MATH UA-129: Homework 6

James Pagan, October 2023

Professor Serfaty

Contents

1	Section 3.4	1
2	Section 3.5	6
3	Section 4.1	8

1 Section 3.4

Problem 3

Using Lagrange multipliers, we have that for some $\lambda \in \mathbb{R}$,

$$\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} = \nabla f = \lambda \nabla g = \begin{bmatrix} 2\lambda x \\ 2\lambda y \\ 2\lambda z \end{bmatrix}$$

We thus have that $1 = 2\lambda x$, so $\frac{1}{2\lambda} = x$; similarly, $-\frac{1}{2\lambda} = y$ and $\frac{1}{2\lambda} = z$. Therefore,

$$2 = x^2 + y^2 + z^2 = \left(\frac{1}{2\lambda}\right)^2 + \left(-\frac{1}{2\lambda}\right)^2 + \left(\frac{1}{2\lambda}\right)^2 = \frac{3}{4\lambda^2}.$$

We deduce that $\lambda^2 = \frac{3}{8}$, so $\lambda = \pm \frac{\sqrt{6}}{4}$. Substituting for x, y, and z, we find two critical points of $f \mid S$:

$$(x, y, z) = \left(\frac{\sqrt{6}}{3}, -\frac{\sqrt{6}}{3}, \frac{\sqrt{6}}{3}\right)$$
 and $(x, y, z) = \left(-\frac{\sqrt{6}}{3}, \frac{\sqrt{6}}{3}, -\frac{\sqrt{6}}{3}\right)$

Evaluating x - y + z at these two points, we find that the first is greater than the second.

Hence,
$$\left(\frac{\sqrt{6}}{3}, -\frac{\sqrt{6}}{3}, \frac{\sqrt{6}}{3}\right)$$
 is the maximum and $\left(-\frac{\sqrt{6}}{3}, \frac{\sqrt{6}}{3}, -\frac{\sqrt{6}}{3}\right)$ is minimum of $f \mid S$.

Problem 8

We have that all $(x, y) \in S$ satisfy y = 2, so if $(x, y) \in S$,

$$f(x,y) = x^2 + y^2 = x^2 + 4.$$

As the right-hand side is a quadratic, it has a minimum at x = 0 and is unbounded above. Therefore, (0,2) is a minimum of $f \mid S$.

Problem 10

We have that all $(x, y) \in S$ satisfy $y = \cos(x)$, so if $(x, y) \in S$,

$$f(x,y) = x^2 - y^2 = x^2 - \cos^2(x).$$

Dub the right-hand side g(x); maximizing $f \mid S$ is equivalent to maximizing g. See that

$$g'(x) = 2x - 2\sin(x)\cos(x) = 2x - \sin(2x),$$

$$g''(x) = 2 + 2\cos(2x).$$

Then g'(x) = 0 implies that $2x = \sin(2x)$, which trivially happens exclusively when x = 0 (this may be proven using the tangent line trick or taylor series).

As $g''(0) = 2 + 2\cos(0) = 4$, the second derivative test implies that x = 0 is a global minimum of g, so (0,1) is a global minimum of $f \mid S$.

Problem 11

Observe that across all (x, y, z),

$$\nabla f = \mathbf{0} \implies \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix} = \mathbf{0},$$

so the only critical point of f is (0,0,0), which does not lie within S. Therefore, any local extrema of f must be attained on the boundary — namely, all elements of $\{(x,y,z) \in \mathbb{R}^3 \mid z=2+x^2+y^2\}$.

