CHAPTER

21

Compounds Containing Nitrogen

Section-A

JEE Advanced/ IIT-JEE

A Fill in the Blanks

- 1. In an acidic medium, behaves as the strongest base. (nitrobenzene, aniline, phenol) (1981 1 Mark)
- 3. The high melting point and insolubility in organic solvents of sulphanilic acid are due to its.....structure.

(1994 - 1 Mark

C MCQs with One Correct Answer

1. The compound which on reaction with aqueous nitrous acid at low temperature produces an oily nitrosamine is

(1981 - 1 Mark)

- (a) methylamine
- (b) ethylamine
- (c) diethylamine
- (d) triethylamine
- 2. Acetamide is treated separately with the following reagents. Which one of these would give methylamine?

(1983 - 1 Mark)

- (a) PCl₅
- (b) NaOH+Br₂
- (c) soda lime
- (d) hot conc. H₂SO₄
- 3. Carbylamine test is performed in alcoholic KOH by heating a mixture of: (1984 1 Mark)
 - (a) chloroform and silver powder
 - (b) trihalogenatedmethane and a primary amine
 - (c) an alkyl halide and a primary amine
 - (d) an alkyl cyanide and a primary amine
- 4. The compound that is most reactive towards electrophilic nitration is: (1985 1 Mark)
 - (a) toluene
- (b) benzene
- (c) benzoic acid
- (d) nitrobenzene
- 5. If two compounds have the same empirical formula but different molecular fomulae they must have
 - (a) different percentage composition
- (1987 1 Mark)
- (b) different molecular weight
- (c) same viscosity
- (d) same vapour density
- **6.** Amongst the following, the most basic compound is:

(1990 - 1 Mark)

- (a) Benzylamine
- (b) Aniline
- (c) Acetanilide
- (d) p-Nitroaniline

- 7. The formation of cyanohydrin from a ketone is an example of: (1990 1 Mark)
 - (a) Electrophilic addition
 - (b) Nucleophilic addition
 - (c) Nucleophilic substitution
 - (d) Electrophilic substitution
- 8. Butanonitrile may be prepared by heating: (1992 1 Mark)
 - (a) Propyl alcohol with KCN
 - (b) Butyl alcohol with KCN
 - (c) Butyl chloride with KCN
 - (d) Propyl chloride with KCN
- 9. In the reaction *p*-chlorotoluene with KNH₂ in liq. NH₃, the major product is: (1997 1 Mark)
 - (a) o-toluidine
- (b) m-toluidine
- (c) *p*-toluidine
- (d) *p*-chloroaniline.
- 10. The most unlikely representation of resonance structures of *p*-nitrophenoxide ion is (1999 2 Marks)

- 11. Among the following, the strongest base is
- (2000S)

- (a) $C_6H_5NH_2$
- (b) $p-NO_2.C_6H_4NH_2$
- (c) $m-NO_2.C_6H_4.NH_2$
- (d) $C_6H_5CH_7NH_7$

12. The correct order of basicities of the following compounds is (2001S)

2.
$$CH_3 - CH_2 - NH_2$$

3. $(CH_3)_2NH$ (a) 2>1>3>4

(a) 2>1>3>4 (c) 3>1>2>4

13. Compound 'A' (molecular formula C₃H₈O) is treated with acidified potassium dichromate to form a product 'B' (molecular formula C₃H₆O). 'B' forms a shining silver mirror on warming with ammonical silver nitrate. 'B' when treated with an aqueous solution of H₂NCONHNH₂. HCl and sodium acetate gives a product 'C'. Identify the structure of 'C'.

