

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа	M3115	К работе допущены	
Студенты	Шатинский Григорий Сергеевич Кочубеев Николай Сергеевич	Работа выполнена	
Іпеполавател	ъ Рахманова Гупьназ Раифовна	Отчет принят	

Численное моделирование по физике №2 «Частица в конденсаторе»

1. Цель работы:

Найти минимальную разность потенциалов, приложенную к обкладкам конденсатора, при которой электрон не успеет вылететь из конденсатора

2. Задачи, решаемые при выполнении работы:

Найти Umin

Построить графики зависимости y(x), Vy(t), ay(t), y(t)

Рассчитать время полета t и конечную скорость электрона Vкон

3. Объект исследования:

Электрон, влетающий в плоский конденсатор

4. Метод экспериментального исследования:

Теоретическое исследование

5. Рабочие формулы и исходные данные:

$$m_e = 9.1 * 10^{-31}$$
кг $q_e = -1.6 * 10^{-19}$ Кл $r = 13.5$ см $= 0.135$ м $R = 28$ см $= 0.28$ м $V_0 = 4.5 * 10^5$ м/с $L = 36$ см $= 0.36$ м

6. Выводы и анализ результатов работы:

Была проведена работа по изучению поведения электрона при попадании в плоский конденсатор. После вычислений мы получили некие величины (характеристики) для электрона. Полученные значения, как и предполагалось, соответствуют ожиданиям, поэтому можно считать эксперимент успешным.

Код:

```
import matplotlib.pyplot as pt
    def motion for graphic(self, U):
            yx.append((self.x, self.y))
            vy.append((self.t, self.vy))
            ay.append((self.t, dvy))
            yt.append((self.t, self.y))
Umax = 1000
Electron_ = Electron(a[ind][2], a[ind][0], a[ind][1], a[ind][3])
yx, vy, ay, yt = Electron_.motion_for_graphic(U)
print("Минимальное напряжение", U)
print("Скорость конечная", (Electron_.vy ** 2 + Electron_.vx ** 2) ** 0.5)
```

```
pt.title('Зависимость высоты от расстояния')
pt.xlabel('Пройденное расстояние, м')
pt.ylabel('Высота, м')
pt.plot([i[0] for i in yx], [i[1] for i in yx])
pt.grid()
pt.savefig((y(x))', )
pt.show()
pt.title('Зависимость скорости от времени')
pt.xlabel('Bpema, c')
pt.ylabel('Скорость, м/с')
pt.grid()
pt.plot([i[0] for i in vy], [i[1] for i in vy])
pt.savefig('Vy(t)', )
pt.show()
pt.title('Зависимость ускорения от времени')
pt.xlabel('Время, с')
pt.ylabel('Ускорение, м/с^2')
pt.grid()
pt.plot([i[0] for i in ay], [i[1] for i in ay])
pt.savefig('ay(t)', )
pt.show()
pt.title('Зависимость высоты от времени')
pt.xlabel('Время, с')
pt.ylabel('Высота, м')
pt.grid()
pt.plot([i[0] for i in yt], [i[1] for i in yt])
pt.savefig('y(t)', )
pt.show()
```

Графики:

