Real-Time Log Analysis Using Hadoop and Spark

Table of Contents

- 1. Abstract
- 2. Introduction
- 3. Problem Statement
- 4. Literature Review
- 5. Architecture & Technology Stack
- 6. Dataset Description
- 7. Detailed Algorithm & System Flow
- 8. Implementation Approach & Code Snippets
- 9. Output & Sample Results
- 10. Conclusion & Future Work
- 11. References

1. Abstract

Modern organizations face challenges with massive, fast, and diverse log data that conventional analytic tools can't handle. This project, "Real-Time Log Analysis Using Hadoop and Spark," creates a distributed pipeline for collecting, ingesting, processing, and aggregating logs using Apache Kafka/Flume, Hadoop HDFS, and Apache Spark Streaming. The system performs real-time trend detection, anomaly alerting, and generates actionable operational dashboards through scalable computation and storage, providing a foundation for continuous monitoring and rapid incident response.

2. Introduction

Log data is crucial for understanding system behavior and health. However, the increasing scale and velocity of log streams overwhelm traditional batch analytics, causing delays in detecting incidents, security threats, and operational issues. This project uses <code>Hadoop's scalable storage</code> and <code>Spark's real-time streaming engine</code> to build a flexible, high-performance pipeline for live log analytics. The solution provides <code>low-latency insights</code>, <code>early warnings</code>, and historical reporting, enabling proactive infrastructure and user experience management.

3. Problem Statement

Traditional logging infrastructures face several key challenges:

- **Scalability**: Inability to manage thousands or millions of log events per second from various sources.
- Latency: Slow ETL and batch jobs cause significant delays in critical incident detection.
- Diversity: Logs from applications, servers, and devices have differing formats and semantics.
- **Operational Insight**: Difficulty in real-time identification of trends, spikes, and anomalies across distributed systems.
- **Storage & Query**: The need for both immediate streaming analytics and historical batch queries over long periods.

The project aims to address these issues by designing a **distributed system** with real-time streaming, scalable storage, and live analysis and alerting capabilities.

4. Literature Review

Industry and academic literature highlights the necessity for **distributed**, **stream-based analytics** in operational monitoring:

- **Distributed Log Ingestion**: **Kafka and Flume** are recognized for high-throughput, fault-tolerant log streaming.
- Stream Analytics: Apache Spark Streaming and similar frameworks enable microbatch, continuous computation as data arrives.
- Operational Visualization: Elasticsearch, Kibana, and Grafana are standard tools for live dashboards and exploratory data analysis.
- Research Findings: Studies confirm that windowed aggregations, alert thresholds, and automated anomaly detection significantly improve the speed of detecting and remediating outages, attacks, or SLA breaches compared to batch architectures.

5. Architecture & Technology Stack

System Design

Layer	Technology	Role
Ingestion	Kafka / Flume	Distributed real-time log shipping
Storage	HDFS, Hive	Durable, scalable log storage
Processing	Spark Structured Streaming	Real-time parsing, filtering, aggregation
Visualization	Grafana, Kibana	Dashboards and trend graphs

clustering

System Flow

- 1. **Log Collection**: Logs from web, application, and system sources are ingested in real-time via **Kafka or Flume**.
- 2. **Distributed Storage**: All logs are initially stored in **Hadoop HDFS**, partitioned by timestamp.
- 3. **Stream Processing: Spark Streaming** consumes logs from Kafka, then parses, filters, and aggregates data in sliding windows to support operational metrics and anomaly detection.
- 4. **Result Storage**: Aggregated data is saved to **Hive** for ad hoc SQL queries, with summaries optionally sent to **Elasticsearch** for live visualization.
- 5. **Visualization**: Real-time and historical dashboards are built using **Hive, Elasticsearch**, or other tools.
- 6. **Alerting**: Thresholds and anomaly detection algorithms trigger alerts for incident response.

6. Dataset Description

Data Sources

- **Web Server Logs**: Include fields such as timestamp, IP, URL, HTTP method, status code, and user agent.
- Application Logs: Contain transaction events, error messages, and custom activity.
- System Logs: Provide CPU/memory/disk metrics and syslog information.

Sample Schema

timestamp	ip	method	url	status	user_agent
2025-07-19	192.168.1.1	GET	/home	200	Mozilla/5.0

10:00:00			

Logs are ingested as either text or CSV/JSON and then parsed into this standardized structure for subsequent analysis.