(a) CH₃CH₂CH=NNHCONH₂

(2002S)

(b)
$$CH_3 - C = NNHCONH_2$$

 CH_3

(c)
$$CH_3 - C = NCONHNH_2$$

 CH_3

(d) $CH_3CH_2CH = NCONHNH_2$

14.
$$F \longrightarrow NO_2$$

$$\xrightarrow{(CH_3)_2 NH} (A) \xrightarrow{i)NaNO_2/HCI} (B). B is: \qquad (2003S)$$

$$\xrightarrow{O^* - S^* C} (B). B is: \qquad (2003S)$$

(a)
$$H_2N$$
 CH_3 CH_3

(b)
$$H_2N$$
 \longrightarrow NH_2

(c)
$$O_2N$$
 N CH_3 NH

(d)
$$O_2N$$
 NH_2

15.

The product A will be

(2003S)

(a)
$$O_2N$$
 OH O_2N

(b)
$$O_2N$$
 OH HOOC

(c) O_2N CH HOOC

(d) O_2N OH

16. Benzamide on reaction with POCl₃ gives (2004S)

(a) aniline

(b) chlorobenzene

(c) benzylamine

(d) benzonitrile

17. The major product obtained when Br₂/Fe is treated with

(d)
$$H_3C$$
 CH_3

18. In the compound given below the correct order of the acidity of the positions X, Y and Z is (2004S)

- (a) Z>X>Y
- (b) X>Y>Z
- (c) X>Z>Y
- (d) Y>X>Z
- 19. When benzenesulfonic acid and p-nitrophenol are treated with NaHCO₃, the gases released respectively are (2006)
 - (a) SO₂, NO
- (b) SO₂, NO₂
- (c) CO_2 , CO_2
- (d) SO_2, CO_2
- 20. In the following reaction,

(2006)

 $CH_3NH_2 + CHCl_3 + KOH$

→ Nitrogen containing compound + KCl + H₂O.
The nitrogen containing compound is

- (a) $CH_3 NH CH_3$
- (b) $CH_3 C \equiv N$
- (c) $CH_3 \overset{+}{N} \equiv \overset{-}{C}$
- (d) $CH_3 \overset{-}{N} \equiv \overset{+}{C}$
- 21. The correct stability order of the following resonance structures is (2009)

$$H_2C = N = N$$
(I)

$$H_2 \overset{\top}{C} - N = 1$$

$$H_2\bar{C} - N \equiv N$$

$$H_2\overline{C} - N = N$$
(IV)

- (a) (I) > (II) > (IV) > (III)
- (b) (I) > (III) > (IV)
- (c) (II) > (I) > (IV)
- (d) (III) > (I) > (IV) > (II)
- 22. The major product of the following reaction is (2011 I)

$$\begin{array}{c|c}
O \\
C' \\
NH \\
C' \\
(ii) Br \\
\hline
CH_2C
\end{array}$$

- (a) C $N-CH_2$ Br O O O
- (c) V $O-CH_2$ Br
- 23. Amongst the compounds given, the one that would form a brilliant colored dye on treatment with NaNO₂ in dil. HCl followed by addition to an alkaline solution of β-naphthol is

(2011 - II)

(a)
$$N(CH_3)_2$$

(d)
$$CH_2NH_2$$

MCQs with One or More Than One Correct

- 1. The products of reaction of alcoholic silver nitrite with ethyl bromide are (1991 1 Mark)
 - (a) ethane
- (b) ethene
- (c) nitroethane
- (d) ethyl alcohol
- (e) ethyl nitrite

O

- 2. Reaction of R C-NH₂ with a mixture of Br₂ and KOH gives R-NH₂ as the main product. The intermediates involved in this reaction are: (1992 1 Mark)
 - O || (a) R - C - NHB:
- (b) R-NHBr
- (c) R-N=C=O
- (d) $R-C-N < \frac{Br}{Rr}$
- 3. When nitrobenzene is treated with Br₂ in presence of FeBr₃, the major product formed is *m*-bromonitrobenzene. Statements which are related to obtain the *m*-isomer are

(1992 - 1 Mark)

- (a) The electron density on meta carbon is more than that on ortho and para positions
- (b) The intermediate carbonium ion formed after initial attack of Br⁺ at the meta position is least destabilised
- (c) Loss of aromaticity when Br⁺ attacks at the ortho and para positions and not at meta position
- (d) Easier loss of H⁺ to regain aromaticity from the meta position than from ortho and para positions.
- 4. Examine the following two structures for the anilinium ion and choose the correct statement from the ones given below:

