Package 'CoOL'

October 12, 2022

Type Package

Title Causes of Outcome Learning

Version 1.1.2

Date 2022-05-23

Maintainer Andreas Rieckmann <aric@sund.ku.dk>

Description Implementing the computational phase of the Causes of Outcome Learning approach as described in Rieckmann, Dworzynski, Arras, Lapuschkin, Samek, Arah, Rod, Ekstrom. 2022. Causes of outcome learning: A causal inference-inspired machine learning approach to disentangling common combinations of potential causes of a health outcome. International Journal of Epidemiology doi:10.1093/ije/dyac078>. The optional 'ggtree' package can be obtained through Bioconductor.

URL https://bioconductor.org

License GPL-2

Imports Rcpp, data.table, pROC, graphics, mltools, stats, plyr, ggplot2, ClustGeo, wesanderson, grDevices

Suggests ggtree, imager

LinkingTo Rcpp, RcppArmadillo

Encoding UTF-8

RoxygenNote 7.2.0

NeedsCompilation yes

Author Andreas Rieckmann [aut, cre], Piotr Dworzynski [aut], Leila Arras [ctb], Claus Thorn Ekstrom [aut]

Repository CRAN

Date/Publication 2022-05-24 10:20:05 UTC

R topics documented:

CoOL_8_mean_risk_contributions_by_sub_group	
CoOL_8_mean_risk_contributions_by_sub_group	
CoOL_7_prevalence_and_mean_risk_plot	
CoOL_6_sum_of_individual_effects	18
CoOL_6_sub_groups	17
CoOL_6_number_of_sub_groups	16
CoOL_6_individual_effects_matrix	
CoOL_6_dendrogram	
CoOL_6_calibration_plot	
CoOL_5_layerwise_relevance_propagation	
CoOL_4_predict_risks	
CoOL_3_plot_neural_network	
CoOL_2_train_neural_network	
CoOL_1_initiate_neural_network	
CoOL_0_working_example	
CoOL_0_mediation_simulation	
CoOL_0_confounding_simulation	
CoOL_0_complex_simulation	
CoOL_0_common_simulation	3
CoOL_0_binary_encode_exposure_data	2

CoOL_0_binary_encode_exposure_data

Binary encode exposure data

Description

This function binary encodes the exposure data set so that each category is coded 0 and 1 (e.g. the variable sex will be two variables men (1/0) and women (0/1)).

Usage

CoOL_0_binary_encode_exposure_data(exposure_data)

Arguments

Value

Data frame with the expanded exposure data, where all variables are binary encoded.

References

Rieckmann, Dworzynski, Arras, Lapuschkin, Samek, Arah, Rod, Ekstrom. 2022. Causes of outcome learning: A causal inference-inspired machine learning approach to disentangling common combinations of potential causes of a health outcome. International Journal of Epidemiology https://doi.org/10.1093/ije/dyac078>

Examples

#See the example under CoOL_0_working_example

CoOL_0_common_simulation

Common example

Description

To reproduce the common causes example.

Usage

```
CoOL_0_common_simulation(n)
```

Arguments

n

number of observations for the synthetic data.

Value

A data frame with the columns Y, A, B, C, D, E, F and n rows.

References

Rieckmann, Dworzynski, Arras, Lapuschkin, Samek, Arah, Rod, Ekstrom. 2022. Causes of outcome learning: A causal inference-inspired machine learning approach to disentangling common combinations of potential causes of a health outcome. International Journal of Epidemiology https://doi.org/10.1093/ije/dyac078>

CoOL_0_complex_simulation

Complex example

Description

To reproduce the complex example.

Usage

```
CoOL_0_complex_simulation(n)
```

Arguments

n

number of observations for the synthetic data.

Value

A data frame with the columns Y, Physically_active, Low_SES, Mutation_X, LDL, Night_shifts, Air_pollution and n rows.

References

Rieckmann, Dworzynski, Arras, Lapuschkin, Samek, Arah, Rod, Ekstrom. 2022. Causes of outcome learning: A causal inference-inspired machine learning approach to disentangling common combinations of potential causes of a health outcome. International Journal of Epidemiology https://doi.org/10.1093/ije/dyac078>

 ${\tt CoOL_0_confounding_simulation}$

Confounding example

Description

To reproduce the confounding example.

