

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) Veröffentlichungsnummer:

(11) Publication number:

EP 1 126 934 A0

(11) Numéro de publication:

Internationale Anmeldung veröffentlicht durch die Weltorganisation für geistiges Eigentum unter der Nummer:

WO 00/25951 (art. 158 des EPÜ).

International application published by the World Intellectual Property Organisation under number:

WO 00/25951 (art. 158 of the EPC).

Demande internationale publiée par l'Organisation Mondiale de la Propriété sous le numéro:

WO 00/25951 (art. 158 de la CBE).

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:

B21C 47/00, 47/24, 47/32, B65H 67/04, B21C 47/06

(11) International Publication Number: **A1**

WO 00/25951

(43) International Publication Date:

11 May 2000 (11.05.00)

(21) International Application Number:

PCT/IB99/01758

(22) International Filing Date:

1 November 1999 (01.11.99)

(30) Priority Data:

UD98A000190

IT 4 November 1998 (04.11.98)

(71) Applicant: DANIELI & C. OFFICINE MECCANICHE S.P.A. [IT/IT]; Via Nazionale, I-33042 Buttrio (IT).

(72) Inventors: BORDIGNON, Giuseppe; Via Roma, 10/2, I-33050 Bicinicco (IT). DE LUCA, Andrea; Via Malignani, 13/6, I-33047 Remanzacco (IT). POLONI, Alfredo; Via General Paolini, 29, I-34070 Fogliano di Redipuglia (IT).

(74) Agent: PETRAZ, Gilberto; GLP S.r.l., Piazzale Cavedalis, 6/2, I-33100 Udine (IT).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: COILING MACHINE FOR ROLLED STOCK

(57) Abstract

Coiling machine for rolled stock (12) located downstream of a rolling train (11), comprising a mandrel (20) mounted rotatable around an axis of rotation (21) on a stationary structure (22), the mandrel (20) being mounted cantilevered on the stationary structure (22) and comprising an inner wall (24) orthogonal to the axis of rotation (21) and an outer end with which a cylindrical plate (29) is suitable to selectively cooperate, the cylindrical plate (29) being movable from a working position, wherein it is arranged substantially orthogonal to the axis of rotation (21) so as to define a side wall parallel to the inner wall (24), to allow the coil of rolled stock (12) to form, and an inactive position, wherein it is distanced and lowered with respect to the mandrel (20) so as to allow the coil of rolled stock (12) to be axially removed.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AΤ	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	٤v	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	T	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Vict Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand	277	Zillozowe
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	ΚZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 00/25951 PCT/IB99/01758

"COILING MACHINE FOR ROLLED STOCK"

10

15

20

25

30

* * * *

FIELD OF THE INVENTION

This invention concerns a coiling machine for rolled stock, particularly bars, plate, or rods (smooth or ribbed) of hot-rolled metal material, with a cross-section either round, square, rectangular, hexagonal or otherwise.

To be more exact, the invention concerns a coiling machine located downstream of a traditional rolling train, equipped with drawing rollers and shears, wherein the rolled stock is wound into spirals to form coils which are subsequently tied to be stored or moved.

BACKGROUND OF THE INVENTION

Coiling machines which are known to the state of the art are substantially divided into two categories, according to whether the axis of rotation of the mandrel or reel is vertical or horizontal.

Coiling machines with a vertical axis of rotation are based mainly on coiling inside containing cylinders, where the spirals are formed with the help of spiral-forming tools equipped with relative motion with respect to the containing cylinder.

This type of coiling machine generally does not ensure that a compact coil is formed, since the reciprocal movement of the spiral-forming tool and the containing cylinder is quite uncontrolled and since the stock which is being coiled is not subjected to a controlled tension.

Coiling machines with a horizontal axis of rotation normally allow to obtain much more compact coils, since the product to be coiled is wound on the central mandrel, which is made to rotate by a motor organ. In such coiling machines, the coil is made by means of successive, superimposed rings or layers, which are coaxial to the reel,

15

20

25

and thus compact coils are obtained.

