Лекция 8

Ilya Yaroshevskiy

3 апреля 2021 г.

Содержание

1	Ста	ндартное абсолюютно непрерывное распределение	1
	1.1	Равномерное распределение	1
	1.2	Экспоненциальное распределение	2
	1.3	Нормальное распределение	2
	1.4	Стандартное нормальное рапределение	2
	1.5	Связь между нормальным и стандартным нормальным распределениями и ее следствия	3
	1.6	Коэффиценты асимметрии и эксцесса	4
		Гамма функция и гамма распределение	

1 Стандартное абсолюютно непрерывное распределение

1.1 Равномерное распределение

Определение. Случайная величина ξ равномерно распределена на [a,b] если ее плотность постоянна на этом отрезке

$$f(x) = \begin{cases} 0 & x < a \\ \frac{1}{b-a} & a \le x \le b \\ 0 & x > b \end{cases}$$

$$F(x) = \int_{a}^{x} \frac{1}{b-a} dx = \frac{x-a}{b-a}$$

$$F(x) = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a \le x \le b \\ 1 & x > b \end{cases}$$

$$E\xi = \int_{-\infty}^{\infty} x f(x) dx = \int_{a}^{b} x \cdot \frac{1}{b-a} dx = \frac{a+b}{2}$$

$$E\xi^{2} = \int_{-\infty}^{\infty} x^{2} f(x) dx = \int_{a}^{b} x^{2} \frac{dx}{b-a} dx = \frac{a^{2} + ab + b^{2}}{3}$$

$$D\xi = E\xi^{2} - (E\xi)^{2} = \frac{a^{2} - 2ab + b^{2}}{12} = \frac{(b-a)^{2}}{12}$$

$$\sigma = \frac{b-a}{2\sqrt{3}}$$

$$p(\alpha < \xi < \beta) = \frac{\beta - \alpha}{b-a} \quad \alpha, \beta \in [a, b]$$

Обозначение. $\xi \in U_{[a,b]}$

Примечание. Датчики случайных чисел имеют равномерное распределение, и с их помощью можно смоделировать другие распределения, если знаем их функции распределения

1.2 Экспоненциальное распределение

Определение. Случайная величина ξ имеет **показательное** распределение, если ее плотность имеет вид:

$$f(x) = \begin{cases} 0 & x < 0 \\ \alpha e^{-\alpha x} & x \ge 0 \end{cases}$$

$$F(x) = \begin{cases} 0 & x < 0 \\ 1 - e^{-\alpha x} & x \ge 0 \end{cases}$$

$$E\xi^k = \int_{-\infty}^{\infty} x^k f(x) dx = \int_0^{\infty} x^k \alpha e^{-\alpha x} dx = \frac{1}{\alpha^k} \int_0^{\infty} \alpha (\alpha x)^k e^{-\alpha x} dx = \frac{k!}{\alpha^k}$$

$$E\xi = \frac{1}{\alpha}$$

$$E\xi^2 = \frac{2}{\alpha^2}$$

$$D\xi = E\xi^2 - (E\xi)^2 = \frac{1}{\alpha^2}$$

$$\sigma = \frac{1}{\alpha}$$

$$p(a < \xi < b) = e^{-a\alpha} - e^{-b\alpha}$$

Примечание. Свойство нестарения. Если $\xi \in E_{\alpha}$, то $p(\xi > x + y | \xi > x) = p(\xi > y)$

Примечание. Гамма функция Эйлера:

$$\Gamma(\lambda) = \int_0^\infty t^{\lambda - 1} e^{-t} dt$$

$$\Gamma(\lambda - 1) = \lambda! \quad \lambda \in \mathbb{N}$$

Обозначение. $\xi \in E_{\alpha}$

Пример. Время работы прибора до поломки

Пример. Время между появлениями двух соседних редких событий в простейшем потоке событий

1.3 Нормальное распределение

Определение. Случайная величина ξ имеет **нормальное** распределение с параметрами $a,\sigma>0,$ если ее плотность имеет вид

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-a)^2}{2\sigma^2}}$$

Смысл параметров распределения: $a=E\xi,\,\sigma$ — среднее квадратическое отклонения. $D=\sigma^2$ Функция распределения

$$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(t-a)^2}{2\sigma^2}} dt$$

Обозначение. $\xi \in N_{a,\sigma}$

1.4 Стандартное нормальное рапределение

Определение. Стандартным нормальным распределением называется нормальное распределение с параметрами $a=0,\ \sigma=1$ т.е. $\xi\in N_{0,1}.$ Плотность

$$\varphi(x) = \frac{1\sqrt{2\pi}^{-\frac{x^2}{2}}}{e}$$

Функиця распределения

$$\Phi_0(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{z^2}{2}} dz$$

Примечание.

$$\Phi_0(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^0 e^{-\frac{z^2}{2}} dz + \frac{1}{\sqrt{2\pi}} \int_0^x e^{-\frac{z^2}{2}} dz = 0.5 + \Phi(x) - \text{функция Лапласса}$$

Примечание. Интеграл Пуассона

$$\int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} dx = \sqrt{2\pi}$$

1.5 Связь между нормальным и стандартным нормальным распределениями и ее следствия

Свойство 1. $\xi \in N_{a,\sigma}$. Тогда

$$F_{\xi}(x) = \Phi_{\xi}\left(\frac{x-a}{\sigma}\right)$$

Доказательство.

