BACS1024 INTRODUCTION TO COMPUTER SYSTEMS

Chapter 3: Floating Point Representation

0. Overview

- 1. Signed & Unsigned Number Representation
- 2. Floating-point Number Representation & Standard
- 3. Bitwise Logical Operations

- **Integer representation**
 - Unsigned integer
 - hold a positive value, and no negative value
 - uses the most significant bit (MSB) as a part of the value
 - **E.g.: Unsigned** integer: 1111 1111₂ = +255₁₀
 - Signed integer
 - hold both positive and negative numbers
 - uses the most significant bit (MSB) to identify if the number is positive or negative. 0 indicates a positive while 1 indicates a negative.
 - **E.g.: Signed** integer: **0**111 1111₂ = **+**127₁₀

However, this made calculation difficult.

In Signed-and-magnitude representation

sign bit (MSB) Magnitude bits

This made calculation difficult.

E.g.: In **signed** integer: **0**111 1111₂ =
$$2^6 + 2^5 + 2^4 + 2^3 + 2^2 + 2^1 + 2^0$$

= $+127_{10}$
1111 1111₂ = $-2^7 + 2^6 + 2^5 + 2^4 + 2^3 + 2^2 + 2^1 + 2^0$
= -1_{10}
 $\neq -127_{10}$

Solution: Two's Complement

■ Two's Complement

☐ 2 steps: 1.) One's complement

Perform inversion. i.e. change 1's to 0's and 0's to 1's

2.) Adding 1 to the result of One's complement

- ☐ As the computer stores data in byte basis, therefore **8 bit system** is used.
- ☐ E.g.:

E.g.:
$$10_{10} = 0000 \, 1010_{2}$$
One's complement = 1111 0101₂

$$Add \, 1_{2} = \underline{1_{2} + 1_$$

■ Two's Complement

- ☐ Uses: To represent negative value & perform subtraction.
- $\Box \text{ E.g.: } 30_{10} 10_{10}$ $= 30_{10} + (-10_{10})$

$$30_{10} = 00011110_{2}$$

$$10_{10} = 0000 \ 1010_{2}$$

One's complement = 1111 0101₂
add 1₂ = ______1₂+
Two's complement = 1111 0110₂
= -10₁₀

Continued:

Decimal	<u>Binary</u>
30 ₁₀	000111102
<u>+ (-10)</u> ₁₀	+1111 0110 ₂
20 ₁₀	(1)0001 0100 ₂
	= 20 ₁₀

Overflow

- Occurs when the result of an arithmetic operation does not fit into the fixed number of bits available for the result.
- ☐ Occur only when both operands have the same sign.
- ☐ Detected by the fact that the sign of the result is opposite of both operands.
- ☐ Stored in overflow flag (OF)

Carry

- □ Occurs when the result of an arithmetic operation exceeds the fixed number of bits allocated, without regard to the sign.
- ☐ The carry bit is ignored in single precision 2's complement addition and subtraction.
- ☐ Detected when extra '1' bit is generated.
- ☐ Stored in carry flag (CF)

Overflow

□ E.g.:

$$64_{10}$$
 0100 0000₂
 $+65_{10}$ +0100 0001₂
 129_{10} 1000 0001₂ = -127₁₀

■ Carry

□ E.g.:

$$106_{10}$$
 0110 1010₂
 $\frac{+(-2)_{10}}{104_{10}}$ $\frac{+11111110}{1000_2}$ = 104₁₀

In **8 bit system**, data ranges from:

$$64_{10} + 65_{10} = 129_{10}$$
 which is > **127**

i.e. 129 does not fit into the number of bits available.

Therefore, **OVERFLOW** occur.

Since $129_{10} \neq -127_{10}$, this is **invalid**.

In <u>8 bit system</u>, extra 1 bit is generated. Carry occur.

Carry ignore

- Exponential notation
 - ☐ For decimal numbers, floating point is represented in **scientific notation**.
 - ☐ E.g.:
 - 12345
 - $= 12345 \times 10^{0}$
 - $= 0.12345 \times 10^{5}$
 - $= 0.0012345 \times 10^{7}$
 - $= 123450000 \times 10^{-4}$
 - ☐ Allows a range of overly large & very small numbers to be represented with a few digits.

