# Методы оптимизации Лекция 8: Метод сопряжённых градиентов, метод тяжёлого шарика и ускоренный градиентный метод Нестерова

#### Александр Катруца

Физтех-школа прикладной математики и информатики Московский физико-технический институт



7 ноября 2022 г.

## На прошлой лекции

- Введение в численные методы оптимизации
- Скорости сходимости методов
- Градиентный спуск
- Понятие о нижних оценках сходимости

## Получение нижних оценок: выпуклый случай

lacktriangle Построим выпуклую L-гладкую функцию f, такую что за k итераций любой метод вида

$$\mathbf{x}_{k+1} = \mathbf{x}_0 + \operatorname{span}(f'(\mathbf{x}_0), \dots, f'(\mathbf{x}_k))$$

сходится НЕ быстрее чем

$$f(\mathbf{x}_{k+1}) - f^* \ge \frac{3L\|\mathbf{x}_0 - \mathbf{x}^*\|_2^2}{32(k+1)^2}$$

## Получение нижних оценок: выпуклый случай

lacktriangle Построим выпуклую L-гладкую функцию f, такую что за k итераций любой метод вида

$$\mathbf{x}_{k+1} = \mathbf{x}_0 + \operatorname{span}(f'(\mathbf{x}_0), \dots, f'(\mathbf{x}_k))$$

сходится НЕ быстрее чем

$$f(\mathbf{x}_{k+1}) - f^* \ge \frac{3L\|\mathbf{x}_0 - \mathbf{x}^*\|_2^2}{32(k+1)^2}$$

Рассмотрим квадратную матрицу вида

$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 0 & \dots & 0 & 0 \\ -1 & 2 & -1 & \dots & 0 & 0 \\ 0 & -1 & 2 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 2 & -1 \\ 0 & 0 & 0 & \dots & -1 & 2 \end{bmatrix}$$

размерности n = 2k + 1

$$\mathbf{x}^{\top} \mathbf{A} \mathbf{x} = x_1^2 + \sum_{i=1}^{n-1} (x_i - x_{i+1})^2 + x_n^2$$

Упражнение: проверьте это равенство!

$$\mathbf{x}^{\top} \mathbf{A} \mathbf{x} = x_1^2 + \sum_{i=1}^{n-1} (x_i - x_{i+1})^2 + x_n^2$$

Упражнение: проверьте это равенство!

ightharpoonup Это значит что  $\mathbf{A}\succeq 0$ 

$$\mathbf{x}^{\top} \mathbf{A} \mathbf{x} = x_1^2 + \sum_{i=1}^{n-1} (x_i - x_{i+1})^2 + x_n^2$$

Упражнение: проверьте это равенство!

- ightharpoonup Это значит что  $\mathbf{A}\succeq 0$
- ▶ Более того  $\mathbf{A} \leq 4\mathbf{I}$ , так как

$$\mathbf{x}^{\top} (\mathbf{A} - 4\mathbf{I}) \mathbf{x} = -x_1^2 - \sum_{i=1}^{n-1} (x_i + x_{i+1})^2 - x_n^2$$

$$\mathbf{x}^{\top} \mathbf{A} \mathbf{x} = x_1^2 + \sum_{i=1}^{n-1} (x_i - x_{i+1})^2 + x_n^2$$

Упражнение: проверьте это равенство!

- ightharpoonup Это значит что  $\mathbf{A}\succeq 0$
- ▶ Более того  $\mathbf{A} \leq 4\mathbf{I}$ , так как  $\mathbf{x}^{\top}(\mathbf{A} 4\mathbf{I})\mathbf{x} = -x_1^2 \sum_{i=1}^{n-1}(x_i + x_{i+1})^2 x_n^2$
- lacktriangle Итак, определим L-гладкую выпуклую функцию

$$f(\mathbf{x}) = \frac{L}{8} \mathbf{x}^{\top} \mathbf{A} \mathbf{x} - \frac{L}{4} \mathbf{e}_1^{\top} \mathbf{x}$$

$$\mathbf{x}^{\top} \mathbf{A} \mathbf{x} = x_1^2 + \sum_{i=1}^{n-1} (x_i - x_{i+1})^2 + x_n^2$$

Упражнение: проверьте это равенство!

- ightharpoonup Это значит что  $\mathbf{A}\succeq 0$
- ▶ Более того  $\mathbf{A} \leq 4\mathbf{I}$ , так как  $\mathbf{x}^{\top}(\mathbf{A} 4\mathbf{I})\mathbf{x} = -x_1^2 \sum_{i=1}^{n-1}(x_i + x_{i+1})^2 x_n^2$
- lacktriangle Итак, определим L-гладкую выпуклую функцию

$$f(\mathbf{x}) = \frac{L}{8} \mathbf{x}^{\top} \mathbf{A} \mathbf{x} - \frac{L}{4} \mathbf{e}_1^{\top} \mathbf{x}$$

lacktriangle Её градиент  $f'(\mathbf{x}) = rac{L}{4}\mathbf{A}\mathbf{x} - rac{L}{4}\mathbf{e}_1$ 

$$\mathbf{x}^{\top} \mathbf{A} \mathbf{x} = x_1^2 + \sum_{i=1}^{n-1} (x_i - x_{i+1})^2 + x_n^2$$

Упражнение: проверьте это равенство!

- ightharpoonup Это значит что  $\mathbf{A}\succeq 0$
- ▶ Более того  $\mathbf{A} \leq 4\mathbf{I}$ , так как  $\mathbf{x}^{\top}(\mathbf{A} 4\mathbf{I})\mathbf{x} = -x_1^2 \sum_{i=1}^{n-1}(x_i + x_{i+1})^2 x_n^2$
- lacktriangle Итак, определим L-гладкую выпуклую функцию

$$f(\mathbf{x}) = \frac{L}{8} \mathbf{x}^{\top} \mathbf{A} \mathbf{x} - \frac{L}{4} \mathbf{e}_1^{\top} \mathbf{x}$$

- lacktriangle Её градиент  $f'(\mathbf{x}) = rac{L}{4}\mathbf{A}\mathbf{x} rac{L}{4}\mathbf{e}_1$
- lacktriangle Условие первого порядка даёт  $\mathbf{A}\mathbf{x}^*=\mathbf{e}_1$

$$\mathbf{x}^{\top} \mathbf{A} \mathbf{x} = x_1^2 + \sum_{i=1}^{n-1} (x_i - x_{i+1})^2 + x_n^2$$

Упражнение: проверьте это равенство!

- ightharpoonup Это значит что  $\mathbf{A}\succeq 0$
- ▶ Более того  $\mathbf{A} \leq 4\mathbf{I}$ , так как  $\mathbf{x}^{\top}(\mathbf{A} 4\mathbf{I})\mathbf{x} = -x_1^2 \sum_{i=1}^{n-1} (x_i + x_{i+1})^2 x_n^2$
- lacktriangle Итак, определим L-гладкую выпуклую функцию

$$f(\mathbf{x}) = \frac{L}{8} \mathbf{x}^{\top} \mathbf{A} \mathbf{x} - \frac{L}{4} \mathbf{e}_1^{\top} \mathbf{x}$$

