1. Matrizes e Sistemas de Equações Lineares

UA, 18/9/2018

ALGA - Agrup. IV 18/19

Resumo dos Conteúdos

- 1 Bases da geometria analítica em \mathbb{R}^3 (revisão)
- 2 Vetores em \mathbb{R}^n
- 3 Matrizes nomenclatura e notações básicas
- Operações usuais com matrizes
- Sepresentação matricial de sistemas de equações lineares
- 6 Escalonamento, por linhas, de matrizes
- Espaço das Colunas, Espaço das Linhas e Espaço Nulo
- Matrizes Invertíveis

Referenciais em \mathbb{R}^3

Fixamos um sistema de coordenadas:

$$O \longrightarrow \mathsf{origem}$$

$$\begin{array}{c}
Ox \\
Oy \\
Oz
\end{array}$$
 \rightarrow eixos coordenados

$$xOy$$
 xOz
 yOz
 yOz
 yOz

Pontos e vetores \mathbb{R}^3

 $x_1, x_2, x_3 \rightarrow \text{coordenadas do ponto } P$

Associamos ao segmento de reta orientado [O, P] o vetor

$$\overrightarrow{OP} = X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

 $y_1, y_2, y_3 \rightarrow \text{coordenadas do ponto } Q$ e seja Y o vetor associado a \overrightarrow{OQ} .

A
$$[P, Q]$$
 fica associado o vetor $\overrightarrow{PQ} = Z = \begin{bmatrix} y_1 - x_1 \\ y_2 - x_2 \\ y_3 - x_3 \end{bmatrix}$

Adição, multiplicação por escalar e combinação linear

Sejam X e Y vetores em \mathbb{R}^3 e $\alpha, \beta \in \mathbb{R}$ escalares

Adição:

$$Z = X + Y = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ x_3 + y_3 \end{bmatrix}$$

Multiplicação por escalar:

$$\alpha X = \alpha \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \alpha x_1 \\ \alpha x_2 \\ \alpha x_3 \end{bmatrix}$$

$$\begin{array}{c} 2X \\ / -Y = (-1)Y \end{array}$$

Combinação linear (de dois vetores):

$$Z = \alpha X + \beta Y = \begin{bmatrix} \alpha x_1 + \beta y_1 \\ \alpha x_2 + \beta y_2 \\ \alpha x_3 + \beta y_3 \end{bmatrix}$$

Os vetores em \mathbb{R}^2 e \mathbb{R}^3 generalizam-se a vetores em \mathbb{R}^n , $n \in \mathbb{N}$:

$$X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n$$

Chamam-se componentes do vetor X aos números reais x_1, x_2, \ldots, x_n . Notação alternativa: $X = (x_1, \ldots, x_n)$.

Observações:

- Identificaremos um vetor de \mathbb{R}^n quer como uma coluna de n números reais quer como um n-uplo, de acordo com a conveniência da escrita e do contexto.
- Também é frequente denotar vetores por letras minúsculas do nosso alfabeto, como por exemplo, x, v, w, etc. Aqui, devido à representação (matricial) em coluna, optamos pelas maíusculas.

Operações (usuais) em \mathbb{R}^n

1 Adição de vetores:
$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{bmatrix}$$

Multiplicação de um vetor por um escalar:

$$\alpha \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} \alpha x_1 \\ \alpha x_2 \\ \vdots \\ \alpha x_n \end{bmatrix}$$

Combinação linear de vetores :

$$\alpha X + \beta Y$$
, com $\alpha, \beta \in \mathbb{R}$ e $X, Y \in \mathbb{R}^n$.

(Tomando dois, para um número superior de vetores é análogo.)

Matriz $m \times n$

Os vetores em \mathbb{R}^n generalizam-se a vetores em $\mathbb{R}^m \times \mathbb{R}^n$ a que chamamos matrizes.

