Übung zur Vorlesung im WS 2010/2011 **Algorithmische Eigenschaften von Wahlsystemen I**

(Lösungsvorschläge) Blatt 9, Abgabe am 16. Dezember 2010

Aufgabe 1 (P, NP und NP-vollständige Mengen): Es sei B eine NP-vollständige Menge. Zeigen Sie die folgende Äquivalenz:

$$NP = P \Leftrightarrow B \in P$$
.

Lösungsvorschläge:

Von links nach rechts: Klar, da $B \in NP = P$.

Von rechts nach links: Wir wissen, dass $P \subseteq NP$ gilt. Bleibt also zu zeigen, dass $NP \subseteq P$ gilt. Es sei nun $A \in NP$ eine beliebige Menge. Da B NP-vollständig ist, gilt $A \leq_m^p B$. Da nach Voraussetzung aber gilt, dass $B \in P$ und P nun wiederum abgeschlossen ist unter \leq_m^p , folgt $A \in P$. Somit gilt $NP \subseteq P$ und NP = P.

Aufgabe 2 (CCWM für Scoring-Protokolle und 3 Kandidaten): Aus der Vorlesung kennen Sie die Reduktion von Partition auf CCWM für Scoring-Protokolle und 3 Kandidaten. Betrachten Sie die Partition-Instanz (1, 9, 5, 3, 8) aus Aufgabe 1 auf Blatt 8.

- (a) Konstruieren Sie aus (1, 9, 5, 3, 8) die Wahl (C, V) gemäß der Reduktion und bestimmen Sie die Punktwerte der Kandidaten in (C, V).
- (b) Wieviele Manipulatoren gibt es in dieser CCWM-Instanz und welche Gewichte haben diese?
- (c) Bestimmen Sie die Präferenzen der einzelnen Manipulatoren und die Punktwerte der Kandidaten in der Wahl $(C, V \cup S)$.
- (d) Erläutern Sie an diesem Beispiel, wieso diese Reduktion für das Wahlsystem Plurality Voting nicht funktioniert.

Lösungsvorschläge: Es ist (1, 9, 5, 3, 8) gegeben und es existiert die Partition $(\{1, 2, 4\}, \{3, 5\})$.

(a)
$$C = \{a, b, p\}, V = \{v_1, \dots, v_{2(2\alpha_1 - \alpha_2)13 - 1)}\}$$
:

- es gibt $(2\alpha_1 \alpha_2)13 1$ Wähler der Form a b p und
- es gibt $(2\alpha_1 \alpha_2)13 1$ Wähler der Form b a p.

$$score_{(C,V)}(a) = \alpha_1((2\alpha_1 - \alpha_2)13 - 1) + \alpha_2((2\alpha_1 - \alpha_2)13 - 1)$$

$$= ((2\alpha_1 - \alpha_2)13 - 1)(\alpha_1 + \alpha_2),$$

$$score_{(C,V)}(b) = \alpha_2((2\alpha_1 - \alpha_2)13 - 1) + \alpha_1((2\alpha_1 - \alpha_2)13 - 1)$$

$$= ((2\alpha_1 - \alpha_2)13 - 1)(\alpha_1 + \alpha_2),$$

$$score_{(C,V)}(p) = 0.$$

(b) Es gibt 5 Manipulatoren mit den Gewichten

Manipulator i	1	2	3	4	5
Gewicht	$1(\alpha_1 + \alpha_2)$	$9(\alpha_1+\alpha_2)$	$5(\alpha_1 + \alpha_2)$	$3(\alpha_1+\alpha_2)$	$8(\alpha_1 + \alpha_2)$

(c) Die Stimmen der Manipulatoren:

Manipulator i	1	2	3	4	5
Gewicht	$1(\alpha_1 + \alpha_2)$	$9(\alpha_1 + \alpha_2)$	$5(\alpha_1 + \alpha_2)$	$3(\alpha_1 + \alpha_2)$	$8(\alpha_1 + \alpha_2)$
Präferenz	p a b	p a b	p b a	p a b	p b a

