USN					
	1 1	1 1		1	

RV COLLEGE OF ENGINEERING®

Autonomous Institution affiliated to VTU

V Semester B. E. Fast Track Examinations July - 19

Information Science and Engineering

THEORY OF COMPUTATION
Time: 03 Hours

Instructions to candidates:

Maximum Marks: 100

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6

PART-A

	1.1	Write the regular expression for the following <i>DFA</i> :	
		1 3 1 AC	
		00,1	01
	1.2	Describe the language generated by the regular expression	
		$(a+b)^*a(a+b)^*a(a+b)^*$	01
-	1.3	Give the regular expression to generate a string over $\Sigma = \{0, 1\}$ such	
-	- 12	that the string does not contain consecutive 0's.	01
	1.4	If $L_1 \subseteq L_2$ and L_1 is not regular, then L_2 is also not regular. Is this	
		statement TRUE or FALSE?	01
	1.5	Show that the grammar $S \to aSb aaSb \in \text{is ambiguous.}$	01
	1.6	Consider CFG with productions	
		$S \rightarrow aSbScS aScSbS bSaScS bScSaSbS cSbSaS \in $	
		Is this grammar generates the language $I = \{u \in \{a, b, c\}^* \mid n \in \{w\} = n \in \{w\}\}$	0.1
	1.7	$L = \{w \in \{a, b, c\}^* n_a(w) = n_b(w) = n_c(w)\}.$ What language over $\{a, b\}$ does the CFG with productions	01
	1.7	what language over $\{a,b\}$ does the CFG with productions $S \rightarrow aaS bbS Saa Sbb abSab abSba baSba baSab \in generates?$	01
	1.8		01
	1.0	For the string $a+a+a+a+a$ derived from the grammar $S \to S + S S - S S * S S/S (S) a$. How many distinct parser trees are	
		there?	01
	1.9	Construct parser tree for the string aaabaabba in the grammar with	01
	2.0	productions $S \to SS bTT TbT TTb \in T \to aS SaS Sa a$.	01
	1.10	Identify the useless variables in the grammar $S \rightarrow AB \mid AC$,	01
		$A \rightarrow aAb \mid bAa \mid a, B \rightarrow bbA \mid aaB \mid AB, C \rightarrow abCa \mid aDb, D \rightarrow bD \mid aC.$	01
	1.11	For the DFA given by the following transition table, find its equivalent	
		linear grammar without ϵ -productions, there A is the start state and	
		B is the final state	
		$\delta \mid a \mid b$	
		$A \mid B \mid D$	
		$B \mid A \mid C$	
		$C \mid D \mid B$	
		D C A	01

Γ	1.12	Say whether the following statement is TRUE or FALSE. "Every regular	
		language can be accepted by a DPDA with only two states in which	1
		there are no ∈-transitions and no symbols are ever removed from the	
		stack.	0
	1.13	Construct <i>DPDA</i> equivalent to the <i>DFA</i> whose transition table is as	
and annual or other Designation	1.13	below. Here A is start state and B is final state.	
1		below. Here A is start state and b is inial state.	
		\$ 0 1	
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
-		$\begin{vmatrix} A & A & B \\ B & C & A \end{vmatrix}$	
-		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.1
and the same		$C \mid A \mid B$	01
	1.14	Define the language of a Turing Machine.	01
-	1.15	Recursively enumerable languages are also called as	
-		languages.	01
	1.16	Obtain Turing machine to accept the language	1
		$L = \{w w \in \{a, b\}^* \text{ and } w \text{ ends with abb}\}.$	01
	1.17	Describe the language generated by the unrestricted grammar with	
		productions $S \to ABCS ABC$, $AB \to BA$, $AC \to CA$, $BC \to CB$, $BA \to AB$,	
		$CA \rightarrow AC$, $CB \rightarrow BCm A \rightarrow a$, $B \rightarrow b$, $C \rightarrow c$	01
	1.18	Algorithms written for Turing machine that always halts is said to be	
			01
	1.19	If L_1 and L_2 are recursive enumerable languages over Σ , then $L_1 \cap L_2$ is	
			01
	1.20	For every unrestricted grammar there exists	01

