Lecture 9: Support Vector Machines II

Reading: Section 12.3

GU4241/GR5241 Statistical Machine Learning

Linxi Liu February 16, 2018

Motivation

More realistic data

Motivation: Kernels

Idea

- The SVM uses the scalar product $\langle \mathbf{x}, \tilde{\mathbf{x}}_i \rangle$ as a measure of similarity between \mathbf{x} and $\tilde{\mathbf{x}}_i$, and of distance to the hyperplane.
- ▶ Since the scalar product is linear, the SVM is a linear method.
- By using a nonlinear function instead, we can make the classifier nonlinear.

Kernels in Detail

► Scalar product can be regarded as a two-argument function

$$\langle .,. \rangle : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$$

▶ We will replace this function with a function $k: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ and substitute

$$k(\mathbf{x}, \mathbf{x}')$$
 for every occurrence of $\langle \mathbf{x}, \mathbf{x}' \rangle$

in the SVM formula.

▶ Under certain conditions on *k*, all optimization/classification results for the SVM still hold. Functions that satisfy these conditions are called **kernel functions**.

The Most Popular Kernel

RBF Kernel

$$k_{\mathsf{RBF}}(\mathbf{x},\mathbf{x}') := \exp\left(-rac{\|\mathbf{x}-\mathbf{x}'\|_2^2}{2\sigma^2}
ight)$$
 for some $\sigma \in \mathbb{R}_+$

is called an **RBF kernel** (RBF = radial basis function). The parameter σ is called **bandwidth**.

Other names for k_{RBF} : Gaussian kernel, squared-exponential kernel.

If we fix \mathbf{x}' , the function $k_{\mathsf{RBF}}(\,.\,,\mathbf{x}')$ is (up to scaling) a spherical Gaussian density on \mathbb{R}^d , with mean \mathbf{x}' and standard deviation σ .

Choosing a kernel

Theory

To define a kernel:

- We have to define a function of two arguments and prove that it is a kernel
- ► This is done by checking a set of necessary and sufficient conditions known as "Mercer's theorem".

Practice

The data analyst does not define a kernel, but tries some well-known standard kernels until one seems to work. Most common choices:

- The RBF kernel.
- ► The "linear kernel" $k_{SP}(\mathbf{x}, \mathbf{x}') = \langle \mathbf{x}, \mathbf{x}' \rangle$, i.e. the standard, linear SVM.

Once kernel is chosen

- Classifier can be trained by solving the optimization problem using standard software.
- SVM software packages include implementations of most common kernels.

Which Functions work as Kernels?

Formal definition

A function $k: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is called a **kernel** on \mathbb{R}^d if there is *some* function $\phi: \mathbb{R}^d \to \mathcal{F}$ into *some* space \mathcal{F} with scalar product $\langle \, . \, , \, . \, \rangle_{\mathcal{F}}$ such that

$$k(\mathbf{x}, \mathbf{x}') = \langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle_{\mathcal{F}}$$
 for all $\mathbf{x}, \mathbf{x}' \in \mathbb{R}^d$.

In other words

- ▶ *k* is a kernel if it can be interpreted as a scalar product on some other space.
- ▶ If we substitute $k(\mathbf{x}, \mathbf{x}')$ for $\langle \mathbf{x}, \mathbf{x}' \rangle$ in all SVM equations, we implicitly train a *linear* SVM on the space \mathcal{F} .
- ► The SVM still works: It still uses scalar products, just on another space.

The mapping ϕ

- $lacklosh \phi$ has to transform the data into data on which a linear SVM works well.
- ▶ This is usually achieved by choosing \mathcal{F} as a higher-dimensional space than \mathbb{R}^d .

Mapping into Higher Dimensions

Example

How can a map into higher dimensions make class boundary (more) linear?
Consider

Mapping into Higher Dimensions

Problem

In previous example: We have to know what the data looks like to choose $\phi!$

Solution

- ▶ Choose high dimension h for \mathcal{F} .
- ► Choose components ϕ_i of $\phi(\mathbf{x}) = (\phi_1(\mathbf{x}), \dots, \phi_h(\mathbf{x}))$ as different nonlinear mappings.
- If two points differ in \mathbb{R}^d , some of the nonlinear mappings will amplify differences.

The RBF kernel is an extreme case

- ▶ The function k_{RBF} can be shown to be a kernel, however:
- \triangleright \mathcal{F} is infinite-dimensional for this kernel.

