575	202.5	16	98
624	S503	2559	319.5	16	98
625	S502	2543	202.5	16	98
626	S501	2527	319.5	16	98
627	S500	2511	202.5	16	98
628	S499	2495	319.5	16	98
629	S498	2479	202.5	16	98
630	S497	2463	319.5	16	98
631	S496	2447	202.5	16	98
632	S495	2431	319.5	16	98
633	S494	2415	202.5	16	98
634	S493	2399	319.5	16	98
635	S492	2383	202.5	16	98
636	S491	2367	319.5	16	98
637	S490	2351	202.5	16	98
638	S489	2335	319.5	16	98
639	S488	2319	202.5	16	98
640	S487	2303	319.5	16	98
641	S486	2287	202.5	16	98
642	S485	2271	319.5	16	98
643	S484	2255	202.5	16	98
644	S483	2239	319.5	16	98
645	S482	2223	202.5	16	98
646	S482 S481	2207	319.5	16	98
647	S480	2191	202.5	16	98
648	S479	2175	319.5	16	98
649	S478	2159	202.5	16	98
650	S477	2143	319.5	16	98
651	S476	2127	202.5	16	98
652	S475	2111	319.5	16	98
653	S474	2095	202.5	16	98
654	S473	2079 2063	319.5 202.5	16 16	98
655	S472				98

#	Pad	Х	Υ	W	Н
656	S471	2047	319.5	16	98
657	S470	2031	202.5	16	98
658	S469	2015	319.5	16	98
659	S468	1999	202.5	16	98
660	S467	1983	319.5	16	98
661	S466	1967	202.5	16	98
662	S465	1951	319.5	16	98
663	S464	1935	202.5	16	98
664	S463	1919	319.5	16	98
665	S462	1903	202.5	16	98
666	S461	1887	319.5	16	98
667	S460	1871	202.5	16	98
668	S459	1855	319.5	16	98
669	S458 S457	1839	202.5 319.5	16 16	98 98
670 671	S456	1823	319.5 202.5	16	98
672	S455	1807 1791	319.5	16	98
673	S454	1775	202.5	16	98
674	S453	1759	319.5	16	98
675	S452	1743	202.5	16	98
676	S451	1727	319.5	16	98
677	S450	1711	202.5	16	98
678	S449	1695	319.5	16	98
679	S448	1679	202.5	16	98
680	S447	1663	319.5	16	98
681	S446	1647	202.5	16	98
682	S445	1631	319.5	16	98
683	S444	1615	202.5	16	98
684	S443	1599	319.5	16	98
685	S442	1583	202.5	16	98
686	S441	1567	319.5	16	98
687	S440	1551	202.5	16	98
688	S439	1535	319.5	16	98
689	S438	1519	202.5	16	98
690	S437	1503	319.5	16	98
691	S436	1487	202.5	16	98
692	S435	1471	319.5	16	98
693	S434	1455	202.5	16	98
694	S433	1439	319.5	16	98
695	S432	1423	202.5	16	98
696	S431	1407	319.5	16	98
697	S430	1391	202.5	16	98
698	S429	1375	319.5	16	98
699	S428	1359	202.5	16	98
700	S427	1343	319.5	16	98
701	S426	1327	202.5	16	98
702	S425	1311	319.5	16	98
703	S424	1295	202.5	16	98
704	S423	1279	319.5	16	98
705	S422	1263	202.5	16	98
706	S421	1247	319.5	16	98
707	S420	1231	202.5	16	98
708	S419	1215	319.5	16	98
709	S418	1199	202.5	16	98
710	S417	1183	319.5	16	98
711	S416	1167	202.5	16	98
712	S415	1151	319.5	16	98
713	S414	1135	202.5	16	98
714	S413	1119	319.5	16	98
715	S412	1103	202.5	16	98
716	S411	1087	319.5	16	98
717	S410	1071	202.5	16	98
718	S409	1055	319.5	16	98
719	S408	1039	202.5	16	98
720	S407	1023	319.5	16	98
721	S406	1007	202.5	16	98
722	S405	991	319.5	16	98
723	S404	975	202.5	16	98
724	S403	959	319.5	16	98
725	S402	943	202.5	16	98
726	S401	927	319.5	16	98
727	S400	911	202.5	16	98
	S399	895	319.5	16	98
728	S398	879	202.5	16	98
729	0007	863	319.5	16	98
729 730	S397		202 -	40	98
729 730 731	S396	847	202.5	16	
729 730 731 732	S396 S395	847 831	319.5	16	98
729 730 731 732 733	\$396 \$395 \$394	847 831 815	319.5 202.5	16 16	98 98
729 730 731 732 733 734	\$396 \$395 \$394 \$393	847 831 815 799	319.5 202.5 319.5	16 16 16	98 98 98
729 730 731 732 733 734 735	\$396 \$395 \$394 \$393 \$392	847 831 815 799 783	319.5 202.5 319.5 202.5	16 16 16	98 98 98 98
729 730 731 732 733 734	\$396 \$395 \$394 \$393	847 831 815 799	319.5 202.5 319.5	16 16 16	98 98 98

