Principes de fonctionnement des machines binaires

2019/2020

Pierluigi Crescenzi

Université de Paris, IRIF

- Tests et examens
 - CC : résultat des tests en TD / TP (semaine 4 et semaine 10)
 - E0 : partiel (samedi 26 octobre)
 - E1 : examen mi décembre
 - E2 : examen fin juin
- Notes finales
 - Note session 1:25% CC + 25% E0 + 50% E1
 - Note session 2 : max(E2, 33% CC + 67% E2)
- Rappel
 - Pas de note ⇒ pas de moyenne ⇒ pas de semestre
- Site web
 - moodlesupd.script.univ-paris-diderot.fr

- Numération et arithmétique
- Numération et arithmétique en machine
- Numérisation et codage (texte, images)
- Compression, cryptographie, contrôle d'erreur
- Logique et calcul propositionnel
- Circuits numériques

Logique et calcul propositionnel

• Le **calcul propositionnel** ou calcul des propositions est une théorie logique qui formalise le raisonnement logique

- Le **calcul propositionnel** ou calcul des propositions est une théorie logique qui formalise le raisonnement logique
 - Exemple : le fameux syllogisme de Socrate

- Le **calcul propositionnel** ou calcul des propositions est une théorie logique qui formalise le raisonnement logique
 - Exemple : le fameux syllogisme de Socrate
 - Si Tous les hommes sont mortels...
 - ...et Socrate est un homme,

- Le **calcul propositionnel** ou calcul des propositions est une théorie logique qui formalise le raisonnement logique
 - Exemple : le fameux syllogisme de Socrate
 - Si Tous les hommes sont mortels...
 - ...et Socrate est un homme,
 - alors Socrate est mortel
 - 2 prémisses qui mènent à 1 conclusion

- Le calcul propositionnel ou calcul des propositions est une théorie logique qui formalise le raisonnement logique
 - Exemple : le fameux syllogisme de Socrate
 - Si Tous les hommes sont mortels...
 - ...et Socrate est un homme,
 - alors Socrate est mortel
 - 2 prémisses qui mènent à 1 conclusion
- Le calcul propositionnel ne se préoccupe que de la bonne articulation logique des propositions entre elles pas de leur vérité intrinsèque

- Le **calcul propositionnel** ou calcul des propositions est une théorie logique qui formalise le raisonnement logique
 - Exemple : le fameux syllogisme de Socrate
 - Si Tous les hommes sont mortels...
 - ...et Socrate est un homme,
 - alors Socrate est mortel
 - 2 prémisses qui mènent à 1 conclusion
- Le calcul propositionnel ne se préoccupe que de la bonne articulation logique des propositions entre elles pas de leur vérité intrinsèque
 - Exemple : un calcul propositionnel invalide
 - Si Tous les chats ont des moustaches..
 - …et Mon grand-père a des moustaches,

- Le **calcul propositionnel** ou calcul des propositions est une théorie logique qui formalise le raisonnement logique
 - Exemple : le fameux syllogisme de Socrate
 - Si Tous les hommes sont mortels...
 - ...et Socrate est un homme,
 - alors Socrate est mortel
 - 2 prémisses qui mènent à 1 conclusion
- Le calcul propositionnel ne se préoccupe que de la bonne articulation logique des propositions entre elles pas de leur vérité intrinsèque
 - Exemple : un calcul propositionnel invalide
 - Si Tous les chats ont des moustaches..
 - …et Mon grand-père a des moustaches,
 - alors Mon grand-père est un chat

- L'algèbre de Boole est le calcul des propositions dont le domaine est celui des booléens
 - Ensemble a 2 éléments {FAUX, VRAI}, {false, true}, $\{\top, \bot\}$ ou {0, 1} qu'on appelle **valeurs de vérité**

• Une **proposition** est une entité qui donne une information à propos d'un état des choses

- Une proposition est une entité qui donne une information à propos d'un état des choses
- Certaines sont universellement vraies ou fausses (ce sont des constantes)
 - 12 est un nombre paire
 - 12 est un nombre premier

- Une proposition est une entité qui donne une information à propos d'un état des choses
- Certaines sont universellement vraies ou fausses (ce sont des constantes)
 - 12 est un nombre paire
 - 12 est un nombre premier
- Certaines sont parfois vraies parfois fausses selon le contexte
 - Il pleut
 - Nous sommes 208 dans cet amphi
 - Aujourd'hui, c'est dimanche
 - La terre est ronde
 - Les tigres sont carnivores

