Lemma 1. Given a timestamp list $T = [t_1, t_2, \cdots, t_n]$ $(n \ge 1)$ and an integer $t \ge 1$, let $T' \subseteq T$ be a sublist no shorter than t whose frequency is equal to the t-frequency $F_t(T)$, there exists an integer $i \in [1, n - t + 1]$ such that $T' = [t_i, t_{i+1}, \cdots, t_{i+|T'|-1}]$.

Proof. Given a $T'=[t_j,...,t_k]$ which is a sublist of T, and the elements in T' do not have consecutive subscripts in T, we can calculate that the local frequency derived from T' is $\frac{|T'|}{t_k-t_j+1}$, however, if we we insert missing elements between t_k and t_j into T, denoted by T'', such that the subscripts of the elements are consecutive in T. Then, the local frequency derived from T'' is $\frac{|T''|}{t_k-t_j+1}$ which is obviously greater because T'' have more elements. \square

Lemma 2. Given a timestamp list $T = [t_1, t_2, \dots, t_n]$ $(n \ge 1)$ and an integer $t \ge 1$, $F_t(T)$ is the reciprocal of the minimum slope of all t-lines between $p'_i = (i-1, t_i-1) \in P_{start}$ and $p_j = (j, t_j) \in P_{end}$ with $j \ge i$.

 $\begin{array}{l} \textit{Proof.} \ \ \text{Based on Lemma 1, the elements in } T' \ \text{must have continuous subscripts in } T, \ \text{so} \ F_t(u,v) = \{\max(\frac{|T'|}{t_k-t_j+1})||T'| \geq t\} = \{\max(\frac{j-i+1}{t_j-t_i+1})|j-i+1 \geq t\} = \{\frac{1}{\min(\frac{t_j-(t_i-1)}{j-(i-1)})}|j-i+1 \geq t\} = \{\frac{1}{\min(\text{slp}(p_i',p_j))}|j-i+1 \geq t\}. \end{array}$

Lemma 3. For an end point p_j and an integer t, any start point p_i' with $1 \le i \le j - t + 1$ such that $\mathrm{slp}(p_i', p_j) = \mathrm{mslp}(\cdot, p_j)$ must satisfy that $p_i' \in \mathrm{UCC}_j$.

Proof. For the p_j' which is not in the upper convex curve and the two points next to it p_i' and p_k' which are in the curve, based on $\operatorname{slp}(p_i',p_j') \leq \operatorname{slp}(p_j',p_k')$ we consider three cases for the end point p_j . Firstly, if $\operatorname{slp}(p_j',p_j) \geq \operatorname{slp}(p_j',p_k')$, then $\operatorname{slp}(p_i',p_j) \leq \operatorname{slp}(p_j',p_j)$. Secondly, if $\operatorname{slp}(p_i',p_j') \leq \operatorname{slp}(p_j',p_j) < \operatorname{slp}(p_j',p_k')$, then both $\operatorname{slp}(p_i',p_j)$ and $\operatorname{slp}(p_k',p_j)$ are less than $\operatorname{slp}(p_j',p_j)$. Third, if $\operatorname{slp}(p_j',p_j) < \operatorname{slp}(p_i',p_j')$, then $\operatorname{slp}(p_k',p_j) < \operatorname{slp}(p_j',p_j)$. In either case, $\operatorname{slp}(p_j',p_j)$ is not the minimum.

Lemma 4. The slopes of the t-lines from points in UCC_j to endpoint p_j decreases monotonically first and then increases. (In boundary cases, it may be monotonically decreasing or increasing).

