BBC_Classification

November 20, 2022

1 CSCC11 - Introduction to Machine Learning, Fall 2022, Assignment 2

1.1 Authors

Shawn Santhoshgeorge (1006094673) Anaqi Amir Razif (1005813880)

1.2 Part 2: Programming Component

1.2.1 Setup

```
[1]: from helper import *
from NB import NB
from GCC import GCC
from KNN import KNN

OUTPUT = 'latex' # 'html' or 'latex' for create_report

binary_data = load_data(mode=Mode.BINARY, train_size=0.7, test_size=0.3)
freq_data = load_data(mode=Mode.FREQ, train_size=0.7, test_size=0.3)
```

1.2.2 Naive Bayes

```
[2]: X_train, y_train, X_test, y_test, labels = binary_data

n_b = NB()
n_b.train(X_train, y_train, labels)

# Using Training Dataset
y_pred_train = n_b.predict(X_train)
label_acc_train, overall_acc_train = get_accuracy(labels, y_train, y_pred_train)

# Using Testing Dataset
y_pred_test = n_b.predict(X_test)
label_acc_test, overall_acc_test = get_accuracy(labels, y_test, y_pred_test)

create_report(label_acc_train, label_acc_test, overall_acc_train, overall_acc_test, output=OUTPUT)
```

Training	Accuracy	Testing	Accuracy

Label	Accuracy	Label	Accuracy
business	98.86 %	business	97.47 %
entertainment	96.24~%	entertainmen	t 95.0 %
politics	95.18 %	politics	93.4 %
sport	99.17~%	sport	98.67 %
tech	92.88 %	tech	82.84 %

Training Overall Accuracy: 96.72 % Testing Overall Accuracy: 93.71 %

1.2.3 Gaussian Class Conditionals

```
[3]: X_train, y_train, X_test, y_test, labels = freq_data

g_cc = GCC()
g_cc.train(X_train, y_train, labels)

# Using Training Dataset
y_pred_train = g_cc.predict(X_train)
label_acc_train, overall_acc_train = get_accuracy(labels, y_train, y_pred_train)

# Using Testing Dataset
y_pred_test = g_cc.predict(X_test)
label_acc_test, overall_acc_test = get_accuracy(labels, y_test, y_pred_test)

create_report(label_acc_train, label_acc_test, overall_acc_train, overall_acc_test, output=OUTPUT)
```

Training Accuracy Testing Accuracy Label Accuracy Label Accuracy business 100.0 % business 93.67 % 100.0 %90.83~%entertainment entertainment 100.0 % politics 87.74 %politics sport100.0% sport 95.33 %100.0~%90.3 %tech tech

Training Overall Accuracy: 100.0 % Testing Overall Accuracy: 91.62 %

1.2.4 K-Nearest Neighbours

```
[4]: for mode in Mode:
         if OUTPUT == 'html':
             display_html(f'<center> <h3> With {mode.value} Data </h3> </center>', raw=True)
         elif OUTPUT == 'latex':
             display(Math(r'\text{With }' + r'\text{' f'{mode.value}' + r'}' + r'\text{ Data}'))
         X_train, y_train, X_test, y_test, labels = freq_data if mode.value == Mode.FREQ.value else binary_data
         for k in [1, 3, 6]:
             if OUTPUT == 'html':
                 display_html(f'<h4> For K = \{k\} </h4>', raw=True)
             elif OUTPUT == 'latex':
                display(Math(r'\text{For K = }' + f'{k}'))
             k_nn = KNN(k)
             k_nn.train(X_train, y_train)
             y_pred_train = k_nn.predict(X_train)
             label_acc_train, overall_acc_train = get_accuracy(labels, y_train, y_pred_train)
             y_pred_test = k_nn.predict(X_test)
             label_acc_test, overall_acc_test = get_accuracy(labels, y_test, y_pred_test)
             create_report(label_acc_train, label_acc_test, overall_acc_train, overall_acc_test, output=OUTPUT)
```

With Frequency Data

For K = 1

Training Accuracy Testing Accuracy

Label	Accuracy	Label	Accuracy
business	100.0 %	business	79.75 %
entertainment	100.0 %	entertainment	60.0 %
politics	100.0 %	politics	73.58 %
sport	100.0 %	sport	100.0 %
tech	100.0 %	tech	61.94 %

Training Overall Accuracy: 100.0 % Testing Overall Accuracy: 76.2 %

For K = 3

Training Accuracy Testing Accuracy

Label	Accuracy	$_{ m Label}$	Accuracy
business	82.1 %	business	68.99 %
entertainment	71.43~%	entertainment	50.0 %
politics	71.06 %	politics	62.26 %
sport	99.72~%	sport	100.0 %
tech	74.53 %	tech	46.27~%

Training Overall Accuracy: 80.86~% Testing Overall Accuracy: 66.92~%

Training Accuracy Testing Accuracy

Label	Accuracy	Label	Accuracy
business	68.75 %	business	56.96 %
entertainment	50.75 %	entertainment	45.0 %
politics	56.91 %	politics	51.89 %
sport	100.0 %	sport	100.0 %
tech	43.45 %	tech	35.07 %

Training Overall Accuracy: 66.22~% Testing Overall Accuracy: 59.28~%

With Binary Data

For K=1

Training Accuracy Testing Accuracy

Label	Accuracy	Label	Accuracy
business	100.0 %	business	41.14 %
entertainment	100.0 %	entertainment	28.33 %
politics	100.0 %	politics	42.45~%
sport	100.0 %	sport	99.33~%
tech	100.0 %	tech	30.6 %

Training Overall Accuracy: 100.0 % Testing Overall Accuracy: 50.0 %

For K = 3

Training Accuracy Testing Accuracy

Label	Accuracy	Label	Accuracy
business	61.36 %	business	34.81 %
entertainment	43.61 %	entertainment	14.17~%
politics	52.41~%	politics	38.68 %
sport	100.0 %	sport	100.0 %
tech	43.07 %	tech	11.19 %

Training Overall Accuracy: 62.36 % Testing Overall Accuracy: 41.62 %

For K = 6

Training Accuracy Testing Accuracy

Label	Accuracy		Label	Accuracy
business	45.17 %	_	business	25.32 %
entertainment	24.44~%		entertainment	13.33 %
politics	32.8 %		politics	25.47 %
sport	100.0 %		sport	100.0 %
tech	11.61~%		tech	5.22~%

Training Overall Accuracy: 46.11 % Testing Overall Accuracy: 35.93 %

1.2.5 Conclusion

Model	Training	Testing
Naive Bayes	96.72 %	93.71 %
Gaussian Class Conditionals	100.00 %	91.92 %
1-NN (Frequency Data)	100.00 %	76.2 %
3-NN (Frequency Data)	80.86 %	66.92 %
6-NN (Frequency Data)	66.22~%	59.28 %
1-NN (Binary Data)	100.00 %	50.00 %
3-NN (Binary Data)	62.36 %	41.62 %
6-NN (Binary Data)	46.11~%	35.93 %

Overall Accuracy Sorted By Testing Data

From the above table we can see that the Naive Bayes performed quite well compared to all other models here and would recommend using Naive Bayes for predicting the article labels. Some other things to note is how the K-NN models have quite varying performance based on if the data provided is Frequency or Binary and seems to work well with Frequency Data. Between all the models we can see that was able to accurately provide the label for 'sports' no matter if the data provided is Frequency or Binary, this could be because there are more of those articles in the dataset.