Static Routing ve Sorun Giderme Rehberi

Hazırlayan: Furkan Yaşar in LinkedIn

Bu rehber, Statik yönlendirme konfigürasyonu ve sorun giderme tekniklerini kapsar.

1. Statik Rota Türleri

KRİTİK BİLGİ: Statik rotalar, dinamik yönlendirme protokolleri kullanılmadığında veya özel durumlarda kullanılan elle konfigüre edilmiş rotalardır.

Rota Türü	Açıklama	Kullanım Alanı
Standard Statik Rota	Belirli bir ağa özel konfigüre edilmiş rota	Sabit topolojiler
Varsayılan Statik Rota	0.0.0.0/0 (IPv4) veya ::/0 (IPv6)	Edge router'lar, çıkış noktaları
Floating Statik Rota	Yedek bağlantı sağlamak için kullanılır	Yüksek AD ile konfigüre edilir
Özet Statik Rota	Alt ağları tek rotada özetler	Routing tablosunu küçültme

Statik Rota Konfigürasyon Seçenekleri

Seçenek	Açıklama	Komut Formati
Next-Hop Rota	Sadece bir sonraki hop IP adresi	ip route [network] [mask] [next-hop-ip]
Doğrudan Bağlı Statik Rota	Sadece çıkış arayüzü	ip route [network] [mask] [exit-intf]
Tam Belirtilmiş Statik Rota	Çıkış arayüzü + sonraki hop IP	ip route [network] [mask] [exit-intf] [next-hop-ip]

2. IPv4 Statik Rota Konfigürasyonu

IPv4 statik rotaları konfigüre etmek için ip route komutu kullanılır.

Next-Hop Statik Rota

```
R1(config)# ip route 172.16.1.0 255.255.255.0 172.16.2.2
R1(config)# ip route 192.168.1.0 255.255.255.0 172.16.2.2
R1(config)# ip route 192.168.2.0 255.255.255.0 172.16.2.2
```

Doğrudan Bağlı Statik Rota

UYARI: Sadece point-to-point seri arayüzler için kullanılmalıdır.

```
R1(config)# ip route 172.16.1.0 255.255.255.0 s0/1/0 R1(config)# ip route 192.168.1.0 255.255.255.0 s0/1/0 R1(config)# ip route 192.168.2.0 255.255.255.0 s0/1/0
```

Tam Belirtilmiş Statik Rota

```
R1(config)# ip route 172.16.1.0 255.255.255.0 GigabitEthernet0/0/1 172.16.2.2 R1(config)# ip route 192.168.1.0 255.255.255.0 GigabitEthernet0/0/1 172.16.2.2 R1(config)# ip route 192.168.2.0 255.255.25 GigabitEthernet0/0/1 172.16.2.2
```

Routing Tablosu Doğrulama

```
R1# show ip route static

Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U - per-user static route

o - ODR, P - periodic downloaded static route, H - NHRP, 1 - LISP

+ - replicated route, % - next hop override

Gateway of last resort is 172.16.2.2 to network 0.0.0.0

S* 0.0.0.0/0 [1/0] via 172.16.2.2
```

3. IPv6 Statik Rota Konfigürasyonu

ÖNEMLİ: IPv6 statik rotalar için ipv6 route komutu kullanılır ve link-local adreslerle calışırken dikkatli olunmalıdır.

IPv6 Next-Hop Statik Rota

```
R1(config)# ipv6 unicast-routing
R1(config)# ipv6 route 2001:db8:acad:1::/64 2001:db8:acad:2::2
R1(config)# ipv6 route 2001:db8:cafe:1::/64 2001:db8:acad:2::2
R1(config)# ipv6 route 2001:db8:cafe:2::/64 2001:db8:acad:2::2
```

IPv6 Tam Belirtilmiş Statik Rota (Link-Local)

UYARI: Link-local next-hop kullanırken arayüz belirtmek zorunludur.

```
R1(config)# ipv6 route 2001:db8:acad:1::/64 Serial0/1/0 FE80::2
```

IPv6 Routing Tablosu

```
R1# show ipv6 route static

IPv6 Routing Table - default - 8 entries

Codes: C - Connected, L - Local, S - Static, U - Per-user Static route

B - BGP, R - RIP, H - NHRP, I1 - ISIS L1

I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary, D - EIGRP

EX - EIGRP external, ND - ND Default, NDP - ND Prefix, DCE - Destination

NDP - Redirect, RL - RPL, O - OSPF Intra, OI - OSPF Inter

OE1 - OSPF ext 1, OE2 - OSPF ext 2, ON1 - OSPF NSSA ext 1

ON2 - OSPF NSSA ext 2, la - LISP alt, lr - LISP site-registrations

ld - LISP dyn-eid, IA - LISP away, le - LISP extranet-policy

a - Application

S ::/0 [1/0]

via 2001:DB8:ACAD:2::2
```

4. Varsayılan Statik Rotalar

Varsayılan statik rotalar, routing tablosunda eşleşme olmayan tüm trafiği yönlendirir.

IPv4 Varsayılan Statik Rota

```
R1(config)# ip route 0.0.0.0 0.0.0.0 172.16.2.2
```

IPv6 Varsayılan Statik Rota

```
R1(config)# ipv6 route ::/0 2001:db8:acad:2::2
```

Varsayılan Rota Doğrulama

```
R1# show ip route static | begin Gateway
Gateway of last resort is 172.16.2.2 to network 0.0.0.0

S* 0.0.0.0/0 [1/0] via 172.16.2.2
```

5. Floating Statik Rotalar

YEDEK BAĞLANTI: Floating statik rotalar, birincil rotanın kullanılamadığı durumlarda devreye giren yedek rotalardır.

