Analytic Center Cutting-Plane Method

- analytic center cutting-plane method
- computing the analytic center
- pruning constraints
- lower bound and stopping criterion

Analytic center cutting-plane method

analytic center of polyhedron $\mathcal{P} = \{z \mid a_i^T z \leq b_i, i = 1, \dots, m\}$ is

$$AC(\mathcal{P}) = \underset{z}{\operatorname{argmin}} - \sum_{i=1}^{m} \log(b_i - a_i^T z)$$

ACCPM is localization method with next query point $x^{(k+1)} = AC(\mathcal{P}_k)$ (found by Newton's method)

ACCPM algorithm

given an initial polyhedron \mathcal{P}_0 known to contain X.

$$k := 0$$
.

repeat

Compute $x^{(k+1)} = AC(\mathcal{P}_k)$.

Query cutting-plane oracle at $x^{(k+1)}$.

If
$$x^{(k+1)} \in X$$
, quit.

Else, add returned cutting-plane inequality to \mathcal{P} .

$$\mathcal{P}_{k+1} := \mathcal{P}_k \cap \{z \mid a^T z \le b\}$$

If $\mathcal{P}_{k+1} = \emptyset$, quit.

$$k := k + 1$$
.

Constructing cutting-planes

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$

 $f_0, \ldots, f_m : \mathbf{R}^n \to \mathbf{R}$ convex; X is set of optimal points; p^* is optimal value

• if x is not feasible, say $f_j(x) > 0$, we have (deep) feasibility cut

$$f_j(x) + g_j^T(z - x) \le 0, \qquad g_j \in \partial f_j(x)$$

 \bullet if x is feasible, we have (deep) objective cut

$$g_0^T(z-x) + f_0(x) - f_{\text{best}}^{(k)} \le 0, \qquad g_0 \in \partial f_0(x)$$

Computing the analytic center

we must solve the problem

minimize
$$\Phi(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x)$$

where
$$\operatorname{dom} \Phi = \{x \mid a_i^T x < b_i, i = 1, \dots, m\}$$

- challenge: we are not given a point in $\operatorname{dom} \Phi$
- some options:
 - use phase I method to find a point in $\operatorname{dom} \Phi$ (or determine that $\operatorname{dom} \Phi = \emptyset$); then use standard Newton method to compute AC
 - use infeasible start Newton method starting from a point outside $\operatorname{\mathbf{dom}} \Phi$

Infeasible start Newton method

minimize
$$-\sum_{i=1}^{m} \log y_i$$

subject to $y = b - Ax$

with variables x and y

- ullet can be started from any x and any $y \succ 0$
- ullet e.g.: take initial x as previous point x_{prev} , and choose y as

$$y_i = \begin{cases} b_i - a_i^T x & b_i - a_i^T x > 0\\ 1 & \text{otherwise} \end{cases}$$

define primal and dual residuals as

$$r_p = y + Ax - b,$$
 $r_d = \begin{bmatrix} A^T \nu \\ g + \nu \end{bmatrix}$

where $g = -\operatorname{diag}(1/y_i)\mathbf{1}$ is gradient of objective and $r = (r_d, r_p)$

• Newton step at (x, y, ν) is defined by

$$\begin{bmatrix} 0 & 0 & A^T \\ 0 & H & I \\ A & I & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta \nu \end{bmatrix} = -\begin{bmatrix} r_d \\ r_p \end{bmatrix},$$

where $H = \mathbf{diag}(1/y_i^2)$ is Hessian of the objective

solve this system by block elimination

$$\Delta x = -(A^T H A)^{-1} (A^T g - A^T H r_p)$$

$$\Delta y = -A \Delta x - r_p$$

$$\Delta \nu = -H \Delta y - g - \nu$$

- options for computing Δx :
 - form A^THA , then use dense or sparse Cholesky factorization
 - solve (diagonally scaled) least-squares problem

$$\Delta x = \operatorname{argmin}_z \ \left\| H^{1/2} A z - H^{1/2} r_p + H^{-1/2} g \right\|_2$$

– use iterative method such as conjugate gradients to (approximately) solve for Δx

Infeasible start Newton method algorithm

given starting point $x, y \succ 0$, tolerance $\epsilon > 0$, $\alpha \in (0, 1/2)$, $\beta \in (0, 1)$. $\nu := 0$.

repeat

- 1. Compute Newton step $(\Delta x, \Delta y, \Delta \nu)$ by block elimination.
- 2. Backtracking line search on $||r||_2$.

$$\begin{aligned} t &:= 1. \\ \text{while } y + t\Delta y \not\succ 0, \qquad t &:= \beta t. \\ \text{while } \|r(x + t\Delta x, y + t\Delta y, \nu + t\Delta \nu)\|_2 > (1 - \alpha t) \|r(x, y, \nu)\|_2, \\ t &:= \beta t. \end{aligned}$$

3. Update. $x:=x+t\Delta x$, $y:=y+t\Delta y$, $\nu:=\nu+t\Delta\nu$. until y=b-Ax and $\|r(x,y,\nu)\|_2\leq\epsilon$.

Properties

- once any equality constraint is satisfied, it remains satisfied for all future iterates
- ullet once a step size t=1 is taken, all equality constraints are satisfied
- if $\operatorname{dom} \Phi \neq \emptyset$, t = 1 occurs in finite number of steps
- if $\operatorname{dom} \Phi = \emptyset$, algorithm never converges

Pruning constraints

- let x^* be analytic center of $\mathcal{P} = \{z \mid a_i^T z \leq b_i, i = 1, \dots, m\}$
- let H^* be Hessian of barrier at x^* ,

$$H^* = -\nabla^2 \sum_{i=1}^m \log(b_i - a_i^T z) \bigg|_{z=x^*} = \sum_{i=1}^m \frac{a_i a_i^T}{(b_i - a_i^T x^*)^2}$$

