Department of Mathematics

Calculus of Several Variables and Differential Geometry

Assignment-IV

- 1. Let a > 0 and $S := \{(x, y, z) \in \mathbb{R}^3 : e^{x^2} + e^{y^2} + e^{z^2} = a\}$. Find the condition on a so that S is a regular surface in \mathbb{R}^3 .
- 2. Let a > b > 0 and $S := \{(x, y, z) \in \mathbb{R}^3 : (\sqrt{x^2 + y^2} a)^2 + z^2 = b^2\}$. Show that S is a regular surface in \mathbb{R}^3 .
- 3. Let S be a compact surface. Show that, for every vector $a \in \mathbb{R}^3 \setminus \{0\}$, there is a point p in S such that the vector a is normal to S at the point p.
- 4. Let S be a regular connected surface in \mathbb{R}^3 and p_0 in \mathbb{R}^3 be such that all the normal lines to S passes through the point p_0 . Show that S is contained in a sphere.
- 5. Let S be a regular connected surface in \mathbb{R}^3 and ℓ in \mathbb{R}^3 be such that all the normal lines to S meets the line ℓ orthogonally. Show that S is contained in a cylinder.
- 6. Let S be a connected surface and $a \in \mathbb{R}^3$ be a unit vector such that for all points p in S, the vector a is orthogonal to T_pS . Show that S is contained in a plane.
- 7. Find the image of the Gauss map for the following surfaces. Further compute the derivative of the Gauss map in each of the cases.
 - (a) Let $S := \{(x, y, z) \in \mathbb{R}^3 : ax + by + cz = d\}$ where (a, b, c) is a non-zero vector in \mathbb{R}^3 and d be a real number.
 - (b) Let R > 0 and $S := \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = R^2\}.$
 - (c) Let R > 0 and $S := \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = R^2\}.$
 - (d) Let $S := \{(x, y, z) \in \mathbb{R}^3 : z = x^2 + y^2\}.$
 - (e) Let $S:=\{(x,y,z)\in\mathbb{R}^3: x^2+y^2=z^2 \text{ and } z>0\}.$
 - (f) Let $S := \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 z^2 = 1\}.$
 - (g) Let $S:=\{(x,y,z)\in\mathbb{R}^3: x^2+y^2-z^2=-1\}.$
 - (h) Let a > b > 0 and $S := \{(x, y, z) \in \mathbb{R}^3 : (\sqrt{x^2 + y^2} a)^2 + z^2 = b^2\}.$
- 8. Let I be an open interval and $c: I \to \mathbb{R}^3$ be the unit speed curve lying in the plane Y = 0. If c(u) := (f(u), 0, g(u)), let $S := \{(f(u) \cos v, f(u) \sin v, g(u)) : u \in I \text{ and } v \in (0, 2\pi)\}$. Show that S is a regular surface. Find the Gauss map and find its derivative.
- 9. Write down a parametrization for each of surfaces in Exercises 7 and 8 and find $E = \langle \varphi_u, \varphi_u \rangle$, $F = \langle \varphi_u, \varphi_v \rangle$ and $G = \langle \varphi_u, \varphi_u \rangle$ for the parametrization you find.
- 10. Find the Gauss curvature and mean curvature of the surfaces in Exercises 7 and 8.
- 11. Let S be the unit sphere in \mathbb{R}^3 . Let $\phi \colon \mathbb{R}^2 \to S^2 \setminus \{(0,0,1)\}$ be the inverse of the stereographic projection map. Find E, F and G for this parametrization.

- 12. Let S be the unit sphere in \mathbb{R}^3 . Let $\ell:=\{tv:t\in\mathbb{R}\}$ for a unit vector v be a straight line passing through origin in \mathbb{R}^2 and $\gamma(t)=\varphi(tv)$ where φ is as in Exercise 11. For $a< b\in\mathbb{R}$, find the length $\int_a^b \|\gamma'(t)\|dt$ of the curve γ in [a,b]. Further find $\lim_{b\to\infty}\int_0^b \|\gamma'(t)\|dt$.
- 13. For any line $\ell_v := \{tv : t \in \mathbb{R}\}$ in \mathbb{R}^2 , find the length of the image curve $\gamma(t) := \varphi(tv)$ on any finite interval, for the parametrization $\varphi(u,v) := (u,v,u^2+v^2)$ of the elliptic paraboloid $S := \{(x,y,z) \in \mathbb{R}^3 : z = x^2 + y^2\}$.
- 14. For any line $\ell_v := \{tv : t \in \mathbb{R}\}$ in \mathbb{R}^2 , find the length of the image curve $\gamma(t) := \varphi(tv)$ on any finite interval, for the parametrization $\varphi(u,v) := (u,v,u^2-v^2)$ of the elliptic paraboloid $S := \{(x,y,z) \in \mathbb{R}^3 : z = x^2 y^2\}$.