- Une proposition est une entité qui donne une information à propos d'un état des choses
- Certaines sont universellement vraies ou fausses (ce sont des constantes)
 - 12 est un nombre paire
 - 12 est un nombre premier
- Certaines sont parfois vraies parfois fausses selon le contexte
 - Il pleut
 - Nous sommes 208 dans cet amphi
 - Aujourd'hui, c'est dimanche
 - La terre est ronde
 - Les tigres sont carnivores
- Les propositions sont dénommées à l'aide de symboles
 - Variables propositionnelles : p,q,r,s,\ldots
 - Ce sont les premiers constituants du langage

- Les seconds constituants sont les **connecteurs** (ou opérateurs)
 - Permettent de construire des propositions plus élaborées

- Les seconds constituants sont les connecteurs (ou opérateurs)
 - Permettent de construire des propositions plus élaborées
- Un exemple de connecteur binaire est le **ou**
 - Permet de combiner deux propositions pour en obtenir une plus complexe dont la valeur de vérité est fonction de la valeur des propositions combinée

- Les seconds constituants sont les connecteurs (ou opérateurs)
 - Permettent de construire des propositions plus élaborées
- Un exemple de connecteur binaire est le **ou**
 - Permet de combiner deux propositions pour en obtenir une plus complexe dont la valeur de vérité est fonction de la valeur des propositions combinée

$$p = \mathtt{il} \ \mathtt{pleut}$$

$$q = \mathtt{il} \ \mathtt{neige}$$

- Les seconds constituants sont les connecteurs (ou opérateurs)
 - Permettent de construire des propositions plus élaborées
- Un exemple de connecteur binaire est le **ou**
 - Permet de combiner deux propositions pour en obtenir une plus complexe dont la valeur de vérité est fonction de la valeur des propositions combinée

- Les seconds constituants sont les connecteurs (ou opérateurs)
 - Permettent de construire des propositions plus élaborées
- Un exemple de connecteur binaire est le **ou**
 - Permet de combiner deux propositions pour en obtenir une plus complexe dont la valeur de vérité est fonction de la valeur des propositions combinée

• Les connecteurs n-aires sont des applications n-aires de $\{\top, \bot\}^n$ à $\{\top, \bot\}$

- Les connecteurs n-aires sont des applications n-aires de $\{\top, \bot\}^n$ à $\{\top, \bot\}$
 - 2 connecteurs 0-aires : constantes \top et \bot
 - o Java:true et false

- Les connecteurs n-aires sont des applications n-aires de $\{\top, \bot\}^n$ à $\{\top, \bot\}$
 - lacksquare 2 connecteurs 0-aires : constantes \top et \bot
 - o Java:true et false
 - 4 connecteurs unaires : $\{\top, \bot\} \rightarrow \{\top, \bot\}$
 - ∘ Java:!

- Les connecteurs n-aires sont des applications n-aires de $\{\top, \bot\}^n$ à $\{\top, \bot\}$
 - lacksquare 2 connecteurs 0-aires : constantes \top et \bot
 - Java: true et false
 - 4 connecteurs unaires : $\{\top, \bot\} \rightarrow \{\top, \bot\}$
 - ∘ Java:!
 - 16 connecteurs binaires : $\{\top, \bot\}^2 \to \{\top, \bot\}$
 - Java : ||, **&&** et ^

- Les connecteurs n-aires sont des applications n-aires de $\{\top, \bot\}^n$ à $\{\top, \bot\}$
 - \blacksquare 2 connecteurs 0-aires : constantes \top et \bot
 - o Java:true et false
 - 4 connecteurs unaires : $\{\top, \bot\} \rightarrow \{\top, \bot\}$
 - ∘ Java:!
 - 16 connecteurs binaires : $\{\top, \bot\}^2 \to \{\top, \bot\}$
 - Java : ||, **&&** et ^
 - 256 connecteurs ternaires : $\{\top, \bot\}^3 \to \{\top, \bot\}$
 - Disjonction conditionnée
 - **-** ...

p	absurdisation	identité	négation	tautologisation
			Т	T
		Т		T

- La négation de p est souvent notée $\neg p$
 - o Java : opérateur !

