

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

	,	IDER THE PATENT COOPERATION TREATY (PCT)
(51) International Patent Classification 6:		11) International Publication Number: WO 99/3123
C12N 15/12, C07K 14/47, 16/18, C12Q 1/68	A2	43) International Publication Date: 24 June 1999 (24.06.9
(21) International Application Number: PCT/IB (22) International Filing Date: 17 December 1998 ((30) Priority Data: 60/069,957 17 December 1997 (17.12.9 60/074,121 9 February 1998 (09.02.98) 60/081,563 13 April 1998 (13.04.98) 60/096,116 10 August 1998 (10.08.98) (71) Applicant (for all designated States except US): [FR/FR]; 24, rue Royale, F-75008 Paris (FR). (72) Inventors; and (75) Inventors/Applicants (for US only): BOUGUELEI die [FR/FR]; 108, avenue Victor Hugo, F-9217 (FR). DUCLERT, Aymeric [FR/FR]; 6 ter, rue F-94100 Saint-Maur (FR). DUMAS MILNE ED Jean-Baptiste [FR/FR]; 8, rue Grégoire de Tours, Paris (FR). (74) Agents: MARTIN, Jean-Jacques et al.; Cabinet Rec 26, avenue Kléber, F-75116 Paris (FR).	7) IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, M MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, S SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, Z ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZV Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, Th European patent (AT, BE, CH, CY, DE, DK, ES, FI, F GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, S TD, TG). Published Without international search report and to be republish upon receipt of that report.

(54) Title: EXTENDED cDNAs FOR SECRETED PROTEINS

(57) Abstract

The sequences of extended cDNAs encoding secreted proteins are disclosed. The extended cDNAs can be used to express secreted proteins or portions thereof or to obtain antibodies capable of specifically binding to the secreted proteins. The extended cDNAs may also be used in diagnostic, forensic, gene therapy, and chromosome mapping procedures. The extended cDNAs may also be used to design expression vectors and secretion vectors.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	υY	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

EXTENDED cDNAS for secreted proteins

The present application relates to extended cDNAs which were disclosed in several United States Provisional Patent Applications. Table I lists the SEQ ID Nos. of the extended cDNAs in the present application, the SEQ ID Nos. of the identical or nearly identical extended cDNAs in the provisional applications, and the identities of the provisional applications in which the extended cDNAs were disclosed.

Background of the Invention

The estimated 50,000-100,000 genes scattered along the human chromosomes offer tremendous promise for the understanding, diagnosis, and treatment of human diseases. In addition, probes capable of specifically hybridizing to loci distributed throughout the human genome find applications in the construction of high resolution chromosome maps and in the identification of individuals.

In the past, the characterization of even a single human gene was a painstaking process, requiring years of effort. Recent developments in the areas of cloning vectors, DNA sequencing, and computer technology have merged to greatly accelerate the rate at which human genes can be isolated, sequenced, mapped, and characterized. Cloning vectors such as yeast artificial chromosomes (YACs) and bacterial artificial chromosomes (BACs) are able to accept DNA inserts ranging from 300 to 1000 kilobases (kb) or 100-400 kb in length respectively, thereby facilitating the manipulation and ordering of DNA sequences distributed over great distances on the human chromosomes. Automated DNA sequencing machines permit the rapid sequencing of human genes. Bioinformatics software enables the comparison of nucleic acid and protein sequences, thereby assisting in the characterization of human gene products.

Currently, two different approaches are being pursued for identifying and characterizing the genes distributed
along the human genome. In one approach, large fragments of genomic DNA are isolated, cloned, and sequenced.
Potential open reading frames in these genomic sequences are identified using bio-informatics software. However, this approach entails sequencing large stretches of human DNA which do not encode proteins in order to find the protein encoding sequences scattered throughout the genome. In addition to requiring extensive sequencing, the bio-informatics software may mischaracterize the genomic sequences obtained. Thus, the software may produce false positives in which non-coding DNA is mischaracterized as coding DNA or false negatives in which coding DNA is mischaeled as non-coding DNA.

An alternative approach takes a more direct route to identifying and characterizing human genes. In this approach, complementary DNAs (cDNAs) are synthesized from isolated messenger RNAs (mRNAs) which encode human proteins. Using this approach, sequencing is only performed on DNA which is derived from protein coding portions of the genome. Often, only short stretches of the cDNAs are sequenced to obtain sequences called expressed sequence tags (ESTs). The ESTs may then be used to isolate or purify extended cDNAs which include sequences adjacent to the EST sequences. The extended cDNAs may contain all of the sequence of the EST which was used to obtain them or only a portion of the sequence of the EST which was used to obtain them. In addition, the extended cDNAs may contain the full coding sequence of the gene from which the EST was derived or, alternatively, the extended cDNAs may include

15

portions of the coding sequence of the gene from which the EST was derived. It will be appreciated that there may be several extended cDNAs which include the EST sequence as a result of alternate splicing or the activity of alternative promoters.

In the past, the short EST sequences which could be used to isolate or purify extended cDNAs were often 5 obtained from oligo-dT primed cDNA libraries. Accordingly, they mainly corresponded to the 3' untranslated region of the mRNA. In part, the prevalence of EST sequences derived from the 3' end of the mRNA is a result of the fact that typical techniques for obtaining cDNAs, are not well suited for isolating cDNA sequences derived from the 5' ends of mRNAs. (Adams et al., Nature 377:174, 1996, Hillier et al., Genome Res. 6:807-828, 1996).

In addition, in those reported instances where longer cDNA sequences have been obtained, the reported 10 sequences typically correspond to coding sequences and do not include the full 5' untranslated region of the mRNA from which the cDNA is derived. Such incomplete sequences may not include the first exon of the mRNA, particularly in situations where the first exon is short. Furthermore, they may not include some exons, often short ones, which are located upstream of splicing sites. Thus, there is a need to obtain sequences derived from the 5' ends of mRNAs which can be used to obtain extended cDNAs which may include the 5' sequences contained in the 5' ESTs.

While many sequences derived from human chromosomes have practical applications, approaches based on the identification and characterization of those chromosomal sequences which encode a protein product are particularly relevant to diagnostic and therapeutic uses. Of the 50,000-100,000 protein coding genes, those genes encoding proteins which are secreted from the cell in which they are synthesized, as well as the secreted proteins themselves, are particularly valuable as potential therapeutic agents. Such proteins are often involved in cell to cell communication and 20 may be responsible for producing a clinically relevant response in their target cells.

In fact, several secretory proteins, including tissue plasminogen activator, G-CSF, GM-CSF, erythropoietin, human growth hormone, insulin, interferon- α , interferon- β , interferon- γ , and interleukin-2, are currently in clinical use. These proteins are used to treat a wide range of conditions, including acute myocardial infarction, acute ischemic stroke, anemia, diabetes, growth hormone deficiency, hepatitis, kidney carcinoma, chemotherapy induced neutropenia and 25 multiple sclerosis. For these reasons, extended cDNAs encoding secreted proteins or portions thereof represent a particularly valuable source of therapeutic agents. Thus, there is a need for the identification and characterization of secreted proteins and the nucleic acids encoding them.

In addition to being therapeutically useful themselves, secretory proteins include short peptides, called signal peptides, at their amino termini which direct their secretion. These signal peptides are encoded by the signal sequences 30 located at the 5' ends of the coding sequences of genes encoding secreted proteins. Because these signal peptides will direct the extracellular secretion of any protein to which they are operably linked, the signal sequences may be exploited to direct the efficient secretion of any protein by operably linking the signal sequences to a gene encoding the protein for which secretion is desired. This may prove beneficial in gene therapy strategies in which it is desired to deliver a particular gene product to cells other than the cell in which it is produced. Signal sequences encoding signal peptides

5

also find application in simplifying protein purification techniques. In such applications, the extracellular secretion of the desired protein greatly facilitates purification by reducing the number of undesired proteins from which the desired protein must be selected. Thus, there exists a need to identify and characterize the 5' portions of the genes for secretory proteins which encode signal peptides.

Public information on the number of human genes for which the promoters and upstream regulatory regions have been identified and characterized is quite limited. In part, this may be due to the difficulty of isolating such regulatory sequences. Upstream regulatory sequences such as transcription factor binding sites are typically too short to be utilized as probes for isolating promoters from human genomic libraries. Recently, some approaches have been developed to isolate human promoters. One of them consists of making a CpG island library (Cross, S.H. et al., 10 Purification of CpG Islands using a Methylated DNA Binding Column, Nature Genetics 6: 236-244 (1994)). The second consists of isolating human genomic DNA sequences containing Spel binding sites by the use of Spel binding protein. (Mortlock et al., Genome Res. 6:327-335, 1996). Both of these approaches have their limits due to a lack of specificity or of comprehensiveness.

5' ESTs and extended cDNAs obtainable therefrom may be used to efficiently identify and isolate upstream 15 regulatory regions which control the location, developmental stage, rate, and quantity of protein synthesis, as well as the stability of the mRNA. (Theil et al., BioFactors 4:87-93, (1993). Once identified and characterized, these regulatory regions may be utilized in gene therapy or protein purification schemes to obtain the desired amount and locations of protein synthesis or to inhibit, reduce, or prevent the synthesis of undesirable gene products.

In addition, ESTs containing the 5' ends of secretory protein genes or extended cDNAs which include 20 sequences adjacent to the sequences of the ESTs may include sequences useful as probes for chromosome mapping and the identification of individuals. Thus, there is a need to identify and characterize the sequences upstream of the 5' coding sequences of genes encoding secretory proteins.

Summary of the Invention

The present invention relates to purified, isolated, or recombinant extended cDNAs which encode secreted 25 proteins or fragments thereof. Preferably, the purified, isolated or recombinant cDNAs contain the entire open reading frame of their corresponding mRNAs, including a start codon and a stop codon. For example, the extended cDNAs may include nucleic acids encoding the signal peptide as well as the mature protein. Alternatively, the extended cDNAs may contain a fragment of the open reading frame. In some embodiments, the fragment may encode only the sequence of the mature protein. Alternatively, the fragment may encode only a portion of the mature protein. A further aspect of the present invention is a nucleic acid which encodes the signal peptide of a secreted protein.

The present extended cDNAs were obtained using ESTs which include sequences derived from the authentic 5' ends of their corresponding mRNAs. As used herein the terms "EST" or "5' EST" refer to the short cDNAs which were used to obtain the extended cDNAs of the present invention. As used herein, the term "extended cDNA" refers to the cDNAs which include sequences adjacent to the 5' EST used to obtain them. The extended cDNAs may contain all or a

portion of the sequence of the EST which was used to obtain them. The term "corresponding mRNA" refers to the mRNA which was the template for the cDNA synthesis which produced the 5' EST. As used herein, the term "purified" does not require absolute purity; rather, it is intended as a relative definition. Individual extended cDNA clones isolated from a cDNA library have been conventionally purified to electrophoretic homogeneity. The sequences obtained from these clones could not be obtained directly either from the library or from total human DNA. The extended cDNA clones are not naturally occurring as such, but rather are obtained via manipulation of a partially purified naturally occurring substance (messenger RNA). The conversion of mRNA into a cDNA library involves the creation of a synthetic substance (cDNA) and pure individual cDNA clones can be isolated from the synthetic library by clonal selection. Thus, creating a cDNA library from messenger RNA and subsequently isolating individual clones from that library results in an approximately 10⁴-10⁶ fold purification of the native message. Purification of starting material or natural material to at least one order of magnitude, preferably two or three orders, and more preferably four or five orders of magnitude is expressly contemplated.

As used herein, the term "isolated" requires that the material be removed from its original environment (e.g., the natural environment if it is naturally occurring). For example, a naturally-occurring polynucleotide present in a living animal is not isolated, but the same polynucleotide, separated from some or all of the coexisting materials in the natural system, is isolated.

As used herein, the term "recombinant" means that the extended cDNA is adjacent to "backbone" nucleic acid to which it is not adjacent in its natural environment. Additionally, to be "enriched" the extended cDNAs will represent 5% or more of the number of nucleic acid inserts in a population of nucleic acid backbone molecules. Backbone molecules according to the present invention include nucleic acids such as expression vectors, self-replicating nucleic acids, viruses, integrating nucleic acids, and other vectors or nucleic acids used to maintain or manipulate a nucleic acid insert of interest. Preferably, the enriched extended cDNAs represent 15% or more of the number of nucleic acid inserts in the population of recombinant backbone molecules. More preferably, the enriched extended cDNAs represent 50% or more of the number of nucleic acid inserts in the population of recombinant backbone molecules. In a highly preferred embodiment, the enriched extended cDNAs represent 90% or more of the number of nucleic acid inserts in the population of recombinant backbone molecules. "Stringent", "moderate," and "low" hybridization conditions are as defined in Example 29.

Unless otherwise indicated, a "complementary" sequence is fully complementary. Thus, extended cDNAs encoding secreted polypeptides or fragments thereof which are present in cDNA libraries in which one or more extended cDNAs encoding secreted polypeptides or fragments thereof make up 5% or more of the number of nucleic acid inserts in the backbone molecules are "enriched recombinant extended cDNAs" as defined herein. Likewise, extended cDNAs encoding secreted polypeptides or fragments thereof which are in a population of plasmids in which one or more extended cDNAs of the present invention have been inserted such that they represent 5% or more of the number of inserts in the plasmid backbone are "enriched recombinant extended cDNAs" as defined herein. However, extended

cDNAs encoding secreted polypeptides or fragments thereof which are in cDNA libraries in which the extended cDNAs encoding secreted polypeptides or fragments thereof constitute less than 5% of the number of nucleic acid inserts in the population of backbone molecules, such as libraries in which backbone molecules having a cDNA insert encoding a secreted polypeptide are extremely rare, are not "enriched recombinant extended cDNAs."

In particular, the present invention relates to extended cDNAs which were derived from genes encoding secreted proteins. As used herein, a "secreted" protein is one which, when expressed in a suitable host cell, is transported across or through a membrane, including transport as a result of signal peptides in its amino acid sequence. "Secreted" proteins include without limitation proteins secreted wholly (e.g. soluble proteins), or partially (e.g. receptors) from the cell in which they are expressed. "Secreted" proteins also include without limitation proteins which are 10 transported across the membrane of the endoplasmic reticulum.

5

Extended cDNAs encoding secreted proteins may include nucleic acid sequences, called signal sequences, which encode signal puptides which direct the extracellular secretion of the proteins encoded by the extended cDNAs. Generally, the signal peptides are located at the amino termini of secreted proteins.

Secreted proteins are translated by ribosomes associated with the "rough" endoplasmic reticulum. Generally, 15 secreted proteins are co-translationally transferred to the membrane of the endoplasmic reticulum. Association of the ribosome with the endoplasmic reticulum during translation of secreted proteins is mediated by the signal peptide. The signal peptide is typically cleaved following its co-translational entry into the endoplasmic reticulum. After delivery to the endoplasmic reticulum, secreted proteins may proceed through the Golgi apparatus. In the Golgi apparatus, the proteins may undergo post-translational modification before entering secretory vesicles which transport them across the 20 cell membrane.

The extended cDNAs of the present invention have several important applications. For example, they may be used to express the entire secreted protein which they encode. Alternatively, they may be used to express portions of the secreted protein. The portions may comprise the signal peptides encoded by the extended cDNAs or the mature proteins encoded by the extended cDNAs (i.e. the proteins generated when the signal peptide is cleaved off). The 25 portions may also comprise polypeptides having at least 10 consecutive amino acids encoded by the extended cDNAs. Alternatively, the portions may comprise at least 15 consecutive amino acids encoded by the extended cDNAs. In some embodiments, the portions may comprise at least 25 consecutive amino acids encoded by the extended cDNAs. In other embodiments, the portions may comprise at least 40 amino acids encoded by the extended cDNAs.

Antibodies which specifically recognize the entire secreted proteins encoded by the extended cDNAs or 30 fragments thereof having at least 10 consecutive amino acids, at least 15 consecutive amino acids, at least 25 consecutive amino acids, or at least 40 consecutive amino acids may also be obtained as described below. Antibodies which specifically recognize the mature protein generated when the signal peptide is cleaved may also be obtained as described below. Similarly, antibodies which specifically recognize the signal peptides encoded by the extended cDNAs may also be obtained.

In some embodiments, the extended cDNAs include the signal sequence. In other embodiments, the extended cDNAs may include the full coding sequence for the mature protein (i.e. the protein generated when the signal polypeptide is cleaved off). In addition, the extended cDNAs may include regulatory regions upstream of the translation start site or downstream of the stop codon which control the amount, location, or developmental stage of gene expression. As discussed above, secreted proteins are therapeutically important. Thus, the proteins expressed from the cDNAs may be useful in treating or controlling a variety of human conditions. The extended cDNAs may also be used to obtain the corresponding genomic DNA. The term "corresponding genomic DNA" refers to the genomic DNA which encodes mRNA which includes the sequence of one of the strands of the extended cDNA in which thymidine residues in the sequence of the extended cDNA are replaced by uracil residues in the mRNA.

The extended cDNAs or genomic DNAs obtained therefrom may be used in forensic procedures to identify individuals or in diagnostic procedures to identify individuals having genetic diseases resulting from abnormal expression of the genes corresponding to the extended cDNAs. In addition, the present invention is useful for constructing a high resolution map of the human chromosomes.

10

The present invention also relates to secretion vectors capable of directing the secretion of a protein of

interest. Such vectors may be used in gene therapy strategies in which it is desired to produce a gene product in one cell which is to be delivered to another location in the body. Secretion vectors may also facilitate the purification of desired proteins.

The present invention also relates to expression vectors capable of directing the expression of an inserted gene in a desired spatial or temporal manner or at a desired level. Such vectors may include sequences upstream of the extended cDNAs such as promoters or upstream regulatory sequences.

In addition, the present invention may also be used for gene therapy to control or treat genetic diseases. Signal peptides may also be fused to heterologous proteins to direct their extracellular secretion.

One embodiment of the present invention is a purified or isolated nucleic acid comprising the sequence of one of SEQ ID NOs: 40-140 and 242-377 or a sequence complementary thereto. In one aspect of this embodiment, the nucleic acid is recombinant.

Another embodiment of the present invention is a purified or isolated nucleic acid comprising at least 10 consecutive bases of the sequence of one of SEQ ID NOs: 40-140 and 242-377 or one of the sequences complementary thereto. In one aspect of this embodiment, the nucleic acid comprises at least 15, 25, 30, 40, 50, 75, or 100 consecutive bases of one of the sequences of SEQ ID NOs: 40-140 and 242-377 or one of the sequences complementary thereto. The nucleic acid may be a recombinant nucleic acid.

Another embodiment of the present invention is a purified or isolated nucleic acid of at least 15 bases capable of hybridizing under stringent conditions to the sequence of one of SEQ ID NOs: 40-140 and 242-377 or a sequence complementary to one of the sequences of SEQ ID NOs: 40-140 and 242-377. In one aspect of this embodiment, the nucleic acid is recombinant.

-7.

Another embodiment of the present invention is a purified or isolated nucleic acid comprising the full coding sequences of one of SEQ ID NOs: 40-140 and 242-377, wherein the full coding sequence optionally comprises the sequence encoding signal peptide as well as the sequence encoding mature protein. In a preferred embodiment, the isolated or purified nucleic acid comprises the full coding sequence of one of SEQ ID Nos. 40, 42-44, 46, 48, 49, 51, 53, 60, 62-72, 76-78, 80-83, 85-88, 90, 93, 94, 97, 99-102, 104, 107-125, 127, 132, 135-138, 140 and 242-377 wherein the full coding sequence comprises the sequence encoding signal peptide and the sequence encoding mature protein. In one aspect of this embodiment, the nucleic acid is recombinant.

A further embodiment of the present invention is a purified or isolated nucleic acid comprising the nucleotides of one of SEO ID NOs: 40-140 and 242-377 which encode a mature protein. In a preferred embodiment, the purified or isolated nucleic acid comprises the nucleotides of one of SEO ID NOs: 40-44, 46, 48, 49, 51-53, 55, 56, 58-72, 75-78, 80-88, 90, 93, 94, 97, 99-125, 127, 132, 133, 135-138, 140, and 242-377 which encode a mature protein. In one aspect of this embodiment, the nucleic acid is recombinant.

Yet another embodiment of the present invention is a purified or isolated nucleic acid comprising the nucleotides of one of SEQ ID NOs: 40-140 and 242-377 which encode the signal peptide. In a preferred embodiment, the purified or isolated nucleic acid comprises the nucleotides of SEQ ID NOs: 40, 42-46, 48, 49, 51, 53, 57, 60, 62-73, 76-78, 80-83, 85-88, 90, 93-95, 97, 99-102, 104, 107-125, 127, 128, 130, 132, 134-140 and 242-377 which encode the signal peptide. In one aspect of this embodiment, the nucleic acid is recombinant.

Another embodiment of the present invention is a purified or isolated nucleic acid encoding a polypeptide having the sequence of one of the sequences of SEQ ID NOs: 141-241 and 378-513.

20

25

30

Another embodiment of the present invention is a purified or isolated nucleic acid encoding a polypeptide having the sequence of a mature protein included in one of the sequences of SEQ ID NOs: 141-241 and 378-513. In a preferred embodiment, the purified or isolated nucleic acid encodes a polypeptide having the sequence of a mature protein included in one of the sequences of SEQ ID NOs: 141-145, 147, 149, 150, 152-154, 156, 157, 159-172, 176-179, 181-189, 191, 194, 195, 198, 200-226, 228, 233, 234, 236-239, 241 and 378-513.

Another embodiment of the present invention is a purified or isolated nucleic acid encoding a polypeptide having the sequence of a signal peptide included in one of the sequences of SEQ ID NOs: 141-241 and 378-513. In a preferred embodiment, the purified or isolated nucleic acid encodes a polypeptide having the sequence of a signal peptide included in one of the sequences of SEQ ID NOs: 141, 143-147, 149, 150, 152, 154, 158, 161, 163-174, 177-179, 181-184, 186-189, 191, 194-196, 198, 200-203, 205, 208-226, 228, 229, 231, 233, 235-241, and 378-513.

Yet another embodiment of the present invention is a purified or isolated protein comprising the sequence of one of SEQ ID NOs: 141-241 and 378-513.

Another embodiment of the present invention is a purified or isolated polypeptide comprising at least 10 consecutive amino acids of one of the sequences of SEQ ID NOs: 141-241 and 378-513. In one aspect of this embodiment, the purified or isolated polypeptide comprises at least 15, 20, 25, 35, 50, 75, 100, 150 or 200 consecutive

amino acids of one of the sequences of SEQ ID NOs: 141-241 and 378-513. In still another aspect, the purified or isolated polypeptide comprises at least 25 consecutive amino acids of one of the sequences of SEQ ID NOs: 141-241 and 378-513.

Another embodiment of the present invention is an isolated or purified polypeptide comprising a signal peptide of one of the polypeptides of SEQ ID NOs: 141-241 and 378-513. In a preferred embodiment, the isolated or purified polypeptide comprises a signal peptide of one of the polypeptides of SEQ ID NOs: 141, 143-147, 149, 150, 152, 154, 158, 161, 163-174, 177-179, 181-184, 186-189, 191, 194-196, 198, 200-203, 205, 208-226, 228, 229, 231, 233, 235-241, and 378-513.

Yet another embodiment of the present invention is an isolated or purified polypeptide comprising a mature protein of one of the polypeptides of SEQ ID NOs: 141-241 and 378-513. In a preferred embodiment, the isolated or purified polypeptide comprises a mature protein of one of the polypeptides of SEQ ID NOs: 141-145, 147, 149, 150, 152-154, 156, 157, 159-172, 176-179, 181-189, 191, 194, 195, 198, 200-226, 228, 233, 234, 236-239, 241 and 378-513.

A further embodiment of the present invention is a method of making a protein comprising one of the sequences of SEQ ID NO: 141-241 and 378-513, comprising the steps of obtaining a cDNA comprising one of the sequences of sequence of SEQ ID NO: 40-140 and 242-377, inserting the cDNA in an expression vector such that the cDNA is operably linked to a promoter, and introducing the expression vector into a host cell whereby the host cell produces the protein encoded by said cDNA. In one aspect of this embodiment, the method further comprises the step of isolating the protein.

Another embodiment of the present invention is a protein obtainable by the method described in the preceding paragraph.

Another embodiment of the present invention is a method of making a protein comprising the amino acid sequence of the mature protein contained in one of the sequences of SEQ ID NO: 141-241 and 378-513, comprising the steps of obtaining a cDNA comprising one of the nucleotides sequence of sequence of SEQ ID NO: 40-140 and 242-377 which encode for the mature protein, inserting the cDNA in an expression vector such that the cDNA is operably linked to a promoter, and introducing the expression vector into a host cell whereby the host cell produces the mature protein encoded by the cDNA. In one aspect of this embodiment, the method further comprises the step of isolating the protein.

Another embodiment of the present invention is a mature protein obtainable by the method described in the 30 preceding paragraph.

In a preferred embodiment, the above method comprises a method of making a protein comprising the amino acid sequence of the mature protein contained in one of the sequences of SEQ ID NO: 141-145, 147, 149, 150, 152-154, 156, 157, 159-172, 176-179, 181-189, 191, 194, 195, 198, 200-226, 228, 233, 234, 236-239, 241 and 378-513, comprising the steps of obtaining a cDNA comprising one of the nucleotides sequence of sequence of SEQ ID NO:

40-44, 46, 48, 49, 51-53, 55, 56, 58-72, 75-78, 80-88, 90, 93, 94, 97, 99-125, 127, 132, 133, 135-138, 140, and 242-377 which encode for the mature protein, inserting the cDNA in an expression vector such that the cDNA is operably linked to a promoter, and introducing the expression vector into a host cell whereby the host cell produces the mature protein encoded by the cDNA. In one aspect of this embodiment, the method further comprises the step of isolating the protein.

Another embodiment of the present invention is a host cell containing the purified or isolated nucleic acids comprising the sequence of one of SEQ ID NOs: 40-140 and 242-377 or a sequence complementary thereto described herein.

Another embodiment of the present invention is a host cell containing the purified or isolated nucleic acids comprising the full coding sequences of one of SEQ ID NOs: 40-140 and 242-377, wherein the full coding sequence comprises the sequence encoding signal peptide and the sequence encoding mature protein described herein.

Another embodiment of the present invention is a host cell containing the purified or isolated nucleic acids comprising the nucleotides of one of SEQ ID NOs: 40-140 and 242-377 which encode a mature protein which are described herein. Preferably, the host cell contains the purified or isolated nucleic acids comprising the nucleotides of one of SEQ ID NOs: 40-44, 46, 48, 49, 51-53, 55, 56, 58-72, 75-78, 80-88, 90, 93, 94, 97, 99-125, 127, 132, 133, 135-138, 140, and 242-377 which encode a mature protein.

Another embodiment of the present invention is a host cell containing the purified or isolated nucleic acids comprising the nucleotides of one of SEQ ID NOs: 40-140 and 242-377 which encode the signal peptide which are described herein. Preferably, the host cell contains the purified or isolated nucleic acids comprising the nucleotides of one of SEQ ID Nos.: 40, 42-46, 48, 49, 51, 53, 57, 60, 62-73, 76-78, 80-83, 85-88, 90, 93-95, 97, 99-102, 104, 107-125, 127, 128, 130, 132, 134-140 and 242-377 which encode the signal peptide.

Another embodiment of the present invention is a purified or isolated antibody capable of specifically binding to a protein having the sequence of one of SEQ ID NOs: 141-241 and 378-513. In one aspect of this embodiment, the antibody is capable of binding to a polypeptide comprising at least 10 consecutive amino acids of the sequence of one of SEQ ID NOs: 141-241 and 378-513.

Another embodiment of the present invention is an array of cDNAs or fragments thereof of at least 15 nucleotides in length which includes at least one of the sequences of SEQ ID NOs: 40-140 and 242-377, or one of the sequences complementary to the sequences of SEQ ID NOs: 40-140 and 242-377, or a fragment thereof of at least 15 consecutive nucleotides. In one aspect of this embodiment, the array includes at least two of the sequences of SEQ ID NOs: 40-140 and 242-377, the sequences complementary to the sequences of SEQ ID NOs: 40-140 and 242-377, or fragments thereof of at least 15 consecutive nucleotides. In another aspect of this embodiment, the array includes at least five of the sequences of SEQ ID NOs: 40-140 and 242-377, the sequences complementary to the sequences of SEQ ID NOs: 40-140 and 242-377, or fragments thereof of at least 15 consecutive nucleotides.

A further embodiment of the invention encompasses purified polynucleotides comprising an insert from a clone deposited in a deposit having an accession number selected from the group consisting of the accession numbers listed in Table VI or a fragment thereof comprising a contiguous span of at least 8, 10, 12, 15, 20, 25, 40, 60, 100, or 200 nucleotides of said insert. An additional embodiment of the invention encompasses purified polypeptides which comprise, consist of, or consist essentially of an amino acid sequence encoded by the insert from a clone deposited in a deposit having an accession number selected from the group consisting of the accession numbers listed in Table VI, as well as polypeptides which comprise a fragment of said amino acid sequence consisting of a signal peptide, a mature protein, or a contiguous span of at least 5, 8, 10, 12, 15, 20, 25, 40, 60, 100, or 200 amino acids encoded by said insert.

An additional embodiment of the invention encompasses purified polypeptides which comprise a contiguous span of at least 5, 8, 10, 12, 15, 20, 25, 40, 60, 100, or 200 amino acids of SEQ ID NOs: 158, 174, 175, 196, 226, 231, 232, wherein said contiguous span comprises at least one of the amino acid positions which was not shown to be identical to a public sequence in any of Figures 11 to 15. Also encompassed by the invention are purified polynuculeotides encoding said polypeptides.

15

10

Brief Description of the Drawings

Figure 1 is a summary of a procedure for obtaining cDNAs which have been selected to include the 5' ends of the mRNAs from which they are derived.

Figure 2 is an analysis of the 43 amino terminal amino acids of all human SwissProt proteins to determine the frequency of false positives and false negatives using the techniques for signal peptide identification described herein.

Figure 3 shows the distribution of von Heijne scores for 5' ESTs in each of the categories described herein and the probability that these 5' ESTs encode a signal peptide.

Figure 4 shows the distribution of 5' ESTs in each category and the number of 5' ESTs in each category having a given minimum von Heijne's score.

Figure 5 shows the tissues from which the mRNAs corresponding to the 5' ESTs in each of the categories described herein were obtained.

Figure 6 illustrates a method for obtaining extended cDNAs.

Figure 7 is a map of pED6dpc2. pED6dpc2 is derived from pED6dpc1 by insertion of a new polylinker to facilitate cDNA cloning. SSt cDNAs are cloned between EcoRI and NotI. PED vectors are described in Kaufman et al. 30 (1991), NAR 19: 4485-4490.

Figure 8 provides a schematic description of the promoters isolated and the way they are assembled with the corresponding 5' tags.

Figure 9 describes the transcription factor binding sites present in each of these promoters.

-11-

Figure 10 is an alignment of the protein of SEQ ID NO: 217 with the human protein TFAR19 that may play a role in apoptosis (Genbank accession number AF014955, SEQ ID NO: 516).

Figure 11 is an alignment of the proteins of SEQ ID NOs: 174, 175 and 232 with a human secreted protein (Genseg accession number W36955, SEQ ID NO: 517).

Figure 12 is an alignment of the protein of SEQ ID NO: 231 with the human E25 protein (Genbank accession number AF038953, SEQ ID NO: 515).

Figure 13 is an alignment of the protein of SEQ ID-NO: 196 with the human seventransmembrane protein (Genbank accession number Y11395, SEQ ID NO: 518).

Figure 14 is an alignment of the protein of SEQ ID NOs: 158 with the murine subunit 7a of the COP9 complex 10 (Genbank accession number AF071316, SEQ ID NO: 519).

Figure 15 is an alignment of the protein of SEQ ID NO: 226 with the bovine subunit B14.5B of the NADHubiquinone oxidureductase complex (Arizmendi *et al, FEBS Lett.*, **313**: 80-84 (1992) and Swissprot accession -number Q02827, SEQ ID NO: 514).

Detailed Description of the Preferred Embodiment

15 I. Obtaining 5' ESTs

The present extended cDNAs were obtained using 5' ESTs which were isolated as described below.

A. Chemical Methods for Obtaining mRNAs having Intact 5' Ends

In order to obtain the 5' ESTs used to obtain the extended cDNAs of the present invention, mRNAs having intact 5' ends must be obtained. Currently, there are two approaches for obtaining such mRNAs. One of these 20 approaches is a chemical modification method involving derivatization of the 5' ends of the mRNAs and selection of the derivatized mRNAs. The 5' ends of eucaryotic mRNAs possess a structure referred to as a "cap" which comprises a guanosine methylated at the 7 position. The cap is joined to the first transcribed base of the mRNA by a 5', 5'triphosphate bond. In some instances, the 5' guanosine is methylated in both the 2 and 7 positions. Rarely, the 5' guanosine is trimethylated at the 2, 7 and 7 positions. In the chemical method for obtaining mRNAs having intact 5' 25 ends, the 5' cap is specifically derivatized and coupled to a reactive group on an immobilizing substrate. This specific derivatization is based on the fact that only the ribose linked to the methylated guanosine at the 5' end of the mRNA and the ribose linked to the base at the 3' terminus of the mRNA, possess 2', 3'-cis diols. Optionally, where the 3' terminal ribose has a 2', 3'-cis diol, the 2', 3'-cis diol at the 3' end may be chemically modified, substituted, converted, or eliminated, leaving only the ribose linked to the methylated guanosine at the 5' end of the mRNA with a 2', 3'-cis diol. A 30 variety of techniques are available for eliminating the 2', 3'-cis diol on the 3' terminal ribose. For example, controlled alkaline hydrolysis may be used to generate mRNA fragments in which the 3' terminal ribose is a 3'-phosphate, 2'phosphate or (2', 3')-cyclophosphate. Thereafter, the fragment which includes the original 3' ribose may be eliminated from the mixture through chromatography on an oligo-dT column. Alternatively, a base which lacks the 2', 3'-cis diol

-12-

may be added to the 3' end of the mRNA using an RNA ligase such as T4 RNA ligase. Example 1 below describes a method for ligation of pCp to the 3' end of messenger RNA.

EXAMPLE 1

Ligation of the Nucleoside Diphosphate pCp to the 3' End of Messenger RNA

1 μg of RNA was incubated in a final reaction medium of 10 μl in the presence of 5 U of T₄ phage RNA ligase in the buffer provided by the manufacturer (Gibco · BRL), 40 U of the RNase inhibitor RNasin (Promega) and, 2 μl of ³²pCp (Amersham #PB 10208).

The incubation was performed at 37°C for 2 hours or overnight at 7-8°C.

Following modification or elimination of the 2', 3'-cis diol at the 3' ribose, the 2', 3'-cis diol present at the 5' end of the mRNA may be oxidized using reagents such as NaBH₄, NaBH₃CN, or sodium periodate, thereby converting the 2', 3'-cis diol to a dialdehyde. Example 2 describes the oxidation of the 2', 3'-cis diol at the 5' end of the mRNA with sodium periodate.

EXAMPLE 2

Oxidation of 2', 3'-cis diol at the 5' End of the mRNA

0.1 OD unit of either a capped oligoribonucleotide of 47 nucleotides (including the cap) or an uncapped oligoribonucleotide of 46 nucleotides were treated as follows. The oligoribonucleotides were produced by in vitro transcription using the transcription kit "AmpliScribe T7" (Epicentre Technologies). As indicated below, the DNA template for the RNA transcript contained a single cytosine. To synthesize the uncapped RNA, all four NTPs were included in the in vitro transcription reaction. To obtain the capped RNA, GTP was replaced by an analogue of the cap, m7G(5')ppp(5')G. This compound, recognized by polymerase, was incorporated into the 5' end of the nascent transcript during the step of initiation of transcription but was not capable of incorporation during the extension step.

Consequently, the resulting RNA contained a cap at its 5' end. The sequences of the oligoribonucleotides produced by the in vitro transcription reaction were:

+Cap:

25 5'm7GpppGCAUCCUACUCCCAUCCAAUUCCACCCUAACUCCUCCCAUCUCCAC-3' (SEQ ID NO:1)

·Cap:

5'-pppGCAUCCUACUCCCAUCCAAUUCCACCCUAACUCCUCCCAUCUCCAC-3' (SEQ ID NO:2)

The oligoribonucleotides were dissolved in 9 µl of acetate buffer (0.1 M sodium acetate, pH 5.2) and 3 µl of freshly prepared 0.1 M sodium periodate solution. The mixture was incubated for 1 hour in the dark at 4°C or room temperature. Thereafter, the reaction was stopped by adding 4 µl of 10% ethylene glycol. The product was ethanol precipitated, resuspended in 10µl or more of water or appropriate buffer and dialyzed against water.

The resulting aldehyde groups may then be coupled to molecules having a reactive amine group, such as hydrazine, carbazide, thiocarbazide or semicarbazide groups, in order to facilitate enrichment of the 5' ends of the mRNAs. Molecules having reactive amine groups which are suitable for use in selecting mRNAs having intact 5' ends

-13-

include avidin, proteins, antibodies, vitamins, ligands capable of specifically binding to receptor molecules, or oligonucleotides. Example 3 below describes the coupling of the resulting dialdehyde to biotin.

EXAMPLE 3

Coupling of the Dialdehyde with Biotin

5 The oxidation product obtained in Example 2 was dissolved in 50 μl of sodium acetate at a pH of between 5 and 5.2 and 50 μl of freshly prepared 0.02 M solution of biotin hydrazide in a methoxyethanol/water mixture (1:1) of formula:

In the compound used in these experiments, n=5. However, it will be appreciated that other commercially available hydrazides may also be used, such as molecules of the formula above in which n varies from 0 to 5.

The mixture was then incubated for 2 hours at 37°C. Following the incubation, the mixture was precipitated with ethanol and dialyzed against distilled water.

Example 4 demonstrates the specificity of the biotinylation reaction.

15

EXAMPLE 4

Specificity of Biotinylation

The specificity of the biotinylation for capped mRNAs was evaluated by gel electrophoresis of the following samples:

Sample 1. The 46 nucleotide uncapped in vitro transcript prepared as in Example 2 and labeled with ³²pCp as described in Example 1.

Sample 2. The 46 nucleotide uncapped in vitro transcript prepared as in Example 2, labeled with ³²pCp as described in Example 1, treated with the oxidation reaction of Example 2, and subjected to the biotinylation conditions of Example 3.

Sample 3. The 47 nucleotide capped in vitro transcript prepared as in Example 2 and labeled with ³²pCp as described in Example 1.

Sample 4. The 47 nucleotide capped in vitro transcript prepared as in Example 2, labeled with ³²pCp as described in Example 1, treated with the oxidation reaction of Example 2, and subjected to the biotinylation conditions of Example 3.

Samples 1 and 2 had indentical migration rates, demonstrating that the uncapped RNAs were not oxidized and 30 biotinylated. Sample 3 migrated more slowly than Samples 1 and 2, while Sample 4 exhibited the slowest migration.

The difference in migration of the RNAs in Samples 3 and 4 demonstrates that the capped RNAs were specifically biotinylated.

In some cases, mRNAs having intact 5' ends may be enriched by binding the molecule containing a reactive amine group to a suitable solid phase substrate such as the inside of the vessel containing the mRNAs, magnetic beads, chromatography matrices, or nylon or nitrocellulose membranes. For example, where the molecule having a reactive amine group is biotin, the solid phase substrate may be coupled to avidin or streptavidin. Alternatively, where the molecule having the reactive amine group is an antibody or receptor ligand, the solid phase substrate may be coupled to the cognate antigen or receptor. Finally, where the molecule having a reactive amine group comprises an oligonucleotide, the solid phase substrate may comprise a complementary oligonucleotide.

The mRNAs having intact 5' ends may be released from the solid phase following the enrichment procedure.

For example, where the dialdehyde is coupled to biotin hydrazide and the solid phase comprises streptavidin, the mRNAs may be released from the solid phase by simply heating to 95 degrees Celsius in 2% SDS. In some methods, the molecule having a reactive amine group may also be cleaved from the mRNAs having intact 5' ends following enrichment.

Example 5 describes the capture of biotinylated mRNAs with streptavidin coated beads and the release of the biotinylated mRNAs from the beads following enrichment.

EXAMPLE 5

Capture and Release of Biotinylated mRNAs Using Strepatividin Coated Beads

The streptavidin-coated magnetic beads were prepared according to the manufacturer's instructions (CPG Inc., USA). The biotinylated mRNAs were added to a hybridization buffer (1.5 M NaCl, pH 5 - 6). After incubating for 30 minutes, the unbound and nonbiotinylated material was removed. The beads were washed several times in water with 1% SDS. The beads obtained were incubated for 15 minutes at 95°C in water containing 2% SDS.

Example 6 demonstrates the efficiency with which biotinylated mRNAs were recovered from the streptavidin coated beads.

EXAMPLE 6

25

Efficiency of Recovery of Biotinylated mRNAs

The efficiency of the recovery procedure was evaluated as follows. RNAs were labeled with ³²pCp, oxidized, biotinylated and bound to streptavidin coated beads as described above. Subsequently, the bound RNAs were incubated for 5, 15 or 30 minutes at 95°C in the presence of 2% SDS.

The products of the reaction were analyzed by electrophoresis on 12% polyacrylamide gels under denaturing 30 conditions (7 M urea). The gels were subjected to autoradiography. During this manipulation, the hydrazone bonds were not reduced,

Increasing amounts of nucleic acids were recovered as incubation times in 2% SDS increased, demonstrating that biotinylated mRNAs were efficiently recovered.

-15-

In an alternative method for obtaining mRNAs having intact 5' ends, an oligonucleotide which has been derivatized to contain a reactive amine group is specifically coupled to mRNAs having an intact cap. Preferably, the 3' end of the mRNA is blocked prior to the step in which the aldehyde groups are joined to the derivatized oligonucleotide, as described above, so as to prevent the derivatized oligonucleotide from being joined to the 3' end of the mRNA. For example, pCp may be attached to the 3' end of the mRNA using T4 RNA ligase. However, as discussed above, blocking the 3' end of the mRNA is an optional step. Derivatized oligonucleotides may be prepared as described below in Example 7.

EXAMPLE 7

Derivatization of the Oligonucleotide

An oligonucleotide phosphorylated at its 3' end was converted to a 3' hydrazide in 3' by treatment with an aqueous solution of hydrazine or of dihydrazide of the formula H₂N(R1)NH₂ at about 1 to 3 M, and at pH 4.5, in the presence of a carbodiimide type agent soluble in water such as 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide at a final concentration of 0.3 M at a temperature of 8°C overnight.

The derivatized oligonucleotide was then separated from the other agents and products using a standard technique for isolating oligonucleotides.

As discussed above, the mRNAs to be enriched may be treated to eliminate the 3' OH groups which may be present thereon. This may be accomplished by enzymatic ligation of sequences lacking a 3' OH, such as pCp, as described above in Example 1. Alternatively, the 3' OH groups may be eliminated by alkaline hydrolysis as described in Example 8 below.

20

EXAMPLE 8

Alkaline Hydrolysis of mRNA

The mRNAs may be treated with alkaline hydrolysis as follows. In a total volume of 100μ of 0.1N sodium hydroxide, 1.5μ g mRNA is incubated for 40 to 60 minutes at 4°C. The solution is neutralized with acetic acid and precipitated with ethanol.

Following the optional elimination of the 3' OH groups, the diol groups at the 5' ends of the mRNAs are oxidized as described below in Example 9.

EXAMPLE 9

Oxidation of Diols

Up to 1 OD unit of RNA was dissolved in 9 µl of buffer (0.1 M sodium acetate, pH 6-7 or water) and 3 µl of freshly prepared 0.1 M sodium periodate solution. The reaction was incubated for 1 h in the dark at 4°C or room temperature. Following the incubation, the reaction was stopped by adding 4 µl of 10% ethylene glycol. Thereafter the mixture was incubated at room temperature for 15 minutes. After ethanol precipitation, the product was resuspended in 10µl or more of water or appropriate buffer and dialyzed against water.

PCT/IB98/02122

Following oxidation of the diol groups at the 5' ends of the mRNAs, the derivatized oligonucleotide was joined to the resulting aldehydes as described in Example 10.

EXAMPLE 10

Reaction of Aldehydes with Derivatized Oligonucleotides

The oxidized mRNA was dissolved in an acidic medium such as 50 µl of sodium acetate pH 4-6. 50 µl of a solution of the derivatized oligonucleotide was added such that an mRNA:derivatized oligonucleotide ratio of 1:20 was obtained and mixture was reduced with a borohydride. The mixture was allowed to incubate for 2 h at 37°C or overnight (14 h) at 10°C. The mixture was ethanol precipitated, resuspended in 10µl or more of water or appropriate buffer and dialyzed against distilled water. If desired, the resulting product may be analyzed using acrylamide gel electrophoresis, HPLC analysis, or other conventional techniques.

Following the attachment of the derivatized oligonucleotide to the mRNAs, a reverse transcription reaction may be performed as described in Example 11 below.

EXAMPLE 11

Reverse Transcription of mRNAs

An oligodeoxyribonucleotide was derivatized as follows. 3 OD units of an oligodeoxyribonucleotide of sequence ATCAAGAATTCGCACGAGACCATTA (SEQ ID NO:3) having 5'-OH and 3'-P ends were dissolved in 70 µl of a 1.5 M hydroxybenzotriazole solution, pH 5.3, prepared in dimethylformamide/water (75:25) containing 2 µg of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. The mixture was incubated for 2 h 30 min at 22°C. The mixture was then precipitated twice in LiClO₄/accetone. The pellet was resuspended in 200 µl of 0.25 M hydrazine and incubated at 8°C from 3 to 14 h. Following the hydrazine reaction, the mixture was precipitated twice in LiClO₄/accetone.

The messenger RNAs to be reverse transcribed were extracted from blocks of placenta having sides of 2 cm which had been stored at -80°C. The mRNA was extracted using conventional acidic phenol techniques. Oligo-dT chromatography was used to purify the mRNAs. The integrity of the mRNAs was checked by Northern-blotting.

The diol groups on 7 µg of the placental mRNAs were oxidized as described above in Example 9. The

derivatized oligonucleotide was joined to the mRNAs as described in Example 10 above except that the precipitation step was replaced by an exclusion chromatography step to remove derivatized oligodeoxyribonucleotides which were not joined to mRNAs. Exclusion chromatography was performed as follows:

10 ml of AcA34 (BioSepra#230151) gel were equilibrated in 50 ml of a solution of 10 mM Tris pH 8.0, 300 mM NaCl, 1 mM EDTA, and 0.05% SDS. The mixture was allowed to sediment. The supernatant was eliminated and the gel was resuspended in 50 ml of buffer. This procedure was repeated 2 or 3 times.

A glass bead (diameter 3 mm) was introduced into a 2 ml disposable pipette (length 25 cm). The pipette was filled with the gel suspension until the height of the gel stabilized at 1 cm from the top of the pipette. The column was then equilibrated with 20 ml of equilibration buffer (10 mM Tris HCl pH 7.4, 20 mM NaCl).

PCT/IB98/02122

10 μ l of the mRNA which had been reacted with the derivatized oligonucleotide were mixed in 39 μ l of 10 mM urea and 2 μ l of blue-glycerol buffer, which had been prepared by dissolving 5 mg of bromophenol blue in 60% glycerol (v/v), and passing the mixture through a filter with a filter of diameter 0.45 μ m.

The column was loaded. As soon as the sample had penetrated, equilibration buffer was added, 100 µl

fractions were collected. Derivatized oligonucleotide which had not been attached to mRNA appeared in fraction 16 and later fractions. Fractions 3 to 15 were combined and precipitated with ethanol.

The mRNAs which had been reacted with the derivatized oligonucleotide were spotted on a nylon membrane and hybridized to a radioactive probe using conventional techniques. The radioactive probe used in these hybridizations was an oligodeoxyribonucleotide of sequence TAATGGTCTCGTGCGAATTCTTGAT (SEQ ID NO:4) which was anticomplementary to the derivatized oligonucleotide and was labeled at its 5' end with 32P. 1/10th of the mRNAs which had been reacted with the derivatized oligonucleotide was spotted in two spots on the membrane and the membrane was visualized by autoradiography after hybridization of the probe. A signal was observed, indicating that the derivatized oligonucleotide had been joined to the mRNA.

The remaining 9/10 of the mRNAs which had been reacted with the derivatized oligonucleotide was reverse transcribed as follows. A reverse transcription reaction was carried out with reverse transcriptase following the manufacturer's instructions. To prime the reaction, 50 pmol of nonamers with random sequence were used.

A portion of the resulting cDNA was spotted on a positively charged nylon membrane using conventional methods. The cDNAs were spotted on the membrane after the cDNA:RNA heteroduplexes had been subjected to an alkaline hydrolysis in order to eliminate the RNAs. An oligonucleotide having a sequence identical to that of the derivatized oligonucleotide was labeled at its 5' end with ³²P and hybridized to the cDNA blots using conventional techniques. Single-stranded cDNAs resulting from the reverse transcription reaction were spotted on the membrane. As controls, the blot contained 1 pmol, 100 fmol, 50 fmol, 10 fmol and 1 fmol respectively of a control oligodeoxyribonucleotide of sequence identical to that of the derivatized oligonucleotide. The signal observed in the spots containing the cDNA indicated that approximately 15 fmol of the derivatized oligonucleotide had been reverse transcribed.

These results demonstrate that the reverse transcription can be performed through the cap and, in particular, that reverse transcriptase crosses the 5'-P-P-P-5' bond of the cap of eukaryotic messenger RNAs.

The single stranded cDNAs obtained after the above first strand synthesis were used as template for PCR reactions. Two types of reactions were carried out. First, specific amplification of the mRNAs for the alpha globin, dehydrogenase, pp15 and elongation factor E4 were carried out using the following pairs of oligodeoxyribonucleotide primers.

alpha-globin

25

GLO-S: CCG ACA AGA CCA ACG TCA AGG CCG C (SEQ ID NO:5)
GLO-As: TCA CCA GCA GGC AGT GGC TTA GGA G 3' (SEQ ID NO:6)

dehydrogenase

-18-

3 DH-S: AGT GAT TCC TGC TAC TTT GGA TGG C (SEQ ID NO:7)

3 DH-As: GCT TGG TCT TGT TCT GGA GTT TAG A (SEQ ID NO:8)

pp15

PP15-S: TCC AGA ATG GGA GAC AAG CCA ATT T (SEQ ID NO:9)

5 PP15-As: AGG GAG GAG GAA ACA GCG TGA GTC C (SEQ ID NO:10)

Elongation factor E4

EFA1-S: ATG GGA AAG GAA AAG ACT CAT ATC A (SEQ ID NO:11)

EF1A-As: AGC AGC AAC AAT CAG GAC AGC ACA G (SEQ ID NO:12)

Non specific amplifications were also carried out with the antisense (_As) oligodeoxyribonucleotides of the pairs described above and a primer chosen from the sequence of the derivatized oligodeoxyribonucleotide (ATCAAGAATTCGCACGAGACCATTA) (SEQ ID NO:13).

A 1.5% agarose gel containing the following samples corresponding to the PCR products of reverse transcription was stained with ethidium bromide. (1/20th of the products of reverse transcription were used for each PCR reaction).

- Sample 1: The products of a PCR reaction using the globin primers of SEQ ID NOs 5 and 6 in the presence of cDNA.
 - Sample 2: The products of a PCR reaction using the globin primers of SEQ ID NOs 5 and 6 in the absence of added cDNA.
- Sample 3: The products of a PCR reaction using the dehydrogenase primers of SEQ ID NOs 7 and 8 in the 20 presence of cDNA.
 - Sample 4: The products of a PCR reaction using the dehydrogenase primers of SEQ ID NOs 7 and 8 in the absence of added cDNA.
 - Sample 5: The products of a PCR reaction using the pp15 primers of SEQ ID NOs 9 and 10 in the presence of cDNA.
- Sample 6: The products of a PCR reaction using the pp15 primers of SEQ ID NOs 9 and 10 in the absence of added cDNA.
 - Sample 7: The products of a PCR reaction using the EIE4 primers of SEQ ID NOs 11 and 12 in the presence of added cDNA.
- Sample 8: The products of a PCR reaction using the EIE4 primers of SEQ ID NOs 11 and 12 in the absence of added cDNA.

In Samples 1, 3, 5 and 7, a band of the size expected for the PCR product was observed, indicating the presence of the corresponding sequence in the cDNA population.

PCR reactions were also carried out with the antisense oligonucleotides of the globin and dehydrogenase primers (SEQ ID NOs 6 and 8) and an oligonucleotide whose sequence corresponds to that of the derivatized

-19-

oligonucleotide. The presence of PCR products of the expected size in the samples corresponding to samples 1 and 3 above indicated that the derivatized oligonucleotide had been incorporated.

The above examples summarize the chemical procedure for enriching mRNAs for those having intact 5' ends.

Further detail regarding the chemical approaches for obtaining mRNAs having intact 5' ends are disclosed in

International Application No. W096/34981, published November 7, 1996.

Strategies based on the above chemical modifications to the 5' cap structure may be utilized to generate cDNAs which have been selected to include the 5' ends of the mRNAs from which they are derived. In one version of such procedures, the 5' ends of the mRNAs are modified as described above. Thereafter, a reverse transcription reaction is conducted to extend a primer complementary to the mRNA to the 5' end of the mRNA. Single stranded RNAs are eliminated to obtain a population of cDNA/mRNA heteroduplexes in which the mRNA includes an intact 5' end. The resulting heteroduplexes may be captured on a solid phase coated with a molecule capable of interacting with the molecule used to derivatize the 5' end of the mRNA. Thereafter, the strands of the heteroduplexes are separated to recover single stranded first cDNA strands which include the 5' end of the mRNA. Second strand cDNA synthesis may then proceed using conventional techniques. For example, the procedures disclosed in WO 96/34981 or in Carninci, P. et al. High-Efficiency Full-Length cDNA Cloning by Biotinylated CAP Trapper. Genomics 37:327-336 (1996) may be employed to select cDNAs which include the sequence derived from the 5' end of the coding sequence of the mRNA.

Following ligation of the oligonucleotide tag to the 5' cap of the mRNA, a reverse transcription reaction is conducted to extend a primer complementary to the mRNA to the 5' end of the mRNA. Following elimination of the RNA component of the resulting heteroduplex using standard techniques, second strand cDNA synthesis is conducted with a primer complementary to the oligonucleotide tag.

Figure 1 summarizes the above procedures for obtaining cDNAs which have been selected to include the 5' ends of the mRNAs from which they are derived.

B. Enzymatic Methods for Obtaining mRNAs having Intact 5' Ends

Other techniques for selecting cDNAs extending to the 5' end of the mRNA from which they are derived are fully enzymatic. Some versions of these techniques are disclosed in Dumas Milne Edwards J.B. (Doctoral Thesis of Paris VI University, Le clonage des ADNc complets: difficultes et perspectives nouvelles. Apports pour l'etude de la regulation de l'expression de la tryptophane hydroxylase de rat, 20 Dec. 1993), EPO 625572 and Kato et al. Construction of a Human Full-Length cDNA Bank. Gene 150:243-250 (1994).

Briefly, in such approaches, isolated mRNA is treated with alkaline phosphatase to remove the phosphate groups present on the 5' ends of uncapped incomplete mRNAs. Following this procedure, the cap present on full length mRNAs is enzymatically removed with a decapping enzyme such as T4 polynucleotide kinase or tobacco acid pyrophosphatase. An oligonucleotide, which may be either a DNA oligonucleotide or a DNA-RNA hybrid oligonucleotide having RNA at its 3' end, is then ligated to the phosphate present at the 5' end of the decapped mRNA using T4 RNA

ligase. The oligonucleotide may include a restriction site to facilitate cloning of the cDNAs following their synthesis. Example 12 below describes one enzymatic method based on the doctoral thesis of Dumas.

EXAMPLE 12

Enzymatic Approach for Obtaining 5' ESTs

Twenty micrograms of PolyA + RNA were dephosphorylated using Calf Intestinal Phosphatase (Biolabs). After a phenol chloroform extraction, the cap structure of mRNA was hydrolysed using the Tobacco Acid Pyrophosphatase (purified as described by Shinshi et al., Biochemistry 15: 2185-2190, 1976) and a hemi 5'DNA/RNA-3' oligonucleotide having an unphosphorylated 5' end, a stretch of adenosine ribophosphate at the 3' end, and an EcoRI site near the 5' end was ligated to the 5'P ends of mRNA using the T4 RNA ligase (Biolabs). Oligonucleotides suitable for use in this 10 procedure are preferably 30-50 bases in length. Oligonucleotides having an unphosphorylated 5' end may be synthesized by adding a fluorochrome at the 5' end. The inclusion of a stretch of adenosine ribophosphates at the 3' end of the oligonucleotide increases ligation efficiency. It will be appreciated that the oligonucleotide may contain cloning sites other than EcoRI.

Following ligation of the oligonucleotide to the phosphate present at the 5' end of the decapped mRNA, first 15 and second strand cDNA synthesis may be carried out using conventional methods or those specified in EPO 625,572 and Kato et al. Construction of a Human Full-Length cDNA Bank. Gene 150:243-250 (1994), and Dumas Milne Edwards, supra. The resulting cDNA may then be ligated into vectors such as those disclosed in Kato et al. Construction of a Human Full-Length cDNA Bank. Gene 150:243-250 (1994) or other nucleic acid vectors known to those skilled in the art using techniques such as those described in Sambrook et al., Molecular Cloning: A Laboratory Manual 2d Ed., Cold 20 Spring Harbor Laboratory Press, 1989.

II. Characterization of 5' ESTs

The above chemical and enzymatic approaches for enriching mRNAs having intact 5' ends were employed to obtain 5' ESTs. First, mRNAs were prepared as described in Example 13 below.

EXAMPLE 13

25

5

Preparation of mRNA

Total human RNAs or PolyA + RNAs derived from 29 different tissues were respectively purchased from LABIMO and CLONTECH and used to generate 44 cDNA libraries as described below. The purchased RNA had been isolated from cells or tissues using acid guanidium thiocyanate-phenol-chloroform extraction (Chomczyniski, P and Sacchi, N., Analytical Biochemistry 162:156-159, 1987). PolyA+ RNA was isolated from total RNA (LABIMO) by 30 two passes of oligodT chromatography, as described by Aviv and Leder (Aviv, H. and Leder, P., Proc. Natl. Acad. Sci. USA 69:1408-1412, 1972) in order to eliminate ribosomal RNA.

The quality and the integrity of the poly A+ were checked. Northern blots hybridized with a globin probe were used to confirm that the mRNAs were not degraded. Contamination of the PolyA+ mRNAs by ribosomal sequences was checked using RNAs blots and a probe derived from the sequence of the 28S RNA. Preparations of mRNAs with less

than 5% of ribosomal RNAs were used in library construction. To avoid constructing libraries with RNAs contaminated by exogenous sequences (prokaryotic or fungal), the presence of bacterial 16S ribosomal sequences or of two highly expressed mRNAs was examined using PCR.

Following preparation of the mRNAs, the above described chemical and/or the enzymatic procedures for enriching mRNAs having intact 5' ends discussed above were employed to obtain 5' ESTs from various tissues. In both approaches an oligonucleotide tag was attached to the cap at the 5' ends of the mRNAs. The oligonucleotide tag had an EcoRI site therein to facilitate later cloning procedures.

Following attachment of the oligonucleotide tag to the mRNA by either the chemical or enzymatic methods, the integrity of the mRNA was examined by performing a Northern blot with 200-500ng of mRNA using a probe complementary to the oligonucleotide tag.

EXAMPLE 14

cDNA Synthesis Using mRNA Templates Having Intact 5' Ends

For the mRNAs joined to oligonucleotide tags using both the chemical and enzymatic methods, first strand cDNA synthesis was performed using reverse transcriptase with random nonamers as primers. In order to protect internal EcoRI sites in the cDNA from digestion at later steps in the procedure, methylated dCTP was used for first strand synthesis. After removal of RNA by an alkaline hydrolysis, the first strand of cDNA was precipitated using isopropanol in order to eliminate residual primers.

For both the chemical and the enzymatic methods, the second strand of the cDNA was synthesized with a Klenow fragment using a primer corresponding to the 5'end of the ligated oligonucleotide described in Example 12.

20 Preferably, the primer is 20-25 bases in length. Methylated dCTP was also used for second strand synthesis in order to protect internal EcoRI sites in the cDNA from digestion during the cloning process.

Following cDNA synthesis, the cDNAs were cloned into pBlueScript as described in Example 15 below.

EXAMPLE 15

Insertion of cDNAs into BlueScript

Following second strand synthesis, the ends of the cDNA were blunted with T4 DNA polymerase (Biolabs) and the cDNA was digested with EcoRI. Since methylated dCTP was used during cDNA synthesis, the EcoRI site present in the tag was the only site which was hemi-methylated. Consequently, only the EcoRI site in the oligonucleotide tag was susceptible to EcoRI digestion. The cDNA was then size fractionated using exclusion chromatography (AcA, Biosepra). Fractions corresponding to cDNAs of more than 150 bp were pooled and ethanol precipitated. The cDNA was directionally cloned into the Smal and EcoRI ends of the phagemid pBlueScript vector (Stratagene). The ligation mixture was electroporated into bacteria and propagated under appropriate antibiotic selection.

Clones containing the oligonucleotide tag attached were selected as described in Example 16 below.

EXAMPLE 16

Selection of Clones Having the Oligonucleotide Tag Attached Thereto

The plasmid DNAs containing 5' EST libraries made as described above were purified (Qiagen). A positive selection of the tagged clones was performed as follows. Briefly, in this selection procedure, the plasmid DNA was converted to single stranded DNA using gene II endonuclease of the phage F1 in combination with an exonuclease (Chang et al., Gene 127:95-8, 1993) such as exonuclease III or T7 gene 6 exonuclease. The resulting single stranded DNA was then purified using paramagnetic beads as described by Fry et al., Biotechniques, 13: 124-131, 1992. In this procedure, the single stranded DNA was hybridized with a biotinylated oligonucleotide having a sequence corresponding to the 3' end of the oligonucleotide described in Example 13. Preferably, the primer has a length of 20-25 bases. Clones including a sequence complementary to the biotinylated oligonucleotide were captured by incubation with streptavidin coated magnetic beads followed by magnetic selection. After capture of the positive clones, the plasmid DNA was released from the magnetic beads and converted into double stranded DNA using a DNA polymerase such as the ThermoSequenase obtained from Amersham Pharmacia Biotech. Alternatively, protocols such as the Gene Trapper kit (Gibco BRL) may be used. The double stranded DNA was then electroporaved into bacteria. The percentage of positive clones having the 5' tag oligonucleotide was estimated to typically rank between 90 and 98% using dot blot analysis.

Following electroporation, the libraries were ordered in 384-microtiter plates (MTP). A copy of the MTP was stored for future needs. Then the libraries were transferred into 96 MTP and sequenced as described below.

EXAMPLE 17

Sequencing of Inserts in Selected Clones

Plasmid inserts were first amplified by PCR on PE 9600 thermocyclers (Perkin-Elmer), using standard SETA-A and SETA-B primers (Genset SA), AmpliTaqGold (Perkin-Elmer), dNTPs (Boehringer), buffer and cycling conditions as recommended by the Perkin-Elmer Corporation.

PCR products were then sequenced using automatic ABI Prism 377 sequencers (Perkin Elmer, Applied Biosystems Division, Foster City, CA). Sequencing reactions were performed using PE 9600 thermocyclers (Perkin Elmer) with standard dye-primer chemistry and ThermoSequenase (Amersham Life Science). The primers used were either T7 or 21M13 (available from Genset SA) as appropriate. The primers were labeled with the JOE, FAM, ROX and TAMRA dyes. The dNTPs and ddNTPs used in the sequencing reactions were purchased from Boehringer. Sequencing buffer, reagent concentrations and cycling conditions were as recommended by Amersham.

Following the sequencing reaction, the samples were precipitated with EtOH, resuspended in formamide loading buffer, and loaded on a standard 4% acrylamide gel. Electrophoresis was performed for 2.5 hours at 3000V on an ABI 377 sequencer, and the sequence data were collected and analyzed using the ABI Prism DNA Sequencing Analysis Software, version 2.1.2.

The sequence data from the 44 cDNA libraries made as described above were transferred to a proprietary database, where quality control and validation steps were performed. A proprietary base-caller ("Trace"), working using a Unix system automatically flagged suspect peaks, taking into account the shape of the peaks, the inter-peak resolution, and the noise level. The proprietary base-caller also performed an automatic trimming. Any stretch of 25 or

5

20

fewer bases having more than 4 suspect peaks was considered unreliable and was discarded. Sequences corresponding to cloning vector or ligation oligonucleotides were automatically removed from the EST sequences. However, the resulting EST sequences may contain 1 to 5 bases belonging to the above mentioned sequences at their 5' end. If needed, these can easily be removed on a case by case basis.

Thereafter, the sequences were transferred to the proprietary NETGENE™ Database for further analysis as described below.

Following sequencing as described above, the sequences of the 5' ESTs were entered in a proprietary database called NETGENETM for storage and manipulation. It will be appreciated by those skilled in the art that the data could be stored and manipulated on any medium which can be read and accessed by a computer. Computer readable media include magnetically readable media, optically readable media, or electronically readable media. For example, the computer readable media may be a hard disc, a floppy disc, a magnetic tape, CD-ROM, RAM, or ROM as well as other types of other media known to those skilled in the art.

In addition, the sequence data may be stored and manipulated in a variety of data processor programs in a variety of formats. For example, the sequence data may be stored as text in a word processing file, such as

15 MicrosoftWORD or WORDPERFECT or as an ASCII file in a variety of database programs familiar to those of skill in the art, such as DB2, SYBASE, or ORACLE.

The computer readable media on which the sequence information is stored may be in a personal computer, a network, a server or other computer systems known to those skilled in the art. The computer or other system preferably includes the storage media described above, and a processor for accessing and manipulating the sequence data.

Once the sequence data has been stored it may be manipulated and searched to locate those stored sequences which contain a desired nucleic acid sequence or which encode a protein having a particular functional domain. For example, the stored sequence information may be compared to other known sequences to identify homologies, motifs implicated in biological function, or structural motifs.

Programs which may be used to search or compare the stored sequences include the MacPattern (EMBL),

BLAST, and BLAST2 program series (NCBI), basic local alignment search tool programs for nucleotide (BLASTN) and
peptide (BLASTX) comparisons (Altschul et al, J. Mol. Biol. 215: 403 (1990)) and FASTA (Pearson and Lipman, Proc.

Natl. Acad. Sci. USA, 85: 2444 (1988)). The BLAST programs then extend the alignments on the basis of defined match and mismatch criteria.

Motifs which may be detected using the above programs include sequences encoding leucine zippers, helix-turn
helix motifs, glycosylation sites, ubiquitination sites, alpha helices, and beta sheets, signal sequences encoding signal peptides which direct the secretion of the encoded proteins, sequences implicated in transcription regulation such as homeoboxes, acidic stretches, enzymatic active sites, substrate binding sites, and enzymatic cleavage sites.

-24-

Before searching the cDNAs in the NETGENE™ database for sequence motifs of interest, cDNAs derived from mRNAs which were not of interest were identified and eliminated from further consideration as described in Example 18 below.

EXAMPLE 18

5

25

Elimination of Undesired Sequences from Further Consideration

5' ESTs in the NETGENE™ database which were derived from undesired sequences such as transfer RNAs, ribosomal RNAs, mitochondrial RNAs, procaryotic RNAs, fungal RNAs, Alu sequences, L1 sequences, or repeat sequences were identified using the FASTA and BLASTN programs with the parameters listed in Table II.

To eliminate 5' ESTs encoding tRNAs from further consideration, the 5' EST sequences were compared to the 10 sequences of 1190 known tRNAs obtained from EMBL release 38, of which 100 were human. The comparison was performed using FASTA on both strands of the 5' ESTs. Sequences having more than 80% homology over more than 60 nucleotides were identified as tRNA. Of the 144,341 sequences screened, 26 were identified as tRNAs and eliminated from further consideration.

To eliminate 5' ESTs encoding rRNAs from further consideration, the 5' EST sequences were compared to the 15 sequences of 2497 known rRNAs obtained from EMBL release 38, of which 73 were human. The comparison was performed using BLASTN on both strands of the 5' ESTs with the parameter S = 108. Sequences having more than 80% homology over stretches longer than 40 nucleotides were identified as rRNAs. Of the 144,341 sequences screened, 3,312 were identified as rRNAs and eliminated from further consideration.

To eliminate 5' ESTs encoding mtRNAs from further consideration, the 5' EST sequences were compared to 20 the sequences of the two known mitochondrial genomes for which the entire genomic sequences are available and all sequences transcribed from these mitochondrial genomes including tRNAs, rRNAs, and mRNAs for a total of 38 sequences. The comparison was performed using BLASTN on both strands of the 5' ESTs with the parameter S = 108. Sequences having more than 80% homology over stretches longer than 40 nucleotides were identified as mtRNAs. Of the 144,341 sequences screened, 6,110 were identified as mtRNAs and eliminated from further consideration.

Sequences which might have resulted from exogenous contaminants were eliminated from further consideration by comparing the 5' EST sequences to release 46 of the EMBL bacterial and fungal divisions using BLASTN with the parameter S = 144. All sequences having more than 90% homology over at least 40 nucleotides were identified as exogenous contaminants. Of the 42 cDNA libraries examined, the average percentages of procaryotic and fungal sequences contained therein were 0.2% and 0.5% respectively. Among these sequences, only one could be 30 identified as a sequence specific to fungi. The others were either fungal or procaryotic sequences having homologies with vertebrate sequences or including repeat sequences which had not been masked during the electronic comparison.

In addition, the 5' ESTs were compared to 6093 Alu sequences and 1115 L1 sequences to mask 5' ESTs containing such repeat sequences from further consideration. 5' ESTs including THE and MER repeats, SSTR sequences or satellite, micro-satellite, or telomeric repeats were also eliminated from further consideration. On average, 11.5% of

-25-

the sequences in the libraries contained repeat sequences. Of this 11.5%, 7% contained Alu repeats, 3.3% contained L1 repeats and the remaining 1.2% were derived from the other types of repetitive sequences which were screened. These percentages are consistent with those found in cDNA libraries prepared by other groups. For example, the cDNA libraries of Adams et al. contained between 0% and 7.4% Alu repeats depending on the source of the RNA which was used to prepare the cDNA library (Adams et al., *Nature* 377:174, 1996).

The sequences of those 5' ESTs remaining after the elimination of undesirable sequences were compared with the sequences of known human mRNAs to determine the accuracy of the sequencing procedures described above.

EXAMPLE 19

Measurement of Sequencing Accuracy by Comparison to Known Sequences

To further determine the accuracy of the sequencing procedure described above, the sequences of 5' ESTs derived from known sequences were identified and compared to the known sequences. First, a FASTA analysis with overhangs shorter than 5 bp on both ends was conducted on the 5' ESTs to identify those matching an entry in the public human mRNA database. The 6655 5' ESTs which matched a known human mRNA were then realigned with their cognate mRNA and dynamic programming was used to include substitutions, insertions, and deletions in the list of "errors" which would be recognized. Errors occurring in the last 10 bases of the 5' EST sequences were ignored to avoid the inclusion of spurious cloning sites in the analysis of sequencing accuracy.

This analysis revealed that the sequences incorporated in the NETGENE TM database had an accuracy of more than 99.5%.

To determine the efficiency with which the above selection procedures select cDNAs which include the 5' ends of their corresponding mRNAs, the following analysis was performed.

EXAMPLE 20

Determination of Efficiency of 5' EST Selection

To determine the efficiency at which the above selection procedures isolated 5' ESTs which included sequences close to the 5' end of the mRNAs from which they were derived, the sequences of the ends of the 5' ESTs which were derived from the elongation factor 1 subunit α and ferritin heavy chain genes were compared to the known cDNA sequences for these genes. Since the transcription start sites for the elongation factor 1 subunit α and ferritin heavy chain are well characterized, they may be used to determine the percentage of 5' ESTs derived from these genes which included the authentic transcription start sites.

For both genes, more than 95% of the cDNAs included sequences close to or upstream of the 5' end of the 30 corresponding mRNAs.

To extend the analysis of the reliability of the procedures for isolating 5' ESTs from ESTs in the NETGENETM database, a similar analysis was conducted using a database composed of human mRNA sequences extracted from GenBank database release 97 for comparison. For those 5' ESTs derived from mRNAs included in the GeneBank database, more than 85% had their 5' ends close to the 5' ends of the known sequence. As some of the mRNA

PCT/IB98/02122

sequences available in the GenBank database are deduced from genomic sequences, a 5' end matching with these sequences will be counted as an internal match. Thus, the method used here underestimates the yield of ESTs including the authentic 5' ends of their corresponding mRNAs.

The EST libraries made above included multiple 5' ESTs derived from the same mRNA. The sequences of such 5' ESTs were compared to one another and the longest 5' ESTs for each mRNA were identified. Overlapping cDNAs were assembled into continuous sequences (contigs). The resulting continuous sequences were then compared to public databases to gauge their similarity to known sequences, as described in Example 21 below.

EXAMPLE 21

Clustering of the 5' ESTs and Calculation of Novelty Indices for cDNA Libraries

For each sequenced EST library, the sequences were clustered by the 5' end. Each sequence in the library was compared to the others with BLASTN2 (direct strand, parameters S = 107). ESTs with High Scoring Segment Pairs (HSPs) at least 25 bp long, having 95% identical bases and beginning closer than 10 bp from each EST 5' end were grouped. The longest sequence found in the cluster was used as representative of the cluster. A global clustering between libraries was then performed leading to the definition of super-contigs.

To assess the yield of new sequences within the EST libraries, a novelty rate (NR) was defined as: NR = 100 X (Number of new unique sequences found in the library/Total number of sequences from the library). Typically, novelty rating range between 10% and 41% depending on the tissue from which the EST library was obtained. For most of the libraries, the random sequencing of 5' EST libraries was pursued until the novelty rate reached 20%.

Following characterization as described above, the collection of 5' ESTs in NETGENE™ was screened to identify those 5' ESTs bearing potential signal sequences as described in Example 22 below.

EXAMPLE 22

Identification of Potential Signal Sequences in 5' ESTs

The 5' ESTs in the NETGENETM database were screened to identify those having an uninterrupted open reading frame (ORF) longer than 45 nucleotides beginning with an ATG codon and extending to the end of the EST.

Approximately half of the CDNA sequences in NETGENETM contained such as ORF. The ORF of the CDNA sequences in NETGENETM contained such as ORF.

Approximately half of the cDNA sequences in NETGENETM contained such an ORF. The ORFs of these 5' ESTs were searched to identify potential signal motifs using slight modifications of the procedures disclosed in Von Heijne, G. A New Method for Predicting Signal Sequence Cleavage Sites. Nucleic Acids Res. 14:4683-4690 (1986). Those 5' EST sequences encoding a 15 amino acid long stretch with a score of at least 3.5 in the Von Heijne signal peptide identification matrix were considered to possess a signal sequence. Those 5' ESTs which matched a known human mRNA or EST sequence and had a 5' end more than 20 nucleotides downstream of the known 5' end were excluded from further analysis. The remaining cDNAs having signal sequences therein were included in a database called SIGNALTAGTM.

To confirm the accuracy of the above method for identifying signal sequences, the analysis of Example 23 was performed.

-27-

EXAMPLE 23

Confirmation of Accuracy of Identification of Potential Signal Sequences in 5' ESTs

The accuracy of the above procedure for identifying signal sequences encoding signal peptides was evaluated by applying the method to the 43 amino terminal amino acids of all human SwissProt proteins. The computed Von Heijne score for each protein was compared with the known characterization of the protein as being a secreted protein or a non-secreted protein. In this manner, the number of non-secreted proteins having a score higher than 3.5 (false positives) and the number of secreted proteins having a score lower than 3.5 (false negatives) could be calculated.

Using the results of the above analysis, the probability that a peptide encoded by the 5' region of the mRNA is in fact a genuine signal peptide based on its Von Heijne's score was calculated based on either the assumption that 10% of human proteins are secreted or the assumption that 20% of human proteins are secreted. The results of this analysis are shown in Figures 2 and 3.

Using the above method of identifying secretory proteins, 5' ESTs for human glucagon, gamma interferon induced monokine precursor, secreted cyclophilin-like protein, human pleiotropin, and human biotinidase precursor all of which are polypeptides which are known to be secreted, were obtained. Thus, the above method successfully identified those 5' ESTs which encode a signal peptide.

To confirm that the signal peptide encoded by the 5' ESTs actually functions as a signal peptide, the signal sequences from the 5' ESTs may be cloned into a vector designed for the identification of signal peptides. Some signal peptide identification vectors are designed to confer the ability to grow in selective medium on host cells which have a signal sequence operably inserted into the vector. For example, to confirm that a 5' EST encodes a genuine signal peptide, the signal sequence of the 5' EST may be inserted upstream and in frame with a non-secreted form of the yeast invertase gene in signal peptide selection vectors such as those described in U.S. Patent No. 5,536,637. Growth of host cells containing signal sequence selection vectors having the signal sequence from the 5' EST inserted therein confirms that the 5' EST encodes a genuine signal peptide.

Alternatively, the presence of a signal peptide may be confirmed by cloning the extended cDNAs obtained using
the ESTs into expression vectors such as pXT1 (as described below), or by constructing promoter-signal sequencereporter gene vectors which encode fusion proteins between the signal peptide and an assayable reporter protein. After
introduction of these vectors into a suitable host cell, such as COS cells or NIH 3T3 cells, the growth medium may be
harvested and analyzed for the presence of the secreted protein. The medium from these cells is compared to the
medium from cells containing vectors lacking the signal sequence or extended cDNA insert to identify vectors which
encode a functional signal peptide or an authentic secreted protein.

Those 5' ESTs which encoded a signal peptide, as determined by the method of Example 22 above, were further grouped into four categories based on their homology to known sequences. The categorization of the 5' ESTs is described in Example 24 below.

Categorization of 5' ESTs Encoding a Signal Peptide

Those 5' ESTs having a sequence not matching any known vertebrate sequence nor any publicly available EST sequence were designated "new." Of the sequences in the SIGNALTAGTM database, 947 of the 5' ESTs having a Von Heijne's score of at least 3.5 fell into this category.

Those 5' ESTs having a sequence not matching any vertebrate sequence but matching a publicly known EST were designated "EST-ext", provided that the known EST sequence was extended by at least 40 nucleotides in the 5' direction. Of the sequences in the SIGNALTAGTM database, 150 of the 5' ESTs having a Von Heijne's score of at least 3.5 fell into this category.

Those ESTs not matching any vertebrate sequence but matching a publicly known EST without extending the known EST by at least 40 nucleotides in the 5' direction were designated "EST." Of the sequences in the SIGNALTAGTM database, 599 of the 5' ESTs having a Von Heijne's score of at least 3.5 fell into this category.

Those 5' ESTs matching a human mRNA sequence but extending the known sequence by at least 40 nucleotides in the 5' direction were designated "VERT-ext." Of the sequences in the SIGNALTAGTM database, 23 of the 5' ESTs having a Von Heijne's score of at least 3.5 fell into this category. Included in this category was a 5' EST which extended the known sequence of the human translocase mRNA by more than 200 bases in the 5' direction. A 5' EST which extended the sequence of a human tumor suppressor gene in the 5' direction was also identified.

Figure 4 shows the distribution of 5' ESTs in each category and the number of 5' ESTs in each category having a given minimum von Heijne's score.

Each of the 5' ESTs was categorized based on the tissue from which its corresponding mRNA was obtained, 20 as described below in Example 25.

EXAMPLE 25

Categorization of Expression Patterns

Figure 5 shows the tissues from which the mRNAs corresponding to the 5' ESTs in each of the above described categories were obtained.

In addition to categorizing the 5' ESTs by the tissue from which the cDNA library in which they were first identified was obtained, the spatial and temporal expression patterns of the mRNAs corresponding to the 5' ESTs, as well as their expression levels, may be determined as described in Example 26 below. Characterization of the spatial and temporal expression patterns and expression levels of these mRNAs is useful for constructing expression vectors capable of producing a desired level of gene product in a desired spatial or temporal manner, as will be discussed in more detail below.

In addition, 5' ESTs whose corresponding mRNAs are associated with disease states may also be identified. For example, a particular disease may result from lack of expression, over expression, or under expression of an mRNA corresponding to a 5' EST. By comparing mRNA expression patterns and quantities in samples taken from healthy

-29-

individuals with those from individuals suffering from a particular disease, 5' ESTs responsible for the disease may be identified.

It will be appreciated that the results of the above characterization procedures for 5' ESTs also apply to extended cDNAs (obtainable as described below) which contain sequences adjacent to the 5' ESTs. It will also be appreciated that if it is desired to defer characterization until extended cDNAs have been obtained rather than characterizing the ESTs themselves, the above characterization procedures can be applied to characterize the extended cDNAs after their isolation.

EXAMPLE 26

Evaluation of Expression Levels and Patterns of mRNAs

10

Corresponding to 5' ESTs or Extended cDNAs

Expression levels and patterns of mRNAs corresponding to 5' ESTs or extended cDNAs (obtainable as described below) may be analyzed by solution hybridization with long probes as described in International Patent Application No. WO 97/05277. Briefly, a 5' EST, extended cDNA, or fragment thereof corresponding to the gene encoding the mRNA to be characterized is inserted at a cloning site immediately downstream of a bacteriophage (T3, T7 or SP6) RNA polymerase promoter to produce antisense RNA. Preferably, the 5' EST or extended cDNA has 100 or more nucleotides. The plasmid is linearized and transcribed in the presence of ribonucleotides comprising modified ribonucleotides (i.e. biotin-UTP and DIG-UTP). An excess of this doubly labeled RNA is hybridized in solution with mRNA isolated from cells or tissues of interest. The hybridizations are performed under standard stringent conditions (40-50°C for 16 hours in an 80% formamide, 0.4 M NaCl buffer, pH 7-8). The unhybridized probe is removed by digestion with ribonucleases specific for single-stranded RNA (i.e. RNases CL3, T1, Phy M, U2 or A). The presence of the biotin-UTP modification enables capture of the hybrid on a microtitration plate coated with streptavidin. The presence of the DIG modification enables the hybrid to be detected and quantified by ELISA using an anti-DIG antibody coupled to alkaline phosphatase.

The 5' ESTs, extended cDNAs, or fragments thereof may also be tagged with nucleotide sequences for the serial analysis of gene expression (SAGE) as disclosed in UK Patent Application No. 2 305 241 A. In this method, cDNAs are prepared from a cell, tissue, organism or other source of nucleic acid for which it is desired to determine gene expression patterns. The resulting cDNAs are separated into two pools. The cDNAs in each pool are cleaved with a first restriction endonuclease, called an "anchoring enzyme," having a recognition site which is likely to be present at least once in most cDNAs. The fragments which contain the 5' or 3' most region of the cleaved cDNA are isolated by binding to a capture medium such as streptavidin coated beads. A first oligonucleotide linker having a first sequence for hybridization of an amplification primer and an internal restriction site for a "tagging endonuclease" is ligated to the digested cDNAs in the first pool. Digestion with the second endonuclease produces short "tag" fragments from the cDNAs.

-30-

A second oligonucleotide having a second sequence for hybridization of an amplification primer and an internalrestriction site is ligated to the digested cDNAs in the second pool. The cDNA fragments in the second pool are also digested with the "tagging endonuclease" to generate short "tag" fragments derived from the cDNAs in the second pool. The "tags" resulting from digestion of the first and second pools with the anchoring enzyme and the tagging 5 endonuclease are ligated to one another to produce "ditags." In some embodiments, the ditags are concatamerized to produce ligation products containing from 2 to 200 ditags. The tag sequences are then determined and compared to the sequences of the 5' ESTs or extended cDNAs to determine which 5' ESTs or extended cDNAs are expressed in the cell, tissue, organism, or other source of nucleic acids from which the tags were derived. In this way, the expression pattern of the 5' ESTs or extended cDNAs in the cell, tissue, organism, or other source of nucleic acids is obtained.

Quantitative analysis of gene expression may also be performed using arrays. As used herein, the term array means a one dimensional, two dimensional, or multidimensional arrangement of full length cDNAs (i.e. extended cDNAs which include the coding sequence for the signal peptide, the coding sequence for the mature protein, and a stop codon), extended cDNAs, 5' ESTs or fragments of the full length cDNAs, extended cDNAs, or 5' ESTs of sufficient length to permit specific detection of gene expression. Preferably, the fragments are at least 15 nucleotides in length. More 15 preferably, the fragments are at least 100 nucleotides in length. More preferably, the fragments are more than 100 nucleotides in length. In some embodiments the fragments may be more than 500 nucleotides in length.

10

25

For example, quantitative analysis of gene expression may be performed with full length cDNAs, extended cDNAs, 5' ESTs, or fragments thereof in a complementary DNA microarray as described by Schena et al. (Science 270:467-470, 1995; *Proc. Natl. Acad. Sci. U.S.A.* 93:10614-10619, 1996). Full length cDNAs, extended cDNAs, 5' 20 ESTs or fragments thereof are amplified by PCR and arrayed from 96-well microtiter plates onto silylated microscope slides using high-speed robotics. Printed arrays are incubated in a humid chamber to allow rehydration of the array elements and rinsed, once in 0.2% SDS for 1 min, twice in water for 1 min and once for 5 min in sodium borohydride solution. The arrays are submerged in water for 2 min at 95°C, transferred into 0.2% SDS for 1 min, rinsed twice with water, air dried and stored in the dark at 25°C.

Cell or tissue mRNA is isolated or commercially obtained and probes are prepared by a single round of reverse transcription. Probes are hybridized to 1 cm² microarrays under a 14 x 14 mm glass coverslip for 6-12 hours at 60°C. Arrays are washed for 5 min at 25°C in low stringency wash buffer (1 x SSC/0.2% SDS), then for 10 min at room temperature in high stringency wash buffer (0.1 x SSC/0.2% SDS). Arrays are scanned in 0.1 x SSC using a fluorescence laser scanning device fitted with a custom filter set. Accurate differential expression measurements are 30 obtained by taking the average of the ratios of two independent hybridizations.

Quantitative analysis of the expression of genes may also be performed with full length cDNAs, extended cDNAs, 5' ESTs, or fragments thereof in complementary DNA arrays as described by Pietu et al. (Genome Research 6:492-503, 1996). The full length cDNAs, extended cDNAs, 5' ESTs or fragments thereof are PCR amplified and spotted on membranes. Then, mRNAs originating from various tissues or cells are labeled with radioactive nucleotides.

-31-

After hybridization and washing in controlled conditions, the hybridized mRNAs are detected by phospho-imaging or autoradiography. Duplicate experiments are performed and a quantitative analysis of differentially expressed mRNAs is then performed.

Alternatively, expression analysis of the 5' ESTs or extended cDNAs can be done through high density

nucleotide arrays as described by Lockhart et al. (Nature Biotechnology 14: 1675-1680, 1996) and Sosnowsky et al.

(Proc. Natl. Acad. Sci. 94:1119-1123, 1997). Oligonucleotides of 15-50 nucleotides corresponding to sequences of the 5' ESTs or extended cDNAs are synthesized directly on the chip (Lockhart et al., supra) or synthesized and then addressed to the chip (Sosnowski et al., supra). Preferably, the oligonucleotides are about 20 nucleotides in length.

cDNA probes labeled with an appropriate compound, such as biotin, digoxigenin or fluorescent dye, are
synthesized from the appropriate mRNA population and then randomly fragmented to an average size of 50 to 100 nucleotides. The said probes are then hybridized to the chip. After washing as described in Lockhart et al., supra and application of different electric fields (Sosnowsky et al., Proc. Natl. Acad. Sci. 94:1119-1123)., the dyes or labeling compounds are detected and quantified. Duplicate hybridizations are performed. Comparative analysis of the intensity of the signal originating from cDNA probes on the same target oligonucleotide in different cDNA samples indicates a differential expression of the mRNA corresponding to the 5' EST or extended cDNA from which the oligonucleotide sequence has been designed.

III. Use of 5' ESTs to Clone Extended cDNAs and to Clone the Corresponding Genomic DNAs

Once 5' ESTs which include the 5' end of the corresponding mRNAs have been selected using the procedures described above, they can be utilized to isolate extended cDNAs which contain sequences adjacent to the 5' ESTs. The extended cDNAs may include the entire coding sequence of the protein encoded by the corresponding mRNA, including the authentic translation start site, the signal sequence, and the sequence encoding the mature protein remaining after cleavage of the signal peptide. Such extended cDNAs are referred to herein as "full length cDNAs." Alternatively, the extended cDNAs may include only the sequence encoding the mature protein remaining after cleavage of the signal peptide, or only the sequence encoding the signal peptide.

Example 27 below describes a general method for obtaining extended cDNAs. Example 28 below describes the cloning and sequencing of several extended cDNAs, including extended cDNAs which include the entire coding sequence and authentic 5' end of the corresponding mRNA for several secreted proteins.

25

The methods of Examples 27, 28, and 29 can also be used to obtain extended cDNAs which encode less than the entire coding sequence of the secreted proteins encoded by the genes corresponding to the 5' ESTs. In some embodiments, the extended cDNAs isolated using these methods encode at least 10 amino acids of one of the proteins encoded by the sequences of SEQ ID NOs: 40-140 and 242-377. In further embodiments, the extended cDNAs encode at least 20 amino acids of the proteins encoded by the sequences of SEQ ID NOs: 40-140 and 242-377. In further embodiments, the extended cDNAs encode at least 30 amino acids of the sequences of SEQ ID NOs: 40-140 and

-32-

242-377. In a preferred embodiment, the extended cDNAs encode a full length protein sequence, which includes the protein coding sequences of SEQ ID NOs: 40-140 and 242-377.

EXAMPLE 27

General Method for Using 5' ESTs to Clone and Sequence Extended cDNAs

The following general method has been used to quickly and efficiently isolate extended cDNAs including sequence adjacent to the sequences of the 5' ESTs used to obtain them. This method may be applied to obtain extended cDNAs for any 5' EST in the NETGENETM database, including those 5' ESTs encoding secreted proteins. The method is summarized in Figure 6.

1. Obtaining Extended cDNAs

10 a) First strand synthesis

The method takes advantage of the known 5' sequence of the mRNA. A reverse transcription reaction is conducted on purified mRNA with a poly 14dT primer containing a 49 nucleotide sequence at its 5' end allowing the addition of a known sequence at the end of the cDNA which corresponds to the 3' end of the mRNA. For example, the primer may have the following sequence: 5'-ATC GTT GAG ACT CGT ACC AGC AGA GTC ACG AGA GAG ACT ACA CGG TAC TGG TTT TTT TTT TTT TTVN -3' (SEQ ID NO:14). Those skilled in the art will appreciate that other sequences may also be added to the poly dT sequence and used to prime the first strand synthesis. Using this primer and a reverse transcriptase such as the Superscript II (Gibco BRL) or Rnase H Minus M-MLV (Promega) enzyme, a reverse transcript anchored at the 3' polyA site of the RNAs is generated.

After removal of the mRNA hybridized to the first cDNA strand by alkaline hydrolysis, the products of the alkaline hydrolysis and the residual poly dT primer are eliminated with an exclusion column such as an AcA34 (Biosepra) matrix as explained in Example 11.

b) Second strand synthesis

30

A pair of nested primers on each end is designed based on the known 5' sequence from the 5' EST and the known 3' end added by the poly dT primer used in the first strand synthesis. Software used to design primers are either based on GC content and melting temperatures of oligonucleotides, such as OSP (Illier and Green, *PCR Meth. Appl.* 1:124-128, 1991), or based on the octamer frequency disparity method (Griffais et al., *Nucleic Acids Res.* 19: 3887-3891, 1991 such as PC-Rare (http://bioinformatics.weizmann.ac.il/software/PC-Rare/doc/manuel.html).

Preferably, the nested primers at the 5' end are separated from one another by four to nine bases. The 5' primer sequences may be selected to have melting temperatures and specificities suitable for use in PCR.

Preferably, the nested primers at the 3' end are separated from one another by four to nine bases. For example, the nested 3' primers may have the following sequences: (5'- CCA GCA GAG TCA CGA GAG AGA CTA CAC GG -3'(SEQ ID NO:15), and 5'- CAC GAG AGA GAC TAC ACG GTA CTG G -3' (SEQ ID NO:16). These primers were selected because they have melting temperatures and specificities compatible with their use in PCR. However, those skilled in the art will appreciate that other sequences may also be used as primers.

The first PCR run of 25 cycles is performed using the Advantage Tth Polymerase Mix (Clontech) and the outerprimer from each of the nested pairs. A second 20 cycle PCR using the same enzyme and the inner primer from each of the nested pairs is then performed on 1/2500 of the first PCR product. Thereafter, the primers and nucleotides are removed.

5 2. Seguencing of Full Length Extended cDNAs or Fragments Thereof

Due to the lack of position constraints on the design of 5' nested primers compatible for PCR use using the OSP software, amplicons of two types are obtained. Preferably, the second 5' primer is located upstream of the translation initiation codon thus yielding a nested PCR product containing the whole coding sequence. Such a full length extended cDNA undergoes a direct cloning procedure as described in section a below. However, in some cases, the second 5' primer is located downstream of the translation initiation codon, thereby yielding a PCR product containing only part of the ORF. Such incomplete PCR products are submitted to a modified procedure described in section b below.

a) Nested PCR products containing complete ORFs

When the resulting nested PCR product contains the complete coding sequence, as predicted from the 5'EST sequence, it is closed in an appropriate vector such as pED6dpc2, as described in section 3.

b) Nested PCR products containing incomplete ORFs

When the amplicon does not contain the complete coding sequence, intermediate steps are necessary to obtain both the complete coding sequence and a PCR product containing the full coding sequence. The complete coding sequence can be assembled from several partial sequences determined directly from different PCR products as described in the following section.

Once the full coding sequence has been completely determined, new primers compatible for PCR use are designed to obtain amplicons containing the whole coding region. However, in such cases, 3' primers compatible for PCR use are located inside the 3' UTR of the corresponding mRNA, thus yielding amplicons which lack part of this region, i.e. the polyA tract and sometimes the polyadenylation signal, as illustrated in figure 6. Such full length extended cDNAs are then cloned into an appropriate vector as described in section 3.

c) Sequencing extended cDNAs

Sequencing of extended cDNAs is performed using a Die Terminator approach with the AmpliTaq DNA polymerase FS kit available from Perkin Elmer.

In order to sequence PCR fragments, primer walking is performed using software such as OSP to choose

30 primers and automated computer software such as ASMG (Sutton et al., *Genome Science Technol.* 1: 9-19, 1995) to construct contigs of walking sequences including the initial 5' tag using minimum overlaps of 32 nucleotides. Preferably, primer walking is performed until the sequences of full length cDNAs are obtained.

Completion of the sequencing of a given extended cDNA fragment is assessed as follows. Since sequences located after a polyA tract are difficult to determine precisely in the case of uncloned products, sequencing and primer

-34-

walking processes for PCR products are interrupted when a polyA tract is identified in extended cDNAs obtained as described in case b. The sequence length is compared to the size of the nested PCR product obtained as described above. Due to the limited accuracy of the determination of the PCR product size by gel electrophoresis, a sequence is considered complete if the size of the obtained sequence is at least 70 % the size of the first nested PCR product. If the 5 length of the sequence determined from the computer analysis is not at least 70% of the length of the nested PCR product, these PCR products are cloned and the sequence of the insertion is determined. When Northern blot data are available, the size of the mRNA detected for a given PCR product is used to finally assess that the sequence is complete. Sequences which do not fulfill the above criteria are discarded and will undergo a new isolation procedure.

Sequence data of all extended cDNAs are then transferred to a proprietary database, where quality controls 10 and validation steps are carried out as described in example 15.

3. Cloning of Full Length Extended cDNAs

20

The PCR product containing the full coding sequence is then cloned in an appropriate vector. For example, the extended cDNAs can be cloned into the expression vector pED6dpc2 (DiscoverEase, Genetics Institute, Cambridge, MA) as follows. The structure of pED6dpc2 is shown in Figure 7. pED6dpc2 vector DNA is prepared with blunt ends by 15 performing an EcoRI digestion followed by a fill in reaction. The blunt ended vector is dephosphorylated. After removal of PCR primers and ethanol precipitation, the PCR product containing the full coding sequence or the extended cDNA obtained as described above is phosphorylated with a kinase subsequently removed by phenol-Sevag extraction and precipitation. The double stranded extended cDNA is then ligated to the vector and the resulting expression plasmid introduced into appropriate host cells.

Since the PCR products obtained as described above are blunt ended molecules that can be cloned in either direction, the orientation of several clones for each PCR product is determined. Then, 4 to 10 clones are ordered in microtiter plates and subjected to a PCR reaction using a first primer located in the vector close to the cloning site and a second primer located in the portion of the extended cDNA corresponding to the 3' end of the mRNA. This second primer may be the antisense primer used in anchored PCR in the case of direct cloning (case a) or the antisense primer located 25 inside the 3'UTR in the case of indirect cloning (case b). Clones in which the start codon of the extended cDNA is operably linked to the promoter in the vector so as to permit expression of the protein encoded by the extended cDNA are conserved and sequenced. In addition to the ends of cDNA inserts, approximately 50 bp of vector DNA on each side of the cDNA insert are also sequenced.

The cloned PCR products are then entirely sequenced according to the aforementioned procedure. In this case, 30 contig assembly of long fragments is then performed on walking sequences that have already contigated for uncloned PCR products during primer walking. Sequencing of cloned amplicons is complete when the resulting contigs include the whole coding region as well as overlapping sequences with vector DNA on both ends.

4. Computer Analysis of Full Length Extended cDNA

Sequences of all full length extended cDNAs are then submitted to further analysis as described below and using the parameters found in Table II with the following modifications. For screening of miscellaneous subdivisions of Genbank, FASTA was used instead of BLASTN and 15 nucleotide of homology was the limit instead of 17. For Alu detection, BLASTN was used with the following parameters: S=72; identity=70%; and length = 40 nucleotides.

Polyadenylation signal and polyA tail which were not search for the 5' ESTs were searched. For polyadenylation signal detection the signal (AATAAA) was searched with one permissible mismatch in the last ten nucleotides preceding the 5' end of the polyA. For the polyA, a stretch of 8 amino acids in the last 20 nucleotides of the sequence was searched with BLAST2N in the sense strand with the following parameters (W = 6, S = 10, E = 1000, and identity = 90%). Finally, patented sequences and ORF homologies were searched using, respectively, BLASTN and BLASTP on GenSEQ (Derwent's database of patented nucleotide sequences) and SWISSPROT for ORFs with the following parameters (W = 8 and B = 10). Before examining the extended full length cDNAs for sequences of interest, extended cDNAs which are not

of interest are searched as follows. a) Elimination of undesired sequences

Although 5'ESTs were checked to remove contaminant sequences as described in Example 18, a last verification was

15 carried out to identify extended cDNAs sequences derived from undesired sequences such as vector RNAs, transfer

RNAs, ribosomal rRNAs, mitochondrial RNAs, prokaryotic RNAs and fungal RNAs using the FASTA and BLASTN

programs on both strands of extended cDNAs as described below.

To identify the extended cDNAs encoding vector RNAs, extended cDNAs are compared to the known sequences of vector RNA using the FASTA program. Sequences of extended cDNAs with more than 90% homology over stretches of 15 nucleotides are identified as vector RNA.

To identify the extended cDNAs encoding tRNAs, extended cDNA sequences were compared to the sequences of 1190 known tRNAs obtained from EMBL release 38, of which 100 were human. Sequences of extended cDNAs having more than 80% homology over 60 nucleotides using FASTA were identified as tRNA.

To identify the extended cDNAs encoding rRNAs, extended cDNA sequences were compared to the sequences
of 2497 known rRNAs obtained from EMBL release 38, of which 73 were human. Sequences of extended cDNAs having
more than 80% homology over stretches longer than 40 nucleotides using BLASTN were identified as rRNAs.

To identify the extended cDNAs encoding mtRNAs, extended cDNA sequences were compared to the sequences of the two known mitochondrial genomes for which the entire genomic sequences are available and all sequences transcribed from these mitochondrial genomes including tRNAs, rRNAs, and mRNAs for a total of 38 sequences. Sequences of extended cDNAs having more than 80% homology over stretches longer than 40 nucleotides using BLASTN were identified as mtRNAs.

Sequences which might have resulted from other exogenous contaminants were identified by comparing extended cDNA sequences to release 105 of Genbank bacterial and fungal divisions. Sequences of extended cDNAs

having more than 90% homology over 40 nucleotides using BLASTN were identified as exogenous prokaryotic or fungal contaminants.

In addition, extended cDNAs were searched for different repeat sequences, including Alu sequences, L1 sequences, THE and MER repeats, SSTR sequences or satellite, micro-satellite, or telomeric repeats. Sequences of extended cDNAs with more than 70% homology over 40 nucleotide stretches using BLASTN were identified as repeat sequences and masked in further identification procedures. In addition, clones showing extensive homology to repeats, i.e., matches of either more than 50 nucleotides if the homology was at least 75% or more than 40 nucleotides if the homology was at least 90%, were flagged.

b) Identification of structural features

Structural features, e.g. polyA tail and polyadenylation signal, of the sequences of full length extended cDNAs are subsequently determined as follows.

A polyA tail is defined as a homopolymeric stretch of at least 11 A with at most one alternative base within it.

The polyA tail search is restricted to the last 20 nt of the sequence and limited to stretches of 11 consecutive A's because sequencing reactions are often not readable after such a polyA stretch. Stretches with 100% homology over 6 nucleotides are identified as polyA tails.

To search for a polyadenylation signal, the polyA tail is clipped from the full-length sequence. The 50 bp preceding the polyA tail are searched for the canonic polyadenylation AAUAAA signal allowing one mismatch to account for possible sequencing errors and known variation in the canonical sequence of the polyadenylation signal.

c) Identification of functional features

Functional features, e.g. ORFs and signal sequences, of the sequences of full length extended cDNAs were subsequently determined as follows.

The 3 upper strand frames of extended cDNAs are searched for ORFs defined as the maximum length fragments beginning with a translation initiation codon and ending with a stop codon. ORFs encoding at least 20 amino acids are preferred.

Each found ORF is then scanned for the presence of a signal peptide in the first 50 amino-acids or, where appropriate, within shorter regions down to 20 amino acids or less in the ORF, using the matrix method of von Heijne (Nuc. Acids Res. 14: 4683-4690 (1986)) and the modification described in Example 22.

d) Homology to either nucleotidic or proteic sequences

25

Sequences of full length extended cDNAs are then compared to known sequences on a nucleotidic or proteic 30 basis.

Sequences of full length extended cDNAs are compared to the following known nucleic acid sequences: vertebrate sequences (Genbank), EST sequences (Genbank), patented sequences (Geneseqn) and recently identified sequences (Genbank daily releases) available at the time of filing for the priority documents. Full length cDNA sequences are also compared to the sequences of a private database (Genset internal sequences) in order to find sequences that

5

have already been identified by applicants. Sequences of full length extended cDNAs with more than 90% homology over 30 nucleotides using either BLASTN or BLAST2N as indicated in Table III are identified as sequences that have already been described. Matching vertebrate sequences are subsequently examined using FASTA; full length extended cDNAs with more than 70% homology over 30 nucleotides are identified as sequences that have already been described.

ORFs encoded by full length extended cDNAs as defined in section c) are subsequently compared to known amino acid sequences found in Swissprot release CHP, PIR release PIR# and Genpept release GPEPT public databases using BLASTP with the parameter W = 8 and allowing a maximum of 10 matches. Sequences of full length extended cDNAs showing extensive homology to known protein sequences are recognized as already identified proteins.

In addition, the three-frame conceptual translation products of the top strand of full length extended cDNAs

are compared to publicly known amino acid sequences of Swissprot using BLASTX with the parameter E=0.001.

Sequences of full length extended cDNAs with more than 70% homology over 30 amino acid stretches are detected as already identified proteins.

5. Selection of Cloned Full Length Sequences of the Present Invention

Cloned full length extended cDNA sequences that have already been characterized by the aforementioned computer analysis are then submitted to an automatic procedure in order to preselect full length extended cDNAs containing sequences of interest.

a) Automatic sequence preselection

All complete cloned full length extended cDNAs clipped for vector on both ends are considered. First, a negative selection is operated in order to eliminate unwanted cloned sequences resulting from either contaminants or PCR artifacts as follows. Sequences matching contaminant sequences such as vector RNA, tRNA, mtRNA, rRNA sequences are discarded as well as those encoding ORF sequences exhibiting extensive homology to repeats as defined in section 4 a). Sequences obtained by direct cloning using nested primers on 5' and 3' tags (section 1. case a) but lacking polyA tail are discarded. Only ORFs containing a signal peptide and ending either before the polyA tail (case a) or before the end of the cloned 3'UTR (case b) are kept. Then, ORFs containing unlikely mature proteins such as mature proteins which size is less than 20 amino acids or less than 25% of the immature protein size are eliminated.

In the selection of the OFR, priority was given to the ORF and the frame corresponding to the polypeptides described in SignalTag Patents (United States Patent Application Serial Nos: 08/905,223; 08/905,135; 08/905,051; 08/905,144; 08/905,279; 08/904,468; 08/905,134; and 08/905,133). If the ORF was not found among the OFRs described in the SignalTag Patents, the ORF encoding the signal peptide with the highest score according to Von Heijne method as defined in Example 22 was chosen. If the scores were identical, then the longest ORF was chosen.

Sequences of full length extended cDNA clones are then compared pairwise with BLAST after masking of the repeat sequences. Sequences containing at least 90% homology over 30 nucleotides are clustered in the same class. Each cluster is then subjected to a cluster analysis that detects sequences resulting from internal priming or from

-38-

alternative splicing, identical sequences or sequences with several frameshifts. This automatic analysis serves as a basis for manual selection of the sequences.

b) Manual sequence selection

30

Manual selection is carried out using automatically generated reports for each sequenced full length extended cDNA clone. During this manual procedures, a selection is operated between clones belonging to the same class as follows. ORF sequences encoded by clones belonging to the same class are aligned and compared. If the homology between nucleotidic sequences of clones belonging to the same class is more than 90% over 30 nucleotide stretches or if the homology between amino acid sequences of clones belonging to the same class is more than 80% over 20 amino acid stretches, than the clones are considered as being identical. The chosen ORF is the best one according to the criteria mentioned below. If the nucleotide and amino acid homologies are less than 90% and 80% respectively, the clones are said to encode distinct proteins which can be both selected if they contain sequences of interest.

Selection of full length extended cDNA clones encoding sequences of interest is performed using the following criteria. Structural parameters (initial tag, polyadenylation site and signal) are first checked. Then, homologies with known nucleic acids and proteins are examined in order to determine whether the clone sequence match a known nucleic/proteic sequence and, in the latter case, its covering rate and the date at which the sequence became public. If there is no extensive match with sequences other than ESTs or genomic DNA, or if the clone sequence brings substantial new information, such as encoding a protein resulting from alternative slicing of an mRNA coding for an already known protein, the sequence is kept. Examples of such cloned full length extended cDNAs containing sequences of interest are described in Example 28. Sequences resulting from chimera or double inserts as assessed by homology to other sequences are discarded during this procedure.

EXAMPLE 28

Cloning and Sequencing of Extended cDNAs

The procedure described in Example 27 above was used to obtain the extended cDNAs of the present invention. Using this approach, the full length cDNA of SEQ ID NO:17 was obtained. This cDNA falls into the "EST-ext" category described above and encodes the signal peptide MKKVLLLITAILAVAVG (SEQ ID NO: 18) having a von Heijne score of 8.2.

The full length cDNA of SEQ ID NO:19 was also obtained using this procedure. This cDNA falls into the "EST-ext" category described above and encodes the signal peptide MWWFQQGLSFLPSALVIWTSA (SEQ ID NO:20) having a von Heijne score of 5.5.

Another full length cDNA obtained using the procedure described above has the sequence of SEQ ID NO:21.

This cDNA, falls into the "EST-ext" category described above and encodes the signal peptide

MVLTTLPSANSANSPVNMPTTGPNSLSYASSALSPCLT (SEQ ID NO:22) having a von Heijne score of 5.9.

.39.

The above procedure was also used to obtain a full length cDNA having the sequence of SEQ ID NO:23. This cDNA falls into the "EST-ext" category described above and encodes the signal peptide ILSTVTALTFAXA (SEQ ID NO:24) having a von Heijne score of 5.5.

The full length cDNA of SEQ ID NO:25 was also obtained using this procedure. This cDNA falls into the "new" category described above and encodes a signal peptide LVLTLCTLPLAVA (SEQ ID NO:26) having a von Heijne score of 10.1.

The full length cDNA of SEQ ID NO:27 was also obtained using this procedure. This cDNA falls into the "new" category described above and encodes a signal peptide LWLLFFLVTAIHA (SEQ ID NO:28) having a von Heijne score of 10.7.

The above procedures were also used to obtain the extended cDNAs of the present invention. 5' ESTs expressed in a variety of tissues were obtained as described above. The appended sequence listing provides the tissues from which the extended cDNAs were obtained. It will be appreciated that the extended cDNAs may also be expressed in tissues other than the tissue listed in the sequence listing.

5' ESTs obtained as described above were used to obtain extended cDNAs having the sequences of SEQ ID

NOs: 40-140 and 242-377. Table IV provides the sequence identification numbers of the extended cDNAs of the present invention, the locations of the full coding sequences in SEQ ID NOs: 40-140 and 242-377 (i.e. the nucleotides encoding both the signal peptide and the mature protein, listed under the heading FCS location in Table IV), the locations of the nucleotides in SEQ ID NOs: 40-140 and 242-377 which encode the signal peptides (listed under the heading SigPep Location in Table IV), the locations of the nucleotides in SEQ ID NOs: 40-140 and 242-377 which encode the mature proteins generated by cleavage of the signal peptides (listed under the heading Mature Polypeptide Location in Table IV), the locations in SEQ ID NOs: 40-140 and 242-377 of stop codons (listed under the heading Stop Codon Location in Table IV), the locations in SEQ ID NOs: 40-140 and 242-377 of polyA signals (listed under the heading Poly A Signal Location in Table IV) and the locations of polyA sites (listed under the heading Poly A Site Location in Table IV).

The polypeptides encoded by the extended cDNAs were screened for the presence of known structural or

functional motifs or for the presence of signatures, small amino acid sequences which are well conserved amongst the
members of a protein family. The conserved regions have been used to derive consensus patterns or matrices included in
the PROSITE data bank, in particular in the file prosite.dat (Release 13.0 of November 1995, located at
http://expasy.hcuge.ch/sprot/prosite.html. Prosite_convert and prosite_scan programs
(http://ulrec3.unil.ch/ftpserveur/prosite scan) were used to find signatures on the extended cDNAs.

For each pattern obtained with the prosite_convert program from the prosite.dat file, the accuracy of the detection on a new protein sequence has been tested by evaluating the frequency of irrelevant hits on the population of human secreted proteins included in the data bank SWISSPROT. The ratio between the number of hits on shuffled proteins (with a window size of 20 amino acids) and the number of hits on native (unshuffled) proteins was used as an index. Every pattern for which the ration was greater than 20% (one hit on shuffled proteins for 5 hits on native

-40-

proteins) was skipped during the search with prosite_scan. The program used to shuffle protein sequences (db_shuffled) and the program used to determine the statistics for each pattern in the protein data banks (prosite_statistics) are available on the ftp site http://ulrec3.unil.ch/ftpserveur/prosite_scan.

Table V lists the sequence identification numbers of the polypeptides of SEQ ID NOs: 141-241 and 378-513, the locations of the amino acid residues of SEQ ID NOs: 141-241 and 378-513 in the full length polypeptide (second column), the locations of the amino acid residues of SEQ ID NOs: 141-241 and 378-513 in the signal peptides (third column), and the locations of the amino acid residues of SEQ ID NOs: 141-241 and 378-513 in the mature polypeptide created by cleaving the signal peptide from the full length polypeptide (fourth column).

The nucleotide sequences of the sequences of SEQ ID NOs: 40-140 and 242-377 and the amino acid sequences

encoded by SEQ ID NOs: 40-140 and 242-377 (i.e. amino acid sequences of SEQ ID NOs: 141-241 and 378-513) are

provided in the appended sequence listing. In some instances, the sequences are preliminary and may include some
incorrect or ambiguous sequences or amino acids. The sequences of SEQ ID NOs: 40-140 and 242-377 can readily be
screened for any errors therein and any sequence ambiguities can be resolved by resequencing a fragment containing
such errors or ambiguities on both strands. Nucleic acid fragments for resolving sequencing errors or ambiguities may be
obtained from the deposited clones or can be isolated using the techniques described herein. Resolution of any such
ambiguities or errors may be facilitated by using primers which hybridize to sequences located close to the ambiguous or
erroneous sequences. For example, the primers may hybridize to sequences within 50-75 bases of the ambiguity or
error. Upon resolution of an error or ambiguity, the corresponding corrections can be made in the protein sequences
encoded by the DNA containing the error or ambiguity. For example, in the sequences of the present invention, ambiguities
in the sequence of SEQ ID NO: 131 were resolved. The amino acid sequence of the protein encoded by a particular clone
can also be determined by expression of the clone in a suitable host cell, collecting the protein, and determining its
sequence.

For each amino acid sequence, Applicants have identified what they have determined to be the reading frame best identifiable with sequence information available at the time of filing. Some of the amino acid sequences may contain "Xaa" designators. These "Xaa" designators indicate either (1) a residue which cannot be identified because of nucleotide sequence ambiguity or (2) a stop codon in the determined sequence where Applicants believe one should not exist (if the sequence were determined more accurately).

Cells containing the extended cDNAs (SEQ ID NOs: 40-140 and 242-377) of the present invention in the vector pED6dpc2, are maintained in permanent deposit by the inventors at Genset, S.A., 24 Rue Royale, 75008 Paris, France.

Pools of cells containing the extended cDNAs (SEQ ID NOs: 40-140 and 242-377), from which cells containing a particular polynucleotide are obtainable, were deposited with the American Type Culture Collection, 10801 University Blvd., Manassas, VA 20110-2209 or the European Collection of Cell Cultures, Vaccine Research and Production Laboratory, Public Health Laboratory Service, Centre for Applied Microbiology and Research, Porton Down, Salisbury, Wiltshire SP4 OJG, United Kingdom. Each extended cDNA clone has been transfected into separate bacterial cells (E-

30

PCT/IB98/02122 WO 99/31236

-41.

coli) for this composite deposit. Table VI lists the deposit numbers of the clones containing the extended cDNAs of the present invention. Table VII provides the internal designation number assigned to each SEQ ID NO and indicates whether the sequence is a nucleic acid sequence or a protein sequence.

Each extended cDNA can be removed from the pED6dpc2 vector in which it was deposited by performing a 5 Notl, Pstl double digestion to produce the appropriate fragment for each clone. The proteins encoded by the extended cDNAs may also be expressed from the promoter in pED6dpc2.

Bacterial cells containing a particular clone can be obtained from the composite deposit as follows:

An oligonucleotide probe or probes should be designed to the sequence that is known for that particular clone. This sequence can be derived from the sequences provided herein, or from a combination of those sequences. The design 10 of the oligonucleotide probe should preferably follow these parameters:

(a) It should be designed to an area of the sequence which has the fewest ambiguous bases ("N's"), if any;

(b) Preferably, the probe is designed to have a T_m of approx. 80°C (assuming 2 degrees for each A or T and 4 degrees for each G or C). However, probes having melting temperatures between 40 °C and 80 °C may also be used provided that specificity is not lost.

15

20

The oligonucleotide should preferably be labeled with (-[32P]ATP (specific activity 6000 Ci/mmole) and T4 polynucleotide kinase using commonly employed techniques for labeling oligonucleotides. Other labeling techniques can also be used. Unincorporated label should preferably be removed by gel filtration chromatography or other established methods. The amount of radioactivity incorporated into the probe should be quantified by measurement in a scintillation counter. Preferably, specific activity of the resulting probe should be approximately 4X10⁶ dpm/pmole.

The bacterial culture containing the pool of full-length clones should preferably be thawed and 100 µl of the stock used to inoculate a sterile culture flask containing 25 ml of sterile L-broth containing ampicillin at 100 ug/ml. The culture should preferably be grown to saturation at 37°C, and the saturated culture should preferably be diluted in fresh L-broth. Aliquots of these dilutions should preferably be plated to determine the dilution and volume which will yield approximately 5000 distinct and well-separated colonies on solid bacteriological media containing L-broth containing 25 ampicillin at 100 μg/ml and agar at 1.5% in a 150 mm petri dish when grown overnight at 37°C. Other known methods of obtaining distinct, well-separated colonies can also be employed.

Standard colony hybridization procedures should then be used to transfer the colonies to nitrocellulose filters and lyse, denature and bake them.

The filter is then preferably incubated at 65°C for 1 hour with gentle agitation in 6X SSC (20X stock is 30 175.3 g NaC1/liter, 88.2 g Na citrate/liter, adjusted to pH 7.0 with NaOH) containing 0.5% SDS, 100 pg/ml of yeast RNA, and 10 mM EDTA (approximately 10 mL per 150 mm filter). Preferably, the probe is then added to the hybridization mix at a concentration greater than or equal to 1X10⁶ dpm/mL. The filter is then preferably incubated at 65°C with gentle agitation overnight. The filter is then preferably washed in 500 mL of 2X SSC/0.1% SDS at room temperature with gentle shaking for 15 minutes. A third wash with 0.1X SSC/0.5% SDS at 65°C for 30 minutes to

1 hour is optional. The filter is then preferably dried and subjected to autoradiography for sufficient time to visualize the positives on the X-ray film. Other known hybridization methods can also be employed.

The positive colonies are picked, grown in culture, and plasmid DNA isolated using standard procedures. The clones can then be verified by restriction analysis, hybridization analysis, or DNA sequencing.

The plasmid DNA obtained using these procedures may then be manipulated using standard cloning techniques familiar to those skilled in the art. Alternatively, a PCR can be done with primers designed at both ends of the extended cDNA insertion. For example, a PCR reaction may be conducted using a primer having the sequence GGCCATACACTTGAGTGAC (SEQ ID NO:38) and a primer having the sequence ATATAGACAAACGCACACC (SEQ. ID. NO:39). The PCR product which corresponds to the extended cDNA can then be manipulated using standard cloning 10 techniques familiar to those skilled in the art.

In addition to PCR based methods for obtaining extended cDNAs, traditional hybridization based methods may also be employed. These methods may also be used to obtain the genomic DNAs which encode the mRNAs from which the 5' ESTs were derived, mRNAs corresponding to the extended cDNAs, or nucleic acids which are homologous to extended cDNAs or 5' ESTs. Example 29 below provides an example of such methods.

15

WO 99/31236

5

30

EXAMPLE 29

Methods for Obtaining Extended cDNAs or Nucleic Acids Homologous to Extended cDNAs or 5' ESTs

A full length cDNA library can be made using the strategies described in Examples 13, 14, 15, and 16 above by replacing the random nonamer used in Example 14 with an oligo-dT primer. For instance, the oligonucleotide of SEQ ID 20 NO:14 may be used.

Alternatively, a cDNA library or genomic DNA library may be obtained from a commercial source or made using techniques familiar to those skilled in the art. The library includes cDNAs which are derived from the mRNA corresponding to a 5' EST or which have homology to an extended cDNA or 5' EST. The cDNA library or genomic DNA library is hybridized to a detectable probe comprising at least 10 consecutive nucleotides from the 5' EST or extended 25 cDNA using conventional techniques. Preferably, the probe comprises at least 12, 15, or 17 consecutive nucleotides from the 5' EST or extended cDNA. More preferably, the probe comprises at least 20-30 consecutive nucleotides from the 5' EST or extended cDNA. In some embodiments, the probe comprises at least 30 nucleotides from the 5' EST or extended cDNA. In other embodiments, the probe comprises at least 40, at least 50, at least 75, at least 100, at least 150, or at least 200 consecutive nucleotides from the 5' EST or extended cDNA.

Techniques for identifying cDNA clones in a cDNA library which hybridize to a given probe sequence are disclosed in Sambrook et al., Molecular Cloning: A Laboratory Manual 2d Ed., Cold Spring Harbor Laboratory Press, 1989. The same techniques may be used to isolate genomic DNAs.

Briefly, cDNA or genomic DNA clones which hybridize to the detectable probe are identified and isolated for further manipulation as follows. A probe comprising at least 10 consecutive nucleotides from the 5' EST or extended cDNA is labeled with a detectable label such as a radioisotope or a fluorescent molecule. Preferably, the probe comprises at least 12, 15, or 17 consecutive nucleotides from the 5' EST or extended cDNA. More preferably, the probe comprises 20-30 consecutive nucleotides from the 5' EST or extended cDNA. In some embodiments, the probe comprises more than 30 nucleotides from the 5' EST or extended cDNA. In some embodiments, the probe comprises at least 40, at least 50, at least 75, at least 100, at least 150, or at least 200 consecutive nucleotides from the 5' EST or extended cDNA.

Techniques for labeling the probe are well known and include phosphorylation with polynucleotide kinase, nick translation, in vitro transcription, and non-radioactive techniques. The cDNAs or genomic DNAs in the library are transferred to a nitrocellulose or nylon filter and denatured. After incubation of the filter with a blocking solution, the filter is contacted with the labeled probe and incubated for a sufficient amount of time for the probe to hybridize to cDNAs or genomic DNAs containing a sequence capable of hybridizing to the probe.

By varying the stringency of the hybridization conditions used to identify extended cDNAs or genomic DNAs which hybridize to the detectable probe, extended cDNAS having different levels of homology to the probe can be identified and isolated. To identify extended cDNAs or genomic DNAs having a high degree of homology to the probe sequence, the melting temperature of the probe may be calculated using the following formulas:

For probes between 14 and 70 nucleotides in length the melting temperature (Tm) is calculated using the formula: Tm = 81.5 + 16.6(log [Na +]) + 0.41(fraction G + C)-(600/N) where N is the length of the probe.

If the hybridization is carried out in a solution containing formamide, the melting temperature may be calculated using the equation Tm=81.5+16.6(log [Na+])+0.41(fraction G+C)-(0.63% formamide)-(600/N) where N is the length of the probe.

Prehybridization may be carried out in 6X SSC, 5X Denhardt's reagent, 0.5% SDS, 100µg denatured fragmented salmon sperm DNA or 6X SSC, 5X Denhardt's reagent, 0.5% SDS, 100µg denatured fragmented salmon sperm DNA, 50% formamide. The formulas for SSC and Denhardt's solutions are listed in Sambrook et al., supra.

Hybridization is conducted by adding the detectable probe to the prehybridization solutions listed above. Where
the probe comprises double stranded DNA, it is denatured before addition to the hybridization solution. The filter is
contacted with the hybridization solution for a sufficient period of time to allow the probe to hybridize to extended
cDNAs or genomic DNAs containing sequences complementary thereto or homologous thereto. For probes over 200
nucleotides in length, the hybridization may be carried out at 15-25°C below the Tm. For shorter probes, such as
oligonucleotide probes, the hybridization may be conducted at 15-25°C below the Tm. Preferably, for hybridizations in
6X SSC, the hybridization is conducted at approximately 68°C. Preferably, for hybridizations in 50% formamide
containing solutions, the hybridization is conducted at approximately 42°C.

All of the foregoing hybridizations would be considered to be under "stringent" conditions. Following hybridization, the filter is washed in 2X SSC, 0.1% SDS at room temperature for 15 minutes. The filter is then washed

-44-

with 0.1X SSC, 0.5% SDS at room temperature for 30 minutes to 1 hour. Thereafter, the solution is washed at the hybridization temperature in 0.1X SSC, 0.5% SDS. A final wash is conducted in 0.1X SSC at room temperature.

Extended cDNAs, nucleic acids homologous to extended cDNAs or 5' ESTs, or genomic DNAs which have hybridized to the probe are identified by autoradiography or other conventional techniques.

5

The above procedure may be modified to identify extended cDNAs, nucleic acids homologous to extended cDNAs, or genomic DNAs having decreasing levels of homology to the probe sequence. For example, to obtain extended cDNAs, nucleic acids homologous to extended cDNAs, or genomic DNAs of decreasing homology to the detectable probe, less stringent conditions may be used. For example, the hybridization temperature may be decreased in increments of 5°C from 68°C to 42°C in a hybridization buffer having a Na + concentration of approximately 1M. Following 10 hybridization, the filter may be washed with 2X SSC, 0.5% SDS at the temperature of hybridization. These conditions are considered to be "moderate" conditions above 50°C and "low" conditions below 50°C.

Alternatively, the hybridization may be carried out in buffers, such as 6X SSC, containing formamide at a temperature of 42°C. In this case, the concentration of formamide in the hybridization buffer may be reduced in 5% increments from 50% to 0% to identify clones having decreasing levels of homology to the probe. Following 15 hybridization, the filter may be washed with 6X SSC, 0.5% SDS at 50°C. These conditions are considered to be "moderate" conditions above 25% formamide and "low" conditions below 25% formamide.

Extended cDNAs, nucleic acids homologous to extended cDNAs, or genomic DNAs which have hybridized to the probe are identified by autoradiography.

If it is desired to obtain nucleic acids homologous to extended cDNAs, such as allelic variants thereof or nucleic 20 acids encoding proteins related to the proteins encoded by the extended cDNAs, the level of homology between the hybridized nucleic acid and the extended cDNA or 5' EST used as the probe may readily be determined. To determine the level of homology between the hybridized nucleic acid and the extended cDNA or 5'EST from which the probe was derived, the nucleotide sequences of the hybridized nucleic acid and the extended cDNA or 5'EST from which the probe was derived are compared. For example, using the above methods, nucleic acids having at least 95% nucleic acid 25 homology to the extended cDNA or 5'EST from which the probe was derived may be obtained and identified. Similarly, by using progressively less stringent hybridization conditions one can obtain and identify nucleic acids having at least 90%, at least 85%, at least 80% or at least 75% homology to the extended cDNA or 5'EST from which the probe was derived. The level of homology between the hybridized nucleic acid and the extended cDNA or 5' EST used as the probe may be further determined using BLAST2N; parameters may be adapted depending on the sequence length and degree of 30 homology studied. In such comparisons, the default parameters or the parameters listed in Tables II and III may be used.

To determine whether a clone encodes a protein having a given amount of homology to the protein encoded by the extended cDNA or 5' EST, the amino acid sequence encoded by the extended cDNA or 5' EST is compared to the amino acid sequence encoded by the hybridizing nucleic acid. Homology is determined to exist when an amino acid sequence in the extended cDNA or 5' EST is closely related to an amino acid sequence in the hybridizing nucleic acid. A

sequence is closely related when it is identical to that of the extended cDNA or 5' EST or when it contains one or more amino acid substitutions therein in which amino acids having similar characteristics have been substituted for one another. Using the above methods, one can obtain nucleic acids encoding proteins having at least 95%, at least 90%, at least 85%, at least 80% or at least 75% homology to the proteins encoded by the extended cDNA or 5'EST from which the probe was derived. Using the above methods and algorithms such as FASTA with parameters depending on the sequence length and degree of homology studied the level of homology may be determined. In determining the level of homology using FASTA, the default parameters or the parameters listed in Tables II or III may be used.

Alternatively, extended cDNAs may be prepared by obtaining mRNA from the tissue, cell, or organism of interest using mRNA preparation procedures utilizing poly A selection procedures or other techniques known to those skilled in the art. A first primer capable of hybridizing to the poly A tail of the mRNA is hybridized to the mRNA and a reverse transcription reaction is performed to generate a first cDNA strand.

The first cDNA strand is hybridized to a second primer containing at least 10 consecutive nucleotides of the sequences of the 5' EST for which an extended cDNA is desired. Preferably, the primer comprises at least 12, 15, or 17 consecutive nucleotides from the sequences of the 5' EST. More preferably, the primer comprises 20-30 consecutive nucleotides from the sequences of the 5' EST. In some embodiments, the primer comprises more than 30 nucleotides from the sequences of the 5' EST. If it is desired to obtain extended cDNAs containing the full protein coding sequence, including the authentic translation initiation site, the second primer used contains sequences located upstream of the translation initiation site. The second primer is extended to generate a second cDNA strand complementary to the first cDNA strand. Alternatively, RTPCR may be performed as described above using primers from both ends of the cDNA to be obtained.

Extended cDNAs containing 5' fragments of the mRNA may be prepared by contacting an mRNA comprising the sequence of the 5' EST for which an extended cDNA is desired with a primer comprising at least 10 consecutive nucleotides of the sequences complementary to the 5' EST, hybridizing the primer to the mRNAs, and reverse transcribing the hybridized primer to make a first cDNA strand from the mRNAs. Preferably, the primer comprises at least 12, 15, or 17 consecutive nucleotides from the 5' EST. More preferably, the primer comprises 20-30 consecutive nucleotides from the 5' EST.

Thereafter, a second cDNA strand complementary to the first cDNA strand is synthesized. The second cDNA strand may be made by hybridizing a primer complementary to sequences in the first cDNA strand to the first cDNA strand and extending the primer to generate the second cDNA strand.

The double stranded extended cDNAs made using the methods described above are isolated and cloned. The extended cDNAs may be cloned into vectors such as plasmids or viral vectors capable of replicating in an appropriate host cell. For example, the host cell may be a bacterial, mammalian, avian, or insect cell.

Techniques for isolating mRNA, reverse transcribing a primer hybridized to mRNA to generate a first cDNA strand, extending a primer to make a second cDNA strand complementary to the first cDNA strand, isolating the double

-46-

stranded cDNA and cloning the double stranded cDNA are well known to those skilled in the art and are described in Current Protocols in Molecular Biology, John Wiley 503 Sons, Inc. 1997 and Sambrook et al. Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press, 1989.

Alternatively, kits for obtaining full length cDNAs, such as the GeneTrapper (Cat. No. 10356-020, Gibco, BRL),

may be used for obtaining full length cDNAs or extended cDNAs. In this approach, full length or extended cDNAs are
prepared from mRNA and cloned into double stranded phagemids. The cDNA library in the double stranded phagemids is
then rendered single stranded by treatment with an endonuclease, such as the Gene II product of the phage F1, and
Exonuclease III as described in the manual accompanying the GeneTrapper kit. A biotinylated oligonucleotide comprising
the sequence of a 5' EST, or a fragment containing at least 10 nucleotides thereof, is hybridized to the single stranded
phagemids. Preferably, the fragment comprises at least 12, 15, or 17 consecutive nucleotides from the 5' EST. More
preferably, the fragment comprises 20-30 consecutive nucleotides from the 5' EST. In some procedures, the fragment
may comprise more than 30 consecutive nucleotides from the 5' EST. For example, the fragment may comprises at least
40, at least 50, at least 75, at least 100, at least 150, or at least 200 consecutive nucleotides from the 5' EST.

Hybrids between the biotinylated oligonucleotide and phagemids having inserts containing the 5' EST sequence are isolated by incubating the hybrids with streptavidin coated paramagnetic beads and retrieving the beads with a magnet. Thereafter, the resulting phagemids containing the 5' EST sequence are released from the beads and converted into double stranded DNA using a primer specific for the 5' EST sequence. The resulting double stranded DNA is transformed into bacteria. Extended cDNAs containing the 5' EST sequence are identified by colony PCR or colony hybridization.

A plurality of extended cDNAs containing full length protein coding sequences or sequences encoding only the mature protein remaining after the signal peptide is cleaved may be provided as cDNA libraries for subsequent evaluation of the encoded proteins or use in diagnostic assays as described below.

IV. Expression of Proteins Encoded by Extended cDNAs Isolated Using 5' ESTs

Extended cDNAs containing the full protein coding sequences of their corresponding mRNAs or portions

thereof, such as cDNAs encoding the mature protein, may be used to express the secreted proteins or portions thereof which they encode as described in Example 30 below. If desired, the extended cDNAs may contain the sequences encoding the signal peptide to facilitate secretion of the expressed protein. It will be appreciated that a plurality of extended cDNAs containing the full protein coding sequences or portions thereof may be simultaneously cloned into expression vectors to create an expression library for analysis of the encoded proteins as described below.

30 EXAMPLE 30

20

Expression of the Proteins Encoded by Extended cDNAs or Portions Thereof

To express the proteins encoded by the extended cDNAs or portions thereof, nucleic acids containing the coding sequence for the proteins or portions thereof to be expressed are obtained as described in Examples 27-29 and cloned into a suitable expression vector. If desired, the nucleic acids may contain the sequences encoding the signal

PCT/IB98/02122 WO 99/31236

.47-

peptide to facilitate secretion of the expressed protein. For example, the nucleic acid may comprise the sequence of one of SEQ ID NOs: 40-140 and 242-377 listed in Table IV and in the accompanying sequence listing. Alternatively, the nucleic acid may comprise those nucleotides which make up the full coding sequence of one of the sequences of SEQ ID NOs: 40-140 and 242-377 as defined in Table IV above.

5

20

It will be appreciated that should the extent of the full coding sequence (i.e. the sequence encoding the signal peptide and the mature protein resulting from cleavage of the signal peptide) differ from that listed in Table IV as a result of a sequencing error, reverse transcription or amplification error, mRNA splicing, post-translational modification of the encoded protein, enzymatic cleavage of the encoded protein, or other biological factors, one skilled in the art would be readily able to identify the extent of the full coding sequences in the sequences of SEQ ID NOs. 40-140 and 242-377. 10 For example, the sequence of SEO ID NO: 115 represents an alternatively spliced transcript of a previously identified mRNA.. Accordingly, the scope of any claims herein relating to nucleic acids containing the full coding sequence of one of SEQ ID NOs. 40-140 and 242-377 is not to be construed as excluding any readily identifiable variations from or equivalents to the full coding sequences listed in Table IV Similarly, should the extent of the full length polypeptides differ from those indicated in Table V as a result of any of the preceding factors, the scope of claims relating to polypeptides 15 comprising the amino acid sequence of the full length polypeptides is not to be construed as excluding any readily identifiable variations from or equivalents to the sequences listed in Table V.

Alternatively, the nucleic acid used to express the protein or portion thereof may comprise those nucleotides which encode the mature protein (i.e. the protein created by cleaving the signal peptide off) encoded by one of the sequences of SEQ ID NOs: 40-140 and 242-377 as defined in Table IV above.

It will be appreciated that should the extent of the sequence encoding the mature protein differ from that listed in Table IV as a result of a sequencing error, reverse transcription or amplification error, mRNA splicing, posttranslational modification of the encoded protein, enzymatic cleavage of the encoded protein, or other biological factors, one skilled in the art would be readily able to identify the extent of the sequence encoding the mature protein in the sequences of SEQ ID NOs. 40-140 and 242-377. Accordingly, the scope of any claims herein relating to nucleic acids 25 containing the sequence encoding the mature protein encoded by one of SEQ ID Nos. 40-140 and 242-377 is not to be construed as excluding any readily identifiable variations from or equivalents to the sequences listed in Table IV. Thus, claims relating to nucleic acids containing the sequence encoding the mature protein encompass equivalents to the sequences listed in Table IV, such as sequences encoding biologically active proteins resulting from post-translational modification, enzymatic cleavage, or other readily identifiable variations from or equivalents to the secreted proteins in 30 addition to cleavage of the signal peptide. Similarly, should the extent of the mature polypeptides differ from those indicated in Table V as a result of any of the preceding factors, the scope of claims relating to polypeptides comprising the sequence of a mature protein included in the sequence of one of SEQ ID NOs. 141-241 and 378-513 is not to be construed as excluding any readily identifiable variations from or equivalents to the sequences listed in Table V. Thus, claims relating to polypeptides comprising the sequence of the mature protein encompass equivalents to the sequences

listed in Table IV, such as biologically active proteins resulting from post-translational modification, enzymatic cleavage, or other readily identifiable variations from or equivalents to the secreted proteins in addition to cleavage of the signal peptide. It will also be appreciated that should the biologically active form of the polypeptides included in the sequence of one of SEQ ID NOs. 141-241 and 378-513 or the nucleic acids encoding the biologically active form of the polypeptides differ from those identified as the mature polypeptide in Table V or the nucleotides encoding the mature polypeptide in Table IV as a result of a sequencing error, reverse transcription or amplification error, mRNA splicing, post-translational modification of the encoded protein, enzymatic cleavage of the encoded protein, or other biological factors, one skilled in the art would be readily able to identify the amino acids in the biologically active form of the polypeptides and the nucleic acids encoding the biologically active form of the polypeptides. In such instances, the claims relating to polypetides comprising the mature protein included in one of SEQ ID NOs. 141-241 and 378-513 or nucleic acids comprising the nucleotides of one of SEQ ID NOs. 40-140 and 242-377 encoding the mature protein shall not be construed to exclude any readily identifiable variations from the sequences listed in Table IV and Table V.

In some embodiments, the nucleic acid used to express the protein or portion thereof may comprise those nucleotides which encode the signal peptide encoded by one of the sequences of SEQ ID NOs: 40-140 and 242-377 as defined in Table IV above.

It will be appreciated that should the extent of the sequence encoding the signal peptide differ from that listed in Table IV as a result of a sequencing error, reverse transcription or amplification error, mRNA splicing, post-translational modification of the encoded protein, enzymatic cleavage of the encoded protein, or other biological factors, one skilled in the art would be readily able to identify the extent of the sequence encoding the signal peptide in the sequences of SEQ ID Nos. 40-140 and 242-377. Accordingly, the scope of any claims herein relating to nucleic acids containing the sequence encoding the signal peptide encoded by one of SEQ ID Nos. 40-140 and 242-377 is not to be construed as excluding any readily identifiable variations from the sequences listed in Table IV. Similarly, should the extent of the signal peptides differ from those indicated in Table V as a result of any of the preceding factors, the scope of claims relating to polypeptides comprising the sequence of a signal peptide included in the sequence of one of SEQ ID Nos. 141-241 and 378-513 is not to be construed as excluding any readily identifiable variations from the sequences listed in Table V.

Alternatively, the nucleic acid may encode a polypeptide comprising at least 10 consecutive amino acids of one of the sequences of SEQ ID NOs: 141-241 and 378-513. In some embodiments, the nucleic acid may encode a polypeptide comprising at least 15 consecutive amino acids of one of the sequences of SEQ ID NOs: 141-241 and 378-513. In other embodiments, the nucleic acid may encode a polypeptide comprising at least 25 consecutive amino acids of one of the sequences of SEQ ID NOs: 141-241 and 378-513. In other embodiments, the nucleic acid may encode a polypeptide comprising at least 60, at least 75, at least 100 or more than 100 consecutive amino acids of one of the sequences of SEQ ID Nos: 141-241 and 378-513.

-49-

The nucleic acids inserted into the expression vectors may also contain sequences upstream of the sequences encoding the signal peptide, such as sequences which regulate expression levels or sequences which confer tissue specific expression.

The nucleic acid encoding the protein or polypeptide to be expressed is operably linked to a promoter in an expression vector using conventional cloning technology. The expression vector may be any of the mammalian, yeast, insect or bacterial expression systems known in the art. Commercially available vectors and expression systems are available from a variety of suppliers including Genetics Institute (Cambridge, MA), Stratagene (La Jolla, California), Promega (Madison, Wisconsin), and Invitrogen (San Diego, California). If desired, to enhance expression and facilitate proper protein folding, the codon context and codon pairing of the sequence may be optimized for the particular expression organism in which the expression vector is introduced, as explained by Hatfield, et al., U.S. Patent No. 5,082,767.

The following is provided as one exemplary method to express the proteins encoded by the extended cDNAs corresponding to the 5' ESTs or the nucleic acids described above. First, the methionine initiation codon for the gene and the poly A signal of the gene are identified. If the nucleic acid encoding the polypeptide to be expressed lacks a methionine to serve as the initiation site, an initiating methionine can be introduced next to the first codon of the nucleic acid using conventional techniques. Similarly, if the extended cDNA lacks a poly A signal, this sequence can be added to the construct by, for example, splicing out the Poly A signal from pSG5 (Stratagene) using Bgll and Sall restriction endonuclease enzymes and incorporating it into the mammalian expression vector pXT1 (Stratagene). pXT1 contains the LTRs and a portion of the gag gene from Moloney Murine Leukemia Virus. The position of the LTRs in the construct allow efficient stable transfection. The vector includes the Herpes Simplex Thymidine Kinase promoter and the selectable neomycin gene. The extended cDNA or portion thereof encoding the polypeptide to be expressed is obtained by PCR from the bacterial vector using oligonucleotide primers complementary to the extended cDNA or portion thereof and containing restriction endonuclease sequences for Pst I incorporated into the 5' primer and Bglll at the 5' end of the corresponding cDNA 3' primer, taking care to ensure that the extended cDNA is positioned in frame with the poly A signal. The purified fragment obtained from the resulting PCR reaction is digested with Pstl, blunt ended with an exonuclease, digested with Bglll, purified and ligated to pXT1, now containing a poly A signal and digested with Bglll.

The ligated product is transfected into mouse NIH 3T3 cells using Lipofectin (Life Technologies, Inc., Grand Island, New York) under conditions outlined in the product specification. Positive transfectants are selected after growing the transfected cells in 600ug/ml G418 (Sigma, St. Louis, Missouri). Preferably the expressed protein is released into the culture medium, thereby facilitating purification.

Alternatively, the extended cDNAs may be cloned into pED6dpc2 as described above. The resulting pED6dpc2 constructs may be transfected into a suitable host cell, such as COS 1 cells. Methotrexate resistant cells are selected and expanded. Preferably, the protein expressed from the extended cDNA is released into the culture medium thereby facilitating purification.

-50-

Proteins in the culture medium are separated by gel electrophoresis. If desired, the proteins may be ammonium sulfate precipitated or separated based on size or charge prior to electrophoresis.

As a control, the expression vector lacking a cDNA insert is introduced into host cells or organisms and the proteins in the medium are harvested. The secreted proteins present in the medium are detected using techniques such as Coomassie or silver staining or using antibodies against the protein encoded by the extended cDNA. Coomassie and silver staining techniques are familiar to those skilled in the art.

Antibodies capable of specifically recognizing the protein of interest may be generated using synthetic 15-mer peptides having a sequence encoded by the appropriate 5' EST, extended cDNA, or portion thereof. The synthetic peptides are injected into mice to generate antibody to the polypeptide encoded by the 5' EST, extended cDNA, or portion thereof.

Secreted proteins from the host cells or organisms containing an expression vector which contains the extended cDNA derived from a 5' EST or a portion thereof are compared to those from the control cells or organism. The presence of a band in the medium from the cells containing the expression vector which is absent in the medium from the control cells indicates that the extended cDNA encodes a secreted protein. Generally, the band corresponding to the protein encoded by the extended cDNA will have a mobility near that expected based on the number of amino acids in the open reading frame of the extended cDNA. However, the band may have a mobility different than that expected as a result of modifications such as glycosylation, ubiquitination, or enzymatic cleavage.

Alternatively, if the protein expressed from the above expression vectors does not contain sequences directing its secretion, the proteins expressed from host cells containing an expression vector containing an insert encoding a secreted protein or portion thereof can be compared to the proteins expressed in host cells containing the expression vector without an insert. The presence of a band in samples from cells containing the expression vector with an insert which is absent in samples from cells containing the expression vector without an insert indicates that the desired protein or portion thereof is being expressed. Generally, the band will have the mobility expected for the secreted protein or portion thereof. However, the band may have a mobility different than that expected as a result of modifications such as glycosylation, ubiquitination, or enzymatic cleavage.

The protein encoded by the extended cDNA may be purified using standard immunochromatography techniques.

In such procedures, a solution containing the secreted protein, such as the culture medium or a cell extract, is applied to a column having antibodies against the secreted protein attached to the chromatography matrix. The secreted protein is allowed to bind the immunochromatography column. Thereafter, the column is washed to remove non-specifically bound proteins. The specifically bound secreted protein is then released from the column and recovered using standard techniques.

If antibody production is not possible, the extended cDNA sequence or portion thereof may be incorporated into expression vectors designed for use in purification schemes employing chimeric polypeptides. In such strategies the coding sequence of the extended cDNA or portion thereof is inserted in frame with the gene encoding the other half of

-51-

the chimera. The other half of the chimera may be β-globin or a nickel binding polypeptide encoding sequence. A chromatography matrix having antibody to β-globin or nickel attached thereto is then used to purify the chimeric protein. Protease cleavage sites may be engineered between the β-globin gene or the nickel binding polypeptide and the extended cDNA or portion thereof. Thus, the two polypeptides of the chimera may be separated from one another by protease digestion.

One useful expression vector for generating β-globin chimerics is pSG5 (Stratagene), which encodes rabbit β-globin. Intron II of the rabbit β-globin gene facilitates splicing of the expressed transcript, and the polyadenylation signal incorporated into the construct increases the level of expression. These techniques as described are well known to those skilled in the art of molecular biology. Standard methods are published in methods texts such as Davis et al.,

(Basic Methods in Molecular Biology, L.G. Davis, M.D. Dibner, and J.F. Battey, ed., Elsevier Press, NY, 1986) and many of the methods are available from Stratagene, Life Technologies, Inc., or Promega. Polypeptide may additionally be produced from the construct using in vitro translation systems such as the In vitro ExpressTM Translation Kit (Stratagene).

Following expression and purification of the secreted proteins encoded by the 5' ESTs, extended cDNAs, or fragments thereof, the purified proteins may be tested for the ability to bind to the surface of various cell types as described in Example 31 below. It will be appreciated that a plurality of proteins expressed from these cDNAs may be included in a panel of proteins to be simultaneously evaluated for the activities specifically described below, as well as other biological roles for which assays for determining activity are available.

EXAMPLE 31

20 <u>Analysis of Secreted Proteins to Determine Whether they Bind to the Cell Surface</u>

The proteins encoded by the 5' ESTs, extended cDNAs, or fragments thereof are cloned into expression vectors such as those described in Example 30. The proteins are purified by size, charge, immunochromatography or other techniques familiar to those skilled in the art. Following purification, the proteins are labeled using techniques known to those skilled in the art. The labeled proteins are incubated with cells or cell lines derived from a variety of organs or tissues to allow the proteins to bind to any receptor present on the cell surface. Following the incubation, the cells are washed to remove non-specifically bound protein. The labeled proteins are detected by autoradiography. Alternatively, unlabeled proteins may be incubated with the cells and detected with antibodies having a detectable label, such as a fluorescent molecule, attached thereto.

Specificity of cell surface binding may be analyzed by conducting a competition analysis in which various

amounts of unlabeled protein are incubated along with the labeled protein. The amount of labeled protein bound to the
cell surface decreases as the amount of competitive unlabeled protein increases. As a control, various amounts of an
unlabeled protein unrelated to the labeled protein is included in some binding reactions. The amount of labeled protein
bound to the cell surface does not decrease in binding reactions containing increasing amounts of unrelated unlabeled
protein, indicating that the protein encoded by the cDNA binds specifically to the cell surface.

As discussed above, secreted proteins have been shown to have a number of important physiological effects and, consequently, represent a valuable therapeutic resource. The secreted proteins encoded by the extended cDNAs or portions thereof made according to Examples 27-29 may be evaluated to determine their physiological activities as described below.

5 EXAMPLE 32

Assaying the Proteins Expressed from Extended cDNAs or Portions Thereof for Cytokine, Cell Proliferation or Cell Differentiation Activity

As discussed above, secreted proteins may act as cytokines or may affect cellular proliferation or differentiation. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of cytokine activity. The activity of a protein of the present invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B5, B9/11, BaF3, MC9/G, M+ (preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7c and CMK. The proteins encoded by the above extended cDNAs or portions thereof may be evaluated for their ability to regulate T cell or thymocyte proliferation in assays such as those described above or in the following references: Current Protocols in Immunology, Ed. by J.E. Coligan et al., Greene Publishing Associates and Wiley-Interscience; Takai et al. J. Immunol. 137:3494-3500, 1986. Bertagnolli et al. J. Immunol. 145:1706-1712, 1990. Bertagnolli et al., Cellular Immunology 133:327-341, 1991. Bertagnolli, et al. J. Immunol. 149:3778-3783, 1992; Bowman et al., J. Immunol. 152:1756-1761, 1994.

In addition, numerous assays for cytokine production and/or the proliferation of spleen cells, lymph node cells
and thymocytes are known. These include the techniques disclosed in Current Protocols in Immunology. J.E. Coligan
et al. Eds., Vol 1 pp. 3.12.1-3.12.14 John Wiley and Sons, Toronto. 1994; and Schreiber, R.D. Current Protocols in
Immunology., supra Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.

The proteins encoded by the cDNAs may also be assayed for the ability to regulate the proliferation and differentiation of hematopoietic or lymphopoietic cells. Many assays for such activity are familiar to those skilled in the art, including the assays in the following references: Bottomly, K., Davis, L.S. and Lipsky, P.E., Measurement of Human and Murine Interleukin 2 and Interleukin 4, Current Protocols in Immunology., J.E. Coligan et al. Eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; deVries et al., J. Exp. Med. 173:1205-1211, 1991; Moreau et al., Nature 36:690-692, 1988; Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Nordan, R., Measurement of Mouse and Human Interleukin 6 Current Protocols in Immunology. J.E. Coligan et al. Eds. Vol 1 pp. 6.6.1-6.6.5, Giannotti, J., Clark, S.C. and Turner, K.J., Measurement of Human Interleukin 11 Current Protocols in Immunology. J.E. Coligan et al. Eds. Vol 1 pp. 6.15.1 John Wiley and Sons, Toronto. 1991; Ciarletta, A., Giannotti, J., Clark, S.C. and Turner, K.J., Measurement of Mouse and Human Interleukin 9 Current Protocols in Immunology. J.E. Coligan et al., Eds. Vol 1 pp. 6.13.1, John Wiley and Sons, Toronto. 1991.

-53-

The proteins encoded by the cDNAs may also be assayed for their ability to regulate T-cell responses to antigens. Many assays for such activity are familiar to those skilled in the art, including the assays described in the following references: Chapter 3 (In Vitro Assays for Mouse Lymphocyte Function), Chapter 6 (Cytokines and Their Cellular Receptors) and Chapter 7, (Immunologic Studies in Humans) in Current Protocols in Immunology, J.E. Coligan et al. Eds. Greene Publishing Associates and Wiley-Interscience; Weinberger et al., Proc. Natl. Acad. Sci. USA 77:6091-6095, 1980; Weinberger et al., Eur. J. Immun. 11:405-411, 1981; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.

Those proteins which exhibit cytokine, cell proliferation, or cell differentiation activity may then be formulated as pharmaceuticals and used to treat clinical conditions in which induction of cell proliferation or differentiation is

10 beneficial. Alternatively, as described in more detail below, genes encoding these proteins or nucleic acids regulating the expression of these proteins may be introduced into appropriate host cells to increase or decrease the expression of the proteins as desired.

EXAMPLE 33

Assaying the Proteins Expressed from Extended cDNAs or Portions

Thereof for Activity as Immune System Regulators

15

The proteins encoded by the cDNAs may also be evaluated for their effects as immune regulators. For example, the proteins may be evaluated for their activity to influence thymocyte or splenocyte cytotoxicity. Numerous assays for such activity are familiar to those skilled in the art including the assays described in the following references: Chapter 3 (In Vitro Assays for Mouse Lymphocyte Function 3.1-3.19) and Chapter 7 (Immunologic studies in Humans) in Current Protocols in Immunology, J.E. Coligan et al. Eds, Greene Publishing Associates and Wiley-Interscience; Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 140:508-512, 1988;

The proteins encoded by the cDNAs may also be evaluated for their effects on T-cell dependent immunoglobulin responses and isotype switching. Numerous assays for such activity are familiar to those skilled in the art, including the assays disclosed in the following references: Maliszewski, J. Immunol. 144:3028-3033, 1990; Mond, J.J. and Brunswick, M Assays for B Cell Function: *In vitro* Antibody Production, Vol 1 pp. 3.8.1-3.8.16 in Current Protocols in Immunology. J.E. Coligan et al Eds., John Wiley and Sons, Toronto. 1994.

Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Brown et al., J. Immunol, 153:3079-3092, 1994.

The proteins encoded by the cDNAs may also be evaluated for their effect on immune effector cells, including their effect on Th1 cells and cytotoxic lymphocytes. Numerous assays for such activity are familiar to those skilled in the art, including the assays disclosed in the following references: Chapter 3 (In Vitro Assays for Mouse Lymphocyte

-54-

Function 3.1-3.19) and Chapter 7 (Immunologic Studies in Humans) in Current Protocols in Immunology, J.E. Coligan et al. Eds., Greene Publishing Associates and Wiley-Interscience; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol. 149:3778-3783, 1992.

The proteins encoded by the cDNAs may also be evaluated for their effect on dendritic cell mediated activation
of naive T-cells. Numerous assays for such activity are familiar to those skilled in the art, including the assays disclosed in the following references: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology 154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., Journal of Virology 67:4062-4069, 1993; Huang et al., Science 264:961-965, 1994; Macatonia et al., Journal of Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 1990.

The proteins ercoded by the cDNAs may also be evaluated for their influence on the lifetime of lymphocytes.

Numerous assays for such activity are familiar to those skilled in the art, including the assays disclosed in the following references: Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood 84:111-117, 1994; Fine et al., Cellular immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995; Toki et al., Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.

Those proteins which exhibit activity as immune system regulators activity may then be formulated as pharmaceuticals and used to treat clinical conditions in which regulation of immune activity is beneficial. For example, the protein may be useful in the treatment of various immune deficiencies and disorders (including severe combined immunodeficiency (SCID)), e.g., in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. These immune deficiencies may be genetic or be caused by viral (e.g., HIV) as well as bacterial or fungal infections, or may result from autoimmune disorders. More specifically, infectious diseases caused by viral, bacterial, fungal or other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpesviruses, mycobacteria, Leishmania spp., malaria spp. and various fungal infections such as candidiasis. Of course, in this regard, a protein of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.

Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, autoimmune pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes mellitis,

·55·

myasthenia gravis, graft-versus-host disease and autoimmune inflammatory eye disease. Such a protein of the present invention may also to be useful in the treatment of allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory problems. Other conditions, in which immune suppression is desired (including, for example, organ transplantation), may also be treatable using a protein of the present invention.

Using the proteins of the invention it may also be possible to regulate immune responses, in a number of ways.

Down regulation may be in the form of inhibiting or blocking an immune response already in progress or may involve preventing the induction of an immune response. The functions of activated T-cells may be inhibited by suppressing T cell responses or by inducing specific tolerance in T cells, or both. Immunosuppression of T cell responses is generally an active, non-antigen-specific, process which requires continuous exposure of the T cells to the suppressive agent.

5

Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigen-specific and persists after exposure to the tolerizing agent has ceased. Operationally, tolerance can be demonstrated by the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.

Down regulating or preventing one or more antigen functions (including without limitation B lymphocyte

antigen functions (such as, for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will

be useful in situations of tissue, skin and organ transplantation and in graft-versus-host disease (GVHD). For example,

blockage of T cell function should result in reduced tissue destruction in tissue transplantation. Typically, in tissue

transplants, rejection of the transplant is initiated through its recognition as foreign by T cells, followed by an immune

reaction that destroys the transplant. The administration of a molecule which inhibits or blocks interaction of a B7

lymphocyte antigen with its natural ligand(s) on immune cells (such as a soluble, monomeric form of a peptide having B7
activity alone or in conjunction with a monomeric form of a peptide having an activity of another B lymphocyte antigen

(e.g., B7-1, B7-3) or blocking antibody), prior to transplantation can lead to the binding of the molecule to the natural

ligand(s) on the immune cells without transmitting the corresponding costimulatory signal. Blocking B lymphocyte

antigen function in this matter prevents cytokine synthesis by immune cells, such as T cells, and thus acts as an

immunosuppressant. Moreover, the lack of costimulation may also be sufficient to anergize the T cells, thereby inducing

tolerance in a subject. Induction of long-term tolerance by B lymphocyte antigen-blocking reagents may avoid the

necessity of repeated administration of these blocking reagents. To achieve sufficient immunosuppression or tolerance

in a subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

The efficacy of particular blocking reagents in preventing organ transplant rejection or GVHD can be assessed using animal models that are predictive of efficacy in humans. Examples of appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4Ig fusion proteins in vivo as described in Lenschow et al., Science 257:789-792 (1992) and Turka et al., Proc. Natl. Acad. Sci USA, 89:11102-11105 (1992). In addition, murine models

-56-

of GVHD (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of blocking B lymphocyte antigen function in vivo on the development of that disease.

Blocking antigen function may also be therapeutically useful for treating autoimmune diseases. Many autoimmune disorders are the result of inappropriate activation of T cells that are reactive against self tissue and which promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate disease symptoms. Administration of reagents which block costimulation of T cells by disrupting receptor ligand interactions of B lymphocyte antigens can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking reagents may induce antigen-specific tolerance of autoreactive T cells which could lead 10 to long-term relief from the disease. The efficacy of blocking reagents in preventing or alleviating autoimmune disorders can be determined using a number of well-characterized animal models of human autoimmune diseases. Examples include murine experimental autoimmune encephalitis, systemic lupus erythmatosis in MRL/pr/pr mice or NZB hybrid mice, murine autoimmuno collagen arthritis, diabetes mellitus in OD mice and BB rats, and murine experimental myasthenia gravis (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856).

Upregulation of an antigen function (preferably a B lymphocyte antigen function), as a means of up regulating immune responses, may also be useful in therapy. Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting an initial immune response. For example, enhancing an immune response through stimulating B lymphocyte antigen function may be useful in cases of viral infection. In addition, systemic viral diseases such as influenza, the common cold, and encephalitis might be alleviated by the administration of stimulatory 20 form of B lymphocyte antigens systemically.

15

Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to T cells 25 in vivo, thereby activating the T cells.

In another application, up regulation or enhancement of antigen function (preferably B lymphocyte antigen function) may be useful in the induction of tumor immunity. Tumor cells (e.g., sarcoma, melanoma, lymphoma, leukemia, neuroblastoma, carcinoma) transfected with a nucleic acid encoding at least one peptide of the present invention can be administered to a subject to overcome tumor-specific tolerance in the subject. If desired, the tumor cell can be 30 transfected to express a combination of peptides. For example, tumor cells obtained from a patient can be transfected ex vivo with an expression vector directing the expression of a peptide having B7-2-like activity alone, or in conjunction with a peptide having B7-1-like activity and/or B7-3-like activity. The transfected tumor cells are returned to the patient to result in expression of the peptides on the surface of the transfected cell. Alternatively, gene therapy techniques can be used to target a tumor cell for transfection in vivo.

.57-

PCT/IB98/02122

The presence of the peptide of the present invention having the activity of a B lymphocyte antigen(s) on the surface of the tumor cell provides the necessary costimulation signal to T cells to induce a T cell mediated immune response against the transfected tumor cells. In addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient amounts of MHC class I or MHC class II molecules, can be transfected with nucleic acids encoding all or a portion of (e.g., a cytoplasmic-domain truncated portion) of an MHC class I α chain protein and β₂ macroglobulin protein or an MHC class II α chain protein and an MHC class II β chain protein to thereby express MHC class I or MHC class II proteins on the cell surface. Expression of the appropriate class II or class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding an antisense construct which blocks expression of an MHC class II associated protein, such as the invariant chain, can also be cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific immunity. Thus, the induction of a T cell mediated immune response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject. Alternatively, as described in more detail below, genes encoding these proteins or nucleic acids regulating the expression of these proteins may be introduced into appropriate host cells to increase or decrease the expression of the proteins as desired.

EXAMPLE 34

Assaying the Proteins Expressed from Extended cDNAs

or Portions Thereof for Hematopoiesis Regulating Activity

The proteins encoded by the extended cDNAs or portions thereof may also be evaluated for their hematopoiesis regulating activity. For example, the effect of the proteins on embryonic stem cell differentiation may be evaluated. Numerous assays for such activity are familiar to those skilled in the art, including the assays disclosed in the following references: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

The proteins encoded by the extended cDNAs or portions thereof may also be evaluated for their influence on the lifetime of stem cells and stem cell differentiation. Numerous assays for such activity are familiar to those skilled in the art, including the assays disclosed in the following references: Freshney, M.G. Methylcellulose Colony Forming Assays, in Culture of Hematopoietic Cells. R.I. Freshney, et al. Eds. pp. 265-268, Wiley-Liss, Inc., New York, NY. 1994; Hirayama et al., Proc. Natl. Acad. Sci. USA 89:5907-5911, 1992; McNiece, I.K. and Briddell, R.A. Primitive Hematopoietic Colony Forming Cells with High Proliferative Potential, in Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss, Inc., New York, NY. 1994; Neben et al., Experimental Hematology 22:353-359, 1994; Ploemacher, R.E. Cobblestone Area Forming Cell Assay, In Culture of Hematopoietic Cells. R.I. Freshney, et al. Eds. pp. 1-21, Wiley-Liss, Inc., New York, NY. 1994; Spooncer, E., Dexter, M. and Allen, T. Long Term Bone Marrow Cultures in the Presence of Stromal Cells, in Culture of Hematopoietic Cells. R.I. Freshney, et al. Eds.

WO 99/31236

pp. 163-179, Wiley-Liss, Inc., New York, NY. 1994; and Sutherland, H.J. Long Term Culture Initiating Cell Assay, in Culture of Hematopoietic Cells. R.I. Freshney, et al. Eds. pp. 139-162, Wiley-Liss, Inc., New York, NY. 1994.

Those proteins which exhibit hematopoiesis regulatory activity may then be formulated as pharmaceuticals and used to treat clinical conditions in which regulation of hematopoeisis is beneficial. For example, a protein of the present 5 invention may be useful in regulation of hematopoiesis and, consequently, in the treatment of myeloid or lymphoid cell deficiencies. Even marginal biological activity in support of colony forming cells or of factor-dependent cell lines indicates involvement in regulating hematopoiesis, e.g. in supporting the growth and proliferation of erythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to stimulate the production of erythroid precursors and/or erythroid 10 cells; in supporting the growth and proliferation of myeloid cells such as granulocytes and monocytes/macrophages (i.e., traditional CSF activity) useful, for example, in conjunction with chemotherapy to prevent or treat consequent myelosuppression; in supporting the growth and proliferation of megakaryocytes and consequently of platelets thereby allowing prevention or treatment of various platelet disorders such as thrombocytopenia, and generally for use in place of or complimentary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem 15 cells which are capable of maturing to any and all of the above-mentioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantion, including, without limitation, aplastic anemia and paroxysmal nocturnal hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either in-vivo or ex-vivo (i.e., in conjunction with bone marrow transplantation or with peripheral progenitor cell transplantation (homologous or heterologous)) as normal cells or 20 genetically manipulated for gene therapy. Alternatively, as described in more detail below, genes encoding these proteins or nucleic acids regulating the expression of these proteins may be introduced into appropriate host cells to increase or decrease the expression of the proteins as desired.

EXAMPLE 35

Assaying the Proteins Expressed from Extended cDNAs or Portions Thereof for Regulation of Tissue Growth

The proteins encoded by the extended cDNAs or portions thereof may also be evaluated for their effect on tissue growth. Numerous assays for such activity are familiar to those skilled in the art, including the assays disclosed in International Patent Publication No. W095/16035, International Patent Publication No. W095/05846 and International Patent Publication No. W091/07491.

Assays for wound healing activity include, without limitation, those described in: Winter, <u>Epidermal Wound</u>

30 <u>Healing</u>, pps. 71-112 (Maibach, H1 and Rovee, DT, eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).

Those proteins which are involved in the regulation of tissue growth may then be formulated as pharmaceuticals and used to treat clinical conditions in which regulation of tissue growth is beneficial. For example, a protein of the present invention also may have utility in compositions used for bone, cartilage, tendon, ligament and/or

-59-

nerve tissue growth or regeneration, as well as for wound healing and tissue repair and replacement, and in the treatment of burns, incisions and ulcers.

A protein of the present invention, which induces cartilage and/or bone growth in circumstances where bone is not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and 5 other animals. Such a preparation employing a protein of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery.

A protein of this invention may also be used in the treatment of periodontal disease, and in other tooth repair 10 processes. Such agents may provide an environment to attract bone-forming cells, stimulate growth of bone-forming cells or induce differentiation of progenitors of bone-forming cells. A protein of the invention may also be useful in the treatment of osteoporosis or osteoarthritis, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes.

15

30

Another category of tissue regeneration activity that may be attributable to the protein of the present invention is tendon/ligament formation. A protein of the present invention, which induces tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to 20 tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament tissue. De novo tendon/ligament-like tissue formation induced by a composition of the present invention contributes to the repair of congenital, trauma induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions of the present invention may provide an environment to attract tendon- or ligament-forming cells, stimulate 25 growth of tendon- or ligament-forming cells, induce differentiation of progenitors of tendon- or ligament-forming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. The compositions of the invention may also be useful in the treatment of tendinitis, carpal tunnel syndrome and other tendon or ligament defects. The compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

The protein of the present invention may also be useful for proliferation of neural cells and for regeneration of nerve and brain tissue, i.e., for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More specifically, a protein may be used in the treatment of diseases of the peripheral nervous system, such as peripheral nerve injuries, peripheral neuropathy and localized neuropathies, and central nervous system diseases, such as

-60-

Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome. Further conditions which may be treated in accordance with the present invention include mechanical and traumatic disorders, such as spinal cord disorders, head trauma and cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a protein of the invention.

Proteins of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds, and the like.

It is expected that a protein of the present invention may also exhibit activity for generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium) muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring to allow normal tissue to generate. A protein of the invention may also exhibit angiogenic activity.

A protein of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokinc damage.

A protein of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

Alternatively, as described in more detail below, genes encoding these proteins or nucleic acids regulating the expression of these proteins may be introduced into appropriate host cells to increase or decrease the expression of the proteins as desired.

20

15

5

EXAMPLE 36

Assaying the Proteins Expressed from Extended cDNAs or Portions Thereof for Regulation of Reproductive Hormones or Cell Movement

The proteins encoded by the extended cDNAs or portions thereof may also be evaluated for their ability to regulate reproductive hormones, such as follicle stimulating hormone. Numerous assays for such activity are familiar to those skilled in the art, including the assays disclosed in the following references: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986. Chapter 6.12 (Measurement of Alpha and Beta Chemokines) Current Protocols in Immunology, J.E. Coligan et al. Eds. Greene Publishing Associates and Wiley-Intersciece; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al. Eur. J. Immunol. 25:1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153:1762-1768, 1994.

Those proteins which exhibit activity as reproductive hormones or regulators of cell movement may then be formulated as pharmaceuticals and used to treat clinical conditions in which regulation of reproductive hormones or cell movement are beneficial. For example, a protein of the present invention may also exhibit activin- or inhibin-related

-61-

activities. Inhibins are characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activins are characterized by their ability to stimulate the release of folic stimulating hormone (FSH). Thus, a protein of the present invention, alone or in heterodimers with a member of the inhibin α family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals.

Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, the protein of the invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin-B group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, United States Patent 4,798,885. A protein of the invention may also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as cows, sheep and pigs.

Alternatively, as described in more detail below, genes encoding these proteins or nucleic acids regulating the expression of these proteins may be introduced into appropriate host cells to increase or decrease the expression of the proteins as desired.

EXAMPLE 36A

15

25

Assaying the Proteins Expressed from Extended cDNAs or Portions Thereof for Chemotactic/Chemokinetic Activity

The proteins encoded by the extended cDNAs or portions thereof may also be evaluated for chemotactic/chemokinetic activity. For example, a protein of the present invention may have chemotactic or chemokinetic activity (e.g., act as a chemokine) for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, cosinophils, epithelial and/or endothelial cells. Chemotactic and chmokinetic proteins can be used to mobilize or attract a desired cell population to a desired site of action. Chemotactic or chemokinetic proteins provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment of localized infections. For example, attraction of lymphocytes, monocytes or neutrophils to tumors or sites of infection may result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhension of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12,

-62-

Measurement of alpha and beta Chemokincs 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Mueller et al Eur. J. Immunol. 25:1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol, 153:1762-1768, 1994.

EXAMPLE 37

5

Assaying the Proteins Expressed from Extended cDNAs or

Portions Thereof for Regulation of Blood Clotting

The proteins encoded by the extended cDNAs or portions thereof may also be evaluated for their effects on blood clotting. Numerous assays for such activity are familiar to those skilled in the art, including the assays disclosed in the following references: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al., Thrombosis Res.

45:413-419, 1987; Humphrey et al., Fibrinolysis 5:71-79 (1991); Schaub, Prostaglandins 35:467-474, 1988.

Those proteins which are involved in the regulation of blood clotting may then be formulated as pharmaceuticals and used to treat clinical conditions in which regulation of blood clotting is beneficial. For example, a protein of the invention may also exhibit hemostatic or thrombolytic activity. As a result, such a protein is expected to be useful in treatment of various coagulations disorders (including hereditary disorders, such as hemophilias) or to enhance coagulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes. A protein of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as,for example, infarction of cardiac and central nervous system vessels (e.g., stroke). Alternatively, as described in more detail below, genes encoding these proteins or nucleic acids regulating the expression of these proteins may be introduced into appropriate host cells to increase or decrease the expression of the proteins as desired.

EXAMPLE 38

Assaying the Proteins Expressed from Extended cDNAs or Portions Thereof for Involvement in Receptor/Ligand Interactions

The proteins encoded by the extended cDNAs or a portion thereof may also be evaluated for their involvement in receptor/ligand interactions. Numerous assays for such involvement are familiar to those skilled in the art, including the assays disclosed in the following references: Chapter 7.28 (Measurement of Cellular Adhesion under Static Conditions 7.28.1-7.28.22) in Current Protocols in Immunology, J.E. Coligan et al. Eds. Greene Publishing Associates and Wiley-Interscience; Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987; Bierer et al., J. Exp. Med. 168:1145-1156, 1988; Rosenstein et al., J. Exp. Med. 169:149-160, 1989; Stoltenborg et al., J. Immunol. Methods 175:59-68, 1994; Stitt et al., Cell 80:661-670, 1995; Gyuris et al., Cell 75:791-803, 1993.

For example, the proteins of the present invention may also demonstrate activity as receptors, receptor ligands or inhibitors or agonists of receptor/ligand interactions. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors involved in cell-cell interactions and their ligands (including without limitation, cellular adhesion

-63-

molecules (such as selectins, integrins and their ligands) and receptor/ligand pairs involved in antigen presentation, antigen recognition and development of cellular and humoral immune respones). Receptors and ligands are also useful for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. A protein of the present invention (including, without limitation, fragments of receptors and ligands) may themselves be useful as inhibitors of receptor/ligand interactions.

EXAMPLE 38A

Assaying the Proteins Expressed from Extended cDNAs or Portions

Thereof for Anti-Inflammatory Activity

The proteins encoded by the extended cDNAs or a portion thereof may also be evaluated for anti-inflammatory activity. The anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cell-cell interactions (such as, for example, cell adhesion), by inhibiting or promoting chemotaxis of cells involved in the inflammatory process, inhibiting or promoting cell extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an inflammatory response. Proteins exhibiting such activities can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation inflammation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusioninury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of cytokines such as TNF or IL-1. Proteins of the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material.

20

30

EXAMPLE 38B

Assaying the Proteins Expressed from Extended cDNAs or

Portions Thereof for Tumor Inhibition Activity

The proteins encoded by the extended cDNAs or a portion thereof may also be evaluated for tumor inhibition activity. In addition to the activities described above for immunological treatment or prevention of tumors, a protein of the invention may exhibit other anti-tumor activities. A protein may inhibit tumor growth directly or indirectly (such as, for example, via ADCC). A protein may exhibit its tumor inhibitory activity by acting on tumor tissue or tumor precursor tissue, by inhibiting formation of tissues necessary to support tumor growth (such as, for example, by inhibiting angiogenesis), by causing production of other factors, agents or cell types which inhibit tumor growth, or by suppressing, climinating or inhibiting factors, agents or cell types which promote tumor growth.

A protein of the invention may also exhibit one or more of the following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites; effecting (suppressing or enhancing) bodily characteristics, including, without limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body part size or shape (such as, for example, breast augmentation or diminution, change in bone form or shape); effecting biorhythms or

circadian cycles or rhythms; effecting the fertility of male or female subjects; effecting the metabolism, catabolism, anabolism, processing, utilization, storage or climination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other nutritional factors or component(s); effecting behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), depression (including depressive disorders) and violent behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth of embryonic stem cells in lineages other than hematopoietic lineages; hormonal or endocrine activity; in the case of enzymes, correcting deficiencies of the enzyme and treating deficiency-related diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulin-like activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.

EXAMPLE 39

Identification of Proteins which Interact with

Polypeptides Encoded by Extended cDNAs

Proteins which interact with the polypeptides encoded by extended cDNAs or portions thereof, such as

receptor proteins, may be identified using two hybrid systems such as the Matchmaker Two Hybrid System 2 (Catalog No. K1604-1, Clontech). As described in the manual accompanying the Matchmaker Two Hybrid System 2 (Catalog No. K1604-1, Clontech), the extended cDNAs or portions thereof, are inserted into an expression vector such that they are in frame with DNA encoding the DNA binding domain of the yeast transcriptional activator GAL4. cDNAs in a cDNA library which encode proteins which might interact with the polypeptides encoded by the extended cDNAs or portions thereof

are inserted into a second expression vector such that they are in frame with DNA encoding the activation domain of GAL4. The two expression plasmids are transformed into yeast and the yeast are plated on selection medium which selects for expression of selectable markers on each of the expression vectors as well as GAL4 dependent expression of the HIS3 gene. Transformants capable of growing on medium lacking histidine are screened for GAL4 dependent lacZ expression. Those cells which are positive in both the histidine selection and the lacZ assay contain plasmids encoding proteins which interact with the polypeptide encoded by the extended cDNAs or portions thereof.

Alternatively, the system described in Lustig et al., Methods in Enzymology 283: 83-99 (1997) may be used for identifying molecules which interact with the polypeptides encoded by extended cDNAs. In such systems, *in vitro* transcription reactions are performed on a pool of vectors containing extended cDNA inserts cloned downstream of a promoter which drives *in vitro* transcription. The resulting pools of mRNAs are introduced into *Xenopus laevis* oocytes.

30 The oocytes are then assayed for a desired activity.

Alternatively, the pooled *in vitro* transcription products produced as described above may be translated *in vitro*. The pooled *in vitro* translation products can be assayed for a desired activity or for interaction with a known polypeptide.

Proteins or other molecules interacting with polypeptides encoded by extended cDNAs can be found by a variety of additional techniques. In one method, affinity columns containing the polypeptide encoded by the extended cDNA or a portion thereof can be constructed. In some versions, of this method the affinity column contains chimeric proteins in which the protein encoded by the extended cDNA or a portion thereof is fused to glutathione S-transferase. 5 A mixture of cellular proteins or pool of expressed proteins as described above and is applied to the affinity column. Proteins interacting with the polypeptide attached to the column can then be isolated and analyzed on 2-D electrophoresis gel as described in Ramunsen et al. Electrophoresis, 18, 588-598 (1997). Alternatively, the proteins retained on the affinity column can be purified by electrophoresis based methods and sequenced. The same method can be used to isolate antibodies, to screen phage display products, or to screen phage display human antibodies.

10

Proteins interacting with polypeptides encoded by extended cDNAs or portions thereof can also be screened by using an Optical Biosensor as described in Edwards & Leatherbarrow, Analytical Biochemistry, 246, 1-6 (1997). The main advantage of the method is that it allows the determination of the association rate between the protein and other interacting molecules. Thus, it is possible to specifically select interacting molecules with a high or low association rate. Typically a target molecule is linked to the sensor surface (through a carboxymethl dextran matrix) and a sample of test 15 molecules is placed in contact with the target molecules. The binding of a test molecule to the target molecule causes a change in the refractive index and/ or thickness. This change is detected by the Biosensor provided it occurs in the evanescent field (which extend a few hundred manometers from the sensor surface). In these screening assays, the target molecule can be one of the polypeptides encoded by extended cDNAs or a portion thereof and the test sample can be a collection of proteins extracted from tissues or cells, a pool of expressed proteins, combinatorial peptide and/ or 20 chemical libraries, or phage displayed peptides. The tissues or cells from which the test proteins are extracted can originate from any species.

In other methods, a target protein is immobilized and the test population is a collection of unique polypeptides encoded by the extended cDNAs or portions thereof.

To study the interaction of the proteins encoded by the extended cDNAs or portions thereof with drugs, the 25 microdialysis coupled to HPLC method described by Wang et al., Chromatographia, 44, 205-208(1997) or the affinity capillary electrophoresis method described by Busch et al., J. Chromatogr. 777:311-328 (1997), the disclosures of which are incorporated herein by referenc can be used.

The system described in U.S. Patent No. 5,654,150 may also be used to identify molecules which interact with the polypeptides encoded by the extended cDNAs. In this system, pools of extended cDNAs are transcribed and 30 translated in vitro and the reaction products are assayed for interaction with a known polypeptide or antibody.

It will be appreciated by those skilled in the art that the proteins expressed from the extended cDNAs or portions may be assayed for numerous activities in addition to those specifically enumerated above. For example, the expressed proteins may be evaluated for applications involving control and regulation of inflammation, tumor

proliferation or metastasis, infection, or other clinical conditions. In addition, the proteins expressed from the extended cDNAs or portions thereof may be useful as nutritional agents or cosmetic agents.

The proteins expressed from the extended cDNAs or portions thereof may be used to generate antibodies capable of specifically binding to the expressed protein or fragments thereof as described in Example 40 below. The antibodies may capable of binding a full length protein encoded by one of the sequences of SEQ ID NOs. 40-140 and 242-377, a mature protein encoded by one of the sequences of SEQ ID NOs. 40-140 and 242-377, or a signal peptide encoded by one of the sequences of SEQ ID Nos. 40-140 and 242-377. Alternatively, the antibodies may be capable of binding fragments of the proteins expressed from the extended cDNAs which comprise at least 10 amino acids of the sequences of SEQ ID NOs: 141-241 and 378-513. In some embodiments, the antibodies may be capable of binding fragments of the proteins expressed from the extended cDNAs which comprise at least 15 amino acids of the sequences of SEQ ID NOs: 141-241 and 378-513. In other embodiments, the antibodies may be capable of binding fragments of the proteins expressed from the extended cDNAs which comprise at least 25 amino acids of the sequences of SEQ ID NOs: 141-241 and 378-513. In further embodiments, the antibodies may be capable of binding fragments of the proteins expressed from the extended cDNAs which comprise at least 40 amino acids of the sequences of SEQ ID NOs: 141-241 and 378-513.

EXAMPLE 40

Production of an Antibody to a Human Protein

Substantially pure protein or polypeptide is isolated from the transfected or transformed cells as described in Example 30. The concentration of protein in the final preparation is adjusted, for example, by concentration on an Amicon filter device, to the level of a few micrograms/ml. Monoclonal or polyclonal antibody to the protein can then be prepared as follows:

A. Monoclonal Antibody Production by Hybridoma Fusion

Monoclonal antibody to epitopes of any of the peptides identified and isolated as described can be prepared from murine hybridomas according to the classical method of Kohler, G. and Milstein, C., Nature 256:495 (1975) or derivative methods thereof. Briefly, a mouse is repetitively inoculated with a few micrograms of the selected protein or peptides derived therefrom over a period of a few weeks. The mouse is then sacrificed, and the antibody producing cells of the spleen isolated. The spleen cells are fused by means of polyethylene glycol with mouse myeloma cells, and the excess unfused cells destroyed by growth of the system on selective media comprising aminopterin (HAT media). The successfully fused cells are diluted and aliquots of the dilution placed in wells of a microtiter plate where growth of the culture is continued. Antibody-producing clones are identified by detection of antibody in the supernatant fluid of the wells by immunoassay procedures, such as Elisa, as originally described by Engvall, E., Meth. Enzymol. 70:419 (1980), and derivative methods thereof. Selected positive clones can be expanded and their monoclonal antibody product harvested for use. Detailed procedures for monoclonal antibody production are described in Davis, L. et al. Basic Methods in Molecular Biology Elsevier, New York. Section 21-2.

B. Polyclonal Antibody Production by Immunization

Polyclonal antiserum containing antibodies to heterogenous epitopes of a single protein can be prepared by immunizing suitable animals with the expressed protein or peptides derived therefrom described above, which can be unmodified or modified to enhance immunogenicity. Effective polyclonal antibody production is affected by many factors related both to the antigen and the host species. For example, small molecules tend to be less immunogenic than others and may require the use of carriers and adjuvant. Also, host animals vary in response to site of inoculations and dose, with both inadequate or excessive doses of antigen resulting in low titer antisera. Small doses (ng level) of antigen administered at multiple intradermal sites appears to be most reliable. An effective immunization protocol for rabbits can be found in Vaitukaitis, J. et al. J. Clin. Endocrinol. Metab. 33:988-991 (1971).

Booster injections can be given at regular intervals, and antiserum harvested when antibody titer thereof, as determined semi-quantitatively, for example, by double immunodiffusion in agar against known concentrations of the antigen, begins to fall. See, for example, Ouchterlony, O. et al., Chap. 19 in: Handbook of Experimental Immunology D. Wier (ed) Blackwell (1973). Plateau concentration of antibody is usually in the range of 0.1 to 0.2 mg/ml of serum (about 12 µM). Affinity of the antisera for the antigen is determined by preparing competitive binding curves, as described, for example, by Fisher, D., Chap. 42 in: Manual of Clinical Immunology, 2d Ed. (Rose and Friedman, Eds.) Amer. Soc. For Microbiol., Washington, D.C. (1980).

Antibody preparations prepared according to either protocol are useful in quantitative immunoassays which determine concentrations of antigen-bearing substances in biological samples; they are also used semi-quantitatively or qualitatively to identify the presence of antigen in a biological sample. The antibodies may also be used in therapeutic compositions for killing cells expressing the protein or reducing the levels of the protein in the body.

V. Use of Extended cDNAs or Portions Thereof as Reagents

The extended cDNAs of the present invention may be used as reagents in isolation procedures, diagnostic assays, and forensic procedures. For example, sequences from the extended cDNAs (or genomic DNAs obtainable therefrom) may be detectably labeled and used as probes to isolate other sequences capable of hybridizing to them. In addition, sequences from the extended cDNAs (or genomic DNAs obtainable therefrom) may be used to design PCR primers to be used in isolation, diagnostic, or forensic procedures.

EXAMPLE 41

Preparation of PCR Primers and Amplification of DNA

The extended cDNAs (or genomic DNAs obtainable therefrom) may be used to prepare PCR primers for a variety of applications, including isolation procedures for cloning nucleic acids capable of hybridizing to such sequences, diagnostic techniques and forensic techniques. The PCR primers are at least 10 bases, and preferably at least 12, 15, or 17 bases in length. More preferably, the PCR primers are at least 20-30 bases in length. In some embodiments, the PCR primers may be more than 30 bases in length. It is preferred that the primer pairs have approximately the same G/C

ratio, so that melting temperatures are approximately the same. A variety of PCR techniques are familiar to those skilled in the art. For a review of PCR technology, see Molecular Cloning to Genetic Engineering White, B.A. Ed. in Methods in Molecular Biology 67: Humana Press, Totowa 1997. In each of these PCR procedures, PCR primers on either side of the nucleic acid sequences to be amplified are added to a suitably prepared nucleic acid sample along with dNTPs and a thermostable polymerase such as Taq polymerase, Pfu polymerase, or Vent polymerase. The nucleic acid in the sample is denatured and the PCR primers are specifically hybridized to complementary nucleic acid sequences in the sample. The hybridized primers are extended. Thereafter, another cycle of denaturation, hybridization, and extension is initiated. The cycles are repeated multiple times to produce an amplified fragment containing the nucleic acid sequence between the primer sites.

10 .

EXAMPLE 42

Use of Extended cDNAs as Probes

Probes derived from extended cDNAs or portions thereof (or genomic DNAs obtainable therefrom) may be labeled with detectable labels familiar to those skilled in the art, including radioisotopes and non-radioactive labels, to provide a detectable probe. The detectable probe may be single stranded or double stranded and may be made using techniques known in the art, including in vitro transcription, nick translation, or kinase reactions. A nucleic acid sample containing a sequence capable of hybridizing to the labeled probe is contacted with the labeled probe. If the nucleic acid in the sample is double stranded, it may be denatured prior to contacting the probe. In some applications, the nucleic acid sample may be immobilized on a surface such as a nitrocellulose or nylon membrane. The nucleic acid sample may comprise nucleic acids obtained from a variety of sources, including genomic DNA, cDNA libraries, RNA, or tissue samples.

Procedures used to detect the presence of nucleic acids capable of hybridizing to the detectable probe include well known techniques such as Southern blotting, Northern blotting, dot blotting, colony hybridization, and plaque hybridization. In some applications, the nucleic acid capable of hybridizing to the labeled probe may be cloned into vectors such as expression vectors, sequencing vectors, or in vitro transcription vectors to facilitate the characterization and expression of the hybridizing nucleic acids in the sample. For example, such techniques may be used to isolate and clone sequences in a genomic library or cDNA library which are capable of hybridizing to the detectable probe as described in Example 30 above.

PCR primers made as described in Example 41 above may be used in forensic analyses, such as the DNA fingerprinting techniques described in Examples 43-47 below. Such analyses may utilize detectable probes or primers based on the sequences of the extended cDNAs isolated using the 5' ESTs (or genomic DNAs obtainable therefrom).

EXAMPLE 43

Forensic Matching by DNA Sequencing

In one exemplary method, DNA samples are isolated from forensic specimens of, for example, hair, semen, blood or skin cells by conventional methods. A panel of PCR primers based on a number of the extended cDNAs (or

genomic DNAs obtainable therefrom), is then utilized in accordance with Example 41 to amplify DNA of approximately 100-200 bases in length from the forensic specimen. Corresponding sequences are obtained from a test subject. Each of these identification DNAs is then sequenced using standard techniques, and a simple database comparison determines the differences, if any, between the sequences from the subject and those from the sample. Statistically significant differences between the suspect's DNA sequences and those from the sample conclusively prove a lack of identity. This lack of identity can be proven, for example, with only one sequence. Identity, on the other hand, should be demonstrated with a large number of sequences, all matching. Preferably, a minimum of 50 statistically identical sequences of 100 bases in length are used to prove identity between the suspect and the sample.

EXAMPLE 44

10

Positive Identification by DNA Sequencing

The technique outlined in the previous example may also be used on a larger scale to provide a unique fingerprint-type identification of any individual. In this technique, primers are prepared from a large number of sequences from Table IV and the appended sequence listing. Preferably, 20 to 50 different primers are used. These primers are used to obtain a corresponding number of PCR-generated DNA segments from the individual in question in accordance with Example 41. Each of these DNA segments is sequenced, using the methods set forth in Example 43. The database of sequences generated through this procedure uniquely identifies the individual from whom the sequences were obtained. The same panel of primers may then be used at any later time to absolutely correlate tissue or other biological specimen with that individual.

EXAMPLE 45

20

Southern Blot Forensic Identification

The procedure of Example 44 is repeated to obtain a panel of at least 10 amplified sequences from an individual and a specimen. Preferably, the panel contains at least 50 amplified sequences. More preferably, the panel contains 100 amplified sequences. In some embodiments, the panel contains 200 amplified sequences. This PCR-generated DNA is then digested with one or a combination of, preferably, four base specific restriction enzymes. Such enzymes are commercially available and known to those of skill in the art. After digestion, the resultant gene fragments are size separated in multiple duplicate wells on an agarose gel and transferred to nitrocellulose using Southern blotting techniques well known to those with skill in the art. For a review of Southern blotting see Davis et al. (Basic Methods in Molecular Biology, 1986, Elsevier Press. pp 62-65).

A panel of probes based on the sequences of the extended cDNAs (or genomic DNAs obtainable therefrom), or fragments thereof of at least 10 bases, are radioactively or colorimetrically labeled using methods known in the art, such as nick translation or end labeling, and hybridized to the Southern blot using techniques known in the art (Davis et al., supra). Preferably, the probe comprises at least 12, 15, or 17 consecutive nucleotides from the extended cDNA (or genomic DNAs obtainable therefrom). More preferably, the probe comprises at least 20-30 consecutive nucleotides from the extended cDNA (or genomic DNAs obtainable therefrom). In some embodiments, the probe comprises more than 30

-70-

nucleotides from the extended cDNA (or genomic DNAs obtainable therefrom). In other embodiments, the probe comprises at least 40, at least 50, at least 75, at least 100, at least 150, or at least 200 consecutive nucleotides from the extended cDNA (or genomic DNAs obtainable therefrom).

Preferably, at least 5 to 10 of these labeled probes are used, and more preferably at least about 20 or 30 are 5 used to provide a unique pattern. The resultant bands appearing from the hybridization of a large sample of extended cDNAs (or genomic DNAs obtainable therefrom) will be a unique identifier. Since the restriction enzyme cleavage will be different for every individual, the band pattern on the Southern blot will also be unique. Increasing the number of extended cDNA probes will provide a statistically higher level of confidence in the identification since there will be an increased number of sets of bands used for identification.

10

25

EXAMPLE 46

Dot Blot Identification Procedure

Another technique for identifying individuals using the extended cDNA sequences disclosed herein utilizes a dot blot hybridization technique.

Genomic DNA is isolated from nuclei of subject to be identified. Oligonucleotide probes of approximately 30 bp 15 in length are synthesized that correspond to at least 10, preferably 50 sequences from the extended cDNAs or genomic DNAs obtainable therefrom. The probes are used to hybridize to the genomic DNA through conditions known to those in the art. The oligonucleotides are end labeled with P32 using polynucleotide kinase (Pharmacia). Dot Blots are created by spotting the genomic DNA onto nitrocellulose or the like using a vacuum dot blot manifold (BioRad, Richmond California). The nitrocellulose filter containing the genomic sequences is baked or UV linked to the filter, prehybridized and 20 hybridized with labeled probe using techniques known in the art (Davis et al. supra). The 32P labeled DNA fragments are sequentially hybridized with successively stringent conditions to detect minimal differences between the 30 bp sequence and the DNA. Tetramethylammonium chloride is useful for identifying clones containing small numbers of nucleotide mismatches (Wood et al., Proc. Natl. Acad. Sci. USA 82(6):1585-1588 (1985)). A unique pattern of dots distinguishes one individual from another individual.

Extended cDNAs or oligonucleotides containing at least 10 consecutive bases from these sequences can be used as probes in the following alternative fingerprinting technique. Preferably, the probe comprises at least 12, 15, or 17 consecutive nucleotides from the extended cDNA (or genomic DNAs obtainable therefrom). More preferably, the probe comprises at least 20-30 consecutive nucleotides from the extended cDNA (or genomic DNAs obtainable therefrom). In some embodiments, the probe comprises more than 30 nucleotides from the extended cDNA (or genomic 30 DNAs obtainable therefrom). In other embodiments, the probe comprises at least 40, at least 50, at least 75, at least 100, at least 150, or at least 200 consecutive nucleotides from the extended cDNA (or genomic DNAs obtainable therefrom).

Preferably, a plurality of probes having sequences from different genes are used in the alternative fingerprinting technique. Example 47 below provides a representative alternative fingerprinting procedure in which the probes are derived from extended cDNAs.

EXAMPLE 47

5

Alternative "Fingerprint" Identification Technique

20-mer oligonucleotides are prepared from a large number, e.g. 50, 100, or 200, of extended cDNA sequences (or genomic DNAs obtainable therefrom) using commercially available oligonucleotide services such as Genset, Paris, France. Cell samples from the test subject are processed for DNA using techniques well known to those with skill in the art. The nucleic acid is digested with restriction enzymes such as EcoRI and Xbal. Following digestion, samples are applied to wells for electrophoresis. The procedure, as known in the art, may be modified to accommodate polyacrylamide electrophoresis, however in this example, samples containing 5 ug of DNA are loaded into wells and separated on 0.8% agarose gels. The gels are transferred onto nitrocellulose using standard Southern blotting techniques.

