ALTERNATING CURRENT

1. AC AND DC CURRENT:

A current that changes its direction periodically is called alternating current (AC). If a current maintains its direction constant it is called direct current (DC).

3. ROOT MEAN SQUARE VALUE:

Root Mean Square Value of a function, from t₁ to t₂, is defined as

$$f_{rms} = \sqrt{\frac{\int_{t_1}^{t_2} f^2 dt}{t_2 - t_1}}$$

4. POWER CONSUMED OR SUPPLIED IN AN AC CIRCUIT:

Average power consumed in a cycle = $\frac{\frac{2\pi}{0}}{\frac{2\pi}{0}} = \frac{1}{2} V_{m} I_{m} \cos \phi$ $\frac{A}{1} = \frac{1}{2} V_{m} I_{m} \cos \phi$

$$= \frac{V_{\mathsf{m}} \quad I_{\mathsf{m}}}{\sqrt{2} \cdot \sqrt{2}} \cdot cos\phi = V_{rms} I_{rms} cos\phi.$$

Here $\cos \phi$ is called **power factor**.

5. **SOME DEFINITIONS:**

The factor $\cos \phi$ is called **Power factor**. $I_m \sin \phi$ is called **wattless current**.

Impedance Z is defined as $Z = \frac{V_m}{I_m} = \frac{V_{rms}}{I_{rms}}$

ωL is called inductive reactance and is denoted by X

 $\frac{1}{\omega C}$ is called **capacitive reactance** and is denoted by $X_{c.}$

6. PURELY RESISTIVE CIRCUIT:

$$I = \frac{\mathbf{v}_s}{R} = \frac{V_m \sin \omega t}{R} = I_m \sin \omega t$$

$$I_{m} = \frac{V_{m}}{R}$$

$$I_{rms} = \frac{V_{rms}}{R}$$

$$= V_{rms}I_{rms}\cos\phi = \frac{V_{rms}^2}{R}$$

7. PURELY CAPACITIVE CIRCUIT:

$$I = \frac{V_{m}}{1/\cos \omega t}$$

$$= \frac{V_{m}}{X_{C}} \cos \omega t = I_{m} \cos \omega t.$$

 $X_c = \frac{1}{\omega C}$ and is called capacitive reactance.

 I_c leads by v_c by $\pi/2$ Diagrammatically (phasor diagram) it is represented as

$$V_{m}$$
 I_{m}

Since
$$\phi = 90^{\circ}$$
, $\langle P \rangle = V_{rms} I_{rms} \cos \phi = 0$