

ArcRider Quick Reference

Version 4.0.6

Revision History

1/8/2010 Edited by AECOM Consult, Inc.

4/15/2010 Edited by RSG, Inc.

Syntax:

ArcRider [-flag] [control_file]

Purpose:

- 1. Create ArcView shapefiles from selected records in TRANSIMS ridership file.
- 2. Create ArcView shapefiles for select lines and line groups.
- 3. Create ArcView shapefiles for select stops and stop groups.

Required Keys

RIDERSHIP_FILE	[project_directory]filename
NET_NODE_TABLE	[net_directory]filename
NET_LINK_TABLE	[net_directory]filename
NET_TRANSIT_STOP_TABLE	[net_directory]filename
NET_TRANSIT_ROUTE_TABLE	[net_directory]filename
NET_TRANSIT_SCHEDULE_TABLE	[net_directory]filename
NET_TRANSIT_DRIVER_TABLE	[net_directory]filename

Optional Keys

TITLE	Text
REPORT_FILE	Filename
REPORT_FLAG	FALSE {true/false/yes/no/1/0}
MAX_WARNING_MESSAGES	100,000
MAX_WARNING_EXIT_FLAG	TRUE {true/false/yes/no/1/0}
PROJECT_DIRECTORY	Pathname
DEFAULT_FILE_FORMAT	VERSION3 {(4)}
NET_DIRECTORY	Pathname
NET_SHAPE_TABLE	[net_directory]filename
ARCVIEW_LINE_DEMAND_FILE (1)	[project_directory]filename.shp (2)
ARCVIEW_LINE_GROUP_FILE (1)	[project_directory]filename.shp (2)
ARCVIEW_RIDERSHIP_FILE (3)	[project_directory]filename.shp (2)
ARCVIEW_STOP_DEMAND_FILE (5)	[project_directory]filename.shp (2)
ARCVIEW_STOP_GROUP_FILE (5)	[project_directory]filename.shp (2)
TIME_OF_DAY_FORMAT	24_HOUR_CLOCK {(6)}

SELECT_LINKS_#	All (7)
SELECT_TIME_PERIODS	All (8)
SELECT_TIME_INCREMENT	All {0240} minutes
SELECT_TRANSIT_STOPS	All (7)
SELECT_TRANSIT_ROUTES	All (7)
SELECT_TRANSIT_MODES	All (9)
TRANSIT_STOP_SIDE_OFFSET	5.0 meters {0.050.0}
Transit_Direction_Offset	0.0 meters {0.015.0}
RIDERSHIP_SCALING_FACTOR (12)	1.0 units / meter {0.01100000.0}
MINIMUM_RIDERSHIP_VALUE	0 {0100000}
MINIMUM_RIDERSHIP_SIZE	0.01 meters {0.00110.0}
MAXIMUM_RIDERSHIP_SIZE	1000 meters {110000}
MAXIMUM_SHAPE_ANGLE	45 degrees {0, 5120}
MINIMUM_SHAPE_LENGTH	5 meters (050)
SET_WIDTH_USING_RUNS (12)	FALSE {true/false/yes/no/1/0}
SET_WIDTH_USING_LOAD_FACTOR (12)	FALSE {true/false/yes/no/1/0}
STOP_EQUIVALENCE_FILE	[project_directory]filename
LINE_EQUIVALENCE_FILE	[project_directory]filename
INPUT_COORDINATE_SYSTEM	System, Code, Units (10)
INPUT_ADJUSTMENT_FACTORS	X offset, Y offset, X factor, Y factor (11)
OUTPUT_COORDINATE_SYSTEM	System, Code, Units (10)
OUTPUT_ADJUSTMENT_FACTORS	X offset, Y offset, X factor, Y factor (11)
OUTPUT_XYZ_SHAPES	FALSE {true/false/yes/no/1/0}
OUTPUT_XYM_SHAPES	FALSE {true/false/yes/no/1/0}
NET_DEFAULT_FORMAT	[default_file_format] {(4)}
NET_NODE_FORMAT	[net_default_format] {(4)}
NET_LINK_FORMAT	[net_default_format] {(4)}
NET_SHAPE_FORMAT	[net_default_format] {(4)}
NET_TRANSIT_STOP_FORMAT	[net_default_format] {(4)}
NET_TRANSIT_ROUTE_FORMAT	[net_default_format] {(4)}
NET_TRANSIT_SCHEDULE_FORMAT	[net_default_format] {(4)}
NET_TRANSIT_DRIVER_FORMAT	[net_default_format] {(4)}

Notes

1	The line demand and line group files generate a separate ridership summary record for each line or line group.
2	*.shp, *.shx, *.dbf, and *.dbf.def files are created based on the filename.
3	The ridership file generates a link segment based on the total ridership from all of the routes that pass through a given link. It is by default a polyline file offset by the directional offset. If the ridership scaling factor is not zero, the ridership on the segment will be drawn as a bandwidth polygon.

4	{VERSION3, BINARY, FIXED_COLUMN, COMMA_DELIMITED, SPACE_DELIMITED, TAB_DELIMITED, CSV_DELIMITED, DBASE, LANL, SQLITE3}
5	The stop demand and stop group files generate a separate ridership summary record for each stop or stop group. The location of a stop group is based on the simple average of the coordinates of the stops included in the group.
6	{HOURS, SECONDS, 24_HOUR_CLOCK, 12_HOUR_CLOCK}
7	ID Range (e.g., 1000, 2000, 30003100)
8	Time Range (e.g., 0:006:00, 18:0023:00)
9	The list of mode codes is comprised of the following options: BUS, LOCAL_BUS, EXPRESS, EXPRESS_BUS, TROLLEY, STREETCAR, LIGHTRAIL, RAPIDRAIL, REGIONRAIL, ANY
10	System options include: UTM, STATEPLAN, and LATLONG Code is the FIPS code number for the system (e.g., Oregon North = 3601) Unit options include: FEET, METERS, MILES, KILOMETERS, DEGREES, and MILLION_DEGREES.
11	X and Y offsets are added to the coordinate values X and Y factors are multiply the coordinate values
12	If the width is set by runs or load factor, the ridership scaling factor is interpreted as runs per meter or riders per run per meter.

