Lecture 7

INTEGERS

Division Algorithm

Theorem

Let $a,b \in \mathbb{Z}$ with b>0. There exist unique $q,r \in \mathbb{Z}$ with $0 \le r < b$ such that a=qb+r.

We call q and r the **quotient** and **remainder** of a when divided by b respectively.

Notation

We shall denote the quotient of a when divided by b as a **div** b and the remainder of a when divided by b as a **mod** b.

Proof.

- ② Then $q \in \mathbb{Z}$ and $q \leq \frac{a}{b} < q+1$.
- ① Let r=a-qb. Then a=qb+r, and $r\in\mathbb{Z}$ (since $a,q,b\in\mathbb{Z}$) with $0\leq r < b$ (from (3)).
- **5** If $q', r' \in \mathbb{Z}$ such that $0 \le r' < b$ and a = q'b + r', then:
 - $q'b \le a < q'b + b = (q'+1)b.$
 - **2** $q' \leq \frac{a}{b} < q' + 1$.
 - 3 Since $q' \in \mathbb{Z}$, (5.2) implies that $q' = \lfloor \frac{a}{b} \rfloor = q$.
 - q r' = a q'b = a qb = r.
- **1** Thus q and r are unique.

Note

From the above proof, we see that $a \operatorname{\mathbf{div}} b = \lfloor \frac{a}{b} \rfloor$.

4D > 4@ > 4 = > = 900

Tan Kai Meng (NUS)

Semester 1, 2019/20

Division Algorithm for Negative Divisors

Let $a, b \in \mathbb{Z}$ with b < 0. By the division algorithm, we get

$$a = q|b| + r = q(-b) + r = (-q)b + r,$$

where $q = a \operatorname{\mathbf{div}} |b|$ and $r = a \operatorname{\mathbf{mod}} |b|$.

Thus we define $a \operatorname{\mathbf{div}} b = -(a \operatorname{\mathbf{div}} |b|)$ and $a \operatorname{\mathbf{mod}} b = a \operatorname{\mathbf{mod}} |b|$ when b < 0.

Exercise

Let $a, b \in \mathbb{Z}$ with $b \neq 0$. Prove that:

- $a \bmod (-b) = a \bmod b.$

4 □ ト ← □ ト ← 亘 ト ← 亘 り へ ○ ○

b-adic Expansion

Definition

Let $b, n \in \mathbb{Z}^+$ with $b \geq 2$. We say that n has a b-adic expansion (or b-adic decomposition) if there exist $k \in \mathbb{Z}^+$, $a_0, a_1, \ldots, a_k \in \mathbb{Z}$ with $1 \leq a_k < b$ and $0 \leq a_0, a_1, \ldots, a_{k-1} < b$ such that

$$n = a_0 b^0 + a_1 b^1 + \dots + a_k b^k,$$

in which case, $a_0b^0 + a_1b^1 + \cdots + a_kb^k$ is a b-adic expansion of n.

Example

- $4 = 1(3^0) + 1(3^1)$ is a 3-adic expansion of 4.
- $9 = 1(2^0) + 1(2^3)$ is a 2-adic expansion of 9.

<ロ > < 回 > < 回 > < 巨 > くき > しき > しき の < ○

Theorem (Existence of b-adic expansion)

Let $b \in \mathbb{Z}_{\geq 2}$. Every $n \in \mathbb{Z}^+$ has a b-adic expansion.

Proof by strong induction.

- For each $n \in \mathbb{Z}^+$, let P(n) = (n has a b-adic expansion).
- ② P(1) is true, since $1 = 1 \cdot b^0$.
- **3** Assume $P(1), P(2), \dots, P(n)$.
- ① Let q=(n+1) $\operatorname{\mathbf{div}} b$ and r=(n+1) $\operatorname{\mathbf{mod}} b$. Then $q,r\in\mathbb{Z}$ with $0\leq q\leq n$ and $0\leq r< b$, and n+1=qb+r.
- **3** Case 1: q=0. Then $n+1=r=rb^0$, a b-adic expansion of n+1. Thus P(n+1) is true.
 - ② Case 2: q > 0. By (3) and (4), P(q) is true, so $q = a_0 b^0 + a_1 b^1 + \dots + a_k b^k$. Then $n+1 = qb+r = rb^0 + a_0 b^1 + a_1 b^2 + \dots + a_k b^{k+1}$ is a b-adic expansion of n+1, so P(n+1) is true.
- **6** In all cases, P(n+1) is true.
- **1** By (strong) MI, P(n) is true for all $n \in \mathbb{Z}^+$.

