	11 2015方程 打分建议	[8分]	三(2)
[6分]	一、方法(一):	2分	$t = 0$, $\sum_{n=0}^{\infty} C_n \sin\left[\left(n - \frac{1}{2}\right)x\right] = \sin\left(\frac{1}{2}x\right)$
2分	$\frac{\partial u}{\partial y} = \int \frac{\partial^2 u}{\partial x \partial y} dx = \frac{x^2}{3}y + \varphi(y)$		$C_1 = 1, C_n = 0 (n > 1)$
2分	$u = \int \frac{\partial u}{\partial y} dy = \int (\frac{x^3}{3}y + \varphi(y))dy$	4分	$D_n = \frac{1}{(n - \frac{1}{2})a} \frac{2}{\pi} \int_0^{\frac{1}{\pi}} \delta(x) \sin[(n - \frac{1}{2})x] dx$
	$= \frac{x^3}{3} \frac{y^2}{2} + \int \varphi(y) dy + g(x)$		$2 \sin[3(n-\frac{1}{2})]$
2分	$u = \frac{x^5y^2}{6} + f(y) + g(x)$	870	$= \frac{2}{\pi} \frac{\sin[3(n-\frac{1}{2})]}{(n-\frac{1}{2})a}$
	方法口:	2分	$u = \cos(\frac{at}{2})\sin(\frac{x}{2})$ ∞
2分	特解 $u^* = \frac{x^2y^2}{6}$		$+\sum_{n=1}^{\infty} \frac{4}{\pi} \frac{\sin(\frac{6n-3}{2})}{(2n-1)a} \sin(\frac{2n-1}{2}at) \sin(\frac{2n-1}{2}x)$
2分	齐次方程通解 $w = f(y) + g(x)$		n=1
2分	$u = u^* + w = \frac{\pi^3 y^2}{6} + f(y) + g(x)$	[12分]	\square , $u = v + w$
Y-1-10-1		4分	
[6分]			$v _{x=0} = B = 0, v _{x=1} = A \cdot 1 = 1, v = x$
2分	边条左II右I 由S-L定理, 固有值>0	1分	$w _{x=0} = w _{x=1} = 0 \text{ I} $ $w_t - 4w_{xx} = u_t - 4u_{xx} - (v_t - 4v_{xx}) = 0$
		1分	$w_t - 4u_{xx} = u_t - 4u_{xx} - (v_t - 4v_{xx}) = 0$ $w _{t=0} = u _{t=0} - v _{t=0} = \varphi + x - x = \varphi$
	$X'(0) = -A \cdot 0 + B \cos(0) = 0, B = 0$	4分	对w分离变量, 经①②③可得
	$X(5) = A \cos \left(\sqrt{\lambda 5}\right) = 0$		$w = \sum_{n=0}^{\infty} A_n e^{-4(n\pi)^2 t} \sin(n\pi x)$
2分	$\lambda_n = \left[\frac{(n-\frac{1}{2})\pi}{5}\right]^2, n = 1, 2, 3 \cdots$		11=1
2分	$X_n = \cos\left[\left(n - \frac{1}{2}\right)\pi\frac{x}{5}\right]$		$A_n = 2 \int_0^1 \varphi(x) \sin(n\pi x) dx$
	*若结果错、据边条等推导酌情给、总分≤3	2分	$u = v + w = x + \sum_{n=0}^{\infty} A_n e^{-4(n\pi)^2 t} \sin n\pi x$
40.00	756		*若结果错,据推导酌情给,总分≤6
[6分]	(2)		
2分	方程 $y'' + \frac{1-x}{x}y' + \frac{\lambda}{x}y = 0$ 同乘 $e^{\int \frac{1-x}{x}dx}$ $e^{\int \frac{1-x}{x}dx} = e^{\ln x - x} = xe^{-x}$	[14分]	五、
2分 2分	$e^{y} = e^{xx} + = xe^{-x}$ $(xe^{-x}y')' + \lambda e^{-x}y = 0$	2分	①分离 $u = R(r)\Theta(\theta)$