- lacktriangle Её градиент  $f'(\mathbf{x}) = rac{L}{4}\mathbf{A}\mathbf{x} rac{L}{4}\mathbf{e}_1$
- lacktriangle Условие первого порядка даёт  $\mathbf{A}\mathbf{x}^*=\mathbf{e}_1$
- lacktriangle Из рекурсии можно показать, что  $x_i^* = 1 rac{i}{n+1}$

$$f^* = -\frac{L}{4} \left( 1 - \frac{1}{n+1} \right) + \frac{L}{8} \left( \left( 1 - \frac{1}{n+1} \right)^2 + \frac{n}{(n+1)^2} \right) =$$

$$= -\frac{L}{4} \left( 1 - \frac{1}{n+1} \right) + \frac{L}{8} \left( 1 - \frac{1}{n+1} \right)$$

$$= -\frac{L}{8} \left( 1 - \frac{1}{n+1} \right)$$

$$f^* = -\frac{L}{4} \left( 1 - \frac{1}{n+1} \right) + \frac{L}{8} \left( \left( 1 - \frac{1}{n+1} \right)^2 + \frac{n}{(n+1)^2} \right) =$$

$$= -\frac{L}{4} \left( 1 - \frac{1}{n+1} \right) + \frac{L}{8} \left( 1 - \frac{1}{n+1} \right)$$

$$= -\frac{L}{8} \left( 1 - \frac{1}{n+1} \right)$$

lackbox Пусть  $\mathbf{x}_0=0$ , тогда  $\mathbf{x}_1=lpha\mathbf{e}_1$ , далее  $\mathbf{x}_2=\mathbf{x}_1-lpha(\mathbf{A}\mathbf{x}_1-\mathbf{e}_1)$  и тд

$$f^* = -\frac{L}{4} \left( 1 - \frac{1}{n+1} \right) + \frac{L}{8} \left( \left( 1 - \frac{1}{n+1} \right)^2 + \frac{n}{(n+1)^2} \right) =$$

$$= -\frac{L}{4} \left( 1 - \frac{1}{n+1} \right) + \frac{L}{8} \left( 1 - \frac{1}{n+1} \right)$$

$$= -\frac{L}{8} \left( 1 - \frac{1}{n+1} \right)$$

- ightharpoonup Пусть  $\mathbf{x}_0=0$ , тогда  $\mathbf{x}_1=\alpha\mathbf{e}_1$ , далее  $\mathbf{x}_2=\mathbf{x}_1-\alpha(\mathbf{A}\mathbf{x}_1-\mathbf{e}_1)$  и тд
- ▶ Заметим, что спустя k итераций в векторе  $\mathbf{x}_k$  первые k элементов ненули, то есть  $[\mathbf{x}_k]_i = 0$  при i > k

$$f^* = -\frac{L}{4} \left( 1 - \frac{1}{n+1} \right) + \frac{L}{8} \left( \left( 1 - \frac{1}{n+1} \right)^2 + \frac{n}{(n+1)^2} \right) =$$

$$= -\frac{L}{4} \left( 1 - \frac{1}{n+1} \right) + \frac{L}{8} \left( 1 - \frac{1}{n+1} \right)$$

$$= -\frac{L}{8} \left( 1 - \frac{1}{n+1} \right)$$

- ightharpoonup Пусть  $\mathbf{x}_0=0$ , тогда  $\mathbf{x}_1=\alpha\mathbf{e}_1$ , далее  $\mathbf{x}_2=\mathbf{x}_1-\alpha(\mathbf{A}\mathbf{x}_1-\mathbf{e}_1)$  и тд
- ▶ Заметим, что спустя k итераций в векторе  $\mathbf{x}_k$  первые k элементов ненули, то есть  $[\mathbf{x}_k]_i = 0$  при i > k
- Рассмотрим задачу

$$\mathbf{x}_k^* = \operatorname*{arg\,min}_{x_i = 0, i > k} f(\mathbf{x})$$

$$f^* = -\frac{L}{4} \left( 1 - \frac{1}{n+1} \right) + \frac{L}{8} \left( \left( 1 - \frac{1}{n+1} \right)^2 + \frac{n}{(n+1)^2} \right) =$$

$$= -\frac{L}{4} \left( 1 - \frac{1}{n+1} \right) + \frac{L}{8} \left( 1 - \frac{1}{n+1} \right)$$

$$= -\frac{L}{8} \left( 1 - \frac{1}{n+1} \right)$$

- lackbox Пусть  $\mathbf{x}_0=0$ , тогда  $\mathbf{x}_1=lpha\mathbf{e}_1$ , далее  $\mathbf{x}_2=\mathbf{x}_1-lpha(\mathbf{A}\mathbf{x}_1-\mathbf{e}_1)$  и тд
- ▶ Заметим, что спустя k итераций в векторе  $\mathbf{x}_k$  первые k элементов ненули, то есть  $[\mathbf{x}_k]_i = 0$  при i > k
- Рассмотрим задачу

$$\mathbf{x}_k^* = \operatorname*{arg\,min}_{x_i = 0, i > k} f(\mathbf{x})$$

lacktriangle Соответственно её решение  $[\mathbf{x}_k^*]_i = egin{cases} 1 - rac{i}{k+1}, & i \leq k \ 0, & \text{иначе.} \end{cases}$ 

lacktriangle Тогда  $f(\mathbf{x}_k^*) = -rac{L}{8}\left(1-rac{1}{k+1}
ight)$ 

- lacktriangle Тогда  $f(\mathbf{x}_k^*) = -\frac{L}{8} \left(1 \frac{1}{k+1}\right)$
- ▶ В итоге получим следующую цепочку неравенств

$$f(\mathbf{x}_k) - f(\mathbf{x}^*) \ge f(\mathbf{x}_k^*) - f(\mathbf{x}^*) =$$

$$-\frac{L}{8} \left( 1 - \frac{1}{k+1} \right) + \frac{L}{8} \left( 1 - \frac{1}{n+1} \right) = \frac{L}{8} \left( \frac{1}{k+1} - \frac{1}{n+1} \right) =$$

$$\frac{L}{8} \left( \frac{1}{k+1} - \frac{1}{2k+1+1} \right) = \frac{L}{8} \frac{1}{2(k+1)}$$

- lacktriangle Тогда  $f(\mathbf{x}_k^*) = -\frac{L}{8} \left(1 \frac{1}{k+1}\right)$
- ▶ В итоге получим следующую цепочку неравенств

$$f(\mathbf{x}_k) - f(\mathbf{x}^*) \ge f(\mathbf{x}_k^*) - f(\mathbf{x}^*) =$$

$$-\frac{L}{8} \left( 1 - \frac{1}{k+1} \right) + \frac{L}{8} \left( 1 - \frac{1}{n+1} \right) = \frac{L}{8} \left( \frac{1}{k+1} - \frac{1}{n+1} \right) =$$

$$\frac{L}{8} \left( \frac{1}{k+1} - \frac{1}{2k+1+1} \right) = \frac{L}{8} \frac{1}{2(k+1)}$$

lackДалее оценим  $\|\mathbf{x}_0 - \mathbf{x}^*\|_2^2 = \|\mathbf{x}^*\|_2^2 = \sum_{i=1}^n \left(1 - rac{i}{n+1}
ight)^2$ 

- lacktriangle Тогда  $f(\mathbf{x}_k^*) = -\frac{L}{8} \left(1 \frac{1}{k+1}\right)$
- ▶ В итоге получим следующую цепочку неравенств

$$f(\mathbf{x}_k) - f(\mathbf{x}^*) \ge f(\mathbf{x}_k^*) - f(\mathbf{x}^*) =$$

$$-\frac{L}{8} \left( 1 - \frac{1}{k+1} \right) + \frac{L}{8} \left( 1 - \frac{1}{n+1} \right) = \frac{L}{8} \left( \frac{1}{k+1} - \frac{1}{n+1} \right) =$$

$$\frac{L}{8} \left( \frac{1}{k+1} - \frac{1}{2k+1+1} \right) = \frac{L}{8} \frac{1}{2(k+1)}$$

- lackДалее оценим  $\|\mathbf{x}_0 \mathbf{x}^*\|_2^2 = \|\mathbf{x}^*\|_2^2 = \sum_{i=1}^n \left(1 rac{i}{n+1}
  ight)^2$
- $\sum_{i=1}^{n} \left(1 \frac{i}{n+1}\right)^2 = n \frac{2}{n+1} \sum_{i=1}^{n} i + \frac{1}{(n+1)^2} \sum_{i=1}^{n} i^2$

$$lacktriangle$$
 Тогда  $f(\mathbf{x}_k^*) = -\frac{L}{8} \left(1 - \frac{1}{k+1}\right)$ 

▶ В итоге получим следующую цепочку неравенств

$$f(\mathbf{x}_k) - f(\mathbf{x}^*) \ge f(\mathbf{x}_k^*) - f(\mathbf{x}^*) =$$

$$-\frac{L}{8} \left( 1 - \frac{1}{k+1} \right) + \frac{L}{8} \left( 1 - \frac{1}{n+1} \right) = \frac{L}{8} \left( \frac{1}{k+1} - \frac{1}{n+1} \right) =$$

$$\frac{L}{8} \left( \frac{1}{k+1} - \frac{1}{2k+1+1} \right) = \frac{L}{8} \frac{1}{2(k+1)}$$