Defining $g(x, y, z) = x^2 + y^2 - z + 2$, we use Lagrange Multipliers to deduce that there exists $\lambda \in \mathbb{R}$ such that

$$\begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix} = \nabla f = \lambda \nabla g = \begin{bmatrix} 2\lambda x \\ 2\lambda y \\ -\lambda \end{bmatrix}$$

If at least one of x and y is nonzero, then $\lambda = 1$, and $z = -\frac{1}{2}$. We conclude that

$$\frac{1}{2} = x^2 + y^2 + 2 \ge 0 + 0 + 2 > \frac{1}{2},$$

a contradiction. Therefore, x = y = 0. As $z = -\frac{\lambda}{2}$,

$$-\frac{\lambda}{2} = x^2 + y^2 + 2 \implies \lambda = -4,$$

and z = 2. Then (0,0,2) is the only extrema of f at x. A trivial calculation verifies that this is a minimum of f, so (0,0,2) is a minimum of $f \mid S$.

Problem 12

Observe that

$$\nabla f = \begin{bmatrix} 2x - 1 \\ 2y - 1 \end{bmatrix}.$$

Thus, the only critical point of f not on the boundary is $(x,y) = (\frac{1}{2}, \frac{1}{2})$, where f evaluates to $\frac{1}{2}$. On the boundary of the unit disc, define $g(x,y) = x^2 + y^2 - 1$; we have that for some $\lambda \in \mathbb{R}$,

$$\begin{bmatrix} 2x - 1 \\ 2y - 1 \end{bmatrix} = \nabla f = \lambda \nabla g = \begin{bmatrix} 2\lambda x \\ 2\lambda y \end{bmatrix}$$

Thus, $2x - 1 = 2\lambda x$, and $x = \frac{1}{2-2\lambda}$. Similarly, $y = \frac{1}{2-2\lambda}$. Thus,

$$1 = x^2 + y^2 = 2x^2 = 2y^2,$$

so our four points to consider are $\left(\pm\frac{\sqrt{2}}{2},\pm\frac{\sqrt{2}}{2}\right)$. We find that

$$f\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) = 2 - \sqrt{2},$$

$$f\left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right) = 2,$$

$$f\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) = 2,$$

$$f\left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right) = 2 + \sqrt{2}.$$

Comparing all of these, we find that the $\left(\frac{1}{2},\frac{1}{2}\right)$ is an absolute minimum and

 $\left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$ is an absolute maximum of f on the unit disc.

Problem 13

Trivially, the only critical point of f outside the boundary is (0,0), in which f evaluates to 0. Defining $g(x) = x^2 + y^2 - 1$, Lagrange mulitpliers yield that there exists $\lambda \in \mathbb{R}$ such that

$$\begin{bmatrix} 2x + y \\ 2y + x \end{bmatrix} = \nabla f = \lambda \nabla g = \begin{bmatrix} 2\lambda x \\ 2\lambda y \end{bmatrix}.$$

Thus, $(2-2\lambda)x + y = 0 = x + (2-2\lambda)y$. Adding these two equations, we find that

$$(3-2\lambda)(x+y) = 0.$$

Either $\lambda = \frac{3}{2}$ — in which case x = y — or x = -y. In each case, $x^2 = y^2$, so

$$1 = x^2 + y^2 = 2x^2.$$

Thus, we have four points on the boundary to consider: $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$, $\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$, $\left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$, and $\left(\frac{-\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$. Comparing these, we find that $\left[(0,0) \text{ is an absolute minimum}\right]$ and $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ and $\left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$ are absolute maxima of f on the unit disc.

Problem 21

We seek to minimize the surface area $2\pi r^2 + 2\pi rh$ of the cylinder under the constrant that its volume $\pi r^2 h$ is 1000. Letting the surface area be S(r,h) and the volume be V(r,h), Lagrange multipliers ensure that there is $\lambda \in \mathbb{R}$ such that

$$\begin{bmatrix} 4\pi r + 2\pi h \\ 2\pi r \end{bmatrix} = \nabla S = \lambda \nabla V = \begin{bmatrix} 2\lambda \pi r h \\ \lambda \pi r^2 \end{bmatrix}.$$

From $2\pi r = \lambda \pi r^2$, we find that $2 = \lambda r$ (as clearly $r \neq 0$). Thus, the top equation yields that

$$4\pi r + 2\pi h = 4\pi h,$$

so 2r = h. Therefore,

$$1000 = \pi r^2 h = 2\pi r^3$$

so
$$r = \sqrt[3]{\frac{1000}{2\pi}}$$
 centimeters and $h = \frac{1}{2}\sqrt[3]{\frac{1000}{2\pi}}$ centimeters.

