PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION

International Bureau INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (51) International Patent Classification 6: (11) International Publication Number: WO 98/49322 C12N 15/57, 9/64, A61K 31/70, 38/48, A1 C12Q 1/37, A61K 48/00, C07K 16/40, (43) International Publication Date: 5 November 1998 (05.11.98) C12N 15/00, A01K 67/027, C12Q 1/68 (21) International Application Number: PCT/IB98/00625 (81) Designated States: AL, AU, BA, BB, BG, BR, CA, CN, CU, CZ, EE, GE, GW, HU, ID, IL, IS, JP, KP, KR, LC, LK, LR, (22) International Filing Date: 24 April 1998 (24.04.98) LT, LV, MG, MK, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, SL, TR, TT, UA, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian (30) Priority Data: patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, 966/97 26 April 1997 (26.04.97) CH CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG). (71)(72) Applicant and Inventor: SONDEREGGER, Peter [CH/CH]; Biochemisches Institut Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich (CH). **Published** With international search report. (74) Agent: ZINK-WILD, Markus, Peter; Patentanwaltsbüro Zink, Before the expiration of the time limit for amending the Birchlistrasse 11, CH-8173 Riedt-Neerach (CH). claims and to be republished in the event of the receipt of amendments.

(54) Title: NEUROTRYPSIN

(57) Abstract

There are described neurotrypsins of the formulas (I) or (II), including the separate coding and coded sequences of these compounds of the formulas (I) or (II). These compounds may be used as at least one active compound in a pharmaceutical component. The coded peptide sequences of these compounds may be used as targets for the development of pharmaceutical drugs.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	Prance	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	Æ	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	ГТ	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
ÐE	Germany	IJ	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

Neurotrypsin

Technical Field

5

10

The present invention is directed to neurotrypsins and to a pharmaceutical composition which contains these substances or has an influence on these substances.

Disclosure of Invention

Neurotrypsin is a newly discovered serine protease, which is predominantly expressed in the brain and in the lungs; the expression in the brain takes place nearly exclusively in the neurons.

15

Neurotrypsin has a previously not yet found domain composition: besides the protease domain, there are found 3 or 4 SRCR (scavenger receptor cysteine-rich) domains and one Kringle domain. It is to be pointed out that the combination of Kringle and SRCR domains have not yet been found in proteins. At the amino terminus of the neurotrypsin protein there is a segment of more than 60 amino acids, which has an extremely high proportion of proline and basic amino acids (arginine and histidine).

The invention is characterized by the characteristics in the independent claims. Preferred embodiments are defined in the dependent claims.

25

The newly found neurotrypsins

- neurotrypsin of the human (compound of the formula I),
- neurotrypsin of the mouse (compound of the formula II)
- 30 differ structurally very much from the so far known serine proteases.

The serine protease whose protease domain is structurally most closely related with the protease domain of the new compounds, namely plasmin (of the human), has only a 44 % amino acid sequence identity.

35

The proline-rich, basic segment at the amino terminus has a certain resemblance with the basic segments of the netrins and the semaphorins/collapsins. Due to this

segment, it is probable that neurotrypsin may be enriched by means of heparin-affinity chromatography.

The neurotrypsins of the human (compound of the formula I) and of the mouse (compound of the formula II) exhibit a very high structural similarity among each other.

The identity of the amino acid sequences of the native proteins of the compounds of the formulas I or II amounts to 81%.

The neurotrypsin of the human (compound of the formula I) has a coding sequence of 2625 nucleotides. The coded peptide of the compound of the formula I has a length of 875 amino acids and contains a signal peptide of 20 amino acids. The neurotrypsin of the mouse (compound of the formula II) has a coding sequence of 2283 nucleotides. The coded protein of the compound of the formula II has a length of 761 amino acids and contains a signal peptide of 21 amino acids. The reason for the greater length of the neurotrypsin of the human consists therein that the human neurotrypsin has 4 SRCR domains, whereas the neurotrypsin of the mouse has only 3 SRCR domains.

The domains which are present in both compounds (compound of the formula I and compound of the formula II) have a high degree of sequence similarity. The corresponding SRCR domains of the compounds of the formulas I and II have an amino acid sequence identity from 81% to 91%. The corresponding Kringle domains have an amino acid sequence identity of 75%. A high degree of similarity consists also in the enzymatically active (i.e. proteolytic) domain (90% amino acid sequence identity).

25

20

5

10

The protease domains of the neurotrypsins of the human (compound of the formula I) and of the mouse (compound of the formula II) are aligned in the following section, in order to illustrate the high degree of sequence identity.

10

CGLRLLHRRQKRIIGGKNSLRGGWPWQVSLRLKSSHGDGRLLCGATLLSS	50
CWVLTAAHCFKRYGNSTRSYAVRVGDYHTLVPEEFEEEIGVQQIVIHREY	100
RPDRSDYDIALVRLQGPEEQCARFSSHVLPACLPLWRERPQKTASNCYIT	150
GWGDTGRAYSRTLQQAAIPLLPKRFCEERYKGRFTGRMLCAGNLHEHKRV	200
DSCQGDSGGPLMCERPGESWVVYGVTSWGYGCGVKDSPGVYTKVSAFVPW	250
IKSVTKL . IKSVTSL	258

From the 258 amino acid sequence positions included in the comparison there are 233 amino acids that are identical in both compounds (upper sequence: compound of the formula I; lower sequence: compound of the formula II; identical amino acids are indicated by vertical lines).

The inventive neurotrypsins are unique when compared with the known serine proteases in that they are expressed according to currently available observations in a distinct degree in neurons. A further organ with a strong expression of neurotrypsin are the lungs (see Gschwend et al., Mol. Cell. Neurosci. 9, pages 207-219, 1997).

The proteins that are structurally most similar to the compounds of the formulas I or II are serine proteases, such as tissue-type plasminogen activator (tPA), urokinase-type plasminogen activator (uPA), plasmin, trypsin, apolipoprotein (a), coagulation factor XI, neuropsin, and acrosin.

5

In the adult brain, the inventive compounds are expressed predomiantly in the cerebral cortex, the hippocampus, and the amygdala.

10

In the adult brain stem and the spinal cord, the inventive compounds are expressed predominantly in the motor neurons. A slightly weaker expression is found in the neurons of the superficial layers of the dorsal horn of the spinal cord.

In the adult peripheral nervous system, the inventive compounds are expressed in a subpopulation of the sensory ganglia neurons.

15

20

25

30

35

The inventive compounds were found in connection with a study aimed at discovering trypsin-like serine proteases in the nervous system.

The first compound that was found and characterized was the compound of the formula II (Gschwend et al., Mol. Cell. Neurosci. 9, pages 207-219, 1997).

By means of an alignment of the protease domains of 7 known serine proteases (tissue-type plasminogen activator, urokinase-type plasminogen activator, thrombin, plasmin, trypsin, chymotrypsin, and pancreatic elastase) in the proximity of the histidine and the serine of the catalytic triade of the active site, the sequences of the so-called primer oligonucleotides for the polymerase chain reaction were determined.

The primer oligonucleotides were used in a polymerase chain reaction (PCR) together with ss-cDNA from total RNA of the brains of 10 days old mice and resulted in the amplification of a cDNA fragment of a length of approximately 500 base pairs.

This cDNA fragment was used successfully for the isolation of further cDNA fragments by screening commercially available cDNA libraries. Together, the isolated cDNA fragments covered the full length of the coding part of the compound of the formula II.

By conventional DNA sequencing the complete nucleotide sequence and the amino acid sequence deduced therefrom was obtained.

The compound of the formula I was cloned based on its pronounced similarity with the compound of the formula II.

The primer oligonucleotides used were synthesized according to the known sequence of the compound of the formula II.

10

15

20

25

5

The cloning of the compound of the formula I was performed by means of two commercially available cDNA libraries from fetal human brain.

This procedure for the cloning can also be used for the isolation of the homologous compounds of other species, such as rat, rabbit, guinea pig, cow, sheep, pig, primates, birds, zebra fish (Brachydanio rerio), Drosophila melanogaster, Caenorhabditis elegans etc.

The coding nucleotide sequences can be used for the production of proteins with the coded amino acid sequences of the compounds of the formulas I or II. A procedure developed in our laboratory allows the production of recombinant proteins in myeloma cells as fusion proteins with an immunoglobulin domain (constant domain of the kappa light chain). The principle of the construction is given in detail by Rader et al. (Rader et al., Eur. J. Biochem. 215, pages 133-141, 1993). The fusion protein produced by the myeloma cells was isolated by immunoaffinity chromatography using a monoclonal antibody against the Ig domain of the kappa light chain. With the same expression method, also the native protein of a compound, starting from the coding sequence, can be produced.

30

The coding sequences of the compounds of the formulas I or II can be used as starting compounds for the discovery and the isolation of alleles of the compounds of the formulas I or II. Both the polymerase chain reaction and the nucleic acid hybridization can be used for this purpose.