Definição:

Uma matriz real com m linhas e n colunas é um quadro de dupla entrada do tipo

$$A = \begin{bmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{i1} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & & \vdots & & \vdots \\ a_{m1} & \dots & a_{mj} & \dots & a_{mn} \end{bmatrix}$$

onde a_{ij} é um número real. Diz-se, também, que A é uma matriz $m \times n$, de ordem $m \times n$, de dimensão $m \times n$.

Linhas, colunas, elementos, notação

linha/coluna:

$$A = \begin{bmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{i1} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & & \vdots & & \vdots \\ a_{m1} & \dots & a_{mj} & \dots & a_{mn} \end{bmatrix} \leftarrow \text{linha } i$$

$$coluna j$$

elemento (ou entrada):

 a_{ij} é o elemento (ou entrada) (i, j) da matriz A.

Notações abreviadas:

$$A = A_{m \times n} = [a_{ij}]_{m \times n} = [a_{ij}], \text{ com } i = 1, 2, ..., m, j = 1, 2, ..., n.$$

Igualdade de matrizes

Duas matrizes são iguais se tiverem a mesma ordem e se entrada a entrada forem iguais. Isto é, sejam $A = [a_{ij}], B = [b_{ij}]$ matrizes $m \times n$, as matrizes $A \in B$ são iguais, se

$$a_{ij} = b_{ij}, \qquad i = 1, \ldots, m, j = 1, \ldots, n.$$

Notação: A = B

Matriz nula, matriz linha e matriz coluna

```
Matiz nula (m \times n):
```

Matriz cujas entradas são todas iguais a 0, denota-se por $O(\text{ou }O_{m\times n})$ ou, ainda, simplesmente, por $O(\text{ou }O_{m\times n})$.

```
Matriz linha (1 \times n):
```

$$\left[\begin{array}{cccc} a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \end{array}\right]$$

Matriz coluna $(m \times 1)$:

Matriz quadrada

Uma matriz A diz-se quadrada de ordem n se tiver n linhas e n colunas. Os elementos a_{ii} constituem a chamada diagonal principal, ou seja,

$$A = \begin{bmatrix} a_{11} & \dots & a_{1i} & \dots & a_{1n} \\ \vdots & \ddots & \vdots & & \vdots \\ a_{i1} & \dots & a_{ii} & \dots & a_{in} \\ \vdots & & \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{ni} & \dots & a_{nn} \end{bmatrix}$$

diagonal principal

Matriz diagonal e matriz identidade

Uma matriz quadrada $A = [a_{ij}]$ diz-se diagonal se $a_{ij} = 0$, $i \neq j$, ou seja,

$$A = \begin{bmatrix} a_{11} & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & & \vdots \\ 0 & \cdots & a_{ii} & \cdots & 0 \\ \vdots & & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & a_{nn} \end{bmatrix}.$$

Chama-se a matriz identidade de ordem n e denota-se por I (ou I_n) à matriz diagonal $n \times n$ com

$$a_{11} = \cdots = a_{nn} = 1$$

Matrizes Triangulares

Seja $A = [a_{ij}]$ uma matriz quadrada.

• A é triangular superior se $a_{ii} = 0$, para i > j:

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1i} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots & & \vdots \\ 0 & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & a_{nn} \end{bmatrix},$$

• A é triangular inferior se $a_{ij} = 0$, para i < j:

$$A = \begin{bmatrix} a_{11} & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & & \vdots \\ a_{i1} & \cdots & a_{ii} & \cdots & 0 \\ \vdots & & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{ni} & \cdots & a_{nn} \end{bmatrix}.$$

Transposta de uma matriz e matriz simétrica

A transposta da matriz $m \times n$ $A = [a_{ij}]$ é a matriz $n \times m$

$$A^T = [a_{ji}]$$

obtida por troca da posição relativa das linhas pelas colunas da matriz A, por exemplo

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \qquad A^{T} = \begin{bmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \\ a_{13} & a_{23} \end{bmatrix}$$

Uma matriz A diz-se simétrica se $A = A^T$ (assim, toda a matriz simétrica é quadrada).

