Practice questions:

- 1. Let $\mathbb{Z}/n\mathbb{Z}$ be defined as the equivalence classes on \mathbb{Z} where $x \sim y$ if and only if $n \mid x-y$. Verify that \sim is an equivalence relation.
- 2. We say G is a group if G is closed under an operation $\cdot: G \times G \mapsto G$ where
 - For all $g_1, g_2, g_3 \in G$, $(g_1 \cdot g_2) \cdot g_3 = g_1 \cdot (g_2 \cdot g_3)$
 - There exists $e \in G$ (called the identity) such that for all $g \in G$, $g \cdot e == g$
 - For all $g \in G$, there exists $g^{-1} \in G$ (called g inverse) such that $g \cdot g^{-1} = e$

Verify that $\mathbb{Z}/n\mathbb{Z}$ forms a group under addition mod n.

- 3. Consider $\mathbb{Z}/n\mathbb{Z} [0]_n$.
 - (a) When does this set form a group under multiplication mod n?
 - (b) What is the biggest subset $U_n \subseteq \mathbb{Z}/n\mathbb{Z}$ such that U_n is a group under multiplication with $[1]_n$ as the identity?
- 4. We say G is a cyclic group if $G = \{g^k : k \in \mathbb{Z}\}$ for some $g \in G$. Then, we call g a generator of G.
 - (a) We say G is isomorphic to H, written $G \cong H$, where G, H are groups under the operations \cdot, \diamond respectively, if there exists a bijection $\phi : G \mapsto H$ such that for all $g_1, g_2 \in G$, $\phi(g_1 \cdot g_2) = \phi(g_1) \diamond \phi(g_2)$. Show that if G is cyclic, then G is isomorphic to \mathbb{Z} under addition or $\mathbb{Z}/n\mathbb{Z}$ under addition mod n.
 - (b) Verify that $\mathbb{Z}/n\mathbb{Z}$ under addition mod n is a cyclic group.
- 5. We say H is a subgroup of G if H is a group contained in G with the same operation as G.
 - (a) Show that every subgroup of a cyclic group is also cyclic.
 - (b) We say the order of an element g, written #g, is the smallest natural number n such that $g^n = e$ where g^n denotes g multiplied by itself n times.
 - (c) We say the order of a group G, denoted #G, is the cardinality of G. Show that if #g = k then $\#\langle g^d \rangle = \frac{d}{\gcd(d,k)}$.
 - (d) Show that if $g_1, g_2 \in G$ have the same order, then $\langle g_1 \rangle = \langle g_2 \rangle$.
 - (e) Show that the generators of $\mathbb{Z}/n\mathbb{Z}$ under addition mod n are $[d]_n$ such that d is coprime to n and that there are $\varphi(n)$ generators of $\mathbb{Z}/n\mathbb{Z}$ under addition mod n where φ denotes the Euler totient function
- 6. Let R be a relation on $\mathbb{Z}/n\mathbb{Z}$ where $[x]_n R[y]_n$ if and only if there exists an invertible $[u]_n$ (under multiplication mod n) such that $[x]_n \cdot [u]_n = [y]_n$ where \cdot is the usual multiplication mod n.

- (a) Show that for every divisor d of n, there exists a unique subgroup of order d contained in $\mathbb{Z}/n\mathbb{Z}$.
- (b) Show that xRy if and only if x and y have the same order in $\mathbb{Z}/n\mathbb{Z}$ under addition mod n.
- (c) Hence show that distinct equivalence classes of R are precisely the set of generators for distinct subgroups of $\mathbb{Z}/n\mathbb{Z}$
- (d) Using this, prove that $n = \sum_{d:d|n} \varphi(d)$.
- 7. Let G be a finite abelian group in which the number of solutions in G of the equation $x^n = e$ is at most n for every positive integer n. For every $d \in \mathbb{N}$, define a set $A_d = \{x \in G : x^d = e, \#x = d\}$. Prove that G is cyclic. (Hint: Use a counting argument involving the result from 6d and show that $A_n \neq \emptyset$ for all $n \in \mathbb{N}$).