Die Punktwerte in $(C, V \cup S)$:

$$score_{(C,V \cup S)}(a) = ((2\alpha_1 - \alpha_2)13 - 1)(\alpha_1 + \alpha_2) + 13(\alpha_1 + \alpha_2)\alpha_2$$

$$= 26(\alpha_1 - \alpha_2)(\alpha_1 + \alpha_2),$$

$$score_{(C,V \cup S)}(b) = 26(\alpha_1 - \alpha_2)(\alpha_1 + \alpha_2),$$

$$score_{(C,V \cup S)}(p) = 26(\alpha_1 + \alpha_2).$$

(d) An den Punktwerten in Aufgabenteil (c) ist zu sehen, dass Kandidat c mit dieser Manipulation im Plurality- Wahlsystem nicht zum eindeutigen Gewinner gemacht werden kann. Denn in PV gilt $\alpha_2=0$ und somit haben alle Kandidaten in der Wahl $(C,V\cup S)$ den gleichen Punktwert.

Aufgabe 3 (Copeland-CCWM für 4 Kandidaten): In der Vorlesung haben Sie das Manipulationsproblem Copeland-CCWM für 4 Kandidaten im uneindeutigen Gewinnermodell kennengelernt. Es wurde gezeigt, dass dieses Problem NP-hart ist.

(a) Zeigen Sie, dass Copeland-CCWM in NP enthalten ist.

(b) Es sei die Copeland-CCWM-Instanz (C, V, S, c) gegeben. Es sei $C = \{a, b, c, d\}$, $V = (v_1, v_2, v_3, v_4)$ mit

S = (1,3) und c sei der ausgezeichnete Kandidat.

Erläutern Sie an dieser Instanz die Vorgehensweise aus Aufgabenteil (a).

(c) Erläutern Sie, warum der NP-Härte-Beweis aus der Vorlesung nur für das uneindeutige Gewinnermodell korrekt ist.

Lösungsvorschläge:

- (a) Angenommen, es sei eine Copeland-CCWM-Instanz (C,V,S,c) gegeben. Rate zu jedem Gewicht in S eine Präferenz. Überprüfe dann, ob c ein Copeland-Gewinner der Wahl $(C,V\cup S)$ ist. Die Überprüfung ist in Polynomialzeit möglich, da die Gewinnerbestimmung in Copeland in Polynomialzeit möglich ist.
- (b) Für die Wahl (C, V) haben wir die folgenden paarweisen Vergleiche und Copeland-Scores:

	a	b	c	d	#Siege	#Ties	Copeland-Score
a	-	2:2	2:2	3:1	1	2	2
b	2:2	-	3:1	4:0	2	1	2,5
c	2:2	1:3	-	3:1	1	1	1,5
d	1:3	0:4	1:3	-	0	0	0

Mögliche Präferenzen bei 4 Kandidaten:

Um c zum eindeutigen Copeland-Gewinner zu machen, muss er/sie z.B. die Kandidaten a und b schlagen. Eine Möglichkeit, dies zu erreichen ist beide Manipulatoren mit c b d a abstimmen zu lassen.

Damit sind in $(C, V \cup S)$ die folgenden Verhältnisse und Copeland-Scores gegeben:

		\overline{a}	b	c	d	#Siege	#Ties	Copeland-Score
C	ι	-	2:6	2:6	3:5	0	0	0
l	5	6:2	-	3:5	8:0	2	0	2
(:	6:2	5:3	-	7:1	3	0	3
6	$l \mid$	5:3	0:8	1:7	-	1	0	1

Kandidat c ist also eindeutiger Copeland-Gewinner in der manipulierten Wahl.

(c) Die Reduktion funktioniert nicht für das eindeutige Gewinnermodell, da p nicht zum eindeutigen Gewinner gemacht werden kann, auch wenn die gegebene PARTITION-Instanz eine Ja-Instanz ist (die Kandidaten a und b erreichen Gleichstand mit dem ausgezeichneten Kandidaten p). Die benötigte Äquivalenz ist folglich nicht gegeben.