# Data Standardization, Multi-Domain Learning and GRAPPA preprocessing for Improved MRI

#### **Mohamed Amine Ketata**

Bachelor's thesis presentation

Supervisor: Prof. Dr.sc ETH Zürich Reinhard Heckel

Technical University of Munich



#### Introduction

- Major goal: Accelerate Magnetic Resonance Imaging (MRI) scans.
- By taking under-sampled k-space measurements.
- fastMRI [1]: research project that provides a large dataset and organizes a yearly challenge.
- Thesis goal: investigate the methods proposed by AIRS medical team, winning team of fastMRI challenge 2020 edition.

#### fastMRI dataset

Introduction

000

- Measured *i*-th k-space signal:  $y_i = F(S_i m) + noise$ , where  $S_i$  is *i*-th coil sensitivity map and m is the spatial image.
- Image reconstruction: (1)  $m_i = F^{-1}(y_i)$ , then (2)  $m_{rss} = \left(\sum_{i=0}^{n_c} |m_i|^2\right)^{\frac{1}{2}}$ .



#### Data acquisition process

# Baseline model: U-Net [2]



Baseline U-Net architecture. Taken from the paper [1].



### Multi-channel data standardization

■ combined image:

$$y_{i} = F(S_{i}m) + noise$$

$$m_{i} = F^{-1}(y_{i}) = S_{i}m$$

$$S_{i}^{*}m_{i} = S_{i}^{*}S_{i}m$$

$$\sum_{i} S_{i}^{*}m_{i} = \sum_{i} S_{i}^{*}S_{i}m$$

$$\sum_{i} S_{i}^{*}m_{i} = m$$

$$\Rightarrow m_{comb} := \sum_{i} S_{i}^{*}m_{i}$$

$$(1)$$

■ residual images:

Introduction

$$m_{i,res} = m_i - S_i m_{comb} \tag{2}$$



Methods •000 Results

Conclusion

5

## Multi-channel data standardization (2)



Absolute values of multi-coil images (top left), sensitivity maps given by ESPIRiT [3] (top right), and combined and residual images (bottom).



### Multi-domain model



Schematic representation of a convolutional layer of MDU-Net



### Data preprocessing with GRAPPA

- GRAPPA [5]: Generalized Autocalibrating Partially Parallel Acquisitions.
- Unacquired k-space values are synthesized by a linear combination of acquired neighbouring k-space data from all coils.



**GRAPPA** preprocessing

Introduction

### Results: Data stnadardization and multi-domain model

- Training on 50% of knee images without fat suppression (PD) and 25% of brain images with sequence AXT2, using RMSProp with learning rate of 0.001 for 10 epochs.
- Baseline model: U-Net model with  $\tilde{m}_{rss}$  as input.
- Baseline model + data standardization: U-Net model with  $|\tilde{m}_{comb}|$  as input.
- MDU-Net: the multi-domain model with  $\tilde{m}_{comb}$  as input.

| Model                                   |       | NMSE          | SSIM   | PSNR  |
|-----------------------------------------|-------|---------------|--------|-------|
| Baseline model                          | Knee  | 0.0076 0.9063 |        | 35.34 |
|                                         | Brain | 0.0155        | 0.9000 | 32.29 |
| Baseline model $+$ data standardization | Knee  | 0.0092        | 0.8902 | 34.44 |
|                                         | Brain | 0.0218        | 0.8615 | 31.02 |
| MDU-Net                                 | Knee  | 0.0188        | 0.8358 | 30.74 |
|                                         | Brain | 0.0283        | 0.8274 | 28.16 |



Introduction

Conclusion

### **Results: GRAPPA preprocessing**

- Training on 25% of brain images with sequence AXT2, using Adam for 50 epochs
- lacksquare Baseline model: U-Net model with  $ilde{m}_{rss}$  as input.
- $\blacksquare$  Baseline model + GRAPPA: U-Net model with GRAPPA preporcessed  $\tilde{m}_{rss}$  as input.

| Model                   | L1-LOSS | NMSE   | SSIM   | PSNR    |
|-------------------------|---------|--------|--------|---------|
| Baseline model          | 0.1186  | 0.0107 | 0.9205 | 33.8951 |
| Baseline model + GRAPPA | 0.1052  | 0.0101 | 0.9222 | 34.9951 |

Introduction

### **Conclusion**

- GRAPPA preprocessing: helps quite well.
- Multi-Channel Data Standardization: slightly drops the performance. Considering the residual images might help.
- Multi-Domain Model: promising idea that could be further investigated. Performs worse than U-Net with current implementation.



Introduction

Methods Results **Conclusion**○○○○ ○○ ●

11

### References

- [1] Jure Zbontar, Florian Knoll, Anuroop Sriram, Tullie Murrell, Zhengnan Huang, Matthew J Muckley, Aaron Defazio, Ruben Stern, Patricia John- son, Mary Bruno, et al. fastmri: An open dataset and benchmarks for accelerated mri. arXiv preprint arXiv:1811.08839, 2018.
- [2] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted interventation, pages 234–241. Springer, 2015.
- [3] Martin Uecker, Peng Lai, Mark J Murphy, Patrick Virtue, Michael Elad, John M Pauly, Shreyas S Vasanawala, and Michael Lustig. Espirit: an eigenvalue approach to autocalibrating parallel mri: where sense meets grappa. Magnetic resonance in medicine, 71(3):990–1001, 2014.
- [4] Mark A Griswold, Peter M Jakob, Robin M Heidemann, Mathias Nittka, Vladimir Jellus, Jianmin Wang, Berthold Kiefer, and Axel Haase. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magnetic Resonance in Medicine, 47(6), 2002.

