известия высших учебных заведений

РАДИОФИЗИКА

1982 TOM XXV

6

ИЗДАНИЕ ГОРЬКОВСКОГО УНИВЕРСИТЕТА И НАУЧНО-ИССЛЕДОВАТЕЛЬСКОГО РАДИОФИЗИЧЕСКОГО ИНСТИТУТА

а радиояркостная температура в указанной зоне достигает всего лишь 15-20 К. Наличие зоны зарождения града во фронтальной части облака, в области «навеса», подтверждается также высокой радиолокационной отражаемостью и низким радиоизлучением.

Из краткого анализа экспериментального материала можно сделать предварительный вывод, что в случае жидкокапельных облаков с ростом радиолокационной отражаемости растет и радиояркостная температура во всех участках облачной среды. В градовых облаках раднояркостная температура в зоне зарождения града медленно растет и значение радиоизлучения мало. В тыловой части (в зоне осадков) величина T_n значительно больше, чем во фронтальной (см. рис. 1 и 2). Значение радиолокационной отражаемости в зоне зарождения града может быть таким же высоким, как и в зоне выпадения осадков. Следовательно, в зоне зарождения града наблюдается повышенная раднолокационная отражаемость и низкая раднояркостная температура, что свойственно градам, растущим в режиме сухого роста.

В заключение следует сказать, что вышензложенные экспериментальные данные позволяют надеяться, что использование активной и пассивной радиолокации в исследовании градовых облаков является эффективным методом для обнаружения зоны зарождения града. Это, в свою очередь, может быть использовано для контроля эффективности воздействия на градодые процессы. Исследования проводились с помощью радиолокационных станций, работающих на волнах $\lambda=10$ и 30 см, и радиометров, работающих на волнах $\lambda=3.3$ и 8,4 см. В дальнейшем желательно для исследования зоны зарождения града в грозо-градовых облаках совместно с активными многоволно-

выми радиолокаторами использовать многоволновые СВЧ раднометры. Авторы выражают искреннюю благодарность А. П. Наумову за ценные заме-

чания и постоянное внимание к работе.

ЛИТЕРАТУРА

1. Башаринов А. Е., Горелик А. Г., Калашников В. В., Кутуза Б. Г.— Изв. АН СССР. Сер. Физика атмосферы и океана, 1970, 6, № 5, с. 1231. 2. Кутуза Б. Г.— Труды ГГО, 1968, вып. 222, с. 11.

3. Аквилонова А.Б., Кутуза Б. Г.— Радиотехника и электроника, 1978, 23, № 9, c. 1792.

- 4. Кармов Х. Н.— Труды ВГИ, 1978, вып. 41, с. 76. 5. Тхамоков Б. Х.— Труды ВГИ, 1974, вып. 22, с. 67. 6. Кармов Х. И.— Изв. АН СССР. Сер. Физика атмосферы и оксана, 1978, 6, № 5, c. 1106.
- 7. Жевакин С. А., Тронцкий В. С., Цейтлин Н. М.— Изв. вузов Радиофизика, 1968, 11, № 2, с. 19.

8. Фалин В. В. Диссертация. Муром, 1980. 9. Сулаквелидзе Г. К. Ливиевые осадки и град.— Л.: Гидрометеонздат, 1967.

Высокогорный геофизический институт Поступила в редакцию 25 августа 1981 г.

УДК 621.378

ИССЛЕДОВАНИЕ СДВИГОВ ЧАСТОТ ДАВЛЕНИЕМ В СИСТЕМЕ ПОСЛЕДОВАТЕЛЬНЫХ ПЕРЕХОДОВ МОЛЕКУЛЫ ¹⁴NH₃ В _{V2}-ВОЗБУЖДЕННОМ КОЛЕБАТЕЛЬНОМ СОСТОЯНИИ

С. П. Белов, А. Ф. Крупнов, А. А. Мельников

Большинство исследований сдвигов частот линий поглощения давлением газа, выполненных методами микроволновой спектроскопии, проведено для молекул, находящихся в основном колебательном состоянии. Кроме того, они изучались главным образом для отдельных не связанных между собой общими энергетическими уровнями переходов. Так, например, в микроволновом спектре поглощения молекул аммиака параметры сдвига давлением измерены лишь для отдельных чисто инверсионных переходов [1]. Исследование сдвигов в спектрах поглощения других молекул типа симметричного волчка обычно ограничено одинм или двумя нижинми вращательными переходами [2]. Все это, на наш взгляд, сдерживает дальнейшее развитие теории сдвигов, поскольку сдвиги отдельных переходов по сравнению с системой содержат, конечно, более бедную информацию о молекуле и ее взаимодействии с окружением.

