Recurrent Neural Network

- In this assignment, you will implement your first Recurrent Neural Network in numpy.
- Recurrent Neural Networks (RNN) are very effective for Natural Language Processing and other sequence tasks because they have "memory". They can read inputs $x\langle t\rangle$ (such as words) one at a time, and remember some information/context through the hidden layer activations that get passed from one time-step to the next.

1

1 - Forward propagation

The basic RNN that you will implement has the structure below.

Steps:

- Implement the calculations needed for one time-step of the RNN.
- Implement a loop over $Tx{\rm Tx}$ time-steps in order to process all the inputs, one at a time.

1 - Packages

Let's first import all the packages that you will need during this assignment.

import numpy as np
from rnn utils import *

2

1.1. RNN-Cell

A Recurrent neural network can be seen as the repetition of a single cell. You are first going to implement the computations for a single time-step. The following figure describes the operations for a single time-step of an RNN cell.

3

FUNCTION: rnn_cell_forward

Implements a single forward step of the RNN-cell

Arguments:

- xt -- your input data at timestep "t", numpy array of shape (n x, m).
- a_prev -- Hidden state at timestep "t-1", numpy array of shape (n_a, m)
- · parameters -- python dictionary containing:
- Wax -- Weight matrix multiplying the input, numpy array of shape (n a, n x)
- Waa -- Weight matrix multiplying the hidden state, numpy array of shape (n a, n a)
- Wya -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a)
- ba -- Bias, numpy array of shape (n_a, 1)
- by -- Bias relating the hidden-state to the output, numpy array of shape (n y, 1)

Returns:

- a_next -- next hidden state, of shape (n_a, m)
- yt_pred -- prediction at timestep "t", numpy array of shape (n_y, m)
- cache -- tuple of values needed for the backward pass, contains (a_next, a_prev, xt, parameters)

5

```
np.random.seed(1)
xt = np.random.randn(3,10)
a_prev = np.random.randn(5,10)
Waa = np.random.randn(5,5)
Wax = np.random.randn(5,3)
Wya = np.random.randn(2,5)
ba = np.random.randn(5,1)
by = np.random.randn(2,1)
parameters = {"Waa": Waa, "Wax": Wax, "Wya": Wya, "ba": ba, "by": by}
a_next, yt_pred, cache = rnn_cell_forward(xt, a_prev, parameters)
a_next[4] = [ 0.59584544  0.18141802  0.61311866  0.99808218  0.85016201  0.99980978
 -0.18887155 0.99815551 0.6531151 0.82872037]
a next.shape = (5, 10)
yt_pred[1] = [0.9888161 0.01682021 0.21140899 0.36817467 0.98988387 0.88945212 0.36920224 0.9966312 0.9982559 0.17746526]
yt pred.shape = (2, 10)
```

```
# Retrieve parameters from "parameters"
Wax = parameters["Wax"]
Waa = parameters["Waa"]
Wya = parameters["Waa"]
ba = parameters["ba"]
by = parameters["by"]

# compute next activation state using the formula given above
a_next = np.tanh(np.dot(Wax,xt)+np.dot(Waa,a_prev)+ba)
# compute output of the current cell using the formula given above
yt_pred = softmax(np.dot(Way,a_next)+by)

# store values you need for backward propagation in cache
cache = (a_next, a_prev, xt, parameters)

return a_next, yt_pred, cache
```

6

8

1.2 - RNN forward pass

Each cell takes as input the hidden state from the previous cell $(a\langle t-1\rangle)$ and the current time-step's input data $(x\langle t\rangle)$. It outputs a hidden state $(a\langle t\rangle)$ and a prediction $(y\langle t\rangle)$ for this time-step.

FUNCTION: rnn_forward

Implement the forward propagation of the recurrent neural network

Arguments:

- x -- Input data for every time-step, of shape (n x, m, T x).
- a0 -- Initial hidden state, of shape (n_a, m)
- · parameters -- python dictionary containing:
- Waa -- Weight matrix multiplying the hidden state, numpy array of shape (n_a, n_a)
- Wax -- Weight matrix multiplying the input, numpy array of shape (n_a, n_x)
- Wya -- Matrix relating the hidden-state to the output, numpy array of shape (n y, n a)
- ba -- Bias numpy array of shape (n a, 1)
- by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1)

Returns:

- a -- Hidden states for every time-step, numpy array of shape (n_a, m, T_x)
- y_pred -- Predictions for every time-step, numpy array of shape (n_y, m, T_x)
- caches -- tuple of values needed for the backward pass, contains (list of caches, x)

