Chapter 5 Notions sur les fonctions en analyse

Exercice 1 (5.1)

Déterminer le domaine de définition des fonctions d'une variable réelle ci-dessous.

1.
$$f(x) = x^2$$
.

2.
$$f(x) = \sqrt{1-x}$$
.

$$3. \ f(x) = \frac{1}{\sqrt{x^2 - 5}}.$$

4.
$$f(x) = \frac{\sqrt{-x}}{\sqrt{x-1}}$$
.

5.
$$f(x) = \sqrt{\frac{-x}{x-1}}$$
.

6.
$$f(x) = \sqrt{x(x+1)^2}$$
.

7.
$$f(x) = \sqrt{-1 + 2x^2 - x^4}$$
.

8.
$$f(x) = \frac{1}{\sqrt{x - x^3}}$$
.

9.
$$f(x) = x^{1/\lfloor x \rfloor}$$
.

10.
$$f(x) = |x| + \frac{x^2}{x}$$
.

11.
$$f(x) = \frac{1}{|x|^3 - 7|x| + 6}$$
.

Solution 1 (5.1)

Solutions à justifier!

1. Dom
$$f = \mathbb{R}$$
.

2. Dom
$$f =]-\infty, 1]$$
.

3. Dom
$$f = \left[-\infty, -\sqrt{5} \right] \cup \left[\sqrt{5}, +\infty \right].$$

4. Dom
$$f = \emptyset$$
.

5. Dom
$$f = [0, 1[$$
.

6. Dom
$$f = \{ -1 \} \cup \mathbb{R}_+$$
.

7. Dom
$$f = \{-1, 1\}$$
.

8. Dom
$$f = \mathbb{R} \setminus \{-1, 0, 1\}.$$

9. Dom
$$f = [1, +\infty[$$
.

10. Dom
$$f = \mathbb{R}^*$$
.

11. Dom
$$f = \mathbb{R} \setminus \{-2, -1, 1, 2\}$$
.

Exercice 2 (5.2)

La courbe d'équation y = f(x) étant donnée. Apparier chaque équation à sa courbe représentative. Expliquer votre choix.

(a)
$$y = f(x - 4)$$

(b)
$$y = \frac{1}{2}f(x)$$

(c)
$$y = 2f(x+6)$$

(d)
$$y = f(x) + 3$$

(e)
$$y = -f(x+4)$$

Solution 2 (5.2)

a3, b4, c2, d1, e5.

Exercice 3 (5.2)

La courbe de f étant donnée, dessiner les courbes suivantes

(a)
$$y = f(x+4)$$

(b)
$$y = f(x) + 4$$

(c)
$$y = 2f(x)$$

(d)
$$y = -\frac{1}{2}f(x) + 4$$

Solution 3 (5.2)

Exercice 4 (5.2)

La courbe de f étant donnée, dessiner les courbes suivantes

(a)
$$y = f(2x)$$

(b)
$$y = f(-x)$$

(c)
$$y = f\left(\frac{1}{2}x\right)$$

(d)
$$y = -f(-x)$$

Solution 4 (5.2)

Exercice 5 (5.2)

Utiliser les courbes représentatives de f et g pour évaluer chacune des expressions suivantes, ou expliquer pourquoi elle ne sont pas définies.

- **1.** f(g(2)).
- **2.** $(g \circ f)(6)$.
- **3.** g(f(0)).
- **4.** $(g \circ g)(-2)$.
- **5.** $(f \circ g)(0)$.
- **6.** $(f \circ f)(4)$.

Solution 5 (5.2)

Exercice 6 (5.3)

La fonction $f: \mathbb{R}^{\star} \to \mathbb{R}, x \mapsto -\frac{1}{x}$ est-elle

1. Croissante sur \mathbb{R}_{-}^{\star} ?

2. Croissante sur \mathbb{R}_+^* ?

3. Croissante?

4. Strictement croissante sur \mathbb{R}_{-}^{\star} ?

5. Strictement croissante sur \mathbb{R}_+^* ?

6. Strictement croissante?

Solution 6 (5.3)

1. f est croissante sur \mathbb{R}_{-}^{\star} car pour $x, y \in \mathbb{R}_{-}^{\star}$,

$$x \le y < 0 \implies \frac{1}{y} \le \frac{1}{x} \implies -\frac{1}{x} \le -\frac{1}{y}.$$

2. f est croissante sur \mathbb{R}_+^* car pour $x, y \in \mathbb{R}_+^*$,

$$0 < x \le y \implies \frac{1}{y} \le \frac{1}{x} \implies -\frac{1}{x} \le -\frac{1}{y}.$$

3. f n'est pas croissante car

$$-1 \le 3$$
 et non $\left(f(-1) = 1 \le f(3) = -\frac{1}{3} \right)$.

4. f est strictement croissante sur \mathbb{R}_{-}^{\star} (remplacer \leq par < dans f croissante).

5. f est strictement croissante sur \mathbb{R}_+^{\star} (remplacer \leq par < dans f croissante).

6. f n'est pas strictement croissante car elle n'est pas croissante.

Exercice 7 (5.3)

Vrai ou Faux?

Déterminer si les assertions suivantes sont vraies ou fausses ; justifier les vraies et produire des contreexemples pour les fausses.

- 1. La somme de deux fonctions croissantes est croissante.
- 2. La différence de deux fonctions croissantes est croissante.
- 3. Le produit de deux fonctions croissantes est croissante.
- 4. La composée de deux fonctions croissantes est croissante.
- 5. L'inverse d'une fonction croissante est croissante.
- **6.** La réciproque d'une bijection croissante est croissante.
- 7. Le produit d'une fonctions croissante par une constante est croissante.
- 8. Il existe des fonctions à la fois croissantes et décroissantes.

Solution 7(5.3)

1. Vrai. Soient $f: A \to \mathbb{R}$ et $g: A \to \mathbb{R}$ deux fonctions croissantes. Soit $x, x' \in A$ tels que $x \le x'$. Puisque f et g sont croissantes, on a

$$f(x) \le f(x')$$
 et $g(x) \le g(x')$.

