This is a book*

Mabel Liu[†], Leslie Liu, and May Liu

Abstract: This is a nice book. People love this book very much.

KEYWORDS AND PHRASES: AI, GPT, Deepseek.

1. Introduction

This book is very interesting about AI description.

2. Definition

This is a BOOK AII.0 and AI2.0.

Book¹ and paper².

3. Lemmas Theorems

- This is a AI1.0 book.
- This is a AI2.0 book.

$$x' + y^2 = z_i^2.$$

This is a AI1 book.

Example of a theorem:

Theorem 3.1. It is interesting about AI problems.

Proof. Obvious result.

4. Proofs

and also in Table 2.

arXiv: 0000.0000

^{*}Thanks Professor Yau's support.

[†]Thanks Professor Yu's support.

¹This is a sample of book.

²This is a sample of paper

Table 1: T	The spherical	case $(I_1 :$	$=0, I_2=0$

Equil. Points	x	y	\overline{z}	C	\overline{S}
$\overline{L_1}$	-2.485252241	0.000000000	0.017100631	8.230711648	U
L_2	0.0000000000	0.0000000000	3.068883732	0.0000000000	\mathbf{S}
L_3	0.009869059	0.0000000000	4.756386544	-0.000057922	U
L_4	0.210589855	0.0000000000	-0.007021459	9.440510897	U
L_5	0.455926604	0.0000000000	-0.212446624	7.586126667	U
L_6	0.667031314	0.0000000000	0.529879957	3.497660052	U
L_7	2.164386674	0.0000000000	-0.169308438	6.866562449	U
L_8	0.560414471	0.421735658	-0.093667445	9.241525367	U
L_9	0.560414471	-0.421735658	-0.093667445	9.241525367	U
L_{10}	1.472523232	1.393484549	-0.083801333	6.733436505	U
L_{11}	1.472523232	-1.393484549	-0.083801333	6.733436505	U

Table 2: Parameter sets used by Bajpai and Reußare not detailed sufficiently to permit a similar analysis

Parameter		Set 1	Set 2
μ_x	$[h^{-1}]$	0.092	0.11
K_x	[g/g DM]	0.15	0.006
μ_p	[g/g DM h]	0.005	0.004
K_p	[g/L]	0.0002	0.0001
K_i	[g/L]	0.1	0.1
$Y_{x/s}$	[g DM/g]	0.45	0.47
$Y_{p/s}$	[g/g]	0.9	1.2
k_h	$[h^{-1}]$	0.04	0.01
m_s	[g/g DM h]	0.014	0.029

Figure 1: Pathway of the penicillin G biosynthesis.

5. Conclusion

This is a AI1.0 AI2.0.

5.1. This is a book AI3.0

This is a book AI3.0.

Two equations:

$$C_s = K_M \frac{\mu/\mu_x}{1 - \mu/\mu_x}$$

and

(2)
$$G = \frac{P_{\text{opt}} - P_{\text{ref}}}{P_{\text{ref}}} \ 100 \ (\%).$$

Two equation arrays:

(3)
$$\frac{dS}{dt} = -\sigma X + s_F F$$

(4)
$$\frac{dX}{dt} = \mu X$$

(5)
$$\frac{dt}{dt} = \pi X - k_h P$$

(6)
$$\frac{dV}{dt} = F$$

and

(7)
$$\mu_{\text{substr}} = \mu_x \frac{C_s}{K_x C_x + C_s}$$

(8)
$$\mu = \mu_{\text{substr}} - Y_{x/s} (1 - H(C_s)) (m_s + \pi/Y_{p/s})$$

(9)
$$\sigma = \mu_{\text{substr}}/Y_{x/s} + H(C_s)(m_s + \pi/Y_{p/s})$$

Long equation:

$$\sum_{u \in C^{+}} \left\lfloor \frac{w'(u)}{m} \right\rfloor \leq \left\lfloor \sum_{u \in C^{+}} \frac{w'(u)}{m} \right\rfloor$$

$$\leq \left\lfloor \frac{r(v) + \sum_{u \in C^{+}} w(u)}{m} \right\rfloor = \left\lfloor \frac{w(v) - \sum_{u \in C^{-}} w(u)}{m} \right\rfloor$$

(10)
$$\leq \left\lfloor \frac{w(v)}{m} \right\rfloor - \sum_{u \in C^{-}} \left\lfloor \frac{w(u)}{m} \right\rfloor = s(v) + \sum_{u \in C^{+}} \left\lfloor \frac{w(u)}{m} \right\rfloor$$

and

$$\sum_{u \in C^{-}} \left\lfloor \frac{w(u)}{m} \right\rfloor \leq \left\lfloor \sum_{u \in C^{-}} \frac{w(u)}{m} \right\rfloor \\
\leq \left\lfloor \frac{r'(v) + \sum_{u \in C^{-}} w'(u)}{m} \right\rfloor = \left\lfloor \frac{w'(v) - \sum_{u \in C^{+}} w'(u)}{m} \right\rfloor \\
\leq \left\lfloor \frac{w'(v)}{m} \right\rfloor - \sum_{u \in C^{+}} \left\lfloor \frac{w'(u)}{m} \right\rfloor = s'(v) + \sum_{u \in C^{-}} \left\lfloor \frac{w'(u)}{m} \right\rfloor.$$

This time we have

$$\begin{split} f(S) - f(T) &= D_k^T (1 + C_{\geq k+1}^T) (1 + C) + C_k^T (1 + D_{\geq k+1}^T) (1 + D) \\ &- C_k^T (1 + C_{\geq k+1}^T) (1 + C) - D_k^T (1 + D_{\geq k+1}^T) (1 + D) \\ &= (D_k^T - C_k^T) [(1 + C_{\geq k+1}) (1 + C) - (1 + D_{\geq k+1}^T) (1 + D)] > 0. \end{split}$$

Appendix A. Appendix section

An interesting books about AI.

A.1. Appendix subsection

$$P = (j_{k,1}, j_{k,2}, \dots, j_{k,m(k)}).$$

Sample of cross-reference to the formula A.1 in Appendix A.

Acknowledgements

An interesting books about AI.

References

- [1] C. A. Athanasiadis, On a refinement of the generalized Catalan numbers for Weyl groups. *Trans. AMS* **357** (2005), 179–196. MR2098091
- [2] D. Bessis, The dual braid monoid, *Ann. Sci. École Norm. Sup.* Sér. IV **36** (2003), 647–683. MR2032983

[3] L. Lamport, LaTeX: A Document Preparation System, Addison-Wesley, 2nd Edition, 1994.

Mabel Liu

No. 120 Da An Road

Taiwan

E-mail address: yassist@math.ntu.edu.tw

Leslie Liu

No. 121 Da she Road

Taiwan

E-mail address: yassist@tims.ntu.edu.tw

May Liu

No.122 Da Chi Road

Taiwan

 $E ext{-}mail\ address: mll202tw@yahoo.com.tw}$

URL: http://www.ntu.edu.tw

Received 15 April 2024