State Space Representation Questions

MCQ Question 1

View this Question Online >

A discrete system is represented by the difference equation
$$\begin{bmatrix} X_1 \left(k+1\right) \\ X_2 \left(k+1\right) \end{bmatrix} = \begin{bmatrix} a & a-1 \\ a+1 & a \end{bmatrix} \begin{bmatrix} X_1 \left(k\right) \\ X_2 \left(k\right) \end{bmatrix}$$

It has initial conditions $X_1(0) = 1$; $X_2(0) = 0$. The pole locations of the system for a = 1, are

1 ± j0

2. -1 ± j0

3. $\pm 1 + j0$

4. 0 ± j1

Answer (Detailed Solution Below)

Option 1:1 ± j0

State Space Representation MCQ Question 1 Detailed Solution

Concept:

The poles of the system are the roots of the characteristic equation.

The characteristic equation is: |z| - A| = 0

Calculation:

From the given representation, the matrix A

$$A = \begin{bmatrix} a & a-1 \\ a+1 & a \end{bmatrix}$$

$$zI-A=egin{bmatrix} z & 0 \ 0 & z \end{bmatrix}-egin{bmatrix} a & a-1 \ a+1 & a \end{bmatrix}$$

$$= \begin{bmatrix} z-a & -a+1 \\ -a-1 & z-a \end{bmatrix}$$

For a = 1,

Characteristic equation: |zl - A| = 0

$$\Rightarrow$$
 $(z-1)^2 = 0$

$$\Rightarrow$$
 z = 1 + i0

The roots of characteristic equation gives the system poles.

MCQ Question 2

View this Question Online >

A second-order linear time-invariant system is described by the following state equations $\frac{d}{dt}x_1\left(t\right)+2x_1\left(t\right)=3u\left(t\right)$ $\frac{d}{dt}x_2\left(t\right)+x_2\left(t\right)=u\left(t\right)$

where x1(t) and x2(t) are the two-state variables and u(t) denotes the input. If the output $c(t) = x_1(t)$, then the system is:

- 1. controllable but not observable
- 2. observable but not controllable
- 3. both controllable and observable
- neither controllable nor observable

Answer (Detailed Solution Below)

Option 1: controllable but not observable

State Space Representation MCQ Question 2 Detailed Solution

Concept:

Controllability:

A system is said to be controllable if it is possible to transfer the system state from any initial state $x(t_0)$ to any desired state x(t) in a specified finite time interval by a control vector u(t)

Kalman's test for controllability:

$$\dot{x} = Ax + Bu$$

$$Q_c = [B AB A^2B ... A^{n-1} B]$$

Qc = controllability matrix

If |Qc| = 0, system is not controllable

If |Q_c|≠ 0, system is controllable

stbook.com

Observability:

A system is said to be observable if every state $x(t_0)$ can be completely identified by measurement of output y(t) over a finite time interval.

Kalman's test for observability:

$$Q_0 = [C^T A^T C^T (A^T)^2 C^T (A^T)^{n-1} C^T]$$

Q₀ = observability testing matrix

If $|Q_0| = 0$, system is not observable

If $|Q_0| \neq 0$, system is observable.

Application:

$$_{\mathsf{Given}}\,\dot{\mathtt{x}}_{1}=-2\mathtt{x}_{1}+3\mathrm{U}$$

$$\dot{x}_{2}=-x_{2}+U_{\text{ and }}c\left(t\right) =x_{1}$$

$$_{..}\,A=\begin{bmatrix} -2 & 0 \\ 0 & -1 \end{bmatrix}$$

$$B = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

Controllability matrix Q_c = [B AB]

$$\begin{bmatrix} 3 & -6 \\ 1 & -1 \end{bmatrix}$$

$$|Q_c| = (-3) - (-6) = 6 - 3 = 3 \neq 0$$

:. System is controllable

Observability matrix $Q_0 = [C^T A^TC^T]$, i.e.

