# Théorie des langages : THL CM 4

Uli Fahrenberg

**EPITA Rennes** 

S5 2021

Aperçu

•00000

# Programme du cours

- Langages rationnels
- Automates finis
- Parsage LL, partie 1
- Parsage LL, partie 2
- TP 1: flex
- Parsage LR
- TP 2, 3: flex & bison

# La dernière fois : hiérarchie de Chomsky

Une grammaire (syntagmatique):  $(N, \Sigma, P, S)$ :

- $N, \Sigma$ : ensembles finis de variables et terminaux
- $S \in N$ : le symbole initial
- $P \subseteq (N \cup \Sigma)^+ \times (N \cup \Sigma)^*$ : l'ensemble de productions

| type | grammaires              | productions                                                                                        | langages                     | automates           |
|------|-------------------------|----------------------------------------------------------------------------------------------------|------------------------------|---------------------|
| 4    | finis                   | $\textit{N} \rightarrow \Sigma^*$                                                                  | finis<br>∱∩                  | finis acycliques    |
| 3    | régulières              | $N 	o \Sigma^* \cup \Sigma^* N$                                                                    |                              | finis               |
| 2    | hors-contexte           | $N 	o V^*$                                                                                         | algébriques                  | à pile              |
| 1    | ↓<br>contextuelles<br>∥ | $ \begin{array}{c} \alpha N\beta \to \alpha V^{+}\beta \\ S_0 \to S \mid \varepsilon \end{array} $ | ∜∩<br>contextuels<br>∜∩      | linéairement bornés |
| 0    | syntagmatiques          | $V^+ 	o V^*$                                                                                       | récursivement<br>énumerables | de Turing           |

Uli Fahrenberg

Théorie des langages : THL

# Aujourd'hui : parsage LL

Une grammaire hors contexte :  $(N, \Sigma, P, S)$  :

- N,  $\Sigma$ : ensembles finis de variables et terminaux
- $S \in N$ : le symbole initial
- $P \subseteq (N \times (N \cup \Sigma)^* : l'ensemble de productions$

But : construire des algorithmes de parsage basés sur grammaires hors-contexte

- grammaire hc  $G \rightsquigarrow$  algorithme A
- $A : mot \ w \rightsquigarrow reject / accept$
- faut que A soit efficace
- dans le poly : section 6.2, chapitre 7, section 8.1

Uli Fahrenberg Théorie des langages : THL 5/78

# Aujourd'hui : parsage LL

Apercu

## Une grammaire hors contexte : $(N, \Sigma, P, S)$ :

- $N, \Sigma$ : ensembles finis de variables et terminaux
- $S \in N$ : le symbole initial
- $P \subseteq (N \times (N \cup \Sigma)^* : l'ensemble de productions$

But : construire des algorithmes de parsage basés sur grammaires hors-contexte

- YACC: grammaire hc  $G \rightsquigarrow$  algorithme A
- A: mot w → reject / accept + arbre de parsage
- faut que A soit efficace
- dans le poly : section 6.2, chapitre 7, section 8.1

Uli Fahrenberg Théorie des langages : THL 6/78 Aperçu

000000

• 
$$G: S \rightarrow aSb \mid ab$$
  $L(G) = \{a^nb^n \mid n \geq 1\}$ 

• automate à pile standard pour 
$$L(G)$$
 :  $a, a/\varepsilon$   $e, S/aSb$   $e, S/ab$   $b, b/\varepsilon$ 

- plein de transitions spontanées, plein de non-déterminisme
- automate à pile type Greibach :  $\xrightarrow{\varphi_i} \underbrace{\varepsilon, \varepsilon/S}_{q_p} \underbrace{q_p}_{a, S/b} \underbrace{a, S/b}_{b, b/\varepsilon}$
- déjà mieux, mais toujours plein de non-déterminisme
- ( on s'en fout de la première transition spontanée )

But : algorithmes de parsage déterministes en temps linéaire

Uli Fahrenberg Théorie des langages : THL 7/78

8/78

# Aussi la dernière fois : langages de Dyck

- langages des mot bien parenthésés
- grammaire de Dyck d'ordre n :

$$G_n: S \rightarrow a_1Sb_1 \mid a_2Sb_2 \mid \cdots \mid a_nSb_n \mid SS \mid \varepsilon$$

