Implementation exercises for the course Heuristic Optimization

Federico Pagnozzi¹ federico.pagnozzi@ulb.ac.be

IRIDIA, CoDE, ULB

February 22, 2017

¹ Slides based on 2014 excersises by Dr. Franco Mascia.

Exercise 1.1: Iterative Improvement for the PFSP

Implement perturbative local search algorithms for the PFSP

- Permutation Flow Shop Scheduling Problem (PFSP)
- First-improvement and Best-Improvement
- Transpose, exchange and insert neighborhoods
- Random initialization vs. Simplified RZ heuristic
- Statistical Empirical Analysis

Glazed Tile Production Flow Chart

- Tiles need several processing steps with different machines
- Tiles of different type require specific processing times for each machine
- Goal: find a schedule of the jobs that minimizes an objective function (makespan or total completion time)

Glazed Tile Production Flow Chart

- Tiles need several processing steps with different machines
- Tiles of different type require specific processing times for each machine
- Goal: find a schedule of the jobs that minimizes an objective function (makespan or total completion time)

Glazed Tile Production Flow Chart

- Tiles need several processing steps with different machines
- Tiles of different type require specific processing times for each machine
- Goal: find a schedule of the jobs that minimizes an objective function (makespan or total completion time)

Glazed Tile Production Flow Chart

- Tiles need several processing steps with different machines
- Tiles of different type require specific processing times for each machine
- Goal: find a schedule of the jobs that minimizes an objective function (makespan or total completion time)

Flow Shop Scheduling

- Several scheduling problems have been proposed with different formulations and constraints.
- In permutation flow shop problems:
 - jobs composed by operations to be executed on several machines
 - all jobs pass through the machines in the same order
 - all jobs available at time zero
 - pre-emption not allowed
 - each operation has to be performed on a specific machine
 - each job at most on one machine at a time
 - each machine at most one job at a time

- Jobs pass trough all machines in the same order (FCFS queues)
- No constraints: infinite buffers between machines, no blocking, no no-wait requirements (steel production)

Flow Shop Scheduling

- Several scheduling problems have been proposed with different formulations and constraints.
- In permutation flow shop problems:
 - jobs composed by operations to be executed on several machines
 - all jobs pass through the machines in the same order
 - all jobs available at time zero
 - pre-emption not allowed
 - each operation has to be performed on a specific machine
 - each job at most on one machine at a time
 - each machine at most one job at a time

- Jobs pass trough all machines in the same order (FCFS queues)
- No constraints: infinite buffers between machines, no blocking, no no-wait requirements (steel production)

Flow Shop Scheduling

- Several scheduling problems have been proposed with different formulations and constraints.
- In permutation flow shop problems:
 - jobs composed by operations to be executed on several machines
 - all jobs pass through the machines in the same order
 - all jobs available at time zero
 - pre-emption not allowed
 - each operation has to be performed on a specific machine
 - each job at most on one machine at a time
 - each machine at most one job at a time

- Jobs pass trough all machines in the same order (FCFS queues)
- No constraints: infinite buffers between machines, no blocking, no no-wait requirements (steel production)

Flow Shop Scheduling

- Several scheduling problems have been proposed with different formulations and constraints.
- In permutation flow shop problems:
 - jobs composed by operations to be executed on several machines
 - all jobs pass through the machines in the same order
 - all jobs available at time zero
 - pre-emption not allowed
 - each operation has to be performed on a specific machine
 - each job at most on one machine at a time
 - each machine at most one job at a time

- Jobs pass trough all machines in the same order (FCFS queues)
- No constraints: infinite buffers between machines, no blocking, no no-wait requirements (steel production)

Flow Shop Scheduling

- Several scheduling problems have been proposed with different formulations and constraints.
- In permutation flow shop problems:
 - jobs composed by operations to be executed on several machines
 - all jobs pass through the machines in the same order
 - all jobs available at time zero
 - pre-emption not allowed
 - each operation has to be performed on a specific machine
 - each job at most on one machine at a time
 - each machine at most one job at a time

- Jobs pass trough all machines in the same order (FCFS queues)
- No constraints: infinite buffers between machines, no blocking, no no-wait requirements (steel production)

Flow Shop Scheduling

- Several scheduling problems have been proposed with different formulations and constraints.
- In permutation flow shop problems:
 - jobs composed by operations to be executed on several machines
 - all jobs pass through the machines in the same order
 - all jobs available at time zero
 - pre-emption not allowed
 - each operation has to be performed on a specific machine
 - each job at most on one machine at a time
 - each machine at most one job at a time

- Jobs pass trough all machines in the same order (FCFS queues)
- No constraints: infinite buffers between machines, no blocking, no no-wait requirements (steel production)

Flow Shop Scheduling

- Several scheduling problems have been proposed with different formulations and constraints.
- In permutation flow shop problems:
 - jobs composed by operations to be executed on several machines
 - all jobs pass through the machines in the same order
 - all jobs available at time zero
 - pre-emption not allowed
 - each operation has to be performed on a specific machine
 - each job at most on one machine at a time
 - each machine at most one job at a time

- Jobs pass trough all machines in the same order (FCFS queues)
- No constraints: infinite buffers between machines, no blocking, no no-wait requirements (steel production)

Flow Shop Scheduling

- Several scheduling problems have been proposed with different formulations and constraints.
- In permutation flow shop problems:
 - jobs composed by operations to be executed on several machines
 - all jobs pass through the machines in the same order
 - all jobs available at time zero
 - pre-emption not allowed
 - each operation has to be performed on a specific machine
 - each job at most on one machine at a time
 - each machine at most one job at a time

- Jobs pass trough all machines in the same order (FCFS queues)
- No constraints: infinite buffers between machines, no blocking, no no-wait requirements (steel production)

Flow Shop Scheduling

- Several scheduling problems have been proposed with different formulations and constraints.
- In permutation flow shop problems:
 - jobs composed by operations to be executed on several machines
 - all jobs pass through the machines in the same order
 - all jobs available at time zero
 - pre-emption not allowed
 - each operation has to be performed on a specific machine
 - each job at most on one machine at a time
 - each machine at most one job at a time

- Jobs pass trough all machines in the same order (FCFS queues)
- No constraints: infinite buffers between machines, no blocking, no no-wait requirements (steel production)

Given

A set of n jobs J_1, \ldots, J_n jobs, where each job J_i consists of m operations o_{i1}, \ldots, o_{im} performed on M_1, \ldots, M_m machines in that order, with processing time p_{ij} for operation o_{ij} .