-6-

The coding sequences of the compounds of the formulas I or II can be used as starting compounds for so-called "site-directed mutagenesis", in order to generate nucleotide sequences coding the coded proteins that are defined by the compounds of the formulas I or II, or parts thereof, but whose nucleotide sequence is degenerated with respect to the compounds of the formulas I or II due to use of alternative codons.

The coding sequences of the compounds of the formulas I or II can be used as starting compounds for the production of sequence variants by means of so-called site-directed mutagenesis.

5

WO 98/49322

5

10

15

20

25

-7-

Best Mod s for Carrying out the Invention (Examples)

cDNA cloning of the c moound of the f rmula II (neurotrypsin of the m use)

Total RNA was isolated from the brains of 10 days old mice (ICR-ZUR) according to the method of Chomczynski and Sacchi (1987). The production of single stranded cDNA was carried out using oligo(dT) primer and a RNA-dependent DNA polymerase (SuperScript RNase H'-Reverse Transcriptase; Gibco BRL, Gaithersburg, MD) according to the instruction of the supplier. For the realization of the polymerase chain reaction one forward primer was synthesized based on the amino acid sequence of the region of the conserved histidine of the catalytic triade and one primer in the backward direction was synthesized based on the amino acid sequence of the region of the conserved serine of the catalytic triade of the serine proteases. The amino acid sequences used for the determination of the oligonucleotide primers were taken from seven known serine proteases. They are presented in the following.

Protease domain	и -[_				_		Н	_	D	_			I	s		
tPA (m)	ssc	W	v	L	s	A	A	н	c	FLEHDA	c	Q	G	D	s	G	PLV
uPA (m)	SPC	w	v	A	s	A	A	Ħ	C	FIQTDS	C	x	G :	D	S	G	PLI
hrombin (m)	SDR	w	v	L	T	A	A	Ħ	C	ILYGDA	C	E	G	D	s c	G	PFV
olasmin (m)										LKSVDS							
rypsin (m)										YKY							
hymTryp b (r)	SED	W	v	v	т	A	A	Ħ	C	GVKvss	c	M	G	D	S	G	PLV
pancElas II (m	ANN	ı w	v	L	T	A	A	H	C	LSNTSS	C	N	G	D	S	G	PLN

The protease domains of 7 known serine proteases (tissue-type plasminogen activator, urokinase-type plasminogen activator, thrombin, plasmin, trypsin, chymotrypsin, and pancreatic elastase) were aligned in the region of the conserved histidine and serine of the catalytic triade of the active site. The conserved amino acids of these regions were taken as the basis for the determination of the degenerated primers. The primer sequences are given according to the recommendation of the IUB nomenclature (Nomenclature Committee 1985).

The primers used in the PCR contained restriction sites for *Eco*RI and *Bam*HI at their 5' ends in order to facilitate a subsequent cloning.

10

15

20

The following primers were used:

In the reading direction (sense primers):

5'-GGGGAATTCTGGGTI(C/G)(T/C)I(T/A)(G/C)IGCIGCICA(T/C)TG-3'

In the counter direction (antisense primers):

5'-GGGGGATCCCCICCI(G/C)(A/T)(A/G)TCICC(C/T)T(G/C/T)(G/A)CA-3'.

The polymerase chain reaction was carried out under standard conditions using the DNA polymerase AmpliTaq (Perkin Elmer) according to the recommendations of the producer. The following PCR profile was employed: 93°C for 3 minutes, followed by 35 cycles of 93°C for 1 minute, 48°C for 2 minutes, and 72°C for 2 minutes. Following the last cycle, the incubation was continued at 72°C for further 10 minutes.

The amplified fragments had an approximate length of 500 base pairs. They were cut with *Eco*Ri and *Bam*Hi and inserted in a Blue Script vector (Bluescript SK(-), Stratagene). The resulting clones were analyzed by DNA sequence determination using the dideoxy chain termination method (Sanger et al., Proc. Natl. Acad. Sci. USA 77, pages 2163-2167, 1977) on an automated DNA sequencer (LI-COR, model 4000L; Lincoln, NE) using a commercial sequencing kit (SequiTerm long-read cycle sequencing kit-LC; Epicentre Technologies, Madison, WI). The analysis yielded a sequence of 474 base pairs of the catalytic region of the serine protease domain of the compound of the formula II.

The 474 base pair long PCR fragment was used for screening of an oligo(dT)-primed Uni-ZAP-XR cDNA library from the brain of 20 days old mice (Stratagene; cat. no. 937 319). At total of 3 x 10⁶ lambda plaques were screened under high stringent conditions (Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, 1989) using a radioactively labeled PCR fragment as a probe and 24 positive clones were found.

30

35

25

From the positive Lambda-Uni-ZAP-XR phagemid clones the corresponding Bluescript plasmid was cut out by *in vivo* excision according to a standard method recommended by the producer (Stratagene). In order to determine the length of the inserted fragm nts the corresponding Bluescript plasmid clones were digested with *Sac* and *Kpnl*. The clones containing the longest fragments wer analyzed by DNA

sequencing (as described above) and for subsequent data analysis the GCG software (version 8.1, Unix; Silicon Graphics, Inc.) was used.

Because none of the clones contained the coding sequence in full length, a second cDNA library was screened. The library used in this screen was an oligo(dT)- and random-primed cDNA library in a Lambda phage (Lambda gt10) which was based on mRNA from 15 days old mouse embryos (oligo(dT)- and random-primed Lambda gt10 cDNA library; Clontech, Palo Alto, CA; cat. no. ML 3002a). As a probe a radioactively labeled DNA fragment (Aval/Aatll) from the 5' end of the longest clone of the first screen was used and approximately 2x10⁶ plaques were screened. This screen resulted in 14 positive clones. The cDNA fragments were excised with *Eco*RI and cloned into the Bluecript vector (KS(+); Stratagene). The sequence analysis was carried out as described above.

10

15

20

In this way the nucleotide sequence over the full length cDNA of 2361 and 2376 base pairs, respectively, of the compound of the formula II was obtained. With the described procedure of PCR cloning it is possible to find and isolate also variant forms of the compounds of the formulas I or II, as for example their alleles or their splice variants. The described method of screening of a cDNA library allows also the detection and the isolation of compounds which hybridize under stringent conditions with the coding sequences of the compounds of the formulas I or II.

WO 98/49322

- 10 -

CI ning of the cDNA of th compound f the formula I (neurotrypsin of the human)

The cloning of the cDNA of the compound of the formula I was carried out basing on the nucleotide sequence of the compound of the formula II. As a first step, a fragment of the compound of the formula I was amplified using the polymerase chain reaction (PCR). As a matrix we used the DNA obtained from a cDNA library from the brain of a human fetus (17th - 18th week of pregnancy) which is commercially available (Oligo(dT)-and random-primed, human fetal brain cDNA library in the Lambda ZAP II vector, cat. no. 936206, Stratagene). The synthetic PCR primers contained restriction sites for *Hind*III and *Xho*I at the 5' end in order to facilitate the subsequent cloning.

In the reading direction (sense primers):

5

10

15

20

25

30

35

5'-GGGAAGCTTGGICA(A/G)TGGGGIACI(A/G)TITG(C/T)GA(C/T)-3'

In the counter direction (antisense primers):

5'-GGGCTCGAGCCCCAICCTGTTATGTAAIAGTTG-3'

The PCR was carried out under standard conditions using the DNA polymerase Amplitaq (Perkin Elmer) according to the recommendations of the producer. The resulting fragment of 1116 base pairs was inserted into the Bluescript vector (Bluescript SK(-), Stratagene). A 600 base pairs long *Hind*III/Stul fragment, corresponding to the 5' half the 1116 base pairs long PCR fragment, was used for the screening of a Lamda cDNA library from human fetal brain (Human Fetal Brain 5'-STRETCH PLUS cDNA library; Lambda gt10; cat. no. HL 3003 a; Clontech). 2x10⁸ Lambda plaques were screened under high stringent conditions (Sambrook et al., Molecular Cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, 1989) by means of a radioactively labeled PCR fragment, and 23 positive clones were found and isolated.

From the positive Lambda gt10 clones the corresponding cDNA fragments were excised with *Eco*RI and inserted into a Bluescript vector (Bluescript KS(+), Stratagene). The sequencing was carried out by means of the dideoxy chain termination method (Sanger et al., Proc. Natl. Acad. Sci. USA 77, pages 2163-2167, 1977), using a commercial sequencing kit (SequiTherm long-read cycle sequencing kit-LC; Epicentre Technologies, Madison, WI) and Bluescript-specific primers.

In an alternative sequencing strategy, the cDNA fragments of the positive Lambda gt10 clones were PCR amplified using Lambda-specific primers. The sequencing was carried out as described above.

5

The computerized analysis of the sequences was performed by means of the program package GCG (version 8.1, Unix; Silicon Graphics Inc.).

