第三章 整数规划

3.1 整数规划的数学模型及解的特点

修贤超

机电工程与自动化学院 上海大学

xcxiu@shu.edu.cn

■ 例 1

□ 某厂利用集装箱托运甲、乙两种货物,每箱体积、重量、可获利润 及托运限制如下。问两种货物各托运多少箱使利润最大?

项目	体积	重量	利润
甲	5	2	20
乙 托运限制	24	5 13	10
九色似的	24	13	

- 例 1
 - \square 设两种货物分别托运 x_1, x_2 , 得到

$$\max z = 20x_1 + 10x_2$$
s.t.
$$\begin{cases} 5x_1 + 4x_2 \le 24\\ 2x_1 + 5x_2 \le 13\\ x_1, x_2 \ge 0 \end{cases}$$

- 例 1
 - \square 设两种货物分别托运 x_1, x_2 , 得到

$$\max z = 20x_1 + 10x_2$$
s.t.
$$\begin{cases} 5x_1 + 4x_2 \le 24\\ 2x_1 + 5x_2 \le 13\\ x_1, x_2 \ge 0 \end{cases}$$

□ 显然托运数量必须是整数,于是

max
$$z = 20x_1 + 10x_2$$

s.t.
$$\begin{cases} 5x_1 + 4x_2 \le 24\\ 2x_1 + 5x_2 \le 13\\ x_1, x_2 \ge 0$$
且取整数

- 整数规划数学模型的一般形式
 - 要求部分或全部决策变量必须取整数值的规划问题称为整数规划 (Integer Programming, IP)

$$\max(\min) \ z = \sum_{j=1}^{n} c_j x_j$$
s.t.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j \le (\ge, =) \ b_i \ (i = 1, \dots, m) \\ x_j \ge 0 \ (j = 1, \dots, n) \\ x_j \end{pmatrix}$$

$$x_j \mapsto \text{中部分或全部取整数}$$

- 整数规划数学模型的一般形式
 - 要求部分或全部决策变量必须取整数值的规划问题称为整数规划 (Integer Programming, IP)

$$\max(\min) \ z = \sum_{j=1}^{n} c_j x_j$$
s.t.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j \le (\ge, =) \ b_i \ (i = 1, \dots, m) \\ x_j \ge 0 \ (j = 1, \dots, n) \\ x_j & \text{中部分或全部取整数} \end{cases}$$

□ 若不考虑整数条件,由余下的目标函数和约束条件构成的规划问题 称为松弛问题

- 整数规划数学模型的一般形式
 - 要求部分或全部决策变量必须取整数值的规划问题称为整数规划 (Integer Programming, IP)

$$\max(\min) \ z = \sum_{j=1}^n c_j x_j$$
 s.t.
$$\begin{cases} \sum_{j=1}^n a_{ij} x_j \leq (\geq, =) \ b_i \ (i=1,\dots,m) \\ x_j \geq 0 \ (j=1,\dots,n) \\ x_j \text{ 中部分或全部取整数} \end{cases}$$

- 若不考虑整数条件,由余下的目标函数和约束条件构成的规划问题 称为松弛问题
- □ 若松弛问题是一个线性规划,则称该规划为称为整数线性规划 (Integer Linear Programming, ILP)

- 整数规划数学模型的一般形式
 - □ 纯整数线性规划: 全部决策变量都必须取整数值

- ■整数规划数学模型的一般形式
 - □ 纯整数线性规划: 全部决策变量都必须取整数值
 - □ 0-1 型整数线性规划:决策变量只能取值 0 或 1

- 整数规划数学模型的一般形式
 - □ 纯整数线性规划: 全部决策变量都必须取整数值
 - □ 0-1 型整数线性规划: 决策变量只能取值 0 或 1
 - □ 混合整数线性规划: 决策变量中一部分必须取整数值,另一部分可以不取整数值

- 整数规划数学模型的一般形式
 - □ 纯整数线性规划: 全部决策变量都必须取整数值
 - □ 0-1 型整数线性规划: 决策变量只能取值 0 或 1
 - □ <mark>混合整数线性规划</mark>: 决策变量中一部分必须取整数值, 另一部分可以不取整数值
 - (中国邮递员问题)一个邮递员从邮局出发,要走完他所管辖范围内的每一条街道,至少一次再返回邮局,如何选择一条尽可能短的路线?该问题由我国数学家管梅谷在1962年首先提出。

- 整数规划数学模型的一般形式
 - □ 纯整数线性规划: 全部决策变量都必须取整数值
 - □ 0-1 型整数线性规划: 决策变量只能取值 0 或 1
 - □ <mark>混合整数线性规划</mark>: 决策变量中一部分必须取整数值, 另一部分可以不取整数值
 - (中国邮递员问题)一个邮递员从邮局出发,要走完他所管辖范围内的每一条街道,至少一次再返回邮局,如何选择一条尽可能短的路线?该问题由我国数学家管梅谷在1962年首先提出。

□ 旅行商问题 (Traveling Salesman Problem, TSP)

