# **Regression Analysis**

# **Regression Analysis**

(1) Relationship between degrees Fahrenheit and degrees Celsius:

$$F = \frac{9}{5}C + 32$$
 (deterministic)

- (2) Circumference =  $\pi \times \text{diameter} \Rightarrow C = 2\pi r$  (deterministic)
- (3) Height and weight of students (is there a perfect relationship?)
- (4) Driving speed and gas mileage (is there a deterministic relation?)
- (5) Fertilizer and crop yield (production)
- (6) Drug dosage and time to get cured
- (7) Income and expenditure of a group of persons
- (8) Sunshine hours/temperature and icecream sale
- (9) Age of car and its sale price

### Let's Observe...linear or non-linear?









# **Purpose: Linear Regression**

- For the following observed data, how can we get the "best-fit" line?
- What would be the equation?



4

#### How to Formulate?

(1) Suppose, X is NOT a RV, rather a mathematical variable.

e.g., let x: depth of water, Y: the water temperature.

Then can we model the water temperature Y, as a function of x?

(2) Armand's (pizza parlour) most successful locations are near college campuses. The manager thinks that their sale Y depends on the number of students (x).

(3) Thus, aren't we dealing with a conditional variable Y|x?

(4) This Y | x will have a mean  $\mu_{Y|x}$  (a function of x).

(5) Can I express (linearly) this as  $\mu_{Y|x} = \beta_0 + \beta_1 x$ ?

Simple Linear Regression Model:  $Y = \beta_0 + \beta_1 x + \varepsilon$ Simple Linear Regression Equation:  $\mu_{Y|x} = \beta_0 + \beta_1 x$ 

Estimated Simple Linear Regression Equation:  $\hat{\mu}_{Y|x}(or, \hat{y}) = \hat{\beta}_0 + \hat{\beta}_1 x$ 

### **Simple Linear Regression (SLR)**

**Simple linear regression** (regression means 'act of going back', 'return', or 'reversion') is a statistical method that allows us to summarize and study relationships between **two continuous** (**quantitative**) **variables**:

- One variable, denoted by x, is regarded as the predictor, explanatory, or independent variable.
- The other variable, denoted by y, is regarded as the response, outcome, or dependent variable.

Why is it called "Simple Linear Regression" model? What is a model? Why simple? Why linear? What is regression?

### **Mathematical Model**

- 1. Often, they describe relationship between variables
- 2. Two parts:
  - Functional part

Probabilistic (stochastic) part
Probabilistic
Models

Regression
Models

Correlation
Models

Models

# **Regression Model**



7

### Formulation: Simple linear regression model (SLRM)

- In a regression study, it is useful to plot the data points in xy-plane. Such a plot is called the *scattergram* (*scatter diagram*).
- We do not expect the points to lie exactly on a straight line. However, if linear regression is applicable, then they should exhibit a linear trend.



#### Formulation: SLRM

- Since we do not know the true values of  $\beta_0$  and  $\beta_1$  (WHY??), we shall not know the true value of  $\varepsilon_i$  (the vertical distance from  $(x_i, y_i)$  to the true regression line).
- Letting  $\hat{\beta}_0$  and  $\hat{\beta}_1$  denote the estimates of  $\beta_0$  and  $\beta_1$  respectively, the estimated line of regression takes the form.

$$\hat{\mu}_{Y|x}(or,\hat{y}) = \hat{\beta}_0 + \hat{\beta}_1 x$$

Simple Linear Regression Model:  $Y | x = \beta_0 + \beta_1 x + \varepsilon$ 

Simple Linear Regression Equation:  $\mu_{Y|x} = \beta_0 + \beta_1 x$ 

 $Var(Y|x) = Var(\beta_0 + \beta_1 x + \varepsilon) = \sigma^2$ 

Estimated Simple Linear Regression Equation:  $\hat{\mu}_{Y|x}(or, \hat{y}) = \hat{\beta}_0 + \hat{\beta}_1 x$ 

# **SLE: Model Assumption**

1. 
$$E(\varepsilon_i) = 0$$

2.  $V(\varepsilon_i) = \sigma^2$ , same for all values of x

3.  $\varepsilon_i$  and  $\varepsilon_j$  are uncorrelated. Thus for  $i \neq j$ ;  $\operatorname{cov}(\varepsilon_i, \varepsilon_j) = 0$ . Thus