Tan Kai Meng (NUS) Semester 1, 2019/20 6 / 37

Theorem (Uniqueness of *b*-adic expansion)

Let $b, n \in \mathbb{Z}^+$ with $b \geq 2$. The b-adic expansion of n is unique.

Tan Kai Meng (NUS) Semester 1, 2019/20 7 / 37

Proof.

- Let $\sum_{i=0}^k a_i b^i$ and $\sum_{i=0}^l a_i' b^i$ be two b-adic expansion of n.
- \bullet Let $N = \max\{k, l\}$, and define $a_i = 0 = a'_i$ for all $i, j \in \mathbb{Z}$ with $k < i \leq N$ and l < j < N.
- **3** Then $\sum_{i=0}^{N} a_i b^i = n = \sum_{i=0}^{N} a'_i b^i$.
- - **1** Let $m = \max(I)$. Then $a_i = a_i'$ for all $j \in \mathbb{Z}$ with $m < j \le N$.
 - **2** WLOG, assume $a_m < a'_m$, and so $a_m + 1 \le a'_m$.
 - Then $n = \sum_{i=1}^{m-1} a_i b^i + \sum_{i=1}^{N} a_i b^i \le \sum_{i=1}^{m-1} (b-1)b^i + \sum_{i=1}^{N} a_i b^i = b^m - 1 + \sum_{i=1}^{N} a_i b^i$ $<(a_m+1)b^m+\sum\limits_{j=m+1}^Na_jb^j\leq a_m'b^m+\sum\limits_{j=m+1}^Na_j'b^j$ $\leq\sum\limits_{i=0}^Na_i'b^i=n,$ a contradiction.
- **5** Thus, $I = \emptyset$, and so $a_i = a'_i$ for all $i \in \mathbb{Z}$ with $0 \le i \le N$.

4 0 3 4 4 3 3 4 3 5 4 3 5 4 3 5 8 / 37

b-adic Expansion Algorithm

To compute a_0, a_1, \ldots, a_k in the *b*-adic expansion of $n = \sum_{i=0}^k a_i b^i$, we use the following algorithm:

- while n > 0 do
 - return $(n \bmod b)$;
 - **2** $n := (n \ \mathbf{div} \ b);$
- enddo.

This uses the fact that $n \bmod b = a_0$ (the coefficient of b^0 in the b-adic expansion of n) and $n \operatorname{div} b = \sum_{i=1}^k a_i b^{i-1}$, since

$$n = (\sum_{i=1}^{k} a_i b^{i-1})b + a_0,$$

and $a_0 \in \mathbb{Z}$ with $0 \le a_0 < b$.

| **イロト 4回 ト 4 恵 ト 4 恵 ト - 恵 - り**90で

Example

We compute the 3-adic expansion of 143.

143 2

47

15

5 2

1

0

Thus,
$$143 = 2(3^0) + 2(3^1) + 2(3^3) + 1(3^4)$$
.

Base b Representation

If $n = \sum_{i=0}^{k} a_i b^i$ is the *b*-adic expansion of *n*, we sometimes write

$$n = (a_k a_{k-1} \cdots a_0)_b.$$

This is the **base** b **representation** of n.

The names for the common b's for which we use such representations are:

b	Name			
10	decimal			
2	binary			
3	ternary			
8	octal			
16	hexadecimal			

In hexadecimal, the letters A, B, C, D, E, F are used to represent 10, 11, 12, 13, 14, 15 respectively.

Tan Kai Meng (NUS) Semester 1, 2019/20 11 / 37

Example

We compute the binary and hexadecimal representation of 143.

143	1		
71	1		
35	1		
17	1	143	15
8	0	8	8
4	0	0	
2	0		
1	1		
0			

Thus,
$$143 = (10001111)_2 = (8F)_{16}$$
.