■ 例 2: 纯整数线性规划问题

□ 某服务部门各时段(每 2h 为一时段)需要的服务员人数见下表。按规定,服务员连续工作 8h(即四个时段)为一班。现要求安排服务员的工作时间,使服务部门服务员总数最少。

 时段	1	2	3	4	5	6	7	8
服务员最少数目	10	8	9	11	13	8	5	3

- 例 2: 纯整数线性规划问题
 - \Box 设在第 j 时段开始时上班的服务员人数为 x_j
 - □ 由于第 j 时段开始时上班的服务员将在第 (j+3) 时段结束时下班, 故决策变量只需考虑 x_1, x_2, x_3, x_4, x_5

- 例 2: 纯整数线性规划问题
 - \square 设在第 j 时段开始时上班的服务员人数为 x_j
 - ② 由于第 j 时段开始时上班的服务员将在第 (j+3) 时段结束时下班, 故决策变量只需考虑 x_1, x_2, x_3, x_4, x_5
 - □ 数学模型为

min
$$z = x_1 + x_2 + x_3 + x_4 + x_5$$

$$\begin{cases} x_1 \ge 10 \\ x_1 + x_2 \ge 8 \\ x_1 + x_2 + x_3 \ge 9 \\ x_1 + x_2 + x_3 + x_4 \ge 11 \end{cases}$$
s.t.
$$\begin{cases} x_2 + x_3 + x_4 + x_5 \ge 13 \\ x_3 + x_4 + x_5 \ge 8 \\ x_4 + x_5 \ge 5 \\ x_5 \ge 3 \\ x_1, x_2, x_3, x_4, x_5 \ge 0$$
且取整数

- 例 3: 0-1 型整数线性规划
 - 回 现有资金总额为 B, 可供选择的投资项目有 n 个, 项目 j 所需投资额和预期收益分别为 a_j 和 c_j $(j=1,\ldots,n)$ 。此外,因种种原因,有 3 个附加条件:
 - 若选择项目 1 必须同时选择项目 2, 反之, 不一定
 - 项目 3 和项目 4 中至少选择一个
 - 项目 5、6、7 中恰好选择两个

应当怎样选择投资项目,才能使总预期收益最大?

- 例 3: 0-1 型整数线性规划
 - □ 每一个投资项目都有被选择和不被选择两种可能, 为此令

$$x_j = \begin{cases} 1 & \text{对项目}_j \text{投资} \\ 0 & \text{对项目}_j \text{不投资} \end{cases}$$

- 例 3: 0-1 型整数线性规划
 - 🛮 每一个投资项目都有被选择和不被选择两种可能,为此令

$$x_j = \begin{cases} 1 & \text{对项目}j$$
投资
$$0 & \text{对项目}j$$
不投资

□ 数学模型为

$$\max z = \sum_{j=1}^{n} c_j x_j$$
s.t.
$$\begin{cases} \sum_{j=1}^{n} a_j x_j \le B \\ x_2 \ge x_1 \\ x_3 + x_4 \ge 1 \\ x_5 + x_6 + x_7 = 2 \\ x_j = 0 \ \text{ex} \ 1 \ (j = 1, \dots, n) \end{cases}$$

■ 例 4: 混合整数线性规划

 \square 工厂 A_1 和 A_2 生产某种物资,由于该种物资供不应求,故需要再建一家工厂。相应建设方案有 A_3 和 A_4 两个。这种物资的需求地有 B_1, B_2, B_3, B_4 四个。各工厂年生产能力、各地年需求量、各厂至各需求地的单位物资运费 c_{ij} (i,j=1,2,3,4) 如下

エ厂	B_1	B_2	B_3	B_4	生产能力 (kt/年)
A_1	2	9	3	4	400
A_2	8	3	5	7	600
A_3	7	6	1	2	200
A_4	4	5	2	5	200
需求量 (kt/年)	350	400	300	150	

工厂 A_3 和 A_4 的生产费用估计为 1200 万元或 1500 万元。现要决定应该建设工厂 A_3 还是 A_4 ,才能使今后每年的总费用 (包括物资运费和新工厂的生产费用) 最少。

- 例 4: 混合整数线性规划
 - \square 设 x_{ij} 为由 A_i 送往 B_i 的物资数量
 - 令

- 例 4: 混合整数线性规划
 - \square 设 x_{ij} 为由 A_i 送往 B_i 的物资数量
 - □ 令

□ 目标函数包括物资总运费和新工厂生产费用,即

min
$$z = \sum_{i=1}^{4} \sum_{j=1}^{4} c_{ij} x_{ij} + [1200y + 1500(1-y)]$$

- 例 4: 混合整数线性规划
 - □ 数学模型为

min
$$z = \sum_{i=1}^{4} \sum_{j=1}^{4} c_{ij} x_{ij} + [1200y + 1500(1 - y)]$$

$$\begin{cases} x_{11} + x_{21} + x_{31} + x_{41} = 350 \\ x_{12} + x_{22} + x_{32} + x_{42} = 400 \\ x_{13} + x_{23} + x_{33} + x_{43} = 300 \\ x_{14} + x_{24} + x_{34} + x_{44} = 150 \\ x_{11} + x_{12} + x_{13} + x_{14} = 400 \\ x_{21} + x_{22} + x_{23} + x_{23} = 600 \\ x_{31} + x_{32} + x_{33} + x_{34} = 200y \\ x_{41} + x_{42} + x_{43} + x_{44} = 200(1 - y) \\ x_{ij} \ge 0 \ (i, j = 1, 2, 3, 4) \\ y = 0 \ \overrightarrow{=} \ \overrightarrow{\downarrow} \ 1$$