 $E(y_i) = \beta_0 + \beta_1 x_i;$   $V(\varepsilon_i) = \sigma^2$ ; and  $y_i$  are uncorrelated

#### Under additional assumption

 $\varepsilon_i$  is normally distributed

 $\varepsilon_i \sim N(0,\sigma^2)$ 

 $\Rightarrow$  y is also normally distributed

Hence,  $\varepsilon_i$  and  $\varepsilon_i$  are not only uncorreleted but independent also

# **Least squares estimation**

Under additional assumption that

 $\varepsilon_i \sim N(0,\sigma^2)$  $\varepsilon_i$  is normally distributed

 $\Rightarrow$  y is also normally distributed

Hence,  $\varepsilon_i$  and  $\varepsilon_i$  are not only uncorreleted but independent also



Each response observation is assumed to come from a normal distribution cantered vertically at the level implied by the model, with identical variance  $\sigma^2$ 

# **Least-Squares Estimation**

- Parameters  $\hat{\beta}_0$  and  $\hat{\beta}_1$  are determined by method of least squares.
- Choose  $\hat{\beta}_0$  and  $\hat{\beta}_1$  such that we minimize the sum of the squares of the residuals.
- Sum of the squares of the residual errors about the estimated regression line is given by

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

Sum of squares of errors  $(SSE) = S(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$ 

# LS estimators of $\beta_0$ , $\beta_1$ , say $\hat{\beta}_0$ and $\hat{\beta}_1$

$$\frac{\left.\frac{\partial S}{\partial \beta_0}\right|_{\hat{\beta}_0, \hat{\beta}_1} = -2\sum_{i=1}^n \left(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i\right) = 0}{\left.\frac{\partial S}{\partial \beta_1}\right|_{\hat{\beta}_0, \hat{\beta}_1} = -2\sum_{i=1}^n \left(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i\right) x_i = 0}$$

• Simplifying, we get normal equations

$$n\hat{\beta}_{0} + \hat{\beta}_{1} \sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} y_{i}$$

$$\hat{\beta}_{0} \sum_{i=1}^{n} x_{i} + \hat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2} = \sum_{i=1}^{n} x_{i} y_{i}$$

$$\sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} x_{i}^{2}$$

$$\begin{bmatrix}
n & \sum_{i=1}^{n} x_i \\
\sum_{i=1}^{n} x_i & \sum_{i=1}^{n} x_i^2
\end{bmatrix} \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} y_i \\ \sum_{i=1}^{n} x_i y_i \end{bmatrix}$$

# Least-Squares Estimates for $\beta_0$ and $\beta_1$

$$\hat{\beta}_{0} = \overline{y} - \hat{\beta}_{1} \overline{x}$$

$$\hat{\beta}_{1} = \frac{\left(\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})\right)}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} = \frac{\left(\sum_{i=1}^{n} (x_{i} - \overline{x})^{2} y_{i}\right)}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}$$

$$\therefore \text{ other term removed from numerator is } = 0; \sum_{i=1}^{n} (x_{i} - \overline{x}) \overline{y} = \overline{y} \sum_{i=1}^{n} (x_{i} - \overline{x}) = 0$$

$$= \frac{\sum_{i=1}^{n} x_{i} y_{i} - \frac{\left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} y_{i}\right)}{n}}{\sum_{i=1}^{n} x_{i}^{2} - \frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n}}$$

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_{i}$$

• Since the denominator of eq. for  $\beta_1$  is the corrected sum of squares of the  $x_i$  and the numerator is the corrected sum of cross products of  $x_i$  and  $y_i$ , we may write these quantities in a more compact notation as

$$S_{xx} = \sum_{i=1}^{n} x_i^2 - \frac{\left(\sum_{i=1}^{n} x_i\right)^2}{n} = \sum_{i=1}^{n} x_i^2 - n\overline{x}^2 = \sum_{i=1}^{n} (x_i - \overline{x})^2$$

$$S_{xy} = \sum_{i=1}^{n} x_i y_i - \frac{\left(\sum_{i=1}^{n} x_i\right) \left(\sum_{i=1}^{n} y_i\right)}{n} = \sum_{i=1}^{n} y_i (x_i - \overline{x})$$

$$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}}$$

# Useful properties of LS fit

• Sum of the residuals in any regression model that contains an intercept  $\beta_0$  is always zero:

$$\sum_{i=1}^{n} (y_i - \hat{y}_i) = \sum_{i=1}^{n} \hat{e}_i$$

• Sum of the observed values  $y_i$  equals the sum of the fitted values  $\hat{y_i}$ :

$$\sum_{i=1}^{n} y_i = \sum_{i=1}^{n} \hat{y}_i$$

- Least-squares regression line always passes through the **centroid**  $(\bar{x}, \bar{y})$  of the data.
- Sum of the residuals weighted by the corresponding value of the regressor variable always equals zero  $\sum_{n=0}^{\infty} x_n \hat{a} = 0$
- Sum of the residuals weighted by the corresponding fitted value always equals zero



