

JAMES J. HAMILL TIMOTHY E. LEVSTIK JOSEPH E. SHIPLEY KENNETH H. SAMPLES PHILIP T. PETTI JOSEPH T. NABOR STEVEN C. SCHROER RICHARD A. KABA KARL R. FINK MARK W. HETZLER TIMOTHY P. MALONEY JAMES P. KRUEGER STEPHEN S. FAVAKEH EDWARD W. GRAY, JR. RICHARD E. WAWRZYNIAK STEVEN G. PARMELEE SHERRI N. BLOUNT* BRUCE R. MANSFIELD KENDREW H. COLTON* G. PAUL EDGELL* RICHARD W. SCHUMACHER

MICHAEL A. SANZO*

FITCH, EVEN, TABIN & FLANNERY

ATTORNEYS AND COUNSELLORS AT LAW

Established in 1859

SUITE 401L - 1801 K STREET, NW WASHINGTON, D.C. 20006-1201 TELEPHONE (202) 419-7000 FACSIMILE (202) 419-7007

ILLINOIS OFFICE

SUITE 1600 - 120 SOUTH LA SALLE STREET, CHICAGO, ILLINOIS 60603-3406 TELEPHONE (312) 577-7000

CALIFORNIA OFFICE

SUITE 250 - 9276 SCRANTON ROAD, SAN DIEGO, CA 92121-7707 TELEPHONE (858) 552-1311

COLORADO OFFICE

SUITE 213 - 1942 BROADWAY, BOULDER, COLORADO 80302 TELEPHONE (303) 402-6966

March 11, 2004

CHRISTOPHER E. GEORGE* SCOTT J. MENGHIN EDWARD E. CLAIR SANDRA V. SCAVO JON A. BIRMINGHAM RUDY KRATZ RAMON R. HOCH JOHN E. LYHUS STEVEN M. FREELAND DONNA E. BECKER SEAN R. O'DOWD MICHAEL G. VRANICAR BRIAN S. CLISE MARTIN R. BADER DEREK L. PRESTIN MARK A. BORSOS DAVID R. JAGLOWSKI W. BRIAN EDGE

PATENT AGENTS

ERIC J. WHITESELL JONATHAN H. BACKENSTOSE LILIA I. SAFONOV

OF COUNSEL

THOMAS F. LEBENS GEORGE W. SPELLMIRE, JR. LISA M. SOMMER

*ADMITTED TO D.C. BAR; D.C. PRACTICE OF ALL OTHERS LIMITED TO FEDERAL COURTS AND AGENCIES

Commissioner of Patents
U.S. Patent and Trademark Office
2011 South Clark Place
Customer Window
Crystal Plaza Two, Lobby, Room 1B03
Arlington, VA 22202

Re:

Submission of Priority Document

Appl. No.:

10/784,914

Filed:

February 24, 2004

Title:

Process for the Preparation of

L-Amino Acids Using Strains of the

Enterobacteriaceae Family

Inventor(s):

Rieping, Mechthild

Atty. Dkt.:

7601/80980

Dear Sir:

The following documents are being forwarded for appropriate action by the U.S. Patent and Trademark Office:

- 1. Submission of Priority Document in Accordance with the Requirements of Rule 55 with certified copy of DE 10 2004 003 410.9 attached; and
- 2. Return postcard.

Commissioner of Patents March 11, 2004 Page 2

Applicant does not believe that any fee is due for the filing of these documents. However, the Commissioner is hereby authorized to charge any fee deficiency with respect to this filing and any other fee required in connection with the present case, or credit any overpayment, to our Deposit Account No. 06-1135 under Order No. 7601/80980.

It is respectfully requested that the enclosed postcard be stamped with the date the enclosed documents are received by the PTO and that it be returned as soon as possible.

Very truly yours,

FITCH, EVEN, TABIN & FLANNERY

Muhael A. Sang

Michael A. Sanzo Reg. No. 36,912

Attorney for Applicant

MAS:ct Enclosures

ED STATES PATENT AND TRADEMARK OFFICE

re patent application of:

Rieping, Mechthild

Appl. No.: 10/784,914

Filed: February 24, 2004

Process for the Preparation of For:

L-Amino Acids Using Strains of the Enterobacteriaceae Family

Art Unit: to be assigned

Examiner: to be assigned

Atty. Dkt.: 7601/80980

Submission of Priority Document in Accordance with the Requirements of Rule 55

Commissioner of Patents U.S. Patent and Trademark Office 2011 South Clark Place Customer Window Crystal Plaza Two, Lobby, Room 1B03 Arlington, VA 22202

Sir:

Please accept the enclosed certified copy of priority documents DE 10 2004 003 410.9, filed on January 23, 2004, for which benefit under 35 U.S.C. § 119/365 is being claimed in the above-captioned application. In the event priority to the enclosed foreign application has not been claimed, it is claimed hereby.

Respectfully submitted,

FITCH, EVEN, TABIN & FLANNERY

Michael A. Sanzo

Reg. No. 36,912

Attorney for Applicant

2004 1801 K Street, N.W., Suite 401L

Washington, DC 20006-1201

Phone: (202) 419-7013

BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

10 2004 003 410.9

Anmeldetag:

23. Januar 2004

Anmelder/Inhaber:

Degussa AG,

40474 Düsseldorf/DE

Bezeichnung:

Verfahren zur Herstellung von L-Aminosäuren

unter Verwendung von Stämmen der Familie

Enterobacteriaceae

IPC:

C 12 N 1/21

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

> München, den 26. Februar 2004 **Deutsches Patent- und Markenamt** Der Präsident Im Auftrag

Klostermeyer

Verfahren zur Herstellung von L-Aminosäuren unter Verwendung von Stämmen der Familie Enterobacteriaceae

Diese Erfindung betrifft ein Verfahren zur Herstellung von L-Aminosäuren, insbesondere L-Threonin, unter Verwendung von Stämmen der Familie Enterobacteriaceae, in denen das eno-Gen verstärkt wird.

Stand der Technik

L-Aminosäuren, insbesondere L-Threonin, finden in der Humanmedizin und in der pharmazeutischen Industrie, in der 10 Lebensmittelindustrie und ganz besonders in der Tierernährung Anwendung.

Es ist bekannt, dass L-Aminosäuren durch Fermentation von Stämmen der Enterobacteriaceae, insbesondere Escherichia coli (E. coli) und Serratia marcescens, hergestellt werden.

- 15 Wegen der großen Bedeutung wird ständig an der Verbesserung der Herstellverfahren gearbeitet. Verfahrensverbesserungen können fermentationstechnische Maßnahmen, wie z.B. Rührung und Versorgung mit Sauerstoff, oder die Zusammensetzung der Nährmedien wie z.B. die Zuckerkonzentration während der
- 20 Fermentation, oder die Aufarbeitung zur Produktform, durch z.B. Ionenaustauschchromatographie, oder die intrinsischen Leistungseigenschaften des Mikroorganismus selbst betreffen.

Zur Verbesserung der Leistungseigenschaften dieser
Mikroorganismen werden Methoden der Mutagenese, Selektion und Mutantenauswahl angewendet. Auf diese Weise erhält man Stämme, die resistent gegen Antimetabolite wie z.B. das Threonin-Analogon α-Amino-β-Hydroxyvaleriansäure (AHV) oder auxotroph für regulatorisch bedeutsame Metabolite sind und
L-Aminosäuren wie z.B. L-Threonin produzieren.

Seit einigen Jahren werden ebenfalls Methoden der rekombinanten DNA-Technik zur Stammverbesserung L-Aminosäuren produzierender Stämme der Familie Enterobacteriaceae eingesetzt, indem man einzelne
Aminosäure-Biosynthesegene amplifiziert und die Auswirkung
auf die Produktion untersucht. Zusammenfassende
Informationen zur Zell- und Molekularbiologie von

5 Escherichia coli und Salmonella sind in Neidhardt (ed):
Escherichia coli and Salmonella, Cellular and Molecular
Biology, 2nd Edition, ASM Press, Washington, D.C.,
USA, (1996) zu finden.

Aufgabe der Erfindung

10 Aufgabe der Erfindung ist es, neue Maßnahmen zur verbesserten fermentativen Herstellung von L-Aminosäuren, insbesondere L-Threonin, bereitzustellen.

Beschreibung der Erfindung

Gegenstand der Erfindung ist ein Verfahren zur Herstellung
von L-Aminosäuren, insbesondere L-Threonin, unter
Verwendung von Mikroorganismen der Familie
Enterobacteriaceae, die insbesondere bereits L-Aminosäuren
produzieren, und in denen mindestens die für das eno-Gen
kodierende Nukleotidsequenz oder dessen Allele verstärkt
wird bzw. werden.