#	Pad	Х	Υ	W	Н
739	S388	719	202.5	16	98
740	S387	703	319.5	16	98
741	S386	687	202.5	16	98
742	S385	671	319.5	16	98
743	S384	655	202.5	16	98
744	S383	639	319.5	16	98
745	S382	623	202.5	16	98
746	S381	607	319.5	16	98
747	S380	591	202.5	16	98
748	S379	575	319.5	16	98
749	S378	559	202.5	16	98
750	S377	543	319.5	16	98
751	S376	527	202.5	16	98
752	S375	511	319.5	16	98
753	S374	495	202.5	16	98
754	S373	479	319.5	16	98
755	S372	463	202.5	16	98
756	S371	447	319.5	16	98
757	S370	431	202.5	16	98
758	S369	415	319.5	16	98
759	S368	399	202.5	16	98
760	S367	383	319.5	16	98
761	S366	367	202.5	16	98
762	S365	351	319.5	16	98
763	S364	335	202.5	16	98
764	S363	319	319.5	16	98
765	S362	303	202.5	16	98
766	S361	287	319.5	16	98
767	DUMMY	271	202.5	16	98
768	DUMMY	-271	202.5	16	98
769	S360	-287	319.5	16	98
770	S359	-303	202.5	16	98
771	S358	-319	319.5	16	98
772	S357	-335	202.5	16	98
773	S356	-351	319.5	16	98
774	S355	-367	202.5	16	98
775	S354	-383	319.5	16	98
776	S353	-399	202.5	16	98
777	S352	-415	319.5	16	98
778	S351	-431	202.5	16	98
779	S350	-447	319.5	16	98
780	S349	-463	202.5	16	98
781	S348	-479	319.5	16	98
782	S347	-495	202.5	16	98
783	S346	-511	319.5	16	98
784	S345	-527	202.5	16	98
785	S344	-543	319.5	16	98
786	S343	-559	202.5	16	98
787	S342	-575	319.5	16	98
788	S341	-591	202.5	16	98
789	S340	-607	319.5	16	98
790	S339	-623	202.5	16	98
791	S338	-639	319.5	16	98
792	S337	-655	202.5	16	98
793	S336	-671	319.5	16	98
794	S335	-687	202.5	16	98
795	S334	-703	319.5	16	98
796	S333	-719	202.5	16	98
797	S332	-735	319.5	16	98
798	S331	-751	202.5	16	98
799	S330	-767	319.5	16	98
800	S329	-783	202.5	16	98
801	S328	-799	319.5	16	98
802	S327	-815	202.5	16	98
803	S326	-831	319.5	16	98
804	S325	-847	202.5	16	98
805	S324	-863	319.5	16	98
806	S323	-879	202.5	16	98
807	S322	-895	319.5	16	98
808	S321	-911	202.5	16	98
809	S320	-927	319.5	16	98
810	S319	-943	202.5	16	98
811	S318	-959	319.5	16	98
812	S317	-975	202.5	16	98
813	S316	-991	319.5	16	98
814	S315	-1007	202.5	16	98
815	S314	-1023	319.5	16	98
816	S313	-1039	202.5	16	98
817	S312	-1055	319.5	16	98
818	S311	-1071	202.5	16	98
819	S310	-1087	319.5	16	98
820	S309	-1103	202.5	16	98
821	S308	-1119	319.5	16	98

