SỞ GD & ĐT HÀ TĨNH TRƯỜNG THPT TRẦN PHÚ

ĐỀ THI THỬ TỐT NGHIỆP THPT LẦN 1 NĂM 2022 **MÔN TOÁN**

Thời gian làm bài : 90 Phút; (Đề có 50 câu)

(Đề có 4 trang)

Ho tên: Số báo danh:

Mã đề 101

Câu 1. Cho đồ thị hàm số bậc ba y = f(x) có đồ thị như hình vẽ bên. Hàm số đã cho nghich biến trên khoảng nào dưới đây?

- **A.** $(2;+\infty)$.
- $\mathbf{C}.(0;2).$
- **D.** (-3;1).

Câu 2. Hàm số nào sau đây có giá trị nhỏ nhất trên tập số thực?

A.
$$y = -x^4 - 3x^2 + 4$$
.

B.
$$y = x^3 - 6x^2 + 9x - 5$$
.

C.
$$y = x^3 - 3x^2 + 3x - 5$$
.

D.
$$v = 2x^4 - 4x^2 + 1$$
.

Câu 3. Trong các hàm số sau, hàm số nào là hàm số mũ?

A.
$$f(x) = \sqrt[3]{x}$$
.

B.
$$g(x) = x - 4^x$$
.

C.
$$h(x) = e^x$$

B.
$$g(x) = x - 4^x$$
. **C.** $h(x) = e^x$. **D.** $t(x) = x^{\frac{1}{3}}$.

Câu 4. Nghiệm của phương trình $3^{x+2} = 27$ là

A.
$$x = \frac{5}{2}$$
.

B.
$$x = 2$$
.

C.
$$x = \frac{3}{2}$$
.

D.
$$x = 1$$

Câu 5. Thể tích của khối trụ tròn xoay có bán kính đáy bằng a, chiều cao a bằng

A.
$$\frac{2}{3}\pi a^3$$
.

B.
$$2\pi a^3$$
.

C.
$$\pi a^3$$
.

D.
$$\frac{1}{3}\pi a^3$$
.

Câu 6. Diện tích xung quanh của hình nón có độ dài đường sinh l và bán kính đáy r tính theo công thức

A.
$$S = 4\pi rl$$
.

B.
$$S = \frac{1}{3}\pi rl$$
.

$$\mathbf{C.} \ S = 2\pi rl \ .$$

D.
$$S = \pi r l$$
.

Câu 7. Thể tích khối lăng trụ có diện tích đáy bằng a^2 và chiều cao bằng 6a là

A.
$$6a^3$$
.

B.
$$2a^{3}$$

C.
$$3\pi a^3$$
.

D.
$$\pi a^3$$
.

Câu 8. Cho khối chóp S.ABCD có đáy là hình vuông cạnh bằng 3a, cạnh bên SA vuông góc với mặt phẳng (ABCD) và SA = a. Thể tích của khối chóp đã cho là

A.
$$V = 6a^3$$
.

B.
$$V = 2a^3$$
.

C.
$$V = 3a^3$$
. **D.** $V = 9a^3$.

D.
$$V = 9a^3$$

Câu 9. Đạo hàm của hàm số $y = 2x - \ln x$ là

A.
$$y' = x^2 - \frac{1}{r}$$
 B. $y' = 2 - \frac{1}{r}$ **C.** $y' = x - \frac{1}{r}$ **D.** $y' = 2 + \frac{1}{r}$

B.
$$y' = 2 - \frac{1}{x}$$

C.
$$y' = x - \frac{1}{x}$$

D.
$$y' = 2 + \frac{1}{x}$$

Câu 10. Trong hệ tọa độ Oxyz, cho điểm A(-3;1;2). Hình chiếu vuông góc của A lên trục Oz là điểm

A.
$$M(3;1;-2)$$
.

B.
$$N(0;-1;0)$$
.

C.
$$P(0;1;0)$$
.

D.
$$Q(0;0;2)$$
.

Câu 11. Họ nguyên hàm của hàm số $f(x) = x^3 - \frac{5}{x}$ là

A.
$$\frac{x^4}{4} - 5\ln|x| + C$$
. **B.** $\frac{x^4}{4} + 3\ln x + C$. **C.** $\frac{x^4}{4} - 5\ln x + C$. **D.** $3x^2 + \frac{5}{x^2} + C$.

