Московский физико-технический институт (государственный университет) Факультет общей и прикладной физики

Лабораторная работа № 4.5.2 (Общая физика: оптика)

Интерференция лазерного излучения

Работу выполнил: Иванов Кирилл, 625 группа

г. Долгопрудный 2018 год

Цель работы: исследование видности интерференционной картины излучения гелий-неонового лазера и определение длины когерентности излучения.

Оборудование: Не -Nе-лазер, интерферометр Майкельсона с подвижным зеркалом, фото-диод с усилителем, осциллограф, поляроид, линейка.

1. Теоретическое введение

Важный параметр интерференционной картины — ее видимость:

$$V = \frac{I_{max} - I_{min}}{I_{max} + I_{min}} \tag{1}$$

Удобно представлять видимость в виде произведения функций различных параметров установки/системы:

$$V = V_1 V_2 V_3 \tag{2}$$

Рассмотрим эти функции подробнее. Первая из них отвечает за отношение интенсивностей интерферирующих волн:

$$V_1 = \frac{2\sqrt{\delta}}{1+\delta}, \quad \delta = \frac{B_m^2}{A_m^2} \tag{3}$$

Здесь A_m, B_m — амплитуды волн. Вторая функция учитывает влияние разности хода и спектрального состава волн:

$$\gamma_2 = \frac{\sum_n A_n^2 \cos \frac{2\pi\Delta\nu nl}{c}}{\sum_n A_n^2} \sim e^{-(\pi\Delta Fl/c^2)}$$

Рис. 1: Качественный график V_2

Здесь l — разность хода, $\Delta \nu$ — спектральный состав излучения, A_n^2 — интенсивность мод. Оценка приведена из перехода к непрерывному пределу. На графике (рис.1) показан вид $V_2(l)$, позволяющий получить расстояние L между зеркалами резонатора и межмодовое расстояние $\Delta \nu$. Величина $l_{1/2}$ позволяет оценить диапазон частот ΔF . Формулы связи межмодового расстояния и длины L, а также $l_{1/2}$ и ΔF таковы:

$$\Delta \nu = \frac{c}{2L}, \quad l_{1/2} \approx \frac{0.26c}{\Delta F}$$
 (4)

Последняя функция — зависимость от угла поляризации α :

$$V_3 = |\cos \alpha|$$

2. Экспериментальная установка

2.1 Описание установки

Для получения интерференционной картины используется интерферометр Майкельсона, смонтированный на вертикально стоящей массивной металлической плите. Схема установки приведена на рисунке.

Схема установки. З, З₁, З₂, З₃ — зеркала. Π_1 и Π_2 — поляроиды. Б₁ и Б₂ — блоки № 1 и 2. ДК — делительный кубик, РФ — ромб Френеля. $\Phi \Pi$ — фотодиод, Э — экран, ПК — пьезокерамика, Π — линза

Источником света служит гелий-неоновый лазер (средняя длина волны $\lambda_0=632,8$ нм). Пучок лазерного излучения отражается от зеркала 3 и проходит призму полного внутреннего отражения РФ (ромб Френеля), которая превращает линейную поляризацию излучения в круговую. Если в установке используется лазер, излучающий неполяризованный свет, то ромб Френеля не нужен, но он и не мешает выполнению работы. Далее лазерное излучение делится диагональной плоскостью делительного кубика ДК на два пучка.

Пучок 1 проходит поляроид Π_1 , отражается под небольшим углом от зеркала 3_1 , снова проходит поляроид Π_1 и, частично отражаясь от диагональной плоскости делительного кубика, выходит из интерферометра, попадает на зеркало 3_3 и далее на фотодиод Φ Д. Зеркало 3_1 наклеено на пьезокерамику Π К, которая может осуществлять малые колебания зеркала вдоль направления распространения падающего пуч- ка. Поляроид и зеркало с пьезокерамикой собраны в единый блок B_1 , который крепится к вертикально стоящей плите. В блоке B_1 имеются юстировочные винты, которые позволяют регулировать угол наклона зеркала 3_1 . В установке

предусмотрена возможность вращения поляро- ида Π_1 . Угол поворота отсчитывается по шкале, нанесённой на оправу поляроида. Пучок 2 проходит линзу Π_2 , поляроид Π_2 , отражается от зеркала Π_2 , снова проходит поляроид Π_2 , линзу Π_2 и делительный кубик, выходит из интерферометра, попадает на зеркало Π_2 и далее на фотодиод Π_2 . Та- ким образом, от зеркала Π_2 под небольшим углом друг к другу идут на фотодиод два пучка, прошедшие разные плечи интерферометра. Меж- ду ними происходит интерференция и образуются интерференционные полосы. Линза Π_2 и зеркало Π_2 собраны в единый блок Π_2 .

