

Project on Trend Following Trading

Min Dai National University of Singapore

Agenda

- Motivation
- Problem formulation
 - Long and Flat
 - Investors have options to switch between long and flat positions
 - The model resembles that of American option pricing
- Variational inequality equations and optimal strategies
- Numerical results and empirical analysis

Motivation: common investment strategies

- Buy and hold
 - Invest for the long run
- Contra-trend
 - Buy low and sell high: buy on falling and sell on rising
- Trend-following
 - Buy high and sell higher: buy on rising and sell on falling

Justifying "Buy and hold"

 justifiable if the average gain of stock market is above the bank rate.

Justifying "Contra-trend"

- justifiable if the investor is risk averse in a constant market
 - The 60/40 rule: 60% in stock and 40% in bond
- justifiable if the market has mean reverting properties:
 - Q. Zhang and H.Q. Zhang (2008)

Justifying "trend following"

- We will show that it is justifiable if the market has trends as we will make precise.
 - Dai, Zhang and Zhu (2010), SIAM J. Financial Math, where the investor is restricted to buy and sell one share of stock
 - Dai, Yang, Zhang and Zhu (2016), Optimal trend following trading rules
 Mathematics of Operations Research, 41(2), 626-642

To capture the trends

- -buy in early up-trend
- -ride the up-trend
- -sell in early down-trend

Modeling: index as a proxy for the market

Index value:
$$\frac{dS_t}{S_t} = \mu(\alpha_t)dt + \sigma dB_t$$

Here B_t is a standard BM, $\sigma > 0$ the volatility, $\alpha_t \in \{1,2\}$ is a 2-state Markov chain independent of B_t , $\mu(i) \equiv \mu_i$, i = 1,2 the expected return rates, $\mu_1 > \mu_2$.

 α_t represents the market trend: $\alpha_t = 1$ up; $\alpha_t = 2$ down.

Let
$$Q = \begin{pmatrix} -\lambda_1 & \lambda_1 \\ \lambda_2 & -\lambda_2 \end{pmatrix}$$
 denote the generator of α_t .

Typically, $1/\lambda_1=3$ years, $1/\lambda_2=0.5$ year.

Wonham filters (1965)

The market trend α_t is unobservable.

 p_t : the conditional probability of $\alpha_t = 1$ given $\{S_u, u < t\}$,

$$dp_{t} = [-(\lambda_{1} + \lambda_{2}) p_{t} + \lambda_{2}] dt + \frac{(\mu_{1} - \mu_{2}) p_{t} (1 - p_{t})}{\sigma} d\widehat{B}_{t}$$

where \widehat{B}_t is another standard BM given by

$$d\widehat{B}_t = \frac{d \log(S_t) - [(\mu_1 - \mu_2)p_t + \mu_2 - \sigma^2/2]dt}{\sigma}.$$

So,
$$dS_t = [(\mu_1 - \mu_2) p_t + \mu_2] S_t dt + \sigma S_t d\hat{B}_t.$$

Target

Given initial wealth w_0 and investment horizon T, our target is to maximize the expected return rate:

$$E\left[\log \frac{w_T}{w_0}\right],$$

where w_T is the terminal wealth.

Without loss of generality, we will take $w_0 = 1$.

Allowable trading decisions

Assume the net position at any time can be either

flat (i=0): no holding; or

long (i=1): all wealth in index.

Buy and sell decisions are determined by a sequence of stopping times $\{\tau_n, v_n\}$, $n=1,2,\cdots$. We buy at τ_n and sell at v_n . If i=0, then the decision sequence is $\Lambda_0=(\tau_1,v_1,\tau_2,v_2,\cdots)$. If i=1, then the decision sequence is $\Lambda_1=(\overline{v}_1,\overline{\tau}_2,\overline{v}_2,\overline{\tau}_3,\cdots)$.

At maturity, the position is required to be flat. We denote the last sell time by v_m ($\overline{v_m}$), and $\tau_{m+1} = \overline{\tau}_{\overline{m}+1} = T$.

Reward functions

Given $S_0 = S$, $p_0 = p$, and initial position i = 0, 1, the reward functions of the decision sequences Λ_0 and Λ_1 are given as follows:

$$J_{i}(p, \Lambda_{i}) = \begin{cases} E\left\{\log\left[\exp\left(\int_{0}^{\tau_{1}} \rho ds\right) \prod_{n=1}^{m} \left(\frac{S_{v_{n}}(1-\alpha)}{S_{\tau_{n}}(1+\theta)} \exp\left(\int_{v_{n}}^{\tau_{n+1}} \rho ds\right)\right)\right]\right\}, & \text{if } i = 0, \\ E\left\{\log\left[\frac{S_{\overline{v}_{1}}(1-\alpha)}{S_{0}} \exp\left(\int_{\overline{v}_{1}}^{\overline{\tau}_{2}} \rho ds\right) \prod_{n=2}^{\overline{m}} \left(\frac{S_{\overline{v}_{n}}(1-\alpha)}{S_{\overline{\tau}_{n}}(1+\theta)} \exp\left(\int_{\overline{v}_{n}}^{\overline{\tau}_{n+1}} \rho ds\right)\right)\right]\right\}, & \text{if } i = 1, \end{cases}$$

where ρ riskfree rate, α and θ the proportional costs.