B.
$$\frac{x^4}{4} + 3 \ln x + C$$

C.
$$\frac{x^4}{4} - 5 \ln x + C$$

D.
$$3x^2 + \frac{5}{x^2} + C$$

Câu 12. Cho $\int_{1}^{5} f(x) dx = -5$, $\int_{1}^{5} g(x) dx = 7$. Tính $K = \int_{1}^{5} \left[g(x) - f(x) \right] dx$.

A.
$$K = 16$$
.

B.
$$K = 12$$

C.
$$K = -47$$

D.
$$K = 6$$
.

Câu 13. Một cấp số cộng (u_n) , có $u_1 = \frac{1}{2}$; $u_{12} = \frac{7}{2}$. Công sai d của cấp số cộng đó là

A.
$$d = \frac{3}{10}$$
.

B.
$$d = \frac{11}{3}$$

B.
$$d = \frac{11}{3}$$
. **C.** $d = \frac{3}{11}$.

D.
$$d = \frac{10}{3}$$
.

- Câu 14. Cho đa giác lồi 11 đỉnh. Số tứ giác có cả 4 đỉnh thuộc đỉnh của đa giác đã cho là
 - **A.** 217.
- **B.** 220.
- **C.** 1320.
- **D.** 330.

Câu 15. Cho hàm số y = f(x) có bảng biến thiên

Số nghiệm của phương trình f(x)-3=0 là:

Câu 16. Cho hàm số f(x) liên tục trên $\mathbb{R}\setminus\{-1\}$ và có bảng biến thiên như hình dưới đây. Tiệm cận đứng của đồ thị hàm số đã cho là đường thẳng có phương trình

A.
$$x = -1$$
.

B.
$$x = 2$$
.

C.
$$y = 2$$
.

D.
$$x = 1$$
.

Câu 17. Đường cong trong hình bên dưới là đồ thị của hàm số nào dưới đây?

A.
$$y = -x^4 + 3x^2 - 2$$
. **B.** $y = -x^4 + 2x^2 - 1$.

B.
$$v = -x^4 + 2x^2 - 1$$

C.
$$y = -x^4 + x^2 -$$

C.
$$y = -x^4 + x^2 - 1$$
. **D.** $y = -x^4 + 3x^2 - 3$.

Câu 18. Hàm số $f(x) = 5^{2x^2-1}$ có đạo hàm là

B.
$$4x.5^{2x^2-1}$$
.

B.
$$4x.5^{2x^2-1}$$
. **C.** $4x.5^{2x^2-1}$. ln 5.

D.
$$5^{2x^2-1}$$
.

Câu 19. Tập xác định của hàm số $y = \log_2(x-2)$ là tập

A.
$$\mathbb{R}\setminus\{2\}$$
.

C.
$$(2; +\infty)$$
.

D.
$$[2; +\infty)$$
.

Câu 20. Một quả bóng có đường kính 12 cm. Diện tích bề mặt của quả bóng là

A.
$$144\pi$$
 (cm²).

B.
$$36\pi (\text{cm}^2)$$

C.
$$24\pi (\text{cm}^2)$$

D.
$$864\pi (\text{cm}^2)$$

Câu 21. Cho khối hộp ABCDA'B'C'D'. Biết rằng thể tích khối lặng trụ ABD.A'B'D' bằng $2a^3\sqrt{3}$. Thể tích của khối hộp ABCD.A'B'C'D' là

B.
$$\frac{a^3\sqrt{3}}{2}$$
.

C.
$$8a^3\sqrt{3}$$
.

D.
$$a^3 \sqrt{3}$$
.

Câu 22. Trong hệ toạ độ Oxyz, mặt cầu $(S): x^2 + y^2 + (z-3)^2 = 1$ có tâm là điểm nào dưới đây?

