Les 10h

Machine Learning Course - CS-433

K-Means Clustering

Nov 19, 2020

changes by Martin Jaggi 2020, 2019, changes by Rüdiger Urbanke 2018, changes by Martin Jaggi 2016, 2017 ©Mohammad Emtiyaz Khan 2015

Last updated on: November 17, 2020

Clustering

Clusters are groups of points whose inter-point distances are small compared to the distances outside the cluster.

The goal is to find "prototype" points $\mu_1, \mu_2, \ldots, \mu_K$ and cluster assignments $z_n \in \{1, 2, \ldots, K\}$ for all $n = 1, 2, \ldots, N$ data vectors $\mathbf{x}_n \in \mathbb{R}^D$.

K-means clustering

Assume K is known. $\min_{\mathbf{z}, \boldsymbol{\mu}} \mathcal{L}(\mathbf{z}, \boldsymbol{\mu}) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|_2^2$ s.t. $\boldsymbol{\mu}_k \in \mathbb{R}^D, z_{nk} \in \{0, 1\}, \sum_{k=1}^{K} z_{nk} = 1,$ where $\mathbf{z}_n = [z_{n1}, z_{n2}, \dots, z_{nK}]^{\top}$ $\mathbf{z} = [\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_N]^{\top}$ $\boldsymbol{\mu} = [\boldsymbol{\mu}_1, \boldsymbol{\mu}_2, \dots, \boldsymbol{\mu}_K]^{\top}$

Is this optimization problem easy?

NP-hard

Algorithm: Initialize $\mu_k \forall k$,

then iterate:

- 1. For all n, compute \mathbf{z}_n given $\boldsymbol{\mu}$. Assignment skep

 2. For all k, compute $\boldsymbol{\mu}_k$ given \mathbf{z} . update cenks

Step 1: For all n, compute \mathbf{z}_n given $\boldsymbol{\mu}$.

$$\mathbf{o}_{nk} = \begin{cases} 1 & \text{if } k = \arg\min_{j=1,2,\dots K} \|\mathbf{x}_n - \boldsymbol{\mu}_j\|_2^2 \\ 0 & \text{otherwise} \end{cases}$$

Step 2: For all k, compute μ_k given \mathbf{z} . Take derivative w.r.t. μ_k to get:

$$oldsymbol{\mu}_k = rac{\sum_{n=1}^N z_{nk} \mathbf{x}_n}{\sum_{n=1}^N z_{nk}} egin{array}{c} \# \mathcal{D}^{nk} & \text{ which with the points of the points } \mathcal{D}^{nk} & \text{ which we have the points } \mathcal{D}^{nk} & \text{ wh$$

Hence, the name 'K-means'.

Summary of K-means

Initialize $\mu_k \, \forall k$, then iterate:

update assignment ?

1. For all n, compute \mathbf{z}_n given $\boldsymbol{\mu}$.

$$z_{nk} = \begin{cases} 1 & \text{if } k = \arg\min \left(\|\mathbf{x}_n - \boldsymbol{\mu}_j\|_2^2 \right) \\ 0 & \text{otherwise} \end{cases}$$

O(N. K.D)

(2.) For all k, compute μ_k given \mathbf{z} .

 $\mu_k = \sum_{n=1}^{N} z_{nk} \mathbf{X}_n$ $\sum_{n=1}^{N} z_{nk}$

O(N·K·D)

Convergence to a local optimum is assured since each step decreases the cost (see Bishop, Exercise 9.1).

Coordinate descent

K-means is a coordinate descent algorithm, where, to find $\min_{\mathbf{z},\boldsymbol{\mu}} \mathcal{L}(\mathbf{z},\boldsymbol{\mu})$, we start with some $\boldsymbol{\mu}^{(0)}$ and repeat the following:

$$\frac{\mathbf{z}^{(t+1)} := \arg\min_{\mathbf{z}} \ \mathcal{L}(\mathbf{z}, \boldsymbol{\mu}^{(t)})}{\boldsymbol{\mu}^{(t+1)} := \arg\min_{\boldsymbol{\mu}} \ \mathcal{L}(\mathbf{z}^{(t+1)}, \boldsymbol{\mu})}$$

M-update of K-means

Examples

K-means for the "old-faithful" dataset (Bishop's Figure 9.1)

MK EIR3

Data compression for images (this is also known as vector quantization).

datapoint

vector quantization

Probabilistic model for K-means

$$P(x_{n}|M,2) = \prod_{n=1}^{k} N(x_{n}|M_{k}, I)$$

$$P(x_{n}|M,2) = \prod_{n=1}^{k} N(x_{n}|M_{k}, I)$$

$$P(x_{n}|M_{k}, I) = \prod_{n=1}^{k} N(x_{n}|M_{k}, I)^{2}nk$$

$$= \prod_{n=1}^{k} \sum_{k=1}^{k} C \cdot e^{-\frac{1}{2}||x_{n}-M_{k}||^{2}} \cdot 2nk$$

$$= \prod_{n=1}^{k} \sum_{k=1}^{n} ||x_{n}-M_{k}||^{2} \cdot 2nk$$

$$= \sum_{n=1}^{k} \sum_{k=1}^{n} ||x_{n}-M_{k}||^{2} \cdot 2nk$$

K-means as a Matrix Factorization

Recall the objective

$$\min_{\mathbf{z}, \boldsymbol{\mu}} \mathcal{L}(\mathbf{z}, \boldsymbol{\mu}) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|_2^2$$

$$= \|\mathbf{X}^{\top} - \mathbf{M}\mathbf{Z}^{\top}\|_{\mathsf{Frob}}^2$$

s.t.
$$\mu_k \in \mathbb{R}^D$$
, $z_{nk} \in \{0, 1\}, \sum_{k=1}^K z_{nk} = 1$.

