

Introduction to gravitational lensing

Neal Jackson BALTICS workshop 5.12.2018

Introduction to gravitational lensing

- 1. What it is
- 2. Finding lenses
- 3. Science from lenses:
 - a) Cosmology
 - b) Magnification: the sources
 - c) Mass and other properties of the lenses

1. What lensing is

The story starts with Newton...

...or Jean-Paul Marat

..but Einstein worked out the equation correctly

If M is the mass of the deflector and b the distance of approach of the light ray, then the deflection angle is given by...

$$\alpha = \frac{4GM}{bc^2}$$

Observer's point of view Light from source (red) deflected by galaxy (green)

Green contours: lines of equal travel time given geometry and influence of lens Images form at stationary points of this surface

2. Finding lenses

0957+561: the first lens system

Walsh, Carswell & Weymann 1979

Optical (Weymann et al.)

Merlin 5 GHz

CLASS radio survey (1990-2000s)

14011067	F14020B57	F14D21522	F14121410	F14130B18	
	•				
14131078	F1+151079	F14151100	F14181439	F14191514	
٠	•		•		
14201295	F14210B09	F1 423 013	F14250853	F14260908	
14261221	F14271270	F14271312	F14290935	F14291128	
	•	•	•		

Discovery of new lenses:

short-term: efficient use of existing surveys (SL2S, hundreds of lenses)

long-term; Euclid space mission, LSST (100000s!)

The future is machine learning (with billions of images)

3a. Uses of lenses: cosmology

Determines Hubble constant (scale of universe)

Most careful job so far: Suyu et al. 2013 H0LiCoW

Double-source plane lenses (Collett & Auger 2012) – 2 known

Two sightlines at different redshifts → geometry, hence w

These lenses are very, very rare – so need huge samples!

3b) Magnification of background sources

3c) Properties of the lensing galaxies: Modelling light and dark matter

Cohn et al. 2001

3c) Using radio imaging to model small-scale structures in lenses

3c) Other properties of lens galaxies (magnetic field, scattering)

See talk by K. Prusis later!

Conclusions

- 40 years since first lens system, now know of 500
- Will shortly have 100000!
- Unique probe of masses in universe
- Also powerful as probes of cosmology and natural magnifying glasses