### SME0809 - Inferência Bayesiana - Distribuição não informativa

Grupo 13 - Francisco Miranda - 4402962 - Heitor Carvalho - 11833351

Setembro 2021

Seja  $Y_1,...,Y_n$  uma amostra aleatória de  $Y \sim \text{Pois}(\theta)$ . Pede-se:

#### (a) encontre a distribuição a priori não informativa de Jeffreys

Temos que

$$p(y|\theta) = \frac{e^{-\theta}\theta^y}{y!}, \ \theta > 0, \ y = 0, 1, 2, \dots$$

Primeiramente, vamos obter a log-verossimilhança

$$\log(L(\theta)) = \log\left(\prod_{i=1}^{n} p(y_i|\theta)\right) = \log\left(\prod_{i=1}^{n} \frac{e^{-\theta}\theta^{y_i}}{y_i!}\right) = \log\left(\frac{e^{-n\theta}\theta^{\sum_{i=1}^{n} y_i}}{\prod_{i=1}^{n} y_i!}\right) = -n\theta + \sum_{i=1}^{n} y_i \log(\theta) - \log\left(\prod_{i=1}^{n} y_i!\right)$$

Tomando a segunda derivada, temos que:

$$\frac{\partial^2}{\partial \theta^2} \log(L(\theta)) = \frac{\partial^2}{\partial \theta^2} \left[ -n\theta + \sum_{i=1}^n y_i \log(\theta) - \log\left(\prod_{i=1}^n y_i!\right) \right] = \frac{\partial}{\partial \theta} \left[ -n + \frac{1}{\theta} \sum_{i=1}^n y_i \right] = -\frac{1}{\theta^2} \sum_{i=1}^n y_i$$

Assim, como  $J(\theta) = E\left(-\frac{\partial^2}{\partial \theta^2} \log(L(\theta))\right)$ então

$$J(\theta) = E\left(\frac{1}{\theta^2} \sum_{i=1}^n y_i\right) = \frac{1}{\theta^2} E\left(\sum_{i=1}^n y_i\right) = \frac{n\theta}{\theta^2} = \frac{n}{\theta} \propto \frac{1}{\theta}$$

A distribuição a priori de Jeffreys é dada por  $\pi(\theta) \propto \sqrt{J(\theta)}$ . Logo,  $\pi(\theta) \propto \theta^{-1/2}$ .

A equação acima expressa a chamada Lei~de~Jeffreys que afirma que a distribuição a priori para um único parâmetro  $\theta$  é aproximadamente não informativa se tomada de modo proporcional à raiz quadrada da Informação de Fisher de  $\theta$ .

Note que esta *priori* pode ser obtida a partir da conjulgada natural Gama $(\alpha, \beta)$ , com  $\alpha = 1/2$  e  $\beta \to 0$ . Ilustramos o efeito de fixar  $\alpha$  e diminuir  $\beta$  abaixo:

# pacotes do R utilizados
library(tidyverse)
library(ggpubr)
library(effectsize)
set.seed(42)

### Densidades de uma Gama( $\alpha$ , $\beta$ ) com $\alpha$ = 1/2





Além disso,  $\pi(\theta)$  é uma distribuição imprópria pois  $\int_0^{+\infty} \theta^{-1/2} d\theta$  diverge.

# (b) A função de verossimilhança na parametrização $\theta$ muda em locação e escala? Justificar graficamente

Já obtivemos a função de verossimilhança em (a):

$$\log(L(\theta)) = -n\theta + \sum_{i=1}^{n} y_i \log(\theta) - \log\left(\prod_{i=1}^{n} y_i!\right) \propto \log(\theta) \sum_{i=1}^{n} y_i - n\theta$$

Vamos agora realizar uma implementação e calcular a verossimilhança para diversas amostras aleatórias de tamanho 20 geradas de uma Poisson.

O gráfico com a verossimilhança normalizada fica:

```
ggplot(df, aes(x = theta)) + geom_line(aes(y = L, color = lambda)) +
geom_line(aes(y = dgamma(theta, 1/2, 0.01), linetype = "Priori de Jeffreys")) +
labs(color= expression(lambda),
    title = expression("Verossimilhança normalizada de uma Poisson"~(lambda)),
    subtitle = "Amostra aléatória com n=20",
    x = expression(theta),
    y = expression(L(theta))) +
scale_linetype_manual(name = " ", values = "dotted") +
scale_x_continuous(limits = c(0, 20))+
theme_pubr()
```

### Verossimilhança normalizada de uma Poisson ( $\lambda$ )

Amostra aléatória com n=20



Dessa forma, vemos que a função de verossimilhança muda tanto em locação como escala, pois valores grandes de  $\lambda$  alocam a distribuição para direita, além de achatá-la.

(c) caso a resposta ao item b) seja afirmativa, encontre a escala na qual a função de verossimilhança mude somente em locação. Mostre graficamente.

$$\phi \propto \int \pi(\theta) d\theta = \int \theta^{-1/2} d\theta = 2\sqrt{\theta} + k \propto \sqrt{\theta}$$

Podemos visualizar o resultado de realizarmos a transformação  $\phi=\sqrt{\theta}$  no gráfico abaixo:

## Verossimilhança normalizada de uma Poisson $(\lambda)$

Amostra aléatória com n=20



Dessa forma, podemos observar que a verossimilhança normalizada na escala  $\phi$  apenas se desloca horizontalmente para valores diferentes de  $\lambda$ , sem achatar-se.