Спецкурс Арифметика III:

Римановы поверхности и алгебраические кривые

Содержание

Содержание лекций и примеры задач	
2.1	Римановы поверхности: определения и примеры
2.2	Функции на римановых поверхностях
2.3	Теорема Гильберта о нулях
2.4	Отображения римановых поверхностей
2.5	Группы, действующие на римановых поверхностях
2.6	Дифференциальные формы и дивизоры
2.7	Пространства функций дивизоров и линейные системы
2.8	Алгебраические кривые, слабая аппроксимация
2.9	Сильная аппроксимация, теорема Римана-Роха
2.10	Некоторые приложения теоремы Римана-Роха
2.11	Нормирования функциональных полей
2.12	Дивизоры и линейные пространства
2.13	Теорема Римана-Роха для функциональных полей
2.14	Дзета функция алгебраической кривой
2.15	Теорема Хассе-Вейля

1 О курсе

Осенний семестр, 15–16 недель

Курс состоит из двух частей. В первой части (лекции 1–10) излагается теория римановых поверхностей с уклоном в приложения для современной теории чисел. Развивается необходимый для доказательства теоремы Римана-Роха аппарат, сама теорема Римана-Роха доказывается используя двойственность Серра. Общие результаты сопровождаются примерами для случаев римановой сферы, комплексного тора (эллиптической кривой), а также римановых поверхностей, возникающих при изучении пространств модулярных форм (модулярных кривых). В частности затрагиваются вопросы компактификации модулярных кривых, а также оценка размерности

пространств модулярных форм для конгруэнц-подгрупп (эти вопросы поднимались в конце курса Арифметика II: Решётки и формы).

Вторая часть (лекции 11–15) посвящена общему случаю алгебраических функциональных полей (над алгебраически замкнутым полем). Теорема Римана—Роха доказывается в более общем случае. Вводится понятие дзета-функции алгебраической кривой. Рассматривается идея доказательства теоремы Хассе—Вейля об оценке числа точек алгебраической кривой над конечным полем.

По сути курс является введением в алгебраическую и арифметическую геометрию (по крайней мере в случай плоских алгебраических кривых). Изложение через римановы поверхности и случай над полем С позволяет развить аналитическую и геометрическую интуицию стояющую за понятиями дифференциалов, дивизоров, линейных пространств и теоремой Римана-Роха, и используя эту интуицию перейти к более общему случаю алгебраических функциональных полей.

2 Содержание лекций и примеры задач

2.1 Римановы поверхности: определения и примеры

Аннотация: Повторение определений и необходимых фактов из топологии: топологические пространства, связность, хаусдорфовость, род, число Эйлера. Определения комплексных карт, атласов, структуры двумерного многообразия и римановой поверхности. Примеры: комплексная плоскость, риманова сфера, комплексный тор, афинные кривые, проективная прямая, проективная плоскость, проективные кривые.

Источники: [Mir], глава I.

Примеры задач:

- 1. Пусть X топологическое пространство, $\phi: U \to V$ комплексная карта на $X, \psi: V \to W$ взаимно-однозначное голоморфное отображение на подмножествах \mathbb{C} . Докажите, что $\psi \circ \phi: U \to W$ также является комплексной картой на X и что $\psi \circ \phi$ совместима ϕ .
- 2. Докажите, что определенная в лекции эквивалентность комплексных атласов действительно является отношением эквивалентности.
- 3. Проверьте, что отображение $\mathbb{P}^1 \to S^2$ проективной прямой над \mathbb{C} в сферу единичного радиуса в \mathbb{R}^3 , заданное

$$[z:w] \mapsto (2\operatorname{Re}(w\overline{z}), 2\operatorname{Im}(w\overline{z}), |w|^2 - |z|^2)/|w|^2 + |z|^2,$$

является гомеоморфизмом. (Поэтому проективная прямая является компактной римановой поверхностью рода 0).

- 4. Докажите, что группа сложения точек комплексного тора X является делимой, то есть, что $\forall p \in X \ \forall n \in \mathbb{Z}_+ \ \exists q \in X : n \cdot q = p$.
- 5. Пусть многочлен от двух переменных имеет вид $f(z, w) = w^2 h(z)$.
 - Докажите, что f(z,w) является неприводимым $\Leftrightarrow h(z)$ не является точным квадратом.
 - Докажите, что f(z,w) является невырожденным \Leftrightarrow все корни h(z) различны.

- 6. Пусть f(z,w) многочленом второй степени. Афинная кривая X заданная f(z,w)=0 называется афинной коникой.
 - Докажите, что если f(z,w) вырожденный, то f(z,w) раскладывается в произведение двух линейных множителей. Что в этом случае можно сказать про X?
 - Приведите примеры гладких афинных коник.
- 7. Пусть F(x,y,z) однородный многочлен степени d. Докажите, что F невырожденный \Leftrightarrow в каждой афинной карте F задаёт гладкую афинную кривую.
- 8. Докажите, что любые две проективные прямые в \mathbb{P}^2 пересекаются в единственной точке.

2.2 Функции на римановых поверхностях

Аннотация: Голоморфные и мероморыне функции, ряды Лорана, порядки нулей и полюсов. Повторение необходимых результатов из комплексного анализа от одной переменной. Кольцо голоморфных функций и поле мероморфных функций. Мероморфные функции на римановой сфере, равенство числа нулей и полюсов с учетом кратностей. Мероморфные функции на торе, проективной прямой и гладкой алгебраической кривой (приложение теоремы Гильберта о нулях).

Источники: [Mir] §II.1–II.2.