- Exponential notation
 - ☐ A number is represented by the combination of 6 specifications.
 - \square E.g.: To represent 12345₁₀

- Floating Point Representation
 - ☐ Floating point numbers will be stored and manipulated in the computer using standard predefined format, usually in 8 bits basis.
 - ☐ There are 2 key format applied: **SEEMMMMM** & **IEEE754** notation
 - ☐ The base of exponent and location of the binary point are standardize as part of the format. Therefore, they are not required to be stored at all.

- Floating Point Representation SEEMMMMM
 - ☐ In **SEEMMMMM** format,
 - ❖ 1 digit for sign
 - ❖ 2 digits for exponent
 - ❖ 5 digits for mantissa, the decimal point location is assumed to be located at the beginning of mantissa.
 - ☐ Excess-N notation
 - ❖ **N** is the chosen middle value
 - ❖ E.g.: Excess-50 allow a magnitude ranges as follow:

 $0.00001 \times 10^{-50} < \text{Number} < 0.99999 \times 10^{49}$

Excess	-48	-49	50	51	52
Exponent	-2	-1	0	1	2

- Floating Point Representation SEEMMMMM
 - **☐** Conversion:
 - The base is 10.

Excess	-48	-49	50	51	52
Exponent	-2	-1	0	1	2

- The implied decimal point is at the beginning of the mantissa.
- Assume that:
 - ✓ Excess-50 is applied.
 - ✓ A 0 represents positive and 5 represents negative.

$$05324567 = 0.24567 \times 10^3 = 245.67$$

$$54810000 = -0.10000 \times 10^{-2} = -0.00100000$$

$$55555555 = -0.5555 \times 10^5 = -55555$$

- Floating Point Representation SEEMMMMM
 - Normalization
 - Shift number left by increasing the exponent until leading zeros are eliminated.
 - ☐ **Steps**: (Convert decimal number into SEEMMMMM format)
 - 1. Provide number with exponent (0 if not yet specified)
 - 2. Increase / decrease exponent to shift decimal point to proper position.
 - 3. Decrease exponent to eliminate leading zeros on mantissa.
 - 4. Correct precision by adding 0's or discarding / rounding least significant digits

- Floating Point Representation SEEMMMMM
 - Normalization and formatting
 - ☐ E.g.:
 - ❖ Given 246.8035, normalize it and represent it in SEEMMMMM format.
 - ☐ Steps:
 - 1. Add exponent : $246.8035 \times 10^{\circ}$
 - 2. Position decimal point $: 0.2468035 \times 10^3$
 - 3. Already normalized, no adjustment is required.
 - 4. Trim mantissa to 5 digits: 0.24680 x **10**³
 - 5. Convert the number : 05324680

- Assume that:
 - ✓ Excess-50 is applied.
 - ✓ A 0 represents positive and 5 represents negative.

- Floating Point Representation SEEMMMMM
 - Normalization and formatting
 - ☐ E.g.:
 - ❖ Given -1255 x **10**-3, normalize it and represent it in SEEMMMMM format.
 - ☐ Steps:
 - 1. The number is already in exponential form.
 - 2. Position decimal point : -0.1255×10^{1}
 - 3. Already normalized, no adjustment is required.
 - 4. Trim mantissa to 5 digits: -0.12550 x 101
 - 5. Convert the number : 55112550

- **Assume** that:
 - ✓ Excess-50 is applied.
 - ✓ A 0 represents positive and 5 represents negative.

- Floating Point Representation SEEMMMMM
 - □ Addition and subtraction
 - Exponent and mantissa treated separately.
 - **Exponents of numbers must agree.**
 - ✓ Align decimal points
 - ✓ Least significant digits may be lost
 - Overflow of the most significant digit may occurs.
 - Number must be shifted right and the exponent incremented to accommodate overflow.

- Floating Point Representation SEEMMMMM
 - Addition and subtraction
 - ❖ E.g.: Add the 2 floating-point numbers.

05199520

+ 04967850

- **Assume** that:
 - ✓ Excess-50 is applied.
 - ✓ A 0 represents positive and 5 represents negative.

Align exponents = 05199520

By adding 2 zeros in front to mantissa = 0510067850 +

Add mantissa, (1) indicates a carry = (1)0019850

Carry requires right shift of exponent = 0 52 10019(850)

Round = 0 52 10020

- Floating Point Representation SEEMMMMM
 - □ Addition and subtraction
 - ❖ E.g.: Check result.

05199520

+04967850

- **Assume** that:
 - ✓ Excess-50 is applied.
 - ✓ A 0 represents positive and 5 represents negative.