9

11

```
np.random.seed(1)
x = np.random.randn(3.10.4)
a0 = np.random.randn(5,10)
Waa = np.random.randn(5,5)
Wax = np.random.randn(5,3)
Wya = np.random.randn(2,5)
ba = np.random.randn(5,1)
by = np.random.randn(2,1)
parameters = {"Waa": Waa, "Wax": Wax, "Wya": Wya, "ba": ba, "by": by}
a, y_pred, caches = rnn_forward(x, a0, parameters)
print("a[4][1] = ", a[4][1])
print("a.shape = ", a.shape)
print("y_pred(1)[3] =", y_pred(1)[3])
print("y_pred.shape = ", y_pred.shape)
print("caches[1][1][3] =", caches[1][1][3])
print("len(caches) = ", len(caches))
a[4][1] = [-0.99999375 \ 0.77911235 \ -0.99861469 \ -0.99833267]
a.shape = (5, 10, 4)
y_pred[1][3] = [0.79560373 0.86224861 0.11118257 0.81515947]
y_pred.shape = (2, 10, 4)
caches[1][1][3] = [-1.1425182 -0.34934272 -0.20889423 0.58662319]
```

```
def rnn forward(x, a0, parameters):
    # Initialize "caches" which will contain the list of all caches
    caches = []
    # Retrieve dimensions from shapes of x and parameters["Wya"]
    n_x, m, T_x = x.shape
    n_y, n_a = parameters["Wya"].shape
    # initialize "a" and "y" with zeros (≈2 lines)
    a = np.zeros((n_a, m, T_x))
    y_pred = np.zeros((n_y, m, T_x))
    # Initialize a_next (~1 line)
    a_next = a0
    # loop over all time-steps
    for t in range(0,T x):
        # Update next hidden state, compute the prediction, get the cache (=1 line)
        a_next, yt_pred, cache = rnn_cell_forward(x[:,:,t], a_next, parameters)
        # Save the value of the new "next" hidden state in a (=1 line)
        a[:,:,t] = a_next
        # Save the value of the prediction in y (=1 line)
        y_pred[:,:,t] = yt_pred
# Append "cache" to "caches" (=1 line)
        caches.append(cache)
    # store values needed for backward propagation in cache
    caches = (caches, x)
    return a, y pred, caches
```

10

12

2 - Long Short-Term Memory (LSTM) network

LSTM-cell. This tracks and updates a "cell state" or memory variable $c\langle t\rangle$ at every time-step, which can be different from $a\langle t\rangle$

FUNCTION: lstm_cell_forward

Implement a single forward step of the LSTM-cell

Arguments:

- xt -- your input data at timestep "t", numpy array of shape (n_x, m).
- a prev -- Hidden state at timestep "t-1", numpy array of shape (n_a, m)
- c_prev -- Memory state at timestep "t-1", numpy array of shape (n_a, m)
- · parameters -- python dictionary containing:
- Wf -- Weight matrix of the forget gate, numpy array of shape (n_a, n_a + n_x)
- bf -- Bias of the forget gate, numpy array of shape (n_a, 1)
- Wi -- Weight matrix of the update gate, numpy array of shape (n_a, n_a + n_x)
- bi -- Bias of the update gate, numpy array of shape (n_a, 1)
- Wc -- Weight matrix of the first "tanh", numpy array of shape (n_a, n_a + n_x)
- bc -- Bias of the first "tanh", numpy array of shape (n_a, 1)
- Wo -- Weight matrix of the output gate, numpy array of shape (n_a, n_a + n_x)
- bo -- Bias of the output gate, numpy array of shape (n_a, 1)
- Wy -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a)
- by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1)

13

```
def lstm_cell_forward(xt, a_prev, c_prev, parameters):
   # Retrieve parameters from "parameters"
   Wf = parameters["Wf"]
   bf = parameters["bf"]
   Wi = parameters["Wi"]
   bi = parameters["bi"]
   Wc = parameters["Wc"]
   bc = parameters["bc"]
   Wo = parameters["Wo"]
   bo = parameters["bo"]
   Wy = parameters["Wy"]
   by = parameters["by"]
   # Retrieve dimensions from shapes of xt and Wy
   n x, m = xt.shape
   n_y, n_a = Wy.shape
   # Concatenate a prev and xt (≈3 lines)
   concat = np.zeros((n x + n a, m))
   concat[: n_a, :] = a_prev
   concat[n_a :, :] = xt
```

