Paper

• Title: Generative Multi-Adversarial Networks

• Authors: Ishan Durugkar, Ian Gemp, Sridhar Mahadevan

• arXiv link: https://arxiv.org/abs/1611.01673

TL;DR

The paper shows how to use multiple Discriminators to train a GAN in order to train them faster. Generative Multi-Adversarial Networks(GMAN) also generates better images when compared by a GAM-type metric. Generative multi adversarial metric(GMAM) is also introduced to perform pairwise evaluation of separately trained frameworks

GMAN

They explore approaches ranging between two extremes: 1) a more discriminating D and 2) a D better matched to the generator's capabilities. Mathematically, reformulate G's objective as $\min_{G} \max_{F}(V(D_1, G), ..., V(D_N, G))$ where V is the classical GAN loss for different choices of F. F could be any differentiable aggregation function like max, mean.

Maximizing V(D, G)

For a fixed G, maximizing $F_G(V_i)$ with F as the max function is equivalent to optimizing V with random restarts in parallel and then presenting $\max_{i \in \{1,\dots,N\}} V(D_i,G)$ as the loss to the Generator. Requiring the generator to minimize the max forces G to generate samples that must fool all N discriminators, each potentially representing a distinct max. Taking the max can also be seen as boosting the online prediction of the discriminator.

Soft Discriminator

In practice, training against a far superior discriminator can impede the generator's learning. So, they consider the following three classical Pythagorean means parameterized by λ where $\lambda=0$ is the mean and $\lambda\to\infty$ corresponds to

the max:

$$AM_{soft}(V,\lambda) = \sum_{i}^{N} w_{i}V_{i}$$

$$GM_{soft}(V,\lambda) = -exp(\sum_{i}^{N} w_{i}log(-V_{i}))$$

$$HM_{soft}(V,\lambda) = \left(\sum_{i}^{N} w_{i}V_{i}^{-1}\right)^{-1}$$

where w_i is the softmax.

\mathbf{GMAM}

In GMAN, the opponent may have multiple discriminators, which makes it unclear how to perform the swaps needed for GAM.

$$GMAM = log \left(\frac{F_{G_b}^{a}(V_i^{a})}{F_{G_a}^{a}(V_i^{a})} \middle/ \frac{F_{G_a}^{a}(V_i^{b})}{F_{G_b}^{b}(V_i^{b})} \right)$$

where a and b refer to the two GMAN variants. The idea here is similar. If G2 performs better than G1 with respect to both D1 and D2, then GMAM \downarrow 0. If G1 performs better in both cases, GMAM \downarrow 0, otherwise, the result is indeterminate.