Suite cours « méthodes directes pour la résolution des systèmes linéaires par Dr Dahmani Djamila.

Exemple 2:

Calculer les décompositions LU, LDV des matrices suivantes :

$$A = \begin{pmatrix} 4 & 2 & -2 & 6 \\ 2 & 5 & 5 & 1 \\ -2 & 5 & 26 & -10 \\ 6 & 1 & -10 & 12 \end{pmatrix} ; B = \begin{pmatrix} 4 & -2 & -4 & 0 \\ -2 & 17 & 10 & 0 \\ -4 & 10 & 9 & 7 \\ 0 & 0 & 7 & 58 \end{pmatrix}, \text{Résoudre les systèmes}$$

$$AX = b \text{ et } BX = b \text{ avec } b = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

I-3Méthode de Cholesky

Définition : une matrice $A \in M_n(\mathcal{R})$ est dite symétrique définie positive si et seulement si elle est symétrique et le produit scalaire $\langle Ax|x\rangle > 0$ pour tout $x \in \mathcal{R}^n - \{0_n\} \Leftrightarrow \det A_k > 0$ pour k = 1, ..., n

Théorème(Cholesky).

Soit $A \in M_n(\mathcal{R})$, si A est une matrice symétrique définie positive alors il existe une matrice R triangulaire supérieure telle que $A = R^t R$. De plus on peut imposer aux éléments de la diagonale de R d'être positifs et dans ce cas cette décomposition sera unique.

Preuve.

Comme A est définie positive donc $\det A_k > 0$ pour k = 1, ..., n et $donc \det A_k \neq 0$ alors admet une décomposition sous la forme A = LU avec $u_{ii} > 0$ car $u_{ii} = \frac{\det A_i}{\det A_{i-1}}$ et donc

$$U = \begin{pmatrix} u_{11} & \cdots & \cdots & u_{1n} \\ 0 & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & u_{nn} \end{pmatrix} = \begin{pmatrix} u_{11} & 0 & \cdots & 0 \\ 0 & \ddots & 0 & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & u_{nn} \end{pmatrix} \begin{pmatrix} 1 & \frac{u_{12}}{u_{11}} & \cdots & \frac{u_{1n}}{u_{11}} \\ 0 & \ddots & \cdots & \frac{u_{2n}}{u_{22}} \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

D étant une diagonale et V une triangulaire supérieure qui a des 1 sur la diagonale.

Donc
$$A=LU=LDV$$
 comme A est symétrique alors $A=A^t=(LDV)^t=V^tD^tL^t=\underbrace{V^t}_{Triangulaire\ inférieure\ qui\ des\ 1\ sur\ la\ diagonale}$ $\underbrace{DL^t}_{Triangulaire\ supérieure}$ d'où

$$V^t = L$$
 et $U = DL^t$ et donc $A = LDL^t$

Comme les éléments diagonaux de D sont strictement positifs car il s'agit des $u_{ii} > 0$ $car \ u_{ii} = \frac{\det A_i}{\det A_{i-1}}$ alors on peut décomposer D sous la forme $D = D^{1/2}D^{1/2}$ où $D^{1/2} = \begin{pmatrix} \sqrt{u_{11}} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sqrt{u_{nn}} \end{pmatrix}$ alors on peut écrire $A = \underbrace{LD^{1/2}}_{R^t} \underbrace{D^{1/2}L^t}_{R}$.

Exemple on reprend la matrice B de l'exemple précèdent.

Dans ce qui suit on présente l'algorithme de Cholesky

```
Algorithme de Cholesky
Pour j allant de 1 à n

Pour k allant de 1 à j-1

a_{jj}=a_{jj}-(a_{jk})^2

Fin k

a_{jj}=\sqrt{a_{jj}}

Pour i allant de j+1 à n

Pour k allant de 1 à j-1

a_{ij}=a_{ij}-a_{ik}a_{jk}

Fin k

a_{ij}=\frac{a_{ij}}{a_{jj}}

Fin i
```

Remarque : le nombre d'opérations nécessaires pour effectuer la factorisation de Cholesky d'une matrice symétrique définie positive d'ordre n est $\frac{1}{6}(n^2-1)$ additions et soustractions, $\frac{1}{6}(n^2-1)n$ multiplications, $\frac{1}{2}n(n-1)$ divisions, et n extractions de racines carrées. Soit plus favorable que la factorisation LU de la même matrice.

Méthodes du pivot partiel et du pivot total.

Exemple (Traité en cours) à Faire en TP.