Adversarial Examples in Random Neural Networks with General Activations

Andrea Montanari and Yuchen Wu

Stanford University

Abstract

Recent theoretical work [1, 2] proved that adversarial examples are ubiquitous in two-layers networks with sub-exponential width and ReLU or smooth activations, and multi-layer ReLU networks with sub-exponential width. We present a result of the same type, with no restriction on width and for general locally Lipschitz continuous activations.

Adversarial Examples

The output of a neural network at test time can be significantly changed by an imperceptible but carefully chosen perturbation of its input. Such perturbed inputs are referred to as adversarial examples.

Figure 1:Adversarial examples in real applications.

Assume data sample takes the form (\boldsymbol{x}, y) , with $\boldsymbol{x} \in$ \mathbb{R}^d a covariates vector and $y \in \mathbb{R}$ the corresponding label. A model is a function $f(\cdot; \boldsymbol{\theta}) : \mathbb{R}^d \to \mathbb{R}$ parametrized by weights $\boldsymbol{\theta} \in \mathbb{R}^p$. Given a test point $\boldsymbol{x} \in \mathbb{R}^d$, an adversary constructs $\boldsymbol{x}^s = \boldsymbol{x}^s(\boldsymbol{x}; \boldsymbol{\theta}) \in$ \mathbb{R}^d . The adversary is successful if, with high probability

$$sign(f(\boldsymbol{x}^s;\boldsymbol{\theta})) = -sign(f(\boldsymbol{x};\boldsymbol{\theta})), \qquad (1)$$

$$\|\boldsymbol{x}^s - \boldsymbol{x}\| \ll \|\boldsymbol{x}\|.$$
 (2)

Fast Gradient Sign Method

The fast gradient sign method (FGSM) is an efficient algorithm used to find adversarial examples. More precisely, FGSM can be stated as follows:

$$oldsymbol{x}^s := oldsymbol{x} - au s_d
abla f(oldsymbol{x}),$$

where $\tau := \text{sign}(f(\boldsymbol{x}))$, and $s_d \in \mathbb{R}^+$ is the step size.

 $\epsilon \operatorname{sign}(\nabla_{\boldsymbol{x}} \dot{\mathcal{T}}(\boldsymbol{\theta}, \boldsymbol{x}, y))$ "gibbon"

99.3 % confidence

Figure 2:Illustration of fast gradient sign method.

Random Multi-layer Networks

We consider a multi-layer neural network with l+1layers for $l \in \mathbb{N}_+$:

$$f(\boldsymbol{x}) = \boldsymbol{W}_{l+1}\sigma(\boldsymbol{W}_{l}\sigma(\cdots\sigma(\boldsymbol{W}_{2}\sigma(\boldsymbol{W}_{1}\boldsymbol{x}))\cdots)).$$

- $ullet oldsymbol{W}_i \in \mathbb{R}^{d_i imes d_{i-1}}$
- $(\mathbf{W}_i)_{jj'} \stackrel{iid}{\sim} \mathsf{N}(0, 1/d_{i-1})$ for all $j \in [d_i], j' \in [d_{i-1}]$
- $\{W_i\}_{i\in[l+1]}$ are independent of each other
- Assume $d_0 = d$, $d_{l+1} = 1$, and $d_i = d_i(d) \to \infty$ for all $0 \le i \le l$
- Activation function $\sigma: \mathbb{R} \to \mathbb{R}$ is understood to act on vectors entrywise

Main Result (Informal)

FGSM-like attack finds adversarial examples for neural networks with random Gaussian weights. Comparing to earlier works, our results apply to arbitrary diverging width and general activation functions.

