

# 日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年 8月21日

出 願 番 号 Application Number:

特願2003-297347

[ST. 10/C]:

[ J P 2 0 0 3 - 2 9 7 3 4 7 ]

出 願 人
Applicant(s):

富士写真フイルム株式会社

2003年 9月 4日

特許庁長官 Commissioner, Japan Patent Office 今井康







【書類名】特許願【整理番号】P27812JK【あて先】特許庁長官殿【国際特許分類】H04N 5/232

【発明者】

【住所又は居所】 神奈川県足柄上郡開成町宮台798番地 富士写真フイルム株式

会社内

【氏名】 山口 博司

【特許出願人】

【識別番号】 000005201

【氏名又は名称】 富士写真フイルム株式会社

【代理人】

【識別番号】 100073184

【弁理士】

【氏名又は名称】 柳田 征史

【選任した代理人】

【識別番号】 100090468

【弁理士】

【氏名又は名称】 佐久間 剛

【先の出願に基づく優先権主張】

【出願番号】 特願2002-283892 【出願日】 平成14年 9月27日

【手数料の表示】

【予納台帳番号】 008969 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

 【物件名】
 明細書 1

 【物件名】
 図面 1

 【物件名】
 要約書 1

 【包括委任状番号】
 9814441



## 【書類名】特許請求の範囲

## 【請求項1】

複数の撮像装置をネットワークを介して連携させて操作して画像データを取得する撮像 装置制御方法において、

前記画像データを表示する表示手段の表示特性に応じて、前記画像データを加工して、 該表示手段に表示することを特徴とする撮像装置制御方法。

#### 【請求項2】

前記加工された画像データの表示を、前記複数の撮像装置のうちの一の撮像装置において行うことを特徴とする請求項1記載の撮像装置制御方法。

#### 【請求項3】

前記画像データの加工を前記複数の撮像装置のそれぞれにおいて行うことを特徴とする 請求項1または2記載の撮像装置制御方法。

#### 【請求項4】

前記画像データの加工を前記一の撮像装置または前記複数の撮像装置のそれぞれのいずれかにおいて行うことを特徴とする請求項2記載の撮像装置制御方法。

## 【請求項5】

前記画像データの加工を前記一の撮像装置および前記複数の撮像装置のそれぞれいずれ において行うかを、前記複数の撮像装置の表示手段の表示特性および/または該複数の撮 像装置の通信能力に応じて決定することを特徴とする請求項4記載の撮像装置制御方法。

#### 【請求項6】

前記表示特性として、前記表示手段の解像度、階調特性、色再現特性、サイズおよびアスペクト比を含むことを特徴とする請求項1から5のいずれか1項記載の撮像装置制御方法。

## 【請求項7】

複数の撮像装置をネットワークを介して連携させて操作して画像データを取得する撮像 装置制御装置において、

前記画像データを表示する表示手段の表示特性に応じて、前記画像データを加工する加工手段を備えたことを特徴とする撮像装置制御装置。

#### 【請求項8】

前記表示手段は、前記複数の撮像装置のうちの一の撮像装置に設けられてなることを特 徴とする請求項7記載の撮像装置制御装置。

#### 【請求項9】

前記複数の撮像装置のそれぞれに設けられてなることを特徴とする請求項7記載の撮像 装置制御装置。

#### 【請求項10】

前記複数の撮像装置のそれぞれに設けられてなることを特徴とする請求項8記載の撮像装置制御装置。

#### 【請求項11】

前記画像データの加工を前記一の撮像装置または前記複数の撮像装置のそれぞれのいずれかにおいて行うよう前記加工手段を制御する制御手段をさらに備えたことを特徴とする請求項10記載の撮像装置制御装置。

#### 【請求項12】

前記制御手段は、前記画像データの加工を前記一の撮像装置および前記複数の撮像装置 のそれぞれのいずれにおいて行うかを、前記複数の撮像装置の表示手段の表示特性および /または該複数の撮像装置の通信能力に応じて決定する手段であることを特徴とする請求 項11記載の撮像装置制御装置。

