

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ	Фундаментальные науки
КАФЕДРА	Прикладная математика

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №2

Численное решение краевых задач для одномерного уравнения теплопроводности Варианты 5, 16

		И.П. Шаманов
Студенты ФН2-61Б	(Подпись, дата)	(И.О. Фамилия)
(Группа)		О.Д. Климов
	(Подпись, дата)	(И.О. Фамилия)
Преподаватель		
		С. А. Конев
	(Подпись, дата)	(И.О. Фамилия)

1. Ответы на контрольные вопросы

1. Дайте определения терминам: корректно поставленная задача, понятие аппроксимации дифференциальной задачи разностной схемой, порядок аппроксимации, однородная схема, консервативная схема, монотонная схема, устойчивая разностная схема (условно/абсолютно), сходимость.

Пусть мы рассматриваем задачу о нахождении решения уравнения Au=f в области G с дополнительными условиями $Ru=\mu$ на границе $\Gamma=\partial G$ области G:

$$Au = f$$
 в G , $Ru = \mu$ на Γ . (1)

где A, R — заданные операторы, f, μ — заданные функции.

Пусть для точной задачи (1) используется разностная схема

<u>Опр.</u> Задача называется корректно поставленной, если ее решение существует, единственно и непрерывно зависит от входных данных. Если же не выполнено хотя бы одно из этих условий, то задача называется некорректно поставленной.

Опр. Функция, определённая только в узлах сетки, называется сеточной.

Опр. Построение разностной схемы — это замена уравнений и дополнительных условий исходной задачи алгебраическими уравнениями для сеточных функций.
Производные в исходных уравнениях заменяют конечными разностями, интегралы — квадратурными формулами, прочие члены — алгебраическими соотношениями.

$$A_h y = \varphi$$
 в G_h , $R_h y = \nu$ на Γ_h . (2)

Сеточные функции $\psi_h = (\varphi - f_h) + ((Av)_h - A_h v_h), \quad \chi_h = (\nu - \mu_h) + ((Rv)_h - R_h v_h)$ — **погрешности аппроксимации разностной** задачи в G_h и на Γ_h соответственно (v есть произвольная функция из области определения оператора A).

<u>Опр.</u> Говорят, что разностная схема аппроксимирует исходную задачу, если $||\psi_h||_{\psi} \to 0$, $||\chi_h||_{\chi} \to 0$ при $h \to 0$. Аппроксимация имеет p-й порядок (p > 0), если $||\psi_h||_{\psi} = O(h^p)$, $||\chi_h||_{\chi} = O(h^p)$ при $h \to 0$.

<u>Опр.</u> Разностные схемы называются консервативными, если их решение удовлетворяет дискретному аналогу закона сохранения (баланса), присущему данной задаче. В противном случае схему называют неконсервативной, или дисбалансной.

<u>Опр.</u> Разностные схемы, в которых расчет ведется по одним формулам и на одном шаблоне во всех узлах сетки без какого-то либо специального выделения имеющихся особенностей, называются однородными.

<u>Опр.</u> Схемы, решение которых удовлетворяет принципу максимума или сохраняет пространственную монотонность (в одномерном случае) при условии, что соответствующие свойства справедливы для исходных задач, называются монотонными.

Пусть y_1, y_2 — решения двух задач с одинаковым оператором, соответствующие правым частям φ_1, φ_2 и граничным условиям ν_1, ν_2 .

<u>Опр.</u> Говорят, что **разностная схема устойчивая**, если решение уравнений схемы непрерывно зависит от входных данных и эта зависимость равномерна по h, т.е.

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0: \ \| \varphi_1 - \varphi_2 \|_{\varphi} < \delta, \| \nu_1 - \nu_2 \|_{\nu} < \delta \Rightarrow \| y_1 - y_2 \|_{Y} < \varepsilon$$

<u>Опр.</u> В случае нескольких независимых переменных **устойчивость** называют **безусловной**(или **абсолютной**), если устойчивость имеет место для любого соотношения шагов, и **условной** в противном случае.

