- 1. Изображения как структура данных. Базовые операции над изображением. Свертка изображения
- 2. Морфологические операции. Эрозия, дилатация, замыкание и размыкание: что это и для чего могут быть использованы.
- **Опр. 1.** Морфологическая операция Пусть дано изображение I в оттенках серого и некоторый структурный элемент S небольшое черно-белое изображение, на котором выделена некоторая начальная точка (как правило, в центре изображения). Тогда под **морфологической операцией** понимается преобразование I в выходное изображение B такого же размера, где значение каждой точки B_{ij} определяется по следующему правилу:
 - 1. Структурный элемент совмещается с исходным изображением так, чтобы точка I_{ij} совпала с начальной точкой S;
 - 2. Из исходного изображения выделяется набор точек, на которые накладываются белые точки структурного элемента;
 - 3. B_{ij} определяется как некоторая заданная функция от значений выделенного набора точек (например, среднее, максимум/минимум)

Выделяют следующие стандартные операции:

Эрозия. В случае эрозии заданная функция — это минимум, поэтому эта операция также называется «оконным минимумом». Эта операция полезна для удаления небольших объектов, в том числе шумов (в предположении, что объекты светлее фона), однако она затирает части объектов вблизи границы. Обозначение: $B = I \ominus S$.

Дилатация. Заданная функция — максимум. В случае, если исходное изображение — бинарное, эта операция эквивалентна смазу, при котором в качестве point spread function используется S. Обозначение: $B = I \oplus S$.

Взятие разности $I-(I\oplus S)$ может использоваться для выделения на изображении границ.

Замыкание (closing). Замыкание – операция, которая задается как комбинация дилатации и эрозии (в таком порядке): $B = (I \oplus S) \ominus S$.

Размыкание (opening). Размыкание – операция, которая задается как комбинация эрозии и дилатации (в таком порядке): $B = (I \ominus S) \oplus S$. Эта операция используется для выделения темного фона: сначала при помощи эрозии удаляются шумы и маленькие объекты, а затем при помощи дилатации восстанавливаются удаленные границы. При помощи вычитания размыкания из исходного изображения можно получить объекты, очищенные от фона. Это полезно, например, для выделения текста на изображении с неравномерным освещением, что можно видеть на изображении 1.

Рис. 1: Исходное изображение (слева) и разность между исходным изображением и размыканием (справа).

3. Фильтр границ Канни, для чего используется, какие параметры за что отвечают.

Фильтр границ Канни (Кэнни) – алгоритм, который среди всех пикселей изображения в градациях серого выделяет множество пикселей, которые образуют границы между объектами. Содержит следующие шаги:

- 1. Сглаживание изображения с целью устранения шума. Сглаживание выполняется путем сворачивания изображения с гауссовым ядром фиксированного размера: $I = H(\sigma) * I_0$. Слишком маленькие значения σ не смогут убрать шум, что приведет к множеству ложноположительных срабатываний, а слишком большие превратят все изображение в слабо меняющийся градиент и уничтожат все границы.
- 2. Вычисление градиента, то есть полей частных производных яркости по двум координатам. Как правило, используется разностная схема размера 3×3 , то есть свертка с ядром оператора Собеля:

$$\begin{split} D_x &= \begin{pmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{pmatrix}, \quad D_y = D_x^T; \\ G_x &= D_x * I, \quad G_y = D_y * I. \end{split}$$

Однако этот шаг может быть объединен с предыдущим: для этого нужно сворачивать исходное изображение с дифференцированным гауссовым ядром, то есть с дискретными приближениями $\partial_x h(0,\sigma), \partial_u h(0,\sigma)$.