 (1993 1 Mark)

 $\bigvee_{I}^{\uparrow} H_{3} \longleftrightarrow {}^{\uparrow} \bigvee_{II}^{NH_{3}}$

- (a) II is not an acceptable canonical structure because carbonium ions are less stable than ammonium ions.
- (b) II is not an acceptable canonical structure because it is non-aromatic.
- (c) II is not an acceptable canonical structure because the nitrogen has 10 valence electrons.
- (d) II is an acceptable canonical structure.
- 5. p-Chloroaniline and anilinium hydrochloride can be distinguished by (1998 2 Marks)
 - (a) Sandmeyer reaction
- (b) NaHCO,
- (c) AgNO₃
- (d) Carbylamine test
- 6. Among the following compounds, which will react with acetone to give a product containing > C = N-bond?

(1998 - 2 Marks)

- (a) $C_6H_5NH_2$
- (b) (CH₂)₃N
- (c) $C_6H_5NHC_6H_5$
- (d) $C_6H_5NHNH_2$
- 7. Benzenediazonium chloride on reaction with phenol in weakly basic medium gives (1998 2 Marks)
 - (a) diphenyl ether
- (b) p-hydroxyazobenzene
- (c) chlorobenzene
- (d) benzene

- 8. A positive carbylamine test is given by (1999 2 Marks)
 - (a) N, N—dimethylaniline
 - (b) 2,4—dimethylaniline
 - (c) N-methyl-o-methylaniline
 - (d) p-methylbenzylamine
- 9. In the reaction $2X + B_2H_6 \rightarrow [BH_2(X)_2]^+[BH_4]^$ the amine(s) X is (are) (2009)
 - (a) NH₂
- (b) CH₂NH₂
- (c) $(CH_3)_2NH$
- (d) $(CH_3)_3N$
- 10. Hydrogen bonding plays a central role in the following phenomena (JEE Adv. 2014)
 - (a) Ice floats in water
 - (b) Higher Lewis basicity of primary amines than tertiary amines in aqueous solutions
 - (c) Formic acid is more acidic than acetic acid
 - (d) Dimerisation of acetic acid in benzene
- 11. In the reaction shown below, the major product(s) formed is/ are (JEE Adv. 2014)

$$\begin{array}{c}
NH_2 \\
\hline
Z & NH_2
\end{array}
\xrightarrow{\text{acetic anhydride}} \text{Product(s)}$$

(a)
$$O$$

$$CH_3$$

$$O$$

$$OH_2$$

$$OH_3$$

(b)
$$H_{O} CH_{3} + CH_{3}COOH$$

(c)
$$\stackrel{\stackrel{\stackrel{\stackrel{\stackrel{\sim}{\longrightarrow}}}{\longrightarrow}}{\longrightarrow}}{\stackrel{\stackrel{\sim}{\longrightarrow}}{\longrightarrow}} CH_3$$

$$(d) \qquad \begin{array}{c} \bigoplus \\ \mathrm{NH_3CH_3COO} \\ \\ \mathrm{N} \\ \mathrm{O} \\ \end{array} \\ \mathrm{CH_3} \\ \end{array}$$

12. The major product of the reaction is (JEE Adv. 2015)

C-173

(c)
$$H_3C$$
 CO_2H CO_2H (d)

$$\begin{array}{ccc}
& \text{H}_3\text{C} & \text{NH} \\
& \text{CH}_3 \text{ OH} & \\
\end{array}$$

13. In the following reactions, the major product W is

$$\begin{array}{c|c}
 & \text{NH}_2 \\
\hline
 & \text{NaNO}_2, \text{HCl} \\
\hline
 & \text{0°C}
\end{array}$$

$$V \xrightarrow{\text{OH}} W$$
(JEE Adv. 2015)

