Note del corso di Geometria 1

Gabriel Antonio Videtta

17 e 19 aprile 2023

Introduzione ai prodotti hermitiani

Nota. Nel corso del documento, per V si intenderà uno spazio vettoriale di dimensione finita n e per φ un suo prodotto, hermitiano o scalare dipendentemente dal contesto.

Definizione. (prodotto hermitiano) Sia $\mathbb{K}=\mathbb{C}$. Una mappa $\varphi:V\times V\to\mathbb{C}$ si dice **prodotto hermitiano** se:

- (i) φ è \mathbb{C} -lineare nel secondo argomento, ossia se $\varphi(\underline{v}, \underline{u} + \underline{w}) = \varphi(\underline{v}, \underline{u}) +$ $\varphi(\underline{v},\underline{w}) \in \varphi(\underline{v},a\underline{w}) = a \varphi(\underline{v},\underline{w}),$
- (ii) $\varphi(\underline{u},\underline{w}) = \overline{\varphi(\underline{w},\underline{u})}$.

Definizione. (prodotto hermitiano canonico in \mathbb{C}^n) Si definisce **prodotto** hermitiano canonico di \mathbb{C}^n il prodotto $\varphi : \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}$ tale per cui, detti $\underline{v} = (z_1 \cdots z_n)^{\top} e \underline{w} = (w_1 \cdots w_n)^{\top}, \ \varphi(\underline{v}, \underline{w}) = \sum_{i=1}^n \overline{z_i} w_i.$

Osservazione.

- $\varphi(w,v) + \varphi(u,v)$, ossia φ è additiva anche nel primo argomento.

- $\begin{array}{l} \bullet \quad \varphi(\underline{v},\underline{v}) = \overline{\varphi(\underline{v},\underline{v})}, \ \text{e quindi} \ \varphi(\underline{v},\underline{v}) \in \mathbb{R}. \\ \bullet \quad \text{Sia} \ \underline{v} = \sum_{i=1}^n x_i \underline{v_i} \ \text{e sia} \ \underline{w} = \sum_{i=1}^n y_i \underline{v_i}, \ \text{allora} \ \varphi(\underline{v},\underline{w}) = \\ \sum_{i=1}^n \sum_{j=1}^n \overline{x_i} y_i \varphi(\underline{v_i},\underline{v_j}). \\ \bullet \quad \varphi(\underline{v},\underline{w}) = 0 \iff \overline{\varphi}(\underline{w},\underline{v}) = 0. \end{array}$

Proposizione. Data la forma quadratica $q:V\to\mathbb{R}$ del prodotto hermitiano φ tale che $q(\underline{v}) = \varphi(\underline{v},\underline{v}) \in \mathbb{R}$, tale forma quadratica individua univocamente il prodotto hermitiano φ .

Dimostrazione. Innanzitutto si osserva che:

$$\varphi(\underline{v},\underline{w}) = \frac{\varphi(\underline{v},\underline{w}) + \overline{\varphi(\underline{v},\underline{w})}}{2} + \frac{\varphi(\underline{v},\underline{w}).\overline{\varphi(\underline{v},\underline{w})}}{2}.$$

Si considerano allora le due identità:

$$q(\underline{v} + \underline{w}) - q(\underline{v}) - q(\underline{w}) = \varphi(\underline{v}, \underline{w}) + \overline{\varphi(\underline{w}, \underline{v})} = 2\Re(\varphi(\underline{v}, \underline{w})),$$

$$q(i\underline{v} + \underline{w}) - q(\underline{v}) - q(\underline{w}) = -i(\varphi(\underline{v}, \underline{w}) - \overline{\varphi(\underline{v}, \underline{w})}) = 2\Im(\varphi(\underline{v}, \underline{w})),$$

da cui si conclude che il prodotto φ è univocamente determinato dalla sua forma quadratica.

Definizione. Si definisce matrice aggiunta di $A \in M(n, \mathbb{K})$ la matrice coniugata della trasposta di A, ossia:

$$A^* = \overline{A^\top} = \overline{A}^\top.$$

Definizione. (matrice associata del prodotto hermitiano) Analogamente al caso del prodotto scalare, data una base $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ si definisce come **matrice associata del prodotto hermitiano** φ la matrice $M_{\mathcal{B}}(\varphi) = (\varphi(\underline{v_i}, v_j))_{i,j=1\dots n}$.