Werden im folgenden L-Aminosäuren oder Aminosäuren erwähnt, sind damit eine oder mehrere Aminosäuren einschließlich ihrer Salze, ausgewählt aus der Gruppe L-Asparagin, L-Threonin, L-Serin, L-Glutamat, L-Glycin, L-Alanin, L-

25 Cystein, L-Valin, L-Methionin, L-Isoleucin, L-Leucin, L-Tyrosin, L-Phenylalanin, L-Histidin, L-Lysin, L-Tryptophan und L-Arginin gemeint. Besonders bevorzugt ist L-Threonin.

Der Begriff "Verstärkung" beschreibt in diesem Zusammenhang die Erhöhung der intrazellulären Aktivität oder

30 Konzentration eines oder mehrerer Enzyme oder Proteine in einem Mikroorganismus, die durch die entsprechende DNA kodiert werden, indem man beispielsweise die Kopienzahl des Gens bzw. der Gene um mindestens eine (1) Kopie erhöht,

25

einen starken Promotor oder ein Gen oder Allel verwendet, das für ein entsprechendes Enzym oder Protein mit einer hohen Aktivität kodiert und gegebenenfalls diese Maßnahmen kombiniert.

- Durch die Maßnahmen der Verstärkung wird die Aktivität oder Konzentration des entsprechenden Proteins im allgemeinen um mindestens 10%, 25%, 50%, 75%, 100%, 150%, 200%, 300%, 400% oder 500%, maximal bis 1000% oder 2000% bezogen auf die des Wildtyp-Proteins beziehungsweise der Aktivität oder
- 10 Konzentration des Proteins im Ausgangs-Mikroorganismus erhöht. Als Ausgangs-Mikroorganismus wird der Mikroorganismus verstanden, an dem die erfinderischen Maßnahmen durchgeführt werden.

Das erfindungsgemäße Verfahren ist dadurch gekennzeichnet, 15 dass man folgende Schritte durchführt:

- a) Fermentation der die gewünschte L-Aminosäure produzierenden Mikroorganismen der Familie Enterobacteriaceae, in denen man das eno-Gen oder dafür kodierende Nukleotidsequenzen oder Allele verstärkt, in einem Medium unter Bedingungen geeignet für die Bildung des eno-Genproduktes,
- b) Anreicherung der gewünschten L-Aminosäure im Medium oder in den Zellen der Mikroorganismen, und
- c) Isolierung der gewünschten L-Aminosäure wobei gegebenenfalls Bestandteile der Fermentationsbrühe und/oder die Biomasse in ihrer Gesamtheit oder Anteilen (> 0 bis 100%) davon im Produkt verbleiben oder vollständig entfernt werden.
- Die insbesondere rekombinanten Mikroorganismen, die 30 ebenfalls Gegenstand der vorliegenden Erfindung sind, können L-Aminosäuren aus Glucose, Saccharose, Laktose, Fructose, Maltose, Melasse, gegebenenfalls Stärke, gegebenenfalls Cellulose oder aus Glycerin und Ethanol

herstellen. Es handelt sich um Vertreter der Familie Enterobacteriaceae, ausgewählt aus den Gattungen Escherichia, Erwinia, Providencia und Serratia. Die Gattungen Escherichia und Serratia werden bevorzugt. Bei der Gattung Escherichia ist insbesondere die Art Escherichia coli und bei der Gattung Serratia insbesondere die Art Serratia marcescens zu nennen.

Rekombinante Mikroorganismen werden durch Transformation, Konjugation oder Transduktion mit die gewünschte Gene 10 tragenden Vektoren hergestellt.

1

Geeignete, insbesondere L-Threonin produzierende Stämme der Gattung Escherichia, insbesondere der Art Escherichia coli sind beispielsweise

- Escherichia coli H4581

(EP 0 301 572)

15 - Escherichia coli KY10935 (Bioscience Biotechnology and Biochemistry 61(11):1877-1882 (1997)

- Escherichia coli VNIIgenetika MG442 (US-A-4278,765)

- Escherichia coli VNIIgenetika M1 (US-A-4,321,325)

Escherichia coli VNIIgenetika 472T23 (US-A-5,631,157)

20 "- Escherichia coli BKIIM B-3996 (US-A-5,175,107)

- Escherichia coli kat 13 (WO 98/04715)

- Escherichia coli KCCM-10132 (WO 00/09660).

Geeignete L-Threonin produzierende Stämme der Gattung Serratia, insbesondere der Art Serratia marcescens sind 25 beispielsweise

Serratia marcescens HNr21 (Applied and Environmental Microbiology 38(6): 1045-1051 (1979))

- Serratia marcescens TLr156 (Gene 57(2-3): 151-158 (1987))
- Serratia marcescens T-2000 (Applied Biochemistry and Biotechnology 37(3): 255-265 (1992)).
- 5 L-Threonin produzierende Stämme aus der Familie der Enterobacteriaceae besitzen bevorzugt, unter anderen, ein oder mehrere der genetischen bzw. phänotypischen Merkmale ausgewählt aus der Gruppe: Resistenz gegen α -Amino- β -Hydroxyvaleriansäure, Resistenz gegen Thialysin, Resistenz
- gegen Ethionin, Resistenz gegen α-Methylserin, Resistenz gegen Diaminobernsteinsäure, Resistenz gegen α-Aminobuttersäure, Resistenz gegen Borrelidin, Resistenz gegen Cyclopentan-Carboxylsäure, Resistenz gegen Rifampicin, Resistenz gegen Valin-Analoga wie
- 15 beispielsweise Valinhydroxamat, Resistenz gegen
 Purinanaloga wie beispielsweise 6-Dimethylaminopurin,
 Bedürftigkeit für L-Methionin, gegebenenfalls partielle und
 kompensierbare Bedürftigkeit für L-Isoleucin, Bedürftigkeit
 für meso-Diaminopimelinsäure, Auxotrophie bezüglich
- Threonin-haltiger Dipeptide, Resistenz gegen L-Threonin, Resistenz gegen Threonin-Raffinat, Resistenz gegen L-Homoserin, Resistenz gegen L-Lysin, Resistenz gegen L-Methionin, Resistenz gegen L-Glutaminsäure, Resistenz gegen L-Aspartat, Resistenz gegen L-Leucin, Resistenz gegen L-
- Phenylalanin, Resistenz gegen L-Serin, Resistenz gegen L-Cystein, Resistenz gegen L-Valin, Empfindlichkeit gegenüber Fluoropyruvat, defekte Threonin-Dehydrogenase, gegebenenfalls Fähigkeit zur Saccharose-Verwertung, Verstärkung des Threonin-Operons, Verstärkung der
- 30 Homoserin-Dehydrogenase I-Aspartatkinase I bevorzugt der feed back resistenten Form, Verstärkung der Homoserinkinase, Verstärkung der Threoninsynthase, Verstärkung der Aspartatkinase, gegebenenfalls der feed back resistenten Form, Verstärkung der Aspartatsemialdehyd-
- 35 Dehydrogenase, Verstärkung der Phosphoenolpyruvat-

Carboxylase, gegebenenfalls der feed back resistenten Form, Verstärkung der Phosphoenolpyruvat-Synthase, Verstärkung der Transhydrogenase, Verstärkung des RhtB-Genproduktes, Verstärkung des RhtC-Genproduktes, Verstärkung des YfiK-Genproduktes, Verstärkung einer Pyruvat-Carboxylase, und Abschwächung der Essigsäurebildung.

Es wurde gefunden, dass Mikroorganismen der Familie Enterobacteriaceae nach Verstärkung, insbesondere Überexpression des eno-Gens, in verbesserter Weise L-10 Aminosäuren, insbesondere L-Threonin produzieren.

Die Nukleotidsequenzen der Gene von Escherichia coli gehören zum Stand der Technik (Siehe nachfolgende Textstellen) und können ebenfalls der von Blattner et al. (Science 277: 1453-1462 (1997)) publizierten Genomsequenz von Escherichia coli entnommen werden.

Das eno-Gen wird unter anderem durch folgende Angaben beschrieben:

Bezeichnung: Enolase, Phosphopyruvate Hydratase

Funktion: Enolisierung (Wasserabspaltung):

20 2-Phosphoglycerat zu Phosphoenolpyruvat

in der Glycolyse

EC-Nr.: EC 4.2.1.11

Referenz: Spring TG. und Wold F.; The Journal of

Biological Chemistry 246(22): 6797-6802

25 (1971)

Klein et al.; DNA Sequence 6(6): 351-355

(1996)

Gulick et al.; Biochemistry 40(51): 15716 -

15724 (2001)

30 Kaga et al.; Bioscience, Biotechnology and

Biochemistry 66(10): 2216-2220 (2002)

Accession No.: AE000361

Das eno-Gen von Salmonella typhimurium wird unter anderem in folgender Referenz beschrieben: Garrido-Pertierra A.; Revista Espanola de Fisiologia 36(1): 33-39 (1980).

