EXPLORATORY DATA ANALYSIS -TELECOM DATASET

Objective-

- Analyzing the CRM data of a wireless company for 2 years to investigate the customer distribution and business behaviors.
- Gain insightful understanding about the customers, and to forecast the deactivation trends for the next 6 months

Dataset Overview-

Obs	Acctno	Actdt	Deactdt	DeactReason	GoodCredit	RatePlan	DealerType	Age	Province	Sales
1	1176913194483	06/20/1999	-		0	1	A1	58	BC	\$128.00
2	1176914599423	10/04/1999	10/15/1999	NEED	1	1	A1	45	AB	\$72.00
3	1176951913656	07/01/2000			0	1	A1	57	BC	\$593.00
4	1176954000288	05/30/2000			1	2	A1	47	ON	\$83.00
5	1176969186303	12/13/2000			1	1	C1	82	BC	
6	1176991056273	08/31/1999	09/18/2000	MOVE	1	1	C1	92	QC	\$1,041.00
7	1176991866552	05/24/2000			1	1	A1	77	ON	
8	1176992889500	11/28/2000			1	1	C1	68	AB	\$72.00
9	1177000067271	12/23/1999			0	1	B1	75	ON	\$134.00
10	1177010940613	12/09/1999			1	2	A1	42	NS	\$11.00
11	1177025997013	11/09/1999			1	1	A1	26	BC	\$154.00
12	1177027515760	10/19/1999			1	1	B1	73	BC	\$16.00
13	1177028996676	09/21/2000	-		0	1	C1		QC	\$179.00
14	1177038747105	03/14/2000	-		0	1	C1	41	ON	\$705.00
15	1177045857516	06/22/2000	-		1	1	A1	53	QC	\$83.00

The Telecom Dataset demonstrates the distribution of 102255 observation which are categorized into 10 variables out of which 5 are categorical and 5 are numerical which are as follows

Categorical Variables	Numerical Variables
Acct No	Act dt
Deact Reason	Age
Dealer Type	Deact Dt
Province	Good Credit
Rate Plan	Sales

Alphabetic List of Variables and Attributes								
#	Variable	Type	Len	Format				
1	Acctno	Char	15					
2	Actdt	Num	8	MMDDYY10				
8	Age	Num	8					
4	DeactReason	Char	6					
3	Deactdt	Num	8	MMDDYY10				
7	DealerType	Char	2					
5	GoodCredit	Num	8					
9	Province	Char	2					
6	RatePlan	Char	2					
10	Sales	Num	8	DOLLAR10.2				

UNIVARIATE ANALYSIS- Categorical Variables

- 1. Acct No
- It's the account no of the customer associated with the Telecom Company
- No Missing or duplicate account numbers found
- The Data Reveals the total of 102255 Customer account numbers.

proc sql;
select count(distinct(Acctno))as Total_Actno
from Nandini.Telcm;
quit;

2. Deact Reason

- The Analysis Focuses on distribution of the variable 'Deact Reason' within the dataset that means reason for service deactivation.
- Summarisation- Proc Freq
- Visualisation- Bar Chart
- The data reveals out of total 102255 observations 4722(4.62%) left due 'COMP' reason, 4020(3.93%) left due to 'DEBT' reason, 1696(1.66%)left due to 'MOVE' reason,6888(6.74%)left due to 'NEED'reason,1767(1.73%) left due to 'TECH' reason. 83162(81.33%) reason is missing. This can be either active customer or those who have not mention reason to leave the service.

DeactReason	Frequency	Percent	Cumulative Frequency	Cumulative Percent
	83162	81.33	83162	81.33
COMP	4722	4.62	87884	85.95
DEBT	4020	3.93	91904	89.88
MOVE	1696	1.66	93600	91.54
NEED	6888	6.74	100488	98.27
TECH	1767	1.73	102255	100.00

`

```
proc freq Data=Nandini.Telcm;
table DeactReason DealerType Province RatePlan/ missing;
run;
title"UNIVARIATE ANALYSIS":
title"Pie Chart showing classification of Deact Reason";
proc sqplot data=Nandini.Telcm;
vbar DeactReason/filltype=gradiant groupdisplay=cluster datalabel;
```


3.Dealer Type-

- The Analysis Focuses on distribution of the variable 'Dealer Type' within the dataset .
- Summarisation- Proc Freq
- Visualisation-Bar Chart
- The data reveals the distribution of 102255 observations categorized into 4 levels of Dealer type
 - o A1- 56132- 54.89%
 - o A2-11255-11.01%
 - o B1-20670-20.21%
 - o C1-14198-13.88%
- It indicates Dealer A1 has maximum customer base

```
proc freq Data=Nandini.Telcm;
table DeactReason DealerType Province RatePlan/ missing;
title"UNIVARIATE ANALYSIS";
title"Bar Chart showing classification of Dealer Type";
proc sgplot data=Nandini.Telcm;
vbar DealerType/filltype=gradiant groupdisplay=cluster datalabel;
run;
title:
```

DealerType	Frequency	Percent	Cumulative Frequency	Cumulative Percent
A1	56132	54.89	56132	54.89
A2	11255	11.01	67387	65.90
B1	20670	20.21	88057	86.12
C1	14198	13.88	102255	100.00

4. Province

- The Analysis Focuses on distribution of the variable 'Province' within the dataset
- Summarisation- Proc Freq
- Visualisation-Pie Chart
- The data reveals total 102255 observations which are grouped as follows-

- AB- 10277 (10.05%)
- BC- 22040(21.55%)
- NS- 11529(11.27%)
- ON- 42500(41.56%)
- QC-10002(9.78%)

proc freq Data=Nandini.Telcm;

- No Province Info-5907(5.78%)
- Maximum Customer base is in ON. Minimum Customer Base in QC

```
table DeactReason DealerType Province RatePlan/ missing;
run;
title"UNIVARIATE ANALYSIS";
title"Pie Chart showing classification of Province";
proc gchart data=Nandini.Telcm;
pie Province/missing discrete value= inside percent=inside;
goption colors=(white,Cyan,Pink, orange,Yellow,green);
```

Province	Frequency	Percent	Cumulative Frequency	Cumulative Percent
	5907	5.78	5907	5.78
AB	10277	10.05	16184	15.83
BC	22040	21.55	38224	37.38
NS	11529	11.27	49753	48.66
ON	42500	41.56	92253	90.22
QC	10002	9.78	102255	100.00

5. Rate Plan

run;

- The Analysis Focuses on distribution of the variable 'Rate Plan' for the customer within the dataset
- Summarisation- Proc Freq
- Visualisation-Pie Chart
- The data reveals the distribution of 102255 observations categorized into 3 Types of Rate Plan
 - o 1-68194-(66.69%)
 - o 2-20187-(19.74%)
 - o 3-13874-(13.57%)
- It indicates majority people -66.69% prefer Rate plan 1

<pre>proc freq Data=Nandini.Telcm;</pre>							
table DeactReason	DealerType	Province	RatePlan/	missing;			
run;							

RatePlan	Frequency	Percent	Cumulative Frequency	Cumulative Percent
1	68194	66.69	68194	66.69
2	20187	19.74	88381	86.43
3	13874	13.57	102255	100.00

```
title"UNIVARIATE ANALYSIS";
title"Pie Chart showing classification of RatePlan";
proc gchart data=Nandini.Telcm;
pie Rateplan/discrete value= inside percent=inside;
goption colors=(Cyan, Pink, orange);
```


6. Good Credit

- The Analysis Focuses on distribution of the variable 'Good Credit' within the dataset that specifies if customer has Good Credit or not
- It's a Numerical variable .But being descrete Numerical variable with only 2 levels we can treat this as categorical.
- Summarisation- Proc Freq
- Visualisation-Bar Chart
- The data reveals the distribution of 102255 observations categorized into 2 Levels of **Good Credit**
 - o 0 (No Good Credit)-31253-30.56%
 - 1-(Has Good Credit)-71002-69.44%
- It indicates majority people -69.44% have **Good Credit**

```
]proc freq Data=Nandini.Telcm;
 table GoodCredit;run;
```

```
title"UNIVARIATE ANALYSIS";
title"Bar Chart showing classification of Good Credit";
∃proc sgplot data=Nandini.Telcm;
vbar GoodCredit/filltype=gradiant groupdisplay=cluster datalabel;
run:
 title;
```


UNIVARIATE ANALYSIS- Numerical Variables

1 .Activation and Deactivation Dates

- The Analysis Focuses on distribution of the continuous variable 'Actdt; (Account activation Date) and 'Deactdt' (Account Deactivation Date).
- Summarisation- Proc Means, Proc Univariate
- Visualisation- QQ plot
- Summary estimate is as shown in the image-'The Means Procedure'
- Latest Activation Date is 20th January 2001 and Latest Deactivation Date is also 20th January 2001.
- Kolmogorov-Smirnov Test of Normality shows that both variables are not normally distributed
- QQ plot displays that distribution is not uniform.

proc means Data=Nandini.Telcm n nmiss var std cv clm mean sum min max maxdec=2; var Actdt Deactdt; run:

	The MEANS Procedure										
Variable	N	N Miss	Variance	Std Dev	Coeff of Variation	Lower 95% CL for Mean		Mean	Sum	Minimum	Maximum
Actdt Deactdt	102255 19635	0 82620	40049.82 26871.28	200.12 163.92	1.36 1.11	14674.13 14799.63			1500628189.0 290635668.00	14264.00 14269.00	14995.00 14995.00

```
/*Latest Activation Date*/
title;
proc sort Data=Nandini.Telcm out=Nandini.Act nodupkey;
by descending Actdt;
proc print Data=Nandini.Telcm (obs=1);
format Actdt mmddyy10.;
/*Latest Deactivation Date*/
proc sort Data=Nandini.Telcm out=Nandini.Deact nodupkey;
by descending Deactdt;
run;
proc print Data=Nandini.Deact (obs=1);
format Deactdt mmddyy10.;
run:
```

Obs	Acctno	Actdt
1	1184263635198	01/20/2001

Obs	Acctno	Actdt	Deactdt	
1	1218085964217	11/29/1999	01/20/2001	

Activation and Deactivation Dates Distribution

proc univariate Data=Nandini.telcm normal; var Actdt Deactdt; qqplot /normal (mu=est sigma=est); run;

Tests for Normality							
Test	St	atistic	p Value				
Kolmogorov-Smirnov	D	0.070832	Pr > D	<0.0100			
Cramer-von Mises	W-Sq	153.9566	Pr > W-Sq	<0.0050			
Anderson-Darling	A-Sq	1107.889	Pr > A-Sq	<0.0050			

