

#### Cancer Gene Expression Classification

https://github.com/tamarahorne/Springboard/tree/main/Capstone%20Project%203

Tamara Horne | May 2023 | Springboard—DSC Capstone Project 3





#### Introduction

The Value of Predicting Cancer Type from Gene Expression Data

#### THE DATA

- subset of the RNA-Seq (HiSeq) PANCAN data set
- samples from five cancer types
  - BRCA (breast)
  - KIRC (kidney)
  - COAD (colon)
  - LUAD (lung)
  - PRAD (prostate)
- 801 rows; 20531 columns
- one row represents one sample
- one column contains a value for the gene expression for one gene
- columns have dummy names (gene\_XX)
- no missing values

#### Concerns

#### VARIANCE DISTRIBUTION



#### Concerns

#### BALANCE



#### Decisions





#### First Steps:

Fixing the Landing Dimension (Rule of Thumb)



Determine if Using a Scaler in the Pipeline with PCA is Wise



Decide if Balancing of Classes is Needed

2023 | May

#### **Percentage of Explained Variance**

#### **Confusion Matrix**

#### **First Two Principal Components**















#### **Desicions:**

Using the Rule of Thumb for Fixing the Landing Dimensions is Sufficient (Seven Principal Components)

A Scaler Should Not be Used



Balancing of Classes is Not Needed

# Baseline Modeling with Logistic Regression

Scores for each fold using training data (PCA, Logistic Regression, StratifiedKFold)

Fold number: 0, F1\_macro\_avg: 0.991
Fold number: 1, F1\_macro\_avg: 1.000
Fold number: 2, F1\_macro\_avg: 1.000
Fold number: 3, F1\_macro\_avg: 0.993
Fold number: 4, F1\_macro\_avg: 0.991

|   | Train set | class | ification | report: |          |         |
|---|-----------|-------|-----------|---------|----------|---------|
|   |           |       | precision | recall  | f1-score | support |
| • |           | 0     | 1.00      | 1.00    | 1.00     | 240     |
|   |           | 1     | 1.00      | 1.00    | 1.00     | 62      |
|   |           | 2     | 1.00      | 1.00    | 1.00     | 116     |
|   |           | 3     | 1.00      | 1.00    | 1.00     | 113     |
|   |           | 4     | 1.00      | 1.00    | 1.00     | 109     |
|   |           |       |           |         | 1 00     | C 40    |
|   | accur     | асу   |           |         | 1.00     | 640     |
|   | macro     | avg   | 1.00      | 1.00    | 1.00     | 640     |
|   | weighted  | avg   | 1.00      | 1.00    | 1.00     | 640     |

| Test set classification report: |           |        |          |         |  |  |  |  |  |
|---------------------------------|-----------|--------|----------|---------|--|--|--|--|--|
|                                 | precision | recall | f1-score | support |  |  |  |  |  |
| 0                               | 0.98      | 1.00   | 0.99     | 60      |  |  |  |  |  |
| 1                               | 1.00      | 1.00   | 1.00     | 16      |  |  |  |  |  |
| 2                               | 1.00      | 1.00   | 1.00     | 30      |  |  |  |  |  |
| 3                               | 1.00      | 0.96   | 0.98     | 28      |  |  |  |  |  |
| 4                               | 1.00      | 1.00   | 1.00     | 27      |  |  |  |  |  |
| accuracy                        |           |        | 0.99     | 161     |  |  |  |  |  |
| macro avg                       | 1.00      | 0.99   | 0.99     | 161     |  |  |  |  |  |
| weighted avg                    | 0.99      | 0.99   | 0.99     | 161     |  |  |  |  |  |