#### Coefficient of Determination

Sum of Squares due to Error (SSE):  $SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$ 

Total Sum of Squares (SST):  $SST = \sum_{i=1}^{n} (y_i - \overline{y})^2$ 

Sum of Squares due to Regression (SSR):  $SSR = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2$ 

Relation: SST = SSR + SSE

$$\frac{SST}{SST} = 1 = \underbrace{\frac{SSR}{SST}}_{2} + \underbrace{\frac{SSE}{SST}}_{2}$$

Coefficient of determination:  $r^2 = \frac{SSI}{SSI}$ 

Sample correlation coefficient:  $r = (\text{sign of } b_1) \sqrt{r^2}$ 



.8



We can write:

$$(y_i - \overline{y}) = (\hat{y}_i - \overline{y}) + (y_i - \hat{y}_i)$$

- Squaring both sides and taking sum from i = 1 to n (and noting that the cross product term is equal to zero), we can write.  $\sum_{i=0}^{n} (y_i \overline{y})^2 = \sum_{i=0}^{n} (\hat{y}_i \overline{y})^2 + \sum_{i=0}^{n} (y_i \hat{y}_i)^2$
- Using relationship, cross-product term (CPT) = 0:

Using: 
$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$$
;  $\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}}$ ;  $\hat{y} = \overline{y} + \hat{\beta}_1 (x - \overline{x})$   $\hat{y}_i - \overline{y} = \hat{\beta}_1 (x_i - \overline{x})$   $y_i - \hat{y}_i = y_i - \overline{y} - \hat{\beta}_1 (x_i - \overline{x})$ 

 $2\sum_{i=1}^{n} (\hat{y}_{i} - \overline{y})(y_{i} - \hat{y}_{i}) = 2\sum_{i=1}^{n} \hat{\beta}_{i}(x_{i} - \overline{x}) \Big[ (y_{i} - \overline{y}) - \hat{\beta}_{i}(x_{i} - \overline{x}) \Big]$   $= 2\hat{\beta}_{i} \sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y}) - \hat{\beta}_{i} \Big[ (x_{i} - \overline{x})((x_{i} - \overline{x})) \Big]$   $= 2\hat{\beta}_{i} \Big[ S_{xy} - \hat{\beta}_{i} S_{xx} \Big]$   $= 0 \qquad \therefore \hat{\beta}_{i} = \frac{S_{xy}}{S}$ 

# Analysis and testing in regression

After obtaining the least-squares fit, a number of questions come to mind:

- 1. How well does this equation fit the data?
- 2. Is the model likely to be useful as a predictor?
- 3. Are any of the basic assumptions (such as constant variance and uncorrelated errors) violated, and if so, how serious is this?

### **Properties of LS estimator**

- LS estimators  $\hat{\beta}_0$  and  $\hat{\beta}_1$  are linear combination of the original observations.
- $\hat{\beta}_0$  and  $\hat{\beta}_1$  are unbiased estimators of  $\beta_0$  and  $\beta_1$ .

$$E[\hat{\beta}_0] = \beta_0 \qquad E[\hat{\beta}_1] = \beta_1$$

$$\begin{split} \hat{\beta}_i &= \frac{S_{xy}}{S_{xx}} = \sum_{i=1}^n c_i y_i; \qquad c_i = \frac{\left(x_i - \overline{x}\right)}{S_{xx}} \\ E\left[\hat{\beta}_i\right] &= E\left[\sum_{i=1}^n c_i y_i\right] = \sum_{i=1}^n c_i E\left[y_i\right] = \sum_{i=1}^n c_i \left[\beta_0 + \beta_1 x_i\right] \\ \sum_{i=1}^n c_i \left[\beta_0 + \beta_1 x_i\right] &= \beta_0 \sum_{i=1}^n c_i + \beta_1 \sum_{i=1}^n c_i x_i & \qquad \because E\left[\varepsilon_i\right] = 0 \end{split}$$

$$\begin{split} & \sum_{i=1}^{n} c_i = 0; \sum_{i=1}^{n} c_i x_i = 1 \\ & \therefore E \left[ \hat{\beta}_0 \right] = \beta_0; E \left[ \hat{\beta}_1 \right] = \beta_1 \end{split}$$