10 ng of each of the oligonucleotides are pooled and end-labeled with P³². The nitrocellulose is prehybridized with blocking solution and hybridized with the labeled probes. Following hybridization and washing, the nitrocellulose filter is exposed to X-Omat AR X-ray film. The resulting hybridization pattern will be unique for each individual.

It is additionally contemplated within this example that the number of probe sequences used can be varied for additional accuracy or clarity.

The antibodies generated in Examples 30 and 40 above may be used to identify the tissue type or cell species from which a sample is derived as described above.

EXAMPLE 48

Identification of Tissue Types or Cell Species by Means of

Labeled Tissue Specific Antibodies

Identification of specific tissues is accomplished by the visualization of tissue specific antigens by means of antibody preparations according to Examples 30 and 40 which are conjugated, directly or indirectly to a detectable marker. Selected labeled antibody species bind to their specific antigen binding partner in tissue sections, cell suspensions, or in extracts of soluble proteins from a tissue sample to provide a pattern for qualitative or semi-qualitative interpretation.

Antisera for these procedures must have a potency exceeding that of the native preparation, and for that
reason, antibodies are concentrated to a mg/ml level by isolation of the gamma globulin fraction, for example, by ionexchange chromatography or by ammonium sulfate fractionation. Also, to provide the most specific antisera, unwanted
antibodies, for example to common proteins, must be removed from the gamma globulin fraction, for example by means
of insoluble immunoabsorbents, before the antibodies are labeled with the marker. Either monoclonal or heterologous
antisera is suitable for either procedure.

A. Immunohistochemical Techniques

Purified, high-titer antibodies, prepared as described above, are conjugated to a detectable marker, as described, for example, by Fudenberg, H., Chap. 26 in: Basic 503 Clinical Immunology, 3rd Ed. Lange, Los Altos, California (1980) or Rose, N. et al., Chap. 12 in: Methods in Immunodiagnosis, 2d Ed. John Wiley 503 Sons, New York (1980).

A fluorescent marker, either fluorescein or rhodamine, is preferred, but antibodies can also be labeled with an enzyme that supports a color producing reaction with a substrate, such as horseradish peroxidase. Markers can be added to tissue-bound antibody in a second step, as described below. Alternatively, the specific antitissue antibodies can be labeled with ferritin or other electron dense particles, and localization of the ferritin coupled antigen-antibody complexes achieved by means of an electron microscope. In yet another approach, the antibodies are radiolabeled, with, for example ¹²⁵I, and detected by overlaying the antibody treated preparation with photographic emulsion.

Preparations to carry out the procedures can comprise monoclonal or polyclonal antibodies to a single protein or peptide identified as specific to a tissue type, for example, brain tissue, or antibody preparations to several antigenically distinct tissue specific antigens can be used in panels, independently or in mixtures, as required.

Tissue sections and cell suspensions are prepared for immunohistochemical examination according to common histological techniques. Multiple cryostat sections (about 4 µm, unfixed) of the unknown tissue and known control, are mounted and each slide covered with different dilutions of the antibody preparation. Sections of known and unknown tissues should also be treated with preparations to provide a positive control, a negative control, for example, pre-immune sera, and a control for non-specific staining, for example, buffer.

Treated sections are incubated in a humid chamber for 30 min at room temperature, rinsed, then washed in buffer for 30-45 min. Excess fluid is blotted away, and the marker developed.

If the tissue specific antibody was not labeled in the first incubation, it can be labeled at this time in a second antibody-antibody reaction, for example, by adding fluorescein or enzyme-conjugated antibody against the immunoglobulin class of the antiserum-producing species, for example, fluorescein labeled antibody to mouse IgG. Such 25 labeled sera are commercially available.

The antigen found in the tissues by the above procedure can be quantified by measuring the intensity of color or fluorescence on the tissue section, and calibrating that signal using appropriate standards.

B. Identification of Tissue Specific Soluble Proteins

20

The visualization of tissue specific proteins and identification of unknown tissues from that procedure is

30 carried out using the labeled antibody reagents and detection strategy as described for immunohistochemistry; however
the sample is prepared according to an electrophoretic technique to distribute the proteins extracted from the tissue in
an orderly array on the basis of molecular weight for detection.

A tissue sample is homogenized using a Virtis apparatus; cell suspensions are disrupted by Dounce homogenization or osmotic lysis, using detergents in either case as required to disrupt cell membranes, as is the practice

.73.

in the art. Insoluble cell components such as nuclei, microsomes, and membrane fragments are removed by ultracentrifugation, and the soluble protein-containing fraction concentrated if necessary and reserved for analysis.

A sample of the soluble protein solution is resolved into individual protein species by conventional SDS polyacrylamide electrophoresis as described, for example, by Davis, L. et al., Section 19-2 in: Basic Methods in 5 Molecular Biology (P. Leder, ed), Elsevier, New York (1986), using a range of amounts of polyacrylamide in a set of gels to resolve the entire molecular weight range of proteins to be detected in the sample. A size marker is run in parallel for purposes of estimating molecular weights of the constituent proteins. Sample size for analysis is a convenient volume of from 5 to 55 μ l, and containing from about 1 to 100 μ g protein. An aliquot of each of the resolved proteins is transferred by blotting to a nitrocellulose filter paper, a process that maintains the pattern of resolution. Multiple copies 10 are prepared. The procedure, known as Western Blot Analysis, is well described in Davis, L. et al., (above) Section 19-3. One set of nitrocellulose blots is stained with Coomassie Blue dye to visualize the entire set of proteins for comparison with the antibody bound proteins. The remaining nitrocellulose filters are then incubated with a solution of one or more specific antisera to tissue specific proteins prepared as described in Examples 30 and 40. In this procedure, as in procedure A above, appropriate positive and negative sample and reagent controls are run.

In either procedure A or B, a detectable label can be attached to the primary tissue antigen-primary antibody complex according to various strategies and permutations thereof. In a straightforward approach, the primary specific antibody can be labeled; alternatively, the unlabeled complex can be bound by a labeled secondary anti-IgG antibody. In other approaches, either the primary or secondary antibody is conjugated to a biotin molecule, which can, in a subsequent step, bind an avidin conjugated marker. According to yet another strategy, enzyme labeled or radioactive 20 protein A, which has the property of binding to any IgG, is bound in a final step to either the primary or secondary antibody.

15

The visualization of tissue specific antigen binding at levels above those seen in control tissues to one or more tissue specific antibodies, prepared from the gene sequences identified from extended cDNA sequences, can identify tissues of unknown origin, for example, forensic samples, or differentiated tumor tissue that has metastasized to foreign 25 bodily sites.

In addition to their applications in forensics and identification, extended cDNAs (or genomic DNAs obtainable therefrom) may be mapped to their chromosomal locations. Example 49 below describes radiation hybrid (RH) mapping of human chromosomal regions using extended cDNAs. Example 50 below describes a representative procedure for mapping an extended cDNA (or a genomic DNA obtainable therefrom) to its location on a human chromosome. Example 30 51 below describes mapping of extended cDNAs (or genomic DNAs obtainable therefrom) on metaphase chromosomes by Fluorescence In Situ Hybridization (FISH).

EXAMPLE 49

Radiation hybrid mapping of Extended cDNAs to the human genome

-74-

Radiation hybrid (RH) mapping is a somatic cell genetic approach that can be used for high resolution mapping of the human genome. In this approach, cell lines containing one or more human chromosomes are lethally irradiated, breaking each chromosome into fragments whose size depends on the radiation dose. These fragments are rescued by fusion with cultured rodent cells, yielding subclones containing different portions of the human genome. This technique 5 is described by Benham et al. (Genomics 4:509-517, 1989) and Cox et al., (Science 250:245-250, 1990). The random and independent nature of the subclones permits efficient mapping of any human genome marker. Human DNA isolated from a panel of 80-100 cell lines provides a mapping reagent for ordering extended cDNAs (or genomic DNAs obtainable therefrom). In this approach, the frequency of breakage between markers is used to measure distance, allowing construction of fine resolution maps as has been done using conventional ESTs (Schuler et al., Science 274:540-546, 10 1996).

RH mapping has been used to generate a high-resolution whole genome radiation hybrid map of human chromosome 17q22-q25.3 across the genes for growth hormone (GH) and thyr.iidine kinase (TK) (Foster et al., Genomics 33:185-192, 1996), the region surrounding the Gorlin syndrome gene (Obermayr et al., Eur. J. Hum. Genet. 4:242-245, 1996), 60 loci covering the entire short arm of chromosome 12 (Raeymaekers et al., Genomics 29:170-178, 1995), the 15 region of human chromosome 22 containing the neurofibromatosis type 2 locus (Frazer et al., Genomics 14:574-584, 1992) and 13 loci on the long arm of chromosome 5 (Warrington et al., Genomics 11:701-708, 1991).

EXAMPLE 50

Mapping of Extended cDNAs to Human Chromosomes using PCR techniques

20

Extended cDNAs (or genomic DNAs obtainable therefrom) may be assigned to human chromosomes using PCR based methodologies. In such approaches, oligonucleotide primer pairs are designed from the extended cDNA sequence (or the sequence of a genomic DNA obtainable therefrom) to minimize the chance of amplifying through an intron. Preferably, the oligonucleotide primers are 18-23 bp in length and are designed for PCR amplification. The creation of PCR primers from known sequences is well known to those with skill in the art. For a review of PCR technology see 25 Erlich, H.A., PCR Technology; Principles and Applications for DNA Amplification. 1992. W.H. Freeman and Co., New York.

The primers are used in polymerase chain reactions (PCR) to amplify templates from total human genomic DNA. PCR conditions are as follows: 60 ng of genomic DNA is used as a template for PCR with 80 ng of each oligonucleotide primer, 0.6 unit of Taq polymerase, and 1 μ Cu of a 32 P-labeled deoxycytidine triphosphate. The PCR is 30 performed in a microplate thermocycler (Techne) under the following conditions: 30 cycles of 94°C, 1.4 min; 55°C, 2 min; and 72°C, 2 min; with a final extension at 72°C for 10 min. The amplified products are analyzed on a 6% polyacrylamide sequencing gel and visualized by autoradiography. If the length of the resulting PCR product is identical to the distance between the ends of the primer sequences in the extended cDNA from which the primers are derived, then the PCR reaction is repeated with DNA templates from two panels of human-rodent somatic cell hybrids, BIOS

-75-

PCR is used to screen a series of somatic cell hybrid cell lines containing defined sets of human chromosomes for the presence of a given extended cDNA (or genomic DNA obtainable therefrom). DNA is isolated from the somatic hybrids and used as starting templates for PCR reactions using the primer pairs from the extended cDNAs (or genomic DNAs obtainable therefrom). Only those somatic cell hybrids with chromosomes containing the human gene corresponding to the extended cDNA (or genomic DNA obtainable therefrom) will yield an amplified fragment. The extended cDNAs (or genomic DNAs obtainable therefrom) are assigned to a chromosome by analysis of the segregation pattern of PCR products from the somatic hybrid DNA templates. The single human chromosome present in all cell hybrids that give rise to an amplified fragment is the chromosome containing that extended cDNA (or genomic DNA obtainable therefrom). For a review of techniques and analysis of results from somatic cell gene mapping experiments. (See Ledbetter et al., Genomics 6:475-481 (1990).)

Alternatively, the extended cDNAs (or genomic DNAs obtainable therefrom) may be mapped to individual chromosomes using FISH as described in Example 51 below.

15

EXAMPLE 51

Mapping of Extended 5' ESTs to Chromosomes

Using Fluorescence in situ Hybridization

Fluorescence in situ hybridization allows the extended cDNA (or genomic DNA obtainable therefrom) to be mapped to a particular location on a given chromosome. The chromosomes to be used for fluorescence in situ hybridization techniques may be obtained from a variety of sources including cell cultures, tissues, or whole blood.

In a preferred embodiment, chromosomal localization of an extended cDNA (or genomic DNA obtainable therefrom) is obtained by FISH as described by Cherif et al. (*Proc. Natl. Acad. Sci. U.S.A.*, 87:6639-6643, 1990).

Metaphase chromosomes are prepared from phytohemagglutinin (PHA)-stimulated blood cell donors. PHA-stimulated lymphocytes from healthy males are cultured for 72 h in RPMI-1640 medium. For synchronization, methotrexate (10 μM) is added for 17 h, followed by addition of 5-bromodeoxyuridine (5-BudR, 0.1 mM) for 6 h. Colcemid (1 μg/ml) is added for the last 15 min before harvesting the cells. Cells are collected, washed in RPMI, incubated with a hypotonic solution of KCI (75 mM) at 37°C for 15 min and fixed in three changes of methanol:acetic acid (3:1). The cell suspension is dropped onto a glass slide and air dried. The extended cDNA (or genomic DNA obtainable therefrom) is labeled with biotin-16 dUTP by nick translation according to the manufacturer's instructions (Bethesda Research

Laboratories, Bethesda, MD), purified using a Sephadex G-50 column (Pharmacia, Upssala, Sweden) and precipitated. Just prior to hybridization, the DNA pellet is dissolved in hybridization buffer (50% formamide, 2 X SSC, 10% dextran sulfate, 1 mg/ml sonicated salmon sperm DNA, pH 7) and the probe is denatured at 70°C for 5-10 min.

Slides kept at -20°C are treated for 1 h at 37°C with RNase A (100 μ g/ml), rinsed three times in 2 X SSC and dehydrated in an ethanol series. Chromosome preparations are denatured in 70% formamide, 2 X SSC for 2 min at

-76-

70°C, then dehydrated at 4°C. The slides are treated with proteinase K (10 μg/100 ml in 20 mM Tris-HCl, 2 mM CaCl₂) at 37°C for 8 min and dehydrated. The hybridization mixture containing the probe is placed on the slide, covered with a coverslip, sealed with rubber cement and incubated overnight in a humid chamber at 37°C. After hybridization and post-hybridization washes, the biotinylated probe is detected by avidin-FITC and amplified with additional layers of
biotinylated goat anti-avidin and avidin-FITC. For chromosomal localization, fluorescent R-bands are obtained as previously described (Cherif et al., supra.). The slides are observed under a LEICA fluorescence microscope (DMRXA). Chromosomes are counterstained with propidium iodide and the fluorescent signal of the probe appears as two symmetrical yellow-green spots on both chromatids of the fluorescent R-band chromosome (red). Thus, a particular extended cDNA (or genomic DNA obtainable therefrom) may be localized to a particular cytogenetic R-band on a given
chromosome.

Once the extended cDNAs (or genomic DNAs obtainable therefrom) have been assigned to particular chromosomes using the techniques described in Examples 49-51 above, they may be utilized to construct a high resolution map of the chromosomes on which they are located or to identify the chromosomes in a sample.

EXAMPLE 52

15

Use of Extended cDNAs to Construct or Expand Chromosome Maps

Chromosome mapping involves assigning a given unique sequence to a particular chromosome as described above. Once the unique sequence has been mapped to a given chromosome, it is ordered relative to other unique sequences located on the same chromosome. One approach to chromosome mapping utilizes a series of yeast artificial chromosomes (YACs) bearing several thousand long inserts derived from the chromosomes of the organism from which the extended cDNAs (or genomic DNAs obtainable therefrom) are obtained. This approach is described in Ramaiah Nagaraja et al. Genome Research 7:210-222, March 1997. Briefly, in this approach each chromosome is broken into overlapping pieces which are inserted into the YAC vector. The YAC inserts are screened using PCR or other methods to determine whether they include the extended cDNA (or genomic DNA obtainable therefrom) whose position is to be determined. Once an insert has been found which includes the extended cDNA (or genomic DNA obtainable therefrom), the insert can be analyzed by PCR or other methods to determine whether the insert also contains other sequences known to be on the chromosome or in the region from which the extended cDNA (or genomic DNA obtainable therefrom) was derived. This process can be repeated for each insert in the YAC library to determine the location of each of the extended cDNAs (or genomic DNAs obtainable therefrom) relative to one another and to other known chromosomal markers. In this way, a high resolution map of the distribution of numerous unique markers along each of the organisms 30 chromosomes may be obtained.

As described in Example 53 below extended cDNAs (or genomic DNAs obtainable therefrom) may also be used to identify genes associated with a particular phenotype, such as hereditary disease or drug response.

EXAMPLE 53

Identification of genes associated with hereditary diseases or drug response

3

This example illustrates an approach useful for the association of extended cDNAs (or genomic DNAs obtainable therefrom) with particular phenotypic characteristics. In this example, a particular extended cDNA (or genomic DNA obtainable therefrom) is used as a test probe to associate that extended cDNA (or genomic DNA obtainable therefrom) with a particular phenotypic characteristic.

Extended cDNAs (or genomic DNAs obtainable therefrom) are mapped to a particular location on a human chromosome using techniques such as those described in Examples 49 and 50 or other techniques known in the art. A search of Mendelian Inheritance in Man (V. McKusick, Mendelian Inheritance in Man (available on line through Johns Hopkins University Welch Medical Library) reveals the region of the human chromosome which contains the extended cDNA (or genomic DNA obtainable therefrom) to be a very gene rich region containing several known genes and several 10 diseases or phenotypes for which genes have not been identified. The gene corresponding to this extended cDNA (or genomic DNA obtainable therefrom) thus becomes an immediate candidate for each of these genetic diseases.

Cells from patients with these diseases or phenotypes are isolated and expanded in culture. PCR primers from the extended cDNA (or genomic DNA obtainable therefrom) are used to screen genomic DNA, mRNA or cDNA obtained from the patients. Extended cDNAs (or genomic DNAs obtainable therefrom) that are not amplified in the patients can 15 be positively associated with a particular disease by further analysis. Alternatively, the PCR analysis may yield fragments of different lengths when the samples are derived from an individual having the phenotype associated with the disease than when the sample is derived from a healthy individual, indicating that the gene containing the extended cDNA may be responsible for the genetic disease.

VI. Use of Extended cDNAs (or genomic DNAs obtainable therefrom) to Construct Vectors

The present extended cDNAs (or genomic DNAs obtainable therefrom) may also be used to construct secretion vectors capable of directing the secretion of the proteins encoded by genes inserted in the vectors. Such secretion vectors may facilitate the purification or enrichment of the proteins encoded by genes inserted therein by reducing the number of background proteins from which the desired protein must be purified or enriched. Exemplary secretion vectors are described in Example 54 below.

EXAMPLE 54

5

20

25

30

Construction of Secretion Vectors

The secretion vectors of the present invention include a promoter capable of directing gene expression in the host cell, tissue, or organism of interest. Such promoters include the Rous Sarcoma Virus promoter, the SV40 promoter, the human cytomegalovirus promoter, and other promoters familiar to those skilled in the art.

A signal sequence from an extended cDNA (or genomic DNA obtainable therefrom), such as one of the signal sequences in SEQ ID NOs: 40-140 and 242-377 as defined in Table IV above, is operably linked to the promoter such that the mRNA transcribed from the promoter will direct the translation of the signal peptide. The host cell, tissue, or organism may be any cell, tissue, or organism which recognizes the signal peptide encoded by the signal sequence in the

-78-

extended cDNA (or genomic DNA obtainable therefrom). Suitable hosts include mammalian cells, tissues or organisms, avian cells, tissues, or organisms, insect cells, tissues or organisms, or yeast.

In addition, the secretion vector contains cloning sites for inserting genes encoding the proteins which are to be secreted. The cloning sites facilitate the cloning of the insert gene in frame with the signal sequence such that a fusion protein in which the signal peptide is fused to the protein encoded by the inserted gene is expressed from the mRNA transcribed from the promoter. The signal peptide directs the extracellular secretion of the fusion protein.

The secretion vector may be DNA or RNA and may integrate into the chromosome of the host, be stably maintained as an extrachromosomal replicon in the host, be an artificial chromosome, or be transiently present in the host. Many nucleic acid backbones suitable for use as secretion vectors are known to those skilled in the art, including retroviral vectors, SV40 vectors, Bovine Papilloma Virus vectors, yeast integrating plasmids, yeast episomal plasmids, yeast artificial chromosomes, human artificial chromosomes, P element vectors, baculovirus vectors, or bacterial plasmids capable of being transiently introduced into the host.

The secretion vector may also contain a polyA signal such that the polyA signal is located downstream of the gene inserted into the secretion vector.

After the gene encoding the protein for which secretion is desired is inserted into the secretion vector, the secretion vector is introduced into the host cell, tissue, or organism using calcium phosphate precipitation, DEAE-Dextran, electroporation, liposome-mediated transfection, viral particles or as naked DNA. The protein encoded by the inserted gene is then purified or enriched from the supernatant using conventional techniques such as ammonium sulfate precipitation, immunoprecipitation, immunochromatography, size exclusion chromatography, ion exchange chromatography, and hplc. Alternatively, the secreted protein may be in a sufficiently enriched or pure state in the supernatant or growth media of the host to permit it to be used for its intended purpose without further enrichment.

The signal sequences may also be inserted into vectors designed for gene therapy. In such vectors, the signal sequence is operably linked to a promoter such that mRNA transcribed from the promoter encodes the signal peptide. A cloning site is located downstream of the signal sequence such that a gene encoding a protein whose secretion is desired may readily be inserted into the vector and fused to the signal sequence. The vector is introduced into an appropriate host cell. The protein expressed from the promoter is secreted extracellularly, thereby producing a therapeutic effect.

The extended cDNAs or 5' ESTs may also be used to clone sequences located upstream of the extended cDNAs or 5' ESTs which are capable of regulating gene expression, including promoter sequences, enhancer sequences, and other upstream sequences which influence transcription or translation levels. Once identified and cloned, these upstream regulatory sequences may be used in expression vectors designed to direct the expression of an inserted gene in a desired spatial, temporal, developmental, or quantitative fashion. Example 55 describes a method for cloning sequences upstream of the extended cDNAs or 5' ESTs.

.79-

Use of Extended cDNAs or 5' ESTs to Clone Upstream

Sequences from Genomic DNA

Sequences derived from extended cDNAs or 5' ESTs may be used to isolate the promoters of the corresponding genes using chromosome walking techniques. In one chromosome walking technique, which utilizes the 5 GenomeWalker™ kit available from Clontech, five complete genomic DNA samples are each digested with a different restriction enzyme which has a 6 base recognition site and leaves a blunt end. Following digestion, oligonucleotide adapters are ligated to each end of the resulting genomic DNA fragments.

For each of the five genomic DNA libraries, a first PCR reaction is performed according to the manufacturer's instructions using an outer adaptor primer provided in the kit and an outer gene specific primer. The gene specific primer 10 should be selected to be specific for the extended cDNA or 5' EST of interest and should have a melting temperature, length, and location in the extended cDNA or 'EST which is consistent with its use in PCR reactions. Each first PCR reaction contains 5ng of genomic DNA, 5 μ l of 10X Tth reaction buffer, 0.2 mM of each dNTP, 0.2 μ M each of outer adaptor primer and outer gene specific primer, 1.1 mM of Mg(OAc), and 1 μ l of the Tth polymerase 50X mix in a total volume of 50 μ l. The reaction cycle for the first PCR reaction is as follows: 1 min @ 94°C / 2 sec @ 94°C, 3 min @ 15 72°C (7 cycles) / 2 sec @ 94°C, 3 min @ 67°C (32 cycles) / 5 min @ 67°C.

The product of the first PCR reaction is diluted and used as a template for a second PCR reaction according to the manufacturer's instructions using a pair of nested primers which are located internally on the amplicon resulting from the first PCR reaction. For example, 5 μ l of the reaction product of the first PCR reaction mixture may be diluted 180 times. Reactions are made in a 50 μ l volume having a composition identical to that of the first PCR reaction except 20 the nested primers are used. The first nested primer is specific for the adaptor, and is provided with the GenomeWalkerTM kit. The second nested primer is specific for the particular extended cDNA or 5' EST for which the promoter is to be cloned and should have a melting temperature, length, and location in the extended cDNA or 5' EST which is consistent with its use in PCR reactions. The reaction parameters of the second PCR reaction are as follows: 1 min @ 94°C / 2 sec @ 94°C, 3 min @ 72°C (6 cycles) / 2 sec @ 94°C, 3 min @ 67°C (25 cycles) / 5 min @ 67°C

The product of the second PCR reaction is purified, cloned, and sequenced using standard techniques. Alternatively, two or more human genomic DNA libraries can be constructed by using two or more restriction enzymes. The digested genomic DNA is cloned into vectors which can be converted into single stranded, circular, or linear DNA. A biotinylated oligonucleotide comprising at least 15 nucleotides from the extended cDNA or 5' EST sequence is hybridized to the single stranded DNA. Hybrids between the biotinylated oligonucleotide and the single stranded DNA containing 30 the extended cDNA or EST sequence are isolated as described in Example 29 above. Thereafter, the single stranded DNA containing the extended cDNA or EST sequence is released from the beads and converted into double stranded DNA using a primer specific for the extended cDNA or 5' EST sequence or a primer corresponding to a sequence included in the cloning vector. The resulting double stranded DNA is transformed into bacteria. DNAs containing the 5' EST or extended cDNA sequences are identified by colony PCR or colony hybridization.

25

PCT/IB98/02122 WO 99/31236

-80-

Once the upstream genomic sequences have been cloned and sequenced as described above, prospective promoters and transcription start sites within the upstream sequences may be identified by comparing the sequences upstream of the extended cDNAs or 5' ESTs with databases containing known transcription start sites, transcription factor binding sites, or promoter sequences.

5 In addition, promoters in the upstream sequences may be identified using promoter reporter vectors as described in Example 56.

EXAMPLE 56

Identification of Promoters in Cloned Upstream Sequences

The genomic sequences upstream of the extended cDNAs or 5' ESTs are cloned into a suitable promoter 10 reporter vector, such as the pSEAP-Basic, pSEAP-Enhancer, p\u00edgal-Basic, p\u00edgal-Enhancer, or pEGFP-1 Promoter Reporter vectors available from Clontech. Briefly, each of these promoter reporter vectors include multiple cloning sites positioned upstream of a reporter gene encoding a readily assayable protein such as secreted alkaline phosphatase, B galactosidase, or green fluorescent protein. The sequences upstream of the extended cDNAs or 5' ESTs are inserted into the cloning sites upstream of the reporter gene in both orientations and introduced into an appropriate host cell. The 15 level of reporter protein is assayed and compared to the level obtained from a vector which lacks an insert in the cloning site. The presence of an elevated expression level in the vector containing the insert with respect to the control vector indicates the presence of a promoter in the insert. If necessary, the upstream sequences can be cloned into vectors which contain an enhancer for augmenting transcription levels from weak promoter sequences. A significant level of expression above that observed with the vector lacking an insert indicates that a promoter sequence is present in the 20 inserted upstream sequence.

Appropriate host cells for the promoter reporter vectors may be chosen based on the results of the above described determination of expression patterns of the extended cDNAs and ESTs. For example, if the expression pattern analysis indicates that the mRNA corresponding to a particular extended cDNA or 5' EST is expressed in fibroblasts, the promoter reporter vector may be introduced into a human fibroblast cell line.

25

Promoter sequences within the upstream genomic DNA may be further defined by constructing nested deletions in the upstream DNA using conventional techniques such as Exonuclease III digestion. The resulting deletion fragments can be inserted into the promoter reporter vector to determine whether the deletion has reduced or obliterated promoter activity. In this way, the boundaries of the promoters may be defined. If desired, potential individual regulatory sites within the promoter may be identified using site directed mutagenesis or linker scanning to obliterate 30 potential transcription factor binding sites within the promoter individually or in combination. The effects of these mutations on transcription levels may be determined by inserting the mutations into the cloning sites in the promoter reporter vectors.

EXAMPLE 57

Cloning and Identification of Promoters

-81-

Using the method described in Example 55 above with 5' ESTs, sequences upstream of several genes were obtained. Using the primer pairs GGG AAG ATG GAG ATA GTA TTG CCT G (SEQ ID NO:29) and CTG CCA TGT ACA TGA TAG AGA GAT TC (SEQ ID NO:30), the promoter having the internal designation P13H2 (SEQ ID NO:31) was obtained.

Using the primer pairs GTA CCA GGGG ACT GTG ACC ATT GC (SEQ ID NO:32) and CTG TGA CCA TTG CTC CCA AGA GAG (SEQ ID NO:33), the promoter having the internal designation P15B4 (SEQ ID NO:34) was obtained.

5

Using the primer pairs CTG GGA TGG AAG GCA CGG TA (SEQ ID NO:35) and GAG ACC ACA CAG CTA GAC AA (SEQ ID NO:36), the promoter having the internal designation P29B6 (SEQ ID NO:37) was obtained.

Figure 8 provides a schematic description of the promoters isolated and the way they are assembled with the corresponding 5' tags. The upstream sequences were screened for the presence of motifs resembling transcription factor binding sites or known transcription start sites using the computer program MatInspector release 2.0, August 1996.

Figure 9 describes the transcription factor binding sites present in each of these promoters. The columns labeled matrice provides the name of the MatInspector matrix used. The column labeled position provides the 5' postion of the promoter site. Numeration of the sequence starts from the transcription site as determined by matching the genomic sequence with the 5' EST sequence. The column labeled "orientation" indicates the DNA strand on which the site is found, with the + strand being the coding strand as determined by matching the genomic sequence with the sequence of the 5' EST. The column labeled "score" provides the MatInspector score found for this site. The column labeled "length" provides the length of the site in nucleotides. The column labeled "sequence" provides the sequence of the site found.

The promoters and other regulatory sequences located upstream of the extended cDNAs or 5' ESTs may be used to design expression vectors capable of directing the expression of an inserted gene in a desired spatial, temporal, developmental, or quantitative manner. A promoter capable of directing the desired spatial, temporal, developmental, and quantitative patterns may be selected using the results of the expression analysis described in Example 26 above. For example, if a promoter which confers a high level of expression in muscle is desired, the promoter sequence upstream of an extended cDNA or 5' EST derived from an mRNA which is expressed at a high level in muscle, as determined by the method of Example 26, may be used in the expression vector.

Preferably, the desired promoter is placed near multiple restriction sites to facilitate the cloning of the desired insert downstream of the promoter, such that the promoter is able to drive expression of the inserted gene. The promoter may be inserted in conventional nucleic acid backbones designed for extrachromosomal replication, integration into the host chromosomes or transient expression. Suitable backbones for the present expression vectors include retroviral backbones, backbones from eukaryotic episomes such as SV40 or Bovine Papilloma Virus, backbones from bacterial episomes, or artificial chromosomes.

-82-

Preferably, the expression vectors also include a polyA signal downstream of the multiple restriction sites for directing the polyadenylation of mRNA transcribed from the gene inserted into the expression vector.

Following the identification of promoter sequences using the procedures of Examples 55-57, proteins which interact with the promoter may be identified as described in Example 58 below.

EXAMPLE 58

5

30

Identification of Proteins Which Interact with Promoter Sequences, Upstream Regulatory Sequences, or mRNA

Sequences within the promoter region which are likely to bind transcription factors may be identified by homology to known transcription factor binding sites or through conventional mutagenesis or deletion analyses of reporter plasmids containing the promoter sequence. For example, deletions may be made in a reporter plasmid containing the promoter sequence of interest operably linked to an assayable reporter gene. The reporter plasmids carrying various deletions within the promoter region are transfected into an appropriate host cell and the effects of the deletions on expression levels is assessed. Transcription factor binding sites within the regions in which deletions reduce expression levels may be further localized using site directed mutagenesis, linker scanning analysis, or other techniques familiar to those skilled in the art. Nucleic acids encoding proteins which interact with sequences in the promoter may be identified using one-hybrid systems such as those described in the manual accompanying the Matchmaker One-Hybrid System kit available from Clontech (Catalog No. K1603-1). Briefly, the Matchmaker One-hybrid system is used as follows. The target sequence for which it is desired to identify binding proteins is cloned upstream of a selectable reporter gene and integrated into the yeast genome. Preferably, multiple copies of the target sequences are inserted into the reporter plasmid in tandem.

A library comprised of fusions between cDNAs to be evaluated for the ability to bind to the promoter and the activation domain of a yeast transcription factor, such as GAL4, is transformed into the yeast strain containing the integrated reporter sequence. The yeast are plated on selective media to select cells expressing the selectable marker linked to the promoter sequence. The colonies which grow on the selective media contain genes encoding proteins which bind the target sequence. The inserts in the genes encoding the fusion proteins are further characterized by sequencing. In addition, the inserts may be inserted into expression vectors or in vitro transcription vectors. Binding of the polypeptides encoded by the inserts to the promoter DNA may be confirmed by techniques familiar to those skilled in the art, such as gel shift analysis or DNAse protection analysis.

VII. Use of Extended cDNAs (or Genomic DNAs Obtainable Therefrom) in Gene Therapy

The present invention also comprises the use of extended cDNAs (or genomic DNAs obtainable therefrom) in gene therapy strategies, including antisense and triple helix strategies as described in Examples 57 and 58 below. In antisense approaches, nucleic acid sequences complementary to an mRNA are hybridized to the mRNA intracellularly, thereby blocking the expression of the protein encoded by the mRNA. The antisense sequences may prevent gene expression through a variety of mechanisms. For example, the antisense sequences may inhibit the ability of ribosomes

to translate the mRNA. Alternatively, the antisense sequences may block transport of the mRNA from the nucleus to the cytoplasm, thereby limiting the amount of mRNA available for translation. Another mechanism through which antisense sequences may inhibit gene expression is by interfering with mRNA splicing. In yet another strategy, the antisense nucleic acid may be incorporated in a ribozyme capable of specifically cleaving the target mRNA.

5

25

WO 99/31236

EXAMPLE 59

Preparation and Use of Antisense Oligonucleotides

The antisense nucleic acid molecules to be used in gene therapy may be either DNA or RNA sequences. They may comprise a sequence complementary to the sequence of the extended cDNA (or genomic DNA obtainable therefrom). The antisense nucleic acids should have a length and melting temperature sufficient to permit formation of an 10 intracellular duplex having sufficient stability to inhibit the expression of the mRNA in the duplex. Strategies for designing antisense nucleic acids suitable for use in gene therapy are disclosed in Green et al., Ann. Rev. Biochem. 55:569-597 (1986) and Izant and Weintraub, Cell 36:1007-1015 (1984).

In some strategies, antisense molecules are obtained from a nucleotide sequence encoding a protein by reversing the orientation of the coding region with respect to a promoter so as to transcribe the opposite strand from 15 that which is normally transcribed in the cell. The antisense molecules may be transcribed using in vitro transcription systems such as those which employ T7 or SP6 polymerase to generate the transcript. Another approach involves transcription of the antisense nucleic acids in vivo by operably linking DNA containing the antisense sequence to a promoter in an expression vector.

Alternatively, oligonucleotides which are complementary to the strand normally transcribed in the cell may be 20 synthesized in vitro. Thus, the antisense nucleic acids are complementary to the corresponding mRNA and are capable of hybridizing to the mRNA to create a duplex. In some embodiments, the antisense sequences may contain modified sugar phosphate backbones to increase stability and make them less sensitive to RNase activity. Examples of modifications suitable for use in antisense strategies are described by Rossi et al., Pharmacol. Ther. 50(2):245-254, (1991).

Various types of antisense oligonucleotides complementary to the sequence of the extended cDNA (or genomic DNA obtainable therefrom) may be used. In one preferred embodiment, stable and semi-stable antisense oligonucleotides described in International Application No. PCT W094/23026 are used. In these moleucles, the 3' end or both the 3' and 5' ends are engaged in intramolecular hydrogen bonding between complementary base pairs. These molecules are better able to withstand exonuclease attacks and exhibit increased stability compared to conventional antisense 30 oligonucleotides.

In another preferred embodiment, the antisense oligodeoxynucleotides against herpes simplex virus types 1 and 2 described in International Application No. WO 95/04141.

In yet another preferred embodiment, the covalently cross-linked antisense oligonucleotides described in International Application No. WO 96/31523 are used. These double- or single-stranded oligonucleotides comprise one or more, respectively, inter- or intra-oligonucleotide covalent cross-linkages, wherein the linkage consists of an amide bond between a primary amine group of one strand and a carboxyl group of the other strand or of the same strand, respectively, the primary amine group being directly substituted in the 2' position of the strand nucleotide monosaccharide ring, and the carboxyl group being carried by an aliphatic spacer group substituted on a nucleotide or nucleotide analog of the other strand or the same strand, respectively.

The antisense oligodeoxynucleotides and oligonucleotides disclosed in International Application No. WO
92/18522 may also be used. These molecules are stable to degradation and contain at least one transcription control
recognition sequence which binds to control proteins and are effective as decoys therefor. These molecules may contain
"hairpin" structures, "dumbbell" structures, "modified dumbbell" structures, "cross-linked" decoy structures and "loop"

10 structures.

In another preferred embodiment, the cyclic double-stranded oligonucleotides described in European Patent Application No. 0 572 287 A2 are used. These ligated oligonucleotide "dumbbells" contain the binding site for a transcription factor and inhibit expression of the gene under control of the transcription factor by sequestering the factor.

15

Use of the closed antisense oligonucleotides disclosed in International Application No. WO 92/19732 is also contemplated. Because these molecules have no free ends, they are more resistant to degradation by exonucleases than are conventional oligonucleotides. These oligonucleotides may be multifunctional, interacting with several regions which are not adjacent to the target mRNA.

The appropriate level of antisense nucleic acids required to inhibit gene expression may be determined using in vitro expression analysis. The antisense molecule may be introduced into the cells by diffusion, injection, infection or transfection using procedures known in the art. For example, the antisense nucleic acids can be introduced into the body as a bare or naked oligonucleotide, oligonucleotide encapsulated in lipid, oligonucleotide sequence encapsidated by viral protein, or as an oligonucleotide operably linked to a promoter contained in an expression vector. The expression vector may be any of a variety of expression vectors known in the art, including retroviral or viral vectors, vectors capable of extrachromosomal replication, or integrating vectors. The vectors may be DNA or RNA.

The antisense molecules are introduced onto cell samples at a number of different concentrations preferably between 1x10⁻¹⁰M to 1x10⁻⁴M. Once the minimum concentration that can adequately control gene expression is identified, the optimized dose is translated into a dosage suitable for use in vivo. For example, an inhibiting concentration in culture of 1x10⁻⁷ translates into a dose of approximately 0.6 mg/kg bodyweight. Levels of oligonucleotide approaching 100 mg/kg bodyweight or higher may be possible after testing the toxicity of the oligonucleotide in laboratory animals. It is additionally contemplated that cells from the vertebrate are removed, treated with the antisense oligonucleotide, and reintroduced into the vertebrate.

-85-

It is further contemplated that the antisense oligonucleotide sequence is incorporated into a ribozyme sequence to enable the antisense to specifically bind and cleave its target mRNA. For technical applications of ribozyme and antisense oligonucleotides see Rossi et al., *supra*.

In a preferred application of this invention, the polypeptide encoded by the gene is first identified, so that the

effectiveness of antisense inhibition on translation can be monitored using techniques that include but are not limited to
antibody-mediated tests such as RIAs and ELISA, functional assays, or radiolabeling.

The extended cDNAs of the present invention (or genomic DNAs obtainable therefrom) may also be used in gene therapy approaches based on intracellular triple helix formation. Triple helix oligonucleotides are used to inhibit transcription from a genome. They are particularly useful for studying alterations in cell activity as it is associated with a particular gene. The extended cDNAs (or genomic DNAs obtainable therefrom) of the present invention or, more preferably, a portion of those sequences, can be used to inhibit gene expression in individuals having diseases associated with expression of a particular gene. Similarly, a portion of the extended cDNA (or genomic DNA obtainable therefrom) can be used to study the effect of inhibiting transcription of a particular gene within a cell. Traditionally, homopurine sequences were considered the most useful for triple helix strategies. However, homopyrimidine sequences can also inhibit gene expression. Such homopyrimidine oligonucleotides bind to the major groove at homopurine:homopyrimidine sequences. Thus, both types of sequences from the extended cDNA or from the gene corresponding to the extended cDNA are contemplated within the scope of this invention.

EXAMPLE 60

Preparation and use of Triple Helix Probes

The sequences of the extended cDNAs (or genomic DNAs obtainable therefrom) are scanned to identify 10-mer to 20-mer homopyrimidine or homopurine stretches which could be used in triple-helix based strategies for inhibiting gene expression. Following identification of candidate homopyrimidine or homopurine stretches, their efficiency in inhibiting gene expression is assessed by introducing varying amounts of oligonucleotides containing the candidate sequences into tissue culture cells which normally express the target gene. The oligonucleotides may be prepared on an oligonucleotide synthesizer or they may be purchased commercially from a company specializing in custom oligonucleotide synthesis, such as GENSET, Paris, France.

The oligonucleotides may be introduced into the cells using a variety of methods known to those skilled in the art, including but not limited to calcium phosphate precipitation, DEAE-Dextran, electroporation, liposome-mediated transfection or native uptake.

Treated cells are monitored for altered cell function or reduced gene expression using techniques such as

Northern blotting, RNase protection assays, or PCR based strategies to monitor the transcription levels of the target
gene in cells which have been treated with the oligonucleotide. The cell functions to be monitored are predicted based
upon the homologies of the target gene corresponding to the extended cDNA from which the oligonucleotide was derived
with known gene sequences that have been associated with a particular function. The cell functions can also be

WO 99/31236

predicted based on the presence of abnormal physiologies within cells derived from individuals with a particular inherited disease, particularly when the extended cDNA is associated with the disease using techniques described in Example 53.

The oligonucleotides which are effective in inhibiting gene expression in tissue culture cells may then be introduced in vivo using the techniques described above and in Example 59 at a dosage calculated based on the in vitro results, as described in Example 59.

In some embodiments, the natural (beta) anomers of the oligonucleotide units can be replaced with alpha anomers to render the oligonucleotide more resistant to nucleases. Further, an intercalating agent such as ethidium bromide, or the like, can be attached to the 3' end of the alpha oligonucleotide to stabilize the triple helix. For information on the generation of oligonucleotides suitable for triple helix formation see Griffin et al. (Science 245:967-10 971 (1989).

EXAMPLE 61

Use of Extended cDNAs to Express an Encoded Protein in a Host Organism

The extended cDNAs of the present invention may also be used to express an encoded protein in a host organism to produce a beneficial effect. In such procedures, the encoded protein may be transiently expressed in the host organism or stably expressed in the host organism. The encoded protein may have any of the activities described above. The encoded protein may be a protein which the host organism lacks or, alternatively, the encoded protein may augment the existing levels of the protein in the host organism.

A full length extended cDNA encoding the signal peptide and the mature protein, or an extended cDNA encoding only the mature protein is introduced into the host organism. The extended cDNA may be introduced into the host organism using a variety of techniques known to those of skill in the art. For example, the extended cDNA may be injected into the host organism as naked DNA such that the encoded protein is expressed in the host organism, thereby producing a beneficial effect.

Alternatively, the extended cDNA may be cloned into an expression vector downstream of a promoter which is active in the host organism. The expression vector may be any of the expression vectors designed for use in gene therapy, including viral or retroviral vectors.

The expression vector may be directly introduced into the host organism such that the encoded protein is expressed in the host organism to produce a beneficial effect. In another approach, the expression vector may be introduced into cells in vitro. Cells containing the expression vector are thereafter selected and introduced into the host organism, where they express the encoded protein to produce a beneficial effect.

EXAMPLE 62

30

<u>Use Of Signal Peptides Encoded By 5' Ests Or Sequences</u> <u>Obtained Therefrom To Import Proteins Into Cells</u>

The short core hydrophobic region (h) of signal peptides encoded by the 5'ESTS or extended cDNAs derived from the 5'ESTs of the present invention may also be used as a carrier to import a peptide or a protein of interest, so-

called cargo, into tissue culture cells (Lin et al., J. Biol. Chem., 270: 14225-14258 (1995); Du et al., J. Peptide Res., 51: 235-243 (1998); Rojas et al., Nature Biotech., 16: 370-375 (1998)).

When cell permeable peptides of limited size (approximately up to 25 amino acids) are to be translocated across cell membrane, chemical synthesis may be used in order to add the h region to either the C-terminus or the N-terminus to the cargo peptide of interest. Alternatively, when longer peptides or proteins are to be imported into cells, nucleic acids can be genetically engineered, using techniques familiar to those skilled in the art, in order to link the extended cDNA sequence encoding the h region to the 5' or the 3' end of a DNA sequence coding for a cargo polypeptide. Such genetically engineered nucleic acids are then translated either *in vitro* or *in vivo* after transfection into appropriate cells, using conventional techniques to produce the resulting cell permeable polypeptide. Suitable hosts cells are then simply incubated with the cell permeable polypeptide which is then translocated across the membrane.

This method may be applied to study diverse intracellular functions and cellular processes. For instance, it has been used to probe functionally relevant domains of intracellular proteins and to examine protein-protein interactions involved in signal transduction pathways (Lin et al., supra; Lin et al., J. Biol. Chem., 271: 5305-5308 (1996); Rojas et al., J. Biol. Chem., 271: 27456-27461 (1996); Liu et al., Proc. Natl. Acad. Sci. USA, 93: 11819-11824 (1996); Rojas et al., Bioch. Biophys. Res. Commun., 234: 675-680 (1997)).

Such techniques may be used in cellular therapy to import proteins producing therapeutic effects. For instance, cells isolated from a patient may be treated with imported therapeutic proteins and then re-introduced into the host organism.

Alternatively, the h region of signal peptides of the present invention could be used in combination with a nuclear localization signal to deliver nucleic acids into cell nucleus. Such oligonucleotides may be antisense oligonucleotides or oligonucleotides designed to form triple helixes, as described in examples 59 and 60 respectively, in order to inhibit processing and maturation of a target cellular RNA.

EXAMPLE 63

Reassembling & Resequencing of Clones

Full length cDNA clones obtained by the procedure described in Example 27 were double-sequenced. These sequences were assembled and the resulting consensus sequences were then reanalyzed. Open reading frames were reassigned following essentially the same process as the one described in Example 27.

After this reanalysis process a few abnormalities were revealed. The sequences presented in SEQ ID NOs: 47, 73, 79, 89, 91, 96, 126, 128, 134, and 139 are apparently unlikely to be genuine full length cDNAs. These clones are missing a stop codon and are thus more probably 3' truncated cDNA sequences. Similarly, the sequences presented in SEQ ID NOs: 45, 50, 54, 57, 73, 74, 89, 92, 95, 98, 126, 129, 130, 131 and 139 may also not be genuine full length cDNAs based on homology studies with existing protein sequences. Although both of these sequences encode a potential start methionine each could represent a 5' truncated cDNA.

In addition, SEQ ID NO: 115 was found to be an alternatively spliced transcript and the identities of some of the bases in SEQ ID NO: 131 were corrected.

Finally, after the reassignment of open reading frames for the clones, new open reading frames were chosen in some instances. For example, in the case of SEQ ID NOs: 41, 47, 50, 52, 54-56, 58, 59, 61, 74, 75, 79, 84, 89, 91, 92, 96, 98, 103, 105, 106, 126, 129, 131, and 133 the new open reading frames were no longer predicted to contain a signal peptide.

As discussed above, Table IV provides the sequence identification numbers of the extended cDNAs of the present invention, the locations of the full coding sequences in SEQ ID NOs: 40-140 and 242-377 (i.e. the nucleotides encoding both the signal peptide and the mature protein, listed under the heading FCS location in Table IV), the locations of the nucleotides in SEQ ID NOs: 40-140 and 242-377 which encode the signal peptides (listed under the heading SigPep Location in Table IV), the locations of the nucleotides in SEQ ID NOs: 40-140 and 242-377 which encode the mature proteins generated by cleavage of the signal peptides (listed under the heading Mature Polypeptide Location in Table IV), the locations in SEQ ID NOs: 40-140 and 242-377 of stop codons (listed under the heading Stop Codon Location in Table IV) the locations in SEQ ID NOs: 40-140 and 242-377 of polyA signals (listed under the heading g PolyA Signal Location in Table IV) and the locations of polyA sites (listed under the heading PolyA Site Location in Table IV).

As discussed above, Table V lists the sequence identification numbers of the polypeptides of SEQ ID NOs: 141-241 and 378-513, the locations of the amino acid residues of SEQ ID NOs: 141-241 and 378-513 in the full length polypeptide (second column), the locations of the amino acid residues of SEQ ID NOs: 141-241 and 378-513 in the signal peptides (third column), and the locations of the amino acid residues of SEQ ID NOs: 141-241 and 379-513 in the mature polypeptide created by cleaving the signal peptide from the fall length polypeptide (fourth column). In Table V, and in the appended sequence listing, the first amino acid of the mature protein resulting from cleavage of the signal peptide is designated as amino acid number 1 and the first amino acid of the signal peptide is designated with the appropriate negative number, in accordance with the regulations governing sequence listings.

25

EXAMPLE 64

Functional Analysis of Predicted Protein Sequences

Following double-sequencing, new contigs were assembled for each of the extended cDNAs of the present invention and each was compared to known sequences available at the time of filing. These sequences originate from the following databases: Genbank (release 108 and daily releases up to October, 15, 1998), Genseq (release 32) PIR (release 30) and SwissProt (release 35). The predicted proteins of the present invention matching known proteins were further classified into 3 categories depending on the level of homology.

The first category contains proteins of the present invention exhibiting more than 70% identical amino acid residues on the whole length of the matched protein. They are clearly close homologues which most probably have the same function or a very similar function as the matched protein.

The second category contains proteins of the present invention exhibiting more remote homologies (40 to 70% over the whole protein) indicating that the protein of the present inventionmay have functions similar to those of the homologous protein.

The third category contains proteins exhibiting homology (90 to 100%) to a domain of a known protein indicating that the matched protein and the protein of the invention may share similar features.

It should be noted that the numbering of amino acids in the protein sequences discussed in Figures 10 to 15, and Table VIII, the first methionine encountered is designated as amino acid number 1. In the appended sequence listing, the first amino acid of the mature protein resulting from cleavage of the signal peptide is designated as amino acid number 1, and the first amino acid of the signal peptide is designated with the appropriate negative number, in accordance with the regulations governing sequence listings.

In addition all of the corrected amino acid sequences (SEQ ED NOs: 141-241 and 378-513) were scanned for the presence of known protein signatures and motifs. This search was performed against the Prosite 15.0 database, using the Proscan software from the GCG package- Functional signatures and their locations are indicated in Table VIII.

15 A) Proteins which are closely related to known proteins

Protein of SEQ ID NO: 217

The protein of SEQ ID NO: 217 encoded by the extended cDNA SEQ ID NO: 116 isolated from lymphocyte shows complete identity to a human protein TFAR19 that may play a role in apoptosis (Genbank accession number AF014955, SEQ ID NO: 516) as shown by the alignment in figure 10.

Taken together, these data suggest that the protein of SEQ ID NO: 217 may be involved in the control of development and homeostasis. Thus, this protein may be useful in diagnosis and/or treating several types of disorders including, but not limited to, cancer, autoimmune disorders, viral infections such as AIDS, neurodegenerative disorders, osteoporosis.

25 Proteins of SEQ ID NOs: 174, 175 and 232

The proteins of SEQ ID NOs: 174, 175 and 232 encoded by the extended cDNAs SEQ ID NOs:. 73, 74 and 131 respectively and isolated from lymphocytes shows complete extensive homologies to a human secreted protein (Genseq accession number W36955, SEQ ID NO: 517). As shown by the alignments of figure 11, the amino acid residues are identical to those of the 110 amino acid long matched protein except for positions 51 and 108-110 of the matched protein for the protein of SEQ ID NOs: 174, for positions 48, 94 and 108-110 of the matched protein of SEQ ID NOs: 175 and for positions 94, and 108-110 of the matched protein for the protein of SEQ ID NOs: 232. Proteins of SEQ ID NOs: 174 and 232 may represent alternative forms issued from alternative use of polyadenylation signals.

Taken together, these data suggest that the proteins of SEQ ID NOs: 174, 175 and 232 may play a role in cell proliferation and/or differentiation, in immune responses and/or in haematopoeisis. Thus, this protein or part therein,

may be useful in diagnosing and treating several disorders including, but not limited to, cancer, immunological, haematological and/or inflammatory disorders. It may also be useful in modulating the immune and inflammatory responses to infectious agents and/or to suppress graft rejection.

5 Proteins of SEQ ID NO: 231

The protein of SEQ ID NO: 231 encoded by the extended cDNA SEQ ID NO: 130 shows extensive homology with the human E25 protein (Genbank accession number AF038953, SEQ ID NO: 515). As shown by the alignments in figure 12, the amino acid residues are identical except for position 159 in the 263 amino acid long matched sequence. The matched protein might be involved in the development and differentiation of haematopoietic stem/progenitor cells.

10 In addition, it is the human homologue of a murine protein thought to be involved in chondro-osteogenic differentiation and belonging to a novel multigene family of integral membrane proteins (Deleersnijder et al, J. Biol. Chem., 271: 19475-19482 (1996)).

The protein of invention contains two short segments from positions 1 to 21 and from 100 to 120 as predicted by the software TopPred II (Claros and von Heijne, *CABIOS applic. Notes*, 10 : 685-686 (1994)). The first transmembrane domains matches exactly those predicted for the murine E25 protein.

Taken together, these data suggest that the protein of SEQ ID NO: 231 may be involved in cellular proliferation and differentiation. Thus, this protein may be useful in diagnosing and/or treating several types of disorders including, but not limited to, cancer and embryogenesis disorders.

20 Protein of SEQ ID NO: 196

The protein of SEQ ID NO: 196 encoded by the extended cDNA SEQ ID NO: 95 shows extensive homology with the human seventransmembrane protein (Genbank accession number Y11395, SEQ ID NO: 518) and its murine homologue (Genbank accession number Y11550). As shown by the alignments in figure 13, the amino acid residues are identical except for position 174 in the 399 amino acid long human matched sequence. The matched protein potentially associated to stomatin may act as a G-protein coupled receptor and is likely to be important for the signal transduction in neurons and haematopoietic cells (Mayer et al, Biochem. Biophys. Acta., 1395: 301-308 (1998)).

Taken together, these data suggest that the protein of SEQ ID NOs: 196 may be involved in signal transduction. Thus, this protein may be useful in diagnosing and/or treating several types of disorders including, but not limited to, cancer, neurodegenerative diseases cardiovascular disorders, hypertension, renal injury and repair and septic shock.

Protein of SEQ ID NO: 158

The protein of SEQ ID NOs: 158 encoded by the extended cDNA SEQ ID NO: 57 shows homology with the murine subunit 7a of the COP9 complex (Genbank accession number AF071316, SEQ ID NO: 520). As shown by the

PCT/IB98/02122

alignments in figure 14, the amino acid residues are identical except for positions 90, 172 and 247 in the 275 amino acid long matched sequence. This complex is highly conserved between mammals and higher plants where it has been shown to act as a repressor of photomorphogenesis All the components of the mammalian COP9 complex contain structural features also present in components of the proteasome regulatory complex and the translation initiation complex eIF3 complex, suggesting that the mammalian COP9 complex is an important cellular regulator modulating multiple signaling pathways (Wei et al, Curr. Biol., 8: 919-922 (1998)).

Taken together, these data suggest that the protein of SEQ ID NO: 158 may be involved in cellular signaling, probably as a subunit of the human COP9 complex. Thus, this protein may be useful in diagnosing and/or treating several types of disorders including, but not limited to, cancer, neurodegenerative diseases, cardiovascular disorders, hypertension, renal injury and repair and septic shock.

Protein of SEQ ID NO: 226

The protein of SEQ ID NO: 226 encoded by the extended cDNA SEQ ID NO: 125 shows homology with the bovine subunit B14.5B of the NADH-ubiquinone oxidureductase complex (Arizmendi et al, FEBS Lett., 313: 80-84 (1992) and Swissprot accession -number Q02827, SEQ ID NO: 514). As shown by the alignments in figure 15, the amino acid residues are identical except for positions 3-4, 6-12, 32-34, 47, 53-55, 67 and 69-74 in the 120 amino acid long matched sequence. This complex is the first of four complexes located in the inner mitochondrial membrane and composing the mitochondrial electron transport chain. Complex I is involved in the dehydrogenation of NADH and the transportation of electrons to coenzyme Q. It is composed of 7 subunits encoded by the mitochondrial genome and 34 subunits encoded by the nuclear genome. It is also thought to play a role in the regulation of apoptosis and necrosis. Mitochondriocytopathies due to complex I deficiency are frequently encountered and affect tissues with a high energy demand such as brain (mental retardation, convulsions, movement disorders), heart (cardiomyopathy, conduction disorders), kidney (Fanconi syndrome), skeletal muscle (exercise intolerance, muscle weakness, hypotonia) and/or eye (opthmaloplegia, ptosis, cataract and retinopathy). For a review on complex I see Smeitink et al., Hum. Mol. Gent., 7: 1573-1579 (1998).

Taken together, these data suggest that the protein of SEO ID NO: 226 may be part of the mitochondrial energy-generating system, probably as a subunit of the NADH-ubiquinone oxidoreductase complex. Thus, this protein or part therein, may be useful in diagnosing and/or treating several disorders including, but not limited to, brain disorders (mental retardation, convulsions, movement disorders), 'heart disorders (cardiomyopathy, conduction disorders), kidney disorders (Fanconi syndrome), skeletal muscle disorders (exercise intolerance, muscle weakness, hypotonia) and/or eye disorders opthmalmoplegia, ptosis, cataract and retinopathy).

B) Proteins which are remotely related to proteins with known functions

Proteins of SEQ ID NOs: 149, 150 and 211

The proteins of SEQ ID NOs: 1.49,150 and 211 encoded by the extended cDNAs SEQ ID NOs: 48, 49 and 110 respectively and found in, skeletal muscle shows homologies with T1/ST2 ligand polypeptide of either human (Genbank accession number U41804 and Genseq accession number W09639) or rodent species (Genbank accession number U41805 and Genseq accession number W09640). These polypeptides are thought to be cytokines that bind to the ST2 receptor, a member of the immunoglobulin family homologous to the interleukin-1 receptor and present on some lymphoma cells. They are predicted to be cell-surface proteins containing a short transmembrane domain. (Gayle *et al, J. Biol. Chem.*, 271: 5784-5789 (1996)). Proteins of SEQ ID NOs: 149, 150 and 211 may represent alternative forms issued from alternative use of polyadenylation signals.

The protein of invention contains two short transmembrane segments from positions 5 to 25 and from 195 to 215 as predicted by the software TopPred II (Claros and von Heijne, *CABIOS applic. Notes*, 10:685-686 (1994)). The second transmembrane domain matches exactly those of the matched cell-surface protein.

Taken together, these data suggest that the protein of SEQ ID NOs: 149, 150 and 211 may act as a cytokine, thus may play a role in the regulation of cell growth and differentiation and/or in the regulation of the immune response.

Thus, this protein or part therein, may be useful in diagnosing and treating several disorders including, but not limited to, cancer, immunological, haematological and/or inflammatory disorders. It may also be useful in modulating the immune and inflammatory responses to infectious agents such as HIV and/or to suppress graft rejection.

Protein of SEQ ID NO: 177

The protein SEQ ID NO: 177 found in testis encoded by the extended cDNA SEQ ID NO: 76 shows homologies to serine protease inhibitor proteins belonging to the pancreatic trypsin inhibitor family (Kunitz) such as the extracellular proteinase inhibitor named chelonianin (Swissprot accession number P00993). The characteristic PROSITE signature of this family is conserved in the protein of the invention (positions 69 to 87) except for a drastic change of the last cysteine residue into an arginine residue.

Taken together, these data suggest that the protein of SEQ ID NO: 177 may be a protease inhibitor, probably

of the Kunitz family. Thus, this protein or part therein, may be useful in diagnosing and treating several disorders including but not limited to, cancer and neurodegenerative disorders such as Alzheimer's disease.

Protein of SEQ ID NO: 146

The protein SEQ ID NO: 146 encoded by the extended cDNA SEQ ID NO: 45 shows homology to human apolipoprotein L (Genbank accession number AF019225). The matched protein is a secreted high density lipoprotein associated with apoA-I-containing lipoproteins which play a key role in reverse cholesterol transport.

Taken together, these data suggest that the protein of SEQ ID NO. 146 may play a role in lipid metabolism. Thus, this protein may be useful in diagnosing and/or treating several types of disorders including, but not limited to,

hyperlipidemia, hypercholesterolemia, atherosclerosis, cardiovascular disorders such as, coronary heart disease, and neurodegenerative disorders such as Alzheimer's disease or dementia.

Protein of SEQ ID NO: 163

5

The protein SEQ ED NO: 163 encoded by the extended cDNA SEQ ID NO: 62 shows homology to the yeast autophagocytosis protein AUT1 (SwissProt accession number P40344). The matched protein is required for starvation-induced non-specific bulk transport of cytoplasmic proteins to the vacuole.

Taken together, these data suggest that the protein of SEQ ID NO: 163 may play a role in protein transport.

Thus, this protein may be useful in diagnosing and/or treating several types of disorders including, but not limited to,
autoimmune disorders and immune disorders due to dysfunction of antigen presentation.

C) Proteins homologous to a domain of a protein with known function

Protein of SEQ ID NO: 214

The protein of SEQ ID NO: 214 encoded by the extended cDNA SEQ ID NO: 113 and expressed in adult brain shows extensive homology to part of the murine SHYC protein (Genbank accession number AF072697) which is expressed in the developing and embryonic nervous system as well as along the olfactory pathway in adult brains (Köster et al., Neuroscience Letters., 252: 69-71 (1998)).

Taken together, these data suggest that the protein of SEQ ID NO: 214 may play a role in nervous system development and function. Thus, this protein may be useful in diagnosing and/or treating cancer and/or brain disorders, including neurodegenerative disorders such as Alzheimer's and Parkinson's diseases.

Protein of SEQ ID NO: 225

The protein of SEQ ID NO: 225 encoded by the extended cDNA SEQ ID NO: 124 and expressed in adult prostate belong to the phosphatidylethanolainin-binding protein from which it exhibits the characteristic PROSITE signature from positions 90 to 112 (see table VIII). Proteins from this widespread family, from nematodes to fly, yeast, rodent and primate species, bind hydrophobic ligands such as phospholipids and nucleotides. They are mostly expressed in brain and in testis and are thought to play a role in cell growth and/or maturation, in regulation of the sperm maturation, motility and 'in membrane remodeling. They may act either through signal transduction or through oxidoreduction reactions (for a review see Schoentgen and Jollès, FEBS Letters, 369: 22-26 (1995)).

Taken together, these data suggest that the protein of SEQ ID NO: 225 may play a role in cell. Thus, these growth, maturation and in membrane remodeling and/or may be related to male fertility. Thus, this protein may be useful in diagnosing and/or treating cancer, neurodegenerative diseases, and/of, disorders related to male fertility and sterility.

Protein of SEQ ID NO: 153

30

The protein of SEQ ID NO: 153 encoded by the extended cDNA SEQ ID NO. 52 and expressed in brain exhibits homology to different integral membrane proteins. These membrane proteins include the nematode protein SRE-2 (Swissprot accession number Q09273) that belongs to the multigene SRE family of *C. elegans* receptor-like proteins and a family of tricarboxylate carriers conserved between flies and mammals. One member of this matched family is the rat tricarboxylate carrier (Genbank accession number S70011), an anion transporter localized in the inner membrane of mitochondria and involved in the biosynthesis of fatty acids and cholesterol. The protein of the invention contains a short transmembrane segments from positions 5 to 25 as predicted by the software TopPred II (Claros and von Heijne, *CABIOS applic. Notes*, 10:685-686 (1994)).

Taken together, these data suggest that the protein of SEQ ID NO: 153 may play a role in signal transduction
and/or in molecule transport. Thus, this protein may be useful in diagnosing and/or treating several types of disorders including, but not limited to, cancer, neurodegenerative diseases, immune disorders, cardiovascular disorders, hypertension, renal injury and repair and septic shock

Protein of SEQ ID NO: 213

The protein of SEQ ID NO: 213 encoded by the extended cDNA SEQ ID NO: 112 and expressed in brain exhibits homology with part of the tRNA pseudouridine 55 synthase found in *Escherichia Coli* (Swissprot accession number P09171). This bacterial protein belongs to the NAP57/CBF5/TRUB family of nucleolar proteins found in bacteria, yeasts and mammals involved in rRNA or tRNA biosynthesis, ribosomal subunit assembly and/or centromere/mircotubule binding.

Taken together, these data suggest that the protein of SEQ ID NO: 213 may play a role in rRNA or tRNA biogensis and function. Thus, this protein may be useful in diagnosing and/or treating several types of disorders including, but not limited to, cancer, hearing loss or disorders linked to chromosomal instability such as dyskeratosis.

Protein of SEQ ED NO: 240

The protein of SEQ ID NO: 240 encoded by the extended cDNA SEQ ID NO: 139 and expressed in brain exhibits homology with a family of eukaryotic cell surface antigens containing 4 transmembrane domains. The PROSITE signature for this family is conserved in the protein of the invention except for a substitution of an alanine residue in place of any of the following hydrophic residues: leucine, valine, isoleucine or methionine (positions 21 to 36).

The protein of the invention contains three short transmembrane segments from positions 6 to 26, 32 to 52 and from 56 to 76 as predicted by the software TopPred II (Claros and von Heijne, *CABIOS applic. Notes*, 10: 685-686 (1994)). These transmembrane domains match the last three transmembrane domains of the matched protein family.

Taken together, these data suggest that the protein of SEQ ID NO: 240 may play a role in immunological and/or inflammatory responses, probably as a cell surface antigen. Thus, this protein or part therein, may be useful in diagnosing and treating several disorders including, but not limited to, cancer, immunological, haematological and/or

inflammatory disorders. It may also be useful in modulating the immune and inflammatory responses to infectious agents and/or to suppress graft rejection.

Protein of SEO ID NO: 239

5

10

20

The protein of SEQ ID NO: 239 encoded by the extended cDNA SEQ ID NO: 138 exhibits homology with a conserved region in a family of NA+/H+ exchanger conserved in yeast, nematode and mammals. These cation/proton exchangers are integral membrane proteins with 5 transmembrane segments involved in intracellular pH regulation, maintenance of cell volume, reabsorption of sodium across specialized epithelia, vectorial transport and are also thought to play a role in signal transduction and especially in the induction of cell proliferation and in the induction of apoptosis.

The protein of invention contains four short transmembrane segments from positions 21 to 41, 48 to 68 and from 131 to 151 as predicted by the software TopPred II (Claros and von Heijne, *CABIOS applic. Notes*, 10: 685-686 (1994)). The third and fourth transmembrane domains match the fourth and fifth transmembrane segments of the matched family of proteins.

Taken together, these data suggest that the protein of SEQ ID NO: 239 may play a role in membrane

15 permeability and/or in signal transduction. Thus, this protein may be useful in diagnosing and/or treating several types of disorders including, but not limited to, cancer, neurodegenerative diseases, cardiovascular disorders, hypertension, renal injury and repair, septic shock as well as disorders of membrane permeability such as diarrhea.

Protein of SEQ ID NO: 200

The protein of SEQ ID NO: 200 encoded by the extended cDNA SEQ ED NO: 99 and expressed in brain exhibits extensive homology to the N-terminus of cell division cycle protein 23 (Genbank accession number AF053977) and also to a lesser extent to its homologue in *Saccharomyces cerevisiae*. The matched protein is required for chromosome segregation and is part of the anaphae-promoting complex necessary for cell cycle progression to mitosis.

Taken together, these data suggest that the protein of SEQ ID NO: 200 may play a role in cellular mitosis.

Thus, this protein may be useful in diagnosing and/or treating several types of disorders including, but not limited to, cancer and leukemia.

Protein of SEQ ID NO: 230

The protein of SEQ ID NO: 230 encoded by the extended cDNA SEQ ID NO: 129 exhibits extensive homology to the C-terminus of the eta subunit of T-complex polypeptide 1 conserved from yeasts to mammals, and even complete identity with the last 54 amino acid residues of the human protein (Genbank accession number AF026292). The matched protein is a chaperonin which assists the folding of actins and tubulins in eukaryotic cells upon ATP hydrolysis.

Taken together, these data suggest that the protein of SEQ ID NO: 230 may play a role in the folding, transport, assembly and degradation of proteins. Thus, this protein may be useful in diagnosing and/or treating several

-96-

types of disorders including, but not limited to, cancer, cardiovascular disorders, immune disorders, neurodegenerative disorders, osteoporosis and arthritis.

Protein of SEQ ED NO: 167

5

The protein of SEQ ID NO: 167 encoded by the extended cDNA SEQ ID NO: 66 exhibits homology to a monkey pepsinogen A-4 precursor (Swissprot accession number P27678) and to related members of the aspartyl protease family. The matched protein belongs to a family of widely distributed proteolytic enzymes known to exist in vertebrate, fungi, plants, retroviruses and some plant viruses.

Taken together, these data suggest that the protein of SEQ ID NO: 167 may play a role in the degradation of proteins. Thus, this protein may be useful in diagnosing and/or treating several types of disorders including, but not limited to, cancer, autoimmune disorders and immune disorders due to dysfunction of antigen presentation.

Protein of SEO ID NO: 179

The protein of SEQ ID NO: 179 encoded by the extended cDNA SEQ ID NO: 78 found in testis exhibits

homology to part of mammalian colipase precursors. Colipases are secreted cofactors for pancreatic lipases that allow the lipase to anchor at the water-lipid interface. Colipase plays a crucial role in the intestinal digestion and absorption of dietary fats. The 5 cysteines characteristic for this protein family are conserved in the protein of the invention although the colipase PROSITE signature is not.

Taken together, these data suggest that the protein of SEQ ED NO: 179 may play a role in the lipid metabolism and/or in male fertility. Thus, this protein may be useful in diagnosing and/or treating several types of disorders including, but not limited to, hyperlipidemia, hypercholesterolemia, atherosclerosis, cardiovascular disorders such as coronary heart disease, and neurodegenerative disorders such as Alzheimer's disease or dementia, and disorders linked to male fertility.

25 Protein of SEQ ID NO: 227

The protein of SEQ ID NO: 227 encoded by the extended cDNA SEQ ID NO: 126 exhibits extensive homology to the ATP binding region of a whole family of serine/threonine protein kinases belonging to the CDC2/CDC28 subfamily.

The PROSITE signature characteristic for this domain is present in the protein of the invention from positions 10 to 34.

Taken together, these data suggest that the protein of SEQ ED NO: 158 may bind ATP, and even be a protein 30 kinase. Thus, this protein may be useful in diagnosing and/or treating several types of disorders including, but not limited to, cancer, neurodegenerative diseases, cardiovascular disorders, hypertension, renal injury and repair and septic shock.

.97.

Although this invention has been described in terms of certain preferred embodiments, other embodiments which will be apparent to those of ordinary skill in the art in view of the disclosure herein are also within the scope of this invention. Accordingly, the scope of the invention is intended to be defined only by reference to the appended claims.

5

As discussed above, the extended cDNAs of the present invention or portions thereof can be used for various purposes. The polynucleotides can be used to express recombinant protein for analysis, characterization or therapeutic use; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in disease states); as molecular weight markers on Southern gels; as chromosome markers or tags (when labeled) to identify chromosomes or to map related gene positions; to 10 compare with endogenous DNA sequences in patients to identify potential genetic disorders; as probes to hybridize and thus discover novel, related DNA sequences; as a source of information to derive PCR primers for genetic fingerprinting; for selecting and making oligomers for attachment to a "gene chip" or other support, including for examination for expression patterns; to raise anti-protein antibodies using DNA immunization techniques; and as an antigen to raise anti-DNA antibodies or elicit another immune response. Where the polynucleotide encodes a protein which binds or 15 potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, for example, that described in Gyuris et al., Cell 75:791-803 (1993)) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.

The proteins or polypeptides provided by the present invention can similarly be used in assays to determine biological activity, including in a panel of multiple proteins for high-throughput screening; to raise antibodies or to elicit 20 another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its receptor) in biological fluids; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of course, to isolate correlative receptors or ligands. Where the protein binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the protein can be used to identify the other 25 protein with which binding occurs or to identify inhibitors of the binding interaction. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction.

Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing 30 such methods include without limitation "Molecular Cloning; A Laboratory Manual", 2d ed., Cole Spring Harbor Laboratory Press, Sambrook, J., E.F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology; Guide to Molecular Cloning Techniques", Academic Press, Berger, S.L. and A.R. Kimmel eds., 1987.

Polynucleotides and proteins of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a

-98-

nitrogen source and use as a source of carbohydrate. In such cases the protein or polynucleotide of the invention can be added to the feed of a particular organism or can be administered as a separate solid or liquid preparation, such as in the form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the protein or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.

-99-

SEQUENCE LISTING FREE TEXT

The following free text appears in the accompanying Sequence Listing:

In vitro transcription product

oligonucleotide

5 promoter

transcription start site

Von Heijne matrix

Score

matinspector prediction

10 name

TABLE I

SEQ ID NO. in Present application	Provisional Application Disclosing Sequence	SEQ ID NO. in provisional application
40	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	51
41	U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998	72
42	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	52
43	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	78
44	U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998	73
45	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	41
46	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	67
47	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	82
48	U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998	80
49	U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998	81
50	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	53
51	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	54
52	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	195
53	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	44
54	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	46
55	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	68
56	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	48
57	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	55
58	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	49
59	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	50
60	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	97
61	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	51
62	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	69
63	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	49
64	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	199
65	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	53
66	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	57
67	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	54
68	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	55
69	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	58
70	U.S. Provisional Patent Application Serial No. 60/095,116, filed Aug. 10, 1998	59

-101-

12	CONT. TABLET		**
1.0. 1.0.	71	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	60
74 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 59 75 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 60 76 U.S. Provisional Patent Application Serial No. 60/089,957, filed Dec. 17, 1997 136 77 U.S. Provisional Patent Application Serial No. 60/081,166, filed Aug. 10, 1998 75 78 U.S. Provisional Patent Application Serial No. 60/086,116, filed Aug. 10, 1998 61 79 U.S. Provisional Patent Application Serial No. 60/089,957, filed Dec. 17, 1997 130 80 U.S. Provisional Patent Application Serial No. 60/089,957, filed Dec. 17, 1997 64 81 U.S. Provisional Patent Application Serial No. 60/089,957, filed Dec. 17, 1997 54 82 U.S. Provisional Patent Application Serial No. 60/089,957, filed Dec. 17, 1997 54 83 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 63 84 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 65 85 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 65 86 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 66 87	72	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	112
1.5 1.5	73	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	52
136	74	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	59
177 U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998 75	75	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	60
U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 61	76	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	136
U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 61	77	U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998	75
80	78	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	61
81 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 65 82 U.S. Provisional Patent Application Serial No. 60/096,957, filed Dec. 17, 1997 54 83 U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998 78 84 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 63 85 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 65 86 U.S. Provisional Patent Application Serial No. 60/089,957, filed Dec. 17, 1997 152 87 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 66 88 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 67 89 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 67 90 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 68 91 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 68 91 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 61 92 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 62 93 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 166 94 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 73 96 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 63 97 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 63 98 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 73 96 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 73 97 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 176 100 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 176 101 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 176	79	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	61
82 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 54	80	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	130
83 U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998 78 84 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 63 85 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 65 86 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 152 87 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 66 88 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 67 89 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 60 90 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 68 91 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 61 92 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 62 93 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 166 94 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 166 95 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 73 96 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 63 97 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 63 98 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 63 99 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 176 100 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 176 100 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 176 101 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 176 101 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 176 101 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	81	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	65
84 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 63 85 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 65 86 U.S. Provisional Patent Application Serial No. 60/089,957, filed Dec. 17, 1997 152 87 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 66 88 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 67 89 U.S. Provisional Patent Application Serial No. 60/089,957, filed Dec. 17, 1997 60 90 U.S. Provisional Patent Application Serial No. 60/089,957, filed Dec. 17, 1997 61 91 U.S. Provisional Patent Application Serial No. 60/089,957, filed Dec. 17, 1997 62 92 U.S. Provisional Patent Application Serial No. 60/089,957, filed Dec. 17, 1997 62 93 U.S. Provisional Patent Application Serial No. 60/089,957, filed Dec. 17, 1997 166 94 U.S. Provisional Patent Application Serial No. 60/089,957, filed Dec. 17, 1997 170 95 U.S. Provisional Patent Application Serial No. 60/089,957, filed Dec. 17, 1997 170 96 U.S. Provisional Patent Application Serial No. 60/089,957, filed Dec. 17, 1997 170 97 U.S. Provisional Patent Application Serial No. 60/089,957, filed Dec. 17, 1997 170 98 U.S. Provisional Patent Application Serial No. 60/089,957, filed Dec. 17, 1998 52 98 U.S. Provisional Patent Application Serial No. 60/089,957, filed Dec. 17, 1997 176 100 U.S. Provisional Patent Application Serial No. 60/089,957, filed Dec. 17, 1997 176 101 U.S. Provisional Patent Application Serial No. 60/089,957, filed Dec. 17, 1997 176 101 U.S. Provisional Patent Application Serial No. 60/089,957, filed Dec. 17, 1997 176 101 U.S. Provisional Patent Application Serial No. 60/089,957, filed Dec. 17, 1997 176 102 U.S. Provisional Patent Application Serial No. 60/089,957, filed Dec. 17, 1997 187	82	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	54
85 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 65 86 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 152 87 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 66 88 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 67 89 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 60 90 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 61 91 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 62 92 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 62 93 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 166 94 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 166 95 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 73 96 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 63 97 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 63 98 U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998 52 99 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 62 99 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 63 101 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 63 101 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 63 101 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 63 101 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 63 101 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 63 101 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	83	U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998	78
86	84	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	63
87 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 66 88 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 67 89 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 60 90 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 61 91 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 61 92 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 62 93 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 166 94 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 73 95 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 63 97 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 63 98 U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998 52 98 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 62 99 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 63 101 U.S. Provisional Patent Application Serial No. 60/096,957, filed Dec. 17, 1997 176 100 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 63 101 U.S. Provisional Patent Application Serial No. 60/096,957, filed Dec. 17, 1997 187	85	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	65
88	86	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	152
89 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 60 90 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 68 91 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 61 92 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 62 93 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 166 94 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 73 95 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 73 96 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 63 97 U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998 52 98 U.S. Provisional Patent Application Serial No. 60/096,957, filed Dec. 17, 1997 176 100 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 176 101 U.S. Provisional Patent Application Serial No. 60/096,957, filed Dec. 17, 1997 187 102 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 187 101 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 187 103 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 187 104 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 187 105 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 187 105 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 187 105 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 187 106 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 187 107 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 187 107 U.S. Provisional Patent Application Serial No. 60/069,957, fil	87	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	66
90 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 68 91 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 61 92 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 62 93 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 166 94 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 70 95 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 73 96 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 63 97 U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998 52 98 U.S. Provisional Patent Application Serial No. 60/089,957, filed Dec. 17, 1997 176 100 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 176 101 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 187	88	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	67
91 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 61 92 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 62 93 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 166 94 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 70 95 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 73 96 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 63 97 U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998 52 98 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 62 99 U.S. Provisional Patent Application Serial No. 60/096,116, filed Dec. 17, 1997 176 100 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998, 63 101 U.S. Provisional Patent Application Serial No. 60/096,157, filed Dec. 17, 1997 187	89	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	60
92 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 62 93 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 166 94 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 70 95 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 73 96 U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1997 63 97 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 52 98 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 62 99 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998, 63 100 U.S. Provisional Patent Application Serial No. 60/099,957, filed Dec. 17, 1997 187	90	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	68
93 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 166 94 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 70 95 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 73 96 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 63 97 U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998 52 98 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 62 99 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 176 100 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998, 63 101 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 187	91	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	61
94 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 70 95 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 73 96 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 63 97 U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998 52 98 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 62 99 U.S. Provisional Patent Application Serial No. 60/099,957, filed Dec. 17, 1997 176 100 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998, 63 101 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 187	92	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	62
95 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 73 96 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 63 97 U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998 52 98 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 62 99 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 176 100 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998, 63 101 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 187	93	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	166
96 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 63 97 U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998 52 98 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 62 99 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 176 100 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998, 63 101 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 187	94	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	70
97 U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998 52 98 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 62 99 U.S. Provisional Patent Application Serial No. 60/099,957, filed Dec. 17, 1997 176 100 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998, 63 101 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 187	95	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	73
98 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 62 99 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 176 100 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998, 63 101 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 187	96	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	63
99 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 176 100 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998, 63 101 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 187	97	U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998	52
100 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998, 63 101 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 187	98	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	62
101 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 187	99	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	176
	100	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	63
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	101	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	187
	102	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	190
103 U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998 83	103	U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998	
104 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 180	104		
105 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 64	105		
106 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 69	106		

-102-

107 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 40	CUNT. TABLET		·.
109 U.S. Provisional Patent Application Serial No. 60/089,957, filed Dec. 17, 1997 43	107	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	40
110 U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998 82	108	U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998	77
110 U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998 76	109	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	43
112 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 46 113 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 46 114 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 47 115 U.S. Provisional Patent Application Serial No. 60/066,677, filed Nov. 13, 1997 53 116 U.S. Provisional Patent Application Serial No. 60/066,677, filed Nov. 13, 1997 53 117 U.S. Provisional Patent Application Serial No. 60/068,677, filed Apr. 13, 1998 74 118 U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998 71 119 U.S. Provisional Patent Application Serial No. 60/089,957, filed Dec. 17, 1997 145 120 U.S. Provisional Patent Application Serial No. 60/089,957, filed Dec. 17, 1997 58 121 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 58 122 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 40 123 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 40 125 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 44 126 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 45 127 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 45 128 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 47 129 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 55 130 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 56 131 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 57 132 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 57 133 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 57 134 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 57 135 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 57 136 U.S. Provisional Patent Application Serial	110	U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998	1
113 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 45	111	U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998	76
114 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 47	112	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	43
115 U.S. Provisional Patent Application Serial No. 60/056,677, filed Nov. 13, 1997 53	113	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	46
116	114	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	47
1177 U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998 74	115	U.S. Provisional Patent Application Serial No. 60/066,677, filed Nov. 13, 1997	53
118 U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998 71	116	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	58
119 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 145	117	U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998	74
120 U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998 67	118	U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998	71
121 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 122 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 72 123 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 73 124 U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998 70 125 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 40 126 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 41 127 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 42 128 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 43 129 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 44 130 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 51 131 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 52 132 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 53 134 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 54 135 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 55 136 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 56 137 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 57 138 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 58 139 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 69 139 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 60 139 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 61 139 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 62 139 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 63 140 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 74 140 U.S. Provisional Patent Application Serial No.	119	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	145
122 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 123 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 73 124 U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998 70 125 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 40 126 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 44 127 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 45 128 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 47 129 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 48 130 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 51 131 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 52 132 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 53 143 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 54 155 156 157 158 159 159 150 150 150 150 150 150	120	U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998	67
123 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 73 124 U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998 70 125 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 40 126 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 44 127 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 45 128 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 47 129 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 48 130 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 51 131 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 50 132 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 56 133 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 57 134 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 71 135 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 72 136 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 65 137 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 65 138 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 65 139 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 74 140 U.S. Provisional Patent Application Serial No. 60/099,957, filed Dec. 17, 1997 74 140 U.S. Provisional Patent Application Serial No. 60/099,957, filed Dec. 17, 1997 75	121	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	58
124 U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998 70 125 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 40 126 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 44 127 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 45 128 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 47 129 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 48 130 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 51 131 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 50 132 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 56 133 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 57 134 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 71 135 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 72 136 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 65 137 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 65 138 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 74 140 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 74 140 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 74 140 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 75	122	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	72
125 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 40 126 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 44 127 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 45 128 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 47 129 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 48 130 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 51 131 U.S. Provisional Patent Application Serial No. 60/066,677, filed Nov. 13, 1997 50 132 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 56 133 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 57 134 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 71 135 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 72 136 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 64 137 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 65 138 U.S. Provisional Patent Application Serial No. 60/096,957, filed Dec. 17, 1997 74 140 U.S. Provisional Patent Application Serial No. 60/096,957, filed Dec. 17, 1997 74 140 U.S. Provisional Patent Application Serial No. 60/096,957, filed Dec. 17, 1997 75 140 U.S. Provisional Patent Application Serial No. 60/096,957, filed Dec. 17, 1997 75 140 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 67 242 U.S. Provisional Patent Application Serial No. 60/096,957, filed Dec. 17, 1997 75 140 U.S. Provisional Patent Application Serial No. 60/096,957, filed Dec. 17, 1997 75 140 U.S. Provisional Patent Application Serial No. 60/096,957, filed Dec. 17, 1997 75 140 U.S. Provisional Patent Application Serial No. 60/096,957, filed	123	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	73
126 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 44 127 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 45 128 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 47 129 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 48 130 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 51 131 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 50 132 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 56 133 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 57 134 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 71 135 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 72 136 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 64 137 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 65 138 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 66 139 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 74 140 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 75 242 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 75 242 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 75 242 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 75 242 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 75 242 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 75 243 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 75 244 U.S. Provisional Patent Application Serial No. 60/069,957, filed	124	U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998	70
127 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 47 128 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 47 129 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 48 130 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 51 131 U.S. Provisional Patent Application Serial No. 60/069,957, filed Nov. 13, 1997 50 132 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 56 133 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 57 134 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 71 135 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 72 136 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 65 137 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 65 138 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 65 139 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 74 140 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 74 140 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 75	125	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	40
128 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 47 129 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 48 130 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 51 131 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 50 132 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 56 133 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 57 134 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 71 135 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 72 136 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 64 137 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 65 138 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 74 140 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 74 140 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 75	126	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	44
129 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 48 130 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 51 131 U.S. Provisional Patent Application Serial No. 60/066,677, filed Nov. 13, 1997 50 132 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 56 133 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 57 134 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 71 135 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 72 136 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 64 137 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 65 138 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 74 140 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 75 242 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 75	127	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	45
130 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 51 131 U.S. Provisional Patent Application Serial No. 60/066,677, filed Nov. 13, 1997 50 132 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 56 133 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 57 134 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 71 135 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 72 136 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 64 137 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 65 138 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 66 139 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 74 140 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 67 242 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 75	128	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	47
131 U.S. Provisional Patent Application Serial No. 60/066,677, filed Nov. 13, 1997 50 132 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 56 133 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 57 134 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 71 135 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 72 136 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 64 137 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 65 138 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 66 139 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 74 140 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 67 242 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 75	129	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	48
132 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 56 133 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 57 134 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 71 135 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 72 136 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 64 137 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 65 138 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 66 139 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 74 140 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 67 242 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 75	130	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	51
133 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 57 134 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 71 135 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 72 136 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 64 137 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 65 138 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 66 139 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 74 140 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 67 242 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 75	131	U.S. Provisional Patent Application Serial No. 60/066,677, filed Nov. 13, 1997	50
134 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 71 135 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 72 136 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 64 137 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 65 138 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 66 139 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 74 140 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 67 242 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 75	132	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	56
135 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 72 136 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 64 137 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 65 138 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 66 139 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 74 140 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 67 242 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 75	133	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	57
136 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 64 137 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 65 138 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 66 139 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 74 140 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 67 242 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 75	134	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	71
137 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 65 138 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 66 139 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 74 140 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 67 242 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 75	135	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	72
138 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 66 139 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 74 140 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 67 242 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 75	136	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	64
139 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 74 140 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 67 242 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 75	137	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	65
140 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 67 242 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 75	138	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	66
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 75	139	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	74
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 75	140	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	67
	242	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	
	243	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	76

CONT. TABLE I		**
244	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	77
245	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	78
246	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	79
247	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	80
248	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	81
249	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	82
250	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	83
251	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	84
252	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	85
253	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	86
254	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	87
255	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	88
256	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	89
257	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	90
258	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	91
259	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	92
260	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	93
261	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	94
262	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	95
263	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	96
264	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	97
265	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	98
266	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	99
267	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	100
268	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	101
269	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	. 102
270	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	103
271	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	104
272	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	105
273	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	106
274	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	107
275	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	108
276	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	109
277	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	110
278	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	111
279	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	112

CONT. TABLE I		٠.
280	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	113
281	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	114
282	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	115
283	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	116
284	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	117
285	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	118
286	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	119
287	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	120
288	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	121
289	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	122
290	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	123
291	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	124
292	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	125
293	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	126
294	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	127
295	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	128
296	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	129
297	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	130
298	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	131
299	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	132
300	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	133
301	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	134
302	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	135
303	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	136
304	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	137
305	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	138
306	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	139
307	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	140
308	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	141
309	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	142
310	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	143
311	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	144
312	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	145
313	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	146
314	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	147
315	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	148

WO 99/31236

CONT. TABLE I		•.
316	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	149
317	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	150
318	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	151
319	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	152
320	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	153
321	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	154
322	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	155
323	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	156
324	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	157
325	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	158
326	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	159
327	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	160
328	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	161
329	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	162
330	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	163
331	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	164
332	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	165
333	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	166
334	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	167
335	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	168
336	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	169
337	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	170
338	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	171
339	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	172
340	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	173
341	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	174
342	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	175
343	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	176
344	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	177
345	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	178
346	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	179
347	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	180
348	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	181
349	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	182
350	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	183
351	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	184

CONT. TABLE I		
352	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	185
353	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	186
354	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	187
355	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	188
356	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	189
357	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	190
358	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	191
359	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	192
360	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	193
361	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	194
362	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	195
363	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	196
364	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	197
365	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	1998
366	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	199
367	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	200
368	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	201
369	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	202
370	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	203
371	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	204
372	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	205
373	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	206
374	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	207
375	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	208
376	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	209
377	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	210

TABLE II: Parameters used for each step of EST analysis

		Search Charac	teristics	Selection Charac	teristics
Step	Program	Strand	Parameters	Identity (%))	Length (bp)
Miscellaneous	Blastn	both	S-61 X-16	90	17
tRNA	Fasta	both		80	60
rRNA	Blastn	both	S=108	80	40
mtRNA	Blastn	both	S-108	80	40
Procaryotic	Blastn	both	S-144	90	40
Fungal	Blastn	both	S=144	90	40
Alu	fasta*	both	•	70	40
L1	Blastn	both	S-72	70	40
Repeats	Biastn	both	S=72	70	40
Promoters	Blastn	top	S=54 X=16	90	15⊥
Vertebrate	fasta*	both	S=108	90	30
ESTs	Blatsn	both	S-108 X-16	90	30
Proteins	blastxŋ	top	E-0.001		

^{*} use "Quick Fast" Database Scanner

 $^{\,\}perp\,$ alignment further constrained to begin closer than 10bp to EST\5' end

⁵ η using BLOSUM62 substitution matrix

TABLE III: Parameters used for each step of extended cDNA analysis

Search characteristics			Selection characteristics			
Step	Program	Strand	Parameters	Identity (%)	Length (bp)	Comments
miscellaneous •	FASTA	both	•	90	15	
tRNA*	FASTA	both		80	90	1
rRNA*	BLASTN	both	S-108	80	40	
mtRNA*	BLASTN	both	S-108	80	40	· · · · · · · · · · · · · · · · · · ·
Procaryotic ¹	BLASTN	both	S-144	90	40	
Fungal*	BLASTN	both	S-144	90	40	
Alu*	BLASTN	both	S-72	70	40	max 5 matches, masking
L11	BLASTN	both	S-72	70	40	max 5 matches, masking
Repeats!	BLASTN	both	S=72	70	40	masking
PolyA	BLAST2N	top	W-6,S-10,E-1000	90	8	in the last 20 nucleotides
Polyadenylati on signal	•	top	AATAAA allowing 1 mis	match		in the 50 nucleotides preceding the 5' end of the polA
Vertebrate*	BLASTN then FASTA	both	·	90 then 70	30	first BLASTN and then FASTA on matching sequences
ESTs*	BLAST2N	both		90	30	
Geneseq	BLASTN	both	W-8, B-10	90	30	
ORF	BLASTP	top	W-8, B-10		•	on ORF proteins, max 10 matches
Proteins*	BLASTX	top	E-0.001	70	30	

steps common to EST analysis and using the same algorithms and parameters
 steps also used in EST analysis but with different algorithms and/or parameters

-109-

TABLE IV

	- COO.					
ld	FCS Location	SigPep Location	Mature Polypeptide	Stop Codon	PolyA Signal	PolyA Site Location
<u> </u>			Location	Location	Location	
40	7 through 471	7 through 99	100 through 471	472	537 through 542	554 through 568
41	168 through 332	·	168 through 332	333	557 through 562	
42	51 through 251	51 through 110	111 through 251	252	849 through 854	882 through 895
43	20 through 613	20 through 82	83 through 613	614		
44	12 through 416	12 through 86	87 through 416	417	425 through 430	445 through 458
45	276 through 1040	276 through 485	486 through 1040	1041		2024 through 2036
46	443 through 619	443 through 589	590 through 619	620		1267 through 1276
47	206 through 747		206 through 747	1		1.
48	36 through 521	36 through 104	105 through 521	522	528 through 533	548 through 561
49	36 through 395	36 through 104	105 through 395	396	599 through 604	619 through 632
50	21 through 41	·	21 through 41	42	328 through 333	357 through 370
51	35 through 631	35 through 160	161 through 631	632	901 through 906	979 through 994
52	271 through 399	·	271 through 399	400	 	
53	103 through 252	103 through 213	214 through 252	253		588 through 597
54	2 through 460	•	2 through 460	461	713 through 718	735 through 748
55	31 through 231	•	31 through 231	232	769 through 774	690 through 703
56	305 through 565	•	305 through 565	566	694 through 699	713 through 725
57	124 through 873	124 through 378	379 through 873	874	1673 through 1678	1694 through 1705
58	135 through 206	·	135 through 206	207	850 through 855	1056 through 1069
59	135 through 818	·	135 through 818	819	909 through 914	1071 through 1084
60	33 through 290	33 through 92	93 through 290	291		1.
61	485 through 616	·	485 through 616	617		669 through 682
62	54 through 995	54 through 227	228 through 995	996	1130 through 1135	1181 through 1191
63	657 through 923	657 through 896	897 through 923	924	957 through 962	974 through 1008
64	18 through 311	18 through 62	63 through 311	312		
65	151 through 426	151 through 258	259 through 426	427	505 through 510	527 through 538
66	10 through 1062	10 through 57	58 through 1062	1063	1710 through 1715	1735 through 1747
67	78 through 491	78 through 218	219 through 491	492	1652 through 1657	1673 through 1686
58	69 through 371	69 through 287	288 through 371	372	510 through 515	530 through 542
59	2 through 757	2 through 205	206 through 757	758	 	1160 through 1174
70	2 through 1051	2 through 205	206 through 1051	1052	1248 through 1253	1272 through 1285
1	2 through 1171	2 through 205	206 through 1171	1172	1368 through 1373	1386 through 1398
2	42 through 611	42 through 287	288 through 611	612	787 through 792	808 through 821
3	62 through 916	62 through 757	758 through 916			904 through 916
4	62 through 520		62 through 520	521	1124 through 1129	1141 through 1153
5	21 through 167	•	21 through 167	168		
6	22 through 318		94 through 318	319	497 through 502	516 through 526
7	8 through 292		119 through 292	293	317 through 322	339 through 352
8	16 through 378		85 through 378	379	502 through 507	522 through 542

CON	T. TABLE IV					
79	57 through 233	•	57 through 233	1.	·	•
80	83 through 340	83 through 124	125 through 340	341	573 through 578	607 through 660
81	47 through 541	47 through 220	221 through 541	542	·	597 through 605
82	46 through 285	46 through 150	151 through 285	286	364 through 369	385 through 396
83	22 through 240	22 through 84	85 through 240	241	397 through 402	421 through 432
84	89 through 382	·	89 through 382	- 383	•	408 through 420
85	80 through 415	80 through 142	143 through 415	416	471 through 476	488 through 501
86	152 through 361	152 through 283	284 through 361	362		
87	32 through 307	32 through 70	71 through 307	308	1240 through 1245	1261 through 1272
88	114 through 734	114 through 239	240 through 734	735	768 through 773	793 through 804
89	199 through 802		199 through 802	 	780 through 785	791 through 802
90	38 through 1174	38 through 148	149 through 1174	1175	1452 through 1457	1478 through 1490
91	26 through 361	·	26 through 361	·		350 through 361
92	3 through 131	·	3 through 131	132		591 through 605
93	33 through 185	33 through 80	81 through 185	186	570 through 575	586 through 591
94	184 through 915	184 through 237	238 through 915	916	1119 through 1124	1139 through 1150
95	58 through 1116	58 through 159	160 through 1116	1117	1486 through 1491	1504 through 1513
96	327 through 417		327 through 417			404 through 417
97	63 through 398	63 through 206	207 through 398	399		
98	2 through 163		2 through 163	164	488 through 493	511 through 522
99	13 through 465	13 through 75	76 through 465	466	·	
100	20 through 703	20 through 94	95 through 703	704	1000 through 1005	1023 through 1041
101	103 through 294	103 through 243	244 through 294	295	1.	
102	81 through 518	81 through 173	174 through 518	519		
103	66 through 326	·	66 through 326	327	1066 through 1071	1087 through 1098
104	170 through 289	170 through 250	251 through 289	290	·	1.
105	36 through 497	·	36 through 497	498	650 through 655	663 through 685
106	18 through 320		18 through 320	321	539 through 544	542 through 554
107	71 through 1438	71 through 136	137 through 1438	1439	1644 through 1649	1665 through 1678
108	25 through 318	25 through 75	76 through 318	319	452 through 457	482 through 494
109	84 through 332	84 through 170	171 through 332	333	•	702 through 714
110	32 through 718	32 through 100	101 through 718	719	770 through 775	793 through 805
111	26 through 481	26 through 88	89 through 481	482	755 through 760	775 through 787
112	26 through 562	26 through 187	188 through 562	563	 . 	
113	4 through 810	4 through 279	280 through 810	811	858 through 863	881 through 893
114	55 through 459	55 through 120	121 through 459	460	1444 through 1449	1462 through 1475
115	48 through 248	48 through 161	162 through 248	249	283 through 288	308 through 321
116	25 through 399	25 through 186	187 through 399	400	· .	
117	10 through 1137	10 through 72	73 through 1137	1138	1144 through 1149	1162 through 1173
118	72 through 704	72 through 161	162 through 704	705	772 through 777	
119	44 through 505	44 through 223	224 through 505	506		 .
120	25 through 393	25 through 150	151 through 393	394	734 through 739	757 through 770
			•	L	l	1

CON	IT. TABLE IV					
121	58 through 1095	58 through 114	115 through 1095	1096	•	1202 through 1213
122	31 through 660	31 through 90	91 through 660	661	1288 through 1293	1307 through 1318
123	31 through 582	31 through 90	91 through 582	583	816 through 821	840 through 853
124	15 through 695	15 through 80	81 through 695	696	795 through 800	814 through 826
125	74 through 295	74 through 196	197 through 295	296	545 through 550	561 through 571
126	440 through 659	•	440 through 659	1.	601 through 606	•
127	38 through 283	38 through 85	86 through 283	284	257 through 262	·
128	121 through 477	121 through 288	289 through 477	· · · · · ·	•	
129	2 through 163	•	2 through 163	164	292 through 297	310 through 323
130	46 through 675	46 through 87	88 through 675	676	1364 through 1369	1383 through 1392
131	62.through 385	•	62 through 385	386	974 through 979	987 through 999
132	422 through 550	422 through 475	476 through 550	551		714 through 725
133	124 through 231	·	124 through 231	232	·	387 through 400
134	131 through 1053	131 through 169	170 through 1053	· -	1019 through 1024	
135	86 through 403	86 through 181	182 through 403	404	1097 through 1102	1117 through 1128
136	37 through 162	37 through 93	94 through 162	163	224 through 229 .	243 through 254
137	31 through 381	31 through 90	91 through 381	382	•	875 through 886
138	46 through 579	46 through 156	157 through 579	580	· · · · · · · · · · · · · · · · · · ·	
139	92 through 471	92 through 172	173 through 471		454 through 459	458 through 471
140	154 through 675	154 through 498	499 through 675	676	819 through 824	838 through 849
242	18 through 173	18 through 77	78 through 173	174	864 through 869	882 through 893
243	17 through 595	17 through 85	86 through 595	596	820 through 825	840 through 851
244	89 through 334	89 through 130	131 through 334	335	462 through 467	484 through 495
245	21 through 614	21 through 83	84 through 614	615	849 through 854	873 through 884
246	94 through 573	94 through 258	259 through 573	574	862 through 867	886 through 897
247	74 through 397	74 through 127	128 through 397	398	472 through 477	507 through 518
248	51 through 242	51 through 116	117 through 242	243	319 through 324	339 through 350
249	111 through 191	111 through 155	156 through 191	192	965 through 970	986 through 996
250	45 through 602	45 through 107	108 through 602	603	828 through 833	850 through 860
251	24 through 560	24 through 101	102 through 560	561	563 through 568	583 through 593
252	109 through 558	109 through 273	274 through 558	559	·	1104 through 1114
253	128 through 835	128 through 220	221 through 835	836	1145 through 1150	1170 through 1181
254	59 through 505	59 through 358	359 through 505	506	1042 through 1047	1062 through 1073
255	1 through 207	1 through 147	148 through 207	208	784 through 789	807 through 818
256	12 through 734	12 through 101	102 through 734	.735	914 through 919	961 through 971
257	378 through 518	378 through 467	468 through 518	519	607 through 612	628 through 640
258	110 through 304	110 through 193	194 through 304	305	708 through 713	732 through 743
259	201 through 419	201 through 272	273 through 419	420	601 through 606	627 through 637
260	123 through 302	123 through 176	177 through 302	303	1279 through 1284	1301 through 1312
261	98 through 673	98 through 376	377 through 673	674	•	1025 through 1035
262	17 through 463	17 through 232	233 through 463	464	657 through 662	684 through 696
263					,	, {

CONT. TABLE IV

COV	IT. TABLE IV					
264	42 through 299	42 through 101	102 through 299	300	·	762 through 775
265	198 through 431	198 through 260	261 through 431	432	•	1064 through 1074
266	279 through 473	279 through 362	363 through 473	474	944 through 949	970 through 981
267	12 through 644	12 through 92	93 through 644	645	1002 through 1007	1020 through 1031
268	91 through 459	91 through 330	331 through 459	460		1271 through 1281
269	70 through 327	70 through 147	148 through 327	328	1741 through 1746	1763 through 1774
270	12 through 497	12 through 104	105 through 497	498	935 through 940	955 through 967
271	90 through 383	90 through 200	201 through 383	384	609 through 614	632 through 643
272	332 through 541	332 through 376	377 through 541	542	739 through 744	761 through 773
273	43 through 222	43 through 177	178 through 222	223	530 through 535	555 through 566
274	115 through 231	115 through 180	181 through 231	232	419 through 424	445 through 455
275	232 through 384	232 through 300	301 through 384	385	650 through 655	662 through 673
276	143 through 427	143 through 286	287 through 427	428	606 through 611	628 through 639
277	284 through 463	294 through 379	380 through 463	464	·	762 through 772
278	162 through 671	162 through 398	399 through 671	672	805 through 810	830 through 840
279	63 through 632	63 through 308	309 through 632	633	808 through 813	829 through 840
280	21 through 362	21 through 200	201 through 362	363	821 through 826	838 through 849
281	21 through 503	21 through 344	345 through 503	504	1305 through 1310	1330 through 1341
282	1 through 201	1 through 63	64 through 201	202	637 through 642	660 through 671
283	39 through 1034	39 through 134	135 through 1034	1035	1566 through 1571	1587 through 1597
284	69 through 263	69 through 125	126 through 263	264	1173 through 1178	1196 through 1205
285	115 through 285	115 through 204	205 through 285	286	505 through 510	525 through 536
286	90 through 344	90 through 140	141 through 344	345	500 through 505	515 through 527
287	57 through 311	57 through 107	108 through 311	312	467 through 472	482 through 493
288	96 through 302	96 through 182	183 through 302	303	1	501 through 514
289	161 through 526	161 through 328	329 through 526	527		799 through 811
290	210 through 332	210 through 299	300 through 332	333	594 through 599	613 through 625
291	212 through 361	212 through 319	320 through 361	362	650 through 655	673 through 684
292	75 through 482	75 through 128	129 through 482	483	595 through 600	618 through 627
293	50 through 631	50 through 244	245 through 631	632	777 through 782	801 through 812
294	154 through 576	154 through 360	361 through 576	577	737 through 742	763 through 775
295	154 through 897	154 through 360	361 through 897	898	1017 through 1022	1044 through 1054
296	146 through 292	146 through 253	254 through 292	293	395 through 400	433 through 444
297	126 through 383	126 through 167	168 through 383 .	384	726 through 731	743 through 754
298	66 through 497	66 through 239	240 through 497	498	594 through 599	618 through 629
299	49 through 411	49 through 96	97 through 411	412	732 through 737	750 through 763
300	49 through 534	49 through 96	97 through 534	535	593 through 598	612 through 623
301	86 through 415	86 through 145	146 through 415	416	540 through 545	560 through 571
302	56 through 268	56 through 100	101 through 268	269	584 through 589	601 through 612
303	32 through 328	32 through 103	104 through 328	329	508 through 513	528 through 539
304	21 through 527	21 through 95	96 through 527	528	921 through 926	953 through 963
305	147 through 647	147 through 374	375 through 647	648		668 through 681
						

CONT. TABLE IV

COI	NT. TABLE IV					•
306	262 through 471	262 through 306	307 through 471	472	663 through 668	682 through 693
307	74 through 1216	74 through 172	173 through 1216	1217	1627 through 1632	1640 through 1652
308	48 through 164	48 through 89	90 through 164	165	482 through 487	505 through 517
309	185 through 334	185 through 295	296 through 334	335	355 through 360	392 through 405
310	195 through 347	195 through 272	273 through 347	348	1037 through 1042	1071 through 1082
311	90 through 815	90 through 179	180 through 815	816	883 through 888	905 through 916
312	52 through 513	52 through 231	232 through 513	514	553 through 558	572 through 583
313	172 through 438	172 through 354	355 through 438	439	682 through 687	685 through 697
314	148 through 366	148 through 225	226 through 366	367	770 through 775	792 through 803
315	175 through 336	175 through 276	277 through 336	337		812 through 823
316	191 through 553	191 through 304	305 through 553	554	766 through 771	804 through 817
317	106 through 603	106 through 216	217 through 603	604	•	1102 through 1112
318	47 through 586	47 through 124	125 through 586	587	1583 through 1588	1614 through 1623
319	99 through 371	99 through 290	291 through 371	372	491 through 496	513 through 524
320	44 through 814	44 through 112	113 through 814	815		978 through 989
321	3 through 581	3 through 182	183 through 581	582		1006 through 1016
322	107 through 427	107 through 190	191 through 427	428	499 through 504	516 through 529
323	45 through 407	45 through 83	84 through 407	408	1008 through 1013	1032 through 1042
324	201 through 332	201 through 251	252 through 332	333		869 through 880
325	217 through 543	217 through 255	256 through 543	544	•	1206 through 1217
326	18 through 446	18 through 140	141 through 446	447	930 through 935	948 through 959
327	29 through 724	29 through 118	119 through 724	725	886 through 891	910 through 920
328	404 through 586	404 through 466	467 through 586	587	1304 through 1309	1334 through 1344
329	331 through 432	331 through 387	388 through 432	433	548 through 553	573 through 585
330	59 through 703	59 through 220	221 through 703	704	886 through 891	903 through 914
331	672 through 752	672 through 722	723 through 752	753		1150 through 1161
332	57 through 311	57 through 128	129 through 311	312	332 through 337	351 through 363
333	80 through 232	80 through 127	128 through 232	233	617 through 622	634 through 645
334	91 through 291	91 through 219	220 through 291	292	367 through 372	389 through 400
335	196 through 384	196 through 240	241 through 384	385	461 through 466	485 through 496
336	54 through 590	54 through 227	228 through 590	591	1.	955 through 965
337	133 through 846	133 through 345	346 through 846	847		890 through 901
338	138 through 671	138 through 248	249 through 671	672	1319 through 1324	1338 through 1347
339	124 through 411	124 through 186	187 through 411	412	948 through 953	971 through 983
340	372 through 494	372 through 443	444 through 494	495	708 through 713	732 through 745
341	112 through 450	112 through 192	193 through 450	451	1053 through 1058	1095 through 1106
342	117 through 866	117 through 170	171 through 866	867	1159 through 1164	1178 through 1190
343	13 through 465	13 through 75	76 through 465	466	1035 through 1040	1060 through 1070
344	2 through 718	2 through 76	77 through 718	719	1170 through 1175	1203 through 1213
345	86 through 709	86 through 361	362 through 709	710	943 through 948	963 through 973
346	63 through 320	63 through 179	180 through 320	321	771 through 776	799 through 810
347	299 through 418	299 through 379	380 through 418	419	739 through 744	762 through 771
					<u> </u>	

CONT. TABLE IV

	717 171000					
348	186 through 380	186 through 233	234 through 380	381	383 through 388	396 through 409
349	69 through 458	69 through 233	234 through 458	459	564 through 569	602 through 613
350	12 through 638	12 through 263	264 through 638	639	951 through 956	975 through 985
351	282 through 389	282 through 332	333 through 389	390	1413 through 1418	1437 through 1447
352	208 through 339	208 through 294	295 through 339	340		1631 through 1641
353	69 through 557	69 through 224	225 through 557	558	849 through 854	870 through 883
354	134 through 325	134 through 274	275 through 325	326	•	718 through 729
355	78 through 731	78 through 227	228 through 731	732	·	1002 through 1013
356	46 through 693	46 through 90	91 through 693	694	937 through 942	962 through 973
357	126 through 527	126 through 182	183 through 527	528	834 through 839	856 through 867
358	66 through 320	66 through 113	114 through 320	321	490 through 495	508 through 519
359	73 through 948	73 through 159	160 through 948	949	•	1016 through 1028
360	69 through 434	69 through 236	237 through 434	435	419 through 424	441 through 452
361	628 through 804	628 through 711	712 through 804	805		864 through 875
362	70 through 366	70 through 108	109 through 366	367	496 through 501	521 through 531
363	70 through 366	70 through 108	109 through 366	367		1233 through 1244
364	111 through 434	111 through 185	186 through 434	435	1.	618 through 631
365	19 through 567	19 through 63	64 through 567	568	749 through 754	771 through 781
366	19 through 312	19 through 63	64 through 312	313	896 through 901	921 through 931
367	64 through 612	64 through 234	235 through 612	613	1.	839 through 849
368	39 through 458	39 through 80	81 through 458	459	613 through 618	633 through 644
369	9 through 185	9 through 50	51 through 185	186		906 through 918
370	14 through 316	14 through 121	122 through 316	317	442 through 447	458 through 471
371	70 through 1092	70 through 234	235 through 1092	1093	1475 through 1480	1493 through 1504
372	274 through 597	274 through 399	400 through 597	598	731 through 736	754 through 765
373	230 through 469	230 through 307	308 through 469	470	1004 through 1009	1027 through 1040
374	72 through 545	72 through 203	204 through 545	546		1151 through 1162
375	36 through 425	36 through 119	120 through 425	426	1215 through 1220	1240 through 1250
376	155 through 751	155 through 340	341 through 751	752	912 through 917	937 through 947
377	46 through 585	46 through 120	121 through 585	586	584 through 589	606 through 619
					I	

TABLE V

ld	Full Length Polypeptide Location	Signal Peptide Location	Mature Polypeptide Location
141	-31 through 124	-31 through -1	1 through 124
142	1 through 55	•	1 through 55
143	-20 through 47	-20 through -1	1 through 47
144	-21 through 177	-21 through -1	1 through 177
145	-25 through 110	-25 through -1	1 through 110
146	-70 through 185	-70 through -1	1 through 185
147	-49 through 10	-49 through -1	1 through 10
148	1 through 180	•	1 through 180
149	-23 through 139	-23 through -1	1 through 139
150	-23 through 97	-23 through -1	1 through 97
151	1 through 7		
152	-42 through 157	-42 through -1	1 through 7
153	1 through 43	·	1 through 157
154	-37 through 13	-37 through -1	1 through 43
155	1 through 153		1 through 13
156	1 through 67		1 through 153
157	1 through 87	•	1 through 67 1 through 87
158	-85 through 165	-85 through -1	1 through 165
159	1 through 24	•	1 through 24
160	1 through 228	•	1 through 228
161	-20 through 66	-20 through -1	1 through 66
162	1 through 44		1 through 44
163	-58 through 256	-58 through -1	1 through 256
164	-80 through 9	-80 through -1	1 through 9
165	-15 through 83	-15 through -1	1 through 83
166	-36 through 56	-36 through -1	1 through 56
167	-16 through 335	-16 through -1	1 through 335
168	-47 through 91	-47 through -1	1 through 91
169	-73 through 28	-73 through -1	1 through 28
170	-68 through 184	-68 through -1	1 through 184
171	-68 through 282	-68 through -1	1 through 282
172	-68 through 322	-68 through -1	1 through 322
173	-82 through 108	-82 through -1	1 through 108
174	-232 through 53	-232 through -1	1 through 53
175	1 through 153		1 through 153
176	1 through 49		1 through 49
177	-24 through 75	-24 through -1	1 through 75
178	-37 through 58	-37 through -1	1 through 58
179	-23 through 98	-23 through -1	1 through 98
180	1 through 59		1 through 59
181	-14 through 72	-14 through -1	1 through 72
182	-58 through 107	-58 through -1	1 through 107
183	-35 through 45	-35 through -1	
184	-21 through 52	-21 through -1	1 through 45 1 through 52
185	1 through 98		1 through 52 1 through 98
186	-21 through 91	-21 through -1	
187	-44 through 26	-44 through -1	1 through 91
188	-13 through 79	-13 through -1	1 through 26
189	-42 through 165	-42 through -1	1 through 79
190	1 through 201		1 through 165 1 through 201

CONT. TABLE V

CONT. TABL	E V		••
191	-37 through 342	-37 through -1	1 through 342
192	1 through 112		1 through 342
193	1 through 43		1 through 43
194	-16 through 35	-16 through -1	1 through 35
195	-18 through 226	-18 through -1	1 through 226
196	-34 through 319	-34 through -1	1 through 319
197	1 through 30	· ·	
198	-48 through 64	-48 through -1	1 through 30
199	1 through 54	40 through 1	1 through 64
200	-21 through 130	-21 through -1	1 through 54
201	-25 through 203	-25 through -1	1 through 130
202	-47 through 17	-47 through -1	1 through 203
203	-31 through 115	-31 through -1	1 through 17
204	1 through 87	-51 through -1	1 through 115
205	-27 through 13	27 through 1	1 through 87
206	1 through 154	-27 through -1	1 through 13
207	1 through 101		1 through 154
208	-22 through 434	20.4	1 through 101
209	-17 through 81	-22 through -1	1 through 434
210	-29 through 54	-17 through -1	1 through 81
211	-23 through 206	-29 through -1	1 through 54
212		-23 through -1	1 through 206
213	-21 through 131 -54 through 125	-21 through -1	1 through 131
214	-92 through 177	-54 through -1	1 through 125
215	-22 through 113	-92 through -1	1 through 177
216		-22 through -1	1 through 113
217	-38 through 29 -54 through 71	-38 through -1	1 through 29
218	-21 through 355	-54 through -1	1 through 71
219		-21 through -1	1 through 355
220	-30 through 181	-30 through -1	1 through 181
221	-60 through 94	-60 through -1	1 through 94
222	-42 through 81	-42 through -1	1 through 81
223	-19 through 327	-19 through -1	1 through 327
224	-20 through 190	-20 through -1	1 through 190
225	-20 through 164	-20 through -1	1 through 164
	-22 through 205	-22 through -1	1 through 205
226	-41 through 33	-41 through -1	1 through 33
227	1 through 73		1 through 73
228	-16 through 66	-16 through -1	1 through 66
229	-56 through 63	-56 through -1	1 through 63
230	1 through 54	•	1 through 54
231	-14 through 196	-14 through -1	1 through 196
232	1 through 108	•	1 through 108
233	-18 through 25	-18 through -1	1 through 25
234	1 through 36		1 through 36
235	-13 through 294	-13 through -1	1 through 294
236	-32 through 74	-32 through -1	1 through 74
237	-19 through 23	-19 through -1	1 through 23
238	-20 through 97	-20 through -1	1 through 97
239	-37 through 141	-37 through -1	1 through 141
240	-27 through 99	-27 through -1	1 through 99
241	-115 through 59	-115 through -1	1 through 59
378	-20 through 32	-20 through -1	1 through 32
		· · · · · · · · · · · · · · · · · · ·	, , , , , , , , , , , , , , , , , , ,
379 380	-23 through 170	-23 through -1	1 through 170

ONT. TABLE V			
381	-21 through 177	-21 through -1	1 through 177
382	-55 through 105	-55 through -1	1 through 105
383	-18 through 90	-18 through -1	1 through 90
384	-22 through 42	-22 through -1	1 through 42
385	-15 through 12	-15 through -1	1 through 12
386	-21 through 165	-21 through -1	1 through 165
387	-26 through 153	-26 through -1	1 through 153
388	-55 through 95	-55 through -1	1 through 95
389	-31 through 205	-31 through -1	1 through 205
390	-100 through 49	-100 through -1	1 through 49
391	-49 through 20	-49 through -1	1 through 20
392	-30 through 211	-30 through -1	1 through 211
393	-30 through 17	-30 through -1	1 through 17
394	-28 through 37	-28 through -1	1 through 37
395	-24 through 49	-24 through -1	1 through 49
396	-18 through 42	-18 through -1	1 through 42
397	-93 through 99	∙93 through ∙1	1 through 99
398	-72 through 77	-72 through -1	1 through 77
399	-20 through 53	-20 through -1	1 through 53
400	-20 through 66	-20 through -1	1 through 66
401	-21 through 57	-21 through -1	1 through 57
402	-28 through 37	-28 through -1	1 through 37
403	-27 through 184	-27 through -1	1 through 184
404	-80 through 43	-80 through -1	1 through 43
405	-26 through 60	-26 through -1	1 through 60
406	-31 through 131	-31 through -1	1 through 131
407	-37 through 61	-37 through -1	1 through 61
408	-15 through 55	-15 through -1	1 through 55
409	-45 through 15	-45 through -1	1 through 15
410	-22 through 17	-22 through -1	1 through 17
411	-23 through 28	-23 through -1	1 through 28
412	-48 through 47	-48 through -1	1 through 47
413	-32 through 28	-32 through -1	1 through 28
414	-79 through 91	-79 through -1	1 through 91
415	-82 through 108	-82 through -1	1 through 108
416	-60 through 54	-60 through -1	1 through 54
417	-108 through 53	-108 through -1	1 through 53
418	-21 through 46	-21 through -1	1 through 46
419	-32 through 300	-32 through -1	1 through 300
420	-19 through 46	-19 through -1	1 through 46
422	-30 through 27	-30 through -1	1 through 27
423	-17 through 68	-17 through -1	
424	-17 through 68	-17 through -1	1 through 68 1 through 68
425	-29 through 40	-29 through -1	
426	-56 through 66	-56 through -1	1 through 40
427	-30 through 11	-30 through -1	1 through 66
428	-36 through 14		1 through 11
429	-18 through 118	-36 through -1	1 through 14
430	-18 through 118	-18 through -1	1 through 118
431		-65 through -1	1 through 129
431	-69 through 72	-69 through -1	1 through 72
432	-69 through 179	-69 through -1	1 through 179
	-36 through 13	-36 through -1	1 through 13
434	-14 through 72	-14 through -1	1 through 72
435	-58 through 86	-58 through -1	1 through 86

CONT. TARLE V

ONT. TABLE V			
436	-16 through 105	-16 through -1	1 through 105
437	-16 through 146	-16 through -1	1 through 146
438	-20 through 90	-20 through -1	1 through 90
439	-15 through 56	-15 through -1	1 through 56
440	-24 through 75	-24 through -1	1 through 75
441	-25 through 144	-25 through -1	1 through 144
442	·76 through 91	.76 through -1	1 through 91
443	-15 through 55	-15 through -1	1 through 55
444	-33 through 348	-33 through -1	1 through 348
445	·14 through 25	-14 through -1	
446	-37 through 13	-37 through -1	1 through 25 1 through 13
447	-26 through 25	-26 through -1	
448	-30 through 212	-30 through -1	1 through 25
449	-60 through 94	-60 through -1	1 through 212
450	-61 through 28	-61 through -1	1 through 94
451	-26 through 47	-26 through -1	1 through 28
452	-34 through 20	-34 through -1	1 through 47
453	-38 through 83	-38 through -1	1 through 20
454	-37 through 129	-37 through -1	1 through 83
455	-26 through 154	-26 through -1	1 through 129
456	-64 through 27		1 through 154
457	-23 through 234	-64 through -1 -23 through -1	1 through 27
458	-60 through 133	-60 through -1	1 through 234
459	-28 through 79		1 through 133
460	-13 through 108	-28 through -1	1 through 79
461	-17 through 27	-13 through -1	1 through 108
462	-13 through 96	-17 through -1	1 through 27
463	-41 through 102	-13 through -1	1 through 96
464	-30 through 202	-41 through -1 -30 through -1	1 through 102
465	-21 through 40	-21 through -1	1 through 202
466	-19 through 15	-19 through -1	1 through 40
467	-54 through 161	-54 through -1	1 through 15
468	-17 through 10	-17 through -1	1 through 161
469	-24 through 61	-24 through -1	1 through 10
470	-16 through 35	-16 through -1	1 through 61
471	-43 through 24		1 through 35
472	-15 through 48	-43 through -1	1 through 24
473	-58 through 121	-15 through -1	1 through 48
474	-71 through 167	-58 through -1 -71 through -1	1 through 121
475	-37 through 141	-71 through -1	1 through 167
476	-21 through 75		1 through 141
477	-24 through 17	-21 through -1	1 through 75
478	-27 through 86	-24 through -1	1 through 17
479	-18 through 232	-27 through -1	1 through 86
480		-18 through -1	1 through 232
481	-21 through 130 -25 through 214	-21 through -1	1 through 130
482	-25 through 214 -92 through 116	-25 through -1	1 through 214
483		-92 through -1	1 through 116
484	-39 through 47	-39 through -1	1 through 47
484	-27 through 13	-27 through -1	1 through 13
	-16 through 49	-16 through -1	1 through 49
486	-55 through 75	-55 through -1	1 through 75
487	-84 through 125	-84 through -1	1 through 125
488	-17 through 19	-17 through -1	1 through 19
489	-29 through 15	-29 through -1	· 1 through 15

·119·

490	-52 through 111	-52 through -1	1 showsh 111
491	-47 through 17	-47 through -1	1 through 111
492	-50 through 168	-50 through -1	1 through 17
493	-15 through 201	-15 through -1	1 through 168
494	-19 through 115	-19 through -1	1 through 201
495	-16 through 69	-16 through -1	1 through 115
496	-29 through 263	-29 through -1	1 through 69
497	-56 through 66		1 through 263
498	-28 through 31	-56 through -1	1 through 66
499	-13 through 86	-28 through -1	1 through 31
500	-13 through 86	-13 through -1	1 through 86
501	-15 through 83	-13 through -1	1 through 86
502		-25 through -1	1 through 83
503	-15 through 168	-15 through -1	1 through 168
503	-15 through 83	-15 through -1	1 through 83
	-57 through 126	-57 through -1	1 through 126
505	-14 through 126	-14 through -1	1 through 126
506	-14 through 45	-14 through -1	1 through 45
507	-36 through 65	-36 through -1	1 through 65
508	-55 through 286	-55 through -1	1 through 286
509	-42 through 66	-42 through -1	1 through 66
510	-26 through 54	-26 through -1	1 through 54
511	-44 through 114	-44 through -1	1 through 114
512	-28 through 102	-28 through -1	1 through 102
513	-62 through 137	-62 through -1	1 through 137
514	-25 through 155	-25 through -1	i anough 137

-120-

TABLE VI

ld	Collection refs	Deposit Name
40	ATCC # 98921	SignalTag 121-144
41	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
42	ATCC # 98921	SignalTag 121-144
43	ATCC # 98920	SignalTag 67-90
44	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
45	ATCC # 98920	SignalTag 67-90
46	ATCC # 98923	SignalTag 44-66
47	ATCC # 98920	SignalTag 67-90
48	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
49	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
50	ATCC # 98921	SignalTag 121-144
51	ATCC # 98921	SignalTag 121-144
52	ATCC # 98920	SignalTag 67-90
53	ATCC # 98923	SignalTag 44-66
54	ATCC # 98920	SignalTag 67-90
55	ATCC # 98920	SignalTag 67-90
56	ATCC # 98920	SignalTag 67-90
7	ATCC # 98921	SignalTag 121-144
58	ATCC # 98920	SignalTag 67-90
59	ATCC # 98920	SignalTag 67-90
30	ATCC # 98920	SignalTag 67-90
1	ATCC # 98923	SignalTag 44-66
2	ATCC # 98923	SignalTag 44-66
3	ATCC # 98923	SignalTag 44-66
4	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
5	ATCC # 98923	SignalTag 44-66
6	ATCC # 98921	SignalTag 121-144
7	ATCC # 98920	SignalTag 67-90
8	ATCC # 98920	SignalTag 67-90
9	ATCC # 98921	SignalTag 121-144
)	ATCC # 98921	SignalTag 121-144
1	ATCC # 98921	SignalTag 121-144
2	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
3	ATCC # 98923	SignalTag 44-66

74	ATCC # 98923	SignalTag 44-66	_
75	ATCC # 98920	SignalTag 67-90	
76	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120	
77	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120	
78	ATCC # 98921	SignalTag 121-144	
79	ATCC # 98923	SignalTag 44-66	_
80	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120	_
81	ATCC # 98921	SignalTag 121-144	
82	ATCC # 98920	SignalTag 67-90	
83	. ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120	
84	ATCC # 98923	SignalTag 44-66	
85	ATCC # 98923	SignalTag 44-66	
86	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120	
87	ATCC # 98923	SignalTag 44-66	
88	ATCC # 98923	SignalTag 44-66	_
89	ATCC # 98923	SignalTag 44-66	_
90	ATCC # 98923	SignalTag 44-66	
91	ATCC # 98923	SignalTag 44-66	٦
92	ATCC # 98920	SignalTag 67-90	٦
93	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120	٦
94	ATCC # 98923	SignalTag 44-66	
95	ATCC # 98923	SignalTag 44-66	٦
96	ATCC # 98920	SignalTag 67-90	٦
97	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120	٦
98	ATCC # 98921	SignalTag 121-144	7
99	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120	┨
100	ATCC # 98921	SignalTag 121-144	7
101	ATCC # 98920	SignalTag 67-90	7
102	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120	7
103	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120	7
104	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120	↿
105	ATCC # 98921	SignalTag 121·144	7
106	ATCC # 98920	SignalTag 67-90	1
107	ATCC # 98920	SignalTag 67-90	7
108	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120	7
109	ATCC # 98923	SignalTag 44-66	7
10	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120	1

-122-

111	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120.
112	ATCC # 98920	SignalTag 67-90
113	ATCC # 98920	SignalTag 67-90
114	ATCC # 98923	SignalTag 44-66
115	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
116	ATCC # 98920	SignalTag 67-90
117	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
118	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
119	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
120	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
121	ATCC # 98923	SignalTag 44-66
122	ATCC # 98920	SignalTag 67-90
123	ATCC # 98920	SignalTag 67-90
124	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
125	ECACC # 98121506	SignalTag 11121998
126	ECACC # 98121506	SignalTag 11121998
127	ECACC # 98121506	SignalTag 11121998
128	ECACC # 98121506	SignalTag 11121998
129	ECACC # 98121506	SignalTag 11121998
130	ECACC # 98121506	SignalTag 11121998
131	ECACC # 98121506	SignalTag 11121998
132	ECACC # 98121506	SignalTag 11121998
133	ECACC # 98121506	SignalTag 11121998
134	ECACC # 98121506	SignalTag 11121998
135	ECACC # 98121506	SignalTag 11121998
136	ECACC # 98121506	SignalTag 11121998
137	ECACC # 98121506	SignalTag 11121998
138	ECACC # 98121506	SignalTag 11121998 .
139	ECACC # 98121506	SignalTag 11121998
140	ECACC # 98121506	SignalTag 11121998

-123-

TABLE VII

Internal designation number	SEQ ID NO	Type of sequence
20-5-2-C3-CL0_4	40	DNA
20-8-4-A11-CL2_6	41	DNA
21-1-4-F2-CL11_1	42	DNA
22-11-2-H9-CL1_1	43	DNA
25-7-3-D4-CL0_2	44	DNA
26-27-3-D7-CL0_1	45	DNA
26-35-4-H9-CL1_1	46	DNA
26-45-2-C4-CL2_6	47	DNA
27-1-2-B3-CL0_1	48	DNA
27-1-2-B3-CL0_2	49	DNA
27-19-3-G7-CL11_2	50	DNA
33-10-4-E2-CL13_4	51	DNA
33-10-4-H2-CL2_2	52	DNA
33-110-4-A5-CL1_1	53	DNA
33-13-1-C1-CL1_1	54	. DNA
33-30-2-A6-CL0_1	55	DNA
33-35-4-F4-CL1_2	56	DNA
33-35-4-G1-CL1_2	57	DNA
33-36-3-E2-CL1_1	58	DNA
33-36-3-E2-CL1_2	59	DNA
33-36-3-F2-CL2_2	60	DNA
33-4-2-G5-CL2_1	61	DNA
33-49-1-H4-CL1_1	62	DNA
33-66-2-B10-CL4_1	63	DNA
33-97-4-G8-CL2_2	64	DNA
33-98-4-C1-CL1_3	·65	DNA
47-14-1-C3-CLO_5	66	DNA
47-15-1-E11-CL0_1	67	DNA
47-15-1-H8-CLO_2	68	DNA
48-1-1-H7-CLO_1	69	DNA
48-1-1-H7-CLO_4	70	DNA
48-1-1-H7-CLO_5	71	DNA
48-3-1-H9-CLO_6	72	DNA
48-54-1-G9-CL2_1	73	DNA

	-124-	
48-54-1-G9-CL3_1	74	DNA
48-7-4-H2-CL2_2	75	DNA
51-11-3-D5-CL1_3	76	DNA
51-11-3-G9-CLO_1	77	DNA
51-15-4-A12-CL11_3	78	DNA
51-17-4-A4-CL3_1	79	DNA
51-2-3-F10-CL1_5	80	DNA
51-2-4-F5-CL11_2	81	DNA
51-27-4-F2-CL0_2	82	DNA
51-34-3-F8-CLO_2	83	DNA
57-1-4-E2-CL1_2	84	DNA
57-19-2-G8-CL2_1	85	DNA
57-27-3-G10-CL2_2	86	DNA
58-33-3-B4-CL1_2	87	DNA
58-34-3-C9-CL1_2	88	DNA
58-4-4-G2-CL2_1	89	DNA
58-48-1-G3-CL2_4	90	DNA
58-6-1-H4-CL1_1	91	DNA
60-12-1-E11-CL1_2	92	DNA
65-4-4-H3-CL1_1	93	DNA
74-5-1-E4-CL1_2	94	DNA
76-13-3-A9-CL1_2	95	DNA
76-16-1-D6-CL1_1	96	DNA
76-28-3-A12-CL1_5	97	DNA
76-42-2-F3-CLO_1	98	DNA
77-16-4-G3-CL1_3	99	DNA
77-39-4-H4-CL11_4	100	DNA
78-24-3-H4-CL2_1	101	DNA
78-27-3-D1-CL1_6	102	DNA
78-28-3-D2-CLO_2	103	DNA
78-7-1-G5-CL2_6	104	DNA
84-3-1-G10-CL11_6	105	DNA
58-48-4-E2-CLO_1	106	DNA
23-12-2-G6-CL1_2	107	DNA
25-8-4-B12-CLO_5	108	DNA
26-44-3-C5-CL2_1	109	DNA
27-1-2-B3-CLO_3	110	DNA

	.125-	
30-12-3-G5-CL0_1	111	DNA
33-106-2-F10-CL1_3	112	DNA
33-28-4-D1-CLO_1	113	DNA
33-31-3-C8-CL2_1	114	DNA
48-24-1-D2-CL3_2	115	DNA
48-46-4-A11-CL1_4	116	DNA
51-1-4-C1-CLO_2	117	DNA
51-39-3-H2-CL1_2	118	DNA
51-42-3-F9-CL1_1	119	DNA
51-5-3-G2-CLO_4	120	DNA
57-18-4-H5-CL2_1	121	DNA
76-23-3-G8-CL1_1	122	DNA
76-23-3-G8-CL1_3	123	DNA
78-8-3-E6-CLO_1	124	DNA
19-10-1-C2-CL1_3	125	DNA
33-11-1-B11-CL1_2	126	DNA
33-113-2-B8-CL1_2	127	DNA
33-19-1-C11-CL1_1	128	DNA
33-61-2-F6-CLO_2	129	DNA
47-4-4-C6-CL2_2	130	DNA
48-54-1-G9-CL1_1	131	DNA
51-43-3-G3:CLO_1	132	DNA
55-1-3-D11-CLO_1	133	DNA
58-14-2-D3-CL1_2	134	DNA
58-35-2-B6-CL2_3	135	DNA
76-18-1-F6-CL1_1	136	DNA
76-23-3-G8-CL2_2	137	DNA
76-30-3-B7-CL1_1	138	DNA
78-21-3-G7-CL2_1	139	DNA
58-45-4-B11-CL13_2	140	DNA
20-5-2-C3-CL0_4	141	PRT
20-8-4-A11-CL2_6	142	PRT
21-1-4-F2-CL11_1	143	PRT
22-11-2-H9-CL1_1	144	PRT
25-7-3-D4-CLO_2	145	PRT
26-27-3-D7-CL0_1	146	PRT
26-35-4-H9-CL1_1	147	PRT

26-45-2-C4-CL2_6	148	PRT
27-1-2-B3-CLO_1	149	PRT
27-1-2-B3-CLO_2	150	PRT
27-19-3-G7-CL11_2	151	PRT
33-10-4-E2-CL13_4	152	PRT
33-10-4-H2-CL2_2	153	PRT
33-110-4-A5-CL1_1	154	PRT
33-13-1-C1-CL1_1	155	PRT
33-30-2-A6-CLO_1	156	PRT
33-35-4-F4-CL1_2	157	PRT
33-35-4-G1-CL1_2	158	PRT
33-36-3-E2-CL1_1	159	PRT
33-36-3-E2-CL1_2	160	PRT
33-36-3-F2-CL2_2	161	PRT
33-4-2-G5-CL2_1	162	PRT
33-49-1-H4-CL1_1	163	PRT
33-66-2-B10-CL4_1	164	PRT
33-97-4-G8-CL2_2	165	PRT
33-98-4-C1-CL1_3	166	PRT
47-14-1-C3-CLO_5	167	PRT
47-15-1-E11-CLO_1	168	PRT
47-15-1-H8-CL0_2	169	PRT
48-1-1-H7-CLO_1	170	PRT
48-1-1-H7-CLO_4	171	PRT
48-1-1-H7-CLO_5	172	PRT
48-3-1-H9-CLO_6	173	PRT
48-54-1-G9-CL2_1	174	PRT
48-54-1-G9-CL3_1	175	PRT
48-7-4-H2-CL2_2	176	PRT
51-11-3-D5-CL1_3	177	PRT
51-11-3-G9-CLO_1	178	PRT
51-15-4-A12-CL11_3	179	PRT
51-17-4-A4-CL3_1	180	PRT
51-2-3-F10-CL1_5	181	PRT
51-2-4-F5-CL11_2	182	PRT
51-27-4-F2-CLO_2	183	PRT
51-34-3-F8-CLO 2	184	PRT

	• [12/-
57-1-4-E2-CL1_2	185	PRT
57-19-2-G8-CL2_1	186	PRT
57-27-3-G10-CL2_2	187	PRT
58-33-3-B4-CL1_2	188	PRT
58-34-3-C9-CL1_2	189	PRT
58-4-4-G2-CL2_1	190	PRT
58-48-1-G3-CL2_4	191	PRT
58-6-1-H4-CL1_1	192	PRT
60-12-1-E11-CL1_2	193	PRT
65-4-4-H3-CL1_1	194	PRT
74-5-1-E4-CL1_2	195	PRT
76-13-3-A9-CL1_2	196	PRT
76-16-1-D6-CL1_1	197	PRT
76-28-3-A12-CL1_5	198	PRT
76-42-2-F3-CL0_1	199	PRT
77-16-4-G3-CL1_3	200	PRT
77-39-4-H4-CL11_4	201	PRT
78-24-3-H4-CL2_1	202	PRT
78-27-3-D1-CL1_6	203	PRT
78-28-3-D2-CLO_2	204	PRT
78-7-1-G5-CL2_6	205	PRT
84-3-1-G10-CL11_6	206	PRT
58-48-4-E2-CL0_1	207	PRT
23-12-2-G6-CL1_2	208	PRT
25-8-4-B12-CL0_5	209	PRT
26-44-3-C5-CL2_1	210	PRT
27-1-2-B3-CLO_3	211	PRT
30-12-3-G5-CLO_1	212	PRT
33-106-2-F10-CL1_3	213	PRT
33-28-4-D1-CLO_1	214.	PRT
33-31-3-C8-CL2_1	215	PRT
48-24-1-D2-CL3_2	216	PRT
48-46-4-A11-CL1_4	217	PRT
51-1-4-C1-CLO_2	218	PRT
51-39-3-H2-CL1_2	219	PRT
51-42-3-F9-CL1_1	220	PRT
51-5-3-G2-CLO_4	221	PRT

	-1	20-
57-18-4-H5-CL2_1	222	PRT
76-23-3-G8-CL1_1	223	PRT
76-23-3-G8-CL1_3	224	PRT
78-8-3-E6-CLO_1	225	PRT
19-10-1-C2-CL1_3	226	PRT
33-11-1-B11-CL1_2	227	PRT
33-113-2-B8-CL1_2	228	PRT
33-19-1-C11-CL1_1	229	PRT
33-61-2-F6-CLO_2	230	PRT
47-4-4-C6-CL2_2	231	PRT
48-54-1-G9-CL1_1	232	PRT
51-43-3-G3-CL0_1	233	PRT
55-1-3-D11-CL0_1	234	PRT
58-14-2-D3-CL1_2	235	PRT
58-35-2-B6-CL2_3	236	PRT
76-18-1-F6-CL1_1	237	PRT
76-23-3-G8-CL2_2	238	PRT
76-30-3-B7-CL1_1	239	PRT
78-21-3-G7-CL2_1	240	PRT
58-45-4-B11-CL13_2	241	PRT
20-6-1-D11-FL2	242	DNA
20-8-4-A11-FL2	243	DNA
22-6-2-C1-FL2	244	DNA
22-11-2-H9-FL1	245	DNA
23-8-3-B1-FL1	246	DNA
24-3-3-C6-FL1	247	DNA
24-4-1-H3-FL1	248	DNA
26-45-2-C4-FL2	249	DNA
26-48-1-H10-FL1	250	DNA
26-49-1-A5-FL2	251	DNA
30-6-4-E3-FL3	252	DNA
33-6-1-G11-FL1	253	DNA
33-8-1-A3-FL2	254	DNA
33-11-3-C6-FL1	255	DNA
33-14-4-E1-FL1	256	DNA
33-21-2-D5-FL1	257	DNA
33-26-4-E10-FL1	258	DNA

	•129•		
33-27-1-E11-FL1	259	DNA	
33-28-4-D1-FL1	260	DNA	
33-28-4-E2-FL2	261	DNA	
33-30-4-C4-FL1	262	DNA	
33-35-4-F4-FL1	263	DNA	
33-36-3-F2-FL2	264	DNA	
33-52-4-F9-FL2	265	DNA	
33-52-4-H3-FL1	266	DNA	
33-59-1-B7-FL1	267	DNA	
33-71-1-A8-FL1	268	DNA	
33-72-2-B2-FL1	269	DNA	
33-105-2-C3-FL1	270	DNA	
33-107-4-C3-FL1	271	DNA	
33-110-2-64-FL1	272	DNA	
47-7-4-D2-FL2	273	DNA	
47-10-2-G12-FL1	274	DNA	
47-14-3-D8-FL1	275	DNA	
47-18-3-C2-FL1	276	DNA	
47-18-3-G5-FL2	277	DNA	
47-18-4-E3-FL2	278	DNA	
48-3-1-H9-FL3	279	DNA	
48-4-2-H3-FL1	280	DNA	
48-6-1-C9-FL1	281	DNA	
48-7-4-H2-FL2	282	DNA	
48-8-1-D8-FL3	283	DNA	
48-13-3-H8-FL1	284	DNA	
48-19-3-A7-FL1	285	DNA	
48-19-3-G1-FL1	286	DNA	
48-25-4-D8-FL1	287	DNA	
48-21-4-H4-FL1	288	DNA	
48-26-3-B8-FL2	289	DNA	
48-29-1-E2-FL1	290	DNA	
48-31-3-F7-FL1	291	DNA	
48-47-3-A5-FL1	292	DNA	
51-1-1-G12-FL1	293	DNA	
51-1-4-E9-FL3	294	DNA	
51-1-4-E9-FL2	295	DNA	
			

	•	-130-
51-2-1-E10-FL1	296	DNA
51-2-3-F10-FL1	297	DNA
51-2-4-F5-FL1	298	DNA
51-3-3-B10-FL2	299	DNA
51-3-3-B10-FL3	300	DNA
51-7-3-G3-FL1	301	DNA
51-10-3-D11-FL1	302	DNA
51-11-3-D5-FL1	303	DNA
51-13-1-F7-FL3	304	DNA
51-15-4-H10-FL1	305	DNA
51-17-4-A4-FL1	306	DNA
51-18-1-C3-FL1	307	DNA
51-25-3-F3-FL1	308	DNA
51-27-1-E8-FL1	309	DNA
51-28-2-G1-FL2	310	DNA
51-39-3-H2-FL1	311	DNA
51-42-3-F9-FL1	312	DNA
51-44-4-H4-FL1	313	DNA
55-1-3-H10-FL1	314	DNA
55-5-4-A6-FL1	315	DNA
58-26-3-D1-FL1	316	DNA
57-18-1-D5-FL1	317	DNA
57-27-3-A11-FL1	318	DNA
57-27-3-G10-FL2	319	DNA
58-10-3-D12-FL1	320	DNA
58-11-1-G10-FL1	321	DNA
58-11-2-G8-FL2	322	DNA
58-36-3-A9-FL2	323	DNA
58-38-1-A2-FL2	324	DNA
58-38-1-E5-FL1	325	DNA
58-44-2-B3-FL3	326	DNA
58-45-3-H11-FL1	327	DNA
58-53-2-B12-FL2	328	DNA
59-9-4-A10-FL1	329	DNA
60-16-3-A6-FL1	330	DNA
60-17-3-G8-FL2	331	DNA
62-5-4-B10-FL1	332	DNA

	·	131.
65-4-4-H3-FL1	333	DNA
74-3-1-B9-FL1	334	DNA
76-4-1-G5-FL1	335	DNA
76-7-3-A12-FL1	336	DNA
76-16-4-C9-FL3	337	DNA
76-30-3-B7-FL1	338	DNA
77-5-1-C2-FL1	339	DNA
77-5-4-E7-FL1	340	DNA
77-11-1-A3-FL1	341	DNA
77-16-3-D7-FL1	342	DNA
77-16-4-G3-FL1	343	DNA
77-25-1-A6-FL1	344	DNA
77-26-2-F2-FL3	345	DNA
78-6-2-E3-FL2	346	DNA
78-7-1-G5-FL2	347	DNA
78-16-2-C2-FL1	348	DNA
78-18-3-B4-FL3	349	DNA
78-20-1-G11-FL1	350	DNA
78-22-3-E10-FL1	351	DNA
78-24-2-B8-FL1	352	DNA
78-24-3-A8-FL1	353	DNA
78-24-3-H4-FL2	354	DNA
78-25-1-F11-FL1	355	DNA
78-26-1-B5-FL1	356	DNA
78-27-3-D1-FL1	357	DNA
78-29-1-B2-FL1	358	DNA
78-29-4-B6-FL1	359	DNA
14-1-3-E6-FL1	360	DNA
30-9-1-G8-FL2	361	DNA
33-10-4-H2-FL2	362	DNA
33-10-4-H2-FL1	363	DNA
74-10-3-C9-FL2	364	DNA
33-97-4-G8-FL3	365	DNA
33-97-4-G8-FL2	366	DNA
33-104-4-H4-FL1	367	DNA
47-2-3-B3-FL1	368	DNA
47-37-4-G11-FL1	369	DNA

	-132-		
57-25-1-F10-FL2	370	DNA	
58-19-3-D3-FL1	371	DNA	
58-34-3-C9-FL2	372	DNA	
58-48-4-E2-FL2	373	DNA	
76-21-1-C4-FL1	374	DNA	
78-26-2-H7-FL1	375	DNA	
77-20-2-E11-FL1	376	DNA	
47-1-3-F7-FL2	377	DNA	
20-6-1-D11-FL2	378	PRT	
20-8-4-A11-FL2	379	PRT	
22-6-2-C1-FL2	380	PRT	
22-11-2-H9-FL1	381	PRT	
23-8-3-B1-FL1	382	PRT	
24-3-3-C6-FL1	383	PRT	
24-4-1-H3-FL1	384	PRT	
26-45-2-C4-FL2	385	PRT	
26-48-1-H10-FL1	386	PRT	
26-49-1-A5-FL2	387	PRT	
30-6-4-E3-FL3	388	PRT	
33-6-1-G11-FL1	389	PRT	
33-8-1-A3-FL2	390	PRT	
33-11-3-C6-FL1	391	PRT	
33-14-4-E1-FL1	392	PRT	
33-21-2-D5-FL1	393	PRT	
33-26-4-E10-FL1	394	PRT	
33-27-1-E11-FL1	395	PRT	
33-28-4-D1-FL1	396	PRT	
33-28-4-E2-FL2	397	PRT	
33-30-4-C4-FL1	398	PRT	
33-35-4-F4-FL1	399	PRT	
33-36-3-F2-FL2	400	PRT	
33-52-4-F9-FL2	401	PRT	
33-52-4-H3-FL1	402	PRT	
33-59-1-B7-FL1	403	PRT	
33-71-1-A8-FL1	404	PRT	
33-72-2-B2-FL1	405	PRT	
33-105-2-C3-FL1	406	PRT	

	'	
33-107-4-C3-FL1	407	PRT
33-110-2-G4-FL1	408	PRT
47-7-4-D2-FL2	409	PRT
47-10-2-G12-FL1	410	PRT
47-14-3-D8-FL1	411	PRT
47-18-3-C2-FL1	412	PRT
47-18-3-G5-FL2	413	PRT
47-18-4-E3-FL2	414	PRT
48-3-1-H9-FL3	415	PRT
. 48-4-2-H3-FL1	416	PRT
48-6-1-C9-FL1	417	PRT
48-7-4-H2-FL2	418	PRT
48-8-1-D8-FL3	419	PRT
48-13-3-H8-FL1	420	PRT
48-19-3-A7-FL1	421	PRT
48-19-3-G1-FL1	422	PRT
48-25-4-D8-FL1	423	PRT
48-21-4-H4-FL1	424	PRT
48-26-3-B8-FL2	425	PRT
48-29-1-E2-FL1	426	PRT
48-31-3-F7-FL1	427	PRT
48-47-3-A5-FL1	428	PRT
51-1-1-G12-FL1	429	PRT
51-1-4-E9-FL3	430	PRT
51-1-4-E9-FL2	431	PRT
51-2-1-E10-FL1	432	PRT
51-2-3-F10-FL1	433	PRT
51-2-4-F5-FL1	434	PRT
51-3-3-B10-FL2	435	PRT
51-3-3-B10-FL3	436	PRT
51-7-3-G3-FL1	437	PRT
51-10-3-D11-FL1	438	PRT
51-11-3-D5-FL1	439	PRT
51-13-1-F7-FL3	440	PRT
51-15-4-H10-FL1	441	PRT
51-17-4-A4-FL1	442	PRT
51-18-1-C3-FL1	443	PRT

	•	
51-25-3-F3-FL1	444	PRT
51-27-1-E8-FL1	445	PRT
51-28-2-G1-FL2	446	PRT
51-39-3-H2-FL1	447	PRT
51-42-3-F9-FL1	448	PRT
51-44-4-H4-FL1	449	PRT
55-1-3-H10-FL1	450	PRT
55-5-4-A6-FL1	451	PRT
58-26-3-D1-FL1	452	PRT
57-18-1-D5-FL1	453	PRT
57-27-3-A11-FL1	454	PRT
57-27-3-G10-FL2	455	PRT
58-10-3-D12-FL1	456	PRT
58-11-1-G10-FL1	457	PRT
58-11-2-G8-FL2	458	PRT
58-36-3-A9-FL2	459	PRT
58-38-1-A2-FL2	460	PRT
58-38-1-E5-FL1	461	PRT
58-44-2-B3-FL3	462	PRT
58-45-3-H11-FL1	463	PRT
58-53-2-B12-FL2	464	PRT
59-9-4-A10-FL1	465	PRT
60-16-3-A6-FL1	466	PRT
60-17-3-G8-FL2	467	PRT
62-5-4-B10-FL1	468	PRT
65-4-4-H3-FL1	469	PRT
74-3-1-B9-FL1	470	PRT
76-4-1-G5-FL1	471	PRT
76-7-3-A 12-FL1	472	PRT
76-16-4-C9-FL3	473	PRT
76-30-3-B7-FL1	474	PRT
77-5-1-C2-FL1	475	PRT
77-5-4-E7-FL1	476	PRT
77-11-1-A3-FL1	477	PRT
77-16-3-D7-FL1	478	PRT
77-16-4-G3-FL1	479	PRT
77-25-1-A6-FL1	480	PRT

77-26-2-F2-FL3	481	PRT
78-6-2-E3-FL2	482	PRT
78-7-1-G5-FL2	483	PRT
78-16-2-C2-FL1	484	PRT
78-18-3-B4-FL3	485	PRT
78-20-1-G11-FL1	486	PRT
78-22-3-E10-FL1	487	PRT-
78-24-2-B8-FL1	488	PRT
78-24-3-A8-FL1	489	PRT
78-24-3-H4-FL2	490	PRT
78-25-1-F11-FL1	491	PRT
78-26-1-B5-FL1	492	PRT
78-27-3-D1-FL1	493	PRT
78-29-1-B2-FL1	494	PRT
78-29-4-86-FL1	495	PRT
14-1-3-E6-FL1	496	PRT
30-9-1-G8-FL2	497	PRT
33-10-4-H2-FL2	498	PRT
33-10-4-H2-FL1	499	PRT
74-10-3-C9-FL2	500	PRT
33-97-4-G8-FL3	501	PRT
33-97-4-G8-FL2	502	PRT
33-104-4-H4-FL1	503	PRT
47-2-3-83-FL1	504	PRT
47-37-4-G11-FL1	505	PRT
57-25-1-F10-FL2	506	PRT
58-19-3-D3-FL1	507	PRT
58-34-3-C9-FL2	508	PRT
58-48-4-E2-FL2	509	PRT
76-21-1-C4-FL1	510	PRT
78-26-2-H7-FL1	511	PRT
77-20-2-E11-FL1	512	PRT
47-1-3-F7-FL2	513	PRT

WO 99/31236 PCT/IB98/02122

-136-

TABLE VIII

ID	Locations	PROSITE Signature Name		
195	110-121	Aldehyde dehydrogenases csyteine active site		
221	28-37	ATP synthase alpha and beta subunits signature		
223	171-181	Regulator of chromosome condensation (RCC1) signature 2		
225	90-112	Phosphatidylethanolamine-binding protein family signature		
226	10-34	Protein kinases ATP-binding region signature		

WHAT IS CLAIMED IS:

- A purified or isolated nucleic acid comprising the sequence of one of SEQ ID NOs: 40-140 and 242 377 or a sequence complementary thereto.
- 2. A purified or isolated nucleic acid comprising at least 10 consecutive bases of the sequence of one of 5 SEQ ID NOs: 40-140 and 242-377 or one of the sequences complementary thereto.
 - 3. A purified or isolated nucleic acid comprising the full coding sequences of one of SEQ ID Nos: 40, 42-44, 46, 48, 49, 51, 53, 60, 62-72, 76-78, 80-83, 85-88, 90, 93, 94, 97, 99-102, 104, 107-125, 127, 132, 135-138, 140 and 242-377wherein the full coding sequence comprises the sequence encoding signal peptide and the sequence encoding mature protein.
- A purified or isolated nucleic acid comprising the nucleotides of one of SEQ ID NOs: 40-44, 46, 48,
 49, 51-53, 55, 56, 58-72, 75-78, 80-88, 90, 93, 94, 97, 99-125, 127, 132, 133, 135-138, 140, and 242-377 which encode a mature protein.
- 5. A purified or isolated nucleic acid comprising the nucleotides of one of SEQ ID NOs: 40, 42-46, 48, 49, 51, 53, 57, 60, 62-73, 76-78, 80-83, 85-88, 90, 93-95, 97, 99-102, 104, 107-125, 127, 128, 130, 132, 134-140 and 242-377 which encode the signal peptide.
 - 6. A purified or isolated nucleic acid encoding a polypeptide having the sequence of one of the sequences of SEO ID NOs: 141-241 and 378-513.
- A purified or isolated nucleic acid encoding a polypeptide having the sequence of a mature protein included in one of the sequences of SEQ ID NOs: 141-145, 147, 149, 150, 152-154, 156, 157, 159-172, 176-179, 181-20
 189, 191, 194, 195, 198, 200-226, 228, 233, 234, 236-239, 241 and 378-513.
 - 8. A purified or isolated nucleic acid encoding a polypeptide having the sequence of a signal peptide included in one of the sequences of SEO ID Nos: 141, 143-147, 149, 150, 152, 154, 158, 161, 163-174, 177-179, 181-184, 186-189, 191, 194-196, 198, 200-203, 205, 208-226, 228, 229, 231, 233, 235-241, and 378-513.
 - 9. A purified or isolated protein comprising the sequence of one of SEO ID NOs: 141-241 and 378-513.
- 25 10. A purified or isolated polypeptide comprising at least 10 consecutive amino acids of one of the sequences of SEQ ID NOs: 141-241 and 378-513.
 - 11. An isolated or purified polypeptide comprising a signal peptide of one of the polypeptides of SEQ ID NOs: 141, 143-147, 149, 150, 152, 154, 158, 161, 163-174, 177-179, 181-184, 186-189, 191, 194-196, 198, 200-203, 205, 208-226, 228, 229, 231, 233, 235-241, and 378-513.
- 30 12. An isolated or purified polypeptide comprising a mature protein of one of the polypeptides of SEQ ID NOs: 141-145, 147, 149, 150, 152-154, 156, 157, 159-172, 176-179, 181-189, 191, 194, 195, 198, 200-226, 228, 233, 234, 236-239, 241 and 378-513.
 - 13. A method of making a protein comprising one of the sequences of SEQ ID NO: 141-241 and 378-513, comprising the steps of:

obtaining a cDNA comprising one of the sequences of sequence of SEQ ID NO: 40-140 and 242-377; inserting said cDNA in an expression vector such that said cDNA is operably linked to a promoter; and introducing said expression vector into a host cell whereby said host cell produces the protein encoded by said cDNA.

- 5 14. The method of Claim 13, further comprising the step of isolating said protein.
 - 15. A protein obtainable by the method of Claim 14.
 - 16. A host cell containing a recombinant nucleic acid of Claim 1.
 - 17. A purified or isolated antibody capable of specifically binding to a protein having the sequence of one of SEO ID NOs: 141-241 and 378-513.
- 10 18. In an array of polynucleotides of at least 15 nucleotides in length, the improvement comprising inclusion in said array of at least one of the sequences of SEQ ID NOs: 40-140 and 242-377, or one of the sequences complementary to the sequences of SEQ ID NOs: 40-140 and 242-377, or a fragment thereof of at least 15 consecutive nucleotides.
- 19. A purified or isolated nucleic acid of at least 15 bases capable of hybridizing under stringent conditions to the sequence of one of SEQ ID NOs: 40-140 and 242-377 or a sequence complementary to one of the sequences of SEQ ID NOs: 40-140 and 242-377.
 - 20. A purified or isolated antibody capable of binding to a polypeptide comprising at least 10 consecutive amino acids of the sequence of one of SEQ ID NOs: 141-241 and 378-513.

Figure 1

2/15

Minimum signal peptide score	false positive rate	false negative rate	proba(0.1)	proba(0.2)
3,5	0,121	0,036	0,467	0,664
4	0,096	0,06	0,519	0,708
4,5	0,078	0,079	0,565	0,745
5	0,062	0,098	0,615	0,782
5,5	0,05	0,127	0,659	0,813
6	0,04	0,163	0,694	0,836
6,5	0,033	0,202	0,725	0,855
7	0,025	0,248	0,763	0,878
7,5	0,021	0,304	0,78	0,889
8	0,015	0,368	0,816	0,909
8,5	0,012	0,418	0,836	0,92
9	0,009	0,512	0,856	0,93
9,5	0,007	0,581	0,863	0,934
10	0,006	0,679	0,835	0,919

influence of minimum score on signal peptide recognition

Minimum signal peptide score		New ESTs	ESTs matching public EST closer than 40 bp from beginning	ESTs extending known mRNA more than 40 bp	ESTs extending public EST more than 40 bp
3,5	2674	947	599	23	150
4	2278	784	499	23	126
4,5	1943	647	425	22	112
5	1657	523	353	- 21	96
5,5	1417	419	307	19	80
6	1190	340	238	.18	68
6,5	1035	280	186	18	60
7	893	219	161	15	48
7,5	753	173	132	12	36
8	636	133	101	11	29
8,5	543	104	83	8	26
9	456	81	. 63	6	24
9,5	364	57	48	6	18
10	303	47	35	6	15

	1				
	•		ESTs	ESTs	ESTs
	1		matching	extending	extending
Tissue	All ESTs	New ESTs	public EST	known	public EST
1			closer than	mRNA more	
			40 bp from	than 40 bp	bp
Brain	329	404	beginning		
I .	329 134	131	75	3	24
Cancerous prostate Cerebellum		40	37	1	6
Colon	17	9	1	0	6
	21	11	4	0	0
Dystrophic muscle	41	18	8	0	1
Fetal brain	70	37	16	0	1
Fetal kidney	227	116	46	1	19
Fetal liver	13	7	2	0	0
Heart	30	15	7	0	1
Hypertrophic prostate	8 6	23	22	2	2
Kidney	10	7	3	0	0
Large intestine	21	8	4	0	1
Liver	23	9	6	0	0
Lung	24	12	4	. 0	1
Lung (cells)	57	38	6	0	4
Lymph ganglia	163	60	23	2	12
Lymphocytes	23	6	4	0	2
Muscle	33	16	6	0	4
Normal prostate	181	61	45	7	11
Ovary	90	57	12	1	2
Pancreas	48	11	6	0	1
Placenta	24	5	1	0	0
Prostate	34	16	4	0	2
Spleen	56	28	10	0	1
Substantia nigra	108	47	27	1	6
Surrenals	15	3	3	1	ŏ
Testis	131	68	25	1	
Thyroid	17	8	2	0	2
Umbilical cord	55	17	12	1	8 2 3 2
Uterus	28	15	3	Ó	3
Non tissue-specific	568	48	177	2	28
Total	2677	947	601	23	150
<u> </u>		U 11	001	20	130

Plasmid name: pED6dpc2 Plasmid size: 5374 bp 8/15

FIGURE 8

WO 99/31236 PCT/IB98/02122

9/15

Description of Transcription Factor Binding Sites present on promoters isolated from SignalTag sequences

Promoter sequence P13H2 (546 bp):

Matrix	Position	Orientation	Score	Length	Sequence
CMYB_01	-502	+	0.983	9	TGTCAGTTG
MYOD_Q6	-501		0.961	10	CCCAACTGAC
S8_01	-444	-	0.960	11	AATAGAATTAG
S8_01	-425	+	0.966	11	AACTAAATTAG
DELTAEF1_01	-390	•	0.960	11	GCACACCTCAG
GATA_C	-364	-	0.964	11	AGATAAATCCA
CMYB_01	-349	+	0.958	9	CTTCAGTTG
GATA1_02	-343	+	0.959	14	TTGTAGATAGGACA
GATA_C	-339	+	0.953	11	AGATAGGACAT
TAL1ALPHAE47_01	-235	+	0.973	16	CATAACAGATGGTAAG
TAL1BETAE47_01	-235	+	0.983	16	CATAACAGATGGTAAG
TAL1BETAITF2_01	-235	+	0.978	16	CATAACAGATGGTAAG
MYOD_Q6	-232	•	0.954	10	ACCATCTGTT
GATA1_04	-217	-	0.953	13	TCAAGATAAAGTA
IK1_01	-126	+	0.963	13	AGTTGGGAATTCC
IK2_01	-126	+	0.985	12	AGTTGGGAATTC
CREL_01	-123	+	0.962	10	TGGGAATTCC
GATA1_02	-96	+	0.950	14	TCAGTGATATGGCA
SRY_02	-41	-	0.951	12	TAAAACAAAACA
E2F_02	-33	+	0.957	8	TTTAGCGC
MZF1_01	-5	-	0.975	8	TGAGGGGA

Promoter sequence P15B4 (861bp):

Matrix	Position	Orientation	Score	Length	Sequence
NFY_Q6	-748	-	0.956	11	GGACCAATCAT
MZF1_01	-738	+	0.962	8	CCTGGGGA
CMYB_01	-684	. +	0.994	9	TGACCGTTG
VMYB_02	-682	-	0.985	9	TCCAACGGT
STAT_01	-673	+	0.968	9	TTCCTGGAA
STAT_01	-673	-	0.951	9	TTCCAGGAA
MZF1_01	-556	-	0.956	8	TTGGGGGA
IK2_01	-451	+	0.965	12	GAATGGGATTTC
MZF1_01	-424	+	0.986	8	AGAGGGGA
SRY_02	-398	•	0.955	12	GAAAACAAAACA
MZF1_01	-216	+	0.960	8	GAAGGGGA
MYOD_Q6	-190	+	0.981	10	AGCATCTGCC
DELTAEF1_01	-176	+	0.958	11	TCCCACCTTCC
S8_01	5	-	0.992	11	GAGGCAATTAT
MZF1_01	16	•	0.986	8	AGAGGGGA

Promoter sequence P29B6 (555 bp):

Matrix	Position	Orientation	Score	Length	Sequence
ARNT_01	-311	+	0.964	16	GGACTCACGTGCTGCT
NMYC_01	-309	+	0.965	12	ACTCACGTGCTG
USF_01	-309	+	0.985	12	ACTCACGTGCTG
USF_01	-309	•	0.985	12	CAGCACGTGAGT
NMYC_01	-309	-	0.956	12	CAGCACGTGAGT
MYCMAX_02	-309	-	0.972	12	CAGCACGTGAGT
USF_C	-307	+	0.997	8	TCACGTGC
USF_C	-307	-	0.991	8	GCACGTGA
MZF1_01	-292	-	0.968	. 8	CATGGGGA
ELK1_02	-105	+	0.963	14	CTCTCCGGAAGCCT
CETS1P54_01	-102	+	0.974	10	TCCGGAAGCC
AP1_Q4	-42	-	0.963	11	AGTGACTGAAC
AP1FJ_Q2	-42	-	0.961	11	AGTGACTGAAC
PADS_C	45	+	1.000	9	TGTGGTCTC

Figure 9

WO 99/31236 PCT/IB98/02122

10/15

100.0% identity in 125 aa overlap 30 40 SEQ ID NO: 217 MADEELEALRRQRLAELQAKHGDPGDAAQQEAKHREAEMRNSILAQVLDQSARARLSNLA SEQ ID NO: 516 MADEELEALRRQRLAELQAKHGDPGDAAQQEAKHREAEMRNSILAQVLDQSARARLSNLA 20 . 30 90 100 120 70 80 110 SEQ ID NO: 217 LVKPEKTKAVENYLIQMARYGQLSEKVSEQGLIEILKKVSQQTEKTTTVKFNRRKVMDSD SEQ ID NO: 516 LVKPEKTKAVENYLIQMARYGQLSEKVSEQGLIEILKKVSQQTEKTTTVKFNRRKVMDSD 80 90 100 110

SEQ ID NO: 217 EDDDY ::::X SEQ ID NO: 516 EDDDY

11/15

CLUSTAL W(1.5) multiple sequence alignment

SEQ ID NO: SEQ ID NO: SEQ ID NO: SEQ ID NO:	232 174	MFCPLKLILLPVLLDYSLGLNDLNVSPPELTVHVGDSALMGCVFQSTEDKCIFKIDWTLS
SEQ ID NO: SEQ ID NO: SEQ ID NO: SEQ ID NO:	232 174	PGEHAKDEYVLYYYSNLSVPIGRFQNRVHLMGDNLCNDGSLLLQDVQDVE
SEQ ID NO: SEQ ID NO: SEQ ID NO: SEQ ID NO:	232 174	KGESQVFKKAVVLHVLPEEPKGTQMLTKGESQVFKKAVVLHVLPEEPKELMVHVGGLIQMGCVFQSTEVKHVTKVEWIFSGRRAKEEKGESQVFKKAVVLHVLPEEPKELMVHVGGLIQMGCVFQSTEVKHVTKVEWIFSGRRAK
SEQ ID NO: SEQ ID NO: SEQ ID NO: SEQ ID NO:	232 174	IVFRYYHKLRMSAEYSQSWGHFQNRVNLVGDIFRNDGSIMLQGVRESDGGNYTCSIHLGN VTRRKHHCVREGSG
SEQ ID NO: SEQ ID NO: SEQ ID NO: SEQ ID NO:	232 174	LVFKKTIVLHVSPEEPRTLVTPAALRPLVLGGNQLVIIVGIVCATILLLPVLILIVKKTC
SEQ ID NO: SEQ ID NO: SEQ ID NO: SEQ ID NO:	232 174	GNKSSVNSTVLVKNTKKTNP

WO 99/31236 PCT/IB98/02122

12/15

99.6% identity in 225 aa overlap SEQ ID NO: 515 PTAVQKEEARQDVEALLSRTVRTQILTGKELRVATQEKEGSSGRCMLTLLGLSFILAGLI SEQ ID NO: 231 LRVATQEKEGSSGRCMLTLLGLSFILAGLI SEQ ID NO: 515 VGGACIYKYFMPKSTIYRGEMCFFDSEDPANSLRGGEPNFLPVTEEADIREDDNIAIIDV SEQ ID NO: 231 VGGACIYKYFMPKSTIYRGEMCFFDSEDPANSLRGGEPNFLPVTEEADIREDDNIAIIDV SEQ ID NO: 515 PVPSFSDSDPAAIIHDFEKGMTAYLDLLLGNCYLMPLNTSIVMPPKNLVELFGKLASGRY SEQ ID NO: 231 PVPSFSDSDPAAIIHDFEKGMTAYLDLLLGICYLMPLNTSIVMPPKNLVELFGKLASGRY SEQ ID NO: 515 LPQTYVVREDLVAVEEIRDVSNLGIFIYQLCNNRKSFRLRRRDLLLGFNKRAIDKCWKIR SEQ ID NO: 231 LPQTYVVREDLVAVEEIRDVSNLGIFIYQLCNNRKSFRLRRRDLLLGFNKRAIDKCWKIR

250 260
SEQ ID NO: 515 HFPNEFIVETKICQE

SEQ ID NO: 231 HFPNEFIVETKICQE

WO 99/31236 PCT/IB98/02122

13/15

99.7% identity in 353 aa overlap SEQ ID NO:196 MERGLKSADPRDGTGYTGWAGIAVLYLHLY SEQ ID NO:518 LAEGYFDAAGRLTPEFSQRLTNKIRELLQQMERGLKSADPRDGTGYTGWAGIAVLYLHLY 70 . SEO ID NO:196 DVFGDPAYLOLAHGYVKOSLNCLTKRSITFLCGDAGPLAVAAVLYHKMNNEKOAEDCITR SEQ ID NO:518 DVFGDPAYLQLAHGYVKQSLNCLTKRSITFLCGDAGPLAVAAVLYHKMNNEKQAEDCITR SEQ ID NO:196 LIHLNKIDPHAPNEMLYGRIGYIYALLFVNKNFGVEKTPQSHIQQICETILTSGENLARK SEQ ID NO:518 LIHLNKIDPHAPNEMLYGRIGYIYALLFVNKNFGVEKIPQSHIQQICETILTSGENLARK SEQ ID NO:196 RNFTAKSPLMYEWYQEYYVGAAHGLAGIYYYLMQPSLQVSQGKLHSLVKPSVDYVCQLKF SEQ ID NO:518 RNFTAKSPLMYEWYQEYYVGAAHGLAGIYYYLMQPSLQVSQGKLHSLVKPSVDYVCOLKF SEQ ID NO:196 PSGNYPPCIGDNRDLLVHWCHGAPGVIYMLIQAYKVFREEKYLCDAYQCADVIWQYGLLK SEQ ID NO:518 PSGNYPPCIGDNRDLLVHWCHGAPGVIYMLIQAYKVFREEKYLCDAYQCADVIWQYGLLK SEQ ID NO:196 KGYGLCHGSAGNAYAFLTLYNLTQDMKYLYRACKFAEWCLEYGEHGCRTPDTPFSLFEGM SEQ ID NO:518 KGYGLCHGSAGNAYAFLTLYNLTQDMKYLYRACKFAEWCLEYGEHGCRTPDTPFSLFEGM SEQ ID NO:196 AGTIYFLADLLVPTKARFPAFEL SEQ ID NO:518 AGTIYFLADLLVPTKARFPAFEL

14/15

98.5% identity in 194 aa overlap SEQ ID NO:519 ARNLPPLTDAQKNKLRHLSVVTLAAKVKCIPYAVLLEALALRNVRQLEDLVIEAVYADVL SEQ ID NO:158 ARNLPPLTEAQKNKLRHLSVVTLAAKVKCIPYAVLLEALALRNVRQLEDLVIEAVYADVL SEQ ID NO:519 RGSLDQRNQRLEVDYSIGRDIQRQDLSAIAQTLQEWCVGCEVVLSGIEEQVSRANQHKEQ SEQ ID NO:158 RGSLDQRNQRLEVDYSIGRDIQRQDLSAIARTLQEWCVGCEVVLSGIEEQVSRANQHKEQ SEQ ID NO:519 QLGLKQQIESEVANLKKTIKVTTAAAAAATSQDPEQHLTELREPASGTNQRQPSKKASKG SEO ID NO:158 QLGLKQQIESEVANLKKTIKVTTAAAAAATSODPEOHLTELREPAPGTNOROPSKKASKG SEQ ID NO:519 KGLRGSAKIWSKSN SEQ ID NO:158 KGLRGSAKIWSKSN 88.7% identity in 62 aa overlap SEQ ID NO:519 MSAEVKVTGQNQEQFLLLAKSAKGAALATLIHQVLEAPGVYVFGELLDMPNVRELAESDF SEQ ID NO:158 MSAEVKVTGQNQEQFLLLAKSAKGAALATLIHQVLEAPGVYVFGELLDMPNVRELXARNL

SEQ ID NO:519 AS

SEQ ID NO:158 PP

FIGURE 14

PCT/IB98/02122 WO 99/31236

15/15

68.9% identity in 74 aa overlap

20 30 40 50 10 SEQ ID NO:226 MIARRNPVPLRFLPDEARSLPPPKLTDPRLLYIGFLGYCSGLIDNLIRRRPIATAGLHR 1...... ${\tt SEQ~ID~NO:514~MMTGRQGRATFQFLPDEARSLPPPKLTDPRLAFVGFLGYCSGLIDNAIRRRPVLLAGLHR}$

10 20 30 40

60

SEQ ID NO:226 QLLYITAFFLLDIIL

SEQ ID NO:514 QLLYITSFVFVGYYLLKRQDYMYAVRDHDMFSYIKSHPEDFPEKDKKTYGEVFEEFHPVR . 80 90

70

100

110

. WO 99/31236 PCT/IB98/02122

<110> . Dumas Milne Edwards, Jean-Baptiste
 Duclert, Aymeric
 Bougueleret, Lydie

<120> Extended cDNAS for Secreted Proteins

<130> GENSET.019A

<160> 519

<170> Patent.pm

<210> 1

<211> 47

<212> RNA

<213> Artificial Sequence

<220>

<221> In vitro transcription product

<221> modified_base

<222> (1)...(1)

<223> m7g

<400> 1

ngcauccuae ucccauccaa uuccacccua acuccuccca ucuccac

47

<210> 2

<211> 46

<212> RNA

<213> Artificial Sequence

<220>

<223> In vitro transcription product

<400> 2

gcauccuacu cccauccaau uccacccuaa cuccucccau cuccac

46

<210> 3

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> In vitro transcription product

<400> 3

atcaagaatt cgcacgagac catta

25

<210> 4

<211> 25

<212> DNA

<213> Artificial Sequence

WO 99/31236 -2- PCT/IB98/02122 .