#	Pad	Х	Υ	W	Ŧ
822	S307	-1135	202.5	16	98
823	S306	-1151	319.5	16	98
824	S305	-1167	202.5	16	98
825	S304	-1183	319.5	16	98
826	S303	-1199	202.5	16	98
827	S302	-1215	319.5	16	98
828	S301	-1231	202.5	16	98
829	S300	-1247	319.5	16	98
830	S299	-1263	202.5	16	98
831	S298	-1279	319.5	16	98
832	S297	-1295	202.5	16	98
833	S296	-1311	319.5	16	98
834	S295	-1327	202.5	16	98
835	S294	-1343		16	98
		-1359			
836	S293		202.5	16	98
837	S292	-1375	319.5	16	98
838	S291	-1391	202.5	16	98
839	S290	-1407	319.5	16	98
840	S289	-1423	202.5	16	98
841	S288	-1439	319.5	16	98
842	S287	-1455	202.5	16	98
843	S286	-1471	319.5	16	98
844	S285	-1487	202.5	16	98
845	S284	-1503	319.5	16	98
846	S283	-1519	202.5	16	98
847	S282	-1535	319.5	16	98
848	S281	-1551	202.5	16	98
849	S280	-1567	319.5	16	98
850	S279	-1583	202.5	16	98
851	S278	-1599	319.5	16	98
852	S277	-1615	202.5	16	98
853	S276	-1631	319.5	16	98
854	S275	-1647	202.5	16	98
855	S274	-1663	319.5	16	98
856	S273	-1679	202.5	16	98
857	S272	-1695	319.5	16	98
858	S271	-1711	202.5	16	98
859	S270	-1727	319.5	16	98
	S269	-1743	202.5	16	98
860 861		-1759		16	98
	S268				
862	S267	-1775	202.5	16	98
863	S266	-1791	319.5	16	98
864	S265	-1807	202.5	16	98
865	S264	-1823	319.5	16	98
866	S263	-1839	202.5	16	98
867	S262	-1855	319.5	16	98
868	S261	-1871	202.5	16	98
869	S260	-1887	319.5	16	98
870	S259	-1903	202.5	16	98
871	S258	-1919	319.5	16	98
872	S257	-1935	202.5	16	98
873	S256	-1951	319.5	16	98
874	S255	-1967	202.5	16	98
875	S254	-1983	319.5	16	98
876	S253	-1999	202.5	16	98
877	S252	-2015	319.5	16	98
878	S251	-2031	202.5	16	98
879	S250	-2047	319.5	16	98
880	S249	-2063	202.5	16	98
881	S248	-2079	319.5	16	98
882	S247	-2095	202.5	16	98
883	S246	-2111	319.5	16	98
884	S245	-2127	202.5	16	98
885	S244	-2143	319.5	16	98
886	S243	-2159	202.5	16	98
887	S242	-2175	319.5	16	98
888	S241	-2191	202.5	16	98
889	S240	-2207	319.5	16	98
890	S239	-2223	202.5	16	98
891	S238	-2239	319.5	16	98
892	S237	-2255	202.5	16	98
893	S236	-2271	319.5	16	98
894	S235	-2287	202.5	16	98
895	S234	-2303	319.5	16	98
896	S233	-2319	202.5	16	98
897	S232	-2335	319.5	16	98
898	S232	-2351	202.5	16	98
899	S230	-2367	319.5	16	98
	S230 S229				98
900	S229 S228	-2383 -2399	202.5 319.5	16	98
		-2399		16	
902	S227	-2415	202.5	16	98
903	S226		319.5	16	98
904	S225	-2447	202.5	16	98

