MAT02025 - Amostragem 1

AAS: estimativa de um índice e estimativa de valores médios e totais das subpopulações

Rodrigo Citton P. dos Reis citton.padilha@ufrgs.br

Universidade Federal do Rio Grande do Sul Instituto de Matemática e Estatística Departamento de Estatística

Porto Alegre, 2023

Estimativa de um índice

Relembrando

Número índice

No sentido mais simples do termo, podemos dizer que um **número índice** é um quociente que expressa uma dada quantidade em comparação a uma **quantidade base**. Em outras palavras, são **valores relativos**.

- Frequentemente, a quantidade que deve ser estimada a partir de uma amostra aleatória simples é a razão de duas variáveis, ambas as quais variam de unidade para unidade.
- Em um levantamento por amostragem domiciliar, alguns exemplos são:
 - o número de aparelhos de celular por residente (o número de celulares e residentes variam de domicílio para domicílio);
 - a despesa com aplicativos de transporte por residente adulto;
 - o número médio de horas por semana gastas assistindo programas no serviço de streaming por criança de 10 a 15 anos.

- A fim de estimar a primeira dessas quantidades, registraríamos para o *i*-ésimo domicílio (i = 1, 2, ..., n) o número de residentes X_i que ali vivem e o número total de aparelhos de celular Y_i que eles possuem.
- ► O parâmetro da população a ser estimado é a razão (ou índice)

$$R = \frac{\text{número total de aparelhos de celular}}{\text{número total de residentes}} = \frac{\sum_{i=1}^{N} Y_i}{\sum_{i=1}^{N} X_i}.$$

► A estimativa amostral correspondente é

$$\widehat{R} = \frac{\sum_{i=1}^{n} Y_i}{\sum_{i=1}^{n} X_i} = \frac{\overline{y}}{\overline{x}}.$$

- Exemplos dessa natureza ocorrem, frequentemente, quando a unidade de amostragem (no caso o domicílio) compreende um grupo ou um conjunto de elementos (residentes) e nosso interesse está no valor médio da população por elemento.
- Os índices também aparecem em muitas outras aplicações, como, por exemplo
 - o índice de empréstimos para construções imobiliárias no total de empréstimos de um banco;
 - ou índice de acres plantados com trigo, no total de acres cultivados de uma fazenda:
 - ou índice de casos de diabetes não diagnosticado, no total de casos de diabetes.

Epidemiology/Health Services Research

ORIGINAL ARTICLE

Prevalence of Diabetes and High Risk for Diabetes Using A1C Criteria in the U.S. Population in 1988–2006

CATHERINE C. COWIE, PHD¹
KEITH F. RUST, PHD²
DANITA D. BYRD-HOLT, BBA³
EDWARD W. GREGG, PHD⁴

EARL S. FORD, MD⁵
LINDA S. GEISS, MS⁴
KATHLEEN E. BAINBRIDGE, PHD³
JUDITH E. FRADKIN, MD¹

cal trials in type 1 and type 2 diabetic patients, which have established widely accepted AIC treatment goals for diabetes. A cut point of ≥6.5% for the diagnosis of diabetes was recommended by the

Prevalence of diabetes using A1C

Table 1—Crude prevalence of diagnosed diabetes, undiagnosed diabetes (AIC \geq 6.5%), total diabetes (diagnosed and undiagnosed combined), total diabetes that is undiagnosed, and at high risk for diabetes (AIC \geq 6.0 to <6.5%), by age, sex, and race/ethnicity: NHANES 2003–2006 (n = 13,094)

	Diagnosed diabetes	Undiagnosed diabetes	Total diabetes	Total diabetes that is undiagnosed	At high risk for diabetes
Combined age-groups (years) ≥12 ≥20	6.8 (6.1–7.5) 7.8 (7.0–8.6)	1.6 (1.2–1.9) 1.8 (1.4–2.2)	8.4 (7.6–9.2) 9.6 (8.7–10.5)	19.0 (15.2–22.7) 19.0 (15.2–22.7)	3.1 (2.7–3.4) 3.5 (3.0–3.9)
≥65	17.7 (15.6–19.7)	3.5 (2.6-4.3)	21.1 (18.7-23.5)	16.3 (12.9-19.8)	8.1 (6.6-9.6)

- A distribuição amostral de \widehat{R} é mais complicada que a de \overline{y} , porque tanto o numerador \overline{y} , quanto o denominador, \overline{x} , variam de amostra para amostra.
- Em pequenas amostras, a distribuição de \widehat{R} é assimétrica, e \widehat{R} é, geralmente, uma estimativa ligeiramente viesada de R.
- Em grandes amostras, a distribuição de \widehat{R} tende à normalidade e o viés torna-se insignificante.