- 3. По полученным значениям вычисляется массив абсолютных значений градиента ($G = \sqrt{G_x^2 + G_y^2}$, поэлементно) и массив направлений. Все направления округляются до одного из основных: вертикаль, горизонталь или одна из двух диагоналей, при этом сторона (влево или вправо) значения не имеет.
- 4. Все пиксели помечаются как границы или как не-границы по следующим правилам в указанном порядке:
 - (a) Если элемент не является локальным максимумом в направлении *своего* градиента, то элемент отмечается как не-граница. Например, если округленное направление градиента в I_{ij} вертикаль, то $G_{ij}\leqslant G_{i-1,j}\wedge G_{ij}\leqslant G_{i+1,j}\implies B_{ij}=0$, где B выходной булев массив того же размера, что и изображение.
 - (b) Если модуль градиента $G_{ij} < \theta_{\text{low}}$, то $B_{ij} = 0$.
 - (c) Если $G_{ij} > \theta_{\text{high}}$, то $B_{ij} = 1$.
 - (d) В противном случае, если пиксель является локальным максимумом, но его абсолютное значение лежит между двумя пороговыми

значениями, то он считается границей, если хотя бы один из 8 соседних был определен как граница с использованием предыдущего правила.

Параметры $\theta_{\rm low}, \theta_{\rm high}$ регулируют количество ошибок обоих родов, но придать им какой-либо физический смысл довольно сложно.

4. Преобразование Радона. Дискретное преобразование Радона. Оценка сложности.

Опр. 2. Преобразование Радона Пусть $l_{\theta,s}$ – прямая, направляющий вектор которой направлен под углом θ ($\theta=0$ соответствует горизональной прямой) и удаленная от начала координат на расстояние s. Тогда преобразованием Радона функции f(x,y) называется интеграл этой функции по параметризованной прямой:

$$\begin{split} \left[\mathcal{R}f\right](\theta,s) &= \int_{l_{\theta,s}} f(x,y) dl = \int_{\mathbb{R}^2} f(x,y) \delta(x\cos\theta + y\sin\theta - s) dx dy = \\ &= \int_{\mathbb{R}} f(s\cos\theta + z\sin\theta, s\sin\theta - z\cos\theta) dz. \end{split}$$

Рассмотрим теперь дискретную версию f(x,y), заданную, например, как среднее по квадратной области:

$$\hat{f}(i,j) = \frac{1}{h^2} \int_{ih-\frac{h}{2}}^{ih+\frac{h}{2}} \int_{jh-\frac{h}{2}}^{jh+\frac{h}{2}} f(x,y) dy dx.$$

Для определения дискретного преобразования Радона также необходим некоторый алгоритм дискретизации прямой $\Omega(s,\alpha)$, возвращающий множество координат пикселей $\{(i_k,j_k)_{k=1}^m\}$, приближающих непрерывную прямую с соответствующими параметрами.

Тогда **дискретное преобразование Радона** определяется следующим образом:

 $\left[\hat{\mathcal{R}}\hat{f}\right](\alpha,s) = \sum_{(i,j) \in \Omega(\alpha,s)} \hat{f}\left(i,j\right).$

Однако такое определение обладает проблемой, связанной с неравномерностью приближения длины прямой количеством пикселей. Например, вертикальная непрерывная прямая, проходящая через центр квадрата со стороной

N имеет длину пересечения N, а диагональная — $N\sqrt{2}$. Но обе дискретные версии будут иметь в пересечении с квадратом N пикселей.

Оценим сложность преобразования Радона наивным способом. В разумной параметризации прямых количество дискретных прямых, которые проходят через изображение, составляет $O(n^2)$. Нужно вычислить и сохранить для каждой из них сумму по содержащимся в ней пикселям, количество которых O(n). Считая, что Ω также обладает не более чем линейной сложностью по n, получаем, что для вычисления сумм требуется $O(n^3)$ операций и $O(n^2)$ памяти.

В случае черно-белых (бинарных) преимущественно черных изображений возможно изменить алгоритм: достаточно перебрать все белые точки и для каждой из них прибавлять единицу к сумме по всем прямым, проходящим через эту точку. Таким образом сложность понижается до $O(Cn^2)$, где C – количество белых точек на изображении. Однако необходимо учесть, что для этой вариации требуется уметь находить прямые, проходящие через заданную точку не более чем за $O(n^2)$ операций, что может быть затруднительно для некоторых видов параметризации.