En sommant ces deux inégalités, on obtient

$$(f+g)(x) = f(x) + g(x) < f(x') + g(x') = (f+g)(x').$$

Conclusion

On a montré

$$\forall x, x' \in A, x \le x' \implies (f+g)(x) \le (f+g)(x');$$

c'est-à-dire f + g est croissante.

- **2.** Faux. Comme contre exemple, on peut prendre $f: x \in \mathbb{R} \mapsto x$ et $g: x \in \mathbb{R} \mapsto 3x$. Ces deux fonctions sont croissantes, alors que la fonction $f g: x \mapsto -2x$ n'est pas croissante.
- **3.** Faux. Comme contre exemple, on peut prendre $f: x \in \mathbb{R} \mapsto x$ et $g: x \in \mathbb{R} \mapsto 3x$. Ces deux fonctions sont croissantes, alors que la fonction $fg: x \mapsto 3x^2$ n'est pas croissante.
- **4.** Vrai. Supposons f croissante et g croissante. Soient $x, x' \in A$ tels que $x \le x'$, alors $f(x) \le f(x')$ car f est croissante, puis $g(f(x)) \le g(f(x'))$ car g est croissante.

Ainsi $g \circ f$ est croissante.

5. Faux. Remarquons tout d'abord que l'inverse d'une fonction n'est pas toujours définie (il faut que la fonction ne s'annule pas). Comme contre exemple, on peut prendre exp : $x \mapsto e^x$. Cette fonction est croissante, et sont inverse $\frac{1}{\exp}$: $x \mapsto e^{-x}$ n'est pas croissante.

6. Vrai. Soit $f: A \to B$ une bijection croissante. Remarquons d'abord que f étant croissante et injective, elle est donc strictement croissante,

Nous allons montrer que sa réciproque $f^{-1}: B \to A$ est aussi croissante, c'est-à-dire

$$\forall (x, x') \in B^2, x \le x' \implies f^{-1}(x) \le f^{-1}(x').$$

Soient $x, x' \in B$ tels que $x \le x'$. On peut réécrire cette inégalité

$$f\left(f^{-1}(x)\right) \le f\left(f^{-1}(x')\right).$$

et puisque f est strictement croissante, cela équivaut à la relation

$$f^{-1}(x) \le f^{-1}(x').$$

Conclusion

La récirpoque d'une bijection croissante est croissante.

- 7. Faux. On peut choisir par exemple $f: x \mapsto x$ qui est croissante, et la constante -3. Alors $-3f: x \mapsto -3x$ n'est pas croissante.
- **8.** Vrai. Ce sont les fonctions constante.

Exercice 8 (5.3)

Soient A,B,C trois parties de \mathbb{R} , $f:A\to B$ et $g:B\to C$. Vérifier la véracité du tableau suivant.

	f croissante	f décroissante
g croissante	$g \circ f$ croissante	gof décroissante
g décroissante	gof décroissante	$g \circ f$ croissante

Solution 8 (5.3)

1. Supposons f croissante et g croissante.

Remarque. On doit montrer que $g \circ f$ est croissante, c'est-à-dire

$$\forall (x, x') \in A^2, x \le x' \implies g \circ f(x) \le g \circ f(x').$$

Le « $\forall (x, x') \in A^2$ suggére de commencer la preuve par «Soient $x, x' \in A$ ». Pour montrer l'implication, on suppose $x \le x'$ et on se débrouille pour arriver à $g(f(x)) \le g(f(x'))$. Pour y arriver, nous avons le droit (en fait nous n'avons trop le choix) d'utiliser les hypothèses : f et g sont croissantes.

Soient $x, x' \in A$ tels que $x \le x'$, alors $f(x) \le f(x')$ car f est croissante, puis $g(f(x)) \le g(f(x'))$ car g est croissante.

- 2. Supposons f croissante et g décroissante. Soient $x, x' \in A$ tels que $x \le x'$, alors $f(x) \le f(x')$ car f est croissante, puis $g(f(x)) \ge g(f(x'))$ car g est décroissante.
- 3. Supposons f décroissante et g croissante. Soient $x, x' \in A$ tels que $x \le x'$, alors $f(x) \ge f(x')$ car f est décroissante, puis $g(f(x)) \ge g(f(x'))$ car g est croissante.
- **4.** Supposons f décroissante et g décroissante. Soient $x, x' \in A$ tels que $x \le x'$, alors $f(x) \ge f(x')$ car f est décroissante, puis $g(f(x)) \le g(f(x'))$ car g est décroissante.

Exercice 9 (5.4)

Déterminer si les fonctions d'une variables réelle suivantes sont paires et si elles sont impaires.

1.
$$x \mapsto \frac{1}{\sqrt[3]{(x-2)^2}}$$
.

$$2. x \mapsto \frac{x^2}{|x|}.$$

3.
$$x \mapsto \frac{3}{x(x^2+1)}$$
.

4.
$$x \mapsto 0$$

5.
$$x \mapsto \frac{1}{x-1} - \frac{1}{x-1}$$
.

6.
$$x \mapsto \frac{x^3}{x+1}$$
.

7.
$$x \mapsto x^2 - 2x + 1$$
.

8.
$$x \mapsto 2x^2 + 3$$
.

9.
$$x \mapsto \frac{(x^2-1)^2}{x^3}$$
.

10.
$$x \mapsto \frac{\ln x}{x}$$
.

11.
$$x \mapsto \ln\left(x + \sqrt{x^2 + 1}\right)$$
.

12.
$$x \mapsto \arcsin x$$
.

13.
$$x \mapsto \arccos x$$
.

14.
$$x \mapsto \frac{3^x + 1}{3^x - 1}$$
.

Solution 9 (5.4)

Solutions à justifier!