The state of the art includes a coiling machine wherein a curved element is arranged inside a containing cylinder, in which the spirals are formed and accumulate, and is kept substantially parallel to the inner surface of the containing cylinder.

In this coiling machine, while the containing cylinder is made to rotate, the curved element is made to gradually advance, parallel to the axis of rotation of the cylinder, and is removed from inside the coil when the latter has been completed.

Although this coiling machine is equipped with a device which facilitates the formation of the spirals of the coil, it does not ensure that a compact coil is formed, since the reciprocal movement of the spiral-forming tool and the containing cylinder is quite uncontrolled and since the stock which is being coiled is not subjected to a controlled tension.

The state of the art also includes a coiling machine located at the end of a rolling plant for the continuous production of iron bars, wire or round pieces, wherein a single plane product, obtained during a first rolling step, is sub-divided into a plurality of profiles which are given the desired shape in subsequent rolling operations. In this plant the rolled products thus obtained are conveyed, parallel to each other, towards the stationary coiling machine with a horizontal axis of rotation, which provides to coil them simultaneously, or in parallel, so as to form a plurality of coils on the same mandrel.

This coiling machine has the disadvantage that several profiles, which may even be different from each other, are wound onto the same mandrel, rotating at a set angular velocity, and therefore the coil formed is neither compact

10

15

20

25

30

nor in the least controlled while it is being formed.

Moreover, coiling machines which are known to the state of the art do not guarantee a uniform temperature over the whole stock which has been rolled and coiled, with differences at the leading and trailing end and the centre; this gives a lack of uniformity of the metallurgical aspect over the whole coil of rolled stock.

The present applicant has designed, tested and embodied this invention to overcome the shortcomings of the state of the art and to obtain further advantages.

SUMMARY OF THE INVENTION

The coiling machine according to this invention is set forth and characterised in the main claim, while the dependent claims describe other characteristics of the main embodiment.

The main purpose of the invention is to achieve a precision coiling machine, that is to say of the type in which the individual spirals are formed under the guidance of mechanical means which regulate their packing, their density and their tension, and wherein it is very easy and quick to remove the coil of rolled stock as soon as it has been formed.

In accordance with this purpose, the coiling machine according to the invention comprises a mandrel mounted rotatable and cantilevered, around its axis of rotation, on a stationary structure; the mandrel comprises an inner wall orthogonal to the axis of rotation and has an outer end with which a cylindrical plate is suitable to cooperate selectively; the latter is movable from a working position, wherein it is arranged substantially orthogonal to the axis of rotation so as to define a lateral wall parallel to the inner wall, so as to allow the coil of rolled stock to form, and an inactive position, wherein it is distanced and

15

20

25

30

lowered with respect to the mandrel so as to allow the coil of rolled stock to be axially removed.

The coiling machine according to the invention is suitable to coil hot rolled stock of any type, such as bars, plate, or rods (smooth or ribbed) of metallic material, such as low, medium or high carbon steels, stainless steels, alloys or otherwise, with a cross section which may be round, square, rectangular, hexagonal or otherwise, with diameters of between 8 and 52 mm or, in the case of bars or plate, with a section of between 60 mm² (for example 20 mm by 3 mm) and 1400 mm² (for example 70 mm by 20 mm).

It is thus possible to coil rolled stock travelling at speeds of up to 40 meters per second and more, with a very high hourly production, in the order of about 100-110 tonnes per hour.

Another purpose of the invention is to provide a coiling machine which will facilitate the formation of the first spirals of rolled stock to be coiled around the reel.

