CBCS SCHEME

USN

18MATDIP31

Third Semester B.E. Degree Examination, Jan./Feb. 2021 Additional Mathematics - I

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Prove that
$$(1 + \cos\theta + i\sin\theta)^n + (1 + \cos\theta - i\sin\theta)^n = 2^{n-1}\cos(\frac{\theta}{2})\cos(\frac{\theta}{2})$$
. (08 Marks)

b. Express
$$1-i\sqrt{3}$$
 in the polar form and hence find its modulus and amplitude. (06 Marks)

c. Find the argument of
$$\frac{1+\sqrt{3}i}{1-\sqrt{3}i}$$
. (96 Marks)

OR

2 a. If
$$\vec{A} = 4\hat{i} + 3\hat{j} + \hat{k}$$
 and $\vec{B} = 2\hat{i} - \hat{j} + 2\hat{k}$ find a unit vector N perpendicular to both A and B such that \vec{A} , \vec{B} and N from a right handed system. (08 Marks)

b. If
$$\vec{a} = \hat{i} + 2\hat{j} - 3\hat{k}$$
 and $\vec{b} = 3\hat{i} - \hat{j} + 2\hat{k}$ then show that $(a + b)$ and $(a - b)$ are orthogonal.

(06 Marks)

c. Show that the position vectors of the vertices of a triangle
$$A = 3(\sqrt{3} \ \hat{i} - \hat{j})$$
. $B = 6\hat{i}$ and $C = 3(\sqrt{3} \ \hat{i} + \hat{j})$ form an isosceles triangle. (06 Marks)

b. If
$$u = \tan^{-1} \left(\frac{x^3 + y^3}{x - y} \right)$$
, prove that $xu_x + yu_y = \sin 2u$. (06 Marks)

c. If
$$u = f(x - y, y - z, z - x)$$
, show that $u_x + u_y + u_z = 0$. (06 Marks)

4 a. Prove that
$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4}$$
... by using Maclaurin's series notation. (08 Marks)

b. Using Euler's theorem, prove that
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 3u \log u$$
. If $u = c$ (06 Marks)

c. If
$$u = x + y$$
, $v = y + z$, $w = z + x$, find $J\left(\frac{u, v, w}{x, y, z}\right)$. (06 Marks)

5 a. A particle moves along the curve
$$\vec{r} = \cos 2t \hat{i} + \sin 2t \hat{j} + t \hat{k}$$
. find the velocity and acceleration at $t = \frac{\pi}{8}$ along $\sqrt{2} \hat{i} + \sqrt{2} \hat{j} + \hat{k}$. (08 Marks)

Find the unit normal to the surface,
$$xy + x + zx = 3$$
 at (1, 1, 1). (06 Marks)

c. Find the constant 'a' such that the vector field
$$F = 2xy^2z^2\hat{i} + 2x^2yz^2\hat{j} + ax^2y^2z\hat{k}$$
 is irrotational. (06 Marks)

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

DOWNLOAD THIS FREE AT

www.vturesource.com

18MATDIP31

OR

6 a. If
$$\vec{F} = (x + y + 1)\hat{i} + \hat{j} - (x + y)\hat{k}$$
 show that $\vec{F} = 0$.

6 b. If $\phi(x, y, z) = xy^2 + yz^3$, find $\nabla \phi \& |\nabla \phi| = (1, -2, -1)$

(05 darks)

c. Show that vector field
$$\vec{F} = \left[\frac{xi + y\hat{j}}{x^2 + y^2} \right]$$
 is solenoidal. (06 Marks)

Module-4

7 a. Obtain a reduction for
$$\int_{0}^{\frac{\pi}{2}} \sin^{n} x dx$$
 (n > 0). (08 Marks)

b. Evaluate
$$\int_0^1 \frac{x^9}{\sqrt{1-x^2}} dx$$
. (06 Marks)

c. Evaluate
$$\iint_{\mathbb{R}} xy dx dy$$
 where R is the first quadrant of the circle $x^2 + y^2 = a^2$, $x \ge 0$, $y \ge 0$.

(06 Marks)

8 a. Obtain a reduction formula for
$$\int_{-\infty}^{\infty} \cos^{n} x dx$$
, $(n > 0)$. (08 Marks)

OR

b. Evaluate
$$\int_{0}^{\infty} x^2 \sqrt{2\alpha x - x^2} dx$$
 (06 Marks)

c. Evaluate
$$\iint_{10}^{\infty} \int_{x+2}^{\infty} (x+y+z)dydxdz$$
 (06 Marks)

Module-5

9 a. Solve
$$\frac{dy}{dx} + y \cot x = \sin x$$
. (08 Marks)

b. Solve
$$\cos x \sin y dx + \cos y \sin x dy = 0$$
. (06 Marks)

c. Solve
$$\frac{dy}{dy} + \frac{y}{x} = y^2x$$
. (06 Marks)

OR

10 a. Solve:
$$\frac{dy}{dx} + \frac{y \cos x + \sin y + y}{\sin x + y \cos y + y} = 0.$$
 (08 Marks)

b. Solve:
$$\frac{dy}{dx} + \frac{y}{x} = y \cdot x$$
. (06 Marks)

c. Solve:
$$y - y^2 dx = (\sin y - x) dy$$
 (06 Marks)
