1. Sea F_n la sucesión de Fibonacci:

$$\begin{array}{rcl} F_1 & = & 1 \\ F_2 & = & 1 \\ F_{n+2} & = & F_{n+1} + F_n \end{array}$$

- a) Probar que: $\sum_{i=1}^{n} F_i = F_{n+2} 1$
- b) Desarrollar formulas para las siguientes sumas:

1)
$$\sum_{i=1}^{n} F_{2i-1}$$
.

2)
$$\sum_{i=1}^{n} F_{2i}$$
.

Soluciones

a)

• Caso base
$$n = 1$$
: $\sum_{i=1}^{n} F_i = F_1 = 1 = 2 - 1 = F_2 + F_1 - 1 = F_3 - 1$.

• Caso inductivo
$$n = k$$
: Supongamos que $\sum_{i=1}^{k} F_i = F_{k+2} - 1$.

Luego:
$$\sum_{i=1}^{k+1} F_i = \sum_{i=1}^k F_i + F_{k+1} = F_{k+2} - 1 + F_{k+1} = F_{k+3} - 1$$
.

b)

1) Observemos que:

$$\sum_{i=1}^{1} F_{2i-1} = F_1 = 1.$$

$$\sum_{i=1}^{2} F_{2i-1} = F_1 + F_3 = 3 = F_4.$$

$$\sum_{i=1}^{3} F_{2i-1} = F_1 + F_3 + F_5 = 8 = F_6.$$

Probaremos entonces que: $\sum_{i=1}^{n} F_{2i-1} = F_{2n}$:

- Caso base n = 1: Trivial.
- Caso n = k: Supongamos que $\sum_{i=1}^{k} F_{2i-1} = F_{2k}$. Luego:

$$\sum_{i=1}^{k+1} F_{2i-1} = \sum_{i=1}^{k} F_{2i-1} + F_{2(k+1)-1} \underbrace{=}_{H.I.} F_{2k} + F_{2k+1} = F_{2k+2} = F_{2(k+1)}$$

- 2) COMPLETAR.
- 2. Encontrar una fórmula para la siguiente sumatoria: $\sum_{i=0}^{n} (a + bi)$.

Solución

$$\sum_{i=0}^{n} (a+bi) = \sum_{i=0}^{n} a + \sum_{i=0}^{n} bi = a \sum_{i=0}^{n} 1 + b \sum_{i=0}^{n} i = a(n+1) + b \left[\frac{n(n+1)}{2} \right]$$

- 3. ¿Cuales de los siguientes enunciados son verdaderos? Probar las respuestas:
 - a) $n^2 \in O(n^3)$.
 - b) $n^2 \in \Omega(n^3)$.
 - c) $2^n \in \Theta(2^{n+1})$.
 - d) $n! \in \Theta[(n+1)!].$

Soluciones

- a) Verdadero: $0 \le n^2 \le cn^3 \iff 0 \le 1 \le cn$. Basta tomar $c = n_0 = 1$.
- b) Falso: $0 \le cn^3 \le n^2 \iff 0 \le cn \le 1 \iff 0 \le n \le 1/c$. Para que esto ocurra, n debe estar acotado por una constante.
- c) $Verdadero: 0 \le c_2 2^{n+1} \le 2^n \le c_1 2^{n+1} \iff 0 \le c_2 2 \le 1 \le c_1 2 \iff 0 \le c_2 \le 1/2 \le c_1$. Basta tomar $c_1 = c_2 = 1/2$.
- d) Falso: $0 \le c(n+1)! \le n! \iff 0 \le c(n+1) \le 1 \iff n \le \frac{1}{c} 1$. Para que esto ocurra, n debe estar acotado por una constante.

4. Demostrar que $f \in \Theta(g)$ si y solo si existen constantes $c_1, c_2 \in \mathbb{R}^+$, $n_0 \in \mathbb{N}$ tales que:

$$\forall n \ge n_0 : 0 \le c_1 g(n) \le f(n) \le c_2 g(n)$$

Solución

- \implies : Por hipótesis $f \in O(g)$ y $f \in \Omega(g)$; y por definición tenemos:
 - $\forall n > n_2 : 0 < f(n) < c_2 g(n)$.
 - $\forall n \geq n_1 : 0 \leq c_1 g(n) \leq f(n)$.