FUNCTION: lstm_cell_forward (2)

Returns:

- a next -- next hidden state, of shape (n a, m)
- c_next -- next memory state, of shape (n_a, m)
- yt_pred -- prediction at timestep "t", numpy array of shape (n y, m)
- cache -- tuple of values needed for the backward pass, contains (a_next, c_next, a_prev, c_prev, xt, parameters)

14

16

```
# Compute values for ft, it, cct, c_next, ot, a_next
# using the formulas given figure (4) (=6 lines)
ft = sigmoid(np.dot(Wf,concat)+bf)
it = sigmoid(np.dot(Wf,concat)+b1)
cct = np.tanh(np.dot(Wc,concat)+bc)
c_next = c_prev*ft + it*cct
ot = sigmoid(np.dot(Wo,concat)+bo)
a_next = ot*np.tanh(c_next)

# Compute prediction of the LSTM cell (=1 line)
yt_pred = softmax(np.dot(Wy,a_next)+by)

# store values needed for backward propagation in cache
cache = (a_next, c_next, a_prev, c_prev, ft, it, cct, ot, xt, parameters)
return a_next, c_next, yt_pred, cache
```

```
np.random.seed(1)
xt = np.random.randn(3,10)
a_prev = np.random.randn(5,10)
c_prev = np.random.randn(5,10)
Wf = np.random.randn(5, 5+3)
bf = np.random.randn(5,1)
Wi = np.random.randn(5, 5+3)
bi = np.random.randn(5,1)
Wo = np.random.randn(5, 5+3)
bo = np.random.randn(5,1)
Wc = np.random.randn(5, 5+3)
bc = np.random.randn(5,1)
Wy = np.random.randn(2,5)
by = np.random.randn(2,1)
a_next, c_next, yt, cache = lstm_cell_forward(xt, a_prev, c_prev, parameters)
print("a_next[4] = ", a_next[4])
print("a_next_shape = ", c_next_shape)
print("c_next[2] = ", c_next[2])
print("c_next_shape = ", c_next_shape)
print("yt[1] =", yt[1])
print("yt.shape = ", yt.shape)
print("cache[1][3] =", cache[1][3])
print("len(cache) = ", len(cache))
```

2.2 - Forward pass for LSTM

Now that you have implemented one step of an LSTM, you can now iterate this over this using a forloop to process a sequence of TxTx inputs.

a_next[4] = [-0.66408471 0.0036921 0.02088357 0.22834167 -0.85575339 0.00138482
 0.76566531 0.34631421 -0.00215674 0.43827275]
a_next.shape = (5, 10)
c_next[2] = [0.63267805 1.00570849 0.35504474 0.20690913 -1.64566718 0.11832942
 0.76449811 -0.0981561 -0.74348425 -0.26810932]
c_next.shape = (5, 10)
yt[1] = [0.79913913 0.15986619 0.22412122 0.15606108 0.97057211 0.31146381
 0.00943007 0.12666353 0.39380172 0.07828381]
yt.shape = (2, 10)
cache[1][3] = [-0.16263996 1.03729328 0.72938082 -0.54101719 0.02752074 -0.30821874
 0.07651101 -1.03752894 1.41219977 -0.37647422]
len(cache) = 10

18

FUNCTION: lstm_forward

Implement the forward propagation of the recurrent neural network using an LSTM-cell

Arguments:

- x -- Input data for every time-step, of shape (n_x, m, T_x).
- · a0 -- Initial hidden state, of shape (n_a, m)
- parameters -- python dictionary containing:
- $\bullet \qquad \text{Wf -- Weight matrix of the forget gate, numpy array of shape (n_a, n_a + n_x)}$
- bf -- Bias of the forget gate, numpy array of shape (n_a, 1)
- Wi -- Weight matrix of the update gate, numpy array of shape (n_a, n_a + n_x)
- bi -- Bias of the update gate, numpy array of shape (n_a, 1)
- Wc -- Weight matrix of the first "tanh", numpy array of shape (n_a, n_a + n_x)
- bc -- Bias of the first "tanh", numpy array of shape (n_a, 1)
- Wo -- Weight matrix of the output gate, numpy array of shape (n_a, n_a + n_x)
- bo -- Bias of the output gate, numpy array of shape (n_a, 1)
- Wy -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a)
- by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1)

19

GRADED FUNCTION: lstm_forward

Returns:

- a -- Hidden states for every time-step, numpy array of shape (n_a, m, T_x)
- y -- Predictions for every time-step, numpy array of shape (n_y, m, T_x)
- caches -- tuple of values needed for the backward pass, contains (list of all the caches, x)