Usage

```
CoOL_0_confounding_simulation(n)
```

Arguments

n

number of observations for the synthetic data.

Value

A data frame with the columns Y, A, B, C, D, E, F and n rows.

References

Rieckmann, Dworzynski, Arras, Lapuschkin, Samek, Arah, Rod, Ekstrom. 2022. Causes of outcome learning: A causal inference-inspired machine learning approach to disentangling common combinations of potential causes of a health outcome. International Journal of Epidemiology https://doi.org/10.1093/ije/dyac078>

 ${\tt CoOL_0_mediation_simulation}$

Mediation example

Description

To reproduce the mediation example.

Usage

CoOL_0_mediation_simulation(n)

Arguments

n

number of observations for the synthetic data.

Value

A data frame with the columns Y, A,B,C, D, E, F and n rows.

References

Rieckmann, Dworzynski, Arras, Lapuschkin, Samek, Arah, Rod, Ekstrom. 2022. Causes of outcome learning: A causal inference-inspired machine learning approach to disentangling common combinations of potential causes of a health outcome. International Journal of Epidemiology https://doi.org/10.1093/ije/dyac078>

CoOL_0_working_example

CoOL working example with sex, drug A, and drug B

Description

To reproduce the CoOL working example with sex, drug A, and drug B.

Usage

CoOL_0_working_example(n)

Arguments

n

number of observations for the synthetic data.

Value

A data frame with the columns Y, sex, drug_a, drug_b and rows equal to n.

References

Rieckmann, Dworzynski, Arras, Lapuschkin, Samek, Arah, Rod, Ekstrom. 2022. Causes of outcome learning: A causal inference-inspired machine learning approach to disentangling common combinations of potential causes of a health outcome. International Journal of Epidemiology https://doi.org/10.1093/ije/dyac078>

```
while (FALSE) {
library(CoOL)
set.seed(1)
data <- CoOL_0_working_example(n=10000)</pre>
outcome_data <- data[,1]</pre>
exposure_data <- data[,-1]
exposure_data <- CoOL_0_binary_encode_exposure_data(exposure_data)</pre>
model <- CoOL_1_initiate_neural_network(inputs=ncol(exposure_data),</pre>
output = outcome_data,hidden=5)
model <- CoOL_2_train_neural_network(lr = 1e-4, X_train=exposure_data,</pre>
Y_train=outcome_data, X_test=exposure_data, Y_test=outcome_data,
model=model, epochs=1000.patience = 200.input_parameter_reg = 1e-3
) # Train the non-negative model (The model can be retrained)
model <- CoOL_2_train_neural_network(lr = 1e-5, X_train=exposure_data,</pre>
Y_train=outcome_data, X_test=exposure_data, Y_test=outcome_data, model=model,
epochs=1000, patience = 100, input_parameter_reg = 1e-3)
# Train the non-negative model (The model can be retrained)
model <- CoOL_2_train_neural_network(lr = 1e-6,X_train=exposure_data,</pre>
Y_train=outcome_data, X_test=exposure_data, Y_test=outcome_data, model=model,
epochs=1000,patience = 50, input_parameter_reg = 1e-3
) # Train the non-negative model (The model can be retrained)
plot(model$train_performance,type='l',yaxs='i',ylab="Mean squared error",
xlab="Epochs",main="A) Performance during training\n\n",
ylim=quantile(model$train_performance,c(0,.975))) # Model performance
CoOL_3_plot_neural_network(model, names(exposure_data), 5/max(model[[1]]),
title = "B) Model connection weights\nand intercepts") # Model visualization
CoOL_4_AUC(outcome_data,exposure_data,model,
title = "C) Receiver operating\ncharacteristic curve") # AUC
risk_contributions <- CoOL_5_layerwise_relevance_propagation(exposure_data,model
) # Risk contributions
CoOL_6_number_of_sub_groups(risk_contributions = risk_contributions,
low_number = 1, high_number = 5)
CoOL_6_dendrogram(risk_contributions,number_of_subgroups = 3,
title = "D) Dendrogram with 3 sub-groups") # Dendrogram
sub_groups <- CoOL_6_sub_groups(risk_contributions,number_of_subgroups = 3</pre>
) # Assign sub-groups
```

```
CoOL_6_calibration_plot(exposure_data = exposure_data,
outcome_data = outcome_data, model = model, sub_groups = sub_groups)

CoOL_7_prevalence_and_mean_risk_plot(risk_contributions, sub_groups,
title = "E) Prevalence and mean risk of sub-groups") # Prevalence and mean risk plot
results <- CoOL_8_mean_risk_contributions_by_sub_group(risk_contributions,
sub_groups,outcome_data = outcome_data,exposure_data = exposure_data,
model=model,exclude_below = 0.01) # Mean risk contributions by sub-groups

CoOL_9_visualised_mean_risk_contributions(results = results, sub_groups = sub_groups)

CoOL_9_visualised_mean_risk_contributions_legend(results = results)
}
```

