Identifiability, Gauss Markov & Predictive Distributions Merlise Clyde

STA721 Linear Models

Duke University

September 16, 2019

Outline

Topics

- Gauss-Markov Theorem
- ► Estimability and Prediction

Readings: Christensen Chapter 2, Chapter 6.3, (Appendix A, and Appendix B as needed)

Non-Identifiable

Recall the One-way ANOVA model

$$\mu_{ij} = \mu + \tau_j$$
 $\mu = (\mu_{11}, \dots, \mu_{n_11}, \mu_{12}, \dots, \mu_{n_2,2}, \dots, \mu_{1J}, \dots, \mu_{nJJ})^T$

- ▶ Let $\beta_1 = (\mu, \tau_1, ..., \tau_I)^T$
- ► Let $\beta_2 = (\mu 42, \tau_1 + 42, \dots, \tau_I + 42)^T$
- ▶ Then $\mu_1 = \mu_2$ even though $\beta_1 \neq \beta_2$
- β is not identifiable
- \triangleright yet μ is identifiable, where $\mu = X\beta$ (a linear combination of β)

Theorem

A function $g(\beta)$ is identifiable if and only if $g(\beta)$ is a function of $\mu(\boldsymbol{\beta})$

Theorem

A function $g(\beta)$ is identifiable if and only if $g(\beta)$ is a function of $\mu(\boldsymbol{\beta})$

In linear models, focus on linear functions. Identifiable linear functions are called *estimable* functions historically

Theorem

A function $g(\beta)$ is identifiable if and only if $g(\beta)$ is a function of $\mu(\boldsymbol{\beta})$

In linear models, focus on linear functions. Identifiable linear functions are called *estimable* functions historically

Definition

A scalar function $\lambda^T \beta$ is estimable if $\lambda^T \beta = \mathbf{a}^T \mathbf{X} \beta$ for some vector $\mathbf{a} \in \mathbb{R}^n$

Theorem

A function $g(\beta)$ is identifiable if and only if $g(\beta)$ is a function of $\mu(\beta)$

In linear models, focus on linear functions. Identifiable linear functions are called *estimable* functions historically

Definition

A scalar function $\lambda^T \beta$ is *estimable* if $\lambda^T \beta = \mathbf{a}^T \mathbf{X} \beta$ for some vector $\mathbf{a} \in \mathbb{R}^n$

Equivalently

Definition

A function $\lambda^T \beta$ is *estimable* if it has an unbiased linear estimator, i.e. there exists an **a** such that $\mathsf{E}(\mathbf{a}^T \mathbf{Y}) = \lambda^T \beta$ for all β

Theorem

The function $\psi = \lambda^T \beta$ is estimable if and only if λ^T is a linear combination of the rows of X. i.e. there exists a^T such that $\lambda^T = \mathbf{a}^T \mathbf{X}$

Theorem

The function $\psi = \lambda^T \beta$ is estimable if and only if λ^T is a linear combination of the rows of X, i.e. there exists \mathbf{a}^T such that $\lambda^T = \mathbf{a}^T \mathbf{X}$

Proof.

The function $\psi = \lambda^T \beta$ is estimable if there exists an \mathbf{a}^T such that $E[a^TY] = \lambda^T\beta$

Theorem

The function $\psi = \lambda^T \beta$ is estimable if and only if λ^T is a linear combination of the rows of X, i.e. there exists \mathbf{a}^T such that $\lambda^T = \mathbf{a}^T \mathbf{X}$

Proof.

The function $\psi = \lambda^T \beta$ is estimable if there exists an \mathbf{a}^T such that $E[a^TY] = \lambda^T\beta$

$$\mathsf{E}[\mathsf{a}^T\mathsf{Y}] \ = \ \mathsf{a}^T\mathsf{E}[\mathsf{Y}]$$

Theorem

The function $\psi = \lambda^T \beta$ is estimable if and only if λ^T is a linear combination of the rows of X, i.e. there exists \mathbf{a}^T such that $\lambda^T = \mathbf{a}^T \mathbf{X}$

Proof.

The function $\psi = \lambda^T \beta$ is estimable if there exists an \mathbf{a}^T such that $E[a^TY] = \lambda^T\beta$

$$E[\mathbf{a}^T \mathbf{Y}] = \mathbf{a}^T E[\mathbf{Y}]$$
$$= \mathbf{a}^T \mathbf{X} \boldsymbol{\beta}$$

Theorem

The function $\psi = \lambda^T \beta$ is estimable if and only if λ^T is a linear combination of the rows of X, i.e. there exists \mathbf{a}^T such that $\lambda^T = \mathbf{a}^T \mathbf{X}$

Proof.

The function $\psi = \lambda^T \beta$ is estimable if there exists an \mathbf{a}^T such that $\mathsf{E}[\mathsf{a}^T\mathsf{Y}] = \lambda^T \beta$

$$E[\mathbf{a}^T \mathbf{Y}] = \mathbf{a}^T E[\mathbf{Y}]$$
$$= \mathbf{a}^T \mathbf{X} \boldsymbol{\beta}$$
$$= \boldsymbol{\lambda}^T \boldsymbol{\beta}$$

Theorem

The function $\psi = \lambda^T \beta$ is estimable if and only if λ^T is a linear combination of the rows of \mathbf{X} . i.e. there exists \mathbf{a}^T such that $\lambda^T = \mathbf{a}^T \mathbf{X}$

Proof.

The function $\psi = \lambda^T \beta$ is estimable if there exists an \mathbf{a}^T such that $\mathsf{E}[\mathbf{a}^T \mathbf{Y}] = \lambda^T \beta$

$$E[\mathbf{a}^T \mathbf{Y}] = \mathbf{a}^T E[\mathbf{Y}]$$
$$= \mathbf{a}^T \mathbf{X} \boldsymbol{\beta}$$
$$= \boldsymbol{\lambda}^T \boldsymbol{\beta}$$

if and only if $\lambda^T = \mathbf{a}^T \mathbf{X}$ for all $\boldsymbol{\beta}$

Estimability of Individual β_i

Proposition

For

$$oldsymbol{\mu} = \mathbf{X}oldsymbol{eta} = \sum_j \mathbf{X}_jeta_j$$

 β_i is not identifiable if and only if there exists α_i such that $\mathbf{X}_{j} = \sum_{i \neq i} \mathbf{X}_{i} \alpha_{i}$