- 5. Виды параметризации прямых на изображении и их свойства. Повторное вычисление преобразования Хафа и связь этой процедуры с поиском точки схода.
- 6. Преобразование Хафа и быстрое преобразование Хафа. Описание работы алгоритмов и их вычислительных характеристик.
- 7. Трехмерное быстрое преобразование Хафа для плоскостей. Параметризация, описание работы, вычислительная сложность.
- 8. Трехмерное быстрое преобразование Хафа для прямых. Параметризация, описание работы, вычислительная сложность.
- 9. История развития томографии. Строение томографа.
- 10. Взаимодействие рентгеновского излучения с веществом. Сведение зарегистрированных данных к виду преобразования Радона.

Рассмотрим монохроматический пучок излучения (в данном случае – рентгеновского), идущего от далекого точечного источника и проходящего через однородный слой вещества толщиной D.

Утв. 1. Закон Бугера-Ламберта-Бера Интенсивность излучения после прохождения вещества описывается следующей формулой:

$$I = I_0 e^{-\mu_0 D},$$

где I_0 – интенсивность излучения перед слоем, μ_0 – линейный коэффициент поглощения, зависящий от вещества и от длины волны. Пренебрегая рассеянием, принимается, что для вакуума $\mu_0=0$.

Этот закон можно обобщить на случай неоднородного слоя следующим образом:

 $I = I_0 e^{-\int_0^D \mu(x) dx}$

Рассмотрим помещенный в работающий по параллельной схеме томограф объект, обладающий неизвестной функцией поглощения $\mu(x,y)$. Тогда непосредственно регистрируемые томографом данные задаются следующими формулами:

$$I(\theta,s) = I_0 e^{-\int_{l_{\theta,s}} \mu(x,y) dl} = I_0 \exp\left(-\int_{\mathbb{R}^2} \mu(x,y) \delta(x\cos\theta + y\sin\theta - s) dx dy\right), \ \ (1)$$

где I_0 – результат, получаемый на детекторе в отсутствие объекта.

При помощи элементарных преобразований данные из (1) сводятся к Радонобразу функции поглощения:

$$\ln \frac{I_0}{I(\theta,s)} = -\ln \frac{I(\theta,s)}{I_0} = \int_{\mathbb{R}^2} \mu(x,y) \delta(x\cos\theta + y\sin\theta - s) dx dy = \left[\mathcal{R}\mu\right](\theta,s).$$

Таким образом, взяв логарифм от ослабления сигнала и применив обратное преобразование, можно вычислить функцию поглощения.

11. Преобразование Радона. Синограмма.

Опр. 3. Преобразование Радона Пусть $l_{\theta,s}$ – прямая, направляющий вектор которой направлен под углом θ ($\theta=0$ соответствует горизональной прямой) и удаленная от начала координат на расстояние s. Тогда преобразованием Радона функции f(x,y) называется интеграл этой функции по параметризованной прямой:

$$\begin{split} \left[\mathcal{R}f\right](\theta,s) &= \int_{l_{\theta,s}} f(x,y) dl = \int_{\mathbb{R}^2} f(x,y) \delta(x\cos\theta + y\sin\theta - s) dx dy = \\ &= \int_{\mathbb{R}} f(s\cos\theta + z\sin\theta, s\sin\theta - z\cos\theta) dz. \end{split}$$

Каждая точка Радон-образа функции представляет собой "сумму" по прямой с определенными параметрами. Как правило, по обоим параметрам рассматривается равномерная дискретная сетка значений, где θ меняется от 0 до π , s – от 0 до некоторого максимального значения, соответствующего размеру сцены. Полученный массив значений называется синограммой, так как Радон-образом точечной функции является синусоида.