- ( avec  $\Sigma = \{a_i, b_i \mid i = 1, ..., n\}$  :
- $a_i b_i$  parenthèses correspondantes )
- $L(G_1) = \{ w \in \{a, b\}^* \mid |w|_a = |w|_b \land \forall u \in \mathsf{Pref}(w) : |u|_a \ge |u|_b \}$

Uli Fahrenberg Théorie des langages : THL

# **Dérivations**

Quelques expressions arithmétiques :

$$S \rightarrow S + T \mid T$$
  
 $T \rightarrow T * F \mid F$   
 $F \rightarrow (S) \mid a$ 

11/78

## Arbres de dérivation

Quelques expressions arithmétiques :



$$S \rightarrow S + T \mid T$$
  
 $T \rightarrow T * F \mid F$   
 $F \rightarrow (S) \mid a$ 

## Arbres de dérivation

## Quelques expressions arithmétiques :



$$S \to S + T \mid T$$
$$T \to T * F \mid F$$

 $F \rightarrow (S) \mid a$ 

13/ 78

## Arbres de dérivation

## Quelques expressions arithmétiques :



$$S \rightarrow S + T \mid T$$
  
 $T \rightarrow T * F \mid F$   
 $F \rightarrow (S) \mid a$ 

Uli Fahrenberg Théorie des langages : THL

14/78

## Arbres de dérivation

## Quelques expressions arithmétiques :



$$S \rightarrow S + T \mid T$$
  
 $T \rightarrow T * F \mid F$   
 $F \rightarrow (S) \mid a$ 

## Arbres de dérivation

## Quelques expressions arithmétiques :



$$S \rightarrow S + T \mid T$$
  
 $T \rightarrow T * F \mid F$   
 $F \rightarrow (S) \mid a$ 

Uli Fahrenberg

## Arbres de dérivation

## Quelques expressions arithmétiques :



$$S \rightarrow S + T \mid T$$
  
 $T \rightarrow T * F \mid F$   
 $F \rightarrow (S) \mid a$ 

Uli Fahrenberg Théorie des langages : THL 16/78

# Quelques expressions arithmétiques :



$$S \rightarrow S + T \mid T$$
  
 $T \rightarrow T * F \mid F$   
 $F \rightarrow (S) \mid a$ 

Uli Fahrenberg Théorie des langages : THL 17/ 78

## Arbres de dérivation

Quelques expressions arithmétiques :



$$S \rightarrow S + T \mid T$$
$$T \rightarrow T * F \mid F$$

 $F \rightarrow (S) \mid a$ 

- plusieurs dérivations, même arbre :
- $S \Rightarrow S + T \Rightarrow T + T$  $\Rightarrow F + T \Rightarrow a + T \Rightarrow \dots$
- $S \Rightarrow S + T \Rightarrow S + T * F$  $\Rightarrow S + F * F \Rightarrow \dots$
- etc.
- on s'intéresse aux arbres, pas aux dérivations

Uli Fahrenberg Théorie des langages : THL 18/78

Parsage LL(1)

# Dérivations gauche

Soit G une grammaire hors-contexte.

#### Définition (6.1)

Une dérivation  $S \Rightarrow \alpha_1 \Rightarrow \cdots \Rightarrow w$  dans G est dite gauche si à chaque pas  $\alpha_i \Rightarrow \alpha_{i+1}$  c'est la variable la plus à gauche dans  $\alpha_i$  qui est réécrit.

par analogie, aussi « dérivation droite »

#### Théorème (6.3)

Pour chaque  $w \in L(G)$  il existe une dérivation gauche  $S \Rightarrow^* w$ .

Uli Fahrenberg

Exemple :  $G: S \rightarrow S + S \mid a$ 

deux dérivations gauche différents :

•  $S \Rightarrow S + S \Rightarrow S + S + S \Rightarrow a + S + S \Rightarrow a + a + S \Rightarrow a + a + a + a$ 

Parsage LL(1)

•  $S \Rightarrow S + S \Rightarrow a + S \Rightarrow a + S + S \Rightarrow a + a + S \Rightarrow a + a + a + a$ 

correspondant à deux arbres différents :



- (a + a) + a vs. a + (a + a)
- heureusement l'addition est associative!