Estimability of Individual β_j

Proposition

For

$$\mu = \mathbf{X}\boldsymbol{eta} = \sum_{j} \mathbf{X}_{j}eta_{j}$$

 β_j is not identifiable if and only if there exists α_j such that $\mathbf{X}_i = \sum_{i \neq j} \mathbf{X}_i \alpha_i$

One-way Anova Model:

$$Y_{ij} = \mu + \tau_j + \epsilon_{ij}$$

$$m{\mu} = \left[egin{array}{ccccc} m{1}_{n_1} & m{1}_{n_1} & m{0}_{n_1} & \dots & m{0}_{n_1} \ m{1}_{n_2} & m{0}_{n_2} & m{1}_{n_2} & \dots & m{0}_{n_2} \ dots & dots & \ddots & dots \ m{1}_{n_J} & m{0}_{n_J} & m{0}_{n_J} & \dots & m{1}_{n_J} \end{array}
ight] \left(egin{array}{c} m{\mu} \ & m{ au}_1 \ & m{ au}_2 \ & dots \ & m{ au}_J \end{array}
ight)$$

Estimability of Individual β_j

Proposition

For

$$oldsymbol{\mu} = \mathbf{X}oldsymbol{eta} = \sum_j \mathbf{X}_jeta_j$$

 β_j is not identifiable if and only if there exists α_j such that

$$\mathbf{X}_{j} = \sum_{i \neq j} \mathbf{X}_{i} \alpha_{i}$$

One-way Anova Model:

$$Y_{ij} = \mu + \tau_j + \epsilon_{ij}$$

$$m{\mu} = \left[egin{array}{cccccc} {f 1}_{n_1} & {f 1}_{n_1} & {f 0}_{n_1} & \dots & {f 0}_{n_1} \ {f 1}_{n_2} & {f 0}_{n_2} & {f 1}_{n_2} & \dots & {f 0}_{n_2} \ dots & dots & \ddots & dots \ {f 1}_{n_J} & {f 0}_{n_J} & {f 0}_{n_J} & \dots & {f 1}_{n_J} \end{array}
ight] \left(egin{array}{c} \mu \ au_1 \ au_2 \ dots \ au_J \end{array}
ight)$$

Are any parameters μ or τ_i identifiable?

Theorem Under the assumptions:

$$E[Y] = \mu$$

Theorem

Under the assumptions:

$$E[\mathbf{Y}] = \mu$$

$$Cov(\mathbf{Y}) = \sigma^2 \mathbf{I}_n$$

Theorem

Under the assumptions:

$$E[\mathbf{Y}] = \mu$$

$$Cov(\mathbf{Y}) = \sigma^2 \mathbf{I}_n$$

every estimable function $\psi = \lambda^T \beta$ has a unique unbiased linear estimator $\hat{\psi}$ which has minimum variance in the class of all unbiased linear estimators.

Theorem

Under the assumptions:

$$E[\mathbf{Y}] = \mu$$

$$Cov(\mathbf{Y}) = \sigma^2 \mathbf{I}_n$$

every estimable function $\psi = \lambda^T \beta$ has a unique unbiased linear estimator $\hat{\psi}$ which has minimum variance in the class of all unbiased linear estimators. $\hat{\psi} = \lambda^T \hat{\beta}$ where $\hat{\beta}$ is any set of ordinary least squares estimators.

Lemma

▶ If $\psi = \lambda^T \beta$ is estimable, there exists a unique linear unbiased estimator of $\psi = \mathbf{a}^{*T}\mathbf{Y}$ with $\mathbf{a}^{*} \in C(\mathbf{X})$.

Lemma

- ▶ If $\psi = \lambda^T \beta$ is estimable, there exists a unique linear unbiased estimator of $\psi = \mathbf{a}^{*T}\mathbf{Y}$ with $\mathbf{a}^{*} \in C(\mathbf{X})$.
- ▶ If $\mathbf{a}^T\mathbf{Y}$ is any unbiased linear estimator of ψ then a^* is the projection of a onto C(X), i.e. $a^* = P_X a$.

Proof

▶ Since ψ is estimable, there exists an $\mathbf{a} \in \mathbb{R}^n$ for which $E[\mathbf{a}^T\mathbf{Y}] = \boldsymbol{\lambda}^T\boldsymbol{\beta} = \psi \text{ with } \boldsymbol{\lambda}^T = \mathbf{a}^T\mathbf{X}$

Proof

- ▶ Since ψ is estimable, there exists an $\mathbf{a} \in \mathbb{R}^n$ for which $E[\mathbf{a}^T\mathbf{Y}] = \boldsymbol{\lambda}^T\boldsymbol{\beta} = \psi \text{ with } \boldsymbol{\lambda}^T = \mathbf{a}^T\mathbf{X}$
- ▶ Let $\mathbf{a} = \mathbf{a}^* + \mathbf{u}$ where $\mathbf{a}^* \in C(\mathbf{X})$ and $\mathbf{u} \in C(\mathbf{X})^{\perp}$

Proof

- \triangleright Since ψ is estimable, there exists an $\mathbf{a} \in \mathbb{R}^n$ for which $\mathsf{E}[\mathsf{a}^T\mathsf{Y}] = \boldsymbol{\lambda}^T\boldsymbol{\beta} = \psi \text{ with } \boldsymbol{\lambda}^T = \mathsf{a}^T\mathsf{X}$
- ▶ Let $\mathbf{a} = \mathbf{a}^* + \mathbf{u}$ where $\mathbf{a}^* \in C(\mathbf{X})$ and $\mathbf{u} \in C(\mathbf{X})^{\perp}$
- ► Then

$$\psi = \mathsf{E}[\mathbf{a}^T \mathbf{Y}] = \mathsf{E}[\mathbf{a}^{*T} \mathbf{Y}] + \mathsf{E}[\mathbf{u}^T \mathbf{Y}]$$