$$Q_0 = \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix}$$

 $|Q_0|=0$ = not observable

:. The system is controllable but not observable

MCQ Question 3

View this Question Online >

The value of A matrix in ${}^{\displaystyle X=AX}$ for the system described by ${}^{\displaystyle y'}+2y'+3y=0$

1.
$$\begin{bmatrix} 1 & 0 \\ -2 & -1 \end{bmatrix}$$

3.
$$\begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$$

$$4. \begin{bmatrix} 0 & 1 \\ -3 & -2 \end{bmatrix}$$

Answer (Detailed Solution Below)

Option 4 :
$$\begin{bmatrix} 0 & 1 \\ -3 & -2 \end{bmatrix}$$

State Space Representation MCQ Question 3 Detailed Solution

Concept:

State-space representation:

State equation: $\dot{X}\left(t\right)=A_{n imes n}X\left(t\right)+B_{n imes n}U\left(t\right)$

Output equation: $Y\left(t\right) = C_{q \times n} X\left(t\right) + D_{q \times p} U\left(t\right)$

If the transfer function is in the form of

$$TF = \frac{b[C_n s^n + C_{n-1} s^{n-1} + \dots + C_1 s + C_0]}{s^{n+1} + a_n s^n + \dots + a_1 s + a_0}$$

Then, the above transfer function can be represented as:

Controllable Canonical Form:

$$A = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 1 \\ -a_0 & -a_1 & -a_2 & \dots & -a_n \end{bmatrix} \begin{bmatrix} b \\ b \end{bmatrix}$$

$$C = \begin{bmatrix} C_0 & C_1 & C_2 & \dots & C_n \end{bmatrix}$$

Observable Canonical Form:

$$C = [0 \quad 0 \quad 0 \quad \dots \quad b]$$

Application:

The given system is y'+2y'+3y=0

By applying the Laplace transform, we get

$$s^2 Y(s) + 2s Y(s) + 3 Y(s) = 1$$

$$\Rightarrow Y(s) = \frac{1}{s^2+2s+3}$$

So, the state space representation for the above transfer function is:

$$A = \begin{bmatrix} 0 & 1 \\ -3 & -2 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

MCQ Question 4

View this Ouestion Online >

Consider the state space system expressed by the signal flow diagram shown in the figure.

The corresponding system is

- 1. always controllable
- 2. always observable
- 3. always stable
- 4. always unstable

Answer (Detailed Solution Below)

Option 1: always controllable

State Space Representation MCQ Question 4 Detailed Solution

Concept:

Where v = differentiation of v₁

Thoron annormation of m

Analysis:

The state equation and output equation as:

State equation:

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = x_3$$

$$\dot{x}_3 = a_1 x_1 + a_2 x_2 + a_3 x_3 + u$$

Output equation:

$$y = c_1 x_1 + c_2 x_2 + c_3 x_3$$

$$\begin{vmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{vmatrix} = \begin{vmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ a_1 & a_2 & a_3 \end{vmatrix} \begin{vmatrix} x_1 \\ x_2 \\ x_3 \end{vmatrix} + \begin{vmatrix} 0 \\ 0 \\ 1 \end{vmatrix} u$$

$$y = \begin{bmatrix} c_1 & c_2 & c_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Here,

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ a_1 & a_2 & a_3 \end{bmatrix} \text{ is state matrix}$$

$$B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \text{ is input matrix}$$

And $C = [c_1 \ c_2 \ c_3]$ is the output matrix.

Now,

After state modeling the system, let's check for controllability & observability.

