Modelado de tópicos Curso de procesamiento de lenguaje natural

Julio Waissman

Maestría en Tecnologías de la Información UNaM/UNEE

9 y 10 de agosto de 2018

¿Que es modelado de tópicos?

Definición formal

Dado:

- $\{d_1, \ldots, d_D\}$ un conjunto de documentos (corpus),
- $\{w_1, \ldots, w\}$ un conjunto de palabras (vocabulario),
- n_{dw} el número de veces que la palabra w aparece en el documento d

Encontrar:

- Para un conjunto de T tópicos $\{t_1, \ldots, t_T\}$
- $\phi_{wt} = \Pr(w|t)$ una distribución de palabras en cada tópico,
- $oldsymbol{ heta}_{td} = \mathsf{Pr}(t|d)$ una distribución de tópicos por cada documento

Basado en las hipótesis:

- Un tópico es un conjunto coherente de palabras que co-ocurren en un subconjunto de documentos
- Un documento está representado con una BOW con cuentas (o proporcional)
- Toda palabra observada en un documento tiene un tópico latente

¿Para qué sirve el modelado de tópicos?

El modelado de tópicos provée una representación semántica inherente a un conjunto de documentos

Se utiliza en:

- Categorización de textos
- 2 Agregación y resumen de noticias
- Sistemas de recomendación
- Recuperación de la información
- Segmentación de corpus

Modelo probabilístico

Ley de probabilodad total (marginalización)

$$\Pr(w) = \sum_{t \in T} \Pr(w|t) \Pr(t)$$

4 Hipótesis de independencia condicional

$$Pr(w|t,d) = Pr(w|t)$$

Planteamiento

$$\Pr(w|d) = \sum_{t \in T} \Pr(w|t, d) \Pr(t|d) = \sum_{t \in T} \Pr(w|t) \Pr(t|d) = \phi_{wt} \theta_{td}$$

Visto en forma matricial

El problema de descomposición matricial en este caso está pobremente definido, y hay que utilizar algún criterio de optimización para encontrar las matrices Φ y Θ

PLSA

Se optimiza la verosimilitud logarítmica

$$\Phi^*, \Theta^* = \arg \max_{\Phi, \Theta} \sum_{d} \sum_{w \in d} n_{dw} \log \sum_{t} \phi_{wt} \theta_{td}$$

Si conociéramos los tópicos sería muy parecido a los vectores de palabra, pero resulta que solo sabemos el número de tópicos que imponemos

Algoritmo EM

Expectation

$$\Pr(t|d,w) = \frac{\Pr(w|t)\Pr(t|d)}{\Pr(w|d)} = \frac{\phi_{wt}\theta_{td}}{\sum_{s}\phi_{ws}\theta_{sd}}$$

Maximization

$$\phi_{wt} = \frac{n_{wt}}{\sum_{v} n_{vt}}$$
 donde $n_{wt} = \sum_{d} n_{dw} \Pr(t|d, w)$

$$heta_{td} = rac{n_{td}}{\sum_{t'} n_{t'd}}$$
 donde $n_{td} = \sum_{w} n_{dw} \Pr(t|d,w)$

Latent Dirichlet Allocation (LDA)

- La distribución de palabras para el tópico t (ϕ_t , el t-ésimo un renglón de Φ) es generada por una distribución de *Dirichlet* con parámetros $\beta \in \mathbb{R}^W$
- $ext{2}$ La distribución de tópicos para el documento d (θ_d una columna de Θ) también se genera a partir de una distribución de *Dirichlet* con parámetros $\alpha \in \mathbb{R}^T$

Modelado de tópicos multimodal

Biblioteca especializada BigARTM en http://bigartm.org

Revisemos el modelado de tópicos