Proof

- Since ψ is estimable, there exists an $\mathbf{a} \in \mathbb{R}^n$ for which $\mathsf{E}[\mathbf{a}^T\mathbf{Y}] = \boldsymbol{\lambda}^T\boldsymbol{\beta} = \psi$ with $\boldsymbol{\lambda}^T = \mathbf{a}^T\mathbf{X}$
- ▶ Let $\mathbf{a} = \mathbf{a}^* + \mathbf{u}$ where $\mathbf{a}^* \in C(\mathbf{X})$ and $\mathbf{u} \in C(\mathbf{X})^{\perp}$
- ► Then

$$\psi = E[\mathbf{a}^T \mathbf{Y}] = E[\mathbf{a}^* \mathbf{T} \mathbf{Y}] + \mathbf{E}[\mathbf{u}^T \mathbf{Y}]$$
$$= E[\mathbf{a}^* \mathbf{T} \mathbf{Y}] + \mathbf{0}$$
$$E[\mathbf{u}^T \mathbf{Y}] = \mathbf{u}^T \mathbf{X} \boldsymbol{\beta}$$

since
$$\mathbf{u} \perp C(\mathbf{X})$$
 (i.e. $\mathbf{u} \in C(\mathbf{X})^{\perp}) E[\mathbf{u}^T \mathbf{Y}] = 0$

Proof

- \triangleright Since ψ is estimable, there exists an $\mathbf{a} \in \mathbb{R}^n$ for which $E[\mathbf{a}^T\mathbf{Y}] = \boldsymbol{\lambda}^T\boldsymbol{\beta} = \psi \text{ with } \boldsymbol{\lambda}^T = \mathbf{a}^T\mathbf{X}$
- ▶ Let $\mathbf{a} = \mathbf{a}^* + \mathbf{u}$ where $\mathbf{a}^* \in C(\mathbf{X})$ and $\mathbf{u} \in C(\mathbf{X})^{\perp}$
- ► Then

$$\psi = \mathsf{E}[\mathbf{a}^T \mathbf{Y}] = \mathsf{E}[\mathbf{a}^{*T} \mathbf{Y}] + \mathbf{E}[\mathbf{u}^T \mathbf{Y}]$$

$$= \mathsf{E}[\mathbf{a}^{*T} \mathbf{Y}] + 0$$

$$\mathsf{E}[\mathbf{u}^T\mathbf{Y}] = \mathbf{u}^T\mathbf{X}\boldsymbol{\beta}$$

since
$$\mathbf{u} \perp C(\mathbf{X})$$
 (i.e. $\mathbf{u} \in C(\mathbf{X})^{\perp}$) $E[\mathbf{u}^T \mathbf{Y}] = 0$

▶ Thus $\mathbf{a}^{*T}\mathbf{Y}$ is also an unbiased linear estimator of ψ with $\mathbf{a}^* \in C(\mathbf{X})$

Proof.

Proof.

$$0 = \mathsf{E}[\mathbf{a}^{*T}\mathbf{Y}] - \mathsf{E}[\mathbf{v}^{T}\mathbf{Y}]$$

Proof.

$$0 = E[\mathbf{a}^{*T}\mathbf{Y}] - E[\mathbf{v}^{T}\mathbf{Y}]$$
$$= (\mathbf{a}^{*} - \mathbf{v})^{T}\mathbf{X}\boldsymbol{\beta}$$

Proof.

$$0 = E[\mathbf{a}^{*T}\mathbf{Y}] - E[\mathbf{v}^{T}\mathbf{Y}]$$
$$= (\mathbf{a}^{*} - \mathbf{v})^{T}\mathbf{X}\boldsymbol{\beta}$$
So $(\mathbf{a}^{*} - \mathbf{v})^{T}\mathbf{X} = 0$ for all $\boldsymbol{\beta}$

Proof.

Suppose that there is another $\mathbf{v} \in C(\mathbf{X})$ such that $E[\mathbf{v}^T\mathbf{Y}] = \psi$. Then for all β

$$0 = E[\mathbf{a}^{*T}\mathbf{Y}] - E[\mathbf{v}^{T}\mathbf{Y}]$$
$$= (\mathbf{a}^{*} - \mathbf{v})^{T}\mathbf{X}\boldsymbol{\beta}$$
So $(\mathbf{a}^{*} - \mathbf{v})^{T}\mathbf{X} = 0$ for all $\boldsymbol{\beta}$

▶ Implies $(\mathbf{a}^* - \mathbf{v}) \in C(\mathbf{X})^{\perp}$

Proof.

$$0 = E[\mathbf{a}^{*T}\mathbf{Y}] - E[\mathbf{v}^{T}\mathbf{Y}]$$
$$= (\mathbf{a}^{*} - \mathbf{v})^{T}\mathbf{X}\boldsymbol{\beta}$$
So $(\mathbf{a}^{*} - \mathbf{v})^{T}\mathbf{X} = 0$ for all $\boldsymbol{\beta}$

- ▶ Implies $(\mathbf{a}^* \mathbf{v}) \in C(\mathbf{X})^{\perp}$
- ▶ but by assumption $(\mathbf{a}^* \mathbf{v}) \in C(\mathbf{X})$

Proof.

$$0 = E[\mathbf{a}^{*T}\mathbf{Y}] - E[\mathbf{v}^{T}\mathbf{Y}]$$
$$= (\mathbf{a}^{*} - \mathbf{v})^{T}\mathbf{X}\boldsymbol{\beta}$$
So $(\mathbf{a}^{*} - \mathbf{v})^{T}\mathbf{X} = 0$ for all $\boldsymbol{\beta}$

- ▶ Implies $(\mathbf{a}^* \mathbf{v}) \in C(\mathbf{X})^{\perp}$
- ▶ but by assumption $(\mathbf{a}^* \mathbf{v}) \in C(\mathbf{X})$ ($C(\mathbf{X})$ is a vector space)

Proof.

$$0 = E[\mathbf{a}^{*T}\mathbf{Y}] - E[\mathbf{v}^{T}\mathbf{Y}]$$
$$= (\mathbf{a}^{*} - \mathbf{v})^{T}\mathbf{X}\boldsymbol{\beta}$$
So $(\mathbf{a}^{*} - \mathbf{v})^{T}\mathbf{X} = 0$ for all $\boldsymbol{\beta}$

- ▶ Implies $(\mathbf{a}^* \mathbf{v}) \in C(\mathbf{X})^{\perp}$
- ▶ but by assumption $(\mathbf{a}^* \mathbf{v}) \in C(\mathbf{X})$ ($C(\mathbf{X})$ is a vector space)
- ▶ the only vector in BOTH is $\mathbf{0}$, so $\mathbf{a}^* = \mathbf{v}$

Proof.