Another purpose of the invention is to achieve a coiling machine wherein, for each coiling machine, means are provided to maintain the coil uniformly compact, so as to guarantee uniformity of temperature and of metallurgical features over the whole rolled and coiled stock, without appreciable differences between the leading end, the centre, and the trailing end thereof.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other characteristics of the invention will become clear from the following description of a preferred form of embodiment, given as a non-restrictive example, wherein:

Fig. 1 is a view from above, in diagram form, of a coiling line using a coiling machine according to the invention;

15

20

25

30

- Fig. 2 is a prospective view of the coiling machine according to the invention, in a working position; and
- Fig. 3 is a prospective view of the coiling machine according to the invention, in an inactive position or a position wherein the coil is removed.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENT

With reference to Fig. 1, a coiling machine 10 according to the invention is suitable to be arranged downstream of a rolling train 11 to coil the rolled stock 12 emerging therefrom.

The rolling train 11 can be of any known type, comprising drawing rollers 13, a loop-forming device 15 and a shears 16 which is suitable to shear to size the rolled stock 12 to be coiled.

The looper 15 is suitable to regulate the flow of rolled stock 12 towards the coiling machine 10 and to make it correctly perform the increase in diameter step, during the same coiling operation. The looper 15 thus fulfils a function of a buffer for the rolled stock 12 before it is coiled.

The coiling machine 10 comprises a mandrel or reel 20 with a horizontal axis of rotation 21 (Fig. 3), mounted cantilevered and rotatable on a vertical turret 22 of a stationary metallic structure 23.

The mandrel 20 comprises four elements 25 arranged radially at 90° with respect to each other so as to form a cylindrical surface; the four elements 25 are retractable radially so as to facilitate the removal of the just-formed coil of rolled stock 12. The radial movement of the four elements 25 is obtained with a hydraulically commanded and water cooled mechanism 26.

The inner part of the mandrel 20 comprises a cylindrical

15

20

25

wall 24, orthogonal to the axis of rotation 21, which defines one of the lateral walls between which the coil of rolled stock 12 is formed.

The mandrel 20 is made to rotate selectively around the axis 21, by an electric motor 27 (Fig. 1), by means of a reduction unit which is arranged inside the turret 22 and which has special gears with helical teeth with a suitable ratio for high speeds.

A cylindrical containing plate 29 is suitable to cooperate with the outer end of the mandrel 20; the cylindrical plate 29 is mounted rotatable and cantilevered on one end 30 of an arm 31, the other end of which pivots on two blocks 32 of the stationary structure 23.

The outer end of the mandrel 20 is conical in shape and is suitable to be inserted in a corresponding central seating 38, also conical, of the plate 29, so as to achieve a coupling between the mandrel 20 and the plate 29.

The cylindrical plate 29 can move between a working position (Fig. 2), wherein it is arranged substantially orthogonal to the axis of rotation 21 of the mandrel 20 and cooperating therewith so as to define the second lateral wall between which the coil of rolled stock 12 is formed, and an inactive position, or position wherein the coil is removed (Fig. 3), wherein it is distanced and lowered with respect to the mandrel 20 and arranged substantially horizontal.

In order to take the plate 29 from the working position to the inactive position and vice versa, a command is given by an actuation organ 33 by means of a transmission shaft 35.

30 On the upper part of the command organ 33 a protective screen 36 is mounted.

The coiling machine 10 also comprises a device 37 suitable to facilitate the formation of the first spirals of the coil

15

20

30

of rolled stock 12 on the mandrel 20.

The device 37 comprises two guides 39 and 40, substantially semi-cylindrical in shape, hollow inside and arranged one above the other below the mandrel 20. Each guide 39 and 40 has an inner profile mating with the cylindrical outer surface of the mandrel 20 and pivots on the vertical turret 22 of the stationary structure 23.

The upper guide 39 is provided with a mouth 41 through which the rolled stock 12 is suitable to enter into the inner cavities of the guides 39 and 40 to be guided in the coiling step during the first revolutions of the mandrel 20.

Two hydraulic actuators 42 and 43 are suitable to simultaneously command the movement of the guides 39 and respectively 40 to take them from a substantially vertical working position (Fig. 2), wherein they are arranged around the mandrel 20 to guide the rolled stock 12, to a substantially horizontal inactive position (Fig. 3), wherein they are distant from the mandrel 20 and outside the space occupied by the coil which is forming on the mandrel 20 itself.