We can also get the ternary representation of 143 from the 3-adic expansion of 143 worked out earlier: $143 = (12022)_3$.

◆□ → ◆□ → ◆ ■ → ● ◆ □ → の Q へ

Divisibility

Definition

Let $a, b \in \mathbb{Z}$. We say that a divides b (or a is a divisor of b, or b is divisible by a, or b is a multiple of a) if, and only if, there exists $k \in \mathbb{Z}$ such that b = ak.

Caution!

Ex: 0 | 0 but 0/ 0 doesn't exist.

 $a \mid b$ is neither equivalent to $\frac{b}{a} \in \mathbb{Z}$ nor $b \mod a = 0$.

Example

Let $n \in \mathbb{Z}$.

- Then $1 \mid n$ and $n \mid n$ (since $n = 1 \cdot n$), and $n \mid 0$ (since 0 = n(0)).
- 2 If $n \mid 1$, then $n = \pm 1$.
- **3** If $0 \mid n$, then n = 0.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ■ 釣९○

Lemma

Let $a, b, c \in \mathbb{Z}$.

- $(a \mid b) \land (b \mid a) \Rightarrow (a = b \lor a = -b).$

Proof.

Easy exercise.

Common Divisors

Definition

Let $a, b, d \in \mathbb{Z}$. We say that d is a **common divisor** of a and b if and only if $(d \mid a) \land (d \mid b)$.

Example

- ① The common divisors of 4 and 6 are ± 1 and ± 2 .
- ② Let $a,b,d\in\mathbb{Z}$. Then d is a common divisor of a and b if and only if |d| is a common divisor of |a| and |b|.

Lemma

Let $a, b, d \in \mathbb{Z}$. If d is a common divisor of a and b, then $d \mid (ax + by)$ for all $x, y \in \mathbb{Z}$.

Proof.

If a=kd and b=ld (where $k,l\in\mathbb{Z}$), then ax+by=kdx+ldy=d(kx+ly). Thus, if $x,y\in\mathbb{Z}$, then $kx+ly\in\mathbb{Z}$, so that $d\mid (ax+by).$

Note

An expression of the form ax + by is called a (real) **linear combination** of a and b. The lemma above says a common divisor of a and b divides all integer linear combinations of a and b.

4D + 4A + 4 = + 4 = + 900

Greatest Common Divisor

Definition

Let $a, b \in \mathbb{Z}$. The greatest common divisor of a and b, denoted gcd(a, b), is a common divisor of a and b that is the largest among all the common divisors of a and b.

Note

- ① Let D(a) (resp. D(b)) denote the set of divisors of a (resp. b), and let CD(a,b) denote the set of common divisors of a and b.
 - Suppose that $a \in \mathbb{Z}$ with $a \neq 0$. Then $D(a) \subseteq \{d \in \mathbb{Z} : |d| \leq |a|\}$, so that D(a) is a finite set.
 - Thus since $CD(a,b)=D(a)\cap D(b)\subseteq D(a)$, we see that CD(a,b) is also a finite set, and is non-empty since $1\in CD(a,b)$. Hence $\gcd(a,b)$ exists and is of course unique. Furthermore, $\gcd(a,b)>0$.

Example

- **1** If $a \in \mathbb{Z}$ with $a \neq 0$, then gcd(a, 0) = |a| = gcd(a, a).
- ② If $a, b \in \mathbb{Z}$ with $a \neq 0$ and $a \mid b$, then gcd(a, b) = |a|.
- **3** If $a, b \in \mathbb{Z}$ not both 0, then gcd(a, b) = gcd(|a|, |b|).

18 / 37

Tan Kai Meng (NUS) Semester 1, 2019/20

Lemma

Let $a, b \in \mathbb{Z}$ with $b \neq 0$. Then gcd(a, b) = gcd(b, a - bx) for all $x \in \mathbb{Z}$. In particular, gcd(a, b) = gcd(b, a mod b).

Proof.