7. Detailed Algorithm & System Flow

Summarized System Steps

1. Data Collection

- o Identify log sources (web, app, system).
- Configure Kafka/Flume for real-time collection and shipping to central topics/channels.

2. Ingestion in Spark

- A **Spark Structured Streaming job** subscribes to the Kafka/Flume stream.
- Logs are read in small intervals (e.g., every 5–10 seconds).
- Raw logs are parsed into structured fields using regex or schema mapping.

3. Processing & Transformation

- Logs are filtered by error conditions (e.g., status >= 400 or ERROR keyword).
- Fields are extracted and enriched with context (e.g., GeoIP, user-agent analysis).
- Data is aggregated with windowing (e.g., 10-minute sliding window) to compute metrics like request count, error rate, and top URLs/IPs.

4. Analysis & Anomaly Detection

- Current metrics are compared to historical averages to identify spikes or anomalies.
- o (Optional) Spark MLlib can be used for unsupervised detection of unusual patterns.

5. Persistence

- Both raw and processed logs are stored in HDFS.
- Aggregates are saved to **Hive tables**, partitioned by time, for SQL analytics.

6. Visualization & Reporting

- Dashboards query Hive, Elasticsearch, or direct Spark outputs for real-time/top-N metrics, error rates, and usage trends.
- Alerts are triggered if error rates or traffic exceed defined thresholds.

Main Outputs

- Aggregated metrics (minute/hour/day)
- Lists of top URLs/IPs
- Anomaly and alert logs
- Visual and exported reports

8. Implementation Approach & Code Snippets

Environment Setup

Python

```
# Install Java, Spark, findspark
!apt-get install openjdk-11-jdk-headless -qq > /dev/null
!wget -q https://archive.apache.org/dist/spark/spark-3.5.0/spark-3.5.0-bin-hadoop3.tgz
!tar xf spark-3.5.0-bin-hadoop3.tgz
!pip install -q findspark

import os
os.environ["JAVA_HOME"] = "/usr/lib/jvm/java-11-openjdk-amd64"
os.environ["SPARK_HOME"] = "/content/spark-3.5.0-bin-hadoop3"
import findspark; findspark.init()
from pyspark.sql import SparkSession
spark = SparkSession.builder.master("local[*]").appName("LogAnalysis").getOrCreate()
```

Load and Prepare Data

Python

```
from google.colab import files
uploaded = files.upload() # Upload 'sample_web_logs_fixed.csv'
```

```
df = spark.read.option("header", True).option("inferSchema",
True).csv("sample_web_logs_fixed.csv")
from pyspark.sql.functions import hour, to_timestamp
df_with_time = df.withColumn("hour", hour(to_timestamp("timestamp")))
```

Aggregation Examples

Python

```
# Hourly traffic counts
traffic = df with time.groupBy("hour").count().orderBy("hour").toPandas()
# Top status codes
status counts = df.groupBy("status").count().orderBy("status").toPandas()
# Top URLs
top urls = df.groupBy("url").count().orderBy("count", ascending=False).limit(10).toPandas()
# Error rate by hour
from pyspark.sql.functions import col, count, lit, coalesce
error requests per hour = df with time.filter(col('status') >= 400).groupBy('hour').count()
total requests per hour = df with time.groupBy('hour').count()
error_rate_by_hour = error_requests_per_hour.join(
  total_requests_per_hour, 'hour', 'right'
).withColumn(
  'error_rate', (coalesce(error_requests_per_hour['count'], lit(0)) /
total_requests_per_hour['count'])
).orderBy('hour')
import matplotlib.pyplot as plt
```

```
plt.xlabel("Hour")
plt.ylabel("Requests")
plt.title("Hourly Traffic")
plt.show()
```



```
import matplotlib.pyplot as plt
import numpy as np

# Suppose traffic['hour'] is int 0-23
fig, ax = plt.subplots(figsize=(10,6))
bars = ax.bar(traffic['hour'], traffic['count'], color="#4b8bbe")

# Set x-axis as all 0-23 to show gaps as zeros if any hours are missing in the data
ax.set_xticks(np.arange(0, 24, 1))
ax.set_xticklabels(np.arange(0, 24, 1))
```



```
status_counts = df.groupBy("status").count().orderBy("status").toPandas()
plt.figure(figsize=(8,5))
plt.bar(status counts['status'].astype(str), status counts['count'],
color="#ec4d37")
plt.xlabel("HTTP Status Code", fontsize=13)
plt.ylabel("Count", fontsize=13)
plt.title("Requests per Status Code", fontsize=15, fontweight='bold')
plt.grid(axis='y', linestyle=':', alpha=0.6)
for idx, val in enumerate(status counts['count']):
    plt.text(idx, val+2, str(val), ha='center', fontsize=10)
plt.tight layout()
plt.show()
```