- 1. Пусть f комплексно-значная функция определенная на римановой сфере \mathbb{C}_{∞} в окрестности ∞ . Докажите, что f голоморфна в $\infty \Leftrightarrow f(1/z)$ голоморфна в 0.
- 2. Пусть $p(z,w), q(z,w) \in \mathbb{C}[z,w]$ однородные многочлены одинаковой степени, $q(z_0,w_0) \neq 0$. Покажите, что f([z:w]) = p(z,w)/q(z,w) корректно определенная на \mathbb{P}^1 функция голоморфная функция в окрестности $[z_0:w_0]$.
- 3. Пусть $X \subset \mathbb{P}^2$ проективная кривая заданная невырожденным многочленом $F(x,y,z) = 0, \, F(x,y,z), \, G(x,y,z) \in \mathbb{C}[x,y,z]$ однородные многочлены одинаковой степени, причем H не равен тождественно нулю на X. Покажите, что G(x,y,z)/H(x,y,z) мероморфная функция на X.
- 4. Пусть U окрестность точки $p \in X$ $f, g \in \mathcal{M}(U)$. Докажите следующие свойства порядка ν_p :
 - $\nu_p(fg) = \nu_p(f) + \nu_p(g);$
 - $\nu_p(1/f) = -\nu_p(f), \ \nu_p(f/g) = \nu_p(f) \nu_p(g);$
 - $\nu_p(f \pm g) \geqslant \min(\nu_p(f), \nu_p(g)).$
- 5. Докажите, что ряд определяющий тета-функцию $\theta_{\tau}(z) = \sum_{n \in \mathbb{Z}} e^{\pi i (n^2 \tau + 2nz)}$ сходится абсолютно и равномерно на компактных подмножествах \mathbb{C} .
- 6. Докажите, что z_0 нуль $\theta_{\tau}(z) \Leftrightarrow \forall m, n \in \mathbb{Z}$ точка $z_0 + m + n\tau$ является нулём $\theta_{\tau}(z)$.
- 7. Докажите, что $(1/2)+(\tau/2)+m+n\tau, m,n\in\mathbb{Z}$ единственные нули θ_{τ} , причём эти нули простые.
- 8. Пусть L решётка в \mathbb{C} , $X = \mathbb{C}/L$ комплексный тор, $\pi : \mathbb{C} \to X$ естественная проекция, и пусть заданы два набора $\{p_i\}_{i=1}^d, \{q_i\}_{i=1}^d \subset X$. Покажите, что существуют два набора $\{x_i\}_{i=1}^d, \{y_i\}_{i=1}^d \subset \mathbb{C} : \pi(x_i) = p_i, \pi(y_i) = q_i, \sum_i x_i = \sum_i y_i \Leftrightarrow \sum_i p_i = \sum_i q_i$, где последнее суммирование выполняется в групповом законе тора.

2.3 Теорема Гильберта о нулях

Аннотация: Повторение определений и необходимых фактов из алгебры: идеалы, модули, кольца главных идеалов, максимальный идеал, радикальный идеал. Идеал множества точек кривой. Неприводимые компоненты алгебраических множеств. Лемма Зарисского, теорема Гильберта о базисе, теорема Гильберта о нулях.

Источники: [Fult] глава 1; [Mir] §III.5.

Примеры задач:

- 1. Пусть k произвольное поле. Докажите, что алгебраические подмножества $\mathbb{A}^1(k)$ исчерпываются конечными подмножествами и самим $\mathbb{A}^1(k)$.
- 2. Пусть k произвольное поле. Докажите следующие свойства алгебраических множеств в $\mathbb{A}^n(k)$ и их идеалов:
 - $X \subset Y \Rightarrow I(X) \supset I(Y)$;
 - $I(\{a_1,\ldots,a_n\})=(x_1-a_1,\ldots,x_n-a_n),\ I(\emptyset)=k[x_1,\ldots x_n],\ I(\mathbb{A}^n(k))=(0)$ (при не конечном k);
 - $I(V(S)) \supset S, V(I(X)) \supset X$, где $S \subset k[x_1, \dots x_n], X \subset \mathbb{A}^n(k)$;
 - V(I(V(S))) = V(S), I(V(I(X))) = I(X), где S и X как выше;
 - $\forall X \subset \mathbb{A}^n(k) \ I(X)$ радикальный идеал;
 - $V = W \Leftrightarrow I(V) = I(W)$, где $V, W \subset \mathbb{A}^n(k)$ алгебраические.
 - $V(I) = V(\sqrt{I}), \sqrt{I} \subset I(V(I)),$ где I идеал в $k[x_1, \dots x_n].$
- 3. Докажите, что $I(\{a_1,\ldots,a_n\})=(x_1-a_1,\ldots,x_n-a_n)$ является максимальным идеалом в $k[x_1,\ldots x_n]$.
- 4. Докажите, что $I=(x^2+1)\subset \mathbb{R}[x]$ радикальный идеал, но при этом I не является идеалом никакого множества $\mathbb{A}^1(\mathbb{R})$.
- 5. Докажите, что $V(y-x^2)\subset \mathbb{A}^2(\mathbb{C})$ неприводимо и $I(V(y-x^2))=(y-x^2).$
- 6. Разложите $V(y^4 x^2, y^4 x^2y^2 + xy^2 x^3) \mathbb{A}^2(\mathbb{C})$ на неприводимые компоненты.

2.4 Отображения римановых поверхностей

Аннотация: Голоморфные отображения римановых поверхностей, индуцирование гомоморфизмов колец голоморфных и полей мероморфных функций. Изоморфизм римановой сферы и проективной прямой. Мероморфные функции как голоморфные отображения на риманову сферу. Теорема о локальной нормальная форме, кратность отображения. Степень отображения. Теорема о сумме порядков мероморфных функций. Формула Гурвица. Точки ветвления для афинных и проективных кривых. Мероморфные функции на торе как отношения тета-функций. Изоморфизмы комплексных торов

Источники: [Mir] §§II.3–II.4, §III.1

- 1. Докажите следующие свойства голоморфных отображений:
 - Если $F: X \to Y, G: Y \to Z$ голоморфные отображения, то $G \circ F: X \to Z$ голоморфное отображение;
 - Если $F: X \to Y$ голоморфное отображение, g голоморфная функция, определенная на открытом подмножестве $W \subset Y$, то $g \circ F$ голоморфная функция, определенная на $F^{-1}(W)$;
 - Если $F: X \to Y$ голоморфное отображение, g мероморфная функция,

определенная на открытом подмножестве $W \subset Y$, то $g \circ F$ — мероморфная функция, определенная на $F^{-1}(W)$.