O seguinte resultado aproximado servirá para a maioria dos propósitos¹.

Teorema 14.1

Se as variáveis Y_i e X_i são medidas em cada unidade de uma amostra aleatória simples de tamanho n, que se presume grande, a variância de $\widehat{R} = \overline{y}/\overline{x}$ é, aproximadamente²,

$$\operatorname{Var}(\widehat{R}) \stackrel{\cdot}{=} \frac{1-f}{n\overline{X}^2} \frac{\sum_{i=1}^{N} (Y_i - RX_i)^2}{N-1},$$

em que $R = \overline{Y}/\overline{X}$ é o índice dos valores médios da população, e f = n/N é a fração de amostragem.

 $^{^{1}}$ A distribuição de \widehat{R} é estudada com mais detalhes no Capítulo 6 de Cochran (1965) e no Capítulo 5 de Bolfarine e Bussab (2005).

²O símbolo = indica "aproximadamente igual".

Demonstração. Note que

$$\widehat{R} - R = \frac{\overline{y}}{\overline{x}} - R = \frac{\overline{y} - R\overline{x}}{\overline{x}}.$$

- ▶ Se *n* é grande, \overline{x} não deve ser muito diferente de \overline{X} .
- Para evitar ter que calcular a distribuição da razão de duas variáveis aleatórias $\overline{y} R\overline{x}$ e \overline{x} , substituímos \overline{x} por \overline{X} no denominador da expressão acima **como uma aproximação**. Isso dá

$$\widehat{R} - R \doteq \frac{\overline{y} - R\overline{x}}{\overline{X}}.$$

Agora calcule a média de todas as amostras aleatórias simples de tamanho *n*:

$$\mathsf{E}(\widehat{R}-R) \stackrel{\cdot}{=} \frac{\mathsf{E}(\overline{y}-R\overline{x})}{\overline{X}} = \frac{\overline{Y}-R\overline{X}}{\overline{X}} = 0,$$

uma vez que $R = \overline{Y}/\overline{X}$.

lsso mostra que, para a ordem de aproximação usada aqui, \widehat{R} é uma estimativa não viesada de R.

Da expressão aproximada, também obtemos

$$\operatorname{Var}(\widehat{R}) = \operatorname{E}(\widehat{R} - R)^2 \stackrel{\cdot}{=} \frac{1}{\overline{X}^2} \operatorname{E}(\overline{y} - R\overline{x})^2.$$

- A quantidade $\overline{y} R\overline{x}$ é a média amostral da variável $D_i = Y_i RX_i$, cuja média populacional, $\overline{D} = \overline{Y} R\overline{X}$, é igual a 0.
- Portanto, podemos encontrar $Var(\widehat{R})$ aplicando o teorema para a variância da média de uma amostra aleatória simples à variável D_i e dividindo por \overline{X}^2 .

► Isso dá

$$\operatorname{Var}(\widehat{R}) \stackrel{\cdot}{=} \frac{1}{\overline{X}^{2}} \operatorname{E}(\overline{y} - R\overline{x})^{2} = \frac{1}{\overline{X}^{2}} \frac{S_{D}^{2}}{n} (1 - f)$$

$$= \frac{1 - f}{n\overline{X}^{2}} \frac{\sum_{i=1}^{N} (D_{i} - \overline{D})^{2}}{N - 1} = \frac{1 - f}{n\overline{X}^{2}} \frac{\sum_{i=1}^{N} (Y_{i} - RX_{i})^{2}}{N - 1},$$

o que completa a demonstração.

Como estimativa amostral de

$$\frac{\sum_{i=1}^{N} (Y_i - RX_i)^2}{N-1}$$

é comum tomarmos

$$\frac{\sum_{i=1}^{n} (Y_i - \widehat{R}X_i)^2}{n-1}.$$

▶ Pode-se demonstrar que essa estimativa tem um viés de ordem³ 1/n.

 $^{^3}$ Ou seja, conforme $n \to \infty$ o viés decresce a zero mais rapidamente que a sequência 1/n. Ou, utilizando a notação $o(\cdot)$, temos que Viés_n = $o(n^{-1})$.