Tests for Normality						
Test	Sta	atistic	p Val	ue		
Kolmogorov-Smirnov	D	0.130351	Pr > D	<0.0100		
Cramer-von Mises	W-Sq	103.8733	Pr > W-Sq	<0.0050		
Anderson-Darling	A-Sq	632.7164	Pr > A-Sq	<0.0050		

2.Age

- The Analysis Focuses on distribution of the continuous variable 'Age' within the dataset
- Summarisation- Proc Means, Proc Univariate
- Visualisation- QQplot
- The data reveals the Age of total 94547 out of 102255 people with following summary estimates
 - Mean- 47.65 years
 - · Standard Deviation- 18.57
 - · Minimum Age-1 Year
 - Maximum Age-110 Years
 - · Mode-48 year- This Age appears more often than others
 - · Skewness-(0.04) This Means it is Positive or slightly Right skewed
 - · Kurtosis-(-0.40) This Means It is Platykurtic .i.e. Has Negative Kurtosis . Peak is Flatter than normal and Tails are longer than normal
 - · Presence of outliers. Maximum value is more than Q3+3IQR(upper outer Fence)
 - P value of Kolmogorov Smirnov Test of Normality is less than 0.05. So we reject Null
 Hypothesis of Normality and conclude Age is not normally distributed .However as per
 CLT we can assume Age is normally distributed

```
proc means Data=Nandini.Telcm n nmiss var std cv clm mean sum min max qrange maxdec =2; var Age; run;
```

	The MEANS Procedure										
	Analysis Variable : Age										
N	N Miss Variance Std Dev Coeff of Variation CL for Mean CL for Mean Sum Minimum Maximum Quartile Range										
94547	7708	344.81	18.57	38.97	47.53	47.77	47.65	4504902.00	1.00	110.00	26.00

```
proc univariate Data=Nandini.Telcm normal plot;
var Age;
qqplot /normal (mu=est sigma=est);
run;
```

TITLE'BOX PLOT';

proc sgplot data = Nandini.Telcm;;
vBOX Age ;
run;

					ATE Procedure ble: Age			
				Мо	ments			
N		9	4547	Sum Weights		94547		
Mea	ın	47.6472		2231	Sum Observations		4504902	
Std	Std Deviation 18.569		0003	Variance		344.807771		
Ske	Skewness 0.0437		0.0437	4618	Kurtosis		-0.406	6355
Unc	orrected	SS	24724	6266	Corrected SS		326001	195.5
Coe	ff Variatio	on	38.9718415		Std Error Mean	1	0.0603	8995
			Basic	Statis	tical Measures			
	Location				Variability	,		
	Mean	47	.64722	Std	Deviation	18	.56900	
	Median	48	.00000	Vari	ance	344	.80777	
	Mode	48	.00000	Rane	ae	109	.00000	

Interquartile Range

	Test	s fo	r Lo	cation	: Mu	0=0		
	Test	9	Statis	tic		p Val	ue	
	Student's t	t	788.	9926	Pr >	t	<.000	1
	Sign	M	472	273.5	Pr >	= M	<.000	1
	Signed Rank	S 2.2348E9 Pr >= S		<.0001				
	1	Гest	s for	Norm	ality			
Test			Sta	atistic			p Val	ue
Kolmo	gorov-Smirnov	D		0.02	2295	Pr > l	D	<0.010
Crame	er-von Mises	W	/-Sq	6.471	1068	Pr > 1	W-Sq	< 0.005

A-Sq 49.27553 Pr > A-Sq <0.0050

Anderson-Darling

3. Sales

- The Analysis Focuses on distribution of the continuous variable 'Sales' within the dataset
- Summarisation- Proc Means, Proc Univariate
- Visualisation- QQplot
- The data reveals the Age of total 93650 out of 102255 people with following summary estimates
 - Mean- \$181.25
 - Standard Deviation- 233.97
 - Minimum Sale-0
 - Maximum Sale-\$1200
 - Mode-\$92 This Amount appears more often than others
 - Skewness-(2.366) This Means it is Positive or Right skewed
 - Kurtosis-(5.28) This Means It is Leptokurtic .i.e. Has Positive Kurtosis . Peak is sharper than normal and Tails are heavier than normal
 - Presence of outliers. Maximum value is more than Q3+3IQR(upper outer Fence)
 - P value of Kolmogorov Smirnov Test of Normality is less than 0.05. So we reject Null Hypothesis of Normality and conclude Sales is not normally distributed . However as per CLT we can assume Age is normally distributed

proc means Data=Nandini.Telcm n nmiss var std cv clm mean sum min max Q1 Q3 qrange maxdec =2; var Sales; run;

	The MEANS Procedure												
	Analysis Variable : Sales												
N	N Miss	Variance	Std Dev	Coeff of Variation	CL for	Upper 95% CL for Mean		Sum	Minimum	Maximum	Lower Quartile	Upper Quartile	Quartile Range
93650	8605	54742.45	233.97	129.09	179.75	182.74	181.25	16973703.00	0.00	1200.00	52.00	190.00	138.00

TITLE'BOX PLOT'; ∃proc sgplot data = Nandini.Telcm;; vBOX sales ; run;

	The UNIVARIATE Procedure Variable: Sales						
	Moments						
N	93650	Sum Weights	93650				
Mean	181.246161	Sum Observations	16973703				
Std Deviation	233.97104	Variance	54742.4477				
Skewness	2.36652039	Kurtosis	5.28183679				
Uncorrected SS	8202993991	Corrected SS	5126575480				
Coeff Variation	129.090205	Std Error Mean	0.76455409				

	Basic Statistical Measures						
Location		Variability					
Mean	181.2462	Std Deviation	233.97104				
Median	91.0000	Variance	54742				
Mode	92.0000	Range	1200				
		Interquartile Range	138.00000				

proc univariate	Data=Nandini.Telcm normal plot;
var Sales;	
qqplot /normal	(mu=est sigma=est);
run;	

	_					
	Test		Test Statistic		p Value	
	Student's t	t	237.0613	Pr > t	<.0001	
	Sign	М	46790.5	Pr >= M	<.0001	
	Signed Rank	S	2.1894E9	Pr >= S	<.0001	

Tests for Normality						
Test	St	atistic	p Value			
Kolmogorov-Smirnov	D	0.250025	Pr > D	<0.0100		
Cramer-von Mises	W-Sq	2131.825	Pr > W-Sq	<0.0050		
Anderson-Darling	A-Sq	11236.89	Pr > A-Sq	<0.0050		

Extreme Observations					
Lov	west	Highest			
Value	Obs	Value	Obs		
0	101798	1200	49191		
0	99796	1200	50411		
0	97151	1200	50506		
0	89286	1200	65146		
0	87254	1200	100136		

	\$1,250 -	BOX PLOT
	\$1,000 -	
Sales	\$750 -	
ű	\$ 500 –	
	\$ 250 -	
	\$ 0 -	

Quantiles (Definition 5)				
Level	Quantile			
100% Max	1200			
99%	1100			
95%	768			
90%	490			
75% Q3	190			
50% Median	91			
25% Q1	52			
10%	26			
5%	15			
1%	4			
0% Min	0			

1.2 What are the age and province distributions of active and deactivated customers? Cont vs categorical.

A) Age Distribution of Active and Deactivated Customers

H0- Means of Age is equal in both groups i.e Age equally distributed in both Active and Deactivated customers group.

H1- Means of Age is not equal in both groups i.e Age not equally distributed in both Active and Deactivated customers group.

Approach- since Age is Numerical variable and Status -Active/Deactivated is a categorical Variable we will use:-

- · For Summarisation- Proc Means
- · For Normality-Proc Univariate
- For Visualisation- Grouped Box Plot
- · For Independency- Proc T test

```
Data Nandini.Status;
set Nandini.Telcm;
length Status $ 12.;
If Deactdt eq . then Status="Active";
else if Deactdt ne . then Status="Deactivated";
proc print Data=Nandini.status (obs=20);run;

proc means Data=Nandini.Status n min max std mean cv clm maxdec=2;
class Status/missing;
var Age;
run;

proc univariate Data=Nandini.Status normal plot;
var Age;
class Status;
qqplot /normal (mu=est sigma=est);
run;
```

The MEANS Procedure									
	Analysis Variable : Age								
Status	N Obs	N	Minimum	Maximum	Std Dev	Mean	Coeff of Variation	Lower 95% CL for Mean	Upper 95% CL for Mean
Active	82620	76377	1.00	109.00	18.58	47.63	39.00	47.50	47.76
Deactivated	19635	18170	1.00	110.00	18.53	47.71	38.84	47.44	47.98

- From the results of Means Procedure, we see that Mean and standard deviation of Active and Deactivated customers almost same or with minimum difference.
- To statistically prove this we will use normality test using Proc Univariate, Homoscedasticity test using Proc GLM and finally Proc Ttest to prove means are equal in both groups
- Test of Normality-
 - HO- Age is normally distributed
 - H1- Age is not normally distributed

Tests for Normality							
Test	Sta	atistic	p Value				
Kolmogorov-Smirnov	D	0.022454	Pr > D	<0.0100			
Cramer-von Mises	W-Sq	5.069319	Pr > W-Sq	<0.0050			
Anderson-Darling	A-Sq	38.36078	Pr > A-Sq	<0.0050			

Tests for Normality								
Test	Sta	atistic	p Value					
Kolmogorov-Smirnov	D	0.025526	Pr > D	<0.0100				
Cramer-von Mises	W-Sq	1.444658	Pr > W-Sq	<0.0050				
Anderson-Darling	A-Sq	11.25617	Pr > A-Sq	<0.0050				

P value in Kolmogorov-Smirnov of Normality is less than 0.05 significance level. So we reject Null Hypothesis of normality and conclude that Age is not normally distributed, However as per CLT, since sample size is more than >30, we can assume Age is normally distributed

- Test of Homoscedasticity for equality of variance-
 - H0- Variance of Age is equal in both Groups
 - H1- Variance of Age is not equal in both Groups

```
/*Equality of variance*/
Eproc glm data=Nandini.Status;
class Status;
model Age = Status;
means Status / hovtest=levene(type=abs) welch;
run;
```

P value in Levene's Test for Equality of Variance 0.8307 is greater than 0.05 significance level.

