Filter Summary Report: TIA simple Z2 Z3 ZL

Generated by MacAnalog-Symbolix

December 4, 2024

Contents

1	Examined $H(z)$ for TIA simple Z2 Z3 ZL: $\frac{Z_3Z_L(Z_2g_m+1)}{Z_2Z_3g_m+Z_2Z_Lg_m+Z_3+Z_L}$	40
2	HP	40
3	BP 3.1 BP-1 $Z(s) = \left(R_1, \ \infty, \ \infty, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}\right)$	4 0
	3.2 BP-2 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$	
	3.3 BP-3 $Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$	
	3.4 BP-4 $Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$	
	3.5 BP-5 $Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$	42
	3.6 BP-6 $Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, R_L\right)$	42
	3.7 BP-7 $Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$	43
	3.8 BP-8 $Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$	4
	3.9 BP-9 $Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, R_L\right)$	4
	3.10 BP-10 $Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$. 44
	3.11 BP-11 $Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$	4

3.32 BP-32 $Z(s) = \left(\infty, \ \infty, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ R_L\right)$. 55
3.33 BP-33 $Z(s) = \left(\infty, \ \infty, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{R_L}{C_L R_L s + 1}\right)$. 56
3.34 BP-34 $Z(s) = \left(\infty, \infty, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$. 56
3.35 BP-35 $Z(s) = \left(\infty, \infty, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, R_L\right)$. 57
3.36 BP-36 $Z(s) = \left(\infty, \infty, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, \frac{1}{C_L s}\right)$. 57
3.37 BP-37 $Z(s) = \left(\infty, \infty, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$. 58
3.38 BP-38 $Z(s) = \left(\infty, \infty, \frac{L_3s}{C_3L_3s^2+1} + R_3, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1}\right)$. 58
3.39 BP-39 $Z(s) = \left(\infty, \infty, \frac{L_3s}{C_3L_3s^2+1} + R_3, \infty, \infty, \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$. 59
3.40 BP-40 $Z(s) = \left(\infty, \infty, \infty, \frac{1}{C_4 s}, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$. 59
3.41 BP-41 $Z(s) = \left(\infty, \infty, \infty, \frac{1}{C_4 s}, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$. 60
3.42 BP-42 $Z(s) = \left(\infty, \infty, \infty, \frac{R_4}{C_4 R_4 s + 1}, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$. 60
3.43 BP-43 $Z(s) = \left(\infty, \infty, \infty, R_4 + \frac{1}{C_4 s}, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right) \dots$. 61
3.44 BP-44 $Z(s) = \left(\infty, \infty, \infty, R_4 + \frac{1}{C_4 s}, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$. 61
3.45 BP-45 $Z(s) = \left(\infty, \infty, \infty, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, R_L\right)$. 62
3.46 BP-46 $Z(s) = \left(\infty, \infty, \infty, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \frac{R_L}{C_L R_L s + 1}\right) \dots \dots$. 62
3.47 BP-47 $Z(s) = \left(\infty, \infty, \infty, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$. 63
3.48 BP-48 $Z(s) = \left(\infty, \infty, \infty, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, R_L\right)$. 63
3.49 BP-49 $Z(s) = \left(\infty, \infty, \infty, \frac{L_4s}{C_4L_4s^2+1} + R_4, \infty, \frac{1}{C_Ls}\right)$. 64
3.50 BP-50 $Z(s) = \left(\infty, \infty, \infty, \frac{L_4s}{C_4L_4s^2+1} + R_4, \infty, \frac{R_L}{C_LR_Ls+1}\right)$. 64
3.51 BP-51 $Z(s) = \left(\infty, \infty, \infty, \frac{L_4s}{C_4L_4s^2+1} + R_4, \infty, \frac{L_Ls}{C_LL_Ls^2+1}\right)$. 65
3.52 BP-52 $Z(s) = \left(\infty, \infty, \infty, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$. 65

3.74	BP-74 $Z(s) =$	(L_1s, L_1s)	$R_2, \infty, \infty,$	∞ , R_L).				 	 	 	 	76
3.75	BP-75 $Z(s) =$	$(L_1s,$	$R_2, \infty, \infty,$	$\infty, \frac{1}{C_L s}$				 	 	 	 	77
3.76	BP-76 $Z(s) =$	$(L_1s,$	$R_2, \infty, \infty,$	∞ , $\frac{R_L}{C_L R_L s + 1}$	$\overline{1}$			 	 	 	 	77
3.77	BP-77 $Z(s) =$	$(L_1s,$	$R_2, \infty, \infty,$	∞ , $\frac{L_L s}{C_L L_L s^2}$	$\overline{+1}$)			 	 	 	 	78
3.78	BP-78 $Z(s) =$	$\left(L_1s,\right.$	$R_2, \infty, \infty,$	∞ , $\frac{1}{C_L s + \frac{1}{R_I}}$	$\left(\frac{1}{L} + \frac{1}{L_L s}\right)$			 	 	 	 	78
3.79	BP-79 $Z(s) =$	$(L_1s,$	$R_2 + \frac{1}{C_2 s}$, c	$\infty, \infty, \infty, \overline{\alpha}$	$\left(\frac{L_L s}{C_L L_L s^2 + 1}\right)$			 	 	 	 	79
3.80	BP-80 $Z(s) =$	$\left(L_1s,\right.$	$R_2 + \frac{1}{C_2 s},$	$\infty, \infty, \infty, \infty$	$\frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L}}$	$\left(\frac{1}{L^s}\right)$		 	 • • • • • ·	 	 	79
3.81	BP-81 $Z(s) =$	$\left(L_1s,\right.$	$L_2s + \frac{1}{C_2s},$	$\infty, \ \infty, \ \infty,$	$\frac{1}{C_L s + \frac{1}{R_L} +}$	$\left(\frac{1}{L_L s}\right)$.		 	 · · · · ·	 	 	80
3.82	BP-82 $Z(s) =$	$(L_1s,$	$L_2s + R_2 +$	$\frac{1}{C_2s}$, ∞ , ∞	$\infty, \ \frac{L}{C_L L_L}$	$\left(\frac{L^{s}}{L^{s^2+1}}\right)$		 	 	 	 	80
3.83	BP-83 $Z(s) =$	$(L_1s,$	$L_2s + R_2 +$	$\frac{1}{C_2s}$, ∞ , ∞	$, \infty, \frac{1}{C_L s}$	$\frac{1}{+\frac{1}{R_L} + \frac{1}{L_L}}$	$\left(rac{1}{\overline{s}} ight) . .$	 	 	 	 	81
3.84	BP-84 $Z(s) =$	$\left(\frac{1}{C_1 s},\right)$	$R_2, \ \infty, \ \infty,$	∞ , R_L)			·	 	 	 	 	81
3.85	BP-85 $Z(s) =$	$\left(\frac{1}{C_1 s},\right.$	$R_2, \ \infty, \ \infty,$	∞ , $\frac{R_L}{C_L R_L s + }$	$\overline{1}$			 	 	 	 	82
3.86	BP-86 $Z(s) =$	$\left(\frac{1}{C_1 s},\right.$	$R_2, \infty, \infty,$	∞ , $\frac{1}{C_L s + \frac{1}{R_I}}$	$\left(\frac{1}{L_L s}\right)$			 	 	 	 	82
3.87	BP-87 $Z(s) =$	$\left(\frac{1}{C_1 s},\right.$	$\frac{R_2}{C_2R_2s+1}, \propto$	∞ , ∞ , ∞ , R	$_{L}\Big)$			 	 	 	 	83
3.88	BP-88 $Z(s) =$	$\left(\frac{1}{C_1 s},\right.$	$\frac{R_2}{C_2R_2s+1}, \propto$	∞ , ∞ , ∞ , \overline{C}	$\left(\frac{1}{Ls}\right) \cdot \cdot \cdot$			 	 	 	 	83
3.89	BP-89 $Z(s) =$	$\left(\frac{1}{C_1 s},\right.$	$\frac{R_2}{C_2R_2s+1}$, \propto	o , ∞ , ∞ , \overline{C}	$\frac{R_L}{LR_Ls+1}$			 	 	 	 	84
3.90	BP-90 $Z(s) =$	$\left(\frac{1}{C_1s},\right.$	$\frac{R_2}{C_2R_2s+1}, \propto$	o , ∞ , ∞ , \overline{C}	$\frac{L_L s}{L L_L s^2 + 1}$			 	 	 	 	84
3.91	BP-91 $Z(s) =$	$\left(\frac{1}{C_1 s},\right.$	$\frac{R_2}{C_2R_2s+1}, \propto$	∞ , ∞ , ∞ , \overline{C}	$\frac{1}{Ls + \frac{1}{R_L} + \frac{1}{L_L}}$	$\left(\frac{1}{\sqrt{s}}\right)$		 	 	 	 	85
3.92	BP-92 $Z(s) =$	$\left(\frac{1}{C_1 s},\right.$	$L_2s + R_2 +$	$\frac{1}{C_2s}$, ∞ , ∞	∞ , $\frac{L}{C_L L_L}$	$\left(\frac{Ls}{Ls^2+1}\right)$		 	 	 	 	85
3.93	BP-93 $Z(s) =$	$\left(\frac{1}{C_1s},\right.$	$L_2s + R_2 +$	$\frac{1}{C_2 s}$, ∞ , ∞	$, \infty, \frac{1}{C_L s}$	$\frac{1}{+\frac{1}{R_L} + \frac{1}{L_L}}$	$\left(\frac{1}{s}\right)$	 	 • • • • ·	 	 	86
3.94	BP-94 $Z(s) =$	$\left(\frac{1}{C_1s},\right.$	$\frac{L_2s}{C_2L_2s^2+1}$ +	$R_2, \infty, \infty,$	∞ , $\frac{1}{C_L s + 1}$	$\frac{1}{\frac{1}{R_L} + \frac{1}{L_L s}}$)	 	 	 	 	86

	3.95 BP-95 $Z(s) = \left(\frac{1}{C_1 s}, \frac{R_2\left(L_2 s + \frac{1}{C_2 s}\right)}{L_2 s + R_2 + \frac{1}{C_2 s}}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$	87
	3.96 BP-96 $Z(s) = \left(\frac{1}{C_1 s}, \frac{R_2\left(L_2 s + \frac{1}{C_2 s}\right)}{L_2 s + R_2 + \frac{1}{C_2 s}}, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$	87
	3.97 BP-97 $Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \infty, R_L\right)$	88
	3.98 BP-98 $Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$	88
	3.99 BP-99 $Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$	89
	3.100BP-100 $Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, R_L\right)$	89
	3.101BP-101 $Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{1}{C_L s}\right)$	90
	$3.102\text{BP-102}\ Z(s) = \left(\frac{R_1}{C_1R_1s+1},\ L_2s + \frac{1}{C_2s},\ \infty,\ \infty,\ \infty,\ \frac{R_L}{C_LR_Ls+1}\right)\ \dots \dots$	90
	$3.103\text{BP-}103\ Z(s) = \left(\frac{R_1}{C_1R_1s+1},\ L_2s + \frac{1}{C_2s},\ \infty,\ \infty,\ \infty,\ \frac{L_Ls}{C_LL_Ls^2+1}\right) \dots $	91
	$3.104\text{BP-}104\ Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1},\ L_2 s + \frac{1}{C_2 s},\ \infty,\ \infty,\ \infty,\ \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right) \dots $	91
1	LP	92
±		<i>J</i> <u>4</u>
ŧ		92
± 5		
± 5	5.1 BS-1 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$	92
5	5.1 BS-1 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$	92 92
5	5.1 BS-1 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$. 5.2 BS-2 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$ 5.3 BS-3 $Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, R_L\right)$.	92 92 92
5	5.1 BS-1 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$. 5.2 BS-2 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$ 5.3 BS-3 $Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, R_L\right)$.	92 92 92 93
5	5.1 BS-1 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$. 5.2 BS-2 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$. 5.3 BS-3 $Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, R_L\right)$. 5.4 BS-4 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, R_L\right)$.	92 92 92 93
± 5	5.1 BS-1 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$. 5.2 BS-2 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$ 5.3 BS-3 $Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, R_L\right)$ 5.4 BS-4 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, R_L\right)$ 5.5 BS-5 $Z(s) = \left(\frac{R_1 \left(L_1 s + \frac{1}{C_1 s}\right)}{L_1 s + R_1 + \frac{1}{C_1 s}}, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$	92 92 92 93
5	5.1 BS-1 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$. 5.2 BS-2 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \infty, \frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$ 5.3 BS-3 $Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, R_L\right)$ 5.4 BS-4 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \infty, R_L\right)$ 5.5 BS-5 $Z(s) = \left(\frac{R_1\left(L_1 s + \frac{1}{C_1 s}\right)}{L_1 s + R_1 + \frac{1}{C_1 s}}, \infty, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$ 5.6 BS-6 $Z(s) = \left(\frac{R_1\left(L_1 s + \frac{1}{C_1 s}\right)}{L_1 s + R_1 + \frac{1}{C_1 s}}, \infty, \infty, \infty, \infty, \infty, \frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$ 5.7 BS-7 $Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, R_L\right)$ 5.8 BS-8 $Z(s) = (\infty, \infty, R_3, \infty, \infty, R_L)$	92 92 92 93
5	5.1 BS-1 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$. 5.2 BS-2 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$ 5.3 BS-3 $Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, R_L\right)$ 5.4 BS-4 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, R_L\right)$ 5.5 BS-5 $Z(s) = \left(\frac{R_1 \left(L_1 s + \frac{1}{C_1 s}\right)}{L_1 s + R_1 + \frac{1}{C_1 s}}, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$ 5.6 BS-6 $Z(s) = \left(\frac{R_1 \left(L_1 s + \frac{1}{C_1 s}\right)}{L_1 s + R_1 + \frac{1}{C_1 s}}, \infty, \infty, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$ 5.7 BS-7 $Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \infty, R_L\right)$	92 92 92 93

5.10	BS-10	Z(s) =	$\left(\infty, \infty\right)$	$c, \frac{1}{C_3 s}, \infty, c$	$\infty, \frac{R_L \left(L_L s + \frac{1}{C_L} + \frac{1}{C_L}$	$\left(\frac{\frac{1}{L_s}}{\frac{1}{L_s}}\right)$		 	 	 	 	96
5.11	BS-11	Z(s) =	(∞, ∞)	$\frac{L_3s}{C_3L_3s^2+1},$	∞ , ∞ , R_L			 	 	 	 	97
5.12	BS-12	Z(s) = 0	(∞, ∞)	$, \infty, R_4, \infty$	R_L)			 	 	 	 	97
5.13	BS-13	Z(s) =	(∞, ∞)	$0, \infty, \frac{1}{C_4 s}, 0$	c , $L_L s + \frac{1}{C_L s}$)		 	 	 	 	98
5.14	BS-14	Z(s) =	$\left(\infty, \infty\right)$	$\infty, \ \infty, \ \frac{1}{C_4 s}, \ \infty$	$\infty, \frac{R_L \left(L_L s + \frac{1}{C_L} + \frac{1}{C_L}$	$\left(\frac{L_s}{L_s}\right)$		 	 	 	 	98
5.15	BS-15	Z(s) =	(∞, ∞)	$0, \ \infty, \ \frac{L_4s}{C_4L_4s^2}$	$_{\overline{+1}}, \infty, R_L$			 	 	 	 	99
5.16	BS-16	Z(s) =	(∞, ∞)	$, \infty, \infty, R_4$	R_L)			 	 	 	 	99
5.17	BS-17	Z(s) =	$\left(\infty, \infty\right)$	∞ , ∞ , ∞ , $\frac{1}{C_4}$	$\frac{1}{s}$, $L_L s + \frac{1}{C_L s}$)		 	 	 	 	100
			>		$\frac{R_L \left(L_L s + \frac{1}{C_L}\right)}{L_L s + R_L + \frac{1}{C_L}}$	- /		 	 	 	 	100
5.19	BS-19	Z(s) =	(∞, ∞)	$0, \infty, \infty, \frac{1}{C_4}$	$\frac{L_4s}{L_4s^2+1}$, R_L)			 	 	 	 	101
				$_2, \infty, \infty, \infty$				 	 	 	 	101
5.21	BS-21	Z(s) =	(R_1, \overline{c})	$\frac{1}{\sqrt{2}s}$, ∞ , ∞ , ∞	∞ , $L_L s + \frac{1}{C_L s}$)		 	 	 	 	102
5.22	BS-22	Z(s) =	(R_1, \overline{c})	$\frac{1}{C_2s}$, ∞ , ∞ ,	$\infty, \frac{R_L \left(L_L s + \frac{1}{C}\right)}{L_L s + R_L + \frac{1}{C}}$	$\left(\frac{\frac{1}{L^s}}{\frac{1}{C_L s}}\right)$		 	 	 	 	102
5.23	BS-23	Z(s) =	$(R_1, L$	$r_2 s + R_2 + \frac{1}{C_2}$	$\frac{1}{s}$, ∞ , ∞ , ∞	$, R_L$)		 	 	 	 	103
5.24	BS-24	Z(s) =	(L_1s, T_1)	$\frac{R_2}{C_2R_2s+1}$, ∞ ,	∞ , ∞ , R_L			 	 	 	 	103
5.25	BS-25	Z(s) =	(L_1s, L_2s, L_3s)	$R_2 + \frac{1}{C_2 s}, \ \infty$	$, \infty, \infty, L_L s$	$+\frac{1}{C_L s}$		 	 	 	 	104
					$, \infty, \infty, \frac{R_L(}{L_L s}$)	 	 	 	 	104
5.27	BS-27	Z(s) =	$\left(L_1s,\right.$	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}$	$, \infty, \infty, \infty, \infty,$	R_L)		 	 	 	 	105
5.28	BS-28	Z(s) =	$\left(\frac{1}{C_1s},\right)$	$L_2s + \frac{1}{C_2s}, \propto$	∞ , ∞ , ∞ , R_L)		 	 	 	 	105
5.29	BS-29	Z(s) =	$\left(\frac{1}{C_1s},\right)$	$L_2s + R_2 + \overline{C}$	$\frac{1}{2s}$, ∞ , ∞ , ∞	$L_L s + \overline{C}$	$\left(\frac{1}{Ls}\right)$	 	 	 	 	106
5.30	BS-30	Z(s) =	$\left(\frac{1}{C_1s},\right)$	$L_2s + R_2 + \overline{c}$	$\frac{1}{C_2s}$, ∞ , ∞ , ∞	$0, \frac{R_L \left(L_L s + L_L s + R_L\right)}{L_L s + R_L}$	$\left(\frac{1}{C_L s}\right) + \frac{1}{C_L s}$	 	 	 	 	106
5.31	BS-31	Z(s) =	$\left(\frac{R_1}{C_1 R_1 s}\right)$	$\frac{1}{+1}$, $\frac{1}{C_2s}$, ∞ ,	∞ , ∞ , R_L			 	 	 	 	107

	5.32	BS-32 $Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \infty, \infty, \infty, R_L\right)$
6	GE 6.1	GE-1 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$
	6.2	GE-2 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$
	6.3	GE-3 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \infty, R_L\right)$
	6.4	GE-4 $Z(s) = \left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \infty, R_L\right)$
		GE-5 $Z(s) = \left(\frac{R_1\left(L_1 s + \frac{1}{C_1 s}\right)}{L_1 s + R_1 + \frac{1}{C_1 s}}, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$
		GE-6 $Z(s) = \left(\frac{R_1\left(L_1s + \frac{1}{C_1s}\right)}{L_1s + R_1 + \frac{1}{C_1s}}, \infty, \infty, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1} + R_L\right)$
	6.7	GE-7 $Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \infty, R_L\right)$
	6.8	GE-8 $Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \infty, \infty, \infty, \infty, R_L\right)$
	6.9	GE-9 $Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$
		GE-10 $Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$
	6.11	GE-11 $Z(s) = \left(\infty, \ \infty, \ \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \ \infty, \ \infty, \ R_L\right)$
		GE-12 $Z(s) = \left(\infty, \ \infty, \ \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \ \infty, \ \infty, \ R_L\right)$
	6.13	GE-13 $Z(s) = \left(\infty, \infty, \infty, \frac{1}{C_4 s}, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$
		GE-14 $Z(s) = \left(\infty, \infty, \infty, \frac{1}{C_4 s}, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$
	6.15	GE-15 $Z(s) = \left(\infty, \infty, \infty, \frac{1}{C_4 s + \frac{1}{R_4} + \frac{1}{L_4 s}}, \infty, R_L\right)$
	6.16	GE-16 $Z(s) = \left(\infty, \infty, \infty, \frac{R_4\left(L_4s + \frac{1}{C_4s}\right)}{L_4s + R_4 + \frac{1}{C_4s}}, \infty, R_L\right)$
	6.17	GE-17 $Z(s) = \left(\infty, \infty, \infty, \infty, \frac{1}{C_4 s}, L_L s + R_L + \frac{1}{C_L s}\right)$
	6.18	GE-18 $Z(s) = \left(\infty, \infty, \infty, \infty, \frac{1}{C_4 s}, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$
	6.19	GE-19 $Z(s) = \left(\infty, \infty, \infty, \infty, \frac{1}{C_4 s + \frac{1}{R_4} + \frac{1}{L_4 s}}, R_L\right)$

	$.20 \text{ GE-20 } Z(s) = \left(\infty, \ \infty, \ \infty, \ \infty, \ \frac{R_4\left(L_4 s + \frac{1}{C_4 s}\right)}{L_4 s + R_4 + \frac{1}{C_4 s}}, \ R_L\right) \dots $	
	$.21 \text{ GE-21 } Z(s) = \left(R_1, \frac{1}{C_2 s}, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right) \dots \dots$	118
	$.22 \text{ GE-22 } Z(s) = \left(R_1, \ \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1} + R_L \right) $	119
	$.23 \text{ GE-23 } Z(s) = \left(R_1, \frac{R_2\left(L_2 s + \frac{1}{C_2 s}\right)}{L_2 s + R_2 + \frac{1}{C_2 s}}, \infty, \infty, \infty, \infty, R_L\right) \dots \dots$	
	$.24 \text{ GE-24 } Z(s) = \left(L_1 s, \frac{1}{C_2 s}, \infty, \infty, \infty, \infty, R_L\right) \dots$	
	.25 GE-25 $Z(s) = \left(L_1 s, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \infty, \frac{1}{C_L s} + R_L + \frac{1}{C_L s}\right)$	
	.26 GE-26 $Z(s) = \left(L_1 s, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$	121
	$.27 \text{ GE-27 } Z(s) = \left(\frac{1}{C_1 s}, \frac{1}{C_2 s}, \infty, \infty, \infty, \infty, R_L\right) \dots \dots$	121
	$.28 \text{ GE-28 } Z(s) = \left(\frac{1}{C_1 s}, \ R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ R_L\right) \dots \dots$	122
	$.29 \text{ GE-29 } Z(s) = \left(\frac{1}{C_1 s}, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ L_L s + R_L + \frac{1}{C_L s}\right) $	
	3.30 GE-30 $Z(s) = \left(\frac{1}{C_1 s}, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)'$	123
	31 GE-31 $Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, R_L\right)$	123
	.32 GE-32 $Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \infty, R_L\right)$	124
7	AP	124
8	NVALID-NUMER	124
	INVALID-NUMER-1 $Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$	124
	.2 INVALID-NUMER-2 $Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$	
	.3 INVALID-NUMER-3 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$	125
	3.3 INVALID-NUMER-3 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$ 4.4 INVALID-NUMER-4 $Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$	125 126
		125 126
	3.3 INVALID-NUMER-3 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$ 4.4 INVALID-NUMER-4 $Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$ 5.5 INVALID-NUMER-5 $Z(s) = \left(\infty, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$. 125. 126. 126
	3.3 INVALID-NUMER-3 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$ 4.4 INVALID-NUMER-4 $Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$	125 126 126 127
	INVALID-NUMER-3 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$ INVALID-NUMER-4 $Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$ INVALID-NUMER-5 $Z(s) = \left(\infty, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$ INVALID-NUMER-6 $Z(s) = \left(\infty, \infty, L_3 s + \frac{1}{C_3 s}, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$	125 126 126 127 127

	8.9 INVALID-NUMER-9 $Z(s) = \left(\infty, \infty, \infty, \infty, R_4 + \frac{1}{C_4 s}, R_L + \frac{1}{C_L s}\right)$	198
	8.10 INVALID-NUMER-10 $Z(s) = \left(\infty, \infty, \infty, \infty, L_4 s + \frac{1}{C_4 s}, \frac{R_L}{C_L R_L s + 1}\right)$	
	8.11 INVALID-NUMER-11 $Z(s) = \left(R_1, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$	
	8.12 INVALID-NUMER-12 $Z(s) = (R_1, L_2s + \frac{1}{C_2s}, \infty, \infty, \infty, \frac{R_L}{C_LR_Ls + 1})$. 130
	8.13 INVALID-NUMER-13 $Z(s) = (L_1 s, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s})$. 130
	8.14 INVALID-NUMER-14 $Z(s) = \left(L_1 s, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$. 131
	8.15 INVALID-NUMER-15 $Z(s) = \left(\frac{1}{C_1 s}, \frac{R_2\left(L_2 s + \frac{1}{C_2 s}\right)}{L_2 s + R_2 + \frac{1}{C_2 s}}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$. 131
	8.16 INVALID-NUMER-16 $Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, R_2, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$. 132
9	INVALID-WZ	132
10) INVALID-ORDER	132
	10.1 INVALID-ORDER-1 $Z(s) = (R_1, \infty, \infty, \infty, \infty, R_L)$. 132
	10.2 INVALID-ORDER-2 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$	
	10.3 INVALID-ORDER-3 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$. 133
	10.4 INVALID-ORDER-4 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$. 133
	10.5 INVALID-ORDER-5 $Z(s) = (L_1 s, \infty, \infty, \infty, \infty, \infty, R_L)$. 133
	10.6 INVALID-ORDER-6 $Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$. 133
	10.7 INVALID-ORDER-7 $Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$. 133
	10.8 INVALID-ORDER-8 $Z(s) = (L_1 s, \infty, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s})$. 133
	10.9 INVALID-ORDER-9 $Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$	
	10.10INVALID-ORDER-10 $Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$. 134
	10.11INVALID-ORDER-11 $Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$. 134
	10.12INVALID-ORDER-12 $Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)'$. 134
	10.13INVALID-ORDER-13 $Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)'$	

10.14INVALID-ORDER-14 $Z(s) = 0$	$\left(\frac{1}{C_1s}, \infty, \right)$	∞ , ∞ ,	∞ , R	\mathcal{C}_L) .			 	 	 	 	 134
10.15INVALID-ORDER-15 $Z(s) = 0$	$\left(\frac{1}{C_1s}, \infty, \infty\right)$	∞ , ∞ ,	∞ , \overline{C}	$\left(\frac{1}{Ls}\right)$			 	 	 	 	 135
10.16INVALID-ORDER-16 $Z(s) = 0$	$\left(\frac{1}{C_1s}, \infty, \infty\right)$	∞ , ∞ ,	∞ , \overline{C}	$\frac{\dot{R_L}}{LR_Ls+}$	$\overline{1}$		 	 	 	 	 135
10.17INVALID-ORDER-17 $Z(s) = 0$	$\left(\frac{1}{C_1 s}, \infty, \infty\right)$	∞ , ∞ ,	∞ , L	$Ls + \overline{\epsilon}$	$\left(\frac{1}{C_L s}\right)$		 	 	 	 	 135
10.18INVALID-ORDER-18 $Z(s) = 0$	$\left(\frac{1}{C_1s}, \infty, \infty\right)$	∞ , ∞ ,	∞ , L	Ls + I	$R_L + \frac{1}{C_L s}$		 	 	 	 	 135
10.19INVALID-ORDER-19 $Z(s) = 0$	$\left(\frac{1}{C_1 s}, \infty, \infty\right)$	∞ , ∞ ,	∞ , \overline{C}	$\frac{L_L s}{L_L L_L s^2}$	$\frac{1}{1} + R_L$		 	 	 	 	 135
10.20INVALID-ORDER-20 $Z(s) = 1$	$\left(\frac{1}{C_1 s}, \infty, \right)$	∞ , ∞ ,	$\infty, \frac{R}{I}$	$\frac{R_L \left(L_L s}{L_L s + R_L}\right)$	$\left(\frac{1+\frac{1}{C_L s}}{1+\frac{1}{C_L s}}\right)$		 	 	 	 	 135
10.21INVALID-ORDER-21 $Z(s) = 0$	$\left(\frac{R_1}{C_1R_1s+1},\right.$	∞ , ∞ ,	∞ , o	∞ , R_L)		 	 	 	 	 136
10.22INVALID-ORDER-22 $Z(s) = 0$	$\left(\frac{R_1}{C_1R_1s+1},\right)$	∞ , ∞ ,	∞ , o	$\infty, \frac{1}{C_L}$	$\left(\frac{1}{s}\right)$		 	 	 	 	 136
10.23INVALID-ORDER-23 $Z(s) = 0$	$\left(\frac{R_1}{C_1R_1s+1},\right.$	∞ , ∞ ,	∞ , o	∞ , R_L	$\left(1 + \frac{1}{C_L s}\right)$		 	 	 	 	 136
10.24INVALID-ORDER-24 $Z(s) = 0$	$\left(\frac{R_1}{C_1R_1s+1},\right.$	∞ , ∞ ,	∞ , o	∞ , L_L	$s + \frac{1}{C_L s}$		 	 	 	 	 136
10.25INVALID-ORDER-25 $Z(s) = 0$	$\left(\frac{R_1}{C_1R_1s+1},\right.$	∞ , ∞ ,	∞ , o	∞ , $\overline{C_L}$	$\frac{L_L s}{L_L s^2 + 1}$		 	 	 	 	 136
10.26INVALID-ORDER-26 $Z(s) = 0$	$\left(\frac{R_1}{C_1R_1s+1},\right.$	∞ , ∞ ,	∞ , o	∞ , L_L	$s + R_L +$	$\frac{1}{C_L s}$	 	 	 	 	 136
10.27INVALID-ORDER-27 $Z(s) = 1$	$\left(\frac{R_1}{C_1R_1s+1},\right.$	∞ , ∞ ,	$, \infty, \infty$	$\infty, \ \overline{C_L}$	$\frac{1}{s + \frac{1}{R_L} + \frac{1}{L_L s}}$	$\left(\frac{1}{2}\right)$.	 	 	 	 	 137
10.28INVALID-ORDER-28 $Z(s) = 0$	$\left(\frac{R_1}{C_1R_1s+1},\right.$	∞ , ∞ ,	∞ , o	∞ , $\overline{C_L}$	$\frac{L_L s}{L_L s^2 + 1} + 1$	R_L	 	 	 	 	 137
10.29INVALID-ORDER-29 $Z(s) = 1$	$\left(\frac{R_1}{C_1R_1s+1},\right.$	∞ , ∞ ,	$, \infty, \infty$	$\infty, \frac{R_L}{L_I}$	$\frac{\left(L_L s + \frac{1}{C_L s}\right)}{c_L s + R_L + \frac{1}{C_L s}}$	$\left(\frac{1}{2}\right)$.	 	 	 	 	 137
10.30INVALID-ORDER-30 $Z(s) = 0$	$\left(R_1 + \frac{1}{C_1 s},\right.$	∞ , ∞	∞ , ∞ ,	∞ , $\frac{1}{C_i}$	$\left(\frac{1}{L^s}\right)$		 	 	 	 	 137
10.31INVALID-ORDER-31 $Z(s) = 0$	$\left(R_1 + \frac{1}{C_1 s},\right.$	∞ , ∞	∞ , ∞ ,	∞ , \overline{C}_{i}	$\frac{R_L}{LR_Ls+1}$		 	 	 	 	 137
10.32INVALID-ORDER-32 $Z(s) = 0$	$\left(R_1 + \frac{1}{C_1 s},\right.$	∞ , ∞	∞ , ∞ ,	∞ , R	$L + \frac{1}{C_L s}$		 	 	 	 	 138
10.33INVALID-ORDER-33 $Z(s) = 0$	$\left(R_1 + \frac{1}{C_1 s},\right)$	∞ , ∞	∞ , ∞ ,	∞ , L_1	$_L s + \frac{1}{C_L s} \Big)$		 	 	 	 	 138
10.34INVALID-ORDER-34 $Z(s) = 0$	$\left(R_1 + \frac{1}{C_1 s},\right.$	∞ , ∞	∞ , ∞ ,	∞ , \overline{C}_i	$\frac{L_L s}{L_L L_L s^2 + 1}$		 	 	 	 	 138
10.35INVALID-ORDER-35 $Z(s) = 0$	$\left(R_1 + \frac{1}{C_1 s},\right.$	∞ , ∞	∞ , ∞ ,	∞ , L_{I}	$Ls + R_L +$	$\left(\frac{1}{C_L s}\right)$	 	 	 	 	 138

10.36INVALID-ORDER-36 $Z(s) = ($	$(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty)$	$\infty, \ \infty, \ \frac{1}{C_L s + \frac{1}{R_L}}$	$\frac{1}{1+\frac{1}{L_L s}}$		 	138
10.37 INVALID-ORDER-37 $Z(s)=\left(\right.$	$R_1 + \frac{1}{C_1 s}, \ \infty, \ \infty, \ \infty$	∞ , ∞ , $\frac{L_L s}{C_L L_L s^2 + 1}$	$_{\overline{1}}+R_{L}\Big) \ldots$		 	139
10.38INVALID-ORDER-38 $Z(s) = 1$	$(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty)$	$\circ, \infty, \frac{R_L \left(L_L s + \frac{1}{L_L s + R_L}\right)}{L_L s + R_L}$	$\left(\frac{1}{C_L s}\right) + \frac{1}{C_L s}$		 	139
10.39 INVALID-ORDER-39 $Z(s)=\left(\right.$	$(L_1s + \frac{1}{C_1s}, \infty, \infty, \infty)$	∞ , ∞ , $\frac{1}{C_L s}$).			 	139
10.40 INVALID-ORDER-40 $Z(s)=\left(\right.$	$(L_1s + \frac{1}{C_1s}, \ \infty, \ \infty, \ \infty)$	∞ , ∞ , $R_L + \frac{1}{C_L}$	$\left(\frac{L}{L^s}\right)$		 	139
10.41 INVALID-ORDER-41 $Z(s)=\left(\right.$	$(L_1s + \frac{1}{C_1s}, \ \infty, \ \infty, \ \infty)$	∞ , ∞ , $L_L s + \overline{c}$	$\left(\frac{1}{C_L s}\right) \dots \dots$		 	139
10.42INVALID-ORDER-42 $Z(s)=\left(\right.$	$(L_1s + \frac{1}{C_1s}, \infty, \infty, \infty)$	∞ , ∞ , $\frac{L_L s}{C_L L_L s^2 + 1}$	$\overline{-1}$) · · · · ·		 	139
10.43 INVALID-ORDER-43 $Z(s)=\left(\right.$	$L_1s + \frac{1}{C_1s}, \ \infty, \ \infty, \ \infty$	∞ , ∞ , $L_L s + P$	$R_L + \frac{1}{C_L s}$.		 	140
10.44 INVALID-ORDER-44 $Z(s)=\left(\right.$	$(L_1s + \frac{1}{C_1s}, \ \infty, \ \infty, \ \infty)$	∞ , ∞ , $\frac{L_L s}{C_L L_L s^2 + 1}$	$\frac{1}{-1} + R_L$)		 	140
10.45INVALID-ORDER-45 $Z(s) = 1$	$\left(L_1s + \frac{1}{C_1s}, \ \infty, \ \infty, \right)$	∞ , ∞ , $\frac{R_L(L_L s - L_L s + R_L)}{L_L s + R_L}$	$\left(\frac{+\frac{1}{C_L s}}{c+\frac{1}{C_L s}}\right) \cdots$		 	140
10.46INVALID-ORDER-46 $Z(s) = ($	$\sum_{C_1L_1s^2+1}^{L_1s}, \infty, \infty, \infty$	$\infty, \ \infty, \ \frac{1}{C_L s}$) .			 	140
10.47INVALID-ORDER-47 $Z(s) = ($	$\left(\frac{L_1s}{C_1L_1s^2+1}, \infty, \infty, \infty\right)$	$\infty, \ \infty, \ \frac{R_L}{C_L R_L s + 1}$)		 	140
10.48INVALID-ORDER-48 $Z(s) = ($	$\frac{L_1s}{C_1L_1s^2+1}, \ \infty, \ \infty, \ \infty$	∞ , ∞ , $R_L + \frac{1}{C_L}$	$\left(\frac{1}{8}\right)$		 	141
10.49INVALID-ORDER-49 $Z(s)=\left(\right.$	$\left(\frac{L_1s}{C_1L_1s^2+1}, \infty, \infty, \infty\right)$	$0, \ \infty, \ L_L s + \frac{1}{C_I}$	$\left(\frac{1}{2s}\right)$		 	141
10.50 INVALID-ORDER-50 $Z(s)=\left(\right.$	$\left(\frac{L_1s}{C_1L_1s^2+1}, \infty, \infty, \infty\right)$	$0, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}$	$\left(\frac{1}{2}\right)^{2}$		 	141
10.51 INVALID-ORDER-51 $Z(s)=\left(\right.$	$\left(\frac{L_1s}{C_1L_1s^2+1}, \infty, \infty, \infty\right)$	$0, \ \infty, \ L_L s + R_I$	$L + \frac{1}{C_L s}$)		 	141
10.52INVALID-ORDER-52 $Z(s) = ($	$\left(\frac{L_1s}{C_1L_1s^2+1}, \infty, \infty, \infty\right)$	$\infty, \ \infty, \ \frac{1}{C_L s + \frac{1}{R_L}}$	$\left(\frac{1}{L_L s}\right) \dots$		 	141
10.53 INVALID-ORDER-53 $Z(s)=\left(\right.$	$\left(\frac{L_1s}{C_1L_1s^2+1}, \infty, \infty, \infty\right)$	$0, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}$	$\left(1 + R_L\right) \dots$		 	142
10.54INVALID-ORDER-54 $Z(s) = 1$	$\left(\frac{L_1s}{C_1L_1s^2+1}, \ \infty, \ \infty, \ \infty\right)$	$c, \infty, \frac{R_L(L_L s + L_L s + R_L + R_L s)}{L_L s + R_L s}$	$\left(\frac{\frac{1}{C_L s}}{+\frac{1}{C_L s}}\right)$		 	142
10.55 INVALID-ORDER-55 $Z(s)=\left(\right.$	$\left(L_1s + R_1 + \frac{1}{C_1s}, \ \infty, \right)$	∞ , ∞ , ∞ , R_I	$L + \frac{1}{C_L s}$		 	142
10.56 INVALID-ORDER-56 $Z(s)=\left(\right.$	$(L_1s + R_1 + \frac{1}{C_1s}, \ \infty,$	∞ , ∞ , ∞ , L_I	$Ls + \frac{1}{C_L s}$)		 	142
10.57 INVALID-ORDER-57 $Z(s)=\left(\right.$	$\left(L_1s + R_1 + \frac{1}{C_1s}, \ \infty, \right)$	∞ , ∞ , ∞ , L_I	$Ls + R_L + \frac{1}{C_L s}$)	 	142

10.58 INVALID-ORDER-58 $Z(s)=\left(\right.$	$\left(L_1s + R_1 + \frac{1}{C_1s}, \infty, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1} + R_L\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
10.59INVALID-ORDER-59 $Z(s) = 1$	$\left(L_{1}s + R_{1} + \frac{1}{C_{1}s}, \infty, \infty, \infty, \infty, \infty, \frac{R_{L}\left(L_{L}s + \frac{1}{C_{L}s}\right)}{L_{L}s + R_{L} + \frac{1}{C_{L}s}}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
10.60INVALID-ORDER-60 $Z(s) = 1$	$\left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right) \dots \dots$
10.61INVALID-ORDER-61 $Z(s) = 1$	$\left(\frac{1}{C_1s + \frac{1}{R_1} + \frac{1}{L_1s}}, \infty, \infty, \infty, \infty, \frac{R_L}{C_LR_Ls + 1}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
10.62INVALID-ORDER-62 $Z(s) = 1$	$\left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right) \dots \dots$
10.63INVALID-ORDER-63 $Z(s) = ($	$\left(\frac{1}{C_1s + \frac{1}{R_1} + \frac{1}{L_1s}}, \infty, \infty, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
10.64INVALID-ORDER-64 $Z(s) = ($	$\left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$
10.65INVALID-ORDER-65 $Z(s) = ($	$\left(\frac{1}{C_1s + \frac{1}{R_1} + \frac{1}{L_1s}}, \infty, \infty, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right) \dots \dots$
10.66INVALID-ORDER-66 $Z(s) = ($	$\left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
10.67INVALID-ORDER-67 $Z(s) = ($	$\left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$
10.68INVALID-ORDER-68 $Z(s) = ($	$\left(\frac{1}{C_{1}s + \frac{1}{R_{1}} + \frac{1}{L_{1}s}}, \infty, \infty, \infty, \infty, \frac{R_{L}\left(L_{L}s + \frac{1}{C_{L}s}\right)}{L_{L}s + R_{L} + \frac{1}{C_{L}s}}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
10.69 INVALID-ORDER-69 $Z(s)=\left(\right.$	$\left(\frac{L_1s}{C_1L_1s^2+1}+R_1, \infty, \infty, \infty, \infty, \frac{1}{C_Ls}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
10.70 INVALID-ORDER-70 $Z(s)=\left(\right.$	$\left(\frac{L_1s}{C_1L_1s^2+1}+R_1, \ \infty, \ \infty, \ \infty, \ \infty, \ \frac{R_L}{C_LR_Ls+1}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
10.71INVALID-ORDER-71 $Z(s)=\left(\right.$	$\left(\frac{L_1s}{C_1L_1s^2+1}+R_1, \infty, \infty, \infty, \infty, R_L+\frac{1}{C_Ls}\right) \dots \dots$
10.72INVALID-ORDER-72 $Z(s) = ($	$\left(\frac{L_{1}s}{C_{1}L_{1}s^{2}+1}+R_{1}, \infty, \infty, \infty, \infty, L_{L}s+\frac{1}{C_{L}s}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
10.73INVALID-ORDER-73 $Z(s) = ($	$\left(\frac{L_1s}{C_1L_1s^2+1}+R_1, \ \infty, \ \infty, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2+1}\right)' \dots \dots \dots \dots \dots \dots \dots \dots \dots $
10.74INVALID-ORDER-74 $Z(s) = ($	$\left(\frac{L_{1s}}{C_{1}L_{1}s^{2}+1}+R_{1}, \infty, \infty, \infty, \infty, \infty, L_{L}s+R_{L}+\frac{1}{C_{L}s}\right) \dots \dots$
10.75INVALID-ORDER-75 $Z(s) = ($	$\left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right) $
10.76INVALID-ORDER-76 $Z(s) = ($	$\left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right) \dots \dots$
10.77INVALID-ORDER-77 $Z(s)=\left(\rule{0mm}{1.5mm}\right.$	$\left(\frac{L_1s}{C_1L_1s^2+1}+R_1, \ \infty, \ \infty, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls+\frac{1}{C_Ls}\right)}{L_Ls+R_L+\frac{1}{C_Ls}}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $

10.78INVALID-ORDER-78 $Z(s) =$	$ \left(\frac{R_1\left(L_1s+\frac{1}{C_1s}\right)}{L_1s+R_1+\frac{1}{C_1s}}, \infty, \infty, \infty, \infty, \infty, R_L\right) \dots \qquad \dots$
10.79INVALID-ORDER-79 $Z(s) =$	$\left(R,\left(1,c+1\right)\right)$
10.80INVALID-ORDER-80 $Z(s) =$	$ \left(\frac{R_1\left(L_1s+\frac{1}{C_1s}\right)}{L_1s+R_1+\frac{1}{C_1s}}, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_LR_Ls+1}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
10.81INVALID-ORDER-81 $Z(s) =$	$\left(\frac{R_1\left(L_1s+\frac{1}{C_1s}\right)}{L_1s+R_1+\frac{1}{C_1s}}, \infty, \infty, \infty, \infty, \infty, R_L+\frac{1}{C_Ls}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
10.82INVALID-ORDER-82 $Z(s) = 0$	$(\infty, R_2, \infty, \infty, \infty, R_L)$
10.83INVALID-ORDER-83 $Z(s) =$	$\left(\infty, R_2, \infty, \infty, \infty, \frac{1}{C_{Ls}}\right)$
10.84INVALID-ORDER-84 $Z(s) =$	$(\infty, R_2, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1})$
10.85INVALID-ORDER-85 $Z(s) =$	$\left(\infty, R_2, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$
10.86INVALID-ORDER-86 $Z(s) =$	$(\infty, R_2, \infty, \infty, \infty, L_L s + \frac{1}{C_L s})$
10.87INVALID-ORDER-87 $Z(s) =$	$\left(\infty, R_2, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$
10.88INVALID-ORDER-88 $Z(s) =$	$(\infty, R_2, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s})$
10.89INVALID-ORDER-89 $Z(s) =$	$\left(\infty, R_2, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$
10.90INVALID-ORDER-90 $Z(s) =$	$\left(\infty, R_2, \infty, \infty, \infty, \frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right) \dots \dots$
10.91INVALID-ORDER-91 $Z(s) =$	$\left(\infty, \frac{1}{C_2 s}, \infty, \infty, \infty, \infty, R_L\right)$
10.92INVALID-ORDER-92 $Z(s) =$	$\left(\infty, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{1}{C_L s}\right)$
10.93INVALID-ORDER-93 $Z(s) =$	$\left(\infty, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$
10.94INVALID-ORDER-94 $Z(s) =$	$\left(\infty, \frac{1}{C_2s}, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$
	$\left(\infty, \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right) \dots \dots$
10.96INVALID-ORDER-96 $Z(s) =$	$\left(\infty, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$
10.97INVALID-ORDER-97 $Z(s) =$	$\left(\infty, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
10.98INVALID-ORDER-98 $Z(s) =$	$\left(\infty, \frac{R_2}{C_2R_2s+1}, \infty, \infty, \infty, \infty, R_L\right)$
10.99INVALID-ORDER-99 $Z(s) =$	$\left(\infty, \frac{R_2}{C_2R_2s+1}, \infty, \infty, \infty, \frac{1}{C_Ls}\right)$

