CS 260: Foundations of Data Science

Prof. Thao Nguyen Fall 2025

Admin

Sit somewhere new

Lab 2 is due tonight at midnight

Lab 3 posted (due next Tuesday)

• Recap *simple* (i.e. p=1) linear regression

Introduction to applied linear algebra

Multiple linear regression

Recap simple (i.e. p=1) linear regression

Introduction to applied linear algebra

Multiple linear regression

Simple linear regression

• Model: $h_{\vec{w}}(x) = w_0 + w_1 x = \hat{y}$

Cost function:

$$J(w_0, w_1) = \frac{1}{2} \sum_{i=1}^{n} (y_i - w_0 - w_1 x_i)^2$$

$$\hat{w}_1 = \frac{\text{Cov}(\boldsymbol{x}, \boldsymbol{y})}{\text{Var}(\boldsymbol{x})} = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2} \qquad \hat{w}_0 = \bar{y} - \hat{w}_1 \bar{x}$$

• Recap *simple* (i.e. p=1) linear regression

Introduction to applied linear algebra

Multiple linear regression

Vectors

Vector magnitude

$$\mathbf{v} = \begin{bmatrix} x \\ y \end{bmatrix}$$
, then $|\mathbf{v}| = \sqrt{x^2 + y^2}$.

Different ways to write a vector

$$\mathbf{v} = \left[\begin{array}{c} x \\ y \end{array} \right] = \left[\begin{array}{cc} x & y \end{array} \right]^{\mathrm{T}}$$

Vector Addition

$$\mathbf{v}_1 + \mathbf{v}_2 = \begin{bmatrix} 8 \\ 3 \end{bmatrix} + \begin{bmatrix} 1 \\ 5 \end{bmatrix} = \begin{bmatrix} 8+1 \\ 3+5 \end{bmatrix} = \begin{bmatrix} 9 \\ 8 \end{bmatrix}$$

Vector Addition

$$\mathbf{v}_1 + \mathbf{v}_2 = \begin{bmatrix} 8 \\ 3 \end{bmatrix} + \begin{bmatrix} 1 \\ 5 \end{bmatrix} = \begin{bmatrix} 8+1 \\ 3+5 \end{bmatrix} = \begin{bmatrix} 9 \\ 8 \end{bmatrix}$$

Vector Addition

$$\mathbf{v}_1 + \mathbf{v}_2 = \begin{bmatrix} 8 \\ 3 \end{bmatrix} + \begin{bmatrix} 1 \\ 5 \end{bmatrix} = \begin{bmatrix} 8+1 \\ 3+5 \end{bmatrix} = \begin{bmatrix} 9 \\ 8 \end{bmatrix}$$

Vector Dot Product

Matrices

 Matrix addition (must be exactly the same dimension!)

$$\mathbf{A} + \mathbf{B} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a+e & b+f \\ c+g & d+h \end{bmatrix}$$

Matrix Multiplication

- Inner dimensions must match
- If A.shape = (m, n) and B.shape = (n, p), then
 AB.shape = (m,p)

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} ae + bg \\ & & \\ &$$

dot product of row 1 and col 1

Matrix Multiplication

- Inner dimensions must match
- If A.shape = (m, n) and B.shape = (n, p), then AB.shape = (m,p)

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} ae + bg \\ \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} ae + bg \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} ae + bg & \textbf{af + bh} \\ c & d \end{bmatrix}$$

dot product of row 1 and col 2

Matrix Multiplication

- Inner dimensions must match
- If A.shape = (m, n) and B.shape = (n, p), then
 AB.shape = (m,p)

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} ae + bg & \\ \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} ae + bg & \textbf{af + bh} \\ \\ c & d \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} ae + bg & af + bh \\ ce + dg & d \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{bmatrix}$$

$$\mathbf{AB} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} ae + bg & \mathbf{af} + \mathbf{bh} \\ ce + dg & cf + dh \end{bmatrix}$$

Matrix Transpose

$$m{A} = egin{bmatrix} a & b & c \ d & e & f \end{bmatrix} \qquad m{A}^T = egin{bmatrix} a & d \ b & e \ c & f \end{bmatrix}$$

Useful note:
$$(\boldsymbol{A}\boldsymbol{B})^T = \boldsymbol{B}^T \boldsymbol{A}^T$$

Matrix Inverse

$$\boldsymbol{A}\boldsymbol{A}^{-1} = \boldsymbol{I}$$

$$m{A} = \left[egin{array}{cc} a & b \ c & d \end{array}
ight] \qquad m{A}^{-1} = rac{1}{ad-bc} \left[egin{array}{cc} d & -b \ -c & a \end{array}
ight]$$