- 2. Покажите, что при изоморфизме между комплексной проективной прямой \mathbb{P}^1 и римановой сферой \mathbb{C}_{∞} точки [z:1] соответствуют конечным точкам $z \in \mathbb{C}$, а точка [1:0] соответствует ∞ .
- 3. Пусть $f(z,w), g(z,w) \in \mathbb{C}[z,w]$ ненулевые, однородные многочлены одинаковой степени, не имеющие общих множителей. Докажите, что отображение $F: \mathbb{P}^1 \to \mathbb{P}^1: [z:w] \mapsto [f(z,w):g(z,w)]$ корректно определено и голоморфно. Что можно сказать про случай, когда f и g имеют общие множители?
- 4. Пусть $A=\left(egin{smallmatrix} a&b\\c&d \end{smallmatrix} \right)\in \mathrm{GL}_2(\mathbb{C}),$ докажите следующие свойства:
 - $F_A: \mathbb{P}^1 \to \mathbb{P}^1: [z:w] \mapsto [az+b:cz+d]$ автоморфизм $\mathbb{P}^1, F_{AB} = F_A \circ F_B;$ • При отождествлении \mathbb{P}^1 с \mathbb{C}_{∞} отображение F_A соответствует преобразова-
 - При отождествлении \mathbb{P}^1 с \mathbb{C}_{∞} отображение F_A соответствует преобразованию $z \mapsto (az+b)/(cz+d)$.
- 5. Пусть X компактная риманова поверхность, f мероморфная непостоянная функция на X. Докажите что f имеет хотя бы один нуль и хотя бы один полюс.
- 6. Обозначим через $L = L(\omega_1, \omega_2) \subset \mathbb{C}$ решётку на комплексной плоскости с базисом $\omega_1, \omega_2 \in \mathbb{C}$. Докажите следующие свойства:
 - Пусть $L\subseteq L'$, докажите, что естественная проекция $\mathbb{C}/L\to\mathbb{C}/L'$ голоморфно, и что голоморфное отображение $\mathbb{C}/L'\to\mathbb{C}/L$ существует $\Leftrightarrow L=L'$;
 - Пусть L решётка в \mathbb{C} , $\alpha \in \mathbb{C}^*$. Покажите, что αL также решётка, и что отображение $\phi : \mathbb{C}/L \to \mathbb{C}/(\alpha L) : z + L \mapsto \alpha z + \alpha L$ корректно определенное биголоморфное отображение.
 - Покажите, что всякий тор \mathbb{C}/L изоморфен тору вида $\mathbb{C}/L(1,\tau), \tau \in \mathbb{H}$.
- 7. Пусть f непостоянная мероморфная функция на торе $X = \mathbb{C}/L$. Докажите, что $\sum_{n} \nu_{p}(f) = 0$.
- 8. Пусть $F: X \to Y, G: Y \to Z$ два непостоянных голоморфных отображения, f мероморфная функция на $Y, p \in X$. Докажите, что $e_p(F \circ G) = e_p(F)e_p(G)$, $\nu_p(f \circ F) = e_p(F)\nu_{F(p)}(f)$.
- 9. Докажите, что всякая прямая в \mathbb{P}^2 невырождена и изоморфна \mathbb{P}_1 .
- 10. Докажите, что в \mathbb{P}^2 всякая гладка кривая второго порядка (коника) изоморфна кривой вида $x^2+y^2+z^2=0$. (В частности в \mathbb{P}^2 все гладкие коники изоморфны между собой).

2.5 Группы, действующие на римановых поверхностях

Аннотация: Действие группы, орбита, стабилизатор. Фактор-пространство как риманова поверхность, степень отображения факторизации. Теорема Гурвица о действии конечной группы. Действие полной модулярной группы и её конгруэнц подгрупп Γ на верхней комплексной полуплоскости $\mathbb H$. Структура римановой поверхности на $Y(\Gamma) = \mathbb H/\Gamma$. Эллиптические и параболические точки. Компактификация $Y(\Gamma)$ в $X(\Gamma)$, род $X(\Gamma)$.

Источники: [Mir] §III.3; [DS] §2.3.1.

Примеры задач:

1. Пусть G — конечная группа действующая на множестве $X, p \in X$. Докажите, что $|G \cdot p| |G_p| = |G|$.

- 2. Пусть K ядро действия G на X. Докажите, что K нормальная подгруппа G, и что ядро действия G/K на X тривиально, а орбиты совпадают с орбитами действия G.
- 3. Пусть G конечная подгруппа мультипликативной группы \mathbb{C}^* порядка n. По-кажите что $G = \{e^{2\pi i/k} : 0 \le k \le n\}$.
- 4. Покажите, что группа действий на римановой сферы \mathbb{C}_{∞} порожденная двумя элементами $z\mapsto e^{2\pi i/r}$ и $z\mapsto 1/z$ есть диэдральная группа порядка 2r. Докажите также, что действие этой группы голоморфно и эффективно. Определите точки ветвления и их индексы ветвления.
- 5. Докажите, что кривая определенная уравнением $xy^3 + yz^3 + zx^3 = 0$ (кривая Клейна) является гладкой проективной кривой. Покажите, что на этой кривой достигается граница теоремы Гурвица.
- 6. Пусть $\pi: \mathbb{H} \to Y(\Gamma) = \mathbb{H}/\Gamma: z \mapsto \Gamma z$ естественная проекция. Докажите, что для открытых множеств $U_1, U_2 \subset \mathbb{H}$ справедливо $\pi(U_1) \cap \pi(U_2) = \emptyset \Leftrightarrow \Gamma U_1 \cap U_2 = \emptyset$.
- 7. Пусть $z_1, z_2 \in \mathbb{H}$. Докажите, что существуют окрестности U_1 и U_2 точек z_1 и z_2 обладающие следующим свойством: $\forall \gamma \in \mathrm{SL}_2(\mathbb{Z}) \ \gamma(U_1) \cap U_2 \neq \emptyset \Rightarrow \gamma(z_1) = z_2$.

2.6 Дифференциальные формы и дивизоры

Аннотация: Голоморфные и мероморфные дифференциальные формы на римановых поверхностях. Интегрирование дифференциальных форм. Вычеты, теорема о сумме вычетов. Дивизоры функций, степень дивизора, главные дивизоры. Дивизоры дифференциальных форм, канонические дивизор. Степень канонического дивизора на компактной римановой поверхности. Линейная эквивалентность дивизоров. Свойства дивизоров на римановой сфере и торе. Теорема Абеля для тора. Понятие степени гладкой проективной кривой, теорема Безу.