Problem 31

Part (a): We define

$$A = \begin{bmatrix} a & b & c \\ b & a & d \\ c & d & a \end{bmatrix} \quad \text{and} \quad \mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}.$$

Then

$$f(\mathbf{x}) = \frac{1}{2}(A\mathbf{x}) \cdot \mathbf{x}$$

$$= \frac{1}{2} \begin{bmatrix} ax + by + cz \\ bx + ay + dz \\ cx + dy + za \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$= \frac{1}{2}(ax^2 + bxy + czx) + \frac{1}{2}(bxy + ay^2 + dyz) + \frac{1}{2}(cxz + dyz + z^2a)$$

$$= \frac{1}{2}ax^2 + \frac{1}{2}by^2 + \frac{1}{2}cz^2 + bxy + dyz + czx.$$

Thus,

$$\nabla f = \begin{bmatrix} ax + by + cz \\ by + bx + dz \\ cz + dy + cx \end{bmatrix} = A\mathbf{x}.$$

Part (b): We have that by Lagrange multipliers, there exists λ such that

$$A\mathbf{x} = \nabla f = \lambda \nabla g = \lambda \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix} = 2\lambda \mathbf{x}.$$

Therefore, A must have an eigenvalue \mathbf{x} with eigenvalue 2λ .

Problem 35

Let x=2 and $z=\frac{1}{2}$. Then if we let $y=\frac{M}{2+\frac{1}{2}}$ for any $M\in\mathbb{R}$,

$$xy + yz = y(x+z) = M$$

so the expression xy + yz can assume any real value. We conclude that it has no minimum or maximum.

Problem 37

We wish to maximize the function

$$\sqrt{\cos^2(t) + \sin^2(t) + \sin^2(\frac{t}{2})} = \sqrt{1 + \frac{1 - \cos(\theta)}{2}}.$$

This function is clearly maximized whenever $\cos(t) = -1$, in which case the maximum is $\sqrt{2}$.

2 Section 3.5

Problem 12

Part (a): We have that

$$\frac{\partial(x,y)}{\partial(r,\theta)} = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{vmatrix} = \begin{vmatrix} \cos(\theta) & -r\sin(\theta) \\ \sin(\theta) & r\cos(\theta) \end{vmatrix} = r\cos^2(x) + r\sin^2(\theta) = r.$$

At $(r, \theta) = (r_0, \theta_0)$, the Jacobian determininant evaluates to r_0 .

Part (b): Clearly $f(r,\theta) = (r\cos(\theta), r\sin(\theta))$ is C^1 . Then f is invertible if the Jacobian determinant is nonzero — at all points except the origin. Clearly, we cannot establish an inverse at the origin.

Part (c): Using the Rule of Sarrus, we have that

$$\frac{\partial(x,y,z)}{\partial(\rho,\phi,\theta)} = \begin{vmatrix} \frac{\partial x}{\partial \rho} & \frac{\partial x}{\partial \phi} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial \rho} & \frac{\partial y}{\partial \phi} & \frac{\partial y}{\partial \theta} \\ \frac{\partial z}{\partial \rho} & \frac{\partial z}{\partial \phi} & \frac{\partial z}{\partial \theta} \end{vmatrix} = \begin{vmatrix} \sin(\phi)\cos(\theta) & \rho\cos(\phi)\cos(\theta) & -\rho\sin(\phi)\sin(\theta) \\ \sin(\phi)\sin(\theta) & \rho\cos(\phi)\sin(\theta) & \rho\sin(\phi)\cos(\theta) \\ \cos(\phi) & -\rho\sin(\phi) & 0 \end{vmatrix},$$

