

智能金融技术

人脸识别

李晨辉 副教授 博士

华东师范大学计算机学院

人脸识别在金融场景中 的应用

远程核身

- 远程开户
- 客户服务
- 刷脸支付

https://zhuanlan.zhihu.com/p/257094055

引子

人世间找不两张完全一样的脸!

人脸是人类赖以区分不同人的基本途径

谁决定了你的长相?

基因 + 成长环境

双胞胎

夫妻相

世间一切尽在脸上!

无处不在的身份验证

如何证明你的身份?

设想你被警察拦下...

传统方法

What you have

身份证,暂住证,结婚证,工作证,银行卡,钥匙...

What you know

Password, information...

What you are/how you do

一种新的技术手段——Biometrics

传统方法有什么问题?

卡、钥匙丢失 密码危机

密码遗忘

纽约每天1000人以上忘记密码 ❸

密码被猜中

生日、电话号码、车号、宿舍...

Heavy web users have an average of 21 passwords; 81% of users select a common password and 30% write their passwords down or store them in a file. (2002 NTA Monitor Password Survey)

损失

2002年,仅美国330万人次的身份盗用;670万信用卡诈骗案

一种新的技术手段

生物特征识别技术Biometrics 什么是Biometrics?

Bio——生物

Metrics——测量

事实含义

通过人体自身的生理特征(what you are)或行为特征(how you do)进行身份验证的技术

Biometrics

生理特征(what you are)

Finger, face, palm, hand, foot, iris, vein...

行为特征(how you do)

步态,声音,敲击键盘...

人人拥有,人各不同!

生物特征识别技术(Biometrics)

生物特征识别技术(Biometrics)

为什么要做人脸识别?

多学科领域的挑战性难题

模式识别: 最典型、最困难的模式识别问题

人工智能: 人类智能的基本体现

计算机视觉: 实现人眼的功能

下一代人机交互

让计算机不再"熟视无睹"

让计算机具有人类的情感

广泛的应用前景

人脸识别相比其他生物特征识别的优势

应用模式	典型具体应用	特点说明	应用领域
身份识别	出入境管理	过滤敏感人物(间谍、恐怖分子等)	国家安全公共安全
	嫌疑人照片比对	公安系统用于确定犯罪嫌疑人身份	
	敏感人物智能监控	监控敏感人物(间谍、恐怖分子等)	
	网上追逃	在移动终端上进行现场比对	
	会议代表身份识别	防止非法人员进入会场带来危险因素	
	关键场所视频监控	如银行大厅,预警可能的不安全因素	
	家政服务机器人	能够识别家庭成员的智能机器人	人机交互
	自动系统登陆	自动识别用户身份,提供个性化界面	
	智能Agent	自动识别用户身份,提供个性化界面	
	真实感虚拟游戏	提供真实感的人物面像,增加交互性	
身份验证	护照、身份证、驾照等各类证件查验	海关、港口、机要部门等查验持证人的身份是否合法	公共安全
	准考证查验	防止替考问题	教育
	机要部门物理门禁	避免钥匙和密码被窃取造成失窃	公共安全
	机要信息系统门禁	避免单纯的密码被窃取造成信息被窃	信息安全
	人脸考勤系统	方便,快捷,杜绝代考勤问题	企业应用
	金融用户身份验证	避免单纯的密码被窃取造成财产损失	金融安全
	电子商务身份验证	安全可靠的身份验证手段	金融安全
	智能卡	安全可靠的授权	信息安全
	会议代表身份验证	防止非法人员进入会场带来危险因素	公共安全
	屏幕保护程序	方便快捷的允许合法用户打开屏保	人机交互

人脸识别相关研究内容

> 生物特征识别

人脸、指纹、虹膜、视网膜、掌纹、

- ▶ 人机交互(HCI)
- **〉** 人脸图像编码/压缩

压缩感知 字典学习

- > 表情分析,情感计算
- ▶ 人脸动画 Face Animation
- **人脸属性分类**种族、性别、年龄

与其他生物特征识别的比较

生物特征识别

生物:指纹、虹膜、人脸、掌纹、手形、视网膜、红外温谱

行为:笔迹、步态、声纹

人脸识别的优点

可以隐蔽操作,特别适用于安全问题、罪犯监控与抓逃应用

非接触式采集,没有侵犯性,容易接受

方便、快捷、强大的事后追踪能力

符合我们人类的识别习惯,可交互性强,无需专家评判

人脸识别的不足

不同人脸的相似性大

安全性低,识别性能受外界条件的影响非常大

有些事没有想象的那么简单!

