Rev.2: 2015.11.20 Fg



The HTPA8x8L\_/\_M(SPI) is a fully calibrated, low cost thermopile array module, with fully digital SPI interface. The module delivers an electrical offset and ambient temperature compensated output stream, which can be already used for image processing, pattern recognition and presence detection purposes. Object temperatures can be easily obtained by this data stream, a look up table and the calibrated sensitivity constants, which can be found in the EEPROM of the module.

#### **Order Code Example**



For modules, the recommended type is M(SPI). The advantages are the better ADC resolution, wider input voltage range, wider measurement range.

#### **Pinout**

| Pin | Name |       | Description                      | Type           |
|-----|------|-------|----------------------------------|----------------|
| ]   |      | #MCLR | Master clear, negotiated         | Digital Input  |
| 2   | :    | VDD   | Positive supply voltage          | Power          |
| 3   | :    | VSS   | Negative supply voltage          | Power          |
| 4   |      | VSS   | Negative supply voltage          | Power          |
| 5   | i    | #SS   | Slave select, negotiated         | Digital Input  |
| 6   | 5    | SDO   | Serial data out of module        | Digital Output |
| 7   | 1    | SDI   | Serial data in of module         | Digital Input  |
| 8   | :    | SCK   | Serial clock                     | Digital Input  |
| 9   |      | MCLK  | Master clock, drives HTPA sensor | Digital Input  |
| 10  |      | #VD   | Valid Data, negotiated.          | Digital Output |

**HEIMANN Sensor GmbH** Maria-Reiche-Str. 1 D-01109 Dresden / Germany Contact / Customer Support Phone 49 (0) 6123 60 50 30 Fax 49 (0) 6123 60 50 39 Internet

www.heimannsensor.com mail: info@heimannsensor.com

Rev.2: 2015.11.20 Fg



#### **SPI Interface:**

**SCK-Frequency:** 350 kHz ...10 MHz <sup>1)</sup>

1) For customer specified devices with higher frame rates than usual, higher SCK-Frequencies than 350 kHz might be needed. See also "Communication and Timings"

**Protocol Specifications:** 

Data format: 16 data bits
Frame Sync: None
Module-Selection: SS-Pin

Clock Edge Select: Serial output data changes on transition from idle

to active clock state

SPI Data Input Sample Phase: Data sampled on transition from active to idle

clock state

Clock Polarity: Idle state is high level, active is low level.

**Electrical Specifications:** 

VDD Range: Supply (2.8 – 3.3 V DC)

SPI Transmit/Receive: TTL VSS GND

Power Supply: 2.8-3.3 VDC IDD (Idle mode) 30 mA IDD (Operating mode) 120 mA

#### HTPA8x8L2.85M(SPI) Optical Orientation of Pixels:



**HEIMANN Sensor GmbH** Maria-Reiche-Str. 1 D-01109 Dresden / Germany Contact / Customer Support Phone 49 (0) 6123 60 50 30 Fax 49 (0) 6123 60 50 39

www.heimannsensor.com mail: info@heimannsensor.com

Internet

Rev.2: 2015.11.20 Fg



### **Electrical Connections:**

Single Module:



Multiple Modules (preliminary):



Rev.2: 2015.11.20 Fg



## **Communication and Timings:**

Proposed flow chart of communication. (Master is referred as µC, Slave as HTPA module)





## **Communication and Timings:**

**Setting emission coefficient epsilon.** (Master is referred as  $\mu$ C, Slave as HTPA module)



<sup>1)</sup> Epsilon needs to be >0 and <=100. (Decimal)
2) See "Proposed flow chart of communication".

Rev.2: 2015.11.20 Fg



## **Communication and Timings (continuation):**

#### **Receive of command:**



(High state of #SS is not necessary, only for communication with multiple devices)

#### **Send of EEPROM content:**



#### Pixel data:



B15...B0: Raw or compensated ADC reading (depending from streaming mode)

#### Receive of stream command:

Receive of Stream Command



Refer also to "Serial order in stream". The last dataset consists out of three 16 bit values.