- lackbox Далее оценим  $\|\mathbf{x}_0 \mathbf{x}^*\|_2^2 = \|\mathbf{x}^*\|_2^2 = \sum_{i=1}^n \left(1 rac{i}{n+1}
  ight)^2$
- $\sum_{i=1}^{n} \left(1 \frac{i}{n+1}\right)^2 = n \frac{2}{n+1} \sum_{i=1}^{n} i + \frac{1}{(n+1)^2} \sum_{i=1}^{n} i^2$
- lacktriangle Вспомним, что  $\sum_{i=1}^n i^2 = rac{n(n+1)(2n+1)}{6}$  и  $\sum_{i=1}^n i = rac{n(n+1)}{2}$

$$lacktriangle$$
 Тогда  $f(\mathbf{x}_k^*) = -\frac{L}{8} \left(1 - \frac{1}{k+1}\right)$ 

▶ В итоге получим следующую цепочку неравенств

$$f(\mathbf{x}_k) - f(\mathbf{x}^*) \ge f(\mathbf{x}_k^*) - f(\mathbf{x}^*) =$$

$$-\frac{L}{8} \left( 1 - \frac{1}{k+1} \right) + \frac{L}{8} \left( 1 - \frac{1}{n+1} \right) = \frac{L}{8} \left( \frac{1}{k+1} - \frac{1}{n+1} \right) =$$

$$\frac{L}{8} \left( \frac{1}{k+1} - \frac{1}{2k+1+1} \right) = \frac{L}{8} \frac{1}{2(k+1)}$$

$$lackbox$$
 Далее оценим  $\|\mathbf{x}_0 - \mathbf{x}^*\|_2^2 = \|\mathbf{x}^*\|_2^2 = \sum_{i=1}^n \left(1 - rac{i}{n+1}
ight)^2$ 

$$\sum_{i=1}^{n} \left(1 - \frac{i}{n+1}\right)^2 = n - \frac{2}{n+1} \sum_{i=1}^{n} i + \frac{1}{(n+1)^2} \sum_{i=1}^{n} i^2$$

$$lacktriangle$$
 Вспомним, что  $\sum_{i=1}^n i^2 = rac{n(n+1)(2n+1)}{6}$  и  $\sum_{i=1}^n i = rac{n(n+1)}{2}$ 

▶ Тогда 
$$\|\mathbf{x}^*\|_2^2 = \frac{n(2n+1)}{6(n+1)} \le \frac{n+1}{3} = \frac{2(k+1)}{3}$$

$$lacktriangle$$
 Тогда  $f(\mathbf{x}_k^*) = -\frac{L}{8} \left(1 - \frac{1}{k+1}\right)$ 

В итоге получим следующую цепочку неравенств

$$f(\mathbf{x}_k) - f(\mathbf{x}^*) \ge f(\mathbf{x}_k^*) - f(\mathbf{x}^*) =$$

$$-\frac{L}{8} \left( 1 - \frac{1}{k+1} \right) + \frac{L}{8} \left( 1 - \frac{1}{n+1} \right) = \frac{L}{8} \left( \frac{1}{k+1} - \frac{1}{n+1} \right) =$$

$$\frac{L}{8} \left( \frac{1}{k+1} - \frac{1}{2k+1+1} \right) = \frac{L}{8} \frac{1}{2(k+1)}$$

$$lack$$
Далее оценим  $\|\mathbf{x}_0 - \mathbf{x}^*\|_2^2 = \|\mathbf{x}^*\|_2^2 = \sum_{i=1}^n \left(1 - rac{i}{n+1}
ight)^2$ 

$$\sum_{i=1}^{n} \left(1 - \frac{i}{n+1}\right)^2 = n - \frac{2}{n+1} \sum_{i=1}^{n} i + \frac{1}{(n+1)^2} \sum_{i=1}^{n} i^2$$

$$lacktriangle$$
 Вспомним, что  $\sum_{i=1}^n i^2 = rac{n(n+1)(2n+1)}{6}$  и  $\sum_{i=1}^n i = rac{n(n+1)}{2}$ 

▶ Тогда 
$$\|\mathbf{x}^*\|_2^2 = \frac{n(2n+1)}{6(n+1)} \le \frac{n+1}{3} = \frac{2(k+1)}{3}$$

▶ И наконец  $k+1 \geq \frac{3}{2} \|\mathbf{x}^* - \mathbf{x}_0\|_2^2$ 

$$f(\mathbf{x}_k) - f(\mathbf{x}^*) \ge \frac{L}{8} \frac{1}{2(k+1)} = \frac{L}{8} \frac{k+1}{2(k+1)^2} \ge \frac{L}{8} \frac{3}{2} \frac{\|\mathbf{x}^* - \mathbf{x}_0\|_2^2}{2(k+1)^2}$$

$$f(\mathbf{x}_k) - f(\mathbf{x}^*) \ge \frac{L}{8} \frac{1}{2(k+1)} = \frac{L}{8} \frac{k+1}{2(k+1)^2} \ge \frac{L}{8} \frac{3}{2} \frac{\|\mathbf{x}^* - \mathbf{x}_0\|_2^2}{2(k+1)^2}$$

Случай сильно выпуклой функции

$$f(\mathbf{x}_k) - f(\mathbf{x}^*) \ge \frac{L}{8} \frac{1}{2(k+1)} = \frac{L}{8} \frac{k+1}{2(k+1)^2} \ge \frac{L}{8} \frac{3}{2} \frac{\|\mathbf{x}^* - \mathbf{x}_0\|_2^2}{2(k+1)^2}$$

#### Случай сильно выпуклой функции

$$lack \$$
 "Плохая" функция  $g(\mathbf{x}) = rac{\mu(\kappa-1)}{8} \left(\mathbf{x}^ op \mathbf{A} \mathbf{x} - 2 \mathbf{e}_1^ op \mathbf{x} 
ight) + rac{\mu}{2} \|\mathbf{x}\|_2^2$ 

$$f(\mathbf{x}_k) - f(\mathbf{x}^*) \ge \frac{L}{8} \frac{1}{2(k+1)} = \frac{L}{8} \frac{k+1}{2(k+1)^2} \ge \frac{L}{8} \frac{3}{2} \frac{\|\mathbf{x}^* - \mathbf{x}_0\|_2^2}{2(k+1)^2}$$

#### Случай сильно выпуклой функции

- $lack \$  "Плохая" функция  $g(\mathbf{x}) = rac{\mu(\kappa-1)}{8} \left(\mathbf{x}^{ op} \mathbf{A} \mathbf{x} 2 \mathbf{e}_1^{ op} \mathbf{x} 
  ight) + rac{\mu}{2} \|\mathbf{x}\|_2^2$
- Аналогичная техника позволяет получить оценку снизу для класса сильно выпуклых функций

Что нам известно?

#### Что нам известно?

Нижние оценки сходимости линейных методов первого порядка:

для выпуклых функций с Липшицевым градиентом

$$f(x_{k+1}) - f^* \ge \frac{3L||x_0 - x^*||_2^2}{32(k+1)^2}$$

для сильно выпуклых функций с Липшицевым градиентом

$$f(x_{k+1}) - f^* \ge \frac{\mu}{2} \left( \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \right)^{2k} \|x_0 - x^*\|_2^2$$

#### Что нам известно?

Нижние оценки сходимости линейных методов первого порядка:

для выпуклых функций с Липшицевым градиентом

$$f(x_{k+1}) - f^* \ge \frac{3L||x_0 - x^*||_2^2}{32(k+1)^2}$$

для сильно выпуклых функций с Липшицевым градиентом

$$f(x_{k+1}) - f^* \ge \frac{\mu}{2} \left( \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \right)^{2k} \|x_0 - x^*\|_2^2$$

Сходимость градиентного спуска:

для выпуклых функций с Липшицевым градиентом

$$f(x_{k+1}) - f^* \le \frac{2L\|x - x_0\|_2^2}{k+4}$$

для сильно выпуклых функций с Липшицевым градиентом

$$f(x_k) - f^* \le \frac{L}{2} \left(\frac{\kappa - 1}{\kappa + 1}\right)^{2k} \|x_0 - x^*\|_2^2$$

▶ Рассмотрим задачу

$$\min_{x \in \mathbb{R}^n} f(x),$$

где 
$$f(x) = \frac{1}{2} x^{\top} A x - b^{\top} x$$
 и  $A \in \mathbb{S}^n_{++}$ 

Рассмотрим задачу

$$\min_{x \in \mathbb{R}^n} f(x),$$

где 
$$f(x) = \frac{1}{2} x^{\top} A x - b^{\top} x$$
 и  $A \in \mathbb{S}^n_{++}$ 

