

CCNA 200-301 Day 3

OSI MODEL & TCP/IP SUITE

What is a networking model?

Networking models categorize and provide a structure for networking protocols and standards.

logical

A set of rules defining how network devices and software should work.

Networks without standardization

OSI Model

•	Application
6	Presentation
5	Session
4	Transport
3	Network
2	Data Link
1	Physical

Application

'Open Systems Interconnection' model
A conceptual model that categorizes and standardizes the different functions in a network.
Created by the 'International Organization for Standardization' (ISO).
Functions are divided into 7 'Layers'.

· These layers work together to make the network work.

OSI Model – Application Layer

IT Lab		
7	Application	 This layer is closest to the end user. Interacts with software applications, for example your
6	Presentation	web browser (Brave, Firefox, Chrome, etc)
5	Session	 HTTP and HTTPS are Layer 7 protocols (https://www.cisco.com)
4	Transport	Functions of Layer 7 include:
3	Network	Identifying communication partnersSynchronizing communication
2	Data Link	
1	Physical	

OSI Model - Application Layer

Adjacent-layer interaction

Application

Presentation

OSI Model – Presentation Layer

format?

· Data in the application layer is in 'application

6	Presentation	 It needs to be 'translated' to a different format to
5	Session	be sent over the network.
		 The Presentation Layer's job is to translate
4	Transport	between application and network formats.
3	Network	 For example, encryption of data as it is sent, and
		decryption of data as it is received.
2	Data Link	 Also translates between different Application –
1	Physical	Layer formats.

OSI Model – Session Layer

7	Application	• Controls dialogues (sessions) between
6	Presentation	communicating hosts.Establishes, manages, and terminates connections
5	Session	between the local application (for example, your web browser) and the remote application (for
4	Transport	example, YouTube).
3	Network	
2	Data Link	
1	Physical	

OSI Model – The Upper Layers

IT Lab		
7	Application	 Network engineers don't usually work with the top
6	Presentation	 3 layers. Application developers work with the top layers of
5	Session	the OSI model to connect their applications over networks.
4	Transport	MOCOVOTAS.
3	Network	
2	Data Link	
1	Physical	

OSI Model - The Upper Layers

Encapsulation

OSI Model – Transport Layer

7	Application	 Segments and reassembles data for
6	Presentation	communications between end hosts. • Breaks large pieces of data into smaller segments
5	Session	which can be more easily sent over the network and are less likely to cause transmission problems
4	Transport	if errors occur.
3	Network	• Provide host-to-host communication.
2	Data Link	
1	Physical	

OSI Model - Encapsulation

Encapsulation

OSI Model – Network Layer

7	Application	• Provides connectivity between end hosts on
6	Presentation	different networks (ie. outside of the LAN). • Provides logical addressing (IP addresses).
5	Session	 Provides path selection between source and destination.
4	Transport	• Routers operate at Layer 3.
3	Network	
2	Data Link	
1	Physical	

OSI Model - Encapsulation

Encapsulation

3

OSI Model - Data Link Layer

II Lab		
7	Application	 Provides node-to-node connectivity and data
	' '	transfer (for example, PC to switch, switch to

Presentation 6 router, router to router). Defines how data is formatted for transmission

Session

over a physical medium (for example, copper UTP cables) · Detects and (possibly) corrects Physical Layer

Transport Network

Data Link

Physical

errors.

· Uses Layer 2 addressing, separate from Layer 3 addressing.

OSI Model - Encapsulation

Encapsulation

Application

Physical

OSI Model – Physical Layer

to transfer data between devices

6	Presentation	 For example, voltage levels, maximum transmission
5	Session	distances, physical connectors, cable specifications, etc.
4	Transport	 Digital bits are converted into electrical (for wired

NetworkData Link

signals.
All of the information in Day 2's video (cables, pin layouts, etc.) is related to the Physical Layer.

connections) or radio (for wireless connections)

Defines physical characteristics of the medium used

OSI Model - Encapsulation

Jeremy's IT Lab

OSI Model - PDUs

5

3

Session

Transport

Network

Data Link

Physical

OSI Model - Acronyms

Seem

Need

Data

Processing

To

Acronyms Pointless People

Students

Teach

Not

Do

Please

TCP/IP Suite

- Conceptual model and set of communications protocols used in the Internet and other networks.
- Known as TCP/IP because those are two of the foundational protocols in the suite.
- Developed by the United States Department of Defense through DARPA (Defense Advanced Research Projects Agency)
- Similar structure to the OSI Model, but with fewer layers.
- · This is the model actually in use in modern networks.
- NOTE: The OSI model still influences how network engineers think and talk about networks.

