Лабораторная работа «Интеграл Римана»

Задание. Составьте интегральную сумму для интеграла Римана данной функции по данному промежутку. Вычислите ее и найдите предел. Докажите, что соответствующий интеграл существует. Проверьте с помощью формулы Ньютона-Лейбница. Напишите программу (язык любой), вычисляющую (и желательно, рисующую), интегральные суммы для данной функции на данном отрезке по формуле прямоугольника.

Входные данные для программы: число точек разбиения, способ выбора оснащения (левые, правые, средние, случайные точки). Разбиение равномерное.

<u>По желанию,</u> можно использовать любой метод численного интегрирования. Основные методы вы можете найти в методичке:

https://drive.google.com/file/d/1oAw wz1f6rTwv8im2PgPyzVBObMw gTW/view?usp=sharing

Отчет по заданию должен содержать:

- 1) Аналитическая часть: доказательство существования интеграла Римана; получение интегральной суммы (для одного случая оснащения); нахождение ее предела; сравнение со значением интеграла, найденным по формуле Ньютона—Лейбница.
- 2) Краткое описание выбранного численного метода. Результаты работы программы оформить в таблицу:

Шаг интегрирования (h)	Численное решение F	Погрешность F-F	Количество итераций N
		•••	

- 3) Скриншоты результатов работы программы с комментариями. Должны быть несколько графиков слагаемых интегральных сумм (ступенчатые фигуры) для различных разбиений (n=10, 100, 1000, 10000, 10⁵, 10⁶) и различных оснащений (4-х графиков достаточно). Для каждого графика должно быть указано значение соответствующей интегральной суммы.
- 4) Текст или скриншот текста программы.
- 5) *(для желающих) Написать программу, вычисляющую приближенное значение интеграла для фиксированного разбиения методом трапеций/формулой Симпсона/формулой Эйлера или иным методом. Нарисовать соответствующий рисунок и сравнить полученный результат с имеющимися.

Варианты заданий

1.
$$f(x) = x^2$$
, [1,2];

2.
$$f(x) = e^x$$
, [0,1];

3.
$$f(x) = \sin x$$
, $[0, \pi]$; **14.** $f(x) = x^3$, $[0, 2]$;

4.
$$f(x) = \cos x$$
, $[0, \pi/2]$; **15.** $f(x) = 3^x$, $[-1, 0]$;

5.
$$f(x) = 2^x$$
, $[0,2]$;

6.
$$f(x) = x^3$$
, $[0,1]$;

7.
$$f(x) = 3^x$$
, [1,2];

8.
$$f(x) = e^{-x}$$
, $[0,1]$;

9.
$$f(x) = x^2, [-3,0];$$

10.
$$f(x) = e^{2x}$$
, $[0,1]$;

11.
$$f(x) = \sin x$$
, $[0, 2\pi]$;

12.
$$f(x) = \cos x$$
, $[0, \pi]$;

13.
$$f(x) = 2^x$$
, [0,1];

14.
$$f(x) = x^3$$
, $[0,2]$;

15.
$$f(x) = 3^x$$
, $[-1,0]$;

16.
$$f(x) = e^{-x}$$
, $[0,2]$;

17.
$$f(x) = x^2$$
, $[-1,1]$;

19
$$f(x) = \sin 2x$$
 $[0, \pi]$

19.
$$f(x) = \sin 2x$$
, $[0, \pi]$

20.
$$f(x) = \cos 2x$$
, $[0, \pi/2]$; **31.** $f(x) = 3^x$, $[-1,1]$;

21.
$$f(x) = 4^x$$
, $[0,2]$;

11.
$$f(x) = \sin x$$
, $[0, 2\pi]$; **22.** $f(x) = x^3$, $[-2, 0]$;

23.
$$f(x) = 4^x$$
, [1,2];

24.
$$f(x) = e^{-2x}$$
, [1,3]

25.
$$f(x) = x^2$$
, [1,4];

26.
$$f(x) = e^{2x}$$
, $[-1,0]$;

27.
$$f(x) = \sin 2x$$
, $[0, \pi.2]$;

28.
$$f(x) = \cos 2x$$
, $[0, \pi]$;

18.
$$f(x) = e^{3x}$$
, $[0,0.5]$; **29.** $f(x) = 5^x$, $[0,3]$;

19.
$$f(x) = \sin 2x$$
, $[0,\pi]$; **30.** $f(x) = x^3$, $[-1,1]$;

31.
$$f(x) = 3^x$$
. $[-1,1]$:

32.
$$f(x) = e^{-x}$$
, $[-1,1]$