

The LNM Institute of Information Technology, Jaipur Department of Electronics and Communication Engineering

Engineering Electromagnetics (ECE 335)

Exam Type: Quiz Degree*: B.Tech

Academic Year: 2017-18

Semester: ODD Year: 2nd and 3rd

Programme*: B. Tech in ECE Date: 19/09/2017

Maximum Marks: 30

Date: 19/09/2017		Maximum Was as.		
			COL	CO5
COI	CO2	CO3	C04	
1.2a	3,4		-	
	22	-	-	
	73			-
	CO1 1,2a 6+2	CO1 CO2 1,2a 3,4	CO1 CO2 CO3 1,2a 3,4 - 6+2 22 -	CO1 CO2 CO3 CO4

Instruction: Write answer to all parts of question in same place. Write Roll no on top right corner of the smith chart.

[Q1]. Find the scattering parameters of the 3 dB attenuator with characteristic impedence 50 Ω circuit shown in figure below. Also find Z_{11}

[2+2+2=6]

[Q2]. A telephone line opearted at 1 kHz has $R=30~\Omega/km$, L=100~mH/km, G=0, and $C=20~\mu F/km$. obtain

(a) The value of α in dB/km.

(b) The characteristic impedance of the line.

(2+2=4)

Q3]. (a) In the following figure derive equations for V_0^+ and V_0^- . Given the conditions at the load

 (γ, Z_0)

(b) Show that the voltage reflection coefficient at any point on the line is given by $\Gamma(z) = \Gamma_L e^{-2\gamma t'}$

1Q4]. A 30-m-long transmission line with $Z_0 = 50 \Omega$ operating at 2 MHz is terminated with a load $Z_L = 60 + j40 \Omega$. If the velocity of propagation on the line is u = 0.6C, find with and without using Smith Chart

- (a) The reflection coefficient Γ
- (b) The standing Wave Ratio S

Use different color to indicate clearly the impedence and admissance. Label points.

[(2+2+2)+(2+2+2)=12]