Objective

Given

A set of n jobs J_1, \ldots, J_n jobs, where each job J_i consists of m operations o_{i1}, \ldots, o_{im} performed on M_1, \ldots, M_m machines in that order, with processing time p_{ij} for operation o_{ij} .

Objective

Given

A set of n jobs J_1, \ldots, J_n jobs, where each job J_i consists of m operations o_{i1}, \ldots, o_{im} performed on M_1, \ldots, M_m machines in that order, with processing time p_{ij} for operation o_{ij} .

Objective

Given

A set of n jobs J_1, \ldots, J_n jobs, where each job J_i consists of m operations o_{i1}, \ldots, o_{im} performed on M_1, \ldots, M_m machines in that order, with processing time p_{ij} for operation o_{ij} .

Objective

Computing completion times

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n \\ j = 2, \dots m \end{array}$$

	J_1	J_2	J_3	J4	J_5
Pi1			4	2	
p_{i2}	2	1	3		1
p_{i3}	4	2	1	2	
VV_i	1	2	4	2	

Computing completion times

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n \\ j = 2, \dots m \end{array}$$

Job	J_1	J ₂	J ₃	J_4	J ₅
<i>p</i> _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
W _i	1	2	4	2	3

3	6		12	
5	7	13	16	17
9	11	14	18	21
9	22	56	36	63

Computing completion times

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} \rho_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} \rho_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + \rho_{\pi(k)j} & k = 2, \dots n \\ j = 2, \dots m \end{array}$$

Job	J_1	J_2	J ₃	J_4	J 5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
W _i	1	2	4	2	3

3	6		12	
5	7	13	16	17
9	11	14	18	21
9	22	56	36	63

Computing completion times

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n \\ j = 2, \dots m \end{array}$$

Job	J_1	J_2	J ₃	J_4	J 5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
Wi	1	2	4	2	3

3	6		12	
5	7	13	16	17
9	11	14	18	21
9	22	56	36	63

Computing completion times

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} \rho_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} \rho_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + \rho_{\pi(k)j} & k = 2, \dots n \\ j = 2, \dots m \end{array}$$

Job	J_1	J_2	J_3	J_4	J 5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
W _i	1	2	4	2	3

3	6		12	
5	7	13	16	17
9	11	14	18	21
9	22	56	36	63

Computing completion times

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n \\ j = 2, \dots m \end{array}$$

Job	J_1	J_2	J_3	J_4	J 5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
W _i	1	2	4	2	3

3	6		12	
5	7	13	16	17
9	11	14	18	21
9	22	56	36	63

Computing completion times

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n \\ j = 2, \dots m \end{array}$$

Job	J_1	J ₂	J ₃	J_4	J 5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
W _i	1	2	4	2	3

	3	6	10	12	
	5	7	13	16	17
	9	11	14	18	21
j	9	22	56	36	63

Computing completion times

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n \\ j = 2, \dots m \end{array}$$

Job	J_1	J_2	J_3	J_4	J 5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
W _i	1	2	4	2	3

3	6	10	12	
5	7	13	16	17
9	11	14	18	21
9	22	56	36	63

Computing completion times

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} \rho_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} \rho_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + \rho_{\pi(k)j} & k = 2, \dots n \\ j = 2, \dots m \end{array}$$

Job	J_1	J_2	J ₃	J_4	J 5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
W _i	1	2	4	2	3

	3	6	10	12	15
	5	7	13	16	17
	9	11	14	18	21
j	9	22	56	36	63

Computing completion times

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n \\ j = 2, \dots m \end{array}$$

Job	J_1	J_2	J ₃	J_4	J 5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
W _i	1	2	4	2	3

3	6	10	12	15
5	7	13	16	17
9	11	14	18	21
9	22	56	36	63

Computing completion times

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} \rho_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} \rho_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + \rho_{\pi(k)j} & k = 2, \dots n \\ j = 2, \dots m \end{array}$$

Job	J_1	J ₂	J ₃	J_4	J ₅
<i>p</i> _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
W _i	1	2	4	2	3

3	6	10	12	15
5	7	13	16	17
9	11	14	18	21
9	22	56	36	63

Computing completion times

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n \\ j = 2, \dots m \end{array}$$

Job	J_1	J ₂	J ₃	J_4	J 5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
W _i	1	2	4	2	3

3	6	10	12	15
5	7	13	16	17
9	11	14	18	21
9	22	56	36	63

Computing completion times

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n \\ j = 2, \dots m \end{array}$$

Job	J_1	J ₂	J ₃	J_4	J ₅
<i>p</i> _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
W _i	1	2	4	2	3

	3	6	10	12	15
	5	7	13	16	17
	9	11	14	18	21
C_i	9	22	56	36	63

Computing completion times

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n \\ j = 2, \dots m \end{array}$$

Job	J_1	J_2	J ₃	J_4	J 5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
W _i	1	2	4	2	3

	3	6	10	12	15
	5	7	13	16	17
	9	11	14	18	21
C_i	9	22	56	36	63

Computing completion times

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n \\ j = 2, \dots m \end{array}$$

Job	J_1	J_2	J_3	J_4	J 5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
W _i	1	2	4	2	3

3	6	10	12	15
5	7	13	16	17
9	11	14	18	21
9	22	56	36	63

Computing completion times

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} \rho_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} \rho_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + \rho_{\pi(k)j} & k = 2, \dots n \\ j = 2, \dots m \end{array}$$

Job	J_1	J_2	J_3	J_4	J 5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
W _i	1	2	4	2	3