Proof. The slope of p_j to UCC_j can be denoted by $k = \frac{y_j - y}{x_j - x}$, its derivative is $k' = \frac{k - \frac{dy}{dx}}{(x_j - x)^3} = \{\frac{k - \mathrm{slp}(p_i', p_{i+1}')}{(x_j - x)^3} | 1 \le i < |T| \}$. Consider three cases, firstly, if the initial k is greater than $\mathrm{slp}(p_i', p_{i+1}')$, i.e., $\mathrm{slp}(p_1', p_j) > \mathrm{slp}(p_1', p_2')$, then k is monotonically increasing because $\mathrm{slp}(p_i', p_{i+1}')$ is decreasing which means k' is always greater than 0. In this case, p_1' is OSP. Secondly, if $\mathrm{slp}(p_1', p_j) \le \mathrm{slp}(p_1', p_2')$, thus k decreases initially until it reaches a certain point p_i' where $\mathrm{slp}(p_i', p_j) > \mathrm{slp}(p_i', p_{i+1}')$, and after that k starts to increase. In this case, p_i' is OSP. Third, if there is no point p_i' such that $\mathrm{slp}(p_i', p_j) > \mathrm{slp}(p_i', p_{i+1}')$, then k is monotonically decreasing, and $p_{|T|}'$ is OSP.

Lemma 5. Those start points other than p'_{j-t+1} that do not exist in UCC_{j-1} cannot exist in UCC_{j} .

Proof. Considering end points p_j and p_{j-1} , since timestamps in T are sorted incrementally, thus p_j is to the upper right of p_{j-1} , which means the proof in Lemma 3 of p_{j-1} can be applied to p_j .

Lemma 6. When iterating to a new end point p_j , points before its OSP can not be the start point to obtain the minimum slope, which means that they should be removed from UCC.

Proof. Suppose that the OSP of p_j is p'_l , and the OSP of a new end point $p_{j'}$ (after p_j) is $p'_{l'}$, while the x-value of $p'_{l'}$ is less than that of p'_l . According to the property of optimal start point and the definition of upper convex curve, there is $\mathrm{slp}(p'_{l'},p_{j'})>\mathrm{slp}(p'_{l'},p'_{l'+1})>\mathrm{slp}(p'_{l-1},p'_l)>\mathrm{slp}(p'_l,p_j)$, which means $p'_{l'}$ can not be the start point to obtain the minimum slope.

Lemma 7. Given a temporal graph \mathcal{G} , $\mathcal{C}^k_{t',f'} \subseteq \mathcal{C}^k_{t,f}$ if $f' \geq f$ and $t' \geq t$.

Proof. Assume a vertex $u \in \mathcal{C}^k_{t',f'}$, we have $|\mathcal{N}_{t,f}(u)| \geq |\mathcal{N}_{t',f'}(u)| \geq k$ if $f' \geq f$ and $t' \geq t$. Thus, u must also be present in $\mathcal{C}^k_{t,f}$, namely, $\mathcal{C}^k_{t,f}$ contains all vertices in $\mathcal{C}^k_{t',f'}$. \square

Lemma 8. Given a vertex v and an integer k, we have $cf(v, k, t) \ge cf(v, k, t')$ if t < t'.

Proof. We prove by contradiction. Supposing that t < t' and there exists a vertex v satisfying $\mathrm{cf}(v,k,t) < \mathrm{cf}(v,k,t')$. We have $v \in \mathcal{C}^k_{t',\mathrm{cf}(v,k,t')}$ and $v \notin \mathcal{C}^k_{t,\mathrm{cf}(v,k,t')}$ since $\mathrm{cf}(v,k,t) < \mathrm{cf}(v,k,t')$. However, $\mathcal{C}^k_{t',\mathrm{cf}(v,k,t')} \subseteq \mathcal{C}^k_{t,\mathrm{cf}(v,k,t')}$ due to t < t' which is a contradiction.

Lemma 9. Given k and t, let $N_t^k(u)$ be the set of neighbors of a vertex u such that for each $v \in N_t^k(u)$ we have $\operatorname{cf}(v,k,t) \geq \operatorname{cf}(u,k,t-1)$ and $F_t(u,v) \geq \operatorname{cf}(u,k,t-1)$. Consequently, $\operatorname{cf}(u,k,t) < \operatorname{cf}(u,k,t-1)$ if and only if $|N_t^k(u)| < k$.

