National NLP Clinical Challenges n2c2 - Track 1

Medical University of Graz (Austria)

Institute for Medical Informatics, Statistics and Documentation

Michel Oleynik, **Amila Kugic**, Markus Kreuzthaler, Zdenko Kasáč, Stefan Schulz

Overview

- Who are we?
- What was the task / the challenge?
- What was our approach to solving the challenge?
- What worked, what didn't?
- What can be improved?

Our Group

- BST (Biomedical Semantics Team) at the Medical University of Graz
 - led by Prof. Stefan Schulz, MD
 - in total about 13 members (including guest researchers)
 - five participants for the challenge (three computer scientists, two physicians)
- focus on
 - Applied Clinical NLP
 - Information Retrieval and Extraction
 - Information Models, Ontologies, Terminologies, Semantics, ...

Our Approach

- three submissions
 - rule-based approach
 - machine learning
 - support vector machines (SVM)
 - neural network (NN)

Rule-Based Approach

- positive text markers
 - "elevated creatinine"
- negative text markers
 - "Spanish", "with interpreter"

Mild anemia - repeat testing-hematocrit stable at 39 and hemogl Mild <mark>elevated creatinine</mark>-repeat testing and check a urine and mi

SOCIAL HISTORY:
No tobacco, Occ Etoh, Spanish speaking, originally from Columbia

- regular expressions for value extraction
 - "HbA1C of 10.7"

, including IDDM, with a HbA1C of 10.7 earlier this month

- basic negation and family history detection
 - "no history of renal failure"
 - "rule out myocardial infarction"

Renal/Genitourinary: no history of renal failure; denies hematuria,

1. Rule out myocardial infarction.

SVM

- data pre-processing
 - alphabetic tokens
 - lowercased
 - tf-idf weighting
 - 1000 most common tokens kept
- data modelling
 - bag-of-words representation
- classifier setting
 - linear kernel
 - optimizing cost parameter

Motivation for NNs

- capture sequences (time)[1]
- Google News vectors (word2vec)
 - low coverage rate
- corpus based recalculation
 - no robust vector representation
- instead used character 3-gram encoding [2]
 - of each sentence
- text cleansing and sentence detection

^[1] Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural computation 9.8 (1997): 1735-1780.

^[2] Arnold, Sebastian, et al. "Robust named entity recognition in idiosyncratic domains." arXiv preprint arXiv:1608.06757 (2016).

Neural Networks

Our Setup

- common framework
 - https://github.com/bst-mug/n2c2
 - Java Libraries: Weka, DL4J, libsvm
- continuous improvement
 - false-positive and false-negative analysis
 - feedback from rule-based approach influenced other strategies

Overall Results

Method	Overall (micro F1)	Overall (macro F1)
Rule-Based Classifier	0.9100	0.7525
Support Vector Machines	0.8035	0.5899
Neural Networks	0.6815	0.4118

Rule-Based Classifier

		1	met			not met			over	overall	
Criterion	Accuracy		Prec.	Rec.	Speci.	F(b=1)	Prec.	Rec.	F(b=1)	F(b=1)	AUC
ABDOMINAL	0.8837	Abdominal	0.8333	0.8333	0.9107	0.8333	0.9107	0.9107	0.9107	0.8720	0.8720
ADVANCED_CAD	0.7906	Advanced-cad	0.8000	0.8000	0.7805	0.8000	0.7805	0.7805	0.7805	0.7902	0.7902
ALCOHOL_ABUSE	0.9534	Alcohol-abuse	0.0000	0.0000	0.9880	0.0000	0.9647	0.9880	0.9762	0.4881	0.4940
asp_for_mi	0.8604	Asp-for-mi	0.8500	1.0000	0.3333	0.9189	1.0000	0.3333	0.5000	0.7095	0.6667
CREATININE	0.8372	Creatinine	0.6786	0.7917	0.8548	0.7308	0.9138	0.8548	0.8833	0.8071	0.8233
DIETSUPP_2MOS	0.9186	Dietsupp-2mos	0.9111	0.9318	0.9048	0.9213	0.9268	0.9048	0.9157	0.9185	0.9183
DRUG_ABUSE	0.9651	Drug-abuse	0.5000	0.3333	0.9880	0.4000	0.9762	0.9880	0.9820	0.6910	0.6606
ENGLISH	0.9418	English	0.9359	1.0000	0.6154	0.9669	1.0000	0.6154	0.7619	0.8644	0.8077
		Hba1c	1.0000	0.8571	1.0000	0.9231	0.9107	1.0000	0.9533	0.9382	0.9286
HBA1C	0.9418	Keto-1yr	0.0000	0.0000	1.0000	0.0000	1.0000	1.0000	1.0000	0.5000	0.5000
KETO_1YR	1.0	Major-diabetes	0.8085	0.8837	0.7907	0.8444	0.8718	0.7907	0.8293	0.8369	0.8372
MAJOR_DIABETES	0.8372	Makes-decisions	0.9651	1.0000	0.0000	0.9822	0.0000	0.0000	0.0000	0.4911	0.5000
MAKES_DECISIONS	0.9651	Mi-6mos	1.0000	0.6250	1.0000	0.7692	0.9630	1.0000	0.9811	0.8752	0.8125
MI_6MOS	0.9651										
OVERALL_MICRO	0.9123	Overall (micro)	0.8784	0.9129	0.9120	0.8953	0.9376	0.9120	0.9246	0.9100	0.9124
OVERALL_MACRO	0.9123	Overall (macro)	0.7140	0.6966	0.7820	0.6993	0.8629	0.7820	0.8057	0.7525	0.7393
		I									

86 files found

Discussion

- What can be improved?
 - not enough data for Neural Networks (?)
 - better negation detection
- What was planned, but not implemented?
 - enhanced feature engineering
 - table processing

Conclusion

- better understanding of NNs used on small datasets
- rule based approach performed best

Rule-based Information Extraction is Dead! Long Live Rule-based Information Extraction Systems! Laura Chiticariu Frederick R. Reiss Yunyao Li IBM Research - Almaden IBM Research - Almaden IBM Research - Almaden San Jose, CA San Jose, CA San Jose, CA chiti@us.ibm.com yunyaoli@us.ibm.com frreiss@us.ibm.com Abstract Implementations of Entity Extraction 100% The rise of "Big Data" analytics over unstructured text has led to renewed interest in information extraction (IE). We surveyed the landscape of IE technologies and identified a major disconnect between industry and academia:

Medical University of Graz (Austria)

Institute for Medical Informatics, Statistics and Documentation

Michel Oleynik, Amila Kugic, Markus Kreuzthaler,

Zdenko Kasáč, Stefan Schulz

Amila Kugic

Computer Scientist

amila.kugic@gmail.com