	3	6	10	12	15
	5	7	13	16	17
	9	11	14	18	21
į	9	22	56	36	63

Computing completion times

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} \rho_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} \rho_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + \rho_{\pi(k)j} & k = 2, \dots n \\ j = 2, \dots m \end{array}$$

Job	J_1	J_2	J ₃	J_4	J 5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
W _i	1	2	4	2	3

	3	6	10	12	15
	5	7	13	16	17
	9	11	14	18	21
i	9	22	56	36	63

Computing completion times

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n \\ & j = 2, \dots m \end{array}$$

Job	J_1	J_2	J ₃	J_4	J 5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
Wi	1	2	4	2	3

$M_1 J_1$	J ₂ J ₃	J ₄	J ₅		
M_2	J_1	J ₃	J ₄ J ₅		
M_3	J ₁	J_2	J_3	J ₅	
0	5	10	15	20	→ time

3	6	10	12	15
5	7	13	16	17
9	11	14	18	21
9	22	56	36	63

Computing completion times

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n \\ & j = 2, \dots m \end{array}$$

Job	J_1	J_2	J ₃	J_4	J 5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
Wi	1	2	4	2	3

$M_1 J_1$	J ₂ J ₃	J ₄	J ₅		
M_2	J_1	J ₃	J ₄ J ₅		
M_3	J ₁	J_2	J_3	J ₅	
0	5	10	15	20	→ time

3	6	10	12	15
5	7	13	16	17
9	11	14	18	21
9	22	56	36	63

Computing completion times

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n \\ & j = 2, \dots m \end{array}$$

Job	J_1	J_2	J ₃	J_4	J 5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
W _i	1	2	4	2	3

$M_1 J_1$	J ₂ J ₃	J_4	J ₅		
M ₂	J_1 J_2	J ₃	J ₄ J ₅		
M_3	J ₁	J_2	J_3	J ₅	
⊢	5	10	15	20	→ time

	3	6	10	12	15
	5	7	13	16	17
	9	11	14	18	21
$w_i \cdot C_i$	9	22	56	36	63

Computing completion times

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n \\ & j = 2, \dots m \end{array}$$

Job	J_1	J_2	J ₃	J_4	J 5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
Wi	1	2	4	2	3

	3	6	10	12	15
	5	7	13	16	17
	9	11	14	18	21
$w_i \cdot C_i$	9	22	56	36	63

Computing completion times

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n \\ & j = 2, \dots m \end{array}$$

Job	J_1	J_2	J 3	J_4	J 5
<i>p</i> _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
W _i	1	2	4	2	3

	3	6	10	12	15
	5	7	13	16	17
	9	11	13 14	18	21
$w_i \cdot C_i$	9	22	56	36	63

Computing completion times

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n \\ & j = 2, \dots m \end{array}$$

Job	J_1	J_2	J_3	J_4	J 5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
W _i	1	2	4	2	3

	3	6	10	12	15
	5	7	13	16	17
	9	11	14	18	21
$w_i \cdot C_i$	9	22	56	36	63

Implement 12 iterative improvements algorithms for the PFSP

Implement 12 iterative improvements algorithms for the PFSP

- Pivoting rule:
 - first-improvement
 - 2 best-improvement
- Neighborhood:
 - Transpose
 - Exchange
 - Insert
- Initial solution:
 - Random permutation
 - Simplified RZ heuristic

Implement 12 iterative improvements algorithms for the PFSP

- Pivoting rule:
 - first-improvement
 - 2 best-improvement
- Neighborhood:
 - Transpose
 - Exchange
 - Insert
- Initial solution:
 - Random permutation
 - Simplified RZ heuristic
- 2 pivoting rules \times 3 neighborhoods \times 2 initialization methods = 12 combinations

Implement 12 iterative improvements algorithms for the PFSP

Don't implement 12 programs!

Reuse code and use command-line parameters

```
pfsp-ii --first --transpose --srz
pfsp-ii --best --exchange --random-init
...
```

Iterative Improvement

```
\pi := \text{GenerateInitialSolution} \ ()
while \pi is not a local optimum do
choose a neighbour \pi' \in \mathcal{N}(\pi) such that F(\pi') < F(\pi)
\pi := \pi'
```

Iterative Improvement

```
\pi := {\sf GenerateInitialSolution}\,() while \pi is not a local optimum do choose a neighbour \pi' \in \mathcal{N}(\pi) such that F(\pi') < F(\pi) \pi := \pi'
```

Which neighbour to choose? Pivoting rule

- Best Improvement: choose best from all neighbours of s
 - ✓ Better quality
 - Requires evaluation of all neighbours in each step
- First improvement: evaluate neighbours in fixed order and choose first improving neighbour.
 - More efficient
 - Order of evaluation may impact quality / performance

Iterative Improvement

```
\begin{aligned} \pi &:= \texttt{GenerateInitialSolution}\,() \\ \textbf{while} \, \pi &\: \text{is not a local optimum do} \\ &\: \text{choose a neighbour} \, \pi' \in \mathcal{N}(\pi) \, \text{such that} \, F(\pi') < F(\pi) \\ &\: \pi := \pi' \end{aligned}
```

Which neighbour to choose? Pivoting rule

- Best Improvement: choose best from all neighbours of s
 - ✓ Better quality
 - X Requires evaluation of all neighbours in each step
- First improvement: evaluate neighbours in fixed order and choose first improving neighbour.
 - More efficient
 - X Order of evaluation may impact quality / performance

Iterative Improvement

```
\pi:= GenerateInitialSolution() while \pi is not a local optimum do choose a neighbour \pi'\in\mathcal{N}(\pi) such that F(\pi')< F(\pi) \pi:=\pi'
```

Which neighbour to choose? Pivoting rule

- Best Improvement: choose best from all neighbours of s
 - Better quality
 - Requires evaluation of all neighbours in each step
- First improvement: evaluate neighbours in fixed order and choose first improving neighbour.
 - More efficient
 - Order of evaluation may impact quality / performance

Iterative Improvement

```
\begin{aligned} \pi &:= \texttt{GenerateInitialSolution}\,() \\ \textbf{while} \, \pi &\: \text{is not a local optimum do} \\ &\: \text{choose a neighbour} \, \pi' \in \mathcal{N}(\pi) \, \text{such that} \, F(\pi') < F(\pi) \\ &\: \pi := \pi' \end{aligned}
```

Initial solution

- Random permutation
- Simplified RZ heuristic

Iterative Improvement

```
\pi := {\sf GenerateInitialSolution} () while \pi is not a local optimum do choose a neighbour \pi' \in \mathcal{N}(\pi) such that F(\pi') < F(\pi) \pi := \pi'
```

Simplified RZ heuristic

Start by ordering the jobs in ascending order of their weighted sum of processing times.