- - ① If d is a common divisor of a and b, then $d \mid b$ and $d \mid a(1) + b(-x) = a bx$, so that d is a common divisor of b and a bx.
 - ② If d' is a common divisor of b and a bx, then $d' \mid bx + (a bx)(1) = a$ and $d' \mid b$, so that d' is a common divisor of a and b.
 - § By (1.1) and (1.2), the sets of common divisors of a and b, and of b and a-bx are the same, and hence the largest elements in these two sets are the same.
 - **3** By definition of gcd, we have gcd(a, b) = gcd(b, a bx).
- ② Let $x = a \operatorname{\mathbf{div}} b$. Then $x \in \mathbb{Z}$ and $a bx = a \operatorname{\mathbf{mod}} b$. Now apply (1.4).

19 / 37

Tan Kai Meng (NUS) Semester 1, 2019/20

Euclidean Algorithm

Consider the following algorithm:

- $\textbf{ 1} \text{ while not } (a \bmod b = 0) \text{ do}$

 - **2** a := b;
 - **3** b := r;
- enddo;
- \odot return |b|;

Let a_0 and $b_0 \ (\neq 0)$ be the input values of a and b, and let a_i and b_i be the values of a and b after the i-th cycle in the above while loop. Then $b_i \in \mathbb{Z}^+$ and $b_i < b_{i-1}$, so that the while loop must terminate, say after m cycles (i.e. $a_m \ \mathbf{mod} \ b_m = 0$), and the algorithm returns $|b_m|$.

By the last lemma, we have $gcd(a_{i-1},b_{i-1})=gcd(a_i,b_i)$ for all i. Thus, $gcd(a_0,b_0)=gcd(a_m,b_m)=|b_m|$.

The above algorithm, called the **Euclidean algorithm**, thus computes $gcd(a_0, b_0)$.

Tan Kai Meng (NUS) Semester 1, 2019/20 20 / 37

Theorem (Bézout's Identity)

(x, y) can be < 0

Let $a, b \in \mathbb{Z}$ with $b \neq 0$. Then gcd(a, b) is an integer linear combination of a and b, i.e.

$$\exists x, y \in \mathbb{Z} \ (ax + by = \gcd(a, b)).$$

Proof by induction.

- ① Let P(n)= ('if the Euclidean algorithm takes n cycles in the while loop to compute $\gcd(a,b)$, then $\gcd(a,b)=ax+by$ for some $x,y\in\mathbb{Z}$ ').
- ② P(0) is true since if it takes 0 cycles then $gcd(a,b)=|b|=a(0)+b(\pm 1)$.
- **3** Assume P(n).
- **③** Suppose that it takes n+1 cycles to compute gcd(a,b).
- **1** Then it takes n cycles to compute $gcd(a_1, b_1)$, where a_1 and b_1 are the values of a and b after the first cycle.
- **6** Applying P(n), $gcd(a_1,b_1) = a_1x + b_1y$ for some $x,y \in \mathbb{Z}$.
- ② $gcd(a, b) = gcd(a_1, b_1) = a_1x + b_1y = bx + (a \text{ mod } b)y = bx + (a qb)y = ay + b(x qy)$. Since $y, x qy \in \mathbb{Z}$, P(n + 1) is true.

8 By MI, P(n) is true for all $n \in \mathbb{Z}_{>0}$.

Tan Kai Meng (NUS) Semester 1, 2019/20

21 / 37

Euclidean Algorithm in Action

Example

Compute gcd(12091, 10807) and express it as an integer linear combination of 12091 and 10807.

Solution:

$$\begin{aligned} 12091 &= 1(10807) + 1284; \\ 10807 &= 8(1284) + 535; \\ 1284 &= 2(535) + 214; \\ 535 &= 2(214) + 107; \\ 214 &= 2(107) + 0. \end{aligned}$$

$$\begin{split} 107 &= 535 - 2(214); \\ &= 535 - 2(1284 - 2(535)) = 5(535) - 2(1284); \\ &= 5(10807 - 8(1284)) - 2(1284) = 5(10807) - 42(1284); \\ &= 5(10807) - 42(12091 - 1(10807)) = 47(10807) - 42(12091). \end{split}$$

Thus, gcd(12091, 10807) = 107 = (12091)(-42) + (10807)(47).

