VECTOR CALCULUS AND VECTOR INTEGRATION:

(a) $\sqrt{2}$ (b) $\sqrt{6}$ (c) $\sqrt{5}$

(d) 1

1. If $\phi = x^2 + y - z - 1$,then $| \nabla \phi |$ at (1,0,0)is

2. The directional derivative of $\varphi = 3x^2 + 2y - 3z$ at(1,1,1)in the direction of $2\hat{\imath} + 2\hat{\jmath} - \hat{k}$ i			
` ' 3	(b) 4 etor to the surface x^2 +	(c) $\frac{19}{3}$ $y^2 - 2z + 3 = 0$ at (
(a) $\frac{2\hat{i}+4\hat{j}+2\hat{k}}{\sqrt{24}}$ (b) $\frac{2\hat{i}}{\sqrt{24}}$	$\frac{(c)^{2}+4\hat{j}}{\sqrt{20}}$ (c) $\frac{2\hat{i}+2\hat{j}}{\sqrt{20}}$	$(d)\frac{2\hat{\imath}+4\hat{\jmath}-2\hat{k}}{\sqrt{24}}$	
4. If $f = \tan^{-1}(\frac{y}{x})$ then (a) 1	n <i>div(grad f)</i> is equal to (b) -1	(c) 0	(d) 2
5. The value of $curl(grad f)$, where $f = 2x^2 - 3y^2 + 4z^2$ is			
(a) $4x - 6y + 8z$	(b) $4x\hat{\imath} - 6y\hat{\jmath} + 8x\hat{\imath}$	$z\hat{k}$ (c) 0	(d) 3
6. What is the value of $\nabla \times (xy\hat{\imath} + yz\hat{\jmath} + zx\hat{k})$ is			
(a) $-y\hat{\imath} + z\hat{\jmath} - x\hat{k}$	(b) $-y\hat{\imath} - z\hat{\jmath} - x$	\hat{k}	
(c)-y-z-x	(d) - y + z - x		
7. If $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$, then $div\vec{r} = \underline{\qquad}$ and $curl\vec{r} = \underline{\qquad}$			
(a) $\hat{i} + \hat{j} + \hat{k}$ and	d 0 (b) 3 and 0	$\vec{0}$ (c) 3 and 0	(d)none of these
8. The angle between the vectors $6\hat{i} + 2\hat{j} + 3\hat{k}$ and $2\hat{i} - 9\hat{j} + 6\hat{k}$ is			
(a) $\theta = 1.4143$	(b) $\theta = 0.897$	(c) $\theta = 0$	(d) $\theta = 0.1558$
9. If $\vec{F} = xyz\hat{\imath} + 3x^2y\hat{\jmath} + (xz^2 - y^2z)\hat{k}$, then at $(2, -1, 1) \nabla \cdot \vec{F} =$			
$(a)-\hat{\imath}+12\hat{\jmath}+3\hat{k}$	(b) $-\hat{i} + 12\hat{j} +$	$5\hat{k}$ (c) 16	(d) 14
10. Find 'a' such that $(-x^2 + yz)\hat{i} + (4ay - z^2x)\hat{j} + (2xz - 4z)\hat{k}$ is solenoidal			
(a) -1	(b) 1	(c) 0	(d) none of these
11. Find 'a'such that the vector $\vec{F} = (x+y+az)\hat{\imath} + (x+2y-z)\hat{\jmath} + (-x-y+2z)\hat{k}$ is irrotational			
(a) -1	(b) 1	(c) 0	(d) none of these

12. If $\varphi = xy^3z^2 = 4$, then $\nabla \varphi$ at the point (1,1,-1) is

(a)
$$\hat{\imath} + 3\hat{\jmath} + 2\hat{k}$$

(b)
$$\hat{i} + 3\hat{j} - 2\hat{k}$$

$$(c)\hat{\imath} - 3\hat{\jmath} + 2\hat{k}$$

(d)
$$\hat{\imath} - 3\hat{\jmath} - 2\hat{k}$$

13. The unit directional derivative to the curve x = t, $y = t^2$, $z = t^3$ at the point (-1,1,-1) is

(a)
$$\frac{1}{\sqrt{14}}(\hat{i}-2\hat{j}+3\hat{k})$$

(b)
$$\frac{1}{\sqrt{14}}(\hat{i}+2\hat{j}+3\hat{k})$$

(c)
$$\frac{1}{\sqrt{3}}(\hat{i} + \hat{j} + \hat{k})$$

$$(d) \frac{1}{\sqrt{3}} (\hat{\imath} - \hat{\jmath} + \hat{k})$$

14. A vector field which has a vanishing divergence is called as

- (a) Solenoidal field
- (b)irrotational field
- (c) roatational field
- (d) scalar field

$$15.\vec{F} = (x + 2y + 4z)\hat{\imath} + (2ax - 3y - z)\hat{\jmath} + (4x - y + 2z)\hat{k}$$
is

- (a) Solenoidal
- (b) irrotational
- (c) rotational
- (d) both solenoidal and irrotational

16. A unit tangent vector to the surface $x = t, y = e^t, z = -3t^2$ at t = 0 is

- (a) $\hat{i} + \hat{j}$ (b) $\frac{1}{\sqrt{2}}\hat{i} + \frac{1}{\sqrt{2}}\hat{j}$ (c) $\frac{1}{\sqrt{3}}\hat{i} + \frac{1}{\sqrt{3}}\hat{j}$ (d) none of these

17. Unit normal vector to the surface z = 2xyat the point (2,1,4)is

- (a) $\frac{1}{\sqrt{20}}(2\hat{\imath} + 4\hat{\jmath})$
- (b) $\frac{1}{\sqrt{20}}(2\hat{\imath}-4\hat{\jmath})$
- (c) $\frac{1}{\sqrt{21}}(2\hat{\imath} + 4\hat{\jmath} \hat{k})$
- (d) $\frac{1}{\sqrt{21}} (2\hat{\imath} + 4\hat{\jmath} + \hat{k})$

18. Maximum value of the directional derivative of $\varphi = xyz^2$ at the point (1,0,3) is

- (a) 9
- (b) 10
- (c) 0
- (d) none of these

- 3.

- 6. b
 7. b
 8. a
 9. d
 10. b
 11. a
 12. b
 13. a
 14. b
 15. a
 16. b
 17. c
 18. a