STUDY TIPS

IN1.6: APPLICATIONS OF INTEGRATION AREA UNDER A CURVE

Calculation of Areas

The definite integral $\int f(x)dx$ gives a measure of the signed area between the graph of f(x) and the x-axis between the values of x = a and x = b.

If the area is **above** the *x*-axis, the definite integral is **positive**. If the area is **below** the *x*-axis, the definite integral is **negative**.

The actual area is the absolute value of the signed area.

$$A = \left| \int_{a}^{b} f(x) dx \right|$$

Note: If the curve crosses the x-axis, the areas above and below the x-axis must be calculated separately.

Examples

1.

Given the function $f(x) = x^2 - 1$, find the area between the curve and the x-axis, for the values x = 0 and x = 3.

Sketch the graph of $y = x^2 - 1$ to determine the area to be calculated

y-intercept: -1x- intercepts: ± 1

Limits of integration: x = 0 to x = 3.

Area from x = 0 to x = 1 is **below** the x axis. Area from x = 1 to x = 3 is above the x axis. Integrate each area separately.

$$A = \left| \int_{0}^{1} (x^{2} - 1) dx \right| + \left| \int_{1}^{3} (x^{2} - 1) dx \right|$$

$$= \left| \left[\frac{x^{3}}{3} - x \right]_{0}^{1} \right| + \left| \left[\frac{x^{3}}{3} - x \right]_{1}^{3} \right|$$

$$= \left| \left[\left(\frac{1}{3} - 1 \right) - 0 \right] \right| + \left| \left[\left(\frac{27}{3} - 3 \right) - \left(\frac{1}{3} - 1 \right) \right] \right|$$

$$= \frac{2}{3} + \left(6 + \frac{2}{3} \right)$$

$$Area = 7\frac{1}{3} \text{ units}$$

Given the function $f(x) = x^2 + 2$, find the area between the curve, the *x*-axis, and the lines x = -1 and x = 1.

Sketch the graph of and $y = x^2 + 2$ to determine the area to be calculated.

y-intercept: 2

x- intercepts: no x- intercepts

Limits of integration:

$$x = -1 \text{ to } x = 1$$

$$A = \left| \int_{-1}^{1} (x^2 + 2) dx \right| = \left| \left[\frac{x^3}{3} + 2x \right]_{-1}^{1} \right|$$
$$= \left| \left[\frac{1}{3} + 2 \right] - \left[\frac{-1}{3} - 2 \right] \right|$$

Area =
$$4\frac{2}{3}$$
 units

Exercises

Exercise 1

- (a) Find the area enclosed by the curve $y = 6x 2x^2$ and the x axis.
- (b) Calculate the area bounded by the curve $y = x^2 9$ and the x axis.
- (c) Find the area bounded by the curve $y = \frac{2}{x}$, the x axis and the lines x = 2 and x = 4
- (d) Find the area bounded by the curve $y = \sin x$ the x-axis and the line $x = \frac{\pi}{2}$

Exercise 2

- (a) Find the total area of the regions bounded by the curve $y = \cos x$ and the x axis between x = 0 and $x = \pi$.
- (b) Find the area bounded by the curve $y = x^2 3x + 2$ and the x axis between x = 0 and x = 2.

Answers

1(a) 9 units, (b) 36 units, (c) $2 \ln 2$, (d) 1 unit

2(a) 2 units (b) 1 unit