# LAPTOP PRICE PREDICTION



# **Group members**

Neeraj Nishad (2100980140031)

Vikas Prajapati (2100980140058)



#### Contents

- 1. Introduction
- 2. Problem statement
- 3. Data exploration
- 4. Feature Selection
- 5. Model selection
- 6. Model evaluation
- 7. User interface
- 8. Conclusion



## Introduction

**Laptop price prediction** is a challenging task due to the dynamic nature of the market and the many factors that can affect pricing. The goal of this model is to accurately predict the prices of laptops based on various features.

Laptop price prediction is important for both buyers and sellers. Buyers can use the model to predict the prices of laptops and make informed purchasing decisions, while sellers can use the model to set appropriate prices for their products.



# **Problem Statement**

We will make a project for Laptop price prediction. The problem statement is that if any user wants to buy a laptop then our application should be compatible to provide a tentative price of laptop according to the user configurations. Although it looks like a simple project or just developing a model, the dataset we have is noisy and needs lots of feature engineering, and preprocessing that will drive your interest in developing this project.



# **Data Exploration**

Most of the columns in a dataset are noisy and contain lots of information. But with feature engineering you do, you will get more good results. The only problem is we are having less data but we will obtain a good accuracy over it. The only good thing is it is better to have a large data. we will develop a website that could predict a tentative price of a laptop based on user configuration.



Dataset

|    |    | is file |           |        |                                    | A (-0.0)                   |      |                     |                                                 |  |
|----|----|---------|-----------|--------|------------------------------------|----------------------------|------|---------------------|-------------------------------------------------|--|
| ı  |    | Company | TypeName  | Inches | ScreenResolution                   | Cpu                        | Ram  | Memory              | Gpu                                             |  |
| ij | 0  | Appre   | Unysbook  | 13.3   | IPS Panel Retina Display 2560x1600 | Intel Core IS 2.3GHz       | 858  | 12808 550           | Intel Inis Plus Graphics 640                    |  |
| ij | 1  | Apple   | Uhrebook  | 13.3   | 1440:000                           | Intel Core iS 1.8GHz       | 858  | 129GB Flesh Storage | Intel HD Graphics 6000                          |  |
| ij | 2  | 167     | Notebook  | 15.6   | Full HD 1920v1080                  | Intel Core iS 72000 2.5GHz | 858  | 254G8 55D           | Intel HD Graphics 620                           |  |
|    | 1  | Apple   | Ultrabook | 15.4   | IPS Panel Retina Display 2880x1800 | Intel Core i7 2.7GHz       | 1658 | \$1208 950          | AMD Radeon Pro 455                              |  |
|    | 4  | Apple   | Ubstock   | 13.3   | IPS Funel Retina Display 2560x1600 | Intel Core IS 3.1GHz       | 858  | 256G8 SSD           | treet tris Plus Graphics 650                    |  |
| ı  | 5  | Acer    | Notebook  | 15.6   | 13664768                           | AMO A5-Series 9420 3GHz    | 408  | 50008 HDD           | AMD Radeon RS                                   |  |
| ı  | 6  | Apple   | Ultrabook | 15.4   | IPS Panel Retina Droplay 2880x1800 | Intel Core I7 2.3GHz       | 1658 | 256GB Flash Storage | Intel Ins Pro Graphics                          |  |
|    | 7  | Apple   | Utrabook  | 13.3   | 1440:600                           | Intel Core IS 1.8GHz       | 858  | 256GB Flash Storage | Intel HD Graphics (000)                         |  |
|    | 0  | Ann     | Utrabook  | 14.0   | Full HD 1920x1080                  | Intel Core I7 8550U 1.8GHz | 1608 | \$13G8 55D          | Neidla GeForce MX150                            |  |
|    | 9. | Acer:   | Utrybook  | 14.0   | IPS Panel Full HD 1920x1080        | Intel Core & 8250U 1,6GHz  | 868  | 25668 SSD           | Intel UHO Graphics 620                          |  |
| H  | 10 | 165     | Nowbook   | 15.6   | 1366x768                           | Witel Core iS 72000 2.5GHz | 456  | 50008 HDD           | Intel HD Graphics 620                           |  |
| ı  | 11 | 167     | Notebook  | 15.6   | Full HD 1920v1080                  | Intel Core i3 600(k) 2GHz  | 408  | 50008 HDD           | Intel HD Graphics 520                           |  |
|    | 12 | Apple   | Utrobook  | 15.4   | IPS Famel Retina Display 2000x1000 | Intel Core I7 2.8GHz       | 1658 | 25408 550           | AMD Radeon Pro 555                              |  |
| ij | 13 | Deli    | Notebook  | 15.6   | Full HD 1920v1080                  | Intel Core i3 6006U 2GHz   | 458  | 256GB SSD           | AMD Radeon R5 M400                              |  |
| i  | 14 | Apple   | Utrabook  | 12.0   | IPS Panel Retina Display 2304v1440 | Intel Core M m3 12GHz      | 858  | 25608 550           | Irmil HD Graphics 615                           |  |
|    | 15 | Apple   | Utrabook  | 13.3   | IPS Panel Retina Display 2560v1600 | Intel Core IS 2.3 GHz      | 858  | 25608 550           | Intel Int Plus Graphics 640                     |  |
| 1  | 16 | Delt    | Nonebook  | 15.6   | Full HO 1920v1080                  | Intel Core I7 75000 2,7GHz | 808  | 254GB 55D           | AMD Radeon RS M430                              |  |
|    | 17 | Apple   | Utrabook  | 15.4   | IPS Finel Retina Display 2880x1800 | Intel Core I7 2:9GHz       | 1608 | \$1268 550          | AMD Radeon Pro 560                              |  |
|    |    |         |           |        | # 0.00 (000 (000                   | 1.14 3.500.000             |      |                     | 11.11 T. A. |  |