#### Extended Modeling: Linear

#### **Naive Bayes**



| Naive Bayes  | classification | report: |          |         |
|--------------|----------------|---------|----------|---------|
|              | precision      | recall  | f1-score | support |
|              |                |         |          |         |
| 0            | 0.98           | 1.00    | 0.99     | 60      |
| 1            | 1.00           | 0.94    | 0.97     | 16      |
| 2            | 1.00           | 1.00    | 1.00     | 30      |
| 3            | 0.96           | 0.96    | 0.96     | 28      |
| 4            | 1.00           | 1.00    | 1.00     | 27      |
|              |                |         |          |         |
| accuracy     |                |         | 0.99     | 161     |
| macro avg    | 0.99           | 0.98    | 0.98     | 161     |
| weighted avg | 0.99           | 0.99    | 0.99     | 161     |

#### **Support Vector Classifier**



| Support Vector | Classifier | classification report: |          |         |  |  |  |
|----------------|------------|------------------------|----------|---------|--|--|--|
|                | precision  | recall                 | f1-score | support |  |  |  |
|                |            |                        |          |         |  |  |  |
| 0              | 0.98       | 1.00                   | 0.99     | 60      |  |  |  |
| 1              | 1.00       | 1.00                   | 1.00     | 16      |  |  |  |
| 2              | 1.00       | 1.00                   | 1.00     | 30      |  |  |  |
| 3              | 1.00       | 0.96                   | 0.98     | 28      |  |  |  |
| 4              | 1.00       | 1.00                   | 1.00     | 27      |  |  |  |
|                |            |                        |          |         |  |  |  |
| accuracy       |            |                        | 0.99     | 161     |  |  |  |
| macro avg      | 1.00       | 0.99                   | 0.99     | 161     |  |  |  |
| weighted avg   | 0.99       | 0.99                   | 0.99     | 161     |  |  |  |

#### Extended Modeling: Non-linear

#### Random Forest Classifier



| Random Forest |           |        |          |         |
|---------------|-----------|--------|----------|---------|
|               | precision | recall | f1-score | support |
|               |           |        |          |         |
| 0             | 0.97      | 1.00   | 0.98     | 60      |
| 1             | 1.00      | 0.94   | 0.97     | 16      |
| 2             | 1.00      | 1.00   | 1.00     | 30      |
| 3             | 0.96      | 0.93   | 0.95     | 28      |
| 4             | 1.00      | 1.00   | 1.00     | 27      |
|               |           |        |          |         |
| accuracy      |           |        | 0.98     | 161     |
| macro avg     | 0.99      | 0.97   | 0.98     | 161     |
| weighted avg  | 0.98      | 0.98   | 0.98     | 161     |

#### **XGBoost Classifier**



| XGBClassifier | GBClassifier classification report: |        |          |         |  |  |  |  |
|---------------|-------------------------------------|--------|----------|---------|--|--|--|--|
|               | precision                           | recall | f1-score | support |  |  |  |  |
|               | -                                   |        |          |         |  |  |  |  |
| 0             | 0.95                                | 1.00   | 0.98     | 60      |  |  |  |  |
| 1             | 1.00                                | 0.94   | 0.97     | 16      |  |  |  |  |
| 2             | 1.00                                | 1.00   | 1.00     | 30      |  |  |  |  |
| 3             | 1.00                                | 0.96   | 0.98     | 28      |  |  |  |  |
| 4             | 1.00                                | 0.96   | 0.98     | 27      |  |  |  |  |
|               |                                     |        |          |         |  |  |  |  |
| accuracy      |                                     |        | 0.98     | 161     |  |  |  |  |
| macro avg     | 0.99                                | 0.97   | 0.98     | 161     |  |  |  |  |
| weighted avg  | 0.98                                | 0.98   | 0.98     | 161     |  |  |  |  |
| 3             |                                     |        |          |         |  |  |  |  |