 $05199520 = 0.99520 \times 10^{1} = 9.520$

 $04967850 = 0.67850 \times 10^{-1} = 0.067850 + 10.019850$

In sign-magnitude form = 0.1001985×10^2

- Floating Point Representation SEEMMMMM
 - Multiply and divide
 - Mantissa: Multiplied or divided
 - Exponent: Added or subtracted and adjusted excess value since added trice

- **Assume** that:
 - ✓ Excess-50 is applied.
 - ✓ A 0 represents positive and 5 represents negative.

- **❖** E.g.:
 - ✓ Assume that two number with exponent 3, each representing 53.
 - \checkmark Adding the two exponent: 53 + 53 = 106
 - ✓ Since 50 (excess-50) is added twice, subtract: 106 50 = 56
- Normalization necessary to:
 - ✓ Restore location of decimal point
 - ✓ Maintain precision of the result.

- Floating Point Representation SEEMMMMM
 - Multiply and divide
 - E.g.: multiply two floating pint numbers

05220000

x 04712500

- **Assume** that:
 - ✓ Excess-50 is applied.
 - ✓ A 0 represents positive and 5 represents negative.

Add exponent, subtract offset = 75 + 47 - 50 = 49

Multiply mantissa = 0.20000×0.12500

= 0.025000000

Normalized the result = 04825000

- Floating Point Representation SEEMMMMM
 - Multiply and divide
 - E.g.: Check result

$$05220000 = 0.20000 \times 10^2 = 20$$

 $04712500 = 0.12500 \times 10^{-3} = 0.000125$

Multiply = 20×0.000125

 $= 0.025000000 \times 10^{-1}$

Normalizing and rounding = 0.25000×10^{-2}

- **Assume** that:
 - ✓ Excess-50 is applied.
 - ✓ A 0 represents positive and 5 represents negative.

- Floating Point Representation IEEE754
 - ☐ Typical floating point format in computer
 - Consists of 32 bits, divided into:
 - ✓ 1 bit of sign
 - ✓ 8 bits of exponent, excess-127 notation, base 2
 - ✓ 23 bits of mantissa

bit 0 1 8 9 31

S E ... E M ... M

Sign Exponent Mantissa

- Floating Point Representation IEEE754
 - □ Normalized numbers must always start with a 1, the leading bit is not stored, but is instead implied.
 - ☐ This bit is located to the left of the implied binary position. So, numbers are normalized to the form 1.MMMMMM...

Precision	Single (32-bit)	Double (64-bit)
Sign	1 bit	1 bit
Exponent	8 bits	11 bits
Implied base	2	2
Range	2 ⁻¹²⁶ to 2 ¹²⁷	2 ⁻¹⁰²² to 2 ¹⁰²³
mantissa	23	52
Notation	Excess-127	Excess-1023

Floating Point Representation – IEEE754

```
\square E.g.: Convert 253.75<sub>10</sub> to binary floating point form.
```

1111 1101. 11₂

Therefore, $253.11_{10} = 1111 \ 1101.11_2$ = 1.111 110111 x 2+7

Sign Exponent Mantissa 1 8 23 bits

- Floating Point Representation Conversion
 - ☐ E.g.: Convert of fraction number
 - \square 16.5₁₀ \rightarrow base 2

2 ²	2 1	2 º	2 -1	2 -2	2-3
4	2	1	1/2	1/4	1/8

- Floating Point Representation Conversion
 - ☐ E.g.: Convert of fraction number
 - \Box 16.5₁₀ \rightarrow base 2

2 2	2 1	2 º	2-1	2- 2	2-3
4	2	1 /	1/2	1/4	1/8

$$\Box 16.5_{10} = 16_{10} + 0.5_{10}$$
$$= 10000_{2} + 0.1_{2}$$
$$= 10000.1_{2}$$

OR, 0.5 x 2 = **1**.00

(Reading the integer only, in top-down direction)

X 2 because it need to change to base 2.

Since it is multiplied using fractional numbers, therefore it must add **0.** in front of the answer.