<220> <223> Oligonucleotide	
<400> 4 taatggtete gtgegaatte ttgat	25
<210> 5 <211> 25 <212> DNA <213> Artificial Sequence	
<220>	
<223> Oligonucleotide	
<400> 5 ccgacaagac caacgtcaag gccgc	25
•	
<210> 6 <211> 25 <212> DNA	
<213> Artificial Sequence	
<220> <223> Oligonucleotide	
<400> 6 tcaccagcag gcagtggctt aggag	25
<210> 7 <211> 25 <212> DNA	
<213> Artificial Sequence	
<220> <223> Oligonucleotide	
<400> 7 agtgattcct gctactttgg atggc	25
<210> 8 <211> 25 <212> DNA	
<213> Artificial Sequence	
<220> <223> Oligonucleotide	
<400> 8 gcttggtctt gttctggagt ttaga	25

	WO 99/31236	-3-	PCT/IB98/02122
•			*.
	<211> 25		
	. <212> DNA		
	<213> Artificial Sequence		
		·	
	<220>		
	<223> Oligonucleotide		
	<400> 9		
	tccagaatgg gagacaagcc aattt		25
	cccagaacgg gagacaagca aaves		
	<210> 10		
	<211> 25 <212> DNA		
	<212> DNA <213> Artificial Sequence		
	(213) Altificial bequence		
	<220>		
	<223> Oligonucleotide		
	400. 10		
	<400> 10		25
	agggaggagg aaacagcgtg agtcc		
	<210> 11		
	<211> 25		
	<212> DNA		•
	<213> Artificial Sequence		
	<220>		
	<223> Oligonucleotide		
•	<400> 11		25
	atgggaaagg aaaagactca tatca		25
	<210> 12		
	<211> 25		
	<212> DNA		
	<213> Artificial Sequence		
	<220>	·	
	<223> Oligonucleotide		
	<400> 12		
	agcagcaaca atcaggacag cacag		25
	<210> 13		
	<211> 25		
	<212> DNA		
	<213> Artificial Sequence		
	<220>		
	<223> Oligonucleotide		
	<400> 13		
	atcaagaatt cgcacgagac catta		25

:210>	1 <i>4</i>	
:211>		
:212> :		
	Artificial Sequence	
(213>	Aftilitial Sequence	
200		
<220>	A 1	
<223>	Oligonucleotide	
<400>	14	
atcgtt	gaga ctcgtaccag cagagtcacg agagagacta cacggtactg gttttttttt	60
ttttv	n	67
<210>	15	
<211>	29	
<212>	DNA	
	Artificial Sequence	
	•	
<220>		
	Oligonucleotide	
<400>	15	
	gagt cacgagagag actacacgg	29
000500		
<210>	16	
<211>		
<212>		
	Artificial Sequence	
	Artificial Sequence	
<220>	03 (3 4	
<223>	Oligonucleotide	
<400>		25
cacgag	agag actacacggt actgg	
	•	
	••	
<210>		
<211>		
<212>		
<213>	Homo sapiens	
<220>		
<221>	misc_feature	
<222>	complement (261376)	
	blastn	
<221>	misc_feature	
	complement (380486)	
<223>	blastn	
<2215	misc_feature	
	complement (110145)	
	blastn	
~~~>	MICHAEL	
<b>-221</b> .	mice feature	
<221>	misc_feature	
	complement (196229)	
<423>	blastn	

<221> sig_peptide <222> 90..140 <223> Von Heijne matrix <400> 17 aatatrarac agctacaata ttccagggcc artcacttgc catttctcat aacagcgtca 60 113 gagagaaaga actgactgar acgtttgag atg aag aaa gtt ctc ctc ctg atc Met Lys Lys Val Leu Leu Leu Ile -15 161 aca gcc atc ttg gca gtg gct gtw ggt ttc cca gtc tct caa gac cag Thr Ala Ile Leu Ala Val Ala Val Gly Phe Pro Val Ser Gln Asp Gln -5 1 gaa cga gaa aaa aga agt atc agt gac agc gat gaa tta gct tca ggr 209 Glu Arg Glu Lys Arg Ser Ile Ser Asp Ser Asp Glu Leu Ala Ser Gly 15 20 wtt ttt gtg ttc cct tac cca tat cca ttt cgc cca ctt cca cca att 257 Xaa Phe Val Phe Pro Tyr Pro Tyr Pro Phe Arg Pro Leu Pro Pro Ile 25 30 35 cca ttt cca aga ttt cca tgg ttt aga cgt aan ttt cct att cca ata 305 Pro Phe Pro Arg Phe Pro Trp Phe Arg Arg Xaa Phe Pro Ile Pro Ile 45 50 cct gaa tct gcc cct aca act ccc ctt cct agc gaa aag taaacaaraa 354 Pro Glu Ser Ala Pro Thr Thr Pro Leu Pro Ser Glu Lys 60 414 ggaaaagtca crataaacct ggtcacctga aattgaaatt gagccacttc cttgaaraat caaaattcct gttaataaaa raaaaacaaa tgtaattgaa atagcacaca gcattctcta 474 526 <210> 18 <211> 17 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> 1..17 <223> Von Heijne matrix score 8.2 seg LLLITAILAVAVG/FP <400> 18 Met Lys Lys Val Leu Leu Leu Ile Thr Ala Ile Leu Ala Val Ala Val 10 Gly <210> 19 <211> 822 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> 260..464 <223> blastn <221> misc feature <222> 118..184

WO 99/31236 -6- PCT/IB98/02122 .

<223> blastn	
221, mine feature	
<221> misc_feature <222> 56113	
<222> 56113 <223> blastn	
<223> blastn	
<221> misc_feature	
<222> 454485	
<223> blastn	
<221> misc_feature	
<222> 118545	
<223> blastn	
<221> misc feature	
<222> 65369	
<223> blastn	
<221> misc feature	
<222> 61399	
<223> blastn	
<221> misc_feature	
<222> 408458	
<223> blastn	
<221> misc_feature	
<222> 60399	
<223> blastn	
<221> misc feature	
<222> 393432	
<222> 393432	
<223> Diastn	
<221> sig_peptide	
<222> 346408	
<223> Von Heijne matrix	
400 40	
<400> 19	60
actectttta geataggge tteggegeea geggeeageg etagteggte tggtaagtge	120
cigatgooga geecogeece cogogeocea aggodaagog gaogaago	180
cccaacagge ccagegeere gegeeeegg against aggeerant and	240
georgeogra geogetatea agaateerea accorrecto accadageon accorre	
-3	300
addecaded ceeededad cedemana danamanada and and and	357
Met Trp Trp Phe	
-20	405
cag caa ggc ccc agc ccc ccc ccc cca goo cca goo aca agg and	
Gln Gln Gly Leu Ser Phe Leu Pro Ser Ala Leu Val Ile Trp Thr Ser	
	453
get get tre ata tit tea tae att act gea gra ata ete eat ata	1,00
Ala Ala Phe Ile Phe Ser Tyr Ile Thr Ala Val Thr Leu His His Ile	
<u></u>	501
and dod doe con one and was and and all and are are	501
Asp Pro Ala Leu Pro Tyr Ile Ser Asp Thr Gly Thr Val Ala Pro Xaa	
——————————————————————————————————————	549
and can con acc aga acc not one and acc acc acc acc and	J47
Lys Cys Leu Phe Gly Ala Met Leu Asn Ile Ala Ala Val Leu Cys Gln	
35 40 45	602
and taganations guaration of the control of the con	502
Lys ctcttcaraa acatotottt acaaocatat ctcttgtatt gctttctaca ctgttgaatt	662

WO 99/31236 -7- PCT/IB98/02122

722

782

gtctggcaat atttctgcag tggaaaattt gatttarmta gttcttgact gataaatatg

gtaaggtggg cttttccccc tgtgtaattg gctactatgt cttactgagc caagttgtaw

822 <210> 20 <211> 21 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> 1..21 <223> Von Heijne matrix score 5.5 seq SFLPSALVIWTSA/AF <400> 20 Met Trp Trp Phe Gln Gln Gly Leu Ser Phe Leu Pro Ser Ala Leu Val 5 10 Ile Trp Thr Ser Ala 20 <210> 21 <211> 405 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> complement (103..398) <223> blastn <221> sig_peptide <222> 185..295 <223> Von Heijne matrix <400> 21 atcacettet tetecateet tstetgggee agtececare ceagtecete teetgacetg 60 cccagcccaa gtcagccttc agcacgcgct tttctgcaca cagatattcc aggcctacct 120 180 ggcattccag gacctccgma atgatgctcc agtcccttac aagcgcttcc tggatgaggg tggc atg gtg ctg acc acc ctc ccc ttg ccc tct gcc aac agc cct gtg 229 Met Val Leu Thr Thr Leu Pro Leu Pro Ser Ala Asn Ser Pro Val -30 -25 -35 aac atg ccc acc act ggc ccc aac agc ctg agt tat gct agc tct gcc 277 Asn Met Pro Thr Thr Gly Pro Asn Ser Leu Ser Tyr Ala Ser Ser Ala -10 -20 -15 ctg tcc ccc tgt ctg acc gct cca aak tcc ccc cgg ctt gct atg atg 325 Leu Ser Pro Cys Leu Thr Ala Pro Xaa Ser Pro Arg Leu Ala Met Met cct gac aac taaatatcct tatccaaatc aataaarwra raatcctccc 374 Pro Asp Asn 405 tccaraaggg tttctaaaaa caaaaaaaaa a

<210> 22

<211> 37

<212> PRT

<213> Homo sapiens <220> <221> SIGNAL <222> 1..37 <223> Von Heijne matrix score 5.9 seq LSYASSALSPCLT/AP Met Val Leu Thr Thr Leu Pro Leu Pro Ser Ala Asn Ser Pro Val Asn 10 Met Pro Thr Thr Gly Pro Asn Ser Leu Ser Tyr Ala Ser Ser Ala Leu 25 20 Ser Pro Cys Leu Thr 35 <210> 23 <211> 496 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> 149..331 <223> blastn <221> misc_feature <222> 328..485 <223> blastn <221> misc_feature <222> complement (182..496) <223> blastn <221> sig_peptide <222> 196..240 <223> Von Heijne matrix <400> 23 60 aaaaaattgg tcccagtttt caccctgccg cagggctggc tgggggagggc agcggtttag attageogtg geetaggeeg tttaaegggg tgacaegage ntgeagggee gagteeaagg 120 180 cccggagata ggaccaaccg tcaggaatgc gaggaatgtt tttcttcgga ctctatcgag gcacacagac agacc atg ggg att ctg tct aca gtg aca gcc tta aca ttt 231 Met Gly Ile Leu Ser Thr Val Thr Ala Leu Thr Phe -15 -10 279 gcc ara gcc ctg gac ggc tgc aga aat ggc att gcc cac cct gca agt Ala Xaa Ala Leu Asp Gly Cys Arg Asn Gly Ile Ala His Pro Ala Ser gag aag cac aga ctc gag aaa tgt agg gaa ctc gag asc asc cac tcg 327 Glu Lys His Arg Leu Glu Lys Cys Arg Glu Leu Glu Xaa Xaa His Ser 25 20 gcc cca gga tca acc cas cac cga aga aaa aca acc aga aga aat tat 375 Ala Pro Gly Ser Thr Xaa His Arg Arg Lys Thr Thr Arg Arg Asn Tyr 45 35 424 tct tca gcc tgaaatgaak ccgggatcaa atggttgctg atcaragccc atatttaaat tggaaaagtc aaattgasca ttattaaata aagcttgttt aatatgtctc 484 496 aaacaaaaaa aa

<210> 24

```
<211> 15
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> 1..15
<223> Von Heijne matrix
     score 5.5
     seq ILSTVTALTFAXA/LD
<400> 24
Met Gly Ile Leu Ser Thr Val Thr Ala Leu Thr Phe Ala Xaa Ala
<210> 25
<211> 623
<212> DNA
<213> Homo sapiens
<220>
<221> sig_peptide
<222> 49..96
<223> Von Heijne matrix
aaagatccct gcagcccggc aggagagaag gctgagcctt ctggcgtc atg gag agg
                                                      Met Glu Arg
                                                          -15
ctc gtc cta acc ctg tgc acc ctc ccg ctg gct gtg gcg tct gct ggc
                                                                      105
Leu Val Leu Thr Leu Cys Thr Leu Pro Leu Ala Val Ala Ser Ala Gly
            -10
tgc gcc acg acg cca gct cgc aac ctg agc tgc tac cag tgc ttc aag
                                                                      153
Cys Ala Thr Thr Pro Ala Arg Asn Leu Ser Cys Tyr Gln Cys Phe Lys
                        10
                                            15
                                                                      201
gtc agc agc tgg acg gag tgc ccg ccc acc tgg tgc agc ccg ctg gac
Val Ser Ser Trp Thr Glu Cys Pro Pro Thr Trp Cys Ser Pro Leu Asp
                    25
                                        30
                                                                      249
caa gtc tgc atc tcc aac gag gtg gtc gtc tct ttt aaa tgg agt gta
Gln Val Cys Ile Ser Asn Glu Val Val Val Ser Phe Lys Trp Ser Val
                40
                                    45
cgc gtc ctg ctc agc aaa cgc tgt gct ccc aga tgt ccc aac gac aac
                                                                      297
Arg Val Leu Leu Ser Lys Arg Cys Ala Pro Arg Cys Pro Asn Asp Asn
                                60
atg aak ttc gaa tgg tcg ccg gcc ccc atg gtg caa ggc gtg atc acc
                                                                      345
Met Xaa Phe Glu Trp Ser Pro Ala Pro Met Val Gln Gly Val Ile Thr
                            75
agg cgc tgc tgt tcc tgg gct ctc tgc aac agg gca ctg acc cca cag
                                                                      393
Arg Arg Cys Cys Ser Trp Ala Leu Cys Asn Arg Ala Leu Thr Pro Gln
                        90
gag ggg cgc tgg gcc ctg cra ggg ggg ctc ctg ctc cag gac cct tcg
                                                                      441
Glu Gly Arg Trp Ala Leu Xaa Gly Gly Leu Leu Gln Asp Pro Ser
                                        110
                    105
agg ggc ara aaa acc tgg gtg cgg cca cag ctg ggg ctc cca ctc tgc
                                                                      489
Arg Gly Xaa Lys Thr Trp Val Arg Pro Gln Leu Gly Leu Pro Leu Cys
                120
                                    125
                                                                      534
ctt ccc awt tcc aac ccc ctc tgc cca rgg gaa acc cag gaa gga
```

Leu Pro Xaa Ser Asn Pro Leu Cys Pro Xaa Glu Thr Gln Glu Gly 140 135 taacactgtg ggtgccccca cctgtgcatt gggaccacra cttcaccctc ttggaracaa 594 623 taaactctca tgcccccaaa aaaaaaaaa <210> 26 <211> 16 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> 1..16 <223> Von Heijne matrix score 10.1 seq LVLTLCTLPLAVA/SA Met Glu Arg Leu Val Leu Thr Leu Cys Thr Leu Pro Leu Ala Val Ala . 5 10 <210> 27 <211> 848 <212> DNA <213> Homo sapiens <220> <221> sig_peptide <222> 32..73 <223> Von Heijne matrix <400> 27 aactttgcct tgtgttttcc accctgaaag a atg ttg tgg ctg ctc ttt ttt 52 Met Leu Trp Leu Leu Phe Phe ctg gtg act gcc att cat gct gaa ctc tgt caa cca ggt gca gaa aat 100 Leu Val Thr Ala Ile His Ala Glu Leu Cys Gln Pro Gly Ala Glu Asn 1 gct ttt aaa gtg aga ctt agt atc aga aca gct ctg gga gat aaa gca 148 Ala Phe Lys Val Arg Leu Ser Ile Arg Thr Ala Leu Gly Asp Lys Ala 20 10 15 tat gcc tgg gat acc aat gaa gaa tac ctc ttc aaa gcg atg gta gct 196 Tyr Ala Trp Asp Thr Asn Glu Glu Tyr Leu Phe Lys Ala Met Val Ala 35 ttc tcc atg aga aaa gtt ccc aac aga gaa gca aca gaa att tcc cat 244 Phe Ser Met Arg Lys Val Pro Asn Arg Glu Ala Thr Glu Ile Ser His 50 45 gtc cta ctt tgc aat gta acc cag agg gta tca ttc tgg ttt gtg gtt 292 Val Leu Leu Cys Asn Val Thr Gln Arg Val Ser Phe Trp Phe Val Val 65 340 aca gac cct tca aaa aat cac acc ctt cct gct gtt gag gtg caa tca Thr Asp Pro Ser Lys Asn His Thr Leu Pro Ala Val Glu Val Gln Ser 80 gcc ata aga atg aac aag aac cgg atc aac aat gcc ttc ttt cta aat 388 Ala Ile Arg Met Asn Lys Asn Arg Ile Asn Asn Ala Phe Phe Leu Asn 100 95 gac caa act ctg gaa ttt tta aaa atc cct tcc aca ctt gca cca ccc 436 Asp Gln Thr Leu Glu Phe Leu Lys Ile Pro Ser Thr Leu Ala Pro Pro

8/02122 -11-WO 00/21226

WO 99/31236															PCT/IB98/02122			
•				110					115					120		•		
ata	gac	cca	tct	ata	ccc	atc	taa	att	att	ata	ttt	aat	ata	ata	ttt	484		
	_										Phe							
			125					130				3	135					
tac	atc	atc		att	gca	att	gca		cta	att	tta	tca		atc	taa	532		
											Leu							
-1-		140					145					150	1					
caa	cat	ada	ara	aao	aac	aaa		cca	tct	gaa	gtg		gac	act	gaa	580		
											Val							
	155			-1-		160					165							
rat	aak	tat	qaa	aac	ato	atc	aca	att	σaa	aat	ggc	atc	ccc	tct	gat	628		
		_	-		_						Gly				_			
170		-2-			175					180	,				185			
	cta	gac	ato	aaα		aaa	cat	att	aat		gcc	ttc	atq	aca		676		
	_	_	_	-						_	Ala		_					
				190		,			195	<u>F</u>				200				
gat	asa	agg	ctc		cct	ata	tgaa	aaaa		tati	ctgo	et to	ectica		1	727		
			Leu				- 5	٠٠٥٠.							-	,		
		5	205															
atta	aaca	att t		ctat	a to	acto	actaa	a aca	atcct	gaa	atac	caac	ac c	agat	catat	787		
			_	_			_	_		_			_	_	aaaaa	847		
c	_					_			•	•	, ,	_				848		
<210	> 28	3																
<211	l> 14	l																
<212	2> PF	TΣ																
<213	3> Hc	omo s	sapie	ens														
<220	)>																	

<221> SIGNAL <222> 1..14 <223> Von Heijne matrix score 10.7 seq LWLLFFLVTAIHA/EL <400> 28 Met Leu Trp Leu Leu Phe Phe Leu Val Thr Ala Ile His Ala 5

<210> 29 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide <400> 29

gggaagatgg agatagtatt gcctg 25

<210> 30 <211> 26 <212> DNA <213> Artificial Sequence <220>

-12-

WO 99/31236 <223> Olignucleotide <400> 30 ctgccatgta catgatagag agattc <210> 31 <211> 546 <212> DNA <213> Homo sapiens <220> <221> promoter <222> 1..517 <221> transcription start site <222> 518 <221> protein_bind <222> 17..25 <223> matinspector prediction name CMYB 01 score 0.983 sequence tgtcagttg <221> protein_bind <222> complement(18..27) <223> matinspector prediction name MYOD Q6 score 0.961 sequence cccaactgac <221> protein_bind <222> complement (75..85) <223> matinspector prediction name S8 01 score 0.960 sequence aatagaattag <221> protein_bind

<222> 94..104

<223> matinspector prediction name S8_01 score 0.966 sequence aactaaattag

<221> protein_bind

<222> complement (129..139)

<223> matinspector prediction name DELTAEF1_01 score 0.960 sequence gcacacctcag

<221> protein bind

<222> complement (155..165)

<223> matinspector prediction name GATA_C score 0.964 sequence agataaatcca

<221> protein_bind

PCT/IB98/02122

26

<222> 170..178
<223> matinspector prediction
name CMYB_01
score 0.958
sequence cttcagttg

<221> protein_bind

<222> 176..189

<223> matinspector prediction name GATA1_02 score 0.959 sequence ttgtagataggaca

<221> protein_bind

<222> 180..190

<223> matinspector prediction
 name GATA_C
 score 0.953
 sequence agataggacat

<221> protein_bind

<222> 284..299

<223> matinspector prediction name TAL1ALPHAE47_01 score 0.973 sequence cataacagatggtaag

<221> protein_bind

<222> 284..299

<223> matinspector prediction name TAL1BETAE47_01 score 0.983 sequence cataacagatggtaag

<221> protein_bind

<222> 284..299

<223> matinspector prediction name TALIBETAITF2_01 score 0.978 sequence cataacagatggtaag

<221> protein_bind

<222> complement (287..296)

<223> matinspector prediction name MYOD_Q6 score 0.954 sequence accatctgtt

<221> protein_bind

<222> complement (302..314)

<223> matinspector prediction name GATA1_04 score 0.953 sequence tcaagataaagta

<221> protein_bind

<222> 393..405

<223> matinspector prediction name IK1_01 score 0.963 sequence agttgggaattcc -14-

PCT/IB98/02122

WO 99/31236 <221> protein_bind <222> 393..404 <223> matinspector prediction name IK2_01 score 0.985 sequence agttgggaattc <221> protein_bind <222> 396..405 <223> matinspector prediction name CREL 01 score 0.962 sequence tgggaattcc

- <221> protein_bind
- <222> 423..436
- <223> matinspector prediction name GATA1_02 score 0.950 sequence tcagtgatatggca
- <221> protein_bind
- <222> complement (478..489)
- <223> matinspector prediction name SRY 02 score 0.951 sequence taaaacaaaca
- <221> protein_bind
- <222> 486..493
- <223> matinspector prediction name E2F_02 score 0.957 sequence tttagcgc
- <221> protein_bind
- <222> complement (514..521)
- <223> matinspector prediction name MZF1 01 score 0.975 sequence tgagggga
- <400> 31

```
tgagtgcagt gttacatgtc agttgggtta agtttgttaa tgtcattcaa atcttctatg
                                                                      60
tottgatttg cotgotaatt ctattattto tggaactaaa ttagtttgat ggttotatta
                                                                     120
gttattgact gaggtgtgct aatctcccat tatgtggatt tatctatttc ttcagttgta
                                                                     180
gataggacat tgatagatac ataagtacca ggacaaaagc agggagatct tttttccaaa
                                                                     240
                                                                      300
atcaggagaa aaaaatgaca tctggaaaac ctatagggaa aggcataaca gatggtaagg
                                                                     360
atactttatc ttgagtagga gagccttcct gtggcaacgt ggagaaggga agaggtcgta
                                                                      420
gaattgagga gtcagctcag ttagaagcag ggagttggga attccgttca tgtgatttag
                                                                      480
catcagtgat atggcaaatg tgggactaag ggtagtgatc agagggttaa aattgtgtgt
                                                                      540
tttgttttag cgctgctggg gcatcgcctt gggtcccctc aaacagattc ccatgaatct
                                                                      546
cttcat
```

<210> 32

<211> 23

<212> DNA

<213> Artificial Sequence

<223> matinspector prediction name MZF1_01 score 0.962 sequence cctgggga

<223> matinspector prediction name CMYB_01 score 0.994

sequence tgaccgttg

sequence tccaacggt

<222> complement(126..134)
<223> matinspector prediction
 name VMYB_02
 score 0.985

<221> protein_bind <222> 124..132

<221> protein_bind

<221> protein_bind <222> 135..143

WO 99/31236 -16- PCT/IB98/02122

<223> matinspector prediction
 name STAT_01
 score 0.968
 sequence ttcctggaa

<221> protein_bind

<222> complement (135..143)

<223> matinspector prediction
 name STAT_01
 score 0.951
 sequence ttccaggaa

<221> protein_bind

<222> complement (252..259)

<223> matinspector prediction name MZF1_01 score 0.956 sequence ttggggga

<221> protein_bind

<222> 357..368

<223> matinspector prediction
 name IK2_01
 score 0.965
 sequence gaatgggatttc

<221> protein_bind

<222> 384..391

<223> matinspector prediction name MZF1_01 score 0.986 sequence agagggga

<221> protein_bind

<222> complement (410..421)

<223> matinspector prediction name SRY_02 score 0.955 sequence gaaaacaaaaca

<221> protein_bind

<222> 592..599

<223> matinspector prediction name MZF1_01 score 0.960 sequence gaagggga

<221> protein_bind

<222> 618..627

<223> matinspector prediction name MYOD_Q6 score 0.981 sequence agcatctgcc

<221> protein_bind

<222> 632..642

<223> matinspector prediction name DELTAEF1_01 score 0.958 seguence toccaccttcc

<221> protein_bind

WO 99/31236 -17- PCT/IB98/02122

<222> complement (813..823) <223> matinspector prediction name S8 01 score 0.992 sequence gaggcaattat <221> protein_bind <222> complement (824..831) <223> matinspector prediction name MZF1 01 score 0.986 sequence agaggga <400> 34 tactataggg cacgcgtggt cgacggccgg gctgttctgg agcagagggc atgtcagtaa 60 tgattggtcc ctggggaagg tctggctggc tccagcacag tgaggcattt aggtatctct 120 180 ctcagagggc taggcacgag ggaaggtcag aggagaaggs aggsarggcc cagtgagarg 240 ggagcatgcc ttcccccaac cctggcttsc ycttggymam agggcgktty tgggmacttr 300 aaytcagggc ccaascagaa scacaggccc aktcntggct smaagcacaa tagcctgaat 360 420 ccaaatcaag gtaacttgct cccttctgct acgggccttg gtcttggctt gtcctcaccc 480 540 caagcagtgt gagaacatgg ctggtagagg ctctagctgt gtgcggggcc tgaaggggag 600 tgggttctcg cccaaagagc atctgcccat ttcccacctt cccttctccc accagaagct 660 tgcctgagct gtttggacaa aaatccaaac cccacttggc tactctggcc tggcttcagc 720 ttggaaccca atacctaggc ttacaggcca tcctgagcca ggggcctctg gaaattctct 780 tcctgatggt cctttaggtt tgggcacaaa atataattgc ctctcccctc tcccattttc 840 tctcttggga gcaatggtca c 861 <210> 35 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide <400> 35 ctgggatgga aggcacggta 20 <210> 36 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide <400> 36 20 gagaccacac agctagacaa <210> 37 <211> 555 <212> DNA

<213> Homo sapiens

<220>

<221> promoter

<222> 1..500

<221> transcription start site

<222> 501

<221> protein_bind

<222> 191..206

<223> matinspector prediction name ARNT_01 score 0.964 sequence ggactcacgtgctgct

<221> protein_bind

<222> 193..204

<223> matinspector prediction name NMYC 01 score 0.965 sequence actcacgtgctg

<221> protein_bind

<222> 193..204

<223> matinspector prediction name USF_01 score 0.985 sequence actcacgtgctg

<221> protein bind

<222> complement(193..204)

<223> matinspector prediction name USF_01 score 0.985 sequence cagcacgtgagt

<221> protein_bind

<222> complement (193..204)

<223> matinspector prediction name NMYC 01 score 0.956 sequence cagcacgtgagt

<221> protein bind

<222> complement(193..204)

<223> matinspector prediction name MYCMAX_02 score 0.972 sequence cagcacgtgagt

<221> protein_bind

<222> 195..202

<223> matinspector prediction name USF C score 0.997 sequence tcacgtgc

<221> protein bind

<222> complement (195..202)

<223> matinspector prediction name USF_C score 0.991

#### sequence gcacgtga

<221> protein_bind <222> complement(210..217) <223> matinspector prediction

<223> matinspector prediction
 name MZF1_01
 score 0.968
 sequence catgggga

<221> protein bind

<222> 397..410

<223> matinspector prediction
 name ELK1_02
 score 0.963
 sequence ctctccggaagcct

<221> protein_bind

<222> 400..409

<223> matinspector prediction name CETS1P54_01 score 0.974 sequence tccggaagcc

<221> protein_bind

<222> complement (460..470)

<223> matinspector prediction name AP1_Q4 score 0.963 sequence agtgactgaac

<221> protein bind

<222> complement (460..470)

<223> matinspector prediction name AP1FJ_Q2 score 0.961 sequence agtgactgaac

<221> protein_bind

<222> 547..555

<223> matinspector prediction name PADS_C score 1.000 sequence tgtggtctc

<400> 37

ctatagggca cgcktggtcg acggcccggg ctggtctggt ctgtkgtgga gtcgggttga 60 aggacageat tigtkacate tggtetactg cacetteect etgeegtgea ettggeettt 120 kawaagetea geaceggtge ceateaeagg geeggeagea cacacatece attacteaga 180 aggaactgac ggactcacgt gctgctccgt ccccatgagc tcagtggacc tgtctatgta 240 gagcagtcag acagtgcctg ggatagagtg agagttcagc cagtaaatcc aagtgattgt 300 catteetgte tgcattagta acteecaace tagatgtgaa aacttagtte ttteteatag 360 gttgctctgc ccatggtccc actgcagacc caggcactct ccggaagcct ggaaatcacc 420 480 egtgtettet geetgeteee geteacatee cacacttgtg tteagteact gagttacaga 540 ttttgcctcc tcaatttctc ttgtcttagt cccatcctct gttcccctgg ccagtttgtc 555 tagctgtgtg gtctc

<210> 38

<211> 19

<212> DNA

<213> Artificial Sequence

WO 99/31236 -20- PCT/IB98/02122

<220> <223> Oligonucleotide	
<400> 38 ggccatacac ttgagtgac	19
<210> 39 <211> 19 <212> DNA	
<213> Artificial Sequence	
<220> <223> Oligonucleotide	
<400> 39	19
atatagacaa acgcacacc	15
<210> 40 <211> 568	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> 7471	
<221> sig_peptide	
<222> 799 <223> Von Heijne matrix	
score 6.9	
seq LLLVPSALSLLLA/LL	
<221> polyA_signal	
<221> polyA_site <222> 554568	
<400> 40	
gggacc atg ttc acc agc acc ggc tcc agt ggg ctc tac aag gcg cct  Met Phe Thr Ser Thr Gly Ser Ser Gly Leu Tyr Lys Ala Pro  -30  -25  -20	48
ctg tcg aag age ctt ctg ctg gtc ccc agt gcc ctc tcc ctc ctg ctc	96
Leu Ser Lys Ser Leu Leu Leu Val Pro Ser Ala Leu Ser Leu Leu Leu -15 -10 -5	
gcc ctc ctg cct cac tgc cag aag ccc ttt gtg tat gac ctt cac	144
Ala Leu Leu Leu Pro His Cys Gln Lys Pro Phe Val Tyr Asp Leu His  1 5 10 15	
1 5 10 15 gca gtc aag aac gac ttc cag att tgg agg ttg ata tgt gga aga ata	192
Ala Val Lys Asn Asp Phe Gln Ile Trp Arg Leu Ile Cys Gly Arg Ile	
20 25 30 att tgc ctt gat ttg aaa gat act ttc tgc agt agt ctg ctt att tat	240
Ile Cys Leu Asp Leu Lys Asp Thr Phe Cys Ser Ser Leu Leu Ile Tyr	
35 40 45 aat ttt agg ata ttt gaa aga aga tat gga agc aga aaa ttt gca tcc	288
Asn Phe Arg Ile Phe Glu Arg Arg Tyr Gly Ser Arg Lys Phe Ala Ser	230
50 55 60	

	WO 9!	9/3123	36			-21-								PC	T/IB98/02122
					gtt Val 70										336
					ttc Phe										384
					tgt Cys										432
					atg Met							taat	aaat	tt	481
_	-	-		_	 gttga aaaa		agg	gctct	gac	tate	gtata	atg 1	gtat	aataa	541 568

<212> DNA <213> Homo sapiens <220> <221> CDS <222> 168..332 <221> polyA_signal <222> 557...562 <400> 41 60 agggggegtg gggccatggt ggtcttgegg geggggaaga agacetttet ecceetete 120 tgccgcgcct tcgcctgccg cggctgtcaa ctcgctccgg agcgcggcgc cgagcgcagg 176 gatacggcgc ccagcggggt cagaaagcaa cattgaatgc agaagaa atg gcg gac Met Ala Asp ttc tac aag gaa ttt tta agt aaa aat ttt cag aag cgc atg tat tat 224 Phe Tyr Lys Glu Phe Leu Ser Lys Asn Phe Gln Lys Arg Met Tyr Tyr 10 aac aga gat tgg tac aag cgc aat ttt gcc atc acc ttc ttc atg gga 272 Asn Arg Asp Trp Tyr Lys Arg Asn Phe Ala Ile Thr Phe Phe Met Gly 25 30 aaa gtg gcc ctg gaa agg att tgg aac aag ctt aaa cag aaa caa aag 320 Lys Val Ala Leu Glu Arg Ile Trp Asn Lys Leu Lys Gln Lys Gln Lys 45 40 aag agg agc aac taggagtcca ctctgaccca gccagagtcc aggtttccac 372 Lys Arg Ser Asn 55 aggaagcaga tggagctcct ttcacagggg ctctgagaaa aactggagcc gatctcaaga 432 agccccacat cttcctaagg ggccccatgg cctgtttggg ggcagggtag gtcctggggc 492 actgtgggcc gcctgcctgc tgatgtgggc tctaggccag cttgttgtca cgtacgtggt 552 569 gtgaaataaa gcccaag

<210> 42 <211> 895 <212> DNA <213> Homo sapiens

<221> CDS <222> 51..251

<210> 41 <211> 569

WO 99/31236 -22- PCT/IB98/02122

<221> sig_peptide <222> 51..110 <223> Von Heijne matrix score 5.3 seg ALIFGGFISLIGA/AF <221> polyA_signal <222> 849..854 <221> polyA_site <222> 882..895 <400> 42 56 ccgagagtgc cgggcggtcg gcgggtcagg gcagcccggg gcctgacgcc atg tcc Met Ser -20 cgg aac ctg cgc acc gcg ctc att ttc ggc ggc ttc atc tcc ctg atc 104 Arg Asn Leu Arg Thr Ala Leu Ile Phe Gly Gly Phe Ile Ser Leu Ile -15 -10 ggc gcc gcc ttc tat ccc atc tac ttc cgg ccc cta atg aga ttg gag 152 Gly Ala Ala Phe Tyr Pro Ile Tyr Phe Arg Pro Leu Met Arg Leu Glu 1 gag tac aag aag gaa caa gct ata aat cgg gct gga att gtt caa gag 200 Glu Tyr Lys Lys Glu Gln Ala Ile Asn Arg Ala Gly Ile Val Gln Glu 20 25 gat gtg cag cca cca ggg tta aaa gtg tgg tct gat cca ttt ggc agg 248 Asp Val Gln Pro Pro Gly Leu Lys Val Trp Ser Asp Pro Phe Gly Arg 40 45 301 aaa tgagagggct gtcatcagct ctgattaaga aaggagattt cttcatgctt togattotgo atggggtaca gocagtoaco toaccagaga atgacqqotg gagaagaaaa 361 ctctgtaata ccataaataa gagtgcttgt aataaaagac tgtgcacaag gattaatatt 421 tecettetta agtateaaaa gaactetgga acaaattata eeattaggaa ggtttteatg 481 541 attcagttga ttttccaaaa atgaagctat ctcacccagc tgggtttgga ggagcaatct gcttattatt ctgtcgttac cacttactca agcgagctgt gatatgaata caagcaacca 601 gtgggctcgg gaaggtccgg gtctcttctg ccatcttcca gataagagat ttcagtaaaa 661 aactgccatg ctgagctgcc ttatagagct cttcgaaaat gttcgagttg ataaagctct 721 781 ttgaggacaa ggtacttcgt gcacctcatg ctgaagattg caccatgttg gaagataaat atgaagcaag tcaaactaga tgcatacact tgtgtagaaa tcaataatca attaatagaa 841 895 <210> 43 <211> 691 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 20..613 <221> sig_peptide <222> 20..82 <223> Von Heijne matrix score 10 seq LWALAMVTRPASA/AP <400> 43

atacettaga eceteagte atg eea gtg eet get etg tge etg ete tgg gee

Met Pro Val Pro Ala Leu Cys Leu Leu Trp Ala

52

						-20	)				-15	5				
														ggc Gly 5		100
_	_	_					_		_					acc Thr	_	148
														gga Gly		196
_		_	_			_	_					_		ata Ile	_	244
	_		_			_				-	-	_	_	gaa Glu		292
														cag Gln 85		340
														gca Ala		388
														agg Arg		436
														gct Ala		484
-	_	_	_						_					gtg Val	-	532
														cag Gln 165		580
_		_	ctc Leu 170							_	tgaa	tctg	gcc t	ggat	ggaac	633
tgaggaccaa tcatgctgca aggaacactt ccacgccccg tgaggcccct gtgcaggg										aggg	691					

<210> 44

<211> 458

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 12..416

<221> sig_peptide

<222> 12..86

<223> Von Heijne matrix score 4 seq LVVMVPLVGLIHL/GW

<221> polyA_signal

<222> 425..430

<221> polyA_site

<222> 445..458

<400> 44	<b>50</b>
gctgaagtac t atg agc ctt cgg aac ttg tgg aga gac tac aaa gtt ttg  Met Ser Leu Arg Asn Leu Trp Arg Asp Tyr Lys Val Leu  -25 -20 -15	50
gtt gtt atg gtc cct tta gtt ggg ctc ata cat ttg ggg tgg tac aga Val Val Met Val Pro Leu Val Gly Leu Ile His Leu Gly Trp Tyr Arg	98
-10 -5 1 atc aaa agc agc cct gtt ttc caa ata cct aaa aac gac gac att cct	146
Ile Lys Ser Ser Pro Val Phe Gln Ile Pro Lys Asn Asp Asp Ile Pro 5 10 15 20	
gag caa gat agt ctg gga ctt tca aat ctt cag aag agc caa atc cag Glu Gln Asp Ser Leu Gly Leu Ser Asn Leu Gln Lys Ser Gln Ile Gln 25 30 35	194
ggg aag nta gca ggc ttg caa tct tca ggt aaa gaa gca gct ttg aat Gly Lys Xaa Ala Gly Leu Gln Ser Ser Gly Lys Glu Ala Ala Leu Asn 40 45 50	242
ctg agc ttc ata tcg aaa gaa gag atg aaa aat acc agt tgg att aga Leu Ser Phe Ile Ser Lys Glu Glu Met Lys Asn Thr Ser Trp Ile Arg 55 60 65	290
aag aac tgg ctt ctt gta gct ggg ata tct ttc ata ggt gac cat ctt Lys Asn Trp Leu Leu Val Ala Gly Ile Ser Phe Ile Gly Asp His Leu 70 75 80	338
gga aca tac ttt ttg cag agg tct gca aag cag tct gta aaa ttt cag Gly Thr Tyr Phe Leu Gln Arg Ser Ala Lys Gln Ser Val Lys Phe Gln	386
tot caa ago aaa caa aag agt att gaa gag tgaagtaaaa taaatatttg Ser Gln Ser Lys Gln Lys Ser Ile Glu Glu	436
gaattactaa aaaaaaaaaa aa	458
<210> 45 <211> 2036 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 2761040	
<221> sig peptide	
<222> 276485 <223> Von Heijne matrix	
score 3.9 seq SVIGVMLAPFTAG/LS	
<221> polyA_site <222> 20242036	
<400> 45	60
gateetgggt geageteate acaagegteg gggtgeagea aaaceateea ggetggaeag tggetggaea gtteeaagaa aagaaaeget teacegaaga agteattgaa taetteeaga	120
agaaagttag cccagtgcat ctgaaaatcc tgctgactag cgatgaagcc tggaagagat	180
tegtgegtgt ggetggattg cecagggaag aagcagatge tetetatgaa getetgaaga	240 293
atcttacacc atatgtggct attgaggaca aagac atg cag caa aaa gaa cag Met Gln Gln Lys Glu Gln -70 -65	
cag ttt agg gag tgg ttt ttg aaa gag ttt cct caa atc aga tgg aag Gln Phe Arg Glu Trp Phe Leu Lys Glu Phe Pro Gln Ile Arg Trp Lys -60 -55 -50	341
att cag gag too ata gaa agg ott ogt gto att goa aat gag att gaa	389

Ile	Gln	Glu	Ser -45	Ile	Glu	Arg	Leu	Arg	Val	Ile	Ala	Asn	Glu -35	Ile	Glu	
aaq	atc	cac	aga	ggc	tac	atc	atc	acc	aat	ata	ata	tct	qqc	tcc.	act	437
Lys	Val	His	Arg	Gly	Cys	Val	Ile -25	Ala	Asn	Val	Val	Ser -20	Ğly	Ser	Thr	
ggc	atc	cta	tct	gtc	att	aac	att	atq	ttq	qca	cca	ttt	aca	gca	999	485
Gly	Ile	Leu	Ser	Val	Ile	Gly -10	Val	Met	Leu	Ala	Pro	Phe	Thr	Āla	Gly	
cta	agc	cta	agc	att	act	qca	qct	qqq	gta	ggg	ctg	gga	ata	gça	tct	533
Len	Ser	Leu	Ser	Ile	Thr	Ala	Āla	Glv	Val	Gly	Leu	Gly	Ile	Ala	Ser	
1				5				•	10	-		_		15		
	acq	act	aaa	atc	acc	tcc	agc	atc	ata	qaq	aac	aca	tac	aca	agg	581
Ala	Thr	Ala	Gly 20	Ile	Ala	Ser	Ser	Ile 25	Val	Ğlü	Asn	Thr	Tyr 30	Thr	Arg	
tca	gca	gaa	ctc	aca	acc	agc	agg	cta	act	qca	acc	aqc	act	qac	caa	629
Ser	Ala	Glu 35	Leu	Thr	Ala	Ser	Arg	Leu	Thr	Ala	Thr	Ser	Thr	Asp	Gln	
++~	aaa		`tta	agg	gac	att		cat	gac	atc	aca	ccc	aat	ata	ctt	677
Len	Glu	Δla	T.e.11	Arg	Den	Tle	T.eu	His	Asp	Tle	Thr	Pro	Asn	Val	Leu	
пеп	50	HIG	п¢и	Arg	Map	55	neu	1115	ASP	110	60		*****			
		~~~	a++	gat			~~~	~~~	202	222		att	aca	aat	gat	725
CCC	בננ	gca	Ton	Asp	222	yac	900	712	The	Tura	Mat	Tla	7/3	Aen	yen	
	Pne	Ala	neu.	Asp		Asp	GIU	Ala	TIII	75	MEC	TTE	AIG	ASII	80	
65					70									++~		773
gtc	cat	aca	CEC	agg	aga	tet	aaa	gcc	act	gtt	gga	290	200	Tan	TIO	113
Val	His	Thr	Leu	Arg	Arg	ser	Lys	Ala		Val	GIA	Arg	PTO		iie	
				85					90					95		001
gct	tgg	cga	tat	gta	cct	ata	aat	gtt	gtt	gag	aca	ctg	aga	aca	cgt	821
Ala	\mathtt{Trp}	Arg	Tyr	Val	Pro	Ile	Asn		Val	Glu	Thr	Leu		Thr	Arg	
			100					105					110			
999	gcc	ccc	acc	cgg	ata	gtg	aga	aaa	gta	gcc	cgg	aac	ctg	ggc	aag	869
Gly	Ala	Pro	Thr	Arg	Ile	Val	Arg	Lys	Val	Ala	Arg	Asn	Leu	Gly	Lys	
		115					120					125				
gcc	act	tca	ggt	gtc	ctc	gtt	gtg	ctg	gat	gta	gtc	aac	ctt	gtg	caa	917
Āla	Thr	Ser	Gly	Val	Leu	Val	Val	Leu	Asp	Val	Val	Asn	Leu	Val	Gln	
	130					135					140					
gac	tca	ctg	gac	ttg	cac	aag	999	gaa	aaa	tcc	gag	tct	gct	gag	ttg	965
Asp	Ser	Leu	Asp	Leu	His	Lys	Gly	Glu	Lys	Ser	Glu	Ser	Ala	Glu	Leu	
145			-		150	_	_		_	155					160	
		caq	taa	act	caq	gag	cta	qaq	qaq	aat	ctc	aat	gag	ctc	acc	1013
Leu	Arg	Gln	Tro	Ala	Gln	Glu	Leu	Glu	Glu	Asn	Leu	Asn	Glu	Leu	Thr	
	5			165					170					175		
cat	atc	cat	cag	agt		aaa	aca	aac	tag	accc	aat	tatt	acaa	qa		1060
				Ser						J			J - J J	-		
			180			-7		185								
agt	cadd	gac			aa a	ggag	taac			atoo	cad	aaga	aco	taaa	ttgtga	1120
aga	tttc	ata	gaca	ttta	tt a	atta	CCCA	a at	taat	actt	tta	taat	ttc	ctat	gcctgt	1180
aga	tage	acg	2464	otas	20 2	2222	++4+	~ 22	catt	tcat	aas	cact	tat	cact	tcccca	1240
200	cacc	900	++~+	~>++	40 t	tata	cctc	+ ~+	ttac	+++2	254	toct	227	ccta	tcagct	1300
acc	aata			gacc				~ +~	2	++~~	~++	2225	~~~	~~~	ttataa	1360
gag	gagg	gra	Laty	Ccac		ayya	.ccar	9 09	acaa	ttgt	900	2200	900	~~~ t	ttgtag	1420
agcatgtgtg tttgaacaat atgaaatctg ggcaccttga aaaaagaaca ggataacagc aatcgttcag gggataagag agataacctt aaactctgac caacagtgag ccgggtggag												1480				
aat	.cgtt	cag	ggga	caag	ag a	yata	acct	L aa	acto	Lyac	caa	cagt	yay		3-33a3	1540
cagagtcata tttcttttct ttcaaaagca aatgggagaa atatcgctga attctttttc tcagcaagga acatccctga gaaagagaat gcaccctga gggtgggtct ataaatggcc												1600				
tca	igcaa	gga	acat	ccct	ga g	aaag	agaa	c go	acco	ctga	999	-ggg	CCT	acaa	arggee	1660
tcc	ctgg	gtg	tggc	cato	כנ כ	tatg	gtcg	a ga	ctgt	aggg	atg	aaat	aaa	CCCC	agtctc	1720
															gtcaga	
															cctgaa	1780
															tgcctc	1840
															caccct	1900
															cagett	1960
gto	gaggo	atc	acgg	aacc	ta c	tgat	gtgt	g at	gtct	cccc	tgg	acac	cta	gctt	taaaat	2020
tto	caaaa	ıaaa	aaaa	aa												2036

```
<210> 46
<211> 1276
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 443..619
<221> sig_peptide
<222> 443..589
<223> Von Heijne matrix
      score 7
      seq LICVVCLYIVCRC/GS
<221> polyA_site
<222> 1267..1276
<400> 46
                                                                       60
gaggcactca cggcatttca ttgctacttt aattttcatt attatgggat tgattgctgt
                                                                      120
cacagctact gctgcagtag ctggagttgc tttgcattcc acagtacaaa cagcagacta
                                                                      180
tgtaaataat tggtagaaaa attctactct gctgtggaat taccaagata atatagacca
gaaactagct gatcaaatta atgatctcca acaaactgta atgtggctag gggatcatat
                                                                      240
agttagttta gaatatagaa tgcggttaca atgtgattga aatacctctg atttttgcat
                                                                      300
                                                                      360
tactcctcat ctgtgtaatg aaacagagca tgagtgggaa aaagttaaga gatatttaaa
aggicatact agaaatttat cittggatat tgcaaagcta aaggaacaag tatticaagc
                                                                      420
                                                                      472
ccctcagata catctgacac ta atg cca gga act gaa gtg ctt gaa gga gct
                         Met Pro Gly Thr Glu Val Leu Glu Gly Ala
                                          -45
                                                                      520
aca gac gga tta gca gct att aac ctg cta aaa tgg atc aag aca ctt
Thr Asp Gly Leu Ala Ala Ile Asn Leu Leu Lys Trp Ile Lys Thr Leu
                                    -30
                ~35
                                                                      568
gga ggc tct gtg att tca atg att gtg ctt tta atc tgt gtt gtt tgt
Gly Gly Ser Val Ile Ser Met Ile Val Leu Leu Ile Cys Val Val Cys
                                 -15
            -20
                                                                      616
ctt tat ata gtc tgt aga tgc gga agc cac ctc tgg aga gaa agc cac
Leu Tyr Ile Val Cys Arg Cys Gly Ser His Leu Trp Arg Glu Ser His
                                                                      669
cac tgagagcaag caatgatagc tgtggcggtt ttgcaaaaag aaaagggaga
His
10
                                                                      729
caagegeeca getatagtta ecaataaage atggtactgg tattaaaata ggeatgtgtt
ctgttccaat ggaacagaat agagaaccca gaaacaaagc caaatattta cagccaactg
                                                                      789
atototgaca aagcaaacaa aaacataaag tggggaaagg acaccotatt ccacaaatag
                                                                      849
tgcagggata attggcaage cacatgtaga aaaatgaage tggateeteg teteteaett
                                                                      909
tatacaaaaa tcaactcaaa atgggtcaaa gtcttaactc taagacctga aaccataaca
                                                                      969
attotagaaa ataacattgg aaaaactott ctagacattg gtttaggcaa aaagttcatg
                                                                      1029
accaagaacc caaaagcaaa tgcaataaaa aggaagataa atagatggga cctaattaag
                                                                      1089
ctgaaaagct tctgcatagc aaaaggaata atcagcagag caaacagaca acccacaggg
                                                                      1149
tgggagaaaa tatttgcaag ctatgtatct gacaatggac taatatccag aatctacaag
                                                                      1209
gaattcaaac aattagcaag aaaaaacact tgtattgtgt ttgctctgta aatcagcaaa
                                                                      1269
                                                                      1276
aaaaaaa
```

<210> 47 <211> 747 <212> DNA

<213> Homo sapiens

<220> <221> CDS <222> 206..745 <400> 47 accagaagca ggtgatttcc gagctcagca atgctcagct cataatgatg tcaagcacca 60 tggccagttt tatgaatggc ttcctgtgtc taatgaccct gacaacccat gttcactcaa 120 180 gtgccaagcc aaaggaacaa ccctggttgt tgaactagca cctaaggtct tagatggtac gegttgetat acagaatett tggat atg tge ate agt ggt tta tge caa att 232 Met Cys Ile Ser Gly Leu Cys Gln Ile gtt ggc tgc gat cac cag ctg gga agc acc gtc aag gaa gat aac tgt 280 Val Gly Cys Asp His Gln Leu Gly Ser Thr Val Lys Glu Asp Asn Cys 10 15 20 ggg gtc tgc aac gga gat ggg tcc acc tgc cgg ctg gtc cga ggg cag 328 Gly Val Cys Asn Gly Asp Gly Ser Thr Cys Arg Leu Val Arg Gly Gln 30 35 tat aaa tcc cag ctc tcc gca acc aaa tcg gat gat act gtg gtt gca 376 Tyr Lys Ser Gln Leu Ser Ala Thr Lys Ser Asp Asp Thr Val Val Ala 50 45 att ccc tat gga agt aga cat att cgc ctt gtc tta aaa ggt cct gat 424 Ile Pro Tyr Gly Ser Arg His Ile Arg Leu Val Leu Lys Gly Pro Asp 65 cac tta tat ctg gaa acc aaa acc ctc cag ggg act aaa ggt gaa aac 472 His Leu Tyr Leu Glu Thr Lys Thr Leu Gln Gly Thr Lys Gly Glu Asn 80 85 520 agt etc age tec aca gga act tte ett gtg gae aat tet agt gtg gae Ser Leu Ser Ser Thr Gly Thr Phe Leu Val Asp Asn Ser Ser Val Asp 95 100 ttc cag aaa ttt cca gac aaa gag ata ctg aga atg gct gga cca ctc 568 Phe Gln Lys Phe Pro Asp Lys Glu Ile Leu Arg Met Ala Gly Pro Leu 110 115 120 aca gca gat ttc att gtc aag att cgt aac tcg ggc tcc gct gac agt 616 Thr Ala Asp Phe Ile Val Lys Ile Arg Asn Ser Gly Ser Ala Asp Ser 130 125 aca gtc cag ttc atc ttc tat caa ccc atc atc cac cga tgg agg gag 664 Thr Val Gln Phe Ile Phe Tyr Gln Pro Ile Ile His Arg Trp Arg Glu 140 145 150 acg gat ttc ttt cct tgc tca gca acc tgt gga gga ggt tat cag ctg 712 Thr Asp Phe Pro Cys Ser Ala Thr Cys Gly Gly Tyr Gln Leu 160 165 aca tog got gag tgc tac gat ctg agg agc aac cg 747 Thr Ser Ala Glu Cys Tyr Asp Leu Arg Ser Asn 175

```
<210> 48
```

<211> 561

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 36..521

<221> sig_peptide

<222> 36..104

<223> Von Heijne matrix score 7.4 seq VLLLAALPPVLLP/GA

WO 99/31236

<221> polyA signal <222> 528..533 <221> polyA_site <222> 548..561 <400> 48 53 gacgcctctt tcagcccggg atcgccccag caggg atg ggc gac aag atc tgg Met Gly Asp Lys Ile Trp -20 101 Leu Pro Phe Pro Val Leu Leu Leu Ala Ala Leu Pro Pro Val Leu Leu -10 -5 149 cct ggg gcg gcc ggc ttc aca cct tcc ctc gat agc gac ttc acc ttt Pro Gly Ala Ala Gly Phe Thr Pro Ser Leu Asp Ser Asp Phe Thr Phe 5 10 197 acc ctt ccc gcc ggc cag aag gag tgc ttc tac cag ccc atg ccc ctg Thr Leu Pro Ala Gly Gln Lys Glu Cys Phe Tyr Gln Pro Met Pro Leu 20 25 aag gcc tcg ctg gag atc gag tac caa gtt tta gat gga gca gga tta 245 Lys Ala Ser Leu Glu Ile Glu Tyr Gln Val Leu Asp Gly Ala Gly Leu 40 45 35 gat att gat ttc cat ctt gcc tct cca gaa ggc aaa acc tta gtt ttt 293 Asp Ile Asp Phe His Leu Ala Ser Pro Glu Gly Lys Thr Leu Val Phe 55 gaa caa aga aaa tca gat gga gtt cac act gta gag act gaa gtt ggt 341 Glu Gln Arg Lys Ser Asp Gly Val His Thr Val Glu Thr Glu Val Gly 65 70 389 gat tac atg ttc tgc ttt gac aat aca ttc agc acc att tct gag aag Asp Tyr Met Phe Cys Phe Asp Asn Thr Phe Ser Thr Ile Ser Glu Lys 90 437 gtg att ttc ttt gaa tta atc ccg gat aat atg gga gaa cag gca caa Val Ile Phe Phe Glu Leu Ile Pro Asp Asn Met Gly Glu Gln Ala Gln 105 100 gaa caa gaa gat tgg aag aaa tat att act ggc aca gat ata ttg gat 485 Glu Gln Glu Asp Trp Lys Lys Tyr Ile Thr Gly Thr Asp Ile Leu Asp 120 115 atg aaa ctg gaa gac atc ctg gtc agt atg gtc ttc taataaaata 531 Met Lys Leu Glu Asp Ile Leu Val Ser Met Val Phe 130 561 aaaattatta acagccaaaa aaaaaaaaaa

<210> 49

<211> 632

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 36..395

<221> sig_peptide

<222> 36..104

<223> Von Heijne matrix score 7.4 seq VLLLAALPPVLLP/GA

<221> polyA_signal <222> 599..604

	> pc		site	:												
<400 gacg	> 49 jecto	tt t	cago	ccgg	ıg at	.cgc	ccag	g cag	igg a	itg g	gc g	l ga/	aag a Lys 1	atc t [le T	jrp gg	53
Leu	Pro	Phe -15	Pro	Val	Leu	Leu	Leu -10	Ala	Ala	Leu	Pro	ccg Pro -5	gtg Val	ctg Leu	Leu	101
Pro	Gly 1	Ala	Ala	Gly	Phe 5	Thr	Pro	Ser	Leu	Asp 10	Ser	Asp	Phe	acc Thr	Phe 15	149
Thr	Leu	Pro	Ala	Gly 20	Gln	Lys	Glu	Cys	Phe 25	Tyr	Gln	Pro	Met	ccc Pro 30	Leu	197
aag Lys	gcc Ala	tcg Ser	ctg Leu 35	gag Glu	atc Ile	gag Glu	tac Tyr	caa Gln 40	gtt Val	tta Leu	gat Asp	gga Gly	gca Ala 45	gga Gly	tta Leu	245
gat Asp	att Ile	gat Asp 50	ttc	cat His	ctt Leu	gcc Ala	tct Ser 55	cca Pro	gaa Glu	ggc	aaa Lys	acc Thr 60	tta Leu	gtt Val	ttt Phe	293
gaa Glu	caa Gln 65	aga	aaa Lys	tca Ser	gat Asp	gga Gly 70	gtt	cac His	acg Thr	tgt Cys	ata Ile 75	aga Arg	agt Ser	aaa Lys	aat Asn	341
999 Gly 80	cca	ggc Gly	act Thr	gcg Ala	gtt Val 85	cac	gcc Ala	tat Tyr	aat Asn	ccc Pro 90	agc Ser	act Thr	ttc Phe	cga Arg	ggc Gly 95	389
caa	gtg	tag	agac	tga a		ggtg	at t	acat	gttc		tttg	acaa	tac	attc	agc	445
acc caa gaa	qqac	aaq	aaqa	ttgg	aa g	aaat	atat	t ac	tggc	acag	ata	tatt	gga	tatg	caggca aaactg aaaaaa	505 565 625 632
<21 <21	0 > 5 1 > 3 2 > D 3 > H	70 NA	sapi	ens												
<22																
	2> 2		1													
	1> p 2> 3	-	_sig 333	nal												
	1> p 2> 3	-	_sit 370	e		,										
	0> 5 ggac		tggc	ctca	ca a M	iet V	tt g al G	ag a lu M	tg a let T	hr G	gg g	ıtg t 'al	agca	gtgc	c	51
tag ago cgt cag	gaga agad gtga gagct	agg aca gca gcc	gcat agco agto aago	gctc acct	gc c ag g ca c gg a	ttcc jccag caac	ccac :ccac	it ta ic ca ig at	ctct gccc aggc	cgtg agga tgtc	gga ctg tca	iggac jaatt lagcc	aag agc caa	aaac aacc ccaa	cattgt acacgg ctgaca gactgg catgcc	111 171 231 291 351 370

WO 99/31236

<210> 51 <211> 994 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 35..631 <221> sig_peptide <222> 35..160 <223> Von Heijne matrix score 8.6 seg ASLFLLLSLTVFS/IV <221> polyA_signal <222> 901..906 <221> polyA_site <222> 979..994 <400> 51 55 ataattggag ctgcaaagca gatcgtgaca agag atg gac ggt cag aag aaa aat Met Asp Gly Gln Lys Lys Asn tgg aag gac aag gtt gtt gac ctc ctg tac tgg aga gac att aag aag 103 Trp Lys Asp Lys Val Val Asp Leu Leu Tyr Trp Arg Asp Ile Lys Lys -25 -35 -30 act gga gtg gtg ttt ggt gcc agc cta ttc ctg ctg ctt tca ttg aca 151 Thr Gly Val Val Phe Gly Ala Ser Leu Phe Leu Leu Ser Leu Thr -10 gta ttc agc att gtg agc gta aca gcc tac att gcc ttg gcc ctg ctc 199 Val Phe Ser Ile Val Ser Val Thr Ala Tyr Ile Ala Leu Ala Leu Leu 1 tct gtg acc atc agc ttt agg ata tac aag ggt gtg atc caa gct atc 247 Ser Val Thr Ile Ser Phe Arg Ile Tyr Lys Gly Val Ile Gln Ala Ile 25 20 cag aaa tca gat gaa ggc cac cca ttc agg gca tat ctg gaa tct gaa 295 Gln Lys Ser Asp Glu Gly His Pro Phe Arg Ala Tyr Leu Glu Ser Glu 40 35 gtt gct ata tct gag gag ttg gtt cag aag tac agt aat tct gct ctt 343 Val Ala Ile Ser Glu Glu Leu Val Gln Lys Tyr Ser Asn Ser Ala Leu 50 55 391 ggt cat gtg aac tgc acg ata aag gaa ctc agg cgc ctc ttc tta gtt Gly His Val Asn Cys Thr Ile Lys Glu Leu Arg Arg Leu Phe Leu Val 70 gat gat tta gtt gat tct ctg aag ttt gca gtg ttg atg tgg gta ttt 439 Asp Asp Leu Val Asp Ser Leu Lys Phe Ala Val Leu Met Trp Val Phe 85 acc tat gtt ggt gcc ttg ttt aat ggt ctg aca cta ctg att ttg gct 487 Thr Tyr Val Gly Ala Leu Phe Asn Gly Leu Thr Leu Leu Ile Leu Ala 105 100 ctc att tca ctc ttc agt gtt cct gtt att tat gaa cgg cat cag gca 535 Leu Ile Ser Leu Phe Ser Val Pro Val Ile Tyr Glu Arg His Gln Ala 120 110 115 cag ata gat cat tat cta gta ctt gca aat aag aat gtt aaa gat gct 583 Gln Ile Asp His Tyr Leu Val Leu Ala Asn Lys Asn Val Lys Asp Ala 130 135 631 atg gct aaa atc caa gca aaa atc cct gga ttg aag cgc aaa gct gaa

Met Ala Lys Ile Gln Ala Lys Ile Pro Gly Leu Lys Arg Lys Ala Glu 145 tgaaaacgcc caaaataatt agtaggagtt catctttaaa ggggatattc atttgattat acgggggagg gtcagggaag aacgaacctt gacgttgcag tgcagtttca cagatcgttg ttagatcttt atttttagcc atgcactgtt gtgaggaaaa attacctgtc ttgactgcca tgtgttcatc atcttaagta ttgtaagctg ctatgtatgg atttaaaccg taatcatatc tttttcctat ctatctgagg cactggtgga ataaaaaaacc tgtatatttt actttgttgc agatagtctt gccgcatctt ggcaagttgc agagatggtg gagctagaaa aaaaaaaac aaa	691 751 811 871 931 991 994
<210> 52 <211> 412 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> 271399	
<pre><400> 52 gccgctagcg cctcgagcga tgcacctcct ttccaactgg gcaaaccccg cttccagcag acgtccttct atggccgctt caggcacttc ttggatatca tcgaccctcg cacactcttt gtcactgaga gacgtctcag agaggctgtg cagctgctgg aggactataa gcatgggacc ctgcgcccgg gggtcaccaa tgaacagctc tggagtgcac agaaaatcaa gcaggctatt ctacatccgg acaccaatga gaagatcttc atg cca ttt aga atg tca ggt tat</pre>	60 120 180 240 294
att cct ttt ggg acg cca att gta agt gtt acc ttc aaa gga ttt cct Ile Pro Phe Gly Thr Pro Ile Val Ser Val Thr Phe Lys Gly Phe Pro 10 15 20	342
ttt cta aaa aat tat ttt aaa tgt cta act tta tgt tat tgc tca cgg Phe Leu Lys Asn Tyr Phe Lys Cys Leu Thr Leu Cys Tyr Cys Ser Arg 25 30 35 40	390
gta ttt gac tgaattgttg att Val Phe Asp	412
<210> 53 <211> 597 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> 103252	
<221> sig_peptide <222> 103213 <223> Von Heijne matrix score 3.9 seq PGPSLRLFSGSQA/SV	
<221> polyA_site <222> 588597	
<400> 53 gaaaggtcag aggaaggagc tgtgggaagc tcgcagcagg tatcggagct taagccagtg gatttggggg ccctgggctc cctagccggc tgcggtgtga ga atg gag tgg gca Met Glu Trp Ala	60 114

														35		1.00
gga a	ag o	ag	cgg (gac	ttt	cag	gta	agg	gca	gct	ccg	ggc	tgg	gat Asp.	cat . Wie	162
Gly I	yys (Arg / -30	Asp	Pne (GIN	vaı	Arg . -25	Ala	Ala	PIO	GIÀ	-20	Asp	1113	
ttg g	rcc 1			ect (aac .	cct	tct		caa	cta	ttt	tct		agt	cag	210
Leu A	Ala	Ser :	Phe	Pro	Gly	Pro	Ser	Leu .	Arg	Leu	Phe	Ser	Gly	Ser	Gln	
		-15					-10					-5				
gcg a	agt 9	gtc	tgt	agt	ctc	tgc	tcg	a aa	ttt	a aa	gct	cag	gaa			252
Ala		Val	Cys			Cys	Ser	Gly	Phe	Gly 10	Ala	GIn	GIu			
	1 ~+ c = :	t~ ~	+~~=		5 + +a	catt	ctat	tad	ctta		асса	aaaa	aa c	aqco	aattt	312
totto	gact	tt a	caaa	tota	a ct	gate	tcac	tct	tact	gaa	tctq	aggt	gt t	taga	cttca	372
ctct	aaaa	ag c	atca	tttt	a ct	ttta	ttta	gca	caaa	ggc	acag	gata	itt t	ttac	aggaa	432
qaat	cttt	ta t	atgg	aaaa	a tc	tgag	ttaa	cat	cact	CCC	gtgg	tgtt	tg t	agtt	cttac	492
aggg	aaac	tc c	agtg	cctt	t tg	agcc	gctt	gtt	cgto	cta	gtga	acac	tg t	ctgt	tttgt	552 597
ctct	tggt	gc t	gcta	tgtc	t ga	cctg	taat	999	agaa	aaa	aaga	a				357
<210	> 54															
<211	> 74	8														
<212																
<213	> Ho	mo s	apie	ens												
<220	>															
<221		S														
<222	> 2.	.460)													
				-												
	> pc > 71		sigr	ıaı							•					
<222	> /1	/	10													
<221	> pc	lyA	site	3												
<222	> 73	57	48													
400																
	> 54		-+ - +	-	-c ct	- a a =	מ כי	ר מנ	rc aa	ac ca	at or	:c c	ac ac	aa co	gt gcc	49
Th	ır Va	ıl Pr	to Le	eu Le	eu Le	eu Gl	iu Pi	ro Al	la As	sp H:	is A.	la A	rg G	ly A	rg Ala	
1				5					10)				1:	5	
cat	gtc	cac	cta	cct	gaa	aat	gtt	cgc	agc	cag	tct	cct	ggc	cat	gtg	97
His	Val	His		Pro	Glu	Asn	Val	Arg	Ser	Gln	Ser	Pro		His	Val	
			20					25		000	3.00	~~~	30	cat	asa	145
cgc	Arg	ggc	aga	agt	ggt	gca Ala	Gln	gta Val	Leu	Pro	Thr	Glv	Pro	Asp	Glu	
AL 9	AT 9	35	nry	361	Gry	ALG	40	***				45				
aaa	cag	gtt	gag	aag	agt	gaa	gtt	gat	ttc	tca	aag	tca	cat	agc	tta	193
Lys	Gln	Val	Glu	Lys	Ser	Glu	Val	Asp	Phe	Ser	Lys	Ser	His	Ser	Leu	
	50					55					60					241
gtg	aga	cga	ttt	gag	gat	ctg	aag	CCC	aag	ctt	tct	gtt	tgc	aaa	act Thr	241
va⊥ 65	Arg	Arg	Pne	GIU	Asp 70	Leu	гÀг	Pro	ьys	75	Ser	Val	Cys	цуs	80	
	t ca	caa	atc	+++		tca	gag	aac	taa	_	atc	taa	qca	gag		289
Gly	Ser	Gln	Val	Phe	Arq	Ser	Glu	Asn	Trp	Lys	Val	Trp	Ala	Glu	Ser	
_				85	_				90					95		
agc	aga	gga	gac	cat	gat	gac	tgc	cta	gac	ttg	tgc	tca	gtg	ctg	tgt	337
Ser	Arg	Gly		His	Asp	Asp	Cys	Leu	Asp	Leu	Cys	Ser			cys	
•			100			225	 -	105	~~~	a++	000	cca	110		aas	385
rgg	gga	gaa	Lev	Cta	cgg	aca Thr	ata Tla	Pro	Glu	Ile	Pro	Pro	Lvs	Ara	gga Gly	3.55
115	CIY	115	∈u	ne u	ar 9	****	120					125		3	4	
gaa	ctc	aaa	acg	gag	ctt	ttg	gga	ctg	aaa	gaa	aga	aaa	cac	aaa	cct	433
Ğlu	Leu	Lys	Thr	Glu	Leu	Leu	Gly	Leu	Lys	Glu	Arg	Lys	His	Lys	Pro	
	130					135					140					

caa gtt tot caa cag gag gaa ott aaa taactatgoo aagaattotg

Gln Val Ser Gln Gln Glu Glu Leu Lys

145 150	•	•
	ttaatttatt gcatcaaact acttgtcctt 5	40
angenettag tetaatgeta actgeaagag	gaggtgctca gtggatgttt agccgatacg 6	00
tranattta attacgettt gattgatatt	tottgaaaac cgccaaagca catatcatca 6	60
angestates togatatoot trocasoato	tttagtcttg aatataatgc gaaatagaat 7	20
atttgtaagt ctaccaaaaa aaaaaaaa	7	48
attiglaagt ctactaaaaa aaaaaaaa		
	•	
<210> 55		
<211> 703		
<211> 703 <212> DNA		
<213> Homo sapiens		
(213) Nomo Bapiens		
<220>		
<221> CDS		
<222> CDS <222> 31231		
<222> 31231		
<221> polyA_signal		
<222> 769774		
(2227 /0311112		
<221> polyA site		
<222> 690703		
<400> 55		
	atg agg cag aag cgg aaa gga gat	54
	atg agg cag aag cgg aaa gga gat Met Arg Gln Lys Arg Lys Gly Asp	54
ctctggtggc tctgctacgg cggcgcagaa	Met Arg Gln Lys Arg Lys Gly Asp 1 5	
ctctggtggc tctgctacgg cggcgcagaa	Met Arg Gln Lys Arg Lys Gly Asp 1 5 ctg act ata gga gat gtt att aaa 1	54
	Met Arg Gln Lys Arg Lys Gly Asp 1 5 ctg act ata gga gat gtt att aaa Leu Thr Ile Gly Asp Val Ile Lys	
ctctggtggc tctgctacgg cggcgcagaa ctc agc cct gct aag ctg atg atg Leu Ser Pro Ala Lys Leu Met Met 10	Met Arg Gln Lys Arg Lys Gly Asp 1 5 ctg act ata gga gat gtt att aaa Leu Thr Ile Gly Asp Val Ile Lys 20	.02
ctctggtggc tctgctacgg cggcgcagaa ctc agc cct gct aag ctg atg atg Leu Ser Pro Ala Lys Leu Met Met 10 15 caa ctg att gaa gcc cac gag cag	Met Arg Gln Lys Arg Lys Gly Asp 1 5 ctg act ata gga gat gtt att aaa Leu Thr Ile Gly Asp Val Ile Lys 20 ggg aaa gac atc gat cta aat aag	
ctctggtggc tctgctacgg cggcgcagaa ctc agc cct gct aag ctg atg atg Leu Ser Pro Ala Lys Leu Met Met 10	Met Arg Gln Lys Arg Lys Gly Asp 1 5 ctg act ata gga gat gtt att aaa Leu Thr Ile Gly Asp Val Ile Lys 20 ggg aaa gac atc gat cta aat aag Gly Lys Asp Ile Asp Leu Asn Lys	.02
ctctggtggc tctgctacgg cggcgcagaa ctc agc cct gct aag ctg atg atg Leu Ser Pro Ala Lys Leu Met Met 10 15 caa ctg att gaa gcc cac gag cag Gln Leu Ile Glu Ala His Glu Gln 25 30	Met Arg Gln Lys Arg Lys Gly Asp 1 5 ctg act ata gga gat gtt att aaa Leu Thr Ile Gly Asp Val Ile Lys 20 ggg aaa gac atc gat cta aat aag Gly Lys Asp Ile Asp Leu Asn Lys 35 40	150
ctctggtggc tctgctacgg cggcgcagaa ctc agc cct gct aag ctg atg atg Leu Ser Pro Ala Lys Leu Met Met 10 15 caa ctg att gaa gcc cac gag cag Gln Leu Ile Glu Ala His Glu Gln 25 30 gtg aga acc aag aca gct gcc aaa	Met Arg Gln Lys Arg Lys Gly Asp 1 5 ctg act ata gga gat gtt att aaa Leu Thr Ile Gly Asp Val Ile Lys 20 ggg aaa gac atc gat cta aat aag Gly Lys Asp Ile Asp Leu Asn Lys 35 40 tat ggc ctt tct gcc cag ccc cgc	.02
ctctggtggc tctgctacgg cggcgcagaa ctc agc cct gct aag ctg atg atg Leu Ser Pro Ala Lys Leu Met Met 10 15 caa ctg att gaa gcc cac gag cag Gln Leu Ile Glu Ala His Glu Gln 25 30 gtg aga acc aag aca gct gcc aaa Val Arg Thr Lys Thr Ala Ala Lys	Met Arg Gln Lys Arg Lys Gly Asp 1 5 ctg act ata gga gat gtt att aaa Leu Thr Ile Gly Asp Val Ile Lys 20 ggg aaa gac atc gat cta aat aag Gly Lys Asp Ile Asp Leu Asn Lys 35 40 tat ggc ctt tct gcc cag ccc cgc Tyr Gly Leu Ser Ala Gln Pro Arg	150
ctctggtggc tctgctacgg cggcgcagaa ctc agc cct gct aag ctg atg atg Leu Ser Pro Ala Lys Leu Met Met 10 15 caa ctg att gaa gcc cac gag cag Gln Leu Ile Glu Ala His Glu Gln 25 30 gtg aga acc aag aca gct gcc aaa Val Arg Thr Lys Thr Ala Ala Lys	Met Arg Gln Lys Arg Lys Gly Asp 1 5 ctg act ata gga gat gtt att aaa Leu Thr Ile Gly Asp Val Ile Lys 20 ggg aaa gac atc gat cta aat aag Gly Lys Asp Ile Asp Leu Asn Lys 35 40 tat ggc ctt tct gcc cag ccc cgc Tyr Gly Leu Ser Ala Gln Pro Arg 50	.02 .50
ctctggtggc tctgctacgg cggcgcagaa ctc agc cct gct aag ctg atg atg Leu Ser Pro Ala Lys Leu Met Met 10 15 caa ctg att gaa gcc cac gag cag Gln Leu Ile Glu Ala His Glu Gln 25 30 gtg aga acc aag aca gct gcc aaa Val Arg Thr Lys Thr Ala Ala Lys 45 ctg gtg gat atc att gct gcc gtc	Met Arg Gln Lys Arg Lys Gly Asp 1 5 ctg act ata gga gat gtt att aaa Leu Thr Ile Gly Asp Val Ile Lys 20 ggg aaa gac atc gat cta aat aag Gly Lys Asp Ile Asp Leu Asn Lys 35 40 tat ggc ctt tct gcc cag ccc cgc Tyr Gly Leu Ser Ala Gln Pro Arg 50 55 cct cct gag tagctgggat tacaggcacc	150
ctctggtggc tctgctacgg cggcgcagaa ctc agc cct gct aag ctg atg atg Leu Ser Pro Ala Lys Leu Met Met 10 15 caa ctg att gaa gcc cac gag cag Gln Leu Ile Glu Ala His Glu Gln 25 30 gtg aga acc aag aca gct gcc aaa Val Arg Thr Lys Thr Ala Ala Lys 45 ctg gtg gat atc att gct gcc gtc Leu Val Asp Ile Ile Ala Ala Val	Met Arg Gln Lys Arg Lys Gly Asp 1 5 ctg act ata gga gat gtt att aaa Leu Thr Ile Gly Asp Val Ile Lys 20 ggg aaa gac atc gat cta aat aag Gly Lys Asp Ile Asp Leu Asn Lys 35 40 tat ggc ctt tct gcc cag ccc cgc Tyr Gly Leu Ser Ala Gln Pro Arg 50 55 cct cct gag tagctgggat tacaggcacc Pro Pro Glu	.02 .50
ctctggtggc tctgctacgg cggcgcagaa ctc agc cct gct aag ctg atg atg Leu Ser Pro Ala Lys Leu Met Met 10 15 caa ctg att gaa gcc cac gag cag Gln Leu Ile Glu Ala His Glu Gln 25 30 gtg aga acc aag aca gct gcc aaa Val Arg Thr Lys Thr Ala Ala Lys 45 ctg gtg gat atc att gct gcc gtc Leu Val Asp Ile Ile Ala Ala Val	Met Arg Gln Lys Arg Lys Gly Asp 1 5 ctg act ata gga gat gtt att aaa Leu Thr Ile Gly Asp Val Ile Lys 20 ggg aaa gac atc gat cta aat aag Gly Lys Asp Ile Asp Leu Asn Lys 35 40 tat ggc ctt tct gcc cag ccc cgc Tyr Gly Leu Ser Ala Gln Pro Arg 50 55 cct cct gag tagctgggat tacaggcacc Pro Pro Glu 65	.02 .50 .98
ctctggtggc tctgctacgg cggcgcagaa ctc agc cct gct aag ctg atg atg Leu Ser Pro Ala Lys Leu Met Met 10 15 caa ctg att gaa gcc cac gag cag Gln Leu Ile Glu Ala His Glu Gln 25 30 gtg aga acc aag aca gct gcc aaa Val Arg Thr Lys Thr Ala Ala Lys 45 ctg gtg gat atc att gct gcc gtc Leu Val Asp Ile Ile Ala Ala Val 60 cgccgctgcc aatttttgta tttttagtag	Met Arg Gln Lys Arg Lys Gly Asp 1 5 ctg act ata gga gat gtt att aaa Leu Thr Ile Gly Asp Val Ile Lys 20 ggg aaa gac atc gat cta aat aag Gly Lys Asp Ile Asp Leu Asn Lys 35 40 tat ggc ctt tct gcc cag ccc cgc Tyr Gly Leu Ser Ala Gln Pro Arg 50 55 cct cct gag tagctgggat tacaggcacc Pro Pro Glu 65 g ggatgggggt ttcaccatat tggtcaggct	.02 .50 .98 .251
ctctggtggc tctgctacgg cggcgcagaa ctc agc cct gct aag ctg atg atg Leu Ser Pro Ala Lys Leu Met Met 10 15 caa ctg att gaa gcc cac gag cag Gln Leu Ile Glu Ala His Glu Gln 25 30 gtg aga acc aag aca gct gcc aaa Val Arg Thr Lys Thr Ala Ala Lys 45 ctg gtg gat atc att gct gcc gtc Leu Val Asp Ile Ile Ala Ala Val 60 cgccgctgcc aatttttgta tttttagtag qqtctcqaac tcctgacctc aggtgatcaa	Met Arg Gln Lys Arg Lys Gly Asp 1 5 ctg act ata gga gat gtt att aaa Leu Thr Ile Gly Asp Val Ile Lys 20 ggg aaa gac atc gat cta aat aag Gly Lys Asp Ile Asp Leu Asn Lys 35 40 tat ggc ctt tct gcc cag ccc cgc Tyr Gly Leu Ser Ala Gln Pro Arg 50 55 cct cct gag tagctgggat tacaggcacc Pro Pro Glu 65 g ggatgggggt ttcaccatat tggtcaggct a cccaccttgg cctccctaaa tgccgggatt	.02 .50 .98 .251
ctctggtggc tctgctacgg cggcgcagaa ctc agc cct gct aag ctg atg atg Leu Ser Pro Ala Lys Leu Met Met 10 15 caa ctg att gaa gcc cac gag cag Gln Leu Ile Glu Ala His Glu Gln 25 30 gtg aga acc aag aca gct gcc aaa Val Arg Thr Lys Thr Ala Ala Lys 45 ctg gtg gat atc att gct gcc gtc Leu Val Asp Ile Ile Ala Ala Val 60 cgccgctgcc aatttttgta tttttagtag ggtctcgaac tcctgacctc aggtgatcaa acaggcatga gccaccgctc cgggcctttg	Met Arg Gln Lys Arg Lys Gly Asp 1 5 ctg act ata gga gat gtt att aaa Leu Thr Ile Gly Asp Val Ile Lys 20 ggg aaa gac atc gat cta aat aag Gly Lys Asp Ile Asp Leu Asn Lys 35 40 tat ggc ctt tct gcc cag ccc cgc Tyr Gly Leu Ser Ala Gln Pro Arg 50 55 cct cct gag tagctgggat tacaggcacc Pro Pro Glu 65 g ggatggggt ttcaccatat tggtcaggct a cccaccttgg cctccctaaa tgccgggatt g atttttaag gtggattttg gttgttataa	.02 .50 .98 .251
ctctggtggc tctgctacgg cggcgcagaa ctc agc cct gct aag ctg atg atg Leu Ser Pro Ala Lys Leu Met Met 10 15 caa ctg att gaa gcc cac gag cag Gln Leu Ile Glu Ala His Glu Gln 25 30 gtg aga acc aag aca gct gcc aaa Val Arg Thr Lys Thr Ala Ala Lys 45 ctg gtg gat atc att gct gcc gtc Leu Val Asp Ile Ile Ala Ala Val 60 cgccgctgcc aatttttgta tttttagtag ggtctcgaac tcctgacctc aggtgatcaa acaggcatga gccaccgctc cgggcctttg atggagaaag gtaagagttc aagttcaacc	Met Arg Gln Lys Arg Lys Gly Asp 1 5 ctg act ata gga gat gtt att aaa Leu Thr Ile Gly Asp Val Ile Lys 20 ggg aaa gac atc gat cta aat aag Gly Lys Asp Ile Asp Leu Asn Lys 35 40 tat ggc ctt tct gcc cag ccc cgc Tyr Gly Leu Ser Ala Gln Pro Arg 50 55 cct cct gag tagctgggat tacaggcacc Pro Pro Glu 65 g ggatggggt ttcaccatat tggtcaggct a cccaccttgg cctccctaaa tgccgggatt g atttttaag gtggattttg gttgttataa c cgtgtgtgaa agcaaaacaa tggaaaacag	.02 .50 .98 .251 .311 .371 .431 .491
ctctggtggc tctgctacgg cggcgcagaa ctc agc cct gct aag ctg atg atg Leu Ser Pro Ala Lys Leu Met Met 10 15 caa ctg att gaa gcc cac gag cag Gln Leu Ile Glu Ala His Glu Gln 25 30 gtg aga acc aag aca gct gcc aaa Val Arg Thr Lys Thr Ala Ala Lys 45 ctg gtg gat atc att gct gcc gtc Leu Val Asp Ile Ile Ala Ala Val 60 cgccgctgcc aatttttgta tttttagtag ggtctcgaac tcctgacctc aggtgatcaa acaggcatga gccaccgctc cgggcctttg atggagaaag gtaagagttc aagttcaacc gattggcttc ttcaaaaggct cctcttgtag	Met Arg Gln Lys Arg Lys Gly Asp 1 5 ctg act ata gga gat gtt att aaa Leu Thr Ile Gly Asp Val Ile Lys 20 ggg aaa gac atc gat cta aat aag Gly Lys Asp Ile Asp Leu Asn Lys 35 40 tat ggc ctt tct gcc cag ccc cgc Tyr Gly Leu Ser Ala Gln Pro Arg 50 55 cct cct gag tagctgggat tacaggcacc Pro Pro Glu 65 g ggatggggt ttcaccatat tggtcaggct a cccaccttgg cctccctaaa tgccgggatt g atttttaag gtggattttg gttgttataa c cgtgtgtgaa agcaaaacaa tggaaaacag g aactgcctct ttgaaatttc gaggtaatct	.02 .50 .98 .251 .311 .371 .431 .491 .551
ctctggtggc tctgctacgg cggcgcagaa ctc agc cct gct aag ctg atg atg Leu Ser Pro Ala Lys Leu Met Met 10 15 caa ctg att gaa gcc cac gag cag Gln Leu Ile Glu Ala His Glu Gln 25 30 gtg aga acc aag aca gct gcc aaa Val Arg Thr Lys Thr Ala Ala Lys 45 ctg gtg gat atc att gct gcc gtc Leu Val Asp Ile Ile Ala Ala Val 60 cgccgctgcc aatttttgta tttttagtag ggtctcgaac tcctgacctc aggtgatcaa acaggcatga gccaccgctc cgggcctttg atggagaaag gtaagagttc aagttcaacc gattggcttc ttcaaaggct cctcttgtag actttqqaqa ctctqcctqq agagggtcag	Met Arg Gln Lys Arg Lys Gly Asp 1 5 ctg act ata gga gat gtt att aaa Leu Thr Ile Gly Asp Val Ile Lys 20 ggg aaa gac atc gat cta aat aag Gly Lys Asp Ile Asp Leu Asn Lys 35 40 tat ggc ctt tct gcc cag ccc cgc Tyr Gly Leu Ser Ala Gln Pro Arg 50 55 cct cct gag tagctgggat tacaggcacc Pro Pro Glu 65 g ggatggggt ttcaccatat tggtcaggct a cccaccttgg cctccctaaa tgccgggatt g atttttaag gtggattttg gttgttataa c cgtgtgtgaa agcaaaacaa tggaaaacag g aactgcctct ttgaaatttc gaggtaatct g ttcctaagtt aaaagcatcg cttaaccttg	.02 .50 .98 .251 .371 .431 .491 .551 .611
ctctggtggc tctgctacgg cggcgcagaa ctc agc cct gct aag ctg atg atg Leu Ser Pro Ala Lys Leu Met Met 10 15 caa ctg att gaa gcc cac gag cag Gln Leu Ile Glu Ala His Glu Gln 25 30 gtg aga acc aag aca gct gcc aaa Val Arg Thr Lys Thr Ala Ala Lys 45 ctg gtg gat atc att gct gcc gtc Leu Val Asp Ile Ile Ala Ala Val 60 cgccgctgcc aatttttgta tttttagtag ggtctcgaac tcctgacctc aggtgatcaa acaggcatga gccaccgctc cgggcctttg atggagaaag gtaagagttc aagttcaacc gattggcttc ttcaaaggct cctcttgtag actttqqaqa ctctqcctqq agagggtcag	Met Arg Gln Lys Arg Lys Gly Asp 1 5 ctg act ata gga gat gtt att aaa Leu Thr Ile Gly Asp Val Ile Lys 20 ggg aaa gac atc gat cta aat aag Gly Lys Asp Ile Asp Leu Asn Lys 35 40 tat ggc ctt tct gcc cag ccc cgc Tyr Gly Leu Ser Ala Gln Pro Arg 50 55 cct cct gag tagctgggat tacaggcacc Pro Pro Glu 65 g ggatggggt ttcaccatat tggtcaggct a cccaccttgg cctcctaaa tgccgggatt g atttttaag gtggatttg gttgttataa c cgtgtgtgaa agcaaaacaa tggaaaacag g aactgcctct ttgaaatttc gaggtaatct g ttcctaagtt aaaagcatcg cttaaccttg g gaattgattc ctctgaaagg gcctgaaaat	.02 .50 .98 .251 .311 .371 .431 .491 .551

<211> 725 <212> DNA <213> Homo sapiens

<210> 56

<220> <221> CDS <222> 305..565

<221> polyA_signal <222> 694699	
<221> polyA_site <222> 713725	
c400 > 56 ctcacggtgg tgaaggtcac agggttgcag cactcccagt agaccaggag ctccgggagg cagggccggc cccacgtcct ctgcgcacca ccctgagttg gatcctctgt gcgccacccc tgagttggat ccagggctag ctgctgttga cctcccact cccacgctgc cctcctgcct gcagccatga cgcccctgct caccctgatc ctggtggtcc tcatgggctt acctctggcc caggccttgg actgccacgt gtgaggacta caaatccctc caggatatca ttgccatcct gggt atg gat gaa ctt tct gag gaa gac aag ttg acc gtg tcc cgt gca Met Asp Glu Leu Ser Glu Glu Asp Lys Leu Thr Val Ser Arg Ala 1 5 10	60 120 180 240 300 349
cgg aaa ata cag cgt ttc ttg tct cag cca ttc cag gtt gct gag gtc Arg Lys Ile Gln Arg Phe Leu Ser Gln Pro Phe Gln Val Ala Glu Val 20 25 30	397
ttc aca ggt cat atg ggg aag ctg gta ccc ctg aag gag acc atc aaa Phe Thr Gly His Met Gly Lys Leu Val Pro Leu Lys Glu Thr Ile Lys 35 40 45	445
gga ttc cag cag att ttg gca ggt gaa tat gac cat ctc cca gaa cag Gly Phe Gln Gln Ile Leu Ala Gly Glu Tyr Asp His Leu Pro Glu Gln 50 55 60	493
gcc ttc tat atg gtg gga ccc att gaa gaa gct gtg gca aaa gct gat Ala Phe Tyr Met Val Gly Pro Ile Glu Glu Ala Val Ala Lys Ala Asp 65 70 75	541
aag ctg gct gaa gag cat tca tcg tgaggggtct ttgtcctctg tactgtctct Lys Leu Ala Glu Glu His Ser Ser 80 85	595
ctccttgccc ctaacccaaa aagcttcatt tttctgtgta ggctgcacaa gagccttgat tgaagatata ttctttctga acagtattta aggtttccaa taaagtgtac acccctcaaa aaaaaaaaaa	655 715 725
<210> 57 <211> 1705 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 124873	
<221> sig_peptide <222> 124378 <223> Von Heijne matrix score 3.6 seq HLSVVTLAAKVKC/IP	
<221> polyA_signal	
<221> polyA_site <222> 16941705	
<400> 57 cggaggtgag gagcggcggc cccgcccggt gcgctggagg tcgaagcttc caggtagcgg cccgcagagc ctgacccagg ctctggacat cctgagccca agtcccccac actcagtgca gtg atg agt gcg gaa gtg aag gtg aca ggg cag aac cag gag caa ttt Met Ser Ala Glu Val Lys Val Thr Gly Gln Asn Gln Glu Gln Phe	60 120 168

	•	•															
		-85					-80					-75					
•	ctg	ctc	cta	gcc	aag	tcg	gcc	aag	999	gca	gcg	ctg	gcc	aca	ctc	atc	216
3	Leu	Leu	Leu	Ala	Lys	Ser	Ala	Lys	Gly	Ala	Ala	Leu	Ala	Thr	Leu-	Ile	
	-70					-65					-60					-55	264
	cat	cag	gtg	ctg	gag	gcc	cct	ggt	gtc	tac	gtg	ttt	gga	gaa	ctg	ctg	264
	His	Gln	Val	Leu		Ala	Pro	GIĀ	vaı		vaı	Pne	GIY	GIU	Leu -40	пеп	
					-50	. ~ -	~~~	ata	222	-45		22t	ctt	cct	_	cta	312
1	gac	Mot	550	Aac Aen	yal	Ara	Glu	Leu	Xaa	Δla	Ara	Asn	Leu	Pro	cca Pro	Leu	
•	ASD	Mec	PIO	-35	vaı	nr 9	014	200	-30		••••			-25			
	aca	gag	act		aaq	aat	aag	ctt		cac	ctc	tca	gtt	gtc	acc	ctg	360
	Thr	Glu	Ala	Gln	Lys	Asn	Lys	Leu	Arg	His	Leu	Ser	Val	Val	Thr	Leu	
			-20					-15					-10				
	gct	gct	aaa	gta	aag	tgt	atc	cca	tat	gca	gtg	ttg	ctg	gag	gct	ctt	408
	Ala		Lys	Val	Lys	Сув	Ile	Pro	Tyr	Ala	Val	Leu	Leu	GIU	Ala	10	
		-5					1	a+a	~~~	~ 2~	5 C++	ata	244	aaa	act		456
	gcc	ctg	cgt	`Aat	grg	720	Gln	T.en	Glu)ac	Len	Val	Tle	Glu	gct Ala	Val	
	Ala	neu	Arg	ABII	15	Arg	9111	Deu	014	20	cu				25		
	tat	act	gac	ata		cat	qqc	tcc	ctg		cag	cgc	aac	cag	cgg	ctc	504
	Tyr	Ala	Asp	Val	Leu	Arg	Gly	Ser	Leu	Asp	Gln	Arg	Asn	Gln	Arg	Leu	
				30					35					40			
	gag	gtt	gac	tac	agc	atc	999	cgg	gac	atc	cag	cgc	cag	gac	ctc	agt	552
	Glu	Val		Tyr	Ser	Ile	Gly		Asp	Ile	Gln	Arg		Asp	Leu	Ser	
			45					50		4 4 -			55	~~~	a+ a	ata	600
	gcc	att	gcc	cga	acc	ctg	cag	gaa	rgg	cgt	grg	ggc	Cyc	gag	gtc	Val	000
	AIA	60	Ala	Arg	THE	Leu	65	GIU	пъ	Cys	Val	70	Cys	GIU	Val	,42	
	cta		aac	att	gag	gag		ata	aσc	cat	acc		caa	cac	aag	gag	648
	Leu	Ser	Glv	Ile	Glu	Glu	Gln	Val	Ser	Arg	Ala	Asn	Gln	His	Lys	Glu	
	75		3			80				_	85					90	
	cag	cag	ctg	ggc	ctg	aag	cag	cag	att	gag	agt	gag	gtt	gcc	aac	ctt	696
	Gln	Gln	Leu	Gly		Lys	Gln	Gln	Ile			Glu	Val	Ala	Asn	Leu	
					95					100					105	tot	744
	aaa	aaa	acc	att	aaa	gtt	acg	acg	gca Nla	gça	gca als	gcc ala	yca Nla	Δla	aca Thr	Ser	744
	гув	гуѕ	THE	110	ьys	vai	1111	TIII	115	Ara	MIA	ALG	AIG	120		502	
	cad	gac	cct		caa	cac	cta	act		cta	agg	qaa	cca		cct	ggc	792
	Gln	Asp	Pro	Glu	Gln	His	Leu	Thr	Glu	Leu	Arg	Ğlu	Pro	Āla	Pro	Gly	
		-	125					130					135				
	acc	aac	cag	cgc	cag	CCC	agc	aag	aaa	gcc	tca	aag	ggc	aag	aaa	ctc	840
	Thr	Asn	Gln	Arg	Gln	Pro			Lys	Ala	Ser			Lys	Gly	Leu	
		140					145					150		-	~+ ~~	+++==+	893
	cga	999	agc	gcc	aag	att	tgg	CO	aag	cor	aat Acr	tga	aaga	act	gucg	tttcct	0,5
	Arg 155		ser	Ala	гÀг	160		Ser	груз	261	165						
			aat	ataa	aatc			ccto	ic ct	acct			atco	tca	gaga	gccttc	953
	tat	accc	cta	acca	acta	at a	atco	tago	it to	atga	ccct	tca	cctc	ccc	taac	cccaaa	1013
	cat	agat	cac	acct	tctc	ta g	ggag	gagt	c aa	atgt	aggt	cat	gttt	ttg	ttgg	tacttt	1073
	ctg	tttt	ttg	tgac	ttca	tg t	gttc	catt	g ct	CCCC	gctg	cca	tgct	ctc	tccc	ttgttt	1133
	cct	taag	agc	tcag	cato	tg t	ccct	gtto	a tt	acat	gtca	ttg	agta	ggt	gggt	agccct	1193
	gat	9999	gtc	gctc	tgtc	tg g	agca	taac	c ca	cagg	cgtt	ttt	tctg	cca	CCCC	atccct	1253
	gca	tgcc	tga	tccc	cagt	tc c	tata	ccct	acc	cctg	jacct	att	gago	agc	CTCT	gaagag	1313 1373
	сса	tagg	gcc	ccca	cctt	tac	tcac	acco	t ga	gaat	tctg	gga	igcca	gtc	tgcc	atgcca	1433
	gga	gtca	ctg	gaca	cgtt	.ca t	ccta	gaat	.c ct	gcca	LCACT	aca	racca	+22	gaat	tcctct	1493
	COT	ttot	taa	-999	ttas	99 9	aatg	++~+	t to	ttar	accet	gar	cato	tca	ggaa	ggcagc gcttga	1553
	tac	caat	cct	ggaa	agat	tt a	atch	cctt	it to	tgac	tttc	ato	qqqa	agg	gaaq	ggtata	1613
	tac	atta	tat	taaa	aaaa	aa a	aggt	atat	a to	cata	tato	tat	atat	aat	atga	cgcaga	1673
				tgag											_	_	1705

```
<210> 58
<211> 1069
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 135..206
<221> polyA_signal
<222> 850..855
<221> polyA_site
<222> 1056..1069
<400> 58
                                                                       60
cccactccgc tctcacgact aagctctcac gattaaggca cgcctgcctc gattgtccag
cetetgecag aagaaagett ageagecage geeteagtag agacetaagg gegetgaatg
                                                                       120
agtgggaaag ggaa atg ccg acc aat tgc gct gcg gcg ggc tgt gcc act
                                                                       170
                Met Pro Thr Asn Cys Ala Ala Ala Gly Cys Ala Thr
                                                                       216
acc tac aac aag cac att aac atc agc ttc cac agg taacctgggc
Thr Tyr Asn Lys His Ile Asn Ile Ser Phe His Arg
                             20
                                                                       276
agggagtggg ggtgacggaa actggagttc ctattgtggc tatcgcttgt gtggaaggaa
caggaggatt ctgctaattc taataacttt cccagctggt agcagggaag catcgtatgt
                                                                       336
                                                                       396
cetttgtgtt teteaaatet geceaattgt tetetgettt eggggaaget ttaeteattt
                                                                       456
tctaaaagaa atccaagtac tgtttggtca ttacccctta gtaaaaaaaa gtaacaggag
gatatogtaa tittotactg tittattoot otgitagaco gggoottgac atgaatgacg
                                                                       516
                                                                       576
ccgtaaggga gaaagagatc ttcccaatca gcaatcaccg taaaagcctg ctgtgttccc
                                                                       636
gttaaaatta ggaaattoto actagatgaa ttgacatggg aggcatttag atttotaata
                                                                       696
gtcacatagt aattotgogg aggaattgag tcatotttga tagccatgga attaagogat
                                                                       756
gttaattaaa gtgcaaacga taacctttct gttcttacta gaatagagta ataaaaagaa
                                                                       816
cctaggtttt cttttgtttg ctggaagaaa aatcaaaatt ctttagttct gtcaaaccag
                                                                       876
aactettgaa agcaetttga acaatgeetg gaaaataaca ggtaetetgt aaatgtttae
                                                                       936
cttctctgca agtgcctgcc acgtgcccga agaaaagaca cattaaaaag ttaagtgaca
ccagtcctga ttttatatat tttatatacc taacaacgta tatgttagta tgtagaaatt
                                                                       996
atateettga cettttteee tacetattae gaactgtaet tttattaaaa getgeeacta
                                                                      1056
                                                                      1069
aaaaaaaaa aaa
 <210> 59
 <211> 1084
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> CDS
 <222> 135..818
 <221> polyA_signal
 <222> 909..914
 <221> polyA_site
 <222> 1071..1084
 <400> 59
 cccactccgc tctcacgact aagctctcac gattaaggca cgcctgcctc gattgtccag
 cctctgccag aagaaagctt agcagccagc gcctcagtag aggcctaagg gcgctgaatg
                                                                        120
```

agtgggaaag ggaa atg ccg acc aat tgc gct gcg gcg ggc tgt gcc act

170

				Met	Pro	Thr	Asn	Cys	Ala	Ala	Ala	Gly	Cys	Ala	Thr	
				1				5					10			210
acc	tac	aac	aag	cac	att	aac	atc	agc	כככ	cac	agg	שש	CCC	ttg	.gac	218
Thr	Tyr		Lys	His	ITe	Asn		ser	Pne	HIS	Arg		PTO	Leu	АБР	
		15				<u> </u>	20					25				266
			aga													200
Pro	7A2	Arg	Arg	гÀг	GIU	35	vaı	Arg	Leu	val	A19	Arg	гуя	ASII	Pile	
ata		qqa	aaa	cac	act		ctt	tgt	tca	aag	cac	ttt	gaa	gcc	tcc	314
			Lys													
45		•	•		50			-		55					60	
tgt	ttt	gac	cta	aça	gga	caa	act	cga	cga	ctt	aaa	atg	gat	gct	gtt	362
			Leu													
-		•		65	_				70					75		
cca	acc	att	ttt	gat	ttt	tgt	acc	cat	ata	aag	tct	atg	aaa	ctc	aag	410
			Phe													
			.80	_				85					90			
tca	agg	aat	ctt	ttg	aag	aaa	aac	aac	agt	tgt	tct	cca	gct	gga	cca	458
			Leu													
	_	95			_		100					105				
tct	agt	tta	aaa	tca	aac	att	agt	agt	cag	caa	gta	cta	ctt	gaa	cac	506
Ser	Ser	Leu	Lys	Ser	Asn	Ile	Ser	Ser	Gln	Gln	Val	Leu	Leu	Glu	His	
	110					115					120					
			ttt													554
Ser	Tyr	Ala	Phe	Arg	Asn	Pro	Met	Glu	Ala	Lys	Lys	Arg	Ile	Ile	Lys	
125					130					135					140	
			gaa													602
Leu	Glu	Lys	Glu	Ile	Ala	Ser	Leu	Arg	Arg	Lys	Met	Lys	Thr	Cys	Leu	
				145			•		150					155		
			cgc													650
Gln	Lys	Glu	Arg	Arg	Ala	Thr	Arg	Arg	Trp	Ile	Lys	Ala	Met	Cys	Leu	
			160					165					170			
			tta													698
Val	Lys		Leu	Glu	Ala	Asn		Val	Leu	Pro	Lys	_	Thr	Ser	Glu	
		175					180					185				
cac	atg	tta	cca	act	gcc	tta	agc	agt	ctt	cct	ttg	gaa	gat	ttt	aag	746
His		Leu	Pro	Thr	Ala		Ser	Ser	Leu	Pro		Glu	Asp	Phe	Lys	
	190					195					200					
			caa													794
Ile	Leu	Glu	Gln	Asp		Gln	Asp	Lys	Thr	Leu	Leu	Ser	Leu	Asn		
205					210					215					220	
			_	_			_	taa	attt	agc	ttgc	acag	ag ci	ttga	tgcct	848
Lys	Gln	Thr	Lys		Thr	Phe	Ile									
				225							.					908
															ttattt	968
	-			_	_			-	_	_	_	_			agaata	1028
															aattac	1028
gga	ctta	aaa	attt	tgct	aa t	aaat	rara.	c gt	ctga	aagg	tga	aaaa	aaa i	aaaa	ad	1004

<210> 60

<211> 419

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 33..290

<221> sig_peptide <222> 33..92

<223> Von Heijne matrix score 5.4 seq WFVHSSALGLVLA/PP aatggtaggc cttcatgtga gccagttact ac atg aat ctt cat ttc cca cag 53 Met Asn Leu His Phe Pro Gln -15 -20 tgg ttt gtt cat tca tca gcg tta ggc ttg gtc ctg gct cca cct ttc 101 Trp Phe Val His Ser Ser Ala Leu Gly Leu Val Leu Ala Pro Pro Phe -5 -10 tee tet eeg gge act gae eec ace tit eeg tgt att tae tgt agg eta 149 Ser Ser Pro Gly Thr Asp Pro Thr Phe Pro Cys Ile Tyr Cys Arg Leu 5 10 tta aat atg atc atg acc cgc ctt gca ttt tca ttc atc acc tgt tta 197 Leu Asn Met Ile Met Thr Arg Leu Ala Phe Ser Phe Ile Thr Cys Leu 25 30 20 tgc cca aat tta aag gaa gtt tgt ctc att ttg cca gaa aaa aat tgt 245 Cys Pro Asn Leu Lys Glu Val Cys Leu Ile Leu Pro Glu Lys Asn Cys 40 45 290 aat agt egg cae get gga ttt gta ggg cea gea aaa ttg egg cag Asn Ser Arg His Ala Gly Phe Val Gly Pro Ala Lys Leu Arg Gln 60 tgaaactagt ttcacttcta aagcccttca tttcccacaa ggttaagctc tcgaaacccc 350 atttgatect tggttectat ttegatecte etttggaate tgaaaategg tetecatgtt 410 419 gtatgcaaa <210> 61 <211> 682 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 485..616 <221> polyA_site <222> 669..682 ctcctttctc attccttatc ttgcgtgttt ttaccttttt ttcataacta agtttttgag 120 gaagttagtg ttcttttcaa agaaccggtt cgaaatgtac ttttctttgc tactttttgt tattttattg atcacatctt taatcttttg ttctctatac gtggcctgtt ttgatttatt 180 ttactattct tgctttctaa ggtaagtatt ttgttgtgta gtgctttatt tttttcatct 240 300 ttcttcttga ataataatga catttttagg ttataaattt tcctctggta ctcagtttgc 360 ctcattaatt ttggcagtaa gcattctcct tttattgctt tctatgtagt ctttaatttt gcttttaact tcttctttga tctaaggatt acctacttgt taatttccaa atattatctt 420 480 gget atg teg eeg agg etg gag tge agt ggt gea ate ttg get eac tge 529 Met Ser Pro Arg Leu Glu Cys Ser Gly Ala Ile Leu Ala His Cys 10 577 aac ccc cqc ctc cca qqt tca agt tat tct cct gcc tca gct act tgg Asn Pro Arg Leu Pro Gly Ser Ser Tyr Ser Pro Ala Ser Ala Thr Trp 25 626 gtg aga gga tcc ctt gag ccg ggg agg ttg agg ctg cag tgagccataa Val Arg Gly Ser Leu Glu Pro Gly Arg Leu Arg Leu Gln 682 ccactactct ccagcctgga taacaaaagt gagactctga ccaaaaaaaa aaaaaa

<210: <211: <212: <213:	> 119 > DNA	Ą	apier	ns												
<220 <221 <222	> CD		5													
<221 <222 <223	> 54 > Vo:	22 n He ore	7 ijne	mat		EE										
	> po > 11		sign 1135	al												
	-		site 1191													
<400 cacg	> 62 gctg	ca c	tttc	cato	c cg	tcgc	9999	ccg	gccg	cta	ctcc	ggcc	cc a	.gg a	itg let	56
cag Gln	aat Asn	gtg Val -55	att Ile	aat Asn	act Thr	gtg Val	aag Lys -50	gga Gly	aag Lys	gca Ala	ctg Leu	gaa Glu -45	gtg Val	gct Ala	gag Glu	104
tac Tyr	Leu	acc	ccg Pro	gtc Val	ctc Leu	aag Lys -35	gaa	tca Ser	aag Lys	ttt Phe	agg Arg -30	gaa Glu	aca Thr	ggt Gly	gta Val	152
Ile	-40 acc Thr	cca Pro	gaa Glu	gag Glu	Phe	ata	gca Ala	gct Ala	gga Gly	gat Asp -15	cac	cta Leu	gtc Val	cac His	cac His -10	200
-25 tgt Cys	cca Pro	aca Thr	tgg Trp	Gln	-20 tgg Trp	gct Ala	aca Thr	GJA aaa	gaa Glu	gaa	ttg Leu	aaa Lys	gtg Val	aag Lys	gca	248
tac Tyr	cta Leu	cca Pro 10	aca Thr	-5 ggc Gly	aaa Lys	caa Gln	ttt Phe 15	ttg Leu	gta Val	acc Thr	aaa Lys	aat Asn 20	gtg Val	ccg Pro	tgc Cys	296
tat Tyr	aag Lys 25	caa	tgc Cys	aaa Lys	cag Gln	atg Met 30	qaa	tat Tyr	tca Ser	gat Asp	gaa Glu 35	ttg Leu	gaa Glu	gct Ala	atc Ile	344
att Ile 40	αаа	gaa Glu	gat Asp	gat Asp	ggt Gly 45	gat	ggc Gly	gga Gly	tgg Trp	gta Val 50	gat Asp	aca Thr	tat Tyr	cac His	aac Asn 55	392
aca	ggt Gly	att Ile	aca Thr	gga Gly 60	ata	acg Thr	gaa Glu	gcc Ala	gtt Val 65	aaa Lys	gag Glu	atc Ile	acá Thr	ctg Leu 70	gaa Glu	440
aat Asn	aag Lys	gac Asp		ata	agg Arg	ctt Leu	caa Gln	gat Asp 80	tgc	tca Ser	gca Ala	cta Leu	tgt Cys 85	gaa Glu	gag Glu	488
gaa Glu	gaa Glu	Asp	75 gaa Glu	gat Asp	gaa Glu	gga Gly	gaa Glu 95	qct	gca Ala	gat Asp	atg Met	gaa Glu 100	gaa Glu	tat	gaa Glu	536
gag Glu	Ser	90 gga Gly	ttg Leu	ttg Leu	gaa Glu	aca Thr	gat Asp	gag Glu	gct Ala	acc Thr	cta Leu 115	gat Asp	aca	agg Arg	aaa Lys	584
Ile	Val	gaa Glu	gct	tgt Cys	Lys	gcc	aaa	act Thr	gat Asp	gct Ala 130	ggc	ggt	gaa Glu	gat Asp	gct Ala 135	632
120 att	ttg	caa	acc	aga	125 act	tat	gac	ctt	tac			tat	gat	aaa	tat	680

```
Ile Leu Gln Thr Arg Thr Tyr Asp Leu Tyr Ile Thr Tyr Asp Lys Tyr
                                        150
                               145
               140
tac cag act cca cga tta tgg ttg ttt ggc tat gat gag caa cgg cag
                                                                     728
Tyr Gln Thr Pro Arg Leu Trp Leu Phe Gly Tyr Asp Glu Gln Arg Gln
                               160
           155
cct tta aca gtt gag cac atg tat gaa gac atc agt cag gat cat gtg
                                                                     776
Pro Leu Thr Val Glu His Met Tyr Glu Asp Ile Ser Gln Asp His Val
                                               180
                            175
       170
aag aaa aca gtg acc att gaa aat cat cct cat ctg cca cca cct ccc
                                                                     824
Lys Lys Thr Val Thr Ile Glu Asn His Pro His Leu Pro Pro Pro Pro
                                           195
                        190
   185
atg tgt tca gtt cac cca tgc agg cat gct gag gtg atg aag aaa atc
                                                                     872
Met Cys Ser Val His Pro Cys Arg His Ala Glu Val Met Lys Lys Ile
                                        210
                   205
                                                                     920
att gag act gtt gca gaa gga ggg gga gaa ctt gga gtt cat atg tat
Ile Glu Thr Val Ala Glu Gly Gly Glu Leu Gly Val His Met Tyr
                                    225
                220
ctt ctt att ttc ttg aaa ttt gta caa gct gtc att cca aca ata gaa
                                                                     968
Leu Leu Ile Phe Leu Lys Phe Val Gln Ala Val Ile Pro Thr Ile Glu
                                240
                                                    245
            235
                                                                    1015
tat gac tac aca aga cac ttc aca atg taatgaagag agcataaaat
Tyr Asp Tyr Thr Arg His Phe Thr Met
        250
ctatcctaat tattggttct gatttttaaa gaattaaccc atagatgtga ccattgacca
                                                                    1075
tattcatcaa tatatacagt ttctctaata agggacttat atgtttatgc attaaataaa
                                                                    1135
                                                                    1191
aatatgttcc actaccagcc ttacttgttt aataaaaatc agtgcaaaaa aaaaaa
<210> 63
<211> 1008
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 657..923
<221> sig peptide
<222> 657..896
<223> Von Heijne matrix
      score 3.5
      seq RGLLSACAPWGDG/ST
<221> polyA_signal
<222> 957..962
<221> polyA site
```

<400> 63 ntcgnatgtg gcacaaaacc cctctgctgg ctcatgtgtg caactgagac tgtcagagca tggctagctc tggggtccag ctctgctggg tgggggctag agaggaagca gggagtatct 120 gcacacagga tgcctgcgct caggtggttg cagaagtcag tgcccaggcc cccccacaca 180 240 gtccccaaag gtccggcctc cccagcgcgg ggctcctcgt ttgaggggag gtgacttccc tcccagcagg ctcttggaca cagtaagctt ccccagccct gcctgagcag cctttcctcc 300 360 ttgccctgtt ccccacctcc cggctccagt ccagggagct cccagggaag tggtcgaccc ctccagtggc tgggccactc tgctagagtc catccgccaa gctgggggca tcggcaaggc 420 caagetgege ageatgaagg agegaaaget ggagaagaag aageagaagg ageaggagea 480 agtgagagcc acgagccaag gtgggcactt gatgtcggat ctcttcaaca agctggtcat 540 600 gaggcgcaag ggcatctctg ggaaagaacc tggggctggt gaggggcccg gaggagcctt

659

tgcccgcgtg tcagactcca tccctcctct gccgccaccg cagcagccac aggtag atg

<222> 974..1008

• •			
		Met	
		-80,	707
agg aca agg acg a	ict ggg aat cci	agg ggg ctc cat gac acc ttc ccc Arg Gly Leu His Asp Thr Phe Pro	
	.nr Gry Abn Fro	-70 -65	
		tot gad atg gad ada god agg ada	755
Arg Arg Pro Arg I	Leu Gly Arg Cys	Ser Asp Met Asp Thr Ala Arg Thr	
-60		-55 -50	
agc tgc tca gac o	etg ctt ccc tgg	gag ggg gtg acg gaa cca gca ctg	803
		Glu Gly Val Thr Glu Pro Ala Leu	
-45	-40		851
tgt gga gac cag (ctt caa gga acg	g gaa ggc tgg ctt gag gcc aca cag c Glu Gly Trp Leu Glu Ala Thr Gln	05-
-30	-25	-20	
		tgt gct cca tgg ggg gac ggc tcc	899
Leu Gly Arg Gly	Leu Leu Ser Ala	a Cys Ala Pro Trp Gly Asp Gly Ser	
-15	-10	-5 1	
		taagaggett ccagagaaaa cggcacacca	953
Thr Gln Pro Val	Pro Leu Cys Sei	c	•
5		·	1000
atcaataaag aactg	agcag aaaaaaaa	aa aaaaaaaaa aaaaaaaaaa aaaan	1008
<210> 64			
<211> 568			
<212> DNA			
<213> Homo sapie	ns		
			•
<220>			
<221> CDS			
<222> 18311			
<221> sig peptid	•		
<221> sig_peptid <222> 1862	C		
<223> Von Heijne	matrix	•	
score 8.4			
	VALAVLA/WG		
•			
<400> 64			
agtgctgctt accca	tc atg gaa gca	atg tgg ctc ctg tgt gtg gcg ttg	50
•		Met Trp Leu Leu Cys Val Ala Leu	
	-15	-10 -5	98
gcg gtc ttg gca	tgg ggc ttc ct	c tgg gtt tgg gac tcc tca gaa cga u Trp Val Trp Asp Ser Ser Glu Arg	30
Ala val Leu Ala	Trp Gry Phe ne	5 10	
ato aao aot coo	asa csa aas aa	a cgg ctg gga gcc gaa agc cgg acc	146
Met Lvs Ser Arg	Glu Gln Glv Gl	y Arg Leu Gly Ala Glu Ser Arg Thr	
15	20		
	qcq cac cct ga	c gat gaa gcc atg ttt ttt gct ccc	194
Leu Leu Val Ile	Ala His Pro As	p Asp Glu Ala Met Phe Phe Ala Pro	
30	35	40	
aca gtg cta ggc	ttg gcc cgc ct	a agg cac tgg gtg tac ctg ctt tgc	242
Thr Val Leu Gly	Leu Ala Arg Le	u Arg His Trp Val Tyr Leu Leu Cys	
45	50	55 60	
ttc tct gca gtt	ttc cgt agg ga	g cta agt gaa tac acc gaa ggt ctt	290
Phe Ser Ala Val		u Leu Ser Glu Tyr Thr Glu Gly Leu	
	65	70 75	341
		gggacagg agcggccggc ttacctggtg	341
Thr Ser Glu Pro	ned INL Ala		
	acado todostad	ta cgccagcagg attgaggagc agagaaacag	401
aarraadaaa carca	Juage regegeat		

521 568

ttgcagttgg ttgtattcag tacctgcatt tccgttggga actccacctg tacttgttat

tetgtggaac ttttttatt tgtagaagga gcaagaatat tgacettact atatagcaca

	568
<210> 65 <211> 538	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS <222> 151426	
<221> sig_peptide	
<222> 151258	
<pre><223> Von Heijne matrix score 5.2</pre>	
seq KVALAGLLGFGLG/KV	
<221> polyA_signal	
<222> 505510	
<221> polyA_site	
<222> 527538	
<400> 65	
	60
cactgggtca aggagtaagc agaggataaa caactggaag gagagcaagc acaaagtcat	60 120
cactgggtca aggagtaagc agaggataaa caactggaag gagagcaagc acaaggtaaccacaagcatgctca gcgtctgctc gtggaaacca agataaagat gcccattttc caccaccaagcaagcagctc tgccttttc tcttgtaagc atg ctt gtc acc cag gga cta gtc Met Leu Val Thr Gln Gly Leu Val -35 -30	
catggettca gegtetgete gtggaaacca agataaagat geceatttte caccaccaag caagcagete tgeetttte tettgtaage atg ett gte ace eag gga eta gte Met Leu Val Thr Gln Gly Leu Val -35 -30 tae caa ggt tat ttg gea get aat tet aga ttt gga tea ttg ece aaa	120
catggettea gegtetgete gtggaaacca agataaagat geceattte caccaccaag caagcagete tgeetttte tettgtaage atg ett gte ace cag gga eta gte Met Leu Val Thr Gln Gly Leu Val	120 174
catggettca gegtetgete gtggaaacca agataaagat geceattte caccaccaag caagcagete tgeetttte tettgtaage atg ett gte ace cag gga eta gte Met Leu Val Thr Gln Gly Leu Val -35 tac caa ggt tat ttg gca get aat tet aga ttt gga tea ttg ece aaa Tyr Gln Gly Tyr Leu Ala Ala Asn Ser Arg Phe Gly Ser Leu Pro Lys -25 -20 -15 qtt qca ett get qgt ete ttg gga tet gga aag gta tea tac	120 174
catggettca gegtetgete gtggaaacca agataaagat geceattte caccaccaag caagcagete tgeetttte tettgtaage atg ett gte ace cag gga eta gte Met Leu Val Thr Gln Gly Leu Val -35 tac caa ggt tat ttg gca get aat tet aga ttt gga tea ttg ece aaa Tyr Gln Gly Tyr Leu Ala Ala Asn Ser Arg Phe Gly Ser Leu Pro Lys -25 gtt gca ett get ggt ete ttg gga ttt gge ett gga aag gta tea tec Val Ala Leu Ala Gly Leu Leu Gly Phe Gly Leu Gly Lys Val Ser Tyr -10 -5	120 174 222
catggettca gegtetgete gtggaaacca agataaagat geceattte caccaccaag caagcagete tgeetttte tettgtaage atg ett gte ace cag gga eta gte Met Leu Val Thr Gln Gly Leu Val -35 tac caa ggt tat ttg gca get aat tet aga ttt gga tea ttg ece aaa Tyr Gln Gly Tyr Leu Ala Ala Asn Ser Arg Phe Gly Ser Leu Pro Lys -25 -20 -15 gtt gca ett get ggt ete ttg gga ttt gge ett gga aag gta tea tac Val Ala Leu Ala Gly Leu Leu Gly Phe Gly Leu Gly Lys Val Ser Tyr -10 -5 ata gga gta tge cag agt aaa tte eat ttt ttt gaa gat cag ete egt	120 174 222
catggettea gegtetgete gtggaaacca agataaagat geceattte caccaccaag caagcagete tgeettte tettgtaage atg ett gte ace cag gga eta gte Met Leu Val Thr Gln Gly Leu Val -35 tac caa ggt tat ttg gca get aat tet aga ttt gga tea ttg ece aaa Tyr Gln Gly Tyr Leu Ala Ala Asn Ser Arg Phe Gly Ser Leu Pro Lys -25 -20 -15 gtt gca ett get ggt ete ttg gga ttt gge ett gga aag gta tea tac Val Ala Leu Ala Gly Leu Leu Gly Phe Gly Leu Gly Lys Val Ser Tyr -10 -5 ata gga gta tge cag agt aaa tte eat ttt ttt gaa gat cag ete egt Ile Gly Val Cys Gln Ser Lys Phe His Phe Phe Glu Asp Gln Leu Ang	120 174 222 270
catggettea gegtetgete gtggaaacca agataaagat geceattte caccaccaag caagcagete tgeetttte tettgtaage atg ett gte ace cag gga eta gte Met Leu Val Thr Gln Gly Leu Val -35 tac caa ggt tat ttg gca get aat tet aga ttt gga tea ttg ece aaa Tyr Gln Gly Tyr Leu Ala Ala Asn Ser Arg Phe Gly Ser Leu Pro Lys -25 -20 -15 gtt gca ett get ggt ete ttg gga ttt gge ett gga aag gta tea tac Val Ala Leu Ala Gly Leu Leu Gly Phe Gly Leu Gly Lys Val Ser Tyr -10 -5 ata gga gta tge cag agt aaa tte eat ttt ttt gaa gat cag ete egt Ile Gly Val Cys Gln Ser Lys Phe His Phe Phe Glu Asp Gln Leu Arg 5 10 15 20	120 174 222 270
catggettea gegtetgete gtggaaacca agataaagat geceattte caccaccaag caagcagete tgeetttte tettgtaage atg ett gte ace cag gga eta gte Met Leu Val Thr Gln Gly Leu Val -35 tac caa ggt tat ttg gca get aat tet aga ttt gga tea ttg ece aaa Tyr Gln Gly Tyr Leu Ala Ala Asn Ser Arg Phe Gly Ser Leu Pro Lys -25 -20 -15 gtt gca ett get ggt ete ttg gga ttt gge ett gga aag gta tea tee Val Ala Leu Ala Gly Leu Leu Gly Phe Gly Leu Gly Lys Val Ser Tyr -10 -5 1 ata gga gta tge cag agt aaa tte cat ttt ttt gaa gat cag ete egt Ile Gly Val Cys Gln Ser Lys Phe His Phe Phe Glu Asp Gln Leu Arg 5 10 15 20 ggg get ggt ttt ggt eca cag cat aac agg eac tge ete ett ace tgt Gly Ala Gly Phe Gly Pro Gln His Asn Arg His Cys Leu Leu Thr Cys	120 174 222 270 318
catggettea gegtetgete gtggaaacca agataaagat geceattte caccaccaag caagcagete tgeetttte tettgtaage atg ett gte ace cag gga eta gte Met Leu Val Thr Gln Gly Leu Val -35 tac caa ggt tat ttg gca get aat tet aga ttt gga tea ttg ece aaa Tyr Gln Gly Tyr Leu Ala Ala Asn Ser Arg Phe Gly Ser Leu Pro Lys -25 gtt gca ett get ggt ete ttg gga ttt gge ett gga aag gta tea tee Val Ala Leu Ala Gly Leu Leu Gly Phe Gly Leu Gly Lys Val Ser Tyr -10 ata gga gta tge cag agt aaa tte eat ttt ttt gaa gat cag ete egt Ile Gly Val Cys Gln Ser Lys Phe His Phe Phe Glu Asp Gln Leu Arg 5 10 ggg get ggt ttt ggt eca eag eat aac agg eac tge ete ett ace tgt Gly Ala Gly Phe Gly Pro Gln His Asn Arg His Cys Leu Leu Thr Cys 25 36 37 38 38 38 38 38 38 38 38 38	120 174 222 270 318
catggettea gegtetgete gtggaaacca agataaagat geceattte caccaccaag caagcagete tgeetttte tettgtaage atg ett gte ace cag gga eta gte Met Leu Val Thr Gln Gly Leu Val -35 tac caa ggt tat ttg gca get aat tet aga ttt gga tea ttg eec aaa Tyr Gln Gly Tyr Leu Ala Ala Asn Ser Arg Phe Gly Ser Leu Pro Lys -25 -20 -15 gtt gca ett get ggt ete ttg gga ttt gge ett gga aag gta tea tae Val Ala Leu Ala Gly Leu Leu Gly Phe Gly Leu Gly Lys Val Ser Tyr -10 ata gga gta tge cag agt aaa tte eat ttt ttt gaa gat cag ete egt Ile Gly Val Cys Gln Ser Lys Phe His Phe Phe Glu Asp Gln Leu Arg 5 10 15 20 ggg get ggt ttt ggt eea cag eat aac agg eac tge ete ett get Gly Ala Gly Phe Gly Pro Gln His Asn Arg His Cys Leu Leu Thr Cys 25 30 35 gag gaa tge aaa ata aag eat gga tta agt gag aag gga gae tet eag Glu Glu Cys Lys Ile Lys His Gly Leu Ser Glu Lys Gly Asp Ser Gln	120 174 222 270 318
catggettea gegtetgete gtggaaacca agataaagat geceattte caccaccaag caagcagete tgeetttte tettgtaage atg ett gte ace cag gga eta gte Met Leu Val Thr Gln Gly Leu Val -35 tac caa ggt tat ttg gca get aat tet aga ttt gga tea ttg eec aaa Tyr Gln Gly Tyr Leu Ala Ala Asn Ser Arg Phe Gly Ser Leu Pro Lys -25 -20 -15 gtt gca ett get ggt ete ttg gga ttt gge ett gga aag gta tea tac Val Ala Leu Ala Gly Leu Leu Gly Phe Gly Leu Gly Lys Val Ser Tyr -10 -5 ata gga gta tge cag agt aaa tte eat ttt ttt gaa gat eag ete egt Ile Gly Val Cys Gln Ser Lys Phe His Phe Phe Glu Asp Gln Leu Arg 5 10 15 20 ggg get ggt ttt ggt eea eag eat aac agg eac tge ete ett ace tgt Gly Ala Gly Phe Gly Pro Gln His Asn Arg His Cys Leu Leu Thr Cys 25 30 35 gag gaa tge aaa ata aag eat gga tta agt gag aag gae tet eag Glu Glu Cys Lys Ile Lys His Gly Leu Ser Glu Lys Gly Asp Ser Gln	120 174 222 270 318
catggettea gegtetgete gtggaaacca agataaagat geceattte caccaccaag caagcagete tgeetttte tettgtaage atg ett gte ace cag gga eta gte Met Leu Val Thr Gln Gly Leu Val -35 tac caa ggt tat ttg gca get aat tet aga ttt gga tea ttg eec aaa Tyr Gln Gly Tyr Leu Ala Ala Asn Ser Arg Phe Gly Ser Leu Pro Lys -25 gtt gca ett get ggt ete ttg gga ttt gge ett gga aag gta tea tec Val Ala Leu Ala Gly Leu Leu Gly Phe Gly Leu Gly Lys Val Ser Tyr -10 ata gga gta tge eag agt aaa tte eat ttt ttt gaa gat eag ete egt Ile Gly Val Cys Gln Ser Lys Phe His Phe Phe Glu Asp Gln Leu Arg 5 10 15 20 ggg get ggt ttt ggt eea eag eat aac agg eac tge ete ett get Gly Ala Gly Phe Gly Pro Gln His Asn Arg His Cys Leu Leu Thr Cys 25 30 35 gag gaa tge aaa ata aag eat gga tta agt gag aag gae tet eag Glu Glu Cys Lys Ile Lys His Gly Leu Ser Glu Lys Gly Asp Ser Gln 40 45	120 174 222 270 318 366 414
catggettea gegtetgete gtggaaacca agataaagat geceattte caccaccaag caagcagete tgeetttte tettgtaage atg ett gte ace cag gga eta gte Met Leu Val Thr Gln Gly Leu Val -35 tac caa ggt tat ttg gca get aat tet aga ttt gga tea ttg ece aaa Tyr Gln Gly Tyr Leu Ala Ala Asn Ser Arg Phe Gly Ser Leu Pro Lys -25 gtt gca ett get ggt ete ttg gga ttt gge ett gga aag gta tea tee Val Ala Leu Ala Gly Leu Leu Gly Phe Gly Leu Gly Lys Val Ser Tyr -10 ata gga gta tge cag agt aaa tte eat ttt ttt gaa gat eag ete egt Ile Gly Val Cys Gln Ser Lys Phe His Phe Phe Glu Asp Gln Leu Arg 5 10 ggg get ggt ttt ggt eea cag eat aac agg eac tge ete ett ace tgt Gly Ala Gly Phe Gly Pro Gln His Asn Arg His Cys Leu Leu Thr Cys 25 gag gaa tge aaa ata aag eat gga tta agt gag aag gga gae tet eag Glu Glu Cys Lys Ile Lys His Gly Leu Ser Glu Lys Gly Asp Ser Gln 40 45 cet tea get tee taaattetgt gtetgtgaet ttegaagttt tttaaaeete Pro Ser Ala Ser	120 174 222 270 318 366 414 466

<210> 66

<211> 1747

<212> DNA

<213> Homo sapiens

<221> CDS <222> 10..1062 <221> sig_peptide <222> 10..57 <223> Von Heijne matrix score 4.9 seq FIYLQAHFTLCSG/WS <221> polyA_signal <222> 1710..1715 <221> polyA_site <222> 1735..1747 <400> 66 geetcacca atg gtt ecc tte ate tat etg caa gee cae ttt aca ete tgt 51 Met Val Pro Phe Ile Tyr Leu Gln Ala His Phe Thr Leu Cys -10 tet ggg tgg tee age aca tae egg gae ete egg aag ggt gtg tat gtg 99 Ser Gly Trp Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val Tyr Val ccc tac acc cag ggc aag tgg gaa ggg gag ctg ggc acc gac ctg gta 147 Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp Leu Val 25 20 age ate ece cat gge ece aac gte act gtg egt gee aac att get gee 195 Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile Ala Ala 35 40 atc act gaa tca gac aag ttc ttc atc aac ggc tcc aac tgg gaa ggc 243 Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp Glu Gly 55 atc ctg ggg ctg gcc tat gct gag att gcc agg cct gad gac tcc ccg 291 Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp Ser Pro 70 65 gag cot the the gae tot ong gha aag cag acc cae ght coe aac one 339 Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr His Val Pro Asn Leu 90 85 387 ttc tcc ctg cag ctt tgt ggt gct ggc ttc ccc ctc aac cag tct gaa Phe Ser Leu Gln Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln Ser Glu 105 100 gtg ctg gcc tct gtc gga ggg agc atg atc att gga ggt atc gac cac 435 Val Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile Asp His 120 115 teg etg tac aca ggc agt etc tgg tat aca eec ate egg egg gag tgg 483 Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg Glu Trp 135 130 tat tat gag gtg atc att gtg cgg gtg gag atc aat gga cag gat ctg 531 Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln Asp Leu 150 155 aaa atg gac tgc aag gag tac aac tat gac aag agc att gtg gac agt 579 Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val Asp Ser 170 165 627 ggc acc acc aac ctt cgt ttg ccc aag aaa gtg ttt gaa gct gca gtc Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala Ala Val 180 185 aaa too ato aag goa goo too too acg gag aag tto cot gac ggt tto 675 Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp Gly Phe 195 200 tgg cta gga gag cag ctg gtg tgc tgg caa gca ggc acc acc cct tgg 723 Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr Pro Trp 215 771 aac att ttc cca gtc atc tca ctc tac cta atg ggt gag gtt acc aac

Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val Thr Asn 230 235 cag tee tte ege ate ace ate ett eeg cag caa tae etg egg eea gtg 819 Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg Pro Val 245 250 867 gaa gat gtg gcc acg tcc caa gac gac tgt tac aag ttt gcc atc tca Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala Ile Ser 265 260 915 cag toa too acg ggc act gtt atg gga gct gtt atc atg gag ggc ttc Gln Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu Gly Phe 285 280 275 963 tac gtt gtc ttt gat cgg gcc cga aaa cga att ggc ttt gct gtc agc Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala Val Ser 295 300 290 get tgc cat gtg cac gat gag ttc agg acg gca gcg gtg gaa ggc cen 1011 Ala Cys His Val His Asp Glu Phe Arg Thr Ala Ala Val Glu Gly Pro 310 315 1059 ttt tgt cac ctt gga cat gga aga ctg tgg cta caa cat tcc aca gac Phe Cys His Leu Gly His Gly Arg Leu Trp Leu Gln His Ser Thr Asp 330 325 aga tgagtcaacc ctcatgacca tagcctatgt catggctgcc atctgcgccc 1112 Arq tottcatgct gccactctgc ctcatggtgt gtcagtggcg ctgcctccgc tgcctgcgcc 1172 agcagcatga tgactttgct gatgacatct ccctgctgaa gtgaggaggc ccatgggcag 1232 1292 aagataggga ttcccctgga ccacacctcc gtggttcact ttggtcacaa gtaggagaca cagatggcac ctgtggccag agcacctcag gaccctcccc acccaccaaa tgcctctgcc 1352 1412 ttgatggaga aggaaaaggc tggcaaggtg ggttccaggg actgtacctg taggagacag aaaagagaag aaagaagcac tctgctggcg ggaatactct tggtcacctc aaatttaagt 1472 cgggaaattc tgctgcttga aacttcagcc ctgaaccttt gtcaccattc ctttaaattc 1532 tccaacccaa agtattcttc ttttcttagt ttcagaagta ctggcatcac acgcaggtta 1592 1652 gccaaagtca gtaggagagg atgcacagtt tgctatttgc tttagagaca gggactgtat 1712 1747 aaacaagcct aacattggtg caaaaaaaaa aaaaa

<210> 67 <211> 1686 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 78..491 <221> sig_peptide <222> 78..218 <223> Von Heijne matrix score 5.8 seq LMCFGALIGLCAC/IC <221> polyA_signal <222> 1652..1657 <221> polyA_site <222> 1673..1686

						_	45				_	40				
200	aaa	att	gat	ctc	ctt	ааа	acc	tat	ctt	tgg	cgt	tgc	cag	ttc	ctt .	158
Ser	333	Tle	Asp	Leu	Leu	Arg	Thr	Tyr	Leu	Trp	Arg	Cys	Gln	Phe	Leu	
561	-35					-30		•		_	-25					
tta	cct	ttt	ata	agt	tta	ggt	ttg	atg	tgc	ttt	ggg	gct	ttg	atc	gga	206
Leu	Pro	Phe	Val	Ser	Leu	Gly	Leu	Met	Сув	Phe	Gly	Ala	Leu	Ile	GIÅ	
-20					-15					-10					-5	
ctt	tgt	gct	tgc	att	tgc	cga	agc	tta	tat	CCC	acc	att	gcc	acg	ggc	254
Leu	Сув	Ala	Cys	Ile	Cys	Arg	Ser	Leu	Tyr	Pro	Thr	Ile	Ala	Thr	Gly	
				1				5					10			202
att	ctc	cat	ctc	ctt	gca	ggt	ctg	tgt	aca	ctg	ggc	tca	gta	agt	tgt	302
Ile	Leu	His	Leu	Leu	Ala	Gly		Cys	Thr	Leu	GIY	ser	Val	ser	Cys	
		15					20					25			~~~	350
tat	gtt	gct	gga	att	gaa	cta	ctc	cac	cag	aaa	cta	gag	TON	Dro	nan	330
Tyr		Ala	Gly	Ile	Glu		Leu	His	GIn	гÀа	40	GIU	neu	PIO	Map	
	30					35					-	act	tat	atc	tet	398
aat	gta	tcc	.ggt	gaa	דננ	gga	rgg m-m	COC	Dhe	Cyc	T.en	Ala	Cve	Val	Ser	•••
	Val	ser	GIĀ	Glu		GIÀ	irb	261	Pile	55	neu	ALU	Cyb		60	
45				ttc	50	act	+~+	act	ctc		atc	taa	act	act		446
gct	CCC	tta	Cag	Phe	Mat	Ala	Ser	Mla	Len	Phe	Ile	Tro	Ala	Ala	His	
Ala	PIO	Leu	GIII	65	MEL	AIG	SCI	n.u	70					75		
200	220	caa	202	gag	tac	acc	tta	ato		аса	tat	cat	ata	gca		491
Thr	Acn	723	Ara	Glu	Tvr	Thr	Leu	Met	Lvs	Ala	Tyr	Arg	Val	Āla		
			80					85					90			
tga	gcaa	gaa	actq	ccta	ct t	taca	attg	с са	tttt	tatt	ttt	ttaa	aat	aata	ctgata	551
ttt	tccc	cac	ctct	caat	tq t	tttt	aatt	t tt	attt	gtgg	ata	tacc	att	ttat	tatgaa	611
aat	ctat	ttt	attt	atac	ac a	ttca	ccac	t aa	atac	acac	tta	atac	cac	taaa	atttat	671
ata	attt	act	ttaa	qcqa	tq c	catc	tttc	a aa	taaa	ctaa	. tct	aggt	cta	gaca	gaaaga	731
aat	ggat	aga	gact	tgac	ac a	aatt	tatg	a aa	gaaa	attg	gga	gtag	gaa	tgtg	accgaa	791
aac	aagt	tgt	gcta	atgt	ct g	ttag	actt	t to	agta	aaac	caa	agta	act	gtat	ctgttc	851 911
aac	taaa	aac	tcta	tatt	ag t	ttct	ttgg	g aa	acct	ctca	tcg	tcaa	aac	ttta	tgttca	971
ctt	tgct	gtt	gtag	atag	cc a	gtca	acca	g ca	gtat	tagt	gct	gttt	tca	aaga	tttaag	1031
cto	tata	aaa	ttgg	gaaa	tt a	tcta	agat	cat	tttc	ccta	ago	attg	aca	cala	gcttca	1091
tct	gagg	tga	gata	tggc	ag c	tgtt	tgta	t ct	gcac	rgtg	tct	gtet	aca	togo	gtgaaa	1151
aat	acag	tgt	ttac	ttga	aa t	ttta	actt	t gt	aact	gcaa	gaa	10200	ayı	ttat	ccgggc	1211
gag	gatt	agt	atta	tttt	ta a	CCCC	ccgt	a ag	Jacco	ccac	tac	catt	tet	++++	tttgga	1271
ttt	tttt	TCT	ttcc	cctt	ca c	atac	cago	g tt	.attc			++cc	200	ccac	acatta	1331
tat	taca	gtt	acaa	iggta	aa a		toaa	ים בי	ctar		. cct	2000	caa	gato	taaagt	1391
444	yaac	966	CCAC	cata	te S	accc acct	ator	15 as	·++=+	-t+c+	tat	aata	ata	taat	gtgcct	1451
500	.ggct	.gcc	222	aacc	+~ ~	aau.	atat	a to	2000	ttet	tt:	atot	ctt	ctaa	ttcagt	1511
C C C		+2+	227	atat	.uu (taas	catt	o as	actt	aaaa	aac	ttat	tta	ttta	ttccac	1571
tar	.coct	ace	atto	acec	rat t	2222	aaat	a ta	acti	cata	att	tctt	acc	ataa	cctcaa	1631
tat	cttt	ttt	aaaa	aata	aa a	attaa	aaat	g aa	aaaga	agaco	caa	aaaa	aaaa	aaaa	ıa	1686
-91								J,-		J	2 - 3 - 4					

<210> 68 <211> 542 <212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 69..371

<221> sig_peptide

<222> 69..287

<223> Von Heijne matrix score 4 seq AVGFLFWVIVLTS/WI

<221> polyA_signal <222> 510515	٠.
<221> polyA_site <222> 530542	
<400> 68 tgttacttag ggtcaaggct tgggtcttgc cccgcaaacc cttgggacga cccggccca gcgcagct atg aac ctg gag cga gtg tcc aat gag gag aaa ttg aac ctg Met Asn Leu Glu Arg Val Ser Asn Glu Glu Lys Leu Asn Leu -70 -65 -60	60 110
tgc cgg aag tac tac ctg ggg ggg ttt gct ttc ttg cct ttt ctc tgg Cys Arg Lys Tyr Tyr Leu Gly Gly Phe Ala Phe Leu Pro Phe Leu Trp -55 -50 -45	158
ttg gtc aac atc ttc tgg ttc tac cga gag gcc ttc ctt gtc cca gcc Leu Val Asn Ile Phe Trp Phe Tyr Arg Glu Ala Phe Leu Val Pro Ala	206
tac aca gaa cag agc caa atc aaa ggc tat gtc tgg cgc tca gct gtg Tyr Thr Glu Gln Ser Gln Ile Lys Gly Tyr Val Trp Arg Ser Ala Val	254
ggc ttc ctc ttc tgg gtg ata gtg ctc acc tcc tgg atc acc atc ttc Gly Phe Leu Phe Trp Val Ile Val Leu Thr Ser Trp Ile Thr Ile Phe	302
cag atc tac cgg ccc cgc tgg ggt gcc ctt ggg gac tac ctc tcc ttc Gln Ile Tyr Arg Pro Arg Trp Gly Ala Leu Gly Asp Tyr Leu Ser Phe	350
acc ata ccc ctg ggc acc ccc tgacaacttc tgcacatact ggggccctgc Thr Ile Pro Leu Gly Thr Pro	401
ttattetece aggacagget cettaaagea gaggageetg teetgggage eeetteteaa acteetaaga ettgttetea tgteecaegt tetetgetga cateeceeaa taaaggacee taaettteaa aaaaaaaaa a	461 521 542
<210> 69 <211> 1174 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> 2757	
<221> sig_peptide <222> 2205 <223> Von Heijne matrix score 7.3 seq LRLILSPLPGAQP/QQ	
<221> polyA_site <222> 11601174	
<pre><400> 69 g atg cct gag ggc ccc gag ctg cac ctg gcc agc cag ttt gtg aat gag Met Pro Glu Gly Pro Glu Leu His Leu Ala Ser Gln Phe Val Asn Glu</pre>	49
-65 -60 -55 gcc tgc agg gcg ctg gtg ttc ggc ggc tgc gtg gag aag tcc tct gtc Ala Cys Arg Ala Leu Val Phe Gly Gly Cys Val Glu Lys Ser Ser Val	97
-50 -45 -40 agc cgc aac cct gag gtg ccc ttt gag agc agt gcc tac cgc atc tca	145

	-35					-30					-25			Ile		
Ala	Ser	Ala	Arg	Gly	Lys -15	Glu	Leu	Arg	Leu	11e	Leu	Ser	Pro	ctg Leu	-5	193
ggg Gly	Ala	Gln	Pro	Gln 1	Gln	Glu	Pro	Leu 5	Ala	Leu	Val	Phe	Arg 10	ttc Phe	GIÀ	241
Met	Ser	Gly 15	Ser	Phe	Gln	Leu	Val 20	Pro	Arg	Glu	Glu	Leu 25	Pro	cgc Arg	His	289
gcc Ala	cac His	ctg Leu	cgc Arg	ttt Phe	tac Tyr	acg Thr 35	gcc Ala	ccg Pro	cct Pro	ggc Gly	ccc Pro 40	cgg Arg	ctc Leu	gcc Ala	cta Leu	337
Cys 45	ttc Phe	Val	Asp	Ile	Arg 50	Arg	Phe	Gly	Arg	Trp 55	Asp	Leu	Gly	gga Gly	Lys 60	385
taa	cag Gln	ccg Pro	ggc Gly	cgc Arg 65	GJÀ aaa	ccc Pro	tgt Cys	gtc Val	ttg Leu 70	cag Gln	gag Glu	tac Tyr	cag Gln	cag Gln 75	ttc Phe	433
agg Arg	gag Glu	aat Asn	gtg Val 80	cta	cga Arg	aac Asn	cta Leu	gcg Ala 85	gat Asp	aag Lys	gcc Ala	ttt Phe	gac Asp 90	cgg Arg	ccc Pro	481
atc Ile	tgc Cys	gag Glu 95	acc	ctc Leu	ctg Leu	gac Asp	cag Gln 100	agg	ttc Phe	ttc Phe	aat Asn	ggc Gly 105	att Ile	ggc Gly	aac Asn	529
tat Tyr	ctg Leu 110	cgg Arg	gca Ala	gag Glu	atc Ile	ctg Leu 115	tac	cgg Arg	ctg Leu	aag Lys	atc Ile 120	Pro	ccc Pro	ttt Phe	gag Glu	577
aag Lys 125	gcc Ala	cac	tcg Ser	gtc Val	ctg Leu 130	gag	gcc Ala	ctg Leu	cag Gln	cag Gln 135	cac His	agg Arg	ccg Pro	agc Ser	ccg Pro 140	625
gag	cta	acc Thr	ctg Leu	agc Ser 145	cag Gln	aag Lys	ata Ile	agg Arg	acc Thr 150	aag Lys	ctg Leu	cag Gln	aat Asn	tca Ser	gac Asp	673
ctg Leu	ctg Leu	gag Glu	cta Leu 160	tgt Cys	cac	tca Ser	gtg Val	ccc Pro	aag Lys	gaa	gtg Val	gtc Val	cag Gln 170	Leu	ggt Gly	721
gag Glu	gco Ala	aaa Lys	gat Asp	ggc Gly	ago Ser	aac	cto Leu 180	tgo Cys	ttc	agc Ser	aaa Lys	tga	ttgt	gta		767
acc	ctqq	aac	actt	gtco	cc c	tctg	gaco	t ga	ttca	ccga	ttt	ggaa	gtt	tgta	gcccta	827
act	gata	ctc	aato	gact	ag c	cctc	ctca	ic tt	gtca	atag	ı tgt	ttcc	agg	ctgg	gcgcag	887
tqc	ictca	tqc	ctqt	ggto	cc g	gcac	ttcg	ig ga	ggcc	gagt	999	ıgtgg	ctc	acct	gaggtc	947
ago	ragtt	cqa	gaco	atco	tq c	ccaa	cate	g to	jaaac	ccca	tct	ccac	taa	aatg	caaaaa	1007 1067
att	agco	agg	tgtg	gtgg	geg g	gcac	ctgt	a gt	ctca	gcta	cto	ggga	igga 	cgas	gcagga	1127
cac	tcgo	gggc	aacc	gagag	gag g	rgga laact	ccat	g ca c to	caaaa	aget	. yaçı ı aaa	acco	ı	cact	gcactc	1174

<210> 70

<211> 1285

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 2..1051

<221> sig_peptide <222> 2..205

<223> Von Heijne matrix score 7.3 seg LRLILSPLPGAQP/QQ <221> polyA_signal <222> 1248..1253 <221> polyA_site <222> 1272..1285 <400> 70 g atg cct gag ggc ccc gag ctg cac ctg gcc agc cag ttt gtg aat gag 49 Met Pro Glu Gly Pro Glu Leu His Leu Ala Ser Gln Phe Val Asn Glu -65 ged tgd agg geg ctg gtg ttd ggd ggd tgd gtg gag aag ted tet gtd Ala Cys Arg Ala Leu Val Phe Gly Gly Cys Val Glu Lys Ser Ser Val -40 -45 age ege aac eet gag gtg eee ttt gag age agt gee tae ege ate tea Ser Arg Asn Pro Glu Val Pro Phe Glu Ser Ser Ala Tyr Arg Ile Ser -30 gct tca gcc cgc ggc aag gag ctg cgc ctg ata ctg agc cct ctg cct 193 Ala Ser Ala Arg Gly Lys Glu Leu Arg Leu Ile Leu Ser Pro Leu Pro -10 -15 ggg gcc cag ccc caa cag gag cca ctg gcc ctg gtc ttc cgc ttc ggc 241 Gly Ala Gln Pro Gln Gln Glu Pro Leu Ala Leu Val Phe Arg Phe Gly 289 atg tcc ggc tct ttt cag ctg gtg ccc cgc gag gag ctg cca cgc cat Met Ser Gly Ser Phe Gln Leu Val Pro Arg Glu Glu Leu Pro Arg His 20 gee cac ctg ege ttt tac aeg gee ceg eet gge eee egg ete gee eta 337 Ala His Leu Arg Phe Tyr Thr Ala Pro Pro Gly Pro Arg Leu Ala Leu 35 tgt ttc gtg gac atc cgc cgg ttc ggc cgc tgg gac ctt ggg gga aag 385 Cys Phe Val Asp Ile Arg Arg Phe Gly Arg Trp Asp Leu Gly Gly Lys 50 tgg cag ccg ggc cgc ggg ccc tgt gtc ttg cag gag tac cag cag ttc 433 Trp Gln Pro Gly Arg Gly Pro Cys Val Leu Gln Glu Tyr Gln Gln Phe 70 65 481 agg ctg aag atc ccc ccc ttt gag aag gcc cgc tcg gtc ctg gag gcc Arg Leu Lys Ile Pro Pro Phe Glu Lys Ala Arg Ser Val Leu Glu Ala 85 ctg cag cag cac agg ccg agc ccg gag ctg acc ctg agc cag aag ata 529 Leu Gln Gln His Arg Pro Ser Pro Glu Leu Thr Leu Ser Gln Lys Ile 105 100 577 agg acc aag ctg cag aat cca gac ctg ctg gag cta tgt cac tca gtg Arg Thr Lys Leu Gln Asn Pro Asp Leu Leu Glu Leu Cys His Ser Val 120 115 625 ccc aag gaa gtg gac cag ttg ggg ggc agg ggc tac ggg tca gag agc Pro Lys Glu Val Asp Gln Leu Gly Gly Arg Gly Tyr Gly Ser Glu Ser 135 130 673 ggg gag gag gac ttt gct gcc ttt cga gcc tgg ctg cgc tgc tat ggc Gly Glu Glu Asp Phe Ala Ala Phe Arg Ala Trp Leu Arg Cys Tyr Gly 150 155 145 atg cca ggc atg agc tcc ctg cag gac cgg cat ggc cgt acc atc tgg 721 Met Pro Gly Met Ser Ser Leu Gln Asp Arg His Gly Arg Thr Ile Trp 165 769 ttc cag ggg gat cct gga ccg ttg gca ccc aaa ggg cgc aag tcc cgc Phe Gln Gly Asp Pro Gly Pro Leu Ala Pro Lys Gly Arg Lys Ser Arg 180 185 aaa aag aaa too aag goo aca cag otg agt oot gag gac aga gtg gag 817 Lys Lys Lys Ser Lys Ala Thr Gln Leu Ser Pro Glu Asp Arg Val Glu 190 195

gac gct ttg cct cca agc aag gcc cct tcc aag aca cga agg gca aag Asp Ala Leu Pro Pro Ser Lys Ala Pro Ser Lys Thr Arg Arg Ala Lys	865
210 215	
and and and and act goa acc cag cod cot gag ggg acc age	913
Arg Asp Lett Pro Lys Arg Thr Ala Thr Gin Arg Pro Gid Giy ini ber	
225 230 233	961
ctc cag cag gac cca gaa gct ccc aca gtg ccc aag aag ggg agg agg	301
Leu Gln Gln Asp Pro Glu Ala Pro Thr Val Pro Lys Lys Gly Ala Ala	
)A() 233	1009
aag ggg cga cag gca gcc tct ggc cac tgc aga ccc cgg aag gtc aag Lys Gly Arg Gln Ala Ala Ser Gly His Cys Arg Pro Arg Lys Val Lys	
255 260 265	
get gag atc coa toc ttg gaa coa gag ggg acc toa goc tot	1051
Ala Asp Ile Pro Ser Leu Glu Pro Glu Gly Thr Ser Ala Ser	
276 275 280	
tagcaggagg ctctccttgc ttgcactcac cctttcttat tgtcttgccc tgcatctggg	1111
and the tet aggregate aggregatetet gaaggtgcaa acaggcccta cygetyttet	1231
atgraceact ctrategett taattgtacc ccatcttcca catctttaaa gettatgtga	1285
aaaatgctgc atttttaata aactgataca tttgaactcc aaaaaaaaaa	1200
•	
<210> 71	
<211> 1398	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> 21171	
<221> sig_peptide	
<222> 2205	
<223> Von Heijne matrix	
score 7.3	
seq LRLILSPLPGAQP/QQ	
	*
<221> polyA_signal	
<222> 13681373	
<221> polyA_site <222> 13861398	
<222> 13861398	
<400> 71	
a sta get and aga aga at gag at gag aga aga aga tit gig aat gag	49
Met Pro Glu Gly Pro Glu Leu His Leu Ala Ser Gin Phe vai Ash Glu	
-65 -60 -35	67
gcc tgc agg gcg ctg gtg ttc ggc ggc tgc gtg gag aag tcc tct gtc	97
Ala Cvs Arg Ala Leu Val Phe Gly Gly Cys Val Glu Lys Ser Ser Var	
-45 -40 -45 -40 -40 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	145
age ege aac eet gag gtg eee ttt gag age agt gee tae ege ate tea	140
Ser Arg Asn Pro Glu Val Pro Phe Glu Ser Ser Ala Tyl Arg Tre Ser	•
-35 -30 -25	193
get tea gee ege gge aag gag etg ege etg ata etg age eet etg eet	
Ale new his here classical Classical Arg Lett Tie Lett Ser Pro Lett Pro	
Ala Ser Ala Arg Gly Lys Glu Leu Arg Leu Ile Leu Ser Pro Leu Pro	
-20 -15 -10	241
-20 -15 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10	241
ggg gcc cag ccc caa cag gag cca ctg gcc ctg gtc ttc cgc ttc ggc Gly Ala Gln Pro Gln Gln Glu Pro Leu Ala Leu Val Phe Arg Phe Gly	241
ggg gcc cag ccc caa cag gag cca ctg gcc ctg gtc ttc cgc ttc ggc Gly Ala Gln Pro Gln Gln Pro Leu Ala Leu Val Phe Arg Phe Gly	241
ggg gcc cag ccc caa cag gag cca ctg gcc ctg gtc ttc cgc ttc ggc Gly Ala Gln Pro Gln Gln Glu Pro Leu Ala Leu Val Phe Arg Phe Gly 1 5 10 2tg tcc ggc tct ttt cag ctg gtg ccc cgc gag gag ctg cca cgc cat	
ggg gcc cag ccc caa cag gag cca ctg gcc ctg gtc ttc cgc ttc ggc Gly Ala Gln Pro Gln Gln Pro Leu Ala Leu Val Phe Arg Phe Gly	

	•
gcc cac ctg cgc ttt tac acg gcc ccg cct ggc ccc cgg ctc gcc cta Ala His Leu Arg Phe Tyr Thr Ala Pro Pro Gly Pro Arg Leu Ala Leu	337
30 35 40 tgt ttc gtg gac atc cgc cgg ttc ggc cgc tgg gac ctt ggg gga aag Cys Phe Val Asp Ile Arg Arg Phe Gly Arg Trp Asp Leu Gly Gly Lys	385
45 50 55 60 tgg cag cgg ggg ccc tgt gtc ttg cag gag tac cag cag ttc	433
Trp Gln Pro Gly Arg Gly Pro Cys Val Leu Gln Glu Tyr Gln Gln Phe 65 70 75	403
agg gag aat gtg cta cga aac cta gcg gat aag gcc ttt gac cgg ccc Arg Glu Asn Val Leu Arg Asn Leu Ala Asp Lys Ala Phe Asp Arg Pro 80 85 90	481
atc tgc gag gcc ctc ctg gac cag agg ttc ttc aat ggc att ggc aac Ile Cys Glu Ala Leu Leu Asp Gln Arg Phe Phe Asn Gly Ile Gly Asn 95 100 105	529
tat ctg cgg gca gag atc ctg tac cgg ctg aag atc ccc ccc ttt gag Tyr Leu Arg Ala Glu Ile Leu Tyr Arg Leu Lys Ile Pro Pro Phe Glu 110 115 120	577
aag gcc cgc tcg gtc ctg gag gcc ctg cag cag cac agg ccg agc ccg Lys Ala Arg Ser Val Leu Glu Ala Leu Gln Gln His Arg Pro Ser Pro	625
gag ctg acc ctg agc cag aag ata agg acc aag ctg cag aat cca gac Glu Leu Thr Leu Ser Gln Lys Ile Arg Thr Lys Leu Gln Asn Pro Asp	673
ctg ctg gag cta tgt cac tca gtg ccc aag gaa gtg gtc cag ttg ggg Leu Leu Glu Leu Cys His Ser Val Pro Lys Glu Val Val Gln Leu Gly 160 165 170	721
ggc aga ggc tac ggg tca gag agc ggg gag gac ttt gct gcc ttt Gly Arg Gly Tyr Gly Ser Glu Ser Gly Glu Glu Asp Phe Ala Ala Phe 175 180 185	769
cga gcc tgg ctg cgc tgc tat ggc atg cca ggc atg agc tcc ctg cag Arg Ala Trp Leu Arg Cys Tyr Gly Met Pro Gly Met Ser Ser Leu Gln 190 195 200	817
gac cgg cat ggc cgt acc atc tgg ttc cag ggg gat cct gga ccg ttg Asp Arg His Gly Arg Thr Ile Trp Phe Gln Gly Asp Pro Gly Pro Leu 205 210 215 220	865
gca ccc aaa ggg cgc aag tcc cgc aaa aag aaa tcc aag gcc aca cag Ala Pro Lys Gly Arg Lys Ser Arg Lys Lys Lys Ser Lys Ala Thr Gln 225 230 235	913
ctg agt cct gag gac aga gtg gag gac gct ttg cct ccg agc aag gcc Leu Ser Pro Glu Asp Arg Val Glu Asp Ala Leu Pro Pro Ser Lys Ala 240 245 250	961
cct tcc agg aca cga agg gca aag aga gac ctt cct aag agg act gca Pro Ser Arg Thr Arg Arg Ala Lys Arg Asp Leu Pro Lys Arg Thr Ala 255 260 265	1009
acc cag cgg cct gag ggg acc agc ctc cag cag gac cca gaa gct ccc Thr Gln Arg Pro Glu Gly Thr Ser Leu Gln Gln Asp Pro Glu Ala Pro 270 275 280	1057
aca gtg ccc aag aag ggg agg agg agg ggg cga cag gca gcc tct ggc Thr Val Pro Lys Lys Gly Arg Lys Gly Arg Gln Ala Ala Ser Gly 285 290 295 300	1105
cac tgc aga ccc cgg aag gtc aag gct gac atc cca tcc ttg gaa cca His Cys Arg Pro Arg Lys Val Lys Ala Asp Ile Pro Ser Leu Glu Pro	1153
305 310 315 gag ggg acc tca gcc tct tagcaggagg ctctccttgc ttgcactcac Glu Gly Thr Ser Ala Ser 320	1201
cctttcttat tgtcttgccc tgcatctggg ggtctgaatt tttgggagca ggcaatatct gaaggtgcaa acaggcccta cggctgttcc ctgcacaact ctcatggttt taattgtacc ccatcttcca catctttaaa gctcatgtga aaaatgctgc atttttaata aactgataca tttgaaaaaa aaaaaaa	1261 1321 1381 1398

<210	> 72														•	
<211	> 82	1														
<212	> DN	A														
<213	> Ho	mo s	apie	ns												
			•													
<220	-															
	> CD	c														
			٠,													
<222	> 42		1													
			ptid	.e												
	> 42															
<223	> Vo	n He	ijne	mat	rix											
	sc	ore	4.4													
	se	q NL	PHLQ	VVGI	TWG/	HI										
<221	> po	lyA_	sign	al												
<222	> 78	77	92													
<221	og <.	lvA	site	:												
	> 80															
~~~	00	• • • •														
-400	> 72															
			+ = = =			cctc	cata	tee	acta	taa	a at	a ta	t at	t to	g ccc	56
ccgt	.cgcc	ag t	ياعاء.	leges	ar gr	.cccg	,cgcc		.4900	99	· Me	+ T	rr Va	ו תי	p Pro	
											M	,	-8		.р	
	_												-		cta	104
tgt	gct	gtg	gtc	ctg	gcc	cag	tac	Ctt	-gg	-	cac	aga	aga	2	Tan	104
Cys	Ala	Val	Val	Leu	Ala	Gln		Leu	Trp	Pne	His		Arg	ser	Leu	
		-75					-70					-65				
cca	ggc	aag	gcc	atc	tta	gag	att	gga	gca	gga	gtg	agc	ctt	cca	gga	152
Pro	Gly	Lys	Ala	Ile	Leu	Glu	Ile	Gly	Ala	Gly	Val	Ser	Leu	Pro	Gly	
	-60	•				-55		_			-50					
att		act	acc	aaa	tgt		gca	gaa	gta	ata	cta	tca	qac	aqc	tca	200
Tla	Len	The	פוע	Tare	Cys	Glv	Δla	Glu	Val	Tle	Len	Ser	Asp	Ser	Ser	
	пеп	TILL	Ala	пув	~40	Gry	AIG	010	· · · ·	-35					-30	
-45								+~+			3.55	+~~	~ 2 2	ato		248
gaa	ctg	CCE	cac	tgt	ctg	gaa	gte	cgc	cgg	Caa	age	cyc	Caa	Mot	nac nan	
Glu	Leu	Pro	His		Leu	GIU	vaı	Cys		GIN	Ser	Cys	GIII	Mec	ASII	
				-25					-20					-15		200
aac	ctg	cca	cat	ctg	cag	gtg	gta	gga	cta	aca	tgg	gặt	cat	ata	tet	296
Asn	Leu	Pro	His	Leu	Gln	Val	Val	Gly	Leu	Thr	Trp	Gly	His	Ile	Ser	
			-10					-5	•				1			
tgg	gat	ctt	ctg	gct	cta	cca	cca	caa	gat	att	atc	ctt	gca	tct	gat	344
Trn	Asp	Leu	Leu	Ala	Leu	Pro	Pro	Gln	Asp	Ile	Ile	Leu	Ala	Ser	Asp	
<u>-</u> -	5					10			-		15				_	
ata			~==	000	gaa			gaa	gac	att		act	aca	ata	tat	392
363	Dho	Dho	23	Dwa	Glu	200	Pho	Glu	300	Tle	T.en	212	Thr	Tle	Tvr	
	Pne	PILE	GIU	PIO		MSD	FILE	GIU	veb	30	neu	AIG	1111		35	
20					25											440
ttt	ttg	atg	cac	aag	aat	CCC	aag	gtc	caa	ttg	_ Egg	ECE	act	Cat	Caa	77'
Phe	Leu	Met	His	Lys	Asn	Pro	Lys	Val		Leu	Trp	Ser	Thr		GIR	
				40					45					50		
gtt	agg	agt	gct	gac	tgg	tca	ctt	gaa	gct	tta	ctc	tac	aaa	tgg	gat	488
Val	Arq	Ser	Ala	Asp	Trp	Ser	Leu	Glu	Ala	Leu	Leu	Tyr	Lys	Trp	Asp	
			55	•	•			60				-	65			
ato	222	tat		cac	att	cct	ctt		tct	ttt	gat	gca	gac	aaa	gaa	53
Mat	Tuc	Cyc	Wal.	Uic	Ile	D~0	T.AN	Glu	Ser	Dhe	200	200	Aen	LVS	Glu	
met	nys		val	urs	TTE	FIO		GIU	261	-116	vob		voħ	د ړ ــ	u	
		70					75					80				<b>c</b> 0
gat	ata	gca	gaa	tct	acc	ctt	cca	gga	aga	cat	aca	gct	gaa	atg	ccg	58-
Asp	Ile	Ala	Glu	Ser	Thr		Pro	Gly	Arg	His		Val	Glu	Met	Leu	
	85					90					95					
gtc	att	tcc	ttt	gca	aag	gac	agt	ctc	tga	atta	tac (	ctac	aacc	tg		63
Val	Ile	Ser	Phe	Ala	Lys	Asp	Ser	Leu								

100 ttctgggac cagcttgag cacctagac aaaaaaaa	a atgcag a acactt	gtggg to	tgaagatg	gtcaa	gtctg	tctgc	cttag	attt	tgatgt	691 751 811 821
<210> 73 <211> 916 <212> DNA <213> Hom	o sapier	ns								
<220> <221> CDS <222> 62.	.916									
seq	.757 Heijne re 4.2 LVTPAAL	matrix	'GN							
<221> poly <222> 904										
<400> 73 cctgaatga g atg gga Met Gly	tgt gtt	ttc ca	ng agc ac n Ser Th	a gaa	gac aa	a cgt	ata t	tc aa	ag ata	60 109
gac tgg a Asp Trp T -215										157
tac tat to Tyr Tyr Tyr Ty-200			Ser Val			Arg P				205
gta cac to	eu Met G			_	n Asp			_	Leu	253
caa gat g Gln Asp V			-					Ile	_	301
ctc aaa g Leu Lys G				Lys Ly		Val V				349
ctt cca g Leu Pro G -135										397
cag atg g Gln Met G -120	ga tgt g ly Cys V	gtt ttc Val Phe -115	Gln Ser	aca gaa	a gtg ı Val -110	Lys H	ac gtg is Val	acc Thr	aag Lys -105	445
gta gaa t Val Glu T	rp Ile F				a Lys					493
cgt tac to	ac cac a	aa ctc		tct gc	ggag			agc		541
ggc cac to	tc cag a	at cgt Asn Arg	gtg aac Val Asn -65	ctg gt	g 999 1 Gly	Asp I	tt ttc	cgc Arg	aat Asn	589
gac ggt t		tg ctt		gtg ag	g gag			gga	aac	637

Asp Gly Ser Ile Met Leu Gln Gly Val Arg Glu Ser Asp Gly Gly Asn -55 -50 -45	
tac acc tgc agt atc cac cta ggg aac ctg gtg ttc aag aaa acc att	685
Tyr Thr Cys Ser Ile His Leu Gly Asn Leu Val Phe Lys Lys Thr Ile	
-40 -35 -30 -25	
gtg ctg cat gtc agc ccg gaa gag cct cga aca ctg gtg acc ccg gca	733
Val Leu His Val Ser Pro Glu Glu Pro Arg Thr Leu Val Thr Pro Ala	
-20 -15 -10	
gcc ctg agg cct ctg gtc ttg ggt ggt aat cag ttg gtg atc att gtg	781
Ala Leu Arg Pro Leu Val Leu Gly Gly Asn Gln Leu Val Ile Ile Val	
-5 1 5	
gga att gtc tgt gcc aca atc ctg ctg ctc cct gtc ctg ata ttg atc	829
Gly Ile Val Cys Ala Thr Ile Leu Leu Leu Pro Val Leu Ile Leu Ile	
10 15 20	
gtg aag aag acc tgt gga aat aag agt tca gtg aat tct aca gtc ttg	877
Val Lys Lys Thr Cys Gly Asn Lys Ser Ser Val Asn Ser Thr Val Leu	
25 30 35 40	
gtg aag aac acg aag act aat cca aaa aaa aaa	916
Val Lys Asn Thr Lys Lys Thr Asn Pro Lys Lys Lys	
45 50	
45	
•	
<210> 74	
<211> 1153	
<211> 1155 <212> DNA	
<213> Homo sapiens	
C2137 Homo Bapteria	
<220>	
<221> CDS	
<222> 62520	
(222) (2)20	
2211 polya gignal	
<221> polyA_signal	
C222> 11241125	
221, polya pito	
<221> polyA_site	
<222> 11411153	
1400. 74	
<400> 74	60
cctgaatgac ttgaatgttt ccccgcctga gctaacagtc catgtgggtg attcagctct	109
g atg gga tgt gtt ttc cag agc aca gta gac aaa tgt ata ttc aag ata	103
Met Gly Cys Val Phe Gln Ser Thr Val Asp Lys Cys Ile Phe Lys Ile	
1 5 10 15	157
gac tgg act ctg tca cca gga gag cac gcc aag gac gaa tat gtg cta	157
Asp Trp Thr Leu Ser Pro Gly Glu His Ala Lys Asp Glu Tyr Val Leu	
20 25 30	205
tac tat tac tee aat etc agt gtg eet att ggg ege tte eag aac ege	205
Tyr Tyr Tyr Ser Asn Leu Ser Val Pro Ile Gly Arg Phe Gln Asn Arg	
35 40 45	
gta cac ttg atg ggg gac atc tta tgc aat gat ggc tct ctc ctg ctc	253
Val His Leu Met Gly Asp Ile Leu Cys Asn Asp Gly Ser Leu Leu Leu	
50 55 60	
caa gat gtg caa gag gct gac cag gga acc tat atc tgt gaa atc cgc	301
Gln Asp Val Gln Glu Ala Asp Gln Gly Thr Tyr Ile Cys Glu Ile Arg	
65 70 75 80	
ctc aaa ggg gag agc cag gtg ttc aag aag gcg gtg gta ctg cat gtg	349
Leu Lys Gly Glu Ser Gln Val Phe Lys Lys Ala Val Val Leu His Val	
85 90 95	
ctt cca qaq gaq ccc aaa gag ctc atq qtc cat qtq qqt qqa ttq att	397
ctt cca gag gag ccc aaa gag ctc atg gtc cat gtg ggt gga ttg att Leu Pro Glu Glu Pro Lvs Glu Leu Met Val His Val Gly Gly Leu Ile	397
Leu Pro Glu Glu Pro Lys Glu Leu Met Val His Val Gly Gly Leu Ile	397
Leu Pro Glu Glu Pro Lys Glu Leu Met Val His Val Gly Gly Leu Ile	397 445

Gln Met Gly Cys Val Phe Gln Ser Thr Glu Val Lys His Val Thr Lys	
gta gaa tgg ata ttt tca gga cgg cgc gca aag gta aca agg agg aaa Val Glu Trp Ile Phe Ser Gly Arg Arg Ala Lys Val Thr Arg Arg Lys 130 135 140	493
cat cac tgt gtt aga gaa ggc tct ggc tgatggtatc aggacaaagg His His Cys Val Arg Glu Gly Ser Gly 145	540
tagaatcagg cacatgagga ggtgttgcaa gagcctgggc tttggtgctt atcagaactg	600
qaccttctcc tagcaatttc agctttctgg tgggaaaggt aactccaatg aagaacaaga	660
acaagaagat gatgatgatg cttaactttt tggatgccga tatgagattg tacatgtaaa	720
gcattttgta taagacttgg cccctgcatt ttagtttcct tctttctccc ttttccttcg	780 840
tatagagtoc atgggagaat gagggagatg atttttgtgg cocagocaag aaagcaatgg gotagacatt aaaatgatta cacttttatt ottactgggg ttagttotgt gagttttcat	900
ctgtgcccca ttgccccatt tatgtgatgg agggaatttt catgggtact tcacgtgttg	960
ggattgattg atcctggggg ccagggtgaa gggtatttta cgggacctct ataaagcagg	1020
aaqaaqcaag tttattcttt agaccagtag ctctcaacca tgatgtggtc atatatttat	1080
gggtcaacat gtgttgtggg gatatcccaa gtaacttgtt attaataaaa gttaagttgc	1140
aaaaaaaaa aaa	1153
•	
<210> 75	
<211> 1517	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> 21167	
<400> 75	
	53
ctctgaaatg cttgtctttt atg ctg gna ggt gac cat agg gct ctg ctt tta Met Leu Xaa Gly Asp His Arg Ala Leu Leu Leu	53
ctctgaaatg cttgtctttt atg ctg gna ggt gac cat agg gct ctg ctt tta Met Leu Xaa Gly Asp His Arg Ala Leu Leu 1 5 10	٠
ctctgaaatg cttgtctttt atg ctg gna ggt gac cat agg gct ctg ctt tta  Met Leu Xaa Gly Asp His Arg Ala Leu Leu Leu  1 5 10  aag ata tgg ctg ctt caa agg cca gag tca cag gaa gga ctt ctt cca	101
ctctgaaatg cttgtctttt atg ctg gna ggt gac cat agg gct ctg ctt tta  Met Leu Xaa Gly Asp His Arg Ala Leu Leu Leu  1 5 10  aag ata tgg ctg ctt caa agg cca gag tca cag gaa gga ctt ctt cca Lys Ile Trp Leu Leu Gln Arg Pro Glu Ser Gln Glu Gly Leu Leu Pro	٠
ctctgaaatg cttgtctttt atg ctg gna ggt gac cat agg gct ctg ctt tta  Met Leu Xaa Gly Asp His Arg Ala Leu Leu Leu  1 5 10  aag ata tgg ctg ctt caa agg cca gag tca cag gaa gga ctt ctt cca Lys Ile Trp Leu Leu Gln Arg Pro Glu Ser Gln Glu Gly Leu Leu Pro  15 20 25	٠
ctctgaaatg cttgtctttt atg ctg gna ggt gac cat agg gct ctg ctt tta  Met Leu Xaa Gly Asp His Arg Ala Leu Leu Leu  1 5 10  aag ata tgg ctg ctt caa agg cca gag tca cag gaa gga ctt ctt cca Lys Ile Trp Leu Leu Gln Arg Pro Glu Ser Gln Glu Gly Leu Leu Pro	101
ctctgaaatg cttgtctttt atg ctg gna ggt gac cat agg gct ctg ctt tta  Met Leu Xaa Gly Asp His Arg Ala Leu Leu Leu  1 5 10  aag ata tgg ctg ctt caa agg cca gag tca cag gaa gga ctt ctt cca  Lys Ile Trp Leu Leu Gln Arg Pro Glu Ser Gln Glu Gly Leu Leu Pro  15 20 25  ggg aga tta gtg gtg atg gag agg aga gtt aaa atg acc tca tgt cct Gly Arg Leu Val Val Met Glu Arg Arg Val Lys Met Thr Ser Cys Pro  30 35 40	101
ctctgaaatg cttgtctttt atg ctg gna ggt gac cat agg gct ctg ctt tta  Met Leu Xaa Gly Asp His Arg Ala Leu Leu Leu  1 5 10  aag ata tgg ctg ctt caa agg cca gag tca cag gaa gga ctt ctt cca Lys Ile Trp Leu Leu Gln Arg Pro Glu Ser Gln Glu Gly Leu Leu Pro  15 20 25  ggg aga tta gtg gtg atg gag agg aga gtt aaa atg acc tca tgt cct Gly Arg Leu Val Val Met Glu Arg Arg Val Lys Met Thr Ser Cys Pro  30 35 40  tct tgt cca cgg ttt tgt tgagttttca ctcttctaat gcaagggtct	101
ctctgaaatg cttgtctttt atg ctg gna ggt gac cat agg gct ctg ctt tta  Met Leu Xaa Gly Asp His Arg Ala Leu Leu Leu  1 5 10  aag ata tgg ctg ctt caa agg cca gag tca cag gaa gga ctt ctt cca  Lys Ile Trp Leu Leu Gln Arg Pro Glu Ser Gln Glu Gly Leu Leu Pro  15 20 25  ggg aga tta gtg gtg atg gag agg aga gtt aaa atg acc tca tgt cct Gly Arg Leu Val Val Met Glu Arg Arg Val Lys Met Thr Ser Cys Pro  30 35 40	101
ctctgaaatg cttgtctttt atg ctg gna ggt gac cat agg gct ctg ctt tta  Met Leu Xaa Gly Asp His Arg Ala Leu Leu Leu  1 5 10  aag ata tgg ctg ctt caa agg cca gag tca cag gaa gga ctt ctt cca Lys Ile Trp Leu Leu Gln Arg Pro Glu Ser Gln Glu Gly Leu Leu Pro  15 20 25  ggg aga tta gtg gtg atg gag agg aga gtt aaa atg acc tca tgt cct Gly Arg Leu Val Val Met Glu Arg Arg Val Lys Met Thr Ser Cys Pro  30 35 40  tct tgt cca cgg ttt tgt tgagttttca ctcttctaat gcaagggtct Ser Cys Pro Arg Phe Cys  45  cacactgtga accacttagg atgtgatcac tttcaggtgg ccaggaatgt tgaatgtctt	101 149 197 257
ctctgaaatg cttgtctttt atg ctg gna ggt gac cat agg gct ctg ctt tta  Met Leu Xaa Gly Asp His Arg Ala Leu Leu Leu  1 5 10  aag ata tgg ctg ctt caa agg cca gag tca cag gaa gga ctt ctt cca Lys Ile Trp Leu Leu Gln Arg Pro Glu Ser Gln Glu Gly Leu Leu Pro  15 20 25  ggg aga tta gtg gtg atg gag agg aga gtt aaa atg acc tca tgt cct Gly Arg Leu Val Val Met Glu Arg Arg Val Lys Met Thr Ser Cys Pro  30 35 40  tct tgt cca cgg ttt tgt tgagttttca ctcttctaat gcaagggtct Ser Cys Pro Arg Phe Cys  45  cacactgtga accacttagg atgtgatcac tttcaggtgg ccaggaatgt tgaatgtctt tggctcagtt catttaaaaa agatatctat ttgaaagttc tcagagttgt acatatgttt	101 149 197 257 317
ctctgaaatg cttgtcttt atg ctg gna ggt gac cat agg gct ctg ctt tta  Met Leu Xaa Gly Asp His Arg Ala Leu Leu Leu  1 5 10  aag ata tgg ctg ctt caa agg cca gag tca cag gaa gga ctt ctt cca Lys Ile Trp Leu Leu Gln Arg Pro Glu Ser Gln Glu Gly Leu Leu Pro  15 20 25  ggg aga tta gtg gtg atg gag agg aga gtt aaa atg acc tca tgt cct Gly Arg Leu Val Val Met Glu Arg Arg Val Lys Met Thr Ser Cys Pro  30 35 40  tct tgt cca cgg ttt tgt tgagttttca ctcttctaat gcaagggtct Ser Cys Pro Arg Phe Cys  45  cacactgtga accacttagg atgtgatcac tttcaggtgg ccaggaatgt tgaatgtctt tggctcagtt catttaaaaa agatatctat ttgaaagttc tcagagttgt acatatgttt cacagtacag gatctgtaca taaaagtttc tttcctaaac cattcaccaa gagccaatat	101 149 197 257 317 377
ctctgaaatg cttgtcttt atg ctg gna ggt gac cat agg gct ctg ctt tta  Met Leu Xaa Gly Asp His Arg Ala Leu Leu Leu  1 5 10  aag ata tgg ctg ctt caa agg cca gag tca cag gaa gga ctt ctt cca Lys Ile Trp Leu Leu Gln Arg Pro Glu Ser Gln Glu Gly Leu Leu Pro  15 20 25  ggg aga tta gtg gtg atg gag agg aga gtt aaa atg acc tca tgt cct Gly Arg Leu Val Val Met Glu Arg Arg Val Lys Met Thr Ser Cys Pro  30 35 40  tct tgt cca cgg ttt tgt tgagttttca ctcttctaat gcaagggtct Ser Cys Pro Arg Phe Cys  45  cacactgtga accacttagg atgtgatcac tttcaggtgg ccaggaatgt tgaatgtctt tggctcagtt catttaaaaa agatatctat ttgaaagttc tcagagttgt acatatgttt cacagtacag gatctgtaca taaaagtttc tttcctaaac cattcaccaa gagccaatat ctaggcattt tcttggtage acaaattttc ttattgctta gaaaattgtc ctccttgtta	101 149 197 257 317 377 437
ctctgaaatg cttgtctttt atg ctg gna ggt gac cat agg gct ctg ctt tta  Met Leu Xaa Gly Asp His Arg Ala Leu Leu Leu  1 5 10  aag ata tgg ctg ctt caa agg cca gag tca cag gaa gga ctt ctt cca Lys Ile Trp Leu Leu Gln Arg Pro Glu Ser Gln Glu Gly Leu Leu Pro  15 20 25  ggg aga tta gtg gtg atg gag agg aga gtt aaa atg acc tca tgt cct Gly Arg Leu Val Val Met Glu Arg Arg Val Lys Met Thr Ser Cys Pro  30 35 40  tct tgt cca cgg ttt tgt tgagttttca ctcttctaat gcaagggtct Ser Cys Pro Arg Phe Cys  45  cacactgtga accacttagg atgtgatcac tttcaggtgg ccaggaatgt tgaatgtctt tggctcagtt catttaaaaa agatatctat ttgaaagttc tcagagttgt acatatgttt cacagtacag gatctgtaca taaaagtttc tttcctaaac cattcaccaa gagccaatat ctaggcattt tcttggtage acaaattttc ttattgctta gaaaattgtc ctccttgtta tttctgtttg taagacttaa gtgagttagg tctttaagga aagcaacgct cctctgaaat	101 149 197 257 317 377 437 497
Ctctgaaatg cttgtcttt atg ctg gna ggt gac cat agg gct ctg ctt tta  Met Leu Xaa Gly Asp His Arg Ala Leu Leu Leu  1 5 10  aag ata tgg ctg ctt caa agg cca gag tca cag gaa gga ctt ctt cca Lys Ile Trp Leu Leu Gln Arg Pro Glu Ser Gln Glu Gly Leu Leu Pro  15 20 25  ggg aga tta gtg gtg atg gag agg aga gtt aaa atg acc tca tgt cct Gly Arg Leu Val Val Met Glu Arg Arg Val Lys Met Thr Ser Cys Pro  30 35 40  tct tgt cca cgg ttt tgt tgagttttca ctcttctaat gcaagggtct Ser Cys Pro Arg Phe Cys  45  cacactgtga accacttagg atgtgatcac tttcaggtgg ccaggaatgt tgaatgtctt tggctcagtt catttaaaaa agatatctat ttgaaagttc tcagagttgt acatatgttt cacagtacag gatctgtaca taaaagtttc tttcctaaac cattcaccaa gagccaatat ctaggcattt tcttggtagc acaaattttc ttattgctta gaaaattgtc ctccttgtaa tttctgtttg taagacttaa gtgagttagg tctttaagga aagcaacgct cctctgaaat gcttgtcttt tatgctgga ggtgaccata gggctctgct ttaaagata tggctgcttc	101 149 197 257 317 377 437
Ctctgaaatg cttgtcttt atg ctg gna ggt gac cat agg gct ctg ctt tta  Met Leu Xaa Gly Asp His Arg Ala Leu Leu Leu  1 5 10  aag ata tgg ctg ctt caa agg cca gag tca cag gaa gga ctt ctt cca Lys Ile Trp Leu Leu Gln Arg Pro Glu Ser Gln Glu Gly Leu Leu Pro  15 20 25  ggg aga tta gtg gtg atg gag agg aga gtt aaa atg acc tca tgt cct Gly Arg Leu Val Val Met Glu Arg Arg Val Lys Met Thr Ser Cys Pro  30 35 40  tct tgt cca cgg ttt tgt tgagttttca ctcttctaat gcaagggtct Ser Cys Pro Arg Phe Cys  45  cacactgtga accacttagg atgtgatcac tttcaggtgg ccaggaatgt tgaatgtctt tggctcagtt catttaaaaa agatatctat ttgaaagttc tcagagttgt acatatgttt cacagtacag gatctgtaca taaaagttc tttctaaac cattcaccaa gagccaatat ctaggcattt tcttggtagc acaaatttc ttattgctta gaaaattgtc ctccttgtta tttctgtttg taagacttaa gtgagttagg tctttaagga aagcaacgct cctctgaaat gcttgtcttt tatgctgga ggtgaccata gggctctgct ttaaagata tggctgctc aaaggccaga gtcacaggaa ggacttcttc cagggagatt agtggtgatg gagaggagag	101 149 197 257 317 377 437 497 557
Met Leu Xaa Gly Asp His Arg Ala Leu Leu Leu  1 5 10  aag ata tgg ctg ctt caa agg cca gag tca cag gaa gga ctt ctt cca Lys Ile Trp Leu Leu Gln Arg Pro Glu Ser Gln Glu Gly Leu Leu Pro  15 20 25  ggg aga tta gtg gtg atg gag agg aga gtt aaa atg acc tca tgt cct Gly Arg Leu Val Val Met Glu Arg Arg Val Lys Met Thr Ser Cys Pro  30 35 40  tct tgt cca cgg ttt tgt tgagttttca ctcttctaat gcaagggtct Ser Cys Pro Arg Phe Cys  45  cacactgtga accacttagg atgtgatcac tttcaggtgg ccaggaatgt tgaatgtctt tggctcagtt cattaaaaa agatatctat ttgaaagttc tcagagttgt acatatgttt cacagtacag gatcgtaca taaaagttc tttcctaaac cattcacca gagccaatat ctaggcattt tcttggtagc acaaatttc ttattgctta gaaaattgtc ctccttgtta tttctgtttg taagacttaa gtgagttagg tctttaagga aagcaacgct cctctgaaat gcttgtcttt tatgctgga ggtgaccata gggctctgct tttaaagata tggctgcttc aaaggccaga gtcacaggaa ggtgaccata gggctctgct tttaaagata tggctgcttc aaaggccaga gtcacaggaa ggacttcttc caggagatt agtggtatg gagaggagag	101 149 197 257 317 377 437 497 557 617 677 737
Ctctgaaatg cttgtcttt atg ctg gna ggt gac cat agg gct ctg ctt tta  Met Leu Xaa Gly Asp His Arg Ala Leu Leu Leu  1 5 10  aag ata tgg ctg ctt caa agg cca gag tca cag gaa gga ctt ctt cca Lys Ile Trp Leu Leu Gln Arg Pro Glu Ser Gln Glu Gly Leu Leu Pro  15 20 25  ggg aga tta gtg gtg atg gag agg aga gtt aaa atg acc tca tgt cct Gly Arg Leu Val Val Met Glu Arg Arg Val Lys Met Thr Ser Cys Pro  30 35 40  tct tgt cca cgg ttt tgt tgagttttca ctcttctaat gcaagggtct Ser Cys Pro Arg Phe Cys  45  cacactgtga accacttagg atgtgatcac tttcaggtgg ccaggaatgt tgaatgtctt tggctcagtt catttaaaaa agatatctat ttgaaagttc tcagagttgt acatatgttt cacagtacag gatctgtaca taaaagttc tttcctaaac cattcaccaa gagccaatat ctaggcattt tcttggtagc acaaatttc tttatgctta gaaaattgtc ctccttgtta ttctgtttg taagacttaa gtgagttagg tctttaagga aagcaacgct cctctgaaat gcttgtcttt tatgctgga ggtgaccata gggctctgct tttaaagata tggctgctc aaaggccaga gtcacaggaa ggacttcttc cagggagatt agtggtgatg gagaggagag	101 149 197 257 317 377 437 497 557 617 677 737
Ctctgaaatg cttgtcttt atg ctg gna ggt gac cat agg gct ctg ctt tta  Met Leu Xaa Gly Asp His Arg Ala Leu Leu Leu  1 5 10  aag ata tgg ctg ctt caa agg cca gag tca cag gaa gga ctt ctt cca Lys Ile Trp Leu Leu Gln Arg Pro Glu Ser Gln Glu Gly Leu Leu Pro  15 20 25  ggg aga tta gtg gtg atg gag agg aga ggt aaa atg acc tca tgt cct Gly Arg Leu Val Val Met Glu Arg Arg Val Lys Met Thr Ser Cys Pro  30 35 40  tct tgt cca cgg ttt tgt tgagttttca ctcttctaat gcaagggtct Ser Cys Pro Arg Phe Cys  45  cacactgtga accacttagg atgtgatcac tttcaggtgg ccaggaatgt tgaatgtctt tggctcagtt catttaaaaa agatatctat ttgaaagttc tcagagttgt acatatgttt cacagtacag gatctgtaca taaaagtttc tttcctaaac cattcaccaa gagccaatat ctaggcattt tcttggtagc acaaattttc ttattgctta gaaaattgtc ctccttgtta tttctgtttg taagacttaa gtgagttagg tctttaaagga aagcaacgct cctctgaaat gcttgtcttt tatgctgga ggtgaccata gggctctgct tataaagata tggctgctc aaaggccaga gtcacaggaa ggacttctc cagggagatt agttgtgatg gagaggagg ttaaaatgac ctcatgtcct tcttgtccac ggttttgttg agttttcacc cttctcaatgc aagggtctca cactgtgaac cacttaggat gtgatcactt tcaggtggc aggaatgttg aatgtctttg gctcagttca tttaaaaaag atatctattt gaaagttctc agagttgtac aatgtctttg gctcagttca tttaaaaaag atatctattt gaaagttctc agagttgtac atatgtttca cagtacagga tctgtacata aaagttctt tcctaaacca ttcaccaaaga	101 149 197 257 317 377 437 497 557 617 677 737 797 857
Met Leu Xaa Gly Asp His Arg Ala Leu Leu Leu  1 5 10  aag ata tgg ctg ctt caa agg cca gag tca cag gaa gga ctt ctt cca Lys Ile Trp Leu Leu Gln Arg Pro Glu Ser Gln Glu Gly Leu Leu Pro  15 20 25  ggg aga tta gtg gtg atg gag agg agg gtt aaa atg acc tca tgt cct Gly Arg Leu Val Val Met Glu Arg Arg Val Lys Met Thr Ser Cys Pro  30 35 40  tct tgt cca cgg ttt tgt tgagtttca ctcttctaat gcaagggtct Ser Cys Pro Arg Phe Cys  45  cacactgtga accacttagg atgtgatcac tttcaggtgg ccaggaatgt tgaatgtctt tggctcagtt catttaaaaa agatatctat ttgaaagttc tcagagttgt acatatgttt cacagtacag gatctgtaca taaaagtttc tttcctaaac cattcaccaa gagccaatat ctaggcattt tcttggtagc acaaattttc ttattgctta gaaaattgtc ctccttgtta tttctgtttg taagacttaa gtgagttagg tctttaagga aagcaacgct cctctgaaat gcttgtcttt tatgctgga ggtgaccata gggctctgct ttaaagata tggctgctc aaaggccaga gtcacaggaa ggacttettc cagggagatt tcaagagtagg gagagagag ttaaaaatgac ctcattgcac tcttgtcac ggttttgtg agtttcact cttctaatgc aagggtctca cactgtgaac cacttaggat gtgatcactt tcagggtggc aggaagagag ttaaaatgac ctcatgtcac tcttgtcac ggttttgtg agtttcact cttctaatgc aagggtctca cactgtgaac cacttaggat gtgatcactt tcaggtggc aggaatgttg aatgttttg gctcagttca tttaaaaaaa atatctattt gaaagttct aggattgtac atatgtttca cagtacagga tctgtacata aaagtttctt tcctaaacca ttcaccaaga gccaatatct aggcattttc ttggtagcac aaattttct tcctaaacca ttcaccaaga gccaatatct aggcattttc ttggtagcac aaattttct tcctaaacca ttcaccaaga gccaatatct aggcattttc ttggtagcac aaattttctt actgataga aaattgtctt	101 149 197 257 317 377 437 497 557 617 677 737 797 857 917
Met Leu Xaa Gly Asp His Arg Ala Leu Leu Leu  1 5 10  aag ata tgg ctg ctt caa agg cca gag tca cag gaa gga ctt ctt cca Lys Ile Trp Leu Leu Gln Arg Pro Glu Ser Gln Glu Gly Leu Leu Pro  15 20 25  ggg aga tta gtg gtg atg gag agg agg ggt aca atg acc tca tgt cct Gly Arg Leu Val Val Met Glu Arg Arg Val Lys Met Thr Ser Cys Pro  30 35 40  tct tgt cca cgg ttt tgt tgagttttca ctcttctaat gcaagggtct Ser Cys Pro Arg Phe Cys  45  cacactgtga accacttagg atggatcac tttcaggtgg ccaggaatgt tgaatgtctt tggctcagt catttaaaaa agatatcat ttgaaagttc tcaggatgt tacagtatgt cattagtaca tacagtacag	101 149 197 257 317 377 437 497 557 617 677 737 797 857
Met Leu Xaa Gly Asp His Arg Ala Leu Leu Leu  1 5 10  aag ata tgg ctg ctt caa agg cca gag tca cag gaa gga ctt ctt cca Lys Ile Trp Leu Leu Gln Arg Pro Glu Ser Gln Glu Gly Leu Leu Pro 15 20 25  ggg aga tta gtg gtg atg gag agg agg gtt aaa atg acc tca tgt cct Gly Arg Leu Val Val Met Glu Arg Arg Val Lys Met Thr Ser Cys Pro 30 35 40  tct tgt cca cgg ttt tgt tgagttttca ctcttctaat gcaagggtct Ser Cys Pro Arg Phe Cys 45  cacactgtga accacttagg atgtgatcac tttcaggtgg ccaggaatgt tgaatgtctt tggctcagtt cattaaaaa agatatctat ttgaaagttc tcagagttgt acatatgttt cacagtacag gatctgtaca taaaagttc tttcctaaac cattcacaa gagccaatat ctaggcattt tcttggtagc acaaattttc ttattgctta gaaaattgtc ctccttgtta ttctgtttg taagacttaa gtgagtagg tctttaagga aagcaacgct cctctgaaat gcttgtctt tatgctgga ggtgaccata gggctctgct ttaaagata tggctgctc aaaggccaga gtcacaggaa ggacttcttc cagggagatt agtggtatg gagaggagg ttaaaatgac ctcatgtcct tcttgtccac ggttttgttg agttttcact cttctaatgc aagggtctca cactgtgaac cacttaggat gtgatcactt tcaggtggc aggaggagg ttaaaatgac ctcatgtcac tcttgtccac ggttttgttg agttttcact cttctaatgc aagggtctca cactgtgaac cacttaggat gtgatcactt tcaggtggc aggaggagg taatgtcttt gccagtca tttaaaaaag atatctatt gaaagttctc aggattgtac atatgtttca cagtacagga tctgacata aaagtttct tcctaaacca ttcaccaaga gccaatatct aggcatttc ttggtagcac aaatttctt tcctaaacca ttcaccaaga gccaatatct tcggtagtaca taatttctt attgcttaga aaattgcct ccttgttatt tctgtttgta agacttaagt gagttaggtc tttaaagaaa gcaacgctcc tctgtaatt tctgttttaa agacttaagt gagttaggtc tttaaagaaa gcaacgctcc tcttgttatt tctgttttta agacttaagt gagttaggtc tttaaagaaa gcaacgctcc tcttgtaatt tctgttttta tgctggagg tgaccataag gcccataagg gccctcttt taaagaaaa gcaacgctcc tcttgaaatgc ttgtctttna tgctggagg tgaccataagg gcctctgctt taaagaaaa gcaacgctcc tctgaaatgc ttgtctttna tgctggagg tgaccataagg gcctctctt taaagaaatgc	101 149 197 257 317 377 437 497 557 617 677 737 797 857 917
Met Leu Xaa Gly Asp His Arg Ala Leu Leu Leu 1 5 10 aag ata tgg ctg ctt caa agg cca gag tca cag gaa gga ctt ctcaa Lys Ile Trp Leu Leu Gln Arg Pro Glu Ser Gln Glu Gly Leu Leu Pro 15 20 25 ggg aga tta gtg gtg atg gag agg agg atgt aaa atg acc tca tgt cct Gly Arg Leu Val Val Met Glu Arg Arg Val Lys Met Thr Ser Cys Pro 30 35 40 tct tgt cca cgg ttt tgt tgagttttca ctcttctaat gcaagggtct Ser Cys Pro Arg Phe Cys 45 cacactgtga accacttagg atgtgatcac tttcaggtgg ccaggaatgt tgaatgtctt tggctcagtt cattaaaaa agatatcat tttgaaagttc tcacagaacag gatctgaca taaaagttc ttattgttg taagacttat tcttgttgt acatatttc ttattgttg taagacttat ttttctgtttg taagactta gggctcagt ttattaatatttcttattgttg taagacttat ttttctgtttg taagacttaa gtggatcac tgaggagatt agtggtggt ccaggaatgt tgaatgtctt tattgtttt tattgcttg agacacacaca gagccaatat cattacacaa gagccaatat cttattgttt tattgcttg agacacacac cctcttgtta ttctgtttt tatgctgga ggtgaccata gggctctgct ttaaaagaa agcacacgct cctctgtta ttctgtttt tatgctgga ggtgaccata gggctctgct ttaaaagata tggctgctc aaaggccaga gtcacaggaa ggactcttc cagggagatt agtggtgatg gagaggagg ttaaaatgcc cactgtacct tcttgtccac ggttttgtt gatttcact cttctaatgc aagggtctca cactgtacac ttttaaaaaa gatatcattt gaaagttct gaggatggc aaggatgttg aatgttctt ggctagatca tttaaaaaa gattttct tcctaaacca ttcaccaaga gccaatatct aggcatttc tctggacac aaattttc tatgcttaga aatgttctac cttctaaacca tcttacacaca tctgtcct tcttgtccac ggttttcta aaaggtcct aggattgac cacttaggat tttgacaca aaattttct tatgcttaga aaattgtcct cttgtacaca aaattttct aaaggtacct taaagaatgtcc agacacaccc tcttgtaat tctgtttga agactaatt tctgtttga agactaatt tcctgttaga aaattgcct ccttgtacaca aaattttct attgcttaga aaattgcct ccttgtaatt tctgtttga agactaatg gggtaccatag gccattaga gacacaccc tcttgtacac cacaggagg taaccatagg gctctctta agactaatg gggtaccatag gccattagaa gcacacccc tctgacaca agactacct taaagaatg ttgccttcaa agactaagg cacacaagg cacacacaca gcacacacac cacaggaggaggaggaggaggaggaggaggaggaggagga	101 149 197 257 317 377 437 497 557 617 677 737 797 857 917 977 1037 1097 1157
Met Leu Xaa Gly Asp His Arg Ala Leu Leu Leu 1 5 10  aag ata tgg ctg ctt caa agg cca gag tca cag gaa gga ctt ctt cca Lys Ile Trp Leu Leu Gln Arg Pro Glu Ser Gln Glu Gly Leu Leu Pro 15 20 25  ggg aga tta gtg gtg atg gag agg agg agt taaa atg acc tca tgt cct Gly Arg Leu Val Val Met Glu Arg Arg Val Lys Met Thr Ser Cys Pro 30 35 40  tct tgt cca cgg ttt tgt tgagttttca ctcttctaat gcaagggtct Ser Cys Pro Arg Phe Cys 45  cacactgtga accacttagg atgtgatcac tttcaggtgg ccaggaatgt tgaatgtctt tggctcagtt catttaaaaa agatatctat ttgaaagttc tcaggattgt acatatgttt cacagtacag gatctgtaca taaaagttc tttctgtta gaaattgtc ttcttgttgt taagactta gtgagtcag ggcaatat tcttggttg agacaatat cttttgttt tatgcttg ggcaggagt ggccaata ggctgttct tatgctgga ggcacata gggccagaa ggcacttctc cagggagatt agtggtgatc cacttagga ggtgaccata gggctctgct ttaaagga tcactgtca cacttagga ggtgaccata gggctctgct ttaaagga tcactgtca cacttagga ggtgaccata gggctctgct ttaaagga tcactgtca cacttagga ggtgaccata gggctctgct ttaaaggat tcattgtct tcttgtcac cacttgacac cacttaggat ggtatcact tcagggaggat agttgtcac acattgtcct tcttgtcac ggttttgtg agtttcact cttctaatgc aatgttctta ggcaattttc tcttgtcac ggttttttt gattagttc aatgttttc cacttgtact tcttgtcac ggttttttt gattact tctcaaga ggccaatatttc tcttgtcac aggatttct cacttgtact tcttgtcac ggttttttt gattact tctcaaga ggcaattttc tcttgtcac ggttttttt gattact tctcaaga atatttctt caaggatgtc aggattttc cacttgtact tcttgtcaca ggttttctt taaggat ggttaccat tcaggatgt aggttacc tttcaaacca ttcaccaaga gccaatact aggcatttc ttggtacaa aaagtttctt tcctaaacca ttcaccaaga gccaatact tctgtttgta agacttaagt gagttaggtc tttaaagaaa gcaacgctcc aggaatgttc ttggtacaatag gagttaggtc ttaaagaaa gcaacgctcc tctgaaatg ttgtctttna tgctggaagg tgaccatagg ctctcacagg ctctttcaaggaaggagagagagagagagagagagagaga	101 149 197 257 317 377 437 497 557 617 677 737 797 857 917 977 1037 1097 1157
Met Leu Xaa Gly Asp His Arg Ala Leu Leu Leu 1 5 10 aag ata tgg ctg ctt caa agg cca gag tca cag gaa gga ctt ctcaa Lys Ile Trp Leu Leu Gln Arg Pro Glu Ser Gln Glu Gly Leu Leu Pro 15 20 25 ggg aga tta gtg gtg atg gag agg agg atgt aaa atg acc tca tgt cct Gly Arg Leu Val Val Met Glu Arg Arg Val Lys Met Thr Ser Cys Pro 30 35 40 tct tgt cca cgg ttt tgt tgagttttca ctcttctaat gcaagggtct Ser Cys Pro Arg Phe Cys 45 cacactgtga accacttagg atgtgatcac tttcaggtgg ccaggaatgt tgaatgtctt tggctcagtt cattaaaaa agatatcat tttgaaagttc tcacagaacag gatctgaca taaaagttc ttattgttg taagacttat tcttgttgt acatatttc ttattgttg taagacttat ttttctgtttg taagactta gggctcagt ttattaatatttcttattgttg taagacttat ttttctgtttg taagacttaa gtggatcac tgaggagatt agtggtggt ccaggaatgt tgaatgtctt tattgtttt tattgcttg agacacacaca gagccaatat cattacacaa gagccaatat cttattgttt tattgcttg agacacacac cctcttgtta ttctgtttt tatgctgga ggtgaccata gggctctgct ttaaaagaa agcacacgct cctctgtta ttctgtttt tatgctgga ggtgaccata gggctctgct ttaaaagata tggctgctc aaaggccaga gtcacaggaa ggactcttc cagggagatt agtggtgatg gagaggagg ttaaaatgcc cactgtacct tcttgtccac ggttttgtt gatttcact cttctaatgc aagggtctca cactgtacac ttttaaaaaa gatatcattt gaaagttct gaggatggc aaggatgttg aatgttctt ggctagatca tttaaaaaa gattttct tcctaaacca ttcaccaaga gccaatatct aggcatttc tctggacac aaattttc tatgcttaga aatgttctac cttctaaacca tcttacacaca tctgtcct tcttgtccac ggttttcta aaaggtcct aggattgac cacttaggat tttgacaca aaattttct tatgcttaga aaattgtcct cttgtacaca aaattttct aaaggtacct taaagaatgtcc agacacaccc tcttgtaat tctgtttga agactaatt tctgtttga agactaatt tcctgttaga aaattgcct ccttgtacaca aaattttct attgcttaga aaattgcct ccttgtaatt tctgtttga agactaatg gggtaccatag gccattaga gacacaccc tcttgtacac cacaggagg taaccatagg gctctctta agactaatg gggtaccatag gccattagaa gcacacccc tctgacaca agactacct taaagaatg ttgccttcaa agactaagg cacacaagg cacacacaca gcacacacac cacaggaggaggaggaggaggaggaggaggaggaggagga	101 149 197 257 317 377 437 497 557 617 677 737 797 857 917 977 1037 1097 1157

1397 1457

526

agttgtacat atgtttcaca gtacaggatc tgtacataaa agtttctttc ctaaaccatt

caccaagage caatatetag geattttett ggtageacaa attttettat tgettagaaa

attgtcctcc ttgttatttc tgtttgtaag acttaagtga gttaggtctt taaggaaagc aacgctcctc tgaaatgctt gtcttttatg ctgggaggtg accatagggc tctgctttta <210> 76 <211> 526 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 22..318 <221> sig_peptide <222> 22..93 <223> Von Heijne matrix score 4.6 seq FFIFCSLNTLLLG/GV <221> polyA signal <222> 497..502 <221> polyA_site <222> 516..526 <400> 76 ctgcctgctg cttgctgcac c atg aag tct gcc aag ctg gga ttt ctt cta Met Lys Ser Ala Lys Leu Gly Phe Leu Leu -20 99 aga ttc ttc atc ttc tgc tca ttg aat acc ctg tta ttg ggt ggt gtt Arg Phe Phe Ile Phe Cys Ser Leu Asn Thr Leu Leu Leu Gly Gly Val -5 -10 aat aaa att gcg gag aag ata tgt gga gac ctc aaa gat ccc tgc aaa 147 Asn Lys Ile Ala Glu Lys Ile Cys Gly Asp Leu Lys Asp Pro Cys Lys 10 15 ttg gac atg aat ttt gga agc tgc tat gaa gtt cac ttt aga tat ttc 195 Leu Asp Met Asn Phe Gly Ser Cys Tyr Glu Val His Phe Arg Tyr Phe 25 tac aac aga acc tcc aaa aga tgt gaa act ttt gtc ttc tcc ggc tgt 243 Tyr Asn Arg Thr Ser Lys Arg Cys Glu Thr Phe Val Phe Ser Gly Cys 40 45 aat ggc aac ctt aac aac ttc aag ctt aaa ata gaa cgt gaa gta gcc 291 Asn Gly Asn Leu Asn Asn Phe Lys Leu Lys Ile Glu Arg Glu Val Ala 60 338 tgt gtt gca aaa tac aaa cca ccg agg tgagaggatg tgaactcatg Cys Val Ala Lys Tyr Lys Pro Pro Arg 70 398 aagttgtctg ctgcaccatc cgaaataaag acacaagaaa attcagactg attttgaaat ctttgtaata tttccataat gctttaagct tccatatgtt tgctattttc ctgaccctag 458 ttttgtcttt cctggaaatt aactgtatga tcattagaat gaaagagtct ttctgtcaaa 518

<210> 77

aaaaaaa

<211> 352

<212> DNA

<213> Homo sapiens

PCT/IB98/02122

49

97

145

193

241

289

342

352

WO 99/31236

<220> <221> CDS <222> 8..292 <221> sig_peptide <222> 8..118 <223> Von Heijne matrix score 5.6 seg WLLLDALLRLGDT/KK <221> polyA signal <222> 317..322 <221> polyA_site <222> 339..352 <400> 77 ctgagat atg gca agt ccc gct gta aac agg tgg aaa agg cca agg ttg Met Ala Ser Pro Ala Val Asn Arg Trp Lys Arg Pro Arg Leu -25 -30 -35 aag ccg gtg tgg cca cgg cgc ttg gaa tcc tgg ttg ttg ctg gat gct Lys Pro Val Trp Pro Arg Arg Leu Glu Ser Trp Leu Leu Leu Asp Ala -15 -10 ctt ttg cga tta gga gat acc aaa aaa aag cga cag cct gaa gca gcc Leu Leu Arg Leu Gly Asp Thr Lys Lys Lys Arg Gln Pro Glu Ala Ala 1 -5 aca aaa too tgt gtt aga ago ago tgt ggg ggt coo agt gga gat ggg Thr Lys Ser Cys Val Arg Ser Ser Cys Gly Gly Pro Ser Gly Asp Gly 20 15 cet ecc eca tge etc eag eag ect gae ect egt gee etg tet eag geg Pro Pro Pro Cys Leu Gln Gln Pro Asp Pro Arg Ala Leu Ser Gln Ala 30 35 ttc tct aga tcc ttt cct ctg ttt ccc tct ctc gct ggc aaa agt atg Phe Ser Arg Ser Phe Pro Leu Phe Pro Ser Leu Ala Gly Lys Ser Met

50

atc taattgaaac aagactgaag gatcaataaa cagccatctg ccccttcaaa

<210> 78 <211> 542

aaaaaaaaa

Ile

<212> DNA

<213> Homo sapiens

45

<220>

<221> CDS

<222> 16..378

<221> sig_peptide

<222> 16..84

<223> Von Heijne matrix score 9.8 seq FLLFFFLFLLTRG/SL

<221> polyA_signal

<222> 502..507

<221> polyA_site

<222> 522..542

WO 99/31236 -57- PCT/IB98/02122 -

		-57-	PCT/IB98/02122
<400> 78			
		c caa tgg ctg ctg ctg ctg o Gln Trp Leu Leu Leu Leu I o -15	
	te tte ete ete	acc agg ggc tca ctt tct co Thr Arg Gly Ser Leu Ser Pr 1	
Lys Tyr Asn Leu I		gag tot tgc atc cgg aac ca Glu Ser Cys Ile Arg Asn Gl 15	ln Asp
tgc gag act ggc t	gc tgc caa cgt	gct cca gac aat tgc gag to Ala Pro Asp Asn Cys Glu Se 30 35	
		agt ctg tgt caa acg cag gt Ser Leu Cys Gln Thr Gln Va 50	
		tgc ctg cgg aac ctg act tg Cys Leu Arg Asn Leu Thr Cy 65	
tat tca aag aat g		agc atc gcc tat ggc cgt to Ser Ile Ala Tyr Gly Arg Cy 80	
aaa att gga agg o	ag aag ttg gct	aag aaa atg ttc ttc tagtgo Lys Lys Met Phe Phe 95	etece 388
accetgttce ccagag	cctc caccatgagt	t gctctcctcc ctacccagag cto t ggagggaagt ggggagtgat tga a aaaa	
<210> 79 <211> 233 <212> DNA <213> Homo sapier	ns		
<220> <221> CDS <222> 57233			
<400> 79 gcaaaaccaa aaccag	gcacc gatecegaca	a tagatcagtg acgtettttt ett	
			Met
•		cat cgt ctt cag gaa gcc ag His Arg Leu Gln Glu Ala An 10	l ga cag 107
Ile Leu Cys Phe I 5 att caa gta ttg a	Leu Leu Pro His	His Arg Leu Gln Glu Ala Ar	l ga cag 107 rg Gln ga gaa 155
Ile Leu Cys Phe I 5 att caa gta ttg a Ile Gln Val Leu I 20 gag aga aaa caa a	Leu Leu Pro His  ag atg ctg cca  Lys Met Leu Pro  25  ata aat ggg aaa	His Arg Leu Gln Glu Ala Ar 10 15 agg gaa aaa tta aga aga ag Arg Glu Lys Leu Arg Arg Ar	1 ga cag 107 rg Gln ga gaa 155 rg Glu aa aca 203

<210> 80 <211> 660 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 83..340 <221> sig_peptide <222> 83..124 <223> Von Heijne matrix score 7.5 seq VALNLILVPCCAA/WC <221> polyA signal <222> 573..578 <221> polyA site <222> 607..660 <400> 80 gaatttgtaa aacttctgct cgtttacact gcacattgaa tacaggtaac taattggaag 60 gagagggag atcactcttt tg atg gtg gcc ctg aac ctc att ctg gtt ccc 112 Met Val Ala Leu Asn Leu Ile Leu Val Pro -10 tgc tgc gct gct tgg tgt gac cca cgg agg atc cac tcc cag gat gac 160 Cys Cys Ala Ala Trp Cys Asp Pro Arg Arg Ile His Ser Gln Asp Asp gtg ccc cgt agc tct gct gct gat act ggg tct gcg atg cag cgg cgt 208 Val Pro Arg Ser Ser Ala Ala Asp Thr Gly Ser Ala Met Gln Arg Arg 15 20 25 256 gag gcc tgg gct ggt tgg aga agg tca caa ccc ttc tct gtt ggt ctg Glu Ala Trp Ala Gly Trp Arg Arg Ser Gln Pro Phe Ser Val Gly Leu 35 cct tct gct gaa aga ctc gag aac caa cca ggg aag ctg tcc tgg agg 304 Pro Ser Ala Glu Arg Leu Glu Asn Gln Pro Gly Lys Leu Ser Trp Arg 50 55 tcc ctg gtc gga gag gga tat aga atc tgt gac ctc tgacaactgt 350 Ser Leu Val Gly Glu Gly Tyr Arg Ile Cys Asp Leu 65 70 gaagccaccc tgggctacag aaaccacagt cttcccagca attattacaa ttcttgaatt 410 470 ccttggggat tttttactgc cctttcaaag cacttaagtg ttagatctaa cgtgttccag tgtctgtctg aggtgactta aaaaatcaga acaaaacttc tattatccag agtcatggga 530 590 gagtacaccc tttccaggaa taatgttttg ggaaacactg aaatgaaatc ttcccagtat tataaattgt gtatttaaaa aaagaaactt ttctgaatgc ctacctggcg gtgtatacca 650 660 ggcagtgtgc <210> 81

<211> 605

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 47..541

<221> sig peptide

<222> 47..220

<223> Von Heijne matrix score 5.4 seq QLLDSVLWLGALG/LT <221> polyA_site <222> 597..605 <400> 81 55 aaaqtqqqaq qaqcactaqq tcttcccqtc acctccacct ctctcc atg acc cgg Met Thr Arg 103 ctc tgc tta ccc aga ccc gaa gca cgt gag gat ccg atc cca gtt cct Leu Cys Leu Pro Arg Pro Glu Ala Arg Glu Asp Pro Ile Pro Val Pro -50 -45 cca agg ggc ctg ggt gct ggg gag ggg tca ggt agt cca gtg cgt cca 151 Pro Arg Gly Leu Gly Ala Gly Glu Gly Ser Gly Ser Pro Val Arg Pro -35 -30 199 cet gta tee ace tgg gge cet age tgg gee cag ete etg gae agt gte Pro Val Ser Thr Trp Gly Pro Ser Trp Ala Gln Leu Leu Asp Ser Val -15 -20 cta tgg ctg ggg gca cta gga ctg aca atc cag gca gtc ttt tcc acc 247 Leu Trp Leu Gly Ala Leu Gly Leu Thr Ile Gln Ala Val Phe Ser Thr -5 1 act ggc cca gcc ctg ctg ctt ctg gtc agc ttc ctc acc ttt gac 295 Thr Gly Pro Ala Leu Leu Leu Leu Leu Val Ser Phe Leu Thr Phe Asp 15 20 ctg ctc cat agg ccc gca ggt cac act ctg cca cag cgc aaa ctt ctc 343 Leu Leu His Arg Pro Ala Gly His Thr Leu Pro Gln Arg Lys Leu Leu 35 30 acc agg ggc cag agt cag ggg gcc ggt gaa ggt cct gga cag cag gag 391 Thr Arg Gly Gln Ser Gln Gly Ala Gly Glu Gly Pro Gly Gln Glu 50 get eta ete etg caa atg ggt aca gte tea gga caa ett age ete eag 439 Ala Leu Leu Gln Met Gly Thr Val Ser Gly Gln Leu Ser Leu Gln 65 70 487 gac gca ctg ctg ctg ctc atg ggg ctg ggc ccg ctc ctg aga gcc Asp Ala Leu Leu Leu Leu Met Gly Leu Gly Pro Leu Leu Arg Ala 80 85 535 tgt ggc atg ccc ttg acc ctg ctt ggc ctg gct ttc tgc ctc cat cct Cys Gly Met Pro Leu Thr Leu Leu Gly Leu Ala Phe Cys Leu His Pro 95 100 tgg gcc tgagagcccc tccccacaac tcagtgtcct tcaaatatac aatgaccacc 591 Trp Ala 605