Зеркало 3_2 установлено в фокальной плоскости линзы Л. Это сделано для того, чтобы падающий и выходящий из блока 6_2 пучки всегда были параллельны друг другу. Блок 6_2 может перемещаться вдоль пучка 2 по штанге, жёстко связанной с плитой интерферометра. Длина штанги 90 см. В установке предусмотрена возможность небольшого поперечно- го перемещения блока 6_2 , что позволяет регулировать расстояние меж- ду падающим и выходящим из блока пучками. При измерениях блок 6_2 крепится к штанге при помощи двух винтов. Вдоль штанги нанесены деления через один сантиметр. При перемещении блока 6_2 вдоль штанги на величину 6_1 0 геометрическая разность хода между пучками 6_2 1 изменяется на величину 6_2 2 геометрическая разность хода между пучками 6_2 2 изменяется на величину 6_2 3 геометрическая разность хода между пучками 6_2 3 изменяется на величину 6_2 4 геометрическая разность хода между пучками 6_2 4 изменяется на величину 6_2 5 геометрическая разность хода между пучками 6_2 6 изменяется на величину 6_2 7 геометрическая разность хода между пучками 6_2 8 геометричес

Сферическое зеркало 3_3 с небольшим фокусным расстоянием увеличивает картину интерференционных полос и позволяет наблюдать её на экране 3, расположенном в плоскости входного окна фотодиода. Свет попадает на фотодиод Φ Д через узкую щель в центре экрана. Щель ориентируется параллельно интерференционным полосам. Ширина щели меньше расстояния между полосами. Сигнал фотодиода усиливается и подаётся на вход осциллографа. Для питания усилителя сигнала фотодиода и управления пьезокерамикой используется блок питания БП.

На пьезокерамику подаётся напряжение с частотой 50 Гц. При этом её длина изменяется с частотой 100 Гц. Величина удлинения зависит от приложенного напряжения и регулируется ручкой «Качание» на блоке питания. Обычно удлинение составляет несколько длин волн света. На эту величину перемещается вдоль пучка 1 зеркало 3_1 . Интерференционная картина смещается на ширину полосы (одно колебание на экране осциллографа), если зеркало 3_1 смещается на $\lambda_0/2 \sim 0.3$ мкм. При измерениях через входную щель фотодиода последовательно проходит несколько полос интерференционной картины, а на экране осциллографа наблюдаются колебания с изменяющимся периодом.

2.2 Методика измерения

Рис. 2: Сигнал фотодиода на осциллографе

Осциллограф мы используем для нахождения следующих вели- чин: фоновой засветки (линия 0 — перекрыты оба пучка 1 и 2); интенсивность света каждого из пучков (линии 1 или 2 — перекрыт пучок 2 или 1); максимума и минимума интенсивности интерференционной картины (открыты оба пучка). При этом параметр δ из (3), определяется отношением

$$\delta = \frac{h_1}{h_2}$$

Понятно, что из физического смысла, наша видимость рассчитывается очевидным образом, согласно формуле (1), так:

$$V = \frac{h_4 - h_3}{h_4 + h_3} \tag{5}$$

Отсюда, используя (2), мы можем получить наши функции из (5), фиксируя одну из них (т.е. беря равной единице). Так, при $\alpha=0 \Rightarrow V_3=1$,

$$V_2(l) = \frac{V}{V_1} = \frac{h_4 - h_3}{h_4 + h_3} \cdot \frac{h_2}{h_1} \tag{6}$$

А приняв разность хода $l=0 \ \Rightarrow \ V_2=0,$ можно найти

$$V_3(\alpha) = \frac{V}{V_1} = \frac{h_4 - h_3}{h_4 + h_3} \cdot \frac{h_2}{h_1} \tag{7}$$

3. Ход работы

3.1 Изучение поляризации

Поворотами поляризатора Π_1 убедимся, что свет от лазера — поляризованный. Настроив поляроид на минимальную видимость и введя дополнительный поляроид, мы вновь получаем интерференционную картину при его поворотах. Так как картина изменятся, получаем, что поляризация — линейная или круговая, а не хаотическая.

