РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (РОСПАТЕНТ)

ФЕДЕРАЛЬНЫЙ ИНСТИТУТ ПРОМЫШЛЕННОЙ СОБСТВЕННОСТИ

Бережковская наб., 30, корп. 1, Москва, Г-59, ГСП-5, 123995 Телефон 240 60 15. Телекс 114818 ПДЧ. Факс 243 33 37

Наш № 20/12-246

"22" апреля 2004 г.

СПРАВКА

Федеральный институт промышленной собственности (далее – Институт) настоящим удостоверяет, что приложенные материалы являются точным воспроизведением первоначального описания, формулы, реферата и чертежей (если имеются) заявки № 2003110466 на выдачу патента на изобретение, поданной в Институт в апреле месяце 11 дня 2003 года (11.04.2003).

Название изобретения:

Расширитель скважин

Заявитель:

Открытое акционерное общество «Татнефть»

им. В.Д.Шашина

Действительные авторы:

ТАХАУТДИНОВ Шафагат Фахразович

ИБРАГИМОВ Наиль Габдулбариевич

КАВЕЕВ Хамит Загирович

АБДРАХМАНОВ Габдрашит Султанович

ХАМИТЬЯНОВ Нигаматьян Хамитович

КАШАПОВ Ильгиз Камаевич

АБДРАХМАНОВ Руслан Габдрашитович

Best Available Copy

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Заведующий отделом 20

А.Л.Журавлев

Объект – устройство

Кл. МКИ 7 Е21В 7/28

РАСШИРИТЕЛЬ СКВАЖИН

Изобретение относится к буровой технике, в частности, к устройствам для увеличения диаметра скважин в заданном интервале.

Известен расширитель скважин, включающий корпус с наклонными пазами и размещенным в нем подпружиненным через посредство штока поршнем, закрепленные в наклонных пазах корпуса лапы с цапфами, на которых консольно установлены шарошки (1).

Недостатком известного устройства является отсутствие надежного центрирования его в скважине, поскольку его конструкция не позволяет размещать на его корпусе более двух рабочих органов без ущерба его прочности. Следствием этого является вибрирование и биение их в процессе расширения скважин. При этом поверхность расширенного участка скважины получается неровной, что не позволяет обеспечить качественную установку профильного перекрывателя при изоляции зон осложнения бурения скважин. Низка также и скорость фрезерования пород.

Кроме того, в известном расширителе (1) шарошки закреплены на лапах консольно без фиксирования свободных концов цапф, что снижает прочность рабочих органов и при повышении механических нагрузок приводит к их поломке.

Наиболее близким к предлагаемому по большинству совпадающих признаков является расширитель, содержащий корпус с наклонными пазами и центральным проходным каналом, в котором размещен шток, подпружиненный в сторону нижнего

2 конца корпуса, закрепленные в наклонных пазах корпуса лапы с цапфами, на которых установлены шарошки, и опоры, в которых закреплены свободные концы цапф лап, взаимодействующие со штоком с помощью толкателей (2).

Недостатками этого устройства являются низкие работоспособность надежность из-за наличия в его конструкции жестко соединенного со штоком кольцевого поршня и толкателей опор в виде двухзвенных тяг, не выдерживающих больших силовых нагрузок. Кроме того, конструкция известного расширителя не позволяет осуществлять контроль за выводом его рабочих органов в рабочее положение.

Цель изобретения повышение работоспособности надежности расширителя.

Достигается это тем, что в расширителе скважин, включающем корпус с наклонными пазами и центральным проходным каналом, в котором размещен шток, подпружиненный-в сторону-нижнего-конца корпуса, закрепленные в наклонных пазах корпуса лапы с цапфами, на которых установлены шарошки, и опоры, в которых расположены свободные концы цапф лап, взаимолействующие со штоком с помощью толкателей, согласно изобретению, толкатели опор выполнены в виде размещенных в наклонных сверлениях корпуса и уплотненных отпосительно его проходного канала и внешней среды цилиндрических поршней, одни концы которых соединены с а другие зафиксированы на штоке с возможностью радиальных перемещений относительно его стенок, причем центральный проходной канал корпуса сообщен с внешней средой отверстиями, выполненными в стенках корпуса и штока, перекрываемыми при выдвижении лап с парошками в рабочее положение.

На фиг. 1 показан расширитель в транспортном положении, продольный разрез; на фиг. 2 - то же, при расширении скважины; на фиг. 3 - сечение по А-А на фиг. 1.

Расширитель скважины (фиг. 1) содержит корпус 1 с центральным проходным каналом 2, в котором размещен шток 3, подпружиненный пружиной 4 в сторону нижнего конца корпуса 1, которая размещена в полости 5, образованной внутренней стенкой корпуса 1 и наружной стенкой штока 3 и сообщенной отверстиями 6, выполненными в стенке корпуса 1, с внешней средой, и отверстиями 7 в стенке штока 3 — с центральным проходным каналом 2 корпуса 1. При этом полость 5 герметизирована от проходного канала 2 уплотнениями 8, а отверстия 7 штока 3 выполнены с учетом того, чтобы при перемещении штока 3 в крайнее верхнее положение они перекрывались упорной втулкой 9.