## 【請求項13】

前記表示特性として、前記表示手段の解像度、階調特性、色再現特性、サイズおよびアスペクト比を含むことを特徴とする請求項7から12のいずれか1項記載の撮像装置制御装置。



## 【請求項14】

複数の撮像装置をネットワークを介して連携させて操作して画像データを取得する撮像 装置制御方法をコンピュータに実行させるためのプログラムにおいて、

前記画像データを表示する表示手段の表示特性に応じて、前記画像データを加工して、 該表示手段に表示する手順を有するプログラム。



## 【書類名】明細書

【発明の名称】撮像装置制御方法および装置並びにプログラム

### 【技術分野】

### [0001]

本発明は、例えば無線LANのようなネットワークを介して接続された複数の撮像装置の動作を制御する撮像装置制御方法および装置並びに撮像装置制御方法をコンピュータに 実行させるためのプログラムに関するものである。

## 【背景技術】

## [0002]

遠隔地に設置されたカメラの映像をネットワークを介して鑑賞できるようにする遠隔カメラシステムが提案されている。このような遠隔カメラシステムは、単にカメラの映像を見ることができるだけでなく、カメラの向きやズーム倍率をも遠隔地から操作することができるものである。また、このような遠隔カメラシステムにおいて、1つのカメラから複数のカメラの動作を制御する方法も提案されている(例えば特許文献1参照)。

【特許文献1】特開2000-113166号公報

### 【発明の開示】

#### 【発明が解決しようとする課題】

## [0003]

ところで、上記遠隔カメラシステムを、デジタルカメラに適用することも可能である。 具体的には、複数のユーザの各々がデジタルカメラを所持している場合に、一のユーザが デジタルカメラを用いて撮影を行うと、他のユーザのデジタルカメラにおいても同時にあ るいは連続して撮影を行わせることも可能である。このように、複数のデジタルカメラを 連携させて操作することにより、様々なアングルから1つの被写体を同時に撮影すること が可能となり、撮影の楽しみを広げることができる。また、複数のカメラによりそれぞれ 取得された画像データを一元的に保管することにより、画像データの配布や画像データを 用いてのアルバム作成等を容易に行うことが可能となる。

#### [0004]

ここで、画像データを配布する場合、画像データにより表される画像に含まれる人物が有するカメラに対して、画像データが添付された電子メールを送信したり、画像データの保管場所を表すURLを電子メールに記述して送信する。これにより、画像データの送信等を受けたユーザは、自身のカメラのモニタに他人が撮影した画像を表示して楽しむことが可能となる。

## [0005]

しかしながら、カメラのモニタはカメラの機種に応じて解像度、階調特性、色再現特性、サイズおよびアスペクト比等が異なる。このため、一のカメラにおいて取得した画像データはそのカメラでは高画質に表示できても、その画像データを他のカメラにおいて表示した場合に、表示した画像が好ましい画質とならない場合がある。

### [0006]

本発明は上記事情に鑑みなされたものであり、他人の撮像装置により取得された画像データであっても高画質の画像を表示できるようにすることを目的とする。

#### 【課題を解決するための手段】

## [0007]

本発明による撮像装置制御方法は、複数の撮像装置をネットワークを介して連携させて 操作して画像データを取得する撮像装置制御方法において、

前記画像データを表示する表示手段の表示特性に応じて、前記画像データを加工して、 該表示手段に表示することを特徴とするものである。

#### [0008]

「撮像装置」とは、被写体を撮影することにより被写体の画像を表すデジタルの画像データを取得する撮影専用のデジタルカメラのみならず、携帯電話やPDA等の通信機能を有する携帯端末装置に搭載されるデジタルカメラをも含む。



