CS 18200

MIDTERM EXAM MODEL SOLUTIONS

Monday, July 10, 2017 Ahmed Mahmood

Solution 1) a) (7 points)Graded by: Rashmi Soni

Let's consider this proof by cases:

Let n be a positive integer. All the perfect cubes of n which are less than equal to 100 are 1, 8, 27, 64 such that:

when
$$n = 1$$
, $n3 = 1$, $n2 = 1$

when
$$n = 2$$
, $n3 = 8$, $n2 = 4$

when
$$n = 3$$
, $n3 = 27$, $n2 = 9$

when
$$n = 4$$
, $n3 = 64$, $n2 = 16$

So.

for
$$n = 1$$
, $n2 + n3 = 2$

for
$$n = 2$$
, $n2 + n3 = 12$

for
$$n = 3$$
, $n2 + n3 = 36$

for
$$n = 4$$
, $n2 + n3 = 80$

Thus, there is no positive integer n such that $n^2 + n^3 = 100$.

Solution 1) b)(5 points) Graded by: Rashmi Soni

Given, A(x, y) := x is angry at y, F(x) := x is friendly, T(x) := x is tall, and the domain for all quantifiers consists of all people

So,
$$\forall x((T(x) \land \neg F(x) \rightarrow \exists y(A(x,y) \land T(y) \land (x \neq y)))$$
 translates as

For all people, if a person is tall and not friendly, then there exists another tall person on whom he is angry on.

Or, If a tall person is not friendly, then he/she is angry on another tall person.

Solution 1) c) (7 points) Graded by: Rashmi Soni

Solve

$$a_n = a_{n-1} + 2n + 4$$
, $a_0 = 4$... $eq(1)$

Substituting n with (n-1) in equation 1, we get

$$a_{n-1} = a_{n-2} + 2(n-1) + 4$$
 ... $eq(2)$

Now, Substituting n with (n-2) in equation 1, we get

$$a_{n-2}=a_{n-3}+2(n-2)+4$$
 ... $eq(3)$

Similarly,

$$a_{n-3} = a_{n-4} + 2(n-3) + 4$$
 ... $eq(4)$

$$a_{n-4} = a_{n-5} + 2(n-4) + 4 \qquad \dots eq(5)$$
 . . .
$$a_2 = a_1 + 2(2) + 4 \qquad \dots eq(n-1)$$

$$a_1 = a_0 + 2(1) + 4 \qquad \dots eq(n)$$
 Adding up all the above equations, we get
$$a_n = a_0 + 2[n + (n-1) + (n-2) + \dots + 1] + 4n$$

$$a_n = a_0 + 2\left(\frac{n(n+1)}{2}\right) + 4n$$

$$a_n = 4 + 2\left(\frac{n(n+1)}{2}\right) + 4n \qquad \{Given, a_0 = 4\}$$

$$a_n = n^2 + 5n + 4$$

(d) (7 points) Use the rules of inference to show that the following argument is valid:

$$(w \land a) \rightarrow p$$

$$\neg w \rightarrow m$$

$$\neg a \rightarrow i$$

$$e \rightarrow (\neg m \land \neg i)$$

$$\neg p$$

$$\neg e$$

Graded by: Ramya Vulimiri

Solution:

1.
$$(w \wedge a) \rightarrow p$$
 Premise
2. $\neg w \rightarrow m$ Premise
3. $\neg a \rightarrow i$ Premise
4. $e \rightarrow (\neg m \wedge \neg i)$ Premise
5. $\neg p$ Premise
6. $\neg (w \wedge a)$ Modus Tollens (1,5)
7. $\neg w \vee \neg a$ DeMorgan's law (6)
8. $w \vee m$ Equivalent to 2
9. $a \vee i$ Equivalent to 3
10. $\neg a \vee m$ Resolution (7,8)
11. $m \vee i$ Resolution (9,10)
12. $\neg e \vee (\neg m \wedge \neg i)$ Equivalent to 4
Disjunctive Syllogism (11,12)

(e) (7 points) Prove by structural induction that $n(T) \ge 2h(T) + 1$ for any full binary tree T, where n(T) is the number of nodes (vertices) in the full binary tree T and h(T) is the height of the full binary tree T. Graded by: Ramya Vulimiri

Solution:

BASIS STEP: For the full binary tree consisting of just the root r, the result is true because n(T) = 1 and h(T) = 0, so that $n(T) = 1 \ge 2h(T) + 1 = 2(0) + 1 = 1$.

RECURSIVE STEP: For the inductive hypothesis, we assume that $n(T_1) \ge 2h(T_1) + 1$ and $n(T_2) \ge 2h(T_2) + 1$. We have to prove that $n(T) \ge 2h(T) + 1$, where T is a new full binary tree formed by a new root node r, left subtree T_1 and right subtree T_2 .