CoOL_1_initiate_neural_network

Initiates a non-negative neural network

Description

This function initiates a non-negative neural network. The one-hidden layer non-negative neural network is designed to resemble a DAG with hidden synergistic components. With the model, we intend to learn the various synergistic interactions between the exposures and outcome. The model needs to be non-negative and estimate the risk on an additive scale. Neural networks include hidden activation functions (if the sum of the input exceeds a threshold, information is passed on), which can model minimum threshold values of interactions between exposures. We need to specify the upper limit of the number of possible hidden activation functions and through model fitting, the model may be able to learn both stand-alone and synergistically interacting factors.

Usage

```
CoOL_1_initiate_neural_network(inputs, output, hidden = 10)
```

Arguments

inputs The number of exposures.

output The outbut variable is used to calcualte the mean of it used to initiate the baseline

risk.

hidden Number of hidden nodes.

Details

The non-negative neural network can be denoted as:

$$P(Y = 1|X^{+}) = \sum_{j} \left(w_{j,k}^{+} ReLU_{j} \left(\sum_{i} (w_{i,j}^{+} X_{i}^{+}) + b_{j}^{-} \right) \right) + R^{b}$$

Value

A list with connection weights, bias weights and meta data.

References

Rieckmann, Dworzynski, Arras, Lapuschkin, Samek, Arah, Rod, Ekstrom. 2022. Causes of outcome learning: A causal inference-inspired machine learning approach to disentangling common combinations of potential causes of a health outcome. International Journal of Epidemiology https://doi.org/10.1093/ije/dyac078>

Examples

#See the example under CoOL_0_working_example

```
CoOL_2_train_neural_network
```

Training the non-negative neural network

Description

This function trains the non-negative neural network. Fitting the model is done in a step-wise procedure one individual at a time, where the model estimates individual's risk of the disease outcome, estimates the prediction's residual error and adjusts the model parameters to reduce this error. By iterating through all individuals for multiple epochs (one complete iterations through all individuals is called an epoch), we end with parameters for the model, where the errors are smallest possible for the full population. The model fit follows the linear expectation that synergism is a combined effect larger than the sum of independent effects. The initial values, derivatives, and learning rates are described in further detail in the Supplementary material. The non-negative model ensures that the predicted value cannot be negative. The model does not prevent estimating probabilities above 1, but this would be unlikely, as risks of disease and mortality even for high risk groups in general are far below 1. The use of a test dataset does not seem to assist deciding on the optimal number of epochs possibly due to the constrains due to the non-negative assumption. We suggest splitting data into a train and test data set, such that findings from the train data set can be confirmed in the test data set before developing hypotheses.

Usage

```
CoOL_2_train_neural_network(
   X_train,
   Y_train,
   X_test,
   Y_test,
   C_train = 0,
   C_test = 0,
   model,
   lr = c(1e-04, 1e-05, 1e-06),
   epochs = 2000,
   patience = 100,
   monitor = TRUE,
   plot_and_evaluation_frequency = 50,
```

```
input_parameter_reg = 0.001,
  spline_df = 10,
  restore_par_options = TRUE,
  drop_out = 0,
  fix_baseline_risk = -1,
  ipw = 1
)
```