```
<210> 82
```

cttcttcaaa aaaa

<211> 396

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 46..285

<221> sig_peptide

<222> 46..150

<223> Von Heijne matrix score 3.6 seq LEPGLSSSAACNG/KE

<221> polyA_signal

<222> 364..369

<221> polyA_site

<222> 385..396

<400> 82	57
cctctacagg aatcagactc agcctctttt ggttttcagt gaagt atg cct ttt caa Met Pro Phe Gln -35	37
ttt gga acc cag cca agg agg ttt cca gtg gaa gga gga gat tct tca Phe Gly Thr Gln Pro Arg Arg Phe Pro Val Glu Gly Gly Asp Ser Ser -30 -25 -20	105
att gag ctg gaa cct ggg ctg agc tcc agt gct gcc tgt aat ggg aag  Ile Glu Leu Glu Pro Gly Leu Ser Ser Ala Ala Cys Asn Gly Lys -15 -10 -5 1	153
gag atg tca cca acc agg caa ctc cgg agg tgc cct gga agt cat tgc Glu Met Ser Pro Thr Arg Gln Leu Arg Arg Cys Pro Gly Ser His Cys 5 10 15	201
ctg aca ata act gat gtt ccc gtc act gtt tat gca aca acg aga aag Leu Thr Ile Thr Asp Val Pro Val Thr Val Tyr Ala Thr Thr Arg Lys 20 25 30	249
cca cct gca caa agc agc aag gaa atg cat cct aaa tagcaccatt Pro Pro Ala Gln Ser Ser Lys Glu Met His Pro Lys 35 40 45	295
aagtetttg teaaggtetg actaggteaa gggtaatgga ceagtateat etggtgatet ggtaaacaaa taaaagtggt ggcacettea aaaaaaaaaa a	355 396
<210> 83	
<211> 432	
<212> DNA <213> Homo sapiens	
<220>	
<221> CDS	
<222> 22240	
<221> sig_peptide	
<222> 2284	
<223> Von Heijne matrix	
score 12 seq VLVLCVLLLQAQG/GY	
<221> polyA_signal	
<221> polyA_site <222> 421432	
<400> 83	
gctcacgctc tggtcagagt t atg gca ccc cag act ctg ctg cct gtc ctg  Met Ala Pro Gln Thr Leu Leu Pro Val Leu  -20  -15	51
gtt ctc tgt gtg ctg ctg cag gcc cag gga gga tac cgt gac aag	99
Val Leu Cys Val Leu Leu Gln Ala Gln Gly Gly Tyr Arg Asp Lys -10 -5 1 5	
atg agg atg cag aga atc aag gtc tgt gag aag cga ccc agc ata gat	147
Met Arg Met Gln Arg Ile Lys Val Cys Glu Lys Arg Pro Ser Ile Asp 10 15 20	
cta tgc atc cac cac tgt tca tgt ttc caa aag tgt gaa aca aat aag	195
Leu Cys Ile His His Cys Ser Cys Phe Gln Lys Cys Glu Thr Asn Lys 25 30 35	
ata tgc tgt tca gcc ttc tgt ggg aac att tgt atg agc atc cta	240
Ile Cys Cys Ser Ala Phe Cys Gly Asn Ile Cys Met Ser Ile Leu 40 45 50	

tgagtgggag agtgggctgg gatgtgcatc ctgctccctg aaccettcca tccgagactg tgcccacatc cgaagcacaa ggacatcaaa tcatcagcac aagaacatca acaggaatgccacctcccc agtgtctgaa ctccctgtcc ctgtcaaatg aaccagaaca aatgcccatg aaaaaaaaaa	300 360 420 432
<210> 84 <211> 420 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> 89382	
<221> polyA_site <222> 408420	
<400> 84	60
gcttgcctga cccccatgtc gcctctgtag gtagaagaag tatgtcttcc tggaccccct ggctggtgct gtaacaaaga cccatgtg atg ctg ggg gca gag aca gag gag Met Leu Gly Ala Glu Thr Glu Glu 1	112
aag ctg ttt gat gcc ccc ttg tcc atc agc aag aga gag cag ctg gaa Lys Leu Phe Asp Ala Pro Leu Ser Ile Ser Lys Arg Glu Gln Leu Glu 10 15 20	160
cag cag gtc cca gag aac tac ttc tat gtg cca gac ctg ggc cag gtg Gln Gln Val Pro Glu Asn Tyr Phe Tyr Val Pro Asp Leu Gly Gln Val 25 30 35 40	208
cct gag att gat gtt cca tcc tac ctg cct gac ctg ccc ggc att gcc Pro Glu Ile Asp Val Pro Ser Tyr Leu Pro Asp Leu Pro Gly Ile Ala 45 50 55	256
aac gac ctc atg tac att gcc gac ctg ggc ccc ggc att gcc ccc tct Asn Asp Leu Met Tyr Ile Ala Asp Leu Gly Pro Gly Ile Ala Pro Ser 60 65 70	304
gcc cct ggc acc att cca gaa ctg ccc acc ttc cac act gag gta gcc Ala Pro Gly Thr Ile Pro Glu Leu Pro Thr Phe His Thr Glu Val Ala 75 80 85	352
gag cct ctc aag acc tac aag atg ggg tac taacagcacc accaccgccc Glu Pro Leu Lys Thr Tyr Lys Met Gly Tyr 90 95	402
CCaCCaaaaa aaaaaaa	420
2310. 95	

<210> 85

<211> 501

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 80..415

<221> sig_peptide

<222> 80..142

<223> Von Heijne matrix score 5.4 seq TFCLIFGLGAVWG/LG

<221> polyA_signal

WO 99/31236 -62- PCT/IB98/02122

<222> 471..476 <221> polyA_site <222> 488..501 <400> 85 cccgcttgat tccaagaacc tcttcgatat ttatttttat ttttaaagag ggagacgatg 60 gactgagetg atcegeace atg gag tet egg gte tta etg aga aca tte tgt 112 Met Glu Ser Arg Val Leu Leu Arg Thr Phe Cys -20 -15 ttg atc ttc ggt ctc gga gca gtt tgg ggg ctt ggt gtg gac cct tcc 160 Leu Ile Phe Gly Leu Gly Ala Val Trp Gly Leu Gly Val Asp Pro Ser - 5 cta cag att gac gtc tta aca gag tta gaa ctt ggg gag tcc acg acc Leu Gln Ile Asp Val Leu Thr Glu Leu Glu Leu Gly Glu Ser Thr Thr 10 15 gga gtg cgt cag gtc ccg ggg ctg cat aat ggg acg aaa gcc ttt ctc 256 Gly Val Arg Gln Val Pro Gly Leu His Asn Gly Thr Lys Ala Phe Leu 30 ttt caa gat act ccc aga agc ata aaa gca tcc act gct aca gct gaa 304 Phe Gln Asp Thr Pro Arg Ser Ile Lys Ala Ser Thr Ala Thr Ala Glu 40 45 50 cag ttt ttt cag aag ctg aga aat aaa cat gaa ttt act att ttg gtg 352 Gln Phe Phe Gln Lys Leu Arg Asn Lys His Glu Phe Thr Ile Leu Val 60 65 acc cta aaa cag acc cac tta aat tca gga gtt att ctc tca att cac Thr Leu Lys Gln Thr His Leu Asn Ser Gly Val Ile Leu Ser Ile His 80 cac ttg gat cac agg taaatgtggt tgctggagtt tcctgtgttt tcattatatg 455 His Leu Asp His Arg 90 501 tggttaaatg aatatattaa agagaagtaa acaaaaaaa aaaaaa <210> 86 <211> 454 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 152..361 <221> sig_peptide <222> 152..283 <223> Von Heijne matrix score 4.7 seq FLLSLSLITYCFW/DP <400> 86 gacattttac ttttttctgt taacgcttac cctagaaatt agaaatgaca ccacgtattc 60 ttagcgaagt ccagttttca gcattttgtc cttattggac aatagcaagg atattagaac 120 gtgttggttc cgcgtgcttc cgtcttgagt t atg tgc tgc tat tgt cgg ata 172 Met Cys Cys Tyr Cys Arg Ile ttt tgt ctt aga tgt acg tac ttt cct gtt cat tgt ggt atg tgt aat Phe Cys Leu Arg Cys Thr Tyr Phe Pro Val His Cys Gly Met Cys Asn -30 ttg cgt tac ttt gaa ttt tcc acg ttt tta ctt tct ttg tct ctc atc 268

Leu Arg Tyr Phe Glu Phe Ser Thr Phe Leu Leu Ser Leu Ser Leu Ile

-10

-15

-20

	ac tgc Yr Cys														316
cta g	gag cac Slu His			_	-						-				361
	ctttc (								ıggg	tata	ataga	at t	cago	gcagct	
gtttc	gttgt	agcac	atta	ıa aa	atat	tttc	ccc	:							454
<210>															
	1272														
<212>	· DNA · Homo :	zania	ne												
(213/	1101110 1	sapre	113												
<220>	•														
<221>	CDS														
<222>	323	07													
-2215	. sia n	~~+4	•												
	• sig_po		.е												
	Von He		mat	rix											
	score	-													
	seq M	LFSLS	LLSN	ILNQ/	'IG										
	3 3		,												
	<ul><li>polyA</li><li>1240.</li></ul>														
~~~~	1240.	. 1243													
<221>	polyA	_site								•					
<222>	1261.	.1272													
400	0.0														
<400>		accac	cctt	rt ac	tttcc	rcae		ata (rta t	- - - -	-c+ c	rto :	פמר (-++	52
	87 Igttgc	accgc	cctt	t gg	jtted	cgag							agc (Ser 1		52
		accgc	cctt	t gg	gttco	cgaç				Phe S					52
gtcag	gttgc a	ctt	aac	caa	atc	ggc	agc	Met i	cac	Phe S ctc	Ser I -10 gac	eu s	ser I	Seu cac	52 100
gtcag ctc t Leu S	gttgc : cc aac er Asn	ctt	aac	caa	atc Ile	ggc	agc	Met i	cac His	Phe S ctc	Ser I -10 gac	eu s	ser I	cac His	
gtcag ctc t Leu S	gttgc accer asn	ctt Leu	aac Asn	caa Gln	atc Ile 1	ggc Gly	agc Ser	agc Ser	cac His 5	Phe S ctc Leu	Ser I -10 gac Asp	cgc Arg	Ser I cca Pro	cac His 10	100
ctc t Leu S -	gttgc accer asn	ctt Leu caa	aac Asn tca	caa Gln gct	atc Ile 1 cag	ggc Gly ctg	agc Ser	agc Ser att	cac His 5 tac	ctc Leu	Ser I -10 gac Asp atg	eu s cgc Arg tct	cca Pro tca	cac His 10 caa	
ctc t Leu S -	gttgc accer asn	ctt Leu caa	aac Asn tca	caa Gln gct	atc Ile 1 cag	ggc Gly ctg	agc Ser	agc Ser att	cac His 5 tac	ctc Leu	Ser I -10 gac Asp atg	eu s cgc Arg tct	cca Pro tca	cac His 10 caa	100
ctc t Leu S - att c Ile P	gttgc accer asn	ctt Leu caa Gln	aac Asn tca Ser 15	caa Gln gct Ala	atc Ile 1 cag Gln	ggc Gly ctg Leu	agc Ser ttt Phe	agc Ser att Ile 20	cac His 5 tac Tyr	ctc Leu caa Gln	Ser I -10 gac Asp atg Met	cgc Arg tct Ser	cca Pro tca Ser 25	cac His 10 caa Gln	100
ctc t Leu S att c Ile P	ggttgc acceder Asn 55 cct ggc	ctt Leu caa Gln	aac Asn tca Ser 15 cag	caa Gln gct Ala	atc Ile 1 cag Gln tcg	ggc Gly ctg Leu gct	agc Ser ttt Phe	agc Ser att Ile 20	cac His 5 tac Tyr	ctc Leu caa Gln gca	Ger I -10 gac Asp atg Met	cgc Arg tct Ser	cca Pro tca Ser 25	cac His 10 caa Gln	100
ctc t Leu S att c Ile P caa c Gln L	ggttgc access access access acces ac	ctt Leu caa Gln cag Gln 30	aac Asn tca Ser 15 cag Gln	caa Gln gct Ala cct Pro	atc Ile 1 cag Gln tcg Ser	ggc Gly ctg Leu gct Ala	agc Ser ttt Phe aac Asn 35	agc Ser att Ile 20 aaa Lys	cac His 5 tac Tyr aaa Lys	ctc Leu caa Gln gca	Ger I -10 gac Asp atg Met gga Gly	cgc Arg tct Ser aaa Lys 40	cca Pro tca Ser 25 atc	cac His 10 caa Gln cac	100 148 196
ctc t Leu S att c Ile P caa c Gln L	gettge accept ac	ctt Leu caa Gln cag Gln 30	aac Asn tca Ser 15 cag Gln	caa Gln gct Ala cct Pro	atc Ile 1 cag Gln tcg Ser	ggc Gly ctg Leu gct Ala	agc Ser ttt Phe aac Asn 35	agc Ser att Ile 20 aaa Lys	cac His tac Tyr aaa Lys acg	ctc Leu caa Gln gca Ala	Ger I -10 gac Asp atg Met gga Gly	cgc Arg tct Ser aaa Lys 40 ctg	cca Pro tca Ser 25 atc Ile	cac His 10 caa Gln cac His	100
ctc t Leu S att c Ile P caa c Gln L	gettge accept get get get get get get get get get ge	ctt Leu caa Gln cag Gln 30	aac Asn tca Ser 15 cag Gln	caa Gln gct Ala cct Pro	atc Ile 1 cag Gln tcg Ser	ggc Gly ctg Leu gct Ala cta Leu	agc Ser ttt Phe aac Asn 35	agc Ser att Ile 20 aaa Lys	cac His tac Tyr aaa Lys acg	ctc Leu caa Gln gca Ala	Ger I -10 gac Asp atg Met gga Gly cat His	cgc Arg tct Ser aaa Lys 40 ctg	cca Pro tca Ser 25 atc Ile	cac His 10 caa Gln cac His	100 148 196
ctc t Leu S - att c Ile P caa c Gln L aac a Asn T	gettec accer Asn et accer Gly cta cag ceu Gln accer Grows 45	ctt Leu caa Gln cag Gln 30 ttc Phe	aac Asn tca Ser 15 cag Gln gcc Ala	caa Gln gct Ala cct Pro aac Asn	atc Ile 1 cag Gln tcg Ser caa Gln	ggc Gly ctg Leu gct Ala cta Leu 50	agc Ser ttt Phe aac Asn 35 aat Asn	agc Ser att Ile 20 aaa Lys cca Pro	cac His tac Tyr aaa Lys acg Thr	ctc Leu caa Gln gca Ala caa Gln	Ger I -10 gac Asp atg Met gga Gly cat His	cgc Arg tct Ser aaa Lys 40 ctg Leu	cca Pro tca Ser 25 atc Ile gca Ala	cac His 10 caa Gln cac His	100 148 196 244
ctc t Leu S att c Ile P caa c Gln L aac a Asn T	gettgc acc acc er Asn strong get get get get get get get get get ge	ctt Leu caa Gln cag Gln 30 ttc Phe	aac Asn tca Ser 15 cag Gln gcc Ala	caa Gln gct Ala cct Pro aac Asn	atc Ile 1 cag Gln tcg ser caa Gln	ggc Gly ctg Leu gct Ala cta Leu 50	agc Ser ttt Phe aac Asn 35 aat Asn	agc Ser att Ile 20 aaa Lys cca Pro	cac His tac Tyr aaa Lys acg Thr	ctc Leu caa Gln gca Ala caa Gln	Ger I -10 gac Asp atg Met gga Gly cat His 55	cgc Arg tct Ser aaa Lys 40 ctg Leu ctc	cca Pro tca Ser 25 atc Ile gca Ala	cac His 10 caa Gln cac His aaa Lys	100 148 196
ctc t Leu S att c Ile P caa c Gln L aac a Asn T	gettec accer Asn et accer Gly cta cag ceu Gln accer Grows 45	ctt Leu caa Gln cag Gln 30 ttc Phe	aac Asn tca Ser 15 cag Gln gcc Ala	caa Gln gct Ala cct Pro aac Asn	atc Ile 1 cag Gln tcg ser caa Gln	ggc Gly ctg Leu gct Ala cta Leu 50	agc Ser ttt Phe aac Asn 35 aat Asn	agc Ser att Ile 20 aaa Lys cca Pro	cac His tac Tyr aaa Lys acg Thr	ctc Leu caa Gln gca Ala caa Gln	Ger I -10 gac Asp atg Met gga Gly cat His 55	cgc Arg tct Ser aaa Lys 40 ctg Leu ctc	cca Pro tca Ser 25 atc Ile gca Ala	cac His 10 caa Gln cac His aaa Lys	100 148 196 244
ctc t Leu S att c Ile P caa c Gln L aac a Asn T cct t Pro P 6 cca t	gettge accept ggc ggc ggc ggc ggc ggc ggc ggc ggc gg	ctt Leu caa Gln cag Gln 30 ttc Phe caa Gln	aac Asn tca Ser 15 cag Gln gcc Ala att Ile	caa Gln gct Ala cct Pro aac Asn ctt Leu	atc Ile 1 cag Gln tcg Ser caa Gln cct Pro	ggc Gly ctg Leu gct Ala cta Leu 50 ggc Gly	agc Ser ttt Phe aac Asn 35 aat Asn	agc Ser att Ile 20 aaa Lys cca Pro cag Gln	cac His tac Tyr aaa Lys acg Thr tcc Ser	ctc Leu caa Gln gca Ala caa Gln ggc Gly 70	Ger I -10 gac Asp atg Met gga Gly cat His 55 agc Ser	cgc Arg tct Ser aaa Lys 40 ctg Leu ctc	Ser I cca Pro tca Ser 25 atc Ile gca Ala acc Thr	cac His 10 caa Gln cac His aaa Lys tca Ser	100 148 196 244
ctc t Leu S att c Clle P caa c Gln L aac a Asn T cct t Pro P 6 cca t	gettec accer Asn cot get Gly cta cag ceu Gln acc ccc Thr Pro 45 ctt cag che Gln 60	ctt Leu caa Gln cag Gln 30 ttc Phe caa Gln	aac Asn tca Ser 15 cag Gln gcc Ala att Ile	caa Gln gct Ala cct Pro aac Asn ctt Leu	atc Ile 1 cag Gln tcg Ser caa Gln cct Pro	ggc Gly ctg Leu gct Ala cta Leu 50 ggc Gly	agc Ser ttt Phe aac Asn 35 aat Asn	agc Ser att Ile 20 aaa Lys cca Pro cag Gln	cac His tac Tyr aaa Lys acg Thr tcc Ser	ctc Leu caa Gln gca Ala caa Gln ggc Gly 70	Ger I -10 gac Asp atg Met gga Gly cat His 55 agc Ser	cgc Arg tct Ser aaa Lys 40 ctg Leu ctc	Ser I cca Pro tca Ser 25 atc Ile gca Ala acc Thr	cac His 10 caa Gln cac His aaa Lys tca Ser	100 148 196 244 292
ctc t Leu S att c Ile P caa c Gln L aac a Asn T cct t Pro P caa t Pro P 75	gettec accer Asn cot get Gly cta cag ceu Gln acc ccc fir Pro 45 ctt cag che Gln ctt cta che Leu	ctt Leu caa Gln cag Gln 30 ttc Phe caa Gln	aac Asn tca Ser 15 cag Gln gcc Ala att Ile tgc Cys	caa Gln gct Ala cct Pro aac Asn ctt Leu	atc Ile 1 cag Gln tcg Ser caa Gln cct Pro 65	ggc Gly ctg Leu gct Ala cta Leu 50 ggc Gly	agc Ser ttt Phe aac Asn 35 aat Asn cgt Arg	agc Ser att Ile 20 aaa Lys cca Pro Gln	cac His tac Tyr aaa Lys acg Thr tcc Ser	ctc Leu caa Gln gca Ala caa Gln ggc Gly 70	Ger I -10 gac Asp atg Met gga Gly cat His 55 agc Ser	cgc Arg tct Ser aaa Lys 40 ctg Leu ctc Leu g aag	cca Pro tca Ser 25 atc Ile gca Ala acc Thr	cac His 10 caa Gln cac His aaa Lys tca Ser	100 148 196 244 292
ctc t Leu S att c Ile P caa c Gln L aac a Asn T cct t Pro P caa t Pro P 75 cgcag	cc aac Ser Asn St ggc Pro Gly Sta cag Seu Gln Acc ccc Thr Pro 45 Stt cag Phe Gln Stt cta Phe Leu	ctt Leu caa Gln cag Gln 30 ttc Phe caa Gln gct Ala	aac Asn tca Ser 15 cag Gln gcc Ala att Ile tgc Cys	caa Gln gct Ala cct Pro aac Asn ctt Leu tgaa	atc Ile 1 cag Gln tcg Ser caa Gln cct Pro 65	ggc Gly ctg Leu gct Ala cta Leu 50 ggc Gly	agc Ser ttt Phe aac Asn 35 aat Asn cgt Arg	agc Ser att Ile 20 aaa Lys cca Pro Gln	cac His tac Tyr aaa Lys acg Thr tcc ser	ctc Leu caa Gln gca Ala caa Gln ggc Gly 70 aagaa	Ser I -10 gac Asp atg Met gga Gly cat His 55 agc Ser	cgc Arg tct Ser aaa Lys 40 ctg Leu ctc Leu gate	cca Pro tca Ser 25 atc Ile gca Ala acc Thr	cac His 10 caa Gln cac His aaa Lys tca Ser	100 148 196 244 292 347
ctc t Leu S att c Ile P caa c Gln L aac a Asn T cct t Pro P cca t Pro P cgcag agaaa	cc aac Ser Asn Sct ggc Pro Gly Sta cag Seu Gln Acc ccc Thr Pro 45 Stt cag Phe Gln Stt cta Phe Leu	ctt Leu caa Gln cag Gln 30 ttc Phe caa Gln gct Ala	aac Asn tca Ser 15 cag Gln gcc Ala att Ile tgc Cys	caa Gln gct Ala cct Pro aac Asn ctt Leu tgaa	atc Ile I cag Gln tcg Ser caa Gln cct Pro 65	ggc Gly ctg Leu gct Ala cta Leu 50 ggc Gly	agc Ser ttt Phe aac Asn 35 aat Asn cgt Arg	agc Ser att Ile 20 aaa Lys cca Pro Gln atct	cac His 5 tac Tyr aaa Lys acg Thr tcc ser	ctc Leu caa Gln gca Ala caa Gln ggc Gly 70 aagaa	Ser I -10 gac Asp atg Met gga Gly cat His 55 agc Ser aggac	cgc Arg tct Ser aaa Lys 40 ctg Leu ctc Leu gct	Ser I cca Pro tca Ser 25 atc Ile gca Ala acc Thr	cac His 10 caa Gln cac His aaa Lys tca Ser ctct	100 148 196 244 292 347 407 467
ctc t Leu S att c Clie P caa c Gln L aac a Asn T cct t Pro P 75 cgcag agaaa	gettge acceptance of the cag	ctt Leu caa Gln cag Gln 30 ttc Phe caa Gln gct Ala gcagg agccg	aac Asn tca Ser 15 cag Gln gcc Ala att Ile tgc Cys	caa Gln gct Ala cct Pro aac Asn ctt Leu tgaa	atc Ile 1 cag Gln tcg Ser caa Gln cct Pro 65 accc	ggc Gly ctg Leu gct Ala cta Leu 50 ggc Gly	agc Ser ttt Phe aac Asn 35 aat Asn cgt Arg	agc Ser att Ile 20 aaa Lys cca Pro Gln atct	cac His 5 tac Tyr aaa Lys acg Thr tcc ser	ctc Leu caa Gln gca Ala caa Gln ggc Gly 70 aagaa gtcg	Ser I -10 gac Asp atg Met gga Gly cat His 55 agc Ser aggac gatte	cgc Arg tct Ser aaa Lys 40 ctg Leu ctc Leu gct agct	cca Pro tca Ser 25 atc Ile gca Ala acc Thr gctto	cac His 10 caa Gln cac His aaa Lys tca Ser etct egggaga	100 148 196 244 292 347 407 467 527
ctc t Leu S att c Ile P caa c Gln L aac a Asn T cct t Pro P cca t Pro P cgcagagaa aggaa	cc aac Ser Asn Sct ggc Pro Gly Sta cag Seu Gln Acc ccc Thr Pro 45 Stt cag Phe Gln Stt cta Phe Leu	ctt Leu caa Gln cag Gln 30 ttc Phe caa Gln gct Ala gagacaa	aac Asn tca Ser 15 cag Gln gcc Ala att Ile tgc Cys	caa Gln gct Ala cct Pro aac Asn ctt Leu tgaa	atc Ile 1 cag Gln tcg Ser caa Gln cct Pro 65 accc	ggc Gly cta cta Leu 50 ggc Gly caa a gagattte	agc Ser ttt Phe aac Asn 35 aat Asn cgt acta	agc Ser att Ile 20 aaa Lys cca Pro Gln atct gaga	cac His 5 tac Tyr aaa Lys acg Thr tcc ser	ctc Leu caa Gln gca Ala caa Gln ggc Gly 70 aagaa agaa agaa	Ser I -10 gac Asp atg Met gga Gly cat His ser aggac gatet ttact	cgc Arg tct Ser aaa Lys ctc Leu ctc Leu gct agct agct agct agct agct agct	Ser I cca Pro tca Ser 25 atc Ile gca Ala acc Thr gcttc	cac His 10 caa Gln cac His aaa Lys tca Ser ctct cgggaaa gacagg	100 148 196 244 292 347 407 467 527 587
ctc ts Leu S att cPro P 6ca ts Pro P cgaaaaaaggaaaaaggaaaaggaaaaggattgtttatggt	cc aac Ser Asn St ggc Pro Gly Sta cag Seu Gln St cag She Gln St cag She Gln St cta She Gln St cta She Gln St cta She Leu Sccgga St caca St caca St caca St caca	ctt Leu caa Gln cag Gln 30 ttc Phe caa Gln gct Ala gagacaa gagacaa gattcaa	aac Asn tca Ser 15 cag Gln gcc Ala att Ile tgc Cys tccc ggttt tcataatcat	caa Gln gct Ala cct Pro aac Asn ctt Leu tgaa cg gt	atc Ile 1 cag Gln tcg Ser caa Gln cct Pro 65 accc tctag tcttg gagg	ggc Gly cta Leu 50 ggc Gly caa a gagattttgtttttttttttttttttttttttt	agc Ser ttt Phe aac Asn agt Asn cgt agg agg agg agg agg agg agg agg agg a	agc Ser att Ile 20 aaa Lys cca Pro Gln atct gagaaacaacaacaacaacaacaacaacaacaacaacaac	cac His 5 tac Tyr aaa Lys acg Thr tcc ser cagaggta agggaata aggaaga	ctc Leu caa Gln gca Ala caa Gln ggc Gly 70 aagaa agaa agaa agaa	Ser I -10 gac Asp atg Met gga Gly cat His sagc sagac gattt ttggt tact ttggt	cgc Arg tct Ser aaa Lys ctc Leu ctc Leu gct G	Ser I cca Pro tca Ser 25 atc Ile gca Ala acc Thr gcttc	cac His 10 caa Gln cac His aaa Lys tca Ser ctct cgggaa atgaa gacagg	100 148 196 244 292 347 407 467 527 587 647 707
ctc ts scale of the case of th	cc aac Ser Asn Sct ggc Pro Gly Sta cag Seu Gln Scc ccc Thr Pro 45 Stt cag Phe Gln Sche Leu Sccgga atcaca aataga	ctt Leu caa Gln cag Gln 30 ttc Phe caa Gln gct Ala gagacaa gatcaa gattgga	aac Asn tca Ser 15 cag Gln gcc Ala att Ile tgc Cys tccc gttt cataatcat gaatt	caa Gln gct Ala cct Pro aac Asn ctt Leu tgaa ct tt	atc Ile 1 cag Gln tcg Ser caa Gln cct Pro 65 accctt agagg	ggc Gly ctg Leu gct Ala cta Leu 50 ggc Gly caa a gattte gaagt ctct ctgaagt ctct ctgaact gaact	agc Ser ttte aac Asn agt agg agg agg agg agg agg agg agg agg	agc Ser att Ile 20 aaa Lys cca Pro Gln atct gatta	cac His 5 tac Tyr aaa Lys acg Thr tcc cagaggaata aggaatagaatg	ctc Leu caa Gln gca Ala caa Gln ggc gly 70 aagaa agaa agaa agaa agaa agaa agaa	Ser I -10 gac Asp atg Met gga Gly cat His ser aggac gattt tagt	cgc Arg cgc Arg tct Ser aaa Lys ctc Leu ctc Leu gct Gag agt Ga	Ser I CCA Pro tca Ser 25 atc Ile gca Ala acc Thr gcttca gattttt gattttt gattaat caata	cac His 10 caa Gln cac His aaa Lys tca Ser ctct cgggaaa gacaggattaaga	100 148 196 244 292 347 407 467 527 587 647 707 767

aaattqaact aaqatttact tttttttcca tagctgggat ataggctgca gctatagttg

887

aacaagcagt ctttaaaaac tgctgtgaaa cacaggccat cagggaaaac gaaatgctgc 947 1007 actattaaat tagaggtttt tgaaaaatcc aactctcatc ctgggcagag gttgcctagt 1067 tggtatagaa tgttaagttt caagaaagtt tacctttgct ttaggtcgta agttccttat ttgattgccg tatatggata catggctgtt cgtgacattc tttatgtgca aatttgtgat 1127 1187 ttcaaaaatg tcctgccagt ttaagggtac attgtagagc cgaactttga gttactgtgc 1247 aagatttttt ttcatgctgt catttgtaat atgttttgtg agaatccttg ggattaaagt 1272 tttggttaca gattaaaaaa aaaaa <210> 88 <211> 804 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 114..734 <221> sig_peptide <222> 114..239 <223> Von Heijne matrix score 5.2 seq LLFDLVCHEFCQS/DD <221> polyA_signal <222> 768..773 <221> polyA site <222> 793..804 <400> 88 60 ccaacaccag gaagagtctg aagagcagcc agtgtttcgg cttgtgccct gtatacttga 116 agetgecaaa caagtaeggt agttetgaaa atecagaatg gettgatgtt tac atg 164 cac att tta caa ctg ctt act aca gtg gat gat gga att caa gca att His Ile Leu Gln Leu Leu Thr Thr Val Asp Asp Gly Ile Gln Ala Ile -35 -30 gta cat tgt cct gac act gga aaa gac att tgg aat tta ctt ttt gac 212 Val His Cys Pro Asp Thr Gly Lys Asp Ile Trp Asn Leu Leu Phe Asp -20 -15 260 ctg gtc tgc cat gaa ttc tgc cag tct gat gat cca ccc atc att ctt Leu Val Cys His Glu Phe Cys Gln Ser Asp Asp Pro Pro Ile Ile Leu -5 caa gaa cag aaa aca gtg cta gcc tct gtt ttt tca gtg ttg tct gcc 308 Gln Glu Gln Lys Thr Val Leu Ala Ser Val Phe Ser Val Leu Ser Ala 15 356 atc tat gcc tca cag act gag caa gag tat cta aag ata gaa aaa gta Ile Tyr Ala Ser Gln Thr Glu Gln Glu Tyr Leu Lys Ile Glu Lys Val 30 35 gat ctt cct cta att gac agc ctc att cgg gtc tta caa aat atg gaa 404 Asp Leu Pro Leu Ile Asp Ser Leu Ile Arg Val Leu Gln Asn Met Glu 45 50 cag tgt cag aaa aaa cca gag aac tcg gca gag tct aac aca gag gaa 452 Gln Cys Gln Lys Lys Pro Glu Asn Ser Ala Glu Ser Asn Thr Glu Glu 60 65 act aaa agg act gat tta acc caa gat gat ctc cac ttg aaa atc tta 500 Thr Lys Arg Thr Asp Leu Thr Gln Asp Asp Leu His Leu Lys Ile Leu 80 aag gat att tta tgt gaa ttt ctt tct aat att ttt cag gca tta aca 548

Lys Asp Ile Leu Cys Glu Phe Leu Ser Asn Ile Phe Gln Ala Leu Thr

		90					95					100				
aaq	aaa		ata	act	cag	qqa		aag	gaa	ggc	çag	ttg	agc	aaa	cag	596
Lys	Glu	Thr	Val	Ala	Gln	Gly	Val	Lys	Glu	Gly	Gln	Leu	Ser	Lys	Gln	
	105					110					115					
aag	tgt	tcc	tct	gca	ttt	caa	aac	ctt	ctt	cct	ttc	tat	agc	cct	gtg	644
Lys	Cys	Ser	Ser	Āla	Phe	Gln	Asn	Leu	Leu	Pro	Phe	Tyr	Ser	Pro	Val	
120					125					130					135	
gtg	gaa	gat	ttt	att	aaa	atc	cta	cgt	gaa	gtt	gat	aag	gcg	ctt	gct	692
Val	Glu	Asp	Phe	Ile	Lys	Ile	Leu	Arg	Glu	Val	Asp	Lys	Ala		Ala	
				140					145					150		
gat	gac	ttg	gaa	aaa	aac	ttc	cca	agt	ttg	aag	gtt	cag	act			734
Asp	Asp	Leu	Glu	Lys	Asn	Phe	Pro		Leu	Lys	Val	Gln				
			155					160					165			
taaa	acct	ga a	ittgg	gaatt	a ct	tctg	taca	aga	aata	aac	ttta	attt	tc t	cact	gacaa	794
aaaa	aaaa	aaa														804
)> 89															
	1> 80															
	2 > Dì															
<213	3 > Ho	omo s	sapie	ens												
<220																
	1> CI															
<222	2> 19	998	301													
-22		. 7	_sigr													
	1> po 2> 78			laı												
<42.	e> /(30	/03													
. 22		. 7 7														
			2174	>												
	_	- •	_site	2												
	1> po 2> 7!	- •	-	2												
<22	2 > 7!	91	-	•												
<222	2 > 7 ! 0 > 8 !	91	302		ac to	aaco	·	c gad	ctcac	act	cta	agte	caq (etec	gaagag	60
<222 <400 agto	2 > 7 ! 0 > 8 ! cacc	91 9 gcc 1	302 egett	cgca											gaagag ttacga	60 120
<22: <40: agt: gaag	2 > 7 ! 0 > 8 ! cacc; gaggs	91 9 gcc t	302 cgctt	cgca	gt to	gaaa	atcg	: tct	cgct	ttg	ccaa	aggga	aga d	ctati	ttacga	
<400 agto gaag tgc	2> 79 0> 89 cacco gaggo tgcao	919 gcc t aat t	gett ceggt	cgca gtgg	gt to	gaaa	tcg	tct ttt	.cgct	ttg	cca:	aggga ctgc	aga d ctg 1	etati	ttacga gtggcc	120
<400 agto gaag tgc	2> 79 0> 89 cacco gaggo tgcao	919 gcc t aat t	gett ceggt	cgca gtgg	gt to cc go atg	gaaa tctg cag	tcgo gtggt gtt	tct ttt gct	cgct gtca ctc	ttg tcc aag	ccaa ttga gag	aggga ctgca gat	aga d ctg 1	tati gtt: gat	ttacga gtggcc gcc	120 180
<400 agto gaag tgc	2> 79 0> 89 cacco gaggo tgcao	919 gcc t aat t	gett ceggt	cgca gtgg	gt to cc go atg	gaaa tctg cag	tcgo gtggt gtt	tct ttt gct	cgct gtca ctc	ttg tcc aag	ccaa ttga gag	aggga ctgca gat	aga d ctg t ctg	tati gtt: gat	ttacga gtggcc gcc	120 180
<400 agto gaag tgco	2 > 79 0 > 89 cacco gaggo tgcao gttgg	916 gcc t aat t aga t	igett ieget ieggt ietgt	cgca cgtgg ctato gtgg	gt to cc go atg Met 1	gaaa tctg cag Gln	tcgo gtggt gtt Val	tct ttt gct Ala	cgct gtca ctc Leu 5	ttg tcc aag Lys	ttge gag Glu	aggga ctgca gat Asp	aga o ctg t ctg Leu	gtati gat gat Asp 10	tacga gtggcc gcc Ala	120 180
<22: <400 agto gaag tgc: tgt:	2 > 79 0 > 89 cacce gagge tgcae gttge aag	Pl	aaa	cegea gtgg tate gtgg	gt to cc go atg Met 1 cga	gaaa ctctg cag Gln aca	tcgo gtggt gtt Val	tct ttt gct Ala gaa	cgct gtca ctc Leu 5 tct	ttg atcc aag Lys aat	ttge gag Glu cag	aggga ctgca gat Asp aaa	aga o ctg t ctg Leu agc	gat gat Asp 10 tca	ttacga gtggcc gcc Ala ttc	120 180 231
<22: <400 agto gaag tgc: tgt:	2 > 79 0 > 89 cacce gagge tgcae gttge aag	Pl	aaa	cegea gtgg tate gtgg	gt to cc go atg Met 1	gaaa ctctg cag Gln aca	tcgo gtggt gtt Val	tct ttt gct Ala gaa	cgct gtca ctc Leu 5 tct	ttg atcc aag Lys aat	ttge gag Glu cag	aggga ctgca gat Asp aaa	aga o ctg t ctg Leu agc	gat gat Asp 10 tca	ttacga gtggcc gcc Ala ttc	120 180 231
<22: <400 agto gaag tgco tgto ctc Leu	2 > 7! 0 > 8! cacce gagge tgcae gttge aag	gcc taat taga t	aaa Lys	cegea cgtgg ctate gtgg ttt Phe	gt to cc go atg Met 1 cga	gaaa ctctg cag Gln aca Thr	atego gtggt gtt Val atg Met	gct Ala gaa Glu 20	cgct cgtca ctc Leu 5 tct Ser	ttg atcc aag Lys aat Asn	ccas ttgs gag Glu cag Gln	aggga etgca gat Asp aaa Lys	aga of ctg to ctg Leu agc Ser 25	gat gat Asp 10 tca Ser	ttacga gtggcc gcc Ala ttc Phe	120 180 231
<22: <400 agto gaag tgc; tgt; ctc Leu	2 > 7! 0 > 8! caccg gaggg tgcas gttgg tycs aag Lys	gcc taat taga t	aaa Lys	ccgca gtgg tato gtgg ttt Phe	gt to c go atg Met l cga Arg	ggaaa ctctg cag Gln aca Thr	tcgg gtggt gtt Val atg Met	gct Ala gaa Glu 20 gaa	ctc ctc Leu 5 tct Ser	ttg atcc aag Lys aat Asn	ccas ttgg gag Glu cag Gln agc	aggga ctgcc gat Asp aaa Lys aag	aga octg to ctg Leu agc Ser 25 caa	gat gat Asp 10 tca Ser	ttacga gtggcc gcc Ala ttc Phe	120 180 231 279
<22: <400 agto gaag tgc; tgt; ctc Leu	2 > 7! 0 > 8! caccg gaggg tgcas gttgg tycs aag Lys	gcc taat taga t	aaa Lys	ccgca gtgg tato gtgg ttt Phe	gt to atg Met 1 cga Arg	ggaaa ctctg cag Gln aca Thr	tcgg gtggt gtt Val atg Met	gct Ala gaa Glu 20 gaa	ctc ctc Leu 5 tct Ser	ttg atcc aag Lys aat Asn	ccas ttgg gag Glu cag Gln agc	aggga ctgcc gat Asp aaa Lys aag	aga octg to ctg Leu agc Ser 25 caa	gat gat Asp 10 tca Ser	ttacga gtggcc gcc Ala ttc Phe	120 180 231 279
<22: <400 agto gaag tgc tgt; ctc Leu caa Gln ctt	2 > 7 ! 0 > 8 ! cacco gaggg tgcat gcttgg Lys gaa Glu gag	gcc taat taga t	aaa Lys CCC Pro	ttt Phe aaa Lys	gt to cc go atg Met 1 cga Arg ctt Leu	ggaaa ctctg cag Gln aca Thr aat Asn	tcgg ttggt yat Val atg Met gaa Glu 35 gag	gct Ala gaa Glu 20 gaa Glu atg	cgct gtca ctc Leu 5 tct Ser cta Leu	ttg atcc aag Lys aat Asn ctc Leu	ccas ttgs gag Glu cag Gln agc Ser	aggga gat Asp aaa Lys aag Lys 40	aga of the ctg Leu agc Ser 25 caa Gln gtc	gat gat Asp 10 tca Ser aaa Lys	ttacga gtggcc gcc Ala ttc Phe caa Gln	120 180 231 279
<22: <400 agto gaag tgc tgt; ctc Leu caa Gln ctt	2 > 7 ! 0 > 8 ! cacco gaggg tgcat gcttgg Lys gaa Glu gag	gcc taat taga t	aaa Lys CCC Pro	ttt Phe aaa Lys	gt to ac go atg Met 1 cga Arg ctt Leu	ggaaa ctctg cag Gln aca Thr aat Asn	tcgg ttggt yat Val atg Met gaa Glu 35 gag	gct Ala gaa Glu 20 gaa Glu atg	cgct gtca ctc Leu 5 tct Ser cta Leu	ttg atcc aag Lys aat Asn ctc Leu	ccas ttgs gag Glu cag Gln agc Ser	aggga gat Asp aaa Lys aag Lys 40	aga of the ctg Leu agc Ser 25 caa Gln gtc	gat gat Asp 10 tca Ser aaa Lys	ttacga gtggcc gcc Ala ttc Phe caa Gln	120 180 231 279
<22: <400 agto gaag tgc tgt; ctc Leu caa Gln ctt	2 > 7 ! 0 > 8 ! cacco gaggg tgcat gcttgg Lys gaa Glu gag	gcc taat taga t	aaa Lys CCC Pro	ttt Phe aaa Lys	gt to cc go atg Met 1 cga Arg ctt Leu	ggaaa ctctg cag Gln aca Thr aat Asn	tcgg ttggt yat Val atg Met gaa Glu 35 gag	gct Ala gaa Glu 20 gaa Glu atg	cgct gtca ctc Leu 5 tct Ser cta Leu	ttg atcc aag Lys aat Asn ctc Leu	ccas ttgs gag Glu cag Gln agc Ser	aggga gat Asp aaa Lys aag Lys 40	aga of the ctg Leu agc Ser 25 caa Gln gtc	gat gat Asp 10 tca Ser aaa Lys	ttacga gtggcc gcc Ala ttc Phe caa Gln	120 180 231 279
<22: <400 agtc gaag tgct tgt; ctc Leu caa Gln ctt Leu aac	2 > 7 ! 0 > 8 ! caccc gaggg tgcae gttgg Lys gaa Glu gag Glu 45 atc	gcc tage to gaa gct to gaa Glu atc Ile 30 aag Lys	aaa Lys ccc Pro att	ttt Phe aaa Lys gaa Glu	gt to cc go atg Met l cga Arg ctt Leu tct Ser	ggaaa tctg cag Gln aca Thr aat Asn gga Gly 50 aag	tcgg tggt gtt Val atg Met gaa Glu gag Glu cag	gct Ala gaa Glu 20 gaa Glu atg Met att	ceget egtes ctc Leu 5 tct Ser cta Leu ggt Gly	ttg tcc aag Lys aat Asn ctc Leu ttg Leu ctg	ccasttggaggaggaggagagagagagagagagagagagaga	aggga gat Asp aaa Lys aag Lys 40 aaa Lys	aga (ctg tctg) Leu agc Ser 25 caa Gln gtc Val	gattegattegattegattegattegattegattegatt	ttacga gtggcc gcc Ala ttc Phe caa Gln ata Ile	120 180 231 279
<22: <400 agtc gaag tgct tgt; ctc Leu caa Gln ctt Leu aac	2 > 7 ! 0 > 8 ! caccc gaggg tgcae gttgg Lys gaa Glu gag Glu 45 atc	gcc tage to gaa gct to gaa Glu atc Ile 30 aag Lys	aaa Lys ccc Pro att	ttt Phe aaa Lys gaa Glu	gt to ac go atg Met 1 cga Arg ctt Leu tct Ser	ggaaa tctg cag Gln aca Thr aat Asn gga Gly 50 aag	tcgg tggt gtt Val atg Met gaa Glu gag Glu cag	gct Ala gaa Glu 20 gaa Glu atg Met att	ceget egtes ctc Leu 5 tct Ser cta Leu ggt Gly	ttg tcc aag Lys aat Asn ctc Leu ttg Leu ctg	ccasttggaggaggaggagagagagagagagagagagagaga	aggga gat Asp aaa Lys aag Lys 40 aaa Lys	aga (ctg tctg) Leu agc Ser 25 caa Gln gtc Val	gattegattegattegattegattegattegattegatt	ttacga gtggcc gcc Ala ttc Phe caa Gln ata Ile gtg Val	120 180 231 279 327
<22: <400 agtc gaag tgct tgt; ctc Leu caa Gln ctt Leu aac Asn 60	2 > 7 ! 0 > 8 ! cacce gaggg tgcae gttgg Lys gaa Glu gag Glu 45 atc Ile	gcc tage tage to gaa Glu atc Ile 30 aag Lys aca Thr	aaa Lys ccc Pro att Ile	ttt Phe aaa Lys gaa Glu atg	gt to atg Met 1 cga Arg ctt Leu tct Ser aat Asn 65	ggaaa ctctg cag Gln aca Thr aat Asn gga Gly 50 aag	atcgg gtggt gtt Val atg Met gaa Glu 35 gag Glu cag	gaa Glu 20 gaa Glu atg Met att	ceget etc Leu 5 tet Ser cta Leu ggt Gly tet	ttg atcc aag Lys aat Asn ctc Leu ttg Leu ctg Leu	caa gag Glu cag Gln agc Ser aac Asn 55 ttg Leu	aggga gat Asp aaa Lys aag Lys 40 aaa Lys	aga (ctg leu agc Ser 25 caa Gln gtc Val	gat gat Asp 10 tca Ser aaa Lys tgg Trp	ttacga gtggcc gcc Ala ttc Phe caa Gln ata Ile gtg Val 75	120 180 231 279 327 375
<22: <400 agtc gaag tgct tgt; ctc Leu caa Gln ctt Leu aac Asn 60 aac	2 > 7 ! 0 > 8 ! cacce gaggg tgcae gttgg Lys gaa Glu gag Glu 45 atc Ile cac	gaa gaa Glu atc Ile 30 aag Lys aca Thr	aaa Lys ccc Pro att Ile gaa Glu	ttt Phe aaa Lys gaa Glu atg Met	gt to cc atg Met 1 cga Arg ctt Leu tct Ser aat Asn 65 aat	ggaaa ctctg Cag Gln aca Thr aat Asn Gly 50 aag Lys	atcgg gtggt gtt Val atg Met gaa Glu 35 gag Glu cag Gln aag	gaa Glu 20 gaa Glu atg Met Ile	cgct gtca ctc Leu 5 tct Ser cta Leu ggt Gly tct Ser	ttg atcc aag Lys aat Asn ctc Leu ttg Leu ctg Leu gca	ccas ttgg gag Glu cag Gln agc Ser aac Asn 55 ttg Leu	aggga gat Asp aaa Lys aug Lys 40 aaa Lys act Thr	aga (ctg leu agc Ser 25 caa Gln gtc Val tct att	gattegattegat Asp 10 tca Ser aaa Lys tgg Trp gca Ala agc	ttacga gtggcc gcc Ala ttc Phe caa Gln ata Ile gtg Val 75 ctg	120 180 231 279 327
<22: <400 agtc gaag tgct tgt; ctc Leu caa Gln ctt Leu aac Asn 60 aac	2 > 7 ! 0 > 8 ! cacce gaggg tgcae gttgg Lys gaa Glu gag Glu 45 atc Ile cac	gaa gaa Glu atc Ile 30 aag Lys aca Thr	aaa Lys ccc Pro att Ile gaa Glu	ttt Phe aaa Lys gaa Glu atg Met	gt to atg Met 1 cga Arg ctt Leu tct Ser aat Asn 65	ggaaa ctctg Cag Gln aca Thr aat Asn Gly 50 aag Lys	atcgg gtggt gtt Val atg Met gaa Glu 35 gag Glu cag Gln aag	gaa Glu 20 gaa Glu atg Met Ile	cgct gtca ctc Leu 5 tct Ser cta Leu ggt Gly tct Ser	ttg atcc aag Lys aat Asn ctc Leu ttg Leu ctg Leu gca	ccas ttgg gag Glu cag Gln agc Ser aac Asn 55 ttg Leu	aggga gat Asp aaa Lys aug Lys 40 aaa Lys act Thr	aga (ctg leu agc Ser 25 caa Gln gtc Val tct att	gattegattegattegattegattegattegattegatt	ttacga gtggcc gcc Ala ttc Phe caa Gln ata Ile gtg Val 75 ctg	120 180 231 279 327 375
<22: <400 agtc gaag tgct tgt; ctc Leu caa Gln ctt Leu aac Asn 60 aac Asn	2 > 7 ! 0 > 8 ! cacce gaggg tgcae gttgg Lys gaa Glu gag Glu 45 atc Ile cac His	gaa gaa Glu atc Ile 30 aag Lys aca Thr	aaa Lys 15 ccc Pro att Ile gaa Glu aaa Lys	ttt Phe aaa Lys gaa Glu atg Met gcc Ala	gt to ac go atg Met 1 cga Arg ctt Leu tct Ser aat Asn 65 aat Asn	ggaaa ctctg cag Gln aca Thr aat Asn gga Gly 50 aag Lys gtt Val	atcgg gtggt gtt Val atg Met gaa Glu 35 gag Glu cag Gln aag Lys	gaa Glu 20 gaa Glu atg Met att Ile tca Ser	cgct gtca ctc Leu 5 tct Ser cta Leu ggt Gly tct Ser gct Ala 85	ttg atcc aag Lys aat Asn ctc Leu ttg Leu ctg Leu 70 gca Ala	ccas ttgg gag Glu cag Gln agc Ser aac Asn 55 ttg Leu gac	aggga gat Asp aaa Lys aag Lys 40 aaa Lys act Thr	aga (ctg leu agc Ser 25 caa Gln gtc Val tct Ser att Ile	gattegattegattegattegattegattegattegatt	ttacga gtggcc gcc Ala ttc Phe caa Gln ata Ile gtg Val 75 ctg Leu	120 180 231 279 327 375 423
<22: <400 agtc gaag tgct tgt; ctc Leu caa Gln ctt Leu aac Asn 60 aac Asn	2 > 7 ! 0 > 8 ! cacce gaggg tgcae gttgg Lys gaa Glu gag Glu 45 atc Ile cac His	gaa gaa Glu atc Ile 30 aag Lys aca Thr	aaa Lys ccc att ccc att ccc Pro att Ile gaa Lys gta	ttt Phe aaa Lys gaa Glu atg Met gcc Ala gag	gt tg catg Met 1 cga Arg ctt Leu tct Ser Asn 65 aat Asn	ggaaa ctctg Cag Gln aca Thr aat Asn Gly 50 aag Lys gtt Val	atcgg gtggt gtt Val atg Met gaa Glu 35 gag Glu cag Gln aag Lys	gaa Glu atg Met att Ile tca Ser aag	cgct gtca ctc Leu 5 tct Ser cta Leu ggt Gly tct Ser Ala 85 agt	ttg atcc aag Lys aat Asn ctc Leu ttg Leu 70 gca Ala gta	ccase ttgg gag glu cag gln agc Ser aac Asn 55 ttg Leu gac Asp gct	aggga gat Asp aaa Lys aug Lys 40 aaa Lys act Thr	aga (ctg leu agc Ser 25 caa Gln gtc Val tct Ile att	gattegattegattegattegattegattegattegatt	ttacga gtggcc gcc Ala ttc Phe caa Gln ata Ile gtg Val 75 ctg Leu aat	120 180 231 279 327 375
<22: <400 agtc gaag tgct tgt; ctc Leu caa Gln ctt Leu aac Asn 60 aac Asn	2 > 7 ! 0 > 8 ! cacce gaggg tgcae gttgg Lys gaa Glu gag Glu 45 atc Ile cac His	gaa gaa Glu atc Ile 30 aag Lys aca Thr	aaa Lys cro atte gaa Lys gta Lys	ttt Phe aaa Lys gaa Glu atg Met gcc Ala gag	gt to ac go atg Met 1 cga Arg ctt Leu tct Ser aat Asn 65 aat Asn	ggaaa ctctg Cag Gln aca Thr aat Asn Gly 50 aag Lys gtt Val	atcgg gtggt gtt Val atg Met gaa Glu 35 gag Glu cag Gln aag Lys	gaa Glu atg Met att Ile tca ser agg Lys	cgct gtca ctc Leu 5 tct Ser cta Leu ggt Gly tct Ser Ala 85 agt	ttg atcc aag Lys aat Asn ctc Leu ttg Leu 70 gca Ala gta	ccase ttgg gag glu cag gln agc Ser aac Asn 55 ttg Leu gac Asp gct	aggga gat Asp aaa Lys aug Lys 40 aaa Lys act Thr	aga (ctg leu agc Ser 25 caa Gln tct Ser att Ile att Ile	gattegattegattegattegattegattegattegatt	ttacga gtggcc gcc Ala ttc Phe caa Gln ata Ile gtg Val 75 ctg Leu aat	120 180 231 279 327 375 423
<22: <400 agtc gaag tgct tgtc ctc Leu caa Gln ctt Leu aac Asn 60 aac Asn cct Pro	2 > 7 ! 0 > 8 ! cacco gaggg tgcae gttgg Lys gau Glu 45 atc Ile cac His	gaa daga daga daga daga daga daga daga	aaa Lys cro atte gaa Lys Glu aaa Lys Stal	ttt Phe aaa Lys gaa Glu atg Met gcc Ala gag Glu	gt to acc go atg Met l cga Arg ctt Leu tct Ser aat Asn 65 aat Asn gga Gly	ggaaa ctctg Cag Gln aca Thr aat Asn Gly 50 aag Lys gtt Val ctt	atcgg gtggt gtt Val atg Met gaa Glu 35 gag Glu cag Gln aag Lys	gaa Glu atg Met att Ile tca Ser agg Lys	cgct gtca ctc Leu 5 tct Ser cta Leu ggt Gly tct Ser Ala 85 agt	ttg atcc aag Lys aat Asn ctc Leu ttg Leu 70 gca Ala gta Val	ccase ttgg gag galu cag Gln agc Ser aac Asn 55 ttg Leu gac Asp	agggat gat Asp aaa Lys aag Lys act Thr ttg Leu tcc	aga (ctg leu agc Ser 25 caa Gln tct Ser att Ile att 1165	gattegattegattegattegattegattegattegatt	ttacga gtggcc gcc Ala ttc Phe caa Gln ata Ile gtg Val 75 ctg Leu aat Asn	120 180 231 279 327 375 423 471 519
<pre><22: <400 agtc gaag tgct tgt; ctc Leu caa Gln ctt Leu aac Asn 60 aac Asn cct Pro act</pre>	2 > 7 ! 2	gaa daga daga daga daga daga daga daga	aaa Lys croo atte gau aaa Lys gtal aaa Lys gtal aaa Lys agc	ttt Phe aaa Lys gaa Glu atg Met gcc Ala gag Glu	at to go at g Met l cga Arg ctt Leu tct Ser Asn 65 aat Asn gga Gly cat	ggaaa ctote cag Gln aca Thr aat Asn Gly 50 agga Lys gtt Val ctt	atcgggggtt Val atg Met gaa Glu cag Glu cag Gln acg Gln gct	gaa glu atg glu atg tca ser agg Lys gtg	cgctcgtcactcuts ctau ser ctau ggty tct ser Ala ser ser gga	ttg atcc aag Lys aat Asn ctc Leu ttg Leu 70 gca Ala gta Val	ccase ttgg gag glu cag gln agc Ser aac Asn 55 ttg Leu gac Asp gct Ala cta	agggat gat Asp aaa Lys aag Lys act Thr teu teer cag	aga (ctg leu agc ser 25 caa Gln tct ser 11e att 11e att 105 aaa	gattegattegattegattegattegattegattegatt	ttacga gtggcc gcc Ala ttc Phe caa Gln ata Ile gtg Val 75 ctg Leu aat Asn	120 180 231 279 327 375 423
<pre><22: <400 agtc gaag tgct tgt; ctc Leu caa Gln ctt Leu aac Asn 60 aac Asn cct Pro act</pre>	2 > 7 ! 2	gaa daga daga daga daga daga daga daga	aaa Lys croo atte gau aaa Lys gtal aaa Lys gtal aaa Lys agc	ttt Phe aaa Lys gaa Glu atg Met gcc Ala gag Glu	gt to acc go atg Met l cga Arg ctt Leu tct Ser aat Asn 65 aat Asn gga Gly	ggaaa ctctg Gln aca Thr aat Asn Gly 50 agga Lys gtt Val ctt	atcgggggtt Val atg Met gaa Glu cag Glu cag Gln acg Gln gct	gaa glu atg glu atg tca ser agg Lys gtg	cgctcgtcactcuts ctau ser ctau ggty tct ser Ala ser ser gga	ttg atcc aag Lys aat Asn ctc Leu ttg Leu 70 gca Ala gta Val	ccase ttgg gag glu cag gln agc Ser aac Asn 55 ttg Leu gac Asp gct Ala cta	agggat gat Asp aaa Lys aag Lys act Thr ttg Leu tcc Cag Gln	aga (ctg leu agc ser 25 caa Gln tct ser 11e att 11e att 105 aaa	gattegattegattegattegattegattegattegatt	ttacga gtggcc gcc Ala ttc Phe caa Gln ata Ile gtg Val 75 ctg Leu aat Asn	120 180 231 279 327 375 423 471 519
<22: <400 agtc gaag tgct tgt; ctc Leu caa Gln ctt Leu aac Asn 60 aac Asn cct Pro act Thr	2 > 7 ! 2	gaa de	aaa Lys cro atte gau Lys gtal ser	ttt Phe aaa Lys gaa Glu atg Met gcc Ala gag Glu gtc Val	at to go at g Met l cga Arg ctt Leu tct Ser Asn 65 aat Asn gga Gly cat	ggaaa ctctg Gln aca Thr aat Asn Gly 50 agga Lys gtt Val ctt Leu ctt	atcgggggtt Val atg Met gaa Glu cag Glu cag Gln axg Gln Ala 115	gaa glu atg glu atg Met tca Ser agg Lys 100 gtg Val	cgct gtca ctc Leu 5 tct Ser cta Leu ggt Gly tct Ser Ala 85 agt Ser gaa Glu	ttg atcc aag Lys aat Asn ctc Leu ttg Leu 70 gca Ala gta Val	ccase ttgg gag gag Glu cag Gln agc Ser aac Asn 55 ttg Leu gac Asp gct Ala cta Leu	agggat gat Asp aaa Lys aag Lys act Thr teu tee Cag Gln 120	aga (ctg leu agc ser 25 caa Gln tct ser 11e att 11e att 12s aaa Lys	gattegattegattegattegattegattegattegatt	ttacga gtggcc gcc Ala ttc Phe caa Gln ata Ile gtg Val 75 ctg Leu aat Asn gtg Val	120 180 231 279 327 375 423 471 519

Asp Glu His Lys Lys Thr Met Glu Leu Leu Gln Ser Asp Met Asn Glr 125 130 135	
cac ttc ttg aag gag act cct gga agc aac cag atc att ccg tca cct	663
His Phe Leu Lys Glu Thr Pro Gly Ser Asn Gln Ile Ile Pro Ser Pro	
140 145 150 155	
tca gcc aca tca gaa ctt gac aat aaa acc cac agt gag aat ttg aas	a 711
Ser Ala Thr Ser Glu Leu Asp Asn Lys Thr His Ser Glu Asn Leu Lys	5
160 165 170	750
cag atg ggt gat aga tot gcc act otg aaa aga cag tot ttg gac cag	a 759
Gln Met Gly Asp Arg Ser Ala Thr Leu Lys Arg Gln Ser Leu Asp Gln 175 180 185	.1
2.0	802
gtc acc aac aga aca gat aca gta aaa atc caa aaa aaa aaa a	002
Val Thr Asn Arg Thr Asp Thr Val Lys Ile Gln Lys Lys 190 195 200	
190 195 200	
•	
<210> 90	
<211> 1490	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> 381174	
<221> sig_peptide	
<222> 38148	
<223> Von Heijne matrix	
score 7.3	
seq LLSACLVTLWGLG/EP	
<221> polyA_signal	
<221> polyA_signal <222> 14521457	
<222> 14521457	
<222> 14521457 <221> polyA_site	
<222> 14521457	
<222> 14521457 <221> polyA_site <222> 14781490	
<222> 14521457 <221> polyA_site <222> 14781490 <400> 90	ta 55
<222> 14521457 <221> polyA_site <222> 14781490 <400> 90 tcatcatcca gagcagccag tgtccgggag gcagaag atg ccc cac tcc agc c	tg 55 eu
<222> 14521457 <221> polyA_site <222> 14781490 <400> 90 tcatcatcca gagcagccag tgtccgggag gcagaag atg ccc cac tcc agc c Met Pro His Ser Ser L	tg 55 eu
<pre><222> 14521457 <221> polyA_site <222> 14781490 <400> 90 tcatcatcca gagcagccag tgtccgggag gcagaag atg ccc cac tcc agc c</pre>	eu
<pre><222> 14521457 <221> polyA_site <222> 14781490 <400> 90 tcatcatcca gagcagccag tgtccgggag gcagaag atg ccc cac tcc agc c</pre>	eu c 103
<222> 14521457 <221> polyA_site <222> 14781490 <400> 90 tcatcatcca gagcagccag tgtccgggag gcagaag atg ccc cac tcc agc c	eu c 103
<pre><222> 14521457 <221> polyA_site <222> 14781490 <400> 90 tcatcatcca gagcagccag tgtccgggag gcagaag atg ccc cac tcc agc c</pre>	eu c 103 a
<pre><222> 14521457 <221> polyA_site <222> 14781490 <400> 90 tcatcatcca gagcagccag tgtccgggag gcagaag atg ccc cac tcc agc c</pre>	eu c 103 a g 151
<pre><222> 14521457 <221> polyA_site <222> 14781490 <400> 90 tcatcatcca gagcagccag tgtccgggag gcagaag atg ccc cac tcc agc c</pre>	eu c 103 a g 151
<pre><222> 14521457 <221> polyA_site <222> 14781490 <400> 90 tcatcatcca gagcagccag tgtccgggag gcagaag atg ccc cac tcc agc c</pre>	eu c 103 a g 151 u
<pre><222> 14521457 <221> polyA_site <222> 14781490 <400> 90 tcatcatcca gagcagccag tgtccgggag gcagaag atg ccc cac tcc agc c</pre>	eu c 103 a g 151 u
<pre><222> 14521457 <221> polyA_site <222> 14781490 <400> 90 tcatcatcca gagcagccag tgtccgggag gcagaag atg ccc cac tcc agc c</pre>	eu c 103 a g 151 u
<pre><222> 14521457 <221> polyA_site <222> 14781490 <400> 90 tcatcatcca gagcagccag tgtccgggag gcagaag atg ccc cac tcc agc c</pre>	eu c 103 a g 151 u g 199 u
<pre><222> 14521457 <221> polyA_site <222> 14781490 <400> 90 tcatcatcca gagcagccag tgtccgggag gcagaag atg ccc cac tcc agc c</pre>	eu c 103 a g 151 u g 199 u
<pre><222> 14521457 <221> polyA_site <222> 14781490 <400> 90 tcatcatcca gagcagccag tgtccgggag gcagaag atg ccc cac tcc agc c</pre>	eu c 103 a g 151 u g 199 u
<pre><222> 14521457 <221> polyA_site <222> 14781490 <400> 90 tcatcatcca gagcagccag tgtccgggag gcagaag atg ccc cac tcc agc c</pre>	eu c 103 a g 151 u g 199 u g 247
<pre><222> 14521457 <221> polyA_site <222> 14781490 <400> 90 tcatcatcca gagcagccag tgtccgggag gcagaag atg ccc cac tcc agc c</pre>	eu c 103 a g 151 u g 199 u g 247 u
<pre><222> 14521457 <221> polyA_site <222> 14781490 <400> 90 tcatcatcca gagcagccag tgtccgggag gcagaag atg ccc cac tcc age c</pre>	eu c 103 a g 151 u g 199 u g 247 u
<pre><222> 14521457 <221> polyA_site <222> 14781490 <400> 90 tcatcatcca gagcagccag tgtccgggag gcagaag atg ccc cac tcc agc c</pre>	eu c 103 a g 151 u g 199 u g 247 u g 295
<pre><222> 14521457 <221> polyA_site <222> 14781490 <400> 90 tcatcatcca gagcagccag tgtccgggag gcagaag atg ccc cac tcc agc c</pre>	eu c 103 a g 151 u g 199 u g 247 u g 295 g 343
<pre><222> 14521457 <221> polyA_site <222> 14781490 <400> 90 tcatcatcca gagcagccag tgtccgggag gcagaag atg ccc cac tcc agc c</pre>	eu c 103 a g 151 u g 199 u g 247 u g 295 g 343 r
<pre><222> 14521457 <222> polyA_site <222> 14781490 <400> 90 tcatcatcac gagcagccag tgtccgggag gcagaag atg ccc cac tcc agc c</pre>	eu c 103 a g 151 u g 199 u g 247 u g 295 g 343 r t 391
<pre><222> 14521457 <221> polyA_site <222> 14781490 <400> 90 tcatcatcca gagcagccag tgtccgggag gcagaag atg ccc cac tcc agc c</pre>	eu c 103 a g 151 u g 199 u g 247 u g 295 g 343 r t 391

WO 99/31236 -67- PCT/IB98/02122 ·

					70					75					80		
	tgg	atg	ctt	gcc	ctc	ctg	ggc	ctc	tcg	cag	gca	ctg	aac	atc	ctc	ctg	439
	Trp	Met	ьeu	AIA 85	Leu	Leu	GIY	Leu	90	GIII.	AIA	ьеи	ASII	95	Leu	-neu	
	ggc	ctc	aag	ggc	ctg	gcc	сса	gct	gag	atc	tct	gca	gtg	tgt	gaa	aaa	487
	Gly	Leu	Lys	Gly	Leu	Ala	Pro	Ala	Glu	Ile	Ser	Ala	Val	Cys	Glu	Lys	
			100					105		~			110	+ > c	250		535
	999	aat	Dhe	Aen	gtg	gcc	Cat Wie	999 999	Leu	Ala	Tro	Ser	Tvr	Tvr	atc Ile	Glv	232
	Oly	115	1 110		, u	****	120	U -7				125	-1-	- 2 -		2	
	tat	ctg	cgg	ctg	atc	ctg	cca	gag	ctc	cag	gcc	cgg	att	cga	act	tac	583
	-	Leu	Arg	Leu	Ile		Pro	Glu	Leu	Gln		Arg	Ile	Arg	Thr	Tyr 145	
	130	cad	cat	tac	220	135	cta	cta	caa	aat.	140 gca	ata	agc	caq	cgg		631
	Asn	Gln	His	Tyr	Asn	Asn	Leu	Leu	Arg	Gly	Ala	Val	Ser	Gln	Arg	Leu	
					150					155					160		•
,															agt		679
	Tyr	Ile	Leu		Pro	Leu	Asp	Cys	G1y	Val	Pro	Asp	Asn	Leu 175	Ser	Met	
	act	gac	ccc	165	att	cac	ttc	cta	_	aaa	cta	ccc	caq		acc	gat	727
	Ala	Asp	Pro	Asn	Ile	Arg	Phe	Leu	Asp	Lys	Leu	Pro	Gln	Gln	Thr	Gly	
		_	180					185					190				
	gac	cgt	gct	ggc	atc	aag	gat	cgg	gtt	tac	agc	aac	agc	atc	tat	gag	775
	Asp	Arg	Ala	Gly	Ile	Lys	Asp 200	Arg	Val	Tyr	Ser	Asn 205	Ser	TIE	Tyr	GIU	
	ctt		gag	aac	aaa	caq		aca	aac	acc	tat		cta	qaq	tac	qcc	823
	Leu	Leu	Glu	Asn	Gly	Gln	Arg	Ala	Gly	Thr	Суз	Val	Leu	Glu	Tyr	Ala	
	210					215					220					225	
															gct		871
	Thr	Pro	ren	GIN	230	ren	Pne	Ala	Mec	235	GIII	IÀT	ser	GIII	Ala 240	GIY	
	ttt	aqc	cqq	qaq		agg	ctt	gag	cag		aaa	ctc	ttc	tgc	cgg	aca	919
	Phe	Ser	Arg	Glu	Asp	Arg	Leu	Glu	Gln	Ala	Lys	Leu	Phe	Cys	Arg	Thr	
				245					250					255	.		0.67
															tgc Cys		967
	Leu	Giu	260	116	neu	MIG	Asp	265	FIO	Gru	261	GIII	270	Vatt	Cys	ur a	
	ctc	att		tac	cag	gaa	cct		gat	gaç	agc	agc	ttc	tcg	ctg	tcc	1015
	Leu	Ile	Ala	Tyr	Gln	Glu	Pro	Ala	Asp	Asp	Ser	Ser	Phe	Ser	Leu	Ser	
		275					280					285					1063
															gtt Val		1063
	290	GIU	vai	neu	Arg	295	пец	ALG	GIII	GIU	300	Dy 3	914	Olu	141	305	
	gtg	ggc	agc	ttg	aag	acc	tca	gcg	gtg	ccc	agt	acc	tcc	acg	atg	tcc	1111
	Val	Gly	Ser	Leu	Lys	Thr	Ser	Ala	Val	Pro	Ser	Thr	Ser	Thr	Met	Ser	
					310					315					320	ata	1159
	Gln	gag	Pro	Glu	CEC Len	Ten	Len	agt	gga	Met	Glv	Lvs	Pro	Len	cct Pro	Leu	1139
	0111	014	210	325	БСи	DCu	Deu	001	330		017	~,5	110	335			
	cgc	acg	gat	ttc	tct	tga	gacc	cag	ggtc	acca	gg c	caga	gcct	cag	gtgg1	tctc	1214
	Arg	Thr	_	Phe	Ser												
			340					.	.								1274
																tccttc	1334
																gatcat	1394
																tttcat	1454
						ta c											1490

<212> DNA <213> Homo sapiens	٠.
<220> <221> CDS <222> 26361	
<221> polyA_site <222> 350361	
<pre><400> 91 tcgagaagct gccccttagc caacc atg ccg tct gag ggt cgc tgc tgg gag</pre>	52
acc ttg aag gcc cta cgc agt tcc gac aaa ggt cgc ctt tgc tac tac Thr Leu Lys Ala Leu Arg Ser Ser Asp Lys Gly Arg Leu Cys Tyr Tyr 10 20 25	100
cgc gac tgg ctg ctg cgc gag gat gtt tta gaa gaa tgt atg tct Arg Asp Trp Leu Leu Arg Arg Glu Asp Val Leu Glu Glu Cys Met Ser 30 35 40	148
ctt ccc aag cta tct tct tat tct gga tgg gtg gta gag cac gtc cta Leu Pro Lys Leu Ser Ser Tyr Ser Gly Trp Val Val Glu His Val Leu 45 50 55	196
ccc cat atg cag gag aac caa cct ctg tct gag act tcg cca tcc tct Pro His Met Gln Glu Asn Gln Pro Leu Ser Glu Thr Ser Pro Ser Ser 60 65 70	244
acg tca gct tca gcc cta gat caa ccc tca ttt gtt ccc aaa tct cct Thr Ser Ala Ser Ala Leu Asp Gln Pro Ser Phe Val Pro Lys Ser Pro 75 80 85	292
gac gca agc tct gcc ttt tcc cca gcc tcc cct gca aca cca aat gga Asp Ala Ser Ser Ala Phe Ser Pro Ala Ser Pro Ala Thr Pro Asn Gly 90 95 100 105	340
acc aag ggc aaa aaa aaa Thr Lys Gly Lys Lys Lys 110	361
<210> 92 <211> 605 <212> DNA <213> Homo sapiens	
<220> <221> CDS	
<222> 3131 <221> polyA site	
<222> 591 6 05	
<pre><400> 92 ca tcc ctt ccc cag gct tta tgg ttc cag ttc ttc tac cac tct gga Ser Leu Pro Gln Ala Leu Trp Phe Gln Phe Phe Tyr His Ser Gly</pre>	47
agc tcc cta gaa tct cct gga atg ctt aat gga cct ttc cag cac cga Ser Ser Leu Glu Ser Pro Gly Met Leu Asn Gly Pro Phe Gln His Arg 20 25 30	95
aat tca aga att atg act cat cgg tca gca gaa aag tgaggatacc Asn Ser Arg Ile Met Thr His Arg Ser Ala Glu Lys 35 40	141
ttttcctaac ctacctgctt cccctgcagt ttcctcacaa tcttactctt tatattttag	201 261

aaggtagagc caggggcact tataaaccag gagcattatt tgacaggcac ttaagaaaga 321 cactggctac gtaatcccag cactttggga ggctgaggcg gatggatcac atgaggtcag 381 . gagttcgaga ccagcctggc cagcatggtg aaaccctgtc tctactaaaa atacaaaaat 441 tagetgggtg tggttgcaca egectgtaat eecagetace tgggaggetg aggeaggaga 501 ategettgaa ettgggagge ggaggttgea gtgageetag attttgeeat tgeacteeag 561 cctgggtgac aagggcgaaa ctccatccca aaaaaaaaa aaaa 605 <210> 93 <211> 591 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 33..185 <221> sig_peptide <222> 33..80 <223> Von Heijne matrix score 3.7 seq IALTLIPSMLSRA/AG <221> polyA signal <222> 570..575 <221> polyA_site <222> 586..591 <400> 93 53 caatettete agettataac egtettteee tt atg eta agg ata gee ett aca Met Leu Arg Ile Ala Leu Thr -15 101 ctc atc cca tct atg ctg tca agg gct gct ggt tgg tgc tgg tac aag Leu Ile Pro Ser Met Leu Ser Arg Ala Ala Gly Trp Cys Trp Tyr Lys -5 gag ccc act cag cag ttt tct tac ctt tgc ctg ccc tgc ctt tca tgg 149 Glu Pro Thr Gln Gln Phe Ser Tyr Leu Cys Leu Pro Cys Leu Ser Trp 15 10 aat aag aaa ggc aac gtt ttg cag ctt cca aat ttc tgaagaaact 195 Asn Lys Lys Gly Asn Val Leu Gln Leu Pro Asn Phe 30 aatctcagat tggcagttaa agtcaaaatg ttgccaaata tttattcctt ttgcctaagt 255 ttggctaccc ggttcaattg ctttttattt ttaatgtctt gactcttcag agttcgtacc 315 tcaaaagaac aatgagaaca tttgctttgc tttctgctga atccctaatc tcaacaatct 375 atacctggac tgtccagttc tcctcctgtg ctatcttctc ttctatccaa gtagaatgta 435 tgccaggagc tccttccctc tagcaatttc tactaaaatg tccaagtaga atgtttcctt 495 ttacaatcaa attactgtat ttattaattt gctagaatcc agtaaatcat tttggtagct 555 591 ctggctgtgc tatcaataaa aagatgaaag caaaaa <210> 94

<211> 1150 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 184..915 <221> sig_peptide <222> 184..237 <223> Von Heijne matrix score 3.5 seg LLGLELSEAEAIG/AD <221> polyA_signal <222> 1119..1124 <221> polyA site <222> 1139..1150 <400> 94 cggatttgac gatggtgttc ggtcttgaat ggaaatgtag tcttaggcca gtcttaggtt 60 120 tttgaacagg atagtaggta tccggagtcg attgagggcc agagcaggca ctggggttcg 180 gatectggge aaagttteee aegttgaggg tetegaggae geetagatet ettteeeagg gec atg geg aac eeg aag etg etg gga etg gag eta age gag geg gag 228 Met Ala Asn Pro Lys Leu Leu Gly Leu Glu Leu Ser Glu Ala Glu -10 -15 276 gcg atc ggt gct gat tcg gcg cga ttt gag gag ctg ctg ctg cag gcc Ala Ile Gly Ala Asp Ser Ala Arg Phe Glu Glu Leu Leu Gln Ala 1 324 teg aag gag ete cag caa gee cag aca ace aga eea gaa teg aca caa Ser Lys Glu Leu Gln Gln Ala Gln Thr Thr Arg Pro Glu Ser Thr Gln 20 372 atc cag cct cag cct ggt ttc tgc ata aag acc aac tcc tcg gaa ggg Ile Gln Pro Gln Pro Gly Phe Cys Ile Lys Thr Asn Ser Ser Glu Gly 45 35 -30 aag gtt ttc atc aac atc tgc cac tcc ccc tct atc cct ccc gcc 420 Lys Val Phe Ile Asn Ile Cys His Ser Pro Ser Ile Pro Pro Pro Ala 55 468 gac gtg acc gag gag gag ctg ctt cag atg cta gag gag gac caa gct Asp Val Thr Glu Glu Glu Leu Leu Gln Met Leu Glu Glu Asp Gln Ala 70 ggg ttt cgc atc ccc atg agt ctg gga gag cct cat gca gaa ctg gat 516 Gly Phe Arg Ile Pro Met Ser Leu Gly Glu Pro His Ala Glu Leu Asp 85 564 gca aaa ggc cag gga tgt acc gcc tac gac gta gct gtc aac agc gac Ala Lys Gly Gln Gly Cys Thr Ala Tyr Asp Val Ala Val Asn Ser Asp 105 100 ttc tac cgg agg atg cag aac agc gat ttc ttg cgg gag ctc gtg atc 612 Phe Tyr Arg Arg Met Gln Asn Ser Asp Phe Leu Arg Glu Leu Val Ile 120 115 acc atc gcc agg gag ggc ctt gag gac ata tac aac ttg cag ctg aat 660 Thr Ile Ala Arg Glu Gly Leu Glu Asp Ile Tyr Asn Leu Gln Leu Asn 130 135 708 ccg gaa tgg cgc atg atg aag aac cgg cca ttc atg ggc tcc atc tcg Pro Glu Trp Arg Met Met Lys Asn Arg Pro Phe Met Gly Ser Ile Ser 150 145 756 cag cag aac atc cgc tcg gag cag cgt cct cgg atc cag gag ctg ggg Gln Gln Asn Ile Arg Ser Glu Gln Arg Pro Arg Ile Gln Glu Leu Gly 170 165 gac ctg tac acg ccc gcc ccc ggg aga gct gag tca ggg cct gaa aag 804 Asp Leu Tyr Thr Pro Ala Pro Gly Arg Ala Glu Ser Gly Pro Glu Lys 180 175 cct cac ctg aac ctg tgg ctg gaa gcc ccc gac ctc ctc ttg gcc gaa 852 Pro His Leu Asn Leu Trp Leu Glu Ala Pro Asp Leu Leu Leu Ala Glu 200 195 gtt gac ctc ccc aaa ctg gat gga gcc ctg ggg ctg tcg ctg gag atc 900 Val Asp Leu Pro Lys Leu Asp Gly Ala Leu Gly Leu Ser Leu Glu Ile 215 210 ggg aga acc gcc tgg tgatgggggg cccccagcag ctgtatcatc tagacgctta 955 WO 99/31236 -71- PCT/IB98/02122 ·

Gly Arg Thr Ala Trp tatecegeeg cagateaact eteatgagag caaggeagee ttecacegga agagaaagea 1015 attaatggtg gccatgccgc ttctgccggt gccttcttga tcagggtgtc tccttgtgct 1075 totgagatgt ggagaagagg ctgctggctt ccctaaaagt tgaaataaaa gatttttgcc 1135 tttaaaaaaa aaaaa <210> 95 <211> 1513 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 58..1116 <221> sig_peptide <222> 58..159 <223> Von Heijne matrix score 4 seg IAVLYLHLYDVFG/DP <221> polyA_signal <222> 1486..1491 <221> polyA_site <222> 1504..1513 <400> 95 57 ctgactcctg agttctcaca acgcttgacc aataagattc gggagcttct tcagcaa atg gag aga ggc ctg aaa tca gca gac cct cgg gat ggc acc ggt tac 105 Met Glu Arg Gly Leu Lys Ser Ala Asp Pro Arg Asp Gly Thr Gly Tyr -20 -25 -30 act ggc tgg gca ggt att gct gtg ctt tac tta cat ctt tat gat gta 153 Thr Gly Trp Ala Gly Ile Ala Val Leu Tyr Leu His Leu Tyr Asp Val -5 -10 -15 201 ttt ggg gac cct gcc tac cta cag tta gca cat ggc tat gta aag caa Phe Gly Asp Pro Ala Tyr Leu Gln Leu Ala His Gly Tyr Val Lys Gln 10 agt ctg aac tgc tta acc aag cgc tcc atc acc ttc ctt tgt ggg gat Ser Leu Asn Cys Leu Thr Lys Arg Ser Ile Thr Phe Leu Cys Gly Asp 25 297 gca ggc ccc ctg gca gtg gcc gct gtg cta tat cat aag atg aac aat Ala Gly Pro Leu Ala Val Ala Ala Val Leu Tyr His Lys Met Asn Asn 40 gag aag cag gca gaa gat tgc atc aca cgg cta att cac cta aat aag 345 Glu Lys Gln Ala Glu Asp Cys Ile Thr Arg Leu Ile His Leu Asn Lys 55 50 att gat cct cat gct cca aat gaa atg ctc tat ggg cga ata ggc tac 393 Ile Asp Pro His Ala Pro Asn Glu Met Leu Tyr Gly Arg Ile Gly Tyr 70 atc tat gct ctt ctt ttt gtc aat aag aac ttt gga gtg gaa aag act 441 Ile Tyr Ala Leu Leu Phe Val Asn Lys Asn Phe Gly Val Glu Lys Thr 80 85 489 cct caa agc cat att cag cag att tgt gaa aca att tta acc tct gga Pro Gln Ser His Ile Gln Gln Ile Cys Glu Thr Ile Leu Thr Ser Gly 105 100 gaa aac cta gct agg aag aga aac ttc acg gca aag tct cca ctg atg 537 Glu Asn Leu Ala Arg Lys Arg Asn Phe Thr Ala Lys Ser Pro Leu Met

115

WO 99/31236 -72- PCТ/IB98/02122 -

				•												
tat	gaa	tgg	tac	cag	gaa	tat	tat	gta	999	gct	gct	cat	ggc	ctg	gct	585
Tyr	Glu	Trp	Tyr	Gln	Glu	Tyr	Tyr	Val	Gly	Ala	Ala	His	Gly	Leu	Ala	
			130					135					140			622
gga	att	tat	tac	tac	ctg	atg	cag	CCC	agc	ctt	caa	gtg	agc	caa	999	633
GIÀ	IIe		Tyr	Tyr	ьеи	Met	150	PIO	ser	Dea	GIII	155	Ser	GIII	GIY	
		145		++-	ata	220		agt	ata	gac	tac		tgc	cag	cta	681
Lvc	Leu	Uic	Sor	LLG	Val	Lvs	Pro	Ser	Val	Asp	Tvr	Val	Cys	Gln	Leu	•••
Lys	160	1113	001	בים	, m	165					170		-3-			
aaa		cct	tct	qqc	aat	tac	cct	cca	tgt	ata	ggt	gat	aat	cga	gat	729
Lys	Phe	Pro	Ser	Gly	Asn	Tyr	Pro	Pro	Cys	Ile	Gly	Asp	Asn	Arg	Asp	
175					180					185					190	
ctg	ctt	gtc	cat	tgg	tgc	cat	ggc	gcc	cct	999	gta	atc	tac	atg	ctc	777
Leu	Leu	Val	His		Cys	His	Gly	Ala		Gly	Val	Ile	Tyr	Met	Leu	
				195					200					205	~~~	825
atc	cag	gcc	tat	aag	gta	ttc	aga	gag	gaa	aag	Tac	CEC	tgt	gat Nen	gee ala	623
TIE	GIN	ATA	1yr 210	гÀè	val	Pne	Arg	215	Giu	пуs	TYL	пеп	Cys 220	Asp	ALG	
+=+	cad	tat		cat	ata	atc	taa		tat	aaa	tta	cta	aag	aaq	qqa	873
TVr	Gln	Cvs	Ala	Asp	Val	Ile	Trp	Gln	Tyr	Glv	Leu	Leu	Lys	Lys	Gly	
-1-		225					230			•		235	•	•	-	
tat	999		tgc	cac	ggt	tct	gca	ggg	aat	gcc	tat	gcc	ttc	ctg	aca	921
Tyr	Gly	Leu	Cys	His	Gly	Ser	Ala	Gly	Asn	Ala	Tyr	Ala	Phe	Leu	Thr	
	240					245					250					2.50
ctc	tac	aac	ctc	aca	cag	gac	atg	aag	tac	ctg	tat	agg	gcc	tgt	aag	969
	Tyr	Asn	Leu	Thr		Asp	Met	Lys	Tyr		Tyr	Arg	Ala	Cys	ьуs 270	
255		~			260	~~~	+=+	~~~	~~~	265	~~	tac	aga	202		1017
Dhe	gct ala	Glu	Trn	Cve	T.e.	Glu	Tvr	Glv	Glu	His	Glv	Cvs	Arg	Thr	Pro	
FIIC	AIU	GIU		275	2Cu		-1-	017	280		U -1	-7-	5	285		
gac	acc	cct	ttc		ctc	ttt	gaa	gga		gct	999	aca	ata	tat	ttc	1065
Asp	Thr	Pro	Phe	Ser	Leu	Phe	Glu	Gly	Met	Ala	Gly	Thr	Ile	Tyr	Phe	
_			290					295					300			
ctg	gct	gac	ctg	cta	gtc	CCC	aca	aaa	gcc	agg	ttc	cct	gca	ttt	gaa	1113
Leu	Ala		Leu	Leu	Val	Pro		Lys	Ala	Arg	Phe		Ala	Phe	Glu	
		305					310					315	-	a+ a		1166
		aagg	ata	gcat	gcca	CC U	gcaa	ctca	c tg	catg	accc		ctgt	ata		1100
Leu		cca	aact	aant	ac t	teca	ttac	+ ++	ccaa	aaaa	aca	aaga	atc	aaac	tgtgga	1226
ctt	gatt	tta	ttao	cttt	tt t	caga	attt	a tc	tttc	attc	agt	tccc	ttc	catt	atcatt	1286
tac	tttt	act	taga	aqta	tc c	aaqq	aaqt	c tt	ttaa	cttt	aat	ttcc	att	tctt	cctaaa	1346
gga	agaq	tga	gtga	tatq	ta c	agtg	tttt	g ag	attg	tata	cat	atat	tcc	agaa	cttgga	1406
gga	aatc	tta	ttta	agtt	ta t	gaat	ataa	c ca	tctg	ttac	tgt	tcta	aaa	atgt	ttaaaa	1466
gaa	actc	aat	acag	ataa	ag a	taaa	tatg	t ga	ctat	taaa	aaa	aaaa				1513

<210> 96 <211> 417 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 327..416 <221> polyA_site <222> 404..417

<400> 96
tgttttgagg tgttggcatt cttcgctgat ttggctgttc ccaatgttta cattatttaa 60
tcttgcaaaa atggttctgt gcacttggat gtgaaatgct gtccagtttt attttttta 120

WO 99/31236 -73 - PCT/IB98/02122 -

tgttgttatc cttggatgta caaaaaattc agaaaatgat ctctgtagat attctgtttt attttggtca tctttagaaa tattcatgaa tgtgtttaaa acaagaagag aacttttctta aggaatgata catagaaaaa attttattt aaaatgagt gtaaagctt gtttctttg ttgctgcaag ctatctgccc aagta atg caa atg gac aca ttt ttt atg tca Met GIn Met Asp Thr Phe Phe Met Ser 1		
gaa aaa cac aca cac aca cac aca cac aca cat ata cac aca aca cac aca cac aca cac aca cac aca aca cac aca cac aca aca cac aca aca cac aca cac aca aca cac aca cac aca aca aca cac aca aca aca cac aca cac aca ac	attttggtca tctttagaag ttatcaggaa tgtgtttaaa acaagaagag aacttttcta aggaatgata catagaaaag attttatttt aaaatgagtt gtaaagcttg tgtttctttg ttgctgcaag ctatctgccc aagtta atg caa atg gac aca ttt ttt atg tca Met Gln Met Asp Thr Phe Phe Met Ser	240 300
aca aaa aaa aaa aaa aaa aa aa aa Thr Lys Lys Lys Lys Lys Sys Lys Sys Lys Lys Sys Lys Lys Sys Lys Lys Sys Lys Lys Lys Lys Lys Lys Lys Lys Lys L	gaa aaa cac aca cac aca cac aca cat ata cac aca cac aca cga aaa Glu Lys His Thr His Thr His Ile His Thr His Thr Arg Lys	401
<pre><211> 603 <212> DNA <213> Homo sapiens </pre> <pre><220> <221> CDS <222> 63398 </pre> <pre><221> sig_peptide <222> 63206 <223> Von Heijne matrix</pre>	aca aaa aaa aaa a Thr Lys Lys Lys	417
<pre><212> DNA <213> Homo sapiens <220> <221> CDS <2221> CDS <222> 63398 <222> 63206 <223> VOn Heijne matrix</pre>		
<pre><220> <221> CDS <222> 63398 </pre> <pre><221> sig_peptide <222> 63206 <223> Von Heijne matrix</pre>		
<pre><221> CDS <222> 63398 <221> sig_peptide <222> 63206 <223> Von Heijne matrix</pre>	<213> Homo sapiens	
<pre><222> 63398 <221> sig_peptide <222> 63206 <223> Von Heijne matrix</pre>	<220>	
<pre><222> 63206 <223> Von Heijne matrix</pre>		
<pre><222> 63206 <223> Von Heijne matrix</pre>	<221> sig peptide	
score 4.9 seq PSLAAGLLFGSLA/GL <400> 97 ggggccttcg tgagaccggt gcaggcctgg ggtagtctcc tgtctggaca gagaagagaa	<222> 63206	
<pre> seq PSLAAGLLFGSLA/GL <400> 97 ggggccttcg tgagaccggt gcaggcctgg ggtagtctcc tgtctggaca gagaagagaa</pre>	•	
aa atg cag gac act ggc tca gta gtg cct ttg cat tgg ttt ggc ttt Met Gln Asp Thr Gly Ser Val Val Pro Leu His Trp Phe Gly Phe -45 ggc tac gca gca ctg gtt gct tct ggg atc att ggc ata gta aaa Gly Tyr Ala Ala Leu Val Ala Ser Gly Gly Ile Ile Gly Tyr Val Lys -30 gca ggc agc gtg ccg tcc ctg gct gca ggg ctg ctc ttt ggc agt cta Ala Gly Ser Val Pro Ser Leu Ala Ala Gly Leu Leu Phe Gly Ser Leu -15 gcc ggc ctg ggt gct tac cag ctg tct cag gat cca agg aac gtt tgg Ala Gly Leu Gly Ala Tyr Gln Leu Ser Gln Asp Pro Arg Asn Val Trp 1 gtt tc cta gct aca tct ggt acc ttg gct gc ggc att atg gga atg agg Val Phe Leu Ala Thr Ser Gly Thr Leu Ala Gly Ile Met Gly Met Arg 20 ttc tac cac tct gga aaa ttc atg cct gca ggt tta att gca ggt gcc Phe Tyr His Ser Gly Lys Phe Met Pro Ala Gly Leu Ile Ala Gly Ala 35 40 agt ttg ctg atg gtc gcc aaa gtt gga gt atg atg tca acc aga ccc Ser Leu Leu Met Val Ala Lys Val Gly Val Ser Met Phe Asn Arg Pro 50 cat tagcagaagt catgttccag cttagactga tgaagaatta aaaatctgca 60 107 107 107 107 107 107 107		
aa atg cag gac act ggc tca gta gtg cct ttg cat tgg ttt ggc ttt Met Gln Asp Thr Gly Ser Val Val Pro Leu His Trp Phe Gly Phe -45 -40 -35 ggc tac gca gca ctg gtt gct tct ggt ggg atc att ggc tat gta aaa Gly Tyr Ala Ala Leu Val Ala Ser Gly Gly Ile Ile Gly Tyr Val Lys -30 -25 gca ggc agc gtg ccg tcc ctg gct gca ggg ctg ctc ttt ggc agt cta Ala Gly Ser Val Pro Ser Leu Ala Ala Gly Leu Leu Phe Gly Ser Leu -15 gcc ggc ctg ggt gct tac cag ctg tct cag gat cca agg acc gtt tgg Ala Gly Leu Gly Ala Tyr Gln Leu Ser Gln Asp Pro Arg Asn Val Trp 1 gtt tc cta gct aca tct ggt acc ttg gct gcc ggc att atg gga atg agg Val Phe Leu Ala Thr Ser Gly Thr Leu Ala Gly Ile Met Gly Met Arg 20 25 10 ttc tac cac tct gga aaa ttc atg cct gca ggt tta att gca ggt gcc Phe Tyr His Ser Gly Lys Phe Met Pro Ala Gly Leu Ile Ala Gly Ala 35 agt ttg ctg atg gtc gcc aaa gtt gga gtt agt atg ttc aac aga ccc Ser Leu Leu Met Val Ala Lys Val Gly Val Ser Met Phe Asn Arg Pro 50 cat tagcagaagt catgttccag cttagactga tgaagaatta aaaatctgca 448		
Met Gln Asp Thr Gly Ser Val Val Pro Leu His Trp Phe Gly Phe -45 ggc tac gca gca ctg gtt gct tct ggt ggg atc att ggc tat gta aaa Gly Tyr Ala Ala Leu Val Ala Ser Gly Gly Ile Ile Gly Tyr Val Lys -30 gca ggc agc gtg ccg tcc ctg gct gca ggg ctg ctc ttt ggc agt cta Ala Gly Ser Val Pro Ser Leu Ala Ala Gly Leu Leu Phe Gly Ser Leu -15 gcc ggc ctg ggt gct tac cag ctg tct cag gat cca agg aac gtt tgg Ala Gly Leu Gly Ala Tyr Gln Leu Ser Gln Asp Pro Arg Asn Val Trp 1 gtt tc cta gct aca tct ggt acc ttg gct ggc att atg gga atg agg Val Phe Leu Ala Thr Ser Gly Thr Leu Ala Gly Ile Met Gly Met Arg 20 25 10 tc tac cac tct gga aaa ttc atg cct gca ggt tta att gca ggt gcc Ala Gly Leu Gly Ala Tyr Gln Leu Ser Gla Ala Gly Ile Met Gly Met Arg 20 25 30 ttc tac cac tct gga aaa ttc atg cct gca ggt tta att gca ggt gcc Ala Gly Leu Ile Ala Gly Ala 35 40 45 agt ttg ctg atg gtc gcc aaa gtt gga gtt agt atg ttc aac aga ccc Ser Leu Leu Met Val Ala Lys Val Gly Val Ser Met Phe Asn Arg Pro 50 50 60 cat tagcagaagt catgttccag cttagactga tgaagaatta aaaatctgca 448	ggggcetteg tgagaceggt geaggeetgg ggtagtetee tgtetggaea gagaagagaa	
ggc tac gca gca ctg gtt gct tct ggt ggg atc att ggc tat gta aaa 155 Gly Tyr Ala Ala Leu Val Ala Ser Gly Gly Ile Ile Gly Tyr Val Lys -30 gca ggc agc gtg ccg tcc ctg gct gca ggg ctg ctc ttt ggc agt cta Ala Gly Ser Val Pro Ser Leu Ala Ala Gly Leu Leu Phe Gly Ser Leu -15 gcc ggc ctg ggt gct tac cag ctg tct cag gat cca agg aac gtt tgg Ala Gly Leu Gly Ala Tyr Gln Leu Ser Gln Asp Pro Arg Asn Val Trp 1 5 gtt ttc cta gct aca tct ggt acc ttg gct ggc att atg gga atg agg Val Phe Leu Ala Thr Ser Gly Thr Leu Ala Gly Ile Met Gly Met Arg 20 ttc tac cac tct gga aaa ttc atg cct gca ggt tta att gca ggt gcc Phe Tyr His Ser Gly Lys Phe Met Pro Ala Gly Leu Ile Ala Gly Ala 35 40 agt ttg ctg atg gtc gcc aaa gtt gga gtt agt atg ttc aac aga ccc Ser Leu Leu Met Val Ala Lys Val Gly Val Ser Met Phe Asn Arg Pro 50 cat tagcagaagt catgttccag cttagactga tgaagaatta aaaatctgca 448	Met Gln Asp Thr Gly Ser Val Val Pro Leu His Trp Phe Gly Phe	
gca ggc agc gtg ccg tcc ctg gct gca ggg ctg ctc ttt ggc agt cta Ala Gly Ser Val Pro Ser Leu Ala Ala Gly Leu Leu Phe Gly Ser Leu -15 gcc ggc ctg ggt gct tac cag ctg tct cag gat cca agg aac gtt tgg Ala Gly Leu Gly Ala Tyr Gln Leu Ser Gln Asp Pro Arg Asn Val Trp 1 gtt tc cta gct aca tct ggt acc ttg gct ggc att atg gga atg agg Val Phe Leu Ala Thr Ser Gly Thr Leu Ala Gly Ile Met Gly Met Arg 20 25 30 ttc tac cac tct gga aaa ttc atg cct gca ggt tta att gca ggt gcc Phe Tyr His Ser Gly Lys Phe Met Pro Ala Gly Leu Ile Ala Gly Ala 35 40 45 agt ttg ctg atg gtc gcc aaa gtt gga gtt agt atg ttc aac aga ccc Ser Leu Leu Met Val Ala Lys Val Gly Val Ser Met Phe Asn Arg Pro 50 55 60 cat tagcagaagt catgttccag cttagactga tgaagaatta aaaatctgca 448	ggc tac gca gca ctg gtt gct tct ggt ggg atc att ggc tat gta aaa	155
gca ggc agc gtg ccg tcc ctg gct gca ggg ctg ctc ttt ggc agt cta Ala Gly Ser Val Pro Ser Leu Ala Ala Gly Leu Leu Phe Gly Ser Leu -15 gcc ggc ctg ggt gct tac cag ctg tct cag gat cca agg aac gtt tgg Ala Gly Leu Gly Ala Tyr Gln Leu Ser Gln Asp Pro Arg Asn Val Trp 1 5 10 15 gtt ttc cta gct aca tct ggt acc ttg gct ggc att atg gga atg agg Val Phe Leu Ala Thr Ser Gly Thr Leu Ala Gly Ile Met Gly Met Arg 20 25 ttc tac cac tct gga aaa ttc atg cct gca ggt tta att gca ggt gcc Phe Tyr His Ser Gly Lys Phe Met Pro Ala Gly Leu Ile Ala Gly Ala 35 40 45 agt ttg ctg atg gtc gcc aaa gtt gga gtt agt atg ttc aac aga ccc Ser Leu Leu Met Val Ala Lys Val Gly Val Ser Met Phe Asn Arg Pro 50 55 60 cat tagcagaagt catgttccag cttagactga tgaagaatta aaaatctgca 448		
gcc ggc ctg ggt gct tac cag ctg tct cag gat cca agg aac gtt tgg Ala Gly Leu Gly Ala Tyr Gln Leu Ser Gln Asp Pro Arg Asn Val Trp 1 5 10 15 gtt ttc cta gct aca tct ggt acc ttg gct ggc att atg gga atg agg 299 Val Phe Leu Ala Thr Ser Gly Thr Leu Ala Gly Ile Met Gly Met Arg 20 25 30 ttc tac cac tct gga aaa ttc atg cct gca ggt tta att gca ggt gcc Phe Tyr His Ser Gly Lys Phe Met Pro Ala Gly Leu Ile Ala Gly Ala 35 40 45 agt ttg ctg atg gtc gcc aaa gtt gga gtt agt atg ttc aac aga ccc Ser Leu Leu Met Val Ala Lys Val Gly Val Ser Met Phe Asn Arg Pro 50 55 60 cat tagcagaagt catgttccag cttagactga tgaagaatta aaaatctgca 448	gea ggc agc gtg ceg tee etg get gea ggg etg etc ttt ggc agt eta	203
Ala Gly Leu Gly Ala Tyr Gln Leu Ser Gln Asp Pro Arg Asn Val Trp 1 5 10 15 gtt ttc cta gct aca tct ggt acc ttg gct ggc att atg gga atg agg 299 Val Phe Leu Ala Thr Ser Gly Thr Leu Ala Gly Ile Met Gly Met Arg 20 25 30 ttc tac cac tct gga aaa ttc atg cct gca ggt tta att gca ggt gcc Phe Tyr His Ser Gly Lys Phe Met Pro Ala Gly Leu Ile Ala Gly Ala 35 40 45 agt ttg ctg atg gtc gcc aaa gtt gga gtt agt atg ttc aac aga ccc Ser Leu Leu Met Val Ala Lys Val Gly Val Ser Met Phe Asn Arg Pro 50 55 60 cat tagcagaagt catgttccag cttagactga tgaagaatta aaaatctgca 448	-15 -10 -5	
gtt ttc cta gct aca tct ggt acc ttg gct ggc att atg gga atg agg 299 Val Phe Leu Ala Thr Ser Gly Thr Leu Ala Gly Ile Met Gly Met Arg 20 25 30 ttc tac cac tct gga aaa ttc atg cct gca ggt tta att gca ggt gcc Phe Tyr His Ser Gly Lys Phe Met Pro Ala Gly Leu Ile Ala Gly Ala 35 40 45 agt ttg ctg atg gtc gcc aaa gtt gga gtt agt atg ttc aac aga ccc Ser Leu Leu Met Val Ala Lys Val Gly Val Ser Met Phe Asn Arg Pro 50 55 60 cat tagcagaagt catgttccag cttagactga tgaagaatta aaaatctgca 448	gcc ggc ctg ggt gct tac cag ctg tct cag gat cca agg aac gtt tgg	251
Val Phe Leu Ala Thr Ser Gly Thr Leu Ala Gly Ile Met Gly Met Arg 20 25 30 ttc tac cac tct gga aaa ttc atg cct gca ggt tta att gca ggt gcc Phe Tyr His Ser Gly Lys Phe Met Pro Ala Gly Leu Ile Ala Gly Ala 35 40 45 agt ttg ctg atg gtc gcc aaa gtt gga gtt agt atg ttc aac aga ccc Ser Leu Leu Met Val Ala Lys Val Gly Val Ser Met Phe Asn Arg Pro 50 55 60 cat tagcagaagt catgttccag cttagactga tgaagaatta aaaatctgca 448	1 5 10 15	
ttc tac cac tct gga aaa ttc atg cct gca ggt tta att gca ggt gcc 347 Phe Tyr His Ser Gly Lys Phe Met Pro Ala Gly Leu Ile Ala Gly Ala 35 40 45 agt ttg ctg atg gtc gcc aaa gtt gga gtt agt atg ttc aac aga ccc Ser Leu Leu Met Val Ala Lys Val Gly Val Ser Met Phe Asn Arg Pro 50 55 60 cat tagcagaagt catgttccag cttagactga tgaagaatta aaaatctgca 448	gtt ttc cta gct aca tct ggt acc ttg gct ggc att atg gga atg agg	299
Phe Tyr His Ser Gly Lys Phe Met Pro Ala Gly Leu Ile Ala Gly Ala 35 40 45 agt ttg ctg atg gtc gcc aaa gtt gga gtt agt atg ttc aac aga ccc Ser Leu Leu Met Val Ala Lys Val Gly Val Ser Met Phe Asn Arg Pro 50 55 60 cat tagcagaagt catgttccag cttagactga tgaagaatta aaaatctgca 448	20 25 30	
35 40 45 agt ttg ctg atg gtc gcc aaa gtt gga gtt agt atg ttc aac aga ccc 395 Ser Leu Leu Met Val Ala Lys Val Gly Val Ser Met Phe Asn Arg Pro 50 55 60 cat tagcagaagt catgttccag cttagactga tgaagaatta aaaatctgca 448	tto tac cac tot gga aaa tto atg cot gca ggt tta att gca ggt gcc	347
Ser Leu Leu Met Val Ala Lys Val Gly Val Ser Met Phe Asn Arg Pro 50 55 60 cat tagcagaagt catgttccag cttagactga tgaagaatta aaaatctgca 448	35 40 45	
50 55 60 cat tagcagaagt catgttccag cttagactga tgaagaatta aaaatctgca 448	agt ttg ctg atg gtc gcc aaa gtt gga gtt agt atg ttc aac aga ccc	395
cat tagtagaage tatgetetag tetagatetga tgaagaatta aaaatoogo	50 55 60	
	cat tagcagaagt catgttccag cttagactga tgaagaatta aaaatctgca His	448

tcttccacta ttttcaatat attaagagaa ataagtgcag catttttgca tctgacattt

tacctaaaaa aaaagacacc aaacttggca gagaggtgga aaatcagtca tgattacaaa

cctacagagg tggcgagtat gtaacacaag agctt

508

568

603

<211> 522 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> 2163	
<221> polyA_signal <222> 488493	
<221> polyA_site <222> 511522	
<pre><400> 98 c gag att gcg ggc tat ggc gcc gaa ggt ttt tcg tca gta ctg gga tat Glu Ile Ala Gly Tyr Gly Ala Glu Gly Phe Ser Ser Val Leu Gly Tyr 1</pre>	49
ccc cga tgg cac cga ttg cca ccg caa agc cta cag cac cac cag tat Pro Arg Trp His Arg Leu Pro Pro Gln Ser Leu Gln His His Gln Tyr 20 25 30	97 ·
tgc cag cgt cgc tgg cct gac cgc cgc tgc cta cag agt cac act caa Cys Gln Arg Arg Trp Pro Asp Arg Arg Cys Leu Gln Ser His Thr Gln 35 40 45	145
tcc tcc ggg cac ctt cct nntgaaggag tggctaaggt tggacaatac Ser Ser Gly His Leu Pro 50	193
acgttcactg cagctgctgt cggggccgtg tttggcctca ccacctgcat cagcgcccat gtccgcgaga agcccgacga ccccctgaac tacttccccg gtggctgcgc cnggaggcct gactctggga gcacgcacgc acaactacgg gattggcgc gccgcctgcg tgtactttgg catagcggcc tccctggtca agatgggccg gctggagggc tgggaggtgt ttgcaaaacc caaggtgtga gccctgtgcc tgccgggacc tccagcctgc agaatgcgtc cagaaataaa ttctgtgtct gtgtgtgaaa aaaaaaaaa	253 313 373 433 493 522
<210> 99 <211> 956 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> 13465	
<221> sig_peptide <222> 1375 <223> Von Heijne matrix	
<400> 99 ngagteggga aa atg get geg agt aen ten atg gne eeg gtg get gtg aeg	51
Met Ala Ala Ser Thr Ser Met Xaa Pro Val Ala Val Thr -20 -15 -10 gcg gca gtg gcg cct gtc ctg tcc ata aac agc gat ttc tca gat ttg	99
Ala Ala Val Ala Pro Val Leu Ser Ile Asn Ser Asp Phe Ser Asp Leu -5 1 5	
cgg gaa att aaa aag caa ctg ctg ctt att gcg ggc ctt acc cgg gag Arg Glu Ile Lys Lys Gln Leu Leu Leu Ile Ala Gly Leu Thr Arg Glu 10 15 20	147
cgg ggc cta cta cac agt agc aaa tgg tcg gcg gag ttg gct ttc tct	195

WO 99/31236 -75- PCT/IB98/02122 -

Arg 25	Gly	Leu	Leu	His	Ser 30	Ser	Lys	Trp	Ser	Ala 35	Glu	Leu	Ala	Phe	Ser 40	
	cct	gca	tta	cct		aac	caq	cta	caa		cct	ccq	cct	att		243
Leu	Pro	Ala	Leu	Pro	Xaa	Gly	Gln	Leu	Gln	Pro	Pro	Pro	Pro	Ile	Thr	
				45					50					55		
gag	gaa	gat	gcc	cag	gat	atg	gat	gcc	tat	acc	ctg	gcc	aag	gcc	tac	291
Glu	Glu	Asp	Ala	Gln	Asp	Met	Asp	Ala	Tyr	Thr	Leu	Ala	Lys	Ala	Tyr	
			60					65					70			
ttt	gac	gtt	aaa	gag	tat	gat	cgg	gca	gca	cat	ttc	ctg	cat	ggc	tgc	339
Phe	Asp	Val	Lys	Glu	Tyr	Asp		Ala	Ala	His	Phe		His	Gly	Cys	
		75					80					85				205
aat	agc	aag	aaa	gcc	tat	ttt	ctg	tat	atg	tat	tcc	aga	tat	ctg	gtg	387
Asn		Lys	Lys	Ala	Tyr		Leu	Tyr	Met	Tyr		Arg	Tyr	Leu	vai	
	90					95				-~+	100	242	+	2+2	+++	435
agg	gcc	att	tta	aaa	tgt	Cat	COL	312	Dhe	Ser	Glu	Thr	Ser	ata Ile	Dhe	433
-	Ата	TIE	Leu	гÀг	110	HIS	261	ATG	Pne	115	Giu	1111	361	110	120	
105	200	22+	~~~			222	+ = +	+++	222		~++a	ירם ו	ataa	gcca		485
			Gly							cag	o c c u ;	, ca	9 - 9 5 :	, o o u ·		
ALG	TIIL	ASII	GIY	125	val	пуз	361	FIIC	130							
as a t	- craat	at :	cttt		-a +:	acca:	ataai	t aaa		aaga	tate	cata	aat a	aaaqi	ttaaaa	545
200	taat	age i	00220	-aca	at at	ttcti	ragg	a ato	gacta	aaca	ggai	taao	taa	caac	ctgatt	605
attt	attt	tac 1	tta	gatta	at a	taag	atte	t to	atac	ctat	gaa	ttaa	tat	tatte	gtgtaa	665
gaat	taac	att a	3222	agect	ta a	acta	actt	t ta	aatti	tata	aati	tcat	tta	tcate	gtttat	725
agta	tati	ta 1	tati	tttt	ct ti	tcate	aact	a tt	aaaa	agta	tga	ctqt	aaa	ggac	aatgca	785
agna	aaac	caa (ctta	ataci	ta ta	attq	aata	a ta	agta	caat	tta	ttat	ttt	actt	tgaaac	845
atta	atqaa	att 1	tact	ttcci	ta c	tttt	tctt	a gt	tgtt:	atct	ata	taaa	ttg .	atta	aaaaa	905
catt	ttat	tgt a	acnti	nncat	tt t	ccta	gtac	a gg	ttga	gtat	ccc	ttat	ttg .	a		956
		_									_					
<210)> 10	00														
<213	1> 10	041														
<212	2 > D1	A														•
<213	3 > Ho	omo :	sapi	ens												
<220																
	l> CI															
<222	2 > 20	07	03													
-00				٠.												
		_	epti 4	ae												
	2> 20															
422.			eijn 3.9		CLIX											
•			TVGL		ם. זייעו	/MC								,		
	5	ey n	I VGII.	n i i i	VILLE	, 113										
<22	1> n	olva	sig	nal												
	_		.100													
				-												
<22	1> p	olyA	sit	е												
	-		.104													
<40	0 > 1	00														
cag	ggtc	ctg	catc	ctac	c at	g to	g at	g gc	t gt	g ga	a ac	c tt	t gg	c tt	c ttc	52
		_			Me	t Se	r Me	t Al	a Va	l Gl	u Th	r Ph	e Gl	y Ph	e Phe	
					-2					-2					-15	
atg	gca	act	gtg	999	ctg	ctg	atg	ctg	999	gtg	act	ctg	cca	aac	agc	100
Met	Ala	Thr	Val	Gly	Leu	Leu	Met	Leu	Gly	Val	Thr	Leu	Pro	Asn	Ser	
				-10					-5					1		_
tac	tgg	cga	gtg	tcc	act	gtg	cac	999	aac	gtc	atc	acc	acc	aac	acc	148
Tyr	Trp	_	Val	Ser	Thr	Val		Gly	Asn	Val	Ile		Thr	Asn	Thr	
		5					10					15				

WO 99/31236

atc	ttc	gag	aac	ctc	tgg	ttt	agc	tgt	gcc	acc	gac	tcc	ctg	ggc	gtc	196
Ile	Phe 20	Glu	Asn	Leu	Trp	Pne 25	ser	Cys	Ala	Thr	30	ser	ьeu	Gly	Vai	•
tac	aac	tgc	tgg	gag	ttc	ccg	tcc	atg	ctg	gcc	ctc	tct	999	tat	att	244
Tyr 35	Asn	Cys	Trp	Glu	Phe 40	Pro	ser	Met	Leu	A1a 45	ren	ser	GIY	Tyr	50	
caq	gcc	tgc	cgg	gca	ctc	atg	atc	acc	gcc	atc	ctc	ctg	ggc	ttc	ctc	292
				55					60					Phe 65		
ggc	ctc	ttg	cta	ggc	ata	gcg	ggc	ctg	cgc	tgc	acc	aac	att	999	ggc	340
Gly	Leu	Leu	Leu 70	GIĀ	ile	Ala	GIÀ	ьеи 75	Arg	Cys	THE	ASII	80	Gly	Gry	
ctg	gag	ctc	tcc	agg	aaa	gcc	aag	ctg	gcg	gcc	acc	gca	999	gcc	CCC	388
Leu	Glu	Leu 85	Ser	Arg	Lys	Ala	Lys 90	Leu	Ala	Ala	Thr	95	GIY	Ala	PIO	
cac	att	ctg	gcc	ggt	atc	tgc	999	atg	gtg	gcc	atc	tcc	tgg	tac	gcc	436
His	Ile 100	Leu	Ala	Gly	Ile	Cys 105	Gly	Met	Val	Ala	Ile	Ser	Trp	Tyr	Ala	
ttc		atc	acc	cgg	gac		ttc	gac	ccc	ttg		ccc	gga	acc	aag	484
Phe	Asn	Ile	Thr	Arg	Asp	Phe	Phe	Asp	Pro	Leu	Tyr	Pro	Gly	Thr	Lys	
115					120			_4_		125					130	532
tac	gag	ctg	ggc	CCC	gcc	CCC	Tur	ten	61v	Tro	Ser	Ala	Ser	ctg Leu	Ile	752
TYL	GIU	Deu	GLY	135	724	Deu	- 7		140			••••		145		
tcc	atc	ctg	ggt	ggc	ctc	tgc	ctc	tgc	tcc	gcc	tgc	tgc	tgc	ggc	tct	580
Ser	Ile	Leu	Gly 150	Gly	Leu	Cys	Leu	Cys 155	Ser	Ala	Cys	Cys	Cys 160	Gly	ser	
gac	gag	gac	cca	gcc	gcc	agc	gcc	cgg	cgg	ccc	tac	cag	gct	cca	gtg	628
Asp	Glu	Asp 165		Ala	Ala	Ser	Ala 170	Arg	Arg	Pro	Tyr	Gln 175	Ala	Pro	Val	
tcc	gtg	atg	CCC	gtc	gcc	acc	tcg	gac	caa	gaa	ggc	gac	agc	agc	ttt	676
Ser	Val 180		Pro	Val	Ala	Thr 185		Asp	Gln	Glu	190	Asp	ser	Ser	hue	
									tag	cagc	tct	ggcc	cgtg	99		723
	Lys	Tyr	Gly	Arg		Ala	Tyr	Val								
195	aaat	a+ a	++00	a	200		~~~	2 AA	~~~	ctaa	cca	aaac	cca	ttcc	cctata	783
ata	ecct	gee caa		cacc	ge c	ccaa	cact	G GG	ggac	cccc	acc	2220	cca	caac	cccgtg	843
tot	taca	cay .	tcat	aacc	cc t	ccaa	acca	а са	acto	ctct	taa	gaaq	tca	cata	tctccc	903
ctc	tgaq	act	ggat	ccct	ca t	cttc	tgac	c ct	gggt	tctg	ggc	tgtg	aag	ggga	cggtgt	963
															ccgtta	1023
aaa	aaaa	aaa	aaaa	aaaa												1041

```
<210> 101
<211> 558
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 103..294
<221> sig_peptide
<222> 103..243
<223> Von Heijne matrix
```

score 5.9

seq TWLGLLSFQNLHC/FP

• •	
taacattaac ttccttaagt aataatcaat gaaagaaatt ct atg cat ggt ttt Met His Gly Phe -45	114
gaa ata ata tcc ttg aaa gag gaa tca cca tta gga aag gtg agt cag Glu Ile Ile Ser Leu Lys Glu Glu Ser Pro Leu Gly Lys Val Ser Gln -40 -35 -30	162
ggt cct ttg ttt aat gtg act agt ggc tca tca tca cca gtg acc tgg Gly Pro Leu Phe Asn Val Thr Ser Gly Ser Ser Ser Pro Val Thr Trp -25 -20 -15	210
ttg ggc cta ctc tcc ttc cag aac ctg cat tgc ttc cca gac ctc ccc Leu Gly Leu Leu Ser Phe Gln Asn Leu His Cys Phe Pro Asp Leu Pro -10 -5 1	258
act gag atg cct cta aga gcc aaa gga gtc aac act tgagcctagg Thr Glu Met Pro Leu Arg Ala Lys Gly Val Asn Thr 10	304
gtgggctaca acaaaagatt ctaatttacc ttgcttcatc taggtccagg ccccaagtag cttgctgaag gaacttaaaa agtagctgtt atttattgta ttgtataagc taaaaacatt tattttgtt gaatcgaaac aattccatgt agcaatcttt tttctgttca cggtgtttgt gatagaacct taaattccgc aagcatcagt tttttgaaaa aatgggaatt gaccggatag taacaggcaa agtt	364 424 484 544 558
<210> 102 <211> 730 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> 81518	
<221> sig_peptide <222> 81173 <223> Von Heijne matrix score 3.9 seq ILFHGVFYAGGFA/IV	
<pre><400> 102 ctcgtcatgc tctttgtagc gtggtgcttc tgttgctcac aggacaactt gcctttgatg attttcaaga gagttgtgct atg atg tgg caa aag tat gca gga agc agg cgg Met Met Trp Gln Lys Tyr Ala Gly Ser Arg Arg -30 -25</pre>	60 113
tca atg cct ctg gga gca agg atc ctt ttc cac ggt gtg ttc tat gcc Ser Met Pro Leu Gly Ala Arg Ile Leu Phe His Gly Val Phe Tyr Ala -20 -15 -10 -5	161
ggg ggc ttt gcc att gtg tat tac ctc att caa aag ttt cat tcc agg Gly Gly Phe Ala Ile Val Tyr Tyr Leu Ile Gln Lys Phe His Ser Arg	209
gct tta tat tac aag ttg gca gtg gag cag ctg cag agc cat ccc gag Ala Leu Tyr Tyr Lys Leu Ala Val Glu Gln Leu Gln Ser His Pro Glu 15 20 25	257
gca cag gaa gct ctg ggc cct cct ctc aac atc cat tat ctc aag ctc Ala Gln Glu Ala Leu Gly Pro Pro Leu Asn Ile His Tyr Leu Lys Leu 30 35 40	305
atc gac agg gaa aac ttc gtg gac att gtt gat gcc aag ttg aag att Ile Asp Arg Glu Asn Phe Val Asp Ile Val Asp Ala Lys Leu Lys Ile 45 50 55 60	353
cct gtc tct gga tcc aaa tca gag ggc ctt ctc tac gtc cac tca tcc Pro Val Ser Gly Ser Lys Ser Glu Gly Leu Leu Tyr Val His Ser Ser 65 70 75	401
aga ggt ggc ccc ttt cag agg tgg cac ctt gac gag gtc ttt tta gag	449

• •	•
Arg Gly Gly Pro Phe Gln Arg Trp His Leu Asp Glu Val Phe Leu Glu 80 85 90	
ctc aag gat ggt cag cag att cct gtg ttc aag ctc agt ggg gaa aac Leu Lys Asp Gly Gln Gln Ile Pro Val Phe Lys Leu Ser Gly Glu Asn 95 100 105	497 '
ggt gat gaa gtg aaa aag gag tagagacgac ccagaagacc cagcttgctt Gly Asp Glu Val Lys Lys Glu 110 115	548
ctagtccatc cttccctcat ctctaccata tggccactgg ggtggtggcc catctcagtg acagacactc ctgcaaccca gttttccagc caccagtggg atgatggtat gtgccagcac atggtaatt tggtgtaatt ctaacttggg cacaacgaat gctatttgtc atttttaaac tg	608 668 728 730
<210> 103 <211> 1098 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> 66326	
<221> polyA_signal <222> 10661071	
<221> polyA_site <222> 10871098	
400. 100	
<pre><400> 103 ctccctttga atgagagaaa ctaacccgct tccgaagccc ctgaaagaca ctgctccttc ctctc atg gag ttg gct ccg aca gcc cgt ctg cca cca ggc cat ggt tcc Met Glu Leu Ala Pro Thr Ala Arg Leu Pro Pro Gly His Gly Ser</pre>	60 110
ctccctttga atgagagaaa ctaacccgct tccgaagccc ctgaaagaca ctgctccttc ctctc atg gag ttg gct ccg aca gcc cgt ctg cca cca ggc cat ggt tcc Met Glu Leu Ala Pro Thr Ala Arg Leu Pro Pro Gly His Gly Ser 1 5 10 15 ttg ccc cat ggt gtc ctg gga ccc aga gca aca gga tct gtc acc cac Leu Pro His Gly Val Leu Gly Pro Arg Ala Thr Gly Ser Val Thr His	
ctccctttga atgagagaaa ctaacccgct tccgaagccc ctgaaagaca ctgctccttc ctctc atg gag ttg gct ccg aca gcc cgt ctg cca cca ggc cat ggt tcc Met Glu Leu Ala Pro Thr Ala Arg Leu Pro Pro Gly His Gly Ser 1 5 10 15 ttg ccc cat ggt gtc ctg gga ccc aga gca aca gga tct gtc acc cac Leu Pro His Gly Val Leu Gly Pro Arg Ala Thr Gly Ser Val Thr His 20 25 30 ctc tct ctt ctc ccc cag atc aag caa cgt gcc tca gag gct ttg ccc Leu Ser Leu Leu Pro Gln Ile Lys Gln Arg Ala Ser Glu Ala Leu Pro	110
ctccctttga atgagagaaa ctaacccgct tccgaagccc ctgaaagaca ctgctccttc ctctc atg gag ttg gct ccg aca gcc cgt ctg cca cca ggc cat ggt tcc Met Glu Leu Ala Pro Thr Ala Arg Leu Pro Pro Gly His Gly Ser 1	110
ctccctttga atgagagaaa ctaacccgct tccgaagccc ctgaaagaca ctgctccttc ctctc atg gag ttg gct ccg aca gcc cgt ctg cca cca ggc cat ggt tcc Met Glu Leu Ala Pro Thr Ala Arg Leu Pro Pro Gly His Gly Ser 1 5 10 15 ttg ccc cat ggt gtc ctg gga ccc aga gca aca gga tct gtc acc cac Leu Pro His Gly Val Leu Gly Pro Arg Ala Thr Gly Ser Val Thr His 20 25 30 ctc tct ctt ctc ccc cag atc aag caa cgt gcc tca gag gct ttg ccc Leu Ser Leu Leu Pro Gln Ile Lys Gln Arg Ala Ser Glu Ala Leu Pro 35 40 45 gaa ttg ctt cgt cct gtc acc ccc atc acc aat ttt gag ggc agc cag Glu Leu Leu Arg Pro Val Thr Pro Ile Thr Asn Phe Glu Gly Ser Gln 50 55 60 tct cag gac cac agt gga atc ttt ggc ctg gta aca aac ctg gaa gag Ser Gln Asp His Ser Gly Ile Phe Gly Leu Val Thr Asn Leu Glu Glu	110 158 206
ctccctttga atgagagaaa ctaacccgct tccgaagccc ctgaaagaca ctgctccttc ctctc atg gag ttg gct ccg aca gcc cgt ctg cca cca ggc cat ggt tcc Met Glu Leu Ala Pro Thr Ala Arg Leu Pro Pro Gly His Gly Ser 1 5 10 15 ttg ccc cat ggt gtc ctg gga ccc aga gca aca gga tct gtc acc cac Leu Pro His Gly Val Leu Gly Pro Arg Ala Thr Gly Ser Val Thr His 20 25 30 ctc tct ctt ctc ccc cag atc aag caa cgt gcc tca gag gct ttg ccc Leu Ser Leu Leu Pro Gln Ile Lys Gln Arg Ala Ser Glu Ala Leu Pro 35 40 45 gaa ttg ctt cgt cct gtc acc ccc atc acc aat ttt gag ggc agc cag Glu Leu Leu Arg Pro Val Thr Pro Ile Thr Asn Phe Glu Gly Ser Gln 50 55 60 tct cag gac cac agt gga atc ttt ggc ctg gta aca aac ctg gaa gag Ser Gln Asp His Ser Gly Ile Phe Gly Leu Val Thr Asn Leu Glu Glu 65 70 75 ctg gag gtg gac gat tgg gag ttc tgagcctctg caaactgtgc gcattctcca Leu Glu Val Asp Asp Trp Glu Phe	110 158 206 254
ctccctttga atgagagaaa ctaacccgct tccgaagccc ctgaaagaca ctgctccttc ctctc atg gag ttg gct ccg aca gcc cgt ctg cca cca ggc cat ggt tcc Met Glu Leu Ala Pro Thr Ala Arg Leu Pro Pro Gly His Gly Ser 1	110 158 206 254 302 356
ctccctttga atgagagaaa ctaacccgct tccgaagccc ctgaaagaca ctgctccttc ctctc atg gag ttg gct ccg aca gcc cgt ctg cca cca ggc cat ggt tcc Met Glu Leu Ala Pro Thr Ala Arg Leu Pro Pro Gly His Gly Ser 1	110 158 206 254 302 356 416 476
ctccctttga atgagagaaa ctaacccgct tccgaagccc ctgaaagaca ctgctccttc ctctc atg gag ttg gct ccg aca gcc cgt ctg cca cca ggc cat ggt tcc Met Glu Leu Ala Pro Thr Ala Arg Leu Pro Pro Gly His Gly Ser 1 5 10 15 ttg ccc cat ggt gtc ctg gga ccc aga gca aca gga tct gtc acc cac Leu Pro His Gly Val Leu Gly Pro Arg Ala Thr Gly Ser Val Thr His 20 25 30 ctc tct ctt ctc ccc cag atc aag caa cgt gcc tca gag gct ttg ccc Leu Ser Leu Leu Pro Gln Ile Lys Gln Arg Ala Ser Glu Ala Leu Pro 35 40 45 gaa ttg ctt cgt cct gtc acc ccc atc acc aat ttt gag ggc agc cag Glu Leu Leu Arg Pro Val Thr Pro Ile Thr Asn Phe Glu Gly Ser Gln 50 55 60 tct cag gac cac agt gga atc ttt ggc ctg gta aca aac ctg gaa gag Ser Gln Asp His Ser Gly Ile Phe Gly Leu Val Thr Asn Leu Glu Glu 65 70 75 ctg gag gtg gac gat tgg gag ttc tgagcctctg caaactgtgc gcattctcca Leu Glu Val Asp Asp Trp Glu Phe 80 85 gccagggatg cagaggccac ccagaggcc ttcctgagag ccggccacat tcccgccctc ctgggcagat tgggtagaaa ggacattctt ccaggaaagt tgactgctgg ctgattgga aagaaaatcc tgggagagata cttcactgct ccaaggcttt tgagacacaa gggaatctca	110 158 206 254 302 356 416 476 536
ctccctttga atgagagaaa ctaacccgct tccgaagccc ctgaaagaca ctgctccttc ctctc atg gag ttg gct ccg aca gcc cgt ctg cca cca ggc cat ggt tcc Met Glu Leu Ala Pro Thr Ala Arg Leu Pro Pro Gly His Gly Ser 1	110 158 206 254 302 356 416 476 536 596
ctcccttga atgagagaaa ctaacccgct tccgaagccc ctgaaagaca ctgctccttc ctctc atg gag ttg gct ccg aca gcc cgt ctg cca cca ggc cat ggt tcc Met Glu Leu Ala Pro Thr Ala Arg Leu Pro Pro Gly His Gly Ser 1 5 10 15 ttg ccc cat ggt gtc ctg gga ccc aga gca aca gga tct gtc acc cac Leu Pro His Gly Val Leu Gly Pro Arg Ala Thr Gly Ser Val Thr His 20 25 30 ctc tct ctt ctc ccc cag atc aag caa cgt gcc tca gag gct ttg ccc Leu Ser Leu Leu Pro Gln Ile Lys Gln Arg Ala Ser Glu Ala Leu Pro 35 40 45 gaa ttg ctt cgt cct gtc acc ccc atc acc aat ttt gag ggc agc cag Glu Leu Leu Arg Pro Val Thr Pro Ile Thr Asn Phe Glu Gly Ser Gln 50 55 60 tct cag gac cac agt gga atc ttt ggc ctg gta aca aac ctg gaa gag Ser Gln Asp His Ser Gly Ile Phe Gly Leu Val Thr Asn Leu Glu Glu 65 70 75 ctg gag gtg gac gat tgg gag ttc tgagcctctg caaactgtgc gcattctca Leu Glu Val Asp Asp Trp Glu Phe 80 85 gccagggatg cagaaggccac ccagaggccc ttcctgaggg ccggccacat tcccgcctc ctgggcagat tgggtagaaa ggacattctt ccaggaaagt tgactgctgg ctgattgga aagaaaatcc tggagagata cttcactgct ccaaaggctt tgagacacaa gggaatctca acaaccaggg atcaggaggt tccaaagccg acattcccag tcctgtgagc tcaggtgacc tcctccgcag aagagagat ctgctctggc cctgggagct gaattccaag cccagggttt	110 158 206 254 302 356 416 476 536
ctccctttga atgagagaaa ctaaccegct tccgaagccc ctgaaagaca ctgctccttc ctctc atg gag ttg gct ccg aca gcc cgt ctg cca cca ggc cat ggt tcc	110 158 206 254 302 356 416 476 536 596 656 716 776
ctccctttga atgagagaaa ctaaccogct tccgaagccc ctgaaagaca ctgctccttc ctctc atg gag ttg gct ccg aca gcc cgt ctg cca cca ggc cat ggt tcc	110 158 206 254 302 356 416 476 536 596 656 716 776 836
ctccctttga atgagagaaa ctaacccgct tccgaagccc ctgaaagaca ctgctccttc ctctc atg gag ttg gct ccg aca gcc cgt ctg cca cca ggc cat ggt tcc Met Glu Leu Ala Pro Thr Ala Arg Leu Pro Pro Gly His Gly Ser 1	110 158 206 254 302 356 416 476 536 596 656 716 776 836 896
ctccctttga atgagagaaa ctaaccogct tccgaagccc ctgaaagaca ctgctccttc ctctc atg gag ttg gct ccg aca gcc cgt ctg cca cca ggc cat ggt tcc	110 158 206 254 302 356 416 476 536 596 656 716 776 836

1098 tcagagacgc aaaaaaaaa aa <210> 104 <211> 346 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 170..289 <221> sig_peptide <222> 170..250 <223> Von Heijne matrix score 3.6 seq LTLLLITPSPSPL/LF <400> 104 ccatttgagc cccaccacgg aggttatgtg gtcccaaaag gaatgatggc caagcaatta 60 120 attittcctc ctagtictta gettgettet geattgattg getttacaca actggcattt agtotgoatt acacaaatag acactaattt atttggaaca agcagcaaa atg aga act 178 Met Arg Thr 226 tta ttt ggt gca gtc agg gct cca ttt agt tcc ctc act ctg ctt cta Leu Phe Gly Ala Val Arg Ala Pro Phe Ser Ser Leu Thr Leu Leu Leu -15 -20 274 ate acc cet tet eee age cet ett eta tit gat aga ggt etg tee etc Ile Thr Pro Ser Pro Ser Pro Leu Leu Phe Asp Arg Gly Leu Ser Leu 1 329 aga toa goa atg tot tagoccotot cototottoc attoottoot gttggtacto Arg Ser Ala Met Ser 10 346 atttcttcta actttta <210> 105 <211> 685 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 36..497 <221> polyA_signal <222> 650..655 <221> polyA site <222> 663..685 53 aagttetgeg etggteggeg gagtageaag tggee atg ggg age ete age ggt Met Gly Ser Leu Ser Gly

ctg cgc ctg gca gca gga agc tgt ttt agg tta tgt gaa aga gat gtt Leu Arg Leu Ala Ala Gly Ser Cys Phe Arg Leu Cys Glu Arg Asp Val

Ser Ser Ser Leu Arg Leu Thr Arg Ser Ser Asp Leu Lys Arg Ile Asn

15 tcc tca tct cta agg ctt acc aga agc tct gat ttg aag aga ata aat

10

101

149

-80-PCT/IB98/02122 WO 99/31236

												35				
		25		aaa		a	30	ant	CCC	gga	act		tcc	cac	act	197
gga	Dhe	cyc	Thr	Lys	Pro	Gln	Glu	Ser	Pro	Glv	Ala	Pro	Ser	Arg.	Thr	•
GIY	40	Cys	TILL	Був	110	45	020	•		2	50			_		
tac	aac	aqa	ata	cct	tta	cac	aaa	cct	acg	gat	tgg	cag	aaa	aag	atc	245
Tyr	Asn	Arg	Val	Pro	Leu	His	Lys	Pro	Thr	Asp	Trp	Gln	Lys	Lys	Ile	
55					60					65					70	
ctc	ata	tgg	tca	ggt	cgc	ttc	aaa	aag	gaa	gat	gaa	atc	cca	gag	act	293
Leu	Ile	Trp	Ser	Gly	Arg	Phe	Lys	Lys	Glu	Asp	Glu	Ile	Pro	Glu	Thr	
				75					80					85		241
gtc	tcg	ttg	gag	atg	ctt	gat	gct	gca	aag	aac	aag	atg	cga	gtg	aag	341
Val	Ser	Leu	Glu	Met	Leu	Asp	Ala	Ala	Lys	Asn	Lys	Met	Arg	vaı	гÀг	
			90					95					100		~-~	389
agc	agc	tat	cta	atg	att	gcc	ctg	acg	gtg	gta	gga	tgc	atc	Dho	Met	369
Ser	Ser		Leu	Met	Ile	Ala		Thr	vaı	vaı	GIĀ	115	TTE	PILE	Mec	
		105					110				~~~		++=	202	200	437
gtt	att	gag	'āāc	aag	aag	gct	gcc	Caa	aya	Tic	gay	Thr	Lua	Thr	Ser	45,
Val			GIÀ	Lys	гÀг		Ala	GIII	Arg	пть	130	1111	пец	1111	501	
	120					125		a+a	222	a2a		acs	act	ato	aag	485
ttg	aac	tta	gaa	aag	aaa	get	ZGC	Lou	Lvc	Glu	Glu	λla	Ala	Met	Lvs	•••
		Leu	GIU	Lys		Ala	Arg	neu	пуъ	145	GIU	AIA	VIG	1100	150	
135					140		- -	~+~+	ta a		s+++	t da	aaati	ccaq		537
				tag	caya	ggı	acco	gugu	cg g	99	acce	c gu		0045		
Ala	гуs	Thr	GIU		aa t	~+	+222	2 20	rata.	taat	ato	agga	tcc .	attt	cataaa	597
gaa	ttat	gtt	ataa	cgtg	-~ -	grac	taaa tttc	a ay	attt	ctac	cat	адза адаа	ota (gaaa	taaatt	657
				aaaa				c 90		0030	090	-5	3 -	J		685
	LLaa	aaa	aaaa	aaaa	aa a	auau	uuu									
-21	0> 1	06														
	() T	.00														
	1 . 5	54														
<21	1> 5															
<21 <21	2> D	NA	cani	ene												
<21 <21	2> D		sapi	ens												
<21 <21 <21	2> D 3> H	NA	sapi	ens												
<21 <21 <21 <22	2> D 3> H	ANG	sapi	ens												
<21 <21 <21 <22 <22	2> D 3> H 0>	ONA Iomo	_	ens												
<21 <21 <21 <22 <22	2> D 3> H 0>	ANG	_	ens												
<21 <21 <21 <22 <22 <22	2> D 3> H 0> 1> C 2> 1	ONA Iomo CDS .83	20													
<21 <21 <21 <22 <22 <22 <22 <22	2> D 3> H 0> 1> C 2> 1	ONA Iomo CDS .83	20 _sig													
<21 <21 <21 <22 <22 <22 <22 <22	2> D 3> H 0> 1> C 2> 1	ONA Iomo CDS .83	20 _sig													
<21 <21 <21 <22 <22 <22 <22 <22	2> D 3> H 0> 1> C 2> 1 1> p	ONA Iomo CDS .83 POLYA	20 _sig 544	nal												
<21 <21 <21 <22 <22 <22 <22 <22 <22 <22	2> D 3> H 0> 1> C 2> 1 1> p 12> 5	ONA Iomo CDS 8.3 8.3	20 _sig 544 _sit	nal												
<21 <21 <21 <22 <22 <22 <22 <22 <22 <22	2> D 3> H 0> 1> C 2> 1 1> p 12> 5	ONA Iomo CDS .83 POLYA	20 _sig 544 _sit	nal												
<21 <21 <22 <22 <22 <22 <22 <22 <22	2> D 3> H 0> C 2> 1 1> C 2> 5	ONA IOMO CDS .83 OOLYA 539	20 _sig 544 _sit	nal												
<21 <21 <21 <22 <22 <22 <22 <22 <22 <22	2> D 3> H 0> C 1> C 2> 1 1> F 12> 5	ONA Iomo CDS .83 OolyA 639	20 _sig 544 _sit	nal e	atq	qtq	tgc	gaa	aaa	tgt	gaa	aag	aaa	ctt	ggt	50
<21 <21 <21 <22 <22 <22 <22 <22 <22 <22	2> D 3> H 0> C 1> C 2> 1 1> F 12> 5	ONA Iomo CDS .83 OolyA 639	20 _sig 544 _sit	nal e	atg Met	gtg Val	tgc Cys	gaa Glu	aaa Lys	tgt Cys	gaa Glu	aag Lys	aaa Lys	ctt Leu	ggt Gly	50
<21 <21 <21 <22 <22 <22 <22 <22 <22 <22	2> D 3> H 0> C 1> C 2> 1 1> F 12> 5	ONA Iomo CDS .83 OolyA 639	20 _sig 544 _sit 554	nal e	atg Met 1	gtg Val	tgc Cys	gaa Glu	aaa Lys 5	tgt Cys	gaa Glu	aag Lys	aaa Lys	ctt Leu 10	ggt Gly	
<211 <211 <221 <222 <222 <222 <222 <222	2> D 3> H 0> C 1> C 2> D 1> C 2> D 2> S 2> S 2> S 2> S 2> S 2> S 2> S 2> S	ONA CDS .83 OOLYA 642	_sig 544 _sit 554 ggga	nal e .agg	Met 1 gat	Val : aca	Cys tgg	Glu aaa	Lys 5 gat	Cys ggt	Glu gct	Lys agg	Lys , aat	Leu 10 acc	Gly : aca	50 98
<211 <211 <221 <222 <222 <222 <222 <222	2> D 3> H 0> C 1> C 2> D 1> C 2> D 2> S 2> S 2> S 2> S 2> S 2> S 2> S 2> S	ONA CDS .83 OOLYA 642	_sig 544 _sit 554 ggga	nal e .agg	Met 1 gat	Val : aca	Cys tgg	Glu aaa	Lys 5 gat	Cys ggt	Glu gct	Lys agg	Lys , aat , Asr	Leu 10 acc	Gly : aca	
<211 <221 <222 <222 <222 <222 <222 <221 <400 aacc Third	2> D 3> H 0> C 1> C 2> D 12> D	ONA CDS .83 OOLYA 642 LO6 cgtg	20 _sig 544 _sit 554 ggga	e agg	Met 1 gat Asp	Val aca Thi	Cys tgg Trp	Glu , aaa , Lys 20	Lys 5 gat Asp	Cys ggt Gly	Glu gct Ala	Lys agg Arg	Lys aat Asr 25	Leu 10 aco Thi	Gly : aca : Thr	98
<211 <221 <222 <222 <222 <222 <222 <222	2> D 3> H 0> C 1> C 2> D 2> D 2> S 2> S 2> S 2> S 2> S 2> S 2> S 2> S	ONA CDS .83 OOLYA 642 LO6 cgtg	20 _sig 544 _sit 554 ggga c act Thr	e agg	Met 1 1 A gat Asp	Val aca Thi	Cys tgg Trp	Glu aaa Lys 20 aaa	Lys 5 gat Asp	Cys ggt Gly	Glu gct Ala gct	Lys agg Arg	Lys aat Asr 25 act	Leu 10 aco Thi	Gly : aca : Thr	
<211 <221 <222 <222 <222 <222 <222 <222	2> D 3> H 0> C 1> C 2> D 2> D 2> S 2> S 2> S 2> S 2> S 2> S 2> S 2> S	ONA CDS .83 OOLYA 642 LO6 cgtg	20 _sig 544 _sit 554 ggga c act Thr	e agg	Met 1 1 A gat Asp	Val aca Thi	Cys tgg Trp	Glu aaa Lys 20 aaa	Lys 5 gat Asp	Cys ggt Gly	Glu gct Ala gct	Lys agg Arg	Lys aat Asr 25 act	Leu 10 aco Thi	Gly : aca : Thr	98
<211 <221 <222 <222 <222 <222 <222 <221 <400 aacc Third Galact Galact Galact Galact Galact Galact Canada Ca	2> D 3> H 0> C 1> C 2> D 1> C 2> D 2> S 1> P 2> S 2> S 2> S 2> S 2> S 2> S 2> S 2> S	ONA COMO COMO COMO COMO COMO COMO COMO COM	20 544 _sit 554 ggga act Thr 15 gga 7 Gly	e cca pro	Met 1 1 Asp aag Lys	Val aca Thi cto	Cys tgg Trp aat Asr 35	Glu Jaaa Lys 20 Laaa Lys	Lys 5 gat Asp aat Asr	Cys ggt Gly aaa Lys	Glu gct Ala gct Ala	Lys agg Arg ttg Lev 40	Lys Jaat JAST 25 Jact Thi	Leu 10 acc Thi tca	Gly aca Thr aaa	98 146
<211 <221 <222 <222 <222 <222 <222 <221 <221 <222 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <	2> D 3> H 0> C 1> C 1> P 12> S 1> P 1> P 1> P 1> P 1> P 1> P 1> P 1> P	NA Iomo CDS .83 .00lyA .642106 .gtg .116 .t ggt .t ggt .t ggt .t ggt	20 Sigs 544 Sit 554 Ggga act 15 Ggga 7 Gly	nal e agg	Met 1 1 1 Asp Asp 1 2 2 4 4 4 4 4 4 4 4 4 4 4	Val aca Thi cts Let	Cys tgg Trp aat Asr 35	Glu aaa Lys 20 aaa Lys aaa	Lys 5 1 gat 2 Asp 1 aat 3 Asr	Cys ggt Gly aaa Lys	Glu gct Ala gct Ala	Lys agg Arg ttg Let 40	Lys y aat y Asr 25 y act y Thr	Leu 10 : acc i Thi : tca : Sei	Gly caca Thr aaaa Lys aga	98
<211 <221 <222 <222 <222 <222 <222 <221 <221 <222 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <	2> D 3> H 0> C 1> C 1> P 12> S 1> P 1> P 1> P 1> P 1> P 1> P 1> P 1> P	NA Iomo CDS .83 .00lyA .642106 .gtg .116 .t ggt .t ggt .t ggt .t ggt	20 Sigs 544 Sit 554 Ggga act 15 Ggga 7 Gly	nal e agg	Met 1 1 1 Asp Asp 1 2 2 4 4 4 4 4 4 4 4 4 4 4	Val aca Thi cts Let	Cys tgg Trp aat Asr 35	Glu aaa Lys 20 aaa Lys aaa	Lys 5 1 gat 2 Asp 1 aat 3 Asr	Cys ggt Gly aaa Lys	Glu gct Ala gct Ala	Lys agg Arg ttg Let 40	Lys y aat y Asr 25 y act y Thr	Leu 10 : acc i Thi : tca : Sei	Gly caca Thr aaaa Lys aga	98 146
<211 <221 <222 <222 <222 <222 <222 <221 <221 <222 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <221 <	2> D 3> H 0> C 1> C 1> P 12> S 1> P 1> P 1> P 1> P 1> P 1> P 1> P 1> P	NA Iomo CDS .83 .00lyA .642106 .gtg .116 .t ggt .t ggt .t ggt .t ggt	20 Sigs 544 Sit 554 Ggga act 15 Ggga 7 Gly	nal e agg	Met 1 1 1 Asp Asp 1 2 2 4 4 4 4 4 4 4 4 4 4 4	Val aca Thi cts Let	Cys tgg Trp aat Asr 35	Glu aaa Lys 20 aaa Lys aaa	Lys 5 1 gat 2 Asp 1 aat 3 Asr	Cys ggt Gly aaa Lys	Glu gct Ala gct Ala	Lys agg Arg ttg Let 40	Lys y aat y Asr 25 y act y Thr	Leu 10 : acc i Thi : tca : Sei	Gly aca Thr aaa	98 146
<211 <221 <222 <222 <222 <222 <222 <222	2 > D 3 > H 0 > C 1 > D 1 > C 2 > D 2 > D 2 > D 2 > D 2 > D 2 > D 3 > D 3 > D 4 > D 4 > D 4 > D 4 > D 5 > D 6 > D 6 > D 7 > D 7 > D 8 > D	INA IOMO IOMO IOMO IOMO IOMO IOMO IOMO IOM	20 Sigs 544 Sit 554 Ggga act 15 Ggga 7 Gly	nal e agg cca pro	Met 1 1 1 2 3 4 4 5 6 7 7 7 7 7 7 8 8 9 1 1 1 1 1 1 1 1 1 1 1 1	Val aca Thi cto Let Typ 50 g cae	Cys tgg Trp gaat Asr 35 Ggs Gly	Glu Jaaa Lys 20 Laaa Lys Lys Lys	Lys 5 1 gat 2 Asp 1 aat 2 Asr 3 Asr 3 Asr	Cys ggt Gly aaa Lys aag Lys	Glu gct Ala gct Ala phe 55 cat	Lys agg Arg ttg Let 40 ctcc Ser	Lys y aat y Asr 25 y act y Thr c act	Leu 10 acc Thi con Sei Cys	Gly aca Thr aaa Lys aga Arg	98 146
<211 <221 <222 <222 <222 <222 <222 <222	2 > D 3 > H 0 > C 1 > D 1 > C 2 > D 2 > D 2 > D 2 > D 2 > D 2 > D 3 > D 3 > D 4 > D 4 > D 4 > D 4 > D 5 > D 6 > D 6 > D 7 > D 7 > D 8 > D	INA IOMO IOMO IOMO IOMO IOMO IOMO IOMO IOM	20 Sigs 544 Sit 554 Ggga act 15 Ggga 7 Gly	nal e agg cca pro	Met 1 1 1 2 3 4 4 5 6 7 7 7 7 7 7 8 8 8 9 1 1 1 1 1 1 1 1 1 1 1 1	Val aca Thi cto Let Typ 50 g cae	Cys tgg Trp gaat Asr 35 Ggs Gly	Glu Jaaa Lys 20 Laaa Lys Lys Lys	Lys 5 1 gat 2 Asp 1 aat 2 Asr 3 Asr 3 Asr	Cys ggt Gly aaa Lys aag Lys	Glu gct Ala gct Ala phe 55 cat	Lys agg Arg ttg Let 40 ctcc Ser	Lys y aat y Asr 25 y act y Thr c act	Leu 10 acc Thi con Sei Cys	Gly aca Thr aaa Lys aga Arg ggc	98 146 194
<211 <221 <222 <222 <222 <222 <222 <222	2> D 3> H 0> C 1> C 1> P 12> S 1> P 1> P 1> P 1> P 1> P 1> P 1> P 1> P	INA IOMO IOMO IOMO IOMO IOMO IOMO IOMO IOM	20 2sig 544 2sit 554 ggga act Thr 15 gga 7 Gl) a ttt g Phe	e agg	Met 1 1 gat 2 Asp 4 aag 4 Lys 5 Cca 5 Pro 5 Val 65	Val aca Thi g cts Lev Lev 50 g cas l His	Cys tgg Trp aat Asr 35 Ggs Gly	Glu y aaa y Lys a aag y Lys a cca	Lys 5 1 gat 2 Asp 1 aat 3 Asr 3 Asr 4 ggt 5 Gl	Cys ggt Gly aaa Lys aac Lys ctct Sei	Glu get Ala get Ala get Ala get Ala get His	Lys agg Arg ttg 40 tcg Ser tag	Lys y aat y Asr 25 y act Thr c act Thr	Leu 10 c acc i Thi c tca c Sei c Cys c cas g Gli	Gly aca Thr aaa Lys aga Arg	98 146 194

Cys Ala Tyr Lys Lys Gly Ile Cys Ala Met Cys Gly Lys Lys Val Leu 80 85 90	
gat acc aaa aac tac aag caa aca tct gtc tagatgtatt gatggaattt Asp Thr Lys Asn Tyr Lys Gln Thr Ser Val 95 100	340
ctggctttct aaatgatttt actttctgcc ttgaattttc aaggcataga tgtcaactta cagaataaca tgttttaaga taattaagtt taaaccagag aatttgattg ttactcattt tgctctcatg ttctaaacag caacagtgta actagtcttt tgttgtaaat ggttattttcttataagaa ttttaagaac taaaaaaaaa aaaa	: 460
<210> 107 <211> 1678 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> 711438	
<221> sig_peptide <222> 71136 <223> Von Heijne matrix score 3.5 seq AAPVAAGLGPVIS/RP	
<221> polyA_signal <222> 16441649	
<221> polyA site	
<222> 16651678	
<222> 16651678 <400> 107 ccgacttcca gaggagcgct gtgcacgtgg agaagagcgg ggactcggcg accetgccc cccgacctc atg ttc gaa gag cct gag tgg gcc gag gcc cca gta Met Phe Glu Glu Pro Glu Trp Ala Glu Ala Ala Pro Val	t 60 109
<pre><222> 16651678 <400> 107 ccgacttcca gaggagcgct gtgcacgtgg agaagagcgg ggactcggcg accctgccc cccgaccctc atg ttc gaa gag cct gag tgg gcc gag gcg gcc cca gta</pre>	-
<pre><222> 16651678 <400> 107 ccgacttcca gaggagcgct gtgcacgtgg agaagagcgg ggactcggcg accctgccc cccgaccctc atg ttc gaa gag cct gag tgg gcc gag gcg gcc cca gta</pre>	109
<pre><222> 16651678 <400> 107 ccgacttcca gaggagcgct gtgcacgtgg agaagagcgg ggactcggcg accctgccc cccgaccctc atg ttc gaa gag cct gag tgg gcc gag gcg gcc cca gta</pre>	109 157
<pre><222> 16651678 <400> 107 ccgacttcca gaggagcgct gtgcacgtgg agaagagcgg ggactcggcg accctgccc cccgaccctc atg ttc gaa gag cct gag tgg gcc gag gcg gcc cca gta</pre>	109 157 205
<pre><222> 16651678 <400> 107 ccgacttcca gaggagcgct gtgcacgtgg agaagagcgg ggactcggcg accctgccc cccgaccctc atg ttc gaa gag cct gag tgg gcc gag gcg gcc cca gta</pre>	109 157 205 253
<pre><222> 16651678 <400> 107 ccgacttcca gaggagcgct gtgcacgtgg agaagagcgg ggactcggcg accctgccc cccgacctc atg ttc gaa gag cct gag tgg gcc gag gcg gcc cca gta</pre>	109 157 205 253 301
<pre><222> 16651678 <400> 107 ccgacttcca gaggagcgct gtgcacgtgg agaagagcgg ggactcggcg accctgccc cccgaccctc atg ttc gaa gag cct gag tgg gcc gag gcg gcc cca gta</pre>	109 157 205 253 301

				•												
Ile	aat Asn	tca Ser	gcc Ala	cag Gln	His	ctg Leu	gac Asp	aat Asn	gtt Val	Asp	caa Gln	aca Thr	ggt Gly	ccc Pro	aaa Lys 135	541
120 gcc	tgg	aag	ggt	agt	125 act	aca	aat	gat	cca	130 cca	aag	caa	agc	cct	999	589
Ala	Trp	Lys	Gly	Ser 140	Thr	Thr	Asn	Asp	Pro 145	Pro	Lys	Gln	Ser	Pro 150	Gly	
tcc	act	tcc	cct	aaa	ccc	cct	cat	aca	tta	agc	cgc	aag	cag	tgg	cgg	637
			Pro 155					160					165			
aac	cgg	caa	aag	aat	aag	aga	aga	tgt	aag	aac	aag	ttt	cag	cca	cct	685
		170	Lys				175					180				
cag	gtg	cca	gac	cag	gcc	cca	gct	gag	gcc	CCC	aca	gag	aag	aca	gag	733
	185		Asp			190					195					=01
gtg	tct	cct	gtt	CCC	agg	aca	gac	agc	cat	999	gct	cgg	gca	999	gct	781
200			Val		205					210			•		215	
ttg	cga	gcc	cgc	atg	gca	cag	cgg	ctg	gat	a aa	gcc	cga	ttt	cgc	tac	829
			Arg	220					225					230		
ctc	aat	gaa	cag	ttg	tac	tca	999	CCC	agc	agt	gct	gca	cag	cgt	CEC	877
		•	Gln 235		-			240					245			
ttc	cag	gaa	gac	cct	gag	gct	ttt	ctt	ctc	tac	cac	cgc	ggc	ttc	cag	925
•		250	Asp				255					260				
agc	caa	gtg	aag	aag	tgg _	cca	ctg	cag	cca	gtg	gac	cgc	atc	gcc	agg	973
	265		Lys			270					275					
gat	ctt	cgc	cag	cgg	cct	gca	tcc	cta	gtg	gtg	gct	gac	Dho	ggc	cys	1021
280		_	Gln		285					290					295	
999	gat	tgc	cgc	ttg	gct	tca	agt	atc	cgg	aac	cct	gtg	cat	tgc	ttt	1069
_			Arg	300					305					310		
			tct													1117
			Ser 315					320					325			1165
gtt	cct	ttg	gag	gat	gag	tct	gtg	gat	gtg	gct	gtg	ttt	tgc	CCC	tca com	1165
		330	Glu				335					340				
ctg	atg	gga	acc	aac	atc	agg	gac	ttc	cta	gag	gag	gca	aat	aga	gta	1213
	345	_	Thr			350	_				355					
			a aa													1261
360	•		Gly		365					370					375	
			cga													1309
	_		Arg	380					3 8 5		•••			390		
att	gtc	tcc	aag	gac	ctg	acc	aac	agc	cat	ttc	ttc	ttg	ttt	gat	ttc	1357
Ile	Val	Ser	Lys 395		Leu	Thr	Asn	Ser		Phe	Phe	Leu	Phe 405	Asp	Phe	
caa	aag	act	999	ccc	cct	ctg	gta	999	CCC	aag	gct	cag	ctt	tca	ggc	1405
Gln	Lys	Thr 410	Gly	Pro	Pro	Leu	Val 415		Pro	Lys	Ala	Gln 420		Ser	Gly	
_	_				_							cctc	tgg	atct	tccttg	1458
	425		Gln		-	430		_								
															cctggc	1518
tgt	gagc	caa	gacc	tggt	tc c	tggt	ggac	c ct	gagg	acaa	agt	gtga	taa	aacc	tctggc	1578

1638 1678

tcagacttgc tctactgaag gcttcttggt tataagatgc ataaagtcac tggggctagc

<210> 108 <211> 494 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 25..318 <221> sig_peptide <222> 25..75 <223> Von Heijne matrix score 7.4 seq FFLLLQFFLRIDG/VL <221> polyA_signal <222> 452..457 <221> polyA site <222> 482..494 <400> 108 aggetgagtg tgaagattag agta atg cet tet age ttt tte etg etg ttg 51 Met Pro Ser Ser Phe Phe Leu Leu -15 cag ttt ttc ttg aga att gat ggg gtg ctt atc aga atg aat gac acg 99 Gln Phe Phe Leu Arg Ile Asp Gly Val Leu Ile Arg Met Asn Asp Thr aga ctt tac cat gag gct gac aag acc tac atg tta cga gaa tat acg 147 Arg Leu Tyr His Glu Ala Asp Lys Thr Tyr Met Leu Arg Glu Tyr Thr 15 10 195 tca cga gaa agc aaa att tct agt ttg atg cat gtt cca cct tcc ctc Ser Arg Glu Ser Lys Ile Ser Ser Leu Met His Val Pro Pro Ser Leu 30 ttc acg gaa cct aat gaa ata tcc cag tat tta cca ata aag gaa gca 243 Phe Thr Glu Pro Asn Glu Ile Ser Gln Tyr Leu Pro Ile Lys Glu Ala 50 45 291 gtt tgt gag aag cta ata ttt cca gaa aga att gat cct aac cca gca Val Cys Glu Lys Leu Ile Phe Pro Glu Arg Ile Asp Pro Asn Pro Ala 65 338 gac tca caa aaa agt aca caa gtg gaa taaaatgtga tacaacatat Asp Ser Gln Lys Ser Thr Gln Val Glu 80 75 actcactatg gaatctgact ggacaccttg gctatttgta aggggttatt tttattatga 398 458 gaattaattg ccttgtttat gtacagattt tctgtagcct taaaggaaaa aaaaataaag 494 atcgttacag gcaggtttca ctcaaaaaaa aaaaac

<210> 109

<211> 714

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 84..332

<221> sig_peptide <222> 84..170 <223> Von Heijne matrix score 5.2 seg PCYYLGLFQRALA/SV <221> polyA_site <222> 702..714 <400> 109 60 cctatctctt ctgctggctg ggctcaatgc cgcgggtgag cgttcggccg aggctgctcc taccettgag tgatgtgeet tga atg acg etg ett tea tte get get tte acg 113 Met Thr Leu Leu Ser Phe Ala Ala Phe Thr -25 get get tte tee gte etc ecc tgt tae tae ett ggg etg ttt eag egg 161 Ala Ala Phe Ser Val Leu Pro Cys Tyr Tyr Leu Gly Leu Phe Gln Arg -10 -15 209 geg etc geg teg gte tte gae eea ett tge gtt tgt tea egt gtg etc Ala Leu Ala Ser Val Phe Asp Pro Leu Cys Val Cys Ser Arg Val Leu ccg aca cct gta tgt acc ttg gtc gca aca caa gcc gaa aaa ata tta 257 Pro Thr Pro Val Cys Thr Leu Val Ala Thr Gln Ala Glu Lys Ile Leu 20 gag aat ggg ccc tgt cca acc aag gag gcg gcc cag ctt gtc ggg aag 305 Glu Asn Gly Pro Cys Pro Thr Lys Glu Ala Ala Gln Leu Val Gly Lys 45 35 30 ggc agc gtt tcc gcc aga aat gct tcg tgaaaggcac ttgagggacc 352 Gly Ser Val Ser Ala Arg Asn Ala Ser 50 ttagcagcat cctcaacagg ccttgtaggg aatgccagaa gaagcagtcc ttggccgggc 472 ggggtggctc atgcctgtgg tcccagcact ttgggaggcc ggggcgggcg gatcacctga ggtcgggagg tccagaccag cctgaccgac atggagaaac cccgtctnta ctagaaatac 532 aaaactagcc gggtgtggtg gcgcatgcct gtagtcccag ctactcggga gggtgaggca 592 652 qqaqacqttc ttqaacccgq gaggcggagt ttgtggtgag ccgagatcgc gccattgcac 712 714 aa

<210> 110

<211> 805

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 32..718

<221> sig_peptide

<222> 32..100

<223> Von Heijne matrix
 score 7.4
 seq VLLLAALPPVLLP/GA

<221> polyA_signal

<222> 770..775

<221> polyA_site

<222> 793..805

<400> 110

cctctttcag cccgggatcg ccccagcagg g atg ggc gac aag atc tgg ctg Met Gly Asp Lys Ile Trp Leu -20														52		
Pro	Phe	Pro	Val	Leu	Leu	Leu -10	Ala	Ala	Leu	Pro	Pro	Val	ctg Leu	Leu	Pro	100
Gly	Ala	Ala	Gly	Phe 5	Thr	Pro	Ser	Leu	Asp 10	Ser	Asp	Phe	acc Thr	Pne 15	Tur	148
ctt	ccc Pro	gcc Ala	ggc Gly 20	cag	aag Lys	gag Glu	tgc Cys	ttc Phe 25	tac Tyr	cag Gln	ccc Pro	atg Met	ccc Pro 30	ctg Leu	aag Lys	196
gcc Ala	tcg Ser	Leu	gag	atc Ile	gag Glu	tac Tyr	caa Gln 40	gtt	tta Leu	gat Asp	gga Gly	gca Ala 45	gga Gly	tta Leu	gat Asp	244
att Ile	Asp	35 ttc Phe	cat His	ctt Leu	gcc Ala	Ser	cca	gaa Glu	ggc Gly	aaa Lys	acc Thr 60	tta	gtt Val	ttt Phe	gaa Glu	292
caa Gln	50 aga Arg	aaa Lys	tca Ser	gat Asp	gga Gly	55 gtt Val	cac His	act Thr	gta Val	Glu	act	gaa Glu	gtt Val	ggt Gly	gat Asp 80	340
65 tac Tyr	atg Met	ttc Phe	tgc Cys	ttt Phe	70 gac Asp	aat Asn	aca Thr	ttc Phe	Ser	75 acc Thr	att Ile	tct Ser	gag Glu	Lys	gtg	388
att Ile	ttc Phe	ttt Phe	gaa Glu	85 tta Leu	atc Ile	ctg Leu	gat Asp	Asn	90 atg Met	gga Gly	gaa Glu	cag Gln	gca Ala	95 caa Gln	gaa Glu	436
caa Gln	gaa Glu	gat Asp	100 tgg Trp	aag Lys	aaa Lys	tat Tyr	Ile	Thr	ggc Gly	aca Thr	gat Asp	Ile	110 ttg Leu	gat Asp	atg Met	484
aaa Lys	ctg Leu	115 gaa Glu	gac Asp	atc Ile	ctg Leu	gaa Glu	120 tcc Ser	atc	agc Ser	agc Ser	Ile	125 aag Lys	tcc Ser	aga Arg	cta Leu	532
agc	130 aaa	agt	aaa	cac	ata	135 caa	att	ctg	ctt	aga	140 gca	ttt	gaa Glu	gct	cgt Arg	580
145 gat	cga	aac	ata	caa	150 gaa	agc	aac	ttt	gat	155 aga	gtc	aat	ttc Phe	tgg	tct	628
ato	att	aat	tta	165 ata	atc	atq	gtg	gtg	170 gtg	tca	gcc	att	caa Gln	175 gtt	tat	676
ato	ctq	aaq	180 agt Ser	ctg	ttt	gaa	gat	185 aag	agg	aaa	agt	aga	190 act			718
taa	aact	195 cca		agag	ta c	gtaa	200 catt	1				205			aaactg	778 805

<210> 111

<211> 787

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 26..481

<221> sig_peptide <222> 26..88

<223> Von Heijne matrix

score 4.4 seq AVASSFFCASLFS/AV

<221> polyA_signal <222> 755..760

<221> polyA_site <222> 775..787

)> 1]															52
gaca	igcct	gg a	ataaa	iggct	c ac	ttg	atg	gct	cag	ttg	gga	gca	gtt	gtg	gct	52
							Met		Gln	Leu	GIA	Ala		vaı	Ala	
								-20					-15			100
gtg	gct	tcc	agt	ttc	ttt	tgt	gca	tct	ctc	ttc	tca	gct	gtg	cac	aag	100
Val	Ala	Ser	Ser	Phe	Phe	Cys	Ala	Ser	Leu	Phe	Ser	Ala	Val	His	Lys	
		-10					- 5					1				
ata	gaa	gag.	gga	cat	att	999	gta	tat	tac	aga	ggc	ggt	gcc	ctg	ctg	148
Ile	Glu	Glu	Gly	His	Ile	Gly	Val	Tyr	Tyr	Arg	Gly	Gly	Ala	Leu	Leu	
5					10					15					20	
act	tcg	acc	agc	ggc	cct	ggt	ttc	cat	ctc	atg	ctc	cct	ttc	atc	aca	196
Thr	Ser	Thr	Ser	Gly	Pro	Gly	Phe	His	Leu	Met	Leu	Pro	Phe	Ile	Thr	
				25					30					35		
tca	tat	aag	tct	gtg	cag	acc	aca	ctc	cag	aca	gat	gag	gtg	aag	aat	244
Ser	Tyr	Lys	Ser	Val	Gln	Thr	Thr	Leu	Gln	Thr	Asp	Glu	Val	Lys	Asn	
			40					45					50			
gta	cct	tgt	999	act	agt	ggt	ggt	gtg	atg	atc	tac	ttt	gac	aga	att	292
Val	Pro	Cys	Gly	Thr	Ser	Gly	Gly	Val	Met	Ile	Tyr	Phe	Asp	Arg	Ile	
		55					60					65				
gaa	gtg	gtg	aac	ttc	ctg	gtc	ccg	aac	gca	gtg	cat	gat	ata	gtg	aag	340
Glu	Val	Val	Asn	Phe	Leu	Val	Pro	Asn	Ala	Val	His	Asp	Ile	Val	Lys	
	70					75					80					
aac	tat	act	gct	gac	tat	gac	aag	gcc	ctc	atc	ttc	aac	aag	atc	cac	388
Asn	Tyr	Thr	Āla	Asp	Tyr	Asp	Lys	Ala	Leu	Ile	Phe	Asn	Lys	Ile	His	
85					90					95					100	
cac	gaa	ctg	aac	cag	ttc	tgc	agt	gtg	cac	acg	ctt	caa	gag	gtc	tac	436
His	Glu	Leu	Asn	Gln	Phe	Cys	Ser	Val	His	Thr	Leu	Gln	Glu	Val	Tyr	
				105					110					115		
att	gag	ctg	ttt	gga	ctg	gaa	aat	gat	ttt	tcc	cag	gaa	tct	tca		481
Ile	Glu	Leu	Phe	Gly	Leu	Glu	Asn	Asp	Phe	Ser	Gln	Glu	Ser	Ser		
			120	_				125					130			
taa	aagg	gac	cctg	agca	ag a	acat	tttt	c at	agca	gaca	gga	ggac	tca	tcca	catcgc	541
cag	caat	cat	aatt	aagc	aa a	ccgc	cttt	t gc	acca	ttta	aga	ttta	gga	aatc	atccaa	601
att	actt	tta :	atgt	ttct	gc a	gtag	aaaa	t ga	atct	aaat	tca	tttt	ata	gggt	ttgtag	661
tct	ttta	tct	gttt	tgga [.]	tt c	actg	tgct	t tt	aaga	aaaa	gtt	ggta	aat	ttgc	cgttga	721
ttt	ttct	ttt	taac	ctca	aa c	taat	agaa	t tt	tata	aaat	att	aatt	ttc	tcca	aaaaaa	781
aaa							-									787

<210> 112

<211> 569

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 26..562

<221> sig_peptide <222> 26..187

<223> Von Heijne matrix score 4.1

seq AVVAAAARTGSEA/RV

<400	> 11	.2															
			tggg	ctac	a aa	agt	atg Met	gcc Ala	gct Ala	tct Ser	gag Glu -50	gcg Ala	gcg Ala	gtg Val	gtg Val	52	
					aaa Lys -40											100	
gga					atg Met											148	
gcg Ala	gtg Val	gtt Val	gcg Ala -10	gcc Ala	gcg Ala	gcc Ala	agg Arg	acc Thr -5	gga Gly	tcc Ser	gaa Glu	gcc Ala	agg Arg 1	gtc Val	tcc Ser	196	
					acc Thr											244	
					999 Gly 25											292	
aag Lys	gag Glu	aag Lys	ctg Leu	ctg Leu 40	gca Ala	gaa Glu	gct Ala	gga Gly	atg Met 45	cct Pro	tct Ser	cca Pro	gaa Glu	tgg Trp 50	acc Thr	340	
					act Thr											388	
					gtt Val											436	
					ttg Leu											484	
					act Thr 105											532	
gaa	_				ggt Gly	_					gtag					569	

<210> 113

<211> 893

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 4..810

<221> sig_peptide

<222> 4..279

<223> Von Heijne matrix score 6.8 seq AVMLYTWRSCSRA/IP

<221> polyA_signal

<222> 858..863

<221> polyA_site

<222> 881..893

<400	> 11	.3														4.0
gcc	atg Met	atc Ile	acg Thr	cac His	gtc Val	acc Thr	ctg Leu	Glu	gat Asp	gcc Ala	ctg Leu	tcc Ser	Asn	gtg Val	-gac Asp	48
			-90					-85					-80		cat	96
ctg Leu	ctt Leu	gaa Glu -75	gag Glu	Leu	ccc Pro	Leu	Pro	gac Asp	Gln	Gln	Pro	Cys -65	Ile	Glu	Pro	70
cca Pro	Pro	tcc	tcc Ser	atc Ile	atg Met	Tyr	cag Gln	gct Ala	aac Asn	ttt Phe	Asp	aca Thr	aac Asn	ttt Phe	gag Glu	144
qac	-60 agg	aat	gca	ttt	gtc	-55 acg	ggc	att	gca	agg	-50 tac	att	gag	cag	gct	192
Asp -45	Arg	Asn	Ala	Phe	Val -40	Thr	Gly	Ile	Ala	Arg	Tyr	Ile	Glu	Gln	Ala -30	
	atc	cac	tcc	agc	atg	aat	gag	atg	ctg	gag	gaa	gga	cat	gag	tat	240
Thr	, Val	His	Ser	Ser -25	Met	Asn	Glu	Met	Leu -20	Glu	Glu	Gly	His	Glu -15	Tyr	
gcg	gtc	atg	ctg	tac	acc	tgg	cgc	agc	tgt	tcc	cgg	gcc	att	CCC	cag	288
			-10		Thr			-5					1			
gtg	aaa	tgc	aac	gag	cag	CCC	aac	cga	gta	gag	atc	tat	gag	aag	aca	336
	5				Gln	10					15			•		
gta	gag	gtg	ctg	gag	ccg	gag	gtc	acc	aag	ctc	atg	aag	ttc	atg	tat	384
20					Pro 25					30					35 -	
ttt	cag	cgc	aag	gcc	atc	gag	cgg	ttc	tgc	agc	gag	gtg	aag	cgg	ctg	432
				40	Ile				45					50		
tgc	cat	gcc	gag	cgc	agg	aag	gac	ttt	gtc	tct	gag	gcc	tac	ctc	ctg	480
			55		Arg			60					65			
acc	ctt	ggc	aag	ttc	atc	aac	atg	ttt	gct	gtc	ctg	gat	gag	cta	aag	528
		70			Ile		75					80				F.7.6
aac	atg	aag	tgc	agc	gtc	aag	aat	gac	cac	tcc	gcc	tac	aag	agg	gca	576
	85				Val	90					95					
gca	cag	ttc	ctg	cgg	aag	atg	gca	gat	CCC	cag	tct	atc	cag	gag	tcg	624
		Phe	Leu	Arg	Lys	Met	Ala	Asp	Pro	110	ser	TIE	GIN	GIU	115	
100		c++	tcc	ata	105 ttc	cta	acc	aac	cac		aaa	atc	acc	caq		672
Gln	Asn	Leu	Ser	Met 120	Phe	Leu	Ala	Asn	His	Asn	Arg	Ile	Thr	Gln 130	Cys	• •
ctc	cac	cao	caa			ata	atc	cca			qaq	qaq	ctg		gct	720
Leu	His	Gln	Gln 135	Leu	Glu	Val	Ile	Pro	Gly	Tyr	Glu	Glu	Leu 145	Leu	Ala	
gac	att	gto			tgt	gtg	gat	tac	tac	gag	aac	aag	atg	tac	ctg	768
Asp	Ile	Val 150	Asn	Ile	Cys	Val	Asp	Tyr	Туг	Glu	Asn	Lys 160	Met	Туг	Leu	
act	ccc	agt	gag	aaa	cat	atg	cto	cto	aag	gta	aaa	cto	ccc	:		810
Thr	Pro	Ser	Glu	Lys	His	Met	Lev	Leu	Lys	Val	Lys	Leu	Pro	•		
	165				•	170					175					070
							ictta	c cc	tete	acct	tct	tctt	att	aaaa	atccgt	870 893
ctt	aaaa	aac	aaaa	aaaa	aa a	aa										093

<210> 114

<211> 1475

<212> DNA

<213> Homo sapiens

<220> <221> CDS <222> 55..459 <221> sig_peptide <222> 55..120 <223> Von Heijne matrix score 7.2 seq GLWLALVDGLVRS/SP <221> polyA_signal <222> 1444..1449 <221> polyA_site <222> 1462..1475 <400> 114 57 cagtteegea getacgtgtg ggaccegetg etgateetgt egeagategt eete atg Met 105 Gln Thr Val Tyr Tyr Gly Ser Leu Gly Leu Trp Leu Ala Leu Val Asp -10 -15 153 ggg cta gtg cga agc agc ccc tcg ctg gac cag atg ttc gac gcc gag Gly Leu Val Arg Ser Ser Pro Ser Leu Asp Gln Met Phe Asp Ala Glu -5 1 atc ctg ggc ttt tcc acc cct cca ggc cgg ctc tcc atg atg tcc ttc 201 Ile Leu Gly Phe Ser Thr Pro Pro Gly Arg Leu Ser Met Met Ser Phe 25 20 atc ttc aac gcc ctc acc tgt gcc ctg ggc ttg ctg tac ttc atc cgg Ile Phe Asn Ala Leu Thr Cys Ala Leu Gly Leu Leu Tyr Phe Ile Arg 35 40 cga gga aag cag tgt ctg gat ttc act gtc act gtc cat ttc ttt cac 297 Arg Gly Lys Gln Cys Leu Asp Phe Thr Val Thr Val His Phe Phe His 50 ctc ctg ggc tgc tgg ttc tac agc tcc cgt ttc ccc tcg gcg ctg acc 345 Leu Leu Gly Cys Trp Phe Tyr Ser Ser Arg Phe Pro Ser Ala Leu Thr 70 65 60 tgg tgg ctg gtc caa gcc gtg tgc att gca ctc atg gct gtc atc ggg 393 Trp Trp Leu Val Gln Ala Val Cys Ile Ala Leu Met Ala Val Ile Gly 85 gag tac ctg tgc atg cgg acg gag ctc aag gag ata ccc ctc aac tca Glu Tyr Leu Cys Met Arg Thr Glu Leu Lys Glu Ile Pro Leu Asn Ser 100 489 gcc cct aaa tcc aat gtc tagaatcagg ccctttggac atcccgctga Ala Pro Lys Ser Asn Val 110 cacttgggcc ccttaacacc ttgggctgct cagaccctcc agatgaggtc cagcccagat 549 609 ctgagaggaa ccctggaaat gtgaagtctc tgttggtgtg ggagagatag tgagggcctg tcaaagaagg caggtagcag tcagcatgac agctgcaaga atgacctctg tctgttgaag 669 ccttggtatc tgagaggtca ggaaggggac ctctttgagg gtaataacat aattggaacc 729 atgccactct tgagccacaa tacctgtcac cagcctgttg ttttaagaga gaaaaaaaat 789 caaggatatc tgattggagc aaaccacttc tttagtcatc tgtcttacct ccctgggaca 849 909 gctgttacct ttgcagtgtt gccgaatcac agcagttacc tttgcaatgt tgccgaatca cagcagttct gttggagaaa cgcttggttt ccggatccag agccacagaa agaaatgtag 969 gtgtgaagta ttaggctgct gtcagggaga ggatggcaga tggaggcatc aagcacaagg 1029 aaaatgcaca acctgtgccc tgttatacac acgttcatgt gcgcccaaga acctatgact 1089 ttettecagt teettetace aggtececat cetgetgeca geteteaaca tageaggeca 1149 1209 taggacccag agaagaatcc cagtgttgct caaagtctga ccatcataaa gacactgcct 1269 gtcttctagg aatgaccagg cacccagctc ccactggact ccaatttttt ttcctgcctt atttagaatt ctttggcggg aagggtatga tgggttccca gagacaagaa gcccaacctt 1329 ctggcctggg ctgtgctgat agtgctgagg gagataggaa tttgctgcta agatttttct

ttggggtgga gtttcctctg tgaggggctt gcagctatcc ttcctgtgta tacaaataca gtattttcca tgaaaaaaaa aaaaaa <210> 115 <211> 321 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 48..248 <221> sig_peptide <222> 48..161 <223> Von Heijne matrix score 6.3 seq LVFALVTAVCCLA/DG <221> polyA_signal <222> 283..288 <221> polyA_site <222> 308..321 <400> 115 56 gctgagaaga gttgagggaa agtgctgctg ctgggtctgc agacgcg atg aat aac Met Asn Asn gtg cag ccg aaa ata aaa cat cgc ccc ttc tgc ttc agt gtg aaa ggc 104 Val Gln Pro Lys Ile Lys His Arg Pro Phe Cys Phe Ser Val Lys Gly -30 -25 -35 cac gtg aag atg ctg cgg ctg gtg ttt gca ctt gtg aca gca gta tgc 152 His Val Lys Met Leu Arg Leu Val Phe Ala Leu Val Thr Ala Val Cys -10 tgt ctt gcc gac ggg gcc ctt att tac cgg aag ctt ctg ttc aat ccc 200 Cys Leu Ala Asp Gly Ala Leu Ile Tyr Arg Lys Leu Leu Phe Asn Pro 248 aac ggt cct tac cag aaa aag cct gtg cat gaa aaa aaa gaa gtt ttg Asn Gly Pro Tyr Gln Lys Lys Pro Val His Glu Lys Lys Glu Val Leu 20 tgattttata ttacttttta gtttgatact aagtattaaa catatttctg tattcttcca 308 321 aaaaaaaaa aaa <210> 116 <211> 450 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 25..399 <221> sig_peptide <222> 25..186 <223> Von Heijne matrix

score 3.5

seq SILAQVLDQSARA/RL

ctgctccagc gctgacgccg agcc atg gcg gac gag gtg ctt gag gcg ctg Met Ala Asp Glu Glu Leu Glu Ala Leu -50	51
agg aga cag agg ctg gcc gag ctg cag gcc aaa cac ggg gat cct ggt Arg Arg Gln Arg Leu Ala Glu Leu Gln Ala Lys His Gly Asp Pro Gly	99
gat gcg gcc caa cag gaa gca aag cac agg gaa gca gaa atg aga aac Asp Ala Ala Gln Gln Glu Ala Lys His Arg Glu Ala Glu Met Arg Asn	147
-25 -20 -15 agt atc tta gcc caa gtt ctg gat cag tcg gcc cgg gcc agg tta agt Ser Ile Leu Ala Gln Val Leu Asp Gln Ser Ala Arg Ala Arg Leu Ser	195
-10 -5 1 aac tta gca ctt gta aag cct gaa aaa act aaa gca gta gag aat tac Asn Leu Ala Leu Val Lys Pro Glu Lys Thr Lys Ala Val Glu Asn Tyr	243
5 10 15 Ctt ata cag atg gca aga tat gga caa cta agt gag aag gta tca gaa Leu Ile Gln Met Ala Arg Tyr Gly Gln Leu Ser Glu Lys Val Ser Glu	291
20 25 30 35 caa ggt tta ata gaa atc ctt aaa aaa gta agc caa caa aca gaa aag Gln Gly Leu Ile Glu Ile Leu Lys Lys Val Ser Gln Gln Thr Glu Lys	339
40 45 50 aca aca aca gtg aaa ttc aac aga aga aaa gta atg gac tct gat gaa Thr Thr Thr Val Lys Phe Asn Arg Arg Lys Val Met Asp Ser Asp Glu	387
55 60 65 gat gac gat tat tgaactacaa gtgctcacag actagaactt aacggaacaa Asp Asp Asp Tyr	439
70 gtctaggaca g	450
<210> 117 <211> 1173 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> 101137	
<221> sig_peptide <222> 1072 <223> Von Heijne matrix score 6.5 seq LLTLLLPPPPLYT/RH	
<221> polyA_signal <222> 11441149	
<221> polyA_site <222> 11621173	
<pre><400> 117 gagctgctt atg gga cac cgc ttc ctg cgc ggc ctc tta acg ctg ctg ctg Met Gly His Arg Phe Leu Arg Gly Leu Leu Thr Leu Leu -20 -15 -10</pre>	51
ccg ccg cca ccc ctg tat acc cgg cac cgc atg ctc ggt cca gag tcc Pro Pro Pro Pro Leu Tyr Thr Arg His Arg Met Leu Gly Pro Glu Ser -5 1 5	99
gtc ccg ccc cca aaa cga tcc cgc agc aaa ctc atg gca ccg ccc cga Val Pro Pro Pro Lys Arg Ser Arg Ser Lys Leu Met Ala Pro Pro Arg 10 15 20 25	147

·	•															
atc Ile	ggg ggg	acg Thr	cac His	Asn	ggc	acc Thr	ttc Phe	cac His	tgc Cys 35	gac Asp	gag Glu	gca Ala	ctg Leu	gca Ala 40	tgc Cys	195
gca Ala	ctg Leu	ctt Leu	Arg	30 ctc Leu	ctg Leu	ccg Pro	gag Glu	Tyr	cgg	gat Asp	gca Ala	gag Glu	att Ile 55	gtg	cgg Arg	243
acc Thr	cgg Arg	Asp	45 ccc Pro	gaa Glu	aaa Lys	ctc Leu	Ala	50 tcc Ser	tgt Cys	gac Asp	atc Ile	gtg Val	gtg	gac Asp	gtg Val	291
Gly aaa	Gly	60 gag Glu	tac Tyr	gac Asp	cct Pro	Arg	65 aga Arg	cac His	cga Arg	tat Tyr	Asp	70 cat His	cac His	cag Gln	agg Arg	339
Ser	75 ttc Phe	aca Thr	gag Glu	acc Thr	Met	80 agc Ser	tcc Ser	ctg Leu	tcc Ser	Pro	85 999 61y	agg Arg	ccg Pro	tgg Trp	cag Gln 105	387
90 acc Thr	aag Lys	ctg Leu	agc Ser	Ser	95 gcg Ala	gga Gly	ctc Leu	atc Ile	Tyr	100 ctg Leu	cac His	ttc Phe	ggg ggg	cac His 120	aag	435
ctg Leu	ctg Leu	gcc Ala	Gln	110 ttg Leu	ctg Leu	ggc Gly	act Thr	Ser	115 gaa Glu	gag Glu	gac Asp	agc Ser	atg Met 135	gtg	ggc Gly	483
acc Thr	ctc Leu	Tyr	125 gac Asp	aag Lys	atg Met	tat Tyr	gag Glu 145	130 aac Asn	ttt Phe	gtg Val	gag Glu	gag Glu 150	gtg	gat Asp	gct Ala	531
gtg Val	Asp	140 aat Asn	Gly 999	atc Ile	tcc Ser	cag Gln 160	tgg	gca Ala	gag Glu	ggg ggg	gag Glu 165	cct Pro	cga Arg	tat Tyr	gca Ala	579
Leu	155 acc Thr	act Thr	acc Thr	ctg Leu	Ser	gca	cga Arg	gtt Val	gct Ala	cga Arg 180	ctt Leu	aat Asn	cct Pro	acc Thr	tgg Trp 185	627
170 aac Asn	cac His	ccc Pro	gac Asp	Gln	Asp	act Thr	gag Glu	gca Ala	999 Gly 195	ttc Phe	aag	cgt Arg	gca Ala	atg Met 200	gat Asp	675
ctg Leu	gtt Val	caa Gln	Glu	Glu	ttt	ctg Leu	cag Gln	aga Arg 210	tta Leu	gat	ttc Phe	tac Tyr	caa Gln 215	cac His	agc	723
tgg Trp	ctg Leu	Pro	Ala	cqq	gcc Ala	ttg Leu	gtg Val	gaa Glu	gag	gcc Ala	ctt Leu	gcc Ala 230	cag Gln	cga	ttc Phe	771
cag Gln	Val	Asp	cca	agt Ser	gga Gly	Glu	att	gtg	gaa Glu	ctg Lev	gcg Ala 245	aaa Lys	ggt	gca Ala	tgt Cys	819
Pro	Trp	aag	gag Glu	cat His	Leu	Tyr	cac	ctg Leu	gaa Glu	tct Ser 260	Gly	g ctg / Leu	tcc	cct Pro	cca Pro 265	867
250 gtg Val	gco	ato Ile	tto Phe	ttt Phe	val	ato	tac Tyr	act Thr	gac Asp	caç Glr	gct	gga Gly	cag Gln	tgg Trp 280	cga Arg	915
ata Ile	cag Glr	tgt Cys	gtg Val	ccc Pro	aag	gag Glu	cco Pro	cac His	tca Ser	tto	caa Glr	a ago n Ser	cgg Arg	ctg Lev	ccc Pro	963
cto Lev	cca Pro	gag Glu	g cca	tgg	g cgg	ggt Gly	ctt Lev	cgg Arg	gac	gag Glu	g gco n Ala	ctg Leu 310	gac Asp	cag	gtc Val	1011
agt Ser	gg9 Gl ₃	g ato	cct	ggc Gly	tgo Cys	ato 320	tto Phe	gto	cat His	gca Ala	ago Ser 325	ggc Gly	tto	att Ile	ggc Gly	1059
ggt Gl ₃ 330	cac His	c cg	aco Thi	cga Arg	a gag g Glu 335	g ggt 1 Gly	gcc	ttg a Lev	g ago	ato Met	g gcd : Ala	cgt	gco g Ala	aco Thi	ttg Leu 345	1107
gc	cag				cto	cca		a ato n Ile		tag		aata	aaac	ctto		1157

355

350 tctcaaaaaa aaaaaa

1173

686

<210> 118 <211> 785 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 72..704 <221> sig_peptide <222> 72..161 <223> Von Heijne matrix score 13.2 seq LLLLSTLVIPSAA/AP <221> polyA_signal <222> 772..777 <400> 118 cggaatccgg gagtccggtg acccgggctg tggtctagca taaaggcgga gcccagaaga 60 agggggggg t atg gga gaa gcc tcc cca cct gcc ccc gca agg cgg cat 110 Met Gly Glu Ala Ser Pro Pro Ala Pro Ala Arg Arg His -25 ctg ctg gtc ctg ctg ctc ctc tct acc ctg gtg atc ccc tcc gct 158 Leu Leu Val Leu Leu Leu Leu Ser Thr Leu Val Ile Pro Ser Ala -10 -15 gca gct cct atc cat gat gct gac gcc caa gag agc tcc ttg ggt ctc 206 Ala Ala Pro Ile His Asp Ala Asp Ala Gln Glu Ser Ser Leu Gly Leu 10 254 aca ggc ctc cag agc cta ctc caa ggc ttc agc cga ctt ttc ctg aaa Thr Gly Leu Gln Ser Leu Leu Gln Gly Phe Ser Arg Leu Phe Leu Lys ggt aac ctg ctt cgg ggc ata gac agc tta ttc tct gcc ccc atg gac 302 Gly Asn Leu Leu Arg Gly Ile Asp Ser Leu Phe Ser Ala Pro Met Asp 40 35 ttc cgg ggc ctc cct ggg aac tac cac aaa gag gag aac cag gag cac 350 Phe Arg Gly Leu Pro Gly Asn Tyr His Lys Glu Glu Asn Gln Glu His 55 cag ctg ggg aac aac acc ctc tcc agc cac ctc cag atc gac aag gta 398 Gln Leu Gly Asn Asn Thr Leu Ser Ser His Leu Gln Ile Asp Lys Val 75 70 65 ccc agg atg gag gag gag gcc ctg gta ccc atc cag aag gcc acg 446 Pro Arg Met Glu Glu Lys Glu Ala Leu Val Pro Ile Gln Lys Ala Thr 90 494 gac age tto cac aca gaa cto cat ccc cgg gtg gcc tto tgg atc att Asp Ser Phe His Thr Glu Leu His Pro Arg Val Ala Phe Trp Ile Ile 105 542 aag ctg cca cgg cgg agg tcc cac cag gat gcc ctg gag ggc ggc cac Lys Leu Pro Arg Arg Arg Ser His Gln Asp Ala Leu Glu Gly Gly His 125 120 tgg ctc agc gag aag cga cac cgc ctg cag gcc atc cgg gat gga ctc 590 Trp Leu Ser Glu Lys Arg His Arg Leu Gln Ala Ile Arg Asp Gly Leu 135 140 cgc aag ggg acc cac aag gac gtc cta gaa gag ggg acc gag agc tcc 638 Arg Lys Gly Thr His Lys Asp Val Leu Glu Glu Gly Thr Glu Ser Ser