21

```
# loop over all time-steps
for t in range(0, T_x):
    # Update next hidden state, next memory state, compute the prediction,
    # get the cache (=1 line)
    a next, c_next, yt, cache = lstm_cell_forward(x[:,:,t], a_next, c_next, parameters)
    # Save the value of the new "next" hidden state in a (=1 line)
    a[:,:,t] = a_next
    # Save the value of the prediction in y (=1 line)
    y[:,:,t] = yt
    # Save the value of the next cell state (=1 line)
    c[:,:,t] = c_next
    # Append the cache into caches (=1 line)
    caches.append(cache)

# store values needed for backward propagation in cache
caches = (caches, x)

return a, y, c, caches
```

def lstm_forward(x, a0, parameters):
 # Initialize "caches", which will track the list of all the caches
 caches = []

Retrieve dimensions from shapes of x and parameters['Wy'] (*2 lines)
 n_x, m, T_x = x.shape
 n_y, n_a = parameters["Wy"].shape

initialize "a", "c" and "y" with zeros (*3 lines)
 a = np.zeros((n_a, m, T_x))
 c = np.zeros((n_a, m, T_x))
 y = np.zeros((n_y, m, T_x))

Initialize a_next and c_next (*2 lines)
 a_next = a0
 c_next = np.zeros((n_a, m))

22

```
np.random.seed(1)
x = np.random.randn(3,10,7)
a0 = np.random.randn(5,10)
Wf = np.random.randn(5, 5+3)
bf = np.random.randn(5,1)
Wi = np.random.randn(5, 5+3)
bi = np.random.randn(5,1)
Wo = np.random.randn(5, 5+3)
bo = np.random.randn(5,1)
Wc = np.random.randn(5, 5+3)
bc = np.random.randn(5,1)
Wy = np.random.randn(2,5)
by = np.random.randn(2,1)
a, y, c, caches = lstm_forward(x, a0, parameters)
print("a[4][3][6] = ", a[4][3][6])
print("a.shape = ", a.shape)
print("y[1][4][3] = ", y[1][4][3])
print("y.shape = ", y.shape)
print("caches[1][1[1]] =", caches[1][1][1])
print("c[1][2][1]", c[1][2][1])
print("len(caches) = ", len(caches))
```

a[4][3][6] = 0.17211776753291672
a.shape = (5, 10, 7)
y[1][4][3] = 0.9508734618501101
y.shape = (2, 10, 7)
caches[1][[1]] = [0.82797464 0.23009474 0.76201118 -0.22232814 -0.20075807 0.18656139
0.41005165]
c[1][2][1] -0.8555449167181982
len(caches) = 2

25

FUNCTION: rnn_cell_backward

Implements the backward pass for the RNN-cell (single time-step).

Arguments

- da_next -- Gradient of loss with respect to next hidden state
- cache -- python dictionary containing useful values (output of rnn_cell_forward())

Returns

- gradients -- python dictionary containing:
- dx -- Gradients of input data, of shape (n x, m)
- da_prev -- Gradients of previous hidden state, of shape (n_a, m)
- dWax -- Gradients of input-to-hidden weights, of shape (n_a, n_x)
- dWaa -- Gradients of hidden-to-hidden weights, of shape (n_a, n_a)
- dba -- Gradients of bias vector, of shape (n_a, 1)