Luego tomando $n_0 = \max\{n_1, n_2\}$ valen ambas desigualdades.

- \models : Por definición tenemos $f \in O(g)$ y $f \in \Omega(g)$, luego $f \in \Theta(g)$.
- 5. Sean $f, g: \mathbb{N} \to \mathbb{R}$ as intoticamente no negativas y h(n) = f(n) + g(n), demostrar que:

$$h(n) \in \Theta\left(\max\left\{f(n), g(n)\right\}\right)$$

Solución Como f y g son asintoticamente no negativas, $\forall n > n_1 : f(n) \ge 0$ y $\forall n > n_2 : g(n) \ge 0$; tomando $n_0 = \max\{n_1, n_2\}$ resulta h ser asintoticamente no negativa. Ademas, tomando $c_1 = 2$ y $c_2 = 1$:

- $\bullet 0 \le f(n) + g(n) \le c_1 \max \{f(n), g(n)\} \Rightarrow h \in O(\max \{f(n), g(n)\}).$
- $\bullet 0 \le c_2 \max \left\{ f\left(n\right), g\left(n\right) \right\} \le \underbrace{f\left(n\right)}_{>0} + \underbrace{g\left(n\right)}_{>0} \Rightarrow h \in \Omega\left(\max \left\{ f\left(n\right), g\left(n\right) \right\} \right).$
- 6. Dadas $f, g : \mathbb{N} \to \mathbb{R}$, demostrar las siguientes propiedades de las notaciones asintoticas:
 - a) $O y \Omega$ son transitivas.
 - b) f as intoticamente no negativa $\Rightarrow f(n) \in \Theta[f(n)]$.
 - c) Θ es simétrica.
 - d) $f(n) \in O[g(n)] \iff g(n) \in \Omega[f(n)].$
 - e) $f(n) \in O[q(n)] \Rightarrow \forall k \in \mathbb{R}^+ : kf(n) \in O[q(n)].$
 - $f(n) \in O[g(n)] \Rightarrow \forall k \in \mathbb{R}^+ : kf(n) \in \Omega[g(n)].$

Soluciones

a)

- Sean f, g, h tales que $f \in O(g)$ y $g \in O(h)$, sabemos que existen c_1, c_2, n_1, n_2 tales que:
 - $\forall n \geq n_1 : 0 \leq f(n) \leq c_1 g(n)$.
 - $\forall n \geq n_2 : 0 \leq g(n) \leq c_2 h(n)$.

Luego tomando $n_0 = \max\{n_1, n_2\}$ valen ambas desigualdades, por lo tanto:

$$\forall n \ge n_0 : 0 \le f(n) \le c_1 g(n) \le \underbrace{c_1 c_2}_{c} h(n) \Rightarrow f \in O(h)$$

- Análogo.
- b) Sabemos que existe $n_0/\forall n \geq n_0$: $f(n) \geq 0$, luego tomando c=1 resultan:
 - $\forall n \ge n_0 : 0 \le f(n) \le cf(n) \Rightarrow f \in O(f)$
 - $\forall n \geq n_0 : 0 \leq cf(n) \leq f(n) \Rightarrow f \in \Omega(f)$
- c) Sean $f, g/f \in \Theta(g)$, luego existen n_0, c_1, c_2 tal que:

$$\forall n \ge n_0 : 0 \le c_1 g(n) \le f(n) \le c_2 g(n)$$

luego, dividiendo por c_1 y por c_2 :

- $\forall n \geq n_0 : 0 \leq g(n) \leq \frac{1}{c_1} f(n) \Rightarrow g \in O(f).$
- $\forall n \geq n_0 : 0 \leq \frac{1}{c_2} f(n) \leq g(n) \Rightarrow g \in \Omega(f).$

d)