- 解的特点
 - □ 整数线性规划问题

$$\max(\min) \ z = \sum_{j=1}^{n} c_j x_j$$
s.t.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j \le (\ge, =) \ b_i \ (i = 1, \dots, m) \\ x_j \ge 0 \ (j = 1, \dots, n) \\ x_j \mapsto \pi$$
 中部分或全部取整数

整数线性规划问题的可行解的集合不是凸集,即任意两个可行解的 凸组合不一定满足整数约束条件。

- 解的特点
 - □ 整数线性规划问题

$$\max(\min) z = \sum_{j=1}^{n} c_j x_j$$
s.t.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j \le (\ge, =) \ b_i \ (i = 1, \dots, m) \\ x_j \ge 0 \ (j = 1, \dots, n) \\ x_j \mapsto \pi$$
 好或全部取整数

- 整数线性规划问题的可行解的集合不是凸集,即任意两个可行解的 凸组合不一定满足整数约束条件。
- □ 整数线性规划问题的可行解一定是松弛问题的可行解,反之不一定。

■ 解的特点

□ 整数线性规划问题

$$\max(\min) z = \sum_{j=1}^{n} c_j x_j$$
s.t.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j \le (\ge, =) \ b_i \ (i = 1, \dots, m) \\ x_j \ge 0 \ (j = 1, \dots, n) \\ x_j \mapsto \pi$$
 好或全部取整数

- 整数线性规划问题的可行解的集合不是凸集,即任意两个可行解的 凸组合不一定满足整数约束条件。
- □ 整数线性规划问题的可行解一定是松弛问题的可行解,反之不一定。
- □ 整数线性规划问题的目标函数值不会优于松弛问题。

- 例 5
 - □ 求解整数线性规划问题

max
$$z = 20x_1 + 10x_2$$

s.t.
$$\begin{cases} 5x_1 + 4x_2 \le 24\\ 2x_1 + 5x_2 \le 13\\ x_1, x_2 \ge 0$$
且取整数

- 例 5
 - □ 考虑其松弛问题

max
$$z = 20x_1 + 10x_2$$

s.t.
$$\begin{cases} 5x_1 + 4x_2 \le 24\\ 2x_1 + 5x_2 \le 13\\ x_1, x_2 \ge 0 \end{cases}$$

- 例 5
 - □ 考虑其松弛问题

max
$$z = 20x_1 + 10x_2$$

s.t.
$$\begin{cases} 5x_1 + 4x_2 \le 24\\ 2x_1 + 5x_2 \le 13\\ x_1, x_2 \ge 0 \end{cases}$$

lue 最优解为 A(4.8,0),最优值 z=96

■ 例 5

 $lacksymbol{\square}$ 设想一: 将松弛问题的最优解进行四舍五入,即 $x_1=5,\ x_2=0$ 。

■ 例 5

 $lue{}$ 设想一:将松弛问题的最优解进行四舍五入,即 $x_1=5,\;x_2=0$ 。

② 设想二: 将松弛问题的最优解向下取整, 即 $x_1 = 4, x_2 = 0, z = 80$ 。

■ 例 5

② 设想一:将松弛问题的最优解进行四舍五入,即 $x_1=5, x_2=0$ 。

② 设想二:将松弛问题的最优解向下取整,即 $x_1 = 4, x_2 = 0, z = 80$ 。

□ 启发: 先求松弛问题最优解,再用简单取整的方法虽然直观,却并不是求解整数规划的有效方法。

- 课堂练习 1
 - □ 求解下述整数线性规划问题

max
$$z = x_1 + 4x_2$$

s.t.
$$\begin{cases} -2x_1 + 3x_2 \le 3\\ x_1 + 2x_2 \le 8\\ x_1, x_2 \ge 0$$
且取整数

线性规划问题及其数学模型

■ 小结

- □ 整数规划的几种类型
 - 纯整数线性规划
 - 0-1 型整数线性规划
 - 混合整数线性规划
- □ 解的特点
 - 最优解不一定在顶点上达到
 - 最优解不一定是相应线性规划的最优解 "化整" 的整数解
 - 最优解不一定是相应线性规划最优解的临近点
 - 整数可行解远多于顶点, 枚举法不可取

$Q\&\mathcal{A}$

Thank you! 感谢您的聆听和反馈