Источники: [Mir] глава IV, §§V.1–V.2.

- 1. Пусть на римановой сфере $X = \mathbb{C}_{\infty}$ заданы две карты с локальными координатами z и w = 1/z и пусть $\omega \in \mathcal{M}^{(1)}(X)$. Докажите, что если $\omega = f(z)dz$ (в локальной координате z), то f рациональная функция от z. Докажите также, что $\Omega^1(X) = \{0\}$. Какие точки являются нулями и полюсами форм dz, dz/z.
- 2. Пусть L решётка в \mathbb{C} , $X = \mathbb{C}/L$ тор, $\pi : \mathbb{C} \to X$ естественная проекция. Покажите, что для формы dz в каждой карте X локальная формула корректно определена и задаёт голоморфную 1-форму на X, и что эта форма не имеет нулей.
- 3. Пусть X гладкая плоская афинная кривая заданная уравнением f(u,v)=0. Покажите, что du, dv корректно определенные голоморфные 1-формы на X, также как и p(u,v)du, p(u,v)dv для любого $p(u,v) \in \mathbb{C}[u,v]$. Покажите что если r(u,v) рациональная функция, то r(u,v)du, r(u,v)dv корректно определенные мероморфные 1-формы.
- 4. Пусть X риманова поверхность определенная уравнением $y^2 = h(x)$, где $h \in \mathbb{C}[x]$, $\deg h = 2g+1, 2g+2$ (то есть X гиперэллиптическая кривая, поверхность рода g). Покажите, что dx/y голоморфная 1-форма при $g \geqslant 1$. Покажите также, что если $p(x) \in \mathbb{C}[x]$, $\deg(p) \leqslant g-1$, то p(x)dx/y голоморфная 1-

форма.

- 5. Пусть X гиперэллиптическая кривая $y^2 = x^5 x$, тогда $x, y \in \mathcal{M}(X)$. Определите $\operatorname{div}(x), \operatorname{div}(y)$.
- 6. Пусть $X = \mathbb{C}/L$ тор. Покажите, что форма dz корректно определённая голоморфная 1-форма всюду отличная от нуля. Что в этом случае можно сказать о главных и канонических дивизорах?
- 7. Пусть X плоская проективная кривая $y^2z=x^3-xz^2$. Определите дивизоры пересечений X с прямыми $x=0,\,y=0,\,z=0$.
- 8. Докажите следующие свойства дивизоров на римановой сфере $X=\mathbb{C}_{\infty}$
 - $D_1 \sim D_2 \Leftrightarrow \deg(D_1) = \deg(D_2);$
 - Если $deg(D) \ge 0$, то $D \sim D_0, D_0 \ge 0$.

2.7 Пространства функций дивизоров и линейные системы

Аннотация: Линейное пространство мероморфных функций L(D) и полная линейная система |D|. Базовые свойства линейных пространств и линейных систем. Линейное пространство мероморфных форм $L^{(1)}(D)$, изоморфизм между простнствами L и $L^{(1)}$. Линейные пространства L(D) для случаев римановой сферы и тора. Оценка размерности L(D). Голоморфные отображения римановых поверхностей в проективные пространства. Базовые точки линейных систем. Обратные образы (пуллбэки) дивизоров и форм. Гиперплоскостные дивизоры.

Источники: [Mir] §§V.3–V.4.

- 1. Пусть X компактна, D дивизор на X, $\deg D = 0$. Докажите, что если $D \sim 0$, то $\dim L(D) = 1$, и что если $D \not\sim 0$, то $L(D) = \{0\}$.
- 2. Пусть X компактна рода g, $\mathcal{M}(X) \neq \mathbb{C}$, докажите, что если $\deg D < 2 2g$, то $L^{(1)}(D) = 0$.
- 3. Пусть $X = \mathbb{C}/L$ тор, $L = \mathbb{Z} + \mathbb{Z}\tau$, $\operatorname{Im}\tau > 0$, $\pi: \mathbb{C} \to X$ естественная проекция, $p_0 = \pi(0)$. Докажите следующие свойства:
 - Пусть $n \in \mathbb{Z}$, $h \in L(np_0)$. Тогда $\operatorname{Res}_{p_0}(h \, dz) = 0$.
 - Пусть z локальная координата в окрестности p_0 , $h(z) = \sum_{i=-n}^{\infty} c_i z^i$ разложение в ряд Лорана функции $h \in L(np_0)$. Тогда если $\forall i \leq 0$ $c_i = 0$, то h тождественно равна 0.
 - Пусть $f \in L(2p_0)$, тогда $\forall x \in X \ f(x) = f(-x)$.
 - $\exists ! f \in L(2p_0)$ такая что разложение в ряд Лорана имеет вид: $f(z) = z^{-2} + a_2 z^2 + a_4 z^4 + \dots$
 - Пусть $g \in L(3p_0)$, тогда $\forall x \in X \ g(x) = -g(-x)$.
 - $\exists ! g \in L(3p_0)$ такая что разложение в ряд Лорана имеет вид: $g(z) = z^{-3} + b_1 z + b_1 z^3 + \dots$
 - $\exists A, B \in \mathbb{C} : g^2 = f^3 + Af + B$, где $f \in L(2p_0), g \in L(3p_0)$ определены как выше. При этом многочлен $w^3 + Aw + B$ не имеет кратных корней.
- 4. Докажите, что $\forall f, g \in \mathcal{M}(X) \exists$ дивизор $D: f, g \in L(D)$
- 5. Пусть X компакнтая, и пусть D>0 дивизор такой, что $\dim L(D)=1+\deg(D)$. Докажите, что $\exists p\in X\colon \dim L(p)=2$, и что X изоморфна римановой сфере \mathbb{C}_{∞} .
- 6. Докажите, что на римановой сфере полная линейная система дивизор неотри-

- цательной степени не содержит базовых точек.
- 7. Докажите, что на комплексном торе полная линейная система дивизора степени ≥ 2 не содержит базовых точек.
- 8. Пусть X кривая в \mathbb{P}^3 определенная уравнениями $xw=yz, xz=y^2, yw=z^2$ (скрученная кубика). Используя степень гиперплоскостного дивизора $\operatorname{div}(x)$ докажите, что степень кривой X равна 3. Определите также $\operatorname{div}(y)$.