• Recap *simple* (i.e. p=1) linear regression

Introduction to applied linear algebra

Multiple linear regression

Lab 3: USA Housing data

Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
79545.45857	5.682861322	7.009188143	4.09	23086.8005	1059033.558
79248.64245	6.002899808	6.730821019	3.09	40173.07217	1505890.915
61287.06718	5.86588984	8.51272743	5.13	36882.1594	1058987.988
63345.24005	7.188236095	5.586728665	3.26	34310.24283	1260616.807
59982.19723	5.040554523	7.839387785	4.23	26354.10947	630943.4893
80175.75416	4.988407758	6.104512439	4.04	26748.42842	1068138.074
64698.46343	6.025335907	8.147759585	3.41	60828.24909	1502055.817
78394.33928	6.989779748	6.620477995	2.42	36516.35897	1573936.564
59927.66081	5.36212557	6.393120981	2.3	29387.396	798869.5328
81885.92718	4.42367179	8.167688003	6.1	40149.96575	1545154.813
80527.47208	8.093512681	5.0427468	4.1	47224.35984	1707045.722
50593.6955	4.496512793	7.467627404	4.49	34343.99189	663732.3969
39033.80924	7.671755373	7.250029317	3.1	39220.36147	1042814.098
73163.66344	6.919534825	5.993187901	2.27	32326.12314	1291331.518
69391.38018	5.344776177	8.406417715	4.37	35521.29403	1402818.21
73091.86675	5.443156467	8.517512711	4.01	23929.52405	1306674.66
79706.96306	5.067889591	8.219771123	3.12	39717.81358	1556786.6
					1

X

Multiple Linear Regression

$$\hat{y} = h_{\overrightarrow{w}}(\vec{x}) \\ = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_p x_p = \overrightarrow{w} \cdot \vec{x}$$
 "fake" ones
$$X = \begin{bmatrix} 1 & x_{11} & x_{12} & x_{13} & \dots & x_{1p} \\ 1 & \vdots & & & \\ 1 & \vdots & & & \\ 1 & & & & \\ \end{bmatrix}$$

Goal: minimize cost function

$$J(\vec{w}) = \frac{1}{2} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{2} \sum_{i=1}^{n} (y_i - \vec{w} \cdot \vec{x}_i)^2$$

 $n \times (p+1)$

• Recap *simple* (i.e. p=1) linear regression

Introduction to applied linear algebra

Multiple linear regression

Analytic solution to multiple linear regression

•
$$J(\vec{w}) = \frac{1}{2} \sum_{i=1}^{n} (y_i - \vec{w} \cdot \vec{x}_i)^2 = \frac{1}{2} (\vec{y} - X\vec{w}) \cdot (\vec{y} - X\vec{w})$$
$$= \frac{1}{2} (\vec{y} \cdot \vec{y} - 2\vec{y} \cdot X\vec{w} + X\vec{w} \cdot X\vec{w})$$

• Take derivative and set to $\vec{0}$

$$\frac{\partial J}{\partial \vec{w}} = -X^T \vec{y} + (X^T X) \vec{w} = \vec{0}$$

$$\leftrightarrow (X^T X) \vec{w} = X^T \vec{y}$$

$$\leftrightarrow (X^T X)^{-1} (X^T X) \vec{w} = (X^T X)^{-1} X^T \vec{y}$$

$$\leftrightarrow \vec{w} = (X^T X)^{-1} X^T \vec{y} \qquad \text{(Keep this formula and its interpretation in mind!)}$$

$$\text{Variance of X Covariance}$$
of X and \vec{y}

Handout 5

Handout 5, #1

$$\mathbf{A} = \begin{bmatrix} 1 & -1 \\ 3 & 2 \end{bmatrix} \quad \text{and} \quad \mathbf{B} = \begin{bmatrix} 0 & 2 \\ -4 & 1 \end{bmatrix}.$$

$$\mathbf{AB} = \begin{bmatrix} 4 & 1 \\ -8 & 8 \end{bmatrix} \quad \text{and} \quad \mathbf{BA} = \begin{bmatrix} 6 & 4 \\ -1 & 6 \end{bmatrix}.$$

Handout 5

$$2. X = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \qquad \vec{y} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

"fake" ones

3.
$$\overrightarrow{w} = (X^T X)^{-1} X^T \overrightarrow{y}$$

$$= \begin{pmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \end{pmatrix}^{-1} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{1}{2-1} \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Same as before!