Therefore, we fail to reject Null Hypothesis and Conclude the variance of Age is equal in both active and deactivated status

	The GLM Procedure							
	Levene's Test for Homogeneity of Age Variance ANOVA of Absolute Deviations from Group Means							
Source	DF	Sum of	Squares	Mean So	quare	F Value	Pr > F	
Status	1	5.4265		5.4265		0.05	0.8307	
Error	94545		11219747	118.7				
		We	elch's ANC	OVA for A	ge			
		Source DF F Value Pr > F				F		
		Status 1.0000 0.26 0.6080			0			
		Error	27524.8					

· Test of difference-

H0- Mean of Age is Equal in both Active and Deactivated groups H1- Mean of Age is not Equal in both Active and Deactivated groups

```
Proc ttest Data=Nandini.Status;
Var Age;
Class Status;
run;
```


- Diagram Grouped Box Plot- The Total Length of Boxplot or Interquartile range (Distance between Q1 and Q3) is very similar for Active and Deactivated groups. This is what we had expected. The groups have similar variance. We can see they line up and Diamond that represents the mean is aligned equally as well. There are more outliers In active group than deactivated group. This are extreme outliers (greater than Q3+3IQR- upper outer fence)
- Diagram Histogram and Density plot -The plots compare the distribution of Age with 2 categories of Active and Deactivated customers. From Histogram, we can see the distribution of Age for both categories of status very symmetric or bell shaped, so we can say the distribution is normal.

T- Test-

H0- Means of Age is equal in both groups i.e Age equally distributed in both Active and Deactivated customers group.

H1- Means of Age is not equal in both groups i.e Age not equally distributed in both Active and Deactivated customers group.

- The First table contain the valid sample size, mean, standard deviation, min and max. In this case the mean of Age- has very minimum difference between two groups. We need to check this difference is statistically or happens by chance. For this we need to check second table that has Two other Test Pooled and Satterwaite.
 - Pooled Test assumes that both groups have the same variance in Age whereas Satterwaite test does not make this assumption.
 - It can be done by checking the last table that it is folded f test:
 - Folded f test hypothesis:H0 is: Variance are equal
 - H1 is- Variance are not equal
 - p value for f test it is 0.6492 > 0.05 so we fail to reject null hypothesis and we will say the variance are equal. Therefore, we will the see results from Pooled Test.

Conclusion-

Since P values in Pooled Test 0.6492 > 0.05,

- ➤ we fail to reject the Null Hypothesis at 5% Significance Level
- Average Age of Active customers is equal to average age of Deactivated customers

B) Province Distribution of Active and Deactivated Customers

Ho- Null Hypothesis-There is no association between Province and Status(Active /Deactivated) H1- Alternate Hypothesis-There is association between Province and Status(Active /Deactivated)

Approach- since both are categorical Variables we will use:-

- For Summarisation- Frequency Table
- For Visualisation- Grouped Bar Chart
- For Independency- Chi sq test

```
proc freq Data=Nandini.Status;
table Province*Status/missing chisq norow nocol;
run;
title"Comparison between Province and Status";
proc SGplot Data=Nandini.Status;
vbar Province/group=status filltype=Gradiant groupdisplay=cluster datalabel;
run;
```


- Grouped Bar Chart shows the distribution of Province with Active and Deactivated Customers.
- From first table, we can say out of 102255

AB has 8.09% of Active Customer and 1.96% of Deactivated Customers BC has 17.41% of Active Customer and 4.14% of Deactivated Customers

NS has 9.12% of Active Customer and 2.15% of Deactivated Customers

ON has 33.57% of Active Customer and 7.99% of Deactivated Customers

QC has 7.9% of Active Customer and 1.88% of Deactivated Customers

No Province info- 4.7% of Active Customer and 1.08% of Deactivated Customers

- Ontario has maximum number of Active and Deactivated customers. Whereas Quebec has Minimum Active and Deactivated Customers
- Second table shows chi-square P value is 0.8811 > 0.05 and Cramer's V is 0.0042, which means there is no association between Province and Status

Conclusion-

- ➤ Since P values >0.05 we do not have enough evidence I to reject the Null Hypothesis at 5% Significance Level
- We accept There is no statistically significant association between Province and Active or Deactivated Customers
- In other words, Province and Status are Independent of each other.

C) Age Distribution Across Provinces

- HO- Means of Age is equal in all Provinces i.e Age equally distributed in all Provinces
- H1- Means of Age is not equal in all Provinces i.e Age is not equally distributed in all Provinces.

Approach- since Age is Numerical variable and Province is a categorical Variable with more than 2 levels we will use:-

- D) For Summarisation- Proc Means
- E) For Normality-Proc Univariate
- F) For Visualisation- Grouped Box Plot
- G) For Independency- Proc Anova

```
/*Age Vs Province Descriptive Analysis*/
∃proc means Data=Nandini.Telcm n min max std mean cv clm maxdec=2;
 var Age;
class Province/missing;
run;
 /*Age Vs. province Normality Test*/
∃proc univariate Data=Nandini.Telcm normal plot;
var Age:
class Province;
 qqplot /normal (mu=est sigma=est);
```

	The MEANS Procedure									
Analysis Variable : Age										
Province	N Obs	N	Minimum	Maximum	Std Dev	Mean	Coeff of Variation	Lower 95% CL for Mean	Upper 95% CL for Mean	
	5907	5459	1.00	106.00	18.29	47.74	38.31	47.25	48.22	
AB	10277	9500	1.00	102.00	18.57	47.63	38.98	47.26	48.01	
BC	22040	20437	1.00	109.00	18.79	47.77	39.33	47.51	48.02	
NS	11529	10692	1.00	103.00	18.38	47.57	38.64	47.22	47.92	
ON	42500	39222	1.00	110.00	18.55	47.61	38.97	47.42	47.79	
QC	10002	9237	1.00	102.00	18.53	47.60	38.94	47.22	47.97	

- From the results of Means Procedure, we see that Mean and standard deviation of Age is all provinces almost same or with minimum difference.
- To statistically prove this we will use normality test using Proc Univariate, Homoscedasticity test using Proc GLM and finally Proc Anova to prove means are equal in all groups
- Test of Normality-
 - H0- Age is normally distributed
 - H1- Age is not normally distributed

Tests for Normality						
Test	Sta	atistic	p Value			
Kolmogorov-Smirnov	D	0.025901	Pr > D	<0.0100		
Cramer-von Mises	W-Sq	0.8705	Pr > W-Sq	<0.0050		
Anderson-Darling	A-Sq	6.17301	Pr > A-Sq	<0.0050		

Tests for Normality							
Test	St	atistic	p Value				
Kolmogorov-Smirnov	D	0.024863	Pr > D	<0.0100			
Cramer-von Mises	W-Sq	0.799578	Pr > W-Sq	<0.0050			
Anderson-Darling	A-Sq	5.561931	Pr > A-Sq	<0.0050			

Tests for Normality						
Test	Statistic p Value					
Kolmogorov-Smirnov	D	0.022965	Pr > D	<0.0100		
Cramer-von Mises	W-Sq	2.610763	Pr > W-Sq	<0.0050		
Anderson-Darling	A-Sq	20.40963	Pr > A-Sq	<0.0050		

Tests for Normality							
Test	St	atistic	p Value				
Kolmogorov-Smirnov	D	0.023013	Pr > D	<0.0100			
Cramer-von Mises	W-Sq	1.571222	Pr > W-Sq	<0.0050			
Anderson-Darling	A-Sq	11.64046	Pr > A-Sq	<0.0050			

Tests for Normality							
Test	St	atistic	p Value				
Kolmogorov-Smirnov	D	0.02473	Pr > D	<0.0100			
Cramer-von Mises	W-Sq	0.682977	Pr > W-Sq	<0.0050			
Anderson-Darling	A-Sq	5.321143	Pr > A-Sq	<0.0050			

P value in Kolmogorov-Smirnov of Normality is less than 0.05 significance level for all provinces. So we reject Null Hypothesis of normality and conclude that Age is not normally distributed, However as per CLT, since sample size is more than>30, we can assume Age is normally distributed

- Test of Homoscedasticity for equality of variance-
 - H0- Variance of Age is equal in all Groups
 - H1- Variance of Age is equal in a;; Groups

```
/*CHecking Equality of Variances */

proc glm data=Nandini.Telcm;
class Province;
model Age = Province;
means Province / hovtest=levene(type=abs) welch;
run;
```


P value in Levene's Test for Equality of Variance 0.0970 is greater than 0.05 significance level.

Therefore, we fail to reject Null Hypothesis and Conclude the variance of Age is equal in all Provinces

- Test of difference-
 - HO- Mean of Age is Equal in all Provinces
 - H1- Mean of Age is not Equal in all Provinces

```
PROC ANOVA DATA = Nandini.Telcm PLOTS(MAXPOINTS=20 );
CLASS Province;
MODEL Age = Province;
MEANS Province/scheffe;
TITLE "Age distribution across Province";
RUN;
QUIT;
```


Comparisons significant at the 0.05 level are indicated by ***.								
Province Comparison	Difference Between Means	Simultaneous 95% Confidence Limits						
BC - AB	0.1317	-0.5792	0.8426					
BC - ON	0.1580	-0.3359	0.6519					
BC - QC	0.1697	-0.5481	0.8875					
BC - NS	0.1941	-0.4892	0.8774					
AB - BC	-0.1317	-0.8426	0.5792					
AB - ON	0.0263	-0.6283	0.6810					
AB - QC	0.0380	-0.7986	0.8746					
AB - NS	0.0624	-0.7448	0.8696					
ON - BC	-0.1580	-0.6519	0.3359					
ON - AB	-0.0263	-0.6810	0.6283					
ON - QC	0.0117	-0.6504	0.6738					
ON - NS	0.0361	-0.5885	0.6607					
QC - BC	-0.1697	-0.8875	0.5481					
QC - AB	-0.0380	-0.8746	0.7986					
QC - ON	-0.0117	-0.6738	0.6504					
QC - NS	0.0244	-0.7889	0.8377					
NS - BC	-0.1941	-0.8774	0.4892					
NS - AB	-0.0624	-0.8696	0.7448					

 F value: the overall f statistic is calculated by using mean square model/mean square error,

107.99/345.45 = 0.31

F value: It is the ratio of mean square model/mean square error, it is used to determine the variance explained by model is significantly greater than the unexplained variance

- The p value: (>0.05)-this means we fail to reject null hypothesis and the mean is statistically equal between the groups.
- R squared: It is the proportion of variance in Age explained by the model. 0.000014 percent shows that variability of Age can not be explained by Province, it is a low, so our model is not sufficient to explain the variability of Age using Province.

- Diagram Grouped Box Plot- The Total Length of Boxplot or Interquartile range (Distance between Q1 and Q3) is similar for all 5 Provinces. We can see they line up and Diamond that represents the mean shows that the mean of all Provinces is almost at similar level.
- There are extreme outliers in all Provinces

Conclusion-

- ➤ Since P values 0.8697>0.05, we fail to reject the Null Hypothesis at 5% Significance Level
- Mean of age is significantly similar in all Provinces.
- Province explains 0% of variability of Age. Therefore, we can say this is not a good model.

