CUESTIONARIO ESTIMACIÓN PUNTUAL

Pregunta 1

Se dice que un estimador es consistente si se aproxima en probabilidad cada vez más al verdadero valor del parámetro a medida que

Seleccione una:

- a) Aumenta el tamaño
- b) muestral Aumenta la varianza
- c) Disminuye el sesgo
- d) Disminuye la varianza

Pregunta 2 Un estimador es

Seleccione una:

- a) Un parámetro para estimar los estadísticos
- b) Un estadístico para estimar parámetros muestrales
- c) Un estadístico para estimar parámetros poblacionales

Pregunta 3

La media muestral de una muestra tomada de una población normal con desviación típica 5, siempre es:

Seleccione una o más de una:

- a) Un estimador insesgado de la media poblacional
- b) Un estimador consistente de la media poblacional
- c) Un estimador sesgado de la media poblacional
- d) Un estimador inconsistente de la media poblacional

Pregunta 4

Sea $\vec{X} = (X_1, X_2, X_3, X_4)$ una muestra aleatoria simple de una población con media μ y varianza σ^2 . Si $\hat{\theta}_1$ y $\hat{\theta}_2$ son los estimadores de μ definidos por:

$$\widehat{\theta}_1 = 0,25X_1 + 0,25X_2 + 0,25X_3 + 0,25X_4$$

$$\widehat{\theta}_1 = 0.2X_1 + 0.4X_2 + 0.25X_3 + 0.15X_4$$

Se puede afirmar que

Seleccione una o más de una:

- lacksquare $a) \, \widehat{ heta}_1$ es la media muestral
- b) Ambos son estimadores insesgados para
- \blacksquare c) estimar Ninguno de ellos es insesgado para estimar μ
- lacksquare d) La varianza de $\widehat{ heta}_1$ es menor que la varianza de $\widehat{ heta}_2$
- lacksquare e) La varianza de $\widehat{ heta}_1$ es mayor que la varianza de $\widehat{ heta}_2$
- \blacksquare f) $\hat{\theta}_1$ es más eficiente para estimar μ que $\hat{\theta}_2$
- lacksquare $\mathbf{g})\widehat{ heta}_1$ es menos eficiente para estimar μ que $\widehat{ heta}_2$

Pregunta 5 Un estimador insesgado...

Seleccione una:

- a) Si la media de la distribución de medias de las muestras coincide con el valor del parámetro que queremos estimar
- b) Si utiliza toda la información relativa al parámetro que la muestra contiene
- c) Si es consistente
- d) Si su sesgo es cero

Pregunta 6 Si X_1, X_2, X_3 es una muestra aleatoria simple de una población con media μ y varianza 4 y utilizamos como estimador de μ a $\widehat{\mu}_1$, definido por

$$\widehat{\mu}_1 = \frac{1}{5} X_1 + \frac{3}{5} X_2 + \frac{1}{5} X_3$$
, el error cuadrático medio de μ a $\widehat{\mu}_1$ es....

Seleccione una:

- a) $\frac{44}{25}$
- b) Cero
- c) Igual que la varianza poblacional
- d) $\frac{32}{25}$

Pregunta 7 En una muestra aleatoria de una distribución exponencial con media μ se han observado los valores 2, 4, 8 y 2. Una estimación de μ obtenida por el método de los momentos a partir de esos datos es...

Seleccione una o más de una:

- a) No se puede calcular
- b) La media de esos datos
- **■** c) 4
- **d**) 3,5

Pregunta 8 De acuerdo con el criterio del error cuadrático medio, entre dos estimadores que tienen distinta varianza y son ambos insesgados para un cierto parámetro, elegirá...

Seleccione una o más de una:

- a) La de menor varianza
- b) El de menor sesgo
- c) El de menor media
- d) El de menor error cuadrático medio

Pregunta 9 Sea X_1, X_2, X_3 una muestra aleatoria simple de tamaño tres de una población con media μ y varianza $\sigma^2 = 25$. Si consideramos como estimadores de μ a $\widehat{\mu}_1$ y $\widehat{\mu}_2$, definidos como:

$$\widehat{\mu}_1 = \frac{1}{4} \setminus (X_1 + 2X_2 + X_3 \setminus)$$

$$\widehat{\mu}_2 = \frac{1}{5} \setminus (X_1 + 2X_2 + X_3 \setminus)$$

Podemos afirmar que, de acuerdo con el criterio del error cuadrático medio,...

Seleccione una:

- lacktrianglea) Es preferible $\widehat{\mu}_1$
- ullet b) Es preferible $\widehat{\mu}_2$
- •c) No son comparables