(c)
$$N = N$$

14. In the following reactions, the product S is (*JEE Adv. 2015*)

(c)
$$H_{3}C$$
 (d) $H_{4}C$

15. The product(s) of the following reaction sequence is(are)
(JEE Adv. 2016)

(a)
$$Br$$

$$Br$$

$$Br$$

$$Br$$

$$Br$$

(c)
$$Br$$
 Br Br Br Br

E Subjective Problems

- 1. Show with equations how the following compounds are prepared (equations need not be balanced):
 - (i) n-propyl amine from ethyl chloride (in two steps) (1982 1 Mark)
 - (ii) chlorobenzene from aniline (in two steps).

(1982 - 1 Mark)

- (iii) Aniline from benzene (1983 1 Mark)
- (iv) Acetoxime from acetaldehyde using the reagents, $[K_2Cr_2O_7/H^+, Ca(OH)_2 \text{ and } NH_2OH.HCl].$

(1984 - 2 Marks)

- (v) aniline to chlorobenzene (1985 1 Mark)
- (vi) benzaldehyde to cyanobenzene. (in not more than 6 steps) (1986 2 Marks)
- (vii) toluene to m-nitrobenzoic acid? (1987 1 Mark)
- (viii) 4-nitroaniline to 1, 2, 3-tribromobenzene.

(1990 - 2 Marks)

(ix) p-bromonitrobenzene from benzene in two steps.

(1993 - 2 Marks)

- (x) 4-nitrobenzaldehyde from benzene. (1994 2 Marks)
- (xi) benzamide from nitrobenzene (1994 2 Marks)
- (xii) Aniline \longrightarrow Benzylamine (in 3 steps)

(2000 - 3 Marks)

(xiv) Convert to
$$OH$$
 in not more than

four steps.

(2004 - 4 Marks)

- 2. Give reasons for the following:
 - (i) Cyclohexylamine is a stronger base than aniline.

(1982 - 1 Mark)

- (ii) o-Nitrophenol is steam volatile whereas p-nitrophenol is not; (1985 1 Mark)
- (iii) Dimethylamine is a stronger base than trimethylamine. (1998 2 Marks)
- (iv) Nitrobenzene does not undergo Friedel-Crafts alkylation (1998 2 Marks)

(v) (a)
$$O_2N$$
 H_3C

$$OH^- \rightarrow O_2N \longrightarrow OH$$
 but

(b)
$$O_2NCH_2$$

$$\xrightarrow{\text{OH}^-}$$
 No release of F⁻ (2005 - 1 Mark)

$$(vi)$$
 $O = N$

$$\xrightarrow{\text{HNO}_3} \text{ON} \xrightarrow{\text{O}_2 \text{N}} + \text{ON} \xrightarrow{\text{O}_2 \text{N}} \text{NO}_{\underline{0}}$$

but

$$O_2N$$
 \longrightarrow O_2N \longrightarrow O_2N \longrightarrow O_2N

(2005 - 1 Mark)

- 3. Arrange the following:
 - (i) p-toluidine, N, N-dimethyl-p-toluidine, p-nitroaniline, aniline in increasing basicity (1986 1 Mark)
 - (ii) methylamine, dimethylamine, aniline, N-methylaniline in incerasing order of base strength. (1988 1 Mark)

4. Complete the following with appropriate structures :

(i)
$$\langle OCI \xrightarrow{base} ?$$
 (1986 - 1 Mark)

(ii)
$$\langle \text{CH}_3 + \text{HNO}_2 \longrightarrow \text{CH}_3 \rangle$$

(1992 - 1 Mark)

(iii)
$$\leftarrow$$
 CONH₂ $\xrightarrow{P_2O_5}$ $\xrightarrow{H^+, H_2O}$ $\xrightarrow{\Delta}$ (1992 - 1 Mark)

(iv) 2, 4-Dinitroaniline

$$\frac{\text{1.NaNO}_2 \text{ and HCl at } 5^{\circ}\text{C}}{\text{2.anisole}} \xrightarrow{\text{2.nnisole}} \frac{\text{C}}{\text{1.995 - 1 Mark}}$$