W.73	(30 9) 1 / 0 9 - 0		$\begin{cases} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) \right\} u = 0 \\ \frac{1}{R} \frac{d}{dr} \left(r^2 \frac{dR}{dr} \right) = \lambda \end{cases}$
[12分]	三(1)		$\frac{\partial^{2} \Phi}{\partial \sin \theta} \frac{\partial^{2} \Phi}{\partial \theta} \left(\sin \theta \frac{\partial \Phi}{\partial \theta} \right) = -\lambda$ $x = \cos \theta \to \left[(1 - x^{2})y' \right]' + \lambda y = 0$
2分	①分离 $u = T(t)X(x)$		$x = \cos \theta \to [(1 - x^2)y']' + \lambda y = 0$
	$T''(t) + \lambda a^2 T(t) = 0$		医胜田有诅用题(Legendre力程)
	$X''(x) + \lambda X(x) = 0$ 边条分离 $X(0) = 0, X'(\pi) = 0$		$\lambda_n = n(n+1), n = 0, 1, 2 \cdots$
	②解固有值问题		$\Theta_n = P_n(\cos \theta)$ 解Euler方程 $R_n = A_n r^n + B_n r^{-(n+1)}$
2分	$\lambda_n = \left[(n - \frac{1}{2}) \frac{\pi}{\pi} \right]^2, n = 1, 2, 3 \cdots$	2分	③叠加: 轴对称情形下解为
W76:	$X_n = \sin\left[\left(n - \frac{1}{2}\right)x\right]$		$u(t, x) = \sum_{n=0}^{\infty} [A_n r^n + B_n r^{-(n+1)}] P_n(\cos \theta)$
2分	解常微分方程 $T''(t) + \lambda_n a^2 T(t) = 0$ $T_n = C_n \cos(n - \frac{1}{2})at + D_n \sin(n - \frac{1}{2})at$	2分	球外: 自然边条无穷远有界 *漏An扣分
	特解 $T_n(t)X_n(x)$ …		$u(t,x) = A_0 + \sum_{n=0}^{\infty} [B_n r^{-(n+1)}] P_n(\cos \theta)$
2分	③登加 $u(t,x) = \sum_{n=1}^{\infty} [C_n \cos(n - \frac{1}{2})at$	2分	
	$+D_n \sin(n-\frac{1}{2})at] \sin[(n-\frac{1}{2})x]$	4分	定系数 $u _{r=+\infty} = A_0 = 0$ $u _{r=R} = \frac{R_0}{R} P_0 + \frac{B_1}{R^2} P_1 + \frac{B_2}{R^2} P_2(\cos\theta) + \cdots$
176			$= 1 - \cos^2 \theta$
4分	定系数 $u _{t=0} = \sum_{n=1}^{\infty} C_n \sin\left[(n-\frac{1}{2})x\right] = \varphi$		偶 $\rightarrow B_1 = 0$; 正交性: 与 P_n , $n > 2$ 无关;
	$u_t _{t=0} = \sum_{n=1}^{\infty} (n - \frac{1}{2})aD_n \sin[n - \frac{1}{2})x] = \psi$	245	$B_2 = -\frac{2}{3}R^3$, $B_0 = \frac{2}{3}R$ $a = \frac{2}{3}R + \frac{1}{3}R^3/2\cos^2\theta = 1$
	$C_n = \frac{2}{\pi} \int_0^{\pi} \varphi(x) \sin[(n - \frac{1}{2})_x] dx$	-4	$u = \frac{2}{3} \frac{R}{r} - \frac{1}{3} \frac{R^3}{r^3} (3\cos^2 \theta - 1)$