- It can be shown that
- LS gives BLUE (Best Linear, Unbiased Estimators)

### Variances of estimators

• Variances are give as

$$\sigma_{\hat{\beta}_{i}}^{2} = Var \left[ \sum_{i=1}^{n} c_{i} y_{i} \right] = \sum_{i=1}^{n} c_{i}^{2} \sigma_{y_{i}}^{2}; \qquad \text{Assuming } \sigma_{y_{i}}^{2} = \sigma^{2}$$

$$\sigma_{\hat{\beta}_{i}}^{2} = \sigma^{2} \sum_{i=1}^{n} c_{i}^{2} = \sigma^{2} \sum_{i=1}^{n} \left[ \frac{\left( x_{i} - \overline{x} \right)}{S_{xx}} \right]^{2} = \frac{\sigma^{2}}{S_{xx}}$$

$$Var\left[\hat{\beta}_{0}\right] = Var\left[\overline{y} - \hat{\beta}_{1}\overline{x}\right] = Var\left[\overline{y}\right] + \overline{x}^{2}Var\left[\hat{\beta}_{1}\right] - 2\overline{x}covar\left[\overline{y}, \hat{\beta}_{1}\right]$$

$$\sigma_{\hat{\beta}_{0}}^{2} = \sigma_{\overline{y}}^{2} + \overline{x}^{2}\sigma_{\hat{\beta}_{1}}^{2} - 2\overline{x}\underbrace{\sigma_{\overline{y}\hat{\beta}_{1}}}_{=0} \quad \text{(can be shown)}$$

$$\sigma_{\hat{\beta}_{0}}^{2} = \frac{\sigma^{2}}{n} + \overline{x}^{2}\underbrace{\sigma^{2}}_{S_{xx}} = \sigma^{2}\left[\frac{1}{n} + \frac{\overline{x}^{2}}{S_{xx}}\right] \quad \because \sigma_{\overline{y}}^{2} = \frac{\sigma^{2}}{n}$$

21

#### Estimation of $\sigma^2$

- Estimate of  $\sigma^2$  is required to test hypotheses and construct interval estimates pertinent to the regression model.
- Ideally, we would like this estimate not to depend on the adequacy of the fitted model. This is only
  possible:
  - when there are several observations on *y* for at least one value of *x* or
  - when prior information concerning  $\sigma^2$  is available.
- When this approach cannot be used, estimate of  $\sigma^2$  is obtained from the *residual* or *error sum of squares*.
- It can be shown that an **unbiased estimator of**  $\sigma^2$

$$SS_{Res} = \sum_{i=1}^{n} v_i^2 = \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$$

$$\hat{\sigma}^2 = \frac{V^T P V}{n-2} = \frac{SS_{\text{Res}}}{n-2} = MS_{\text{Res}} \text{(Residual Mean Square)}$$

- Square root of  $\hat{\sigma}^2$  is called **standard error of regression** and is model dependent.
- Because  $\hat{\sigma}^2$  depends on the residual sum of squares, any violation of the assumptions on the model errors or any misspecification of the model form may seriously damage the usefulness of  $\hat{\sigma}^2$  as an estimate of  $\sigma^2$ . Because  $\hat{\sigma}^2$  is computed from the regression model residuals, we say that it is a model-dependent estimate of  $\sigma^2$  (a posteriori reference variance)

# **Testing for Significance**

- We are often interested in testing hypotheses and constructing confidence intervals about the model parameters. It requires that we make the additional assumption that the model errors  $\varepsilon_i$  are normally distributed. Thus, the complete assumptions are that the errors are normally and independently distributed with mean 0 and variance  $\sigma^2$ , abbreviated NID(0, $\sigma^2$ ). These assumptions are also checked through residual analysis.
- Procedure to test the hypothesis that the slope equals a constant, say  $eta_{10}$ .