PART-B

a	Define NFA, extended transition function δ^* for NFA and language	04
h		
D		
	is same as the language accepted by the given W. A.	
	Pa,b a Pa,b	04
c		
		04
.1		04
a		
		04
a	Define Context Free Grammar (<i>CFG</i>) and language generated by <i>CFG</i> . Give <i>CFGs</i> to generate the following languages i) $I_{ci} = \{a^i b^j c^k i = i + k\}$	
		06
h		
D	$S \rightarrow a Sa bSS SSb$	04
	b c d	accepted by NFA. Consider the NFA below, construct DFA accepting the language which is same as the language accepted by the given NFA. For each of the regular expression below, find an \in -NFA recognizing language corresponds to the regular expressions. i) $((ab)^*b + ab^*)^*$ ii) $(ab + (aab)^*)(aa + a)$ Using pumping lemma for regular sets, show that the language below is not regular. $L = \{xy \mid x, y \in \{0, 1\}^* \text{ and } y \text{ is either } x \text{ or } x^T\}.$ a Define Context Free Grammar (CFG) and language generated by CFG. Give CFGs to generate the following languages i) $L_1 = \{a^i b^j c^k i = j + k\}$ ii) $L_2 = \{a^i b^j c^k j = i \text{ or } j = k\}$ Define ambiguity in CFG. Show that the given grammar is ambiguous.

-0-0-				
	С	Con	nsider the following DFA	
			i) Identify the language accepted by this <i>DFA</i> . ii) Give the equivalent right linear grammar to this <i>DFA</i>	
			iii) Show that the string $w = aababba$ is accepted by DFA and w is generated by the right linear grammar.	06
			OR	
	a b	a t	Define null productions and unit productions. For the <i>CFG</i> below find an equivalent <i>CFG</i> with no null productions and no unit productions hat generates the same language, except possible for \in . $S \rightarrow AB ABC, A \rightarrow BA BC a \in B \rightarrow AC CB b \in C \rightarrow BC AB A c$ Define <i>CNF</i> grammar, convert the below grammar to <i>CNF</i> grammar	06
	С		$S \rightarrow AaA CA BaB$, $A \rightarrow aaBa CDA aa DC$, $B \rightarrow bB / bAB / bb / as$, $C \rightarrow Ca / bC / D$, $D \rightarrow bD \in$ What is left recursion? How to remove left recursion in <i>CFG</i> ?	06
-			Eliminate left recursion in the following grammar: $S \rightarrow 0S1 1S0 01S 10S S01 S10 \in$	04
The second secon	5 a		Define Push Down Automat (<i>PDA</i>) and Instantaneous Description (<i>ID</i>). Construct <i>PDA</i> to recognize $L = \{ww^R w \in \{0,1\}^*\}$. Show by <i>IDs</i> the string 011110 is accepted. List the steps to convert the given <i>CFG</i> to equivalent <i>PDA</i> by empty	06
		c	stack. Convert the below <i>CFG</i> to equivalent <i>FDA</i> by empty stack. $S \rightarrow aSb bSa a b \in$ Define Deterministic Push Down Automata (<i>DPDA</i>). Give transition	04
		C	table for <i>DPDA</i> recognizing the language $L = \{a^n b^{n+m} a^m n, m \ge 1\}$	06
			OR	
	6	a b	State and prove pumping lamma for context free languages, show that the language $L = \{a^i b^{21} a^i i > 0\}$ is not a <i>CFL</i> . Show that the following languages are CFL, but their complements are not <i>CFL</i> .	06
		С	i) $L_1 = \{a^i b^j c^k i < j \}$ ii) $L_2 = \{a^i b^j c^k i < k \}$ Describe the algorithms for the following decision problems. i) Given a <i>CFG G</i> , is $L(G) = \phi$?	06
			ii) Given a CFG G, is $L(G)$ finite?	04

7	a	Define Turing Machine (TM), language acceptance by Turing Machine.	04	
	b	Design Turing Machine to accept		
		$L = \{w w \in \{a, b\}^* \text{ and } w \text{ is a palindrome } \}.$		
		Using instantaneous description, show that the string abaaba is		
		accepted by the machine.	06	
	c	Write a note on the following:		
		i) Multi tape turing machine		
		ii) Multi head turing machine.	06	
8	a	Define unrestricted grammar. Give unrestricted grammar to generate		
		the language $L = \{ww w \in \{a, b\}^*\}$. Show that the string $abbabb \in L$.	06	
	b	Write a note on Chomeky hierarchy.	06	
-	C	Show that if L is recursively enumerable language whose complement		
		is also recursively enumerable, then L is recursive.	04	

.