solutions for quiz: Feb12:

Gr II:

1. The uncertainty in the position of a proton is Δx ;

the uncertainty in its momentum> $\frac{\hbar}{2.\Delta x}$

the uncertainty in its kinetic energy $> \frac{\left(\frac{\hbar}{2.\Delta x}\right)^2}{2.m_p} = \frac{\hbar^2}{8.m_p.(\Delta x)^2}$

2. The antisymmetrized wavefunction for the H₂ molecule in its ground state is $\frac{1}{\sqrt{2}}\sigma(1).\sigma(2) \left[\alpha(1)\beta(2) - \alpha(2)\beta(1)\right]$, where $\sigma(i) = N(\phi_{1s_A} + \phi_{1s_B})$; ϕ_{1s_X} =the normalized hydrogen 1s wavefunction with coordinates referring to nucleus X as the origin (C.M.);

 $\alpha(1)\beta(2)$ implies that the electron 1 is in spin state α , (say, $s=\frac{1}{2}$; $m_s=\frac{1}{2}$) and the electron 2 is in spin state β , $(s=\frac{1}{2};\ m_s=-\frac{1}{2})$.

 $Gr \qquad \quad I:$

- 1. The uncertainty in the position of a proton at time t=0 is Δx_0 .
 - (a) the uncertainty in its momentum at time $t=0; > \frac{\hbar}{2\Delta x_0}$
 - (b) the uncertainty in its velocity at time $t=0; > \frac{\hbar}{2.m_p.\Delta x_0}$
 - (c) the uncertainty in its position at time $t>0; > \frac{\hbar.t}{2.m_p.\Delta x_0}$
- 2. The antisymmetrized wavefunction for the He atom in its ground state is: $\frac{1}{\sqrt{2}}\phi_{1s}(1).\phi_{1s}(2)\left[\alpha(1)\beta(2) \alpha(2)\beta(1)\right]$ where ϕ_{1s} is the 1s wavefunction.