#### 目录

| 【一维插值】interp1                    | 1  |
|----------------------------------|----|
| yi = interp1(x,y,xi,method)      |    |
| 例 1                              | 1  |
| 例 2                              | 2  |
| 【二维插值】interp2                    | 4  |
| ZI = interp2(X,Y,Z,XI,YI,method) |    |
| 插值方式比较示例                         | 4  |
| 例 3                              | 8  |
| 例 4                              | 9  |
| 【三角测量和分散数据插值】                    |    |
| 【数据拟合】                           | 17 |
| 例 5                              | 17 |
| 例 6                              |    |

### 【一维插值】interp1

## yi = interp1(x,y,xi,method)

#### 例1

在 1-12 的 11 小时内,每隔 1 小时测量一次温度,测得的温度依次为: 5,8,9,15,25,29,31,30,22,25,27,24。试估计每隔 1/10 小时的温度值。

```
建立 M 文件 temp. m
hours=1:12;
temps=[5 8 9 15 25 29 31 30 22 25 27 24];
h=1:0.1:12;
t=interp1(hours,temps,h,'spline');
plot(hours,temps,'kp',h,t,'b');
```



**例 2** 已知飞机下轮廓线上数据如下,求 x 每改变 0.1 时的 y 值。

| X | 0 | 3   | 5   | 7   | 9   | 11  | 12  | 13  | 14  | 15  |
|---|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Y | 0 | 1.2 | 1.7 | 2.0 | 2.1 | 2.0 | 1.8 | 1.2 | 1.0 | 1.6 |

建立 M 文件 plane.m

```
x0=[0 3 5 7 9 11 12 13 14 15 ];
y0=[0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6 ];
x=0:0.1:15;
y1=interp1(x0,y0,x,'nearest');
y2=interp1(x0,y0,x);
y3=interp1(x0,y0,x,'spline');
plot(x0,y0,'kp',x,y1,'r')
```



plot(x0,y0,'kp',x,y2,'r')



plot(x0,y0,'kp',x,y3,'r')



## 【二维插值】interp2

## ZI = interp2(X,Y,Z,XI,YI,method)

## 插值方式比较示例

● 用较大间隔产生 peaks 函数数据点

```
[x,y] = meshgrid(-3:1:3);
z = peaks(x,y);
surf(x,y,z)
```



## ● 产生一个较好的网格

[xi,yi] = meshgrid(-3:0.25:3);

● 利用最近邻方式插值

zi1 = interp2(x,y,z,xi,yi,'nearest');surf(xi,yi,zi1)



#### ● 双线性插值方式

zi2 = interp2(x,y,z,xi,yi,'bilinear');surf(xi,yi,zi2)



## ● 双立方插值方式

zi3 = interp2(x,y,z,xi,yi,'bicubic');surf(xi,yi,zi3)



● 不同插值方式构造的等高线图对比 contour (xi,yi,zi1)



contour(xi,yi,zi2)



contour(xi,yi,zi3)



#### 例 3

```
82 81 80 82 84
79 63 61 65 81
84 84 82 85 86
试作出平板表面的温度分布曲面 z=f(x,y)的图形。
建立 M 文件 wendu. m
xi=1:0.2:5;
yi=1:0.2:3;
zi=interp2(x,y,temps,xi',yi,'cubic');
mesh(xi,yi,zi);
```

测得平板表面 3\*5 网格点处的温度分别为:



**例 4** 某山区测得一些地点的高度如下表所示,平面区域为 1200 ≤ x ≤ 4000,1200 ≤ y ≤ 3600, 试作出该山区的地貌图和等高线图。比较几种插值方法。

| YX   | 1200 | 1600 | 2000 | 2400 | 2800 | 3200 | 3600 | 4000 |
|------|------|------|------|------|------|------|------|------|
| 1200 | 1130 | 1250 | 1280 | 1230 | 1040 | 900  | 500  | 700  |
| 1600 | 1320 | 1450 | 1420 | 1400 | 1300 | 700  | 900  | 850  |
| 2000 | 1390 | 1500 | 1500 | 1400 | 900  | 1100 | 1060 | 950  |
| 2400 | 1500 | 1200 | 1100 | 1350 | 1450 | 1200 | 1150 | 1010 |
| 2800 | 1500 | 1200 | 1100 | 1550 | 1600 | 1550 | 1380 | 1070 |
| 3200 | 1500 | 1550 | 1600 | 1550 | 1600 | 1600 | 1600 | 1550 |
| 3600 | 1480 | 1500 | 1550 | 1510 | 1430 | 1300 | 1200 | 980  |

建立 M 文件 moutain.m

x=0:400:5600;

y=0:400:4800;

z=[370 470 550 600 670 690 670 620 580 450 400 300 100 150 250;...

510 620 730 800 850 870 850 780 720 650 500 200 300 350 320;...

