Área em Coordenadas Polares

Calcularemos a área de uma região limitada por duas retas que passam pela origem e por uma curva cuja equação é dada em coordenadas polares Seja f uma função contínua no intervalo fechado $[\alpha, \beta]$. Suponha que $fx) \ge 0$ para todo $x \in [\alpha, \beta]$. Seja R a região limitada pelo gráfico de $r = f(\theta)$ e pelas retas $\theta = \alpha$ e $\theta = \beta$.

Considere a partição Δ do intervalo $[\alpha, \beta]$ dada por $\alpha = \theta_0 < \theta_1 < \theta_2 < \dots < \theta_{n-1} < \theta_n = \beta$

Seja $[\theta_{i-1}, \theta_i]$ o i-ésimo intervalo.

Seja ρ_i um valor de θ no subintervalo $[\theta_{i-1}, \theta_i]$. A medida do ângulo , em radianos, do ângulo entre as retas $\theta = \theta_{i-1}$ e $\theta = \theta_i$ será denotada por $\Delta_i \theta$. A área do setor circular de raio $f(\rho_i)$ e ângulo central $\Delta_i \theta$ é dada por $\frac{1}{2}[f(\rho_i)]^2 \Delta_i \theta$.

Para cada dos n subintervalos temos um setor dessa forma A soma das áreas dos *n* setores será então

$$S_n = \sum_{i=1}^n \frac{1}{2} [f(\rho_i)]^2 \Delta_i \theta$$

Definição

Seja R a região limitada pelo gráfico de $r = f(\theta)$ e pelas retas $\theta = \alpha$ e $\theta = \beta$, onde f é uma função contínua no intervalo fechado $[\alpha, \beta]$. Então a área de R é

$$A = \lim_{|\Delta| \to 0} \sum_{i=1}^{n} \frac{1}{2} [f(\rho_i)]^2 \, \Delta_i \theta = \int_{\alpha}^{\beta} \frac{1}{2} [f(\theta)]^2 d\theta$$

Exemplo

Calcule a área da região limitada pelo gráfico de $r=2+2\cos\theta$

Solução:

