This print-out should have 16 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

001 10.0 points

When f is defined by

$$f(x) = \sqrt{x},$$

find a so f'(a) is five times the value of f'(4).

1.
$$a = \frac{16}{25}$$

2.
$$a = \frac{12}{25}$$

3.
$$a = \frac{4}{25}$$
 correct

4.
$$a = \frac{8}{25}$$

5.
$$a = \frac{2}{25}$$

Explanation:

First we determine f'(a) for a general value of a. Now

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
.

But when $f(x) = \sqrt{x}$,

$$\frac{f(x) - f(a)}{x - a} = \frac{\sqrt{x} - \sqrt{a}}{x - a}$$
$$= \frac{x - a}{(x - a)(\sqrt{x} + \sqrt{a})},$$

after rationalizing the numerator. Thus

$$f'(a) = \lim_{x \to a} \left(\frac{1}{\sqrt{x} + \sqrt{a}} \right) = \frac{1}{2\sqrt{a}}.$$

In this case

$$f'(a) = 5f'(4) \implies \frac{1}{2\sqrt{a}} = \frac{5}{2\sqrt{4}}.$$

Consequently,

$$a = \frac{4}{(5)^2} = \frac{4}{25} \ .$$

keywords: square root, definition of derivative, limit

002 10.0 points

The displacement (in feet) of a particle moving in a straight line is given by the equation of motion

$$s(t) = 3t^3 + 4t + 3$$

where t is measured in seconds. Find the velocity, v(1), of the particle after 1 second.

1.
$$v(1) = 14 \text{ ft/sec}$$

2.
$$v(1) = 11 \text{ ft/sec}$$

3.
$$v(1) = 15 \text{ ft/sec}$$

4.
$$v(1) = 13$$
 ft/sec correct

5.
$$v(1) = 12 \text{ ft/sec}$$

Explanation:

The velocity, v(t), of the particle after t seconds is the derivative s'(t) of the displacement

$$s(t) = 3t^3 + 4t + 3$$
.

Thus

$$v(t) = 9t^2 + 4$$
,

and so at t=1,

$$v(1) = 13 \, \text{ft/sec}$$

003 10.0 points

Find the derivative of

$$f(x) = \frac{x^4}{12} + \frac{1}{4}x^{-4}.$$

1.
$$f'(x) = \frac{x^8 - 3}{3x^5}$$
 correct

2.
$$f'(x) = \frac{x^8 + 3}{3x^5}$$

3.
$$f'(x) = \frac{x^7 - 3}{x^4}$$

4.
$$f'(x) = \frac{x^8 - 1}{x^5}$$

5.
$$f'(x) = \frac{x^7 + 1}{x^5}$$

6.
$$f'(x) = \frac{x^7 + 1}{3x^4}$$

Since

$$\frac{d}{dx}x^r = r x^{r-1},$$

it follows that

$$f'(x) = \frac{x^3}{3} - \frac{1}{x^5} = \frac{x^3 \cdot x^5 - 3}{3x^5}.$$

Consequently,

$$f'(x) = \frac{x^8 - 3}{3x^5} \ .$$

keywords: DerivFunc, DerivFuncExam,

004 10.0 points

Find the derivative of f when

$$f(x) = \frac{x^4}{16} + \frac{1}{2}x^{-4}.$$

1.
$$f'(x) = \frac{x^7 + 8}{4x^4}$$

2.
$$f'(x) = \frac{x^7 - 8}{4 x^4}$$

3.
$$f'(x) = \frac{x^8 + 8}{4 x^5}$$

4.
$$f'(x) = \frac{x^8 - 2}{4 x^5}$$

5.
$$f'(x) = \frac{x^8 - 8}{4 x^5}$$
 correct

Explanation:

Since

$$\frac{d}{dx}x^r = r x^{r-1},$$

it follows that

$$f'(x) = \frac{x^3}{4} - \frac{2}{x^5}.$$

Consequently,

$$f'(x) = \frac{x^8 - 8}{4 x^5} \ .$$

keywords: derivatives, negative powers

005 10.0 points

Find the derivative of f when

$$f(x) = 4x^4 + \frac{4}{x^2} + 3\pi$$
.