Uli Fahrenberg

# Associativité de l'addition (ou pas )

Addition des Int32:

$$x = 2^{31} - 1$$
  $y = 1$   $z = -1$   
 $x + (y + z) = x + 0 = 2^{31} - 1$   
 $(x + y) + z = 0 + z = -1$ 

Parsage LL(1)

overflow!

Uli Fahrenberg

Théorie des langages : THL

# **Ambiguité**

#### Définition (6.5)

Une grammaire hors-contexte est ambiguë s'il existe  $w \in L(G)$  admettant deux dérivations gauches différents.

- équivalent : « ... admettant deux arbres de dérivation différents »
- deux arbres différents ⇒ deux sémantiques différents
- ⇒ pour le parsage, faut des grammaires non-ambiguës

#### Théorème (sans démonstration ici)

Il existe des langages algébriques qui ne peuvent être engendrés que par des grammaires ambiguës.

- par exemple  $L = \{a^m b^n c^p \mid m = n \text{ ou } n = p\}$
- un langage intrinsèquement ambigu
- on ne peut pas traiter des langages intrinsèquement ambigus

Uli Fahrenberg Théorie des langages : THL 22/ 78

# Fin à l'ambiguité

Dans la pratique il existe toujours des grammaires hc non-ambiguës.

#### Exemple:

• 
$$S \rightarrow S + S \mid a \quad \rightsquigarrow \quad S \rightarrow S + a \mid a$$

• engendre le même langage, avec associativité à gauche





•  $S \rightarrow S + T \mid T$ ;  $T \rightarrow T * F \mid F$ ;  $F \rightarrow (S) \mid a$ : même chose

Uli Fahrenberg Théorie des langages : THL 23/78

# Fin à l'ambiguité

Dans la pratique il existe toujours des grammaires hc non-ambiguës.

#### Exemple:

• 
$$S \rightarrow S + S \mid a \quad \rightsquigarrow \quad S \rightarrow S + a \mid a$$

• engendre le même langage, avec associativité à gauche





•  $S \rightarrow S + T \mid T$ ;  $T \rightarrow T * F \mid F$ ;  $F \rightarrow (S) \mid a$ : même chose

Uli Fahrenberg Théorie des langages : THL 24/78

Parsage LL(1)

26 / 78

## Parsage

#### Problème de parsage

Pour une grammaire ho G, construire un algorithme qui :

- pour un mot w, decide si  $w \in L(G)$
- et dans le cas  $w \in L(G)$ , retourne l'arbre de dérivation
- arbre de dérivation de  $w \triangleq sémantique$  de w

Nos algorithmes de parsage devrait

- pouvoir traiter des grammaires non-ambiguës
- avoir une complexité linéaire en taille d'entrée
- lire w de gauche à droite sans retour arrière

Uli Fahrenberg Théorie des langages : THL

# **Approches**





Parsage LL(1)

(3)

(4)

# Exemple

$$S 
ightarrow ext{if $E$ then $S$ fi} \quad (1) \hspace{1cm} E 
ightarrow ext{true} \ | ext{ echo} \hspace{1cm} | ext{ false}$$

Mot d'entrée :

Arbre construit :

if true then if false then echo fi fi

S

$$S 
ightarrow ext{if } E ext{ then } S ext{ fi} \qquad (1) \qquad \qquad E 
ightarrow ext{true} \qquad (3) \ | ext{ echo} \qquad \qquad (4)$$

Mot d'entrée : Arbre construit :

if true then if false then echo fi fi

$$S \rightarrow \text{if} E \text{ then } S \text{ fi}$$
 (1)

$$E \rightarrow \text{true}$$
 (3)

Mot d'entrée :

Arbre construit:

 $\inf_{(1)}$  true then if false then echo fi fi



$$S \rightarrow \text{if } E \text{ then } S \text{ fi}$$
 (1)

$$E \rightarrow \text{true}$$
 (3)

Mot d'entrée :