Suppose that there is another $\mathbf{v} \in C(\mathbf{X})$ such that $E[\mathbf{v}^T\mathbf{Y}] = \psi$. Then for all $\boldsymbol{\beta}$

$$0 = E[\mathbf{a}^{*T}\mathbf{Y}] - E[\mathbf{v}^{T}\mathbf{Y}]$$
$$= (\mathbf{a}^{*} - \mathbf{v})^{T}\mathbf{X}\boldsymbol{\beta}$$
So $(\mathbf{a}^{*} - \mathbf{v})^{T}\mathbf{X} = 0$ for all $\boldsymbol{\beta}$

- ▶ Implies $(\mathbf{a}^* \mathbf{v}) \in C(\mathbf{X})^{\perp}$
- ▶ but by assumption $(\mathbf{a}^* \mathbf{v}) \in C(\mathbf{X})$ ($C(\mathbf{X})$ is a vector space)
- ▶ the only vector in BOTH is $\mathbf{0}$, so $\mathbf{a}^* = \mathbf{v}$

Therefore $\mathbf{a}^{*T}\mathbf{Y}$ is the unique linear unbiased estimator of ψ with $\mathbf{a}^{*} \in \mathcal{C}(\mathbf{X})$.

Let $\mathbf{a}^{*T}\mathbf{Y}$ be the unique unbiased linear estimator of ψ with $\mathbf{a}^* \in C(\mathbf{X})$.

- ▶ Let $\mathbf{a}^{*T}\mathbf{Y}$ be the unique unbiased linear estimator of ψ with $\mathbf{a}^* \in C(\mathbf{X})$.
- Let $\mathbf{a}^T \mathbf{Y}$ be any unbiased estimate of ψ ; $\mathbf{a} = \mathbf{a}^* + \mathbf{u}$ with $\mathbf{a}^* \in C(\mathbf{X})$ and $\mathbf{u} \in C(\mathbf{X})^{\perp}$

- ▶ Let $\mathbf{a}^{*T}\mathbf{Y}$ be the unique unbiased linear estimator of ψ with $\mathbf{a}^* \in C(\mathbf{X})$.
- Let $\mathbf{a}^T \mathbf{Y}$ be any unbiased estimate of ψ ; $\mathbf{a} = \mathbf{a}^* + \mathbf{u}$ with $\mathbf{a}^* \in C(\mathbf{X})$ and $\mathbf{u} \in C(\mathbf{X})^{\perp}$

$$Var(\mathbf{a}^T\mathbf{Y}) = \mathbf{a}^T Cov(\mathbf{Y})\mathbf{a}$$

- Let $\mathbf{a}^{*T}\mathbf{Y}$ be the unique unbiased linear estimator of ψ with $\mathbf{a}^* \in C(\mathbf{X})$.
- Let $\mathbf{a}^T \mathbf{Y}$ be any unbiased estimate of ψ ; $\mathbf{a} = \mathbf{a}^* + \mathbf{u}$ with $\mathbf{a}^* \in C(\mathbf{X})$ and $\mathbf{u} \in C(\mathbf{X})^{\perp}$

$$Var(\mathbf{a}^T \mathbf{Y}) = \mathbf{a}^T Cov(\mathbf{Y}) \mathbf{a}$$
$$= \sigma^2 ||\mathbf{a}||^2$$

- Let $\mathbf{a}^{*T}\mathbf{Y}$ be the unique unbiased linear estimator of ψ with $\mathbf{a}^* \in C(\mathbf{X})$.
- Let $\mathbf{a}^T \mathbf{Y}$ be any unbiased estimate of ψ ; $\mathbf{a} = \mathbf{a}^* + \mathbf{u}$ with $\mathbf{a}^* \in C(\mathbf{X})$ and $\mathbf{u} \in C(\mathbf{X})^{\perp}$

$$\begin{aligned} \mathsf{Var}(\mathbf{a}^T \mathbf{Y}) &= \mathbf{a}^T \mathsf{Cov}(\mathbf{Y}) \mathbf{a} \\ &= \sigma^2 \|\mathbf{a}\|^2 \\ &= \sigma^2 (\|\mathbf{a}^*\|^2 + \|\mathbf{u}\|^2 + 2{\mathbf{a}^*}^T \mathbf{u}) \end{aligned}$$

- ▶ Let $\mathbf{a}^{*T}\mathbf{Y}$ be the unique unbiased linear estimator of ψ with $\mathbf{a}^* \in C(\mathbf{X})$.
- Let $\mathbf{a}^T \mathbf{Y}$ be any unbiased estimate of ψ ; $\mathbf{a} = \mathbf{a}^* + \mathbf{u}$ with $\mathbf{a}^* \in C(\mathbf{X})$ and $\mathbf{u} \in C(\mathbf{X})^{\perp}$

$$Var(\mathbf{a}^T \mathbf{Y}) = \mathbf{a}^T Cov(\mathbf{Y}) \mathbf{a}$$

$$= \sigma^2 \|\mathbf{a}\|^2$$

$$= \sigma^2 (\|\mathbf{a}^*\|^2 + \|\mathbf{u}\|^2 + 2\mathbf{a}^{*T} \mathbf{u})$$

$$= \sigma^2 (\|\mathbf{a}^*\|^2 + \|\mathbf{u}\|^2) + 0$$

- ▶ Let $\mathbf{a}^{*T}\mathbf{Y}$ be the unique unbiased linear estimator of ψ with $\mathbf{a}^* \in C(\mathbf{X})$.
- Let $\mathbf{a}^T \mathbf{Y}$ be any unbiased estimate of ψ ; $\mathbf{a} = \mathbf{a}^* + \mathbf{u}$ with $\mathbf{a}^* \in C(\mathbf{X})$ and $\mathbf{u} \in C(\mathbf{X})^{\perp}$

$$\begin{aligned} \mathsf{Var}(\mathbf{a}^T\mathbf{Y}) &= \mathbf{a}^T\mathsf{Cov}(\mathbf{Y})\mathbf{a} \\ &= \sigma^2\|\mathbf{a}\|^2 \\ &= \sigma^2(\|\mathbf{a}^*\|^2 + \|\mathbf{u}\|^2 + 2\mathbf{a}^{*T}\mathbf{u}) \\ &= \sigma^2(\|\mathbf{a}^*\|^2 + \|\mathbf{u}\|^2) + 0 \\ &= \mathsf{Var}(\mathbf{a}^{*T}\mathbf{Y}) + \sigma^2\|\mathbf{u}\|^2 \end{aligned}$$