Die Nukleinsäuresequenzen können den Datenbanken des

5 National Center for Biotechnology Information (NCBI) der
National Library of Medicine (Bethesda, MD, USA), der
Nukleotidsequenz-Datenbank der European Molecular Biologies
Laboratories (EMBL, Heidelberg, Deutschland bzw. Cambridge,
UK) oder der DNA Datenbank von Japan (DDBJ, Mishima, Japan)

10 entnommen werden.

Der besseren Übersichtlichkeit halber sind die Nukleotidsequenz des eno-Gens und die Aminosäuresequenz des Genprduktes von Escherichia coli als SEQ ID NO:3 und 4 wiedergegeben.

- Die in den angegebenen Textstellen beschriebenen Gene können erfindungsgemäß verwendet werden. Weiterhin können Allele der Gene verwendet werden, die sich aus der Degeneriertheit des genetischen Codes oder durch funktionsneutrale Sinnmutationen ("sense mutations")
- 20 ergeben. Die Verwendung endogener Gene wird bevorzugt.

Unter "endogenen Genen" oder "endogenen Nukleotidsequenzen" versteht man die in der Population einer Art vorhandenen Gene oder Allele beziehungsweise Nukleotidsequenzen.

Zu den geeigneten Allelen des eno-Gens gehören solche,
25 welche funktionsneutrale Mutationen bzw. Sinnmutationen
("sense mutations") enthalten. Hierzu zählen unter anderem
solche, die zu mindestens einem (1) konservativen
Aminosäureaustausch in dem von ihnen kodierten Protein
führen. Die maximale Anzahl an konservativen

30 Aminosäurenaustauschen kann 2, 3, 5, 10, 20, in keinem Fall aber mehr als 30 Aminosäuren betreffen. Durch die genannten konservativen Aminosäurenaustausche wird die

Funktionsfähigkeit um 0% bis maximal 24%, 20%, 10%, 5%, 3%, 2% oder 1% erniedrigt oder erhöht.

Bei den aromatischen Aminosäuren spricht man von konservativen Austauschen wenn Phenylalanin, Tryptophan und 5 Tyrosin gegeneinander ausgetauscht werden. Bei den hydrophoben Aminosäuren spricht man von konservativen Austauschen wenn Leucin, Isoleucin und Valin gegeneinander ausgetauscht werden. Bei den polaren Aminosäuren spricht man von konservativen Austauschen wenn Glutamin und

- 10 Aparagin gegeneinander ausgetauscht werden. Bei den basischen Aminosäuren spricht man von konservativen Austauschen wenn Arginin, Lysin und Histidin gegeneinander ausgetauscht werden. Bei den sauren Aminosäuren spricht man von konservativen Austauschen wenn Asparaginsäure und
- 15 Glutaminsäure gegeneinander ausgetauscht werden. Bei den Hydroxyl-Gruppen enthaltenden Aminosäuren spricht man von konservativen Austauschen wenn Serin und Threonin gegeneinander ausgetauscht werden. Alle übrigen Aminosäureaustausche werden als nicht-konservative
- 20 Aminosäurenaustausche bezeichnet.

In gleicher Weise können auch solche Nukleotidsequenzen verwendet werden, die für Varianten der genannten Proteine kodieren, die zusätzlich am N- oder C-Terminus eine Verlängerung oder Verkürzung um mindestens eine (1)

25 Aminosäure enthalten. Diese Verlängerung oder Verkürzung beträgt nicht mehr als 50, 40, 30, 20, 10, 5, 3 oder 2 Aminosäuren oder Aminosäurereste.

Zu den geeigneten Allelen zählen auch solche, die für Proteine kodieren, in denen mindestens eine (1) Aminosäure 30 eingefügt (Insertion) oder entfernt (Deletion) ist. Die maximale Anzahl derartige als Indels bezeichneter Veränderungen kann 2, 3, 5, 10, 20 in keinem Falle aber mehr als 30 Aminosäuren betreffen.

Zu den geeigneten Allelen gehören ferner solche die durch Hybridisierung, insbesondere unter stringenten Bedingungen unter Verwendung von SEQ ID No. 3 oder Teilen davon insbesondere der Kodierregionen bzw. der dazu

5 komplementären Sequenzen, erhältlich sind.

Anleitungen zur Identifizierung von DNA-Sequenzen mittels Hybridisierung findet der Fachmann unter anderem im Handbuch "The DIG System Users Guide for Filter Hybridization" der Firma Boehringer Mannheim GmbH

- 10 (Mannheim, Deutschland, 1993) und bei Liebl et al.

 (International Journal of Systematic Bacteriology 41: 255260 (1991)). Die Hybridisierung findet unter stringenten
 Bedingungen statt, das heißt, es werden nur Hybride
 gebildet, bei denen Sonde und Zielsequenz, d. h. die mit
- 15 der Sonde behandelten Polynukleotide, mindestens 70% identisch sind. Es ist bekannt, dass die Stringenz der Hybridisierung einschließlich der Waschschritte durch Variieren der Pufferzusammensetzung, der Temperatur und der Salzkonzentration beeinflusst bzw. bestimmt wird. Die
- 20 Hybridisierungsreaktion wird im Allgemeinen bei relativ niedriger Stringenz im Vergleich zu den Waschschritten durchgeführt (Hybaid Hybridisation Guide, Hybaid Limited, Teddington, UK, 1996).
- Für die Hybridisierungsreaktion kann beispielsweise ein

 25 Puffer entsprechend 5x SSC-Puffer bei einer Temperatur von
 ca. 50°C 68°C eingesetzt werden. Dabei können Sonden auch
 mit Polynukleotiden hybridisieren, die weniger als 70%

 Identität zur Sequenz der Sonde aufweisen. Solche Hybride
 sind weniger stabil und werden durch Waschen unter
- 30 stringenten Bedingungen entfernt. Dies kann beispielsweise durch Senken der Salzkonzentration auf 2x SSC und gegebenenfalls nachfolgend 0,5x SSC (The DIG System User's Guide for Filter Hybridisation, Boehringer Mannheim, Mannheim, Deutschland, 1995) erreicht werden, wobei eine
- 35 Temperatur von ca. 50°C 68°C, ca. 52°C 68°C, ca. 54°C -

68°C, ca. 56°C - 68°C, ca. 58°C - 68°C, ca. 60°C - 68°C, ca. 62°C - 68°C, ca. 64°C - 68°C, ca. 66°C - 68°C eingestellt wird. Es ist gegebenenfalls möglich die Salzkonzentration bis auf eine Konzentration entsprechend 0,2x SSC oder 0,1x SSC zu senken. Durch schrittweise Erhöhung der Hybridisierungstemperatur in Schritten von ca. 1 - 2°C von 50°C auf 68°C können Polynukleotidfragmente isoliert werden, die beispielsweise mindestens 70% oder mindestens 80% oder mindestens 90% bis 95% oder mindestens 96% bis 99% Identität zur Sequenz der eingesetzten Sonde besitzen. Weitere Anleitungen zur Hybridisierung sind in Form sogenannter Kits am Markt erhältlich (z.B. DIG Easy Hyb von der Firma Roche Diagnostics GmbH, Mannheim, Deutschland, Catalog No. 1603558).

15 Zur Erzielung einer Verstärkung können beispielsweise die Expression der Gene oder die katalytischen Eigenschaften der Enzymproteine erhöht werden. Gegebenenfalls können beide Maßnahmen kombiniert werden.

So kann beispielsweise die Kopienzahl der entsprechenden
20 Gene erhöht werden, oder es kann die Promotor- und
Regulationsregion oder die Ribosomenbindungsstelle, die
sich stromaufwärts des Strukturgens befindet, mutiert
werden. In gleicher Weise wirken Expressionskassetten, die
stromaufwärts des Strukturgens eingebaut werden. Durch
25 induzierbare Promotoren ist es zusätzlich möglich, die
Expression im Verlaufe der fermentativen L-ThreoninProduktion zu steigern. Durch Maßnahmen zur Verlängerung
der Lebensdauer der m-RNA wird ebenfalls die Expression
verbessert. Weiterhin wird durch Verhinderung des Abbaus
30 des Enzymproteins ebenfalls die Enzymaktivität verstärkt.
Die Gene oder Genkonstrukte können entweder in Plasmiden
mit unterschiedlicher Kopienzahl vorliegen oder im
Chromosom integriert und amplifiziert sein. Alternativ kann

weiterhin eine Überexpression der betreffenden Gene durch

Veränderung der Medienzusammensetzung und Kulturführung erreicht werden.