Arbre construit:

if true then if false then echo fi fi



$$S 
ightarrow ext{if $E$ then $S$ fi} \quad (1) \qquad \qquad E 
ightarrow ext{true} \qquad (3) \ | ext{ echo} \qquad \qquad (4)$$

Mot d'entrée :

Arbre construit:

if true then if false then echo fi fi (3)



$$S \rightarrow \text{if } E \text{ then } S \text{ fi}$$
 (1)

$$E \rightarrow \text{true}$$
 (3)

Mot d'entrée :

Arbre construit:

if true then if false then echo fi fi



Uli Fahrenberg

Théorie des langages : THL

$$S 
ightarrow ext{if } E ext{ then } S ext{ fi} \qquad (1) \qquad \qquad E 
ightarrow ext{true} \qquad (3) \ | ext{ echo} \qquad \qquad (4)$$

Mot d'entrée :

Arbre construit :

if true then  $\inf_{(1)}$  false then echo fi fi  $\inf_{E \text{ then}} S$  fi

Uli Fahrenberg

Théorie des langages : THL

$$S 
ightarrow ext{if $E$ then $S$ fi (1)} \qquad \qquad E 
ightarrow ext{true} \qquad \qquad (3) \ | ext{ echo} \qquad \qquad (2) \qquad \qquad | ext{ false} \qquad \qquad (4)$$

Mot d'entrée :

Arbre construit:

35/78

if true then  $\inf_{(1)}$  false then echo fi fi



Uli Fahrenberg Théorie des langages : THL

Mot d'entrée :

Arbre construit:



Uli Fahrenberg Théorie des langages : THL 36/ 78

$$S 
ightarrow ext{if $E$ then $S$ fi (1)} \qquad \qquad E 
ightarrow ext{true} \qquad \qquad (3) \ | ext{ echo} \qquad \qquad (4)$$

Mot d'entrée :

Arbre construit:

if true then if false then echo fi fi



Uli Fahrenberg Théorie des langages : THL 37/ 78

## Exemple

$$S \rightarrow \text{if } E \text{ then } S \text{ fi}$$
 (1)  $E \rightarrow \text{true}$  (3)   
  $| \text{echo}$  (2)  $| \text{false}$  (4)

Mot d'entrée :

Arbre construit:

echo

if true then if false then echo fi fi (2)then F fi E then S if true false

> Uli Fahrenberg Théorie des langages : THL 38 / 78

$$S 
ightarrow ext{if } E ext{ then } S ext{ fi} \qquad (1) \qquad \qquad E 
ightarrow ext{true}$$
 | echo | false

Mot d'entrée :

Arbre construit:

(3)

(4)

if true then if false then echo fi fi



Uli Fahrenberg Théorie des langages : THL 39/ 78

## Exemple, version Greibach

• une grammaire Greibach déterministe

| état  | pile             |    |      |      |    |       | reste du mot |      |    |    |
|-------|------------------|----|------|------|----|-------|--------------|------|----|----|
| $q_i$ | $\varepsilon$    | if | true | then | if | false | then         | echo | fi | fi |
| $q_p$ | S                | if | true | then | if | false | then         | echo | fi | fi |
| $q_p$ | E then $S$ fi    |    | true | then | if | false | then         | echo | fi | fi |
| $q_p$ | then $S$ fi      |    |      | then | if | false | then         | echo | fi | fi |
| $q_p$ | S fi             |    |      |      | if | false | then         | echo | fi | fi |
| $q_p$ | E then $S$ fi fi |    |      |      |    | false | then         | echo | fi | fi |
| $q_p$ | then $S$ fi fi   |    |      |      |    |       | then         | echo | fi | fi |
| $q_p$ |                  |    |      |      |    |       |              |      |    |    |

Uli Fahrenberg

Théorie des langages : THL

 $\mathtt{fi},\mathtt{fi}/arepsilon$ 

- approche descendante
- lire le mot w de gauche à droite / Left-to-right
  - sans passer à l'arrière
- construire une dérivation gauche / Leftmost
- en accordant, à chaque pas, le premier symbole de w avec le côté droit d'une production

Uli Fahrenberg Théorie des langages : THL 41/78

## Exemple, encore

Une table de parsage :

• case vide : erreur de parsage

## End of file

C'est souhaitable de pouvoir expliciter la fin d'entrée.