All the parts which come into contact with the rolled stock 12, like the elements 25 of the mandrel 20, the inner wall 24, the cylindrical plate 29 and the guides 39 and 40, are made of wear-resistant materials.

The coiling machine 10 also comprises a device to distribute the spirals 45 (Fig. 1), arranged between the looper 15 and the mandrel 20.

The distributor 45 comprises a tubular guide 46, about 5.5 metres long and with one end 47 pivoting on the base and one end 48 mounted on a distribution trolley 49 which is movable horizontally, commanded by an electric motor which is not shown in the drawings.

In the inactive position the tubular guide 46 lies on a

10

15

20

25

plane substantially tangent to the outer cylindrical surface of the mandrel 20.

The end 48 of the guide 46 is also movable vertically on the trolley 49 so that it can pass from one ring of spirals to the following one with a larger diameter and thus perform the increase in diameter step within the same coiling cycle. A balancing device of a pneumatic type, which is not shown in the drawings, is connected to the end 48 of the guide 46 to facilitate the increase in diameter step and the variation thereof during coiling.

A coil-handling assembly 50 is associated with the mandrel 20 and is suitable to remove the coil of rolled stock 12 as soon as it is formed around the mandrel 20 and to position it on an assembly 51 to transport the coil, located downstream thereof.

The coil-handling assembly 50 comprises a supporting frame 52, on which four idler rollers 53 are rotatably assembled, parallel to each other, to contain the spirals of the coil; they are suitable to cooperate with the trailing end of the rolled stock 12 during the final step as it is coiled onto the mandrel 20.

The coiling machine as described heretofore functions as follows:

In the initial working position the coiling machine 10 is pre-arranged to receive the rolled stock 12 which is to be coiled. To be more exact, the cylindrical plate 29 is positioned in contact with the outer end of the mandrel 20 (Fig. 2) and the semi-cylindrical guides 39 and 40 are arranged in a vertical position, around the mandrel 20.

The mandrel 20 and with it the cylindrical plate 29 are made to rotate by the motor 27 (Fig. 1).

The rolled stock 12 arriving from the rolling train 11 is drawn by the drawing rollers 13 at a very high speed, more

than 40 metres per second, towards the coiling machine 10 and the device 45 to distribute the spirals guides the leading end of the rolled stock 12 towards the mouth 41 of the guide 39.

The inner cavities of the guides 39 and 40 facilitate the formation of the first two or three spirals on the mandrel 20, after which the actuators 42 and 43 are activated and the guides 39 and 40 move away from the mandrel 20, rotating by about 90°.

The rollers 13 of the looper 15 guarantee that the rolled stock 12 is kept under tension and that it is coiled under traction onto the mandrel 20 of the coiling machine 10. They also form the loop needed to accumulate rolled stock 12 to be supplied quickly to the coiling machine 10 as the diameters of the coil are increased during the same coiling cycle. The drawing rollers 13 brake the trailing end of the rolled stock 12, to keep it at the desired tension when the mandrel 20 decelerates and stops at the end of the coiling step.

The rolled stock 12 is then guided by the tubular guide 46 which is displaced horizontally, backwards and forwards by the trolley 49 and upwards at the end of every ring of spirals. It is thus possible to obtain a rational and controlled distribution of the spirals both on every single ring and also on the different coaxial rings which form the coil.

With every ring of spirals the mandrel 20 is made to rotate by the motor 27 at a speed temporarily below that of the drawing rollers 13 of the looper 15. The rolled stock 12 is released by the looper 15 at the moment when one ring of spirals is completed and the subsequent ring is started. At this moment the peripheral coiling speed increases in ratio to the change of diameter and the motor 27 adapts its

15

20

30

angular speed.

The speed of rotation of the mandrel 20 is controlled by the loop formed by the looper 15, by means of a rotary probe and the motor 27 is torque controlled, and therefore guarantees at every moment the desired coiling traction, irrespective of the speed of the rolled stock 12.