In this way the nucleotide sequence over the full length of the cDNA of 3350 base pairs was obtained. With the described procedure for PCR cloning it is possible to find and to isolate also variant forms of the compounds of the formulas I or II, as for example their alleles or their splice variants. The described procedure for the screening of a cDNA library allows also the discovery and the isolation of compounds which hybridize under stringent conditions with the coding sequences of the compounds of the formulas I or II.

10

15

20

25

<u>Visualization of the cod d sequ nces of the compounds of the formulas I or II by means of antibodies</u>

The more than 60 amino acids long proline-rich, basic segment at the amino terminus of the coded sequence of the compounds of the formulas I or II is well suited for the production of antibodies by means of synthesizing peptides and using them for immunization. We have selected two peptide sequences with a length of 19 and 13 amino acids from the proline-rich, basic segment at the amino terminus of the coded sequence of the compound of the formula II for the generation of antibodies. The peptides had the following sequences:

Peptide 1: H₂N-SRS PLH RPH PSP PRS QX-CONH₂

Peptide 2: H,N-LPS SRR PPR TPR F-COOH

The two peptides were synthesized chemically, coupled to a macromolecular carrier (Keyhole Limpet Hemacyanin), and injected into 2 rabbits for immunization. The resulting antisera exhibit a high antibody titer and could successfully be used both for the identification of native neurotrypsin in brain extract of the mouse and for the identification of recombinant neurotrypsin. The employed procedure for the generation of antibodies can also be used for the generation of antibodies against the coded sequence of the compound of the formula I.

The resulting antibodies against the partial sequences of the coded sequences of the compounds of the formulas I or II can be used for the detection and the isolation of variant forms of the compounds of the formulas I or II, as for example alleles or splice variants. Such antibodies can also be used for the detection and isolation of gene technologically generated variants of the compounds of the formulas I or II.

10

15

20

Purification of the code desequences of the compounds of the formulas I or II

Besides conventional chromatographic methods, as for example ion exchange chromatography, the purification of the coded sequences of the compounds of the formulas I or II can also be achieved using two affinity chromatographic purification procedures. One affinity chromatographic purification procedure is based on the availability of antibodies. By coupling the antibodies on a chromatographic matrix, a purification procedure results, in which a very high degree of purity of the corresponding compound can be achieved in one step.

Another important feature that can be used for the purification of the coded sequences of the compounds of the formulas I or II is the proline-rich, basic segment at the amino terminus. It may be expected that, due to the high density of positive charges, this segment mediates the binding of the coded sequences of the compounds of the formulas I or II to heparin and heparin-like affinity matrices. This principle allows also the isolation, or at least the enrichment, of variant forms of the coded sequences of the compounds of the formulas I or II, as for example their alleles or splice variants. Likewise the heparin affinity chromatography can be used for the isolation, or at least the enrichment, of species-homologous proteins of the compounds of the formulas I or II.

Industrial Applicability

5

10

15

20

25

The coding sequences of the formulas I and II can be used for the production of the coded proteins or parts thereof of the formulas I and II. The production of the coded proteins can be achieved in procaryotic or eucaryotic expression systems.

The gene expression pattern of the inventive compounds in the brain is extremely interesting, because these molecules are expressed in the adult nervous system predominantly in neurons of those regions that are thought to play an important role in learning and memory functions. Together with the recently found evidence for a role of extracellular proteases in neural plasticity, the expression pattern allows the assumption that the proteolytic activity of neurotrypsin has a role in structural reorganizations in connection with learning and memory operations, for example operations which are involved in the processing and storage of learned behaviors, learned emotions, or memory contents. The inventive compounds may, thus, represent a target for pharmaceutical intervention in malfunctions of the brain.

The gene expression pattern of the inventive compounds in the cerebral cortex (especially layers V and VI) is extremely interesting, because a reduction of the cellular differentiation in the cerebral cortex has been found to be associated with schizophrenia. The inventive compounds may, thus, be a target for pharmaceutical intervention in schizophrenia and related psychiatric diseases.

The coding sequences of the inventive compounds have been found to be increased in the neurons located adjacent to the damaged tissue of a focal ischemic stroke, indicating that the inventive compounds play a role in the tissue reaction in the injured cerebral tissue. The inventive compounds may, thus, represent a target for pharmaceutical intervention after ischemic stroke and other forms of neural tissue damage.

30

35

Tissue-type plasminogen activator, a serine protease related to the inventive compounds, has recently been found to be involved in excitotoxicity-mediated neuronal cell death. A similar function is conceivable for the inventive compounds and, thus, the inventive compounds represent a possible target for a pharmacological intervention in diseases in which cell death occurs.

The gene expression pattern of the inventive compounds in the spinal cord and in the sensory ganglia is interesting, because these molecules are expressed in the adult nervous system in neurons of those brain regions that are thought to play a role in the processing of pain, as well as in the pathogenesis of pathological pain. The inventive compounds may, thus, be a target for pharmaceutical intervention in pathological pain.

In the following part statements concerning the compounds of the formulas I or II are given:

- (1) INFORMATION ABOUT THE COMPOUND OF THE FORMULA I (Neurotrypsin of the human)
- (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3350 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single strand
- (D) TOPOLOGY: linear

10

- (ii) MOLECULE TYPE: cDNA to mRNA
- (vi) ORIGINAL SOURCE:
- 15 (A) ORGANISM: Homo sapiens
 - (D) DEVELOPMENT STAGE: fetal
 - (F) TISSUE TYPE: brain
 - (vii) IMMEDIATE SOURCE:

20

- (A) LIBRARY: human fetal brain 5'-stretch plus cDNA library in the lambda gt10 vector; catalog No. HL 3003a; Clontech, Palo Alto, CA, USA.
- (B) CLONE: cDNA Clone No.: 25 3-1, 3-2, 3-6, 3-7, 3-8, 3-10, 3-11, 3-12
 - (ix) FEATURE:
- 30 (A) NAME/KEY: Signal peptide
 - (B) LOCATION: 44 .. 103

- (ix) FEATURE:
 - (A) NAME/KEY: mature peptide
 - (B) LOCATION: 104 .. 2668

- (ix) FEATURE:
- (A) NAME/KEY: coding sequence
- (B) LOCATION: 44 .. 2668 10
 - (ix) FEATURE:
- (A) NAME/KEY: Proline-rich, basic segment 15
 - (B) LOCATION: 104 .. 319
 - (ix) FEATURE:

20

- (A) NAME/KEY: Kringle domain
- (B) LOCATION: 320 .. 538
- 25 (ix) FEATURE:
 - (A) NAME/KEY: SRCR domain 1
 - (B) LOCATION: 551 .. 856

30

- (ix) FEATURE:
- (A) NAME/KEY: SRCR domain 2
- (B) LOCATION: 881 .. 1186

35

	(ix)	FEATURE:
	(A)	NAME/KEY: SRCR domain 3
5	(B)	LOCATION: 1202 1504
	(ix)	FEATURE:
10	(A)	NAME/KEY: SRCR domain 4
		LOCATION: 1541 1846
	(i. A	CCATUDE.
15	(IX)	FEATURE:
	(A)	NAME/KEY: proteolytic domain
	(B)	LOCATION: 1898 2668
20	(ix)	FEATURE:
		NAME/KEY: histidine of the catalytic triade
	(B)	LOCATION: 2069 - 2071
25		
	(ix)	FEATURE:
	(A)	,
30	(B)	LOCATION: 2219 - 2221
50		
	(ix)	FEATURE:
	/41	ALABAMA A A A A A A A A A A A A A A A A A
	(A)	NAME/KEY: serine of the catalytic triade

35 (B) LOCATION: 2516 .. 2518

- (ix) FEATURE:
- 5 (A) NAME/KEY: polyA signal
 - (B) LOCATION: 2873 .. 2878
 - (ix) FEATURE

- (A) NAME/KEY: polyA signal
- (B) LOCATION: 3034 .. 3039
- 15 (ix) FEATURE:
 - (A) NAME/KEY: polyA signal
 - (B) LOCATION: 3215 .. 3220

20

- (ix) FEATURE:
- (A) NAME/KEY: 3'UTR
- (B) LOCATION: 2669 .. 3350

25

- (ix) FEATURE
- (A) NAME/KEY: 5'UTR
- 30 (B) LOCATION: 1.. 43

C mp und of th formula I (neur trypsin f the human)

CGG	\AGC1	rgg (GGAGC	CATGO	SA CO	CAGAC	cccc	G CAC	GCGC1	rggc	ACC		CTC Leu	55
											CCC Pro -5			103
											AGC Ser			151
											CCC Pro			199
											CGC Arg	_		247
								-			CTC Leu 60			 295
											GGC Gly			343
	_										TGG Trp			391
											GCT Ala			439
											GCG Ala			487
											TGG Trp 140			535
											AAA Lys			583
											GGC			631
											TGT Cys			679