1.3 Segment the customers based on age, province, and sales amount:

Sales segment: < \$100, \$100-\$500, \$500-\$800, \$800 and above.

Age segments: < 20, 21-40, 41-60, 60 and above.

```
proc format;
                           proc format;
value Agegroup
                           value SalesGroup
low-20='<20'
                           low-100='<$100'
                           101- 500='$100-$500'
21- 40='21-40'
                           501-800='$500-$800'
41-60='41-60'
                           801-High='$800 and above'
61-High='60 and above';
                           ;
run;
```

	ndini.Telcm dini.Telcm:						
	Segemetation		Province,	Agegroup	and	Sales	group*
proc freq	Data=Nandini.	Telcml;					
table Prov	ince Agesegme	nt Saless	egment/mis	sing;			
run;							
title;							

Province	Frequency	Percent	Cumulative Frequency	Cumulative Percent
	5907	5.78	5907	5.78
AB	10277	10.05	16184	15.83
BC	22040	21.55	38224	37.38
NS	11529	11.27	49753	48.66
ON	42500	41.56	92253	90.22
QC	10002	9.78	102255	100.00

Agesegment	Frequency	Percent	Cumulative Frequency	Cumulative Percent	
Salessegment	Frequency	Percent	Cumulative Frequency	Cumulative Percent	
	8605	8.42	8605	8.42	
<\$100	52965	51.80	61570	60.21	
\$100-\$500	31534	30.84	93104	91.05	
\$500-\$800	4920	4.81	98024	95.86	
\$800 and above	4231	4.14	102255	100.00	

Observations from the Customer Segmentation

- ON Has Maximum Customer Base whereas QC has Minimum Customer Base
- Maximum Customers are from Age Group 41-60 whereas age group <20 has minimum customer base. This also indicates Young customers do not stick to the particular telecom service for longer.
- Maximum customers has taken the service from this telecom company for amount less that \$100. There is a possibility that maximum customers are not happy with service.

1.4. Statistical Analysis:

1) Calculate the tenure in days for each account and give its simple statistics.

Latest Activation and Deactivation Dates								
Obs	Latest_Activation_Date	Latest_Deactivation_Date						
1	01/20/2001	01/20/2001						

```
Data Nandini.Tenure;
set Nandini.Telcm;
dl="20JAN2001"D;
if Deactdt eq . then Tenuredays=intck('day', Actdt, Dl);
if Deactdt ne . then Tenuredays=intck('day', Actdt, Deactdt);
RUN;
PROC PRINT DATA=Nandini.Tenure (obs=20);
FORMAT Dl DATE9.;
RUN;

proc means Data=Nandini.Tenure maxdec=2;
var Tenuredays:run;
```


Obs	Acctno	Actdt	Deactdt	DeactReason	GoodCredit	RatePlan	DealerType	Age	Province	Sales	d1	Tenuredays
1	1176913194483	06/20/1999			0	1	A1	58	BC	\$128.00	20JAN2001	580
2	1176914599423	10/04/1999	10/15/1999	NEED	1	1	A1	45	AB	\$72.00	20JAN2001	11
3	1176951913656	07/01/2000			0	1	A1	57	ВС	\$593.00	20JAN2001	203
4	1176954000288	05/30/2000			1	2	A1	47	ON	\$83.00	20JAN2001	235
5	1176969186303	12/13/2000			1	1	C1	82	BC		20JAN2001	38
6	1176991056273	08/31/1999	09/18/2000	MOVE	1	1	C1	92	QC	\$1,041.00	20JAN2001	384
7	1176991866552	05/24/2000			1	1	A1	77	ON		20JAN2001	241
8	1176992889500	11/28/2000			1	1	C1	68	AB	\$72.00	20JAN2001	53
9	1177000067271	12/23/1999			0	1	B1	75	ON	\$134.00	20JAN2001	394
10	1177010940613	12/09/1999			1	2	A1	42	NS	\$11.00	20JAN2001	408
44	4477005007040	44/00/4000			4	4	۸.4	06	DC.	£454.00	20 141/2004	420

Observations:

- For tenure of customer who are still active, we have considered end date as the latest activation date. For the tenure of customers who have deactivated service, end date is same as deactivation date.
- For active Customer- Tenure= from Activation date to Latest Activation date
- For Deactivated Customers-Tenure- From Activation date till Deactivation Date
- Latest activation as well as Deactivation Date is 20th Jan 2001
- Mean of Tenure is 282.57. Maximum Tenure is 731 days.
- Minimum tenure is 0 days which indicates there are customers who has deactivated the service on the same day

2) Calculate the number of accounts deactivated for each month.

```
Data Nandini.Deact;
set Nandini.Telcm;
Month=month (Deactdt);
format Deactdt date9.;
proc print Data=Nandini.Deact (OBS=20);run;
```

```
proc sql;
select month, count (Acctno) as Total Deactivated
from Nandini Deact
where not missing(Deactdt)
group by Month
order by Month
quit;
```

Month	Total_Deactivated
1	2494
2	553
3	760
4	731
5	914
6	1403
7	1380
8	1494
9	1717
10	2817
11	2076
12	3296

```
select actdt, deactdt from Nandini.Telcm
where actdt=deactdt
quit;
 proc sql;
 select count(actdt) from Nandini.Telcm
 where actdt=deactdt
 quit;
         Same_Day_Deactivation
                          340
```

Observations:

- Maximum Deactivation Occurred in Winter-From October to January
- 340 customers deactivated service on the same day

Actdt	Deactdt
12/28/2000	12/28/2000
09/13/2000	09/13/2000
01/03/2000	01/03/2000
01/14/2001	01/14/2001
08/11/2000	08/11/2000
10/21/1999	10/21/1999
05/15/2000	05/15/2000
09/29/2000	09/29/2000
01/15/2000	01/15/2000
05/16/2000	05/16/2000
09/13/1999	09/13/1999
05/26/2000	05/26/2000
01/28/2000	01/28/2000
12/16/2000	12/16/2000
12/02/2000	12/02/2000
44/00/4000	44/00/4000

3) Segment the account, first by account status "Active" and "Deactivated", then byTenure: < 30 days, 31---60 days, 61 days--- one year, over one year. Report the number of accounts of percent of all for each segment.

```
Data Nandini.Status_Tenure;
set Nandini.Tenure;
length Acct Status $ 12. Tenure $ 25.;
If Deactdt eq . then Acct Status="Active";
else if Deactdt ne . then Acct_Status="Deactivated";
if Tenuredays <30 then Tenure="0-30 Days";
else if Tenuredays >=31 and Tenuredays<60 then Tenure="31--60Days";
else if Tenuredays >=61 and Tenuredays<366 then Tenure="61 days --One Year";
else Tenure="Over One Year";
run;
proc print Data=Nandini.Status_Tenure (obs=20);run;
proc freq Data=Nandini.Status_Tenure;
table Acct_Status Tenure/missing;run;
```

Obs	Acctno	Actdt	Deactdt	DeactReason	GoodCredit	RatePlan	DealerType	Age	Province	Sales	d1	Tenuredays	Acct_Status	Tenure
1	1176913194483	06/20/1999			0	1	A1	58	BC	\$128.00	14995	580	Active	Over One Year
2	1176914599423	10/04/1999	10/15/1999	NEED	1	1	A1	45	AB	\$72.00	14995	11	Deactivated	0-30 Days
3	1176951913656	07/01/2000			0	1	A1	57	BC	\$593.00	14995	203	Active	61 days One Year
4	1176954000288	05/30/2000			1	2	A1	47	ON	\$83.00	14995	235	Active	61 days One Year
5	1176969186303	12/13/2000			1	1	C1	82	BC		14995	38	Active	3160Days
6	1176991056273	08/31/1999	09/18/2000	MOVE	1	1	C1	92	QC	\$1,041.00	14995	384	Deactivated	Over One Year
7	1176991866552	05/24/2000			1	1	A1	77	ON		14995	241	Active	61 days One Year
8	1176992889500	11/28/2000			1	1	C1	68	AB	\$72.00	14995	53	Active	3160Days
9	1177000067271	12/23/1999			0	1	B1	75	ON	\$134.00	14995	394	Active	Over One Year
10	1177010940613	12/09/1999			1	2	A1	42	NS	\$11.00	14995	408	Active	Over One Year
11	1177025997013	11/09/1999			1	1	A1	26	BC	\$154.00	14995	438	Active	Over One Year

Observation-

- Tenure of Maximum customers is between 61 days- One year
- Minimum customers have tenure between 31 days- 60 days
- Active customers are 4 times greater than Deactivated customers, which is a good thing.

	*	т.								
	The FREQ Procedure									
Ac	ct_Status	Fre	equenc	/ Pe	ercent		imulative requency	Cu	ımulative Percent	
Ac	tive		82620)	80.80		82620		80.80	
De	Deactivated		19635	5	19.20		102255	100.00		
Tenui	re		Freque	ency	Perce	ent	Cumulati Frequen		Cumulati Perce	
0-30 I	Days		g	486	9.28		948		9.28	
316	3160Days		7980		7.	80	174	66	66 17.08	
61 da	61 daysOne Year		45389		44.	39	628	55	61.	47
Over	One Year		39	400	38.	53	1022	55 100.		00

4) Test the general association between the tenure segments and "Good Credit" "RatePlan" and "DealerType."