Anleitungen hierzu findet der Fachmann unter anderem bei Chang und Cohen (Journal of Bacteriology 134: 1141-1156
5 (1978)), bei Hartley und Gregori (Gene 13: 347-353 (1981)), bei Amann und Brosius (Gene 40: 183-190 (1985)), bei de Broer et al. (Proceedings of the National Academy of Sciences of the United States of America 80: 21-25 (1983)), bei LaVallie et al. (BIO/TECHNOLOGY 11: 187-193 (1993)), in PCT/US97/13359, bei Llosa et al. (Plasmid 26: 222-224 (1991)), bei Quandt und Klipp (Gene 80: 161-169 (1989)), bei Hamilton et al. (Journal of Bacteriology 171: 4617-4622 (1989)), bei Jensen und Hammer (Biotechnology and Bioengineering 58: 191-195 (1998)) und in bekannten
15 Lehrbüchern der Genetik und Molekularbiologie.

In Enterobacteriaceae replizierbare Plasmidvektoren wie z.B. von pACYC184 abgeleitete Kloniervektoren (Bartolomé et al.; Gene 102: 75-78 (1991)), pTrc99A (Amann et al.; Gene 69: 301-315 (1988)) oder pSC101-Derivate (Vocke und Bastia; Proceedings of the National Academy of Sciences USA 80(21): 6557-6561 (1983)) können verwendet werden. In einem erfindungsgemäßen Verfahren kann man einen mit einem Plasmidvektor transformierten Stamm einsetzen, wobei der Plasmidvektor mindestens eine für das eno-Gen kodierende Nukleotidsequenz oder Allel trägt.

Unter dem Begriff Transformation versteht man die Aufnahme einer isolierten Nukleinsäure durch einen Wirt (Mikroorganismus).

Es ist ebenfalls möglich, Mutationen, die die Expression der jeweiligen Gene betreffen, durch Sequenzaustausch (Hamilton et al.; Journal of Bacteriology 171: 4617-4622 (1989)), Konjugation oder Transduktion in verschiedene Stämme zu überführen.

Nähere Erläuterungen zu den Begriffen der Genetik und Molekularbiologie findet man in bekannten Lehrbüchern der Genetik und Molekularbiologie wie beispielsweise dem Lehrbuch von Birge (Bacterial and Bacteriophage Genetics, 5 4th ed., Springer Verlag, New York (USA), 2000) oder dem Lehrbuch von Berg, Tymoczko and Stryer (Biochemistry, 5th ed., Freeman and Company, New York (USA), 2002) oder dem Handbuch von Sambrook et al. (Molekular Cloning, A Laboratory Manual, (3-Volume Set), Cold Spring Harbor 10 Laboratory Press, Cold Spring Harbor (USA), 2001).

Weiterhin kann es für die Produktion von L-Aminosäuren, insbesondere L-Threonin mit Stämmen der Familie Enterobacteriaceae vorteilhaft sein, zusätzlich zur Verstärkung des eno-Gens, ein oder mehrere Enzyme des bekannten Threonin-Biosyntheseweges oder Enzyme des anaplerotischen Stoffwechsels oder Enzyme für die Produktion von reduziertem Nicotinamid-Adenin-Dinukleotid-Phosphat oder Enzyme der Glykolyse oder PTS-Enzyme oder Enzyme des Schwefelstoffwechsels zu verstärken. Die Verwendung endogener Gene wird im allgemeinen bevorzugt.

So können beispielsweise gleichzeitig eines oder mehrere der Gene, ausgewählt aus der Gruppe

- das für die Aspartatkinase, die Homoserin-Dehydrogenase, die Homoserinkinase und die Threoninsynthase kodierende thrABC-Operon (US-A-4,278,765),
 - das für die Pyruvat-Carboxylase kodierende pyc-Gen von Corynebacterium glutamicum (WO 99/18228),
- das für die Phosphoenolpyruvat-Synthase kodierende pps-Gen (Molecular and General Genetics 231(2): 332-336
 (1992)),
 - das für die Phosphoenolpyruvat-Carboxylase kodierende ppc-Gen ((WO 02/064808),

- die für die Transhydrogenase kodierenden Gene pntA und pntB (European Journal of Biochemistry 158: 647-653 (1986)),
- das Homoserinresistenz vermittelnde Gen rhtB (EP-A-0 994 190),
 - das Threoninresistenz vermittelnde Gen rhtC (EP-A-1 013 765),
 - das für das Threoninexport-Protein kodierende thrE-Gen von Corynebacterium glutamicum (WO 01/92545),
- 10 das für die Glutamat-Dehydrogenase kodierende gdhA-Gen (Nucleic Acids Research 11: 5257-5266 (1983); Gene 23: 199-209 (1983)),
 - das für die Phosphoglucomutase kodierende pgm-Gen (WO 03/004598),
 - das für die Fructose Biphosphat Aldolase kodierende fba-Gen (WO 03/004664),
 - das für die Phosphohistidin-Protein-Hexose-Phosphotransferase des Phosphotransferase-Systems PTS kodierende ptsH-Gen des ptsHIcrr-Operons (WO 03/004674),
- 20 das für das Enzym I des Phosphotransferase-Systems PTS kodierende ptsI-Gen des ptsHIcrr-Operons (WO 03/004674),
 - das für die Glucose-spezifische IIA Komponente des Phosphotransferase-Systems PTS kodierende crr-Gen des ptsHIcrr-Operons (WO 03/004674),
 - das für die Glucose-spezifische IIBC Komponente kodierende ptsG-Gen (WO 03/004670),
 - das für den Regulator des Leucin-Regulons kodierende lrp-Gen (WO 03/004665),

- das für den Regulator des fad-Regulons kodierende fadR-Gen (WO 03/038106),
- das für den Regulator des zentralen Intermediärstoffwechsels kodierende iclR-Gen (WO 03/038106),
- das für die kleine Untereinheit der Alkyl Hydroperoxid Reduktase kodierende ahpC-Gen des ahpCF-Operons (WO 03/004663),
- das für die große Untereinheit der Alkyl Hydroperoxid
 Reduktase kodierende ahpF-Gen des ahpCF-Operons
 (WO 03/004663),
 - das für die Cystein-Synthase A kodierende cysK-Gen (WO 03/006666),
- das für den Regulator des cys-Regulons kodierende cysB Gen (WO 03/006666),
 - das für das Flavoprotein der NADPH-Sulfit-Reduktase kodierende cysJ-Gen des cysJIH-Operons (WO 03/006666),
 - das für das Hämoprotein der NADPH-Sulfit-Reduktase kodierende cysI-Gen des cysJIH-Operons (WO 03/006666),
- das für die Adenylylsulfat-Reduktase kodierende cysH-Gen des cysJIH-Operons (WO 03/006666),
 - das für ein Membranprotein mit anti-sigmaE-Aktivität kodierende rseA-Gen des rseABC-Operons (WO 03/008612),
- das für einen globalen Regulator des sigmaE-Faktors kodierende rseC-Gen des rseABC-Operons (WO 03/008612),
 - das für die Decarboxylase Untereinheit der 2-Ketoglutarat Dehydrogenase kodierende sucA-Gen des sucABCD-Operons (WO 03/008614),

- das für die Dihydrolipoyltranssuccinase E2 Untereinheit der 2-Ketoglutarat Dehydrogenase kodierende sucB-Gen des sucABCD-Operons (WO 03/008614),
- das für die β -Untereinheit der Succinyl-CoA Synthetase kodierende sucC-Gen des suc ABCD-Operons (WO 03/008615),
 - ° das für die α -Untereinheit der Succinyl-CoA Synthetase kodierende sucD-Gen des sucABCD-Operons (WO 03/008615),
 - das für die E1-Komponente des Pyruvat-Dehydrogenase-Komplexes kodierende aceE-Gen (WO 03/076635),
 - das für die E2-Komponente des Pyruvat-Dehydrogenase-Komplexes kodierende aceF-Gen (WO 03/076635), und
 - das für den Regulator der SigmaE-Faktor-Aktivität kodierende rseB-Gen (Molecular Microbiology 24(2): 355-371 (1997))
- 15 verstärkt werden.

