

ABOUT ME

Education

NCU (MIS) · NCCU (CS)

Experience

• 外商資料倉儲、國內電信業

Teaching

• 資策會

User Group

- TW Spark User Group
- TW Hadoop User Group

Consulting

• 聯瞻資訊顧問、數數科技資訊社顧問

DAY 1

▶上午

- ▶物聯網大數據介紹與實際案例分享
- ▶ 樹莓派3介紹與作業系統安裝

下午

- ▶ Raspbian 環境介紹與相關資源
- ▶ Docker on 樹莓派3
- ▶ Docker 指令操作
- ▶ Docker 操作 GPIO

✓ Internet of Things [,]簡稱 IoT

✓ 所有能行使獨立功能的實現互聯互通 的網路物件

✓ 物聯網的網路通常是指無線網路,可 以透過藍芽、ZigBee、WiFi、LoRa、 NB-IoT 等方式進行資料交換

SCADA: Supervisory Control And Data Acquisition (數據採集系統) BMS: Building Management Systems (建築物自動化設備管理系統)

✓領域主要包括

- ✓運輸和物流領域
- ✓健康醫療
- ✓智慧環境(家庭、辦公、工廠)
- ✓個人和社會

- ✓ Machine to machine (M2M) 架構
- ✓具備微處理機、網路通訊模組的微控制器
- ✓ 視需求決定是否需要作業系統

✓常見的作業系統:Raspberry OS、Windows IoT

物聯網將提供更多元的服務

連網、雲端同步、客製化服務

例如:

可由 PC 得知冰箱溫度

例如:

家電資料與外部資料結合 提供服務

例如:

系統判斷主人到家,並且 根據過去學習經驗主動把冷氣打開

阿龜微氣候天眼通

耕種環境環境資料

https://www.facebook.com/agriweather/

阿龜微氣候天眼通

https://thingspeak.com/channels/266305

空氣盒子

✓ 即時偵測資料

✓一小時內各地空氣盒子所蒐集的資料

✓ 歷史偵測資料

✓七天內的歷史資料

✓ 設備資料

✓空氣盒子設備的相關資料

空氣盒子

- ✓ 空氣品質 (Air Quality Indicator)
 - ✓—公里見方空氣品質
- ✓ 偵測、預測、監控、告警
 - ✓空氣汙染指標
- ✓ 資料視覺化
 - √https://airbox.edimaxcloud.com/
 - √https://pm25.lass-net.org/zh_tw/

- ✓ LASS (Location Aware Sensor System)
 - ✓在物聯網的應用中,環境變化的即時監測是很重要的一個領域,包括空氣品質、大地防災 (如土石流預警)、公共建設監控(如橋樑),都對監控系統有很大的需求

✓ 時間演變資料分析

✓ 空間分布資料分析

✓ 快、慢資料流設計 (輕量級設計)

Advantech IoT Solution Architecture

Domain Specific Cloud Services (SaaS)

Smart City Solutions

Retail

Transportation

Fleet

Building

Parking

Industry 4.0 Solutions

Factory

Equipment

Cognitive Solutions

Robotics

Warehouse

HoT Solutions

Environment

Power & Energy

Agriculture

Oil & Gas

Solution **Ready Platforms** (SRP)

Store Traffic

Loss Prevention

Signage API

eMenu API

iWard API

BEMS API

IAQ API

Equipment API

Environment API

PMQ API

Process Visual

Asset Tracking

Embedded Platforms

Edge Intelligence Servers (EIS)

> loT Sensing Devices

Cloud Services

3rd party SaaS Dashboards Data Insights Machine Learning

REST API / Node-RED

WISE-PaaS

WebAccess/SCADA WebAccess/HM WebAccess/IVS WebAccess/ WebAccess/NMS Microsoft Azure ARM mbed Cloud Bluemix Ali AWS.

