COL872 Problem Set 5

Mallika Prabhakar (2019CS50440) Sayam Sethi (2019CS10399) Satwik Jain (2019CS10398)

May 2023

Contents

1	Question 1	2
	1.1 Question 1.1	2
	1.2 Question 1.2	2
2	Question 2	3
	2.1 Question 2	3
3	Question 3	4
	3.1 Question 3.1	4
	3.2 Question 3.2	
4	Question 4	5
	4.1 Question 4.1	5
	4.2 Question 4.1	
5	Question 5	6
	5.1 Question 5.1	6
	5.2 Question 5.2	6
	5.3 Question 5.3	6

1.1 Question 1.1

Universal Cloning

Question. Consider the following quantum process: it maps $\alpha |0\rangle + \beta |1\rangle$ to $\alpha |0\rangle |0\rangle + \beta |1\rangle |1\rangle$. Is T p-good for some constant p?

Proof. We know that T converts a pure state to another pure state. So Application of T on the density matrix $\langle \psi \rangle \psi$ will give the density matrix of another pure state. For a state to be p-good,

$$|\left\langle \psi | \left\langle \psi | \cdot T(|\psi\rangle \left\langle \psi |\right) \cdot |\psi\rangle |\psi\rangle \right.| \geq p$$

For $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$,

we have LHS as

 $\alpha^{2} \langle 0 | \langle 0 | + \alpha \beta (\langle 0 | \langle 1 | + \langle 1 | \langle 0 |) + \beta^{2} \langle 1 | \langle 1 | \cdot T(|\psi\rangle \langle \psi|) \cdot \alpha^{2} | 0 \rangle | 0 \rangle + \alpha \beta (|0\rangle | 1 \rangle + |1\rangle | 0 \rangle) + \beta^{2} |1\rangle |1\rangle$ where, $T(|\psi\rangle \langle \psi|) = (\alpha |0\rangle |0\rangle + \beta |1\rangle |1\rangle) (\alpha \langle 0 | \langle 0 | + \beta \langle 1 | \langle 1 |)$

then the LHS becomes $(\alpha^3 + \beta^3)^2$

Now we have $\alpha^2 + \beta^2 = 1$, $|\alpha|$, $|\beta| \le 1$

Using this we get $(\alpha^3 + \beta^3)^2 \ge \frac{1}{2}$.

Therefore, T is a half-good cloning device.

1.2 Question 1.2

Universal Cloning

Question. Prove that, for all $|\psi\rangle$, $|\langle\psi|\langle\psi|\rho|\psi\rangle|\psi\rangle| \geq 2/3$

Proof. The Partial measurement of

2.1 Question 2

Question 2

Question. Let (Setup, H) be an SSB-hash. Construct a collapsing hash function (with appropriate domain and co-domain) using the SSB-hash, and prove security of your construction.

Proof. Let H_k be an SSB-hash with input domain $(\{0,1\}^s)^L$ and co-domain be $\{0,1\}^l$ with hash key k. The same construction of H_k works as a collapsing hash. The property of H_k is that $\Pr\left[\exists x=(x[0],x[1],\ldots x[L-1])\right]$

3.1 Question 3.1

Optimal Attack on Wiesner's Scheme

Question. Give a procedure that succeeds in attacking Weisner's Scheme with probability at least $\frac{5}{8}$

Proof. The Procedure is as follows:

- 1. Bank sends a qubit $|\psi\rangle$ to adversary.
- 2. Adversary measures the qubit in $\{|0\rangle, |1\rangle\}$ basis.
- 3. Adversary creates two identical copies based on the measured value and sends the qubits to the Bank.

If the qubit is in $\{|0\rangle, |1\rangle\}$ basis, we will get the correct measurement and will be able to model copies correctly and fool the bank.

If the qubit is in $\{|+\rangle, |-\rangle\}$ basis, The adversary measures in $\{|0\rangle, |1\rangle\}$ basis and models the qubit in the same basis. When the bank measures the copies in $\{|+\rangle, |-\rangle\}$ basis, there is a 1/2 probability of getting the correct measurement for each copy.

Therefore, the overall probability of fooling the Bank is $\frac{1}{2} \times 1 + \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{5}{8}$

3.2 Question 3.2

Optimal Attack on Wiesner's Scheme	
Question. Show that the probability of success for new procedure is higher than what a achieved in part 3.1.	was
Proof.	

