What is a Level Shifter?

Swipe >

What is a Level Shifter?

- A circuit that converts voltage levels between devices
- Example: 5V signal shifted down to 3.3V.

Why Do We Need Level Shifters?

- Chips use different voltages (1.8V, 3.3V, 5V)
- Logic thresholds differ: 5V chips may need
 ~3.5V for "high," but 3.3V outputs only 3.3V →
 not always recognized
- 3.3V inputs are usually not 5V tolerant → risk of permanent damage

Example: MOSFET-Based Level Shifter

How it works

- Pull-ups hold each side at its supply (5V ↔ 3.3V)
- When one side pulls low, MOSFET conducts and pulls the other side low too
- High levels stay at their own Vdd via pull-ups
 → each side safe

Where it's used

- I²C and other open-drain signals
- Cheap, simple, bidirectional

Image: MOSFET-based bidirectional level shifter

Types of Level Shifters

Туре	Direction	Notes
Resistor Divider	Unidirectional	Cheap, simple, inaccurate at high speeds
Diode Clamp	Unidirectional	Protects against overvoltage, limited for logic translation
MOSFET-based	Bidirectional	Ideal for I ² C and low-speed buses (~1 MHz), not suitable for high-speed use
Op-Amp / Buffer	Unidirectional	Good for MHz-range buses (SPI, UART), adds cost and complexity
Dedicated IC	Uni / Bi	Handles high-speed, multi-channel designs, reliable but more expensive

How to Select the Right Level Shifter

- Match the voltage levels (e.g., 1.8V ↔ 3.3V)
- Identify number of channels required
- Decide direction (uni or bi-directional)
- Check speed of signals
 - I²C (100 kHz 1 MHz) → MOSFET
 - SPI/UART (MHz range) → Buffer/IC
 - High-speed buses (tens/hundreds MHz) →
 Dedicated IC

What If We Don't Use Level Shifters?

- Signals misread → unreliable communication
- Data lost or corrupted
- 5V into a 1.8V input → Can lead to 1.8V IC damage

Reach Out for Embedded, IoT, and Hardware Development Services

www.oxeltech.de