Edge Intelligence

Windows / Linux / Industrial Android Device Management

WISE-PaaS/RMM WISE-PaaS/Security WISE-PaaS/OTA

Local Analytics 3rd party containers

WISE-Agent

RTOS / mbed OS MQTT / AMQP SSL/TLS

行動物聯網

全面感知

運用雲端運算, 進行海量資料分析與處理, 提供智慧化服務

通過互聯網路, 將物體的資訊, 即時準確地傳遞出去

利用感知器隨時隨地獲取物體的資訊

樹莓派介紹

樹莓派介紹

- ✓ Raspberrypi.org 基金會開發設計
- ✓ 以低價硬體與自由軟體刺激電腦科學教育
- ✓ 公開的 datasheet、線路圖、原始碼
- ✓ 由 element14、RS Components、Egoman 生產製造

英國樹莓派組織 https://www.raspberrypi.org/about/

樹莓派介紹

✓ Raspberry Pi OS (原名稱為

Raspbian)

✓可搭配 64-bit 的作業系統,

例如 Ubuntu 20.04 LTS

	樹莓派Pi 3 B+	樹莓派Pi 4			
技術	藍芽升級4.2版本、 無線升級雙頻網路 2.4Ghz + 5Ghz 透過USB 可將網路提升至300Mbps	藍芽升級5.0版本、 無線雙頻網路 2.4Ghz + 5Ghz			
芯片	雙核GPU的Broadcom 升級 BCM2837B0, ARM的Cortex-A8(A53)四核處理器	雙核GPU的Broadcom BCM2837, ARM的Cortex-A72 四核處理器			
處理速度	1.4 GHz	升級 換 1.5 GHz			
内存量	1 GB LPDDR2 memory	2GB、4GB、8GB(3種) LPDDR2 memory			
USB 2.0	4 x USB 2.0 sockets	2x USB 3.0 ports 2x USB 2.0 ports			
SD- ‡	MicroSD	MicroSD			
插針	40 pin	40 pin			
電源	+5.1V @ 2.5A,多了POE功能(網路線供電)	換 USB-C - 5V 3A, POE功能(網路線供電)			
尺寸	86 x 56 x 17mm	85 x 56 x 17mm			
HDMI接頭	HDMI接頭 X1	換 micro HDMI 接頭 X2			
	產品壽命最少保證 至 2023年				

各式擴充板

PiFace

Gertboard

Pi Rack + Embedded Pi

Arduino

raspicomm

Wolfson Audio Card

也是一台小電腦

- ✓ HDMI monitor
- ✓ USB interface
- ✓ 2.5 Amp Power Adapter
- ✓ Micro-USB cable
- √ 8GB+ MicroSD card
- ✓ Ethernet/ Wifi
- ✓ Computer to load initial card image
- ✓ GPIO

P2P 下載機

省電伺服器

- ✓ Web Server
- ✓ Mail Server
- ✓ FTP Server
- ✓ File Server
- ✓ VPN Server
- ✓ Printer Server
- ✓ Git Server

無線路由器

- ✓ Server
- ✓ Client

免費的路由器程式: https://openwrt.org/

無人自動監視器

衛星導航設備

遊戲機

遊戲模擬器:

https://lifehacker.com/how-to-turn-your-raspberry-pi-into-a-retro-game-console-498561192 http://www.makezine.com.tw/make2599131456/portaberry-pi-3draspberry-pi

比特幣採礦機

Company	Ť	Product	٠	Cost (BTC)	Cost (USD) +	Cost (EUR) +	Speed (GHash/sec)	Power (Watts) *
ASICMiner		Block Erupter USB		0.18	26	19	0.3	3
ASICMiner		Block Erupter Blade (overclock)		4.00	583	432	10.7	75
Avalon		Batch 3		75.00	10,935	8,100	65.0	620
Bittury (EU)		Starter Kit (EU October Delivery)		9.26	1,350	1,000		0
Bitfury (EU)		Full Kit (EU August Delivery)		138.89	20,250	15,000		0
Bitfury (EU)		Full Kit (EU October Delivery)		69.44	10,125	7,500		0
Bittury (US)		Starter Kit (October Delivery)		8.92	1,300	963		0
Bittury (US)		Full Kit (August Delivery)		132.03	19,250	14,259	400.0	300
Bittury (US)		Full Kit (October Delivery)		54.87	8,000	5,926	400.0	380

2

https://tradeblock.com/blog/bitfury-begins-shipping-to-customers/

平行運算叢集

https://www.ithome.com.tw/news/118304

數位相機

四軸飛行器

打造四軸飛行器: https://www.slideshare.net/itembedded/raspberry-pi-56539014

孵化育種

https://www.facebook.com/twFUNSUN/videos/1811451789075532

TENSORFLOW LITE ON RASPBERRY PI

- ✓ Object detection
- √ https://www.youtube.com/watch?v=aimSGOAUI8Y

數位神經棒

- √ Neural compute stick2
 - ✓ 搭配 OpenVINO套件,加入影像辨識速度
- √ https://blog.cavedu.com/2019/08/30/openvino-movidius
- √ https://www.youtube.com/watch?v=NI6KppDqQnE
- √https://www.youtube.com/watch?v=xN117Ts4JJI