Konfigürasyon

```
R1(config)# ip route 0.0.0.0 0.0.0.0 172.16.2.2 # Birincil rota (AD=1)
R1(config)# ip route 0.0.0.0 0.0.0 10.10.10.2 5 # Yedek rota (AD=5)
R1(config)# ipv6 route ::/0 2001:db8:acad:2::2 # Birincil rota (AD=1)
R1(config)# ipv6 route ::/0 2001:db8:feed:10::2 5 # Yedek rota (AD=5)
```

Yedek Rota Testi

```
R1# show ip route static | begin Gateway
Gateway of last resort is 10.10.10.2 to network 0.0.0.0

S* 0.0.0.0/0 [5/0] via 10.10.10.2
```

6. Host Rotaları

IPv4 Host Rota Konfigürasyonu

```
Branch(config)# ip route 209.165.200.238 255.255.255.255 198.51.100.2
```

IPv6 Host Rota Konfigürasyonu

```
Branch(config)# ipv6 route 2001:db8:acad:2::238/128 2001:db8:acad:1::2
```

Link-Local Next-Hop ile IPv6 Host Rota

```
Branch(config)# ipv6 route 2001:db8:acad:2::238/128 serial 0/1/0 fe80::2
```

7. Paket İşleme Süreci ve Topoloji

Statik rotalarla paket işleme süreci, bir paketin kaynaktan hedefe nasıl iletildiğini anlamak için kritiktir.

```
PC1 (172.16.1.10/24) | Default Gateway: 172.16.1.1 | ___[G0/0/0]— R1 (172.16.1.1/24) | 172.16.2.1/30 on S0/1/0 | ___[S0/1/0]— R2 (172.16.2.2/30) | 192.168.1.2/30 on S0/1/1 | ___[S0/1/1]— R3 (192.168.1.1/30) |
```

192.168.2.1/24 on G0/0/0 | \Box G

Paket İsleme Adımları

- 1. PC1 paketi PC3'e gönderir (varsayılan ağ geçidine)
- 2. R1 paketi alır ve routing tablosunda eşleşme arar:
 - Statik rota eşleşirse → next-hop IP/çıkış arayüzü kullanılır
 - Eşleşme yoksa → varsayılan rota kullanılır (konfigüre edilmişse)
 - Hiçbir eşleşme yoksa → paket düşürülür ve ICMP mesajı gönderilir
- 3. R1 paketi yeniden kapsüller ve S0/1/0 arayüzünden R2'ye gönderir
- 4. R2 aynı işlemi tekrarlar ve paketi R3'e gönderir
- 5. R3 hedef ağın doğrudan bağlı olduğunu görür:
 - ARP tablosunda PC3 MAC adresi aranır
 - MAC adresi yoksa ARP isteği gönderilir
 - o PC3 ARP yanıtı ile MAC adresini gönderir
- 6. R3 paketi PC3 MAC adresiyle kapsüller ve gönderir

8. Sorun Giderme Teknikleri

SORUN KAYNAKLARI: Ağ bağlantısızlığı genellikle arayüz arızaları, servis sağlayıcı kesintileri, bağlantı doygunluğu veya yanlış konfigürasyonlardan kaynaklanır.

Temel Sorun Giderme Komutları

Komut	Açıklama	Kullanım Örneği
ping	Katman 3 bağlantısını doğrular	ping 192.168.1.1
traceroute	Hedefe giden yolu doğrular	traceroute 10.0.0.1
show ip route	Routing tablosunu gösterir	show ip route 192.168.1.0
show ip interface brief	Arayüz durumunu gösterir	show ip interface brief
show cdp neighbors	Doğrudan bağlı cihazları listeler	show cdp neighbors detail

Bağlantı Sorunu Çözümü

PC1'den PC3'e bağlantı hatası durumunda:

- 1. R1'den PC3'e extended ping testi yap → başarısız
- 2. R1'den R2'ye ping testi yap → başarılı
- 3. R1'den R3'e ping testi yap \rightarrow başarılı
- 4. R2 routing tablosunu kontrol et: show ip route
- 5. Hatalı statik rotayı kaldır: no ip route 172.16.3.0 255.255.255.0 192.168.1.1
- 6. Doğru statik rotayı ekle: ip route 172.16.3.0 255.255.255.0 172.16.2.1

9. Önemli Çıkarımlar

STATIK ROTA ÖZETI:

- Statik rotalar IPv4 ve IPv6 için konfigüre edilebilir
- Next-hop, doğrudan bağlı ve tam belirtilmiş olmak üzere 3 statik rota türü vardır
- Varsayılan statik rotalar tüm hedeflere yönlendirme sağlar
- Floating statik rotalar yedek bağlantı sağlar (daha yüksek AD ile)
- Host rotaları belirli bir cihaza yönlendirme yapar (IPv4: /32, IPv6: /128)

SORUN GİDERME ÖZETİ:

- Router'lar paketleri işlerken routing tablosunu kullanır
- Eşleşme yoksa varsayılan rota kullanılır (konfigüre edilmişse)
- Hiçbir eşleşme yoksa paket düşürülür ve ICMP mesajı gönderilir
- ARP, son hedefe ulaşmak için kullanılır
- Temel sorun giderme komutları: ping, traceroute, show ip route, show ip interface brief

SON TAVSİYE: Statik rotaları konfigüre ederken her zaman routing tablosunu show ip route komutuyla kontrol edin ve ping testleri yaparak bağlantıyı doğrulayın.