	$D_n = \frac{\pi J_0}{(n - \frac{1}{2})a} \frac{2}{\pi} \int_0^{\pi} \psi(x) \sin[(n - \frac{1}{2})x] dx$		
	*注意基,内积.模²; 基若错全错 步骤分≤ 6		

[14分]	六、	7	1 434
2分		[10分]	八、方法(-):
W-72	①分离 $u = R(r)Z(z)$ *轴对称指出 $\nu = 0$ $r^2R'' + rR' + \lambda r^2R = 0$ Bessel	2分	变换 $u = e^{-t}v$
	$Z'' - \lambda Z = 0$ Bessel	452	$u_t = e^{-t}v_t - e^{-t}v$
			$u_{tt} = e^{-t}v_{tt} - 2e^{-t}v_t + e^{-t}v$
1分	边条分离 $R'(a) = J'_0(\omega r) = 0$ II类		$u_{tt} + 2u_t + u = e^{-t}v_{tt} - 2e^{-t}v_t + e^{-t}v$
1.0	②解固有值问题(Bessel方程) $\lambda = \omega^2$ 有限解 $\rho(\omega) = 1/\omega$		$+2e^{-t}v_t - 2e^{-t}v + e^{-t}v = e^{-t}v_{tt}$
25)	有界解 $R(r) = J_0(\omega r)$ 沿。是 $r(\omega r) = note = 0.1 \dots$		$v_{tt} = 4v_{xx}$ *此方法过简.步骤不全应严格扣分以公平
+21		2分	$v = \frac{\varphi(x-at) + \varphi(x+at)}{2} + \frac{1}{2a} \int_{x-at}^{x+at} \psi(\xi) d\xi$
153	则固有值 $\lambda_n = \omega_n^2$,固有函数 $J_0(\omega_n r)$	231	
1分	解其余问题 $\lambda_0 = 0$, $Z_0 = C_0 + D_0 z$		$=\frac{1}{4}\int_{r-2\ell}^{x+2\ell} \psi(\xi)d\xi$
1分	$n = 1, 2 \cdots \mathbb{R}^{2}, Z_{v} = C_{v} ch\omega_{v} z + D_{v} sh\omega_{v} z$	25)	$u = e^{-t} \frac{1}{4} \int_{x-2t}^{x+2t} \psi(\xi) d\xi$
+50	* \oplus \square		方法(-):
2分	00	2分	①FT $\bar{u}(t, \lambda) = F[u(t, x)]$
	③叠矩: $u(r, z) = C_0 + D_0 z + \sum_{n=1}$ …		$4(-i\lambda)^2 \bar{u} = \frac{d^2\bar{u}}{dt} + 2\frac{d\bar{u}}{dt} + \bar{u}$
4分	定系数: 见课本P288 $f_2 = 0$		$\bar{u} _{t=0} = 0$
	$N_{02n}^2 = \frac{a^2}{2} J_0^2(\omega_n a), J_0(0) = 1, N_{020}^2 = \frac{a^2}{2}$		$\bar{u}_t _{t=0} = \bar{\psi}, \mathfrak{S} \hat{z} \bar{\psi}(\lambda) = F[\psi(x)]$
Trans.	- 4	3分	② 解特征方程得 $k = \frac{-2\pm\sqrt{4-4(1+4\lambda^2)}}{2}$
[12分]			通解 $\bar{u} = Ae^{(-1+i2\lambda)t} + Be^{(-1-i2\lambda)t}$
3分	$\Delta_3 G = -\delta(M - M_0), G _S = 0$ $3SM_B h + (+C_1 - C_2) H + (+C_2 - C_3) H + (+C_3 - C_3)$		定解条件 $\bar{u} _{t=0} = A + B = 0$
991			$\bar{u}_t _{t=0} = A(-1+i2\lambda) + B(-1-i2\lambda) = \bar{\psi}$
	M_2 坐标 $(+\eta, -\xi, \xi)$ 競像+		$A = -B = \frac{\psi}{4i\lambda}$