10.10 0 NVALID-ORDER-100 $Z(s) = ($	$\left(\infty, \right)$	$\frac{R_2}{C_2R_2s+1}, \ \ c$	∞ , o	∞ , ∞ ,	$R_L + \frac{1}{C_L s}$	$\left(\frac{1}{8}\right)$		 	 	 	 	 	 	150
10.10INVALID-ORDER-101 $Z(s) = ($	$(\infty,$	$\frac{R_2}{C_2R_2s+1}, \ \ c$	∞ , o	o, ∞,	$L_L s + \frac{1}{C_L}$	$\left(\frac{1}{\sqrt{s}}\right)$.		 	 	 	 	 	 	151
10.10 2 NVALID-ORDER-102 $Z(s) = ($	$(\infty,$	$\frac{R_2}{C_2R_2s+1}, \ \ c$	∞ , o	∞ , ∞ ,	$\frac{L_L s}{C_L L_L s^2 + 1}$	·		 	 	 	 	 	 	151
10.10 B NVALID-ORDER-103 $Z(s) = ($	$(\infty,$	$\frac{R_2}{C_2R_2s+1}, \ \ c$	∞ , o	∞ , ∞ ,	$L_L s + R_I$	$L + \frac{1}{C_L}$	\overline{s}).	 	 	 	 	 	 	151
10.10#NVALID-ORDER-104 $Z(s) = ($	$\left(\infty,\right.$	$\frac{R_2}{C_2R_2s+1},$	∞ , c	$\infty, \infty,$	$\frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{R_L}}$	$+\frac{1}{L_L s}$		 	 	 	 	 	 	151
10.105NVALID-ORDER-105 $Z(s) = ($	$(\infty,$	$\frac{R_2}{C_2R_2s+1}, \ \ $	∞ , o	∞ , ∞ ,	$\frac{L_L s}{C_L L_L s^2 + 1}$	$+R_L$) .	 	 	 	 	 	 	151
10.10 6 NVALID-ORDER-106 $Z(s) = ($	$\left(\infty,\right.$	$\frac{R_2}{C_2R_2s+1},$	∞ , c	$\infty, \infty,$	$R_L \left(L_L s + L_L s + R_L $	$\left(\frac{\frac{1}{C_L s}}{\frac{1}{C_L s}}\right)$		 	 	 	 	 	 	152
10.10 T NVALID-ORDER-107 $Z(s) = ($	$(\infty,$	$R_2 + \frac{1}{C_2 s},$	∞ ,	$\infty, \infty,$	$\frac{1}{C_L s}$			 	 	 	 	 	 	152
10.10\(\text{NVALID-ORDER-108} \) $Z(s) = \left($	$(\infty,$	$R_2 + \frac{1}{C_2 s},$	∞ ,	∞ , ∞ ,	$\frac{R_L}{C_L R_L s + 1}$	$\bar{1}$)		 	 	 	 	 	 	152
10.109NVALID-ORDER-109 $Z(s) = ($	$\left(\infty,\right.$	$R_2 + \frac{1}{C_2 s},$	∞ ,	∞ , ∞ ,	$R_L + \frac{1}{C_L}$	$\left(\frac{1}{\sqrt{s}}\right)$.		 	 	 	 	 	 	152
10.11 0 NVALID-ORDER-110 $Z(s) = ($	$(\infty,$	$R_2 + \frac{1}{C_2 s},$	∞ ,	∞ , ∞ ,	$L_L s + \overline{c}$	$\left(\frac{1}{C_L s}\right)$.		 	 	 	 	 	 	152
10.11INVALID-ORDER-111 $Z(s) = ($	$(\infty,$	$R_2 + \frac{1}{C_2 s},$	∞ ,	$\infty, \infty,$	$\frac{L_L s}{C_L L_L s^2 +}$	$\overline{1}$.		 	 	 	 	 	 	153
10.11 2 NVALID-ORDER-112 $Z(s) = ($	$(\infty,$	$R_2 + \frac{1}{C_2 s},$	∞ ,	$\infty, \infty,$	$L_L s + R$	$R_L + \frac{1}{C_L}$	$\left(\frac{1}{L^s}\right)$	 	 	 	 	 	 	153
10.11 E NVALID-ORDER-113 $Z(s) = ($	$(\infty,$	$R_2 + \frac{1}{C_2 s},$	∞ ,	∞ , ∞	$\frac{1}{C_L s + \frac{1}{R_L}}$	$\frac{1}{+\frac{1}{L_L s}}$		 	 	 	 	 	 	153
10.11 4 NVALID-ORDER-114 $Z(s) = ($	$(\infty,$	$R_2 + \frac{1}{C_2 s},$	∞ ,	∞ , ∞ ,	$\frac{L_L s}{C_L L_L s^2 +}$	$\overline{R}_1 + R_1$	L) .	 	 	 	 	 	 	153
10.11 5 NVALID-ORDER-115 $Z(s) = ($	$\left(\infty,\right.$	$R_2 + \frac{1}{C_2 s},$	∞ ,	∞ , ∞	$, \frac{R_L \left(L_L s - L_L s + R_L\right)}{L_L s + R_L}$	$\left(\frac{+\frac{1}{C_L s}}{+\frac{1}{C_L s}}\right)$)	 	 	 	 	 	 	153
10.116NVALID-ORDER-116 $Z(s) = ($								 	 	 	 	 	 	154
10.11 T NVALID-ORDER-117 $Z(s) = ($	$(\infty,$	$L_2s + \frac{1}{C_2s},$	$, \infty,$	∞ , ∞	$R_L + \overline{C}$	$\left(\frac{1}{C_L s}\right)$.		 	 	 	 	 	 	154
10.11\(\) NVALID-ORDER-118\(Z(s) = \((s) \)	$(\infty,$	$L_2s + \frac{1}{C_2s},$	$, \infty,$	∞ , ∞	$L_L s + \frac{1}{2}$	$\frac{1}{C_L s}$		 	 	 	 	 	 	154
10.11 9 NVALID-ORDER-119 $Z(s) = ($	$(\infty,$	$L_2s + \frac{1}{C_2s},$	$, \infty,$	∞ , ∞	$\frac{L_L s}{C_L L_L s^2}$	$\frac{1}{+1}$).		 	 	 	 	 	 	154
10.12 0 NVALID-ORDER-120 $Z(s) = \left(\begin{array}{c} 1 & 1 \\ 1 & 1 \end{array}\right)$	$(\infty,$	$L_2s + \frac{1}{C_2s},$	$, \infty,$	∞ , ∞	$L_L s + L_L s$	$R_L + \overline{c}$	$\left(\frac{1}{C_L s}\right)$	 	 	 	 	 	 	154
10.12INVALID-ORDER-121 $Z(s) = ($	$(\infty,$	$L_2s + \frac{1}{C_2s},$	$, \infty,$	∞ , ∞	$, \frac{L_L s}{C_L L_L s^2}$	$\frac{1}{1} + R$	$(R_L)^{'}$	 	 	 	 	 	 	154

10.122NVALID-ORDER-122 $Z(s) = 1$	$\left(\infty, L_2s + \frac{1}{C_2s}, \infty, \infty, \infty, \infty, \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
	$(\infty, L_2s + R_2 + \frac{1}{C_2s}, \infty, \infty, \infty, \infty, \frac{1}{C_Ls}) $
10.124NVALID-ORDER-124 $Z(s)=($	$\stackrel{\sim}{\infty}, L_2s + R_2 + \frac{1}{C_2s}, \infty, \infty, \infty, \frac{\stackrel{\sim}{R_L}}{C_LR_Ls + 1} $
10.125NVALID-ORDER-125 $Z(s) = ($	$(\infty, L_2s + R_2 + \frac{1}{C_2s}, \infty, \infty, \infty, R_L + \frac{1}{C_Ls}) \qquad \dots \qquad $
10.126NVALID-ORDER-126 $Z(s) = ($	$(\infty, L_2s + R_2 + \frac{1}{C_2s}, \infty, \infty, \infty, L_Ls + \frac{1}{C_Ls})$
10.12 T NVALID-ORDER-127 $Z(s) = ($	$\left(\infty, L_2s + R_2 + \frac{1}{C_2s}, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1}\right) \dots \dots$
10.12\&NVALID-ORDER-128 $Z(s) = ($	$\left(\infty, L_2s + R_2 + \frac{1}{C_2s}, \infty, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right) \dots \dots$
10.12 9 NVALID-ORDER-129 $Z(s) = 1$	$(\infty, L_2s + R_2 + \frac{1}{C_2s}, \infty, \infty, \infty, \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}})$
10.13 0 NVALID-ORDER-130 $Z(s) = ($	$\left(\infty, L_2s + R_2 + \frac{1}{C_2s}, \infty, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1} + R_L\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
10.13 INVALID-ORDER-131 $\boldsymbol{Z}(s) = ($	$(\infty, L_2s + R_2 + \frac{1}{C_2s}, \infty, \infty, \infty, \infty, \frac{R_L(L_Ls + \frac{1}{C_Ls})}{L_Ls + R_L + \frac{1}{C_Ls}})$
10.13 2 NVALID-ORDER-132 $Z(s) = ($	$(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, \infty, \infty, \infty, R_L + \frac{1}{C_Ls})$
10.13 B NVALID-ORDER-133 $Z(s)=($	$\left(\infty, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$
10.134NVALID-ORDER-134 $Z(s)=\langle$	$\left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, \infty, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$
10.13 5 NVALID-ORDER-135 $Z(s) = ($	$\left(\infty, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$
10.136NVALID-ORDER-136 $Z(s) = 1$	$\left(\infty, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$
10.13 T NVALID-ORDER-137 $Z(s) = 1$	$\left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \infty, \infty, \infty, \frac{1}{C_Ls}\right)$
10.13\&NVALID-ORDER-138 $Z(s) = 1$	$\left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$
10.139 NVALID-ORDER-139 $Z(s)=\left[\right.$	$\left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_Ls}\right) \dots \dots$
10.140NVALID-ORDER-140 $Z(s) = 1$	$\left(\infty, \frac{R_2 \left(L_2 s + \frac{1}{C_2 s} \right)}{L_2 s + R_2 + \frac{1}{C_2 s}}, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s} \right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
10.14INVALID-ORDER-141 $Z(s) = 1$	$\left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1}\right)$

10.142NVALID-ORDER-142 $Z(s) =$	$\left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \infty, \infty, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right) \dots \dots$
10.14 NVALID-ORDER-143 $Z(s) =$	$\left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \infty, \infty, \infty, \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)\right) $
10.14 4 NVALID-ORDER-144 $Z(s) =$	$\left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \infty, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1} + R_L\right) \dots \dots$
10.14Б NVALID-ORDER-145 $Z(s)=$	$\left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \infty, \infty, \infty, \infty, \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right) \dots \dots$
10.146NVALID-ORDER-146 $Z(s) =$	$\left(\infty, \infty, R_3, \infty, \infty, \frac{1}{C_L s}\right)$
10.14 T NVALID-ORDER-147 $Z(s) =$	$\left(\infty, \infty, R_3, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$
10.14\bigselentrian VALID-ORDER-148 $Z(s) = 0$	$\left(\infty, \infty, R_3, \infty, \infty, R_L + \frac{1}{C_L s}\right) \dots \dots$
10.14 9 NVALID-ORDER-149 $Z(s) =$	$\left(\infty, \infty, R_3, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$
10.15 0 NVALID-ORDER-150 $Z(s) =$	$\left(\infty, \infty, R_3, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$
10.15INVALID-ORDER-151 $Z(s) =$	$\left(\infty, \infty, R_3, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$
10.15 2 NVALID-ORDER-152 $Z(s) =$	
10.15 B NVALID-ORDER-153 $Z(s) =$	$\left(\infty, \infty, R_3, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right) \dots \dots$
10.154NVALID-ORDER-154 $Z(s) =$	$\left(\infty, \ \infty, \ R_3, \ \infty, \ \infty, \ \frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
10.15 NVALID-ORDER-155 $Z(s) =$	$\left(\infty, \infty, \frac{1}{C_3 s}, \infty, \infty, R_L\right)$
	$\left(\infty, \infty, \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s}\right)$
10.15 T NVALID-ORDER-157 $Z(s) =$	$\left(\infty, \infty, \frac{1}{C_3 s}, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$
10.15&NVALID-ORDER-158 $Z(s) =$	$\left(\infty, \infty, \frac{1}{C_3 s}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$
10.15 9 NVALID-ORDER-159 $Z(s) =$	$\left(\infty, \infty, \frac{R_3}{C_3 R_3 s+1}, \infty, \infty, R_L\right)$
10.16 0 NVALID-ORDER-160 $Z(s) =$	$\left(\infty, \infty, \frac{R_3}{C_3 R_3 s+1}, \infty, \infty, \frac{1}{C_L s}\right)$
10.16INVALID-ORDER-161 $\boldsymbol{Z}(s) =$	$\left(\infty, \infty, \frac{R_3}{C_3R_3s+1}, \infty, \infty, \frac{R_L}{C_LR_Ls+1}\right)$
10.16 2 NVALID-ORDER-162 $Z(s) =$	$\left(\infty, \infty, \frac{R_3}{C_3 R_3 s+1}, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$

10.16 B NVALID-ORDER-163 $Z(s) =$	$(\infty, \infty,$	$\frac{R_3}{C_3R_3s+1},$	∞ , ∞ ,	$L_L s + \overline{c}$	$\left(\frac{1}{C_L s}\right)$.		 	 	 	 	 	. 163
10.16 4 NVALID-ORDER-164 $Z(s) =$	$(\infty, \infty,$	$\frac{R_3}{C_3R_3s+1},$	∞ , ∞ ,	$\frac{L_L s}{C_L L_L s^2 +}$	$\overline{-1}$)		 	 	 	 	 	. 163
10.16 5 NVALID-ORDER-165 $Z(s) =$	$(\infty, \infty,$	$\frac{R_3}{C_3R_3s+1},$	∞ , ∞ ,	$L_L s + F$	$R_L + \frac{1}{C_L s}$	$\left(\frac{1}{8}\right)$.	 	 	 	 	 	. 163
10.16 C NVALID-ORDER-166 $Z(s) =$	$(\infty, \infty,$	$\frac{R_3}{C_3R_3s+1},$	∞ , ∞ ,	$\frac{L_L s}{C_L L_L s^2 +}$	$\overline{+1} + R_L$) .	 	 	 	 	 	. 163
10.16TNVALID-ORDER- $167 Z(s) =$	$\left(\infty, \infty, \right.$	$\frac{R_3}{C_3R_3s+1},$	∞ , ∞ ,	$\frac{R_L \left(L_L s - L_L s + R_L \right)}{L_L s + R_L}$	$\left(\frac{+\frac{1}{C_L s}}{c+\frac{1}{C_L s}}\right)$. 163
10.16 NVALID-ORDER-168 $Z(s) =$. 163
10.16 9 NVALID-ORDER-169 $Z(s) =$	$(\infty, \infty,$	$R_3 + \frac{1}{C_3 s},$	∞ , ∞ ,	$\frac{1}{C_L s}$. 164
10.17 ONVALID-ORDER-170 $Z(s) =$	$(\infty, \infty,$	$R_3 + \frac{1}{C_3 s},$	∞ , ∞ ,	$\frac{R_L}{C_L R_L s +}$	$\overline{+1}$)		 	 	 	 	 	. 164
10.17 I NVALID-ORDER-171 $Z(s) =$	$\left(\infty, \ \infty, \right.$	$R_3 + \frac{1}{C_3 s},$	∞ , ∞ ,	$L_L s +$	$\frac{1}{C_L s}$) .		 	 	 	 	 	. 164
10.172NVALID-ORDER-172 $Z(s) =$	$(\infty, \infty,$	$R_3 + \frac{1}{C_3 s},$	∞ , ∞ ,	$L_L s + 1$	$R_L + \frac{1}{C_L}$	$\left(\frac{1}{\sqrt{s}}\right)$. 164
10.17 B NVALID-ORDER-173 $Z(s) =$	$(\infty, \infty,$	$R_3 + \frac{1}{C_3 s},$	∞ , ∞ ,	$\frac{L_L s}{C_L L_L s^2}$	$\frac{1}{r+1} + R_L$	\mathcal{L} .	 	 	 	 	 	. 164
10.174NVALID-ORDER-174 $Z(s) =$	$\left(\infty, \infty, \right.$	$R_3 + \frac{1}{C_3 s},$	∞ , ∞ ,	$\frac{R_L \left(L_L s + R \right)}{L_L s + R}$	$\left(\frac{s+\frac{1}{C_L s}}{C_L s}\right)$)	 	 	 	 	 	. 164
10.175NVALID-ORDER-175 $Z(s) =$	$(\infty, \infty,$	$L_3s + \frac{1}{C_3s}$	$, \infty, \infty$	R_L			 	 	 	 	 	. 165
10.176NVALID-ORDER-176 $Z(s) =$	$(\infty, \infty,$	$L_3s + \frac{1}{C_3s}$	$, \infty, \infty$	$\left(\frac{1}{C_L s} \right)$. 165
10.17 NVALID-ORDER-177 $Z(s) =$	$\left(\infty, \ \infty, \right.$	$L_3s + \frac{1}{C_3s}$	$, \infty, \infty$	$R_L +$	$\frac{1}{C_L s}$) .		 	 	 	 	 	. 165
10.17 NVALID-ORDER-178 $Z(s) =$	$(\infty, \infty,$	$L_3s + \frac{1}{C_3s}$	$, \infty, \infty$	$L_Ls +$	$-\frac{1}{C_L s}$. 165
10.17 9 NVALID-ORDER-179 $Z(s) =$	$\left(\infty, \ \infty, \right.$	$L_3s + \frac{1}{C_3s}$	$, \infty, \infty$	$, \frac{L_L s}{C_L L_L s}$	$\left(\frac{s}{s^2+1}\right)$.		 	 	 	 	 	. 165
10.18 ONVALID-ORDER-180 $Z(s) =$	$(\infty, \infty,$	$L_3s + \frac{1}{C_3s}$	$, \infty, \infty$	$L_L s +$	$R_L + \overline{C}$	$\left(\frac{1}{C_L s}\right)$. 165
10.18INVALID-ORDER-181 $Z(s) =$	$\left(\infty, \ \infty, \right.$	$L_3s + \frac{1}{C_3s}$	$\frac{1}{2}$, ∞ , ∞	$C_L s + \overline{Q}_L s$	$\frac{1}{\frac{1}{R_L} + \frac{1}{L_L s}}$) .	 	 	 	 	 	. 166
10.18 2 NVALID-ORDER-182 $Z(s) =$	$(\infty, \infty,$	$L_3s + \frac{1}{C_3s}$	$, \infty, \infty$	$, \frac{L_L s}{C_L L_L s}$	$\frac{s}{s^2+1} + R$	\mathcal{L}_L	 	 	 	 	 	. 166
10.18 B NVALID-ORDER-183 $Z(s) =$	$\left(\infty, \infty, \right.$	$L_3s + \frac{1}{C_3s}$	$\frac{1}{2}$, ∞ , ∞	$\frac{R_L \left(L_L}{L_L s + L}\right)$	$\frac{Ls + \frac{1}{C_L s}}{R_L + \frac{1}{C_L s}}$) .	 	 	 	 	 	. 166
10.18 INVALID-ORDER-184 $Z(s) =$	$(\infty, \infty,$	$\frac{L_3s}{C_3L_3s^2+1},$	$\infty, \ \infty,$	$\frac{1}{C_L s}$).			 	 	 	 	 	. 166

10.18Б NVALID-ORDER-185 $Z(s)=\left(\right.$	$\left(\infty,\ \infty,\ rac{L_3s}{C_3L_3s^2+1},\ \infty,\ \infty,\ rac{R_L}{C_LR_Ls+1} ight)$	166
10.186NVALID-ORDER-186 $Z(s)=\langle$	$\left(\infty,\ \infty,\ rac{L_3s}{C_3L_3s^2+1},\ \infty,\ \infty,\ R_L+rac{1}{C_Ls} ight)$	167
10.18 T NVALID-ORDER-187 $Z(s) = ($	$\left(\infty, \ \infty, \ rac{L_3s}{C_3L_3s^2+1}, \ \infty, \ \infty, \ L_Ls+rac{1}{C_Ls} ight) \ \ \ldots \ \ \ldots \ \ \ \ \ \ \ \ \ \ \ \ \ $	167
10.18\bigselenvalid-Order-188 $Z(s)=($	$(\infty, \infty, \frac{L_3s}{C_3L_3s^2+1}, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1})$	167
10.18 9 NVALID-ORDER-189 $Z(s)=\left(\right. \label{eq:20}$	$\left(\infty, \infty, \frac{L_{3s}}{C_3L_{3s}^2+1}, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$	167
10.19 0 NVALID-ORDER-190 $Z(s) = 1$	$(\infty, \infty, \frac{L_3s}{C_3L_3s^2+1}, \infty, \infty, \frac{1}{C_Ls+\frac{1}{R_L}+\frac{1}{L_Ls}})$	167
10.19INVALID-ORDER-191 $Z(s)=\langle$	$\left(\infty, \infty, \frac{L_{3s}}{C_3L_3s^2+1}, \infty, \infty, \frac{L_{Ls}}{C_LL_Ls^2+1} + R_L\right)$	168
10.19 2 NVALID-ORDER-192 $Z(s) = 1$	$\left(\infty, \ \infty, \ \frac{L_{3}s}{C_{3}L_{3}s^{2}+1}, \ \infty, \ \infty, \ \frac{R_{L}\left(L_{L}s+\frac{1}{C_{L}s}\right)}{L_{L}s+R_{L}+\frac{1}{C_{L}s}}\right)$	168
10.19 & NVALID-ORDER-193 $Z(s)=\left(\right. \label{eq:2.1}$	$\left(\infty, \infty, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, \frac{1}{C_Ls}\right)$	168
10.19#NVALID-ORDER-194 $Z(s)=\langle$	$\left(\infty, \infty, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, \infty, R_L + \frac{1}{C_Ls}\right)$	168
10.195 NVALID-ORDER-195 $Z(s)=\langle$	$\left(\infty, \infty, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$	168
10.196NVALID-ORDER-196 $Z(s)=\langle$	$\left(\infty, \infty, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1}\right) \dots \dots$	168
10.19 T NVALID-ORDER-197 $Z(s)=\langle$	$\left(\infty, \infty, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$	169
10.19&NVALID-ORDER-198 $Z(s)=\langle$	$\left(\infty, \infty, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1} + R_L\right)$	169
10.19 9 NVALID-ORDER-199 $Z(s) = 1$	$\left(\infty, \ \infty, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$	169
10.20 0 NVALID-ORDER-200 $Z(s) = 1$		169
10.20INVALID-ORDER-201 $Z(s) =$	$\left(\infty, \ \infty, \ \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \ \infty, \ \infty, \ \frac{R_L}{C_L R_L s + 1}\right)$	169
10.202NVALID-ORDER-202 $Z(s) = 1$	$\left\langle \infty, \infty, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, R_L + \frac{1}{C_L s} \right\rangle$	170
10.20 B NVALID-ORDER-203 $Z(s) = 1$	$(\infty, \infty, \frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}}, \infty, \infty, L_Ls + \frac{1}{C_Ls})$	170
10.204NVALID-ORDER-204 $Z(s) = 1$	$(\infty, \infty, \frac{1}{C_3s + \frac{1}{R_3} + \frac{1}{L_3s}}, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1})$	170
10.20 5 NVALID-ORDER-205 $Z(s)=\langle$	$\left(\infty, \ \infty, \ \frac{1}{C_3s+rac{1}{R_3}+rac{1}{L_3s}}, \ \infty, \ \infty, \ L_Ls+R_L+rac{1}{C_Ls} ight)$	170

10.20 6 NVALID-ORDER-206 $Z(s) =$	$\left(\infty, \infty\right)$	$\frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \ \infty, \ \infty, \ \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}$)	170
	\	, ,	$\left(L_{L} \right) \left(1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 $	171
10.20\&NVALID-ORDER-208 $Z(s) =$	$\left(\infty, \infty\right)$	$\frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}$)	171
10.209NVALID-ORDER-209 $Z(s) =$	$\left(\infty, \ \infty\right)$	$\frac{L_3s}{C_3L_3s^2+1} + R_3$, ∞ , ∞ , $R_L + \frac{1}{C_Ls}$		171
10.21 ONVALID-ORDER-210 $Z(s) =$	$\left(\infty, \ \infty\right)$	$\frac{L_3s}{C_3L_3s^2+1} + R_3$, ∞ , ∞ , $L_Ls + \frac{1}{C_Ls}$		171
10.21INVALID-ORDER-211 $Z(s) =$	$\left(\infty, \ \infty\right)$	$\frac{L_3s}{C_3L_3s^2+1} + R_3$, ∞ , ∞ , $L_Ls + R_L +$	$\frac{1}{C_L s}$ \cdots	171
10.21 2 NVALID-ORDER-212 $Z(s) =$	$\left(\infty, \ \infty\right)$	$\frac{L_3s}{C_3L_3s^2+1} + R_3$, ∞ , ∞ , $\frac{L_Ls}{C_LL_Ls^2+1} +$	R_L)	172
10.21 B NVALID-ORDER-213 $Z(s) =$	$\left(\infty, \infty\right)$	$\frac{L_3s}{C_3L_3s^2+1} + R_3, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_L}\right)}{L_Ls + R_L + \frac{1}{C_L}}$	$\left(\frac{\overline{s}}{\overline{s}}\right)$	172
10.21#NVALID-ORDER-214 $Z(s) =$	$\left(\infty, \infty\right)$	$\frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \ \infty, \ \infty, \ \frac{1}{C_Ls}\right) \dots$		172
10.21 Invalid-order-215 $Z(s) =$	\	,		172
10.216NVALID-ORDER-216 $Z(s) =$	$\left(\infty, \infty\right)$	$\frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \ \infty, \ \infty, \ R_L + \frac{1}{C_Ls}$		172
10.21 INVALID-ORDER-217 $Z(s) =$	$\left(\infty, \infty\right)$	$\frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \ \infty, \ \infty, \ L_Ls + \frac{1}{C_Ls}$		173
10.21 NVALID-ORDER-218 $Z(s) =$	\	/ /		173
10.21 9 NVALID-ORDER-219 $Z(s) =$	(∞, ∞)	$\frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \ \infty, \ \infty, \ L_Ls + R_L + \frac{1}{C_3s}$	$\left(\frac{1}{C_L s}\right)$	173
10.22 ONVALID-ORDER- $220 Z(s) =$	\	L L	/	
10.22INVALID-ORDER-221 $Z(s) =$	$\left(\infty, \infty\right)$	$\frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2 + 1} + I$	$R_L igg) \; \ldots \; \ldots \; \ldots \; \ldots \; \ldots \; \ldots \; \ldots$	173
10.222NVALID-ORDER-222 $Z(s) =$	(∞, ∞)	$\frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}$)·	174
10.22 NVALID-ORDER- 223 $Z(s) =$	(∞, ∞)	$\infty, R_4, \infty, \frac{1}{C_L s}$, , , , , , , , , , , , , , , , , , , ,	174
10.224NVALID-ORDER- 224 $Z(s) =$	(∞, ∞)	$\infty, R_4, \infty, \frac{\stackrel{\cdot}{R_L}}{C_L R_L s + 1}$		174

10.225NVALID-ORDER- $225 Z(s) = 1$	$\left(\infty,\right)$	$\infty, \infty,$	R_4 ,	∞ ,	$R_L +$	$\frac{1}{C_L s}$				 	 	 	 	 	 	174
10.22 CNVALID-ORDER- $226 Z(s) = 10.22$	$(\infty, $	$\infty, \infty,$	R_4 ,	∞ ,	$L_L s$ -	$+\frac{1}{C_L s}$				 	 	 	 	 	 	174
10.22TNVALID-ORDER- $227 Z(s) = 10.22$ TNVALID-ORDER	$(\infty,$ (∞ , ∞ ,	R_4 ,	∞ ,	$\frac{L_L}{C_L L_L}$	$\left(\frac{s}{s^2+1}\right)^{\prime}$				 	 	 	 	 	 	175
10.22\NVALID-ORDER-228 $Z(s) = 0$	$(\infty, $	$\infty, \infty,$	R_4 ,	∞ ,	$L_L s$ -	$+R_L +$	$-\frac{1}{C_L s}$)		 	 	 	 	 	 	175
10.22 9 NVALID-ORDER-229 $Z(s) =$	$\left(\infty,\right)$	∞ , ∞	R_4	∞ ,	$\overline{C_L s} +$	$\frac{1}{\frac{1}{R_L} + \frac{1}{L_L}}$	$\left(\frac{1}{2s}\right)$			 	 	 	 	 	 	175
10.23 ONVALID-ORDER-230 $Z(s) = 0$	(∞, α)	$\infty, \infty,$	R_4 ,	∞ ,	$\frac{L_L}{C_L L_L}$	$\frac{s}{s^2+1}$ +	R_L			 	 	 	 	 	 	175
10.23INVALID-ORDER-231 $Z(s) =$	$(\infty,$	∞ , ∞	R_4	∞ ,	$\frac{R_L \left(L \right)}{L_L s + 1}$	$\frac{c_L s + \frac{1}{C_L}}{R_L + \frac{1}{C_L}}$	$\left(\frac{\overline{s}}{\overline{s}}\right)$			 	 	 	 	 	 	175
10.23 2 NVALID-ORDER-232 $Z(s) = 1$	/				`					 	 	 	 	 	 	176
10.23\(\text{SNVALID-ORDER-233} \) $Z(s) = 0$	$(\infty, $	$\infty, \infty,$	$\frac{1}{C_4 s}$	$, \infty,$	$\frac{1}{C_L s}$)				 	 	 	 	 	 	176
10.23 4 NVALID-ORDER-234 $Z(s) = 0$	$(\infty, $	$\infty, \infty,$	$\frac{1}{C_4 s}$	$, \infty,$	$\frac{R}{C_L R}$	$\left(\frac{L}{L}s+1\right)$				 	 	 	 	 	 	176
10.235NVALID-ORDER- 235 $Z(s) = 1$	(∞, α)	$\infty, \infty,$	$\frac{1}{C_4 s}$	$, \infty,$	R_L -	$+\frac{1}{C_L s}$				 	 	 	 	 	 	176
10.236NVALID-ORDER-236 $Z(s) = 1$	(∞, α)	$\infty, \infty,$	$\frac{I}{C_4R}$	$\frac{R_4}{R_4s+1}$	$, \infty,$	R_L				 	 	 	 	 	 	176
10.23 T NVALID-ORDER-237 $Z(s) = 0$	$\left(\infty,\right)$	$\infty, \infty,$	$\frac{I}{C_4R}$	$\frac{R_4}{R_4s+1}$	$, \infty,$	$\frac{1}{C_L s}$				 	 	 	 	 	 	176
10.23\NVALID-ORDER-238 $Z(s) = 0$	$\left(\infty,\right)$	∞ , ∞ ,	$\frac{R}{C_4R}$	$\frac{R_4}{R_4s+1}$	$, \infty,$	$\frac{R_L}{C_L R_L s}$	$\overline{+1}$			 	 	 	 	 	 	177
10.23 9 NVALID-ORDER-239 $Z(s) = 0$	$\Big(\infty,$ (∞ , ∞ ,	$\frac{R}{C_4R}$	$\frac{R_4}{R_4s+1}$	$, \infty,$	$R_L + \epsilon$	$\frac{1}{C_L s}$			 	 	 	 	 	 	177
10.24 ONVALID-ORDER-240 $Z(s) = 0$	$\Big(\infty,$ (∞ , ∞ ,	$\frac{R}{C_4 R}$	$\frac{R_4}{R_4s+1}$	$, \infty,$	$L_L s +$	$\frac{1}{C_L s}$			 	 	 	 	 	 	177
10.24INVALID-ORDER-241 $Z(s) = 0$	$\Big(\infty,$ (∞ , ∞ ,	$\frac{R}{C_4R}$	$\frac{R_4}{R_4s+1}$	$, \infty,$	$\frac{L_L s}{C_L L_L s}$	$\left(\frac{1}{2+1}\right)$			 	 	 	 	 	 	177
10.24 2 NVALID-ORDER-242 $Z(s) = 0$	$\Big(\infty,$ (∞ , ∞ ,	$\frac{R}{C_4 R}$	$\frac{R_4}{R_4s+1}$	$, \infty,$	$L_L s +$	R_L +	$-\frac{1}{C_L s}$) .	 	 	 	 	 	 	177
10.24BNVALID-ORDER- 243 $Z(s) = 0$	$\Big(\infty,$ (∞ , ∞ ,	$\frac{R}{C_4 R}$	$\frac{R_4}{R_4s+1}$	$, \infty,$	$\frac{L_L s}{C_L L_L s^2}$	+ + + +	R_L		 	 	 	 	 	 	177
10.24 INVALID-ORDER-244 $Z(s) =$	$\left(\infty,\right.$	∞ , ∞	$, \frac{1}{C_4 R}$	$\frac{R_4}{R_4s+1}$	∞	$\frac{R_L \left(L_L + L_L \right)}{L_L s + L_L s + L_L s}$	$\frac{1}{C_L}s + \frac{1}{C_L}$ $R_L + \frac{1}{C_L}$	$\left(\frac{\overline{s}}{L}\right)$		 	 	 	 	 	 	178
10.245NVALID-ORDER- $245 Z(s) = 1$	$\left(\infty,\right)$	$\infty, \infty,$	R_4 -	$+\frac{1}{C_4}$	$\frac{1}{s}$, ∞ ,	R_L				 	 	 	 	 	 	178
10.24 6 NVALID-ORDER-246 $Z(s) = 1$	$\left(\infty,\right)$	$\infty, \infty,$	R_4 -	$+ \frac{1}{C_4}$	$\bar{s}, \infty,$	$\frac{1}{C_L s}$				 	 	 	 	 	 	178
10.24TNVALID-ORDER- $247~Z(s) = 1$	(∞, α)	$\infty, \infty,$	R_4 -	$+\frac{1}{C_4}$	$\frac{1}{s}$, ∞ ,	$\frac{R_L}{C_L R_L}$	$\left(\frac{1}{s+1}\right)$			 	 	 	 	 	 	178

10.24&NVALID-ORDER-248 $Z(s)=\left(\rule{0mm}{2.5mm}\right.$	$(\infty, \infty, \infty, \infty,$	$R_4 + \frac{1}{C_4 s}, \ \infty,$	$L_L s + \frac{1}{C_L s}$.		 	 178
10.24 9 NVALID-ORDER-249 $Z(s) = ($	$(\infty, \infty, \infty,$	$R_4 + \frac{1}{C_4 s}, \ \infty,$	$L_L s + R_L + \frac{1}{C_L}$	\overline{s} \cdots	 	 178
10.25 0 NVALID-ORDER-250 $Z(s) = ($	$(\infty, \infty, \infty, \infty,$	$R_4 + \frac{1}{C_4 s}, \ \infty,$	$\frac{L_L s}{C_L L_L s^2 + 1} + R_L$	$\left(1, 1 \right) \cdot $	 	 179
10.25INVALID-ORDER-251 $Z(s) = 1$	$\left(\infty, \ \infty, \ \infty, \right.$	$R_4 + \frac{1}{C_4 s}, \ \infty,$	$\frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}$		 	 179
10.25 2 NVALID-ORDER-252 $Z(s) = ($	$(\infty, \infty, \infty, \infty,$	$L_4s + \frac{1}{C_4s}, \ \infty$	$, R_L $		 	 179
10.25 B NVALID-ORDER-253 $Z(s)=($	$(\infty, \infty, \infty,$	$L_4s + \frac{1}{C_4s}, \ \infty$	$, \frac{1}{C_L s}$ \ldots		 	 179
10.254NVALID-ORDER-254 $Z(s)=\langle$	$(\infty, \infty, \infty, \infty,$	$L_4s + \frac{1}{C_4s}, \ \infty$	$, R_L + \frac{1}{C_L s}) .$		 	 179
10.25 NVALID-ORDER-255 $Z(s) = ($	$(\infty, \infty, \infty, \infty,$	$L_4s + \frac{1}{C_4s}, \ \infty$	$, L_L s + \frac{1}{C_L s}$		 	 179
10.25 GNVALID-ORDER-256 $Z(s) = ($	$(\infty, \infty, \infty, \infty,$	$L_4s + \frac{1}{C_4s}, \ \infty$	$, \frac{L_L s}{C_L L_L s^2 + 1}$.		 	 180
10.25 T NVALID-ORDER-257 $Z(s) = ($	$(\infty, \infty, \infty, \infty,$	$L_4s + \frac{1}{C_4s}, \ \infty$	$, L_L s + R_L + \overline{C}$	$\left(\frac{1}{L^S}\right)$	 	 180
10.25&NVALID-ORDER-258 $Z(s) = 1$	$\left(\infty, \ \infty, \ \infty, \right.$	$L_4s + \frac{1}{C_4s}, \ \infty$	$C_L s + \frac{1}{R_L} + \frac{1}{L_L s}$)	 	 180
10.25 9 NVALID-ORDER-259 $Z(s) = ($	$(\infty, \infty, \infty, \infty,$	$L_4s + \frac{1}{C_4s}, \ \infty$	$, \frac{L_L s}{C_L L_L s^2 + 1} + R$	$_{L}\Big)$	 	 180
10.26 0 NVALID-ORDER-260 $Z(s) = 1$	$\left(\infty, \ \infty, \ \infty, \right.$	$L_4s + \frac{1}{C_4s}, \ \infty$	$\frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}$)	 	 180
10.26INVALID-ORDER-261 $Z(s) = \langle$	$(\infty, \infty, \infty, \infty,$	$\frac{L_4s}{C_4L_4s^2+1}, \infty,$	$\frac{1}{C_L s}$) \cdots		 	 181
10.26 2 NVALID-ORDER-262 $Z(s) = ($	$(\infty, \infty, \infty, \infty,$	$\frac{L_4s}{C_4L_4s^2+1}, \ \infty,$	$\frac{R_L}{C_L R_L s + 1}$		 	 181
10.26 B NVALID-ORDER-263 $Z(s)=($	$(\infty, \infty, \infty,$	$\frac{L_4s}{C_4L_4s^2+1}, \ \infty,$	$R_L + \frac{1}{C_L s}$.		 	 181
10.264NVALID-ORDER-264 $Z(s)=\langle$	$(\infty, \infty, \infty, \infty,$	$\tfrac{L_4s}{C_4L_4s^2+1}, \ \infty,$	$L_L s + \frac{1}{C_L s}$.		 	 181
10.265 NVALID-ORDER-265 $Z(s)=\langle$	$(\infty, \infty, \infty, \infty,$	$\frac{L_4s}{C_4L_4s^2+1}, \ \infty,$	$\frac{L_L s}{C_L L_L s^2 + 1}$.		 	 181
10.26 GNVALID-ORDER-266 $Z(s) = 0$	$(\infty, \infty, \infty, \infty,$	$\frac{L_4s}{C_4L_4s^2+1}, \ \infty,$	$L_L s + R_L + \frac{1}{C_L}$	$\left(\frac{1}{s}\right)$	 	 181
10.26 TNVALID-ORDER-267 $Z(s) = 1$	$\left(\infty, \ \infty, \ \infty, \right.$	$\frac{L_4s}{C_4L_4s^2+1}, \ \infty,$	$\frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$		 	 182
10.26&NVALID-ORDER-268 $Z(s) = ($	$(\infty, \infty, \infty, \infty,$	$\tfrac{L_4s}{C_4L_4s^2+1},\ \infty,$	$\frac{L_L s}{C_L L_L s^2 + 1} + R_L$)	 	 182
10.26 9 NVALID-ORDER-269 $Z(s) = 0$	$\left(\infty, \ \infty, \ \infty, \right.$	$\frac{L_4s}{C_4L_4s^2+1}, \ \infty,$	$\frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$		 	 182

10.27 0 NVALID-ORDER-270 $Z(s) =$	$(\infty, \infty, \infty,$	$L_4s + R_4 + \frac{1}{C_4s},$	$\infty, \frac{1}{C_L s}$)		 	182
10.27 I NVALID-ORDER-271 $Z(s) =$	$(\infty, \infty, \infty,$	$L_4s + R_4 + \frac{1}{C_4s}$,	∞ , $R_L + \frac{1}{C_L s}$		 	182
10.27 2 NVALID-ORDER-272 $Z(s) =$	$(\infty, \infty, \infty,$	$L_4s + R_4 + \frac{1}{C_4s}$,	∞ , $L_L s + \frac{1}{C_L s}$		 	183
10.278NVALID-ORDER-273 $Z(s) =$	$(\infty, \infty, \infty,$	$L_4s + R_4 + \frac{1}{C_4s},$	$\infty, \frac{L_L s}{C_L L_L s^2 + 1}$		 	183
10.27 INVALID-ORDER-274 $Z(s) =$	$(\infty, \infty, \infty,$	$L_4s + R_4 + \frac{1}{C_4s},$	∞ , $L_L s + R_L +$	$\frac{1}{C_L s}$)	 	183
10.275NVALID-ORDER-275 $Z(s) =$	$(\infty, \infty, \infty,$	$L_4s + R_4 + \frac{1}{C_4s},$	∞ , $\frac{L_L s}{C_L L_L s^2 + 1} + \frac{1}{2}$	R_L)	 	183
10.276NVALID-ORDER-276 $Z(s) =$	$\left(\infty, \ \infty, \ \infty, \right.$	$L_4s + R_4 + \frac{1}{C_4s},$	∞ , $\frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}$	$\left(\frac{1}{2}\right)$	 	183
10.27 INVALID-ORDER-277 $Z(s) =$	$\left(\infty, \ \infty, \ \infty, \right.$	$\frac{1}{C_4 s + \frac{1}{R_4} + \frac{1}{L_4 s}}, \ \infty$	$, \frac{1}{C_L s} $ $$		 	184
10.27\NVALID-ORDER-278 $Z(s) =$	$\left(\infty, \ \infty, \ \infty, \right.$	$\frac{1}{C_4 s + \frac{1}{R_4} + \frac{1}{L_4 s}}, \ \infty$	$, \frac{R_L}{C_L R_L s + 1} $		 	184
10.27 9 NVALID-ORDER-279 $Z(s) =$	$\left(\infty, \ \infty, \ \infty, \right.$	$\frac{1}{C_4 s + \frac{1}{R_4} + \frac{1}{L_4 s}}, \ \infty$	$R_L + \frac{1}{C_L s}$.		 	184
10.28 ONVALID-ORDER-280 $Z(s) =$	$\left(\infty, \ \infty, \ \infty, \right.$	$\frac{1}{C_4 s + \frac{1}{R_4} + \frac{1}{L_4 s}}, \ \infty$	$, L_L s + \frac{1}{C_L s}$		 	184
10.28INVALID-ORDER-281 $Z(s) =$	$\left(\infty, \ \infty, \ \infty, \right.$	$\frac{1}{C_4 s + \frac{1}{R_4} + \frac{1}{L_4 s}}, \ \infty$	$, \frac{L_L s}{C_L L_L s^2 + 1} $		 	184
10.282NVALID-ORDER-282 $Z(s) =$	$\left(\infty, \ \infty, \ \infty, \right.$	$\frac{1}{C_4 s + \frac{1}{R_4} + \frac{1}{L_4 s}}, \ \infty$	$, L_L s + R_L + \frac{1}{C_L}$	$\left(\frac{1}{s}\right)$	 	185
10.28 NVALID-ORDER-283 $Z(s) =$	$\left(\infty, \ \infty, \ \infty, \right)$	$\frac{1}{C_4 s + \frac{1}{R_4} + \frac{1}{L_4 s}}, \ \infty$	$, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}} \right)$		 	185
10.284NVALID-ORDER-284 $Z(s) =$	(4 4)	 	185
10.28 Invalid-order-285 $Z(s) =$	$\left(\infty, \ \infty, \ \infty, \right.$	$\frac{1}{C_4 s + \frac{1}{R_4} + \frac{1}{L_4 s}}, \ \infty$	$, \frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}$		 	185
10.28 6 NVALID-ORDER-286 $Z(s) =$	$(\infty, \infty, \infty,$	$\frac{L_4s}{C_4L_4s^2+1} + R_4$, or	∞ , $R_L + \frac{1}{C_L s}$		 	185
10.28TNVALID-ORDER- $287 Z(s) =$	>		2 /		 	186
10.28\NVALID-ORDER-288 $Z(s) =$	>			` '	 	186
10.289NVALID-ORDER-289 $Z(s) =$	$(\infty, \infty, \infty,$	$\frac{L_4s}{C_4L_4s^2+1} + R_4$, or	∞ , $\frac{L_L s}{C_L L_L s^2 + 1} + R$	$R_Lig) \ldots \ldots .$	 	186

$(\infty, \infty, \infty, \infty, \frac{L_4s}{C_4L_4s^2+1} + R_4, \infty, \frac{R_L(L_Ls + \frac{1}{C_Ls})}{L_Ls + R_L + \frac{1}{C_Ls}})$	186
$\left(\infty, \infty, \infty, \frac{R_4\left(L_4s + \frac{1}{C_4s}\right)}{L_4s + R_4 + \frac{1}{C_4s}}, \infty, \frac{1}{C_Ls}\right)$	186
$(\infty, \infty, \infty, \infty, \frac{R_4\left(L_4s + \frac{1}{C_4s}\right)}{L_4s + R_4 + \frac{1}{C_4s}}, \infty, \frac{R_L}{C_L R_L s + 1})$	187
$(\infty, \infty, \infty, \infty, \frac{R_4(L_4s + \frac{1}{C_4s})}{L_4s + R_4 + \frac{1}{C_4s}}, \infty, R_L + \frac{1}{C_Ls})$	187
C_{4}	187
	187
	187
$(\infty, \infty, \infty, \infty, \frac{R_4(L_4s + \frac{1}{C_4s})}{L_4s + R_4 + \frac{1}{C_4s}}, \infty, \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}})$	188
$(\infty, \infty, \infty, \infty, \frac{R_4(L_4s + \frac{1}{C_4s})}{L_4s + R_4 + \frac{1}{C_4s}}, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1} + R_L)$	188
$(\infty, \infty, \infty, \infty, \frac{R_4(L_4s + \frac{1}{C_4s})}{L_4s + R_4 + \frac{1}{C_4s}}, \infty, \frac{R_L(L_Ls + \frac{1}{C_Ls})}{L_Ls + R_L + \frac{1}{C_Ls}})$	188
$(\infty, \infty, \infty, \infty, \infty, R_4, \frac{1}{C_L s})$	188
$(\infty, \infty, \infty, \infty, R_4, \frac{R_L}{C_L R_L s + 1})$	188
∞ , ∞ , ∞ , ∞ , R_4 , $R_L + \frac{1}{C_L s}$)	189
$(\infty, \infty, \infty, \infty, \infty, R_4, L_L s + \frac{1}{C_L s})$	189
$\stackrel{\sim}{\infty}$, ∞ , ∞ , ∞ , R_4 , $\frac{L_L s}{C_L L_L s^2 + 1}$ $\stackrel{\sim}{}$	189
∞ , ∞ , ∞ , ∞ , R_4 , $L_L s + R_L + \frac{1}{C_L s}$)	189
$\stackrel{\sim}{(}\infty, \infty, \infty, \infty, R_4, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}} $	189
$(\infty, \infty, \infty, \infty, \infty, R_4, \frac{L_L s}{C_L L_L s^2 + 1} + R_L)$	190
$(\infty, \infty, \infty, \infty, \infty, R_4, \frac{R_L(L_L s + \frac{1}{C_L s})}{L_L s + R_L + \frac{1}{C_L s}})$	190

10.30 9 NVALID-ORDER-309 $Z(s) = 0$	$\left(\infty, \ \infty, \right)$	∞ , ∞ ,	$\frac{1}{C_4 s}$, R_L				 	 	 	 	 190
10.31 0 NVALID-ORDER-310 $Z(s) = 0$	$(\infty, \infty,$	∞ , ∞ ,	$\frac{1}{C_4 s}, \ \frac{1}{C_L s}$)			 	 	 	 	 190
10.31 I NVALID-ORDER-311 $Z(s) = 0$	$(\infty, \infty,$	∞ , ∞ ,	$\frac{1}{C_4 s}, \ \frac{R}{C_L R}$	$\left(\frac{R_L}{L_L s+1}\right)$.			 	 	 	 	 190
10.31 2 NVALID-ORDER-312 $Z(s) = 0$	$(\infty, \infty,$	∞ , ∞ ,	$\frac{1}{C_4 s}$, R_L -	$+\frac{1}{C_L s}$			 	 	 	 	 190
10.31 3 NVALID-ORDER-313 $Z(s) = 0$	$(\infty, \infty,$	∞ , ∞ ,	$\frac{R_4}{C_4R_4s+1},$	R_L) .			 	 	 	 	 191
10.31#NVALID-ORDER-314 $Z(s) = 0$	$(\infty, \infty,$	∞ , ∞ ,	$\frac{R_4}{C_4R_4s+1},$	$\frac{1}{C_L s}$).			 	 	 	 	 191
10.315NVALID-ORDER-315 $Z(s) = 0$	$(\infty, \infty,$	∞ , ∞ ,	$\frac{R_4}{C_4R_4s+1},$	$\frac{R_L}{C_L R_L s + 1}$)		 	 	 	 	 191
10.316NVALID-ORDER-316 $Z(s) = 0$	$\left(\infty, \ \infty, \right.$	∞ , ∞ ,	$\frac{R_4}{C_4R_4s+1},$	$R_L + \frac{1}{C_L s}$	$\left(\frac{1}{8}\right)$		 	 	 	 	 191
10.31 T NVALID-ORDER-317 $Z(s) = 0$	$\left(\infty, \ \infty, \right.$	∞ , ∞ ,	$\frac{R_4}{C_4R_4s+1},$	$L_L s + \frac{1}{C_L}$	$\left(\frac{1}{\sqrt{s}}\right)$.		 	 	 	 	 191
10.31&NVALID-ORDER-318 $Z(s) = 0$	$\left(\infty, \ \infty, \right.$	∞ , ∞ ,	$\frac{R_4}{C_4R_4s+1},$	$\frac{L_L s}{C_L L_L s^2 + 1}$	·		 	 	 	 	 191
10.31 9 NVALID-ORDER-319 $Z(s) = 0$	\					/	 	 	 	 	 192
10.32 ONVALID-ORDER- 320 $Z(s) = ($	$\left(\infty, \ \infty, \right.$	∞ , ∞ ,	$\frac{R_4}{C_4R_4s+1},$	$\frac{L_L s}{C_L L_L s^2 + 1}$	$\left(+R_{L}\right)$		 	 	 	 	 192
10.32INVALID-ORDER-321 $Z(s) = 1$	$\left(\infty, \ \infty, \right.$	∞ , ∞ ,	$\frac{R_4}{C_4R_4s+1},$	$R_L \left(L_L s + L_L s + R_L s + $	$\left(\frac{\frac{1}{C_L s}}{\frac{1}{C_L s}}\right)$		 	 	 	 	 192
10.32 NVALID-ORDER- $322 Z(s) = 0$	$(\infty, \infty,$	∞ , ∞ ,	$R_4 + \frac{1}{C_4 s},$	R_L .			 	 	 	 	 192
10.32\(\text{SNVALID-ORDER-323} \) $Z(s) = ($	$(\infty, \infty,$	∞ , ∞ ,	$R_4 + \frac{1}{C_4 s},$	$\left(\frac{1}{C_L s}\right)$			 	 	 	 	 192
10.32#NVALID-ORDER-324 $Z(s) = 0$	$(\infty, \infty,$	∞ , ∞ ,	$R_4 + \frac{1}{C_4 s},$	$\frac{R_L}{C_L R_L s + 1}$	$\bar{1}$)		 	 	 	 	 192
10.325NVALID-ORDER-325 $Z(s) = 1$	$(\infty, \infty,$	∞ , ∞ ,	$R_4 + \frac{1}{C_4 s},$	$L_L s + \overline{c}$	$\left(\frac{1}{C_L s}\right)$.		 	 	 	 	 193
10.326NVALID-ORDER-326 $Z(s) = 1$	$\left(\infty, \ \infty, \right.$	∞ , ∞ ,	$R_4 + \frac{1}{C_4 s},$	$L_L s + R$	$R_L + \frac{1}{C_L}$	\overline{s} .	 	 	 	 	 193
10.32 T NVALID-ORDER-327 $Z(s) = 0$	$(\infty, \infty,$	∞ , ∞ ,	$R_4 + \frac{1}{C_4 s},$	$\frac{L_L s}{C_L L_L s^2 +}$	$\overline{R_1} + R_L$)	 	 	 	 	 193
10.32\NVALID-ORDER-328 $Z(s) = 1$	$\left(\infty, \ \infty, \right.$	∞ , ∞ ,	$R_4 + \frac{1}{C_4 s}$	$, \frac{R_L \left(L_L s - \frac{1}{L_L s + R_L}\right)}{L_L s + R_L}$	$\left(\frac{+\frac{1}{C_L s}}{+\frac{1}{C_L s}}\right)$		 	 	 	 	 193
10.32¶NVALID-ORDER-329 $Z(s) = 0$	$(\infty, \infty,$	∞ , ∞ ,	$L_4s + \frac{1}{C_4s}$	(R_L)			 	 	 	 	 193
10.33 0 NVALID-ORDER-330 $Z(s) = 0$	$(\infty, \infty,$	∞ , ∞ ,	$L_4s + \frac{1}{C_4s}$	$\left(\frac{1}{C_L s}\right)$			 	 	 	 	 194
10.33INVALID-ORDER-331 $Z(s) = 0$	$(\infty, \infty,$	∞ , ∞ ,	$L_4s + \frac{1}{C_4s}$	$\frac{1}{6}$, $R_L + \frac{1}{6}$	$\left(\frac{1}{r_{L}s}\right)$.		 	 	 	 	 194

