CLAIMS

What is claimed is.

1	1.	A computing system comprising:	
2		a processor in a processor package;	
3		a shunt, transient voltage regulator (STVR) in the processor package	
4	and co	oupled to the processor; and	
5		at least one input/output device coupled to at least one of the STVR	
6	and th	e processor.	
1	2.	The computing system of claim 1, further including:	
2		a decoupling capacitor coupled between the processor and the STVR.	
1	3.	The computing system of claim 1, further including:	
2		at least one decoupling capacitor coupled between the processor and	
3	the ST	the STVR, wherein the at least one decoupling capacitor is selected from a	
4	land-si	de capacitor, a die-side capacitor, and a combination thereof.	
1	4.	The computing system of claim 1, further including:	
2		an interposer coupled to the processor package; and	
3		a decoupling capacitor in the interposer.	
1	5.	The computing system of claim 1, further including:	
2		an interposer coupled to the processor package;	
3		a first decoupling capacitor having a first capacitance functionality in	
4	the interposer; and		
5		coupled between the processor and the STVR, a second decoupling	
6	capacitor having a second capacitance functionality that is different from the		
7	first capacitance functionality.		

1	6.	The computing system of claim 1, further including:
2		an interposer that is integral with the processor package;
3		a first decoupling capacitor having a first capacitance functionality in
4	the int	erposer; and
5		coupled between the processor and the STVR, a second decoupling
6	capaci	tor having a second capacitance functionality different from the first
7	capaci	tance functionality.
1	7.	The computing system of claim 1, further including:
2		a mounting substrate, wherein the processor package is coupled to
3	the mo	ounting substrate; and
4		a DC power converter voltage regulator coupled to the processor in
5	series with the STVR.	
1	8.	The computing system of claim 1, further including:
2		a mounting substrate, wherein the processor package is coupled to
3	the mo	ounting substrate;
4		a power socket between the processor and the mounting substrate;
5	and	
6		a DC power converter voltage regulator on the mounting substrate
7	and co	oupled to the processor in series with the STVR.
1	9.	The computing system of claim 1, further including:
2		a mounting substrate, wherein the processor package is coupled to
3	the mounting substrate; and	
4		a DC power converter voltage regulator coupled to the processor in
5	series	with the STVR, wherein the DC power converter voltage regulator is
6	optimized for DC power conversion.	

1	10.	The computing system of claim 1, wherein the STVR is optimized		
2	for responding	ng to a processor load transient.		
1	11.	The computing system of claim 1, wherein the computing system is		
2	disposed in one of a computer, a wireless communicator, a hand-held device, an			
3	automobile,	a locomotive, an aircraft, a watercraft, and a spacecraft.		
1	12.	The computing gratem of aloing 1 subscription CTVD to a 1.14		
		The computing system of claim 1, wherein an STVR is coupled to at		
2	least one of data storage, a digital signal processor, an application-specific			
3	integrated cir	rcuit, and a microcontroller.		
1	13.	An apparatus comprising:		
2		a processor package including:		
3		a processor; and		
4		a shunt, transient voltage regulator (STVR);		
5		a mounting substrate, wherein the processor is coupled to the		
6	moun	iting substrate;		
7		a DC power converter coupled in series with the STVR, to the		
8	processor; and			
9		at least one input/output device coupled to at least one of the STVR		
10	and the processor.			
1	14.	The apparatus of claim 13, further including:		
2		coupled between the processor and the STVR, a decoupling		
3	capacitor.			
1	15.	The apparatus of claim 13, further including:		
2		an interposer coupled to the processor package;		
3		in the interposer, a first decoupling capacitor having a first		
4	capac	capacitance functionality; and		

5	coupled between the processor and the STVR, a second decoupling		
6	capacitor having a second capacitance functionality that is different from the		
7	first capacitance functionality.		
1	16. The apparatus of claim 13, further including:		
1	between the processor and the mounting substrate, a power socket;		
2	and		
3	coupled between the processor and the STVR, a decoupling capacitor		
4	in an interposer.		
1	17. The apparatus of claim 13, wherein the apparatus is disposed in one		
2	of a computer, a wireless communicator, a hand-held device, an automobile, a		
3	locomotive, an aircraft, a watercraft, and a spacecraft.		
1	18. The apparatus of claim 13, wherein an STVR is coupled to at least		
2	one of data storage, a digital signal processor, an application-specific integrated		
3	circuit, and a microcontroller.		
1	19. A method comprising:		
2	operating a processor in a processor package, wherein the processor		
3	package is coupled to at least on of an input/output device; and		
4	with a shunt, transient voltage regulator (STVR) in the processor		
5	package, responding to transient loads of the processor.		
1	20. The method of claim 19, wherein the STVR is operated with an		
2	independent voltage source first shunt, and a ground second shunt.		
1	21. The method of claim 19, further including:		
2	with a DC voltage converter spaced apart from the processor		
3	package, converting at least one voltage input to Vcc.		

1	22. The method of claim 19, further including:				
2	responding to all processor transients with decoupling capacitor functionality				
3	selected from a second decoupling capacitor in the processor package, a first				
4	decoupling capacitor in an interposer that is coupled to the processor package, a first				
5	decoupling capacitor in an interposer that is integral with the processor package, and				
6	a combination thereof.				
1	23. The method of claim 19, wherein the STVR includes an independent				
2	voltage source first shunt and a ground second shunt, and further including:				
3	controlling the first shunt and the second shunt by gated logic.				
1	24. A method comprising:				
2	inserting a shunt, transient voltage regulator (STVR) in a processor				
3	package; and				
4	coupling the processor package to at least one of an input/output				
5	device.				
1	25. The method of claim 24, further including:				
2	on a mounting substrate for the processor package, coupling in series				
3	a DC voltage converter to the STVR.				
1	26. The method of claim 24, wherein the STVR includes an independent				
2	voltage source first shunt, and a ground second shunt.				
1	27. The method of claim 24, further including:				
2	fabricating a decoupling capacitor in the processor package.				
1	28. The method of claim 24, further including:				
2	fabricating a decoupling capacitor in an interposer that is integral				
3	with the processor package.				

- 1 29. The method of claim 24, further including:
- between the DC voltage converter and the STVR, inserting a power
- 3 socket.
- 1 30. The method of claim 24, wherein the STVR is disposed in one of a
- 2 computer, a wireless communicator, a hand-held device, an automobile, a
- 3 locomotive, an aircraft, a watercraft, and a spacecraft.
- 1 31. The method of claim 24, wherein an STVR is coupled to at least one
- 2 of data storage, a digital signal processor, an application-specific integrated circuit,
- 3 and a microcontroller.