Topic Modeling and Machine Learning on Hotel Review Data

Yanhua Hou Mentor: Alex Rutherford

Data Science Intensive Capstone Project

Github: https://github.com/phyhouhou

Outlines

- Introduction
- Data Information and Data Cleaning
- Exploratory Data Analysis
- Machine Learning Models for Predictions
- Conclusions and Future Work

Hotel Reviews

- More and more people are using online reviews in making important decisions, i.e., where to stay, where to eat, ...
- A massive amount of reviews are being posted online for sharing opinions or experiences, too many to read through manually.
- What are previous customers saying about hotels?
- Do they like or hate the hotels based on what they say?

Clients

Owners, customers, travel intelligences...

Data Information

- Data is from kaggle. It's about 515k+ reviews data for 1493 luxury hotels across Europe from 08/2015 to 08/ 2017 with 17 features.
- Hotel features: 'Hotel_Name', 'Hotel_Address', 'lat',
 'Ing', 'Average_Score','Total_Number_of_Reviews', etc.
- Reviewer features: Reviewer_Nationality,
 'Total_Number_of_Reviews_Reviewer_Has_Given', etc.
- Review features: 'Review_Date', 'Negative_Review',
 'Positive_Review', 'Review_Score', 'Tags', etc.

Data Wrangling

- Missing values and duplicates;
- Extract cities of hotels from its address, i.e., 'Hotel_Address'.
- Add 'Pos_Rev_WCRatio' and 'Neg_Rev_WCRatio';
- Extract features from 'Tag', i.e., 'Trip_Type', 'Traveler_Type', 'Num_Nights';
- Preprocess review texts, i.e., remove stopwords, whitespaces, non-letters characters, word tokenization and lemmatization.

Visualizations

Visualization of Hotels

Average Score of Hotels

All average scores are above 5.0, most are above 8.0

CDF of Reviewer Score

A majority of scores are high except a minority of very low scores.

The average reviewer score of hotels is higher in January and lower in October.

What factors affect scores?

Reviewers on a leisure trip tend to rate higher than those on a business trip.

'solo traveler' tends to rate lower than 'couples'.

Word Cloud of Reviews

Most frequent words indicates content on location, staff, facilities, food, cleanliness, comfort, value for money (price)...

Classifier

Can we build a model to tell if reviewer likes or dislikes hotels based on what they posted?

Classes

Add label: 'poor' (reviewer_score<8), 'good' otherwise

Machine Learning Model for Predictions

- Feature engineering / feature selection
- Model comparison/evaluation
- Model optimization

Classification Steps

Data pre-processing steps:

- 1. Split texts into training and testing sets (70-30 splits)
- 2. Vectorize text: Text->Features->Labels
- 3. Add supplemental

features:'Trip_Type','Len_LemRev_char'...

Test classifier on unseen test set and compare model performance

Build ML pipelines to train classifier on predicting labels of reviews

Evaluate and optimize model performance

Topic Modeling with LDA

Display Top 20 Keywords in Topics

Topic 0: [facilities]

bed room bathroom shower comfortable small comfy clean nice water good location pillow big bath size great coffee double large

Topic 1: [staff, food; positive]

staff breakfast room location friendly helpful good great excellent clean nice bar food comfortable service lovely really restaurant facility stay

Topic 2: [location]

location close walk station good great city metro nice restaurant pool minute easy room area clean train centre value parking

Topic 3: [reception service, negative]

stay staff check room time day book make pay ask service reception night say charge come tell help leave extra

Topic 4: [room, noise; negative]

room location good work night breakfast floor window air door noise star open noisy small old bad need clean poor

Display a Document - Topic Table

	Topic0	Topic1	Topic2	Topic3	Topic4	dominant_topic
Doc0	0.03	0.00	0.07	0.47	0.43	3
Doc1	0.12	0.45	0.11	0.32	0.00	1
Doc2	0.20	0.41	0.01	0.12	0.26	1
Doc3	0.08	0.00	0.06	0.25	0.60	4
Doc4	0.00	0.00	0.06	0.68	0.26	3
Doc5	0.01	0.38	0.30	0.16	0.14	1
Doc6	0.89	0.01	80.0	0.01	0.01	0
Doc7	0.01	0.88	0.09	0.01	0.01	1
Doc8	0.22	0.02	0.02	0.34	0.41	4
Doc9	0.27	0.22	0.25	0.01	0.26	0

Model Performance: Text Features

Concerning texts, the TF-IDF vectorized features as inputs give the best model performance.