(v)
$$NO_2$$
 + (COOEt)₂ + EtONa \longrightarrow C

(1997 - 1 Mark)

(vi)
$$CH_3CH_2NH_2 \xrightarrow{(CH_3CO)_2O, heat} 2 \text{ products}$$
(1998 - 2 Marks)

(vii) CH₃CONHC₆H₅
$$\xrightarrow{\text{Br}_2, \text{ Fe}}$$
 2 products
(1998 - 2 Marks)

- 5. Write balanced equations for the following reaction:
 Acetamide is reacted with bromine in the presence of potassium hydroxide. (1987 1 Mark)
- 6. Give a chemical test and the reagents used to distinguish between the following pair of compounds:

 Ethylamine and diethylamine. (1988 1 Mark)
- 7. An organic compound A, containing C, H, N and O, on analysis gives 49.32% carbon, 9.59% hydrogen and 19.18% nitrogen. A on boiling with NaOH gives off NH₃ and a salt which on acidification gives a monobasic nitrogen free acid B. The silver salt of B contains 59.67% silver. Deduce the structures of A and B. (1988 3 Marks)
- 8. A mixture of two aromatic compounds A and B was separated by dissolving a chloroform followed by extraction with aqueous KOH solution. The organic layer containing compound A, when heated with alcoholic solution of KOH produced a compound C(C₇H₅N) associated with an unpleasant odour. The alkaline aqueous layer on the other hand, when heated with chloroform and then acidified gave a mixture of two isomeric compounds D and E of molecular formula C₇H₆O₂. Identify the compounds A, B, C, D, E and write their structures. (1990 4 Marks)
- 9. A basic, volatile nitrogen compound gave a foul smelling gas when treated with chloroform and alcoholic potash. A 0.295 g sample of the substance, dissolved in aq. HCl and

treated with NaNO₂ solution at 0°C, liberated a colorless, odourless gas whose volume corresponded to 112 ml at STP. After the evolution of the gas was complete, the aqueous solution was distilled to give an organic liquid which did not contain nitrogen and which on warming with alkali and iodine gave a yellow precipitate. Identify the original substance. Assume that it contains one N atom per molecule. (1993 - 4 Marks)

10. Identify the major product in the following reactions:

(i)
$$\langle OO - \langle OO - \langle OO \rangle \xrightarrow{HNO_3/H_2SO_4} ?$$

(1993 - 1 Mark)

(ii)
$$NaOCH_3 \rightarrow NaOCH_3 \rightarrow NO_2$$
 (2000 - 1 Mark)

(iii) $R = \frac{Br_2/Fe (l eq)}{Br_2/Fe (l eq)}$

(2000 - 1 Mark)

11. Identify, $A(C_3H_9N)$ which reacts with benzensulphonyl chloride to give a solid, insoluble in alkali.

(1993 - 1 Mark)

12. Write the structure of the foul-smelling compound obtained when aniline is treated with chloroform in the presence of KOH. (1996 - 1 Mark)

13. Acetophenone on reaction with hydroxylamine hydrochloride can produce two isomeric oximes. Write structures of the oximes. (1997 - 2 Marks)

14. Compound A (C_8H_8O) on treatment with NH₂OH. HCl gives B and C. B and C rearrange to give D and E, respectively, on treatment with acid. B, C, D and E are all isomers of molecular formula (C_8H_9NO). When D is boiled with alcoholic KOH an oil F (C_6H_7N) separates out. F reacts rapidly with CH₃COCI to give back D. On the other hand, E on boiling with alkali followed by acidification gives a white solid G ($C_7H_6O_2$). Identify A-G (1999 - 7 Marks)

15. Complete the following reaction with appropriate reagents:

(1999 - 4 Marks)

16. Explain briefly the formation of the products giving the structures of the intermediates.

$$\begin{array}{c} & & & \\ & &$$

17. How would you synthesise 4-methoxyphenol from bromobenzene in NOT more than five steps? State clearly the reagents used in each step and show the structures of the intermediate compounds in your synthetic scheme. (2001 - 5 Marks)

18. Write structures of the products A, B, C, D and E in the following scheme.

(2002 - 5 Marks)

19. There is a solution of *p*—hydroxybenzoic acid and *p*-aminobenzoic acid. Discuss one method by which we can separate them and also write down the confirmatory tests of the functional groups present. (2003 - 4 Marks).