10.33 2 NVALID-ORDER-332 $Z(s) = \left(\right.$	$(\infty, \infty, \infty, \infty)$	$L_4s + \frac{1}{C_4s}$	$L_L s + \frac{1}{C_L s}$		 	 	194
10.33 3 NVALID-ORDER-333 $Z(s) = \left(\begin{array}{c} \\ \end{array}\right)$	$(\infty, \infty, \infty, \infty)$	$L_4s + \frac{1}{C_4s}$	$\left(\frac{L_L s}{C_L L_L s^2 + 1}\right)$		 	 	194
10.334NVALID-ORDER-334 $Z(s) = ($	$(\infty, \infty, \infty, \infty)$	$L_4s + \frac{1}{C_4s}$	$L_L s + R_L +$	$\frac{1}{C_L s}$)	 	 	194
10.33\$NVALID-ORDER-335 $Z(s) = \left(\right.$	$(\infty, \ \infty, \ \infty, \ \infty$	$L_4s + \frac{1}{C_4s}$	$, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L}}$	$\left(\frac{1}{s}\right)$	 	 	194
10.336NVALID-ORDER-336 $Z(s) = ($	$(\infty, \infty, \infty, \infty)$	$L_4s + \frac{1}{C_4s}$	$\frac{L_L s}{C_L L_L s^2 + 1} +$	(R_L)	 	 	195
10.33 T NVALID-ORDER-337 $Z(s) = \left(\frac{1}{2} \right)$	$(\infty, \infty, \infty, \infty)$	$L_4s + \frac{1}{C_4s}$	$, \frac{R_L \left(L_L s + \frac{1}{C_L s} + \frac{1}{C_L s} \right)}{L_L s + R_L + \frac{1}{C_L s}}$	$\frac{)}{\overline{s}}$ \cdots	 	 	195
10.33\nabla NVALID-ORDER-338 $Z(s) = \left(\begin{array}{c} 10.33\nabla NVALID-ORDER-338 \end{array} \right)$					 	 	195
10.339NVALID-ORDER-339 $Z(s) = ($	$(\infty, \infty, \infty, \infty)$	$, \frac{L_4s}{C_4L_4s^2+1},$	$\frac{R_L}{C_L R_L s + 1}$.		 	 	195
10.34 0 NVALID-ORDER-340 $Z(s) = \left(\frac{1}{2} \right)$	$(\infty, \infty, \infty, \infty)$	$, \frac{L_4s}{C_4L_4s^2+1},$	$R_L + \frac{1}{C_L s}$		 	 	195
10.34INVALID-ORDER-341 $Z(s) = \left(\right.$	$(\infty, \infty, \infty, \infty$	$, \frac{L_4s}{C_4L_4s^2+1},$	$L_L s + \frac{1}{C_L s}$		 	 	196
10.34 2 NVALID-ORDER-342 $Z(s) = \left(\frac{1}{2} \right)$	$(\infty, \ \infty, \ \infty, \ \infty$	$, \frac{L_4s}{C_4L_4s^2+1},$	$\frac{L_L s}{C_L L_L s^2 + 1}$		 	 	196
10.34BNVALID-ORDER-343 $Z(s) = \left(\frac{1}{s} \right)$	$(\infty, \infty, \infty, \infty)$	$, \frac{L_4s}{C_4L_4s^2+1},$	$L_L s + R_L + \overline{\epsilon}$	$\left(\frac{1}{C_L s}\right)$	 	 	196
10.34#NVALID-ORDER-344 $Z(s) = \left(\right.$	$\stackrel{\textstyle \prime}{\scriptstyle \infty}, \; \infty, \; \infty, \; \infty$	$\frac{L_4s}{C_4L_4s^2+1},$	$\frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}$)	 	 	196
10.345NVALID-ORDER-345 $Z(s) = \left(\frac{1}{2} \right)$	$(\infty, \infty, \infty, \infty)$	$, \frac{L_4s}{C_4L_4s^2+1},$	$\frac{L_L s}{C_L L_L s^2 + 1} + F$	R_L)	 	 	196
10.346NVALID-ORDER-346 $Z(s) = \left(\right.$	$(\infty, \ \infty, \ \infty, \ \infty$	$\frac{L_4s}{C_4L_4s^2+1},$	$\frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}$		 	 	197
10.34 T NVALID-ORDER-347 $Z(s) = \left(\frac{1}{2} \right)$	$(\infty, \infty, \infty, \infty)$	$, L_4s + R_4 -$	$+\frac{1}{C_4s}, \frac{1}{C_Ls}$		 	 	197
10.34\(\text{NVALID-ORDER-348} \(Z(s) = \infty \)	$(\infty, \infty, \infty, \infty)$	$, L_4s + R_4 -$	$+\frac{1}{C_4s}$, $R_L+\frac{1}{C_4s}$	$\left(\frac{1}{C_L s}\right)$	 	 	197
10.349NVALID-ORDER-349 $Z(s) = \left(\frac{1}{s} \right)$	$(\infty, \infty, \infty, \infty)$	$, L_4s + R_4 -$	$+\frac{1}{C_4s}, L_Ls +$	$\frac{1}{C_L s}$)	 	 	197
10.35 0 NVALID-ORDER-350 $Z(s) = \left(\begin{array}{c} \\ \end{array} \right)$	$(\infty, \infty, \infty, \infty)$	$L_4s + R_4 - $	$+\frac{1}{C_4s}, \frac{L_Ls}{C_LL_Ls^2}$	$\frac{1}{1}$	 	 	197
10.35INVALID-ORDER-351 $Z(s) = ($	$(\infty, \infty, \infty, \infty)$	$, L_4s + R_4 -$	$+\frac{1}{C_4s}, L_Ls+$	$R_L + \frac{1}{C_L s}$	 	 	197
10.35 2 NVALID-ORDER-352 $Z(s) = \left(\begin{array}{c} \\ \end{array}\right)$	$(\infty, \infty, \infty, \infty$	$, L_4s + R_4 -$	$+\frac{1}{C_4s}, \frac{L_Ls}{C_LL_Ls^2}$	$\frac{1}{1} + R_L$	 	 	198
10.35 % NVALID-ORDER-353 $Z(s) = \left(\frac{1}{2} \right)$	$(\infty, \infty, \infty, \infty, \infty)$	$, L_4s + R_4$	$+\frac{1}{C_4s}, \frac{R_L(L_L)}{L_Ls+R}$	$\left(\frac{s + \frac{1}{C_L s}}{\frac{1}{C_L s}}\right)$	 	 	198

$$\begin{array}{lll} 10.35 \text{INVALID-ORDER-354} \ Z(s) = \left(\infty, \ \infty, \ \infty, \ \infty, \ \frac{1}{C_4 s + \frac{1}{R_4} + \frac{1}{L_4} s}, \ \frac{1}{C_4 s}, \ \frac{1}{C_4 s + \frac{1}{R_4} + \frac{1}{L_4} s}, \ \frac{1}{C_4 s + \frac{1}{R_4} + \frac{1}{C_4} s}, \ \frac{1}{C_4 s + \frac{1}{C_4 s}}, \ \frac{1}{C_4 s + \frac{1}{C_4 s} s}, \ \frac{1}{C_4 s + \frac{1}{$$

10.372NVALID-ORDER-372 $Z(s) =$. 202
10.378NVALID-ORDER-373 $Z(s) =$. 202
10.374NVALID-ORDER-374 $Z(s) =$	$\left(\infty,\right.$	∞ , \propto	∞ , ∞ ,	$\frac{R_4\left(L_{4s+}\right)}{L_{4s+}}$	$\frac{1}{C_4 s} + \frac{1}{C_4 s}$	$\frac{1}{C_L s}$	$+\frac{1}{R_L}$	$+\frac{1}{L_L s}$) .	 	 	 	 	 	 	. 202
10.37 NVALID-ORDER-375 $Z(s) =$	(040				/	 	 	 	 	 	 	. 202
10.376NVALID-ORDER-376 $Z(s) =$	$\left(\infty,\right.$	∞ , \propto	∞ , ∞ ,	$R_4 \left(L_4 + L_4 + L_$	$-R_4 + \frac{1}{C_4 s}$	$\frac{1}{L_L}$, $\frac{R_L}{L_L}$	$\frac{\left(L_L s + \frac{1}{s + R_L - s}\right)}{s + R_L - s}$	$\frac{1}{C_L{}^s} \Big) + \frac{1}{C_L{}^s}$) .	 	 	 	 	 	 	. 202
10.37TNVALID-ORDER- $377 Z(s) =$	$(R_1,$	R_2 , c	$\infty, \infty,$	∞ ,	$\frac{1}{C_L s}$. 203
10.37\nabla NVALID-ORDER-378 $Z(s) =$	$(R_1,$	R_2 , c	$\infty, \infty,$	∞ ,	$\frac{R_L}{C_L R_L s +}$	$\overline{-1}$) .				 	 	 	 	 	 	. 203
10.379NVALID-ORDER-379 $Z(s) =$	$(R_1,$	R_2 , c	$\infty, \infty,$	∞ ,	$R_L + \overline{C}$	$\left(\frac{1}{T_L s}\right)$. 203
10.38 ONVALID-ORDER- $380 Z(s) =$	$(R_1,$	R_2 , c	$\infty, \infty,$	∞ ,	$L_L s + \frac{1}{6}$	$\frac{1}{C_L s}$. 203
10.38INVALID-ORDER-381 $Z(s) =$	$(R_1,$	R_2 , c	$\infty, \infty,$	∞ ,	$\frac{L_L s}{C_L L_L s^2}$	$\frac{1}{+1}$).				 	 	 	 	 	 	. 203
10.38 2 NVALID-ORDER-382 $Z(s) =$	$(R_1,$	R_2 , c	$\infty, \infty,$	∞ ,	$L_L s + I$	$R_L + \overline{\epsilon}$	$\frac{1}{C_L s}$. 203
10.38 B NVALID-ORDER-383 $Z(s) =$	R_1	R_2 , c	∞, ∞	$, \infty,$	$\frac{1}{C_L s + \frac{1}{R_I}}$	$\frac{1}{L} + \frac{1}{L_{L}s}$	$\left(\right) ^{\prime }.$. 204
10.38 INVALID-ORDER-384 $Z(s) =$	$(R_1,$	R_2 , c	$\infty, \infty,$	∞ ,	$\frac{L_L s}{C_L L_L s^2}$	$\frac{1}{+1} + I$	\hat{R}_L			 	 	 	 	 	 	. 204
10.38 NVALID-ORDER-385 $Z(s) =$	`.				,	`	. /			 	 	 	 	 	 	. 204
10.38 6 NVALID-ORDER-386 $Z(s) =$	$(R_1,$	$\frac{1}{C_2 s}$,	∞ , ∞	$, \infty,$	R_L)					 	 	 	 	 	 	. 204
10.38 TNVALID-ORDER-387 $Z(s) =$	$(R_1,$	$\frac{1}{C_2 s}$,	∞ , ∞	∞	$\frac{1}{C_L s}$. 204
10.38NVALID-ORDER-388 $Z(s) =$	$(R_1,$	$\frac{1}{C_2 s}$,	∞ , ∞	∞	$\frac{R_L}{C_L R_L s}$	$\frac{1}{+1}$).				 	 	 	 	 	 	. 205
10.389NVALID-ORDER-389 $Z(s) =$	R_1	$\frac{1}{C_2s}$,	∞ , ∞	∞	$R_L + \frac{1}{6}$	$\frac{1}{C_L s}$. 205
10.39 ONVALID-ORDER- $390 Z(s) =$	>					\ /				 	 	 	 	 	 	. 205
10.39 I NVALID-ORDER-391 $Z(s) =$	>	_				. ′\				 	 	 	 	 	 	. 205
10.392NVALID-ORDER-392 $Z(s) =$	>					_ /	$_{\overline{1}}$) .			 	 	 	 	 	 	. 205

10.39\$NVALID-ORDER-393 $Z(s)=\left(\right. \label{eq:2.1}$	$\left(R_1, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$
10.394NVALID-ORDER-394 $Z(s)=\langle$	$\left(R_1, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$
10.39 INVALID-ORDER-395 $Z(s) = ($	$\left(R_1, \frac{R_2}{C_2R_2s+1}, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1}\right)$
10.396NVALID-ORDER-396 $Z(s)=\langle$	$\left(R_1, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right) \dots \dots$
10.39¶NVALID-ORDER-397 $Z(s)=\langle$	$\left(R_1, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$
10.39&NVALID-ORDER-398 $Z(s) = 1$	$\left(R_1, \frac{R_2}{C_2 R_2 s+1}, \infty, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$
	$\left(R_1,\ R_2 + \frac{1}{C_2 s},\ \infty,\ \infty,\ \infty,\ R_L\right)$
10.40 © NVALID-ORDER-400 $Z(s)=\langle$	$\left(R_1, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{1}{C_L s}\right)$
10.40INVALID-ORDER-401 $Z(s)=\langle$	$\left(R_1, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$
10.40 2 NVALID-ORDER-402 $Z(s) = ($	$\left(R_1, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$
10.40 & NVALID-ORDER-403 $Z(s) = ($	$\left(R_1, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$
10.404NVALID-ORDER-404 $Z(s) = ($	$\left(R_1, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right) \dots \dots$
10.40\$NVALID-ORDER-405 $Z(s) = 1$	$\left(R_1, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$
10.40 GNVALID-ORDER-406 $Z(s)=($	$\left(R_1,\ L_2s+rac{1}{C_2s},\ \infty,\ \infty,\ \infty,\ R_L ight)$
10.40 T NVALID-ORDER-407 $Z(s) = ($	$\left(R_1, L_2s + \frac{1}{C_2s}, \infty, \infty, \infty, \frac{1}{C_Ls}\right) \ldots 20$
10.40&NVALID-ORDER-408 $Z(s) = ($	$\left(R_1, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$
10.40 9 NVALID-ORDER-409 $Z(s) = ($	$\left(R_1, L_2s + \frac{1}{C_2s}, \infty, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$
10.41 © NVALID-ORDER-410 $Z(s) = ($	$\left(R_1, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$
10.41INVALID-ORDER-411 $Z(s) = ($	$\left(R_1, L_2s + \frac{1}{C_2s}, \infty, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right) \dots \dots$
10.41 2 NVALID-ORDER-412 $Z(s) = 1$	$\left(R_1, L_2s + \frac{1}{C_2s}, \infty, \infty, \infty, \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$
10.41 B NVALID-ORDER-413 $Z(s)=($	$\left(R_1, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$
10.414NVALID-ORDER-414 $Z(s) = 0$	$\binom{R_1, L_2s + \frac{1}{C_2s}, \infty, \infty, \infty, \frac{R_L(L_Ls + \frac{1}{C_Ls})}{L_Ls + R_L + \frac{1}{C_Ls}}}{\binom{R_L(L_Ls + \frac{1}{C_Ls})}{L_Ls + R_L + \frac{1}{C_Ls}}}$

10.415NVALID-ORDER-415 $Z(s)=\langle$	$\left(R_1, \ L_2s + R_2 + \frac{1}{C_2s}, \ \infty, \ \infty, \ \infty, \ \frac{1}{C_Ls}\right) \ \dots \ $
10.41 6 NVALID-ORDER-416 $Z(s) = 0$	$\left(R_1, L_2s + R_2 + \frac{1}{C_2s}, \infty, \infty, \infty, \frac{R_L}{C_LR_Ls + 1}\right)$
10.41 T NVALID-ORDER-417 $Z(s) = 0$	$(R_1, L_2s + R_2 + \frac{1}{C_2s}, \infty, \infty, \infty, R_L + \frac{1}{C_Ls})$
10.41\bigselentrightarrow NVALID-ORDER-418 $Z(s)=($	$\left(R_1, L_2s + R_2 + \frac{1}{C_2s}, \infty, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$
10.41 9 NVALID-ORDER-419 $Z(s) = 0$	$\left(R_1, \ L_2s + R_2 + \frac{1}{C_2s}, \ \infty, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2 + 1}\right)$
10.42 0 NVALID-ORDER-420 $Z(s) = 0$	$\left(R_1, L_2s + R_2 + \frac{1}{C_2s}, \infty, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$
10.42INVALID-ORDER-421 $Z(s) = 1$	$\left(R_{1}, L_{2}s + R_{2} + \frac{1}{C_{2}s}, \infty, \infty, \infty, \frac{1}{C_{L}s + \frac{1}{R_{L}} + \frac{1}{L_{L}s}}\right) \dots \dots$
10.42 2 NVALID-ORDER-422 $Z(s) = 0$	$\left(R_1, L_2s + R_2 + \frac{1}{C_2s}, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1} + R_L\right)$
10.42\$NVALID-ORDER-423 $Z(s) = 1$	$\left(R_{1}, L_{2}s + R_{2} + \frac{1}{C_{2}s}, \infty, \infty, \infty, \frac{R_{L}\left(L_{L}s + \frac{1}{C_{L}s}\right)}{L_{L}s + R_{L} + \frac{1}{C_{L}s}}\right) \dots \dots$
10.424NVALID-ORDER-424 $Z(s)=\langle$	$\left(R_1, \frac{L_2s}{C_2L_2s^2+1} + R_2, \infty, \infty, \infty, \frac{1}{C_Ls}\right)$
10.42 5 NVALID-ORDER-425 $Z(s) = 0$	$\left(R_1, \frac{L_2s}{C_2L_2s^2+1} + R_2, \infty, \infty, \infty, R_L + \frac{1}{C_Ls}\right)$
10.426NVALID-ORDER-426 $Z(s) = 0$	$\left(R_1, \frac{L_2s}{C_2L_2s^2+1} + R_2, \infty, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$
10.42 T NVALID-ORDER-427 $Z(s) = 0$	$\left(R_1, \frac{L_2s}{C_2L_2s^2+1} + R_2, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1}\right)$
10.42\nstackNVALID-ORDER-428 $Z(s) = 0$	$\left(R_1, \frac{L_2s}{C_2L_2s^2+1} + R_2, \infty, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$
10.42 9 NVALID-ORDER-429 $Z(s) = 0$	$\left(R_1, \frac{L_2s}{C_2L_2s^2+1} + R_2, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1} + R_L\right) \dots \dots$
	$\left(R_{1}, \frac{L_{2}s}{C_{2}L_{2}s^{2}+1} + R_{2}, \infty, \infty, \infty, \frac{R_{L}\left(L_{L}s + \frac{1}{C_{L}s}\right)}{L_{L}s + R_{L} + \frac{1}{C_{L}s}}\right) \dots \dots$
	$\left(R_1, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \infty, \infty, \infty, \frac{1}{C_Ls}\right)$
	$\left(R_{1}, \frac{R_{2}\left(L_{2}s + \frac{1}{C_{2}s}\right)}{L_{2}s + R_{2} + \frac{1}{C_{2}s}}, \infty, \infty, \infty, \frac{R_{L}}{C_{L}R_{L}s + 1}\right) \dots \dots$
	$\left(R_1, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \infty, \infty, \infty, R_L + \frac{1}{C_Ls}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
10.43 4 NVALID-ORDER-434 $Z(s) = 1$	$\left(R_{1}, \frac{R_{2}\left(L_{2}s + \frac{1}{C_{2}s}\right)}{L_{2}s + R_{2} + \frac{1}{C_{2}s}}, \infty, \infty, \infty, L_{L}s + \frac{1}{C_{L}s}\right) \dots \dots$
10.43 INVALID-ORDER-435 $Z(s) = 1$	$\left(R_1, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1}\right) \dots \dots$

10.436NVALID-ORDER-436 $Z(s) =$							$\left(\frac{1}{\sqrt{s}} \right)$.	 	 	 	 , 	213
10.43TNVALID-ORDER- 437 $Z(s) = 1$								 	 	 	 	213
10.43\NVALID-ORDER-438 $Z(s) =$	R_1	$\frac{R_2 \left(L_2 s + \frac{1}{C_2 s}\right)}{L_2 s + R_2 + \frac{1}{C_2 s}}$	$\frac{\overline{s}}{\overline{s}}$, ∞	$, \infty, \infty,$	$\frac{L_L s}{C_L L_L s^2}$	$\frac{1}{1} + R_L$	<i>a</i>) .	 	 	 	 	214
10.43 9 NVALID-ORDER-439 $Z(s) = 1$	R_1	$\frac{R_2 \left(L_2 s + \frac{1}{C_2 s}\right)}{L_2 s + R_2 + \frac{1}{C_2 s}}$	$\frac{1}{\sqrt{s}}$, ∞	$, \infty, \infty,$	$R_L \left(L_L s - L_L s + R_L s - L_L s + R_L s - L_L $	$\left(\frac{+\frac{1}{C_L s}}{+\frac{1}{C_L s}}\right)$		 	 	 	 	214
10.44 ONVALID-ORDER- $440 Z(s) = 0$	$(L_1s,$	R_2, ∞, ∞	∞ , ∞ ,	$R_L + \frac{1}{C_L}$	$\left(\frac{1}{s}\right)$			 	 	 	 	214
10.44INVALID-ORDER- $441 Z(s) = 0$	$(L_1s,$	R_2, ∞, ∞	∞ , ∞ ,	$L_L s + \frac{1}{C_L}$	$\left(\frac{1}{Ls}\right)$			 	 	 	 	214
10.44 2 NVALID-ORDER-442 $Z(s) = 0$	$(L_1s,$	R_2, ∞, ∞	∞ , ∞ ,	$L_L s + R_1$	$L + \frac{1}{C_L s}$)		 	 	 	 	214
10.44BNVALID-ORDER- 443 $Z(s) = 0$	$(L_1s,$	R_2, ∞, ∞	∞ , ∞ ,	$\frac{L_L s}{C_L L_L s^2 + 1}$	$(1 + R_L)$			 	 	 	 	215
10.44\(\text{INVALID-ORDER-444}\) $Z(s) = 1$	$(L_1s,$	R_2, ∞, ∞	∞ , ∞ ,	$R_L \left(L_L s + L_L s + R_L - L_L s + R_L $	$\left(\frac{1}{C_L s}\right) + \frac{1}{C_L s}$			 	 	 	 	215
10.445NVALID-ORDER- 445 $Z(s) = 1$								 	 	 	 	215
10.44 6 NVALID-ORDER-446 $Z(s) = 1$	$(L_1s,$	$\frac{1}{C_2s}$, ∞ , o	$\infty, \infty,$	$\frac{R_L}{C_L R_L s + 1}$	$_{\overline{1}}$)			 	 	 	 	215
10.44 T NVALID-ORDER-447 $Z(s) = 1$	$(L_1s,$	$\frac{1}{C_2s}$, ∞ , ∞	∞ , ∞ ,	$R_L + \frac{1}{C_L}$	$\left(\frac{1}{2s}\right)$.			 	 	 	 	215
10.448NVALID-ORDER- 448 $Z(s) = 1$	$(L_1s,$	$\frac{1}{C_2s}$, ∞ , ∞	∞ , ∞ ,	$L_L s + \overline{c}$	$\left(\frac{1}{C_L s}\right)$.			 	 	 	 	216
10.44 9 NVALID-ORDER-449 $Z(s) = 0$	$(L_1s,$	$\frac{1}{C_2s}$, ∞ , ∞	$\infty, \infty,$	$\frac{L_L s}{C_L L_L s^2 +}$	$_{\overline{-1}})^{'}$			 	 	 	 	216
10.45 ONVALID-ORDER- $450 Z(s) = 10.45$	$(L_1s,$	$\frac{1}{C_2s}$, ∞ , o	$\infty, \infty,$	$L_L s + F$	$R_L + \frac{1}{C_L s}$	$\left(\cdot \right) \cdot \cdot \cdot$		 	 	 	 	216
10.45INVALID-ORDER-451 $Z(s) =$	$(L_1s,$	$\frac{1}{C_2s}$, ∞ , ∞	$\infty, \infty,$	$\frac{1}{C_L s + \frac{1}{R_L}}$	$\left(\frac{1}{1+\frac{1}{L_L s}}\right)$			 	 	 	 	216
10.45 2 NVALID-ORDER- 452 $Z(s) = 1$	$(L_1s,$	$\frac{1}{C_2s}$, ∞ , ∞	∞ , ∞ ,	$\frac{L_L s}{C_L L_L s^2 +}$	$\left(\frac{1}{1} + R_L\right)$			 	 	 	 	216
10.45 8 NVALID-ORDER-453 $Z(s) = 1$	$(L_1s,$	$\frac{1}{C_2s}$, ∞ ,	$\infty, \infty,$	$\frac{R_L \left(L_L s - L_L s + R_L \right)}{L_L s + R_L}$	$\left(\frac{+\frac{1}{C_L s}}{+\frac{1}{C_L s}}\right)$			 	 	 	 	217
10.45 4 NVALID-ORDER- 454 $Z(s) = 1$	$(L_1s,$	$\frac{R_2}{C_2R_2s+1},$	∞, ∞	$, \infty, \frac{1}{C_L s}$	$\left(\frac{1}{2}\right)$. $\left(\frac{1}{2}\right)$			 	 	 	 	217
10.455NVALID-ORDER- 455 $Z(s) = 1$	>				′ \			 	 	 	 	217
10.456NVALID-ORDER- 456 $Z(s) = 1$	$(L_1s,$	$\frac{R_2}{C_2R_2s+1},$	∞, ∞	$, \infty, R_L$	$+\frac{1}{C_L s}$			 	 	 	 	217

10.45 T NVALID-ORDER- 457 $Z(s) =$	$(L_1s,$	$\frac{R_2}{C_2R_2s+1},$	∞ , ∞ ,	∞ ,	$L_L s + \frac{1}{C_L s}$			 	 	 	 	 217
10.458NVALID-ORDER- 458 $Z(s) =$	$(L_1s,$	$\frac{R_2}{C_2R_2s+1},$	∞ , ∞ ,	∞ ,	$\frac{L_L s}{C_L L_L s^2 + 1}$			 	 	 	 	 218
10.459NVALID-ORDER- 459 $Z(s) =$	$(L_1s,$	$\frac{R_2}{C_2R_2s+1},$	∞ , ∞ ,	∞ ,	$L_L s + R_L +$	$-\frac{1}{C_L s}$		 	 	 	 	 218
10.46 ONVALID-ORDER- $460 Z(s) =$	$\left(L_1s,\right.$	$\frac{R_2}{C_2R_2s+1},$	∞ , ∞ ,	∞ ,	$\frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L}}$	$\frac{1}{L^s}$		 	 	 	 	 218
10.46INVALID-ORDER- 461 $Z(s) =$	$(L_1s,$	$\frac{R_2}{C_2R_2s+1},$	∞ , ∞ ,	∞ ,	$\frac{L_L s}{C_L L_L s^2 + 1} +$	$-\stackrel{'}{R_L}$.		 	 	 	 	 218
10.46 2 NVALID-ORDER-462 $Z(s) =$	$(L_1s,$	$\frac{R_2}{C_2R_2s+1},$	∞ , ∞ ,	∞ ,	$\frac{R_L \left(L_L s + \frac{1}{C_L} + $	$\left(\frac{\overline{s}}{L}\right)$		 	 	 	 	 218
10.463NVALID-ORDER- 463 $Z(s) =$	/				\			 	 	 	 	 219
10.46 INVALID-ORDER- 464 $Z(s) =$	$(L_1s,$	$R_2 + \frac{1}{C_2 s},$	∞ , ∞	$, \infty,$	$\frac{1}{C_L s}$)			 	 	 	 	 219
10.46 5 NVALID-ORDER-465 $Z(s) =$	$(L_1s,$	$R_2 + \frac{1}{C_2 s},$	∞ , ∞	$, \infty,$	$\frac{R_L}{C_L R_L s + 1}$			 	 	 	 	 219
10.46 6 NVALID-ORDER-466 $Z(s) =$	$(L_1s,$	$R_2 + \frac{1}{C_2 s},$	∞ , ∞	$, \infty,$	$R_L + \frac{1}{C_L s}$			 	 	 	 	 219
10.46 T NVALID-ORDER- 467 $Z(s) =$	$(L_1s,$	$L_2s + \frac{1}{C_2s}$	$, \infty, \infty$	o, ∞	$, R_L$)			 	 	 	 	 219
10.468NVALID-ORDER- 468 $Z(s) =$	$(L_1s,$	$L_2s + \frac{1}{C_2s}$	$, \infty, \infty$	o, ∞	$, \frac{1}{C_L s}$.			 	 	 	 	 219
10.469NVALID-ORDER- $469 Z(s) =$	$(L_1s,$	$L_2s + \frac{1}{C_2s}$	$, \infty, \infty$	o, ∞	$, \frac{R_L}{C_L R_L s + 1}$			 	 	 	 	 220
10.47 ONVALID-ORDER- $470 Z(s) =$	$(L_1s,$	$L_2s + \frac{1}{C_2s}$	$, \infty, \infty$	o, ∞	$, R_L + \frac{1}{C_L s}$			 	 	 	 	 220
10.47INVALID-ORDER- $471 Z(s) =$	$(L_1s,$	$L_2s + \frac{1}{C_2s}$	$, \infty, \infty$	o, ∞	$, L_L s + \frac{1}{C_L}$	$\left(\frac{1}{s}\right)$.		 	 	 	 	 220
10.47 2 NVALID-ORDER-472 $Z(s) =$	$(L_1s,$	$L_2 s + \frac{1}{C_2 s}$	$, \infty, \infty$	o, ∞	$, \frac{L_L s}{C_L L_L s^2 + 1}$)		 	 	 	 	 220
10.47 3 NVALID-ORDER-473 $Z(s) =$	$(L_1s,$	$L_2s + \frac{1}{C_2s}$	$, \infty, \infty$	o, ∞	$L_L s + R_L$	$\left(+ \frac{1}{C_L s} \right)$)	 	 	 	 	 220
10.47INVALID-ORDER- 474 $Z(s) =$	$(L_1s,$	$L_2s + \frac{1}{C_2s}$	$, \infty, \infty$	o, ∞	$, \frac{L_L s}{C_L L_L s^2 + 1}$	$+R_L$		 	 	 	 	 220
10.47 Invalid-Order-475 $Z(s) =$	$(L_1s,$	$L_2s + \frac{1}{C_2s}$	$\frac{1}{2}$, ∞ , ∞	0, ∞	$\frac{R_L \left(L_L s + \frac{1}{2}\right)}{L_L s + R_L + \frac{1}{2}}$	$\left(\frac{1}{C_L s}\right)$ $\left(\frac{1}{C_L s}\right)$		 	 	 	 	 221
10.476NVALID-ORDER- $476 Z(s) =$	$(L_1s,$	$L_2s + R_2$	$+\frac{1}{C_2s}$	∞ , c	∞ , ∞ , R_L			 	 	 	 	 221
10.47 T NVALID-ORDER-477 $Z(s) =$	$(L_1s,$	$L_2s + R_2$	$+\frac{1}{C_2s}$	∞ , c	∞ , ∞ , $\frac{1}{C_L s}$)		 	 	 	 	 221
10.47\nstructure NVALID-ORDER-478 $Z(s) =$	$(L_1s,$	$L_2s + R_2$	$+\frac{1}{C_2s}$	∞ , c	∞ , ∞ , $\frac{I}{C_L R}$	$\left(\frac{R_L}{R_L s+1}\right)$		 	 	 	 	 221
10.47 9 NVALID-ORDER-479 $Z(s) =$	$(L_1s,$	$L_2s + R_2$	$+\frac{1}{C_2s}$	∞ , c	∞ , ∞ , $L_L s$	$+\frac{1}{C_L s}$)	 	 	 	 	 221

10.48 0 NVALID-ORDER-480 $Z(s) = \left(\frac{1}{2} \right)$	$L_2s + R_2 + \frac{1}{C_2s}, \ \infty, \ \infty, \ \infty$	∞ , $L_L s + R_L + \frac{1}{C_L s}$. 221
10.48INVALID-ORDER-481 $Z(s) = (1.000000000000000000000000000000000000$	$L_2s + R_2 + \frac{1}{C_2s}, \ \infty, \ \infty, \ \infty$	$\infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L$. 222
10.48 2 NVALID-ORDER-482 $Z(s) = \left(\frac{1}{2}\right)$	$L_2s + R_2 + \frac{1}{C_2s}$, ∞ , ∞ , ∞	$\infty, \ \frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}} $. 222
10.48 3 NVALID-ORDER-483 $Z(s) = (1)^{-1}$. 222
10.484NVALID-ORDER-484 $Z(s) = \left(A_s \right)$	$\frac{L_2s}{C_2L_2s^2+1} + R_2, \ \infty, \ \infty, \ \infty$	$\left(1, \; rac{1}{C_L s} ight) \; \ldots \; $. 222
10.485NVALID-ORDER-485 $Z(s) = \left(1.000000000000000000000000000000000000$	$\frac{L_2s}{C_2L_2s^2+1} + R_2, \ \infty, \ \infty, \ \infty$	$\left(R_L + rac{1}{C_L s}\right)$. 222
10.486NVALID-ORDER-486 $Z(s) = \left(1.000000000000000000000000000000000000$	$\frac{L_2s}{C_2L_2s^2+1} + R_2, \ \infty, \ \infty, \ \infty$	$(L_L s + \frac{1}{C_L s})$. 222
10.48 T NVALID-ORDER-487 $Z(s) = \left(1.000000000000000000000000000000000000$	$\frac{L_2s}{C_2L_2s^2+1} + R_2, \ \infty, \ \infty, \ \infty$	$\left(,\; rac{L_L s}{C_L L_L s^2 + 1} ight) \;$. 223
10.48\text{NVALID-ORDER-488} $Z(s) = \left(1.48 \text{NVALID-ORDER-488}\right)$	$\frac{L_2s}{C_2L_2s^2+1} + R_2, \ \infty, \ \infty, \ \infty$	$(R_L + R_L + \frac{1}{C_L s}) \dots \dots$. 223
10.48 INVALID-ORDER-489 $Z(s) = \left(\frac{1}{2} \right)$	$\frac{L_2s}{C_2L_2s^2+1} + R_2, \ \infty, \ \infty, \ \infty$), $\frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}$. 223
10.49 0 NVALID-ORDER-490 $Z(s) = \left(\frac{1}{2} \right)$	$\frac{L_2s}{C_2L_2s^2+1} + R_2, \ \infty, \ \infty, \ \infty$	$\left(\frac{L_L s}{C_L L_L s^2 + 1} + R_L \right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $. 223
10.49INVALID-ORDER-491 $Z(s) = \left(\frac{1}{2}\right)$. 223
10.49 2 NVALID-ORDER-492 $Z(s) = \left(\frac{1}{2} \right)$	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ \infty, \ \infty, \ \infty,$	$\left(\frac{1}{C_L s}\right)$. 224
10.49 B NVALID-ORDER-493 $Z(s) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$	0 20	/	. 224
10.494NVALID-ORDER-494 $Z(s) = \left(1.000000000000000000000000000000000000$	-	/	. 224
10.49 \mathbf{I} NVALID-ORDER-495 $Z(s) = \left(\frac{1}{2} \right)$	$\frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ \infty, \ \infty, \ \infty,$	$L_L s + \frac{1}{C_L s}$. 224
10.496NVALID-ORDER-496 $Z(s) = 0$	$\frac{R_2\left(L_2 s + \frac{1}{C_2 s}\right)}{L_2 s + R_2 + \frac{1}{C_2 s}}, \ \infty, \ \infty, \ \infty,$	$\left(\frac{L_L s}{C_L L_L s^2 + 1}\right)$. 224
10.49 INVALID-ORDER-497 $Z(s) = (1.000000000000000000000000000000000000$	- <u>4</u> ·	/	. 225
10.49 NVALID-ORDER-498 $Z(s) = (1.000)$	$\frac{R_2\left(L_2 s + \frac{1}{C_2 s}\right)}{L_2 s + R_2 + \frac{1}{C_2 s}}, \ \infty, \ \infty, \ \infty,$	$\frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}$. 225
10.49 9 NVALID-ORDER-499 $Z(s) = 0$	$\frac{R_2\left(L_2 s + \frac{1}{C_2 s}\right)}{L_2 s + R_2 + \frac{1}{C_2 s}}, \ \infty, \ \infty, \ \infty,$	$\frac{L_L s}{C_L L_L s^2 + 1} + R_L$)	. 225

10.500NVALID-ORDER-500 $Z(s) = 1$	$\left(L_{1}s, \frac{R_{2}\left(L_{2}s+\frac{1}{C_{2}s}\right)}{L_{2}s+R_{2}+\frac{1}{C_{2}s}}, \infty, \infty, \infty, \infty, \frac{R_{L}\left(L_{L}s+\frac{1}{C_{L}s}\right)}{L_{L}s+R_{L}+\frac{1}{C_{L}s}}\right) \dots \dots$
10.50INVALID-ORDER-501 $Z(s)=\langle$	$\left(\frac{1}{C_1s}, R_2, \infty, \infty, \infty, \frac{1}{C_Ls}\right)$
10.50 2 NVALID-ORDER-502 $Z(s) = 0$	$\left(\frac{1}{C_1s},\ R_2,\ \infty,\ \infty,\ \infty,\ R_L+rac{1}{C_Ls} ight)$
10.50 B NVALID-ORDER-503 $Z(s)=0$	$\left(\frac{1}{C_1s}, R_2, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$
10.504NVALID-ORDER-504 $Z(s)=\langle$	$\left(\frac{1}{C_1s}, R_2, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1}\right)$
10.505NVALID-ORDER-505 $Z(s)=\langle$	$\left(\frac{1}{C_1s}, R_2, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$
10.50 GNVALID-ORDER-506 $Z(s) = 0$	$\left(\frac{1}{C_1s}, R_2, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1} + R_L\right) \dots \dots$
10.50 T NVALID-ORDER-507 $Z(s) = 0$	$\left(\frac{1}{C_1 s}, R_2, \infty, \infty, \infty, \frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right) \qquad \dots \qquad $
10.50&NVALID-ORDER-508 $Z(s) = 0$	$\left(\frac{1}{C_1s}, \frac{1}{C_2s}, \infty, \infty, \infty, \frac{1}{C_Ls}\right)$
10.50 9 NVALID-ORDER-509 $Z(s) = 0$	$\left(\frac{1}{C_1s}, \frac{1}{C_2s}, \infty, \infty, \infty, \frac{R_L}{C_LR_Ls+1}\right)$
10.51©NVALID-ORDER-510 $Z(s) = 0$	$\left(\frac{1}{C_1s}, \frac{1}{C_2s}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_Ls}\right)$
10.51INVALID-ORDER-511 $Z(s) = 0$	$\left(\frac{1}{C_1s}, \frac{1}{C_2s}, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$
10.51 2 NVALID-ORDER-512 $Z(s) = 0$	$\left(\frac{1}{C_1s}, \frac{1}{C_2s}, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1}\right)$
10.51 & NVALID-ORDER-513 $Z(s) = 0$	$\left(\frac{1}{C_{1s}}, \frac{1}{C_{2s}}, \infty, \infty, \infty, \infty, L_{Ls} + R_{L} + \frac{1}{C_{Ls}}\right)$
10.514NVALID-ORDER-514 $Z(s) = 1$	$\left(\frac{1}{C_1 s}, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$ 228
	$\left(\frac{1}{C_1s}, \frac{1}{C_2s}, \infty, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1} + R_L\right)$
10.516NVALID-ORDER-516 $Z(s) = 1$	$\left(\frac{1}{C_1 s}, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
10.51 T NVALID-ORDER-517 $Z(s) = 0$	$\left(\frac{1}{C_1s}, \frac{R_2}{C_2R_2s+1}, \infty, \infty, \infty, R_L + \frac{1}{C_Ls}\right)$
10.51&NVALID-ORDER-518 $Z(s) = 0$	$\left(\frac{1}{C_1s}, \frac{R_2}{C_2R_2s+1}, \infty, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$
10.51 9 NVALID-ORDER-519 $Z(s) = 0$	$\left(\frac{1}{C_1s}, \frac{R_2}{C_2R_2s+1}, \infty, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$
10.52 0 NVALID-ORDER-520 $Z(s) = 0$	$\left(\frac{1}{C_1 s}, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$
10.52INVALID-ORDER-521 $Z(s) = 1$	$\left(\frac{1}{C_1 s}, \frac{R_2}{C_2 R_2 s+1}, \infty, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$

10.52 2 NVALID-ORDER-522 $Z(s)=\left(\begin{array}{ccc} & & & & & & \\ & & & & & \\ & & & & & \\ \end{array} \right)$	$\left(\frac{1}{C_1 s}, R_2 + \frac{1}{C_2 s},\right)$	∞ , ∞ , ∞ ,	$\frac{1}{C_L s}$)		 	229
10.52 B NVALID-ORDER-523 $Z(s)=($	$\left(\frac{1}{C_1 s}, R_2 + \frac{1}{C_2 s},\right)$	∞ , ∞ , ∞ ,	$\frac{R_L}{C_L R_L s + 1}$ $\cdot \cdot \cdot$		 	229
10.524NVALID-ORDER-524 $Z(s)=\langle$	$(\frac{1}{C_1 s}, R_2 + \frac{1}{C_2 s},$	∞ , ∞ , ∞ ,	$R_L + \frac{1}{C_L s}$		 	230
10.525NVALID-ORDER-525 $Z(s) = 0$	$\left(\frac{1}{C_1 s}, R_2 + \frac{1}{C_2 s},\right)$	∞ , ∞ , ∞ ,	$L_L s + \frac{1}{C_L s}$		 	230
10.526NVALID-ORDER-526 $Z(s) = 0$	$\left(\frac{1}{C_1 s}, R_2 + \frac{1}{C_2 s},\right)$	∞ , ∞ , ∞ ,	$\frac{L_L s}{C_L L_L s^2 + 1}$		 	230
10.52 T NVALID-ORDER-527 $Z(s) = ($	$\left(\frac{1}{C_1 s}, R_2 + \frac{1}{C_2 s},\right.$	∞ , ∞ , ∞ ,	$L_L s + R_L + \frac{1}{C_L s}$)	 	230
10.52\NVALID-ORDER-528 $Z(s) = 1$	$\left(\frac{1}{C_1 s}, R_2 + \frac{1}{C_2 s},\right.$	∞ , ∞ , ∞ ,	$\frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$		 	230
10.52 9 NVALID-ORDER-529 $Z(s) = ($	$(\frac{1}{C_1 s}, R_2 + \frac{1}{C_2 s},$	∞ , ∞ , ∞ ,	$\frac{L_L s}{C_L L_L s^2 + 1} + R_L \bigg)$		 	231
10.530NVALID-ORDER-530 $Z(s) = 1$	$\left(\frac{1}{C_1 s}, R_2 + \frac{1}{C_2 s},\right)$	∞ , ∞ , ∞ ,	$\frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}$		 	231
10.53INVALID-ORDER-531 $Z(s) = ($	$(\frac{1}{C_1 s}, L_2 s + \frac{1}{C_2 s},$	∞ , ∞ , ∞	$, \frac{1}{C_L s}$ $\cdot \cdot \cdot \cdot$		 	231
10.532NVALID-ORDER-532 $Z(s) = 0$	$\left(\frac{1}{C_1 s}, \ L_2 s + \frac{1}{C_2 s},\right.$	∞ , ∞ , ∞	$, \frac{R_L}{C_L R_L s + 1} $		 	231
10.53 B NVALID-ORDER-533 $Z(s)=($	$\left(\frac{1}{C_1 s}, L_2 s + \frac{1}{C_2 s},\right.$	∞ , ∞ , ∞	$, R_L + \frac{1}{C_L s})$		 	231
10.534NVALID-ORDER-534 $Z(s)=\langle$	$\left(\frac{1}{C_1 s}, \ L_2 s + \frac{1}{C_2 s},\right.$	∞ , ∞ , ∞	$, L_L s + \frac{1}{C_L s}$.		 	232
10.535NVALID-ORDER-535 $Z(s)=\langle$	$\left(\frac{1}{C_1 s}, \ L_2 s + \frac{1}{C_2 s},\right.$	∞ , ∞ , ∞	$, \frac{L_L s}{C_L L_L s^2 + 1} $		 	232
10.536NVALID-ORDER-536 $Z(s) = ($	$\left(\frac{1}{C_1 s}, \ L_2 s + \frac{1}{C_2 s},\right.$	∞ , ∞ , ∞	$, L_L s + R_L + \frac{1}{C_L s}$	$\left(\frac{1}{2}\right)$	 	232
10.53 T NVALID-ORDER-537 $Z(s) = 1$	$\left(\frac{1}{C_1 s}, L_2 s + \frac{1}{C_2 s}\right)$	∞ , ∞ , ∞	$, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}$		 	232
10.53\%NVALID-ORDER-538 $Z(s) = ($	$\left(\frac{1}{C_1 s}, L_2 s + \frac{1}{C_2 s},\right.$	∞ , ∞ , ∞	$, \frac{L_L s}{C_L L_L s^2 + 1} + R_L$)	 	232
10.539NVALID-ORDER-539 $Z(s) = 1$	$\left(\frac{1}{C_1 s}, \ L_2 s + \frac{1}{C_2 s},\right)$	∞, ∞, ∞	$, \frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}$		 	233
10.54©NVALID-ORDER-540 $Z(s) = ($	$\left(\frac{1}{C_1s}, L_2s + R_2 + \right)$	$-\frac{1}{C_2s}$, ∞ , o	∞, ∞, R_L)		 	233
10.54INVALID-ORDER-541 $Z(s) = 0$	$\left(\frac{1}{C_1 s}, \ L_2 s + R_2 + \right.$	$-\frac{1}{C_2s}$, ∞ , o	$\infty, \infty, \frac{1}{C_L s} \Big) . .$		 	233
10.542NVALID-ORDER-542 $Z(s) = ($	$\left(\frac{1}{C_1 s}, \ L_2 s + R_2 + \right.$	$-\frac{1}{C_2s}$, ∞ , o	$\infty, \ \infty, \ \frac{R_L}{C_L R_L s + 1}$		 	233
10.54 B NVALID-ORDER-543 $Z(s) = ($	$\left(\frac{1}{C_1s}, L_2s + R_2 + \right)$	$-\frac{1}{C_2s}$, ∞ , o	∞ , ∞ , $R_L + \frac{1}{C_L s}$)	 	233

