Planar Inverse Kinematics

Lecture 5

Winter 2023

Review: Forward Kinematics

 The complete FK equation is assembled from the individual homogeneous transformations

$$H = A_1(q_1)...A_n(q_n) = \begin{bmatrix} R_n^0 & o_n^0 \\ 0 & 1 \end{bmatrix}$$

- $\blacksquare R_n^0$ represents orientation of the end effector
- $lackbox{0.5cm} o_n^0$ represents location of end effector in frame 0

Inverse Kinematics

- Forward Kinematics:
 - Finds end-effector pose $H_n^0(q)$ as function of configuration q

$$H = A_1(q_1)...A_n(q_n) = \begin{bmatrix} R_n^0 & o_n^0 \\ 0 & 1 \end{bmatrix}$$

- Inverse Kinematics:
 - Given desired end effector pose H
 - Find all joint variables $q_1, ..., q_n$
 - In 2D we have 3 independent equations with n unknowns
 - In 3D we have 6 independent equations with n unknowns

RR Arm

- 2 Joints, 2DOF
- Can control position
- No control over orientation

Geometrical Solution

- Use Law of Cosines to find β
- $\bullet \theta_2 = \pi \beta$

$$x^2 + y^2 = l_1^2 + l_2^2 - 2l_1l_2\cos\beta$$

Geometrical Solution

Degeneracies

$$\cos(\theta) = \cos(-\theta)$$

- 2 solutions for θ_2
- We refer to these as "elbow up" and "elbow down" configuration
- The configuration depends on θ_1 as well

Geometrical Solution

RR IK Solution Summary

(x,y) Find 2 solutions for θ_2

$$\theta_2 = \cos^{-1}\left(\frac{(x^2 + y^2) - l_1^2 - l_2^2}{2l_1 l_2}\right)$$

• Find solution for θ_1 depending on choice of θ_2

$$\theta_1 = \operatorname{atan2}(y, x) - \operatorname{atan2}(l_2 \sin \theta_2, l_1 + l_2 \cos \theta_2)$$

Kinematic Decoupling

Decompose problem into two solutions:

Inverse Position Kinematics Solution

- Find wrist center (x_c, y_c)
- Find shoulder and elbow joint variables
- Inverse Orientation Kinematics
 - find wrist joint variable

3-link RRR Arm

• Given (x, y, θ) can find (x_c, y_c) then use 2 link RR manipulator equations to find θ_1 and θ_2 .

$$\begin{bmatrix} x_c \\ y_c \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} - l_3 R_3^0 \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$FK: f(q_1, q_2, q_3) = \begin{bmatrix} c_{123} & -s_{123} & l_1c_1 + l_2c_{12} + l_3c_{123} \\ s_{123} & c_{123} & l_1s_1 + l_2s_{12} + l_3s_{123} \\ 0 & 0 & 1 \end{bmatrix}$$

3-link RRR Arm

- Using FK for the wrist point and desired θ find θ_3 .
- By inspection $\theta_3 = \theta (\theta_1 + \theta_2)$
- Generally, we want to solve for R_3^2 :

$$R = R_2^0 R_3^2$$

$$R_3^2 = (R_2^0)^{-1} R$$

$$\begin{bmatrix} c_3 & -s_3 \\ s_3 & c_3 \end{bmatrix} = \begin{bmatrix} c_{12} & s_{12} \\ -s_{12} & c_{12} \end{bmatrix} \begin{bmatrix} c_{123} & -s_{123} \\ s_{123} & c_{123} \end{bmatrix}$$

Summary

- Inverse Kinematics equations can be solved in closed form using geometry.
- Closed form solutions are convenient, fast to compute, and provide explicit knowledge of degeneracies and singularities.
- Kinematic decoupling can be used to solve for orientation as well as position so long as the kinematics of the end effector position and orientation are independent.
- We will use the planar IK solution as part of the full 3D IK solution in the next lecture.

3D Geometrical Inverse Kinematics

Winter 2023

Review: Kinematic Decoupling

• Given (x, y, θ) can find (x_c, y_c) then use 2 link RR manipulator equations to find θ_1 and θ_2 .

$$\begin{bmatrix} x_c \\ y_c \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} - l_3 R_3^0 \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Direction of x_3 in base frame

$$FK: f(q_1, q_2, q_3) = \begin{bmatrix} c_{123} & -s_{123} & l_1c_1 + l_2c_{12} + l_3c_{123} \\ s_{123} & c_{123} & l_1s_1 + l_2s_{12} + l_3s_{123} \\ 0 & 0 & 1 \end{bmatrix}$$

6DOF with Spherical Wrist

- Axes of last 3 joints intersect at point o_c
- Decouple into 2 solutions:
- Inverse position at wrist center o_c
- Inverse orientation of wrist center R_6^3

6DOF with Spherical Wrist

- Represent desired end effector pose as the homogeneous transform H
- Separate out R and o from H
- IK problem: given R and o, find q_1, \dots, q_6
- The wrist center o_c only depends on $q_1, ..., q_3$

Finding o_c

■ The origin of the end effector frame is a distance l_6 along z_5 from the wrist center o_c

$$\bullet \ o = o_c^0 + l_6 R \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

■ The 3^{rd} column of R represents the direction of z_6 in the base frame

$$\bullet o_c^0 = o - l_6 R \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Finding the other joints

• After finding o_c , we can use 2D planar IK solution to find other joints

Base Joint - θ_1

Singular Configuration

- Solutions for θ_1 are valid unless $x_c = y_c = 0$
- Infinite solutions exist...