20. Identify (A) to (D) in the following series of reactions.

(2004 - 4 Marks)

$$CH_2Cl \xrightarrow{KCN} [A]$$

$$\frac{C_2H_5ONa, C_2H_5OH}{C_6H_5CHO, heat} [B]$$

$$\frac{H_3O^+}{heat} [C] \xrightarrow{(i) SOCl_2} [D]$$

21. $C_5H_{13}N$ $\xrightarrow{\text{aq. NaNO}_2/\text{HCl}}$ $\xrightarrow{\text{Tertiary alcohol}}$ + Some other products

(2005 - 4 Marks)

- (i) Identify (X) and (Y)
- (ii) Is (Y) optically active?
- (iii) Give structure(s) of intermediate(s), if any, in the formation of (Y) from (X).

Match the Following

DIRECTIONS (Q. No.1): Each question contains statements given in two columns, which have to be matched. The statements in Column-I are labelled A, B, C and D, while the statements in Column-II are labelled p, q, r, s and t. Any given statement in Column-I can have correct matching with ONE OR MORE statement(s) in Column-II. The appropriate bubbles corresponding to the answers to these questions have to be darkened as illustrated in the following example:

If the correct matches are A-p, s and t; B-q and r; C-p and q; and D-s then the correct darkening of bubbles will look like the given.

1. Match each of the compounds in **Column I** with its characteristic reaction(s) in **Column II**.

(2009)

Column I

- (A) CH₃CH₂CH₂CN
- (B) CH₃ CH₂ OCOCH₃
- (C) CH₃-CH=CH-CH₂OH
- (D) CH₃CH₂CH₂CH₂NH₂

- Column II
- (p) Reduction with Pd–C/H₂
- (q) Reduction with SnCl₂/HCl
- (r) Development of foul smell on treatment with chloroform and alcoholic KOH
- (s) Reduction with diisobutylaluminium hydride(DIBAL-H)
- (t) Alkaline hydrolysis

DIRECTIONS (Q. No. 2): Match the four starting materials (P, Q, R, S) given in List-I with the corresponding reaction schemes (I, II, III, IV) provided in List-II and select the correct answer using the code given below the lists.

2. List - I List - II (JEE Adv. 2014)

Р. Н——Н

- 1. Scheme I
 - (i) KMnO₄, HO , heat (ii) H^{\oplus}, H₂O (iii) SOCl₂(iv) NH₃? \longrightarrow C₇H₆N₂O₃

- 2. Scheme II
 - (ii) Sn/HCl (ii) CH₃COCl (iii) conc. H₂SO₄ (iv) HNO₃ (v) dil. H₂SO₄, heat (vi) HO ? \longrightarrow C₆H₆N₂O₂

$$R \longrightarrow NO_2$$

- 3. Scheme III
 - (i) red hot iron, 873 K (ii) fuming $\mathrm{HNO}_3, \mathrm{H}_2\mathrm{SO}_4, \mathrm{heat}$
 - (iii) H₂S.NH₃ (iv) NaNO₂, H₂SO₄ (v) hydrolysis

S.
$$\frac{NO_2}{CH_3}$$

4. Scheme IV

- (i) conc. H_2SO_4 , $60^{\circ}C$
- (ii) conc. HNO₃, conc. H₂SO₄
- (iii) dil. H_2SO_4 , heat? $C_6H_5NO_4$

Code:				
	P	Q	R	S
(a)	1	4	2	3
(b)	3	1	4	2
(c)	3	4	2	1
(d)	4	1	3	2

G Comprehension Based Questions

PASSAGE - 1

The conversion of an amide to an amine with one carbon atom less by the action of alkaline hydrohalite is known as Hofmann bromamide degradation.