10.54 4 NVALID-ORDER-544 $Z(s)=$	$\left(\frac{1}{C_1s}, \frac{L_2s}{C_2L_2s^2+1} + R_2, \infty, \infty, \infty, R_L\right)$
10.54 5 NVALID-ORDER-545 $Z(s) =$	$\left(\frac{1}{C_1 s}, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \infty, \infty, \infty, \frac{1}{C_L s}\right)$
10.54 @NVALID-ORDER-546 Z(s) =	$\left(\frac{1}{C_1 s}, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$
$10.54 {\hbox{\it T}} {\hbox{\it NVALID-ORDER-}} 547 \ Z(s) =$	$\left(\frac{1}{C_1 s}, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$
$10.54 \& \text{NVALID-ORDER-548} \ Z(s) =$	$\left(\frac{1}{C_1 s}, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$
10.54 9 NVALID-ORDER-549 $Z(s) =$	$\left(\frac{1}{C_1 s}, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$
$10.55 @ \text{NVALID-ORDER-} 550 \ Z(s) =$	$\left(\frac{1}{C_1 s}, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right) \dots \dots$
$10.55 {\rm INVALID\text{-}ORDER\text{-}}551~Z(s) =$	$\left(\frac{1}{C_1 s}, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$
10.55 2 NVALID-ORDER-552 $Z(s) =$	$\left(\frac{1}{C_1 s}, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right) \dots \dots$
10.55 & NVALID-ORDER-553 $Z(s) =$	$\left(\frac{1}{C_{1}s}, \frac{R_{2}\left(L_{2}s + \frac{1}{C_{2}s}\right)}{L_{2}s + R_{2} + \frac{1}{C_{2}s}}, \infty, \infty, \infty, R_{L}\right) \dots \dots$
10.554NVALID-ORDER-554 $Z(s) =$	$\left(\frac{1}{C_{1}s}, \frac{R_{2}\left(L_{2}s + \frac{1}{C_{2}s}\right)}{L_{2}s + R_{2} + \frac{1}{C_{2}s}}, \infty, \infty, \infty, \frac{1}{C_{L}s}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
10.55 INVALID-ORDER-555 $Z(s) =$	$\left(\frac{1}{C_{1s}}, \frac{R_{2}\left(L_{2}s + \frac{1}{C_{2}s}\right)}{L_{2}s + R_{2} + \frac{1}{C_{2}s}}, \infty, \infty, \infty, \frac{R_{L}}{C_{L}R_{L}s + 1}\right) \dots \dots$
10.55©NVALID-ORDER-556 $Z(s) =$	$\left(\frac{1}{C_1 s}, \frac{R_2\left(L_2 s + \frac{1}{C_2 s}\right)}{L_2 s + R_2 + \frac{1}{C_2 s}}, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right) \qquad \dots $
10.55 T NVALID-ORDER-557 $Z(s) =$	$\left(\frac{1}{C_1 s}, \frac{R_2\left(L_2 s + \frac{1}{C_2 s}\right)}{L_2 s + R_2 + \frac{1}{C_2 s}}, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right) \dots \dots$
10.55\&NVALID-ORDER-558 $Z(s) =$	$\left(\frac{1}{C_{1}s}, \frac{R_{2}\left(L_{2}s + \frac{1}{C_{2}s}\right)}{L_{2}s + R_{2} + \frac{1}{C_{2}s}}, \infty, \infty, \infty, \frac{L_{L}s}{C_{L}L_{L}s^{2} + 1} + R_{L}\right) \dots \dots$
10.55 9 NVALID-ORDER-559 $Z(s) =$	$\left(\frac{1}{C_{1}s}, \frac{R_{2}\left(L_{2}s + \frac{1}{C_{2}s}\right)}{L_{2}s + R_{2} + \frac{1}{C_{2}s}}, \infty, \infty, \infty, \infty, \frac{R_{L}\left(L_{L}s + \frac{1}{C_{L}s}\right)}{L_{L}s + R_{L} + \frac{1}{C_{L}s}}\right) \dots \dots$
$10.56 @ \text{NVALID-ORDER-} 560 \ Z(s) =$	$\left(\frac{R_1}{C_1R_1s+1}, R_2, \infty, \infty, \infty, R_L\right)$
$10.56 {\rm INVALID\text{-}ORDER\text{-}}561~Z(s) =$	$\left(\frac{R_1}{C_1R_1s+1}, R_2, \infty, \infty, \infty, \frac{1}{C_Ls}\right)$
$10.56 2 \text{NVALID-ORDER-} 562 \ Z(s) =$	$\left(\frac{R_1}{C_1R_1s+1}, R_2, \infty, \infty, \infty, R_L + \frac{1}{C_Ls}\right) \qquad \dots \qquad $
$10.56 \& \text{NVALID-ORDER-563} \ Z(s) =$	$\left(\frac{R_1}{C_1R_1s+1}, R_2, \infty, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$
10.564NVALID-ORDER-564 $Z(s) = $	$\left(\frac{R_1}{C_1R_1s+1}, R_2, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1}\right)$

10.56 NVALID-ORDER-565 $Z(s) = 0$	$\left(\frac{R_1}{C_1R_1s+1}, I\right)$	R_2, ∞, \circ	∞, ∞, I	$L_L s +$	$R_L + \frac{1}{C}$	$\left(\frac{1}{Ls}\right)$.		 	 	 	 	 	. 237
10.56 6 NVALID-ORDER-566 $Z(s) = 1$	$\left(rac{R_1}{C_1R_1s+1}, ight.$	R_2, ∞, c	∞ , ∞ ,	$C_L s + \frac{1}{2}$	$\left(\frac{1}{R_L} + \frac{1}{L_L s}\right)$. 237
10.56 T NVALID-ORDER-567 $Z(s) = ($	$\left(\frac{R_1}{C_1R_1s+1}, I\right)$,		,		 	 	 	 	 	. 238
10.56&NVALID-ORDER-568 $Z(s) = 1$	$\left(\frac{R_1}{C_1R_1s+1},\right)$	R_2, ∞, c	$\infty, \infty,$	$\frac{R_L \left(L_I}{L_L s + 1}\right)$	$\frac{\left(Ls + \frac{1}{C_L s}\right)}{R_L + \frac{1}{C_L s}}$)		 	 	 	 	 	. 238
10.56 9 NVALID-ORDER-569 $Z(s) = ($	$\left(\frac{R_1}{C_1R_1s+1}, \ \ \overline{C_1R_1s+1}\right)$	$\frac{1}{C_2s}$, ∞ ,	∞ , ∞ ,	$\frac{1}{C_L s}$. 238
10.570NVALID-ORDER-570 $Z(s)=\left(\rule{0mm}{2.5mm}\right.$	$\left(\frac{R_1}{C_1R_1s+1}, \ \overline{C_1R_1s+1}\right)$	$\frac{1}{C_2s}$, ∞ ,	∞ , ∞ ,	$\frac{R_I}{C_L R_L}$	$\left(\frac{s}{s+1}\right)$.			 	 	 	 	 	. 238
10.57 INVALID-ORDER-57 1 $Z(s)=\left(\right.$	$\left(\frac{R_1}{C_1R_1s+1}, \right.$	$\frac{1}{C_2s}$, ∞ ,	∞ , ∞ ,	R_L +	$\left(\frac{1}{C_L s}\right)$.			 	 	 	 	 	. 238
10.572NVALID-ORDER-572 $Z(s) = ($	$\left(\frac{R_1}{C_1R_1s+1}, \ \overline{C_1R_1s+1}\right)$	$\frac{1}{C_2s}$, ∞ ,	∞ , ∞ ,	$L_L s$ -	$+\frac{1}{C_L s}$. 239
10.57 B NVALID-ORDER-573 $Z(s) = ($	$\left(\frac{R_1}{C_1R_1s+1}, \right)$	$\frac{1}{C_2s}$, ∞ ,	∞ , ∞ ,	$\frac{L_L}{C_L L_L}$	$\left(\frac{s}{s^2+1}\right)$.			 	 	 	 	 	. 239
10.574NVALID-ORDER-574 $Z(s)=\left(\right. \label{eq:2.1}$	<i>;</i> _					$\left(\frac{1}{C_L s}\right)$. 239
10.575NVALID-ORDER-575 $Z(s)=\langle$	$\left(\frac{R_1}{C_1R_1s+1},\right.$	$\frac{1}{C_2s}$, ∞ ,	∞ , ∞ ,	$\overline{C_L s}$ +	$\frac{1}{R_L} + \frac{1}{L_L s}$)		 	 	 	 	 	. 239
10.576NVALID-ORDER-576 $Z(s) = ($	$\left(\frac{R_1}{C_1R_1s+1}, \ \overline{C_1R_1s+1}\right)$	$\frac{1}{C_2s}$, ∞ ,	∞ , ∞ ,	$\frac{L_L}{C_L L_L}$	$\frac{s}{s^2+1} + R$	\hat{R}_L) .		 	 	 	 	 	. 239
10.57 TNVALID-ORDER-577 $Z(s) = 1$	$\left(\frac{R_1}{C_1R_1s+1},\right.$	$\frac{1}{C_2s}$, ∞ ,	$\infty, \ \infty,$	$R_L\left(I_{L_L s + L_L s + L_$	$\frac{L_L s + \frac{1}{C_L s}}{-R_L + \frac{1}{C_L s}}$	$\left(\cdot \right) $. 240
10.57&NVALID-ORDER-578 $Z(s) = ($	$\left(\frac{R_1}{C_1R_1s+1}, \ \overline{C_1R_1s+1}\right)$	$\frac{R_2}{C_2R_2s+1},$	∞ , ∞ ,	∞ ,	$\left(\frac{1}{C_L s}\right)$. 240
10.57 9 NVALID-ORDER-579 $Z(s)=\left(\right.$	$\left(\frac{R_1}{C_1R_1s+1}, \right.$	$\frac{R_2}{C_2R_2s+1},$	∞ , ∞ ,	∞ , i	$R_L + \frac{1}{C_L s}$	$\left(\frac{1}{3}\right)$.		 	 	 	 	 	. 240
10.580NVALID-ORDER-580 $Z(s)=\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left(\frac{R_1}{C_1R_1s+1}, \ \ \overline{C_1R_1s+1}\right)$	$\frac{R_2}{C_2R_2s+1},$	∞ , ∞ ,	∞ , i	$L_L s + \frac{1}{C_L}$	$\left(\frac{1}{s}\right)$.		 	 	 	 	 	. 240
10.58INVALID-ORDER-581 $Z(s)=\left(\rule{0mm}{1.5ex}\right.$	$\left(\frac{R_1}{C_1R_1s+1}, \ \ \overline{C_1R_1s+1}\right)$	$\frac{R_2}{C_2R_2s+1},$	∞ , ∞ ,	∞ ,	$\frac{L_L s}{C_L L_L s^2 + 1}$	$\left(\cdot \right)$.		 	 	 	 	 	. 240
10.58 2 NVALID-ORDER-582 $Z(s) = ($	$\left(\frac{R_1}{C_1R_1s+1}, \ \overline{C_1R_1s+1}\right)$	$\frac{R_2}{C_2R_2s+1},$	∞ , ∞ ,	∞ , i	$L_L s + R_I$	$L + \frac{1}{C_L}$	$\left(\frac{1}{s}\right)$.	 	 	 	 	 	. 240
10.58\$NVALID-ORDER-583 $Z(s)=\langle$	(01101011) .	 	 	 	 	 	. 241
10.584NVALID-ORDER-584 $Z(s) = 1$	$\left(\frac{R_1}{C_1R_1s+1},\right.$	$\frac{R_2}{C_2R_2s+1},$	∞ , ∞ ,	∞ ,	$R_L \left(L_L s + L_L s + R_L s + R_$	$\left(\frac{\frac{1}{C_L s}}{\frac{1}{C_L s}}\right)$. 241
10.58 INVALID-ORDER-585 $Z(s) = 0$	$\left(\frac{R_1}{C_1R_1s+1}, I\right)$	$R_2 + \frac{1}{C_2 s},$	∞ , ∞	∞	$\frac{1}{C_L s}$) .			 	 	 	 	 	. 241
10.586NVALID-ORDER-586 $Z(s) = \langle$	$\left(\frac{R_1}{C_1R_1s+1}, I\right)$	$R_2 + \frac{1}{C_2 s},$	∞ , ∞	$, \infty,$	$\frac{R_L}{C_L R_L s + 1}$	$\left(1\right) $. 241

10.58 T NVALID-ORDER-587 $Z(s)=0$	$\left(\frac{R_1}{C_1 R_1 s + 1}, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$
10.58\bigselength{\mathbf{g}} NVALID-ORDER-588 \ Z(s) = ($\left(\frac{R_1}{C_1R_1s+1}, R_2 + \frac{1}{C_2s}, \infty, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$
10.58 9 NVALID-ORDER-589 $Z(s) = 0$	$\left(\frac{R_1}{C_1R_1s+1}, R_2 + \frac{1}{C_2s}, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1}\right)$
10.59 ONVALID-ORDER-590 $Z(s)=0$	$\left(\frac{R_1}{C_1R_1s+1}, R_2 + \frac{1}{C_2s}, \infty, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$
10.59 INVALID-ORDER-59 1 $\boldsymbol{Z}(s) = 1$	$\left(\frac{R_1}{C_1R_1s+1}, R_2 + \frac{1}{C_2s}, \infty, \infty, \infty, \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$
10.59 2 NVALID-ORDER-592 $Z(s) = 0$	$\left(\frac{R_1}{C_1R_1s+1}, R_2 + \frac{1}{C_2s}, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1} + R_L\right) \dots \dots$
10.59 NVALID-ORDER-593 $Z(s) = 1$	$\left(\frac{R_1}{C_1 R_1 s + 1}, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
10.594NVALID-ORDER-594 $Z(s)=\langle$	$\left(\frac{R_1}{C_1 R_1 s + 1}, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$
10.595NVALID-ORDER-595 $Z(s)=\langle$	$\left(\frac{R_1}{C_1R_1s+1}, L_2s + \frac{1}{C_2s}, \infty, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$
10.596NVALID-ORDER-596 $Z(s)=0$	$\left(\frac{R_1}{C_1R_1s+1}, L_2s + \frac{1}{C_2s}, \infty, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$
10.59 T NVALID-ORDER-597 $Z(s) = 0$	$\left(\frac{R_1}{C_1R_1s+1}, L_2s + \frac{1}{C_2s}, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1} + R_L\right)$
10.59&NVALID-ORDER-598 $Z(s) = 1$	$\left(\frac{R_1}{C_1R_1s+1}, L_2s + \frac{1}{C_2s}, \infty, \infty, \infty, \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right) \dots \dots$
10.59 9 NVALID-ORDER-599 $Z(s) = 0$	$\left(\frac{R_1}{C_1R_1s+1}, L_2s + R_2 + \frac{1}{C_2s}, \infty, \infty, \infty, \frac{1}{C_Ls}\right)$
10.60 0 NVALID-ORDER-600 $Z(s) = 0$	$\left(\frac{R_1}{C_1R_1s+1}, L_2s + R_2 + \frac{1}{C_2s}, \infty, \infty, \infty, \frac{R_L}{C_LR_Ls+1}\right) \dots \dots$
10.60 INVALID-ORDER-601 $\boldsymbol{Z}(s) = ($	$\left(\frac{R_1}{C_1R_1s+1}, L_2s + R_2 + \frac{1}{C_2s}, \infty, \infty, \infty, R_L + \frac{1}{C_Ls}\right)$
10.60 2 NVALID-ORDER-602 $Z(s) = 0$	$\left(\frac{R_1}{C_1 R_1 s + 1}, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right) \dots \dots$
10.60 B NVALID-ORDER-603 $Z(s)=($	$\left(\frac{R_1}{C_1R_1s+1}, L_2s + R_2 + \frac{1}{C_2s}, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1}\right)$
10.604NVALID-ORDER-604 $Z(s)=\langle$	$\left(\frac{R_1}{C_1R_1s+1}, L_2s+R_2+\frac{1}{C_2s}, \infty, \infty, \infty, L_Ls+R_L+\frac{1}{C_Ls}\right)$
10.60\$NVALID-ORDER-605 $Z(s) = 1$	$\left(\frac{R_1}{C_1R_1s+1}, L_2s+R_2+\frac{1}{C_2s}, \infty, \infty, \infty, \frac{1}{C_Ls+\frac{1}{R_L}+\frac{1}{L_Ls}}\right)$
10.60 6 NVALID-ORDER-606 $Z(s)=\langle$	$\left(\frac{R_1}{C_1R_1s+1}, L_2s + R_2 + \frac{1}{C_2s}, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1} + R_L\right)$
10.60 T NVALID-ORDER-607 $Z(s) = 1$	$\left(\frac{R_1}{C_1R_1s+1}, L_2s + R_2 + \frac{1}{C_2s}, \infty, \infty, \infty, \infty, \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right) \dots \dots$
10.60\nbeloeknvalid-order-608 $Z(s) = ($	$\left(\frac{R_1}{C_1R_1s+1}, \frac{L_2s}{C_2L_2s^2+1} + R_2, \infty, \infty, \infty, \frac{1}{C_Ls}\right)$

10.609NVALID-ORDER- 609 $Z(s) =$	$\left(\frac{R_1}{C_1R_1s+1},\right.$	$\frac{L_2s}{C_2L_2s^2+1} + R_2$	$, \infty, \infty,$	∞ ,	$\frac{R_L}{C_L R_L s + 1}$. 246
10.61 ONVALID-ORDER-610 $Z(s) =$	$\left(\frac{R_1}{C_1R_1s+1},\right.$	$\frac{L_2s}{C_2L_2s^2+1} + R_2$	$, \infty, \infty,$	∞ ,	$R_L + \frac{1}{C_L s}$. 246
10.61 I NVALID-ORDER-611 $Z(s) =$	$\left(\frac{R_1}{C_1R_1s+1},\right.$	$\frac{L_2s}{C_2L_2s^2+1} + R_2$	$, \infty, \infty,$	∞ ,	$L_L s + \frac{1}{C_L s}$)	 	 	 	 	. 246
10.61 2 NVALID-ORDER-612 $Z(s) =$	$\left(\frac{R_1}{C_1R_1s+1},\right.$	$\frac{L_2s}{C_2L_2s^2+1} + R_2$	$, \infty, \infty,$	∞ ,	$\frac{L_L s}{C_L L_L s^2 + 1}$. 246
10.61BNVALID-ORDER- 613 $Z(s) =$	$\left(\frac{R_1}{C_1R_1s+1},\right)$	$\frac{L_2s}{C_2L_2s^2+1} + R_2$	$, \infty, \infty,$	∞ ,	$L_L s + R_L$	$+\frac{1}{C_L s}$. 246
10.61\PVALID-ORDER-614 $Z(s) =$	(· L	L /					
10.615NVALID-ORDER-615 $Z(s) =$	$\left(\frac{R_1}{C_1R_1s+1},\right.$	$\frac{L_2s}{C_2L_2s^2+1} + R_2$	$, \infty, \infty,$	∞ ,	$\frac{L_L s}{C_L L_L s^2 + 1} -$	$+R_L$. 247
10.61 6 NVALID-ORDER-616 $Z(s) =$	$\left(\frac{R_1}{C_1R_1s+1},\right.$	$\frac{L_2s}{C_2L_2s^2+1} + R_2$	$_{2}, \infty, \infty$	$, \infty,$	$\frac{R_L \left(L_L s + \frac{1}{C_L} \right)}{L_L s + R_L + \frac{1}{C_L}}$	$\left(\frac{\frac{1}{L^s}}{\frac{1}{L^s}}\right)$. 247

1 Examined H(z) for TIA simple Z2 Z3 ZL: $\frac{Z_3Z_L(Z_2g_m+1)}{Z_2Z_3g_m+Z_2Z_Lg_m+Z_3+Z_L}$

$$H(z) = \frac{Z_3 Z_L (Z_2 g_m + 1)}{Z_2 Z_3 g_m + Z_2 Z_L g_m + Z_3 + Z_L}$$

- 2 HP
- 3 BP
- 3.1 BP-1 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$

$$H(s) = \frac{L_L R_3 s}{C_L L_L R_3 s^2 + L_L s + R_3}$$

Parameters:

Q:
$$C_L R_3 \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L R_3}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.2 BP-2
$$Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_3 R_L s}{C_L L_L R_3 R_L s^2 + L_L R_3 s + L_L R_L s + R_3 R_L}$$

Q:
$$\frac{C_L R_3 R_L \sqrt{\frac{1}{C_L L_L}}}{R_3 + R_L}$$
wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
bandwidth:
$$\frac{R_3 + R_L}{C_L R_3 R_L}$$
K-LP: 0
K-HP: 0
K-BP:
$$\frac{R_3 R_L}{R_3 + R_L}$$
Qz: 0
Wz: None

3.3 BP-3
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s}{C_3 L_L R_L s^2 + C_L L_L R_L s^2 + L_L s + R_L}$$

Q:
$$R_L \sqrt{\frac{1}{L_L(C_3 + C_L)}} (C_3 + C_L)$$

wo: $\sqrt{\frac{1}{L_L(C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L(C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.4 BP-4
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L R_3 s}{C_3 L_L R_3 s^2 + C_L L_L R_3 s^2 + L_L s + R_3}$$

Q:
$$R_3\sqrt{\frac{1}{L_L(C_3+C_L)}}(C_3+C_L)$$

wo:
$$\sqrt{\frac{1}{L_L(C_3+C_L)}}$$

bandwidth: $\frac{1}{R_3(C_3+C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.5 BP-5
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_3 R_L s}{C_3 L_L R_3 R_L s^2 + C_L L_L R_3 R_L s^2 + L_L R_3 s + L_L R_L s + R_3 R_L}$$

Q:
$$\frac{R_{3}R_{L}\sqrt{\frac{1}{L_{L}(C_{3}+C_{L})}}(C_{3}+C_{L})}{R_{3}+R_{L}}$$
 wo:
$$\sqrt{\frac{1}{L_{L}(C_{3}+C_{L})}}$$
 bandwidth:
$$\frac{R_{3}+R_{L}}{R_{3}R_{L}(C_{3}+C_{L})}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_{3}R_{L}}{R_{3}+R_{L}}$$
 Qz: 0 Wz: None

3.6 BP-6
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{L_3 R_L s}{C_3 L_3 R_L s^2 + L_3 s + R_L}$$

Q:
$$C_3 R_L \sqrt{\frac{1}{C_3 L_3}}$$
 wo: $\sqrt{\frac{1}{C_3 L_3}}$

bandwidth:
$$\frac{1}{C_3R_L}$$

K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.7 BP-7
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{L_3 R_L s}{C_3 L_3 R_L s^2 + C_L L_3 R_L s^2 + L_3 s + R_L}$$

Q:
$$R_L \sqrt{\frac{1}{L_3(C_3 + C_L)}} (C_3 + C_L)$$

wo: $\sqrt{\frac{1}{L_3(C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L(C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.8 BP-8
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_3 L_L R_L s}{C_3 L_3 L_L R_L s^2 + C_L L_3 L_L R_L s^2 + L_3 L_L s + L_3 R_L + L_L R_L}$$

Q:
$$R_L \sqrt{\frac{L_3 + L_L}{L_3 L_L (C_3 + C_L)}} (C_3 + C_L)$$

wo: $\sqrt{\frac{L_3 + L_L}{L_3 L_L (C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L (C_3 + C_L)}$

K-LP: 0 K-HP: 0 K-BP: R_L Qz: 0 Wz: None

3.9 BP-9
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{L_3 R_3 R_L s}{C_3 L_3 R_3 R_L s^2 + L_3 R_3 s + L_3 R_L s + R_3 R_L}$$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{C_{3}R_{3}R_{L}\sqrt{\frac{1}{C_{3}L_{3}}}}{R_{3}+R_{L}} \\ \text{wo:} \ \sqrt{\frac{1}{C_{3}L_{3}}} \\ \text{bandwidth:} \ \frac{R_{3}+R_{L}}{C_{3}R_{3}R_{L}} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_{3}R_{L}}{R_{3}+R_{L}} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.10 BP-10
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + C_L L_3 R_3 s^2 + L_3 s + R_3}$$

Q:
$$R_3\sqrt{\frac{1}{L_3(C_3+C_L)}}$$
 (C_3+C_L)
wo: $\sqrt{\frac{1}{L_3(C_3+C_L)}}$
bandwidth: $\frac{1}{R_3(C_3+C_L)}$
K-LP: 0

K-HP: 0K-BP: R_3 Qz: 0Wz: None

3.11 BP-11
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{L_3 R_3 R_L s}{C_3 L_3 R_3 R_L s^2 + C_L L_3 R_3 R_L s^2 + L_3 R_3 s + L_3 R_L s + R_3 R_L}$$

Parameters:

$$Q \colon \frac{R_3 R_L \sqrt{\frac{1}{L_3 (C_3 + C_L)}} (C_3 + C_L)}{R_3 + R_L}$$
wo: $\sqrt{\frac{1}{L_3 (C_3 + C_L)}}$
bandwidth: $\frac{R_3 + R_L}{R_3 R_L (C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: $\frac{R_3 R_L}{R_3 + R_L}$
Qz: 0
Wz: None

3.12 BP-12
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_3 L_L R_3 s}{C_3 L_3 L_L R_3 s^2 + C_L L_3 L_L R_3 s^2 + L_3 L_L s + L_3 R_3 + L_L R_3}$$

Q:
$$R_3 \sqrt{\frac{L_3 + L_L}{L_3 L_L (C_3 + C_L)}}$$
 ($C_3 + C_L$)
wo: $\sqrt{\frac{L_3 + L_L}{L_3 L_L (C_3 + C_L)}}$
bandwidth: $\frac{1}{R_3 (C_3 + C_L)}$
K-LP: 0

K-BP: R_3 Qz: 0 Wz: None

3.13 BP-13
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_3 L_L R_3 R_L s}{C_3 L_3 L_L R_3 R_L s^2 + C_L L_3 L_L R_3 R_L s^2 + L_3 L_L R_3 s + L_3 L_L R_1 s + L_3 R_3 R_L + L_L R_3 R_L}$$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{R_3R_L\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}(C_3+C_L)}{R_3+R_L} \\ \text{wo:} \ \sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}} \\ \text{bandwidth:} \ \frac{R_3+R_L}{R_3R_L(C_3+C_L)} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_3R_L}{R_3+R_L} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.14 BP-14
$$Z(s) = \left(\frac{R_1\left(L_1s + \frac{1}{C_1s}\right)}{L_1s + R_1 + \frac{1}{C_1s}}, \infty, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1}\right)$$

$$H(s) = \frac{L_LR_3s}{C_LL_LR_3s^2 + L_Ls + R_3}$$

Q:
$$C_L R_3 \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L R_3}$
K-LP: 0
K-HP: 0

K-BP: R_3 Qz: 0 Wz: None

3.15 BP-15
$$Z(s) = \left(\frac{R_1\left(L_1s + \frac{1}{C_1s}\right)}{L_1s + R_1 + \frac{1}{C_1s}}, \infty, \infty, \infty, \infty, \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_LR_3R_Ls}{C_LL_LR_3R_Ls^2 + L_LR_3s + L_LR_Ls + R_3R_L}$$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{C_L R_3 R_L \sqrt{\frac{1}{C_L L_L}}}{R_3 + R_L} \\ \text{wo:} \ \sqrt{\frac{1}{C_L L_L}} \\ \text{bandwidth:} \ \frac{R_3 + R_L}{C_L R_3 R_L} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_3 R_L}{R_3 + R_L} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.16 BP-16
$$Z(s) = \left(\infty, R_2, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s}{C_3 L_L R_L s^2 + C_L L_L R_L s^2 + L_L s + R_L}$$

Q:
$$R_L \sqrt{\frac{1}{L_L(C_3 + C_L)}} (C_3 + C_L)$$

wo: $\sqrt{\frac{1}{L_L(C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L(C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_L

Qz: 0 Wz: None

3.17 BP-17
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L R_3 s}{C_3 L_L R_3 s^2 + C_L L_L R_3 s^2 + L_L s + R_3}$$

Parameters:

Q:
$$R_3\sqrt{\frac{1}{L_L(C_3+C_L)}}$$
 (C_3+C_L) wo: $\sqrt{\frac{1}{L_L(C_3+C_L)}}$ bandwidth: $\frac{1}{R_3(C_3+C_L)}$ K-LP: 0 K-HP: 0 K-BP: R_3 Qz: 0 Wz: None

3.18 BP-18
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_3 R_L s}{C_3 L_L R_3 R_L s^2 + C_L L_L R_3 R_L s^2 + L_L R_3 s + L_L R_L s + R_3 R_L}$$

$$\begin{array}{l} \text{Q:} \ \frac{R_3R_L\sqrt{\frac{1}{L_L(C_3+C_L)}}(C_3+C_L)}{R_3+R_L} \\ \text{wo:} \ \sqrt{\frac{1}{L_L(C_3+C_L)}} \\ \text{bandwidth:} \ \frac{R_3+R_L}{R_3R_L(C_3+C_L)} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_3R_L}{R_3+R_L} \\ \text{Qz:} \ 0 \end{array}$$

Wz: None

3.19 BP-19
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{L_3 R_L s}{C_3 L_3 R_L s^2 + L_3 s + R_L}$$

Parameters:

Q:
$$C_3R_L\sqrt{\frac{1}{C_3L_3}}$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{1}{C_3R_L}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.20 BP-20
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{L_3 R_L s}{C_3 L_3 R_L s^2 + C_L L_3 R_L s^2 + L_3 s + R_L}$$

Q:
$$R_L \sqrt{\frac{1}{L_3(C_3 + C_L)}} (C_3 + C_L)$$

wo: $\sqrt{\frac{1}{L_3(C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L(C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.21 BP-21
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_3 L_L R_L s}{C_3 L_3 L_L R_L s^2 + C_L L_3 L_L R_L s^2 + L_3 L_L s + L_3 R_L + L_L R_L s}$$

Q:
$$R_L \sqrt{\frac{L_3 + L_L}{L_3 L_L (C_3 + C_L)}}$$
 $(C_3 + C_L)$ wo: $\sqrt{\frac{L_3 + L_L}{L_3 L_L (C_3 + C_L)}}$ bandwidth: $\frac{1}{R_L (C_3 + C_L)}$ K-LP: 0 K-HP: 0 K-BP: R_L Qz: 0 Wz: None

3.22 BP-22
$$Z(s) = \left(\infty, \ \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \ \infty, \ \infty, \ \infty, \ R_L\right)$$

$$H(s) = \frac{L_3 R_3 R_L s}{C_3 L_3 R_3 R_L s^2 + L_3 R_3 s + L_3 R_L s + R_3 R_L}$$

$$\begin{array}{l} \text{Q:} \ \frac{C_{3}R_{3}R_{L}\sqrt{\frac{1}{C_{3}L_{3}}}}{R_{3}+R_{L}} \\ \text{wo:} \ \sqrt{\frac{1}{C_{3}L_{3}}} \\ \text{bandwidth:} \ \frac{R_{3}+R_{L}}{C_{3}R_{3}R_{L}} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_{3}R_{L}}{R_{3}+R_{L}} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.23 BP-23
$$Z(s) = \left(\infty, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + C_L L_3 R_3 s^2 + L_3 s + R_3}$$

Q:
$$R_3\sqrt{\frac{1}{L_3(C_3+C_L)}}$$
 (C_3+C_L)
wo: $\sqrt{\frac{1}{L_3(C_3+C_L)}}$
bandwidth: $\frac{1}{R_3(C_3+C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.24 BP-24
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \infty, \ \infty, \ \infty, \ \frac{R_L}{C_LR_Ls+1}\right)$$

$$H(s) = \frac{L_3 R_3 R_L s}{C_3 L_3 R_3 R_L s^2 + C_L L_3 R_3 R_L s^2 + L_3 R_3 s + L_3 R_L s + R_3 R_L}$$

$$\begin{array}{l} \text{Q:} \ \frac{R_3R_L\sqrt{\frac{1}{L_3(C_3+C_L)}}(C_3+C_L)}{R_3+R_L} \\ \text{wo:} \ \sqrt{\frac{1}{L_3(C_3+C_L)}} \\ \text{bandwidth:} \ \frac{R_3+R_L}{R_3R_L(C_3+C_L)} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_3R_L}{R_3+R_L} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.25 BP-25
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \infty, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2+1}\right)$$

$$H(s) = \frac{L_3 L_L R_3 s}{C_3 L_3 L_L R_3 s^2 + C_L L_3 L_L R_3 s^2 + L_3 L_L s + L_3 R_3 + L_L R_3}$$

Q:
$$R_3\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}$$
 (C_3+C_L)
wo: $\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}$
bandwidth: $\frac{1}{R_3(C_3+C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.26 BP-26
$$Z(s) = \left(\infty, \ \frac{L_{2s}}{C_2L_2s^2+1} + R_2, \ \infty, \ \infty, \ \infty, \ \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_3L_LR_3R_Ls}{C_3L_3L_LR_3R_Ls^2 + C_LL_3L_LR_3R_Ls^2 + L_3L_LR_3s + L_3L_LR_Ls + L_3R_3R_L + L_LR_3R_L}$$

$$\begin{array}{l} \text{Q:} \ \frac{R_3R_L\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}}{R_3+R_L} (C_3+C_L)} \\ \text{wo:} \ \sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}} \\ \text{bandwidth:} \ \frac{R_3+R_L}{R_3R_L(C_3+C_L)} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_3R_L}{R_3+R_L} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.27 BP-27
$$Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L R_3 s}{C_L L_L R_3 s^2 + L_L s + R_3}$$

Q:
$$C_L R_3 \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L R_3}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.28 BP-28
$$Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_3 R_L s}{C_L L_L R_3 R_L s^2 + L_L R_3 s + L_L R_L s + R_3 R_L}$$

Q:
$$\frac{C_L R_3 R_L \sqrt{\frac{1}{C_L L_L}}}{R_3 + R_L}$$
wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
bandwidth:
$$\frac{R_3 + R_L}{C_L R_3 R_L}$$
K-LP: 0
K-HP: 0
K-BP:
$$\frac{R_3 R_L}{R_3 + R_L}$$
Qz: 0
Wz: None

3.29 BP-29
$$Z(s) = \left(\infty, \infty, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s}{C_3 L_L R_L s^2 + C_L L_L R_L s^2 + L_L s + R_L}$$

Q:
$$R_L \sqrt{\frac{1}{L_L(C_3 + C_L)}} (C_3 + C_L)$$

wo: $\sqrt{\frac{1}{L_L(C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L(C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.30 BP-30
$$Z(s) = \left(\infty, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L R_3 s}{C_3 L_L R_3 s^2 + C_L L_L R_3 s^2 + L_L s + R_3}$$

Q:
$$R_3\sqrt{\frac{1}{L_L(C_3+C_L)}}$$
 (C_3+C_L)
wo: $\sqrt{\frac{1}{L_L(C_3+C_L)}}$
bandwidth: $\frac{1}{R_3(C_3+C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.31 BP-31
$$Z(s) = \left(\infty, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_3 R_L s}{C_3 L_L R_3 R_L s^2 + C_L L_L R_3 R_L s^2 + L_L R_3 s + L_L R_L s + R_3 R_L}$$

Q:
$$\frac{R_{3}R_{L}\sqrt{\frac{1}{L_{L}(C_{3}+C_{L})}}(C_{3}+C_{L})}{R_{3}+R_{L}}$$
 wo:
$$\sqrt{\frac{1}{L_{L}(C_{3}+C_{L})}}$$
 bandwidth:
$$\frac{R_{3}+R_{L}}{R_{3}R_{L}(C_{3}+C_{L})}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_{3}R_{L}}{R_{3}+R_{L}}$$
 Qz: 0 Wz: None

3.32 BP-32
$$Z(s) = \left(\infty, \infty, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{L_3 R_L s}{C_3 L_3 R_L s^2 + L_3 s + R_L}$$

Q:
$$C_3R_L\sqrt{\frac{1}{C_3L_3}}$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{1}{C_3R_L}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.33 BP-33
$$Z(s) = \left(\infty, \infty, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{L_3 R_L s}{C_3 L_3 R_L s^2 + C_L L_3 R_L s^2 + L_3 s + R_L}$$

Q:
$$R_L \sqrt{\frac{1}{L_3(C_3+C_L)}} (C_3+C_L)$$

wo: $\sqrt{\frac{1}{L_3(C_3+C_L)}}$
bandwidth: $\frac{1}{R_L(C_3+C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.34 BP-34
$$Z(s) = \left(\infty, \infty, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_3 L_L R_L s}{C_3 L_3 L_L R_L s^2 + C_L L_3 L_L R_L s^2 + L_3 L_L s + L_3 R_L + L_L R_L}$$

Q:
$$R_L \sqrt{\frac{L_3 + L_L}{L_3 L_L (C_3 + C_L)}}$$
 ($C_3 + C_L$)
wo: $\sqrt{\frac{L_3 + L_L}{L_3 L_L (C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L (C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.35 BP-35
$$Z(s) = \left(\infty, \infty, \frac{L_3s}{C_3L_3s^2+1} + R_3, \infty, \infty, R_L\right)$$

$$H(s) = \frac{L_3 R_3 R_L s}{C_3 L_3 R_3 R_L s^2 + L_3 R_3 s + L_3 R_L s + R_3 R_L}$$

$$\begin{aligned} &\text{Q:} \ \frac{C_{3}R_{3}R_{L}\sqrt{\frac{1}{C_{3}L_{3}}}}{R_{3}+R_{L}} \\ &\text{wo:} \ \sqrt{\frac{1}{C_{3}L_{3}}} \\ &\text{bandwidth:} \ \frac{R_{3}+R_{L}}{C_{3}R_{3}R_{L}} \\ &\text{K-LP:} \ 0 \\ &\text{K-HP:} \ 0 \\ &\text{K-BP:} \ \frac{R_{3}R_{L}}{R_{3}+R_{L}} \\ &\text{Qz:} \ 0 \\ &\text{Wz:} \ \text{None} \end{aligned}$$

3.36 BP-36
$$Z(s) = \left(\infty, \infty, \frac{L_3s}{C_3L_3s^2+1} + R_3, \infty, \infty, \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + C_L L_3 R_3 s^2 + L_3 s + R_3}$$

Q:
$$R_3\sqrt{\frac{1}{L_3(C_3+C_L)}}$$
 (C_3+C_L)
wo: $\sqrt{\frac{1}{L_3(C_3+C_L)}}$
bandwidth: $\frac{1}{R_3(C_3+C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.37 BP-37
$$Z(s) = \left(\infty, \infty, \frac{L_3s}{C_3L_3s^2+1} + R_3, \infty, \infty, \frac{R_L}{C_LR_Ls+1}\right)$$

$$H(s) = \frac{L_3 R_3 R_L s}{C_3 L_3 R_3 R_L s^2 + C_L L_3 R_3 R_L s^2 + L_3 R_3 s + L_3 R_L s + R_3 R_L}$$

$$\begin{array}{l} \text{Q:} \ \frac{R_3R_L\sqrt{\frac{1}{L_3(C_3+C_L)}}(C_3+C_L)}{R_3+R_L} \\ \text{wo:} \ \sqrt{\frac{1}{L_3(C_3+C_L)}} \\ \text{bandwidth:} \ \frac{R_3+R_L}{R_3R_L(C_3+C_L)} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_3R_L}{R_3+R_L} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.38 BP-38
$$Z(s) = \left(\infty, \infty, \frac{L_3s}{C_3L_3s^2+1} + R_3, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1}\right)$$

$$H(s) = \frac{L_3 L_L R_3 s}{C_3 L_3 L_L R_3 s^2 + C_L L_3 L_L R_3 s^2 + L_3 L_L s + L_3 R_3 + L_L R_3}$$

Q:
$$R_3\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}$$
 (C_3+C_L) wo: $\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}$ bandwidth: $\frac{1}{R_3(C_3+C_L)}$ K-LP: 0 K-HP: 0 K-BP: R_3 Qz: 0 Wz: None

3.39 BP-39
$$Z(s) = \left(\infty, \infty, \frac{L_3s}{C_3L_3s^2+1} + R_3, \infty, \infty, \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_3L_LR_3R_Ls}{C_3L_3L_LR_3R_Ls^2 + C_LL_3L_LR_3R_Ls^2 + L_3L_LR_3s + L_3L_LR_Ls + L_3R_3R_L + L_LR_3R_L}$$

$$\begin{array}{l} \text{Q:} \ \frac{R_3R_L\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}(C_3+C_L)}{R_3+R_L}\\ \text{wo:} \ \sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}\\ \text{bandwidth:} \ \frac{R_3+R_L}{R_3R_L(C_3+C_L)}\\ \text{K-LP:} \ 0\\ \text{K-HP:} \ 0\\ \text{K-BP:} \ \frac{R_3R_L}{R_3+R_L}\\ \text{Qz:} \ 0\\ \text{Wz:} \ \text{None} \end{array}$$

3.40 BP-40
$$Z(s) = \left(\infty, \infty, \infty, \frac{1}{C_4 s}, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L R_3 s}{C_L L_L R_3 s^2 + L_L s + R_3}$$

Q:
$$C_L R_3 \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L R_3}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.41 BP-41
$$Z(s) = \left(\infty, \infty, \infty, \frac{1}{C_4 s}, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_3 R_L s}{C_L L_L R_3 R_L s^2 + L_L R_3 s + L_L R_L s + R_3 R_L}$$

Q:
$$\frac{C_L R_3 R_L \sqrt{\frac{1}{C_L L_L}}}{R_3 + R_L}$$
 wo: $\sqrt{\frac{1}{C_L L_L}}$ bandwidth: $\frac{R_3 + R_L}{C_L R_3 R_L}$ K-LP: 0 K-HP: 0 K-BP: $\frac{R_3 R_L}{R_3 + R_L}$ Qz: 0 Wz: None

3.42 BP-42
$$Z(s) = \left(\infty, \infty, \infty, \frac{R_4}{C_4 R_4 s + 1}, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s}{C_3 L_L R_L s^2 + C_L L_L R_L s^2 + L_L s + R_L}$$

Q:
$$R_L \sqrt{\frac{1}{L_L(C_3 + C_L)}} (C_3 + C_L)$$

wo: $\sqrt{\frac{1}{L_L(C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L(C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.43 BP-43
$$Z(s) = \left(\infty, \infty, \infty, R_4 + \frac{1}{C_4 s}, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L R_3 s}{C_3 L_L R_3 s^2 + C_L L_L R_3 s^2 + L_L s + R_3}$$

$$\begin{array}{l} {\rm Q:}\; R_3 \sqrt{\frac{1}{L_L(C_3 + C_L)}} \left(C_3 + C_L \right) \\ {\rm wo:}\; \sqrt{\frac{1}{L_L(C_3 + C_L)}} \\ {\rm bandwidth:}\; \frac{1}{R_3(C_3 + C_L)} \\ {\rm K-LP:}\; 0 \\ {\rm K-HP:}\; 0 \\ {\rm K-BP:}\; R_3 \\ {\rm Qz:}\; 0 \\ {\rm Wz:}\; {\rm None} \end{array}$$

3.44 BP-44
$$Z(s) = \left(\infty, \infty, \infty, R_4 + \frac{1}{C_4 s}, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_3 R_L s}{C_3 L_L R_3 R_L s^2 + C_L L_L R_3 R_L s^2 + L_L R_3 s + L_L R_L s + R_3 R_L}$$

$$\begin{array}{l} \text{Q:} \ \frac{R_3R_L\sqrt{\frac{1}{L_L(C_3+C_L)}}(C_3+C_L)}{R_3+R_L}\\ \text{wo:} \ \sqrt{\frac{1}{L_L(C_3+C_L)}}\\ \text{bandwidth:} \ \frac{R_3+R_L}{R_3R_L(C_3+C_L)}\\ \text{K-LP:} \ 0\\ \text{K-HP:} \ 0\\ \text{K-BP:} \ \frac{R_3R_L}{R_3+R_L}\\ \text{Qz:} \ 0\\ \text{Wz:} \ \text{None} \end{array}$$

3.45 BP-45
$$Z(s) = \left(\infty, \infty, \infty, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, R_L\right)$$

$$H(s) = \frac{L_3 R_L s}{C_3 L_3 R_L s^2 + L_3 s + R_L}$$

Q:
$$C_3R_L\sqrt{\frac{1}{C_3L_3}}$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{1}{C_3R_L}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.46 BP-46
$$Z(s) = \left(\infty, \infty, \infty, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{L_3 R_L s}{C_3 L_3 R_L s^2 + C_L L_3 R_L s^2 + L_3 s + R_L}$$

Q:
$$R_L \sqrt{\frac{1}{L_3(C_3 + C_L)}} (C_3 + C_L)$$

wo: $\sqrt{\frac{1}{L_3(C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L(C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.47 BP-47
$$Z(s) = \left(\infty, \infty, \infty, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_3 L_L R_L s}{C_3 L_3 L_L R_L s^2 + C_L L_3 L_L R_L s^2 + L_3 L_L s + L_3 R_L + L_L R_L}$$

Q:
$$R_L \sqrt{\frac{L_3 + L_L}{L_3 L_L (C_3 + C_L)}}$$
 $(C_3 + C_L)$ wo: $\sqrt{\frac{L_3 + L_L}{L_3 L_L (C_3 + C_L)}}$ bandwidth: $\frac{1}{R_L (C_3 + C_L)}$ K-LP: 0 K-HP: 0 K-BP: R_L Qz: 0 Wz: None

3.48 BP-48
$$Z(s) = \left(\infty, \infty, \infty, \frac{L_{4s}}{C_4L_4s^2+1} + R_4, \infty, R_L\right)$$

$$H(s) = \frac{L_3R_3R_Ls}{C_3L_3R_3R_Ls^2 + L_3R_3s + L_3R_Ls + R_3R_L}$$

$$\begin{array}{l} \text{Q:} \ \frac{C_{3}R_{3}R_{L}\sqrt{\frac{1}{C_{3}L_{3}}}}{R_{3}+R_{L}} \\ \text{wo:} \ \sqrt{\frac{1}{C_{3}L_{3}}} \\ \text{bandwidth:} \ \frac{R_{3}+R_{L}}{C_{3}R_{3}R_{L}} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_{3}R_{L}}{R_{3}+R_{L}} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.49 BP-49
$$Z(s) = \left(\infty, \infty, \infty, \frac{L_4s}{C_4L_4s^2+1} + R_4, \infty, \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + C_L L_3 R_3 s^2 + L_3 s + R_3}$$

$$\begin{array}{l} {\rm Q:}\; R_3\sqrt{\frac{1}{L_3(C_3+C_L)}}\,(C_3+C_L)\\ {\rm wo:}\; \sqrt{\frac{1}{L_3(C_3+C_L)}}\\ {\rm bandwidth:}\; \frac{1}{R_3(C_3+C_L)}\\ {\rm K-LP:}\; 0\\ {\rm K-HP:}\; 0\\ {\rm K-BP:}\; R_3\\ {\rm Qz:}\; 0\\ {\rm Wz:}\; {\rm None} \end{array}$$

3.50 BP-50
$$Z(s) = \left(\infty, \infty, \infty, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{L_3 R_3 R_L s}{C_3 L_3 R_3 R_L s^2 + C_L L_3 R_3 R_L s^2 + L_3 R_3 s + L_3 R_L s + R_3 R_L}$$

$$Q \colon \frac{R_3 R_L \sqrt{\frac{1}{L_3(C_3 + C_L)}}(C_3 + C_L)}{R_3 + R_L}$$
 wo: $\sqrt{\frac{1}{L_3(C_3 + C_L)}}$ bandwidth: $\frac{R_3 + R_L}{R_3 R_L(C_3 + C_L)}$ K-LP: 0 K-HP: 0 K-BP: $\frac{R_3 R_L}{R_3 + R_L}$ Qz: 0 Wz: None

3.51 BP-51
$$Z(s) = \left(\infty, \infty, \infty, \frac{L_4s}{C_4L_4s^2+1} + R_4, \infty, \frac{L_Ls}{C_LL_Ls^2+1}\right)$$

$$H(s) = \frac{L_3L_LR_3s}{C_3L_3L_LR_3s^2 + C_LL_3L_LR_3s^2 + L_3L_Ls + L_3R_3 + L_LR_3}$$

Q:
$$R_3\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}$$
 (C_3+C_L)
wo: $\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}$
bandwidth: $\frac{1}{R_3(C_3+C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.52 BP-52
$$Z(s) = \left(\infty, \infty, \infty, \frac{L_4s}{C_4L_4s^2+1} + R_4, \infty, \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_3L_LR_3R_Ls}{C_3L_3L_LR_3R_Ls^2 + C_LL_3L_LR_3R_Ls^2 + L_3L_LR_3s + L_3L_LR_Ls + L_3R_3R_L + L_LR_3R_L}$$

$$\begin{array}{l} \text{Q:} \ \frac{R_3R_L\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}}{R_3+R_L} (C_3+C_L) \\ \text{wo:} \ \sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}} \\ \text{bandwidth:} \ \frac{R_3+R_L}{R_3R_L(C_3+C_L)} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_3R_L}{R_3+R_L} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.53 BP-53
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{1}{C_4 s}, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L R_3 s}{C_L L_L R_3 s^2 + L_L s + R_3}$$

Q:
$$C_L R_3 \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L R_3}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.54 BP-54
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{1}{C_4 s}, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_3 R_L s}{C_L L_L R_3 R_L s^2 + L_L R_3 s + L_L R_L s + R_3 R_L}$$

Q:
$$\frac{C_L R_3 R_L \sqrt{\frac{1}{C_L L_L}}}{R_3 + R_L}$$
wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
bandwidth:
$$\frac{R_3 + R_L}{C_L R_3 R_L}$$
K-LP: 0
K-HP: 0
K-BP:
$$\frac{R_3 R_L}{R_3 + R_L}$$
Qz: 0
Wz: None

3.55 BP-55
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{R_4}{C_4 R_4 s + 1}, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s}{C_3 L_L R_L s^2 + C_L L_L R_L s^2 + L_L s + R_L}$$

Q:
$$R_L \sqrt{\frac{1}{L_L(C_3 + C_L)}} (C_3 + C_L)$$

wo: $\sqrt{\frac{1}{L_L(C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L(C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.56 BP-56
$$Z(s) = \left(\infty, \infty, \infty, \infty, R_4 + \frac{1}{C_4 s}, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L R_3 s}{C_3 L_L R_3 s^2 + C_L L_L R_3 s^2 + L_L s + R_3}$$