## [0009]

「表示手段の表示特性」とは、表示手段の解像度、階調特性、色再現特性、表示手段のサイズおよび表示手段のアスペクト比等の表示される画像の画質に影響を与える表示手段の特性をいう。

## [0010]

「加工」とは、解像度変換処理、階調補正処理、色補処理正、濃度補正処理、拡大縮小処理およびアスペクト比に合わせるためのトリミング処理等を施すことを意味する。

## [0011]

なお、本発明による撮像装置制御方法においては、前記加工された画像データの表示を 、前記複数の撮像装置のうちの一の撮像装置において行うようにしてもよい。

## [0012]

また、画像データの表示を、複数の撮像装置により取得された画像データを管理するサーバ等の手段において行ってもよい。この場合、表示手段はそのサーバ等の手段に設けられてなるものである。

## [0013]

また、本発明による撮像装置制御方法においては、前記画像データの加工を前記複数の 撮像装置のそれぞれにおいて行うようにしてもよい。

## [0014]

また、前記加工された画像データの表示を前記複数の撮像装置のうちの一の撮像装置において行うに際し、前記画像データの加工を前記一の撮像装置または前記複数の撮像装置のそれぞれのいずれかにおいて行うようにしてもよい。

## [0015]

この場合、前記画像データの加工を前記一の撮像装置および前記複数の撮像装置のそれぞれのいずれにおいて行うかを、前記複数の撮像装置の表示手段の表示特性および/または該複数の撮像装置の通信能力に応じて決定するようにしてもよい。

#### [0016]

本発明による撮像装置制御装置は、複数の撮像装置をネットワークを介して連携させて 操作して画像データを取得する撮像装置制御装置において、

前記画像データを表示する表示手段の表示特性に応じて、前記画像データを加工する加工手段を備えたことを特徴とするものである。

## [0017]

なお、本発明による撮像装置制御装置においては、前記表示手段を、前記複数の撮像装置のうちの一の撮像装置に設けてもよい。

## [0018]

また、本発明による撮像装置制御装置を、前記複数の撮像装置のそれぞれに設けてもよい。

## [0019]

また、表示手段が複数の撮像装置のうちの一の撮像装置に設けられてなり、本発明による撮像装置制御装置が複数の撮像装置のそれぞれに設けられてなる場合においては、前記画像データの加工を前記一の撮像装置または前記複数の撮像装置のそれぞれのいずれかにおいて行うよう前記加工手段を制御する制御手段をさらに備えるものとしてもよい。

#### [0020]

この場合、前記制御手段は、前記画像データの加工を前記一の撮像装置および前記複数の撮像装置のそれぞれのいずれにおいて行うかを、前記複数の撮像装置の表示手段の表示特性および/または該複数の撮像装置の通信能力に応じて決定する手段としてもよい。

#### [0021]

なお、本発明による撮像装置制御方法をコンピュータに実行させるためのプログラムと して提供してもよい。

#### 【発明の効果】

## [0022]



本発明によれば、複数の撮像装置により取得された画像データが、画像データを表示する表示手段の表示特性に応じて加工されて表示手段に表示される。このため、表示手段に はその表示特性に応じて加工された高画質の画像を表示することができる。

## [0023]

また、加工された画像データの表示を複数の撮像装置のうちの一の撮像装置において行うことにより、その一の撮像装置において他の撮像装置が取得した画像データを高画質に表示することができる。

#### [0024]

また、画像データの加工を複数の撮像装置のそれぞれにおいて行うことにより、加工された画像データを撮像装置から表示手段に直ちに表示することができるため、高画質の画像を迅速に表示することができる。

### [0025]

また、画像データの加工を一の撮像装置または複数の撮像装置のそれぞれのいずれかにおいて行うことにより、加工を行わない撮像装置の処理の負担を軽減できる。

### [0026]

この場合、複数の撮像装置の表示手段の表示特性および/または通信能力に応じて、一の撮像装置および複数の撮像装置のそれぞれのいずれにおいて画像データの加工を行うかを決定することにより、ある撮像装置の表示手段の表示特性および/または通信能力に応じて、適切に画像データを加工できる。