• then, $\mathcal{P} \subseteq \mathcal{E} = \{z \mid (z - x^*)^T H^*(z - x^*) \leq m^2\}$

define (ir)relevance measure $\eta_i = \frac{b_i - a_i^T x^*}{\sqrt{a_i^T H^{*-1} a_i}}$

- η_i/m is normalized distance from hyperplane $a_i^T x = b_i$ to outer ellipsoid
- if $\eta_i \geq m$, then constraint $a_i^T x \leq b_i$ is redundant

common ACCPM constraint dropping schemes:

- drop all constraints with $\eta_i \geq m$ (guaranteed to not change \mathcal{P})
- drop constraints in order of irrelevance, keeping constant number, usually 3n-5n

PWL lower bound on convex function

- ullet suppose f is convex, and $g^{(i)} \in \partial f(x^{(i)})$, $i=1,\ldots,m$
- then we have

$$\hat{f}(z) = \max_{i=1,\dots,m} \left(f(x^{(i)}) + g^{(i)T}(z - x^{(i)}) \right) \le f(z)$$

ullet \hat{f} is PWL lower bound on f

Lower bound in ACCPM

• in solving convex problem

minimize
$$f_0(x)$$

subject to $f_1(x) \leq 0$,
 $Cx \leq d$

(by taking max of constraint functions we can assume there is only one)

- ullet we have evaluated f_0 and subgradient g_0 at $x^{(1)},\dots,x^{(q)}$
- we have evaluated f_1 and subgradient g_1 at $x^{(q+1)}, \ldots, x^{(k)}$
- ullet form piecewise-linear approximations \hat{f}_0,\hat{f}_1

form PWL relaxed problem

minimize
$$\hat{f}_0(x)$$

subject to $\hat{f}_1(x) \leq 0$, $Cx \leq d$

(can be solved via LP)

- ullet optimal value is a lower bound on p^{\star}
- can easily construct a lower bound on the PWL relaxed problem, as a by-product of the analytic centering computation
- this, in turn, gives a lower bound on the original problem

form dual of PWL relaxed problem

$$\begin{array}{ll} \text{maximize} & \sum_{i=1}^{q} \lambda_i (f_0(x^{(i)}) - g_0^{(i)T} x^{(i)}) \\ & + \sum_{i=q+1}^{k} \lambda_i (f_1(x^{(i)}) - g_1^{(i)T} x^{(i)}) - d^T \mu \\ \text{subject to} & \sum_{i=1}^{q} \lambda_i g_0^{(i)} + \sum_{i=q+1}^{k} \lambda_i g_1^{(i)} + C^T \mu = 0 \\ & \mu \succeq 0, \quad \lambda \succeq 0, \quad \sum_{i=1}^{q} \lambda_i = 1, \end{array}$$

• optimality condition for $x^{(k+1)}$

$$\sum_{i=1}^{q} \frac{g_0^{(i)}}{f_{\text{best}}^{(i)} - f_0(x^{(i)}) - g_0^{(i)T}(x^{(k+1)} - x^{(i)})} + \sum_{i=q+1}^{k} \frac{g_1^{(i)}}{-f_1(x^{(i)}) - g_1^{(i)T}(x^{(k+1)} - x^{(i)})} + \sum_{i=1}^{m} \frac{c_i}{d_i - c_i^T x^{(k+1)}} = 0.$$

• take
$$\tau_i = 1/(f_{\text{best}}^{(i)} - f_0(x^{(i)}) - g_0^{(i)T}(x^{(k+1)} - x^{(i)}))$$
 for $i = 1, \dots, q$.

construct a dual feasible point by taking

$$\lambda_{i} = \begin{cases} \tau_{i}/\mathbf{1}^{T}\tau & \text{for } i = 1, \dots, q \\ 1/(-f_{1}(x^{(i)}) - g_{1}^{(i)T}(x^{(k+1)} - x^{(i)}))(\mathbf{1}^{T}\tau) & \text{for } i = q+1, \dots, k, \end{cases}$$

$$\mu_{i} = 1/(d_{i} - c_{i}^{T}x^{(k+1)})(\mathbf{1}^{T}\tau) \quad i = 1, \dots, m.$$

ullet using these values of λ and μ , we conclude that

$$p^* \ge l^{(k+1)},$$

where
$$l^{(k+1)} = \sum_{i=1}^{q} \lambda_i (f_0(x^{(i)}) - g_0^{(i)T} x^{(i)}) + \sum_{i=q+1}^{k} \lambda_i (f_1(x^{(i)}) - g_1^{(i)T} x^{(i)}) - d^T \mu$$
.

Stopping criterion

since ACCPM isn't a descent method, we keep track of best point found, and best lower bound

- best function value so far: $f_{\text{best}}^{(k)} = \min_{i=1,\dots,k} f_0(x^{(k)})$
- best lower bound so far: $l_{\text{best}}^{(k)} = \max_{i=1,\dots,k} l(x^{(k)})$
- \bullet can stop when $f_{\mathrm{best}}^{(k)} l_{\mathrm{best}}^{(k)} \leq \epsilon$
- ullet guaranteed to be ϵ -suboptimal

Example: Piecewise linear minimization

problem instance with n=20 variables, m=100 terms, $f^\star \approx 1.1$

Prof. S. Boyd, EE364b, Stanford University

ACCPM with constraint dropping

PWL objective, n=20 variables, m=100 terms

number of inequalities in \mathcal{P} :

accuracy versus approximate cumulative flop count

Epigraph ACCPM

PWL objective, n=20 variables, m=100 terms

