

Course > Unit 7 Generalized Linear Models > Homework 11 > 1. Poisson regression

1. Poisson regression

Instructions: For this problem, whenever a formula box requires you to enter a factorial, enter **fact** to indicate the factorial function. For instance, **fact(10)** denotes 10!.

(a)

5/5 points (graded)

We want to model the rate of infection with an infectious disease depending on the day after outbreak t. Denote the recorded number of outbreaks at day t by k_t .

We are going to model the distribution of k_t as a Poisson distribution with a time-varying parameter λ_t , which is a common assumption when handling count data.

First, recall the likelihood of a Poisson distributed random variable Y in terms of the parameter λ ,

$$P(Y=k)=\mathbf{e}^{-\lambda}rac{\lambda^k}{k!}.$$

Rewrite this in terms of an exponential family. In other words, write it in the form

$$P(Y = k) = h(k) \exp \left[\eta(\lambda) T(k) - B(\lambda) \right].$$

Since this representation is only unique up to re-scaling by constants, take the convention that $T\left(k
ight)=k$.

$$\eta(\lambda) = \boxed{ ext{In(lambda)} }$$

$$B(\lambda)=ig|$$
 lambda $ig|$ Answer: lambda

$$h\left(k\right) = \boxed{ 1/(\mathrm{fact(k)}) }$$

We can write this in canonical form, e.g. as

$$P(Y = k) = h(k) \exp [k\eta - b(\eta)].$$

What is $b\left(\eta\right)$?

$$b\left(\eta
ight)=iggl[$$
 e^eta $iggr$ Answer: exp(eta)

Recall that the mean of a Poisson (λ) distribution is λ . What is the canonical link function $g(\mu)$ associated with this exponential family, where $\mu=\mathbb{E}\left[Y\right]$? Write your answer in terms of λ .

$$g\left(\mu
ight)= oxed{ In(lambda)}$$

Solution:

We can rewrite the likelihood as

$$egin{align} P\left(Y=k
ight) &=& \mathbf{e}^{-\lambda}rac{\lambda^{k}}{k!} \ &=& rac{1}{k!}\mathrm{exp}\left[-\lambda+k\ln\left(\lambda
ight)
ight]. \end{split}$$

Hence, given the convention $T\left(k\right)=k$ for this specific case, we set

$$egin{aligned} h\left(k
ight) &=& rac{1}{k!} \ B\left(\lambda
ight) &=& \lambda \ \eta\left(\lambda
ight) &=& \ln\left(\lambda
ight). \end{aligned}$$

In order to rewrite this in canonical form, solve

$$\ln\left(\lambda
ight) = \eta \iff \lambda = \mathbf{e}^{\eta},$$

SO

$$b\left(\eta
ight) =\mathbf{e}^{\eta }.$$

The canonical link function is b'^{-1} , which is

$$b^{\prime -1}\left(\mu
ight) =\ln \left(\mu
ight)$$

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

(b)

2/2 points (graded)

What range will the values in $\,Y\,$ belong to?

$$\bigcirc \ \mathbb{Z}=\{\ldots,-2,-1,0,1,2,\ldots\}$$

 $igcup \mathbb{Z}_+ = \{1,2,3,\ldots\}$

 $lackbox{lack} \mathbb{Z}_{\geq 0} = \{0,1,2,3,\ldots\}$

 $\bigcirc \mathbb{R}$

 $igcup \mathbb{R}_{\geq 0} = \{x \in \mathbb{R}: x \geq 0\}$

 $igcup \mathbb{R}_{>0} = \{x \in \mathbb{R}: x > 0\}$

~

According to the canonical Generalized Linear Model (your answer from (a)), what is the range of possible predictions for λ ?

 $igcup \mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$

 $igcup \mathbb{Z}_+ = \{1,2,3,\ldots\}$

 $igcup \mathbb{Z}_{\geq 0} = \{0,1,2,3,\ldots\}$

 $\bigcirc \mathbb{R}$

 $igcap \mathbb{R}_{\geq 0} = \{x \in \mathbb{R} : x \geq 0\}$

 $lackbox{0} \mathbb{R}_{>0} = \{x \in \mathbb{R}: x > 0\}$

~

Solution:

Y has the Poisson distribution, so it lives in $\{0,1,2,\ldots\}$.

Since the canonical model states $\lambda=e^\eta$, the range of λ_t is the full range of parameters for a Poisson distribution: $\mathbb{R}_{>0}=\{x\in\mathbb{R}:x>0\}$.

Submit

You have used 2 of 3 attempts

1 Answers are displayed within the problem

(c)

3/3 points (graded)

Return to the original model. We now introduce a Poisson intensity parameter λ_t for every time point and denote the parameter (η) that gives the canonical exponential family representation as above by θ_t . We choose to employ a linear model connecting the time points t with the canonical parameter θ of the Poisson distribution above, i.e.,

$$heta_t = a + bt.$$

In other words, we choose a generalized linear model with Poisson distribution and its canonical link function. That also means that conditioned on t, we assume the Y_t to be independent.

