Session 13: Stochastic gradient descent

Optimization and Computational Linear Algebra for Data Science

Final exam

- Scope: everything except today's lecture and this week's video.
- Of course, it will be a bit more focused on what we did after the midterm (PCA, linear regression, convex functions, optimization...)
- Same format as for the midterm
- "24 hours window" on Thursday December 17th.
- 1 hour 40 minutes to work + 20 minutes to scan + upload on Gradescope.
- In case you have any issue when uploading: **email me your** work.

Contents

- 1. Introduction: supervised learning
- 2. Stochastic gradient descent
- 3. Convergence analysis, comparison with gradient descent

Introduction 3/14

```
Supervised learning
```

```
Supervised learning
```

```
Supervised learning
```

Why not using gradient descent?

$$f(\theta) = \frac{1}{N} \sum_{i=1}^{N} f_i(\theta).$$

Gradient descent iterations:

$$\theta_{t+1} = \theta_t - \alpha_t \nabla f(\theta_t)$$
$$= \theta_t - \frac{\alpha_t}{N} \sum_{i=1}^{N} \nabla f_i(\theta_t).$$

Stochastic gradient descent

Stochastic gradient descent

$$f(\theta) = \frac{1}{N} \sum_{i=1}^{N} f_i(\theta).$$

Starting at some $\theta_0 \in \mathbb{R}^n$, perform the updates:

Pick
$$i$$
 uniformly at random in $\{1,\ldots,N\},$ Update $\theta_{t+1}=\theta_t-\alpha_t \nabla f_i(\theta_t),$

Tradeoffs in SGD

SGD in practice

Mini-batch stochastic gradient descent:

Pick a mini-batch i_1, \ldots, i_k in $\{1, \ldots, N\}$,

Update
$$\theta_{t+1} = \theta_t - \frac{\alpha_t}{k} \sum_{m=1}^k \nabla f_{i_m}(\theta_t),$$

- Decrease the step size after a fixed number of epochs.
- Use momentum + "adaptive gradient": Adagrad, RMSprop, Adedelta, Adam, Adamax, Nadam...

Excellent reference:

https://arxiv.org/pdf/1609.04747.pdf

Convergence analysis

Convergence rates

- if the f_i are convex and L-smooth: SGD with $\alpha_t = 1/\sqrt{t}$ achieves an error $\leq C/\sqrt{t}$.
- if the f_i are μ -strongly convex and L-smooth: SGD with $\alpha_t = 1/(\mu t)$ achieves an error $\leq C/t$.

GD vs SGD

Gradient descent

Time per step

Error after t steps

Log-error after τ units of time

Stochastic gradient descent

Time per step

Error after t steps

Log-error after au units of time

GD vs SGD

GD vs SGD: who wins?

- If one is looking for a very small optimization error $f(\theta_t) \min f$, then gradient descent wins.
- If one has a limited time budget and does not need a very small $f(\theta_t) \min f$, then stochastic gradient descent wins.

Questions?

Questions?

