Topología

Alec Zabel-Mena.

January 24, 2021

Chapter 1

Topological Spaces and Continuous Functions.

1.1 Espacios Métricos.

Definition. Una **Métrica** sobre un conjunto X es ina funcion $d: X \times X\mathbb{R}$ tal que para toda $x, yz \in X$:

- (1) $d(x,y) \ge 0$ y d(x,y) = 0 si y solo si x = y.
- (2) d(x,y) = d(y,x).
- (3) $d(x,z) \leq d(x,y) + d(y,z)$ (La Desigualdad Triangular).

Si d es una métrica sobre el conjunto X, entonces decimos que el par ordenado (X, d) es un **espacio métrico**, y que d(x, y) es la **distancia** entre x y y.

Example 1.1. Sea $X = \mathbb{R}$ y $d = |\cdot|$, entonces $(\mathbb{R}, |\cdot|)$ es una espacio métrico. Para $X = \mathbb{R}^2$ y $d = ||\cdot||$, $(\mathbb{R}^2, ||\cdot||)$ tambien es un espacio metrico.

Example 1.2 (La Métrica Discreta). Sea X cualquier conjunto, y sea $d(x,y) = \begin{cases} 1 & x \neq y \\ 0 & x = y \end{cases}$

Vemos que las propiedades (1) y (2) estan satisfecho. Tambien vemos que para $x, y, z \in X$ que d(x, z) = 1, 0 y que d(x, y), d(y, x) = 1, 0. Pues d(x, y) + d(y, z) = 2, 1, 0, pues en todo caso $d(x, z) \le d(x, y) + d(y, z)$. (X, d) es un espacio metrico.

Definition. Sea (X, d) un espacio métrico, $x \in X$ y $\epsilon > 0$. Definimos el conjunto $B_d(x, \epsilon) = \{y \in X : d(x, y) < \epsilon\}$ como la ϵ -bola con centro en x. Tambien es conocido como la bola abierta centrado en x de radio ϵ .

Example 1.3. (1) Sea $X = \{a, b, c\}$ y sea d la metrica disscreta. Entonces $B_d(a, \frac{1}{2}) = \{a\}$, $B_d(a, 4) = X$ y $B_d(a, 1) = \{a\}$.

(2) Sea $X = \mathbb{R}^n$ y defina $d : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ talque $d(x,y) = \sqrt{\sum (x_i - y_i)^2} = ||x - y||$. Claramente los primeros 2 propiedades se satisfechan. Ahora por la desigualdad de

Figure 1.1: El métrico Euclideano, el métrico taxista, y el métrico cuadrado.

Cauchy-Schwarz, tenemos que $|\langle x,y\rangle| \leq ||x||||y||$ y por la desigualdad de Minowski, tenemos que $||x+y|| \leq ||x|| + ||y||$. Puse usando estos dos desigualdades vemos que d es un métrico. Llamamos a este métrico el **métric Euclideano** y lo denotaremos como $||\cdot||$.

Tambien existen otros métricos en \mathbb{R}^n . Definimos la **métrica taxista** como $d(x,y) = \sum |x_i - y_i|$ y la **métrica cuadrada** como $\rho(x,y) = \max |x_1 - y_1|, \dots, |x_n - y_n|$. Aqui vemos que pa los puntos x = (2,3) y y = (6,6) en $X = \mathbb{R}^2$ que $||x-y|| = \sqrt{(2-6)^2 + (3-6)^2} = 5$, d(x,y) = |2-6| + |3-6| = 7 y que $\rho(x,y) = \max |2-6|, |3-6| = 4$; y tenemos que $B_{||\cot||}(0,1) = \{x \in \mathbb{R}^2 : ||x|| < 1\} = \{x \in \mathbb{R}^2 : \sqrt{x_1^2 + x_2^2} < 1\}$, que $B_d(0,1) = \{x \in \mathbb{R}^2 : d(x,0) < 1\} = \{x \in \mathbb{R}^2 : |x_1| + |x_2| < 1\}$ y que $B_\rho(0,1) = \{x \in \mathbb{R}^2 : \rho(x,0) < 1\} = \{x \in \mathbb{R}^2 : \max |x_1|, |x_2| < 1\}$

Definition. Sean (X, d) y (Y, ρ) espacios metricos. Una función $f: X \to Y$ es **continua en el punto** $a \in X$ si para cade $\epsilon > 0$ existe un $\delta > 0$ tal que sí $x \in X$ y $d(a, x) < \delta$, entonces $\rho(f(a), f(x)) < \epsilon$. Decimos que f es **continua** si es continua en casa punto de X.

Example 1.4. Sean (X, d) y (Y, ρ) espacios métricos y sea $y_0 \in Y$ y defina $i : X \to X$ for $x \to x$ y $c : X \to Y$ por $x \to y_0$. Para i, sea $\epsilon > 0$ y coge $\delta = \epsilon$. Pues vemos que $d(a, x) = d(i(a), i(x)) < \delta = \epsilon$. Pues i es continua en todo X. Ahora sea $\epsilon > 0$ y $\delta > 0$, tenemos que $d(a, x) < \delta$ implica que $\rho(c(x), c(a)) = \rho(y_0, y_0) = 0 < \epsilon$ pues c tambien es continua en X.

Theorem 1.1.1. Sean (X,d) y (Y,ρ) espacios métricos, entonces $f: X \to Y$ es continua en el punto $a \in X$ si y solo si para cada bola abierta $B_{\rho}(f(a),\epsilon)$, existe una bola abierta $B_d(a,\delta)$ tal que $f(B_d(a,\delta)) \subseteq B_{\rho}(f(a),\epsilon)$.

Proof. Sea f continua en a, entonces dado $\epsilon > 0$ considere la bola $B_{\rho}(f(a), \epsilon)$, pues existe un $\delta > 0$ tal que si $x \in X$ y $d(a, x) < \delta$, entonces $\rho(f(a), f(x)) < \epsilon$. Pues vemos que como $x \in B_d(a, \delta)$, tenemos que $f(B_d(a, \delta)) \subseteq B_{\rho}(f(a), \epsilon)$

Ahora suponga que para cada $B_{\rho}(f(a), \epsilon)$ hay un $B_d(x, \delta)$ tal que $f(B_d(a, \delta)) \subseteq B_{\rho}(f(a), \epsilon)$. Entonces sea $x \in X$ con $d(x, a) < \delta$, entonces tenemos que $x \in B_d(a, \delta)$, pues por hípotesis, $f(x) \in B_{\rho}(f(a), \epsilon)$, es decir que $\rho(f(x), f(a)) < \epsilon$; por lo tanto f es continua en a.