2.8 Алгебраические кривые, слабая аппроксимация

Аннотация: Понятие алгебраической кривой. Примеры римановых поверхностей являющихся алгебраическими кривыми. Функции с заданными порядками в точке и функции с заданными отрезками рядов Лорана. Теорема о слабой аппроксимации. Конечная порождённость поля рациональных функций алгебраической кривой. Степень поля функций и степень кривой.

Источники: [Mir], §VI.1.

Примеры задач:

- 1. Докажите, что следующие римановы поверхности являются алгебраическими кривыми:
 - риманова сфера \mathbb{C}_{∞} ;
 - комплексный тор \mathbb{C}/L ;
 - гиперэллиптическая кривая;
 - гладкая проективная кривая.
- 2. Пусть X алгебраическая кривая. Используя компактность X докажите, что в $\mathcal{M}(X)$ существует конечное число глобальных мероморфных функций отделяющих точки и касательные.
- 3. Пусть X компактная риманова поверхность. Докажите, что если $\forall p_1, \dots, p_n \in X \ \forall m_1, \dots, m_n \in \mathbb{Z} \ \exists f \in \mathcal{M}(X) : \nu_{p_i}(f) = m_i$, то X алгебраическая кривая.
- 4. Пусть G конечная группа, действующая эффективно на алгебраической кривой X.
 - Покажите, что можно задать действие G на $\mathcal{M}(X)$.
 - Докажите, что $\mathcal{M}(X/G) = \mathcal{M}(X)^G$.
 - Докажите, что X/G является алгебраической кривой.
- 5. Докажите следующие утверждения:
 - $\mathcal{M}(\mathbb{C}_{\infty})$ порождается локальной координатой z.
 - $\mathcal{M}(\mathbb{C}/L)$ порождается отношениями тета-функций.
 - Если X гиперэллиптическая кривая $y^2 = h(x)$, то $\mathcal{M}(X)$ порождается x и y.
 - ullet Если X гладкая проективная кривая, то $\mathcal{M}(X)$ поле рациональных функций.

2.9 Сильная аппроксимация, теорема Римана-Роха

Аннотация: Дивизоры отрезков рядов Лорана. Задача Миттаг—Леффлера. Пространство $H^1(D)$. Теорема Римана—Роха, двойственность Серра. Замечание про три определения рода. Замечание про язык аделей.

Источники: [Mir] §§VI.2–VI.3

Примеры задач:

- 1. Пусть f мероморфная функция, D дивизор. Докажите, что определенный в лекции оператор умножения $\mu_f^D: \mathcal{T}[D](X) \to \mathcal{T}[D-\operatorname{div}(f)](X)$ является изоморфизмом с обратным отображением $\mu_{1/f}^{D-{
 m div}(f)}$.
- 2. Пусть D дивизор, f,g глобальные мероморфные функции на $X,\ \alpha_D$: $\mathcal{M}(X) \to \mathcal{T}[D](X)$ — отображение, определенное в лекции. Докажите, что $\mu_f^D(\alpha_D(g)) = \alpha_{D-\operatorname{div}(f)}(fg).$
- 3. Докажите, что $D_1\leqslant D_2\Rightarrow \alpha_{D_2}=t_{D_2}^{D_1}\circ\alpha_{D_1}$ 4. Пусть $X=\mathbb{C}_\infty$ риманова сфера. Докажите, что $H^1(0)=0$ явным образом используя прообраз α_0 .
- 5. Пусть $X = \mathbb{C}/L$ комплексный тор, p тождественный элемент группового закона на X, z — локальная координата в окрестности $p, Z = z^{-1} \cdot p \in \mathcal{T}[0](X)$. Докажите, что Z не лежит в прообразе α_0 (то есть $H^1(0) \neq 0$)
- 6. Пусть $f \in \mathcal{M}(X)$, $\omega \in L^{(1)}(-D)$. Докажите, что $f\omega \in L^{(1)}(-D-\operatorname{div}(f))$, и что $\operatorname{Res}_{\omega} \circ \mu_f^D = \operatorname{Res}_{f\omega} \operatorname{B} \mathcal{T}[D + \operatorname{div}(f)](X).$
- 7. Докажите, что если D положительный дивизор, $\deg D \geqslant g+1$, то в L(D)существует по крайней мере одна непостоянная функция.
- 8. Пусть X алгебраическая кривая, K канонический дивизор, D дивизор степени $\deg D > 0$. Докажите, что $H^1(K+D) = 0$.
- 9. Докажите, что если $g \ge 2$, $m \ge 2$, то dim L(mK) = (g-1)(2m-1).

2.10Некоторые приложения теоремы Римана-Роха

Аннотация: Первые приложения теоремы Римана Роха: алгебраические кривые являются проективными, кривые рода 0 изоморфны римановой сфере, кривые рода 1 изоморфны комплексным торам, кривые рода 2 изоморфны гиперэллиптическим кривым. Теорема Клиффорда. Существование мероморфных 1-форм. Автоморфные формы и мероморфные 1-формы на модулярной кривой, размерность пространств модулярных форм конгруэнц подгрупп (обзорно).

Источники: [Mir] §VII.1 ; [DS] глава 3.