$$= \rho^2 \sin(\phi)\cos^2(\phi)\cos^2(\theta) + \rho^2 \sin^3(\phi)\sin^2(\theta) + \rho^2 \sin(\phi)\cos(\phi)^2 \sin^2(\theta)$$

$$+ \rho^2 \sin^3(\phi)\cos^2(\theta),$$

$$= \rho^2 \sin(\phi)\cos^2(\phi) + \rho^2 \sin^3(\phi),$$

$$= \rho^2 \sin(\phi).$$

Part (d): We can solve for (ρ, ϕ, θ) whenever the Jacobian determininat is nonzero, which occurs for all (ρ, ϕ, θ) such that $\rho \neq 0$ and $\phi \notin \{\pi n \mid n \in \mathbb{Z}\}\$.

Problem 17

Part (a): We define

$$F_1(x, y, u, v) = x^2 - y^2 - u^3 + v^2 + 4,$$

$$F_2(x, y, u, v) = 2xy + y^2 - 2u^2 + 3v^4 + 8.$$

We have that

$$\begin{vmatrix} \frac{\partial F_1}{\partial u} & \frac{\partial F_2}{\partial v} \\ \frac{\partial F_2}{\partial u} & \frac{\partial F_2}{\partial y} \end{vmatrix} = \begin{vmatrix} -3u^2 & 2v \\ -4u & 12v^3 \end{vmatrix} = (-3u^2)(12v^3) - (2v)(-4u) = -36u^2v^3 + 8uv.$$

At (x, y, u, v) = (2, -1, 2, 1), this determinant evaluates to $-128 \neq 0$. The Inverse Function Theorem thus gurantees that there exists functions u(x, y) and v(x, y) near the point (2, -1, 2, 1).

Part (b): Using implicit differentiation,

$$0 = 2x - 3u^{2} \left(\frac{\partial u}{\partial x}\right) + 2v \left(\frac{\partial v}{\partial x}\right),$$

$$0 = 2y - 4u \left(\frac{\partial u}{\partial x}\right) + 12v^{3} \left(\frac{\partial v}{\partial x}\right).$$

Substituting (x, y, u, v) = (2, -1, 2, 1) yields

$$0 = 4 - 12\left(\frac{\partial u}{\partial x}\right) + 2\left(\frac{\partial v}{\partial x}\right),$$
$$0 = -2 - 8\left(\frac{\partial u}{\partial x}\right) + 12\left(\frac{\partial v}{\partial x}\right).$$

Subtracting six times the top equation to the second equation, we find that

$$0 = -26 - 64 \frac{\partial u}{\partial x},$$

so
$$\left| \frac{\partial u}{\partial x} = \frac{13}{32} \right|$$

Problem 19

Let the roots of $x^3 + ax^2 + bx + c$ for $a, b, c \in \mathbb{R}$ be r, s, and t. Vieta's Formulas return that

$$a = -r - s - t$$
$$b = rs + st + tr$$
$$c = -rst.$$

Viewing a, b, and c as functions of r, s, and t, we have that

$$\begin{vmatrix} \frac{\partial a}{\partial r} & \frac{\partial a}{\partial s} & \frac{\partial a}{\partial t} \\ \frac{\partial b}{\partial r} & \frac{\partial b}{\partial s} & \frac{\partial b}{\partial t} \\ \frac{\partial c}{\partial r} & \frac{\partial c}{\partial s} & \frac{\partial c}{\partial t} \end{vmatrix} = \begin{vmatrix} -1 & -1 & -1 \\ s+t & t+r & r+s \\ -st & -tr & -rs \end{vmatrix}$$

$$= rs(t+r) + st(r+s) + tr(s+t) - st(t+r) - rs(s+t) - tr(r+s)$$

$$= r^2 s + s^2 t + t^2 r - rs^2 - st^2 - tr^2$$

$$= (r-s)(s-t)(t-s).$$

This determinant is nonzero if and only if r, s, and t are all distinct. In this case, the Inverse Function Theorem guarantees that the vector-valued function (a(r, s, t), b(r, s, t), c(r, s, t)) has a smooth inverse — namely, a function that maps a, b, and c to the roots of the polynomial given by $x^3 + ax^2 + cx + d = 0$.