	M_3 坐标 $(-\xi, +\eta, \xi)$ 鏡像-		$\mathbb{E} \mathbb{R} \bar{u} = e^{-t} \left[\frac{1}{4} \frac{\bar{\psi}}{i\lambda} e^{i2\lambda t} + \frac{1}{4} \frac{\bar{\psi}}{-i\lambda} e^{-i2\lambda t} \right]$
	M_4 坐标 $(-\xi, -\eta, \zeta)$ 镜像+		$\Im F^{-1}T$
	M_5 坐标 $(-\eta, -\xi, \zeta)$ 镜像-	3分	$F^{-1}\left[\frac{\tilde{\psi}}{-i\lambda}\right] = \int_{-\infty}^{x} \psi(\xi)d\xi$
	M_6 坐标 $(-\eta, +\xi, \zeta)$ 镜像+		$F^{-1}\left[\frac{1}{4}\frac{\bar{\psi}}{-i\lambda}e^{-i2\lambda t}\right] = \frac{1}{4}\int_{-\infty}^{\pi+2t} \psi(\xi)d\xi$
-14	M_7 坐标 $(+\xi, -\eta, \zeta)$ 镜像-		$F^{-1}\left[\frac{1}{4}\frac{\psi}{i\lambda}e^{i2\lambda t}\right] = -\frac{1}{4}\int_{-\infty}^{x-2t}\psi(\xi)d\xi$
2分	考虑点源在 $M(x,y,z)$ 处的电势,约定	2分	$u(t,x) = F^{-1}[\bar{u}] = e^{-t} \frac{1}{4} \int_{x-2t}^{x+2t} \psi(\xi) d\xi$
	$M_0) = \sqrt{(x-\xi)^2 + (y-\eta)^2 + (z-\zeta)^2}$	200	101 - 4 J ₂ -2t +18/05
	$M_1) = \sqrt{(x-\eta)^2 + (y-\xi)^2 + (z-\zeta)^2}$		
	M_2) = $\sqrt{(x - \eta)^2 + (y + (\xi)^2 + (z - \zeta)^2}$ M_3) = $\sqrt{(x + (\xi)^2 + (y - \eta)^2 + (z - \zeta)^2}$		
	$(M_4) = \sqrt{(x+\xi)^2 + (y-\eta)^2 + (z-\zeta)^2}$ $(M_4) = \sqrt{(x+\xi)^2 + (y+\eta)^2 + (z-\zeta)^2}$		J 134 ~ 1514
r(M	$M_5) = \sqrt{(x + \eta)^2 + (y + \eta)^2 + (z - \zeta)^2}$		in einth = in einth.
r(M	$M_6) = \sqrt{(x+\eta)^2 + (y+\zeta)^2 + (z-\zeta)^2}$		i A i A
r(M	M_7 = $\sqrt{(x-\xi)^2 + (y+\eta)^2 + (z-\zeta)^2}$		
357	$G = U_0 + U_1 + U_2 + U_3 + U_4 + U_5 + U_6 + U_7$		8
= 17	$rr(M,M_0) = \frac{1}{4\pi r(M,M_1)} + \frac{1}{4\pi r(M,M_2)} = \frac{1}{4\pi r(M,M_2)}$		= The alminate
+ 4=	$r(M,M_4) = \frac{1}{4\pi r(M,M_5)} + \frac{1}{4\pi r(M,M_5)} = \frac{1}{4\pi r(M,M_5)}$		14
255	验证 $G _{u=0} = (U_7 + U_0) _{u=0}$		250
_ 1	$+(U_1 + U_2) + (U_3 + U_4) + (U_5 + U_6) _{y=0}$		= 2-1-5:1-44.
- 4:	$\frac{+(U_1 + U_2) + (U_3 + U_4) + (U_5 + U_6) _{y=0}}{\sqrt{(x-\xi)^2 + (-\eta)^2 + (x-\zeta)^2}} - \frac{1}{\sqrt{(x-\xi)^2 + (\eta)^2 + (x-\zeta)^2}}\right)$		A
2分	$= (0) + (\square 2 2 0) + (0) + (0) = 0$ $G _{y=x} = (U_0 + U_1) _{y=x}$		
-73	$O_{1y=x} = (U_0 + U_1) _{y=x}$ $+(U_2 + U_3) + (U_4 + U_5) + (U_6 + U_7) _{y=x}$		D = sinht
	= 0		an .