Main Theorem

Let $\boldsymbol{x} \in \mathbb{R}^d$ be a deterministic vector with $\|\boldsymbol{x}\|_2 =$ \sqrt{d} . Assume that σ is (1) not a constant, (2) continuous, (3) almost everywhere differentiable, (4) σ' is almost everywhere continuous and (5) σ' is pseudo-Lipschitz. Then the following hold:

Theorem 2.1 of [3]

Let $\{\xi_d\}_{d\in\mathbb{N}_+}\subseteq\mathbb{R}^+$ be an increasing sequence such that $\xi_d \to \infty$ as $d \to \infty$. Then there exists $\{s_d\}_{d\in\mathbb{N}_+}\subseteq\mathbb{R}^+$, such that $s_d\leq\xi_d$ and the following hold:

- ullet p- $\lim_{m,d o\infty}rac{\|oldsymbol{x}-oldsymbol{x}^s\|_2}{\|oldsymbol{x}\|_2}=0,$
- $\lim_{m,d\to\infty} \mathbb{P}(\operatorname{sign}(f(\boldsymbol{x})) \neq \operatorname{sign}(f(\boldsymbol{x}^s))) = 1.$

Gaussian Conditioning Lemma

Let $X \in \mathbb{R}^{m \times d}$ have i.i.d. standard Gaussian entries, $\boldsymbol{a} \in \mathbb{R}^d$, $\boldsymbol{w} \in \mathbb{R}^m$. Furthermore, \boldsymbol{X} , \boldsymbol{a} and \boldsymbol{w} are mutually independent

$$ullet g = Wa$$

 $ullet oldsymbol{m} = oldsymbol{W}^\intercal F(oldsymbol{g}, oldsymbol{w}), \, F: \mathbb{R}^{2m} o \mathbb{R}^m$

Conditioning on $(\boldsymbol{g}, \boldsymbol{m})$, the conditional distribution $\boldsymbol{X} \mid \boldsymbol{g}, \boldsymbol{m}$ is equal to

$$\Pi_{\boldsymbol{x}}^{\perp} \tilde{\boldsymbol{X}} \Pi_{\boldsymbol{q}}^{\perp} + \Pi_{\boldsymbol{x}}^{\perp} \boldsymbol{X} \Pi_{\boldsymbol{g}} + \Pi_{\boldsymbol{x}} \boldsymbol{X} \Pi_{\boldsymbol{q}}^{\perp} + \Pi_{\boldsymbol{x}} \boldsymbol{X} \Pi_{\boldsymbol{g}},$$

- $\Pi_{\boldsymbol{v}}$ denotes projection onto the subspace spanned
- $ullet \Pi_{oldsymbol{u}}^\perp = oldsymbol{\mathsf{I}} \Pi_{oldsymbol{v}}$
- ullet X is an independent copy of X that is independent of $(\boldsymbol{g}, \boldsymbol{m})$

Conclusion

Fully connected neural networks with constant depth, Gaussian weights, general activation function and arbitrary diverging width have adversarial examples that can be found by FGSM.

Open Problems

- Diverging depth
- Beyond Gaussian weights
- More complicated structure

References

- [1] Sébastien Bubeck, Yeshwanth Cherapanamjeri, Gauthier Gidel, and Remi Tachet des Combes.
- A single gradient step finds adversarial examples on random two-layers neural networks.
- Advances in Neural Information Processing Systems, 34:10081-10091, 2021.
- [2] Peter Bartlett, Sébastien Bubeck, and Yeshwanth Cherapanamjeri.
- Adversarial examples in multi-layer random relu networks. Advances in Neural Information Processing Systems, 34:9241-9252, 2021.
- [3] Andrea Montanari and Yuchen Wu.
- Adversarial examples in random neural networks with general activations.
- arXiv preprint arXiv:2203.17209, 2022.

Acknowledgements

This work was supported by the NSF through award DMS-2031883, the Simons Foundation through Award 814639 for the Collaboration on the Theoretical Foundations of Deep Learning, the NSF grant CCF-2006489, the ONR grant N00014-18-1-2729.

Contact Information

- Web: https://wuyc0114.github.io./
- Email: wuyc14@stanford.edu
- Phone: +1 (650) 613 8374