Méthodes de Monte Carlo et inférence bayésienne

Introduction

Pierre Gloaguen

pierre.gloaguen@agroparistech.fr

Déroulé du cours

- 7 séances de 3h;
- Chaque début de séance consacré aux questions et à la présentation du cours;
- ► TD en autonomie ensuite (avec réponse aux questions);
- Evaluation en contrôle continu (exercices à rendre);

Objectifs de cette 1ère séance

- Introduction et motivation du sujet du cours;
- Principe des méthodes de Monte Carlo;
- ▶ Premiers exercices et implémentation sous R.

Modèlisation statistique

- ► Formulation probabiliste d'un problème:
 - On suppose que les données sont les réalisations de variables aléatoires telles que . . .;
- Quantification de l'incertitude:
 - d'après le modèle posé, la probabilité que tel événement arrive est de . . .;
- Recours permanent au calcul de probabilités;

Exemple immédiat

- Test d'hypothèse: On veut tester une hypothèse H₀ contre une hypothèse H₁
 - Ex: Comparaison de moyennes de deux échantillons Gaussiens;
- On construit une statistique de test T;
- ▶ Décision binaire, pour un risque de première espèce α , on définit un zone de rejet \mathcal{R} , telle que

$$\mathbb{P}_{H_0}\left(T\in\mathcal{R}\right)=\alpha$$

Exemple immédiat

- Test d'hypothèse: On veut tester une hypothèse H₀ contre une hypothèse H₁
 - Ex: Comparaison de moyennes de deux échantillons Gaussiens;
- On construit une statistique de test T;
- ▶ Décision binaire, pour un risque de première espèce α , on définit un zone de rejet \mathcal{R} , telle que

$$\mathbb{P}_{H_0}\left(T\in\mathcal{R}\right)=\alpha$$

Rappel:

$$\mathbb{P}_{H_0}\left(\textit{T} \in \mathcal{R}\right) = \mathbb{E}_{H_0}\left[\mathbf{1}_{\textit{T} \in \mathcal{R}}\right]$$

➤ On doit donc être capable d'évaluer une espérance (ici, la probabilité d'évènements) sous H₀ pour construire notre test.

Exemple de modèle statistique: Biomasse d'une population de poisson

Ce qu'on connaît

Observations scientifiques Y

Quantité d'intérêt Biomasse de poisson X

Modèle probabiliste d'observation de la dynamique de population

$$\begin{split} X_{t+1} &= \left(X_t + r X_t \left(1 - \frac{X_t}{\mathcal{K}} \right) - C_t \right) \exp(\varepsilon_{t+1}), \text{ Biomasse cach\'ee} \\ Y_t | X_t &= q X_t \exp(\nu_t), \ C_t \text{ Observations} \\ \varepsilon_t &\overset{i.i.d}{\sim} \mathcal{N} \left(-\sigma^2/2, \sigma^2 \right), \quad \nu_t \overset{i.i.d}{\sim} \mathcal{N} \left(-\sigma_{\text{obs}}^2/2, \sigma_{\text{obs}}^2 \right). \end{split}$$

- X_t: Biomasse à l'année t (non observée);
- Y_t: Abundance observée à l'année t;
- C_t: Captures à l'année t;
- K: Capacité d'accueil du milieu (paramètre);
- r: Taux de croissance de la population (paramètre);
- σ , σ _{obs}: Paramètres de l'aléa;
- q: Détectabilité (paramètre);

▶ Pour un tel modèle, étant donnée une population initiale X₀, quelle est la moyenne attendue du nombre de poissons au bout de 10 ans si on se fixe une quantité de captures?

- ▶ Pour un tel modèle, étant donnée une population initiale X₀, quelle est la moyenne attendue du nombre de poissons au bout de 10 ans si on se fixe une quantité de captures?
 - ▶ $\mathbb{E}[X_{10}|X_0]$?