12. Теорема о центральном сечении.

Преобразование Фурье функций от одной и от двух переменных задаются следующими формулами:

$$\hat{f}(\omega) = \int_{\mathbb{R}} f(t)e^{-2\pi i(\omega t)}dt,$$
(2)

$$\hat{F}(u,v) = \int_{\mathbb{R}^2} f(x,y)e^{-2\pi i(xu+yv)}dudv.$$
 (3)

Также введем сокращенное обозначение для преобразования Радона, считая θ фиксированным параметром, а s – переменной:

$$p_{\theta}(s) := [\mathcal{R}f](\theta, s)$$
.

Теор. 1. О центральном сечении. Преобразование Фурье от $p_{\theta}(s)$ совпадает со значениями двумерного преобразования Фурье от f(x,y) на некоторой прямой:

$$\hat{p}_{\theta}(\omega) = F(\omega \cos \theta, \omega \sin \theta)$$

 \Box . Преобразуем определение преобразований Фурье и Радона, используя основное свойство дельта-функции (а также $\delta(t) = \delta(-t)$):

$$\begin{split} \hat{p}_{\theta}(\omega) &= \int_{\mathbb{R}} p_{\theta}(s) e^{-2\pi i \omega s} ds = \\ &= \int_{\mathbb{R}^3} f(x,y) \cdot \delta(x\cos\theta + y\sin\theta - s) e^{-2\pi i \omega s} dx dy ds = \int_{\mathbb{R}^2} f(x,y) e^{-2\pi i \omega (x\cos\theta + y\sin\theta)} dx dy; \\ F(u = \omega\cos\theta, v = \omega\sin\theta) &= \int_{\mathbb{R}^2} f(x,y) e^{-2\pi i (xu + yv)} \bigg|_{\substack{u = \omega\cos\theta \\ v = \omega\sin\theta}} = \hat{p}_{\theta}(s). \end{split}$$

8

Таким образом, прямая, вырезанная из двумерного Фурье-образа исходной функции, проходящая через начало координат, фактически описывает интегралы этой функции вдоль всех прямых, параллельных вырезанной. Получить их можно при помощи обратного к (2) преобразования.

13. Алгоритм обратного проецирования (ВР).

Рассмотрим задачу восстановления исходной функции по ее Радон-образу. Если рассматривать модель непрерывного мира, то f(x,y) может быть восстановлена при помощи **обратного проецирования** (Back-projection):

$$[\mathcal{B}(p_{\theta}(s))](x,y) = \int_0^{\pi} p_{\theta}(x\cos\theta + y\sin\theta) d\theta. \tag{4}$$

Рис. 2: Суть backprojection в одной картинке

Выражение (4) не совпадает с f(x,y), однако часто используется как его приближение.

$$f(x,y)=\mathcal{F}_2^{-1}\left[F(u,v)\right](x,y)=\int_{\mathbb{R}^2}F(u,v)e^{2\pi i(xu+yv)}dudv=\dots$$

Перейдем в последнем равенстве к полярным координатам по переменным интегрирования: $u = \omega \cos \theta, v = \omega \sin \theta, du dv = |\omega| d\omega d\theta$:

$$\cdots = \int_0^{\pi} \int_{-\infty}^{\infty} F(\omega \cos \theta, \omega \sin \theta) e^{2\pi i (x \cos \theta + y \sin \theta)\omega} |\omega| d\omega d\theta = \dots$$

Используем теорему 1 для замены $F(\omega \cos \theta, \omega \sin \theta) = \hat{p}_{\theta}(\omega)$. Также введем для краткости обозначение $s = x \cos \theta + y \sin \theta$.

$$\int_{0}^{\pi} \int_{\mathbb{R}} |\omega| \hat{p}_{\theta}(\omega) e^{2\pi i s \omega} d\omega d\theta = \int_{0}^{\pi} \left[\mathcal{F}^{-1} \left(|\omega| \hat{p}_{\theta}(\omega) \right) \right] (s) d\theta. \tag{5}$$

Если удалить из последнего выражения якобиан $|\omega|$, оставив под интегралом вместо выражения $\mathcal{F}^{-1}\left[\hat{p}_{\theta}(\omega)\right](s) = p_{\theta}(s) = p_{\theta}\left(x\cos\theta + y\sin\theta\right)$ то получится в точности выражение (4).