Osservazione. Si osserva che, analogamente al caso del prodotto scalare, vale la seguente identità:

$$\varphi(\underline{v},\underline{w}) = [\underline{v}]_{\mathcal{B}}^* M_{\mathcal{B}}(\varphi) [\underline{w}]_{\mathcal{B}}.$$

Proposizione. (formula del cambiamento di base per i prodotto hermitiani) Siano \mathcal{B} , \mathcal{B}' due basi di V. Allora vale la seguente identità:

$$M_{\mathcal{B}'} = M_{\mathcal{B}}^{\mathcal{B}'} (Id_V)^* M_{\mathcal{B}}(\varphi) M_{\mathcal{B}}^{\mathcal{B}'} (Id_V).$$

Dimostrazione. Siano $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ e $\mathcal{B}' = \{\underline{w_1}, \dots, \underline{w_n}\}$. Allora $\varphi(\underline{w_i}, \underline{w_j}) = [\underline{w_i}]_{\mathcal{B}}^* M_{\mathcal{B}}(\varphi) [\underline{w_j}]_{\mathcal{B}} = (M_{\mathcal{B}}^{\mathcal{B}'} (Id_V)^i)^* M_{\mathcal{B}}(\varphi) M_{\mathcal{B}}^{\mathcal{B}'} (Id_V)^j = (M_{\mathcal{B}}^{\mathcal{B}'} (Id_V))^* M_{\mathcal{B}}(\varphi) M_{\mathcal{B}}^{\mathcal{B}'} (Id_V)^j$, da cui si ricava l'identità desiderata. \square

Definizione. (radicale di un prodotto hermitiano) Analogamente al caso del prodotto scalare, si definisce il **radicale** del prodotto φ come il seguente sottospazio:

$$V^{\perp} = \{ \underline{v} \in V \mid \varphi(\underline{v}, \underline{w}) = 0 \ \forall \underline{w} \in V \}.$$

Proposizione. Sia \mathcal{B} una base di V e φ un prodotto hermitiano. Allora $V^{\perp} = [\cdot]_{\mathcal{B}}^{-1} (\operatorname{Ker} M_{\mathcal{B}}(\varphi))^{1}$.

Dimostrazione. Sia $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ e sia $\underline{v} \in V^{\perp}$. Siano $a_1, \dots, a_n \in \mathbb{K}$ tali che $\underline{v} = a_1\underline{v_1} + \dots + a_n\underline{v_n}$. Allora, poiché $\underline{v} \in V$, $0 = \varphi(\underline{v_i}, \underline{v}) == a_1\varphi(\underline{v_i}, \underline{v_1}) + \dots + a_n\varphi(\underline{v_i}, \underline{v_n}) = M_i[\underline{v}]_{\mathcal{B}}$, da cui si ricava che $[\underline{v}]_{\mathcal{B}} \in \operatorname{Ker} M_{\mathcal{B}}(\varphi)$, e quindi che $V^{\perp} \subseteq [\cdot]_{\mathcal{B}}^{-1}(\operatorname{Ker} M_{\mathcal{B}}(\varphi))$.

Sia ora $\underline{v} \in V$ tale che $[\underline{v}]_{\mathcal{B}} \in \operatorname{Ker} M_{\mathcal{B}}(\varphi)$. Allora, per ogni $\underline{w} \in V$, $\varphi(\underline{w},\underline{v}) = [\underline{w}]_{\mathcal{B}}^* M_{\mathcal{B}}(\varphi)[\underline{v}]_{\mathcal{B}} = [\underline{w}]_{\mathcal{B}}^* 0 = 0$, da cui si conclude che $\underline{v} \in V^{\perp}$, e quindi che $V^{\perp} \supseteq [\cdot]_{\mathcal{B}}^{-1}(\operatorname{Ker} M_{\mathcal{B}}(\varphi))$, ossia la tesi. \square

Osservazione. Come conseguenza della proposizione appena dimostrata, valgono le principali proprietà già viste per il prodotto scalare.

▶ $\det(M_{\mathcal{B}}(\varphi)) = 0 \iff V^{\perp} \neq \{\underline{0}\} \iff \varphi \text{ è degenere.}$

Proposizione. Se $V = \mathbb{R}^n$ con prodotto canonico $\varphi(\underline{x}, \underline{y}) = \underline{x}^{\top}\underline{y}$. Sono allora equivalenti i seguenti fatti:

- (i) $A \in O_n$,
- (ii) $f_A: V \to V \text{ con } f_A(\underline{x}) = A\underline{x}$,
- (iii) Le colonne (e le righe) di A formano una base ortonormale di V.

Dimostrazione. $(1 = \[\] 2)$ ovvio $(2 = \[\] 3)$ f_A manda basi ortonormali in basi ortonormali, e quindi così sono ortonormali le colonne di A. Analogamente per le righe considerando $A^{\top}A = I$. $(3 = \[\] 1)$ $A^{\top}A = I$.

¹Stavolta non è sufficiente considerare la mappa $f:V\to V^*$ tale che $f(\underline{v})=[\underline{w}\mapsto \varphi(\underline{v},\underline{w})]$, dal momento che f non è lineare, bensì antilineare, ossia $f(a\underline{v})=\overline{a}f(\underline{v})$.