**HEIMANN Sensor GmbH** Maria-Reiche-Str. 1 D-01109 Dresden / Germany Contact / Customer Support Phone 49 (0) 6123 60 50 30 Fax 49 (0) 6123 60 50 39

Internet

www.heimannsensor.com mail: info@heimannsensor.com

Rev.2: 2015.11.20 Fg



## **Communication and Timings (continuation):**

Absolute values:

|                        | MIN | NOM | MAX  | Unit | Remarks       |
|------------------------|-----|-----|------|------|---------------|
| MCLR pulse width (low) | 2   |     |      | μs   |               |
| t(SSmin)               | 150 |     |      | ns   |               |
| t(SCK)                 | 0.1 | 1   | 2.86 | μs   |               |
| t(EEacq)               | 185 |     |      | μs   |               |
| t(framestart)          |     | 29  |      | ms   | f(MCLK)=1 MHz |
| t(Pix)                 |     | 208 |      | μs   | f(MCLK)=1 MHz |

<sup>1)</sup> For customer specified devices with higher frame rates than usual, higher SCK-Frequencies than 350 kHz might be needed. See below comment: 32\*t(SCK)<t(Pix)

t(Pix) and t(framestart) depend on the given MCLK frequency of the master. In example: MCLK frequency is 1003 kHz, then t(Pix) and t(framestart) is calculated via

$$t(Pix) = \frac{208}{f(MCLK)} = \frac{208}{1003000} = 207,4\mu s$$
  $t(framestart) = t(Pix) \cdot 8 \cdot 9 + 14 \text{ms} = 28,9 \text{ms}$ 

**Attention!** Above calculation refers only when command 0d200 was sent. If 0d1600 or 0d1800 was sent, the time until first  $\overline{VD}$  transition is 4 times t(framestart).

#### **Important:**

The SCK frequency needs to be at least that large, that the 32 bits can be submitted within tPix. Therefore, the following condition must be always true:

$$32 \cdot t(SCK) < t(Pix)$$

- 7 -

Rev.2: 2015.11.20 Fg



## **EEPROM Mapping:**

#### Overview:

| Start address | End address | Data type     | Value                        |
|---------------|-------------|---------------|------------------------------|
| 0x0           | 0x9         | float         | Heimann Sensor reserved      |
| 0xA           | 0xA         | char          | Table number                 |
| 0xB           | 0x33        |               | Heimann Sensor reserved      |
| 0x34          | 0x37        | float         | PTATgrad                     |
| 0x38          | 0x3B        | float         | PTAToff                      |
| 0x3C          | 0x58        |               | Heimann Sensor reserved      |
| 0x46          | 0x46        | unsigned char | Emission coefficient epsilon |
| 0x59          | 0x5A        | unsigned int  | MCLK Frequency in kHz        |
| 0x5B          | 0x75        |               | Heimann Sensor reserved      |
| 0x76          | 0x76        | unsigned char | Moduletype 2)                |
| 0x80          | 0x3FFF      |               | Heimann Sensor reserved      |

<sup>2)</sup> Shows which sensor and PCB type the current module is. Refer to table "Details for Moduletype" for details.

#### **Important Note:**

unsigned int: 2 byte; float: 4 byte; char: 1 byte

All the values are stored (if larger than one byte) in little endian, the so called "Intel-Format". Example for the MCLK-Frequency:

$$MCLK_{LB} = \text{EEPROM}[0x59] \ MCLK_{HB} = \text{EEPROM}[0x5A]$$
  
 $MCLK = 256 \cdot MCLK_{HB} + MCLK_{LB}$ 

#### **Details for Moduletype:**

| Value |     | Declaration                                  |
|-------|-----|----------------------------------------------|
|       | 255 | M(LC)                                        |
|       | 0   | M(SPI) + Analogous Chip                      |
|       | 1   | M(SPI) + Digital Chip                        |
|       | 2   | M(UDP) + analogous Chip                      |
|       | 3   | M(PoE) + 16x16d; BCC stored in Flash         |
|       | 4   | M(PoE) + 16x16d; BCC stored in Sensor EEPROM |