4.1 Question 4.1

Question 4

Question. Suppose the QM adversary always outputs a forgery of the form

$$\sum_{x,s,s'H(x)=h} \alpha_{x,s,x,s'} \left| x \right\rangle_{x_1} \left| s \right\rangle_{s_1} \left| x \right\rangle_{x_2} \left| s' \right\rangle_{s_2}$$

Show that if the challenger runs $VerifyCoin\ on(X_1,S_1)$ and (X_2,S_2) , the probability of an accept in both the verifications is at most c for some constant c < 1.

Proof. proof \Box

4.2 Question 4.1

Question x

Question. Now consider a general QM adversary that outputs a forgery of the form

$$\sum_{\substack{x,s,x',s':\\H(x)=H(x')=h}} \alpha_{x,s,x',s'} |x\rangle_{X_1} |s\rangle_{S_1} |x'\rangle_{X_2} |s'\rangle_{S_2} \quad where \quad \sum_{\substack{x,s,s'\\H(x)=h}} |\alpha_{x,s,x,s'}|^2 > 1 - \epsilon \tag{1}$$

Show that if the challenger runs VerifyCoin on (X_1, S_1) and (X_2, S_2) , the probability of an accept in both the verifications is at most $c\theta$ for some constant c' < 1.

Proof. (Note: we prove a general result for any $1 \ge \epsilon > 0$)

Let the probability of success on applying Test1 on both coins be p_1 and on applying Test2 be p_2 . Now, we find a bound on p_2 in terms of p_1 using the trace distance between the adversary's state and the state obtained after measuring the register $x = 2\sqrt{\epsilon}$,

$$p_{1} \leq \Pr\left[x = x'\right] \cdot (1 - p_{0} + \mathsf{Tr}_{dist}) + \Pr\left[x \neq x'\right] \cdot 1$$
$$= (1 - \epsilon) \cdot (1 - p_{0} + 2\sqrt{\epsilon}) + \epsilon \tag{2}$$

Thus, the total probability of success is,

$$\frac{1}{2}(p_0 + p_1) = \frac{1 + \epsilon \cdot p_0 + 2\sqrt{\epsilon} \cdot (1 - \epsilon)}{2} \le \frac{1}{2} + \frac{\sqrt{\epsilon}}{2} \cdot (2 + p_0 - \sqrt{\epsilon})
\le \frac{1}{2} + c'$$
(3)

Therefore, any adversary has at most a constant probability of giving a valid forgery for the publically-verifiable QM scheme. \Box

5.1 Question 5.1

Question 5.1

Question. Complete Step V_4 .

Proof. We assume that V_4 executes iff c=1. In the case when c=0, the verifier simply checks if the obtained x_b is one of x_0 or x_1 (the verifier knows the two pre-images using td and y). The steps of V_4 are:

- 1. The verifier first computes x_0, x_1 using td, y.
- 2. Using r, b, d, x_0, x_1 , the verifier can uniquely determine the state $|\psi_2\rangle$. Note that $|\psi_2\rangle = |b\rangle |d\rangle |\psi\rangle$, where $|\psi\rangle \in \{|0\rangle, |1\rangle, |+\rangle, |-\rangle\}$.
- 3. Based on c', the verifier knows what should be the most-likely response of the prover. If the response is the same, the verifier accepts, else it rejects.

5.2 Question 5.2

Question 5.2

Question. (Completeness) Prove that the honest quantum prover's response is accepted with probability 1 if c = 0, else it is accepted with probability $\cos^2 \frac{\pi}{8}$ if c = 1.

Proof. If c=0, then, if the prover followed the protocol honestly, on measuring $|\psi_1\rangle$ it will definitely get one of the pre-images of y. Thus, the verifier will always accept in that case. Otherwise, if c=1, then the measurement is at a distance of $\pi/8$ from the actual state $|\psi\rangle$ (which is at an angle $\theta \in \{-\pi/4, 0, \pi/4, \pi/2\}$ with respect to $|0\rangle$). Therefore, the probability of an honest prover outputting the correct bit is $\cos^2 \frac{\pi}{8}$.

5.3 Question **5.3**

Question 5.3 Question. (Soundness) Show an upper bound on the success probability of any p.p.t. (classical) prover. Proof.