A) Association Between Tenure segments and Good Credit

Ho- Null Hypothesis-There is no association between Tenure and Good Credit H1- Alternate Hypothesis-There is association between Tenure and Good Credit

Approach- since both are categorical Variables we will use:-

For Summarisation- Frequency Table

- For Visualisation- Grouped Bar Chart
- For Independency- Chi sq test

```
proc freq Data=Nandini.Status Tenure;
table Tenure * GoodCredit/Missing chisq norow nocol;
proc freq Data=Nandini.Status;
table Status*goodcredit/missing;
```

```
title"Comparison between Tenure and Good Credit
proc SGplot Data=Nandini.Status tenure;
vbar Tenure/group=GoodCredit filltype=Gradient
groupdisplay=cluster datalabel;
run;
```


Frequency	Table of Tenure by GoodCredit									
Percent		GoodCredit								
	Tenure	0	1	Total						
	0-30 Days	2179	7307	9486						
		2.13	7.15	9.28						
	3160Days	1802	6178	7980						
		1.76	6.04	7.80						
	61 days One Year	16519	28870	45389						
		16.15	28.23	44.39						
	Over One Year	10753	28647	39400						
		10.52	28.02	38.53						
	Total	31253	71002	102255						
		30.56	69.44	100.00						

Statistics for Table of Tenure by GoodCredit							
Statistic	DF	Value	Prob				
Chi-Square	3	1423.1037	<.0001				
Likelihood Ratio Chi-Square	3	1432.8657	<.0001				
Mantel-Haenszel Chi-Square	1	298.0330	<.0001				
Phi Coefficient		0.1180					
Contingency Coefficient 0.1172							
Cramer's V		0.1180					

The FREQ Procedure										
Frequency	Table of Status by GoodCredit									
Percent Row Pct		G	GoodCre	dit						
Col Pct	Status	0	1	Total						
	Active	22596 22.10	60024 58.70	82620 80.80						
		27.35 72.30		00.00						
	Deactivated	8657 8.47 44.09 27.70	10978 10.74 55.91 15.46	19635 19.20						
	Total	31253 30.56	71002 69.44	102255 100.00						

- Grouped Bar Chart shows the distribution of Tenure segments with 2 levels of Good Credit
- From first table, we can say out of 102255 0 to 30 days- has 7.15% of Good Credit customers and 2.13% of Customers do not have good credit

- 31 days to 60 days- has 6.04% of Good Credit customers and 1.76% of Customers do not have good credit
- 61 days to One year has 28.23% of Good Credit customers and 16.15% of Customers do not have good credit. This group has maximum customers with Good Credit.
- over One year has 28.02% of Good Credit customers and 10.52% of Customers do not have good credit
- Simultaneously Third table indicates that Maximum active customers have Good Credit
- Second table shows chi-square P value is <0.05 and Cramer's V is 0.1180, which means there is a statistically significant association between Tenure and Good Credit

Conclusion-

- ➤ Since P values >0.05 reject the Null Hypothesis at 5% Significance Level
- We accept there is statistically significant association between Tenure and Good Credit Customers
- In other words we can say Customer with more tenure has Good Credit.

B) Association Between Tenure segments and RatePlan

Ho- Null Hypothesis-There is no association between Tenure and Rate Plan

H1- Alternate Hypothesis-There is association between Tenure and Rate Plan

Approach- since both are categorical Variables we will use:-

- For Summarisation- Frequency Table
- For Visualisation- Grouped Bar Chart
- For Independency- Chi sq test

```
proc freq Data=Nandini.Status Tenure;
table Tenure*Rateplan/Missing chisq norow nocol;
run;
proc freq Data=Nandini.Status;
table Status*Rateplan/missing;
run;
```

```
title"Comparison Between Tenure and Rateplan",
proc sgplot Data=Nandini.Status_tenure;
vbar Tenure/group=Rateplan filltype=Gradient
Groupdisplay=cluster datalabel;
run;
```


Frequency	Table o	Table of Tenure by RatePlan									
Percent		RatePlan									
	Tenure	1	2	3	Total						
	0-30 Days	4120 4.03	4463 4.36	903 0.88	9486 9.28						
	3160Days	3550 3.47	3686 3.60	744 0.73	7980 7.80						
	61 daysOne Year	32107 31.40	6731 6.58	6551 6.41	45389 44.39						
	Over One Year	28417 27.79	5307 5.19	5676 5.55	39400 38.53						
	Total	68194 66.69	20187 19.74	13874 13.57	102255 100.00						

Statistics for Table of Tenure by RatePlan											
Statistic	DF	Value	Prob								
Chi-Square	6	9661.6962	<.0001								
Likelihood Ratio Chi-Square	6	8227.3953	<.0001								
Mantel-Haenszel Chi-Square	1	179.3125	<.0001								
Phi Coefficient		0.3074									
Contingency Coefficient		0.2938									
Cramer's V		0.2174									

Frequency	Table of Status by RatePlan								
Percent Row Pct		RatePlan							
Col Pct	Status	1	2	3	3 Total				
	Active	55725	16748	10147	82620				
		54.50	16.38	9.92	80.80				
		67.45	20.27	12.28					
		81.72	82.96	73.14					
	Deactivated	12469	3439	3727	19635				
		12.19	3.36	3.64	19.20				
		63.50	17.51	18.98					
		18.28	17.04	26.86					
	Total	68194	20187	13874	102255				
		66.69	19.74	13.57	100.00				

- Grouped Bar Chart shows the distribution of Tenure segments with 3 levels of Rate Plan
- From first table, we can say out of 102255 customers For tenure -0 to 30 days- 4.03% Customer have Rateplan 1,4.36 % has Rateplan 2,0.88% customers have Rateplan 3
- For Tenure 31 days to 60 days- 3.47% Customer have Rateplan 1,3.6% has Rateplan 2,0.73% customers have Rateplan 3
- For Tenure 61 days to One year 31.40% Customer have Rateplan 1, 6.58 % has Rateplan 2, 6.41% customers have Rateplan 3.
- For tenure over One year 27.79% Customer have Rateplan 1,5.19% has Rateplan 2,5.55% customers have Rateplan 3.
- Simultaneously Third table indicates that Maximum active customers 54.50% prefer Rate plan 1.
- Second table shows chi-square P value is <0.05 and Cramer's V is 0.2174, which means there is a statistically significant association between Tenure and Rate Plan

Conclusion-

- ➤ Since P values >0.05 reject the Null Hypothesis at 5% Significance Level
- We accept there is statistically significant association between Tenure and Rate Plan
- Customers with Rate plan 1 have tenure more than 60 days.
- Rate Plan 2 has minimum churn followed by rate plan
- Rate Plan 3 has Maximum Churn.
- Over all rate plan 1 is better than other 2
- Majority Active customers are likely to have Rate plan 1

C) Association Between Tenure segments and Dealer Type

Ho- Null Hypothesis-There is no association between Tenure and Dealer Type

H1- Alternate Hypothesis-There is association between Tenure and Dealer Type

Approach- since both are categorical Variables we will use:-

- For Summarization- Frequency Table
- For Visualisation- Grouped Bar Chart
- For Independency- Chi sq test

```
proc freq Data=Nandini.Status Tenure;
table Tenure*DealerType/Missing chisq norow nocol;
run;
proc freq Data=Nandini.Status;
table Status*Dealertype/missing norow nocol;
```

Proc sgplot Data=Nandini.Status Tenure; vbar Tenure/group=DealerType filltype=Gradient Groupdisplay=cluster datalabel; run;

		Compar	rison Between To	enure and Dealer	Туре
	25000 -			24064	22402
	20000 -				
Frequency	15000 –			8	
Fre	10000 –			10699	6663
	5000 –	5361 1787 1429	4305 756 1521	4188	6402
	0 –	0-30 Days	3160Days	61 days One Year	Over One Year
			Tenu DealerType ■ A1	■ A2 ■ B1 ■ C1	

Frequency	Table	e of Tenu	ure by De	ealerTyp	е				
Percent		DealerType							
	Tenure	A1	A2	B1	C1	Total			
	0-30 Days	5361 5.24	909 0.89	1787 1.75	1429 1.40	9486 9.28			
	3160Days	4305 4.21	756 0.74	1521 1.49	1398 1.37	7980 7.80			
	61 daysOne Year	24064 23.53	4188 4.10	10699 10.46	6438 6.30	45389 44.39			
	Over One Year	22402 21.91	5402 5.28	6663 6.52	4933 4.82	39400 38.53			
	Total	56132 54.89	11255 11.01	20670 20.21	14198 13.88	102255 100.00			

Statistic	DF	Value	Prob
Chi-Square	9	1110.5992	<.0001
Likelihood Ratio Chi-Square	9	1096.4370	<.0001
Mantel-Haenszel Chi-Square	1	328.9110	<.0001
Phi Coefficient		0.1042	
Contingency Coefficient		0.1037	
Cramer's V		0.0602	

	quency	1	Table of Status by DealerType									
Per	cent		DealerType									
		Status	A1	A2	B1	C1	Total					
		Active	45501 44.50	8706 8.51	16791 16.42	11622 11.37	82620 80.80					
		Deactivated	10631 10.40	2549 2.49	3879 3.79	2576 2.52	19635 19.20					
		Total	56132 54.89	11255 11.01	20670 20.21	14198 13.88	102255 100.00					

- Grouped Bar Chart shows the distribution of Tenure segments with 4 Dealer Types
- From first table, we can say out of 102255 customers For tenure -0 to 30 days- 5.24% Customer Deal with A1,0.89% Customer Deal with A2,1.75% Customer Deal with B1 and 1.4% Customer deal with C1
- For Tenure 31 days to 60 days- 4.21% Customer Deal with A1,0.74% Customer Deal with A2,1.49% Customer Deal with B1 and 1.37% Customer deal with C1
- For Tenure 61 days to One year 23.53% Customer Deal with A1,4.1% Customer Deal with A2,10.46% Customer Deal with B1 and 6.3% Customer deal with C1
- For tenure over One year -21.91% Customer Deal with A1,5.28 % Customer Deal with A2,6.52% Customer Deal with B1 and 4.82% Customer deal with C1
- Simultaneously Third table indicates that Maximum active customers 44.50% prefer to deal with Dealer type A1
- Second table shows chi-square P value is <0.05 and Cramer's V is 0.0602, which means there is a statistically significant association between Tenure and Dealer Type

Conclusion-

➤ Since P values >0.05 reject the Null Hypothesis at 5% Significance Level

- We accept there is statistically significant association between Tenure and Dealer Type
- Customers Who deal with A1 1 have tenure more than 60 days.
- Majority Active customers are likely to Deal with A1.

5) Is there any association between the account status and the tenure segments?