Rev.2: 2015.11.20 Fg



#### Serial order of data in stream:

|         | Compensated Voltage Mode       |                                               |  |  |  |  |  |
|---------|--------------------------------|-----------------------------------------------|--|--|--|--|--|
| Dataset |                                | Value                                         |  |  |  |  |  |
|         | 0                              | offset corrected Voltage of Pixel0 in digits  |  |  |  |  |  |
|         | 1                              | offset corrected Voltage of Pixel1 in digits  |  |  |  |  |  |
|         | 2                              | offset corrected Voltage of Pixel2 in digits  |  |  |  |  |  |
|         |                                |                                               |  |  |  |  |  |
|         | 63                             | offset corrected Voltage of Pixel63 in digits |  |  |  |  |  |
|         | 64                             | elOff0 in digits+0x7000                       |  |  |  |  |  |
|         | 65 elOff1 in digits+(0x800<<4) |                                               |  |  |  |  |  |
|         | 66                             | elOff2 in digits+(0x90<<8)                    |  |  |  |  |  |
|         | 67                             | elOff3 in digits+(0xA<<12)                    |  |  |  |  |  |
|         | 68                             | PTAT0 in digits   (TA&0xF000)                 |  |  |  |  |  |
|         | 69                             | PTAT1 in digits   ((TA&0x0F00)<<4)            |  |  |  |  |  |
|         | 70                             | PTAT2 in digits   ((TA&0x00F0)<<8)            |  |  |  |  |  |
|         | 71                             | PTAT3 in digits   ((TA&0x000F)<<12)           |  |  |  |  |  |
|         | 72                             | Sync byte 0x789A                              |  |  |  |  |  |
|         | 73                             | Ambient temperature in dK                     |  |  |  |  |  |

|          |                                | Raw Voltage Mode                      |  |  |  |  |
|----------|--------------------------------|---------------------------------------|--|--|--|--|
| Datas et |                                | Value                                 |  |  |  |  |
|          | 0                              | absolute Voltage of Pixel0 in digits  |  |  |  |  |
|          | 1                              | absolute Voltage of Pixel1 in digits  |  |  |  |  |
|          | 2                              | absolute Voltage of Pixel2 in digits  |  |  |  |  |
|          |                                |                                       |  |  |  |  |
|          | 63                             | absolute Voltage of Pixel63 in digits |  |  |  |  |
|          | 64                             | elOff0 in digits+0x7000               |  |  |  |  |
|          | 65 elOff1 in digits+(0x800<<4) |                                       |  |  |  |  |
|          | elOff2 in digits+(0x90<<8)     |                                       |  |  |  |  |
|          | 67                             | elOff3 in digits+(0xA<<12)            |  |  |  |  |
|          | 68                             | PTAT0 in digits                       |  |  |  |  |
|          | 69                             | PTAT1 in digits                       |  |  |  |  |
|          | 70                             | PTAT2 in digits                       |  |  |  |  |
|          | 71                             | PTAT3 in digits                       |  |  |  |  |
|          | 72                             | Sync byte 0x789A                      |  |  |  |  |
|          | 73                             | Data: 0x0000                          |  |  |  |  |