#### N Neighbors Classifier



| KNeighborsClassifier classification report: |           |        |          |         |  |  |  |  |  |
|---------------------------------------------|-----------|--------|----------|---------|--|--|--|--|--|
|                                             | precision | recall | f1-score | support |  |  |  |  |  |
| 0                                           | 0.98      | 1.00   | 0.99     | 60      |  |  |  |  |  |
| 1                                           | 1.00      | 1.00   | 1.00     | 16      |  |  |  |  |  |
| 2                                           | 1.00      | 1.00   | 1.00     | 30      |  |  |  |  |  |
| 3                                           | 1.00      | 0.96   | 0.98     | 28      |  |  |  |  |  |
| 4                                           | 1.00      | 1.00   | 1.00     | 27      |  |  |  |  |  |
|                                             |           |        |          |         |  |  |  |  |  |
| accuracy                                    |           |        | 0.99     | 161     |  |  |  |  |  |
| macro avg                                   | 1.00      | 0.99   | 0.99     | 161     |  |  |  |  |  |
| weighted avg                                | 0.99      | 0.99   | 0.99     | 161     |  |  |  |  |  |

#### Model Comparison: f1 macro scores



#### Interpretion:

XGBoost Classifier and SHAP

## Feature Importance per class



#### BRCA (breast): Class O







#### COAD (colon): Class 1







#### KIRC (kidney): Class 2







#### LUAD (lung): Class 3







#### PRAD (prostate): Class 4







#### Data Predictability Skepticism of Model Success

All models had f1 macro scores of over 97%. Why are the classes so easy to predict?





#### What I Know

- Classes were largely separate with just two principal components
- Higher values for top feature seen in membership class
- Data comes from a reputable source

#### What I Don't Know

- In the real world, is there a direct relationship between high gene expression values and cancer class membership? We see a correlation in the data but that cannot be misconstrued for causation.
- Are all gene expression datasets this predictable or is there something abnormal, wrong, or exceptional about this particular dataset?

## Conclusions and Client Recommendations

Best Models per Class based on Rate of False Positives/Negatives

|                           | Score    | Class 0       |    | Class 1      |    | Class 2       |    | Class 3     |    | Class 4         |    |
|---------------------------|----------|---------------|----|--------------|----|---------------|----|-------------|----|-----------------|----|
|                           |          | BRCA (breast) |    | COAD (colon) |    | KIRC (kidney) |    | LUAD (lung) |    | PRAD (prostate) |    |
|                           |          | FP            | FN | FP           | FN | FP            | FN | FP          | FN | FP              | FN |
| K Neighbors Classifier    | 0.994711 | 1             | 0  | 0            | 0  | 0             | 0  | 0           | 1  | 0               | 0  |
| Logistic Regression       | 0.994711 | 1             | 0  | 0            | 0  | 0             | 0  | 0           | 1  | 0               | 0  |
| Support Vector Classifier | 0.994711 | 1             | 0  | 0            | 0  | 0             | 0  | 0           | 1  | 0               | 0  |
| Naive Bayes               | 0.984753 | 1             | 0  | 0            | 1  | 0             | 0  | 1           | 1  | 0               | 0  |
| XGBoost Classifier        | 0.981260 | 3             | 0  | 0            | 1  | 0             | 0  | 0           | 1  | 0               | 1  |
| Random Forest Classifier  | 0.979361 | 2             | 0  | 0            | 1  | 0             | 0  | 1           | 2  | 0               | 0  |

 $FP = False\ Positive\ (a\ false\ positive\ for\ class\ x\ is\ one\ where\ a\ true\ class\ x\ sample\ is\ predicted\ to\ be\ class\ y)$ 

 $FN = False \ Negative$  (a false negative for class x is one where a true class y sample is predicted to be class x)

### Conclusions and Client Recommendations

#### The Knowledge Gained Through Interpretation



Relationship between SHAP values and Feature Importance



Direction and magnitude of feature importance for single sample



Distribution of values per class for single feature

#### Possible Future Project Extension

Explore each feature in greater depth

• Plot feature gene expression value distribution for the other important features for each class.

• Find value threshold for important features above which there is a 100% chance of class membership.







#### For More Information Please Visit

https://github.com/tamarahorne/Springboard/tree/main/Capstone%20Project%203