## 【発明を実施するための最良の形態】

### [0027]

以下図面を参照して本発明の実施形態について説明する。図1は本発明の実施形態による撮像装置制御装置を用いた遠隔カメラシステムの構成を示す概略ブロック図である。図1に示すように、本実施形態による遠隔カメラシステムは、複数(ここでは4台)のデジタルカメラ1A,1B,1C,1Dおよびカメラサーバ2がネットワーク3により接続されてなり、デジタルカメラ1A~1Dにおいて取得した画像データをカメラサーバ2に送信し、カメラサーバ2において画像データの保管および管理を行うものである。なお、本実施形態においては、ネットワーク3は無線LANを用いるものとするが、デジタルカメラ1A~1Dを互いに遠隔操作できるものであれば、いかなるネットワークを用いてもよい。

## [0028]

本実施形態においては、デジタルカメラ1Aをマスターカメラ、デジタルカメラ1B,1C,1Dをスレーブカメラと設定し、デジタルカメラ1Aにおいて撮影動作を行うと、これと同時にデジタルカメラ1B,1C,1Dにおいて撮影を行うように、デジタルカメラ1B,1C,1Dの動作が制御されるものとする。

#### [0029]

なお、マスターカメラに設定されたデジタルカメラ1Aは、デジタルカメラ1B,1C,1Dに撮影を行わせることなく単独で撮影を行うことが可能である。また、スレーブカメラに設定されたデジタルカメラ1B,1C,1Dは、デジタルカメラ1Aからの撮影指示を受けることなく、単独で撮影を行うことが可能である。ここで、各デジタルカメラ1A~1Dが単独で撮影することにより取得した画像データは、カメラサーバ2に送信してもよいが、各デジタルカメラ1A~1Dのメモリカードに保管しておいてもよい。

#### [0030]

図2はデジタルカメラ1Aの構成を示す背面斜視図である。なお、デジタルカメラ1B,1C,1Dはデジタルカメラ1Aと同一の構成を有するため説明を省略する。図2に示すようにデジタルカメラ1Aは、撮影しようとしている画像やメニュー等の種々の表示を行うモニタ11と、シャッタボタン12と、無線LANによる通信を行う無線LANチップ13と、種々の入力を行う十字キー14Aを含む入力手段14と、音声出力を行うスピーカ15とを備えてなる。また、デジタルカメラ1Aの内部には、シャッタボタン12の半押し動作により、撮影通知情報をデジタルカメラ1B,1C,1Dに送信する撮影通知



手段16および撮影により取得された画像データを加工する加工手段17を備える。 [0031]

モニタ11には、デジタルカメラ1A自身が撮影しようとしている画像およびデジタル カメラ1B,1C,1Dが撮影しようとしている画像の双方が表示される。図3は、モニ タ11に表示される画像を示す図である。図3に示すように、モニタ11には、デジタル カメラ1Aが撮影しようとする画像を表示するウィンドウ11Aおよびデジタルカメラ1 B, 1C, 1Dが撮影しようとする画像を表示するウィンドウ11B, 11C, 11Dが 表示される。なお、図3に示すようにウィンドウ11Aはデジタルカメラ1Aが撮影しよ うとする画像であるため、他のウィンドウ11B, 11C, 11Dと比較してサイズが大 きいものとなっている。

## [0032]

ここで、他のウィンドウ11B、11C、11Dはウィンドウ11Aと比較してサイズ が小さいため、表示された画像が見にくい場合がある。このため、ウィンドウ11B, 1 1 C, 11 Dには、撮影しようとする画像の中心部分のみを表示してもよい。また、入力 手段14により選択したウィンドウ11B, 11C, 11Dを拡大してモニタ11に表示 してもよい。