Proof. (\Rightarrow) We prove by contradiction, suppose $\mathrm{cf}(u,k,t) < \mathrm{cf}(u,k,t-1)$ and $|N_t^k(u)| \ge k$, then u have more than k neighbors v that satisfying $\mathrm{cf}(v,k,t) \ge \mathrm{cf}(u,k,t-1)$ and $F_t(u,v) \ge \mathrm{cf}(u,k,t-1)$, which means $u \in \mathcal{C}^k_{t,\mathrm{cf}(u,k,t-1)}$. Based on the definition of core frequency, we have $\mathrm{cf}(u,k,t-1) \le \mathrm{cf}(u,k,t)$, which contradicts to the assumption.

Lemma 10. Given t and k, $\operatorname{cf}(u,k,t)$ equals to the maximum float $f \leq 1$ such that the number of neighbor vertices (denoted by v) of u, which satisfy $\operatorname{cf}(v,k,t) \geq f$ and $F_t(u,v) \geq f$, is no less than k.

Proof. We consider the value of f' in two cases. First, if f' > f, then u does not exist in $C_{t,f'}^k$ due to the maximality of f, so

 $cf(u, k, t) \neq f'$. Second, if f' < f, Since it does not satisfy the maximality in the definition of core frequency, $cf(u, k, t) \neq f'$.

Lemma 11. For any skyline (k, t, f)-core, f is a core frequency of at least one vertex, and thus is preserved in the CF-Index.

Proof. Assuming there is a (k,t,f)-core, whose f is not preserved in the CF-Index, then there must exist a vertex v that satisfies $\operatorname{cf}(v,k,t)>f$, so $(k,t,\operatorname{cf}(v,k,t))$ -core dominates (k,t,f)-core.

Lemma 12. For any skyline (k, t, f)-core, we have t = t' - 1 for a pair (t', f') preserved in the partition of k.

Proof. For two consecutive entries in the partition of k and v, (t_1, f_1) and (t_2, f_2) , since for any $t_1 \le t < t_2 - 1$, core frequency satisfies $\operatorname{cf}(v, k, t) = \operatorname{cf}(v, k, t_2 - 1) = f_1$, so $(k, t_2 - 1, f_1)$ -core dominates any other (k, t, f_1) -core, which means $t = t_2 - 1, t' = t_2, f = f_1, f' = f_2$ in the Lemma. \square

Lemma 13. Let $Skyline_k$ contain all pairs of (t, f). If a triple (k_1, t_1, f_1) is dominated by another (k_2, t_2, f_2) , it can only be one of the two cases: 1) $k_1 = k_2, t_1 < t_2, f_1 = f_2$. 2) $k_1 < k_2, t_1 = t_2, f_1 = f_2$.

Proof. Consider the following cases, and we will prove in turn the reasons why they should not be taken into account. 1) $k_1 = k_2, t_1 = t_2, f_1 \le f_2$ 2) $k_1 < k_2, t_1 = t_2, f_1 < f_2$ $3)k_1 < k_2, t_1 < t_2, f_1 \le f_2$ For the first case, since during the traversal of CF-index to obtain the candidate skyline tuples in the algorithm, for fixed k and t, only the largest f is retained, therefore case 1 does not exist. For the second case, assuming this situation exists, then there must exist a point uthat satisfies $cf(u, k_2, t_2) = f_2$. Due to the monotonicity of core frequency, we have $cf(u, k_1, t_1) \ge f_2$, which contradicts the assumptions of case 2. For the third case, we similarly assume that it holds, then there must exist a point u that satisfies $cf(u, k_2, t_2) = f_2$ and $cf(u, k_1, t_2) = f_3$ in which $f_3 \geq f_2$. So there exists a tuple (k_1, t_4, f_4) in the candidate skyline tuples that satisfies $t_4 \ge t_2 > t_1, f_4 \ge f_3 \ge f_1$, which means (k_1, t_1, f_1) have been removed in the first situation of the algorithm.