3 - Backpropagation in recurrent neural networks

3.1 Basic RNN backward pass

26

```
def rnn_cell_backward(da_next, cache):
    # Retrieve values from cache
    (a_next, a_prev, xt, parameters) = cache
    # Retrieve values from parameters
    Wax = parameters["Wax"]
Waa = parameters["Waa"]
    Wya = parameters["Wya"]
    ba = parameters["ba"]
    by = parameters["by"]
    # compute the gradient of tanh with respect to a_next (=1 line)
    dtanh = 1 - np.power(a_next,2)
    # compute the gradient of the loss with respect to Wax (=2 lines)
    dxt = np.dot(Wax.T, da_next*dtanh)
    dWax = np.dot(da_next*dtanh, xt.T)
    # compute the gradient with respect to Waa (=2 lines)
    da_prev = np.dot(Waa.T, da_next*dtanh)
    dWaa = np.dot(da_next*dtanh, a_prev.T)
    # compute the gradient with respect to b (=1 line)
    dba = np.sum(da_next*dtanh, axis=1, keepdims=True)
    # Store the gradients in a python dictionary
    gradients = {"dxt": dxt, "da_prev": da_prev, "dWax": dWax, "dWaa": dWaa, "dba": dba}
    return gradients
```

```
np.random.seed(1)
xt = np.random.randn(3,10)
a _prev = np.random.randn(5,10)
Wax = np.random.randn(5,3)
Waa = np.random.randn(5,5)
Wya = np.random.randn(5,5)
b = np.random.randn(2,1)
by = np.random.randn(2,1)
parameters = {"Wax": Wax, "Waa": Waa, "Wya": Wya, "ba": ba, "by": by}

a_next, yt, cache = rnn_cell_forward(xt, a_prev, parameters)

da_next = np.random.randn(5,10)
gradients = rnn_cell_backward(da_next, cache)
print("gradients("dxtt"]:1]:2] =", gradients["dxt"]:1]:2]
print("gradients("dxtt"]:shape =", gradients["da_prev"]:3]:3]
print("gradients("da_prev"):shape =", gradients["da_prev"]:shape)
print("gradients("da_prev"):shape =", gradients["da_prev"]:shape)
print("gradients("dwax"):shape =", gradients["dwax"]:shape)
print("gradients("dwax"):shape =", gradients("dwaa"]:shape)
print("gradients("dwax"):shape =", gradients["dwaa"]:shape)
print("gradients("dwa"):shape =", gradients["dwaa"]:shape)
```

Backward pass through the RNN

- Computing the gradients of the cost with respect to $a\langle t\rangle a\langle t\rangle$ at every time-step tt is useful because it is what helps the gradient backpropagate to the previous RNN-cell.
- To do so, you need to iterate through all the time steps starting at the end, and at each step, you increment th overall dba, dWaa, dWax and you store dxd.

```
gradients["dxt"][1][2] = -0.4605641030588796
gradients["dxt"].shape = (3, 10)
gradients["da_prev"][2][3] = 0.08429686538067718
gradients["da_prev"].shape = (5, 10)
gradients["dWax"][3][1] = 0.3930818739219303
gradients["dWax"].shape = (5, 3)
gradients["dWax"].shape = (5, 3)
gradients["dwa"][1][2] = -0.2848395578696067
gradients["dwa"].shape = (5, 5)
gradients["dba"][4] = [0.80517166]
gradients["dba"].shape = (5, 1)
```

30

FUNCTION: rnn backward

Implement the backward pass for a RNN over an entire sequence of input data.

Arguments

- da -- Upstream gradients of all hidden states, of shape (n_a, m, T_x)
- caches -- tuple containing information from the forward pass (rnn_forward)

Returns:

- gradients -- python dictionary containing:
- dx -- Gradient w.r.t. the input data, numpy-array of shape (n x, m, T x)
- da0 -- Gradient w.r.t the initial hidden state, numpy-array of shape (n_a, m)
- dWax -- Gradient, the input's weight matrix, numpy-array of shape (n a, n x)
- dWaa -- Gradient, the hidden state's weight matrix, numpy-array of (n_a, n_a)
- dba -- Gradient w.r.t the bias, of shape (n_a, 1)

```
def rnn_backward(da, caches):
    # Retrieve values from the first cache (t=1) of caches (=2 lines)
    (caches, x) = caches
    (al, a0, x1, parameters) = caches[1]

# Retrieve dimensions from da's and x1's shapes (=2 lines)
    n_a, m, T_x = da.shape
    n_x, m = x1.shape

# initialize the gradients with the right sizes (=6 lines)
dx = np.zeros((n_x, m, T_x))
dWax = np.zeros((n_a, n_x))
dba = np.zeros((n_a, n_a))
dba = np.zeros((n_a, m))
da = np.zeros((n_a, m))
da_prevt = np.zeros((n_a, m))
```

```
np.random.seed(1)
x = np.random.randn(3.10.4)
a0 = np.random.randn(5,10)
Wax = np.random.randn(5,3)
Waa = np.random.randn(5,5)
Wya = np.random.randn(2,5)
ba = np.random.randn(5,1)
by = np.random.randn(2,1)
parameters = {"Wax": Wax, "Waa": Waa, "Wya": Wya, "ba": ba, "by": by}
a, y, caches = rnn_forward(x, a0, parameters)
da = np.random.randn(5, 10, 4)
gradients = rnn backward(da, caches)
print("gradients[\"dx\"][1][2] =", gradients["dx"][1][2])
print("gradients[\"dx\"].shape =", gradients["dx"].shape)
print("gradients[\"da0\"][2][3] =", gradients["da0"][2][3])
print("gradients[\"da0\"].shape =", gradients["da0"].shape)
print("gradients[\"dwax\"][3][1] =", gradients["dwax"][3][1])
print("gradients[\"dwax\"].shape =", gradients["dwax"].shape)
print("gradients[\"dwax\"].shape =", gradients["dwax"].shape)
print("gradients[\"dWaa\"][1][2] =", gradients["dWaa"][1][2])
print("gradients[\"dWaa\"].shape =", gradients["dWaa"].shape)
print("gradients[\"dba\"][4] =", gradients["dba"][4])
print("gradients[\"dba\"].shape =", gradients["dba"].shape)
```