## [0033]

また、図4に示すように、デジタルカメラの数に応じて単にモニタ11の画面を分割し て、各デジタルカメラ1A~1Dにおいて撮影しようとする画像を表示してもよい。

### [0034]

シャッタボタン12は、半押し動作によりフォーカスおよび測光を行い、全押し動作に よりシャッタを駆動して撮影を行うものである。ここで、本実施形態においては、シャッ タボタン12の半押し動作により、撮影通知手段16が駆動され、無線LANチップ13 からネットワーク3経由で、デジタルカメラ1B,1C,1Dに対して撮影通知情報が送 信される。撮影通知情報はこれから撮影が行われることをデジタルカメラ1B,1C,1 Dに通知するための情報であり、デジタルカメラ1B, 1C, 1Dは、撮影通知情報に基 づいてデジタルカメラ1B, 1C, 1Dのユーザに撮影通知を行う。

## [0035]

具体的には、チャイム音、ビープ音、「撮影します」、「カメラを構えて下さい」の音 声をデジタルカメラ1B,1C,1Dのスピーカ15から出力させることにより撮影通知 を行えばよい。また、デジタルカメラ1B, 1C, 1Dのモニタ11に、「撮影します」 、「カメラを構えて下さい」等のメッセージを表示して撮影通知を行ってもよく、メッセ ージと音声とを組み合わせて撮影通知を行ってもよい。さらには、モニタ11自体を点滅 させたり、モニタ11の表示色を反転させたり、カメラ自体を振動させる等して撮影通知 を行ってもよい。

## [0036]

そしてこのように撮影通知が行われた後、デジタルカメラ1Aのシャッタボタン12を 全押しすることにより、デジタルカメラ1Aにおいて撮影が行われるとともに、デジタル カメラ1B, 1C, 1Dにおいても同時に撮影が行われる。なお、撮影のタイミングは同 時のみならず、一定時間遅延させて、順次デジタルカメラ1B, 1C, 1Dにおいて連続 した撮影を行わせるものであってもよい。

## [0037]

無線LANチップ13は、無線LANによるネットワーク3経由の通信を行うためのも のであり、通信に必要な認証情報を記憶するメモリ、通信インターフェース等を備えてな るものである。

## [0038]

加工手段17は、撮影により取得された画像データをモニタ11の表示特性に応じて加 工して加工済みの画像データを取得する。具体的には、モニタ11の解像度、階調特性、 色再現特性、サイズおよびアスペクト比に応じて、撮影により取得された画像データに対 して解像度変換処理、階調補正処理、色補正処理、濃度補正処理、拡大縮小処理、および



トリミングを施して加工済みの画像データを取得する。なお、本実施形態においては、マスターカメラであるデジタルカメラ1Aのモニタ11に画像を表示するものとし、他のデジタルカメラ1B,1C,1Dは、デジタルカメラ1Aのモニタ11の表示特性に応じて、取得された画像データを加工するものとする。

## [0039]

カメラサーバ2は、デジタルカメラ1A~1Dにおいて取得された画像データ(加工済みのもの)を保管および管理するためのものであり、大容量のハードディスク2Aを備えてなる。すなわち、デジタルカメラ1Aが撮影を行うことにより、デジタルカメラ1B,1C,1Dにおいて撮影が行われて、各デジタルカメラ1A~1Dにおいて同時に4つの画像データが取得されるが、各デジタルカメラ1A~1Dからは画像データがカメラサーバ2に送信されて、ここで画像データが保管される。

## [0040]

また、カメラサーバ2は、遠隔操作が行われるデジタルカメラ1A~1Dの機種、カメラを識別するID、マスターカメラかスレーブカメラであるかの情報を管理する。また、本実施形態においては、1度の撮影により4つの画像データがカメラサーバ2に送信されるが、カメラサーバ2は重複しないようにファイル名を画像データに付与して画像データを保管する。また、保管される画像データがいずれのデジタルカメラ1A~1Dにおいて取得されたものであるかが分かるように、画像データを管理する。