#	Pad	X	Y	W	Н
905	S224	-2463	319.5	16	98
906	S223	-2479	202.5	16	98
907	S222	-2495	319.5	16	98
908	S221	-2511	202.5	16	98
909	S220 S219	-2527	319.5	16	98
910		-2543	202.5	16	98 98
911 912	S218	-2559	319.5 202.5	16	
913	S217 S216	-2575 -2591	202.5 319.5	16 16	98 98
914	S215		202.5	16	98
915		-2607			98
916	S214 S213	-2623	319.5 202.5	16 16	98
917	S213	-2639 -2655	319.5	16	98
918	S211	-2671	202.5	16	98
919	S210	-2687	319.5	16	98
920	S209	-2703	202.5	16	98
921	S208	-2719	319.5	16	98
922	S207	-2735	202.5	16	98
923	S206	-2751	319.5	16	98
924	S205	-2767	202.5	16	98
925	S203	-2783	319.5	16	98
		-2799		16	98
926	S203		202.5		
927	S202	-2815	319.5	16	98
928	S201	-2831	202.5	16	98
929	S200	-2847	319.5	16	98
930	S199	-2863	202.5	16	98
931	S198	-2879	319.5	16	98
932	S197	-2895	202.5	16	98
933	S196	-2911	319.5	16	98
934	S195	-2927	202.5	16	98
935	S194	-2943	319.5	16	98
936	S193	-2959	202.5	16	98
937	S192	-2975	319.5	16	98
938	S191	-2991	202.5	16	98
939	S190	-3007	319.5	16	98
940	S189	-3023	202.5	16	98
941	S188	-3039	319.5	16	98
942	S187	-3055	202.5	16	98
943	S186	-3071	319.5	16	98
944	S185	-3087	202.5	16	98
945	S184	-3103	319.5	16	98
946	S183	-3119	202.5	16	98
947	S182	-3135	319.5	16	98
948	S181	-3151	202.5	16	98
949	S180 S179	-3167	319.5	16	98
950		-3183	202.5	16	98
951	S178	-3199	319.5	16	98
952	S177	-3215	202.5	16	98
953 954	S176 S175	-3231	319.5	16	98
955	S173	-3247	202.5 319.5	16	98 98
		-3263		16	_
956	S173	-3279 -3295	202.5	16	98
957	S172		319.5	16	98
958	S171	-3311	202.5	16	98 98
959	S170 S160	-3327	319.5	16	
960 961	S169 S168	-3343 -3359	202.5 319.5	16 16	98 98
301	S108	-337F	319.5	16	98
962	S167	-3375	319.5	16	98
964	S165	-3391	202.5	16	98
965	S164	-3407	319.5	16	98
966	S163	-3439	202.5	16	98
967	S162	-3455	319.5	16	98
968	S161	-3471	202.5	16	98
969	S160	-3487	319.5	16	98
970	S159	-3503	202.5	16	98
971	S158	-3519	319.5	16	98
972	S157	-3535	202.5	16	98
973	S156	-3551	319.5	16	98
974	S155	-3567	202.5	16	98
975	S154	-3583	319.5	16	98
976	S153	-3599	202.5	16	98
977	S152	-3615	319.5	16	98
978	S152	-3631	202.5	16	98
010	S150		319.5	16	98
	S149	-3647			
979	J149	-3663		16	98
979 980	S1/Ω	-3679	319.5	16	98
979 980 981	S148		202 =	10	
979 980 981 982	S147	-3695	202.5	16	98
979 980 981 982 983	S147 S146	-3695 -3711	319.5	16	98
979 980 981 982 983 984	S147 S146 S145	-3695 -3711 -3727	319.5 202.5	16 16	98 98
979 980 981 982 983	S147 S146	-3695 -3711	319.5	16	98