- ▶ Let $\mathbf{a}^{*T}\mathbf{Y}$ be the unique unbiased linear estimator of ψ with $\mathbf{a}^* \in C(\mathbf{X})$.
- Let $\mathbf{a}^T \mathbf{Y}$ be any unbiased estimate of ψ ; $\mathbf{a} = \mathbf{a}^* + \mathbf{u}$ with $\mathbf{a}^* \in C(\mathbf{X})$ and $\mathbf{u} \in C(\mathbf{X})^{\perp}$

$$\begin{aligned} \mathsf{Var}(\mathbf{a}^T\mathbf{Y}) &= \mathbf{a}^T\mathsf{Cov}(\mathbf{Y})\mathbf{a} \\ &= \sigma^2\|\mathbf{a}\|^2 \\ &= \sigma^2(\|\mathbf{a}^*\|^2 + \|\mathbf{u}\|^2 + 2\mathbf{a}^{*T}\mathbf{u}) \\ &= \sigma^2(\|\mathbf{a}^*\|^2 + \|\mathbf{u}\|^2) + 0 \\ &= \mathsf{Var}(\mathbf{a}^{*T}\mathbf{Y}) + \sigma^2\|\mathbf{u}\|^2 \\ &\geq \mathsf{Var}(\mathbf{a}^{*T}\mathbf{Y}) \end{aligned}$$

- Let $\mathbf{a}^{*T}\mathbf{Y}$ be the unique unbiased linear estimator of ψ with $\mathbf{a}^{*} \in C(\mathbf{X})$.
- Let $\mathbf{a}^T\mathbf{Y}$ be any unbiased estimate of ψ ; $\mathbf{a} = \mathbf{a}^* + \mathbf{u}$ with $\mathbf{a}^* \in C(\mathbf{X})$ and $\mathbf{u} \in C(\mathbf{X})^{\perp}$

$$\begin{aligned} \mathsf{Var}(\mathbf{a}^T\mathbf{Y}) &= \mathbf{a}^T\mathsf{Cov}(\mathbf{Y})\mathbf{a} \\ &= \sigma^2\|\mathbf{a}\|^2 \\ &= \sigma^2(\|\mathbf{a}^*\|^2 + \|\mathbf{u}\|^2 + 2\mathbf{a}^{*T}\mathbf{u}) \\ &= \sigma^2(\|\mathbf{a}^*\|^2 + \|\mathbf{u}\|^2) + 0 \\ &= \mathsf{Var}(\mathbf{a}^{*T}\mathbf{Y}) + \sigma^2\|\mathbf{u}\|^2 \\ &\geq \mathsf{Var}(\mathbf{a}^{*T}\mathbf{Y}) \end{aligned}$$

with equality if and only if $\mathbf{a} = \mathbf{a}^*$

- Let $\mathbf{a}^{*T}\mathbf{Y}$ be the unique unbiased linear estimator of ψ with $\mathbf{a}^{*} \in \mathcal{C}(\mathbf{X})$.
- Let $\mathbf{a}^T\mathbf{Y}$ be any unbiased estimate of ψ ; $\mathbf{a} = \mathbf{a}^* + \mathbf{u}$ with $\mathbf{a}^* \in C(\mathbf{X})$ and $\mathbf{u} \in C(\mathbf{X})^{\perp}$

$$Var(\mathbf{a}^{T}\mathbf{Y}) = \mathbf{a}^{T}Cov(\mathbf{Y})\mathbf{a}$$

$$= \sigma^{2}\|\mathbf{a}\|^{2}$$

$$= \sigma^{2}(\|\mathbf{a}^{*}\|^{2} + \|\mathbf{u}\|^{2} + 2\mathbf{a}^{*T}\mathbf{u})$$

$$= \sigma^{2}(\|\mathbf{a}^{*}\|^{2} + \|\mathbf{u}\|^{2}) + 0$$

$$= Var(\mathbf{a}^{*T}\mathbf{Y}) + \sigma^{2}\|\mathbf{u}\|^{2}$$

$$\geq Var(\mathbf{a}^{*T}\mathbf{Y})$$

with equality if and only if $\mathbf{a} = \mathbf{a}^*$

Hence $\mathbf{a}^{*T}\mathbf{Y}$ is the unique linear unbiased estimator of ψ with minimum variance

- Let $\mathbf{a}^{*T}\mathbf{Y}$ be the unique unbiased linear estimator of ψ with $\mathbf{a}^{*} \in \mathcal{C}(\mathbf{X})$.
- Let $\mathbf{a}^T\mathbf{Y}$ be any unbiased estimate of ψ ; $\mathbf{a} = \mathbf{a}^* + \mathbf{u}$ with $\mathbf{a}^* \in C(\mathbf{X})$ and $\mathbf{u} \in C(\mathbf{X})^{\perp}$

$$\begin{aligned} \mathsf{Var}(\mathbf{a}^T\mathbf{Y}) &= \mathbf{a}^T\mathsf{Cov}(\mathbf{Y})\mathbf{a} \\ &= \sigma^2\|\mathbf{a}\|^2 \\ &= \sigma^2(\|\mathbf{a}^*\|^2 + \|\mathbf{u}\|^2 + 2\mathbf{a}^{*T}\mathbf{u}) \\ &= \sigma^2(\|\mathbf{a}^*\|^2 + \|\mathbf{u}\|^2) + 0 \\ &= \mathsf{Var}(\mathbf{a}^{*T}\mathbf{Y}) + \sigma^2\|\mathbf{u}\|^2 \\ &\geq \mathsf{Var}(\mathbf{a}^{*T}\mathbf{Y}) \end{aligned}$$

with equality if and only if $\mathbf{a} = \mathbf{a}^*$

Hence $\mathbf{a}^{*T}\mathbf{Y}$ is the unique linear unbiased estimator of ψ with minimum variance "BLUE" = Best Linear Unbiased Estimator

Proof.

Show that $\hat{\psi} = \mathbf{a}^{*T}\mathbf{Y} = \boldsymbol{\lambda}^{T}\hat{\boldsymbol{\beta}}$

Proof.