A.
$$I(0;0;-3)$$
.

B.
$$N(1;1;3)$$
.

C.
$$H(0;0;3)$$
.

D.
$$K(3;0;0)$$
.

Câu 23. Tiệm cận ngang của đồ thị hàm số $y = \frac{2x-1}{3x-2}$ là đường thẳng

A.
$$x = 2$$
.

B.
$$y = \frac{2}{3}$$
.

C.
$$x = \frac{2}{3}$$
.

D.
$$y = 2$$
.

Câu 24. Số các hoán vị của 5 phần tử khác nhau kí hiệu là

$$\mathbf{A}. B_{\varepsilon}.$$

B.
$$A_5$$
.

C.
$$C_5$$
.

D.
$$P_5$$
.

Câu 25. Nguyên hàm của hàm số $f(x) = e^x - \sin x$ là

$$\mathbf{A.} \ e^{x} - \cos x + C$$

$$\mathbf{B.} \ e^x + \cos x + C$$

$$\mathbf{C.} \ e^x - \sin x + C \ .$$

A.
$$e^x - \cos x + C$$
. **B.** $e^x + \cos x + C$. **C.** $e^x - \sin x + C$. **D.** $\frac{e^{x+1}}{x+1} + \cos x + C$.

Câu 26. Cho hàm số $f(x) = \log_2 x$. Với $x > 0$, giá trị của biểu thức $P = f\left(\frac{6}{x}\right) + f\left(\frac{8x}{3}\right)$ bằng								
A. $P = 2$.	B. $P = 1$.	C. $P = 4$.	D. $P = 3$.					
Câu 27. Cho hàm số mũ $y = (6-a)^x$ với a là tham số. Có bao nhiều số tự nhiên a để hàm số đã cho đồng								
biến trên ℝ?	_							
A. 3. Câu 28. Cho <i>a</i> , <i>b</i> là các số dương	B. 6. Tìm x biết $\log_3 x = 3\log_3 x$		D. 4.					
A. $x = \frac{a^5}{b^3}$.	B. $x = \frac{a^3}{b^5}$.	C. $x = a^3 b^5$.	D. $x = a^3 - b^5$.					
	âu 29. Thể tích của khối chóp tứ giác đều $S.ABCD$ có chiều cao bằng $\sqrt{3}a$ và độ dài cạnh bên $3a$ bằng							
A. $\frac{8\sqrt{3}a^3}{3}$.	B. $4\sqrt{3}a^3$.	C. $\frac{4\sqrt{5}a^3}{3}$.	D. $\frac{4\sqrt{3}a^3}{3}$.					
Câu 30. Cho đồ thị hàm số $y = \frac{2x+1}{x-1}$ là (C). Biết đường thẳng $d: y = x+2$ cắt (C) tại hai điểm phân biệt								
A và B có hoành độ lần lượt là x_1 A. 5.	và <i>x</i> ₂ . Giá trị của biểu B. 1.	thức $x_1 + x_2$ bằng C. 3.	D. 2.					
Câu 31. Một khối trụ tròn xoay có bán kính đáy bằng a và chiều cao $2a\sqrt{5}$. Thể tích khối cầu ngoại tiếp khối trụ đã cho bằng								
A. $8\sqrt{6}\pi a^3$.	B. $6\sqrt{6}\pi a^3$.	C. $4\sqrt{3}\pi a^3$.	D. $4\sqrt{6}\pi a^3$.					
Câu 32. Gọi $F(x)$ là một nguyên								
	B. 2.	·	D. 0.					
Câu 33. Trong hệ trục tọa độ Ox			1;0) và điểm $M(1;-2;2)$					
trung điểm của đoạn QR. Tọa độ đ	iểm Q là							
A. $(-1;1;-2)$.	B. $(-2;2;-3)$.	C. (0;1;3).	D. $(2;-1;1)$.					
Câu 34. Cho hình hộp chữ nhật $ABCD.A'B'C'D'$ có $AB = 2a$, $AD = AA' = a$. Khoảng cách giữa hai đường thẳng AC và DC' bằng								
A. $\frac{\sqrt{6}a}{3}$.	$\sqrt{3}a$	$c \sqrt{3}a$	\mathbf{p}^{-2a}					
3	<u> </u>	3	3					
 Câu 35. Bác Minh gửi 60 triệu vào ngân hàng kì hạn 1 năm với lãi suất 5,6% /năm. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào gốc để tính lãi cho năm tiếp theo. Hỏi sau ít nhất bao nhiêu năm bác Minh nhận được số tiền nhiều hơn 120 triệu đồng bao gồm cả gốc và lãi ? A. 11 năm. B. 12 năm. C. 13 năm. D. 14 năm. 								
Câu 36. Trong mặt phẳng (P), cho hình bình hành $ABCD$ có $AB = 8dm$; $AD = 3dm$; $ABC = 45^{\circ}$. Cho $ABCD$								
đã cho quay xung quanh đường thầ								
A. $13\pi dm^3$. Câu 37. Cho a,b thỏa mãn điều k	B. $15\pi dm^3$. ien $\begin{cases} 1 < b < a \end{cases}$	C. $36\pi dm^3$. Tính giá tri của biểu	D. $18\pi dm^3$. thức $T = \log_{10} \left(ab^2\right)$.					
A. $13\pi dm^3$. B. $15\pi dm^3$. C. $36\pi dm^3$. D. $18\pi dm^3$. C. $36\pi dm^3$. D. $18\pi dm^3$. C. $36\pi dm^3$. D. $18\pi dm^3$. C. $36\pi dm^3$. D.								
Câu 38. Cho tứ diện $OABC$ vuông tại O có $OA = a, OB = 4a, OC = 3a$. Gọi M, N, P lần lượt là điểm đối xứng với điểm O qua trung điểm ba cạnh AB , BC , CA của tam giác ABC . Thể tích của tứ diện $OMNP$ bằng								
A. $2a^3$.	B. $3a^3$.	C. $4a^3$.	D. $\frac{8}{3}a^3$.					
Câu 39. Cho hàm số $y = \frac{mx - m^2 - 1}{x + 2m}$ với m là tham số. Có bao nhiều giá trị của m để giá trị lớn nhất của								
hàm số đã cho trên đoạn $[1;3]$ bằng $\frac{1}{5}$.								