Para o erro padrão estimado de \hat{R} , temos

$$s_{\widehat{R}} = \frac{\sqrt{1-f}}{\sqrt{nX}} \sqrt{\frac{\sum_{i=1}^{n} (Y_i - \widehat{R}X_i)^2}{n-1}}.$$

- ightharpoonup Se \overline{X} não é conhecido, a estimativa amostral \overline{x} o substitui no denominador da fórmula.
- Uma fórmula prática para calcular s

 é dada por

$$s_{\widehat{R}} = \frac{\sqrt{1-f}}{\sqrt{nX}} \sqrt{\frac{\sum_{i=1}^{n} Y_i^2 - 2\widehat{R} \sum_{i=1}^{n} Y_i X_i + \widehat{R}^2 \sum_{i=1}^{n} X_i^2}{n-1}}.$$

Estimativa do valor médio das subpopulações

- Em muitos levantamentos, as estimativas são feitas para cada uma das várias classes (setores ou domínios) nas quais a população está subdividida.
- ► Em um levantamento domiciliar, estimativas separadas podem ser necessárias para famílias de 0,1,2,... filhos, para proprietários e locatários, ou para famílias em diferentes grupos de ocupação.

Table 2

Prevalence of diabetes mellitus in adults overall and by sex according to sociodemographic and clinical characteristics. Brazilian National Health Survey, 2013 and 2019.

Characteristic	2013					2019						
	Total			Men		Women		Total		Men Women		
	%	95%CI	%	95%CI	%	95%CI	%	95%CI	%	95%CI	%	95%CI
Total	6.2	5.9-6.6	5.3	4.8-5.8	7.0	6.5-7.5	7.7	7.4-8.0	6.9	6.5-7.4	8.4	8.0-8.8
Age (years)												
18-24	0.5	0.3-0.8	0.4	0.1-0.7	0.6	0.2-1.1	0.7	0.4-1.1	1.0	0.4-1.7	0.4	0.2-0.6
25-34	0.8	0.6-1.0	0.7	0.4-1.1	0.9	0.6-1.2	0.9	0.7-1.2	0.7	0.3-1.0	1.1	0.8-1.5
35-44	2.9	2.4-3.4	2.4	1.7-3.2	3.4	2.6-4.1	3.1	2.7-3.6	3.1	2.5-3.8	3.2	2.5-3.8
45-54	6.6	5.8-7.4	5.8	4.6-6.9	7.3	6.2-8.4	7.7	6.9-8.5	6.9	5.8-8.0	8.4	7.2-9.6
55-64	13.5	12.1-14.9	12.1	9.8-14.3	14.7	12.8-16.6	14.8	13.8-15.7	13.6	12.2-15.0	15.8	14.5-17.1
≥ 65	19.8	18.2-21.3	17.7	15.1-20.3	21.4	19.3-23.5	21.6	20.5-22.7	20.2	18.6-21.9	22.7	21.2-24.1
Race/Skin color												
White	6.7	6.1-7.2	6.0	5.2-6.8	7.3	6.5-8.0	8.0	7.6-8.5	7.9	7.1-8.6	8.2	7.5-8.9
Black	7.3	6.0-8.6	5.5	3.4-7.5	8.9	7.2-10.5	7.8	7.0-8.7	6.9	5.7-8.0	8.7	7.5-9.9
Mixed-race	5.5	5.0-5.9	4.5	3.8-5.1	6.4	5.7-7.0	7.3	6.9-7.7	5.9	5.3-6.4	8.5	7.9-9.1
Asian	6.3	3.0-9.6	7.3	0.9-13.7	5.6	2.2-9.0	12.8	7.9-17.7	13.6	6.3-21.0	12.0	5.5-18.5
Indigenous	6.9	2.7-11.1	5.4	1.8-18.7 *	8.0	2.8-13.2	7.5	4.4-10.6	5.2	1.4-8.9	10.2	5.3-15.1
Education level												
Incomplete elementary	9.6	9.0-10.3	6.7	5.8-7.5	12.4	11.3-13.4	12.9	12.3-13.5	10.2	9.4-11.0	15.4	14.4-16.3
Complete elementary	5.4	4.5-6.3	5.4	4.0-6.9	5.4	4.3-6.5	6.3	5.5-7.0	5.4	4.4-6.4	7.1	6.1-8.2
Complete high school	3.4	2.9-3.8	3.5	2.8-4.2	3.3	2.7-3.8	4.6	4.2-5.0	4.6	4.0-5.2	4.6	4.1-5.1
Complete higher education	4.1	3.3-5.0	5.5	3.9-7.2	3.1	2.3-4.0	4.7	4.1-5.2	6.0	5.0-7.1	3.6	3.1-4.2

Fonte: http://dx.doi.org/10.1590/0102-311X00149321.