$$H_0: \beta_1 = \beta_{10}$$

$$H_1: \beta_1 \neq \beta_{10}$$

- The appropriate hypotheses for a **two-tailed test** are:
- Since the errors  $\varepsilon_i \sim \text{NID}(0, \sigma^2)$ , the observations  $y_i \sim \text{NID}(\beta_0 + \beta_1 x_i, \sigma^2)$ . Now  $\hat{\beta}_1$  is a linear combination of the observations, so is normally distributed with mean  $\beta_1$  and variance  $\sigma^2/S_{xx}$  using the mean and variance of  $\hat{\beta}_1$  found earlier.
- The testing statistic

 $Z_0 = \frac{\hat{\beta}_1 - \beta_{10}}{\sqrt{\sigma^2 / S_{xx}}} \sim N(0,1)$ 

23

- If  $\sigma^2$  were known, we could use  $Z_0$  to test the above hypotheses. Typically,  $\sigma^2$  is unknown. It can be shown that  $MS_{Res}$  is an unbiased estimator of  $\sigma^2$ . Further:
  - (n-2) MS<sub>Res</sub>/ $\sigma^2$  follows a  $\chi^2_{n-2}$  distribution and
  - $MS_{Res}$  and  $\hat{\beta}_1$  are independent.
- • The t statistic given as  $t_{0^{\prime}}$  with DoF same as associated with  ${\rm MS_{Res}}$ )

$$t_0 = \frac{\hat{\beta}_1 - \beta_{10}}{\hat{\sigma}_{\beta_1}} = \frac{\hat{\beta}_1 - \beta_{10}}{\sqrt{MS_{Res}/S_{xx}}} \sim t_{n-2}$$

and implies that the null hypothesis  $H_0$ :  $\beta_1 = \beta_{10}$  is true.

- Thus, the ratio  $t_0$  is the test statistic used to test  $H_0$ :  $\beta_1 = \beta_{10}$ .
- The test procedure computes  $t_0$  and compares the observed value of  $t_0$  from above equation with the upper  $\alpha/2$  percentage point of the  $t_{n-2}$  distribution ( $t_{\alpha/2, n-2}$ ). This procedure rejects the null hypothesis if
- Alternatively, the p-value based approach can also be used.

- Procedure for testing the intercept (same as for slope)
- $H_1: \beta_0 \neq \beta_{00}$

Use the statistic

 $t_{0} = \frac{\hat{\beta}_{0} - \beta_{00}}{\hat{\sigma}_{\beta_{1}}} = \frac{\hat{\beta}_{1} - \beta_{00}}{\sqrt{MS_{Res}\left(\frac{1}{n} + \frac{\overline{x}^{2}}{S_{xx}}\right)}} \sim t_{n-2}$ 

- Testing for significance of regression
  - A very important special case of the hypotheses

 $H_0: \beta_1 = 0$  $H_1: \beta_1 \neq 0$ 

- The test procedure for  $H_0$ :  $\beta_1 = 0$  is developed by using *t-statistic* and simply using  $\beta_{10} = 0$  or
- The null hypothesis of significance of regression is rejected if

 $|\iota_0| > \iota_{\alpha/2,n-2}$ 

### Confidence Interval for $\beta_1$

$$(1-\alpha)\times 100\%$$
 confidence interval for  $\beta_1$  is  $\left(\hat{\beta}_1 \pm t_{\frac{\alpha}{2},n-2}\sigma_{\hat{\beta}_1}\right)$ 



• Failing to reject  $H_0$ :  $\beta_1 = 0$ : Implies that there is no linear relationship between x and y. This may imply either that x is of little value in explaining the variation in y and that the best estimator of y for any x is  $\hat{y} = \bar{y}$  (Left Figure a) or that the true relationship between x and y is not linear (Left Figure b). Therefore, failing to reject  $H_0$ :  $\beta_1 = 0$  is equivalent to saying that there is no linear relationship between y and y.



Situations when  $H_0$ :  $\beta_1 = 0$  is not rejected (Left fig)

Situations when  $H_0$ :  $\beta_1 = 0$  is rejected (right fig)

If  $H_0$ :  $\beta_1 = 0$  is rejected: Implies that x is of value in explaining the variability in y. This is illustrated in Figure (Right). However, rejecting  $H_0$ :  $\beta_1 = 0$  could mean either that the straight-line model is adequate (Right Figure a) or that even though there is a linear effect of x, better results could be obtained with the addition of higher order polynomial terms in x (Right Figure b).