Q:
$$R_3\sqrt{\frac{1}{L_L(C_3+C_L)}}$$
 (C_3+C_L)
wo: $\sqrt{\frac{1}{L_L(C_3+C_L)}}$
bandwidth: $\frac{1}{R_3(C_3+C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.57 BP-57
$$Z(s) = \left(\infty, \infty, \infty, \infty, R_4 + \frac{1}{C_4 s}, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_3 R_L s}{C_3 L_L R_3 R_L s^2 + C_L L_L R_3 R_L s^2 + L_L R_3 s + L_L R_L s + R_3 R_L}$$

Q:
$$\frac{R_{3}R_{L}\sqrt{\frac{1}{L_{L}(C_{3}+C_{L})}}(C_{3}+C_{L})}{R_{3}+R_{L}}$$
 wo:
$$\sqrt{\frac{1}{L_{L}(C_{3}+C_{L})}}$$
 bandwidth:
$$\frac{R_{3}+R_{L}}{R_{3}R_{L}(C_{3}+C_{L})}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_{3}R_{L}}{R_{3}+R_{L}}$$
 Qz: 0 Wz: None

3.58 BP-58
$$Z(s) = \left(\infty, \infty, \infty, \infty, L_4 s + R_4 + \frac{1}{C_4 s}, R_L\right)$$

$$H(s) = \frac{L_3 R_L s}{C_3 L_3 R_L s^2 + L_3 s + R_L}$$

Q:
$$C_3R_L\sqrt{\frac{1}{C_3L_3}}$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{1}{C_3R_L}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.59 BP-59
$$Z(s) = \left(\infty, \infty, \infty, \infty, L_4 s + R_4 + \frac{1}{C_4 s}, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{L_3 R_L s}{C_3 L_3 R_L s^2 + C_L L_3 R_L s^2 + L_3 s + R_L}$$

$$\begin{array}{l} {\rm Q:}\; R_L \sqrt{\frac{1}{L_3(C_3+C_L)}} \left(C_3+C_L\right) \\ {\rm wo:}\; \sqrt{\frac{1}{L_3(C_3+C_L)}} \\ {\rm bandwidth:}\; \frac{1}{R_L(C_3+C_L)} \\ {\rm K-LP:}\; 0 \\ {\rm K-HP:}\; 0 \\ {\rm K-BP:}\; R_L \\ {\rm Qz:}\; 0 \\ {\rm Wz:}\; {\rm None} \end{array}$$

3.60 BP-60
$$Z(s) = \left(\infty, \infty, \infty, \infty, L_4 s + R_4 + \frac{1}{C_4 s}, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_3 L_L R_L s}{C_3 L_3 L_L R_L s^2 + C_L L_3 L_L R_L s^2 + L_3 L_L s + L_3 R_L + L_L R_L}$$

Q:
$$R_L \sqrt{\frac{L_3 + L_L}{L_3 L_L (C_3 + C_L)}}$$
 $(C_3 + C_L)$ wo: $\sqrt{\frac{L_3 + L_L}{L_3 L_L (C_3 + C_L)}}$ bandwidth: $\frac{1}{R_L (C_3 + C_L)}$ K-LP: 0 K-HP: 0 K-BP: R_L Qz: 0 Wz: None

3.61 BP-61
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_4s}{C_4L_4s^2+1} + R_4, R_L\right)$$

$$H(s) = \frac{L_3 R_3 R_L s}{C_3 L_3 R_3 R_L s^2 + L_3 R_3 s + L_3 R_L s + R_3 R_L}$$

$$\begin{array}{l} \text{Q:} \ \frac{C_3 R_3 R_L \sqrt{\frac{1}{C_3 L_3}}}{R_3 + R_L} \\ \text{wo:} \ \sqrt{\frac{1}{C_3 L_3}} \\ \text{bandwidth:} \ \frac{R_3 + R_L}{C_3 R_3 R_L} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_3 R_L}{R_3 + R_L} \\ \text{Qz:} \ 0 \end{array}$$

3.62 BP-62
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_4s}{C_4L_4s^2+1} + R_4, \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + C_L L_3 R_3 s^2 + L_3 s + R_3}$$

 ${\bf Parameters:}$

Wz: None

Q:
$$R_3\sqrt{\frac{1}{L_3(C_3+C_L)}}$$
 (C_3+C_L)
wo: $\sqrt{\frac{1}{L_3(C_3+C_L)}}$
bandwidth: $\frac{1}{R_3(C_3+C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.63 BP-63
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_4s}{C_4L_4s^2+1} + R_4, \frac{R_L}{C_LR_Ls+1}\right)$$

$$H(s) = \frac{L_3 R_3 R_L s}{C_3 L_3 R_3 R_L s^2 + C_L L_3 R_3 R_L s^2 + L_3 R_3 s + L_3 R_L s + R_3 R_L}$$

$$Q \colon \frac{R_3 R_L \sqrt{\frac{1}{L_3 (C_3 + C_L)}} (C_3 + C_L)}{R_3 + R_L}$$
wo: $\sqrt{\frac{1}{L_3 (C_3 + C_L)}}$
bandwidth: $\frac{R_3 + R_L}{R_3 R_L (C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: $\frac{R_3 R_L}{R_3 + R_L}$
Qz: 0
Wz: None

3.64 BP-64
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_4s}{C_4L_4s^2+1} + R_4, \frac{L_Ls}{C_LL_Ls^2+1}\right)$$

$$H(s) = \frac{L_3 L_L R_3 s}{C_3 L_3 L_L R_3 s^2 + C_L L_3 L_L R_3 s^2 + L_3 L_L s + L_3 R_3 + L_L R_3}$$

Q:
$$R_3\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}$$
 (C_3+C_L)
wo: $\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}$
bandwidth: $\frac{1}{R_3(C_3+C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.65 BP-65
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_4s}{C_4L_4s^2+1} + R_4, \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_3L_LR_3R_Ls}{C_3L_3L_LR_3R_Ls^2 + C_LL_3L_LR_3R_Ls^2 + L_3L_LR_3s + L_3L_LR_Ls + L_3R_3R_L + L_LR_3R_L}$$

$$\begin{array}{l} \text{Q:} \ \frac{R_3R_L\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}(C_3+C_L)}{R_3+R_L} \\ \text{wo:} \ \sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}} \\ \text{bandwidth:} \ \frac{R_3+R_L}{R_3R_L(C_3+C_L)} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_3R_L}{R_3+R_L} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.66 BP-66
$$Z(s) = \left(R_1, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L R_3 s}{C_L L_L R_3 s^2 + L_L s + R_3}$$

Q:
$$C_L R_3 \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L R_3}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.67 BP-67
$$Z(s) = \left(R_1, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_3 R_L s}{C_L L_L R_3 R_L s^2 + L_L R_3 s + L_L R_L s + R_3 R_L}$$

Q:
$$\frac{C_L R_3 R_L \sqrt{\frac{1}{C_L L_L}}}{R_3 + R_L}$$
wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
bandwidth:
$$\frac{R_3 + R_L}{C_L R_3 R_L}$$
K-LP: 0
K-HP: 0
K-BP:
$$\frac{R_3 R_L}{R_3 + R_L}$$
Qz: 0
Wz: None

3.68 BP-68
$$Z(s) = \left(R_1, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s}{C_3 L_I R_L s^2 + C_L L_I R_L s^2 + L_L s + R_L}$$

Q:
$$R_L \sqrt{\frac{1}{L_L(C_3 + C_L)}} (C_3 + C_L)$$

wo: $\sqrt{\frac{1}{L_L(C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L(C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.69 BP-69
$$Z(s) = \left(R_1, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L R_3 s}{C_3 L_L R_3 s^2 + C_L L_L R_3 s^2 + L_L s + R_3}$$

$$\begin{array}{l} {\rm Q:}\; R_3 \sqrt{\frac{1}{L_L(C_3+C_L)}} \left(C_3+C_L\right) \\ {\rm wo:}\; \sqrt{\frac{1}{L_L(C_3+C_L)}} \\ {\rm bandwidth:}\; \frac{1}{R_3(C_3+C_L)} \\ {\rm K-LP:}\; 0 \\ {\rm K-HP:}\; 0 \\ {\rm K-BP:}\; R_3 \\ {\rm Qz:}\; 0 \\ {\rm Wz:}\; {\rm None} \end{array}$$

3.70 BP-70
$$Z(s) = \left(R_1, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_3 R_L s}{C_3 L_L R_3 R_L s^2 + C_L L_L R_3 R_L s^2 + L_L R_3 s + L_L R_L s + R_3 R_L}$$

$$Q \colon \frac{R_{3}R_{L}\sqrt{\frac{1}{L_{L}(C_{3}+C_{L})}}(C_{3}+C_{L})}{R_{3}+R_{L}}$$
 wo: $\sqrt{\frac{1}{L_{L}(C_{3}+C_{L})}}$ bandwidth: $\frac{R_{3}+R_{L}}{R_{3}R_{L}(C_{3}+C_{L})}$ K-LP: 0 K-HP: 0 K-BP: $\frac{R_{3}R_{L}}{R_{3}+R_{L}}$ Qz: 0 Wz: None

3.71 BP-71
$$Z(s) = \left(R_1, \frac{L_2s}{C_2L_2s^2+1} + R_2, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{L_3 R_L s}{C_3 L_3 R_L s^2 + L_3 s + R_L}$$

Q:
$$C_3R_L\sqrt{\frac{1}{C_3L_3}}$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{1}{C_3R_L}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.72 BP-72
$$Z(s) = \left(R_1, \frac{L_2s}{C_2L_2s^2+1} + R_2, \infty, \infty, \infty, \frac{R_L}{C_LR_Ls+1}\right)$$

$$H(s) = \frac{L_3 R_L s}{C_3 L_3 R_L s^2 + C_L L_3 R_L s^2 + L_3 s + R_L}$$

Q:
$$R_L \sqrt{\frac{1}{L_3(C_3 + C_L)}} (C_3 + C_L)$$

wo: $\sqrt{\frac{1}{L_3(C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L(C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.73 BP-73
$$Z(s) = \left(R_1, \frac{L_{2s}}{C_2L_2s^2+1} + R_2, \infty, \infty, \infty, \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_3L_LR_Ls}{C_3L_3L_LR_Ls^2 + C_LL_3L_LR_Ls^2 + L_3L_Ls + L_3R_L + L_LR_L}$$

Q:
$$R_L \sqrt{\frac{L_3 + L_L}{L_3 L_L (C_3 + C_L)}}$$
 ($C_3 + C_L$)
wo: $\sqrt{\frac{L_3 + L_L}{L_3 L_L (C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L (C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.74 BP-74 $Z(s) = (L_1 s, R_2, \infty, \infty, \infty, R_L)$

$$H(s) = \frac{L_3 R_3 R_L s}{C_3 L_3 R_3 R_L s^2 + L_3 R_3 s + L_3 R_L s + R_3 R_L}$$

Q:
$$\frac{C_3R_3R_L\sqrt{\frac{1}{C_3L_3}}}{R_3+R_L}$$
 wo: $\sqrt{\frac{1}{C_3L_3}}$ bandwidth: $\frac{R_3+R_L}{C_3R_3R_L}$ K-LP: 0 K-HP: 0 K-BP: $\frac{R_3R_L}{R_3+R_L}$ Qz: 0 Wz: None

3.75 BP-75
$$Z(s) = \left(L_1 s, R_2, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + C_L L_3 R_3 s^2 + L_3 s + R_3}$$

$$\begin{array}{l} {\rm Q:}\; R_3\sqrt{\frac{1}{L_3(C_3+C_L)}}\left(C_3+C_L\right) \\ {\rm wo:}\;\; \sqrt{\frac{1}{L_3(C_3+C_L)}} \\ {\rm bandwidth:}\;\; \frac{1}{R_3(C_3+C_L)} \\ {\rm K-LP:}\; 0 \\ {\rm K-HP:}\; 0 \\ {\rm K-BP:}\; R_3 \\ {\rm Qz:}\; 0 \\ {\rm Wz:}\; {\rm None} \end{array}$$

3.76 BP-76
$$Z(s) = \left(L_1 s, R_2, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{L_3 R_3 R_L s}{C_3 L_3 R_3 R_L s^2 + C_L L_3 R_3 R_L s^2 + L_3 R_3 s + L_3 R_L s + R_3 R_L}$$

Q:
$$\frac{R_{3}R_{L}\sqrt{\frac{1}{L_{3}(C_{3}+C_{L})}}(C_{3}+C_{L})}{R_{3}+R_{L}}$$
 wo:
$$\sqrt{\frac{1}{L_{3}(C_{3}+C_{L})}}$$
 bandwidth:
$$\frac{R_{3}+R_{L}}{R_{3}R_{L}(C_{3}+C_{L})}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_{3}R_{L}}{R_{3}+R_{L}}$$
 Qz: 0 Wz: None

3.77 BP-77
$$Z(s) = \left(L_1 s, R_2, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_3 L_L R_3 s}{C_3 L_3 L_L R_3 s^2 + C_L L_3 L_L R_3 s^2 + L_3 L_L s + L_3 R_3 + L_L R_3}$$

Q:
$$R_3\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}$$
 (C_3+C_L)
wo: $\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}$
bandwidth: $\frac{1}{R_3(C_3+C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.78 BP-78
$$Z(s) = \left(L_1 s, R_2, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_3 L_L R_3 R_L s}{C_3 L_3 L_L R_3 R_L s^2 + C_L L_3 L_L R_3 R_L s^2 + L_3 L_L R_3 s + L_3 L_L R_1 s + L_3 R_3 R_L + L_L R_3 R_L}$$

$$\begin{array}{l} \text{Q:} \ \frac{R_3R_L\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}(C_3+C_L)}{R_3+R_L} \\ \text{wo:} \ \sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}} \\ \text{bandwidth:} \ \frac{R_3+R_L}{R_3R_L(C_3+C_L)} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_3R_L}{R_3+R_L} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.79 BP-79
$$Z(s) = \left(L_1 s, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L R_3 s}{C_L L_L R_3 s^2 + L_L s + R_3}$$

Q:
$$C_L R_3 \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L R_3}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.80 BP-80
$$Z(s) = \left(L_1 s, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_3 R_L s}{C_L L_L R_3 R_L s^2 + L_L R_3 s + L_L R_L s + R_3 R_L}$$

Q:
$$\frac{C_L R_3 R_L \sqrt{\frac{1}{C_L L_L}}}{R_3 + R_L}$$
wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
bandwidth:
$$\frac{R_3 + R_L}{C_L R_3 R_L}$$
K-LP: 0
K-HP: 0
K-BP:
$$\frac{R_3 R_L}{R_3 + R_L}$$
Qz: 0
Wz: None

3.81 BP-81
$$Z(s) = \left(L_1 s, \ L_2 s + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s}{C_3 L_L R_L s^2 + C_L L_L R_L s^2 + L_L s + R_L}$$

Q:
$$R_L \sqrt{\frac{1}{L_L(C_3 + C_L)}} (C_3 + C_L)$$

wo: $\sqrt{\frac{1}{L_L(C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L(C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.82 BP-82
$$Z(s) = \left(L_1 s, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L R_3 s}{C_3 L_L R_3 s^2 + C_L L_L R_3 s^2 + L_L s + R_3}$$

Q:
$$R_3\sqrt{\frac{1}{L_L(C_3+C_L)}}$$
 (C_3+C_L)
wo: $\sqrt{\frac{1}{L_L(C_3+C_L)}}$
bandwidth: $\frac{1}{R_3(C_3+C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.83 BP-83
$$Z(s) = \left(L_1 s, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_3 R_L s}{C_3 L_L R_3 R_L s^2 + C_L L_L R_3 R_L s^2 + L_L R_3 s + L_L R_L s + R_3 R_L}$$

Q:
$$\frac{R_{3}R_{L}\sqrt{\frac{1}{L_{L}(C_{3}+C_{L})}}(C_{3}+C_{L})}{R_{3}+R_{L}}$$
 wo:
$$\sqrt{\frac{1}{L_{L}(C_{3}+C_{L})}}$$
 bandwidth:
$$\frac{R_{3}+R_{L}}{R_{3}R_{L}(C_{3}+C_{L})}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_{3}R_{L}}{R_{3}+R_{L}}$$
 Qz: 0 Wz: None

3.84 BP-84
$$Z(s) = \left(\frac{1}{C_1 s}, R_2, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{L_3 R_L s}{C_3 L_3 R_L s^2 + L_3 s + R_L}$$

Q:
$$C_3R_L\sqrt{\frac{1}{C_3L_3}}$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{1}{C_3R_L}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.85 BP-85
$$Z(s) = \left(\frac{1}{C_1 s}, R_2, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{L_3 R_L s}{C_3 L_3 R_L s^2 + C_L L_3 R_L s^2 + L_3 s + R_L}$$

Q:
$$R_L \sqrt{\frac{1}{L_3(C_3 + C_L)}} (C_3 + C_L)$$

wo: $\sqrt{\frac{1}{L_3(C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L(C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.86 BP-86
$$Z(s) = \left(\frac{1}{C_1 s}, R_2, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_3 L_L R_L s}{C_3 L_3 L_L R_L s^2 + C_L L_3 L_L R_L s^2 + L_3 L_L s + L_3 R_L + L_L R_L}$$

Q:
$$R_L \sqrt{\frac{L_3 + L_L}{L_3 L_L (C_3 + C_L)}}$$
 ($C_3 + C_L$)
wo: $\sqrt{\frac{L_3 + L_L}{L_3 L_L (C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L (C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.87 BP-87
$$Z(s) = \left(\frac{1}{C_1 s}, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{L_3 R_3 R_L s}{C_3 L_3 R_3 R_L s^2 + L_3 R_3 s + L_3 R_L s + R_3 R_L}$$

$$\begin{array}{l} \text{Q:} \ \frac{C_{3}R_{3}R_{L}\sqrt{\frac{1}{C_{3}L_{3}}}}{R_{3}+R_{L}} \\ \text{wo:} \ \sqrt{\frac{1}{C_{3}L_{3}}} \\ \text{bandwidth:} \ \frac{R_{3}+R_{L}}{C_{3}R_{3}R_{L}} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_{3}R_{L}}{R_{3}+R_{L}} \\ \text{Qz:} \ 0 \end{array}$$

3.88 BP-88
$$Z(s) = \left(\frac{1}{C_1 s}, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + C_L L_3 R_3 s^2 + L_3 s + R_3}$$

 ${\bf Parameters:}$

Wz: None

Q:
$$R_3\sqrt{\frac{1}{L_3(C_3+C_L)}}$$
 (C_3+C_L)
wo: $\sqrt{\frac{1}{L_3(C_3+C_L)}}$
bandwidth: $\frac{1}{R_3(C_3+C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.89 BP-89
$$Z(s) = \left(\frac{1}{C_1 s}, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{L_3 R_3 R_L s}{C_3 L_3 R_3 R_L s^2 + C_L L_3 R_3 R_L s^2 + L_3 R_3 s + L_3 R_L s + R_3 R_L}$$

Q:
$$\frac{R_{3}R_{L}\sqrt{\frac{1}{L_{3}(C_{3}+C_{L})}}(C_{3}+C_{L})}{R_{3}+R_{L}}$$
 wo:
$$\sqrt{\frac{1}{L_{3}(C_{3}+C_{L})}}$$
 bandwidth:
$$\frac{R_{3}+R_{L}}{R_{3}R_{L}(C_{3}+C_{L})}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_{3}R_{L}}{R_{3}+R_{L}}$$
 Qz: 0 Wz: None

3.90 BP-90
$$Z(s) = \left(\frac{1}{C_1 s}, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_3 L_L R_3 s}{C_3 L_3 L_L R_3 s^2 + C_L L_3 L_L R_3 s^2 + L_3 L_L s + L_3 R_3 + L_L R_3}$$

Q:
$$R_3\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}$$
 (C_3+C_L) wo: $\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}$ bandwidth: $\frac{1}{R_3(C_3+C_L)}$ K-LP: 0 K-HP: 0 K-BP: R_3 Qz: 0 Wz: None

3.91 BP-91
$$Z(s) = \left(\frac{1}{C_1 s}, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_3 L_L R_3 R_L s}{C_3 L_3 L_L R_3 R_L s^2 + C_L L_3 L_L R_3 R_L s^2 + L_3 L_L R_3 s + L_3 L_L R_4 s + L_3 R_3 R_L + L_L R_3 R_L s}$$

$$\begin{array}{l} \text{Q:} \ \frac{R_3R_L\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}(C_3+C_L)}{R_3+R_L}\\ \text{wo:} \ \sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}\\ \text{bandwidth:} \ \frac{R_3+R_L}{R_3R_L(C_3+C_L)}\\ \text{K-LP:} \ 0\\ \text{K-HP:} \ 0\\ \text{K-BP:} \ \frac{R_3R_L}{R_3+R_L}\\ \text{Qz:} \ 0\\ \text{Wz:} \ \text{None} \end{array}$$

3.92 BP-92
$$Z(s) = \left(\frac{1}{C_1 s}, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L R_3 s}{C_L L_L R_3 s^2 + L_L s + R_3}$$

Q:
$$C_L R_3 \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L R_3}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.93 BP-93
$$Z(s) = \left(\frac{1}{C_1 s}, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_3 R_L s}{C_L L_L R_3 R_L s^2 + L_L R_3 s + L_L R_L s + R_3 R_L}$$

Q:
$$\frac{C_L R_3 R_L \sqrt{\frac{1}{C_L L_L}}}{R_3 + R_L}$$
 wo: $\sqrt{\frac{1}{C_L L_L}}$ bandwidth: $\frac{R_3 + R_L}{C_L R_3 R_L}$ K-LP: 0 K-HP: 0 K-BP: $\frac{R_3 R_L}{R_3 + R_L}$ Qz: 0 Wz: None

3.94 BP-94
$$Z(s) = \left(\frac{1}{C_1 s}, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s}{C_3 L_L R_L s^2 + C_L L_L R_L s^2 + L_L s + R_L}$$

Q:
$$R_L \sqrt{\frac{1}{L_L(C_3 + C_L)}} (C_3 + C_L)$$

wo: $\sqrt{\frac{1}{L_L(C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L(C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.95 BP-95
$$Z(s) = \left(\frac{1}{C_1 s}, \frac{R_2 \left(L_2 s + \frac{1}{C_2 s}\right)}{L_2 s + R_2 + \frac{1}{C_2 s}}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L R_3 s}{C_3 L_L R_3 s^2 + C_L L_L R_3 s^2 + L_L s + R_3}$$

Q:
$$R_3\sqrt{\frac{1}{L_L(C_3+C_L)}}$$
 (C_3+C_L)
wo: $\sqrt{\frac{1}{L_L(C_3+C_L)}}$
bandwidth: $\frac{1}{R_3(C_3+C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.96 BP-96
$$Z(s) = \left(\frac{1}{C_1 s}, \frac{R_2\left(L_2 s + \frac{1}{C_2 s}\right)}{L_2 s + R_2 + \frac{1}{C_2 s}}, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_3 R_L s}{C_3 L_L R_3 R_L s^2 + C_L L_L R_3 R_L s^2 + L_L R_3 s + L_L R_L s + R_3 R_L s}$$

$$\begin{array}{l} \text{Q:} \ \frac{R_3R_L\sqrt{\frac{1}{L_L(C_3+C_L)}}(C_3+C_L)}{R_3+R_L} \\ \text{wo:} \ \sqrt{\frac{1}{L_L(C_3+C_L)}} \\ \text{bandwidth:} \ \frac{R_3+R_L}{R_3R_L(C_3+C_L)} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_3R_L}{R_3+R_L} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.97 BP-97
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{L_3 R_L s}{C_3 L_3 R_L s^2 + L_3 s + R_L}$$

Q:
$$C_3R_L\sqrt{\frac{1}{C_3L_3}}$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{1}{C_3R_L}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.98 BP-98
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{L_3 R_L s}{C_3 L_3 R_L s^2 + C_L L_3 R_L s^2 + L_3 s + R_L}$$

Q:
$$R_L \sqrt{\frac{1}{L_3(C_3 + C_L)}} (C_3 + C_L)$$

wo: $\sqrt{\frac{1}{L_3(C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L(C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.99 BP-99
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_3 L_L R_L s}{C_3 L_3 L_L R_L s^2 + C_L L_3 L_L R_L s^2 + L_3 L_L s + L_3 R_L + L_L R_L}$$

Q:
$$R_L \sqrt{\frac{L_3 + L_L}{L_3 L_L (C_3 + C_L)}}$$
 ($C_3 + C_L$)
wo: $\sqrt{\frac{L_3 + L_L}{L_3 L_L (C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L (C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.100 BP-100
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{L_3 R_3 R_L s}{C_3 L_3 R_3 R_L s^2 + L_3 R_3 s + L_3 R_L s + R_3 R_L}$$

Q:
$$\frac{C_3R_3R_L\sqrt{\frac{1}{C_3L_3}}}{R_3+R_L}$$
 wo: $\sqrt{\frac{1}{C_3L_3}}$ bandwidth: $\frac{R_3+R_L}{C_3R_3R_L}$ K-LP: 0 K-HP: 0 K-BP: $\frac{R_3R_L}{R_3+R_L}$ Qz: 0 Wz: None

3.101 BP-101
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + C_L L_3 R_3 s^2 + L_3 s + R_3}$$

Q:
$$R_3\sqrt{\frac{1}{L_3(C_3+C_L)}}$$
 (C_3+C_L)
wo: $\sqrt{\frac{1}{L_3(C_3+C_L)}}$
bandwidth: $\frac{1}{R_3(C_3+C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.102 BP-102
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{L_3 R_3 R_L s}{C_3 L_3 R_3 R_L s^2 + C_L L_3 R_3 R_L s^2 + L_3 R_3 s + L_3 R_L s + R_3 R_L}$$

$$Q \colon \frac{R_3 R_L \sqrt{\frac{1}{L_3 (C_3 + C_L)}} (C_3 + C_L)}{R_3 + R_L}$$
wo: $\sqrt{\frac{1}{L_3 (C_3 + C_L)}}$
bandwidth: $\frac{R_3 + R_L}{R_3 R_L (C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: $\frac{R_3 R_L}{R_3 + R_L}$
Qz: 0
Wz: None

3.103 BP-103
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_3 L_L R_3 s}{C_3 L_3 L_L R_3 s^2 + C_L L_3 L_L R_3 s^2 + L_3 L_L s + L_3 R_3 + L_L R_3}$$

Q:
$$R_3\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}$$
 (C_3+C_L)
wo: $\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}$
bandwidth: $\frac{1}{R_3(C_3+C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.104 BP-104
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_3 L_L R_3 R_L s}{C_3 L_3 L_L R_3 R_L s^2 + C_L L_3 L_L R_3 R_L s^2 + L_3 L_L R_3 s + L_3 L_L R_4 s + L_3 R_3 R_L + L_L R_3 R_L}$$

$$\begin{array}{l} \text{Q:} \ \frac{R_3R_L\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}(C_3+C_L)}{R_3+R_L} \\ \text{wo:} \ \sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}} \\ \text{bandwidth:} \ \frac{R_3+R_L}{R_3R_L(C_3+C_L)} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_3R_L}{R_3+R_L} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

- 4 LP
- 5 BS

5.1 BS-1
$$Z(s) = \left(R_1, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 (C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_3 s + 1}$$

Q:
$$\frac{L_L\sqrt{\frac{1}{C_LL_L}}}{R_3}$$
wo:
$$\sqrt{\frac{1}{C_LL_L}}$$
bandwidth:
$$\frac{R_3}{L_L}$$
K-LP: R_3 K-HP: R_3 K-BP: 0
Qz: None
Wz:
$$\sqrt{\frac{1}{C_LL_L}}$$

5.2 BS-2
$$Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \infty, \frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_3 R_L\left(C_L L_L s^2 + 1\right)}{C_L L_L R_2 s^2 + C_L L_L R_2 s^2 + C_L R_2 R_2 s + R_2 + R_L}$$

Q:
$$\frac{L_L\sqrt{\frac{1}{C_LL_L}}(R_3+R_L)}{R_3R_L}$$
wo:
$$\sqrt{\frac{1}{C_LL_L}}$$
bandwidth:
$$\frac{R_3R_L}{L_L(R_3+R_L)}$$
K-LP:
$$\frac{R_3R_L}{R_3+R_L}$$

K-HP: $\frac{R_3R_L}{R_3+R_L}$ K-BP: 0 Qz: None Wz: $\sqrt{\frac{1}{C_LL_L}}$

5.3 BS-3
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L (C_3 L_3 s^2 + 1)}{C_3 L_3 s^2 + C_3 R_L s + 1}$$

Parameters:

$$\begin{array}{l} \text{Q: } \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_L} \\ \text{wo: } \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth: } \frac{R_L}{L_3} \\ \text{K-LP: } R_L \\ \text{K-HP: } R_L \\ \text{K-BP: } 0 \\ \text{Qz: None} \\ \text{Wz: } \sqrt{\frac{1}{C_3L_3}} \end{array}$$

5.4 BS-4
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_3 R_L \left(C_3 L_3 s^2 + 1 \right)}{C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_3 R_3 R_L s + R_3 + R_L}$$

$$\begin{array}{l} \text{Q:} \ \frac{L_3\sqrt{\frac{1}{C_3L_3}}(R_3 + R_L)}{R_3R_L} \\ \text{wo:} \ \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth:} \ \frac{R_3R_L}{L_3(R_3 + R_L)} \\ \text{K-LP:} \ \frac{R_3R_L}{R_3 + R_L} \end{array}$$

K-HP:
$$\frac{R_3R_L}{R_3+R_L}$$

K-BP: 0
Qz: None
Wz: $\sqrt{\frac{1}{C_3L_3}}$

5.5 BS-5
$$Z(s) = \left(\frac{R_1\left(L_1s + \frac{1}{C_1s}\right)}{L_1s + R_1 + \frac{1}{C_1s}}\right), \infty, \infty, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_3\left(C_LL_Ls^2 + 1\right)}{C_LL_Ls^2 + C_LR_3s + 1}$$

$$\begin{array}{l} \text{Q:} \ \frac{L_L\sqrt{\frac{1}{C_LL_L}}}{R_3} \\ \text{wo:} \ \sqrt{\frac{1}{C_LL_L}} \\ \text{bandwidth:} \ \frac{R_3}{L_L} \\ \text{K-LP:} \ R_3 \\ \text{K-HP:} \ R_3 \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_LL_L}} \end{array}$$

5.6 BS-6
$$Z(s) = \left(\frac{R_1\left(L_1s + \frac{1}{C_1s}\right)}{L_1s + R_1 + \frac{1}{C_1s}}, \infty, \infty, \infty, \infty, \infty, \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{R_3R_L\left(C_LL_Ls^2 + 1\right)}{C_LL_LR_3s^2 + C_LL_LR_Ls^2 + C_LR_3R_Ls + R_3 + R_L}$$

Q:
$$\frac{L_L \sqrt{\frac{1}{C_L L_L}} (R_3 + R_L)}{R_3 R_L}$$
wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
bandwidth:
$$\frac{R_3 R_L}{L_L (R_3 + R_L)}$$

K-LP:
$$\frac{R_3R_L}{R_3+R_L}$$

K-HP: $\frac{R_3R_L}{R_3+R_L}$
K-BP: 0
Qz: None
Wz: $\sqrt{\frac{1}{C_LL_L}}$

5.7 BS-7
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + 1 \right)}{C_3 L_3 s^2 + C_3 R_L s + 1}$$

$$\begin{array}{l} \text{Q: } \frac{L_{3}\sqrt{\frac{1}{C_{3}L_{3}}}}{R_{L}} \\ \text{wo: } \sqrt{\frac{1}{C_{3}L_{3}}} \\ \text{bandwidth: } \frac{R_{L}}{L_{3}} \\ \text{K-LP: } R_{L} \\ \text{K-HP: } R_{L} \\ \text{K-BP: } 0 \\ \text{Qz: None} \\ \text{Wz: } \sqrt{\frac{1}{C_{3}L_{3}}} \end{array}$$

5.8 BS-8 $Z(s) = (\infty, \infty, R_3, \infty, \infty, R_L)$

$$H(s) = \frac{R_3 R_L \left(C_3 L_3 s^2 + 1 \right)}{C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_3 R_3 R_L s + R_3 + R_L}$$

Q:
$$\frac{L_3\sqrt{\frac{1}{C_3L_3}}(R_3+R_L)}{R_3R_L}$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{R_3R_L}{L_3(R_3+R_L)}$

K-LP:
$$\frac{R_3R_L}{R_3+R_L}$$

K-HP: $\frac{R_3R_L}{R_3+R_L}$
K-BP: 0
Qz: None
Wz: $\sqrt{\frac{1}{C_3L_3}}$

5.9 BS-9
$$Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 (C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_3 s + 1}$$

Q:
$$\frac{L_L\sqrt{\frac{1}{C_LL_L}}}{R_3}$$
 wo:
$$\sqrt{\frac{1}{C_LL_L}}$$
 bandwidth:
$$\frac{R_3}{L_L}$$
 K-LP: R_3 K-HP: R_3 K-BP: 0 Qz: None Wz:
$$\sqrt{\frac{1}{C_LL_L}}$$

5.10 BS-10
$$Z(s) = \left(\infty, \ \infty, \ \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_L L_L s^2 + 1 \right)}{C_L L_L R_3 s^2 + C_L L_L R_L s^2 + C_L R_3 R_L s + R_3 + R_L}$$

Q:
$$\frac{L_L \sqrt{\frac{1}{C_L L_L}} (R_3 + R_L)}{R_3 R_L}$$
wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
bandwidth:
$$\frac{R_3 R_L}{L_L (R_3 + R_L)}$$

K-LP:
$$\frac{R_3R_L}{R_3+R_L}$$

K-HP: $\frac{R_3R_L}{R_3+R_L}$
K-BP: 0
Qz: None
Wz: $\sqrt{\frac{1}{C_LL_L}}$

5.11 BS-11
$$Z(s) = \left(\infty, \infty, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + 1 \right)}{C_3 L_3 s^2 + C_3 R_L s + 1}$$

$$\begin{array}{l} \text{Q:} \ \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_L} \\ \text{wo:} \ \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth:} \ \frac{R_L}{L_3} \\ \text{K-LP:} \ R_L \\ \text{K-HP:} \ R_L \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_3L_3}} \end{array}$$

5.12 BS-12 $Z(s) = (\infty, \infty, \infty, R_4, \infty, R_L)$

$$H(s) = \frac{R_3 R_L \left(C_3 L_3 s^2 + 1 \right)}{C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_3 R_3 R_L s + R_3 + R_L}$$

Q:
$$\frac{L_3\sqrt{\frac{1}{C_3L_3}}(R_3+R_L)}{R_3R_L}$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{R_3R_L}{L_3(R_3+R_L)}$

K-LP:
$$\frac{R_3R_L}{R_3+R_L}$$

K-HP: $\frac{R_3R_L}{R_3+R_L}$
K-BP: 0
Qz: None
Wz: $\sqrt{\frac{1}{C_3L_3}}$

5.13 BS-13
$$Z(s) = \left(\infty, \infty, \infty, \frac{1}{C_4 s}, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 (C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_3 s + 1}$$

Q:
$$\frac{L_L\sqrt{\frac{1}{C_LL_L}}}{R_3}$$
 wo:
$$\sqrt{\frac{1}{C_LL_L}}$$
 bandwidth:
$$\frac{R_3}{L_L}$$
 K-LP: R_3 K-HP: R_3 K-BP: 0 Qz: None Wz:
$$\sqrt{\frac{1}{C_LL_L}}$$

5.14 BS-14
$$Z(s) = \left(\infty, \infty, \infty, \frac{1}{C_4 s}, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_L L_L s^2 + 1 \right)}{C_L L_L R_3 s^2 + C_L L_L R_L s^2 + C_L R_3 R_L s + R_3 + R_L}$$

Q:
$$\frac{L_L \sqrt{\frac{1}{C_L L_L}} (R_3 + R_L)}{R_3 R_L}$$
wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
bandwidth:
$$\frac{R_3 R_L}{L_L (R_3 + R_L)}$$

K-LP:
$$\frac{R_3R_L}{R_3+R_L}$$

K-HP: $\frac{R_3R_L}{R_3+R_L}$
K-BP: 0
Qz: None
Wz: $\sqrt{\frac{1}{C_LL_L}}$

5.15 BS-15
$$Z(s) = \left(\infty, \infty, \infty, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + 1 \right)}{C_3 L_3 s^2 + C_3 R_L s + 1}$$

$$\begin{array}{l} \text{Q:} \ \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_L} \\ \text{wo:} \ \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth:} \ \frac{R_L}{L_3} \\ \text{K-LP:} \ R_L \\ \text{K-HP:} \ R_L \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_3L_3}} \end{array}$$

5.16 BS-16 $Z(s) = (\infty, \infty, \infty, \infty, R_4, R_L)$

$$H(s) = \frac{R_3 R_L \left(C_3 L_3 s^2 + 1 \right)}{C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_3 R_3 R_L s + R_3 + R_L}$$

Q:
$$\frac{L_3\sqrt{\frac{1}{C_3L_3}}(R_3+R_L)}{R_3R_L}$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{R_3R_L}{L_3(R_3+R_L)}$

K-LP:
$$\frac{R_3R_L}{R_3+R_L}$$

K-HP: $\frac{R_3R_L}{R_3+R_L}$
K-BP: 0
Qz: None
Wz: $\sqrt{\frac{1}{C_3L_3}}$

5.17 BS-17
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{1}{C_4 s}, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 (C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_3 s + 1}$$

Q:
$$\frac{L_L\sqrt{\frac{1}{C_LL_L}}}{R_3}$$
wo:
$$\sqrt{\frac{1}{C_LL_L}}$$
bandwidth:
$$\frac{R_3}{L_L}$$
K-LP: R_3 K-HP: R_3 K-BP: 0
Qz: None
Wz:
$$\sqrt{\frac{1}{C_LL_L}}$$

5.18 BS-18
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{1}{C_4 s}, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_L L_L s^2 + 1 \right)}{C_L L_L R_3 s^2 + C_L L_L R_L s^2 + C_L R_3 R_L s + R_3 + R_L}$$

Q:
$$\frac{L_L \sqrt{\frac{1}{C_L L_L}} (R_3 + R_L)}{R_3 R_L}$$
wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
bandwidth:
$$\frac{R_3 R_L}{L_L (R_3 + R_L)}$$

K-LP:
$$\frac{R_3R_L}{R_3+R_L}$$

K-HP: $\frac{R_3R_L}{R_3+R_L}$
K-BP: 0
Qz: None
Wz: $\sqrt{\frac{1}{C_LL_L}}$

5.19 BS-19
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_4s}{C_4L_4s^2+1}, R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + 1 \right)}{C_3 L_3 s^2 + C_3 R_L s + 1}$$

$$\begin{array}{l} \text{Q:} \ \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_L} \\ \text{wo:} \ \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth:} \ \frac{R_L}{L_3} \\ \text{K-LP:} \ R_L \\ \text{K-HP:} \ R_L \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_3L_3}} \end{array}$$

5.20 BS-20
$$Z(s) = (R_1, R_2, \infty, \infty, \infty, R_L)$$

$$H(s) = \frac{R_3 R_L \left(C_3 L_3 s^2 + 1 \right)}{C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_3 R_3 R_L s + R_3 + R_L}$$

Q:
$$\frac{L_3\sqrt{\frac{1}{C_3L_3}}(R_3+R_L)}{R_3R_L}$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{R_3R_L}{L_3(R_3+R_L)}$

K-LP:
$$\frac{R_3R_L}{R_3+R_L}$$

K-HP: $\frac{R_3R_L}{R_3+R_L}$
K-BP: 0
Qz: None
Wz: $\sqrt{\frac{1}{C_3L_3}}$

5.21 BS-21
$$Z(s) = \left(R_1, \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 (C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_3 s + 1}$$

$$\begin{array}{l} \text{Q:} \ \frac{L_L\sqrt{\frac{1}{C_LL_L}}}{R_3}\\ \text{wo:} \ \sqrt{\frac{1}{C_LL_L}}\\ \text{bandwidth:} \ \frac{R_3}{L_L}\\ \text{K-LP:} \ R_3\\ \text{K-HP:} \ R_3\\ \text{K-BP:} \ 0\\ \text{Qz:} \ \text{None}\\ \text{Wz:} \ \sqrt{\frac{1}{C_LL_L}} \end{array}$$

5.22 BS-22
$$Z(s) = \left(R_1, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_L L_L s^2 + 1 \right)}{C_L L_L R_3 s^2 + C_L L_L R_L s^2 + C_L R_3 R_L s + R_3 + R_L}$$

Q:
$$\frac{L_L \sqrt{\frac{1}{C_L L_L}} (R_3 + R_L)}{R_3 R_L}$$
wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
bandwidth:
$$\frac{R_3 R_L}{L_L (R_3 + R_L)}$$

K-LP:
$$\frac{R_3R_L}{R_3+R_L}$$

K-HP: $\frac{R_3R_L}{R_3+R_L}$
K-BP: 0
Qz: None
Wz: $\sqrt{\frac{1}{C_LL_L}}$

5.23 BS-23
$$Z(s) = \left(R_1, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + 1 \right)}{C_3 L_3 s^2 + C_3 R_L s + 1}$$

$$\begin{array}{l} \text{Q:} \ \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_L} \\ \text{wo:} \ \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth:} \ \frac{R_L}{L_3} \\ \text{K-LP:} \ R_L \\ \text{K-HP:} \ R_L \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_3L_3}} \end{array}$$

5.24 BS-24
$$Z(s) = \left(L_1 s, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_3 R_L \left(C_3 L_3 s^2 + 1 \right)}{C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_3 R_3 R_L s + R_3 + R_L}$$

Q:
$$\frac{L_3\sqrt{\frac{1}{C_3L_3}}(R_3+R_L)}{R_3R_L}$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{R_3R_L}{L_3(R_3+R_L)}$

K-LP:
$$\frac{R_3R_L}{R_3+R_L}$$

K-HP: $\frac{R_3R_L}{R_3+R_L}$
K-BP: 0
Qz: None
Wz: $\sqrt{\frac{1}{C_3L_3}}$

5.25 BS-25
$$Z(s) = \left(L_1 s, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + 1\right)}{C_L L_L s^2 + C_L R_2 s + 1}$$

$$\begin{array}{l} \text{Q:} \ \frac{L_L\sqrt{\frac{1}{C_LL_L}}}{R_3}\\ \text{wo:} \ \sqrt{\frac{1}{C_LL_L}}\\ \text{bandwidth:} \ \frac{R_3}{L_L}\\ \text{K-LP:} \ R_3\\ \text{K-HP:} \ R_3\\ \text{K-BP:} \ 0\\ \text{Qz:} \ \text{None}\\ \text{Wz:} \ \sqrt{\frac{1}{C_LL_L}} \end{array}$$

5.26 BS-26
$$Z(s) = \left(L_1 s, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_L L_L s^2 + 1\right)}{C_L L_L R_3 s^2 + C_L L_L R_L s^2 + C_L R_3 R_L s + R_3 + R_L}$$

Q:
$$\frac{L_L \sqrt{\frac{1}{C_L L_L}} (R_3 + R_L)}{R_3 R_L}$$
wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
bandwidth:
$$\frac{R_3 R_L}{L_L (R_3 + R_L)}$$

K-LP:
$$\frac{R_3R_L}{R_3+R_L}$$

K-HP: $\frac{R_3R_L}{R_3+R_L}$
K-BP: 0
Qz: None
Wz: $\sqrt{\frac{1}{C_LL_L}}$

5.27 BS-27
$$Z(s) = \left(L_1 s, \frac{R_2\left(L_2 s + \frac{1}{C_2 s}\right)}{L_2 s + R_2 + \frac{1}{C_2 s}}, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L\left(C_3 L_3 s^2 + 1\right)}{C_3 L_3 s^2 + C_3 R_L s + 1}$$

Q:
$$\frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_L}$$
 wo: $\sqrt{\frac{1}{C_3L_3}}$ bandwidth: $\frac{R_L}{L_3}$ K-LP: R_L K-HP: R_L K-BP: 0 Qz: None Wz: $\sqrt{\frac{1}{C_3L_3}}$

5.28 BS-28
$$Z(s) = \left(\frac{1}{C_1 s}, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_3 R_L \left(C_3 L_3 s^2 + 1 \right)}{C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_3 R_3 R_L s + R_3 + R_L}$$

Q:
$$\frac{L_3\sqrt{\frac{1}{C_3L_3}}(R_3+R_L)}{R_3R_L}$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{R_3R_L}{L_3(R_3+R_L)}$

K-LP:
$$\frac{R_3R_L}{R_3+R_L}$$

K-HP: $\frac{R_3R_L}{R_3+R_L}$
K-BP: 0
Qz: None
Wz: $\sqrt{\frac{1}{C_3L_3}}$

5.29 BS-29
$$Z(s) = \left(\frac{1}{C_1 s}, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + 1\right)}{C_L L_L s^2 + C_L R_2 s + 1}$$

$$\begin{array}{l} \text{Q:} \ \frac{L_L\sqrt{\frac{1}{C_LL_L}}}{R_3}\\ \text{wo:} \ \sqrt{\frac{1}{C_LL_L}}\\ \text{bandwidth:} \ \frac{R_3}{L_L}\\ \text{K-LP:} \ R_3\\ \text{K-HP:} \ R_3\\ \text{K-BP:} \ 0\\ \text{Qz:} \ \text{None}\\ \text{Wz:} \ \sqrt{\frac{1}{C_LL_L}} \end{array}$$

5.30 BS-30
$$Z(s) = \left(\frac{1}{C_1 s}, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_L L_L s^2 + 1\right)}{C_L L_L R_3 s^2 + C_L L_L R_1 s^2 + C_L R_3 R_L s + R_3 + R_L}$$

Q:
$$\frac{L_L \sqrt{\frac{1}{C_L L_L}} (R_3 + R_L)}{R_3 R_L}$$
wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
bandwidth:
$$\frac{R_3 R_L}{L_L (R_3 + R_L)}$$

K-LP:
$$\frac{R_3R_L}{R_3+R_L}$$

K-HP: $\frac{R_3R_L}{R_3+R_L}$
K-BP: 0
Qz: None
Wz: $\sqrt{\frac{1}{C_LL_L}}$

5.31 BS-31
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \frac{1}{C_2 s}, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + 1 \right)}{C_3 L_3 s^2 + C_3 R_L s + 1}$$

$$\begin{array}{l} \text{Q: } \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_L} \\ \text{wo: } \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth: } \frac{R_L}{L_3} \\ \text{K-LP: } R_L \\ \text{K-HP: } R_L \\ \text{K-BP: } 0 \\ \text{Qz: None} \\ \text{Wz: } \sqrt{\frac{1}{C_3L_3}} \end{array}$$

5.32 BS-32
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_3 R_L \left(C_3 L_3 s^2 + 1 \right)}{C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_3 R_3 R_L s + R_3 + R_L}$$

Q:
$$\frac{L_3\sqrt{\frac{1}{C_3L_3}}(R_3+R_L)}{R_3R_L}$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{R_3R_L}{L_3(R_3+R_L)}$

K-LP: $\frac{R_3R_L}{R_3+R_L}$ K-HP: $\frac{R_3R_L}{R_3+R_L}$ K-BP: 0 Qz: None Wz: $\sqrt{\frac{1}{C_3L_3}}$

6 **GE**

6.1 GE-1
$$Z(s) = \left(R_1, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L L_L s^2 + C_L R_3 s + C_L R_L s + 1}$$

Parameters:

$$\begin{aligned} &\text{Q: } \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_3 + R_L} \\ &\text{wo: } \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth: } \frac{R_3 + R_L}{L_L} \\ &\text{K-LP: } R_3 \\ &\text{K-HP: } R_3 \\ &\text{K-BP: } \frac{R_3 R_L}{R_3 + R_L} \\ &\text{Qz: } \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L} \\ &\text{Wz: } \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

6.2 GE-2
$$Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_L L_L R_3 s^2 + C_L L_L R_L s^2 + L_L s + R_3 + R_L}$$

$$\begin{aligned} &\text{Q: } C_L \sqrt{\frac{1}{C_L L_L}} \left(R_3 + R_L \right) \\ &\text{wo: } \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth: } \frac{1}{C_L (R_3 + R_L)} \\ &\text{K-LP: } \frac{R_3 R_L}{R_3 + R_L} \\ &\text{K-HP: } \frac{R_3 R_L}{R_3 + R_L} \\ &\text{K-BP: } R_3 \\ &\text{Qz: } C_L R_L \sqrt{\frac{1}{C_L L_L}} \\ &\text{Wz: } \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

6.3 GE-3
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{C_3 L_3 s^2 + C_3 R_3 s + C_3 R_L s + 1}$$

$$\begin{array}{l} \text{Q: } \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3+R_L} \\ \text{wo: } \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth: } \frac{R_3+R_L}{L_3} \\ \text{K-LP: } R_L \\ \text{K-HP: } R_L \\ \text{K-BP: } \frac{R_3R_L}{R_3+R_L} \\ \text{Qz: } \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3} \\ \text{Wz: } \sqrt{\frac{1}{C_3L_3}} \end{array}$$