AWS-IOT-工業智造

- ✓ 參考連結
 - √ https://www.slideshare.net/AmazonWebServices/awsiot-155978430

統計學解釋

變異係數:變異係數 (coefficient of variation),又稱離散係數,是一個衡量資料離散程度的、沒有量綱的統計量。其

值為標準差與平均值之比。

變異係數的計算公式為:

$$CV = \frac{\sigma}{\mu}$$

作業系統與安裝

- ✓ 下載 SDFormatter
- https://www.sdcard.org/cht/downloads/formatter_4/eula_windows

- ✓ 下載 Win32 Disk Imager
 - https://sourceforge.net/projects/win32diskimager

- ✓ 下載 Image (2019-07: Raspbian Buster)
 - https://www.raspberrypi.org/downloads

作業系統與安裝

- ✓接上螢幕輸出裝置 (HDMI)
- ✓修改設定
 - ✓ 設定 System (SSH \ VNC)
 - ✓ 設定 Interfaces
 - ✓ 設定 Localisation
- ✓ 啟動樹莓派網路 (建議手機無線網路)

✓修改root遠端登入

sudo nano /etc/ssh/sshd_config

PermitRootLogin yes

✓修改密碼

sudo passwd root

✓更新作業系統 & 重新開機

sudo apt-get update

作業系統介紹

- ✓ 衍生自 Debian 的發行版,目前 Raspberry Pi 的主力發行版
- ✓ 適合初學者,支援多、資料多,Trouble shooting 也比較容易

空氣盒子

✓ 下載課程程式

cd ~; sudo git clone https://github.com/orozcohsu/2019-ltu-airbox.git

- ✓ VMWARE
- ✓ Hyper-V
- ✓ Docker的技術為了解決重複存放 的作業系統及提升效能而產生的 一種技術
- ✓ 將作業系統從每個虛擬化抽離出 來,分別使用容器放置所需執行 的服務或程式

- ✓ 介紹 Image ` Container及 Repository
- ✓ 叢集管理 K8S 套件
- ✓ 請於 Dockerhub 建立自己的帳號

- ✓ 以 root 登入
- ✓ 安裝 Docker engine

curl -sSL https://get.docker.com | sh

✓ 安裝完成之後,需要重新開機

reboot

✓ 將 pi 使用者加入 docker 群組

sudo usermod -aG docker pi

✓ 自動啟動 docker 服務

sudo systemctl enable docker

✓ 尋找網路上可用的 images (樹莓派專屬)

sudo docker search armhf

docker 教學介紹

https://training.play-with-docker.com/ops-s1-hello/

✓ 從 dockerhub 取得 images

sudo docker pull resin/rpi-raspbian

✓ 尋找 docker 本身的 images

sudo docker images

✓ 啟動容器

映像檔(Image)	 是一個唯讀的模板 docker 執行容器前需要本地存在對應的映像檔, 如果映像檔不存在本地, docker 會從映像檔倉庫 下載
容器(Container)	 容器是獨立執行的一個或一組應用,以及它們的執行態環境,對應到虛擬機,類比執行一整套作業系統 docker 的容器是從映像檔建立的執行實例,它可以被啟動、開始、停止、刪除每個容器都是相互隔離的、保證安全的平台
倉庫(Repository)	是集中存放映像檔檔案的場所 官方提供 <u>Docker Hub</u> 作為映像檔登錄及註冊 (Registry), 這是類似 Github 程式碼儲存服務 一個 Docker Registry 中可以包含多個倉庫 (Repository) 每個倉庫可以包含多個標籤(Tag);每個標籤對應 一個映像檔

sudo docker run -it resin/rpi-raspbian

- -i: 開啟對話視窗
- -t: 配置一個虛擬終端機

✓ 離開內層容器

Ctrl 按下不放加按一下 p 與 q 鍵

✓ 檢查 docker 目前狀態

sudo docker ps -a

✓ 再進去內層容器

sudo docker exec -it [容器ID] /bin/bash

外層 (Raspbian)

docker engine

內層**{封裝}** (rpi-raspbian) 名稱: rs1

内層 rpi-raspbian) 名稱: rs2

- ✓ 建立 dockerhub 帳號
 - ✓ https://hub.docker.com

✓ 關閉容器

sudo docker rm -f [容器ID]

