Theory of Computing

CSE - 203

Introduction to Grammars

Grammar

A grammar G can be formally written as a 4-tuple (N, T, S, P) where -

- **N** or V_N is a set of variables or non-terminal symbols.
- **T** or **∑** is a set of Terminal symbols.
- **S** is a special variable called the Start symbol, S ∈ N
- **P** is Production rules for Terminals and Non-terminals. A production rule has the form $\alpha \to \beta$, where α and β are strings on $V_N \cup \Sigma$ and least one symbol of α belongs to V_N .

Example

Grammar G1 – $({S, A, B}, {a, b}, S, {S \rightarrow AB, A \rightarrow a, B \rightarrow b})$ Here,

- S, A, and B are Non-terminal symbols;
- **a** and **b** are Terminal symbols
- **S** is the Start symbol, S ∈ N
- Productions, $P: S \rightarrow AB$, $A \rightarrow a$, $B \rightarrow b$

Example

If there is a grammar

G: N = {S, A, B} T = {a, b} P = {S
$$\rightarrow$$
 AB, A \rightarrow a, B \rightarrow b}

Here **S** produces **AB**, and we can replace **A** by **a**, and **B** by **b**. Here, the only accepted string is **ab**, i.e.,

$$L(G) = {ab}$$

Construction of a Grammar Generating a Language

We'll consider some languages and convert it into a grammar G which produces those languages.

Example

Problem – Suppose, L (G) = $\{a^m b^n \mid m \ge 0 \text{ and } n > 0\}$. We have to find out the grammar **G** which produces **L(G)**.

Solution

Since L(G) =
$$\{a^m b^n \mid m \ge 0 \text{ and } n > 0\}$$

the set of strings accepted can be rewritten as -

Here, the start symbol has to take at least one 'b' preceded by any number of 'a' including null.

To accept the string set {b, ab, bb, aab, abb,}, we have taken the productions –

 $S \rightarrow aS, S \rightarrow B, B \rightarrow b \text{ and } B \rightarrow bB$

 $S \rightarrow B \rightarrow b$ (Accepted)

 $S \rightarrow B \rightarrow bB \rightarrow bb$ (Accepted)

 $S \rightarrow aS \rightarrow aB \rightarrow ab$ (Accepted)

 $S \rightarrow aS \rightarrow aaS \rightarrow aaB \rightarrow aab$ (Accepted)

 $S \rightarrow aS \rightarrow aB \rightarrow abB \rightarrow abb$ (Accepted)

Thus, we can prove every single string in L(G) is accepted by the language generated by the production set.

Hence the grammar – G: ($\{S, A, B\}, \{a, b\}, S, \{S \rightarrow aS \mid B, B \rightarrow b \mid bB\}$)

According to Noam Chomosky, there are four types of grammars – Type 0, Type 1, Type 2, and Type 3. The following table shows how they differ from each other –

Grammar Type	Grammar Accepted		Automaton
Type 0	Unrestricted grammari	Recursively enumerable language	Turing Machine
Type 1			Linear-bounded automaton
Type 2	Context-free grammar	Context-free language	Pushdown automaton
Type 3	Regular grammar	Regular language	Finite state automaton

The following illustration shows the scope of each type of grammar -

Type - 3 Grammar

Type-3 grammars generate regular languages. Type-3 grammars must have a single non-terminal on the left-hand side and a right-hand side consisting of a single terminal or single terminal followed by a single non-terminal.

The productions must be in the form $X \rightarrow a$ or $X \rightarrow aY$ where $X, Y \in N$ (Non terminal) and $a \in T$ (Terminal)

The rule $S \rightarrow \varepsilon$ is allowed if S does not appear on the right side of any rule.

Example

 $X \rightarrow \epsilon$

 $X \rightarrow a \mid aY$

 $Y \rightarrow b$

Type - 2 Grammar

Type-2 grammars generate context-free languages.