Propriedade: $(A^T)^T = A$.

Adição de matrizes

Definição:

Sejam $A=[a_{ij}],\ B=[b_{ij}]$ matrizes $m\times n$. A soma de A e B é a matriz $m\times n$ $A+B=C=[c_{ij}]$ tal que

$$c_{ij} = a_{ij} + b_{ij}, \qquad i = 1, \ldots, m, \ j = 1, \ldots, n.$$

Propriedades:

- comutativa: A + B = B + A,
- associativa: (A+B)+C=A+(B+C),
- admite elemento neutro: A + O = O + A = A,
- A possui simétrico aditivo: A + (-A) = (-A) + A = 0,
- $(A+B)^T = A^T + B^T$,

para quaisquer matrizes $m \times n A, B, C$.

Multiplicação de uma matriz por um escalar

Sejam $A = [a_{ii}]$ matriz $m \times n$ e $\alpha \in \mathbb{R}$.

O produto de A pelo escalar α é a matriz $m \times n$ $\alpha A = D = [d_{ii}]$ tal que

$$d_{ij} = \alpha a_{ij}, \qquad i = 1, \dots, m, \ j = 1, \dots, n.$$

Propriedades:

- associativa: $\alpha(\beta A) = (\alpha \beta) A$,
- distributiva: $(\alpha + \beta)A = \alpha A + \beta A$,
- distributiva: $\alpha(A+B) = \alpha A + \alpha B$,
- \bullet $(\alpha A)^T = \alpha A^T$,

para quaisquer matrizes $m \times n$ A, B, e $\alpha, \beta \in \mathbb{R}$.

A matriz $m \times n$ A é uma combinação linear das matrizes A_1, \ldots, A_k $m \times n$ se

$$A = \alpha_1 A_1 + \cdots + \alpha_k A_k, \quad \alpha_1, \dots, \alpha_k \in \mathbb{R}$$

Multiplicação de uma matriz linha por uma matriz coluna

Dadas
$$A = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$$
 e $B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$

o produto da matriz linha A pela matriz coluna B é

$$AB = a_1b_1 + a_2b_2 + \cdots + a_nb_n = \sum_{i=1}^n a_ib_i$$

Operação bem definida só se A e B possuem igual número de elementos!

Multiplicação de matrizes - Caso Geral

Multiplicação de A matriz $m \times n$ e B matriz $n \times p$ sendo

$$A = \begin{bmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{i1} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & & \vdots & & \vdots \\ a_{m1} & \dots & a_{mj} & \dots & a_{mn} \end{bmatrix} e B = \begin{bmatrix} b_{11} & \dots & b_{1j} & \dots & b_{1p} \\ \vdots & & \vdots & & \vdots \\ b_{i1} & \dots & b_{ij} & \dots & b_{ip} \\ \vdots & & \vdots & & \vdots \\ b_{n1} & \dots & b_{nj} & \dots & b_{np} \end{bmatrix} :$$

O produto de A por B é a matriz $m \times p$ $AB = [c_{ij}]$ cuja entrada (i,j) resulta da multiplicação da linha i de A pela coluna j de B, i.e.,

$$c_{ij} = a_{i1}b_{1i} + \cdots + a_{in}b_{ni}, \qquad i = 1, \dots, m, \ j = 1, \dots, p.$$

Propriedades da multiplicação de matrizes

- associativa: (AB)C = A(BC),
- distributiva à esquerda e à direita, em relação à adição:

$$(A+\widetilde{A})B=AB+\widetilde{A}B$$
 e $A(B+\widetilde{B})=AB+A\widetilde{B},$

- admite elemento neutro à esquerda e à direita: $I_m A = A = A I_n$,
- $(\alpha A)B = \alpha (AB) = A(\alpha B),$
- $\bullet (AB)^T = B^T A^T,$

para quaisquer matrizes A, \widetilde{A} $m \times n$, B, \widetilde{B} $n \times p$, C $p \times q$ e $\alpha \in \mathbb{R}$.