В настоящей работе приводятся результаты измерения параметров сдвига давлением частот переходов молекулы аммиака ¹⁴NH₃ в возбужденном колебательном состоянии $v_2 = 1$. В совокупности со сделанными ранее измеренлями [3] они позволили впервые получить информацию о едвигах частог линий давлением для системы инверсионных и инверсионно-вращательных переходов при малых значентях квантовых чисел

J и K (рис. 1). Памерення позволили также уточнить частоты переходов аммиака и проверить справедливость простой «штарковской» модели сдвигов, предложенной ранее [4].

Наблюдение и измерение сдвигов проводилось с помощью субмиллиметрового микроволнового спектрометра РАД с системой стабилизации частоты излучения ЛОВ по методике, описанной ранее [3,5]. Результаты измерения частот, параметров сдвига и уширения переходов аммиака $^{14}{\rm NH_3}$ в $v_2=1$ состоянии представлены вместе с получеными ранее данными в табл. 1. Величина параметров сдвига (в $M\Gamma u/Top$) для всех исследовавнихся переходов приведена также на рис. 1 (в кружочках). На рис. 2, в качестве примера, представлены результаты измерения зависимости частоты перехода $s(2,1) \leftarrow a(1,1)$ молекулы $s(2,1) \leftarrow a(1,$

Рис. 1. Часть системы вращательно-инверсионных энергетических уровней молекулы аммнака $^{14}{\rm NH_3}$ в колебательном состоянии $v_2=1$. Квантовые числа J, K и индексы симметрии s, a уровней приведены на рисунке. Стрелками показаны переходы, для которых измерялся нараметр сдвига. Величина параметров сдвига в $M\Gamma u/Top$ указана в кружочках.

Характеристики этого перехода измерялись ранее [6] в связи с определением точности методов лазерной спектроскопии. Результаты наших измерений показывают, что частота перехода $s(2,1) \leftarrow a(1,1)$ (табл. 1) примерно на 1,6 $M\Gamma u$ ниже ранее измеренной: 140143,5 \pm 0,8 $M\Gamma u$. Столь большое для микроволновых измерений расхождение обусловлено, по-видимому, сильной зависимостью частоты перехода от давления, которая ранее не предсказывалась и в работе [6] не учитывалась.

Таблица 1

Экспериментально измеренные частоты, параметры сдвига и уширения переходов молекулы $^{14}{
m NH_3}$ в состоянии ${
m v}_2=1$

$\frac{1}{1}$			
Переход	Частота, МГц	$\Delta v_{\rm c}^2$, $M\Gamma u/Top$	Δγ ⁹ _y . ΜΓμ/Τορ*
$\begin{array}{c} a\ (0,0) \leftarrow s\ (1,0) \\ a\ (1,1) \leftarrow s\ (1,1) \\ s\ (2,1) \leftarrow a\ (1,1) \\ a\ (2,1) \leftarrow s\ (2,1) \\ a\ (2,2) \leftarrow s\ (2,1) \\ s\ (3,1) \leftarrow a\ (2,1) \\ s\ (3,2) \leftarrow a\ (2,2) \\ s\ (3,0) \leftarrow a\ (2,0) \\ a\ (3,3) \leftarrow a\ (2,0) \end{array}$	466215,6 1056650,82 140141,78 10:5318,70 1057676,77 762852,3 741788,1 769710,0 772593,5	+ 5,65 - 2,4 + 3,92 - 2,4 + 1,5 - 3,3 - 0,2 + 3,73 + 3,93	13,75 15,3 15,75 — 10,8 — 12,5 10,6

^{*} Параметр уширения Δv_y определен как полуширина линии по уровню половины интенсивности.