- on utilise « \$ » comme symbole EOF ici
- if true then if false then echo fi fi\$

Pour adapter la grammaire :

- rajout d'une nouvelle variable Z
- avec production  $Z \rightarrow S$ \$

### End of file

C'est souhaitable de pouvoir expliciter la fin d'entrée.

- on utilise « \$ » comme symbole EOF ici
- if true then if false then echo fi fi\$

Pour adapter la grammaire :

- rajout d'une nouvelle variable Z
- avec production  $Z \rightarrow S$ \$

Exemple:

$$S \rightarrow \text{if } E \text{ then } S \text{ fi}$$
 (1)

$$E \rightarrow \text{true}$$
 (3)

(4)

### End of file

C'est souhaitable de pouvoir expliciter la fin d'entrée.

- on utilise « \$ » comme symbole EOF ici
- if true then if false then echo fi fi\$

Pour adapter la grammaire :

- rajout d'une nouvelle variable Z
- avec production  $Z \rightarrow S$ \$

#### Exemple:

$$Z \rightarrow S$$
\$ (0)

$$S 
ightarrow ext{if } E ext{ then } S ext{ fi} \quad (1)$$

$$E \rightarrow \text{true}$$
 (3)

(4)

### **FIRST**

$$Z o S$$
\$ (0)  
 $S o ext{if } E ext{ then } S ext{ fi } (1)$   $E o ext{true}$  (3)  
 $| ext{ echo}$  (2)  $| ext{ false}$  (4)

Pour construire la table de parsage, on a besoin de savoir quel peut être les terminaux à gauche d'une dérivation depuis une variable.

### Définition (8.2)

```
Soit A \in N, alors FIRST(A) \subseteq \Sigma est defini par FIRST(A) = \{a \in \Sigma \mid \exists w \in V^* : A \Rightarrow^* aw\}.
```

```
def FIRST(A):
    res = {}
    foreach (A to aw):
        res += {a}
    foreach (A to Bw):
        res += FIRST(B)
A | FIRST(A)

Z

S

E
```

return res
Uli Fahrenberg

#### IDCI

### **FIRST**

$$Z \rightarrow S$$
\$ (0)

$$S \rightarrow \text{if } E \text{ then } S \text{ fi} \quad (1)$$

$$\mid$$
 echo  $(2)$ 

$$E \rightarrow \text{true}$$
 (3)

Pour construire la table de parsage, on a besoin de savoir quel peut être les terminaux à gauche d'une dérivation depuis une variable.

### Définition (8.2)

Soit  $A \in N$ , alors FIRST $(A) \subseteq \Sigma$  est defini par FIRST $(A) = \{a \in \Sigma \mid \exists w \in V^* : A \Rightarrow^* aw\}$ .

```
def FIRST(A):
    res = {}
    foreach (A to aw):
        res += {a}
    foreach (A to Bw):
        res += FIRST(B)
A | FIRST(A)

Z
S if, echo
E true, false
```

return res

### **FIRST**

$$Z o S \$$$
 (0)  
 $S o ext{if } E ext{ then } S ext{ fi}$  (1)  $E o ext{true}$  (3)  
 $| ext{ echo}$  (2)  $| ext{ false}$  (4)

Pour construire la table de parsage, on a besoin de savoir quel peut être les terminaux à gauche d'une dérivation depuis une variable.

### Définition (8.2)

```
Soit A \in N, alors FIRST(A) \subseteq \Sigma est defini par
\mathsf{FIRST}(A) = \{ a \in \Sigma \mid \exists w \in V^* : A \Rightarrow^* aw \}.
```

```
def FIRST(A):
    res = {}
                                       FIRST(A)
    foreach (A to aw):
                                       if, echo
         res += {a}
                                       if, echo
    foreach (A to Bw):
                                       true, false
         res += FIRST(B)
```

return res

```
def FIRST(A):
    res = \{\}
    foreach (A to aw):
        res += {a}
    foreach (A to Bw):
        res += FIRST(B)
    return res
```