- ▶ Pour un tel modèle, étant donnée une population initiale X₀, quelle est la moyenne attendue du nombre de poissons au bout de 10 ans si on se fixe une quantité de captures?
 - ▶ $\mathbb{E}[X_{10}|X_0]$?
- ► Etant données des observations sur 10 années, et en supposant tous les paramètres connus, que puis je dire sur la quantité de poissons qu'il y avait durant ces 10 ans?

- ▶ Pour un tel modèle, étant donnée une population initiale X₀, quelle est la moyenne attendue du nombre de poissons au bout de 10 ans si on se fixe une quantité de captures?
 - ▶ $\mathbb{E}[X_{10}|X_0]$?
- ▶ Etant données des observations sur 10 années, et en supposant tous les paramètres connus, que puis je dire sur la quantité de poissons qu'il y avait durant ces 10 ans?
 - $\mathbb{E}[X_{0:10}|Y_{0:10}]$?

- ▶ Pour un tel modèle, étant donnée une population initiale X₀, quelle est la moyenne attendue du nombre de poissons au bout de 10 ans si on se fixe une quantité de captures?
 - ▶ $\mathbb{E}[X_{10}|X_0]$?
- ► Etant données des observations sur 10 années, et en supposant tous les paramètres connus, que puis je dire sur la quantité de poissons qu'il y avait durant ces 10 ans?
 - $\mathbb{E}[X_{0:10}|Y_{0:10}]$?
- Etant données des observations, que puis je dire sur la valeur des paramètres de dynamique de population?

- ▶ Pour un tel modèle, étant donnée une population initiale X₀, quelle est la moyenne attendue du nombre de poissons au bout de 10 ans si on se fixe une quantité de captures?
 - ▶ $\mathbb{E}[X_{10}|X_0]$?
- ► Etant données des observations sur 10 années, et en supposant tous les paramètres connus, que puis je dire sur la quantité de poissons qu'il y avait durant ces 10 ans?
 - \triangleright $\mathbb{E}[X_{0:10}|Y_{0:10}]$?
- Etant données des observations, que puis je dire sur la valeur des paramètres de dynamique de population?
 - ► Inférence des paramètres:
 - Méthode des moments (nécessite un calcul d'espérance);

- ▶ Pour un tel modèle, étant donnée une population initiale X₀, quelle est la moyenne attendue du nombre de poissons au bout de 10 ans si on se fixe une quantité de captures?
 - ▶ $\mathbb{E}[X_{10}|X_0]$?
- ► Etant données des observations sur 10 années, et en supposant tous les paramètres connus, que puis je dire sur la quantité de poissons qu'il y avait durant ces 10 ans?
 - $\mathbb{E}[X_{0:10}|Y_{0:10}]$?
- Etant données des observations, que puis je dire sur la valeur des paramètres de dynamique de population?
 - ► Inférence des paramètres:
 - Méthode des moments (nécessite un calcul d'espérance);
 - Méthode du maximum de vraisemblance (nécessite ici un calcul d'espérance);

- ▶ Pour un tel modèle, étant donnée une population initiale X₀, quelle est la moyenne attendue du nombre de poissons au bout de 10 ans si on se fixe une quantité de captures?
 - ▶ $\mathbb{E}[X_{10}|X_0]$?
- ► Etant données des observations sur 10 années, et en supposant tous les paramètres connus, que puis je dire sur la quantité de poissons qu'il y avait durant ces 10 ans?
 - $\mathbb{E}[X_{0:10}|Y_{0:10}]$?
- Etant données des observations, que puis je dire sur la valeur des paramètres de dynamique de population?
 - ► Inférence des paramètres:
 - Méthode des moments (nécessite un calcul d'espérance);
 - Méthode du maximum de vraisemblance (nécessite ici un calcul d'espérance);
 - Estimateur Bayésien: Nécessite un calcul d'espérance.