719

Сравнение результатов показывает, в частности, что при проведении точных измерений (а также в ряде других случаев, например, при исследовании сдвигов) полезно иметь оценки величины сдвига частоты того или другого перехода. Сделать их, однако, довольно сложно, поскольку применение существующих теорий сдвигов требует проведения больших численных расчетов с применением ЭВМ. Интересно, что положительный знак и большую величину параметра сдвига $s(2,1) \leftarrow a(1,1)$ перехода легко предсказать на основе выдвинутого в [4] предположения о связи сдвигов частот линий давлением со штарковским смещением этих же линий. Несложные оценки величины штарковского смещения показывают, что взаимное расталкивание уровней $s(2,\ 1)$ и $a(1,\ 1)$ является преобладающим. В картину сильного штарковского расталкивания этих уровней хорошо укладывается и отрицательное значение параметра сдвига перехода $a(2, 1) \leftarrow s(2, 1)$ (рис. 1). В целом, применение штарковской модели для расчета параметров сдвига всех наблюдавшихся нами переходов (рис. 1) в простейшем предположении о постоянстве величины усредненного поля для всех энергетических уровней молекулы и использовании обычного усреднения матричных элементов дипольного момента перехода по числу M [7] дает результаты, согласующиеся качественно, а отчасти и количественно с экспериментальными данными. Таким путем при учете лишь квадратичного эффекта Штарка получаются правильные знаки параметров сдвига для $a(0,0) \leftarrow s(1,0)$, $s(3,0) \leftarrow a(2,0)$, $s(2,1) \leftarrow a(1,1)$, и отрицательные для $a(1,1) \leftarrow s(1,1)$, $a(2,1) \leftarrow s(2,1)$, (положительные (положительные для $a(0, 0) \leftarrow s(1, 0)$, $a(0, 0) \leftarrow s(1, 0)$, a(0, 0)вестно, впервые для довольно сложной системы переходов, показывают возможность описания сдвигов частот линий давлением с помощью штарковского подхода и свидетельствуют о целесообразности его дальнейшего развития.

Достижение количественного согласия между расчетом и экспериментом требует, разумеется, проведения дальнейших исследований, в частности, более детального изучения свойств сдвигов, обоснования способа усреднения по квантовому числу M, выбора величины усредненного поля для каждого из уровней молекул и некоторых других моментов. Интересным, например, представляется вопрос об аддитивности сдвигов. Неявно аддитивность сдвигов предполагается, по-видимому, во всех теоретических работах, однако она не подтверждена экспериментально. Для реального эксперимента нужно, конечно, брать три последовательно идущих перехода, поскольку переходы между урсвнями одинаковой симметрии в электродипольном приближении запрещены. Для молекулы аммиака измерения параметра сдвига перехода $a(2, 1) \leftarrow s(1, 1)$ замкнуло бы цепочку переходов $a(2, 1) \leftarrow s(2, 1) \leftarrow a(1, 1) \leftarrow s(1, 1)$, что позволило бы получить ответ на поставленный вопрос. К сожалению, частота этого перехода лежит в дальней инфракрасной области и пока не может быть измерена с помощью спектрометра РАД.

Еще одним интересным применением полученной системы сдвигов может быть исследование вопроса о разделении вкладов колебательных и инверсионно-вращательных переходов в величину параметров сдвига давлением частот переходов v2 полосы молекулы аммиака, которая в пастоящее время интенсивно исследуется методами лазерной спектроскопии $[^{8-10}]$.

ЛИТЕРАТУРА

Buffa G., Martinelli M., Tarrini O. e. a.— J. Phys. B.: Atom Molec. Phys., 1979, 12, p. 743.
 Wensink W. A.— Thesis, University, Utrecht, The Netherlands, 1979.
 Belov S. P., Gershtein L. I., Krupnov A. F. e. a.— J. Molec. Spectr., 1980,

- 84, p. 288.
- 4. Крупнов А. Ф.— Изв. вузов Раднофизика, 1979, 22, № 2, с. 247. 5. Крупнов А. Ф.— Вестинк АН СССР, 1978, № 7, с. 18. 6. Сhu F. Y., Freund S. M.— J. Molec. Spectr., 1973, 48, p. 183.

- 7. Таунс Ч., Шавлов А. Радиоспектроскопия.— М.: ИЛ, 1959. 8. Freund S. M., Oka T.— Phys. Rev. A., 1976, 13, p. 2178. 9. Kostluk T., Mumma M. J., Hillman J. J. e. a.— Infrared Phys., 1977, 17, p. 431.

10. Jones H.— Appl. Phys., 1978, 15, p. 261.

Институт прикладной физики ÃH CCCP

Поступила в редакцию 27 июля 1981 г.

C d

cpe; paa: раз (RT. TO:

лей мен тев ста

Зде

Ура КОГ эле Бу:

По. му

Per q (-

Зде HHS Ин

П

FA

3