Arguments

X_train	The exposure data for the training data.				
Y_train	The outcome data for the training data.				
X_test	The exposure data for the test data (currently the training data is used).				
Y_test	The outcome data for the test data (currently the training data is used).				
C_train	One variable to adjust the analysis for such as calendar time (training data).				
C_test	One variable to adjust the analysis for such as calendar time (currently the training data is used).				
model	The fitted non-negative neural network.				
lr	Learning rate (several LR can be provided, such that the model training will train for each LR and continue to the next).				
epochs	Epochs.				
patience	The number of epochs allowed without an improvement in performance.				
monitor	Whether a monitoring plot will be shown during training.				
plot_and_evalua	ation_frequency				
	The interval for plotting the performance and checking the patience.				
input_paramete	_ 3				
	Regularisation decreasing parameter value at each iteration for the input parameters.				
spline_df	Degrees of freedom for the spline fit for the performance plots.				
restore_par_options					
	Restore par options.				
drop_out	To drop connections if their weights reaches zero.				
fix_baseline_r	fix_baseline_risk				
	To fix the baseline risk at a value.				
ipw	a vector of weights per observation to allow for inverse probability of censoring weighting to correct for selection bias				

Value

An updated list of connection weights, bias weights and meta data.

References

Rieckmann, Dworzynski, Arras, Lapuschkin, Samek, Arah, Rod, Ekstrom. 2022. Causes of outcome learning: A causal inference-inspired machine learning approach to disentangling common combinations of potential causes of a health outcome. International Journal of Epidemiology https://doi.org/10.1093/ije/dyac078>

Examples

```
#See the example under CoOL_0_working_example
```

```
CoOL_3_plot_neural_network
```

Plotting the non-negative neural network

Description

This function plots the non-negative neural network

Usage

```
CoOL_3_plot_neural_network(
  model,
  names,
  arrow_size = NA,
  title = "Model connection weights and intercepts",
  restore_par_options = TRUE
)
```

Arguments

model The fitted non-negative neural network.

names Labels of each exposure.

arrow_size Define the arrow_size for the model illustration in the reported training progress.

title Title on the plot.

restore_par_options

Restore par options.

Value

A plot visualizing the connection weights.

References

Rieckmann, Dworzynski, Arras, Lapuschkin, Samek, Arah, Rod, Ekstrom. 2022. Causes of outcome learning: A causal inference-inspired machine learning approach to disentangling common combinations of potential causes of a health outcome. International Journal of Epidemiology https://doi.org/10.1093/ije/dyac078>

```
#See the example under CoOL_0_working_example
```

CoOL_4_AUC

CoOL_4_AUC

Plot the ROC AUC

Description

Plot the ROC AUC

Usage

```
CoOL_4_AUC(
  outcome_data,
  exposure_data,
  model,
  title = "Receiver operating\ncharacteristic curve",
  restore_par_options = TRUE
)
```

Arguments

```
outcome_data The outcome data.

exposure_data The exposure data.

model The fitted the non-negative neural network.

title Title on the plot.

restore_par_options

Restore par options.
```

Value

A plot of the ROC and the ROC AUC value.

References

Rieckmann, Dworzynski, Arras, Lapuschkin, Samek, Arah, Rod, Ekstrom. 2022. Causes of outcome learning: A causal inference-inspired machine learning approach to disentangling common combinations of potential causes of a health outcome. International Journal of Epidemiology https://doi.org/10.1093/ije/dyac078>

```
#See the example under CoOL_0_working_example
```

Description

Predict the risk of the outcome using the fitted non-negative neural network.

Usage

```
CoOL_4_predict_risks(X, model)
```

Arguments

X The exposure data.

model The fitted the non-negative neural network.

Value

A vector with the predicted risk of the outcome for each individual.

References

Rieckmann, Dworzynski, Arras, Lapuschkin, Samek, Arah, Rod, Ekstrom. 2022. Causes of outcome learning: A causal inference-inspired machine learning approach to disentangling common combinations of potential causes of a health outcome. International Journal of Epidemiology https://doi.org/10.1093/ije/dyac078>

Examples

#See the example under CoOL_0_working_example

```
CoOL_5_layerwise_relevance_propagation
```

Layer-wise relevance propagation of the fitted non-negative neural network

Description

Calculates risk contributions for each exposure and a baseline using layer-wise relevance propagation of the fitted non-negative neural network and data.

Usage

```
CoOL_5_layerwise_relevance_propagation(X, model)
```

Arguments

X The exposure data.

model The fitted the non-negative neural network.

