ALARM SYSTEM TO HIGH TEMPERATURE ASSIGNMENT:2

By
M.MEENA
952319106020

BUILD A PYTHON CODE, ASSUME U GET TEMPERATURE AND HUMIDITY VALUE AND WRITE A CONDITION TO CONTINUOUSLY DETECT ALARM IN CASE OF HIGH TEMPERATURE:

This article, we shall discuss interacting DHT11 with Respectly Pi and see it working using python code. Also, we shall display real-time data on the 16x2 LCD will be included with its article home page. So lets begin.

- You may visit its Arduino
 Tutorial to have a more clear Idea of
 Its working if you are working so,
 here we are giving you the tutorial on
 how to connect dht11 with Raspberry
 Pi.
- ❖ DHT11 is a simple sensor and has a very simple structure for measuring temperature and humidity. Basically, it is an enclosed structure that consists

of two wires which are responsible for checking humidity and temperature.

DHT11 with Raspberry Pi Diagram

Import Adafruit_DHT

DHT11=Adafruit_DHT.DHT11#Adafruit_DHT.DHT22 forDHT22 sensor. While True:

Try:

Temp,humid=Adafruit
_DHT.read_retry(DHT11,4)#4 is the
GPIO number you can change this to
you required need.

Print("TEMP={0:0.if}C
HUMIDITY ={1:0.if}%" format
(temp,humid))

Except keyboardInterrupt:

Break

The first line as we have said we have imported the library for the

DHT11 Sensor to work i.e., Adafruit_DHT. You can use this library with DHT22 also, but you need to change the DHT11 object line.

- Then we create a DHT object which store the DHT11 sensor configuration details and further in code we use this object name to refer to all working statements.
- Next we create an infinite while loop within Try and expect method to create a keyboard interrupt terminating condition ie., Ctrl+C
- ❖ In next line we read data from the DHT11 Sensor and stores it in two variable values are begin received

,one for temperature and other for humidity.

CODING:

!/usr/bin/python Import struct,array,time,io,fcnt1 I2C_SLAVE=OXO703

```
# find with sudo i2cdetect -y 1
HDC1008 ADDR = 0x40
bus=1
fr = io.open("/dev/i2c-
"+str(bus), "rb", buffering=0)
fw = io.open("/dev/i2c-
"+str(bus), "wb", buffering=0)
# set device address
fcntl.ioctl(fr, I2C SLAVE,
HDC1008_ADDR)
fcntl.ioctl(fw, I2C_SLAVE,
HDC1008 ADDR)
time.sleep(0.015) #15ms startup
time
s = [0x02,0x02,0x00]
```

```
s2 = bytearray( s )
fw.write( s2 ) #sending config
register bytes
time.sleep(0.015)
# From the data sheet
s = [0x00] # temp
s2 = bytearray( s )
fw.write( s2 )
time.sleep(0.0625)
# From the data sheet
data = fr.read(2) #read 2 byte
temperature data
buf = array.array('B', data)
print ( "Temp: %f" % (
((((buf[0]<<8) +
(buf[1]))/65536.0)*165.0) -
40.0 )
```

```
time.sleep(0.015)
# From the data sheet

s = [0x01] # hum

s2 = bytearray( s )
fw.write( s2 )
time.sleep(0.0625)
# From the data sheet

data = fr.read(2) #read 2 byte
temperature data
buf = array.array('B', data)
print ( "Humidity: %f" % (
((((buf[0]<<8) +
(buf[1]))/65536.0)*100.0 ) ) )</pre>
```