- 1. Ni paire ni impaire.
- 2. Paire et non impaire.
- 3. Impaire et non paire.
- 4. Paire et impaire.
- 5. Ni paire ni impaire.
- 6. Ni paire ni impaire.
- 7. Ni paire ni impaire.

- **8.** Paire et non impaire.
- 9. Impaire et non paire.
- 10. Ni paire ni impaire.
- 11. Impaire et non paire.
- **12.** Impaire et non paire.
- **13.** Ni paire ni impaire.
- **14.** Impaire et non paire.

Exercice 10 (5.4)

Quelle est la parité de la composée de deux fonctions impaires ? paires ? paire et impaire ?

Solution 10 (5.4)

Pour démontrer un énoncé aussi général, il faut commencer par prendre des notations. Soit A, B, C trois parties de \mathbb{R} , $f:A\to B$ et $g:B\to C$.

Supposons f impaire et g impaire. Soit $x \in A$, alors $-x \in A$ car f est impaire, donc définie sur un ensemble symétrique par rapport à 0. Deplus,

$$g \circ f(-x) = g\left(f(-x)\right) = g\left(-f(x)\right) = -g\left(f(x)\right) = -\left(g \circ f(x)\right).$$

L'application $g \circ f$ est donc impaire.

De manière analogue, on montre que

- si f est paire et g est paire, alors $g \circ f$ est paire;
- si f est impaire et g est paire, alors $g \circ f$ est paire;
- si f est paire et g est impaire, alors $g \circ f$ est paire.

Exercice 11 (5.4)

Réduire l'intervalle d'étude au maximum et indiquer comment obtenir la courbe entière.

- 1. $f: x \mapsto \sin x \sin 3x$;
- 2. $f: x \mapsto \sin \frac{x}{2} \sin \frac{3x}{2}$;
- 3. $f: x \mapsto x^3 + x^2 + x$. (Indication: chercher un centre de symétrie d'abscisse $-\frac{1}{3}$)

Solution 11 (5.4)

1. f est définie sur \mathbb{R} . De plus, pour tout $x \in \mathbb{R}$,

$$f(x+2\pi) = \sin(x+2\pi) - \sin(3x+6\pi) = \sin(x) - \sin(3x) = f(x)$$
$$f(-x) = \sin(-x) - \sin(-3x) = -\sin(x) + \sin(3x) = -f(x)$$
$$f(\pi-x) = \sin(\pi-x) - \sin(3\pi-3x) = \sin(x) - \sin(3x) = f(x).$$

- ¹ Nous pouvons donc
 - étudier et tracer la courbe de f sur $[0, \frac{\pi}{2}]$;
 - effectuer une symétrie d'axe $x = \frac{\pi}{2}$, on obtient la courbe sur $[0, \pi]$;
 - effectuer une symétrie par rapport à l'origine, on obtient la courbe sur $[-\pi, \pi]$;
 - effectuer des translations de vecteur $k2\pi \vec{e_1}$, $k \in \mathbb{Z}$, on obtient la courbe sur \mathbb{R} .
- **2.** f est définie sur \mathbb{R} . De plus, pour tout $x \in \mathbb{R}$,

$$f(x+2\pi) = \sin(x/2+\pi)\sin(3x/2+3\pi) = (-\sin(x/2))(-\sin(3x/2) = f(x))$$
$$f(-x) = \sin(-x/2) - \sin(-3x/2) = (-\sin(x/2))(-\sin(3x/2) = f(x))$$

- ² Nous pouvons donc
 - étudier et tracer la courbe de f sur $[0, \pi]$;
 - effectuer une symétrie d'axe (Oy), on obtient la courbe sur $[-\pi, \pi]$;
 - effectuer des translations de vecteur $2k\pi \vec{e_1}$, $k \in \mathbb{Z}$, on obtient la courbe sur \mathbb{R} .
- **3.** f est définie sur \mathbb{R} . De plus, pour tout $x \in \mathbb{R}$,

$$f(-\frac{2}{3} - x) = -x^3 - 2x^2 - \frac{4}{3}x - \frac{8}{27} + x^2 + \frac{4}{3}x + \frac{4}{9} - \frac{2}{3} - x$$
$$= -(x^3 + x^2 + x) - \frac{14}{9}$$
$$= -f(x) - \frac{14}{27}.$$

La courbe de f est donc symétrique par rapport au point $A\left(-\frac{1}{3}, -\frac{7}{27}\right)$. Il suffit donc d'étudier f sur $\left[-\frac{1}{3}, +\infty\right[(\text{ou } \left]-\infty, -\frac{1}{3}\right])$ et d'effectuer cette symétrie.

¹On peut également utiliser la π -antipériodicité.

²On a également $f(2\pi - x) = f(x)$, mais cela n'apporte rien de plus que la périodicité et la parité.

Calculus

Exercice 12 (5.4)

Après avoir précisé le domaine de dérivabilité, dériver les fonctions définies par $x \mapsto$

1.
$$4x^5 + 5x^3 - 3x + 4$$

2.
$$x^{-1/\sqrt{2}}$$

1.
$$4x^5 + 5x^3 - 3x + 4$$

2. $x^{-1/\sqrt{2}}$
3. $(x - a)(x^2 - b^2)(x^3 - c^3)$ où $a, b, c \in \mathbb{R}$.