p	q	上	et	n-imp	p_1	n-pmi	p_2	x-ou	ou
		上		Т		上		工	
	T	上		Т		Т		T	T
		上		Т	T	上		T	T
	\top	上		Т		\perp	$ \top $	上	\top
_									
p	q	n-ou	eq	n-p ₂	pmi	n-p ₁	imp	n-et	T
	$oxed{q}$	n-ou	eq	n-p ₂	pmi T	$oxed{egin{array}{ c c c c c c c c c c c c c c c c c c c$	imp	n-et	T T
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	n-ou	eq T L	n-p ₂	pmi T L	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	imp T	n-et	T T T
	<i>q</i>	n-ou	eq	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	pmi T L T	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	imp	n-et	T

p	q	上	et	n-imp	p_1	n-pmi	p_2	x-ou	ou
		上		上		\perp		工	工
	T	上				T		T	T
		上		Т	T			Т	T
	extstyle o	上	T	上				上	T
p	q	n-ou	eq	n-p ₂	pmi	n-p ₁	imp	n-et	T
$egin{bmatrix} p \ \bot \ \end{matrix}$	$oxed{q}$	n-ou	eq T	n-p ₂	pmi T	$oxed{egin{array}{ c c c c c c c c c c c c c c c c c c c$		n-et	T
$egin{array}{ c c c c c c c c c c c c c c c c c c c$		n-ou	eq T L	n-p ₂	pmi T L	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	imp ⊤ ⊤	n-et	T T T
		n-ou	eq	n-p ₂	pmi T L T	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	imp	n-et	T

• et : ∧ (Java : && ou &)

p	q	上	et	n-imp	p_1	n-pmi	p_2	x-ou	ou
		上		上				上	Τ.
	T	上		上		T		T	T
		上	上	Т	一十一	上		T	T
$ \top $	op	上	T	上		上	$ \top $		T
p	q	n-ou	eq	n-p ₂	pmi	n-p ₁	imp	n-et	T
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	n-ou	eq	n-p ₂	pmi T	n-p ₁	imp	n-et	T
		n-ou	eq T L	n-p ₂	pmi T L	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	imp T	n-et	T T T
		n-ou	eq	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	pmi T L T	n-p₁	imp	n-et	T T T T

• et : ∧ (Java : && ou &)

• ou : ∨ (Java : || ou |)

p	q	上	et	n-imp	p_1	n-pmi	p_2	x-ou	ou
		上		上		上	上	Т	工
	T	上		上		T	\top	T	\top
一		上		Т	一十一	上	上	T	丁
	\top	上	T	上		上	$ \top $	上	\top
p	q	n-ou	eq	\mid n- $p_2 \mid$	pmi	n - p_1	imp	n-et	$ \top $
$egin{bmatrix} p \ oxed{oxed}$	$oxed{q}$	n-ou	eq	$oxed{ ext{n-}p_2 }$	pmi T	$oxed{ ext{n-}p_1 }$		n-et	T T
$egin{bmatrix} p \ oldsymbol{\perp} \ oldsymbol{\perp} \ oldsymbol{\perp} \ \end{array}$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	n-ou	eq T L	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	pmi T L	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	imp	n-et	T T T
		n-ou T L	eq	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	pmi	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	imp	n-et	T T T T

• et: ∧ (Java: && ou &)

• ou : ∨ (Java : || ou |)

p	q	上	et	n-imp	p_1	n-pmi	p_2	x-ou	ou
		上		上				工	
	T	上	上			T		T	T
一		上		Т	一十一	上		T	T
$ \top $	op		T	上	$ \top $	上	$ \top $	工	\top
p	q	n-ou	eq	n-p ₂	pmi	n-p ₁	imp	n-et	T
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	n-ou	eq T	n-p ₂	pmi T	n-p ₁	imp T	n-et	T
		n-ou	eq T L	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	pmi T L	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	imp T	n-et	T T T
	<i>q</i>	n-ou	eq	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	pmi T L T	n-p₁	imp	n-et	T T T

• et : ∧ (Java : && ou &)

n-et: ↑

• ou: ∨ (Java: || ou |)

p	q	上	et	n-imp	p_1	n-pmi	p_2	x-ou	ou
		上		上				上	工
	o	上		上		T		T	丁
		上		Т	一十一	上		Т	T
	\sqcap	上	T	上		上	$ \top $	上	T
p	q	n-ou	eq	n-p ₂	pmi	n-p ₁	imp	n-et	T
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	n-ou	eq T	$\begin{array}{ c c c c }\hline \text{n-}p_2 \end{array}$	pmi T	$oxed{egin{array}{ c c c c c c c c c c c c c c c c c c c$	imp	n-et	T
		n-ou	eq T L	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	pmi T L	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	imp T	n-et	T T T
		n-ou	eq	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	pmi T L T	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	imp	n-et	T

• et : ∧ (Java : && ou &)

n-et: ↑

• ou: \langle (Java: || ou |)

• n-ou:↓

p	q	上	et	n-imp	p_1	n-pmi	p_2	x-ou	ou
		上		上				上	工
	o	上				Т	一十一	T	T
		上		Т	一十一			Т	T
	$\mid \top \mid$		$ \ \top \ $	\perp		\perp		上	T
p	q	n-ou	eq	n-p ₂	pmi	n-p ₁	imp	n-et	Τ
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	n-ou	eq T	$oxed{ ext{n-}p_2 }$	pmi T	$oxed{egin{array}{ c c c c c c c c c c c c c c c c c c c$	imp	n-et	T T
		n-ou	eq T L	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	pmi T L	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	imp T	n-et T	T T T
		n-ou	eq	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	pmi T L T	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	imp	n-et	T

