Arizona Aquifer Recharge Suitability Analysis

 $\mathbf{Travis} \ \mathbf{Zalesky}^1$

¹University of Arizona,

Corresponding author: Travis Zalesky, travisz@arizona.edu

4 Abstract

- Aquifer recharge can be either passive or active, and is implemented in a variety of
- ways. This analysis seeks to identify regions across AZ which are boadly suitable for
- aquifer recharge projects as a general template for more focuse analysis.

8 Plain Language Summary

- Identifying regions in AZ where surface water can be stored long-term as ground
- 10 water.

1 Introduction

2 Data & Methods

- These methods and data layers are preliminary and subject to change
- ### Elevation #### DEM Elevation and elevation derivatives from 30-m NASA
- SRTM. USGS 3-DEM (10m) product not suitable for full study area analysis due
- to (1) the large area of missing data in Mexico, and (2), the excessively high spatial
- resolution (massively increasing computational requirements).
- SRTM elevation sinks filled prior to calculating slope and aspect.
- Should elevation be directly used in the suitability analysis?
- 20 2.0.1 Slope
- Slope derived from hydrologically conditioned (filled) 30-m SRTM layer using
- quadratic surface function and a fixed 30-m neighborhood. Slope measured in °.
- 23 Higher slopes are less suitable because thinning is both more expensive and 24 more precipitation will end up as runoff.
- Slope classified from 1-10 using a **continuous function** in ArcPro Suitability Mapper.

Pamameter	Setting
Function	MSSSmall
Mean multiplyer	1
Sddv multiplier	2
Lower threshold	0
Value below threshold	0
Upper threshold	90
Value above threshold	0
Invert function	FALSE
Save transformed dataset	TRUE
Output	${\bf Transformed_SRTM_slope}$

Figure 1: Slope suitability mapper rescale transformation setup.

- 27 2.0.2 Aspect
- Aspect calculated as with slope. Aspect reference point at N. Pole.
- Aspect has a large impact on solar radiation.
- $_{30}$ Closer to 0 or 360 is desired, low suitability scores for closeness.
- Aspect classified from 1-10 using a **continuous function** in ArcPro Suitability
 Mapper.

Pamameter	Setting
Function	Near
Mid Point	180
Point spread	0.0011049638968393428 (default)
Lower threshold	-1 (flat)
Value below threshold	0
Upper threshold	360
Value above threshold	0
Invert function	TRUE
Save transformed dataset	TRUE
Output	${\bf Transformed_SRTM_aspect}$

Figure 2: Aspect suitability mapper rescale transformation setup.

2.1 Precipitation

33

- PRISM normals, 800m resolution. Annual precipitation.
- $_{35}$ Mean annual precipitation must be higher than 500mm 1990 2020
- Precipitation classified from 1-10 using a **continuous function** in ArcPro Suitability Mapper.
- NOTE: The logistic growth function may also be a good choice for this dataset. See Logistic Growth function

Pamameter	Setting
Function	MSLarge
Mean multiplyer	1.68 (aproximates 500mm at x-intercept)
Sddv multiplier	1
Lower threshold	67.33789825439453 (default, minimum)
Value below threshold	0
Upper threshold	1214.5689697265625 (default, maximum)
Value above threshold	0
Invert function	FALSE
Save transformed dataset	TRUE
Output	Transformed_PRISM_ppt_30yrnormal_800m

Figure $\,$ 3: Aspect suitability mapper rescale transformation setup.

- 2.2 Vegetation Characteristics
- 2.2.1 NLCD 2021 Total Canopy Cover
- 2.2.2 Landfire

40

- 2.3 Soil Hydrology
- 44 AZ_Soil_Hydric_Group data layer

45 Classification Schema

Class	$\begin{array}{c} { m Count} \\ { m (pixels)} \end{array}$	Text	Value
A	62559472	Group A soils consist of deep, well drained sands or gravelly sands with high infiltration and low runoff rates.	10
В	76665198	Group B soils consist of deep well drained soils with a moderately fine to moderately coarse texture and a moderate rate of infiltration and runoff.	10
С	88491710	Group C consists of soils with a layer that impedes the downward movement of water or fine textured soils and a slow rate of infiltration.	8
D	155095790	Group D consists of soils with a very slow infiltration rate and high runoff potential. This group is composed of clays that have a high shrink-swell potential, soils with a high water table, soils that have a clay pan or clay layer at or near the surface, and soils that are shallow over nearly impervious material.	3
A/D	43192	Group A/D soils naturally have a very slow infiltration rate due to a high water table but will have high infiltration and low runoff rates if drained.	??
B/D	18456	Group B/D soils naturally have a very slow infiltration rate due to a high water table but will have a moderate rate of infiltration and runoff if drained.	??

Class	Count (pixels)	Text	Value
C/D	217771	Group C/D soils naturally have a very slow infiltration rate due to a high water table but will have a slow rate of infiltration if drained.	??

- 3 Conclusion
- 47 References