Construct the solution by inserting **one job at a time** in the position that minimize the WCT.

The weighted sum of processing times of job J_i is computed as $\frac{1}{w_i} \cdot \sum_{j=1}^{m} p_{ij}$

Note: the solution is constructed incrementally, and at each iteration C_i corresponds to the makespan of the partial solution.

$$C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h}$$

$$C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1}$$

$$C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j}$$

$$T_{i} = \frac{1}{w_{i}} \cdot \sum_{1}^{m} p_{ij}$$

Job	J_1	J_2	J_3	J_4	J_5
p_{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
147	- 1	2	1	2	2

Starting sequence =
$$\{J_3 J_5 J_2 J_4 J_1\}$$

Initial Solution = $\{J_4 J_3 J_5 J_2 J_1\}$

$$j = 1, \dots m$$

$$k = 1, \dots n$$

$$k = 2, \dots n, j = 2, \dots m$$

Step 1 $\pi = \{\}$	
	WCT = 65
	WCT = 65
Step 2 $\pi = \{J_3 J_5\}$	
	WCT = 98
	WCT = 94
	WCT = 91
	WCT = 123
	WCT = 130
	WCT = 125
	WCT = 125
Step 4 $\pi = \{J_4 \ J_3 \ J_5 \ J_2\}$	
	WCT = 167
	WCT = 161
	WCT = 163
	WCT = 151
	WCT = 144

$$C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h}$$

$$C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1}$$

$$C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j}$$

$$T_{i} = \frac{1}{w_{i}} \cdot \sum_{1}^{m} p_{ij}$$

3.5

Job	<i>J</i> ₁	J ₂	J ₃	J_4	J 5
<i>p</i> _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
W _i	1	2	4	2	3

Starting sequence =
$$\{J_3 J_5 J_2 J_4 J_1\}$$

Initial Solution = $\{J_4 J_3 J_5 J_2 J_1\}$

$$j = 1, \dots m$$

$$k = 1, \dots n$$

$$k = 2, \dots n, j = 2, \dots m$$

Step 1 $\pi = \{\}$	
	WCT = 65
	WCT = 65
Step 2 $\pi = \{J_3 \ J_5\}$	
	WCT = 98
	WCT = 94
	WCT = 91
	WCT = 123
	WCT = 130
	WCT = 125
	WCT = 125
Step 4 $\pi = \{J_4 \ J_3 \ J_5 \ J_2\}$	
	WCT = 167
	WCT = 161
	WCT = 163
	WCT = 151
	WCT = 144

2.33

$$C_{\pi(1)j} = \sum_{h=1}^{j} \rho_{\pi(1)h}$$

$$C_{\pi(k)1} = \sum_{h=1}^{k} \rho_{\pi(h)1}$$

$$C_{\pi(k)j} = \max_{j} \{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + \rho_{\pi(k)j}$$

$$T_{i} = \frac{1}{w_{i}} \cdot \sum_{1}^{m} \rho_{ij}$$

Job	J_1	J_2	J_3	J_4	J 5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
W _i	1	2	4	2	3
Ti	9	3	2	3.5	2.33

Starting sequence =
$$\{J_3 J_5 J_2 J_4 J_1\}$$

Initial Solution = $\{J_4 J_3 J_5 J_2 J_1\}$

$$j = 1, \dots m$$

$$k = 1, \dots n$$

$$k = 2, \dots n, j = 2, \dots m$$

Step 1 $\pi = \{\}$	
	WCT = 65
	WCT = 65
Step 2 $\pi = \{J_3 \ J_5\}$	
	WCT = 98
	WCT = 94
	WCT = 91
	WCT = 123
	WCT = 130
	WCT = 125
	WCT = 125
Step 4 $\pi = \{J_4 \ J_3 \ J_5 \ J_2\}$	
	WCT = 167
	WCT = 161
	WCT = 163
	WCT = 151
	WCT = 144

$$C_{\pi(1)j} = \sum_{h=1}^{J} p_{\pi(1)h}$$

$$C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1}$$

$$C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j}$$

$$T_{i} = \frac{1}{w_{i}} \cdot \sum_{1}^{m} p_{ij}$$

Job	<i>J</i> ₁	J ₂	J ₃	J_4	J 5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
W _i	1	2	4	2	3

Starting sequence =
$$\{J_3 \ J_5 \ J_2 \ J_4 \ J_1\}$$

Initial Solution = $\{J_4 \ J_5 \ J_6 \ J_6 \ J_6 \}$

3 2 3.5

$$\{J_4 \ J_3 \ J_5 \ J_2 \ J_1\}$$

 $\{J_3 J_5\}$ WCT = 65

Step 1 $\pi = \{\}$

k = 2, ..., n, j = 2, ..., m

 $j=1,\ldots m$

 $k=1,\ldots,n$

 $\{J_5 J_3\}$ WCT = 65

2.33

$$C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h}$$

$$C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1}$$

$$C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j}$$

$$T_{i} = \frac{1}{w_{i}} \cdot \sum_{1}^{m} p_{ij}$$

Job	J_1	J ₂	J ₃	J_4	J ₅
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
W _i	1	2	4	2	3