Из необходимого условия экстремума имеем

$$Ax^* = b$$

Рассмотрим задачу

$$\min_{x \in \mathbb{R}^n} f(x),$$

где 
$$f(x) = \frac{1}{2} x^{\top} A x - b^{\top} x$$
 и  $A \in \mathbb{S}^n_{++}$ 

Из необходимого условия экстремума имеем

$$Ax^* = b$$

lacktriangle Также обозначим  $f'(x_k) = Ax_k - b = r_k$ 

Рассмотрим задачу

$$\min_{x \in \mathbb{R}^n} f(x),$$

где 
$$f(x) = \frac{1}{2} x^{\top} A x - b^{\top} x$$
 и  $A \in \mathbb{S}^n_{++}$ 

Из необходимого условия экстремума имеем

$$Ax^* = b$$

- lacktriangle Также обозначим  $f'(x_k) = Ax_k b = r_k$
- Задача оптимизации сведена к задаче решения системы линейных уравнений

# Немного истории

► M. Hestenes и E. Stiefel предложили метод сопряжённых градиентов в 1952 году как *прямой* метод

### Немного истории

- ► М. Hestenes и Е. Stiefel предложили метод сопряжённых градиентов в 1952 году как прямой метод
- Долгое время считалось, что метод представляет только теоретический интерес поскольку

- ► М. Hestenes и Е. Stiefel предложили метод сопряжённых градиентов в 1952 году как прямой метод
- Долгое время считалось, что метод представляет только теоретический интерес поскольку
  - не работает на логарифмической линейке

- ► М. Hestenes и Е. Stiefel предложили метод сопряжённых градиентов в 1952 году как прямой метод
- Долгое время считалось, что метод представляет только теоретический интерес поскольку
  - не работает на логарифмической линейке
  - имеет небольшое преимущество перед исключением Гаусса при вычислениях на калькуляторе

- ► M. Hestenes и E. Stiefel предложили метод сопряжённых градиентов в 1952 году как *прямой* метод
- Долгое время считалось, что метод представляет только теоретический интерес поскольку
  - не работает на логарифмической линейке
  - имеет небольшое преимущество перед исключением Гаусса при вычислениях на калькуляторе
- Метод сопряжённых градиентов необходимо рассматривать как итерационный метод, то есть останавливаться до точной сходимости!

- ► M. Hestenes и E. Stiefel предложили метод сопряжённых градиентов в 1952 году как *прямой* метод
- Долгое время считалось, что метод представляет только теоретический интерес поскольку
  - не работает на логарифмической линейке
  - имеет небольшое преимущество перед исключением Гаусса при вычислениях на калькуляторе
- Метод сопряжённых градиентов необходимо рассматривать как итерационный метод, то есть останавливаться до точной сходимости!
- Подробнее здесь

# Мотивация

Сходимость градиентного спуска сильно зависит от числа обусловленности

## Мотивация

- Сходимость градиентного спуска сильно зависит от числа обусловленности
- Как сделать метод, который для любого числа обусловленности сходился бы как максимум за n итераций?

## Мотивация

- Сходимость градиентного спуска сильно зависит от числа обусловленности
- Как сделать метод, который для любого числа обусловленности сходился бы как максимум за n итераций?



Рисунок взят отсюда

### Определение

Множество ненулевых векторов  $\{p_0,\dots,p_l\}$  называется сопряжёнными относительно матрицы  $A\in\mathbb{S}^n_{++}$ , если

$$p_i^{\top} A p_j = 0, \qquad i \neq j$$

### Определение

Множество ненулевых векторов  $\{p_0,\dots,p_l\}$  называется сопряжёнными относительно матрицы  $A\in\mathbb{S}^n_{++}$ , если

$$p_i^{\top} A p_j = 0, \qquad i \neq j$$

#### Свойства

### Определение

Множество ненулевых векторов  $\{p_0,\dots,p_l\}$  называется сопряжёнными относительно матрицы  $A\in\mathbb{S}^n_{++}$ , если

$$p_i^{\top} A p_j = 0, \qquad i \neq j$$

#### Свойства

линейно независимы

### Определение

Множество ненулевых векторов  $\{p_0,\dots,p_l\}$  называется сопряжёнными относительно матрицы  $A\in\mathbb{S}^n_{++}$ , если

$$p_i^{\top} A p_j = 0, \qquad i \neq j$$

#### Свойства

- линейно независимы
- ightharpoonup сопряжённые направления + шаг по правилу наискорейшего спуска = метод, сходящийся за n итераций

### Определение

Множество ненулевых векторов  $\{p_0,\dots,p_l\}$  называется сопряжёнными относительно матрицы  $A\in\mathbb{S}^n_{++}$ , если

$$p_i^{\top} A p_j = 0, \qquad i \neq j$$

#### Свойства

- линейно независимы
- ightharpoonup сопряжённые направления + шаг по правилу наискорейшего спуска = метод, сходящийся за n итераций

### Определение

Множество ненулевых векторов  $\{p_0,\dots,p_l\}$  называется сопряжёнными относительно матрицы  $A\in\mathbb{S}^n_{++}$ , если

$$p_i^{\top} A p_j = 0, \qquad i \neq j$$

#### Свойства

- линейно независимы
- ightharpoonup сопряжённые направления + шаг по правилу наискорейшего спуска = метод, сходящийся за n итераций

**Q**: как получить сопряжённые направления из любого набора линейно независимых векторов?

#### Теорема

Пусть  $x_k$  генерируются методом сопряжённых направлений. Тогда

- 1.  $\langle r_k, p_i \rangle = 0, i = 1, \dots, k-1$
- 2.  $x_k = \operatorname*{arg\,min}_{x \in P} f(x)$ , где  $P = x_0 + \mathtt{span}(p_0, \ldots, p_{k-1})$

#### Теорема

Пусть  $x_k$  генерируются методом сопряжённых направлений. Тогда

- 1.  $\langle r_k, p_i \rangle = 0, i = 1, \dots, k-1$
- 2.  $x_k = \operatorname*{arg\,min}_{x \in P} f(x)$ , где  $P = x_0 + \mathtt{span}(p_0, \ldots, p_{k-1})$

1. 
$$\phi(\gamma) = f(x_0 + \gamma_0 p_0 + \ldots + \gamma_{k-1} p_{k-1})$$

#### Теорема

Пусть  $x_k$  генерируются методом сопряжённых направлений. Тогда

- 1.  $\langle r_k, p_i \rangle = 0, i = 1, \dots, k-1$
- 2.  $x_k = \operatorname*{arg\,min}_{x \in P} f(x)$ , где  $P = x_0 + \mathtt{span}(p_0, \ldots, p_{k-1})$

- 1.  $\phi(\gamma) = f(x_0 + \gamma_0 p_0 + \ldots + \gamma_{k-1} p_{k-1})$
- 2.  $\phi(\gamma)$  строго выпукла  $\to$  существует  $\gamma^*$

#### Теорема

Пусть  $x_k$  генерируются методом сопряжённых направлений. Тогда

- 1.  $\langle r_k, p_i \rangle = 0, i = 1, \dots, k-1$
- 2.  $x_k = \operatorname*{arg\,min}_{x \in P} f(x)$ , где  $P = x_0 + \mathtt{span}(p_0, \ldots, p_{k-1})$

- 1.  $\phi(\gamma) = f(x_0 + \gamma_0 p_0 + \ldots + \gamma_{k-1} p_{k-1})$
- 2.  $\phi(\gamma)$  строго выпукла o существует  $\gamma^*$
- 3. По критерию первого порядка

$$\phi'(\gamma^*) = \langle f'(x_0 + \gamma_0^* p_0 + \dots + \gamma_{k-1}^* p_{k-1}), p_i \rangle = 0, \ i = 0, \dots, k-1$$

#### Теорема

Пусть  $x_k$  генерируются методом сопряжённых направлений. Тогда

- 1.  $\langle r_k, p_i \rangle = 0, i = 1, \dots, k-1$
- 2.  $x_k = \operatorname*{arg\,min}_{x \in P} f(x)$ , где  $P = x_0 + \mathtt{span}(p_0, \ldots, p_{k-1})$