Nota importante:

A multiplicação de matrizes não é comutativa!

Potência de uma matriz quadrada

Sejam A uma matriz $n \times n$ e $p \in \mathbb{N}$.

A potência p de A é a matriz $n \times n$ dada por

$$A^p = A A^{p-1},$$

em que $A^0 = I_n$, por convenção.

Propriedades da potência de matrizes

- $(A^p)^q = A^{pq}$
- $\bullet \ A^p A^q = A^{p+q}$

Nota:

Em geral $(AB)^p \neq A^p B^p$.

Sistema de *m* equações lineares com *n* incógnitas

$$\begin{cases} a_{11} x_1 + \dots + a_{1n} x_n = b_1 \\ \vdots \\ a_{m1} x_1 + \dots + a_{mn} x_n = b_m \end{cases}$$

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \qquad X = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \qquad B = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$$

matriz dos coeficientes

$$X = \begin{vmatrix} x_1 \\ \vdots \\ x_n \end{vmatrix}$$

coluna das incógnitas

$$B = \begin{vmatrix} b_1 \\ \vdots \\ b_m \end{vmatrix}$$

coluna dos termos independentes

Forma matricial de um sistema linear

$$\begin{cases} a_{11} x_1 + \dots + a_{1n} x_n = b_1 \\ \vdots & \Leftrightarrow AX = B, \\ a_{m1} x_1 + \dots + a_{mn} x_n = b_m \end{cases}$$

em que A é a matriz $(m \times n)$ dos coeficientes do sistema, X é a coluna $(n \times 1)$ das incógnitas, B é a coluna $(m \times 1)$ dos termos independentes

$$M = [A \mid B] = \begin{bmatrix} a_{11} & \cdots & a_{1n} & b_1 \\ \vdots & & \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} & b_m \end{bmatrix}, \quad m \times (n+1),$$

é dita a matriz ampliada, aumentada ou completa do sistema.

Matriz escalonada por linhas

A primeira entrada não nula de cada linha é designada por pivot.

```
\begin{bmatrix} 0 & \dots & a_1 & * & \dots & * & * & * & \dots & * \\ 0 & \dots & 0 & 0 & \dots & a_2 & * & * & \dots & * \\ 0 & \dots & 0 & 0 & \dots & 0 & 0 & a_3 & \dots & * \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 0 & 0 & \dots & 0 \end{bmatrix}, a_1, a_2, a_3, \dots \neq 0
```

- Abaixo de cada pivot só ocorrem zeros,
- ② Dadas duas linhas não nulas consecutivas, o pivot da linha i+1 está numa coluna à direita da coluna que contém o pivot da linha i,
- As linhas nulas, caso existam, ocorrem só na parte inferior da matriz.

Matriz escalonada por linhas reduzida

```
\begin{bmatrix} 0 & \dots & 1 & * & \dots & 0 & * & 0 & \dots & * \\ 0 & \dots & 0 & 0 & \dots & 1 & * & 0 & \dots & * \\ 0 & \dots & 0 & 0 & \dots & 0 & 0 & 1 & \dots & * \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 0 & 0 & 0 & \dots & 0 \end{bmatrix}
```

- A matriz está na forma escalonada por linhas,
- Os pivots são todos iguais a 1,
- Acima de cada pivot só ocorrem zeros.

Operações elementares nas linhas de uma matriz:

1. Troca da posição relativa de duas linhas, L_i e L_j :

$$L_i \leftrightarrow L_j$$

2. Multiplicação de uma linha, L_i , por um escalar $\alpha \neq 0$:

$$L_i := \alpha L_i$$

3. Substituição de uma linha, L_i , pela que dela se obtém adicionando-lhe outra linha, L_j , multiplicada por um escalar $\beta \in \mathbb{R}$:

$$L_i := L_i + \beta L_j$$

Matrizes equivalentes por linhas:

Duas matrizes A e C são equivalentes por linhas se C resulta de A por aplicação de uma sequência finita de operações elementares nas linhas de A.