6.4 GE-4
$$Z(s) = \left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + L_3 s + R_3 + R_L}$$

Q:
$$C_3\sqrt{\frac{1}{C_3L_3}}$$
 (R_3+R_L)
wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{1}{C_3(R_3+R_L)}$
K-LP: $\frac{R_3R_L}{R_3+R_L}$
K-HP: $\frac{R_3R_L}{R_3+R_L}$
K-BP: R_L
Qz: $C_3R_3\sqrt{\frac{1}{C_3L_3}}$
Wz: $\sqrt{\frac{1}{C_3L_3}}$

6.5 GE-5
$$Z(s) = \left(\frac{R_1\left(L_1s + \frac{1}{C_1s}\right)}{L_1s + R_1 + \frac{1}{C_1s}}, \infty, \infty, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_3\left(C_LL_Ls^2 + C_LR_Ls + 1\right)}{C_LL_Ls^2 + C_LR_3s + C_LR_Ls + 1}$$

$$\begin{array}{l} \text{Q:} \ \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_3 + R_L} \\ \text{wo:} \ \sqrt{\frac{1}{C_L L_L}} \\ \text{bandwidth:} \ \frac{R_3 + R_L}{L_L} \\ \text{K-LP:} \ R_3 \\ \text{K-HP:} \ R_3 \\ \text{K-BP:} \ \frac{R_3 R_L}{R_3 + R_L} \\ \text{Qz:} \ \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L} \\ \text{Wz:} \ \sqrt{\frac{1}{C_L L_L}} \end{array}$$

6.6 GE-6
$$Z(s) = \left(\frac{R_1\left(L_1s + \frac{1}{C_1s}\right)}{L_1s + R_1 + \frac{1}{C_1s}}, \infty, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1} + R_L\right)$$

$$H(s) = \frac{R_3\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_LL_LR_3s^2 + C_LL_LR_Ls^2 + L_Ls + R_3 + R_L}$$

Q:
$$C_L \sqrt{\frac{1}{C_L L_L}} \left(R_3 + R_L \right)$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L (R_3 + R_L)}$
K-LP: $\frac{R_3 R_L}{R_3 + R_L}$
K-HP: $\frac{R_3 R_L}{R_3 + R_L}$
K-BP: R_3
Qz: $C_L R_L \sqrt{\frac{1}{C_L L_L}}$
Wz: $\sqrt{\frac{1}{C_L L_L}}$

6.7 GE-7
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{C_3 L_3 s^2 + C_3 R_3 s + C_3 R_L s + 1}$$

$$\begin{aligned} &\text{Q: } \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3+R_L} \\ &\text{wo: } \sqrt{\frac{1}{C_3L_3}} \\ &\text{bandwidth: } \frac{R_3+R_L}{L_3} \\ &\text{K-LP: } R_L \\ &\text{K-HP: } R_L \\ &\text{K-BP: } \frac{R_3R_L}{R_3+R_L} \\ &\text{Qz: } \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3} \\ &\text{Wz: } \sqrt{\frac{1}{C_3L_3}} \end{aligned}$$

6.8 GE-8
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ \infty, \ \infty, \ \infty, \ R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + L_3 s + R_3 + R_L}$$

Q:
$$C_3\sqrt{\frac{1}{C_3L_3}}$$
 (R_3+R_L)
wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{1}{C_3(R_3+R_L)}$
K-LP: $\frac{R_3R_L}{R_3+R_L}$
K-HP: $\frac{R_3R_L}{R_3+R_L}$
K-BP: R_L
Qz: $C_3R_3\sqrt{\frac{1}{C_3L_3}}$
Wz: $\sqrt{\frac{1}{C_3L_3}}$

6.9 GE-9
$$Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L L_L s^2 + C_L R_3 s + C_L R_L s + 1}$$

$$\begin{aligned} &\text{Q: } \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_3 + R_L} \\ &\text{wo: } \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth: } \frac{R_3 + R_L}{L_L} \\ &\text{K-LP: } R_3 \\ &\text{K-HP: } R_3 \\ &\text{K-BP: } \frac{R_3 R_L}{R_3 + R_L} \\ &\text{Qz: } \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L} \\ &\text{Wz: } \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

6.10 GE-10
$$Z(s) = \left(\infty, \infty, \frac{1}{C_{3s}}, \infty, \infty, \frac{L_{Ls}}{C_{L}L_{Ls}^{2}+1} + R_{L}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_L L_L R_3 s^2 + C_L L_L R_L s^2 + L_L s + R_3 + R_L}$$

$$\begin{aligned} &\text{Q: } C_L \sqrt{\frac{1}{C_L L_L}} \left(R_3 + R_L \right) \\ &\text{wo: } \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth: } \frac{1}{C_L (R_3 + R_L)} \\ &\text{K-LP: } \frac{R_3 R_L}{R_3 + R_L} \\ &\text{K-HP: } \frac{R_3 R_L}{R_3 + R_L} \\ &\text{K-BP: } R_3 \\ &\text{Qz: } C_L R_L \sqrt{\frac{1}{C_L L_L}} \\ &\text{Wz: } \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

6.11 GE-11
$$Z(s) = \left(\infty, \infty, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{C_3 L_3 s^2 + C_3 R_3 s + C_3 R_L s + 1}$$

$$\begin{array}{l} \text{Q:} \ \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3+R_L} \\ \text{wo:} \ \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth:} \ \frac{R_3+R_L}{L_3} \\ \text{K-LP:} \ R_L \\ \text{K-HP:} \ R_L \\ \text{K-BP:} \ \frac{R_3R_L}{R_3+R_L} \\ \text{Qz:} \ \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3} \\ \text{Wz:} \ \sqrt{\frac{1}{C_3L_3}} \end{array}$$

6.12 GE-12
$$Z(s) = \left(\infty, \infty, \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L\left(C_3L_3R_3s^2 + L_3s + R_3\right)}{C_3L_3R_3s^2 + C_3L_3R_Ls^2 + L_3s + R_3 + R_L}$$

Q:
$$C_3\sqrt{\frac{1}{C_3L_3}}$$
 (R_3+R_L)
wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{1}{C_3(R_3+R_L)}$
K-LP: $\frac{R_3R_L}{R_3+R_L}$
K-HP: $\frac{R_3R_L}{R_3+R_L}$
K-BP: R_L
Qz: $C_3R_3\sqrt{\frac{1}{C_3L_3}}$
Wz: $\sqrt{\frac{1}{C_3L_3}}$

6.13 GE-13
$$Z(s) = \left(\infty, \infty, \infty, \frac{1}{C_4 s}, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L L_L s^2 + C_L R_3 s + C_L R_L s + 1}$$

$$\begin{aligned} &\text{Q: } \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_3 + R_L} \\ &\text{wo: } \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth: } \frac{R_3 + R_L}{L_L} \\ &\text{K-LP: } R_3 \\ &\text{K-HP: } R_3 \\ &\text{K-BP: } \frac{R_3 R_L}{R_3 + R_L} \\ &\text{Qz: } \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L} \\ &\text{Wz: } \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

6.14 GE-14
$$Z(s) = \left(\infty, \infty, \infty, \frac{1}{C_4 s}, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_L L_L R_3 s^2 + C_L L_L R_L s^2 + L_L s + R_3 + R_L}$$

$$\begin{aligned} &\text{Q: } C_L \sqrt{\frac{1}{C_L L_L}} \left(R_3 + R_L \right) \\ &\text{wo: } \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth: } \frac{1}{C_L (R_3 + R_L)} \\ &\text{K-LP: } \frac{R_3 R_L}{R_3 + R_L} \\ &\text{K-HP: } \frac{R_3 R_L}{R_3 + R_L} \\ &\text{K-BP: } R_3 \\ &\text{Qz: } C_L R_L \sqrt{\frac{1}{C_L L_L}} \\ &\text{Wz: } \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

6.15 GE-15
$$Z(s) = \left(\infty, \infty, \infty, \frac{1}{C_4 s + \frac{1}{R_4} + \frac{1}{L_4 s}}, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{C_3 L_3 s^2 + C_3 R_3 s + C_3 R_L s + 1}$$

$$\begin{array}{l} \text{Q:} \ \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3+R_L} \\ \text{wo:} \ \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth:} \ \frac{R_3+R_L}{L_3} \\ \text{K-LP:} \ R_L \\ \text{K-HP:} \ R_L \\ \text{K-BP:} \ \frac{R_3R_L}{R_3+R_L} \\ \text{Qz:} \ \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3} \\ \text{Wz:} \ \sqrt{\frac{1}{C_3L_3}} \end{array}$$

6.16 GE-16
$$Z(s) = \left(\infty, \infty, \infty, \frac{R_4\left(L_4s + \frac{1}{C_4s}\right)}{L_4s + R_4 + \frac{1}{C_4s}}, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + L_3 s + R_3 + R_L}$$

Q:
$$C_3\sqrt{\frac{1}{C_3L_3}}$$
 (R_3+R_L)
wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{1}{C_3(R_3+R_L)}$
K-LP: $\frac{R_3R_L}{R_3+R_L}$
K-HP: $\frac{R_3R_L}{R_3+R_L}$
K-BP: R_L
Qz: $C_3R_3\sqrt{\frac{1}{C_3L_3}}$
Wz: $\sqrt{\frac{1}{C_3L_3}}$

6.17 GE-17
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{1}{C_4 s}, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L L_L s^2 + C_L R_3 s + C_L R_L s + 1}$$

$$\begin{aligned} &\text{Q: } \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_3 + R_L} \\ &\text{wo: } \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth: } \frac{R_3 + R_L}{L_L} \\ &\text{K-LP: } R_3 \\ &\text{K-HP: } R_3 \\ &\text{K-BP: } \frac{R_3 R_L}{R_3 + R_L} \\ &\text{Qz: } \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L} \\ &\text{Wz: } \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

6.18 GE-18
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{1}{C_4 s}, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_L L_L R_3 s^2 + C_L L_L R_L s^2 + L_L s + R_3 + R_L}$$

$$\begin{aligned} &\text{Q: } C_L \sqrt{\frac{1}{C_L L_L}} \left(R_3 + R_L \right) \\ &\text{wo: } \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth: } \frac{1}{C_L (R_3 + R_L)} \\ &\text{K-LP: } \frac{R_3 R_L}{R_3 + R_L} \\ &\text{K-HP: } \frac{R_3 R_L}{R_3 + R_L} \\ &\text{K-BP: } R_3 \\ &\text{Qz: } C_L R_L \sqrt{\frac{1}{C_L L_L}} \\ &\text{Wz: } \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

6.19 GE-19
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{1}{C_4 s + \frac{1}{R_4} + \frac{1}{L_4 s}}, R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{C_3 L_3 s^2 + C_3 R_3 s + C_3 R_L s + 1}$$

$$\begin{array}{l} \text{Q:} \ \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3+R_L} \\ \text{wo:} \ \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth:} \ \frac{R_3+R_L}{L_3} \\ \text{K-LP:} \ R_L \\ \text{K-HP:} \ R_L \\ \text{K-BP:} \ \frac{R_3R_L}{R_3+R_L} \\ \text{Qz:} \ \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3} \\ \text{Wz:} \ \sqrt{\frac{1}{C_3L_3}} \end{array}$$

6.20 GE-20
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{R_4\left(L_4s + \frac{1}{C_4s}\right)}{L_4s + R_4 + \frac{1}{C_4s}}, R_L\right)$$

$$H(s) = \frac{R_L\left(C_3L_3R_3s^2 + L_3s + R_3\right)}{C_3L_3R_3s^2 + C_3L_3R_4s^2 + L_3s + R_3 + R_L}$$

Q:
$$C_3\sqrt{\frac{1}{C_3L_3}}$$
 (R_3+R_L)
wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{1}{C_3(R_3+R_L)}$
K-LP: $\frac{R_3R_L}{R_3+R_L}$
K-HP: $\frac{R_3R_L}{R_3+R_L}$
K-BP: R_L
Qz: $C_3R_3\sqrt{\frac{1}{C_3L_3}}$
Wz: $\sqrt{\frac{1}{C_3L_3}}$

6.21 GE-21
$$Z(s) = \left(R_1, \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L L_L s^2 + C_L R_3 s + C_L R_L s + 1}$$

$$\begin{aligned} &\text{Q: } \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_3 + R_L} \\ &\text{wo: } \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth: } \frac{R_3 + R_L}{L_L} \\ &\text{K-LP: } R_3 \\ &\text{K-HP: } R_3 \\ &\text{K-BP: } \frac{R_3 R_L}{R_3 + R_L} \\ &\text{Qz: } \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L} \\ &\text{Wz: } \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

6.22 GE-22
$$Z(s) = \left(R_1, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_L L_L R_3 s^2 + C_L L_L R_L s^2 + L_L s + R_3 + R_L}$$

$$\begin{aligned} &\text{Q: } C_L \sqrt{\frac{1}{C_L L_L}} \left(R_3 + R_L \right) \\ &\text{wo: } \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth: } \frac{1}{C_L (R_3 + R_L)} \\ &\text{K-LP: } \frac{R_3 R_L}{R_3 + R_L} \\ &\text{K-HP: } \frac{R_3 R_L}{R_3 + R_L} \\ &\text{K-BP: } R_3 \\ &\text{Qz: } C_L R_L \sqrt{\frac{1}{C_L L_L}} \\ &\text{Wz: } \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

6.23 GE-23
$$Z(s) = \left(R_1, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L\left(C_3L_3s^2 + C_3R_3s + 1\right)}{C_2L_2s^2 + C_2R_2s + C_2R_1s + 1}$$

$$\begin{aligned} &\text{Q: } \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3+R_L} \\ &\text{wo: } \sqrt{\frac{1}{C_3L_3}} \\ &\text{bandwidth: } \frac{R_3+R_L}{L_3} \\ &\text{K-LP: } R_L \\ &\text{K-HP: } R_L \\ &\text{K-BP: } \frac{R_3R_L}{R_3+R_L} \\ &\text{Qz: } \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3} \\ &\text{Wz: } \sqrt{\frac{1}{C_3L_3}} \end{aligned}$$

6.24 GE-24
$$Z(s) = \left(L_1 s, \frac{1}{C_2 s}, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + L_3 s + R_3 + R_L}$$

Q:
$$C_3\sqrt{\frac{1}{C_3L_3}} (R_3 + R_L)$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{1}{C_3(R_3 + R_L)}$
K-LP: $\frac{R_3R_L}{R_3 + R_L}$
K-HP: $\frac{R_3R_L}{R_3 + R_L}$
K-BP: R_L
Qz: $C_3R_3\sqrt{\frac{1}{C_3L_3}}$
Wz: $\sqrt{\frac{1}{C_3L_3}}$

6.25 GE-25
$$Z(s) = \left(L_1 s, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L L_L s^2 + C_L R_3 s + C_L R_L s + 1}$$

$$\begin{aligned} &\text{Q: } \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_3 + R_L} \\ &\text{wo: } \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth: } \frac{R_3 + R_L}{L_L} \\ &\text{K-LP: } R_3 \\ &\text{K-HP: } R_3 \\ &\text{K-BP: } \frac{R_3 R_L}{R_3 + R_L} \\ &\text{Qz: } \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L} \\ &\text{Wz: } \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

6.26 GE-26
$$Z(s) = \left(L_1 s, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_L L_L R_3 s^2 + C_L L_L R_L s^2 + L_L s + R_3 + R_L}$$

Q:
$$C_L\sqrt{\frac{1}{C_LL_L}}$$
 (R_3+R_L)
wo: $\sqrt{\frac{1}{C_LL_L}}$
bandwidth: $\frac{1}{C_L(R_3+R_L)}$
K-LP: $\frac{R_3R_L}{R_3+R_L}$
K-HP: $\frac{R_3R_L}{R_3+R_L}$
K-BP: R_3
Qz: $C_LR_L\sqrt{\frac{1}{C_LL_L}}$
Wz: $\sqrt{\frac{1}{C_LL_L}}$

6.27 GE-27
$$Z(s) = \left(\frac{1}{C_1 s}, \frac{1}{C_2 s}, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{C_3 L_3 s^2 + C_3 R_3 s + C_3 R_L s + 1}$$

$$\begin{array}{l} \text{Q: } \frac{L_{3}\sqrt{\frac{1}{C_{3}L_{3}}}}{R_{3}+R_{L}} \\ \text{wo: } \sqrt{\frac{1}{C_{3}L_{3}}} \\ \text{bandwidth: } \frac{R_{3}+R_{L}}{L_{3}} \\ \text{K-LP: } R_{L} \\ \text{K-HP: } R_{L} \\ \text{K-BP: } \frac{R_{3}R_{L}}{R_{3}+R_{L}} \\ \text{Qz: } \frac{L_{3}\sqrt{\frac{1}{C_{3}L_{3}}}}{R_{3}} \\ \text{Wz: } \sqrt{\frac{1}{C_{3}L_{3}}} \end{array}$$

6.28 GE-28
$$Z(s) = \left(\frac{1}{C_1 s}, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + L_3 s + R_3 + R_L}$$

Q:
$$C_3\sqrt{\frac{1}{C_3L_3}}$$
 (R_3+R_L)
wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{1}{C_3(R_3+R_L)}$
K-LP: $\frac{R_3R_L}{R_3+R_L}$
K-HP: $\frac{R_3R_L}{R_3+R_L}$
K-BP: R_L
Qz: $C_3R_3\sqrt{\frac{1}{C_3L_3}}$
Wz: $\sqrt{\frac{1}{C_3L_3}}$

6.29 GE-29
$$Z(s) = \left(\frac{1}{C_1 s}, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L L_L s^2 + C_L R_3 s + C_L R_L s + 1}$$

$$\begin{aligned} &\text{Q: } \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_3 + R_L} \\ &\text{wo: } \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth: } \frac{R_3 + R_L}{L_L} \\ &\text{K-LP: } R_3 \\ &\text{K-HP: } R_3 \\ &\text{K-BP: } \frac{R_3 R_L}{R_3 + R_L} \\ &\text{Qz: } \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L} \\ &\text{Wz: } \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

6.30 GE-30
$$Z(s) = \left(\frac{1}{C_1 s}, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_L L_L R_3 s^2 + C_L L_L R_L s^2 + L_L s + R_3 + R_L}$$

$$\begin{aligned} &\text{Q: } C_L \sqrt{\frac{1}{C_L L_L}} \left(R_3 + R_L \right) \\ &\text{wo: } \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth: } \frac{1}{C_L (R_3 + R_L)} \\ &\text{K-LP: } \frac{R_3 R_L}{R_3 + R_L} \\ &\text{K-HP: } \frac{R_3 R_L}{R_3 + R_L} \\ &\text{K-BP: } R_3 \\ &\text{Qz: } C_L R_L \sqrt{\frac{1}{C_L L_L}} \\ &\text{Wz: } \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

6.31 GE-31
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{C_3 L_3 s^2 + C_3 R_3 s + C_3 R_L s + 1}$$

$$\begin{array}{l} \text{Q:} \ \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3+R_L} \\ \text{wo:} \ \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth:} \ \frac{R_3+R_L}{L_3} \\ \text{K-LP:} \ R_L \\ \text{K-HP:} \ R_L \\ \text{K-BP:} \ \frac{R_3R_L}{R_3+R_L} \\ \text{Qz:} \ \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3} \\ \text{Wz:} \ \sqrt{\frac{1}{C_3L_3}} \end{array}$$

6.32 GE-32
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + L_3 s + R_3 + R_L}$$

Q:
$$C_3\sqrt{\frac{1}{C_3L_3}}$$
 (R_3+R_L)
wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{1}{C_3(R_3+R_L)}$
K-LP: $\frac{R_3R_L}{R_3+R_L}$
K-HP: $\frac{R_3R_L}{R_3+R_L}$
K-BP: R_L
Qz: $C_3R_3\sqrt{\frac{1}{C_3L_3}}$
Wz: $\sqrt{\frac{1}{C_3L_3}}$

7 AP

8 INVALID-NUMER

8.1 INVALID-NUMER-1
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 (C_L R_L s + 1)}{C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_L R_3 s + C_L R_L s + 1}$$

$$\begin{aligned} &\text{Q: } \frac{C_3C_LR_3R_L\sqrt{\frac{1}{C_3C_LR_3R_L}}}{C_3R_3+C_LR_3+C_LR_L} \\ &\text{wo: } \sqrt{\frac{1}{C_3C_LR_3R_L}} \\ &\text{bandwidth: } \frac{C_3R_3+C_LR_3+C_LR_L}{C_3C_LR_3R_L} \end{aligned}$$

K-LP: R_3

K-HP: 0 K-BP: $\frac{C_L R_3 R_L}{C_3 R_3 + C_L R_3 + C_L R_L}$ Qz: 0

Wz: None

8.2 INVALID-NUMER-2 $Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$

$$H(s) = \frac{R_L (C_3 R_3 s + 1)}{C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_3 R_L s + C_L R_L s + 1}$$

Parameters:

Q: $\frac{C_{3}C_{L}R_{3}R_{L}\sqrt{\frac{1}{C_{3}C_{L}R_{3}R_{L}}}}{C_{3}R_{3}+C_{3}R_{L}+C_{L}R_{L}}$ wo: $\sqrt{\frac{1}{C_{3}C_{L}R_{3}R_{L}}}$ bandwidth: $\frac{C_{3}R_{3}+C_{3}R_{L}+C_{L}R_{L}}{C_{3}C_{L}R_{3}R_{L}}$ K-LP: R_{L}

K-HP: 0

K-BP: $\frac{C_3R_3R_L}{C_3R_3+C_3R_L+C_LR_L}$ Qz: 0

Wz: None

8.3 INVALID-NUMER-3 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$

$$H(s) = \frac{R_3 \left(C_L R_L s + 1 \right)}{C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_L R_3 s + C_L R_L s + 1}$$

Parameters:

Q:
$$\frac{C_3C_LR_3R_L\sqrt{\frac{1}{C_3C_LR_3R_L}}}{C_3R_3+C_LR_3+C_LR_L}$$
 wo:
$$\sqrt{\frac{1}{C_3C_LR_3R_L}}$$

bandwidth: $\frac{C_3R_3 + C_LR_3 + C_LR_L}{C_3C_LR_3R_L}$

K-LP: R_3

K-HP: 0

 $\begin{array}{l} \text{K-BP:} \ \frac{C_L R_3 R_L}{C_3 R_3 + C_L R_3 + C_L R_L} \\ \text{Qz:} \ 0 \end{array}$

Wz: None

8.4 INVALID-NUMER-4 $Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \infty, \infty, \infty, \frac{R_L}{C_LR_Ls+1}\right)$

$$H(s) = \frac{R_L (C_3 R_3 s + 1)}{C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_3 R_L s + C_L R_L s + 1}$$

Parameters:

Q: $\frac{C_3C_LR_3R_L\sqrt{\frac{1}{C_3C_LR_3R_L}}}{C_3R_3+C_3R_L+C_LR_L}$ wo: $\sqrt{\frac{1}{C_3C_LR_3R_L}}$

bandwidth: $\frac{C_3R_3+C_3R_L+C_LR_L}{C_3C_LR_3R_L}$

K-LP: R_L

K-HP: 0 K-BP: $\frac{C_3R_3R_L}{C_3R_3+C_3R_L+C_LR_L}$ Qz: 0

Wz: None

8.5 INVALID-NUMER-5 $Z(s) = \left(\infty, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$

$$H(s) = \frac{R_3 (C_L R_L s + 1)}{C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_L R_3 s + C_L R_L s + 1}$$

Parameters:

Q: $\frac{C_{3}C_{L}R_{3}R_{L}\sqrt{\frac{1}{C_{3}C_{L}R_{3}R_{L}}}}{C_{3}R_{3}+C_{L}R_{3}+C_{L}R_{L}}$ wo: $\sqrt{\frac{1}{C_{3}C_{L}R_{3}R_{L}}}$ bandwidth: $\frac{C_{3}R_{3}+C_{L}R_{3}+C_{L}R_{L}}{C_{3}C_{L}R_{3}R_{L}}$

K-LP: *R*₃ K-HP: 0

K-BP: $\frac{C_L R_3 R_L}{C_3 R_3 + C_L R_3 + C_L R_L}$

Wz: None

8.6 INVALID-NUMER-6 $Z(s) = \left(\infty, \infty, L_3 s + \frac{1}{C_3 s}, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$

$$H(s) = \frac{R_L (C_3 R_3 s + 1)}{C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_3 R_L s + C_L R_L s + 1}$$

Parameters:

Q: $\frac{C_3 C_L R_3 R_L \sqrt{\frac{1}{C_3 C_L R_3 R_L}}}{C_3 R_3 + C_3 R_L + C_L R_L}$ wo: $\sqrt{\frac{1}{C_3 C_L R_3 R_L}}$

bandwidth: $\frac{C_3R_3 + C_3R_L + C_LR_L}{C_3C_LR_3R_L}$

K-LP: R_L K-HP: 0

K-BP: $\frac{C_3R_3R_L}{C_3R_3+C_3R_L+C_LR_L}$ Qz: 0

Wz: None

8.7 INVALID-NUMER-7 $Z(s) = \left(\infty, \infty, \infty, R_4 + \frac{1}{C_4 s}, \infty, R_L + \frac{1}{C_L s}\right)$

$$H(s) = \frac{R_3 (C_L R_L s + 1)}{C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_L R_3 s + C_L R_L s + 1}$$

Parameters:

Q: $\frac{C_3C_LR_3R_L\sqrt{\frac{1}{C_3C_LR_3R_L}}}{C_3R_3+C_LR_3+C_LR_L}$ wo: $\sqrt{\frac{1}{C_3C_LR_3R_L}}$

bandwidth: $\frac{C_3R_3 + C_LR_3 + C_LR_L}{C_3C_LR_3R_L}$

K-LP: R_3

K-HP: 0 K-BP: $\frac{C_L R_3 R_L}{C_3 R_3 + C_L R_3 + C_L R_L}$

Qz: 0 Wz: None

8.8 INVALID-NUMER-8 $Z(s) = \left(\infty, \infty, \infty, L_4 s + \frac{1}{C_4 s}, \infty, \frac{R_L}{C_L R_L s + 1}\right)$

$$H(s) = \frac{R_L (C_3 R_3 s + 1)}{C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_3 R_L s + C_L R_L s + 1}$$

Parameters:

Q:
$$\frac{C_{3}C_{L}R_{3}R_{L}\sqrt{\frac{1}{C_{3}C_{L}R_{3}R_{L}}}}{C_{3}R_{3}+C_{3}R_{L}+C_{L}R_{L}}$$
 wo:
$$\sqrt{\frac{1}{C_{3}C_{L}R_{3}R_{L}}}$$
 bandwidth:
$$\frac{C_{3}R_{3}+C_{3}R_{L}+C_{L}R_{L}}{C_{3}C_{L}R_{3}R_{L}}$$
 K-LP: R_{L} K-HP: 0

K-BP: $\frac{C_3R_3R_L}{C_3R_3+C_3R_L+C_LR_L}$ Qz: 0

Qz: 0 Wz: None

8.9 INVALID-NUMER-9 $Z(s) = \left(\infty, \infty, \infty, \infty, R_4 + \frac{1}{C_4 s}, R_L + \frac{1}{C_L s}\right)$

$$H(s) = \frac{R_3 (C_L R_L s + 1)}{C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_L R_3 s + C_L R_L s + 1}$$

$$\begin{aligned} &\text{Q: } \frac{C_3C_LR_3R_L\sqrt{\frac{1}{C_3C_LR_3R_L}}}{C_3R_3+C_LR_3+C_LR_L} \\ &\text{wo: } \sqrt{\frac{1}{C_3C_LR_3R_L}} \\ &\text{bandwidth: } \frac{C_3R_3+C_LR_3+C_LR_L}{C_3C_LR_3R_L} \\ &\text{K-LP: } R_3 \\ &\text{K-HP: } 0 \\ &\text{K-BP: } \frac{C_LR_3R_L}{C_3R_3+C_LR_3+C_LR_L} \\ &\text{Qz: } 0 \end{aligned}$$

Wz: None

8.10 INVALID-NUMER-10 $Z(s) = \left(\infty, \infty, \infty, \infty, L_4 s + \frac{1}{C_4 s}, \frac{R_L}{C_L R_L s + 1}\right)$

$$H(s) = \frac{R_L (C_3 R_3 s + 1)}{C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_3 R_L s + C_L R_L s + 1}$$

Parameters:

 $\begin{array}{l} \text{Q:} \ \frac{C_3C_LR_3R_L\sqrt{\frac{1}{C_3C_LR_3R_L}}}{C_3R_3+C_3R_L+C_LR_L} \\ \text{wo:} \ \sqrt{\frac{1}{C_3C_LR_3R_L}} \\ \text{bandwidth:} \ \frac{C_3R_3+C_3R_L+C_LR_L}{C_3C_LR_3R_L} \\ \text{K-LP:} \ R_L \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{C_3R_3R_L}{C_3R_3+C_3R_L+C_LR_L} \\ \text{Qz:} \ 0 \end{array}$

8.11 INVALID-NUMER-11 $Z(s) = \left(R_1, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$

$$H(s) = \frac{R_3 (C_L R_L s + 1)}{C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_L R_3 s + C_L R_L s + 1}$$

Parameters:

Wz: None

 $\begin{array}{l} \text{Q:} \ \frac{C_3C_LR_3R_L\sqrt{\frac{1}{C_3C_LR_3R_L}}}{C_3R_3+C_LR_3+C_LR_L} \\ \text{wo:} \ \sqrt{\frac{1}{C_3C_LR_3R_L}} \\ \text{bandwidth:} \ \frac{C_3R_3+C_LR_3+C_LR_L}{C_3C_LR_3R_L} \\ \text{K-LP:} \ R_3 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{C_LR_3R_L}{C_3R_3+C_LR_3+C_LR_L} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$

8.12 INVALID-NUMER-12
$$Z(s) = \left(R_1, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L (C_3 R_3 s + 1)}{C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_3 R_L s + C_L R_L s + 1}$$

 $\begin{aligned} &\text{Q: } \frac{C_3C_LR_3R_L\sqrt{\frac{1}{C_3C_LR_3R_L}}}{C_3R_3+C_3R_L+C_LR_L} \\ &\text{wo: } \sqrt{\frac{1}{C_3C_LR_3R_L}} \\ &\text{bandwidth: } \frac{C_3R_3+C_3R_L+C_LR_L}{C_3C_LR_3R_L} \\ &\text{K-LP: } R_L \\ &\text{K-HP: } 0 \\ &\text{K-BP: } \frac{C_3R_3R_L}{C_3R_3+C_3R_L+C_LR_L} \\ &\text{Qz: } 0 \end{aligned}$

8.13 INVALID-NUMER-13 $Z(s) = \left(L_1 s, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ R_L + \frac{1}{C_L s}\right)$

$$H(s) = \frac{R_3 (C_L R_L s + 1)}{C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_L R_3 s + C_L R_L s + 1}$$

Parameters:

Wz: None

 $\begin{array}{l} \text{Q:} \ \frac{C_3C_LR_3R_L\sqrt{\frac{1}{C_3C_LR_3R_L}}}{C_3R_3+C_LR_3+C_LR_L} \\ \text{wo:} \ \sqrt{\frac{1}{C_3C_LR_3R_L}} \\ \text{bandwidth:} \ \frac{C_3R_3+C_LR_3+C_LR_L}{C_3C_LR_3R_L} \\ \text{K-LP:} \ R_3 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{C_LR_3R_L}{C_3R_3+C_LR_3+C_LR_L} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$

8.14 INVALID-NUMER-14
$$Z(s) = \left(L_1 s, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L (C_3 R_3 s + 1)}{C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_3 R_L s + C_L R_L s + 1}$$

$$\begin{array}{l} \text{Q:} \ \frac{C_3C_LR_3R_L\sqrt{\frac{1}{C_3C_LR_3R_L}}}{C_3R_3+C_3R_L+C_LR_L} \\ \text{wo:} \ \sqrt{\frac{1}{C_3C_LR_3R_L}} \\ \text{bandwidth:} \ \frac{C_3R_3+C_3R_L+C_LR_L}{C_3C_LR_3R_L} \\ \text{K-LP:} \ R_L \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{C_3R_3R_L}{C_3R_3+C_3R_L+C_LR_L} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

8.15 INVALID-NUMER-15
$$Z(s) = \left(\frac{1}{C_1 s}, \frac{R_2 \left(L_2 s + \frac{1}{C_2 s}\right)}{L_2 s + R_2 + \frac{1}{C_2 s}}, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 (C_L R_L s + 1)}{C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_L R_3 s + C_L R_L s + 1}$$

$$\begin{array}{l} \text{Q:} \ \frac{C_3C_LR_3R_L\sqrt{\frac{1}{C_3C_LR_3R_L}}}{C_3R_3+C_LR_3+C_LR_L} \\ \text{wo:} \ \sqrt{\frac{1}{C_3C_LR_3R_L}} \\ \text{bandwidth:} \ \frac{C_3R_3+C_LR_3+C_LR_L}{C_3C_LR_3R_L} \\ \text{K-LP:} \ R_3 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{C_LR_3R_L}{C_3R_3+C_LR_3+C_LR_L} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

8.16 INVALID-NUMER-16
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, R_2, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L (C_3 R_3 s + 1)}{C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_3 R_L s + C_L R_L s + 1}$$

Wz: None

 $\begin{aligned} &\text{Q: } \frac{C_3C_LR_3R_L\sqrt{\frac{1}{C_3C_LR_3R_L}}}{C_3R_3+C_3R_L+C_LR_L} \\ &\text{wo: } \sqrt{\frac{1}{C_3C_LR_3R_L}} \\ &\text{bandwidth: } \frac{C_3R_3+C_3R_L+C_LR_L}{C_3C_LR_3R_L} \\ &\text{K-LP: } R_L \\ &\text{K-HP: } 0 \\ &\text{K-BP: } \frac{C_3R_3R_L}{C_3R_3+C_3R_L+C_LR_L} \\ &\text{Qz: } 0 \end{aligned}$

9 INVALID-WZ

10 INVALID-ORDER

10.1 INVALID-ORDER-1 $Z(s) = (R_1, \infty, \infty, \infty, \infty, R_L)$

$$H(s) = \frac{R_3 R_L}{R_3 + R_L}$$

10.2 INVALID-ORDER-2 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$

$$H(s) = \frac{R_3}{C_L R_3 s + 1}$$

10.3 INVALID-ORDER-3
$$Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_3 R_L}{C_L R_3 R_L s + R_3 + R_L}$$

10.4 INVALID-ORDER-4
$$Z(s)=\left(R_1, \infty, \infty, \infty, \infty, R_L+\frac{1}{C_L s}\right)$$

$$H(s)=\frac{R_3\left(C_L R_L s+1\right)}{C_L R_3 s+C_L R_L s+1}$$

10.5 INVALID-ORDER-5 $Z(s) = (L_1 s, \infty, \infty, \infty, \infty, R_L)$

$$H(s) = \frac{R_L}{C_3 R_L s + 1}$$

10.6 INVALID-ORDER-6
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{1}{s\left(C_3 + C_L\right)}$$

10.7 INVALID-ORDER-7
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L}{C_3 R_L s + C_L R_L s + 1}$$

10.8 INVALID-ORDER-8
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L R_L s + 1}{s \left(C_3 C_L R_L s + C_3 + C_L\right)}$$

10.9 INVALID-ORDER-9
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_L s^2 + 1}{s \left(C_3 C_L L_L s^2 + C_3 + C_L \right)}$$

10.10 INVALID-ORDER-10
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s}{C_3 L_L s^2 + C_L L_L s^2 + 1}$$

10.11 INVALID-ORDER-11
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_L s^2 + C_L R_L s + 1}{s \left(C_3 C_L L_L s^2 + C_3 C_L R_L s + C_3 + C_L \right)}$$

10.12 INVALID-ORDER-12
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_3 C_L L_L R_L s^3 + C_3 L_L s^2 + C_3 R_L s + C_L L_L s^2 + 1}$$

10.13 INVALID-ORDER-13
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L (C_L L_L s^2 + 1)}{C_3 C_L L_L R_L s^3 + C_3 R_L s + C_L L_L s^2 + C_L R_L s + 1}$$

10.14 INVALID-ORDER-14
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_3 R_L}{C_3 R_3 R_L s + R_3 + R_L}$$

10.15 INVALID-ORDER-15
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3}{C_3 R_3 s + C_L R_3 s + 1}$$

10.16 INVALID-ORDER-16
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_3 R_L}{C_3 R_3 R_L s + C_L R_3 R_L s + R_3 + R_L}$$

10.17 INVALID-ORDER-17
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + 1 \right)}{C_3 C_L L_L R_3 s^3 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + 1}$$

10.18 INVALID-ORDER-18
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_3 C_L L_L R_3 s^3 + C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.19 INVALID-ORDER-19
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 L_L R_3 s^2 + C_3 R_3 R_L s + C_L L_L R_3 s^2 + C_L L_L R_L s^2 + L_L s + R_3 + R_L}$$

10.20 INVALID-ORDER-20
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_L L_L s^2 + 1 \right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 R_3 R_L s + C_L L_L R_3 s^2 + C_L L_L R_L s^2 + C_L R_3 R_L s + R_3 + R_L}$$

10.21 INVALID-ORDER-21
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L (C_3 R_3 s + 1)}{C_3 R_3 s + C_3 R_L s + 1}$$

10.22 INVALID-ORDER-22
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 R_3 s + 1}{s \left(C_3 C_L R_3 s + C_3 + C_L \right)}$$

10.23 INVALID-ORDER-23
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_L R_L s + 1)}{s (C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L)}$$

10.24 INVALID-ORDER-24
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_L L_L s^2 + 1)}{s (C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 + C_L)}$$

10.25 INVALID-ORDER-25
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s (C_3 R_3 s + 1)}{C_3 C_L L_L R_3 s^3 + C_3 L_L s^2 + C_3 R_3 s + C_L L_L s^2 + 1}$$

10.26 INVALID-ORDER-26
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_L L_L s^2 + C_L R_L s + 1)}{s (C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L)}$$

10.27 INVALID-ORDER-27
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 R_3 s + 1\right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 L_L R_3 s^2 + C_3 L_L R_L s^2 + C_3 R_3 R_L s + C_L L_L R_L s^2 + L_L s + R_L}$$

10.28 INVALID-ORDER-28
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_2 C_L L_L R_2 s^3 + C_2 C_L L_L R_L s^3 + C_2 L_L s^2 + C_2 R_2 s + C_2 R_L s + C_L L_L s^2 + 1}$$

10.29 INVALID-ORDER-29
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_3 R_3 s + 1\right) \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_L R_3 s^3 + C_3 C_L L_L R_L s^3 + C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_3 R_L s + C_L L_L s^2 + C_L R_L s + 1}$$

10.30 INVALID-ORDER-30
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + 1}{s \left(C_3 C_L L_3 s^2 + C_3 + C_L\right)}$$

10.31 INVALID-ORDER-31
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_3 R_L s + C_L R_L s + 1}$$

10.32 INVALID-ORDER-32
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L R_L s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.33 INVALID-ORDER-33
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 + C_L\right)}$$

10.34 INVALID-ORDER-34
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 L_3 s^2 + C_3 L_L s^2 + C_L L_L s^2 + 1}$$

10.35 INVALID-ORDER-35
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + C_L R_L s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.36 INVALID-ORDER-36
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L R_L s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_L s^2 + C_3 L_L R_L s^2 + C_L L_L R_L s^2 + L_L s + R_L R_L s^2 + C_L L_L R_L s^2 + C_L R_L R_L s^2$$

10.37 INVALID-ORDER-37
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_L R_L s^3 + C_3 L_3 s^2 + C_3 L_L s^2 + C_3 R_L s + C_L L_L s^2 + 1}$$

10.38 INVALID-ORDER-38
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_L s^3 + C_3 C_L L_L R_L s^3 + C_3 L_3 s^2 + C_3 R_L s + C_L L_L s^2 + C_L R_L s + 1}$$

10.39 INVALID-ORDER-39
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 s}{C_3 L_3 s^2 + C_L L_3 s^2 + 1}$$

10.40 INVALID-ORDER-40
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 s \left(C_L R_L s + 1\right)}{C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L R_L s + 1}$$

10.41 INVALID-ORDER-41
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_L s^2 + 1}$$

10.42 INVALID-ORDER-42
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_3 L_L s}{C_3 L_3 L_L s^2 + C_L L_3 L_L s^2 + L_3 + L_L}$$

10.43 INVALID-ORDER-43
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 s \left(C_L L_L s^2 + C_L R_L s + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_4 s^2 + C_L R_L s + 1}$$

10.44 INVALID-ORDER-44
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{L_3s \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_3 C_L L_3 L_L R_L s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_L s^2 + C_L L_3 L_L s^3 + C_L L_L R_L s^2 + L_3 s + L_L s + R_L}$$

10.45 INVALID-ORDER-45
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{L_3 R_L s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_L s^4 + C_3 L_3 R_L s^2 + C_L L_3 L_L s^3 + C_L L_3 R_L s^2 + C_L L_L R_L s^2 + L_3 s + R_L}$$

10.46 INVALID-ORDER-46
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + C_3 R_3 s + 1}{s \left(C_3 C_L L_3 s^2 + C_3 C_L R_3 s + C_3 + C_L \right)}$$

10.47 INVALID-ORDER-47
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{C_3 C_L L_3 R_L s^3 + C_3 C_L R_3 R_L s^2 + C_3 L_3 s^2 + C_3 R_3 s + C_3 R_L s + C_L R_L s + 1}$$

10.48 INVALID-ORDER-48
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L R_L s + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.49 INVALID-ORDER-49
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 + C_L\right)}$$

10.50 INVALID-ORDER-50
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_L R_3 s^3 + C_3 L_3 s^2 + C_3 L_L s^2 + C_3 R_3 s + C_L L_L s^2 + 1}$$

10.51 INVALID-ORDER-51
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + C_3 R_3 s + 1\right) \left(C_L L_L s^2 + C_L R_L s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.52 INVALID-ORDER-52
$$Z(s) = \left(\frac{L_1s}{C_1L_1s^2+1}, \infty, \infty, \infty, \infty, \infty, \frac{1}{C_Ls+\frac{1}{R_L}+\frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_LR_Ls\left(C_3L_3s^2+C_3R_3s+1\right)}{C_3C_LL_3L_LR_4s^4+C_3C_LL_LR_3R_Ls^3+C_3L_3L_Ls^3+C_3L_3R_Ls^2+C_3L_LR_3s^2+C_3L_LR_4s^2+C_3R_3R_Ls+C_LL_LR_Ls^2+L_Ls+R_Ls^2+C_3L_LR_3s^2+C_3L_LR_4s^2+C_3L_4R_4s^2+C_3L$$

10.53 INVALID-ORDER-53
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_3L_3s^2 + C_3R_3s + 1\right)\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_LR_3s^3 + C_3C_LL_LR_Ls^3 + C_3L_3s^2 + C_3L_Ls^2 + C_3R_3s + C_3R_Ls + C_LL_Ls^2 + 1}$$

10.54 INVALID-ORDER-54
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_L L_L s^2 + 1 \right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_L s^3 + C_3 C_L L_L R_3 s^3 + C_3 C_L L_L R_2 s^3 + C_3 C_L R_3 R_L s^2 + C_3 R_3 s^2 + C_3 R_3 s + C_3 R_L s + C_L L_L s^2 + C_L R_L s + 1}$$

10.55 INVALID-ORDER-55
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L R_L s + 1\right)}{C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_L L_3 R_3 s^2 + C_L L_3 R_L s^2 + C_L R_3 R_L s + L_3 s + R_3}$$

10.56 INVALID-ORDER-56
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 L_3 R_3 s^2 + C_L L_3 L_L s^3 + C_L L_3 R_3 s^2 + C_L L_1 R_3 s^2 + L_3 s + R_3}$$

10.57 INVALID-ORDER-57
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L L_L s^2 + C_L R_L s + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 R_3 s^2 + C_L L_3 L_L s^3 + C_L L_3 R_3 s^2 + C_L L_3 R_L s^2 + C_L R_3 R_L s + L_3 s + R_3 R_L s +$$

10.58 INVALID-ORDER-58
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

10.59 INVALID-ORDER-59
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{L_3 R_3 R_L s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 R_3 R_L s^2 + C_L L_3 L_L R_3 s^3 + C_L L_3 L_L R_3 s^3 + C_L L_3 R_3 R_L s^2 + C_L L_L R_3 R_L s^2 + L_3 R_3 s + L_3 R_L s + R_3 R_L s^2 + C_L L_3 R_3 R_L s^2 + C_L R_3 R_3 R_L s$$

10.60 INVALID-ORDER-60
$$Z(s) = \left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 L_3 R_3 s^2 + L_3 s + R_3}{C_3 C_L L_3 R_3 s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L R_3 s + 1}$$

10.61 INVALID-ORDER-61
$$Z(s) = \left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_L L_3 R_L s^2 + C_L R_3 R_L s + L_3 s + R_3 + R_L}$$

10.62 INVALID-ORDER-62
$$Z(s) = \left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_L R_L s + 1) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.63 INVALID-ORDER-63
$$Z(s) = \left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_4 s^2 + C_L R_3 s + 1}$$

10.64 INVALID-ORDER-64
$$Z(s) = \left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_3 s^2 + C_L L_3 L_L S^3 + C_L L_L R_3 s^2 + L_3 s + L_L s + R_3}$$

10.65 INVALID-ORDER-65
$$Z(s) = \left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + C_L R_L s + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_2 s^2 + C_L R_3 s + C_L R_L s + 1}$$

$$\textbf{10.66} \quad \textbf{INVALID-ORDER-66} \ Z(s) = \left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \ \infty, \ \infty, \ \infty, \ \infty, \ \infty, \ \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 R_L s^2 + C_L L_3 L_L R_3 s^3 + C_L L_L R_3 R_L s^2 + L_3 L_L s^2 + L_3 R_L s + L_L R_3 s + L_L R_3 s + L_L R_4 s + R_3 R_L s^2 + L_4 R_4 s^3 + L$$

10.67 INVALID-ORDER-67
$$Z(s) = \left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right) \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_2 L_L R_3 s^4 + C_3 C_L L_3 L_L R_3 s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_L L_3 L_L s^3 + C_L L_L R_3 s^2 + C_L L_L R_$$

10.68 INVALID-ORDER-68
$$Z(s) = \left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_L L_L s^2 + 1 \right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_L s^2 + C_L L_3 L_L s^3 + C_L L_3 R_L s^2 + C_L L_L R_3 s^2 + C_L$$

10.69 INVALID-ORDER-69
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1 \right)}{C_3 C_L L_3 R_3 s^3 + C_3 L_3 s^2 + C_3 R_3 s + C_L R_3 s + 1}$$

10.70 INVALID-ORDER-70
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_3 L_3 s^2 + 1 \right)}{C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_3 R_3 R_L s + C_L R_3 R_L s + R_3 + R_L}$$

10.71 INVALID-ORDER-71
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1 \right) \left(C_L R_L s + 1 \right)}{C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 C_L R_3 R_L s^2 + C_3 L_3 s^2 + C_3 R_3 s + C_L R_3 s + C_L R_L s + 1}$$

10.72 INVALID-ORDER-72
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1 \right) \left(C_L L_L s^2 + 1 \right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 C_L L_L R_3 s^3 + C_3 L_3 s^2 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + 1}$$

10.73 INVALID-ORDER-73
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L R_3 s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_L R_3 s^2 + C_L L_L R_3 s^2 + L_L s + R_3}$$

10.74 INVALID-ORDER-74
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + C_L R_L s + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 C_L L_R 3 s^3 + C_3 C_L R_3 R_L s^2 + C_3 L_3 s^2 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.75 INVALID-ORDER-75
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_3 R_L s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 L_L R_L s^3 + C_3 L_3 R_3 R_L s^2 + C_3 L_L R_3 R_L s^2 + C_L L_L R_3 R_L s^2 + L_L R_3 s + L_L R_L s + R_3 R_L s^2 + L_L R_3 R_L s^2 + L_L$$

10.76 INVALID-ORDER-76
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1\right) \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_2 L_L R_3 R_L s^3 + C_3 L_3 L_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_3 L_L R_3 s^2 + C_4 L_L R_3 s^2 + C_L L_L R_3 s^2 + C_L L_L R_3 s^2 + L_L s + R_3 + R_L R_3 r^2 + C_3 L_1 R_3 r^2 + C_$$

10.77 INVALID-ORDER-77
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 R_1 R_L s^3 + C_3 C_L L_R R_2 s^3 + C_3 L_3 R_L s^3 + C_3 L_3 R_L s^2 + C_3 R_3 R_L s + C_L L_L R_3 s^2 + C_L L_L R_2 s^2 + C_L R_3 R_L s + R_3 + R_L R_2 s^2 + C_L R_3 R_L s^2 + C_L R_$$

10.78 INVALID-ORDER-78
$$Z(s) = \left(\frac{R_1\left(L_1 s + \frac{1}{C_1 s}\right)}{L_1 s + R_1 + \frac{1}{C_1 s}}, \infty, \infty, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_3 R_L}{R_3 + R_L}$$

10.79 INVALID-ORDER-79
$$Z(s) = \left(\frac{R_1\left(L_1s + \frac{1}{C_1s}\right)}{L_1s + R_1 + \frac{1}{C_1s}}, \infty, \infty, \infty, \infty, \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_3}{C_L R_3 s + 1}$$