Ho- Null Hypothesis-There is no association between Tenure and Dealer Type H1- Alternate Hypothesis-There is association between Tenure and Dealer Type

Approach- since both are categorical Variables we will use:-

- For Summarization- Frequency Table
- For Visualisation- Grouped Bar Chart
- For Independency- Chi sq test

```
proc freq Data=Nandini.Status tenure;
table acct Status*Tenure/chisq missing norow nocol;
run;
```

```
Title "Comparison Between Tenure and account Status";
Proc sgplot Data=Nandini.Status Tenure;
vbar Tenure/Group=acct Status filltype=Gradient
Groupdisplay=CLuster datalabel;
run;
```


Frequency	Table of Acct_Status by Tenure											
Percent		Tenure										
	Acct_Status	0-30 Days	3160Days	61 daysOne Year	Over One Year	Total						
	Active	6353 6.21	6872 6.72	33962 33.21	35433 34.65	82620 80.80						
	Deactivated	3133 3.06	1108 1.08	11427 11.18	3967 3.88	19635 19.20						
	Total	9486 9.28	7980 7.80	45389 44.39	39400 38.53	102255 100.00						

Statistics for Table of Acct_Status by Tenure											
Statistic	DF	Value	Prob								
Chi-Square	3	4476.5710	<.0001								
Likelihood Ratio Chi-Square	3	4611.5562	<.0001								
Mantel-Haenszel Chi-Square	1	1716.4870	<.0001								
Phi Coefficient		0.2092									
Contingency Coefficient		0.2048									
Cramer's V		0.2092									

- Grouped Bar Chart shows the distribution of Tenure segments with Account Status Active and Deactivated
- From first table, we can say out of 102255 customers

For tenure -0 to 30 days- 6.21% customer are active and 3.06% are deactivated

- For Tenure 31 days to 60 days- 6.72% customer are active and 1.08% are deactivated
- For Tenure 61 days to One year -33.21% customer are active and 11.18% are deactivated
- For tenure over One year -34.65% customer are active and 3.88% are deactivated
- Simultaneously Third table indicates that Maximum active customers 34.65% have Tenure More than one year
- Second table shows chi-square P value is <0.05 and Cramer's V is 0.2092, which means there is a statistically significant association between Tenure and Account Status

Conclusion-

- ➤ Since P values >0.05 reject the Null Hypothesis at 5% Significance Level
- ➤ We accept there is statistically significant association between Tenure and Account Status
- Maximum Active Customers have tenure more than 60 days.
- Customer churn is seen more with tenure <30 days.(33%)(3133 customers out of 9486 for</p> Tenure less than 30 days)

Could you find a better tenure segmentation strategy that is more associated with the account status?

/*Alternate tenure strateagy*/				
Data Nandini.AltTenure;	Statistic	DF	Value	Prob
set Nandini.Status_Tenure; length AltTenure \$ 20.;	Chi-Square	5	4497.4179	<.0001
if Tenuredays <30 then AltTenure="1 month and less";	Likelihood Ratio Chi-Square	5	4607.2354	<.0001
else if Tenuredays >=31 and Tenuredays<60 then AltTenure="2months"; else if Tenuredays >=61 and Tenuredays<90 then AltTenure="3 months";	Mantel-Haenszel Chi-Square	1	2002.8305	<.0001
else if Tenuredays >=91 and Tenuredays<180 then AltTenure="3 to 6 months"; else if Tenuredays >=181 and Tenuredays<366 then AltTenure="6Months-1 vr";	Phi Coefficient		0.2097	
else AltTenure="year and above";	Contingency Coefficient		0.2053	
run; proc print Data=Nandini.AltTenure (obs=20);run;	Cramer's V		0.2097	

Frequency	Table of Acct_Status by AltTenure											
Percent		AltTenure										
	Acct_Status	1 month and less	2months	3 months	3 to 6 months	6Months-1 yr	year and above	Total				
	Active	6353 6.21	6872 6.72	3942 3.86	10716 10.48	19121 18.70	35616 34.83	82620 80.80				
	Deactivated	3133 3.06	1108 1.08	1253 1.23	4051 3.96	6051 5.92	4039 3.95	19635 19.20				
	Total	9486 9.28	7980 7.80	5195 5.08	14767 14.44	25172 24.62	39655 38.78	102255 100.00				

```
proc freq Data=Nandini.AltTenure ;
table acct Status*AltTenure/chisq missing norow nocol out=Nandini.freq;
proc print Data=Nandini.freq;run;
```

```
proc sgplot Data=Nandini.freq;
where acct status="Deactivated";
series x=Alttenure y= count/markers;
xaxis label="Tenure";
yaxis label="Deactivated";
run;
```

Original Tenure

Alternate Tenure Segmentation

- Frequency Table Shows that Maximum Active customers have tenure more than 1 year and above
- Diagram-Alternate Tenure segmentation indicates the Trend of Customer churn with each alternative Tenure segment. Customer churn was more in first month which reduced in next 2 months. It again increased after month 3 till year end. It finally decreased after one year.
- Diagram –Original Tenure does not explain the customer churn well.

6) Does the Sales amount differ among different account statuses, GoodCredit, and customer age segments?

A) Sales Distribution across Age Segments

H0- Means of Sales is equal All Age groups i.e Sale equally distributed in all age groups

H1 Means of Sales is not equal All Age groups i.e Sale Is not equally distributed in all age groups

Approach- since Sale is Numerical variable and AgeSegment is a categorical Variable we will use:-

- For Summarisation- Proc Means
- For Normality-Proc Univariate
- For Visualisation- Grouped Box Plot
- For Independency- Proc Anova

```
Data Nandini.Sales;
set Nandini.Status;
Agesegment=Age;
format Agesegment Agegroup.;
run;
proc print data=Nandini.Sales (obs=20);run;
/*Descriptive Analysis Sales Vs Agesegment*/
proc means Data=Nandini.sales n nmiss var std cv clm mean sum min Q1 Q3 grange max ;
var Sales;
class Agesegment;
run;
```

	Analysis Variable : Sales														
Agesegment	N Obs	N	N Miss	Variance	Std Dev	Coeff of Variation	Lower 95% CL for Mean	Upper 95% CL for Mean	Mean	Sum	Minimum	Lower Quartile	Upper Quartile	Quartile Range	Maximum
<20	7137	6514	623	52866.53	229.93	129.33	172.20	183.37	177.78	1158080.00	0.00	52.00	188.00	136.00	1198.00
21-40	26382	24146	2236	55499.42	235.58	129.12	179.49	185.43	182.46	4405602.00	0.00	52.00	194.00	142.00	1200.00
41-60	37478	34385	3093	54735.26	233.96	129.04	178.83	183.78	181.30	6234135.00	0.00	53.00	189.00	136.00	1200.00
60 and above	23550	21564	1986	54277.03	232.97	129.03	177.45	183.67	180.56	3893685.00	0.00	52.00	190.00	138.00	1200.00

- From the results of Means Procedure, we see that Mean and standard deviation of all age segments are very much closer to each other
- To statistically prove this we will use normality test using Proc Univariate, Homoscedasticity test using Proc GLM and finally Proc Anova to prove means are equal in both groups
- Test of Normality-
 - HO- Sales is normally distributed
 - H1- Sales is not normally distributed

Age <20-P value <0.05

Tests for Normality									
Test	Statistic p Value								
Kolmogorov-Smirnov	D	0.246737	Pr > D	<0.0100					
Cramer-von Mises	W-Sq	147.2475	Pr > W-Sq	<0.0050					
Anderson-Darling	A-Sq	779.516	Pr > A-Sq	<0.0050					

Age 41-60-P value < 0.05

Tests for Normality									
Test	Statistic p Value								
Kolmogorov-Smirnov	D	0.250593	Pr > D	<0.0100					
Cramer-von Mises	W-Sq	783.9127	Pr > W-Sq	<0.0050					
Anderson-Darling	A-Sq	4130.056	Pr > A-Sq	<0.0050					

Age 21-40-P value < 0.05

Tests for Normality										
Test	Statistic p Value									
Kolmogorov-Smirnov	D	0.24979	Pr > D	<0.0100						
Cramer-von Mises	W-Sq	547.8163	Pr > W-Sq	<0.0050						
Anderson-Darling	A-Sq	2886.84	Pr > A-Sq	<0.0050						

Age 60&above-P value < 0.05

Tests for Normality									
Test	Statistic p Value								
Kolmogorov-Smirnov	D	0.24986	Pr > D	<0.0100					
Cramer-von Mises	W-Sq	490.1939	Pr > W-Sq	<0.0050					
Anderson-Darling	A-Sq	2586.639	Pr > A-Sq	<0.0050					

- P value in Kolmogorov-Smirnov of Normality is less than 0.05 significance level for all age segments.
- So we reject Null Hypothesis of normality and conclude that Sales is not normally distributed,
- However as per CLT, since sample size is more than>30, we can assume Sales is normally distributed
- No bell shape visible -Data is highly skewed-Sales not normally distributed in any age group

Test of Homoscedasticity for equality of variance-

HO- Variance of Sales is equal in all Age Groups

H1- Variance of Sales is not equal in all Age Groups

```
/*Equality of variance Sales Vs Agesegement*/
proc glm data=Nandini.Sales;
class Agesegment;
model Sales = Agesegment;
means Agesegment / hovtest=levene(type=abs) welch;
run;
```

	The GLM Procedure											
	Levene's Test for Homogeneity of Sales Variance ANOVA of Absolute Deviations from Group Means											
	Source	DF Sum of Squares Mean Square F Value Pr > F										
1	Agesegment	3		214477	71	1492.5	2.42	0.0638				
	Error	86605		2.5549E9	2.5549E9 29500.1							
			Welch's	s ANOVA	for Sales							
		Sourc	е	DF	F Value	Pr > F	:					
1		Ages	egment	3.0000	0.76	0.5143	3					
		Error		26457.8								

P value in Levene's Test for Equality of Variance 0.0638 is greater than 0.05 significance level.

Therefore, we fail to reject Null Hypothesis and Conclude the variance of Sale is equal All Age segments.

Test of difference-HO- Mean of Sale is Equal in all Age groups

```
TITLE "Sales distribution across Age Segements";
PROC ANOVA DATA = Nandini.Sales;
 CLASS Agesegment;
MODEL Sales = Agesegment;
MEANS Agesegment/scheffe;
RUN;
QUIT;
title;
```

H1- Mean of Sale is not Equal in all Age groups

	Sales distribution across Age Segements											
	The ANOVA Procedure											
	Dependent Variable: Sales											
Source			DF	Sum of Squ	uares	Mea	ın Sqı	uare	F Va	lue	Pr > F	
Model			3	1:	23228	41076		1076	(0.75	0.5216	
Erro	r	8	6605	47367	46122	6122 546		4694				
Cor	rected To	tal 8	6608	47368	69350							
		R-Sq	uare	Coeff Var	Root	MSE	Sale	s Mea	n			
		0.00	0026	129.0824	233.	233.8668		81.176	3			
	Source		DF	Anova SS	Mea	Mean Squ		F Valu	ıe	Pr>	F	
	Agesegment		3	123227.8921	4	41075.9640		0.7	75	0.521	6	

Comparisons significant at the 0.05 level are indicated by ***.									
Agesegment Comparison	Difference Between Means	Simultaneous 95% Confidence Limits							
21-40 - 41-60	1.153	-4.336	6.642						
21-40 - 60 and above	1.893	-4.233	8.018						
21-40 - <20	4.674	-4.454	13.802						
41-60 - 21-40	-1.153	-6.642	4.336						
41-60 - 60 and above	0.740	-4.939	6.419						
41-60 - <20	3.521	-5.314	12.355						
60 and above - 21-40	-1.893	-8.018	4.233						
60 and above - 41-60	-0.740	-6.419	4.939						
60 and above - <20	2.781	-6.462	12.024						
<20 - 21-40	-4.674	-13.802	4.454						
<20 - 41-60	-3.521	-12.355	5.314						

• F value: the overall f statistic is calculated by using mean square model/mean square error, 41078/56494 = 0.75

F value: It is the ratio of mean square model/mean square error, it is used to determine the variance explained by model is significantly greater than the unexplained variance

- The p value: (>0.05)-this means we fail to reject null hypothesis and the mean is statistically equal between the groups.
- Sceffe's results indicate very small difference between each age segments
- R squared: It is the proportion of variance in Age explained by the model. 0.000026 percent shows that variability of Sales can not be explained by Age segments, it is a low, so our model is not sufficient to explain the variability of Sales using Age segments

- Diagram Grouped Box Plot- The Total Length of Boxplot or Interquartile range (Distance between Q1 and Q3) is similar for all 4 age segments. We can see they line up and Diamond that represents the mean shows that the mean of all age segments is almost at similar level.
- There are extreme outliers in all age segments . Outliers are greater than upper outer fence (Q3+3IQR)

Conclusion-

- Since P values 0.5216>0.05, we fail to reject the Null Hypothesis at 5% Significance Level
- Mean of Sales is significantly similar in all age segments
- Age segment explains 0% of variability of Sales. Therefore, we can say this is not a good model.