155

150

tee cac tee agg etg tee eec ega aag ace cac tta etg tae ate etc

Ser His Ser Arg Leu Ser Pro Arg Lys Thr His Leu Leu Tyr Ile Leu 160 165 170 175	34
agg ccc tct cgg cag ctg taggggtggg gaccggggag cacctgcctg Arg Pro Ser Arg Gln Leu 180	-
	85
<210> 119 <211> 559	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS <222> 44505	
<pre><221> sig_peptide <222> 44223</pre>	
<223> Von Heijne matrix	
score 4 seq LVRRTLLVAALRA/WM	
400. 110	
adcaaccada dddadatdat caccigaaco acegorocaa aoo aoo aoo ao	55
Met Gly Ser Lys	
tgc tgt aaa ggt ggt cca gat gaa gat gca gta gaa aga cag agg cgg	.03
Cys Cys Lys Gly Gly Pro Asp Glu Asp Ala Val Glu Arg Gln Arg Arg -55 -50 -45	
cag aag ttg ctt ctt gca caa ctg cat cac aga aaa agg gtg aag gca 1	.51
Gln Lys Leu Leu Ala Gln Leu His His Arg Lys Arg Val Lys Ala	
-40	199
Ala Gly Gln Ile Gln Ala Trp Trp Arg Gly Val Leu Val Arg Arg Thr	
-20	247
Leu Leu Val Ala Ala Leu Arg Ala Trp Met Ile Gln Cys Trp Trp Arg	
acg ttg gtg cag aga cgg atc cgt cag cgg cgg cag gcc ctg ttg agg	295
Thr Leu Val Gln Arg Arg Ile Arg Gln Arg Arg Gln Ala Leu Leu Arg 10 15 20	
qtc tac qtc atc cag gag cag gcg acg gtc aag ctc cag tcc tgc atc	343
Val Tyr Val Ile Gln Glu Gln Ala Thr Val Lys Leu Gln Ser Cys Ile	
25	391
Arg Met Trp Gln Cys Arg Gln Cys Tyr Arg Gln Met Cys Asn Ala Leu 50 55	
the field free card die com and man and and and and and and	139
Cys Leu Phe Gln Val Pro Glu Ser Ser Leu Ala Phe Gln Thr Asp Gly 60 65 70	
ttt tta cag gtc caa tat gca atc cct tca aag cag cca gag ttc cac	487
Phe Leu Gln Val Gln Tyr Ala Ile Pro Ser Lys Gln Pro Glu Phe His 75 80 85	
	535
Ile Glu Ile Leu Ser Ile	
90 cactacccta ataaatgtct gacc	559

```
<210> 120
<211> 770
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 25..393
<221> sig_peptide
<222> 25..150
<223> Von Heijne matrix
      score 4.6
      seq LDPAVSLSAPAFA/SA
<221> polyA_signal
<222> 734..739
<221> polyA_site
<222> 757..770
<400> 120
                                                                       51
cgcagaaagg agagacacac atac atg aaa gga ggt ttc tcc aat ctt
                           Met Lys Gly Gly Ala Phe Ser Asn Leu
                                    -40
                                                                       99
aat gat too cag oto toa goo tog ttt otg caa coo ago otg caa goa
Asn Asp Ser Gln Leu Ser Ala Ser Phe Leu Gln Pro Ser Leu Gln Ala
                                                     -20
            -30
                                 -25
aac tgt cct gct ttg gac cct gct gtg tca ctc tcc gca cca gcc ttt
                                                                       147
Asn Cys Pro Ala Leu Asp Pro Ala Val Ser Leu Ser Ala Pro Ala Phe
                             -10
        -15
                                                                       195
ged tot get oft ege tot atg aag toe toe cag get gea egg aag gac
Ala Ser Ala Leu Arg Ser Met Lys Ser Ser Gln Ala Ala Arg Lys Asp
                                         10
                    5
                                                                       243
gac ttt ctc agg tct ctt agt gat gga gac tca ggg aca tca gaa cac
Asp Phe Leu Arg Ser Leu Ser Asp Gly Asp Ser Gly Thr Ser Glu His
                 20
 atc tca gcg gtg gtg act agc cct cgg att tcc tgc cat ggt gct gcc
                                                                       291
 Ile Ser Ala Val Val Thr Ser Pro Arg Ile Ser Cys His Gly Ala Ala
                                                     45
            35
 att ccc acc gcc cgt gcc ctc tgc cta ggc tgt tcc tgc tgc acc gaa
                                                                       339
 Ile Pro Thr Ala Arg Ala Leu Cys Leu Gly Cys Ser Cys Cys Thr Glu
                                                 60
                             55
                                                                       387
 cgc ctc ctc ctg cca ccg ccc tcc ctc ctt tct tta gaa gcc cct gcc
 Arg Leu Leu Pro Pro Pro Ser Leu Leu Ser Leu Glu Ala Pro Ala
                         70
                                                                       443
 age ace tgagetetet getgattget gtteeteeca gtetgtggaa getttgeeca
 Ser Thr
                                                                       503
 tatgetttee ttaaaagggt tetgggeagg geaggegeee ceatttetea gggateeeet
                                                                       563
 ccaggacaac gccttttcct tgtgtcttca gctctcctta ccagatatct atatatttgt
                                                                       623
 atatattcag tttcaccaac aatgcatcaa gtactttttt ttttaagtaa agaaccgcag
                                                                       683
 tcatcgaact ggagccccat tgattccctc cccctcgcct ccccaaatct ggcacctgcc
 caaggtatcc tcagaaccat ttggggtgtc ctttggcatt ggataataga aataaaattt
                                                                       743
                                                                       770
 tacctctttc tacaaaaaaa aaaaaac
```

<210> 121

<211> 1213

<212> DNA

<213> Homo sapiens

<220 <221 <222	> CD		95											,		
<221 <222 <223	> 58 > Vo sc	11 n He ore	4 ijne 5.4	mat	rix VIQ/	EP										
<221 <222																
<400	> 12	1					+ ~ ~ +	a++	2001		+acc				rcc	57
cctg	gctt	tg c	CCCC	geee	t go	ctc	age	cac	ctc	cta	cca	aat	cta	cgg	caq	105
Met	Ala	Met	Ala	Gln -15	Lys	Leu	Ser	His	Leu -10	Leu	Pro	Ser	Leu	Arg -5	Gln	
gtc Val	atc Ile	cag Gln	gag Glu	cct Pro	cag Gln	cta Leu	tct Ser	ctg Leu	cag Gln	cca Pro	gag Glu	cct Pro 10	gtc Val	ttc Phe	acg Thr	153
	~~+	~~~	1	a > a	ata	cca	2	ctc	ttc	taa	aag		tac	atc	tat	201
Val	Asp 15	Arg	Ala	Glu	Val	Pro 20	Pro	Leu	Phe	Trp	Lys 25	Pro	Tyr	Ile	Tyr	
gcg	ggc	tac	cgg	ccg	ctg	cat	cag	acc	tgg	cgc	ttc	tat	ttc	cgc	acg	249
	Gly	Tyr	Arg	Pro		His	Gln	Thr	Trp		Phe	Tyr	Phe	Arg	Thr 45	
30					35	~~~	~~	ata	a a t	40 Ct.C	taa	acc	cac	ctg		297
Leu	Phe	Gln	Gln	His	Asn	Glu	Ala	Val	Asn 55	Val	Trp	Thr	His	Leu 60	Leu	
qcq	qcc	ctq	gta	ctq	ctg	ctg	cgg	ctg	gcc	ctc	ttt	gtg	gag	acc	gtg	345
Ala	Ala	Leu	Val 65	Leu	Leu	Leu	Arg	Leu 70	Ala	Leu	Phe	Val	Glu 75	Thr	Val	222
gac	ttc	tgg	gga	gac	cca	cac	gcc	ctg	- CCC	ctc	ttc	atc	att	gtc	ctt	393
		80					85					90		Val		441
gcc	tct Ser	Dhe	acc	Tac	CCC	Ser	Len	Ser	Δla	Len	Ala	His	Leu	ctg Leu	Gln	***
VTO	95	FIIC	****	TYL	Deu	100					105					
gcc	aag	tct	gag	ttc	tgg	cat	tac	agc	ttc	ttc	ttc	ctg	gac	tat	gtg	489
Ala 110	Lys	Ser	Glu	Phe	Trp 115	His	Tyr	Ser	Phe	Phe 120	Phe	Leu	Asp	Tyr	Val 125	
aāa	gtg	gcc	gtg	tac	cag	ttt	ggc	agt	gcc	ttg	gca	cac	ttc	tac	tat	537
GIY	Val	Ala	Val	Tyr 130	GIn	Pne	GIY	Ser	135	Leu	ALA	HIS	PIIE	Tyr 140	TYL	
act	atc	gag	ccc		taa	cat	acc	cag		caq	act	att	ttt	ctg	ccc	585
Ala	Ile	Glu	Pro	Ala	Trp	His	Ala	Gln 150	Val	Gln	Ala	Val	Phe 155	Leu	Pro	
atg	gct	gcc	ttt	ctc	gcc	tgg	ctt	tcc	tgc	att	ggc	tcc	tgc	tat	aac	633
Met	Ala	Ala 160	Phe	Leu	Ala	Trp	Leu 165	Ser	Cys	Ile	Gly	Ser 170	Cys	Tyr	Asn	
aag	tac	atc	cag	aaa	cca	ggc	ctg	ctg	ggc	cgc	aca	tgc	cag	gag	grg	681
_	175					180					185			Glu		729
CCC	TCC	gtc	ctg	gcc	Tac	gca	Len	yac	Tle	Ser	Pro	y vy	Val	cat His	Ara	, ,
190	Set	val	nen	vrq	195	WT.	Jeu	op		200	-10				205	
atc	ttc	gta	tcc	tcc	gac	ccc	acc	acg	gat	gat	cca	gct	ctt	ctc	tac	777
Ile	Phe	Val	Ser	Ser 210	Asp	Pro	Thr	Thr	Asp 215	Asp	Pro	Ala	Leu	Leu 220	Tyr	
cac	aag	tgc	cag	gtg	gtc	ttc	ttt	ctg	ctg	gct	gct	gcc	ttc	ttc	tct	825

WO 99/31236 -97- PCT/IB98/02122 -

His Lys Cys Gln Val Val Phe Phe Leu Leu Ala Ala Ala Phe Phe Ser 225 230 235	
acc ttc atg ccc gag cgc tgg ttc cct ggc agc tgc cat gtc ttc ggg	873
Thr Phe Met Pro Glu Arg Trp Phe Pro Gly Ser Cys His Val Phe Gly	
240 245 250	921
cag ggc cac caa ctt ttc cat atc ttc ttg gtg ctg tgc acg ctg gct Gln Gly His Gln Leu Phe His Ile Phe Leu Val Leu Cys Thr Leu Ala	
255 260 265	
cag ctg gag gct gtg gca ctg gac tat gag gcc cga cgg ccc atc tat	969
Gln Leu Glu Ala Val Ala Leu Asp Tyr Glu Ala Arg Arg Pro Ile Tyr	
270 275 280 285	1017
gag cct ctg cac acg cac tgg cct cac aac ttt tct ggc ctc ttc ctg Glu Pro Leu His Thr His Trp Pro His Asn Phe Ser Gly Leu Phe Leu	1017
290 295 300	
ctc acq gtg ggc agc agc atc ctc act gca ttc ctc ctg agc cag ctg	1065
Leu Thr Val Gly Ser Ser Ile Leu Thr Ala Phe Leu Leu Ser Gln Leu	
305 310 315	1115
gta cag cgc aaa ctt gat cag aag acc aag tgaaggggga tggcatctgg	1113
Val Gln Arg Lys Leu Asp Gln Lys Thr Lys 320 325	
tagggaggga ggtatagttg ggggacaggg gtctgggttt ggctccaagt gggaacaagg	1175
cctggtaaag ttgtttgtgt ctggccaaaa aaaaaaaa	1213
<210> 122	
<211> 1318	
<212> DNA	
<213> Homo sapiens	
<220> <221> CDS	
<222> 31660	
<221> sig_peptide	
<222> 3190	
<223> Von Heijne matrix	
score 5.4 seq AFVIACVLSLIST/IY	
Dug Di Tinu Duliu Af Ka	
<221> polyA_signal	
<222> 12881293	
<221> polyA_site <222> 13071318	
<2225 13071316	
<400> 122	
ggaggatggg cgagcagtct gaatgccaga atg gat aac cgt ttt gct aca gca	54
Met Asp Asn Arg Phe Ala Thr Ala	
-20 -15	102
ttt gta att gct tgt gtg ctt agc ctc att tcc acc atc tac atg gca Phe Val Ile Ala Cys Val Leu Ser Leu Ile Ser Thr Ile Tyr Met Ala	
-10 -5	
get tee att gge aca gae tte tgg tat gag tat ega agt eea gtt caa	150
Ala Ser Ile Gly Thr Asp Phe Trp Tyr Glu Tyr Arg Ser Pro Val Gln	
5 10 15 20	
gaa aat too agt gat ttg aat aaa ago ato tgg gat gaa tto att agt	198
Glu Asn Ser Ser Asp Leu Asn Lys Ser Ile Trp Asp Glu Phe Ile Ser	
25 30 35 gat gag gca gat gaa aag act tat aat gat gca ctt ttt cga tac aat	246
Asp Glu Ala Asp Glu Lys Thr Tyr Asn Asp Ala Leu Phe Arg Tyr Asn	
40 45 50	

aac	aca	ata	gga	ttg	tgg	aga	cgg	tgt	atc	acc	ata	ccc	aaa	aac	atg	294
Glv	Thr	Val	Gly	Leu	Trp	Arg	Arg	Cys	Ile	Thr	Ile	Pro	Lys	Asn	Met	
		55					60					65			•	
cat	tgg	tat	agc	cca	cca	gaa	agg	aca	gag	tca	ttt	gat	gtg	gtc	aca	342
His	Trp	Tyr	Ser	Pro	Pro	Glu	Arg	Thr	Glu	Ser	Phe	Asp	Val	Val	Thr	
	70					75					80					200
aaa	tgt	gtg	agt	ttc	aca	cta	act	gag	cag	ttc	atg	gag	aaa	ttt	gtt	390
Lys	Cys	Val	Ser	Phe	Thr	Leu	Thr	Glu	Gln	Phe	.Met	Glu	Lys	Pne	vai	
85					90					95					100	420
gat	ccc	gga	aaç	cac	aat	agc	ggg	att	gat	ctc	ctt	agg	acc	tat	CLL	438
Asp	Pro	Gly	Asn	His	Asn	Ser	Gly	Ile	Asp	Leu	Leu	Arg	Thr	Tyr	Leu	
				105					110					115		406
tgg	cgt	tgc	cag	ttc	ctt	tta	cct	ttt	gtg	agt	tta	ggt	ttg	atg	tgc	486
Trp	Arg	Cys	Gln	Phe	Leu	Leu	Pro	Phe	Val	Ser	Leu	GIA	Leu	Met	Cys	
			120					125					130			534
ttt	999	gct	ttg	atc	gga	ctt	tgt	gct	tgc	att	tgc	cga	agc	tta	cat m	234
Phe	Gly	Ala	Leu	Ile	Gly	Leu			Сув	Ile	Cys	Arg	Ser	Leu	TYL	
		135					140					145			~~~	582
CCC	acc	att	gcc	acg	aac	att	ctc	cat	CEC	CCC	gca	gtg	aca	aag	gag	502
Pro	Thr	Ile	Ala	Thr	Gly	Ile	Leu	His	Leu	ьеи	Ala	vai	Thr	пåа	Giu	
	150					155					160			aa+	~~~	630
ago	atg	ctt	cca	gct	gga	gct	gag	tcc	aag	cac	aca	gcc	act	Dro	yca Nla	030
	Met	Leu	Pro	Ala			GIu	Ser	гуѕ	HIS	Thr	Ala	IIII	PLO	180	
165					170					175	~~~	242	~~~	2424		680
cac	gca	tgc	gtg	caa	aca	999	aag	CCC	aag	tag	gaga	aga	yyaa	ayay	9.	
His	Ala	Cys	Val		Thr	GIY	пĀг	PIO	ру5 190							
				185				+ ~~			222	ascs.	aat	ctac	tteest	740
tgt	aggg	att	E 999	aaga	ac c	tega	ccct	.c .cc	eect	+222	ato	aact	aca	teet	ttccct	800
gaa	atca	CCC	tega	atct	ac L	annt-	2000	t ct	ccaa	accc	tta	tttt	tto	ttta	aactgt	860
car	CCCC	222			ay c	tace	acga	a ca	gato	caat	cto	tαaα	aao	atga	aaattg	920
aaa	actt	CCa	CLCA	Lyya	.cg a	ecct	acct	G G8	ctca	ggaa	acc	aaaa	aaa	aaqt	caatgc	980
994		toa	2250		~+ +	++++	ctac	t ta	aato	tatt	tat	tttt	ctt	qtaq	gttgag	1040
agg	-++c+	taa	cacy	++++	ot o	ctct	aato	rt at	aaca	aaca	aat	caaa	att	tccc	atcttt	1100
cai		 	atea	++~=	at c	ctac	ctte	ic at	actt	aato	cat	agto	aaa	tggc	atctag	1160
001		aca	Caco	ccca	22 2	caca	ccac	c at	ttca	ttad	ato	ccca	aaa	aatt	ctgtat	1220
ua;	gaaal	2++	tatt	tatt	at t	attt	ttac	t tt	ttct	taac	cca	ctat	ata	ttga	ctgcaa	1280
200	gaatt	act	2221	tato	ice t	tete	gaaa	ia aa	iaaaa	aa				_	-	1318
ac,	gaact	·uac	uaat				,,,===									

```
<210> 123
```

<211> 853

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 31..582

<221> sig_peptide

<222> 31..90

<223> Von Heijne matrix score 5.4 seq AFVIACVLSLIST/IY

<221> polyA_signal

<222> 816..821

<221> polyA_site <222> 840..853

<pre><400> 123 ggaggatggg cgagcagtct gaatgccaga atg gat aac cgt ttt gct aca gca</pre>	54
ttt gta att gct tgt gtg ctt agc ctc att tcc acc atc tac atg gca Phe Val Ile Ala Cys Val Leu Ser Leu Ile Ser Thr Ile Tyr Met Ala -10 -5 1	102
gcc tcc att ggc aca gac ttc tgg tat gaa tat cga agt cca gtt cad Ala Ser Ile Gly Thr Asp Phe Trp Tyr Glu Tyr Arg Ser Pro Val Gln 15 20	150
gaa aat too agt gat ttg aat aaa ago ato tgg gat gaa tto att agt Glu Asn Ser Ser Asp Leu Asn Lys Ser Ile Trp Asp Glu Phe Ile Ser 25 30 35	198
gat gaa gca gat gaa aag act tat aat gat gca cct ttt cga tac aat Asp Glu Ala Asp Glu Lys Thr Tyr Asn Asp Ala Pro Phe Arg Tyr Asn	246
ggc aca gtg gga ttg tgg aga cgg tgt atc acc ata ccc aaa aac atg Gly Thr Val Gly Leu Trp Arg Arg Cys Ile Thr Ile Pro Lys Asn Met	294
cat tgg tat agc cca cca gaa agg aca gag tca ttt gat gtg gtc aca His Trp Tyr Ser Pro Pro Glu Arg Thr Glu Ser Phe Asp Val Val Thr	342
aaa tgt gtg agt ttc aca cta act gag cag ttc atg gag aaa ttt gtt Lys Cys Val Ser Phe Thr Leu Thr Glu Gln Phe Met Glu Lys Phe Val	390
gat ccc gga aac cac aat agc ggg att gat ctc ctt agg acc tat ctt Asp Pro Gly Asn His Asn Ser Gly Ile Asp Leu Leu Arg Thr Tyr Leu	438
tgg cgt tgc cag ttc ctt tta cct ttt gtg agt tta ggt ttg atg tgc Trp Arg Cys Gln Phe Leu Leu Pro Phe Val Ser Leu Gly Leu Met Cys	486
ttt ggg gct ttg atc gga ctt tgt gct tgc att tgc cga agc tta tat Phe Gly Ala Leu Ile Gly Leu Cys Ala Cys Ile Cys Arg Ser Leu Tyr	534
ccc acc att gcc acg ggc att ctc cat ctc ctt gca gat acc atg ctg Pro Thr Ile Ala Thr Gly Ile Leu His Leu Leu Ala Asp Thr Met Leu	582
tgaagtccag gccacatgga ggtgtcctgt gtagatgctc cagctgaaat cccaagctaa gctcccaact gacagccaac atcatttcca gccatgtgtg ggagccatcc tggatgtcca gccttaacaa gccttcagag gacttcagcc acagctatta tcttactaca tccttgtgag actctaataa agaaccaact agctgagccc aatcaaccta tggaactgat agaaataaaa tgaattgttg ttttgcgaaa aaaaaaaaaa	642 702 762 822 853

<210> 124

<211> 826

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 15..695

<221> sig_peptide

<222> 15..80

<223> Von Heijne matrix score 8.5 seq AALLLGLMMVVTG/DE

<221> polyA_signal <222> 795..800

<221> polyA_site <222> 814..826 <400> 124 aaccagaggt gccc atg ggt tgg aca atg agg ctg gtc aca gca gca ctg 50 Met Gly Trp Thr Met Arg Leu Val Thr Ala Ala Leu -20 tta ctg ggt ctc atg atg gtg gtc act gga gac gag gat gag aac agc 98 Leu Leu Gly Leu Met Met Val Val Thr Gly Asp Glu Asp Glu Asn Ser ccg tgt gcc cat gag gcc ctc ctg gac gag gac acc ctc ttt tgc cag Pro Cys Ala His Glu Ala Leu Leu Asp Glu Asp Thr Leu Phe Cys Gln 10 15 ggc ctt gaa gtt ttc tac cca gag ttg ggg aac att ggc tgc aag gtt 194 Gly Leu Glu Val Phe Tyr Pro Glu Leu Gly Asn Ile Gly Cys Lys Val 30 gtt cct gat tgt aac aac tac aga cag aag atc acc tcc tgg atg gag 242 Val Pro Asp Cys Asn Asn Tyr Arg Gln Lys Ile Thr Ser Trp Met Glu 40 45 ccg ata gtc aag ttc ccg ggg gcc gtg gac ggc gca acc tat atc ctg 290 Pro Ile Val Lys Phe Pro Gly Ala Val Asp Gly Ala Thr Tyr Ile Leu 60 65 gtg atg gtg gat cca gat gcc cct agc aga gca gaa ccc aga cag aga 338 Val Met Val Asp Pro Asp Ala Pro Ser Arg Ala Glu Pro Arg Gln Arg 80 ttc tgg aga cat tgg ctg gta aca gat atc aag ggc gcc gac ctg aag 386 Phe Trp Arg His Trp Leu Val Thr Asp Ile Lys Gly Ala Asp Leu Lys 95 aaa ggg aag att cag ggc cag gag tta tca gcc tac cag gct ccc tcc 434 Lys Gly Lys Ile Gln Gly Gln Glu Leu Ser Ala Tyr Gln Ala Pro Ser 110 cca ccg gca cac agt ggc ttc cat cgc tac cag ttc ttt gtc tat ctt 482 Pro Pro Ala His Ser Gly Phe His Arg Tyr Gln Phe Phe Val Tyr Leu 125 cag gaa gga aag gtc atc tct ctc ctt ccc aag gaa aac aaa act cga 530 Gln Glu Gly Lys Val Ile Ser Leu Leu Pro Lys Glu Asn Lys Thr Arg 140 145 ggc tot tgg aaa atg gac aga ttt ctg aac cgt ttc cac ctg ggc gaa 578 Gly Ser Trp Lys Met Asp Arg Phe Leu Asn Arg Phe His Leu Gly Glu 155 160 cct gaa gca agc acc cag ttc atg acc cag aac tac cag gac tca cca 626 Pro Glu Ala Ser Thr Gln Phe Met Thr Gln Asn Tyr Gln Asp Ser Pro 170 175 acc etc cag get ecc aga gaa agg gec age gag ecc aag cac aaa aac 674 Thr Leu Gln Ala Pro Arg Glu Arg Ala Ser Glu Pro Lys His Lys Asn 185 190 cag gcg gag ata gct gcc tgc tagatagccg gctttgccat ccgggcatgt 725 Gln Ala Glu Ile Ala Ala Cys 205 ggccacactg cccaccaccg acgatgtggg tatggaaccc cctctggata cagaacccct 785 826

<210> 125

<211> 571

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 74..295 <221> sig_peptide <222> 74..196 <223> Von Heijne matrix score 5.4 seq RLLYIGFLGYCSG/LI <221> polyA signal <222> 545..550 <221> polyA site <222> 561..571 <400> 125 egggtagtgg tegtegtggt ttteettgta gttegtggte tgagaecagg ceteaagtgg 60 aaacggcgtc acc atg atc gca cgg cgg aac cca gta ccc tta cgg ttt 109 Met Ile Ala Arg Arg Asn Pro Val Pro Leu Arg Phe -40 -35 ctg ccg gat gag gcc cgg agc ctg ccc ccg ccc aag ctg acc gac ccg 157 Leu Pro Asp Glu Ala Arg Ser Leu Pro Pro Pro Lys Leu Thr Asp Pro -25 -15 -20 egg etc etc tac ate gge tte ttg gge tac tge tec gge etg att gat 205 Arg Leu Leu Tyr Ile Gly Phe Leu Gly Tyr Cys Ser Gly Leu Ile Asp -10 aac ctg atc cgg cgg agg ccg atc gcg acg gct ggt ttg cat cgc cag 253 Asn Leu Ile Arg Arg Pro Ile Ala Thr Ala Gly Leu His Arg Gln 10 15 ctt cta tat att acg gec ttt ttt ttg ctg gat att atc ttg 295 Leu Leu Tyr Ile Thr Ala Phe Phe Leu Leu Asp Ile Ile Leu taaaacgtga agactacctg tatgctgtga gggaccgtga aatgtttgga tatatgaaat 355 tacatccaga ggattttcct gaagaagata agaaaacata tggtgaaatt tttgaaaaaat 415 tocatocaat acgttgaagt cttcaaaaatg cttgctccag tttcactgat acctgctgtt 475 cctgaatttg atggaacatg tttcttatga cagttgaagc ttatgctaat ctgtatgttg 535 acaccttgta attaaaatac gtaccaaaaa aaaaaa 571 <210> 126 <211> 659 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 440..658 <221> polyA_signal <222> 601..606 <400> 126 egeettaega getgggaggt ggtgeetete acceagetaa ttgeteteta geeettggee ttcacaggtg ttggtgcctg ccgtgaacgc attctgacct gggccgtatc tgtctcccaa 120 gactttgtgc ctatggttgg ggacagagtg aggtcgttgc cttgacgacg acagcatgcg 180 gcccgtggtc ctcctaagtg tgagcttgcg gcggaccgag gcccacctgc ctccctgcct 240 gcttcgccca ggactcgtga ctgcgtccgc agaagaaatc acaacagcgc tggaattgct 300 agtttgctag gcagcatctt ttggacctgc gaaccatatg catttcacct caaatctgtt 360 tccaagttga aaacctttgg gtctttctat gcgaacggat tgaagaaacg caaaaagttt 420 ctacggactt taaattaaa atg gaa aaa tat gaa aac ctg ggt ttg gtt gga 472 Met Glu Lys Tyr Glu Asn Leu Gly Leu Val Gly 5

-		-				_								act Thr	gga Gly	520
_			_		_	_			_	_	_	_	_	aaa Lys		568
_		_		_	_	_	-	_	-			_		ctt Leu		616
	_	aac Asn	_				_	_		_				a		659

<210> 127

<211> 301

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 38..283

<221> sig_peptide

<222> 38..85

<223> Von Heijne matrix score 4.1 seq LLPATSLAGPVLS/TL

<221> polyA_signal <222> 257..262

<400> 127

cacctgaatc ccaggaaccc tca	Met Ly	ng aga ctg ctg cca 55 vs Arg Leu Leu Pro
gct acc agc ctg gct ggc c Ala Thr Ser Leu Ala Gly F -10 -5		
ccc atg ttg ttt tgt gaa g Pro Met Leu Phe Cys Glu F 10		
aag tot cac aag aca tgg g Lys Ser His Lys Thr Trp G 25		
ttt gga aat ttg ttt cta t Phe Gly Asn Leu Phe Leu C		_
ttt tgt atg aat aca gaa t Phe Cys Met Asn Thr Glu C 55 60		_
aaaaaaa		301

<210> 128

<211> 477

<212> DNA

<213> Homo sapiens

<221> CDS <222> 121..477 <221> sig_peptide <222> 121..288 <223> Von Heijne matrix score 3.5 seq SSCADSFVSSSSS/QP <400> 128 cctcggagca ggcggagtaa agggacttga gcgagccagt tgccggatta ttctatttcc cottoctote tecogeolog tatetetttt caccettete ceaccetege tegegtagee 120 atg geg gag ceg teg geg gec act cag tee cat tee ate tee teg teg 168 Met Ala Glu Pro Ser Ala Ala Thr Gln Ser His Ser Ile Ser Ser Ser -50 tec tte gga gee gag eeg tee geg eee gge gge ggg age eea gga 216 Ser Phe Gly Ala Glu Pro Ser Ala Pro Gly Gly Gly Ser Pro Gly -40 -35 -30 gee tge eec gee etg ggg acg aag age tge age tee tee tgt geg gat 264 Ala Cys Pro Ala Leu Gly Thr Lys Ser Cys Ser Ser Ser Cys Ala Asp -20 -15 tee ttt gtt tet tee tet tee tet cag eet gta tet eta ttt teg acc Ser Phe Val Ser Ser Ser Ser Gln Pro Val Ser Leu Phe Ser Thr -5 1 tca caa gag gga ttg agc tct ctt tgc tct gat gag cca tct tca gaa 360 Ser Gln Glu Gly Leu Ser Ser Leu Cys Ser Asp Glu Pro Ser Ser Glu 20 15 408 att atg act tot too ttt ott toa tot tot gaa ata cat aac act ggo Ile Met Thr Ser Ser Phe Leu Ser Ser Ser Glu Ile His Asn Thr Gly 30 35 ctt aca ata cta cat gga gaa aaa agc cat gtg tta ggg agc cag cct 456 Leu Thr Ile Leu His Gly Glu Lys Ser His Val Leu Gly Ser Gln Pro 45 50 att tta gcc aaa aaa aaa aaa 477 Ile Leu Ala Lys Lys Lys Lys 60 <210> 129 <211> 323 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 2..163 <221> polyA_signal <222> 292..297 <221> polyA_site <222> 310..323 <400> 129 a gct ttc gtg tgg gag cca gct atg gtg cgg atc aat gcg ctg aca gca 49 Ala Phe Val Trp Glu Pro Ala Met Val Arg Ile Asn Ala Leu Thr Ala 10 gcc tct gag gct gcg tgc ctg atc gtg tct gta gat gaa acc atc aag 97

Ala Ser Glu Ala Ala Cys Leu Ile Val Ser Val Asp Glu Thr Ile Lys

aac ccc cgc tcg act gtg gat gct ccc aca gca gca ggc cgg ggc cgt

Asn Pro Arg Ser Thr Val Asp Ala Pro Thr Ala Ala Gly Arg Gly Arg	
ggt cgt ggc cgc ccc cac tgagaggcac cccacccatc acatggctgg Gly Arg Gly Arg Pro His 50	193
ctggctgctg ggtgcactta ccctccttgg cttggttact tcattttaca aggaaggggt agtaattggc ccactctctt cttactggag gctatttaaa taaaatgtaa gacttcaaaa aaaaaaaaaa	253 313 323
<210> 130	
<211> 1392 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> 46675	
<221> sig_peptide	
<pre><222> 4687 <223> Von Heijne matrix score 5.3 seq LTLLGLSFILAGL/IV</pre>	
<221> polyA_signal <222> 13641369	
<221> polyA_site	
<400> 130 ctccgagttg ccacccagga aaaagagggc tcctctggga gatgt atg ctt act ctc Met Leu Thr Leu	57
tta ggc ctt tca ttc atc ttg gca gga ctt att gtt ggt gga gcc tgc Leu Gly Leu Ser Phe Ile Leu Ala Gly Leu Ile Val Gly Gly Ala Cys	105
-10 -5 1 5 att tac aag tac ttc atg ccc aag agc acc att tac cgt gga gag atg	153
Ile Tyr Lys Tyr Phe Met Pro Lys Ser Thr Ile Tyr Arg Gly Glu Met 10 15 20	201
tgc ttt ttt gat tct gag gat cct gca aat tcc ctt cgt gga gga gag Cys Phe Phe Asp Ser Glu Asp Pro Ala Asn Ser Leu Arg Gly Glu 25 30 35	201
cct aac ttc ctg cct gtg act gag gag gct gac att cgt gag gat gac Pro Asn Phe Leu Pro Val Thr Glu Glu Ala Asp Ile Arg Glu Asp Asp 40 45 50	249
aac att gca atc att gat gtg cct gtc ccc agt ttc tct gat agt gac Asn Ile Ala Ile Ile Asp Val Pro Val Pro Ser Phe Ser Asp	297
cct gca gca att att cat gac ttt gaa aag gga atg act gct tac ctg	345
Pro Ala Ala Ile Ile His Asp Phe Glu Lys Gly Met Thr Ala Tyr Leu 75 80 85	
gac ttg ttg ctg ggg atc tgc tat ctg atg ccc ctc aat act tct att Asp Leu Leu Cly Ile Cys Tyr Leu Met Pro Leu Asn Thr Ser Ile 90 95 100	393
gtt atg cct cca aaa aat ctg gta gag ctc ttt ggc aaa ctg gcg agt Val Met Pro Pro Lys Asn Leu Val Glu Leu Phe Gly Lys Leu Ala Ser 105 110 115	441
ggc aga tat ctg cct caa act tat gtg gtt cga gaa gac cta gtt gct Gly Arg Tyr Leu Pro Gln Thr Tyr Val Val Arg Glu Asp Leu Val Ala 120 125 130	489

WO 99/31236 -105- PCT/IB98/02122 -

gtg gag gaa att cgt gat gtt agt aac ctt ggc atc ttt att tac caa Val Glu Glu Ile Arg Asp Val Ser Asn Leu Gly Ile Phe Ile Tyr Gln 135 140 145 150	537
ctt tgc aat aac aga aag tcc ttc cgc ctt cgt cgc aga gac ctc ttg Leu Cys Asn Asn Arg Lys Ser Phe Arg Leu Arg Arg Arg Asp Leu Leu 155 160 165	585
ctg ggt ttc aac aaa cgt gcc att gat aaa tgc tgg aag att aga cac Leu Gly Phe Asn Lys Arg Ala Ile Asp Lys Cys Trp Lys Ile Arg His 170 175 180	633
ttc ccc aac gaa ttt att gtt gag acc aag atc tgt caa gag Phe Pro Asn Glu Phe Ile Val Glu Thr Lys Ile Cys Gln Glu 185 190 195	675
taagaggcaa cagatagagt gtccttggta ataagaagtc agagatttac aatatgactt	735
taacattaag gtttatggga tactcaagat atttactcat gcatttactc tattgcttat	795
gctttaaaaa aaggaaaaaa aaaaaactac taaccactgc aagctcttgt caaattttag	855
tttaattggc attgcttgtt ttttgaaact gaaattacat gagtttcatt ttttctttgc	915
atttataggg tttagatttc tgaaagcagc atgaatatat cacctaacat cctgacaata	975
aattocatoc gttgtttttt ttgtttgttt gttttttctt ttcctttaag taagctcttt	1035
attcatctta tggtggagca attttaaaat ttgaaatatt ttaaattgtt tttgaacttt	1095
ttgtgtaaaa tatatcagat ctcaacattg ttggtttctt ttgtttttca ttttgtacaa	1155
ctttcttgaa tttagaaatt acatctttgc agttctgtta ggtgctctgt aattaacctg	1215
acttatatgt gaacaatttt catgagacag tcatttttaa ctaatgcagt gattctttct	1275
cactactate tgtattgtgg aatgcacaaa attgtgtagg tgctgaatge tgtaaggagt	1335
ttaggttgta tgaattctac aaccctataa taaattttac tctatacaaa aaaaaaa	1392

<210> 131 <211> 999 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 62..385 <221> polyA_signal <222> 974..979 <221> polyA_site <222> 987..999 <400> 131 cctgaatgac ttgaatgttt ccccgcctga gctaacagtc catgtgggtg attcagctct 60 g atg gga tgt gtt ttc cag agc aca gaa gac aaa tgt ata ttc aag ata 109 Met Gly Cys Val Phe Gln Ser Thr Glu Asp Lys Cys Ile Phe Lys Ile 10 157 gae tgg act etg tea eea gga gag cae gee aag gae gaa tat gtg eta Asp Trp Thr Leu Ser Pro Gly Glu His Ala Lys Asp Glu Tyr Val Leu 20 25 30 205 tac tat tac tee aat etc agt gtg eet att ggg ege tte eag aac ege Tyr Tyr Tyr Ser Asn Leu Ser Val Pro Ile Gly Arg Phe Gln Asn Arg 40 45 35 gta cac ttg atg ggg gac atc tta tgc aat gat ggc tct ctc ctg ctc 253 Val His Leu Met Gly Asp Ile Leu Cys Asn Asp Gly Ser Leu Leu Leu 55 caa gat gtg caa gag gct gac cag gga acc tat atc tgt gaa atc cgc 301 Gln Asp Val Gln Glu Ala Asp Gln Gly Thr Tyr Ile Cys Glu Ile Arg 70 ctc aaa ggg gag agc cag gtg ttc aag aag gcg gtg gta ctg cat gtg 349 Leu Lys Gly Glu Ser Gln Val Phe Lys Lys Ala Val Val Leu His Val

90

-106-WO 99/31236 PCT/IB98/02122 -

395

575

ctt cca gag gag ccc aaa ggt acg caa atg ctt act taaagagggg

105 ccaaggggca agagctttca tgtgcaagag gcaaggaaac tgattatctt gagtaaatgc cageetttgg getaagtact taccacagag tgaatettca aaaaatgate ataattattt

cagtcaataa aaatagagtt attttattaa ataaaatatt gataattatt gtattattac

Leu Pro Glu Glu Pro Lys Gly Thr Gln Met Leu Thr

100

<210> 133 <211> 400 <212> DNA

<213> Homo sapiens

tttaaacaca cttccccctc acaaaagccc tgtgaaggat gttttgttca catatatgtc caaatatgtt ttggacacat atttattaaa tggaataaat agtacttgaa ccctggcacc tctgacaaca aagtccatgt tcttttact atgccctaat acctttcatc agttatccac attgatgcta catctgtatt ttataggtac cctatgttag gtgttctggg ggatagaaaa gaaataagca ggccaggctc agtggctcat gcctgtaatc ctagcatttt gggaggctga ggcagcagaa ctgcctgagc cccagggttc aagactgcag tgagctatga tggcaccact gcattctagc ctgggtgaca gagcaagact ctgtctaaaa taaaaaaaaa gaaaaaaaaa aaaa	635 695 755 815 875 935 995
<210> 132 <211> 725 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> 422550	
<221> sig_peptide <222> 422475 <223> Von Heijne matrix score 4.5 seq LRWLMPVIPALWG/AE	
<221> polyA_site <222> 714725	
<400> 132 totgogaggg tgggagagaa aattaggggg agaaaggaca gagagagcaa otaccatoca	60
tagccagata ggtgagtaaa tatatttgca gtaacctatt tgctattcct tgctgcaact	120
gtgtttaatg ttccttccag aatcagagag agtattgcca tccaagaaat cgtttttaga	180
tatgacattt gagctatcat cttgagacca atacctaaaa caatttcagt ttaagaaatg	240
tctaggtatg gtgaaaacac agtttaaaac cagcaaaaca gaatttattg ccctcagcga	300 360
atacccacaa tgtacatata cettgtattt etgaaagcaa agcaagcatg ecaagtagtt tttatttace tgtacetata atacagcaag gtgaaacagg atatattttt gaagtttaaa	420
a atg tct tca ggc cgg ctg cgg tgg ctc atg cct gta atc cca gca ctt Met Ser Ser Gly Arg Leu Arg Trp Leu Met Pro Val Ile Pro Ala Leu -15 -10 -5	469
tgg gga gcc gag aag ggt gaa tca cct gag gtc agc agt ttt gag acc Trp Gly Ala Glu Lys Gly Glu Ser Pro Glu Val Ser Ser Phe Glu Thr 1 5 10	517
agg ctg gcc aac atg gcg aaa ccc tgt ctc tac tgaaaataca aaaattagct Arg Leu Ala Asn Met Ala Lys Pro Cys Leu Tyr 15 20 25	570
gggtgtggtg gcgggcgcct gtagtcccag ctacttggga gactgaggca ggagaattgc	630
ttgaacacgg aaggcggaag ttgcagtaag ctgagatcgt gccaccgcac accagcttgg	690
gcaacagagt gagactccct ctcaaaaaaa aaaaa	725

WO 99/31236 -107- PCT/IB98/02122

<220>	
<221> CDS <222> 124231	
<221> polyA_site <222> 387400	
<400> 133	
ctogoototo otggottotg gtatgoacca goaattootg gogttoottg gotootagaa goatoactoo tatoacatgg toatottoac cotgtgtgto ttoacactac cotttototg	60 120
	168
tta ggg tct acc ata ata cct cat ttt aac tta atc acc ttt gta aag Leu Gly Ser Thr Ile Ile Pro His Phe Asn Leu Ile Thr Phe Val Lys 20 25 30	216
acc ttt ttc caa ata tagtcactct ctgaggtact gatggttagg atctcaacat : Thr Phe Phe Gln Ile 35	271
	331
	391 400
<210> 134	
<211> 1053 <212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> 1311051	
<221> sig_peptide	
<222> 131169 <223> Von Heijne matrix	
score 4.2	
seq MLAVSLTVPLLGA/MM	
<221> polyA signal	
<222> 10191024	
<400> 134	
gagegaggeg gaegggetge gaeagegeeg geeeetgegg eegeaggteg teacagaega	60
	120 169
Met Leu Ala Val Ser Leu Thr Val Pro Leu Leu Gly Ala -10 -5	107
	217
Met Met Leu Glu Ser Pro Ile Asp Pro Gln Pro Leu Ser Phe Lys 1 5 10	
gaa ccc ccg ctc ttg ctt ggt gtt ctg cat cca aat acg aag ctg cga	265
Glu Pro Pro Leu Leu Gly Val Leu His Pro Asn Thr Lys Leu Arg 20 25 30	
cag gca gaa agg ctg ttt gaa aat caa ctt gtt gga ccg gag tcc ata	313
Gln Ala Glu Arg Leu Phe Glu Asn Gln Leu Val Gly Pro Glu Ser Ile 35 40 45	
gca cat att ggg gat gtg atg ttt act ggg aca gca gat ggc cgg gtc	361
Ala His Ile Gly Asp Val Met Phe Thr Gly Thr Ala Asp Gly Arg Val 50 60	
50 55 60	

gta Val 65	aaa Lys	ctt Leu	gaa Glu	aat Asn	ggt Gly 70	gaa Glu	ata Ile	gag Glu	acc Thr	att Ile 75	gcc Ala	cgg Arg	ttt Phe	ggt Gly	tcg Ser 80	409
ggc											tgt Cys					457
ggt Gly	atc Ile	cgt Arg	gca Ala 100	ggg Gly	ccc Pro	aat Asn	Gly	act Thr 105	ctc Leu	ttt Phe	gtg Val	gcc Ala	gat Asp 110	gca Ala	tgc Cys	505
											gaa Glu					553
											atg Met 140					601
											tat Tyr					649
											ctg Leu					697
											gtg Val					745
	_		_	_	_		_				gga Gly	_	_			793
											acc Thr 220					841
											Gly 999					889
			_					_			cgg Arg		-	_		937
											cct Pro					985
											att Ile					1033
	aag Lys 290				aaa Lys	aa										1053

<210> 135 <211> 1128

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 86..403

<221> sig_peptide

<222> 86..181

<223> Von Heijne matrix score 8.8 seq VPMLLLIVGGSFG/LR

```
<221> polyA_signal
<222> 1097..1102
<221> polyA site
<222> 1117..1128
<400> 135
cgtcttggtg agagcgtgag ctgctgagat ttgggagtct gcgctaggcc cgcttggagt
                                                                       60
                                                                      112
totgagooga tggaagagtt cacto atg ttt goa coc gog gtg atg ogt got
                            Met Phe Ala Pro Ala Val Met Arg Ala
                                    -30
                                                         -25
ttt cgc aag aac aag act ctc ggc tat gga gtc ccc atg ttg ttg ctg
                                                                      160
Phe Arg Lys Asn Lys Thr Leu Gly Tyr Gly Val Pro Met Leu Leu Leu
            -20
                                -15
att gtt gga ggt tct ttt ggt ctt cgt gag ttt tct caa atc cga tat
                                                                      208
Ile Val Gly Sly Ser Phe Gly Leu Arg Glu Phe Ser Gln Ile Arg Tyr
        -5
                            1
gat gct gtg aag agt aaa atg gat cct gag ctt gaa aaa aaa ctg aaa
                                                                      256
Asp Ala Val Lys Ser Lys Met Asp Pro Glu Leu Glu Lys Lys Leu Lys
                    15
                                        20
gag aat aaa ata tot tta gag tog gaa tat gag aaa ato aaa gac too
                                                                      304
Glu Asn Lys Ile Ser Leu Glu Ser Glu Tyr Glu Lys Ile Lys Asp Ser
                30
                                    35
aag ttt gat gac tgg aag aat att cga gga ccc agg cct tgg gaa gat
                                                                      352
Lys Phe Asp Asp Trp Lys Asn Ile Arg Gly Pro Arg Pro Trp Glu Asp
                                50
                                                                      400
cct gac ctc ctc caa gga aga aat cca gaa agc ctt aag act aag aca
Pro Asp Leu Leu Gln Gly Arg Asn Pro Glu Ser Leu Lys Thr Lys Thr
                            65
                                                                      453
act tgactctgct gattcttttt tccnnntttt tttttttta aataaaaata
ctattaactg gacttcctaa tatatacttc tatcaagtgg aaaggaaatt ccaggcccat
                                                                      513
ggaaacttgg atatgggtaa tttgatgaca aataatcttc actaaaggtc atgtacaggt
                                                                      573
ttttatactt cccagctatt ccatctgtgg atgaaagtaa caatgttggc cacgtatatt
                                                                      633
ttacacctcg aaataaaaaa tgtgaatact gctccaaaaa aaaaaaccag taccgtgtag
                                                                      693
totototogt ggottggatt tacactgggc aacgtggttg gaatgtatot ggotcagaac
                                                                      753
tatgatatac caaacctggc taaaaaactt gaagaaatta aaaaggactt ggatgccaag
                                                                      813
                                                                      873
aagaaacccc ctagtgcatg agactgcctc cagcactgcc ttcaggatat accgattcta
                                                                      933
ctgctcttga gggcctcgtt tactatctga accaaaagct tttgttttcg tctccagcct
cagcacttct cttctttgct agaccctgtg ttttttgctt taaagcaagc aaaatggggc
                                                                      993
cccaatttga gaactacccg acgtttccaa catactcacc tcttcccata atccctttcc
                                                                     1053
aactgcatgg gaggttctaa gactggaatt atggtgctag attagtaaac atgactttta
                                                                     1113
acgaaaaaa aaaaa
                                                                     1128
```

```
<210> 136
<211> 254
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 37..162
<221> sig_peptide
<222> 37..93
```

<223> Von Heijne matrix
scoxe 9.5
sexp-lMCLSLCTAFALS/KP

<221> polyA_signal <222> 224..229 <221> polyA_site <222> 243..254 <400> 136 54 tgtgctgtgg gggctacgag gaaagatcta attatc atg gac ctg cga cag ttt Met Asp Leu Arg Gln Phe ctt atg tgc ctg tcc ctg tgc aca gcc ttt gcc ttg agc aaa ccc aca 102 Leu Met Cys Leu Ser Leu Cys Thr Ala Phe Ala Leu Ser Lys Pro Thr gaa aag aag gac cgt gta cat cat gag cct cag ctc agt gac aag gtt 150 Glu Lys Lys Asp Arg Val His His Glu Pro Gln Leu Ser Asp Lys Val 202 cac aat gat att tgatagaacc aattgttgta cataaaacag atctgcgcat His Asn Asp Ile 254 <210> 137 <211> 886 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 31..381 <221> sig_peptide <222> 31..90 <223> Von Heijne matrix score 5.4 seq AFVIACVLSLIST/IY <221> polyA_site <222> 875..886 <400> 137 ggaggatggg cgagcagtct gaatggcaga atg gat aac cgt ttt gct aca gca 54 Met Asp Asn Arg Phe Ala Thr Ala -20 ttt gta att gct tgt gtg ctt agc ctc att tcc acc atc tac atg gca 102 Phe Val Ile Ala Cys Val Leu Ser Leu Ile Ser Thr Ile Tyr Met Ala -5 gcc tcc att ggc aca gac ttc tgg tat gaa tat cga agt cca gtt caa 150 Ala Ser Ile Gly Thr Asp Phe Trp Tyr Glu Tyr Arg Ser Pro Val Gln 10 15 gaa aat too agt gat ttg aat aaa ago ato tgg gat gaa tto att agt 198 Glu Asn Ser Ser Asp Leu Asn Lys Ser Ile Trp Asp Glu Phe Ile Ser 30 gat gag gca gat gaa aag act tat aat gat gca ctt ttt cga tac aat 246 Asp Glu Ala Asp Glu Lys Thr Tyr Asn Asp Ala Leu Phe Arg Tyr Asn 45 ggc aca gtg gga ttg tgg gga cgg tgt atc acc ata ccc aaa aac atg 294 Gly Thr Val Gly Leu Trp Gly Arg Cys Ile Thr Ile Pro Lys Asn Met 55 60 cat tgg tat agc cca cca gaa agg aca ggt att tct ctt att tta act 342 His Trp Tyr Ser Pro Pro Glu Arg Thr Gly Ile Ser Leu Ile Leu Thr

WO 99/31236 -111- PCT/IB98/02122

											80 acg Thr		taa	tgatt	gc	391
85 ccaa	attad	cat g	gtaag	gcagg	90 gt ti	gttg	ggtto	e tet	ctct	95 cct	taaa	agaaa			gtgtat caata	451 511
		_							_			_			tctta	571
											_		_		igttgg	631
															atcgaa	691
				_				-		-					atcatt attatg	751 811
_	-				_		_		_				_	_	acagaa	871
-	-	aaa a			,	,	5-:	,:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,			3			886
J																
<21	0> 1: 1> 1:	244														
	2> Di 3> H	AV. S OMC	ani.	ene												
~~.		51110 2	, apri	-110												
<220																
-	1> CI 2> 46	JS 557	79													
		_														
		ig_pe		ie												
		515 on He		a mat	-riv											
\22.		core		· iliai	-11^											
		eq LV		LILI	CILT,	/IW				•						
-400	0> 13	20												•		
			gttr	ittat	c ta	ngga	atco	cnr	maag	gact	3 333				ga cag cg Gln	57
tca	agg	gtt	atg	tca	gaa	aag	gat	gag	tat	cag	ttt	caa	cat	can		105
			-30			-	_	-25	•				-20	Xaa		
	_	-	-		_				-					att Ile	_	153
V10	Aaa	-15	Deu	пеа	vai	PHE	-10	FILE	ьец	Leu	116	-5	TIII	116	Deu	
														gaa		201
Thr	Ile 1	Trp	Leu	Phe	Lys 5	Asn	His	Arg	Phe	Arg 10	Phe	Leu	His	Glu	Thr 15	
gga		gca	atg	gtg	_	ggc	ctt	ata	atg		cta	att	tca	cga		249
				Val					Met					Arg		
act	aca	aca	cca	20 act	ant.	2++	as a	act	25	act	ata	+a+	~=~	30 tgt	σta.	297
														Cys		231
			35					40	,			-1-	45	-2-		
														gac		345
Lys	Leu		Phe	Ser	Pro	Pro		Leu	Leu	Val	Asn		Thr	Asp	Gln	
att	tat	50 gaa	tat	aaa	tac	aaa	55 aga	σаа	ata	agt.	cag	60 cac	aac	atc	aat	393
														Ile		•
	65					70					75					
														cca		441
80	uis	GIII	GIĀ	ASII	85	116	nen	GIU	пÅг	90	TIL	Pne	Asp	Pro	95	
	ttc	ttc	aat	qtt		cta	cca	cca	att		ttt	cat	qca	gga		489
														Gly		
				100					105					110	-	

WO 99/31236 -112 - PCT/IB98/02122 -

agt cta aag aag aga cac ttt ttt caa aac tta gga tct att tta acg Ser Leu Lys Lys Arg His Phe Phe Gln Asn Leu Gly Ser Ile Leu Thr 115 120 125	537
tat gcc ttc ttg gga act gcc atc tcc tgc atc gtc ata ggg Tyr Ala Phe Leu Gly Thr Ala Ile Ser Cys Ile Val Ile Gly 130 135 140	579
taagtgacat teggagetea agttgeaggt ggetgtgggg tetgtgatet gtgtgaggga tetaacactt ceaggattet tgetggetgg gaaaattgte tttttttag tatateacat atttgtatgt tttttetgae ttaatteeae ggettetgae aaatacaagg etteaaatea aggaateaet tgeettgagt tatgtgaage geattgeatt	639 699 759 819 879 939 1059 1119 1279 1244
<210> 139 <211> 471 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> 92469	
<221> sig_peptide <222> 92172 <223> Von Heijne matrix score 7.9 seq VVVLALGFLGCYG/AK	
<221> polyA_signal <222> 454459	
<221> polyA_site <222> 458471	
<pre><400> 139 gcaagtgcag aagtcggtga cggtgggcat ctgggtgtca atcgatgggg catcctttct gaagatcttc gggccactgt cgtccagtgc c atg cag ttt gtc aac gtg ggc</pre>	60 112
gaagatette gggeeactgt egteeagtge e atg eag ttt gte aac gtg gge Met Gln Phe Val Asn Val Gly -25	
Met Gln Phe Val Asn Val Gly	160
Met Gln Phe Val Asn Val Gly -25 tac ttc ctc atc gca gcc ggc gtt gtg gtc ctt gct ctt ggt ttc ctg Tyr Phe Leu Ile Ala Ala Gly Val Val Val Leu Ala Leu Gly Phe Leu -20 -15 -10 -5 ggc tgc tat ggt gct aag act gag agc atg tgt gcc ctc gtg acg ttc Gly Cys Tyr Gly Ala Lys Thr Glu Ser Met Cys Ala Leu Val Thr Phe 1 5 10	208
Met Gln Phe Val Asn Val Gly -25 tac ttc ctc atc gca gcc ggc gtt gtg gtc ctt gct ctt ggt ttc ctg Tyr Phe Leu Ile Ala Ala Gly Val Val Val Leu Ala Leu Gly Phe Leu -20 -15 ggc tgc tat ggt gct aag act gag agc atg tgt gcc ctc gtg acg ttc Gly Cys Tyr Gly Ala Lys Thr Glu Ser Met Cys Ala Leu Val Thr Phe 1 5 10 ttc ttc atc ctc ctc ctc atc ttc att gct gag gtt gca gct gct gtg Phe Phe Ile Leu Leu Leu Ile Phe Ile Ala Glu Val Ala Ala Ala Val 15 20 25	
Met Gln Phe Val Asn Val Gly -25 tac ttc ctc atc gca gcc ggc gtt gtg gtc ctt gct ctt ggt ttc ctg Tyr Phe Leu Ile Ala Ala Gly Val Val Val Leu Ala Leu Gly Phe Leu -20 -15 ggc tgc tat ggt gct aag act gag agc atg tgt gcc ctc gtg acg ttc Gly Cys Tyr Gly Ala Lys Thr Glu Ser Met Cys Ala Leu Val Thr Phe 1 5 10 ttc ttc atc ctc ctc ctc atc ttc att gct gag gtt gca gct gct gtg Phe Phe Ile Leu Leu Leu Ile Phe Ile Ala Glu Val Ala Ala Ala Val	208

WO 99/31236 -113- PCT/IB98/02122 -

•			FC 1/1D70/021	- .
•				_
caa gtg tgg aac Gln Val Trp Asn	acc acc atg a Thr Thr Met I 65	aaa ggg ctc aag tg Lys Gly Leu Lys Cy 70	c cgt ggc ttc acc 400 s Arg Gly Phe Thr 75	
aac tat acg gat Asn Tyr Thr Asp 80	ttt gag gac t	tca ccc tac ttc aa Ser Pro Tyr Phe Ly 85	rs Met His Lys Pro 90	
gtt aca atg aaa Val Thr Met Lys 95		aa	471	1
<210> 140 <211> 849 <212> DNA <213> Homo sapi	ens			
<220> <221> CDS <222> 154675				
<221> sig_pepti <222> 154498 <223> Von Heijn score 4.8 seq PLRLL	e matrix			
<221> polyA_sig	nal		•	
<221> polyA_sit <222> 838849	е			
<400> 140 cccctatctc caga	.cctcat tcgcaat	tgaa gtagaatgtc tg	gaaagcaga tttcaaccac 60	
		ctat gac atg cgc t	etatgttgc atttctcccc 120 egg tca tgt gag cac 174 erp Ser Cys Glu His -110	
			c acc acg caa ctg 222	
-10	-	Ala Phe Val Met Le -100	eu Thr Thr Gln Leu -95	2
ttg cca tcc aaa	tac tgt gat t Tyr Cys Asp 1	-100 ttg cta cat aaa tc		
ttg cca tcc aaa Leu Pro Ser Lys -90 ggc aag tgg cag	tac tgt gat to tyr Cys Asp I	-100 ttg cta cat aaa tc Leu Leu His Lys Se -85 cat ggg tcc tac ag	-95 ca gct gct cac ctg 270 er Ala Ala His Leu -80 gc aat gct cca cag 310 er Asn Ala Pro Gln	0
ttg cca tcc aaa Leu Pro Ser Lys -90 ggc aag tgg cag Gly Lys Trp Gln -75 cac att tgg tca	tac tgt gat to tyr Cys Asp I aag ttg gaa of Lys Leu Glu I -70	-100 ttg cta cat aaa tc Leu Leu His Lys Se -85 cat ggg tcc tac ag His Gly Ser Tyr Se -6 ata tgg cct caa gg	-95 ca gct gct cac ctg 270 er Ala Ala His Leu -80 gc aat gct cca cag 310 er Asn Ala Pro Gln	0
ttg cca tcc aaa Leu Pro Ser Lys -90 ggc aag tgg cag Gly Lys Trp Gln -75 cac att tgg tca His Ile Trp Ser -60 cac agc aga tgt	tac tgt gat to tgr Cys Asp I aag ttg gaa of Lys Leu Glu I -70 agaa aat aca of Glu Asn Thr 1 -55 tta tat aga of	-100 ttg cta cat aaa tc Leu Leu His Lys Se -85 cat ggg tcc tac ag His Gly Ser Tyr Se -6 ata tgg cct caa gg Ile Trp Pro Gln Gl -50	-95 ca gct gct cac ctg 276 er Ala Ala His Leu -80 gc aat gct cca cag 316 er Asn Ala Pro Gln 65 gg gtg ctg gtg cgg 366 ly Val Leu Val Arg -45 ac aac gtg gca gtg 416	0 8
ttg cca tcc aaa Leu Pro Ser Lys -90 ggc aag tgg cag Gly Lys Trp Gln -75 cac att tgg tca His Ile Trp Ser -60 cac agc aga tgt His Ser Arg Cys cct tca gat gta Pro Ser Asp Val	tac tgt gat to tgr Cys Asp less tryr Cys Asp less try gaa de Lys Leu Glu less try gaa aat aca de Glu Asn Thr 1-55 tta tat aga gas Leu Tyr Arg 1-40 tct cat gcc de Ser His Ala	-100 ttg cta cat aaa tc Leu Leu His Lys Se -85 cat ggg tcc tac ag His Gly Ser Tyr Se ata tgg cct caa gg Ile Trp Pro Gln Gl -50 gcc atg ggg cct ta Ala Met Gly Pro Ty -35 cgc ttt tat ttc tt	-95 ca gct gct cac ctg 276 er Ala Ala His Leu -80 gc aat gct cca cag 316 er Asn Ala Pro Gln 55 gg gtg ctg gtg cgg 366 ly Val Leu Val Arg -45 ac aac gtg gca gtg 416 yr Asn Val Ala Val	0 8 6
ttg cca tcc aaa Leu Pro Ser Lys -90 ggc aag tgg cag Gly Lys Trp Gln -75 cac att tgg tca His Ile Trp Ser -60 cac agc aga tgt His Ser Arg Cys cct tca gat gta Pro Ser Asp Val tta agg ctg tta	tac tgt gat to tgt gat aca aca aca aca aca aca aca aca aca a	-100 ttg cta cat aaa tc Leu Leu His Lys Se -85 cat ggg tcc tac ag His Gly Ser Tyr Se ata tgg cct caa gg Ile Trp Pro Gln Gl -50 gcc atg ggg cct ta Ala Met Gly Pro Ty -35 cgc ttt tat ttc tt Arg Phe Tyr Phe Le -20 atc ctt att gag gg	-95 ca gct gct cac ctg 276 er Ala Ala His Leu -80 gc aat gct cca cag 316 er Asn Ala Pro Gln 55 gg gtg ctg gtg cgg 366 ly Val Leu Val Arg -45 ac aac gtg gca gtg 416 yr Asn Val Ala Val -30 ca ttt cat cga cca 466 eu Phe His Arg Pro	0 8 6 4

15 10 tcc atg gct ctc atc ctc ttc tgc aac tac tat gtt tta ttt aaa ctt 606 Ser Met Ala Leu Ile Leu Phe Cys Asn Tyr Tyr Val Leu Phe Lys Leu 30 25 654 ctc cgg gac aga ata gta tta ggc agg gca tac tcc tac cca ctc aac Leu Arg Asp Arg Ile Val Leu Gly Arg Ala Tyr Ser Tyr Pro Leu Asn 45 705 agt tat gaa ctc aag gca aac taagctgcct ctcaacaatg agggagaact Ser Tyr Glu Leu Lys Ala Asn 55 765 cagataaaaa tattttcata cgttctattt ttttcttgtg atttttataa atatttaaga tgttttatat tttgtatact attatgtttt gaaagtcggg aagagtaagg gatattaaat 825 849 gtatccgtaa acaaaaaaaa aaaa

<210> 141 <211> 155 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -31. -1

<400> 141

Met Phe Thr Ser Thr Gly Ser Ser Gly Leu Tyr Lys Ala Pro Leu Ser -25 Lys Ser Leu Leu Leu Val Pro Ser Ala Leu Ser Leu Leu Ala Leu -10 -5 Leu Leu Pro His Cys Gln Lys Pro Phe Val Tyr Asp Leu His Ala Val 10 Lys Asn Asp Phe Gln Ile Trp Arg Leu Ile Cys Gly Arg Ile Ile Cys 20 25 Leu Asp Leu Lys Asp Thr Phe Cys Ser Ser Leu Leu Ile Tyr Asn Phe 40 45 Arg Ile Phe Glu Arg Arg Tyr Gly Ser Arg Lys Phe Ala Ser Phe Leu 60 55 Leu Gly Thr Trp Val Leu Ser Ala Leu Phe Asp Phe Leu Leu Ile Glu 70 Ala Met Gln Tyr Phe Phe Gly Ile Thr Ala Ala Ser Asn Leu Pro Ser 90 Gly Leu Ile Phe Cys Cys Ala Phe Cys Ser Glu Thr Lys Leu Phe Leu 105 110 Ser Arg Gln Ala Met Ala Glu Asn Phe Ser Ile 115 120

<210> 142 <211> 55 <212> PRT <213> Homo sapiens

WO 99/31236 -115- PCT/IB98/02122 ·

50 55

<210> 144 <211> 198 <212> PRT <213> Homo sapiens

Thr Ala Ala Leu Pro Ala

<220>
<221> SIGNAL
<222> -21..-1

Gly Arg Lys

45

<400> 144

Met Pro Val Pro Ala Leu Cys Leu Leu Trp Ala Leu Ala Met Val Thr -15 -10 Arg Pro Ala Ser Ala Ala Pro Met Gly Gly Pro Glu Leu Ala Gln His 1 Glu Glu Leu Thr Leu Leu Phe His Gly Thr Leu Gln Leu Gly Gln Ala 20 Leu Asn Gly Val Tyr Arg Thr Thr Glu Gly Trp Leu Thr Lys Ala Arg Asn Ser Leu Gly Leu Tyr Gly Arg Thr Ile Glu Leu Leu Gly Gln Glu Val Ser Arg Gly Arg Asp Ala Ala Gln Glu Leu Arg Ala Ser Leu Leu 70 Glu Thr Gln Met Glu Glu Asp Ile Leu Gln Leu Gln Ala Glu Ala Thr 80 85 Ala Glu Val Leu Gly Glu Val Ala Gln Ala Gln Lys Val Leu Arg Asp 100 Ser Val Gln Arg Leu Glu Val Gln Leu Arg Ser Ala Trp Leu Gly Pro 115 120 Ala Tyr Arg Glu Phe Glu Val Leu Lys Ala His Ala Asp Lys Gln Ser 130 135 His Ile Leu Trp Ala Leu Thr Gly His Val Gln Arg Gln Arg Glu 145 150 Met Val Ala Gln Gln His Arg Leu Arg Gln Ile Gln Glu Arg Leu His

PCT/IB98/02122 -

175

<210> 145 <211> 135 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -25..-1 <400> 145 Met Ser Leu Arg Asn Leu Trp Arg Asp Tyr Lys Val Leu Val Val Met -20 -15 Val Pro Leu Val Gly Leu Ile His Leu Gly Trp Tyr Arg Ile Lys Ser 1 Ser Pro Val Phe Gln Ile Pro Lys Asn Asp Asp Ile Pro Glu Gln Asp 15 Ser Leu Gly Leu Ser Asn Leu Gln Lys Ser Gln Ile Gln Gly Lys Xaa 30 Ala Gly Leu Gln Ser Ser Gly Lys Glu Ala Ala Leu Asn Leu Ser Phe 45 50 Ile Ser Lys Glu Glu Met Lys Asn Thr Ser Trp Ile Arg Lys Asn Trp Leu Leu Val Ala Gly Ile Ser Phe Ile Gly Asp His Leu Gly Thr Tyr 80 Phe Leu Gln Arg Ser Ala Lys Gln Ser Val Lys Phe Gln Ser Gln Ser 95 Lys Gln Lys Ser Ile Glu Glu 105 <210> 146

<210> 146 <211> 255 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -70..-1

<400> 146 Met Gln Gln Lys Glu Gln Gln Phe Arg Glu Trp Phe Leu Lys Glu Phe -65 -60 Pro Gln Ile Arg Trp Lys Ile Gln Glu Ser Ile Glu Arg Leu Arg Val -50 Ile Ala Asn Glu Ile Glu Lys Val His Arg Gly Cys Val Ile Ala Asn -30 Val Val Ser Gly Ser Thr Gly Ile Leu Ser Val Ile Gly Val Met Leu -15 -10 Ala Pro Phe Thr Ala Gly Leu Ser Leu Ser Ile Thr Ala Ala Gly Val Gly Leu Gly Ile Ala Ser Ala Thr Ala Gly Ile Ala Ser Ser Ile Val 20 Glu Asn Thr Tyr Thr Arg Ser Ala Glu Leu Thr Ala Ser Arg Leu Thr 30 35 Ala Thr Ser Thr Asp Gln Leu Glu Ala Leu Arg Asp Ile Leu His Asp 50 . Ile Thr Pro Asn Val Leu Ser Phe Ala Leu Asp Phe Asp Glu Ala Thr

65 Lys Met Ile Ala Asn Asp Val His Thr Leu Arg Arg Ser Lys Ala Thr 80 85 Val Gly Arg Pro Leu Ile Ala Trp Arg Tyr Val Pro Ile Asn Val Val 100 Glu Thr Leu Arg Thr Arg Gly Ala Pro Thr Arg Ile Val Arg Lys Val 110 115 Ala Arg Asn Leu Gly Lys Ala Thr Ser Gly Val Leu Val Val Leu Asp 130 Val Val Asn Leu Val Gln Asp Ser Leu Asp Leu His Lys Gly Glu Lys 145 Ser Glu Ser Ala Glu Leu Leu Arg Gln Trp Ala Gln Glu Leu Glu Glu 160 165 Asn Leu Asn Glu Leu Thr His Ile His Gln Ser Leu Lys Ala Gly 175 180

<210> 147 <211> 59 <212> PRT <213> Homo sapiens

<220>
<221> SIGNAL
<222> -49..-1

<400> 147

Met Pro Gly Thr Glu Val Leu Glu Gly Ala Thr Asp Gly Leu Ala Ala
-45

Ile Asn Leu Leu Lys Trp Ile Lys Thr Leu Gly Gly Ser Val Ile Ser
-30

Met Ile Val Leu Leu Ile Cys Val Val Cys Leu Tyr Ile Val Cys Arg
-15

Cys Gly Ser His Leu Trp Arg Glu Ser His His
1

<210> 148 <211> 180 <212> PRT <213> Homo sapiens

<400> 148 Met Cys Ile Ser Gly Leu Cys Gln Ile Val Gly Cys Asp His Gln Leu 10 Gly Ser Thr Val Lys Glu Asp Asn Cys Gly Val Cys Asn Gly Asp Gly Ser Thr Cys Arg Leu Val Arg Gly Gln Tyr Lys Ser Gln Leu Ser Ala Thr Lys Ser Asp Asp Thr Val Val Ala Ile Pro Tyr Gly Ser Arg His 55 Ile Arg Leu Val Leu Lys Gly Pro Asp His Leu Tyr Leu Glu Thr Lys 70 Thr Leu Gln Gly Thr Lys Gly Glu Asn Ser Leu Ser Ser Thr Gly Thr 90 Phe Leu Val Asp Asn Ser Ser Val Asp Phe Gln Lys Phe Pro Asp Lys 105 Glu Ile Leu Arg Met Ala Gly Pro Leu Thr Ala Asp Phe Ile Val Lys 120 125 Ile Arg Asn Ser Gly Ser Ala Asp Ser Thr Val Gln Phe Ile Phe Tyr WO 99/31236 -118- PCT/IB98/02122

```
135
   130
Gln Pro Ile Ile His Arg Trp Arg Glu Thr Asp Phe Phe Pro Cys Ser
                            155
               150
Ala Thr Cys Gly Gly Gly Tyr Gln Leu Thr Ser Ala Glu Cys Tyr Asp
                          170
Leu Arg Ser Asn
          180
<210> 149
<211> 162
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -23..-1
<400> 149
Met Gly Asp Lys Ile Trp Leu Pro Phe Pro Val Leu Leu Leu Ala Ala
          -20 -15
Leu Pro Pro Val Leu Leu Pro Gly Ala Ala Gly Phe Thr Pro Ser Leu
                        1
Asp Ser Asp Phe Thr Phe Thr Leu Pro Ala Gly Gln Lys Glu Cys Phe
                                     20
                  15
·Tyr Gln Pro Met Pro Leu Lys Ala Ser Leu Glu Ilé Glu Tyr Gln Val
                                  35
Leu Asp Gly Ala Gly Leu Asp Ile Asp Phe His Leu Ala Ser Pro Glu
                              50
           45
Gly Lys Thr Leu Val Phe Glu Gln Arg Lys Ser Asp Gly Val His Thr
                          65
Val Glu Thr Glu Val Gly Asp Tyr Met Phe Cys Phe Asp Asn Thr Phe
                       80
Ser Thr Ile Ser Glu Lys Val Ile Phe Phe Glu Leu Ile Pro Asp Asn
                                      100
                   95
Met Gly Glu Gln Ala Gln Glu Gln Glu Asp Trp Lys Lys Tyr Ile Thr
                                 115
               110
Gly Thr Asp Ile Leu Asp Met Lys Leu Glu Asp Ile Leu Val Ser Met
           125
                             130
Val Phe
<210> 150
<211> 120
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -23..-1
```

-119-

Leu Asp Gly Ala Gly Leu Asp Ile Asp Phe His Leu Ala Ser Pro Glu 45 Gly Lys Thr Leu Val Phe Glu Gln Arg Lys Ser Asp Gly Val His Thr 65 Cys Ile Arg Ser Lys Asn Gly Pro Gly Thr Ala Val His Ala Tyr Asn Pro Ser Thr Phe Arg Gly Gln Val 95

<210> 151 <211> 7 <212> PRT <213> Homo sapiens <400> 151 Met Val Glu Met Thr Gly Val

<210> 152 <211> 199 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -42..-1

<400> 152 Met Asp Gly Gln Lys Lys Asn Trp Lys Asp Lys Val Val Asp Leu Leu -30 -35 -40 Tyr Trp Arg Asp Ile Lys Lys Thr Gly Val Val Phe Gly Ala Ser Leu -15 -20 -25 Phe Leu Leu Ser Leu Thr Val Phe Ser Ile Val Ser Val Thr Ala 1 -5 Tyr Ile Ala Leu Ala Leu Leu Ser Val Thr Ile Ser Phe Arg Ile Tyr 15 20 Lys Gly Val Ile Gln Ala Ile Gln Lys Ser Asp Glu Gly His Pro Phe 30 Arg Ala Tyr Leu Glu Ser Glu Val Ala Ile Ser Glu Glu Leu Val Gln 45 Lys Tyr Ser Asn Ser Ala Leu Gly His Val Asn Cys Thr Ile Lys Glu 60 Leu Arg Arg Leu Phe Leu Val Asp Asp Leu Val Asp Ser Leu Lys Phe 80 75 Ala Val Leu Met Trp Val Phe Thr Tyr Val Gly Ala Leu Phe Asn Gly 95 90 Leu Thr Leu Leu Ile Leu Ala Leu Ile Ser Leu Phe Ser Val Pro Val 110 115 Ile Tyr Glu Arg His Gln Ala Gln Ile Asp His Tyr Leu Val Leu Ala 130 125 Asn Lys Asn Val Lys Asp Ala Met Ala Lys Ile Gln Ala Lys Ile Pro 145 140 Gly Leu Lys Arg Lys Ala Glu 155

<220> <221> SIGNAL <222> -37..-1

<210> 155 <211> 153 <212> PRT <213> Homo sapiens

<400> 155 Thr Val Pro Leu Leu Glu Pro Ala Asp His Ala Arg Gly Arg Ala 10 His Val His Leu Pro Glu Asn Val Arg Ser Gln Ser Pro Gly His Val Arg Arg Gly Arg Ser Gly Ala Gln Val Leu Pro Thr Gly Pro Asp Glu 40 Lys Gln Val Glu Lys Ser Glu Val Asp Phe Ser Lys Ser His Ser Leu 55 Val Arg Arg Phe Glu Asp Leu Lys Pro Lys Leu Ser Val Cys Lys Thr Gly Ser Gln Val Phe Arg Ser Glu Asn Trp Lys Val Trp Ala Glu Ser 90 Ser Arg Gly Asp His Asp Asp Cys Leu Asp Leu Cys Ser Val Leu Cys 105 Trp Gly Glu Leu Leu Arg Thr Ile Pro Glu Ile Pro Pro Lys Arg Gly 120 Glu Leu Lys Thr Glu Leu Leu Gly Leu Lys Glu Arg Lys His Lys Pro 135 Gln Val Ser Gln Gln Glu Glu Leu Lys 150

<210> 156 <211> 67 <212> PRT <213> Homo sapiens <400> 156 Met Arg Gln Lys Arg Lys Gly Asp Leu Ser Pro Ala Lys Leu Met Met 10 Leu Thr Ile Gly Asp Val Ile Lys Gln Leu Ile Glu Ala His Glu Gln 20 25 Gly Lys Asp Ile Asp Leu Asn Lys Val Arg Thr Lys Thr Ala Ala Lys 45 40 Tyr Gly Leu Ser Ala Gln Pro Arg Leu Val Asp Ile Ile Ala Ala Val 55 50 Pro Pro Glu . 65 <210> 157 <211> 87 <212> PRT <213> Homo sapiens <400> 157 Met Asp Glu Leu Ser Glu Glu Asp Lys Leu Thr Val Ser Arg Ala Arg 15 10 Lys Ile Gln Arg Phe Leu Ser Gln Pro Phe Gln Val Ala Glu Val Phe 25 Thr Gly His Met Gly Lys Leu Val Pro Leu Lys Glu Thr Ile Lys Gly Phe Gln Gln Ile Leu Ala Gly Glu Tyr Asp His Leu Pro Glu Gln Ala 60 55 Phe Tyr Met Val Gly Pro Ile Glu Glu Ala Val Ala Lys Ala Asp Lys 70 Leu Ala Glu Glu His Ser Ser 85 <210> 158 <211> 250 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -85..-1 <400> 158 Met Ser Ala Glu Val Lys Val Thr Gly Gln Asn Gln Glu Gln Phe Leu -80 -75 Leu Leu Ala Lys Ser Ala Lys Gly Ala Ala Leu Ala Thr Leu Ile His -60 -65 Gln Val Leu Glu Ala Pro Gly Val Tyr Val Phe Gly Glu Leu Leu Asp -50 Met Pro Asn Val Arg Glu Leu Xaa Ala Arg Asn Leu Pro Pro Leu Thr -30 -25 Glu Ala Gln Lys Asn Lys Leu Arg His Leu Ser Val Val Thr Leu Ala

-15

Ala Lys Val Lys Cys Ile Pro Tyr Ala Val Leu Leu Glu Ala Leu Ala

-10

Leu Arg Asn Val Arg Gln Leu Glu Asp Leu Val Ile Glu Ala Val Tyr 20 Ala Asp Val Leu Arg Gly Ser Leu Asp Gln Arg Asn Gln Arg Leu Glu Val Asp Tyr Ser Ile Gly Arg Asp Ile Gln Arg Gln Asp Leu Ser Ala 50 Ile Ala Arg Thr Leu Gln Glu Trp Cys Val Gly Cys Glu Val Val Leu 70 Ser Gly Ile Glu Glu Gln Val Ser Arg Ala Asn Gln His Lys Glu Gln 85 Gln Leu Gly Leu Lys Gln Gln Ile Glu Ser Glu Val Ala Asn Leu Lys 100 Lys Thr Ile Lys Val Thr Thr Ala Ala Ala Ala Ala Ala Thr Ser Gln 115 Asp Pro Glu Gln His Leu Thr Glu Leu Arg Glu Pro Ala Pro Gly Thr 130 135 Asn Gln Arg Gln Pro Ser Lys Lys Ala Ser Lys Gly Lys Gly Leu Arg 145 Gly Ser Ala Lys Ile Trp Ser Lys Ser Asn . 160

<210> 159 <211> 24 <212> PRT <213> Homo sapiens

His Ile Asn Ile Ser Phe His Arg

20

<210> 160 <211> 228 <212> PRT <213> Homo sapiens

<400> 160 Met Pro Thr Asn Cys Ala Ala Ala Gly Cys Ala Thr Thr Tyr Asn Lys 10 His Ile Asn Ile Ser Phe His Arg Phe Pro Leu Asp Pro Lys Arg Arg 25 Lys Glu Trp Val Arg Leu Val Arg Arg Lys Asn Phe Val Pro Gly Lys 40 His Thr Phe Leu Cys Ser Lys His Phe Glu Ala Ser Cys Phe Asp Leu 55 Thr Gly Gln Thr Arg Arg Leu Lys Met Asp Ala Val Pro Thr Ile Phe 70 Asp Phe Cys Thr His Ile Lys Ser Met Lys Leu Lys Ser Arg Asn Leu 90 85 Leu Lys Lys Asn Asn Ser Cys Ser Pro Ala Gly Pro Ser Ser Leu Lys 105 100 Ser Asn Ile Ser Ser Gln Gln Val Leu Leu Glu His Ser Tyr Ala Phe 120 125 Arg Asn Pro Met Glu Ala Lys Lys Arg Ile Ile Lys Leu Glu Lys Glu Ile Ala Ser Leu Arg Arg Lys Met Lys Thr Cys Leu Gln Lys Glu Arg

150 155 Arg Ala Thr Arg Arg Trp Ile Lys Ala Met Cys Leu Val Lys Asn Leu 170 165 Glu Ala Asn Ser Val Leu Pro Lys Gly Thr Ser Glu His Met Leu Pro 180 185 190 Thr Ala Leu Ser Ser Leu Pro Leu Glu Asp Phe Lys Ile Leu Glu Gln 205 195 200 Asp Gln Gln Asp Lys Thr Leu Leu Ser Leu Asn Leu Lys Gln Thr Lys 215 Ser Thr Phe Ile 225

<210> 161 <211> 86 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -20..-1

65

Met Asn Leu His Phe Pro Gln Trp Phe Val His Ser Ser Ala Leu Gly -15 -10 Leu Val Leu Ala Pro Pro Phe Ser Ser Pro Gly Thr Asp Pro Thr Phe 5 10 1 Pro Cys Ile Tyr Cys Arg Leu Leu Asn Met Ile Met Thr Arg Leu Ala 20 25 Phe Ser Phe Ile Thr Cys Leu Cys Pro Asn Leu Lys Glu Val Cys Leu 35 40 Ile Leu Pro Glu Lys Asn Cys Asn Ser Arg His Ala Gly Phe Val Gly 50 55 Pro Ala Lys Leu Arg Gln

40

Arg Gly Ser Leu Glu Pro Gly Arg Leu Arg Leu Gln

<210> 163
<211> 314
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -58..-1

<400> 163 Met Gln Asn Val Ile Asn Thr Val Lys Gly Lys Ala Leu Glu Val Ala -55 -50 · -45 Glu Tyr Leu Thr Pro Val Leu Lys Glu Ser Lys Phe Arg Glu Thr Gly -35 -30 Val Ile Thr Pro Glu Glu Phe Val Ala Ala Gly Asp His Leu Val His -15 -20 His Cys Pro Thr Trp Gln Trp Ala Thr Gly Glu Glu Leu Lys Val Lys -5 Ala Tyr Leu Pro Thr Gly Lys Gln Phe Leu Val Thr Lys Asn Val Pro 10 15 Cys Tyr Lys Arg Cys Lys Gln Met Glu Tyr Ser Asp Glu Leu Glu Ala Ile Ile Glu Glu Asp Asp Gly Asp Gly Gly Trp Val Asp Thr Tyr His Asn Thr Gly Ile Thr Gly Ile Thr Glu Ala Val Lys Glu Ile Thr Leu 60 65 Glu Asn Lys Asp Asn Ile Arg Leu Gln Asp Cys Ser Ala Leu Cys Glu 80 Glu Glu Glu Asp Glu Asp Glu Gly Glu Ala Ala Asp Met Glu Glu Tyr 95 Glu Glu Ser Gly Leu Leu Glu Thr Asp Glu Ala Thr Leu Asp Thr Arg 110 115 Lys Ile Val Glu Ala Cys Lys Ala Lys Thr Asp Ala Gly Glu Asp 125 130 Ala Ile Leu Gln Thr Arg Thr Tyr Asp Leu Tyr Ile Thr Tyr Asp Lys 140 145 Tyr Tyr Gln Thr Pro Arg Leu Trp Leu Phe Gly Tyr Asp Glu Gln Arg 160 . 155 Gln Pro Leu Thr Val Glu His Met Tyr Glu Asp Ile Ser Gln Asp His 170 175 Val Lys Lys Thr Val Thr Ile Glu Asn His Pro His Leu Pro Pro Pro 185 190 195 Pro Met Cys Ser Val His Pro Cys Arg His Ala Glu Val Met Lys Lys 205 210 Ile Ile Glu Thr Val Ala Glu Gly Gly Glu Leu Gly Val His Met 225 220 Tyr Leu Leu Ile Phe Leu Lys Phe Val Gln Ala Val Ile Pro Thr Ile 235 Glu Tyr Asp Tyr Thr Arg His Phe Thr Met

<210> 164 <211> 89 <212> PRT <213> Homo sapiens <220> <221> SIGNAL

<400> 164

<222> -80..-1

 Met Arg Thr Arg Thr Thr Gly Asn Pro Arg Gly Leu His Asp Thr Phe

 -80
 -75
 -70
 -65

 Pro Arg Arg Pro Arg Leu Gly Arg Cys Ser Asp Met Asp Thr Ala Arg
 -55
 -50

 Thr Ser Cys Ser Asp Leu Leu Pro Trp Glu Gly Val Thr Glu Pro Ala
 -45
 -40
 -35

 Leu Cys Gly Asp Gln Leu Gln Gly Thr Glu Gly Trp Leu Glu Ala Thr

-25 Gln Leu Gly Arg Gly Leu Leu Ser Ala Cys Ala Pro Trp Gly Asp Gly -10 Ser Thr Gln Pro Val Pro Leu Cys Ser 1 5 <210> 165 <211> 98 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -15..-1 <400> 165 Met Glu Ala Met Trp Leu Leu Cys Val Ala Leu Ala Val Leu Ala Trp -15 -10 -5 Gly Phe Leu Trp Val Trp Asp Ser Ser Glu Arg Met Lys Ser Arg Glu Gln Gly Gly Arg Leu Gly Ala Glu Ser Arg Thr Leu Leu Val Ile Ala 25 His Pro Asp Asp Glu Ala Met Phe Phe Ala Pro Thr Val Leu Gly Leu 40 45 Ala Arg Leu Arg His Trp Val Tyr Leu Leu Cys Phe Ser Ala Val Phe 55 60 Arg Arg Glu Leu Ser Glu Tyr Thr Glu Gly Leu Thr Ser Glu Pro Leu 75 Thr Ala <210> 166 <211> 92 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -36..-1 Met Leu Val Thr Gln Gly Leu Val Tyr Gln Gly Tyr Leu Ala Ala Asn -30 Ser Arg Phe Gly Ser Leu Pro Lys Val Ala Leu Ala Gly Leu Leu Gly - 5 -15 -10 Phe Gly Leu Gly Lys Val Ser Tyr Ile Gly Val Cys Gln Ser Lys Phe 1 5 10 His Phe Phe Glu Asp Gln Leu Arg Gly Ala Gly Phe Gly Pro Gln His 15 20 25 Asn Arg His Cys Leu Leu Thr Cys Glu Glu Cys Lys Ile Lys His Gly 35

Leu Ser Glu Lys Gly Asp Ser Gln Pro Ser Ala Ser 45 50 55

<210> 167

<211> 351

<212> PRT

WO 99/31236 -126- PCT/IB98/02122 -

<220> <221> SIGNAL <222> -16..-1 <400> 167 Met Val Pro Phe Ile Tyr Leu Gln Ala His Phe Thr Leu Cys Ser Gly -10 Trp Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val Tyr Val Pro Tyr 10 Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp Leu Val Ser Ile 25 Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile Ala Ala Ile Thr 40 Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp Glu Gly Ile Leu 55 Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp Ser Pro Glu Pro 70 Phe Phe Asp Ser Leu Val Lys Gln Thr His Val Pro Asn Leu Phe Ser 85 90 Leu Gln Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln Ser Glu Val Leu 105 Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile Asp His Ser Leu 120 125 Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr 135 140 Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln Asp Leu Lys Met 150 155 Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr 170 175 165 Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala Ala Val Lys Ser 180 185 Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu 205 200 Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile 215 220 Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val Thr Asn Gln Ser 235 230 Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp 250 245 Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala Ile Ser Gln Ser 260 265 Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu Gly Phe Tyr Val 280 Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala Val Ser Ala Cys 295 His Val His Asp Glu Phe Arg Thr Ala Ala Val Glu Gly Pro Phe Cys 315 310 His Leu Gly His Gly Arg Leu Trp Leu Gln His Ser Thr Asp Arg 330

<210> 168 <211> 138 <212> PRT <213> Homo sapiens <220> <221> SIGNAL

<222> -47..-1

<213> Homo sapiens

<400> 168 Met Glu Lys Phe Val Asp Pro Gly Asn His Asn Ser Gly Ile Asp Leu ~40 -35 Leu Arg Thr Tyr Leu Trp Arg Cys Gln Phe Leu Leu Pro Phe Val Ser -25 -20 Leu Gly Leu Met Cys Phe Gly Ala Leu Ile Gly Leu Cys Ala Cys Ile -10 - 5. Cys Arg Ser Leu Tyr Pro Thr Ile Ala Thr Gly Ile Leu His Leu Leu 10 Ala Gly Leu Cys Thr Leu Gly Ser Val Ser Cys Tyr Val Ala Gly Ile 25 Glu Leu Leu His Gln Lys Leu Glu Leu Pro Asp Asn Val Ser Gly Glu 40 Phe Gly Trp Ser Phe Cys Leu Ala Cys Val Ser Ala Pro Leu Gln Phe 55 60 Met Ala Ser Ala Leu Phe Ile Trp Ala Ala His Thr Asn Arg Arg Glu 70 75 Tyr Thr Leu Met Lys Ala Tyr Arg Val Ala 85

<210> 169 <211> 101 <212> PRT <213> Homo sapiens <221> SIGNAL <222> -73..-1 <400> 169 Met Asn Leu Glu Arg Val Ser Asn Glu Glu Lys Leu Asn Leu Cys Arg -65 -70 Lys Tyr Tyr Leu Gly Gly Phe Ala Phe Leu Pro Phe Leu Trp Leu Val -50 Asn Ile Phe Trp Phe Tyr Arg Glu Ala Phe Leu Val Pro Ala Tyr Thr -35 -30 Glu Gln Ser Gln Ile Lys Gly Tyr Val Trp Arg Ser Ala Val Gly Phe -15 -20 Leu Phe Trp Val Ile Val Leu Thr Ser Trp Ile Thr Ile Phe Gln Ile -5 1 Tyr Arg Pro Arg Trp Gly Ala Leu Gly Asp Tyr Leu Ser Phe Thr Ile 10 15

<210> 170 <211> 252 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -68..-1

Pro Leu Gly Thr Pro

25

<400> 170
Met Pro Glu Gly Pro Glu Leu His Leu Ala Ser Gln Phe Val Asn Glu
-65 -60 -55

Ala Cys Arg Ala Leu Val Phe Gly Gly Cys Val Glu Lys Ser Ser Val -45 Ser Arg Asn Pro Glu Val Pro Phe Glu Ser Ser Ala Tyr Arg Ile Ser -25 -30 -35 Ala Ser Ala Arg Gly Lys Glu Leu Arg Leu Ile Leu Ser Pro Leu Pro -15 -10 Gly Ala Gln Pro Gln Gln Glu Pro Leu Ala Leu Val Phe Arg Phe Gly Met Ser Gly Ser Phe Gln Leu Val Pro Arg Glu Glu Leu Pro Arg His 20 Ala His Leu Arg Phe Tyr Thr Ala Pro Pro Gly Pro Arg Leu Ala Leu 35 Cys Phe Val Asp Ile Arg Arg Phe Gly Arg Trp Asp Leu Gly Gly Lys 50 Trp Gln Pro Gly Arg Gly Pro Cys Val Leu Gln Glu Tyr Gln Gln Phe 70 Arg Glu Asn Val Leu Arg Asn Leu Ala Asp Lys Ala Phe Asp Arg Pro 85 Ile Cys Glu Ala Leu Leu Asp Gln Arg Phe Phe Asn Gly Ile Gly Asn 100 Tyr Leu Arg Ala Glu Ile Leu Tyr Arg Leu Lys Ile Pro Pro Phe Glu 120 115 Lys Ala Arg Ser Val Leu Glu Ala Leu Gln Gln His Arg Pro Ser Pro 135 130 Glu Leu Thr Leu Ser Gln Lys Ile Arg Thr Lys Leu Gln Asn Ser Asp 150 Leu Leu Glu Leu Cys His Ser Val Pro Lys Glu Val Val Gln Leu Gly 165 Glu Ala Lys Asp Gly Ser Asn Leu Cys Phe Ser Lys

<210> 171 <211> 350 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -68..-1

<400> 171 Met Pro Glu Gly Pro Glu Leu His Leu Ala Ser Gln Phe Val Asn Glu -55 -60 Ala Cys Arg Ala Leu Val Phe Gly Gly Cys Val Glu Lys Ser Ser Val -45 -40 -50 Ser Arg Asn Pro Glu Val Pro Phe Glu Ser Ser Ala Tyr Arg Ile Ser -30 -25 Ala Ser Ala Arg Gly Lys Glu Leu Arg Leu Ile Leu Ser Pro Leu Pro -15 -10 Gly Ala Gln Pro Gln Gln Glu Pro Leu Ala Leu Val Phe Arg Phe Gly 5 Met Ser Gly Ser Phe Gln Leu Val Pro Arg Glu Glu Leu Pro Arg His 20 Ala His Leu Arg Phe Tyr Thr Ala Pro Pro Gly Pro Arg Leu Ala Leu 40 35 Cys Phe Val Asp Ile Arg Arg Phe Gly Arg Trp Asp Leu Gly Gly Lys 55 50 Trp Gln Pro Gly Arg Gly Pro Cys Val Leu Gln Glu Tyr Gln Gln Phe 70 Arg Leu Lys Ile Pro Pro Phe Glu Lys Ala Arg Ser Val Leu Glu Ala

85 Leu Gln Gln His Arg Pro Ser Pro Glu Leu Thr Leu Ser Gln Lys Ile 105 100 Arg Thr Lys Leu Gln Asn Pro Asp Leu Leu Glu Leu Cys His Ser Val 115 Pro Lys Glu Val Asp Gln Leu Gly Gly Arg Gly Tyr Gly Ser Glu Ser 135 130 Gly Glu Glu Asp Phe Ala Ala Phe Arg Ala Trp Leu Arg Cys Tyr Gly 145 150 Met Pro Gly Met Ser Ser Leu Gln Asp Arg His Gly Arg Thr Ile Trp 165 Phe Gln Gly Asp Pro Gly Pro Leu Ala Pro Lys Gly Arg Lys Ser Arg 175 180 Lys Lys Lys Ser Lys Ala Thr Gln Leu Ser Pro Glu Asp Arg Val Glu 200 195 Asp Ala Leu Pro Pro Ser Lys Ala Pro Ser Lys Thr Arg Arg Ala Lys 215 210 Arg Asp Leu Pro Lys Arg Thr Ala Thr Gln Arg Pro Glu Gly Thr Ser 230 225 Leu Gln Gln Asp Pro Glu Ala Pro Thr Val Pro Lys Lys Gly Arg Arg 240 245 Lys Gly Arg Gln Ala Ala Ser Gly His Cys Arg Pro Arg Lys Val Lys 260 Ala Asp Ile Pro Ser Leu Glu Pro Glu Gly Thr Ser Ala Ser 275

<210> 172 <211> 390 <212> PRT <213> Homo sapiens

<220>
<221> SIGNAL
<222> -68..-1

<400> 172

Met Pro Glu Gly Pro Glu Leu His Leu Ala Ser Gln Phe Val Asn Glu -65 -60 Ala Cys Arg Ala Leu Val Phe Gly Gly Cys Val Glu Lys Ser Ser Val -45 -40 Ser Arg Asn Pro Glu Val Pro Phe Glu Ser Ser Ala Tyr Arg Ile Ser -30 -25 Ala Ser Ala Arg Gly Lys Glu Leu Arg Leu Ile Leu Ser Pro Leu Pro -15 -10 Gly Ala Gln Pro Gln Gln Glu Pro Leu Ala Leu Val Phe Arg Phe Gly 1 Met Ser Gly Ser Phe Gln Leu Val Pro Arg Glu Glu Leu Pro Arg His 15 20 Ala His Leu Arg Phe Tyr Thr Ala Pro Pro Gly Pro Arg Leu Ala Leu 35 Cys Phe Val Asp Ile Arg Arg Phe Gly Arg Trp Asp Leu Gly Gly Lys 55 50 Trp Gln Pro Gly Arg Gly Pro Cys Val Leu Gln Glu Tyr Gln Gln Phe 70 Arg Glu Asn Val Leu Arg Asn Leu Ala Asp Lys Ala Phe Asp Arg Pro 85 Ile Cys Glu Ala Leu Leu Asp Gln Arg Phe Phe Asn Gly Ile Gly Asn 100 Tyr Leu Arg Ala Glu Ile Leu Tyr Arg Leu Lys Ile Pro Pro Phe Glu 115 120

Lys Ala Arg Ser Val Leu Glu Ala Leu Gln Gln His Arg Pro Ser Pro 135 130 Glu Leu Thr Leu Ser Gln Lys Ile Arg Thr Lys Leu Gln Asn Pro Asp 150 145 Leu Leu Glu Leu Cys His Ser Val Pro Lys Glu Val Val Gln Leu Gly 165 160 Gly Arg Gly Tyr Gly Ser Glu Ser Gly Glu Glu Asp Phe Ala Ala Phe 180 Arg Ala Trp Leu Arg Cys Tyr Gly Met Pro Gly Met Ser Ser Leu Gln 200 195 Asp Arg His Gly Arg Thr Ile Trp Phe Gln Gly Asp Pro Gly Pro Leu 215 210 Ala Pro Lys Gly Arg Lys Ser Arg Lys Lys Ser Lys Ala Thr Gln 230 225 Leu Ser Pro Glu Asp Arg Val Glu Asp Ala Leu Pro Pro Ser Lys Ala 245 Pro Ser Arg Thr Arg Arg Ala Lys Arg Asp Leu Pro Lys Arg Thr Ala 265 260 Thr Gln Arg Pro Glu Gly Thr Ser Leu Gln Gln Asp Pro Glu Ala Pro 275 280 Thr Val Pro Lys Lys Gly Arg Arg Lys Gly Arg Gln Ala Ala Ser Gly 295 290 His Cys Arg Pro Arg Lys Val Lys Ala Asp Ile Pro Ser Leu Glu Pro 305 Glu Gly Thr Ser Ala Ser 320

<210> 173 <211> 190 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -82..-1 <400> 173 Met Tyr Val Trp Pro Cys Ala Val Val Leu Ala Gln Tyr Leu Trp Phe -75 -70 His Arg Arg Ser Leu Pro Gly Lys Ala Ile Leu Glu Ile Gly Ala Gly -60 -55 Val Ser Leu Pro Gly Ile Leu Thr Ala Lys Cys Gly Ala Glu Val Ile -45 -40 Leu Ser Asp Ser Ser Glu Leu Pro His Cys Leu Glu Val Cys Arg Gln -25 -30 Ser Cys Gln Met Asn Asn Leu Pro His Leu Gln Val Val Gly Leu Thr -10 -15 Trp Gly His Ile Ser Trp Asp Leu Leu Ala Leu Pro Pro Gln Asp Ile 10 Ile Leu Ala Ser Asp Val Phe Phe Glu Pro Glu Asp Phe Glu Asp Ile 20 25 Leu Ala Thr Ile Tyr Phe Leu Met His Lys Asn Pro Lys Val Gln Leu 35 Trp Ser Thr Tyr Gln Val Arg Ser Ala Asp Trp Ser Leu Glu Ala Leu Leu Tyr Lys Trp Asp Met Lys Cys Val His Ile Pro Leu Glu Ser Phe 70

Asp Ala Asp Lys Glu Asp Ile Ala Glu Ser Thr Leu Pro Gly Arg His

80 85 90
Thr Val Glu Met Leu Val Ile Ser Phe Ala Lys Asp Ser Leu

100 105 95

<210> 174 <211> 285 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -232..-1 <400> 174 Met Gly Cys Val Phe Gln Ser Thr Glu Asp Lys Arg Ile Phe Lys Ile -230 -225 Asp Trp Thr Leu Ser Pro Gly Glu His Ala Lys Asp Glu Tyr Val Leu -215 -210 -205 Tyr Tyr Tyr Ser Asn Leu Ser Val Pro Ile Gly Arg Phe Gln Asn Arg -195 -190 Val His Leu Met Gly Asp Asn Leu Cys Asn Asp Gly Ser Leu Leu Leu -180 -175 Gln Asp Val Gln Glu Ala Asp Gln Gly Thr Tyr Ile Cys Glu Ile Arg -160 -165 -155 Leu Lys Gly Glu Ser Gln Val Phe Lys Lys Ala Val Val Leu His Val -140 -150 -145 Leu Pro Glu Glu Pro Lys Glu Leu Met Val His Val Gly Gly Leu Ile -130 -125 Gln Met Gly Cys Val Phe Gln Ser Thr Glu Val Lys His Val Thr Lys -115 -110 -105 Val Glu Trp Ile Phe Ser Gly Arg Arg Ala Lys Glu Glu Ile Val Phe -100 -95 Arg Tyr Tyr His Lys Leu Arg Met Ser Ala Glu Tyr Ser Gln Ser Trp -85 -80 -75 Gly His Phe Gln Asn Arg Val Asn Leu Val Gly Asp Ile Phe Arg Asn -65 Asp Gly Ser Ile Met Leu Gln Gly Val Arg Glu Ser Asp Gly Gly Asn -55 -50 Tyr Thr Cys Ser Ile His Leu Gly Asn Leu Val Phe Lys Lys Thr Ile -30 -35 Val Leu His Val Ser Pro Glu Glu Pro Arg Thr Leu Val Thr Pro Ala -15 -20 Ala Leu Arg Pro Leu Val Leu Gly Gly Asn Gln Leu Val Ile Ile Val -5 1 Gly Ile Val Cys Ala Thr Ile Leu Leu Leu Pro Val Leu Ile Leu Ile 10 20 15 Val Lys Lys Thr Cys Gly Asn Lys Ser Ser Val Asn Ser Thr Val Leu 35 30 Val Lys Asn Thr Lys Lys Thr Asn Pro Lys Lys Lys 45

<210> 175 <211> 153 <212> PRT <213> Homo sapiens

<400> 175 Met Gly Cys Val Phe Gln Ser Thr Val Asp Lys Cys Ile Phe Lys Ile 10 Asp Trp Thr Leu Ser Pro Gly Glu His Ala Lys Asp Glu Tyr Val Leu

-132-PCT/IB98/02122 - .

25 Tyr Tyr Tyr Ser Asn Leu Ser Val Pro Ile Gly Arg Phe Gln Asn Arg 40 Val His Leu Met Gly Asp Ile Leu Cys Asn Asp Gly Ser Leu Leu Leu 55 Gln Asp Val Gln Glu Ala Asp Gln Gly Thr Tyr Ile Cys Glu Ile Arg 70 Leu Lys Gly Glu Ser Gln Val Phe Lys Lys Ala Val Val Leu His Val 90 Leu Pro Glu Glu Pro Lys Glu Leu Met Val His Val Gly Gly Leu Ile 110 105 Gln Met Gly Cys Val Phe Gln Ser Thr Glu Val Lys His Val Thr Lys 125 120 Val Glu Trp Ile Phe Ser Gly Arg Arg Ala Lys Val Thr Arg Arg Lys 135 His His Cys Val Arg Glu Gly Ser Gly 150

<210> 176 <211> 49 <212> PRT <213> Homo sapiens

WO 99/31236

<400> 176 Met Leu Xaa Gly Asp His Arg Ala Leu Leu Leu Lys Ile Trp Leu Leu Gln Arg Pro Glu Ser Gln Glu Gly Leu Leu Pro Gly Arg Leu Val Val 25 Met Glu Arg Arg Val Lys Met Thr Ser Cys Pro Ser Cys Pro Arg Phe 45 Cys

<210> 177 <211> 99 <212> PRT <213> Homo sapiens

<220> <221> SIGNAL <222> -24..-1

<400> 177 Met Lys Ser Ala Lys Leu Gly Phe Leu Leu Arg Phe Phe Ile Phe Cys -15 -20 Ser Leu Asn Thr Leu Leu Leu Gly Gly Val Asn Lys Ile Ala Glu Lys -5 Ile Cys Gly Asp Leu Lys Asp Pro Cys Lys Leu Asp Met Asn Phe Gly 15 Ser Cys Tyr Glu Val His Phe Arg Tyr Phe Tyr Asn Arg Thr Ser Lys 35 30 Arg Cys Glu Thr Phe Val Phe Ser Gly Cys Asn Gly Asn Leu Asn Asn 50 45 Phe Lys Leu Lys Ile Glu Arg Glu Val Ala Cys Val Ala Lys Tyr Lys Pro Pro Arg

<210> 178 <211> 95 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -37..-1 <400> 178 Met Ala Ser Pro Ala Val Asn Arg Trp Lys Arg Pro Arg Leu Lys Pro -35 -30 Val Trp Pro Arg Arg Leu Glu Ser Trp Leu Leu Leu Asp Ala Leu Leu -20 -15 -10 Arg Leu Gly Asp Thr Lys Lys Lys Arg Gln Pro Glu Ala Ala Thr Lys Ser Cys Val Arg Ser Ser Cys Gly Gly Pro Ser Gly Asp Gly Pro Pro 20 Pro Cys Leu Gln Gln Pro Asp Pro Arg Ala Leu Ser Gln Ala Phe Ser 35 Arg Ser Phe Pro Leu Phe Pro Ser Leu Ala Gly Lys Ser Met Ile 50 <210> 179 <211> 121 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -23..-1 <400> 179 Met Met Leu Pro Gln Trp Leu Leu Leu Phe Leu Leu Phe Phe Phe -15 -20 Leu Phe Leu Leu Thr Arg Gly Ser Leu Ser Pro Thr Lys Tyr Asn Leu -5 5 Leu Glu Leu Lys Glu Ser Cys Ile Arg Asn Gln Asp Cys Glu Thr Gly 15 20 Cys Cys Gln Arg Ala Pro Asp Asn Cys Glu Ser His Cys Ala Glu Lys 30 35 Gly Ser Glu Gly Ser Leu Cys Gln Thr Gln Val Phe Phe Gly Gln Tyr 50 45 Arg Ala Cys Pro Cys Leu Arg Asn Leu Thr Cys Ile Tyr Ser Lys Asn 60 65 Glu Lys Trp Leu Ser Ile Ala Tyr Gly Arg Cys Gln Lys Ile Gly Arg 85 80 Gln Lys Leu Ala Lys Lys Met Phe Phe <210> 180

210> 10

<211> 59

<212> PRT

<213> Homo sapiens

<400> 180

Met Ile Leu Cys Phe Leu Leu Pro His His Arg Leu Gln Glu Ala Arg

10 15
Gln Ile Gln Val Leu Lys Met Leu Pro Arg Glu Lys Leu Arg Arg Arg
20 25 30
Glu Glu Arg Lys Gln Ile Asn Gly Lys Lys Glu Arg Thr Lys Tyr Glu
35
Thr Pro Arg Lys Arg Glu Gly Lys Lys Lys Lys
50 55

<211> 86 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -14..-1 <400> 181 Met Val Ala Leu Asn Leu Ile Leu Val Pro Cys Cys Ala Ala Trp Cys -5 -10 Asp Pro Arg Arg Ile His Ser Gln Asp Asp Val Pro Arg Ser Ser Ala 15 10 Ala Asp Thr Gly Ser Ala Met Gln Arg Arg Glu Ala Trp Ala Gly Trp 25 Arg Arg Ser Gln Pro Phe Ser Val Gly Leu Pro Ser Ala Glu Arg Leu 45 40 Glu Asn Gln Pro Gly Lys Leu Ser Trp Arg Ser Leu Val Gly Glu Gly ... 60 55 Tyr Arg Ile Cys Asp Leu 70

<210> 182 <211> 165 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -58..-1

<210> 181

<400> 182 Met Thr Arg Leu Cys Leu Pro Arg Pro Glu Ala Arg Glu Asp Pro Ile -45 -50 Pro Val Pro Pro Arg Gly Leu Gly Ala Gly Glu Gly Ser Gly Ser Pro -35 -30 Val Arg Pro Pro Val Ser Thr Trp Gly Pro Ser Trp Ala Gln Leu Leu -20 -15 Asp Ser Val Leu Trp Leu Gly Ala Leu Gly Leu Thr Ile Gln Ala Val 1 -5 Phe Ser Thr Thr Gly Pro Ala Leu Leu Leu Leu Val Ser Phe Leu 15 10 Thr Phe Asp Leu Leu His Arg Pro Ala Gly His Thr Leu Pro Gln Arg 30 Lys Leu Leu Thr Arg Gly Gln Ser Gln Gly Ala Gly Glu Gly Pro Gly 45 50 Gln Gln Glu Ala Leu Leu Gln Met Gly Thr Val Ser Gly Gln Leu 65 60 Ser Leu Gln Asp Ala Leu Leu Leu Leu Leu Met Gly Leu Gly Pro Leu

To Solve The Leu Leu Gly Leu Ala Phe Cys 90 95 100

Leu His Pro Trp Ala 105

<210> 183 <211> 80 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -35..-1 <400> 183 Met Pro Phe Gln Phe Gly Thr Gln Pro Arg Arg Phe Pro Val Glu Gly -35 -30 -25 -20 Gly Asp Ser Ser Ile Glu Leu Glu Pro Gly Leu Ser Ser Ser Ala Ala -5 -10 -15 Cys Asn Gly Lys Glu Met Ser Pro Thr Arg Gln Leu Arg Arg Cys Pro 5 10 Gly Ser His Cys Leu Thr Ile Thr Asp Val Pro Val Thr Val Tyr Ala

Thr Thr Arg Lys Pro Pro Ala Gln Ser Ser Lys Glu Met His Pro Lys

25

40

20

35

<210> 184 <211> 73 <212> PRT <213> Homo sapiens <220> <221> SIGNAL

<222> -21..-1

15

<400> 184 Met Ala Pro Gln Thr Leu Leu Pro Val Leu Val Leu Cys Val Leu Leu -15 -10 Leu Gln Ala Gln Gly Gly Tyr Arg Asp Lys Met Arg Met Gln Arg Ile -5 1 Lys Val Cys Glu Lys Arg Pro Ser Ile Asp Leu Cys Ile His His Cys 20 15 Ser Cys Phe Gln Lys Cys Glu Thr Asn Lys Ile Cys Cys Ser Ala Phe 35 30 Cys Gly Asn Ile Cys Met Ser Ile Leu 45 50

10

<210> 185
<211> 98
<212> PRT
<213> Homo sapiens
<400> 185
Met Leu Gly Ala Glu Thr Glu Glu Lys Leu Phe Asp Ala Pro Leu Ser

WO 99/31236 -136- PCT/IB98/02122 -

<210> 186
<211> 112
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -21..-1

<400> 186 Met Glu Ser Arg Val Leu Leu Arg Thr Phe Cys Leu Ile Phe Gly Leu -15 -20 Gly Ala Val Trp Gly Leu Gly Val Asp Pro Ser Leu Gln Ile Asp Val 5 1 Leu Thr Glu Leu Glu Leu Gly Glu Ser Thr Thr Gly Val Arg Gln Val 20 25 15 Pro Gly Leu His Asn Gly Thr Lys Ala Phe Leu Phe Gln Asp Thr Pro 35 Arg Ser Ile Lys Ala Ser Thr Ala Thr Ala Glu Gln Phe Phe Gln Lys 50 Leu Arg Asn Lys His Glu Phe Thr Ile Leu Val Thr Leu Lys Gln Thr 65 His Leu Asn Ser Gly Val Ile Leu Ser Ile His His Leu Asp His Arg 85

<210> 187 <211> 70 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -44..-1 <400> 187 Met Cys Cys Tyr Cys Arg Ile Phe Cys Leu Arg Cys Thr Tyr Phe Pro -40 -35 Val His Cys Gly Met Cys Asn Leu Arg Tyr Phe Glu Phe Ser Thr Phe -20 -15 -25 Leu Leu Ser Leu Ser Leu Ile Thr Tyr Cys Phe Trp Asp Pro Pro His ~5 1 Arg Gly Ser His Ser Leu Ser Leu Glu His Thr Pro Leu Asp Phe Leu 15 10 Glu Trp Gly Leu Leu Arg

```
<210> 188
<211> 92
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -13..-1
<400> 188
Met Leu Phe Ser Leu Ser Leu Leu Ser Asn Leu Asn Gln Ile Gly Ser
Ser His Leu Asp Arg Pro His Ile Pro Gly Gln Ser Ala Gln Leu Phe
                       10
Ile Tyr Gln Met Ser Ser Gln Gln Leu Gln Gln Gln Pro Ser Ala Asn
                   25
Lys Lys Ala Gly Lys Ile His Asn Thr Pro Phe Ala Asn Gln Leu Asn
               40
```

55

<210> 189 <211> 207 <212> PRT <213> Homo sapiens

70

<220> <221> SIGNAL

<222> -42..-1 <400> 189

Met His Ile Leu Gln Leu Leu Thr Thr Val Asp Asp Gly Ile Gln Ala -35 -30 Ile Val His Cys Pro Asp Thr Gly Lys Asp Ile Trp Asn Leu Leu Phe -15 -20 Asp Leu Val Cys His Glu Phe Cys Gln Ser Asp Asp Pro Pro Ile Ile 1 -5 Leu Gln Glu Gln Lys Thr Val Leu Ala Ser Val Phe Ser Val Leu Ser 10 15 Ala Ile Tyr Ala Ser Gln Thr Glu Gln Glu Tyr Leu Lys Ile Glu Lys 35 30 25 Val Asp Leu Pro Leu Ile Asp Ser Leu Ile Arg Val Leu Gln Asn Met 45 50 Glu Gln Cys Gln Lys Lys Pro Glu Asn Ser Ala Glu Ser Asn Thr Glu 65 60 Glu Thr Lys Arg Thr Asp Leu Thr Gln Asp Asp Leu His Leu Lys Ile 80 75 Leu Lys Asp Ile Leu Cys Glu Phe Leu Ser Asn Ile Phe Gln Ala Leu 95 90 Thr Lys Glu Thr Val Ala Gln Gly Val Lys Glu Gly Gln Leu Ser Lys 115 110 Gln Lys Cys Ser Ser Ala Phe Gln Asn Leu Leu Pro Phe Tyr Ser Pro 125 130 120 Val Val Glu Asp Phe Ile Lys Ile Leu Arg Glu Val Asp Lys Ala Leu 145 140 Ala Asp Asp Leu Glu Lys Asn Phe Pro Ser Leu Lys Val Gln Thr

-5

Pro Thr Gln His Leu Ala Lys Pro Phe Gln Gln Ile Leu Pro Gly Arg 60

Gln Ser Gly Ser Leu Thr Ser Pro Phe Leu Ala Cys

30

WO 99/31236 -138- PCT/IB98/02122

155 160 165

<210> 190 <211> 201 <212> PRT <213> Homo sapiens

_

<400> 190 Met Gln Val Ala Leu Lys Glu Asp Leu Asp Ala Leu Lys Glu Lys Phe Arg Thr Met Glu Ser Asn Gln Lys Ser Ser Phe Gln Glu Ile Pro Lys Leu Asn Glu Glu Leu Leu Ser Lys Gln Lys Gln Leu Glu Lys Ile Glu Ser Gly Glu Met Gly Leu Asn Lys Val Trp Ile Asn Ile Thr Glu Met Asn Lys Gln Ile Ser Leu Leu Thr Ser Ala Val Asn His Leu Lys Ala 75 70 Asn Val Lys Ser Ala Ala Asp Leu Ile Ser Leu Pro Thr Thr Val Glu 90 Gly Leu Gln Lys Ser Val Ala Ser Ile Gly Asn Thr Leu Asn Ser Val 105 100 His Leu Ala Val Glu Ala Leu Gln Lys Thr Val Asp Glu His Lys Lys 120 Thr Met Glu Leu Leu Gln Ser Asp Met Asn Gln His Phe Leu Lys Glu 135 140 Thr Pro Gly Ser Asn Gln Ile Ile Pro Ser Pro Ser Ala Thr Ser Glu 155 150 Leu Asp Asn Lys Thr His Ser Glu Asn Leu Lys Gln Met Gly Asp Arg 170 165 Ser Ala Thr Leu Lys Arg Gln Ser Leu Asp Gln Val Thr Asn Arg Thr 185 Asp Thr Val Lys Ile Gln Lys Lys

<210> 191 <211> 379 <212> PRT <213> Homo sapiens <220>

<221> SIGNAL <222> -37..-1

<400> 191 Met Pro His Ser Ser Leu His Pro Ser Ile Pro Cys Pro Arg Gly His -30 -25 Gly Ala Gln Lys Ala Ala Leu Val Leu Leu Ser Ala Cys Leu Val Thr -15 -10 Leu Trp Gly Leu Gly Glu Pro Pro Glu His Thr Leu Arg Tyr Leu Val 5 Leu His Leu Ala Ser Leu Gln Leu Gly Leu Leu Asn Gly Val Cys 20 Ser Leu Ala Glu Glu Leu Arg His Ile His Ser Arg Tyr Arg Gly Ser 35 40 Tyr Trp Arg Thr Val Arg Ala Cys Leu Gly Cys Pro Leu Arg Arg Gly 50 Ala Leu Leu Leu Ser Ile Tyr Phe Tyr Tyr Ser Leu Pro Asn Ala

65 Val Gly Pro Pro Phe Thr Trp Met Leu Ala Leu Leu Gly Leu Ser Gln 80 Ala Leu Asn Ile Leu Leu Gly Leu Lys Gly Leu Ala Pro Ala Glu Ile 100 Ser Ala Val Cys Glu Lys Gly Asn Phe Asn Val Ala His Gly Leu Ala 115 120 Trp Ser Tyr Tyr Ile Gly Tyr Leu Arg Leu Ile Leu Pro Glu Leu Gln 135 130 Ala Arg Ile Arg Thr Tyr Asn Gln His Tyr Asn Asn Leu Leu Arg Gly 150 145 Ala Val Ser Gln Arg Leu Tyr Ile Leu Leu Pro Leu Asp Cys Gly Val 165 160 Pro Asp Asn Leu Ser Met Ala Asp Pro Asn Ile Arg Phe Leu Asp Lys 180 175 Leu Pro Gln Gln Thr Gly Asp Arg Ala Gly Ile Lys Asp Arg Val Tyr 195 Ser Asn Ser Ile Tyr Glu Leu Leu Glu Asn Gly Gln Arg Ala Gly Thr 210 215 Cys Val Leu Glu Tyr Ala Thr Pro Leu Gln Thr Leu Phe Ala Met Ser 230 225 Gln Tyr Ser Gln Ala Gly Phe Ser Arg Glu Asp Arg Leu Glu Gln Ala 245 240 Lys Leu Phe Cys Arg Thr Leu Glu Asp Ile Leu Ala Asp Ala Pro Glu 260 255 Ser Gln Asn Asn Cys Arg Leu Ile Ala Tyr Gln Glu Pro Ala Asp Asp 275 280 Ser Ser Phe Ser Leu Ser Gln Glu Val Leu Arg His Leu Arg Gln Glu 295 290 Glu Lys Glu Glu Val Thr Val Gly Ser Leu Lys Thr Ser Ala Val Pro 310 305 Ser Thr Ser Thr Met Ser Gln Glu Pro Glu Leu Leu Ser Gly Met 325 320 Gly Lys Pro Leu Pro Leu Arg Thr Asp Phe Ser 335

<210> 192 <211> 112 <212> PRT <213> Homo sapiens

<400> 192 Met Pro Ser Glu Gly Arg Cys Trp Glu Thr Leu Lys Ala Leu Arg Ser 10 Ser Asp Lys Gly Arg Leu Cys Tyr Tyr Arg Asp Trp Leu Leu Arg Arg 25 2.0 Glu Asp Val Leu Glu Glu Cys Met Ser Leu Pro Lys Leu Ser Ser Tyr 40 Ser Gly Trp Val Val Glu His Val Leu Pro His Met Gln Glu Asn Gln Pro Leu Ser Glu Thr Ser Pro Ser Ser Thr Ser Ala Ser Ala Leu Asp 75 70 Gln Pro Ser Phe Val Pro Lys Ser Pro Asp Ala Ser Ser Ala Phe Ser 90 Pro Ala Ser Pro Ala Thr Pro Asn Gly Thr Lys Gly Lys Lys Lys 105

<211> 43 <212> PRT <213> Homo sapiens Ser Leu Pro Gln Ala Leu Trp Phe Gln Phe Phe Tyr His Ser Gly Ser 10 Ser Leu Glu Ser Pro Gly Met Leu Asn Gly Pro Phe Gln His Arg Asn 25 Ser Arg Ile Met Thr His Arg Ser Ala Glu Lys 35 <210> 194 <211> 51 <212> PRT <213> Homo sapiens <220> <221> SIGNAL . <222> -16..-1 <400> 194 Met Leu Arg Ile Ala Leu Thr Leu Ile Pro Ser Met Leu Ser Arg Ala -10 Ala Gly Trp Cys Trp Tyr Lys Glu Pro Thr Gln Gln Phe Ser Tyr Leu 5 10 Cys Leu Pro Cys Leu Ser Trp Asn Lys Lys Gly Asn Val Leu Gln Leu 25 20 Pro Asn Phe 35 <210> 195 <211> 244 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -18..-1 <400> 195 Met Ala Asn Pro Lys Leu Leu Gly Leu Glu Leu Ser Glu Ala Glu Ala -10 Ile Gly Ala Asp Ser Ala Arg Phe Glu Glu Leu Leu Gln Ala Ser Lys Glu Leu Gln Gln Ala Gln Thr Thr Arg Pro Glu Ser Thr Gln Ile 20 25 Gln Pro Gln Pro Gly Phe Cys Ile Lys Thr Asn Ser Ser Glu Gly Lys 40 Val Phe Ile Asn Ile Cys His Ser Pro Ser Ile Pro Pro Pro Ala Asp 55 Val Thr Glu Glu Leu Leu Gln Met Leu Glu Glu Asp Gln Ala Gly 70 Phe Arg Ile Pro Met Ser Leu Gly Glu Pro His Ala Glu Leu Asp Ala

85

100

Lys Gly Gln Gly Cys Thr Ala Tyr Asp Val Ala Val Asn Ser Asp Phe

Tyr Arg Arg Met Gln Asn Ser Asp Phe Leu Arg Glu Leu Val Ile Thr

90

120 115 Ile Ala Arg Glu Gly Leu Glu Asp Ile Tyr Asn Leu Gln Leu Asn Pro 130 135 Glu Trp Arg Met Met Lys Asn Arg Pro Phe Met Gly Ser Ile Ser Gln 150 Gln Asn Ile Arg Ser Glu Gln Arg Pro Arg Ile Gln Glu Leu Gly Asp 165 170 Leu Tyr Thr Pro Ala Pro Gly Arg Ala Glu Ser Gly Pro Glu Lys Pro 185 180 His Leu Asn Leu Trp Leu Glu Ala Pro Asp Leu Leu Leu Ala Glu Val 195 200 Asp Leu Pro Lys Leu Asp Gly Ala Leu Gly Leu Ser Leu Glu Ile Gly 215 210 Arg Thr Ala Trp 225

<210> 196 <211> 353 <212> PRT <213> Homo sapiens <220> <221> SIGNAL

<222> -34..-1

<400> 196 Met Glu Arg Gly Leu Lys Ser Ala Asp Pro Arg Asp Gly Thr Gly Tyr -30 -25 -20 Thr Gly Trp Ala Gly Ile Ala Val Leu Tyr Leu His Leu Tyr Asp Val ~5 -10 -15 Phe Gly Asp Pro Ala Tyr Leu Gln Leu Ala His Gly Tyr Val Lys Gln 1 5 10 Ser Leu Asn Cys Leu Thr Lys Arg Ser Ile Thr Phe Leu Cys Gly Asp 25 20 Ala Gly Pro Leu Ala Val Ala Ala Val Leu Tyr His Lys Met Asn Asn 40 35 Glu Lys Gln Ala Glu Asp Cys Ile Thr Arg Leu Ile His Leu Asn Lys 55 Ile Asp Pro His Ala Pro Asn Glu Met Leu Tyr Gly Arg Ile Gly Tyr 70 75

Ile Tyr Ala Leu Leu Phe Val Asn Lys Asn Phe Gly Val Glu Lys Thr 85 90 Pro Gln Ser His Ile Gln Gln Ile Cys Glu Thr Ile Leu Thr Ser Gly 100 105 Glu Asn Leu Ala Arg Lys Arg Asn Phe Thr Ala Lys Ser Pro Leu Met 115 120 Tyr Glu Trp Tyr Gln Glu Tyr Tyr Val Gly Ala Ala His Gly Leu Ala 130 135 Gly Ile Tyr Tyr Leu Met Gln Pro Ser Leu Gln Val Ser Gln Gly 150 155 145 Lys Leu His Ser Leu Val Lys Pro Ser Val Asp Tyr Val Cys Gln Leu 165 170 Lys Phe Pro Ser Gly Asn Tyr Pro Pro Cys Ile Gly Asp Asn Arg Asp 185 180 Leu Leu Val His Trp Cys His Gly Ala Pro Gly Val Ile Tyr Met Leu 195 200

Ile Gln Ala Tyr Lys Val Phe Arg Glu Glu Lys Tyr Leu Cys Asp Ala
210 215 220

Tyr Gln Cys Ala Asp Val Ile Trp Gln Tyr Gly Leu Leu Lys Lys Gly

Tyr Gly Leu Cys His Gly Ser Ala Gly Asn Ala Tyr Ala Phe Leu Thr
240

Leu Tyr Asn Leu Thr Gln Asp Met Lys Tyr Leu Tyr Arg Ala Cys Lys
255

Phe Ala Glu Trp Cys Leu Glu Tyr Gly Glu His Gly Cys Arg Thr
275

Asp Thr Pro Phe Ser Leu Phe Glu Gly Met Ala Gly Thr Ile Tyr Phe
290

Leu Ala Asp Leu Leu Val Pro Thr Lys Ala Arg Phe Pro Ala Phe Glu
305

Leu Ala Cys Lys
267

270

Asp Thr Pro Phe Ser Leu Phe Glu Gly Met Ala Gly Thr Ile Tyr Phe
290

300

Leu Ala Asp Leu Leu Val Pro Thr Lys Ala Arg Phe Pro Ala Phe Glu
305

<210> 197 <211> 30 <212> PRT <213> Homo sapiens

<210> 198
<211> 112
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -48..-1

<400> 198 Met Gln Asp Thr Gly Ser Val Val Pro Leu His Trp Phe Gly Phe Gly -40 -35 Tyr Ala Ala Leu Val Ala Ser Gly Gly Ile Ile Gly Tyr Val Lys Ala -25 -20 Gly Ser Val Pro Ser Leu Ala Ala Gly Leu Leu Phe Gly Ser Leu Ala -10 -5 Gly Leu Gly Ala Tyr Gln Leu Ser Gln Asp Pro Arg Asn Val Trp Val 10 15 Phe Leu Ala Thr Ser Gly Thr Leu Ala Gly Ile Met Gly Met Arg Phe 25 20 Tyr His Ser Gly Lys Phe Met Pro Ala Gly Leu Ile Ala Gly Ala Ser 40 Leu Leu Met Val Ala Lys Val Gly Val Ser Met Phe Asn Arg Pro His

<210> 199 <211> 54 <212> PRT <213> Homo sapiens

 Pro
 Arg
 Trp
 His
 Arg
 Leu
 Pro
 Pro
 Gln
 Ser
 Leu
 Gln
 His
 Gln
 Tyr

 Cys
 Gln
 Arg
 Arg
 Trp
 Pro
 Asp
 Arg
 Arg
 Cys
 Leu
 Gln
 Ser
 His
 Thr
 Gln

 Ser
 Ser
 Gly
 His
 Leu
 Pro
 40
 45
 45

<210> 200 <211> 151 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -21..-1 <400> 200 Met Ala Ala Ser Thr Ser Met Xaa Pro Val Ala Val Thr Ala Ala Val -15 -10 Ala Pro Val Leu Ser Ile Asn Ser Asp Phe Ser Asp Leu Arg Glu Ile Lys Lys Gln Leu Leu Leu Ile Ala Gly Leu Thr Arg Glu Arg Gly Leu 20 Leu His Ser Ser Lys Trp Ser Ala Glu Leu Ala Phe Ser Leu Pro Ala 35 Leu Pro Xaa Gly Gln Leu Gln Pro Pro Pro Pro Ile Thr Glu Glu Asp . .55 50 Ala Gln Asp Met Asp Ala Tyr Thr Leu Ala Lys Ala Tyr Phe Asp Val 70 Lys Glu Tyr Asp Arg Ala Ala His Phe Leu His Gly Cys Asn Ser Lys 80 85 Lys Ala Tyr Phe Leu Tyr Met Tyr Ser Arg Tyr Leu Val Arg Ala Ile 100 105 95 Leu Lys Cys His Ser Ala Phe Ser Glu Thr Ser Ile Phe Arg Thr Asn 115 110 Gly Lys Val Lys Ser Phe Lys

<210> 201 <211> 228 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -25..-1

125

 4400> 201

 Met Ser Met Ala Val Glu Thr Phe Gly Phe Phe Met Ala Thr Val Gly -25
 -20
 -15
 -10

 Leu Leu Met Leu Gly Val Thr Leu Pro Asn Ser Tyr Trp Arg Val Ser -5
 1
 5

 Thr Val His Gly Asn Val Ile Thr Thr Asn Thr Ile Phe Glu Asn Leu 10
 15
 20

 Trp Phe Ser Cys Ala Thr Asp Ser Leu Gly Val Tyr Asn Cys Trp Glu 25
 30
 35

 Phe Pro Ser Met Leu Ala Leu Ser Gly Tyr Ile Gln Ala Cys Arg Ala 40
 45
 50

Leu Met Ile Thr Ala Ile Leu Leu Gly Phe Leu Gly Leu Leu Gly Ile Ala Gly Leu Arg Cys Thr Asn Ile Gly Gly Leu Glu Leu Ser Arg Lys Ala Lys Leu Ala Ala Thr Ala Gly Ala Pro His Ile Leu Ala Gly Ile Cys Gly Met Val Ala Ile Ser Trp Tyr Ala Phe Asn Ile Thr Arg 110 115 Asp Phe Phe Asp Pro Leu Tyr Pro Gly Thr Lys Tyr Glu Leu Gly Pro 130 125 Ala Leu Tyr Leu Gly Trp Ser Ala Ser Leu Ile Ser Ile Leu Gly Gly 145 140 Leu Cys Leu Cys Ser Ala Cys Cys Cys Gly Ser Asp Glu Asp Pro Ala 160 165 155 Ala Ser Ala Arg Arg Pro Tyr Gln Ala Pro Val Ser Val Met Pro Val 180 175 Ala Thr Ser Asp Gln Glu Gly Asp Ser Ser Phe Gly Lys Tyr Gly Arg 190 Asn Ala Tyr Val

<210> 202 <211> 64 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -47..-1

<210> 203
<211> 146
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -31..-1
<400> 203

Met Met Trp Gln Lys Tyr Ala Gly Ser Arg Arg Ser Met Pro Leu Gly
-30 -25 -20

Ala Arg Ile Leu Phe His Gly Val Phe Tyr Ala Gly Gly Phe Ala Ile
-15 -10 -5 1

Val Tyr Tyr Leu Ile Gln Lys Phe His Ser Arg Ala Leu Tyr Tyr Lys
5 10 15

Leu Ala Val Glu Gln Leu Gln Ser His Pro Glu Ala Gln Glu Ala Leu
20 25 30

<210> 204 <211> 87 <212> PRT <213> Homo sapiens

<210> 205 <211> 40 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -27..-1

<210> 206 <211> 154 <212> PRT <213> Homo sapiens

<400> 206 Met Gly Ser Leu Ser Gly Leu Arg Leu Ala Ala Gly Ser Cys Phe Arg WO 99/31236

10 Leu Cys Glu Arg Asp Val Ser Ser Ser Leu Arg Leu Thr Arg Ser Ser 25 Asp Leu Lys Arg Ile Asn Gly Phe Cys Thr Lys Pro Gln Glu Ser Pro 40 Gly Ala Pro Ser Arg Thr Tyr Asn Arg Val Pro Leu His Lys Pro Thr 60 55 Asp Trp Gln Lys Lys Ile Leu Ile Trp Ser Gly Arg Phe Lys Lys Glu 75 70 Asp Glu Ile Pro Glu Thr Val Ser Leu Glu Met Leu Asp Ala Ala Lys 90 85 Asn Lys Met Arg Val Lys Ser Ser Tyr Leu Met Ile Ala Leu Thr Val 110 100 105 Val Gly Cys Ile Phe Met Val Ile Glu Gly Lys Lys Ala Ala Gln Arg 125 120 His Glu Thr Leu Thr Ser Leu Asn Leu Glu Lys Lys Ala Arg Leu Lys 135 Glu Glu Ala Ala Met Lys Ala Lys Thr Glu 150

<210> 207 <211> 101 <212> PRT

<213> Homo sapiens

<400> 207 Met Val Cys Glu Lys Cys Glu Lys Lys Leu Gly Thr Val Ile Thr Pro 10 Asp Thr Trp Lys Asp Gly Ala Arg Asn Thr Thr Glu Ser Gly Gly Arg 30 20 Lys Leu Asn Lys Asn Lys Ala Leu Thr Ser Lys Lys Ala Arg Phe Asp 45 40 Pro Tyr Gly Lys Asn Lys Phe Ser Thr Cys Arg Ile Cys Lys Ser Ser 55 Val His Gln Pro Gly Ser His Tyr Cys Gln Gly Cys Ala Tyr Lys Lys 75 70 Gly Ile Cys Ala Met Cys Gly Lys Lys Val Leu Asp Thr Lys Asn Tyr 90 85 Lys Gln Thr Ser Val 100

<210> 208 <211> 456 <212> PRT <213> Homo sapiens <220> <221> SIGNAL

<222> -22..-1

<400> 208 Met Phe Glu Glu Pro Glu Trp Ala Glu Ala Ala Pro Val Ala Ala Gly -15 -10 -20 Leu Gly Pro Val Ile Ser Arg Pro Pro Pro Ala Ala Ser Ser Gln Asn 1 Lys Gly Ser Lys Arg Arg Gln Leu Leu Ala Thr Leu Arg Ala Leu Glu 20 Ala Ala Ser Leu Ser Gln His Pro Pro Ser Leu Cys Ile Ser Asp Ser

```
35
Glu Glu Glu Glu Glu Arg Lys Lys Cys Pro Lys Lys Ala Ser
                                             55
                          50
Phe Ala Ser Ala Glu Val Gly Lys Lys Lys Lys Lys Cys
                      65
Gln Lys Gln Gly Pro Pro Cys Ser Asp Ser Glu Glu Glu Val Glu Arg
                                      85
                  80
Lys Lys Cys His Lys Gln Ala Leu Val Gly Ser Asp Ser Ala Glu
                                  100
               95
Asp Glu Lys Arg Lys Arg Lys Cys Gln Lys His Ala Pro Ile Asn Ser
                                                 120
                              115
           110
Ala Gln His Leu Asp Asn Val Asp Gln Thr Gly Pro Lys Ala Trp Lys
                                           . 135
                          130
       125
Gly Ser Thr Thr Asn Asp Pro Pro Lys Gln Ser Pro Gly Ser Thr Ser
                                         150
                       145
Pro Lys Pro Pro His Thr Leu Ser Arg Lys Gln Trp Arg Asn Arg Gln
                  160
                                     165
Lys Asn Lys Arg Arg Cys Lys Asn Lys Phe Gln Pro Pro Gln Val Pro
                                 180
               175
Asp Gln Ala Pro Ala Glu Ala Pro Thr Glu Lys Thr Glu Val Ser Pro
                             195
           190
Val Pro Arg Thr Asp Ser His Gly Ala Arg Ala Gly Ala Leu Arg Ala
                         210
                                              215
Arg Met Ala Gln Arg Leu Asp Gly Ala Arg Phe Arg Tyr Leu Asn Glu
                   225
                                          230
Gln Leu Tyr Ser Gly Pro Ser Ser Ala Ala Gln Arg Leu Phe Gln Glu
                  240
                                      245
Asp Pro Glu Ala Phe Leu Leu Tyr His Arg Gly Phe Gln Ser Gln Val
                                  260
               255
Lys Lys Trp Pro Leu Gln Pro Val Asp Arg Ile Ala Arg Asp Leu Arg
                               275
           270
Gln Arg Pro Ala Ser Leu Val Val Ala Asp Phe Gly Cys Gly Asp Cys
                                              295
                           290
Arg Leu Ala Ser Ser Ile Arg Asn Pro Val His Cys Phe Asp Leu Ala
                                          310
                       305
Ser Leu Asp Pro Arg Val Thr Val Cys Asp Met Ala Gln Val Pro Leu
                                      325
                   320
Glu Asp Glu Ser Val Asp Val Ala Val Phe Cys Leu Ser Leu Met Gly
                                   340
               335
Thr Asn Ile Arg Asp Phe Leu Glu Glu Ala Asn Arg Val Leu Lys Pro
            350
                               355
Gly Gly Leu Leu Lys Val Ala Glu Val Ser Ser Arg Phe Glu Asp Val
                                              375
                           370
Arg Thr Phe Leu Arg Ala Val Thr Lys Leu Gly Phe Lys Ile Val Ser
                                          390
                       385
Lys Asp Leu Thr Asn Ser His Phe Phe Leu Phe Asp Phe Gln Lys Thr
                                      405
                  400
 Gly Pro Pro Leu Val Gly Pro Lys Ala Gln Leu Ser Gly Leu Gln Leu
           415
                                   420
 Gln Pro Cys Leu Tyr Lys Arg Arg
            430
```

<210> 209 <211> 98

<212> PRT <213> Homo sapiens

<220>
<221> SIGNAL
<222> -17..-1

<400> 209 Met Pro Ser Ser Phe Phe Leu Leu Leu Gln Phe Phe Leu Arg Ile Asp -10 -5 -15 Gly Val Leu Ile Arg Met Asn Asp Thr Arg Leu Tyr His Glu Ala Asp 10 5 Lys Thr Tyr Met Leu Arg Glu Tyr Thr Ser Arg Glu Ser Lys Ile Ser 2.5 20 Ser Leu Met His Val Pro Pro Ser Leu Phe Thr Glu Pro Asn Glu Ile 35 . 40 Ser Gln Tyr Leu Pro Ile Lys Glu Ala Val Cys Glu Lys Leu Ile Phe 55 60 Pro Glu Arg Ile Asp Pro Asn Pro Ala Asp Ser Gln Lys Ser Thr Gln 70 Val Glu 80

<210> 210 <211> 83 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -29..-1

<400> 210 Met Thr Leu Leu Ser Phe Ala Ala Phe Thr Ala Ala Phe Ser Val Leu -20 -25 Pro Cys Tyr Tyr Leu Gly Leu Phe Gln Arg Ala Leu Ala Ser Val Phe -5 -10 Asp Pro Leu Cys Val Cys Ser Arg Val Leu Pro Thr Pro Val Cys Thr 10 15 Leu Val Ala Thr Gln Ala Glu Lys Ile Leu Glu Asn Gly Pro Cys Pro 30 25 Thr Lys Glu Ala Ala Gln Leu Val Gly Lys Gly Ser Val Ser Ala Arg 40 45 Asn Ala Ser

<210> 211 <211> 229 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -23..-1

50 Gly Lys Thr Leu Val Phe Glu Gln Arg Lys Ser Asp Gly Val His Thr 65 Val Glu Thr Glu Val Gly Asp Tyr Met Phe Cys Phe Asp Asn Thr Phe Ser Thr Ile Ser Glu Lys Val Ile Phe Phe Glu Leu Ile Leu Asp Asn 100 Met Gly Glu Gln Ala Gln Glu Glu Asp Trp Lys Lys Tyr Ile Thr 115 110 Gly Thr Asp Ile Leu Asp Met Lys Leu Glu Asp Ile Leu Glu Ser Ile 135 130 125 Ser Ser Ile Lys Ser Arg Leu Ser Lys Ser Gly His Ile Gln Ile Leu 150 145 Leu Arg Ala Phe Glu Ala Arg Asp Arg Asn Ile Gln Glu Ser Asn Phe 165 160 Asp Arg Val Asn Phe Trp Ser Met Val Asn Leu Val Val Met Val Val 180 175 Val Ser Ala Ile Gln Val Tyr Met Leu Lys Ser Leu Phe Glu Asp Lys 195 190 Arg Lys Ser Arg Thr 205.

<210> 212 <211> 152 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -21..-1

<400> 212 Met Ala Gln Leu Gly Ala Val Val Ala Val Ala Ser Ser Phe Phe Cys -10 -15 Ala Ser Leu Phe Ser Ala Val His Lys Ile Glu Glu Gly His Ile Gly Val Tyr Tyr Arg Gly Gly Ala Leu Leu Thr Ser Thr Ser Gly Pro Gly 15 20 Phe His Leu Met Leu Pro Phe Ile Thr Ser Tyr Lys Ser Val Gln Thr 35 Thr Leu Gln Thr Asp Glu Val Lys Asn Val Pro Cys Gly Thr Ser Gly 50 Gly Val Met Ile Tyr Phe Asp Arg Ile Glu Val Val Asn Phe Leu Val 65 Pro Asn Ala Val His Asp Ile Val Lys Asn Tyr Thr Ala Asp Tyr Asp Lys Ala Leu Ile Phe Asn Lys Ile His His Glu Leu Asn Gln Phe Cys 100 Ser Val His Thr Leu Gln Glu Val Tyr Ile Glu Leu Phe Gly Leu Glu 115 110 Asn Asp Phe Ser Gln Glu Ser Ser 125 . 130

<210> 213 <211> 179 <212> PRT <213> Home sapiens <220> <221> SIGNAL <222> -54..-1

<400> 213

Met Ala Ala Ser Glu Ala Ala Val Val Ser Ser Pro Ser Leu Lys Thr -45 -50 Asp Thr Ser Pro Val Leu Glu Thr Ala Gly Thr Val Ala Ala Met Ala -30 -35 Ala Thr Pro Ser Ala Arg Ala Ala Ala Ala Val Val Ala Ala Ala Ala -10 -15 Arg Thr Gly Ser Glu Ala Arg Val Ser Lys Ala Ala Leu Ala Thr Lys Leu Leu Ser Leu Ser Gly Val Phe Ala Val His Lys Pro Lys Gly Pro Thr Ser Ala Glu Leu Leu Asn Arg Leu Lys Glu Lys Leu Leu Ala Glu 30 Ala Gly Met Pro Ser Pro Glu Trp Thr Lys Arg Lys Lys Gln Thr Leu 50 Lys Ile Gly His Gly Gly Thr Leu Asp Ser Ala Ala Arg Gly Val Leu 65 Val Val Gly Ile Gly Ser Gly Thr Lys Met Leu Thr Ser Met Leu Ser 85 80 Gly Ser Lys Arg Tyr Thr Ala Ile Gly Glu Leu Gly Lys Ala Thr Asp 100 105 Thr Leu Asp Ser Thr Gly Lys Val Thr Glu Glu Lys Pro Tyr Gly Met 115 Asn Leu Ile 125

<210> 214 <211> 269 <212> PRT <213> Homo sapiens <220> <221> SIGNAL

<400> 214

<222> -92..-1

Met Ile Thr His Val Thr Leu Glu Asp Ala Leu Ser Asn Val Asp Leu -85 -90 Leu Glu Glu Leu Pro Leu Pro Asp Gln Gln Pro Cys Ile Glu Pro Pro -70 -65 Pro Ser Ser Ile Met Tyr Gln Ala Asn Phe Asp Thr Asn Phe Glu Asp -50 -55 Arg Asn Ala Phe Val Thr Gly Ile Ala Arg Tyr Ile Glu Gln Ala Thr -40 -35 Val His Ser Ser Met Asn Glu Met Leu Glu Glu Gly His Glu Tyr Ala -20 Val Met Leu Tyr Thr Trp Arg Ser Cys Ser Arg Ala Ile Pro Gln Val - 5 Lys Cys Asn Glu Gln Pro Asn Arg Val Glu Ile Tyr Glu Lys Thr Val 15 Glu Val Leu Glu Pro Glu Val Thr Lys Leu Met Lys Phe Met Tyr Phe 30 Gln Arg Lys Ala Ile Glu Arg Phe Cys Ser Glu Val Lys Arg Leu Cys 40 45 His Ala Glu Arg Arg Lys Asp Phe Val Ser Glu Ala Tyr Leu Leu Thr 60

Leu Gly Lys Phe Ile Asn Met Phe Ala Val Leu Asp Glu Leu Lys Asn 70 75 Met Lys Cys Ser Val Lys Asn Asp His Ser Ala Tyr Lys Arg Ala Ala 95 90 Gln Phe Leu Arg Lys Met Ala Asp Pro Gln Ser Ile Gln Glu Ser Gln 110 105 Asn Leu Ser Met Phe Leu Ala Asn His Asn Arg Ile Thr Gln Cys Leu 120 125 His Gln Gln Leu Glu Val Ile Pro Gly Tyr Glu Glu Leu Leu Ala Asp 140 145 Ile Val Asn Ile Cys Val Asp Tyr Tyr Glu Asn Lys Met Tyr Leu Thr 155 160 Pro Ser Glu Lys His Met Leu Leu Lys Val Lys Leu Pro 170

<210> 215 <211> 135 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -22..-1

<400> 215

Met Gln Thr Val Tyr Tyr Gly Ser Leu Gly Leu Trp Leu Ala Leu Val -15 -10 -20 Asp Gly Leu Val Arg Ser Ser Pro Ser Leu Asp Gln Met Phe Asp Ala 1 Glu Ile Leu Gly Phe Ser Thr Pro Pro Gly Arg Leu Ser Met Met Ser 20 Phe Ile Phe Asn Ala Leu Thr Cys Ala Leu Gly Leu Leu Tyr Phe Ile 40 30 35 Arg Arg Gly Lys Gln Cys Leu Asp Phe Thr Val Thr Val His Phe Phe 45 50 55 His Leu Leu Gly Cys Trp Phe Tyr Ser Ser Arg Phe Pro Ser Ala Leu 70 65 Thr Trp Trp Leu Val Gln Ala Val Cys Ile Ala Leu Met Ala Val Ile 85 80 Gly Glu Tyr Leu Cys Met Arg Thr Glu Leu Lys Glu Ile Pro Leu Asn 95 100 Ser Ala Pro Lys Ser Asn Val

<210> 216 <211> 67 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -38..-1 <400> 216

110

Met Asn Asn Val Gln Pro Lys Ile Lys His Arg Pro Phe Cys Phe Ser
-35
-30
-25

Val Lys Gly His Val Lys Met Leu Arg Leu Val Phe Ala Leu Val Thr
-20
-15

Ala Val Cys Cys Leu Ala Asp Gly Ala Leu Ile Tyr Arg Lys Leu Leu -5 1 5 5 10

Phe Asn Pro Asn Gly Pro Tyr Gln Lys Lys Pro Val His Glu Lys Lys Glu Val Leu 25

Glu Val Leu

<210> 217 <211> 125 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -54..-1

<400> 217 Met Ala Asp Glu Glu Leu Glu Ala Leu Arg Arg Gln Arg Leu Ala Glu -50 -45 Leu Gln Ala Lys His Gly Asp Pro Gly Asp Ala Ala Gln Gln Glu Ala -30 Lys His Arg Glu Ala Glu Met Arg Asn Ser Ile Leu Ala Gln Val Leu -15 Asp Gln Ser Ala Arg Ala Arg Leu Ser Asn Leu Ala Leu Val Lys Pro 5 Glu Lys Thr Lys Ala Val Glu Asn Tyr Leu Ile Gln Met Ala Arg Tyr 20 Gly Gln Leu Ser Glu Lys Val Ser Glu Gln Gly Leu Ile Glu Ile Leu 35 Lys Lys Val Ser Gln Gln Thr Glu Lys Thr Thr Thr Val Lys Phe Asn 50 Arg Arg Lys Val Met Asp Ser Asp Glu Asp Asp Asp Tyr

100 105 Leu Ser Ser Ala Gly Leu Ile Tyr Leu His Phe Gly His Lys Leu Leu 115 . Ala Gln Leu Leu Gly Thr Ser Glu Glu Asp Ser Met Val Gly Thr Leu 130 135 Tyr Asp Lys Met Tyr Glu Asn Phe Val Glu Glu Val Asp Ala Val Asp 150 145 Asn Gly Ile Ser Gln Trp Ala Glu Gly Glu Pro Arg Tyr Ala Leu Thr 170 165 160 Thr Thr Leu Ser Ala Arg Val Ala Arg Leu Asn Pro Thr Trp Asn His 180 175 Pro Asp Gln Asp Thr Glu Ala Gly Phe Lys Arg Ala Met Asp Leu Val 200 195 190 Gln Glu Glu Phe Leu Gln Arg Leu Asp Phe Tyr Gln His Ser Trp Leu 215 210 Pro Ala Arg Ala Leu Val Glu Glu Ala Leu Ala Gln Arg Phe Gln Val 230 225 Asp Pro Ser Gly Glu Ile Val Glu Leu Ala Lys Gly Ala Cys Pro Trp 240 245 Lys Glu His Leu Tyr His Leu Glu Ser Gly Leu Ser Pro Pro Val Ala 260 255 Ile Phe Phe Val Ile Tyr Thr Asp Gln Ala Gly Gln Trp Arg Ile Gln 275 270 Cys Val Pro Lys Glu Pro His Ser Phe Gln Ser Arg Leu Pro Leu Pro 290 295 Glu Pro Trp Arg Gly Leu Arg Asp Glu Ala Leu Asp Gln Val Ser Gly 305 310 Ile Pro Gly Cys Ile Phe Val His Ala Ser Gly Phe Ile Gly Gly His 325 ... 330 320 Arg Thr Arg Glu Gly Ala Leu Ser Met Ala Arg Ala Thr Leu Ala Gln 340 335 Arg Ser Tyr Leu Pro Gln Ile Ser 350

<210> 219 <211> 211 <212> PRT <213> Homo sapiens

<220> <221> SIGNAL

<222> -30..-1

<400> 219

Met Gly Glu Ala Ser Pro Pro Ala Pro Ala Arg Arg His Leu Leu Val -25 -20 Leu Leu Leu Leu Ser Thr Leu Val Ile Pro Ser Ala Ala Ala Pro -10 -5 Ile His Asp Ala Asp Ala Gln Glu Ser Ser Leu Gly Leu Thr Gly Leu 10 Gln Ser Leu Leu Gln Gly Phe Ser Arg Leu Phe Leu Lys Gly Asn Leu 25 30 Leu Arg Gly Ile Asp Ser Leu Phe Ser Ala Pro Met Asp Phe Arg Gly 40 45 Leu Pro Gly Asn Tyr His Lys Glu Glu Asn Gln Glu His Gln Leu Gly 55 60 Asn Asn Thr Leu Ser Ser His Leu Gln Ile Asp Lys Val Pro Arg Met 70 75 Glu Glu Lys Glu Ala Leu Val Pro Ile Gln Lys Ala Thr Asp Ser Phe

His Thr Glu Leu His Pro Arg Val Ala Phe Trp Ile Ile Lys Leu Pro 105 110 Arg Arg Arg Ser His Gln Asp Ala Leu Glu Gly Gly His Trp Leu Ser 120 125 Glu Lys Arg His Arg Leu Gln Ala Ile Arg Asp Gly Leu Arg Lys Gly 140 135 Thr His Lys Asp Val Leu Glu Glu Gly Thr Glu Ser Ser Ser His Ser 150 155 Arg Leu Ser Pro Arg Lys Thr His Leu Leu Tyr Ile Leu Arg Pro Ser 170 175 Arg Gln Leu 180

<210> 220 <211> 154 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -60..-1

Arg Val Lys Ala Ala Gly Gln Ile Gln Ala Trp Trp Arg Gly Val Leu
-25 -20 -15

Val Arg Arg Thr Leu Leu Val Ala Ala Leu Arg Ala Trp Met Ile Gln
-10 -5 1

Cys Trp Trp Arg Thr Leu Val Gln Arg Arg Ile Arg Gln Arg Arg Gln

10 15 20

Ala Leu Leu Arg Val Tyr Val Ile Gln Glu Gln Ala Thr Val Lys Leu
25 30 35

Gln Ser Cys Ile Arg Met Trp Gln Cys Arg Gln Cys Tyr Arg Gln Met 40 45 50

Cys Asn Ala Leu Cys Leu Phe Gln Val Pro Glu Ser Ser Leu Ala Phe 55 60 65

Gln Thr Asp Gly Phe Leu Gln Val Gln Tyr Ala Ile Pro Ser Lys Gln 70 75 80

Pro Glu Phe His Ile Glu Ile Leu Ser Ile 85 90

<210> 221 <211> 123 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -42..-1 <400> 221

Met Lys Gly Gly Ala Phe Ser Asn Leu Asn Asp Ser Gln Leu Ser Ala
-40 -35 -30

Ser Phe Leu Gln Pro Ser Leu Gln Ala Asn Cys Pro Ala Leu Asp Pro
-25 -20 -15

Ala Val Ser Leu Ser Ala Pro Ala Phe Ala Ser Ala Leu Arg Ser Met -5 -10 Lys Ser Ser Gln Ala Ala Arg Lys Asp Asp Phe Leu Arg Ser Leu Ser 15 10 Asp Gly Asp Ser Gly Thr Ser Glu His Ile Ser Ala Val Val Thr Ser 30 Pro Arg Ile Ser Cys His Gly Ala Ala Ile Pro Thr Ala Arg Ala Leu 45 50 Cys Leu Gly Cys Ser Cys Cys Thr Glu Arg Leu Leu Pro Pro Pro 60 65 Ser Leu Leu Ser Leu Glu Ala Pro Ala Ser Thr 75

-10 Val Ile Gln Glu Pro Gln Leu Ser Leu Gln Pro Glu Pro Val Phe Thr 5 Val Asp Arg Ala Glu Val Pro Pro Leu Phe Trp Lys Pro Tyr Ile Tyr 20 25 Ala Gly Tyr Arg Pro Leu His Gln Thr Trp Arg Phe Tyr Phe Arg Thr 35 · 40 Leu Phe Gln Gln His Asn Glu Ala Val Asn Val Trp Thr His Leu Leu 50 55 Ala Ala Leu Val Leu Leu Arg Leu Ala Leu Phe Val Glu Thr Val 70 Asp Phe Trp Gly Asp Pro His Ala Leu Pro Leu Phe Ile Ile Val Leu 85 Ala Ser Phe Thr Tyr Leu Ser Leu Ser Ala Leu Ala His Leu Leu Gln 100 105 Ala Lys Ser Glu Phe Trp His Tyr Ser Phe Phe Phe Leu Asp Tyr Val 115 120 125 Gly Val Ala Val Tyr Gln Phe Gly Ser Ala Leu Ala His Phe Tyr Tyr 130 135 140 Ala Ile Glu Pro Ala Trp His Ala Gln Val Gln Ala Val Phe Leu Pro 145 150 Met Ala Ala Phe Leu Ala Trp Leu Ser Cys Ile Gly Ser Cys Tyr Asn 165 170 Lys Tyr Ile Gln Lys Pro Gly Leu Leu Gly Arg Thr Cys Gln Glu Val 175 180 185 Pro Ser Val Leu Ala Tyr Ala Leu Asp Ile Ser Pro Val Val His Arg 195 200 Ile Phe Val Ser Ser Asp Pro Thr Thr Asp Asp Pro Ala Leu Leu Tyr 215 210 His Lys Cys Gln Val Val Phe Phe Leu Leu Ala Ala Ala Phe Phe Ser 230 225

Thr Phe Met Pro Glu Arg Trp Phe Pro Gly Ser Cys His Val Phe Gly 240 245 250
Gln Gly His Gln Leu Phe His Ile Phe Leu Val Leu Cys Thr Leu Ala

Gln Leu Glu Ala Val Ala Leu Asp Tyr Glu Ala Arg Arg Pro Ile Tyr

265

<210> 223 <211> 210 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -20..-1 <400> 223 Met Asp Asn Arg Phe Ala Thr Ala Phe Val Ile Ala Cys Val Leu Ser -15 -10 Leu Ile Ser Thr Ile Tyr Met Ala Ala Ser Ile Gly Thr Asp Phe Trp Tyr Glu Tyr Arg Ser Pro Val Gln Glu Asn Ser Ser Asp Leu Asn Lys 20 Ser Ile Trp Asp Glu Phe Ile Ser Asp Glu Ala Asp Glu Lys Thr Tyr 35 Asn Asp Ala Leu Phe Arg Tyr Asn Gly Thr Val Gly Leu Trp Arg Arg 50 55 Cys Ile Thr Ile Pro Lys Asn Met His Trp Tyr Ser Pro Pro Glu Arg 70 Thr Glu Ser Phe Asp Val Val Thr Lys Cys Val Ser Phe Thr Leu Thr 85 90 80 Glu Gln Phe Met Glu Lys Phe Val Asp Pro Gly Asn His Asn Ser Gly 100 105 Ile Asp Leu Leu Arg Thr Tyr Leu Trp Arg Cys Gln Phe Leu Leu Pro 110 115 120 Phe Val Ser Leu Gly Leu Met Cys Phe Gly Ala Leu Ile Gly Leu Cys 125 130 135 Ala Cys Ile Cys Arg Ser Leu Tyr Pro Thr Ile Ala Thr Gly Ile Leu 145 150 His Leu Leu Ala Val Thr Lys Glu Ser Met Leu Pro Ala Gly Ala Glu 160 165 170 Ser Lys His Thr Ala Thr Pro Ala His Ala Cys Val Gln Thr Gly Lys . 180 185 Pro Lys 190

<210> 224 <211> 184 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -20..-1

<400> 224

Met Asp Asn Arg Phe Ala Thr Ala Phe Val Ile Ala Cys Val Leu Ser

-10 -15 Leu Ile Ser Thr Ile Tyr Met Ala Ala Ser Ile Gly Thr Asp Phe Trp 1 . 10 Tyr Glu Tyr Arg Ser Pro Val Gln Glu Asn Ser Ser Asp Leu Asn Lys 20 Ser Ile Trp Asp Glu Phe Ile Ser Asp Glu Ala Asp Glu Lys Thr Tyr 35 Asn Asp Ala Pro Phe Arg Tyr Asn Gly Thr Val Gly Leu Trp Arg Arg 50 55 Cys Ile Thr Ile Pro Lys Asn Met His Trp Tyr Ser Pro Pro Glu Arg 65 70 Thr Glu Ser Phe Asp Val Val Thr Lys Cys Val Ser Phe Thr Leu Thr 85 80 Glu Gln Phe Met Glu Lys Phe Val Asp Pro Gly Asn His Asn Ser Gly 100 105 Ile Asp Leu Leu Arg Thr Tyr Leu Trp Arg Cys Gln Phe Leu Leu Pro 115 120 Phe Val Ser Leu Gly Leu Met Cys Phe Gly Ala Leu Ile Gly Leu Cys 130 135 Ala Cys Ile Cys Arg Ser Leu Tyr Pro Thr Ile Ala Thr Gly Ile Leu 150 145 His Leu Leu Ala Asp Thr Met Leu 160

<210> 225 <211> 227 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -22..-1

<400> 225

Met Gly Trp Thr Met Arg Leu Val Thr Ala Ala Leu Leu Cly Leu -20 -15 Met Met Val Val Thr Gly Asp Glu Asp Glu Asn Ser Pro Cys Ala His Glu Ala Leu Leu Asp Glu Asp Thr Leu Phe Cys Gln Gly Leu Glu Val 15 Phe Tyr Pro Glu Leu Gly Asn Ile Gly Cys Lys Val Val Pro Asp Cys 35 Asn Asn Tyr Arg Gln Lys Ile Thr Ser Trp Met Glu Pro Ile Val Lys 50 Phe Pro Gly Ala Val Asp Gly Ala Thr Tyr Ile Leu Val Met Val Asp 65 Pro Asp Ala Pro Ser Arg Ala Glu Pro Arg Gln Arg Phe Trp Arg His 80 85 Trp Leu Val Thr Asp Ile Lys Gly Ala Asp Leu Lys Lys Gly Lys Ile 100 95 Gln Gly Gln Glu Leu Ser Ala Tyr Gln Ala Pro Ser Pro Pro Ala His 115 110 Ser Gly Phe His Arg Tyr Gln Phe Phe Val Tyr Leu Gln Glu Gly Lys 130 Val Ile Ser Leu Leu Pro Lys Glu Asn Lys Thr Arg Gly Ser Trp Lys 145 150 Met Asp Arg Phe Leu Asn Arg Phe His Leu Gly Glu Pro Glu Ala Ser 160 165 Thr Gln Phe Met Thr Gln Asn Tyr Gln Asp Ser Pro Thr Leu Gln Ala 175 180

Pro Arg Glu Arg Ala Ser Glu Pro Lys His Lys Asn Gln Ala Glu Ile 190 195 200 Ala Ala Cys

<210> 226 <211> 74 <212> PRT <213> Homo sapiens

205

<221> SIGNAL <222> -41..-1

<400> 226

 Met
 11e
 Ala
 Arg
 Arg
 Asn
 Pro
 Val
 Pro
 Leu
 Arg
 Phe
 Leu
 Pro
 Asp
 Glu

 -40
 -40
 -80
 -35
 -80
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -

<210> 227 <211> 73 <212> PRT <213> Homo sapiens

<210> 228
<211> 82
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -16..-1
<400> 228

Met Lys Arg Leu Leu Pro Ala Thr Ser Leu Ala Gly Pro Val Leu Ser
-15
-10
-5
Thr Leu Ile Ala Pro Thr Pro Met Leu Phe Cys Glu Asp Lys Ser Trp

<210> 229
<211> 119
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -56..-1

60

<400> 229

<210> 230

Met Ala Glu Pro Ser Ala Ala Thr Gln Ser His Ser Ile Ser Ser Ser -55 -50 Ser Phe Gly Ala Glu Pro Ser Ala Pro Gly Gly Gly Ser Pro Gly -35 -30 Ala Cys Pro Ala Leu Gly Thr Lys Ser Cys Ser Ser Ser Cys Ala Asp -20 -15 Ser Phe Val Ser Ser Ser Ser Gln Pro Val Ser Leu Phe Ser Thr 1 5 Ser Gln Glu Gly Leu Ser Ser Leu Cys Ser Asp Glu Pro Ser Ser Glu 15 Ile Met Thr Ser Ser Phe Leu Ser Ser Ser Glu Ile His Asn Thr Gly 30 35 Leu Thr Ile Leu His Gly Glu Lys Ser His Val Leu Gly Ser Gln Pro Ile Leu Ala Lys Lys Lys

<210> 231 <211> 210 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -14..-1 <400> 231 Met Leu Thr Leu Leu Gly Leu Ser Phe Ile Leu Ala Gly Leu Ile Val -10 -5 Gly Gly Ala Cys Ile Tyr Lys Tyr Phe Met Pro Lys Ser Thr Ile Tyr 10 Arg Gly Glu Met Cys Phe Phe Asp Ser Glu Asp Pro Ala Asn Ser Leu 25 Arg Gly Glu Pro Asn Phe Leu Pro Val Thr Glu Glu Ala Asp Ile 40 45 Arg Glu Asp Asp Asn Ile Ala Ile Ile Asp Val Pro Val Pro Ser Phe 55 60 Ser Asp Ser Asp Pro Ala Ala Ile Ile His Asp Phe Glu Lys Gly Met 70 75 Thr Ala Tyr Leu Asp Leu Leu Cly Ile Cys Tyr Leu Met Pro Leu 90 Asn Thr Ser Ile Val Met Pro Pro Lys Asn Leu Val Glu Leu Phe Gly 105 110 Lys Leu Ala Ser Gly Arg Tyr Leu Pro Gln Thr Tyr Val Val Arg Glu 120 125 Asp Leu Val Ala Val Glu Glu Ile Arg Asp Val Ser Asn Leu Gly Ile 135 140 145 Phe Ile Tyr Gln Leu Cys Asn Asn Arg Lys Ser Phe Arg Leu Arg Arg 150 155 Arg Asp Leu Leu Gly Phe Asn Lys Arg Ala Ile Asp Lys Cys Trp 170 175 Lys Ile Arg His Phe Pro Asn Glu Phe Ile Val Glu Thr Lys Ile Cys 185 Gln Glu 195

<210> 232 <211> 108 <212> PRT <213> Homo sapiens

<400> 232

Met Gly Cys Val Phe Gln Ser Thr Glu Asp Lys Cys Ile Phe Lys Ile 10 Asp Trp Thr Leu Ser Pro Gly Glu His Ala Lys Asp Glu Tyr Val Leu 20 Tyr Tyr Tyr Ser Asn Leu Ser Val Pro Ile Gly Arg Phe Gln Asn Arg 35 40 Val His Leu Met Gly Asp Ile Leu Cys Asn Asp Gly Ser Leu Leu Leu 55 60 Gln Asp Val Gln Glu Ala Asp Gln Gly Thr Tyr Ile Cys Glu Ile Arg 70 75 Leu Lys Gly Glu Ser Gln Val Phe Lys Lys Ala Val Val Leu His Val 85 90 Leu Pro Glu Glu Pro Lys Gly Thr Gln Met Leu Thr 100 105

<212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -18..-1 <400> 233 Met Ser Ser Gly Arg Leu Arg Trp Leu Met Pro Val Ile Pro Ala Leu -15 -10 -5 Trp Gly Ala Glu Lys Gly Glu Ser Pro Glu Val Ser Ser Phe Glu Thr 1 5 Arg Leu Ala Asn Met Ala Lys Pro Cys Leu Tyr 20 <210> 234 <211> 36

<212> PRT <213> Homo sapiens

<400> 234 Met Ser Ala Arg Ile Pro Phe Tyr Lys Asp Thr Ser Gln Ile Arg Leu 10 Gly Ser Thr Ile Ile Pro His Phe Asn Leu Ile Thr Phe Val Lys Thr 20 Phe Phe Gln Ile 35

<210> 235 <211> 307 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -13..-1

Met Leu Ala Val Ser Leu Thr Val Pro Leu Leu Gly Ala Met Met Leu -5 Leu Glu Ser Pro Ile Asp Pro Gln Pro Leu Ser Phe Lys Glu Pro Pro 10 15 Leu Leu Gly Val Leu His Pro Asn Thr Lys Leu Arg Gln Ala Glu 30 Arg Leu Phe Glu Asn Gln Leu Val Gly Pro Glu Ser Ile Ala His Ile Gly Asp Val Met Phe Thr Gly Thr Ala Asp Gly Arg Val Val Lys Leu 60 Glu Asn Gly Glu Ile Glu Thr Ile Ala Arg Phe Gly Ser Gly Pro Cys 75 Lys Thr Arg Asp Asp Glu Pro Val Cys Gly Arg Pro Leu Gly Ile Arg 90 Ala Gly Pro Asn Gly Thr Leu Phe Val Ala Asp Ala Cys Lys Gly Leu 105 110 Phe Glu Val Asn Pro Trp Lys Arg Glu Val Lys Leu Leu Ser Ser 120 125 Glu Thr Pro Ile Glu Gly Lys Asn Met Ser Phe Val Asn Asp Leu Thr 140

Val Ser Gln Asp Gly Arg Lys Ile Tyr Phe Thr Asp Ser Ser Ser Lys 155 Trp Gln Arg Arg Asp Tyr Leu Leu Leu Val Met Glu Gly Thr Asp Asp 170 175 Gly Arg Leu Leu Glu Tyr Asp Thr Val Thr Arg Glu Val Lys Val Leu 185 190 Leu Asp Gln Leu Arg Phe Pro Asn Gly Val Gln Leu Ser Pro Ala Glu 200 205 Asp Phe Val Leu Val Ala Glu Thr Thr Met Ala Arg Ile Arg Arg Val 215 220 Tyr Val Ser Gly Leu Met Lys Gly Gly Ala Asp Leu Phe Val Glu Asn 235 Met Pro Gly Phe Pro Asp Asn Ile Arg Pro Ser Ser Ser Gly Gly Tyr 250 255 Trp Val Gly Met Ser Thr Ile Arg Pro Asn Pro Gly Phe Ser Met Leu 265 270 Asp Phe Leu Ser Glu Arg Pro Trp Ile Lys Arg Met Ile Phe Lys Ala Lys Lys Lys

<210> 236 <211> 106 <212> PRT <213> Homo sapiens <220>

<221> SIGNAL <222> -32..-1

<400> 236

Met Phe Ala Pro Ala Val Met Arg Ala Phe Arg Lys Asn Lys Thr Leu -25 -20 Gly Tyr Gly Val Pro Met Leu Leu Leu Ile Val Gly Gly Ser Phe Gly -15 -10 -5 Leu Arg Glu Phe Ser Gln Ile Arg Tyr Asp Ala Val Lys Ser Lys Met 5 10 Asp Pro Glu Leu Glu Lys Lys Leu Lys Glu Asn Lys Ile Ser Leu Glu 20 25 Ser Glu Tyr Glu Lys Ile Lys Asp Ser Lys Phe Asp Asp Trp Lys Asn 35 40 Ile Arg Gly Pro Arg Pro Trp Glu Asp Pro Asp Leu Leu Gln Gly Arg 55 Asn Pro Glu Ser Leu Lys Thr Lys Thr Thr

<210> 237 <211> 42 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -19..-1

10 Gln Leu Ser Asp Lys Val His Asn Asp Ile 15 20 <210> 238 <211> 117 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -20..-1 <400> 238 Met Asp Asn Arg Phe Ala Thr Ala Phe Val Ile Ala Cys Val Leu Ser -15 -10 Leu Ile Ser Thr Ile Tyr Met Ala Ala Ser Ile Gly Thr Asp Phe Trp Tyr Glu Tyr Arg Ser Pro Val Gln Glu Asn Ser Ser Asp Leu Asn Lys 15 20 Ser Ile Trp Asp Glu Phe Ile Ser Asp Glu Ala Asp Glu Lys Thr Tyr Asn Asp Ala Leu Phe Arg Tyr Asn Gly Thr Val Gly Leu Trp Gly Arg 50 . . 55 60 . Cys Ile Thr Ile Pro Lys Asn Met His Trp Tyr Ser Pro Pro Glu Arg 70 Thr Gly Ile Ser Leu Ile Leu Thr Ser Val Phe Phe Thr Trp Leu Ile 85 Ile Asp Lys Thr Thr 95 <210> 239 <211> 178 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -37..-1 <400> 239 Met Glu Arg Gln Ser Arg Val Met Ser Glu Lys Asp Glu Tyr Gln Phe -30 Gln His Xaa Xaa Ala Xaa Xaa Leu Leu Val Phe Asn Phe Leu Leu Ile -15 Leu Thr Ile Leu Thr Ile Trp Leu Phe Lys Asn His Arg Phe Arg Phe Leu His Glu Thr Gly Gly Ala Met Val Tyr Gly Leu Ile Met Gly Leu 20 Ile Ser Arg Tyr Ala Thr Ala Pro Thr Asp Ile Glu Ser Gly Thr Val 35 Cys Asp Cys Val Lys Leu Thr Phe Ser Pro Pro Thr Leu Leu Val Asn 50 Val Thr Asp Gln Val Tyr Glu Tyr Lys Tyr Lys Arg Glu Ile Ser Gln

65

70

His Asn Ile Asn Pro His Gln Gly Asn Ala Ile Leu Glu Lys Met Thr 80 85 90 Phe Asp Pro Glu Ile Phe Phe Asn Val Leu Leu Pro Pro Ile Ile Phe

95 100 105

His Ala Gly Tyr Ser Leu Lys Lys Arg His Phe Phe Gln Asn Leu Gly
110 115 120

Ser Ile Leu Thr Tyr Ala Phe Leu Gly Thr Ala Ile Ser Cys Ile Val
125 130 135

Ile Gly
140

<210> 240 <211> 126 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -27..-1

<400> 240 Met Gln Phe Val Asn Val Gly Tyr Phe Leu Ile Ala Ala Gly Val Val -25 -20 Val Leu Ala Leu Gly Phe Leu Gly Cys Tyr Gly Ala Lys Thr Glu Ser -5 Met Cys Ala Leu Val Thr Phe Phe Phe Ile Leu Leu Leu Ile Phe Ile 15 Ala Glu Val Ala Ala Ala Val Val Ala Leu Val Tyr Thr Thr Met Ala 25 30 Glu His Phe Leu Thr Leu Leu Val Val Pro Ala Ile Lys Lys Asp Tyr 45 Gly Ser Gln Glu Asp Phe Thr Gln Val Trp Asn Thr Thr Met Lys Gly 60 Leu Lys Cys Arg Gly Phe Thr Asn Tyr Thr Asp Phe Glu Asp Ser Pro 75 80 Tyr Phe Lys Met His Lys Pro Val Thr Met Lys Lys Lys

<210> 241 <211> 174 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -115..-1 <400> 241

Met Arg Trp Ser Cys Glu His Leu Val Met Val Trp Ile Asn Ala Phe -115 -110 -105 Val Met Leu Thr Thr Gln Leu Leu Pro Ser Lys Tyr Cys Asp Leu Leu -95 -90 His Lys Ser Ala Ala His Leu Gly Lys Trp Gln Lys Leu Glu His Gly -80 -75 -70 Ser Tyr Ser Asn Ala Pro Gln His Ile Trp Ser Glu Asn Thr Ile Trp -65 -55 -60 Pro Gln Gly Val Leu Val Arg His Ser Arg Cys Leu Tyr Arg Ala Met -45 -40 Gly Pro Tyr Asn Val Ala Val Pro Ser Asp Val Ser His Ala Arg Phe -30 -25 Tyr Phe Leu Phe His Arg Pro Leu Arg Leu Leu Asn Leu Leu Ile Leu

WO 99/31236 -165- PCT/IB98/02122 -

<210> 242 <211> 896 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 18..173 <221> sig_peptide <222> 18..77 <223> Von Heijne matrix score 6.5 seq GLCVLQLTTAVTS/AF <221> polyA signal <222> 864..869 <221> polyA site <222> 882..893 <400> 242 aaccttcaca gtgtgag atg cct agt gtg aac agt gct gga tta tgt gtc 50 Met Pro Ser Val Asn Ser Ala Gly Leu Cys Val -20 -15 ttg cag ttg aca acg gca gtr acc agt gcc ttt tta cta gca aaa gtg 98 Leu Gln Leu Thr Thr Ala Val Thr Ser Ala Phe Leu Leu Ala Lys Val -5 1 aat cet tte gaa ret ttt ete tea agg gge ttt tgg eta tgt get gee 146 Asn Pro Phe Glu Xaa Phe Leu Ser Arg Gly Phe Trp Leu Cys Ala Ala 15 cat cat ttc att cat cct tgc ctg gat tgagacgtgt tcctgattca 193 His His Phe Ile His Pro Cys Leu Asp 30 aagtgttacc tcaagaagca gaagaagaaa acagactcct gatagttcag gatgcttcag 253 agagggcage acttatacet ggtggtettt etgatggtea gttttattee eeteetgaat 313 ccgaagcagg atctgaagaa gctgaagaaa aacaggacag tgagaaacca cttttagaac 373 tatgagtact acttttgtta aatgtgaaaa accctcacag aaagtcatcg aggcaaaaag 433 aggcaggcag tggagtctcc ctgtcgacag taaagttgaa atggtgacgt ccactgctgg ctttattgaa cagctaataa agatttattt attgtaatac ctcacagacg ttgtaccata tccatgcaca tttagttgcc tgcctgtggc tggtaaggta atgtcatgat tcatcctctc ttcagtgaga ctgagcctga tgtgttaaca aataggtgaa gaaagtcttg tgctgtattc ctaatcaaaa gacttaatat attgaagtaa cactttttta gtaagcaaga taccttttta 733 tttcaattca cagaatggaa tttttttgtt tcatgtctca gatttatttt gtatttcttt 793 tttaacactc tacatttccc ttgtttttta actcatgcac atgtgctctt tgtacagttt 853 taaaaagtgt aataaaatct gacatgtcaa araaaaaaaa mcy 896

<211> 851 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 17..595 <221> sig_peptide <222> 17..85 <223> Von Heijne matrix score 3.70000004768372 seg FLPPLXRAFACRG/CQ <221> polyA_signal <222> 820..825 <221> polyA site <222> 840..851 <400> 243 52 aagggggcgt ggggcc atg gtg gtc ttg cgg gcg ggg aag aag acc ttt ctc Met Val Val Leu Arg Ala Gly Lys Lys Thr Phe Leu -20 -15 ecc cet etm wge ege gee tte gee tge ege gge tgt caa etc get eeg 100 Pro Pro Leu Xaa Arg Ala Phe Ala Cys Arg Gly Cys Gln Leu Ala Pro gag cgc ggc gcc gag cgc agg gat aca gcg ccc agc ggg gtc tca aga Glu Arg Gly Ala Glu Arg Arg Asp Thr Ala Pro Ser Gly Val Ser Arg 15 ttc tgc cct cca aga aag tct tgc cat gat tgg ata gga ccc cca gat 196 Phe Cys Pro Pro Arg Lys Ser Cys His Asp Trp Ile Gly Pro Pro Asp 30 aaa tat tca aac ctt cga cct gtt cac ttt tac ata cct gaa aat gaa 244 Lys Tyr Ser Asn Leu Arg Pro Val His Phe Tyr Ile Pro Glu Asn Glu 40 tct cca ttg gaa caa aag ctt aga aaa tta aga caa gaa aca caa gaa 292 Ser Pro Leu Glu Gln Lys Leu Arg Lys Leu Arg Gln Glu Thr Gln Glu 60 tgg aat caa cag tto tgg gca aac cag aat ttg act ttt agt aag gaa 340 Trp Asn Gln Gln Phe Trp Ala Asn Gln Asn Leu Thr Phe Ser Lys Glu 75 80 aaa gaa gaa ttt att cac tca aga cta aaa act aaa ggc ctg ggc ctg 388 Lys Glu Glu Phe Ile His Ser Arg Leu Lys Thr Lys Gly Leu Gly Leu 95 aga act gaa tca ggt cag aaa gca aca ttg aat gca gaa gaa atg gcg 436 Arg Thr Glu Ser Gly Gln Lys Ala Thr Leu Asn Ala Glu Glu Met Ala 110 gac ttc tac aag gaa ttt tta agt aaa aat ttt cag aag cac atg tat 484 Asp Phe Tyr Lys Glu Phe Leu Ser Lys Asn Phe Gln Lys His Met Tyr 125 tat aac aga gat tgg tac aag cgc aat ttt gcc atc acc ttc ttc atg 532 Tyr Asn Arg Asp Trp Tyr Lys Arg Asn Phe Ala Ile Thr Phe Phe Met 135 140 gga aaa gtg gcc ctg gaa agg att tgg aac aag ctt aaa cag aaa caa 580 Gly Lys Val Ala Leu Glu Arg Ile Trp Asn Lys Leu Lys Gln Lys Gln 155 160 aag aag agg agc aac taggagtcca ctctgaccca gccagagtcc aggtttccac 635 Lys Lys Arg Ser Asn 170 aggaagcara tggagctcct ttcacagggg ctctgagaaa aactggagct gatctcaaga 695 agccccacat cttcctaagg ggccccatgg cctgtttggg ggcagggtag gtcctggggc 755

815

-167-PCT/IB98/02122 WO 99/31236

actgtgggcc gcctgcctgc tgatgtgggc tctaggccag cttgttgtca cgtacgtggt

<pre> <210> 244 <211> 495 <212> DNA <213> Homo sapiens </pre> <pre> <220> <221> CDS <221> Sig_peptide <222> 89334 </pre> <pre> <221> sig_peptide <222> 89334 </pre> <pre> <221> polyA_sipnal <222> 462467 </pre> <pre> <221> polyA_signal <222> 462467 </pre> <pre> <221> polyA_site <222> 484495 </pre> <pre> <pre> <222</pre></pre>	gtgaaataaa gcccaagcac tgggaaaaaa aaaaaa	851
<pre><221> CDS <222> 89334 <221> sig_peptide <222> 89130 <223> Von Heijne matrix</pre>	<211> 495 <212> DNA	
<pre><222> 89130 <223> Von Heijne matrix</pre>	<221> CDS	
<pre><222> 462467 <221> polyA site <222> 484495 <400> 244 agtaggaasg cgccgsccgt ggaggcgca cgtcccttgc sgcggcggga gagamatcgc ttggacttcg gggcggcctc ggacggcc atg gcc ttt acc ctg tas tca ctg 112</pre>	<222> 89130 <223> Von Heijne matrix score 3.59999990463257	
<pre><222> 484495 <400> 244 agtaggaasg cgccgsccgt ggaggcgcca cgtcccttgc sgcggcggga gagamatcgc ttggacttcg gggcggcctc ggacggcc atg gcc ttt acc ctg tas tca ctg 112</pre>		
agtaggaasg cgccgsccgt ggaggcgcca cgtcccttgc sgcggcggga gagamatcgc ttggacttcg gggcggcct ggacggcc atg gcc ttt acc ctg tas tca ctg 112 Met Ala Phe Thr Leu Xaa Ser Leu -10 Ctg Cag gca gcc ctg ctc tgc gtc aac gcc atc gca gtg ctg cac gag 160 Leu Gln Ala Ala Leu Leu Cys Val Asn Ala Ile Ala Val Leu His Glu -5	· · · · · · · · · · · · · · · · · · ·	
Leu Gln Ala Ala Leu Leu Cys Val Asn Ala Ile Ala Val Leu His Glu -5 1 5 10 gag cga ttc ctc aag aac att ggc tgg gga aca gac cag gga att ggt 208 Glu Arg Phe Leu Lys Asn Ile Gly Trp Gly Thr Asp Gln Gly Ile Gly 15 20 25 gga ttt gga gaa gag ccg gga att aaa tca sag sta atg avs ctt att 256 Gly Phe Gly Glu Glu Pro Gly Ile Lys Ser Xaa Xaa Met Xaa Leu Ile 30 35 40 cga tct gta aga acc gtg atg aga gtg cca ttg ata ata gta aac tca 304 Arg Ser Val Arg Thr Val Met Arg Val Pro Leu Ile Ile Val Asn Ser 45 50 55 att gca att gtg tta ctt tta tta ttt gga tgaatwtcat tggagaaaat 354 Ile Ala Ile Val Leu Leu Leu Leu Phe Gly 60 65 ggakactcag aaraggacat gccaktaraa kttattactt tggtcattat tggaatattt 414 atatcttagc tggctgacct tgcacttgtc aaaaatgtaa agctgaaaat aaaaccaggg 474	agtaggaasg cgccgsccgt ggaggcgcca cgtcccttgc sgcggcggga gagamatcgc ttggacttcg gggcggcctc ggacggcc atg gcc ttt acc ctg tas tca ctg Met Ala Phe Thr Leu Xaa Ser Leu -10	
Glu Arg Phe Leu Lys Asn Ile Gly Trp Gly Thr Asp Gln Gly Ile Gly 15 20 25 gga ttt gga gaa gag ccg gga att aaa tca sag sta atg avs ctt att 256 Gly Phe Gly Glu Glu Pro Gly Ile Lys Ser Xaa Xaa Met Xaa Leu Ile 30 35 40 cga tct gta aga acc gtg atg aga gtg cca ttg ata ata gta aac tca 304 Arg Ser Val Arg Thr Val Met Arg Val Pro Leu Ile Ile Val Asn Ser 45 50 55 att gca att gtg tta ctt tta tta ttt gga tgaatwtcat tggagaaaat 354 Ile Ala Ile Val Leu Leu Leu Phe Gly 60 65 ggakactcag aaraggacat gccaktaraa kttattactt tggtcattat tggaatattt 414 atatcttagc tggctgacct tgcacttgtc aaaaatgtaa agctgaaaat aaaaccaggg 474	Leu Gln Ala Ala Leu Leu Cys Val Asn Ala Ile Ala Val Leu His Glu	160
Gly Phe Gly Glu Glu Pro Gly Ile Lys Ser Xaa Xaa Met Xaa Leu Ile 30 35 40 Cga tct gta aga acc gtg atg aga gtg cca ttg ata ata gta aac tca 304 Arg Ser Val Arg Thr Val Met Arg Val Pro Leu Ile Ile Val Asn Ser 45 50 55 att gca att gtg tta ctt tta tta ttt gga tgaatwtcat tggagaaaat 354 Ile Ala Ile Val Leu Leu Leu Phe Gly 60 65 ggakactcag aaraggacat gccaktaraa kttattactt tggtcattat tggaatattt 414 atatcttagc tggctgacct tgcacttgtc aaaaatgtaa agctgaaaat aaaaccaggg 474	Glu Arg Phe Leu Lys Asn Ile Gly Trp Gly Thr Asp Gln Gly Ile Gly	208
Arg Ser Val Arg Thr Val Met Arg Val Pro Leu Ile Ile Val Asn Ser 45 50 55 att gca att gtg tta ctt tta tta ttt gga tgaatwtcat tggagaaaat 354 Ile Ala Ile Val Leu Leu Leu Phe Gly 60 65 ggakactcag aaraggacat gccaktaraa kttattactt tggtcattat tggaatattt 414 atatcttagc tggctgacct tgcacttgtc aaaaatgtaa agctgaaaat aaaaccaggg 474	Gly Phe Gly Glu Glu Pro Gly Ile Lys Ser Xaa Xaa Met Xaa Leu Ile	256
att gca att gtg tta ctt tta tta ttt gga tgaatwtcat tggagaaaat 354 Ile Ala Ile Val Leu Leu Leu Phe Gly 60 65 ggakactcag aaraggacat gccaktaraa kttattactt tggtcattat tggaatattt 414 atatcttagc tggctgacct tgcacttgtc aaaaatgtaa agctgaaaat aaaaccaggg 474	Arg Ser Val Arg Thr Val Met Arg Val Pro Leu Ile Ile Val Asn Ser	304
atatettage tggetgacet tgcacttgte aaaaatgtaa agetgaaaat aaaaccaggg 474	Ile Ala Ile Val Leu Leu Leu Phe Gly	354
	ggakactcag aaraggacat gccaktaraa kttattactt tggtcattat tggaatattt atatcttagc tggctgacct tgcacttgtc aaaaatgtaa agctgaaaat aaaaccaggg	474

<210> 245

<211> 884

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 21..614

<221> sig_peptide

WO 99/31236 -168- PCT/IB98/02122

<222> 21..83 <223> Von Heijne matrix score 10 seq LWALAMVTRPASA/AP <221> polyA_signal <222> 849..854 <221> polyA_site <222> 873..884 <400> 245 aatacettag acceteagte atg cea gtg cet get etg tge etg etc tgg gee 53 Met Pro Val Pro Ala Leu Cys Leu Leu Trp Ala -20 -15 ctg gca atg gtg acc cgg cct gcc tca gcg gcc ccc atg ggc ggc cca 101 Leu Ala Met Val Thr Arg Pro Ala Ser Ala Ala Pro Met Gly Gly Pro -10 -5 gaa ctg gca cag cat gag gag ctg acc ctg ctc ttc cat ggg acc ctg 149 Glu Leu Ala Gln His Glu Glu Leu Thr Leu Leu Phe His Gly Thr Leu 15 cag ctg ggc cag gcc ctc aac ggt gtg tac agg acc acg gag gga cgg 197 Gln Leu Gly Gln Ala Leu Asn Gly Val Tyr Arg Thr Thr Glu Gly Arg 25 30 ctg aca aag gcc agg aac agc ctg ggt ctc tat ggc cgc aca ata gaa 245 Leu Thr Lys Ala Arg Asn Ser Leu Gly Leu Tyr Gly Arg Thr Ile Glu 45 50 ctc ctg ggg cag gac gtc agc cgg ggc cgg gat gca gcc cag gaa ctt 293 Leu Leu Gly Gln Glu Val Ser Arg Gly Arg Asp Ala Ala Gln Glu Leu 60 cgg gca agc ctg ttg gaa act car atg gag gag gat att ctg cas ctg 341 Arg Ala Ser Leu Leu Glu Thr Gln Met Glu Glu Asp Ile Leu Xaa Leu 75 80 cag gca rag gcc aca gct gag gtg ctg ggg gag gtg gcc cag gca car Gln Ala Xaa Ala Thr Ala Glu Val Leu Gly Glu Val Ala Gln Ala Gln aag gtg cta cgg gac agc gtg cag cgg cta daa ktc cag ctg arg asc 437 Lys Val Leu Arg Asp Ser Val Gln Arg Leu Xaa Xaa Gln Leu Xaa Xaa 105 110 115 gcc tgg ctg ggc cct gcc tac cga aaa ttt gar gtc tta aag gcy ccc 485 Ala Trp Leu Gly Pro Ala Tyr Arg Lys Phe Glu Val Leu Lys Ala Pro 125 130 cck gam aar car aac cac atc cta tgg gcc ctc aca ggc cac gtg cak 533 Pro Xaa Lys Gln Asn His Ile Leu Trp Ala Leu Thr Gly His Val Xaa 140 145 cgg car arg cgg gar atg gtg gca cag cag cwt ckg ctg cna car atc 581 Arg Gln Xaa Arg Glu Met Val Ala Gln Gln Xaa Xaa Leu Xaa Gln Ile 155 160 cag gar aaa ctc cac aca gcg gcg ctc cca gcc tgaatctgcc tggatggaac Gln Glu Lys Leu His Thr Ala Ala Leu Pro Ala 175 tgaggaccaa tcatgctgca aggaacactt ccacgccccg tgaggcccct gtgcagggag 694 gagetgeetg tteaetggga teagecaggg egeegggeee caettetgag caeagagear 754 agacagacgc aggcgggac aaaggcagag gatgtagccc cattggggag gggtggagga 814 aggacatgta ccctttcatr mctacacacc cctcattaaa gcavagtcgt ggcatctcaa 874 aaaaaaaaa 884