Starting sequence =
$$\{J_3 J_5 J_2 J_4 J_1\}$$

Initial Solution = $\{J_4 J_3 J_5 J_2 J_1\}$

3.5

$$j = 1, \dots m$$

$$k = 1, \dots n$$

$$k = 2, \dots n, j = 2, \dots m$$

Step 1 $\pi = \{\}$	
$\{J_3 J_5\}$	WCT = 65
$\{J_5 J_3\}$	WCT = 65
Step 2 $\pi = \{J_3 J_5\}$	
	WCT = 98
	WCT = 94
	WCT = 91
	WCT = 123
	WCT = 130
	WCT = 125
	WCT = 125
Step 4 $\pi = \{J_4 \ J_3 \ J_5 \ J_2\}$	
	WCT = 167
	WCT = 161
	WCT = 163
	WCT = 151
	WCT = 144

2.33

$$C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h}$$

$$C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1}$$

$$C_{\pi(k)j} = \max_{j} \{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j}$$

$$T_{i} = \frac{1}{w_{i}} \cdot \sum_{1}^{m} p_{ij}$$

Job	J_1	J_2	J_3	J_4	J_5
<i>p</i> _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
	1	2	4	2	3
Ti	9	3	2	3.5	2.33

Starting sequence =
$$\{J_3 J_5 J_2 J_4 J_1\}$$

Initial Solution = $\{J_4 J_3 J_5 J_2 J_1\}$

$$j = 1, \dots m$$

$$k = 1, \dots n$$

$$k = 2, \dots n, j = 2, \dots m$$

Step 1 $\pi = \{\}$	
$\{J_3 \ J_5\}$	WCT = 65
$\{J_5 J_3\}$	WCT = 65
Step 2 $\pi = \{J_3 \ J_5\}$	
$\{J_2 \ J_3 \ J_5\}$	WCT = 98
$\{J_3 \ J_2 \ J_5\}$	WCT = 94
$\{J_3 \ J_5 \ J_2\}$	WCT = 91
	WCT = 123
	WCT = 130
	WCT = 125
	WCT = 125
Step 4 $\pi = \{J_4 \ J_3 \ J_5 \ J_2\}$	
	WCT = 167
	WCT = 161
	WCT = 163
	WCT = 151
	WCT = 144

$$C_{\pi(1)j} = \sum_{h=1}^{j} \rho_{\pi(1)h} \\ C_{\pi(k)1} = \sum_{h=1}^{k} \rho_{\pi(h)1} \\ C_{\pi(k)j} = \max_{j} \left\{ C_{\pi(k-1)j}, C_{\pi(k)(j-1)} \right\} + \rho_{\pi(k)j} \\ T_{i} = \frac{1}{w_{i}} \cdot \sum_{1}^{m} \rho_{ij}$$

Job	J_1	J ₂	J ₃	J_4	J 5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
Wi	1	2	4	2	3
Ti	9	3	2	3.5	2.33

Starting sequence =
$$\{J_3 J_5 J_2 J_4 J_1\}$$

Initial Solution = $\{J_4 J_3 J_5 J_2 J_1\}$

$$j = 1, \dots m$$

$$k = 1, \dots n$$

$$k = 2, \dots n, j = 2, \dots m$$

Step 1 $\pi = \{\}$ $\{J_3 \ J_5\}$ $\{J_5 \ J_3\}$ Step 2 $\pi = \{J_3 \ J_5\}$	<i>WCT</i> = 65 <i>WCT</i> = 65
$\{J_2 J_3 J_5\}$	<i>WCT</i> = 98
$\{J_3 \ J_2 \ J_5\}$	WCT = 94
$\{J_3 \ J_5 \ J_2\}$	WCT = 91
Step 3 $\pi = \{J_3 \ J_5 \ J_2\}$	
	WCT = 123
	WCT = 130
	WCT = 125
	WCT = 125
Step 4 $\pi = \{J_4 \ J_3 \ J_5 \ J_2\}$	
	WCT = 167
	WCT = 161
	WCT = 163
	WCT = 151
	WCT = 144

$$C_{\pi(1)j} = \sum_{h=1}^{j} \rho_{\pi(1)h}$$

$$C_{\pi(k)1} = \sum_{h=1}^{k} \rho_{\pi(h)1}$$

$$C_{\pi(k)j} = \max_{j} \left\{ C_{\pi(k-1)j}, C_{\pi(k)(j-1)} \right\} + \rho_{\pi(k)j}$$

$$T_{i} = \frac{1}{w_{i}} \cdot \sum_{1}^{m} \rho_{ij}$$

Job	J_1	J_2	J_3	J_4	J 5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
W_i	1	2	4	2	3
Ti	9	3	2	3.5	2.33

Starting sequence =
$$\{J_3 J_5 J_2 J_4 J_1\}$$

Initial Solution = $\{J_4 J_3 J_5 J_2 J_1\}$

$$j = 1, \dots m$$

$$k = 1, \dots n$$

$$k = 2, \dots n, j = 2, \dots m$$

Step 1 $\pi = \{\}$	
$\{J_3 \ J_5\}$	WCT = 65
$\{J_5 J_3\}$	WCT = 65
Step 2 $\pi = \{J_3 \ J_5\}$	
$\{J_2 J_3 J_5\}$	WCT = 98
$\{J_3 \ J_2 \ J_5\}$	WCT = 94
$\{J_3 J_5 J_2\}$	WCT = 91
Step 3 $\pi = \{J_3 \ J_5 \ J_2\}$	
$\{J_4 J_3 J_5 J_2\}$	WCT = 123
$\{J_3 \ J_4 \ J_5 \ J_2\}$	WCT = 130
$\{J_3 J_5 J_4 J_2\}$	WCT = 125
{J ₃ J ₅ J ₂ J ₄ }	WCT = 125
Step 4 $\pi = \{J_4 \ J_3 \ J_5 \ J_2\}$	
	WCT = 167
	WCT = 161
	WCT = 163
	WCT = 151
	WCT = 144

$$C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h}$$

$$C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1}$$

$$C_{\pi(k)j} = \max_{j} \{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j}$$

$$T_{i} = \frac{1}{w_{i}} \cdot \sum_{1}^{m} p_{ij}$$

Job	J_1	J_2	J_3	J_4	J 5
p_{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
W _i	1	2	4	2	3
Ti	9	3	2	3.5	2.33