Details

For each individual:

$$P(Y = 1|X^+) = R^b + \sum_{i} R_i^X$$

The below procedure is conducted for all individuals in a one by one fashion. The baseline risk, \$R^b\$, is simply parameterised in the model. The decomposition of the risk contributions for exposures, \$R^X_i\$, takes 3 steps:

Step 1 - Subtract the baseline risk, \$R^b\$:

$$R_k^X = P(Y = 1|X^+) - R^b$$

Step 2 - Decompose to the hidden layer:

$$R_j^X = \frac{H_j w_{j,k}}{\sum_j (H_j w_{j,k})} R_k^X$$

Where \$H_j\$ is the value taken by each of the \$ReLU()_j\$ functions for the specific individual.

Step 3 - Hidden layer to exposures:

$$R_{i}^{X} = \sum_{i} \left(\frac{X_{i}^{+} w_{i,j}}{\sum_{i} (X_{i}^{+} w_{i,j})} R_{j}^{X} \right)$$

This creates a dataset with the dimensions equal to the number of individuals times the number of exposures plus a baseline risk value, which can be termed a risk contribution matrix. Instead of exposure values, individuals are given risk contributions, R^X_i.

Value

A data frame with the risk contribution matrix [number of individuals, risk contributors + the baseline risk].

References

Rieckmann, Dworzynski, Arras, Lapuschkin, Samek, Arah, Rod, Ekstrom. 2022. Causes of outcome learning: A causal inference-inspired machine learning approach to disentangling common combinations of potential causes of a health outcome. International Journal of Epidemiology https://doi.org/10.1093/ije/dyac078>

Examples

#See the example under CoOL_0_working_example

```
CoOL_6_calibration_plot
```

Calibration curve

Description

Shows the calibration curve e.i. the predicted risk vs the actual risk by subgroups.

Usage

```
CoOL_6_calibration_plot(
  exposure_data,
  outcome_data,
  model,
  sub_groups,
  ipw = 1,
  restore_par_options = TRUE
)
```

Arguments

```
exposure_data The exposure dataset.
outcome_data The outcome vector.
```

model The fitted non-negative neural network.

sub_groups The vector with the assigned sub_group numbers.

ipw a vector of weights per observation to allow for inverse probability of censoring

weighting to correct for selection bias

restore_par_options

Restore par options.

Value

A calibration curve.

References

Rieckmann, Dworzynski, Arras, Lapuschkin, Samek, Arah, Rod, Ekstrom. 2022. Causes of outcome learning: A causal inference-inspired machine learning approach to disentangling common combinations of potential causes of a health outcome. International Journal of Epidemiology https://doi.org/10.1093/ije/dyac078>

```
#See the example under CoOL_0_working_example
```

CoOL_6_dendrogram 15

CoOL_6_dendrogram

Dendrogram and sub-groups

Description

Calculates presents a dendrogram coloured by the pre-defined number of sub-groups and provides the vector with sub-groups.

Usage

```
CoOL_6_dendrogram(
  risk_contributions,
  number_of_subgroups = 3,
  title = "Dendrogram",
  colours = NA,
  ipw = 1
)
```

Arguments

risk_contributions

The risk contributions.

number_of_subgroups

The number of sub-groups chosen (Visual inspection is necessary).

title The title of the plot.

colours Colours indicating each sub-group.

ipw a vector of weights per observation to allow for inverse probability of censoring

weighting to correct for selection bias

Value

A dendrogram illustrating similarities between individuals based on their risk contributions.

```
#See the example under CoOL_0_working_example
```

CoOL_6_individual_effects_matrix

Risk contribution matrix based on individual effects (had all other exposures been set to zero)

Description

Estimating the risk contribution for each exposure if each individual had been exposed to only one exposure, with the value the individual actually had.

Usage

```
CoOL_6_individual_effects_matrix(X, model)
```

Arguments

X The exposure data.

model The fitted the non-negative neural network.

Value

A matrix [Number of individuals, exposures] with the estimated individual effects by each exposure had all other values been set to zero.