14. Алгоритм FBP.

Как было показано ранее, алгоритм обратного проецирования легко описать и реализовать, но он не является вполне точным с математической точки зрения, поскольку опускает якобиан $|\omega|$. В результате этого, как правило, восстановленное изображение получается размытым, значения, близкие к началу координат, завышены, а далекие от начала координат, наоборот, занижены. Причина этого в том, что после дискретизации с равномерной сеткой по s и θ через пиксели, близкие к началу координат, проходит большее количество дискретных прямых.

Алгоритм filtered backprojection состоит в использовании вместо (4) более правильной формулы, выведенной в (5):

$$\left[\mathcal{B}_f(p_\theta(s))\right](x,y) = \mathcal{F}^{-1}\left[|\omega|\hat{p}_\theta(\omega)\right](x\cos\theta + y\sin\theta)\,d\theta. \tag{6}$$

С точки зрения реализации следует добавить в алгоритм обратного проецирования дополнительный шаг: для каждого угла θ_i заменить «сырые» значения синограммы $p_{\theta_i}(s)$ на $\mathcal{F}^{-1}\left[|\omega|\hat{p}_{\theta_i}(\omega)\right](s)$. Множитель $|\omega|$ называется **Ramp filter**.

Puc. 3: Восстановление белого квадрата из синограммы при помощи backprojection (слева) и filtered backprojection (справа).

15. Способ использования БПХ для определения наклона шрифта.

Быстрое преобразование Хафа может быть использовано для определения наклона шрифта. Рассмотрим следующее изображение:

Рис. 4: Исходное изображение

Выделим на изображении границы путем вычитания из изображения его дилатации. Также здесь изображение было отражено относительно вертикальной оси, поскольку шрифт, очевидно, наклонен вправо, а стандартная версия быстрого преобразования Хафа работает с прямыми, наклоненными влево с точки стандартной системы координат изображения.

Применим к полученному изображению БПХ:

В полученном массиве каждая точка описывает сумму значений по некоторой дискретной прямой, причем i-я строка соответствует семейству прямых с определенным наклоном $\theta_i = \arctan\left(\frac{n-1}{i}\right)$. Ясно, что среди всех таких семейств то, которое накладывается на особенности шрифта, будет иметь наи-

Рис. 5: Выделенные границы на изображении

Рис. 6: Результат применения БПХ к изображению

большую изменчивость: от 0 в промежутках между буквами до высоты строки в случае наложения на «вертикальный» элемент буквы. Следовательно, нужно выбрать строку, значения в которой обладают наибольшей дисперсией (или наибольшим стандартным отклонением):

Рис. 7: График стандартных отклонений строк

В данном случае максимальной дисперсией обладает строка i=158, описывающая прямые с наклоном $\theta_{158}=\arctan\left(\frac{511}{158}\right)\approx73^{\circ}.$

Рис. 8: Изображение со случайно выбранной прямой из найденного семейства

- 16. Способ использования БПХ для слепой компенсации радиальной дисторсии.
- 17. Способ использования БПХ для определения степени сбития камеры. Эпиполярная геометрия.
- 18. Быстрое вычисление суммы по любому отрезку и четырехвершиннику на изображении с помощью БПХ.
- 19. Сочетание БПХ и принципа четырех русских для случаях прямых в трехмерном пространстве.
- 20. Быстрая линейная бинарная кластеризация с помощью БПХ.
- 21. Робастное решение задачи линейной регресси путем вычисления М-оценок с помощью БПХ.