IP - Adressierung - Das IPv6 Special Netzwerkgrundlagen (NWG2)

Markus Zeilinger¹

¹FH Oberösterreich Department Sichere Informationssysteme

Sommersemester 2023

Wichtiger Hinweis

Alle Materialien, die im Rahmen dieser LVA durch den LVA-Leiter zur Verfügung gestellt werden, wie zum Beispiel Foliensätze, Audio-Aufnahmen, Übungszettel, Musterlösungen, ... dürfen ohne explizite Genehmigung durch den LVA-Leiter NICHT weitergegeben werden!

IPv6 Adressierung - Basics (tw. Wiederholung)

- ► Logische Adressen, weltweit eindeutige Identifikation von Netzwerk Interfaces.
 - ▶ IPv6: 128 Bit Adresse ($\rightarrow \approx$ 340 Trillionen Trillionen Adressen)
- ► IPv6: Colon Hexadecimal Notation = Trennung 8 hexadezimaler Wörter durch Doppelpunkte (:) (z. B. 2a0c:2345:3013::38).

	0 1	.6 3	2 4	48	64	80	96	112	128
Binär	00101010 00001100	00100011 01000101	00110000 00010011	00000000	00000000	00000000	00000000	00000000 00111000	
Colon Hexadecimal	2a0c	2345	3013	0000	0000	0000	0000	0038	
Zero-Compressed	2a0c	2345	3013		38				

- ▶ Jede IPv6 Adresse besteht aus Netz- und Host-Anteil (aka Interface Identifier).
- Adresstypen: Unicast, Multicast und Anycast (KEIN Broadcast!)
- ► Address Scopes (≈ Gültigkeitsbereiche): Link-Local Scope, Unique-Local Scope, Global Scope

Organisation des IPv6 Adressraums

► Basis:

- ► RFC 4291 IPv6 Addressing Architecture
- ► IPv6 Address Space (IANA)
- ► IANA IPv6 Special-Purpose Address Registry

High-Order Bits	IPv6 Adresse	Beschreibung
0000 0 (128 Bits)	::/128	Nicht spezifizierte Adresse (Unspecified Address), Selbstreferenz
0000 1 (128 Bits)	::1/128	Loopback Adresse
1111 1100	fc00::/7	Unique-Local Unicast Adressen (RFC 4193)
1111 1110 1000	fe80::/64	Link-Local Unicast Adressen
1111 1111	ff00::/8	Multicast Adressen
Rest (aktuell: 0010)	2000::/3	Global Unicast Adressen

Link-Local Unicast Adressen

► Link-Local Unicast Adressen (LLA, Präfix: fe80::/64)

0	[10 Bit]	10	[54 Bit]	64	[64 Bit]	128
	1111 1110 10		0		Interface Identifier	

- ► LLAs werden automatisch erzeugt und sind nur an einem Segment/Link gültig (link-local).
- ightharpoonup Verwendung für Basisfunktionalitäten in IPv6 (ightharpoonup ND, SLAAC), lokale Services, Transitnetze zw. Routern, ...
- Pakete von/an LLAs werden nicht geroutet!

```
~$ ip addr
2: ens33: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP [...]
link/ether 00:0c:29:e2:5f:f1 brd ff:ff:ff:ff:ff
inet 172.16.72.130/24 brd 172.16.72.255 scope global dynamic noprefixroute ens33
valid_lft 1706sec preferred_lft 1706sec
inet6 fe80::fbf8:a39b:9696:a731/64 scope link noprefixroute
valid_lft forever preferred_lft forever
```

Global Unicast Adressen I

Global Unicast Adressen (GUA, aktuell aus 2000::/3):

(n Bit]	[m Bit] 6	54 12	:8
	Global Routing Prefix	Subnet ID	Interface Identifier	

- Global (= im Internet) gültige, eindeutige Unicast Adressen (aka "öffentliche" Adressen).
- ▶ Pakete von/an Global Unicast Adressen werden im Internet geroutet.
- Adressvergabe folgt den gleichen Prinzipien wie bei IPv4 (IANA \rightarrow RIR \rightarrow LIR \rightarrow Endkunde) (\rightarrow CIDR & Adressorganisation).