B) Sales Distribution between active and deactivated customers

H0- Means of Sales is equal in both groups i.e Sales equally distributed in both Active and Deactivated customers group.

H1- Means of Sales is not equal in both groups i.e Sales not equally distributed in both Active and Deactivated customers group.

Approach- since Sales is Numerical variable and Status -Active/Deactivated is a categorical Variable we will use:-

- For Summarisation- Proc Means
- For Normality-Proc Univariate
- For Visualisation- Grouped Box Plot
- For Independency- Proc T test

```
/*Descriptive Analysis Sales Vs Status*/
proc means Data=Nandini.sales n nmiss var std cv clm mean sum min Q1 Q3 grange max maxdec=2;
var Sales;
class Status;
run;
```

	Analysis Variable : Sales														
Status	N Obs	N	N Miss	Variance	Std Dev	Coeff of Variation	Lower 95% CL for Mean	Upper 95% CL for Mean	Mean	Sum	Minimum	Lower Quartile	Upper Quartile	Quartile Range	Maximum
Active	82620	75675	6945	54986.11	234.49	129.15	179.89	183.23	181.56	13739549.00	0.00	52.00	191.00	139.00	1200.00
Deactivated	19635	17975	1660	53717.47	231.77	128.81	176.54	183.31	179.93	3234154.00	0.00	53.00	188.00	135.00	1199.00

- From the results of Means Procedure, we see that Mean and standard deviation of Active and Deactivated customers are almost with minimum difference.
- To statistically prove this we will use normality test using Proc Univariate, Homoscedasticity test using Proc GLM and finally Proc Ttest to prove means are equal in both groups
 - Test of Normality-H0- Sales is normally distributed H1- Sales is not normally distributed

```
/*Normality test Sales Vs Status*/
proc univariate Data=Nandini.Sales normal plot;
var Sales:
Class Status;
qqplot /normal (mu=est sigma=est);
```

Tests for Normality									
Test	Sta	atistic	p Value						
Kolmogorov-Smirnov	D	0.250605	Pr > D	<0.0100					
Cramer-von Mises	W-Sq	1722.213	Pr > W-Sq	<0.0050					
Anderson-Darling	A-Sq	9074.765	Pr > A-Sq	<0.0050					

group by Acct Status; quit; **Tests for Normality** Test Statistic p Value Kolmogorov-Smirnov D 0.247594 Pr > D <0.0100 < 0.0050

from Nandini.Status Tenure

/*Total sales ineach account status*/

select sum(sales)as Total_Sales,acct_status

W-Sq 409.5501 Pr > W-Sq

A-Sq 2162.105 Pr > A-Sq

< 0.0050

proc sql;

Cramer-von Mises

Anderson-Darling

Status-Active

Status- Deactivated

- P value in Kolmogorov-Smirnov of Normality is less than 0.05 significance level.
- So we reject Null Hypothesis of normality and conclude that Sales is not normally distributed
- However as per CLT, since sample size is more than>30, we can assume Sales is normally distributed Total Sales Acct Status
- Total Sales for Active customers is \$13,739,549 while for Deactivated customers is \$32,34,154
- Test of Homoscedasticity for equality of variance-
 - H0- Variance of Sales is equal in both Groups H1- Variance of Sales is not equal in both Groups

```
/*Equality of variance Sales Vs Status*/
lproc glm data=Nandini.Sales;
class Status;
model Sales = Status;
means Status / hovtest=levene(type=abs) welch;
run;
```

P value in Levene's Test for Equality of Variance 0.0505 is greater than 0.05 significance level.

Therefore, we fail to reject Null Hypothesis and Conclude the variance of Sales is equal in both active and deactivated status

Test of difference-

HO- Mean of Sales is Equal in both Active and Deactivated groups

H1- Mean of Sales is not Equal in both Active and Deactivated groups

```
proc ttest Data=Nandini.Sales;
Var Sales;
Class status;
run;
```


13739549

Active

3234154 Deactivated

Diagram - Grouped Box Plot-

The Total Length Boxplot or Interquartile range (Distance between Q1 and Q3) is very similar for Active and Deactivated groups. This is what we had expected. The groups have similar variance. We can see they line up and Diamond that represents the mean is aligned equally as well. There are more outliers both group. This are extreme outliers (greater than Q3+3IQR- upper outer fence)

- Diagram Histogram and Density plot -The plots compare the distribution of Sales with 2 categories of Active and Deactivated customers. From Histogram, we can see the distribution of Sales for both categories of status is not symmetric or bell shaped, it is right skewed.so we can say the distribution is not normal.
- T- Test-
 - HO- Means of Sales is equal in both groups i.e Sales equally distributed in both Active and Deactivated customers group.
 - H1- Means of Sales is not equal in both groups i.e Sales not equally distributed in both Active and Deactivated customers group.
- The First table in ttest contain the valid sample size, mean, standard deviation, min and max. In this case the mean of Sales- has very minimum difference between two groups. We need to check this difference is statistically or happens by chance. For this we need to check second table that has Two other Test Pooled and Satterwaite.
 - Pooled Test assumes that both groups have the same variance in Age whereas Satterwaite test does not make this assumption.
 - It can be done by checking the last table that it is folded f test:
 - Folded f test hypothesis:H0 is: Variance are equal
 - H1 is- Variance are not equal

 p value for f test it is 0.0475 < 0.05 so we reject null hypothesis and we will say the variance are not equal. Therefore, we will the see results from Satterwaite Test.

Conclusion-

Since P values in Satterwaite Test 0.3963 > 0.05,

- we fail to reject the Null Hypothesis at 5% Significance Level
- Average Sales ge of Active customers is equal to average Sales of Deactivated customers
- Mean of Sales is equal in both Active Deactivated customer groups

C) Sales Distribution between Good Credit Category

HO- Means of Sales is equal in both groups i.e Sales equally distributed in both categories of GoodCredit

H1- Means of Sales is not equal in both groups i.e Sales not equally distributed in both categories of good credit

Approach- since Sales is Numerical variable and Good Credit Yes/No -is a categorical Variable we will use:-

- For Summarisation- Proc Means
- For Normality-Proc Univariate
- For Visualisation- Grouped Box Plot
- For Independency- Proc T test

```
/*Descriptive Analysis Sales Vs Goodcredit*/
proc means Data=Nandini.sales n nmiss var std cv clm mean sum min Q1 Q3 qrange max maxdec=2 ;
 var Sales;
 class Goodcredit;
 run:
```

	Analysis Variable : Sales														
GoodCredit	N Obs	N	N Miss	Variance	Std Dev	Coeff of Variation	Lower 95% CL for Mean	Upper 95% CL for Mean	Mean	Sum	Minimum	Lower Quartile	Upper Quartile	Quartile Range	Maximum
0	31253	28599	2654	55148.62	234.84	129.34	178.85	184.29	181.57	5192720.00	0.00	52.00	190.00	138.00	1200.00
1	71002	65051	5951	54564.66	233.59	128.98	179.31	182.90	181.10	11780983.00	0.00	53.00	190.00	137.00	1200.00

- From the results of Means Procedure, we see that Mean and standard deviation of Sales in Good Credit Yes and Good Credit No category are almost with minimum difference.
- To statistically prove this we will use normality test using Proc Univariate, Homoscedasticity test using Proc GLM and finally Proc Ttest to prove means are equal in both groups
- Test of Normality-
 - H0- Sales is normally distributed
 - H1- Sales is not normally distributed

```
/*Normality Test Sales Vs Agesegment*/
proc univariate Data=Nandini.Sales normal plot;
var Sales;
Class Goodcredit;
qqplot /normal (mu=est sigma=est);
run;
```

```
/*Total Sales classified between Good credit categories*/
proc sql;
select sum(sales ) as Total_Sales_credit,Goodcredit
from Nandini.Sales
group by goodcredit;
quit;
```

Tests for Normality									
Test	Statistic p Value								
Kolmogorov-Smirnov	D	0.249608	Pr > D	<0.0100					
Cramer-von Mises	W-Sq	652.0233	Pr > W-Sq	<0.0050					
Anderson-Darling	A-Sq	3437.394	Pr > A-Sq	<0.0050					

Tests for Normality									
Test	Statistic p Value								
Kolmogorov-Smirnov	D	0.250311	Pr > D	<0.0100					
Cramer-von Mises	W-Sq	1479.829	Pr > W-Sq	<0.0050					
Anderson-Darling	A-Sq	7799.709	Pr > A-Sq	<0.0050					

No Good Credit

Has Good Credit

- P value in Kolmogorov-Smirnov of Normality is less than 0.05 significance level.
- So we reject Null Hypothesis of normality and conclude that Sales is not normally distributed
- No Bell Shape distribution observed .Data is highly right skewed
- However as per CLT, since sample size is more than>30, we can assume Sales is normally distributed
- Total Sales for Customers with Good Credit is \$1,17,80,983
 while Customers without Good credit is \$51,92,72

Total_Sales_credit	GoodCredit
5192720	0
11780983	1

- Test of Homoscedasticity for equality of variance-
 - H0- Variance of Sales is equal in both Groups of customers with Good Credit and Without Good Credit
 - H1- Variance of Sales is not equal in both Groups of customers with Good Credit and Without Good Credit

```
/*Equality of variance Sales Vs Status*/
proc glm data=Nandini.Sales;
class Status;
model Sales = Status;
means Status / howtest=levene(type=abs) welch;
```

P value in Levene's Test for Equality of Variance 0.6795 is greater than 0.05 significance level.