4.
$$\frac{1+x}{1-x}$$

5.
$$\frac{7x-3}{x+2}$$

6. $\log x$

7.
$$\frac{3x^4 - 5x^3 + 1}{2x^2 + x - 3}$$

Solution 12 (5.4)

- **1.** La fonction $f: x \mapsto 4x^5 + 5x^3 3x + 4$ est une fonction polynômiale. Elle est donc dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}, f'(x) = 20x^4 + 15x^2 - 3.$
- **2.** La fonction $f: x \mapsto x^{-1/\sqrt{2}}$ est dérivable sur \mathbb{R}_+^* (c'est une fonction usuelle) et

$$\forall x > 0, f'(x) = -\frac{1}{\sqrt{2}} x^{\frac{-1}{\sqrt{2}} - 1} = -\frac{1}{\sqrt{2}} x^{\frac{-1 - \sqrt{2}}{\sqrt{2}}}.$$

3. La fonction $f: x \mapsto (x-a)(x^2-b^2)(x^3-c^3)$ est une fonction polynômiale; elle est donc dérivable sur

$$\forall x \in \mathbb{R}, f'(x) = (x^2 - b^2)(x^3 - c^3) + 2x(x - a)(x^3 - c^3) + 3x^2(x - a)(x^2 - b^2).$$

4. La fonction $f: x \mapsto \frac{1+x}{1-x}$ est une fonction rationnelle; elle est donc dérivable sur son ensemble de définition $\mathbb{R} \setminus \{1\}$ et

$$\forall x \in \mathbb{R} \setminus \{1\}, f'(x) = \frac{1(1-x)-(1+x)(-1)}{(1-x)^2} = \frac{2}{(1-x)^2}.$$

5. La fonction $f: x \mapsto \frac{7x-3}{x+2}$ est une fonction rationnelle; elle est donc dérivable sur son ensemble de définition $\mathbb{R} \setminus \{-2\}$ et

$$\forall x \in \mathbb{R} \setminus \{-2\}, f'(x) = \frac{7(x+2) - (7x-3)(1)}{(x+2)^2} = \frac{17}{(x+2)^2}.$$

6. La fonction $f: x \mapsto \log x = \frac{\ln x}{\ln 10}$ est dérivable sur \mathbb{R}_+^* (c'est une fonction usuelle) et

$$\forall x \in \mathbb{R}_+^*, f'(x) = \frac{1}{\ln 10} \frac{1}{x} = \frac{1}{x \ln 10}.$$

7. La fonction $f: x \mapsto \frac{3x^4 - 5x^3 + 1}{2x^2 + x - 3}$ est une fonction rationnelle; elle est donc dérivable sur son ensemble de définition $D = \mathbb{R} \setminus \left\{ -\frac{3}{2}, 1 \right\}$ et

$$\forall x \in D, f'(x) = \frac{(12x^3 - 15x^2)(2x^2 + x - 3) - (3x^4 - 5x^3 + 1)(4x + 1)}{(2x^2 + x - 3)^2}$$
$$= \frac{12x^5 - x^4 - 46x^3 + 45x^2 - 4x - 1}{(2x^2 + x - 3)^2}$$

Exercice 13 (5.4)

Après avoir précisé le domaine de dérivabilité, dériver les fonctions définies par $x \mapsto$

1. $\ln(\sin x)$

2. $\arctan(\ln x)$

3. $e^{\cos x}$

4. $\tan^3 x$

5. $\arcsin(e^x)$

6. $\sin(\ln x)$

7. $\sin(\sin x)$

8. $\arctan(\tan x)$

9. e^e

10. $\arcsin(\cos x)$

Solution 13 (5.4)

1. La fonction ln est dérivable sur \mathbb{R}_{+}^{\star} et

$$\sin x > 0 \iff x \in D = \bigcup_{k \in \mathbb{Z}}]2k\pi, (2k+1)\pi[.$$

De plus, la fonction sin est dérivable sur D. La fonction $f: x \mapsto \ln(\sin x)$ est donc dérivable sur D et

$$\forall x \in D, f'(x) = \sin'(x) \ln'(\sin x) = \cos(x) \frac{1}{\sin x} = \frac{\cos x}{\sin x}.$$

2. La fonction arctan est dérivable sur \mathbb{R} et ln est dérivable sur \mathbb{R}_+^* (à images dans \mathbb{R}). La fonction f: $x \mapsto \arctan(\ln x)$ est donc dérivable sur \mathbb{R}_+^* et

$$\forall x \in \mathbb{R}_+^*, f'(x) = \arctan'(\ln x) \ln'(x) = \frac{1}{1 + (\ln x)^2} \frac{1}{x} = \frac{1}{x(1 + \ln^2 x)}.$$

3. La fonction exp est dérivable sur $\mathbb R$ et cos est dérivable sur $\mathbb R$ (à images dans $\mathbb R$). La fonction $f:x\mapsto e^{\cos x}$ est donc dérivable sur $\mathbb R$ et

$$\forall x \in \mathbb{R}, f'(x) = \exp'(\cos x)\cos'(x) = -\sin(x)e^{\cos x}.$$

4. La fonction $x \mapsto x^3$ est dérivable sur \mathbb{R} et la fonction tan est dérivable sur $D = \mathbb{R} \setminus \left\{ \left| \frac{\pi}{2} + k\pi \right| \mid k \in \mathbb{Z} \right. \right\}$.

La fonction $f: x \mapsto \tan^3 x$ est donc dérivable sur D et

$$\forall x \in D, f'(x) = 3\tan'(x)\tan^2(x) = 3(1 + \tan^2(x))\tan^2(x) = 3\frac{\sin^2(x)}{\cos^4(x)}.$$

5. La fonction arcsin est définie sur [-1, 1] et

$$e^x \in [-1, 1] \iff -1 \le e^x \le 1 \iff x \le 0.$$

La fonction $f: x \mapsto \arcsin(e^x)$ est donc définie sur $]-\infty, 0]$.

Néanmoins, la fonction arcsin n'est dérivable que sur]-1, 1[et

$$e^x \in]-1,1[\iff x < 0.$$

Le théorème de dérivation d'une composée n'assure donc la dérivabilité de f que sur $]-\infty$, 0[et alors

$$\forall x \in]-\infty, 0[, f'(x) = \arcsin'(e^x)e^x = \frac{e^x}{\sqrt{1 - (e^x)^2}} = \frac{e^x}{\sqrt{1 - e^{2x}}}.$$

La fonction f est-elle dérivable en 0? Les théorèmes généraux ne permettent pas de conclure. Il faudrait donc revenir à la définition, mais lever l'indétermination est pour l'instant un peu compliqué.