$$F_{\xi}(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{(t-a)^2}{2\sigma^2}} dt$$

Доделать

Свойство 2. Если $\xi \in N_{a,\sigma}$, тогда $\eta = \frac{1-a}{\sigma} \in N_{0,1}$

Доказательство. Доделать

Свойство 3. $\xi \in N_{a,\sigma}$. Тогда $E\xi = a, D\xi = \sigma^2$

Доказательство.

$$\eta = \frac{\xi - a}{\sigma} \in N_{0,1} \Rightarrow E\eta = 0, \ D\eta = 1$$
$$\xi = \sigma\eta + a$$
$$E\xi = \sigma \cdot 0 + a = a$$
$$D\xi = \sigma^2 \cdot 1 = \sigma^2$$

Свойство 4. Вероятность попадания случайной величины в заданый интервал

$$p(\alpha < \xi < \beta) = \Phi\left(\frac{\beta - a}{\sigma}\right) - \Phi\left(\frac{\alpha - a}{\sigma}\right)$$

Доказательство.

$$\begin{split} p(\alpha < \xi < \beta) &= F_{\xi}(\beta) - F_{\xi}(\alpha) = \Phi_{0}\left(\frac{\beta - a}{\sigma}\right) - \Phi_{0}\left(\frac{\alpha - a}{\sigma}\right) = \\ &= \left(0, 5 + \Phi\left(\frac{\beta - a}{\sigma}\right)\right) - \left(0, 5 + \Phi\left(\frac{\alpha - a}{\sigma}\right)\right) = \Phi\left(\frac{\beta - a}{\sigma}\right) - \Phi\left(\frac{\alpha - a}{\sigma}\right) \end{split}$$

Свойство 5. Вероятность отклонения случайной величины от ее среднего значения или попадание в интервал симметричный относительно а

$$p(|\xi - a| < t) = 2\Phi\left(\frac{t}{\sigma}\right)$$

Доказательство.

$$P(|\xi - a| < t) = p(-t < \xi - a < t) = p(a - t < \xi a + t) = \Phi\left(\frac{a + t - a}{\sigma}\right) - \Phi\left(\frac{a - t - a}{\sigma}\right) = \Phi\left(\frac{t}{\sigma}\right) - \Phi\left(\frac{t}{\sigma}\right) = 2\Phi\left(\frac{t}{\sigma}\right)$$

Доказательство. При замене в этой формуле Phi(x) на $\Phi_0(x)$ получится

$$p(|\xi - a| < t) = 2\Phi_0 \left(\frac{t}{\sigma}\right) - 1$$

Свойство 6 (Правило трех σ).

$$p(|\xi - a| < 3\sigma) \approx 0.9973$$

1.6 Коэффиценты асимметрии и эксцесса

Определение. Асимметрией распределения называется число

$$A_{\xi} = E\left(rac{\xi-a}{\sigma}
ight)^3 = rac{N_{a,\sigma}}{\sigma^3}$$
 Исправить

Определение. Эксцессом распределения называется число

$$E_{\xi}=E\left(rac{\xi-a}{\sigma}
ight)^4-3=rac{N_{a,\sigma}}{\sigma^4}-3$$
 Исправить

Примечание. Если $\xi \in N_{a,\sigma^2}$, то $A\xi = 0$ и $E\xi = 0$. Таким образом эти коэффиценты показывают насколько сильно данное распределение отличается от нормального

1.7 Гамма функция и гамма распределение

Определение. Гамма функцией Гаусса называется функия

$$\Gamma(\lambda) = \int_0^\infty t^{\lambda - 1} e^{-t} dt$$

Свойство 1.

$$\Gamma(\lambda) = (\lambda - 1) \cdot \Gamma(\lambda - 1)$$

Свойство 2.

$$\Gamma(1) = 1$$

Свойство 3.

$$\Gamma(x) = (x-1)! \quad x \in \mathbb{N}$$

Свойство 4.

$$\Gamma(\frac{1}{2}) = \sqrt{\pi}$$

Определение. Случайная величина ξ имеет гамма распределение с параметрами $\alpha, \lambda > 0$, если ее плотность имеет вид:

$$f_{\xi}(x) = \begin{cases} 0 & x < 0 \\ \frac{\alpha^{\lambda}}{\Gamma(\lambda)} x^{\lambda - 1} e^{-\alpha x} & x \ge 0 \end{cases}$$
 Исправить

$$F_{\xi}(x) = \frac{\alpha^{\lambda}}{\Gamma(\lambda)} \int_{0}^{x} t^{\lambda - 1} e^{-\alpha t} dt \quad x \ge 0$$

Если $\lambda \in \mathbb{N}$, то

$$F_{\xi}(x) = \sum_{k=\lambda}^{\infty} \frac{(\alpha x)^k}{x^k} e^{-\alpha x}$$
 Исправить

Обозначение. $\xi \in \Gamma_{\alpha,\lambda}$

Свойство 1. $E\xi = \frac{\lambda}{\alpha}, D\xi = \frac{\lambda}{\alpha^2}$

Свойство 2. $\Gamma_{\alpha,\lambda} = E_{\alpha}$

Свойство 3. Доделать

Свойство 4. $Ecnu \ \xi \in N_{0,1}, \ mo \ \xi^2 \in \Gamma_{\frac{1}{6},\frac{1}{6}}$