Starting sequence =
$$\{J_3 J_5 J_2 J_4 J_1\}$$

Initial Solution = $\{J_4 J_3 J_5 J_2 J_1\}$

$$j = 1, \dots m$$

$$k = 1, \dots n$$

$$k = 2, \dots n, j = 2, \dots m$$

Step 1 $\pi = \{\}$	
$\{J_3 \ J_5\}$	WCT = 65
$\{J_5 J_3\}$	WCT = 65
Step 2 $\pi = \{J_3 \ J_5\}$	
$\{J_2 \ J_3 \ J_5\}$	WCT = 98
$\{J_3 \ J_2 \ J_5\}$	WCT = 94
$\{J_3 \ J_5 \ J_2\}$	WCT = 91
Step 3 $\pi = \{J_3 \ J_5 \ J_2\}$	
$\{J_4 \ J_3 \ J_5 \ J_2\}$	WCT = 123
$\{J_3 \ J_4 \ J_5 \ J_2\}$	WCT = 130
$\{J_3 \ J_5 \ J_4 \ J_2\}$	WCT = 125
$\{J_3 \ J_5 \ J_2 \ J_4\}$	WCT = 125
Step 4 $\pi = \{J_4 \ J_3 \ J_5 \ J_2\}$	
	WCT = 167
	WCT = 161
	WCT = 163
	WCT = 151
	WCT = 144

$$C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} \\ C_{\pi(k)j} = \max_{k} \{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} \\ T_{i} = \frac{1}{w_{i}} \cdot \sum_{1}^{m} p_{ij}$$

Job	J_1	J_2	J_3	J_4	J 5
p_{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
W _i	1	2	4	2	3
Ti	9	3	2	3.5	2.33

Starting sequence =
$$\{J_3 \ J_5 \ J_2 \ J_4 \ J_1\}$$

Initial Solution = $\{J_4 \ J_3 \ J_5 \ J_2 \ J_1\}$

$$j = 1, \dots m$$

$$k = 1, \dots n$$

$$k = 2, \dots n, j = 2, \dots m$$

Step 1 $\pi = \{\}$	
$\{J_3 \ J_5\}$	WCT = 65
$\{J_5 J_3\}$	WCT = 65
Step 2 $\pi = \{J_3 \ J_5\}$	
$\{J_2 \ J_3 \ J_5\}$	WCT = 98
$\{J_3 \ J_2 \ J_5\}$	WCT = 94
$\{J_3 \ J_5 \ J_2\}$	WCT = 91
Step 3 $\pi = \{J_3 \ J_5 \ J_2\}$	
$\{J_4 \ J_3 \ J_5 \ J_2\}$	WCT = 123
$\{J_3 \ J_4 \ J_5 \ J_2\}$	WCT = 130
$\{J_3 J_5 J_4 J_2\}$	WCT = 125
$\{J_3 \ J_5 \ J_2 \ J_4\}$	WCT = 125
Step 4 $\pi = \{J_4 \ J_3 \ J_5 \ J_2\}$	
$\{J_1 \ J_4 \ J_3 \ J_5 \ J_2\}$	WCT = 167
$\{J_4 \ J_1 \ J_3 \ J_5 \ J_2\}$	WCT = 161
$\{J_4\ J_3\ J_1\ J_5\ J_2\}$	WCT = 163
$\{J_4\ J_3\ J_5\ J_1\ J_2\}$	WCT = 151
$\{J_4\ J_3\ J_5\ J_2\ J_1\}$	WCT = 144

$$C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} \\ C_{\pi(k)j} = \max_{j} \left\{ C_{\pi(k-1)j}, C_{\pi(k)(j-1)} \right\} + p_{\pi(k)j} \\ T_{i} = \frac{1}{w_{i}} \cdot \sum_{1}^{m} p_{ij}$$

3.5

Job	J ₁	J ₂	J ₃	J_4	J 5
p_{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
W_i	1	2	4	2	3

Starting sequence = $\{J_3 J_5 J_2 J_4 J_1\}$ Initial Solution = $\{J_4 J_3 J_5 J_2 J_1\}$

$$j = 1, \dots m$$

$$k = 1, \dots n$$

$$k = 2, \dots n, j = 2, \dots m$$

Step 1 $\pi = \{\}$ $\{J_3 \ J_5\}$	<i>WCT</i> = 65
$\{J_5 J_3\}$	WCT = 65
	7707 = 00
Step 2 $\pi = \{J_3 \ J_5\}$	14/OT 00
$\{J_2 \ J_3 \ J_5\}$	WCT = 98
$\{J_3 J_2 J_5\}$	WCT = 94
$\{J_3 J_5 J_2\}$	WCT = 91
Step 3 $\pi = \{J_3 J_5 J_2\}$	
$\{J_4 \ J_3 \ J_5 \ J_2\}$	WCT = 123
$\{J_3 \ J_4 \ J_5 \ J_2\}$	WCT = 130
$\{J_3 J_5 J_4 J_2\}$	WCT = 125
(J ₃ J ₅ J ₂ J ₄)	WCT = 125
Step 4 $\pi = \{J_4 \ J_3 \ J_5 \ J_2\}$	
$\{J_1 \ J_4 \ J_3 \ J_5 \ J_2\}$	WCT = 167
$\{J_4 \ J_1 \ J_3 \ J_5 \ J_2\}$	WCT = 161
$\{J_4 \ J_3 \ J_1 \ J_5 \ J_2\}$	WCT = 163
$\{J_4 \ J_3 \ J_5 \ J_1 \ J_2\}$	WCT = 151
$\{J_4 \ J_3 \ J_5 \ J_2 \ J_1\}$	WCT = 144

2.33

Iterative Improvement

```
\begin{split} \pi &:= \texttt{GenerateInitialSolution}\,(\,) \\ \textbf{while} \, \pi &\: \text{is not a local optimum do} \\ &\: \text{choose a neighbour} \, \pi' \in \mathcal{N}(\pi) \, \text{such that} \, F(\pi') < F(\pi) \\ &\: \pi := \pi' \end{split}
```

Which neighborhood $\mathcal{N}(\pi)$?