■ \implies : Sabemos que existen n_0 , c tales que $\forall n \geq n_0 : 0 \leq f(n) \leq cg(n)$ y dividiendo por c resulta:

$$0 \le \frac{1}{c} f(n) \le g(n) \Rightarrow g \in \Omega(f)$$

■ \sqsubseteq : Sabemos que existen n_0 , c tales que $\forall n \geq n_0 : 0 \leq cf(n) \leq g(n)$ y dividiendo por c resulta:

$$0 \le f(n) \le \frac{1}{c}g(n) \Rightarrow f \in O(g)$$

e) Puesto que $f(n) \in O[g(n)]$ sabemos que existen n_0, c tales que $\forall n \geq n_0 : 0 \leq f(n) \leq cg(n)$. Sea $k \in \mathbb{R}^+$, luego multiplicando por k en la inecuación anterior obtenemos:

$$\forall n \geq n_0 : 0 \leq kf(n) \leq kcg(n)$$

es decir, $kf \in O(g)$.

- f) Análogo.
- 7. Sean $a, b \in \mathbb{R}$ constantes, b positivo, probar que:
 - $a) (n+a)^b \in \Theta(n^b).$
 - b) $b^n \in \Theta(b^{n+a}).$

Soluciones

a)

■
$$(n+a)^b \in O(n^b)$$
: Sea $n_0 > a$ luego: $\forall n \ge n_0 : 0 \le (n+a)^b \le (2n)^b = 2^b n^b$.

• Caso $a \ge 0$: Sea $n_0 \ge 0$ luego:

$$\forall n \ge n_0 : 0 \le a \iff 0 \le n \le n+a \iff 0 \le n^b \le (n+a)^b$$

• Caso $a \le 0$: Sea $n_0 \ge -2a \iff -n_0 \le 2a \iff -n_0/2 \le a$, luego $\forall n \ge n_0$:

$$-\frac{n}{2} \le a \iff n - \frac{n}{2} = \frac{n}{2} \le n + a \iff \left(\frac{n}{2}\right)^b = \frac{1}{2^b} n^b \le (n+a)^b$$

b)

$$0 \le b^n \le b^n = (1/b^a) b^a b^n = (1/b^a) b^{n+a}.$$

$$\bullet \ 0 \le (1/b^a) \, b^{n+a} \le (1/b^a) \, b^{n+a} = b^n.$$

8. Demostrar que dadas dos funciones $f, g : \mathbb{N} \to \mathbb{R}$ asintoticamente no negativas, y $\lim_{n \to \infty} \frac{f(n)}{g(n)} = k$ con $k \in \mathbb{R}^+$, entonces $f(n) \in \Theta[g(n)]$.

Solución COMPLETAR.

9. Encontrar dos funciones $f, g: \mathbb{N} \to \mathbb{N}^+$ tal que $f(n) \notin O[g(n)]$ y $g(n) \notin O[f(n)]$. Probar la respuesta.

Solución Sean
$$f(x) = \begin{cases} n^2 & \text{si } n \text{ es impar} \\ n & \text{si } n \text{ es par} \end{cases}$$
 y $g(x) = \begin{cases} n & \text{si } n \text{ es impar} \\ n^2 & \text{si } n \text{ es par} \end{cases}$.

■ Supongamos $f(n) \in O[g(n)]$, luego existen n_0 y c tales que:

$$\forall n \geq n_0 : 0 \leq f(n) \leq cg(n)$$

En particular para n impar $0 \le n^2 \le cn \iff 0 \le n \le c$. Absurdo.

- Análogo.
- 10. Probar usando propiedades aritméticas que $\sum_{i=1}^{n} i^{k} \in \Theta(n^{k+1})$ para $k \in \mathbb{Z}^{+}$.

Solución

$$\sum_{i=1}^{n} i^{k} = 1^{k} + 2^{k} + \ldots + n^{k} \le n^{k} + \ldots + n^{k} = nn^{k} = n^{k+1}.$$