		GGA Gly 195														727
		CCC Pro														775
		CTG Leu														823
		ATG Met														871
		ATC Ile														919
		CTC Leu 275														967
		GAT Asp														1 01 5
		GCC Ala														1063
		ATG Met														1111
		TGT Cys														. 1159
		GCT Ala 355														1207
		GGT Gly														1255
		CAG Gln														1303
		GTG Val														1351
TCT Ser	GCC Ala	AAC Asn	CAT His 420	TTT Phe	GAA Glu	GAA Glu	AGC Ser	ACA Thr 425	GGG Gly	CCC Pro	ATA Ile	TGG Trp	TTG Leu 430	GAT Asp	GAC Asp	1399

						GAA Glu										1447
						TGC Cys 455										1495
						GGA Gly										1543
						AAT Asn										1591
						ACA Thr										1639
						CGT Arg										1687
						TTT Phe 535										1735
						GGA Gly										1783
						CAC His										1831
						GGC Gly										1879
						TGT Cys										1927
¥	•		~ 4			AAA Lys 615	_	_	_	_						1975
						AAG Lys										2023
TGC Cys	GGG Gly	GCT Ala	ACG Thr	CTC Leu 645	CTG Leu	AGT Ser	AGC Ser	TGC Cys	TGG Trp 650	GTC Val	CTC Leu	ACA Thr	GCA Ala	GCA Ala 655	CAC His	2071
						AAC Asn										2119

GGA GAT TAT CAT ACT CTG GTA CCA GAG GAG TTT GAG GAA GAA ATT GGA Gly Asp Tyr His Thr Leu Val Pro Glu Glu Phe Glu Glu Glu Ile Gly 675 680 685	2167
GTT CAA CAG ATT GTG ATT CAT CGG GAG TAT CGA CCC GAC CGC AGT GAT Val Gln Gln Ile Val Ile His Arg Glu Tyr Arg Pro Asp Arg Ser Asp 690 695 700	2215
TAT GAC ATA GCC CTG GTT AGA TTA CAA GGA CCA GAA GAG CAA TGT GCC Tyr Asp Ile Ala Leu Val Arg Leu Gln Gly Pro Glu Glu Gln Cys Ala 705 710 720	2263
AGA TTC AGC AGC CAT GTT TTG CCA GCC TGT TTA CCA CTC TGG AGA GAG Arg Phe Ser Ser His Val Leu Pro Ala Cys Leu Pro Leu Trp Arg Glu 725 730 735	2311
AGG CCA CAG AAA ACA GCA TCC AAC TGT TAC ATA ACA GGA TGG GGT GAC Arg Pro Gln Lys Thr Ala Ser Asn Cys Tyr Ile Thr Gly Trp Gly Asp 740 745 750	2359
ACA GGA CGA GCC TAT TCA AGA ACA CTA CAA CAA GCA GCC ATT CCC TTA Thr Gly Arg Ala Tyr Ser Arg Thr Leu Gln Gln Ala Ala Ile Pro Leu 755 760 765	2407
CTT CCT AAA AGG TTT TGT GAA GAA CGT TAT AAG GGT CGG TTT ACA GGG Leu Pro Lys Arg Phe Cys Glu Glu Arg Tyr Lys Gly Arg Phe Thr Gly 770 775 780	2455
AGA ATG CTT TGT GCT GGA AAC CTC CAT GAA CAC AAA CGC GTG GAC AGC Arg Met Leu Cys Ala Gly Asn Leu His Glu His Lys Arg Val Asp Ser 785 790 795 800	2503
TGC CAG GGA GAC AGC GGA GGA CCA CTC ATG TGT GAA CGG CCC GGA GAG Cys Gln Gly Asp Ser Gly Gly Pro Leu Met Cys Glu Arg Pro Gly Glu 805 810 815	2551
AGC TGG GTG GTG TAT GGG GTG ACC TCC TGG GGG TAT GGC TGT GGA GTC Ser Trp Val Val Tyr Gly Val Thr Ser Trp Gly Tyr Gly Cys Gly Val 820 825 830	2599
AAG GAT TCT CCT GGT GTT TAT ACC AAA GTC TCA GCC TTT GTA CCT TGG Lys Asp Ser Pro Gly Val Tyr Thr Lys Val Ser Ala Phe Val Pro Trp 835 840 845	2647
ATA AAA AGT GTC ACC AAA CTG TAA TTCTTCATGG AAACTTCAAA GCAGCATTT Ile Lys Ser Val Thr Lys Leu * 850 855	2700
AAACAAATGG AAAACTTTGA ACCCCCACTA TTAGCACTCA GCAGAGATGA CAACAAATGG	2760
CAAGATCTGT TTTTGCTTTG TGTTGTGGTA AAAAATTGTG TACCCCCTGC TGCTTTTGAG	2820
AAATTTGTGA ACATTTŢCAG AGGCCTCAGT GTAGTGGAAG TGATAATCCT TAAATGAACA	2880
TTTTCTACCC TAATTTCACT GGAGTGACTT ATTCTAAGCC TCATCTATCC CCTACCTATT	2940

- 24 -

TCTCAAAATC	ATTCTATGCT	GATTTTACAA	AAGATCATTT	TTACATTTGA	ACTGAGAACC	3000
CCTTTTAATT	GAATCAGTGG	TGTCTGAAAT	САТАТТАААТ	ACCCACATTT	GACATAAATG	3060
CGGTACCCTT	TACTACACTC	ATGAGTGGCA	TATTTATGCT	TAGGTCTTTT	CAAAAGACTT	3120
GACAAGAAAT	CTTCATATTC	TCTGTAGCCT	TTGTCAAGTG	AGGAAATCAG	TGGTTAAAGA	3180
ATTCCACTAT	AAACTTTTAG	GCCTGAATAG	GAGTAGTAAA	GCCTCAAGGA	CATCTGCCTG	3240
TCACAATATA	TTCTCAAAGT	GATCTGATAT	TTGGAAACAA	GTATCCTTGT	TGAGTACCAA	3300
GTGCTACAGA	AACCATAAGA	ТАААААТАСТ	TTCTACCTAC	AGCGTGCCCG		3350

WO 98/49322

- 25 -

- (1) <u>INFORMATION ABOUT THE COMPOUND OF THE FORMULA II</u> (Neurotrypsin of the mouse)
- (i) SEQUENCE CHARACTERISTICS:

5

- (A) LENGTH: 2376 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single strand
- (D) TOPOLOGY: linear

10

- (ii) MOLECULE TYPE: cDNA to mRNA
- (vi) ORIGINAL SOURCE:
- 15 (A) ORGANISM: Mus musculus
 - (D) DEVELOPMENT STAGE: postnatal day 10
 - (F) TISSUE TYPE: brain
 - (G) CELL TYPE: neurons
- 20 (vii) IMMEDIATE SOURCE:
 - (A) LIBRARY: mouse brain cDNA library in the lambda Uni-ZAP-XR vector, oligo

(dT)-primed, from Balb c mice, postnatal day 20, Cat. No.. 937 319; Stratagene, La Jolla, CA, USA

25

- (B) CLONE: cDNA clone no. 16
- (vii) IMMEDIATE SOURCE:

30

(A) LIBRARY: mouse brain cDNA library in the Lambda gt10 vector,

oligo(dT)- and random-primed, embryonic day 15, Cat. No. ML 3002a; Clontech, Palo Alto, CA, USA

35 (B) CLONE: cDNA clone #25

	(ix)	FEATURE:
	(A)	NAME/KEY: signal peptide
5	(B)	LOCATION: 24 86
	(ix)	FEATURE:
10	(A)	NAME/KEY: mature peptide
	(B)	LOCATION: 87 2306
15	(ix)	FEATURE:
	(A)	NAME/KEY: coding sequence
	(B)	LOCATION: 24 2306
20	(ix)	FEATURE:
	(A)	NAME/KEY: proline-rich, basic segment
	(B)	LOCATION: 90 275
25		
	(ix)	FEATURE:
	(A)	NAME/KEY: Kringle domain
	(B)	LOCATION: 276 494
30		
	(ix)	FEATURE:
	(A)	NAME/KEY: SRCR domain 1

35 (B) LOCATION: 519 .. 824

WO 98/49322

- 27 -

	(ix)	FEATURE:
5	(A)	NAME/KEY: SRCR domain 2
	(B)	LOCATION: 840 1142
	(ix)	FEATURE:
10		
	• •	NAME/KEY: SRCR domain 3
	(B)	LOCATION: 1179 1484
		•
15	(ix)	FEATURE:
	•	
	(A)	NAME/KEY: proteolytic domain
	(B)	LOCATION: 1536 2306
20	/:. A	EEATUDE.
	(IX)	FEATURE:
	(A)	NAME/KEY: histidine of the catalytic triade
	(B)	LOCATION: 1707 1709
25		
	(ix)	FEATURE:
	(A)	NAME/KEY: aspartic acid of the catalytic triade
30	(B)	•
-	\- <i>\</i>	
	(ix)	FEATURE:

35 (A) NAME/KEY: serine of the catalytic triade

- (B) LOCATION: 2154 .. 2156
- (ix) FEATURE:
- 5 (A) NAME/KEY:polyA signal
 - (B) LOCATION: 2324 .. 2329 and 2331 .. 2336
 - (ix) FEATURE:
- 10 (A) NAME/KEY: polyA segment
 - (B) LOCATION: 2357 .. 2376
 - (ix) FEATURE:

- (A) NAME/KEY: 3'UTR
- (B) LOCATION: 2307 .. 2341 or 2307 .. 2356

20

- (ix) FEATURE:
- (A) NAME/KEY: 5'UTR
- (B) LOCATION: 1 .. 23

Coump und of the formula II (n ur trypsin of the mouse)

GGACCACACT CGGCGCCGCA GCC ATG GCG CTC GCC CGC TGC GTG CTG GCT GTG Met Ala Leu Ala Arg Cys Val Leu Ala Val -20 -15	53
ATT TTA GGG GCA CTG TCT GTA GTG GCC CGC GCT GAT CCG GTC TCG CGC Ile Leu Gly Ala Leu Ser Val Val Ala Arg Ala Asp Pro Val Ser Arg -10 -5 1 5	101
TCT CCC CTT CAC CGC CCG CAT CCG TCC CCA CCG CGT TCC CAA CAC GCG Ser Pro Leu His Arg Pro His Pro Ser Pro Pro Arg Ser Gln His Ala 10 15 20	149
CAC TAC CTT CCC AGC TCG CGG CGG CCA CCC AGG ACC CCG CGC TTC CCG His Tyr Leu Pro Ser Ser Arg Arg Pro Pro Arg Thr Pro Arg Phe Pro 25 30 35	197
CTC CCG CTG CGG ATC CCC GCT GCC CAG CGC CCG CAG GTC CTC AGC ACC Leu Pro Leu Arg Ile Pro Ala Ala Gln Arg Pro Gln Val Leu Ser Thr 40 45 50	245
GGG CAC ACG CCC CCG ACG ATT CCA CGC CGC TGC GGG GCA GGA GAG TCG Gly His Thr Pro Pro Thr Ile Pro Arg Arg Cys Gly Ala Gly Glu Ser 55 60 65	293
TGG GGC AAT GCC ACC AAC CTC GGC GTC CCG TGT CTA CAC TGG GAC GAG Trp Gly Asn Ala Thr Asn Leu Gly Val Pro Cys Leu His Trp Asp Glu 70 75 80 85	341
GTG CCG CCC TTC CTG GAG CGG TCG CCC CCG GCC AGT TGG GCT GAG CTG Val Pro Pro Phe Leu Glu Arg Ser Pro Pro Ala Ser Trp Ala Glu Leu 90 95 100	389
CGA GGG CAG CCG CAC AAC TTC TGC CGG AGC CCG GAT GGC TCG GGC AGA Arg Gly Gln Pro His Asn Phe Cys Arg Ser Pro Asp Gly Ser Gly Arg 105 110 115	437
CCT TGG TGC TTC TAT CGG AAT GCC CAG GGC AAA GTA GAC TGG GGC TAC Pro Trp Cys Phe Tyr Arg Asn Ala Gln Gly Lys Val Asp Trp Gly Tyr 120 125 130	485
TGC GAT TGT GGT CAA GGC CCG GCG TTG CCC GTC ATT CGC CTT GTT GGT Cys Asp Cys Gly Gln Gly Pro Ala Leu Pro Val Ile Arg Leu Val Gly 135 140 145	533
GGG AAC AGT GGG CAT GAA GGT CGA GTG GAG CTG TAC CAC GCT GGC CAG Gly Asn Ser Gly His Glu Gly Arg Val Glu Leu Tyr His Ala Gly Gln 150 165	581
TGG GGG ACC ATC TGT GAC GAC CAA TGG GAC AAT GCA GAC GCA GAC GTC Trp Gly Thr Ile Cys Asp Asp Gln Trp Asp Asn Ala Asp Ala Asp Val 170 175 180	629
ATC TGT AGG CAG CTG GGG CTC AGT GGC ATT GCC AAA GCA TGG CAT CAG Ile Cys Arg Gln Leu Gly Leu Ser Gly Ile Ala Lys Ala Trp His Gln 185 190 195	677

			TCT Ser						725
			TCA Ser 220						773
			CAT His					-	821
			ATC Ile						869
			TAC Tyr						917
			ATG Met						965
			CAG Gln 300						1013
			GAT Asp						1061
			AGG Arg						1109
	_		CTC Leu						1157
			CCC Pro						1205
			GTT Val 380						1253
			GAT Asp					 CAA Gln 405	1301
			GCC Ala					GGG Gly	1349
					Asn			AAT Asn	1397

				GTC Val 445					1	.445
				GGA Gly					1	.493
				AAA Lys					1	.541
				CAG Gln					1	.589
				TGG Trp					1	637
 _	_	•		CTT Leu 525			 	 	1	685
				CAC His					1	733
				GTT Val					1	781
				GGG Gly					1	829
				GAC Asp					1	877
				GCC Ala 605					1	.925
				GAG Glu					1	.973
				GAC Asp					2	2021
				CTG Leu					2	069
				GGG Gly					2	2117

- 32 -

WO 98/49322 PCT/IB98/00625

CAA	GAA	GAC	AAC	CGT	GTG	GAC	AGC	TGC	CAG	GGA	GAC	AGT	GGA	GGA	CCA	2165
Gln	Glu	Asp 680	Asn	Arg	Val	Asp	Ser 685	Суѕ	Gln	Gly	Asp	Ser 690	Gly	Gly	Pro	
						GAT Asp 700										2213
						GGA Gly										2261
						CCT Pro										2306
TAAC	TTAT	rgg A	AAAGC	TCA	AG AA	ATAC	LAAT	A ACA	GTAA	CTA	TTC	GTCI	TC A	AAAA	AAAAA	2366
AAAA	AAAA	LAA														2376

WO 98/49322

Patent claims

- 33 -

- 1. Neurotrypsins of the formulas I and II
- I: neurotrypsin of the human

5

10

15

20

25

30

35

II: neurotrypsin of the mouse

comprising the separate, coding and coded sequences of these compounds of the formulas I or II, comprising the separate partial sequences of the coding and coded sequences of these compounds of the formulas I or II, as for example the coding and coded sequences of the catalytic domains of the compounds of the formulas I or II, comprising the coding or coded sequences or partial sequences of the corresponding splice variants of the compounds of the formulas I or II, comprising the coding or coded sequences or partial sequences of the corresponding alleles of the compounds of the formulas I or II, comprising all sequence variants of the coding or coded sequences, or parts thereof, of the compounds of the formulas I or II, whose biological activity is equal or similar to that of the compounds of the formulas I or II, for example sequence variants of the compounds of the formulas I or II, which differ in the not conserved amino acid sequence positions of the sequence of the formulas I or II, comprising the sequences hybridizing to the coding sequences, or parts thereof, under stringent conditions, comprising the translation products of the sequences hybridizing to the coding sequences of the compounds of the formulas I or II, or to parts thereof, under stringent conditions, comprising the nucleotide sequences coding the proteins coded by the compounds of the formulas I or II, or parts thereof, but, as a result of the use of different alternative codons, are degenerated with regard to the nucleotide sequences defined by the compounds of the formulas I or II.

2. Pharmaceutical composition, characterized in that it contains as at least one active compound either the coded sequence or the coding sequence of the compound of the formula I or of the formula II, or the separate partial sequences of the coded and coding sequences of these compounds of the formulas I or II, as for example the coding or coded sequences of the catalytic domains, comprising the coding or coded sequences or partial sequences of the corresponding splice variants of the compounds of the formulas I or II, comprising the coding or coded sequences or partial sequences of the corresponding alleles of the compounds of the formulas I or II, comprising all

15

20

25

sequence variants of the coding or coded sequences, or parts th r of, of the compounds of formulas I or II, whose biological activity is qual or similar to that of the compounds of the formulas I or II, for example sequence variants of the compounds of th formulas I or II, which differ in the not conserved amino acid sequence positions of the sequence of the formulas I or II, comprising the sequences hybridizing to the coding sequences, or parts thereof, under stringent conditions, comprising the translation products of the sequences hybridizing to the coding sequences of the compounds of the formulas I or II, or to parts thereof, under stringent conditions, comprising the nucleotide sequences coding the proteins coded by the compounds of formulas I or II, or parts thereof, but, as a result of the use of different alternative codons, are degenerated with regard to the nucleotide sequences defined by the compounds of the formulas I or II.

- 3. Pharmaceutical composition, characterized in that it contains as at least one active compound a substance which changes the function of the coded sequence of the compounds of formulas I or II, for example, in that it reduces or increases the catalytic activity of the coded protein, or a part thereof, or in that it shortens or prolongs the time of presence of the coded protein at its place of action in the body.
- 4. Pharmaceutical composition, characterized in that it contains as at least one active compound a substance which changes the expression of the coding or coded sequences of the compounds of formulas I or II, for example in that it enhances or inhibits the transcription of the mRNA or in that it enhances or inhibits the translation of the coded sequences of the compounds of formulas I or II.
- 5. Pharmaceutical composition according to claim 2, 3, or 4, characterized in that it prevents or reduces the growth, the expansion, the infiltration and the metastasis of primary and metastatic tumors, as for example brain tumors or tumors of the retina.
- 6. Pharmaceutical composition according to claim 2, 3, or 4, characterized in that it contributes to the minimization of the tissue destruction in stroke, including brain infarction and ischemia, intracerebral hemorrhage, and subarrachnoid hemorrhage, as for example by exerting a protecting effect on the cells of the so-called penumbra zone surrounding the necrotic tissue.

