2010 Geometry: Ex. 2

due 2011/09/30

HHbonus

1. P47: 3

2. P47: 4

3. ₩ P47: 5

4. ▼P23: 4 (僅討論平面情形)

5. \mathbf{H} 以 t=0 開始將曲線 (t^2,t^3) 化成長度參數。並討論 t=0 時的曲率。

6. **H**

- (a) 以原點為中心,將 y=f(x) 的圖形縮放 λ 倍,說明新圖形是 $y=\lambda f(\frac{x}{\lambda})$ 的函數圖形。
- (b) 討論曲率的變化
- 7. $\blacksquare \blacksquare$ 如圖,有一橢圓,其焦點為 O_1 和 O_2 ,設 L 切橢圓於 P,且 L 與 $\overline{O_2P}$ 之夾角為 θ 。以 θ 為參數,說明曲率 $\kappa(P) \propto \sin^3 \theta$

- 8. 將 $\begin{cases} (\gamma^I)^e = \gamma \\ (\gamma^e)^I = \gamma_a^p \end{cases}$ 仔細寫一遍
- 9. \maltese 如圖,有 regular curve $\gamma(t)$, $\gamma_0=\gamma(0)$, $N_0=N(0)$, $L_0=\{\gamma_0+vN_0\}$ 。

現考慮直線
$$L_t=\{\gamma(t)+uN(t)\}$$
,令 $P(t)=L_t\cap L_0$ 証明
$$\kappa(0)\neq 0\Rightarrow \lim_{t\to 0}P(t)=\gamma_0+\frac{1}{\kappa(0)}N_0$$