We know
$$h(T) = max(h(T_1), h(T_2)) + 1$$
 and
$$n(T) = n(T_1) + n(T_2) + 1$$
 We find that

$$n(T) = n(T_1) + n(T_2) + 1 (1)$$

$$\geq (2h(T_1) + 1) + (2h(T_2) + 1) + 1 \tag{2}$$

$$= 2(h(T_1) + h(T_2)) + 3 (3)$$

$$\geq 2(\max(h(T_1), h(T_2))) + 3 \tag{4}$$

$$= 2(max(h(T_1), h(T_2)) + 1) + 1$$
(5)

$$=2(h(T)+1) \tag{6}$$

$$\therefore n(T) \ge 2h(T) + 1$$

Solution 2) a) (5 points)Graded by: Rashmi Soni

Final order so that each function is big-O of next function :

$$log\sqrt{n^3}$$
, $3n + 5$, $3nlogn$, $6n(logn)^2 + 5n\sqrt{n}$, $20n^2$, $(\frac{n}{logn})^3$

(b) (5 points) Give an efficient algorithm to find the second largest element in an unsorted list.

Graded by: Ramya Vulimiri

Solution:

(c) (5 points) Show that if A, B, and C are sets, then $|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$. Graded by: Ramya Vulimiri

Solution:

We can use the fact that set union is associative and the result that $|A \cup B| = |A| + |B| - |A \cap B|$.

$$|A \cup B \cup C| = |A \cup (B \cup C)| \tag{7}$$

$$= |A| + |(B \cup C)| - |A \cap (B \cup C)| \tag{8}$$

$$= |A| + |B| + |C| - |(B \cap C)| - |(A \cap B) \cup (A \cap C)| \tag{9}$$

$$= |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|. \tag{10}$$

(d) (8 points)

Consider this nondeterministic finite-state automaton:

1. Construct a deterministic finite-state automaton that recognizes the same language. Solution:

2. Represent the language that the automaton recognizes using regular expressions.

Solution: $(11)^* \cup ((11)^*0(0 \cup 1)^*)$

(e) (5 points) Express -88_{10} in signed 8-bit 2's complement binary

Solution:

Converting to Binary:

88/2 = 44, remainder is 0

44/2 = 22, remainder is 0

22/2 = 11, remainder is 0

11/2 = 5, remainder is 1

5/2 = 2, remainder is 1

2/2 = 1, remainder is 0

1/2 = 0, remainder is 1

Thus, $88 = 0101 \ 1000$

ones complement = $1010\ 0111$

two's complement $= 1010 \ 1000$

Ans: 1010 1000

(f) (5 points) Give the derivation tree and the Backus-Naur Form of the grammar in MCQ [7].

Solution:

Derivation tree:

The BNF form is:

S := a

S := aA - aab

S := b

Note: The bubble in section of the midterm has 17 questions to bubble in (each is worth 2 points).

- 1. I have spelled out and bubbled in correctly my first name, last name, and my Purdue ID.
 - \mathbf{A} True
 - B False
- 2. NFAs are more powerful than DFAs.
 - A True
 - B False

Solution: B

- 3. The halting problem has an exponential time algorithm
 - A True
 - ${f B}$ False

Solution: B

- 4. The least big-O estimate for $f(n) = \frac{(3n^3 + n^2)(n+4)}{5n^3 + 10n^2}$ is .
 - $\mathbf{A} O(n^3)$
 - \mathbf{B} O(nlogn)
 - \mathbf{C} $O(n^n)$
 - $\mathbf{D} O(n^2)$
 - **E** None of the above

Solution: E

- 5. Which problem can be solved using a finite state automata.
 - A Sorting
 - **B** Finding the nth Fibonacci number
 - C Halting
 - **D** Matching regular expression
 - ${f E}$ None of the above

Solution: D

0.	Finite state machines have infinite memory
-	A True
-	B False Solution: B
	The language of this grammar is $G=(V,T,S,P),\ V=\{S,A,a,b\},\ T=\{a,b\},\ P=\{S\to aA,S\to b,A\to ab\}$
	$\mathbf{A} \ \{b,aaa\}$
	$\mathbf{B} \ \{b,aab\}$
($\mathbf{C} \ \{ab\}$
	D None of the above Solution: B
8. ′	There are infinite number systems
-	A True
	B False Solution: A
	All integers (positive and negative) can be represented uniquely using a sufficient number of digits under which binary representation?
	A Signed magnitude
-	B One's complement
(C Two's complement
	D Octal system
-	E None of the above Solution: C
10.	There are infinite prime numbers
	A True
	B False
	Solution: A

11.	The value of $gcd(91,14)$ is
	A 14
	B 7
	C 6
	D 91
	E None of the above Solution: B
12.	Which of the following numbers is congruent to 5 modulo 6
	$\mathbf{A} \ 0$
	B 2
	C 6
	D 17
	E None of the above Solution: D
13.	Array A contains n integers. You know that the array contains only two numbers that are not in proper order. Which sorting algorithm achieves $O(n)$ time on all input sequences with two numbers that are not in proper order?
	A Bubble sort
	B Mergesort
	C Insertion sort
	D None of the above
	Solution: C
14.	$\sum_{i=0}^{n-1} (2i+1)$ equals
	\mathbf{A} n
	$\mathbf{B} \ n^2$
	$C n^2 - 1$
	D None of the above Solution: B

	A Injective
	B Surjective
	C Bijective
	D Partial Solution: B
16.	The function $f(x)=x^2-x$, from N to N, is an injection.
	A True

15. The range of a function is equal to its co-domain in which function type

- 17. Recursive algorithms are always faster than iterative algorithms.
 - A True

 ${\bf B}$ False

 ${f B}$ False

Solution: B

Solution: B