63

6. La fonction sin est dérivable sur \mathbb{R} et la fonction ln est dérivable sur \mathbb{R}_+^* (à valeurs dans \mathbb{R}). La fonction $f: x \mapsto \sin(\ln x)$ est donc dérivable sur \mathbb{R}_+^* et

$$\forall x > 0, f'(x) = \sin'(\ln x) \ln'(x) = \cos(\ln x) \frac{1}{x} = \frac{\cos(\ln x)}{x}.$$

7. La fonction sin est dérivable sur \mathbb{R} (à valeurs réelles). La fonction $f: x \mapsto \sin(\sin x)$ est donc dérivable sur \mathbb{R} et

$$\forall x \in \mathbb{R}, f'(x) = \sin'(\sin x)\sin'(x) = \cos(\sin x)\cos(x).$$

8. La fonction arctan est dérivable sur \mathbb{R} et la fonction tan est dérivable sur $D = \mathbb{R} \setminus \left(\frac{\pi}{2} + \pi \mathbb{Z}\right)$ (à images dans \mathbb{R}). La fonction $f: x \mapsto \arctan(\tan x)$ est donc dérivable sur D et

$$\forall x \in D, f'(x) = \arctan'(\tan x) \tan'(x) = \frac{1}{1 + \tan^2 x} 1 + \tan^2 x = 1.$$

9. La fonction $f: x \mapsto e^{e^x}$ est clairement dérivable sur \mathbb{R} et

$$\forall x \in \mathbb{R}, f'(x) = e^{e^x} e^x = e^{x + e^x}.$$

10. La fonction arcsin est définie sur [-1, 1] et

$$\forall x \in \mathbb{R}, \cos x \in [-1, 1].$$

La fonction $f: x \mapsto \arcsin(\cos x)$ est donc définie sur \mathbb{R} .

De plus, la fonction arcsin est dérivable sur]-1,1[et

$$\cos x = \pm 1 \iff \exists k \in \mathbb{Z} x = k\pi.$$

Le théorème de dérivation d'une composée assure donc la dérivabilité de f sur $D = \mathbb{R} \setminus \{k\pi \mid k \in \mathbb{Z}\}$ et on a

$$\forall x \in D, f'(x) = \arcsin'(\cos x)\cos'(x) = \frac{1}{\sqrt{1 - \cos^2 x}}(-\sin x) = \frac{-\sin x}{|\sin x|}$$

On a donc,

$$f'(x) = \begin{cases} -1 & \text{si } x \in \left] -\frac{\pi}{2} + 2k\pi, \frac{\pi}{2} + 2k\pi \right[\\ +1 & \text{si } x \in \left[\frac{\pi}{2} + 2k\pi, \frac{3\pi}{2} + 2k\pi \right[\end{cases} (k \in \mathbb{Z}).$$

Lorsque $x \equiv 0 \pmod{\pi}$, les théorèmes généraux ne permettent pas de conclure. On peut revenir à la définition, mais l'indétermination est un peu compliquée à lever pour l'instant.

Exercice 14 (5.4)

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction dérivable. Après avoir précisé le domaine de dérivabilité, dériver les fonctions définies par $x \mapsto$

1.
$$f(x^2)$$

2.
$$f(\sin x)$$

1.
$$f(x^2)$$

2. $f(\sin x)$
3. $f\left(\frac{3x}{x^2+1}\right)$

4.
$$\sin(f(x))$$

5.
$$\frac{1}{f(x)^{3/2}}$$

6.
$$\ln(f(e^x))$$
.

Solution 14 (5.4)

1. La fonction $x \mapsto x^2$ est dérivable sur \mathbb{R} (à images dans \mathbb{R}) et f est dérivable sur \mathbb{R} , donc $g: x \mapsto f(x^2)$ est dérivable sur R et

$$\forall x \in \mathbb{R}, g'(x) = 2xf'(x^2).$$

2. La fonction $x \mapsto \sin x$ est dérivable sur \mathbb{R} (à images dans \mathbb{R}) et f est dérivable sur \mathbb{R} , donc $g: x \mapsto f$ $f(\sin x)$ est dérivable sur \mathbb{R} et

$$\forall x \in \mathbb{R}, g'(x) = \cos x f'(\sin x).$$

3. La fonction $u: x \mapsto \frac{3x}{x^2+1}$ est une fonction rationnelle, elle est donc dérivable sur \mathbb{R} son ensemble de définition et

$$\forall x \in \mathbb{R}, u'(x) = \frac{3(x^2 + 1) - 3x(2x)}{(x^2 + 1)^2} = \frac{-3x^2 + 3}{(x^2 + 1)^2}.$$

De plus, f est dérivable sur \mathbb{R} , donc $g: x \mapsto f\left(\frac{3x}{x^2+1}\right)$ est dérivable sur \mathbb{R} et

$$\forall x \in \mathbb{R}, g'(x) = u'(x)f'(u(x)) = \frac{-3x^2 + 3}{(x^2 + 1)^2} \times f'\left(\frac{3x}{x^2 + 1}\right).$$

4. L'application sin est dérivable sur \mathbb{R} et f est dérivable sur \mathbb{R} (à images réelles), donc $g: x \mapsto \sin(f(x))$ est dérivable sur R et

$$\forall x \in \mathbb{R}, g'(x) = f'(x)\sin'(f(x)) = f'(x)\cos(f(x)).$$

5. La fonction $h: x \mapsto x^{-3/2}$ est dérivable sur \mathbb{R}_+^* et

$$\forall x \in \mathbb{R}_+^*, h'(x) = -\frac{3}{2}x^{-5/2}.$$

Notons $D = \{ x \in \mathbb{R} \mid f(x) > 0 \}$. De plus, f est dérivable sur \mathbb{R} , elle est donc dérivable sur D et

$$\forall x \in D, f(x) > 0.$$

La fonction $g: x \mapsto \frac{1}{f(x)^{3/2}}$ est donc dérivable sur D et

$$\forall x \in D, g'(x) = f'(x) \times \frac{-3}{2} f(x)^{-5/2} = \frac{-3f'(x)}{2f(x)^{5/2}}.$$