#### Доказательство

- 1.  $\phi(\gamma) = f(x_0 + \gamma_0 p_0 + \ldots + \gamma_{k-1} p_{k-1})$
- 2.  $\phi(\gamma)$  строго выпукла o существует  $\gamma^*$
- 3. По критерию первого порядка

$$\phi'(\gamma^*) = \langle f'(x_0 + \gamma_0^* p_0 + \ldots + \gamma_{k-1}^* p_{k-1}), p_i \rangle = 0, \ i = 0, \ldots, k-1$$

4. Из определения  $r_k$  следует, что  $\langle r_k, p_i \rangle = 0, \; i=0,\ldots,k-1$ 

#### Теорема

Пусть  $x_k$  генерируются методом сопряжённых направлений. Тогда

- 1.  $\langle r_k, p_i \rangle = 0, i = 1, \dots, k-1$
- 2.  $x_k = \operatorname*{arg\,min}_{x \in P} f(x)$ , где  $P = x_0 + \mathtt{span}(p_0, \ldots, p_{k-1})$

- 1.  $\phi(\gamma) = f(x_0 + \gamma_0 p_0 + \ldots + \gamma_{k-1} p_{k-1})$
- 2.  $\phi(\gamma)$  строго выпукла o существует  $\gamma^*$
- 3. По критерию первого порядка

$$\phi'(\gamma^*) = \langle f'(x_0 + \gamma_0^* p_0 + \ldots + \gamma_{k-1}^* p_{k-1}), p_i \rangle = 0, \ i = 0, \ldots, k-1$$

- 4. Из определения  $r_k$  следует, что  $\langle r_k, p_i \rangle = 0, \ i = 0, \dots, k-1$
- 5. Таким образом,  $(1) \Leftrightarrow (2)$

6. Докажем (1) по индукции:

- 6. Докажем (1) по индукции:
  - ightharpoonup база:  $\langle r_1, p_0 \rangle = 0$  по построению

- 6. Докажем (1) по индукции:
  - ightharpoonup база:  $\langle r_1, p_0 \rangle = 0$  по построению
  - ightharpoonup гипотеза:  $\langle r_{k-1}, p_i \rangle = 0, \ i = 1, \dots, k-2$

- 6. Докажем (1) по индукции:
  - ightharpoonup база:  $\langle r_1, p_0 \rangle = 0$  по построению
  - ightharpoonup гипотеза:  $\langle r_{k-1}, p_i \rangle = 0, \ i = 1, \dots, k-2$
- 7.  $r_k = r_{k-1} + \alpha_{k-1} A p_{k-1}$

- **6**. Докажем (1) по индукции:
  - **>** база:  $\langle r_1, p_0 \rangle = 0$  по построению
  - ightharpoonup гипотеза:  $\langle r_{k-1}, p_i \rangle = 0, \ i = 1, \dots, k-2$
- 7.  $r_k = r_{k-1} + \alpha_{k-1} A p_{k-1}$
- 8.  $\langle p_{k-1},r_k \rangle=\langle p_{k-1},r_{k-1} \rangle+\alpha_{k-1}\langle p_{k-1},Ap_{k-1} \rangle=0$  по построению  $\alpha_{k-1}$

- **6**. Докажем (1) по индукции:
  - **>** база:  $\langle r_1, p_0 \rangle = 0$  по построению
  - ightharpoonup гипотеза:  $\langle r_{k-1}, p_i \rangle = 0, \ i = 1, \dots, k-2$
- 7.  $r_k = r_{k-1} + \alpha_{k-1} A p_{k-1}$
- 8.  $\langle p_{k-1},r_k \rangle=\langle p_{k-1},r_{k-1} \rangle+\alpha_{k-1}\langle p_{k-1},Ap_{k-1} \rangle=0$  по построению  $\alpha_{k-1}$
- 9.  $\langle p_i, r_k \rangle = \langle p_i, r_{k-1} \rangle + \alpha_{k-1} \langle p_i, Ap_{k-1} \rangle, \ i = 1, \dots, k-2$

- **6**. Докажем (1) по индукции:
  - **>** база:  $\langle r_1, p_0 \rangle = 0$  по построению
  - ightharpoonup гипотеза:  $\langle r_{k-1}, p_i \rangle = 0, \ i = 1, \dots, k-2$
- 7.  $r_k = r_{k-1} + \alpha_{k-1} A p_{k-1}$
- 8.  $\langle p_{k-1},r_k \rangle=\langle p_{k-1},r_{k-1} \rangle+\alpha_{k-1}\langle p_{k-1},Ap_{k-1} \rangle=0$  по построению  $\alpha_{k-1}$
- 9.  $\langle p_i, r_k \rangle = \langle p_i, r_{k-1} \rangle + \alpha_{k-1} \langle p_i, Ap_{k-1} \rangle, i = 1, \dots, k-2$
- 10.  $\langle p_i, r_{k-1} \rangle = 0$  по гипотезе

- 6. Докажем (1) по индукции:
  - **>** база:  $\langle r_1, p_0 \rangle = 0$  по построению
  - ightharpoonup гипотеза:  $\langle r_{k-1}, p_i \rangle = 0, \ i = 1, \dots, k-2$
- 7.  $r_k = r_{k-1} + \alpha_{k-1} A p_{k-1}$
- 8.  $\langle p_{k-1},r_k \rangle=\langle p_{k-1},r_{k-1} \rangle+\alpha_{k-1}\langle p_{k-1},Ap_{k-1} \rangle=0$  по построению  $\alpha_{k-1}$
- 9.  $\langle p_i, r_k \rangle = \langle p_i, r_{k-1} \rangle + \alpha_{k-1} \langle p_i, Ap_{k-1} \rangle, \ i = 1, \dots, k-2$
- 10.  $\langle p_i, r_{k-1} \rangle = 0$  по гипотезе
- 11.  $\langle p_i, Ap_{k-1} \rangle = 0$  по свойству сопряжённости  $\{p_i\}$

# Сопряжённые градиенты

▶ 
$$p_0 = -r_0$$
 — антиградиент

# Сопряжённые градиенты

- ▶  $p_0 = -r_0$  антиградиент
- $p_{k+1} = -r_{k+1} + \beta_{k+1} p_k$ , где  $\beta_{k+1}$  гарантирует сопряжённость  $p_k$  и  $p_{k+1}$ :

$$p_k^{\top} A p_{k+1} = p_k^{\top} A (-r_{k+1} + \beta_{k+1} p_k) = 0$$
$$\beta_{k+1} = \frac{p_k^{\top} A r_{k+1}}{p_k^{\top} A p_k}$$

# Псевдокод: медленная версия

```
def ConjugateGradientQuadratic(x0, A, b, eps):
    r = A.dot(x0) - b
    p = -r
    while np.linalg.norm(r) > eps:
        alpha = -r.dot(p) / p.dot(A.dot(p))
        x = x + alpha * p
        r = A.dot(x) - b
        beta = r.dot(A.dot(p)) / p.dot(A.dot(p))
        p = -r + beta * p
    return x
```

# Ускорение медленной версии

**В**ычисление  $\alpha_k$ :

$$\alpha_k = -\frac{r_k^\top p_k}{p_k^\top A p_k} = -\frac{r_k^\top (-r_k + \beta_k p_{k-1})}{p_k^\top A p_k} = \frac{\|r_k\|_2^2}{p_k^\top A p_k}$$

# Ускорение медленной версии

**В**ычисление  $\alpha_k$ :

$$\alpha_k = -\frac{r_k^\top p_k}{p_k^\top A p_k} = -\frac{r_k^\top (-r_k + \beta_k p_{k-1})}{p_k^\top A p_k} = \frac{\|r_k\|_2^2}{p_k^\top A p_k}$$

**В**ычисление  $\beta_k$ :

$$\beta_{k+1} = \frac{r_{k+1}^{\top} A p_k}{p_k^{\top} A p_k} = \frac{r_{k+1}^{\top} (r_{k+1} - r_k)}{(-r_k + \beta_k p_{k-1})^{\top} (r_{k+1} - r_k)} = \frac{\|r_{k+1}\|_2^2}{\|r_k\|_2^2}$$

# Псевдокод: быстрая версия

```
def ConjugateGradientQuadratic(x0, A, b, eps):
    r = A.dot(x0) - b
    p = -r
    while np.linalg.norm(r) > eps:
        alpha = r.dot(r) / p.dot(A.dot(p))
        x = x + alpha * p
        r_next = r + alpha * A.dot(p)
        beta = r_next.dot(r_next) / r.dot(r)
        p = -r_next + beta * p
        r = r_next
    return x
```

# Почему сопряжённые градиенты сопряжены?

## Теорема

Пусть после k итераций  $x_k \neq x^*$ . Тогда

1. 
$$\langle r_k, r_i \rangle = 0, i = 1, \dots k-1$$

2. 
$$span(r_0, ..., r_k) = span(r_0, Ar_0, ..., A^k r_0)$$

3. 
$$\operatorname{span}(p_0, \dots, p_k) = \operatorname{span}(r_0, Ar_0, \dots, A^k r_0)$$

**4.** 
$$p_k^{\top} A p_i = 0$$
,  $i = 1, \dots, k-1$ 

# Крыловское пространство

### Определение

Пространство  $\mathcal{K}_k(A) = \mathrm{span}(b,Ab,\dots,A^{k-1}b)$  называется пространством Крылова.