Kalman's Test:

(i) For controllability:

$$Q_c = [B AB A^2B ...]$$

If $|Q_c| \neq 0 \Rightarrow$ Controllable

= 0 ⇒ Uncontrollable

$$_{\left(\text{ii}\right) }Q_{0}=\left| \begin{array}{c} C\\CA\\[1mm] CA2 \end{array} \right|$$

 $|Q_0| \neq 0 \Rightarrow Observable$

= 0 ⇒ Unobservable

$$AB = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$$

$$AB = \begin{bmatrix} 0 \\ 1 \\ \lfloor a_3 \end{bmatrix}$$

$$A^2 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix}$$

$$A^2 = \begin{bmatrix} 0 & 0 & 1 \\ a_1 & a_2 & a_3 \\ a_1a_3 & a_1 + a_2a_3 & a_2 + a_3^2 \end{bmatrix}$$

$$A^2B = \begin{bmatrix} 0 & 0 & 1 & 0 \\ a_1 & a_2 & a_3 & 0 \\ a_1a_3 & a_1 + a_2a_3 & a_2 + a_3^2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$A^2B = \begin{bmatrix} 1 \\ a_3 \\ \left\lfloor a_2 + a_3^2 \right\rfloor \end{bmatrix}$$

$$Q_c = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & a_3 \\ 1 & a_3 & a_2 + a_3^2 \end{bmatrix}$$

$$|Q_c| = 0 = 0 + 1 \, (0 - 1)$$

$$|Q_c| = -1$$

Since $|Q_c| \neq 0$, hence our system is always controllable.

Since it is MCQ type Question we need not check other options. Option A is correct.

But let's check for the observability.

$$Q_0 = egin{bmatrix} C & C \ CA \end{bmatrix}$$

$$CA = \begin{bmatrix} C_1 & C_2 & C_3 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ a_1 & a_2 & a_3 \end{bmatrix}$$

 $CA = [a_1c_3 c_1 + a_2c_3 c_2 + c_3a_3]$

$$CA^2 = \begin{bmatrix} c_1 & c_2 & c_3 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & a_2 & a_3 \\ a_1 a_3 & a_1 + a_2 a_3 & a_1 + a_2^2 \end{bmatrix}$$

$$CA^2 = \begin{bmatrix} a_1 a_3 c_3 & a_2 c_2 + a_1 c_3 + a_2 a_3 c_3 & c_1 + c_2 a_3 + a_2 c_3 + a_3^2 c_3 \end{bmatrix}$$

$$Q_0 = \begin{bmatrix} C_1 & c_2 & c_3 \\ a_1c_3 & c_1 + a_2c_3 & c_2 + c_3a_3 \\ a_1a_3c_3 & a_2c_2 + a_1c_3 + a_2a_3c_3 & c_1 + c_2a_3 + a_2c_3 + a_3^2c_3 \end{bmatrix}$$

Since we do not know about the nature of a_1 , a_2 , a_3 , and c_1 , c_2 , c_3 whether they are positive or negative numbers we cannot comment on $|Q_0|$ & hence we cannot comment on observability. Similar is the case for stability since for stable system all the roots of characteristic equation must lie in the left half of s-plane characteristic equation: |SI - A| = 0

$$[SI-A] = \begin{bmatrix} s & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & s \end{bmatrix} - \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ a_1 & a_2 & a_3 \end{bmatrix}$$

$$=\begin{bmatrix} s & -1 & 0 \\ 0 & s & -1 \\ -a_1 & -a_2 & s-a_3 \end{bmatrix}$$

$$|SI - A| = S(s^2 - a_3s - a_2) + (-a_1)$$

$$|SI - A| = s^3 - a_3 s^2 - a_2 s - q_1 = 0$$

Now, again we cannot comment on stability because we do not know the nature of a_1 , a_2 & a_3 Hence, only option A is correct.

MCQ Question 5

View this Question Online >

Let
$$X' = \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ 0 & 2 \end{bmatrix} X + \begin{bmatrix} \mathbf{0} \\ 1 \end{bmatrix} U$$

U = [b, 0] X

Where b is an unknown constant. This system is

- 1. Observable for all values of b
- 2. Unobservable for all values of b
- 3. Observable for all non-zero values of b
- 4. Unobservable for all non-zero values of b

Answer (Detailed Solution Below)

Option 3: Observable for all non-zero values of b

State Space Representation MCQ Question 5 Detailed Solution

Concept:

State space representation:

$$\dot{x}(t) = A(t) x(t) + B(t) u(t)$$

$$y(t) = C(t) x(t) + D(t) u(t)$$

y(t) is output

u(t) is input

x(t) is a state vector

A in a quotam matrix

This representation is continuous time-variant.