✓ 啟動新的容器

sudo docker run -it resin/rpi-raspbian

✓刪除image

sudo docker rmi -f resin/rpi-raspbian

sudo docker images

✓ 建立一個目錄 GPIO

sudo mkdir -p /home/pi/GPIO

✓ 在 GPIO 目錄內建立 Dockerfile 檔案

sudo touch /home/pi/GPIO/Dockerfile

✓ 編輯 Dockerfile 檔案內容

sudo vi/home/pi/GPIO/Dockerfile

FROM resin/rpi-raspbian:latest

ENTRYPOINT []

RUN apt-get -q update && \
apt-get -qy install python python-pip \
python-dev python-rpi.gpio

✓ 製作新的 image

cd /home/pi/GPIO && sudo docker build -t gpio.

gpio: image名稱

✓ 查看新的 image

sudo docker images

✓ 我們把這個 image 當作自己的母片

✓ 製作另外一個新的 image

mkdir -p /home/pi/GPIO1 && cd /home/pi/GPIO1 && touch led.py

✓ 編輯 led.py

✓ 編輯 Dockerfile

cd /home/pi/GPIO1 && sudo nano Dockerfile

✓ 製作新的 image

cd /home/pi/GPIO1 && sudo docker build -t 帳號/gpio1.

帳號是自己在 dockerhub 上面申請的帳號

✓ 查看新的 image

sudo docker images

我們用剛剛 建立的母片

Dockerfile 的內容

FROM gpio:latest

ADD ./led.py ./led.py CMD ["python", "led.py"]

✓ 查看腳位 (網路孔朝下)

gpio readall

BCM	wPi	Name	Mode	l v	Physical		l v	Mode	Name	WPi	BCM
		3.3v	i		1	2			5v		l
2	8	SDA.1	IN	1	3	4			5V		l
3	9	SCL.1	IN	1	5	6			0v		į .
4	7	GPIO. 7	IN	1	7	8	1	ALT0	TxD	15	14
		0v			9	10	1	ALT0	RxD	16	15
17	0	GPIO. 0	IN	0	11	12	0	IN	GPIO. 1	1	18
27	2	GPIO. 2	IN	0	13	14			0v		
22	3	GPIO. 3	IN	0	15	16	0	IN	GPIO. 4	4	23
		3.3v			17	18	0	IN	GPIO. 5	5	24
10	12	MOSI	IN	0	19	20			0v		1
9	13	MISO	IN	0	21	22	0	IN	GPIO. 6	6	25
11	14	SCLK	IN	0	23	24	1	IN	CE0	10	8
		Øv.		ĺ	25	26	1	IN	CE1	11	7
0	30	SDA.0	IN	1	27	28	1	IN	SCL.0	31	1
5	21	GPI0.21	IN	1	29	30		İ	0v		İ
6	22	GPI0.22	IN	1	31	32	0	IN	GPI0.26	26	12
13	23	GPI0.23	IN	0	33	34	İ		0v		İ
19	24	GPI0.24	IN	0	35	36	0	IN	GPI0.27	27	16
26	25	GPI0.25	IN	0	37	38	0	IN	GPI0.28	28	20
		l 0v	ļ	İ	39	40	0	IN	GPI0.29	29	21
всм	wPi	Name	Mode	V	++ Physical		V	Mode	Name	wPi	BCM

DOCKER 操作 LED IMAGE (控制 LED 燈)

- ✓ 將 LED 插上樹莓派
- ✓ 執行 LED 程式

sudo docker run --privileged --rm 帳號/gpio1

privileged: 授與該容器全部權限

LED

長腳為正極,接 3.3V

短腳為負極,接GPIO0 (第11隻)

DOCKER 操作 LED IMAGE (控制 LED 燈)

- ✓ 結束執行中的容器
- ✓ 上傳容器到 Dockerhub

docker login docker push 帳號/gpio

docker push 帳號/gpio1

✓查看 Dockerhub

作業

- ✓ 試試看做出不同的 images,在不同的 BCM 上發光
- ✓ gpio1 => 1秒
- ✓ gpio2 = > 5秒
- ✓ gpio3 => 10秒