Show that $\hat{\psi} = \mathbf{a}^{*T}\mathbf{Y} = \boldsymbol{\lambda}^{T}\hat{\boldsymbol{\beta}}$ Since $\mathbf{a}^{*} \in C(\mathbf{X})$ we have $\mathbf{a}^{*} = \mathbf{P}_{\mathbf{X}}\mathbf{a}^{*}$

Show that
$$\hat{\psi} = \mathbf{a}^{*T}\mathbf{Y} = \boldsymbol{\lambda}^T\hat{\boldsymbol{\beta}}$$

Since $\mathbf{a}^* \in \mathcal{C}(\mathbf{X})$ we have $\mathbf{a}^* = \mathbf{P}_{\mathbf{X}}\mathbf{a}^*$
$$\mathbf{a}^{*T}\mathbf{Y} = \mathbf{a}^{*T}\mathbf{P}_{\mathbf{X}}^T\mathbf{Y}$$

Show that
$$\hat{\psi} = \mathbf{a}^{*T}\mathbf{Y} = \lambda^{T}\hat{\boldsymbol{\beta}}$$

Since $\mathbf{a}^{*} \in C(\mathbf{X})$ we have $\mathbf{a}^{*} = \mathbf{P}_{\mathbf{X}}\mathbf{a}^{*}$
$$\mathbf{a}^{*T}\mathbf{Y} = \mathbf{a}^{*T}\mathbf{P}_{X}^{T}\mathbf{Y}$$
$$= \mathbf{a}^{*T}\mathbf{P}_{X}\mathbf{Y}$$

Show that
$$\hat{\psi} = \mathbf{a}^{*T}\mathbf{Y} = \lambda^{T}\hat{\boldsymbol{\beta}}$$

Since $\mathbf{a}^{*} \in C(\mathbf{X})$ we have $\mathbf{a}^{*} = \mathbf{P}_{\mathbf{X}}\mathbf{a}^{*}$
$$\mathbf{a}^{*T}\mathbf{Y} = \mathbf{a}^{*T}\mathbf{P}_{X}^{T}\mathbf{Y}$$
$$= \mathbf{a}^{*T}\mathbf{P}_{X}\mathbf{Y}$$
$$= \mathbf{a}^{*T}\mathbf{X}\hat{\boldsymbol{\beta}}$$

Show that
$$\hat{\psi} = \mathbf{a}^{*T}\mathbf{Y} = \lambda^{T}\hat{\boldsymbol{\beta}}$$

Since $\mathbf{a}^{*} \in C(\mathbf{X})$ we have $\mathbf{a}^{*} = \mathbf{P}_{\mathbf{X}}\mathbf{a}^{*}$
$$\mathbf{a}^{*T}\mathbf{Y} = \mathbf{a}^{*T}\mathbf{P}_{X}^{T}\mathbf{Y}$$
$$= \mathbf{a}^{*T}\mathbf{P}_{X}\mathbf{Y}$$
$$= \mathbf{a}^{*T}\mathbf{X}\hat{\boldsymbol{\beta}}$$
$$= \lambda^{T}\hat{\boldsymbol{\beta}}$$

Proof.

Show that
$$\hat{\psi} = \mathbf{a}^{*T}\mathbf{Y} = \lambda^{T}\hat{\boldsymbol{\beta}}$$

Since $\mathbf{a}^{*} \in \mathcal{C}(\mathbf{X})$ we have $\mathbf{a}^{*} = \mathbf{P}_{\mathbf{X}}\mathbf{a}^{*}$
$$\mathbf{a}^{*T}\mathbf{Y} = \mathbf{a}^{*T}\mathbf{P}_{X}^{T}\mathbf{Y}$$
$$= \mathbf{a}^{*T}\mathbf{P}_{X}\mathbf{Y}$$
$$= \mathbf{a}^{*T}\mathbf{X}\hat{\boldsymbol{\beta}}$$

 $= \lambda^T \hat{\beta}$

for
$$\lambda^T = \mathbf{a}^{*T} \mathbf{X}$$
 or $\lambda = \mathbf{X}^T \mathbf{a}$

MVUE

► Gauss-Markov Theorem says that OLS has minimum variance in the class of all Linear Unbiased estimators

MVUE

- ► Gauss-Markov Theorem says that OLS has minimum variance in the class of all Linear Unbiased estimators
- ► Requires just first and second moments

MVUF

- ► Gauss-Markov Theorem says that OLS has minimum variance in the class of all Linear Unbiased estimators
- Requires just first and second moments
- Additional assumption of normality, OLS = MLEs have minimum variance out of ALL unbiased estimators (MVUE); not just linear estimators

MVUF

- Gauss-Markov Theorem says that OLS has minimum variance in the class of all Linear Unbiased estimators
- Requires just first and second moments
- ► Additional assumption of normality, OLS = MLEs have minimum variance out of ALL unbiased estimators (MVUE); not just linear estimators (requires Completeness and Rao-Blackwell Theorem - next semester)

MVUF

- Gauss-Markov Theorem says that OLS has minimum variance in the class of all Linear Unbiased estimators
- Requires just first and second moments
- ► Additional assumption of normality, OLS = MLEs have minimum variance out of ALL unbiased estimators (MVUE); not just linear estimators (requires Completeness and Rao-Blackwell Theorem - next semester)

Prediction

► For predicting at new x_{*} is there always a unique unbiased estimator of $E[Y \mid x_*]$?

Prediction

- ► For predicting at new x_{*} is there always a unique unbiased estimator of $E[Y \mid x_*]$?
- ▶ If one does exist, how do we know that if we are given λ ?

 $lackbox{x}_*^Teta$ has a unique unbiased estimator if $lackbox{x}_*\equiv oldsymbol{\lambda} = oldsymbol{\mathsf{X}}^Toldsymbol{\mathsf{a}}$

- $\mathbf{x}_{*}^{T}\boldsymbol{\beta}$ has a unique unbiased estimator if $\mathbf{x}_{*} \equiv \boldsymbol{\lambda} = \mathbf{X}^{T}\mathbf{a}$
- ightharpoonup Clearly if $\mathbf{x}_* = \mathbf{x}_i$ (*i*th row of observed data) then it is estimable with a equal to the vector with a 1 in the ith position even if X is not full rank!

- $\mathbf{x}_{*}^{T}\boldsymbol{\beta}$ has a unique unbiased estimator if $\mathbf{x}_{*} \equiv \boldsymbol{\lambda} = \mathbf{X}^{T}\mathbf{a}$
- ightharpoonup Clearly if $\mathbf{x}_* = \mathbf{x}_i$ (*i*th row of observed data) then it is estimable with a equal to the vector with a 1 in the ith position even if X is not full rank!
- ▶ What about out of sample prediction?