3 Section 4.1

Problem 19

We assume the object lies in 3D space — the argument here may be easily generalized to higher dimensions.

If the velocity vector of the object is $\mathbf{v}(t) = (v_1(t), v_2(t), v_3(t))$ and the acceleration vector is $\mathbf{a}(t) = \mathbf{v}'(t)$, then we are given that

$$\mathbf{v} \cdot \mathbf{a} = v_1(t)v_1'(t) + v_2(t) + v_2'(t) + v_3(t) + v_3'(t) = 0.$$

We thus calculate the derivative of the speed of the object, which is the norm of \mathbf{v} :

$$\frac{\mathrm{d}}{\mathrm{d}t}\|\mathbf{v}(t)\| = \frac{\mathrm{d}}{\mathrm{d}t}\sqrt{v_1^2(t) + v_2^2(t) + v_3^2(t)} = \frac{v_1(t)v_1'(t) + v_2(t)v_2'(t) + v_3(t)v_3'(t)}{\sqrt{v_1^2(t) + v_2^2(t) + v_3^2(t)}} = 0.$$

As the derivative of the speed is zero, the object's speed must be constant.

Problem 21

We have that if the period is T in miles, the mass of the earth is M, and the gravitational constant is G,

$$T \approx \sqrt{(6.436 \times 10^6 + 500)^3 \frac{(2\pi)^2}{GM}}.$$

Problem 23

The general solution of $\mathbf{c}'(t) = (t, e^t, t^2)$ is $\mathbf{c} = (\frac{1}{2}t^2 + c_1, e^t + c_2, \frac{1}{3}t^3 + c_3)$ for $c_1, c_2, c_3 \in \mathbb{R}$. Solving for these constants, we have that at t = 0,

$$\begin{bmatrix} 0 \\ -5 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{2}(0)^2 + c_1 \\ e^0 + c_2 \\ \frac{1}{3}(0)^3 + c_3 \end{bmatrix} = \begin{bmatrix} c_1 \\ 1 + c_2 \\ c_3 \end{bmatrix},$$

so $c_1 = 0$, $c_2 = -6$, and $c_3 = 1$. The path we desire is thus $c_1 = c_1 + c_2 + c_3 + c_4 + c_5 + c_$

Problem 26

Defining $\mathbf{c}(t)$ as $(f_1(t), f_2(t), f_3(t))$, we have that

$$\frac{\mathrm{d}}{\mathrm{d}t}(m\mathbf{c}(t) \times \mathbf{v}(t)) = \frac{\mathrm{d}}{\mathrm{d}t} \left(m \begin{bmatrix} f_2 f_3' - f_2' f_3 \\ f_3 f_1' - f_1 f_3' \\ f_1 f_2' - f_2 f_1' \end{bmatrix} \right)
= m \begin{bmatrix} (f_2' f_3' + f_2 f_3'') - (f_2'' f_3 + f_2' f_3') \\ (f_3' f_1' + f_3 f_1'') - (f_3'' f_1 + f_3' f_1') \\ (f_1' f_2' + f_1 f_2'') - (f_1'' f_2 + f_1' f_2') \end{bmatrix}
= m \begin{bmatrix} f_2 f_3'' - f_2'' f_3 \\ f_3 f_1'' - f_1 f_3'' \\ f_1 f_2'' - f_2 f_1'' \end{bmatrix}
= m(\mathbf{c}(t) \times \mathbf{a}(t))
= \mathbf{c}(t) \times \mathbf{F}(\mathbf{c}(t)),$$

as desired.