### [0041]

また、本実施形態においては、マスターカメラであるデジタルカメラ1Aにおいて、他のデジタルカメラ1B, 1C, 1Dにより取得された画像データの確認を行う必要があるため、カメラサーバ2は、デジタルカメラ1A~1Dから送信された画像データのうち、デジタルカメラ1B, 1C, 1Dから送信された画像データをデジタルカメラ1Aに送信する。

### [0042]

なお、画像データの送信に代えて、画像データの保管場所を表すURL(ここではハードディスク2Aのフォルダ名等)をデジタルカメラ1Aに送信してもよい。この場合、URLの送信を受けたデジタルカメラ1Aのユーザは、そのURLにアクセスしてデジタルカメラ1B,1C,1Dが取得した画像データをダウンロードして手に入れることができる。

#### [0043]

次いで、本実施形態において行われる処理について説明する。図5は、本実施形態において行われる処理を示すフローチャートである。まず、マスターカメラであるデジタルカメラ1Aにより、シャッタボタン12が全押しされて撮影指示がなされたか否かが監視されており(ステップS1)、ステップS1が肯定されると、デジタルカメラ1Aにより撮影が行われ(ステップS2)、撮影により取得された画像データがデジタルカメラ1Aのモニタ11の表示特性に応じて加工されて(ステップS3)、加工された画像データがカメラサーバ2に送信される(ステップS4)。

#### [0044]

これと同時に、他のデジタルカメラ1B,1C,1Dにより撮影が行われ(ステップS5)、撮影により取得された画像データがデジタルカメラ1Aのモニタ11の表示特性に応じて加工されて(ステップS6)、加工された画像データがカメラサーバ2に送信される(ステップS7)。

#### [0045]

そして、カメラサーバ2においては画像データが受信され(ステップS8)、受信された画像データが保管され(ステップS9)、さらに保管された画像データのうち、デジタルカメラ1B,1C,1Dにより取得された画像データがデジタルカメラ1Aに送信されて(ステップS10)、処理を終了する。

#### [0046]

デジタルカメラ1Aにおいては、デジタルカメラ1B, 1C, 1Dにより取得された画 出証特2003-3072623 像データがモニタ11に表示される。

## [0047]

このように、本実施形態においては、デジタルカメラ1B,1C,1Dが取得した画像データをデジタルカメラ1Aのモニタ11の表示特性に応じて加工手段17により加工し、加工済みの画像データをデジタルカメラ1Aに送信してデジタルカメラ1Aのモニタ11に表示するようにしたものである。このため、デジタルカメラ1Aにおいては、他のデジタルカメラ1B,1C,1Dが取得した画像データであっても、デジタルカメラ1Aのモニタ11の表示特性に応じて加工された高画質の画像を表示することができる。

## [0048]

また、画像データの加工をデジタルカメラ1B,1C,1Dにおいて行っているため、デジタルカメラ1Aは送信された画像データをモニタ11に直ちに表示することができ、これにより、高画質の画像を迅速に表示することができる。

### [0049]

なお、上記実施形態においては、デジタルカメラ1B,1C,1Dにより取得された画像データをデジタルカメラ1Aのモニタ11の表示特性に応じて加工して、カメラサーバ2経由でデジタルカメラ1Aに送信しているが、図6に示すようにカメラサーバ2が有するモニタ2Aに画像データを表示する場合には、モニタ2Aの表示特性に応じて、デジタルカメラ1A~1Dにおいて取得された画像データを各デジタルカメラ1A~1Dの加工手段17により加工してカメラサーバ2に送信してもよい。これにより、カメラサーバ2のモニタ2Aには、モニタ2Aの表示特性に応じた高画質の画像を表示することができる

