BAYESIÁNSKÁ ANALÝZA – DOMÁCÍ SKUPINOVÝ ÚKOL Č. 3

Pro účely zpracování tohoto úkolu využijte pracovní skupinu o velikosti až přibližně 4 osob. Úkol zpracujte a odevzdejte do stanoveného termínu. Veškeré podklady (např. skripty Matlabu, R, Pythonu) a komentáře, odevzdávejte do příslušné odevzdávárny.

Termín odevzdání

7. 1. 2021 (včetně)

Zadání úkolu

Bayesovský odhad GARCH modelu

Náplní tohoto úkolu je bayesovsky identifikovat GARCH model volatility cen zvoleného aktiva (měny, akcie, akciového indexu). GARCH model představuje jeden z přístupů k modelování volatility (rizikovosti) aktiv. Východiskem pro zpracování tohoto úkolu je Rachev et al. (2009): *Bayesian Methods in Finance*, kde lze nalézt vše potřebné. Kapitola 10 se zabývá teoretickými východisky GARCH modelu (str. 185–193), kapitola 11 pak popisuje veškeré detaily bayesovkého odhadu GARCH(1,1) modelu (str. 202–214). Ke zpracování úkolu s úspěchem využijete veškeré dosavadní dovednosti získané ze seminářů a přednášek za Bayesiánské analýzy (v případě problémů, otázek a nejasností neváhejte vyhledat odbornou pomoc).

- 1. *Studium literatury:* Přečtěte si kapitolu 10 (zejména úvodní část věnovanou GARCH modelům na stranách 185–193) a následně i kapitolu 11 (zejména strany 202–214).
- 2. Data: Zvolte si dostatečně dlouhou řadu měsíčních, týdenních nebo denních dat o vývoji vámi zvoleného aktiva (kurz měny, cena akcie, cenový index) a sestrojte na základě ní odpovídající řadu výnosů (temp růstu dle zvolené frekvence dat). Data v rámci zpracování svého úkolu dobře popište a prezentujte v reprezentativní podobě.
- 3. Specifikace rovnice výnosů a GARCH(1,1) modelu: Jako základní model využijte GARCH(1,1) model s rovnicí pro výnosy odpovídající regresní rovnice jen s úrovňovou konstantou. Definujte a komentujte použité apriorní hustoty, věrohodnostní funkci a podmíněné aposteriorní hustoty. Využijte k tomu závěry z Rachev et al. (2009), kapitola 11, kdy modelujte Studentovo t-rozdělení jako kompozici normálních rozdělení, což výpočetně zjednodušuje celý problém. Nezapomeňte rovněž na odpovídající restrikce na koeficienty popsané v kapitole 10 (rovnice 10.8).
- 4. Odhad rovnice výnosů a GARCH(1,1) modelu: Identifikujte parametry základního GARCH(1,1) modelu na datech. Zvolte si vhodné parametry apriorních hustot a s využitím Gibbsova vzorkovače získejte vzorky z aposteriorního rozdělení. Pro generování vzorků z podmíněných hustot pro počet stupňů volnosti využijte Metropolis-Hastings algoritmus (ale můžete využít i jiný vzorkovač vhodný pro jednorozměrná rozdělení). Pokuste se spočítat marginální věrohodnost tohoto modelu s využitím metody Gelfanda a Deye. Spočítejte dlouhodobý (nepodmíněný) rozptyl výnosů a charakteristiky jeho rozdělení (jeho rozdělení ilustrujte graficky a spočítejte predikční p-hodnotu realizovaného rozptylu výnosů vzhledem k tomuto modelovému dlouhodobému rozptylu). Výsledky odhadů, ověření konvergence prezentujte v přehledné tabulce případně graficky a výsledky okomentujte.
- 5. Specifikace a odhad modifikované rovnice výnosů a GARCH(1,1) modelu: Odhadněte modifikovaný GARCH(1,1) model za předpokladu, že výnos je modelován jako AR(1) proces (s úrovňovou konstantou). Využijte podobný postup jako ten z předchozí otázky (můžete využít i obdobné nastavení apriorních hyperparametrů). Pokuste se spočítat marginální věrohodnost tohoto modelu s využitím metody Gelfanda a Deye. I v tomto případě spočítejte dlouhodobý (nepodmíněný) rozptyl výnosů a charakteristiky jeho rozdělení (jeho rozdělení ilustrujte graficky a spočítejte predikční p-hodnotu realizovaného rozptylu výnosů vzhledem k tomuto modelovému dlouhodobému rozptylu). Výsledky odhadů, ověření konvergence prezentujte v přehledné tabulce případně graficky a výsledky okomentujte (prezentaci výsledků můžete sloučit s těmi z předchozí otázky).

6. Bayesovské porovnání modelů: Porovnejte s využitím Bayesova faktoru vhodnost základní a modifikované modelové specifikace, a to s využitím výsledků z odhadů marginální věrohodnosti metodou Gelfanda a Deye, Savage-Dickeyho poměru hustot nebo odpovídajícího intervalu nejvyšší aposteriorní hustoty. Pokuste se rovněž na základě výsledků odhadů komentovat oprávněnost předpokladu o t-rozdělených náhodných složkách.

Dosažené výsledky kriticky zhodnoť te, a to v rámci krátké zprávy obsahující jak krátké představení řešené problematiky (tj. teoretický popis odhadovaného modelu a popis vámi zvoleného přístupu a jendotlivých kroků k jeho identifikaci), tak i vhodně komentované výstupy odhadů.