Tan Kai Meng (NUS) Semester 1, 2019/20 22 / 37

Corollary

Let $a, b \in \mathbb{Z}$, not both 0.

- **1** Every common divisor of a and b divides gcd(a, b).

Proof.

- ① Any common divisor of a and b divides all integer linear combinations of a and b.
- 3 By (1) and (2), any common divisor of a and b divides gcd(a,b) (universal instantiation), giving part (1).
- **5** By (2), $gcd(a, b) \in S$.
- **1** If $n \in S$, then:

 - ② $gcd(a,b) = |gcd(a,b)| \le |n| = n$, since gcd(a,b), n > 0.
- **3** By (5) and (6.2), gcd(a, b) = min(S), giving part (2).

Tan Kai Meng (NUS) Semester 1, 2019/20 23 / 37

Corollary

Let $a, b \in \mathbb{Z}$. Then gcd(a, b) = 1 if and only if there exists $x, y \in \mathbb{Z}$ such that ax + by = 1.

Proof.

- ① By Bézout's Identity, if $\gcd(a,b)=1$, then there exists $x,y\in\mathbb{Z}$ such that ax+by=1.
- ② Conversely, if there exists $x,y\in\mathbb{Z}$ such that ax+by=1, then $1\in\{n\in\mathbb{Z}^+\mid \exists x,y\in\mathbb{Z}\;(n=ax+by)\}$, so that

$$1 = \min\{n \in \mathbb{Z}^+ \mid \exists x, y \in \mathbb{Z} \ (n = ax + by)\} = \gcd(a, b)$$

by the part (2) of the last corollary.

Primes

Recall that:

- An integer $n \in \mathbb{Z}^+$ is **composite** if there exists $a,b \in \mathbb{Z}^+$ with 1 < a,b < n such that n = ab.
- An integer $n \in \mathbb{Z}$ is **prime** if $n \geq 2$ and n is not composite.

Note

An alternative definition of a prime integer:

A positive integer that has exactly two positive integer divisors (namely, 1 and itself).

Lemma

Let p and q be two prime integers. If $p \mid q$ then p = q.

Proof.

Since \boldsymbol{q} is prime, \boldsymbol{q} has exactly two positive integer divisors, namely \boldsymbol{q} and

1. If $p \mid q$ then p is a positive integer divisor of q, and $p \neq 1$, so p = q.

Tan Kai Meng (NUS) Semester 1, 2019/20 25 / 37

Theorem

There are infinitely many prime integers.

Proof by contradiction.

- **3** Suppose that there exist only finite many prime integers; let them be p_1, p_2, \dots, p_k .
- 2 Consider $N = p_1 p_2 \cdots p_k + 1$.
- **3** Since $N \in \mathbb{Z}_{\geq 2}$, it can be factorised into primes (Slide 14 of LECT6-1.pdf).
- **4** So there exists a prime integer p such that $p \mid N$.
- **5** By (1), $p = p_i$ for some $1 \le i \le k$.
- **1** By (5) and (2), $p \mid p_1 p_2 \cdots p_k = N 1$.
- **②** By (4) and (6), $p \mid (N(1) + (N-1)(-1)) = 1$, a contradiction.

Lemma

Let p be a prime integer, and let $n \in \mathbb{Z}$. Then

$$\gcd(p,n) = \begin{cases} p, & \textit{if } p \mid n; \\ 1, & \textit{otherwise}. \end{cases}$$

Proof.

- **1** If $p \mid n$, then gcd(p, n) = |p| = p.
- ② If $p \nmid n$, then since p has only two positive divisors, namely 1 and p, 1 is the only positive common divisor of p and n. Thus $\gcd(p,n)=1$.

Definition

Let $a, b \in \mathbb{Z}$. We say that a and b are coprime (or relatively prime) if, and only if, gcd(a, b) = 1.

Example

- $oldsymbol{0}$ 3 and 4 are coprime. 4 and 6 are not coprime.
- ② If $p, n \in \mathbb{Z}$ with p prime, then either $p \mid n$ or (p and n are coprime).
- **③** If $a,b\in\mathbb{Z}$, then a and b are coprime if and only if there exist $x,y\in\mathbb{Z}$ such that ax+by=1.