## [0050]

また、上記実施形態においては、デジタルカメラ1A~1Dに加工手段17を設けて、画像データを表示するデジタルカメラ1Aのモニタ11の表示特性に応じて画像データを加工しているが、図7に示すように、カメラサーバ2に加工手段2Bを設けてもよい。この場合、デジタルカメラ1A~1Dは撮影により取得された画像データを加工することなくカメラサーバ2に送信する。そして、いずれかのデジタルカメラ1A~1Dから画像データの送信指示があると、送信指示のあったデジタルカメラ1A~1Dのモニタ11の表示特性に応じて、送信する画像データが加工手段2Bにより加工されて、送信指示のあったデジタルカメラ1A~1Dに送信される。これにより、画像データの送信指示を行ったデジタルカメラ1A~1Dのモニタ11には、モニタ11の表示特性に応じた高画質の画像を表示することができる。また、この場合、デジタルカメラ1A~1Dに加工手段17を設ける必要がなくなるため、デジタルカメラ1A~1Dの構成を簡易なものとすることができる。

#### $[0\ 0\ 5\ 1]$

また、上記実施形態においては、カメラサーバ2においてデジタルカメラ $1A \sim 1D$ により取得された画像データを保管しているが、カメラサーバ2を設けることなく、マスターカメラであるデジタルカメラ1Aにおいて、自身が取得した画像データおよび他のデジタルカメラ1B, 1C, 1Dが取得した画像データを保管してもよい。この場合、デジタルカメラ1B, 1C, 1Dからは、デジタルカメラ1Aに直接画像データが送信される。なお、任意の1のスレーブカメラに、他のスレーブカメラおよびマスターカメラであるデジタルカメラ1Aから画像データを直接送信し、その1のスレーブカメラにおいて画像データを保管してもよい。この場合、各デジタルカメラにおいては、1のスレーブカメラのモニタ11の表示特性に応じて画像データが加工される。

#### [0052]

またこの場合、デジタルカメラ1A~1D間の通信は、図8に示すように、デジタルカメラ1A~1D同士で直接データのやりとりを行うピア・ツー・ピア通信方式を用いればよい。なお、ピア・ツー・ピア通信方式においては、デジタルカメラ1A~1D間のデータ転送は、データを発信するデジタルカメラから送信先のデジタルカメラへ向けて直接情報パケットを転送することにより行われる。

[0053]

なお、この場合、デジタルカメラ1B,1C,1Dから加工前の画像データをデジタルカメラ1Aに送信し、デジタルカメラ1Aにおいてデジタルカメラ1Aが取得した画像データを加工するようにしてもよい。さらに、デジタルカメラ1B,1C,1Dにおいて画像データを加工するようにしてもよい。さらに、デジタルカメラ1B,1C,1Dにおいて画像データを活信して画像データを加工するかを、各デジタルカメラ1B,1C,1Dにおいて選択できるようにしてもよい。具体的には、デジタルカメラ1B,1C,1Dにおいてデジタルカメラ1Aの表示特性および/または通信能力にて、デジタルカメラ1Aに画像データを送信して画像データを加工するか、各デジタルカメラ1B,1C,1Dが取得した画像データにより、定は加工手段17が行うようにすればよい。これにより、例えばデジタルカメラ1Aの通信能力が低い場合に、デジタルカメラ1B,1C,1Dが取得した画像データにより、電能力が低い場合に、デジタルカメラ1B,1C,1Dが取得した画像データにより、不可能を表す画像で一名をデジタルカメラ1Aに送信するようにすれば、デジタルカメラ1Aの通信負荷を軽減して効率よく画像データを送信することができる。