技术挑战

影响人脸图像表观的因素

人与摄像设备的位置关系(距离角度等)

光照环境条件

摄像设备

图像存储质量

年龄变化

饰物(眼镜帽子等)

化妆、整容

精神状态

健康状况

意外损伤

面部毛发(头发,胡须)

人脸识别的基本原理 及其计算模型探讨

我们人类靠什么识别?

天赋的能力还是后天获得的?

脸形,面部器官结构

国田由用, 目甲风申

皮肤和肤色

光滑/粗糙,黝黑/白皙

局部特性

黑痣, 刀疤, 鹰勾鼻子, 独眼龙

动态特征

酒窝, 皱纹

人类视觉识别系统特性简 介及其借鉴意义

人脸识别是否是一个特定的过程?

证据: "人脸识别能力缺失症(Prosopagnosia)"患者的存在,患有此症的人可以正常的识别其他物体,甚至可以正确的识别鼻子眼睛和嘴巴等面部器官,但是就是不能认出熟悉的人脸,因此有理由怀疑其人脸识别功能区遭到了破坏。

全局特征与局部特征孰轻孰重?

全局特征主要包括人脸的肤色特征(比如白皙、黝黑)、总体轮廓(比如圆脸、鸭蛋脸、方脸、长脸等)、以及面部五官的分布特征(比如,在绘画界就有"国田由用,目甲风申"8种脸形之说),中医也将人脸按照总体结构特征划分为"金木水火土"五行(侧重人脸3D结构和肌肉凸凹情况)而局部特征则主要指面部五官的特点,比如浓眉毛、丹凤眼、鹰勾鼻、大豁嘴、八字胡须、尖下巴等,以及面部的一些奇异特征,比如黑痣、伤痕、酒窝等等二者对识别都是必要的,但全局特征一般用来进行粗略的匹配,局部特征则提供更为精细的确认。

人脸识别的分类

传感器

可见光——模拟眼睛

红外

主动

被动

3D人脸识别

输入模式

静态照片

动态视频序列

理想的识别模型

从人脸图像中剥离出

人脸稳定不变的本质属性(3D形状与表面反射率)

外界条件及其摄像参数变化导致的图像变化

然后,从3D形状与表面反射率属性中提取不同人脸的

差异信息,馈入到后端的判别分类器中进行识别

Face Image = 3D Model + Texture + Illumination

人脸检测 面部特征定位 人脸识别/确认 $X=(\overline{x_1, x_2, \dots, x_n})$ 问题分解

人脸检测和识别

基于几何特征的例子

建模:用面部关键特征的相对位置、大小、形状、面积等参数来描述人脸 人脸图像f→特征向量 ν

 $v = (x_1, x_2, ..., x_n)$

对所有已知人脸提取同样描述的几何特征

 $D = \{v_1, v_2, ..., v_p\}$

待识别的人脸, 健取的几何特征为 v_f **计算 v_f**与 D中所有 v_f的相似度 s(v_f v_i)(比如欧式 距离、cosine(.)等), 进行排序 根据相似度最大的已知人脸的身份即可**判断**待 识别人脸的身份信息

国内外研究现状——研究机构

国外研究机构情况

以美欧为主,各知名大学、研究所、企业研究院均设立了与 人脸识别相关的研究组

大学: CMU, MIT, UMD, USC, Michigan State University, UCLA, University of Manchester, University of Surrey...

评测:FERET(94-97), FRVT(2000/2002/2006), (X)M2VTS, FVC...

国内研究机构简况

大学:清华大学,哈尔滨工业大学,中山大学,南京大学,上海交大,浙大,香港中文大学,香港理工大学

研究所:中科院计算所,自动化所等

从评测看当前人脸识别技 术的研究水平

FERET'1997

理想条件下1000人左右的正面人脸识别系统识别率95%左右 非理想条件下,200人左右正面人脸识别率骤降至50%左右

FRVT 2002

较理想条件下(37437人(121,589幅图像)的正面人脸签证照)

人脸识别(Identification)最高首选识别率73%

人脸验证(Verification)的等错误率大约为5%-7%

错误接收率为0.01%时,最低错误拒绝率30%左右

错误接受率为0.1%时,最低错误拒绝率18%左右

错误接受率为1%时,最低错误拒绝率10%左右

检测系统的构建-遍历所有位置

Q&A