Lemma

Let $a, b, c \in \mathbb{Z}$, with a and b coprime.

- ullet If a and c are coprime, then a and bc are coprime.
- 2 If $a \mid bc$, then $a \mid c$.

Proof.

Since a and b are coprime, there exist $x, y \in \mathbb{Z}$ such that ax + by = 1.

- ① If a and c are coprime, then ax'+cy'=1 for some $x',y'\in\mathbb{Z}$, so that by(ax'+cy')=by=1-ax, giving a(x+byx')+bc(yy')=1. Hence $\gcd(a,bc)=1$ since $x+byx',yy'\in\mathbb{Z}$.
- ② If bc=ka for some $k\in\mathbb{Z}$, then since c(ax+by)=c, we get c=acx+bcy=acx+kay=a(cx+ky), so that $a\mid c$ since $cx+ky\in\mathbb{Z}$.

Corollary

Let $a, b, p \in \mathbb{Z}$ with p prime. If $p \mid ab$, then $p \mid a$ or $p \mid b$.

Proof by division into cases.

If $p \mid ab$, then:

- ① Case 1 : $p \mid a$. Then $p \mid a$ or $p \mid b$ (generalisation).
- ② Case $2: p \nmid a$. Then p and a are coprime, so that part (2) of the last lemma applies to give $p \mid b$. Thus $p \mid a$ or $p \mid b$ (generalisation).

In all cases, $p \mid a$ or $p \mid b$.

Corollary

Let $n, p \in \mathbb{Z}^+$ with p prime. If $a_1, a_2, \ldots, a_n \in \mathbb{Z}$ and $p \mid a_1 a_2 \cdots a_n$ then $p \mid a_i$ for some $i \in \{1, 2, \ldots, n\}$.

Proof by induction on n.

Exercise.

◆ロト ◆個ト ◆差ト ◆差ト 差 めな()

Theorem

Let $k \in \mathbb{Z}^+$. If $l \in \mathbb{Z}^+$ and p_1, p_2, \ldots, p_k and q_1, q_2, \ldots, q_l are prime integers such that $p_1p_2\cdots p_k=q_1q_2\cdots q_l$, then k=l, and after reordering the q_j 's if necessary, $p_1=q_1, p_2=q_2, \ldots, p_k=q_k$.

Proof by induction on k.

- ① For each $k \in \mathbb{Z}^+$, let P(k) be the statement of the theorem.
- ② For P(1), if $p_1=q_1q_2\cdots q_l$ where p_1,q_1,q_2,\ldots,q_l are prime integers, then l=1 (otherwise p_1 is composite, a contradiction), and so $p_1=q_1$. Thus P(1) is true.
- **3** Assume P(k).

continue on next frame . . .

Proof.

- **5** For P(k+1), if $p_1p_2\cdots p_{k+1}=q_1q_2\cdots q_l$ where $p_1,p_2,\ldots,p_{k+1},q_1,q_2,\ldots,q_l$ are prime integers, then:
 - **1** $p_{k+1} \mid p_1 p_2 \cdots p_{k+1} = q_1 q_2 \cdots q_l$, so that $p_{k+1} \mid q_j$ for some j.
 - ② Thus $p_{k+1} = q_j$ by the Lemma on Slide 25.
 - **3** By reordering if necessary, we may assume j=l, i.e. $p_{k+1}=q_l$.
- **o** Cancelling p_{k+1} and q_l from $p_1p_2\cdots p_{k+1}=q_1q_2\cdots q_l$, we get $p_1p_2\cdots p_k=q_1q_2\cdots q_{l-1}$.
- ② By P(k), l-1=k and, after reordering if necessary, $p_1=q_1$, $p_2=q_2$, . . . , $p_k=q_k$.
- **3** Since l-1=k, $p_{k+1}=q_l=q_{k+1}$.
- **9** Thus P(k+1) is true.

Fundamental Theorem of Arithmetic

Theorem

Every $n \in \mathbb{Z}_{\geq 2}$ can be factorised uniquely (up to order) into primes.