7. Pharmaceutical composition according to claim 2, 3, or 4, characterized in that it contributes to the minimization of the tissue destruction in traumatic brain injury, as for example by exerting a protective effect on the cells of the so-called zone surrounding the necrotic tissue.

5

8. Pharmaceutical composition according to claim 2, 3, or 4, characterized in that it prevents, ameliorates or cures the negative effects caused by neurodegenerative diseases.

10

9. Pharmaceutical composition according to claim 2, 3, or 4, characterized in that it prevents, ameliorates or cures the negative effects caused by neuroinflammatory diseases, as for example multiple sclerosis.

15 **1**

10. Pharmaceutical composition according to claim 2, 3, or 4, characterized in that it reduces or prevents negative effects on brain tissue caused by epileptic seizures.

20

11. Pharmaceutical composition according to claim 2, 3, or 4, characterized in that it contributes to the rescue of endangered neurons, as for example neurons endangered by hypoxia and ischemia, axotomy, nerve transection, deafferentiation, excitotoxicity, neuroinflammatory diseases and processes, epileptic seizures, and cancerous neoformations.

12. Pharmaceutical composition according to claim 2, 3, or 4, characterized in that it contributes to axonal regeneration and/or restoration of synaptic integrity and functions.

25

13. Pharmaceutical composition according to claim 2, 3, or 4, characterized in that it prevents, ameliorates, or cures retinal disorders, as for example retinal degeneration and retinal neoangiogenesis.

30

14. Pharmaceutical composition according to claim 2, 3, or 4, characterized in that it prevents cell death, comprising apoptosis and other forms of cell death, in the nervous system.

15. Pharmaceutical composition according to claim 14, characterized in that the cell death is an cell death in connection with damages of the nervous tissu, for xample infarct of the brain and ischemic stroke, or hemorrhage of the brain, or trauma of the brain.

5

16. Pharmaceutical composition according to claim 14, characterized in that the cell deathis an cell death in connection with damages of the nervous tissue, which occur due to lack of oxygen or glucose or due to intoxication.

10

17. Pharmaceutical composition according to claim 14, characterized in that the cell death is an cell death in connection with epileptic seizures.

15

18. Pharmaceutical composition according to claim 14, characterized in that the cell death is an cell death in connection with neurodegenerative diseases and inherited genetic deficiencies of the nervous system.

19. Pharmaceutical composition according to claim 14, characterized in that the cell death is an cell death in connection with axotomy or nerve transection, or deafferentiation.

20

20. Pharmaceutical composition according to claim 2, 3, or 4, characterized in that it influences the regeneration of injured, damaged, underdeveloped, or maldeveloped brain tissue and/or nervous tissue.

25

21. Pharmaceutical composition according to claim 2, 3, or 4, characterized in that it enhances the reorganization of the brain or nervous areas that have remained intact after brain and/or nerve injuries or after the destruction or damage of brain areas.

30

22. Pharmaceutical composition according to claim 2, 3, or 4, characterized in that it prevents, ameliorates, or cures pathological pain syndromes.

23. Pharmaceutical composition according to claim 2, 3, or 4, characterized in that it contributes to the improvement of the brain performance in healthy persons, as well as in persons with reduced brain performance.

- 24. Pharmaceutical composition according to claim 2, 3, or 4, characterized in that it ameliorates the learning and memory functions in healthy persons, as well as in persons with reduced learning and memory functions.
- 25. Pharmaceutical composition according to claim 2, 3, or 4, characterized in that it ameliorates or cures disorders in the field of disorders of the psychic wellness, or the psychosomatic state of health, as for example nervosity or "inner unrest".
- 26. Pharmaceutical composition according to claim 2, 3, or 4, characterized in that it ameliorates or cures disorders in the field of the emotional functions, as for example states of anxiety.
- 27. Pharmaceutical composition according to claim 2, 3, or 4, characterized in that it ameliorates or cures psychiatric disorders.
- 28. Pharmaceutical composition according to claim 27, characterized in that the psychiatric disorder is a disorder in the field of schizophrenia and schizophrenia-like disorders, comprising chronic schizophrenia, chronic schizo-affective disorders, unspecific disorders, comprising acute and chronic schizophrenia of various symptomatologies, as for example severe, non-remitting "Kraepelinic" schizophrenia, or as for example the DSM-III-R-prototype of the schizophrenia-like disorders, comprising episodic schizophrenic disorders, comprising delusionic schizophrenia-like disorders, comprising schizophrenia-like personality disorders, as for example schizophrenia-like personality disorders with mild symptomatics, comprising schizotypic personality disorders, comprising the latent forms of schizophrenic or schizophrenia-like disorders, comprising non-organic psychotic disorders.
- 29. Pharmaceutical composition according to claim 27, characterized in that the psychiatric disorder is a disorder in the field of the endogenic depressions or in the field of manic or manic-depressive disorders.
- 30. Pharmaceutical composition according to claim 2, 3, or 4, characterized in that it ameliorates or cures disorders of the brain function due deficiency, malfunction, or overfunction of at least one protease.

30

5

10

15

20

- 31. Pharmaceutical composition according to claim 30, charact rized in that the protease is tissue-type plasminogen activator, abbr viated as tPA, urokinase-type plasminogen activator, abbreviated as uPA, or plasmin.
- 32. Pharmaceutical composition according to claim 2, 3, or 4, characterized in that it ameliorates or cures disorders of the function of the lungs due to deficiency, malfunction, or overfunction of at least one protease.
- 33. Pharmaceutical composition according to claim 32, characterized in that the disorder of the function of the lungs is chronic bronchitis or emphysema of the lungs.
 - 34. Use for the production of recombinant proteins of the coding nucleotide sequences of the compounds of the formulas I or II, comprising the separate partial sequences of the coding sequences of the compounds of the formulas I or II, as for example the coding sequences of the catalytic domains of the compounds of the formulas I or II, comprising the coding nucleotide sequences or partial sequences of the corresponding splice variants of the compounds of the formulas I or II, comprising the coding sequences or partial sequences thereof of the corresponding alleles of the compounds of the formulas I or II, comprising all sequence variants of the coding sequences, or parts thereof, of the compounds of formulas I or II, whose translation products have a biological activity equal or similar to that of the translation products of the compounds of the formulas I or II, for example sequence variants of the compounds of the formulas I or II, which differ in the not conserved amino acid sequence positions of the sequence of the formulas I or II, comprising the sequences hybridizing to the coding sequences of the compounds of the formulas I or II, or parts thereof, under stringent conditions, comprising the nucleotide sequences coding the proteins coded by the compounds of the formulas I or II, or parts thereof, but, as a result of the use of different alternative codons, are degenerated with regard to the nucleotide sequences defined by the compounds of the formulas I or II.

30

35

25

5

10

15

20

35. Use as targets for the development of pharmaceutical drugs, for example for the inhibition or the enhancement of the catalytic activity of the coded proteins of the formulas I or II, of proteins with the coded amino acid sequences of the compounds of the formulas I or II, comprising the proteins with the separate partial sequences of the coded amino acid sequences of the compounds of the formulas I or II, as for example

the separate catalytic domains of the compounds of the formulas I or II, comprising the proteins with the coded sequences or partial sequences of the corresponding splice variants of the compounds of the formulas I or II, comprising the proteins with the coded amino acid sequences or partial sequences thereof of the corresponding alleles of the compounds of the formulas I or II, comprising all sequence variants of the coded sequences, or parts thereof, of the compounds of formulas I or II, whose biological activity is equal or similar to the coded sequences of the compounds of the formulas I or II, for example sequence variants of the compounds of the formulas I or II, which differ in the not conserved amino acid sequence positions of the sequences of the formulas I or II, comprising the proteins with the coded amino acid sequences, or partial sequences thereof, of the nucleotide sequences hybridizing to the coding sequences of the compounds of the formulas I or II, or parts thereof, under stringent conditions.

5

10

15

20

25

30

35

36. Use as targets for the development of pharmaceutical drugs, for example for the enhancement or the inhibition of the catalytic activity of the coded proteins of the formulas I or II, of the species-homologous proteins, or parts thereof, of the compounds of the formulas I or II, as for example the species-homologous proteins of the rat, the rabbit, the cow, the sheep, the pig, the primates, the birds, the zebra fish, the fruit fly (Drosophila melanogaster), etc., comprising the partial sequences thereof, as for example the separate catalytic domains, comprising the splice variants of the species-homologous proteins, comprising the translation products of the sequences hybridizing under stringent conditions to the corresponding species-homologous compounds of the formulas I or II, or their splice variants, or their alleles, of the coding sequences or partial sequences of the compounds of formulas I or II.