ш	Dod	v	Υ	10/	
#	Pad	X 0704		W	Н
988	S141	-3791	202.5	16	98
989	S140	-3807	319.5	16	98
990	S139	-3823	202.5	16	98
991	S138	-3839	319.5	16	98
992	S137	-3855	202.5	16	98
993	S136	-3871	319.5	16	98
994	S135	-3887	202.5	16	98
995	S134	-3903	319.5	16	98
996	S133	-3919	202.5	16	98
997	S132	-3935	319.5	16	98
998	S131	-3951	202.5	16	98
999	S130	-3967	319.5	16	98
		-3983			
1000	S129		202.5	16	98
1001	S128	-3999	319.5	16	98
1002	S127	-4015	202.5	16	98
1003	S126	-4031	319.5	16	98
1004	S125	-4047	202.5	16	98
1005	S124	-4063	319.5	16	98
1006	S123	-4079	202.5	16	98
1007	S122	-4095	319.5	16	98
1008	S121	-4111	202.5	16	98
1009	S120	-4127	319.5	16	98
1010	S119	-4143	202.5	16	98
1011	S118	-4159	319.5	16	98
1012	S117	-4175	202.5	16	98
1013	S116	-4191	319.5	16	98
1014	S115	-4207	202.5	16	98
1015	S114	-4223	319.5	16	98
1016	S113	-4239	202.5	16	98
				16	98
1017	S112	-4255	319.5	_	_
1018	S111	-4271	202.5	16	98
1019	S110	-4287	319.5	16	98
1020	S109	-4303	202.5	16	98
1021	S108	-4319	319.5	16	98
1022	S107	-4335	202.5	16	98
1023	S106	-4351	319.5	16	98
1024	S105	-4367	202.5	16	98
1025	S104	-4383	319.5	16	98
1026				16	
	S103	-4399			98
1027	S102	-4415	319.5	16	98
1028	S101	-4431	202.5	16	98
1029	S100	-4447	319.5	16	98
1030	S99	-4463	202.5	16	98
1031	S98	-4479	319.5	16	98
1032	S97	-4495	202.5	16	98
1033	S96	-4511	319.5	16	98
1034	S95	-4527	202.5	16	98
1035	S94	-4543	319.5	16	98
					_
1036	S93	-4559	202.5	16	98
1037	S92	-4575	319.5	16	98
1038	S91	-4591	202.5	16	98
1039	S90	-4607	319.5	16	98
1040	S89	-4623	202.5	16	98
1041	S88	-4639	319.5	16	98
1042	S87	-4655	202.5	16	98
1043	S86	-4671	319.5	16	98
1044	S85	-4687	202.5	16	98
1044	S84	-4703	319.5	16	98
		-4719	202.5		
1046	S83			16	98
1047	S82	-4735	319.5	16	98
1048	S81	-4751	202.5	16	98
1049	S80	-4767	319.5	16	98
1050	S79	-4783	202.5	16	98
1051	S78	-4799	319.5	16	98
1052	S77	-4815	202.5	16	98
1053	S76	-4831	319.5	16	98
1054	S75	-4847	202.5	16	98
1055	S74	-4863	319.5	16	98
		-4879	202.5	16	98
	573				98
1056	S73			16	70
1057	S72	-4895	319.5	16	
1057 1058	S72 S71	-4895 -4911	319.5 202.5	16	98
1057 1058 1059	\$72 \$71 \$70	-4895 -4911 -4927	319.5 202.5 319.5	16 16	98 98
1057 1058	S72 S71	-4895 -4911	319.5 202.5	16	98
1057 1058 1059	\$72 \$71 \$70	-4895 -4911 -4927	319.5 202.5 319.5	16 16	98 98
1057 1058 1059 1060	\$72 \$71 \$70 \$69	-4895 -4911 -4927 -4943 -4959	319.5 202.5 319.5 202.5	16 16 16	98 98 98
1057 1058 1059 1060 1061 1062	\$72 \$71 \$70 \$69 \$68 \$67	-4895 -4911 -4927 -4943	319.5 202.5 319.5 202.5 319.5 202.5	16 16 16 16	98 98 98 98
1057 1058 1059 1060 1061 1062 1063	\$72 \$71 \$70 \$69 \$68 \$67 \$66	-4895 -4911 -4927 -4943 -4959 -4975 -4991	319.5 202.5 319.5 202.5 319.5 202.5 319.5	16 16 16 16 16	98 98 98 98 98
1057 1058 1059 1060 1061 1062 1063 1064	\$72 \$71 \$70 \$69 \$68 \$67 \$66 \$65	-4895 -4911 -4927 -4943 -4959 -4975 -4991 -5007	319.5 202.5 319.5 202.5 319.5 202.5 319.5 202.5	16 16 16 16 16 16	98 98 98 98 98 98
1057 1058 1059 1060 1061 1062 1063 1064 1065	\$72 \$71 \$70 \$69 \$68 \$67 \$66 \$65 \$64	-4895 -4911 -4927 -4943 -4959 -4975 -4991 -5007 -5023	319.5 202.5 319.5 202.5 319.5 202.5 319.5 202.5 319.5	16 16 16 16 16 16 16	98 98 98 98 98 98 98
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066	\$72 \$71 \$70 \$69 \$68 \$67 \$66 \$65 \$64	-4895 -4911 -4927 -4943 -4959 -4975 -4991 -5007 -5023 -5039	319.5 202.5 319.5 202.5 319.5 202.5 319.5 202.5 319.5 202.5 319.5 202.5	16 16 16 16 16 16 16 16	98 98 98 98 98 98 98 98
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067	\$72 \$71 \$70 \$69 \$68 \$67 \$66 \$65 \$64 \$63 \$62	-4895 -4911 -4927 -4943 -4959 -4975 -4991 -5007 -5023 -5039 -5055	319.5 202.5 319.5 202.5 319.5 202.5 319.5 202.5 319.5 202.5 319.5 202.5 319.5	16 16 16 16 16 16 16 16	98 98 98 98 98 98 98 98
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066	\$72 \$71 \$70 \$69 \$68 \$67 \$66 \$65 \$64	-4895 -4911 -4927 -4943 -4959 -4975 -4991 -5007 -5023 -5039	319.5 202.5 319.5 202.5 319.5 202.5 319.5 202.5 319.5 202.5 319.5 202.5	16 16 16 16 16 16 16 16	98 98 98 98 98 98 98 98
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067	\$72 \$71 \$70 \$69 \$68 \$67 \$66 \$65 \$64 \$63 \$62	-4895 -4911 -4927 -4943 -4959 -4975 -4991 -5007 -5023 -5039 -5055	319.5 202.5 319.5 202.5 319.5 202.5 319.5 202.5 319.5 202.5 319.5 202.5 319.5	16 16 16 16 16 16 16 16	98 98 98 98 98 98 98 98