Proof.

Existence of prime factorisation is proved in Slide 14 of LECT6-1.pdf. Uniqueness of prime factorisation is the subject of the last Theorem.

Let $a,b\in\mathbb{Z}^+$. Using the fundamental theorem of arithmetic, we can find distinct prime integers $p_1,p_2,\ldots,p_k,\ a_1,a_2,\ldots,a_k,b_1,b_2,\ldots,b_k\in\mathbb{Z}_{\geq 0}$ such that

$$a = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k},$$

$$b = p_1^{b_1} p_2^{b_2} \cdots p_k^{b_k}.$$

◆ロト ◆個ト ◆差ト ◆差ト を めらぐ

Lemma

 $a \mid b$ if and only if $a_1 \leq b_1$, $a_2 \leq b_2$, ..., $a_k \leq b_k$.

Proof.

- $c = p_1^{b_1 - a_1} p_2^{b_2 - a_2} \cdots p_k^{b_k - a_k} \in \mathbb{Z}$, so that $a \mid b$.
- ② If $a \mid b$, say b = ac where $c \in \mathbb{Z}$, then $c = \frac{b}{a} > 0$ so that $c \in \mathbb{Z}^+$.
 - **1** Case 1: c = 1. Then a = b, so that $a_1 = b_1$, $a_2 = b_2$, ..., $a_k = b_k$ by uniqueness of prime factorisation.
 - **Q** Case 2: c > 2. Since $c \mid b$, every prime divisor of c divides b, and so divides one of the prime divisors p_i of b by Slide 30, and hence equals to p_i by Slide 25. Thus $c = p_1^{c_1} p_2^{c_2} \cdots p_k^{c_k}$ for some $c_1, c_2, \dots, c_k \in \mathbb{Z}_{\geq 0}$, and so

$$\begin{split} p_1^{b_1} p_2^{b_2} \cdots p_k^{b_k} &= b = ac = (p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}) (p_1^{c_1} p_2^{c_2} \cdots p_k^{c_k}) \\ &= p_1^{a_1 + c_1} p_2^{a_2 + c_2} \cdots p_k^{a_k + c_k}. \end{split}$$

By the uniqueness of prime factorisation of b, we get $b_1 = a_1 + c_1 \ge a_1$, $b_2 = a_2 + c_2 > a_2, \ldots, b_k = a_k + c_k > a_k$

34 / 37

Corollary

$$\gcd(a,b) = p_1^{\min\{a_1,b_1\}} p_2^{\min\{a_2,b_2\}} \cdots p_k^{\{a_k,b_k\}}.$$

Proof.

- ② By the last Lemma, $D \mid a$ and $D \mid b$.
- lacksquare If $d \mid a$ and $d \mid b$, then
 - ① case 1: $d \le 0$. Then d < D, since $D \ge 1$.
 - ② case 1: d>0. Then by the last lemma, $d=p_1^{d_1}p_2^{d_2}\cdots p_k^{d_k}$, with $d_1\leq a_1,b_1$, $d_2\leq a_2,b_2,\ldots,d_k=a_k,b_k$. Thus, $d_1\leq \min\{a_1,b_1\},d_2\leq \min\{a_2,b_2\},\ldots,d_k=\min\{a_k,b_k\}$, and hence

$$d = p_1^{d_1} p_2^{d_2} \cdots p_k^{d_k} \le p_1^{\min\{a_1, b_1\}} p_2^{\min\{a_2, b_2\}} \cdots p_k^{\{a_k, b_k\}} = D.$$

In all cases, $d \leq D$.

4 D > 4 A > 4 E > 4 E > 9 Q P

Remarks

By the last Corollary, one can compute $\gcd(a,b)$ by finding the prime factorisations of a and b. This method is very fast for small numbers. However, for large numbers, determining their prime factorisations is VERY difficult, and the Euclidean algorithm is a very efficient method of computing their \gcd .

Summary

We have covered:

- Division algorithm
- b-adic expansion and base b representation
- Divisibility
- Common divisors and gcds
- Euclidean algorithm and Bézout's Identity
- Infinitude of primes
- Fundamental Theorem of Arithmetic