#### Dataset

#### **Exploratory Data Analysis**

Exploratory analysis is a process to explore and understand the data and data relationship in a complete depth so that it makes feature engineering and machine learning modeling steps smooth and streamlined for prediction. EDA involves Univariate, Bivariate, or Multivariate analysis. EDA helps to prove our assumptions true or false. In other words, it helps to perform hypothesis testing. We will start from the first column and explore each column and understand what impact it creates on the target column. At the required step, we will also perform preprocessing and feature engineering tasks. our aim in performing in-depth EDA is to prepare and clean data for better machine learning modeling to achieve high performance and generalized models. so let's get started with analyzing and preparing the dataset for prediction.





**Data Distribution** 



Price corr with weight

# **Feature Selection**

Feature selection is the process of selecting a subset of the most relevant features from a larger set of features for use in building a prediction model. The goal of feature selection is to identify the most informative and relevant features that have the greatest impact on the target variable, while reducing the dimensionality of the data and decreasing the risk of over fitting.



#### Methods of Feature selection:

- Correlation Analysis
- Mutual Information
- Feature Importance
- Lasso and Ridge regularization
- Dimensionality reduction

#### Reasons why Feature Selection is imp:

- · Reducing the dimensionality of data
- · Improving Model performance
- · Identifying importance feature
- · Reducing over fitting







**Correlation analysis** 

## **Model Selection**

In the first step for categorical encoding, we passed the index of columns to encode, and pass-through means pass the other numeric columns as it is. The best accuracy I got is with all-time favorite Random Forest. But you can use this code again by changing the algorithm and its parameters. I am showing Random forest, you can do Hyper parameter tuning using Grid search CV or Random Search CV, we can also do feature scaling but it does not create any impact on Random Forest.

#### Different ML models use for Model Selection:

- Linear Regression
- · Ridge Regression
- Lasso Regression
- KNN
- Decision Trees
- Random Forest
- SVM
- Ada Boost
- Gradient Boost



## **Model Evaluation**

#### Random forest

```
In [108]: step1 = ColumnTransformer(transformers=[
                   ('col tnf', OneHotEncoder(sparse=False, drop='first'), [0,1,7,10,11])
           1,remainder='passthrough')
          step2 = RandomForestRegressor(n_estimators=100,
                                        random state=3,
                                        max samples=0.5,
                                        max features=0.75,
                                        max depth=15)
          pipe = Pipeline([
              ('step1', step1),
              ('step2', step2)
          1)
          pipe.fit(X train,y train)
          y pred = pipe.predict(X test)
          print('R2 score',r2 score(y test,y pred))
          print('MAE', mean absolute error(y test, y pred))
```

R2 score 0.8873402378382488 MAE 0.15860130110457718

#### Selected Model with R2 Score:

# **Feasibility Studies**

- Data availability
- Data quality
- Computational resources
- Model complexity
- Model interpretability
- Model performance
- Legal and ethical considerations
- Cost and benefit analysis



# Limitations

- Data availability
- Data quality
- Computational resources
- Model complexity
- Model interpretability
- Real-world variability
- Non-linear relationships
- Over fitting



# **User Interface**







## Conclusion

- Summary of key findings: Summarize the key findings of the model development process, including the
  performance of the final model and any insights into the factors that affect laptop prices.
- Model performance: Provide a summary of the model's performance, such as the accuracy, recall, precision, F1-score, and AUC-ROC, and compare it with the benchmark models or with other models that were considered.
- Model interpretability: Discuss how the model provides insights into the factors that affect laptop prices, and how it can be used to make more informed decisions.
- Potential Impact: Discuss the potential impact of the model on the domain, such as how it can be used to
  improve pricing strategies and make better decisions for buyers and sellers.
- Limitations: Summarize the limitations of the model, such as the availability of data, the quality of data, or the complexity of the model, and discuss how they may have affected the results.
- Future work: Discuss any future work that could be done to improve the model, such as collecting more
  data, incorporating additional features, or testing different model architectures.
- Conclusion: Sum up the main takeaways from the model development and results and its potential impact on the domain.