top_urls = df.groupBy("url").count().orderBy("count",
ascending=False).limit(10).toPandas()

```
plt.figure(figsize=(10,6))
bars = plt.barh(top_urls['url'], top_urls['count'], color="#64cc85")
plt.xlabel("Requests", fontsize=13)
plt.ylabel("URL", fontsize=13)
```

```
plt.title("Top 10 Requested URLs", fontsize=15, fontweight='bold')
    plt.text(bar.get width()+2,
str(int(bar.get width())), va='center')
 olt.show()
 op urls = df.groupBy("url").count().orderBy("count",
    nding=False).limit(10).toPandas()
 olt.figure(figsize=(10,6))
                    urls['url'], top urls['count'], color="#64cc85")
       plt.barh(to
      abel("Requests",
    vlabel("URL"
                    ontsize=13)
    title("Top 10 Requested URLs", fontsize=15, fontweight='bold')
from pyspark.sql.functions import col, coalesce, lit
# Reuse df_with_time which already has the 'hour' column extracted using
PvSpark
# Filter for error logs (status >= 400) using PySpark
             ck = df with time.filter(col('status'))
 Calculate total requests per hour using PySpark
   with time.groupBy('hour').count().orderBy('hour')
# Calculate error requests per hour using PySpark
              .groupBy('hour').count().orderBy('hour')
 Join the two DataFrames to calculate the error rate
 Use a left outer join from total requests to error requests to include
 ours with no errors
```

```
rror rate by hour spark = total requests per hour spark.join(
   on='hour',
   how='left_outer'
                                            ['count'], lit(0))
                              ['count']).alias('error rate')
 orderBy('hour')
 Convert the result to pandas for plotting
import matplotlib.pyplot as plt
plt.figure(figsize=(10,6))
                       pandas['hour'], erro
                                                      pandas['error rate'],
      ='o', color='#ffb800',
                                   ='Error Rate')
     label("Hour of Day", fontsiz
          ("Error Rate", fon
                          pandas['hour']) # Ensure all hours with data are
shown on x-axis
plt.grid(True, linestyle='--', alpha=0.6)
olt.show()
```



```
ascending=False).limit(10).toPandas()
plt.figure(figsize=(7,7))
plt.pie(top_ips['count'], labels=top_ips['ip'], autopct='%1.1f%%',
startangle=140, colors=plt.cm.Paired.colors)
plt.title("Top 10 Clients by Number of Requests", fontsize=15,
fontweight='bold')
plt.tight_layout()
plt.show()
```


9. Output & Sample Results

(Visualizations—bar charts, line graphs, and pie charts—can be added in this section.)

- Hourly Request Volume Table: Shows the distribution of request counts per hour.
- Status Code Distribution: Provides a breakdown of response code frequencies (e.g., 200, 404, 500).
- **Top URLs Table**: Lists the most-requested resources.
- **Error Rate Table**: Presents hour-by-hour error percentages, highlighting timeframes of operational concern.
- **Anomaly Alerts**: Examples include alerts like "Error rate exceeded 10% in hour 12" for any window breaching predefined thresholds.

10. Conclusion & Future Work

The real-time log analysis pipeline successfully delivers:

- Scalable, low-latency log ingestion and processing for modern distributed systems.
- Near-instant detection of operational anomalies and error surges.
- Efficient storage and historical analytics using HDFS and Hive.
- Actionable insights through automatic aggregations and live metrics.

Future Extensions

- Deployment of advanced ML techniques (e.g., deep learning or autoencoders) for complex anomaly and threat detection.
- Seamless cloud integration (AWS, Azure) for elasticity and managed scaling.
- NLP-based log field extraction and semantic classification.
- Automated remediation actions on critical alert triggers.

11. References

- Abstract.pdf: Project summary and breakdown of module design.
- Algorithm.pdf: Step-wise algorithm description and pseudocode.
- Real_time_Log_Analysis_Using_Hadoop_and_Spark.ipynb: Complete codebase, results, and prototype analytics.
- Apache Spark, Hadoop, Kafka, Flume Official Documentation.
- Grafana, Kibana Documentation for dashboard and visualization best practices.
 - Industry whitepapers and Cloudera/Databricks big data analytics guides.

Yadla Venkata Praveen 24M11MC286 Aditya University