0.110101₂

Floating Point Representation - Conversion

- ☐ E.g.: Convert of fraction number
- \Box 0.828125₁₀ \rightarrow base 2
 - 0.828125 x 2 = **1.656250**
 - $0.656250 \times 2 = 1.312500$
 - $0.312500 \times 2 = 0.625000$
 - $0.625000 \times 2 = 1.250000$
 - $0.250000 \times 2 = 0.500000$
 - $0.500000 \times 2 = 1.000000$

Therefore, $0.828125_{10} = 0.110101_2$

- Floating Point Representation Conversion
 - ☐ E.g.: Convert of fraction number
 - □ 0.828125_{10} → base 2
 - ☐ To validate it:

	2 º	2 -1	2- 2	2-3	2-4	2- 5	2-6
Decimal	0	1/2	1/4	1/8	1/16	1/32	1/64
	0	0.5	0.25	0.125	0.0625	0.0312 5	0.015625
Binary	0	1	1	0	1	0	1

Therefore, $0.828125_{10} = 0.110101_2$

- Floating Point Representation Conversion
 - ☐ E.g.: Convert of fraction number
 - \square 11.110011₂ \rightarrow base 10

Binary	1	1	•	1	1	0	0	1	1
	21	20	•	2-1	2-2	2-3	2-4	2 ⁻⁵	2-6
Decimal	2	1		1/2	1/4	1/8	1/16	1/32	1/64
Decimal	2	1 _		0.5	0.25	0.125_	0.0625	0.0312	0.015625
	•	•		•	•	•	+	5	
	3.796875 ₁₀								

Therefore, $11.110011_2 = 3.796875_{10}$

- Floating Point Representation Conversion
 - ☐ E.g.: Convert of fraction number
 - □ 10011.10111₂ \rightarrow base ₁₆

10011.101112

- Floating Point Representation Conversion
 - ☐ E.g.: Convert of fraction number
 - \square 39.B8₁₆ \rightarrow base 10

$$= (3 \times 16^{1}) + (9 \times 16^{0}) + (.) + (B \times 16^{-1}) + (8 \times 16^{-2})$$

$$=48_{10}+9_{10}+(.)0.6875_{10}+0.03125_{10}$$

- Floating Point Representation Conversion
 - ☐ E.g.: Convert of fraction number
 - \square 4F5.09₁₆ \rightarrow base ₂

4 F 5.0 9₁₆

0100 1111 0101 . 0000 1001₂

Additional Zero added

■ Bitwise logical operations are including:

Logical operation	Symbol	Exam	nple
AND= Yield TRUE if both operands are TRUE	(•),(^)	A • B	A ^ B
OR = Yield TRUE if either/both operand is/are TRUE	(+),(v)	A + B	AvB
NOT = Inverts the value of its operand	(') , (¬)	A'	¬ A
XOR = exclusive disjunction	(⊕) , (<u>∨</u>)	$A \oplus B$	AVB

Bitwise Operator precedence

Expression	Order of Operations			
A + B'	NOT, then OR			
(A + B)'	OR, then NOT			
A + (B • C)	AND, then OR			

■ Relative order of precedence: **NOT > XOR > AND > OR**

- Bitwise logical operations
- E.g.: **AND**

	1	1	0	0
AND	1	0	1	0
	0	0	0	0

- Bitwise logical operations
- E.g.: **OR**

	1	1	0	0
OR	1	0	1	0
	1	1	1	0

- Bitwise logical operations
- E.g.: **NOT**

OR	1	0
	0	1

- Bitwise logical operations
- E.g.: XOR

	1	1	0	0
XOR	1	0	1	0
	0	1	1	0

Chapter Review

Chapter Review

- 1. Signed and unsigned number representation
 - ☐ Signed: Positive only
 - ☐ Unsigned: Positive (0) /negative (1)
- 2. Floating-point Num Representation & Standard
 - ☐ Sign-magnitude notation

 $\pm 0.12345 \times 10^{\pm 5}$

□ SEEMMMMM notation

Excess-50, 1=+ve, 2=-ve

25512345

- ☐ IEEE754 notation
 - Single precision (1:8:23)
 - ❖ Double precision (1:11:1023)
- ☐ Floating-point number conversion
 - ♦ B/O/H \rightarrow D: 2/8/16-n
 - ❖ D → B / O / H: Mantissa x base
 - \bullet B \rightarrow O /H: Collapse
 - $Arr H/O \rightarrow B$: Expand

3. Bitwise logical operations

Operator	Symbol	Example	
AND	(•),(^)	A • B	A ^ B
OR	(+),(v)	A + B	AvB
NOT	(') , (¬)	A'	¬ A
XOR	(⊕) , (<u>∨</u>)	$A \oplus B$	AVB