Controllability:

A system is said to be controllable if it is possible to transfer the system state from any initial state $x(t_0)$ to any desired state x(t) in a specified finite time interval by a control vector u(t)

Kalman's test for controllability:

$$\dot{x} = Ax + Bu$$

$$Q_c = \{B AB A^2B ... A^{n-1} B\}$$

Qc = controllability matrix

If $|Q_c| = 0$, system is not controllable

If |Qc|≠ 0, system is controllable

Observability:

A system is said to be observable if every state $x(t_0)$ can be completely identified by measurement of output y(t) over a finite time interval.

Kalman's test for observability:

$$Q_0 = [C^T A^T C^T (A^T)^2 C^T (A^T)^{n-1} C^T]$$

Q₀ = observability testing matrix

If $|Q_0| = 0$, system is not observable

If $|Q_0| \neq 0$, system is observable.

Calculation:

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}, \; B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \; C = \begin{bmatrix} b & 0 \end{bmatrix}$$

Observability:

$$CA = \begin{bmatrix} b & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} b & 2b \end{bmatrix}$$

If $|Q_0| \neq 0$, system is observable.

Observable for all non-zero values of b.

MCQ Question 6

View this Question Online >

Consider a system described by the state model

$$\dot{X} = egin{bmatrix} 2 & 1 \ -1 & 2 \end{bmatrix} X + egin{bmatrix} 1 \ 1 \end{bmatrix} U$$

 $Y = [1 \ 1] X$

The system is

- 1. controllable but not observable
- 2. uncontrollable and observable
- both controllable and observable
- neither controllable nor observable

Answer (Detailed Solution Below)

Option 3: both controllable and observable

State Space Representation MCQ Question 6 Detailed Solution

Concept:

State space representation:

$$\dot{x}(t) = A(t)x(t) + B(t)u(t)$$

$$y(t) = C(t)x(t) + D(t)u(t)$$

y(t) is output

u(t) is input

x(t) is a state vector

This representation is continuous time-variant.

Controllability:

A system is said to be controllable if it is possible to transfer the system state from any initial state $x(t_0)$ to any desired state x(t) in a specified finite time interval by a control vector u(t)

Kalman's test for controllability:

$$\dot{x} = Ax + Bu$$

$$Q_c = \{B AB A^2B ... A^{n-1} B\}$$

Qc = controllability matrix

If $|Q_c| = 0$, system is not controllable

If |Q_c|≠ 0, system is controllable

Observability:

A system is said to be observable if every state $x(t_0)$ can be completely identified by measurement of output y(t) over a finite time interval.

Kalman's test for observability:

$$Q_0 = [C^T A^T C^T (A^T)^2 C^T (A^T)^{n-1} C^T]$$

Qn = observability testing matrix

If $|Q_0| = 0$, system is not observable

If $|Q_0| \neq 0$, system is observable.

Calculation:

$$A = egin{bmatrix} 2 & 1 \ -1 & 2 \end{bmatrix}, \ B = egin{bmatrix} 1 \ 1 \end{bmatrix}, \ C = \begin{bmatrix} 1 & 1 \end{bmatrix}$$

Controllability:

$$AB = \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

Controllability matrix,

$$M = \begin{bmatrix} 1 & 3 \\ 1 & 1 \end{bmatrix}$$

$$|M| = -2$$

Therefore, the system is controllable.

