

BVRIT HYDERABAD

College of Engineering for Women

MOVIE CRITIC

Team No: 9
Team Members:
M. Sandhya - 20wh1a1243
P. Harini - 20wh1a1244
E. Meenakshi Supriya - 20wh1a1245
G. Indhu - 20wh1a1246
Madeeha Qamar - 20wh1a1247

AGENDA

- Problem statement
- Python Packages used
- Types of Algorithms
- Output and Graph
- Comparison table
- Execute the Code

Problem Statement

• In this dataset, you are provided with 7398 movies. Movies are labeled with id. Data points include cast, crew, plot keywords, budget, posters, release dates, languages, production companies, and countries. You are predicting the worldwide revenue for 4398 movies in the test file. Note - Many movies are remade over the years, therefore it may seem like multiple instances of a movie appear in the data, however they are different and should be considered separate movies. In addition, some movies may share a title, but be entirely unrelated. E.g. The Karate Kid (id: 5266) was released in 1986, while a remake (id: 1987) was released in 2010.

Python Packages used

- pandas
- numpy
- scikit-learn
- matplotlib
- seaborn
- datetime
- collections
- ast

Algorithm

- Multiple Linear Regression
- Random Forest
- Ridge Regression
- Lasso Regression
- Extreme Gradient Boosting(XGBoost)

Multiple Linear Regression

- Linear Regression is a machine learning algorithm based on supervised learning.
- It performs a regression task.
- It is a statistical method that is used for predictive analysis.
- Linear regression algorithm shows a linear relationship between a dependent (y) and one or more independent (y) variables.

Random Forest

- Random Forest is a popular machine learning algorithm that belongs to the supervised learning technique. It is based on the concept of ensemble learning, which is a process of combining multiple classifiers to solve a complex problem and to improve the performance of the model.
- Random Forest is a classifier that contains a number of decision trees on various subsets of the given dataset and takes the average to improve the predictive accuracy of that dataset.
- Instead of relying on one decision tree, the random forest takes the prediction from each tree and based on the majority votes of predictions, and it predicts the final output.
- The greater number of trees in the forest leads to higher accuracy and prevents the problem of overfitting.

- Ridge regression is one of the types of linear regression in which a small amount of bias is introduced so that we can get better long-term predictions.
- Ridge regression is a regularization technique, which is used to reduce the complexity of the model. It is also called as L2 regularization.

- Lasso regression is another regularization technique to reduce the complexity of the model. It stands for Least Absolute and Selection Operator
- It is also called as L1 regularization.

XGBoost

- XGBoost stands for "Extreme Gradient Boosting"
- XGBoost is an optimized distributed gradient boosting library designed for efficient and scalable training of machine learning models.
- It is an ensemble learning method that combines the predictions of multiple weak models to produce a stronger prediction.
- It provides parallel tree boosting and is the leading machine learning library for regression, classification, and ranking problems.

Output

		0
id	revenue	
3001	636631.1606295245318	
3002	3597515.2157505536293	
3003	971851.162917065463	
3004	13049602.177637019745	
3005	17157061.606449148407	
3006	428303.86532665085312	
3007	632940.85468068075113	
3008	11293729.218483906074	
3009	26696884.153116011645	
3010	346070740.35508292814	

Linear regression

Output

-		
	revenue	id
	186946.02166424189247	3001
	909296.72912333701595	3002
	932730.65962322913776	3003
	11464618.527065978673	3004
	1196897.1219268795201	3005
	871589.5577037696444	3006
	548864.2473859212043	3007
	33145495.880680322032	3008
	27089572.693474583539	3009
	151628027.57217869734	3010

Random Forest

Output

		- (c)
id	revenue	
3001	593741.4373866120468	
3002	1687587.1218405323546	
3003	1112642.0180739149133	
3004	18149667.000749076815	
3005	2177403.5283906561785	
3006	536798.214941865891	
3007	356164.11882848253111	
3008	16346426.967385990254	
3009	21819474.976510670012	
3010	190044884.84351855755	

XGBoost

Graph

Comparision Table

	Model	RMSE
0	Linear Regression	2.273472
1	Lasso Regression	2.280914
2	Ridge Regression	2.281044
3	Random Forest	2.043063
4	XGBoost	1.988186

Execute Code

THANK YOU