Regresión Polinómica

jerf

15/6/2021

Regresión Polinómica

```
dataset = read.csv("Position_Salaries.csv")
dataset = dataset[, 2:3]
dataset
##
      Level Salary
## 1
          1
              45000
## 2
          2
              50000
## 3
          3
              60000
## 4
          4
             80000
## 5
          5 110000
## 6
          6 150000
## 7
          7 200000
## 8
          8 300000
## 9
          9 500000
         10 1000000
```

Pre Procesado de datos

No es necesario dividir el conjunto de datos, pues son muy pocos

Escalado de datos

Tampoco es necesario en este caso

Ajustar Mdelo de Regresión Lineal con el dataset

```
lin_reg = lm(formula = Salary ~ Level,
             data = dataset
summary(lin_reg)
##
## Call:
## lm(formula = Salary ~ Level, data = dataset)
## Residuals:
##
      Min
                1Q Median
                                3Q
                                       Max
## -170818 -129720 -40379
                             65856
                                    386545
##
```

```
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -195333    124790 -1.565    0.15615
## Level         80879    20112    4.021    0.00383 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 182700 on 8 degrees of freedom
## Multiple R-squared: 0.669, Adjusted R-squared: 0.6277
## F-statistic: 16.17 on 1 and 8 DF, p-value: 0.003833
```

Un empleado en nivel cero debería pagar 195333 a la empresa, por cada nivel que suba el empleado ganaría 80879 más

Ajustar Modelo de Regresión Polinómica con el dataset

```
dataset$Level2 = dataset$Level ^ 2
dataset$Level3 = dataset$Level ^ 3
dataset$Level4 = dataset$Level ^ 4
poly_reg = lm(formula = Salary ~ Level + Level2 + Level3 + Level4,
             data = dataset)
summary(poly_reg)
##
## Call:
## lm(formula = Salary ~ Level + Level2 + Level3 + Level4, data = dataset)
##
## Residuals:
              2
##
       1
                     3
                                   5
                                          6
                                                                    10
                                      6725 15997 10006 -28695 11084
##
  -8357 18240
                 1358 -14633 -11725
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                          67768.0
## (Intercept) 184166.7
                                   2.718 0.04189 *
                           76382.2 -2.762 0.03972 *
## Level
              -211002.3
## Level2
                94765.4
                           26454.2
                                   3.582 0.01584 *
## Level3
               -15463.3
                            3535.0 -4.374 0.00719 **
                             159.8
## Level4
                  890.2
                                   5.570 0.00257 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 20510 on 5 degrees of freedom
```

Visualización del modelo Lineal

Multiple R-squared: 0.9974, Adjusted R-squared: 0.9953 ## F-statistic: 478.1 on 4 and 5 DF, p-value: 1.213e-06

Predicción lineal del sueldo en función del nivel de empleado

Visualización del modelo Polinómico

Predicción Polinómica del sueldo en función del nivel de empleado

Prediccion de resultados con Regresión Lineal

```
y_pred = predict(lin_reg, newdata = data.frame(Level = 6.5))
y_pred
## 1
## 330378.8
```

Es una cantidad mucho más elevada de la que se considera en los datos

Predicción de resultados con Regresión Polinómica

```
y_pred = predict(poly_reg, newdata = data.frame(Level = 6.5 , Level2 = 6.5 ^2, Level3 = 6.5 ^3, Level4 = y_pred
## 1
```

158862.5

La predicción es mucho más acertada, por lo cual este modelo trabaja mejor