a) Die Sprache $L_1 = \{a^i b^j \mid i+j \leq 200, 2i+j \geq 15\}$ ist nicht regulär.

ng 10 July 12, 2017 1 / 7

a) Die Sprache $L_1=\{a^ib^j\mid i+j\leq 200, 2i+j\geq 15\}$ ist nicht regulär. L_1 nicht regulär: Sei $15\leq n\leq 100$. Sei $w=a^nb^n$. $w\in L$. Wir betrachten eine Zerlegung w=xyz mit $|xy|\leq n$ und |y|>0. Wegen Pumping-Lemma muss auch $xy^iz\in L$ für alle i. Das Wort $xy^{200}z$ hat Länge ungefähr 200 und somit zu viele a und b. So gilt $xy^{200}z\notin L$. Also L nicht regulär und Aussage wahr.

a) Die Sprache $L_1=\{a^ib^j\mid i+j\leq 200, 2i+j\geq 15\}$ ist nicht regulär. L_1 nicht regulär: Sei $15\leq n\leq 100$. Sei $w=a^nb^n$. $w\in L$. Wir betrachten eine Zerlegung w=xyz mit $|xy|\leq n$ und |y|>0. Wegen Pumping-Lemma muss auch $xy^iz\in L$ für alle i. Das Wort $xy^{200}z$ hat Länge ungefähr 200 und somit zu viele a und b. So gilt $xy^{200}z\notin L$. Also L nicht regulär und Aussage wahr.

n fest gewählt, für n>200 gibt es kein passendes Wort zum widerlegen mehr, da L_1 endlich ist. Jede endliche Sprache ist regulär.

b) Die Sprache $L_2 = \{(abcd)^n \mid n \in \mathbb{N}\}$ ist regulär.

ng 10 July 12, 2017 2 / 7

b) Die Sprache $L_2=\{(abcd)^n\mid n\in\mathbb{N}\}$ ist regulär. Sei n belibig. Wir wählen $w=(abcd)^n$. Es gilt $w\in L$. $x=ab,y=cd,z=(abcd)^{n-1}$. Es gilt w=xyz und $|xy|\leq n$ und |y|>0. Nach dem Pumping-Lemma muss auch $xy^iz\in L$. Es gilt $xy^2z=abcdcd(abcd)^{n-1}\notin L$. So mit L_2 nicht regulär und wiederlegt.

b) Die Sprache $L_2=\{(abcd)^n\mid n\in\mathbb{N}\}$ ist regulär. Sei n belibig. Wir wählen $w=(abcd)^n$. Es gilt $w\in L$. $x=ab,y=cd,z=(abcd)^{n-1}$. Es gilt w=xyz und $|xy|\leq n$ und |y|>0. Nach dem Pumping-Lemma muss auch $xy^iz\in L$. Es gilt $xy^2z=abcdcd(abcd)^{n-1}\notin L$. So mit L_2 nicht regulär und wiederlegt. Zerlegung wurde fest gewählt. Die gewünschte Aussage gilt nicht für alle Zerlegungen $(x=\varepsilon,y=abcd,z=(abcd)^{n-1}$ kann man pumpen ohne die Sprache zu verlassen). Die Sprache L_2 ist regulär, da sie durch den regulären Ausdruck $(abcd)^*$ beschrieben wird.

c) Die Sprache $L_3=\{z=xyx^R\mid x,y\in\Sigma^*\}$ mit $\Sigma=\{a,b,c\}$ ist kontextfrei.

ng 10 July 12, 2017 3 / 7

c) Die Sprache $L_3=\{z=xyx^R\mid x,y\in\Sigma^*\}$ mit $\Sigma=\{a,b,c\}$ ist kontextfrei.

 $z=a^nb^na^n$, dann gibt's Zerlegung z=uvwxy mit $|vwx|\leq n$ und |vx|>0. Sei uvwxy so gewählt, dass der vxw-Part im ersten drittel liegt, also nur die ersten as enthält. Nach dem Pump-Lemma muss auch $uv^iwx^iy\in L$ für alle i kann aber trivialistischerweise nicht sein da die Anzahl der a am Anfang sich ändert und am Ende des Wortes gleich bleibt. $\implies L_3$ nicht konteckstfrei und die Ausage widerlegt.

c) Die Sprache $L_3=\{z=xyx^R\mid x,y\in\Sigma^*\}$ mit $\Sigma=\{a,b,c\}$ ist kontextfrei.