Compare Classifiers

Take TF-IDF vectorized features to represent review texts.

LR: LogisticRegression, NB: MultinomialNB, RF: RandomForestClassifier

Further Improvement

 Grid search hyperparameters for LogisticRegression classifier

Enrich predictors with categorical and numerical features via FeatureUnion

Conclusions

- We've performed data wrangling and exploratory analysis on hotel review data regarding hotels, reviewers and reviews.
- We've implemented topic modeling on review texts. The topics are not as separable as expected.
- We've conducted NLP analysis and generated vectorized (BOW, TF-IDF, LDA topics) text features.
- Out of different types of vectorized features TF-IDF weighting works best.
- With TF-IDF features as input, logistic regression classifier performs best. With 70%-30% splitting, the test data set gave ROC AUC=0.88

Next Steps

Improve performance:

- Improve text cleaning, I.e., correcting mis-spelling, including n-grams
- Add interactions between features
- o Resample to tackle imbalanced dataset

Other interesting questions include:

- Extract topics by months to explore if there is some trend in topics in a time series.
- Adjust the model and tune to a potential client.

0 ...

Thank you! Q&A

Visualization of Reviewers

Where are reviewers from?

Redder indicates more reviewers. While hotels are located in Europe, many reviewers are from America and Europe.

Classifier Ingredients: Vectorizer

- Classifier interacts with features, not the text itself.
- Vectorizer or feature extractor transforms a text into quantifiable information about the text.
- Common word feature extractors:
 - Bag-of-Words (word counts)
 - TF-IDF weighting
 - LDA model topics

Bag-of-Words (BOW) Representation

Bag of words is a kind of feature extraction where:

- The set of features is the set of words in the text.
- A single text is represented by how many of each word appears in it.

Simple example										
Original text is Hop on pop Hop off pop		hop	off	on	pop					
Hop Hop hop	Hop on pop	1	0	1	1					
Words for each feature: ['hop', 'off', 'on', 'pop']	Hop off pop	1	1	0	1					
Transformed text vector is [1 0 1 1] [1 1 0 1] [3 0 0 0]	Hop Hop hop	3	0	0	0					

Bag-of-Words (BOW) Representation

Use CountVectorizer to create document-word matrix:

```
CountVectorizer( min_df=10, #words have occurred at least 10 times stop_words='english', lowercase=True, token_pattern='[a-zA-Z]{3,}', # char length at least 3
```

Shape of Sparse Matrix: (429464, 10670)

Amount of Non-Zero occurrence: 6941938

sparsity: 0.15%

TF-IDF Weighting Representation

- Term-Frequency * Inverse Document Frequency (weighted by the inverse of its popularity in all documents).
- TF-IDF is essentially a measure of term importance, and of how discriminative a word is in a corpus.
- TF-IDF weighted features can be used as inputs to any classifier.

```
Simple example

Original text is
Hop on pop
Hop off pop
Hop Hop hop

IDF: 'hop': 1.0, 'off': 1.69, 'on': 1.69, 'pop': 1.29

Transformed text vector is

[1 0 1 1]
[1 1 0 1]
[1 1 0 0]
[3 0 0 0]

[3 0 0 0]
```

LDA Topics Representation

- Group words into topics applicable for prediction
- Each document is represented by a vector of its topic portions.
- Num_topics needs to be determined empirically
- Provide dimension reduction(10670 features->5, ...100)
- Implemented via Scikit-learn library and Gensim.

Topic Model Training

$$\frac{N_{ild} + \alpha}{N_d + T\alpha} \times \frac{N_{wli} + \beta}{N_i + V\beta}$$

pyLDAvis

