Graduate Homework In Mathematics

Number Theory

白永乐

202011150087

202011150087@mail.bnu.edu.cn

北京师范大学数学科学学院

ROBEM I Prove that $\forall n \in \mathbb{Z}, 3 \mid n(n+1)(2n+1)$.

SOLITION. If $n \equiv 0 \mod 3$ then $3 \mid n$. If $n \equiv 1 \mod 3$ then $3 \mid 2n+1$. So no matter what is $n \mod 3$, we can obtain $3 \mid n(n+1)(2n+1)$.

ROBEM II Let $a, b \in \mathbb{Z}$ and $b \neq 0$. Prove that there exists a pair of $s, t \in \mathbb{Z}$ such that $a = sb + t \wedge |t| \leq \frac{|b|}{2}$. And if b is odd, then the pair s, t is unique. What if b is even?

SOUTION. Let $A := \{x \in \mathbb{Z} : \exists y \in \mathbb{Z}, a = yb + x\}$. Since a = 0b + a we know $a \in A$, so $A \neq \emptyset$. By the definition of m we know $\exists s, t \in \mathbb{Z}, |t| = m, a = sb + t$. Then a = (s-1)b + (t+b), a = (s+1)b + (t-b). So by the definition of A we get $t \pm b \in A$. Thus, by the definition of m we get $|t \pm b| \geq |t|$. So we get $|t| - |b| \geq |t|$. Easily |t| - |b| < |t| since $b \neq 0$, so we get $|b| - |t| \geq |t|$, i.e., $|t| \leq \frac{|b|}{2}$.

Now take $2 \nmid b$, we will prove the uniqueness. Assume there are two pairs $s_1, t_1; s_2, t_2$ satisfy the given condition, then $a = s_1b + t_1 = s_2b + t_2$. Then we get $b \mid s_1b - s_2b = t_2 - t_1$. Since $(s_1, t_1) \neq (s_2, t_2)$ we easily get $t_1 \neq t_2$. So $|b| \leq |t_1 - t_2|$. Noting $|t_1 - t_2| \leq |t_1| + |t_2| \leq \frac{|b|}{2} + \frac{|b|}{2} = |b|$, we obtain $|t_1| = |t_2| = \frac{|b|}{2}$. But $2 \nmid b$, so $\frac{|b|}{2} \notin \mathbb{Z}$, contradiction!

Now we consider b is even. Take $a \equiv \frac{b}{2} \mod b$, then $a = kb + \frac{b}{2}$ for some $k \in \mathbb{Z}$, and $a = (k+1)b - \frac{b}{2}$. So there is exactly two pairs of (s,t) satisfy the condition. When $a \not\equiv \frac{b}{2} \mod b$, obviously (s,t) is unique.

ROBEM III Use Problem II to prove the existence of the greatest common factor of any pair $(x,y) \in \mathbb{Z} \land (x,y) \neq (0,0)$, and find an algorithm to get $\gcd(x,y)$, and find $\gcd(76501,9719)$ by your algorithm and Euckidean algorithm respectively.

SOLITION. Without loss of generality assume $|x| \leq |y|$. If x = 0 then easily $\gcd(x,y) = |y|$. Now assume $|y| \geq |x| > 0$. Now we prove $\gcd(x,y)$ exists by contradiction, assume for some $x,y \in \mathbb{Z}$, $|x| \leq |y|$ there is $\gcd(x,y)$ not exists. Let $A := \{x \in \mathbb{Z} : \exists y \in \mathbb{Z}, |y| \geq |x|, \gcd(x,y) \text{ not exists} \}$. Then $A \neq \emptyset$. Let $t = \min\{|x| : x \in A\}$. Then by the definition of A we know $\exists s \in \mathbb{Z} \land |s| \geq |t|$ such that $\gcd(s,t)$ doesn't exist. Since we have proved $\gcd(0,y)$ exists, we get $t \neq 0$. From Problem II we know there exists $x,y \in \mathbb{Z}$ such that $s = xt + y, |y| \leq \frac{|t|}{2}$. Consider the pair (t,y), we know |y| < |t|, so by the definition of t we get $\gcd(t,y)$ exists. So $\gcd(t,y) = \gcd(t,xt+y) = \gcd(s,t)$. Contradict to that $\gcd(s,t)$ doesn't exist. So we get $\forall (x,y) \in \mathbb{Z}^2 \land (x,y) \neq (0,0), \gcd(x,y)$ exists.