# Крыловское пространство

#### Определение

Пространство  $\mathcal{K}_k(A) = \mathrm{span}(b,Ab,\dots,A^{k-1}b)$  называется пространством Крылова.

#### Основное свойство

$$A^{-1}b \in \mathcal{K}_n(A)$$

#### Определение

Пространство  $\mathcal{K}_k(A)=\mathrm{span}(b,Ab,\dots,A^{k-1}b)$  называется пространством Крылова.

Основное свойство

$$A^{-1}b \in \mathcal{K}_n(A)$$

#### Определение

Пространство  $\mathcal{K}_k(A) = \mathrm{span}(b,Ab,\dots,A^{k-1}b)$  называется пространством Крылова.

#### Основное свойство

$$A^{-1}b \in \mathcal{K}_n(A)$$

### Доказательство

lacktriangle Теорема Гамильтона-Кэли: p(A)=0, где  $p(\lambda)=\det(A-\lambda I)$ 

#### Определение

Пространство  $\mathcal{K}_k(A) = \mathrm{span}(b,Ab,\dots,A^{k-1}b)$  называется пространством Крылова.

#### Основное свойство

$$A^{-1}b \in \mathcal{K}_n(A)$$

- lacktriangle Теорема Гамильтона-Кэли: p(A)=0, где  $p(\lambda)=\det(A-\lambda I)$
- $p(A)b = A^nb + a_1A^{n-1}b + \dots + a_{n-1}Ab + a_nb = 0$

#### Определение

Пространство  $\mathcal{K}_k(A)=\mathrm{span}(b,Ab,\dots,A^{k-1}b)$  называется пространством Крылова.

#### Основное свойство

$$A^{-1}b \in \mathcal{K}_n(A)$$

- lacktriangle Теорема Гамильтона-Кэли: p(A)=0, где  $p(\lambda)=\det(A-\lambda I)$
- $p(A)b = A^nb + a_1A^{n-1}b + \dots + a_{n-1}Ab + a_nb = 0$
- $A^{-1}p(A)b = A^{n-1}b + a_1A^{n-2}b + \dots + a_{n-1}b + a_nA^{-1}b = 0$

#### Определение

Пространство  $\mathcal{K}_k(A) = \mathrm{span}(b,Ab,\dots,A^{k-1}b)$  называется пространством Крылова.

#### Основное свойство

$$A^{-1}b \in \mathcal{K}_n(A)$$

- $\blacktriangleright$  Теорема Гамильтона-Кэли: p(A)=0, где  $p(\lambda)=\det(A-\lambda I)$
- $p(A)b = A^nb + a_1A^{n-1}b + \dots + a_{n-1}Ab + a_nb = 0$
- $A^{-1}p(A)b = A^{n-1}b + a_1A^{n-2}b + \dots + a_{n-1}b + a_nA^{-1}b = 0$
- $A^{-1}b = -\frac{1}{a_n}(A^{n-1}b + a_1A^{n-2}b + \dots + a_{n-1}b)$

## Интерпретация

ightharpoonup Поиск лучшего приближения на k-ом Крыловском пространстве

$$x_k = \operatorname*{arg\,min}_{x \in \mathcal{K}_k} f(x)$$

### Интерпретация

ightharpoonup Поиск лучшего приближения на k-ом Крыловском пространстве

$$x_k = \operatorname*{arg\,min}_{x \in \mathcal{K}_k} f(x)$$

▶ Направления  $\{p_i\} \neq \{b, Ab, \dots, A^{k-1}b\}$ . Почему?

### Интерпретация

Поиск лучшего приближения на k-ом Крыловском пространстве

$$x_k = \operatorname*{arg\,min}_{x \in \mathcal{K}_k} f(x)$$

▶ Направления  $\{p_i\} \neq \{b, Ab, \dots, A^{k-1}b\}$ . Почему?

Краткое описание метода сопряжённых градиентов Поиск решения в ортонормированном Крыловском базисе

### Полезные соотношения

**▶** Решение:  $x^* = A^{-1}b$ 

### Полезные соотношения

- **Р**ешение:  $x^* = A^{-1}b$
- Минимум функции:

$$f^* = \frac{1}{2} b^\top A^{-\top} A A^{-1} b - b^\top A^{-1} b = -\frac{1}{2} b^\top A^{-1} b = -\frac{1}{2} \|x^*\|_A^2$$

### Полезные соотношения

- **Р**ешение:  $x^* = A^{-1}b$
- Минимум функции:

$$f^* = \frac{1}{2} b^\top A^{-\top} A A^{-1} b - b^\top A^{-1} b = -\frac{1}{2} b^\top A^{-1} b = -\frac{1}{2} \|x^*\|_A^2$$

Оценка сходимости по функции:

$$f(x) - f^* = \frac{1}{2}x^{\top}Ax - b^{\top}x + \frac{1}{2}\|x^*\|_A^2$$
$$= \frac{1}{2}\|x\|_A^2 - x^{\top}Ax^* + \frac{1}{2}\|x^*\|_A^2$$
$$= \frac{1}{2}\|x - x^*\|_A^2$$

 $ightharpoonup x_k$  лежит в  $\mathcal{K}_k$ 

- $ightharpoonup x_k$  лежит в  $\mathcal{K}_k$
- $lacktriangledown x_k = \sum\limits_{i=1}^k c_i A^{i-1} b = p(A) b$ , где p(x) некоторый полином степени не выше k-1

- $ightharpoonup x_k$  лежит в  $\mathcal{K}_k$
- $lacktriangledown x_k = \sum\limits_{i=1}^k c_i A^{i-1} b = p(A) b$ , где p(x) некоторый полином степени не выше k-1
- $ightharpoonup x_k$  минимизирует f на  $\mathcal{K}_k$ , отсюда

$$2(f_k - f^*) = \inf_{x \in \mathcal{K}_k} \|x - x^*\|_A^2 = \inf_{\deg(p) < k} \|(p(A) - A^{-1})b\|_A^2$$

- $ightharpoonup x_k$  лежит в  $\mathcal{K}_k$
- $lacktriangledown x_k = \sum\limits_{i=1}^k c_i A^{i-1} b = p(A) b$ , где p(x) некоторый полином степени не выше k-1
- $ightharpoonup x_k$  минимизирует f на  $\mathcal{K}_k$ , отсюда

$$2(f_k - f^*) = \inf_{x \in \mathcal{K}_k} \|x - x^*\|_A^2 = \inf_{\deg(p) < k} \|(p(A) - A^{-1})b\|_A^2$$

lacktriangle Спектральное разложение  $A=U\Lambda U^*$  даёт

$$2(f_k - f^*) = \inf_{\deg(p) < k} \| (p(\Lambda) - \Lambda^{-1}) d \|_{\Lambda}^2$$

$$= \inf_{\deg(p) < k} \sum_{i=1}^n \frac{d_i^2 (\lambda_i p(\lambda_i) - 1)^2}{\lambda_i}$$

$$= \inf_{\deg(q) \le k, q(0) = 1} \sum_{i=1}^n \frac{d_i^2 q(\lambda_i)^2}{\lambda_i}$$

$$f_k - f^* \le \left(\sum_{i=1}^n \frac{d_i^2}{2\lambda_i}\right) \inf_{\deg(q) \le k, q(0) = 1} \left(\max_{i=1,\dots,n} q(\lambda_i)^2\right)$$
$$= \frac{1}{2} \|x^*\|_{A}^2 \inf_{\deg(q) \le k, q(0) = 1} \left(\max_{i=1,\dots,n} q(\lambda_i)^2\right)$$

lacktriangle Пусть A имеет m различных собственных значений, тогда для

$$r(y) = \frac{(-1)^m}{\lambda_1 \cdot \ldots \cdot \lambda_m} (y - \lambda_i) \cdot \ldots \cdot (y - \lambda_m)$$