Notação: A ∼ C

Teorema

Toda a matriz $m \times n$ é equivalente por linhas a uma matriz escalonada por linhas (reduzida).

Exemplo ilustrativo do teorema anterior

Passo 1: Encontrar, na 1.ª coluna não nula, o 1.º elemento não nulo, pivot.

$$A = \begin{bmatrix} 0 & 2 & 3 & -4 & 1 \\ 0 & 0 & 2 & 3 & 4 \\ 2 & 2 & -5 & 2 & 4 \\ 2 & 0 & -6 & 9 & 7 \end{bmatrix}$$

Passo 2: Trocar linhas para colocar o pivot como 1.º elemento da coluna.

$$\begin{bmatrix} 0 & 2 & 3 & -4 & 1 \\ 0 & 0 & 2 & 3 & 4 \\ 2 & 2 & -5 & 2 & 4 \\ 2 & 0 & -6 & 9 & 7 \end{bmatrix} \sim \begin{bmatrix} 2 & 2 & -5 & 2 & 4 \\ 0 & 0 & 2 & 3 & 4 \\ 0 & 2 & 3 & -4 & 1 \\ 2 & 0 & -6 & 9 & 7 \end{bmatrix}$$

$$L_1 \leftrightarrow L_3$$

Passo 3: Operar com as linhas para obter zeros abaixo do pivot.

$$\begin{bmatrix} 2 & 2 & -5 & 2 & 4 \\ 0 & 0 & 2 & 3 & 4 \\ 0 & 2 & 3 & -4 & 1 \\ 2 & 0 & -6 & 9 & 7 \end{bmatrix} \sim \begin{bmatrix} 2 & 2 & -5 & 2 & 4 \\ 0 & 0 & 2 & 3 & 4 \\ 0 & 2 & 3 & -4 & 1 \\ 0 & -2 & -1 & 7 & 3 \end{bmatrix}$$

$$L_4 := L_4 - L_1$$

Passo 4: Considerar a submatriz que se obtém eliminando a 1.ª linha e aplicar os passos 1 a 4 até esgotar as linhas.

$$\begin{bmatrix} 2 & 2 & -5 & 2 & 4 \\ 0 & 0 & 2 & 3 & 4 \\ 0 & 2 & 3 & -4 & 1 \\ 0 & -2 & -1 & 7 & 3 \end{bmatrix}$$

Fim Passo 4: Obtém-se uma matriz escalonada por linhas equivalente a A.

$$\begin{bmatrix} 2 & 2 & -5 & 2 & 4 \\ 0 & 2 & 3 & -4 & 1 \\ 0 & 0 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Passo 5: Multiplicar as linhas não nulas pelos inversos dos pivots de modo a obter pivots iguais a 1.

$$\begin{bmatrix} 2 & 2 & -5 & 2 & 4 \\ 0 & 2 & 3 & -4 & 1 \\ 0 & 0 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & -\frac{5}{2} & 1 & 2 \\ 0 & 1 & \frac{3}{2} & -2 & \frac{1}{2} \\ 0 & 0 & 1 & \frac{3}{2} & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$L_{1} := \frac{1}{2}L_{1}$$

$$L_{2} := \frac{1}{2}L_{2}$$

$$L_{3} := \frac{1}{2}L_{3}$$

Passo 6: Operar com as linhas de modo a obter zeros acima dos pivots.