Loop through all the time steps for t in reversed(range(0, T_x)): # Compute gradients at time step t. Choose wisely the "da_next" and # the "cache" to use in the backward propagation step. (=1 line) gradients = rnn_cell_backward(da[:,:,t] + da_prevt, caches[t]) # Retrieve derivatives from gradients (= 1 line) dxt, da_prevt, dWaxt, dWaat, dbat = gradients["dxt"], gradients["da_prev"], gradients["dwax"], gradients["dwaa"], gradients["dba"]
Increment global derivatives w.r.t parameters by adding # their derivative at time-step t (=4 lines) dx[:, :, t] = dxtdWay += dWayt dWaa += dWaat # Set da0 to the gradient of a which has been backpropagated through # all time-steps (=1 line) # Store the gradients in a python dictionary
gradients = {"dx": dx, "da0": da0, "dWax": dWax, "dWaa": dWaa, "dba": dba} return gradients

gradients["dx"].shape = (3, 10, 4)
gradients["dx"].shape = (3, 10, 4)
gradients["da0"].shape = (5, 10)
gradients["dwax"].shape = (5, 10)
gradients["dwax"].shape = (5, 3)
gradients["dwax"].shape = (5, 3)
gradients["dwaa"][1][2] = 2.303333126579893
gradients["dwaa"].shape = (5, 5)
gradients["dba"][4] = [-0.74747722]
gradients["dba"].shape = (5, 1)

gradients["dx"][1][2] = [-2.07101689 -0.59255627 0.02466855 0.01483317]

3.2 - LSTM backward pass

3.2.1 One Step backward

The LSTM backward pass is slighltly more complicated than the forward one. We have provided you with all the equations for the LSTM backward pass below.

gate derivatives

$$\begin{split} d\Gamma_o^{(t)} &= da_{next} * \tanh(c_{next}) * \Gamma_o^{(t)} * (1 - \Gamma_o^{(t)}) \\ d\bar{c}^{(t)} &= dc_{next} * \Gamma_u^{(t)} + \Gamma_o^{(t)} (1 - \tanh(c_{next})^2) * i_t * da_{next} * \bar{c}^{(t)} * (1 - \tanh(\bar{c})^2) \\ d\Gamma_u^{(t)} &= dc_{next} * \bar{c}^{(t)} + \Gamma_o^{(t)} (1 - \tanh(c_{next})^2) * \bar{c}^{(t)} * da_{next} * \Gamma_u^{(t)} * (1 - \Gamma_u^{(t)}) \\ d\Gamma_f^{(t)} &= dc_{next} * \bar{c}_{prev} + \Gamma_o^{(t)} (1 - \tanh(c_{next})^2) * c_{prev} * da_{next} * \Gamma_f^{(t)} * (1 - \Gamma_f^{(t)}) \end{split}$$

37

FUNCTION: Istm cell backward

Implement the backward pass for the LSTM-cell (single time-step).

Arguments:

- da next -- Gradients of next hidden state, of shape (n a, m)
- dc next -- Gradients of next cell state, of shape (n a, m)
- cache -- cache storing information from the forward pass
- dbo -- Gradient w.r.t. biases of the output gate, of shape (n_a, 1)

parameter derivatives

$$\begin{split} dW_f &= d\Gamma_f^{(f)} * \begin{pmatrix} a_{prev} \\ x_i \end{pmatrix}^T \\ dW_u &= d\Gamma_u^{(f)} * \begin{pmatrix} a_{prev} \\ x_i \end{pmatrix}^T \\ dW_c &= d\tilde{c}^{(f)} * \begin{pmatrix} a_{prev} \\ x_i \end{pmatrix}^T \\ dW_o &= d\Gamma_o^{(f)} * \begin{pmatrix} a_{prev} \\ x_i \end{pmatrix}^T \end{split}$$