 $z=a^nb^na^n$, dann gibt's Zerlegung z=uvwxy mit $|vwx|\leq n$ und |vx|>0. Sei uvwxy so gewählt, dass der vxw-Part im ersten drittel liegt, also nur die ersten as enthält. Nach dem Pump-Lemma muss auch $uv^iwx^iy\in L$ für alle i kann aber trivialistischerweise nicht sein da die Anzahl der a am Anfang sich ändert und am Ende des Wortes gleich bleibt. $\implies L_3$ nicht konteckstfrei und die Ausage widerlegt.

Wieder Zerlegung fest gewählt. Außerdem wurde angenommen, dass $a^mb^na^n\notin L_3$ für $m\neq n$, tatsächlich ist jedoch $L_3=\Sigma^*$ und somit regulär.

Bekannt: Einfache Produktkonstruktion zum Erkennen von Schnitt, Vereinigung, etc. regulärer Sprachen

ng 10 July 12, 2017 4 / 7

Bekannt: Einfache Produktkonstruktion zum Erkennen von Schnitt, Vereinigung, etc. regulärer Sprachen

Übung 10 July 12, 2017

4 / 7

Jetzt: Synchronisiertes Produkt: $A \circ B$ mit $\Sigma_{\circ} = \{a\}$.

Jetzt: Synchronisiertes Produkt: $A \circ B$ mit $\Sigma_{\circ} = \{a\}$.

Übung 10 July 12, 2017

5 / 7

Unsynchronisiertes Produkt: $\mathcal{A} \sqcup \!\!\! \sqcup \mathcal{B}$.

Unsynchronisiertes Produkt: $A \sqcup \!\!\! \sqcup \mathcal{B}$.

Unsynchronisiertes Produkt: $A \coprod B$.

• Bisher: Kontextfreie Grammatiken: $\mathcal{G}=(N,\Sigma,P,S)$ mit Produktionen der Form $A\to\gamma$ mit $\gamma\in(N\cup\Sigma)^*$.

- Bisher: Kontextfreie Grammatiken: $\mathcal{G}=(N,\Sigma,P,S)$ mit Produktionen der Form $A\to\gamma$ mit $\gamma\in(N\cup\Sigma)^*$.
- Jetzt: Mit Kontextsensitive Grammatiken, d.h. erlaube die Anwendung von Produktionen nur mit bestimmten Kontext:

$$\alpha A\beta \to \alpha \gamma \beta,$$
 $\alpha, \beta \in (N \cup \Sigma)^*, \gamma \in (N \cup \Sigma)^+.$

- Bisher: Kontextfreie Grammatiken: $\mathcal{G}=(N,\Sigma,P,S)$ mit Produktionen der Form $A\to\gamma$ mit $\gamma\in(N\cup\Sigma)^*$.
- Jetzt: Mit Kontextsensitive Grammatiken, d.h. erlaube die Anwendung von Produktionen nur mit bestimmten Kontext:

$$\alpha A \beta \to \alpha \gamma \beta,$$
 $\alpha, \beta \in (N \cup \Sigma)^*, \gamma \in (N \cup \Sigma)^+.$

• Kontextsensitive Grammatik für $\{a^nb^nc^n\mid n\in\mathbb{N}\}$:

$$S \rightarrow aSBC \mid \varepsilon, \qquad CB \rightarrow XB, \qquad XB \rightarrow XY,$$

$$XY \rightarrow BY, \qquad BY \rightarrow BC, \qquad aB \rightarrow ab,$$

$$bB \rightarrow bb, \qquad C \rightarrow c.$$

- Bisher: Kontextfreie Grammatiken: $\mathcal{G}=(N,\Sigma,P,S)$ mit Produktionen der Form $A\to \gamma$ mit $\gamma\in (N\cup\Sigma)^*$.
- Jetzt: Mit Kontextsensitive Grammatiken, d.h. erlaube die Anwendung von Produktionen nur mit bestimmten Kontext:

$$\alpha A \beta \to \alpha \gamma \beta,$$
 $\alpha, \beta \in (N \cup \Sigma)^*, \gamma \in (N \cup \Sigma)^+.$

• Kontextsensitive Grammatik für $\{a^nb^nc^n\mid n\in\mathbb{N}\}$:

$$S o aSBC \mid \varepsilon, \qquad CB o XB, \qquad XB o XY, \ XY o BY, \qquad BY o BC, \qquad aB o ab, \ bB o bb, \qquad C o c.$$

• Wie könnte ein Automatenmodell, das kontextsensitive Sprachen erkennt, funktionieren?