# **Analysis of variance**

- We may also use an analysis-of-variance approach to test significance of regression. It is based on a partitioning of total variability in the response variable y to draw inferences.
- To obtain this partitioning, begin with the identity

$$(y_i - \overline{y}) = (\hat{y}_i - \overline{y}) + (y_i - \hat{y}_i)$$

• Squaring both sides and taking sum from i = 1 to n.

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + 2\sum_{i=1}^{n} (\hat{y}_i - \overline{y})(y_i - \hat{y}_i)$$
cross-product term = CPT

• Now

$$2\sum_{i=1}^{n} (\hat{y}_{i} - \overline{y})(y_{i} - \hat{y}_{i}) = 2\sum_{i=1}^{n} \hat{y}_{i}(y_{i} - \hat{y}_{i}) - \overline{y}\sum_{i=1}^{n} (y_{i} - \hat{y}_{i}) = 2\sum_{i=1}^{n} \hat{y}_{i}e_{i} - \overline{y}\sum_{i=1}^{n} e_{i} = 0$$

$$\therefore \sum_{i=1}^{n} e_{i} = 0$$

Hence

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

 $\sum_{i=1}^{n} (y_i - \overline{y})^2 = \underbrace{\sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2}_{SS_R} + \underbrace{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}_{SS_{Res}}$  $SS_T = SS_R + SS_{Res}$ 

LHS: Corrected sum of squares of the observations, SS<sub>T</sub>, which measures the total variability in the observations.

Two components of  $SS_T$  measure, respectively:

- (a) Regression or model sum of squares (SS<sub>R</sub>): amount of variability in the observations  $y_i$ accounted for by the regression line
- (b) Residual or error sum of squares (SS<sub>Res</sub>): residual variation left unexplained by the regression line
- Further:

$$\begin{split} SS_{\text{Res}} &= \sum_{i=1}^{n} \left( y_{i} - \hat{y}_{i} \right)^{2} = \sum_{i=1}^{n} \hat{e}_{i}^{2} \\ \text{Using:} & \hat{y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{i} x_{i} \\ SS_{\text{Res}} &= \sum_{i=1}^{n} \hat{e}_{i}^{2} = \sum_{i=1}^{n} \left( y_{i} - \hat{\beta}_{0} + \hat{\beta}_{i} x_{i} \right)^{2} = \sum_{i=1}^{n} y_{i}^{2} - n \overline{y} - \hat{\beta}_{i} S_{xy} \\ \text{But:} & SS_{T} = \sum_{i=1}^{n} y_{i}^{2} - n \overline{y}^{2} = \sum_{i=1}^{n} \left( y_{i} - \overline{y} \right)^{2} \\ \therefore & SS_{\text{Res}} = SS_{T} - \hat{\beta}_{i} S_{xy} \Rightarrow SS_{R} = \hat{\beta}_{i} S_{xy} \end{split}$$

# **Analysis of variance table**

| Source of<br>Variation | Sum of Squares                              | Degrees of<br>Freedom | Mean Square | $F_0$                              |
|------------------------|---------------------------------------------|-----------------------|-------------|------------------------------------|
| Regression             | $SS_{R} = \hat{\beta}_{1}S_{xy}$            | 1                     | $MS_R$      | MS <sub>R</sub> /MS <sub>Res</sub> |
| Residual               | $SS_{Res} = SS_{T} - \hat{\beta}_{1}S_{xy}$ | n-2                   | $MS_{Res}$  |                                    |
| Total                  | $SS_{\mathrm{T}}$                           | n-1                   |             |                                    |

- · Degree-of-freedom (DoF) breakdown.
  - Total sum of squares,  $SS_T$ :  $df_T = (n-1)$  because one degree of freedom is lost as a result of the constraint on the deviations  $(y_i - \bar{y})$
  - Model or regression sum of squares,  $SS_R$ , has  $df_R = 1$  degree of freedom because  $SS_R$  is completely determined by one parameter, namely,  $\hat{\beta}_1$
  - SS<sub>Res</sub> has  $df_{Res} = (n-2)$  because two constraints are imposed on deviations  $(y_i \hat{y}_i)$  as a result of estimating  $\hat{\beta}_0$  and  $\hat{\beta}_1$
  - $df_T = df_R + df_{Res}$ • Note that DoF have additive property: (n-1)=1+(n-2)

