Sprawozdanie z laboratorium nr 5 Algorytmy Sortujące -QUICKSORT

30.03.2014

1. Opis działania algorytmu

Algorytm sortowania szybkiego opiera się na strategii "dziel i zwyciężaj". Proces quicksort-u można podzielić na następujące etapy:

- **Dziel** na początku dzieli sortowaną tablicę na dwie tak, aby wszystkie elementy leżące w pierwszej tablicy były mniejsze od wszystkich elementów drugiej tablicy.
- Zwyciężaj każdą z tablic jest sortowana rekurencyjnie tym samym algorytmem.
- Połącz ostatnim krokiem jest połączenie tablic w jedną posortowaną.

2. Złożoność obliczeniowa algorytmu

Złożoność obliczeniowa została zbadana dla dwóch przypadków - gdy tablica jest wstępnie posortowana oraz gdy elementy tablicy są losowe. Wyniki zostały przedstawione na wykresie 1.

Rysunek 1. Zależność czasu wykonywania algorytmu od rozmiaru problemu dla sortowania szybkiego.

3. Podsumowanie i wnioski

- Jak widać na powyższym wykresie zależności czasu od rozmiaru problemu pokrywają się z krzywymi dopasowania nlogn¹. Wynika z tego, że obu sprawdzanych przypadkach złożoność obliczeniowa wynosi O(nlogn).
- W szczegolnych przypadkach złożoność obliczeniowa algorytmu może wynosić $O(n^2)$. Przykładem jest sytuacja, gdy element rozdzielający (piwot) za każdym razem jest elementem podtablicy o skrajnej wartości (maksymalnej lub minimalnej) w takim przypadku podtablica nie jest praktycznie dzielona, lecz 'odpada' od niej jedynie element osiowy, a resztę tablicy należy dzielić dalej. Jest to jednak przypadek, który przy takiej implementacji algorytmu nie powinien wystąpić (w programie za każdym razem wybierany losowy piwot).

¹ są to funkcje przemnożona przez odpowiednio dobraną stałą