выполнено  $\deg(r)=m$  и r(0)=1

$$f_k - f^* \le \left(\sum_{i=1}^n \frac{d_i^2}{2\lambda_i}\right) \inf_{\deg(q) \le k, q(0) = 1} \left(\max_{i=1,\dots,n} q(\lambda_i)^2\right)$$
$$= \frac{1}{2} \|x^*\|_{A}^2 \inf_{\deg(q) \le k, q(0) = 1} \left(\max_{i=1,\dots,n} q(\lambda_i)^2\right)$$

lacktriangle Пусть A имеет m различных собственных значений, тогда для

$$r(y) = \frac{(-1)^m}{\lambda_1 \cdot \ldots \cdot \lambda_m} (y - \lambda_i) \cdot \ldots \cdot (y - \lambda_m)$$

выполнено deg(r) = m и r(0) = 1

ightharpoonup Значение для оптимального полинома степени не выше k оценим сверху значением для полинома r степени m

$$0 \le f_k - f^* \le \frac{1}{2} \|x^*\|_A^2 \max_{i=1,\dots,m} r(\lambda_i) = 0$$

$$f_k - f^* \le \left(\sum_{i=1}^n \frac{d_i^2}{2\lambda_i}\right) \inf_{\deg(q) \le k, q(0) = 1} \left(\max_{i=1,\dots,n} q(\lambda_i)^2\right)$$
$$= \frac{1}{2} \|x^*\|_A^2 \inf_{\deg(q) \le k, q(0) = 1} \left(\max_{i=1,\dots,n} q(\lambda_i)^2\right)$$

lacktriangle Пусть A имеет m различных собственных значений, тогда для

$$r(y) = \frac{(-1)^m}{\lambda_1 \cdot \ldots \cdot \lambda_m} (y - \lambda_i) \cdot \ldots \cdot (y - \lambda_m)$$

выполнено deg(r) = m и r(0) = 1

ightharpoonup Значение для оптимального полинома степени не выше k оценим сверху значением для полинома r степени m

$$0 \le f_k - f^* \le \frac{1}{2} \|x^*\|_{A}^2 \max_{i=1,\dots,m} r(\lambda_i) = 0$$

lacktriangle Метод сопряжённых градиентов сошёлся за m итераций

## Пример задачи

n = 100

ightharpoonup Спектр  $A: \{1, 10, 100, 1000\}$ 

 $\kappa = 1000$ 



# Иллюстрация сходимости

 $10^{-8}$ 

20

40 60 Iteration number, k



CG

GD

100

80

# Другие оценки

lacktriangle Если q(x) – Чебышёвский полином на  $[\lambda_{\min}, \lambda_{\max}]$ , то

$$f_k - f^* \le C \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} - 1}\right)^k$$

lacktriangle Если q(x) имеет корни  $\lambda_1,\dots,\lambda_{k-1}$  и  $(\lambda_1+\lambda_n)/2$ , то

$$f_k - f^* \le C \left(\frac{\lambda_k - \lambda_n}{\lambda_k + \lambda_n}\right)^2$$

1. Шаг  $\alpha_k$  подбирается адаптивно

- 1.~ Шаг  $lpha_k$  подбирается адаптивно
- 2. Коэффициент  $\beta_k$  ищется с помощью градиентов  $f'(x_{k-1}), f'(x_{k-2})$

- 1. Шаг  $\alpha_k$  подбирается адаптивно
- 2. Коэффициент  $\beta_k$  ищется с помощью градиентов  $f'(x_{k-1}), f'(x_{k-2})$

### Примеры

- 1. Шаг  $\alpha_k$  подбирается адаптивно
- 2. Коэффициент  $\beta_k$  ищется с помощью градиентов  $f'(x_{k-1}), f'(x_{k-2})$

#### Примеры

▶ Метод Флетчера-Ривса (Fletcher-Reeves)

$$\beta_k = \frac{\|f'(x_{k-1})\|_2^2}{\|f'(x_{k-2})\|_2^2}$$

- 1. Шаг  $\alpha_k$  подбирается адаптивно
- 2. Коэффициент  $\beta_k$  ищется с помощью градиентов  $f'(x_{k-1}), f'(x_{k-2})$

### Примеры

► Метод Флетчера-Ривса (Fletcher-Reeves)

$$\beta_k = \frac{\|f'(x_{k-1})\|_2^2}{\|f'(x_{k-2})\|_2^2}$$

► Метод Полака-Рибьера (Polak-Ribière)

$$\beta_k = \frac{\langle f'(x_{k-1}), f'(x_{k-1}) - f'(x_{k-2}) \rangle}{\|f'(x_{k-2})\|_2^2}$$

- 1. Шаг  $\alpha_k$  подбирается адаптивно
- 2. Коэффициент  $\beta_k$  ищется с помощью градиентов  $f'(x_{k-1}), f'(x_{k-2})$

#### Примеры

► Метод Флетчера-Ривса (Fletcher-Reeves)

$$\beta_k = \frac{\|f'(x_{k-1})\|_2^2}{\|f'(x_{k-2})\|_2^2}$$

Метод Полака-Рибьера (Polak-Ribière)

$$\beta_k = \frac{\langle f'(x_{k-1}), f'(x_{k-1}) - f'(x_{k-2}) \rangle}{\|f'(x_{k-2})\|_2^2}$$

► Метод Хестенса-Штифеля (Hestenes-Stiefel)

$$\beta_k = \frac{\langle f'(x_{k-1}), f'(x_{k-1}) - f'(x_{k-2}) \rangle}{\langle p_{k-1}, f'(x_{k-1}) - f'(x_{k-2}) \rangle}$$

ightharpoonup С ростом числа итераций направления  $p_k$  могут становится всё более коллинеарными

- ightharpoonup С ростом числа итераций направления  $p_k$  могут становится всё более коллинеарными
- ▶ Помогают рестарты при выполнении некоторых условий

- ightharpoonup С ростом числа итераций направления  $p_k$  могут становится всё более коллинеарными
- Помогают рестарты при выполнении некоторых условий
- ▶ При выборе  $\alpha_k$  по правилу наискорейшего спуска,  $p_k$  направление убывание

- ightharpoonup С ростом числа итераций направления  $p_k$  могут становится всё более коллинеарными
- Помогают рестарты при выполнении некоторых условий
- При выборе  $\alpha_k$  по правилу наискорейшего спуска,
    $p_k$  направление убывание
- lacktriangle НЕ при любом способе адаптивного поиска  $lpha_k$  направление  $lpha_k p_k$  будет направлением убывания

- ightharpoonup С ростом числа итераций направления  $p_k$  могут становится всё более коллинеарными
- Помогают рестарты при выполнении некоторых условий
- При выборе  $\alpha_k$  по правилу наискорейшего спуска,
    $p_k$  направление убывание
- ightharpoonup НЕ при любом способе адаптивного поиска  $lpha_k$  направление  $lpha_k p_k$  будет направлением убывания
- Интерпретация через квазиньютоновский метод с ограниченной памятью — через две недели

# Метод тяжёлого шарика (Б. Т. Поляк, 1964)





gradient descent



heavy-ball method

#### Рисунок взят отсюда

- Двухшаговый немонотонный метод
- Дискретизация следующего дифференциального уравнения

$$\ddot{x} + b\dot{x} + af'(x) = 0$$

Метод сопряжённых градиентов — частный случай

# Сходимость для сильно выпуклой функции

Перепишем метод как

$$\begin{bmatrix} x_{k+1} \\ x_k \end{bmatrix} = \begin{bmatrix} (1+\beta_k)I & -\beta_k I \\ I & 0 \end{bmatrix} \begin{bmatrix} x_k \\ x_{k-1} \end{bmatrix} + \begin{bmatrix} -\alpha_k f'(x_k) \\ 0 \end{bmatrix}$$

# Сходимость для сильно выпуклой функции

▶ Перепишем метод как

$$\begin{bmatrix} x_{k+1} \\ x_k \end{bmatrix} = \begin{bmatrix} (1+\beta_k)I & -\beta_k I \\ I & 0 \end{bmatrix} \begin{bmatrix} x_k \\ x_{k-1} \end{bmatrix} + \begin{bmatrix} -\alpha_k f'(x_k) \\ 0 \end{bmatrix}$$