A. 1.	B. 2.	C. 0.	D. 3.					
Câu 40. Cho hàm số $y = f(x) > 0$ liên tục trên \mathbb{R} và $f(1) = e^3$. Biết $f'(x) = (2x-3)f(x)$, $\forall x \in \mathbb{R}$. Hỏi								
phương trình $f(x) = e^{2x^4 - 3x + 4}$ có bao nhiều nghiệm								
A. 4.	B. 3.	C. 2.	D. 0.					
Câu 41. Cho hàm số $y = f(x)$ c	có liên tục trên $\mathbb R$ và $\mathfrak c$	đạo hàm là $f'(x) = \begin{cases} x \\ e^{x+1} \end{cases}$	$-x \text{ km } x \ge -2$ Hàm số đã $-1 \text{ khi } x < -2$					
cho có bao nhiêu điểm cực trị?		(C	Time N \ 2					
	B. 5.		D. 3.					
	Câu 42. Cho hàm số $y = f(x)$ có bảng xét dấu đạo hàm như ở bảng dưới đây.							
$\frac{s}{f'(0)}$	$\frac{x}{(x)} - \infty = -2$	$\frac{0}{0} + 0 -$						
Hỏi hàm số $g(x) = 3 - 2f\left(x + \frac{1}{x}\right)$ đồng biến trên khoảng nào dưới đây?								
$\mathbf{A.}\left(-\frac{1}{2};0\right).$	$\mathbf{B.}\left(\frac{1}{2};2\right).$	$\mathbf{C.}\left(-2;-\frac{1}{2}\right).$	$\mathbf{D.}\left(0;\frac{1}{2}\right).$					
Câu 43. Cho phương trình $\log_{3}^{2} \left(1 - x^{2}\right) + \log_{\frac{1}{2}} \left(x + \frac{m}{4}\right) \cdot \log_{\sqrt{3}} \sqrt{1 - x^{2}} = 0$ với m là tham số . Có bao nhiều								
giá trị nguyên của m để phương t \mathbf{A} . 1.	rình đã cho có đúng 2 r B. 8.	nghiệm phân biệt ? C. 3.	D. 6.					
Câu 44. Cho khối chóp S.ABCD	,		ất cả các cạnh bên của hình					
chóp bằng $5a$. Thể tích lớn nhất c $20a^3\sqrt{5}$		_	~ .					
A. $\frac{288 - \sqrt{8}}{3}$.	B. $\frac{38}{3}$.	C. $\frac{40\sqrt{5}a^3}{3}$.	D. $15\sqrt{5}a^3$.					
Câu 45. Cho hàm số $y = f(x)$	$) = -x^3 + \frac{13}{2}x^2 - 12x - 6$	$e^x - 2022$. Cho biết bấ	t phương trình ẩn <i>m</i> sau					
đây $f \left[\log_{0.5} \left(\log_2 \left(2m + 1 \right) \right) - 2021 \right]$	$\left[f\left(f\left(0\right) \right] \right]$ có bao n	hiêu nghiệm nguyên?						
	B. 10.							
Câu 46. Cho hàm số $y = x^3 + (m^3 + m^2)$	·		hiêu giá trị nguyên của m					
thoả mãn $ m-1 < 5$ để hàm số đã			D 4					
A. 0.	B. 3.	C. 5.	D. 4.					
A. 6. B. 3. C. 5. D. 4. Câu 47. Có bao nhiều giá trị m để hàm số $y = \frac{2}{3}m^2x^3 - 4mx^2 + (8 - 2m^2)x - 1$ nghịch biến trên khoảng								
(-2;0)	D 6	C 1	D 2					
Câu 48. Trong khoảng (–	-10;20) có bao nl	hiêu giá trị <i>m</i> ng	uyên để phương trình					
A. 4. B. 6. C. 1. D. 2. Câu 48. Trong khoảng $(-10;20)$ có bao nhiều giá trị m nguyên để phương trình $4x \log_3(x+1) = \log_9 \left[9(x+1)^{2m}\right]$ có đúng 2 nghiệm phân biệt.								
A. 8.			D. 15.					
Câu 49. Cho tứ diện $ABCD$ có $AB = 3$, $AC = 6$, $AD = 9$, $BAC = 60^{\circ}$, $CAD = 90^{\circ}$, $BAD = 120^{\circ}$. Thể tích của khối tứ diện $ABCD$ bằng								
A. $\frac{27\sqrt{2}}{2}$.	B. $\frac{9\sqrt{2}}{4}$.	C. $9\sqrt{2}$.	D. $6\sqrt{6}$.					
Câu 50. Có bao nhiều số tự nhiên x sao cho mỗi giá trị x tồn tại số y thoả mãn								
$\log_3(x-y) \ge \log_6\left(x^2 + 2y^2\right)?$								
A. 1	B. 3	C. 2	D. 6					