References

Rieckmann, Dworzynski, Arras, Lapuschkin, Samek, Arah, Rod, Ekstrom. 2022. Causes of outcome learning: A causal inference-inspired machine learning approach to disentangling common combinations of potential causes of a health outcome. International Journal of Epidemiology https://doi.org/10.1093/ije/dyac078>

Examples

#See the example under CoOL_0_working_example

CoOL_6_number_of_sub_groups

Number of subgroups

Description

Calculates the mean distance by several number of subgroups to determine the optimal number of subgroups.

CoOL_6_sub_groups 17

Usage

```
CoOL_6_number_of_sub_groups(
  risk_contributions,
  low_number = 1,
  high_number = 5,
  ipw = 1,
  restore_par_options = TRUE
)
```

Arguments

risk_contributions

The risk contributions.

low_number The lowest number of subgroups.

high_number The highest number of subgroups.

ipw a vector of weights per observation to allow for inverse probability of censoring

weighting to correct for selection bias

restore_par_options

Restore par options.

Value

A plot of the mean distance by the number of subgroups. The mean distance converges when the optimal number of subgroups are found.

Examples

#See the example under CoOL_0_working_example

Description

Calculates presents a dendrogram coloured by the pre-defined number of sub-groups and provides the vector with sub-groups.

Usage

```
CoOL_6_sub_groups(risk_contributions, number_of_subgroups = 3, ipw = 1)
```

Arguments

risk_contributions

The risk contributions.

number_of_subgroups

The number of sub-groups chosen (Visual inspection is necessary).

ipw

a vector of weights per observation to allow for inverse probability of censoring

weighting to correct for selection bias

Value

A vector [number of individuals] with an assigned sub-group.

References

Rieckmann, Dworzynski, Arras, Lapuschkin, Samek, Arah, Rod, Ekstrom. 2022. Causes of outcome learning: A causal inference-inspired machine learning approach to disentangling common combinations of potential causes of a health outcome. International Journal of Epidemiology https://doi.org/10.1093/ije/dyac078>

Examples

#See the example under CoOL_0_working_example

CoOL_6_sum_of_individual_effects

Predict the risk based on the sum of individual effects

Description

By summing the through the risk as if each individual had been exposed to only one exposure, with the value the individual actually had.

Usage

```
CoOL_6_sum_of_individual_effects(X, model)
```

Arguments

X The exposure data.

model The fitted the non-negative neural network.

Value

A value the sum of indivisual effects, had there been no interactions between exposures.

References

Rieckmann, Dworzynski, Arras, Lapuschkin, Samek, Arah, Rod, Ekstrom. 2022. Causes of outcome learning: A causal inference-inspired machine learning approach to disentangling common combinations of potential causes of a health outcome. International Journal of Epidemiology https://doi.org/10.1093/ije/dyac078>

Examples

```
#See the example under CoOL_0_working_example
```

```
CoOL_7_prevalence_and_mean_risk_plot

Prevalence and mean risk plot
```

Description

This plot shows the prevalence and mean risk for each sub-group. Its distribution hits at sub-groups with great public health potential.

Usage

```
CoOL_7_prevalence_and_mean_risk_plot(
    risk_contributions,
    sub_groups,
    title = "Prevalence and mean risk\nof sub-groups",
    y_max = NA,
    restore_par_options = TRUE,
    colours = NA,
    ipw = 1
)
```

Arguments

risk_contributions

The risk contributions.

sub_groups The vector with the sub-groups.

title The title of the plot.

y_max Fix the axis of the risk of the outcome.

restore_par_options

Restore par options.

colours Colours indicating each sub-group.

ipw a vector of weights per observation to allow for inverse probability of censoring

weighting to correct for selection bias

Value

A plot with prevalence and mean risks by sub-groups.

References

Rieckmann, Dworzynski, Arras, Lapuschkin, Samek, Arah, Rod, Ekstrom. 2022. Causes of outcome learning: A causal inference-inspired machine learning approach to disentangling common combinations of potential causes of a health outcome. International Journal of Epidemiology https://doi.org/10.1093/ije/dyac078>

Examples

```
#See the example under CoOL_0_working_example
```

```
CoOL_8_mean_risk_contributions_by_sub_group

Mean risk contributions by sub-groups
```

Description

Table with the mean risk contributions by sub-groups.