<210> 246 <211> 897

<212> DNA

<213> Homo sapiens <220> <221> CDS <222> 94..573 <221> sig_peptide <222> 94..258 <223> Von Heijne matrix score 4.69999980926514 seq IGILCSLLGTVLL/WV <221> polyA signal <222> 862..867 <221> polyA_site <222> 886..897 <400> 246 aagggcggct gcctagcacc cggaagagcc gtcaacttag cgagcgcaac aggctgccgc 60 tgaggagctg gagctggtgg ggactgggcc gca atg gac aag ctg aag aag gtg 114 Met Asp Lys Leu Lys Lys Val -55 -50 ctg age ggg cag gac acg gag gac egg age gge etg tee gag gtt gtt 162 Leu Ser Gly Gln Asp Thr Glu Asp Arg Ser Gly Leu Ser Glu Val Val -45 gag gea tet tea tta age tgg agt ace agg ata aaa gge tte att geg 210 Glu Ala Ser Ser Leu Ser Trp Ser Thr Arg Ile Lys Gly Phe Ile Ala -25 -20 tgt ttt gct ata gga att ctc tgc tca ctg ctg ggt act gtt ctg ctg 258 Cys Phe Ala Ile Gly Ile Leu Cys Ser Leu Leu Gly Thr Val Leu Leu -10 -5 tgg gtg ccc agg aag gga cta cac ctc ttc gca gtg ttt tat acc ttt 306 Trp Val Pro Arg Lys Gly Leu His Leu Phe Ala Val Phe Tyr Thr Phe 10 ggt aat atc gca tca att ggg agt acc atc ttc ctc atg gga cca gtg 354 Gly Asn Ile Ala Ser Ile Gly Ser Thr Ile Phe Leu Met Gly Pro Val 20 25 30 aaa cag ctg aag cga atg ttt gag cct act cgt ttg att gca act atc 402 Lys Gln Leu Lys Arg Met Phe Glu Pro Thr Arg Leu Ile Ala Thr Ile 40 atg gtg ctg ttg tgt ttt gca ctt acc ctg tgt tct gcc ttt tgg tgg 450 Met Val Leu Cys Phe Ala Leu Thr Leu Cys Ser Ala Phe Trp Trp 55 cat aac aag gga ctt gca ctt atc ttc tgc att ttg cag tct ttg gca 498 His Asn Lys Gly Leu Ala Leu Ile Phe Cys Ile Leu Gln Ser Leu Ala 75 ttg acg tgg tac agc ctt tcc ttc ata cca ttt gca agg gat gct gtg 546 Leu Thr Trp Tyr Ser Leu Ser Phe Ile Pro Phe Ala Arg Asp Ala Val 90 95 aaa aad tgt ttt gcc gtg tgt ctt gca taattcatgg ccagttttat 593 Lys Xaa Cys Phe Ala Val Cys Leu Ala gaagetttgg aaggeactat ggacagaage tggtggacag ttttgtwact atettegaaa 653 cctctgtctt acagacatgt gccttttatc ttgcagcaat gtgttgcttg tgattcgaac 713 atttgagggt tacttttgga agcaacaata cattctcgaa cctgaatgtc agtagcacag 773 gatgagaagt gggttctgta tcttgtggag tqqaatcttc ctcatqtacc tqtttcctct ctggatgttg tcccactgaa ttcccatgaa tacaaaccta ttcagcaaca gcaaaaaaaa 893 aaaa 897

```
<210> 247
<211> 518
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 74..397
<221> sig_peptide
<222> 74..127
<223> Von Heijne matrix
     score 7.69999980926514
     seq LLLLPVLGLLVSS/KT
<221> polyA_signal
<222> 472..477
<221> polyA_site
<222> 507..518
<400> 247
aaagaaagag ctgcsgtgca ggaattcgtg tgccggattt ggttagctga gcccaccgag
                                                                   60
aggegeetge agg atg aaa get ete tgt ete ete ete eet gee etg
                                                                  109
              Met Lys Ala Leu Cys Leu Leu Leu Pro Val Leu
                          -15
ggg ctg ttg gtg tct agc aag acc ctg tgc tcc atg gaa gaa gcc atc
                                                                  157
Gly Leu Leu Val Ser Ser Lys Thr Leu Cys Ser Met Glu Glu Ala Ile
aat gag agg atc cag gag gtc gcc ggc tcc cta ata ttt agg gca ata
                                                                  205
Asn Glu Arg Ile Gln Glu Val Ala Gly Ser Leu Ile Phe Arg Ala Ile
age age att gge ega ggg age gag age gte ace tee agg ggg gae etg
Ser Ser Ile Gly Arg Gly Ser Glu Ser Val Thr Ser Arg Gly Asp Leu
                              35
get act tgc ecc ega gge ttc gec gtc acc gge tgc act tgt gge tec
                                                                  301
Ala Thr Cys Pro Arg Gly Phe Ala Val Thr Gly Cys Thr Cys Gly Ser
       45
                          50
gcc tgt ggc tcg tgg gat gtg cgc gcc gag acc aca tgt cac tgc cag
                                                                  349
Ala Cys Gly Ser Trp Asp Val Arg Ala Glu Thr Thr Cys His Cys Gln
                      65
tgc gcg ggc atg gac tgg acc gga gcg cgc tgc tgt cgt gtg cag ccc
                                                                  397
Cys Ala Gly Met Asp Trp Thr Gly Ala Arg Cys Cys Arg Val Gln Pro
tgaggtcgcg cgcagcgcgt gcacagcgcg ggcggaggcg gctccaggtc cggaggggtt
                                                                  457
517
```

<210> 248

<211> 350

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 51..242

<221> sig_peptide

<222> 51..116

<223> Von Heijne matrix

score 6.5 seq SCLCPALFPGTSS/FI <221> polyA signal <222> 319..324 <221> polyA_site <222> 339..350 <400> 248 acgteattee aaaaceacae cettgeaaag etttgtaete egeaceecag atg ate 56 tcc agg cag ctc aga tct ctt tcc tgc ctt tgc cct gca ctg ttc ccc 104 Ser Arg Gln Leu Arg Ser Leu Ser Cys Leu Cys Pro Ala Leu Phe Pro -20 -15 -10 ggt act tcc tcc ttt att gta gca ctc agc tcc cca gcc gat ctg tac 152 Gly Thr Ser Ser Phe Ile Val Ala Leu Ser Ser Pro Ala Asp Leu Tyr atc cct cav agg cas cga tct gat gaa ttg gtt ttt gaa tcc car aaa 200 Ile Pro Xaa Arg Xaa Arg Ser Asp Glu Leu Val Phe Glu Ser Gln Lys 20 ggg tot gcc atg gag ttg gca gtc atc acg gta rat ggc gta 242 Gly Ser Ala Met Glu Leu Ala Val Ile Thr Val Xaa Gly Val tgattttgct gaattttaaa taaaatgaaa accataaatt acatratgct tttattgach 302 cttgacmact ggcctaaata aaaaractct gactccaaaa aaaaaaaa 350 <210> 249 <211> 996 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 111..191 <221> sig_peptide <222> 111..155 <223> Von Heijne matrix score 5.80000019073486 seq FLXLMTLTTHVHS/SA <221> polyA signal <222> 965..970 <221> polyA site <222> 986..996 <400> 249 atccgataca gaacatgcaq taatgtggac tgcccaccaq aaqcaqqtqa tttccgagct 60 cagcaatgct cagctcataa tgatgtcaag caccatggcc agttttatga atg ggy 116 Met Gly -15 tto ctg wgt cta atg acc ctg aca acc cat gtt cac tca agt gcc aag 164 Phe Leu Xaa Leu Met Thr Leu Thr Thr His Val His Ser Ser Ala Lys

-5

ggtacgcgtt gctatacaga atctttggat atgtgcatca gtggtttatg ccaaattgtt

211

271

cca aat gaa caa ccc tgg ttg ttg aac tagcacctaa ggtcttarat

10

-10

Pro Asn Glu Gln Pro Trp Leu Leu Asn

WO 99/31236 -172- PCT/IB98/02122

nate teres gete gacwaact tegga tegga tacc gcca	ggtogatgatgatgatgatgatgatgatgatgatgatgatgatg	ata ata atc aga gct aga aga	cctg ctgt actt cagg tact ccgc cgga gcta acat tcaa	ccgg ggtt aact gaga tgac tttc cgat caaa attt	ct c gc t t t gc t t c c c c t	gtcc attc gaar gctg gctg acag acag agat	gagg ccta ccaw tgga tcca gctc gcta ccaa ccatt	g t a c a g g c c a c c c c c c c c c c c c	rtat aagt ctcat cacc catcc aacc tcagt catc	aaat akac aggg agtcag ttgtg ttgtg agaca	ccc ata gga tgg attc gatg cta	akct ttaa tcat tcat taacg aacca actt ccat	ctc cctg ccat tcat ataa aggt	cgca tgta tgaa gaaw cata catct tcca tcca	aacrga accaaa ttaaaa aacagt tttcca attcgt caccga ctgaca cactat tgtcca aatagg	331 391 451 571 631 691 751 811 871 931 996
<220 <221	> 86 > DN > Ho	SO VA OMO	sapio	ens												
<222 <223	> 5i > 45 > Vo so se	ig_position Horore	eptio 07 eijno 8.5 LTIVO	e mai		/QT										
<221 <222 <221	> 82 > pc	28i	333 _site													
<222 <400 acct	> 25	50		ggcto	gc c	ggcti	cagga	a cc	cca	gctc	cgad	_		r Pro	tct Ser	56
ggt Gly	cgc Arg	ctg Leu -15	tgt Cys	ctt Leu	ctc Leu	acc Thr	atc Ile -10	gtt Val	ggc Gly	ctg Leu	att Ile	ctc Leu -5	ccc	acc Thr	aga Arg	104
Gly	Gln 1	Thr	Leu	Lys	Asp 5	Thr	Thr	Ser	Ser	Ser 10	Ser	Ala	Asp	tca Ser	Thr 15	152
Ile	Met	Asp	Ile	Gln 20	Val	Pro	Thr	Arg	Ala 25	Pro	Asp	Ala	Val	tac Tyr 30	Thr	200
Glu	Leu	Gln	Pro 35	Thr	Ser	Pro	Thr	Pro 40	Thr	Trp	Pro	Ala	Asp 45	gaa Glu	Thr	248
cca Pro	caa Gln	ccc Pro 50	cag Gln	acc Thr	cag Gln	acc Thr	cag Gln 55	caa Gln	ctg Leu	gaa Glu	gga Gly	acg Thr 60	gat Asp	gjà aaa	Pro	296
Leu	Val 65	Thr	Asp	Pro	Glu	Thr 70	His	Xaa	Ser	Xaa	Lys 75	Ala	Ala	cat His	Pro	344
act Thr 80	gat Asp	gac Asp	acc Thr	acg Thr	acg Thr 85	ctc Leu	tct Ser	gag Glu	aga Arg	cca Pro 90	tcc Ser	cca Pro	agc Ser	aca Thr	kac Xaa 95	392

				_	_											
gtc Val	cat His	dac Xaa	aga Arg	ccb Pro 100	cba Xaa	kda Xaa	ccc Pro	tca Ser	akc Xaa 105	cat His	ctg Leu	gtt Val	ttc Phe	atg Met	agg Arg	44
atg Met	acc Thr	cct Pro	tct Ser 115	tct Ser	atg Met	atg Met	aac Asn	aca Thr 120	Pro	tcc Ser	gga Gly	aac Asn	sgg Xaa 125	Gly	tgt Cys	48
													Ser		gtg Val	536
gca Ala	agt Ser 145	gca Ala	ggc	agc Ser	tgt Cys	ccc Pro 150	ggt Gly	tat Tyr	gcc Ala	gga Gly	atc Ile 155	Ile	gca Ala	ggt Gly	gag Glu	584
				agg Arg		tgad	caac	etg	ctgg	gcac			ccaa	g		632
ggaa aac	agaca cctgo	aca g	gatga gccc	atgaa ctgaa	ag ct	tggaq ctaco	gccáq ctggq	g gg	ctgc cttg	cggt gggg	ccg ctg	agtc tccc	tcc tca	tacc	agagag tccccc atctcc	752
tctg	gctaa	aga (caaaa	aagta	aa ag	gcact	gtg	g te	tttg	caaa	aaa	aaaa	a			860
<211 <212	0> 25 l> 59 2> DN 3> Ho	93 NA	sapie	ens												
)> -> CI !> 24		50													
<222	!> 24 !> Vo so	n He	eijne 10.3	le mat 39999 CGPS(9618		S		·							
	.> pc :> 56		_sigr 568	nal												
	.> pc !> 58		_site 593	•												
	> 25 cago		sgco	egged	a go	c at	g ga	ıg ac	et ge	ga go	g ct	g cg	gg cg	gc co	g caa	53
a++	a.		**-				-2	:5				- 2	20		ro Gln	
Leu	Leu -15	Pro	Leu	ctg Leu	Leu	Leu -10	Leu	Cys	Gly	Pro	Ser -5	Gln	Asp	Gln	Cys	101
Arg 1	Pro	Val	Leu	cag Gln 5	Asn	Leu	Leu	Gln	Ser 10	Pro	Gly	Leu	Thr	Trp 15	Ser	149
ttg Leu	gaa Glu	gtg Val	ccc Pro 20	act Thr	Gly 999	aga Arg	gaa Glu	gga Gly 25	aag Lys	gaa Glu	ggt Gly	GJA aaa	gat Asp 30	cgg Arg	gga Gly	197
cca Pro	ggg ggg	cta Leu 35	akt Xaa	Gly 999	gcc Ala	Thr	cca Pro 40	gcc Ala	agg Arg	agc Ser	cct Pro	cag Gln 45	ggc	aag Lys	gag Glu	245
atg Met	999 Gly 50	aga	caa Gln	agg Arg	Thr	aga	aag	gtg Val	aag Lys	ggc Gly	cct Pro	qct	tgg Trp	akt Xaa	cac His	293

WO 99/31236 -174 - PCT/IB98/02122 -

aca gca aat cag gaa cta aac agg atg agg tct ctg tct tct ggc tcc	341
Thr Ala Asn Gln Glu Leu Asn Arg Met Arg Ser Leu Ser Ser Gly Ser 65 70 75 80	
gtg cca gtg ggg cat ctg gag ggt ggc acg gtc aag ctt cag aag gac Val Pro Val Gly His Leu Glu Gly Gly Thr Val Lys Leu Gln Lys Asp 85 90 95	389
acg ggc ctc cat tcc tgc ara gat ggt atg gct tct ctt gaa ggg acg Thr Gly Leu His Ser Cys Xaa Asp Gly Met Ala Ser Leu Glu Gly Thr	437
cca gct tca gtc ctg gct gat gct tgc cca gga ttc cat gat gtg aan Pro Ala Ser Val Leu Ala Asp Ala Cys Pro Gly Phe His Asp Val Xaa	485
gtt car arg gcc cta ttt ggg tta agt ggg ana rta ctg tgg ctg aaa Val Gln Xaa Ala Leu Phe Gly Leu Ser Gly Xaa Xaa Leu Trp Leu Lys	533
130 135 140 acc cac ttc tgc ctt tct att ana ctt taaataaact ctgaaracct Thr His Phe Cys Leu Ser Ile Xaa Leu	580
145 150 gtaaaaaaa aaa	593
<210> 252 <211> 1114 <212> DNA	
<213> Homo sapiens	
<220> <221> CDS <222> 109.,558	
<221> sig_peptide <222> 109273 <223> Von Heijne matrix score 3.7000004768372 seq VAFMLTLPILVCK/VQ	
<221> polyA_site <222> 1104. 1114	
<400> 252	60
attagetste caaggtetee eecageactg aggagetege etgetgeeet ettgegegeg ggaageagea eeaagtteae ggeeaacgee ttggeactag ggteeaga atg get aca Met Ala Thr	60 117
attagetste caaggtetee eecageactg aggagetege etgetgeeet ettgegegeg ggaageagea ceaagtteae ggecaaegee ttggeactag ggtecaga atg get aca Met Ala Thr -55 aca gte cet gat ggt tge ege aat gge etg aaa tee aag tae tae aga Thr Val Pro Asp Gly Cys Arg Asn Gly Leu Lys Ser Lys Tyr Tyr Arg	
attagetstc caaggtetee eccageactg aggagetege etgetgeeet ettgegegeg ggaageagea ccaagtteae ggecaaegee ttggeactag ggtecaga atg get aca Met Ala Thr -55 aca gtc cct gat ggt tgc ege aat ggc etg aaa tcc aag tac tac aga Thr Val Pro Asp Gly Cys Arg Asn Gly Leu Lys Ser Lys Tyr Tyr Arg -50 -45 ctt tgt gat aag get gaa get tgg gge ate gte eta gaa aeg gtg gee Leu Cys Asp Lys Ala Glu Ala Trp Gly Ile Val Leu Glu Thr Val Ala	117
attagetstc caaggtetec eccageactg aggagetege etgetgeeet ettgegegeg ggaageagea ccaagtteac ggecaacgee ttggeactag ggtecaga atg get aca Met Ala Thr -55 aca gte cet gat ggt tge ege aat gge etg aaa tee aag tae tae aga Thr Val Pro Asp Gly Cys Arg Asn Gly Leu Lys Ser Lys Tyr Tyr Arg -50 -45 ctt tgt gat aag get gaa get tgg gge ate gte eta gaa aeg gtg gee Leu Cys Asp Lys Ala Glu Ala Trp Gly Ile Val Leu Glu Thr Val Ala -35 -30 -25 aca gee ggg gtt gtg ace teg gtg gee tte atg etg act ete eeg ate Thr Ala Gly Val Val Thr Ser Val Ala Phe Met Leu Thr Leu Pro Ile	117
attagetstc caaggtetee eccageactg aggagetege etgetgeeet ettgegegeg ggaageagea ccaagtteae ggecaacgee ttggeactag ggtecaga atg get aca Met Ala Thr -55 aca gte cet gat ggt tge ege aat gge etg aaa tee aag tae tae aga Thr Val Pro Asp Gly Cys Arg Asn Gly Leu Lys Ser Lys Tyr Tyr Arg -50 -45 ctt tgt gat aag get gaa get tgg gge ate gte eta gaa aeg gtg gee Leu Cys Asp Lys Ala Glu Ala Trp Gly Ile Val Leu Glu Thr Val Ala -35 -30 -25 aca gee ggg gtt gtg ace teg gtg gee tte atg etg act ete eeg Thr Ala Gly Val Val Thr Ser Val Ala Phe Met Leu Thr Leu Pro Ile -20 -15 -10 -5 cte gte tge aag gtg eag gae tee aac agg ega aaa atg etg eet act Leu Val Cys Lys Val Gln Asp Ser Asn Arg Arg Lys Met Leu Pro Thr	117 165 213
attagetstc caaggtetec eccageactg aggagetege etgetgeeet ettgegegeg ggaageagea ccaagtteac ggecaacgee ttggeactag ggtecaga atg get aca Met Ala Thr -55 aca gte cet gat ggt tge ege aat gge etg aaa tee aag tae tae aga Thr Val Pro Asp Gly Cys Arg Asn Gly Leu Lys Ser Lys Tyr Tyr Arg -50 -45 ctt tgt gat aag get gaa get tgg gge ate gte eta gaa acg gtg gee Leu Cys Asp Lys Ala Glu Ala Trp Gly Ile Val Leu Glu Thr Val Ala -35 -30 -25 aca gee ggg gtt gtg ace teg gtg gee tte atg etg act ete eeg ate Thr Ala Gly Val Val Thr Ser Val Ala Phe Met Leu Thr Leu Pro Ile -20 -15 -10 -5 cte gte tge aag gtg eag gae tee aac agg ega aaa atg etg eet act	117 165 213 261

WO 99/31236 -175- PCT/IB98/02122 -

30 35 40 ctc ttt tcc atc tgc ttc tcc tgc ctg ctg gct cat.	453
Leu Phe Gly Ile Leu Phe Ser Ile Cys Phe Ser Cys Leu Leu Ala His	•••
45 50 55 60	
get gtc agt ctg acc aag etc gtc egg ggg agg aaa gee eet tte eet	501
Ala Val Ser Leu Thr Lys Leu Val Arg Gly Arg Lys Ala Pro Phe Pro 65 70 75	
gtt ggt gat tot ggg tot ggc ogt ggg ott dag oot agt oda gga tgt	549
Val Gly Asp Ser Gly Ser Gly Arg Gly Leu Gln Pro Ser Pro Gly Cys	0.10
80 85 90	
tat cgc tat tgaatatatt gtcctgacca tgaataggac caacgtcaat	598
Tyr Arg Tyr	
95 gtcttttctg agctttccgc tcctcgtcgc aatgaaaact ttgtcctcct gctcacctac	658
kteetettet tgatggeget gaeetteete wtgteeteet teacettetg tggtkeette	718
acgggctgga avagacatgg ggcccacatc tacctcasga tgctcskctc cattgccatc	778
tgggtggcct ggatcaccct gctcatgctt cctgactttg accgcrggtg ggatgacacc	838
atcmtcarct cogcettggs tresaatgge tgggtgttee tgttggetta tgttagteee	898
gagttttggc tgctcacaaa gcaackaaac cccatggatt atcctgttga ggatgctttc	958
tgtaaacctc aactcgtgaa gaagagctat ggtgtggrga acagagccta skctcaagag	1018
gaaatcactc aaggttttga agagacaggg gacacgctct atgcccccta ttccacacat	1078 1114
tttcagctgc agaascagcc tccccaaaaa aaaaaa	1117
<210> 253	
<211> 1182 <212> DNA	
<213> Homo sapiens	
12137 Nome Sapiens	
<220>	
<221> CDS	
<222> 128835	
<221> sig_peptide	
<222> 128220	
<223> Von Heijne matrix	
score 4.69999980926514	
seq LAVDSWWLDPGHA/AV	
allia maluh mismal	
<pre><221> polyA_signal <222> 11451150</pre>	
<221> polyA_site	
<222> 11701181	
.400. 252	
<400> 253 aagaactgcg tctcgcgacc caggcgcggg ttcccggagg acagccaaca agcgatgctg	60
ccgccgcgt ttcctgattg gttgtgggtg gctacctctt cgttctgatt ggccgctagt	120
gagcaag atg ctg agc aag ggt ctg aag cgg aaa cgg gag gag gag gag	169
Met Leu Ser Lys Gly Leu Lys Arg Lys Arg Glu Glu Glu Glu	
-30 -25 -20	
gag aag gaa cot otg goa gto gac too tgg tgg ota gat oot ggo cac	217
Glu Lys Glu Pro Leu Ala Val Asp Ser Trp Trp Leu Asp Pro Gly His	
-15 -10 -5 gca gcg gtg gca cag gca ccc ccg gcc gtg gcc tct agc tcc ctc ttt	265
Ala Ala Val Ala Gln Ala Pro Pro Ala Val Ala Ser Ser Leu Phe	203
1 5 10 15	
gac ctc tca gtg ctc aag ctc cac cac agc ctg cag vrr agt rag ccg	313
Asp Leu Ser Val Leu Lys Leu His His Ser Leu Gln Xaa Ser Xaa Pro	
20 25 30	
gac ctg cgg cac ctg gtg ctg gtc atr aac act ctg cgg cgc atc cag	361

Asp	Leu	Arg	His 35	Leu	Val	Leu	Val	Xaa 40	Asn	Thr	Leu	Arg	Arg 45	Ile	Gln	
gcg Ala	tcc Ser	atg Met 50	gca	ccc Pro	gcg Ala	gct Ala	gcc Ala 55	ctg Leu	cca Pro	cct Pro	gtg Val	cct Pro 60	acc	cca Pro	cct Pro	409
gca Ala	gcc Ala 65	CCC	ant Xaa	gtg Val	gct Ala	gac Asp 70	aac	tta Leu	ctg Leu	gca Ala	agc Ser 75	tcg Ser	gac Asp	gct Ala	gcc Ala	457
	tca													att Ile		505
ggc														cca Pro 110		553
cgt Arg	agc Ser	Ile	999 Gly	gga	wca Xaa	ccg Pro	ccc Pro	amc Xaa 120	ctg Leu	ggt Gly	gcc Ala	ttg Leu	gac Asp 125	ctg Leu	ctg Leu	601
		gcc	act											ctg Leu		649
		att					tat					tgg		cca Pro		697
	gag Glu					ggc					ccg			gag Glu		745
gct	ccg	gag Glu	ctg Leu	gac Asp 180	gag	gcc Ala	gaa Glu	ttg Leu	gac Asp 185	tac	ctc Leu	atg Met	gat Asp	gtg Val 190	ctg Leu	793
			cag Gln 195	gca					ccg							835
tgt gag	cctc agac	gaa aga	aaga atct	caca; agtc	gc to	ggct:	tccci actt	t ag	taca; atcc;	gaga gtcc	aca;	gggc gggc	ttg (gggc	accaac actttg tggcag aattcc	895 955 1015 1075
_	-		ggtc: ttaa	_			_			-	_		gag	accc	aatcag	1135 1182

<210> 254

<221> polyA_site <222> 1062..1073

actgtttnng ggaggegegt ggggettgag geegagaaeg geeettgetg ceaceaac. 58 atg gag act ttg tac cgt gtc ccg ttc tta gtg ctc gaa tgt ccc aac Met Glu Thr Leu Tyr Arg Val Pro Phe Leu Val Leu Glu Cys Pro Asn -100 -95 -90 ctg aag ctg aag aag ccg ccc tgg ttg cac atg ccg tcg gcc atg act 154 Leu Lys Leu Lys Lys Pro Pro Trp Leu His Met Pro Ser Ala Met Thr -80 -75 -70 gtg tat gct ctg gtg gtg tct tac ttc ctc atc acc gga gga ata 202 Val Tyr Ala Leu Val Val Val Ser Tyr Phe Leu Ile Thr Gly Gly Ile -65 -60 att tat gat gtt att gtt gaa oot ooa agt gto ggt tot atg act gat 250 Ile Tyr Asp Val Ile Val Glu Pro Pro Ser Val Gly Ser Met Thr Asp -50 -45 gaa cat ggg cat cag agg cca gta gct ttc ttg gcc tac aga gta aat 298 Glu His Gly His Gln Arg Pro Val Ala Phe Leu Ala Tyr Arg Val Asn -30 -25 gga caa tat att atg gaa gga ctt gca tcc agc ttc cta ttt aca atg 346 Gly Gln Tyr Ile Met Glu Gly Leu Ala Ser Ser Phe Leu Phe Thr Met -15 -10 gga ggt tta ggt ttc ata atc ctg gac gga tcg aat gca cca aat atc 394 Gly Gly Leu Gly Phe Ile Ile Leu Asp Gly Ser Asn Ala Pro Asn Ile cca aaa ctc aat aga ttc ctt ctt ctg ttc att gga ttc gtc tgt gtc Pro Lys Leu Asn Arg Phe Leu Leu Phe Ile Gly Phe Val Cys Val 15 20 cta twr agt ttt tkc ayg gct aga gta ttc atg aga atg aaa ctg ccg 490 Leu Xaa Ser Phe Xaa Xaa Ala Arg Val Phe Met Arg Met Lys Leu Pro 35 40 ggc tat ctg atg ggt tagagtgcct ttgasaagaa atcagtggat actggatttg 545 Gly Tyr Leu Met Gly 45 ctcctgtcaa wgaastttta aaggctgtmc caatcctcta atatgaaatg tggaaaagaa 605 tgaagagcag cagtaaaaga aatatctagt gaaaaaaacag gaagcgtatt gaagcttgga 665 ctagaatttc ttcttggtat taaagagaca agtttatcac agaatttttt ttcctgctgg 725 cctattgcta taccaatgat gttgagtggc attttctttt tagtttttca ttaaaatata 785 ttccatatct acaactataa tatcaaataa agtgattatt ttttacaacc ctcttaacat 845 tttttggaga tgacatttct gattttcaga aattaacata aaatccagaa gcaagattcc 905 gtaagctgag aactetggae agttgateag etttacetat ggtgetttge etttaactag 965 agtgtgtgat ggtagattat ttcagatatg tatgtaaaac tgtttcctga acaataagat 1025 gtatgaacgg agcagaaata aatacttttt ctaattaaaa aaaaaaaa 1073

```
<210> 255
```

<211> 818

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 1..207

<221> sig_peptide

<222> 1..147

<223> Von Heijne matrix
 score 7.59999990463257
 seq HLPFLLLLSCVGX/XP

<221> polyA_signal <222> 784..789

<221> polyA_site <222> 807..818 <400> 255 48 atg cct ttc cat ttt ccg ttc ctt ggg ttt gtg tgt ctg cat ctc cat Met Pro Phe His Phe Pro Phe Leu Gly Phe Val Cys Leu His Leu His -45 -40 ctt acc cct tgc ctg act gta ccc cgt aga ccc ctg ttt ctc ctc ctg 96 Leu Thr Pro Cys Leu Thr Val Pro Arg Pro Leu Phe Leu Leu Leu -25 -20 -30 cac ctg tgt ccc cat ctg ccc ttc ttg ttg ctc ctg tca tgt gtc ggg 144 His Leu Cys Pro His Leu Pro Phe Leu Leu Leu Ser Cys Val Gly -15 -10 192 gke www ecc tee tgt etg ect tet tee tee act tgt gte age ttg cat Xaa Xaa Pro Ser Cys Leu Pro Ser Ser Ser Thr Cys Val Ser Leu His 10 ttt ttt att cct gac tgagtcacca caccectete ecetgatcaa agggaatatk 247 Phe Phe Ile Pro Asp 20 artttttaat ttggatcgac tgaggtgcca ggagaaactg cagkcccagg tatccmvaca gecaceagga tggteceteg ecceacece acegeetetk ecceacettt tecaacgtgt tgcatgctgg gaactggggg gtgtggggga aggggctgcc ggcttctttc aggangctga 427 rgtttggarg caaaatcaac ctgggaracc acccggccg cggcgcctca gtggacaggt 487 547 gggargaaaa gaaaacttct taccttggar garggacatc ccgcttcctt atccttagct tttttgttgc tcctccccac tgcccctttt aatttatttg gttgtttgcg gaaggagggg 607 667 ggaaggggt aagetgggce gggaactgte egaggtgetg agetggggeg ggaceggaat cctcccggta gggtaccagg gactgagttg ggcctggggc cgtgtccaag gtgccaatga 727 tgcgggccga cagarcgggc cgcactgtct gtctgtccgt ctgtcccgga aagaactata 787 818 aagcgctgga agcgcctgca aaaaaaaaa a <210> 256 <211> 971 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 12..734 <221> sig_peptide <222> 12..101 <223> Von Heijne matrix score 4.80000019073486 seq ILFCVGAVGACTL/SV <221> polyA_signal <222> 914..919 <221> polyA site <222> 961..971 <400> 256 50 aatacacaga a atg ggg act gcg agc aga agc aac atc gct cgc cat ctg Met Gly Thr Ala Ser Arg Ser Asn Ile Ala Arg His Leu -25 -30 -20 caa acc aat ctc att cta ttt tgt gtc ggt gct gtg ggc gcc tgt act 98 Gln Thr Asn Leu Ile Leu Phe Cys Val Gly Ala Val Gly Ala Cys Thr -10 -15 ctc tct gtc aca caa ccg tgg tac cta gaa gtg gac tac act cat gag

Leu Ser Wal Thr Gln Pro Trp Tyr Leu Glu Val Asp Tyr Thr His Glu

-179-PCT/IB98/02122 -WO 99/31236

	1				5					10					15	
gcc	gtc	acc	ata	aag	tgt	acc	ttc	tcc	gca	acc	gga	tgc	cct	tct	gag .	194
Ala	Val	Thr	Ile	Lys	Cys	Thr	Phe	Ser	Ala	Thr	Gly	Cys	Pro	Ser	Glu	•
				20					25					30		
														gag		242
Gln	Pro	Thr	Cys	Leu	Trp	Phe	Arg	Tyr	Gly	Ala	His	Gln	Pro	Glu	Asn	
			35					40					45			
														gtg		290
Leu	Cys		Asp	Gly	Cys	Lys		Glu	Ala	Xaa	Lys		Thr	Val	Arg	
•		50					55					60				
														gtg		338
GIu		Leu	rys	Glu	Asn		val	Ser	Leu	Thr		Asn	Arg	Val	Thr	
	65					70		.			75					200
														agt		386
	Asn	Asp	ser	Ala		ıyr	TTE	Cys	GIY	90	Ala	Pne	PIO	Ser	95	
80	~~~	~~~	200		85			~~~	~~~		200		a+ a	~+~		131
														gtg Val		434
PIO	GIU	Ala	Arg	100	ոչո	GIII	1111	GIŞ	105	GIY	1111	1111	пеп	110	val	
2072	~	- t- t-	224		ata	300	224	~ 22		caa	200	++0	ata	aca	act	482
														Thr		402
AL 9	Giu	116	115	Бец	Dea	261	пур	120	пец	Arg	261	FIIC	125	1111	AIG	
ctt	ata	tra		ctc	tot	atc	tat		200	aat	ata	tac		gcc	ttc	530
														Ala		330
DÇ u	• • • •	130	шси	Dea	UCI	Val	135	V CL 1	****	OLY	val	140	Val	niu	1110	
ata	ctc		tcc	aaa	tca	aaa		aac	cct	cta	aga.		aaa	gaa	ata	578
														Glu		
	145			-1-		150					155		-1 -			
aaa	gaa	gac	tca	caa	aag	aag	aag	agt	gct	cgg	cgt	att	ttt	cag	gaa	626
		_			_	_	_	_	-					Gln	-	
160		_			165	_	_			170	_				175	
att	gct	caa	gaa	cta	tac	cat	aag	aga	cat	gtg	gaa	aca	aat	cag	caa	674
Ile	Ala	Gln	Glu	Leu	Tyr	His	Lys	Arg	His	Val	Glu	Thr	Asn	Gln	Gln	
				180					185					190		
tct	gag	aaa	gat	aac	aac	act	tat	gaa	aac	aga	aga	gta	ctt	tcc	aac	722
Ser	Glu	Lys	Asp	Asn	Asn	Thr	Tyr	Glu	Asn	Arg	Arg	Val	Leu	Ser	Asn	
			195					200					205			
			cca	taga	aaac	gtt t	taat	tttt	a at	gaag	gtcac	: tga	aaat	cca		774
Tyr	Glu	Arg	Pro													
		210														
		-	-		_		_								ataaa	834
	_											_	-		ataac	894
					ca ct	aaaa	accca	aca	aaat	gca	acto	gaaaa	at a	ecct	ccaaa	954
tttg	gccaa	aaa a	aaaa	aaw												971

<210> 257

<211> 640

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 378..518

<221> sig_peptide <222> 378..467

<223> Von Heijne matrix score 5.5 seq SLMTCTTLINASA/IS <221> polyA_signal <222> 607..612 <221> polyA_site <222> 628..640 <400> 257 60 agectgggta akgeccaaga tggetgtett egeettagta etegtgtgaa gttggegggg 120 acggttcctg tcatcttctt gggcttattt ggtgtgctgt tgaagggggg agactagaga 180 aatggcaggg aacctcttat ccggggcagg taggcgcctg tgggactggg tgcctctggc gtgcagaagc ttctctcttg gtgtgcctag attgatcggt ataaggctca ctctcccgcc 240 ccccaaagtg gttgatcgtt ggaacgagaa aagggccatg ttcggagtgt atgacaacat cgggatcctg ggaaactttg aaaagcaccc caaagaactg atcagggggc ccatatggct tcgaggttgg aaaggga atg aat tgc aac gtt gta tcc gaa aga gga aaa 410 Met Asn Cys Asn Val Val Ser Glu Arg Gly Lys -30 -25 458 tgg ttg gaa gta gaa tgt tcg ctg atg acc tgc aca acc tta ata aac Trp Leu Glu Val Glu Cys Ser Leu Met Thr Cys Thr Thr Leu Ile Asn -15 -10 506 gea tee get ate tet aca aac act tta ace gae atg gga agt tte gat Ala Ser Ala Ile Ser Thr Asn Thr Leu Thr Asp Met Gly Ser Phe Asp 558 aga aga gaa agc tgagaacttc ggaaaaggct catctgtcac cctggaraag Arg Arg Glu Ser ggaaactgta cttttccctg tgaggaaacg gctttgtatt ttctctgtaa taaaatgggg 618 640 cttctttgga aaaaaaaaa aa <210> 258 <211> 745 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 110..304 <221> sig_peptide <222> 110..193 <223> Von Heijne matrix score 4.59999990463257 seq PLQWSLLVAVVAG/SV <221> polyA_signal <222> 708..713 <221> polyA_site <222> 732..743 <400> 258 acttccgcct gcgcctgcgc agcvcagctc cshgagccct gccaaccatg gtgaacttgg 60 gtctgtcccg ggtggacgac gccgtggctg ccaagcaccc ggcaccggc atg gcc ttt 118 Met Ala Phe 166 ggc ttg cag atg ttc att cag agg aag ttt cca tac cct ttg cag tgg Gly Leu Gln Met Phe Ile Gln Arg Lys Phe Pro Tyr Pro Leu Gln Trp -25 -20 -15 -10 age etc eta gtg gee gtg gtt gea gge tet gtg gte age tae ggg gtg 214 Ser Leu Leu Val Ala Val Val Ala Gly Ser Val Val Ser Tyr Gly Val 262 acg aga gtg gag tcg gag aaa tgc aac aac ctc tgg ctc ttc ctg gag

Thr Arg Val Glu Ser Glu Lys Cys Asn Asn Leu Trp Leu Phe Leu Glu 10 15 20	
acc qqa caq ctc ccc aaa gac agg agc aca gat cag ara agc	304
Thr Gly Gln Leu Pro Lys Asp Arg Ser Thr Asp Gln Xaa Ser	
25 30 35 taggagaget ecageaggg caeagargat tgggggeagg argartetgg aacaeakeet	364
teatgecece tgaceceagg ecgacectee ceacacecta gggtacecea gtegtateet	424
ctgtccqcat gtgtgqccag gcctgacaaa cmcctgcaga tggctgctgc cccaacctgg	484
gacctgcca ggaggttgga gcagaaaggg ctctccctgg ggtggtgttt ctcctctagg	544
gtattgggat gcatgttctg cactgccagc agagagggtg tgtctggggg ccaccaccta	604 664
tgggacacgg ggtcgaaggg gcctgtacac tctgtcattt cctttctagc ccctgcatct	724
ccaacaagtc caaggtgaca gctggtgcta ggggcgtggg gttaataaat ggcttatcct tctctccaaa araaaaaaam c	745
CCCCCaaa araaaaaaaaaaaaaaaaaaaaaaaaaaaa	
	•
<210> 259	
<211> 637 <212> DNA	
<212> DNA <213> Homo sapiens	
AZZO NOMO OZPZONA	
<220>	
<221> CDS	
<222> 201419	
<221> sig_peptide	
<222> 201272	
<223> Von Heijne matrix	
score 6.4000009536743	
seq LSYLPLWLGPIWP/CS	
<221> polyA signal	
<222> 601606	
<221> polyA_site	
<222> 627637	
<400> 259	
acaaaatata attgcctcts ccctctccca ttttctctct tgggagcaat ggtcacagtc	60
cctggtacct gaaaaggtac ctaggtctag gcccttcttc cctttccctt cctctccct	120
acccagaac tttggctccc tttcccttct ctctctggta gctccaggag gcctgtgatc	180 233
cagetecetg cetageatee atg ace tgt tgg atg tta eet eea ate agt tte Met Thr Cys Trp Met Leu Pro Pro Ile Ser Phe	233
-20 -15	
ctg tcc tac ctg cct ctt tgg ctt gga cct ata tgg cca tgc tct ggc	281
Leu Ser Tyr Leu Pro Leu Trp Leu Gly Pro Ile Trp Pro Cys Ser Gly	
-10 -5 1	220
tot acc ott ggg aag oot gat ooc ggt gtg tgg ooc ago ttg tto agg	329
Ser Thr Leu Gly Lys Pro Asp Pro Gly Val Trp Pro Ser Leu Phe Arg	
ccc tgg gat gct gca tct cca ggc aac tat gca ctt tcc cgg gga rar	377
Pro Trp Asp Ala Ala Ser Pro Gly Asn Tyr Ala Leu Ser Arg Gly Xaa	
20 25 30 35	
aac cak tat gav aak tgg ggg cag ggc aca cat tca tct ttg	419
Asn Xaa Tyr Xaa Xaa Trp Gly Gln Gly Thr His Ser Ser Leu	
40 45 targaaggto tggoctgggg torggtgaag gagggoccag gtoagttotg gggtoccagt	479
gacetgettt gecattetee tggtgeeget getgeteest gtttetggag etggatgtte	53
cccacctggc agttgagctg cctgagccaa tgtgtctgtc tttggtaact gagtgaacca	599
taataaaggg gaacatttgg ccctgtgaaa aaaaaaaa	63

```
<210> 260
<211> 1315
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 123..302
<221> sig_peptide
<222> 123..176
<223> Von Heijne matrix
     score 4.30000019073486
      seq WTCLKSFPSPTSS/HA
<221> polyA_signal
<222> 1279..1284
<221> polyA_site
<222> 1301..1312
<400> 260
aagagcatcc tgcgccccgg cgcggggccc tgcggtagcc tcaggcccct cccctggacc 60
cgccgcagag ccagtgcaga atacagaaac tgcagccatg accacgcacg tcaccctgga
                                                                    120
                                                                    167
ag atg ccc tgt cca acg tgg acc tgc ttg aag agc ttc ccc tcc ccg
   Met Pro Cys Pro Thr Trp Thr Cys Leu Lys Ser Phe Pro Ser Pro
acc agc agc cat gca tcg agc ctc cac ctt cct cca tca tgt acc agg
                                                                    215
Thr Ser Ser His Ala Ser Ser Leu His Leu Pro Pro Ser Cys Thr Arg
                                                                    263
cta act ttg aca caa act ttg agg aca gga atg cat ttg tca cgg gca
Leu Thr Leu Thr Gln Thr Leu Arg Thr Gly Met His Leu Ser Arg Ala
                       20
                                           25
                                                                    312
ttg caa ggt aca ttg acc agg cta cag tcc act cca gca tgaatgarat
Leu Gln Gly Thr Leu Thr Arg Leu Gln Ser Thr Pro Ala
                    35
gctggaggaa ggacatgakt atgcggtcat gctgtacacc tggcgcagct gttcccgggc
                                                                    372
cattccccag gtgaaatgca acragcagcc caaccgakta raratctatg araaracagt
                                                                    432
araggtgctg gagccggagg tcaccaagct catgaagttc atgtattttc arcgcaaggc
                                                                    492
                                                                    552
categagegg ttetgeaseg aggtgaageg getgtgeeat geegagegea ggaaggaett
tgtctctgag gcctacctcc tgacccttgg caagttcatc aacatgtttg ctgtcctgga
                                                                    612
tgagctaaag aacatgaast gcagcgtcaa raatgaccac tctgcctaca agagggcagc
                                                                    672
                                                                    732
acagttcctg cggaagatgg cagatcccca gtctatccag gagtcgcaga acctttccat
                                                                    792
qttcctqqcc aaccacaaca ggatcaccca gtgtctccac cagcaacttg aagtgatccc
                                                                    852
aggetatgag gagetgetgg etgacattgt caacatetgt gtggattaet acgagaacaa
                                                                    912
gatgtacctg actoccagtg agaaacatat gctcctcaag gtaaaactcc cctgaggccg
                                                                    972
cacccatgga gcctgggctt accctctcac cttcttctta ttaaaaatcc gttttaaaaa
                                                                   1032
acaatgtttc ttttttttta aacattgata cagatettac ggcacataat ggtttgtaac
ctgttccttt cctgtaatat aatataccgt agtcaccttt ccagatgtca ttaaggctat
                                                                   1092
                                                                   1152
ttctacaatg ttatgtgtaa tgactgccaa gtattctgtt gtattggaac attgtcatgt
                                                                   1212
aacatatccc ctgtggttgg atatttgcta aacttcattg aacacccttg tagcagtttt
                                                                   1272
tgtgcacatc tttttgtcaa ggcaaacttc ctagaagaga aattgctggc tcaaagggaa
                                                                   1315
```

<210> 261 <211> 1035

<212> DNA

<213> Homma sapiens

<220> <221> CDS <222> 98..673 <221> sig_peptide <222> 98..376 <223> Von Heijne matrix score 5.59999990463257 seq VLLLRQLFAQAEK/WY <221> polyA_site <222> 1025..1035 <400> 261 60 aattttcygt ggtccaacta ccctcggcga tcccaggctt ggcggggcac cgcctggcct 115 ctcccgttcc tttaggctgc cgccgctgcc tgccgcc atg gca gag ttg ggc cta Met Ala Glu Leu Gly Leu aat gag cac cat caa aat gaa gtt att aat tat atg cgt ttt gct cgt 163 Asn Glu His His Gln Asn Glu Val Ile Asn Tyr Met Arg Phe Ala Arg -80 tca aag aga ggc ttg aga ctc aaa act gta gat tcc tgc ttc caa gac 211 Ser Lys Arg Gly Leu Arg Leu Lys Thr Val Asp Ser Cys Phe Gln Asp -65 -70 ctc aag gag agc agg ctg gtg gag gac acc ttc acc ata gat gaa gtc 259 Leu Lys Glu Ser Arg Leu Val Glu Asp Thr Phe Thr Ile Asp Glu Val -45 -50 -55 tot gaa gto oto aat gga tta caa got gtg gtt cat agt gag gtg gaa 307 Ser Glu Val Leu Asn Gly Leu Gln Ala Val Val His Ser Glu Val Glu -30 -35 tet gag etc atc aac act gee tat acc aat gtg tta ett etg ega cag 355 Ser Glu Leu Ile Asn Thr Ala Tyr Thr Asn Val Leu Leu Leu Arg Gln -15 -20 ctg ttt gca caa gct gag aag tgg tat ctt aag cta cag aca gac atc 403 Leu Phe Ala Gln Ala Glu Lys Trp Tyr Leu Lys Leu Gln Thr Asp Ile 1 -5 tct gaa ctt gaa aac cga gaa tta tta gaa caa ktt gca gaa ttt gaa 451 Ser Glu Leu Glu Asn Arg Glu Leu Leu Glu Gln Xaa Ala Glu Phe Glu 20 15 aaa gca rav att aca tct tca aac aaa aag ccc atc tta dat gtc aca 499 Lys Ala Xaa Ile Thr Ser Ser Asn Lys Lys Pro Ile Leu Xaa Val Thr 35 30 aas cca aaa ctt gct cca ctt aat gaa ggt gga aca gca aaa ctc cta 547 Xaa Pro Lys Leu Ala Pro Leu Asn Glu Gly Gly Thr Ala Lys Leu Leu 55 50 45 595 aac aag gta ata tgt att att ttg aga aac gga aag tct ctc att ctg Asn Lys Val Ile Cys Ile Ile Leu Arg Asn Gly Lys Ser Leu Ile Leu 65 tcc tgt cat tgc cta ggg tgg aga aac aaa agt gga agg ttt gtt tca 643 Ser Cys His Cys Leu Gly Trp Arg Asn Lys Ser Gly Arg Phe Val Ser 80 ggt cct ctg agg ata att agt cca ttg cag tagttttact tgatggtacc 693 Gly Pro Leu Arg Ile Ile Ser Pro Leu Gln 95 ccatgggcca gaagaggca tacttaacct tctagagagc ctgaagtagc tcctgatcac 753 accttttcaa ggtaaagtga agagcatgaa attttggaca gcgtttattg atggacattt 813 873 aattageegg gtgtggtggt aegtgeetat agteagaget aetegggagg etgaggeagg 933 993 agaattgett gaacceggga ggtggaggtt gcagtgaget gagatcaege caetgeacte 1035 tagectggge gacagagega gactecatet caaaaaaaaa aa

<210> 262 <211> 696 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 17..463 <221> sig_peptide <222> 17..232 <223> Von Heijne matrix score 3.79999995231628 seq LMGLALAVYKCQS/MG <221> polyA_signal <222> 657..662 <221> polyA site <222> 684..696 <400> 262 actcaaacag attccc atg aat ctc ttc atc atg tac atg gca ggc aat act 52 Met Asn Leu Phe Ile Met Tyr Met Ala Gly Asn Thr 100 atc tcc atc ttc cct act atg atg gtg tgt atg atg gcc tgg cga ccc Ile Ser Ile Phe Pro Thr Met Met Val Cys Met Met Ala Trp Arg Pro -50 -55 att cag gca ctt atg gcc att tca gcc act ttc aag atg tta gaa agt Ile Gln Ala Leu Met Ala Ile Ser Ala Thr Phe Lys Met Leu Glu Ser -40 -35 196 tca ago cag aag ttt ctt cag ggt ttg gtc tat ctc att ggg aac ctg Ser Ser Gln Lys Phe Leu Gln Gly Leu Val Tyr Leu Ile Gly Asn Leu -20 -15 -25 atg ggt ttg gca ttg gct gtt tac aag tgc cag tcc atg gga ctg tta 244 Met Gly Leu Ala Leu Ala Val Tyr Lys Cys Gln Ser Met Gly Leu Leu -5 292 cct aca cat gca tog gat tgg tta gcc ttc att gag ccc cct gag aga Pro Thr His Ala Ser Asp Trp Leu Ala Phe Ile Glu Pro Pro Glu Arg 10 15 atg gag tca gtg gtg gag gac tgc ttt tgt gaa cat gag aaa gca gcg 340 Met Glu Ser Val Val Glu Asp Cys Phe Cys Glu His Glu Lys Ala Ala 25 30 cct ggt ccc tat gta ttt ggg tct tat tta cat cct tct tta agc cca 388 Pro Gly Pro Tyr Val Phe Gly Ser Tyr Leu His Pro Ser Leu Ser Pro 40 45 gtg gct cct cag cat act ctt aaa cta atc act tat gtt aaa aaa aac 436 Val Ala Pro Gln His Thr Leu Lys Leu Ile Thr Tyr Val Lys Lys Asn 60 483 caa aaa act ctt ttc tcc atg gtg ggg tgacaggtcc taaaaggaca Gln Lys Thr Leu Phe Ser Met Val Gly 543 atgtgcatat tacgacaaac acaaaaaaac tataccataa cccagggctg aaaataatgt 603 aaaaaacttt attttgttt ccagtacaga gcaaaacaac aacaaaaaaa cataactatg taaacaaaaa aataactgct gctaaatcaa aaactgttgc agcatctcct ttcaataaat 663 696 taaatggttg araacaatgc aaaaaaaaaa aaa

<212> DNA <213> Homo sapiens <220> <221> CDS <222> 263..481 <221> sig_peptide <222> 263..322 <223> Von Heijne matrix score 11.1999998092651 seq ILVVLMGLPLAQA/LD <221> polyA site <222> 858..868 <400> 263 aagacacgcc tacgattaga ctcaggcagg cacctaccgg cgagcggccg crvgtgactc ccaggcgcgg cggtacctca cggtggtgaa ggtcacaggg ttgcagcact cccagtagac 120 caggagetee gggaggeagg geeggeeeea egteetetge geaceaceet gagttggate 180 240 ctctgtgcgc cacccctgag ttggatccag ggctagctgc tgttgacctc cccactccca cgctgccctc ctgcctgcag cc atg acg ccc ctg ctc acc ctg atc ctg gtg 292 Met Thr Pro Leu Leu Thr Leu Ile Leu Val -15 -20 340 gtc ctc atg ggc tta cct ctg gcc cag gcc ttg gac tgc cac gtg tgt Val Leu Met Gly Leu Pro Leu Ala Gln Ala Leu Asp Cys His Val Cys -10 gcc tac aac gga gac aac tgc ttc aac ccc atg cgc tgc ccg gct atg 388 Ala Tyr Asn Gly Asp Asn Cys Phe Asn Pro Met Arg Cys Pro Ala Met 15 10 gtt gcc tac tgc atg acc acg cgc acc tac tac acc ccc acc agg atg 436 Val Ala Tyr Cys Met Thr Thr Arg Thr Tyr Tyr Thr Pro Thr Arg Met 30 481 aag gtc agt aag tcc tgc gtg ccc cgc tgc ttc gar nac tgt gta Lys Val Ser Lys Ser Cys Val Pro Arg Cys Phe Glu Xaa Cys Val 45 50 tgatggctac tccaagcacg cgtccaccac ctcctgctgc cagtacgacc tctgcaacgg 541 caccggeett gecaccecgg ceaccetgge cetggeecee atecteetgg ceaccetetg 601 gggteteete taaageeece gaggeagace caeteaagaa caaagetete gagacacaet 661 getayaccet ekcacceake teaccetgee teacceteca caetecetge gaccteetea 721 gccatgccca gggtcaggac tgtgggcaag aagacacccg acctccccca accaccacac 781 gacctcactt cgaggccttg acctttcgat gctgtgtggg atcccaaaag tgtccggctt 841 tgatgggctg atcagcaaaa aaaaaaa

```
<211> 775
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 42..299
<221> sig_peptide
<222> 42..101
<223> Von Heijne matrix
score 5.4000009536743
seq WFVHSSALGLVLA/PP
```

<210> 264

<222> 762..775

<400																
aacg	atac	aa a	tggt	aggo	c tt	catg	tgag	. cca	gtda	cta	c at Me	t As	n Le	eu Hi	s Phe	56
cca Pro -15	cag Gln	tgg Trp	ttt Phe	gtt Val	cat His -10	tca Ser	tca Ser	gcg Ala	tta Leu	ggc Gly -5	ttg Leu	gtc Val	ctg Leu	gct Ala	cca Pro 1	104
cct Pro	ttc Phe	tcc Ser	tct Ser 5	ccg Pro	ggc Gly	act Thr	gac Asp	ccc Pro 10	acc Thr	ttt Phe	ccg Pro	tgt Cys	att Ile 15	tac Tyr	tgt Cys	152
agg Arg	cta Leu	tta Leu 20	aat Asn	atg Met	atc Ile	atg Met	acc Thr 25	cgc Arg	ctt Leu	gca Ala	ttt Phe	tca Ser 30	ttc Phe	atc Ile	acc Thr	200
tgt Cys	tta Leu 35	tgc Cys	cca Pro	aat Asn	tta Leu	aag Lys 40	gaa Glu	gtt Val	tgt Cys	ctc Leu	att Ile 45	ttg Leu	cca Pro	gaa Glu	aaa Lys	248
aat Asn 50	tgt Cys	aat Asn	agt Ser	cga Arg	cac His 55	gct Ala	gga Gly	ttt Phe	gta Val	ggg Gly 60	cca Pro	sca Xaa	aaa Lys	ttg Leu	cgg Arg 65	296
cag Gln	tgaa	aactı	wkk 1	tew	ette	ta aa	agcco	ettea	a ttt	ccca	acaa	ggtt	aag	ctc		349
tct	cate	gtt 9	gtate	gcaa	at ta	aaaal	cttgo	ctt	gttt	gtt	acto	cttco	caa (cacag	aatogg gggtat caagaa	469
ttc	ctca	gga (cttc	ettt	gg ti	gggg	gattt	tac	ctttc	cca	aaag	gtate	gat (ctgai	ttctt	589 64 9
	aatt														tttgc acaaaa	

<210> 265 <211> 1075 <212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 198..431

<221> sig_peptide

<222> 198..260

<223> Von Heijne matrix score 6.90000009536743 seq LLACGSLLPGLWQ/HL

<221> polyA_site <222> 1064..1074

<400> 265	
atatatttct gaggcagtac ccatctcact tgtaaactta aaagacaccg cagagatttg	60
agggactcag aagtcaaata gagtaggtta aaaacctctt atttttcaaa ttaattgttt	120
taagaaacaa gcatacctgt gtaagtgaaa tatcttaatt tgtgttgaat caagttagga	180
gacagagatt ctcatga atg tgt cct gtg ttc tca aag cag ctg cta gcc	230
Met Cys Pro Val Phe Ser Lys Gln Leu Leu Ala	
-20 -15	
tgt ggg tet etc eta eet ggg tta tgg eag eac etc aca gec aat eac	278
Cys Gly Ser Leu Leu Pro Gly Leu Trp Gln His Leu Thr Ala Asn His	
-10 -5 1 5	

tgg cet cea the ted set the etc tgt aca git tge tet ggt tee tea 326 Trp Pro Pro Phe Ser Xaa Phe Leu Cys Thr Val Cys Ser Gly Ser Ser 15 gag cag att too gag tat act got toa god acg coc coa ctg tgc cgt 374 Glu Gln Ile Ser Glu Tyr Thr Ala Ser Ala Thr Pro Pro Leu Cys Arg 30 tcc ctg aac caa gag cca ttc gty tca aga gcc att cgt cca aag tac 422 Ser Leu Asn Gln Glu Pro Phe Val Ser Arg Ala Ile Arg Pro Lys Tyr 45 471 tot atc acc tagocattgt akccatacca agccgggctt cctacttccc Ser Ile Thr 55 tetgetecce ttggttteet cetgtraart aaateteact gaecettgat geaseteeaa 531 gcatatataa tatatatata ataaaaccat abtctaaaaa attcaaacca ggawaaataa 591 asccaraaat ttgtatggga aaaatctgca caaatttatt tggccagcat ggttatcatg 651 gctctattga atttatcctt gaccgtcttt aaagccaaag caaacgggat aaagtgatca 711 actacttacc tctcaatacc aaaaargaag caggaggcaa aatctctcaw taatttcata 771 aaaacaatto ttakotgggo goggtggoto woacctgtar toccaacact ttgggaggco 831 saggtgggcg gatcatgagg tcgggagatc aamaccatcc tggctaacat ggtgaaaccc 891 catctctact aaaattacaa aaaattrgct gggcgaggtg gcgggcacct gtggtcccag 951 1011 ctactcggga ggctgaggca agagaatggt gtgaacccca gggggcggag cctgcagtga 1071 gctgagatcg caccactgca ctccagcctg ggcgacagtg agactccgtc tcaaaaaaaa 1075 <210> 266 <211> 981 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 279..473 <221> sig_peptide <222> 279..362 <223> Von Heijne matrix score 4.40000009536743 seq SCFLVALIIWCYL/RE <221> polyA_signal <222> 944..949 <221> polyA_site <222> 970..981 <400> 266 60 agaatcgtgt cttgtgtgcc ccggcggccg ggtgagctcc tcaaggtctc ggagggccga 120 gggcagacae eggegggegg geggasgett actgetetet etetteeagg geegteeggg 180 egetgagget cataggetgg getteeegaa geetteatee gttgeeeggt teeegggate 240 gggcccaccc tgccgccgag gaagaggacg accetgaccg ccccattgag ttttcctcca 296 gcaaagccaa ccctcaccgc tggtcggtgg gccatacc atg gga aag gga cat cag Met Gly Lys Gly His Gln -25 cgg ccc tgg tgg aag gtg ctg ccc ctc agc tgc ttc ctc gtg gcg ctg 344 Arg Pro Trp Trp Lys Val Leu Pro Leu Ser Cys Phe Leu Val Ala Leu -20 -15 -10 392 atc atc tgg tgc tac ctg agg gag gag agc gag gcg gac cag tgg ttg Ile Ile Trp Cys Tyr Leu Arg Glu Glu Ser Glu Ala Asp Gln Trp Leu

aga cag gtg tgg gga gag gtg cca gag ccc agt gat cgt tct gag gag

Arg Gln Val Trp Gly Glu Val Pro Glu Pro Ser Asp Arg Ser Glu Glu	
cct gag act cca gct gcc tac aga gcg aga act tgacggggtg cccgctgggg Pro Glu Thr Pro Ala Ala Tyr Arg Ala Arg Thr	493
ctggcaggaa gggagccgac asccgcctt cggatttgat ktcacgtttg cccgtgactg tcctggctat gcktgcgtcc tcagcactra argacttggc tggtggatgg ggcacttggc tatgctgatt cgcgtgaagg cggavcaaaa tctcagcaaa tcggaaactg ctcctcggt ktccaaggat tccatcggca aaacttctca ratccttggg gaaggtttca gttgcactgt atgctgttgg atttgccaag tctttgtata acataatcat gtttccaaag cacttctggt gacacttgtc atccagtgtt agtttgcagg taatttgctt tctgagatag aatatctggc agaagtgtga aactgtattg catgctgcgg cctgtgcaag gaacacttcc acatgtgagt tttacacaac aacaaatgaa aataaatttt aattttataa tatgggaaaa aaaaaaaa	553 613 673 733 793 853 913 973 981
<210> 267 <211> 1031 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> 12644	
<221> sig_peptide <222> 1292 <223> Von Heijne matrix score 4 seq LTFFSGVYGTCIG/AT	
<221> polyA_signal	
<221> polyA_site <222> 10201031	
<pre><400> 267 acaccaagga g atg ctc ctt ctt agt att aca act gct tat aca ggt ctg</pre>	50
gaa tta act ttc ttc tct ggt gta tat gga acc tgt att ggt gct aca Glu Leu Thr Phe Phe Ser Gly Val Tyr Gly Thr Cys Ile Gly Ala Thr -10 -5 1	98
aat aaa ttt gga gca gaa gag ara agc ctt att gga ctt tct ggc att Asn Lys Phe Gly Ala Glu Glu Xaa Ser Leu Ile Gly Leu Ser Gly Ile 10	146
ttc atc ggc att gga gaa att tta ggt gga agc ctc ttc ggc ctg ctg Phe Ile Gly Ile Gly Glu Ile Leu Gly Gly Ser Leu Phe Gly Leu Leu 20 25 30	194
agc aag aac aat cgt ttt ggt aga aat cca gtt gtg ctg ttg ggc atc Ser Lys Asn Asn Arg Phe Gly Arg Asn Pro Val Val Leu Leu Gly Ile 35 40 45 50	242
ctg gtg cac ttc ata gct ttt tat cta ata ttt ctc aac atg cct gga Leu Val His Phe Ile Ala Phe Tyr Leu Ile Phe Leu Asn Met Pro Gly	290
gat gcc ccg att gct cct gtt aaa gga act gac agc agt gct tac atc Asp Ala Pro Ile Ala Pro Val Lys Gly Thr Asp Ser Ser Ala Tyr Ile 70 75 80	338
aaa too ago aaa raa ttt goo att oto tgo akt ttt otg tkg ggo ott Lys Ser Ser Lys Xaa Phe Ala Ile Leu Cys Xaa Phe Leu Xaa Gly Leu	386

27	
95 gga aac agc tgc ttt aat acc cas ctg ctt akt atc tkg ggc ttt ctg 43	4
Gly Asn Ser Cys Phe Asn Thr Xaa Leu Leu Xaa Ile Xaa Gly Phe Leu 100 105 110	
tat tot gaa rac age gee cea kea tit gee ate tit aat tit git cag 48	12
Tyr Ser Glu Xaa Ser Ala Pro Xaa Phe Ala Ile Phe Asn Phe Val Gln	
115 120 125 130	
tot att tgc gca gcc gtg gca ttt ttc tac agc aac tac ctt ctc ctt 53	0
Ser Ile Cys Ala Ala Val Ala Phe Phe Tyr Ser Asn Tyr Leu Leu Leu 135 140 145	
cac tgg caa ctc ctg gtc atg gtk atw ttt ggg ttt ttk gga aca att 57	18
His Trp Gln Leu Leu Val Met Val Ile Phe Gly Phe Xaa Gly Thr Ile 150 155 160	
tot tto tto act gtg gaa tgg gaa sot goo goo ttt gta soc cgc ggc 62	:6
Ser Phe Phe Thr Val Glu Trp Glu Xaa Ala Ala Phe Val Xaa Arg Gly 165 170 175	
tot gao tac oga agt atc tgatotggtg toogtgaggg gacacgtatg 67	4
Ser Asp Tyr Arg Ser Ile 180	
acctcagaaa cacagctgga cacagagctt ggtggaagaa gtcgcctttg atcttcacta 73	
tatattgggt gatgttcagt atggaaaatc aagggattaa gactgttaaa tcagccagag 79	
tkggtgttca agtttacaga tatgagttat ttaaagcaag tagaataagg gaaagctgtt 85	
ctgtcaactg taattgttca aagatgttgt ttttcatttc atctatctca attcttataa 91	
tcatgttata gaatgtaaat gttttcttct ctctcctgct cttgttggaa gatcctgcct 97 tgatttagaa tactaggcca tatgtcatat aaatattttt tctggaaaaa aaaaaaa 103	
<pre><210> 268 <211> 1283 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 91459 <221> sig_peptide <222> 91330 <223> Von Heijne matrix</pre>	
<222> 12711281	
<pre><400> 268 tattccttgg agttccacga ctgaattaag actgttgtgg grdccataat tttcaaatac 6 ttgccctata ttcgtgttga gggttcacac atg agc aca tgg tat ttg gca ctt 11</pre>	50 14
-80 -75	
aat aag too tat aag aat aaa gac ago gtt agg att tat oto ago ttg Asn Lys Ser Tyr Lys Asn Lys Asp Ser Val Arg Ile Tyr Leu Ser Leu	52
-70 -65 - 60	
tgc aca gtg agc att aaa ttt aca tac ttt cat gat ata cag act aat Cys Thr Val Ser Ile Lys Phe Thr Tyr Phe His Asp Ile Gln Thr Asn	10
-55 -50 -45 tot off aca aca tog aga cat tog aga tog aga tit tat tog goa tit 25	5 0
tgt ctt aca aca tgg aaa cat tcg aga tgc aga ttt tat tgg gca ttt 25 Cys Leu Thr Thr Trp Lys His Ser Arg Cys Arg Phe Tyr Trp Ala Phe	, 0
-40 -35 -30 -25	
ggt ggt tcc att tta cag cac tca gtg gat ccc ctt gtt ttg ttc cta 30	0 6
Gly Gly Ser Ile Leu Gln His Ser Val Asp Pro Leu Val Leu Phe Leu	

-15 age etg gee etg tta gtg aca eec act tee ace eet tet get aar ata 354. Ser Leu Ala Leu Leu Val Thr Pro Thr Ser Thr Pro Ser Ala Lys Ile -5 1 402 car ago ott caa att gac otc oot gga ggo tgg agg otg goo act gac Gln Ser Leu Gln Ile Asp Leu Pro Gly Gly Trp Arg Leu Ala Thr Asp 10 15 agg atc ttt acc ctc tcc ccc gta ccc atg gac rgc ccc ctc atc ctt 450 Arg Ile Phe Thr Leu Ser Pro Val Pro Met Asp Xaa Pro Leu Ile Leu 35 . . 30 cat cag ttg taaaggtaga tatttgttcc ttggagtcca acatcatgct 499 His Gln Leu gttcagaata taatgagatc aatagttgaa aaactagata tacatgccac ccwgacaaag 559 619 ctattaagtt attaagtgtc agccctggat cttggcttat tgtgaaatgt taattatttt atcactcyat taagaagctg tgggctccat ctcagcattg aaaagggact aatttgctct 679 739 qttttqqaat tqaattagct ttcaggccas cagggcactg tttggtaaat tgctttttcc 799 agtactagca tgttttctcc ctccatagcc tctgttagct tctgagcttg taacctccag ggaaavatga gaatattcac ccttttaata tgtgtagaga ccatgcaaga ccattgtctt 859 ctaataatta gaaatactta gccagattct ctatagtaaa cccggagatt gggagggctg 919 ctttctactt ggtgcatcct tctgcgcttc taatgatttt taaaaatctg ttaataattg 979 1039 . atgttttctg getgggcaca gtggetcacg cetgtaatee cageaetttg ggaggeeaag gagggcagat catgaggtca ggagattgar accatcctgg ctaacacggt gaaaccccgt 1099 ctctactaaa aatacaaaar aattakccgg gcatggtagt gggcgcctgt gtacccagct 1159 1219 actqqqqaqq ctqaqqcarq araatcgctt gaacctggga ggcggaggtt gcastragct 1279 gagatggtgc caccgcactc tagcctgggt gacagagcga gacttcattt caaaaaaaaa 1283 aamc <210> 269 <211> 1777 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 70..327 <221> sig_peptide <222> 70..147 <223> Von Heijne matrix score 9.60000038146973 seg WLIALASWSWALC/RI <221> polyA signal <222> 1741..1746 <221> polyA site <222> 1763..1774 <400> 269 60 agcooggttt ogtgooogog googaotgog casotgtoog ogagtotgag atacttacag agagetaca atg gaa aag tee tgg atg etg tgg aac ttt gtt gaa aga tgg 111 Met Glu Lys Ser Trp Met Leu Trp Asn Phe Val Glu Arg Trp -20 159 cta ata gcc ttg gct tca tgg tct tgg gct ctc tgc cgt att tct ctt Leu Ile Ala Leu Ala Ser Trp Ser Trp Ala Leu Cys Arg Ile Ser Leu -10 -5 tta cct tta ata gtg act ttt cat ctg tat gga ggc att atc tta ctt 207 Leu Pro Leu Ile Val Thr Phe His Leu Tyr Gly Gly Ile Ile Leu Leu 15

ttg tta ata ttc ata tca atw kca ggt att ctg tat aaa ttc cas gat

255

Leu Leu Ile Phe Ile Ser Ile Xaa Gly Ile Leu Tyr Lys Phe Xaa Asp 30 303 gta ttg ctt tat ttt ccw kaa cag yya tcc tct tca cgt ctt tat gat Val Leu Leu Tyr Phe Pro Xaa Gln Xaa Ser Ser Ser Arg Leu Tyr Asp 45 40 tcc cat gcc cac tgg cmt tcg rca taaaaaaaatt ttcatcagaa ccaaagatgg 357 Ser His Ala His Trp Xaa Ser Xaa aatacgtctg aatcttattt tgatacgata cactggagac aattcaccct attccccaac 417 tataatttat tttcatggga atgcaggcaa cataggtcac aggttggcca aatgcattac 477 537 ttatgttggt taacctcaaa gttaaccttt tgctggttga ttatcgagga tatggaaaaa gtgaaggaga agcaagtgaa gaaggactct acttagattc tgaagctgtg ttagactacg 597 657 tgatgactag acctgacctt gataaaacaa aaatttttct ttttggccgt tccttgggtg garcagtggc tattcatttg gcttctgaaa attcacatag gatttcagcc attatggtgg 717 agaacacatt tttaagcata ccacatatgg ccagcacttt attttcattc tttccgatgc 777 gttaccttcc tttatggtgc tacaaaaata aatttttgtc ctacagaaaa atctctcagt 837 gtagaatgcc ttcacttttc atctctggac tctcagatca attaattcca ccagtaatga 897 tgaaacaact ttatgaactc tccccatctc ggactaagan attagccatt tttccagatg 957 ggactcacaa tgacacatgg cagtgccaag gctatttcac tgcacttgaa cagttcatca 1017 aagaagtegt aaagageeat teteetgaag aaatggeaaa aaetteatet aatgtaacaa 1077 ttatataatg tttccctttt tgattattgc attgtatttt aatttgtgca gaatgataaa 1137 1197 quatgttect tttagaagtg tgttatgtet gtacetgtet gaagagtgae attaaaettt 1257 gaaaggactt cactgctcct ttacgatatt ccaaatagtt ttttacattg gaaaaactaa 1317 ttcttgggat tctttcatac attttcatca aaactttcag tgtgattatg tattcatatc ttcagtttaa tatgtcagta taatagatat tgttcaaaaag tttcttgttg ctaaagtggt 1377 gtaatctgtt acacagatga atagctagat gtggaaagag atatgtaaac aagaaacctt 1437 tgggtattgt ttcttaagta aatattggga caatcatggt aagcaaactt agttctgtaa 1497 1557 ctgcattttt caccttaaaa qttaaatgaa atgcatgatg gtattttatt ccttgaatta 1617 tgcaatgcaa cattttacat gtaaatagca ctggtcatat actgatgtat atggttatct gggttatatc tatttttatg taaactctat ttttgttttt ggcaagaagt gaaattgaga 1677 1737 cttatgtgca ggttgccatt gaattttgct ctggtgaatg ctgagatcca gctttttctt 1777 acaaataaat gggaccctgt tttccaaaaa aaaaaaamcm

```
<210> 270
<211> 970
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 12..497
<221> sig_peptide
<222> 12..104
<223> Von Heijne matrix
      score 5.5
<221> polyA_signal
<222> 935..940
<221> polyA_site
<222> 955..967
<400> 270
```

seq LVGVLWFVSVTTG/PW 50 aggtotecaa g atg geg gee gee tgg eeg tet ggt eeg ket get eeg gag Met Ala Ala Ala Trp Pro Ser Gly Pro Xaa Ala Pro Glu -30 -25 gec gtg acg gcc aga ctc gtt ggt gtc ctg tgg ttc gtc tca gtc act 98 Ala Val Thr Ala Arg Leu Val Gly Val Leu Trp Phe Val Ser Val Thr

			-15					-10					-5			
aca	gga	ccc	tgg	ggg	gct	gtt	gcc	acc	tcc	gcc	999	ggc	gag	gag	tcg	146
Thr	Gly	Pro	Trp	Gly	Ala	Val	Ala	Thr	Ser	Ala	Gly	Gly	Glu	Glu ·	Ser	
		1				5					10					
ctt	aag	tgc	gag	gac	ctc	aaa	gtg	gga	caa	tat	att	tgt	aaa	gat	cca	194
	Lys	Cys	Glu	Asp		Lys	Val	Gly	Gln		Ile	Cys	гÀг	Asp		
15					20					25				t = 0	30	242
														tac		242
ьys	TTE	Asn	Asp	A1a 35	Thr	GIII	GIU	PIO	40	ASII	Cys	THE	ASII	Tyr 45	1111	
~~+	cat	~++	tee		+++	cca	aca	ccc		ata	act	tat	aag	gat	tee	290
														Asp		
AIG	****	Val	50	Cys	2 .110	110		55				-1-	60			
agt	aac	aat		aca	cat	ttt	act		aac	qaa	qtt	qqt	ttt	ttc	aag	338
Ser	Glv	Asn	Glu	Thr	His	Phe	Thr	Gly	Asn	Glu	Val	Gly	Phe	Phe	Lys	
		65					70	-				75			_	
CCC	ata	tct	tgc	cga	aat	gta	aat	ggc	tat	tcc	tac	aat	gag	cag	tcg	386
Pro	Ile	Ser	Cys	Arg	Asn	Val	Asn	Gly	Tyr	Ser	Tyr	Asn	Glu	Gln	Ser	
	80					85					90					
														cct		434
His	Val	Ser	Phe	Ser		Met	Val	Gly	Ser		Ser	Ile	Leu	Pro		
95					100			_		105					110	400
														tkg		482
Ile	Pro	Cys	Phe		Phe	Val	Lys	Xaa		His	Cys	Arg	Val	Xaa	Trp	
				115					120					125		537
					tgat	EEEC	асу с	cttai	LLLC	aa tg	gcaga	ittg	r rg	gacct	Lua	537
Asn	IIÞ	GIU	Pro	ASII												
aato	יתאאנ	rta (att:	at ac	aatt	actai	e aa	acca	agac	ttac	aag	act ·	gagta	attact	597
															agattt	
															ttttt	
															gagtta	
															agtgtt	
															tttac	
															ttcaca	957
	aaaa	-	_													970

<210> 271 <211> 645 <212> DNA

<213> Homo sapiens

<220>
<221> CDS
<222> 90..383

<221> sig_peptide <222> 90..200 <223> Von Heijne matrix

<223> Von Heijne matrix score 4.90000009536743 seq MLIMLGIFFNVHS/AV

<221> polyA_signal <222> 609..614

<221> polyA_site <222> 632..643

<400> 271

WO 99/31236 -193 - PCT/IB98/02122

·	
cacctcggcg atccccgact cccttcttt atg gcg tcg ctc ctg tgc tgt ggg Met Ala Ser Leu Leu Cys Cys Gly -35	113
ccg aag ctg gcc gcc tgc ggc atc gtc ctc agc gcc tgg gga gtg atc Pro Lys Leu Ala Ala Cys Gly Ile Val Leu Ser Ala Trp Gly Val Ile -25 -20 -15	161
atg ttg ata atg ctc gga ata ttt ttc aat gtc cat tcc gct gtg ttg Met Leu Ile Met Leu Gly Ile Phe Phe Asn Val His Ser Ala Val Leu -10 -5 1	209
att gag gac gtt ccc ttc acg gag aaa gat ttt gag aac ggc ccc car Ile Glu Asp Val Pro Phe Thr Glu Lys Asp Phe Glu Asn Gly Pro Gln	257
aac ata tac aac ctt tac rag caa ktc agc tac aac tgt ttc atc gct Asn Ile Tyr Asn Leu Tyr Xaa Gln Xaa Ser Tyr Asn Cys Phe Ile Ala	305
gca ggc ctt tac ctc ctc ctc gga ggc ttc tct ttc tgc caa ktt cgg Ala Gly Leu Tyr Leu Leu Cly Gly Phe Ser Phe Cys Gln Xaa Arg	353
40 45 50 ctc aat aag cgc aag gaa tac atg gtg cgc tagggccccg gcgcgtttcc Leu Asn Lys Arg Lys Glu Tyr Met Val Arg	403
55 60 ccgctccagc ccctcctcta tttaaaract ccctgcaccg tktcacccag gtcgcgtccc acccttgccg gcgccctctg tgggactggg tttcccgggc rararactga atcccttctc ccatctctgg catccggcc ccgtggarar ggctgaggct ggggggctgt tccgtctctc cacccttcgc tgtgtcccgt atctcaataa agagaatctg ctctctcaa aaaaaaaaaa	463 523 583 643 645
<210> 272	
<211> 773 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> 332541	
<pre><221> sig_peptide <222> 332376 <223> Von Heijne matrix score 3.59999990463257 seq FLPCCLLWSVFNP/ES</pre>	
<221> polyA_signal <222> 739744	
<221> polyA_site <222> 761773	
<pre><400> 272 aaaacaattc atgcctttca tagtttatta ttattaaagt ctaaacaaaa ttgcaatttc ttaggtaacc ttatatttac aataaatgaa gattaccctc aaatgctaga agctgtctag gtccgtccgg tgtgtcagat tttcctcaga ttagatgtgc caataaccaa gtttattcag taaacaactt gtacttgttt catctggttt tattactctc acccataaac agtaatgact ctctgaccct ctggaaatat gtaatgcttc caatcttgct ttgtgtatct catttaattt gttataaggt agtactgatt ttagcatatt a atg cga ttt ctt cct tgt tgt Met Arg Phe Leu Pro Cys Cys -15</pre> -10	60 120 180 240 300 352
ttg ctt tgg tct gtg ttc aat cca gag agc tta aat tgt cat tat ttt Leu Leu Trp Ser Val Phe Asn Pro Glu Ser Leu Asn Cys His Tyr Phe -5 1 5	400

ghk ndd gaa amc tgt att ttt gyt agt tta caa tat tat gaa att tca Xaa Xaa Glu Xaa Cys Ile Phe Xaa Ser Leu Gln Tyr Tyr Glu Ile Ser 10 15 20	448
ctt cag gag aaa ctg ctg ggc ttc ctg tgg ctt tgt ttt ctt agt tac Leu Gln Glu Lys Leu Leu Gly Phe Leu Trp Leu Cys Phe Leu Ser Tyr 25 30 35 40	496
ttt ttc cgt gcc gtg tat ttt tta att gat ttt tct tct ttt act Phe Phe Arg Ala Val Tyr Phe Leu Ile Asp Phe Ser Ser Phe Thr 45 50 55	541
tgaaaagaaa gtgttttatt ttcaaatctg gtccatattt acattctagt tcagagccaa gccttaaact gtacagaatt tccactgtaa ttaaaactat ttagtgttag ttataaatag ccttcaaaaa gagagattct ccattacacg atcacctgca tcacagccca tggtgaatgt atgtttctgc atagcgaaat aaaaatggca aatgcactga aaaaaaaaaa	601 661 721 773
<210> 273 <211> 566 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> 43222	
<221> sig_peptide <222> 43177 <223> Von Heijne matrix score 4 seq ENFLSLLSKSCSA/DP	
<221> polyA_signal	
<221> polyA_site <222> 555566	
<pre><400> 273 aacgagtgga ggtgtggcta gtggctgtga tgagataaat cc atg cat agc ctt</pre>	54
ttc att gcg agc ttg aaa gtt ctt ttc tat tac agt ttt agc ttt agg Phe Ile Ala Ser Leu Lys Val Leu Phe Tyr Tyr Ser Phe Ser Phe Arg -40 -35 -30	102
ttt aat tgg ttc gac tgc ctt ctc cac aat ttg ggc gag aat ttc ctt Phe Asn Trp Phe Asp Cys Leu Leu His Asn Leu Gly Glu Asn Phe Leu -25 -20 -15 -10	150
agc ctt ctc agc aaa agt tgt tct gcg gac ccg tct ggg tca act ttc Ser Leu Leu Ser Lys Ser Cys Ser Ala Asp Pro Ser Gly Ser Thr Phe -5	198
atg agg gac att gag aca aac aaa tgaaatatgg gttaaagtac tctgagcagc Met Arg Asp Ile Glu Thr Asn Lys 10 15	252
tacaaaaaga araccagtct atcetgetgg agacagtgge cacgtgaara aagagetett geagtatgaa agaceacatg gaaagagagg ccacatggaa ccaacagtca geatettggt tteggacacg tgaaraaatt catetearac tgtgtateet aaatcaggea ettgetgaat ctaactacat gagtgagace agttgacaac acatggagea racatgaget gtteteagtg arteetacac aaatteetga etcacaacac tgtgageaat aaaatggttg ttattttaag ccaaaaaaaa aaaa	312 372 432 492 552 566

<210> 274 <211> 455 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 115..231 <221> sig_peptide <222> 115..180 <223> Von Heijne matrix score 5 seq HLFVTWSSQRALS/HP <221> polyA_signal <222> 419..424 <221> polyA_site <222> 445..455 <400> 274 aacctgccag tkatgcaaat gccaaaatgt gggtcatcat atagtatatt tgaaaccttt 60 117 ctgaacatgt acaccaccca atgctagagg ctgacttgga aaccggtggg tgca atg ccc gag gct gtg gaa caa tca gcc cat ctc ttt gtg acc tgg agc agt 165 Pro Glu Ala Val Glu Gln Ser Ala His Leu Phe Val Thr Trp Ser Ser -15 -20 cag agg gcc ctc agt cac ccc gcc cca ttc ctc acc ara raa aar aat 213 Gln Arg Ala Leu Ser His Pro Ala Pro Phe Leu Thr Xaa Xaa Lys Asn 10 5 261 cca ttt cta tgg aag ctc tgacgtaact tcagtgtttt ctacaatact Pro Phe Leu Trp Lys Leu 15 cctcctgccc cgccccatta aaacagttct tttgttaaaa aatavcctaa tggtccaact 321 ttgctgtctg ttcttccaaa tgtttataat acacattatt tataaatatg tctgtttggg 381 441 aagctaagaa caagctagtt tttacaacac aaatggaaat aaatgcaatt attataaaaa 455 tycaaaaaa aaaa <210> 275 <211> 673 <212> DNA

<400> 275	60
attiggettg cagactgeet tetateceag aacagetgag aaatetatga agetgagatt etgaaggace cagettaggt tettecaett aggeeteaat teeetteett tiecagggge	120 180
agcettagtt teccatggee etgaaacaca cacattteee eetteettte ecagaageea etggeeece atageaceea gtgeateett tttacaagtg gaagaactag g atg get Met Ala	237
ttc caa agt ctt cta gaa atg aag ttc ttt ctc tgt gca gct ttc ccc Phe Gln Ser Leu Leu Glu Met Lys Phe Phe Leu Cys Ala Ala Phe Pro -20 -15 -10	285
ctt gga gca gga gtg aag atg ttt cat tat ctt ggg cct ggg aaa cca Leu Gly Ala Gly Val Lys Met Phe His Tyr Leu Gly Pro Gly Lys Pro -5 10	333
ctt cyy cag gct tct ccc tcc ccc cac ccc cat agg amc agg att tgg Leu Xaa Gln Ala Ser Pro Ser Pro His Pro His Arg Xaa Arg Ile Trp 15 20 25	381
cct tagettetgg geetatesge tgeetteect ettytteeta ceaectette Pro	434
tgccttcctt trawctctgt tgggcttggg gatcttagtt ttcttttgtt tatttcccat	494
ctcatttttt tcttctggtc agttttttta agggggggtg ttgtggtttt ttgtttttgt	554
tttgcttctg aaaaarcatt tgcctttctt cctctcccaa cataacaatc gtggtaacag	614
aatgcgactg ctgatttacc gatgtattta atgtaagtaa aaaaaggaaa aaaaraaaa	673
<210> 276	
<211> 639	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> 143427	
<221> sig_peptide	
<222> 143286	
<223> Von Heijne matrix	
score 7.5	
seq FVILLLFIFTVVS/LV	
<221> polyA_signal	
<221> polyA_site <222> 628639	
<400> 276	
aatcgcttca gcagcatcct ctcagacaag agccactatt tctgattcag atcacctgtc	60
atcgaagttt aaagaagggg aaacaggaga cagaaataca ctgaaccaaa aagattcaaa	120
agagcaagtg gaatctctaa ga atg gct tcc agc cac tgg aat gaa acc act	172
Met Ala Ser Ser His Trp Asn Glu Thr Thr	
••	220
acc tot gtt tat cag tac out ggt ttt caa gtt caa aaa att tac cot Thr Ser Val Tyr Gln Tyr Leu Gly Phe Gln Val Gln Lys Ile Tyr Pro	
-35 -30 -25	200
ttc cat gac aac tgg aac act gcc tgc ttt gtc atc ctg ctt tta ttt	268
Phe His Asp Asn Trp Asn Thr Ala Cys Phe Val Ile Leu Leu Leu Phe -20 -15 -10	
ata ttt aca gtg gta tct tta gtg gtg ctg gct ttc ctt tat gaa gtg	316
Ile Phe Thr Val Val Ser Leu Val Val Leu Ala Phe Leu Tyr Glu Val	
-5	364
ctt gam wgc tgc tgc tgt gta aaa aac aaa acc gtg aaa gac ttg aaa	307

-197-PCT/IB98/02122 WO 99/31236

15	20 23
agt gaa ccc aac cct ctt ara akt at	g atg gac aac atc aga aaa cgt 412
Ser Glu Pro Asn Pro Leu Xaa Xaa Me	t Met Asp Asn Ile Arg Lys Arg
30 35	40
gaa act gaa gtg gtc taacactcta tar	aaaatga acaaaatctc tgaaagcagc 467
Slu Thr Glu Val Val	
45	
reacciett etgaraaaaa aaatatatte t	gaggccaac tgttgctaca aaacaaattc 527
tgactgaatg gttaaaacat ttctagtara a	agggaaaaa aaakttaaac atgcactgtt 587
tgtgtgtata sccatttcat taaatataca g	rtaaaactyc aaaaaaaaaa aa 639
egegegeded because out canalism a	•
010. 077	
<210> 277	
<211> 772	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> 284463	
<221> sig_peptide	
<222> 284379	
<223> Von Heijne matrix	
score 3.79999995231628	
seq TFINITLWLGSLC/QR	
•	
<221> polyA_site	
<222> 762772	
<400> 277	
acagetgggg ctttgtcttc tttattgcta	ggagaatgta gcaatagaag ttctcatcgc 60
cctgtattgc acttttggtt ttaaggactg	gacccagagt teetgaaage caaactccat 120
aagctgctca gtaagttcca agcacatagc	cogctkhoog atocqattco gtcgaggtct 180
gttgaatgaa ggtagacgca gcaggcagtt	tgtccttacc agtgacctgg aagacggtgg 240
cactteetga gtgageteae ttacetteee	tgaatggtga ggc atg gat gaa tat 29
cacificating grayereac cracerees	Met Asp Glu Tyr
	-30
	_ ·
tcc tgg tgg tgc cac gtg tta gag g	the grant and grant and the second
Ser Trp Trp Cys His Val Leu Glu V	
ttt att aat att aca tta tgg ctt g	gt tot otg tgt cag cga ttt tto
Phe Ile Asn Ile Thr Leu Trp Leu G	ly Ser Leu Cys Gin Arg Phe Phe
-10 -5	1
tat gcc tcg ggt act tat ttc cta a	ta tat atc agc aca gta acg cct 43
Tyr Ala Ser Gly Thr Tyr Phe Leu I	le Tyr Ile Ser Thr Val Thr Pro
5 10	15 20
agc tgg agg ctt tgt ctt gtt agt t	gataaatta gtggtaacag gtagatttgg 49
Ser Trp Arg Leu Cys Leu Val Ser	
25	
ttacctccca aagtgctggg attrcagacg	tgagccaccg cgcctggccg aaacaattct 55
tttgaaagag agaagtotoc ctgtgttgcg	caggetggtc tcagactcct qqqqtcaagt 61
gageeteetg etttegeete etaaagtget	gggattacag gcgtgagcca ccgcacccgg 67
gageeteetg etttegeete etaaagtget	addaccacaa acacaaaaaaa acaaaaaaa
acagatgtgt tgattttaaa gtgggtatga	
ggacaacatg gcaagaccct gtctctccaa	

<210> 278 <211> 840 <212> DNA

WO 99/31236 -198- PCT/IB98/02122 .

<213> Homo sapiens <221> CDS <222> 162..671 <221> sig_peptide <222> 162..398 <223> Von Heijne matrix score 4.09999990463257 seg QGVLFICFTCARS/FP <221> polyA_signal <222> 805..810 <221> polyA_site <222> 830..840 <400> 278 60 aaaaactgag gcctgggagc aggaacctgt aggcagcgct tgagggtagc gggatagcag ctgcaacgcg cgtgggaggc gggggctctg ggcggaacaa aaatcacagg atgtcagagg 120 atgtttcccg ggaagaactg ggataaaggg gtcccagcac c atg gag gac ccg aac 176 Met Glu Asp Pro Asn 224 cct gaa gag aac atg aag cag cag gat tca ccc aag gag aga agt ccc Pro Glu Glu Asn Met Lys Gln Gln Asp Ser Pro Lys Glu Arg Ser Pro -65 -70 cag age eca gga gge aac ate tge eac etg ggg gee eeg aag tge ace 272 Gln Ser Pro Gly Gly Asn Ile Cys His Leu Gly Ala Pro Lys Cys Thr -45 -50 -55 cgc tgc ctc atc acc ttc gca gat tcc aag ttc cag gag cgt cac atg 320 Arg Cys Leu Ile Thr Phe Ala Asp Ser Lys Phe Gln Glu Arg His Met -35 -30 368 aag cgg gag cac cca gcg gac ttc gtg gcc cag aag ctg cag ggg gtc Lys Arg Glu His Pro Ala Asp Phe Val Ala Gln Lys Leu Gln Gly Val -15 -20 etc ttc atc tgc ttc acc tgc gcc cgc tcc ttc ccc tcc taa gcc 416 Leu Phe Ile Cys Phe Thr Cys Ala Arg Ser Phe Pro Ser Ser Lys Ala 1 -5 ckr rkc acc cac car cgc agc cac ggt cca rcc gcc aag ccc acc ctg 464 Xaa Xaa Thr His Gln Arg Ser His Gly Pro Xaa Ala Lys Pro Thr Leu 15 10 ccg gtt gca acc act act gcc car ccc acc ttc cct tgt cct gac tgt 512 Pro Val Ala Thr Thr Thr Ala Gln Pro Thr Phe Pro Cys Pro Asp Cys 35 30 ggc aaa acc ttt ggg cag gct gtt tct ctg arg cgg cac csc caa atr 560 Gly Lys Thr Phe Gly Gln Ala Val Ser Leu Xaa Arg His Xaa Gln Xaa 50 45 608 cat gar gtc cgt gcc cct cct ggc acc ttc gcc tgc aca rad tgc ggt His Glu Val Arg Ala Pro Pro Gly Thr Phe Ala Cys Thr Xaa Cys Gly 65 60 656 cag gac ttt gct car gaa rca ggg ctg cat caa cac tac att cgg cat Gln Asp Phe Ala Gln Glu Xaa Gly Leu His Gln His Tyr Ile Arg His 80 711 gcc cgg ggg gga ctc tgagttcagc ttaagcctct ccacggtgac gggtggctct Ala Arg Gly Gly Leu 90 771 gtggctggta ggactcaccc atgatatggg gtgcaggaac tctggggggcc ctgaaggatt tgcttccctc ccctgggaag gcagagggct cttaataaag aggacccaka agattcttaa 831

aaaaaaaa

PCT/IB98/02122

752

<210> 279 <211> 840 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 63..632 <221> sig_peptide <222> 63..308 <223> Von Heijne matrix score 4.40000009536743 seq NLPHLQVVGLTWG/HI <221> polyA_signal <222> 808..813 <221> polyA_site <222> 829..840 <400> 279 aacttccggt cgcgccascg cccgttgcca gttctgcgcg tgtcctgcat ctccagtatg 60 ga atg tat gtd tgg ccc tgt gct gtg gtc ctg gcc cag tac ctt tgg 107 Met Tyr Val Trp Pro Cys Ala Val Val Leu Ala Gln Tyr Leu Trp -75 155 ttt cac aga aga tct ctg cca ggc aag gcc atc tta gag att gga gct Phe His Arg Arg Ser Leu Pro Gly Lys Ala Ile Leu Glu Ile Gly Ala -55 -60 gga gtg agc ctt cca gga att ttg gct gcc aaa tgt ggt gca gaa gta 203 Gly Val Ser Leu Pro Gly Ile Leu Ala Ala Lys Cys Gly Ala Glu Val -45 -40 ata ctg tca gac agc tca gaa ctg cct cac tgt ctg gaa gtc tgt cgg 251 Ile Leu Ser Asp Ser Ser Glu Leu Pro His Cys Leu Glu Val Cys Arg -30 -25 299 caa agc tgc caa atg aat aac ctg cca cat ctg cag gtg gta gga cta Gln Ser Cys Gln Met Asn Asn Leu Pro His Leu Gln Val Val Gly Leu -10 -15 aca tgg ggt cat ata tot tgg gat ott otg got ota coa coa caa gat 347 Thr Trp Gly His Ile Ser Trp Asp Leu Leu Ala Leu Pro Pro Gln Asp att atc ctt gca tct gat gtg ttc ttt gaa cca gaa rat ttt gaa gac 395 Ile Ile Leu Ala Ser Asp Val Phe Phe Glu Pro Glu Xaa Phe Glu Asp 20 att ttg gct aca ata tat ttt ttg atg cac aar aat ccc aag gtc caa 443 Ile Leu Ala Thr Ile Tyr Phe Leu Met His Lys Asn Pro Lys Val Gln 35 ttg tgg tct act tat caa gtt agg art gct gac tgg tca ctt gaa gct 491 Leu Trp Ser Thr Tyr Gln Val Arg Xaa Ala Asp Trp Ser Leu Glu Ala 55 539 tta ctc tac aaa tgg gat atg aaa tgt gtc cac att cct ctt gag tct Leu Leu Tyr Lys Trp Asp Met Lys Cys Val His Ile Pro Leu Glu Ser 70 587 ttt gat gca gac aaa gaa rat ata gca gaa tct acc ctt cca gga aga Phe Asp Ala Asp Lys Glu Xaa Ile Ala Glu Ser Thr Leu Pro Gly Arg 90 85 632 cat aca gtt gaa atg ctg gtc att tcc ttt gca aag gac agt ctc His Thr Val Glu Met Leu Val Ile Ser Phe Ala Lys Asp Ser Leu 105 100 tgaattatac ctacaacctg ttctgggaca gtatcaatac tgatgagcaa cctggcacac 692

aaactatgag cagaccactt cagcttgaga atgcagtggg tctgaagatg gtcaagtctg

812 tttgccttar attttgatgt cacctagaca acacttaaac tcatatgaaa caaaaattaa aatacgtatt acaagcaaaa aaaaaaaa 840 <210> 280 <211> 849 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 21..362 <221> sig_peptide <222> 21..200 <223> Von Heijne matrix score 4.80000019073486 seq LVILSLKSQTLDA/ET <221> polyA_signal <222> 821..826 <221> polyA_site <222> 838..849 <400> 280 agtaagteec ecegeetege atg atg get geg gtg eeg eeg gge etg gag eeg Met Met Ala Ala Val Pro Pro Gly Leu Glu Pro tgg aac cgt gtg aga atc cct aag gcg ggg aac cgc agc gca gtg aca 101 Trp Asn Arg Val Arg Ile Pro Lys Ala Gly Asn Arg Ser Ala Val Thr -45 -40 gtg cag aac ccc ggc gcg gcc ctt gac ctt tgc att gca gct gta att 149 Val Gln Asn Pro Gly Ala Ala Leu Asp Leu Cys Ile Ala Ala Val Ile -30 -25 aaa gaa tgc cat ctc gtc ata ctg tcg ctg aag agc caa acc tta gat 197 Lys Glu Cys His Leu Val Ile Leu Ser Leu Lys Ser Gln Thr Leu Asp -15 gca gaa aca gat gtg tta tgt gca gtc ctt tac agc aat cac aac aga Ala Glu Thr Asp Val Leu Cys Ala Val Leu Tyr Ser Asn His Asn Arg 10 atg ggc cgc cac aaa ccc cat ttg gcc ctc aaa cag gtt gag caa tgt 293 Met Gly Arg His Lys Pro His Leu Ala Leu Lys Gln Val Glu Gln Cys 20 25 tta aag cgt ttg aaa aac atg aat ttg gag ggc tca att caa gac ctg 341 Leu Lys Arg Leu Lys Asn Met Asn Leu Glu Gly Ser Ile Gln Asp Leu 35 40 ttt gag ttg ttt tct tcc aag taagtaagtg gtccarttgc tttgtgatgt 392 Phe Glu Leu Phe Ser Ser Lys ggtgggctgg gaactcaatg tcttgtgatc kcccttwgga ttkctctakg ctygckgttg 452 gaatataacc aattataccw cagctgtaka aatwitgtit taatgtgggg taccyggtgt 512 ktgtggtaat cttctgacat tgatctatgg gartgactgg tgtgacattg aaatctgggt 572 catggtagat tatattaaaa catcagtggg ctgttattgt gcttaactac ctcaagttga 632 gcttaaagca agtcttcact tgaaaactgc tatagaaatg ctttatattt aaaaatgaaa 692 gtaatgggar mttgcacata gctgaaaatg tgaagggtcg cccagggagg amatggaagc 752 tetgtgette ttetgecata cettgeceta tgeatetett tgttteaate etttgteata 812 tcctttataa taaactggta aatgtaaaaa aaaaaaa 849

<210> 281 <211> 1344 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 21..503 <221> sig_peptide <222> 21..344 <223> Von Heijne matrix score 5.30000019073486 seq ACMTLTASPGVFP/SL <221> polyA_signal <222> 1305.,1310 <221> polyA_site <222> 1330..1341 <400> 281 aaacaactcc ggaaagtaca atg acc agc ggg cag gcc cga gct tcc wyc cag Met Thr Ser Gly Gln Ala Arg Ala Ser Xaa Gln -105 tee eec cag gee etg gag gae teg gge eeg gtg aat ate tea gte tea 101 Ser Pro Gln Ala Leu Glu Asp Ser Gly Pro Val Asn Ile Ser Val Ser -95 -90 atc acc cta acc ctg gac cca ctg aaa ccc ttc gga ggg tat tcc cgc 149 Ile Thr Leu Thr Leu Asp Pro Leu Lys Pro Phe Gly Gly Tyr Ser Arg -75 -70 aac gtc acc cat ctg tac tca acc atc tta ggg cat cag att gga ctt 197 Asn Val Thr His Leu Tyr Ser Thr Ile Leu Gly His Gln Ile Gly Leu -65 -60 -55 tca ggc agg gaa gcc cac gag gag ata aac atc acc ttc acc ctg cct 245 Ser Gly Arg Glu Ala His Glu Glu Ile Asn Ile Thr Phe Thr Leu Pro -40 aca gcg tgg agc tca gat gac tgc gcc ctc cac ggt cac tgt gag cag 293 Thr Ala Trp Ser Ser Asp Asp Cys Ala Leu His Gly His Cys Glu Gln -30 -25 -20 gtg gta ttc aca gcc tgc atg acc ctc acg gcc agc cct ggg gtg ttc Val Val Phe Thr Ala Cys Met Thr Leu Thr Ala Ser Pro Gly Val Phe -10 ccg tca ctg tac agc cac cgc act gtg ttc ctg aca cgt aca gca acg 389 Pro Ser Leu Tyr Ser His Arg Thr Val Phe Leu Thr Arg Thr Ala Thr 10 cca cgc tct ggt aca aga tct tca caa ctg cca gag atg cca aca caa 437 Pro Arg Ser Gly Thr Arg Ser Ser Gln Leu Pro Glu Met Pro Thr Gln 25 aat acg ccc aaa att aca atc ctt tct ggt gtt ata agg ggg cca ttg 485 Asn Thr Pro Lys Ile Thr Ile Leu Ser Gly Val Ile Arg Gly Pro Leu 40 45 gaa aag tot atc atg ott taaatcccaa gottacagtg attgttccag 533 Glu Lys Ser Ile Met Leu 50 atgatgaccg ttcattaata aatttgcatc tcatgcacac cagttacttc ctctttgtga tggtgataac aatgttttgc tatgctgtta tcaagggcag acctagcaaa ttgcgtcaga gcaatcctga attttgtccc gagaaggtgg ctttggctga agcctaattc cacagctcct tgttttttga gagagactga gagaaccata atccttgcct gctgaaccca gcctgggcct ggatgctctg tgaatacatt atcttgcgat gttgggttat tccagccaaa gacatttcaa gtgcctgtaa ctgatttgta catatttata aaaatctatt cagaaattgg tccaataatg 893 cacgtgcttt gccctgggta cagccagagc ccttcaaccc caccttggac ttgaggacct 953

1013

1073

acctgatggg acgtttccac gtgtctctag agaaggatcc tggatctagc tggtcacgac

ttettgttte ageccaatat gtagagaaca tttgaaacag tetgeacett tgataeggta 1133 ttgcatttcc aaagccacca atccattttg tggattttat gtgtctgtgg cttaataatc 1193 atagtaacaa caataatacc tttttctcca ttttgcttgc aggaaacata ccttaagttt 1253 1313 gtcacatttt aatacyaaaa aaaaaaaamc h <210> 282 <211> 671 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 1..201 <221> sig_peptide <222> 1..63 <223> Von Heijne matrix score 5.09999990463257 seq LLLKIWLLQRPES/QE <221> polyA signal <222> 637..642 <221> polyA_site <222> 660..671 <400> 282 atg ctg gga ggt gac cat agg gct ctg ctt tta aag ata tgg ctg ctt 48 Met Leu Gly Gly Asp His Arg Ala Leu Leu Leu Lys Ile Trp Leu Leu -15 -10 caa agg cca gag tca cag gaa gga ctt ctt cca ggg aga tta gtg gtg 96 Gln Arg Pro Glu Ser Gln Glu Gly Leu Leu Pro Gly Arg Leu Val Val atg gag agg aga gtt aaa aat gac ctc atg tcc ttc ttg tcc acg gtt 144 Met Glu Arg Arg Val Lys Asn Asp Leu Met Ser Phe Leu Ser Thr Val 15 20 ttg ttg agt ttt cac tct tct aat gca agg gtc tca cac tgt gaa cca Leu Leu Ser Phe His Ser Ser Asn Ala Arg Val Ser His Cys Glu Pro 35 ctt agg atg tgatcacttt caggtggcca ggaatgttga atgtctttgg 241 Leu Arg Met 45 ctcagttcat ttaaaaaaga tatctatttg aaagttctca rarttgtaca tatgtttcac 301 agtacaggat ctgtacataa aagtttcttt cctaaaccat tcaccaagag ccaatatcta 361 ggcattttct tggtagcaca aattttctta ttgcttaraa aattgtcctc cttgttattt 421 ctgtttgtaa racttaagtg agttaggtct ttaaggaaag caacgctcct ctgaaatgct 481 tgtctttttt ctgttgccga aatarctggt cctttttcgg gagttaratg tatarartgt 541 ttgtatgtaa acatttcttg taggcatcac catgaacaaa gatatattt ctatttattt 601 attatatgtg cacttcaaga agtcactgtc agagaaataa agaattgtct taaatgtcaa 661 aaaaaaaaa 671

<210> 283

<211> 1601

<212> DNA

<213> Homo sapiens

<220> <221> CDS <222> 39..1034 <221> sig_peptide <222> 39..134 <223> Von Heijne matrix score 6.09999990463257 seg LPLLTSALHGLQQ/QH <221> polyA_signal <222> 1566..1571 <221> polyA site <222> 1587..1597 <400> 283 agccccagat cctgaaggag gtgcagagcc cagagggg atg atc kcg ctg agg gac Met Ile Xaa Leu Arg Asp aca get gee tee etc ege ett gag aga gae aca agg eag ttg eea etg 104 Thr Ala Ala Ser Leu Arg Leu Glu Arg Asp Thr Arg Gln Leu Pro Leu -15 -20 152 ctc acc agt gcc ctg cac gga ctg cag cag cac cca gcc ttc tct Leu Thr Ser Ala Leu His Gly Leu Gln Gln Gln His Pro Ala Phe Ser 1 -5 200 ggt gtg gca cgg ctg gcc aag cgg tgg gtg cgt gcc cag ctt ctt ggt Gly Val Ala Arg Leu Ala Lys Arg Trp Val Arg Ala Gln Leu Leu Gly gag ggt ttc gct gat gag agc ctg gat ctg gtg gcc gct gcc ctt ttc 248 Glu Gly Phe Ala Asp Glu Ser Leu Asp Leu Val Ala Ala Ala Leu Phe 30 296 ctg cac cct gag ccc ttc acc cct ccg agt tcc ccc cag gtt ggc ttc Leu His Pro Glu Pro Phe Thr Pro Pro Ser Ser Pro Gln Val Gly Phe 45 344 ctt cga ttc ctt ttc ttg gta tca acg ttt gat tgg aag aac aac ccc Leu Arg Phe Leu Phe Leu Val Ser Thr Phe Asp Trp Lys Asn Asn Pro 60 65 ctc ttt gtc aac ctc aat aat gag ctc act gtg gag gag cag gtg gar 392 Leu Phe Val Asn Leu Asn Asn Glu Leu Thr Val Glu Glu Gln Val Glu 75 atc cgc agt ggc ttc ctg gca gct cgg gca cag ctc ccc gtc atg gtc 440 Ile Arg Ser Gly Phe Leu Ala Ala Arg Ala Gln Leu Pro Val Met Val 95 488 att gtt acc ccc caa rac cgc aaa aac tct gtg tgg aca cag gat gga Ile Val Thr Pro Gln Xaa Arg Lys Asn Ser Val Trp Thr Gln Asp Gly 105 110 536 ccc tca gcc car atc ctg cag cag ctt gtg gtc ctg gca gct gaa scc Pro Ser Ala Gln Ile Leu Gln Gln Leu Val Val Leu Ala Ala Glu Xaa 125 ctg ccc atg tta rar aas cag ctc atg gat ccc cgg gga cct ggg gac 584 Leu Pro Met Leu Xaa Xaa Gln Leu Met Asp Pro Arg Gly Pro Gly Asp 140 145 atc agg aca gkg ttc cgg ccg ccc ttg gac att tac gac gtg ctg att 632 Ile Arg Thr Xaa Phe Arg Pro Pro Leu Asp Ile Tyr Asp Val Leu Ile 160 ege etg tet eet ege eat ate eeg egg eac ege eag get gtg gae ter Arg Leu Ser Pro Arg His Ile Pro Arg His Arg Gln Ala Val Asp Ser 175 cca gct gcc tcc ttc tgc cgg ggc ctg ctc agc cag ccg ggg ccc tca 728

Pro Ala Ala Ser Phe Cys Arg Gly Leu Leu Ser Gln Pro Gly Pro Ser

185 190 195 tee etg atg eee gtg etg gge tak gat eet eet eag ete tat etg aeg Ser Leu Met Pro Val Leu Gly Xaa Asp Pro Pro Gln Leu Tyr Leu Thr 205 210 cag etc arg gag gee tit ggg gat etg gee ett tie tie tat gae cag 824 Gln Leu Xaa Glu Ala Phe Gly Asp Leu Ala Leu Phe Phe Tyr Asp Gln 220 225 cat ggt gga gag gtg att ggt gtc ctc tgg aag ccc acc agc ttc cag 872 His Gly Gly Glu Val Ile Gly Val Leu Trp Lys Pro Thr Ser Phe Gln 235 240 ccg cag ccc ttc aag gcc tcc agc aca aag ggg cgc atg gtg atg tct 920 Pro Gln Pro Phe Lys Ala Ser Ser Thr Lys Gly Arg Met Val Met Ser 255 cga ggt ggg gag cta gta atg gtg ccc aat gtt gaa gca atc ctg gag 968 Arg Gly Glu Leu Val Met Val Pro Asn Val Glu Ala Ile Leu Glu 270 gac ttt gct gtg ctg ggt gaa ggc ctg gtg cag act gtg gag gcc cga 1016 Asp Phe Ala Val Leu Gly Glu Gly Leu Val Gln Thr Val Glu Ala Arg 285 290 agt gag agg tgg act gtg tgatcccagc tctggagcaa gctgtagacg 1064 Ser Glu Arg Trp Thr Val 295 gacagcagga cattggacct ctagagcaag atgtcagtag gatgacctcc accctccttg gacatgaatc ctccatggag ggcctgctgg ctgaacatgc tgaatcatct ccaacaaaac ccagccccaa ctttctctct gatgctccag cattggggca ggggcatggt ggcccatgta gtctcctggg cctcaccatc ccagaagagg agtgggagcc agctcagaga aggaactgaa cccaggagat ccatccacct attagccctg ggcctggacc tccctgcgat ttcccactcc tttcttagtc ttcttccaga aacagagaag gggatgtgtg cctgggagag gctctgtctc 1424 cttcctgctg ccaggacctg tgcctagact tagcatgccc ttcactgcag tgtcaggcct 1484 ttagatggga cccagcgaaa atgtggccct tctgagtcac atcaccgaca ctgagcagtg 1544 gaaaggggct atatgtgtat gaatagacca cattgaagga gcaaaaaaaa aaamcch 1601

<210> 284

<211> 1206

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 69..263

<221> sig_peptide

<222> 69..125

<223> Von Heijne matrix score 3.90000009536743 seq ALSMSSFSFHSSS/CS

<221> polyA_signal

<222> 1173..1178

<221> polyA_site

<222> 1196..1205

<400> 284

acatttgtga ctttaccaat accctcccag ttcttgatag acagctgtag gttgctgggt

tcaagaat atg ggt ggg ata tgg aat gct ctt tca atg tct agc ttc agt

Met Gly Gly Ile Trp Asn Ala Leu Ser Met Ser Ser Phe Ser

-15

-10

158

ttt cat tca tcc tcc tgc tca gca ctg tca gcc aag agc tta ctc agc Phe His Ser Ser Ser Cys Ser Ala Leu Ser Ala Lys Ser Leu Leu Ser

aga cac cac ata ctg cag cag ttc cta gtg aga aaa tct gtg cca cta 206 . Arg His His Ile Leu Gln Gln Phe Leu Val Arg Lys Ser Val Pro Leu 15 20 254 gaa aat get tea ett eea tit eet eae etg gge agt tet etg tit aaa Glu Asn Ala Ser Leu Pro Phe Pro His Leu Gly Ser Ser Leu Phe Lys 3.0 35 40 303 att gtg ggc tgatttggtc ttcctctcct cctcccactg ttactgccct. Ile Val Gly 45 gragecettg ttraggtgta ragarcetta ttrtggrete tagtgtrett gtrtgtratg 363 acacaccett cegeceaaat acetetgace ecaaggetgg aatggggetg gtaggarata 423 agtttgetta eteatartea tgteetttet ettggeaeet getteeetge ggtgteetea aatggattte tgtgtggcag tggartgatt gcatgaattt ttetgtaaca cattaaettt 543 gtattattat taagggartt tgaraaagct ttgcttataa tgtcaaggca aggaggtaaa 603 aactggagcc caaakaaatt cccttagggc aagattatgt tataataraa aattgaattt 663 cctgaggcag tggctgccac cccttttcar atgtttagtc ctgcaaatag catctttctt 723 gtagtctgtg acatggatgg ggatgctagg gcccttaggg gcaaggggac taaactaaat 783 caakttgagt ttttttccag caggggttar gggaggtact csctgttgat atttgacact 843 araaagtaat cttttttaca aaactgtttt tctaggtggg tggaaagtga aactgccaca 903 tccttgttgg tttagtccaa raratcattt gcaacaacag taratgtccg ggttttgttt 963 ctgtcttttt attatgaaaa actatgttaa gggggaaaat gtggattatg gtaaccarag 1023 gaatccctas ccttgttttc cttaraarac ttgtttagtg ttttatcara cgtctgttgt 1083 agttgtarac aggaaagctt gtgaraaaaa caccacatgg ascctgtaaa tgtttttgca 1143 caacctgtaa agcattcttg gaaktggcca gtaaaaaggg gttttaccat ttaaaaaaaa 1203 1206

<210> 285 <211> 536 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 115..285 <221> sig_peptide <222> 115..204 <223> Von Heijne matrix score 3.7000004768372 seq SMMLLTVYGGYLC/SV <221> polyA signal <222> 505..510 <221> polyA site <222> 525..536

<400> 285

acgagtgctg cgttcggctg tgctgggaag ttgcgtagac agtggcctcg agaccctgcc 60 tgcctgagga ggcctcggtt ggatgcgaag gagctgcagc atccagggga caag atg 117 cca act ggc aag cag cta gct gac att ggc tat aag acc ttc tct acc 165 Pro Thr Gly Lys Gln Leu Ala Asp Ile Gly Tyr Lys Thr Phe Ser Thr -25 -20 tee atg atg ett etc act gtg tat ggg ggg tac etc tge agt gte ega 213 Ser Met Met Leu Leu Thr Val Tyr Gly Gly Tyr Leu Cys Ser Val Arg -10 -5 gtc tac cac tat ttc cag tgg cgc agg gcc cag cgc cag gcc gca gaa 261

	Tyr 5	HIS	TÀT	rne	GII	11p	Arg	Arg	Ala	GIN	arg 15	GIII	Ala	Ala	GIU .	
	cag					atc		taga	acto	agg 9		tttt	c t	cctga	igcar	315
	gccc	aa g	gcat	gctg	gt gg	gagag	gactt	cad	ctg	cac	catt	tcca	agg	tcaad	aggac	375
	_	_					-		_						gttct	435
_		_						_	_						gtaca	495
ccta															_	536
	_				_											
<210	> 28	16														
<211	> 52	9														
<212	> DN	ΙA														
<213	> HC	a omo	apie	ens												
<220	>			•												
<221	> CI	S					·									
<222	> 90	34	4													
<221	> si	.g_pe	ptic	le												
<222																
<223	> Vc	n He	eijne	mat	rix											
	sc	ore	8.19	9999	8092	26514	1									
	se	q LI	LITA	ILA	/AVG/	/FP										
		_														
<221	-		_	nal												
<222	> 50	005	505								•	٠.				
	_		site	9												
<222	> 51	.55	527													
400																
<400																, ,
			-			_				_				_	cgtca	60
gaga	gaaa	iga a	ictga	actga	ar ac	gtt	gag	_			_			ctg		113
								met	пÀг	-	val	ьеи	ьеи	Leu		
										-15					-10	3.63
														gac		163
THE	Ala	TTE	ьeu		vaı	Ala	vaı	GIY		Pro	vai	ser		Asp	GIN	
				-5					1				5			200
														tca		209
GIU	Arg		ьys	Arg	Ser	TTE		Asp	ser	Asp			Ата	Ser	GIÀ	
		10					15					20				0.55
														cca		257
Aaa		vaı	Pne	Pro	ıyr		Tyr	Pro	Pne	Arg		ren	Pro	Pro	TTE	
	25					30	4. 4. 4.				35					
			_						-					cca		305
	Pue	Pro	Arg	Pne		Trp	Pne	Arg	Arg		Pne	Pro	lie	Pro		
40					45					50					55	
													taa	acaaı	aa	354
PIO	GIU	ser	Ala		Thr	Thr	PLO	ьeu		Ser	Glu	Lys				
				60					65							
															araat	414
															ctcta	474
gtca	acat	ct t	tagt	gato	t to	ctta	acaa	aca	atgaa	agc	aaaa	aaaa	aaa	aaaco	:	529

<210> 287

<211> 493 <212> DNA

<213> Homo sapiens <220> <221> CDS <222> 57..311 <221> sig_peptide <222> 57..107 <223> Von Heijne matrix score 8.19999980926514 seq LLLITAILAVAVG/FP <221> polyA_signal <222> 467..472 <221> polyA site <222> 482..493 <400> 287 aacttgccat ttctcataac agcgtcagag agaaagaact gactgaaacg tttgag atg 59 aag aaa gtt ctc ctc ctg atc aca gcc atc ttg gca gtg gct gtt ggt 107 Lys Lys Val Leu Leu Leu Ile Thr Ala Ile Leu Ala Val Ala Val Gly ~15 -10 -5 ttc cca gtc tct caa gac cak gaa cga gaa aaa aga agt atc agt gac 155 Phe Pro Val Ser Gln Asp Xaa Glu Arg Glu Lys Arg Ser Ile Ser Asp 10 203 age gat gaa tta get tea ggg ttt ttt gtg tte eet tae eea tat eea Ser Asp Glu Leu Ala Ser Gly Phe Phe Val Phe Pro Tyr Pro Tyr Pro 20 25 30 ttt cgc cca ctt cca cca att cca ttt cca aga ttt cca tgg ttt aga 251 Phe Arg Pro Leu Pro Pro Ile Pro Phe Pro Arg Phe Pro Trp Phe Arg 40 cgt aat ttt cct att cca ata cct gaa tct gcc cct aca act ccc ctt 299 Arg Asn Phe Pro Ile Pro Ile Pro Glu Ser Ala Pro Thr Thr Pro Leu 55 60 351 ccg agc gaa aag taaacaagaa ggaaaagtca cgataaacct ggtcacctga Pro Ser Glu Lys aattgaaatt gagccacttc cttgargaat caaaattcct gttaataaaa gaaaaacaaa 411 tgtaattgaa atagcacaca gcattctcta gtcaatatct ttagtgatct tctttaataa 471 acatgaaagc aaaaaaaaa aa 493 <210> 288 <211> 521 <212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 96..302

<221> sig_peptide

<222> 96..182

<223> Von Heijne matrix score 5 seg ELSLLPSSLWVLA/TS

<221> polyA_site

<222> 501..514

<400> 288	40
aagagacgtc accggctgcg cccttcagta tcgcggacgg	
totcatocag eggetgegga actgggegte eggge atg a	cc tgc agg gga agc 113
Met T	Thr Cys Arg Gly Ser
	-25
tgc agc tac gct acc agg aga tct cca agc gaa	ctc agc ctc ctc cca 161
Cys Ser Tyr Ala Thr Arg Arg Ser Pro Ser Glu	
-20 -15	-10
age tee etg tgg gte eta gee aca age tet eca	
Ser Ser Leu Trp Val Leu Ala Thr Ser Ser Pro	Thr Ile Thr Ile Ala
-5 1	5
ctc gcg atg gcc gcc ggg aat ctg tgc ccc ctt	cca tca tca tkt cgt 257
Leu Ala Met Ala Ala Gly Asn Leu Cys Pro Leu	Pro Ser Ser Xaa Arg
10 15 20	25
crc aaa agg cgc tgg tgt cag gca asc car caa	ara gct ctg ctg 302
Xaa Lys Arg Arg Trp Cys Gln Ala Xaa Gln Gln	
30 35	40
tagetgecae tgaaaaraag geggtgaete cageteetee	
cctcggacca gccttacctg tgacactgca ccctcacggc	
ttggatttcc tccagggaga atgtgaccta atttatgaca	aatacgtara gctcaggtat 482
cacttctagt tttactttaa aaaataaaaa aatagagac	521
•	
	•
<210> 289	
	•
<211> 811	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> 161526	
,	•
<221> sig_peptide	
<222> 161328	
<223> Von Heijne matrix	
score 4.19999980926514	
seq XSPLLTLALLGQC/SL	
-	
<221> polyA_site	
<222> 799811	
72227 73311022	
1400- 200	
<400> 289	
aaaaaattgc agtgctgaag acactggacc cgcaaaaggc	
ttctgggctc actgagttca cctgcgagtc agccctacct	
aaacaggctg ctggcattga ggtctgctac aaaaanarta	atg gtc cca tgg ccc 175
	Met Val Pro Trp Pro
	-55
agg ggc aag gtg aaa act gct cct att ccc atc	
Arg Gly Lys Val Lys Thr Ala Pro Ile Pro Ile	_
-50 -45	-40
ctc cct acc cac gac cca ccc acc cca gca cat	tgg tct cca gca tct 271
Leu Pro Thr His Asp Pro Pro Thr Pro Ala His	Trp Ser Pro Ala Ser
-35 -30 -25	-20
cat cag cag ttt aaa cat kkg tca ccc ctc ctc	
His Gln Gln Phe Lys His Xaa Ser Pro Leu Leu	
-15 -10	-5
ggt cag tgc tct ctg ttc arc aat ttg agg aaa	
Gly Gln Cys Ser Leu Phe Xaa Asn Leu Arg Lys	
1 5	10
	ccc ctg aca ctc tgg 415

Lys Ala Lys Lys Leu Pro Ser Phe Ser Ser Leu Pro Leu Thr Leu Trp 15 20 25	
cca tta act cct caa ttt gct gag ctc act aca gtg gca caa aaa aaa Pro Leu Thr Pro Gln Phe Ala Glu Leu Thr Thr Val Ala Gln Lys Lys 30 35 40 45	463
ttg agg tgg tcc ggg acc cta ggt tgg ggt cca gtt ccc agc tgg gtt Leu Arg Trp Ser Gly Thr Leu Gly Trp Gly Pro Val Pro Ser Trp Val 50 55 60	511
caa ttt ttt tta ggg tgaatggagg garagttggg gactgaaaas ccttcaaara Gln Phe Phe Leu Gly 65	566
caatgttatt acagcaktot cocottatoo aaaktttoot tttootgadt ttoagttago	626
tatggtcaac cgcttggaaa atakttgaac acagtacaat aaratatttt gaggctggga	686
ktggtggctc atgcctgtaa taatcccagg actttgtgar accaaktttg aaggatcact	746
tgaacccagg aktttgarac cascctgggc aacatrgtra gacctcatct ctacaaaaaa aaaaaa	806
	811
<210> 290 <211> 625	
<211> 023 <212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> 210332	
2001 oir manhid	
<221> sig_peptide <222> 210299	
<223> Von Heijne matrix	
score 8.10000038146973	
seq ITCLLAFWVPASC/IQ	
<221> polyA_signal	
<222> 594599	
<221> polyA site	
<222> polyA_site <222> 613625	
<400> 290	
acaggicsmc ttaacatctc ttgatttgag ccactcccac tgtcatcagc tttcacctgg	60
attatogtga cagootoota otgottotot atcatgtggo cagagotato ttoootaaaa atgoattgoa tagttgatoa agtoactoto tggootaaaa cottoottgg otoootgotg	120 180
coctcaggat aaagtotgga cocctcago atg got tgt gag act cat ggt gto	233
Met Ala Cys Glu Thr His Gly Val	233
-30 -25	
ott gte eet get eac ete tet ggt ete ate aet tge ett ett gea tte	281
Leu Val Pro Ala His Leu Ser Gly Leu Ile Thr Cys Leu Leu Ala Phe -20 -15 -10	
gg gtc cca gcc tcc tgt atc cag aga tgc agt ggc tct cca ttg cca	329
Trp Val Pro Ala Ser Cys Ile Gln Arg Cys Ser Gly Ser Pro Leu Pro	323
-5 1 5 . 10	
etc tgatteetee tttettttgg teacagagaa agggtaettt etetgteaaa Seu	382
cctcaactta gacttgactt cctccaagga gctttggcta tactctctcc cwcgaccccc	442
accetggeat actacacara teactetggg eteacttgee tgeetaatgg teateteece	502
agtaaactgt aagcteettg agggeaagga ttgtgttgga atttttgtat taacagtgee	562
ggcttggtg cctggcacct aaaaagcact caataaatgt ttgtttaatg aaaaaaaaa	622
aaa	625

```
<210> 291
 <211> 684
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> CDS
 <222> 212..361
 <221> sig_peptide
 <222> 212..319
 <223> Von Heijne matrix
       score 4.09999990463257
      seq HWLFLASLSGIKT/YQ
<221> polyA_signal
<222> 650..655
<221> polyA site
<222> 673..684
<400> 291
atccccawns cactetetea cagagactgt tetttteett etgagaceet actccagett
                                                                       60
gtagttctaa atctgtgatt atgcactgtc tgtcttcctc ttgaggtcag gggccatttc
                                                                      120
ttttgttctc tgctatgctc aggacccaga tcaaaggagc tcagtaacta tttacaggcg
                                                                      180
tacatcatat gtggaggaca cttatgctgt g atg gcc cca cac aca gct tcc
                                    Met Ala Pro His Thr Ala Ser
                                        -35
ttt ggg gtc tgt ccc ctg ctc tcc gtt acc cgc gtg gta gcc act gag
                                                                      280
Phe Gly Val Cys Pro Leu Leu Ser Val Thr Arg Val Val Ala Thr Glu
                -25
                                     -20
cac tgg ctc ttc ctg gct tca ctc tct ggc atc aaa act tat cag tcc
                                                                      328
His Trp Leu Phe Leu Ala Ser Leu Ser Gly Ile Lys Thr Tyr Gln Ser
            -10
                                -5
tac atc tca gtc ttt tgc aag gtg aca ctt atc tgattaccta attcacacra
Tyr Ile Ser Val Phe Cys Lys Val Thr Leu Ile
                        10
aggtgttaat ggtggtaatg gcataktatt tattacccca ggggacccak aacggtggta
                                                                      441
tcaaaacata tcattcccca gtggtttaaa actctggtag ctttccargg aatccaaagt
                                                                      501
ggaatccagt ctccttagct gawttcacag ggccccgtct gcacaacttg gcttctgtcg
                                                                      561
gettecetan ecctgaette ccaageetta gteateacce teteteccae ccagggetea
                                                                      621
gcacagtacc tggaacagtc aagccctcaa taaatgttta ctgagtgcat yaaaaaaaa
                                                                      681
aaa
                                                                      684
<210> 292
<211> 628
```

```
<211> 628
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
```

<222> 75..482

<221> polyA signal <222> 595..600 <221> polyA site <222> 618..627 <400> 292 aagtgagacc gcgcggcaac agcttgcggc tgcggggagc tcccgtgggc gctccgctgg 60 ctgtgcaggc ggcc atg gat tcc ttg cgg aaa atg ctg atc tca gtc gca 110 Met Asp Ser Leu Arg Lys Met Leu Ile Ser Val Ala -15 -10 atg ctg ggc gca rgg gct ggc gtg ggc tac gcg ctc ctc gtt atc gtg 158 Met Leu Gly Ala Xaa Ala Gly Val Gly Tyr Ala Leu Leu Val Ile Val acc ccg gga gag cgg cgg aag cag gaa atg cta aag gag atg cca ctg 206 Thr Pro Gly Glu Arg Arg Lys Gln Glu Met Leu Lys Glu Met Pro Leu 15 20 254 Gln Asp Pro Arg Ser Arg Glu Glu Ala Ala Arg Thr Gln Gln Leu Leu. 35 ctg gcc act ctg cag gag gca gcg acc acg cag gag aac gtg gcc tgg 302 Leu Ala Thr Leu Gln Glu Ala Ala Thr Thr Gln Glu Asn Val Ala Trp 50 agg aag aac tgg atg gtt ggc ggc gaa ggc ggc gcc acg gga kgt cac 350 Arg Lys Asn Trp Met Val Gly Gly Glu Gly Gly Ala Thr Gly Xaa His 65 cgt gag acc gga ctt gcc tcc gtg ggc gcc gga cct tgg ctt ggg cgc 398 Arg Glu Thr Gly Leu Ala Ser Val Gly Ala Gly Pro Trp Leu Gly Arg 80 85 . agg aat ccg agg cag ctt tct cct tcg tgg gcc can cgg aaa atc cgg 446 Arg Asn Pro Arg Gln Leu Ser Pro Ser Trp Ala Xaa Arg Lys Ile Arg 100 95 amc gaa aat wcc atg cca gga ctc tcc ggg gtc ctg tgaactgccg 492 Xaa Glu Asn Xaa Met Pro Gly Leu Ser Gly Val Leu tegggtgage acgtgteece caaaccetgg actgactget ttaaggteeg caaggeggge 552 cagggccgag acgcgagtcg gatgtggtga actgaaagaa ccaataaaat catqttcctc 612 cammcaaaaa aaaaah 628

<210> 293

<211> 813

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 50..631

<221> sig_peptide

<222> 50..244

<223> Von Heijne matrix score 8 seq LTLIGCLVTGVES/KI

<221> polyA_signal

<222> 777..782

<221> polyA_site

<222> 801..812

<400> 293	
aaggaaagga ttactcgagc cttgttagaa tcagacatgg cttcagggg atg cag gac Met Gln Asp -65	58
gct ccc ctg agc tgc ctg tca ccg act aag tgg agc agt gtt tct tcc Ala Pro Leu Ser Cys Leu Ser Pro Thr Lys Trp Ser Ser Val Ser Ser -60 -55	106
gca gac tca act gag aag tca gcc tct gcg gca ggc acc agg aat ctg Ala Asp Ser Thr Glu Lys Ser Ala Ser Ala Ala Gly Thr Arg Asn Leu -45 -40 -35	154
cct ttt cag ttc tgt ctc cgg cag gct ttg agg atg aag gct gcg ggc Pro Phe Gln Phe Cys Leu Arg Gln Ala Leu Arg Met Lys Ala Ala Gly -30 -25 -20 -15	202
att ctg acc ctc att ggc tgc ctg gtc aca ggc gtc gag tcc aaa atc Ile Leu Thr Leu Ile Gly Cys Leu Val Thr Gly Val Glu Ser Lys Ile -10 -5	250
tac act cgt tgc aaa ctg gca aaa ata ttc tcg agg gct ggc ctg gac Tyr Thr Arg Cys Lys Leu Ala Lys Ile Phe Ser Arg Ala Gly Leu Asp 5 10	298
aat cyg agg ggc ttc agc ctt gga aac tgg atc tgc atg gcg tat tat Asn Xaa Arg Gly Phe Ser Leu Gly Asn Trp Ile Cys Met Ala Tyr Tyr 20 25 30	346
gag agc ggc tac aac acc aca gcc car acg gtc ctg gat gac ggc agc Glu Ser Gly Tyr Asn Thr Thr Ala Gln Thr Val Leu Asp Asp Gly Ser 35 40 45 50	394
atc gac tay ggc atc ttc caa atc aac agc ttc gcg tgg tgc aga cgc Ile Asp Tyr Gly Ile Phe Gln Ile Asn Ser Phe Ala Trp Cys Arg Arg 55 60 65	442
gga aag ctg aag gag aac aac cac tgc cay gtc gcc tgc tca gcc ttg Gly Lys Leu Lys Glu Asn Asn His Cys His Val Ala Cys Ser Ala Leu 70 75 80	490
rtc act gat gac ctc aca gat gca att atc tgt gcc arg aaa att gtt Xaa Thr Asp Asp Leu Thr Asp Ala Ile Ile Cys Ala Xaa Lys Ile Val 85 90	538
aaa gag aca caa gga atg aac tat tgg caa ggc tgg aag aaa cay tgt Lys Glu Thr Gln Gly Met Asn Tyr Trp Gln Gly Trp Lys Lys His Cys 100 105 110	586
gag ggg aga gac ctg tcc gas tgg aaa aaa ggc tgt gag gtt tcc Glu Gly Arg Asp Leu Ser Xaa Trp Lys Lys Gly Cys Glu Val Ser 115 120 125	631
taaactggaa ctggacccag gatgctttgc ascaacgccc tagggtttgc agtgaatgtc caaatgcctg tgtcatcttg tcccgtttcc tcccaatatt ccttctcaaa cttggagagg gaaaattaag ctatactttt aagaaaataa atatttccat ttaaatgtca amaaaaaaaa ah	691 751 811 813

<210> 294

<211> 778

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 154..576

<221> sig_peptide

<222> 154..360

<222> 134..360
<223> Von Heijne matrix
score 4.80000019073486
seq MMVLSLGIILASA/SF

<221> polyA signal <222> 737..742 <221> polyA site <222> 763..775 <400> 294 agtaaaaaaa cactggaata aggaagggct gatgactttc agaagatgaa ggtaagtaga 60 aaccgttgat gggactgaga aaccagagtk aaaacctctt tggagcttct gaggactcag 120 ctggaaccaa cgggcacagt tggcaacacc atc atg aca tca caa cct gtt ccc 174 Met Thr Ser Gln Pro Val Pro aat gag acc atc ata gtg ctc cca tca aat gtc atc aac ttc tcc caa 222 Asn Glu Thr Ile Ile Val Leu Pro Ser Asn Val Ile Asn Phe Ser Gln -55 gca gag aaa ccc gaa ccc acc aac cag ggg cag gat agc ctg aag aaa 270 Ala Glu Lys Pro Glu Pro Thr Asn Gln Gly Gln Asp Ser Leu Lys Lys -40 -35 cat cta cac gca gaa atc aaa gtt att ggg act atc cag atc ttg tgt 318 His Leu His Ala Glu Ile Lys Val Ile Gly Thr Ile Gln Ile Leu Cys -25 -20 ggc atg atg gta ttg agc ttg ggg atc att ttg gca tct gct tcc ttc 366 Gly Met Met Val Leu Ser Leu Gly Ile Ile Leu Ala Ser Ala Ser Phe -10 -5 tot cca aat tit acc caa gtg act tot aca ctg ttg aac tot got tac 414 Ser Pro Asn Phe Thr Gln Val Thr Ser Thr Leu Leu Asn Ser Ala Tyr 10 cca ttc ata gga ccc ttt ttt gtr akt aaa btt tct gag gag ggc agg 462 Pro Phe Ile Gly Pro Phe Phe Val Xaa Lys Xaa Ser Glu Glu Gly Arg 25 30 atg ggg caa ara ggg gag gaa rat vcc aat agc tta aac ttc cca sct 510 Met Gly Gln Xaa Gly Glu Glu Xaa Xaa Asn Ser Leu Asn Phe Pro Xaa 40 45 gcc agc ttg cta tkt ttg atc tgc cag gav caa gga ttc aac ggt gaa 558 Ala Ser Leu Leu Xaa Leu Ile Cys Gln Xaa Gln Gly Phe Asn Gly Glu 60 tot tgt tot cot gtc ggg targataaca ggggttgctt rattttagat 606 Ser Cys Ser Pro Val Gly 70 caatttctta tcagactcaa ataaacattt cttttgaaaa tcatcttatt cttcacatta 666 tcatcttgag ctatgatgga aactagtgas ktctctccag gtttaggcga aaaaaaaatc 726 catgaattag gataaagttg ggaaggaaca ttttatacaa aaaaaaaaah cc

<210> 295

<211> 1060

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 154..897

<221> sig_peptide

<222> 154..360

<223> Von Heijne matrix score 4.80000019073486 seq MMVLSLGIILASA/SF

<221> polyA_signal <222> 1017..1022

<221> polyA_site <222> 1044..1054

<222	:> 1C	44	. 1054	ŀ												
agta		aa c													agtaga actcag	60 120
									ato	g aca	a tca	caa	a cct	t gtt o Val	ccc l Pro	174
Asn	Glu	Thr	Ile	Ile	Val	Leu	Pro -55	Ser	Asn	Val	Ile	Asn -50	Phe	tcc Ser	Gln	222
														aag Lys		270
			_	_			_					_		ttg Leu	_	318
														tcc Ser 1		366
														gct Ala		414
														tca Ser		462
														ctg Leu		510
														ayc Xaa 65		558
	_		_	_					_		_		-	gag Glu		606
_										_	-			tat Tyr		654
					_	_	_			-		_		ctg Leu	-	702
					-					_				tgc Cys		750
														gac Asp 145	Phe	798
		-	_			_			-					tct Ser		846
			aaa										cta	ttg Leu		894
tct Ser	taa		aaa q	gga	gaaat	ta t		cagaa	a agt	tgat	tct		gataa	ata		947
	aaaa	gtt a	aacca	attai	a q	aaaa	gcaaa	a gct	tgad	ittt	ccta	aaato	gta a	agcti	tttaaa	1007
		-	ttaa		-			_		-				_		1060

PCT/IB98/02122.

```
<210> 296
<211> 444
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 146..292
<221> sig_peptide
<222> 146..253
<223> Von Heijne matrix
      score 5.5
      seq FTSMCILFHCLLS/FQ
<221> polyA_signal
<222> 395..400
<221> polyA_site
<222> 433..444
<400> 296
aacttgggac aagaratcaa actttaaaga tggtctaaag cccctcttaa aggtctgact
gtgtcggacc tctagagcta atctcactag atgtgagcca ttgtttatat tctagccatc
                                                                  120
ctttcatttc attctagaag acccc atg caa gtt ccc cac cta agg gtc tgg
                                                                  172
                          Met Gln Val Pro His Leu Arg Val Trp
                              -35
                                                 -30
aca cag gtg awa gat acc ttc att ggt tat aga aat ttg gga ttt aca
                                                                  220
Thr Gln Val Xaa Asp Thr Phe Ile Gly Tyr Arg Asn Leu Gly Phe Thr
        -25
                           -20
agt atg tgc ata ttg ttc cac tgt ctt ctt agc ttt cag gtt ttc aaa
                                                                  268
Ser Met Cys Ile Leu Phe His Cys Leu Leu Ser Phe Gln Val Phe Lys
aag aaa aga aaa ctt ara ctt ttc tgatgttctt ttttacgtaa ataaccattt
                                                                  322
Lys Lys Arg Lys Leu Xaa Leu Phe
               10
tattgttgtt ttgctttttc tgccttcaaa ctactcccac aggccaaata tavctggctg
                                                                  382
                                                                  442
444
<210> 297
<211> 754
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 126..383
```

<221> polyA_signal <222> 726..731

<221> sig_peptide <222> 126..167

<223> Von Heijne matrix score 7.5

seq VALNLILVPCCAA/WC

<221> polyA_site <222> 743..754

<400> 297

aattgtatgt tacgatgttg tattgatttt taagaaagta attkratttg taaaacttct	60
gctcgtttac actgcacatt gaatacaggt aactaattgg wwggagaggg gaggtcactc	120
ttttg atg gtg gcc ctg aac ctc att ctg gtt ccc tgc tgc gct tgg	170
Met Val Ala Leu Asn Leu Ile Leu Val Pro Cys Cys Ala Ala Trp -10 -5 1	
	218
tgt gac cca cgg agg atc cac tcc cag gat gac gtg ctc cgt agc tct Cys Asp Pro Arg Arg Ile His Ser Gln Asp Asp Val Leu Arg Ser Ser	210
5 , 10 15	
gct gct gat act ggg tct gcg atg cag cgg cgt gag gcc tgg gct ggt Ala Ala Asp Thr Gly Ser Ala Met Gln Arg Arg Glu Ala Trp Ala Gly 20 25 30	266
tgg aga agg tca caa ccc ttc tct gtt ggt ctg cct tct gct gaa aga	314
Trp. Arg Arg Ser Gln Pro Phe Ser Val Gly Leu Pro Ser Ala Glu Arg 35 40 45	217
ctc gag aac caa cca ggg aag ctg tcc tgg agg tcc ctg gtc gga gag	362
Leu Glu Asn Gln Pro Gly Lys Leu Ser Trp Arg Ser Leu Val Gly Glu 50 65	
gga cat aga atc tgt gac ctc tgacrrctgt gaasccaccc tgggctacar	41:
Gly His Arg Ile Cys Asp Leu	
70	473
aaaccacagt cttcccagca attattacaa ttcttgaatt ccttggggat tttttactgc	
cctttcaaag cacttaaktg tkrratctaa cgtkttccag tgtctgtctg aggtgactta	533
aaaaatcaga acaaaacttc tattatccag agtcatggga gagtacaccc tttccaggaa	593
taatgttttg ggaaacactg aaatgaaatc ttcccagtat tataaattgt gtatttaaaa	653
aaaagaaact tttctgaatg cctacctggc ggtgtatacc aggcagtgtg ccagtttaaa	713
aagatgaaaa agaataaaaa cttttgagga aaaaaaaaaa	754
<210> 298	
<211> 629	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> 66497	
<221> sig_peptide	
<222> 66239	
<223> Von Heijne matrix	
score 5.4000009536743	
seq QLLDSVLWLGALG/LT	
<221> polyA_signal	
<222> 594599	
2001	
<221> polyA_site	
<222> 618629	
<400> 298	
aactcccaga atgctgacca aagtgggagg agcactaggt cttcccgtca cctccacctc	60
totoc atg acc egg etc tge tta ecc aga ecc gaa gea egt gag gat eeg	110
Met Thr Arg Leu Cys Leu Pro Arg Pro Glu Ala Arg Glu Asp Pro	'
-55 -50 -45	
ate cca gtt cct cca agg ggc ctg ggt gct ggg gag ggg tca ggt agt	158
Ile Pro Val Pro Pro Arg Gly Leu Gly Ala Gly Glu Gly Ser Gly Ser	100
-40 -35 -30	
cca gtg cgt cca cct gta tcc acc tgg ggc cct agc tgg gcc cag ctc	206
Pro Val Arg Pro Pro Val Ser Thr Trp Gly Pro Ser Trp Ala Gln Leu	

20	
-25 -20 -15 ctg gac agt gtc cta tgg ctg ggg gca cta gga ctg aca atc cag gca	254
Leu Asp Ser Val Leu Trp Leu Gly Ala Leu Gly Leu Thr Ile Gln Ala	
-10 -5 1 5	
gto ttt too acc act ggo coa goo ctg ctg ctt ctg gto ago tto	302
Val Phe Ser Thr Thr Gly Pro Ala Leu Leu Leu Leu Leu Val Ser Phe	
ctc acc ttt gac ctg ctc cat agg ccc gca gtc aca ctc tgc cac agc	350
Leu Thr Phe Asp Leu Leu His Arg Pro Ala Val Thr Leu Cys His Ser	
25 30 35	
gca aac ttc tca cca ggg gcc aga gtc agg ggg ccg gtg aag gtc ctg	398
Ala Asn Phe Ser Pro Gly Ala Arg Val Arg Gly Pro Val Lys Val Leu 40 45 50	
40 45 50 gac age agg ctc tac tcc tgc aaa tgg gta cag tct cag gac aac	446
Asp Ser Arg Arg Leu Tyr Ser Cys Lys Trp Val Gln Ser Gln Asp Asn	
55 60 65	
tta gcc tcc agg aag cac tgc tgc tgc tca tgg ggc tgg gcc cgc	494
Leu Ala Ser Arg Lys His Cys Cys Cys Cys Ser Trp Gly Trp Ala Arg	
70 75 80 85	547
tcc tgaaaacctg tggcatgccc ttgwaccctg cttggcctgg ctttctgcct Ser	34,
ccatcettgg geetgakane eceteeceae aacteagtgt cetteaaata tacaatgace	607
accettette aaaaaaaaa aa	629
<210> 299	
<211> 765	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS <222> 49411	
<2225 45411	
<221> sig_peptide	
<222> 4996	
<223> Von Heijne matrix	
score 10.1000003814697	
seq LVLTLCTLPLAVA/SA	
4221s nolvà gianol	
<221> polyA_signal <222> 732737	
<221> polyA_site	
<222> 750763	
<400> 299	57
aaagateeet geageeegge aggagagaag getgageett etggegte atg gag agg Met Glu Arg	<i>J.</i>
-15	
ctc gtc cta acc ctg tgc acc ctc ccg ctg gct gtg gcg tct gct ggc	105
Leu Val Leu Thr Leu Cys Thr Leu Pro Leu Ala Val Ala Ser Ala Gly	
-10 -5 1	
tgc gcc acg acg cca gct cgc aac ctg agc tgc tac cag tgc ttc aag	153
Cys Ala Thr Thr Pro Ala Arg Asn Leu Ser Cys Tyr Gln Cys Phe Lys 5 10 15	
5 10 15 gtc agc agc tgg acg gag tgc ccg ccc acc tgg tgc agc ccg ctg gac	201
Val Ser Ser Trp Thr Glu Cys Pro Pro Thr Trp Cys Ser Pro Leu Asp	
20 25 30 35	
caa gtc tgc atc tcc aac gag gtg gtc gtc tct ttt agt gag tcy ccc	
caa gee ege ace eee aac gag geg gee eee eee age gag geg	249
Gln Val Cys Ile Ser Asn Glu Val Val Ser Phe Ser Glu Ser Pro	249

WO 99/31236 -218- PCT/IB98/02122 -

40 45 50	
ccg ggc aga ggg cas gtg cca bgt gcc ggg gaa kgg ccg gtg ccc ccg Pro Gly Arg Gly Xaa Val Pro Xaa Ala Gly Glu Xaa Pro Val Pro Pro	7
55 60 65	
cct ctc wkc gac tta bct atg act cct cgg ckc ycc agg gcc tgg ggc 34!	5
Pro Leu Xaa Asp Leu Xaa Met Thr Pro Arg Xaa Xaa Arg Ala Trp Gly 70 75 80	
cck gtg ggt ccd aaa gtg cct cct gct gtc tct ccc gcg ctg ggc tcg 39	3
Pro Val Gly Pro Lys Val Pro Pro Ala Val Ser Pro Ala Leu Gly Ser 85 90 95	
ggc gag cat ccs rva btg tgaatkkkga cttttttctc ckccatttga 44	1
Gly Glu His Pro Xaa Xaa 100 105	
agtgtcacta ggaactgtca gcaggacaaa ggctctgatg tcactgaatt tacaaaraca 50	1
gcaggaacrs ackggtgggg atgggcagct gttcrarger atgggtkatc tgcccttcct 56	
ggcacagcac artacacctg ccatacaacc carcatcagg cakgctgcac tggaatcgat 62: acagtgtatg acaatgtcat atagtataac acaacataat gaatataacg tgtatattgc 68:	
aacttaatat aatacgatgt aatataatgc tacataatac aacataatat aataaaatag 74	
aatgcaacac aaaaaaaaa aacc 769	5
<210> 300	
<211> 623	
<212> DNA <213> Homo sapiens	
(213) Homo Sapiens	
<220>	
<221> CDS <222> 49534	
<pre><221> sig_peptide <222> 4996</pre>	
<223> Von Heijne matrix	
score 10.1000003814697 seq LVLTLCTLPLAVA/SA	
sed naturingnay or	
<221> polyA_signal <222> 593598	
<222> 593598	
<221> polyA_site	
<222> 612623	
<400> 300	
aaagatccct gcagcccggc aggagagaag gctgagcctt ctggcgtc atg gag agg 57 Met Glu Arg	7
-15	
ctc gtc cta acc ctg tgc acc ctc ccg ctg gct gtg gcg tct gct ggc 105	5
Leu Val Leu Thr Leu Cys Thr Leu Pro Leu Ala Val Ala Ser Ala Gly	
tgc gcc acg acg cca gct cgc aac ctg agc tgc tac cag tgc ttc aag 153	3
Cys Ala Thr Thr Pro Ala Arg Asn Leu Ser Cys Tyr Gln Cys Phe Lys	
5 10 15 gtc agc agc tgg acg gag tgc ccg ccc acc tgg tgc agc ccg ctg gac 203	1
Val Ser Ser Trp Thr Glu Cys Pro Pro Thr Trp Cys Ser Pro Leu Asp	-
25 30 35 caa gtc tgc atc tcc aac gag gtg gtc gtc tct ttt aaa tgg agt gta 249	٥
Gin Val Cys Ile Ser Asn Glu Val Val Val Ser Phe Lys Trp Ser Val	J
40 45 50	_
cgc gtc ctg ctc agc aaa cgc tgt gct ccc aga tgt ccc aac gac aac Arg Val Leu Ser Lys Arg Cys Ala Pro Arg Cys Pro Asn Asp Asn	7
55 60 65	

atg aak ttc gaa tgg tcg ccg gcc ccc atg gtg caa ggc gtg atc acc	
Met Xaa Phe Glu Trp Ser Pro Ala Pro Met Val Gln Gly Val Ile Thr	345
70 75 80	
agg cgc tgc tgt tcc tgg gct ctc tgc aac agg gca ctg acc cca cag Arg Arg Cys Cys Ser Trp Ala Leu Cys Asn Arg Ala Leu Thr Pro Gln	393
85 90 95	
gag ggg cgc tgg gcc ctg cra ggg ggg ctc ctg ctc cag gac cct tcg	441
Glu Gly Arg Trp Ala Leu Xaa Gly Gly Leu Leu Gln Asp Pro Ser	
100 105 110 115	400
agg ggc ara aaa acc tgg gtg cgg cca cag ctg ggg ctc cca ctc tgc Arg Gly Xaa Lys Thr Trp Val Arg Pro Gln Leu Gly Leu Pro Leu Cys	489
120 125 130	
ctt ccc awt tcc aac ccc ctc tgc cca rgg gaa acc cag gaa gga	534
Leu Pro Xaa Ser Asn Pro Leu Cys Pro Xaa Glu Thr Gln Glu Gly	
135 140 145 taacactgtg ggtgcccca cctgtgcatt gggaccacra cttcaccctc ttggaracaa	594
taaactotca tgccccaaa aaaaaaaaa	623
*** ***	
<210> 301 <211> 571	
<211> 3/1 <212> DNA	
<213> Homo sapiens	
•	
<220>	
<221> CDS <222> 86415	
<221> sig_peptide	
<222> 86145	
<pre><223> Von Heijne matrix score 9.80000019073486</pre>	
seg FTIGLTLLLGXQA/MP	
-221 - molyan diemol	
<221> polyA_signal	
<222> 540545	
<222> 540545	
-	
<222> 540545	
<222> 540545 <221> polyA_site <222> 560571 <400> 301	
<222> 540545 <221> polyA_site <222> 560571 <400> 301 aaaaactcac ccagtgagtg tgagcattta agaagcatcc tctgccaaga ccaaaaggaa	60
<222> 540545 <221> polyA_site <222> 560571 <400> 301 aaaaactcac ccagtgagtg tgagcattta agaagcatcc tctgccaaga ccaaaaggaa agaagaaaaa bggccaaaag ccaaa atg ara ctg atg gta ctt gtt ttc acc	60 112
<222> 540545 <221> polyA_site <222> 560571 <400> 301 aaaaactcac ccagtgagtg tgagcattta agaagcatcc tctgccaaga ccaaaaggaa	
<222> 540545 <221> polyA_site <222> 560571 <400> 301 aaaaactcac ccagtgagtg tgagcattta agaagcatcc tctgccaaga ccaaaaggaa agaagaaaaa bggccaaaag ccaaa atg ara ctg atg gta ctt gtt ttc acc Met Xaa Leu Met Val Leu Val Phe Thr	
<pre><222> 540545 <221> polyA_site <222> 560571 <400> 301 aaaaactcac ccagtgagtg tgagcattta agaagcatcc tctgccaaga ccaaaaggaa agaagaaaaa bggccaaaag ccaaa atg ara ctg atg gta ctt gtt ttc acc</pre>	112
<pre><222> 540545 <221> polyA_site <222> 560571 <400> 301 aaaaactcac ccagtgagtg tgagcattta agaagcatcc tctgccaaga ccaaaaggaa agaagaaaaa bggccaaaag ccaaa atg ara ctg atg gta ctt gtt ttc acc</pre>	112
<pre><222> 540545 <221> polyA_site <222> 560571 <400> 301 aaaaactcac ccagtgagtg tgagcattta agaagcatcc tctgccaaga ccaaaaggaa agaagaaaaa bggccaaaag ccaaa atg ara ctg atg gta ctt gtt ttc acc</pre>	112
<pre><222> 540545 <221> polyA_site <222> 560571 <400> 301 aaaaactcac ccagtgagtg tgagcattta agaagcatcc tctgccaaga ccaaaaggaa agaagaaaaa bggccaaaag ccaaa atg ara ctg atg gta ctt gtt ttc acc</pre>	112
<pre><222> 540545 <221> polyA_site <222> 560571 <400> 301 aaaaactcac ccagtgagtg tgagcattta agaagcatcc tctgccaaga ccaaaaggaa agaagaaaaa bggccaaaag ccaaa atg ara ctg atg gta ctt gtt ttc acc</pre>	112
<pre><222> 540545 <221> polyA_site <222> 560571 <400> 301 aaaaactcac ccagtgagtg tgagcattta agaagcatcc tctgccaaga ccaaaaggaa agaagaaaaa bggccaaaag ccaaa atg ara ctg atg gta ctt gtt ttc acc</pre>	112 160 208
<pre><222> 540545 <221> polyA_site <222> 560571 <400> 301 aaaaactcac ccagtgagtg tgagcattta agaagcatcc tctgccaaga ccaaaaggaa agaagaaaaa bggccaaaag ccaaa atg ara ctg atg gta ctt gtt ttc acc</pre>	112 160 208 256
<pre><222> 540545 <221> polyA_site <222> 560571 <400> 301 aaaaactcac ccagtgagtg tgagcattta agaagcatcc tctgccaaga ccaaaaggaa agaagaaaaa bggccaaaag ccaaa atg ara ctg atg gta ctt gtt ttc acc</pre>	112 160 208
<pre><222> 540545 <221> polyA_site <222> 560571 <400> 301 aaaaactcac ccagtgagtg tgagcattta agaagcatcc tctgccaaga ccaaaaggaa agaagaaaaa bggccaaaag ccaaa atg ara ctg atg gta ctt gtt ttc acc</pre>	112 160 208 256
<pre><222> 540545 <221> polyA_site <222> 560571 <400> 301 aaaaactcac ccagtgagtg tgagcattta agaagcatcc tctgccaaga ccaaaaggaa agaagaaaaa bggccaaaag ccaaa atg ara ctg atg gta ctt gtt ttc acc</pre>	112 160 208 256
<pre><222> 540545 <221> polyA_site <222> 560571 <400> 301 aaaaactcac ccagtgagtg tgagcattta agaagcatcc tctgccaaga ccaaaaggaa agaagaaaaa bggccaaaag ccaaa atg ara ctg atg gta ctt gtt ttc acc</pre>	112 160 208 256 304
<pre><222> 540545 <221> polyA_site <222> 560571 <400> 301 aaaaactcac ccagtgagtg tgagcattta agaagcatcc tctgccaaga ccaaaaggaa agaagaaaaa bggccaaaag ccaaa atg ara ctg atg gta ctt gtt ttc acc</pre>	112 160 208 256 304

Leu Phe Arg Asp Ser Leu Gln Gln Ser Met Arg Ile Phe Met Tyr Ser 85 75 70 ggc gaa cac cat too tgatttocca caaactgcac tacatcagta taactgcatt 455 Gly Glu His His Ser tctagtttct atatagtgca atagagcata gattctataa attcttactt gtctaagaaa 515 571 gtaaatctgt gttaaacaag tagtaataaa agttaattca atccaaaaaa aaaaaa <210> 302 <211> 612 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 56..268 <221> sig_peptide <222> 56..100 <223> Von Heijne matrix score 4.59999990463257 seq LLTHNLLSSHVRG/VG <221> polyA_signal <222> 584..589 <221> polyA site <222> 601..612 <400> 302 ctaatcgaaa agggggattt tccggttccg gcctggcgag agtttgtgcg gcgac atg 58 -15 aaa ctg ctt acc cac aat ctg ctg agc tcg cat gtg cgg ggg gtg ggg 106 Lys Leu Leu Thr His Asn Leu Leu Ser Ser His Val Arg Gly Val Gly -5 -10 154 tee eqt qqc tte eee etg ege ete eag gee ace gag gte egt ate tge Ser Arg Gly Phe Pro Leu Arg Leu Gln Ala Thr Glu Val Arg Ile Cys 10 202 cet gtg gaa ttc aac ccc aac ttc gtg gcg cgt atg ata cct aaa gtg Pro Val Glu Phe Asn Pro Asn Phe Val Ala Arg Met Ile Pro Lys Val 20 25 gag tgg tcg gcg ttc ctg gag gcg rmc gat aac ttg cgt ctg atc cag 250 Glu Trp Ser Ala Phe Leu Glu Ala Xaa Asp Asn Leu Arg Leu Ile Gln 50 40 gtg ccg aga agg gcc ggt tgagggatat gaggagaatg aggagtttct 298 Val Pro Arg Arg Ala Gly 55 gaggaccatg caccacctgc tgctggaggt ggamstgaka gagggcaccc tgcagtgccc 358 ggaatctgga cgtatgttcc ccatcagccg cgggatcccc aacatgctgc tgagtgaaga 418 478 ggaaactgag agttgattgt gccaggcgcc agtttttctt gttatgactg tgtatttttg ttgatctata ccctgtttcc gaattctgcc gtgtgtatcc ccaacccttg acccaatgac 538 accaaacaca gtgtttttga gctcggtatt atatattttt ttctcattaa aggtttaaaa 598 612 ccaaaaaaa aaaa

<210> 303

<211> 539

<212> DNA

<213> Homo sapiens <220> <221> CDS <222> 32..328 <221> sig peptide <222> 32..103 <223> Von Heijne matrix score 4.59999990463257 seq FFIFCSLNTLLLG/GV <221> polyA_signal <222> 508..513 <221> polyA_site <222> 528..539 <400> 303 aacaactatc ctgcctgctg cttgctgcac c atg aag tct gcc aag ctg gga Met Lys Ser Ala Lys Leu Gly -20 ttt ctt cta aga ttc ttc atc ttc tgc tca ttg aat acc ctg tta ttg 100 Phe Leu Leu Arg Phe Phe Ile Phe Cys Ser Leu Asn Thr Leu Leu Leu -15 -10 -5 ggt ggt gtt aat aaa att gcg gag aag ata tgt gga gac ctc aaa gat 148 Gly Gly Val Asn Lys Ile Ala Glu Lys Ile Cys Gly Asp Leu Lys Asp 5 10 ccc tgc aaa ttg gac atg aat ttt gga agc tgc tat gaa gtt cac ttt 196 Pro Cys Lys Leu Asp Met Asn Phe Gly Ser Cys Tyr Glu Val His Phe 20 25 aga tat ttc tac aac aga acc tcc aaa aga tgt gaa act ttt gtc ttc 244 Arg Tyr Phe Tyr Asn Arg Thr Ser Lys Arg Cys Glu Thr Phe Val Phe · 40 35 45 tcc agc tgt aat ggc aac ctt aac aac ttc aag ctt aaa ata gaa cgt 292 Ser Ser Cys Asn Gly Asn Leu Asn Asn Phe Lys Leu Lys Ile Glu Arg 55 338 gaa gta kcc tgt gtt gca aaa tac aaa cca ccg agg tgagaggatg Glu Val Xaa Cys Val Ala Lys Tyr Lys Pro Pro Arg 70 tgaactcatg aagttgtctg ctgcaccatc cgaaataaag acacaagaaa attcaractg 398 atttwgaaat ctttgttwta tttccmymak ggcgwktaag cttccatatg tttgctattt 458 tectgacect agttttgtet tteetggaaa ttaactgtat gakeattasa atgaaagagt 518 ctttctgtca aaaaaaaaa a 539

<211> 964
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> 21..527

<221> sig_peptide
<222> 21..95
<223> Von Heijne matrix
score 8.5
seq_LKVLLLPLAPAAA/QD

<210> 304

<221> polyA_signal <222> 921..926 <221> polyA_site <222> 953..963 <400> 304 agggcggate tteteeggee atg agg aag eea gee get gge tte ett eec tea Met Arg Lys Pro Ala Ala Gly Phe Leu Pro Ser -20 -25 101 ctc ctg aag gtg ctg ctc ctg cct ctg gca cct gcc gca gcc cag gat Leu Leu Lys Val Leu Leu Pro Leu Ala Pro Ala Ala Ala Gln Asp -10 -5 tog act cag goo too act coa ggo ago cot ctc tot cot acc gaa tac 149 Ser Thr Gln Ala Ser Thr Pro Gly Ser Pro Leu Ser Pro Thr Glu Tyr 10 197 caa cgc ttc ttc gca ctg ctg act cca acc tgg aag gca gar act acc Gln Arg Phe Phe Ala Leu Leu Thr Pro Thr Trp Lys Ala Glu Thr Thr 25 tgc cgt ctc cgt gca acc cac ggc tgc cgg aat ccc aca ctc gtc cag 245 Cys Arg Leu Arg Ala Thr His Gly Cys Arg Asn Pro Thr Leu Val Glm 40 45 ctg gac caa tat gaa aac cac ggc tta gtg ccc gat ggt gct gtc tgc 293 Leu Asp Gln Tyr Glu Asn His Gly Leu Val Pro Asp Gly Ala Val Cys 55 60 tee aac etc eet tat gee tee tgg ttt gag tet tte tge cag tte act 341 Ser Asn Leu Pro Tyr Ala Ser Trp Phe Glu Ser Phe Cys Gln Phe Thr cac tac cgt tgc tcc aac cac gtc tac tat gcc aag aga gtc ctg tgt 389 His Tyr Arg Cys Ser Asn His Val Tyr Tyr Ala Lys Arg Val Leu Cys 90 95 too cag cca gto tot att oto tow cot aac act oto aag gag ata gaa 437 Ser Gln Pro Val Ser Ile Leu Ser Pro Asn Thr. Leu Lys Glu Ile Glu 100 105 110 sct tca gct gaa gtc tca ccc acc aca gat gac ctc ccc cat ctc acc 485 Xaa Ser Ala Glu Val Ser Pro Thr Thr Asp Asp Leu Pro His Leu Thr 120 125 cca ctt cac agt gac aga acg cca gac ctt cca gcc ctg gcc 527 Pro Leu His Ser Asp Arg Thr Pro Asp Leu Pro Ala Leu Ala 135 tgagaggete ageaacaacg tggaagaget cetacaatee teettgteee tgggaggeea 587 ggagcaagcg ccagagcaca agcaggagca aggagtggag cacaggcagg agccgacaca 647 agaacacaag caggaagagg ggcagaaaca ggaagagcaa gaagaggaac aggaagagga 707 gggaaagcag gaagaaggac aggggactaa ggagggacgg gaggctgtgt ctcagctgca gacagactca gagcccaagt ttcactctga atetctatct tctaaccctt cctcttttgc 827 tccccgggta cganaagtag agtctactcc tatgataatg gagaacatcc aggagctcat tcgatcagcc caggaaatag atgaaatgaa tgaaatatat gatgagaact cctactggag 947 aaaccaaaaa aaaaaak 964

<210> 305

<211> 684

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 147..647

<221> sig_peptide

<222> 147..374

<223> Von Heijne matrix score 3.5 seq LASASELPLGSRP/AP

<221> polyA_site <222> 668..681

<400> 305 aacttcctgt gagcccggcg gtgacaacgg caacatggcc cgtgaacgga gctgaagtcg 60 120 acgaettete etrgrarmee eegaetgagg eggagaegaa ggtgetgeag gegegaeggg ageggeaaga tegeatetee eggete atg gge gae tat etg etg ege ggt tae 173 Met Gly Asp Tyr Leu Leu Arg Gly Tyr -75 cgc atg ctg ggc gag acg tgt gcg gac tgc ggg acg atc ctc ctc caa 221 Arg Met Leu Gly Glu Thr Cys Ala Asp Cys Gly Thr Ile Leu Leu Gln -55 -60 -65 gac aaa cag cgg aaa atc tac tgc gtg gct tgt cag gaa ctc gac tca 269 Asp Lys Gln Arg Lys Ile Tyr Cys Val Ala Cys Gln Glu Leu Asp Ser -45 gac gtg gat aaa gat aat ccc gct ctg aat gcc cag gct gcc ctc tcc 317 Asp Val Asp Lys Asp Asn Pro Ala Leu Asn Ala Gln Ala Ala Leu Ser -35 -30 -25 caa gct cgg gag cac cag ctg gcc tca gcc tca gag ctc ccc ctg ggc 365 Gln Ala Arg Glu His Gln Leu Ala Ser Ala Ser Glu Leu Pro Leu Gly -15 -10 tot cga cot gcg coc caa coc cca gta cot cgt ccg gag cac tgt gag 413 Ser Arg Pro Ala Pro Gln Pro Pro Val Pro Arg Pro Glu His Cys Glu gga gct gca gca gga ctc aag gca gcc cag ggg.cca cct gct cct gct 461 Gly Ala Ala Ala Gly Leu Lys Ala Ala Gln Gly Pro Pro Ala Pro Ala 20 gtg cct cca aat aca rat gtc atg gcc tgc aca cag aca gcc ctc ttg 509 Val Pro Pro Asn Thr Xaa Val Met Ala Cys Thr Gln Thr Ala Leu Leu 40 557 caa aag ctg acc tgg gcc tct gct gaa ctg ggc tct anc acc tcc cyg Gln Lys Leu Thr Trp Ala Ser Ala Glu Leu Gly Ser Xaa Thr Ser Xaa 50 55 gga aaa mta gca tcc agc tgt gtg gcc tta tcc gcg cat gtg cgg agg 605 Gly Lys Xaa Ala Ser Ser Cys Val Ala Leu Ser Ala His Val Arg Arg 65 ccc tgc gca gcc tgc agc agc tac agc act aag aga agc ccc 647 Pro Cys Ala Ala Cys Ser Ser Tyr Ser Thr Lys Arg Ser Pro 85 684 tgagaaaaac ctctagaaaa acaaaaaaaa aaaaccc

<210> 306

<211> 693

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 262..471

<221> sig_peptide

<222> 262..306

<223> Von Heijne matrix score 3.5 seq LCFLLPHHRLQEA/RQ WO 99/31236 -224 - PCT/IB98/02122

<221> polyA_signal	
<221> polyA_site <222> 682693	
<pre><400> 306 atttcgcggc gctcgcbgma cyhsgwtgtt cagcaccttc ggtccggttg aggttgtcaa gtcggmccaa acaggttgtt tctctgcagt ttccaacatg gcagggmsgt ttaatagaca tggataagaa gtccactcac agaaatcctg aagatgccag ggctggcaaa tatgaaggta aacacaaacg aaagaaaaga agaaagcaaa accaaaacca gcaccgatcc cgacatagat cagtgacgtc ttttcttca g atg atc cta tgt ttc ctt ctt cct cat cat</pre>	60 120 180 240 291
cgt ctt cag gaa gcc aga cag att caa gta ttg aag atg ctt cca agg Arg Leu Gln Glu Ala Arg Gln Ile Gln Val Leu Lys Met Leu Pro Arg -5 10	339
gaa aaa tta aga aga aga gaa gag aga aaa caa ata aat ggg aaa aaa Glu Lys Leu Arg Arg Arg Glu Glu Arg Lys Gln Ile Asn Gly Lys Lys 15 20 25	387
raa agg aca aaa tat gaa aca cca aga aaa rga raa gga aaa aaa gga Xaa Arg Thr Lys Tyr Glu Thr Pro Arg Lys Xaa Xaa Gly Lys Lys Gly 30 35	435
gga aac mac cmc wtw tkt cmc ctt tcc aar agg gac tgaaactggg Gly Asn Xaa Xaa Xaa Xaa Leu Ser Lys Arg Asp 45 50 55	481
ctgaccettt tgatttecaa veteasegtt ttggtgtaag geggeeaaar aaggatgegg aseceageae tgtgaageet acaaaaacat tgatgegetg gettggggat ttgaatttga acatetttea cactaagtte agacteatga aaccaatett cagatgetet gtaaaccaca taataaagag tttggaaatt aaaaaaaaar aa	541 601 661 693
<210> 307 <211> 1656 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> 741216	
<221> sig_peptide <222> 74172 <223> Von Heijne matrix score 5.80000019073486 seq XLCLGMALCPRQA/TR	
<221> polyA_signal <222> 16271632	
<221> polyA_site <222> 16401652	
<pre><400> 307 atctcttggc gtctcaacgt tcggatcagc agcttttttc cattctctct ctccacttct tcagtgagca gcc atg agt tgg act gtg cct gtt gtg cgg gcc agc cag</pre>	60 109
aga gtg agc tcg gtg gga gcg aat ktc cta tgc ctg ggg atg gcc ctg Arg Val Ser Ser Val Gly Ala Asn Xaa Leu Cys Leu Gly Met Ala Leu -20 -15 -10	157

tgt Cys -5	ccg Pro	cgt Arg	caa Gln	gca Ala	acg Thr 1	cgc Arg	atc Ile	ccg Pro	ctc Leu 5	aac Asn	ggc Gly	acc Thr	tgg Trp	ctc Leu 10	ttc Phe	205
acc			agc Ser		atg			Val	aar				Ile	gag		253
			15 gar Glu													301
act	aaa	30 tca	gtg	aac	ato	acc	35 tac	act	atc	адс	atc	40 tta	tta	aaa	aac	349
Thr	Gly 45	Ser	Val	Gly	Met	Ala 50	Cys	Ala	Ile	Ser	Ile 55	Leu	Leu	Lys	Gly	
			gaa Glu													397
			atg Met													445
t	2++	~++	tgt		222	rat	tac	+++		202	aca	220	tcc		cta	493
Asn	Ile	Val	Cys 95	Ser	Lys	Xaa	Tyr	Phe 100	Val	Thr	Ala	Asn	Ser 105	Asn	Leu	
			aca Thr													541
		stc	cag													589
	125		Gln	_		130					135					
			tac													637
Ile 140	Val	Gln	Tyr	Ser	Pro 145	His	Cys	Lys	Leu	Ile 150	Ile	Val	Ser	Asn	Pro 155	
	cat	atc	tta	a c t		at a	act	taa	220		ant	aca	+++	ccc		685
Val	Asp	Ile	Leu	Thr 160	Tyr	Val	Ala	Trp	Lys 165	Leu	Ser	Ala	Phe	Pro 170	Lys	
aac Asn	cgt Arg	att Ile	att Ile 175	gga Gly	agc Ser	Gly	tgt Cys	aat Asn 180	ctg Leu	ata Ile	mhg Xaa	gct Ala	cgt Arg 185	Phe	cgt Arg	733
ttc	ttg	att	gga	caa	aag	ctt	ggt	atc	cat	tct	gaa	agc	tgc	cat	gga	781
Phe	Leu	Ile 190	Gly	Gln	Lys	Leu	Gly 195	Ile	His	Ser	Glu	Ser 200	Cys	His	Gly	
tgg Trp	Ile 205	ctc Leu	gga Gly	gag Glu	cat His	gga Gly 210	gac Asp	tca Ser	agt Ser	gtt Val	Pro 215	gtg Val	tgg Trp	ser	gga Gly	829
															gga	877
Val 220	Asn	Ile	Ala	Gly	Val 225	Pro	Leu	Lys	Asp	Leu 230	Asn	Ser	Asp	iie	G1y 235	
act	gat	aaa	gat	cct	gag	caa	tgg	aaa	aat	gtc	cac	aaa	gaa	gtg	act	925
Thr	Asp	Lys	Asp	Pro 240	Glu	Gln	Trp	Lys	Asn 245	Val	His	Lys	Glu	Val 250	Thr	
			tat Tyr													973
att	aac	cta	255 tct	ata	acc	cat	tta	260	gaa	ant	2++	tta	265	aat	ctt	1021
			Ser													
		Ile	cat His				Thr									1069
rat			gta	ttc	ctc			cct	tat	atc		qqa	gag	aac	ggt	1117
Xaa	Glu		Val		Leu					Ile	Leu					
300 att		3 3.0	ctt	2+-	305	ate	225	c+~	200	310		a = =	asa.	acc		1165
			Leu													1100

320 325 330	
ctg aaa aaa agt gca aaa aca ctc tgg gaa att cag aat aag ctt aag Leu Lys Lys Ser Ala Lys Thr Leu Trp Glu Ile Gln Asn Lys Leu Lys 335 340 345	1213
ctt taaagttgcc taaaactacc attccgaaat tattgaagag atcatagata	1266
Leu caggattata taacgaaatt ttgaataaac ttgaattcct aaaagatgga aacaggaaag taggtagagt gattttccta tttatttagt cctccagctc ttttattgag catccacgtg ctggacgata cttatttaca attcckaagt atttttggta cctctgatgt agcagcactt gccatgttat atatatgtag ttgrmatttg gttcccaaaa agtaggatgt aggtatttat tgtgttctag aaattccgac tcttttcatt agatatatgc tatttcttc attcttgctg gtttatacct atgttcatt atatgctgta aaaaagtagt agcttcttct acaatgtaaa aataaatgta catacaaaaa aaaaaamcmc	1326 1386 1446 1506 1566 1626
<210> 308 <211> 517 <212> DNA <213> Homo sapiens	
<221> CDS <222> 48164	
<pre><221> sig_peptide <222> 4889 <223> Von Heijne matrix score 4 seq YYMVCLFFRLIFS/EH</pre>	
<221> polyA_signal	
<221> polyA_site <222> 505517	
<400> 308 aggagatagc ctcgtagaaa tgacaaccac aatgttaata ctaacat atg tat tac Met Tyr Tyr	56
atg gtt tgt ttg ttc ttt cgc tta ata ttt tca gag cac cta cct att Met Val Cys Leu Phe Phe Arg Leu Ile Phe Ser Glu His Leu Pro Ile -10 -5 1 5	104
ata ggc act gtc act tct cac aaa act ggg aca cta act gtt tat cca Ile Gly Thr Val Thr Ser His Lys Thr Gly Thr Leu Thr Val Tyr Pro 10 15 20	152
aca tot got ggo taaataaaga catgatotto acottttggg attgttaatt Thr Ser Ala Gly 25	204
taaaatggtt ccataagagc aatgcaaaga cagagatatt tggcagcact gcagctggtg	264
atttatatgg ctcttcacaa ggtgttattt tggggtatca aggtatggat gcttaaatca gctgcaggaa gtaagaaaga agaaaaaagg agtgataaag ataaaaaaaa	324 384
gtccttccac caaaacccat taatttccat atcatcatct gcataararg gaaaattcct	444
acwtgaccag gttactgcaa ggatktkaat tttgaatatt aaaatattat mcmcaattgg aaaaaaaaaa aaa	504 517

<210> 309

<211> 405

<212> DNA

<213> Homo sapiens

<220>	
<221> CDS	
<222> 185334	
<221> sig_peptide	
<222> 185295	
<223> Von Heijne matrix	
score 5.9000009536743	
seq LSYASSALSPCLT/AP	
<221> polyA_signal	
<222> 355360	
001	
<221> polyA_site	
<222> 392405	
<400> 309	
atcaccttct totocatect tstotgggee agtecocare coagtecote tectgacetg	60
cccagcccaa gtcagccttc agcacgcgct tttctgcaca cagatattcc aggcctacct	120
ggcattccag gacctccgma atgatgctcc agtcccttac aagcgcttcc tggatgaggg	180
tgge atg gtg etg ace ace ete eee ttg eee tet gee aac age eet gtg	229
Met Val Leu Thr Thr Leu Pro Leu Pro Ser Ala Asn Ser Pro Val	
-35 - 30 -25	
aac atg ccc acc act ggc ccc aac agc ctg agt tat gct agc tct gcc	277
Asn Met Pro Thr Thr Gly Pro Asn Ser Leu Ser Tyr Ala Ser Ser Ala	
-20 -15 -10	
ctg tee eee tgt etg ace get eea aag tee eee ega ett get atg atg	325
Leu Ser Pro Cys Leu Thr Ala Pro Lys Ser Pro Arg Leu Ala Met Met	
-5 1 5 10	374
cct gac aac taaatatcct tatccaaatc aataaarwra raatcctccc	3/4
Pro Asp Asn	405
tccaraaggg tttctaaaaa caaaaaaaaa a	
<210> 310	
<211> 1087	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> 195347	
<221> sig_peptide	
<222> 195272	
<223> Von Heijne matrix	
score 7.09999990463257	
seg LASLQWSLTLAWC/GS	
<221> polyA_signal	
<222> 10371042	
<221> polyA_site	
<222> 10711082	
<400> 310	60
aaagtgtaga acacggacct ctgagttatg ctcttgagag gtgccaaagc tgggctgttt acctacctta tccacagagc tctgaaagtc aagccagaaa ggaaggattc caaattcttg	120
daarrrare radaaaadaa daccaadcad errrorrer rerordacce abiibeibbe	180
gaattttatc tagaaaagaa gactaagcag cttttgttct tctgtgaccc agttgctggc ccaagacatg gaca atg acc ccc tgg tgt ttg gcg tgt ctg ggg agg agg	180 230

Met Thr Pro Trp Cys Leu Ala Cys Leu Gly Arg Arg -15 -20 278 cct ctc gct tct ttg cag tgg agc ctg aca ctg gcg tgg tgt ggc tcc Pro Leu Ala Ser Leu Gln Trp Ser Leu Thr Leu Ala Trp Cys Gly Ser -10 -5 326 ggc agc cac tgg aca gag aga cca akt cag akt tca ccg tgg akt tct Gly Ser His Trp Thr Glu Arg Pro Xaa Gln Xaa Ser Pro Trp Xaa Ser 10 ctg tca gcg acc acc agg ggg tgatcacacg gaaggtgaac atccaggtcg 377 Leu Ser Ala Thr Thr Arg Gly gggatgtgaa tgacaacgcg cccacatttc acaatcagcc ctacagcgtc cgcatccctg 437 497 araatacacc agtggggacg cccatcttca tcgtgaatgc cacagacccc gacttggggg 557 cagggggag cgtcctctac tccttccagc cccctccca attcttcgcc attgacagcg 617 cccgcggtat.cktcacagtg atccgggagc tggactacga taccacrcmg gcctaccagc 677 tcwcggtcwa cgccacagat caagacaara ccaggcctct gtccaccstg gccaacttgg ccatcatcat cacagatgtc caggacatgg accecatctt catcaacctg ccttacagca 737 ccaacatcta cgagcattct cctccgggca cgacggtgcg catcatcacc gccatagacc 797 857 aggataaagg acgtccccgg ggcattggct acaccatcgt ttcagggcat ctgtgtttac aagaacccaa gatctctcag gagctcagga aaaggggctt gctgtgaggc tcagggttcc 917 catggacatt ctgagctgac cctcctcagc attggatctc ctggctcagg aactaggaac 977 gaagettgga tgttttctcc tttcctacag catctgtatt catttcctat agttgccata 1037 1087 ataaaatgcc actaacttag tggcttaaaa accaaaaaaa aaaaaccctt

<210> 311 <211> 916 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 90..815 <221> sig peptide <222> 90..179 <223> Von Heijne matrix score 13.1999998092651 seq LLLLSTLVIPSAA/AP <221> polyA signal <222> 883..888 <221> polyA site <222> 905..916 <400> 311

60 aaaacagtac gtgggcggcc ggaatccggg agtccggtga cccgggctgt ggtctagcat aaaggcggag ccagaagaag gggcggggt atg gga gaa gcc tcc cca cct gcc 113 Met Gly Glu Ala Ser Pro Pro Ala -25 -30 161 ccc gca agg cgg cat ctg ctg gtc ctg ctg ctc ctc tct acc ctg Pro Ala Arg Arg His Leu Leu Val Leu Leu Leu Leu Ser Thr Leu -20 -10 -15 209 gtg atc ccc tcc gct gca gct cct atc cat gat gct gac gcc caa gag Val Ile Pro Ser Ala Ala Ala Pro Ile His Asp Ala Asp Ala Gln Glu 1 age tee ttg ggt etc aca gge etc cag age eta etc caa gge tte age 257 Ser Ser Leu Gly Leu Thr Gly Leu Gln Ser Leu Leu Gln Gly Phe Ser 20 cga ctt ttc ctg aaa ggt aac ctg ctt cgg ggc ata gac agc tta ttc 305 Arg Leu Phe Leu Lys Gly Asn Leu Leu Arg Gly Ile Asp Ser Leu Phe 35 tot god cod atg gad tto egg ggd etc cot ggg aad tad cad aaa gag 353 Ser Ala Pro Met Asp Phe Arg Gly Leu Pro Gly Asn Tyr His Lys Glu 50 gag aac cag gag cac cag ctg ggg aac aac acc ctc tcc agc cac ctc 401 Glu Asn Gln Glu His Gln Leu Gly Asn Asn Thr Leu Ser Ser His Leu 65 70 449 cag atc gac aag atg acc gac aac aag aca gga gag gtg ctg atc tcc Gln Ile Asp Lys Met Thr Asp Asn Lys Thr Gly Glu Val Leu Ile Ser 85 80 gag aat gtg gtg gca tcc att caa cca vcg gag ggg anc ttc gag ggt 497 Glu Asn Val Val Ala Ser Ile Gln Pro Xaa Glu Gly Xaa Phe Glu Gly 100 545 gat ttg aag gth ccc agg atg gag gar aag gag gcc ctg gta ccc mtc Asp Leu Lys Val Pro Arg Met Glu Glu Lys Glu Ala Leu Val Pro Xaa 115 car aag gcc acg gac agc ttc cac aca gaa ctc cat ccc cgg gtg gcc 593 Gln Lys Ala Thr Asp Ser Phe His Thr Glu Leu His Pro Arg Val Ala 130 135 641 ttc tgg atc att aag ctg cca cgg cgg agg tcc cac cag gat gcc ctg Phe Trp Ile Ile Lys Leu Pro Arg Arg Arg Ser His Gln Asp Ala Leu 145 150 gag ggc ggc cac tgg ctc anc gar aag cga cac cgc ctg cag gcc atc Glu Gly Gly His Trp Leu Xaa Glu Lys Arg His Arg Leu Gln Ala Ile 155 160 165 cgg gat gga ctc cgc aag ggg acc cac aag gac rtc cta daa rag ggg 737 Arg Asp Gly Leu Arg Lys Gly Thr His Lys Asp Xaa Leu Xaa Xaa Gly 180 175 acc gar age tee tee cae tee agg etg tee eec ega aar amm cae tta 785 Thr Glu Ser Ser His Ser Arg Leu Ser Pro Arg Lys Xaa His Leu 190 195 ctg tac atc ctc arg ccc tct cgg cag ctg targggtggg gaccggggar 835 Leu Tyr Ile Leu Xaa Pro Ser Arg Gln Leu-210 895 macctgcctg tagccccat caracctgc cccaagcacc atatggaaat aaagttcttt 916 cttacatcca aaaaaaaaa a

<210> 312

<211> 583

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 52..513

<221> sig_peptide

<222> 52..231

<223> Von Heijne matrix score 4 seq LVRRTLLVAALRA/WM

<221> polyA signal

<222> 553..558

<221> polyA_site

<222> 572..583

aaggaaacag caaccagagg gagatgatca cctgaaccac tgctccaaac c atg ggc 57 Met Gly -60 agt aaa tgc tgt aaa ggt ggt cca gat gaa gat gca gta gaa aga cag 105 Ser Lys Cys Cys Lys Gly Gly Pro Asp Glu Asp Ala Val Glu Arg Gln -50 -45 153 agg cgg cag aag ttg ctt ctt gca caa ctg cat cac aga aaa agg gtg Arg Arg Gln Lys Leu Leu Leu Ala Gln Leu His His Arg Lys Arg Val -30 -35 aar gca gct ggg cag atc cag gcc tgg tgg cgt ggg gtc ctg gtg cgc 201 Lys Ala Ala Gly Gln Ile Gln Ala Trp Trp Arg Gly Val Leu Val Arg -20 -15 agg acc ctg ctg gtt gct gcc ctc agg gcc tgg atg att cag tgc tgg 249 Arg Thr Leu Leu Val Ala Ala Leu Arg Ala Trp Met Ile Gln Cys Trp tgg agg acg ttg gtg cag aga cgg atc cgt cag cgg cgg cag gcc ctg 297 Trp Arg Thr Leu Val Gln Arg Arg Ile Arg Gln Arg Arg Gln Ala Leu 15 ttr ggg gtc tac gtc atc cag gag cag gcg gcg gtc aag ctc cag tcc 345 Leu Gly Val Tyr Val Ile Gln Glu Gln Ala Ala Val Lys Leu Gln Ser 30 25 393 tgc atc cgc atg tgg cag tgc cgg caa tgt tac cgc caa atg tgc aat Cys Ile Arg Met Trp Gln Cys Arg Gln Cys Tyr Arg Gln Met Cys Asn 45 get etc tge ttg tte cag gte cea aaa age age ett gee tte caa act 441 Ala Leu Cys Leu Phe Gln Val Pro Lys Ser Ser Leu Ala Phe Gln Thr 60 65 489 gat ggc ttt tta cag gtc caa tat gca atc cct tca aag cag cca gag Asp Gly Phe Leu Gln Val Gln Tyr Ala Ile Pro Ser Lys Gln Pro Glu 75 ttc cac att gaa atc cta tca atc tgaaaggcct ggggcatgga gaacaggctg 543 Phe His Ile Glu Ile Leu Ser Ile 583

<210> 313 <211> 697 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 172..438 <221> sig_peptide <222> 172..354 <223> Von Heijne matrix score 4.69999980926514 seq LLPCNLHCSWLHS/SP <221> polyA signal <222> 682..687 <221> polyA site

<222> 685..697

<400> 313 agattggctg ggcagatggg ctgactggct gggcagatgg gtgggtgagt tccctctccc

cagagecate ggccaggtac caaageteag etgtatggat teccaacagg aggacetgeg cttccctggg acccattgtt gtactggatt aacaagcgac ggcgctacgg c atg aat

60 120

Met Asn	
gca gcc atc aac acg ggc cct gcc cct gct gtc acc aag act gag act Ala Ala Ile Asn Thr Gly Pro Ala Pro Ala Val Thr Lys Thr Glu Thr -55 -50 -45	225
gag gtc cag aat cca gat gtt ctg tgg gat ttg gac atc ccc gaa gcc Glu Val Gln Asn Pro Asp Val Leu Trp Asp Leu Asp Ile Pro Glu Ala -40 -35 -30	273
agg agc cat gct gac caa gac agc aac ccc aag gcg gaa gcc ctg ctc Arg Ser His Ala Asp Gln Asp Ser Asn Pro Lys Ala Glu Ala Leu Leu -25 -20 -15	321
ccc tgc aac ctg cac tgc agc tgg ctc cac agc agc ccc agg cca gat Pro Cys Asn Leu His Cys Ser Trp Leu His Ser Ser Pro Arg Pro Asp -10 -5 1 5	369
ccc cat tcc cac ttc cca tct ktc agg agg tgc cct ttg ccc cac cct Pro His Ser His Phe Pro Ser Xaa Arg Arg Cys Pro Leu Pro His Pro 10 15 20	417
tgt gca acc tac ccc ccs kgc tgaaccactc tgtctcctat cctttggcca Cys Ala Thr Tyr Pro Pro Xaa 25	468
cctgtcctga aaggaatgtt ctcttccatt ccctcctgaa tctggcccag gaagaccata gcttcaatgy caagcctttt ccttcaaaac tgtagcctcc tctcactgaa ggtgggagct gcaggaatca ggtgcagagt aggaaatgga actaacctca ggaaggtggt attgacagag gtcaggaccc acctggatgt catgctatga aacattaaaa gaaaaaaaa	528 588 648 697
<210> 314 <211> 803 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> 148366	
<pre><221> sig_peptide <222> 148225 <223> Von Heijne matrix</pre>	
<221> polyA_signal <222> 770775	
<221> polyA_site <222> 792803	
<400> 314 aaatgggggg aaaagggcgg aaaaggacaa ggatccaaac tggcgaattt gctgatcttc gcgtcctct ccgctttccg gccgcagcg ctgccagggt atatttcctt ttttccgatc ctgcaacagc ctctttaaac tgtttaa atg aga atg tcc ttg gct cag aga gta Met Arg Met Ser Leu Ala Gln Arg Val	60 120 174
-25 -20 cta ctc acc tgg ctt ttc aca cta ctc ttc ttg atc atg ttg gtg ttg Leu Leu Thr Trp Leu Phe Thr Leu Leu Phe Leu Ile Met Leu Val Leu -15 -10 -5	222
aaa ctg gat gag aaa gca cct tgg aac tgg ttc ctc ata ttc att cca Lys Leu Asp Glu Lys Ala Pro Trp Asn Trp Phe Leu Ile Phe Ile Pro	270
gtc tgg ata ttt gat act atc ctt ctt gtc ctg ctg att gtg aaa atg Val Trp Ile Phe Asp Thr Ile Leu Leu Val Leu Leu Ile Val Lys Met	318