Layer after layer, or ring after ring, the coil is formed until the rolled stock 12 has been completely coiled.

The shears 16 is commanded to shear to size the rolled stock 12 which is coiling on the coiling machine 10, in such a way that the dimensions and weight of the coil are predefined.

While the last spirals are forming, the motor 27 is rapidly decelerated, so that the mandrel 20 stops in a very short time.

During this deceleration step, when the speed of rotation is low and before the trailing end of the rolled stock 12 emerges from the rollers of the drawing assembly 13 located upstream of the spiral distributor 45, the cylindrical plate 29 is distanced from the mandrel 20 by the actuation organ 33 and the handling assembly 50 is taken towards the mandrel 20, with its four idler rollers 53 coaxial to the coil which is just being completed.

The rollers 53 close on the rotating coil and thus prevent the last spirals of the coil from unravelling. In this way the rollers 53 also collaborate in the final step of coiling the trailing end of the compact coil.

When the motor 27 has completely stopped and the coil of rolled stock 12 is stationary, the coil is removed horizontally from the mandrel 20, which at the same time is radially retracted, commanded by the mechanism 37.

It is obvious that modifications and additions may be made to the coiling machine for rolled stock as described WO 00/25951 PCT/IB99/01758

- 11 -

heretofore, but these shall remain nonetheless within the spirit and scope of the invention.

30

CLAIMS

- 1 Coiling machine for rolled stock (12) located downstream of a rolling train (11), comprising a mandrel (20) mounted rotary around an axis of rotation (21) on a stationary structure (22), the coiling machine being characterised in that the mandrel (20) is mounted cantilevered on the stationary structure (22) and comprises an inner wall (24) orthogonal to the axis of rotation (21) and an outer end with which a cylindrical plate (29) is suitable to 10 selectively cooperate, the cylindrical plate (29) being movable between a working position, wherein it is arranged substantially orthogonal to the axis of rotation (21) so as to define a side wall parallel to the inner wall (24), to allow the coil of rolled stock (12) to form, and an inactive 15 position, wherein it is distanced and lowered with respect to the mandrel (20) so as to allow the coil of rolled stock (12) to be axially removed.
- 2 Coiling machine as in Claim 1, characterised in that the mandrel (20) comprises a plurality of elements (25) arranged so as to form a cylindrical surface and radially retractable towards the said axis of rotation (21) to facilitate the removal of the just-formed coil of rolled stock (12).
 - 3 Coiling machine as in Claim 2, characterised in that the radial movement of the retractable elements (25) is obtained by a hydraulically commanded and water cooled mechanism (26).
 - 4 Coiling machine as in Claim 1, characterised in that the cylindrical plate (29) is mounted cantilevered and rotatable on one end (30) of an arm (31) whose other end pivots on the stationary structure (22) and is commanded by an actuation organ (33).
 - 5 Coiling machine as in Claim 1, characterised in that the outer end of the mandrel (20) is substantially conical in

25

30

shape and is suitable to be inserted in a corresponding conical central seating (38) of the cylindrical plate (29), so as to achieve a coupling between the mandrel (20) and the plate (29), so that the plate (29) rotates together with the mandrel (20) when the plate (29) is in the working position.

6 - Coiling machine as in Claim 1, characterised in that the mandrel (20) is made to selectively rotate by an electric motor (27) by means of a reduction unit with gears with helical teeth with an appropriate ratio for high speeds.

- 7 Coiling machine as in Claim 1, characterised in that a device (37) is provided to facilitate the formation of the first spirals of the coil of rolled stock (12) on the mandrel (20), the device (37) comprising two guides (39, 40) substantially semi-cylindrical in shape, hollow inside and arranged one above the other below the mandrel (20), each of the guides (39, 40) having an inner profile mating with the outer cylindrical surface of the mandrel (20).
 - 8 Coiling machine as in Claim 7, characterised in that one of the two guides (39) is provided with a mouth (41) through which the rolled stock (12) is suitable to enter the inner cavities of the guides (39, 40) to be guided as it is coiled during the first revolutions of the mandrel (20).
 - 9 Coiling machine as in Claim 7 or 8, characterised in that two actuators (42, 43) are suitable to simultaneously command the movement of the two guides (39, 40) to take them from a working position substantially orthogonal to the axis of rotation (21), wherein they are arranged around the mandrel (20) to guide the rolled stock (12), to an inactive position substantially parallel to the axis of rotation (21), wherein they are distant from the mandrel (20) and outside the space occupied by the coil of rolled stock (12). 10 Coiling machine as in Claims 2 and 8, characterised in

