

Phylodynamics Workshop

Dr Samantha Lycett

Infection & Immunity
Roslin Institute
University of Edinburgh

June 2023

Welcome to Phylodynamics!

- General introduction (talk)
- Molecular clock and Tempest (practical / demo)
- Time-scales and BEAST trees (talk)
- Phylodynamics and Phylogeography Practical (see handout)
 - Setting up BEAST1 using BEAUTI
 - Using Tracer, TreeAnnotator and FigTree to look at the results
 - Phylogeography: including traits in BEAUTI

What can pathogen sequences tell us? Introducing Phylodynamics and Phylogeography

How to use sequence data to infer transmission patterns

Pathogen genomes and Molecular Evolution

- Pathogen sequences (DNA / RNA, Protein) accumulate mutations over time
- Different types of mutations:
 - Mutations in nucleotide only
 - Mutations that change amino acid
 - Insertions and deletions
 - Recombination & Gene transfer

Sequence data: Each row is a sample Each column is a genome position

Nucleotides (A,C,G,T)

Amino Acids (Protein)

Pathogen Genomes and Evolutionary Rates

	RNA Viruses	DNA Viruses	Bacteria
Replication & Evolution	Fast and error prone	Slower, more conserved	Very slow, but horizontal gene transfer
Genome size	8-30kb	20-200kb	4Mb
Mutations per year	10-100	1-20	0-1

HIV, Ebola Foot-and-Mouth Coronavirus

Segmented ssRNA

Avian influenza Schmallenberg African Swine Fever

Bovine Tb

Segmented dsRNA

Blue Tongue African Horse Sickness

Pathogen Sequence Data

- Pathogen sequences provide richer information than strain type
- Sequences accumulate mutations over time

How are the sequences related?

Adding a time scale and creating a Phylogenetic tree

Reading a phylogenetic tree

Reading a phylogenetic tree

Infer that:

Pink group (.. Place 1 ..) infected
Blue group (.. Place 2..)

Use a model to calculate the probability of the location of the ancestral nodes

Phylodynamic Modelling Scenarios Viral pathogen sequencing for disease tracking

Forensic Scenario

- For outbreak situations
- What strain is it?
- When did it arrive ?
- Who infects whom ?
- Dense sampling required

Transmission Patterns

- For epidemics and pandemics
- Pattern of diversity
- Imports and Exports
- Quantify transmission between locations and hosts
- Surveillance sampling required

• Yes ?

No

 Need to know who was infected first, not who was sampled first

• Yes ?

• No

Maybe ?

Genetic Clusters

- Exact determination of who infected whom is problematic; but can analyse collections of links between individuals
- Clusters: sequences from samples are genetically similar;
- (not had time to mutate much yet)
- Similar sequences have recent time to most recent common ancestor (TMRCA)
- Used in HIV analysis, Hospital infections and in Vet. Surveillence e.g. BVD

Pathogen Phylodynamics

Harness pathogen sequence and disease surveillance data

Tree + Spatial model

- Evolution and epidemiology of animal viruses and bacteria
- Cross species transmissions, host adaptations, epistatic interactions

- Combined evolutionary and spatial models
- Sources, routes and speed of spread
- Drivers of transmission patterns and evolution

Pathogens including: Influenza, FMDV, BVDV, PRRSV, M.bovis, S.aureus and SARS-CoV-2...

What can trees tell us?

A "plain" tree

What can trees tell us?

A "plain" tree – timescale by molecular clock

Time to most recent common ancestor (root age)

Adding time scales to Trees (2)

Adding Locations to Trees

Adding other 'Traits' to trees

What can trees tell us?

- Add traits to the tips;
- Infer ancestral states

(decorated tree)

Focus on one branch

Location A

Branch length = t

$$P(\mathbf{Y}|\mathbf{t}) = M(\mathbf{t}).\mathbf{X}$$

Probability of being in A after time t?

Probability of being in state Y after time t? Given that you started in state X (here X=A)

M(t) = Model of 'trait' evolution on the tree e.g. how can location change over time

Discrete Trait Models

Tree with Location Traits

Transition Rate Matrix (M)

	Α	В	С	D
Α	-	A -> B	A -> C	A -> D
В	B -> A	-	B -> C	B -> D
С	C -> A	C -> B	-	C -> D
D	D -> A	D -> B	D -> C	-

Probability of Ancestral state (x'), given branch length t and child state x:

$$p(x'|t) \sim e^{Mt}x$$

In a program, e.g. BEAST!

- Add locations to phylogenetic tree
- Estimate transition rates between locations along branches
- Transmission pattern represented by rate matrix

What can trees tell us?

Add traits to the tips; infer ancestral states

What can trees tell us?

Add traits to the tips; infer ancestral states

network figure version of the rate matrix of A->B etc Arrow width = rate value Arrow colour = importance measure of rate

Using Spatial Coordinates

- Discrete traits models are good for when there are discrete populations
- However, the real distribution of samples may be more diverse

Spatial Diffusion

- Model the spatial coordinates as continuous traits on the tree
- Viral lineages "diffuse" from a point source
 - Distance of child node is expected diffusion distance from parent node assuming time t has elapsed
 - Uses Brownian motion (random walk) diffusion model and extensions

Influenza viruses

- 8 RNA Segments coding for 10+ proteins
- Virus subtype defined by surface proteins
 - Hemagglutinin (HA)
 - Neuraminidase (NA)
- Reassortments between all segments
- Substitution rate ~ 5 x 10-3 per site per year (10-70 nucleotides per year across genome)

Avian Influenza Phylodynamics

- H5 + multiple subtypes (H5NX) since 2005
- Outbreaks in 2014/2015 in Asia, Europe, North America
- Outbreaks in 2016/2017 in Asia and Europe
- Data from 16 countries in Global Consortium
- Then Autumn Winter 20/21/22
- AGAIN IN UK, EUROPE, AMERICAS NOW – 2022/2023

Reassortants on Map (Global) 2020-2022 data

H5N1 data, but colours are by internal segment Reassortment code

Summary & Comments

- Tracking spread of infection using pathogen sequences and phylodynamics
 - Near real time surveillance sequencing
 - Global surveillance and data sharing important
 - Applicable to many measureably evolving systems: Influenza, SARS-CoV-2, FMDV..
- To make predictions or forecasts for viral spread in populations:
 - where are the current infections? surveillance & field
 - Imports and spreading patterns in the population ?
 - Fitness of (new) variants? Integrate experimental results with population scale growth rate estimates

Lineage AY

Example of SARS-CoV-2 Delta AY lineages in Scotland calculated using whole genomes, time-scaled trees and discrete trait models

Arrow width: number of imports/exports in 7 days Circle size: max sequences of AY Lineages in 7 days.

Background colour: "intensity" within healthboard transmissions

Lycett et al 2021 medRxiv https://doi.org/10.1101/2021.01.08.20248677 "Epidemic waves of COVID-19 in Scotland: a genomic perspective on the impact of the

introduction and relaxation of lockdown on SARS-CoV-2"