10.80 INVALID-ORDER-80
$$Z(s) = \left(\frac{R_1\left(L_1 s + \frac{1}{C_1 s}\right)}{L_1 s + R_1 + \frac{1}{C_1 s}}, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_3 R_L}{C_L R_3 R_L s + R_3 + R_L}$$

10.81 INVALID-ORDER-81
$$Z(s) = \left(\frac{R_1\left(L_1s + \frac{1}{C_1s}\right)}{L_1s + R_1 + \frac{1}{C_1s}}, \infty, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_3\left(C_LR_Ls + 1\right)}{C_LR_3s + C_LR_Ls + 1}$$

10.82 INVALID-ORDER-82
$$Z(s) = (\infty, R_2, \infty, \infty, \infty, R_L)$$

$$H(s) = \frac{R_L}{C_3 R_L s + 1}$$

10.83 INVALID-ORDER-83
$$Z(s) = \left(\infty, R_2, \infty, \infty, \infty, \frac{1}{C_{Ls}}\right)$$

$$H(s) = \frac{1}{s\left(C_3 + C_L\right)}$$

10.84 INVALID-ORDER-84
$$Z(s) = \left(\infty, R_2, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L}{C_3 R_L s + C_L R_L s + 1}$$

10.85 INVALID-ORDER-85
$$Z(s) = \left(\infty, R_2, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L R_L s + 1}{s (C_3 C_L R_L s + C_3 + C_L)}$$

10.86 INVALID-ORDER-86
$$Z(s) = \left(\infty, R_2, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_L s^2 + 1}{s \left(C_3 C_L L_L s^2 + C_3 + C_L \right)}$$

10.87 INVALID-ORDER-87
$$Z(s) = \left(\infty, R_2, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s}{C_3 L_L s^2 + C_L L_L s^2 + 1}$$

10.88 INVALID-ORDER-88
$$Z(s) = \left(\infty, R_2, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_L s^2 + C_L R_L s + 1}{s \left(C_3 C_L L_L s^2 + C_3 C_L R_L s + C_3 + C_L \right)}$$

10.89 INVALID-ORDER-89
$$Z(s) = \left(\infty, R_2, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_3 C_L L_L R_L s^3 + C_3 L_L s^2 + C_3 R_L s + C_L L_L s^2 + 1}$$

10.90 INVALID-ORDER-90
$$Z(s) = \left(\infty, \ R_2, \ \infty, \ \infty, \ \infty, \ \frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L\left(C_L L_L s^2 + 1\right)}{C_3 C_L L_L R_L s^3 + C_3 R_L s + C_L L_L s^2 + C_L R_L s + 1}$$

10.91 INVALID-ORDER-91
$$Z(s)=\left(\infty,\ \frac{1}{C_2s},\ \infty,\ \infty,\ \infty,\ R_L\right)$$

$$H(s)=\frac{R_3R_L}{C_3R_3R_Ls+R_3+R_L}$$

10.92 INVALID-ORDER-92
$$Z(s)=\left(\infty,\ \frac{1}{C_2s},\ \infty,\ \infty,\ \infty,\ \frac{1}{C_Ls}\right)$$

$$H(s)=\frac{R_3}{C_3R_3s+C_LR_3s+1}$$

10.93 INVALID-ORDER-93
$$Z(s)=\left(\infty,\ \frac{1}{C_2s},\ \infty,\ \infty,\ \infty,\ \frac{R_L}{C_LR_Ls+1}\right)$$

$$H(s)=\frac{R_3R_L}{C_3R_3R_Ls+C_LR_3R_Ls+R_3+R_L}$$

10.94 INVALID-ORDER-94
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_L R_3 s^3 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + 1}$$

10.95 INVALID-ORDER-95
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_3 C_L L_L R_3 s^3 + C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.96 INVALID-ORDER-96
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 L_L R_3 s^2 + C_3 R_3 R_L s + C_L L_L R_3 s^2 + C_L L_L R_L s^2 + L_L s + R_3 + R_L}$$

10.97 INVALID-ORDER-97
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_L L_L s^2 + 1 \right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 R_3 R_L s + C_L L_L R_3 s^2 + C_L L_L R_L s^2 + C_L R_3 R_L s + R_3 + R_L}$$

10.98 INVALID-ORDER-98
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L (C_3 R_3 s + 1)}{C_3 R_3 s + C_3 R_L s + 1}$$

10.99 INVALID-ORDER-99
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 R_3 s + 1}{s \left(C_3 C_L R_3 s + C_3 + C_L \right)}$$

10.100 INVALID-ORDER-100
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_L R_L s + 1)}{s (C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L)}$$

10.101 INVALID-ORDER-101
$$Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \infty, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_L L_L s^2 + 1)}{s (C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 + C_L)}$$

10.102 INVALID-ORDER-102
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 R_3 s + 1\right)}{C_3 C_L L_L R_3 s^3 + C_3 L_L s^2 + C_3 R_3 s + C_L L_L s^2 + 1}$$

10.103 INVALID-ORDER-103
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_L L_L s^2 + C_L R_L s + 1)}{s (C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L)}$$

10.104 INVALID-ORDER-104
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 R_3 s + 1\right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 L_L R_3 s^2 + C_3 L_L R_L s^2 + C_3 R_3 R_L s + C_L L_L R_L s^2 + L_L s + R_L}$$

10.105 INVALID-ORDER-105
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_L L_L R_L s^2 + L_L s + R_L)}{C_3 C_L L_L R_3 s^3 + C_3 C_L L_L R_L s^3 + C_3 L_L s^2 + C_3 R_3 s + C_3 R_L s + C_L L_L s^2 + 1}$$

10.106 INVALID-ORDER-106
$$Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \infty, \infty, \infty, \infty, \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{R_L\left(C_3R_3s + 1\right)\left(C_LL_Ls^2 + 1\right)}{C_3C_LL_LR_3s^3 + C_3C_LL_LR_Ls^3 + C_3C_LR_3R_Ls^2 + C_3R_3s + C_3R_Ls + C_LL_Ls^2 + C_LR_Ls + 1}$$

10.107 INVALID-ORDER-107
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + 1}{s \left(C_2 C_L L_2 s^2 + C_2 + C_L\right)}$$

10.108 INVALID-ORDER-108
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + 1 \right)}{C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_3 R_L s + C_L R_L s + 1}$$

10.109 INVALID-ORDER-109
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L R_L s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.110 INVALID-ORDER-110
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 + C_L\right)}$$

10.111 INVALID-ORDER-111
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 L_3 s^2 + C_3 L_L s^2 + C_L L_L s^2 + 1}$$

10.112 INVALID-ORDER-112
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + C_L R_L s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.113 INVALID-ORDER-113
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L R_L s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_L s^2 + C_3 L_L R_L s^2 + C_L L_L R_L s^2 + L_L s + R_L}$$

10.114 INVALID-ORDER-114
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_L R_L s^3 + C_3 L_3 s^2 + C_3 L_L s^2 + C_3 R_L s + C_L L_L s^2 + 1}$$

10.115 INVALID-ORDER-115
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + 1 \right) \left(C_L L_L s^2 + 1 \right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_L s^3 + C_3 C_L L_L R_L s^3 + C_3 L_3 s^2 + C_3 R_L s + C_L L_L s^2 + C_L R_L s + 1}$$

10.116 INVALID-ORDER-116
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 s}{C_3 L_3 s^2 + C_L L_2 s^2 + 1}$$

10.117 INVALID-ORDER-117
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 s \left(C_L R_L s + 1 \right)}{C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L R_L s + 1}$$

10.118 INVALID-ORDER-118
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_L s^2 + 1}$$

10.119 INVALID-ORDER-119
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_3 L_L s}{C_3 L_3 L_L s^2 + C_L L_3 L_L s^2 + L_3 + L_L}$$

10.120 INVALID-ORDER-120
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3s \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_L s^2 + C_L R_L s + 1}$$

10.121 INVALID-ORDER-121
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{L_3s\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_3C_LL_3L_LR_Ls^4 + C_3L_3L_Ls^3 + C_3L_3R_Ls^2 + C_LL_3L_Ls^3 + C_LL_LR_Ls^2 + L_3s + L_Ls + R_L}$$

10.122 INVALID-ORDER-122
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{L_3 R_L s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_L s^4 + C_3 L_3 R_L s^2 + C_L L_3 L_L s^3 + C_L L_3 R_L s^2 + C_L L_L R_L s^2 + L_3 s + R_L}$$

10.123 INVALID-ORDER-123
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + C_3 R_3 s + 1}{s \left(C_3 C_L L_3 s^2 + C_3 C_L R_3 s + C_3 + C_L\right)}$$

10.124 INVALID-ORDER-124
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{C_3 C_L L_3 R_L s^3 + C_3 C_L R_3 R_L s^2 + C_3 L_3 s^2 + C_3 R_3 s + C_3 R_L s + C_L R_L s + 1}$$

10.125 INVALID-ORDER-125
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_L R_L s + 1) (C_3 L_3 s^2 + C_3 R_3 s + 1)}{s (C_3 C_L L_3 s^2 + C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L)}$$

10.126 INVALID-ORDER-126
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 + C_L\right)}$$

10.127 INVALID-ORDER-127
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$L_L s \left(C_2 L_2 s^2 + C_2 R_2 s + 1\right)$$

$$H(s) = \frac{L_L s \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_L R_3 s^3 + C_3 L_3 s^2 + C_3 L_L s^2 + C_3 R_3 s + C_L L_L s^2 + 1}$$

10.128 INVALID-ORDER-128
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3L_3s^2 + C_3R_3s + 1\right)\left(C_LL_Ls^2 + C_LR_Ls + 1\right)}{s\left(C_3C_LL_3s^2 + C_3C_LL_Ls^2 + C_3C_LR_3s + C_3C_LR_Ls + C_3 + C_L\right)}$$

10.129 INVALID-ORDER-129
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{C_3 C_L L_3 L_L R_L s^4 + C_3 C_L L_L R_3 R_L s^3 + C_3 L_3 L_L s^3 + C_3 L_3 R_L s^2 + C_3 L_L R_3 s^2 + C_3 L_L R_2 s^2 + C_3 R_3 R_L s + C_L L_L R_L s^2 + L_L s + R_L R_2 r^2 + C_3 R_3 R_L s + C_L R_3 R_2 r^2 + C_3 R_3 R_3 r^2 + C_$$

10.130 INVALID-ORDER-130
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_3L_3s^2 + C_3R_3s + 1\right)\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_LR_3s^3 + C_3C_LL_LR_Ls^3 + C_3L_3s^2 + C_3L_Ls^2 + C_3R_3s + C_3R_Ls + C_LL_Ls^2 + 1}$$

10.131 INVALID-ORDER-131
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_L L_L s^2 + 1 \right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_L s^3 + C_3 C_L L_L R_3 s^3 + C_3 C_L L_L R_L s^3 + C_3 C_L R_3 R_L s^2 + C_3 R_3 s^2 + C_3 R_3 s + C_3 R_L s + C_L L_L s^2 + C_L R_L s + 1}$$

10.132 INVALID-ORDER-132
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \infty, \ \infty, \ \infty, \ R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L R_L s + 1\right)}{C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_L L_3 R_3 s^2 + C_L L_3 R_L s^2 + C_L R_3 R_L s + L_3 s + R_3}$$

10.133 INVALID-ORDER-133
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \infty, \ \infty, \ \infty, \ L_Ls + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 L_3 R_3 s^2 + C_L L_3 L_L s^3 + C_L L_3 R_3 s^2 + C_L L_L R_3 s^2 + L_3 s + R_3}$$

10.134 INVALID-ORDER-134
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \infty, \ \infty, \ \infty, \ L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L L_L s^2 + C_L R_L s + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_L L_3 L_L s^3 + C_L L_3 R_3 s^2 + C_L L_3 R_L s^2 + C_L L_3 R_L s^2 + C_L L_3 R_L s^2 + C_L R_3 R_L s + L_3 s + R_3 R_L s + R_3 R_L$$

10.135 INVALID-ORDER-135
$$Z(s) = \left(\infty, \ \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \ \infty, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 R_3 R_L s^2 + C_L L_3 L_L R_3 s^3 + C_L L_3 L_L R_3 r^3 + C_$$

10.136 INVALID-ORDER-136
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \infty, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{L_3 R_3 R_L s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 R_3 R_L s^2 + C_L L_3 L_L R_3 s^3 + C_L L_3 L_L R_L s^3 + C_L L_3 R_3 R_L s^2 + C_L L_L R_3 R_L s^2 + L_3 R_3 s + L_3 R_L s + R_3 R_L s^2 + C_L L_3 R_3 R_L s^2 + C_L R_3 R_L s^2 +$$

10.137 INVALID-ORDER-137
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \infty, \infty, \infty, \infty, \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{C_3L_3R_3s^2 + L_3s + R_3}{C_3C_LL_3R_3s^3 + C_3L_3s^2 + C_LL_3s^2 + C_LR_3s + 1}$$

10.138 INVALID-ORDER-138
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \infty, \infty, \infty, \frac{R_L}{C_LR_Ls + 1}\right)$$

$$H(s) = \frac{R_L\left(C_3L_3R_3s^2 + L_3s + R_3\right)}{C_3C_LL_3R_3R_Ls^3 + C_3L_3R_3s^2 + C_3L_3R_Ls^2 + C_LL_3R_Ls^2 + C_LR_3R_Ls + L_3s + R_3 + R_L}$$

10.139 INVALID-ORDER-139
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_LR_Ls + 1\right)\left(C_3L_3R_3s^2 + L_3s + R_3\right)}{C_3C_LL_3R_3s^3 + C_3C_LL_3R_Ls^3 + C_3L_3s^2 + C_LL_3s^2 + C_LR_3s + C_LR_Ls + 1}$$

10.140 INVALID-ORDER-140
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \infty, \infty, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_LL_Ls^2 + 1\right)\left(C_3L_3R_3s^2 + L_3s + R_3\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_3R_3s^3 + C_3L_3s^2 + C_LL_3s^2 + C_LL_4s^2 + C_LR_3s + 1}$$

10.141 INVALID-ORDER-141
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1}\right)$$

$$H(s) = \frac{L_Ls\left(C_3L_3R_3s^2 + L_3s + R_3\right)}{C_3C_LL_3L_LR_3s^4 + C_3L_3L_Ls^3 + C_3L_3R_3s^2 + C_LL_3L_LR_3s^2 + L_3s + L_Ls + R_3}$$

10.142 INVALID-ORDER-142
$$Z(s) = \left(\infty, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \infty, \infty, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + C_L R_L s + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_1 s^4 + C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_1 s^3 + C_3 L_2 s^2 + C_L L_3 s^2 + C_L L_1 s^2 + C_L R_3 s + C_L R_1 s + 1}$$

10.143 INVALID-ORDER-143
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ \infty, \ \infty, \ \infty, \ \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 L_L R_2 s^3 + C_3 L_3 R_L s^2 + C_L L_3 L_L R_3 s^2 + L_3 L_L s^2 + L_3 L_L s^2 + L_3 R_L s + L_L R_3 s + L_L R_4 s + R_3 R_L s^2 + L_3 R_4 s^2 + L_3 R_4 s^3 + L_4 R_$$

10.144 INVALID-ORDER-144
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ \infty, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_3L_3R_3s^2 + L_3s + R_3\right)\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_3C_LL_3L_LR_3s^4 + C_3C_LL_3L_LR_3s^4 + C_3L_3L_Ls^3 + C_3L_3R_3s^2 + C_3L_3R_Ls^2 + C_LL_3L_Ls^3 + C_LL_LR_3s^2 + C_LL_2R_3s^2 + C_LL_2R_3s^2 + C_LL_3L_3L_2R_3s^2 + C_LL_3L_3L_3s^2 + C_LL_3L_3s^2 + C_LL_3L_3s^2 + C_LL_3L_3s^2 + C_LL_3L_3s^2 + C_LL_3L_3s^2 + C_LL_3L_3s^2 + C_LL_3s^2 + C_LL_3s$$

10.145 INVALID-ORDER-145
$$Z(s) = \left(\infty, \ \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \ \infty, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{R_L \left(C_L L_L s^2 + 1 \right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_L s^2 + C_L L_3 L_L s^3 + C_L L_3 R_L s^2 + C_L L_L R_3 s^2 + C_L$$

10.146 INVALID-ORDER-146
$$Z(s) = \left(\infty, \infty, R_3, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 (C_3 L_3 s^2 + 1)}{C_3 C_L L_3 R_3 s^3 + C_3 L_3 s^2 + C_3 R_3 s + C_L R_3 s + 1}$$

10.147 INVALID-ORDER-147 $Z(s) = \left(\infty, \infty, R_3, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$

$$H(s) = \frac{R_3 R_L \left(C_3 L_3 s^2 + 1 \right)}{C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_3 R_3 R_L s + C_L R_3 R_L s + R_3 + R_L}$$

10.148 INVALID-ORDER-148 $Z(s) = \left(\infty, \infty, R_3, \infty, \infty, R_L + \frac{1}{C_L s}\right)$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1 \right) \left(C_L R_L s + 1 \right)}{C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 C_L R_3 R_L s^2 + C_3 L_3 s^2 + C_3 R_3 s + C_L R_3 s + C_L R_L s + 1}$$

10.149 INVALID-ORDER-149 $Z(s) = \left(\infty, \infty, R_3, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1 \right) \left(C_L L_L s^2 + 1 \right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 C_L L_L R_3 s^3 + C_3 L_3 s^2 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + 1}$$

10.150 INVALID-ORDER-150 $Z(s) = \left(\infty, \infty, R_3, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$

$$H(s) = \frac{L_L R_3 s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_L R_3 s^2 + C_L L_L R_3 s^2 + L_L s + R_3}$$

10.151 INVALID-ORDER-151 $Z(s) = \left(\infty, \infty, R_3, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1 \right) \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 C_L L_1 R_3 s^3 + C_3 C_L L_1 R_3 s^3 + C_3 C_L R_3 R_L s^2 + C_3 R_3 s^2 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.152 INVALID-ORDER-152
$$Z(s) = \left(\infty, \ \infty, \ R_3, \ \infty, \ \infty, \ \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_3 R_L s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 L_L R_L s^3 + C_3 L_3 R_3 R_L s^2 + C_3 L_L R_3 R_L s^2 + C_L L_L R_3 R_L s^2 + L_L R_3 s + L_L R_L s + R_3 R_L s^2 + C_L R_3 R$$

10.153 INVALID-ORDER-153 $Z(s) = \left(\infty, \infty, R_3, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1\right) \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_L R_3 R_L s^3 + C_3 L_3 L_L s^3 + C_3 L_3 R_L s^2 + C_3 L_3 R_L s^2 + C_3 L_L R_3 s^2 + C_4 L_L R_3 s^2 + C_L L_L R_3 s^2 + L_L s + R_3 + R_L R_3 r^2 + C_4 R_3 R_L s^2 + C_4 R_4 R_L s^2$$

10.154 INVALID-ORDER-154
$$Z(s) = \left(\infty, \infty, R_3, \infty, \infty, \frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 R_4 R_L s^3 + C_3 C_L L_R R_3 R_L s^3 + C_3 L_3 R_4 s^2 + C_3 L_3 R_L s^2 + C_4 L_L R_3 s^2 + C_L L_L R_3 s^2 +$$

10.155 INVALID-ORDER-155
$$Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_3 R_L}{R_3 + R_L}$$

10.156 INVALID-ORDER-156
$$Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3}{C_L R_3 s + 1}$$

10.157 INVALID-ORDER-157
$$Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_3 R_L}{C_L R_3 R_L s + R_3 + R_L}$$

10.158 INVALID-ORDER-158
$$Z(s)=\left(\infty,\ \infty,\ \frac{1}{C_3s},\ \infty,\ \infty,\ R_L+\frac{1}{C_Ls}\right)$$

$$H(s)=\frac{R_3\left(C_LR_Ls+1\right)}{C_LR_3s+C_LR_Ls+1}$$

10.159 INVALID-ORDER-159
$$Z(s)=\left(\infty,\ \infty,\ \frac{R_3}{C_3R_3s+1},\ \infty,\ \infty,\ R_L\right)$$

$$H(s)=\frac{R_L}{C_3R_Ls+1}$$

10.160 INVALID-ORDER-160
$$Z(s)=\left(\infty,\ \infty,\ \frac{R_3}{C_3R_3s+1},\ \infty,\ \infty,\ \frac{1}{C_Ls}\right)$$

$$H(s)=\frac{1}{s\left(C_3+C_L\right)}$$

10.161 INVALID-ORDER-161
$$Z(s)=\left(\infty,\ \infty,\ \frac{R_3}{C_3R_3s+1},\ \infty,\ \infty,\ \frac{R_L}{C_LR_Ls+1}\right)$$

$$H(s)=\frac{R_L}{C_3R_Ls+C_LR_Ls+1}$$

10.162 INVALID-ORDER-162
$$Z(s) = \left(\infty, \ \infty, \ \frac{R_3}{C_3 R_3 s + 1}, \ \infty, \ \infty, \ R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L R_L s + 1}{s \left(C_3 C_L R_L s + C_3 + C_L\right)}$$

10.163 INVALID-ORDER-163
$$Z(s) = \left(\infty, \infty, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_L s^2 + 1}{s \left(C_3 C_L L_L s^2 + C_3 + C_L \right)}$$

10.164 INVALID-ORDER-164
$$Z(s) = \left(\infty, \infty, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s}{C_3 L_L s^2 + C_L L_L s^2 + 1}$$

10.165 INVALID-ORDER-165
$$Z(s) = \left(\infty, \infty, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_L s^2 + C_L R_L s + 1}{s \left(C_3 C_L L_L s^2 + C_3 C_L R_L s + C_3 + C_L \right)}$$

10.166 INVALID-ORDER-166
$$Z(s) = \left(\infty, \infty, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_3 C_L L_L R_L s^3 + C_3 L_L s^2 + C_3 R_L s + C_L L_L s^2 + 1}$$

10.167 INVALID-ORDER-167
$$Z(s) = \left(\infty, \infty, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_L L_L s^2 + 1 \right)}{C_3 C_L L_L R_L s^3 + C_3 R_L s + C_L L_L s^2 + C_L R_L s + 1}$$

10.168 INVALID-ORDER-168
$$Z(s) = \left(\infty, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_3 R_L}{C_3 R_3 R_L s + R_3 + R_L}$$

10.169 INVALID-ORDER-169
$$Z(s) = \left(\infty, \ \infty, \ R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3}{C_2 R_{23} s + C_L R_{23} s + 1}$$

10.170 INVALID-ORDER-170
$$Z(s) = \left(\infty, \ \infty, \ R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_3 R_L}{C_3 R_3 R_L s + C_L R_3 R_L s + R_3 + R_L}$$

10.171 INVALID-ORDER-171
$$Z(s) = \left(\infty, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + 1 \right)}{C_3 C_L L_L R_3 s^3 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + 1}$$

10.172 INVALID-ORDER-172
$$Z(s) = \left(\infty, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_3 C_L L_L R_3 s^3 + C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.173 INVALID-ORDER-173
$$Z(s) = \left(\infty, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 L_L R_3 s^2 + C_3 R_3 R_L s + C_L L_L R_3 s^2 + C_L L_L R_L s^2 + L_L s + R_3 + R_L}$$

10.174 INVALID-ORDER-174
$$Z(s) = \left(\infty, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_L L_L s^2 + 1 \right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 R_3 R_L s + C_L L_L R_3 s^2 + C_L L_L R_L s^2 + C_L R_3 R_L s + R_3 + R_L}$$

10.175 INVALID-ORDER-175
$$Z(s) = \left(\infty, \infty, L_3 s + \frac{1}{C_3 s}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L (C_3 R_3 s + 1)}{C_3 R_3 s + C_3 R_L s + 1}$$

10.176 INVALID-ORDER-176
$$Z(s) = \left(\infty, \infty, L_3 s + \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 R_3 s + 1}{s \left(C_3 C_L R_3 s + C_3 + C_L \right)}$$

10.177 INVALID-ORDER-177
$$Z(s) = \left(\infty, \infty, L_3 s + \frac{1}{C_3 s}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_L R_L s + 1)}{s (C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L)}$$

10.178 INVALID-ORDER-178
$$Z(s) = \left(\infty, \infty, L_3 s + \frac{1}{C_3 s}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_L L_L s^2 + 1)}{s (C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 + C_L)}$$

10.179 INVALID-ORDER-179
$$Z(s) = \left(\infty, \infty, L_3 s + \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s (C_3 R_3 s + 1)}{C_3 C_L L_L R_3 s^3 + C_3 L_L s^2 + C_3 R_3 s + C_L L_L s^2 + 1}$$

10.180 INVALID-ORDER-180
$$Z(s) = \left(\infty, \infty, L_3 s + \frac{1}{C_3 s}, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_L L_L s^2 + C_L R_L s + 1)}{s (C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L)}$$

10.181 INVALID-ORDER-181
$$Z(s) = \left(\infty, \ \infty, \ L_3 s + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 R_3 s + 1\right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 L_L R_3 s^2 + C_3 L_L R_L s^2 + C_3 R_3 R_L s + C_L L_L R_L s^2 + L_L s + R_L}$$

10.182 INVALID-ORDER-182
$$Z(s) = \left(\infty, \ \infty, \ L_3 s + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_{3}R_{3}s+1\right)\left(C_{L}L_{L}R_{L}s^{2}+L_{L}s+R_{L}\right)}{C_{3}C_{L}L_{L}R_{3}s^{3}+C_{3}C_{L}L_{L}R_{L}s^{3}+C_{3}L_{L}s^{2}+C_{3}R_{3}s+C_{3}R_{L}s+C_{L}L_{L}s^{2}+1}$$

10.183 INVALID-ORDER-183
$$Z(s) = \left(\infty, \ \infty, \ L_3 s + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_3 R_3 s + 1 \right) \left(C_L L_L s^2 + 1 \right)}{C_3 C_L L_L R_3 s^3 + C_3 C_L L_L R_L s^3 + C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_3 R_L s + C_L L_L s^2 + C_L R_L s + 1}$$

10.184 INVALID-ORDER-184
$$Z(s) = \left(\infty, \infty, \frac{L_{3s}}{C_3L_3s^2+1}, \infty, \infty, \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + 1}{s \left(C_3 C_L L_3 s^2 + C_3 + C_L \right)}$$

10.185 INVALID-ORDER-185
$$Z(s) = \left(\infty, \infty, \frac{L_3s}{C_3L_3s^2+1}, \infty, \infty, \infty, \frac{R_L}{C_LR_Ls+1}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + 1 \right)}{C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_3 R_L s + C_L R_L s + 1}$$

10.186 INVALID-ORDER-186
$$Z(s) = \left(\infty, \infty, \frac{L_{3s}}{C_{3}L_{3}s^{2}+1}, \infty, \infty, R_{L} + \frac{1}{C_{L}s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L R_L s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.187 INVALID-ORDER-187
$$Z(s) = \left(\infty, \infty, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 + C_L\right)}$$

10.188 INVALID-ORDER-188
$$Z(s) = \left(\infty, \ \infty, \ \frac{L_3s}{C_3L_3s^2+1}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2+1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 L_3 s^2 + C_3 L_L s^2 + C_L L_L s^2 + 1}$$

10.189 INVALID-ORDER-189
$$Z(s) = \left(\infty, \infty, \frac{L_{3s}}{C_3L_3s^2+1}, \infty, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + C_L R_L s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.190 INVALID-ORDER-190
$$Z(s) = \left(\infty, \infty, \frac{L_3s}{C_3L_3s^2+1}, \infty, \infty, \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L R_L s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_L s^2 + C_3 L_L R_L s^2 + C_L L_L R_L s^2 + L_L s + R_L}$$

10.191 INVALID-ORDER-191
$$Z(s) = \left(\infty, \ \infty, \ \frac{L_3s}{C_3L_3s^2+1}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2+1} + R_L\right)$$

$$H(s) = \frac{\left(C_3L_3s^2+1\right)\left(C_LL_LR_Ls^2+L_Ls+R_L\right)}{C_3C_LL_3L_Ls^4+C_3C_LL_LR_Ls^3+C_3L_3s^2+C_3L_Ls^2+C_3R_Ls+C_LL_Ls^2+1}$$

10.192 INVALID-ORDER-192
$$Z(s) = \left(\infty, \ \infty, \ \frac{L_3s}{C_3L_3s^2+1}, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{R_L\left(C_3L_3s^2 + 1\right)\left(C_LL_Ls^2 + 1\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_3R_Ls^3 + C_3C_LL_RL_s^3 + C_3L_3s^2 + C_3R_Ls + C_LL_Ls^2 + C_LR_Ls + 1}$$

10.193 INVALID-ORDER-193
$$Z(s) = \left(\infty, \ \infty, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 s}{C_2 L_2 s^2 + C_L L_2 s^2 + 1}$$

10.194 INVALID-ORDER-194
$$Z(s) = \left(\infty, \ \infty, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{L_3s \left(C_L R_L s + 1\right)}{C_2 C_L L_2 R_L s^3 + C_2 L_2 s^2 + C_L L_2 s^2 + C_L R_L s + 1}$$

10.195 INVALID-ORDER-195
$$Z(s) = \left(\infty, \ \infty, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_L s^2 + 1}$$

10.196 INVALID-ORDER-196
$$Z(s) = \left(\infty, \ \infty, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_3 L_L s}{C_3 L_3 L_L s^2 + C_L L_3 L_L s^2 + L_3 + L_L}$$

10.197 INVALID-ORDER-197
$$Z(s) = \left(\infty, \ \infty, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{L_{3s}\left(C_LL_Ls^2 + C_LR_Ls + 1\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_3R_Ls^3 + C_3L_3s^2 + C_LL_3s^2 + C_LL_3s^2 + C_LR_Ls + 1}$$

10.198 INVALID-ORDER-198
$$Z(s) = \left(\infty, \ \infty, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{L_3s \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_3 C_L L_3 L_L R_L s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_L s^2 + C_L L_3 L_L s^3 + C_L L_L R_L s^2 + L_3 s + L_L s + R_L}$$

10.199 INVALID-ORDER-199
$$Z(s) = \left(\infty, \ \infty, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{L_3R_Ls\left(C_LL_Ls^2 + 1\right)}{C_3C_LL_3L_LR_Ls^4 + C_3L_3R_Ls^2 + C_LL_3L_Ls^3 + C_LL_3R_Ls^2 + C_LL_LR_Ls^2 + L_3s + R_L}$$

10.200 INVALID-ORDER-200
$$Z(s) = \left(\infty, \infty, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + C_3 R_3 s + 1}{s \left(C_3 C_L L_3 s^2 + C_3 C_L R_3 s + C_3 + C_L\right)}$$

10.201 INVALID-ORDER-201
$$Z(s) = \left(\infty, \ \infty, \ \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \ \infty, \ \infty, \ \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{C_3 C_L L_3 R_L s^3 + C_3 C_L R_3 R_L s^2 + C_3 L_3 s^2 + C_3 R_3 s + C_3 R_L s + C_L R_L s + 1}$$

10.202 INVALID-ORDER-202
$$Z(s) = \left(\infty, \ \infty, \ \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \ \infty, \ \infty, \ R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L R_L s + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.203 INVALID-ORDER-203
$$Z(s) = \left(\infty, \ \infty, \ \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \ \infty, \ \infty, \ L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 + C_L\right)}$$

10.204 INVALID-ORDER-204
$$Z(s) = \left(\infty, \infty, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{C_3 C_L L_1 S_2 s^4 + C_3 C_L L_L R_3 s^3 + C_3 L_3 s^2 + C_3 L_L s^2 + C_3 R_3 s + C_L L_L s^2 + 1}$$

10.205 INVALID-ORDER-205
$$Z(s) = \left(\infty, \ \infty, \ \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \ \infty, \ \infty, \ L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + C_3 R_3 s + 1\right) \left(C_L L_L s^2 + C_L R_L s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.207 INVALID-ORDER-207
$$Z(s) = \left(\infty, \ \infty, \ \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + C_3 R_3 s + 1\right) \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_L R_3 s^3 + C_3 C_L L_L R_L s^3 + C_3 L_3 s^2 + C_3 L_L s^2 + C_3 R_3 s + C_3 R_L s + C_L L_L s^2 + 1}$$

10.208 INVALID-ORDER-208
$$Z(s) = \left(\infty, \ \infty, \ \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_L L_L s^2 + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{C_2 C_L L_2 L_2 s^4 + C_2 C_L L_2 R_1 s^3 + C_2 C_L L_2 R_2 s$$

10.209 INVALID-ORDER-209
$$Z(s) = \left(\infty, \infty, \frac{L_{3s}}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L R_L s + 1\right)}{C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_L L_3 R_3 s^2 + C_L L_3 R_L s^2 + C_L R_3 R_L s + L_3 s + R_3}$$

10.210 INVALID-ORDER-210
$$Z(s) = \left(\infty, \infty, \frac{L_3s}{C_3L_3s^2+1} + R_3, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 L_3 R_3 s^2 + C_L L_3 L_L s^3 + C_L L_3 R_3 s^2 + C_L L_L R_3 s^2 + L_3 s + R_3}$$

10.211 INVALID-ORDER-211
$$Z(s) = \left(\infty, \infty, \frac{L_3s}{C_3L_3s^2+1} + R_3, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L L_L s^2 + C_L R_L s + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_L L_3 L_L s^3 + C_L L_3 R_3 s^2 + C_L L_3 R_L s^2 + C_L R_3 R_L s + L_3 s + R_3 R_L s + R_3 R_L$$

10.212 INVALID-ORDER-212
$$Z(s) = \left(\infty, \infty, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 R_3 R_L s^2 + C_L L_3 L_L R_3 s^3 + C_$$

10.213 INVALID-ORDER-213
$$Z(s) = \left(\infty, \ \infty, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{L_3R_3R_Ls\left(C_LL_Ls^2 + 1\right)}{C_3C_LL_3L_LR_3R_Ls^4 + C_3L_3R_3R_Ls^2 + C_LL_3L_LR_3s^3 + C_LL_3L_LR_ss^3 + C_LL_3R_3R_Ls^2 + C_LL_LR_3R_Ls^2 + L_3R_3s + L_3R_Ls + R_3R_Ls^2}$$

10.214 INVALID-ORDER-214
$$Z(s) = \left(\infty, \ \infty, \ \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \ \infty, \ \infty, \ \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{C_3L_3R_3s^2 + L_3s + R_3}{C_2C_1L_2R_2s^3 + C_2L_2s^2 + C_1L_2s^2 + C_1R_2s + 1}$$

10.215 INVALID-ORDER-215
$$Z(s) = \left(\infty, \infty, \frac{R_3\left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_L L_3 R_L s^2 + C_L R_3 R_L s + L_3 s + R_3 + R_L}$$

10.216 INVALID-ORDER-216
$$Z(s) = \left(\infty, \infty, \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \infty, \infty, \infty, R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_L R_L s + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.217 INVALID-ORDER-217
$$Z(s) = \left(\infty, \infty, \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_L s^2 + C_L R_3 s + 1}$$

10.218 INVALID-ORDER-218
$$Z(s) = \left(\infty, \ \infty, \ \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2 + 1}\right)$$

$$H(s) = \frac{L_Ls\left(C_3L_3R_3s^2 + L_3s + R_3\right)}{C_3C_LL_3L_LR_3s^4 + C_3L_3L_Ls^3 + C_3L_3R_3s^2 + C_LL_3L_Ls^3 + C_LL_LR_3s^2 + L_3s + L_Ls + R_3}$$

10.219 INVALID-ORDER-219
$$Z(s) = \left(\infty, \infty, \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \infty, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + C_L R_L s + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_1 s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.222 INVALID-ORDER-222
$$Z(s) = \left(\infty, \infty, \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \infty, \infty, \infty, \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

10.223 INVALID-ORDER-223
$$Z(s) = \left(\infty, \infty, \infty, R_4, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1 \right)}{C_3 C_L L_3 R_3 s^3 + C_3 L_3 s^2 + C_3 R_3 s + C_L R_3 s + 1}$$

10.224 INVALID-ORDER-224 $Z(s) = \left(\infty, \infty, \infty, R_4, \infty, \frac{R_L}{C_L R_L s + 1}\right)$

$$H(s) = \frac{R_3 R_L \left(C_3 L_3 s^2 + 1 \right)}{C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_3 R_3 R_L s + C_L R_3 R_L s + R_3 + R_L}$$

10.225 INVALID-ORDER-225 $Z(s) = \left(\infty, \infty, \infty, R_4, \infty, R_L + \frac{1}{C_L s}\right)$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1 \right) \left(C_L R_L s + 1 \right)}{C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 C_L R_3 R_L s^2 + C_3 L_3 s^2 + C_3 R_3 s + C_L R_3 s + C_L R_L s + 1}$$

10.226 INVALID-ORDER-226 $Z(s) = \left(\infty, \infty, \infty, R_4, \infty, L_L s + \frac{1}{C_L s}\right)$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1 \right) \left(C_L L_L s^2 + 1 \right)}{C_3 C_L L_3 L_1 s^4 + C_3 C_L L_3 R_3 s^3 + C_3 C_L L_L R_3 s^3 + C_3 L_3 s^2 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + 1}$$

10.227 INVALID-ORDER-227
$$Z(s) = \left(\infty, \infty, \infty, R_4, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L R_3 s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_L R_3 s^2 + C_L L_L R_3 s^2 + L_L s + R_3}$$

10.228 INVALID-ORDER-228
$$Z(s) = \left(\infty, \infty, \infty, R_4, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + C_L R_L s + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 C_L L_R 3 s^3 + C_3 C_L L_R 3 s^3 + C_3 C_L L_R 3 s^2 + C_3 L_3 s^2 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.229 INVALID-ORDER-229
$$Z(s) = \left(\infty, \infty, \infty, R_4, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_3 R_L s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 L_L R_2 s^3 + C_3 L_3 R_3 R_L s^2 + C_3 L_L R_3 R_L s^2 + C_L L_L R_3 R_L s^2 + L_L R_3 s + L_L R_L s + R_3 R_L s^2 + C_L R_3 R_L s^2 + C_L$$

10.230 INVALID-ORDER-230
$$Z(s) = \left(\infty, \infty, \infty, R_4, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1\right) \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_L R_3 R_L s^3 + C_3 L_3 L_L s^3 + C_3 L_3 R_L s^2 + C_3 L_3 R_L s^2 + C_3 L_L R_3 s^2 + C_L L_L R_3 s^2 + C_L L_L R_3 s^2 + L_L s + R_3 + R_L R_3 s^2 + C_3 L_3 R_L s^3 + C_3 L_3 R_L s^3$$

10.231 INVALID-ORDER-231
$$Z(s) = \left(\infty, \infty, \infty, R_4, \infty, \frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 R_4 R_L s^3 + C_3 C_L L_L R_3 R_L s^3 + C_3 L_3 R_L s^2 + C_3 L_3 R_L s^2 + C_L L_L R_3 s^2 + C_L R_3 R_L s + R_3 + R_L R_2 r^2 + C_L R_3 R_L s^2 +$$

10.232 INVALID-ORDER-232
$$Z(s) = \left(\infty, \infty, \infty, \frac{1}{C_4 s}, \infty, R_L\right)$$

$$H(s) = \frac{R_3 R_L}{R_2 + R_L}$$

10.233 INVALID-ORDER-233
$$Z(s)=\left(\infty,\ \infty,\ \infty,\ \frac{1}{C_4s},\ \infty,\ \frac{1}{C_Ls}\right)$$

$$H(s)=\frac{R_3}{C_LR_3s+1}$$

10.234 INVALID-ORDER-234
$$Z(s)=\left(\infty,\ \infty,\ \infty,\ \frac{1}{C_4s},\ \infty,\ \frac{R_L}{C_LR_Ls+1}\right)$$

$$H(s)=\frac{R_3R_L}{C_LR_3R_Ls+R_3+R_L}$$

10.235 INVALID-ORDER-235
$$Z(s)=\left(\infty,\ \infty,\ \infty,\ \frac{1}{C_4s},\ \infty,\ R_L+\frac{1}{C_Ls}\right)$$

$$H(s)=\frac{R_3\left(C_LR_Ls+1\right)}{C_LR_3s+C_LR_Ls+1}$$

10.236 INVALID-ORDER-236
$$Z(s)=\left(\infty,\ \infty,\ \infty,\ \frac{R_4}{C_4R_4s+1},\ \infty,\ R_L\right)$$

$$H(s)=\frac{R_L}{C_3R_Ls+1}$$

10.237 INVALID-ORDER-237
$$Z(s)=\left(\infty,\ \infty,\ \infty,\ \frac{R_4}{C_4R_4s+1},\ \infty,\ \frac{1}{C_Ls}\right)$$

$$H(s)=\frac{1}{s\left(C_3+C_L\right)}$$

10.238 INVALID-ORDER-238
$$Z(s) = \left(\infty, \infty, \infty, \frac{R_4}{C_4 R_4 s + 1}, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L}{C_3 R_L s + C_L R_L s + 1}$$

10.239 INVALID-ORDER-239
$$Z(s) = \left(\infty, \infty, \infty, \frac{R_4}{C_4 R_4 s + 1}, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L R_L s + 1}{s (C_3 C_L R_L s + C_3 + C_L)}$$

10.240 INVALID-ORDER-240
$$Z(s) = \left(\infty, \infty, \infty, \frac{R_4}{C_4 R_4 s + 1}, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_L s^2 + 1}{s \left(C_3 C_L L_L s^2 + C_3 + C_L \right)}$$

10.241 INVALID-ORDER-241
$$Z(s) = \left(\infty, \infty, \infty, \frac{R_4}{C_4 R_4 s + 1}, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s}{C_3 L_L s^2 + C_L L_L s^2 + 1}$$

10.242 INVALID-ORDER-242
$$Z(s) = \left(\infty, \infty, \infty, \frac{R_4}{C_4 R_4 s + 1}, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_L s^2 + C_L R_L s + 1}{s \left(C_3 C_L L_L s^2 + C_3 C_L R_L s + C_3 + C_L \right)}$$

10.243 INVALID-ORDER-243
$$Z(s) = \left(\infty, \infty, \infty, \frac{R_4}{C_4 R_4 s + 1}, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_3 C_L L_L R_L s^3 + C_3 L_L s^2 + C_3 R_L s + C_L L_L s^2 + 1}$$

10.244 INVALID-ORDER-244
$$Z(s) = \left(\infty, \ \infty, \ \infty, \ \frac{R_4}{C_4 R_4 s + 1}, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_L R_L s^3 + C_3 R_L s + C_L L_L s^2 + C_L R_L s + 1}$$

10.245 INVALID-ORDER-245
$$Z(s) = \left(\infty, \ \infty, \ \infty, \ R_4 + \frac{1}{C_4 s}, \ \infty, \ R_L\right)$$

$$H(s) = \frac{R_3 R_L}{C_3 R_3 R_L s + R_3 + R_L}$$

10.246 INVALID-ORDER-246
$$Z(s) = \left(\infty, \infty, \infty, R_4 + \frac{1}{C_4 s}, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3}{C_3 R_3 s + C_L R_3 s + 1}$$

10.247 INVALID-ORDER-247
$$Z(s) = \left(\infty, \infty, \infty, R_4 + \frac{1}{C_4 s}, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_3 R_L}{C_3 R_3 R_L s + C_L R_3 R_L s + R_3 + R_L}$$

10.248 INVALID-ORDER-248
$$Z(s) = \left(\infty, \infty, \infty, R_4 + \frac{1}{C_4 s}, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_L R_3 s^3 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + 1}$$

10.249 INVALID-ORDER-249
$$Z(s) = \left(\infty, \infty, \infty, R_4 + \frac{1}{C_4 s}, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + C_L R_L s + 1\right)}{C_3 C_L L_L R_3 s^3 + C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.250 INVALID-ORDER-250
$$Z(s) = \left(\infty, \infty, \infty, R_4 + \frac{1}{C_4 s}, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 L_L R_3 s^2 + C_3 R_3 R_L s + C_L L_L R_3 s^2 + C_L L_L R_L s^2 + L_L s + R_3 + R_L}$$

10.251 INVALID-ORDER-251
$$Z(s) = \left(\infty, \infty, \infty, R_4 + \frac{1}{C_4 s}, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_L L_L s^2 + 1 \right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 R_3 R_L s + C_L L_L R_3 s^2 + C_L L_L R_L s^2 + C_L R_3 R_L s + R_3 + R_L}$$

10.252 INVALID-ORDER-252
$$Z(s) = \left(\infty, \infty, \infty, L_4 s + \frac{1}{C_4 s}, \infty, R_L\right)$$

$$H(s) = \frac{R_L (C_3 R_3 s + 1)}{C_3 R_3 s + C_3 R_L s + 1}$$

10.253 INVALID-ORDER-253
$$Z(s) = \left(\infty, \infty, \infty, L_4 s + \frac{1}{C_4 s}, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 R_3 s + 1}{s \left(C_3 C_L R_3 s + C_3 + C_L \right)}$$

10.254 INVALID-ORDER-254
$$Z(s) = \left(\infty, \infty, \infty, L_4 s + \frac{1}{C_4 s}, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_L R_L s + 1)}{s (C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L)}$$

10.255 INVALID-ORDER-255
$$Z(s) = \left(\infty, \infty, \infty, L_4 s + \frac{1}{C_4 s}, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_L L_L s^2 + 1)}{s (C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 + C_L)}$$

10.256 INVALID-ORDER-256
$$Z(s) = \left(\infty, \infty, \infty, L_4 s + \frac{1}{C_4 s}, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 R_3 s + 1\right)}{C_3 C_L L_L R_3 s^3 + C_3 L_L s^2 + C_3 R_3 s + C_L L_L s^2 + 1}$$

10.257 INVALID-ORDER-257
$$Z(s) = \left(\infty, \ \infty, \ \infty, \ L_4s + \frac{1}{C_4s}, \ \infty, \ L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_3R_3s + 1\right)\left(C_LL_Ls^2 + C_LR_Ls + 1\right)}{s\left(C_3C_LL_Ls^2 + C_3C_LR_3s + C_3C_LR_Ls + C_3 + C_L\right)}$$

10.258 INVALID-ORDER-258
$$Z(s) = \left(\infty, \infty, \infty, L_4 s + \frac{1}{C_4 s}, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 R_3 s + 1\right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 L_L R_3 s^2 + C_3 L_L R_L s^2 + C_3 R_3 R_L s + C_L L_L R_L s^2 + L_L s + R_L}$$

10.259 INVALID-ORDER-259
$$Z(s) = \left(\infty, \infty, \infty, L_4 s + \frac{1}{C_4 s}, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_L R_3 s^3 + C_3 C_L L_L R_L s^3 + C_3 L_L s^2 + C_3 R_3 s + C_3 R_L s + C_L L_L s^2 + 1}$$

10.260 INVALID-ORDER-260
$$Z(s) = \left(\infty, \ \infty, \ \infty, \ L_4s + \frac{1}{C_4s}, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{R_L\left(C_3R_3s + 1\right)\left(C_LL_Ls^2 + 1\right)}{C_3C_LL_LR_3s^3 + C_3C_LL_LR_Ls^3 + C_3C_LR_3R_Ls^2 + C_3R_3s + C_3R_Ls + C_LL_Ls^2 + C_LR_Ls + 1}$$

10.261 INVALID-ORDER-261
$$Z(s) = \left(\infty, \infty, \infty, \frac{L_4s}{C_4L_4s^2+1}, \infty, \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + 1}{s \left(C_3 C_L L_3 s^2 + C_3 + C_L \right)}$$

10.262 INVALID-ORDER-262
$$Z(s) = \left(\infty, \infty, \infty, \frac{L_4s}{C_4L_4s^2+1}, \infty, \frac{R_L}{C_LR_Ls+1}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + 1 \right)}{C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_3 R_L s + C_L R_L s + 1}$$

10.263 INVALID-ORDER-263
$$Z(s) = \left(\infty, \infty, \infty, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L R_L s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.264 INVALID-ORDER-264
$$Z(s) = \left(\infty, \infty, \infty, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 + C_L\right)}$$

10.265 INVALID-ORDER-265
$$Z(s) = \left(\infty, \infty, \infty, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 L_3 s^2 + C_3 L_L s^2 + C_L L_L s^2 + 1}$$

10.266 INVALID-ORDER-266
$$Z(s) = \left(\infty, \infty, \infty, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + C_L R_L s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.267 INVALID-ORDER-267
$$Z(s) = \left(\infty, \infty, \infty, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L R_L s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_L s^2 + C_3 L_L R_L s^2 + C_L L_L R_L s^2 + L_L s + R_L s^2}$$

10.268 INVALID-ORDER-268
$$Z(s) = \left(\infty, \infty, \infty, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_3L_3s^2 + 1\right)\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_LR_Ls^3 + C_3L_3s^2 + C_3L_Ls^2 + C_3R_Ls + C_LL_Ls^2 + 1}$$

10.269 INVALID-ORDER-269
$$Z(s) = \left(\infty, \infty, \infty, \frac{L_{4s}}{C_4 L_4 s^2 + 1}, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + 1 \right) \left(C_L L_L s^2 + 1 \right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_L s^3 + C_3 C_L L_R L_S^3 + C_3 L_3 s^2 + C_3 R_L s + C_L L_L s^2 + C_L R_L s + 1}$$