Value functions

For i = 0, 1, define value functions

$$W_i(p,t) = \sup_{\Lambda_i} J_i(p,t,\Lambda_i)$$

It is easy to see

$$W_{0}(p,t) = \sup_{\tau_{1}} E_{t} \left\{ \int_{t}^{\tau_{1}} \rho ds - \log(1+\theta) + W_{1}(p_{\tau_{1}},\tau_{1}) \right\},$$

$$W_{1}(p,t) = \sup_{\overline{v}_{1}} E_{t} \left\{ \int_{t}^{\overline{v}_{1}} \widetilde{f}(p_{s}) ds + \log(1-\alpha) + W_{0}(p_{\overline{v}_{1}},\overline{v}_{1}) \right\},$$

where

$$\widetilde{f}(p) = (\mu_1 - \mu_2) p + \mu_2 - \frac{\sigma^2}{2}$$

HJB equations

$$-\mathcal{A}W_0 = \rho \text{ if } W_0 > W_1 - \log(1+\theta)$$
$$-\mathcal{A}W_0 \ge \rho \text{ if } W_0 = W_1 - \log(1+\theta)$$

and

$$-\mathcal{A}W_1 = \widetilde{f} \text{ if } W_1 > W_0 + \log(1 - \alpha)$$
$$-\mathcal{A}W_1 \ge \widetilde{f} \text{ if } W_1 = W_0 + \log(1 - \alpha)$$

with $W_0(p,T) = 0$, $W_1(p,T) = \log(1-\alpha)$,

$$\mathcal{A} = \frac{\partial}{\partial t} + \frac{1}{2} \left(\frac{(\mu_1 - \mu_2)p(1-p)}{\sigma} \right)^2 \frac{\partial}{\partial p^2} + \left[-(\lambda_1 + \lambda_2)p + \lambda_2 \right] \frac{\partial}{\partial p}$$

A concise expression

$$\min \{ -AW_0 - \rho, \ W_0 - W_1 + \log(1 + \theta) \} = 0$$

$$\min\left\{-\mathcal{A}W_1 - \widetilde{f}, \ W_1 - W_0 - \log(1 - \alpha)\right\} = 0$$

with
$$W_0(p,T) = 0$$
, $W_1(p,T) = \log(1-\alpha)$.

An equivalent problem

Let $Z(p,t) = W_1(p,t) - W_0(p,t)$. Then Z is the unique solution to the double obstacle problem

 $\max \left\{ \min \left\{ -\mathcal{A}Z - f(p), Z - \log(1-\alpha) \right\}, Z - \log(1+\theta) \right\} = 0,$ that is,

$$-AZ = f(p) \text{ if } \log(1-\alpha) < Z < \log(1+\theta)$$

$$-AZ \geq f(p)$$
 if $Z = \log(1 - \alpha)$

$$-AZ \leq f(p) \text{ if } Z = \log(1+\theta)$$

in $p \in (0,1)$, with $Z(p,T) = \log(1-\alpha)$, where

$$f(p) = \widetilde{f}(p) - \rho.$$

Optimal strategies

$$BR = \{(p,t) \in (0,1) \times [0,T) : W_0 - W_1 + \log(1+\theta) = 0\};$$

 $SR = \{(p,t) \in (0,1) \times [0,T) : W_1 - W_0 - \log(1-\alpha) = 0\};$
 $NT = (0,1) \setminus (BR \cup SR).$

Theorem There exist $p_b^*(t)$, $p_s^*(t)$, $p_b^*(t) > p_s^*(t)$, such that

$$BR = \{(p,t) \in (0,1) \times [0,T) : p \ge p_b^*(t)\}$$

$$SR = \{(p,t) \in (0,1) \times [0,T) : p \le p_s^*(t)\}$$

Numerical solutions: penalty method

For the long/flat case,

$$-AZ = \beta[\log(1-\alpha) - Z]^{+} - \beta[Z - \log(1+\theta)]^{+}$$

Penalty method: see Forsyth and Vetzal (2002) and Dai, Kwok and You (2007).

Numerical results

 $\lambda_1=0.36,\ \lambda_2=2.53,\ \mu_1=0.18,\ \mu_2=-0.77,\ \sigma=0.184,\ \rho=0.0679,\ \alpha=\theta=0.1\%$ (statistics data of SP500)

Continued: a simulation result

Red: holding;

blue: no positions

Continued: another sample

Red: holding;

blue: no positions

On average, the trend following strategy robustly outperforms the buy and hold strategy over 10 times in return.

A question

Why is the strategy trend-following?

Simulation results: average returns

TF	No. Trades	BH
78.71	41	5.86
77.17	40	5.72
72.48	41	5.92
72.52	41	5.73

Empirical analysis: statistics of markets

Index	λ_1	λ_2	μ_1	μ_2	σ_1	σ_2
SP500 (62-08)	0.353	2.208	0.196	-0.616	0.135	0.211
DJIA (62-08)	0.36	2.53	0.18	-0.77	0.144	0.223
NASDAQ (91-08)	2.158	2.3	0.875	-1.028	0.273	0.35

Continued

We compute p_s^* using σ_2 and p_b^* using σ_1 .

Index	p_s^*	p_b^*	
SP500 σ ₁	0.708	0.923	
SP500 σ ₂	0.774	0.922	
DJIA σ_1	0.760	0.948	
DJIA σ_2	0.825	0.950	
NASDAQ σ_1	0.461	0.716	
NASDAQ σ_2	0.495	0.711	

Testing returns from real data

Index(time frame)	TF	ВН	10y bonds	No. Trades
SP500 (1962-2008)	63.2	32.8	23.44	80
DJIA (1962-2008)	13.9	12.1	23.44	80
NASDAQ(1991-2008)	6.6	4.2	2.63	67

Legend: TF – trend following, BH – buy and hold

Trend following vs buy and hold: test on NASDAQ: 1991-2009

Conclusion

- We provide a model to justify the trend following strategy.
- Our model generates a trend following strategy, whose efficiency is demonstrated by simulations and empirical analysis.