C. 2 -----Hết-----

ĐÁP ÁN ĐỀ THI THỬ TỐT NGHIỆP THPT LẦN 1 MÔN TOÁN

Câu	Mã đề 101	Mã đề 202	Mã đề 103	Mã đề 204
1	A	C	D	D
2	D	A	D	С
3	C	D	A	A
4	D	В	С	В
5	C	В	D	В
6	D	C	D	C
7	A	В	В	В
8	C	D	A	D
9	В	D	C	D
10	D	C	C	A
11	A	C	A	С
12	В	A	C	В
13	C	В	D	C
14	D	В	В	D
15	A	D	A	В
16	A	В	C	В
17	В	В	B	В
18	C	A	A	A
19	C	В	C	В
20	A	В	D	C
21	A	C	A	В
22	C	D	C	D
23	B	C	B	C
24	D	В	A	В
25	B	D	B	C
26	C	D	C	D
27	C	D	C	D
28	B	A	B	D
29	B	D	B	A
30	В	A	B	A
31	A	A	C	A
32	C	A	D	C
33	D	C	D	A
34	D	A	D	В
35	C	B	C	A
36	C	D	C	D
37	D	A	C	A
38	C	A	D	A
39	A	A	C	C
40	C	B	A	A
41	В	C	A	B
42	A	D	B	В
43	B	A	D	D
44	C	B	B	A
45	D	A	C	A
46	D	B	C	B
47	C	D	B	C
48	В	C	B	C
49	A	C	D	D
50	B	C	A	C
30	D		A	L