

Data Center Switch Architecture in the Age of Merchant Silicon

Nathan Farrington
Erik Rubow
Amin Vahdat

The Network is a Bottleneck

- HTTP request amplification
 - Web search (e.g. Google)
 - Small object retrieval (e.g. Facebook)
 - Web services (e.g. Amazon.com)
- MapReduce-style parallel computation
 - Inverted search index
 - Data analytics
- Need high-performance interconnects

The Network is Expensive

What we really need: One Big Switch

- Commodity
- Plug-and-play

• Potentially no oversubscription

Rack 1 Rack 2 Rack 3 Rack N

Why not just use a fat tree of commodity TOR switches?

M. Al-Fares, A. Loukissas, A. Vahdat. A Scalable, Commodity Data Center Network Architecture. In SIGCOMM '08.

10 Tons of Cable

- 55,296 Cat-6 cables
- 1,128 separate cable bundles

The "Yellow Wall"

Merchant Silicon gives us Commodity Switches

Maker	Broadcom	Fulcrum	Fujitsu
Model	BCM56820	FM4224	MB86C69RBC
Ports	24	24	26
Cost	NDA	NDA	\$410
Power	NDA	20 W	22 W
Latency	< 1 µs	300 ns	300 ns
Area	NDA	40 x 40 mm	35 x 35 mm
SRAM	NDA	2 MB	2.9 MB
Process	65 nm	130 nm	90 nm

Eliminate Redundancy

- Networks of packet switches contain many redundant components
 - chassis, power conditioning circuits, cooling
 - CPUs, DRAM
- Repackage these discrete switches to lower the cost and power consumption

Our Architecture, in a Nutshell

- Fat tree of merchant silicon switch ASICs
- Hiding cabling complexity with PCB traces and optics
- Partition into multiple pod switches + single core switch array
- Custom EEP ASIC to further reduce cost and power
- Scales to 65,536 ports when 64-port ASICs become available, late 2009

3 Different Designs

- 24-ary 3-tree
- 720 switch ASICs
- 3,456 ports of 10GbE
- No oversubscription

Network 1: No Engineering Required

720 discrete packet switches, connected with optical fiber

Cost of Parts	\$4.88M
Power	52.7 kW
Cabling Complexity	3,456
Footprint	720 RU
NRE	\$0

Cabling complexity (noun): the number of long cables in a data center network.

Network 2: Custom Boards and Chassis

• 24 "pod" switches, one core switch array, 96 cables

Cost of Parts	\$3.07M
Power	41.0 kW
Cabling Complexity	96
Footprint	192 RU
NRE	\$3M est

This design is shown in more detail later.

Switch at 10G, but Transmit at 40G

	SFP	SFP+	QSFP
Rate	1 Gb/s	10 Gb/s	40 Gb/s
Cost/Gb/s	\$35*	\$25*	\$15*
Power/Gb/s	500mW	150mW	60mW

* 2008-2009 Prices

Network 3: Network 2 + Custom ASIC

 Uses 40GbE between pod switches and core switch array; everything else is same as Network 2.

Cost of Parts	\$2.33M
Power	36.4 kW
Cabling Complexity	96
Footprint	114 RU
NRE	\$8M est

This simple ASIC provides tremendous cost and power savings.

Cost of Parts

Power Consumption

Cabling Complexity

Footprint

Partially Deployed Switch

Fully Deployed Switch

Pod Switch

Logical Topology

Pod Switch Line Card

Pod Switch Uplink Card

Core Switch Array Card

Why an Ethernet Extension Protocol?

- Optical transceivers are 80% of the cost
- EEP allows the use of fewer and faster optical transceivers

How does EEP work?

- Ethernet frames are split up into EEP frames
- Most EEP frames are 65 bytes
 - Header is 1 byte; payload is 64 bytes
- Header encodes ingress/egress port

How does EEP work?

- Round-robin arbiter
- EEP frames are transmitted as one large Ethernet frame
- 40GbE overclocked by 1.6%

Ethernet Frames

EEP Frames

EEP Frame Format

SOF: Start of Ethernet Frame

EOF: End of Ethernet Frame

LEN: Set if EEP Frame contains less than 64B of payload

Virtual Link ID: Corresponds to port number (0-15)

Payload Length: (0-63B)

Why not use VLANs?

- Because it adds latency and requires more SRAM
- FPGA Implementation
 - VLAN tagging
 - EEP

Latency Measurements

Related Work

- M. Al-Fares, A. Loukissas, A. Vahdat. A Scalable, Commodity Data Center Network Architecture. In SIGCOMM '08.
 - Fat trees of commodity switches, Layer 3 routing, flow scheduling
- R. N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S.
 Radhakrishnan, V. Subramanya, and A. Vahdat. PortLand: A Scalable Fault-Tolerant Layer 2 Data Center Network Fabric. In SIGCOMM '09.
 - Layer 2 routing, plug-and-play configuration, fault tolerance, switch software modifications
- A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. VL2: A Scalable and Flexible Data Center Network. In SIGCOMM '09.
 - Layer 2 routing, end-host modifications

Conclusion

- General architecture
 - Fat tree of merchant silicon switch ASICs
 - Hiding cabling complexity
 - Pods + Core
 - Custom EEP ASIC
 - Scales to 65,536 ports with 64-port ASICs
- Design of a 3,456-port 10GbE switch
- Design of the EEP ASIC