6. La fonction ln est dérivable sur \mathbb{R}_+^* . Notons $D = \{ x \in \mathbb{R} \mid f(e^x) > 0 \}$. La fonction exp est dérivable sur D, à images dans \mathbb{R} et la fonction f est dérivable sur \mathbb{R} , donc la fonction $g: x \mapsto f(e^x)$ est dérivable sur D et

$$\forall x \in D, g'(x) = e^x f'(e^x).$$

De plus, ln dérivable sur \mathbb{R}_+^* et pour $x \in D$, $g(x) = f(e^x) > 0$; la fonction $h: x \mapsto \ln(f(e^x))$ est donc dérivable sur D et

$$\forall x \in D, h'(x) = g'(x) \ln'(g(x)) = e^x f'(e^x) \frac{1}{g(x)} = \frac{e^x f'(e^x)}{g(x)}.$$

Exercice 15 (5.4)

Étudier et tracer la courbe de la fonction f définie par

$$f(x) = \frac{x}{x^2 - 9}$$

Solution 15 (5.4)

La fonction f est définie sur $D = \mathbb{R} \setminus \{-3, 3\}$.

Pour $x \in D$, $-x \in D$ et

$$f(-x) = \frac{-x}{(-x)^2 - 9} = \frac{-x}{x^2 - 9} = -f(x).$$

La fonction f est donc impaire. Nous effectuons donc l'étude de f sur $A = D \cap \mathbb{R}_+ = [0, 3[\cup]3, +\infty[$ et compléterons le tracé de la courbe à l'aide d'une symétrie de centre O.

On peut écrire $f(x) = \frac{x}{(x-3)(x+3)}$ d'où

$$\lim_{\substack{x \to 3 \\ <}} f(x) = -\infty \text{ et } \lim_{\substack{x \to 3 \\ >}} f(x) = +\infty.$$

De plus, pour x au voisinage de $+\infty$,

$$f(x) = \frac{x}{x^2} \frac{1}{1 - \frac{9}{x^2}} = \frac{1}{x} \frac{1}{1 - \frac{9}{x^2}} \xrightarrow{x \to +\infty} 0 \times 1 = 0.$$

La fonction f est une fonction rationnelle. Elle est donc dérivable sur A et

$$\forall x \in A, f'(x) = \frac{(1)(x^2 - 9) - (x)(2x)}{(x^2 - 9)^2} = \frac{-x^2 - 9}{(x^2 - 9)^2} < 0.$$

On en déduit le tableau de variations

x	0	3 +∞
f'(x)	$-\frac{1}{9}$ -	_
Variations de <i>f</i>	0 -∞	+∞

La courbe de f possède une asymptote verticale \mathcal{A}_1 d'équation x=3 et une asymptote horizontale \mathcal{A}_2 d'équation y=0. Le tableau de variations nous permet de préciser que la courbe de f est au dessus de \mathcal{A}_2 au voisinage de $+\infty$.

Exercice 16 (5.4)

Étudier et tracer la courbe de la fonction f définie par

$$f(x) = \frac{\sqrt{1 - x^2}}{x}$$

Préciser les demi-tangentes au point d'abscisse -1 et 1.

Solution 16 (5.4)

Pour $x \in \mathbb{R}$,

$$1 - x^2 \ge 0 \iff x^2 \le 1 \iff -1 \le x \le 1.$$

La fonction f est définie au point x si, et seulement si

$$1 - x^2 > 0$$
 et $x \neq 0$

Donc f est définie sur $D = [-1, 0[\cup]0, 1]$.

Pour $x \in D$, $-x \in D$ et

$$f(-x) = \frac{\sqrt{1 - (-x)^2}}{-x} = -\frac{\sqrt{1 - x^2}}{x} = -f(x).$$

La fonction f est donc impaire Nous effectuons donc l'étude de f sur $A = D \cap \mathbb{R}_+ =]0,1]$ et compléterons le tracé de la courbe à l'aide d'une symétrie de centre O.

On a

$$\lim_{\substack{x \to 0 \\ >}} f(x) = \lim_{\substack{x \to 0 \\ >}} \frac{\sqrt{1 - x^2}}{x} = +\infty.$$

La droite d'équation x = 0 (l'axe des ordonnées) est asymptote à la courbe de f.

La fonction $x \mapsto \sqrt{x}$ est dérivable sur $]0, +\infty[$ et la fonction $u: x \mapsto 1-x^2$ est dérivable sur [0, 1[et pour $x \in]0, 1],$

$$u(x) \in]0, +\infty[\iff 1-x^2 > 0 \iff x^2 < 1 \iff x < 1.$$

La fonction $v: x \mapsto \sqrt{1-x^2}$ est donc dérivable sur]0, 1[et

$$\forall x \in]0,1[,v'(x) = \frac{-2x}{2\sqrt{1-x^2}} = \frac{-x}{\sqrt{1-x^2}}.$$

Enfin, f est dérivable sur]0,1[en tant que quotient définit de fonction dérivable sur]0,1[et

$$\forall x \in]0,1[,f'(x) = \frac{v'(x)x - v(x)}{x^2} = \frac{\frac{-x^2}{\sqrt{1-x^2}} - \sqrt{1-x^2}}{x^2}$$

$$= \frac{-x^2 - 1 + x^2}{x^2 \sqrt{1 - x^2}} = \frac{-1}{x^2 \sqrt{1 - x^2}} < 0.$$

On en déduit le tableau de variations

Х	() 1
f'(x)		-
Variations de <i>f</i>		+∞ 0

Étudions le taux d'accroissement de f en 1.

$$\frac{f(x) - f(1)}{x - 1} = \frac{\frac{\sqrt{1 - x^2}}{x}}{x - 1} = \frac{\sqrt{1 - x^2}}{x(x - 1)} = -\frac{\sqrt{1 + x}}{x\sqrt{1 - x}} \xrightarrow[x \to 1]{} -\infty.$$

La fonction f n'est donc pas dérivable en 1. Néanmoins, la courbe de f admet une demi-tangente verticale au point d'abscisse 1.