In this reaction, RCONHBr is formed from which the reaction has derived its name. Hofmann reaction is accelerated if the migrating group is more electron-releasing. Hofmann degradation reaction is an intramolecular reaction.

- 1. How can the conversion of (i) to (ii) be brought about?
 - (2006 5M, -2)

- (a) KBr
- (b) KBr+CH₃ONa
- (c) KBr+KOH
- (d) $Br_2 + KOH$
- 2. Which is the rate determining step in Hofmann bromamide degradation? (2006 5M, -2)
 - (a) Formation of (i)
- (b) Formation of (ii)
- (c) Formation of (iii)
- (d) Formation of (iv)
- 3. What are the constituent amines formed when the mixture of (i) and (ii) undergoes Hofmann bromamide degradation? (2006 5M, -2)

$$\begin{array}{c} \text{CONH}_2 \\ \text{ii)} \\ \text{D} \end{array} \text{ and } \begin{array}{c} \text{CONH}_2 \\ \text{(ii)} \\ \text{D} \end{array}$$

PASSAGE - 2

Treatment of compound O with KMnO₄/H⁺ gave P, which on heating with ammonia gave Q. The compound Q on treatment with Br₂/NaOH produced R. On strong heating, Q gave S, which on further treatment with ethyl 2-bromopropanoate in the presence of KOH followed by acidification, gave a compound T. (JEE Adv. 2016)

4. The compound R is

(a)
$$NH_2$$
 (b) Br Br Br $NHBr$ $NHBr$ $NHBr$

- 5. The compound T is
 - (a) glycine
- (b) alanine
- (c) valine
- (d) serine

H Assertion & Reason Type Questions

Read the following Statement-1(Asseration) and Statement -2 (Reason) and answer as per the options given below:

- (a) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (b) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (c) Statement-1 is True, Statement-2 is False
- (d) Statement-1 is False, Statement-2 is True

- 1. **Statement 1:** *p*-Nitrophenol is a stronger acid than *o*-nitrophenol.
 - **Statement 2:** Intramolecular hydrogen bonding makes the *o*-isomer weaker than the *p*-isomer. (1989 2 Marks)
- 2. **Statement 1:** Benzonitrile is prepared by the reaction of chlorobenzene with potassium cyanide.
 - **Statement 2:** Cyanide (CN⁻) is a strong nucleophile.

(1998 - 2 Marks)

- 3. **Statement 1:** In strongly acidic solutions, aniline becomes more reactive towards electrophilic reagents.
 - **Statement-2:** The amino group being completely protonated in strongly acidic solution, the lone pair of electrons on the nitrogen is no longer available for resonance. (2001S)
- 4. Statement 1: Aniline on reaction with NaNO₂ / HCl at 0° C followed by coupling with β -naphthol gives a dark blue precipitate.

and

Statement - 2: The colour of the compound formed in the reaction of aniline with NaNO₂/HCl at 0° C followed by coupling with β -naphthol is due to the extended conjugation. (2008)

C-179

JEE Main / AIEEE Section-B

- 1. When primary amine reacts with chloroform in ethanolic KOH then the product is [2002]
 - (a) an isocyanide
 - (b) an aldehyde
 - (c) a cyanide
 - (d) an alcohol.
- The reaction of chloroform with alcoholic KOH and 2. p-toluidine forms [2003]
 - (a) $H_3C \longrightarrow N_2CI$
 - (b) H₂C NHCHCl₂
 - (c) $H_2C \longrightarrow NC$
 - (d) $H_3C \longrightarrow CN$
- 3. The correct order of increasing basic nature for the bases NH₃, CH₃NH₂ and (CH₃), NH is [2003]
 - (a) $(CH_3)_2NH < NH_3 < CH_3NH_2$
 - (b) NH₃ < CH₃NH₂ < (CH₃)₂NH
 - (c) $CH_3NH_2 < (CH_3)_2NH < NH_3$
 - (d) $CH_3NH_2 < NH_3 < (CH_3)_2NH$
- 4. Ethyl isocyanide on hydrolysis in acidic medium generates
 - (a) propanoic acid and ammonium salt
- [2003]
- (b) ethanoic acid and ammonium salt
- (c) methylamine salt and ethanoic acid
- (d) ethylamine salt and methanoic acid
- 5. Which one of the following methods is neither meant for the synthesis nor for separation of amines? [2005]
 - (a) Curtius reaction
 - (b) Wurtz reaction
 - (c) Hofmann method
 - (d) Hinsberg method
- 6. Amongst the following the most basic compound is

