Chapter 6, Problems 1, 2, 4 and 9

Problem 1. Suppose α increases on [a,b], $a \leq x_0 \leq b$, α is continuous at x_0 , $f(x_0) = 1$, and f(x) = 0 if $x \neq x_0$. Prove that $f \in R(\alpha)$ and that $\int f d\alpha = 0$.

Proof. Let $\varepsilon > 0$. Because α is continuous, we may find $\delta > 0$ such that $|x - x_0| < \delta$ implies $|\alpha(x) - \alpha(x_0)| < \varepsilon$. Consider any partition $a = t_0 < t_1 < \cdots < t_n = b$ with $n \ge 2$ such that $t_i - t_{i-1} < \delta/2$ for all i. Then there exists an index i such that $t_{i-1} < x_0 < t_i$. For any choice of t_1^*, \ldots, t_n^* , we have

$$\left| \sum_{j=1}^{n} f(t_j^*)(\alpha(t_j) - \alpha(t_{j-1})) \right| \leq |f(t_i^*)| |\alpha(t_{i+1}) - \alpha(t_i)|$$

$$\leq |\alpha(t_{i+1}) - \alpha(t_i)|$$

$$\leq \varepsilon.$$

(Actually there is some ickiness when $t_i = x_0$, but this has no real effect the computation.) By definition of the Riemann-Stieltjes integral, this means that $f \in \mathcal{R}(\alpha)$ and $\int f d\alpha = 0$.

Problem 2. Suppose $f \geq 0$, f is continuous on [a,b] and $\int_a^b f(x)dx = 0$. Prove that f(x) = 0 for all $x \in [a,b]$. (Compare this with Exercise 1.)

Proof. We prove the contrapositive. Suppose there is some x_0 such that $f(x_0) > 0$; we want to show that $\int_a^b f(x)dx > 0$.

Set $\varepsilon = \frac{f(x_0)}{2} > 0$. The continuity of f gives us some $\delta > 0$ such that $|f(x) - f(x_0)| < \frac{f(x_0)}{2} = \varepsilon$ if $|x - x_0| < \delta$. Let $\ell = \min(\delta, \max(x_0 - a, b - x_0))$ and note that $\ell > 0$. Let I be the interval $[x_0 - \ell, x_0]$ if it is contained in [a, b] and $[x_0, x_0 + \ell]$ otherwise. (These are all just technical details to fit the right interval in.) In any case, we have $f(x) \ge \frac{f(x_0)}{2} = \varepsilon$ for all $x \in I$. Now consider the function

$$f'(x) = \begin{cases} \varepsilon & x \in I \\ 0 & x \in [a, b] \setminus I \end{cases}$$

which is continuous on [a, b] except at two points, so it is Riemann integrable. At the same time we have $f(x) \ge f'(x)$ for all $x \in [a, b]$, so

$$\int_{a}^{b} f(x)dx \ge \int_{a}^{b} f'(x)dx = \int_{x \in I} \varepsilon dx = \ell \varepsilon > 0.$$

This completes the proof. Note here, compared to Exercise 1, the continuity of f made a key difference.

Problem 4. If f(x) = 0 for all irrational x, f(x) = 1 for all rational x, prove that $f \notin \mathcal{R}$ on [a, b] for any a < b.

Proof. Let a < b and let $a = t_0 < t_1 < \cdots < t_n = b$ be any partition of [a, b]. Since both the rationals and irrationals are dense in \mathbb{R} , we can also find t_1^*, \ldots, t_n^* such that they are all either rational or irrational. With these two choices we will have

$$\left| \sum_{i=1}^{n} f(t_i^*)(t_i - t_{i-1}) \right| = b - a \quad \text{or} \quad \left| \sum_{i=1}^{n} f(t_i^*)(t_i - t_{i-1}) \right| = 0.$$

This holds for any a < b and any partition, so the upper Riemann sum is b - a while the lower Riemann sum is 0. These do not match so f(x) is not Riemann integrable.

Problem 9. Show that integration by parts can sometimes be applied to the "improper" integrals defined in Exercises 7 and 8. (State appropriate hypotheses, formulate a theorem, and prove it.) For instance show that

$$\int_0^\infty \frac{\cos x}{1+x} dx = \int_0^\infty \frac{\sin x}{(1+x)^2} dx.$$

Show that one of these integrals converges absolutely, but that the other does not.

Proposition. Let f(x) and g(x) be continuously differentiable functions defined on $[a, \infty)$. If $\lim_{x\to\infty} f(x)g(x)$ exists and $\int_a^\infty f(x)g'(x)dx$ converges, then $\int_a^\infty f'(x)g(x)dx$ converges.

Proof. Let b > a. Applying the normal integration by parts gives

$$\int_{a}^{b} f'(x)g(x)dx = [f(b)g(b) - f(a)g(a)] - \int_{a}^{b} f(x)g'(x)dx.$$

In the limit, our hypotheses guarantee that the RHS is well defined. Thus the LHS also exists and is well defined, as desired. \Box

So now let $f(x) = \sin x$ and $g(x) = \frac{1}{1+x}$. Then $f'(x) = \cos x$ and $g'(x) = -\frac{1}{(1+x)^2}$. Since

$$\left| \frac{\sin x}{(1+x)^2} \right| \le \frac{1}{x^2},$$

we know that $\int_0^\infty f(x)g'(x)dx$ converges absolutely; and $\lim_{x\to\infty} f(x)g(x)=0$. So indeed,

$$\int_0^\infty \frac{\cos x}{1+x} dx = \int_0^\infty \frac{\sin x}{(1+x)^2} dx.$$