#	Pad	Х	Υ	W	Н
1071	S58	-5119	319.5	16	98
1072	S57	-5135	202.5	16	98
1073	S56	-5151	319.5	16	98
1074	S55	-5167	202.5	16	98
1075	S54	-5183	319.5	16	98
1076	S53	-5199	202.5	16	98
1077	S52	-5215	319.5	16	98
1078	S51	-5231	202.5	16	98
1079	S50	-5247	319.5	16	98
1080	S49	-5263	202.5	16	98
1081	S48	-5279	319.5	16	98
1082	S47	-5295	202.5	16	98
1083	S46	-5311	319.5	16	98
1084	S45	-5327	202.5	16	98
1085	S44	-5343	319.5	16	98
1086	S43	-5359	202.5	16	98
1087	S42	-5375	319.5	16	98
1088	S41	-5391	202.5	16	98
1089	S40	-5407	319.5	16	98
1090	S39	-5423	202.5	16	98
1091	S38	-5439	319.5	16	98
1092	S37	-5455	202.5	16	98
1093	S36	-5471	319.5	16	98
1094	S35	-5487	202.5	16	98
1095	S34	-5503	319.5	16	98
1096	S33	-5519	202.5	16	98
1097	S32	-5535	319.5	16	98
1098	S31	-5551	202.5	16	98
1099	S30	-5567	319.5	16	98
1100	S29	-5583	202.5	16	98
1101	S28	-5599	319.5	16	98
1102	S27	-5615	202.5	16	98
1103	S26	-5631	319.5	16	98
1104	S25	-5647	202.5	16	98
1105	S24	-5663	319.5	16	98
1106	S23	-5679	202.5	16	98
1107	S22	-5695	319.5	16	98
1108	S21	-5711	202.5	16	98
1109	S20	-5727	319.5	16	98
1110	S19	-5743	202.5	16	98
1111	S18	-5759	319.5	16	98
1112	S17	-5775	202.5	16	98
1113	S16	-5791	319.5	16	98
1114	S15	-5807	202.5	16	98
1115	S14	-5823	319.5	16	98
1116	S13	-5839	202.5	16	98
1117	S12	-5855	319.5	16	98
1118	S11	-5871	202.5	16	98
1119	S10	-5887	319.5	16	98
1120	S9	-5903	202.5	16	98
1121	S8	-5919	319.5	16	98
1122	S7	-5935	202.5	16	98
1123	S6	-5951	319.5	16	98
1124	S5	-5967	202.5	16	98
1125	S4	-5983	319.5	16	98
1126	S3	-5999	202.5	16	98
1127	S2	-6015	319.5	16	98
1128	S1	-6031	202.5	16	98
1129	DUMMY	-6047	319.5	16	98
1130	DUMMY	-6083	319.5	16	98
1131	G1	-6099	202.5	16	98
1132	G3	-6115	319.5	16	98
1133	G5	-6131	202.5	16	98
1134	G7	-6147	319.5	16	98
1135	G9	-6163	202.5	16	98
1136	G11	-6179	319.5	16	98
1137	G13	-6195	202.5	16	98
1138	G15	-6211	319.5	16	98
1139	G17	-6227	202.5	16	98
1140	G19	-6243	319.5	16	98
1141	G21	-6259	202.5	16	98
1142	G23	-6275	319.5	16	98
1143	G25	-6291	202.5	16	98
1144	G27	-6307	319.5	16	98
1145	G29	-6323	202.5	16	98
1146	G31	-6339	319.5	16	98
1147	G33	-6355	202.5	16	98
1148	G35	-6371	319.5	16	98
1149	G37	-6387	202.5	16	98
1150	G39	-6403	319.5	16	98
1151	G41	-6419	202.5	16	98
1152	G43	-6435	319.5	16	98
1153	G45	-6451	202.5	16	98