Un algorithme de point fixe

Uli Fahrenberg

Théorie des langages : THL

# FIRST problems

```
def FIRST(A):
    res = \{\}
    foreach (A to aw):
        res += {a}
    foreach (A to Bw):
        res += FIRST(B)
    return res
```

Un algorithme de point fixe

- mais si  $A \rightarrow Aw$ ?
  - récursion à gauche : on ne l'aime pas, faut éviter

## FIRST problems

```
def FIRST(A):
    res = \{\}
    foreach (A to aw):
        res += \{a\}
    foreach (A to Bw):
        res += FIRST(B)
    return res
```

#### Un algorithme de point fixe

- mais si  $A \rightarrow Aw$ ?
  - récursion à gauche : on ne l'aime pas, faut éviter
- ou si  $A \to Bw$  et  $B \Rightarrow \varepsilon$ ?
  - traiter avec NULL et FOLLOW, plus tard
  - pour le moment, ignorer

Uli Fahrenberg

52 / 78

# Algorithme LL(1)

- entrée : une grammaire hc G
- construire la table FIRST
- utiliser FIRST pour construire la TABLE de parsage :

$$\mathsf{TABLE}(A, a) = \{ n \mid \exists \alpha \in V, w \in V^* : A \xrightarrow{(n)} \alpha w, a \in \mathsf{FIRST}(\alpha) \}$$

• pour simplicité, FIRST(a) = {a} pour tout  $a \in \Sigma$ 

#### Définition

G est LL(1) si chaque TABLE(A, a) contient au maximum une production.

Uli Fahrenberg Théorie des langages : THL

## Exemple

$$\mathsf{TABLE}(A, a) = \{ n \mid \exists \alpha \in V, w \in V^* : A \xrightarrow{(n)} \alpha w, a \in \mathsf{FIRST}(\alpha) \}$$

$$Z o S$$
\$ (0)  $A \mid FIRST(A)$   
 $S o if E \text{ then } S \text{ fi } (1)$   $Z \mid if, echo$   
 $\mid echo$  (2)  $S \mid if, echo$   
 $E o true$  (3)  $E \mid true, false$   
 $\mid false$  (4)

|   | if | then | fi | echo | true | false | \$ |
|---|----|------|----|------|------|-------|----|
| Z | 0  |      |    | 0    |      |       | -  |
| S | 1  |      |    | 2    |      |       |    |
| Ε |    |      |    |      | 3    | 4     |    |

Uli Fahrenberg

(4)

 $E \rightarrow \text{true}$ 

### **Factorisation**

$$Z o S$$
\$ (0)  $S o$  echo (3)  $S o$  if  $E$  then  $S$  (1)  $E o$  true (4)

| if 
$$E$$
 then  $S$  else  $S$  (2) | false (5)

|                | if   | then | else | echo | true | false | \$ |
|----------------|------|------|------|------|------|-------|----|
| $\overline{z}$ | 0    |      |      | 0    |      |       |    |
| S              | 1, 2 |      |      | 3    |      |       |    |
| Ε              |      |      |      |      | 4    | 5     |    |

« conflit FIRST/FIRST »

 $S \rightarrow \text{if } E \text{ then } S$ 

- notre grammaire n'est pas LL(1)
- solution : factorisation gauche

Uli Fahrenberg

## Factorisation gauche

#### Théorème (8.6)

Pour chaque grammaire hc G il existe une autre G' avec L(G) = L(G')et telle que pour chaque paire  $A \to X_1 \dots X_k \mid Y_1 \dots Y_\ell$  de productions,  $X_1 \neq Y_1$ .

#### Exemple:

$$S \rightarrow \text{if } E \text{ then } S$$
  
| if  $E \text{ then } S \text{ else } S$ 

devient

$$S \rightarrow \text{if } E \text{ then } SX$$
  
 $X \rightarrow \text{else } S \mid \varepsilon$ 

• attention à la production  $X \to \varepsilon$ 

Uli Fahrenberg

Sheila Greibach to the rescue!

