

Resonant Circuits

Series RLC Resonant Circuit

Resonant Circuits

- © RLC Series resonant circuit
 - RLC circuit in series
 - Phasor diagram
 - Resonance in RLC circuit
 - Graphical representation of resonance
 - Bandwidth of series RLC
 - Half power frequencies
 - Q-factor of series circuit

Series RLC Resonant Circuit

Conditions for Series Resonance

Impedance
$$Z = R + jX_L - jX_C$$

When Z becomes real i.e. when Z consists of only the resistive part i.e. Z = R

$$X_L - X_C = 0$$

Magnitude of Z, i.e. | Z |, is a minimum

This resonance is known as

Low Impedance Resonance

Phasor Diagram of a RLC series circuit at resonance

Phasor Diagram of a RLC series circuit at resonance

There are 4 voltages but only 1 current in the circuit. The current is therefore usually chosen as the Reference.

Phasor Diagram of a RLC series circuit at resonance

V_R is the voltage across a pure resistor and is therefore in phase with I.

 V_L is the voltage across a pure inductor and is therefore leading the current I by 90° .

Phasor Diagram of a RLC series circuit at resonance

$$V_{L} = I X_{L}$$

$$V_{R} = I R = V$$

$$I(Ref)$$

$$V_{C} = I X_{C}$$

$$V = V_R + V_L + V_C$$
 (By KVL)
At resonance, $|V_L| = |V_C|$, making $V_L + V_C = 0$, leaving only $V = V_R$
ET0053: Circuit Theory & Analysis

Phasor Diagram of a RLC series circuit at resonance

$$V_{L} = I X_{L}$$

$$V_{R} = I R = V$$

$$I(Ref)$$

$$V_{C} = I X_{C}$$

At resonance, the applied voltage V and current I are in phase.

Z = R and the power factor of the circuit is unity (equals to 1 ET0053: Circuit Theory & Analysis

Series RLC Circuit at Resonant

At resonance, V & I are in phase and Z = R. The circuit is still an RLC circuit but is now

behaving like a pure resistor given by R

Equations for Series ResonantFrequency

Resonant Frequency (f_0) is the frequency at which the resonance occurs.

```
At resonance, Z is real (= R)
Giving X_L - X_C = 0
```

Therefore
$$\omega$$
 L = 1/ ω C, giving ω = 1/ \sqrt{LC} rad/s = ω_o (= 2 π f $_o$) or f $_o$ = 1/2 π \sqrt{LC} Hz

Variations of Resistance, Impedance and Current with Frequency - Series Circuit

Variations of Resistance, Impedance and Current with Frequency - Series Circuit

Half Power Frequencies and Bandwidth of a series resonant circuit

f₂ and f₁ are frequencies at which the power dissipation of the circuit is half the power dissipated at resonance. f₂ and f₁ are known as upper and lower half power frequencies (or cut-off frequencies) respectively.

BW is the range of frequency within which the current I is equal to or greater than 70.7 % of its value at resonance (Io)

Bandwidth and Half Power Frequencies of a series resonant circuit

Bandwidth of a series resonant circuit

BW =
$$f_2$$
 - f_1 (in Hz) or = ω_2 - ω_1 (in rad/s)

BW serves as a measure of the sharpness of the peak.

Quality Factor or Q Factor of Series Resonance Circuit

The ratio of the capacitor or inductor voltage at resonance to the supply voltage is a measure of the quality of a resonance circuit.

This ratio is termed the Q factor of the circuit, and is also known as the voltage magnification factor.

Effects of varying R, L and C on the Q factor of series RLC circuit

Q factor =
$$V_L/V = \omega_o L/R$$

or = $V_c/V = 1/\omega_o RC$

Q factor of a circuit at resonance can be improved (increased) by reducing the effective resistance R of the circuit.

Effect of changing R on bandwidth and factor

Decrease R gives a sharper current response, narrower bandwidth and higher Q factor 0053: Circuit Theory & Analysis

Relationship between Bandwidth, resonant frequency and Q factor

$$BW = f_o / Q (Hz)$$
or
$$BW = 2 \pi f_o / Q (rad/s)$$

Example 3.1

A series resonant circuit has the following parameters: frequency at resonance = $5000/2\pi$ Hz; impedance at resonance = 56Ω ; Q factor = 25.

- (a) Assuming that the capacitor is pure, calculate
 - (i) the capacitance value
 - (ii) the inductance value
- (b) Determine the upper and lower half power frequencies.

Example 3.1

Frequency at resonance = $5000/2\pi$ Hz = f_o giving $\omega_o = 2\pi f_o = 5000$ rad/s impedance at resonance = $56 \Omega = R$ Q factor = 25

- (i) $Q = 25 = \omega_o L / R = 5000 \text{ x L} / 56$ giving L = 25 x 56 / 5000 = 0.28 H
- (ii) $Q = 25 = 1/\omega_0 RC = 1/5000(56)C$ giving $C = 1/(25 \times 56 \times 5000) = 0.143 \mu F$

Example 3.1

Frequency at resonance = $5000/2\pi$ Hz = f_o = 795.8 Hz Q factor = 25 (b) Bandwidth BW = f_2 - f_1 = f_o / Q = $(5000/2\pi)$ / 25 = 31.83 Hz

$$f_1 = f_o - BW / 2 = 795.8 - 31.83/2 = 779.9 Hz$$

 $f_2 = f_o + BW / 2 = 795.8 + 31.83/2 = 811.7 Hz$