- Transpose
- Exchange
- Insertion

transpose neighbourhood

exchange neighbourhood

insert neighbourhood

exchange neighbourhood

Example: Exchange π_i and π_j (i < j), $\pi' = \text{Exchange}(\pi, i, j)$

Only jobs after i are affected!

Do not recompute the evaluation function from scratch!

Equivalent speed-ups with Transpose and Insertion

exchange neighbourhood

Example: Exchange π_i and π_j (i < j), $\pi' = \text{Exchange}(\pi, i, j)$

Only jobs after i are affected!

Do not recompute the evaluation function from scratch!

Equivalent speed-ups with Transpose and Insertion

exchange neighbourhood

Example: Exchange π_i and π_j (i < j), $\pi' = \text{Exchange}(\pi, i, j)$

Only jobs after i are affected!

Do not recompute the evaluation function from scratch! Equivalent speed-ups with Transpose and Insertion

exchange neighbourhood

Example: Exchange π_i and π_j (i < j), $\pi' = \text{Exchange}(\pi, i, j)$

Only jobs after i are affected!

Do not recompute the evaluation function from scratch!

Equivalent speed-ups with Transpose and Insertion

exchange neighbourhood

Example: Exchange π_i and π_j (i < j), $\pi' = \text{Exchange}(\pi, i, j)$

Only jobs after i are affected!

Do not recompute the evaluation function from scratch!

Equivalent speed-ups with Transpose and Insertion

Instances

- PFSP instances with 50 and 100 jobs, and 20 machines.
- More info: http://iridia.ulb.ac.be/~stuetzle/Teaching/HO/

Experiments

Apply each algorithm *k* once to each instance *i* and compute:

- Relative percentage deviation $\Delta_{ki} = 100 \cdot \frac{\cos t_{ki} \text{best-known}_i}{\text{best-known}_i}$
- ② Computation time (t_{ki})

Report for each algorithm k

- Average relative percentage deviation
- Sum of computation time

Instances

- PFSP instances with 50 and 100 jobs, and 20 machines.
- More info: http://iridia.ulb.ac.be/~stuetzle/Teaching/HO/

Experiments

Apply each algorithm k once to each instance i and compute:

- lacktriangled Relative percentage deviation $\Delta_{ki} = 100 \cdot rac{\mathrm{cost}_{ki} \mathrm{best\text{-}known}_i}{\mathrm{best\text{-}known}_i}$
- 2 Computation time (t_{ki})

Report for each algorithm k

- Average relative percentage deviation
- Sum of computation time

Instances

- PFSP instances with 50 and 100 jobs, and 20 machines.
- More info: http://iridia.ulb.ac.be/~stuetzle/Teaching/HO/

Experiments

Apply each algorithm k once to each instance i and compute:

- Relative percentage deviation $\Delta_{ki} = 100 \cdot \frac{\text{cost}_{ki} \text{best-known}_i}{\text{best-known}_i}$
- 2 Computation time (t_{ki})

Report for each algorithm *k*

- Average relative percentage deviation
- Sum of computation time

Is there a statistically significant difference between the solution quality generated by the different algorithms?

Statistical test

- Paired t-test
- Wilcoxon signed-rank test

Is there a statistically significant difference between the solution quality generated by the different algorithms?

- Statistical hypothesis tests are used to assess the validity of statements about properties of or relations between sets of statistical data.
- The statement to be tested (or its negation) is called the *null hypothesis* (H₀) of the test.
 Example: For the Wilcoxon signed-rank test, the null hypothesis is that 'the median of the differences is zero'.
- The *significance level* (α) determines the maximum allowable probability of incorrectly rejecting the null hypothesis. Typical values of α are 0.05 or 0.01.

Is there a statistically significant difference between the solution quality generated by the different algorithms?

- Statistical hypothesis tests are used to assess the validity of statements about properties of or relations between sets of statistical data.
- The statement to be tested (or its negation) is called the *null hypothesis* (H₀) of the test.
 - *Example:* For the Wilcoxon signed-rank test, the null hypothesis is that 'the median of the differences is zero'.
- The *significance level* (α) determines the maximum allowable probability of incorrectly rejecting the null hypothesis. Typical values of α are 0.05 or 0.01.

Is there a statistically significant difference between the solution quality generated by the different algorithms?

- Statistical hypothesis tests are used to assess the validity of statements about properties of or relations between sets of statistical data.
- The statement to be tested (or its negation) is called the *null hypothesis* (H₀) of the test.
 Example: For the Wilcoxon signed-rank test, the null hypothesis is that 'the median of the differences is zero'.
- The *significance level* (α) determines the maximum allowable probability of incorrectly rejecting the null hypothesis. Typical values of α are 0.05 or 0.01.

Is there a statistically significant difference between the solution quality generated by the different algorithms?

- Statistical hypothesis tests are used to assess the validity of statements about properties of or relations between sets of statistical data.
- The statement to be tested (or its negation) is called the *null hypothesis* (H₀) of the test.
 Example: For the Wilcoxon signed-rank test, the null hypothesis is that 'the median of the differences is zero'.
- The significance level (α) determines the maximum allowable probability of incorrectly rejecting the null hypothesis.

Is there a statistically significant difference between the solution quality generated by the different algorithms?

- Statistical hypothesis tests are used to assess the validity of statements about properties of or relations between sets of statistical data.
- The statement to be tested (or its negation) is called the *null hypothesis* (H₀) of the test.
 Example: For the Wilcoxon signed-rank test, the null hypothesis is that 'the median of the differences is zero'.
- The *significance level* (α) determines the maximum allowable probability of incorrectly rejecting the null hypothesis. Typical values of α are 0.05 or 0.01.