### Théorème (re THL 3)

Pour chaque grammaire hors-contexte G il existe une autre G' telle que L(G') = L(G) et toutes les productions sont sous la forme  $S \to \varepsilon$ ou  $A \rightarrow a\alpha$  avec  $a \in \Sigma$  et  $\alpha \in (N \setminus \{S\})^*$ .

- donc  $S \to \varepsilon$  ou  $A \to aA_1 \dots A_n$
- convertir récursion gauche en récursion droite

#### Exemple:

$$X o Xu$$
 devient  $X o vY$ 
 $\mid v$   $Y o uY$ 
 $\mid \varepsilon$ 

Uli Fahrenberg Théorie des langages : THL 57 / 78

## $\mathsf{LL}(1)$ isation

### Pour convertir G en LL(1):

- éliminer récursion à gauche pour pouvoir calculer FIRST
- factorisation gauche pour éviter des conflits FIRST/FIRST
- les deux constructions introduit des productions type  $A \rightarrow \varepsilon$
- alors comment modifier notre algorithme LL(1) pour les traiter?

Uli Fahrenberg

## FIRST avec $\varepsilon$

```
\mathsf{FIRST}(A) = \{ a \in \Sigma \mid \exists w \in V^* : A \Rightarrow^* aw \}
def FIRST(A):
      res = {}
      foreach (A to aw):
            res += {a}
      foreach (A to Bw):
            res += FIRST(B)
      return res
   • mais si A \rightarrow Aw?

    récursion à gauche : on sais l'éviter

   • ou si A \to Bw et B \Rightarrow \varepsilon?

    traiter avec NULL et FOLLOW :
```

Uli Fahrenberg

60 / 78

### **NULL**

### Définition (8.3)

NULL  $\subseteq N$  est défini par NULL  $= \{A \in N \mid A \Rightarrow^* \epsilon\}$ .

• encore un algorithme de point fixe

Uli Fahrenberg Théorie des langages : THL

# Exemple

$$Z \to XYZ \mid c$$

$$X \to Y \mid a$$

$$Y \to b \mid \varepsilon$$

NULL =

# Exemple

$$Z \rightarrow XYZ \mid c$$

$$X \rightarrow Y \mid a$$

$$Y \rightarrow b \mid \varepsilon$$

$$\mathsf{NULL} = \{X, Y\}$$

## FIRST avec $\varepsilon$ , bis

```
\begin{aligned} \mathsf{FIRST}(A) &= \big\{ a \in \Sigma \mid \exists w \in V^* : A \Rightarrow^* aw \big\} \\ \mathsf{def} & \mathsf{FIRST}(\mathsf{X}) : \\ & \mathsf{if} & \mathsf{X} == \mathsf{a} : \; \mathsf{return} \; \left\{ \mathsf{a} \right\} \\ & \mathsf{if} & \mathsf{X} == \mathsf{epsilon} : \; \mathsf{return} \; \left\{ \right\} \\ & \mathsf{res} &= \left\{ \right\} \\ & \mathsf{foreach} \; (\mathsf{X} \; \mathsf{to} \; \mathsf{A1} \; \ldots \; \mathsf{An} \; \mathsf{Y} \; \mathsf{w}) : \\ & \mathsf{if} \; \mathsf{all}(\mathsf{NULL}(\mathsf{Ai})) : \\ & \mathsf{res} \; += \; \mathsf{FIRST}(\mathsf{Y}) \\ & \mathsf{return} \; \mathsf{res} \end{aligned}
```

$$Z \rightarrow XYZ \mid c$$
  
 $X \rightarrow Y \mid a$  NULL =  $\{X, Y\}$   
 $Y \rightarrow b \mid \varepsilon$ 

$$\begin{array}{c|c} A & \mathsf{FIRST}(A) \\ \hline X & a, b \\ Y & b \\ Z & c \\ \end{array}$$

$$\begin{array}{c|c}
A & \mathsf{FIRST}(A) \\
\hline
X & a, b \\
Y & b \\
Z & c, a
\end{array}$$

$$\begin{array}{c|c}
A & \mathsf{FIRST}(A) \\
\hline
X & a, b \\
Y & b \\
Z & c, a, b
\end{array}$$

### **FOLLOW**

Le dernier morceau : calculer des terminaux qui peuvent suivre une variable dans une dérivation :

### Définition (8.4, corrigé)

Soit  $A \in N$ , alors FOLLOW(A)  $\subseteq \Sigma$  est défini par FOLLOW(A) = { $a \in \Sigma \mid \exists B \in N, \alpha, \beta \in V^* : B \Rightarrow^* \alpha A a \beta$  }.