1. none of the other answers

2.
$$f'(x) = 2\left(\frac{1-2x^6}{x^3}\right)$$

3.
$$f'(x) = 8\left(\frac{2x^6 - 1}{x^3}\right)$$
 correct

4.
$$f'(x) = 2\left(\frac{2x^5+1}{x^2}\right)$$

5.
$$f'(x) = 8\left(\frac{2x^6+1}{x^3}\right)$$

6.
$$f'(x) = 2\left(\frac{2x^5-1}{x^2}\right)$$

7.
$$f'(x) = 8\left(\frac{1-2x^6}{x^3}\right)$$

Explanation:

Since

$$\frac{d}{dx}(x^r) = rx^{r-1}$$

holds for all r, we see that

$$f'(x) = 16x^3 - \frac{8}{x^3}.$$

Consequently,

$$f'(x) = 8\left(\frac{2x^6 - 1}{x^3}\right).$$

keywords: derivatives, negative powers

006 10.0 points

Find the value of the derivative of f at x = -1 when

$$f(x) = 2x + 3e^x.$$

- 1. $f'(-1) = 3e^{-1}$
- 2. f'(-1) = 2 + 3e
- 3. f'(-1) = 2 3e
- 4. $f'(-1) = 2 3e^{-1}$
- 5. $f'(-1) = 2 + 3e^{-1}$ correct
- 6. f'(-1) = 2e

Explanation:

After differentiation

$$f'(x) = 2 + 3e^x.$$

At x = -1, therefore,

$$f'(-1) = 2 + 3e^{-1}$$

007 10.0 points

Determine the derivative of

$$f(x) = 3x^5 + 2e^x$$
.

- 1. $f'(x) = 3x^5 + 2e^x$
- **2.** $f'(x) = 5x^5 2e^x$

3.
$$f'(x) = 15x^4 - 2e^x$$

4.
$$f'(x) = 5x^4 + 2e^x$$

5.
$$f'(x) = 3x^5 - 2e^x$$

6.
$$f'(x) = 15x^4 + 2e^x$$
 correct

Explanation:

Since

$$\frac{d}{dx}e^x = e^x, \qquad \frac{d}{dx}x^n = nx^{n-1},$$

we see that

$$f'(x) = 15x^4 + 2e^x .$$

008 10.0 points

Determine the derivative of

$$f(x) = 3e^x - x^5$$
.

- 1. $f'(x) = 3e^x 5x^4$ correct
- **2.** $f'(x) = 3e^x + 5x^4$
- $3. f'(x) = 3e^{x-1} + 5x^4$
- **4.** $f'(x) = 3e^{x-1} + 5x^5$
- **5.** $f'(x) = 3e^{x-1} 5x^5$
- **6.** $f'(x) = 3e^x 5x^5$

Explanation:

Since

$$\frac{d}{dx}e^x = e^x, \qquad \frac{d}{dx}x^n = nx^{n-1},$$

we see that

$$f'(x) = 3e^x - 5x^4 .$$

009 10.0 points

Determine the derivative of

$$f(x) = 2x + e^{x-1}$$
.

1.
$$f'(x) = 2 - e^{x-1}$$

2.
$$f'(x) = 2 - e^{x-2}$$

3.
$$f'(x) = 2x + e^x$$

4.
$$f'(x) = 2x - e^x$$

5.
$$f'(x) = 2x + e^{x-2}$$

6.
$$f'(x) = 2 + e^{x-1}$$
 correct

Since
$$e^{x-1} = e^x e^{-1} = e^{-1} e^x$$
 and

$$\frac{d}{dx}e^x = e^x, \qquad \frac{d}{dx}x^n = nx^{n-1},$$

we see that

$$\frac{d}{dx}e^{x-1} = \frac{d}{dx}e^{-1}e^x = e^{-1}e^x = e^{x-1}.$$

Consequently,

$$f'(x) = 2 + e^{x-1} \ .$$

010 10.0 points

Find the value of f'(4) when

$$f(x) = \frac{2}{3}x^{3/2} + 8x^{1/2}.$$

1.
$$f'(4) = \frac{9}{2}$$

2.
$$f'(4) = \frac{7}{2}$$

3.
$$f'(4) = 3$$

4.
$$f'(4) = 4$$
 correct

5.
$$f'(4) = \frac{5}{2}$$

Explanation:

Since

$$\frac{d}{dx}x^r = rx^{r-1},$$

we see that

$$f'(x) = x^{1/2} + 4x^{-1/2}$$
.