- $\mathbf{x}_{*}^{T}\boldsymbol{\beta}$ has a unique unbiased estimator if $\mathbf{x}_{*} \equiv \boldsymbol{\lambda} = \mathbf{X}^{T}\mathbf{a}$
- ightharpoonup Clearly if $\mathbf{x}_* = \mathbf{x}_i$ (*i*th row of observed data) then it is estimable with a equal to the vector with a 1 in the ith position even if X is not full rank!
- ▶ What about out of sample prediction?

Example

```
x1 = -4:4
x2 = c(-2, 1, -1, 2, 0, 2, -1, 1, -2)
x3 = 3*x1 - 2*x2
x4 = x2 - x1 + 4
Y = 1+x1+x2+x3+x4 + c(-.5,.5,.5,-.5,0,.5,-.5,-.5,..5)
dev.set = data.frame(Y, x1, x2, x3, x4)
lm1234 = lm(Y \sim x1 + x2 + x3 + x4, data=dev.set)
round(coefficients(lm1234), 4)
## (Intercept)
                         x1
                                      x2
                                                   x3
                                                               x4
##
                                                   NA
                                                               NA
lm3412 = lm(Y \sim x3 + x4 + x1 + x2, data = dev.set)
round(coefficients(lm3412), 4)
## (Intercept)
                                                               x2
                         xЗ
                                      x4
                                                   x1
##
           -19
                          3
                                                   NΑ
                                                               NΑ
```

In Sample Predictions

```
cbind(dev.set, predict(lm1234), predict(lm3412))
       Y x1 x2 x3 x4 predict(lm1234) predict(lm3412)
##
## 1 -7.5 -4 -2 -8 6
                                 -7
## 2 -3.5 -3 1 -11 8
                                 -4
## 3 -0.5 -2 -1 -4 5
                                 -1
## 4 1.5 -1 2 -7 7
## 5 5.0 0 0 0 4
                                  5
## 6 8.5 1 2 -1 5
## 7 10.5 2 -1 8 1
                                 11
                                                11
## 8 13.5 3 1 7 2
                                 14
                                                14
## 9 17.5 4 -2 16 -2
                                 17
                                                17
```

Both models agree for estimating the mean at the observed ${\bf X}$ points!

Out of Sample

```
out = data.frame(test.set,
    Y1234=predict(lm1234, new=test.set),
    Y3412=predict(lm3412, new=test.set))
0111
## x1 x2 x3 x4 Y1234 Y3412
             14 14
## 1 3 1 7 2
## 2 6 2 14 4 23 47
## 3 6 2 14 0 23 23
## 4 0 0 0 4 5
## 5 0 0 0 0 5 -19
## 6 1 2 3 4
                    14
```

Out of Sample

```
out = data.frame(test.set,
    Y1234=predict(lm1234, new=test.set),
    Y3412=predict(lm3412, new=test.set))
011t
## x1 x2 x3 x4 Y1234 Y3412
## 1 3 1 7 2 14 14
## 2 6 2 14 4 23 47
## 3 6 2 14 0 23 23
## 4 0 0 0 4 5 5
## 5 0 0 0 0 5 -19
## 6 1 2 3 4
                     14
```

Agreement for cases 1, 3, and 4 only! Can we determine that without finding the predictions and comparing?

Determining Estimable λ

Estimable means that $\lambda^T = \mathbf{a}^T \mathbf{X}$ for $\mathbf{a} \in C(\mathbf{X})$

Determining Estimable λ

- **E**stimable means that $\lambda^T = \mathbf{a}^T \mathbf{X}$ for $\mathbf{a} \in C(\mathbf{X})$
- ▶ Transpose: $\lambda = \mathbf{X}^T \mathbf{a}$ for $\mathbf{a} \in C(\mathbf{X})$

Determining Estimable λ

- **E**stimable means that $\lambda^T = \mathbf{a}^T \mathbf{X}$ for $\mathbf{a} \in C(\mathbf{X})$
- ▶ Transpose: $\lambda = \mathbf{X}^T \mathbf{a}$ for $\mathbf{a} \in C(\mathbf{X})$
- $\lambda \in C(\mathbf{X}^T) \ (\lambda \in R(\mathbf{X}))$

- **E**stimable means that $\lambda^T = \mathbf{a}^T \mathbf{X}$ for $\mathbf{a} \in C(\mathbf{X})$
- ▶ Transpose: $\lambda = \mathbf{X}^T \mathbf{a}$ for $\mathbf{a} \in C(\mathbf{X})$
- $\lambda \in C(\mathbf{X}^T) \ (\lambda \in R(\mathbf{X}))$
- $\triangleright \lambda \perp C(\mathbf{X}^T)^{\perp}$

- **E**stimable means that $\lambda^T = \mathbf{a}^T \mathbf{X}$ for $\mathbf{a} \in C(\mathbf{X})$
- ▶ Transpose: $\lambda = \mathbf{X}^T \mathbf{a}$ for $\mathbf{a} \in C(\mathbf{X})$
- $\lambda \in C(\mathbf{X}^T) \ (\lambda \in R(\mathbf{X}))$
- $\triangleright \lambda \perp C(\mathbf{X}^T)^{\perp}$
- \triangleright $C(\mathbf{X}^T)^{\perp}$ is the null space of \mathbf{X}

- **E**stimable means that $\lambda^T = \mathbf{a}^T \mathbf{X}$ for $\mathbf{a} \in C(\mathbf{X})$
- ▶ Transpose: $\lambda = \mathbf{X}^T \mathbf{a}$ for $\mathbf{a} \in C(\mathbf{X})$
- $\lambda \in C(\mathbf{X}^T) \ (\lambda \in R(\mathbf{X}))$
- $\triangleright \lambda \perp C(\mathbf{X}^T)^{\perp}$
- \triangleright $C(X^T)^{\perp}$ is the null space of X

$$\mathbf{v} \perp C(\mathbf{X}^T) : \mathbf{X}\mathbf{v} = 0 \Leftrightarrow \mathbf{v} \in N(\mathbf{X})$$