Offset

Wrist & Elbow - θ_2 , θ_3

Same result as the Planar RR manipulator we covered previously...

Inverse Orientation Kinematics

- Now that we know θ_1 , θ_2 , θ_3 , can find orientation of the wrist R_3^0 using forward kinematics
- Then find expression for remaining joints angles

$$R_3^0 = \begin{bmatrix} c_1 c_{23} & -c_1 s_{23} & s_1 \\ s_1 c_{23} & -s_1 s_{23} & -c_1 \\ s_{23} & c_{23} & 0 \end{bmatrix}$$

$$R = R_3^0 R_6^3 \qquad R_6^3 = (R_3^0)^{-1} R = (R_3^0)^T R$$

$$k_{N_0} k_{N_0} k_{$$

Determining Angles from Rotation Matrix

• For ZYZ Euler Angles (ϕ, θ, ψ)

$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = \begin{bmatrix} c_{\phi}c_{\theta}c_{\psi} - s_{\phi}s_{\psi} & -c_{\phi}c_{\theta}s_{\psi} - s_{\phi}c_{\psi} & c_{\phi}s_{\theta} \\ s_{\phi}c_{\theta}c_{\psi} + c_{\phi}s_{\psi} & -s_{\phi}c_{\theta}s_{\psi} + c_{\phi}c_{\psi} & s_{\phi}s_{\theta} \\ -s_{\theta}c_{\psi} & s_{\theta}s_{\psi} & c_{\theta} \end{bmatrix}$$

■ Case 1: r_{13} and/or r_{23} is non-zero, so $r_{33} \neq \pm 1$

•
$$c_{\theta} = r_{33}$$
, $s_{\theta} = \pm \sqrt{1 - r_{33}^2}$ so $\theta = \text{atan2}(\pm \sqrt{1 - r_{33}^2}, r_{33})$

• If
$$s_{\theta} > 0$$

$$\Phi = \text{atan2}(r_{23}, r_{13})$$

•
$$\psi = \text{atan2}(r_{32}, -r_{31})$$

• If
$$s_{\theta} < 0$$

$$\Phi = \text{atan2}(-r_{23}, -r_{13})$$

$$-\psi = atan2(-r_{23}, r_{31})$$

Determining Angles from Rotation Matrix

• For ZYZ Euler Angles (ϕ, θ, ψ)

$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = \begin{bmatrix} c_{\phi}c_{\theta}c_{\psi} - s_{\phi}s_{\psi} & -c_{\phi}c_{\theta}s_{\psi} - s_{\phi}c_{\psi} & c_{\phi}s_{\theta} \\ s_{\phi}c_{\theta}c_{\psi} + c_{\phi}s_{\psi} & -s_{\phi}c_{\theta}s_{\psi} + c_{\phi}c_{\psi} & s_{\phi}s_{\theta} \\ -s_{\theta}c_{\psi} & s_{\theta}s_{\psi} & c_{\theta} \end{bmatrix}$$

- Case 2: $r_{13} = r_{23} = 0$, $r_{33} = \pm 1$ so $s_{\theta} = 0$
- $\Phi + \psi = \operatorname{atan2}(r_{21}, r_{11})$ therefore infinitely many solutions!

Roll, Pitch, Yaw

$$\begin{split} R_{XYZ} &= R_{z,\phi} R_{y,\theta} R_{x,\psi} \\ &= \begin{bmatrix} c_{\phi} & -s_{\phi} & 0 \\ s_{\phi} & c_{\phi} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_{\theta} & 0 & s_{\theta} \\ 0 & 1 & 0 \\ -s_{\theta} & 0 & c_{\theta} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{\psi} & -s_{\psi} \\ 0 & s_{\psi} & c_{\psi} \end{bmatrix} \\ &= \begin{bmatrix} c_{\phi} c_{\theta} & -s_{\phi} c_{\psi} + c_{\phi} s_{\theta} s_{\psi} & s_{\phi} s_{\psi} + c_{\phi} s_{\theta} c_{\psi} \\ s_{\phi} c_{\theta} & c_{\phi} c_{\psi} + s_{\phi} s_{\theta} s_{\psi} & -c_{\phi} s_{\psi} + s_{\phi} s_{\theta} c_{\psi} \\ -s_{\theta} & c_{\theta} s_{\psi} & c_{\theta} c_{\psi} \end{bmatrix} \end{split}$$

Wrist Joints - θ_4 , θ_5 , θ_6

- Kinematics are equivalent to ZYZ Euler angles
- Will be different if using other Euler angles

$$R_6^3 = \begin{bmatrix} c_4 c_5 c_6 - s_4 s_6 & -c_4 c_5 s_6 - s_4 c_6 & c_4 s_5 \\ s_4 c_5 c_6 + c_4 s_6 & -s_4 c_5 s_6 + c_4 c_6 & s_4 s_5 \\ -s_5 c_6 & s_5 s_6 & c_5 \end{bmatrix}$$

$$\theta_4 = \operatorname{atan2}(r_{23}, r_{13})$$

$$\theta_5 = \operatorname{atan2}(\pm \sqrt{1 - r_{33}^2}, r_{33})$$

$$\theta_6 = \operatorname{atan2}(r_{32}, -r_{31})$$