Weiterhin kann es für die Produktion von L-Aminosäuren, insbesondere L-Threonin vorteilhaft sein, zusätzlich zur Verstärkung des eno-Gens, eines oder mehrere der Gene ausgewählt aus der Gruppe

- 20 o das für die Threonin-Dehydrogenase kodierende tdh-Gen (Journal of Bacteriology 169: 4716-4721 (1987)),
 - o das für die Malat-Dehydrogenase (E.C. 1.1.1.37) kodierende mdh-Gen (Archives in Microbiology 149: 36-42 (1987)),
- 25 o das Genprodukt des offenen Leserahmens (orf) yjfA (Accession Number AAC77180 des National Center for Biotechnology Information (NCBI, Bethesda, MD, USA), WO 02/29080),

- das Genprodukt des offenen Leserahmens (orf) ytfP (Accession Number AAC77179 des National Center for Biotechnology Information (NCBI, Bethesda, MD, USA), WO 02/29080),
- das für das Enzym Phosphoenolpyruvat-Carboxykinase kodierende pckA-Gen (WO 02/29080),
 - das für die Pyruvat-Oxidase kodierende poxB-Gen (WO 02/36797),
- das für den DgsA-Regulator des Phosphotransferase-Systems kodierende dgsA-Gen (WO 02/081721), das auch unter der Bezeichnung mlc-Gen bekannt ist,
 - das für den Fructose-Repressor kodierende fruR-Gen
 (WO 02/081698), das auch unter der Bezeichnung cra-Gen bekannt ist.
 - das für den Sigma³⁸-Faktor kodierende rpoS-Gen
 (WO 01/05939), das auch unter der Bezeichnung katF-Gen bekannt ist, und
 - das für die Aspartat Ammonium-Lyase kodierende aspA-Gen (WO 03/008603)
 - 20 abzuschwächen, insbesondere auszuschalten oder die Expression zu verringern.

Der Begriff "Abschwächung" beschreibt in diesem Zusammenhang die Verringerung oder Ausschaltung der intrazellulären Aktivität oder Konzentration eines oder

- 25 mehrerer Enzyme oder Proteine in einem Mikroorganismus, die durch die entsprechende DNA kodiert werden, indem man beispielsweise einen schwachen Promotor oder ein Gen oder Allel verwendet, das für ein entsprechendes Enzym bzw. Protein mit einer niedrigen Aktivität kodiert bzw. das
- 30 entsprechende Enzym (Protein) oder Gen inaktiviert und gegebenenfalls diese Maßnahmen kombiniert.

Durch die Maßnahmen der Abschwächung wird die Aktivität oder Konzentration des entsprechenden Proteins im allgemeinen auf 0 bis 75%, 0 bis 50%, 0 bis 25%, 0 bis 10% oder 0 bis 5% der Aktivität oder Konzentration des Wildtyp-Proteins, beziehungsweise der Aktivität oder Konzentration des Proteins im Ausgangs-Mikroorganismus, herabgesenkt.

Weiterhin kann es für die Produktion von L-Aminosäuren, insbesondere L-Threonin vorteilhaft sein, zusätzlich zur Verstärkung des eno-Gens, unerwünschte Nebenreaktionen 10 auszuschalten (Nakayama: "Breeding of Amino Acid Producing Microorganisms", in: Overproduction of Microbial Products, Krumphanzl, Sikyta, Vanek (eds.), Academic Press, London, UK, 1982).

Die erfindungsgemäß hergestellten Mikroorganismen können im
batch - Verfahren (Satzkultivierung), im fed batch
(Zulaufverfahren) oder im repeated fed batch-Verfahren
(repetitives Zulaufverfahren) kultiviert werden. Eine
Zusammenfassung über bekannte Kultivierungsmethoden sind im
Lehrbuch von Chmiel (Bioprozesstechnik 1. Einführung in die
Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart,
1991)) oder im Lehrbuch von Storhas (Bioreaktoren und
periphere Einrichtungen (Vieweg Verlag,
Braunschweig/Wiesbaden, 1994)) beschrieben.

Das zu verwendende Kulturmedium muss in geeigneter Weise
25 den Ansprüchen der jeweiligen Stämme genügen.
Beschreibungen von Kulturmedien verschiedener
Mikroorganismen sind im Handbuch "Manual of Methods for
General Bacteriology" der American Society for Bacteriology
(Washington D.C., USA, 1981) enthalten.

30 Als Kohlenstoffquelle können Zucker und Kohlehydrate wie z.B. Glucose, Saccharose, Laktose, Fructose, Maltose, Melasse, Stärke und gegebenenfalls Cellulose, Öle und Fette wie z.B. Sojaöl, Sonnenblumenöl, Erdnussöl und Kokosfett, Fettsäuren wie z.B. Palmitinsäure, Stearinsäure und

Linolsäure, Alkohole wie z.B. Glycerin und Ethanol und organische Säuren wie z.B. Essigsäure verwendet werden. Diese Stoffe können einzeln oder als Mischung verwendet werden.

- 5 Als Stickstoffquelle können organische Stickstoff-haltige Verbindungen wie Peptone, Hefeextrakt, Fleischextrakt, Malzextrakt, Maisquellwasser, Sojabohnenmehl und Harnstoff oder anorganische Verbindungen wie Ammoniumsulfat, Ammoniumchlorid, Ammoniumphosphat, Ammoniumcarbonat und
- 10 Ammoniumnitrat verwendet werden. Die Stickstoffquellen können einzeln oder als Mischung verwendet werden.

Als Phosphorquelle können Phosphorsäure, Kaliumdihydrogenphosphat oder Dikaliumhydrogenphosphat oder die entsprechenden Natrium-haltigen Salze verwendet werden.

- 15 Das Kulturmedium muss weiterhin Salze von Metallen enthalten, wie z.B. Magnesiumsulfat oder Eisensulfat, die für das Wachstum notwendig sind. Schließlich können essentielle Wuchsstoffe wie Aminosäuren und Vitamine zusätzlich zu den oben genannten Stoffen eingesetzt werden.
- 20 Dem Kulturmedium können überdies geeignete Vorstufen zugesetzt werden. Die genannten Einsatzstoffe können zur Kultur in Form eines einmaligen Ansatzes hinzugegeben oder in geeigneter Weise während der Kultivierung zugefüttert werden.
- Die Fermentation wird im allgemeinen bei einem pH-Wert von 5,5 bis 9,0, insbesondere 6,0 bis 8,0, durchgeführt. Zur pH-Kontrolle der Kultur werden basische Verbindungen wie Natriumhydroxid, Kaliumhydroxid, Ammoniak bzw.

 Ammoniakwasser oder saure Verbindungen wie Phosphorsäure
- 30 oder Schwefelsäure in geeigneter Weise eingesetzt. Zur Kontrolle der Schaumentwicklung können Antischaummittel wie z.B. Fettsäurepolyglykolester eingesetzt werden. Zur Aufrechterhaltung der Stabilität von Plasmiden können dem Medium geeignete selektiv wirkende Stoffe z.B. Antibiotika hinzugefügt werden. Um aerobe Bedingungen

aufrechtzuerhalten, werden Sauerstoff oder Sauerstoffhaltige Gasmischungen wie z.B. Luft in die Kultur
eingetragen. Die Temperatur der Kultur liegt normalerweise
bei 25°C bis 45°C und vorzugsweise bei 30°C bis 40°C. Die

Kultur wird solange fortgesetzt, bis sich ein Maximum an LAminosäuren bzw. L-Threonin gebildet hat. Dieses Ziel wird
normalerweise innerhalb von 10 Stunden bis 160 Stunden
erreicht.

Die Analyse von L-Aminosäuren kann durch

Anionenaustauschchromatographie mit anschließender
Ninhydrin Derivatisierung erfolgen, so wie bei Spackman et
al. (Analytical Chemistry 30: 1190-1206 (1958))
beschrieben, oder sie kann durch reversed phase HPLC
erfolgen, so wie bei Lindroth et al. (Analytical Chemistry

51: 1167-1174 (1979)) beschrieben.

Das erfindungsgemäße Verfahren dient zur fermentativen Herstellung von L-Aminosäuren, wie beispielsweise L-Threonin, L-Isoleucin, L-Valin, L-Methionin, L-Homoserin und L-Lysin, insbesondere L-Threonin.

20 Die vorliegende Erfindung wird im Folgenden anhand von Ausführungsbeispielen näher erläutert.

Verwendete Minimal- (M9) und Vollmedien (LB) für Escherichia coli sind von J.H. Miller (A Short Course in Bacterial Genetics (1992), Cold Spring Harbor Laboratory

- Press) beschrieben. Die Isolierung von Plasmid-DNA aus Escherichia coli sowie alle Techniken zur Restriktion, Ligation, Klenow- und alkalische Phosphatasebehandlung werden nach Sambrook et al. (Molecular Cloning A Laboratory Manual (1989) Cold Spring Harbor Laboratory
- 30 Press) durchgeführt. Die Transformation von Escherichia coli wird, wenn nicht anders beschrieben, nach Chung et al. (Proceedings of the National Academy of Sciences of the United States of America 86: 2172-2175 (1989)) durchgeführt.

Die Bebrütungstemperatur bei der Herstellung von Stämmen und Transformanten ist 37°C.