- 1. Пусть X алгебраическая кривая, D дивизор степени $\deg D > 0$. Докажите, что dim $L(D) = 1 + \text{deg } D \Leftrightarrow g(X) = 0.$
- 2. Пусть X алгебраическая кривая рода $g(X) = g \geqslant 2$, D дивизор степени $\deg D > 0$. Докажите, что если $\deg D \leqslant 2g - 3$, то $\dim L(D) \leqslant g$.
- 3. Пусть X компактная Риманова поверхность, D_1, D_2 дивизоры. Докажите, что dim $L(D_1)$ + dim $L(D_2) \leq \dim L(\min(D_1, D_2))$ + dim $L(\max(D_1, D_2))$.
- 4. Пусть X алгебраическая кривая рода q(X) = q, K канонический дивизор, D — дивизор такой, что dim $L(D) \ge 1$ и dim $L(K - D) \ge 1$. Докажите, что $\dim L(D) + \dim L(K - D) \leqslant 1 + g.$
- 5. Пусть X алгебраическая кривая $g(X)\geqslant 1,\, K$ канонический дивизор, D— дивизор, такой что пространства L(D), L(K-D) ненулевые и $2 \dim L(D) \leqslant$ $\deg D + 2$. Докажите, что тогда D -либо главный, либо канонический.
- 6. Покажите, что разложение в ряд Лорана модулярного инварианта имеет вид: $j(z) = 1/q + \sum_{n=0}^{\infty} a_n q^n, \ a_n \in \mathbb{Z}, \ q = e^{2\pi i z}.$ 7. Докажите, что $\forall k \in \mathbb{Z}$ если $f \in \mathcal{A}_k(\Gamma), \ f \neq 0$, то $\mathcal{A}_k(\Gamma) = \mathcal{M}(X(\Gamma)) \cdot f$.

8. Докажите, что $S_2(\Gamma) \cong \Omega^1(X(\Gamma))$.

2.11 Нормирования функциональных полей

Аннотация: Алгебраические функциональные поля. Дискретные нормирования алгебраических функциональных полей и их свойства. Точки функциональных полей, степень точек. Теорема о слабой аппроксимации Поле рациональных функций.

Источники: [Stich] §§1.1–1.3; [Степ] §IV.2.1-IV.2.2.

Примеры задач:

- 1. Пусть K(x)/K поле рациональных функций, $z \in K(x) \setminus K$, z = f(x)/g(x), где $f, g \in K[x]$ взаимно просты, $\deg z = \max(\deg f, \deg g)$. Докажите, что
 - $\bullet \ [K(x):K(z)] = \deg z;$
 - $K(x) = K(z) \Leftrightarrow z = (ax + b)/(cx + d), a, b, c, d \in K, ad bc \neq 0.$
- 2. Пусть $\operatorname{Aut}(L/M)$ обозначает группу автоморфизмов расширения L/M и пусть K(x)/K поле рациональных функций. Докажите, что
 - $\forall \sigma \in \operatorname{Aut}(K(x)/K) \exists a, b, c, d \in K : ad bc \neq 0 \ \sigma(x) = (ax + b)/(cx + d);$
 - $\forall a, b, c, d \in K$: $ad bc \neq 0 \ \exists \sigma \in \operatorname{Aut}(K(x)/K)$: $\sigma(x) = (ax + b)/(cx + d)$;
 - $\operatorname{Aut}(K(x)/K) \cong \operatorname{GL}_2(K)/K^*$.
- 3. Пусть $L^G = \{z \in L : \sigma(z) = z \ \forall \ \sigma \in G\}$ обозначает неподвижное поле подгрупны $G < \operatorname{Aut}(L/M), \ L/L^G$ является конечным расширением и $[L : L^G] = |G|$. Пусть $G < \operatorname{Aut}(K(x)/K)$ конечная подгруппа, $u = \prod_{\sigma \in G} \sigma(x), v = \sum_{\sigma \in G} \sigma(x)$. Докажите, что
 - либо $v \in K$, либо $K(v) = K(x)^G$;
 - либо $u \in K$, либо $K(u) = K(x)^G$.
- 4. Пусть K(x)/K поле рациональных функций. Докажите $\forall z \in K(x)$ существует единственное представление вида $z = \sum_{i=1}^r \sum_{j=1}^{k_i} \frac{c_{ij}(x)}{p_i(x)^j} + h(x)$, где
 - $p_1(x), \dots, p_r(x) \in K[x]$ различны и неприводимы,
 - $k_i \geqslant 1$,
 - $c_{ij}(x) \in K[x]$, $\deg(c_{ij}(x)) < \deg(p_i(x))$,
 - $c_{ik_i} \neq 0$,
 - \bullet $h(x) \in K[x]$.
- 5. Пусть K(x)/K поле рациональных функций, $P_{\infty} = \{f(x)/g(x): f,g \in K[x], \deg(f) < \deg(g)\}$ точка K(x). Докажите, что $\deg P_{\infty} = 1, \ t = 1/x$ соответствующий простой элемент, и $\nu_{\infty} = \deg(g) \deg(f)$ соответствующее нормирование.

2.12 Дивизоры и линейные пространства

Аннотация: Дивизоры, группа классов дивизоров. Линейные пространства L(D). Теорема о равенстве числа нулей и полюсов. Алгебраический род. Теорема Римана.

Источники: [Stich] §1.4; [Степ] §IV.2.3, §IV.3.1.

- 1. Пусть F функциональное поле, $D \in Div(F)$. Докажите, что
 - $x \in L(D) \Leftrightarrow \nu_P(x) \geqslant -\nu_P(D) \ \forall P \in \mathcal{P}_F.$
 - $L(D) \neq \{0\} \Leftrightarrow \exists D' \in Div(F), D' \geqslant 0: D' \sim D.$
- 2. Докажите, что оценка $l(D) \leq \deg D + 1$ справедлива $\forall D \in \operatorname{Div}(F), \deg D \geqslant 0$.