Таблица 1: Измерение зависимости видности от угла

α	h_4	h_3	h_2	h_1	V	δ	V_1	V_3
90	30	24	25	1	0.11	25	0.38	0.29
80	30	24	25	2	0.11	12.5	0.52	0.21
75	31	25	24	3	0.11	8	0.63	0.17
65	36	26	24	6	0.16	4	0.8	0.2
55	42	27	24	10	0.22	2.4	0.91	0.24
45	47	26	24	12	0.29	2	0.94	0.31
35	58	28	24	19	0.35	1.3	0.99	0.35
25	59	34	24	18	0.27	1.3	0.99	0.4
15	64	33	24	20	0.32	1.2	1	0.46
5	66	20	24	20	0.53	1.2	1	0.54

3.2 Измерение зависимости видности от угла

Исследуем зависимость видности интерференционной картины от угла α поворота поляроида Π_1 при нулевой разности хода ($V_2=1$). Для этого измерим величины h_1,h_2,h_3 и h_4 на экране осциллографа. Результаты занесем в таблицу и построим график согласно формуле (7). Значения для δ, V, V_1 получим из формул выше.

Рис. 3: Измерение зависимости видности V_3 от угла поляризации lpha

Из графика видно, что он приближается функцией $\cos^2\alpha$. Это значит, что **поляризация** — **круговая**.

3.3 Измерение зависимости видности от дальности хода

Теперь установим α на максимальную видность и будем перемещать блок B_2 , тем самым изменяя дальность хода x. Аналогично предыдущему пункту измерим величины h_1, h_2, h_3 и h_4 на экране осциллографа. Результаты занесем в таблицу и построим график согласно формуле (6). Значения для δ, V, V_1 получим из формул выше.

Видно, что у нас наблюдается 2 максимума по краям области измерения и некоторые колебания в промежуточной области. А именно, максимумы в области $x_1 \approx (10 \pm 2)$ см и в области $x_2 \approx (75 \pm 2)$ см, откуда получаем следующий результат:

$$L = \frac{1}{2}(x_2 - x_1) = (32.5 \pm 1.4) \text{ cm}$$

Отсюда нетрудно получить и значение $\Delta \nu$ из формулы (4):

Рис. 4: Измерение зависимости видности V_2 от дальности хода x

$$\Delta \nu = \frac{c}{2L} \approx (4.6 \pm 0.2) \cdot 10^8 \; \Gamma$$
ц

Оценим $l_{1/2} \approx 18-10=8\pm 2,$ откуда по формуле (4) получаем

$$2\Delta F = 2 \cdot \frac{0,26c}{l_{1/2}} \approx (19,5 \pm 4,9) \cdot 10^8 \Gamma$$
ц

Тогда для числа одновременно генерируемых лазером продольных волн можно провести оценку:

$$N \approx 1 + \frac{2\Delta F}{\Delta \nu} \approx 5 \pm 1$$

Таблица 2: Измерение зависимости видности от угла

α	h_4	h_3	h_2	h_1	V	δ	V_1	V_2
10	69	20	20	24	0.55	1.2	1	0.55
14	49	28	20	12	0.27	0.6	0.97	0.28
16	62	28	20	24	0.38	1.2	1	0.38
18	76	42	24	36	0.29	1.5	0.98	0.29
20	69	39	24	35	0.28	1.5	0.98	0.28
22	55	42	14	35	0.13	2.5	0.9	0.15
24	45	39	13	30	0.07	2.3	0.92	0.08
26	46	38	8	33	0.1	4.1	0.79	0.12
28	40	36	8	30	0.05	3.8	0.82	0.06
30	32	39	17	23	-0.1	1.4	0.99	0.1
32	30	26	7	22	0.07	3.1	0.86	0.08
34	31	26	7	32	0.09	4.6	0.77	0.11
36	40	26	7	31	0.21	4.4	0.78	0.27
38	40	36	7	30	0.05	4.3	0.78	0.07
40	44	32	7	33	0.16	4.7	0.76	0.21
42	37	35	7	38	0.03	5.4	0.72	0.04
44	49	33	7	40	0.2	5.7	0.71	0.27
46	43	44	7	34	-0.01	4.9	0.75	0.02
48	36	38	7	28	-0.03	4	0.8	0.03
50	56	34	7	48	0.24	6.9	0.67	0.37
52	52	52	7	44	0	6.3	0.69	0
54	48	48	7	39	0	5.6	0.72	0
56	46	44	7	38	0.02	5.4	0.72	0.03
58	50	49	7	43	0.01	6.1	0.69	0.01
60	58	51	19	37	0.06	1.9	0.95	0.07
62	45	34	18	22	0.14	1.2	0.99	0.14
64	31	21	16	8	0.19	0.5	0.94	0.2
66	62	34	16	32	0.29	2	0.94	0.31
68	37	14	16	4	0.45	4	0.8	0.56
70	60	24	16	20	0.43	1.3	0.99	0.43
72	56	19	16	22	0.49	1.4	0.99	0.5
74	43	14	10	19	0.51	1.9	0.95	0.54
76	56	16	20	18	0.56	0.9	1	0.56
78	52	19	21	14	0.46	0.7	0.98	0.47
80	41	18	20	10	0.39	0.5	0.94	0.41