#	Pad	Х	Υ	W	Н
1154	G47	-6467	319.5	16	98
1155	G49	-6483	202.5	16	98
1156 1157	G51 G53	-6499 -6515	319.5 202.5	16 16	98 98
1157	G55	-6531	202.5 319.5	16	98
1159	G57	-6547	202.5	16	98
1160	G59	-6563	319.5	16	98
1161	G61	-6579	202.5	16	98
1162	G63	-6595	319.5	16	98
1163	G65	-6611	202.5	16	98
1164	G67	-6627	319.5	16	98
1165	G69	-6643	202.5	16	98
1166	G71	-6659	319.5	16	98
1167	G73	-6675	202.5 319.5	16	98
1168 1169	G75 G77	-6691 -6707	202.5	16 16	98 98
1170	G79	-6723	319.5	16	98
1171	G81	-6739	202.5	16	98
1172	G83	-6755	319.5	16	98
1173	G85	-6771	202.5	16	98
1174	G87	-6787	319.5	16	98
1175	G89	-6803	202.5	16	98
1176	G91	-6819	319.5	16	98
1177	G93	-6835	202.5	16	98
1178 1179	G95 G97	-6851 -6867	319.5 202.5	16 16	98 98
1180	G97 G99	-6883	319.5	16	98
1181	G101	-6899	202.5	16	98
1182	G103	-6915	319.5	16	98
1183	G105	-6931	202.5	16	98
1184	G107	-6947	319.5	16	98
1185	G109	-6963	202.5	16	98
1186	G111	-6979	319.5	16	98
1187	G113	-6995	202.5	16	98
1188 1189	G115 G117	-7011 -7027	319.5 202.5	16 16	98 98
1190	G119	-7027	202.5 319.5	16	98
1191	G121	-7059	202.5	16	98
1192	G123	-7075	319.5	16	98
1193	G125	-7091	202.5	16	98
1194	G127	-7107	319.5	16	98
1195	G129	-7123	202.5	16	98
1196	G131	-7139	319.5	16	98
1197	G133	-7155	202.5	16	98
1198	G135 G137	-7171 -7187	319.5 202.5	16 16	98 98
1200	G139	-7203	202.5 319.5	16	98
1201	G141	-7219	202.5	16	98
1202	G143	-7235	319.5	16	98
1203	G145	-7251	202.5	16	98
1204	G147	-7267	319.5	16	98
1205	G149	-7283	202.5	16	98
1206	G151	-7299	319.5	16	98
1207	G153	-7315	202.5	16	98
1208	G155	-7331	319.5	16	98
1209 1210	G157 G159	-7347	202.5 319.5	16 16	98 98
1211	G161	-7363 -7379	202.5	16	98
1212	G163	-7395	319.5	16	98
1213	G165	-7411	202.5	16	98
1214	G167	-7427	319.5	16	98
1215	G169	-7443	202.5	16	98
1216	G171	-7459	319.5	16	98
1217	G173	-7475	202.5	16	98
1218	G175	-7491	319.5	16	98
1219	G177	-7507	202.5	16	98
1220 1221	G179 G181	-7523 -7539	319.5 202.5	16 16	98
1221	G183	-7555	319.5	16	98
1223	G185	-7571	202.5	16	98
1224	G187	-7587	319.5	16	98
1225	G189	-7603	202.5	16	98
1226	G191	-7619	319.5	16	98
1227	G193	-7635	202.5	16	98
1228	G195	-7651	319.5	16	98
1229	G197	-7667	202.5	16	98
1230 1231	G199 G201	-7683	319.5	16 16	98
	G201	-7699 -7715	202.5 319.5	16	98 98
					98
1232	G205	-//31	202.5	10	
1232 1233 1234	G205 G207	-7731 -7747	202.5 319.5	16 16	98
1233					

