3) GENERATE MAP WITH SLAM

To achieve the good of mavigation A B. B

"A to B Navigation avoiding the space where ROBOT we start from MAP creation of the world can move

Generating a map is important in Next step, so Nav stack can perform varigation in any point of the world!

Without a MAP could work Navigation, but Without the map knowledge will take long time that's why we separate in 2 main steps as seen before.

To Generate MAP, we rely on SLAM (simultaneus Localization)

And Mapping)

Allows Robot to equalize in environment,

relative to obtacles/walls etc anound + map the environment

Omce ROBOT and Simulation / Real world are set-up
you can start scay to generate MAP
MAP is being generated as the ROBOT moves in the world

Omce MAP is generated, we save it and use for Navigation!

ROBOT MOVEMENT

FIRST of all, we need to have the ROBOT moving in a simulated world

FOR NOW based on turtle bot 3 = all already

Later on... Nav with custom robot implemented

gor Enis

for NOW, comsider we meed a ROBOT able to more in un environment with ROS2 + teleop mode (move ct!)

•	how to make	e tuitlebot 3 move	⇒ then we will see scam
	+		and map generation
		y model of ROBOT	
		· · · · · · · · · · · · · · · · · · ·	exporting environment variable
	for example	le by modifying b	example of turtlebot 3 model
		21001 F -11-1 0 -10	
		export TURTLE BOTS	5_40062 = Wafte
	+ - 000001 84	Cazeho simulation,	LUC CALAMITA.
	turtle	hot3_gazeho tunt	lebot 3-world. Rumula.py
	1		
	dierrential	drive Robot with	a 2D LIDAR (~4 meter scom)
	spawm in		1
	closed wa		to acate an environment map (x, y plane)
	them, to m	make ROBOT Monve	we run
		,	
	7	turtle bot 3 - telego	telegp- Keyhoand
	(telleg	p-leybound) — /cmd	-vel (/turtlebot3_diff_drive)
		ommands —	
	to /	cmd-vel robot	
			topic with its controller, making
		Yohot	move
	This is	- Of the meed to 1	UAP the environment
	77.5	ecc We like a Co x	any the fillingum

GENERATE AND SAVE MAP	
ROBOT + a way to move it, is what we me	ed for SCAM and
HAP neutrom	
olamch the gazebo simulation world	additional augocumu
	hecause we work
o lumb SLAM feature of turtlebot3	im Gazebo
turtebot3-contographer contographer.low	nchipy use_sim_time:=]
L> Ehis will start RVIZ2 (visualization too	e)
Where the map is generated from the	data generated
by CASER SCAN	0
↓	
the goal is to generate entire MAP and	save ut
)
NOTICE: Gazebo replace real robot (simulation	n physics)
RVIZ is a 3D visualization tool)
a personal tapas anda de amora de la la	
olumin teleop mode to move the robot	a M(1)
-> dumy motion, in RVIZ we see En	e map
updating (while TF moves in RVIZ)	
(White pixels:= lree space	
AP ~ { Black pixels: _ obstacles space	
AP~ { White pixels:= lree space Black pixels:= obstacles space Grey pixels:= Still Unknown	
Possible issuEs:	
Turning 600 fast create problems during maj	Oping
Being LaserScan in 2D plane, of ROBOT lit	Operacle and Oscillate
restrully, map data can become moisy	

im case of issues, restart SCAM and simulation

Once we finish the map exploration, we recover all map information.
Im RVIZ we see the final map (mimor missing pixels are not) a problem for marigation)
NOW WE cam SAVE the MAP
before closing the SLAM+ simulation
have a DIRECTORY for the Imaps
them runs
CHOICE TOUC
mar2_map_server map_saver_cli -f maps/ <mame></mame>
mo extension
this well neute a required
<pre><mame). <mame).="" and="" file<="" pgm="" pre="" yame=""></mame).></pre>
WHAT IS INSIDE THE GENERATED MAP
Explore what are important things about the saved map.
<mame>.pgm map image, White/hlack/gray pixels</mame>
free / obstacles/ conkmown
this will be loaded
When runming Navigation to find easily put to destination
< mame). yame contain different information
- image: relative path to image file (.pgm)
- resolution: im [m/pixel]
IF for example 0.05: each pixel is 5 cm (precision)
the precision requirements depends on application and
om the environment into account
-origin: coordinates of enuest left point in the map
(bottom left corner)
It will depends on where the volat mapping started

-me	yate: 0	0/1 1	F 1 eve	ytning (will he	reversed.	free = obstacle	
-000	epied_+	t bresh	clean	sepaation	v lvee/o	bstacle	BUT im prime	unle
	1				and the second second		pixel is occu	
		ex					that IF pixe	
							65%. Chama, 1	
				dered o				
-fr	ee_+h	resh :					upied is less	Enam
			tnis, t	che pix	el 15 l	ree	'	
		ex)					than 25% pml	palbelity
			tohe	ocupied			· ·	
J	L							
∫ IF	pixel	more t	tnam 6	5% OCUIP	ed (int	nlack dire	ctiom") → hlack	(
		less	thom 2	25% ocu	upied ("	into douk	ction") → hlack value) → whit	e J
						bash u	ith momo	< n comes.pgm
W	ie con	see t	ne pixe	es of E	ne imag	e		
Alv	٨/.			A 1	rac also be a	/ -	7 200 1121 +	10.0
10 ^	Ny		⇒		resolution		give you t	
# pixel	# pı	xel		Ny ·	resoluti	om = Ly	map dimer	
NUAIS	Ve	utial					in Meter)
• A55	IG NME)	UT 1						
Prac	tice on	n gener	atimy n	nap Wi	th sca	м.		
Gem	erate	a mi	up gar	a meu	1 wore	d "turte	zhot3_houe"	
							se.lamch.py	
→ im	this	world	, we be	ove a s	simple	linuse em	vironment	
(0	pen im	the c	utside,	VOT COS	ed im	Walls)		
Fol	low E	he sa	me prod	edune e	xplaimed	hefore t	co generati n	nap
							T open wored	
NOTICE	VA/N OW	W(IVVIW•	he sum	MAT 40 0	AUNO " A A	onthe	walls and oth	,,]
WOLLE						affect Nov		DU
L	1173139	ייישטייו			- 01/01/0	aggict NO		J

• RECAP: (pdf provided as course resource)

SLAM Steps (ROS2 Nav2 Course - Section 3)

Those commands are the ones you will run in this section on SLAM. Use this PDF to easily access them while doing the exercises.

Some of the commands are specific to the Turtlebot3 robot, which we use as an example.

Later on in the course (Section 7), you will also get the general commands to run for any robots.

Steps

When you see some text in red, replace it with the correct value.

1. Start your robot stack (simulation environment)

\$ ros2 launch turtlebot3_gazebo turtlebot3_world.launch.py

2. Start SLAM (mapping from sensor data)

\$ ros2 launch turtlebot3_cartographer cartographer.launch.py use_sim_time:=True

3. Make the robot move to generate the map (+eleopunte commod to retrieve duta)

\$ ros2 run turtlebot3_teleop_teleop_keyboard

4. Save the map

\$ ros2 run nav2_map_server map_saver_cli -f ~/my_map