$$oldsymbol{\mu}_k \in \mathbb{R}^D, \qquad oldsymbol{\mathcal{M}} = \left(oldsymbol{\mathcal{M}}, oldsymbol{\mathcal{M}}_k \right) \ z_{nk} \in \{0,1\}, \ \sum_{k=1}^K z_{nk} = 1. \ oldsymbol{\mathcal{M}} = \left(oldsymbol{\mathcal{M}}, oldsymbol{\mathcal{M}}_k \right) \ oldsymbol{\mathcal{M}}_k \in \{0,1\}, \ \sum_{k=1}^K z_{nk} = 1. \ oldsymbol{\mathcal{M}}_k \in \{0,1\}, \ \sum_{k=1}^K z_{nk} = 1. \ oldsymbol{\mathcal{M}}_k \in \{0,1\}, \ \sum_{k=1}^K z_{nk} = 1. \ oldsymbol{\mathcal{M}}_k \in \{0,1\}, \ \sum_{k=1}^K z_{nk} = 1. \ oldsymbol{\mathcal{M}}_k \in \{0,1\}, \ \sum_{k=1}^K z_{nk} = 1. \ oldsymbol{\mathcal{M}}_k \in \{0,1\}, \ \sum_{k=1}^K z_{nk} = 1. \ oldsymbol{\mathcal{M}}_k \in \{0,1\}, \ \sum_{k=1}^K z_{nk} = 1. \ oldsymbol{\mathcal{M}}_k \in \{0,1\}, \ \sum_{k=1}^K z_{nk} = 1. \ oldsymbol{\mathcal{M}}_k \in \{0,1\}, \ \sum_{k=1}^K z_{nk} = 1. \ oldsymbol{\mathcal{M}}_k \in \{0,1\}, \ \sum_{k=1}^K z_{nk} = 1. \ oldsymbol{\mathcal{M}}_k \in \{0,1\}, \ \sum_{k=1}^K z_{nk} = 1. \ oldsymbol{\mathcal{M}}_k \in \{0,1\}, \ \sum_{k=1}^K z_{nk} = 1. \ oldsymbol{\mathcal{M}}_k \in \{0,1\}, \ \sum_{k=1}^K z_{nk} = 1. \ oldsymbol{\mathcal{M}}_k \in \{0,1\}, \ \sum_{k=1}^K z_{nk} = 1. \ oldsymbol{\mathcal{M}}_k \in \{0,1\}, \ \sum_{k=1}^K z_{nk} = 1. \ oldsymbol{\mathcal{M}}_k \in \{0,1\}, \ \sum_{k=1}^K z_{nk} = 1. \ oldsymbol{\mathcal{M}}_k \in \{0,1\}, \ \sum_{k=1}^K z_{nk} = 1. \ oldsymbol{\mathcal{M}}_k \in \{0,1\}, \ \sum_{k=1}^K z_{nk} = 1. \ oldsymbol{\mathcal{M}}_k \in \{0,1\}, \ \sum_{k=1}^K z_{nk} = 1. \ oldsymbol{\mathcal{M}}_k \in \{0,1\}, \ \sum_{k=1}^K z_{nk} = 1. \ oldsymbol{\mathcal{M}}_k \in \{0,1\}, \ \sum_{k=1}^K z_{nk} = 1. \ oldsymbol{\mathcal{M}}_k \in \{0,1\}, \ \sum_{k=1}^K z_{nk} = 1. \ oldsymbol{\mathcal{M}}_k \in \{0,1\}, \ \sum_{k=1}^K z_{nk} = 1. \ oldsymbol{\mathcal{M}}_k \in \{0,1\}, \ \sum_{k=1}^K z_{nk} = 1. \ oldsymbol{\mathcal{M}}_k \in \{0,1\}, \ \sum_{k=1}^K z_{nk} = 1. \ oldsymbol{\mathcal{M}}_k \in \{0,1\}, \ \sum_{k=1}^K z_{nk} = 1. \ oldsymbol{\mathcal{M}}_k \in \{0,1\}, \ \sum_{k=1}^K z_{nk} = 1. \ oldsymbol{\mathcal{M}}_k \in \{0,1\}, \ \sum_{k=1}^K z_{nk} = 1. \ oldsymbol{\mathcal{M}}_k \in \{0,1\}, \ \sum_{k=1}^K z_{nk} = 1. \ oldsymbol{\mathcal{M}}_k \in \{0,1\}, \ \sum_{k=1}^K z_{nk} = 1. \ oldsymbol{\mathcal{M}}_k \in \{0,1\}, \ \sum_{k=1}^K z_{nk} = 1. \ oldsymbol{\mathcal{M}}_k \in \{0,1\}, \ \sum_{k=1}^K z_{nk} = 1. \ oldsymbol{\mathcal{M}}_k \in \{0,1\}, \ \sum_{k=1}^K z_{nk} = 1. \ oldsymbol{\mathcal{M}}_k \in \{0,1\}, \ \sum_{k=1}^K z_{nk} = 1. \ oldsymbol$$

Issues with K-means

- 1. Computation can be heavy for large N, D and K.
- 9 (N.K.D)
- 2. Clusters are forced to be spherical (e.g. cannot be elliptical).
- 3. Each example can belong to only one cluster ("hard" cluster assignments).