• et : ∧ (Java : && ou &)

n-et: ↑

imp : ⇒

• ou: \langle (Java: || ou |)

n-ou:↓

p	q	上	et	n-imp	p_1	n-pmi	p_2	x-ou	ou
		上		上				上	工
	o	上		上		T		T	丁
		上		Т	\top			T	T
	\sqcap	上	\Box	上	$ \top $			上	T
p	q	n-ou	eq	n-p ₂	pmi	n-p ₁	imp	n-et	T
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	n-ou	eq	$oxed{ ext{n-}p_2 }$	pmi T	n-p ₁	imp	n-et	T
		n-ou	eq T L	n-p ₂	pmi T L	n-p ₁	imp 	n-et T	T T T
	<i>q</i> ⊥ ⊤	n-ou	eq	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	pmi T L T	n-p₁	imp	n-et	T

• et : ∧ (Java : && ou &)

• n-et:↑

imp : ⇒

• ou: \langle (Java: || ou |)

n-ou:↓

• eq:⇔

Connecteurs ternaires

p	q	$\mid r \mid$	si p alors q sinon r
	工		
	丄	extstyle o	T
	T		
	T	extstyle o	T
	工		
	上	extstyle o	
	T		T
	T	\top	T

- En Java : opérateur ? :
 - Exemple: s = p ? q : r;
- $2^8 = 256$ connecteurs ternaires au total

• Les **formules** du calcul propositionnel sont obtenues par induction

- Les **formules** du calcul propositionnel sont obtenues par induction
 - Toute constante est une formule, toute variable est une formule

- Les **formules** du calcul propositionnel sont obtenues par induction
 - Toute constante est une formule, toute variable est une formule
 - Pour tout entier n, pour tout connecteur n-aire γ et pour toute formule f_i ($1 \le i \le n$), $\gamma(f_1, \ldots, f_n)$ est une formule
 - $\circ \ n=2$: $(f_1)\ \gamma\ (f_2)$ (notation infixe)

- Les **formules** du calcul propositionnel sont obtenues par induction
 - Toute constante est une formule, toute variable est une formule
 - Pour tout entier n, pour tout connecteur n-aire γ et pour toute formule f_i ($1 \le i \le n$), $\gamma(f_1, \ldots, f_n)$ est une formule
 - $\circ \ n=2$: $(f_1)\ \gamma\ (f_2)$ (notation infixe)
- Exemples
 - \blacksquare \top , \bot , p, q et r
 - $lackbox{1}{\bullet} (p) \land (q), ((p) \land (q)) \lor (r), \neg (((p) \land (q)) \lor (r))$

- Les **formules** du calcul propositionnel sont obtenues par induction
 - Toute constante est une formule, toute variable est une formule
 - Pour tout entier n, pour tout connecteur n-aire γ et pour toute formule f_i ($1 \le i \le n$), $\gamma(f_1, \ldots, f_n)$ est une formule
 - $\circ \ n=2$: $(f_1) \ \gamma \ (f_2)$ (notation infixe)
- Exemples
 - \blacksquare \top , \bot , p, q et r
 - $lackbox{1}{\bullet} (p) \land (q), ((p) \land (q)) \lor (r), \neg (((p) \land (q)) \lor (r))$
- Certaines parenthèses peuvent être enlevées (pourvu que des priorités soient définies entre opérateurs)

- Les **formules** du calcul propositionnel sont obtenues par induction
 - Toute constante est une formule, toute variable est une formule
 - Pour tout entier n, pour tout connecteur n-aire γ et pour toute formule f_i ($1 \le i \le n$), $\gamma(f_1, \ldots, f_n)$ est une formule
 - $\circ \ n=2$: $(f_1) \ \gamma \ (f_2)$ (notation infixe)
- Exemples
 - \blacksquare \top , \bot , p, q et r
 - $lackbox{1.5}{\ } (p) \ \land \ (q), ((p) \ \land \ (q)) \ \lor \ (r), \ \lnot(((p) \ \land \ (q)) \ \lor \ (r))$
- Certaines parenthèses peuvent être enlevées (pourvu que des **priorités** soient définies entre opérateurs)
 - Exemple : $\neg (p \land q \lor r)$

- Il est parfois pratique d'associer à une formule son arbre syntaxique qui reflète sa structure profonde
 - Exemple : $\neg((p \lor q) \land r)$