Usage

```
CoOL_8_mean_risk_contributions_by_sub_group(
    risk_contributions,
    sub_groups,
    exposure_data,
    outcome_data,
    model,
    exclude_below = 0.001,
    restore_par_options = TRUE,
    colours = NA,
    ipw = 1
)
```

Arguments

```
risk_contributions
```

The risk contributions.

sub_groups The vector with the sub-groups.

exposure_data The exposure data.

outcome_data The outcome data.

model The trained non-negative model.

exclude_below A lower cut-off for which risk contributions shown.

```
restore_par_options
```

Restore par options.

colours Colours indicating each sub-group.

ipw a vector of weights per observation to allow for inverse probability of censoring

weighting to correct for selection bias

Value

A plot and a dataset with the mean risk contributions by sub-groups.

References

Rieckmann, Dworzynski, Arras, Lapuschkin, Samek, Arah, Rod, Ekstrom. 2022. Causes of outcome learning: A causal inference-inspired machine learning approach to disentangling common combinations of potential causes of a health outcome. International Journal of Epidemiology https://doi.org/10.1093/ije/dyac078>

Examples

```
#See the example under CoOL_0_working_example
```

```
CoOL_9_visualised_mean_risk_contributions
```

Visualisation of the mean risk contributions by sub-groups

Description

Visualisation of the mean risk contributions by sub-groups. The function uses the output

Usage

```
CoOL_9_visualised_mean_risk_contributions(
  results,
  sub_groups,
  ipw = 1,
  restore_par_options = TRUE
)
```

Arguments

results CoOL_8_mean_risk_contributions_by_sub_group.

sub_groups The vector with the sub-groups.

ipw a vector of weights per observation to allow for inverse probability of censoring

weighting to correct for selection bias

restore_par_options

Restore par options.

References

Rieckmann, Dworzynski, Arras, Lapuschkin, Samek, Arah, Rod, Ekstrom. 2022. Causes of outcome learning: A causal inference-inspired machine learning approach to disentangling common combinations of potential causes of a health outcome. International Journal of Epidemiology https://doi.org/10.1093/ije/dyac078>

Examples

#See the example under CoOL_0_working_example

```
{\it CoOL\_9\_visualised\_mean\_risk\_contributions\_legend} \\ {\it Legend~to~the~visualisation~of~the~mean~risk~contributions~by~sub-groups}
```

Description

Legend to the visualisation of the mean risk contributions by sub-groups. The function uses the output

Usage

```
CoOL_9_visualised_mean_risk_contributions_legend(
  results,
  restore_par_options = TRUE
)
```

Arguments

```
results CoOL_8_mean_risk_contributions_by_sub_group.
restore_par_options
Restore par options.
```

References

Rieckmann, Dworzynski, Arras, Lapuschkin, Samek, Arah, Rod, Ekstrom. 2022. Causes of outcome learning: A causal inference-inspired machine learning approach to disentangling common combinations of potential causes of a health outcome. International Journal of Epidemiology https://doi.org/10.1093/ije/dyac078>

```
#See the example under CoOL_0_working_example
```

CoOL_default 23

CoOL_default

The default analysis for computational phase of CoOL

Description

The analysis and plots presented in the main paper. We recommend using View(CoOL_default) and View() on the many sub-functions to understand the steps and modify to your own research question. 3 sets of training will run with a learning rate of 1e-4 and a patience of 200 epochs, a learning rate of 1e-5 and a patience of 100 epochs, and a learning rate of 1e-6 and a patience of 50 epochs.

Usage

```
CoOL_default(
  data,
  sub_groups = 3,
  exclude_below = 0.01,
  input_parameter_reg = 0.001,
  hidden = 10,
  monitor = TRUE,
  epochs = 10000
)
```

Arguments

data A data.frame(cbind(outcome data,exposure data)).

sub_groups Define the number of expected sub-groups.

exclude_below Risk contributions below this value are not shown in the table.

input_parameter_reg

The regularization of the input parameters.

hidden The number of synergy-functions.

monitor Whether monitoring plots will be shown in R.

epochs The maximum number of epochs.

Value

A series of plots across the full Causes of Outcome Learning approach.