[2005]

- (a) p-nitroaniline
- (b) acetanilide
- (c) aniline
- (d) benzylamine
- An organic compound having molecular mass 60 is found 7. to contain C = 20%, H = 6.67% and N = 46.67% while rest is oxygen. On heating it gives NH₂ alongwith a solid residue. The solid residue give violet colour with alkaline copper sulphate solution. The compound is [2005]
 - (a) CH₃CH₂CONH₂
- (b) $(NH_2)_2CO$
- (c) CH₃CONH₂
- (d) CH₃NCO
- Which one of the following is the strongest base in aqueous solution? [2007]
 - (a) Methylamine
- (b) Trimethylamine
- (c) Aniline
- (d) Dimethylamine.

In the chemical reaction,

 $CH_2CH_2NH_2 + CHCl_2 + 3KOH \rightarrow (A) + (B) + 3H_2O$, the compounds (A) and (B) are respectively [2007]

- (a) C₂H₅NC and 3KCl
- (b) C₂H₅CN and 3KCl
- (c) CH₂CH₂CONH₂ and 3KCl
- (d) C_2H_5NC and K_2CO_3 .
- In the chemical reactions, 10.

the compounds 'A' and 'B' respectively are [2010]

- (a) nitrobenzene and fluorobenzene
- (b) phenol and benzene
- (c) benzene diazonium chloride and fluorobenzene
- (d) nitrobenzene and chlorobenzene
- A compound with molecular mass 180 is acvlated with CH₂COCl to get a compound with molecular mass 390. The number of amino groups present per molecule of the former compound is: [JEE M 2013]
 - (a) 2

(b) 5

(c) 4

- (d) 6
- An organic compound A upon reacting with NH₃ gives B. On heating B gives C. C in presence of KOH reacts with Br₂ to given CH₂CH₂NH₂. A is: [JEE M 2013]
 - (a) CH₃COOH
- (b) CH₃CH₂CH₂COOH
- CH₃
- CH₃ CH COOH (d) CH₃CH₂COOH
- The gas leaked from a storage tank of the Union Carbide plant in Bhopal gas tragedy was: [JEE M 2013]
 - (a) Methyl isocyanate
- (b) Methylamine
- (c) Ammonia
- (d) Phosgene
- 14. On heating an aliphatic primary amine with chloroform and ethanolic potassium hydroxide, the organic compound formed is: [JEE M 2014]
 - (a) an alkanol
- (b) an alkanediol
- (c) an alkyl cyanide
- (d) an alkyl isocyanide
- 15. Considering the basic strength of amines in aqueous solution, which one has the smallest pK_h value? [JEE M 2014]
 - (a) $(CH_3)_2NH$
- (b) CH₃NH₂
- (c) $(CH_3)_3N$
- (d) $C_6H_5NH_2$

16. In the reaction

[JEE M 2015]

the product E is:

- 17. In the Hofmann bromamide degradation reaction, the number of moles of NaOH and Br₂ used per mole of amine produced are: [JEE M 2016]
 - (a) Two moles of NaOH and two moles of Br₂.
 - (b) Four moles of NaOH and one mole of Br₂.
 - (c) One mole of NaOH and one mole of Br₂.
 - (d) Four moles of NaOH and two moles of Br₂.