MA 3831 Principles of Real Analysis Homework 1

Hubert J. Farnsworth

January 19, 2022

Exercise 1

Show that for all $x, y \in \mathbb{Q}$,

- a) $\left| \frac{1}{x} \right| = \frac{1}{|x|}$ for $x \neq 0$.
- b) $||x| |y|| \le |x y| \le |x| + |y|$

Answer:

a) In class it was established that |ab| = |a||b| for all $a, b \in \mathbb{Q}$. Set $a = x \neq 0$ and b = 1/x in this identity to get:

 $1 = |1| = \left| x \frac{1}{x} \right| = |x| \left| \frac{1}{x} \right| \iff \frac{1}{|x|} = \left| \frac{1}{x} \right|$

b) In class the triangle identity was established: $|a+b| \le |a| + |b|$ for all $a, b \in \mathbb{Q}$. Set a=x and b=-y in this identity to get:

$$|x - y| = |x + (-y)| \le |x| + |-y| = |x| + |y|$$

To establish $||x| - |y|| \le |x - y|$ write, in turn, x = x - y + y and y = y - x + x to get:

$$|x| = |(x - y) + y| \le |x - y| + |y| \implies |x| - |y| \le |x - y|$$

$$|y| = |(y - x) + x| \le |y - x| + |x| = |x - y| + |x| \implies -|x - y| \le |x| - |y|$$

Since $-|x - y| \le |x| - |y| \le |x - y|$, conclude $||x| - |y|| \le |x - y|$.

Exercise 2

Let $T = (0,1) \cup \{2\}$. Find, with proof, sup T.

Answer: Since $t \leq 2$ for all $t \in T$, 2 is an upper bound of the set T of real numbers. Therefore $\sup T$ exists. To prove that $\sup T = 2$, show that for any $\epsilon > 0$, $2 - \epsilon$ is not an upper bound of T: Let $\epsilon > 0$ be given. Since $2 \in T$ and $2 - \epsilon < 2$, $2 - \epsilon$ is not an upper bound of T. Since 2 is an upper bound of T and any real number less than 2 is not an upper bound of T, conclude by the definition of supremum that $\sup T = 2$.

Exercise 3

Let S and T be two bounded above subsets of \mathbb{R} . Show that S+T is bounded above, where S+T is defined:

$$S + T = \{s + t : s \in S, t \in T\}$$
.

Answer: Let M_S be an upper bound of S and M_T be an upper bound of T. Then S+T is bounded above by M_S+M_T . To prove this, suppose $u\in S+T$. By the definition of S+T we know u=s+t for some $s\in S$ and some $t\in T$. Since $s\in S$, $s\leq M_S$. Since $t\in T$, $t\leq M_T$. Thus $u=s+t\leq M_S+M_T$. Since u was an arbitrary element of S+T, conclude $u\leq M_S+M_T$ for all $u\in S+T$ and therefore S+T is bounded above.

Exercise 4

(Exercise 1.4.4 of Understanding Analysis 2nd Edition by Stephen Abbott) Let a < b be real numbers and consider the set $T = \mathbb{Q} \cap [a, b]$. Show sup T = b.

Answer: For any $t \in T$, $t \in \mathbb{Q}$ and $t \in [a, b]$. Since $t \in [a, b]$, $t \leq b$ which means that b is an upper bound of $T \subset \mathbb{R}$ and therefore $\sup T$ exists. To prove that $\sup T = b$, show that for any $\epsilon > 0$, $b - \epsilon$ is not an upper bound. Using the fact that between any two real numbers there exists a rational number, there exists a $t \in \mathbb{Q}$ such that $b - \epsilon < t < b$ since $b - \epsilon$ and b are both real numbers. The rational number t can be chosen such that $a \leq t$ as well (if $\epsilon > b - a$ one can simply create a subinterval of $(b - \epsilon, b)$ contained within T). Thus $t \in T$ with $b - \epsilon < t$ which shows that $b - \epsilon$ is not an upper bound of T. Conclude that since b is an upper bound of T and any real number less than b is not an upper bound of T that $\sup T = b$.

Exercise 5

Use the definition of a convergent sequence to show that $b_n = \frac{1}{\sqrt{n}}$ converges to 0.

Answer: Let $\epsilon > 0$. By the Archimedean property of $\mathbb R$ there is an $N \in \mathbb N$ such that $N > 1/\epsilon^2$. This implies $\sqrt{N} = \sqrt{|N|} > |1/\epsilon| = 1/\epsilon$ which implies $0 < 1/\sqrt{N} < \epsilon$. For any $n \ge N$ we have $1/\sqrt{n} \le 1/\sqrt{N}$. Therefore for any $n \ge N$:

$$|b_n - 0| = \left| \frac{1}{\sqrt{n}} - 0 \right| = \frac{1}{\sqrt{n}} \le \frac{1}{\sqrt{N}} < \epsilon.$$

Since $\epsilon > 0$ was arbitrary, this shows that for any $\epsilon > 0$ there exists an $N = N(\epsilon) \in \mathbb{N}$ such that

$$|b_n - 0| < \epsilon \text{ for all } n \ge N$$
.

Conclude by the definition of a convergent sequence that b_n converges to 0 as $n \to \infty$.

Exercise 6

Use the definition of a convergent sequence to show that any constant sequence is convergent.

Answer: Assume b_n is a constant sequence with $b_n = b \in \mathbb{R}$ for $n = 1, 2, 3, \ldots$. Then b_n converges with limit b. To prove this, let $\epsilon > 0$ and take N = 1. Then for any integer $n \geq N$, $b_n = b$ so that $|b_n - b| = |b - b| = |0| = 0 < \epsilon$. This shows that for any $\epsilon > 0$ one can find an $N \in \mathbb{N}$ such that $|b_n - b| < \epsilon$ for all $n \geq N$ from which we conclude by the definition of a convergent sequence that b_n converges to b. Since b_n was an arbitrary constant sequence, conclude that every constant sequence of real numbers is convergent.