20 25 30	366
get ggg egg tgt aag tet gge ttt gae ete gae atg gat eac aca ata	300 .
Ala Gly Arg Cys Lys Ser Gly Phe Asp Leu Asp Met Asp His Thr Ile 35 40 45	
taaaaaaaaa aacctggtac ctcattgcac tgtkacttaa attasccttc tgcctcgcac	426
tetgtgetaa actggaacag tttactacca tgaatetate etatgtette attectttat	486
gggccttgct ggctggggct ttaacagaac tcggatataa tgtctttttt gtgaaagact	546
gacttctaag tacatcatct cctttctatt gctgttcaac aagttaccat taaagtgttc	606
tgaatctgtc aagcttcaag aataccagag aactgaggga aaataccaaa tgtagtttta	666
tactactice ataaaacagg attiggtgaat caeggaette tagteaacet acagettaat	726
tattcagcat ttgagttatt gaaatcctta ttatctctat gtaaataaag tttgttttgg	786
acctcaaaaa aaaaaaa	803
accitadada daadada	
<210> 315	
<211> 823	-
<211> 623 <212> DNA	
<213> Homo sapiens	
C2137 Nomo Baptens	
<220>	
<221> CDS	
<222> 175336	
10000	
<221> sig_peptide	
<222> 175276	
<223> Von Heijne matrix	
score 3.7000004768372	
seg SVLNVGHLLFSSA/CS	
•	
<221> polyA site	
<222> 812823	
<222> 812823 <400> 315	
<222> 812823 <400> 315 aaggegegeg egaceggegg etetttggeg eggattaggg ggteteggeg agggagteat	60
<222> 812823 <400> 315 aaggegegeg egaceggegg etetttggeg eggattaggg ggteteggeg agggagteat caagetttgg tgtatgtgtt ggeeggttet gaagtettga agaagetetg etgaggaaga	60 120
<222> 812823 <400> 315 aaggegegegegegegegegegegegegegegegegeg	
<222> 812823 <400> 315 aaggegegeg egaceggegg etetttggeg eggattaggg ggteteggeg agggagteat caagetttgg tgtatgtgtt ggeeggttet gaagtettga agaagetetg etgaggaaga ccaaageage actegttgee aattagggaa tggacegttt gggtteettt agea atg Met	120 177
<222> 812823 <400> 315 aaggegegeg egaceggegg etetttggeg eggattaggg ggteteggeg agggagteat caagetttgg tgtatgtgtt ggeeggttet gaagtettga agaagetetg etgaggaaga ccaaageage actegttgee aattagggaa tggaeegttt gggtteettt agea atg Met ate eet etg ata age eac ett gee gag get get eet eet ace tea tgg	120
<222> 812823 <400> 315 aaggegegeg egaceggegg etetttggeg eggattaggg ggteteggeg agggagteat caagetttgg tgtatgtgtt ggeeggttet gaagtettga agaagetetg etgaggaaga ecaaageage actegttgee aattagggaa tggacegttt gggtteettt agea atg Met ate eet etg ata age eac ett gee gag get get eet eet ace tea tgg Ile Pro Leu Ile Ser His Leu Ala Glu Ala Ala Pro Pro Thr Ser Trp	120 177
<pre><222> 812823 <400> 315 aaggegegeg egaceggegg etetttggeg eggattaggg ggteteggeg agggagteat caagetttgg tgtatgtgtt ggeeggttet gaagtettga agaagetetg etgaggaaga ccaaageage actegttgee aattagggaa tggacegttt gggtteettt agea atg</pre>	120 177 225
<pre><222> 812823 <400> 315 aaggegegeg egaceggegg etetttggeg eggattaggg ggteteggeg agggagteat caagetttgg tgtatgtgtt ggeeggttet gaagtettga agaagetetg etgaggaaga ccaaageage actegttgee aattagggaa tggacegttt gggtteettt agea atg</pre>	120 177
<pre><222> 812823 <400> 315 aaggcgcgcg cgaccggcgg ctctttggcg cggattaggg ggtctcggcg agggagtcat caagctttgg tgtatgtgtt ggccggttct gaagtcttga agaagctctg ctgaggaaga ccaaagcagc actcgttgcc aattagggaa tggaccgttt gggttccttt agca atg</pre>	120 177 225
<pre><222> 812823 <400> 315 aaggegegeg egaceggegg etetteggeg eggattaggg ggteteggeg agggagteat caagettegg tgtatgtgtt ggeeggttet gaagtettga agaagetetg etgaggaaga ccaaageage actegttgee aattagggaa tggacegttt gggtteettt agea atg</pre>	120 177 225 273
<pre><222> 812823 <400> 315 aaggegegeg egaceggegg etetttggeg eggattaggg ggteteggeg agggagteat caagetttgg tgtatgtgtt ggeeggttet gaagtettga agaagetetg etgaggaaga ccaaageage actegttgee aattagggaa tggacegttt gggtteettt agea atg</pre>	120 177 225
<pre><222> 812823 <400> 315 aaggegegeg egaceggegg etetteggeg eggattaggg ggteteggeg agggagteat caagettegg tgtatgtgtt ggeeggttet gaagtettga agaagetetg etgaggaaga ccaaageage actegttgee aattagggaa tggacegttt gggtteettt agea atg</pre>	120 177 225 273
<pre><222> 812823 <400> 315 aaggegegeg egaceggegg ctctttggeg eggattaggg ggtcteggeg agggagteat caagetttgg tgtatgtgtt ggceggttet gaagtettga agaagetetg etgaggaaga ccaaageage actegttgee aattagggaa tggacegttt gggtteettt agea atg</pre>	120 177 225 273 321
<pre><222> 812823 <400> 315 aaggegegeg egaceggegg etetteggeg eggattaggg ggteteggeg agggagteat caagettegg tgtatgtgtt ggeeggttet gaagtettga agaagetetg etgaggaaga ccaaageage actegttgee aattagggaa tggacegttt gggtteettt agea atg</pre>	120 177 225 273
<pre><222> 812823 <400> 315 aaggegegeg egaceggegg ctctttggeg eggattaggg ggtcteggeg agggagteat caagetttgg tgtatgtgtt ggceggttet gaagtettga agaagetetg etgaggaaga ccaaageage actegttgee aattagggaa tggacegttt gggtteettt agea atg</pre>	120 177 225 273 321
<pre><222> 812823 <400> 315 aaggegegeg egaceggegg etetteggeg eggattaggg ggteteggeg agggagteat caagettegg tgtatgtgtt ggeeggttet gaagtettga agaagetetg etgaggaaga ccaaageage actegttgee aattagggaa tggacegttt gggtteettt agea atg</pre>	120 177 225 273 321
<pre><222> 812823 <400> 315 aaggegegeg egaceggegg etetttggeg eggattaggg ggteteggeg agggagteat caagetttgg tgtatgtgtt ggeeggttet gaagtettga agaagetetg etgaggaaga ccaaageage actegttgee aattagggaa tggacegttt gggtteettt agea atg</pre>	120 177 225 273 321 376
<pre><222> 812823 <400> 315 aaggegegeg egaceggegg etetteggeg eggattaggg ggteteggeg agggagteat caagettegg tgtatgtet ggeeggteet gaagteetga agaageteetg etgaggaaga ccaaageage actegetgee aattagggaa tggaeegtet gggtteettt agea atg</pre>	120 177 225 273 321 376 436 496
<pre><222> 812823 <400> 315 aaggegegeg egaceggegg etetteggeg eggattaggg ggteteggeg agggagteat caagettegg tgtatgtet ggeeggteet gaagteetga agaageteet etaggaaaga ccaaageage actegetgee aattagggaa tggacegtet gggtteettt agea atg</pre>	120 177 225 273 321 376 436 496 556
<pre><222> 812823 <400> 315 aaggcgcgcg cgaccggcgg ctctttggcg cggattaggg ggtctcggcg agggagtcat caagctttgg tgtatgtgtt ggccggttct gaagtcttga agaagctctg ctgaggaaga ccaaagcagc actcgttgcc aattagggaa tggaccgttt gggttccttt agca atg</pre>	120 177 225 273 321 376 436 496 556 616
<pre><222> 812823 <400> 315 aaggegege cgaccggegg ctctttggeg eggattaggg ggteteggeg agggagteat caagetttgg tgtatgtgt ggceggttet gaagtettga agaagetetg etgaggaaga ccaaageage actegttgee aattagggaa tggacegttt gggtteettt agea atg</pre>	120 177 225 273 321 376 436 496 556 616 676
<pre><222> 812823 <400> 315 aaggegege cgaceggegg ctetttggeg eggattaggg ggteteggeg agggagteat caagetttgg tgtatgtgtt ggeeggttet gaagtettga agaagetett etgaggaaga ccaaageage actegttgee aattagggaa tggacegttt gggtteettt agea atg</pre>	120 177 225 273 321 376 436 496 556 616 676 736
<pre><222> 812823 <400> 315 aaggegege cgaccggegg ctctttggeg eggattaggg ggteteggeg agggagteat caagetttgg tgtatgtgt ggceggttet gaagtettga agaagetetg etgaggaaga ccaaageage actegttgee aattagggaa tggacegttt gggtteettt agea atg</pre>	120 177 225 273 321 376 436 496 556 616 676 736 796
<pre><222> 812823 <400> 315 aaggegege cgaceggegg ctetttggeg eggattaggg ggteteggeg agggagteat caagetttgg tgtatgtgtt ggeeggttet gaagtettga agaagetett etgaggaaga ccaaageage actegttgee aattagggaa tggacegttt gggtteettt agea atg</pre>	120 177 225 273 321 376 436 496 556 616 676 736

```
<211> 823
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 191..553
<221> sig_peptide
<222> 191..304
<223> Von Heijne matrix
      score 5.69999980926514
      seq LAFLSCLAFLVLD/TQ
<221> polyA_signal
<222> 766..771
<221> polyA site
<222> 804..817
<400> 316
                                                                       60
aactotgoag ggootocaag gooaggotto agggotggga otoagtootg aggoactggg
gagccatgag gggctgtggc agggaggggc agggtgtgga aagactcccc tgggggccatg
                                                                      120
gtggagatgt getgaggtet tetecetgat egtettetee tecetgetga eegaeggeta
                                                                      180
ccagaackag atg gag tot ceg cag otc cac tgc att otc aac agc aac
                                                                      229
          Met Glu Ser Pro Gln Leu His Cys Ile Leu Asn Ser Asn
                                           -30
                       -35
                                                                      277
age gtg gee tge age ttt gee gtg gga gee gge tte etg gee tte etc
Ser Val Ala Cys Ser Phe Ala Val Gly Ala Gly Phe Leu Ala Phe Leu
-25
                    -20
                                        -15
                                                                      325
age tge etg gee tte ete gte etg gae aca eag gag ace ege att gee
Ser Cys Leu Ala Phe Leu Val Leu Asp Thr Gln Glu Thr Arg Ile Ala
                                                                      373
ggc acc cgc ttc aag aca gcc ttc cag ctc ctg gac ttc atc ctg gct
Gly Thr Arg Phe Lys Thr Ala Phe Gln Leu Leu Asp Phe Ile Leu Ala
        10
                            15
gtt ctc tgg gca gtt gtc tgg ttc atg ggt ttc tgc ttc ctg gcc aac
                                                                      421
Val Leu Trp Ala Val Val Trp Phe Met Gly Phe Cys Phe Leu Ala Asn
                        30
caa tgg cag cat tcg ccg ccc aaa gar kkc ctc ctg ggg agc agc agt
                                                                      469
Gln Trp Gln His Ser Pro Pro Lys Glu Xaa Leu Leu Gly Ser Ser Ser
                    45
ged dag ged atd ggd stt dad ott ott ott dat eet tgt otg gat
                                                                      517
Ala Gln Ala Ala Ile Gly Xaa His Leu Leu His Pro Cys Leu Asp
                                    65
                                                                      563
att cca rgc cta cct ggc akk cca gga cct ccg aaa tgatgctcca
Ile Pro Xaa Leu Pro Gly Xaa Pro Gly Pro Pro Lys
                                80
            75
gtcccttacm arcgcttcct ggatgaaggt ggcatggtgs kkaacaccct ccccttgccc
                                                                      623
totgocaaca gootgtgaac atgoccacca otggocccaa cagootgagt tatgotagot
                                                                      683
                                                                      743
etgecetgte eccetgtetg accgetemaa agtececeg gettgetatg atgeetgaca
actaaatato ottatooaaa toaataaaga gagaatooto ootooagaag ggtttotaaa
                                                                      803
                                                                      823
aacaaaaaa aaaahncctt
```

<210> 317

<211> 1112

<212> DNA

<213> Homo sapiens

<221> CDS <222> 106..603 <221> sig_peptide <222> 106..216 <223> Von Heijne matrix score 4.30000019073486 seq LWEKLTLLSPGIA/VT <221> polyA_site <222> 1102..1112 <400> 317 agegattgeg aateeteege tgaggtgatt tggatateee tagaaegttg agggeaegag 60 117 tegggteetg agaccaggte etcagecage agagecaegt teett atg age ace gtg Met Ser Thr Val ggt tta ttt cat ttt cct aca cca ctg acc cga ata tgc ccg gcg cca 165 Gly Leu Phe His Phe Pro Thr Pro Leu Thr Arg Ile Cys Pro Ala Pro -25 -30 213 tgg gga ctc cgg ctt tgg gag aag ctg acg ttg tta tcc cca gga ata Trp Gly Leu Arg Leu Trp Glu Lys Leu Thr Leu Leu Ser Pro Gly Ile -5 -15 -10 get gtc act ceg gtc cag atg gca ggc aag aag gac tac cet gca etg 261 Ala Val Thr Pro Val Gln Met Ala Gly Lys Lys Asp Tyr Pro Ala Leu 5 10 1 ctt tcc ttg gat gag aat gaa ctc gaa gag cag ttt gtg aaa gga cac 309 Leu Ser Leu Asp Glu Asn Glu Leu Glu Glu Gln Phe Val Lys Gly His 25 357 ggt cca ggg ggc cag gca acc aac aaa acc agc aac tgc gtg gtg ctg Gly Pro Gly Gly Gln Ala Thr Asn Lys Thr Ser Asn Cys Val Val Leu 35 40 405 aar mac atc ccc tca ggc atc gtt gta aag tgc cat cag aca aga tca Lys Xaa Ile Pro Ser Gly Ile Val Val Lys Cys His Gln Thr Arg Ser 55 gtt gat cag aac aga aag cta gct cgg aaa atc cta caa gag aaa gta 453 Val Asp Gln Asn Arg Lys Leu Ala Arg Lys Ile Leu Gln Glu Lys Val 70 rat gtt ttc tac aat ggt gaa aac agt cct gtt cac aaa gaa aaa cga 501 Xaa Val Phe Tyr Asn Gly Glu Asn Ser Pro Val His Lys Glu Lys Arg 85 90 549 gaa gcg gcg aag aaa aaa car gaa agg aaa aaa aga gca aag gaa acc Glu Ala Ala Lys Lys Gln Glu Arg Lys Lys Arg Ala Lys Glu Thr 100 105 597 ctg gaa aaa aag aas ctm ctt aaa raa ctg tgg gag tca agt aaa aag Leu Glu Lys Lys Xaa Leu Leu Lys Xaa Leu Trp Glu Ser Ser Lys Lys 120 125 115 gtc cac tgagaaaaga attagagatt ccaactgaca gaatctgcca gaagctccca 653 Val His gggaataatg gtggcgagtt ccatcaccag cattattata gtgcttcaaa agaaatattt 773 ttgatgaact taaaagacaa caaatttatt taaatggtgc actaaactgt agtgaacaga 833 gacatgcacg attcaagaat aaaactcggc cgggcacggt ggacggtgcc tcacatctgt aatcccagca ctttgggagg ccgaggcggg cggatcactt gaggtcagga gtttgagacc 893 953 agcctggcca acatggtgaa accccgtctc tactaaaaat acaaaaaatt agccaggcat 1013 ggtggcggc acctgtaatc ccagctactc gggaggccga ggcaggagaa ttgcgtgaac ctgggaggcg gaggttgcag tgagctgaga tcgcgccact gcactcaagc ctgggcaaca 1073

1112

cctgggtgac agagcaagac cccatcycaa aaaaaaaa

<212> DNA <213> Homo sapiens <220> <221> CDS <222> 47..586 <221> sig_peptide <222> 47..124 <223> Von Heijne matrix score 6.30000019073486 seq GVGLVTLLGLAVG/SY <221> polyA_signal <222> 1583..1588 <221> polyA_site <222> 1614..1623 <400> 318 55 agggatotgt oggottgtca ggtggtggag gaaaaggogo toogto atg ggg atc Met Gly Ile -25 cag acg agc ccc gtc ctg ctg gcc tcc ctg ggg gtg ggg ctg gtc act 103 Gln Thr Ser Pro Val Leu Leu Ala Ser Leu Gly Val Gly Leu Val Thr -20 -15 151 ctg ctc ggc ctg gct gtg ggc tcc tac ttg gtt cgg agg tcc cgc cgg Leu Leu Gly Leu Ala Val Gly Ser Tyr Leu Val Arg Arg Ser Arg Arg 199 cct cag gtc act ctc ctg gac ccc aat gaa aag tac ctg cta cga ctg Pro Gln Val Thr Leu Leu Asp Pro Asn Glu Lys Tyr Leu Leu Arg Leu 20 247 cta gac aag acg act gtg agc cac aac acc aag agg ttc cgc ttt gcc Leu Asp Lys Thr Thr Val Ser His Asn Thr Lys Arg Phe Arg Phe Ala 30 35 295 ctg ccc acc gcc cac cac act ctg ggg ctg cct gtg ggc aaa cat atc Leu Pro Thr Ala His His Thr Leu Gly Leu Pro Val Gly Lys His Ile 50 45 tac etc tec aem mga att gat gge age etg gte ate agg eca tac aet 343 Tyr Leu Ser Thr Arg Ile Asp Gly Ser Leu Val Ile Arg Pro Tyr Thr 65 cct gtc acc agt gat gag gat caa ggc tat gtg gat ctt gtc mtc aag 391 Pro Val Thr Ser Asp Glu Asp Gln Gly Tyr Val Asp Leu Val Xaa Lys 80 gtc tac ctg aag ggt gtg cac ccc aaa ttt cct gag gga ggg aar atg 439 Val Tyr Leu Lys Gly Val His Pro Lys Phe Pro Glu Gly Gly Lys Met 100 487 tct cak tac ctg gat asc ctg aaa gtt ggg gat btg gtg gaa ttt csg Ser Xaa Tyr Leu Asp Xaa Leu Lys Val Gly Asp Xaa Val Glu Phe Xaa 110 115 ggg cca agc ggg ttg ctc act tac act gga aaa ggg cat ttt aac att 535 Gly Pro Ser Gly Leu Leu Thr Tyr Thr Gly Lys Gly His Phe Asn Ile 130 135 125 583 cag ccc aac aag aat ctc cac cag aac ccc gag tgg cga aga aac tgg Gln Pro Asn Lys Asn Leu His Gln Asn Pro Glu Trp Arg Arg Asn Trp 145 636 gaa tgattgccgg cgggacagga atcaccccaa tgctacagct gatccgggcc Glu atcctgaaag tccctgaaga tccaacccag tgctttctgc tttttgccaa ccagacagaa 696 756 aaggatatca tottgoggga ggacttagag gaactgoagg cocgotatco caatogottt 816 aagetetggt teactetgga teateceeca aaagrttggg cetacageaa gggetttgtg

actgccgacw tgatccggga acacctgccc gctccagggg atgatgtgct ggtactgctt

tgtgggccmc ccccaatggt gcagctggcc tgccatccca acttggacaa actgggctac 936 tcacaaaaga tgcgattcac ctactgagca tcctccagct tccctggtgc tgttcgctgc 996 1056 agttgttccc catcagtact caagcactak aagccttagr ktcctktcct cagagtttca ggttttttca gttrsatcka gagctgaaat ctggatagta cctgcaggaa caatattcct 1116 gtagccatgg aagagggcca aggctcagtc actccttgga tggcctccta aatctccccg 1176 tggcaacagg tccaggagag gcccatggag cagtctcttc catggagtaa gaaggaaggg 1236 1296 agcatgtacg cttggtccaa gattggctag ttccttgata gcatcttact ctcaccttct 1356 ttgtgtctgt gatgaaagga acagtctgtg caatgggttt tacttaaact tcactgttca acctatgage aaatetgtat gtgtgagtat aagttgagea tageataett eeagaggtgg 1416 tcttatggag atggcaagaa aggaggaaat gatttcttca gatctcaaag gagtctgaaa 1476 tatcatattt ctgtgtgtgt cdctctcagc ccctgcccad gctagaggga wacagctact 1536 gataatcgaa aactgctgtt tgtgggcarg aacccctggc tgtgcaaata atggggctga 1596 1623 ngccctgtgt gatattgaaa aaaaaaa <210> 319 <211> 526 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 99..371 <221> sig_peptide <222> 99..290 <223> Von Heijne matrix score 3.79999995231628 seq LFIVVCVICVTLN/FP <221> polyA_signal <222> 491..496 <221> polyA site <222> 513..524 <400> 319 60 attggattag tagaattgct tttgtcattc cattgttttc atatatttgt ttgggacatt ttactttttt ctgttaacgc ttaccctagr aattagaa atg aca cca cgt att ctt Met Thr Pro Arg Ile Leu age gaa gte cag ttt tea gea ttt tgt eet tat tgg aca ata gea agg 164 Ser Glu Val Gln Phe Ser Ala Phe Cys Pro Tyr Trp Thr Ile Ala Arg ~50 ata tta gaa cgt gtt ggt tcc gcg tgc ttc cgt ctt gag tta tgt gct 212 Ile Leu Glu Arg Val Gly Ser Ala Cys Phe Arg Leu Glu Leu Cys Ala -35 -30 260 gct att gtc gga tat ttt gtc tta gat gta cgt act ttc ctg ttc att Ala Ile Val Gly Tyr Phe Val Leu Asp Val Arg Thr Phe Leu Phe Ile -20 -15 308 gtg gta tgt gta att tgc gtt act ttg aat ttt cca cgt ttt tac ttt Val Val Cys Val Ile Cys Val Thr Leu Asn Phe Pro Arg Phe Tyr Phe -10 -5 1 356 ctt tgt ctc tca tca ctt acc gct ttt ggg acc ccc ccc atc ggg gtt Leu Cys Leu Ser Ser Leu Thr Ala Phe Gly Thr Pro Pro Ile Gly Val 15 411 cac att ccc tct ccc tararcacac tcccttggat ttcctcradt ggggtctgct His Ile Pro Ser Pro 25 471 geggtgaage ttteecattt tatgtgeaga ttatttteag agggtatata gaatteagge

agctqtttcg ttgtagcaca ttaaaaatat tttcccactt caaaaaaaaa aaacc

<210> 320 <211> 989 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 44..814 <221> sig_peptide <222> 44..112 <223> Von Heijne matrix score 8.30000019073486 seg VRLLLXLLLLLIA/LE <221> polyA_site <222> 978..989 <400> 320 55 agatototac acoccaqct tectocetot tactetecae agt atg ega aga ata Met Arg Arg Ile 103 tcc ctg act tct agc cct gtg cgc ctt ctt ttg tdt ctg ctg ttg cta Ser Leu Thr Ser Ser Pro Val Arg Leu Leu Leu Xaa Leu Leu Leu Leu -15 -10 cta ata gcc ttg gag atc atg gtt ggt ggt cac tct ctt tgc ttc aac 151 Leu Ile Ala Leu Glu Ile Met Val Gly Gly His Ser Leu Cys Phe Asn ttc act ata aaa tca ttg tcc aga cct gga cag ccc tgg tgt gaa gcg 199 Phe Thr Ile Lys Ser Leu Ser Arg Pro Gly Gln Pro Trp Cys Glu Ala 247 cat gtc ttc ttg aat aaa aat ctt ttc ctt cag tac aac agt gac aac His Val Phe Leu Asn Lys Asn Leu Phe Leu Gln Tyr Asn Ser Asp Asn 35 40 295 aac atg gtc aaa cct ctg ggc ctc ctg ggg aag aag gta tat gcc acc Asn Met Val Lys Pro Leu Gly Leu Leu Gly Lys Lys Val Tyr Ala Thr 55 50 343 age act tgg gga gaa ttg ace caa acg ctg gga gaa gtg ggg cga gac Ser Thr Trp Gly Glu Leu Thr Gln Thr Leu Gly Glu Val Gly Arg Asp ctc agg atg ctc ctt tgt gac atc aaa ccc car ata aag acc agt gat 391 Leu Arg Met Leu Leu Cys Asp Ile Lys Pro Gln Ile Lys Thr Ser Asp 80 85 90 439 cct tcc act ctg caa gtc kar atk ttt tgt caa cgt gaa gca gaa cgg Pro Ser Thr Leu Gln Val Xaa Xaa Phe Cys Gln Arg Glu Ala Glu Arg 100 105 487 tgc act ggt gca tcc tgg cag ttc gcc acc aat gga gag aaa tcc ctc Cys Thr Gly Ala Ser Trp Gln Phe Ala Thr Asn Gly Glu Lys Ser Leu 110 115 120 ctc ttt gac gca atg aac atg acc tgg aca gta att aat cat gaa gcc 535 Leu Phe Asp Ala Met Asn Met Thr Trp Thr Val Ile Asn His Glu Ala 135 130 583 agt wag atc aag gag aca tgg aag aaa gac aga ngg ctg gaa aak tat Ser Xaa Ile Lys Glu Thr Trp Lys Lys Asp Arg Xaa Leu Glu Xaa Tyr 145 150 ttc agg aag ctc tca aar gga gac tgc gat cac tgg ctc agg gaa ttc 631 Phe Arg Lys Leu Ser Lys Gly Asp Cys Asp His Trp Leu Arg Glu Phe 165 679 tta ggg cac tgg gaa gca atg cca raa ccg ama gtg tcm cca rta aat

Leu Gly His Trp Glu Ala Met Pro Xaa Pro Xaa Val Ser Pro Xaa Asn 727 get tea raw ate eac tgg tet tet tet art eta eea raw ara tgg ate Ala Ser Xaa Ile His Trp Ser Ser Ser Xaa Leu Pro Xaa Xaa Trp Ile 195 200 775 atc ctg ggg gca ttc atc ctg tta vtt tta atg gga att gtt ctc atc Ile Leu Gly Ala Phe Ile Leu Leu Xaa Leu Met Gly Ile Val Leu Ile 215 210 tgt gtc tgg tgg caa aat ggc ara ara tcc acc tad arg tgataccacg 824 Cys Val Trp Trp Gln Asn Gly Xaa Xaa Ser Thr Xaa Xaa 225 230 884 geggegeaaa attgtteace tgtggteete gategetgae ageettgget eccaetgetg 944 tgtgttecet gagtcaagtg gaggeggage etgeaatgag eggaratege geetetgeat 989 tccagtcttg gcaacagarc aagactccgt ctcaaaaaaa aaaaa <210> 321 <211> 1017 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 3..581 <221> sig_peptide <222> 3..182 <223> Von Heijne matrix score 6.69999980926514 seq LWPFLTWINPALS/IC <221> polyA_site <222> 1006..1016 <400> 321 47 ac atg tgc cct agt ctg gaa gag gct ccc agt gtc aag ggg act ctg Met Cys Pro Ser Leu Glu Glu Ala Pro Ser Val Lys Gly Thr Leu -55 -50 95 ccc tgc tca gga caa cag cag cct ttc ccg ttt gga gcc tca aac atc Pro Cys Ser Gly Gln Gln Gln Pro Phe Pro Phe Gly Ala Ser Asn Ile -45 -40 -35 cca cta ctc ctg ggc agg agc aga aag gtg gct cga ggt gca ccg gtc 143 Pro Leu Leu Gly Arg Ser Arg Lys Val Ala Arg Gly Ala Pro Val -25 -20 ctg tgg cca ttt ctc act tgg ata aac cct gca ctg tcc atc tgt gac 191 Leu Trp Pro Phe Leu Thr Trp Ile Asn Pro Ala Leu Ser Ile Cys Asp -10 -5 ccc tta gga tcc tgc gga tgg cyw tgc cac acg gcc car gtc cct gcg 239 Pro Leu Gly Ser Cys Gly Trp Xaa Cys His Thr Ala Gln Val Pro Ala 10 ccc ctg car ttg cct act gcc tgt cct ccc ctc cca cat ggc acc cgg 287 Pro Leu Gln Leu Pro Thr Ala Cys Pro Pro Leu Pro His Gly Thr Arg 25 30 get gta gge eec aeg eea gge etc etc eet gag get gea gee eea sge 335 Ala Val Gly Pro Thr Pro Gly Leu Leu Pro Glu Ala Ala Ala Pro Xaa 40 45 acg tgk ggg gca ctg tcc tca cgc agc agg cac tgg tca tgt tcc att 383 Thr Xaa Gly Ala Leu Ser Ser Arg Ser Arg His Trp Ser Cys Ser Ile 55 60 65

gtc arc tgc ctc cac ctg cac ara ctc ctg tct gtg gag acc aga arc

Val Xaa Cys Leu His Leu His Xaa Leu Leu Ser Val Glu Thr Arg Xaa

70 75 80 ttc cas aaa cat ctg ttg gtg ctg ctg gtg gct gtg gcc cat agt gtt									
	479								
Phe Xaa Lys His Leu Leu Val Leu Leu Val Ala Val Ala His Ser Val 85 90 95									
ctg gaa cca cct gcc ctg gtc cca aat gtg cag tgt gag atg tgc aca	527								
Leu Glu Pro Pro Ala Leu Val Pro Asn Val Gln Cys Glu Met Cys Thr									
100 . 105 110 . 115									
cac tea ggg eec egt gae etg gaa gee gea gte gtg tee eea gea eet	575								
His Ser Gly Pro Arg Asp Leu Glu Ala Ala Val Val Ser Pro Ala Pro									
tgg gaa tgagcctgtc ctctgtgtga aggaggggt ggttctcaaa ccactgactc	631								
Trp Glu	691								
ttggtgetea ggaggggeet getgetgtee tgggeatggg gtggteattg tteaagaetg aggeagaete agtetttgaa agggtgeaga ggeeaggege ggtggeteae geetgtaatt	751								
ccagcacttt gggaggccaa ggtggacaga tcatgaggtc aggagttcga gaccagcctg	811								
gccaatacgg tgaaaccgca tototactaa rraatawcaw aaattagtog ggcatgggtg	871								
atgtgtgctt gtagtcccag ctactcatga ggyctgaggc agaagaatca cctgaatctg	931								
ggaggcagag gttgcagtga accaagatcg cacgactgta caccagcctg ggcgacagag	991								
tgagactccg tctcaaaaaa aaaaam	1017								
<210> 322									
<211> 529									
<211> 325 <212> DNA									
<213> Homo sapiens									
•									
<220>									
<221> CDS									
<222> 107427									
-221 rig postido									
<221> sig_peptide <222> 107190									
<223> Von Heijne matrix									
score 3.79999995231628									
seq RFLSLSAADGSDG/SH									
<221> polyA_signal									
<221> polyA_signal <222> 499504									
<222> 499504									
<222> 499504 <221> polyA_site									
<222> 499504									
<222> 499504 <221> polyA_site									
<222> 499504 <221> polyA_site <222> 516529 <400> 322 aaagtcagcg ctggagtcgg ctaggcggct ggaaacggcg gctgccgccg gtgactcagg	60								
<222> 499504 <221> polyA_site <222> 516529 <400> 322 aaagtcagcg ctggagtcgg ctaggcggct ggaaacggcg gctgccgccg gtgactcagg gaggcggag gccgmsggmg gagctcttcc tgcaggcgtg garacc atg gtg ctc	60 115								
<222> 499504 <221> polyA_site <222> 516529 <400> 322 aaagtcagcg ctggagtcgg ctaggcggct ggaaacggcg gctgccgccg gtgactcagg gaggcgggag gccgmsggmg gagctcttcc tgcaggcgtg garacc atg gtg ctc Met Val Leu	115								
<pre><222> 499504 <221> polyA_site <222> 516529 <400> 322 aaagtcagcg ctggagtcgg ctaggcggct ggaaacggcg gctgccgccg gtgactcagg gaggcgggag gccgmsggmg gagctcttcc tgcaggcgtg garacc atg gtg ctc</pre>									
<222> 499504 <221> polyA_site <222> 516529 <400> 322 aaagtcagcg ctggagtcgg ctaggcggct ggaaacggcg gctgccgccg gtgactcagg gaggcgggag gccgmsggmg gagctcttcc tgcaggcgtg garacc atg gtg ctc Met Val Leu acg ctc gga gaa agt tgg ccg gta ttg gtg ggg agg agg ttt ctc agt Thr Leu Gly Glu Ser Trp Pro Val Leu Val Gly Arg Arg Phe Leu Ser	115								
<pre><222> 499504 <221> polyA_site <222> 516529 <400> 322 aaagtcagcg ctggagtcgg ctaggcggct ggaaacggcg gctgccgccg gtgactcagg gaggcggag gccgmsggmg gagctcttcc tgcaggcgtg garacc atg gtg ctc</pre>	115 163								
<pre><222> 499504 <221> polyA_site <222> 516529 <400> 322 aaagtcagcg ctggagtcgg ctaggcggct ggaaacggcg gctgccgccg gtgactcagg gaggcgggag gccgmsggmg gagctcttcc tgcaggcgtg garacc atg gtg ctc</pre>	115								
<pre><222> 499504 <221> polyA_site <222> 516529 <400> 322 aaagtcagcg ctggagtcgg ctaggcggct ggaaacggcg gctgccgccg gtgactcagg gaggcggag gccgmsggmg gagctcttcc tgcaggcgtg garacc atg gtg ctc</pre>	115 163								
<pre><222> 499504 <221> polyA_site <222> 516529 <400> 322 aaagtcagcg ctggagtcgg ctaggcggct ggaaacggcg gctgccgccg gtgactcagg gaggcgggag gccgmsggmg gagctcttcc tgcaggcgtg garacc atg gtg ctc</pre>	115 163								
<pre><222> 499504 <221> polyA_site <222> 516529 <400> 322 aaagtcagcg ctggagtcgg ctaggcggct ggaaacggcg gctgccgccg gtgactcagg gaggcgggag gccgmsggmg gagctcttcc tgcaggcgtg garacc atg gtg ctc</pre>	115 163 211								
<pre><222> 499504 <221> polyA_site <222> 516529 <400> 322 aaagtcagcg ctggagtcgg ctaggcggct ggaaacggcg gctgccgccg gtgactcagg gaggcgggag gccgmsggmg gagctcttcc tgcaggcgtg garacc atg gtg ctc</pre>	115 163 211 259								
<pre><222> 499504 <221> polyA_site <222> 516529 <400> 322 aaagtcagcg ctggagtcgg ctaggcggct ggaaacggcg gctgccgccg gtgactcagg gaggcggag gccgmsggmg gagctcttcc tgcaggcgtg garacc atg gtg ctc</pre>	115 163 211								
<pre><222> 499504 <221> polyA_site <222> 516529 <400> 322 aaagtcagcg ctggagtcgg ctaggcggct ggaaacggcg gctgccgccg gtgactcagg gaggcgggag gccgmsggmg gagctcttcc tgcaggcgtg garacc atg gtg ctc</pre>	115 163 211 259								
<pre><222> 499504 <221> polyA_site <222> 516529 <400> 322 aaagtcagcg ctggagtcgg ctaggcggct ggaaacggcg gctgccgccg gtgactcagg gaggcgggag gccgmsggmg gagctcttcc tgcaggcgtg garacc atg gtg ctc</pre>	115 163 211 259								
<pre><222> 499504 <221> polyA_site <222> 516529 <400> 322 aaagtcagcg ctggagtcgg ctaggcggct ggaaacggcg gctgccgccg gtgactcagg gaggcgggag gccgmsggmg gagctcttcc tgcaggcgtg garacc atg gtg ctc</pre>	115 163 211 259								
<pre><222> 499504 <221> polyA_site <222> 516529 <400> 322 aaagtcagcg ctggagtcgg ctaggcggct ggaaacggcg gctgccgccg gtgactcagg gaggcgggag gccgmsggmg gagctcttcc tgcaggcgtg garacc atg gtg ctc</pre>	115 163 211 259								

cta Leu	agg Arg	aaa Lys	gca Ala	ttt Phe 60	tta Leu	gta Val	aaa Lys	cat His	aat Asn 65	ttg Leu	gtt Val	tta Leu	gct Ala	gaa Glu 70	cga Arg	403
			gaa Glu 75	att				taac	cato	tt t	agtt	aaat	g ga	attt	taat	457
ttaa aaaa	_	_	tttg	ctaa	t tt	taag	jtgtt	aag	gcatt	ttg	catt	aaaa	ita t	tcat	ataat	517 529
<211 <212	> 32 > 10 > DN > Ho	46 A	apie	ens												
	> .> CD !> 45		7												·	
<222	> 45 > Vo sc	83 on He ore	eptid sijne 5.69 LVLRS	mat	8092		<u>1</u>									
	-		sigr 1013							•						
	_		site													
)> 32 aggac		gctg	gcts	gc tt	ttct	cago	c gcd	gaag	ıccg	cgc				ctc Leu -10	56
aga Arg	agc Ser	gcc Ala	ctg Leu	act Thr	cgg Arg	gcg Ala	ctg Leu	gcc Ala	tca Ser 1	cgg Arg	acg Thr	ctg Leu	gcg Ala 5	cct Pro	cag	104
											tac Tyr					152
											aag Lys 35					200
ctg Leu 40	gaa Glu	aat Asn	ttt Phe	gag Glu	aaa Lys 45	aac Asn	gct Ala	caa Gln	ctt Leu	cgg Arg 50	aca Thr	gct Ala	cac His	tct Ser	gaa Glu 55	248
											aga Arg					296
											cga Arg					344
											caa Gln					392
	_	gct	ctc Leu		_	taaa		gata	gtga	ga t	tact		t gg	tacca	atgg	441
-	aaati	_				_		-		_					atgaaa stcaat	50°

ctaggctaca caaaactagt tggagtgttc cacacagagt acggagcact caacagagtt

627

382

442

502

562 622

682

742

802

862

880

687 catqttcttt ggtggaatga gagtgcagat agtcgtgcag ctgggagaca taagtcccat gaggatccca gagttgtggc agctgttcgg gaaagtgtca actacctagt atctcagcag 747 aatatgcttc tgattcctac atcgttttca ccactgaaat agttttctac tgaaatacaa 807 aacatttcat taactgctat aggatctgtc tgctaatggt gcttaaattc tcccaagagg 867 ttctcacttt tatttgaagg aggtggtaag ttaatttgct atgtttcttg cattatgaag 927 987 gctacatctg tgctttgtaa gtaccacttc aaaaaatakt tctgtttact ttctgcatgg 1046 tatttcagtg tctgtcatac attaaaaata cttgtcactg tttyaaaaaa aaaaammcc <210> 324 <211> 880 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 201..332 <221> sig_peptide <222> 201..251 <223> Von Heijne matrix score 7.80000019073486 seq VLWLISFFTFTDG/HG <221> polyA_site <222> 869..880 <400> 324 aattgctgat ggatcagtga gcctgtgttc atgccagtga gctgctgtgg ctcagatact gatactttct ttccaaacag cataagaagt gattgancca caagtatact gaaggmargg 120 yhocowsvar tyctggwgtg amgagataaa toaccagtoa cagactatgo accogactgo 180 233 tgctgttcag tccagggaaa atg aaa gtt gga gtg ctg tgg ctc att tct ttc Met Lys Val Gly Val Leu Trp Leu Ile Ser Phe -10 -15 281 ttc acc ttc act gac ggc cac ggt ggc ttc ctg ggg gtg agt tgg tgc Phe Thr Phe Thr Asp Gly His Gly Gly Phe Leu Gly Val Ser Trp Cys 329 Tyr Val Ser Tyr Leu Phe Ser Thr Asn Ser Pro Leu Ser Phe Arg Arg 15 20

att tagaacccct cactctctag gggactgcaa ctgcataatt taatgtactt

gagatcagaa gtcctgagtt ctcgtttcaa cattaccaac attcactgtg tggccttgga

taagtragtc atttcatctc ttcggagctt agatgatcma actgcaarag gaggatcttt

gattamacta tottagagat cttttccagt tcaacacatg ctgtactatg gcttctcgga

tgcagaaaaa tcacatggat ggacattagc aatccttara cactgtcttt cctgtctaca

ctcgcttgag tgatgckttc atctaggatc atggttttaa tattctctac atgctgatga

ctcccagctg tatagctcca tctcagaacc tctcccctgt ccacactcac atatccatta

cctacgtgtt atttccagct gggaaatcca gcggaacctc ggnaacttca tttgnttcaa

aatcgnaacc caatcettet tgeetatete ageaagtggt atcactatet ttecagetae

<210> 325 <211> 1217 <212> DNA <213> Homo sapiens

ttaggcaaaa aaaaaaaa

Ile

<221> CDS <222> 217..543 <221> sig_peptide <222> 217..255 <223> Von Heijne matrix score 6.40000009536743 seq MCLLTALVTQVIS/LR <221> polyA_site <222> 1206..1217 <400> 325 60 aatgccagtg tcagcttctc tccgaaaact gggtaatacg aaatggtctt tattggttgt 120 gaacactcga gctgagaaac attttaggat ctttgtgtct tttgtgatga ttttgtttct 180 graagrwgga aasctgtcta aaaatattca agtgtgcaac caaggattta gatgaagcca gcaaacaaag gaatcatgta atcaggacct gagcga atg tgc tta ctc acg gcg 234 Met Cys Leu Leu Thr Ala -10 282 tta gtt aca cag gtg att tcc tta aga aaa aat gca gag aga act tgt Leu Val Thr Gln Val Ile Ser Leu Arg Lys Asn Ala Glu Arg Thr Cys - 5 1 tta tgc aag agg aga tgg ccc tgg ngc ccc tcg ccc cgg atc tac tgc 330 Leu Cys Lys Arg Arg Trp Pro Trp Xaa Pro Ser Pro Arg Ile Tyr Cys 20 tca tcc acc cca tgc gat tcc aaa ttc ccc acc gtc tac tcc agt gcc 378 Ser Ser Thr Pro Cys Asp Ser Lys Phe Pro Thr Val Tyr Ser Ser Ala 35 30 cca ttc cat gcc ccc ctc ccc gtc cag aat tcc tta tgg ggg cac ccg 426 Pro Phe His Ala Pro Leu Pro Val Gln Asn Ser Leu Trp Gly His Pro 50 45 474 ctc cat ggt tgt tcc tgg caa tgc cac cat ccc cag gga car aat ctc Leu His Gly Cys Ser Trp Gln Cys His His Pro Gln Gly Gln Asn Leu 60 65 70 522 cag cct gcc agt ctc cad acc cat ctc tcc aag ccc aag cgc cat ttt Gln Pro Ala Ser Leu Xaa Thr His Leu Ser Lys Pro Lys Arg His Phe 80 573 ara aar aar rra tgt caa gcc tgatgaarac atgagtggca aaaacattgc Xaa Lys Lys Xaa Cys Gln Ala 90 95 aatgtacara aatgagggtt totatgotga toottacott tatcacgagg gacggatgag catascetca teccatggtg gacacceact ggatgteece gaccacatca ttgcatatea 693 ccgcaccgcc atccggtcag cgagtgctta ttgtaacccc tcaatgcaag cggaaatgca tatggaacaa tcactgtaca gacagaaatc aaggaaatat ccggatagcc atttgcctac 873 actgggctcc aaaacacccc ctqcctctcc tcacagaktc agtgacctga ggatgataga catgcacgct cactataatg cccacggccc ccctcacacc atgcagccag accgggcctc 933 993 teegageege caggeettta aaaaggagee aggeacettg gtgtatatag aaaageeaeg gagogotgoa ggattatoca goottgtaga cotoggocot cototaatgg agaagcaagt 1053 1113 ttttgcctac agcacggcga caatacccaa agacagagag accagagaga ggatgcaagc catggagaaa cagattgcca gtttaactgg ccttgttcag tctgcgcttt ttaaagggcc 1173 1217 cattacaagt tatagcaaar atgcgtctag ctaaaaaaaa aaaa

<210> 326

<211> 959

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 18..446

<221> sig_peptide <222> 18..140 <223> Von Heijne matrix score 4.09999990463257 seq GILILWIIRLLFS/KT <221> polyA_signal <222> 930..935 <221> polyA_site <222> 948..959 <400> 326 50 aaaggaagcg gctaact atg gcg acc gcc acg gag cag tgg gtt ctg gtg Met Ala Thr Ala Thr Glu Gln Trp Val Leu Val -40 -35 gag atg gta cag gcg ctt tac gag gct cct gct tac cat ctt att ttg 98 Glu Met Val Gln Ala Leu Tyr Glu Ala Pro Ala Tyr His Leu Ile Leu -20 -25 -30 gaa ggg att ctg atc ctc tgg ata atc aga ctt ctt ttc tct aag act 146 Glu Gly Ile Leu Ile Leu Trp Ile Ile Arg Leu Leu Phe Ser Lys Thr -5 -10 tac aaa tta caa gaa cga tct gat ctt aca gtc aag gaa aaa gaa gaa 194 Tyr Lys Leu Gln Glu Arg Ser Asp Leu Thr Val Lys Glu Lys Glu Glu 10 15 242 ctg att gaa gag tgg caa cca gaa cct ctt gtt cct cct gtc cca aaa Leu Ile Glu Glu Trp Gln Pro Glu Pro Leu Val Pro Pro Val Pro Lys . ,30 25 290 gac cat cct gct ctc aac tac aac atc gtt tca ggc cct cca agc cac Asp His Pro Ala Leu Asn Tyr Asn Ile Val Ser Gly Pro Pro Ser His 50 35 40 aaa act gtg gtg aat gga aaa gaa tgt ata aac ttc gcc tca ttt aat 338 Lys Thr Val Val Asn Gly Lys Glu Cys Ile Asn Phe Ala Ser Phe Asn 60 ttt ctt gga ttg ttg gat aac cct agg gtt aag gca gca gct tta gca 386 Phe Leu Gly Leu Leu Asp Asn Pro Arg Val Lys Ala Ala Ala Leu Ala 70 tct cta aag aag tat ggc gtg ggg act tgt gga ccc tgt gga ttt tat 434 Ser Leu Lys Lys Tyr Gly Val Gly Thr Cys Gly Pro Cys Gly Phe Tyr 90 486 ggc aca ttt gaa tgaaratgaa ggatcattga tttccttgtg tatggataat Gly Thr Phe Glu ccgggaacag gccaactaaa tatttgatga atgtatgatt tcaaatacag tgaattccct 546 606 gggagtcatc aaaraagacg gcattttatg gttgttttta ttaagtgtat attctttgct 666 cctgaaaatg ttattaaata attgtttagg ccgggcatgg tggctcatgc ctgtaatccc 726 agcactttca aaggctgagg caggcagatc acctgaggtc aggagttcaa aaccagcctg 786 gccaacatgc tgaaacctcg tctctactaa aaatacaaaa attagctggg cgtggtggtg grtgcctgtg gtcccagctr cgtgggaggc tgaggtggga gaattgcttc aacctgggag 846 906 geggaggttg cagtgageeg agateatgee actgeactee ageetgggea acagageaag 959

<210> 327

<211> 921

. <212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 29..724 <221> sig_peptide <222> 29..118 <223> Von Heijne matrix score 3.90000009536743 seg VAHALSLPAESYG/NX <221> polyA_signal <222> 886..891 <221> polyA_site <222> 910..920 <400> 327 aaggagccac gctttcgggg gttgcaag atg gcg gcc acc agt gga act gat 52 Met Ala Ala Thr Ser Gly Thr Asp -30 gag ccg gtt tcc ggg gag ttg gtg tct gtg gca cat gcg ctt tct ctc 100 Glu Pro Val Ser Gly Glu Leu Val Ser Val Ala His Ala Leu Ser Leu -15 -10 cca gca gag tcg tat ggy aac grt yct gac att gag atg gct tgg gcc 148 Pro Ala Glu Ser Tyr Gly Asn Xaa Xaa Asp Ile Glu Met Ala Trp Ala 1 atg aga gca atg cag cat gct gaa gtc tat tac aag ctg att tca tca 196 Met Arg Ala Met Gln His Ala Glu Val Tyr Tyr Lys Leu Ile Ser Ser 20 15 gtt gac cca cag ttc ctg aaa ctc acc aaa gta gat gac caa att tac 244 Val Asp Pro Gln Phe Leu Lys Leu Thr Lys Val Asp Asp Gln Ile Tyr 30 tet gag tte egg aaa aat ttt gag ace ett agg ata gat gtg ttg gre 292 Ser Glu Phe Arg Lys Asn Phe Glu Thr Leu Arg Ile Asp Val Leu Xaa 55 50 340 cca gaa gan ctc aag tca gaa tca gcn aaa gag ccc cca gga tac aat Pro Glu Xaa Leu Lys Ser Glu Ser Ala Lys Glu Pro Pro Gly Tyr Asn 65 60 tot ttg cca ttg aaa ttg ctc gga acc ggg aag gct ata aca aag ctg 388 Ser Leu Pro Leu Lys Leu Leu Gly Thr Gly Lys Ala Ile Thr Lys Leu ttt ata tca gtg ttc agg aca aag gag aga aag gag tca aca atg 436 Phe Ile Ser Val Phe Arg Thr Lys Lys Glu Arg Lys Glu Ser Thr Met 100 gag gag aaa aaa gag ctg aca gtg gag aag aag aga aca cca aga atg 484 Glu Glu Lys Lys Glu Leu Thr Val Glu Lys Lys Arg Thr Pro Arg Met 120 115 532 gag gag aga aag gag ctg ata gtg gag aag aaa aag agg aag gaa tca Glu Glu Arg Lys Glu Leu Ile Val Glu Lys Lys Lys Arg Lys Glu Ser 130 125 aca gag aag aca aaa ctg aca aag gag gag aaa aag gga aag aag ctg 580 Thr Glu Lys Thr Lys Leu Thr Lys Glu Glu Lys Lys Gly Lys Lys Leu 145 150 aca aag aaa tca aca aaa gtg gtg aaa aag cta tgt aag gta tac agg 628 Thr Lys Lys Ser Thr Lys Val Val Lys Lys Leu Cys Lys Val Tyr Arg 160 165 gaa cag cac tot aga ago tat gac toa att gag act aca agt acc acg 676 Glu Gln His Ser Arg Ser Tyr Asp Ser Ile Glu Thr Thr Ser Thr Thr 185 175 180 724 gtg cta ctt gca cag acc cct ttg gtt aaa tgt aaa ttc ttg tac aat Val Leu Leu Ala Gln Thr Pro Leu Val Lys Cys Lys Phe Leu Tyr Asn 195 190 784 tgaaggatac gcagaaggac atctttctag tctaacagtc aggagctgct ctggtcattc

ccttqtatga actgqtctaa agactgttag tggggtgtta gttgattttt cctggtatac

904

1344

tgtttcttgg ctgacactac tggtcaagta agaaatttgt aaataaattt cttttggttc 921 ttattaamaa aaaaaas <210> 328 <211> 1344 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 404..586 <221> sig_peptide <222> 404..466 <223> Von Heijne matrix score 4.09999990463257 seg SLMFFSMMATCTS/NV <221> polyA_signal <222> 1304..1309 <221> polyA_site <222> 1334..1344 <400> 328 60 ataatttaat qcaaaatatc cttttatgaa tttcatgtta atattgtgaa atattaaaat 120 aattccacaa tagttgagaa aaatgagcat ttttttccat ttttaaaaaaa tgcatagaaa 180 agacaatttt aaaatcctgg gamccawatt tatttagaag tagctgttag taaaacatta 240 gaaaaggagt caggccatba ggttatttat nbnaatctct aagcaattag gntgaagtta 300 ttaagtcaag cctagaaaag ctgcctcctt gtaaggcttt catgacaatg tatagtaatc 360 breagtgtee aattettege acteeteagg aatateacta ceteaggtta eggtacaeag gctataattg atgatgatgt tcagataact gaagacacaa taa atg aca ttc aga 415 Met Thr Phe Arg -20 463 cat cag gac aat too ctc atg ttc ttt tct atg atg gcc acc tgt acc His Gln Asp Asn Ser Leu Met Phe Phe Ser Met Met Ala Thr Cys Thr -15 -10 511 age aac gtg ggt tte ace cae aca acg atg aac tgt tet ett act tet Ser Asn Val Gly Phe Thr His Thr Thr Met Asn Cys Ser Leu Thr Ser 1 10 15 cca gtt gat ttt aaa gac ttg tta aga gtc tta cta ata aaa ttt ggg 559 Pro Val Asp Phe Lys Asp Leu Leu Arg Val Leu Leu Ile Lys Phe Gly 20 25 606 tat gat aga aaa tcc aca atc aaa tct tgaaccaaat aacatattaa Tyr Asp Arg Lys Ser Thr Ile Lys Ser 35 666 attactaata tttaagtgat ggaagacaca caaaaaactt aaaagcacga acaacctaac 726 ttgaaaaara attttaaaat atgattaacc tgaaraaaar araatcctaa ragccaaagc tcctttttat ttagcttgga attttcctat tggttcctaa caaactgtcc caatgtcata 786 taaggaaaca tgatctatta cattccttta taacaacgtg gararactat aaacctatgt aagtagtaaa actatatcag adactcagga ractgactww aaggcctgga tctgcagtgt attatctgta taaaaattgg cagggggaag ctaaaaggaa aggagattgg agatctcaat totatcatgg tgtatttcat acgcaaatca ragcatgcat tgttttttgt ttttggaaar avaarggaag tgtgttctgc cccatgtttc cttccgtgtt tatagttcaa actctatata tacttcaggt atttttgtt tagcccttca ttataaatgg gcaggaaatt gtttatcaac 1206 ctagccagtt tattactagt gaccttgact tcagtatctt gagcattctt ttatattttt cttttattat cctgagtctg taactaaaca attttgtctt caaattttta tccaatatcc 1266 1326 attgcaccac accaaatcaa gcttcttgat tttcaaaaat aaaaaggggg aaatacttac

aacttgtaaa aaaaaaaa

```
<210> 329
<211> 585
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 331..432
<221> sig_peptide
<222> 331..387
<223> Von Heijne matrix
      score 7
      seq AGLSSCLLPLCWL/ER
<221> polyA_signal
<222> 548..553
<221> polyA_site
<222> 573..585
<400> 329
aagcotaggt gtggcgcccc gaccggactt tcacttctgg ccagcccttt ccccacctgg
                                                                      120
gcgcgggass ggtgccagtc tttaaacaac ctctcgatgg gtcccacgaa gatgtttcca
gaccettgga atgccaagtt caagtttage tatgtetege ggagaggeeg gtggaagaag
                                                                      180
                                                                      240
caacgagaat gaagcacccc agttctctgc tgagcacatg ggcatctgca ataaagattt
                                                                      300
aatttcccag cttctcctga agctcggtat ggccacaaca ctaaattctg cccgaggaga
                                                                      354
ttgagcaaaa tagtatggga cttccaagaa atg ttt tta aag tca ggg gca ggc
                                 Met Phe Leu Lys Ser Gly Ala Gly
                                                  -15
ctt tct tca tgc ctt ctt cct ctt tgc tgg ctg gaa cgc aaa gac cat
Leu Ser Ser Cys Leu Leu Pro Leu Cys Trp Leu Glu Arg Lys Asp His
                        -5
ggc agg agg cca agc asc cat cct gga agg tgaaagcctc atactaagga
                                                                       452
Gly Arg Arg Pro Ser Xaa His Pro Gly Arg
                10
cgtcaracag cgaaataara rectgggtcc ttgaccetgt aaasatetee etececatee
                                                                       512
                                                                       572
tggtctgtct gccttgactc ctttcatatg aaaaaaataa acttttaact tgcgtwaacc
                                                                       585
aaaaaaaaa aaa
<210> 330
<211> 914
<212> DNA
<213> Homo sapiens
```

<222> 886..891

<221> polyA_site <222> 903..914

<400	> 33	0														58
acaa	atat	ca a	ıtgat	gttt	a tg	aato	tagt	gtg	gaaag	jtkt	taat	caca	itc a	caag	iger	106
atg	aac	rra	tat	gca	agt	cca	ttc	aac	tgw	caa	ttg	ard	tat	ttg	gak	100
Met	Asn	Xaa	Tyr		Ser	Pro	Phe	Asn		Gln	Leu	хаа	Tyr	Terr.	Add	
				-50					-45	•				-40		154
ttg	agc	agr	ttc	gag	tgt	gtr	cat	aga	gat	gga	aga	gta	att	aca	ctg	154
Leu	Ser	Arg	Phe	Glu	Cys	Val	His		Asp	Gly	Arg	Val	TTE	Thr	Leu	
			-35					-30					-25			202
tct	tat	cag	gag	cag	gag	cta	cag	gat	ttt	ctt	ctg	tct	cag	atg	tca	202
Ser	Tyr	Gln	Glu	Gln	Glu	Leu	Gln	Asp	Phe	Leu	Leu	Ser	Gln	Met	Ser	
		-20					-15					-10				050
cag	cac	cag	gta	cat	gca	gtt	cag	caa	ctc	gcc	aag	gtt	atg	ggc	tgg	250
Gln	His	Gln	Val	His	Ala	Val	Gln	Gln	Leu	Ala	Lys	Val	Met	GIY	Trp	
	-5					1				5					10	
caa	gta	ctg	agc	ttc	agt	aat	cat	gtg	gga	ctt	gga	cct	ata	gag	agc	298
Gln	Val	Leu	Ser	Phe	Ser	Asn	His	Val	Gly	Leu	Gly	Pro	Ile	Glu	Ser	
				15					20					25		
abt	ggt	aat	gca	tct	gcc	atc	acg	gtg	gcc	CCC	caa	gtg	gtg	act	atg	346
Xaa	Gly	Asn	Ala	Ser	Ala	Ile	Thr	Val	Ala	Pro	Gln	Val	Val	Thr	Met	
	_		30					35					40			
cta	ttt	cag	ttc	gta	atg	gac	ctg	aaa	gtg	gca	gca	aga	tta	tgg	ttc	394
Leu	Phe	Gln	Phe	Val	Met	Asp	Leu	Lys	Val	Ala	Ala	Arg	Leu	Trp	Phe	
		45					50					55				
aqt	ttc	ctc	gta	acc	aat	gta	aar	acc	ttc	caa	aaa	gtg	atg	ttt	tac	442
Ser	Phe	Leu	Val	Thr	Asn	Val	Lys	Thr	Phe	Gln	Lys	Val	Met	Phe	Tyr	
	60					65					.70					
aar	ata	aca	aat	gga	gtc	atc	ttc	gtg	ggc	cat	tca	aar	aag	ttc	agt	490
Lys	Ile	Thr	Asn	Gly	Val	Ile	Phe	Val	Gly	His	Ser	Lys	Lys	Phe	Ser	
75					80					85					90	
gga	ata	aaa	tgg	aag	gtc	kaa	att	ttg	ttt	ata	aaa	tgg	arm	tgc	tta	538
Gly	Ile	Lys	Trp	Lys	Val	Xaa	Ile	Leu	Phe	Ile	Lys	Trp	Xaa	Cys	Leu	
				95					100					105		
tgt	ctg	cac	tta	gcc	ctt	gtc	tac	tat	gat	ttt	ttc	car	atg	ttt	cct	586
Cys	Leu	His	Leu	Ala	Leu	Val	Tyr	Tyr	Asp	Phe	Phe	Gln	Met	Phe	Pro	
			110					115					120			
aaa	raa	gtt	tcc	ara	aac	ttt	gac	ttg	aaa	tgt	ttg	car	atc	aac	tat	634
Lys	Xaa	Val	Ser	Xaa	Asn	Phe	Asp	Leu	Lys	Cys	Leu	Gln	Ile	Asn	Tyr	
		125					130					135				
aaq	cac	aaa	gaa	gar	ata	act	tcc	aaa	aga	gtg	ctg	ttt	tta	aaa	ata	682
Lys	His	Lys	Glu	Glu	Ile	Thr	Ser	Lys	Arg	Val	Leu	Phe	Leu	Lys	Ile	
•	140					145					150					
ata	att	agg	aaa	tat	ttt	att	tag	cact	ttc	aaac	tttt	ca c	ttta	taaa	t	733
Ile	Ile	Ara	Lys	Cvs	Phe	Ile	_									
155		5	-1-	-1-	160											
		act	ttaa	aato			ttat	g ta	cagt	tqta	tat	acaq	tat	gaca	agatgt	793
aaa	ataa	tat	attt	ttca	ta c	agtt	taaa	a ta	ttac	taac	tta	aggq	ttt	ctat	gtgctt	853
ttt	2222	tat	teet	tett	to a	tatt	qaca	t ca	aata	aaqt	ato	tgat	tta	aaaa	aaaaaa	913
a					- J - J	- 5					_					914

<210> 331

<211> 1161

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 672..752

WO 99/31236

PCT/IB98/02122 -

```
<221> sig_peptide
<222> 672..722
<223> Von Heijne matrix
     score 4.30000019073486
     seq LLYAHLSFTSKRA/VV
<221> polyA_site
<222> 1150..1161
<400> 331
aagatatcac tgtcttgttt tcacttagat cctacttaca aagtgagggt tattaacaga
                                                                       60
ataaagcctt cctttaaagc tttataataa tcatatttat taataatgct gttgtgcata
                                                                      120
cttatagtat gcatatattc agcatatgtt gcatgtsttc agaattacat aagatgaaat
                                                                      180
ccctttcatt gcaacttgca agtgagaaaa gatccttagt ggctctggtg gaagaaatag
                                                                      240
                                                                      300
tatttettet teteagggtg tetecetgee ttggeceete ccagaageee eggetttaaa
                                                                      360
agtgaaaatg tttgaaacat gaaacatgtc tgtaggaagc atcagcatgg ccataagtgc
artgattttc atatatgcct ctgcccattt caaatatatt tttgacatga ataaatctaa
                                                                      420
cagtatacar aataattcat gtaaraccct aacgtgtaca tgtgaaaaag catttctata
                                                                      480
taatgtgagg agcactggcc atcaattagg gaaataaagg tcatgtaata ttgcaaattt
                                                                      540
tcaaaataga gcsstgcaag ataactgcaa tcataccaaa aactatttga gtaaatggat
                                                                      600
ttttaaagta atttttgttt aaaaaaattt atatttcaga agsagaaaat gtcaaatgat
                                                                      660
agtotttgta a atg gtg gtg cac ott oto tat gca cat otg tot ttt aca
                                                                      710
             Met Val Val His Leu Leu Tyr Ala His Leu Ser Phe Thr
                                         -10
                                                                      752
tca aaa aga gct gtg gtc atg cta aaa tta gag ata act ttt
Ser Lys Arg Ala Val Val Met Leu Lys Leu Glu Ile Thr Phe
tgaatgactt ggtcaagctg tgtgtaaaat atttaaccat aagtcaagta cagtgtacta
                                                                      812
tgtttaataa agttacattt aatgcattta ttgcatatat gaatatatac atgaagaggc
                                                                      872
                                                                      932
tttatgtctt ctggtatttg attttgaatg ttttttaagt cagtggtgcc tttaggcaag
                                                                      992
aactttcgaa attaatcatt ctttgtgttt tctgattttt caggtaacat gtacactatt
tagaaaccat catagtttat tcaccttaaa aaattgattg tattatttaa atatatcact
                                                                     1052
tagatgggca tttcctataa ttaggatatt ccaaatagtt gctgaaatca attgtgccat
                                                                     1112
                                                                     1161
tgaccaatgg atgcacttgg ttagccttaa ttttttyaaa aaaaaaaaa
<210> 332
<211> 363
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 57..311
<221> sig_peptide
<222> 57..128
<223> Von Heijne matrix
      score 5.30000019073486
      seg LFHLLFLPHYIET/FK
<221> polyA_signal
<222> 332..337
<221> polyA site
<222> 351..363
<400> 332
acatttetta etgeettaeg eteateetga ggteeacett ggtetetaaa aacace atg
```

Met

	•
tgt tct cat gcc tcc atg tct ttt cac aca ctg ttc cat ttg ctc ttc	107
Cys Ser His Ala Ser Met Ser Phe His Thr Leu Phe His Leu Leu Phe -20 -15 -10	
ctc cca cat tac att gaa act ttc aag cct cag tcg aaa cat tgc ttc Leu Pro His Tyr Ile Glu Thr Phe Lys Pro Gln Ser Lys His Cys Phe	155
-5 1 5 tto tgg ata gca gcc tto ttg aca tcc ctc act ccc cag tcc cta	203
Phe Trp Ile Ala Ala Phe Leu Thr Ser Leu Leu Thr Pro Gln Ser Leu	203
10 15 20 25 cag ggc ttc cat agc tct tta tgt gca ctt cga tcc cag cat ttt cca	251
Gln Gly Phe His Ser Ser Leu Cys Ala Leu Arg Ser Gln His Phe Pro 30 35 40	
tcg act tgt aat tgt ttc tgc tac ctg aca atc atc gcc ttg drd tac Ser Thr Cys Asn Cys Phe Cys Tyr Leu Thr Ile Ile Ala Leu Xaa Tyr	299
45 50 55	251
tgg gac aac ctt tgattactca ttatatcctc aataaatatt tgttgaacca Trp Asp Asn Leu	351
60 . aaaaaaaaaa aa	363
<210> 333	
<211> 645 <212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS <222> 80232	
<pre><221> sig_peptide</pre>	
<222> 80127 <223> Von Heijne matrix	
score 3.7000004768372 seq IALTLIPSMLSRA/AG	
<221> polyA_signal	
<222> 617622	
<221> polyA_site <222> 634645	
<400> 333	
accttettgt tatttatget attetetttg tggeteeatt ettettteaa tetteteage ttataacegt etteeeett atg eta agg ata gee ett aca ete ate eea tet	60 112
Met Leu Arg Ile Ala Leu Thr Leu Ile Pro Ser -15 -10	
atg ctg tca agg gct gct ggt tgg tgc tgg tac aag gag ccc act cag	160
Met Leu Ser Arg Ala Ala Gly Trp Cys Trp Tyr Lys Glu Pro Thr Gln -5 1 5 10	
cag ttt tct tac ctt tgc ctg ccc tgc ctt tca tgg aat aar aaa ggc Gln Phe Ser Tyr Leu Cys Leu Pro Cys Leu Ser Trp Asn Lys Lys Gly	208
15 20 25 aac gtt ttg cag ctt cca aat ttc tgaaraaact aatctcarat tggcagttaa	262
Asn Val Leu Gln Leu Pro Asn Phe 30 35	
agtcaaaatg ttgccaaata tttattcctt ttgcctaakt ttggctaccc ggttcaattg ctttttattt ttaatgtctt gactcttcar agttcgtacc tcaaaaraac aatgaraaca	322 382
tttgctttgc tttctgctga atccctaatc tcaacaatct atacctggac tgtccagttc	442 502
tootootgtg ctatottoto ttotatocaa gtaraatgta ygocaggaro toottoooto tarcaattto tactaaaatg tooaagtara atgtttoott ttacaatcaa attactgtat	562

622

ttattaattt gctaraatcc aktaaatcat tttggtagct ctggctgtgc tatcaataaa

aagatgaaag caaaaaaaa aaa	645
<210> 334 <211> 400 <212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS <222> 91291	
<pre><221> sig_peptide <222> 91219</pre>	
<223> Von Heijne matrix	
score 3.79999995231628 seq LISVLYLIPKTLT/TN	
<221> polyA_signal	
<222> 367372	
<221> polyA_site <222> 389400	
<400> 334	
aacaaaagga gagttttata attcacttta aaaggagatt tgatggtaaa gtttaaagat taaaatattt tgttcttcaa ttacagagcg atg acc cca cag tat ctg cct cac	60 114
Met Thr Pro Gln Tyr Leu Pro His	
-40	162
ggt gga aaa tac caa gtt ctt gga gat tac tct ttg gca gtg gtc ttc Gly Gly Lys Tyr Gln Val Leu Gly Asp Tyr Ser Leu Ala Val Val Phe	102
-35 -30 -25 -20	
ccc ctg cac ttt tct gat cta att tct gtt tta tac ctt ata ccc aaa Pro Leu His Phe Ser Asp Leu Ile Ser Val Leu Tyr Leu Ile Pro Lys	210
-15 -10 -5	
aca ctt act acc aac aca gct gtt aaa cat tct ata caa aaa aat tgt	258
Thr Leu Thr Thr Asn Thr Ala Val Lys His Ser Ile Gln Lys Asn Cys 1 5 10	
atg mat ctg gta tta gga aaa tta ctt tca cag taaatatcaa agaaaaaaga	311
Met Xaa Leu Val Leu Gly Lys Leu Ser Gln 15 20	
ttaagggtct ctttgccatg cttttcatca tatgcaccaa atgtaaattt tgtacaataa	371
aattttattt cctaagyaaa aaaaaaaaa	400
4910. 335	
<210> 335	

<211> 496

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 196..384

<221> sig_peptide

<222> 196..240

<223> Von Heijne matrix
 score 6.69999980926514
 seq ILSTVTALTFARA/LD

<221> polyA_signal	
<221> polyA_site <222> 485496	
<400> 335 aaaaaattgg teccagtttt caccetgeeg cagggetgge tggggaggge ageggtttag attageegtg geetaggeeg tttaacgggg tgacacgage htgcagggee gagtecaagg eeeggagata ggaceaaceg teaggaatge gaggaatgtt tttettegga etetategag geacacagae agace atg ggg att etg tet aca gtg aca gee tta aca ttt Met Gly Ile Leu Ser Thr Val Thr Ala Leu Thr Phe -15 -10 -5	60 120 180 231
gcc aga gcc ctg gac ggc tgc aga aat ggc att gcc cac cct gca agt Ala Arg Ala Leu Asp Gly Cys Arg Asn Gly Ile Ala His Pro Ala Ser .1 5 10	279
gag aag cac aga ctc gag aaa tgt agg gaa ctc gag agc agc cac tcg Glu Lys His Arg Leu Glu Lys Cys Arg Glu Leu Glu Ser Ser His Ser 15 20 25	327
gcc cca gga tca acc cag cac cga aga aaa aca acc aga aga	375
tct tca gcc tgaaatgaak ccgggatcaa atggttgctg atcaragccc Ser Ser Ala	424
atatttaaat tggaaaagtc aaattgasca ttattaaata aagcttgttt aatatgtctc	484 496
aaacaaaaa aa	
<210> 336 <211> 968	
<212> DNA <213> Homo sapiens	
<220> <221> CDS <222> 54590	
<221> sig_peptide <222> 54227 <223> Von Heijne matrix score 3.5 seq GGILMGSFQGTIA/GQ	
<221> polyA_site <222> 955965	
<400> 336 atatttgccc cttactttat cttgtgcctt gagaaattgc tggggagaga ggt atg Met	56
tcc act ggg cag ctg tac agg atg gag gat ata ggg cgt ttc cac tcc Ser Thr Gly Gln Leu Tyr Arg Met Glu Asp Ile Gly Arg Phe His Ser -55 -50 -45	104
cag cag cca ggt tcc ctc acc cca agc tca ccc act gtt ggg gag att Gln Gln Pro Gly Ser Leu Thr Pro Ser Ser Pro Thr Val Gly Glu Ile -40 -35 -30	152
atc tac aat aac acc aga aac aca ttg ggg tgg att ggg ggt atc ctt Ile Tyr Asn Asn Thr Arg Asn Thr Leu Gly Trp Ile Gly Gly Ile Leu -25 -10 -10	200
atg ggt tot tit cag gga acc att got gga caa ggc aca gga gcc acc Mer Gly Ser Phe Gln Gly Thr Ile Ala Gly Gln Gly Thr Gly Ala Thr	248

				-5					1				5				
tcc Ser	att Ile	tct Ser 10	gag Glu	ctc Leu	tgc Cys	aag Lys	gga Gly 15	caa Gln	gaa Glu	cta Leu	gag Glu	cca Pro 20	tca Ser	gly ggg	gct Ala	296	;
ggg ggg	Leu	act	gtg Val	gcc Ala	cca Pro	ccc Pro 30	caa	gcc Ala	gtc Val	agc Ser	ctc Leu 35	cag	ggw Gly	atc Ile	tac Tyr	344	Ł
Thr	25 ctg Leu	cct Pro	tgg Trp	ctg Leu	Leu	cag	ctt Leu	ttt Phe	cac His	tcc Ser 50	act	gcc Ala	cta Leu	rgg Xaa	gna Xaa 55	392	2
40 dtt Xaa	cag Gln	caa Gln	cct Pro	aat Asn	45 gga Gly	tct Ser	cta Leu	tct Ser	Leu	aac	atc Ile	tct Ser	tca Ser	tcc Ser 70	cat	440)
gct Ala	ccr Pro	rgt Xaa	Pro	60 rca Xaa	acc Thr	tgc Cys	acc Thr	Leu	65 gaa Glu	cca Pro	gga Gly	gtg Val	Asp	cct	acc Thr	488	3
cga Arg	sct Xaa	Val	75 tgt Cys	att Ile	aat Asn	ccc Pro	His	80 ccc Pro	cca Pro	cca Pro	cca Pro	Ile	85 tta Leu	aaa Lys	abc Xaa	536	5
cct Pro	Leu	90 tcc Ser	ccc Pro	tac Tyr	cct Pro	Lys	95 ccc Pro	cag Gln	tta Leu	ggt Gly	Thr	100 cat His	gct Ala	ggy ggg	caa Gln	584	1
Val	105 aat Asn	taad	caatt	cta t	gca	110 caggi	ca ct	agti	ttai	t tg	115 tatta	accg	ttc	cagg	gta	640)
atco gcct ggca ggat	cago agaco agaco	cac f caa (gtc f gag (tttgg caggg tgtrg gttg	ggagg gtgaa gtcc	gc ca aa co ca go ga go	aaggi cccgi ctati ccga	tggg tctc tcag gatt	c aga t aca g aga	atcgo aaaa actgo	cctg atar aggc	aggi gaaa acga	tctg aatt: agaa	gag (rgc (ttc (ttca: cagg catg	cctgta agacca tgtggt aaccca acagag	760 820	
<213	0> 3: 1> 9: 2> DI 3> H:	01 NA	sapi	ens													
	0 > 1 > C 2 > 1		846								-						
<22	2> 1 3> V s	33 on H core	eijn 9.3	de e ma 9999 LLLA	9618	5302	7										
	1> p 2> 8		_sit 901	е													
aag tac	tgat	ttc cta	tnna ta a	tggc tg r et X	ag a wn n	gaaa nk t	aaaa tc a	a at ca g	tgtg ac c sp P	acca cc t	gag ct t	acgt ca g	gta tg a	gcaa at g sn G	aagagt tgaaca aa aag lu Lys 60	12 17	0
aag Lys	agg Arg	agg Arg	gag Glu -55	cgg Arg	gaa	gaa Glu	agg Arg	cag Gln -50	aat Asn	att	gtc Val	ctg Leu	tgg Trp	aga Arg	cag Gln	21:	9
ccg	ctc	att			cag	tat	ttt			gaa	atc	ctt	gta	atc	ttg	26	7

											_		_		_	
		-40					-35					-30	Val			
aaσ	gaa	taa	acc	tca	aaa	tta	taa	cat	cgt	caa	agc	att	gtg	gtg	tct	315
Larg	Glu	TYD	Thr	Ser	LVS	Leu	Trp	His	Arq	Gln	Ser	Ile	Val	Val	Ser	
Буз	-25	LLP	****	001		-20			• •		-15					
		ata	cta	ctt	act		ctt	ata	act	acσ	tat	tat	gtt	gaa	gga	363
27-	Tan	Tan	Tou	Tou	מומ	222	T.AU	Tle	Δla	Thr	Tyr	Tyr	Val	Glu	Glv	
	neu	Den	neu	neu	-5	Gry	Deu	110	nια	1	- , -	+ J +		5	,	
-10					_	•••	-a-	- - -	~		C2.0		ctt	tta	tat	411
grg	cat	Caa	cag	Lat.	949	Caa	722	Tla	Glu	Larc	Cla	Dhe	Leu	T.e.ii	Tur	
vai	HIS	GIN		Tyr	vaı	GIII	Arg		Gru	шуs	GIII	FIIC	20	DCu	- 7 -	
			10					15				~~~		~~ =	303	459
gcc	tac	tgg	ata	ggc	tta	gga	acc	ttg		200	get	999	ctt	994	mbs	432
Ala	Tyr		Ile	GIÀ	Leu	GIY		Leu	Ser	ser	vai		Leu	Gly	TITT	
		25					30					35				507
999	ctg	cac	acc	ttt	ctg	ctt	tat	ctg	ggt	cca	cat	ata	gcc	tca	gee	307
Gly	Leu	His	Thr	Phe	Leu		Tyr	Leu	GIA	Pro		He	Ala	Ser	vaı	
	40					45					50					
aca	tta	gct	gct	tat	gaa	tgc	aat	tca	gtt	aat	ttt	CCC	gaa	cca	ccc	555
Thr	Leu	Ala	Ala	Tyr	Glu	Cys	Asn	Ser	Val	Asn	Phe	Pro	Glu	Pro	Pro	
55					60					65					70	
tat	cct	gat	cag	att	att	tgt	cca	gat	gaa	gag	ggc	act	gaa	gga	acc	603
Tyr	Pro	Asp	Gln	Ile	Ile	Cys	Pro	Asp	Glu	Glu	Gly	Thr	Glu	Gly	Thr	
•				75					80					85		
att	tct	ttg	tgg	agt	atc	atc	tca	aaa	gtt	agg	att	gaa	gcc	tgc	atg	651
Ile	Ser	Leu	Trp	Ser	Ile	Ile	Ser	Lys	Val	Arg	Ile	Glu	Ala	Cys	Met	
			90					95					100			
tgg	ggt	atc	ggt	aca	gca	atc	gga	gag	ctg	cct	cca	tat	ttc	atg	gcc	699
Trp	Gly	Ile	Gly	Thr	Ala	Ile	Gly	Glu	Leu	Pro	Pro	Tyr	Phe	Met	Ala	
•	•	105	-				110					115				
aga	qca	act	cac	ctc	tca	ggt	gct	gaa	cca	gat	gat	gaa	gag	tat	cag	747
Ara	Ala	Ala	Ara	Leu	Ser	Glv	Āla	Glu	Pro	Asp	Asp	Glu	Glu	Tyr	Gln	
3	120		5			125				. •	130					
gaa		gaa	gag	ato	cta	gaa	cat	qca	qaq	tct	qca	caa	gta	aga	aca	795
Glu	Phe	Glu	Glu	Met	Leu	Glu	His	Āla	Glu	Ser	Ala	Gln	Val	Arg	Thr	
135					140					145				_	150	
	aaa	ata	gaa	aat		aca	ctt	tac	ttc		cta	aaq	agg	cta	tta	843
yal Yal	222	Tle	Glu	Acn	Ara	Thr	Len	Tvr	Phe	Phe	Len	Lvs	Arg	Leu	Leu	
AGI	OLY	226	U-u	155		****		-1-	160			-,-	5	165		
266	+		~++			ct c	taaa	assa.		acto	ctaa	agt	aaaa		aaaaa	901
		aatt	gcc	ayca	gıla		Lyaa	3009	u aa	uccy	ccua	د ح				
Arg																

```
<210> 338
<211> 1347
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 138..671
<221> sig_peptide
<222> 138..248
<223> Von Heijne matrix
      score 3.5
      seq LVFNFLLILTILT/IW
<221> polyA_signal <222> 1319..1324
```

<221> polyA_site

<222> 1338..1347

	> 33															CO
aaga	atgo	tt g	gtgaa	gtag	gc aa	ictaa	agto	gca	ıgtgt	ttc	ttct	gaaa	att o	ctcas	gcagt	60
caga	ctgt	ct t	aggo	aaat	c tt	gata	aaat	: ago	cctt	atc	cago	jttt	ta t	tctaa	aggaat	120
ccca	agaa	iga d	ctggg	ga a	itg 9	gag a	iga d	ag t	ca a	igg g	gtt a	itg t	ca	gaa a	aag	170
				Ŋ	let (Blu A	Arg (3ln S	Ser A	irg V	/al N	let S	Ser (Glu I	.ys	
							35					-30				
gat	gag	tat	cag	ttt	caa	cat	cag	gga	gcg	gtg	gag	ctg	ctt	gtc	ttc	218
Asp	Glu	Tyr	Gln	Phe	Gln	His	Gln	Gly	Ala	Val	Glu	Leu	Leu	Val	Phe	
	-25	•				-20					-15					
aat	ttt	tta	ctc	atc	ctt	acc	att	ttg	aca	atc	tgg	tta	ttt	aaa	aat	266
Asn	Phe	Leu	Leu	Ile	Leu	Thr	Ile	Leu	Thr	Ile	Trp	Leu	Phe	Lys	Asn	
-10					-5					1	-			5		
	сда	ttc	cac	ttc	tta	cat	qaa	act	qqa	qqa	qca	atg	gtg	tat	ggc	314
His	Ara	Phe	Ara	Phe	Leu	His	Glu	Thr	Glv	Gly	Ala	Met	Val	Tyr	Gly	
			10					15	•	•			20	_		
ctt	ava			cta	att	tta	csa		act	aca	gca	cca	act	gat	att	362
Ten	Yaa	Met	GJ v	T.e.ii	Tle	Leu	Xaa	Tvr	Ala	Thr	Ala	Pro	Thr	Asp	Ile	
nea	лаа	25	Gly	neu	110		30	-] -				35				
~~~	24+		rct	ata	tat	as c		ata	222	cta	act		agt	cca	tca	410
gaa	agu	991	Von	ycc val	mir	Jac	Cyc	Val	Lve	Len	Thr	Dhe	Ser	Pro	Ser	
GIU		GIA	Add	var	TAT	45	Cys	Vai	БуЗ	пси	50	2110	001			
	40						~~~		a++	+-+		+ = +	222	tac	227	458
act	ctg	ctg	gtt	aat	atc	mb-	yac	Caa	77-1	The w	Clu	m.v.	Tare	Tire	Tare	100
	Leu	ren	vaı	Asn		Thr	Asp	GIII	val		GIU	TÀT	пуs	Tyr	70	
55					60					65				~~+		506
aga	gaa	ata	agt	cag	cac	amc	atc	aat	CCE	cat	cam	gga	241	gct	Tlo	300
Arg	Glu	Ile	Ser		His	Xaa	тте	Asn		HIS	хаа	GIY	ASII	Ala	116	
				75					80					85		F F 4
ctt	gaa	aag	atg	aca	ttt	gat	cca	raa	atc	כנכ	TTC	aat	gtt	tta	ctg	554
Leu	Glu	Lys		Thr	Phe	Asp	Pro		Ile	Phe	Pne	Asn		Leu	ьeu	
			90					95					100			
														cac		602
Pro	Pro	Ile	Ile	Phe	His	Ala	Gly	Tyr	Ser	Leu	Lys		Arg	His	Phe	
		105					110					115				
ttt	caa	aac	tta	gga	tct	att	tta	acg	tat	gcc	ttc	ttg	gga	act	gcc	650
Phe	Gln	Asn	Leu	Gly	Ser	Ile	Leu	Thr	Tyr	Ala	Phe	Leu	Gly	Thr	Ala	
	120					125					130					
atc	tcc	tgc	atc	gtc	ata	999	taa	gtga	cat 1	cgga	agcto	ca a	gttg	cagg	t	701
Ile	Ser	Cys	Ile	Val	Ile	Gly										
135					140											
ggct	tgtg	<b>3</b> 99 '	tcygi	tgat	ct g	tgtga	aggg	a tc	taac	actt	cca	ggati	tct	tgct	ggckgg	761
															ttccac	821
															tttctc	881
															tgaagc	941
															tttgtc	1001
tta	tatte	gag	agac	ctta	cc t	gtati	ttaa	c ad	gagt	qcaa	aag	taac	tat	atge	caagag	1061
															atatca	1121
															actctt	1181
															actctg	1241
70+	taca		catt	2+22	-y a	2222	tata	a te	-3	atoo	יבחל	בטעכי	aat	CCSG	cctctg	1301
														9		1347
aca	alcc	cyt	ccaa	Laca	ii d	aagc	ccca	c cy	cayy	uaad	aad	aaa				2021

<210> 339

<211> 987

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 124..411 <221> sig_peptide <222> 124..186 <223> Von Heijne matrix score 6.30000019073486 seg MVALCCCLWKISG/CE <221> polyA_signal <222> 948..953 <221> polyA_site <222> 971..983 <400> 339 aagacgctgc ctttagggag agataaaaag cataatgaca ttagctagga aagttaattt 60 tcagttctta ctgaagtgct gtatgaaact gaaatttcca aggaactgaa ttttgtgagc 120 168 caa atg agc atg caa ttc ttg ttt aag atg gtg gcc tta tgc tgt tgt Met Ser Met Gln Phe Leu Phe Lys Met Val Ala Leu Cys Cys -15 ctc tgg aag atc tcc ggc tgt gag gaa gtc cct cta act tac aac ctg 216 Leu Trp Lys Ile Ser Gly Cys Glu Glu Val Pro Leu Thr Tyr Asn Leu ctc aag tgc ctc cta gat aaa gcg cac tgt gta ctc ctg aca cct tgt 264 Leu Lys Cys Leu Leu Asp Lys Ala His Cys Val Leu Leu Thr Pro Cys 20 15 ggt tac atc ttt tcc ttg atc agt cca gaa att ctc aaa ctc act tta 312 Gly Tyr Ile Phe Ser Leu Ile Ser Pro Glu Ile Leu Lys Leu Thr Leu 35 30 atc act ttq cav atc ctc tta ata ctc aaa aat cta cac tta ctg tgg 360 Ile Thr Leu Xaa Ile Leu Leu Ile Leu Lys Asn Leu His Leu Leu Trp 50 55 408 ctg aca gtt tca agc awa tgt gtt cat cgc agt agt gca aga aaa gaa Leu Thr Val Ser Ser Xaa Cys Val His Arg Ser Ser Ala Arg Lys Glu 65 461 aag tagaagaacc ctgcagagat ttgatggaac ccagcttcta ttcattaaaa Lys 75 ccaatggcaa aatataaagc aaataggagg tgacgaaggt tacaaaaata cgtattgttt 521 581 atgttttccc tggggtgtgc tgattgtcag gcatcagttc cctgtgccat tcattcccca 641 acacagcatg catcagaaat tttatcaata aatgctttct ctctcaatgt tcaacctatg ctgatagacc attaaataca gtttttgggt tcacagcttg tcatcatcat ttgtctatac 701 ctgtggcaaa gaatatctaa taagatactc tcagcatttt gcacacttaa actaagatgc 761 tgaatgctgt attttacgga ataatcagcc acattaaatt tggagactca acaagcatgc 821 tgtgaacatt caacattagg tttaaatttt atttttaaaa gttaataata aaaggatata 881 941 tgttaagtat tatgaaaccc tgcatatact gtaataaaat ggtggatgtg aatggacaat 987 atatgcaata aaatttataa tttgattcya aaaaaaaaa aamccv

```
<210> 340
```

<211> 748

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 372..494

<221> sig_peptide

<222> 372..443

<223> Von Heijne matrix

score 5.30000019073486 seq RILLLHFYCLLRS/SE

<221> polyA_signal <222> 708..713 <221> polyA site <222> 732..745 <400> 340 acatgaaatg tgcttggtct gtgatctctt ggtcagatat ctgccttcca ggcgatcctt tgaggttgtg taattcagct ggccctggct cctggtccct gttactgagc tgggcagtcg 120 aaccgaaggc agatgagctc aagatcatgc cttgggaagc atggtgctct aggggtgcct 180 ttttattcct ttcattgtat tatagactgt ttccaagttt atggttagaa atggtaaagt 240 300 qqqtctqqtq ttttqaqqta gaacccaqcc tagggcaaga tatgaactgt tcttgaggta 360 gaaatgtcta cagtcagttg tttcatctag cttgcatctt aaaacacaaa cccttcagtt gettteactt a atg cac aca ttt gee aat gae aga ggg tta tae agg ate 410 Met His Thr Phe Ala Asn Asp Arg Gly Leu Tyr Arg Ile -20 -15 ctt ctt tta cat ttc tat tgt ctg cta cgc tca tca gag tat att ttg 458 Leu Leu Leu His Phe Tyr Cys Leu Leu Arg Ser Ser Glu Tyr Ile Leu -10 -5 1 ggg tac aag gtt ttg ggg gtt ttt tty ccc att ttg taactgcctt 504 Gly Tyr Lys Val Leu Gly Val Phe Phe Pro Ile Leu 15 10 attgaaaadt aaktgccctt ccattccagg cctcctcata ttgtacttgt ttcctgccaa atctggggga tcatttgtat tttaactttg taatctatgg ctctgtactg ttgaaagstc 624 684 tcaattctgt ggggtctcct tagtatgtat gtgacttttc atgttgcaat atcacacgat 744 qqqatqqccc qacttttqct cttaataaat aatctgaatg agtaagaraa aaaaaaaaaa 748 accc <210> 341 <211> 1106 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 112..450 <221> sig peptide <222> 112..192 <223> Von Heijne matrix score 7.19999980926514 seq SLLFFLLLEGGXT/EQ <221> polyA_signal <222> 1053..1058 <221> polyA_site <222> 1095..1106 <400> 341 aagacctcgg aacgagagcg ccccggggag ctcggagcgc gtgcacgcgt ggcavacgga 60 gaaggevakk rennnnrett gaaggttetg teacettttg cagtggteca a atg aga 117 Met Arg raa aag tgg aaa atg gga ggc atg aaa tac atc ttt tcg ttg ttc 165 Xaa Lys Trp Lys Met Gly Gly Met Lys Tyr Ile Phe Ser Leu Leu Phe -20 -15

ttt ctt ttg cta gaa ggc kaa aca gag caa gtr amn cat tca gag

213

Phe Leu Leu Glu Gly Gly Xaa Thr Glu Gln Val Xaa His Ser Glu aca tat tgc atg ttt caa gac aag aag tac aga gtg ggt gag aga tgg 261 Thr Tyr Cys Met Phe Gln Asp Lys Lys Tyr Arg Val Gly Glu Arg Trp 309 cat cct tac ctg gaa cct tat ggg ttg gtt tac tgc gtg aac tgc atc His Pro Tyr Leu Glu Pro Tyr Gly Leu Val Tyr Cys Val Asn Cys Ile 30 . 35 tgc tca gag aat ggg aat gtg ctt tgc agc cga gtc aga tgt cca aat 357 Cys Ser Glu Asn Gly Asn Val Leu Cys Ser Arg Val Arg Cys Pro Asn 45 50 gtt cat tgc ctt tct cct gtg cat att cct cat ctg tgc tgc cct cgc 405 Val His Cys Leu Ser Pro Val His Ile Pro His Leu Cys Cys Pro Arg 60 65 450 tgc cca gaa gac tcc tta ccc cca gtg aac aat rwg gtg acc agc Cys Pro Glu Asp Ser Leu Pro Pro Val Asn Asn Xaa Val Thr Ser 80 tagtottgok agtacaatgg gacaacttac caacatggas agctgttogt agctgrrggg 510 ctctttcaga atcggcaacc cmatcaatgc acccagtgca gctgttcgga rggaaacktg 570 tattgtggtc tcaagacttg ccccaaatta acctgtgcct tcccagtctc tgttccarat 630 tectgetgee gggtwtgeag argagatgga caactgteat gggaacmtte tgatggtgat 690 atottocggo aacotgocaa cagagaagoa agacattott accacogoto toactatgat 750 cetecaceaa geegaeagge tggaggtetg teeegettte etggggeeag aagteaeegg 810 ggagctctta tggattccca gcaagcatca ggaaccattg tgcaaattgt catcaataac 870 aaacacaagc atggacaagt gtgtgtttcc aatggaaaga cctattctca tggcgagtcc 930 tggcacccaa acctccgggc atttggcatt gtggagtgtg tgctatgtac ttgtaatgtc accaagcaag agtgtaagaa aatccactgc cccaatcgat acccctgcaa gtatcctcaa 1050 aaaatagacg gaaaatgctg caaggtgtgt ccaggtaaaa aagcaaaaaa aaaaaa 1106

agg att ctg cag tta atc ctg ctt gct ctg gca aca ggg ctt gta ggg

Arg Ile Leu Gln Leu Ile Leu Leu Ala Leu Ala Thr Gly Leu Val Gly

gga gag acc agg atc atc aag ggg ttc gag tgc aag cct cac tcc cag

Gly Glu Thr Arg Ile Ile Lys Gly Phe Glu Cys Lys Pro His Ser Gln

- 5

-10

60

119

167

215

<210> 342 <211> 1191 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 117..866 <221> sig_peptide <222> 117..170 <223> Von Heijne matrix score 10.6999998092651 seg LILLALATGLVGG/ET <221> polyA_signal <222> 1159..1164 <221> polyA site <222> 1178..1190 <400> 342 aaaacccage ctacetgetg tagetgeege caetgeegte teegeegeea etggweecee agagebnmag ecceagagee taggaacetg gggeeegete etceeeete caggee atg

-15

ccc tgg cag gca Pro Trp Gln Ala	Ala Leu Phe Glu	Lys Thr Arg	cta ctc tgt ggg gcg Leu Leu Cys Gly Ala	263
Thr Leu Ile Ala	20 ccc aga tgg ctc Pro Arg Trp Leu	25 ctg aca gca Leu Thr Ala	30 gcc cac tgc ctc aag Ala His Cys Leu Lys 45	311
		cag cac aac	ctc cag aag gag gag Leu Gln Lys Glu Glu	359
ggc tgt gag car	acc cgg aca gcc	act gag tcc Thr Glu Ser	ttc ccc cac ccc ggc Phe Pro His Pro Gly 75	407
ttc aac aac agc		-	aat gac atc atg ctg Asn Asp Ile Met Leu 95	455
			gct gtg cga ccc ctc Ala Val Arg Pro Leu 110	503
Thr Leu Ser Ser	Arg Cys Val Thr	Ala Gly Thr	agc tgc ctc att tcc Ser Cys Leu Ile Ser 125	551
ggc tgg ggc agc Gly Trp Gly Ser 130	acg tcc agc ccc Thr Ser Ser Pro	Gln Leu Arg	ctg cct cac acc ttg Leu Pro His Thr Leu 140	599
Arg Cys Ala Asn 145	Ile Thr Ile Ile 150	e Glu His Gln	aag tgt gag aac gcc Lys Cys Glu Asn Ala 155	647
Tyr Pro Gly Asn 160	Ile Thr Asp Thr	Met Val Cys-	gcc agc gtg cag gaa Ala Ser Val Gln Glu 175	695
Gly Gly Lys Asp	Ser Cys Gln Gly 180	Asp Ser Gly 185	ggc cct ctg gtc tgt Gly Pro Leu Val Cys 190	743
Asn Gln Ser Leu 195	Gln Gly Ile Ile	Ser Trp Gly 200	cag gat ccg tgt gcg Gln Asp Pro Cys Ala 205	791
Ile Thr Arg Lys 210	Pro Gly Val Tyr 215	Thr Lys Val	tgc aaa tat gtg gac Cys Lys Tyr Val Asp 220	839
tgg atc cag gag Trp Ile Gln Glu 225	Thr Met Lys Asr 230	n Asn		886
			gttcactctg ttaataagaa ctggactaca ggagatgctg	946 1006
	-		tggattcaaa ttctgccttg	1066
aaatattgtg actct	tgggaa tgacaacac	c tggtttgttc	totgttgtat coccagocco	1126
aaakwcagct cctgo	gccata tatcaaggt	t tcaataaata	tttgctaaat gaawaaaaaa	1186 1191

<210> 343

<211> 1070

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 13..465

<221> sig_peptide <222> 13..75

<223> Von Heijne matrix score 3.90000009536743 seq PVAVTAAVAPVLS/IN <221> polyA_signal <222> 1035..1040 <221> polyA site <222> 1060..1070 <400> 343 agagteggga aa atg get geg agt ace tee atg gte eeg gtg get gtg acg 51 Met Ala Ala Ser Thr Ser Met Val Pro Val Ala Val Thr -15 -20 gcg gca gtg gcg cct gtc ctg tcc ata aac agc gat ttc tca gat ttg 99 . Ala Ala Val Ala Pro Val Leu Ser Ile Asn Ser Asp Phe Ser Asp Leu **N-5** 1 cgg gaa att aaa aag caa ctg ctg ctt att gcg ggc ctt acc cgg gag 147 Arg Glu Ile Lys Lys Gln Leu Leu Leu Ile Ala Gly Leu Thr Arg Glu 15 20 cgg ggc cta cta cac agt agc aaa tgg tcg gcg gag ttg gct ttc tct 195 Arg Gly Leu Leu His Ser Ser Lys Trp Ser Ala Glu Leu Ala Phe Ser 35 30 ctc cct gca ttg cct ctg gcc gag ctg caa ccg cct ccg cct att aca 243 Leu Pro Ala Leu Pro Leu Ala Glu Leu Gln Pro Pro Pro Ile Thr 50 45 gag gaa gat gcc cag gat atg gat gcc tat acc ctg gcc aag gcc tac 291 Glu Glu Asp Ala Gln Asp Met Asp Ala Tyr Thr Leu Ala Lys Ala Tyr 65 ttt gac gtt aaa gag tat gat cgg gca gca cat ttc ctg cat ggc tgc 339 Phe Asp Val Lys Glu Tyr Asp Arg Ala Ala His Phe Leu His Gly Cys 80 387 aat gca aga aaa gcc tat ttt ctg tat atg tat tcc aga tat ctg gtg Asn Ala Arg Lys Ala Tyr Phe Leu Tyr Met Tyr Ser Arg Tyr Leu Val 100 95 435 agg gcc att tta aaa tgt cat tct gcc ttt agt gaa aca tcc ata ttt Arg Ala Ile Leu Lys Cys His Ser Ala Phe Ser Glu Thr Ser Ile Phe 105 120 110 115 aga acc aat gga aaa gtt aaa tct ttt aaa tagcttagca gtgggccact 485 Arg Thr Asn Gly Lys Val Lys Ser Phe Lys gaatgaatgt actttataca tagcaataat aaaaaaaaga tatcataaat aaagttaaaa 545 aggatggtaa aaaaaaaat attottagga atgactaaca ggataagtaa caacctgatt 605 atttatttac tttaggttat ataaggttct tcatgcctgt gaattaatat tattgtgtaa 665 725 gaattaagtt aaaaagcctg ggctgacttt taaatttata aattcattta tcatgtttat 785 agtatattta ttgtttttct ttcatggcta ttaaaaagta tgactgtaaa ggacaatgca agtaaaccaa cttaatactg tattgaataa taagtacaat ttattatttt actttgaaac 845 attatgaatt tactttccta ctttttctta gttgttatct atataaattg attaaaaaaa 905 965 cattttatgt acttctcatt tcctagtaca ggttgagtat cccttatttg aagtgcttgg 1025 gaccaaaagt gtttcagatt tcagattttt ttcagatttt ggtatatttg cattatactt 1070 actggttgaa ataaaaaatg ctgcagtgag tgtcaaaaaa aaaaa

<210> 344 <211> 1213 <212> DNA <213> Homo sapiens <220> <221> CDS

<222> 2..718

			ptid	le												
<222> 276 <223> Von Heijne matrix score 3.9000009536743																
	sc	ore		0000	0953											
			sign 1175													
<221	> po	lyA	site	<b>:</b>												
<222	> 12	03	1213													
	> 34		.a		r	a to	יר תם	+ ct	t co	ים מר	+ a+	c ac	a at	t ac	gt ctg	49
	t Pr					s Cy					a Va				y Leu -10	
tta	ctc		ggt													97
Leu	Leu	Gly	Gly	Gly -5	Gly	Val	Tyr	Gly	Ser 1	Arg	Phe	Arg	Phe 5	Thr	Phe	
			aga Arg													145
			atg													193
_	25		Met			30					35					
			tgc Cys													241
40 ·	261	vai	Cys		45	Deu	пеп	AIA	GIU	50	116	TILL	ııp	Val	55	
			aca	gac	aag											289
			Thr	60					65					70		
			aaa													337
GIII	Ser	nys	ւրջ 75	Leu	GIU	ьуѕ	ъys	80 Eys	GIU	1111	116	IIII	85	261	Ala	
			cag													385
Gly	Arg	Gln 90	Gln	Lys	Lys	Lys	Ile 95	Glu	Arg	Xaa	Xaa	Xaa 100	Xaa	Leu	Xaa	
			aga													433
Asn	Asn 105	Asn	Arg	Asp	Leu	Ser 110	Met	Val	Arg	Met	Lys 115	Ser	Met	Phe	Ala	
	ggc		tgt													481
	Gly	Phe	Cys	Phe		Ala	Leu	Met	Gly		Phe	Asn	Ser	Ile		
120 gat	aat	aga	gtg	ata	125 gca	aaq	ctt	cct	ttt	130 acc	cct	ctt	tct	tas	135 rtc	529
			Val													
				140					145					150		<b>533</b>
			tct Ser													577
			155					160	<b>-</b> -,		p	****	165		0,70	
			ttc													625
Ser	Phe	11e 170	Phe	Leu	Xaa	Ile	Leu 175	Cys	Thr	Met	Ser	11e 180	Arg	GIn	Asn	
	_	_	att				-			_	_	_			_	673
Ile	Gln 185	Lys	Ile	Leu	Gly	Leu 190	Ala	Pro	Ser	Arg	Ala 195	Ala	Thr	Lys	Gln	
gca		gga	ttt	ctt	ggc		cca	cct	cct	tct		aag	ttc	tct		718
	Gly	Gly	Phe	Leu	_	Pro	Pro	Pro	Pro		Gly	Lys	Phe	Ser		
200 tgaa	ictca	iaq a	acto	ttta	205 Lt tt	tcta	akcat	tct	ttct	210 aga	caca	caca	ıca t	caga	actggc	778
aact	gttt	tg t	asca	agag	jc ca	tagg	gtago	ctt	acka	ctt	ggg	ctct	tt d	ctagt	tttga	838
atta	ttatttcta agccttttgg gtatkattag agtgaaaatg gcagccagca aacttgatag 898															

tgcttttggt cctagatgat ttttatcaaa taagtggatt gattagttaa gttcaggtaa tgtttatgta atgaaaaaca aatagcatcc ttcttgtttc atttacataa gtattttctgtgggaccgac tctcaaggca ctgtgtatgc cctgcaagtt ggctgtctat gagcatttagagatttagaa gaaaaattta gtttgtttaa cccttgtaac tgtttgtttt gttgttgtttttttttt	j. 1018 j 1078 : 1138
<210> 345 <211> 978 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> 86709	
<221> sig_peptide <222> 86361 <223> Von Heijne matrix score 6.30000019073486 seq LLMSILALIFIMG/NS	
<221> polyA_signal <222> 943948	
<221> polyA_site <222> 963973	
<400> 345	a 60
aaagcatcct tccctaggac tgctgtaagc ttttgagcctc tagcaggaga catgcctcg ggacgaaaga gtcggcgccg ccgta atg cga gag ccg cag aag aga acc gca Met Arg Glu Pro Gln Lys Arg Thr Ala -90 -85	112
aca atc gca aaa tyc rrg gcs tva gag ggc ctc cga gac ccc tat ggc Thr Ile Ala Lys Xaa Xaa Ala Xaa Glu Gly Leu Arg Asp Pro Tyr Gly -80 -75 -70	160
cgc ctc tgt ggt agc gag cac ccc cga aga cca cct gag cgg ccc gag Arg Leu Cys Gly Ser Glu His Pro Arg Arg Pro Pro Glu Arg Pro Glu	208
-65 -60 -55  gaa gac ccg agc act cca gag gag gcc tct acc acc cct gaa gaa gcc Glu Asp Pro Ser Thr Pro Glu Glu Ala Ser Thr Thr Pro Glu Glu Ala	256
-65 -60 -55  gaa gac ccg agc act cca gag gag gcc tct acc acc cct gaa gaa gcc Glu Asp Pro Ser Thr Pro Glu Glu Ala Ser Thr Thr Pro Glu Glu Ala -50 -45 -40  tcg agc act gcc caa gca caa aag cct tca gtg ccc cgg agc aat ttt Ser Ser Thr Ala Gln Ala Gln Lys Pro Ser Val Pro Arg Ser Asn Phe	256 304
gaa gac ccg agc act cca gag gag gcc tct acc acc cct gaa gaa gcc Glu Asp Pro Ser Thr Pro Glu Glu Ala Ser Thr Thr Pro Glu Glu Ala -50  tcg agc act gcc caa gca caa aag cct tca gtg ccc cgg agc aat ttt Ser Ser Thr Ala Gln Ala Gln Lys Pro Ser Val Pro Arg Ser Asn Phe -35 -30 -25 -20 cag ggc acc aag aaa agt ctc ctg atg tct ata tta gcg ctc atc ttc Gln Gly Thr Lys Lys Ser Leu Leu Met Ser Ile Leu Ala Leu Ile Phe	
gaa gac ccg agc act cca gag gag gcc tct acc acc cct gaa gaa gcc Glu Asp Pro Ser Thr Pro Glu Glu Ala Ser Thr Thr Pro Glu Glu Ala -50 -45 -45 -40 tcg agc act gcc caa gca caa aag cct tca gtg ccc cgg agc aat ttt Ser Ser Thr Ala Gln Ala Gln Lys Pro Ser Val Pro Arg Ser Asn Phe -35 -30 -25 -20 cag ggc acc aag aaa agt ctc ctg atg tct ata tta gcg ctc atc ttc	304
gaa gac ccg agc act cca gag gag gcc tct acc acc cct gaa gaa gcc Glu Asp Pro Ser Thr Pro Glu Glu Ala Ser Thr Thr Pro Glu Glu Ala -50 -45 -40  tcg agc act gcc caa gca caa aag cct tca gtg ccc cgg agc aat ttt Ser Ser Thr Ala Gln Ala Gln Lys Pro Ser Val Pro Arg Ser Asn Phe -35 -30 -25 -20  cag ggc acc aag aaa agt ctc ctg atg tct ata tta gcg ctc atc ttc Gln Gly Thr Lys Lys Ser Leu Leu Met Ser Ile Leu Ala Leu Ile Phe -15 -10 -5  atc atg ggc aac agc gcc aag gaa gct ctg gtc tgg aaa gtg ctg ggg Ile Met Gly Asn Ser Ala Lys Glu Ala Leu Val Trp Lys Val Leu Gly 1 aag tta gga atg cag cct gga cgt cas cac agc atc ttt gga gat ccg Lys Leu Gly Met Gln Pro Gly Arg Xaa His Ser Ile Phe Gly Asp Pro	304 352
gaa gac ccg agc act cca gag gag gcc tct acc acc cct gaa gaa gcc Glu Asp Pro Ser Thr Pro Glu Glu Ala Ser Thr Thr Pro Glu Glu Ala -50  tcg agc act gcc caa gca caa aag cct tca gtg ccc cgg agc aat ttt Ser Ser Thr Ala Gln Ala Gln Lys Pro Ser Val Pro Arg Ser Asn Phe -35  cag ggc acc aag aaa agt ctc ctg atg tct ata tta gcg ctc atc ttc Gln Gly Thr Lys Lys Ser Leu Leu Met Ser Ile Leu Ala Leu Ile Phe -15  atc atg ggc aac agc gcc aag gaa gct ctg gtc tgg aaa gtg ctg ggg Ile Met Gly Asn Ser Ala Lys Glu Ala Leu Val Trp Lys Val Leu Gly 1  aag tta gga atg cag cct gga cgt cas cac agc atc ttt gga gat ccg	304 352 400

ccc cga gca cac gtg gaa tcg agc ara ctg aaa stc wtg cat ttt gtg Pro Arg Ala His Val Glu Ser Ser Xaa Leu Lys Xaa Xaa His Phe Val 65 70 75	592
gca agg gtt cgt aac cga tgc tct aaa gac tgg cct tgt aat tat gac Ala Arg Val Arg Asn Arg Cys Ser Lys Asp Trp Pro Cys Asn Tyr Asp 80 85 90	640
tgg gat tcg gac gat gat gca gag gtt gag gct atc ctc aat tca ggt Trp Asp Ser Asp Asp Asp Ala Glu Val Glu Ala Ile Leu Asn Ser Gly 95 100 105	688
gct arg ggt tat tcc gcc cct taagtaratc tgaggcagac ccttgggggt Ala Xaa Gly Tyr Ser Ala Pro 110 115	739
gtaaaagaga gtcacaggta ccccaaggag tagatgccag ggtcctaagt tgaaaatgmt gtcgattggg ggcgggggac actgtatttg atatttgtga tcagtgatca ttgttcaact gcgaaataga gtgtttgctt ttgataatgg aaaattgtat tcgttttaaa attccgtttg	799 859 919
ttgagaataa caatatgttt aaaaatataa ttgaacaaat tttaaaaaaa aaaamcccy	978
<210> 346 <211> 810 <212> DNA	
<213> Homo sapiens	
<220> <221> CDS	
<222> 63320	
<221> sig_peptide <222> 63179	
<pre>&lt;223&gt; Von Heijne matrix score 3.9000009536743</pre>	
seq VLAIGLLHIVLLS/IP	
<221> polyA_signal <222> 771776	
<221> polyA_site <222> 799810	
<400> 346 agggaacega tecegggeeg ttgatetteg geeceacaeg aacageagag aggggeatea	60
gg atg aat gtk ggc aca gcg cac ags dag gtg aac ccc aac acg cgg Met Asn Val Gly Thr Ala His Xaa Xaa Val Asn Pro Asn Thr Arg -35 -25	107
gtk atg aac agc cgt ggc atc tgg ctc tcc tac gtg ctg gcc atc ggt Val Met Asn Ser Arg Gly Ile Trp Leu Ser Tyr Val Leu Ala Ile Gly -20 -15 -10	155
ctc ctc cac atc gtg ctg ctg agc atc ccg ttt gtk agt gtc cct gtc Leu Leu His Ile Val Leu Leu Ser Ile Pro Phe Val Ser Val Pro Val -5 1 5	203
gtc tgg acc ctc acc aac ctc att cac aac atg ggc atg tat atc ttc  Val Trp Thr Leu Thr Asn Leu Ile His Asn Met Gly Met Tyr Ile Phe  10 20	251
Ctg Cac acg gtg aag ggg aca ccc ttt gag acc ccg gac cag ggc aag Leu His Thr Val Lys Gly Thr Pro Phe Glu Thr Pro Asp Gln Gly Lys 25 30 35 40	299
gcg agg ctg cta acc cac tgg tgagcagatg gattatgggg tccagttcac Ala Arg Leu Leu Thr His Trp 45	350
ggcctctcgg aakttcttga ccatcacacc catcgtgctg tacttcctca ccagcttcta cactaaktac raccaaatcc attttgtgct caacaccgtg tccctgatra gcgtgcttat	410 470

ccccaagctg ccccagctcc acggaktccg gatttttgga atcaataakt actgaaaktg

ccccaagctg ccccagctc acggaktccg gattittgga atcaataakt actgaaaktg cascccttc ccctgccag ggtggcaggg gaggggtagg gtaaaaggca tktgctgcaa chctgaaaac araaaraara rscctctgga cactgccara ratgggggtt gagcctctgg cctaatttcc cccctcgctt cccccagtag ccaacttgga gtagcttgta ytggggttgg ggtaggcccc ctgggctctg accttttctg aattttttga tcttttcctt ttgctttttg aatararact ccatggagtt ggtcatggaa aaaaaaaaaa	530 590 650 710 770 810
<210> 347 <211> 771 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> 299418	
<pre>&lt;221&gt; sig_peptide &lt;222&gt; 299379 &lt;223&gt; Von Heijne matrix</pre>	
<221> polyA_signal   <222> 739744	
<221> polyA_site <222> 762771	
<pre>&lt;400&gt; 347 accttgggct ccaaattcta gctcataaag atgcaagtkt tgcaatttcc tataaatggt taagaaaaga gcaagctgtc cagagagtga gaagtttgaa aagagaggtg cataagagag aaatgatgtc catttgagcc ccaccacgga ggttatgtgg tcccaaaagg aatgatggcc aagcaattaa tttttcctcc tagttcttag cttgcttctg cattgattgg ctttacacaa ctggcattta gtctgcatta cacaaataga cactaattta tttggaacaa gcagcaaa atg aga act tta ttt ggt gca gtc agg gct cca ttt agt tcc ctc act Met Arg Thr Leu Phe Gly Ala Val Arg Ala Pro Phe Ser Ser Leu Thr</pre>	60 120 180 240 298 346
ctg ctt cta atc acc cct tct ccc agc cct ctt cta ttt gat aga ggt Leu Leu Leu Ile Thr Pro Ser Pro Ser Pro Leu Leu Phe Asp Arg Gly -10 -5 1 5 ctg tcc ctc aga tca gca atg tct tagcccctct cctctctcc attccttcct	394 448
Leu Ser Leu Arg Ser Ala Met Ser  10 gttggtactc atttcttcta acttttaata aacatttagg tataatacat tacagtaagt gctatttaga tacaaactta aaacatacta tatattttaa ggatctaaga atcctttara rrrggcacat gactgaagta cctcagctgc gcagcctgta accagtttt ttaatgtaaa agtaaraatg ccagccttaa cctabccctg carataaaag ctaacttta ttaataccag ccctgaataa tggcactaat ccacactctt ccttaragtg atgctggaaa aataaaatca ggggcttcag attaaaaaaa aaa	508 568 628 688 748 771

<210> 348

<211> 409

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 186..380

<221> sig_peptide <222> 186233 <223> Von Heijne matrix score 4 seq FFLFLSFVLMYDG/LR	
<221> polyA_signal	
<221> polyA_site <222> 396409	
<pre>&lt;400&gt; 348 ataaaagaag cagcaaatag aatttcccac aaagtaagtt gactctaaat cttaagtatt acctagtttt ttaaaggttt gaatataata atgcagtatt tgcagtataa aaaggaagga atttgtagag aatcattttg gtgctcaagt ctcttagcag tgccttattg cctcatagca agaag atg ctg ggg ttt ttt ttg ttt ttg tcc ttt gta tta atg tat gat</pre>	60 120 180 230
ggt ttg cgc ctt ttt ggc att ctt tca aca tgt cgt gta cat cac acc Gly Leu Arg Leu Phe Gly Ile Leu Ser Thr Cys Arg Val His His Thr	278
atg aat cag ttc cta att gat ata tct agc ttt acc tcc cga gtt aaa  Met Asn Gln Phe Leu Ile Asp Ile Ser Ser Phe Thr Ser Arg Val Lys  20 25 30	326
aaa aaa atc ttt tta ttt tat gcc ttc awa ggt tgc ycg ttt car agt Lys Lys Ile Phe Leu Phe Tyr Ala Phe Xaa Gly Cys Xaa Phe Gln Ser 35 40 45	374
gcc aca taaataaaat gtttaacaaa aaaaaaaaa Ala Thr	409
<pre>&lt;210&gt; 349 &lt;211&gt; 613 &lt;212&gt; DNA &lt;213&gt; Homo sapiens  &lt;220&gt;</pre>	
aagaacctga gcagcctgtc ttcagacaga gagaggccca cggctgtttc ttgaaaytgg cgctggga atg gcc atg tgg aac agg cca tgb bag ang ctg cct cag cag Met Ala Met Trp Asn Arg Pro Xaa Xaa Xaa Leu Pro Gln Gln -55 -50 -45	60 110
cct cts sta gct gag ccc act gca gag ggg gag cca cac ctg ccc acg	158

WO 99/31236 -265- PCT/IB98/02122

-40 -35 -30	
ggc egg gas byg act gag gec aac ege tte gec tat get gec ete tgt	206
Gly Arg Xaa Xaa Thr Glu Ala Asn Arg Phe Ala Tyr Ala Ala Leu Cys	
-25 -20 -15 -10 ggc atc tcc ctg tcc cag tta ttt cct gaa ccc gaa cac agc tcc ttc	254
Gly Ile Ser Leu Ser Gln Leu Phe Pro Glu Pro Glu His Ser Ser Phe	
-5 1 5	. 2
tgc aca gag ttc atg gca ggc ctg gtg ckm tgg ctg gag ttg tct gaa Cys Thr Glu Phe Met Ala Gly Leu Val Xaa Trp Leu Glu Leu Ser Glu	302
10 15 20	
get gtc ttg cca acc atg act get ttt geg age ggc ctg gga ggt gaa	350
Ala Val Leu Pro Thr Met Thr Ala Phe Ala Ser Gly Leu Gly Gly Glu	
25 30 35 gga sca vma tgt gtt tgt tca aat ttt act gaa gga ccc cat ctt gaa	398
Gly Xaa Xaa Cys Val Cys Ser Asn Phe Thr Glu Gly Pro His Leu Glu	
40 45 50 55	
gga cga ccc gac ggt gat cac tca gga cct tct gag ctt ctc act caa	446
Gly Arg Pro Asp Gly Asp His Ser Gly Pro Ser Glu Leu Leu Thr Gln 60 65 70	
gga tgg gca cta tgacscccgg gccagagtcc tcgtttgcca catgacctcc	498
Gly Trp Ala Leu	
75	558
ctgctccaag tgcccttgga ggagctggat gtccttgaaa agatgttcct ggagagcctg aaggaaatca aagaagagga atctgaaatg gccgaggcat cccraaaaaa aaaaa	613
<210> 350	
<211> 986	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> 12638	
.007. min nambida	
<221> sig_peptide <222> 12263	
<pre>&lt;222&gt; 12263 &lt;223&gt; Von Heijne matrix score 4.19999980926514</pre>	
<223> Von Heijne matrix	
<223> Von Heijne matrix score 4.19999980926514 seq ITMLQMLALLGYG/LF	
<223> Von Heijne matrix score 4.19999980926514	
<pre>&lt;223&gt; Von Heijne matrix     score 4.19999980926514     seq ITMLQMLALLGYG/LF  &lt;221&gt; polyA_signal &lt;222&gt; 951956</pre>	
<pre>&lt;223&gt; Von Heijne matrix</pre>	
<pre>&lt;223&gt; Von Heijne matrix     score 4.19999980926514     seq ITMLQMLALLGYG/LF  &lt;221&gt; polyA_signal &lt;222&gt; 951956</pre>	
<pre>&lt;223&gt; Von Heijne matrix</pre>	
<pre>&lt;223&gt; Von Heijne matrix     score 4.19999980926514     seq ITMLQMLALLGYG/LF  &lt;221&gt; polyA_signal &lt;222&gt; 951956  &lt;221&gt; polyA_site &lt;222&gt; 975985  &lt;400&gt; 350 accctatcaa g atg gtc aac ttc ccc cag aaa att gca ggt gaa ctc tat</pre>	50
<pre>&lt;223&gt; Von Heijne matrix</pre>	50
<pre>&lt;223&gt; Von Heijne matrix     score 4.19999980926514     seq ITMLQMLALLGYG/LF  &lt;221&gt; polyA_signal &lt;222&gt; 951956  &lt;221&gt; polyA_site &lt;222&gt; 975985  &lt;400&gt; 350 accctatcaa g atg gtc aac ttc ccc cag aaa att gca ggt gaa ctc tat</pre>	
<pre>&lt;223&gt; Von Heijne matrix</pre>	50 98
<pre>&lt;223&gt; Von Heijne matrix</pre>	98
<pre>&lt;223&gt; Von Heijne matrix</pre>	
<pre>&lt;223&gt; Von Heijne matrix</pre>	98
<pre>&lt;223&gt; Von Heijne matrix</pre>	98
<pre>&lt;223&gt; Von Heijne matrix</pre>	98 146
<pre>&lt;223&gt; Von Heijne matrix</pre>	98 146

Tyr Phe Leu Ala Tyr Leu Cys Asn Ala Gln Ile Thr Met Leu Gln Met -10 -15 -20 ttg gca ctg ctg ggc tat ggc ctc ttt ggg cat tgc att gtc ctg ttc Leu Ala Leu Leu Gly Tyr Gly Leu Phe Gly His Cys Ile Val Leu Phe 1 338 ate ace tat aat ate cae ete ege gee ete tte tae ete tte tgg etg Ile Thr Tyr Asn Ile His Leu Arg Ala Leu Phe Tyr Leu Phe Trp Leu 20 15 386 ttg gtg ggt gga ctg tcc aca ctg cgc atg gta gca gtg ttg gtg tct Leu Val Gly Gly Leu Ser Thr Leu Arg Met Val Ala Val Leu Val Ser cgg acc gtg ggc ccc aca cad cgg mtg ctc ctc tgt ggc acc ctg gct 434 Arg Thr Val Gly Pro Thr Xaa Arg Xaa Leu Leu Cys Gly Thr Leu Ala 50 gcc cta cac atg ctc ttc ctg ctc tat ctg cat ttt gcc tac cac aaa 482 Ala Leu His Met Leu Phe Leu Leu Tyr Leu His Phe Ala Tyr His Lys 60 、 65 dtg gta dag ggg atc ctg gac aca ctg gag ggc ccc aac atc ccg ccc 530 Xaa Val Xaa Gly Ile Leu Asp Thr Leu Glu Gly Pro Asn Ile Pro Pro 80 atc cag agg gtc ccc aga gac atc cct gcc atg ctc cct gct gct cgg 578 Ile Gln Arg Val Pro Arg Asp Ile Pro Ala Met Leu Pro Ala Ala Arg 100 95 626 ctt ccc acc acc gtc ctc aac gcc aca gcc aaa gct gtt gcg gtg acc Leu Pro Thr Thr Val Leu Asn Ala Thr Ala Lys Ala Val Ala Val Thr 115 110 ctg cag tca cac tgaccccacc tgaaattctt ggccagtcct ctttcccgca 678 Leu Gln Ser His 125 gctgcagaga ggargaasac tattaaagga cagtcctgat gacatgtttc gtagatgggg 738 798 tttqcaqctq ccactqaqct qtagctgcgt aagtacctcc ttgatgcctg tcggcacttc 858 tgaaaggcac aaggccaaga actcctggcc aggactgcaa ggctctgcag ccaatgcaga 918 aaatgggtca gctcctttga gaacccctcc ccacctaccc cttccttcct ctttatctct cccacattgt cttgctaaat atagacttgg taattaaaat gttgattgaa gtctggaaaa 978 986 aaaaaaat

<210> 351 <211> 1447 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 282..389 <221> sig peptide <222> 282..332 <223> Von Heijne matrix score 3.5 seq RWWCFHLQAEASA/HP <221> polyA_signal <222> 1413..1418 <221> polyA_site <222> 1437..1447

<400> 351
ataataatat ctaaaaagct aaattttaaa taccagcttt acataaatga ttgtkgactc
tggtctgtkt ctgacacctt tccagaaaaa agtcaattgt tcaggtacac caaagaggaa

WO 99/31236 -267- PCT/IB98/02122 -

gaagagctgt ggaggccacc ctctacaaag ctttatagaa cttctggatc taactcacaa	180
acaagettee agaagaet agagaeetta ggeeaggaga tgaaggagtt cagtageaaa	240
gtcacacctg tccaattccc tgagctttgc tcactcagct a atg gga tgg caa agg	296
Met Gly Trp Gln Arg	
-15	
tgg tgg tgc ttt cat ctt cag gca gaa gcc tct gcc cat ccc cct caa	344
Trp Trp Cys Phe His Leu Gln Ala Glu Ala Ser Ala His Pro Pro Gln	
-10 -5 1	
ggg ctg cag gcc caa ttc tca tgc tgc cct tgg gtg ggc atc tgt	389
Gly Leu Gln Ala Gln Phe Ser Cys Cys Pro Trp Val Gly Ile Cys	
5 10 15	
taacaaadga aaacgtctgg gtggcggcag casctttgct ctgagtgcct acaaagctaa	449
tgcttggtgc tagaaacatc atcattatta aacttcagaa aagcagcagc catgttcagt	509
caggeteatg etgeeteact gettaagtge etgeaggage egeetgeeaa reteceette	569
ctacacctgg cacactgggg tctgcacaag gctttgtcaa ccaaaracag cttcccccww	629
ttgattgcct gtagactttg gagccaaraa acactctgtg tgactctaca cacacttcag	689
gtggtttgtg cttcaaagtc attgatgcaa cttgaaagga aacagtttaa tggtggaaat	749 809
gaactaccat ttataacttc tgttttttta ttgagaaaat gattcacgaa kkccaaatca	
gattgccagg aagaaatagg acgtgacggt actgggccct gtgattctcc cagcccttgc	869 929
agtccgctag gtgagaggaa aagctcttta cttccgcccc tggcagggac ttctgggtta	989
tgggagaaac cagagatggg aatgaggaaa atatgaacta cagcagaagc ccctgggcag	1049
ctgtgatgga geceetgaea ttaetettet tgeatetgte etgeettett teeetetgeg aggeagtggg gtgggattea gagtgettag tetgeteaet gggagaagaa gagtteetge	1109
gcatgcaagc cotgotgtgt ggotgtogtt tacatttggg aggtgtootg tatgtotgta	1169
cgttggggac tgcctgtatt tggaagattt aaaaacctag catcctgttc tcaccctcta	1229
agetgeattg agaaatgaet egtetetgta tttgtattaa geettaacae ttttettaag	1289
tgcattcggt gccaacattt tttagagctg taccaaaaca aaaagcctgt actcacatca	1349
camtgtcatt ttgataggag cgttttgtta tttttacaag gcagaatggg gtgtaacagt	1409
tgaattaaac ttagcaatca cgtgctcaaa aaaaaaaa	1447
ogenouses outgodeca agagadada	2227
<210> 352	
<211> 1641	
<212> DNA	
<213> Homo sapiens	
•	
<220>	
<221> CDS	
<222> 208339	
<221> sig_peptide	
<222> 208294	
<223> Von Heijne matrix	
score 5.59999990463257	
seq LFLQLLVSHEIVC/AT	
<221> polyA_site	
<222> 16311641	
<400> 352	
agaaccgtga tgggaagatg gacaaggaag agaccaaaga ctggatcctt ccctcagact	60
atgatcatgc agaggcagaa gccaggcacc tggtctatga atcagaccaa aacaaggatg	120
gcaagettae caaggaggag ategttgaca agtatgaett atttgttgge agecaggeca	180
cagattttgg ggaggeetta gtaegge atg atg agt tet gag eta egg agg aac	234
Met Met Ser Ser Glu Leu Arg Arg Asn	
-25	
cct cat ttc ctc aaa agt aat tta ttt tta cag ctt ctg gtt tca cat	282
Pro His Phe Leu Lys Ser Asn Leu Phe Leu Gln Leu Leu Val Ser His	
-20 -15 -10 -5	
gaa att gtt tgc gct act gag act gtt act aca aac ttt tta aga cat	330
Glu Ile Val Cys Ala Thr Glu Thr Val Thr Thr Asn Phe Leu Arg His	

WO 99/31236 -268- PCT/IB98/02122 .

1 5 10	
gaa aag gcg taatgaaaac catcccgtcc ccattcctcc tcctctctga Glu Lys Ala 15	379
	420
gggactggag ggaagccgtg cttctgagga acaactctaa ttagtacact tgtgtttgta	439
ratttacacw wtgtattatg tattaacatg gcgtgtttat ttttgtattt ttctctggtt	499
gggagtatka tatgaaggat caarateete aacteacaca tgtaracaaa cattasetet	559
ttactctttc tcaacccctt wtatgatttt aataattctc acttaactaa ttttgtaagc	619
ctgagatcaa taagaaatgt tcaggagaga ggaaagaaaa aaaatatatg ctccacaatt	679
tatatttaga gagagaacac ttagtcttgc ctgtcaaaaa gtccaacatt tcataggtag	739
taggggccac atattacatt cagttgctat aggtccagca actgaacctg ccattacctg	799
ggcaaggaaa gatccctttg ctctaggaaa gcttggccca aattgatttt cttcttttc	859
cccctgtagg actgactgtt ggctaatttt gtcaagcaca gctgtggtgg gaagagttag	919
ggccagtgtc ttgaaaatca atcaagtagt gaatgtgatc tctttgcara gctatagata	979
gaaacagctg gaaaactaaa ggaaaaatac aagtgttttc ggggcataca tttttttttt	1039
gggtgtgcat ctgttgaaat gctcaagact taattatttg ccttttgaaa tcactgtaaa	1099
tgcccccatc cggttcctct tcttcccarg tgtgccaagg aattaatctt ggtttcacta	1159
caattaaaat tcactccttt ccaatcatgt cattgaaagt gcctttaacg aaagaaatgg	1219
tcactgaatg ggaattctct taagaaaccc tgagattaaa aaaagactat ttggataact	1279
tataggaaag cctagaacct cccagtagag tggggatttt tttcttcttc cctttctctt	1339
ttggacaata gttaaattag cagtattagt tatgagtttg gttgcagtgt tcttatcttg	1399
tgggctgatt tccaaaaacc acatgctgct gaatttacca gggatcctca tacctcacaa	1459
tgcaaaccac ttactaccag gcctttttct gtgtccactg gagagettga gctcacacte	1519
aaagatcaga ggacctacag agagggctct ttggtttgag gaccatggct tacctttcct	1579
gcctttgacc catcacaccc catttcctcc tctttccctc tccccgctgc caaaaaaaaa	1639
aa	1641
<pre>&lt;210&gt; 353 &lt;211&gt; 884 &lt;212&gt; DNA &lt;213&gt; Homo sapiens  &lt;220&gt; &lt;221&gt; CDS &lt;222&gt; 69557  &lt;221&gt; sig_peptide &lt;222&gt; 69224 &lt;223&gt; Von Heijne matrix</pre>	
<400> 353	
attggctccg gatcgtgcgt gaggcggctt cgtgggcagc gagagtcaca gacaagacag	60
caagcagg atg gag cac tac cgg aaa gct ggc tct gta gag ctc cca gcg  Met Glu His Tyr Arg Lys Ala Gly Ser Val Glu Leu Pro Ala  -50  -45  -40	110
cct tcc cca atg ccc cag cta cct cct gat acc ctt gag atg egg gtc	158
Pro Ser Pro Met Pro Gln Leu Pro Pro Asp Thr Leu Glu Met Arg Val	
-35 -30 -25	
Cga gat ggc agc aaa att cgc aac ctg ctg ggg ttg gct ctg ggt cgg Arg Asp Gly Ser Lys Ile Arg Asn Leu Leu Gly Leu Ala Leu Gly Arg -20 -15	206
-20 -15 -10	_

ttg gag ggc ggc agt gct cgg cat gta gtg ttc tca ggt tct ggc agg

254

Leu	-5	GIY	GIY	ser	Ala	Arg	HIS	vaı	vaı	Fne 5	ser	GIY	Ser	GIY	10	
act		aas	aad	act	atc		tac	act	gag	_	atc	aaq	caa	cgg		302
Ala	Ala	Gly	Lys	Ala 15	Val	Ser	Cys	Ala	Glu 20	Ile	Val	Lys	Arg	Arg 25	Val	• • • • • • • • • • • • • • • • • • • •
cca	aac	cta	cac		ctc	acc	aad	cta		ttc	ctt	саа	act	gag	gac	350
Pro	Gly	Leu	His	Gln	Leu	Thr	Lys	Leu 35	Xaa	Phe	Leu	Gln	Thr 40	Glu	Asp	
agc	tgg	gtc		scc	tca	cct	gac	aca	ggg	cta	rac	ccc	ctc	aca	gtg	398
														Thr		
cgc	cgc	cat	gtg	cct	gca	ktg	tgg	gtg	ctg	ctc	asc	cgg	gac	CCC	ctg	446
Arg	Arg 60	His	Val	Pro	Ala	Xaa 65	Trp	Val	Leu	Leu	Xaa 70	Arg	Asp	Pro	Leu	
														ggc		494
75				_	80	_				85				Gly	90	
														agg		542
Gly	Ser	Met	Pro	Ser 95	Ser	Ser	Cys	Gly	Pro 100	Arg	Ser	Xaa	Lys	Arg 105	Ala	
cra	rac	acc	cga	tcg	tgaa	aaac	ctg d	ctgas	scca	gc ct	gtt	ctcc	g gg(	cctra	aatg	597
Xaa	Xaa	Thr	Arg 110	Ser												
_		_		-			_								caaggt	657
															gggaag	717
	_		_	_					-		_				ataag	777
						acagi							aga 9	ggtc	akgga	837 884
<21: <21: <21: <22: <22: <22: <22: <22:	0 > CI > CI	NA DS 34 34 on He core	eptic 274 eijne 5.90 WLGLI	ie e ma 0000 LSFQ	0095	3674: /FP	3									
	) )> 3:		, 23													
															ctgtaa	60
tgt	aatg	caa 🤉	gtcc	ccta	ac to	ccct	gtt	g cta	acat	taa	ctt	cctta	aag 1	taata	aatcaa	120
tga	aaga [,]	vat 1			His (					lle S				gag g Glu (		169
										ttg	ttt			act Thr		217
														cag Gln -5		265
ctg	cat	tgc	ttc		gac	ctc	ccc	act		atg	cct	cta	ara	gcc	aaa	313

Leu His Cys Phe Pro Asp Leu Pro Thr Glu Met Pro Leu Xaa Ala Lys	
gga ktc aac act tgagcctagg gtgggctaca acaaaaratt ctaatttacc Gly Xaa Asn Thr	365
ttgcttcatc taggtccagg ccccaaktag cttgctgaag gaacttaaaa agtagctgt atttattgta ttgtataasc taaaaacatt tatttttgtt gaatcraaac aattccatg ascaatcttt tttctgttca cggtgtttgt gataaaacct taaattccgc aagcatcag tttttgaaaa aatgggaatt gaccggatag wwacaggcaa agwtataaat agctacaac tcatttaact tttataaaca tgccttctct ctattgaara catctgatat ttttgctgg aagttggatc tatcctcagt aactctgcca tgaattcctg tttcckggtt ccaaaaaaa aaaa	485 545 a 605 a 665
<210> 355 <211> 1013 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> 78731	
<pre>&lt;221&gt; sig_peptide &lt;222&gt; 78227 &lt;223&gt; Von Heijne matrix</pre>	
<221> polyA_site   <222> 10021013	
<pre>&lt;400&gt; 355 agtttccaag ggaaggagca gcgtgtggga aagcacagaa gagtgagaag gaagcgact aattttattt actttct atg cat cat ggc ctc aca cca ctg tta ctt ggt</pre>	a 60 110
agtttccaag ggaaggagca gcgtgtggga aagcacagaa gagtgagaag gaagcgact aattttattt actttct atg cat cat ggc ctc aca cca ctg tta ctt ggt Met His His Gly Leu Thr Pro Leu Leu Gly	
agtttccaag ggaaggagca gcgtgtggga aagcacagaa gagtgagaag gaagcgact aattttattt actttct atg cat cat ggc ctc aca cca ctg tta ctt ggt  Met His His Gly Leu Thr Pro Leu Leu Leu Gly  -50  -45  -40  gta cat gag caa aaa cag caa gtg gtg aaa ttt tta atc aag aaa aaa Val His Glu Gln Lys Gln Gln Val Val Lys Phe Leu Ile Lys Lys	110
agtttccaag ggaaggagca gcgtgtggga aagcacagaa gagtgagaag gaagcgact aattttattt acttct atg cat cat ggc ctc aca cca ctg tta ctt ggt  Met His His Gly Leu Thr Pro Leu Leu Leu Gly  -50  -45  -40  gta cat gag caa aaa cag caa gtg gtg aaa ttt tta atc aag aaa aaa  Val His Glu Gln Lys Gln Gln Val Val Lys Phe Leu Ile Lys Lys Lys  -35  -30  -25  gca aat tta aat gca ctg gat aga tat gga aga act gct ctc ata ctt  Ala Asn Leu Asn Ala Leu Asp Arg Tyr Gly Arg Thr Ala Leu Ile Leu	110
agtttccaag ggaaggagca gcgtgtggga aagcacagaa gagtgagaag gaagcgact aattttattt acttct atg cat cat ggc ctc aca cca ctg tta ctt ggt  Met His His Gly Leu Thr Pro Leu Leu Leu Gly  -50  -45  -40  gta cat gag caa aaa cag caa gtg gtg aaa ttt tta atc aag aaa aaa  Val His Glu Gln Lys Gln Gln Val Val Lys Phe Leu Ile Lys Lys Lys  -35  -30  -25  gca aat tta aat gca ctg gat aga tat gga aga act gct ctc ata ctt  Ala Asn Leu Asn Ala Leu Asp Arg Tyr Gly Arg Thr Ala Leu Ile Leu  -20  -15  -10  gct gta tgt tgt gga tcg gca agt ata gtc agc ctt cta ctt gag caa  Ala Val Cys Cys Gly Ser Ala Ser Ile Val Ser Leu Leu Leu Glu Gln	110 158 206
agtttccaag ggaaggagca gcgtgtggga aagcacagaa gagtgagaag gaagcgactatttattt acttct atg cat cat ggc ctc aca cca ctg tta ctt ggt  Met His His Gly Leu Thr Pro Leu Leu Leu Gly -50 -45 -40  gta cat gag caa aaa cag caa gtg gtg aaa ttt tta atc aag aaa aaa  Val His Glu Gln Lys Gln Gln Val Val Lys Phe Leu Ile Lys Lys Lys Lys -35 -30 -25  gca aat tta aat gca ctg gat aga tat gga aga act gct ctc ata ctt  Ala Asn Leu Asn Ala Leu Asp Arg Tyr Gly Arg Thr Ala Leu Ile Leu -20 -15 -10  gct gta tgt tgt gga tcg gca agt ata gtc agc ctt cta ctt gag caa  Ala Val Cys Cys Gly Ser Ala Ser Ile Val Ser Leu Leu Leu Glu Gln -5 - 1 -5  aac att gat gta tct tct caa gat cta tct gga cag acg gcc aaa aag  Asn Ile Asp Val Ser Ser Gln Asp Leu Ser Gly Gln Thr Ala Lys Lys	110 158 206 254
agtttccaag ggaaggagca gcgtgtggga aagcacagaa gagtgagaag gaagcgactatttattt acttct atg cat cat ggc ctc aca cca ctg tta ctt ggt  Met His His Gly Leu Thr Pro Leu Leu Leu Gly  -50  -45  -40  gta cat gag caa aaa cag caa gtg gtg aaa ttt tta atc aag aaa aaa  Val His Glu Gln Lys Gln Gln Val Val Lys Phe Leu Ile Lys Lys Lys  -35  -30  -25  gca aat tta aat gca ctg gat aga tat gga aga act gct ctc ata ctt  Ala Asn Leu Asn Ala Leu Asp Arg Tyr Gly Arg Thr Ala Leu Ile Leu  -20  -15  gct gta tgt tgt gga tcg gca agt ata gtc agc ctt cta ctt gag caa  Ala Val Cys Cys Gly Ser Ala Ser Ile Val Ser Leu Leu Leu Glu Gln  -5  aac att gat gta tct tct caa gat cta tct gga cag acg gcc aaa aag  Asn Ile Asp Val Ser Ser Gln Asp Leu Ser Gly Gln Thr Ala Lys Lys  10  15  20  25  tat gct gtt tct agt cgt cat aat gta att tgc cag tta ctt tct gac  Tyr Ala Val Ser Ser Arg His Asn Val Ile Cys Gln Leu Leu Ser Asp	110 158 206 254 302
agtttccaag ggaaggagca gcgtgtggga aagcacagaa gagtgagaag gaagcgactaatttatt actttct atg cat cat ggc ctc aca cca ctg tta ctt ggt  Met His His Gly Leu Thr Pro Leu Leu Leu Gly  -50  -45  -40  gta cat gag caa aaa cag caa gtg gtg aaa ttt tta atc aag aaa aaa  Val His Glu Gln Lys Gln Gln Val Val Lys Phe Leu Ile Lys Lys Lys  -35  -30  -25  gca aat tta aat gca ctg gat aga tat gga aga act gct ctc ata ctt  Ala Asn Leu Asn Ala Leu Asp Arg Tyr Gly Arg Thr Ala Leu Ile Leu  -20  -15  gct gta tgt tgt gga tcg gca agt ata gtc agc ctt cta ctt gag caa  Ala Val Cys Cys Gly Ser Ala Ser Ile Val Ser Leu Leu Leu Glu Gln  -5  aac att gat gta tct tct caa gat cta tct gga cag acg gcc aaa aag  Asn Ile Asp Val Ser Ser Gln Asp Leu Ser Gly Gln Thr Ala Lys Lys  10  15  20  25  tat gct gtt tct agt cgt cat aat gta att tgc cag tta ctt tct gac  Tyr Ala Val Ser Ser Arg His Asn Val Ile Cys Gln Leu Leu Ser Asp  30  35  40  tac aaa raa aaa cag atr cta aaa gtc tct tct ct gaa aac agc aat cca  Tyr Lys Xaa Lys Gln Xaa Leu Lys Val Ser Ser Glu Asn Ser Asn Pro	110 158 206 254 302

aat arg ggt ggt gat aga aag gtt gaa raa raa atg aar aag cac gga	542
Asn Xaa Gly Gly Asp Arg Lys Val Glu Xaa Xaa Met Lys Lys His Gly	•
90 95 100 105	
agt wet cat atg gga tte cea raa aac etg met aac ggt gee aet get	590
Ser Xaa His Met Gly Phe Pro Xaa Asn Leu Xaa Asn Gly Ala Thr Ala	
110 115 120	
gac aat ggt gat gat gga tta att ccm cca rgg aaa asc ara aca cct	638
Asp Asn Gly Asp Asp Gly Leu Ile Pro Pro Xaa Lys Xaa Xaa Thr Pro	
125 130 135	
gaa agc cas caa ttt cct gac act gag aat gaa cag tat cac agg gac	686
Glu Ser Xaa Gln Phe Pro Asp Thr Glu Asn Glu Gln Tyr His Arg Asp	
140 145 150	
ttt tct ggc cat ccc mac ttt ccc acd acc ctt ccc atc aaa cag	731
Phe Ser Gly His Pro Xaa Phe Pro Thr Thr Leu Pro Ile Lys Gln	
155 160 165	
tgatgaacaa aatgatactc hsaagcmmct ttctgaagam caraacactg gaatattaca	
agatgagatt ctgattcatg aagaaaagca gatagaagtg gctgaaaatg aattctgagc	
tttctcttag ttataaraaa gaaaaagacc tcttgcatga aaatagtacg ttgcaggaag	
aaattgtcat gctaaractg gaactagack taatgaaaca tcagagccag ctaararaaa	
araaatattt ggaggaaatt gaaagtgtgg aaaaaaaaa	1013
•	

<210> 356 <211> 973 <212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 46..693

<221> sig_peptide

<222> 46..90

<223> Von Heijne matrix score 7.59999990463257 seq CVLVLAAAAGAVA/VF

<221> polyA_signal <222> 937..942

<221> polyA_site <222> 962..973

<400> 356 aagcggctgg tccccggaag ttggacgcat gcgccgtttc tctgc atg gtg tgc Met Val Cys	
-15	
ctc gtt cta gct gcg gcc gca gga gct gtg gcg gtt ttc cta atc c	_
Leu Val Leu Ala Ala Ala Ala Gly Ala Val Ala Val Phe Leu Ile Le	au .
-10 -5 1 5	
cga ata tgg gta gtg ctt cgt tcc atg gac gtt acg ccc cgg gag te	ct 153
Arg Ile Trp Val Val Leu Arg Ser Met Asp Val Thr Pro Arg Glu Se	er
10 15 20	
ctc agt atc ttg gta gtg gct ggg tcc ggt ggg cat acc act gag a	cc 201
Leu Ser Ile Leu Val Val Ala Gly Ser Gly Gly His Thr Thr Glu I	le
25 30 35	
ctg agg ctg ctt ggg agc ttg tcc aat gcc tac tca cct aga cat ta	at 249
Leu Arg Leu Leu Gly Ser Leu Ser Asn Ala Tyr Ser Pro Arg His T	yr
40 45 50	
gtc att gct gac act gat gaa atg agt gcc aat aaa ata aat tct t	tt 297
Val Ile Ala Asp Thr Asp Glu Met Ser Ala Asn Lys Ile Asn Ser P.	ne

WO 99/31236 -272- PCT/IB98/02122 -

	55					60					65					
gaa	cta	rat	cga	gsk	gat	aga	rac	cct	agt	aac	atg	twt	acc	aaa	tac .	345
														Lys		•
70			_		75	_				80				•	85	
	att	cac	cga	att		ara	agc	caa	gag		cag	cag	tee	tgg		393
														Trp		320
-1-		****	y	90				y	95	V41	<b>J</b> 111	0111	001	100	110	
+00	200	a++	<b>+1/</b> 0		200	++~	~~~						1-			447
														CCC		441
ser	inr	vaı		Thr	Thr	Leu	HIS		Met	Trp	Leu	Ser		Pro	ren	
			105					110					115			
				_			_		_	_				gga		489
lie	Hls	_	Val	Lys	Pro	Xaa		Val	Leu	Cys	Asn	-	Pro	Gly	Thr	
		120					125					130				
tgt	gty	cct	atc	tgt	gta	tct	gcc	ctt	ctc	ctt	999	ata	cta	gga	ata	537
Cys	Val	Pro	Ile	Cys	Val	Ser	Ala	Leu	Leu	Leu	Gly	Ile	Leu	Gly	Ile	
	135					140					145					
aag	aaa	gtg	atc	att	gtc	tac	gtt	gaa	agç	atc	tgc	cgt	gta	aaa	acs	585
Lys	Lys	Val	lle	Ile	Val	Tyr	Val	Glu	Ser	Ile	Cys	Arg	Val	Lys	Thr	
150					155	-				160	_	_		_	165	
tta	tcc	atg	tcc	qqa	aaq	att	ctq	ttt	cat	ctc	tca	aat	tac	ttc	att	633
														Phe		
			•	170	-4 -				175				-2-	180		
att	caq	taa	cca	act	cta	aaa	gaa	aad		CCC	222	tca	ata	tac	ctt	681
														Tyr		
			185					190	-1-		<b>- J - J</b>		195	-1-	200	
aaa	cga	att		tgac	aaat	aa c	aact		t ct	ttac	:aa++	tte		-+		733
_		Ile	_	cguc		.99 .	·uuc	guct		ccas	, aacc	. ccg	cast	cau		,,,,
<b>-</b> - <i>y</i>	••• 3	200	vu_													
cadt	arta		acto		+ ~		,,,,,,		ccct		+~++	+ ~++	~+ -		gcgtct	793
															gaara:	
																853
										-		-			tgcct	913
ctyt	aaac	ica a	acct	CCCC	t ct	arat	aaaa	ata	ıtgta	itta	ctac	ctgo	aa a	laaaa	ıaaaaa	973
-210	. 25	-														
	> 35															
	> 86															
	> DN															
<213	> HC	e omo	apie	ns												
<220		_														
	> CI															
<222	> 12	65	27													
<221	.> si	_pe	ptid	le												
		61														
<223	> Vc	n He	ijne	mat	rix											
	sc	ore	3.90	0000	0953	6743	1									
	se	q IL	FHGV	FYAG	GFA/	IV										
					·											
<221	og <.	lyA	sign	al												
		48														
	_															
<221	ים כ	lyA_	site	•												
		68														
		2	٠,													
<400	> 35	7														

Met Pro Leu Gly Ala Arg Ile Leu Phe His Gly Val Phe Tyr Ala
-15 -10 -5

60

120

170

actggaagaa ctcgtcatgc tctttgtagc gtggtgcttc tgttgctcac aggacaactt

gcctttgatg attttcaaga gagttgtgct atgatgtggc aaagtatgca ggaagcaggc

ggtca atg cct ctg gga gca agg atc ctt ttc cac ggt gtg ttc tat gcc

	ggc Gly														agg Arg	218
act	tta Leu	tat Tyr 15	tac Tyr	aag	ttg Leu	gca Ala	gtg Val 20	gar	cag Gln	ctg Leu	car Gln	arc Xaa 25	cat	ccc Pro	gag Glu	266
	cag Gln 30															314
Ile 45	gac Asp	Arg	Glu	Asn	Phe 50	Val	Asp	Ile	Val	Xaa 55	Ala	Lys	Leu	Lys	Ile 60	362
	gtc Val															410
	ggt Gly															458
Let	aag Lys	Asp 95	Gly	Gln	Gln	Ile	Pro 100	Val	Phe	Lys	Leu	Ser 105	Gly	Glu	Asn	506
	gat Asp 110	-			_		taga	agac	gac (	ccaga	aaga	ec ca	agcti	tgcti	t	557
aca atg tga tgt	gaca gtaa atcc	ctc o ttt t gaa a aaa a	ctgca tggtg agaaa agcad	aacco gtaa actco	ca g) tt ct ct at	kttt caact ctata	ccago ttggg aaati	c cad g cad t taa	cagt caacq agata	gaat aatg	atga gcta taat	atggi attt gtai	tat q gtc a	gtgc attt gaaa	ccagtg cagcac ttaaac gtgctt ctttaa	617 677 737 797 857 868
<21 <21	.0> 3: .1> 5: .2> DI	19 NA	sapie	ens												
	10> 1> Cl 2> 6		20													
<22		on He core	13 ∋ijne	e mai		/vr										
	21> po 22> 4			nal					,							
	1> p			•												
aat	ca a	gcg ( tg go et Al	ca gt	g a	cg go	eg ti	tg go eu Ai	eg ge	eg mi	cg ac	gt	gct	eu G	gc gt	ctccag cg tgg	60 110
ggg	gtg Val	agg	acc	atg Met	caa Gln 5	gcc Ala	cga	ggc	ttc Phe	ggc Gly 10	tcg Ser	gat	cag	tcc Ser	gag Glu 15	158

WO 99/31236 -274- PCT/IB98/02122 -

aat gtc gac cgg ggc gcg ggc tcc atc cgg gaa gcc ggt ggg gcc ttc Asn Val Asp Arg Gly Ala Gly Ser Ile Arg Glu Ala Gly Gly Ala Phe	206										
gga aag aga gag cag gct gaa gag gaa cga tat ttc cga gca cag agt Gly Lys Arg Glu Gln Ala Glu Glu Glu Arg Tyr Phe Arg Ala Gln Ser 35 40 45	254										
aca gaa caa ctg gca rct ttg aaa aaa crc cat gaa gaa gar atc gtt Thr Glu Gln Leu Ala Xaa Leu Lys Lys Xaa His Glu Glu Glu Ile Val	302										
cat cat aga gaa gga gat tgagcgtctg cagaaagaaa ttgagcgcca His His Arg Glu Gly Asp 65	350										
taagcagaag atcaaaatgc tagaacatga tgattaagtg cacaccgtgt gccatagaat ggcacatgtc attgcccact tetgtgtaaa catggttetg gtttaactaa tatttgtetg tgtgctacta acagattata ataaattgtc atcagtgaaa aaaaaaaaa	410 470 519										
<210> 359 <211> 1028 <212> DNA <213> Homo sapiens											
<220> <221> CDS <222> 73948											
<pre>&lt;222&gt; /3948  &lt;221&gt; sig_peptide &lt;222&gt; 73159  &lt;223&gt; Von Heijne matrix</pre>											
<221> polyA_site <222> 10161028											
<pre>&lt;400&gt; 359 agctttaaag gcctggccag gggaggagca cagatatttt cctgtataat tccagaatgt cttcagagag cc atg cat gga ttg ctt cat tac ctt ttc cat acg aga aac</pre>	60 111										
cac acc ttc att gtc ctg cac ctg gtc ttg caa ggg atg gtt tat act His Thr Phe Ile Val Leu His Leu Val Leu Gln Gly Met Val Tyr Thr -15 -10 -5	159										
gag tac acc tgg gaa gta ttt ggc tac tgt cag gag ctg gag ttg tcc Glu Tyr Thr Trp Glu Val Phe Gly Tyr Cys Gln Glu Leu Glu Leu Ser 1 5 10 15	207										
ttg cat tac ctt ctt ctg ccc tat ctg ctg cta ggt gta aac ctg ttt Leu His Tyr Leu Leu Leu Pro Tyr Leu Leu Cly Val Asn Leu Phe 20 25 30	255										
ttt ttc acc ctg act tgt gga acc aat cct ggc att ata aca aaa gca Phe Phe Thr Leu Thr Cys Gly Thr Asn Pro Gly Ile Ile Thr Lys Ala 35 40 45	303										
aat gaa tta tta ttt ctt cat gtt tat gaa ttt gat gaa ktg atg ttt Asn Glu Leu Leu Phe Leu His Val Tyr Glu Phe Asp Glu Xaa Met Phe 50 55 60	351										
CCa aaa aac gtg agg tgc tct act tgt gat tta agg aaa cca gct cga Pro Lys Asn Val Arg Cys Ser Thr Cys Asp Leu Arg Lys Pro Ala Arg 65 70 75 80	399										
tcc aas cac tgc akt gtg tgt aac tgg tgt gtg cac cgt ttc rac cat Ser Xaa His Cys Xaa Val Cys Asn Trp Cys Val His Arg Phe Xaa His 85 90 95	447										

cac His	tgt Cys	gtt Val	tgg Trp 100	gtg Val	aac Asn	aac Asn	tgc Cys	atc Ile 105	Gly 999	gcc Ala	tgg Trp	aac Asn	atc Ile 110	agg Arg	tmc Xaa	495
ttc Phe	ctc Leu	atc Ile 115	tac	gtc Val	ttg Leu	acc Thr	ttg Leu 120	acg Thr	gcc Ala	tcg Ser	gct Ala	gcc Ala 125	acc Thr	gtc Val	gcc Ala	543
Ile	Val	Ser	Thr	Thr	Phe	Leu 135	Val	His	Leu	Val	Val 140	Met	tca Ser	Asp	Leu	591
Tyr 145	Gln	Glu	Thr	Tyr	Ile 150	Asp	Asp	Leu	Gly	His 155	Leu	His	gtt Val	Met	Asp 160	639
acg Thr	gtc Val	ttt Phe	ctt Leu	att Ile 165	cag Gln	tac Tyr	ctg Leu	ttc Phe	ctg Leu 170	act Thr	ttt Phe	cca Pro	cgg Arg	att Ile 175	gtc Val	687
ttc Phe	atg Met	ctg Leu	ggc Gly 180	Phe	gtc Val	gtg Val	gtt Val	ctg Leu 185	arc Xaa	ttc Phe	ctc Leu	ctg Leu	ggt Gly 190	ggc	tac Tyr	735
ctg Leu	ttg Leu	ttt Phe 195	gtc Val	ctg Leu	tat Tyr	ctg Leu	gcg Ala 200	gcc Ala	acc Thr	aac Asn	cag Gln	act Thr 205	act Thr	aac Asn	gag Glu	783
tgg Trp	tac Tyr 210	aga	rgt Xaa	gac Asp	tgg Trp	gcc Ala 215	tgg Trp	tgc Cys	cag Gln	cgt Arg	tgt Cys 220	ccc Pro	ctt Leu	gtg Val	gcc Ala	831
tgg Trp 225	cct Pro	ccg Pro	tca Ser	gca Ala	gar Glu 230	ccc Pro	caa Gln	gtc Val	cac His	cgg Arg 235	aac Asn	att Ile	cac His	tcc Ser	cat His 240	879
ggg	ctt	cgg Arg	arc Xaa	aac Asn 245	ctt Leu	caa Gln	gar Glu	atc Ile	ttt Phe 250	cta Leu	cct Pro	gcc Ala	ttt Phe	cca Pro 255	tgt Cys	927
			aag Lys 260	aaa Lys				cmag		atga	ctgc	ct t	tgag	ctgt	a	978
gtt	cccg	ttt	attt		at g	tgga	tcct	c gt	tttc	caaa	aaa	aaaa	aaa			1028

<210> 360 <211> 452 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 69..434 <221> sig_peptide <222> 69..236 <223> Von Heijne matrix score 4.90000009536743 seq FACVPGASPTTLA/FP <221> polyA_signal <222> 419..424 <221> polyA_site <222> 441..452

<400> 360
acagcgtgas tcgcccgcca gaagaatatg aaaaagcaga gcganctcgg ttaagggaaa
gcgccgag atg acg ggc ttt ctg ctg ccg ccc gca agc aga ggg act cgg
Met Thr Gly Phe Leu Leu Pro Pro Ala Ser Arg Gly Thr Arg

60

110

·						
-55		-50	-45			
aga tca tgc agc aga Arg Ser Cys Ser Arg	agc aga aaa a	agg caa acg	aga aga agg agg a	ac 158 Asn		
-40 cca agt agc ttt gtg	-35		-30			
Pro Ser Ser Phe Val	Ala Ser Cys I	Pro Thr Leu	Leu Pro Phe Ala (	:ys		
gtg cct gga gcc agt	ccc acc acg	ctc gcg ttt	cct cct gta ktg	etc 254		
Val Pro Gly Ala Ser	-5	1	5			
aca ggt ccc avc acc Thr Gly Pro Xaa Thr 10	Asp Gly Ile I	Pro Phe Ala 15	Leu Xaa Ser Ala A	Ala		
ggt ccc ttt tgt gct Gly Pro Phe Cys Ala	Ser Phe Pro	tca ggt avc Ser Gly Xaa	Leu Ser Pro Pro (	gly ggg 350		
25 cca ctc ccg.ggg gtg	30 agg ggg tta (	ccc ctt ccc	35 agt gtt ttt tat t	cc 398		
Pro Leu Pro Gly Val	Arg Gly Leu 1	Pro Leu Pro	Ser Val Phe Tyr S	Ser		
tgt ggg gct cac ccc Cys Gly Ala His Pro	aaa gta tta a Lys Val Leu 1 60	aaa gta gct Lys Val Ala 65	ttg taattcaaaa Leu	444		
aaaaaaaa				452		
<210> 361						
<211> 875 <212> DNA						
<213> Homo sapiens						
<220>						
<221> CDS <222> 628804						
<221> sig_peptide						
<222> 628711						
<223> Von Heijne matrix score 4.19999980926514						
seq LMPVIPALQ	)EAXA/GG					
<221> polyA_site <222> 864875						
<400> 361						
aaagatggac accgcgga gaaaccgctt tatcatco	igg aagacatatg ett gtgtatgtac	tagagtgtgt:	aggtcagaag gaaca	cctga 60 gaatg 120		
cttagttcaa tggctgaa	ac acagtcgaaa	agaatactgt	gaattatgca agcac	agatt 180		
tgcttttaca ccaattta	tt ctccagatat	gccttcacgg	cttccaattc aagac	atatt 240 cttqt 300		
ggcctttgca tggttggg	ag tigticcict	tacagcatgt	gagtattcat gcctc			
ggagttattt aaacattg	ca taactactta	atattataaa	gcaatattgc atcat	attat 420		
tatttgactg atgtttag araaratgtt catcggaa	itt atttgatgtc	agagtgtcat	gtattaggaa agcct	tactt 480 tqtqq 540		
gaaaraacac agcataca	aga atggctaacc	: atgaaagttc	atgaaagcgt kgaaa	aaatc 600		
aaatcaaatc ataattag	jat atgaagt at Me	et Leu Xaa Le	tt tca agg gct ac eu Ser Arg Ala Th 25	a aaa 654 r Lys -20		
rac ggc cgg gcg cgg Xaa Gly Arg Ala Arg	g Trp Leu Met	cct gta atc Pro Val Ile	cca gca ctt cag Pro Ala Leu Gln	gag 702		
gcc gan gca ggc gga		-10 cag gag ttt	-5 gaa act agc ctg	gcc 750		

aac atg gag act gag gca gga gaa ttg ctt aaa ccc agg agg cgg agg 798 Asm Met Glu Thr Glu Ala Gly Glu Leu Leu Lys Pro Arg Arg Arg Arg 15 20 25  ttg car tgaactgaga tcgcaccact gcactccage ttgggcaaca gagcaagact Leu Gln 30  ttgtctcgca aaaaaaaaaa a 875  <2210 > 362 <2211 > 531 <2212 > DNA <2213 > Homo sapiens  <2220 > <2212 CDS <2221 > CDS <2222 > 70366 <2221 > sig_peptide <222 > 70108 <2232 > Von Heijne matrix score 3.5 seq MHLLSNWANPASS/RR  <2212 > polyA_signal <2222 + 496501  <2212 > polyA_site <2223 > 521531  <400 > 362 aagtggcat ggcggataca gcgactacag catcggcgc ggcggctagt gccgctagcg cctcgagcg atg cac ctc ctt tcc aac tgg gca aac ccc gct tcc agc aga Met His Leu Leu Ser Asn Trp Ala Asn Pro Ala Ser Ser Arg cgt cct tct atg gcc gct tca ggc act tct tgg ata tca tcg acc ctc Arg Pro Ser Met Ala Ala Ser Gly Thr Ser Trp 1le Ser Ser Thr Leu 5 10 gca cac tct ttg tca ctg aga gac gtc tca gag agg ctg tcg agc tgc Ala His Ser Leu Ser Leu Arg Asp Val Ser Glu Arg Leu Cys Ser Cys 20 25 10 12 13 13 13 14 15 15 16 17 17 18 18 18 19 19 19 10 10 11 11 11 11 11 11 11 11 11 11 11	Ala Xaa Ala Gly Gly Ser Arg Gly Gln Glu Phe Glu Thr Ser Leu Ala	
ttg car tgaactgaga tcgcaccact gcactccagc ttgggcaaca gagcaagact Leu Gln 30 ttgtctcgca aaaaaaaaaa a 875  <210> 362 <221> 531 <221> DNA <213> Homo sapiens  <222> 70366  <222> 70366  <222> 70366  <221> sig_peptide <222> 70366  <221> some HillsinwanPass/RR  <221> polyA_signal <222> 496501  <221> polyA_signal <222> 521531  <400> 362 aagtggccat ggcggataca gcgactacag catcggcggc ggcggctagt gccgctagcg cctcgagcg atg cac ctc ctt tcc aac tgg gca aac ccc gct tcc agc aga Met His Leu Leu Ser Asn Trp Ala Asn Pro Ala Ser Ser Arg  -10 cgt cct tct atg gcc gct tca ggc act tct tgg ata tca tcg acc ctc Arg Pro Ser Met Ala Ala Ser Gly Thr Ser Trp 11e Ser Ser Thr Leu 5 10 gca cac tct ttg tca ctg aga gac gtc tca gag agg ctg tgc agg tgc tha His Ser Leu Arg App Val Ser Glu Arg Leu Cys Ser Cys 20 tgg agg act ata agc atg gga ccc tgc gcc ggg gg tta cca atg aac Trp Arg Thr Ile Ser Met Gly Pro Cys Ala Arg Gly Ser Pro Met Asn 35 40 agc tct gga gtg cac aga aaa tca agc agg cta ttc tac atc cgg aca Ser Ser Gly Val His Arg Lys Ser Ser Arg Leu Phe Tyr Ile Arg Thr 50 cca atg aga aga tct tca tgc cat tta gaa tgt crg gtt ata ttc ctt Pro Met Arg Arg Ser Ser Cys His Leu Glu Cys Xaa Val Ile Phe Leu 70 75 80 ttttaratgt ctaactttat gttattgctc acgggtattt gactgaattg ttgatttagg ttttaratgt ctaactttat gttattgcc acgggtattt gactgaattg ttgatttagg ttttaratgt ctaactttat gttattgcc acgggtattt gactgaattg ttgatttagg ttttaratgt ctaactttat gttattgcc acgggtatt acttat accacaaaa  50 10 51 50 51 50 60 52 60 53 60 54 65 60 55 60 56 65 60 56 65 60 57 60 58 61 61 61 61 61 61 61 61 61 61 61 61 61	Asn Met Glu Thr Glu Ala Gly Glu Leu Leu Lys Pro Arg Arg Arg	798
c210> 362 c211> 531 c212> DNA c213> Homo sapiens  c220> c221> CDS c221> 70366  c221> 70108 c222> 70108 c222> 70108 c221> polyA_signal c222> 496501  c221> polyA_site c222> 521531  c400> 362 catt ct at a gc ac ctc ctt tcc aac tag gca aac ccc gct tcc age aga	ttg car tgaactgaga tcgcaccact gcactccagc ttgggcaaca gagcaagact	854
<pre>&lt;211&gt; 531 </pre> <pre>&lt;220&gt; &lt;221&gt; CDS </pre> <pre>&lt;221&gt; Sig_peptide </pre> <pre>&lt;222&gt; 70108 </pre> <pre>&lt;221&gt; polyA_signal </pre> <pre>&lt;221&gt; polyA_signal </pre> <pre>&lt;221&gt; 521531 </pre> <pre>&lt;221&gt; polyA_site </pre> <pre>&lt;222&gt; 521531 </pre> <pre>&lt;221&gt; polyA_site </pre> <pre>&lt;222&gt; 521531 </pre> <pre>&lt;400&gt; 362 aagtagaccat gacggataca gacatacag catcagacgac gacagacagacagacagagatagacatagagacat cac ctc ctt tcc aac tag gaca aac ccc gct tcc aga aga</pre>		875
<pre>&lt;211&gt; 531 </pre> <pre>&lt;220&gt; &lt;221&gt; CDS </pre> <pre>&lt;221&gt; Sig_Deptide </pre> <pre>&lt;222&gt; 70108 </pre> <pre>&lt;221&gt; polyA_signal </pre> <pre>&lt;221&gt; polyA_signal </pre> <pre>&lt;222&gt; 521531 </pre> <pre>&lt;221&gt; polyA_signal </pre> <pre>&lt;222&gt; 521531 </pre> <pre>&lt;400&gt; 362 </pre> <pre>aagtggccat ggcggataca gcgactacag catcggcggc ggcggctagt gccgctagcg ccctgagcg atg cac ctc ctt tcc aac tgg gca aac ccc gct tcc agc aga <pre>Met His Leu Leu Ser Asn Trp Ala Asn Pro Ala Ser Ser Arg <pre>-10</pre> <pre>-5</pre> <pre>1</pre> <pre>cgt cct tct atg gcc gct tca ggc act tct tgg ata tca tcg acc ctc <pre>Arg Pro Ser Met Ala Ala Ser Gly Thr Ser Trp Ile Ser Ser Thr Leu <pre>5</pre> <pre>gc acac tct ttg tca ctg aga gac gtc tca gag agg ctg tgc agc tgc Ala His Ser Leu Ser Leu Arg Asp Val Ser Glu Arg Leu Cys Ser Cys 20 <pre>20</pre> <pre>tgg agg act ata agc atg gga ccc tgc gcc cgg ggg tca cca atg aac Trp Arg Thr Ile Ser Met Gly Pro Cys Ala Arg Gly Ser Pro Met Asn 35 40 40 45 agc tct gga gg cac aga aga tct tca tga aga gtc tt tac acc cgg aca Ser Ser Gly Val His Arg Lys Ser Ser Arg Leu Phe Tyr Ile Arg Thr 50 51 52 53 540 65 540 65 65 66 67 67 68 67 68 67 68 67 68 68 68 69 69 60 60 60 60 60 60 60 60 60 60 60 60 60</pre></pre></pre></pre></pre></pre>		
<pre>&lt;212&gt; DNA &lt;213&gt; Homo sapiens  &lt;220&gt; &lt;221&gt; CDS &lt;222&gt; 70366  &lt;221&gt; sig_peptide &lt;222&gt; 70108 &lt;221&gt; Son Heljne matrix</pre>		
<pre>&lt;220&gt; &lt;221&gt; CDS &lt;222&gt; 70366 </pre> <pre>&lt;221&gt; sig_peptide &lt;222&gt; 70108 </pre> <pre>&lt;223&gt; Von Heijne matrix</pre>		
<pre>&lt;221&gt; CDS &lt;222&gt; 70366  &lt;221&gt; sig_peptide &lt;222&gt; 70108 &lt;223&gt; Von Heijne matrix</pre>	<213> Homo sapiens	
<pre>&lt;222&gt; 70366  &lt;221&gt; sig_peptide &lt;222&gt; 70108 &lt;223&gt; Von Heijne matrix</pre>		
<pre>&lt;221&gt; sig_peptide &lt;222&gt; 70108 &lt;223&gt; Von Heijne matrix</pre>		
<pre>&lt;222&gt; 70108 &lt;223&gt; Von Heijne matrix     score 3.5     seq MHLLSNWANPASS/RR  &lt;221&gt; polyA signal &lt;222&gt; 496501  </pre> <pre>&lt;221&gt; polyA site &lt;222&gt; 521531  &lt;400&gt; 362     aagtggccat ggcggataca gcgactacag catcggcggc ggcggctagt gccgctagcg     aagtggccat ggcggataca gcgactacag catcggcggc ggcggctagt gccgctagcg     aegtggcat gac cctc ctt tcc aac tgg gca aac ccc gct tcc aga aga</pre>		
<pre>&lt;223&gt; Von Heijne matrix</pre>		
<pre> &lt;221&gt; polyA_signal &lt;222&gt; 496501  &lt;221&gt; polyA_site &lt;222&gt; 521531  &lt;400&gt; 362 aagtggccat ggcggataca gcgactacag catcggcgc ggcggctagt gccgctagcg cctcgagcg atg cac ctc ctt tcc aac tgg gca aac ccc gct tcc agc aga Met His Leu Leu Ser Asn Trp Ala Asn Pro Ala Ser Ser Arg</pre>		
<pre>&lt;221&gt; polyA_signal &lt;222&gt; 496501  &lt;221&gt; polyA_site &lt;222&gt; 521531  &lt;400&gt; 362 aagtggccat ggcggataca gcgactacag catcggcggc ggcggctagt gccgctagcg 60 cctcgagcg atg cac ctc ctt tcc aac tgg gca aac ccc gct tcc agc aga Met His Leu Leu Ser Asn Trp Ala Asn Pro Ala Ser Ser Arg</pre>		
<pre>&lt;222&gt; 496501  &lt;221&gt; polyA_site &lt;222&gt; 521531  &lt;400&gt; 362 aagtggccat ggcggataca gcgactacag catcggcggc ggcggctagt gccgctagcg 60 cctcgagcg atg cac ctc ctt tcc aac tgg gca aac ccc gct tcc agc aga 111</pre>	seq MHLLSNWANPASS/RR	
<pre>&lt;400&gt; 362 aagtggccat ggcggataca gcgactacag catcggcggc ggcggctagt gccgctagcg cctcgagcg atg cac ctc ctt tcc aac tgg gca aac ccc gct tcc agc aga</pre>		
aagtggccat ggcggataca gcgactacag catcggcggc ggcggctagt gccgctagcg 60 cctcgagcg atg cac ctc ctt tcc aac tgg gca aac ccc gct tcc agc aga 111  Met His Leu Leu Ser Asn Trp Ala Asn Pro Ala Ser Ser Arg -10 -5 1  cgt cct tct atg gcc gct tca ggc act tct tgg ata tca tcg acc ctc 159 Arg Pro Ser Met Ala Ala Ser Gly Thr Ser Trp Ile Ser Ser Thr Leu 5 10 15  gca cac tct ttg tca ctg aga gac gtc tca gag agg ctg tgc agc tgc 207 Ala His Ser Leu Ser Leu Arg Asp Val Ser Glu Arg Leu Cys Ser Cys 20 25 30  tgg agg act ata agc atg gga ccc tgc gcc cgg ggg tca cca atg aac 255 Trp Arg Thr Ile Ser Met Gly Pro Cys Ala Arg Gly Ser Pro Met Asn 35 40 45  agc tct gga gtg cac aga aaa tca agc agg cta ttc tac atc cgg aca 303 Ser Ser Gly Val His Arg Lys Ser Ser Arg Leu Phe Tyr Ile Arg Thr 50 55 60 65  cca atg aga aga tct tca tgc cat tta gaa tgt crg gtt ata ttc ctt 351 Pro Met Arg Arg Ser Ser Cys His Leu Glu Cys Xaa Val Ile Phe Leu 70 75 80  tttg gga cgc caa ttg taaktgttac cttcaaagga tttccttttc taaaaaaatta 406 ataagtcaat tcctggaggg aaattaccaa ataaaatgat atgtatttct taccacaaaa 526  ttttaratgt ctaactttat gttattgctc acgggtattt gactgaattg ttgatttagg 466 ataagtcaat tcctggaggg aaattaccaa ataaaatgat atgtatttct taccacaaaa 526		
aagtggccat ggcggataca gcgactacag catcggcggc ggcggctagt gccgctagcg cctcgagcg atg cac ctc ctt tcc aac tgg gca aac ccc gct tcc agc aga  Met His Leu Leu Ser Asn Trp Ala Asn Pro Ala Ser Ser Arg  -10 -5 1  cgt cct tct atg gcc gct tca ggc act tct tgg ata tca tcg acc ctc  Arg Pro Ser Met Ala Ala Ser Gly Thr Ser Trp Ile Ser Ser Thr Leu  5 10 15  gca cac tct ttg tca ctg aga gac gtc tca gag agg ctg tgc agc tgc  Ala His Ser Leu Ser Leu Arg Asp Val Ser Glu Arg Leu Cys Ser Cys  20 25 30  tgg agg act ata agc atg gga ccc tgc gcc cgg ggg tca cca atg aac  Trp Arg Thr Ile Ser Met Gly Pro Cys Ala Arg Gly Ser Pro Met Asn  35 40 45  agc tct gga gtg cac aga aaa tca agc agg cta ttc tac atc cgg aca  Ser Ser Gly Val His Arg Lys Ser Ser Arg Leu Phe Tyr Ile Arg Thr  50 55 60 65  cca atg aga aga tct tca tgc cat tta gaa tgt crg gtt ata ttc ctt  Pro Met Arg Arg Ser Ser Cys His Leu Glu Cys Xaa Val Ile Phe Leu  70 75 80  ttg gga cgc caa ttg taaktgttac cttcaaagga tttccttttc taaaaaaatta  406  Leu Gly Arg Gln Leu  85  ttttaratgt ctaactttat gttattgctc acgggtattt gactgaattg ttgatttagg  ataagtcaat tcctggaggg aaattaccaa ataaaatgat atgtatttct taccacaaaaa  526  526  527  530  640  650  651  652  653  654  655  656  657  657  657  658  658  659  659  659  650  650  650  650  650		
Met His Leu Leu Ser Asn Trp Ala Asn Pro Ala Ser Ser Arg  -10 -5 1  cgt cct tct atg gcc gct tca ggc act tct tgg ata tca tcg acc ctc Arg Pro Ser Met Ala Ala Ser Gly Thr Ser Trp Ile Ser Ser Thr Leu  5 10 15  gca cac tct ttg tca ctg aga gac gtc tca gag agg ctg tgc agc tgc Ala His Ser Leu Ser Leu Arg Asp Val Ser Glu Arg Leu Cys Ser Cys  20 25 30  tgg agg act ata agc atg gga ccc tgc ggc ggg tca cca atg aac Trp Arg Thr Ile Ser Met Gly Pro Cys Ala Arg Gly Ser Pro Met Asn  35  40  36  37  38  39  40  30  Ser Ser Gly Val His Arg Lys Ser Ser Arg Leu Phe Tyr Ile Arg Thr  50  55 60 65  55 60 65  56  65  65  65		60
Met His Leu Leu Ser Asn Trp Ala Asn Pro Ala Ser Ser Arg  -10 -5 1  cgt cct tct atg gcc gct tca ggc act tct tgg ata tca tcg acc ctc Arg Pro Ser Met Ala Ala Ser Gly Thr Ser Trp Ile Ser Ser Thr Leu  5 10 15  gca cac tct ttg tca ctg aga gac gtc tca gag agg ctg tgc agc tgc Ala His Ser Leu Ser Leu Arg Asp Val Ser Glu Arg Leu Cys Ser Cys  20 25 30  tgg agg act ata agc atg gga ccc tgc gcc cgg ggg tca cca atg aac Trp Arg Thr Ile Ser Met Gly Pro Cys Ala Arg Gly Ser Pro Met Asn  35 40 45  agc tct gga gtg cac aga aaa tca agc agg cta ttc tac atc cgg aca Ser Ser Gly Val His Arg Lys Ser Ser Arg Leu Phe Tyr Ile Arg Thr 50 55 60 65 cca atg aga aga tct tca tgc cat tta gaa tgt crg gtt ata ttc ctt Pro Met Arg Arg Ser Ser Cys His Leu Glu Cys Xaa Val Ile Phe Leu  70 75 80  ttt gga cgc caa ttg taaktgttac cttcaaagga tttccttttc taaaaaatta 406 Leu Gly Arg Gln Leu  85  ttttaratgt ctaactttat gttattgctc acgggtattt gactgaattg ttgatttagg 466 ataagtcaat tcctggaggg aaattaccaa ataaaatgat atgtatttct taccacaaaa	cctcgagcg atg cac ctc ctt tcc aac tgg gca aac ccc gct tcc agc aga	111
cgt cct tct atg gcc gct tca ggc act tct tgg ata tca tcg acc ctc  Arg Pro Ser Met Ala Ala Ser Gly Thr Ser Trp Ile Ser Ser Thr Leu  5 10 15  gca cac tct ttg tca ctg aga gac gtc tca gag agg ctg tgc agc tgc  Ala His Ser Leu Ser Leu Arg Asp Val Ser Glu Arg Leu Cys Ser Cys  20 25 30  tgg agg act ata agc atg gga ccc tgc gcc cgg ggg tca cca atg aac 255  Trp Arg Thr Ile Ser Met Gly Pro Cys Ala Arg Gly Ser Pro Met Asn  35 40 45  agc tct gga gtg cac aga aaa tca agc agg cta ttc tac atc cgg aca 303  Ser Ser Gly Val His Arg Lys Ser Ser Arg Leu Phe Tyr Ile Arg Thr  50 55 60  cca atg aga aga tct tca tgc cat tta gaa tgt crg gtt ata ttc ctt  Pro Met Arg Arg Ser Ser Cys His Leu Glu Cys Xaa Val Ile Phe Leu  70 75 80  ttg gga cgc caa ttg taaktgttac cttcaaagga tttccttttc taaaaaatta 406  Leu Gly Arg Gln Leu  85  ttttaratgt ctaactttat gttattgctc acgggtattt gactgaattg ttgatttagg 466  ataagtcaat tcctggaggg aaattaccaa ataaaatgat atgtatttct taccacaaaa		
Arg Pro Ser Met Ala Ala Ser Gly Thr Ser Trp Ile Ser Ser Thr Leu  5 10 15  gca cac tct ttg tca ctg aga gac gtc tca gag agg ctg tgc agc tgc 207  Ala His Ser Leu Ser Leu Arg Asp Val Ser Glu Arg Leu Cys Ser Cys  20 25 30  tgg agg act ata agc atg gga ccc tgc gcc cgg ggg tca cca atg aac 255  Trp Arg Thr Ile Ser Met Gly Pro Cys Ala Arg Gly Ser Pro Met Asn  35 40 45  agc tct gga gtg cac aga aaa tca agc agg cta ttc tac atc cgg aca 303  Ser Ser Gly Val His Arg Lys Ser Ser Arg Leu Phe Tyr Ile Arg Thr  50 55 60 65  cca atg aga aga tct tca tgc cat tta gaa tgt crg gtt ata ttc ctt 351  Pro Met Arg Arg Ser Ser Cys His Leu Glu Cys Xaa Val Ile Phe Leu  70 75 80  ttg gga cgc caa ttg taaktgttac cttcaaagga tttccttttc taaaaaatta 406  Leu Gly Arg Gln Leu  85  ttttaratgt ctaactttat gttattgctc acgggtattt gactgaattg ttgatttagg 466  ataagtcaat tcctggaggg aaattaccaa ataaaatgat atgtatttct taccacaaaa	-10	159
gca cac tct ttg tca ctg aga gac gtc tca gag agg ctg tgc agc tgc  Ala His Ser Leu Ser Leu Arg Asp Val Ser Glu Arg Leu Cys Ser Cys  20 25 30  tgg agg act ata agc atg gga ccc tgc gcc cgg ggg tca cca atg aac  Trp Arg Thr Ile Ser Met Gly Pro Cys Ala Arg Gly Ser Pro Met Asn  35 40 45  agc tct gga gtg cac aga aaa tca agc agg cta ttc tac atc cgg aca  Ser Ser Gly Val His Arg Lys Ser Ser Arg Leu Phe Tyr Ile Arg Thr  50 55 60 65  cca atg aga aga tct tca tgc cat tta gaa tgt crg gtt ata ttc ctt  Pro Met Arg Arg Ser Ser Cys His Leu Glu Cys Xaa Val Ile Phe Leu  70 75 80  ttg gga cgc caa ttg taaktgttac cttcaaagga tttccttttc taaaaaatta  406  Leu Gly Arg Gln Leu  85  ttttaratgt ctaactttat gttattgctc acgggtattt gactgaattg ttgatttagg  466  ataagtcaat tcctggaggg aaattaccaa ataaaaatgat atgtatttct taccacaaaa	Arg Pro Ser Met Ala Ala Ser Gly Thr Ser Trp Ile Ser Ser Thr Leu	
tgg agg act ata agc atg gga ccc tgc gcc cgg ggg tca cca atg aac  Trp Arg Thr Ile Ser Met Gly Pro Cys Ala Arg Gly Ser Pro Met Asn  35  40  45  agc tct gga gtg cac aga aaa tca agc agg cta ttc tac atc cgg aca  Ser Ser Gly Val His Arg Lys Ser Ser Arg Leu Phe Tyr Ile Arg Thr  50  55  60  65  cca atg aga aga tct tca tgc cat tta gaa tgt crg gtt ata ttc ctt  Pro Met Arg Arg Ser Ser Cys His Leu Glu Cys Xaa Val Ile Phe Leu  70  75  80  ttg gga cgc caa ttg taaktgttac cttcaaagga tttccttttc taaaaaatta  406  Leu Gly Arg Gln Leu  85  ttttaratgt ctaactttat gttattgctc acgggtattt gactgaattg ttgatttagg  466  ataagtcaat tcctggaggg aaattaccaa ataaaatgat atgtatttct taccacaaaa	gca cac tot ttg toa otg aga gao gto toa gag agg otg tgc ago tgc	207
tgg agg act ata agc atg gga ccc tgc gcc cgg ggg tca cca atg aac  Trp Arg Thr Ile Ser Met Gly Pro Cys Ala Arg Gly Ser Pro Met Asn  35  40  45  agc tct gga gtg cac aga aaa tca agc agg cta ttc tac atc cgg aca  Ser Ser Gly Val His Arg Lys Ser Ser Arg Leu Phe Tyr Ile Arg Thr  50  55  60  65  cca atg aga aga tct tca tgc cat tta gaa tgt crg gtt ata ttc ctt  Pro Met Arg Arg Ser Ser Cys His Leu Glu Cys Xaa Val Ile Phe Leu  70  75  80  ttg gga cgc caa ttg taaktgttac cttcaaagga tttccttttc taaaaaatta  406  Leu Gly Arg Gln Leu  85  ttttaratgt ctaactttat gttattgctc acgggtattt gactgaattg ttgatttagg  466  ataagtcaat tcctggaggg aaattaccaa ataaaatgat atgtatttct taccacaaaa		
Trp Arg Thr Ile Ser Met Gly Pro Cys Ala Arg Gly Ser Pro Met Asn 35 40 45  agc tct gga gtg cac aga aaa tca agc agg cta ttc tac atc cgg aca 303  Ser Ser Gly Val His Arg Lys Ser Ser Arg Leu Phe Tyr Ile Arg Thr 50 55 60 65  cca atg aga aga tct tca tgc cat tta gaa tgt crg gtt ata ttc ctt 351  Pro Met Arg Arg Ser Ser Cys His Leu Glu Cys Xaa Val Ile Phe Leu 70 75 80  ttg gga cgc caa ttg taaktgttac cttcaaagga tttccttttc taaaaaatta 406  Leu Gly Arg Gln Leu 85  ttttaratgt ctaactttat gttattgctc acgggtattt gactgaattg ttgatttagg 466 ataagtcaat tcctggaggg aaattaccaa ataaaatgat atgtatttct taccacaaaa 526		255
agc tct gga gtg cac aga aaa tca agc agg cta ttc tac atc cgg aca  Ser Ser Gly Val His Arg Lys Ser Ser Arg Leu Phe Tyr Ile Arg Thr 50 55 60 65  cca atg aga aga tct tca tgc cat tta gaa tgt crg gtt ata ttc ctt 351  Pro Met Arg Arg Ser Ser Cys His Leu Glu Cys Xaa Val Ile Phe Leu 70 75 80  ttg gga cgc caa ttg taaktgttac cttcaaagga tttccttttc taaaaaatta 406  Leu Gly Arg Gln Leu 85  ttttaratgt ctaactttat gttattgctc acgggtattt gactgaattg ttgatttagg 466 ataagtcaat tcctggaggg aaattaccaa ataaaatgat atgtatttct taccacaaaa 526	Trp Arg Thr Ile Ser Met Gly Pro Cys Ala Arg Gly Ser Pro Met Asn	
Ser Ser Gly Val His Arg Lys Ser Ser Arg Leu Phe Tyr Ile Arg Thr  50 55 60 65  cca atg aga aga tct tca tgc cat tta gaa tgt crg gtt ata ttc ctt 351  Pro Met Arg Arg Ser Ser Cys His Leu Glu Cys Xaa Val Ile Phe Leu  70 75 80  ttg gga cgc caa ttg taaktgttac cttcaaagga tttccttttc taaaaaatta 406  Leu Gly Arg Gln Leu  85  ttttaratgt ctaactttat gttattgctc acgggtattt gactgaattg ttgatttagg 466  ataagtcaat tcctggaggg aaattaccaa ataaaatgat atgtatttct taccacaaaa 526		303
50 55 60 65  cca atg aga aga tct tca tgc cat tta gaa tgt crg gtt ata ttc ctt 351  Pro Met Arg Arg Ser Ser Cys His Leu Glu Cys Xaa Val Ile Phe Leu  70 75 80  ttg gga cgc caa ttg taaktgttac cttcaaagga tttccttttc taaaaaatta 406  Leu Gly Arg Gln Leu  85  ttttaratgt ctaactttat gttattgctc acgggtattt gactgaattg ttgatttagg 466 ataagtcaat tcctggaggg aaattaccaa ataaaatgat atgtatttct taccacaaaa 526	Ser Ser Gly Val His Arg Lys Ser Ser Arg Leu Phe Tyr Ile Arg Thr	
Pro Met Arg Arg Ser Ser Cys His Leu Glu Cys Xaa Val Ile Phe Leu 70 75 80  ttg gga cgc caa ttg taaktgttac cttcaaagga tttccttttc taaaaaatta 406 Leu Gly Arg Gln Leu 85  ttttaratgt ctaactttat gttattgctc acgggtattt gactgaattg ttgatttagg 466 ataagtcaat tcctggaggg aaattaccaa ataaaatgat atgtatttct taccacaaaa 526	50 55 60 65	253
70 75 80  ttg gga cgc caa ttg taaktgttac cttcaaagga tttccttttc taaaaaatta 406  Leu Gly Arg Gln Leu  85  ttttaratgt ctaactttat gttattgctc acgggtattt gactgaattg ttgatttagg 466 ataagtcaat tcctggaggg aaattaccaa ataaaatgat atgtatttct taccacaaaa 526	cca atg aga aga tot toa tgo cat tta gaa tgt org gtt ata tto ctt	351
Leu Gly Arg Gln Leu  85  ttttaratgt ctaactttat gttattgctc acgggtattt gactgaattg ttgatttagg 466 ataagtcaat tcctggaggg aaattaccaa ataaaatgat atgtatttct taccacaaaa 526		
ttttaratgt ctaactttat gttattgctc acgggtattt gactgaattg ttgatttagg 466 ataagtcaat tcctggaggg aaattaccaa ataaaatgat atgtatttct taccacaaaa 526	Leu Gly Arg Gln Leu	406
ataagtcaat tcctggaggg aaattaccaa ataaaatgat atgtatttct taccacaaaa 526		466
	ataagtcaat tootggaggg aaattaccaa ataaaatgat atgtatttot taccacaaaa	526

<210> 363 <211> 1244 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 70..366 <221> sig peptide <222> 70..108 <223> Von Heijne matrix score 3.5 seq MHLLSNWANPASS/RR <221> polyA_site <222> 1233..1244 <400> 363 aagtggccat ggcggataca gcgactacag catcggcggc ggcggctagt gccgctagcg cetegageg atg cae etc ett tee aac tgg gea aac eec get tee age aga Met His Leu Leu Ser Asn Trp Ala Asn Pro Ala Ser Ser Arg -5 -10 159 cgt cct tct atg gcc gct tca ggc act tct tgg ata tca tcg acc ctc Arg Pro Ser Met Ala Ala Ser Gly Thr Ser Trp Ile Ser Ser Thr Leu 5 207 gca cac tot ttg tca ctg aga gac gtc tca gag agg ctg tgc agc tgc Ala His Ser Leu Ser Leu Arg Asp Val Ser Glu Arg Leu Cys Ser Cys 25 30 255 tgg agg act ata agc atg gga ccc tgc gcc cgg ggg tca cca atg aac Trp Arg Thr Ile Ser Met Gly Pro Cys Ala Arg Gly Ser Pro Met Asn 35 40 45 303 age tet gga gtg cae aga aaa tea age agg eta tte tae ate egg aca Ser Ser Gly Val His Arg Lys Ser Ser Arg Leu Phe Tyr Ile Arg Thr 60 55 cca atg aga aga tot toa tgc cat tta raa tgt cag gtt ata ttc ctt 351 Pro Met Arg Arg Ser Ser Cys His Leu Xaa Cys Gln Val Ile Phe Leu 75 406 ttg gga cgc caa ttg tagtcggtct tctcttgccc aaccagacac tggcatccac Leu Gly Arg Gln Leu 85 tgtcttctgg cagtggctga accagagcca caatgcctgt gtcaactatg caaaccgcaa tgcraccaag ccttcacctg catccaagtt catccaggga tacctgggag ctgtcatcag 586 cgccgtctcc attgctgtgg gccttatktc ctggttcaga aagccaacaa gttcacccca 646 gccacccgcc ttctcatcca gaggtttgtg ccgttccctg ctgtagccag tgccaatatc tgcaatgtgg tcctgatgcg gtacggggag ctggaggaag ggattgatgt cctggacagc 706 gatggcaacc tcgtgggctc ctccaagatc gcagcccgac acgccctgct ggagacggcg 766 ctgacgcgag tggtcctgcc catgcccatc ctggtgctac ccccgatcgt catgtccatg 826 ctggagaaga cggctctcct gcaggcacgc ccccggctgc tcctccctgt gcaaagcctc 886 gtgtgcctgg cagccttcgg cctggccctg ccgctggcca tcagcctctt cccgcaaatg 946 1006 tcagagattg aaacatccca attagagccg gagatagccc aggccacgag cagccggaca gtggtgtaca acaaggggtt gtgagtgtgg tcagcggcct ggggacggag cactgtgcag 1066 ccggggagct gaggggcarg gccgtagact cacggctgca cctgcaggga gcagcacgcc 1126 1186 aaccccagca gtcctgggcc ccctgggaga gtgctcaacc tacagtggag ggagactgac ccattcacat tttaacatag gcaagaggag ttctaacaca tttcgtacaa aaaaaaaa 1244

<210> 364

<211> 631

<212> DNA

<213> Homo sapiens

PCT/IB98/02122

```
<220>
<221> CDS
<222> 111..434
<221> sig_peptide
<222> 111..185
<223> Von Heijne matrix
      score 3.90000009536743
      seq WIAAVTIAAGTAA/IG
<221> polyA_site
<222> 618..631
<400> 364
                                                                      60
aatcgcggag tcggtgcttt agtacgccgc tggcaccttt actctcgccg gccgcgcgaa
                                                                      116
cccgtttgag ctcggtatcc tagtgcacac gccttgcaag cgacggcgcc atg agt
                                                        Met Ser
                                                                      164
ctg act tcc agt tcc agc gta cga gtt gaa tgg atc gca gca gtt acc
Leu Thr Ser Ser Ser Ser Val Arg Val Glu Trp Ile Ala Ala Val Thr
            -20
                                 -15
att gct gct ggg aca gct gca att ggt tat cta gct tac aaa aga ttt
                                                                      212
Ile Ala Ala Gly Thr Ala Ala Ile Gly Tyr Leu Ala Tyr Lys Arg Phe
                                                                      260
tat gtt aaa gat cat cga aat aaa gct atg ata aac ctt cac atc cag
Tyr Val Lys Asp His Arg Asn Lys Ala Met Ile Asn Leu His Ile Gln
10
                    15
                                        20
aaa gac aac ccc aag ata gta cat gct ttt gac atg gag gat ttg gga
                                                                      308
Lys Asp Asn Pro Lys Ile Val His Ala Phe Asp Met Glu Asp Leu Gly
                                    35
                30
                                                                      356
gat aaa get gtg tac tgc egt tgt tgg agg tee aaa aag tte eea tte
Asp Lys Ala Val Tyr Cys Arg Cys Trp Arg Ser Lys Lys Phe Pro Phe
                                50
                                                                      404
tgt gat ggg gct cac aca aaa cat aac gaa gag act gga gac aat gtg
Cys Asp Gly Ala His Thr Lys His Asn Glu Glu Thr Gly Asp Asn Val
                            65
                                                70
                                                                      454
ggc cct ctg atc atc aag aaa aaa gaa act taaatggaca cttttgatgc
Gly Pro Leu Ile Ile Lys Lys Lys Glu Thr
                        80
                                                                      514
tgcaaatcag cttgtcgtga agttacctga ttgtttaatt araatgacta ccacctctgt
                                                                      574
ctgattcacc ttcgctggat tctaaatgtg gtatattgcm aactgcagct ttcacattta
tggcatttgt cttgttgaaa catcgtggtg cacatttgtt taaacaaaaa aaaaaaa
```

<210> 365

<211> 781

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 19..567

<221> sig_peptide

<222> 19..63

<223> Von Heijne matrix
 score 8.39999961853027
 seq AMWLLCVALAVLA/WG

<221> polyA_signal

<222> 749..754 <221> polyA site <222> 771..781 <400> 365 aagtgetget tacceate atg gaa gea atg tgg etc etg tgt gtg geg ttg Met Glu Ala Met Trp Leu Leu Cys Val Ala Leu -10 -15 geg gtc ttg gea tgg ggc ttc ctc tgg gtt tgg gac tcc tca gaa cga 99 Ala Val Leu Ala Trp Gly Phe Leu Trp Val Trp Asp Ser Ser Glu Arg 1 atg aag agt cgg gag cag gga aga cgg ctg gga gcc gaa agc cgg acc 147 Met Lys Ser Arg Glu Gln Gly Arg Arg Leu Gly Ala Glu Ser Arg Thr 25 20 195 ctg ctg gtc ata gcg cac cct gac gat gaa gcc atg ttt ttt gct ccc Leu Leu Val Ile Ala His Pro Asp Asp Glu Ala Met Phe Phe Ala Pro 35 40 243 aca gtg cta ggc ttg gcc cgc cta agg cac tgg gtg tac ctg ctt tgc Thr Val Leu Gly Leu Ala Arg Leu Arg His Trp Val Tyr Leu Leu Cys 55 50 ttc tct gca gga aat tac tac aat caa gga gag act cgt aag aaa gaa 291 Phe Ser Ala Gly Asn Tyr Tyr Asn Gln Gly Glu Thr Arg Lys Lys Glu 70 65 ctt ttg car agc tgt gat gtt ttg ggg att cca ctc tcc agt gta atg 339 Leu Leu Gln Ser Cys Asp Val Leu Gly Ile Pro Leu Ser Ser Val Met 85 90 387 att att gac aac agg gat ttc cca rat gac cca ggc atg cag tgg gac Ile Ile Asp Asn Arg Asp Phe Pro Xaa Asp Pro Gly Met Gln Trp Asp 95 100 435 aca rag cac gtg gcc ara gtc ctc ctt cag cac ata gaa gtg aat ggc Thr Xaa His Val Ala Xaa Val Leu Leu Gln His Ile Glu Val Asn Gly 120 115 atc aat ctg gtg gtg act ttc gat gca ggg gga rta agt ggc cac agc 483 Ile Asn Leu Val Val Thr Phe Asp Ala Gly Gly Xaa Ser Gly His Ser 125 130 135 aat cac att gct ctg tat gca gct gtg agg aag ctt gag ggc caa att 531 Asn His Ile Ala Leu Tyr Ala Ala Val Arg Lys Leu Glu Gly Gln Ile 145 150 tgc aag ccc tgt ggc act gga caa gac ttt aag gaa tgagtgctgt 577 Cys Lys Pro Cys Gly Thr Gly Gln Asp Phe Lys Glu 160 165 caatcagtgt gcctccacct tcaccatctt cttcccctta ctctcacttc cgtcatgtgt 637 697 tttatacaac tctcaaatct ttcttggaga aggaggatat acatacataa tatgaaatgt 757 gtttgttctt cacagtcacc cgattttact gatatttatt tgcattttac caataaaaag 781 aaaatgcaag ctcaaaaaaa aaaa

<210> 366
<211> 931
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 19..312
<221> sig_peptide
<222> 19..63

<223> Von Heijne matrix

score 8.39999961853027

51

99

147

195

243

291

342

## seg AMWLLCVALAVLA/WG

<221> polyA signal <222> 896..901 <221> polyA_site <222> 921..931 <400> 366 aagtgotgot taccoato atg gaa goa atg tgg oto otg tgt gtg gog ttg Met Glu Ala Met Trp Leu Leu Cys Val Ala Leu -15 -10 geg gtc ttg gca tgg ggc ttc ctc tgg gtt tgg gac tcc tca gaa cga Ala Val Leu Ala Trp Gly Phe Leu Trp Val Trp Asp Ser Ser Glu Arg atg aag agt cgg gag cag gga rga cgg ctg gga gcc gaa agc cgg acc Met Lys Ser Arg Glu Gln Gly Xaa Arg Leu Gly Ala Glu Ser Arg Thr ctg ctg gtc ata gcg cac cct gac gat gaa gcc atg ttt ttt gct ccc Leu Leu Val Ile Ala His Pro Asp Asp Glu Ala Met Phe Phe Ala Pro aca gtg cta ggc ttg gcc cgc cta agg cac tgg gtg tac ctg ctt tgc Thr Val Leu Gly Leu Ala Arg Leu Arg His Trp Val Tyr Leu Leu Cys 50 60 55 ttc tct gca gtt ttc cgt agg gag cta agt gaa tac acc gaa rgt ctt Phe Ser Ala Val Phe Arg Arg Glu Leu Ser Glu Tyr Thr Glu Xaa Leu. 65 acc tot gaa coc oto ama goo tagggacagg arcggccggc ttacctggtg Thr Ser Glu Pro Leu Xaa Ala 80

402 ggttggggga cgtcggcagc tcrcgtacta cgccagcagg attganganc acagaaacag ttgchsttgg ttgtattcag tacctkcatt tccgttggga actccaccwg tacttgttat 462 kctgtggaac tttttttat ttgtagaagg agcaagaata ttgaccttac tatatagcac 522 582 acgaaacaat ctatgctgta tcgtgcctgc tcaatcctta aagttaactt ctaatgatag taaaaracct teetgetgee tttaaaatge agettgtget aktaacatge atgtgtcaaa ttgaaraatt agacatagat gactaratar aaagtaattt tgtaggtaat tttaragttc 702 762 aactccaccc agctttcakt gaaggaacct ttcaaataat aratttttgc ttaccatara 822 raaaaratca aatgacaaag caaatattga ccattaagct ggaatatggt gataattgaa 882 cagttgtata aatgaaktaa ttgaattgta cacatacaat gggtgaattt tatggcatgt caaagtatac ctcaataaag ctatttttt aaattgcmaa aaaaaaaaa 931

<210> 367

<211> 849

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 64..612

<221> sig_peptide

<222> 64..234

<223> Von Heijne matrix
 score 3.79999995231628
 seq QLWLVMEFCGAGS/VT

<221> polyA_site

<222> 839..849

WO 99/31236 -282- PCT/IB98/02122 -

acatacgggc aagtttataa gggtcgtcat gtcaaaacgg gccagcttgc agccatcaag	60
gtt atg gat gtc aca ggg gat gaa gag gaa gaa atc aaa caa gaa att	108
Met Asp Val Thr Gly Asp Glu Glu Glu Glu Ile Lys Gln Glu Ile	
-55 -50 -45	
aac atg ttg aag aaa tat tot cat cac cgg aat att got aca tac tat	156
Asn Met Leu Lys Lys Tyr Ser His His Arg Asn Ile Ala Thr Tyr Tyr	
-40 -35 -30	
ggt gct ttt atc aaa aag aac cca cca ggc atg gat gac caa ctt tgg	204
Gly Ala Phe Ile Lys Lys Asn Pro Pro Gly Met Asp Asp Gln Leu Trp	
-25 -20 -15	
ttg gtg atg gag ttt tgt ggt gct ggc tct gtc acc gac ctg atc aag	252
Leu Val Met Glu Phe Cys Gly Ala Gly Ser Val Thr Asp Leu Ile Lys	
-10 -5 1 5	200
aac aca aaa ggt aac acg ttg aaa gag gag tgg att gca tac atc tgc	300
Asn Thr Lys Gly Asn Thr Leu Lys Glu Glu Trp Ile Ala Tyr Ile Cys	
10 15 20	240
msg gaa atc tta cgg ggg ctg art cac ctg cac cag cat aaa gtg att	348
Xaa Glu Ile Leu Arg Gly Leu Xaa His Leu His Gln His Lys Val Ile	
25 30 35	306
cat cga rat att aaa ggg caa aat gtc ttg ctg act gaa aat gca gaa	396
His Arg Xaa Ile Lys Gly Gln Asn Val Leu Leu Thr Glu Asn Ala Glu	
40 45 50	444
gtt aaa cta gtg gac ttt gga rtc akt gct cag ctt gat cga aca gtg	444
Val Lys Leu Val Asp Phe Gly Xaa Xaa Ala Gln Leu Asp Arg Thr Val	
•••	492
ggc agg arg aat act ttc att gga act ccc tac tgg atg gca cca raa	7.74
Gly Arg Xaa Asn Thr Phe Ile Gly Thr Pro Tyr Trp Met Ala Pro Xaa 75 80 85	
gtt att gcc tgt gat gaa aac cca sat gcc aca tat gat ttc aar art	540
Val Ile Ala Cys Asp Glu Asn Pro Xaa Ala Thr Tyr Asp Phe Lys Xaa	5.10
90 95 100	
gac ttg tgg tct ttg ggt atc acc gcc att gaa atg gca gaa ggg ctc	588
Asp Leu Trp Ser Leu Gly Ile Thr Ala Ile Glu Met Ala Glu Gly Leu	
105 110 115	
ccc ctc tct gtg aca tgc acc cca tgagagetet ettecteate ecceggaate	642
Pro Leu Ser Val Thr Cys Thr Pro	
120 125	
cagcgcctcg gctgaagtct aagaagtggt caaaaaaaatt ccagtcattt attgagagct	702
gcttggtaaa aaatcacagc cagcgaccag caacagaaca attgatgaag catccattta	
tacgagacca acctaatgag cgacaggtcc gcattcaact caaggaccat attgatagaa	
caaagaagaa gcgaggaaaa aaaaaaa	849