Будем различать следующие устойчивости. Устойчивость по правой части: непрерывная зависимость решения разностной задачи от φ . Устойчивость по граничным условиям: непрерывная зависимость решения разностной задачи от ν на границе пространственной области. Устойчивость по начальным данным: непрерывная зависимость решения разностной задачи от ν на гиперплоскости t=0.

Опр. Разностное решение y сходится к решению u точной задачи, если $\|y-p_hu\|_Y\to 0$ при $h\to 0$. Говорят, что имеет место **сходимость** с p-м (p>0) порядком, если $\|y-p_hu\|_Y=O(h^p)$ при $h\to 0$.

Замечание.
$$f(x) = O(g(x)) \Leftrightarrow \forall x \in U(x) : |f(x)| \leqslant C|g(x)|$$
.

2. Какие из рассмотренных схем являются абсолютно устойчивыми? Какая из рассмотренных схем позволяет вести расчеты с более крупным шагом по времени?

Схема Дюфорта—Франсла

3. Будет ли смешанная схема иметь второй порядок аппроксимации $npu \ a_i = \frac{2K(x_i)K(x_{i-1})}{K(x_i)+K(x_{i-1})}$?

Имеем однородную консервативную схему

$$c\rho \frac{y_i^{j+1} - y_i^j}{\tau} = \frac{1}{h} \left(\sigma(a_{i+1}y_{i+\frac{1}{2}}^{j+1} - a_iy_{i-\frac{1}{2}}^{j+1}) + (1 - \sigma)(a_{i+1}y_{i+\frac{1}{2}}^j - a_iy_{i-\frac{1}{2}}^j)\right),$$

Преобразовав данное в вопросе выражение, имеем

$$\frac{1}{a_i} = \frac{1}{2} \left(\frac{1}{K_i} + \frac{1}{K_{i-1}} \right)$$

Разложим в ряд Тейлора в окрестности точки $x_{i-\frac{1}{2}} = x_i - \frac{h}{2}$:

$$\frac{1}{K_i} = \frac{1}{K_{i-\frac{1}{2}}} - \frac{2K'_{i-\frac{1}{2}}}{(K_{i-\frac{1}{2}})^2} \frac{1}{2!} \frac{h}{2} + O(h^2), \quad \frac{1}{K_{i-\frac{1}{2}}} = \frac{1}{K_{i-\frac{1}{2}}} + \frac{2K'_{i-\frac{1}{2}}}{(K_{i-\frac{1}{2}})^2} \frac{1}{2!} \frac{h}{2} + O(h^2)$$

Подставим и получим

$$\frac{1}{a_i} = \frac{1}{2} \left(\frac{1}{K_i} + \frac{1}{K_{i-1}} + O(h^2) \right) = \frac{1}{K_{i-\frac{1}{2}}} + O(h^2) \quad \Rightarrow \quad a_i = K_{i-\frac{1}{2}} + O(h^2)$$

Следовательно при $K_{i-\frac{1}{2}}$ получаем порядок аппроксимации $O(h^2)$.

4. Какие методы (способы) построения разностной аппроксимации граничных условий (2.5), (2.6) с порядком точности $O(\tau+h^2)$, $O(\tau^2+h^2)$, $O(\tau^+h)$ вы знаете?

5. При каких h, τ и σ смешанная схема монотонна? Проиллюстрируйте результатами расчетов свойства монотонных и немонотонных разностных схем.

6. Какие ограничения на $h, \, \tau \, \, u \, \sigma \,$ накладывают условия устойчивости прогонки?

7. В случае K = K(u) чему равно количество внутренних итераций, если итерационный процесс вести до сходимости, а не обрывать после нескольких первых итераций?

8. Для случая K = K(u) предложите способы организации внутреннего итерационного процесса или алгоритмы, заменяющие его.

Список использованных источников

1. Галанин М.П., Савенков Е.Б. Методы численного анализа математических моделей. М.: Изд-во МГТУ им. Н.Э. Баумана. 2018. 592 с.