Beispiel 1

Konstruktion des Expressionsplasmides pTrc99Aeno

- 5 Das eno-Gen aus E. coli K12 wird unter Anwendung der Polymerase-Kettenreaktion (PCR) sowie synthetischen Oligonukleotiden amplifiziert. Ausgehend von der Nukleotidsequenz des eno-Gens in E. coli K12 MG1655 (Accession Number AE000361, Blattner et al. (Science 277:
- 10 1453-1474 (1997)) werden PCR-Primer synthetisiert (MWG Biotech, Ebersberg, Deutschland). Die Primer enthalten Sequenzen für Restriktionsenzyme, die in der unten dargestellten Nukleotidabfolge durch Unterstreichen markiert sind. Der Primer enol enthält die
- 15 Restriktionsschnittstelle für XbaI, der Primer eno2 die für HindIII.

eno1:

5' - GTTTGTCTAGAGTTTCAGTTTAACTAGTGAC - 3' (SEQ ID No. 1)

eno2:

20 5' - CCGGAGGCTGGCAAGCTTAAATCAG - 3' (SEQ ID No. 2)

- Die für die PCR eingesetzte chromosomale E. coli K12 MG1655 DNA wird nach Herstellerangaben mit "Qiagen Genomic-tips 100/G" (QIAGEN, Hilden, Deutschland) isoliert. Ein ca. 1381 bp großes DNA-Fragment kann mit den spezifischen Primern
- 25 unter Standard-PCR-Bedingungen (Innis et al. (1990) PCR Protocols. A Guide to Methods and Applications, Academic Press) mit der Vent-DNA-Polymerase (New England BioLaps, Frankfurt, Deutschland) amplifiziert werden (SEQ ID No. 3).
- 30 Das amplifizierte eno-Fragment wird mit den Restriktionsenzymen HindIII und XbaI restringiert und nach Aufreinigung (Purification Kit, QIAGEN, Hilden,

Deutschland) in einem 0,8%igen Agarosegel überprüft. Der Vektor pTrc99A (Pharmacia Biotech, Uppsala, Schweden) wird mit den Enzymen HindIII und XbaI gespalten, und mit dem restringierten eno-Fragment ligiert. Der E. coli Stamm

5 TOP10 One Shot (TOPO TA Cloning Kit, Invitrogen, Groningen, Niederlande) wird mit dem Ligationsansatz transformiert und Plasmid tragende Zellen auf LB Agar, der mit 50 µg/ml Ampicillin versetzt ist, selektioniert. Die erfolgreiche Klonierung kann nach der Plasmid DNA Isolierung durch die Kontrollspaltung mit dem Enzymen HindIII/XbaI und PvuI nachgewiesen werden. Das Plasmid wird als pTrc99Aeno (Figur 1) bezeichnet.

Beispiel 2

Herstellung von L-Threonin mit dem Stamm MG442/pTrc99Aeno

- Der L-Threonin produzierende E. coli Stamm MG442 ist in der Patentschrift US-A- 4,278,765 beschrieben und bei der Russischen Nationalsammlung für industrielle Mikroorganismen (VKPM, Moskau, Russland) als CMIM B-1628 hinterlegt.
- 20 Der Stamm MG442 wird mit dem in Beispiel 1 beschriebenen Expressionsplasmid pTrc99Aeno und mit dem Vektor pTrc99A transformiert und auf LB Agar mit 50 μg/ml Ampicillin Plasmid tragende Zellen selektioniert. Die erfolgreichen Transformationen können nach der Plasmid DNA Isolierung
- durch die Kontrollspaltungen mit den Enzymen HindIII/XbaI bestätigt werden. Auf diese Weise entstehen die Stämme MG442/pTrc99Aeno und MG442/pTrc99A. Ausgewählte Einzelkolonien werden anschließend auf Minimalmedium mit der folgenden Zusammensetzung: 3,5 g/l Na₂HPO₄*2H₂O, 1,5 g/l
- 30 KH₂PO₄, 1 g/l NH₄Cl, 0,1 g/l MgSO₄*7H₂O, 2 g/l Glucose, 20 g/l Agar, 50 mg/l Ampicillin, weiter vermehrt. Die Bildung von L-Threonin wird in batch Kulturen von 10 ml, die in 100 ml Erlenmeierkolben enthalten sind, überprüft. Dazu wird 10 ml Vorkulturmedium der folgenden Zusammensetzung: 2 g/l

Hefeextrakt, 10 g/l (NH₄)₂SO₄, 1 g/l KH₂PO₄, 0,5 g/l MgSO₄*7H₂O, 15 g/l CaCO₃, 20 g/l Glucose, 50 mg/l Ampicillin, beimpft und für 16 Stunden bei 37°C und 180 rpm auf einem ESR Inkubator der Firma Kühner AG (Birsfelden, 5 Schweiz) inkubiert.

Je 250 µl dieser Vorkultur werden in 10 ml Produktionsmedium (25 g/l (NH $_4$) $_2$ SO $_4$, 2 g/l KH $_2$ PO $_4$, 1 g/l MgSO $_4$ *7H $_2$ O, 0,03 g/l FeSO $_4$ *7H $_2$ O, 0,018 g/l MnSO $_4$ *1H $_2$ O, 30 g/l CaCO $_3$, 20 g/l Glucose, 50 mg/l Ampicillin) überimpft und

- 10 für 48 Stunden bei 37°C inkubiert. Zur vollständigen Induktion der Expression des eno-Gens wird in Parallelansätzen 100 mg/l Isopropyl- β -D-thiogalactopyranosid (IPTG) hinzugefügt Die Bildung von L-Threonin durch den Ausgangsstamm MG442 wird in der gleichen
- 15 Weise überprüft, wobei jedoch keine Zugabe von Ampicillin zum Medium erfolgt. Nach der Inkubation wird die optische Dichte (OD) der Kultursuspension mit einem LP2W-Photometer der Firma Dr. Lange (Düsseldorf, Deutschland) bei einer Messwellenlänge von 660 nm bestimmt.
- 20 Anschließend wird die Konzentration an gebildetem LThreonin im steril filtrierten Kulturüberstand mit einem
 Aminosäureanalysator der Firma Eppendorf-BioTronik
 (Hamburg, Deutschland) durch Ionenaustauschchromatographie
 und Nachsäulenreaktion mit Ninhydrindetektion bestimmt.
- 25 In Tabelle 1 ist das Ergebnis des Versuches dargestellt.

Tabelle 1

Stamm	Zusätze	OD (660 nm)	L-Threonin g/l
MG442	_	5,6	1,4
MG442/pTrc99A	_	3,8	1,3
MG442/pTrc99Aeno	-	2,6	1,7
MG442/pTrc99Aeno	IPTG	5,1	2,6

Kurze Beschreibung der Figur:

Längenangaben sind als ca.-Angaben aufzufassen. Die verwendeten Abkürzungen und Bezeichnungen haben folgende Bedeutung:

• Amp: Ampicillinresistenzgen

• lacI: Gen für das Repressorprotein des trc-Promotors

• Ptrc: trc-Promotorregion, IPTG-induzierbar

10 • eno: Kodierregion des eno-Gens

• 5S: 5S rRNA-Region

• rrnBT: rRNA-Terminator-Region

Die Abkürzungen für die Restriktionsenzyme haben folgende Bedeutung

15 • HindIII: Restriktionsendonuklease aus Haemophilus

influenze R_C

PvuI Restriktionsendonuklease aus Proteus

vulgaris

• XbaI:

Restriktionsendonuklease aus Xanthomonas campestris

20

25

Patentansprüche

- Verfahren zur Herstellung von L-Aminosäuren, insbesondere L-Threonin, dadurch gekennzeichnet, dass man folgende Schritte durchführt:
- 5 a) Fermentation der die gewünschte L-Aminosäure produzierenden Mikroorganismen der Familie Enterobacteriaceae, in denen man das eno-Gen oder dafür kodierende Nukleotidsequenzen oder Allele verstärkt,
- 10 b) Anreicherung der gewünschten L-Aminosäure im Medium oder in den Zellen der Mikroorganismen, und
 - c) Isolierung der gewünschten L-Aminosäure wobei gegebenenfalls Bestandteile der Fermentationsbrühe und/oder die Biomasse in ihrer Gesamtheit oder Anteilen (> 0 bis 100%) davon im Produkt verbleiben.
 - Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass man Mikroorganismen einsetzt, in denen man zusätzlich weitere Gene des Biosyntheseweges der gewünschten L-Aminosäure verstärkt.
 - 3. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass man Mikroorganismen einsetzt, in denen die Stoffwechselwege zumindest teilweise ausgeschaltet sind, die die Bildung der gewünschten L-Aminosäure verringern.
 - 4. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass man die Expression des (der) Polynukleotids (e), das (die) für das eno-Gen kodiert (kodieren), erhöht.
- Verfahren gemäß Anspruch 1, dadurch gekennzeichnet,
 dass man die regulatorischen und/oder katalytischen

10

Eigenschaften des Polypeptids (Proteins) verbessert oder erhöht, für das das Polynukleotid eno kodiert.