```
<210> 368
```

<211> 644

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 39..458

<221> sig_peptide

<222> 39..80

<223> Von Heijne matrix score 4.40000009536743 seq FLTALLWRGRIPG/RQ

<221> polyA_signal

<222> 613..618

-283-PCT/IB98/02122 -WO 99/31236

	-	olyA_	-	2												
<222	!> 6:	336	944													
	)> 36 ggaga		agag	gtett	g ag	cago	gegr	n cag	gcac	c at	g tt	c ct	g ac	et go	g ctc la Leu	56
										ME	et Pr	ie De	eu II		la beu	
														cac His		104
														cgc Arg		152
														tac Tyr		200
acc Thr	cgg Arg	gag Glu	cag Gln	gag Glu 45	cgc Arg	ggc Gly	cac His	gcc Ala	gcg Ala 50	ttg Leu	cgc Arg	agg Arg	agg Arg	gag Glu 55	gcc Ala	248
														cat His		296
														atg Met		344
														ctg Leu		392
														aat Asn		440
		acc Thr	_			taaa	aacaa	aac a	aaaca	atgag	gt ag	gtct	gcata	a		488
															gtggtt	548
		tct g								caca	gat	gata	ttt 1	tgaaq	ggaaag	608 644
<210	0 > 3	69		•				•								
_	1> 9															
<21	2 > D	AN														

<213> Homo sapiens

<220>

<221> CDS

<222> 9..185

<221> sig_peptide

<222> 9..50

<223> Von Heijne matrix score 3.70000004768372 seq AALVTVLFTGVRR/LH

<221> polyA_site <222> 906..918

<400> 369

agctcage atg gct gct tta gtg act gtt ctc ttc aca ggt gtc cgg agg Met Ala Ala Leu Val Thr Val Leu Phe Thr Gly Val Arg Arg -10 -5

ctg cac tgc agc gcr scg ctt ggg cgg gcg gcc agt ggc grc tac agc 98 Leu His Cys Ser Ala Xaa Leu Gly Arg Ala Ala Ser Gly Xaa Tyr Ser 10 agg aac tgg ctg cca acc cct ccg gct acg ggc ccc tta ccg agc tcc 146 Arg Asn Trp Leu Pro Thr Pro Pro Ala Thr Gly Pro Leu Pro Ser Ser 20 25 195 cag act ggt cat atg cgg atg gcc gcc ctg ctc ccc caa tgaaaggcca Gln Thr Gly His Met Arg Met Ala Ala Leu Leu Pro Gln 45 35 40 qcttcqaaaa aaagctgaaa gggagacktt tgcaaracra kttgtactgc tgtcacagga 255 aatggacgct ggattacaas catggcasct caggcagcar aakttgcagg aaraacaaag 375 gaagcaggaa aatgctctta aacccaaagg ggcttcactg aaaascccac ttccaaktca 435 ataaaaagca actootgoot coottootoa cootgtotot ggatttottt totatoacot aratgettea tecagecara aaatageett eackkteece atetgtette arageaaaar 495 agctgggacm ccaaraacaa gctgttarat cactgcctgg gaggcttggc ttartactct 555 615 catctctggt tccattccag ttcagctaag tcttgcttta aaatttttac ctcctagctg 675 qqtqcqgtqq ctcacqcctg taatcccagc actttgggag gctgaggcgg gcagatcaca 735 agatcaggag ttcgagacca gcctggccaa cccagcctgg tcaacatggt gaaaccctgt 795 ccctactaaa gatacaaaca attagccggg cgtggtgggg tgcgcttgta atcccagcta 855 ctcaggaggc tgaggcagga gaatcgctta aactcgggag gtagaggttg cagtgagcca 915 918 aaa <210> 370 <211> 472 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 14..316 <221> sig_peptide <222> 14..121 <223> Von Heijne matrix score 5.19999980926514 seg PLRLLNLLILIEG/SV <221> polyA_signal <222> 442..447 <221> polyA site <222> 458..471 <400> 370 attatataga gcc atg ggg cct tac aac gtg gca gtg cct tca gat gta 49 Met Gly Pro Tyr Asn Val Ala Val Pro Ser Asp Val -35 -30 97 tet cat gee ege ttt tat tte tta ttt cat ega eea tta agg etg tta Ser His Ala Arg Phe Tyr Phe Leu Phe His Arg Pro Leu Arg Leu Leu -20 -15 -10 145 aat ctg ctc atc ctt att gag ggc agt gtc gtc ttc tat cag ctc tat Asn Leu Leu Ile Leu Ile Glu Gly Ser Val Val Phe Tyr Gln Leu Tyr -5 tcc ttg ctg cgg tcg gag aag tgg aac cac aca ctt tcc atg gct ctc 193 Ser Leu Leu Arg Ser Glu Lys Trp Asn His Thr Leu Ser Met Ala Leu 15 20 atc ctc ttc tgc aac tac tat gtt tta ttt aaa ctt ctc cgg gac aga 241 Ile Leu Phe Cys Asn Tyr Tyr Val Leu Phe Lys Leu Leu Arg Asp Arg

WO 99/31236 -285- PCT/IB98/02122 -

										200
wta kta ti Xaa Xaa Le	eu Gly A	agg gca Arg Ala 15	tac tcc Tyr Ser	Tyr 1	cca ctc Pro Leu 50	aac ag Asn Se	r Tyr (	gaa Glu 55	ctc Leu	289
aag gca aa Lys Ala A					tgagggag	aa ctc	agataa	a		336
aatattttca attttgtata aaacaaaaa	a tacgti a ctatta	atgtt tt	ttttctt gaaagtc	g tga	ttttat agagtaa	aaatat gggata	ttaa g ttaa a	atat tgta	tttat tccgt	396 456 472
<210> 371 <211> 150 <212> DNA	4									
<213> Hom	o sapie	ns								
<221> CDS <222> 70.										
<221> sig <222> 70. <223> Von	.234 Heijne		53257							
		LASHPTA,	-							
<221> pol <222> 147										
<221> pol <222> 149										-
· · ·	1504 a ggact g atg cg Met Ar	tccga a: a aag g	tg gtt t al Val I	tr at eu Il	gtttgct t acc gg e Thr Gl	g gct	agc ag Ser Se	ıt gg	c att	60 111
<222> 149 <400> 371 agaaatcgt tgcgcgaag ggc ctg g Gly Leu A	a ggact a ggact atg cg Met Ar -55	tccga aa a aag g g Lys Va tgc aag	tg gtt t al Val I - cgg ctg Arg Lev	tr at eu Il 50 ctg	t acc gg e Thr Gl gcg gaa	gg gct Ly Ala gat ga Asp As	agc ag Ser Se -45 at gag	r gg r Gl	gc att y Ile cat	
<222> 149 <400> 371 agaaatcgt tgcgcgaag  ggc ctg g Gly Leu A -40 ctg tgt t Leu Cys L	a ggact a ggact atg cg Met Ar -55 gcc ctc ala Leu	tccga as a aag g g Lys Vo tgc aag Cys Lys tgc agg Cys Arg	tg gtt tal Val I cgg ctg Arg Lev -35 aat atg	tr at eu Il 50 ctg Leu gagc	t acc gge e Thr Gl gcg gaa Ala Glu aag gca Lys Ala	gg gct y Ala gat ga Asp As -30 gaa gc	agc ag Ser Se -45 at gag sp Glu	t gg r Gl ctt Leu tgt	catt cat His gct Ala	111
<222> 149 <400> 371 agaaatcgt tgcgcgaag ggc ctg g Gly Leu A -40 ctg tgt t	a ggact a ggact atg cg Met Ar -55 gcc ctc ala Leu etg gcg	tccga as a aag g' g Lys Vi tgc aag Cys Lys tgc agg Cys Arg -20 tct cac Ser His	tg gtt tal Val I cgg ctg Arg Lev -35 aat atg Asn Met	tr at eu Il 50 ctg Leu gagc Ser	t acc gg e Thr Gl gcg gaa Ala Glu aag gca Lys Ala -15 gag gtc Glu Val	gg gct Ly Ala gat ga Asp As -30 gaa gc Glu Al acc at	agc ag Ser Se -45 at gag Sp Glu ct gtc La Val	t gger Gler Gler Gler Gler Gler Gler Gler Gl	catt Ly Ile  cat His  gct Ala -10 gtg	111
<pre>&lt;222&gt; 149 &lt;400&gt; 371 agaaatcgt tgcgcgaag  ggc ctg g Gly Leu A</pre>	a ggact a aggact a atg cg Met Ar -55 gcc ctc ala Leu ctg gcg Leu Ala ctg gcc Leu Ala ctg gcc Leu Ala ctg gcc Leu Ala ctg gcc Leu Ala ctg Asn	tccga as a aag gr g Lys Vo tgc aag Cys Lys tgc agg Cys Arg -20 tct cac Ser His -5 ctg cag	tg gtt tal Val I cgg ctg Arg Lev -35 aat atg Asn Met ccc act Pro Thi	tr at leu Il 50 ctg Leu gagc Ser ctg ttc	t acc gge Thr Gl gcg gaa Ala Glu aag gca Lys Ala -15 gag gtc Glu Val 1 cgg gcc	gg gct Ly Ala  gat ga Asp As -30 gaa gc Glu Al  acc at Thr Il  tcc aa Ser Ly	agc ag Ser Se -45 at gag Sp Glu ct gtc La Val ct gtc Le Val sag gaa /s Glu	ctt Ctt Leu tgt Cys cag Gln	catt Ly Ile  cat His  gct Ala -10 gtg Val  aag	111 159 207
<pre>&lt;222&gt; 149 &lt;400&gt; 371 agaaatcgt tgcgcgaag  ggc ctg g Gly Leu A</pre>	a ggact a ggact atg cg Met Ar -55 acc ctc ala Leu atg gcg Leu Ala atg gcc aac agc aac agc aac acc att cag	tccga as a aag grand g Lys Votes Lys tgc agg Cys Arg -20 tct cac Ser His ctg cag Leu Gln aga tta	cgg ctg Arg Lev -35 aat atg Asn Met ccc act Pro Thr tca ttc Ser Phe 15 gac tgt Asp Cys	tr at teu Il 150 (ctg Leu Ser Leu	t acc gge Thr Gl gcg gaa Ala Glu aag gca Lys Ala -15 gag gtc Glu Val 1 cgg gcc Arg Ala tat cta	gg gct y Ala gat ga Asp As -30 gaa gc Glu Al acc at Thr Il tcc aa Ser Ly 20 aat gc Asn Al	agc ag Ser Se -45 at gag Sp Glu ct gtc La Val ct gtc Le Val ag gaa /S Glu	ctt Leu tgt Cys cag Gln ctt Leu	catt y Ile cat His gct Ala -10 gtg Val aag Lys atg	111 159 207 255
<pre>&lt;222&gt; 149 &lt;400&gt; 371 agaaatcgt tgcgcgaag  ggc ctg g Gly Leu A</pre>	a ggact a ggact atg cg Met Ar -55 cc ctc ala Leu ctg gcg Leu Ala ctg gcc Leu Ala agc aac Ger Asn to cag Phe Gln	tccga as a aag grig Lys Votes aag Cys Lys tgc agg Cys Arg -20 tct cac Ser His ctg cag Leu Gln aga tta Arg Leu cta aat Leu Asn	tg gtt tal Val I cgg ctg Arg Lev -35 aat atg Asn Met ccc act Pro Thr tca ttc Ser Phe 15 gac tgt Asp Cys 30 atc aad	tr at teu Il 50 (ctg Leu Ser Ala ctc Phe ata Ile	t acc go e Thr Gl gcg gaa Ala Glu aag gca Lys Ala -15 gag gtc Glu Val 1 cgg gcc Arg Ala tat cta Tyr Leu ctt ttc	gg gct y Ala  gat ga Asp As -30 gaa gc Glu Al  tcc at Thr Il  tcc aa Ser Ly aat gc Asn Al 35 ttt gg	agc ag Ser Se -45 at gag Sp Glu ct gtc la Val st gtc le Val sq gaa /s Glu ct ggg la Gly	ctt Leu tgt Cys cag Gln ctt Leu atc Ile	catt y Ile cat His gct Ala -10 gtg Val aag Lys atg Met tca	111 159 207 255 303
<pre>&lt;222&gt; 149 &lt;400&gt; 371 agaaatcgt tgcgcgaag  ggc ctg g Gly Leu A</pre>	a ggact a ggact a tg cg Met Ar -55 cc ctc la Leu tg gcg Leu Ala ctg gcc aca Asn lo ttt cag Phe Gln cca caa Pro Gln	tccga aa a aag gi g Lys Va tgc aag Cys Lys tgc agg Cys Arg -20 tct cac Ser His -5 ctg cag Leu Gln aga tta Arg Leu cta aat Leu Asn 45 cat atg	tg gtt tal Val I cgg ctg Arg Lev -35 aat atg Asn Met ccc act Pro Thr tca ttc Ser Phe 15 gac tgt Asp Cys 30 atc aas Ile Lys	tr at teu Il 50 (ctg Leu Ser Ala ctc Phe ata Ile a gca Ala caca	t acc government of the control of t	gg gct y Ala  gat ga Asp As -30 gaa gc Glu Al  tcc at Thr Il  tcc aa Ser Ly aat gc Asn Al 35 ttt gc Phe Gl ggc ct	agc ag Ser Se -45 at gag Sp Glu ct gtc la Val st gtc le Val sq gaa /s Glu ct ggg la Gly gc ctc ly Leu	ctt Leu tgt Cys cag Gln ctt Leu atc Ile ttt Phe	catt y Ile cat His gct Ala -10 gtg Val aag Lys atg Met tca Ser 55 cag	111 159 207 255 303 351

		Gly					Ile							ctc Leu		543
	Ser											tct		agt Ser		591
Arg					Ser	ctc				Gln	cac			ggc Gly		639
				Ser					Thr					gtg Val 150	gct	687
			Asn					Gly					Val	gcc Ala		735
		Thr					Leu					Leu		ccg Pro		783
	Trp					Pro					Leu			ttt Phe		831
Asn	_			_	Thr					Thr	-	_	_	gta Val	Trp	879
				Lys					Asn					tat Tyr		927
_			Thr				_	Asn			_		Gln	230 aag Lys		975
		Asp					Glu					Lys		ctg Leu		1023
_	Glu	_				Val					Thr	_		cag Gln	_	1071
Arg		_	ggc Gly		Cys		taai	ttcca	agc a	actt	275 :ggg:	ag go	ccaa	ggcag	3	1122
cta ctc aga tat	caaaa agaaa ttgta ttaa	aag a gga t gcc a tat a	aaata tgagg actgo atata	aaaa gtggg cacto ataa	at as ga gg cc ag aa co	atago gato gooto cagao	etgg ettg gggt getg	g tgi g agg g aca a caa	ggt gctg agcg atga	ggca ggag agac cact	gcag cctg	gcate gaggt gtcte gaace	gta q ttg q caa q att q	gtcco cagto aatat gcata	tgtct agcta gagctg gtata accttc	1242 1302 1362 1422
			aaaa					- 54	, - <del>- 3</del> ;				;	,		1504

<210> 372

<211> 765

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 274..597

<221> sig_peptide

<222> 274..399

<223> Von Heijne matrix score 5.19999980926514

## seq LLFDLVCHEFCQS/DD

<221> polyA_signal <222> 731..736 <221> polyA_site <222> 754..765 <400> 372 accaggaaca tocagctatt tatgatagca tttgcttcat tatgtcaagt tcaacaaatg 120 ttgacttgct ggtgaaggtg ggggaggttg tggacaagct ctttgatttg gatgagaaac taatgttaag aatgggtcag aaatggggct gctcagcctc tggaccaacc ccaggaagag totgaagago agocagtgtt toggottgtg cootgtatac ttgaagotgo caaacaagta 240 cgttctgaaa atccagaatg gcttgatgtt tac atg cac att tta caa ctg ctt 294 Met His Ile Leu Gln Leu Leu act aca gtg gat gat gga att caa gca att gta cat tgt cct gac act 342 Thr Thr Val Asp Asp Gly Ile Gln Ala Ile Val His Cys Pro Asp Thr -25 -30 390 gga aaa gac att tgg aat tta ctt ttt gac ctg gtc tgc cat gaa ttc Gly Lys Asp Ile Trp Asn Leu Leu Phe Asp Leu Val Cys His Glu Phe -10 -15 tgc cag tct gat gat cca gcc atc att ctt caa raa car aaa acr gtg Cys Gln Ser Asp Pro Ala Ile Ile Leu Gln Xaa Gln Lys Thr Val . 10 5 cta gcc tct gtt ttt tca gtg ttg tct gcc atc tat gcc tca cag act 486 Leu Ala Ser Val Phe Ser Val Leu Ser Ala Ile Tyr Ala Ser Gln Thr 15 20 gag caa gak tat cta aar ata raa aaa gga gac ggt ggc tca ggg agt 534 Glu Gln Xaa Tyr Leu Lys Ile Xaa Lys Gly Asp Gly Gly Ser Gly Ser 35 40 aaa gga agg cca ktt gan caa aca gaa ktg ttc ctc tgc att tca aaa Lys Gly Arg Pro Xaa Xaa Gln Thr Glu Xaa Phe Leu Cys Ile Ser Lys 60 55

cct tct tcc ttt cta tagccctgtg gtggaagatt ttattaaaat cctacgtgaa

gttgataagg cgcttgctga tgacttggaa aaaaacttcc caagtttgaa ggttcagact

taaaacctga attggaatta cttctgtaca agaaataaac tttatttttc tcactgacaa

637

697

757 765

<210> 373

aaaaaaa

<211> 1041

<212> DNA

<213> Homo sapiens

Pro Ser Ser Phe Leu

<220>

<221> CDS

<222> 230..469

<221> sig_peptide

<222> 230..307

<223> Von Heijne matrix
 score 4.90000009536743
 seq VLCTNQVLITARA/VP

<221> polyA_signal

<222> 1004..1009

<221> polyA_site

WO 99/31236 -288- PCT/IB98/02122 -

<222> 1027..1040 <400> 373 aacttccaag ttgtagtgtt gttgttttca gcctgctgct gctgctgcta ttgcggctag 60 gggaaccgtc gtggggaagg atggtgtgcg aaaaatgtga aaagaaactt ggtactgtta 120 180 tcactccaga tacatggaaa gatggtgcta ggaataccac agaaagtggt ggaagaaagc 238 tgaatgaaaa taaagctttg acttcaaaaa aagccagaat tgatccata atg gaa gaa Met Glu Glu ata agt tot coa ott gta gaa ttt gta aaa gtt ttg tgc acc aac cag 286 Ile Ser Ser Pro Leu Val Glu Phe Val Lys Val Leu Cys Thr Asn Gln -20 -15 -10 gtt ctc att act gcc agg gct gtg cct aca aaa aag gca tct gtg cga 334 Val Leu Ile Thr Ala Arg Ala Val Pro Thr Lys Lys Ala Ser Val Arg 1 382 tgt gtg gaa aaa agg ttt tgg ata cca aaa act aca agc aaa cat ctg Cys Val Glu Lys Arg Phe Trp Ile Pro Lys Thr Thr Ser Lys His Leu 10 20 tct aga tgt att gat gga att tct ggc ttt cta aat gat ttt act ttc 430 Ser Arg Cys Ile Asp Gly Ile Ser Gly Phe Leu Asn Asp Phe Thr Phe 30 35 tgc ctt gaa ttt tca agg cat aga tgt caa ctt aca gaa taacatgtkt 479 Cys Leu Glu Phe Ser Arg His Arg Cys Gln Leu Thr Glu 45 50 taagataatt aagtktaaac cagaraattt gattgttact cattttgctc tcatgtkcta 539 aaacagcaac agtgtaacta gtcttttgtt gtaaatggtt attttcctta taaaaatttt aaaaactaag tggcaaattc catgaaaata tttctcagtt ctgtatgcac ttttatttaa agataataaa tactttgctc tgaatttggc atccaaagtt aacatttctc ccctcactcc 779 cttgctggtg tcatagttat tagaatcagc agcctcttaa ctaattgcgg tttcatagga 839 899 tatataaatg tttcaagcca ttattgctga atggttcttt agttattaac ctagacccaa 959 atcaaagacc agttggattt atgatatttt ttatttgttc ttgcagccaa agtgccagtt 1019 totttaatat gtgaccaaga acacaaggag catccatatg gccaaataaa tacactgaat 1041 tttagaaaaa caaaaaaaa ar <210> 374 <211> 1164 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 72..545 <221> sig peptide <222> 72..203 <223> Von Heijne matrix score 5.5 seq ILFFTGWWIMIDA/AV <221> polyA site <222> 1151..1162 <400> 374 aaagtcggcg tggacgtttg aggaagctgg gatacagcat ttaatgaaaa atttatgctt aagaagtaaa a atg gca ggc ttc cta gat aat ttt cgt tgg cca gaa tgt 110 Met Ala Gly Phe Leu Asp Asn Phe Arg Trp Pro Glu Cys -35

gaa tgt att gac tgg agt gag aga aga aat gct gtg gca tct gtt gtc

Glu Cys Ile Asp Trp Ser Glu Arg Arg Asn Ala Val Ala Ser Val Val

-30 -25 -20	
gca ggt ata ttg ttt ttt aca ggc tgg tgg ata atg att gat gca gct	206
Ala Gly Ile Leu Phe Phe Thr Gly Trp Trp Ile Met Ile Asp Ala Ala	•
-15 -10 -5 1	254
gtg gtg tat cet aag cea gaa eag ttg aac cat gee ttt cae aca tgt	254
Val Val Tyr Pro Lys Pro Glu Gln Leu Asn His Ala Phe His Thr Cys  10 15	
ggt gta ttt tcc aca ttg gct ttc ttc atg ata aat gct gta tcc aat	302
Gly Val Phe Ser Thr Leu Ala Phe Phe Met Ile Asn Ala Val Ser Asn	
20 25 30	
gct cag gtg aga ggt gat agc tat gaa agc ggc tgt tta gga aga aca	350
Ala Gln Val Arg Gly Asp Ser Tyr Glu Ser Gly Cys Leu Gly Arg Thr	
35 40 45	398
ggt gct cga gtt tgg ctt ttc att ggt ttc atg ttg atg ttt ggg tca Gly Ala Arg Val Trp Leu Phe Ile Gly Phe Met Leu Met Phe Gly Ser	376
50 55 60 65	
ctt att gct tcc atg tgg att ctt ttt ggt gca tat gtt acc caa aat	446
Leu Ile Ala Ser Met Trp Ile Leu Phe Gly Ala Tyr Val Thr Gln Asn	
70 75 80	
act gat gtt tat ccg gga cta gct gtg ttt ttt caa aat gca ctt ata	494
Thr Asp Val Tyr Pro Gly Leu Ala Val Phe Phe Gln Asn Ala Leu Ile	
85 90 95	542
ttt ttt agc act ctg atc tac aaa ttt gga aga acc gaa gag cta tgg Phe Phe Ser Thr Leu Ile Tyr Lys Phe Gly Arg Thr Glu Glu Leu Trp	542
100 105 110	
acc tgagatcact tottaagtca cattttcctt ttgttatatt ctgtttgtag	595
Thr	
ataggttttt tatctctcag tacacattgc caaatggagt agattgtaca ttaaatgtt	
tgtttcttta catttttatg ttctgagttt tgaaatagtt ttatgaaatt tctttattt	
tcattgcata gactgttaat atgtatataa tacaagacta tatgaattgg ataatgagt tcagtttttt attcctgaga tttagaactt gatctactcc ctgagccagg gttacatca	
cttgtcattt tagaagtaac cactcttgtc tctctggctg ggcacggtgg ctcatgcct	
taatcccagc actttgggag gccgaggcgg gccgattgct tgaggtcaag tgtttgaga	
cagcetggcc aacatggcga aaccecatct actaaaaata caaaaattag ccaggcatg	
tggtgggtgc ctgtaatccc aactacctag gaggctgagg caggagaatc gcttgaacc	cc 1075
ggggggcaga ggttgyagtg agctgagttt gcgccactgc actctagcct gggggagaa	
gtgaaactcc ctctcaaaaa aaaaaaamc	1164

<210> 375

<211> 1250

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 36..425

<221> sig_peptide

<222> 36..119

<223> Von Heijne matrix score 11.6000003814697 seq LLLLVQLLRFLRA/DG

<221> polyA_signal

<222> 1215..1220

<221> polyA_site

<222> 1240..1250

atttetteee eeegagetgg gegtgegegg eegea atg aac tgg gag etg etg Met Asn Trp Glu Leu Leu -25	53
ctg tgg ctg ctg gtg ctg tgc gcg ctg ctc ctg ctc ttg gtg cag ctg Leu Trp Leu Leu Val Leu Cys Ala Leu Leu Leu Leu Val Gln Leu -20 -15 -10	101
ctg cgc ttc ctg agg gct gac ggc gac ctg acg cta cta tgg gcc gag Leu Arg Phe Leu Arg Ala Asp Gly Asp Leu Thr Leu Leu Trp Ala Glu -5 10	149
tgg cag gga cga cgc cca gaa tgg gag ctg act gat atg gtg gtg tgg Trp Gln Gly Arg Arg Pro Glu Trp Glu Leu Thr Asp Met Val Val Trp 15 20 25	197
gtg act gga gcc tcg agt gga att ggt gag gag ctg gct tac cag ttg Val Thr Gly Ala Ser Ser Gly Ile Gly Glu Glu Leu Ala Tyr Gln Leu 30 35 40	245
tct aaa cta gga gtt tct ctt gtg ctg tca gcc aga aga gtg cat gag Ser Lys Leu Gly Val Ser Leu Val Leu Ser Ala Arg Arg Val His Glu 45 50 55	293
ctg gaa agg gtg aaa aga aga tgc cta gag aat ggc aat tta aaa gaa Leu Glu Arg Val Lys Arg Arg Cys Leu Glu Asn Gly Asn Leu Lys Glu 60 65 70	341
aaa gat ata ctt gtt ttg ccc ctt gac ctg acc gac act ggt tcc cat Lys Asp Ile Leu Val Leu Pro Leu Asp Leu Thr Asp Thr Gly Ser His 75 80 85 90	389
gaa agc ggc tac caa agc tgt tct cca gga att tgg tagaatcgac Glu Ser Gly Tyr Gln Ser Cys Ser Pro Gly Ile Trp 95	435
attotggtca acaatgtgga aatgtoccag ogttototgt gcatggatac caacttggat	495
gtctacagaa agctaatgag agcttaacta cttagggacg gtgtccttga caaaatgtgk	555
kctgcctcac atgatcgaga ngaarcaagg aaagattgtt actgtgaata gcatcctggg	615
tatcatatot gtacotottt coattggata otgtgotago aagcatgoto tooggggktk	675
ktttaatggc cttcraacag aacttgccac atacccargt ataatagttt ctaacatttg	735
cccaggacct gtgcaatcaa atattgtgga aaattcccta gctggagaag tcacaaagac	795
tataggcaat aatggagacc agtcccacaa gatgacaacc agtcgttgtg tgcggctgat	855 915
gttaatcagc atggccaatg atttgaaaga agtttggatc tcagaacaac ctttcttgtt	915
agtaacatat ttgtggcaat acatgccaac ctgggcctgg tggataacca acaagatggg	1035
gaagaaaagg attgagaact ttaagagtgg tgtggatgca gactcttctt attttaaaat	1095
ctttaagaca aaacatgact gaaaagagca cctgtacttt tcaagccact ggagggagaa atggaaaaca tgaaaacagc aatcttctta tgcttctgaa taatcaaaga ctaatttgtg	1155
attttacttt ttaatagata tgactttgct tccaacatgg aatgaaataa aaaataaata	1215
ataaaagatt gccatgaatc ttgcaaaaaa aaaaa	1250

```
<210> 376
```

<211> 947

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 155..751

<221> sig_peptide

<222> 155..340

<223> Von Heijne matrix
 score 3.7000004768372
 seq SILGIISVPLSIG/YC

<221> polyA_signal

<222> 912..917

<221> polyA_site <222> 937..947

<400> 376	
agtgaaaaga agatgcctag agaatggcaa tttaaaagaa aaagatatac ttgttttgcc	60
cettgacetg accgacactg gttcccatga ageggetace aaagetgtte tecaggagtt	120
tggtagaatc gacattctgg tcaacaatgg tgga atg tcc cag cgt tct ctg tgc	175
Met Ser Gln Arg Ser Leu Cys	
•	223
atg gat acc agc ttg gat gtc tac aga rag cta ata gag ctt aac tac	223
Met Asp Thr Ser Leu Asp Val Tyr Arg Xaa Leu Ile Glu Leu Asn Tyr -55 -40 -45	
-55 -50 -45 -45 tta ggg acg gtg tcc ttg aca aaa tgt gtt ctg cct cac atg atc gag	271
Leu Gly Thr Val Ser Leu Thr Lys Cys Val Leu Pro His Met Ile Glu	
-35 -30 -25	
agg aag caa gga aag att gtt act gtg aat agc atc ctg ggt atc ata	319
Arg Lys Gln Gly Lys Ile Val Thr Val Asn Ser Ile Leu Gly Ile Ile	
-20 -15 -10	
tot gta cot ott too att gga tao tgt got ago aag cat got oto ogg	367
Ser Val Pro Leu Ser Ile Gly Tyr Cys Ala Ser Lys His Ala Leu Arg	
-5 1 5	
ggt ttt ttt aat ggc ctt cga aca gaa ctt gcc aca tac cca ggt ata	415
Gly Phe Phe Asn Gly Leu Arg Thr Glu Leu Ala Thr Tyr Pro Gly Ile	
10 15 20 25	
ata gtt tct aac att tgc cca gga cct gtg caa tca aat att gtg gaa	463
Ile Val Ser Asn Ile Cys Pro Gly Pro Val Gln Ser Asn Ile Val Glu	
30 35 40	
aat too ota got gga gaa gto aca aaa act ata ggo aat aat gga aac	511
Asn Ser Leu Ala Gly Glu Val Thr Lys Thr Ile Gly Asn Asn Gly Asn	
45 50 55	559
cag tee cae aag atg aca ace agt egt tgt gtg egg etg atg tta ate	555
Gln Ser His Lys Met Thr Thr Ser Arg Cys Val Arg Leu Met Leu Ile 60 65 70	
60 65 70 agc atg gcc aat gat ttg aaa gaa gtt tgg atc tca gaa caa cct ttc	607
Ser Met Ala Asn Asp Leu Lys Glu Val Trp Ile Ser Glu Gln Pro Phe	•••
75 80 85	
ttg tta gta aca tat ttg tgg caa tac atg cca acc tgg gcc tgg tgg	655
Leu Leu Val Thr Tyr Leu Trp Gln Tyr Met Pro Thr Trp Ala Trp Trp	
90 95 100 105	
ata acc aac aag atg ggg aag aaa agg att gag aac ttt aag agt ggt	703
Ile Thr Asn Lys Met Gly Lys Lys Arg Ile Glu Asn Phe Lys Ser Gly	
110 115 120	
gtg gat gcm rac tot tot tat ttt aaa ato ttt aag aca aaa cat gac	751
Val Asp Ala Xaa Ser Ser Tyr Phe Lys Ile Phe Lys Thr Lys His Asp	
125 130 135	
tgaaaaganc acctgtactt ttcaagccac tggagggaga aatggaaaac atgaaaacag	811
caatcttctt atgcttctga ataatcaaag actaatttgt gattttactt tttaatagat	871
atgactttgc ttccaacatg grrtgaaata aaaaataaat aataaaagat tgccatgrrt	931
cttgcaaaaa aaaaaa	947

<210> 377

<211> 621 <212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 46..585

<221> sig_peptide

## WO 99/31236 -292 - PCT/IB98/02122 .

<222> 46..120 <223> Von Heijne matrix score 6.30000019073486 seq AFSLSVMAALTFG/CF <221> polyA signal <222> 584..589 <221> polyA site <222> 606..619 <400> 377 aactgggtgt gcgtrtggag tccggactcg tgggagacga tcgcg atg aac acg gtg Met Asn Thr Val ctg tcg cgg gcg aac tca ctg ttc gcc ttc tcg ctg agc gtg atg gcs 105 Leu Ser Arg Ala Asn Ser Leu Phe Ala Phe Ser Leu Ser Val Met Ala -20 -15 -10 geg etc ace tte gge tge tte atc ayy ace gee tte aaa gae agg age 153 Ala Leu Thr Phe Gly Cys Phe Ile Xaa Thr Ala Phe Lys Asp Arg Ser - 5 gtc ccg gtg cgg ctg cac gtc tcg cga atc atg cta aaa aat gta gaa 201 Val Pro Val Arg Leu His Val Ser Arg Ile Met Leu Lys Asn Val Glu 15 20 gat ttc act gga cct aga gaa aga agt gat ctg gga ttt atc aca ttt Asp Phe Thr Gly Pro Arg Glu Arg Ser Asp Leu Gly Phe Ile Thr Phe 35 gat ata act gct gat cta gag aat ata ttt gat tgg aat gtt aag cag 297 Asp Ile Thr Ala Asp Leu Glu Asn Ile Phe Asp Trp Asn Val Lys Gln 50 ttg ttt ctt tat tta tca gca gaa tat tca aca aaa aat aat gct ctg 345 Leu Phe Leu Tyr Leu Ser Ala Glu Tyr Ser Thr Lys Asn Asn Ala Leu 65 aac caa ktt gtc cta tgg gac aag att gtt ttg aga ggt gat aat ccg 393 Asn Gln Xaa Val Leu Trp Asp Lys Ile Val Leu Arg Gly Asp Asn Pro 80 85 aag ctg ctg aaa gat atg aaa aca aaa tat ttt ttc ttt gac gat 441 Lys Leu Leu Lys Asp Met Lys Thr Lys Tyr Phe Phe Phe Asp Asp 95 100 gga aat ggt ctc wag gga aac agg aat gtc act ttg acc ctg tct tgg 489 Gly Asn Gly Leu Xaa Gly Asn Arg Asn Val Thr Leu Thr Leu Ser Trp 110 115 120 aac gtc gta cca aat gct gga att cta cct ctt gtg aca gga tca gga 537 Asn Val Val Pro Asn Ala Gly Ile Leu Pro Leu Val Thr Gly Ser Gly 130 135 cac gta tct gtc cca ttt cca gat aca tat gaa ata acg aag agt tat 585 His Val Ser Val Pro Phe Pro Asp Thr Tyr Glu Ile Thr Lys Ser Tyr 145 150 taaattatto tgaatttgaa acaaaaaaa aaaahm 621

<210> 378

<211> 52

<212> PRT

<213> Homo sapiens

<220>

<221> SIGNAL

<222> -20..-1

<400> 378

<211> 193 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -23..-1 <400> 379 Met Val Val Leu Arg Ala Gly Lys Lys Thr Phe Leu Pro Pro Leu Xaa -15 -20 Arg Ala Phe Ala Cys Arg Gly Cys Gln Leu Ala Pro Glu Arg Gly Ala 1 Glu Arg Arg Asp Thr Ala Pro Ser Gly Val Ser Arg Phe Cys Pro Pro 15 20 Arg Lys Ser Cys His Asp Trp Ile Gly Pro Pro Asp Lys Tyr Ser Asn 35 30 Leu Arg Pro Val His Phe Tyr Ile Pro Glu Asn Glu Ser Pro Leu Glu 50 45 Gln Lys Leu Arg Lys Leu Arg Gln Glu Thr Gln Glu Trp Asn Gln Gln 65 Phe Trp Ala Asn Gln Asn Leu Thr Phe Ser Lys Glu Lys Glu Glu Phe 80 85 Ile His Ser Arg Leu Lys Thr Lys Gly Leu Gly Leu Arg Thr Glu Ser 100 95 Gly Gln Lys Ala Thr Leu Asn Ala Glu Glu Met Ala Asp Phe Tyr Lys 115 110 Glu Phe Leu Ser Lys Asn Phe Gln Lys His Met Tyr Tyr Asn Arg Asp 130 125 Trp Tyr Lys Arg Asn Phe Ala Ile Thr Phe Phe Met Gly Lys Val Ala 145 150 Leu Glu Arg Ile Trp Asn Lys Leu Lys Gln Lys Gln Lys Lys Arg Ser Asn 170

<210> 380 <211> 82 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -14..-1

<210> 379

Met Ala Phe Thr Leu Xaa Ser Leu Leu Gln Ala Ala Leu Leu Cys Val

Asn Ala Ile Ala Val Leu His Glu Glu Arg Phe Leu Lys Asn Ile Gly 10 Trp Gly Thr Asp Gln Gly Ile Gly Gly Phe Gly Glu Glu Pro Gly Ile 25 Lys Ser Xaa Xaa Met Xaa Leu Ile Arg Ser Val Arg Thr Val Met Arg 40 Val Pro Leu Ile Ile Val Asn Ser Ile Ala Ile Val Leu Leu Leu 60 Phe Gly

<211> 198 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -21..-1 <400> 381 Met Pro Val Pro Ala Leu Cys Leu Leu Trp Ala Leu Ala Met Val Thr -10 -20 -15 Arg Pro Ala Ser Ala Ala Pro Met Gly Gly Pro Glu Leu Ala Gln His -5 Glu Glu Leu Thr Leu Leu Phe His Gly Thr Leu Gln Leu Gly Gln Ala 20 15 Leu Asn Gly Val Tyr Arg Thr Thr Glu Gly Arg Leu Thr Lys Ala Arg 40 Asn Ser Leu Gly Leu Tyr Gly Arg Thr Ile Glu Leu Leu Gly Gln Glu 50 55 Val Ser Arg Gly Arg Asp Ala Ala Gln Glu Leu Arg Ala Ser Leu Leu 65 70 Glu Thr Gln Met Glu Glu Asp Ile Leu Xaa Leu Gln Ala Xaa Ala Thr 85

80

95

175

120 115 Ala Tyr Arg Lys Phe Glu Val Leu Lys Ala Pro Pro Xaa Lys Gln Asn 130 135 His Ile Leu Trp Ala Leu Thr Gly His Val Xaa Arg Gln Xaa Arg Glu 150 145 Met Val Ala Gln Gln Xaa Xaa Leu Xaa Gln Ile Gln Glu Lys Leu His 160 165 Thr Ala Ala Leu Pro Ala

Ala Glu Val Leu Gly Glu Val Ala Gln Ala Gln Lys Val Leu Arg Asp 100

Ser Val Gln Arg Leu Xaa Xaa Gln Leu Xaa Xaa Ala Trp Leu Gly Pro

<210> 382 <211> 160 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -55..-1

<210> 381

<400> 382 Met Asp Lys Leu Lys Lys Val Leu Ser Gly Gln Asp Thr Glu Asp Arg WO 99/31236

-50 -45 Ser Gly Leu Ser Glu Val Val Glu Ala Ser Ser Leu Ser Trp Ser Thr -35 -30 Arg Ile Lys Gly Phe Ile Ala Cys Phe Ala Ile Gly Ile Leu Cys Ser -15 -20 Leu Leu Gly Thr Val Leu Leu Trp Val Pro Arg Lys Gly Leu His Leu Phe Ala Val Phe Tyr Thr Phe Gly Asn Ile Ala Ser Ile Gly Ser Thr 20 15 Ile Phe Leu Met Gly Pro Val Lys Gln Leu Lys Arg Met Phe Glu Pro 35 30 Thr Arg Leu Ile Ala Thr Ile Met Val Leu Leu Cys Phe Ala Leu Thr 50 4.5 Leu Cys Ser Ala Phe Trp Trp His Asn Lys Gly Leu Ala Leu Ile Phe 65 70 Cys Ile Leu Gln Ser Leu Ala Leu Thr Trp Tyr Ser Leu Ser Phe Ile 85 80 Pro Phe Ala Arg Asp Ala Val Lys Xaa Cys Phe Ala Val Cys Leu Ala 100 95

<210> 383 <211> 108 <212> PRT <213> Homo sapiens

<220>
<221> SIGNAL
<222> -18..-1

<400> 383 Met Lys Ala Leu Cys Leu Leu Leu Pro Val Leu Gly Leu Leu Val -10 -15 Ser Ser Lys Thr Leu Cys Ser Met Glu Glu Ala Ile Asn Glu Arg Ile 5 1.0 Gln Glu Val Ala Gly Ser Leu Ile Phe Arg Ala Ile Ser Ser Ile Gly 25 20 Arg Gly Ser Glu Ser Val Thr Ser Arg Gly Asp Leu Ala Thr Cys Pro 35 40 Arg Gly Phe Ala Val Thr Gly Cys Thr Cys Gly Ser Ala Cys Gly Ser 55 50 Trp Asp Val Arg Ala Glu Thr Thr Cys His Cys Gln Cys Ala Gly Met 70 Asp Trp Thr Gly Ala Arg Cys Cys Arg Val Gln Pro 80

<210> 384 <211> 64 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -22..-1

<210> 386 <211> 186 <212> PRT <213> Homo sapiens <220> <221> SIGNAL

<222> -21..-1 <400> 386 Met Ser Pro Ser Gly Arg Leu Cys Leu Leu Thr Ile Val Gly Leu Ile -10 -20 -15 Leu Pro Thr Arg Gly Gln Thr Leu Lys Asp Thr Thr Ser Ser Ser -5 1 Ala Asp Ser Thr Ile Met Asp Ile Gln Val Pro Thr Arg Ala Pro Asp 20 15 Ala Val Tyr Thr Glu Leu Gln Pro Thr Ser Pro Thr Pro Thr Trp Pro 30 35 Ala Asp Glu Thr Pro Gln Pro Gln Thr Gln Thr Gln Gln Leu Glu Gly 50 Thr Asp Gly Pro Leu Val Thr Asp Pro Glu Thr His Xaa Ser Xaa Lys 70 65 Ala Ala His Pro Thr Asp Asp Thr Thr Thr Leu Ser Glu Arg Pro Ser 85 Pro Ser Thr Xaa Val His Xaa Arg Pro Xaa Xaa Pro Ser Xaa His Leu 100 105 Val Phe Met Arg Met Thr Pro Ser Ser Met Met Asn Thr Pro Ser Gly 115 120 Asn Xaa Gly Cys Trp Ser Gln Leu Cys Cys Ser Ser Gln Ala Ser Ser 135 130 Ser Ser Pro Val Ala Ser Ala Gly Ser Cys Pro Gly Tyr Ala Gly Ile 145 150 Ile Ala Gly Glu Ser Ile Arg Asn Arg Ser

WO 99/31236 -297- PCT/IB98/02122 ·

<210> 387 <211> 179 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -26..-1 <400> 387 Met Glu Thr Gly Ala Leu Arg Arg Pro Gln Leu Leu Pro Leu Leu -15 -20 Leu Leu Cys Gly Pro Ser Gln Asp Gln Cys Arg Pro Val Leu Gln Asn Leu Leu Gln Ser Pro Gly Leu Thr Trp Ser Leu Glu Val Pro Thr Gly 15 10 Arg Glu Gly Lys Glu Gly Gly Asp Arg Gly Pro Gly Leu Xaa Gly Ala Thr Pro Ala Arg Ser Pro Gln Gly Lys Glu Met Gly Arg Gln Arg Thr Arg Lys Val Lys Gly Pro Ala Trp Xaa His Thr Ala Asn Gln Glu Leu 60 65 Asn Arg Met Arg Ser Leu Ser Ser Gly Ser Val Pro Val Gly His Leu 80 75 Glu Gly Gly Thr Val Lys Leu Gln Lys Asp Thr Gly Leu His Ser Cys 95 Xaa Asp Gly Met Ala Ser Leu Glu Gly Thr Pro Ala Ser Val Leu Ala 105 110 115 Asp Ala Cys Pro Gly Phe His Asp Val Xaa Val Gln Xaa Ala Leu Phe 125 130 Gly Leu Ser Gly Xaa Xaa Leu Trp Leu Lys Thr His Phe Cys Leu Ser 135 140 Ile Xaa Leu <210> 388 <211> 150 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -55..-1 <400> 388 Met Ala Thr Thr Val Pro Asp Gly Cys Arg Asn Gly Leu Lys Ser Lys -50 Tyr Tyr Arg Leu Cys Asp Lys Ala Glu Ala Trp Gly Ile Val Leu Glu -35 -30 Thr Val Ala Thr Ala Gly Val Val Thr Ser Val Ala Phe Met Leu Thr -10 -15 -20 Leu Pro Ile Leu Val Cys Lys Val Gln Asp Ser Asn Arg Arg Lys Met Leu Pro Thr Gln Phe Leu Phe Leu Leu Gly Val Leu Gly Ile Phe Gly 20 15 Leu Thr Phe Ala Phe Ile Ile Gly Leu Asp Gly Ser Thr Gly Pro Thr 30 Arg Phe Phe Leu Phe Gly Ile Leu Phe Ser Ile Cys Phe Ser Cys Leu

45 50 55 Leu Ala Hiş Ala Val Ser Leu Thr Lys Leu Val Arg Gly Arg Lys Ala

Pro Phe Pro Val Gly Asp Ser Gly Ser Gly Arg Gly Leu Gln Pro Ser

80

Pro Gly Cys Tyr Arg Tyr

<213> Homo sapiens

90 <210> 389 <211> 236 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -31..-1 <400> 389 Met Leu Ser Lys Gly Leu Lys Arg Lys Arg Glu Glu Glu Glu Lys -25 -20 Glu Pro Leu Ala Val Asp Ser Trp Trp Leu Asp Pro Gly His Ala Ala -5 -10 Val Ala Gln Ala Pro Pro Ala Val Ala Ser Ser Ser Leu Phe Asp Leu 10 Ser Val Leu Lys Leu His His Ser Leu Gln Xaa Ser Xaa Pro Asp Leu 30 25 20 Arg His Leu Val Leu Val Xaa Asn Thr Leu Arg Arg Ile Gln Ala Ser 40 45 Met Ala Pro Ala Ala Ala Leu Pro Pro Val Pro Thr Pro Pro Ala Ala 55 60 Pro Xaa Val Ala Asp Asn Leu Leu Ala Ser Ser Asp Ala Ala Leu Ser 70 75 Ala Ser Met Ala Xaa Leu Leu Glu Asp Leu Ser His Ile Glu Gly Leu 90 85 Ser Gln Ala Pro Gln Pro Leu Ala Asp Glu Gly Pro Pro Gly Arg Ser 110 100 105 Ile Gly Gly Xaa Pro Pro Xaa Leu Gly Ala Leu Asp Leu Leu Gly Pro 120 125 115 Ala Thr Gly Cys Leu Leu Asp Asn Gly Leu Glu Gly Leu Phe Glu Asp 140 135 Ile Asp Thr Ser Met Tyr Asp Asn Glu Leu Trp Ala Pro Ala Ser Glu 150 155 Gly Leu Lys Pro Gly Pro Glu Asp Gly Pro Gly Lys Glu Glu Ala Pro 170 Glu Leu Asp Glu Ala Glu Leu Asp Tyr Leu Met Asp Val Leu Val Gly 185 180 Thr Gln Ala Leu Glu Arg Pro Pro Gly Pro Gly Arg 200 195 <210> 390 <211> 149 <212> PRT

<220>
<221> SIGNAL
<222> -100..-1

<400> 390

Met Glu Thr Leu Tyr Arg Val Pro Phe Leu Val Leu Glu Cys Pro Asn
-100 -95 -90 -85

```
Leu Lys Leu Lys Lys Pro Pro Trp Leu His Met Pro Ser Ala Met Thr
                                   -75
               -80
Val Tyr Ala Leu Val Val Val Ser Tyr Phe Leu Ile Thr Gly Gly Ile
                                                   -55
                               -60
           -65
Ile Tyr Asp Val Ile Val Glu Pro Pro Ser Val Gly Ser Met Thr Asp
                                               -40
                           -45
       -50
Glu His Gly His Gln Arg Pro Val Ala Phe Leu Ala Tyr Arg Val Asn
                                           -25
                      -30
Gly Gln Tyr Ile Met Glu Gly Leu Ala Ser Ser Phe Leu Phe Thr Met
                                       -10
                   -15
Gly Gly Leu Gly Phe Ile Ile Leu Asp Gly Ser Asn Ala Pro Asn Ile
               1
Pro Lys Leu Asn Arg Phe Leu Leu Leu Phe Ile Gly Phe Val Cys Val
                            20
       15
Leu Xaa Ser Phe Xaa Xaa Ala Arg Val Phe Met Arg Met Lys Leu Pro
                       35
Gly Tyr Leu Met Gly
```

<210> 391 <211> 69 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -49..-1

<210> 392 <211> 241 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -30..-1 <400> 392 Met Gly Thr Ala Ser Arg -30 -25

Cys Leu Trp Phe Arg Tyr Gly Ala His Gln Pro Glu Asn Leu Cys Leu 40 45 Asp Gly Cys Lys Ser Glu Ala Xaa Lys Phe Thr Val Arg Glu Ala Leu 55 60 Lys Glu Asn Gln Val Ser Leu Thr Val Asn Arg Val Thr Ser Asn Asp 75 70 Ser Ala Ile Tyr Ile Cys Gly Ile Ala Phe Pro Ser Val Pro Glu Ala 90 95 Arg Ala Lys Gln Thr Gly Gly Gly Thr Thr Leu Val Val Arg Glu Ile 105 110 Lys Leu Leu Ser Lys Glu Leu Arg Ser Phe Leu Thr Ala Leu Val Ser 120 125 Leu Leu Ser Val Tyr Val Thr Gly Val Cys Val Ala Phe Ile Leu Leu 140 135 Ser Lys Ser Lys Ser Asn Pro Leu Arg Asn Lys Glu Ile Lys Glu Asp 155 150 160 Ser Gln Lys Lys Lys Ser Ala Arg Arg Ile Phe Gln Glu Ile Ala Gln 170 175 165 Glu Leu Tyr His Lys Arg His Val Glu Thr Asn Gln Gln Ser Glu Lys 185 190 Asp Asn Asn Thr Tyr Glu Asn Arg Arg Val Leu Ser Asn Tyr Glu Arg 205 200 Pro

<210> 393 <211> 47 <212> PRT <213> Homo sapiens <220> <221> SIGNAL

<400> 393

<222> -30..-1

Met Asn Cys Asn Val Val Ser Glu Arg Gly Lys Trp Leu Glu Val Glu -30 -25 -25 -20 -20 -15

Cys Ser Leu Met Thr Cys Thr Thr Leu Ile Asn Ala Ser Ala Ile Ser -10 -5 -5 1

Thr Asn Thr Leu Thr Asp Met Gly Ser Phe Asp Arg Glu Ser 5 10 -15

<210> 394 <211> 65 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -28..-1

WO 99/31236 -301- PCT/IB98/02122

25 30 35

Ser

<210> 395 <211> 73 <212> PRT <213> Homo sapiens

<220>
<221> SIGNAL
<222> -24..-1

<400> 395

 Met Thr Cys
 Trp Met Leu Pro Pro Ile Ser Phe Leu Ser Tyr Leu Pro -20
 -15
 -10

 Leu Trp Leu Gly Pro Ile Trp Pro Cys Ser Gly Ser Thr Leu Gly Lys -5
 5

 Pro Asp Pro Gly Val Trp Pro Ser Leu Phe Arg Pro Trp Asp Ala Ala 10
 15
 20

 Ser Pro Gly Asn Tyr Ala Leu Ser Arg Gly Xaa Asn Xaa Tyr Xaa Xaa 25
 30
 35
 40

 Trp Gly Gln Gly Thr His Ser Ser Leu

<210> 396 <211> 60 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -18..-1

45

<210 > 397 <211 > 192 <212 > PRT <213 > Homo sapiens <220 > <221 > SIGNAL <222 > -93..-1

-65 -70 Asp Ser Cys Phe Gln Asp Leu Lys Glu Ser Arg Leu Val Glu Asp Thr -60 -55 -50 Phe Thr Ile Asp Glu Val Ser Glu Val Leu Asn Gly Leu Gln Ala Val -35 -40 Val His Ser Glu Val Glu Ser Glu Leu Ile Asn Thr Ala Tyr Thr Asn -25 -20 Val Leu Leu Leu Arg Gln Leu Phe Ala Gln Ala Glu Lys Trp Tyr Leu -5 Lys Leu Gln Thr Asp Ile Ser Glu Leu Glu Asn Arg Glu Leu Leu Glu 10 15 Gln Xaa Ala Glu Phe Glu Lys Ala Xaa Ile Thr Ser Ser Asn Lys Lys 25 30 Pro Ile Leu Xaa Val Thr Xaa Pro Lys Leu Ala Pro Leu Asn Glu Gly 40 45 Gly Thr Ala Lys Leu Leu Asn Lys Val Ile Cys Ile Ile Leu Arg Asn .55 60 Gly Lys Ser Leu Ile Leu Ser Cys His Cys Leu Gly Trp Arg Asn Lys 75 80 Ser Gly Arg Phe Val Ser Gly Pro Leu Arg Ile Ile Ser Pro Leu Gln 85 · 90

<210> 398 <211> 149 <212> PRT <213> Homo sapiens

<220>
<221> SIGNAL
<222> -72..-1

<400> 398

Met Asn Leu Phe Ile Met Tyr Met Ala Gly Asn Thr Ile Ser Ile Phe -70 -65 -60 Pro Thr Met Met Val Cys Met Met Ala Trp Arg Pro Ile Gln Ala Leu -50 -45 Met Ala Ile Ser Ala Thr Phe Lys Met Leu Glu Ser Ser Gln Lys -25 -35 -30 Phe Leu Gln Gly Leu Val Tyr Leu Ile Gly Asn Leu Met Gly Leu Ala -15 -20 Leu Ala Val Tyr Lys Cys Gln Ser Met Gly Leu Leu Pro Thr His Ala -5 1 Ser Asp Trp Leu Ala Phe Ile Glu Pro Pro Glu Arg Met Glu Ser Val 10 15 20 Val Glu Asp Cys Phe Cys Glu His Glu Lys Ala Ala Pro Gly Pro Tyr 30 35 Val Phe Gly Ser Tyr Leu His Pro Ser Leu Ser Pro Val Ala Pro Gln 50 45 His Thr Leu Lys Leu Ile Thr Tyr Val Lys Lys Asn Gln Lys Thr Leu 60 65 Phe Ser Met Val Gly

<210> 399 <211> 73 <212> PRT <213> Homo sapiens

WO 99/31236

<220> <221> SIGNAL <222> -20..-1

<400> 399 Met Thr Pro Leu Leu Thr Leu Ile Leu Val Val Leu Met Gly Leu Pro -10 -15 Leu Ala Gln Ala Leu Asp Cys His Val Cys Ala Tyr Asn Gly Asp Asn 5 1 Cys Phe Asn Pro Met Arg Cys Pro Ala Met Val Ala Tyr Cys Met Thr 25 20 15 Thr Arg Thr Tyr Tyr Thr Pro Thr Arg Met Lys Val Ser Lys Ser Cys 35 40

Val Pro Arg Cys Phe Glu Xaa Cys Val 50

<210> 400 <211> 86 <212> PRT <213> Homo sapiens <220> <221> SIGNAL

<222> -20..-1 <400> 400

Met Asn Leu His Phe Pro Gln Trp Phe Val His Ser Ser Ala Leu Gly -5 -10 -15 Leu Val Leu Ala Pro Pro Phe Ser Ser Pro Gly Thr Asp Pro Thr Phe 10 1 Pro Cys Ile Tyr Cys Arg Leu Leu Asn Met Ile Met Thr Arg Leu Ala 15 20 Phe Ser Phe Ile Thr Cys Leu Cys Pro Asn Leu Lys Glu Val Cys Leu 40 35 Ile Leu Pro Glu Lys Asn Cys Asn Ser Arg His Ala Gly Phe Val Gly 55 50 45

Pro Xaa Lys Leu Arg Gln 65

<210> 401 <211> 78 <212> PRT <213> Homo sapiens

<220> <221> SIGNAL <222> -21..-1

<400> 401 Met Cys Pro Val Phe Ser Lys Gln Leu Leu Ala Cys Gly Ser Leu Leu -10 -20 -15 Pro Gly Leu Trp Gln His Leu Thr Ala Asn His Trp Pro Pro Phe Ser 5 Xaa Phe Leu Cys Thr Val Cys Ser Gly Ser Ser Glu Gln Ile Ser Glu 20 15 Tyr Thr Ala Ser Ala Thr Pro Pro Leu Cys Arg Ser Leu Asn Gln Glu 35 Pro Phe Val Ser Arg Ala Ile Arg Pro Lys Tyr Ser Ile Thr

55

45

50

<210> 402 <211> 65 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -28..-1 <400> 402

 Met Gly Lys Gly His Gln Arg Pro Trp Trp Lys Val Leu Pro Leu Ser -25
 -20
 -15

 Cys Phe Leu Val Ala Leu Ile Ile Trp Cys Tyr Leu Arg Glu Glu Ser -10
 -5
 1

 Glu Ala Asp Gln Trp Leu Arg Gln Val Trp Gly Glu Val Pro Glu Pro 5
 15
 20

 Ser Asp Arg Ser Glu Glu Pro Glu Thr Pro Ala Ala Tyr Arg Ala Arg 25
 30
 35

<210> 403 <211> 211 <212> PRT

<213> Homo sapiens

<220>
<221> SIGNAL
<222> -27..-1

<400> 403 Met Leu Leu Ser Ile Thr Thr Ala Tyr Thr Gly Leu Glu Leu Thr -15 -20 Phe Phe Ser Gly Val Tyr Gly Thr Cys Ile Gly Ala Thr Asn Lys Phe -5 Gly Ala Glu Glu Xaa Ser Leu Ile Gly Leu Ser Gly Ile Phe Ile Gly 15 Ile Gly Glu Ile Leu Gly Gly Ser Leu Phe Gly Leu Leu Ser Lys Asn 30 Asn Arg Phe Gly Arg Asn Pro Val Val Leu Leu Gly Ile Leu Val His 45 Phe Ile Ala Phe Tyr Leu Ile Phe Leu Asn Met Pro Gly Asp Ala Pro 60 Ile Ala Pro Val Lys Gly Thr Asp Ser Ser Ala Tyr Ile Lys Ser Ser 80 Lys Xaa Phe Ala Ile Leu Cys Xaa Phe Leu Xaa Gly Leu Gly Asn Ser 90 Cys Phe Asn Thr Xaa Leu Leu Xaa Ile Xaa Gly Phe Leu Tyr Ser Glu 110 115 Xaa Ser Ala Pro Xaa Phe Ala Ile Phe Asn Phe Val Gln Ser Ile Cys

120 125 130

Ala Ala Val Ala Phe Phe Tyr Ser Asn Tyr Leu Leu Leu His Trp Gln
135 140 145

Leu Leu Val Met Val Ile Phe Gly Phe Xaa Gly Thr Ile Ser Phe Phe

150 155 160 165
Thr Val Glu Trp Glu Xaa Ala Ala Phe Val Xaa Arg Gly Ser Asp Tyr
170 175 180

Arg Ser Ile

<210> 404 <211> 123 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -80..-1 <400> 404 Met Ser Thr Trp Tyr Leu Ala Leu Asn Lys Ser Tyr Lys Asn Lys Asp -70 -75 Ser Val Arg lle Tyr Leu Ser Leu Cys Thr Val Ser Ile Lys Phe Thr -60 -55 Tyr Phe His Asp Ile Gln Thr Asn Cys Leu Thr Thr Trp Lys His Ser -40 -35 -45 Arg Cys Arg Phe Tyr Trp Ala Phe Gly Gly Ser Ile Leu Gln His Ser -25 -30 -20 Val Asp Pro Leu Val Leu Phe Leu Ser Leu Ala Leu Leu Val Thr Pro -15 -10 - 5 Thr Ser Thr Pro Ser Ala Lys Ile Gln Ser Leu Gln Ile Asp Leu Pro 5 10 Gly Gly Trp Arg Leu Ala Thr Asp Arg Ile Phe Thr Leu Ser Pro Val 25 20 Pro Met Asp Xaa Pro Leu Ile Leu His Gln Leu 4.0

<210> 405
<211> 86
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -26..-1
<400> 405
Met Glu Lys Ser Trp 1

Met Glu Lys Ser Trp Met Leu Trp Asn Phe Val Glu Arg Trp Leu Ile
-25 - -20 - -15

Ala Leu Ala Ser Trp Ser Trp Ala Leu Cys Arg Ile Ser Leu Leu Pro
-10 -5 - 1 5

Leu Ile Val Thr Phe His Leu Tyr Gly Gly Ile Ile Leu Leu Leu Leu
10 15 - 20

Ile Phe Ile Ser Ile Xaa Gly Ile Leu Tyr Lys Phe Xaa Asp Val Leu
25 - 30 - 35

Leu Tyr Phe Pro Xaa Gln Xaa Ser Ser Ser Arg Leu Tyr Asp Ser His
40 45 - 50

Ala His Trp Xaa Ser Xaa

<210> 406 <211> 162 <212> PRT <213> Homo sapiens

<221> SIGNAL <222> -31..-1 <400> 406 Met Ala Ala Ala Trp Pro Ser Gly Pro Xaa Ala Pro Glu Ala Val Thr -25 -20 Ala Arg Leu Val Gly Val Leu Trp Phe Val Ser Val Thr Thr Gly Pro -5 -10 Trp Gly Ala Val Ala Thr Ser Ala Gly Gly Glu Glu Ser Leu Lys Cys Glu Asp Leu Lys Val Gly Gln Tyr Ile Cys Lys Asp Pro Lys Ile Asn 25 Asp Ala Thr Gln Glu Pro Val Asn Cys Thr Asn Tyr Thr Ala His Val 40 45 Ser Cys Phe Pro Ala Pro Asn Ile Thr Cys Lys Asp Ser Ser Gly Asn 55 60 Glu Thr His Phe Thr Gly Asn Glu Val Gly Phe Phe Lys Pro Ile Ser 75 70 Cys Arg Asn Val Asn Gly Tyr Ser Tyr Asn Glu Gln Ser His Val Ser 90 85 Phe Ser Trp Met Val Gly Ser Arg Ser Ile Leu Pro Trp Ile Pro Cys 100 105 Phe Gly Phe Val Lys Xaa Xaa His Cys Arg Val Xaa Trp Asn Trp Glu 115 120 125 Pro Asn 130

<210> 407 <211> 98 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -37..-1

<400> 407

<220>

Met Ala Ser Leu Leu Cys Cys Gly Pro Lys Leu Ala Ala Cys Gly Ile -30 -35 -25 Val Leu Ser Ala Trp Gly Val Ile Met Leu Ile Met Leu Gly Ile Phe -15 -10 Phe Asn Val His Ser Ala Val Leu Ile Glu Asp Val Pro Phe Thr Glu 5 1 Lys Asp Phe Glu Asn Gly Pro Gln Asn Ile Tyr Asn Leu Tyr Xaa Gln 15 20 25 Xaa Ser Tyr Asn Cys Phe Ile Ala Ala Gly Leu Tyr Leu Leu Leu Gly 30 35

Gly Phe Ser Phe Cys Gln Xaa Arg Leu Asn Lys Arg Lys Glu Tyr Met 45 50 55 Val Arg

Val Arg

<210> 408 <211> 70 <212> PRT <213> Homo sapiens

<220> <221> SIGNAL <222> -15..-1 <400> 408 Met Arg Phe Leu Pro Cys Cys Leu Leu Trp Ser Val Phe Asn Pro Glu -10 <del>-</del> 5 Ser Leu Asn Cys His Tyr Phe Xaa Xaa Glu Xaa Cys Ile Phe Xaa Ser 10 Leu Gln Tyr Tyr Glu Ile Ser Leu Gln Glu Lys Leu Leu Gly Phe Leu . 20 25 30 Trp Leu Cys Phe Leu Ser Tyr Phe Phe Arg Ala Val Tyr Phe Leu Ile 35 40 45 Asp Phe Ser Ser Phe Thr ١ 50 <210> 409 <211> 60 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -45..-1 <400> 409 Met His Ser Leu Phe Ile Ala Ser Leu Lys Val Leu Phe Tyr Tyr Ser <del>-</del>40 -35 Phe Ser Phe Arg Phe Asn Trp Phe Asp Cys Leu Leu His Asn Leu Gly -25 -20 -15 Glu Asn Phe Leu Ser Leu Leu Ser Lys Ser Cys Ser Ala Asp Pro Ser -10 -5 Gly Ser Thr Phe Met Arg Asp Ile Glu Thr Asn Lys 5 10 <210> 410 <211> 39 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -22..-1 <400> 410 Met Pro Glu Ala Val Glu Gln Ser Ala His Leu Phe Val Thr Trp Ser -20 -15 -10

Ser Gln Arg Ala Leu Ser His Pro Ala Pro Phe Leu Thr Xaa Xaa Lys

1

15

Asn Pro Phe Leu Trp Lys Leu

5

10

<210> 411 <211> 51 <212> PRT

~ 5

<213> Homo sapiens <220> <221> SIGNAL <222> -23..-1 <400> 411 Met Ala Phe Gln Ser Leu Leu Glu Met Lys Phe Phe Leu Cys Ala Ala -15 -20 Phe Pro Leu Gly Ala Gly Val Lys Met Phe His Tyr Leu Gly Pro Gly 1 5 Lys Pro Leu Xaa Gln Ala Ser Pro Ser Pro His Pro His Arg Xaa Arg 10 Ile Trp Pro <210> 412 <211> 95 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -48..-1 <400> 412 Met Ala Ser Ser His Trp Asn Glu Thr Thr Thr Ser Val Tyr Gln Tyr -40 -35 Leu Gly Phe Gln Val Gln Lys Ile Tyr Pro Phe His Asp Asn Trp Asn -20 -30 -25 Thr Ala Cys Phe Val Ile Leu Leu Leu Phe Ile Phe Thr Val Val Ser -10 -5 -15 Leu Val Val Leu Ala Phe Leu Tyr Glu Val Leu Xaa Xaa Cys Cys Cys 5 10 Val Lys Asn Lys Thr Val Lys Asp Leu Lys Ser Glu Pro Asn Pro Leu 25 20 Xaa Xaa Met Met Asp Asn Ile Arg Lys Arg Glu Thr Glu Val Val 40 <210> 413 <211> 60 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -32..-1 <400> 413 Met Asp Glu Tyr Ser Trp Trp Cys His Val Leu Glu Val Val Lys Gly -30 -25 Gln Met Phe Thr Phe Ile Asn Ile Thr Leu Trp Leu Gly Ser Leu Cys -10 -5

Gln Arg Phe Phe Tyr Ala Ser Gly Thr Tyr Phe Leu Ile Tyr Ile Ser

25

Thr Val Thr Pro Ser Trp Arg Leu Cys Leu Val Ser

<210> 414 <211> 170 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -79..-1 <400> 414 Met Glu Asp Pro Asn Pro Glu Glu Asn Met Lys Gln Gln Asp Ser Pro -75 -70 Lys Glu Arg Ser Pro Gln Ser Pro Gly Gly Asn Ile Cys His Leu Gly -60 -55 Ala Pro Lys Cys Thr Arg Cys Leu Ile Thr Phe Ala Asp Ser Lys Phe -40 -45、 Gln Glu Arg His Met Lys Arg Glu His Pro Ala Asp Phe Val Ala Gln -25 -20 Lys Leu Gln Gly Val Leu Phe Ile Cys Phe Thr Cys Ala Arg Ser Phe -10 -5 Pro Ser Ser Lys Ala Xaa Xaa Thr His Gln Arg Ser His Gly Pro Xaa 15 10 Ala Lys Pro Thr Leu Pro Val Ala Thr Thr Thr Ala Gln Pro Thr Phe 30 25 Pro Cys Pro Asp Cys Gly Lys Thr Phe Gly Gln Ala Val Ser Leu Xaa 40 45 Arg His Xaa Gln Xaa His Glu Val Arg Ala Pro Pro Gly Thr Phe Ala 60 55 Cys Thr Xaa Cys Gly Gln Asp Phe Ala Gln Glu Xaa Gly Leu His Gln 70 75 His Tyr Ile Arg His Ala Arg Gly Gly Leu . 90 85

<210> 415 <211> 190 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -82..-1 <400> 415

Met Tyr Val Trp Pro Cys Ala Val Val Leu Ala Gln Tyr Leu Trp Phe -80 -75 -70 His Arg Arg Ser Leu Pro Gly Lys Ala Ile Leu Glu Ile Gly Ala Gly -60 -65 -55 Val Ser Leu Pro Gly Ile Leu Ala Ala Lys Cys Gly Ala Glu Val Ile -45 -40 Leu Ser Asp Ser Ser Glu Leu Pro His Cys Leu Glu Val Cys Arg Gln -20 -30 -25 Ser Cys Gln Met Asn Asn Leu Pro His Leu Gln Val Val Gly Leu Thr -5 -15 -10 Trp Gly His Ile Ser Trp Asp Leu Leu Ala Leu Pro Pro Gln Asp Ile Ile Leu Ala Ser Asp Val Phe Phe Glu Pro Glu Xaa Phe Glu Asp Ile 20 25 Leu Ala Thr Ile Tyr Phe Leu Met His Lys Asn Pro Lys Val Gln Leu 35 40

<210> 416 <211> 114 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -60..-1

<400> 416 Met Met Ala Ala Val Pro Pro Gly Leu Glu Pro Trp Asn Arg Val Arg -55 -50 Ile Pro Lys Ala Gly Asn Arg Ser Ala Val Thr Val Gln Asn Pro Gly -40 -35 -30 Ala Ala Leu Asp Leu Cys Ile Ala Ala Val Ile Lys Glu Cys His Leu -15 -25 -20 Val Ile Leu Ser Leu Lys Ser Gln Thr Leu Asp Ala Glu Thr Asp Val -10 -5 Leu Cys Ala Val Leu Tyr Ser Asn His Asn Arg Met Gly Arg His Lys 15 10 Pro His Leu Ala Leu Lys Gln Val Glu Gln Cys Leu Lys Arg Leu Lys 30 25 Asn Met Asn Leu Glu Gly Ser Ile Gln Asp Leu Phe Glu Leu Phe Ser 45 Ser Lys

<210> 417 <211> 161 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -108..-1

<400> 417 Met Thr Ser Gly Gln Ala Arg Ala Ser Xaa Gln Ser Pro Gln Ala Leu -105 -100 - 95 Glu Asp Ser Gly Pro Val Asn Ile Ser Val Ser Ile Thr Leu Thr Leu -90 -85 -80 Asp Pro Leu Lys Pro Phe Gly Gly Tyr Ser Arg Asn Val Thr His Leu -75 -70 -65 Tyr Ser Thr Ile Leu Gly His Gln Ile Gly Leu Ser Gly Arg Glu Ala -60 -55 -50 His Glu Glu Ile Asn Ile Thr Phe Thr Leu Pro Thr Ala Trp Ser Ser -35 -30 -40 Asp Asp Cys Ala Leu His Gly His Cys Glu Gln Val Val Phe Thr Ala -20 -25 Cys Met Thr Leu Thr Ala Ser Pro Gly Val Phe Pro Ser Leu Tyr Ser -10
His Arg Thr Val Phe Leu Thr Arg Thr Ala Thr Pro Arg Ser Gly Thr
5
10
15
20
Arg Ser Ser Gln Leu Pro Glu Met Pro Thr Gln Asn Thr Pro Lys Ile
25
Thr Ile Leu Ser Gly Val Ile Arg Gly Pro Leu Glu Lys Ser Ile Met
40
45
50
Leu

<210> 418
<211> 67
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -21..-1

<210> 419
<211> 332
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -32..-1
<400> 419
Met Ile Xaa Leu Arc

Met Ile Xaa Leu Arg Asp Thr Ala Ala Ser Leu Arg Leu Glu Arg Asp -25 -20 -30 Thr Arg Gln Leu Pro Leu Leu Thr Ser Ala Leu His Gly Leu Gln Gln -15 -10 Gln His Pro Ala Phe Ser Gly Val Ala Arg Leu Ala Lys Arg Trp Val 10 Arg Ala Gln Leu Leu Gly Glu Gly Phe Ala Asp Glu Ser Leu Asp Leu 20 25 Val Ala Ala Leu Phe Leu His Pro Glu Pro Phe Thr Pro Pro Ser 40 45 Ser Pro Gln Val Gly Phe Leu Arg Phe Leu Phe Leu Val Ser Thr Phe 60 Asp Trp Lys Asn Asn Pro Leu Phe Val Asn Leu Asn Asn Glu Leu Thr 75 Val Glu Glu Gln Val Glu Ile Arg Ser Gly Phe Leu Ala Ala Arg Ala 90 Gln Leu Pro Val Met Val Ile Val Thr Pro Gln Xaa Arg Lys Asn Ser 100 105

Val Trp Thr Gln Asp Gly Pro Ser Ala Gln Ile Leu Gln Gln Leu Val 120 125 Val Leu Ala Ala Glu Xaa Leu Pro Met Leu Xaa Xaa Gln Leu Met Asp 135 140 Pro Arg Gly Pro Gly Asp Ile Arg Thr Xaa Phe Arg Pro Pro Leu Asp 150 155 Ile Tyr Asp Val Leu Ile Arg Leu Ser Pro Arg His Ile Pro Arg His 165 170 . 175 Arg Gln Ala Val Asp Ser Pro Ala Ala Ser Phe Cys Arg Gly Leu Leu 180 185 190 Ser Gln Pro Gly Pro Ser Ser Leu Met Pro Val Leu Gly Xaa Asp Pro 195 200 205 Pro Gln Leu Tyr Leu Thr Gln Leu Xaa Glu Ala Phe Gly Asp Leu Ala 215 220 Leu Phe Phe Tyr Asp Gln His Gly Gly Glu Val Ile Gly Val Leu Trp 230 235 Lys Pro Thr Ser Phe Gln Pro Gln Pro Phe Lys Ala Ser Ser Thr Lys 245 250 Gly Arg Met Val Met Ser Arg Gly Gly Glu Leu Val Met Val Pro Asn 265 Val Glu Ala Ile Leu Glu Asp Phe Ala Val Leu Gly Glu Gly Leu Val 280 Gln Thr Val Glu Ala Arg Ser Glu Arg Trp Thr Val 295

<210> 420 <211> 65 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -19..-1

. . .

<210> 421 <211> 57 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -30..-1

-10 -5 1
Arg Val Tyr His Tyr Phe Gln Trp Arg Arg Ala Gln Arg Gln Ala Ala
5 10 15
Glu Glu Gln Lys Xaa Ser Gly Ile Met
20 25

<210> 422 <211> 85 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -17..-1 <400> 422 Met Lys Lys Val Leu Leu Leu Ile Thr Ala Ile Leu Ala Val Ala Val -15 -10 Gly Phe Pro Val Ser Gln Asp Gln Glu Arg Glu Lys Arg Ser Ile Ser 10 Asp Ser Asp Glu Leu Ala Ser Gly Xaa Phe Val Phe Pro Tyr Pro Tyr 20 25 Pro Phe Arg Pro Leu Pro Pro Ile Pro Phe Pro Arg Phe Pro Trp Phe 35 40 Arg Arg Asn Phe Pro Ile Pro Ile Pro Glu Ser Ala Pro Thr Thr Pro Leu Pro Ser Glu Lys 65

<212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -17..-1 <400> 423 Met Lys Lys Val Leu Leu Leu Ile Thr Ala Ile Leu Ala Val Ala Val -15 -10 -5 Gly Phe Pro Val Ser Gln Asp Xaa Glu Arg Glu Lys Arg Ser Ile Ser 10 Asp Ser Asp Glu Leu Ala Ser Gly Phe Phe Val Phe Pro Tyr Pro Tyr 20 25 Pro Phe Arg Pro Leu Pro Pro Ile Pro Phe Pro Arg Phe Pro Trp Phe 35 40 Arg Arg Asn Phe Pro Ile Pro Ile Pro Glu Ser Ala Pro Thr Thr Pro 55 Leu Pro Ser Glu Lys 65

<210> 424 <211> 69 <212> PRT <213> Homo sapiens

<210> 423 <211> 85 <220> <221> SIGNAL <222> -29..-1 <400> 424 Met Thr Cys Arg Gly Ser Cys Ser Tyr Ala Thr Arg Arg Ser Pro Ser -25 -20 -15 Glu Leu Ser Leu Leu Pro Ser Ser Leu Trp Val Leu Ala Thr Ser Ser -5 -10 Pro Thr Ile Thr Ile Ala Leu Ala Met Ala Ala Gly Asn Leu Cys Pro 15 10 Leu Pro Ser Ser Xaa Arg Xaa Lys Arg Arg Trp Cys Gln Ala Xaa Gln 30 25 Gln Xaa Ala Leu Leu 40

<210> 425 <211> 122 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -56..-1 <400> 425 Met Val Pro Trp Pro Arg Gly Lys Val Lys Thr Ala Pro Ile Pro Ile -45 -50 Ser Arg Phe Pro Phe Leu Pro Thr His Asp Pro Pro Thr Pro Ala His -30 -35 Trp Ser Pro Ala Ser His Gln Gln Phe Lys His Xaa Ser Pro Leu Leu -10 -20 -15 Thr Leu Ala Leu Leu Gly Gln Cys Ser Leu Phe Xaa Asn Leu Arg Lys 1 5 -5 Lys Leu Ala Gly Gln Lys Ala Lys Lys Leu Pro Ser Phe Ser Ser Leu 20 15 Pro Leu Thr Leu Trp Pro Leu Thr Pro Gln Phe Ala Glu Leu Thr Thr 30 35 Val Ala Gln Lys Lys Leu Arg Trp Ser Gly Thr Leu Gly Trp Gly Pro 45 50 Val Pro Ser Trp Val Gln Phe Phe Leu Gly

Arg Cys Ser Gly Ser Pro Leu Pro Leu 5

<210> 427 <211> 50 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -36..-1 <400> 427 Met Ala Pro His Thr Ala Ser Phe Gly Val Cys Pro Leu Leu Ser Val -30 Thr Arg Val Val Ala Thr Glu His Trp Leu Phe Leu Ala Ser Leu Ser -20 **-1**5 -10 Gly Ile Lys Thr Tyr Gln Ser Tyr Ile Ser Val Phe Cys Lys Val Thr 10 5 1 Leu Ile

<210 > 428 <211 > 136 <212 > PRT <213 > Homo sapiens <220 > <221 > SIGNAL <222 > -18..-1

<400> 428 Met Asp Ser Leu Arg Lys Met Leu Ile Ser Val Ala Met Leu Gly Ala -10 -15 Xaa Ala Gly Val Gly Tyr Ala Leu Leu Val Ile Val Thr Pro Gly Glu 5 10 1 Arg Arg Lys Gln Glu Met Leu Lys Glu Met Pro Leu Gln Asp Pro Arg 25 20 Ser Arg Glu Glu Ala Ala Arg Thr Gln Gln Leu Leu Leu Ala Thr Leu 40 35 Gln Glu Ala Ala Thr Thr Gln Glu Asn Val Ala Trp Arg Lys Asn Trp 60 55 Met Val Gly Gly Glu Gly Gly Ala Thr Gly Xaa His Arg Glu Thr Gly 70 Leu Ala Ser Val Gly Ala Gly Pro Trp Leu Gly Arg Arg Asn Pro Arg 90 85 Gln Leu Ser Pro Ser Trp Ala Xaa Arg Lys Ile Arg Xaa Glu Asn Xaa 105 100 Met Pro Gly Leu Ser Gly Val Leu

<210> 429 <211> 194 <212> PRT <213> Homo sapiens

<221> SIGNAL <222> -65..-1

<400> 429 Met Gln Asp Ala Pro Leu Ser Cys Leu Ser Pro Thr Lys Trp Ser Ser -55 -60 -65 Val Ser Ser Ala Asp Ser Thr Glu Lys Ser Ala Ser Ala Ala Gly Thr -40 . -35 -45 Arg Asn Leu Pro Phe Gln Phe Cys Leu Arg Gln Ala Leu Arg Met Lys -25 -20 Ala Ala Gly Ile Leu Thr Leu Ile Gly Cys Leu Val Thr Gly Val Glu -15 -10 -5 Ser Lys Ile Tyr Thr Arg Cys Lys Leu Ala Lys Ile Phe Ser Arg Ala 10 Gly Leu Asp Asn Xaa Arg Gly Phe Ser Leu Gly Asn Trp Ile Cys Met 20 25 Ala Tyr Tyr Glu Ser Gly Tyr Asn Thr Thr Ala Gln Thr Val Leu Asp 40 35 Asp Gly Ser Ile Asp Tyr Gly Ile Phe Gln Ile Asn Ser Phe Ala Trp Cys Arg Arg Gly Lys Leu Lys Glu Asn Asn His Cys His Val Ala Cys 70 Ser Ala Leu Xaa Thr Asp Asp Leu Thr Asp Ala Ile Ile Cys Ala Xaa 85 90 Lys Ile Val Lys Glu Thr Gln Gly Met Asn Tyr Trp Gln Gly Trp Lys 105 100 Lys His Cys Glu Gly Arg Asp Leu Ser Xaa Trp Lys Lys Gly Cys Glu 120 Val Ser

<210> 430 <211> 141 <212> PRT <213> Homo sapiens <220> <221> SIGNAL

<400> 430

<222> -69..-1

Met Thr Ser Gln Pro Val Pro Asn Glu Thr Ile Ile Val Leu Pro Ser -60 Asn Val Ile Asn Phe Ser Gln Ala Glu Lys Pro Glu Pro Thr Asn Gln -45 Gly Gln Asp Ser Leu Lys Lys His Leu His Ala Glu Ile Lys Val Ile -30 -25 Gly Thr Ile Gln Ile Leu Cys Gly Met Met Val Leu Ser Leu Gly Ile -15 -10 Ile Leu Ala Ser Ala Ser Phe Ser Pro Asn Phe Thr Gln Val Thr Ser -5 1 Thr Leu Leu Asn Ser Ala Tyr Pro Phe Ile Gly Pro Phe Phe Val Xaa 15 20 Lys Xaa Ser Glu Glu Gly Arg Met Gly Gln Xaa Gly Glu Glu Xaa Xaa 35 Asn Ser Leu Asn Phe Pro Xaa Ala Ser Leu Leu Xaa Leu Ile Cys Gln 50 Xaa Gln Gly Phe Asn Gly Glu Ser Cys Ser Pro Val Gly

```
<210> 431
<211> 248
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -69..-1
<400> 431
Met Thr Ser Gln Pro Val Pro Asn Glu Thr Ile Ile Val Leu Pro Ser
               -65
                                    -60
Asn Val Ile Asn Phe Ser Gln Ala Glu Lys Pro Glu Pro Thr Asn Gln
           -50
                               -45
Gly Gln Asp Ser Leu Lys Lys His Leu His Ala Glu Xaa Lys Val Ile
                           -30
Gly Thr Ile Gln Ile Leu Cys Gly Met Met Val Leu Ser Leu Gly Ile
    -20
                       -15
                                           -10
Ile Leu Ala Ser Ala Ser Phe Ser Pro Asn Phe Thr Gln Val Thr Ser
Thr Leu Leu Asn Ser Ala Tyr Pro Phe Ile Gly Pro Phe Phe Phe Ile
           15
                               20
Ile Ser Gly Ser Leu Ser Ile Ala Thr Lys Lys Arg Leu Thr Asn Leu
                           35
Leu Val His Thr Thr Leu Val Gly Ser Ile Leu Ser Ala Leu Ser Ala
                       50
Leu Val Gly Phe Ile Xaa Leu Ser Val Lys Gln Ala Thr Leu Asn Pro
                   65
                                       70 .
Ala Ser Leu Xaa Cys Glu Leu Xaa Lys Asn Asn Ile Pro Thr Xaa Xaa
              80
                                  85
Tyr Val Xaa Tyr Phe Tyr His Asp Ser Leu Tyr Thr Thr Asp Xaa Tyr
           95
                               100
                                                105
Thr Ala Lys Ala Xaa Leu Ala Gly Thr Leu Ser Leu Met Leu Ile Cys
        110
                           115
                                               120
Thr Leu Leu Glu Phe Cys Xaa Xaa Val Leu Thr Ala Val Leu Arg Trp
                       130
                                           135
Lys Gln Ala Tyr Ser Asp Phe Pro Gly Ser Val Leu Phe Leu Pro Xaa
140
                   145
                                       150
Ser Tyr Ile Gly Asn Ser Gly Met Ser Ser Lys Met Thr His Asp Cys
                                   165
               160
Gly Tyr Glu Glu Leu Leu Thr Ser
            175
```

<210> 432 <211> 49 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -36..-1 <400> 432 Met Gln Val Pro Hi

Met Gln Val Pro His Leu Arg Val Trp Thr Gln Val Xaa Asp Thr Phe
-35

Ile Gly Tyr Arg Asn Leu Gly Phe Thr Ser Met Cys Ile Leu Phe His
-20

-15

Cys Leu Leu Ser Phe Gln Val Phe Lys Lys Lys Arg Lys Leu Xaa Leu

Phe

<210> 433 <211> 86 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -14..-1 <400> 433 Met Val Ala Leu Asn Leu Ile Leu Val Pro Cys Cys Ala Ala Trp Cys -5 -10 Asp Pro Arg Arg Ile His Ser Gln Asp Asp Val Leu Arg Ser Ser Ala 10 Ala Asp Thr Gly Ser Ala Met Gln Arg Arg Glu Ala Trp Ala Gly Trp 25 Arg Arg Ser Gln Pro Phe Ser Val Gly Leu Pro Ser Ala Glu Arg Leu 40 45 Glu Asn Gln Pro Gly Lys Leu Ser Trp Arg Ser Leu Val Gly Glu Gly 55 60 His Arg Ile Cys Asp Leu 70

<212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -58..-1 <400> 434 Met Thr Arg Leu Cys Leu Pro Arg Pro Glu Ala Arg Glu Asp Pro Ile -50 Pro Val Pro Pro Arg Gly Leu Gly Ala Gly Glu Gly Ser Gly Ser Pro -40 -35 -30 Val Arg Pro Pro Val Ser Thr Trp Gly Pro Ser Trp Ala Gln Leu Leu -25 -20 -15 Asp Ser Val Leu Trp Leu Gly Ala Leu Gly Leu Thr Ile Gln Ala Val -10 - 5 Phe Ser Thr Thr Gly Pro Ala Leu Leu Leu Leu Leu Val Ser Phe Leu 10 20 15 Thr Phe Asp Leu Leu His Arg Pro Ala Val Thr Leu Cys His Ser Ala 30 35

Asn Phe Ser Pro Gly Ala Arg Val Arg Gly Pro Val Lys Val Leu Asp

Ser Arg Arg Leu Tyr Ser Cys Lys Trp Val Gln Ser Gln Asp Asn Leu

Ala Ser Arg Lys His Cys Cys Cys Cys Ser Trp Gly Trp Ala Arg Ser

65

45

<210> 434 <211> 144

<212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -16..-1 <400> 435 Met Glu Arg Leu Val Leu Thr Leu Cys Thr Leu Pro Leu Ala Val Ala -10 Ser Ala Gly Cys Ala Thr Thr Pro Ala Arg Asn Leu Ser Cys Tyr Gln 10 Cys Phe Lys Val Ser Ser Trp Thr Glu Cys Pro Pro Thr Trp Cys Ser 25 Pro Leu Asp Gln Val Cys Ile Ser Asn Glu Val Val Val Ser Phe Ser 40 Glu Ser Pro Pro Gly Arg Gly Xaa Val Pro Xaa Ala Gly Glu Xaa Pro 55 Val Pro Pro Pro Leu Xaa Asp Leu Xaa Met Thr Pro Arg Xaa Xaa Arg 75 Ala Trp Gly Pro Val Gly Pro Lys Val Pro Pro Ala Val Ser Pro Ala 85 90 Leu Gly Ser Gly Glu His Pro Xaa Xaa 100

<210> 436

<211> 162 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -16..-1 <400> 436 Met Glu Arg Leu Val Leu Thr Leu Cys Thr Leu Pro Leu Ala Val Ala -15 -10 Ser Ala Gly Cys Ala Thr Thr Pro Ala Arg Asn Leu Ser Cys Tyr Gln 10 Cys Phe Lys Val Ser Ser Trp Thr Glu Cys Pro Pro Thr Trp Cys Ser 20 25 Pro Leu Asp Gln Val Cys Ile Ser Asn Glu Val Val Val Ser Phe Lys 40 Trp Ser Val Arg Val Leu Leu Ser Lys Arg Cys Ala Pro Arg Cys Pro 55 Asn Asp Asn Met Xaa Phe Glu Trp Ser Pro Ala Pro Met Val Gln Gly 70 75 Val Ile Thr Arg Arg Cys Cys Ser Trp Ala Leu Cys Asn Arg Ala Leu 90 Thr Pro Gln Glu Gly Arg Trp Ala Leu Xaa Gly Gly Leu Leu Leu Gln 105 Asp Pro Ser Arg Gly Xaa Lys Thr Trp Val Arg Pro Gln Leu Gly Leu 120 125 Pro Leu Cys Leu Pro Xaa Ser Asn Pro Leu Cys Pro Xaa Glu Thr Gln 130 135 Glu Gly 145

<210> 437 <211> 110 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -20..-1 <400> 437 Met Xaa Leu Met Val Leu Val Phe Thr Ile Gly Leu Thr Leu Leu Leu -15 -10 Gly Xaa Gln Ala Met Pro Ala Asn Arg Leu Ser Cys Tyr Arg Lys Ile 1 Leu Lys Asp His Asn Cys His Asn Leu Pro Glu Gly Val Ala Asp Leu 20 Thr Gln Ile Asp Val Asn Val Gln Asp His Phe Trp Asp Gly Lys Gly 40 35 Cys Glu Met Ile Cys Tyr Cys Asn Phe Lys Arg Ile Ala Leu Leu Pro 50 55 . Lys Arg Arg Phe Leu Trp Thr Lys Asp Leu Phe Arg Asp Ser Leu Gln 70 Gln Ser Met Arg Ile Phe Met Tyr Ser Gly Glu His His Ser 80 85 <210> 438

<211> 71 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -15..-1 <400> 438 Met Lys Leu Leu Thr His Asn Leu Leu Ser Ser His Val Arg Gly Val -10 1 -5 Gly Ser Arg Gly Phe Pro Leu Arg Leu Gln Ala Thr Glu Val Arg Ile 10 Cys Pro Val Glu Phe Asn Pro Asn Phe Val Ala Arg Met Ile Pro Lys 25 30 Val Glu Trp Ser Ala Phe Leu Glu Ala Xaa Asp Asn Leu Arg Leu Ile Gln Val Pro Arg Arg Ala Gly 50

<210> 439
<211> 99
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -24..-1
<400> 439

Met Lys Ser Ala Lys Leu Gly Phe Leu Leu Arg Phe Phe Ile Phe Cys
-20 -15 -10

Ser Leu Asn Thr Leu Leu Leu Gly Gly Val Asn Lys Ile Ala Glu Lys
-5
Ile Cys Gly Asp Leu Lys Asp Pro Cys Lys Leu Asp Met Asn Phe Gly
10
Ser Cys Tyr Glu Val His Phe Arg Tyr Phe Tyr Asn Arg Thr Ser Lys
20
Arg Cys Glu Thr Phe Val Phe Ser Ser Cys Asn Gly Asn Leu Asn Asn
45
Phe Lys Leu Lys Ile Glu Arg Glu Val Xaa Cys Val Ala Lys Tyr Lys
60
Fro Pro Arg
75

<210> 440 <211> 169 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -25..-1

<400> 440 Met Arg Lys Pro Ala Ala Gly Phe Leu Pro Ser Leu Leu Lys Val Leu -20 -15 Leu Leu Pro Leu Ala Pro Ala Ala Gln Asp Ser Thr Gln Ala Ser -5 Thr Pro Gly Ser Pro Leu Ser Pro Thr Glu Tyr Gln Arg Phe Phe Ala 10 15 20 Leu Leu Thr Pro Thr Trp Lys Ala Glu Thr Thr Cys Arg Leu Arg Ala 30 35 Thr His Gly Cys Arg Asn Pro Thr Leu Val Gln Leu Asp Gln Tyr Glu 45 50 Asn His Gly Leu Val Pro Asp Gly Ala Val Cys Ser Asn Leu Pro Tyr 60 65 Ala Ser Trp Phe Glu Ser Phe Cys Gln Phe Thr His Tyr Arg Cys Ser 80 Asn His Val Tyr Tyr Ala Lys Arg Val Leu Cys Ser Gln Pro Val Ser 95 Ile Leu Ser Pro Asn Thr Leu Lys Glu Ile Glu Xaa Ser Ala Glu Val 110 115 Ser Pro Thr Thr Asp Asp Leu Pro His Leu Thr Pro Leu His Ser Asp 125 130 Arg Thr Pro Asp Leu Pro Ala Leu Ala

Ala Asp Cys Gly Thr Ile Leu Leu Gln Asp Lys Gln Arg Lys Ile Tyr -55 -50 Cys Val Ala Cys Gln Glu Leu Asp Ser Asp Val Asp Lys Asp Asn Pro -30 -35 -40 Ala Leu Asn Ala Gln Ala Ala Leu Ser Gln Ala Arg Glu His Gln Leu -20 -25 Ala Ser Ala Ser Glu Leu Pro Leu Gly Ser Arg Pro Ala Pro Gln Pro -10 -5 Pro Val Pro Arg Pro Glu His Cys Glu Gly Ala Ala Ala Gly Leu Lys 10 Ala Ala Gln Gly Pro Pro Ala Pro Ala Val Pro Pro Asn Thr Xaa Val Met Ala Cys Thr Gln Thr Ala Leu Leu Gln Lys Leu Thr Trp Ala Ser 45 Ala Glu Leu Gly Ser Xaa Thr Ser Xaa Gly Lys Xaa Ala Ser Ser Cys 60 Val Ala Leu Ser Ala His Val Arg Arg Pro Cys Ala Ala Cys Ser Ser Tyr Ser Thr Lys Arg Ser Pro

<210> 442 <211> 70 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -15..-1 <400> 442 Met Ile Leu Cys Phe Leu Leu Pro His His Arg Leu Gln Glu Ala Arg -10 -5 Gln Ile Gln Val Leu Lys Met Leu Pro Arg Glu Lys Leu Arg Arg 10 Glu Glu Arg Lys Gln Ile Asn Gly Lys Lys Xaa Arg Thr Lys Tyr Glu 25 Thr Pro Arg Lys Xaa Xaa Gly Lys Lys Gly Gly Asn Xaa Xaa Xaa Xaa Leu Ser Lys Arg Asp

-25

10

-10 Ala Thr Arg Ile Pro Leu Asn Gly Thr Trp Leu Phe Thr Pro Val Ser

<210> 443 <211> 381 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -33..-1 <400> 443 Met Ser Trp Thr Val Pro Val Val Arg Ala Ser Gln Arg Val Ser Ser -30 Val Gly Ala Asn Xaa Leu Cys Leu Gly Met Ala Leu Cys Pro Arg Gln

-15

Lys Met Ala Thr Val Lys Ser Glu Leu Ile Glu Arg Phe Thr Ser Glu Lys Pro Val His His Ser Lys Val Ser Ile Ile Gly Thr Gly Ser Val 40 Gly Met Ala Cys Ala Ile Ser Ile Leu Leu Lys Gly Leu Ser Asp Glu 55 Leu Ala Leu Val Asp Leu Asp Glu Xaa Lys Leu Lys Gly Glu Thr Met 70 Asp Leu Gln His Gly Ser Pro Phe Thr Lys Met Pro Asn Ile Val Cys 85 90 Ser Lys Xaa Tyr Phe Val Thr Ala Asn Ser Asn Leu Val Ile Ile Thr 105 100 Ala Gly Ala Arg Gln Xaa Lys Gly Glu Thr Arg Leu Asn Leu Xaa Gln 120 115 Arg Asn Val Ala Ile Phe Lys Leu Met Ile Ser Ser Ile Val Gln Tyr 135 Ser Pro His Cys Lys Leu Ile Ile Val Ser Asn Pro Val Asp Ile Leu 150 155 Thr Tyr Val Ala Trp Lys Leu Ser Ala Phe Pro Lys Asn Arg Ile Ile 165 170 Gly Ser Gly Cys Asn Leu Ile Xaa Ala Arg Phe Arg Phe Leu Ile Gly 185 180 Gln Lys Leu Gly Ile His Ser Glu Ser Cys His Gly Trp Ile Leu Gly 195 200 Glu His Gly Asp Ser Ser Val Pro Val Trp Ser Gly Val Asn Ile Ala 215 Gly Val Pro Leu Lys Asp Leu Asn Ser Asp Ile Gly Thr Asp Lys Asp 230 235 Pro Glu Gln Trp Lys Asn Val His Lys Glu Val Thr Ala Thr Ala Tyr 250 245 Glu Ile Ile Lys Met Lys Gly Tyr Thr Ser Trp Ala Ile Gly Leu Ser 265 260 Val Ala Asp Leu Thr Glu Ser Ile Leu Lys Asn Leu Arg Arg Ile His 275 280 285 Pro Val Ser Thr Ile Thr Lys Gly Leu Tyr Gly Ile Xaa Glu Glu Val 290 295 Phe Leu Ser Ile Pro Cys Ile Leu Gly Glu Asn Gly Ile Thr Asn Leu 310 315 Ile Lys Ile Lys Leu Thr Pro Glu Glu Glu Ala His Leu Lys Lys Ser 325 330 Ala Lys Thr Leu Trp Glu Ile Gln Asn Lys Leu Lys Leu 340

```
<210> 444
<211> 39
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -14..-1
```

```
<210> 445
<211> 50
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -37..-1
<400> 445
Met Val Leu Thr Thr Leu Pro Leu Pro Ser Ala Asn Ser Pro Val Asn
                               -25
    -35
                   -30
Met Pro Thr Thr Gly Pro Asn Ser Leu Ser Tyr Ala Ser Ser Ala Leu
                                         -10
                      -15
-20
Ser Pro Cys Leu Thr Ala Pro Lys Ser Pro Arg Leu Ala Met Met Pro
-5
                  1
Asp Asn
<210> 446
<211> 51
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -26..-1
<400> 446
Met Thr Pro Trp Cys Leu Ala Cys Leu Gly Arg Arg Pro Leu Ala Ser
 -25
                      -20
                                         -15
Leu Gln Trp Ser Leu Thr Leu Ala Trp Cys Gly Ser Gly Ser His Trp
                  -5
Thr Glu Arg Pro Xaa Gln Xaa Ser Pro Trp Xaa Ser Leu Ser Ala Thr
                             15
Thr Arg Gly
      25
<210> 447
<211> 242
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -30..-1
<400> 447
Met Gly Glu Ala Ser Pro Pro Ala Pro Ala Arg Arg His Leu Leu Val
                -25
                                      -20
Leu Leu Leu Leu Ser Thr Leu Val Ile Pro Ser Ala Ala Ala Pro
               -10
                                   - 5
Ile His Asp Ala Asp Ala Gln Glu Ser Ser Leu Gly Leu Thr Gly Leu
                           10
Gln Ser Leu Leu Gln Gly Phe Ser Arg Leu Phe Leu Lys Gly Asn Leu
                       25
Leu Arg Gly Ile Asp Ser Leu Phe Ser Ala Pro Met Asp Phe Arg Gly
```

40 45 Leu Pro Gly Asn Tyr His Lys Glu Glu Asn Gln Glu His Gln Leu Gly 60 55 Asn Asn Thr Leu Ser Ser His Leu Gln Ile Asp Lys Met Thr Asp Asn 75 Lys Thr Gly Glu Val Leu Ile Ser Glu Asn Val Val Ala Ser Ile Gln 90 95 Pro Xaa Glu Gly Xaa Phe Glu Gly Asp Leu Lys Val Pro Arg Met Glu 105 110 Glu Lys Glu Ala Leu Val Pro Xaa Gln Lys Ala Thr Asp Ser Phe His 120 125 Thr Glu Leu His Pro Arg Val Ala Phe Trp Ile Ile Lys Leu Pro Arg 140 135 Arg Arg Ser His Gln Asp Ala Leu Glu Gly Gly His Trp Leu Xaa Glu 150 155 Lys Arg His Arg Leu Gln Ala Ile Arg Asp Gly Leu Arg Lys Gly Thr 170 175 165、 His Lys Asp Xaa Leu Xaa Xaa Gly Thr Glu Ser Ser Ser His Ser Arg 190 185 Leu Ser Pro Arg Lys Xaa His Leu Leu Tyr Ile Leu Xaa Pro Ser Arg 195 . 200 205 Gln Leu

<210> 448 <211> 154 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -60..-1

<400> 448

Met Gly Ser Lys Cys Cys Lys Gly Gly Pro Asp Glu Asp Ala Val Glu -55 -50 Arg Gln Arg Arg Gln Lys Leu Leu Ala Gln Leu His His Arg Lys -35 -30 Arg Val Lys Ala Ala Gly Gln Ile Gln Ala Trp Trp Arg Gly Val Leu -25 -20 -15 Val Arg Arg Thr Leu Leu Val Ala Ala Leu Arg Ala Trp Met Ile Gln -10 **-5** Cys Trp Trp Arg Thr Leu Val Gln Arg Arg Ile Arg Gln Arg Arg Gln 10 15 Ala Leu Leu Gly Val Tyr Val Ile Gln Glu Gln Ala Ala Val Lys Leu 25 30 Gln Ser Cys Ile Arg Met Trp Gln Cys Arg Gln Cys Tyr Arg Gln Met 45 Cys Asn Ala Leu Cys Leu Phe Gln Val Pro Lys Ser Ser Leu Ala Phe 60 Gln Thr Asp Gly Phe Leu Gln Val Gln Tyr Ala Ile Pro Ser Lys Gln 75

<210> 449 <211> 89 <212> PRT <213> Homo sapiens

Pro Glu Phe His Ile Glu Ile Leu Ser Ile

```
<220>
<221> SIGNAL
<222> -61..-1
<400> 449
Met Asn Ala Ala Ile Asn Thr Gly Pro Ala Pro Ala Val Thr Lys Thr
               -55 -50
Glu Thr Glu Val Gln Asn Pro Asp Val Leu Trp Asp Leu Asp Ile Pro
-45
                 -40
                                 -35
Glu Ala Arg Ser His Ala Asp Gln Asp Ser Asn Pro Lys Ala Glu Ala
                                                  -15
              -25
                                -20
Leu Leu Pro Cys Asn Leu His Cys Ser Trp Leu His Ser Ser Pro Arg
          -10
                   -5
Pro Asp Pro His Ser His Phe Pro Ser Xaa Arg Arg Cys Pro Leu Pro
                  10
His Pro Cys Ala Thr Tyr Pro Pro Xaa
        25
<210> 450
<211> 73
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -26..-1
<400> 450
Met Arg Met Ser Leu Ala Gln Arg Val Leu Leu Thr Trp Leu Phe Thr
               -20
                                       -15
Leu Leu Phe Leu Ile Met Leu Val Leu Lys Leu Asp Glu Lys Ala Pro
               - 5
                                  1
Trp Asn Trp Phe Leu Ile Phe Ile Pro Val Trp Ile Phe Asp Thr Ile
         10
                           15
                                    20
Leu Leu Val Leu Leu Ile Val Lys Met Ala Gly Arg Cys Lys Ser Gly
              30
                                        35
Phe Asp Leu Asp Met Asp His Thr Ile
  40
                     45
<210> 451
<211> 54
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -34..-1
<400> 451
Met Ile Pro Leu Ile Ser His Leu Ala Glu Ala Ala Pro Pro Thr Ser
              -30
                               -25
```

Trp Ser Leu Ile Ser Ser Val Leu Asn Val Gly His Leu Leu Phe Ser

Ser Ala Cys Ser Val Ser Leu Glu Ala Leu Ser Thr Arg Asn Ile Lys

-10

10

-5

-15

20

Ala Ile Ile Leu Met Lys

```
<210> 452
<211> 121
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -38..-1
<400> 452
Met Glu Ser Pro Gln Leu His Cys Ile Leu Asn Ser Asn Ser Val Ala
           -35
                               -30
Cys Ser Phe Ala Val Gly Ala Gly Phe Leu Ala Phe Leu Ser Cys Leu
                           -15
                                               -10
Ala Phe Leu Val Leu Asp Thr Gln Glu Thr Arg Ile Ala Gly Thr Arg
Phe Lys Thr Ala Phe Gln Leu Leu Asp Phe Ile Leu Ala Val Leu Trp
              15
                                   20
Ala Val Val Trp Phe Met Gly Phe Cys Phe Leu Ala Asn Gln Trp Gln
           30
                              35
His Ser Pro Pro Lys Glu Xaa Leu Leu Gly Ser Ser Ser Ala Gln Ala
                           50
                                             55
Ala Ile Gly Xaa His Leu Leu Leu His Pro Cys Leu Asp Ile Pro Xaa
                      65
Leu Pro Gly Xaa Pro Gly Pro Pro Lys
                  80
<210> 453
<211> 166
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -37..-1
<400> 453
Met Ser Thr Val Gly Leu Phe His Phe Pro Thr Pro Leu Thr Arg Ile
    -35 -30 -25
Cys Pro Ala Pro Trp Gly Leu Arg Leu Trp Glu Lys Leu Thr Leu Leu
                       -15
                                           -10
Ser Pro Gly Ile Ala Val Thr Pro Val Gln Met Ala Gly Lys Lys Asp
                   1
Tyr Pro Ala Leu Leu Ser Leu Asp Glu Asn Glu Leu Glu Glu Gln Phe
                              20
Val Lys Gly His Gly Pro Gly Gly Gln Ala Thr Asn Lys Thr Ser Asn
                           35
                                             40
Cys Val Val Leu Lys Xaa Ile Pro Ser Gly Ile Val Val Lys Cys His
                       50
Gln Thr Arg Ser Val Asp Gln Asn Arg Lys Leu Ala Arg Lys Ile Leu
                   65
                                       70
Gln Glu Lys Val Xaa Val Phe Tyr Asn Gly Glu Asn Ser Pro Val His
                                  85
Lys Glu Lys Arg Glu Ala Ala Lys Lys Gln Glu Arg Lys Lys Arg
```

100 Ala Lys Glu Thr Leu Glu Lys Lys Xaa Leu Leu Lys Xaa Leu Trp Glu

120

115

95

Ser Ser Lys Lys Val His 125

<210> 454 <211> 180 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -26..-1 <400> 454 Met Gly Ile Gln Thr Ser Pro Val Leu Leu Ala Ser Leu Gly Val Gly -25 、 -20 -15 Leu Val Thr Leu Leu Gly Leu Ala Val Gly Ser Tyr Leu Val Arg Arg 1 - 5 Ser Arg Arg Pro Gln Val Thr Leu Leu Asp Pro Asn Glu Lys Tyr Leu 10 15 Leu Arg Leu Leu Asp Lys Thr Thr Val Ser His Asn Thr Lys Arg Phe 30 35 Arg Phe Ala Leu Pro Thr Ala His His Thr Leu Gly Leu Pro Val Gly 45 50 Lys His Ile Tyr Leu Ser Thr Arg Ile Asp Gly Ser Leu Val Ile Arg 60 65 Pro Tyr Thr Pro Val Thr Ser Asp Glu Asp Gln Gly Tyr Val Asp Leu 75 80 Val Xaa Lys Val Tyr Leu Lys Gly Val His Pro Lys Phe Pro Glu Gly 95 Gly Lys Met Ser Xaa Tyr Leu Asp Xaa Leu Lys Val Gly Asp Xaa Val 110 115 Glu Phe Xaa Gly Pro Ser Gly Leu Leu Thr Tyr Thr Gly Lys Gly His 125 130 Phe Asn Ile Gln Pro Asn Lys Asn Leu His Gln Asn Pro Glu Trp Arg 140 145 Arg Asn Trp Glu

<210> 455 <211> 91 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -64..-1

<400> 455 Met Thr Pro Arg Ile Leu Ser Glu Val Gln Phe Ser Ala Phe Cys Pro -55 -60 Tyr Trp Thr Ile Ala Arg Ile Leu Glu Arg Val Gly Ser Ala Cys Phe -45 -40 -35 Arg Leu Glu Leu Cys Ala Ala Ile Val Gly Tyr Phe Val Leu Asp Val -25 -20 -30 Arg Thr Phe Leu Phe Ile Val Val Cys Val Ile Cys Val Thr Leu Asn -10 -5 Phe Pro Arg Phe Tyr Phe Leu Cys Leu Ser Ser Leu Thr Ala Phe Gly 10 Thr Pro Pro Ile Gly Val His Ile Pro Ser Pro

20 25

```
<210> 456
<211> 257
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -23..-1
<400> 456
Met Arg Arg Ile Ser Leu Thr Ser Ser Pro Val Arg Leu Leu Leu Xaa
           -20
                        -15
Leu Leu Leu Leu Ile Ala Leu Glu Ile Met Val Gly Gly His Ser
 - 5
Leu Cys Phe Asn Phe Thr Ile Lys Ser Leu Ser Arg Pro Gly Gln Pro
                   15
                                      20
Trp Cys Glu Ala His Val Phe Leu Asn Lys Asn Leu Phe Leu Gln Tyr
               30
                                  35
Asn Ser Asp Asn Asn Met Val Lys Pro Leu Gly Leu Leu Gly Lys Lys
                               50
Val Tyr Ala Thr Ser Thr Trp Gly Glu Leu Thr Gln Thr Leu Gly Glu
                           65
Val Gly Arg Asp Leu Arg Met Leu Leu Cys Asp Ile Lys Pro Gln Ile
                       80
                                           85
Lys Thr Ser Asp Pro Ser Thr Leu Gln Val Xaa Xaa Phe Cys Gln Arg
                   95
                                       100
Glu Ala Glu Arg Cys Thr Gly Ala Ser Trp Gln Phe Ala Thr Asn Gly
                                   115
               110
Glu Lys Ser Leu Leu Phe Asp Ala Met Asn Met Thr Trp Thr Val Ile
           125
                               130
                                                   135
Asn His Glu Ala Ser Xaa Ile Lys Glu Thr Trp Lys Lys Asp Arg Xaa
                           145
                                               150
Leu Glu Xaa Tyr Phe Arg Lys Leu Ser Lys Gly Asp Cys Asp His Trp
                       160
                                           165
Leu Arg Glu Phe Leu Gly His Trp Glu Ala Met Pro Xaa Pro Xaa Val
                   175
                                      180
Ser Pro Xaa Asn Ala Ser Xaa Ile His Trp Ser Ser Xaa Leu Pro
                                   195
Xaa Xaa Trp Ile Ile Leu Gly Ala Phe Ile Leu Leu Xaa Leu Met Gly
                               210
Ile Val Leu Ile Cys Val Trp Trp Gln Asn Gly Xaa Xaa Ser Thr Xaa
                           225
Xaa
```

```
<210> 457
<211> 193
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -60..-1
```

Cys Ser Gly Gln Gln Pro Phe Pro Phe Gly Ala Ser Asn Ile Pro -30 -40 -35 Leu Leu Cly Arg Ser Arg Lys Val Ala Arg Gly Ala Pro Val Leu -15 -20 -25 Trp Pro Phe Leu Thr Trp Ile Asn Pro Ala Leu Ser Ile Cys Asp Pro -5 -10 Leu Gly Ser Cys Gly Trp Xaa Cys His Thr Ala Gln Val Pro Ala Pro 10 15 Leu Gln Leu Pro Thr Ala Cys Pro Pro Leu Pro His Gly Thr Arg Ala Val Gly Pro Thr Pro Gly Leu Leu Pro Glu Ala Ala Pro Xaa Thr 45 Xaa Gly Ala Leu Ser Ser Arg Ser Arg His Trp Ser Cys Ser Ile Val 60 Xaa Cys Leu His Leu His Xaa Leu Leu Ser Val Glu Thr Arg Xaa Phe 75 80 Xaa Lys His Leu Leu Val Leu Leu Val Ala Val Ala His Ser Val Leu 95 90 Glu Pro Pro Ala Leu Val Pro Asn Val Gln Cys Glu Met Cys Thr His 105 110 Ser Gly Pro Arg Asp Leu Glu Ala Ala Val Val Ser Pro Ala Pro Trp Glu

```
<210> 458
<211> 107
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -28..-1
```

<400> 458

70

Met Val Leu Thr Leu Gly Glu Ser Trp Pro Val Leu Val Gly Arg Arg
-25 -20 -15

Phe Leu Ser Leu Ser Ala Ala Asp Gly Ser Asp Gly Ser His Asp Ser
-10 -5 1

Trp Asp Val Glu Arg Val Ala Glu Trp Pro Trp Leu Ser Gly Thr Ile

5 10 15 20

Arg Ala Val Ser Hig Thr Arg Val Thr Luc Luc Arg Leu Luc Val Cyc

Arg Ala Val Ser His Thr Asp Val Thr Lys Lys Asp Leu Lys Val Cys
25
30
35
Val Glu Phe Xaa Gly Glu Ser Trp Arg Lys Arg Arg Trp Ile Glu Val

40 45 50

Tyr Ser Leu Leu Arg Lys Ala Phe Leu Val Lys His Asn Leu Val Leu

55 60 65 Ala Glu Arg Lys Ser Pro Glu Ile Ser Trp Gly

```
<210> 459
<211> 121
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -13..-1
```

<400> 459 Met Leu Val Leu Arg Ser Ala Leu Thr Arg Ala Leu Ala Ser Arg Thr -10 -5 Leu Ala Pro Gln Met Cys Ser Ser Phe Ala Thr Gly Pro Arg Gln Tyr 10 15 Asp Gly Ile Phe Tyr Glu Phe Arg Ser Tyr Tyr Leu Lys Pro Ser Lys 25 30 Met Asn Glu Phe Leu Glu Asn Phe Glu Lys Asn Ala Gln Leu Arg Thr Ala His Ser Glu Leu Val Gly Tyr Trp Ser Val Xaa Phe Gly Gly Arg 60 Met Xaa Thr Val Phe His Ile Trp Lys Tyr Asp Asn Phe Ala His Arg 75 Thr Glu Phe Gln Lys Ala Leu Ala Lys Asp Lys Glu Trp Gln Glu Gln 90 Phe Leu Ile Pro Asn Leu Ala Leu Asn 100 105

<210> 461 <211> 109 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -13..-1 <400> 461 Met Cys Leu Leu Thr Ala Leu Val Thr Gln Val Ile Ser Leu Arg Lys -5 Asn Ala Glu Arg Thr Cys Leu Cys Lys Arg Arg Trp Pro Trp Xaa Pro 10 Ser Pro Arg Ile Tyr Cys Ser Ser Thr Pro Cys Asp Ser Lys Phe Pro 25 30 Thr Val Tyr Ser Ser Ala Pro Phe His Ala Pro Leu Pro Val Gln Asn 40 45 Ser Leu Trp Gly His Pro Leu His Gly Cys Ser Trp Gln Cys His His 55 60 Pro Gln Gly Gln Asn Leu Gln Pro Ala Ser Leu Xaa Thr His Leu Ser 75

Lys Pro Lys Arg His Phe Xaa Lys Lys Xaa Cys Gln Ala

-332-WO 99/31236 PCT/IB98/02122 --

85 95

<211> 143 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -41..-1 <400> 462 Met Ala Thr Ala Thr Glu Gln Trp Val Leu Val Glu Met Val Gln Ala -40 -35 -30 Leu Tyr Glu Ala Pro Ala Tyr His Leu Ile Leu Glu Gly Ile Leu Ile -25 -20 -15 Leu Trp Ile Ile Arg Leu Leu Phe Ser Lys Thr Tyr Lys Leu Gln Glu -5 Arg Ser Asp Leu Thr Val Lys Glu Lys Glu Glu Leu Ile Glu Glu Trp 10 15 Gln Pro Glu Pro Leu Val Pro Pro Val Pro Lys Asp His Pro Ala Leu 30 35 Asn Tyr Asn Ile Val Ser Gly Pro Pro Ser His Lys Thr Val Val Asn 45 50 Gly Lys Glu Cys Ile Asn Phe Ala Ser Phe Asn Phe Leu Gly Leu Leu 65 Asp Asn Pro Arg Val Lys Ala Ala Ala Leu Ala Ser Leu Lys Lys Tyr 75 80 Gly Val Gly Thr Cys Gly Pro Cys Gly Phe Tyr Gly Thr Phe Glu 95

<210> 463 <211> 232 <212> PRT

<210> 462

<213> Homo sapiens

<220>

<221> SIGNAL

<222> -30..-1

<400> 463

Met Ala Ala Thr Ser Gly Thr Asp Glu Pro Val Ser Gly Glu Leu Val -25 -20 Ser Val Ala His Ala Leu Ser Leu Pro Ala Glu Ser Tyr Gly Asn Xaa -10 -5 Xaa Asp Ile Glu Met Ala Trp Ala Met Arg Ala Met Gln His Ala Glu 10 Val Tyr Tyr Lys Leu Ile Ser Ser Val Asp Pro Gln Phe Leu Lys Leu 20 25 30 Thr Lys Val Asp Asp Gln Ile Tyr Ser Glu Phe Arg Lys Asn Phe Glu 40 45 Thr Leu Arg Ile Asp Val Leu Xaa Pro Glu Xaa Leu Lys Ser Glu Ser 60 Ala Lys Glu Pro Pro Gly Tyr Asn Ser Leu Pro Leu Lys Leu Leu Gly 75 Thr Gly Lys Ala Ile Thr Lys Leu Phe Ile Ser Val Phe Arg Thr Lys 90 Lys Glu Arg Lys Glu Ser Thr Met Glu Glu Lys Lys Glu Leu Thr Val

105 110 100 Glu Lys Lys Arg Thr Pro Arg Met Glu Glu Arg Lys Glu Leu Ile Val 120 125 Glu Lys Lys Lys Arg Lys Glu Ser Thr Glu Lys Thr Lys Leu Thr Lys 135 140 Glu Glu Lys Lys Gly Lys Lys Leu Thr Lys Lys Ser Thr Lys Val Val 155 160 Lys Lys Leu Cys Lys Val Tyr Arg Glu Gln His Ser Arg Ser Tyr Asp 170 175 Ser Ile Glu Thr Thr Ser Thr Thr Val Leu Leu Ala Gln Thr Pro Leu 185 Val Lys Cys Lys Phe Leu Tyr Asn 200

<210> 464 <211> 61 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -21..-1 <400> 464

<210> 465
<211> 34
<212> PRT
<213> Homo sapiens

<220>
<221> SIGNAL
<222> -19..-1

<400> 465
Met Phe Leu Lys Ser Gly Ala
-15
Cys Trp Leu Glu Arg Lys Asp

Met Phe Leu Lys Ser Gly Ala Gly Leu Ser Ser Cys Leu Leu Pro Leu

-15

-10

-5

Cys Trp Leu Glu Arg Lys Asp His Gly Arg Arg Pro Ser Xaa His Pro

1

5

10

Gly Arg

15

<210> 466 <211> 215 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -54..-1

<400> 466

Met Asn Xaa Tyr Ala Ser Pro Phe Asn Xaa Gln Leu Xaa Tyr Leu Xaa -50 -45 Leu Ser Arg Phe Glu Cys Val His Arg Asp Gly Arg Val Ile Thr Leu -30 -25 -35 Ser Tyr Gln Glu Gln Glu Leu Gln Asp Phe Leu Leu Ser Gln Met Ser -20 -15 Gln His Gln Val His Ala Val Gln Gln Leu Ala Lys Val Met Gly Trp Gln Val Leu Ser Phe Ser Asn His Val Gly Leu Gly Pro Ile Glu Ser 15 20 Xaa Gly Asn Ala Ser Ala Ile Thr Val Ala Pro Gln Val Val Thr Met 35 Leu Phe Gln Phe Val Met Asp Leu Lys Val Ala Ala Arg Leu Trp Phe 50 Ser Phe Leu Val Thr Asn Val Lys Thr Phe Gln Lys Val Met Phe Tyr 65 Lys Ile Thr Asn Gly Val Ile Phe Val Gly His Ser Lys Lys Phe Ser 80 85 Gly Ile Lys Trp Lys Val Xaa Ile Leu Phe Ile Lys Trp Xaa Cys Leu 95 100 Cys Leu His Leu Ala Leu Val Tyr Tyr Asp Phe Phe Gln Met Phe Pro 115 Lys Xaa Val Ser Xaa Asn Phe Asp Leu Lys Cys Leu Gln Ile Asn Tyr 130 135 Lys His Lys Glu Glu Ile Thr Ser Lys Arg Val Leu Phe Leu Lys Ile 145 Ile Ile Arg Lys Cys Phe Ile

<210> 467 <211> 27 <212> PRT <213> Homo sapiens <220> <221> SIGNAL

<222> -17..-1

<400> 467 Met Val Val His Leu Leu Tyr Ala His Leu Ser Phe Thr Ser Lys Arg -10 Ala Val Val Met Leu Lys Leu Glu Ile Thr Phe 1 5

<210> 468. <211> 85 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -24..-1

<400> 468

Met Cys Ser His Ala Ser Met Ser Phe His Thr Leu Phe His Leu Leu -15 -20 Phe Leu Pro His Tyr Ile Glu Thr Phe Lys Pro Gln Ser Lys His Cys -5 1 Phe Phe Trp Ile Ala Ala Phe Leu Thr Ser Leu Leu Thr Pro Gln Ser 15 Leu Gln Gly Phe His Ser Ser Leu Cys Ala Leu Arg Ser Gln His Phe 35 30 Pro Ser Thr Cys Asn Cys Phe Cys Tyr Leu Thr Ile Ile Ala Leu Xaa 50 45 Tyr Trp Asp Asn Leu 60

. <210> 469 <211> 51 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -16..-1 <400> 469 Met Leu Arg Ile Ala Leu Thr Leu Ile Pro Ser Met Leu Ser Arg Ala -5 -10 -15 Ala Gly Trp Cys Trp Tyr Lys Glu Pro Thr Gln Gln Phe Ser Tyr Leu 10 Cys Leu Pro Cys Leu Ser Trp Asn Lys Lys Gly Asn Val Leu Gln Leu 25

<210> 470 <211> 67 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -43..-1

Pro Asn Phe 35

<210> 471 <211> 63 <212> PRT <213> Homo sapiens

```
<220>
<221> SIGNAL
<222> -15..-1
<400> 471
Met Gly Ile Leu Ser Thr Val Thr Ala Leu Thr Phe Ala Arg Ala Leu
            -10
Asp Gly Cys Arg Asn Gly Ile Ala His Pro Ala Ser Glu Lys His Arg
                              10
Leu Glu Lys Cys Arg Glu Leu Glu Ser Ser His Ser Ala Pro Gly Ser
   20
                       25
Thr Gln His Arg Arg Lys Thr Thr Arg Arg Asn Tyr Ser Ser Ala
                    40
<210> 472
<211> 179
<212> PRT
<213> Homo sapiens
<220>
```

<221> SIGNAL <222> -58..-1 <400> 472 Met Ser Thr Gly Gln Leu Tyr Arg Met Glu Asp Ile Gly Arg Phe His -50 -45 Ser Gln Gln Pro Gly Ser Leu Thr Pro Ser Ser Pro Thr Val Gly Glu -35 -30 Ile Ile Tyr Asn Asn Thr Arg Asn Thr Leu Gly Trp Ile Gly Gly Ile -20 -15 Leu Met Gly Ser Phe Gln Gly Thr Ile Ala Gly Gln Gly Thr Gly Ala -5 1 Thr Ser Ile Ser Glu Leu Cys Lys Gly Gln Glu Leu Glu Pro Ser Gly 10 15 Ala Gly Leu Thr Val Ala Pro Pro Gln Ala Val Ser Leu Gln Gly Ile 30 35 Tyr Thr Leu Pro Trp Leu Leu Gln Leu Phe His Ser Thr Ala Leu Xaa 45 Xaa Xaa Gln Gln Pro Asn Gly Ser Leu Ser Leu Asn Ile Ser Ser Ser 60 His Ala Pro Xaa Pro Xaa Thr Cys Thr Leu Glu Pro Gly Val Asp Pro 75 80 Thr Arg Xaa Val Cys Ile Asn Pro His Pro Pro Pro Pro Ile Leu Lys 95 90 Xaa Pro Leu Ser Pro Tyr Pro Lys Pro Gln Leu Gly Thr His Ala Gly 105 110 Gln Val Asn 120

```
<210> 473
<211> 238
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -71..-1
```

<400> 473 Met Xaa Xaa Phe Thr Asp Pro Ser Ser Val Asn Glu Lys Lys Arg Arg -65 Glu Arg Glu Glu Arg Gln Asn Ile Val Leu Trp Arg Gln Pro Leu Ile -50 -45 Thr Leu Gln Tyr Phe Ser Leu Glu Ile Leu Val Ile Leu Lys Glu Trp -35 -30 Thr Ser Lys Leu Trp His Arg Gln Ser Ile Val Val Ser Phe Leu Leu -20 -15 Leu Leu Ala Gly Leu Ile Ala Thr Tyr Tyr Val Glu Gly Val His Gln Gln Tyr Val Gln Arg Ile Glu Lys Gln Phe Leu Leu Tyr Ala Tyr Trp Ile Gly Leu Gly Ile Leu Ser Ser Val Gly Leu Gly Thr Gly Leu His 30 Thr Phe Leu Leu Tyr Leu Gly Pro His Ile Ala Ser Val Thr Leu Ala 50 Ala Tyr Glu Cys Asn Ser Val Asn Phe Pro Glu Pro Pro Tyr Pro Asp 65 Gln Ile Ile Cys Pro Asp Glu Glu Gly Thr Glu Gly Thr Ile Ser Leu 80 85 Trp Ser Ile Ile Ser Lys Val Arg Ile Glu Ala Cys Met Trp Gly Ile 95 100 Gly Thr Ala Ile Gly Glu Leu Pro Pro Tyr Phe Met Ala Arg Ala Ala 115 Arg Leu Ser Gly Ala Glu Pro Asp Asp Glu Glu Tyr Gln Glu Phe Glu 125 130 Glu Met Leu Glu His Ala Glu Ser Ala Gln Val Arg Thr Val Gly Ile 145 Glu Asn Arg Thr Leu Tyr Phe Phe Leu Lys Arg Leu Leu Arg 160

<210> 474 <211> 178 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -37..-1

<400> 474

Met Glu Arg Gln Ser Arg Val Met Ser Glu Lys Asp Glu Tyr Gln Phe -30 -25 Gln His Gln Gly Ala Val Glu Leu Leu Val Phe Asn Phe Leu Leu Ile -15 -10 Leu Thr Ile Leu Thr Ile Trp Leu Phe Lys Asn His Arg Phe Arg Phe Leu His Glu Thr Gly Gly Ala Met Val Tyr Gly Leu Xaa Met Gly Leu 20 Ile Leu Xaa Tyr Ala Thr Ala Pro Thr Asp Ile Glu Ser Gly Xaa Val Tyr Asp Cys Val Lys Leu Thr Phe Ser Pro Ser Thr Leu Leu Val Asn 50 Ile Thr Asp Gln Val Tyr Glu Tyr Lys Tyr Lys Arg Glu Ile Ser Gln 65 70 His Xaa Ile Asn Pro His Xaa Gly Asn Ala Ile Leu Glu Lys Met Thr 85 Phe Asp Pro Xaa Ile Phe Phe Asn Val Leu Leu Pro Pro Ile Ile Phe

```
100
His Ala Gly Tyr Ser Leu Lys Lys Arg His Phe Phe Gln Asn Leu Gly
                                    120
 110
                       115
Ser Ile Leu Thr Tyr Ala Phe Leu Gly Thr Ala Ile Ser Cys Ile Val
  125
                                        135
Ile Gly
140
<210> 475
<211> 96
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -21..-1
<400> 475
Met Ser Met Gln Phe Leu Phe Lys Met Val Ala Leu Cys Cys Cys Leu
 -20
                      -15
                                         -10
Trp Lys Ile Ser Gly Cys Glu Glu Val Pro Leu Thr Tyr Asn Leu Leu
-5
                  1
Lys Cys Leu Leu Asp Lys Ala His Cys Val Leu Leu Thr Pro Cys Gly
         15
                           20
Tyr Ile Phe Ser Leu Ile Ser Pro Glu Ile Leu Lys Leu Thr Leu Ile
                          35
Thr Leu Xaa Ile Leu Leu Ile Leu Lys Asn Leu His Leu Leu Trp Leu
                     50
                                        55
Thr Val Ser Ser Xaa Cys Val His Arg Ser Ser Ala Arg Lys Glu Lys
                 65
<210> 476
<211> 41
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -24..-1
<400> 476
Met His Thr Phe Ala Asn Asp Arg Gly Leu Tyr Arg Ile Leu Leu Leu
                    -15
            -20
His Phe Tyr Cys Leu Leu Arg Ser Ser Glu Tyr Ile Leu Gly Tyr Lys
           - 5
                             1
Val Leu Gly Val Phe Phe Pro Ile Leu
<210> 477
<211> 113
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
```

<222> -27..-1

<210> 478 <211> 250 <212> PRT <213> Homo sapiens <220> <221> SIGNAL

225

<222> -18..-1

<400> 478 Met Arg Ile Leu Gln Leu Ile Leu Leu Ala Leu Ala Thr Gly Leu Val -15 -10 -5 Gly Gly Glu Thr Arg Ile Ile Lys Gly Phe Glu Cys Lys Pro His Ser Gln Pro Trp Gln Ala Ala Leu Phe Glu Lys Thr Arg Leu Leu Cys Gly 20 25 Ala Thr Leu Ile Ala Pro Arg Trp Leu Leu Thr Ala Ala His Cys Leu 35 Lys Pro Arg Tyr Ile Xaa His Leu Gly Gln His Asn Leu Gln Lys Glu 55 Glu Gly Cys Glu Gln Thr Arg Thr Ala Thr Glu Ser Phe Pro His Pro 70 Gly Phe Asn Asn Ser Leu Pro Asn Lys Asp Xaa Xaa Asn Asp Ile Met 85 Leu Val Xaa Met Xaa Ser Pro Val Ser Ile Thr Trp Ala Val Arg Pro 100 105 Leu Thr Leu Ser Ser Arg Cys Val Thr Ala Gly Thr Ser Cys Leu Ile 115 120 Ser Gly Trp Gly Ser Thr Ser Ser Pro Gln Leu Arg Leu Pro His Thr 130 135 Leu Arg Cys Ala Asn Ile Thr Ile Ile Glu His Gln Lys Cys Glu Asn 150 145 155 Ala Tyr Pro Gly Asn Ile Thr Asp Thr Met Val Cys Ala Ser Val Gln 165 170 Glu Gly Gly Lys Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro Leu Val 180 185 Cys Asn Gln Ser Leu Gln Gly Ile Ile Ser Trp Gly Gln Asp Pro Cys 195 200 Ala Ile Thr Arg Lys Pro Gly Val Tyr Thr Lys Val Cys Lys Tyr Val 215 Asp Trp Ile Gln Glu Thr Met Lys Asn Asn

WO 99/31236 -340- PCT/IB98/02122 -

<210> 479

```
<211> 151
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -21..-1
<400> 479
Met Ala Ala Ser Thr Ser Met Val Pro Val Ala Val Thr Ala Ala Val
                       -15
                                           -10
Ala Pro Val Leu Ser Ile Asn Ser Asp Phe Ser Asp Leu Arg Glu Ile
Lys Lys Gln Leu Leu Leu Ile Ala Gly Leu Thr Arg Glu Arg Gly Leu
                               20
Leu His Ser Ser Lys Trp Ser Ala Glu Leu Ala Phe Ser Leu Pro Ala
                           35
Leu Pro Leu Ala Glu Leu Gln Pro Pro Pro Pro Ile Thr Glu Glu Asp
                       50
                                           55
Ala Gln Asp Met Asp Ala Tyr Thr Leu Ala Lys Ala Tyr Phe Asp Val
                                       70
                  65
Lys Glu Tyr Asp Arg Ala Ala His Phe Leu His Gly Cys Asn Ala Arg
               80
                                   85
Lys Ala Tyr Phe Leu Tyr Met Tyr Ser Arg Tyr Leu Val Arg Ala Ile
                               100
                                                   105
Leu Lys Cys His Ser Ala Phe Ser Glu Thr Ser Ile Phe Arg Thr Asn
       110
                           115
Gly Lys Val Lys Ser Phe Lys
   125
                       130
<210> 480
<211> 239
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -25..-1
<400> 480
Met Pro Arg Lys Arg Lys Cys Asp Leu Arg Ala Val Arg Val Gly Leu
                                       -15
Leu Leu Gly Gly Gly Val Tyr Gly Ser Arg Phe Arg Phe Thr Phe
Pro Gly Cys Arg Ala Leu Ser Pro Trp Arg Val Arg Xaa Gln Arg Arg
Arg Cys Glu Met Ser Thr Met Phe Ala Asp Thr Leu Leu Ile Val Phe
                       30
Ile Ser Val Cys Thr Ala Leu Leu Ala Glu Gly Ile Thr Trp Val Leu
                                       50
Val Tyr Arg Thr Asp Lys Tyr Lys Arg Leu Lys Ala Glu Val Glu Lys
Gln Ser Lys Lys Leu Glu Lys Lys Glu Thr Ile Thr Glu Ser Ala
                               80
Gly Arg Gln Gln Lys Lys Ile Glu Arg Xaa Xaa Xaa Xaa Leu Xaa
```

Asn Asn Asn Arg Asp Leu Ser Met Val Arg Met Lys Ser Met Phe Ala 110 115 Ile Gly Phe Cys Phe Thr Ala Leu Met Gly Met Phe Asn Ser Ile Phe 125 130 Asp Gly Arg Val Val Ala Lys Leu Pro Phe Thr Pro Leu Ser Xaa Xaa 140 145 Xaa Gly Leu Ser His Arg Asn Leu Leu Gly Asp Asp Thr Thr Asp Cys 155 160 165 Ser Phe Ile Phe Leu Xaa Ile Leu Cys Thr Met Ser Ile Arg Gln Asn 170 175 180 Ile Gln Lys Ile Leu Gly Leu Ala Pro Ser Arg Ala Ala Thr Lys Gln 190 195 Ala Gly Gly Phe Leu Gly Pro Pro Pro Pro Ser Gly Lys Phe Ser 205

<210> 481 <211> 208 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -92..-1

<400> 481

Met Arg Glu Pro Gln Lys Arg Thr Ala Thr Ile Ala Lys Xaa Xaa Ala -90 -85 Xaa Glu Gly Leu Arg Asp Pro Tyr Gly Arg Leu Cys Gly Ser Glu His -70 -65 Pro Arg Arg Pro Pro Glu Arg Pro Glu Glu Asp Pro Ser Thr Pro Glu -50 -55 Glu Ala Ser Thr Thr Pro Glu Glu Ala Ser Ser Thr Ala Gln Ala Gln -40 -35 Lys Pro Ser Val Pro Arg Ser Asn Phe Gln Gly Thr Lys Lys Ser Leu -20 Leu Met Ser Ile Leu Ala Leu Ile Phe Ile Met Gly Asn Ser Ala Lys -5 Glu Ala Leu Val Trp Lys Val Leu Gly Lys Leu Gly Met Gln Pro Gly 10 15

Pro Val Glu Tyr Xaa Phe Phe Trp Gly Pro Arg Ala His Val Glu Ser 55

Ser Xaa Leu Lys Xaa Xaa His Phe Val Ala Arg Val Arg Asn Arg Cys 70

Ser Lys Asp Trp Pro Cys Asn Tyr Asp Trp Asp Ser Asp Asp Asp Ala 85

Glu Val Glu Ala Ile Leu Asn Ser Gly Ala Xaa Gly Tyr Ser Ala Pro 105

Arg Xaa His Ser Ile Phe Gly Asp Pro Lys Lys Ile Val Thr Glu Xaa

Phe Val Arg Arg Gly Tyr Leu Ile Tyr Xaa Pro Val Pro Arg Xaa Ser

30

<210> 482 <211> 86 <212> PRT <213> Homo sapiens

<221> SIGNAL <222> -39..-1

<400> 482

Met Asn Val Gly Thr Ala His Xaa Xaa Val Asn Pro Asn Thr Arg Val -35 -30 -25 Met Asn Ser Arg Gly Ile Trp Leu Ser Tyr Val Leu Ala Ile Gly Leu -20 -15 -10 Leu His Ile Val Leu Leu Ser Ile Pro Phe Val Ser Val Pro Val Val 1 Trp Thr Leu Thr Asn Leu Ile His Asn Met Gly Met Tyr Ile Phe Leu 10 15 20 His Thr Val Lys Gly Thr Pro Phe Glu Thr Pro Asp Gln Gly Lys Ala 30 Arg Leu Leu Thr His Trp

45

<210> 483

<211> 40

<212> PRT

<213> Homo sapiens

<220'>

<221> SIGNAL

<222> -27..-1

<400> 483

Leu Ser Leu Arg Ser Ala Met Ser

10

<210> 484

<211> 65

<212> PRT

<213> Homo sapiens

<220>

<221> SIGNAL

<222> -16..-1

<400> 484

Met Leu Gly Phe Phe Leu Phe Leu Ser Phe Val Leu Met Tyr Asp Gly
-15 - -10 - -5

Leu Arg Leu Phe Gly Ile Leu Ser Thr Cys Arg Val His His Thr Met
1 5 - 10 - 15

Asn Gln Phe Leu Ile Asp Ile Ser Ser Phe Thr Ser Arg Val Lys Lys
20 - 25 - 30

Lys Ile Phe Leu Phe Tyr Ala Phe Xaa Gly Cys Xaa Phe Gln Ser Ala

35 40 45

Thr

<210> 485

<211> 130

<212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -55..-1 <400> 485 Met Ala Met Trp Asn Arg Pro Xaa Xaa Xaa Leu Pro Gln Gln Pro Leu -50 -45 Xaa Ala Glu Pro Thr Ala Glu Gly Glu Pro His Leu Pro Thr Gly Arg -25 -30 Xaa Xaa Thr Glu Ala Asn Arg Phe Ala Tyr Ala Ala Leu Cys Gly Ile -10 -15 Ser Leu Ser Gln Leu Phe Pro Glu Pro Glu His Ser Ser Phe Cys Thr 1 Glu Phe Met Ala Gly Leu Val Xaa Trp Leu Glu Leu Ser Glu Ala Val 20 10 15 Leu Pro Thr Met Thr Ala Phe Ala Ser Gly Leu Gly Gly Glu Gly Xaa 35 30 Xaa Cys Val Cys Ser Asn Phe Thr Glu Gly Pro His Leu Glu Gly Arg 45 50 Pro Asp Gly Asp His Ser Gly Pro Ser Glu Leu Leu Thr Gln Gly Trp Ala Leu 75 <210> 486 <211> 209 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -84..-1 <400> 486 Met Val Asn Phe Pro Gln Lys Ile Ala Gly Glu Leu Tyr Gly Pro Leu -80 -75 Met Leu Val Phe Thr Leu Val Ala Ile Leu Leu His Gly Met Lys Thr -65 -60 Ser Asp Thr Ile Ile Arg Glu Gly Thr Leu Met Gly Thr Ala Ile Gly -45

Thr Cys Phe Gly Tyr Trp Leu Gly Val Ser Ser Phe Ile Tyr Phe Leu -30 -25 Ala Tyr Leu Cys Asn Ala Gln Ile Thr Met Leu Gln Met Leu Ala Leu -15 -10 Leu Gly Tyr Gly Leu Phe Gly His Cys Ile Val Leu Phe Ile Thr Tyr Asn Ile His Leu Arg Ala Leu Phe Tyr Leu Phe Trp Leu Leu Val Gly 20 Gly Leu Ser Thr Leu Arg Met Val Ala Val Leu Val Ser Arg Thr Val 35 Gly Pro Thr Xaa Arg Xaa Leu Leu Cys Gly Thr Leu Ala Ala Leu His 50 55 Met Leu Phe Leu Leu Tyr Leu His Phe Ala Tyr His Lys Xaa Val Xaa 70 65 Gly Ile Leu Asp Thr Leu Glu Gly Pro Asn Ile Pro Pro Ile Gln Arg 85 Val Pro Arg Asp Ile Pro Ala Met Leu Pro Ala Ala Arg Leu Pro Thr

```
100
                                             105
Thr Val Leu Asn Ala Thr Ala Lys Ala Val Ala Val Thr Leu Gln Ser
 110
                      115
                                         120
His
125
<210> 487
<211> 36
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -17..-1
<400> 487
Met Gly Trp Gln Arg Trp Trp Cys Phe His Leu Gln Ala Glu Ala Ser
    -15
                  -10
                                          -5
Ala His Pro Pro Gln Gly Leu Gln Ala Gln Phe Ser Cys Cys Pro Trp
                                     10
Val Gly Ile Cys
<210> 488
<211> 44
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -29..-1
<400> 488
Met Met Ser Ser Glu Leu Arg Arg Asn Pro His Phe Leu Lys Ser Asn
            -25 -20
Leu Phe Leu Gln Leu Leu Val Ser His Glu Ile Val Cys Ala Thr Glu
           -10
                             -5
Thr Val Thr Thr Asn Phe Leu Arg His Glu Lys Ala
  5
<210> 489
<211> 163
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -52..-1
<400> 489
Met Glu His Tyr Arg Lys Ala Gly Ser Val Glu Leu Pro Ala Pro Ser
       -50
                          -45
Pro Met Pro Gln Leu Pro Pro Asp Thr Leu Glu Met Arg Val Arg Asp
  -35
                      -30
                                         -25
Gly Ser Lys Ile Arg Asn Leu Leu Gly Leu Ala Leu Gly Arg Leu Glu
                  -15
                                     -10
```

Gly Gly Ser Ala Arg His Val Val Phe Ser Gly Ser Gly Arg Ala Ala

Gly Lys Ala Val Ser Cys Ala Glu Ile Val Lys Arg Arg Val Pro Gly 25 20 Leu His Gln Leu Thr Lys Leu Xaa Phe Leu Gln Thr Glu Asp Ser Trp 35 40 Val Pro Xaa Ser Pro Asp Thr Gly Leu Xaa Pro Leu Thr Val Arg Arg 55 50 His Val Pro Ala Xaa Trp Val Leu Leu Xaa Arg Asp Pro Leu Asp Pro 65 70 Asn Glu Cys Gly Tyr Gln Pro Pro Gly Ala Pro Pro Gly Leu Gly Ser 85 Met Pro Ser Ser Cys Gly Pro Arg Ser Xaa Lys Arg Ala Xaa Xaa 100 Thr Arg Ser 110

<210> 490 <211> 64 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -47..-1 <400> 490

<210> 491 <211> 218 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -50..-1

<400> 491 Met His His Gly Leu Thr Pro Leu Leu Gly Val His Glu Gln Lys -45 -40 Gln Gln Val Val Lys Phe Leu Ile Lys Lys Lys Ala Asn Leu Asn Ala -30 -25 Leu Asp Arg Tyr Gly Arg Thr Ala Leu Ile Leu Ala Val Cys Cys Gly -15 -10 Ser Ala Ser Ile Val Ser Leu Leu Leu Glu Gln Asn Ile Asp Val Ser 10 Ser Gln Asp Leu Ser Gly Gln Thr Ala Lys Lys Tyr Ala Val Ser Ser 20 25 Arg His Asn Val Ile Cys Gln Leu Leu Ser Asp Tyr Lys Xaa Lys Gln 35 40 Xaa Leu Lys Val Ser Ser Glu Asn Ser Asn Pro Xaa Gln Asp Leu Lys

55 Leu Thr Ser Glu Glu Glu Ser Gln Arg Leu Lys Gly Ser Glu Asn Ser 70 Gln Pro Glu Glu Met Ser Gln Glu Pro Glu Ile Asn Xaa Gly Gly Asp 85 90 Arg Lys Val Glu Xaa Xaa Met Lys Lys His Gly Ser Xaa His Met Gly 100 105 Phe Pro Xaa Asn Leu Xaa Asn Gly Ala Thr Ala Asp Asn Gly Asp Asp 115 120 Gly Leu Ile Pro Pro Xaa Lys Xaa Xaa Thr Pro Glu Ser Xaa Gln Phe 135 130 Pro Asp Thr Glu Asn Glu Gln Tyr His Arg Asp Phe Ser Gly His Pro 150 Xaa Phe Pro Thr Thr Leu Pro Ile Lys Gln 165

<210> 492 <211> 216 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -15..-1

<400> 492

Met Val Cys Val Leu Val Leu Ala Ala Ala Gly Ala Val Ala Val -15 -10 -5 Phe Leu Ile Leu Arg Ile Trp Val Val Leu Arg Ser Met Asp Val Thr Pro Arg Glu Ser Leu Ser Ile Leu Val Val Ala Gly Ser Gly Gly His 25 Thr Thr Glu Ile Leu Arg Leu Leu Gly Ser Leu Ser Asn Ala Tyr Ser 40 Pro Arg His Tyr Val Ile Ala Asp Thr Asp Glu Met Ser Ala Asn Lys 55 60 Ile Asn Ser Phe Glu Leu Xaa Arg Xaa Asp Arg Xaa Pro Ser Asn Met 75 Xaa Thr Lys Tyr Tyr Ile His Arg Ile Pro Xaa Ser Arg Glu Val Gln 85 90 Gln Ser Trp Pro Ser Thr Val Xaa Thr Thr Leu His Ser Met Trp Leu 105 Ser Xaa Pro Leu Ile His Arg Val Lys Pro Xaa Leu Val Leu Cys Asn 120 125 Gly Pro Gly Thr Cys Val Pro Ile Cys Val Ser Ala Leu Leu Leu Gly 135 140 Ile Leu Gly Ile Lys Lys Val Ile Ile Val Tyr Val Glu Ser Ile Cys 150 155 Arg Val Lys Thr Leu Ser Met Ser Gly Lys Ile Leu Phe His Leu Ser 170 165 Asn Tyr Phe Ile Val Gln Trp Pro Ala Leu Lys Glu Lys Tyr Pro Lys 180 185 Ser Val Tyr Leu Gly Arg Ile Val

<210> 493

<211> 134

<212> PRT

<213> Homo sapiens <220> <221> SIGNAL <222> -19..-1 <400> 493 Met Pro Leu Gly Ala Arg Ile Leu Phe His Gly Val Phe Tyr Ala Gly -10 Gly Phe Ala Ile Val Tyr Tyr Leu Ile Gln Lys Phe His Ser Arg Thr Leu Tyr Tyr Lys Leu Ala Val Glu Gln Leu Gln Xaa His Pro Glu Ala 20 Gln Glu Ala Leu Gly Pro Pro Leu Asn Ile His Tyr Leu Lys Leu Ile 35 40 Asp Arg Glu Asn Phe Val Asp Ile Val Xaa Ala Lys Leu Lys Ile Pro 50 55 Val Ser Gly Ser Lys Ser Glu Gly Leu Leu Tyr Val His Ser Ser Arg 65 70 Gly Gly Pro Phe Gln Arg Trp His Leu Asp Glu Val Phe Leu Glu Leu 85 Lys Asp Gly Gln Gln Ile Pro Val Phe Lys Leu Ser Gly Glu Asn Gly 95 100 Asp Glu Val Lys Lys Glu <210> 494 <211> 85 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -16..-1 Met Ala Val Thr Ala Leu Ala Ala Xaa Thr Trp Leu Gly Val Trp Gly -10 - 5 Val Arg Thr Met Gln Ala Arg Gly Phe Gly Ser Asp Gln Ser Glu Asn Val Asp Arg Gly Ala Gly Ser Ile Arg Glu Ala Gly Gly Ala Phe Gly 20 25 Lys Arg Glu Gln Ala Glu Glu Glu Arg Tyr Phe Arg Ala Gln Ser Thr 40 Glu Gln Leu Ala Xaa Leu Lys Lys Xaa His Glu Glu Glu Ile Val His 55 . His Arg Glu Gly Asp <210> 495 <211> 292 <212> PRT <213> Homo sapiens <220> <221> SIGNAL

<222> -29..-1

```
<400> 495
Met His Gly Leu Leu His Tyr Leu Phe His Thr Arg Asn His Thr Phe
               -25
                                   -20
Ile Val Leu His Leu Val Leu Gln Gly Met Val Tyr Thr Glu Tyr Thr
           -10
                               -5
Trp Glu Val Phe Gly Tyr Cys Gln Glu Leu Glu Leu Ser Leu His Tyr
                       10
Leu Leu Pro Tyr Leu Leu Cly Val Asn Leu Phe Phe Thr
                   25
                                      30
Leu Thr Cys Gly Thr Asn Pro Gly Ile Ile Thr Lys Ala Asn Glu Leu
                                  45
               40
Leu Phe Leu His Val Tyr Glu Phe Asp Glu Xaa Met Phe Pro Lys Asn
                               60
Val Arg Cys Ser Thr Cys Asp Leu Arg Lys Pro Ala Arg Ser Xaa His
                           75
Cys Xaa Val Cys Asn Trp Cys Val His Arg Phe Xaa His His Cys Val
                       90
Trp Val Asn Asn Cys Ile Gly Ala Trp Asn Ile Arg Xaa Phe Leu Ile
                  105
                                     110
Tyr Val Leu Thr Leu Thr Ala Ser Ala Ala Thr Val Ala Ile Val Ser
                                  125
              120
Thr Thr Phe Leu Val His Leu Val Val Met Ser Asp Leu Tyr Gln Glu
           135
                              140
                                                 145
Thr Tyr Ile Asp Asp Leu Gly His Leu His Val Met Asp Thr Val Phe
                           155
                                              160
Leu Ile Gln Tyr Leu Phe Leu Thr Phe Pro Arg Ile Val Phe Met Leu
                       170
                                          175
Gly Phe Val Val Leu Xaa Phe Leu Leu Gly Gly Tyr Leu Leu Phe
180
               . 185
                                      190
Val Leu Tyr Leu Ala Ala Thr Asn Gln Thr Thr Asn Glu Trp Tyr Arg
             200
                                  205
Xaa Asp Trp Ala Trp Cys Gln Arg Cys Pro Leu Val Ala Trp Pro Pro
                              220
Ser Ala Glu Pro Gln Val His Arg Asn Ile His Ser His Gly Leu Arg
                          235
Xaa Asn Leu Gln Glu Ile Phe Leu Pro Ala Phe Pro Cys His Glu Arg
                 . 250
                                          255
Lys Lys Gln Glu
260
```

```
<210> 496
<211> 122
<212> PRT
<213> Homo sapiens
```

<221> SIGNAL <222> -56..-1

Phe Cys Ala Ser Phe Pro Ser Gly Xaa Leu Ser Pro Pro Gly Pro Leu 25 30 35 40

Pro Gly Val Arg Gly Leu Pro Leu Pro Ser Val Phe Tyr Ser Cys Gly 45 50 55

Ala His Pro Lys Val Leu Lys Val Ala Leu 60 65

<210> 497 <211> 59 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -28..-1 <400> 497 Met Leu Xaa Leu Ser Arg Ala Thr Lys Xaa Gly Arg Ala Arg Trp Leu -25 -20 Met Pro Val Ile Pro Ala Leu Gln Glu Ala Xaa Ala Gly Gly Ser Arg -5 Gly Gln Glu Phe Glu Thr Ser Leu Ala Asn Met Glu Thr Glu Ala Gly 10 Glu Leu Leu Lys Pro Arg Arg Arg Leu Gln

<210> 498 <211> 99 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -13..-1

25

<400> 498

 Met
 His
 Leu
 Leu
 Ser
 Asn
 Trp
 Ala
 Asn
 Pro
 Ala
 Ser
 Ser
 Arg
 Arg
 Pro

 Ser
 Met
 Ala
 Ala
 Ser
 Gly
 Thr
 Ser
 Trp
 Ile
 Ser
 Ser
 Thr
 Leu
 Ala
 His
 His
 His
 His
 His
 His
 Arg
 Arg
 Arg
 Ile
 Ser
 Gr
 Trp
 Arg
 Arg
 Ile
 Trp
 Ile
 Ser
 Ser
 Cys
 Trp
 Arg
 Arg

<210> 499 <211> 99 <212> PRT <213> Homo sapiens

```
<220>
<221> SIGNAL
<222> -13..-1
<400> 499
Met His Leu Leu Ser Asn Trp Ala Asn Pro Ala Ser Ser Arg Arg Pro
           -10
                                - 5
Ser Met Ala Ala Ser Gly Thr Ser Trp Ile Ser Ser Thr Leu Ala His
                                           15
                       10
Ser Leu Ser Leu Arg Asp Val Ser Glu Arg Leu Cys Ser Cys Trp Arg
                   25
Thr Ile Ser Met Gly Pro Cys Ala Arg Gly Ser Pro Met Asn Ser Ser
                                   45
Gly Val His Arg Lys Ser Ser Arg Leu Phe Tyr Ile Arg Thr Pro Met
                               60
Arg Arg Ser Ser Cys His Leu Xaa Cys Gln Val Ile Phe Leu Leu Gly
       70
                        75
Arg Gln Leu
   85
<210> 500
<211> 108
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -25..-1
<400> 500
Met Ser Leu Thr Ser Ser Ser Val Arg Val Glu Trp Ile Ala Ala
                                        -15
                    -20
Val Thr Ile Ala Ala Gly Thr Ala Ala Ile Gly Tyr Leu Ala Tyr Lys
               -5
                                   1
Arg Phe Tyr Val Lys Asp His Arg Asn Lys Ala Met Ile Asn Leu His
     . 10
                           15
                                               20
Ile Gln Lys Asp Asn Pro Lys Ile Val His Ala Phe Asp Met Glu Asp
                       30
                                           35
Leu Gly Asp Lys Ala Val Tyr Cys Arg Cys Trp Arg Ser Lys Lys Phe
                                       50
                   45
Pro Phe Cys Asp Gly Ala His Thr Lys His Asn Glu Glu Thr Gly Asp
               60
                                   65
Asn Val Gly Pro Leu Ile Ile Lys Lys Lys Glu Thr
<210> 501
<211> 183
<212> PRT
<213> Homo sapiens
<220>
```

<220>
<221> SIGNAL
<222> -15..-1

<400> 501
Met Glu Ala Met Trp Leu Leu Cys Val Ala Leu Ala Val Leu Ala Trp
-15
-10
Gly Phe Leu Trp Val Trp Asp Ser Ser Glu Arg Met Lys Ser Arg Glu

10 Gln Gly Arg Arg Leu Gly Ala Glu Ser Arg Thr Leu Leu Val Ile Ala His Pro Asp Asp Glu Ala Met Phe Phe Ala Pro Thr Val Leu Gly Leu 40 Ala Arg Leu Arg His Trp Val Tyr Leu Leu Cys Phe Ser Ala Gly Asn 55 60 Tyr Tyr Asn Gln Gly Glu Thr Arg Lys Lys Glu Leu Leu Gln Ser Cys 75 70 Asp Val Leu Gly Ile Pro Leu Ser Ser Val Met Ile Ile Asp Asn Arg 90 Asp Phe Pro Xaa Asp Pro Gly Met Gln Trp Asp Thr Xaa His Val Ala 105 Xaa Val Leu Leu Gln His Ile Glu Val Asn Gly Ile Asn Leu Val Val 120 125 Thr Phe Asp Ala Gly Gly Xaa Ser Gly His Ser Asn His Ile Ala Leu 135 140 Tyr Ala Ala Val Arg Lys Leu Glu Gly Gln Ile Cys Lys Pro Cys Gly 150 155 Thr Gly Gln Asp Phe Lys Glu 165

<210> 502 <211> 98 <212> PRT <213> Homo sapiens

<221> SIGNAL <222> -15..-1

A00 > 502

Xaa Ala

 Met
 Glu
 Ala
 Met
 Trp
 Leu
 Leu
 Cys
 Val
 Ala
 Leu
 Ala
 Val
 Leu
 Ala
 Trp
 Trp
 Trp
 Asp
 Ser
 Ser
 Glu
 Arg
 Met
 Lys
 Ser
 Arg
 Glu
 Arg
 Glu
 Arg
 Glu
 Arg
 Glu
 Arg
 Glu
 Arg
 Arg</th

Met Asp Val Thr Gly Asp Glu Glu Glu Glu Ile Lys Gln Glu Ile Asn

-50

<210> 503 <211> 183 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -57..-1

-55

Met Leu Lys Lys Tyr Ser His His Arg Asn Ile Ala Thr Tyr Tyr Gly -35 Ala Phe Ile Lys Lys Asn Pro Pro Gly Met Asp Asp Gln Leu Trp Leu -20 -15 Val Met Glu Phe Cys Gly Ala Gly Ser Val Thr Asp Leu Ile Lys Asn Thr Lys Gly Asn Thr Leu Lys Glu Glu Trp Ile Ala Tyr Ile Cys Xaa 15 Glu Ile Leu Arg Gly Leu Xaa His Leu His Gln His Lys Val Ile His Arg Xaa Ile Lys Gly Gln Asn Val Leu Leu Thr Glu Asn Ala Glu Val 50 45 Lys Leu Val Asp Phe Gly Xaa Xaa Ala Gln Leu Asp Arg Thr Val Gly 65 Arg Xaa Asn Thr Phe Ile Gly Thr Pro Tyr Trp Met Ala Pro Xaa Val 80 Ile Ala Cys Asp Glu Asn Pro Xaa Ala Thr Tyr Asp Phe Lys Xaa Asp 95 100 Leu Trp Ser Leu Gly Ile Thr Ala Ile Glu Met Ala Glu Gly Leu Pro 110 Leu Ser Val Thr Cys Thr Pro

<210> 504 <211> 140 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -14..-1

<400> 504

Met Phe Leu Thr Ala Leu Leu Trp Arg Gly Arg Ile Pro Gly Arg Gln -5 -10 Trp Ile Gly Lys His Arg Arg Pro Arg Phe Val Ser Leu Arg Ala Lys 10 Gln Asn Met Ile Arg Arg Leu Glu Ile Glu Ala Glu Asn His Tyr Trp 25 30 Leu Ser Met Pro Tyr Met Thr Arg Glu Glu Glu Arg Gly His Ala Ala 40 45 Leu Arg Arg Glu Ala Phe Glu Ala Ile Lys Ala Ala Ala Thr Ser 60 55 Lys Phe Pro Pro His Arg Phe Ile Ala Asp Gln Leu Asp His Leu Asn 75 Xaa His Gln Glu Met Val Leu Ile Leu Ser Arg His Pro Trp Ile Leu 90 Trp Ile Thr Glu Leu Thr Ile Phe Thr Trp Ser Gly Leu Lys Asn Cys 105 110 Ser Leu Cys Glu Asn Glu Leu Trp Thr Ser Leu Tyr 120

<210> 505 <211> 59 <212> PRT <213> Homo sapiens <221> SIGNAL <222> -14..-1

<400> 505

Met Ala Ala Leu Val Thr Val Leu Phe Thr Gly Val Arg Arg Leu His
-10
-5
1
Cys Ser Ala Xaa Leu Gly Arg Ala Ala Ser Gly Xaa Tyr Ser Arg Asn
5

Trp Leu Pro Thr Pro Pro Ala Thr Gly Pro Leu Pro Ser Ser Gln Thr 20 25 30

Gly His Met Arg Met Ala Ala Leu Leu Pro Gln 35 40 45

<210> 506

<211> 101

<212> PRT

<213> Homo sapiens

<220>

<221> SIGNAL

<222> -36..-1

<400> 506

Met Gly Pro Tyr Asn Val Ala Val Pro Ser Asp Val Ser His Ala Arg
-35
-25

Phe Tyr Phe Leu Phe His Arg Pro Leu Arg Leu Leu Asn Leu Leu Ile
-20 -15 -10 -5

Leu Ile Glu Gly Ser Val Val Phe Tyr Gln Leu Tyr Ser Leu Leu Arg

Ser Glu Lys Trp Asn His Thr Leu Ser Met Ala Leu Ile Leu Phe Cys
15 20 25

Asn Tyr Tyr Val Leu Phe Lys Leu Leu Arg Asp Arg Xaa Xaa Leu Gly 30 35 40

Arg Ala Tyr Ser Tyr Pro Leu Asn Ser Tyr Glu Leu Lys Ala Asn Xaa 45. 50 55 60

Ala Ala Ser Xaa Gln

65

<210> 507

<211> 341

<212> PRT

<213> Homo sapiens

<220>

<221> SIGNAL

<222> -55..-1

<400> 507

Met Arg Lys Val Val Leu Ile Thr Gly Ala Ser Ser Gly Ile Gly Leu
-55 -45 -45

Ala Leu Cys Lys Arg Leu Leu Ala Glu Asp Asp Glu Leu His Leu Cys
-35 -30 -25

Leu Ala Cys Arg Asn Met Ser Lys Ala Glu Ala Val Cys Ala Ala Leu
-20 -15 -10

Leu Ala Ser His Pro Thr Ala Glu Val Thr Ile Val Gln Val Asp Val

Ser Asm Leu Gln Ser Phe Phe Arg Ala Ser Lys Glu Leu Lys Gln Arg
10 20 25

Phe Gln Arg Leu Asp Cys Ile Tyr Leu Asn Ala Gly Ile Met Pro Asn Pro Gln Leu Asn Ile Lys Ala Leu Phe Phe Gly Leu Phe Ser Arg Lys Val Ile His Met Phe Ser Thr Ala Glu Gly Leu Leu Thr Gln Gly Asp 65 Lys Ile Thr Ala Asp Gly Leu Gln Glu Val Phe Glu Thr Asn Val Phe 85 80 Gly His Phe Ile Leu Ile Arg Glu Leu Glu Pro Leu Cys His Ser 95 100 Asp Asn Pro Ser Gln Leu Ile Trp Thr Ser Ser Arg Ser Ala Arg Lys 115 120 110 Ser Asn Phe Ser Leu Glu Asp Phe Gln His Ser Lys Gly Lys Glu Pro 130 Tyr Ser Ser Ser Lys Tyr Ala Thr Asp Leu Leu Ser Val Ala Leu Asn 150 145 Arg Asn Phe Asn Gln Gln Gly Leu Tyr Ser Asn Val Ala Cys Pro Gly 165 155 160 Thr Ala Leu Thr Asn Leu Thr Tyr Gly Ile Leu Pro Pro Phe Ile Trp 180 175 Thr Leu Leu Met Pro Ala Ile Leu Leu Leu Arg Phe Phe Ala Asn Ala 190 195 Phe Thr Leu Thr Pro Tyr Asn Gly Thr Glu Ala Leu Val Trp Leu Phe 205 210 His Gln Lys Pro Glu Ser Leu Asn Pro Leu Ile Lys Tyr Leu Ser Ala 225 230 220 Thr Thr Gly Phe Gly Arg Asn Tyr Ile Met Thr Gln Lys Met Asp Leu 240 245 Asp Glu Asp Thr Ala Glu Lys Phe Tyr Gln Lys Leu Leu Glu Leu Glu 255 260 Lys His Ile Arg Val Thr Ile Gln Lys Thr Asp Asn Gln Ala Arg Leu 270 Ser Gly Ser Cys Leu 285

<210> 508 <211> 108 <212> PRT

<213> Homo sapiens

<221> SIGNAL

<220>

<222> -42..-1

<400> 508

 Met His Ile Leu Gln Leu Leu Thr Thr Val Asp Asp Gly Ile Gln Ala -40
 -35
 -30

 Ile Val His Cys Pro Asp Thr Gly Lys Asp Ile Trp Asn Leu Leu Phe -25
 -20
 -15

 Asp Leu Val Cys His Glu Phe Cys Gln Ser Asp Asp Pro Ala Ile Ile -10
 -5
 1

 Leu Gln Xaa Gln Lys Thr Val Leu Ala Ser Val Phe Ser Val Leu Ser 10
 20

 Ala Ile Tyr Ala Ser Gln Thr Glu Gln Xaa Tyr Leu Lys Ile Xaa Lys 25
 30

 Gly Asp Gly Gly Ser Gly Ser Lys Gly Arg Pro Xaa Xaa Gln Thr Glu 40
 45

 Xaa Phe Leu Cys Ile Ser Lys Pro Ser Ser Phe Leu

<210> 509 <211> 80 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -26..-1 <400> 509 Met Glu Glu Ile Ser Ser Pro Leu Val Glu Phe Val Lys Val Leu Cys -20 Thr Asn Gln Val Leu Ile Thr Ala Arg Ala Val Pro Thr Lys Lys Ala Ser Val Arg Cys Val Glu Lys Arg Phe Trp Ile Pro Lys Thr Thr Ser 15 Lys His Leu Ser Arg Cys Ile Asp Gly Ile Ser Gly Phe Leu Asn Asp 30 Phe Thr Phe Cys Leu Glu Phe Ser Arg His Arg Cys Gln Leu Thr Glu <210> 510 <211> 158 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -44..-1 <400> 510 Met Ala Gly Phe Leu Asp Asn Phe Arg Trp Pro Glu Cys Glu Cys Ile -40 -35 Asp Trp Ser Glu Arg Arg Asn Ala Val Ala Ser Val Val Ala Gly Ile -25 -20 Leu Phe Phe Thr Gly Trp Trp Ile Met Ile Asp Ala Ala Val Val Tyr -5 Pro Lys Pro Glu Gln Leu Asn His Ala Phe His Thr Cys Gly Val Phe 10 15 Ser Thr Leu Ala Phe Phe Met Ile Asn Ala Val Ser Asn Ala Gln Val 30 Arg Gly Asp Ser Tyr Glu Ser Gly Cys Leu Gly Arg Thr Gly Ala Arg 45 Val Trp Leu Phe Ile Gly Phe Met Leu Met Phe Gly Ser Leu Ile Ala Ser Met Trp Ile Leu Phe Gly Ala Tyr Val Thr Gln Asn Thr Asp Val 75 80

Tyr Pro Gly Leu Ala Val Phe Phe Gln Asn Ala Leu Ile Phe Phe Ser

Thr Leu Ile Tyr Lys Phe Gly Arg Thr Glu Glu Leu Trp Thr

95

90

105

<210> 511 <211> 130 <212> PRT

<213> Homo sapiens

```
<220>
<221> SIGNAL
<222> -28..-1
<400> 511
Met Asn Trp Glu Leu Leu Leu Trp Leu Leu Val Leu Cys Ala Leu Leu
        -25
                   -20
Leu Leu Leu Val Gln Leu Leu Arg Phe Leu Arg Ala Asp Gly Asp Leu
                           -5
Thr Leu Leu Trp Ala Glu Trp Gln Gly Arg Arg Pro Glu Trp Glu Leu
                  10
                                      15
Thr Asp Met Val Val Trp Val Thr Gly Ala Ser Ser Gly Ile Gly Glu
Glu Leu Ala Tyr Gln Leu Ser Lys Leu Gly Val Ser Leu Val Leu Ser
        40
                              45
Ala Arg Arg .Val His Glu Leu Glu Arg Val Lys Arg Arg Cys Leu Glu
                           60
Asn Gly Asn Leu Lys Glu Lys Asp Ile Leu Val Leu Pro Leu Asp Leu
                      75
Thr Asp Thr Gly Ser His Glu Ser Gly Tyr Gln Ser Cys Ser Pro Gly
Ile Trp
<210> 512
<211> 199
<212> PRT
<213> Homo sapiens
<220>
```

<221> SIGNAL <222> -62..-1

<400> 512 Met Ser Gln Arg Ser Leu Cys Met Asp Thr Ser Leu Asp Val Tyr Arg -60 -55 Xaa Leu Ile Glu Leu Asn Tyr Leu Gly Thr Val Ser Leu Thr Lys Cys -40 -35 Val Leu Pro His Met Ile Glu Arg Lys Gln Gly Lys Ile Val Thr Val -25 -20 Asn Ser Ile Leu Gly Ile Ile Ser Val Pro Leu Ser Ile Gly Tyr Cys -10 -5 Ala Ser Lys His Ala Leu Arg Gly Phe Phe Asn Gly Leu Arg Thr Glu 10 Leu Ala Thr Tyr Pro Gly Ile Ile Val Ser Asn Ile Cys Pro Gly Pro Val Gln Ser Asn Ile Val Glu Asn Ser Leu Ala Gly Glu Val Thr Lys 40 Thr Ile Gly Asn Asn Gly Asn Gln Ser His Lys Met Thr Thr Ser Arg 60 Cys Val Arg Leu Met Leu Ile Ser Met Ala Asn Asp Leu Lys Glu Val 70 75 Trp Ile Ser Glu Gln Pro Phe Leu Leu Val Thr Tyr Leu Trp Gln Tyr 90 Met Pro Thr Trp Ala Trp Trp Ile Thr Asn Lys Met Gly Lys Lys Arg 105 110 Ile Glu Asn Phe Lys Ser Gly Val Asp Ala Xaa Ser Ser Tyr Phe Lys

125

Ile Phe Lys Thr Lys His Asp 135

120

<210> 513 <211> 180

```
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -25..-1
<400> 513
Met Asn Thr Val Leu Ser Arg Ala Asn Ser Leu Phe Ala Phe Ser Leu
                   -20
                                       -15
Ser Val Met Ala Ala Leu Thr Phe Gly Cys Phe Ile Xaa Thr Ala Phe
       · -5
                                  1
Lys Asp Arg Ser Val Pro Val Arg Leu His Val Ser Arg Ile Met Leu
       10
                           15
                                              20
Lys Asn Val Glu Asp Phe Thr Gly Pro Arg Glu Arg Ser Asp Leu Gly
                       30
                                          35
Phe Ile Thr Phe Asp Ile Thr Ala Asp Leu Glu Asn Ile Phe Asp Trp
                   45
                                      50
Asn Val Lys Gln Leu Phe Leu Tyr Leu Ser Ala Glu Tyr Ser Thr Lys
                                   65
Asn Asn Ala Leu Asn Gln Xaa Val Leu Trp Asp Lys Ile Val Leu Arg
           75
                               80
Gly Asp Asn Pro Lys Leu Leu Lys Asp Met Lys Thr Lys Tyr Phe
                           95
                                   .. 100
Phe Phe Asp Asp Gly Asn Gly Leu Xaa Gly Asn Arg Asn Val Thr Leu
                       110
                                          115
Thr Leu Ser Trp Asn Val Val Pro Asn Ala Gly Ile Leu Pro Leu Val
                   125
                                       130
Thr Gly Ser Gly His Val Ser Val Pro Phe Pro Asp Thr Tyr Glu Ile
Thr Lys Ser Tyr
           155
<210> 514
<211> 120
<212> PRT
<213> Bos taurus
Met Met Thr Gly Arg Gln Gly Arg Ala Thr Phe Gln Phe Leu Pro Asp
                                   10
Glu Ala Arg Ser Leu Pro Pro Pro Lys Leu Thr Asp Pro Arg Leu Ala
Phe Val Gly Phe Leu Gly Tyr Cys Ser Gly Leu Ile Asp Asn Ala Ile
Arg Arg Pro Val Leu Leu Ala Gly Leu His Arg Gln Leu Leu Tyr
Ile Thr Ser Phe Val Phe Val Gly Tyr Tyr Leu Leu Lys Arg Gln Asp
                   70
Tyr Met Tyr Ala Val Arg Asp His Asp Met Phe Ser Tyr Ile Lys Ser
                                   90
His Pro Glu Asp Phe Pro Glu Lys Asp Lys Lys Thr Tyr Gly Glu Val
           100
                               105
Phe Glu Glu Phe His Pro Val Arg
                           120
```

```
<210> 515
<211> 1082
<212> DNA
<213> Homo sapiens
<400> 515
qatcccagac ctcggcttgc agtagtgtta gactgaagat aaagtaagtg ctgtttgggc
                                                                   60
taacaggatc tectettgca gtetgcagec caggacgetg attecageag egeettaceg
                                                                  120
cgcagcccga agattcacta tggtgaaaat cgccttcaat acccctaccg ccgtgcaaaa
                                                                  180
                                                                  240
ggaggaggcg cggcaagacg tggaggccct cctgagccgc acggtcagaa ctcagatact
                                                                  300
gaccggcaag gagctccgag ttgccaccca ggaaaaaagag ggctcctctg ggagatgtat
                                                                  360
gettactete ttaggeettt catteatett ggeaggaett attgttggtg gageetgeat
                                                                  420
ttacaagtac ttcatgccca agagcaccat ttaccgtgga gagatgtgct tttttgattc
                                                                  480
tgaggatect geaaatteee ttegtggagg agageetaac tteetgeetg tgaetgagga
ggctgacatt cgtgaggatg acaacattgc aatcattgat gtgcctgtcc ccagtttctc
                                                                  540
tgatagtgac cctgcagcaa ttattcatga ctttgaaaag ggaatgactg cttacctgga
                                                                  600
cttgttgctg gggaactgct atctgatgcc cctcaatact tctattgtta tgcctccaaa
                                                                  660
aaatctggta gagctctttg gcaaactggc gagtggcaga tatctgcctc aaacttatgt
                                                                  720
                                                                  780
ggttcgagaa gacctagttg ctgtggagga aattcgtgat gttagtaacc ttggcatctt
tatttaccaa ctttqcaata acagaaagte cttccgcctt cgtcgcagag acctcttgct
                                                                  840
gggtttcaac aaacgtgcca ttgataaatg ctggaagatt agacacttcc ccaacgaatt
                                                                  900
tattgttgag accaagatct gtcaagagta agaggcaaca gatagagtgt ccttggtaat
                                                                  960
aagaagtcag agatttacaa tatgacttta acattaaggt ttatgggata ctcaagatat
                                                                 1020
1080
                                                                 1082
aa
<210> 516
<211> 559
<212> DNA
<213> Homo sapiens
<400> 516
ctgctccagc gctgacgccg agccatggcg gacgaggagc ttgaggcgct gaggagacag
                                                                   60
aggctggccg agctgcaggc caaacacggg gatcctggtg atgcggccca acaggaagca
                                                                  120
aagcacaggg aagcagaaat gagaaacagt atcttagccc aagttctgga tcagtcggcc
                                                                  180
cgggccaggt taagtaactt agcacttgta aagcctgaaa aaactaaagc agtagagaat
                                                                  240
taccttatac agatggcaag atatggacaa ctaagtgaga aggtatcaga acaaggttta
                                                                  300
atagaaatcc ttaaaaaagt aagccaacaa acagaaaaga caacaacagt gaaattcaac
                                                                  360
agaagaaaag taatggactc tgatgaagat gacgattatt gaactacaag tgctcacaga
                                                                  420
ctagaactta acggaacaag tctaggacag aagttaagat ctgattattt actttgttta
                                                                  480
                                                                  540
aaaaaaaaa aaaaaaaaa
                                                                  559
<210> 517
<211> 110
<212> PRT
<213> Homo sapiens
<400> 517
Met Phe Cys Pro Leu Lys Leu Ile Leu Leu Pro Val Leu Leu Asp Tyr
                                  10
Ser Leu Gly Leu Asn Asp Leu Asn Val Ser Pro Pro Glu Leu Thr Val
                              25
His Val Gly Asp Ser Ala Leu Met Gly Cys Val Phe Gln Ser Thr Glu
       35
                          40
                                              45
```

WO 99/31236 -359- PCT/IB98/02122 -

<210> 518 <211> 4544 <212> DNA <213> Homo sapiens

<400> 518

ccgagaaggg cttcaggacg cgggaggcgc acttgcttca agtcgcgggc gtgggaacgg 60 ggttgcaaaa cggggccttt ttatccgggc ttgcttccgg cgtcatggct caaagggcct 120 tcccgaatcc ttatgctgat tataacaaat ccctggccga aggctacttt gatgctgccg 180 ggaggctgac tcctgagttc tcacaacgct tgaccaataa gattcgggag cttcttcagc 240 aaatggagag aggcctgaaa tcagcagacc ctcgggatgg caccggttac actggctggg 300 caggiating thing that the catetit and the time of the cagging that the cagging 360 agttagcaca tggctatgta aagcaaagtc tgaactgctt aaccaagcgc tccatcacct 420 teetttgtgg ggatgeagge ceeetggeag tggeegetgt getatateae aagatgaaca 480 atgagaagca ggcagaagat tgcatcacac ggctaattca cctaaataag attgatcctc 540 atgctccaaa tgaaatgctc tatgggcgaa taggctacat ctatgctctt ctttttgtca 600 ataagaactt tggagtggaa aagattcctc aaagccatat tcagcagatt tgtgaaacaa 660 ttttaacctc tggagaaaac ctagctagga agagaaactt cacggcaaag tctccactga 720 tgtatgaatg gtaccaggaa tattatgtag gggctgctca tggcctggct ggaatttatt 780 actacctgat gcagcccagc cttcaagtga gccaagggaa gttacatagt ttggtcaagc 840 ccagtgtaga ctacgtctgc cagctgaaat tcccttctgg caattaccct ccatgtatag 900 gtgataatcg agatctgctt gtccattggt gccatggcgc ccctggggta atctacatgc 960 tcatccaggc ctataaggta ttcagagagg aaaagtatct ctgtgatgcc tatcagtgtg 1020 ctgatgtgat ctggcaatat gggttgctga agaagggata tgggctgtgc cacggttctg 1080 cagggaatgc ctatgccttc ctgacactct acaacctcac acaggacatg aagtacctgt 1140 atagggcctg taagtttgct gaatggtgct tagagtatgg agaacatgga tgcagaacac 1200 cagacacccc tttctctctc tttgaaggaa tggctggaac aatatatttc ctggctgacc 1260 tgctagtccc cacaaaagcc aggttccctg catttgaact ctgaaaggat agcatgccac 1320 ctgcaactca ctgcatgacc ctttctgtat attcaaaccc aagctaagtg cttccgttgc 1380 tttccaagga aacaaagagt caaactgtgg acttgatttt gttagctttt ttcagaattt 1440 atctttcatt cagttccctt ccattatcat ttacttttac ttagaagtat ccaaggaagt 1500 cttttaactt taatttccat ttcttcctaa agggagagtg agtgatatgt acagtgtttt 1560 gagattgtat acatatattc cagaacttgg aggaaatctt atttaagttt atgaatataa 1620 ccatctgtta ctgttctaaa aatgtttaaa agaaactcaa tacagataaa gataaatatg 1680 tgactattat tgggtattac acttcacttc tctttaatat ttttcctcca actggagggc 1740 agacaatttt ctgacttgct tttctctagg tggttcattt tgaaagggga cagaaatata . 1800 actaaatgct tccaggagaa aaattccaag agttacaatc tggacttggt acctaaatat 1860 cattttttaa attcttgatg cctatttgga ctagaggtaa acatactttc agattggcct 1920 gtttttgtcg gtaaggcata cagccttcag aagccaacat ttttaatcaa aaacttataa 1980 aacatgatga tcattgtgaa aattctgagt tgaaggttag tttaagataa gctaacaata 2040 acagtotgtg ttttctctaa aataatotga gttttttgga actotttatt taaatatgtg 2100 tgtttttcag tattcaaata agatcaggaa gccaattttc tatgtatgaa tatgctttaa 2160 cctaggattt cagtccactc tgactgactt tctaaacttt aacttgggtt tttacagtga 2220 ctatgcatta gtgctgactc tttggtataa gccataaaat attttccttc ctatcaattt 2280 atctgaactt tggtcttttc actaaattgt acagtattct acttctgttt aaaaagggga 2340 gatgagaaag ggaatactat ctaaccaata acttgaacaa aaacactaaa ctaagcattt 2400 aatagaaatg ctttttattg aggaggtatt atccagagtt catgcttaga acaaatgcat 2460 ctttgcgtat cctagactta acaattcatc agtttctgag accacagaat caggttttcc 2520 gtagtagata aagactetet ggtgetteaa attetgttea agtgttttga eteateaget 2580 tetactettt etattaetge etttgeetgg ettgtttigt etetttgeaa etgattttge 2640 aaaaaaaaat tgtagcttta aaataacagg gtctaagtat tttaaatgtg cctatttcac 2700

agctctcttg	gtcacaaaaa	catgctattt	ttattggaac	ttcaaaccaa	atccccactg	2760
agtgtgtact	ggttcctgca	ggtagcagtc	tcctattatc	tcctgtttag	caccaaaaga	2820
gctaatatta	ttggaaactg	accttttaaa	ggccactggc	agtaggattt	aaaaagcagc	2880
ccactgctca	gtttccagga	tcagcttcct	ccttctgtca	cttgtgtaag	ttggcactac	2940
cttgtgcctc	tcagattgct	gaagtgctgc	tggtaagcat	gtgcatgctc	tgcctttctt	3000
				aagtaaaagt		3060
aaagctaatt	tgcctttgcc	tggggtgttc	agcttgaaag	aataaagctc	atttggttta	3120
gttaaatgtc	ttactctact	gtgcctatgc	ttttagctgc	gttactaagc	aagggaaaaa	3180
taacagtttc	tctgagccag	agaagacttg	atcacagttc	tccaagcatc	gtgatagcaa	3240
tgcttaaccc	caggaagatt	tcaaggcagg	gagaagaaca	tttcaaataa	gattcttgtt	3300
aacccattta	tgcctagtgt	tccattattg	gaatgctaag	cttgtgggag	tcatttacat	3360
cctactgctc	aaagtcattg	ccaaggtctg	atttttcaca	caaaaaa‡tg	caacccccag	3420
cataaatggg	ttagctactg	tcatcagtta	gcaaattcat	ccacacaaac	acaattagag	3480
tttggttttt	ttttaagctt	ttcaaaactt	actaaactgg	cacaatttta	tatgtatgct	3540
atttgttgta	tttatgctta	agagcaaaaa	agttttgatg	ggattttaaa	ttcagcaaag	3600
cctacaacgc	tgagacaatc	ccctaacaac	atggtagtaa	ctaaagaaac	ttttatacta	3660
ggcttcttag	ttttaaaagg	aagtggcatc	attgtttcag	ttctagtttg	tatttttctc	3720
tcagatattt	ttcttcttta	aaaatctttc	ccagaagttg	gttcctagaa	aactcaatac	3780
catcatctct	tatctctata	cagggactag	gtaataaaac	cttcaaaggt	tgtcaaaggt	3840
catcaagcag	tgttcattta	tcctgtcaca	tgtttctgtt	tctatagtaa	tttagaaatt	3900
gcaaatagtt	aacttttcat	catgtaaaaa	gttaacatta	tectatttec	atagatacca	3960
tggacggcgg	tgtggcctga	gttgtcagtc	tttaatcctg	agtcatgtgg	ctctctttc	4020
atctttgatg	tcagttccaa	ttatttggca	tcaaaaacct	tcatggtagg	tagagtttta	4080
ggtaaaagtg	gatctagggt	tactttcttt	attaacattt	cctaaataac	tgaattgaga	4140
gacatactct	gctactatgt	cctcaggtta	atttttgtct	gatcttacga	tgccctgcct	4200
tttactagct	actttagaaa	tagaaaatgt	gaagagtgac	tatttacatg	tatactcctt	4260
tggctgctag	aactcatctg	tagtccttta	ttatttacac	tgaattccaa	tttcatttct	4320
cttccgctaa	gtaagagcac	ctcattcctg	tgttttctct	actattgagc	tgtagacgaa	4380
ctgtttctct	aattataaag	caaactgttt	gggatattca	gggaaactac	cccaatgtta	4440
tgttgtcatt	taatgggaaa	ggctgggatc	atatgtattt	ctatgttctg	taaagtattt	4500
gacttactag.	ttctcaataa	aattttatta	ggactataaa	aaaa		4544

```
<210> 519 <211> 1779
```

<212> DNA

<213> Mus musculus

<400> 519

(400) 21)						
ggtccggaat	tcccgggtcg	acccacgcgt	ccgctggcct	tgggcgcaga	ccccggccgg	60
tcccggggct	gcctctttaa	gggagggggt	ggagccgcga	gtcaggcgcg	aggagctcca	120
gaaatcttga	ggccagagcc	ccgcacctcg	gcgcagccat	gagtgcggag	gtgaaggtga	180
cagggcagaa	ccaagagcag	tttctgctcc	ttgccaagtc	ggctaagggg	gcggcactgg	240
ccacactcat	ccaccaggtg	ctggaggccc	ctggtgtcta	cgtgtttggg	gaactgctgg	300
atatgcctaa	tgttagagag	ctggcagaaa	gcgactttgc	ctccaccttc	cggctgctca	360
cagtgtttgc	ctatgggacc	tatgcggact	acttagctga	agccaggaat	ctcccccàc	420
tgactgacgc	acagaagaat	aagcttcgac	atctgtcagt	tgtcactctg	gctgccaaag	480
tcaagtgtat	cccatatgca	gtgttgctgg	aggcccttgc	ccttcgaaac	gtgcgccagc	540
tggaagacct	tgtgatcgag	gctgtgtatg	ctgatgtcct	tcgtggctct	ctggaccagc	600
gcaatcagcg	gctagaggtt	gattacagca	tcgggcggga	catccagcgc	caggacctca	660
gtgccatcgc	ccagaccctg	caagagtggt	gcgtgggctg	tgaggttgtg	ttgtcgggca	720
tcgaagagca	ggtcagccgt	gccaaccagc	acaaggagca	gcagctgggc	ctgaagcagc	780
agatcgaaag	tgaggttgcc	aaccttaaga	aaaccattaa	agttacgaca	gcagctgctg	840
ctgcagccac	ctcccaggat	cctgagcaac	acctgacaga	gctgagagaa	ccagcttctg	900
gcaccaacca	gcgccagccc	agcaagaaag	cctccaaggg	caagggactc	cgagggagcg	960
ccaagatttg	gtccaagtcg	aactgaaagg	acttgtttct	tccctgggaa	tgtggggtcc	1020
cagctgccta	cctgcctacc	ccttaggagt	cctcagagcc	ttcctgtgcc	cctggccagc	1080
tgataatgct	agttcattac	ttttcatctc	ctccaccccc	aagcataagc	cacaccctct	1140
gtagggagga	ggccagtgca	ggtcatgttc	tgttggtacc	tcttatgtgt	tccatgctct	1200
tccccagcac	gcttgctctc	atcgtttttc	cgcactgtgt	ctgcccatta	cccctgtcat	1260
tgagcaggtt	ggcagtccta	tggagggtgc	tggctcttaa	ccacccacac	ctacccctgc	1320

WO 99/31236 -361- PCT/IB98/02122 -

atgcctaatc tgcagttc	t cetectece	ttgcctagtg	ggctgcatct	gaaaagccat	1380
ggggaagggg gtctccac	t tcattccagc	cttagagttc	tggagccagt	ctgctaccct.	1440
gggagtcgct ggacattt	c ctcccagaac	cccatcacac	tacaattgtt	tettteetet	1500
ctcatctcct tgggcctg	g gatactgctg	cttcagtgac	cccagagcct	gagaacagct	1560
atttttgaga tgttaaga					1620
atcctggaag gatttata	c tectectgtg	gttctggtgg	ggaaggaaat	atagattgta	1680
tattaaaaat aaaaaata	ta tatgaatagg	tctatatata	ttgacacatg	acacagaaat	1740
aaatgtatga gaaatgta	tg tacaaaaaa	aaaaaaaa	_		1779