- L'arbre syntaxique exprime la formule indépendamment de sa syntaxe formelle
 - C'est une forme canonique

- La forme standard de l'écriture d'une formule (forme infixe) a l'inconvénient de nécessiter l'usage de parenthèses
 - Il existe deux autres formes que l'on peut extraire facilement de l'arbre syntaxique et qui permettent de s'en passer
- Forme préfixe : les opérateurs sont placés avant les opérandes
 - lacksquare $p \wedge q : \wedge p q$
- Forme suffixe : les opérateurs sont placés après les opérandes
 - $\blacksquare p \land q : pq \land$

$$\neg \wedge \lor p$$

$$\neg \wedge \lor p$$

$$\neg \wedge \lor p q$$

$$\neg \wedge \lor p q$$

$$\neg \wedge \lor p q$$

 $\neg \wedge \lor p q r$

 $\neg \wedge \lor p q r$

 $\neg \wedge \lor p q r$

p

p

p q

 $p \quad q \quad \lor$

p q \vee

 $p \quad q \quad \lor \quad r$

 $p q \lor r \land$

p q \vee r \wedge \neg

$$\neg$$
 ((

$$\neg$$
 ((

$$\neg \quad (\quad (\quad (p)$$

$$\neg \quad (\quad (\quad (p) \lor$$

$$\neg \quad (\quad (\quad (p) \lor (q)$$

$$\neg \quad (\quad (\quad (p) \lor (q) \)$$

$$\neg$$
 (($(p) \lor (q)$) \land

$$\neg \quad (\quad (\quad (p) \lor (q) \quad) \quad \land \ (r)$$

$$\neg \quad (\quad (\quad (p) \lor (q) \quad) \quad \land (r) \quad)$$

$$\lnot$$
 (($(p)\lor(q)$) \land (r))

 L'arbre syntaxique ou arbre de syntaxe abstraite permet aussi d'évaluer une expression étant donnée la valuation des variables

- L'arbre syntaxique ou arbre de syntaxe abstraite permet aussi d'évaluer une expression étant donnée la valuation des variables
 - Exemple : $p = \bot$, $q = \bot$ et $r = \top$

- L'arbre syntaxique ou arbre de syntaxe abstraite permet aussi d'évaluer une expression étant donnée la valuation des variables
 - Exemple : $p = \bot$, $q = \bot$ et $r = \top$

- L'arbre syntaxique ou arbre de syntaxe abstraite permet aussi d'évaluer une expression étant donnée la valuation des variables
 - Exemple : $p = \bot$, $q = \bot$ et $r = \top$

- L'arbre syntaxique ou arbre de syntaxe abstraite permet aussi d'évaluer une expression étant donnée la valuation des variables
 - Exemple : $p = \bot$, $q = \bot$ et $r = \top$

- L'arbre syntaxique ou arbre de syntaxe abstraite permet aussi d'évaluer une expression étant donnée la valuation des variables
 - Exemple : $p = \bot$, $q = \bot$ et $r = \top$

- L'arbre syntaxique ou arbre de syntaxe abstraite permet aussi d'évaluer une expression étant donnée la valuation des variables
 - Exemple : $p = \bot$, $q = \bot$ et $r = \top$

- Pour un arbre il existe plusieurs stratégies d'évaluation
 - Chaque langage possède la sienne

- Il est fréquent de présenter les valeurs d'une expression sous la forme d'une table où les entrées sont les valuations des variables de l'expression et les sorties la valuation de l'expression
 - Exemple : $E = ((p \Rightarrow \neg q) \lor \neg (q \Leftrightarrow r)) \land (p \oplus r)$

- Il est fréquent de présenter les valeurs d'une expression sous la forme d'une table où les entrées sont les valuations des variables de l'expression et les sorties la valuation de l'expression
 - Exemple : $E = ((p \Rightarrow \neg q) \lor \neg (q \Leftrightarrow r)) \land (p \oplus r)$

$\mid p \mid$	q	$\mid r \mid$	$\mid \neg q \mid$	$p \Rightarrow \neg q$	$q \Leftrightarrow r$	$\neg(q \Leftrightarrow r)$	$(p \Rightarrow \neg q) \vee \neg (q \Leftrightarrow r)$	$p\oplus r$	$\mid E \mid$
			T	Т	Т		Т	上	
		T	T	Т	Т	Т	Т	Т	一丁
	T			Т	Т	Т	Т		
	T	T		Т	Т		Т	Т	一十一
			T	Т	Т		Т	Т	一十一
T		T	T	Т	Т	Т	Т	上	
	T				Т	Т	Т	Т	T
		$ \top $		Ţ	T		Т		