- Na situação mais simples, cada unidade da população cai em um dos setors.
- Assuma que o j-ésimo setor contém N_i unidades e seja n_i o número de unidades em uma amostra aleatória simples de tamanho n que por acaso caem neste setor.
- Se $Y_{ik}(k=1,2,\ldots,n_i)$ são as medidas nessas unidades, a média da população \overline{Y}_i para o *j*-ésimo setor é estimada por

$$\overline{y}_j = \frac{1}{n_j} \sum_{k=1}^{n_j} Y_{jk}.$$

- \triangleright À primeira vista, \overline{y}_i parece ser uma **estimativa de razão (índice)**.
- Embora n seja fixo, nj variará de uma amostra de tamanho n para outra.
- A complicação de uma estimativa de razão pode ser evitada considerando a distribuição de y

 são fixos.
 - Assumimos $n_i > 0$.

Na totalidade das amostras, com n e n_j determinados, a probabilidade de que qualquer conjunto específico de n_j unidades das N_j unidades no setor j sejam sorteadas é

$$\frac{N - N_{j} C_{n - n_{j}}}{N - N_{j} C_{n - n_{j}} \times N_{j} C_{n_{j}}} = \frac{1}{N_{j} C_{n_{j}}}.$$

Uma vez que cada conjunto específico de n_j unidades do setor j pode aparecer em todas as seleções de (n - n_j) unidades, dentre as (N - N_j) que não estão no setor j, o numerador acima é o número de amostras contendo um conjunto especificado de n_j e o denominador é o número total de amostras.

▶ Segue-se que os **teoremas das aulas 9, 10 e 11** se aplicam ao Y_{jk} se colocarmos n_i no lugar de n e N_i no lugar de N.

Do **Teorema 9.1**, \overline{y}_i é um estimador não enviesado para \overline{Y}_i .

Do **Teorema 10.1**, o erro padrão de \overline{y}_j é $\frac{S_j}{\sqrt{n_i}}\sqrt{1-(n_j/N_j)}$, em que

$$S_j^2 = \frac{1}{N_j - 1} \sum_{k=1}^{N_j} (Y_{jk} - \overline{Y}_j)^2.$$

De acordo com o **Teorema 11.1** e o **Corolário 11.1** , uma estimativa do erro padrão de \overline{y}_i é

$$\frac{s_j}{\sqrt{n_j}}\sqrt{1-\left(n_j/N_j\right)},$$

em que

$$s_j^2 = \frac{1}{n_j - 1} \sum_{k=1}^{n_j} (Y_{jk} - \overline{y}_j)^2.$$

- ▶ Se o valor de N_j **não for conhecido**, a quantidade n/N pode ser utilizada em lugar de n_i/N_i , no cálculo das **cpf**.
 - ▶ Na amostragem aleatória simples, n_j/N_j é uma estimativa não enviesada de n/N.

Estimativa dos valores totais das subpopulações

- Suponha que em uma população (de adultos), na qual algumas pessoas são obesas (IMC > 30) e outras não, podemos desejar estimar, por meio de uma amostra, o total de pessoas com diabetes entre os obesos.
- Se N_j (o número de pessoas obesas na população) é conhecido, não há problema.
 - A estimativa a partir da amostra é $N_j \overline{y}_j$ e seu erro padrão condicional é N_j vezes $\frac{S_j}{\sqrt{n_j}} \sqrt{1 (n_j/N_j)}$.

- Alternativamente, se o *total de indivíduos com diabetes* for conhecido na **população**, uma estimativa de razão pode ser usada.
 - A amostra fornece uma estimativa da razão

total de pessoas com diabetes entre os obesos total de indivíduos com diabetes

Isso é multiplicado pelo total de indivíduos com diabetes conhecido na população.

- Se nem N_j, e nem o total de indivíduos com diabetes é conhecido, essas estimativas não podem ser feitas.
- ► Em vez disso, multiplicamos o *valor amostral total* das unidades *Y* contidas no *j*-ésimo setor pelo **fator de expansão** *N/n*.
- Isso dá a estimativa

$$\hat{Y}_{T_j} = \frac{N}{n} \sum_{k=1}^{n_j} Y_{jk}.$$

- Mostraremos que \hat{Y}_{T_j} é imparcial e obteremos seu erro padrão sobre amostras repetidas de tamanho n.
 - ightharpoonup O artifício de manter n_j constante, bem como n não ajuda neste caso.

