trait SampleBernoulli

Vicki Xu, Hanwen Zhang, Zachary Ratliff February 7, 2024

This proof resides in "contrib" because it has not completed the vetting process.

Warning 1 (Code is not constant-time). sample_bernoulli takes in a boolean constant_time parameter to protect against timing attacks on the Bernoulli sampling procedure. However, the current implementation does not guard against other types of timing side-channels that can break differential privacy, e.g., non-constant time code execution due to branching.

PR History

• Pull Request #473

This document proves that the implementations of SampleBernoulli in mod.rs at commit f5bb719 (outdated¹) satisfy the definition of the SampleBernoulli trait.

Definition 0.1. The SampleBernoulli<T> trait defines a function sample_bernoulli, where the data type of the probability is T.

For any setting of the input parameters prob of type T restricted to [0,1], and constant_time of type bool, sample_bernoulli either

- raises an exception if there is a lack of system entropy or constant_time is not supported,
- returns out where out is \top with probability prob, otherwise \bot .

If constant_time is set, the implementation's runtime is constant.

There are two impl's (implementations): one for float probabilities, and one for rational probabilities. To prove correctness of each impl, we prove correctness of the implementation of sample_bernoulli.

Contents

1	impl for Float Probability	2
	1.1 Hoare Triple	2
	1.2 Proof	
2	impl for Rational Probability	4
	2.1 Hoare Triple	4
	2.2 Proof	Ę

 $^{^{1}\}mathrm{See}\ \mathrm{new}\ \mathrm{changes}\ \mathrm{with}\ \mathrm{git}\ \mathrm{diff}\ \mathrm{f5bb719..2fc0be0}\ \mathrm{rust/src/traits/samplers/bernoulli/mod.rs}$

1 impl for Float Probability

This corresponds to impl<T> SampleBernoulli<T> for bool where T: Float in Rust. At a high level, sample_bernoulli considers the binary expansion of prob into an infinite sequence a_i, like so: prob = $\sum_{i=0}^{\infty} \frac{a_i}{2^{i+1}}$. The algorithm samples $I \sim Geom(0.5)$ using an internal function sample_geometric_buffer, then returns a_I .

1.1 Hoare Triple

Preconditions

- User-specified types:
 - Variable prob must be of type T
 - Variable constant_time must be of type bool
 - Type T has trait Float. Float implies there exists an associated type T::Bits (defined in FloatBits) that captures the underlying bit representation of T.
 - Type T::Bits has traits PartialOrd and ExactIntCast<usize>
 - Type usize has trait ExactIntCast<T::Bits>

Pseudocode

```
# returns a single bit with some probability of success
  def sample_bernoulli(prob : T, constant_time : bool) -> bool:
      if prob == 1:
          return True
      # prepare for sampling first heads index by coin flipping
6
      max_coin_flips = usize.exact_int_cast(T::EXPONENT_BIAS) + \
                        usize.exact_int_cast(T::MANTISSA_BITS)
      # find number of bits to sample, rounding up to nearest byte (smallest sample size)
      buffer_len = max_count_flips.inf_div(8)
11
      # repeatedly flip fair coin and identify 0-based index of first heads
13
14
      first_heads_index = sample_geometric_buffer(buffer_len, constant_time)
15
      # if no events occurred, return early
16
      if first_heads_index is None:
17
          return False
18
19
      # find number of zeroes in binary rep. of prob
20
      leading_zeroes = T::EXPONENT_BIAS - 1 - prob.raw_exponent()
21
22
      # case 1: index into the leading zeroes
23
      if first_heads_index < leading_zeros:</pre>
24
25
          return False
26
      # case 2: index into implicit bit directly to left of mantissa
27
      if first_heads_index == leading_zeroes:
28
29
          return prob.raw_exponent() != 0
30
      # case 3: index into out-of-bounds/implicitly-zero bits
31
      if first_heads_index > leading_zeroes + MANTISSA_BITS:
32
          return False
33
34
      # case 4: index into mantissa
35
      mask = (1 << (T::MANTISSA_BITS + leading_zeroes - first_heads_index))</pre>
36
     return (prob.to_bits() & mask) != 0
```

Postcondition

The postcondition is supplied by 0.1.

1.2 Proof

Proof. To show the correctness of sample_bernoulli we observe first that the base-2 representation of prob is of the form

and is represented exactly as a normal floating-point number. The IEEE-754 standard represents a normal floating-point number using an exponent E, and a mantissa m, using a base-2 analog of scientific notation.