• Quelques propriétés des opérateurs logiques

- Quelques propriétés des opérateurs logiques
 - La négation est involutive

$$\circ \neg \neg p \Leftrightarrow p$$

- Quelques propriétés des opérateurs logiques
 - La négation est involutive

$$\circ \neg \neg p \Leftrightarrow p$$

- Les connecteurs ∧ et ∨ sont **idempotents**
 - $\circ p \wedge p \Leftrightarrow p$
 - $\circ \ p \lor p \Leftrightarrow p$

p	p	$p \wedge p$	$p \lor p$
上	工	上	上
T	T	T	T

- Quelques propriétés des opérateurs logiques
 - La négation est involutive

$$\circ \neg \neg p \Leftrightarrow p$$

- Les connecteurs ∧ et ∨ sont **idempotents**
 - $\circ p \wedge p \Leftrightarrow p$
 - $\circ p \lor p \Leftrightarrow p$
- Simplifications fondamentales

$$\circ p \lor \bot \Leftrightarrow p, p \lor \top \Leftrightarrow \top, p \lor \neg p \Leftrightarrow \top$$

$$\circ \ p \land \bot \Leftrightarrow \bot$$
, $p \land \top \Leftrightarrow p$, $p \land \neg p \Leftrightarrow \bot$

$\mid p \mid$	$\mid \neg p \mid$		\top	$p \lor \bot$	$p \lor \top$	$p \lor \neg p$	$p \wedge \bot$	$p \wedge \top$	$p \wedge \neg p$
	T	上	$\lceil \top \rceil$		T	Т	Т	Т	
		工	extstyle o	T	Т	Т		T	上

- Quelques propriétés des opérateurs logiques
 - Commutativité, associativité

$$\circ p \lor q \Leftrightarrow q \lor p \text{ et } p \land q \Leftrightarrow q \land p$$

$$\circ \ (p \wedge q) \wedge r \Leftrightarrow p \wedge (q \wedge r)$$

- Quelques propriétés des opérateurs logiques
 - Commutativité, associativité

$$\circ p \lor q \Leftrightarrow q \lor p \text{ et } p \land q \Leftrightarrow q \land p$$

$$\circ \ (p \wedge q) \wedge r \Leftrightarrow p \wedge (q \wedge r)$$

Distributivité

$$egin{array}{ll} \circ & p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r) \end{array}$$

p	q	r	$q \wedge r$	$p \lor (q \land r)$	$p \lor q$	$p \lor r$	$(p \lor q) \land (p \lor r)$
			上	Т	Т		
		T		Т	丄	T	Т
	T	上	上	Т	Т		Т
	Τ	$\lceil \top \rceil$	T	Т	Т	T	Τ
			Ι Τ	Т	Т	T	\vdash
		$\lceil \top \rceil$		Т	Т	T	Τ
	T	上		Т	T	T	Τ
	T	T	T	Т	T	T	Т

- Quelques propriétés des opérateurs logiques
 - Commutativité, associativité
 - $\circ p \lor q \Leftrightarrow q \lor p \text{ et } p \land q \Leftrightarrow q \land p$
 - $\circ \ (p \wedge q) \wedge r \Leftrightarrow p \wedge (q \wedge r)$
 - Distributivité
 - $\circ \ p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$
 - $\circ \ p \wedge (q \vee r) \Leftrightarrow (p \wedge q) \vee (p \wedge r)$

- Quelques propriétés des opérateurs logiques
 - Commutativité, associativité

$$\circ p \lor q \Leftrightarrow q \lor p \text{ et } p \land q \Leftrightarrow q \land p$$

$$\circ \ (p \wedge q) \wedge r \Leftrightarrow p \wedge (q \wedge r)$$

Distributivité

$$\circ \ p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$$

$$\circ \ p \wedge (q \vee r) \Leftrightarrow (p \wedge q) \vee (p \wedge r)$$

Absorption

$$\circ \ (p \lor q) \land p \Leftrightarrow p$$

$$\circ \ (p \wedge q) \lor p \Leftrightarrow p$$

p	q	$p \lor q$	$(p \lor q) \land p$	$p \wedge q$	$(p \land q) \lor p$
<u></u>			Т	上	
工	extstyle o	T	Т	上	Т
Т		T	Т	上	Т
T	T	T	T	T	Т