Exercice 17 (5.4)

Étudier et tracer la courbe de la fonction f définie par

$$f(x) = \frac{x}{\sqrt{x^2 - 1}}$$

Solution 17 (5.4)

Pour $x \in \mathbb{R}$, $x^2 - 1 > 0 \iff x < -1$ ou x > 1. La fonction f est donc définie sur $D =]-\infty, -1[\cup]1, +\infty[$. Pour $x \in D$, $-x \in D$ et

$$f(-x) = \frac{-x}{\sqrt{(-x)^2 - 1}} = -\frac{x}{\sqrt{x^2 - 1}} = -f(x).$$

La fonction f est impaire. Nous l'étudions sur $A =]1, +\infty[$ et compléterons la courbe de f avec une symétrie de centre O.

On a clairement

$$\lim_{x \to 1} f(x) = +\infty.$$

La droite A_1 d'équation x = 1 est asymptote verticale à la courbe de f. De plus, pour x au voisinage de $+\infty$,

$$f(x) = \frac{x}{\sqrt{x^2 - 1}} = \frac{x}{x} \frac{1}{\sqrt{1 - \frac{1}{x^2}}} = \frac{1}{\sqrt{1 - \frac{1}{x^2}}} \xrightarrow{x \to +\infty} 1.$$

La droite A_2 d'équation y=1 est asymptote horizontale à la courbe de f. La fonction $x\mapsto x^2-1$ est dérivable sur A. De plus, la fonction $x\mapsto \sqrt{x}$ est dérivable sur \mathbb{R}_+^{\star} et pour $x \in A$, $x^2 - 1 \in \mathbb{R}_+^*$. La fonction $u : x \mapsto \sqrt{x^2 - 1}$ et donc dérivable sur A et

$$\forall x \in A, u'(x) = 2x \frac{1}{2\sqrt{x^2 - 1}} = \frac{x}{\sqrt{x^2 - 1}}.$$

La fonction f est donc dérivable sur A en tant que quotient défini de fonction dérivable et

$$\forall x \in A, f'(x) = \frac{\sqrt{x^2 - 1} - x \frac{x}{\sqrt{x^2 - 1}}}{x^2 - 1} = \frac{x^2 - 1 - x^2}{(x^2 - 1)^{3/2}} = \frac{-1}{(x^2 - 1)^{3/2}} < 0.$$

On en déduit le tableau de variations

x	1	+∞
f'(x)		-
Variations de <i>f</i>	+∞	1

La courbe de f est donc au-dessus de A_2 au voisinage de $+\infty$.

Exercice 18 (5.4)

Étudier et tracer la courbe de la fonction f définie par

$$f(x) = \frac{\sin x}{1 + \cos x}$$

Solution 18 (5.4)

Pour $x \in \mathbb{R}$,

$$1 + \cos x = 0 \iff x \equiv \pi \pmod{2\pi}$$
.

La fonction f est définie sur $D = \mathbb{R} \setminus \{ \pi + 2k\pi \mid k \in \mathbb{Z} \} = \mathbb{R} \setminus (\pi + 2\pi\mathbb{Z})$. Pour $x \in D$, $x \pm 2\pi \in D$ et

$$f(x+2\pi) = \frac{\sin(x+2\pi)}{1+\cos(x+2\pi)} = \frac{\sin x}{1+\cos x} = f(x).$$

La fonction f est donc 2π -périodique. De plus, pour $x \in D$, $-x \in D$ et

$$f(-x) = \frac{\sin(-x)}{1 + \cos(-x)} = \frac{-\sin x}{1 + \cos x} = -f(x).$$

La fonction f est impaire. Nous étudions donc f sur $A = D \cap [0, \pi] = [0, \pi[$ et compléterons la courbe de f avec une symétrie de centre O puis des translations de vecteurs $2k\pi \vec{e_1}$, $k \in \mathbb{Z}$.

Pour $x \in A$,

$$f(x) = \frac{\sin x}{1 + \cos x} = \frac{2\sin\frac{x}{2}\cos\frac{x}{2}}{2\cos^2\frac{x}{2}} = \frac{\sin\frac{x}{2}}{\cos\frac{x}{2}} \xrightarrow{x \to \pi} +\infty.$$

La droite \mathcal{A} d'équation $x = \pi$ est asymptote verticale à la courbe de f.

La fonction f est dérivable sur A en tant que quotient défini de fonction dérivables sur A et

$$\forall x \in A, f'(x) = \frac{(\cos x)(1 + \cos x) - (\sin x)(-\sin x)}{(1 + \cos x)^2} = \frac{\cos x + 1}{(1 + \cos x)^2} = \frac{1}{1 + \cos x}.$$

De plus, pour $x \in A = [0, \pi[, \cos x > -1, \text{donc } f'(x) > 0]$. On en déduit le tableau de variations

x	0		1	τ
f'(x)	$\frac{1}{2}$	+		
Variations de <i>f</i>	0 ^		+∞	

Exercice 19 (5.4)

Étudier et tracer la courbe de la fonction f définie par

$$f(x) = \frac{\sin x}{2 + \cos x}$$

Solution 19 (5.4)

Pour $x \in \mathbb{R}$, $2 + \cos x \neq 0$. La fonction f est définie sur \mathbb{R} . Pour $x \in \mathbb{R}$, $x \pm 2\pi \in \mathbb{R}$ et

$$f(x+2\pi) = \frac{\sin(x+2\pi)}{2 + \cos(x+2\pi)} = \frac{\sin x}{2 + \cos x} = f(x).$$

La fonction f est donc 2π -périodique. De plus, pour $x \in \mathbb{R}$, $-x \in \mathbb{R}$ et

$$f(-x) = \frac{\sin(-x)}{2 + \cos(-x)} = \frac{-\sin x}{2 + \cos x} = -f(x).$$

La fonction f est impaire. Nous étudions donc f sur $A = [0, \pi]$ et compléterons la courbe de f avec une symétrie de centre O puis des translations de vecteurs $2k\pi \vec{e_1}$, $k \in \mathbb{Z}$.