Observability:

$$CA = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 3 \end{bmatrix}$$

Observability matrix,

$$N = \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix}$$

|N| = 2

Therefore, the system is observable

MCQ Question 7

View this Question Online >

The dynamic model of a pendulum is given by $\frac{d^2\theta}{dt^2} + 400\theta = 100T$, where θ is the displacement in rad / s and T is the applied torque in N-m. Its representation in time scale state variable form $\dot{\bf X}$ = α X + β u can have the constants.

1.
$$\alpha = \begin{bmatrix} 0 & 1 \\ -4 & 0 \end{bmatrix}; \beta = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$_{2.}\ \alpha = \left[\begin{array}{cc} 0 & 1 \\ -4 & 0 \end{array}\right];\ \beta = \left[\begin{array}{c} 1 \\ 0 \end{array}\right]$$

3.
$$\alpha = \begin{bmatrix} 0 & 0 \\ 4 & 1 \end{bmatrix}; \ \beta = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$_{4.} \ \alpha = \left[\begin{array}{cc} 0 & 0 \\ -4 & 1 \end{array} \right]; \ \beta = \left[\begin{array}{c} 1 \\ 0 \end{array} \right]$$

Answer (Detailed Solution Below)

Option 1 :
$$\alpha = \begin{bmatrix} 0 & 1 \\ -4 & 0 \end{bmatrix}$$
; $\beta = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

State Space Representation MCQ Question 7 Detailed Solution

Let
$$x_1 = \theta$$

$$\Rightarrow \dot{x}_1 = d\theta / dt ---- (1)$$

And consider $x_2 = d\theta / dt$ and u = T

$$\Rightarrow \dot{x}_2 = d^2\theta / dt^2$$

From the given dynamic model of a pendulum, we get

$$\frac{d^2\theta}{dt^2} = -400\theta + 100T$$

$$\Rightarrow \dot{x}_2 = -400 x_1 + 100 u ----- (2)$$

From equations (1) and (2), we can get the state model as

$$\begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbf{1} \\ -400 & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ 100 \end{bmatrix} \mathbf{U}$$

$$\Rightarrow \begin{bmatrix} \vec{X}_1 \\ \vec{X}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -4 & 0 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} U$$

On comparing the above state model with $\dot{X} = \alpha X + \beta u$, we get

$$\Rightarrow \alpha = \begin{bmatrix} 0 & 1 \\ -4 & 0 \end{bmatrix}; \ \beta = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

MCQ Question 8:

View this Question Online >

Given the homogeneous state space equation $\dot{x}=\begin{bmatrix}0&1\\-1&-2\end{bmatrix}x$ and the initial state

value
$$x(0) = \begin{bmatrix} 10 \\ -10 \end{bmatrix}$$

The steady state values of $x_{ss1} = \lim x_1(t)$ and $x_{ss2} = \lim x_2(t)$ are

- 1. 0,0
- 2. 10,0
- 3. 10, -10
- 4. 0, -10

Answer (Detailed Solution Below)

Option 1:0,0

MCQ Question 9:

View this Question Online >

Which of the following is not an advantage of state space approach in analyzing the performance of a control system?

- 1. State space approach can be used to represent non linear systems having backlash.
- 2. State space approach can handle system with nonzero initial conditions.
- 3. Multiple input/output system can be handled effectively by state space approach.
- The physical interpretation of the model in state space approach is easily obtained.

Answer (Detailed Solution Below)

Option 4: The physical interpretation of the model in state space approach is easily obtained.

MCQ Question 10:

View this Question Online >

A second order system is given by

$$x = egin{bmatrix} 1 & 1 \ -3 & -2 \end{bmatrix} egin{bmatrix} x_1 \ x_2 \end{bmatrix} + egin{bmatrix} 1 \ 0 \end{bmatrix} u \ y = egin{bmatrix} 1 & 0 \end{bmatrix} egin{bmatrix} x_1 \ x_2 \end{bmatrix}$$

- 1. The system is state controllable and output controllable
- 2. The system is state controllable but not output controllable
- 3. The system is output controllable but not state controllable
- 4. The system is neither state controllable nor output controllable