Definition 1.1 (Floating-Point Number). A (k,ℓ) -bit floating-point number z is represented as

$$z = (-1)^s \cdot (B.M) \cdot (2^E)$$

where

- \bullet s is used to represent the sign of z
- \bullet B is the implicit bit; 1 for normal floating-point numbers and 0 for subnormal floating point numbers
- $M \in \{0,1\}^k$ is a k-bit string representing the part of the mantissa to the right of the radix point, i.e.,

$$1.M = \sum_{i=1}^{k} M_i 2^{-i}$$

• $E \in \mathbb{Z}$ represents the *exponent* of z. When ℓ bits are allocated to representing E, then $E \in [-(2^{\ell-1}-2), 2^{\ell-1}] \cap \mathbb{Z}$. Note that the range of E is $2^{\ell}-2$ rather than 2^{ℓ} as the remaining to numbers are used to represent special floating point values. When $E = -(2^{\ell-1}-2)$, then the floating point number is considered *subnormal*.

We now use the technique for arbitrarily biasing a coin in 2 expected tosses as a building block. Recall that we can represent the probability prob as $\operatorname{prob} = \sum_{i=0}^\infty \frac{a_i}{2^{i+1}}$ for $a_i \in \{0,1\}$, where a_i is the zero-indexed i-th significant bit in the binary expansion of prob. Then let $I \sim \operatorname{Geom}(0.5)$ and observe that the random variable a_I is an exact Bernoulli sample with probability prob since $P(a_I=1) = \sum_{i=0}^\infty P(a_i=1|I=i)P(I=i) = \sum_{i=1}^\infty a_i \cdot \frac{1}{2^{i+1}} = \operatorname{prob}$. It is therefore sufficient to show that for any (k,ℓ) -bit float $\operatorname{prob} = \sum_{i=0}^\infty \frac{a_i}{2^{i+1}}$, sample_bernoulli returns the value a_I with $I \sim \operatorname{Geom}(0.5)$.

First, we observe that by line 3, if prob = 1.0 then prob = 1.

Assuming that sample_geometric_buffer returns some I < j, sample_bernoulli computes the number of leading zeroes in the binary expansion of prob to be leading_zeroes = T::EXPONENT_BIAS - 1 - raw_exponent(prob), where raw_exponent(prob) is the value stored in the ℓ bits of the exponent. This value is correct by the specification of a (k, ℓ) -bit float. sample_bernoulli then matches on the value

first_heads_index corresponding to $I \sim Geom(0.5)$ returned by the function sample_geometric_buffer:

Case 1 (first_heads_index < leading_zeroes).

This corresponds to sample_geometric_buffer returning a value I such that a_I indexes into the leading_zeroes part of the prob variable's binary expansion. Therefore, for any $I < \text{leading_zeroes}$, it follows that $a_I = 0$ and we should return false. In this case, sample_bernoulli returns false.

Case 2 (first_heads_index == leading_zeroes).

This corresponds to sample_geometric_buffer returning a value I such that a_I indexes into the implicit_bit part of the prob variable's binary expansion. When prob is a normal floating point value, i.e., $E \neq -(2^{\ell-1}-2)$ then the implicit bit $a_I = 1$. Otherwise, when prob is a subnormal floating point value, i.e., $E = -(2^{\ell-1}-2)$, the implicit bit $a_I = 0$. Since raw_exponent(prob) corresponds to the exponent E for any (k, ℓ) -bit floating point number prob, sample_bernoulli returns true when raw_exponent(prob) $\neq 0$ and false otherwise.

Case 3 (leading_zeroes+T::MANTISSA_BITS < I). This corresponds to the case where sample_geometric_buffer returns a value I where I > j, but $I < \max_{coin_flips}$ and therefore a_I indexes into the trailing zeroes. In this case, sample_bernoulli returns false since $a_I = 0$ for all bits in the trailing_zeroes part of prob's binary expansion.

Case 4 (leading_zeroes < first_heads_index < leading_zeroes + T::MANTISSA_BITS).

This corresponds to sample_geometric_buffer returning a value I such that a_I indexes into the mantissa part of the prob variable's binary expansion. In this case, sample_bernoulli left-shifts the value 1 by (MANTISSA_BITS + leading_zeroes - first_heads_index) digits, the index into the mantissa corresponding to the digit a_I in the binary representation of prob. Since the operation between the left-shifted 1 and the binary representation of prob at that position is a bitwise AND, if the bit in question is 1 (matching the left-shifted 1), sample_bernoulli will return true. Otherwise, sample_bernoulli will return false.

Therefore, for any value of prob, the function sample_bernoulli either raises an exception or returns the value true with probability exactly prob.

2 impl for Rational Probability

This corresponds to impl SampleBernoulli<Rational> for bool in Rust.

2.1 Hoare Triple

Preconditions

- User-specified types:
 - Variable prob must be of type Rational
 - Variable constant_time must be of type bool

Pseudocode

```
# returns a single bit with some probability of success
def sample_bernoulli(prob: Rational, constant_time : bool) -> bool:
    if constant_time:
        raise NotImplementedError("constant-time uniform sampling of rationals is not implemented")

let (numer, denom) = prob.into_numer_denom();
return numer > Integer.sample_uniform_int_below(denom)
```

Postcondition

The postcondition is supplied by 0.1.

2.2 Proof

This proof has not been written.