#### Algorithme:

- pour chaque  $A \in N$ : FOLLOW(A) =  $\emptyset$
- répéter jusqu'au point fixe :
  - pour chaque  $B \to \alpha A\beta \gamma$  avec  $\beta \in \text{NULL}^*$ :
    - si  $\gamma \notin \text{NULL}^*$ : FOLLOW(A) += FIRST( $\gamma$ )
    - $\circ$  si  $\gamma \in \text{NULL}^* : \text{FOLLOW}(A) += \text{FOLLOW}(B)$

Uli Fahrenberg Théorie des langages : THL 68/ 78

$$\begin{array}{c|c}
A & \mathsf{FIRST}(A) \\
\hline
X & a, b \\
Y & b \\
Z & c, a, b
\end{array}$$

$$\begin{array}{c|c}
A & \mathsf{FIRST}(A) \\
\hline
X & a, b \\
Y & b \\
Z & c, a, b
\end{array}$$

Uli Fahrenberg

71 / 78

## Algorithme LL(1) complet

- entrée : une grammaire hc G
- calculer NULL
- construire la table FIRST
- construire la table FOLLOW
- construire la TABLE de parsage :
  - **1** pour chaque production  $X \to w$  (n):
    - pour chaque  $a \in FIRST(w)$  : TABLE $(X, a) += \{n\}$ 
      - 2 si  $w \in NULL$  ou  $w = \varepsilon$ :
        - pour chaque  $a \in FOLLOW(X)$ : TABLE $(X, a) += \{n\}$

Uli Fahrenberg Théorie des langages : THL

(6)

$$Z \rightarrow XYZ$$
 (1)

$$X \to a$$
 (3)

$$Y \to b$$
 (5)

$$\begin{array}{c|c}
A & FOLLOW(A) \\
\hline
X & a, b, c \\
Y & a, b, c
\end{array}$$

$$\mathsf{NULL} = \{X, Y\}$$

$$Z \rightarrow XYZ$$
 (1)

$$\mid c$$
 (2)

$$X \to a$$
 (3)

$$Y \rightarrow b$$
 (5)

$$\mid \varepsilon$$
 (6)

$$\mathsf{NULL} = \{X, Y\}$$

$$Z \rightarrow XYZ$$
 (1)

$$X \to a$$
 (3)

$$Y \to b$$
 (5)  
 $\mid \varepsilon$  (6)

$$\mathsf{NULL} = \{X, Y\}$$

$$Z \rightarrow XYZ$$
 (1)

$$\mid c$$
 (2)

$$X \to a \tag{3}$$
$$\mid Y \tag{4}$$

$$Y \rightarrow b$$
 (5)

$$|\varepsilon|$$
 (6)

$$\begin{array}{c|c}
A & FOLLOW(A) \\
\hline
X & a, b, c \\
Y & a, b, c \\
Z & \end{array}$$

$$\mathsf{NULL} = \{X, Y\}$$

$$Z \rightarrow XYZ$$
 (1)

$$X \to a$$
 (3)

$$Y \to b$$
 (5)  
 $\mid \varepsilon$  (6)

$$\begin{array}{c|c}
A & FOLLOW(A) \\
\hline
X & a, b, c \\
Y & a, b, c \\
Z & \\
\end{array}$$

$$\mathsf{NULL} = \{X, Y\}$$

Uli Fahrenberg

$$Z \rightarrow XYZ$$
 (1)

$$X \to a$$
 (3)

$$Y \to b$$
 (5)  
 $\mid \varepsilon$  (6)

$$\begin{array}{c|c}
A & FOLLOW(A) \\
\hline
X & a, b, c \\
Y & a, b, c \\
Z & \\
\end{array}$$

$$\mathsf{NULL} = \{X, Y\}$$

Uli Fahrenberg