The productions must be in the form $A \rightarrow \gamma$ where $A \in N$ (Non terminal) and $\gamma \in (T \cup N)^*$ (String of terminals and non-terminals).

These languages generated by these grammars are be recognized by a non-deterministic pushdown automaton.

Example

 $S \rightarrow X a$

 $X \rightarrow a$

 $X \rightarrow aX$

 $X \rightarrow abc$

 $X \rightarrow \epsilon$

Type - 1 Grammar

Type-1 grammars generate context-sensitive languages. The productions must be in the form

$\alpha A \beta \rightarrow \alpha \gamma \beta$

where $A \in N$ (Non-terminal) and α , β , $\gamma \in (T \cup N)^*$ (Strings of terminals and non-terminals)

The strings α and β may be empty, but γ must be non-empty.

The rule $S \rightarrow \varepsilon$ is allowed if S does not appear on the right side of any rule. The languages generated by these grammars are recognized by a linear bounded automaton.

Example

 $AB \rightarrow AbBc$

 $A \rightarrow bcA$

 $B \rightarrow b$

Type - 0 Grammar

Type-0 grammars generate recursively enumerable languages. The productions have no restrictions. They are any phase structure grammar including all formal grammars.

They generate the languages that are recognized by a Turing machine.

The productions can be in the form of $\alpha \to \beta$ where α is a string of terminals and nonterminals with at least one non-terminal and α cannot be null. β is a string of terminals and non-terminals.

Example

 $S \rightarrow ACaB$

 $Bc \rightarrow acB$

 $CB \rightarrow DB$

 $aD \rightarrow Db$

Pumping Lemma for Regular Grammars

Theorem

Let L be a regular language. Then there exists a constant 'c' such that for every string ${\bf w}$ in ${\bf L}$ –

We can break w into three strings, w = xyz, such that -

- |y| > 0
- |xy| ≤ c
- For all $k \ge 0$, the string xy^kz is also in L.

Applications of Pumping Lemma

Pumping Lemma is to be applied to show that certain languages are not regular. It should never be used to show a language is regular.

- If **L** is regular, it satisfies Pumping Lemma.
- If L does not satisfy Pumping Lemma, it is non-regular.

Method to prove that a language L is not regular

- At first, we have to assume that **L** is regular.
- So, the pumping lemma should hold for L.
- Use the pumping lemma to obtain a contradiction
 - o Select w such that |w| ≥ c
 - o Select y such that |y| ≥ 1
 - Select x such that |xy| ≤ c
 - Assign the remaining string to z.
 - Select k such that the resulting string is not in L.

Hence L is not regular.

Problem

Prove that $L = \{a^ib^i \mid i \ge 0\}$ is not regular.

Solution -

- At first, we assume that **L** is regular and n is the number of states.
- Let $w = a^n b^n$. Thus $|w| = 2n \ge n$.
- By pumping lemma, let w = xyz, where $|xy| \le n$.
- Let $x = a^p$, $y = a^q$, and $z = a^r b^n$, where p + q + r = n, $p \ne 0$, $q \ne 0$, $r \ne 0$. Thus $|y| \ne 0$.
- Let k = 2. Then $xy^2z = a^pa^{2q}a^rb^n$.
- Number of as = (p + 2q + r) = (p + q + r) + q = n + q
- Hence, $xy^2z = a^{n+q}b^n$. Since $q \ne 0$, xy^2z is not of the form a^nb^n .
- Thus, xy²z is not in L. Hence L is not regular.

<u>Homework</u>

1. Find a CFG that generates the following languages:

a.
$$L(G) = \{ a^n b^m c^m d^{2n} \mid n \ge 0, m > 0 \}.$$

b.
$$L(G) = \{ a^n b^m \mid 0 \le n \le m \le 2n \}.$$

2. Which language generates the grammar G given by the following production rules?

$$a. \ \ S \rightarrow aSa \ | \ aBa$$

$$B \rightarrow bB \mid b$$

b.
$$S \rightarrow abScB \mid \epsilon$$

$$B \rightarrow bB / b$$