From above, we can get following algorithm to get gcd(x, y):

```
1 #include<stdio.h>
2 int abs(int x){
3    return x>0?x:-x;
4 }
5 int min_abs_remainder(int y, int x){
6    if(x==0){
7      return y;
8    }
9    int r = (y % abs(x) + abs(x)) % abs(x);
10    if(r>abs(x)/2){
11      return r-abs(x);
12    }
13    return r;
14 }
```

```
15 //this function is to get the greatest commom factor of two integer.
int gcd(int x, int y){
    if (abs(x)>abs(y)){
   //the function int abs(int a) returns the absolute value of a.
19
      int temp = x;
20
      x = y;
21
      y = temp;
22
     if(x = 0){
     return abs(y);
24
25
    int r=min_abs_remainder(y,x);
26
27
    int k=(y-r)/x;
28
     printf("%d &= %d &\\times %d &+ %d\n",y,k,x,r);
    return gcd(x,min_abs_remainder(y,x));
  //the return value of function min_abs_remainder is the least-abs remainder of x divide y, which we have
       proved is less or equal to abs(x)
31
  int main(){
32
     printf("%d", gcd(76501,9719));
    return 0;
34
35 }
```

Now we use Euckidean algorithm to get gcd(76501, 9719).

$$76501 = 7$$
 $\times 9719$ $+8468$
 $9719 = 1$ $\times 8468$ $+1251$
 $8468 = 6$ $\times 1251$ $+962$
 $1251 = 1$ $\times 962$ $+289$
 $962 = 3$ $\times 289$ $+95$
 $289 = 3$ $\times 95$ $+4$
 $95 = 23$ $\times 4$ $+3$
 $4 = 1$ $\times 3$ $+1$
 $3 = 3$ $\times 1$ $+0$

So gcd(76501, 9719) = 1.

Now we use the new algorithm to get gcd(76501, 9719).

$$76501 = 8 \times 9719 - 1251$$

$$9719 = (-8) \times (-1251) - 289$$

$$-1251 = 4 \times (-289) - 95$$

$$-289 = 3 \times (-95) - 4$$

$$-95 = 24 \times (-4) + 1$$

$$-4 = (-4) \times 1 + 0$$

ROBEM IV Assume $f(x) = \sum_{k=0}^{n} a_k x^k \in \mathbb{Z}[x]$ and $a_0, a_n \neq 0$. Prove that if a rational number $\frac{p}{q}, \gcd(p,q) = 1$ is root of f, then $p \mid a_0, q \mid a_n$. Thus, $\sqrt{2} \notin \mathbb{Q}$.

SOLTION. Since $\frac{p}{q}$ is a root of f, we get $f(\frac{p}{q}) = 0$. So $\sum_{k=0}^{n} a_k (\frac{p}{q})^k = 0$. Multiple q^n , we get $\sum_{k=0}^{n} a_k p^k q^{n-k} = 0$. Mod p, we get $p \mid 0 = \sum_{k=0}^{n} a_k p^k q^{n-k}$. For k > 0 we have $p \mid a_k p^k q^{n-k}$, so $p \mid \sum_{k=1}^{n} a_k p^k q^{n-k}$. So $p \mid \sum_{k=0}^{n} a_k p^k q^{n-k} - \sum_{k=1}^{n} a_k p^k q^{n-k} = a_0 q^n$. Since $\gcd(p,q) = 1$, easily $p \mid a_0 q^n \iff p \mid a_0$. So we get $p \mid a_0$. For the same reason easy to get $q \mid a_n$.

Consider $f(x) = x^2 - 2 \in \mathbb{Z}[x]$. Easily $f(\sqrt{2}) = 0$. So if $\sqrt{2} = \frac{p}{q}, \gcd(p, q) = 1$, then we get $p \mid 2, q \mid 1$. Without loss of generality assume q > 0, then q = 1. Then $\sqrt{2} = \pm 1, \pm 2$. But none of them is root of f, contradiction!