KochkaKV 11102024-183031

Даны значения s-параметров на некоторой частоте:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.4	0.358	-170.8	9.244	83.6	0.051	66.7	0.250	-73.2

Требуется выбрать согласованный аттенюатор с *минимальным* затуханием, подключения которого будет *достаточно*, чтобы обеспечить безусловную устойчивость всего устройства на этой частоте.

Варианты ОТВЕТА:

- 1) аттенюатор с затуханием 1.0 дБ, подключённый к плечу 1;
- 2) аттенюатор с затуханием 1.4 дБ, подключённый к плечу 2;
- 3) аттенюатор с затуханием 0.0 дБ, подключённый к плечу 2;
- 4) аттенюатор с затуханием 1.9 дБ, подключённый к плечу 2.

Дано значение коэффициента передачи диссипативной цепи коррекции, выполненной в виде цепи постоянного входного сопротивления 50 Ом: $s_{21} = -4.4~$ дБ.

Ко входу этой цепи подключён генератор с внутренним сопротивлением $50~{\rm Om}$ и доступной мощностью $8.9~{\rm дБм}.$

Какая мощность рассеивается внутри цепи коррекции?

Варианты ОТВЕТА:

- 1) 1.1 mBT
- 2) 3.2 mBT
- 3) 2.8 мВт
- 4) 4.9 мВт

Дана частотная характеристика модуля коэффициента отражения (см. рисунок 1) от входа цепи согласования (слева) с действительным импедансом R (подключённым справа). (Измерения проведены с помощью генератора с внутренним импедансом 50 Ом).

Рисунок 1 – Частотная характеристика модуля коэффициента отражения

Какой из предложенных рисунке 2 ситуаций соответствует эта частотная характеристика?

Рисунок 2 – Различные реализации Г-образной цепи согласования

Варианты ОТВЕТА: 1) a 2) b 3) c 4) d

Даны значения ѕ-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.533	166.8	5.967	75.6	0.051	56.7	0.274	-43.8
1.6	0.557	145.3	3.754	59.4	0.074	54.7	0.253	-50.7
2.2	0.596	128.6	2.704	45.0	0.098	50.2	0.237	-62.5
2.8	0.639	113.9	2.096	31.5	0.119	44.6	0.222	-77.5
3.4	0.682	101.9	1.698	19.7	0.138	39.1	0.212	-95.3
4.0	0.723	92.0	1.409	8.2	0.156	33.5	0.215	-115.0
4.6	0.752	83.4	1.190	-2.1	0.171	28.2	0.227	-134.2

Выбрать Γ -образный четырёхполюсник (см. рисунок 3), который может обеспечить согласование со стороны плеча 1 на частоте 1.0 $\Gamma\Gamma$ ц.

Рисунок 3 — Различные реализации Г-образного четырёхполюсника

Варианты ОТВЕТА:

1) A 2) B 3) C 4) D

Дано значение коэффициента отражения от входа реактивной цепи коррекции $s_{11}=0.18\text{-}0.31\mathrm{i}$.

Найти модуль (в дБ) коэффициента передачи s_{21} .

Варианты ОТВЕТА:

- 1) -0.6 дБ
- 2) -1.9 дБ
- 3) -1.2 дБ
- 4) -0.9 дБ

Найти неравномерность усиления в полосе, ограниченной частотами $f_{\text{\tiny H}}=2.2~\Gamma\Gamma$ ц и $f_{\text{\tiny B}}=4.0~\Gamma\Gamma$ ц, используя рисунок 4.

Рисунок 4 – Частотная характеристика усиления

Варианты ОТВЕТА:

1) 0.3 дБ 2) 1.3 дБ 3) 0.7 дБ 4) 1.0 дБ