Корпус 1 имеет наружные наклонные пазы 10 (фиг. 1, 3) типа «ласточкин хвост», в которых закреплены лапы 11 с цапфами 12, на которых установлены с возможностью вращения шарошки 13 с твердосплавными зубками 14. Такими же зубками снабжены и лапы 11, выполняющими функцию калибраторов. Свободные концы 15 цапф 12 закреплены в опорах 16, также установленных в наклонных пазах корпуса I и жестко соединенных с цилиндрическими поршнями установленными в наклонных сверлениях 18 корпуса 1, свободные концы 19 которых с помощью ползунов 20 закреплены в отверстиях 21 штока 3 с возможностью радиальных перемещений. Сверления 18 продольным пазом 22 корпуса 1 сообщены с проходным каналом 2 корпуса 1 и герметизированы от внешней среды уплотнениями 23.

На концах корпуса 1 выполнены резьбы: 24 — для соединения с колонной бурильных труб 25 (фиг. 2) через переходник 26 и 27 - для присоединения бурового долота (не показано), имеющего штуцирующие промывочные отверстия.

Расширитель скважин работает следующим образом.

В резьбу 27 корпуса 1 ввинчивают буровое долото (не показано), а на резьбу 24 навинчивают переходник 26, присоединяют расширитель к бурильной колонне труб 25 и спускают в скважину 28 (фиг. 2).

На заданной глубине скважины колонну бурильных труб 25 начинают вращать с одновременной подачей в нее промывочной жидкости, которая поступает в центральный проходной канал 2 корпуса 1 и далее — в промывочные отверстия долота, в которых создается перепад давления. По мере возрастания перепада давления над долотом поршни 17, соединенные со штоком 3 ползунами 20, преодолевая усилие пружины 4, перемещают опоры 16 с закрепленными в них с помощью цапф 12 шарошками -13 и лапами -11 по наклонным пазам -10 в рабочее положение, до упора в торец 29 переходника 26. При этом жидкость из полости 5 вытесняется в затрубное пространство скважины 28 через отверстия 6 корпуса 1, а отверстия 7 в штоке 3 перекрываются упорной втулкой 9, что создает резкий скачок давления в расширителе в сторону его повышения и является сигналом о выводе рабочих органов расширителя в рабочее положение. Далее подачей инструмента вниз расширяют скважину в заданном интервале.

После окончания расширения скважины нагнетание жидкости в колонну бурильных труб 25 прекращают. При этом пружина 4, разжимаясь, возвращает шток 3 и связанные с ним поршни 17, опоры 16 и лапы 11 с шарошками 13 в транспортное положение.

При выводе рабочих органов в рабочее и возвращение их в транспортное положения жестко соединенные с поршнями 17 ползуны 20, перемещаясь по пазам 22 в корпусе 1, совершают радиальные перемещения в отверстиях 21 штока 3 – выдвигаясь из них и вдвигаясь обратно.

Такая конструкция расширителя за счет более совершенного выполнения механизма выдвижения рабочих органов в рабочее положение и обеспечения возможности контроля за их выдвижением повышает его работоспособность и надежность.

Источники информации

- 1. Авторское свидетельство СССР № 582373, кл. Е21В 7/28, 1977 г.
- 2. Патент РФ № 2172385 кл. Е21В 7/28, 2001 г.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Расширитель скважин, содержащий корпус с наклонными пазами и центральным проходным каналом, в котором размещен шток, подпружиненный в сторону нижнего конца корпуса, закрепленные в наклонных пазах корпуса лапы с цапфами, на которых установлены шарошки, и опоры, в которых расположены свободные концы цапф лап, взаимодействующие со штоком с помощью толкателей, о т л и ч а ю щ и й с я тем, что толкатели опор выполнены в виде размещенных в наклонных сверлениях корпуса и уплотненных относительно его проходного канала и внешней среды цилиндрических поршней, одни концы которых соединены с опорами, а другие зафиксированы на штоке с возможностью радиальных перемещений относительно его стенок, причем центральный проходной канал корпуса сообщен с внешней средой отверстиями, выполненными в стенках корпуса и штока, перекрываемыми-при выдвижении лап-с шарошками-в рабочее положение.

Расширитель скважин

РЕФЕРАТ

к патенту РФ №

на «Расширитель скважин»

Изобретение относится к буровой технике, в частности, к устройствам для увеличения диаметра скважин в заданном интервале.

Корпус имеет радиальные отверстия и центральный проходной канал, в котором размещен подпружиненный шток с отверстиями в нижней и верхней частях, последние из которых перекрываются в рабочем положении рабочих органов расширителя. На наружной поверхности корпуса выполнены наклонные пазы, в которых закреплены лапы с цапфами, установленными в опорах, на которых закреплены шарошки. Опоры жестко соединены с цилиндрическими поршнями, размещенными в наклонных сверлениях корпуса, полости которых сообщены с его центральным проходным каналом и герметизированы от внешней среды. Поршни с помощью ползунов соединены со штоком. При этом ползуны имеют возможность радиальных перемещений относительно штока и вертикальных — в пазах корпуса.

Изобретение повышает работоспособность и надежность расширителя.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☑ BLACK BORDERS
☑ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☑ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.