$$\begin{bmatrix} 1 & 1 & -\frac{5}{2} & 1 & 2 \\ 0 & 1 & \frac{3}{2} & -2 & \frac{1}{2} \\ 0 & 0 & 1 & \frac{3}{2} & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 & \frac{19}{4} & 7 \\ 0 & 1 & 0 & -\frac{17}{4} & -\frac{5}{2} \\ 0 & 0 & 1 & \frac{3}{2} & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$L_{2} := L_{2} - \frac{3}{2}L_{3}$$

$$L_{1} := L_{1} + \frac{5}{2}L_{3}$$

$$\sim \begin{bmatrix} 1 & 0 & 0 & 9 & \frac{19}{2} \\ 0 & 1 & 0 & -\frac{17}{4} & -\frac{5}{2} \\ 0 & 0 & 1 & \frac{3}{2} & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Obtém-se uma matriz escalonada por linhas reduzida equivalente a A.

Aplicação à resolução de sistemas

Teorema

Se as matrizes ampliadas de dois sistemas lineares são $[A \mid B]$ e $[C \mid D]$, tais que

$$[A|B] \sim [C|D],$$

então os dois sistemas têm o mesmo conjunto de soluções.

Observação:

Se B=D=0, basta que $A \sim C$ para que os sistemas possuam o mesmo conjunto de soluções.

Métodos de eliminação

Método de eliminação de Gauss

- 1. Dado o sistema AX = B, formar a sua matriz ampliada $[A \mid B]$.
- 2. Transformar $[A \mid B]$ numa forma escalonada por linhas $[C \mid D]$.
- 3. Escrever o sistema CX = D, ignorando as linhas nulas, e resolver por substituição ascendente.

Método de eliminação de Gauss-Jordan

- 1. Dado o sistema AX = B, formar a sua matriz ampliada $[A \mid B]$.
- 2. Transformar $[A \mid B]$ numa forma escalonada por linhas reduzida $[E \mid F]$.
- 3. Escrever o sistema EX = F, ignorando as linhas nulas, e resolver.

Classificação de sistemas

Um sistema linear representado matricialmente por AX = B, tal que

$$[A \mid B] \sim [C \mid D],$$

com a matriz $[C \mid D]$ escalonada por linhas, classifica-se em

- impossível se não possui solução;
 (há um pivot na coluna D)
- possível e determinado se possui uma única solução;
 (todas as colunas de C têm pivot e não há pivot na coluna D);
- possível e indeterminado se possui uma infinidade de soluções;
 (grau de indeterminação do sistema = n.º de incógnitas livres = n.º de colunas de C sem pivot).

Caraterística e classificação de sistemas

A caraterística da matriz A, car(A), é o número de pivots de uma matriz C escalonada por linhas equivalente, por linhas, a A.

Classificação de sistemas (usando características):

O sistema linear $AX = B \operatorname{com} A m \times n \operatorname{e} B m \times 1 \operatorname{e}$

- 1. impossível \Leftrightarrow car(A) < car([A|B]);
- 2. possível e determinado \Leftrightarrow car (A) = car([A|B]) = n;
- 3. $\underset{\text{de grau } n \text{ car}(A)}{\text{possível e indeterminado}} \Leftrightarrow \operatorname{car}(A) = \operatorname{car}([A|B]) < n.$

Espaço das colunas de uma matriz

O espaço das colunas de uma matriz A $m \times n$, C(A), é o conjunto de todas as combinações lineares das colunas C_1, \ldots, C_n de A,

$$\mathcal{C}(A) = \{ \alpha_1 C_1 + \dots + \alpha_n C_n : \alpha_1, \dots, \alpha_n \in \mathbb{R} \}.$$

Notar que, se
$$X = [\alpha_1 \cdots \alpha_n]^T$$
, então $AX = \alpha_1 C_1 + \cdots + \alpha_n C_n$, logo
$$\mathcal{C}(A) = \{AX \in \mathbb{R}^m \colon \ X \in \mathbb{R}^n\}.$$

Teorema

Dadas $A m \times n \in B m \times 1$,

 $B \in \mathcal{C}(A) \Leftrightarrow AX = B$ é um sistema possível.