Is there a statistically significant difference between the solution quality generated by the different algorithms?

- The application of a test to a given data set results in a p-value, which represents the probability that the null hypothesis is incorrectly rejected.
- The null hypothesis is rejected iff this p-value is smaller than the previously chosen significance level.
- Most common statistical hypothesis tests are already implemented in statistical software such as the R software environment (http://www.r-project.org/).

Is there a statistically significant difference between the solution quality generated by the different algorithms?

- The application of a test to a given data set results in a p-value, which represents the probability that the null hypothesis is incorrectly rejected.
- The null hypothesis is rejected iff this p-value is smaller than the previously chosen significance level.
- Most common statistical hypothesis tests are already implemented in statistical software such as the R software environment (http://www.r-project.org/).

Is there a statistically significant difference between the solution quality generated by the different algorithms?

- The application of a test to a given data set results in a p-value, which represents the probability that the null hypothesis is incorrectly rejected.
- The null hypothesis is rejected iff this p-value is smaller than the previously chosen significance level.
- Most common statistical hypothesis tests are already implemented in statistical software such as the R software environment (http://www.r-project.org/).

Is there a statistically significant difference between the solution quality generated by the different algorithms?

```
best.known <- read.csv ("bestSolutions.txt")
a.cost <- read.table("ii-best-ex-rand.dat")$V1
a.cost <- 100 * (a.cost - best.known) / best.known$BS
b.cost <- read.table("ii-best-ins-rand.dat")$V1
b.cost <- 100 * (b.cost - best.known) / best.known$BS
t.test (a.cost, b.cost, paired=T)$p.value
[1] 0.8819112
wilcox.test (a.cost, b.cost, paired=T)$p.value
[1] 0.0019212</pre>
```

Is there a statistically significant difference between the solution quality generated by the different algorithms?

```
best.known <- read.csv ("bestSolutions.txt")
a.cost <- read.table("ii-best-ex-rand.dat")$V1
a.cost <- 100 * (a.cost - best.known) / best.known$BS
b.cost <- read.table("ii-best-ins-rand.dat")$V1
b.cost <- 100 * (b.cost - best.known) / best.known$BS
t.test (a.cost, b.cost, paired=T)$p.value
[1] 0.8819112
wilcox.test (a.cost, b.cost, paired=T)$p.value
[1] 0.0019212</pre>
```

Is there a statistically significant difference between the solution quality generated by the different algorithms?

```
best.known <- read.csv ("bestSolutions.txt")
a.cost <- read.table("ii-best-ex-rand.dat")$V1
a.cost <- 100 * (a.cost - best.known) / best.known$BS
b.cost <- read.table("ii-best-ins-rand.dat")$V1
b.cost <- 100 * (b.cost - best.known) / best.known$BS
t.test (a.cost, b.cost, paired=T)$p.value
[1] 0.8819112
wilcox.test (a.cost, b.cost, paired=T)$p.value
[1] 0.0019212</pre>
```

Is there a statistically significant difference between the solution quality generated by the different algorithms?

```
best.known <- read.csv ("bestSolutions.txt")
a.cost <- read.table("ii-best-ex-rand.dat")$V1
a.cost <- 100 * (a.cost - best.known) / best.known$BS
b.cost <- read.table("ii-best-ins-rand.dat")$V1
b.cost <- 100 * (b.cost - best.known) / best.known$BS
t.test (a.cost, b.cost, paired=T)$p.value
[1] 0.8819112
wilcox.test (a.cost, b.cost, paired=T)$p.value
[1] 0.0019212</pre>
```

Is there a statistically significant difference between the solution quality generated by the different algorithms?

```
best.known <- read.csv ("bestSolutions.txt")
a.cost <- read.table("ii-best-ex-rand.dat")$V1
a.cost <- 100 * (a.cost - best.known) / best.known$BS
b.cost <- read.table("ii-best-ins-rand.dat")$V1
b.cost <- 100 * (b.cost - best.known) / best.known$BS
t.test (a.cost, b.cost, paired=T)$p.value
[1] 0.8819112
wilcox.test (a.cost, b.cost, paired=T)$p.value
[1] 0.0019212</pre>
```

Is there a statistically significant difference between the solution quality generated by the different algorithms?

```
best.known <- read.csv ("bestSolutions.txt")
a.cost <- read.table("ii-best-ex-rand.dat")$V1
a.cost <- 100 * (a.cost - best.known) / best.known$BS
b.cost <- read.table("ii-best-ins-rand.dat")$V1
b.cost <- 100 * (b.cost - best.known) / best.known$BS
t.test (a.cost, b.cost, paired=T)$p.value
[1] 0.8819112
wilcox.test (a.cost, b.cost, paired=T)$p.value
[1] 0.0019212</pre>
```

Exercise 1.2 VND algorithms for the PFSP

Implement 4 VND algorithms for the PFSP

- Pivoting rule: first-improvement
- Neighborhood order:
 - $\mathbf{0}$ transpose \rightarrow exchange \rightarrow insert
 - 2 transpose \rightarrow insert \rightarrow exchange
- Initial solution:
 - Random permutation
 - Simplified RZ heuristic

Exercise 1.2 VND algorithms for the PFSP

Variable Neighbourhood Descent (VND)

```
k neighborhoods \mathcal{N}_1, \ldots, \mathcal{N}_k
\pi := GenerateInitialSolution()
i := 1
repeat
   choose the first improving neighbor \pi' \in \mathcal{N}_i(\pi)
   if \nexists \pi' then
      i := i + 1
   else
      \pi := \pi'
      i := 1
until i > k
```

Exercise 1.2 VND algorithms for the PFSP

Implement 4 VND algorithms for the PFSP

- Instances: Same as 1.1
- Experiments: one run of each algorithm per instance
- Report: Same as 1.1
- Statistical tests: Same as 1.1

- Instances and barebone code will be soon available at: http://iridia.ulb.ac.be/~stuetzle/Teaching/HO/
- Deadline is April 4 (23:59)
- Questions in the meantime? federico.pagnozzi@ulb.ac.be