- 6. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass man zur Herstellung von L-Aminosäuren Mikroorganismen der Familie Enterobacteriaceae fermentiert, in denen man zusätzlich gleichzeitig eines oder mehrere der Gene, ausgewählt aus der Gruppe:
 - 6.1 das für die Aspartatkinase, die Homoserin-Dehydrogenase, die Homoserinkinase und die Threoninsynthase kodierende thrABC-Operon,
 - 6.2 das für die Pyruvat-Carboxylase kodierende pyc-Gen,
 - 6.3 das für die Phosphoenolpyruvat-Synthase kodierende pps-Gen,
- 15 6.4 das für die Phosphoenolpyruvat-Carboxylase kodierende ppc-Gen,
 - 6.5 die für die Transhydrogenase kodierenden Gene pntA und pntB,
 - 6.6 das Homoserinresistenz vermittelnde Gen rhtB,
- (a), 20 6.7 das Threoninresistenz vermittelnde Gen rhtC,
 - 6.8 das für das Threoninexport-Protein kodierende thrE-Gen,
 - 6.9 das für die Glutamat-Dehydrogenase kodierende gdhA-Gen,
 - 25 6.10 das für die Phosphoglucomutase kodierende pgm-Gen,
 - 6.11 das für die Fructose Biphosphat Aldolase kodierende fba-Gen,

	6.12	Phosphotransferase kodierende ptsH-Gen,
* .	6.13	das für das Enzym I des Phosphotransferase- Systems kodierende ptsI-Gen,
5	6.14	das für die Glucose-spezifische IIA Komponente kodierende crr-Gen,
	6.15	das für die Glucose-spezifische IIBC Komponente kodierende ptsG-Gen,
10	6.16	das für den Regulator des Leucin-Regulons kodierende lrp-Gen,
	6.17	das für den Regulator des fad-Regulons kodierende fadR-Gen,
	6.18	das für den Regulator des zentralen Intermediärstoffwechsels kodierende iclR-Gen,
15	6.19	das für die kleine Untereinheit der Alkyl Hydroperoxid Reduktase kodierende ahpC-Gen,
	6.20	das für die große Untereinheit der Alkyl Hydroperoxid Reduktase kodierende ahpF-Gen,
20	6.21	das für die Cystein-Synthase A kodierende cysK-Gen,
	6.22	das für den Regulator des cys-Regulons kodierende cysB-Gen,
	6.23	das für das Flavoprotein der NADPH-Sulfit- Reduktase kodierende cysJ-Gen,
25	6.24	das für das Hämoprotein der NADPH-Sulfit- Reduktase kodierende cysI-Gen,
	6.25	das für die Adenylylsulfat-Reduktase kodierende cysH-Gen,

	0.20	Aktivität kodierende rseA-Gen,
	6.27	das für einen globalen Regulator des sigmaE- Faktors kodierende rseC-Gen
5	6.28	das für die Decarboxylase Untereinheit der 2- Ketoglutarat Dehydrogenase kodierende sucA-Gen,
	6.29	das für die Dihydrolipoyltranssuccinase E2 Untereinheit der 2-Ketoglutarat Dehydrogenase kodierende sucB-Gen,
10	6.30	das für die β -Untereinheit der Succinyl-CoA Synthetase kodierende sucC-Gen,
	6.31	das für die α -Untereinheit der Succinyl-CoA Synthetase kodierende sucD-Gen,
15	6.32	das für die E1-Komponente des Pyruvat- Dehydrogenase-Komplexes kodierende aceE-Gen,
	6.33	das für die E2-Komponente des Pyruvat- Dehydrogenase-Komplexes kodierende aceF-Gen, und
20	6.34	das für den Regulator der SigmaE-Faktor- Aktivität kodierende rseB-Gen

verstärkt.

25

- 7. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass man zur Herstellung von L-Aminosäuren Mikroorganismen der Familie Enterobacteriaceae fermentiert, in denen man zusätzlich gleichzeitig eines oder mehrere der Gene, ausgewählt aus der Gruppe:
 - 7.1 das für die Threonin-Dehydrogenase kodierende tdh-Gen,

- 7.2 das für die Malat-Dehydrogenase kodierende mdh-Gen, 7.3 das Genprodukt des offenen Leserahmens (orf) yjfA, 7.4 das Genprodukt des offenen Leserahmens (orf) ytfP, 7.5 das für die Phosphoenolpyruvat-Carboxykinase kodierende pckA-Gen, 7.6 das für die Pyruvat-Oxidase kodierende poxB-Gen, 7.7 das für den DgsA-Regulator des Phosphotransferase-Systems kodierende dgsA-Gen, 7.8 das für den Fructose-Repressor kodierende fruR-Gen, 15 7.9 das für den Sigma³⁸-Faktor kodierende rpoS-Gen und 7.10 das für die Aspartat Ammonium-Lyase kodierende aspA-Gen
 - abschwächt, insbesondere ausschaltet oder die Expression verringert.
 - 8. Mikroorganismen der Familie Enterobacteriaceae, insbesondere der Gattung Escherichia, in denen das eno-Gen oder dafür kodierende Nukleotidsequenzen verstärkt vorliegt.
- 9. Mikroorganismen, gemäß Anspruch 8, dadurch gekennzeichnet, dass diese L-Threonin produzieren.

Zusammenfassung

Die Erfindung betrifft ein Verfahren zur Herstellung von L-Aminosäuren, insbesondere L-Threonin, in dem man folgende Schritte durchführt:

- 5 a) Fermentation der die gewünschte L-Aminosäure produzierenden Mikroorganismen der Familie Enterobacteriaceae, in denen man das eno-Gen oder dafür kodierende Nukleotidsequenzen oder Allele verstärkt,
 - b) Anreicherung der gewünschten L-Aminosäure im Medium oder in den Zellen der Mikroorganismen, und
 - c) Isolierung der gewünschten L-Aminosäure.

Figur 1: Karte des Plasmides pTrc99Aeno

SEQUENZPROTOKOLL

```
<110> Degussa AG
     <120> Verfahren zur Herstellung von L-Aminosäuren unter Verwendung von
            Stämmen der Familie Enterobacteriaceae
-10
     <130> 020479 BT
15 <160> 4
     <170> PatentIn version 3.1
20
     <210>
     <211>
           31
     <212> DNA
     <213> Künstliche Sequenz
25
    <220>
    <221> Primer
     <222>
           (1)..(31)
30 <223> eno1
     <400> 1
    gtttgtctag agtttcagtt taactagtga c
                                                                          31
35
    <210>
           2
    <211>
           25
    <212> DNA
    <213> Künstliche Sequenz
40
    <220>
    <221>
           Primer
    <222>
           (1)..(25)
    <223>
          eno2
    <400> 2
    ccggaggctg gcaagcttaa atcag
                                                                          25
50
    <210> 3
           1381
DNA
    <211>
    <212>
    <213> Escherichia coli
55
    <220>
    <221>
          PCR-Produkt
    <222>
           (1)..(1381)
60
    <223>
    <220>
    <221> CDS
```