Global Unicast Adressen I

- ► Vergabegrößen:
 - ▶ Allocation IANA \rightarrow RIR: /12 ¹
 - ▶ Allocation RIR \rightarrow LIR: $/32 /29^2$
 - ► Allocation LIR → ISP: nicht definiert
 - ► Assignment LIR/ISP \rightarrow Endkunde: $/48 /56^{-3}$
- ▶ Beispiel: Präfix 2001:628:2220::/48 (FH Oberösterreich)

¹Quelle: IANA Policy for Allocation of IPv6 Blocks to RIRs

³Quelle: BCOP: IPv6 Prefix Assignment for End-Users - RIPE 690 listet in Abschnitt 4.2 verschiedene Empfehlungen (z. B. /48 für alle, /48 für Unternehmen/Orgs + /56 für Private, von der Vergabe von kleineren Präfixen als /56 wird dringend abgeraten).

²Quelle: IPv6 Address Allocation and Assignment Policy - RIPE 738, RIPE vergibt aktuell ausschließlich /29

Interface Identifier (IID) I

- ► Interface Identifier (IID) (= Host-Anteil bei IPv4) identifiziert ein Interface eines Systems innerhalb eines IPv6 Netzwerks.
- \blacktriangleright LLAs werden automatisch erzeugt \to Interface Identifier muss automatisch erzeugt werden.
- 1. Ableitung aus der 48-Bit MAC Adresse (\rightarrow Schicht 2) des Netzwerk Interfaces.
 - ▶ IEEE EUI-64 Format: Einschieben von fffe + Bit 2 im höchstwertigen Oktett auf 1
 - \blacktriangleright Weltweite Eindeutigkeit von MAC Adressen \rightarrow weltweite Eindeutigkeit des IID \rightarrow Bedenken bzgl. Datenschutz
- Zufällige, temporäre Generierung (RFC 8981 Temporary Address Extensions for SLAAC in IPv6)
 - ▶ IID wird zufällig, temporär erzeugt und laufend neu generiert (z. B. einmal täglich).
 - ► Keine automatische Eindeutigkeit → Duplicate Address Detection (DAD)

Interface Identifier (IID) II

► IID abgeleitet aus MAC Adresse:

```
~$ ip addr
2: ens33: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP [...]
link/ether 00:0c:29:e2:5f:f1 brd ff:ff:ff:ff:ff
inet 172.16.72.130/24 brd 172.16.72.255 scope global dynamic noprefixroute ens33
   valid_lft 1706sec preferred_lft 1706sec
inet6 fe80::020c:29ff:fee2:5ff1/64 scope link noprefixroute
   valid_lft forever preferred_lft forever
```

► IID zufällig erzeugt:

```
-$ ip addr
2: ens33: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP [...]
link/ether 00:0c:29:e2:5f:f1 brd ff:ff:ff:ff:
inet 172.16.72.130/24 brd 172.16.72.255 scope global dynamic noprefixroute ens33
   valid_lft 1706sec preferred_lft 1706sec
inet6 fe80::fbf8:a39b:9696:a731/64 scope link noprefixroute
   valid_lft forever preferred_lft forever
```


Multicast Adressen

Multicast Adressen, allgemeines Format:

```
0 [8 Bit] 8 [4] 12 [4] 16 [112 Bit] 128

1111 1111 | Flags | Scope | Group ID
```

- ► IPv6 macht aufgrund der eliminierten Broadcasts massiven Gebrauch von s. g. "well-known" Multicast Gruppen:
 - ► All-Nodes Address, link-local: ff02::1
 - ► All-Routers Address, link-local: ff02::2
 - ► Solicited Node Adresse, link-local: ff02::1:ff00:0000/104 + low-order 24 Bits der IPv6 Unicast Adresse
- ▶ Mehr zum Thema Multicasts folgt auf Schicht 2!

