$\arcsin(x) = \theta$	$\arctan(x) = \theta$	$arcsec(x) = \theta$
\(\)	\	\$
$x = \sin(\theta)$	$x = \tan(\theta)$	$x = \sec(\theta)$
$\sqrt{1-x^2}$	$\sqrt{1+x^2}$ 1	$ x $ $\sqrt{x^2-1}$
$x = \sin(\theta)$	$x = \tan(\theta)$	$ x = \sec(\theta)$
$\frac{d}{dx}[x] = \frac{d}{dx}[\sin(\theta)]$	$\frac{d}{dx}[x] = \frac{d}{dx}[\tan(\theta)]$	$\frac{d}{dx} [x] = \frac{d}{dx} [\sec(\theta)]$
$1 = \cos(\theta) \cdot \theta'$	$1 = \sec^2(\theta) \cdot \theta'$	$\frac{x}{ x } = \sec(\theta)\tan(\theta) \cdot \theta'$
$1 = \frac{\sqrt{1 - x^2}}{1} \cdot \theta'$ $1 = \sqrt{1 - x^2} \cdot \theta'$	$1 = \left(\frac{\sqrt{1+x^2}}{1}\right)^2 \cdot \theta'$	$\frac{x}{ x } = x\left(\sqrt{x^2 - 1}\right) \cdot \theta'$
$\theta' = \frac{1}{\sqrt{1 - x^2}}$	$1 = (1 + x^{2}) \cdot \theta'$ $\theta' = \frac{1}{1 + x^{2}}$	$\theta' = \frac{1}{ x \sqrt{x^2 - 1}}$
$\left[\arcsin\left(x\right)\right]' = \frac{1}{\sqrt{1-x^2}}$	$\left[\arctan\left(x\right)\right]' = \frac{1}{1+x^2}$	$\left[\operatorname{arcsec}(x)\right]' = \frac{1}{ x \sqrt{x^2 - 1}}$

Note: The domain of the $f(x) = \operatorname{arcsec}(x)$ is the range of $g(x) = \sec(x)$, which is $(-\infty, 1] \cup [1, \infty)$.

Since the domain of $f(x) = \operatorname{arcsec}(x)$ includes negative values. In the proof of the derivative, the length of the hypotenuse of the triangle must be positive, so x should be replaced with |x|.

$arccos(x) = \theta$	$\operatorname{arccot}(x) = \theta$	$arccsc(x) = \theta$
\(\bar{\pi}\)	\	\$
$x = \cos(\theta)$	$x = \cot(\theta)$	$x = \csc(\theta)$
$\frac{1}{\sqrt{1-x^2}}$	$\sqrt{1+x^2}$ 1	$ x $ $\sqrt{x^2-1}$
$x = \cos(\theta)$	$x = \cot(\theta)$	$ x = \csc(\theta)$
$\frac{d}{dx}[x] = \frac{d}{dx}[\cos\theta]$	$\frac{d}{dx}[x] = \frac{d}{dx}[\cot(\theta)]$	$\frac{d}{dx} [x] = \frac{d}{dx} [\csc(\theta)]$
$1 = -\sin(\theta) \cdot \theta'$ $1 = -\left(\sqrt{1 - x^2}\right) \cdot \theta'$	$1 = -\csc^{2}(\theta) \cdot \theta'$ $1 = -\left[\frac{1}{\sqrt{1+x^{2}}}\right]^{2} \cdot \theta'$	$\frac{x}{ x } = -\csc(\theta)\cot(\theta) \cdot \theta'$ $\frac{x}{ x } = -(x)\left(\sqrt{x^2 - 1}\right) \cdot \theta'$
$\theta' = -\frac{1}{\sqrt{1 - x^2}}$ $\left[\arccos(x)\right]' = -\frac{1}{\sqrt{1 - x^2}}$	$1 = -\frac{1}{1+x^2} \cdot \theta'$ $\theta' = -\frac{1}{1+x^2}$	$\theta' = -\frac{1}{ x \sqrt{x^2 - 1}}$ $\left[\operatorname{arccsc}(x)\right]' = -\frac{1}{ x \sqrt{x^2 - 1}}$
	$\left[\operatorname{arccot}(x)\right]' = -\frac{1}{1+x^2}$	$ x \sqrt{x-1}$

Note: The domain of the $f(x) = \operatorname{arccsc}(x)$ is the range of $g(x) = \operatorname{csc}(x)$, which is $(-\infty, 1] \cup [1, \infty)$.

Since the domain of $f(x) = \operatorname{arccsc}(x)$ includes negative values. In the proof of the derivative, the length of the hypotenuse of the triangle must be positive, so x should be replaced with |x|.

