

Parul University

Faculty of Engineering & Technology

Department of Applied Sciences and Humanities

1st Year B.Tech Programme (All Branches)

Mathematics – 1 (303191101)

Assignment -1

Q-1	Choose the correct option from the below given questions.		
	1)The linear system of two equations,		
	x + 2y = 7		
		2y = 3	
	possess	LINE LeC	
	a)Infinite solutions c)A unique solution	b)No solution d)None of the above	
	C)A unique solution	d)None of the above	
		$\begin{bmatrix} 7 & 12 \\ 1 & 2 \end{bmatrix}$	
	2) The eigen values for the matrix $A = \begin{bmatrix} 0 & -1 & -2 \\ 0 & 0 & 3 \end{bmatrix}$ are		
	a)1. –1.3	0 3 J b)1,0,0	
	a)1, -1,3 c)1,1,2	d) 1, -4,3	
	3) The matrix $A = \begin{bmatrix} 1 & 0 & 1 & -1 & 6 & 0 \\ 0 & 1 & 0 & 7 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$ is in,		
	3) The matrix $A = \begin{bmatrix} 0 & 1 & 0 & 7 & 2 & 0 \end{bmatrix}$ is in	,	
	[0 0 0 0 0 1]		
	a)Only Row echelon Form	b)Reduced Row echelon form	
	[-2 -8 -12]	difference of any	
	4) If eigen values of $A = \begin{bmatrix} 1 & 4 & 4 \end{bmatrix}$	are $0,1,2$ the the eigen values for $A^T is$	
d)Neither of any $ 4) \text{If eigen values of A} = \begin{bmatrix} -2 & -8 & -12 \\ 1 & 4 & 4 \\ 0 & 0 & 1 \end{bmatrix} \text{ are } 0,1,2 \text{ the the eigen values} $			
	a)1,2,2 c)0,1,1/2	b)0,1,2 d)1,4,3	
	5) The coefficient matrix for the quadratic form, $x^2 + y^2 - 2xy$		
	$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	$b)\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$	
	$\begin{bmatrix} c & c & c \\ c & -1 \end{bmatrix}$	$d)\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$	
	10 -11	, r-1 0 1	
	$6)\frac{\partial f}{\partial x} \text{ for } f = x^y \text{ is}$		
	$\frac{\partial x}{\partial v x^{y-1}}$	$b)xy^{x-1}$	
	$\begin{array}{c} x \\ x \\ y \\ x^{y-1} \\ x \\ y \\ x^{y-1} \end{array}$	d)none of the above	
		/	

	[1 0 1 -1 0]		
	7)Rank of matrix 'A' having row echelon form as $R = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$, is		
	a)1 b)3		
	c)2		
Q-2	Answer the following questions		
	1)State Cayley-Hamilton theorem.		
	2)How many types of solutions does a homogeneous linear system possess and which are they?		
	3)Define free variables and leading variables.		
	4)Write names of methods to solve linear system.		
	5) Define a modal matrix with its notation.		
	6) Write four paths for evaluating limit of a function for two variables.		
	7)A 3x3 matrix, say 'B' has rank 3 iff B is		
	8) The value class for quadratic form $x_1^2 + x_2^2$ is		
	9)Define limit of a function for two variables.		
	10)State Euler's theorem for first order for function of two as well as three variables.		
Q-3	Solve the following linear systems using Gauss Jordan Elimination method.		
	x - 2y - z + 3w = 1		
	2x - 4y + z = 5 $x - 2y + 2z - 3w = 4$		
Q-4	Find the rank of a matrix using determinant method		
	$A = \begin{bmatrix} 1 & 2 & -1 & -4 \\ 2 & 4 & 3 & 5 \\ -1 & -2 & 6 & -7 \end{bmatrix}$		
	$A = \begin{bmatrix} 2 & 4 & 3 & 5 \\ 1 & 2 & 6 & 7 \end{bmatrix}$		
Q-5	Find rank of a matrix by reducing in row echelon form.		
	$A = \begin{bmatrix} 1 & 1 & -1 & 1 \\ 1 & -1 & 2 & -1 \\ 3 & 1 & 0 & 1 \end{bmatrix}$		
Q-6	Γ−2 2 −31		
V S	Find the eigen values and eigen vectors for $A = \begin{bmatrix} 2 & 1 & -6 \end{bmatrix}$		
	$\begin{bmatrix} -1 & -2 & 0 \end{bmatrix}$		
Q-7	Find the eigen values and eigen vectors for $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$ Find a matrix P that diagonalizes matrix A and determine $P^{-1}AP$ for		
	$A = \begin{bmatrix} -1 & 4 & -2 \\ -3 & 4 & 0 \\ -3 & 1 & 3 \end{bmatrix}$		
Q-8	8 $((2x^2 + v), (x, v) \neq (1.2)$		
	Discuss the continuity of $f(x, y) = \begin{cases} (2x^2 + y), & (x, y) \neq (1, 2) \\ 0 & (x, y) = (1, 2) \end{cases}$		
Q-9	Check whether the given function is homogeneous or not . If yes then show that $x \frac{\partial u}{\partial x} +$		
0.10	$y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = 4u$ for $u = x^2yz - 4y^2z^2 + 2xz^3$ using Euler's theorem.		
Q-10	For $u = x^3y + e^{xy^2}$ show that $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$		
	For $u = x$ $y + e^{-x}$ show that $\frac{\partial u}{\partial x \partial y} = \frac{\partial u}{\partial y \partial x}$		