- Now we can use usual **analysis-of-variance F test** to test the hypothesis  $H_0$ :  $\beta_1 = 0$ .
- It can be shown that

(i) 
$$SS_{Res} = (n-2)\frac{MS_{Res}}{\sigma^2} \sim \chi_{n-2}^2$$
  
(ii) If the null hypothesis  $H_0: \beta_i = 0$  is true, then  $\frac{SS_R}{2} \sim \chi_{n-2}^2$ 

- (ii) If the null hypothesis  $H_0: \beta_1 = 0$  is true, then  $\frac{SS_R}{\sigma^2}$
- (iii)  $SS_{Res}$  and  $SS_{R}$  are independent

$$F_0 = \frac{SS_R/df_R}{SS_{\rm Res}/df_{\rm Res}} = \frac{SS_R/1}{SS_{\rm Res}/(n-1)} = \frac{MS_R}{MS_{\rm Res}} \sim F_{1,n-2}$$

• Therefore, by the definition of an *F* **statistics**, we have

$$E(MS_{Res}) = \sigma^2$$
  $E(MS_R) = \sigma^2 + \beta_1^2 S_{xx}$ 

- · It can also be shown that
- These expected mean squares indicate that if the observed value of  $F_0$  is large, then it is likely that the slope  $\beta_1 \neq 0$ .

- It can also be shown that if  $\beta_1 \neq 0$ , then  $F_0$  follows a non-central F distribution with 1 and (n-2)degrees of freedom and a non-centrality parameter of
- Non-centrality parameter also indicates that the observed value of  $\mathbf{F_0}$  should be large if  $\beta_1 \neq 0$ .
- Therefore, to test the hypothesis  $H_0$ :  $\beta_1 = 0$ , compute the test statistic  $F_0$  and reject  $H_0$  if

| $\sim F_{\alpha,(1,n-2)}$ |
|---------------------------|
|---------------------------|

| Source of variation | Sum of squares                                          | Degrees of freedom | Mean<br>square | F <sub>0</sub>  |
|---------------------|---------------------------------------------------------|--------------------|----------------|-----------------|
| Regression          | $SS_R = \beta_1^2 S_{xy}$                               | 1                  | $MS_R$         | $MS_R/MS_{Res}$ |
| Residual            | $SS_{\text{Res}} = SS_{\text{T}} - \beta_{1}^{2}S_{xy}$ | (n-1)              | $MS_{ m Res}$  |                 |
| Total               | $SS_{\mathrm{T}}$                                       | (n-2)              |                |                 |
|                     |                                                         |                    |                |                 |

- Interval estimation for  $\beta_0$ ,  $\beta_1$ , and  $\sigma^2$  For  $\beta_0$ ,  $\beta_1$ , and  $\sigma^2$ , we may also obtain confidence interval estimates of these parameters.
- The width of these confidence intervals is a measure of the overall quality of the regression line.
- If the errors are normally and independently distributed, then the sampling distribution of both  $\frac{\hat{\beta}_{n} - \beta_{n}}{\hat{\beta}_{n}}$  and  $\frac{\hat{\beta}_{n} - \beta_{n}}{\hat{\beta}_{n}}$  is  $t_{n-2}$  with (n-2) DoF. Therefore,  $(1-\alpha)$  100 percent CI are given as:

$$\left(\hat{\beta}_1 \pm t_{\underline{\alpha}, n-2} \sigma_{\hat{\beta}_1}\right) \text{ and } \left(\hat{\beta}_0 \pm t_{\underline{\alpha}, n-2} \sigma_{\hat{\beta}_0}\right)$$

- These CIs have the usual frequentist interpretation. That is, if we were to take repeated samples of the same size at the same x levels and construct, for example, 95% CIs on the slope/intercept for each sample, then 95% of those intervals will contain the true value of  $\beta_1/\beta_0$ .
- If the errors are normally and independently distributed, sampling distribution

Hence,

• Thus (1 -  $\alpha$ ) 100 percent CI on  $\sigma^2$  is

$$P\left(\chi_{1-\frac{\alpha}{2},n-2}^{2} \le (n-2)\frac{MS_{\text{Res}}}{\sigma^{2}} \le \chi_{n-2}^{2}\chi_{\frac{\alpha}{2},n-2}^{2}\right) = 1 - \alpha$$