that the parts which are suitable to come into contact with

20

the rolled stock (12), like the retractable elements (25) and the inner wall (24) of the mandrel (20), the cylindrical plate (29) and the guides (39, 40), are all made of wear-resistant materials.

- 5 11 Coiling machine as in Claim 1, characterised in that a device (45) to distribute the spirals is provided to guide the formation of the spirals of rolled stock (12) onto the mandrel (20), the spiral distributing device (45) comprising a guide organ (46) having at least one end (48) movable on a plane substantially tangent to the outer cylindrical surface of the mandrel (20).
 - 12 Coiling machine as in Claim 1, characterised in that a coil handling assembly (50) is provided to remove the coil of rolled stock (12) just formed around the mandrel (20) and to position it on a coil transport assembly (51).
 - 13 Coiling machine as in Claim 12, characterised in that the coil handling assembly (50) comprises a supporting frame (52) on which a plurality of idler rollers (53) are mounted rotatable, parallel to the axis of rotation (21) and suitable to cooperate with the trailing end of the rolled stock (12) during its final phase of coiling onto the mandrel (20) to prevent the spirals of the coil from uncoiling.

INTERNATIONAL SEARCH REPORT

International Application No PCT/IR 99/01758

PCT/IB 99/01758 A. CLASSIFICATION OF SUBJECT MATTER B65H67/04 B21C47/06 B21C47/32 B21C47/00 B21C47/24 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 7 B21C B65H Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Category 3 DE 31 50 319 A (OKUN DAVID ;KAGANOVSKIJ 1-6 Α IOSIF I (SU); BAJZUR LJUDMILA GRIGOREVNA () 30 June 1983 (1983-06-30) page 9, line 28 -page 10, line 8 page 13, line 34 - line 37; figures 1,4-6DE 12 65 525 B (UNITED ENGINEERING & Α FOUNDRY) column 4, line 5 -column 5, line 5; figures US 3 945 585 A (MOSLENER JORN) 1,7-10Α 23 March 1976 (1976-03-23) column 3, line 40 -column 4, line 44; figures Further documents are listed in the continuation of box C. Patent family members are listed in annex. X Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docucitation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 09/02/2000 3 February 2000 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2

Barrow, J

NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Fax: (+31-70) 340-3016

INTERNATIONAL SEARCH REPORT

International Application No PCT/IR 99/01758

		PCT/IB 99	9/01758
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		
tegory '	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
	US 4 664 329 A (PALI CHRISTOPHER) 12 May 1987 (1987-05-12) column 14, line 48 -column 17, line 8; figures 5A-5I		11
	DE 34 04 893 A (SCHLOEMANN SIEMAG AG) 14 August 1985 (1985-08-14) page 6, line 1 -page 7, line 26; figures		12,13

INTERNATIONAL SEARCH REPORT

Information on patent family members

PCT/IB 99/01758

Patent document cited in search report		Publication date	Patent family member(s)	Publication date
DE 3150319	Α	30-06-1983	NONE	
DE 1265525	В		NONE	
US 3945585	Α	23-03-1976	DE 2359139 A FR 2252143 A IT 1026559 B JP 891621 C JP 50110959 A JP 52016985 B	05-06-1975 20-06-1975 20-10-1978 24-12-1977 01-09-1975 12-05-1977
US 4664329	Α	12-05-1987	NONE	
DE 3404893	Α	14-08-1985	NONE ·	

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.