La fonction f est dérivable sur A en tant que quotient défini de fonction dérivables sur A et

$$\forall x \in A, f'(x) = \frac{(\cos x)(2 + \cos x) - (\sin x)(-\sin x)}{(2 + \cos x)^2} = \frac{2\cos x + 1}{(2 + \cos x)^2}$$

De plus, pour $x \in A = [0, \pi]$,

$$f'(x) = 0 \iff 2\cos x + 1 = 0 \iff \cos x = -\frac{1}{2} \iff x = \frac{2\pi}{3}.$$

De plus, cos est décroissante sur $A = [0, \pi]$ d'où

$$f'(x) \ge 0 \iff 2\cos x + 1 \ge 0 \iff \cos x \ge -\frac{1}{2} \iff x \le \frac{2\pi}{3}$$

On en déduit le tableau de variations

x	0		$\frac{2\pi}{3}$		π
f'(x)	$\frac{3}{4}$	+	0	_	-1
Variations de <i>f</i>	0		_ 1 _		$\frac{\sqrt{3}}{5}$

Exercice 20 (5.4)

Étudier et tracer la courbe de la fonction f définie par

$$f(x) = \frac{1}{1 + e^{-x}}$$

Solution 20 (5.4)

La fonction f est clairement définie et dérivable sur $\mathbb R$ et

$$\forall x \in \mathbb{R}, f'(x) = \frac{-(-e^{-x})}{(1 + e^{-x})^2} = \frac{e^{-x}}{(1 + e^{-x})^2} > 0.$$

La fonction f est donc strictement croissante sur \mathbb{R} .

De plus,

$$\lim_{x \to -\infty} e^{-x} = +\infty \text{ et } \lim_{x \to +\infty} e^{-x} = 0.$$

donc

$$\lim_{x \to -\infty} f(x) = 0 \text{ et } \lim_{x \to +\infty} f(x) = 1$$

Les droites

$$\mathcal{A}_1: y=0 \text{ et } \mathcal{A}_2: y=1$$

sont asymptote à la courbe de f.

Exercice 21 (5.4)

Étudier complètement la fonction définie par

$$f(x) = \arctan \frac{x}{x+1}.$$

Déterminer son domaine de définition, étudier sa continuité, rechercher ses asymptotes, calculer sa dérivée première, dresser le tableau de ses variations et esquisser son graphe.

Solution 21 (5.4)

La fonction arctan est définie sur \mathbb{R} , donc f est définie sur $D = \mathbb{R} \setminus \{-1\}$. Pour x au voisinage de $\pm \infty$,

$$\frac{x}{x+1} = \frac{x}{x} \frac{1}{1+\frac{1}{x}} \xrightarrow{x \to \pm \infty} 1.$$

Or $\lim_{x \to 1} \arctan x = \frac{\pi}{4}$, donc

$$\lim_{x \to \pm \infty} f(x) = \frac{\pi}{4}.$$

La droite A_1 d'équation $y = \frac{\pi}{4}$ est asymptote à la courbe de f (en $-\infty$ et $+\infty$).

De plus

$$\lim_{\substack{x \to -1 \\ >}} \frac{x}{x+1} = +\infty$$

$$\lim_{\substack{u \to \infty}} \arctan u = +\frac{\pi}{2}$$

$$\left. \frac{1}{x+1} = +\infty \atop \text{donc } \lim_{\substack{x \to -1 \\ <}} f(x) = +\frac{\pi}{2}.$$

De manière analogue

$$\lim_{\substack{x \to -1 \\ <}} \frac{x}{x+1} = -\infty$$

$$\lim_{u \to \infty} \arctan u = -\frac{\pi}{2}$$

$$\lim_{x \to -1} f(x) = -\frac{\pi}{2}.$$

La fonction arctan est dérivable sur \mathbb{R} et $x\mapsto \frac{x}{x+1}$ est dérivable sur D, donc f est dérivable sur D et

$$\forall x \in D, f'(x) = \frac{x+1-x}{(x+1)^2} \frac{1}{1 + \left(\frac{x}{x+1}\right)^2} = \frac{1}{(x+1)^2 + x^2} > 0.$$

On remarque que

$$\lim_{\substack{x \to -1 \\ x \to -1}} f'(x) = 1 \text{ et } \lim_{\substack{x \to -1 \\ x \to -1}} f'(x) = 1.$$

La fonction f n'est pas prolongeable par continuité en -1, néanmoins, elle admet des limites finies à gauche et à droite de -1. Cela nous donne une information sur l'aspect de la courbe au voisinage de 1.

On en déduit le tableau de variations

Х	-∞		_	1		+∞
f'(x)		+	1	1	+	
Variations de <i>f</i>	$\frac{\pi}{4}$,	$\frac{\pi}{2}$	$-\frac{\pi}{2}$		$\frac{\pi}{4}$

Exercice 22 (5.4)

On considère la fonction
$$f: \mathbb{R} \to \mathbb{R}$$
 . $x \mapsto 1 - x^2 e^x$.

- **1.** Montrer que f établit une bijection de \mathbb{R}_+ vers $]-\infty,1]$.
- **2.** On note $g: \mathbb{R}_+ \to]-\infty,1]$. Déterminer le domaine de dérivabilité de g^{-1} . $x\mapsto 1-x^2\,\mathrm{e}^x$
- 3. Déterminer $(g^{-1})'(1-e)$.