Therefore, we fail to reject Null Hypothesis and Conclude the variance of Sales is equal in customers with Good Credit and without Good Credit Categories.

Test of difference-

HO- Mean of Sales is Equal in both Customer with Good Credit and Without Good Credit groups H1- Mean of Sales is not Equal in both Customer with Good Credit and Without Good Credit groups

> proc ttest Data=Nandini.Sales; Var Sales; Class Goodcredit; run;

The GLM Procedure							
			_	neity of Sa ons from (
Source	DF	DF Sum of Squares Mean Square F			F Value	Pr > F	
GoodCredit	1		5039.1		5039.1	0.17	0.6795
Error	93648	2.7643E9 29517.5					
Welch's ANOVA for Sales							
	Soul	Source DF F Value Pr > F					
	Goo	dCredit	1.0000	0.08	0.7793		
	Erro	r	54366.1				

- Diagram –Grouped Box Plot-
 - The Total Length Boxplot or Interquartile range (Distance between Q1 and Q3) is very similar for With Good Credit and Without Good Credit groups. This is what we had expected. The groups have similar variance. We can see they line up and Diamond that represents the mean is aligned equally as well. There are more outliers both group. This are extreme outliers (greater than Q3+3IQR- upper outer fence)
- Diagram Histogram and Density plot -The plots compare the distribution of Sales with 2 categories of Customers with and without Good Credit. From Histogram, we can see the distribution of Sales for both categories of Good Credit is not symmetric or bell shaped, it is right skewed.so we can say the distribution is not normal.
- T- Test-
 - H0- Means of Sales is equal in both groups i.e Sales equally distributed in both With Good Credit and Without Good Credit Categories.
 - H1- Means of Sales is not equal in both groups i.e Sales not equally distributed in both With Good Credit and Without Good Credit Categories.
- The First table in ttest contain the valid sample size, mean, standard deviation, min and max.
- In this case the mean of Sales- has very minimum difference between two groups. We need to check this difference is statistically or happens by chance. For this we need to check second table that has Two other Test Pooled and Satterwaite.
- Pooled Test assumes that both groups have the same variance in Age whereas Satterwaite test does not make this assumption.
- It can be done by checking the last table that it is folded f test:
 - Folded f test hypothesis: H0 is: Variance are equal
 - H1 is- Variance are not equal
- p value for f test it is 0.2878 > 0.05 so we fail to reject null hypothesis and we will say the variance are equal. Therefore, we will the see results from Pooled Test.

Conclusion-

Since P values in Pooled Test 0.7788 > 0.05,

- we fail to reject the Null Hypothesis at 5% Significance Level
- Average Sales of Customers with Good Credit is equal to average Sales of Customers without **Good Credit**
- Mean of Sales is equal in both With Good Credit and Without Good Credit Categories.

Determine if Tenuredays and Sales are correlated with each Other

proc surveyselect data=Nandini.Status_Tenure out=Nandini.Salecorr method=srs n=100; run; proc print data=Nandini.Salecorr;run;

```
proc corr Data=Nandini.Salecorr;
var Tenuredavs;
with Sales;
proc reg data=Nandini.Salecorr;
model Sales= Tenuredays;
run;
```

HO- There is no correlation Between Sales and **Tenuredays**

H1- There is significant Correlation between Sales and **Tenuredays**

- P value of Tenuredays is 0.3214 >0.05. Therefore, we fail to reject Null Hypothesis and conclude there is no correlation between Sales and Tenuredays.
- R square is very low 0.0112and RMSE is high 210.988
- R Square- 0.0112 indicates only 1% of variation in sales can be explained by Tenuredays.
- Model is not a best fit for the analysis between Sales and Tenuredays

Determine if Age and Sales are correlated with each Other

```
proc surveyselect data=Nandini.Status Tenure out=Nandini.Salecorr method=srs n=100;
run;
proc print data=Nandini.Salecorr;run;
```

```
proc corr Data=Nandini.Salecorr;
var Age;
with Sales;
run;
proc reg data=Nandini.Salecorr;
model Sales= Age ;
run;
```

H0- There is no correlation Between Sales and Age H1- There is significant Correlation between Sales and Age

- P value of Tenuredays is 0.7405 > 0.05. Therefore, we fail to reject Null Hypothesis and conclude there is no correlation between Sales and Age.
- R square is very low 0.0014and RMSE is high 219.27
- R Square- 0.0014 indicates almost 0% of variation in sales can be explained by Age
- Therefore Model is not a best fit for the analysis between Sales and Age

```
proc sql;
select sales, tenuredays
from Nandini.Status Tenure
where Sales>900 and tenuredays<10;
quit;
proc sql;
select sales, Age
from Nandini.Status Tenure
where Sales>900 and Age<5 and age ne .;
quit;
```

- Sale is missing or very low for tenure more than 1 year
- Sale is very high for even 1 days
- Sale is very high for age of 1 year
- · Most places data looks unrealistic More accurate information needed to make this model perfect

```
proc sql;
select sales, tenuredays
from Nandini.Status Tenure
where Sales<100 and tenuredays>300;
 quit;
```

Sales	Tenuredays
\$11.00	408
\$16.00	459
\$44.00	630
\$97.00	340
	467
\$71.00	440
\$67.00	550
\$76.00	407
\$24.00	304
\$33.00	575
\$74.00	486
\$27.00	449
\$23.00	453
-	541
\$11.00	325
\$50.00	589
\$90.00	540
\$60.00	730
-	434
\$92.00	407

Sales	Tenuredays
\$965.00	6
\$1,096.00	3
\$951.00	3
\$1,164.00	1
\$1,135.00	8
\$1,188.00	8
\$956.00	2
\$1,064.00	3
\$1,026.00	4
\$1,186.00	4
\$917.00	4
\$962.00	7
\$1,072.00	7
\$906.00	9
\$1,053.00	9
\$932.00	8

_		
	Sales	Age
	\$917.00	2
	\$945.00	4
	\$947.00	2
	\$1,023.00	1
	\$1,098.00	1
	\$1,057.00	2
	\$908.00	4
	\$1,114.00	2
	\$1,095.00	2
	\$913.00	2
	\$1,082.00	4
	\$973.00	4
	\$1,155.00	4
	\$1,123.00	1
	\$1,193.00	2
	\$1,047.00	1
	\$1,066.00	4
	\$927.00	2

3 Variables: Sales Age Tenuredays						
Simple Statistics						
Variable	N	Mean	Std Dev	Median	Minimum	Maximum
Sales	93650	181.24616	233.97104	91.00000	0	1200
Age	94547	47.64722	18.56900	48.00000	1.00000	110.00000
Tenuredays	102255	282.57180	197.32371	265.00000	0	731.00000

```
proc corr Data=Nandini.Status_Tenure pearson spearman kendall
plots(maxpoints=none) = matrix(histogram);
var Sales Age Tenuredays;
run;
```

```
proc corr Data=Nandini.Status_Tenure pearson spearman kendall
plots(maxpoints=none) = matrix(histogram);
var Sales Age Tenuredays;
run;
```

Pearson Correlation Coefficients Prob > r under H0: Rho=0 Number of Observations					
Sales Age Tenuredays					
Sales	1.00000	0.00147	-0.00391		
		0.6656	0.2310		
	93650	86609	93650		
Age	0.00147	1.00000	-0.00329		
	0.6656		0.3123		
	86609	94547	94547		
Tenuredays	-0.00391	-0.00329	1.00000		
	0.2310	0.3123			
	93650	94547	102255		

Spearman Correlation Coefficients Prob > r under H0: Rho=0 Number of Observations						
Sales Age Tenuredays						
Sales	1.00000	0.00195	-0.00040			
		0.5668	0.9022			
	93650	86609	93650			
Age	0.00195	1.00000	-0.00259			
	0.5668		0.4261			
	86609	94547	94547			
Tenuredays	-0.00040	-0.00259	1.00000			
	0.9022	0.4261				
	93650	94547	102255			

Kendall Tau b Correlation Coefficients Prob > tau under H0: Tau=0 Number of Observations					
Sales Age Tenuredays					
Sales	1.00000	0.00130 0.5685	-0.00028 0.8998		
	93650	86609	93650		
Age	0.00130 0.5685	1.00000	-0.00174 0.4249		
	86609	94547	94547		
Tenuredays	-0.00028 0.8998	-0.00174 0.4249	1.00000		
	93650	94547	102255		

No Pattern or linear correlation found between any of 3 independent variables.

FINDINGS

- Age and Sales has Majority of Outliers, Missing Data, Unrealistic figures
- ON has maximum Customer Base where as QC has Minimum
- Count of Age<20 (Young Customers) is very low
- 52% customers has taken service of less than \$100.Only 4 % customers have taken service of more than \$800.
- Maximum Deactivation Occurred in Winters. Reason can be interrupted service, outage due to harsh weather
- 340 customers have deactivated service on the same day
- Customers with greater Tenure have good credit
- Majority active customers prefer Rate plan 1 .Rate plan 2 has minimum customer churn. Rate Plan 3 has maximum customer churn
- Dealer type A1 has maximum customer base.
- Customer churn is seen more with tenure <30 days.(33%)
- Customer churn went increasing after March till year end.
- Sales is Maximum in age group 41-60 and minimum in <20.It indicates young people tend to prefer better deals by competitors
- Sales is maximum for active customers than Deactivated Customers.
- Maximum Sales is from the customers with Good Credit
- Model is not best fit to explain sales with the help of Tenure and Age data.

RECCOMENDATIONS

- Need More accurate information for effective analysis.
- More promotions needed in QC
- Good Promotions, offers, deals need to be arranged to attract Young crowd
- Need to reach out to customer for their feedback and understand their need. Offer better solutions. Initiate Rewards for loyal customers.
- Need to find way outs to avoid interruption in winters.
- Deactivation on same day is a major point of concern. Need investigation
- Arrange Loyalty rewards for Good Credit Customers
- Rate Plan 2 can be improved to match rate plan 1. Rate plan 3 needs attention.
- Other Dealers need to match the service of Dealer A1
- Provide best service to avoid losing customers in first month.
- Competitor analysis required .
- · Age and Sales figures need to be rechecked.
- Overall the available data is not sufficient to make strong conclusions regarding sale and customer churn. Details like customer income, customer feedback may add value to the analysis.