$$A = 2 \int_0^{\pi} \frac{1}{2} [2 + 2\cos\theta]^2 d\theta = \int_0^{\pi} (4 + 8\cos\theta + 4\cos^2\theta) d\theta = 4 \int_0^{\pi} (1 + 2\cos\theta + \cos^2\theta) d\theta = 4 \int_0^{\pi} \left(1 + 2\cos\theta + \frac{1 + \cos 2\theta}{2}\right) d\theta = 4 \int_0^{\pi} \left(\frac{3}{2} + 2\cos\theta + \frac{\cos 2\theta}{2}\right) d\theta = 4 \int_0^{\pi} \left(\frac{3}{2} + 2\cos\theta + \frac{\sin 2\theta}{2}\right) d\theta = 4 \int_0^{\pi} \left(\frac{3}{2} + 2\sin\theta + \frac{\sin 2\theta}{2}\right) d\theta = 4 \int_0^{\pi} \left(\frac{3}{2} + 2\sin\theta + \frac{\sin 2\theta}{2}\right) d\theta = 4 \int_0^{\pi} \left(\frac{3}{2} + 2\sin\theta + \frac{\sin 2\theta}{2}\right) d\theta = 4 \int_0^{\pi} \left(\frac{3}{2} + 2\sin\theta + \frac{\sin 2\theta}{2}\right) d\theta = 4 \int_0^{\pi} \left(\frac{3}{2} + 2\sin\theta + \frac{\sin 2\theta}{2}\right) d\theta = 4 \int_0^{\pi} \left(\frac{3}{2} + 2\sin\theta + \frac{\sin 2\theta}{2}\right) d\theta = 4 \int_0^{\pi} \left(\frac{3}{2} + 2\sin\theta + \frac{\sin 2\theta}{2}\right) d\theta = 4 \int_0^{\pi} \left(\frac{3}{2} + 2\sin\theta + \frac{\sin 2\theta}{2}\right) d\theta = 4 \int_0^{\pi} \left(\frac{3}{2} + 2\sin\theta + \frac{\sin 2\theta}{2}\right) d\theta = 4 \int_0^{\pi} \left(\frac{3}{2} + 2\sin\theta + \frac{\sin 2\theta}{2}\right) d\theta = 4 \int_0^{\pi} \left(\frac{3}{2} + 2\sin\theta + \frac{\sin 2\theta}{2}\right) d\theta = 4 \int_0^{\pi} \left(\frac{3}{2} + 2\sin\theta + \frac{\sin 2\theta}{2}\right) d\theta = 4 \int_0^{\pi} \left(\frac{3}{2} + 2\sin\theta + \frac{\sin 2\theta}{2}\right) d\theta = 4 \int_0^{\pi} \left(\frac{3}{2} + 2\sin\theta + \frac{\sin 2\theta}{2}\right) d\theta = 4 \int_0^{\pi} \left(\frac{3}{2} + 2\sin\theta + \frac{\sin 2\theta}{2}\right) d\theta = 4 \int_0^{\pi} \left(\frac{3}{2} + 2\sin\theta + \frac{\sin 2\theta}{2}\right) d\theta = 4 \int_0^{\pi} \left(\frac{3}{2} + 2\sin\theta + \frac{\sin 2\theta}{2}\right) d\theta = 4 \int_0^{\pi} \left(\frac{3}{2} + 2\sin\theta + \frac{\sin 2\theta}{2}\right) d\theta = 4 \int_0^{\pi} \left(\frac{3}{2} + 2\sin\theta + \frac{\sin 2\theta}{2}\right) d\theta = 4 \int_0^{\pi} \left(\frac{3}{2} + 2\sin\theta + \frac{\sin 2\theta}{2}\right) d\theta = 4 \int_0^{\pi} \left(\frac{3}{2} + 2\sin\theta + \frac{\sin 2\theta}{2}\right) d\theta = 4 \int_0^{\pi} \left(\frac{3}{2} + 2\sin\theta + \frac{\sin 2\theta}{2}\right) d\theta = 4 \int_0^{\pi} \left(\frac{3}{2} + 2\cos\theta + \frac{\cos\theta}{2}\right) d\theta = 4 \int_0^{\pi} \left(\frac{3}{2} + 2\cos\theta + \frac{\cos\theta}{2}\right) d\theta = 4 \int_0^{\pi} \left(\frac{3}{2} + 2\cos\theta + \frac{\cos\theta}{2}\right) d\theta = 4 \int_0^{\pi} \left(\frac{3}{2} + 2\cos\theta + \frac{\cos\theta}{2}\right) d\theta = 4 \int_0^{\pi} \left(\frac{3}{2} + 2\cos\theta + \frac{\cos\theta}{2}\right) d\theta = 4 \int_0^{\pi} \left(\frac{3}{2} + 2\cos\theta + \frac{\cos\theta}{2}\right) d\theta = 4 \int_0^{\pi} \left(\frac{3}{2} + 2\cos\theta + \frac{\cos\theta}{2}\right) d\theta = 4 \int_0^{\pi} \left(\frac{3}{2} + 2\cos\theta + \frac{\cos\theta}{2}\right) d\theta = 4 \int_0^{\pi} \left(\frac{3}{2} + 2\cos\theta + \frac{\cos\theta}{2}\right) d\theta = 4 \int_0^{\pi} \left(\frac{3}{2} + 2\cos\theta + \frac{\cos\theta}{2}\right) d\theta = 4 \int_0^{\pi} \left(\frac{3}{2} + 2\cos\theta + \frac{\cos\theta}{2}\right) d\theta = 4 \int_0^{\pi} \left(\frac{3}{2} + 2\cos\theta + \frac{\cos\theta}{2}\right) d\theta = 4 \int_0^{\pi} \left(\frac{3}{2} + 2\cos\theta + \frac{\cos\theta}{2}\right) d\theta = 4 \int_0^{\pi} \left(\frac{3}{2} + 2\cos\theta + \frac{\cos\theta}{2}\right) d\theta = 4 \int_0^{\pi} \left(\frac{3}{2} + 2\cos\theta + \frac{\cos\theta}{2}\right) d\theta = 4 \int_0^{\pi} \left(\frac{3}{2} + 2\cos\theta + \frac{\cos\theta}{2}\right) d\theta = 4 \int_0^{\pi} \left(\frac{3}{2} + 2\cos\theta + \frac{\cos\theta}{2}\right) d\theta = 4 \int_0^{\pi} \left(\frac{3}{2} + 2\cos\theta + \frac{\cos\theta}{2}\right) d\theta = 4$$