OSI vs TCP/IP

TCP/IP Suite

RFC 1122 ₺, Internet STD 3 (1989)	Cisco Academy ^[31]	Kurose, ^[32] Forouzan ^[33]	Comer, ^[34] Kozierok ^[35]	Stallings ^[36]	Tanenbaum ^[37]	Arpanet Reference Model (RFC 871 🗗)	OSI model
Four layers	Four layers	Five layers	Four+one layers	Five layers	Five layers	Three layers	Seven layers
"Internet model"	"Internet model"	"Five-layer Internet model" or "TCP/IP protocol suite"	"TCP/IP 5- layer reference model"	"TCP/IP model"	"TCP/IP 5-layer reference model"	"Arpanet reference model"	OSI model
Application	Application	Application	Application	Application	Application	Application/Process	Application Presentation
Transport	Transport	Transport	Transport	Host-to-host or transport	Transport	Host-to-host	Session Transport
Internet	Internetwork	Network	Internet	Internet	Internet		Network
Link	Network interface	Data link	Data link (Network interface)	Network access	Data link	Network interface	Data link
		Physical	(Hardware)	Physical	Physical		Physical

TCP/IP Suite

Network Topology

Data Flow

en:User:Kbrose (https://commons.wikimedia.org/wiki/File:IP_stack_connections.svg), "IP stack connections", https://creativecommons.org/licenses/by-sa/3.0/legalcode

HTTP data sent from a YouTube web server is displayed via your web browser. This is an example of what?

- a) Adjacent-layer interaction
- b) Same-layer interaction
- c) Encapsulation
- d) De-encapsulation

X Adjacent-layer interaction

Adjacent-layer interaction refers to interaction between different layers of the OSI model.

In this case, both YouTube's web server and your web browser are operating at Layer 7 using HTTP.

🔀 Encapsulation, 🖔 De-encapsulation

Although encapsulation and de-encapsulation of data surely happened many times as the data was sent from YouTube's web server to your web browser, they are not descriptions of the interaction between YouTube and your browser.

★b) Same-layer interaction

Same-layer interaction refers to interaction between the same layer on different hosts, in this case the application layer of YouTube's web server and the browser on your PC.

The concept of same-layer interaction allows you to 'ignore' the other layers involved and focus on interactions between a single layer on different devices.

HTTP data has been encapsulated with three separate headers and one trailer. What is the appropriate name for this PDU?

- a) Packet
- b) Segment
- c) Frame
- d) Data

Packet refers to the OSI Layer 3 PDU. It would have two headers (Layer 4 header, Layer 3 header) and no trailer.

Segment refers to the OSI Layer 4 PDU. It would have one header (Layer 4 header), and no trailer.

Data refers to the upper-layer data before being encapsulated. It would have no headers or trailer.

Frame refers to the OSI Layer 2 PDU. It has three headers (Layer 4, Layer 3, and Layer 2 headers) and one trailer (Layer 2 trailer).

Which layers of the OSI model are most relevant to the role of a network engineer?

- a) Transport Network Data Link Physical
- b) Transport Network Data Link
- c) Network only
- d) Application Presentation Session

X Transport - Network - Data Link

Although these layers are very relevant to the duties of a network engineer, the physical layer is missing.

Although the Network layer is very relevant to network engineers, it is not the only one.

*Application - Presentation - Session

These layers of the OSI model are not generally relevant to the role of a network engineer. They are relevant to application developers.

★a) Transport - Network - Data Link - Physical

These lower four layers of the OSI models are all very relevant to the role of a network engineer.

The Link layer of the TCP/IP Model is equivalent to what layer, or layers, of the OSI Model?

- a) Transport Network
- b) Network Data Link
- c) Data Link
- d) Data Link Physical

X Transport - Network

The OSI Transport layer is equivalent to the TCP/IP Transport layer, and the OSI Network layer is equivalent to the TCP/IP Internet layer.

- 🔌 Network Data Link
- X Data Link

The OSI Network model is equivalent to the TCP/IP Internet layer. The OSI Data Link layer is equivalent to part of the TCP/IP Link layer, but it is not totally equivalent.

★d) Data Link - Physical

The combined functions of the OSI Data Link and Physical layers are equivalent to the TCP/IP Link layer.

Which layer of the OSI model provides host-to-host communications?

- a) Application
- b) Network
- c) Transport
- d) Data Link

The Application layer provides process-to-process communications, not host-to-host.

X) Data Link

The Network and Data Link layers do not provide end-to-end, host-to-host communications.

The Transport layer provides host-to-host communications.

Network Topology

Data Flow

en:User:Kbrose (https://commons.wikimedia.org/wiki/File:IP_stack_connections.svg), "IP stack connections", https://creativecommons.org/licenses/by-sa/3.0/legalcode