To calculate db_f , db_u , db_c , db_o you just need to sum across the horizontal (axis= 1) axis on $d\Gamma_f^{(f)}$, $d\Gamma_u^{(f)}$, $d\bar{c}^{(f)}$, $d\bar{c}^$

Finally, you will compute the derivative with respect to the previous hidden state, previous memory state, and input.

$$da_{prev}=W_f^{T}*d\Gamma_f^{(t)}+W_u^{T}*d\Gamma_u^{(t)}+W_c^{T}*d\bar{c}^{(t)}+W_o^{T}*d\bar{\Gamma}_o^{(t)}$$
 Here, the weights for equations 13 are the first n_a, (i.e. $W_f=W_f[:n_a,:]$ etc...)

$$dc_{prev} = dc_{next}\Gamma_f^{(t)} + \Gamma_o^{(t)} * (1 - \tanh(c_{next})^2) * \Gamma_f^{(t)} * da_{next}$$

$$dx^{(t)} = W_f^T * d\Gamma_f^{(t)} + W_u^T * d\Gamma_u^{(t)} + W_c^T * d\tilde{c}_t + W_o^T * d\Gamma_o^{(t)}$$

where the weights for equation 15 are from n_a to the end, (i.e. $W_f = W_f[n_a : : :]$ etc...)

38

FUNCTION: lstm_cell_backward

Returns:

- · gradients -- python dictionary containing:
- dxt -- Gradient of input data at time-step t, of shape (n_x, m)
- da prev -- Gradient w.r.t. the previous hidden state, numpy array of shape (n a, m)
- dc_prev -- Gradient w.r.t. the previous memory state, of shape (n_a, m, T_x)
- dWf the weight matrix of the forget gate, numpy array of shape (n_a, n_a + n_x)
- dWi -- the weight matrix of the update gate, numpy array of shape (n_a, n_a + n_x)
- dWc -- the weight matrix of the memory gate, numpy array of $(n \ a, n \ a + n \ x)$
- dWo -- the weight matrix of the output gate, numpy array of shape (n_a, n_a + n_x)
- dbf -- Gradient w.r.t. biases of the forget gate, of shape (n_a, 1)
- dbi -- Gradient w.r.t. biases of the update gate, of shape (n_a, 1)
- dbc -- Gradient w.r.t. biases of the memory gate, of shape (n a, 1)
- dbo -- Gradient w.r.t. biases of the output gate, of shape (n_a, 1)

39

```
def lstm_cell_backward(da_next, dc_next, cache):
    # Retrieve information from "cache"
    (a_next, c_next, a_prev, c_prev, ft, it, cct, ot, xt, parameters) = cache
   # Retrieve dimensions from xt's and a_next's shape (~2 lines)
   n x, m = xt.shape
   n_a, m = a_next.shape
   # Compute gates related derivatives, you can find their values
    # can be found by looking carefully at equations (7) to (10) (=4 lines)
    dot = da_next*np.tanh(c_next)
   dcct = (da_next*ot*(1-np.power(np.tanh(c_next), 2))+dc_next)*it
   dit = (da_next*ot*(1-np.power(np.tanh(c_next), 2))+dc_next)*cct
   dft = (da_next*ot*(1-np.power(np.tanh(c_next), 2))+dc_next)*c_prev
   # Code equations (7) to (10) (=4 lines)
   dit = dit*it*(1-it)
   dft = dft*ft*(1-ft)
    dot = dot*ot*(1-ot)
   dcct = dcct*(1-np.power(cct, 2))
```

```
np.random.seed(1)
xt = np.random.randn(3,10)
a_prev = np.random.randn(5,10)
c_prev = np.random.randn(5,10)
Wf = np.random.randn(5, 5+3)
bf = np.random.randn(5,1)
Wi = np.random.randn(5, 5+3)
bi = np.random.randn(5,1)
Wo = np.random.randn(5, 5+3)
bo = np.random.randn(5,1)
Wc = np.random.randn(5, 5+3)
bc = np.random.randn(5,1)
Wy = np.random.randn(2,5)
by = np.random.randn(2,1)
parameters = {"Wf": Wf, "Wi": Wi, "Wo": Wo, "Wc": Wc, "Wy": Wy, "bf": bf,
              "bi": bi, "bo": bo, "bc": bc, "by": by}
a_next, c_next, yt, cache = lstm_cell_forward(xt, a_prev, c_prev, parameters)
da next = np.random.randn(5,10)
dc_next = np.random.randn(5,10)
gradients = lstm_cell_backward(da_next, dc_next, cache)
```