- 3. Пусть F = K(x) поле рациональных функций. найдите базисы следующих линейных пространств: $L(rP_{\infty}), L(rP_{\alpha}), L(P_{p(x)})$.
- 4. Пусть $g(F)>0,\,D\in \mathrm{Div}(F),\,l(D)>0.$ Докажите, что $l(D)=\deg D+1\Leftrightarrow D$ главный.
- 5. Пусть F/K функциональное поле. Докажите, что следующие условия эквиваленты:
 - g(F) = 0;
 - $\exists D \in \text{Div}(F): \text{deg } D = 2, l(D) = 3;$
 - $\exists D \in \text{Div}(F): \text{deg } D \geqslant 1, \ l(D) > \text{deg } D;$
 - $\exists D \in \text{Div}(F)$: $\deg D \geqslant 1$, $l(D) = \deg D + 1$;
 - при условии, что $\mathrm{char}(K) \neq 2$: $\exists x,y \in F$: $F = K(x,y), \ y^2 = ax^2 + b$ $(a,b \in K^*).$
- 6. Пусть $\mathbb{R}(x)$ поле рациональных функций над \mathbb{R} . Докажите следующие утверждения:
 - Многочлен $f(T) = T^2 + (x^2 + 1) \in \mathbb{R}(x)[T]$ неприводим над $\mathbb{R}(x)$. Пусть $F = \mathbb{R}(x,y), y^2 + x^2 + 1 = 0.$
 - \mathbb{R} поле констант для F, q(F) = 0.
 - F/\mathbb{R} не является полем рациональных функций.
 - Все точки F имеют степень 2.
- 7. Пусть E проективная эллиптическая кривая над полем F: $zy^2 = x^3 + azx^2 + bz^3$, $4a^3 + 27b^2 \neq 0$, $P, P' \in E$.
 - Докажите, что сопоставление $E \to \mathrm{Cl}^0(E): P \mapsto C_P = [P-P']$ задаёт взаимно-однозначное отображение между E и $\mathrm{Cl}^0(E)$.
 - Докажите, что $C_P + C_Q + C_R = 0 \Leftrightarrow$ точки P, Q, R лежат на одной проективной прямой.
 - Опишите закон сложения классов C_P , C_Q в группе $\mathrm{Cl}^0(E)$ в терминах точек P, Q кривой E.
 - Покажите, что группа $\mathrm{Cl}^0(E)$ имеет ровно четыре элемента второго порядка. Какие точки кривой E соответствуют этим элементам?

2.13 Теорема Римана-Роха для функциональных полей

Аннотация: Кольцо аделей (распределений). Дифференциалы Вейля, канонический класс. Теорема Римана—Роха, двойственность Серра. Теорема о сильной аппроксимации. Теорема Вейершрасса о пропусках.

Источники: [Stich] §§1.5–1.6; [Степ] §IV.3.2–IV.3.4.

- 1. Пусть F = K(x) поле рациональных функций, \mathcal{A}_F кольцо аделей (распределений). Докажите, что $\mathcal{A}_F = \mathcal{A}_F(0) + F$.
- 2. Пусть char $(K) \neq 2, \ F = K(x,y), \ y^2 = f(x), \ f \in K[x], \ \deg f = 2m+1 \geqslant 3.$ Докажите, что
 - K поле констант для F.
 - $\exists !$ точка $P \in \mathcal{P}_F$ являющаяся полюсом x и единственным полюсом y.
 - $\forall r \in \mathbb{Z}_+, 0 \leq s < r m \ 1, x, x^2, \dots, x^r, y, xy, \dots, x^s y \in L(2rP).$
 - $g(F) \leqslant m$.

- 3. Пусть $F = \mathbb{F}_3(x)$ поле рациональных функций над конечным полем \mathbb{F}_3 . Докажите, что
 - $f(T) = T^2 + x^4 x^2 + 1 \in \mathbb{F}_3(x)[T]$ неприводим.
 - если $F = \mathbb{F}_3(x,y), \ y^2 + x^4 x^2 + 1 = 0, \ K$ поле констант F, то |K| = 9, F = K(x).
- 4. Пусть F/K функциональное поле, g = g(F), $\exists P \in \mathcal{P}_F$: deg P = 1. Докажите, что $\exists x, y \in F$: [F : K(x)] = [F : K(y) = 2g + 1] и F = K[x, y].
- 5. Пусть F/K функциональное поле, $D \in \mathrm{Div}(F)$, $\omega \in \Omega_F$ ненулевой дифференциал Вейля, $W = (\omega)$. Докажите, что отображение $s: L(W-D) \times \mathcal{A}_F/(\mathcal{A}_F(D)+F) \to K: (x,\alpha) \mapsto \omega(x\alpha)$ задаёт невырожденное спаривание. (Невырожденное спаривание это билинейное отображение векторных пространств $s: V \times U \to K$ такое, что $\forall v \in V \setminus \{0\} \ \exists u \in U: s(v,u) \neq 0$ и $\forall u \in U \setminus \{0\} \ \exists v \in V: s(v,u) \neq 0$.)
- 6. Пусть K алгебраически замкнутое поле, F/K функциональное поле g(F)=g. Докажите, что $\forall d\in\mathbb{Z}_+,\ d\geqslant g\ \exists\ D\in Div(F)$ такой, что $\deg D=d$ и $l(D)=\deg D+1-g$.
- 7. Пусть $D \in \text{Div}(F)$. Докажите, что
 - $i(D) \leq \max(0, 2g(F) 1 \deg D);$
 - если i(D) > 0, то $\forall D' \in \text{Div}(F) \ l(D D') \leqslant i(D')$.
- 8. Пусть $C \in \mathrm{Div}(F), \, |D|$ линейная система. Класс дивизора $[C] \in \mathrm{Cl}(F)$ называется примитивным, если $\neg \exists \, B \in \mathrm{Div}(F) \colon B > 0 \land \forall \, A \in [C] \, B \leqslant A$. Докажите, что
 - $\forall D \in \text{Div}(F) \text{ deg } D \geqslant 2g(F)$ класс [D] примитивный;
 - если $g(F) \geqslant 1$, то канонический класс является примитивным;
 - если $g(F) \geqslant 1$, $K \in \text{Div}(F)$ канонический, $P \in \mathcal{P}_F$ точка степени 1, то класс [K+P] не может быть примитивным.

2.14 Дзета функция алгебраической кривой

Аннотация: Рациональные точки алгебраических кривых, рациональные дивизоры. Конечность числа классов дивизоров нулевой степени. Дзета функция алгебраической кривой. Рациональность дзета-функции, произведение Эйлера и функциональное уравнение.

Источники: [Степ] §§V.1.1–V.1.3; [Stich] §5.1; [ВНЦ] §3.1.