▶ Используем теорему из анализа

$$\begin{bmatrix} x_{k+1} - x^* \\ x_k - x^* \end{bmatrix} = \underbrace{\begin{bmatrix} (1+\beta_k)I - \alpha_k \int_0^1 f''(x(\tau))d\tau & -\beta_k I \\ I & 0 \end{bmatrix}}_{=A_t} \begin{bmatrix} x_k - x^* \\ x_{k-1} - x^* \end{bmatrix},$$

где 
$$x(\tau) = x_k + \tau(x^* - x_k)$$

# Сходимость для сильно выпуклой функции

▶ Перепишем метод как

$$\begin{bmatrix} x_{k+1} \\ x_k \end{bmatrix} = \begin{bmatrix} (1+\beta_k)I & -\beta_k I \\ I & 0 \end{bmatrix} \begin{bmatrix} x_k \\ x_{k-1} \end{bmatrix} + \begin{bmatrix} -\alpha_k f'(x_k) \\ 0 \end{bmatrix}$$

▶ Используем теорему из анализа

$$\begin{bmatrix} x_{k+1} - x^* \\ x_k - x^* \end{bmatrix} = \underbrace{\begin{bmatrix} (1+\beta_k)I - \alpha_k \int_0^1 f''(x(\tau))d\tau & -\beta_k I \\ I & 0 \end{bmatrix}}_{=A_t} \begin{bmatrix} x_k - x^* \\ x_{k-1} - x^* \end{bmatrix},$$

где 
$$x(\tau) = x_k + \tau(x^* - x_k)$$

lacktriangle Сходимость зависит от спектрального радиуса матрицы итераций  $A_t$ 

# Сходимость для сильно выпуклой функции

▶ Перепишем метод как

$$\begin{bmatrix} x_{k+1} \\ x_k \end{bmatrix} = \begin{bmatrix} (1+\beta_k)I & -\beta_k I \\ I & 0 \end{bmatrix} \begin{bmatrix} x_k \\ x_{k-1} \end{bmatrix} + \begin{bmatrix} -\alpha_k f'(x_k) \\ 0 \end{bmatrix}$$

Используем теорему из анализа

$$\begin{bmatrix} x_{k+1} - x^* \\ x_k - x^* \end{bmatrix} = \underbrace{\begin{bmatrix} (1+\beta_k)I - \alpha_k \int_0^1 f''(x(\tau))d\tau & -\beta_k I \\ I & 0 \end{bmatrix}}_{=A_t} \begin{bmatrix} x_k - x^* \\ x_{k-1} - x^* \end{bmatrix},$$

где 
$$x(\tau) = x_k + \tau(x^* - x_k)$$

- lacktriangle Сходимость зависит от спектрального радиуса матрицы итераций  $A_t$
- ightharpoonup Выберем  $lpha_k$  и  $eta_k$  так, чтобы минимизировать спектральный радиус

## Выбор параметров

### Теорема

Пусть f выпуклая с Липшицевым градиентом и сильно выпуклая функция. Тогда  $\alpha_k = \frac{4}{(\sqrt{L}+\sqrt{\mu})^2}$  и

$$eta_k = \max(|1-\sqrt{lpha_k L}|, |1-\sqrt{lpha_k \mu}|)^2$$
 дают

$$\left\| \begin{bmatrix} x_{k+1} - x^* \\ x_k - x^* \end{bmatrix} \right\|_2 \le \left( \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \right)^k \left\| \begin{bmatrix} x_1 - x^* \\ x_0 - x^* \end{bmatrix} \right\|_2$$

- ightharpoonup Параметры зависят от L и  $\mu$
- Быстрее чем градиентный спуск
- ► Аналог CG для сильно выпуклой квадратичной функции

## Иллюстрация

- n = 100
- Случайная квадратичная задача



#### Один из вариантов

$$y_0 = x_0$$

$$x_{k+1} = y_k - \alpha_k f'(y_k)$$

$$y_{k+1} = x_{k+1} + \frac{k}{k+3} (x_{k+1} - x_k)$$

#### Один из вариантов

$$y_0 = x_0$$

$$x_{k+1} = y_k - \alpha_k f'(y_k)$$

$$y_{k+1} = x_{k+1} + \frac{k}{k+3} (x_{k+1} - x_k)$$

▶ Сравнение с методом тяжёлого шарика

#### Один из вариантов

$$y_0 = x_0$$

$$x_{k+1} = y_k - \alpha_k f'(y_k)$$

$$y_{k+1} = x_{k+1} + \frac{k}{k+3} (x_{k+1} - x_k)$$

- ▶ Сравнение с методом тяжёлого шарика
- Немонотонный

#### Один из вариантов

$$y_0 = x_0$$

$$x_{k+1} = y_k - \alpha_k f'(y_k)$$

$$y_{k+1} = x_{k+1} + \frac{k}{k+3} (x_{k+1} - x_k)$$

- Сравнение с методом тяжёлого шарика
- Немонотонный
- ▶ Интерпретация как дискретизация некоторого ОДУ

# Визуализация итераций



## Сходимость

### Теорема

Пусть f выпукла с Липшицевым градиентом, а шаг  $lpha_k=rac{1}{L}.$  Тогда ускоренный градиентый метод сходится как

$$f(x_k) - f^* \le \frac{2L||x_0 - x^*||_2^2}{(k+1)^2} = \mathcal{O}(1/k^2)$$

## Сходимость

### Теорема

Пусть f выпукла с Липшицевым градиентом, а шаг  $\alpha_k = \frac{1}{L}$ . Тогда ускоренный градиентый метод сходится как

$$f(x_k) - f^* \le \frac{2L||x_0 - x^*||_2^2}{(k+1)^2} = \mathcal{O}(1/k^2)$$

### Теорема

Ускоренный метод Нестерова для сильно выпуклой функции при шаге  $\alpha_k=\frac{1}{L}$  сходится как

$$f(x_k) - f^* \le L ||x_k - x_0||_2^2 \left(1 - \frac{1}{\sqrt{\kappa}}\right)^k$$

## Пример сходимости



▶ Сходимость градиентного спуска может быть улучшена

- Сходимость градиентного спуска может быть улучшена
- Метод сопряжённых градиентов надо использовать для квадратичных сильно выпуклых функций

- Сходимость градиентного спуска может быть улучшена
- Метод сопряжённых градиентов надо использовать для квадратичных сильно выпуклых функций
- Ускоренный метод Нестерова оптимален для выпуклых с
   Липшицевым градиентом и сильно выпуклых функций

- Сходимость градиентного спуска может быть улучшена
- Метод сопряжённых градиентов надо использовать для квадратичных сильно выпуклых функций
- Ускоренный метод Нестерова оптимален для выпуклых с
   Липшицевым градиентом и сильно выпуклых функций

### Вопросы

- Сходимость градиентного спуска может быть улучшена
- Метод сопряжённых градиентов надо использовать для квадратичных сильно выпуклых функций
- Ускоренный метод Нестерова оптимален для выпуклых с
   Липшицевым градиентом и сильно выпуклых функций

### Вопросы

Что делать, когда нельзя точно посчитать градиент?

- Сходимость градиентного спуска может быть улучшена
- Метод сопряжённых градиентов надо использовать для квадратичных сильно выпуклых функций
- Ускоренный метод Нестерова оптимален для выпуклых с
   Липшицевым градиентом и сильно выпуклых функций

### Вопросы

- Что делать, когда нельзя точно посчитать градиент?
- Все методы зависят от неизвестных констант, как подбирать шаги адаптивно?

- Сходимость градиентного спуска может быть улучшена
- Метод сопряжённых градиентов надо использовать для квадратичных сильно выпуклых функций
- Ускоренный метод Нестерова оптимален для выпуклых с
   Липшицевым градиентом и сильно выпуклых функций

### Вопросы

- Что делать, когда нельзя точно посчитать градиент?
- Все методы зависят от неизвестных констант, как подбирать шаги адаптивно?
- Что произойдёт со скоростями сходимости?

### Резюме

▶ Метод сопряжённых градиентов

### Резюме

- ▶ Метод сопряжённых градиентов
- ▶ Метод тяжёлого шарика

#### Резюме

- ▶ Метод сопряжённых градиентов
- ▶ Метод тяжёлого шарика
- ▶ Ускоренный градиентный метод Нестерова