- **E**stimable means that $\lambda^T = \mathbf{a}^T \mathbf{X}$ for $\mathbf{a} \in C(\mathbf{X})$
- ▶ Transpose: $\lambda = \mathbf{X}^T \mathbf{a}$ for $\mathbf{a} \in C(\mathbf{X})$
- $\lambda \in C(\mathbf{X}^T) \ (\lambda \in R(\mathbf{X}))$
- $\triangleright \lambda \perp C(\mathbf{X}^T)^{\perp}$
- \triangleright $C(X^T)^{\perp}$ is the null space of X

$$\mathbf{v} \perp C(\mathbf{X}^T) : \mathbf{X}\mathbf{v} = 0 \Leftrightarrow \mathbf{v} \in N(\mathbf{X})$$

 $\triangleright \lambda \perp N(X)$

- ▶ Estimable means that $\lambda^T = \mathbf{a}^T \mathbf{X}$ for $\mathbf{a} \in \mathcal{C}(\mathbf{X})$
- ► Transpose: $\lambda = \mathbf{X}^T \mathbf{a}$ for $\mathbf{a} \in C(\mathbf{X})$
- $\triangleright \lambda \perp C(\mathbf{X}^T)^{\perp}$
- $ightharpoonup C(\mathbf{X}^T)^{\perp}$ is the null space of \mathbf{X}

$$\mathbf{v} \perp C(\mathbf{X}^T) : \mathbf{X}\mathbf{v} = 0 \Leftrightarrow \mathbf{v} \in N(\mathbf{X})$$

- $ightharpoonup \lambda \perp N(X)$
- ▶ if P is a projection onto $C(X^T)$ then I P is a projection onto N(X) and therefore $(I P)\lambda = 0$ if λ is estimable

- ▶ Estimable means that $\lambda^T = \mathbf{a}^T \mathbf{X}$ for $\mathbf{a} \in \mathcal{C}(\mathbf{X})$
- ▶ Transpose: $\lambda = \mathbf{X}^T \mathbf{a}$ for $\mathbf{a} \in C(\mathbf{X})$
- $\lambda \in C(\mathbf{X}^T) \ (\lambda \in R(\mathbf{X}))$
- $\triangleright \lambda \perp C(\mathbf{X}^T)^{\perp}$
- $ightharpoonup C(\mathbf{X}^T)^{\perp}$ is the null space of \mathbf{X}

$$\mathbf{v} \perp C(\mathbf{X}^T) : \mathbf{X}\mathbf{v} = 0 \Leftrightarrow \mathbf{v} \in N(\mathbf{X})$$

- \triangleright $\lambda \perp N(X)$
- ▶ if P is a projection onto $C(X^T)$ then I P is a projection onto N(X) and therefore $(I P)\lambda = 0$ if λ is estimable

Take $P_{X^T}=(X^TX)(X^TX)^-$ as a projection onto $C(X^T)$ and show $(I-P_{X^T})\lambda=0_p$

Example

Rows 2, 5, and 6 are not estimable! No linear unbiased estimator

▶ When BLUEs exist, under normality they are MVUE (ditto for prediction - BLUP)

- When BLUEs exist, under normality they are MVUE (ditto for prediction - BLUP)
- ▶ BLUE/BLUP do not always exist for estimation/prediction if X is not full rank

- When BLUEs exist, under normality they are MVUE (ditto for prediction - BLUP)
- ▶ BLUE/BLUP do not always exist for estimation/prediction if X is not full rank
- ightharpoonup may occur with redundancies for modest p < n and of course p > n

- When BLUEs exist, under normality they are MVUE (ditto for prediction - BLUP)
- ▶ BLUE/BLUP do not always exist for estimation/prediction if X is not full rank
- ightharpoonup may occur with redundancies for modest p < n and of course p > n
- ▶ Eliminate redundancies by removing variables (variable selection)

- When BLUEs exist, under normality they are MVUE (ditto for prediction - BLUP)
- BLUE/BLUP do not always exist for estimation/prediction if
 X is not full rank
- may occur with redundancies for modest p < n and of course p > n
- Eliminate redundancies by removing variables (variable selection)
- Consider alternative estimators (Bayes and related)

What about some estimator $g(\mathbf{Y})$ that is not unbiased?

What about some estimator $g(\mathbf{Y})$ that is not unbiased?

▶ Mean Squared Error for estimator $g(\mathbf{Y})$ of $\lambda^T \beta$ is

$$\mathsf{E}[g(\mathbf{Y}) - \boldsymbol{\lambda}^T \boldsymbol{\beta}]^2 = \mathsf{Var}(g(\mathbf{Y})) + \mathsf{Bias}^2(g(\mathbf{Y}))$$

where Bias =
$$E[g(\mathbf{Y})] - \lambda^T \beta$$

What about some estimator $g(\mathbf{Y})$ that is not unbiased?

▶ Mean Squared Error for estimator $g(\mathbf{Y})$ of $\lambda^T \beta$ is

$$\mathsf{E}[\mathit{g}(\mathbf{Y}) - \boldsymbol{\lambda}^T \boldsymbol{\beta}]^2 = \mathsf{Var}(\mathit{g}(\mathbf{Y})) + \mathsf{Bias}^2(\mathit{g}(\mathbf{Y}))$$

where
$$\mathsf{Bias} = \mathsf{E}[g(\mathbf{Y})] - \boldsymbol{\lambda}^T \boldsymbol{\beta}$$

Bias vs Variance tradeoff

What about some estimator $g(\mathbf{Y})$ that is not unbiased?

▶ Mean Squared Error for estimator $g(\mathbf{Y})$ of $\lambda^T \beta$ is

$$\mathsf{E}[\mathit{g}(\mathbf{Y}) - \boldsymbol{\lambda}^T \boldsymbol{\beta}]^2 = \mathsf{Var}(\mathit{g}(\mathbf{Y})) + \mathsf{Bias}^2(\mathit{g}(\mathbf{Y}))$$

where
$$\mathsf{Bias} = \mathsf{E}[g(\mathbf{Y})] - \boldsymbol{\lambda}^T \boldsymbol{\beta}$$

- Bias vs Variance tradeoff
- Can have smaller MSE if we allow some Bias!

Bayes

- Next Class Bayes Theorem & Conjugate Normal-Gamma Prior/Posterior distributions
- Read Chapter 2 in Christensen or Wakefield 5.7
- Review Multivariate Normal and Gamma distributions