- 1. Пусть $X = \mathbb{P}^1(\overline{\mathbb{F}}_q)$ проективная прямая. Покажите, что
 - $Z_X(t) = (1-t)^{-1}(1-qt)^{-1}$;
 - $Z_X(1/(qt)) = qt^2 Z_X(t)$.
- 2. Пусть $X \subset \mathbb{P}^2(\mathbb{F}_q)$ проективная кривая $x^2+y^2-z^2=0$. Покажите, что $Z_X(t)=(1-t)^{-1}(1-qt)^{-1}$.
- 3. Пусть $\operatorname{char}(\mathbb{F}_q) \neq 2, X \subset \mathbb{A}^2(\mathbb{F}_q)$ афинная кривая, N_{q^s} число \mathbb{F}_{q^s} рациональных точек этой кривой, $Z_X(t) = \exp\left(\sum_{s=1}^\infty \frac{N_{q^s}}{s} t^s\right)$ дзета функция. Докажите следующие утверждения:
 - $Z_{\mathbb{A}^1}(t) = (1 qt)^{-1}$;
 - $Z_{\mathbb{A}^n}(t) = (1 q^n t)^{-1};$
 - ullet для X: $x^2+y^2=1$ $Z_X(t)=(1-t)(1-qt)^{-1}$ при $q\equiv 1$ (4) и $Z_X(t)=$

 $(1+t)(1-qt)^{-1}$ при $q \equiv 3(4)$;

- для X: $y^2 = x^3 Z_X(t) = (1 qt)^{-1}$; для X: $y^2 = x^3 + x^2 Z_X(t) = (1 t)(1 qt)^{-1}$.
- 4. Пусть $X \subset \mathbb{P}^2(\mathbb{F}_q)$ эллиптическая кривая. Докажите, что
 - $Z_X(t) = (1 + \alpha t + qt^2)(1 t)^{-1}(1 qt)^{-1}$;
 - $Z_X(1/(qt)) = Z_X(t)$.
- 5. Докажите по определению, что $Z_{\mathbb{P}^n}(t) = (1-t)^{-1}(1-qt)^{-1}\dots(1-q^nt)^{-1}$.
- 6. Пусть $X \subset \mathbb{P}^n$ многообразие размерности $r, Z_X(t) = \prod_{i=1}^a (1 \omega_i t) / \prod_{i=1}^b (1 \omega_i t)$ $\omega_i't)$. Докажите, что функциональное уравнение для $Z_X(t)$ равносильно выполнению соотношений $\omega_i \omega_{a-i+1} = q^r$, $\omega'_j \omega'_{b-j+1} = q^r$.
- 7. Пусть $X \subset \mathbb{A}^n(\mathbb{F}_q)$ афинная гиперповерхность, N_{q^s} число \mathbb{F}_{q^s} рациональных точек, $Z_X(t) = \exp\left(\sum_{s=1}^{\infty} \frac{N_q s}{s} t^s\right) = 1 + \sum_{m=1}^{\infty} a_m t^m$. Докажите, что
 - $\forall m \ a_m \in \mathbb{Z}_{\geqslant 0};$
 - $\forall m \ a_m \leqslant q^{mn}$

2.15Теорема Хассе-Вейля

Аннотация: Связь дзета функции с числом точек на кривой над конечным полем. Оценка числа точек на кривой. Теорема Вейля (аналог гипотезы Римана для нулей дзета функции алгебраической кривой). Оценка Хассе-Вейля. Обзор некоторых других приложений (оценки тригонометрических сумм, гипотеза Рамануджана).

Источники: [Степ] §§V.1.3-V.2; [Stich] §5.2; [ВНЦ] §3.1.

Примеры задач:

- 1. Пусть X кривая над $\mathbb{F}_q,$ g(X)=g. Докажите, что $N_q,N_{q^2},\ldots,N_{q^g}$ однозначно определяют N_{q^s} для $s \geqslant g+1$.
- 2. Пусть $f,g\in\mathbb{F}_q[x],\,N_{q^s}$ число решений системы уравнений $y^n=f(x),\,z^q-z=$ g(x) в элементах $x,y,z\in\mathbb{F}_{q^s},\,\chi,\,\psi$ обозначают мультипликативный и аддитивный характеры поля \mathbb{F}_q . Докажите, что $N_{q^s}=\sum_{\chi^n=\epsilon}\sum_{\psi}\sum_{x\in\mathbb{F}_{q^s}}\chi_s(f(x))\psi_s(g(x)).$
- 3. Пусть $f, g \in \mathbb{F}_q[x]$, $\deg f = m$, $\deg g = l$, (m, n) = 1, (l, q) = 1. Докажите, что уравнения $y^n = f(x), z^q - z = g(x)$ определяют абсолютную кривую в афинном пространстве $\mathbb{A}^3(\overline{\mathbb{F}}_a)$.
- 4. Пусть $f,g \in \mathbb{F}_q[x]$, $\deg f = l, \ \deg g = n, \ f = f_1^{k_1} \dots f_r^{k_r}$ разложение на неприводимые множители, $m = \deg(f_1 \dots f_r), \chi$ — нетривиальный мультипликативный характер порядка N, ψ — нетривиальный аддитивный характер поля \mathbb{F}_q . Докажите, что если $(l,N)=1,\,(n,q)=1,\,$ то $\left|\sum_{x\in\mathbb{F}_{q^s}}\chi_s(f(x))\psi_s(g(x))\right|\leqslant$ $(m+n-1)q^{s/2}$.

Список литературы

R. Miranda, Algebraic Curves and Riemann Surfaces, AMS, 1995. Mir

[Stich] H. Stichtenoth, Algebraic Function Fields and Codes, 2nd edition, Springer, 2009.

[Степ] С.А. Степанов, Арифметика алгебраических кривых, Наука, 1991.

- [Fult] W. Fulton, Algebraic Curves: An Introduction to Algebraic Geometry, 3rd edition, AMS, 2008.
- [DS] F. Diamond, J. Shurman, A First Course in Modular Forms, Springer, 2005.
- [ВНЦ] С.Г. Влэдуц, Д.Ю. Ногин, М.А. Цфасман, Алгеброгеометрические коды. Основные понятия, МЦНМО, 2003.
- [Шаф] И.Р. Шафаревич, Основы алгебраической геометрии, 3-е изд., МЦНМО, 2007.
- [FK] H.M. Farkas, I. Kra, Riemann Surfaces, 2nd edition, Springer, 1992.
- [КЛП] М.Э. Казарян, С.К. Ландо, В.В. Прасолов, Алгебраические кривые. По направлению к пространствам модулей, МЦНМО, 2019.