Compute parameters related derivatives. Use equations (11)-(14) (=8 lines) concat = np.zeros((n_x + n_a, m)) concat[: n a, :] = a prev concat[n a :, :] = xt dWf = np.dot(dft, concat.T) dWi = np.dot(dit, concat.T) dWc = np.dot(dcct, concat.T) dWo = np.dot(dot, concat.T) dbf = np.sum(dft, axis=1, keepdims=True) dbi = np.sum(dit, axis=1, keepdims=True)
dbc = np.sum(dcct, axis=1, keepdims=True) dbo = np.sum(dot, axis=1, keepdims=True) # Compute derivatives w.r.t previous hidden state, previous memory # state and input. Use equations (15)-(17). (=3 lines) da_prevx = np.dot(parameters['Wf'].T, dft) + np.dot(parameters['Wo'].T, dot) + np.dot(parameters['Wi'].T, dit) + np.dot(parameters['Wc'].T, dcct) da prev = da prevx[: n a, :] dc_prev = (da_next*ot*(1-np.power(np.tanh(c_next), 2))+dc_next)*ft dxt = da_prevx[n_a:,:] # Save gradients in dictionary return gradients

42

```
print("gradients[\"dxt\"][1][2] =", gradients["dxt"][1][2])
print("gradients[\"dxt\"].shape =", gradients["dxt"].shape)
print("gradients[\"da_prev\"][2][3] =", gradients["da_prev"][2][3])
print("gradients[\"da_prev\"].shape =", gradients["da_prev"].shape)
print("gradients[\"dc_prev\"][2][3] =", gradients["dc_prev"][2][3])
print("gradients[\"dc prev\"].shape =", gradients["dc prev"].shape)
print("gradients[\"dwf\"][3][1] =", gradients["dwf"][3][1])
print("gradients[\"dwf\"].shape =", gradients["dwf"].shape)
print("gradients(\"dwi\")[3][1] = ", gradients[\"dwi"][1][2])
print("gradients(\"dwi\").shape = ", gradients[\"dwi"].shape)
print("gradients[\"dwc\"][3][1] = ", gradients[\"dwc"][3][1])
print("gradients[\"dWc\"].shape =", gradients["dWc"].shape)
print("gradients[\"dWo\"][1][2] =", gradients["dWo"][1][2])
print("gradients[\"dWo\"].shape =", gradients["dWo"].shape)
print("gradients[\"dbf\"][4] =", gradients["dbf"][4])
print("gradients[\"dbf\"].shape =", gradients["dbf"].shape)
print("gradients[\"dbi\"][4] =", gradients["dbi"][4])
print("gradients[\"dbi\"].shape =", gradients["dbi"].shape)
print("gradients[\"dbc\"][4] =", gradients["dbc"][4])
print("gradients[\"dbc\"].shape =", gradients["dbc"].shape)
print("gradients[\"dbo\"][4] =", gradients["dbo"][4])
print("gradients[\"dbo\"].shape =", gradients["dbo"].shape)
```

```
gradients["dxt"][1][2] = 3.2305591151091884
gradients["dxt"].shape = (3, 10)
gradients["da_prev"][2][3] = -0.0639621419710924
gradients["da_prev"].shape = (5, 10)
gradients["dc_prev"][2][3] = 0.7975220387970015
gradients["dc_prev"].shape = (5, 10)
gradients["dWf"][3][1] = -0.1479548381644968
gradients["dWf"].shape = (5, 8)
gradients["dWi"][1][2] = 1.0574980552259903
gradients["dWi"].shape = (5, 8)
gradients["dWc"][3][1] = 2.304562163687667
gradients["dwc"].shape = (5, 8)
gradients["dwo"][1][2] = 0.3313115952892109
gradients["dWo"].shape = (5, 8)
gradients["dbf"][4] = [0.18864637]
gradients["dbf"].shape = (5, 1)
gradients["dbi"][4] = [-0.40142491]
gradients["dbi"].shape = (5, 1)
gradients["dbc"][4] = [0.25587763]
gradients["dbc"].shape = (5, 1)
gradients["dbo"][4] = [0.13893342]
gradients["dbo"].shape = (5, 1)
```

References

 https://github.com/Kulbear/deep-learningcoursera/blob/master/Sequence%20Models/Building%20a %20Recurrent%20Neural%20Network%20-%20Step%20by%20Step%20-%20v2.ipynb