240RGBx320 TFT Controller-Driver

#	Pad	Х	Υ	W	Н
1237	G213	-7795	202.5	16	98
1238	G215	-7811	319.5	16	98
1239	G217	-7827	202.5	16	98
1240	G219	-7843	319.5	16	98
1241	G221	-7859	202.5	16	98
1242	G223	-7875	319.5	16	98
1243	G225	-7891	202.5	16	98
1244	G227	-7907	319.5	16	98
1245	G229	-7923	202.5	16	98
1246	G231	-7939	319.5	16	98
1247	G233	-7955	202.5	16	98
1248	G235	-7971	319.5	16	98
1249	G237	-7987	202.5	16	98
1250	G239	-8003	319.5	16	98
1251	G241	-8019	202.5	16	98
1252	G243	-8035	319.5	16	98
1253	G245	-8051	202.5	16	98
1254	G247	-8067	319.5	16	98
1255	G249	-8083	202.5	16	98

#	Pad	Х	Υ	W	н
1256	G251	-8099	319.5	16	98
1257	G253	-8115	202.5	16	98
1258	G255	-8131	319.5	16	98
1259	G257	-8147	202.5	16	98
1260	G259	-8163	319.5	16	98
1261	G261	-8179	202.5	16	98
1262	G263	-8195	319.5	16	98
1263	G265	-8211	202.5	16	98
1264	G267	-8227	319.5	16	98
1265	G269	-8243	202.5	16	98
1266	G271	-8259	319.5	16	98
1267	G273	-8275	202.5	16	98
1268	G275	-8291	319.5	16	98
1269	G277	-8307	202.5	16	98
1270	G279	-8323	319.5	16	98
1271	G281	-8339	202.5	16	98
1272	G283	-8355	319.5	16	98
1273	G285	-8371	202.5	16	98
1274	G287	-8387	319.5	16	98

#	Pad	X	Υ	w	н
			•		
1275	G289	-8403	202.5	16	98
1276	G291	-8419	319.5	16	98
1277	G293	-8435	202.5	16	98
1278	G295	-8451	319.5	16	98
1279	G297	-8467	202.5	16	98
1280	G299	-8483	319.5	16	98
1281	G301	-8499	202.5	16	98
1282	G303	-8515	319.5	16	98
1283	G305	-8531	202.5	16	98
1284	G307	-8547	319.5	16	98
1285	G309	-8563	202.5	16	98
1286	G311	-8579	319.5	16	98
1287	G313	-8595	202.5	16	98
1288	G315	-8611	319.5	16	98
1289	G317	-8627	202.5	16	98
1290	G319	-8643	319.5	16	98
1291	DUMMY	-8659	202.5	16	98

TRAY INFORMATION

High-Voltage Mixed-Signal IC

REVISION HISTORY

Revision	Contents	Date
0.6	First release	Apr. 9, '09
	First release (1) Reference voltage for interface pin input, I/OVCC, is adjusted. 1.8~3.3V → 1.65~3.3V (Section "Feature Highlights", page 4) (2) The table for register VC[2:0] is extended with a column for VsN. (Section "Command Description" – (16) Power Control 1~4, page 30) Legacy content of 6800 mode are removed: (3) Settings "0000" and "1000" of IM[3:0] are removed. (Section "Pin Description", page 7) (4) The main table and the content are updated accordingly. (Section "Host Interface", Pp 51-54) (5) The drawings are removed. (Section "Host Interface Reference Circuit", page 59~60) (6) VDD is renamed as VD1. VDD3 is renamed as IOVcc. VDD4 is renamed as VD4. (overall) (7) The "Reference Adjustment" table is corrected. (Section "Variable resistor", page 69) (8) The Gamma Curve chart is corrected. (Section "Gamma Voltage Formula", page 72) (9) VsN (Min.): −2.3 → −2.75 V VIL (Max.): 0.2 IOVcc → 0.15 IOVcc V VIH (Min.): 0.8 IOVcc → 0.85 IOVcc V VIH (Min.): 0.8 IOVcc → 0.85 IOVcc V VIL (Max.): 0 x IOVcc V VIL (Max.): 0 x IOVcc V VIL (Min.): 1 x IOVcc V (Section "Specifications" – DC Characteristics, page 79)	
	(11) Power consumption data present.(Section "Specifications" – Power Consumption, page 79)	
	(12) AC timings present. (Section "AC Characteristics", page 80~83)	