Determining whether k is a kernel

Mercer's theorem

A mathematical result called $\it Mercer's theorem$ states that, if the function $\it k$ is positive, i.e.

$$\int_{\mathbb{R}^d \times \mathbb{R}^d} k(\mathbf{x}, \mathbf{x}') f(\mathbf{x}) f(\mathbf{x}') d\mathbf{x} d\mathbf{x}' \ge 0$$

for all functions f, then it can be written as

$$k(\mathbf{x}, \mathbf{x}') = \sum_{j=1}^{\infty} \lambda_j \phi_j(\mathbf{x}) \phi_j(\mathbf{x}')$$
.

The ϕ_j are functions $\mathbb{R}^d \to \mathbb{R}$ and $\lambda_i \geq 0$. This means the (possibly infinite) vector $\phi(\mathbf{x}) = (\sqrt{\lambda_1}\phi_1(\mathbf{x}), \sqrt{\lambda_2}\phi_2(\mathbf{x}), \ldots)$ is a feature map.

Kernel arithmetic

Various functions of kernels are again kernels: If k_1 and k_2 are kernels, then e.g.

$$k_1 + k_2$$
 $k_1 \cdot k_2$ const. $\cdot k_1$

are again kernels.

The Kernel Trick

Kernels in general

- Many linear machine learning and statistics algorithms can be "kernelized".
- ► The only conditions are:
 - 1. The algorithm uses a scalar product.
 - 2. In all relevant equations, the data (and all other elements of \mathbb{R}^d) appear *only inside a scalar product*.
- This approach to making algorithms non-linear is known as the "kernel trick".

Kernel SVM

Optimization problem

$$\begin{split} & \min_{\mathbf{v}_{\mathsf{H}},c} & & \|\mathbf{v}_{\mathsf{H}}\|_{\mathcal{F}}^2 + \gamma \sum_{i=1}^n \xi^2 \\ & \text{s.t.} & & \tilde{y}_i(\langle \mathbf{v}_{\mathsf{H}}, \phi(\tilde{\mathbf{x}}_i) \rangle_{\mathcal{F}} - c) \geq 1 - \xi_i \quad \text{ and } \xi_i \geq 0 \end{split}$$

Note: \mathbf{v}_{H} now lives in \mathcal{F} , and $\|.\|_{\mathcal{F}}$ and $\langle .,. \rangle_{\mathcal{F}}$ are norm and scalar product on \mathcal{F} .

Dual optimization problem

$$\begin{split} \max_{\pmb{\alpha} \in \mathbb{R}^n} \qquad W(\pmb{\alpha}) &:= \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j \tilde{y}_i \tilde{y}_j (\frac{\pmb{k}(\tilde{\mathbf{x}}_i, \tilde{\mathbf{x}}_j)}{\sqrt{2}}) + \frac{1}{\gamma} \mathbb{I}\{i=j\}) \\ \text{s.t.} \qquad \sum_{i=1}^n \tilde{y}_i \alpha_i &= 0 \qquad \text{and} \qquad \alpha_i \geq 0 \end{split}$$

Classifier

$$f(\mathbf{x}) = \operatorname{sgn}\left(\sum_{i=1}^{n} \tilde{y}_{i} \alpha_{i}^{*} k(\tilde{\mathbf{x}}_{i}, \mathbf{x}) - c\right)$$

SVM with RBF Kernel

$$f(\mathbf{x}) = \mathrm{sign}\left(\sum_{i=1}^n y_i \alpha_i^* k_{\mathrm{RBF}}(\mathbf{x}_i, \mathbf{x})\right)$$

- Circled points are support vectors. The the two contour lines running through support vectors are the nonlinear counterparts of the convex hulls.
- The thick black line is the classifier.
- ▶ Think of a Gaussian-shaped function $k_{\mathsf{RBF}}(\,.\,,\mathbf{x}')$ centered at each support vector \mathbf{x}' . These functions add up to a function surface over \mathbb{R}^2 .
- ► The lines in the image are contour lines of this surface. The classifier runs along the bottom of the "valley" between the two classes.
- \blacktriangleright Smoothness of the contours is controlled by σ

Decision Boundary with RBF Kernel

The decision boundary runs here.

The decision boundary of the classifier coincides with the set of points where the surfaces for class +1 and class -1 have equal value.

Summary: SVMs

Basic SVM

- Linear classifier for linearly separable data.
- ▶ Positions of affine hyperplane is determined by maximizing margin.
- ▶ Maximizing the margin is a convex optimization problem.

Full-fledged SVM

Ingredient	Purpose
Maximum margin Slack variables	Good generalization properties Overlapping classes Robustness against outliers
Kernel	Nonlinear decision boundary

Use in practice

- ► Software packages (e.g. libsvm, SVMLite)
- ► Choose a kernel function (e.g. RBF)
- lacktriangle Cross-validate margin parameter γ and kernel parameters (e.g. bandwidth)