ELATE: Elastic tensor analysis

Welcome to ELATE, the online tool for analysis of elastic tensors, developed by **Romain Gaillac** and **François-Xavier Coudert** at <u>CNRS / Chimie ParisTech</u>.

If you use the software in published results (paper, conference, etc.), please cite the <u>corresponding paper</u> (*J. Phys. Condens. Matter*, 2016, 28, 275201) and give the website URL.

ELATE is open source software. Any queries or comments are welcome at fx.coudert@chimie-paristech.fr

Summary of the properties (3D material)

Input: stiffness matrix (coefficients in GPa) of

49.089	24.2	15.792	-0.0121	-0.0207	6.9446
24.2	21.049	9.9717	0.1428	0.3205	2.7049
15.792	9.9717	279.05	1.1616	0.031	3.2918
-0.0121	0.1428	1.1616	1.0992	0.8919	0.2544
-0.0207	0.3205	0.031	0.8919	3.756	-0.1076
6.9446	2.7049	3.2918	0.2544	-0.1076	5.7735

Average properties

Averaging scheme	Bulk modulus	Young's modulus	Shear modulus	Poisson's ratio
Voigt	K _V = 49.902 GPa	<i>E</i> _V = 57.712 GPa	G _V = 22.074 GPa	$v_{V} = 0.30725$
Reuss	K _R = 19.199 GPa	<i>E</i> _R = 7.1586 GPa	G _R = 2.4893 GPa	$v_{R} = 0.43786$
Hill	K _H = 34.55 GPa	E _H = 32.942 GPa	G _H = 12.282 GPa	v _H = 0.34109

Eigenvalues of the stiffness matrix

λ ₁	λ_2	λ ₃	λ_4	λ ₅	λ ₆
0.80348 GPa	3.9871 GPa	4.4102 GPa	7.5851 GPa	62.318 GPa	280.71 GPa

Variations of the elastic moduli

	Young's modulus		Linear compressibility		Shear modulus		Poisson's ratio		
	\textit{E}_{min}	E _{max}	β_{min}	β_{max}	G _{min}	G _{max}	v _{min}	v _{max}	
Value	2.9356 GPa	273.14 GPa	-6.4246 TPa ^{–1}	55.605 TPa ^{–1}	0.80311 GPa	26.109 GPa	-0.26389	1.1429	Value
Anisotropy	93	.04	c	0	32.	.51	∞		Anisotropy
Axis	-0.2511 0.6955 0.6732	-0.0000 0.0039 1.0000	0.9417 0.1731 0.2886	-0.1839 0.9829 0.0104	-0.0763 -0.0170 0.9969	0.6417 0.2864 -0.7115	0.7771 0.5952 -0.2046	0.2040 0.1885 0.9607	Axis

13/09/2024, 16:43 Elastic analysis of

-0.2893 -0.6545 -0.5025 0.3977 0.9572 -0.2790 0.3910 0.8807 Second -0.0058 -0.7027 -0.7711 -0.2572

Spatial dependence of Young's modulus

Visualize in 3D

Spatial dependence of linear compressibility

Young's modulus in (yz) plane

Visualize in 3D

60

Spatial dependence of shear modulus

Visualize in 3D

Spatial dependence of Poisson's ratio

Visualize in 3D

Poisson's ratio in (yz) plane

Code version: 2024.03.15 (running on Python 3.11.2) Execution time: 1.180 seconds