Math 357 Long quiz 05

2024–03–25 (M)

Your name:	

Let $p = t^3 - 3t - 1 \in \mathbf{Q}[t]$.

- (a) Prove that p is irreducible.
- (b) Prove that p has three distinct zeros in **R**. (You need not compute them.)
- (c) Let $\alpha \in \mathbf{R}$ be a zero of p. Prove that $\sqrt{2} \notin \mathbf{Q}(\alpha)$.

Solution: Part (a): Because p is a degree-3 polynomial over \mathbf{Q} , a field, p is irreducible in $\mathbf{Q}[t]$ if and only if it has no zeros in \mathbf{Q} . We may show that p has no zeros in \mathbf{Q} in various ways.

1. By the rational roots test,² if $\frac{r}{s} \in \mathbf{Q}$ is a zero of p and in lowest terms, then r divides the constant term of p and s divides the leading coefficient of p. This implies that if $\alpha \in \mathbf{Q}$ is a zero of p, then $\alpha = \pm 1$. Evaluating the function p at these two values, we find

$$p(-1) = 1$$
 $p(1) = -3$

so p has no zeros in \mathbf{Q} , and hence is irreducible in $\mathbf{Q}[t]$.

2. Viewing $p \in \mathbf{Z}[t]$ and reducing its coefficients modulo 2, we get

$$\overline{p} = t^3 + t + 1$$

Evaluating \overline{p} at the elements of the (finite) field $\mathbb{Z}/(2)$, we find

$$\overline{\mathfrak{p}}(0) = 1$$
 $\overline{\mathfrak{p}}(1) = 3 \equiv 1$

so p has no zeros in $\mathbb{Z}/(2)$, and hence is irreducible in $(\mathbb{Z}/(2))[t]$, hence in $\mathbb{Z}[t]$, hence (by Gauß's lemma⁴) in $\mathbb{Q}[t]$.

3. Evaluating p at t + 1, we get

$$p(t+1) = t^3 + 3t^2 - 3$$

which by the Eisenstein–Schönemann criterion⁵ with p=3 is irreducible in $\mathbf{Z}[t]$ and hence (by Gauß's lemma) in $\mathbf{Q}[t]$.

Part (b): Evaluating p at a few small values of $t \in \mathbf{Z}$, we find⁶

t	-2	-1	0	1	2
p(t)	-3	1	-1	-3	1

In particular, p(t) changes sign three times as t increases over the interval [-2,2]. If we view the polynomial $p \in Q[t]$ as a function $R \to R$, then the intermediate value theorem implies that p has three zeros in R.

Part (c): To begin, note that

¹See DF3e, Proposition 9.10, p 308.

²See DF3e, Proposition 9.11, p 308.

³See DF3e, Proposition 9.12, p 309.

⁴See DF3e, Proposition 9.5, p 303.

⁵See DF3e, Proposition 9.13, p 309.

⁶In settings where we have access to graphing applications, we might use these to guide our search.

1. The minimal polynomial of α over \boldsymbol{Q} is p, because p is monic, irreducible, and $p(\alpha)=0.^7$ Thus

$$[\mathbf{Q}(\alpha):\mathbf{Q}]=\deg\mathfrak{p}=3$$

2. The minimal polynomial of $\sqrt{2}$ over ${\bf Q}$ is $\mathfrak{m}_{\sqrt{2},{\bf Q}}=\mathfrak{t}^2-2.$ Thus

$$[\mathbf{Q}(\sqrt{2}):\mathbf{Q}] = \deg \mathfrak{m}_{\sqrt{2},\mathbf{Q}} = 2$$

Let $K: \mathbf{Q}$ be a field extension such that $\sqrt{2} \in K$. Then $\mathbf{Q}(\sqrt{2})$ is an intermediate field of $K: \mathbf{Q}$, so we get a tower of field extensions:

$$K : \mathbf{Q}(\sqrt{2}) : \mathbf{Q}$$

By the tower law, the degrees of these extensions satsify⁸

$$[K:\mathbf{Q}] = [K:\mathbf{Q}(\sqrt{2})][\mathbf{Q}(\sqrt{2}):\mathbf{Q}]$$

In particular, $[\mathbf{Q}(\sqrt{2}):\mathbf{Q}]=2$ divides $[K:\mathbf{Q}]$. That is, if $\sqrt{2}\in K$, then $2\mid [K:\mathbf{Q}]$. Equivalently, if $2\not\mid [K:\mathbf{Q}]$, then $\sqrt{2}\notin K$. Because $[\mathbf{Q}(\alpha):\mathbf{Q}]=3$ is not divisible by 2, we conclude that $\sqrt{2}\notin \mathbf{Q}(\alpha)$.

⁷See DF3e, Proposition 13.9, p 520, and the subsequent discussion.

⁸See DF3e, Theorem 13.14, p 523.