

SCAM! Transferring humans between images with Semantic Cross Attention

Nicolas Dufour David Picard

Vicky Kalogeiton

Introduction

Goal: Easily swap subjects in an image.

Approach: Separate the latent space with a segmentation mask.

Prior work: *Single* style code per image [*ParkCVPR19*], *Single* style code per segmentation region [*ZhuCVPR20*].

Our method: Multiple style codes per semantic region.

Method

Training setup of the proposed SCAM architecture.

Semantic Cross Attention (SCA)

SCA: semantically constrained attention on pixels and latents.

- → Pixel and group of latents have an assigned semantic label.
- → Pixels or latents can only attend same semantic label latents.

$$\operatorname{SCA}(I_1,I_2,I_3) = \sigmaigg(rac{QK^{T'}\odot I_3 + au(1-I_3)}{\sqrt{d_{in}}}igg),$$

 $Q{=}W_{Q}I_{1},K{=}W_{K}I_{2} ext{ and } V{=}W_{V}I_{2}$

Semantic Cross Attention Modulation (SCAM)

SCAM: Multiple latents per semantic region.

- → More reprensentative power for *coarse* semantic regions.
- → Discover *unsupervised semantic structures* inside the labels.

Training setup

- ♦ Hinge GAN loss + L1 loss + Perceptual Loss.
- ♦ PatchGAN discriminator.

Semantic Attention Transformer (SAT)

SAT Operation: *transformer-like* operation with *SCA*.

SAT encode/decode data in a *semantically constrained* fashion.

SCAM-Operation.

Subject Transfer Results

Unsupervised Semantic Knowledge

Quantitative Results

Method	iDesigner					CelebAMask-HQ			ADE20K	
	PSNR ·	↑ R-FID .	↓ S-FID、	REIDSim ´	REIDAcc ↑	PSNR ↑	R-FID 、	↓ S-FID ↓	PSNR ↑	R-FID ↓
SPADE [ParkCVPR19]	10.4	66.7	67.5	0.67	0.26	10.9	38.2	38.3	10.7	59.7
CLADE[TanTPAMI21]	11.3	45.4	46.1	0.68	0.29	10.8	41.8	42.0	10.4	53.7
SEAN-CLADE [TanTPAMI21]	15.3	48.4	56.1	0.75	0.31	16.2	19.8	24.3	14.0	38.7
INADE [TanCVPR21]	12.0	33.0	33.9	0.72	0.34	12.24	22.7	23.4	11.3	48.6
SEAN [ZhuCVPR20]	14.9	53.5	58.7	0.74	0.30	16.2	18.9	22.8	14.6	47.6
SCAM (Ours)	21.4	13.2	26.9	0.81	0.56	21.9	15.5	19.8	20.0	27.5