- Ao fazermos a demonstração, voltamos à notação original, na qual Y_i é a medida da i-ésima unidade da população.
- \triangleright Defina para cada unidade na população uma nova variável Y_i' , em que

$$Y'_i = \begin{cases} Y_i, & \text{se a unidade pertencer ao setor } j, \\ 0, & \text{caso contrário.} \end{cases}$$

ightharpoonup O valor **total populacional** da variável Y'_i é

$$\sum_{i=1}^{N} Y_i' = \sum_{\text{setor } i} Y_i = Y_{T_i}.$$

- Em uma amostra aleatória simples de tamanho n, $Y'_i = Y_i$ para todas as n_j unidades que se encontram no j-ésimo setor; $Y'_i = 0$ para todas as restantes $n n_i$ unidades.
- ▶ Se \overline{y}' é a média amostral de Y'_i , então temos

$$N\overline{y}' = \frac{N}{n} \sum_{i=1}^{n} Y_i' = \frac{N}{n} \sum_{k=1}^{n_j} Y_{jk} = \hat{Y}_{T_j}$$

Este resultado mostra que a estimativa \hat{Y}_{T_j} é N vezes a média amostral de Y_i' .

- Em repetidas amostras de tamanho n, podemos aplicar os **teoremas** das aulas 9, 10 e 11 às variáveis Y_i' .
- Estes, por sua vez, mostram que \hat{Y}_{T_j} é uma estimativa imparcial de Y_{T_i} com erro padrão

$$\sigma(\hat{Y}_{T_j}) = \frac{NS'}{\sqrt{n}} \sqrt{1 - (n/N)},$$

em que S' é desvio padrão populacional de Y'_i .

Para calcular S', consideramos a população como consistindo de N_j valores Y_i que estão no j-ésimo setor e de $N-N_i$ valores zero. Assim

$$S^{\prime 2} = \frac{1}{N-1} \left(\sum_{\text{setor } j} Y_i^2 - \frac{Y_{T_j}^2}{N} \right).$$

Pelo teorema da **aula 11**, uma estimativa amostral do erro padrão de \hat{Y}_{T_i} será

$$s(\hat{Y}_{T_j}) = \frac{Ns'}{\sqrt{n}}\sqrt{1-(n/N)}.$$

No cálculo de s', qualquer unidade que não esteja no j-ésimo setor recebe um valor zero.

Comparação da eficiência dos estimadores de total no setor

- ightharpoonup Às vezes é possível, com algum esforço, identificar e contar as unidades que não contribuem com nada, de modo que em nossa notação $(N-N_j)$, e portanto N_j , seja conhecido.
- Consequentemente, vale a pena examinar o quanto da $Var(\hat{Y}_{T_j})$ é reduzido quando N_j é conhecido.
- ► Se N_i não for conhecido, temos (pelo Corolário 10.2)

$$\operatorname{Var}(\hat{Y}_{T_j}) = \frac{N^2 S'^2}{n} \left(1 - \frac{n}{N} \right).$$

Comparação da eficiência dos estimadores de total no setor

▶ Se \overline{Y}_j e S_j são a média e o desvio padrão no setor de interesse (ou seja, entre as unidades diferentes de zero), é possível verificar que

$$(N-1)S'^2 = (N_j-1)S_j^2 + N_j \overline{Y}_j^2 \left(1 - \frac{N_j}{N}\right).$$

Uma vez que os termos em $1/N_j$ e 1/N são quase sempre insignificantes, temos

$$S'^2 \stackrel{.}{=} P_j S_j^2 + P_j Q_j \overline{Y}_j^2,$$
 em que $P_j = N_j/N$ e $Q_j = 1 - P_j.$

Comparação da eficiência dos estimadores de total no setor

Desta forma,

$$\operatorname{Var}(\hat{Y}_{T_j}) \stackrel{\cdot}{=} \frac{N^2}{n} (P_j S_j^2 + P_j Q_j \overline{Y}_j^2) \left(1 - \frac{n}{N}\right). \tag{1}$$