## [0054]

また、上記実施形態において、マスターカメラおよびスレーブカメラの関係を各デジタルカメラ1A~1Dにおいて任意に切り替えられるようにしてもよい。

## [0055]

また、上記実施形態においては、デジタルカメラ1A~1Dを用いた遠隔カメラシステムについて説明しているが、携帯電話、PDA等のカメラ付きの携帯端末装置を用いて遠隔カメラシステムを構成することも可能である。この場合、カメラ付きの携帯端末装置とデジタルカメラとが混在したシステムであってもよい。なお、カメラ付き携帯端末装置はデジタルカメラ1A~1Dとは異なり、専用のシャッタボタンを含む撮影のための各種操作を行うための専用のボタンが設けられず、携帯端末装置の操作ボタンが撮影のための各種操作を行うボタンを兼用してなるものである。

## 【図面の簡単な説明】

## [0056]

- 【図1】本発明の実施形態による撮像装置制御装置を用いた遠隔カメラシステムの構成を示す概略ブロック図
  - 【図2】デジタルカメラの構成を示す背面斜視図
  - 【図3】モニタに表示される画像を示す図
- 【図4】デジタルカメラの数に応じて分割されたモニタの画面を示す図
- 【図5】本実施形態において行われる処理を示すフローチャート
- 【図 6 】本発明の他の実施形態によるカメラ制御装置を用いた遠隔カメラシステムの 構成を示す概略ブロック図
- 【図7】本発明のさらに他の実施形態によるカメラ制御装置を用いた遠隔カメラシステムの構成を示す概略ブロック図
- 【図8】ピア・ツー・ピアの通信方式を説明するための図

#### 【符号の説明】

## [0057]

- 1A~1D デジタルカメラ
- 2 カメラサーバ
- 3 ネットワーク
- 11, 2A モニタ
- 12 シャッタボタン
- 13 無線LANチップ
- 14 入力手段
- 15 スピーカ
- 16 撮影通知手段

17,2B 加工手段

【書類名】図面 【図1】



【図2】



【図3】



【図4】



【図5】



【図6】



【図7】



【図8】



## 【書類名】要約書

【要約】

【課題】 複数の撮像装置を用いた遠隔カメラシステムにおいて、他人の撮像装置により 取得された画像データであっても高画質の画像を表示できるようにする。

【解決手段】 デジタルカメラ1Aをマスターカメラ、デジタルカメラ1B,1C,1D をスレーブカメラに設定し、デジタルカメラ1Aの撮影動作によりデジタルカメラ1B,1C,1Dにおいても撮影を行う。デジタルカメラ1B,1C,1Dにおいて、デジタルカメラ1Aのモニタ11の表示特性に応じて画像データを加工してカメラサーバ2に送信し、カメラサーバ2からデジタルカメラ1B,1C,1Dが取得した画像データをデジタルカメラ1Aに送信する。デジタルカメラ1Aにおいてはモニタ11の表示特性に応じて加工された高画質の画像をモニタ11に表示できる。

【選択図】

図 1

## 認定・付加情報

特許出願の番号 特願2003-297347

受付番号 50301376827

書類名 特許願

担当官 第四担当上席 0093

作成日 平成15年 8月26日

<認定情報・付加情報>

【提出日】 平成15年 8月21日

【特許出願人】

【識別番号】 000005201

【住所又は居所】 神奈川県南足柄市中沼210番地

【氏名又は名称】 富士写真フイルム株式会社

【代理人】 申請人

【識別番号】 100073184

【住所又は居所】 神奈川県横浜市港北区新横浜3-18-3 新横

浜KSビル 7階

【氏名又は名称】 柳田 征史

【選任した代理人】

【識別番号】 100090468

【住所又は居所】 神奈川県横浜市港北区新横浜3-18-3 新横

浜KSビル 7階

【氏名又は名称】 佐久間 剛

# 特願2003-297347

# 出願人履歴情報

識別番号

[000005201]

[変更理由]

1. 変更年月日 1990年 8月14日 新規登録

住 所

神奈川県南足柄市中沼210番地

氏 名 富士写真フイルム株式会社