<222> (46)..(1344) <223> eno-Gen

5	<400:						•										
J		_		ıgtt	cagt	it ta	aacta	agtga	a cti	-gag	gaaa	acc				aa atc ys Ile	57
10	gta a Val 1 5	aaa Lys	atc Ile	atc Ile	ggt Gly	cgt Arg 10	gaa Glu	atc Ile	atc Ile	gac Asp	tcc Ser 15	cgt Arg	ggt Gly	aac Asn	ccg Pro	act Thr 20	105
15	gtt (Val (gaa Glu	gcc Ala	gaa Glu	gta Val 25	cat His	ctg Leu	gag Glu	ggt Gly	ggt Gly 30	ttc Phe	gtc Val	ggt Gly	atg Met	gca Ala 35	gct Ala	153
20	gct o	ccg Pro	tca Ser	ggt Gly 40	gct Ala	tct Ser	act Thr	ggt Gly	tcc Ser 45	cgt Arg	gaa Glu	gct Ala	ctg Leu	gaa Glu 50	ctg Leu	cgc Arg	201
25	gat (Asp (ggc Gly	gac Asp 55	aaa Lys	tcc Ser	cgt Arg	ttc Phe	ctg Leu 60	ggt Gly	aaa Lys	ggc Gly	gta Val	acc Thr 65	aaa Lys	gct Ala	gtt Val	249
	gct q Ala A	gcg Ala 70	gta Val	aac Asn	ggc	ccg Pro	atc Ile 75	gct Ala	cag Gln	gcg Ala	ctg Leu	att Ile 80	ggc Gly	aaa Lys	gat Asp	gct Ala	297
30	aaa q Lys <i>1</i> 85	gat Asp	cag Gln	gct Ala	ggc Gly	att Ile 90	gac Asp	aag Lys	atc Ile	atg Met	atc Ile 95	gac Asp	ctg Leu	gac Asp	ggc Gly	acc Thr 100	345
35	gaa a Glu A	aac Asn	aaa Lys	tcc Ser	aaa Lys 105	ttc Phe	ggc Gly	gcg Ala	aac Asn	gca Ala 110	atc Ile	ctg Leu	gct Ala	gta Val	tct Ser 115	ctg Leu	393
40	gct a Ala A	aac Asn	gcc Ala	aaa Lys 120	gct Ala	gct Ala	gca Ala	gct Ala	gct Ala 125	aaa Lys	ggt Gly	atg Met	ccg Pro	ctg Leu 130	Tyr	gag Glu	441
45	cac a	Ile	gct Ala 135	gaa Glu	ctg Leu	aac Asn	ggt Gly	act Thr 140	ccg Pro	ggc Gly	aaa Lys	tac Tyr	tct Ser 145	atg Met	ccg Pro	gtt Val	489
	ccg a Pro N	atg Met 150	atg Met	aac Asn	atc Ile	atc Ile	aac Asn 155	ggt Gly	ggt Gly	gag Glu	cac His	gct Ala 160	gac Asp	aac Asn	aac Asn	gtt Val	537
50	gat a Asp 1 165	atc Ile	cag Gln	gaa Glu	ttc Phe	atg Met 170	att Ile	cag Gln	ccg Pro	gtt Val	ggc Gly 175	gcg Ala	aaa Lys	act Thr	gtg Val	aaa Lys 180	585
55	gaa g Glu <i>A</i>																633
60	ctg a Leu I	aaa Lys	gcg Ala	aaa Lys 200	ggc	atg Met	aac Asn	act Thr	gct Ala 205	gtt Val	ggt Gly	gac Asp	gaa Glu	ggt Gly 210	ggc Gly	tat Tyr	681
65	gcg c	Pro															729

	gct Ala	gtt Val 230	aaa Lys	gct Ala	gct Ala	ggt Gly	tat Tyr 235	gaa Glu	ctg Leu	ggc Gly	aaa Lys	gac Asp 240	atc Ile	act Thr	ttg Leu	gcg Ala	777
5	atg Met 245	gac Asp	tgc Cys	gca Ala	gct Ala	tct Ser 250	gaa Glu	ttc Phe	tac Tyr	aaa Lys	gat Asp 255	ggt Gly	aaa Lys	tac Tyr	gtt Val	ctg Leu 260	825
.10	gct Ala	ggc Gly	gaa Glu	ggc Gly	aac Asn 265	aaa Lys	gcg Ala	ttc Phe	acc Thr	tct Ser 270	gaa Glu	gaa Glu	ttc Phe	act Thr	cac His 275	ttc Phe	873
15	ctg Leu	gaa Glu	gaa Glu	ctg Leu 280	acc Thr	aaa Lys	cag Gln	tac Tyr	ccg Pro 285	atc Ile	gtt Val	tct Ser	atc Ile	gaa Glu 290	gac Asp	ggt Gly	921
20	ctg Leu	gac Asp	gaa Glu 295	tct Ser	gac Asp	tgg Trp	gac Asp	ggt Gly 300	ttc Phe	gca Ala	tac Tyr	cag Gln	acc Thr 305	aaa Lys	gtt Val	ctg Leu	969
	ggc	gac Asp 310	aaa Lys	atc Ile	cag Gln	ctg Leu	gtt Val 315	ggt Gly	gac Asp	gac Asp	ctg Leu	ttc Phe 320	gta Val	acc Thr	aac Asn	acc Thr	1017
25	aag Lys 325	atc Ile	ctg Leu	aaa Lys	gaa Glu	ggt Gly 330	atc Ile	gaa Glu	aaa Lys	ggt Gly	atc Ile 335	gct Ala	aac Asn	tcc Ser	.atc Ile	ctg Leu 340	1065
30	atc Ile	aaa Lys	ttc Phe	aac Asn	cag Gln 345	atc Ile	ggt Gly	tct Ser	ctg Leu	acc Thr 350	gaa Glu	act Thr	ctg Leu	gct Ala	gca Ala 355	atc Ile	1113
35	aag Lys	atg Met	gcg Ala	aaa Lys 360	gat Asp	gct Ala	ggc Gly	tac Tyr	act Thr 365	gca Ala	gtt Val	atc Ile	tct Ser	cac His 370	cgt Arg	tct Ser	1161
40	ggc Gly	gaa Glu	act Thr 375	gaa Glu	gac Asp	gct Ala	acc Thr	atc Ile 380	gct Ala	gac Asp	ctg Leu	gct Ala	gtt Val 385	ggt Gly	act Thr	gct Ala	1209
	gca Ala	ggc Gly 390	cag Gln	atc Ile	aaa Lys	act Thr	ggt Gly 395	tct Ser	atg Met	agc Ser	cgt Arg	tct Ser 400	gac Asp	cgt Arg	gtt Val	gct Ala	1257
45	aaa Lys 405	tac Tyr	aac Asn	Gln	Leu	Ile	Arg	Ile	Glu	Glu	Ala	ctg Leu	Gly	Glu	Lys	Ala	1305
50				ggt Gly								gca Ala	taa	gact	gact	tt	1354
	atct	gatt	ta a	agctt	gcca	ag co	ctccc	ıg .									1381
55	<210 <211 <212 <213	L> 4 2> E	132 PRT	ericl	nia o	coli						,					
60	<400 Met 1			Ile	Val 5	Lys	Ile	Ile	Gly	Arg 10	Glu	Ile	Ile	Asp	Ser 15	Arg	

Gly Asn Pro Thr Val Glu Ala Glu Val His Leu Glu Gly Gly Phe Val Gly Met Ala Ala Pro Ser Gly Ala Ser Thr Gly Ser Arg Glu Ala 5 Leu Glu Leu Arg Asp Gly Asp Lys Ser Arg Phe Leu Gly Lys Gly Val Thr Lys Ala Val Ala Ala Val Asn Gly Pro Ile Ala Gln Ala Leu Ile Gly Lys Asp Ala Lys Asp Gln Ala Gly Ile Asp Lys Ile Met Ile Asp Leu Asp Gly Thr Glu Asn Lys Ser Lys Phe Gly Ala Asn Ala Ile Leu Ala Val Ser Leu Ala Asn Ala Lys Ala Ala Ala Ala Lys Gly Met 20 Pro Leu Tyr Glu His Ile Ala Glu Leu Asn Gly Thr Pro Gly Lys Tyr 25 Ser Met Pro Val Pro Met Met Asn Ile Ile Asn Gly Gly Glu His Ala 150 Asp Asn Asn Val Asp Ile Gln Glu Phe Met Ile Gln Pro Val Gly Ala 30 Lys Thr Val Lys Glu Ala Ile Arg Met Gly Ser Glu Val Phe His His 185 Leu Ala Lys Val Leu Lys Ala Lys Gly Met Asn Thr Ala Val Gly Asp 35 Glu Gly Gly Tyr Ala Pro Asn Leu Gly Ser Asn Ala Glu Ala Leu Ala 215 40 Val Ile Ala Glu Ala Val Lys Ala Ala Gly Tyr Glu Leu Gly Lys Asp Ile Thr Leu Ala Met Asp Cys Ala Ala Ser Glu Phe Tyr Lys Asp Gly Lys Tyr Val Leu Ala Gly Glu Gly Asn Lys Ala Phe Thr Ser Glu Glu 265 Phe Thr His Phe Leu Glu Glu Leu Thr Lys Gln Tyr Pro Ile Val Ser 50 Ile Glu Asp Gly Leu Asp Glu Ser Asp Trp Asp Gly Phe Ala Tyr Gln 295 300 55 Thr Lys Val Leu Gly Asp Lys Ile Gln Leu Val Gly Asp Asp Leu Phe Val Thr Asn Thr Lys Ile Leu Lys Glu Gly Ile Glu Lys Gly Ile Ala 325 60 Asn Ser Ile Leu Ile Lys Phe Asn Gln Ile Gly Ser Leu Thr Glu Thr Leu Ala Ala Ile Lys Met Ala Lys Asp Ala Gly Tyr Thr Ala Val Ile 65 360

Ser His Arg Ser Gly Glu Thr Glu Asp Ala Thr Ile Ala Asp Leu Ala 5 Val Gly Thr Ala Ala Gly Gln Ile Lys Thr Gly Ser Met Ser Arg Ser 385 390 395 Asp Arg Val Ala Lys Tyr Asn Gln Leu Ile Arg Ile Glu Glu Ala Leu Gly Glu Lys Ala Pro Tyr Asn Gly Arg Lys Glu Ile Lys Gly Gln Ala
420 425 430 420

425