- Quelques propriétés des opérateurs logiques
 - De Morgan

$$egin{array}{ll} \circ & \lnot(p\lor q) \Leftrightarrow \lnot p\land\lnot q \ \circ & \lnot(p\land q) \Leftrightarrow \lnot p\lor\lnot q \ \end{array}$$

$$\circ \
eg (p \wedge q) \Leftrightarrow
eg p ee
eg q$$

p	$\mid q \mid$	$p \lor q$	$\neg (p \lor q)$	$\neg p$	$\neg q$	$\neg p \wedge \neg q$	$p \wedge q$	$\neg (p \land q)$	$\neg p \lor \neg q$
		上	Т	T	T	Т	上	Τ	Т
	T	T	Т	T	工	Т		T	T
T		T	Т	上	T	Т		Т	Т
	T	T	Т	上	上	Т	T	L	L

- Simplification
 - $lacksquare p ee \lnot (p \land q)$

- Simplification
 - $lacksquare p \lor \lnot(p \land q)$
 - $p \lor \neg p \lor \neg q$ (De Morgan)

- Simplification
 - $lacksquare p \lor \lnot (p \land q)$
 - $p \lor \neg p \lor \neg q$ (De Morgan)
 - $(p \lor \neg p) \lor \neg q$ (associativité)

- $lacksquare p \lor \lnot (p \land q)$
- $p \lor \neg p \lor \neg q$ (De Morgan)
- $(p \lor \neg p) \lor \neg q$ (associativité)
- $\top \lor \neg q$ (fondamentale)

- $lacksquare p \lor \lnot (p \land q)$
- $p \lor \neg p \lor \neg q$ (De Morgan)
- $(p \lor \neg p) \lor \neg q$ (associativité)
- $\top \lor \neg q$ (fondamentale)
- $\neg q \lor \top$ (commutativité)

- $lacksquare p \lor \lnot (p \land q)$
- $p \lor \neg p \lor \neg q$ (De Morgan)
- $(p \lor \neg p) \lor \neg q$ (associativité)
- $\top \lor \neg q$ (fondamentale)
- $\neg q \lor \top$ (commutativité)
- ⊤ (fondamentale)

- Simplification
 - $lacksquare
 eg(p \wedge q) \wedge (
 eg p ee q) \wedge (q ee
 eg q)$

- Simplification
 - $lacksquare
 eg(p \wedge q) \wedge (
 eg p ee q) \wedge (q ee
 eg q)$
 - $\neg (p \land q) \land (\neg p \lor q) \land \top$ (fondamentale)

- $lacksquare
 eg(p \wedge q) \wedge (
 eg p \vee q) \wedge (q \vee
 eg q)$
- $\blacksquare \neg (p \land q) \land (\neg p \lor q) \land \top$ (fondamentale)
- $\neg (p \land q) \land (\neg p \lor q)$ (fondamentale)

- $lacksquare \neg (p \land q) \land (\neg p \lor q) \land (q \lor \neg q)$
- $\neg (p \land q) \land (\neg p \lor q) \land \top$ (fondamentale)
- $\neg (p \land q) \land (\neg p \lor q)$ (fondamentale)
- $(\neg p \lor \neg q) \land (\neg p \lor q)$ (De Morgan)

- lacksquare $\neg (p \land q) \land (\neg p \lor q) \land (q \lor \neg q)$
- $\neg (p \land q) \land (\neg p \lor q) \land \top$ (fondamentale)
- $\neg (p \land q) \land (\neg p \lor q)$ (fondamentale)
- $(\neg p \lor \neg q) \land (\neg p \lor q)$ (De Morgan)
- $(\neg p \land (\neg p \lor q)) \lor (\neg q \land (\neg p \lor q))$ (distributivité)

- $lacksquare
 eg(p \wedge q) \wedge (
 eg p ee q) \wedge (q ee
 eg q)$
- $\neg (p \land q) \land (\neg p \lor q) \land \top$ (fondamentale)
- $\neg (p \land q) \land (\neg p \lor q)$ (fondamentale)
- $(\neg p \lor \neg q) \land (\neg p \lor q)$ (De Morgan)
- $(\neg p \land (\neg p \lor q)) \lor (\neg q \land (\neg p \lor q))$ (distributivité)
- $((\neg p \land \neg p) \lor (\neg p \land q)) \lor ((\neg q \land \neg p) \lor (\neg q \land q))$ (distributivité)

- $lacksquare
 eg(p \wedge q) \wedge (
 eg p ee q) \wedge (q ee
 eg q)$
- $\neg (p \land q) \land (\neg p \lor q) \land \top$ (fondamentale)
- $\neg (p \land q) \land (\neg p \lor q)$ (fondamentale)
- $(\neg p \lor \neg q) \land (\neg p \lor q)$ (De Morgan)
- $(\neg p \land (\neg p \lor q)) \lor (\neg q \land (\neg p \lor q))$ (distributivité)
- $((\neg p \land \neg p) \lor (\neg p \land q)) \lor ((\neg q \land \neg p) \lor (\neg q \land q))$ (distributivité)
- \blacksquare $(\neg p \lor (\neg p \land q)) \lor ((\neg q \land \neg p) \lor (\neg q \land q))$ (idempotent)