37. Use for the spatial structure determination, for example the spatial structure determination by means of crystallography or nuclear resonance spectroscopy, of the proteins with the coded amino acid sequences of the compounds of the formulas I or II, comprising the proteins with the separate partial sequences of the coded amino acid sequences of the compounds of the formulas I or II, as for example the separate catalytic domains, comprising the proteins with the coded sequences or partial sequences of the corresponding splice variants of the compounds of the formulas I or II, comprising the proteins with the coded amino acid sequences, or partial sequences the reof, of the corresponding alleles of the compounds of the formulas I or II, comprising

- 40 -

all sequence variants of the coded sequences, or parts thereof, of the compounds of the formulas I or II, whose biological activity is equal or similar to that of the coded sequences of the compounds of the formulas I or II, for example sequence variants of the compounds of the formulas I or II, which differ in the not conserved amino acid sequence positions of the sequences of the formulas I or II, comprising the translation products with the sequences hybridizing to the coding sequences of the compounds of the formulas I or II, or parts thereof, under stringent conditions, comprising the species-homologous proteins of the compounds of the formulas I or II, for example the species-homologous proteins of the rat, the rabbit, the cow, the sheep, the pig, the primates, the birds, the zebra fish, the fruit fly (Drosophila melanogaster), etc., comprising the partial sequences thereof, as for example the separate catalytic domains.

38. Use for the prediction of the protein structure by means of computerized protein structure prediction methods, of the coded amino acid sequences of the compounds of the formulas I or II, comprising the separate partial sequences of the coded amino acid sequences of the compounds of the formulas I or II, as for example the coded amino acid sequences of the separate catalytic domains of the compounds of the formulas I or II, comprising the coded sequences or partial sequences of the corresponding splice variants of the compounds of the formulas I or II, comprising the coded amino acid sequences, or parts thereof, of the corresponding alleles of the compounds of the formulas I or II, comprising all sequence variants of the coded sequences, or parts thereof, of the compounds of the formulas I or II, whose biological activity is equal or similar to that of the coded sequences of the compounds of the formulas I or II, for example sequence variants of the compounds of the formulas I or II, which differ in the not conserved amino acid sequence positions of the sequences of the formulas I or II, comprising the amino acid sequences of the translation products of the sequences hybridizing to the coding sequences of the compounds of the formulas I or II, or parts thereof, under stringent conditions, comprising sequences of the specieshomologous compounds of the compounds of the formulas I or II, for example the sequences of the species-homologous compounds of the rat, the rabbit, the cow, the sheep, the pig. the primates, the birds, the zebra fish, the fruit fly (Drosophila melanogaster), etc., comprising the partial sequences of the species-homologous compounds, as for example the sequences of the catalytic domains of the specieshomologous compounds.

30

10

15

20

39. Us as targets for the development of pharmaceutical drugs, for xample for the inhibition or the enhancement of the catalytic activity of the coded proteins of the compounds of the formulas I or II, of the spatial structure of the coded amino acid sequences of the compounds of the formulas I or II, comprising the spatial structures of the separate partial sequences of the compounds of the formulas I or II, as for example the spatial structure of the catalytic domains, comprising the spatial structure of the coded sequences or partial sequences of the corresponding splice variants of the compounds of the formulas I or II, comprising the spatial structure of the coded sequences or partial sequences of the corresponding alleles of the compounds of the formulas I or II, comprising the spatial structure of all sequence variants of the coded sequences, or parts thereof, of the compounds of formulas I or II, whose biological activity is equal or similar to the coded sequences of the compounds of the formulas I or II, for example sequence variants of the compounds of the formulas I or II, which differ in the not conserved amino acid sequence positions of the sequences of the formulas I or II, comprising the spatial structures of the translation products of the sequences hybridizing to the coding sequences of the compounds of the formulas I or II, or parts thereof, under stringent conditions, comprising the spatial structures of the specieshomologous compounds of the compounds of the formulas I or II, as for example the spatial structures of the species homologous compounds, or parts thereof, of the rat, the rabbit, the cow, the sheep, the pig, the primates, the birds, the zebra fish, the fruit fly (Drosophila melanogaster), etc..

10

15

20

25

30

35

40. Use in gene therapeutical applications in humans and in animals, as for example as parts of gene therapy vectors or as for example as parts of artificial chromosomes, of the coding nucleotide sequences of the compounds of the formulas I or II, comprising the separate partial sequences of the coding sequences of these compounds of the formulas I or II, as for example the coding sequences of the catalytic domains of the compounds of the formulas I or II, comprising the coding sequences or partial sequences of the corresponding splice variants of the compounds of the formulas I or II, comprising all sequence variants of the coding sequences, or parts thereof, of the compounds of the formulas I or II, whose translation products exhibit a biological activity which is equal or similar to that of the translation products of the compounds of the formulas I or II, for example sequence variants of the compounds of the formulas I or II, which differ in the not conserved amino

5

10

15

20

25

acid sequence positions of the sequences of the compounds of the formulas I or II, comprising the sequences hybridizing to the coding sequences, or parts thereof, under stringent conditions, comprising the nucleotide s quences coding the proteins coded by the compounds of the formulas I or II, or parts thereof, but as a result of the use of different alternative codons, are degenerated with regard to the nucleotide sequences defined by the compounds of the formulas I or II.

41. Use for so-called cell engineering applications for the production of gene technologically mutated cells, which produce the coded sequences, or parts thereof, of the compounds of the formulas I or II, for example for cell-therapeutical applications as a pharmaceutical composition according to claim 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33, of the coding nucleotide sequences of the compounds of the formulas I or II, comprising the separate partial sequences of the coding sequences of these compounds of the formulas I or II, as for example the coding sequences of the catalytic domains of the compounds of the formulas I or II, comprising the coding sequences or partial sequences of the corresponding splice variants of the compounds of the formulas I or II, comprising the coding sequences or partial sequences of the corresponding alleles of the compounds of the formulas I or II, comprising all sequence variants of the coding sequences, or parts thereof, of the compounds of the formulas I or II, whose translation products exhibit a biological activity which is equal or similar to that of the translation products of the compounds of the formulas I or II, for example sequence variants of the compounds of the formulas I or II, which differ in the not conserved amino acid sequence positions of the sequence of the compounds of the formulas I or II, comprising the sequences hybridizing to the coding sequences, or parts thereof, under stringent conditions, comprising the nucleotide sequences coding the proteins coded by the compounds of formulas I or II, or parts thereof, but as a result of the use of different alternative codons, are degenerated with regard to the nucleotide sequences defined by the compounds of the formulas I or II.

30

35

42. Use as antigens for the production of antibodies, as for example antibodies that inhibit or promote the protease function or antibodies that can be used for immunohistochemical studies, of the coded amino acid sequences of the compounds of the formulas I or II, comprising the separate partial sequences of the coded amino acid sequences of the compounds of the formulas I or II, as for example the coded amino

acid sequence of the catalytic domain or one or more of the other domains or segments. comprising the cod d sequences or partial sequences of the corresponding splice variants of the compounds of the formulas I or II, comprising the coded sequences or partial sequences of the corresponding alleles of the compounds of the formulas I or II. comprising all sequence variants of the coded sequences, or parts thereof, of the compounds of the formulas I or II, whose biological activity is equal or similar to that of the coded sequences of the compounds of the formulas I or II, for example sequence variants of the compounds of the formulas I or II, which differ in the not conserved amino acid sequence positions of the sequence of the compounds of the formulas I or II, comprising the translation products or parts thereof, of the sequences hybridizing to the coding sequences of the compounds of the formulas I or II, or parts thereof, under stringent conditions, comprising the coded sequences of the species-homologous compounds of the compounds of the formulas I or II, as for example the coded sequences of the species-homologous compounds of the rat, the rabbit, the cow, the sheep, the pig, the primates, the birds, the zebra fish, the fruit fly (Drosophila melanogaster), etc., comprising the separate partial sequences of the coded sequences of the species-homologous compounds of the compounds of the formulas I or II, as for example the coded amino acid sequence of the catalytic domain, or one or more of the other domains or segments.

20

25

30

35

5

10

15

43. Use for the production of transgenic animals, as for example transgenic mice, of the coding nucleotide sequences of the compounds of the formulas I or II, comprising the separate partial sequences of the coding sequences of these compounds of the formulas I or II, as for example the coding sequences of the catalytic domains of the compounds of the formulas I or II, comprising the coding sequences or partial sequences of the corresponding splice variants of the compounds of the formulas I or II, comprising the coding sequences, or partial sequences, of the corresponding alleles of the compounds of the formulas I or II, comprising all sequence variants of the coding sequences, or parts thereof, of the compounds of the formulas I or II, whose translation products exhibit a biological activity which is equal or similar to that of the translation products of the compounds of the formulas I or II, for example sequence variants of the compounds of the formulas I or II, which differ in the not conserved amino acid sequence positions of the sequences of the compounds of the formulas I or II, comprising the sequence s hybridizing to the coding sequences, or parts thereof, under stringent conditions, comprising the nucleotide sequences coding the prot ins coded by the

compounds of the formulas I or II, or parts thereof, but as a r sult of the use of different alternative codons, are degenerated with regard to the nucleotide sequences defined by the compounds of the formulas I or II.