At x = 4, therefore,

$$f'(4) = 4$$

011 10.0 points

Determine the derivative of f when

$$f(x) = \left(\frac{5}{6}\right)^{2/3}.$$

1. f'(x) = 0 correct

2.
$$f'(x) = \frac{2}{3} \left(\frac{5}{6}\right)^{-1/3}$$

3.
$$f'(x) = \left(\frac{5}{6}\right)x^{-1/3}$$

4. f'(x) does not exist

5.
$$f'(x) = \frac{5}{9}x^{-1/3}$$

Explanation:

The derivative of any constant function is zero. Consequently,

$$f'(x) = 0.$$

012 10.0 points

Determine f'(x) when

$$f(x) = -2x^7 + 3x^3 + 8\pi.$$

1.
$$f'(x) = -14x^6 + 9x^2$$
 correct

2.
$$f'(x) = -14x^6 + 9x^2 + 8\pi x$$

3.
$$f'(x) = -2x^7 + 9x^2 + 8$$

4.
$$f'(x) = -14x^6 + 9x^2 + 8\pi$$

5.
$$f'(x) = -14x^6 + 3x^3$$

By linearity of differentiation and the rule

$$(x^n)' = n \cdot x^{n-1},$$

we see that

$$f'(x) = -14x^6 + 9x^2 \quad .$$

013 10.0 points

Find the derivative of

$$f(x) = x^{\frac{1}{6}} - 5x^{-\frac{1}{6}} + 4.$$

1.
$$f'(x) = \frac{x^{\frac{1}{3}} - 5}{6x^{\frac{5}{6}}}$$

2.
$$f'(x) = \frac{x^{\frac{1}{3}} + 5}{6x^{\frac{7}{6}}}$$
 correct

3.
$$f'(x) = \frac{x^{\frac{1}{6}} + 5}{6x^{\frac{5}{6}}}$$

4.
$$f'(x) = \frac{x^{\frac{1}{3}} + 5}{5x^{\frac{7}{6}}}$$

5.
$$f'(x) = \frac{x^{\frac{1}{3}} - 5}{6x^{\frac{7}{6}}}$$

Explanation:

Since

$$\frac{d}{dx}(x^r) = rx^{r-1},$$

we see that

$$f'(x) = \frac{1}{6} \left(\frac{1}{x^{\frac{5}{6}}} + \frac{5}{x^{\frac{7}{6}}} \right).$$

Consequently,

$$f'(x) = \frac{x^{\frac{1}{3}} + 5}{6x^{\frac{7}{6}}}$$

014 10.0 points

Find the derivative of

$$f(x) = \sqrt{x} + \frac{2}{\sqrt{x}}.$$

1.
$$f'(x) = \frac{x+2}{x\sqrt{x}}$$

2.
$$f'(x) = \frac{x+2}{2x\sqrt{x}}$$

3.
$$f'(x) = \frac{x-2}{2x\sqrt{x}}$$
 correct

4.
$$f'(x) = \frac{x-2}{x\sqrt{x}}$$

5.
$$f'(x) = \frac{x-2}{2\sqrt{x}}$$

6.
$$f'(x) = \frac{x+2}{\sqrt{x}}$$

Explanation:

Since

$$\frac{d}{dx}\sqrt{x} = \frac{d}{dx}x^{1/2} = \frac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}},$$

while

$$\frac{d}{dx}\frac{1}{\sqrt{x}} = \frac{d}{dx}x^{-1/2} = -\frac{1}{2}x^{-3/2} = -\frac{1}{2x\sqrt{x}}.$$

Thus

$$f'(x) = \frac{1}{2\sqrt{x}} - \frac{1}{x\sqrt{x}}$$
.

Consequently,

$$f'(x) = \frac{x-2}{2x\sqrt{x}}$$

015 10.0 points

Find the derivative of g when

$$g(t) = \frac{4}{5t^5}.$$

1.
$$g'(t) = -\frac{4}{5}t^{-4}$$

2.
$$g'(t) = \frac{4}{5}t^{-6}$$

3.
$$g'(t) = 4t^{-6}$$

4.
$$g'(t) = -\frac{4}{5}t^{-6}$$

5.
$$g'(t) = -4t^{-4}$$

6.
$$g'(t) = -4t^{-6}$$
 correct

Since

$$\frac{d}{dt} a t^r = r a t^{r-1}$$

for all $r \neq 0$ and all constants a, we see that

$$g'(t) = -\frac{4}{5} \left(\frac{5}{t^6} \right) = -4t^{-6}$$

016 10.0 points

Find the derivative of

$$f(x) = \frac{\sqrt{6}}{x^6}.$$

1.
$$f'(x) = -\frac{6\sqrt{6}}{x^7}$$
 correct

2.
$$f'(x) = \frac{6\sqrt{6}}{x^5}$$

3.
$$f'(x) = \frac{6\sqrt{6}}{x^7}$$

4.
$$f'(x) = \frac{\sqrt{6}}{6x^5}$$

5.
$$f'(x) = \frac{7\sqrt{6}}{x^7}$$

Explanation:

Since

$$f(x) = \frac{\sqrt{6}}{x^6} = \sqrt{6} x^{-6},$$

we see that

$$f'(x) = -6\sqrt{6} x^{-7}.$$

Consequently,

$$f'(x) = -\frac{6\sqrt{6}}{x^7} \quad .$$