- $lacksquare
 eg(p \wedge q) \wedge (
 eg p ee q) \wedge (q ee
 eg q)$
- $\neg (p \land q) \land (\neg p \lor q) \land \top$ (fondamentale)
- $\blacksquare \neg (p \land q) \land (\neg p \lor q)$ (fondamentale)
- $(\neg p \lor \neg q) \land (\neg p \lor q)$ (De Morgan)
- $(\neg p \land (\neg p \lor q)) \lor (\neg q \land (\neg p \lor q))$ (distributivité)
- $((\neg p \land \neg p) \lor (\neg p \land q)) \lor ((\neg q \land \neg p) \lor (\neg q \land q))$ (distributivité)
- $(\neg p \lor (\neg p \land q)) \lor ((\neg q \land \neg p) \lor (\neg q \land q))$ (idempotent)
- $(\neg p \lor (\neg p \land q)) \lor ((\neg q \land \neg p) \lor \bot)$ (fondamentale)

- $lacksquare
 eg(p \wedge q) \wedge (
 eg p ee q) \wedge (q ee
 eg q)$
- $\neg (p \land q) \land (\neg p \lor q) \land \top$ (fondamentale)
- $\blacksquare \neg (p \land q) \land (\neg p \lor q)$ (fondamentale)
- $(\neg p \lor \neg q) \land (\neg p \lor q)$ (De Morgan)
- $(\neg p \land (\neg p \lor q)) \lor (\neg q \land (\neg p \lor q))$ (distributivité)
- $((\neg p \land \neg p) \lor (\neg p \land q)) \lor ((\neg q \land \neg p) \lor (\neg q \land q))$ (distributivité)
- \blacksquare $(\neg p \lor (\neg p \land q)) \lor ((\neg q \land \neg p) \lor (\neg q \land q))$ (idempotent)
- $(\neg p \lor (\neg p \land q)) \lor ((\neg q \land \neg p) \lor \bot)$ (fondamentale)
- $(\neg p \lor (\neg p \land q)) \lor (\neg q \land \neg p)$ (fondamentale)

- $lacksquare
 eg(p \wedge q) \wedge (
 eg p ee q) \wedge (q ee
 eg q)$
- $\neg (p \land q) \land (\neg p \lor q) \land \top$ (fondamentale)
- $\blacksquare \neg (p \land q) \land (\neg p \lor q)$ (fondamentale)
- $(\neg p \lor \neg q) \land (\neg p \lor q)$ (De Morgan)
- $(\neg p \land (\neg p \lor q)) \lor (\neg q \land (\neg p \lor q))$ (distributivité)
- $((\neg p \land \neg p) \lor (\neg p \land q)) \lor ((\neg q \land \neg p) \lor (\neg q \land q))$ (distributivité)
- $(\neg p \lor (\neg p \land q)) \lor ((\neg q \land \neg p) \lor (\neg q \land q))$ (idempotent)
- $(\neg p \lor (\neg p \land q)) \lor ((\neg q \land \neg p) \lor \bot)$ (fondamentale)
- $(\neg p \lor (\neg p \land q)) \lor (\neg q \land \neg p)$ (fondamentale)
- $\neg p \lor (\neg q \land \neg p)$ (absorption)

- lacksquare $\neg (p \land q) \land (\neg p \lor q) \land (q \lor \neg q)$
- $\neg (p \land q) \land (\neg p \lor q) \land \top$ (fondamentale)
- $\blacksquare \neg (p \land q) \land (\neg p \lor q)$ (fondamentale)
- $(\neg p \lor \neg q) \land (\neg p \lor q)$ (De Morgan)
- $(\neg p \land (\neg p \lor q)) \lor (\neg q \land (\neg p \lor q))$ (distributivité)
- $((\neg p \land \neg p) \lor (\neg p \land q)) \lor ((\neg q \land \neg p) \lor (\neg q \land q))$ (distributivité)
- $(\neg p \lor (\neg p \land q)) \lor ((\neg q \land \neg p) \lor (\neg q \land q))$ (idempotent)
- $(\neg p \lor (\neg p \land q)) \lor ((\neg q \land \neg p) \lor \bot)$ (fondamentale)
- $(\neg p \lor (\neg p \land q)) \lor (\neg q \land \neg p)$ (fondamentale)
- $\neg p \lor (\neg q \land \neg p)$ (absorption)
- $\neg p$ (absorption)