Se as unidades diferentes de zero forem identificadas (ou seja, se N_j for conhecido), retiramos delas uma amostra de tamanho n_j . A estimativa do total do setor é $N_j \overline{y}_j$ com variância

$$\operatorname{Var}\left(N_{j}\overline{y}_{j}\right) = \frac{N_{j}^{2}}{n_{j}}S_{j}^{2}\left(1 - \frac{n_{j}}{N_{j}}\right) = \frac{N^{2}}{n_{j}}P_{j}^{2}S_{j}^{2}\left(1 - \frac{n_{j}}{N_{j}}\right). \tag{2}$$

- As variâncias dadas pelas expressões (1) e (2) são comparáveis.
- ► Em (1), o número médio de unidades diferentes de zero na amostra de tamanho n é nP_i.
- Se tomarmos $n_j = nP_j$ em (2), de modo que o número de valores diferentes de zero a serem medidos seja aproximadamente o mesmo com ambos os métodos, (2) torna-se

$$\operatorname{Var}(N_{j}\overline{y}_{j}) = \frac{N^{2}}{n}P_{j}S_{j}^{2}\left(1 - \frac{n}{N}\right). \tag{3}$$

► A razão entre as variâncias (3) e (1) é

$$\frac{\mathsf{Var}_{\;N_{j}\;\mathsf{conhecido}}(\textit{N}_{j}\overline{\textit{y}}_{j})}{\mathsf{Var}_{\;\textit{N}_{i}\;\mathsf{desconhecido}}(\hat{\mathsf{Y}}_{\mathcal{T}_{j}})} = \frac{\textit{S}_{j}^{2}}{\textit{S}_{i}^{2} + \textit{Q}_{j}\overline{\textit{Y}}_{i}^{2}} = \frac{\textit{C}_{j}^{2}}{\textit{C}_{j}^{2} + \textit{Q}_{j}} \leq 1,$$

em que $C_j = S_j/\overline{Y}_j$ é o **coeficiente de variação** entre as unidades de valores diferentes de zero.

Observação

Como era de se esperar, a redução da variância, decorrente do conhecimento de N_j, é maior quando a proporção de unidades de valor nulo é grande e quando Y_j varia relativamente pouco entre as unidades de valor diferente de zero.

- A tabela a seguir mostra o número de pessoas (X_1) , a renda familiar semanal (X_2) e os gastos semanais com alimentação (Y) em uma amostra aleatória simples de 33 famílias de baixa renda.
- Como a amostra é pequena, os dados se destinam apenas a ilustrar os cálculos.

Tabela 1: Renda semanal e custo dos alimentos de 33 famílias

Número	Tamanho	Renda	Custo dos	Número	Tamanho	Renda	Custo dos
da família	(x_1)	(x_2)	alimentos (y)	da família	(x_1)	(x_2)	alimentos (y)
1	2	62	14,3	18	4	83	36,0
2	3	62	20,8	19	2	85	20,6
3	3	87	22,7	20	4	73	27,7
4	5	65	30,5	21	2	66	25,9
5	4	58	41,2	22	5	58	23,3
6	7	92	28,2	23	3	77	39,8
7	2	88	24,2	24	4	69	16,8
8	4	79	30,0	25	7	65	37,8
9	2	83	24,2	26	3	77	34,8
10	5	62	44,4	27	3	69	28,7
11	3	63	13,4	28	6	95	63,0
12	6	62	19,8	29	2	77	19,5
13	4	60	29,4	30	2	69	21,6
14	4	75	27,1	31	6	69	18,2
15	2	90	22,2	32	4	67	20,1
16	5	15	37,7	33	2	63	20,7
17	3	69	22,6				

- 1. Estime a partir da amostra
 - a. o gasto semanal médio com comida por família;
 - b. o gasto semanal médio com comida por pessoa;
 - c. a porcentagem da renda que é gasta com comida.
- Calcule os erros padrões dessas estimativas (pode ignorar as cpf).
- 3. Compartilhe os seus resultados no Fórum Geral do Moodle.

Para casa 2 (PQP.2)

Para casa 2 (PQP.2)

Para casa 2 (PQP.2)

Considere o exemplo da aula 11 (assinaturas de uma petição). Depois de selecionada a amostra, o número de folhas completamente cheias (com 42 assinaturas cada) foi contado e verificou-se que eram 326. Use essa informação para fazer uma estimativa melhorada do número total de assinaturas e achar o erro padrão da sua estimativa.

Próxima aula

► Validade da aproximação normal.

Por hoje é só!

Bons estudos!

