Graph-based Annotation Engineering Towards a gold corpus for Role and Reference Grammar

Christian Chiarcos & Christian Fäth
Applied Computational Linguistics (ACoLi)
Goethe-Universität Frankfurt am Main

Annotation Engineering: Create gold data for machine learning

- low resource languages are on the rise
 - NLP: projection and induction techniques
 - UD, UniMorph
 - linguistics & philologies
 - quantitative methods and digital turn
- however, SOTA parsing paradigms grew out of European traditions
 - grammar frameworks actually designed for the analysis of low resource languages have a low level of technical support
 - here: Role and Reference Grammar (RRG)

Annotation Engineering with CoNLL-RDF

https://github.com/acoli-repo/conll-rdf

"RDF done in an NLP-friendly fashion" (Chiarcos & Fäth@LDK-2017)

CoNLL/TSV

- one word per line, empty line between sentences
- one column per annotation (except for certain semantic phenomena)
 - dialects/tools differ wrt. arrangement of columns
 - existing applications are mostly dialect-specific
- ⇒ idea: use RDF to

disentangle format logic (table) from transformation logic (graph)

- generic parser into a shallow RDF representation
- 2. manipulations with order-invariant graph transformation: SPARQL Update

Role and Reference Grammar (RRG)

Towards an implementation of Van Valin and Lapolla (1997)

Why RRG?

- wide use in typology and language documentation
 - no European bias
- semantics-based rather than syntax-focused
- not generative, but descriptive
 - flexibly deals with free word order
- modular
 - avoids overload of syntactic structures
- no data available (except for text book examples)
 - some rule-based parser prototypes

Syntax on multiple dimensions

- PRED(icate)
 - is the semantic nucleus of the clause

- NUC(leus)
 - contains the predicate(s)
 - roughly corresponding to a frame instance
 - can carry operators, e.g., aspect

CORE

- contains the semantic arguments
 - □ cf. PropBank A0..A4
 - can carry operators, e.g., modality

CORE

- contains the semantic arguments
- PERIPHERY
 - contains semantic modifiers (cf. PropBank: ARG-M)

CLAUSE

- contains CORE and optional peripheral positions
- can carry operators, e.g., tense

Operator projection

Nested
hierarchy of
grammatical
features

containing the operators that constituents carry constrain co(sub)ordination

Towards an RRG Treebank

According to Van Valin and Lapolla (1997)

Treebanking by annotation engineering

- the ideal source corpus combines manual annotations for syntax with manual annotations for semantic roles
 - English Web Treebank (EWT)
 - ⇒ PTB + UD: CoNLL-Merge (Chiarcos & Schenk@LDK-2019)
 - development data
 - 453 examples from textbooks (automatically parsed)
 - EWT corpus dev/answers

0. Preprocessing

Merge PropBank and Universal Dependencies Annotations

If you know or work there could you enlighten me?

0. Preprocessing

reduce to local arguments, indirect arguments (dashed) and arguments of head (dashed)

I. NP/PP/ADV chunks

based on UD (dependencies)

2. NUC / ARG: CORE arguments

based on PropBank Core roles

2. NUC / ARG / PERIPHERY

based on PropBank non-Core roles

2. CORE cosubordination

shared PropBank arguments

(a) create potential parent nodes of clausal nodes(b) add operators (from FEATS)

(c) prune tree (remove non-branching top-level nodes)

(a) attach clausal arguments (PropBank)

- (a) attach clausal arguments (PropBank)
- (b) clause linkage markers (UD)

5. complete sentential structure

IF (illocutionary force) operator SENTENCE node

Simulating an IDE

- ensemble of tools to address different stages of the workflow
 - a second screen does help

Evaluation: English Web Treebank

- SPARQL Update postprocessing step
- Structural evaluation ("FRAG")
 - fix inconsistent trees by inserting CYCLE/MPARENT nodes (=> FRAG)
- Pattern validation ("INVALID"): matching against a generation rule

	dev	test	train	
sentences	1974	2061	11364	
INVALID	25,1%	26,1%	35,1%	
<= FRAG	7,4%	8,8%	11,7%	
<= MPARENT	4,6%	5,9%	6,7%	
<= CYCLE	0,0%	0,0%	0,0%	

≤1 3 muc core cl s LSCS (SENTENCE, non-branching) validated output st 3 nuc core cl a syn_CLAUSE LSCS (CLAUSE, non-branching) Core-4 Template rya_ID Core-3 Template Core-1 Template $\operatorname{rys}_{-}\mathbb{D}$ rdfsisDefine∢By a syn_ARG :s1_3_muc a syn NUC syn_has onll/TNS confl:IF original output :s1 5 np LSNP (NP) LSNP (NP) :s1_2_np_core :s1_5_np_core rdfsisDefinedBy coull DEE :s1_2_np_core_nuc :81_5_np_core_mic a syn NUCn :s1 3 :s1 2 s1.1:s1 6 ≈ 1.4 a nif:Word a nif:Word a nif:Word a nifWord a nif:Word a ni£Word ROOT DOCUMENTS usubj conflictors punct post-spice north EDGE conffLEMD(A the contilendal OHRIL CORFLEMMA cost:WORD conf:WORD

Template validation

- match pattern
- add reference to pattern definition
- do not export

Future work

- integrate external knowledge sources
 - disambiguate complementizers and clausal prepositions
 - frequency dictionaries
 - no suitable RDF vocabulary => Ontolex-frac proposal

https://acoli-repo.github.io/ontolex-frac/

- disambiguate core and peripheral arguments
 - currently via PropBank
 - for UD-only data (e.g., textbook), could be disambiguated using PDEV

http://pdev.org.uk/pdevlemonfiles/pdevlemon.ttl.tar.gz

Thank you!

scripts and data to be released soon: https://github.com/acoli-repo/RRG

Annotation Engineering with SPARQL Update

```
s8_1
           nsubi----- Susan
                                   ID 1 LEMMA Susan NER PERSON POS NNP
s8_2
                                   ID 2 LEMMA do POS VBZ
s8_3
         / neq----- n't
                                   ID 3 LEMMA not POS RB
s8_4
                         want
                                      4 LEMMA want POS VB
s8_5
         . / mark---- to
                                      5 LEMMA to POS TO
s8_6
          . / auxpass--- be
                                      6 LEMMA be POS VB
          xcomp----- arrested
                                   ID 7 LEMMA arrest POS VBN
s8_7
                                                              conll:HEAD of ?n
s8_8
           \ case----- bv
                                   ID 8 LEMMA by POS IN
s8_9
                 det---- the
                                   ID 9 LEMMA the POS DT
             \ nmod---- police
                                   ID 10 LEMMA police POS NN
                                                               ?n
s8_11
                                   ID II LEMMA . POS .
```

CoNLL-RDF dependency visualization