References

Rieckmann, Dworzynski, Arras, Lapuschkin, Samek, Arah, Rod, Ekstrom. 2022. Causes of outcome learning: A causal inference-inspired machine learning approach to disentangling common combinations of potential causes of a health outcome. International Journal of Epidemiology https://doi.org/10.1093/ije/dyac078>

Examples

```
# Not run
while (FALSE) {
#See the example under CoOL_0_working_example for a more detailed tutorial
library(CoOL)
data <- CoOL_0_working_example(n=10000)
CoOL_default(data)
}</pre>
```

cpp_train_network_relu

Function used as part of other functions

Description

Non-negative neural network

Usage

```
cpp_train_network_relu(
 Х,
 у,
 С,
  testx,
  testy,
  testc,
 W1_input,
 B1_input,
 W2_input,
 B2_input,
 C2_input,
  ipw,
  lr = 0.01,
 maxepochs = 100,
  input_parameter_reg = 1e-06,
 drop_out = 0L,
  fix_baseline_risk = -1
)
```

Arguments

С

x A matrix of predictors for the training dataset of shape (nsamples, nfeatures)

y A vector of output values for the training data with a length similar to the number of rows of x

A vector of the data to adjust the analysis for such as calendar time (training data) with the same number of rows as x.

random 25

testx	A matrix of predictors for the test dataset of shape (nsamples, nfeatures)					
testy	A vector of output values for the test data with a length similar to the number of rows of x					
testc	A vector the data to adjust the analysis for such as calendar time (training data) with the same number of rows as x.					
W1_input	Input-hidden layer weights of shape (nfeatuers, hidden)					
B1_input	Biases for the hidden layer of shape (1, hidden)					
W2_input	Hidden-output layer weights of shape (hidden, 1)					
B2_input	Bias for the output layer (the baseline risk) af shape (1, 1)					
C2_input	Bias for the data to adjust the analysis for					
ipw	a vector of weights per observation to allow for inverse probability of censoring weighting to correct for selection bias					
lr	Initial learning rate					
maxepochs	The maximum number of epochs					
<pre>input_parameter_reg</pre>						
	Regularisation decreasing parameter value at each iteration for the input parameters					
drop_out	To drop connections if their weights reaches zero.					
fix_baseline_risk						
	To fix the baseline risk at a value.					

Value

A list of class "SCL" giving the estimated matrices and performance indicators

Author(s)

Andreas Rieckmann, Piotr Dworzynski, Leila Arras, Claus Ekstrøm

random Function used as part of other functions	random	Function used as part of other functions	
---	--------	--	--

Description

Function used as part of other functions

Usage

```
random(r, c)
```

Arguments

r rows in matrix c columns in matrix

26 relu

rcpprelu

Function used as part of other functions

Description

relu-function

Usage

rcpprelu(x)

Arguments

Х

input in the relu function

rcpprelu_neg

Function used as part of other functions

Description

negative relu-function

Usage

```
rcpprelu_neg(x)
```

Arguments

Х

input in the negative relu-function

relu

Function used as part of other functions

Description

Function used as part of other functions

Usage

relu(input)

Arguments

input

input in the relu function

Index

```
CoOL_0_binary_encode_exposure_data, 2
CoOL_0_common_simulation, 3
{\tt CoOL\_0\_complex\_simulation, 4}
CoOL_0_confounding_simulation, 4
CoOL_0_mediation_simulation, 5
CoOL_0_working_example, 5
CoOL_1_initiate_neural_network, 7
CoOL_2_train_neural_network, 8
CoOL_3_plot_neural_network, 10
CoOL_4_AUC, 11
CoOL_4_predict_risks, 12
CoOL_5_layerwise_relevance_propagation,
        12
CoOL_6_calibration_plot, 14
CoOL_6_dendrogram, 15
CoOL_6_individual_effects_matrix, 16
CoOL_6_number_of_sub_groups, 16
CoOL_6_sub_groups, 17
CoOL_6_sum_of_individual_effects, 18
CoOL_7_prevalence_and_mean_risk_plot,
CoOL_8_mean_risk_contributions_by_sub_group,
CoOL_9_visualised_mean_risk_contributions,
CoOL_9_visualised_mean_risk_contributions_legend,
CoOL_default, 23
cpp_train_network_relu, 24
random, 25
rcpprelu, 26
rcpprelu_neg, 26
relu, 26
```