650 760 880 970 1020 1050 1020 830 900 700 300 500 550 480 350;...

```
740 880 1080 1130 1250 1280 1230 1040 900 500 700 780 750 650
550;...
     830 980 1180 1320 1450 1420 1400 1300 700 900 850 840 380 780
750;...
     880 1060 1230 1390 1500 1500 1400 900 1100 1060 950 870 900 930
950;...
     910 1090 1270 1500 1200 1100 1350 1450 1200 1150 1010 880 1000
1050 1100;...
     950 1190 1370 1500 1200 1100 1550 1600 1550 1380 1070 900 1050
1150 1200;...
     1550 1550;...
     1420 1430 1450 1480 1500 1550 1510 1430 1300 1200 980 850 750 550
500;...
     1380 1410 1430 1450 1470 1320 1280 1200 1080 940 780 620 460 370
350;...
     1370 1390 1410 1430 1440 1140 1110 1050 950 820 690 540 380 300
210;...
     1350 1370 1390 1400 1410 960 940 880 800 690 570 430 290 210 150];
figure(1);
meshz(x,y,z)
```



```
xi=0:50:5600;
yi=0:50:4800;

figure(2)
zli=interp2(x,y,z,xi,yi','nearest');
surfc(xi,yi,zli)
```



```
figure(3)
z2i=interp2(x,y,z,xi,yi');
surfc(xi,yi,z2i)
```



```
figure(4)
z3i=interp2(x,y,z,xi,yi','cubic');
surfc(xi,yi,z3i)
```



#### figure(5)

```
subplot(1,2,1),contour(xi,yi,z2i,10);
subplot(1,2,2),contour(xi,yi,z3i,10);
```



### 【三角测量和分散数据插值】

## 凸包(Convex Hulls)

```
load seamount
plot(x,y,'.','markersize',10)
k = convhull(x,y);
hold on, plot(x(k),y(k),'-r'), hold off
grid on
```



# 德洛涅三角(Delaunay Triangulation)

```
load seamount
plot(x,y,'.','markersize',12)
xlabel('Longitude'), ylabel('Latitude')
grid on
```



tri = delaunay(x,y);
hold on, triplot(tri,x,y), hold off



```
figure
hidden on
trimesh(tri,x,y,z)
grid on
xlabel('Longitude'); ylabel('Latitude'); zlabel('Depth in Feet')
```



```
figure
[xi,yi] = meshgrid(210.8:.01:211.8,-48.5:.01:-47.9);
zi = griddata(x,y,z,xi,yi,'cubic');
[c,h] = contour(xi,yi,zi,'b-');
clabel(c,h)
xlabel('Longitude'), ylabel('Latitude')
```



火龙尼图形(Voronoi Diagrams)

```
load seamount
voronoi(x,y)
grid on
xlabel('Longitude'), ylabel('Latitude')
```



#### 【数据拟合】

例 5

对下面一组数据作二次多项式拟合

|   | xi | 0.1   | 0.2  | 0.4  | 0.5  | 0.6  | 0.7  | 0.8  | 0.9  | 1    |
|---|----|-------|------|------|------|------|------|------|------|------|
| 3 | yi | 1.978 | 3.28 | 6.16 | 7.34 | 7.66 | 9.58 | 9.48 | 9.30 | 11.2 |

```
x=[0.1 0.2 0.4:.1:1];
y=[1.978 3.28 6.16 7.34 7.66 9.58 9.48 9.30 11.2];
A=polyfit(x,y,2);
z=polyval(A,x);
plot(x,y,'k+',x,z,'r')
```



#### 例 6

```
用下面一组数据拟合c(t) = a + be^{0.02kt}中的参数 a, b, k。
```

#### 方法 1: 用 lsqcurvefit

建立 M 文件 curvefun1.m

function f=curvefun1(x,tdata)

f=x(1)+x(2)\*exp(-0.02\*x(3)\*tdata)

%其中 x(1)=a; x(2)=b; x(3)=k;

#### 输入命令:

```
tdata=100:100:1000;

cdata=1e-03*[4.54,4.99,5.35,5.65,5.90,6.10,6.26,6.39,6.50,6.59];

x0=[0.2,0.05,0.05];

x=lsqcurvefit ('curvefun1',x0,tdata,cdata)
```

```
方法 2: 用 lsqnonlin
建立 M 文件 curvefun2.m
function f=curvefun2(x)
tdata=100:100:1000;
cdata=1e-03*[4.54,4.99,5.35,5.65,5.90,6.10,6.26,6.39,6.50,6.59];
f=x(1)+x(2)*exp(-0.02*x(3)*tdata)- cdata
输入命令:
x0=[0.2,0.05,0.05];
x=lsqnonlin('curvefun2',x0)
x =
0.0063 -0.0034 0.2542
```

x =