| Temperature Mode |                               |  |  |  |  |
|------------------|-------------------------------|--|--|--|--|
| Dataset          | Value                         |  |  |  |  |
| 0                | Object temp. at Pixel0 in dK  |  |  |  |  |
| 1                | Object temp. at Pixel1 in dK  |  |  |  |  |
| 2                | Object temp. at Pixel2 in dK  |  |  |  |  |
|                  |                               |  |  |  |  |
| 63               | Object temp. at Pixel63 in dK |  |  |  |  |
| 64               | elOff0 in digits              |  |  |  |  |
| 65               | elOff1 in digits              |  |  |  |  |
| 66               | elOff2 in digits              |  |  |  |  |
| 67               | elOff3 in digits              |  |  |  |  |
| 68               | PTAT0 in digits               |  |  |  |  |
| 69               | PTAT1 in digits               |  |  |  |  |
| 70               | PTAT2 in digits               |  |  |  |  |
| 71               | PTAT3 in digits               |  |  |  |  |
| 72               | Sync byte 0x789A              |  |  |  |  |
| 73               | Ambient temperature in dK     |  |  |  |  |

Most datasets consists of a 16 bit value. The 16 bit values are transmitted with MSB first. In case of compensated voltage mode a signed 16 bit value is transmitted, in case of raw voltage mode an unsigned 16 bit value. Signed values are always in 2's complement.

The last dataset consists out of three 16bit values, refer to following diagram:



Rev.2: 2015.11.20 Fg



## Pixel Map:

| 0  | 1  | 2  | 3  | 4  | 5  | 6  | 7  |
|----|----|----|----|----|----|----|----|
| 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
| 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
| 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 |
| 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 |
| 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 |
| 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 |

C-Code for all these calculations can be found in our SDK (**S**oftware **D**evelopment **K**it). Furthermore, the SDK is able to fetch the data from the module and sends it to our GUI (**G**raphical **U**ser **I**nterface) which can visualize the data, records videos and text files and has many additional features. For more information see <a href="https://www.heimannsensor.com">www.heimannsensor.com</a>.

# 



### **Communication commands:**

| Sent Command | Answer / Result                                                                                                      |
|--------------|----------------------------------------------------------------------------------------------------------------------|
| 0d100        | Output of EEPROM content. Data ready of each 2 bytes is signified by #VD pin.                                        |
| 0d200        | Module streams out uncompensated, raw data stream. Data ready of each 4 bytes is signified by #VD pin.               |
| 0d700        | Device goes in IDLE mode.                                                                                            |
| 0d1000       | Stops streaming mode of module.                                                                                      |
| 0d1600       | Module streams offset corrected stream (electrical and thermal). Data ready of each 4 bytes is signified by #VD pin. |
| 0d1800       | Module streams temperature stream in deci-Kelvin. Data ready of each 4 bytes is signified by #VD pin                 |

Attention! 0d → Refers to decimal.

#### **Precondition for all streaming modes:**

VDD must be in the given limits.

# **Absolute Maximum Ratings:**

| Value                                      | MIN  | NOM | MAX     | Unit | Remarks                              |
|--------------------------------------------|------|-----|---------|------|--------------------------------------|
| VDD in respect to VSS                      | -0.3 | 3   | 4       | V    |                                      |
| VDD in streaming mode                      | 2.8  | 3   | 3.3     | V    | False VDD values affect compensation |
| Voltage on digital pin with respect to VSS | -0.3 |     | VDD+0.3 | V    |                                      |
| Storage temperature                        | -40  |     | 120     | °C   |                                      |
| ADC reference voltages                     | VSS  |     | 4.096   | V    | high precision references            |
| ADC resolution                             |      | 14  |         | bit  | 4dig/mV                              |
| Max. current sunk/sourced on any pin       |      | 20  |         | mA   |                                      |
| Operating temperature                      | -20  |     | 85      | °C   | non-condensing                       |
| Current consumption                        | 115  | 120 | 130     | mA   | In streaming                         |
| Current consumption                        | 25   | 30  | 35      | mA   | Idle                                 |

Rev.2: 2015.11.20 Fg



### **Dimensions:**



**HEIMANN Sensor GmbH** Maria-Reiche-Str. 1 D-01109 Dresden / Germany Contact / Customer Support Phone 49 (0) 6123 60 50 30 Fax 49 (0) 6123 60 50 39 **Internet** 

www.heimannsensor.com mail: info@heimannsensor.com