Espaço das linhas de uma matriz

O espaço das linhas de uma matriz A $m \times n$, $\mathcal{L}(A)$, é o conjunto de todas as combinações lineares das colunas L_1^T, \ldots, L_m^T que resultam da transposta das linhas L_1, \ldots, L_m de A,

$$\mathcal{L}(A) = \{ \alpha_1 L_1^T + \dots + \alpha_m L_m^T, \ \alpha_1, \dots, \alpha_m \in \mathbb{R} \}.$$

Proposição

Se
$$A \sim C$$
, então $\mathcal{L}(A) = \mathcal{L}(C)$.

Como
$$\mathcal{L}(A) = \mathcal{C}(A^T)$$
, temos

$$B \in \mathcal{L}(A) \Leftrightarrow A^T X = B$$
 é um sistema possível.

Sistema homogéneo e nulidade

Um sistema diz-se homogéneo se os termos independentes são todos nulos:

$$AX = 0$$
.

Todo o sistema homogéneo é possível pois possui pelo menos a solução nula, dita solução trivial, mas pode ter outras soluções, ditas não triviais, se o sistema for indeterminado.

Teorema

Seja A uma matriz $m \times n$.

car(A) < n se e só se AX = 0 admite uma solução não trivial se e só se AX = 0 é indeterminado.

A nulidade de A, nul (A), é o número de incógnitas livres do sistema AX = 0, ou seja, o grau de indeterminação do sistema, isto é,

$$\operatorname{\mathsf{nul}}(A) = n - \operatorname{\mathsf{car}}(A),$$

onde n é o número de colunas de A.

Espaço nulo de uma matriz

O espaço nulo de A, $\mathcal{N}(A)$, é o conjunto de todas as soluções do sistema homogéneo associado a A $m \times n$,

$$\mathcal{N}(A) = \{X \in \mathbb{R}^n : AX = 0\}.$$

Observação: O espaço nulo de A, $\mathcal{N}(A)$, caso não se reduza ao vetor nulo, pode escrever-se como o conjunto de todas as combinações lineares de n - car(A) vetores de \mathbb{R}^n . Vetores (colunas) que podem ser obtidos facilmente a partir de certas colunas da forma escalonada reduzida de A.

Teorema

Dadas $A \ m \times n$ e $B \ m \times 1$, se o sistema AX = B é possível e se \overline{X} é uma sua solução, então o conjunto de soluções do sistema é

$$\{\overline{X} + Y \colon Y \in \mathcal{N}(A)\}.$$

Inversa de uma matriz quadrada

Uma matriz A $n \times n$ diz-se invertível se existe B $n \times n$ tal que

$$AB = BA = I_n$$

Teorema

Se $A n \times n$ é invertível, então a inversa de A é única.

À única matriz B satisfazendo a $AB = BA = I_n$ chama-se inversa de A e denota-se por A^{-1} .

Caso contrário (não existe B), A diz-se singular ou não invertível.

Teorema

Se A, B $n \times n$ e B $A = I_n$, então $AB = I_n$.

Propriedades da inversa e algoritmo de cálculo

Propriedades:

Para quaisquer $A, B \ n \times n$ invertíveis:

- $(A^{-1})^{-1} = A;$
- $(AB)^{-1} = B^{-1}A^{-1};$
- $(A^T)^{-1} = (A^{-1})^T;$

Método prático para determinar a inversa

método de eliminação de Gauss-Jordan

Critérios de invertibilidade de uma matriz

Teorema

Dada A $n \times n$, são equivalentes as afirmações

- A é invertível
- ② A é equivalente por linhas a I_n , i.e., $A \sim I_n$
- nul(A) = 0

- $\mathcal{O}(A) = \mathbb{R}^n$
- **9** AX = B tem uma única solução, para cada $B \ n \times 1$. Caso A seja invertível, a solução de AX = B é $X = A^{-1}B$.