- ▶ Pour un tel modèle, étant donnée une population initiale X₀, quelle est la moyenne attendue du nombre de poissons au bout de 10 ans si on se fixe une quantité de captures?
 - ▶ $\mathbb{E}[X_{10}|X_0]$?
- ► Etant données des observations sur 10 années, et en supposant tous les paramètres connus, que puis je dire sur la quantité de poissons qu'il y avait durant ces 10 ans?
 - $\mathbb{E}[X_{0:10}|Y_{0:10}]$?
- Etant données des observations, que puis je dire sur la valeur des paramètres de dynamique de population?
 - Inférence des paramètres:
 - Méthode des moments (nécessite un calcul d'espérance);
 - Méthode du maximum de vraisemblance (nécessite ici un calcul d'espérance);
 - Estimateur Bayésien: Nécessite un calcul d'espérance.

Ces espérances n'ont, en général, pas d'expressions directes!

Méthodes de Monte Carlo

Méthodes de Monte Carlo

▶ **But:** Approcher des espérances (intégrales) en utilisant des simulations probabilistes;

Méthodes de Monte Carlo

- But: Approcher des espérances (intégrales) en utilisant des simulations probabilistes;
- Idée: La loi des grands nombres! La moyenne empirique d'une variable aléatoire va tendre, si on répète l'expérience, vers la moyenne théorique.

On dispose d'un dé à 6 faces et seulement de ce dé. Comment peut on essayer de savoir s'il est biaisé?

 Si on lance le dé suffisament de fois, on obtient une information;

On dispose d'un dé à 6 faces et seulement de ce dé. Comment peut on essayer de savoir s'il est biaisé?

- Si on lance le dé suffisament de fois, on obtient une information;
- ► Combien de fois faut il lancer le dé pour avoir une idée précise?

On dispose d'un dé à 6 faces et seulement de ce dé. Comment peut on essayer de savoir s'il est biaisé?

- Si on lance le dé suffisament de fois, on obtient une information;
- Combien de fois faut il lancer le dé pour avoir une idée précise?
- À quel point peut être confiant en notre réponse?

On dispose d'un dé à 6 faces et seulement de ce dé. Comment peut on essayer de savoir s'il est biaisé?

- Si on lance le dé suffisament de fois, on obtient une information;
- Combien de fois faut il lancer le dé pour avoir une idée précise?
- À quel point peut être confiant en notre réponse?
- Encore faut il savoir lancer le dé!

- Présentation formelle des méthodes de Monte Carlo pour le calcul d'intégrales;
- Application directe en statistique classique (évaluation d'une probabilité, aide à la décision);

- Présentation formelle des méthodes de Monte Carlo pour le calcul d'intégrales;
- Application directe en statistique classique (évaluation d'une probabilité, aide à la décision);
- ► Comment peut on simuler des variables aléatoires génériques (avec un ordinateur)?

- Présentation formelle des méthodes de Monte Carlo pour le calcul d'intégrales;
- Application directe en statistique classique (évaluation d'une probabilité, aide à la décision);
- ► Comment peut on simuler des variables aléatoires génériques (avec un ordinateur)?
- Une méthode d'inférence dépendante de la simulation: l'inférence bayésienne;

- Présentation formelle des méthodes de Monte Carlo pour le calcul d'intégrales;
- Application directe en statistique classique (évaluation d'une probabilité, aide à la décision);
- ► Comment peut on simuler des variables aléatoires génériques (avec un ordinateur)?
- Une méthode d'inférence dépendante de la simulation: l'inférence bayésienne;
- Une extension nécessaire, les Méthodes de Monte Carlo par chaîne de Markov (MCMC).

Prérequis

- Résulats statistiques asymptotiques:
 - ▶ Loi des grands nombres, théorème central limite, lemme de Slutsky, Delta méthode.
- Chaînes de Markov:
 - Loi de transition, irréductibilité, périodicité, mesure invariante
 ...
- ► Logiciel R
 - Logiciel R installé ainsi que l'IDE Rstudio.
 - Connaissance minimale du langage (boucles, fonctions, graphiques de base...).