Imagine we observe the following data:

 $t_1=1$ 1 outbreaks

 $t_2=2\;\;$ 3 outbreaks

 $t_3=4$ 10 outbreaks

We want to produce a maximum likelihood estimator for (a,b). To this end, write down the log likelihood $\ell(a,b)$ of the model for the provided three observations at t_1 , t_2 , and t_3 (plug in their values).

$$\ell(a,b) =$$

14*a+47*b-e^(a+b)-e^(a+2*b)-e^(a+4*b)-16.89617

Answer: $-\ln(6)-\ln(\text{fact}(10))-\exp(a+b)-\exp(a+2*b)-\exp(a+4*b)+(14*a)+(47*b)$

$$14 \cdot a + 47 \cdot b - e^{a+b} - e^{a+2 \cdot b} - e^{a+4 \cdot b} - 16.89617$$

What is its gradient? Enter your answer as a pair of derivatives.

$$\partial_{a}\ell\left(a,b\right) =$$

14-e^(a+b)-e^(a+2*b)-e^(a+4*b)

Answer: $-\exp(a+b)-\exp(a+2*b)-\exp(a+4*b)+14$

$$14-e^{a+b}-e^{a+2\cdot b}-e^{a+4\cdot b}$$

$$\partial_b \ell (a,b) =$$

47-e^(a+b)-2*e^(a+2*b)-4*e^(a+4*b)

Answer: $-\exp(a+b)-2*\exp(a+2*b)-4*\exp(a+4*b)+47$

$$47 - e^{a+b} - 2 \cdot e^{a+2 \cdot b} - 4 \cdot e^{a+4 \cdot b}$$

Solution:

The likelihood for one observation is given by

$$P\left(Y_{t}=k_{t}
ight)=rac{1}{k_{t}!}\mathrm{exp}\left[-\exp\left(a+bt
ight)+k_{t}\left(a+bt
ight)
ight].$$

That means the log likelihood for the model for n observations is

$$\ell\left(a,b
ight) = \sum_{i=1}^{n} \left[-\ln\left(k_{t}!
ight) - \exp\left(a + bt_{i}
ight) + k_{t_{i}}\left(a + bt_{i}
ight)
ight].$$

Plugging in the provided values, we get

$$\ell(a,b) = -\ln(1!) - \ln(3!) - \ln(10!)$$
 $-\exp(a+b) - \exp(a+2b) - \exp(a+4b)$
 $+14a + 47b.$

Its derivative with respect to $\,a\,$ is

$$\partial_{a}\ell\left(a,b
ight)= -\exp\left(a+b
ight)-\exp\left(a+2b
ight)-\exp\left(a+4b
ight)+14.$$

Its derivative with respect to $\,b\,$ is

$$\partial_b\ell\left(a,b
ight) = -\exp\left(a+b
ight) - 2\exp\left(a+2b
ight) - 4\exp\left(a+4b
ight) + 47.$$

Submit

You have used 3 of 3 attempts

• Answers are displayed within the problem

(d)

1/1 point (graded)

In order to find the maximum likelihood estimator, we have to solve the nonlinear equation

$$\nabla \ell (a,b) = 0,$$

which in general does not have a closed solution.

Assume that we can reasonably estimate the likelihood estimator using numerical methods, and we obtain

$$\widehat{a} pprox -0.43, \quad \widehat{b} pprox 0.69.$$

Given these results, what would be the predicted expected number of outbreaks for $\,t=3$? Round your answer to the nearest 0.001.

5.15517

✓ Answer: 5.1551695

Solution:

We obtain the expected number of outbreaks as

$$\mathbb{E}\left[Y_t|t
ight]=\lambda_t,$$

since the expectation of a Poisson random variable is equal to its rate parameter. With this and the relation $\lambda_t=\exp{(a+bt)}$, we obtain the prediction

$$\lambda_3 = \exp{(\widehat{a} + \widehat{b}t)} pprox 5.1551695.$$

Submit

You have used 1 of 3 attempts

• Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Unit 7 Generalized Linear Models:Homework 11 / 1. Poisson regression

Add a Post

? [Staff] Calculating theta	4
? [STAFF] Factorial required Hi, isn't a factorial required for part a)? The system doesn't let me put it as an input.	3
? [STAFF] Log Likelihood Function in (c). Hi, I calculated the log likelihood function using MLE method and got the gradient of a and b correct, but the log likelihood was incorrect. I checked my calculation and believe	8
I screwed a quite dumb point here!!! Just two tips: 1. Pay attention to what happens to $Y!$ in c. 2. You can use $\exp(f\infty)$ function in the last exercise in this page. Fortunately, I only missed one of them. But almo	1
? [Staff] One more attempt? My calculus has been rusty, plus having not enough exercise in the lecture, I kindly request one more attempt in this homework set. Thanks	2

© All Rights Reserved