5

10

15

20

44. Use for the inactivation or the mutation of the corresponding gene by means of gene targeting techniques, as for example the elimination of the gene in the mouse through homologous recombination, of the coding nucleotide sequences of the compounds of the formulas I or II, comprising the separate partial sequences of the coding sequences of these compounds of the formulas I or II, as for example the coding sequences of the catalytic domains of the compounds of the formulas I or II, comprising the coding sequences, or partial sequences, of the corresponding splice variants of the compounds of the formulas I or II, comprising the coding sequences, or partial sequences, of the corresponding alleles of the compounds of the formulas I or II, comprising all sequence variants of the coding sequences, or parts thereof, of the compounds of the formulas I or II, whose translation products exhibit a biological activity which is equal or similar to that of the translation products of the compounds of the formulas I or II, for example sequence variants of the compounds of the formulas I or II, which differ in the not conserved amino acid sequence positions of the sequence of the compounds of the formulas I or II, comprising the sequences hybridizing to the coding sequences, or parts thereof, under stringent conditions, comprising the nucleotide sequences coding the proteins coded by the compounds of the formulas I or II, or parts thereof, but as a result of the use of different alternative codons, are degenerated with regard to the nucleotide sequences defined by the compounds of the formulas I or II.

25

30

35

45. Use for the diagnostics of disorders in the gene corresponding to the compound of the formula I, of the coding nucleotide sequences of the compounds of the formulas I or II, comprising the separate partial sequences of the coding sequences of these compounds of the formulas I or II, as for example the coding sequences of the catalytic domains of the compounds of the formulas I or II, comprising the coding sequences or partial sequences of the corresponding splice variants of the compounds of the formulas I or II, comprising the coding sequences, or partial sequences, of the corresponding alleles of the compounds of the formulas I or II, comprising all sequence variants of the coding sequences, or parts thereof, of the compounds of the formulas I or II, whose translation products xhibit a biological activity which is equal or similar to that of the translation products of the compounds of the formulas I or II, for example

10

15

20

25

30

sequence variants of the compounds of the formulas I or II, which differ in the not conserved amino acid sequence positions of the sequence s of the compounds of the formulas I or II, comprising the sequences hybridizing to the coding sequences, or parts thereof, under stringent conditions, comprising the nucleotide sequences coding the proteins coded by the compounds of the formulas I or II, or parts thereof, but as a result of the use of different alternative codons, are degenerated with regard to the nucleotide sequences defined by the compounds of the formulas I or II.

46. Use as a starting sequence for gene technological modifications aimed at the production of pharmaceutical compositions or gene therapy vectors which exhibit changed properties as compared with the corresponding pharmaceutical compositions or gene therapy vectors containing the coding nucleotide sequence of the compounds of formulas I or II, for example changed proteolytic activity, changed proteolytic specificity, or changed pharmacokinetic characteristics, of the coding nucleotide sequences of the compounds of the formulas I or II, comprising the separate partial sequences of the coding sequences of these compounds of the formulas I or II, as for example the coding sequences of the catalytic domains of the compounds of the formulas I or II, comprising the coding sequences or partial sequences of the corresponding splice variants of the compounds of the formulas I or II, comprising the coding sequences, or partial sequences, of the corresponding alleles of the compounds of the formulas I or II, comprising all sequence variants of the coding sequences, or parts thereof, of the compounds of the formulas I or II, whose translation products exhibit a biological activity which is equal or similar to that of the translation products of the compounds of the formulas I or II, for example sequence variants of the compounds of the formulas I or II, which differ in the not conserved amino acid sequence positions of the sequences of the compounds of the formulas I or II, comprising the sequences hybridizing to the coding sequences, or parts thereof, under stringent conditions, comprising the nucleotide sequences coding the proteins coded by the compounds of the formulas I or II, or parts thereof, but as a result of the use of different alternative codons, are degenerated with regard to the nucleotide sequences defined by the compounds of the formulas I or II.

national Application No PCT/IB 98/00625

					.,	
A. CLASSI IPC 6	FICATION OF SUBJECT MATTER C12N15/57 C12N9 A61K48/00 C07K1	/64 A61K31/ 6/40 C12N15/	′70 ′00	A61K38/48 A01K67/027	C1201 C1201	/37 /68
According to	o International Patent Classification (IPC) or to both national classifi	cation and	IIPC		
	SEARCHED					
Minimum do IPC 6	ocumentation searched (classification s C12N A61K C12Q	ystem followed by classifica	tion symb	ols)		
Documental	tion searched other than minimum docu	mentation to the extent that	such doc	ments are included in	the fields sear	ched
Electronic d	ata base consulted during the internati	onal search (name of data b	ase and,	where practical, search	n terms used)	
C. DOCUM	ENTS CONSIDERED TO BE RELEVA	NT				
Category *	Citation of document, with Indication,	where appropriate, of the re	elevant pa	ssages		Relevant to claim No.
X	EMBL/GENBANK DATA AA166524, Sequenc MMAA66524, 21 Dec MARRA M ET AL:"TH Project" XP002075099 see the whole doc	e identificatio ember 1996 e WashU-HHMI Mo	n	ST		1,34,37, 38,42
X	EMBL/GENBANK DATABASES Accession no AA373034, Sequence identification HSZZ78160, 18 April 1997 ADAMS M ET AL: "Initial assessment of human gene diversity and expression patterns based upon 83 million nucleotides of cDNA sequence" XP002075100 see the whole document				1,34,37, 38,42	
			-/			
X Furt	her documents are listed in the continu	ation of box C.		Patent family member	ers are listed in	annex.
* Special categories of cited documents :				er document published	after the interr	national filing date
tuing date			ir "X" do c	or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone		
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means				cument of particular rel annot be considered to ocument is combined v ents, such combination	levance; the cla involve an involve an involve with one or mor	aimed invention entive step when the e other such docu-
"P" document published prior to the international filing date but				the art. cument member of the	•	•
Date of the	actual completion of theinternational se	earch	D:	ite of maiting of the inte	ernational sear	ch report
2	5 August 1998			04/09/1998		
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 Nt 2280 HV Rijswijk			A	Authorized officer		
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016				Van der Schaal, C		

national Application No PCT/IB 98/00625

C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category '	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EMBL/GENBANK DATABASES Accession no AA073513, Sequence identification MMA73513, 5 October 1996 MARRA M ET AL: "THe WashU-HHMI Mouse EST Project" XP002075101 see the whole document	1,34,37, 38,42
X	EMBL/GENBANK DATABASES Accesion no AA063841, Sequence identification MMA63841, 25 September 1996 MARRA M ET AL: "THe WashU-HHMI Mouse EST Project" XP002075102 see the whole document	1,34,37, 38,42
A	YAMASHIRO K ET AL: "Molecular cloning of a novel trypsin-like serine protease (neurosin) preferentially expressed in brain." BIOCHIMICA ET BIOPHYSICA ACTA, (1997 JAN 3) 1350 (1) 11-4. JOURNAL CODE: AOW. ISSN: 0006-3002., XP002075096 Netherlands	
Ρ,Χ	DATABASE MEDLINE US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US PROBA K ET AL: "Cloning and sequencing of the cDNA encoding human neurotrypsin." XP002075103 see abstract & BIOCHIMICA ET BIOPHYSICA ACTA, (1998 MAR 9) 1396 (2) 143-7. JOURNAL CODE: AOW. ISSN: 0006-3002., Netherlands	1-4, 34-39, 42-44
P,X	GSCHWEND T P ET AL: "Neurotrypsin, a novel multidomain serine protease expressed in the nervous system." MOLECULAR AND CELLULAR NEUROSCIENCES, (1997) 9 (3) 207-19. JOURNAL CODE: B1D. ISSN: 1044-7431., XP002075097 United States see the whole document	1-46
		·

I. .tational Application No PCT/IB 98/00625

C.(Continua	ntion) DOCUMENTS CONSIDERED TO BE RELEVANT	101/16 90/00025	
Category ?	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
P,X	YAMAMURA Y ET AL: "Molecular cloning of a novel brain-specific serine protease with a kringle-like structure and three scavenger receptor cysteine-rich motifs." BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, (1997 OCT 20) 239 (2) 386-92. JOURNAL CODE: 9Y8. ISSN: 0006-291X., XP002075098 United States see the whole document	1-4, 34-39, 42-44	

international application No.

PCT/IB 98/00625

Box I Observations where certain claims were found uns archabl (C ntinuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claims 40 42 44 and 45 are (partially) directed to a method of treatment of the human/animal body or to a diagnostic method practised on the human/animal body, the search has been carried out and based on the alleged effects of the compound.
Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.