10.270 INVALID-ORDER-270
$$Z(s) = \left(\infty, \infty, \infty, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 s}{C_3 L_3 s^2 + C_L L_3 s^2 + 1}$$

10.271 INVALID-ORDER-271
$$Z(s) = \left(\infty, \infty, \infty, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 s \left(C_L R_L s + 1\right)}{C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L R_L s + 1}$$

10.272 INVALID-ORDER-272
$$Z(s) = \left(\infty, \infty, \infty, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_L s^2 + 1}$$

10.273 INVALID-ORDER-273
$$Z(s) = \left(\infty, \infty, \infty, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_3 L_L s}{C_3 L_3 L_L s^2 + C_L L_3 L_L s^2 + L_3 + L_L}$$

10.274 INVALID-ORDER-274
$$Z(s) = \left(\infty, \infty, \infty, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3s \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_L s^2 + C_L R_L s + 1}$$

10.275 INVALID-ORDER-275
$$Z(s) = \left(\infty, \infty, \infty, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{L_3s\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_3C_LL_3L_LR_Ls^4 + C_3L_3L_Ls^3 + C_3L_3R_Ls^2 + C_LL_3L_Ls^3 + C_LL_LR_Ls^2 + L_3s + L_Ls + R_L}$$

10.276 INVALID-ORDER-276
$$Z(s) = \left(\infty, \infty, \infty, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{L_3 R_L s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_L s^4 + C_3 L_3 R_L s^2 + C_L L_3 L_L s^3 + C_L L_3 R_L s^2 + C_L L_1 R_L s^2 + L_3 s + R_L}$$

10.277 INVALID-ORDER-277
$$Z(s) = \left(\infty, \infty, \infty, \frac{1}{C_4 s + \frac{1}{R_4} + \frac{1}{L_4 s}}, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + C_3 R_3 s + 1}{s \left(C_3 C_L L_3 s^2 + C_3 C_L R_3 s + C_3 + C_L\right)}$$

10.278 INVALID-ORDER-278
$$Z(s) = \left(\infty, \infty, \infty, \frac{1}{C_4 s + \frac{1}{R_4} + \frac{1}{L_4 s}}, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{C_3 C_L L_3 R_L s^3 + C_3 C_L R_3 R_L s^2 + C_3 L_3 s^2 + C_3 R_3 s + C_3 R_L s + C_L R_L s + 1}$$

10.279 INVALID-ORDER-279
$$Z(s) = \left(\infty, \infty, \infty, \frac{1}{C_4 s + \frac{1}{R_4} + \frac{1}{L_4 s}}, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L R_L s + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.280 INVALID-ORDER-280
$$Z(s) = \left(\infty, \infty, \infty, \frac{1}{C_4 s + \frac{1}{R_4} + \frac{1}{L_4 s}}, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 + C_L\right)}$$

10.281 INVALID-ORDER-281
$$Z(s) = \left(\infty, \infty, \infty, \frac{1}{C_4 s + \frac{1}{R_4} + \frac{1}{L_4 s}}, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{C_3 C_L L_2 L_2 L_4 s^4 + C_3 C_L L_L R_3 s^3 + C_3 L_3 s^2 + C_3 L_L s^2 + C_3 R_3 s + C_L L_L s^2 + 1}$$

10.282 INVALID-ORDER-282
$$Z(s) = \left(\infty, \infty, \infty, \frac{1}{C_4 s + \frac{1}{R_4} + \frac{1}{L_4 s}}, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + C_3 R_3 s + 1\right) \left(C_L L_L s^2 + C_L R_L s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.284 INVALID-ORDER-284
$$Z(s) = \left(\infty, \infty, \infty, \frac{1}{C_4 s + \frac{1}{R_4} + \frac{1}{L_4 s}}, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + C_3 R_3 s + 1\right) \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_L R_3 s^3 + C_3 C_L L_L R_L s^3 + C_3 L_3 s^2 + C_3 L_L s^2 + C_3 R_3 s + C_3 R_L s + C_L L_L s^2 + 1}$$

$$\textbf{10.285} \quad \textbf{INVALID-ORDER-285} \ Z(s) = \left(\infty, \ \infty, \ \infty, \ \frac{1}{C_4 s + \frac{1}{R_4} + \frac{1}{L_4 s}}, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s} \right)}{L_L s + R_L + \frac{1}{C_L s}} \right)$$

$$H(s) = \frac{R_L \left(C_L L_L s^2 + 1 \right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_L s^3 + C_3 C_L L_L R_3 s^3 + C_3 C_L L_L R_3 s^3 + C_3 C_L L_3 R_L s^2 + C_3 R_3 s + C_3 R_4 s + C_L L_L s^2 + C_L R_L s + 1}$$

10.286 INVALID-ORDER-286
$$Z(s) = \left(\infty, \infty, \infty, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L R_L s + 1\right)}{C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_L L_3 R_3 s^2 + C_L L_3 R_L s^2 + C_L R_3 R_L s + L_3 s + R_3}$$

10.287 INVALID-ORDER-287
$$Z(s) = \left(\infty, \infty, \infty, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 L_3 R_3 s^2 + C_L L_3 L_L s^3 + C_L L_3 R_3 s^2 + C_L L_L R_3 s^2 + L_3 s + R_3}$$

10.288 INVALID-ORDER-288
$$Z(s) = \left(\infty, \infty, \infty, \frac{L_4s}{C_4L_4s^2+1} + R_4, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L L_L s^2 + C_L R_L s + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_L L_3 L_L s^3 + C_L L_3 R_3 s^2 + C_L L_3 R_L s^2 + C_L R_3 R_L s + L_3 s + R_3 R_L s + R_$$

10.289 INVALID-ORDER-289
$$Z(s) = \left(\infty, \infty, \infty, \frac{L_4s}{C_4L_4s^2+1} + R_4, \infty, \frac{L_Ls}{C_LL_Ls^2+1} + R_L\right)$$

10.290 INVALID-ORDER-290
$$Z(s) = \left(\infty, \infty, \infty, \frac{L_{4s}}{C_4L_4s^2+1} + R_4, \infty, \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{L_3R_3R_Ls\left(C_LL_Ls^2 + 1\right)}{C_3C_LL_3L_4R_3R_4s^4 + C_3L_3R_3R_4s^2 + C_4L_3L_4R_3s^3 + C_4L_3L_4R_4s^3 + C_4L_3R_3R_4s^2 + C_4L_4R_3R_4s^2 + L_3R_3s + L_3R_4s + R_3R_4s^2 + C_4L_4R_3R_4s^3 + C_4L_3R_3R_4s^3 +$$

10.291 INVALID-ORDER-291
$$Z(s) = \left(\infty, \infty, \infty, \frac{R_4\left(L_4s + \frac{1}{C_4s}\right)}{L_4s + R_4 + \frac{1}{C_4s}}, \infty, \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{C_3L_3R_3s^2 + L_3s + R_3}{C_3C_LL_3R_3s^3 + C_3L_3s^2 + C_LL_3s^2 + C_LR_3s + 1}$$

10.292 INVALID-ORDER-292
$$Z(s) = \left(\infty, \infty, \infty, \frac{R_4\left(L_4s + \frac{1}{C_4s}\right)}{L_4s + R_4 + \frac{1}{C_4s}}, \infty, \frac{R_L}{C_LR_Ls + 1}\right)$$

$$H(s) = \frac{R_L\left(C_3L_3R_3s^2 + L_3s + R_3\right)}{C_3C_LL_3R_3R_Ls^3 + C_3L_3R_3s^2 + C_3L_3R_Ls^2 + C_LL_3R_Ls^2 + C_LR_3R_Ls + L_3s + R_3 + R_L}$$

10.293 INVALID-ORDER-293
$$Z(s) = \left(\infty, \infty, \infty, \frac{R_4\left(L_4s + \frac{1}{C_4s}\right)}{L_4s + R_4 + \frac{1}{C_4s}}, \infty, R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_L R_L s + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.294 INVALID-ORDER-294
$$Z(s) = \left(\infty, \infty, \infty, \frac{R_4\left(L_4s + \frac{1}{C_4s}\right)}{L_4s + R_4 + \frac{1}{C_4s}}, \infty, L_Ls + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_LL_Ls^2 + 1\right)\left(C_3L_3R_3s^2 + L_3s + R_3\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_3R_3s^3 + C_3L_3s^2 + C_LL_3s^2 + C_LL_Ls^2 + C_LR_3s + 1}$$

10.295 INVALID-ORDER-295
$$Z(s) = \left(\infty, \infty, \infty, \frac{R_4\left(L_4s + \frac{1}{C_4s}\right)}{L_4s + R_4 + \frac{1}{C_4s}}, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1}\right)$$

$$H(s) = \frac{L_Ls\left(C_3L_3R_3s^2 + L_3s + R_3\right)}{C_3C_LL_3L_LR_3s^4 + C_3L_3L_Ls^3 + C_3L_3R_3s^2 + C_LL_3L_Ls^3 + C_LL_LR_3s^2 + L_3s + L_Ls + R_3}$$

10.296 INVALID-ORDER-296
$$Z(s) = \left(\infty, \infty, \infty, \frac{R_4\left(L_4s + \frac{1}{C_4s}\right)}{L_4s + R_4 + \frac{1}{C_4s}}, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_LL_Ls^2 + C_LR_Ls + 1\right)\left(C_3L_3R_3s^2 + L_3s + R_3\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_3R_3s^3 + C_3C_LL_3R_Ls^3 + C_3L_3s^2 + C_LL_3s^2 + C_LL_3s^2 + C_LR_3s + C_LR_Ls + 1}$$

10.297 INVALID-ORDER-297
$$Z(s) = \left(\infty, \infty, \infty, \frac{R_4\left(L_4s + \frac{1}{C_4s}\right)}{L_4s + R_4 + \frac{1}{C_4s}}, \infty, \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 L_L R_L s^3 + C_3 L_3 R_L s^2 + C_L L_3 L_L R_3 s^2 + L_3 L_L s^2 + L_3 L_L s^2 + L_3 R_L s + L_L R_3 s + L_L R_4 s + R_3 R_L s^2 + L_3 R_4 s^2 + L_3 R_4 s^3 + L_4 R_$$

10.298 INVALID-ORDER-298
$$Z(s) = \left(\infty, \infty, \infty, \frac{R_4\left(L_4s + \frac{1}{C_4s}\right)}{L_4s + R_4 + \frac{1}{C_4s}}, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_3L_3R_3s^2 + L_3s + R_3\right)\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_3C_LL_3L_LR_3s^4 + C_3C_LL_3L_LR_2s^4 + C_3L_3L_Ls^3 + C_3L_3R_3s^2 + C_3L_3R_Ls^2 + C_LL_3L_Ls^3 + C_LL_LR_3s^2 + C_LL_LR_2s^2 + L_Ls + R_3 + R_L}$$

10.299 INVALID-ORDER-299
$$Z(s) = \left(\infty, \infty, \infty, \frac{R_4\left(L_4s + \frac{1}{C_4s}\right)}{L_4s + R_4 + \frac{1}{C_4s}}, \infty, \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{R_L \left(C_L L_L s^2 + 1 \right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_L L_3 L_L s^3 + C_L L_3 R_L s^2 + C_L L_L R_3 s^2 + C_L L_L R_2 s^2 + C_L L_R R_3 s^2 + C_L L_R R_3 s^2 + C_L R_3 R_L s + L_3 s + R_3 + R_L R_2 r^2 + C_L R_3 R_L s^2 + C_L R_3 R_L s^$$

10.300 INVALID-ORDER-300
$$Z(s) = \left(\infty, \infty, \infty, \infty, R_4, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1 \right)}{C_3 C_L L_3 R_3 s^3 + C_3 L_3 s^2 + C_3 R_3 s + C_L R_3 s + 1}$$

10.301 INVALID-ORDER-301
$$Z(s) = \left(\infty, \infty, \infty, \infty, R_4, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_3 L_3 s^2 + 1 \right)}{C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_3 R_3 R_L s + C_L R_3 R_L s + R_3 + R_L}$$

10.302 INVALID-ORDER-302
$$Z(s) = \left(\infty, \infty, \infty, \infty, R_4, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1 \right) \left(C_L R_L s + 1 \right)}{C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 C_L R_3 R_L s^2 + C_3 L_3 s^2 + C_3 R_3 s + C_L R_3 s + C_L R_L s + 1}$$

10.303 INVALID-ORDER-303
$$Z(s) = \left(\infty, \infty, \infty, \infty, R_4, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1 \right) \left(C_L L_L s^2 + 1 \right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 C_L L_L R_3 s^3 + C_3 L_3 s^2 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + 1}$$

10.304 INVALID-ORDER-304
$$Z(s) = \left(\infty, \infty, \infty, \infty, R_4, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L R_3 s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_L R_3 s^2 + C_L L_L R_3 s^2 + L_L s + R_3}$$

10.305 INVALID-ORDER-305
$$Z(s) = \left(\infty, \infty, \infty, \infty, R_4, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1 \right) \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 C_L L_R R_3 s^3 + C_3 C_L L_R R_3 s^3 + C_3 C_L R_3 R_L s^2 + C_3 R_3 s^2 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.306 INVALID-ORDER-306
$$Z(s) = \left(\infty, \infty, \infty, \infty, R_4, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_3 R_L s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 L_L R_2 s^3 + C_3 L_3 R_3 R_L s^2 + C_3 L_L R_3 R_L s^2 + C_L L_L R_3 R_L s^2 + L_L R_3 s + L_L R_L s + R_3 R_L s^2 + L_L R_3 R_L s^2 + L_L$$

10.307 INVALID-ORDER-307
$$Z(s) = \left(\infty, \infty, \infty, \infty, R_4, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

10.308 INVALID-ORDER-308
$$Z(s) = \left(\infty, \infty, \infty, \infty, R_4, \frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 R_L s^4 + C_3 C_L L_3 R_L s^3 + C_3 C_L L_L R_3 R_L s^3 + C_3 L_3 R_L s^2 + C_3 L_3 R_L s^2 + C_L L_L R_3 s^2 +$$

10.309 INVALID-ORDER-309
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{1}{C_4 s}, R_L\right)$$

$$H(s) = \frac{R_3 R_L}{R_3 + R_L}$$

10.310 INVALID-ORDER-310
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{1}{C_4 s}, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3}{C_L R_3 s + 1}$$

10.311 INVALID-ORDER-311
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{1}{C_4 s}, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_3 R_L}{C_L R_3 R_L s + R_3 + R_L}$$

10.312 INVALID-ORDER-312
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{1}{C_4 s}, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 (C_L R_L s + 1)}{C_L R_3 s + C_L R_L s + 1}$$

10.313 INVALID-ORDER-313
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{R_4}{C_4 R_4 s + 1}, R_L\right)$$

$$H(s) = \frac{R_L}{C_3 R_L s + 1}$$

10.314 INVALID-ORDER-314
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{R_4}{C_4 R_4 s + 1}, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{1}{s\left(C_3 + C_L\right)}$$

10.315 INVALID-ORDER-315
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{R_4}{C_4 R_4 s + 1}, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L}{C_3 R_L s + C_L R_L s + 1}$$

10.316 INVALID-ORDER-316
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{R_4}{C_4 R_4 s + 1}, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L R_L s + 1}{s (C_3 C_L R_L s + C_3 + C_L)}$$

10.317 INVALID-ORDER-317
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{R_4}{C_4 R_4 s + 1}, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_L s^2 + 1}{s \left(C_3 C_L L_L s^2 + C_3 + C_L \right)}$$

10.318 INVALID-ORDER-318
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{R_4}{C_4 R_4 s + 1}, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s}{C_3 L_L s^2 + C_L L_L s^2 + 1}$$

10.319 INVALID-ORDER-319
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{R_4}{C_4 R_4 s + 1}, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_L s^2 + C_L R_L s + 1}{s \left(C_3 C_L L_L s^2 + C_3 C_L R_L s + C_3 + C_L \right)}$$

10.320 INVALID-ORDER-320
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{R_4}{C_4R_4s+1}, \frac{L_Ls}{C_LL_Ls^2+1} + R_L\right)$$

$$H(s) = \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_3 C_L L_L R_L s^3 + C_3 L_L s^2 + C_3 R_L s + C_L L_L s^2 + 1}$$

10.321 INVALID-ORDER-321
$$Z(s) = \left(\infty, \ \infty, \ \infty, \ \infty, \ \frac{R_4}{C_4 R_4 s + 1}, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L (C_L L_L s^2 + 1)}{C_3 C_L L_L R_L s^3 + C_3 R_L s + C_L L_L s^2 + C_L R_L s + 1}$$

10.322 INVALID-ORDER-322
$$Z(s) = \left(\infty, \infty, \infty, \infty, R_4 + \frac{1}{C_4 s}, R_L\right)$$

$$H(s) = \frac{R_3 R_L}{C_3 R_3 R_L s + R_3 + R_L}$$

10.323 INVALID-ORDER-323
$$Z(s) = \left(\infty, \infty, \infty, \infty, R_4 + \frac{1}{C_4 s}, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3}{C_3 R_3 s + C_L R_3 s + 1}$$

10.324 INVALID-ORDER-324
$$Z(s) = \left(\infty, \infty, \infty, \infty, R_4 + \frac{1}{C_4 s}, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_3 R_L}{C_3 R_3 R_L s + C_L R_3 R_L s + R_3 + R_L}$$

10.325 INVALID-ORDER-325
$$Z(s) = \left(\infty, \infty, \infty, \infty, R_4 + \frac{1}{C_4 s}, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_L R_3 s^3 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + 1}$$

10.326 INVALID-ORDER-326
$$Z(s) = \left(\infty, \infty, \infty, \infty, R_4 + \frac{1}{C_4 s}, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_3 C_L L_L R_3 s^3 + C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.327 INVALID-ORDER-327
$$Z(s) = \left(\infty, \infty, \infty, \infty, R_4 + \frac{1}{C_4 s}, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 L_L R_3 s^2 + C_3 R_3 R_L s + C_L L_L R_3 s^2 + C_L L_L R_L s^2 + L_L s + R_3 + R_L}$$

10.328 INVALID-ORDER-328
$$Z(s) = \left(\infty, \infty, \infty, \infty, R_4 + \frac{1}{C_4 s}, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_L L_L s^2 + 1 \right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 R_3 R_L s + C_L L_L R_3 s^2 + C_L L_L R_L s^2 + C_L R_3 R_L s + R_3 + R_L}$$

10.329 INVALID-ORDER-329
$$Z(s) = \left(\infty, \infty, \infty, \infty, L_4 s + \frac{1}{C_4 s}, R_L\right)$$

$$H(s) = \frac{R_L (C_3 R_3 s + 1)}{C_3 R_3 s + C_3 R_L s + 1}$$

10.330 INVALID-ORDER-330
$$Z(s) = \left(\infty, \infty, \infty, \infty, L_4 s + \frac{1}{C_4 s}, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 R_3 s + 1}{s \left(C_3 C_L R_3 s + C_3 + C_L \right)}$$

10.331 INVALID-ORDER-331
$$Z(s) = \left(\infty, \infty, \infty, \infty, L_4 s + \frac{1}{C_4 s}, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_L R_L s + 1)}{s (C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L)}$$

10.332 INVALID-ORDER-332
$$Z(s) = \left(\infty, \infty, \infty, \infty, L_4 s + \frac{1}{C_4 s}, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_L L_L s^2 + 1)}{s (C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 + C_L)}$$

10.333 INVALID-ORDER-333
$$Z(s) = \left(\infty, \infty, \infty, \infty, L_4 s + \frac{1}{C_4 s}, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s (C_3 R_3 s + 1)}{C_3 C_L L_L R_3 s^3 + C_3 L_L s^2 + C_3 R_3 s + C_L L_L s^2 + 1}$$

10.334 INVALID-ORDER-334
$$Z(s) = \left(\infty, \infty, \infty, \infty, L_4 s + \frac{1}{C_4 s}, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_L L_L s^2 + C_L R_L s + 1)}{s (C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L)}$$

10.335 INVALID-ORDER-335
$$Z(s) = \left(\infty, \infty, \infty, \infty, L_4 s + \frac{1}{C_4 s}, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 R_3 s + 1\right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 L_L R_3 s^2 + C_3 L_L R_L s^2 + C_3 R_3 R_L s + C_L L_L R_L s^2 + L_L s + R_L}$$

10.336 INVALID-ORDER-336
$$Z(s) = \left(\infty, \infty, \infty, \infty, L_4 s + \frac{1}{C_4 s}, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_{3}R_{3}s+1\right)\left(C_{L}L_{L}R_{L}s^{2}+L_{L}s+R_{L}\right)}{C_{3}C_{L}L_{L}R_{3}s^{3}+C_{3}C_{L}L_{L}R_{L}s^{3}+C_{3}L_{L}s^{2}+C_{3}R_{3}s+C_{3}R_{L}s+C_{L}L_{L}s^{2}+1}$$

10.337 INVALID-ORDER-337
$$Z(s) = \left(\infty, \infty, \infty, \infty, L_4 s + \frac{1}{C_4 s}, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_3 R_3 s + 1 \right) \left(C_L L_L s^2 + 1 \right)}{C_3 C_L L_L R_3 s^3 + C_3 C_L L_L R_L s^3 + C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_3 R_L s + C_L L_L s^2 + C_L R_L s + 1}$$

10.338 INVALID-ORDER-338
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_4s}{C_4L_4s^2+1}, \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + 1}{s \left(C_3 C_L L_3 s^2 + C_3 + C_L \right)}$$

10.339 INVALID-ORDER-339
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_4s}{C_4L_4s^2+1}, \frac{R_L}{C_LR_Ls+1}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + 1 \right)}{C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_3 R_L s + C_L R_L s + 1}$$

10.340 INVALID-ORDER-340
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_4s}{C_4L_4s^2+1}, R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L R_L s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.341 INVALID-ORDER-341
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_{4s}}{C_4 L_4 s^2 + 1}, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 + C_L\right)}$$

10.342 INVALID-ORDER-342
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_4s}{C_4L_4s^2+1}, \frac{L_Ls}{C_LL_Ls^2+1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 L_3 s^2 + C_3 L_L s^2 + C_L L_L s^2 + 1}$$

10.343 INVALID-ORDER-343
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_4 s}{C_4 L_4 s^2 + 1}, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + C_L R_L s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.344 INVALID-ORDER-344
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_4s}{C_4L_4s^2+1}, \frac{1}{C_Ls+\frac{1}{R_L}+\frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L R_L s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_L s^2 + C_3 L_L R_L s^2 + C_L L_L R_L s^2 + L_L s + R_L}$$

10.345 INVALID-ORDER-345
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_4s}{C_4L_4s^2+1}, \frac{L_Ls}{C_LL_Ls^2+1} + R_L\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_L R_L s^3 + C_3 L_3 s^2 + C_3 L_L s^2 + C_3 R_L s + C_L L_L s^2 + 1}$$

10.346 INVALID-ORDER-346
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_4s}{C_4L_4s^2+1}, \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{R_L\left(C_3L_3s^2 + 1\right)\left(C_LL_Ls^2 + 1\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_3R_Ls^3 + C_3C_LL_RL_s^3 + C_3L_3s^2 + C_3R_Ls + C_LL_Ls^2 + C_LR_Ls + 1}$$

10.347 INVALID-ORDER-347
$$Z(s) = \left(\infty, \infty, \infty, \infty, L_4 s + R_4 + \frac{1}{C_4 s}, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 s}{C_3 L_3 s^2 + C_L L_3 s^2 + 1}$$

10.348 INVALID-ORDER-348
$$Z(s) = \left(\infty, \infty, \infty, \infty, L_4 s + R_4 + \frac{1}{C_4 s}, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 s \left(C_L R_L s + 1\right)}{C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L R_L s + 1}$$

10.349 INVALID-ORDER-349
$$Z(s) = \left(\infty, \infty, \infty, \infty, L_4 s + R_4 + \frac{1}{C_4 s}, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_L s^2 + 1}$$

10.350 INVALID-ORDER-350
$$Z(s) = \left(\infty, \infty, \infty, \infty, L_4 s + R_4 + \frac{1}{C_4 s}, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_3 L_L s}{C_3 L_3 L_L s^2 + C_L L_3 L_L s^2 + L_3 + L_L}$$

10.351 INVALID-ORDER-351
$$Z(s) = \left(\infty, \infty, \infty, \infty, L_4 s + R_4 + \frac{1}{C_4 s}, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3s \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_L s^2 + C_L R_L s + 1}$$

10.352 INVALID-ORDER-352
$$Z(s) = \left(\infty, \infty, \infty, \infty, L_4 s + R_4 + \frac{1}{C_4 s}, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{L_3 s \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_3 L_L R_L s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_L s^2 + C_L L_3 L_L s^3 + C_L L_L R_L s^2 + L_3 s + L_L s + R_L}$$

10.353 INVALID-ORDER-353
$$Z(s) = \left(\infty, \infty, \infty, \infty, L_4 s + R_4 + \frac{1}{C_4 s}, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{L_3 R_L s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_L s^4 + C_3 L_3 R_L s^2 + C_L L_3 L_L s^3 + C_L L_3 R_L s^2 + C_L L_L R_L s^2 + L_3 s + R_L}$$

10.354 INVALID-ORDER-354
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{1}{C_4 s + \frac{1}{R_4} + \frac{1}{L_4 s}}, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + C_3 R_3 s + 1}{s \left(C_3 C_L L_3 s^2 + C_3 C_L R_3 s + C_3 + C_L\right)}$$

10.355 INVALID-ORDER-355
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{1}{C_4 s + \frac{1}{R_4} + \frac{1}{L_4 s}}, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{C_3 C_L L_3 R_L s^3 + C_3 C_L R_3 R_L s^2 + C_3 L_3 s^2 + C_3 R_3 s + C_3 R_L s + C_L R_L s + 1}$$

10.356 INVALID-ORDER-356
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{1}{C_4 s + \frac{1}{R_4} + \frac{1}{L_4 s}}, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L R_L s + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.357 INVALID-ORDER-357
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{1}{C_4 s + \frac{1}{R_4} + \frac{1}{L_4 s}}, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 + C_L\right)}$$

10.358 INVALID-ORDER-358
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{1}{C_4 s + \frac{1}{R_4} + \frac{1}{L_4 s}}, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{C_3 C_L L_2 L_2 L_3 L_4 s^4 + C_3 C_L L_L R_3 s^3 + C_3 L_3 s^2 + C_3 L_4 s^2 + C_3 R_3 s + C_L L_4 s^2 + 1}$$

10.359 INVALID-ORDER-359
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{1}{C_4 s + \frac{1}{R_4} + \frac{1}{L_4 s}}, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + C_3 R_3 s + 1\right) \left(C_L L_L s^2 + C_L R_L s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.360 INVALID-ORDER-360
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{1}{C_4 s + \frac{1}{R_4} + \frac{1}{L_4 s}}, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{C_3 C_L L_3 L_L R_L s^4 + C_3 C_L L_L R_3 R_L s^3 + C_3 L_3 L_L s^3 + C_3 L_3 R_L s^2 + C_3 L_L R_3 s^2 + C_3 L_L R_2 s^2 + C_3 R_3 R_L s + C_L L_L R_L s^2 + L_L s + R_L R_2 s^2 + C_3 R_3 R_L s + C_L R_2 s^2 + C_3 R_3 R_L s + C_L R_2 s^2 + C_3 R_3 R_L s + C_L R_2 s^2 + C_3 R_3 R_L s + C_L R_2 s^2 + C_L R_2 s^2$$

10.361 INVALID-ORDER-361
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{1}{C_4 s + \frac{1}{R_4} + \frac{1}{L_4 s}}, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + C_3 R_3 s + 1\right) \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_L R_3 s^3 + C_3 C_L L_L R_L s^3 + C_3 L_3 s^2 + C_3 L_L s^2 + C_3 R_3 s + C_3 R_L s + C_L L_L s^2 + 1}$$

10.362 INVALID-ORDER-362
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{1}{C_4 s + \frac{1}{R_4} + \frac{1}{L_4 s}}, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_L L_L s^2 + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_L s^3 + C_3 C_L L_L R_3 s^3 + C_3 C_L L_R R_3 s^3 + C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_3 R_4 s + C_L L_L s^2 + C_L R_L s + 1}$$

10.363 INVALID-ORDER-363
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_4s}{C_4L_4s^2+1} + R_4, R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L R_L s + 1\right)}{C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_L L_3 R_3 s^2 + C_L L_3 R_L s^2 + C_L R_3 R_L s + L_3 s + R_3}$$

10.364 INVALID-ORDER-364
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 L_3 R_3 s^2 + C_L L_3 L_L s^3 + C_L L_3 R_3 s^2 + C_L L_L R_3 s^2 + L_3 s + R_3}$$

10.365 INVALID-ORDER-365
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_4s}{C_4L_4s^2+1} + R_4, L_Ls + R_L + \frac{1}{C_Ls}\right)$$

10.366 INVALID-ORDER-366
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_4s}{C_4L_4s^2+1} + R_4, \frac{L_Ls}{C_LL_Ls^2+1} + R_L\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 R_3 R_L s^2 + C_L L_3 L_L R_3 s^3 + C_$$

10.367 INVALID-ORDER-367
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_{4s}}{C_4L_4s^2+1} + R_4, \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{L_3R_3R_Ls\left(C_LL_Ls^2 + 1\right)}{C_3C_LL_3L_LR_3R_Ls^4 + C_3L_3R_3R_Ls^2 + C_LL_3L_LR_3s^3 + C_LL_3L_LR_Ls^3 + C_LL_3R_3R_Ls^2 + C_LL_LR_3R_Ls^2 + L_3R_3s + L_3R_Ls + R_3R_Ls^2}$$

10.368 INVALID-ORDER-368
$$Z(s) = \left(\infty, \infty, \infty, \frac{R_4\left(L_4s + \frac{1}{C_4s}\right)}{L_4s + R_4 + \frac{1}{C_4s}}, \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{C_3L_3R_3s^2 + L_3s + R_3}{C_3C_LL_3R_3s^3 + C_3L_3s^2 + C_LL_3s^2 + C_LR_3s + 1}$$

10.369 INVALID-ORDER-369
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{R_4\left(L_4s + \frac{1}{C_4s}\right)}{L_4s + R_4 + \frac{1}{C_4s}}, \frac{R_L}{C_LR_Ls + 1}\right)$$

$$H(s) = \frac{R_L\left(C_3L_3R_3s^2 + L_3s + R_3\right)}{C_3C_LL_3R_3R_Ls^3 + C_3L_3R_3s^2 + C_3L_3R_Ls^2 + C_LL_3R_Ls^2 + C_LR_3R_Ls + L_3s + R_3 + R_L}$$

10.370 INVALID-ORDER-370
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{R_4\left(L_4s + \frac{1}{C_4s}\right)}{L_4s + R_4 + \frac{1}{C_4s}}, R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_L R_L s + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.371 INVALID-ORDER-371
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{R_4\left(L_4s + \frac{1}{C_4s}\right)}{L_4s + R_4 + \frac{1}{C_4s}}, L_Ls + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_LL_Ls^2 + 1\right)\left(C_3L_3R_3s^2 + L_3s + R_3\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_3R_3s^3 + C_3L_3s^2 + C_LL_3s^2 + C_LL_4s^2 + C_LR_3s + 1}$$

10.372 INVALID-ORDER-372
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{R_4\left(L_4s + \frac{1}{C_4s}\right)}{L_4s + R_4 + \frac{1}{C_4s}}, \frac{L_Ls}{C_LL_Ls^2 + 1}\right)$$

$$H(s) = \frac{L_Ls\left(C_3L_3R_3s^2 + L_3s + R_3\right)}{C_3C_LL_3L_LR_3s^4 + C_3L_3L_Ls^3 + C_3L_3R_3s^2 + C_LL_3L_Ls^3 + C_LL_LR_3s^2 + L_3s + L_Ls + R_3}$$

10.373 INVALID-ORDER-373
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{R_4\left(L_4s + \frac{1}{C_4s}\right)}{L_4s + R_4 + \frac{1}{C_4s}}, L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_LL_Ls^2 + C_LR_Ls + 1\right)\left(C_3L_3R_3s^2 + L_3s + R_3\right)}{C_3C_LL_3L_1s^4 + C_3C_LL_3R_3s^3 + C_3C_LL_3R_1s^3 + C_3L_3s^2 + C_LL_3s^2 + C_LL_3s^2 + C_LR_3s + C_LR_1s + 1}$$

$$\begin{aligned} \mathbf{10.374} \quad \mathbf{INVALID\text{-}ORDER\text{-}374} \ Z(s) &= \left(\infty, \ \infty, \ \infty, \ \infty, \ \frac{R_4 \left(L_4 s + \frac{1}{C_4 s} \right)}{L_4 s + R_4 + \frac{1}{C_4 s}}, \ \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}} \right) \\ H(s) &= \frac{L_L R_L s \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 R_4 s^2 + C_L L_3 L_L R_4 s^3 + C_L L_L R_3 R_L s^2 + L_3 L_L s^2 + L_3 R_L s + L_L R_3 s + L_L R_4 s + R_3 R_L s^2 + L_4 R_4 s^$$

$$\textbf{10.375} \quad \textbf{INVALID-ORDER-375} \ \ Z(s) = \left(\infty, \ \infty, \ \infty, \ \infty, \ \frac{R_4 \left(L_4 s + \frac{1}{C_4 s} \right)}{L_4 s + R_4 + \frac{1}{C_4 s}}, \ \frac{L_L s}{C_L L_L s^2 + 1} + R_L \right)$$

$$H(s) = \frac{\left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right) \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 L_L R_4 s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_L L_3 L_L s^3 + C_L L_L R_3 s^2 + C_L L_L R_4 s^2 + L_3 s + L_L s + R_3 + R_L R_4 r^2 + L_3 r^2 + R_4 r^$$

10.377 INVALID-ORDER-377
$$Z(s) = \left(R_1, R_2, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1 \right)}{C_3 C_L L_3 R_3 s^3 + C_3 L_3 s^2 + C_3 R_3 s + C_L R_3 s + 1}$$

10.378 INVALID-ORDER-378
$$Z(s) = \left(R_1, R_2, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_3 L_3 s^2 + 1 \right)}{C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_3 R_3 R_L s + C_L R_3 R_L s + R_3 + R_L}$$

10.379 INVALID-ORDER-379
$$Z(s) = \left(R_1, R_2, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1 \right) \left(C_L R_L s + 1 \right)}{C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 C_L R_3 R_L s^2 + C_3 L_3 s^2 + C_3 R_3 s + C_L R_3 s + C_L R_L s + 1}$$

10.380 INVALID-ORDER-380
$$Z(s) = \left(R_1, R_2, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1 \right) \left(C_L L_L s^2 + 1 \right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 C_L L_L R_3 s^3 + C_3 L_3 s^2 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + 1}$$

10.381 INVALID-ORDER-381
$$Z(s) = \left(R_1, R_2, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L R_3 s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_L R_3 s^2 + C_L L_L R_3 s^2 + L_L s + R_3}$$

10.382 INVALID-ORDER-382
$$Z(s) = \left(R_1, R_2, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1 \right) \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 C_L L_2 R_3 s^3 + C_3 C_L L_3 R_L s^2 + C_3 L_3 s^2 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.383 INVALID-ORDER-383
$$Z(s) = \left(R_1, R_2, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_3 R_L s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 L_L R_L s^3 + C_3 L_3 R_3 R_L s^2 + C_3 L_L R_3 R_L s^2 + C_L L_L R_3 R_L s^2 + L_L R_3 s + L_L R_L s + R_3 R_L s^2}$$

10.384 INVALID-ORDER-384 $Z(s) = \left(R_1, R_2, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1\right) \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_2 R_2 s^4 + C_3 L_L R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_3 L_L R_3 s^2 + C_4 L_L R_3 s^2 + C_L L_L R_3 s^2 + L_L s + R_3 + R_L R_3 s^2 + C_4 R_3 R_L s^2 + C_4 R_4 R_L s^2 + C_4 R_$$

10.385 INVALID-ORDER-385
$$Z(s) = \left(R_1, R_2, \infty, \infty, \infty, \frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 R_4 R_L s^3 + C_3 C_L L_L R_3 R_L s^3 + C_3 L_3 R_L s^3 + C_3 L_3 R_L s^2 + C_3 R_3 R_L s + C_L L_L R_3 s^2 + C_L L_L R_2 s^2 + C_L R_3 R_L s + R_3 + R_L R_2 r^2 + C_L R_3 R_L s^2 + C_$$

10.386 INVALID-ORDER-386
$$Z(s) = \left(R_1, \frac{1}{C_2 s}, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_3 R_L}{R_3 + R_L}$$

10.387 INVALID-ORDER-387
$$Z(s) = \left(R_1, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3}{C_L R_3 s + 1}$$

10.388 INVALID-ORDER-388
$$Z(s) = \left(R_1, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_3 R_L}{C_L R_3 R_L s + R_3 + R_L}$$

10.389 INVALID-ORDER-389
$$Z(s) = \left(R_1, \frac{1}{C_2 s}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L R_L s + 1\right)}{C_L R_3 s + C_L R_L s + 1}$$

10.390 INVALID-ORDER-390
$$Z(s)=\left(R_1,\ \frac{R_2}{C_2R_2s+1},\ \infty,\ \infty,\ \infty,\ R_L\right)$$

$$H(s)=\frac{R_L}{C_3R_Ls+1}$$

10.391 INVALID-ORDER-391
$$Z(s) = \left(R_1, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{1}{s (C_3 + C_L)}$$

10.392 INVALID-ORDER-392
$$Z(s) = \left(R_1, \frac{R_2}{C_2R_2s+1}, \infty, \infty, \infty, \frac{R_L}{C_LR_Ls+1}\right)$$

$$H(s) = \frac{R_L}{C_3R_Ls + C_LR_Ls + 1}$$

10.393 INVALID-ORDER-393
$$Z(s) = \left(R_1, \frac{R_2}{C_2R_2s+1}, \infty, \infty, \infty, R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{C_LR_Ls + 1}{s\left(C_3C_LR_Ls + C_3 + C_L\right)}$$

10.394 INVALID-ORDER-394
$$Z(s) = \left(R_1, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_L s^2 + 1}{s \left(C_3 C_L L_L s^2 + C_3 + C_L \right)}$$

10.395 INVALID-ORDER-395
$$Z(s) = \left(R_1, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s}{C_3 L_L s^2 + C_L L_L s^2 + 1}$$

10.396 INVALID-ORDER-396
$$Z(s) = \left(R_1, \frac{R_2}{C_2R_2s+1}, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_L s^2 + C_L R_L s + 1}{s \left(C_3 C_L L_L s^2 + C_3 C_L R_L s + C_3 + C_L \right)}$$

10.397 INVALID-ORDER-397
$$Z(s) = \left(R_1, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_3 C_L L_L R_L s^3 + C_3 L_L s^2 + C_3 R_L s + C_L L_L s^2 + 1}$$

10.398 INVALID-ORDER-398
$$Z(s) = \left(R_1, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_L L_L s^2 + 1 \right)}{C_3 C_L L_L R_L s^3 + C_3 R_L s + C_L L_L s^2 + C_L R_L s + 1}$$

10.399 INVALID-ORDER-399
$$Z(s) = \left(R_1, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_3 R_L}{C_3 R_3 R_L s + R_3 + R_L}$$

10.400 INVALID-ORDER-400
$$Z(s) = \left(R_1, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3}{C_2 R_{23} s + C_L R_{23} s + 1}$$

10.401 INVALID-ORDER-401
$$Z(s) = \left(R_1, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_3 R_L}{C_3 R_3 R_L s + C_L R_3 R_L s + R_3 + R_L}$$

10.402 INVALID-ORDER-402
$$Z(s) = \left(R_1, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + 1 \right)}{C_3 C_L L_L R_3 s^3 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + 1}$$

10.403 INVALID-ORDER-403
$$Z(s) = \left(R_1, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_3 C_L L_L R_3 s^3 + C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.404 INVALID-ORDER-404
$$Z(s) = \left(R_1, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 L_L R_3 s^2 + C_3 R_3 R_L s + C_L L_L R_3 s^2 + C_L L_L R_L s^2 + L_L s + R_3 + R_L}$$

10.405 INVALID-ORDER-405
$$Z(s) = \left(R_1, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_L L_L s^2 + 1 \right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 R_3 R_L s + C_L L_L R_3 s^2 + C_L L_L R_L s^2 + C_L R_3 R_L s + R_3 + R_L}$$

10.406 INVALID-ORDER-406
$$Z(s) = \left(R_1, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L (C_3 R_3 s + 1)}{C_3 R_3 s + C_3 R_L s + 1}$$

10.407 INVALID-ORDER-407
$$Z(s) = \left(R_1, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 R_3 s + 1}{s \left(C_3 C_L R_3 s + C_3 + C_L \right)}$$

10.408 INVALID-ORDER-408
$$Z(s) = \left(R_1, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_L R_L s + 1)}{s (C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L)}$$

10.409 INVALID-ORDER-409
$$Z(s) = \left(R_1, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_L L_L s^2 + 1)}{s (C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 + C_L)}$$

10.410 INVALID-ORDER-410
$$Z(s) = \left(R_1, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s (C_3 R_3 s + 1)}{C_3 C_L L_L R_3 s^3 + C_3 L_L s^2 + C_3 R_3 s + C_L L_L s^2 + 1}$$

10.411 INVALID-ORDER-411
$$Z(s) = \left(R_1, \ L_2 s + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_L L_L s^2 + C_L R_L s + 1)}{s (C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L)}$$

10.412 INVALID-ORDER-412
$$Z(s) = \left(R_1, \ L_2 s + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 R_3 s + 1\right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 L_L R_3 s^2 + C_3 L_L R_L s^2 + C_3 R_3 R_L s + C_L L_L R_L s^2 + L_L s + R_L}$$

10.413 INVALID-ORDER-413
$$Z(s) = \left(R_1, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_{3}R_{3}s+1\right)\left(C_{L}L_{L}R_{L}s^{2}+L_{L}s+R_{L}\right)}{C_{3}C_{L}L_{L}R_{3}s^{3}+C_{3}C_{L}L_{L}R_{L}s^{3}+C_{3}L_{L}s^{2}+C_{3}R_{3}s+C_{3}R_{L}s+C_{L}L_{L}s^{2}+1}$$

10.414 INVALID-ORDER-414
$$Z(s) = \left(R_1, \ L_2s + \frac{1}{C_2s}, \ \infty, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{R_L\left(C_3R_3s + 1\right)\left(C_LL_Ls^2 + 1\right)}{C_3C_LL_LR_3s^3 + C_3C_LL_LR_3s^3 + C_3C_LR_3R_Ls^2 + C_3R_3s + C_3R_Ls + C_LL_Ls^2 + C_LR_Ls + 1}$$

10.415 INVALID-ORDER-415
$$Z(s) = \left(R_1, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + 1}{s \left(C_3 C_L L_3 s^2 + C_3 + C_L \right)}$$

10.416 INVALID-ORDER-416
$$Z(s) = \left(R_1, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + 1 \right)}{C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_3 R_L s + C_L R_L s + 1}$$

10.417 INVALID-ORDER-417
$$Z(s) = \left(R_1, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L R_L s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.418 INVALID-ORDER-418
$$Z(s) = \left(R_1, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 + C_L\right)}$$

10.419 INVALID-ORDER-419
$$Z(s) = \left(R_1, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 L_3 s^2 + C_3 L_L s^2 + C_L L_L s^2 + 1}$$

10.420 INVALID-ORDER-420
$$Z(s) = \left(R_1, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + C_L R_L s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.421 INVALID-ORDER-421
$$Z(s) = \left(R_1, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L R_L s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_L s^2 + C_3 L_L R_L s^2 + C_L L_L R_L s^2 + L_L s + R_L}$$

10.422 INVALID-ORDER-422
$$Z(s) = \left(R_1, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_L R_L s^3 + C_3 L_3 s^2 + C_3 L_L s^2 + C_3 R_L s + C_L L_L s^2 + 1}$$

10.423 INVALID-ORDER-423
$$Z(s) = \left(R_1, \ L_2s + R_2 + \frac{1}{C_2s}, \ \infty, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{R_L\left(C_3L_3s^2 + 1\right)\left(C_LL_Ls^2 + 1\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_3R_Ls^3 + C_3C_LL_RL_s^3 + C_3L_3s^2 + C_3R_Ls + C_LL_Ls^2 + C_LR_Ls + 1}$$

10.424 INVALID-ORDER-424
$$Z(s) = \left(R_1, \frac{L_2s}{C_2L_2s^2+1} + R_2, \infty, \infty, \infty, \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{L_3s}{C_2L_2s^2 + C_LL_2s^2 + 1}$$

10.425 INVALID-ORDER-425
$$Z(s) = \left(R_1, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \infty, \ \infty, \ \infty, \ R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{L_3s\left(C_LR_Ls + 1\right)}{C_3C_LL_3R_Ls^3 + C_3L_3s^2 + C_LL_3s^2 + C_LR_Ls + 1}$$

10.426 INVALID-ORDER-426
$$Z(s) = \left(R_1, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \infty, \ \infty, \ \infty, \ L_Ls + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{L_3s\left(C_LL_Ls^2 + 1\right)}{C_3C_LL_3L_Ls^4 + C_3L_3s^2 + C_LL_3s^2 + C_LL_Ls^2 + 1}$$

10.427 INVALID-ORDER-427
$$Z(s) = \left(R_1, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_3 L_L s}{C_3 L_3 L_L s^2 + C_L L_3 L_L s^2 + L_3 + L_L}$$

10.428 INVALID-ORDER-428
$$Z(s) = \left(R_1, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \infty, \ \infty, \ \infty, \ L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{L_3s\left(C_LL_Ls^2 + C_LR_Ls + 1\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_3R_Ls^3 + C_3L_3s^2 + C_LL_3s^2 + C_LL_4s^2 + C_LR_4s + 1}$$

10.429 INVALID-ORDER-429
$$Z(s) = \left(R_1, \frac{L_2s}{C_2L_2s^2+1} + R_2, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1} + R_L\right)$$

$$H(s) = \frac{L_3s\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_3C_LL_2L_LR_Ls^4 + C_3L_3L_Ls^3 + C_3L_3R_Ls^2 + C_LL_3L_Ls^3 + C_LL_LR_Ls^2 + L_3s + L_Ls + R_L}$$

10.430 INVALID-ORDER-430
$$Z(s) = \left(R_1, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \infty, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{L_3R_Ls\left(C_LL_Ls^2 + 1\right)}{C_3C_LL_3L_LR_Ls^4 + C_3L_3R_Ls^2 + C_LL_3L_Ls^3 + C_LL_3R_Ls^2 + C_LL_LR_Ls^2 + L_3s + R_L}$$

10.431 INVALID-ORDER-431
$$Z(s) = \left(R_1, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \infty, \infty, \infty, \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{C_3L_3s^2 + C_3R_3s + 1}{s\left(C_3C_LL_3s^2 + C_3C_LR_3s + C_3 + C_L\right)}$$

10.432 INVALID-ORDER-432
$$Z(s) = \left(R_1, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \infty, \infty, \infty, \frac{R_L}{C_LR_Ls + 1}\right)$$

$$H(s) = \frac{R_L\left(C_3L_3s^2 + C_3R_3s + 1\right)}{C_3C_LL_3R_Ls^3 + C_3C_LR_3R_Ls^2 + C_3L_3s^2 + C_3R_3s + C_3R_Ls + C_LR_Ls + 1}$$

10.433 INVALID-ORDER-433
$$Z(s) = \left(R_1, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_L R_L s + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.434 INVALID-ORDER-434
$$Z(s) = \left(R_1, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \infty, \infty, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_LL_Ls^2 + 1\right)\left(C_3L_3s^2 + C_3R_3s + 1\right)}{s\left(C_3C_LL_3s^2 + C_3C_LL_Ls^2 + C_3C_LR_3s + C_3 + C_L\right)}$$

10.435 INVALID-ORDER-435
$$Z(s) = \left(R_1, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1}\right)$$

$$H(s) = \frac{L_Ls\left(C_3L_3s^2 + C_3R_3s + 1\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_LR_3s^3 + C_3L_3s^2 + C_3L_Ls^2 + C_3R_3s + C_LL_Ls^2 + 1}$$

10.436 INVALID-ORDER-436
$$Z(s) = \left(R_1, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \infty, \infty, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_3L_3s^2 + C_3R_3s + 1\right)\left(C_LL_Ls^2 + C_LR_Ls + 1\right)}{s\left(C_3C_LL_3s^2 + C_3C_LL_Ls^2 + C_3C_LR_3s + C_3C_LR_Ls + C_3 + C_L\right)}$$

10.437 INVALID-ORDER-437
$$Z(s) = \left(R_1, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \infty, \infty, \infty, \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_LR_Ls\left(C_3L_3s^2 + C_3R_3s + 1\right)}{C_3C_LL_3L_LR_Ls^4 + C_3C_LL_LR_3R_Ls^3 + C_3L_3L_Ls^3 + C_3L_3R_Ls^2 + C_3L_LR_3s^2 + C_3L_LR_3s^2 + C_3R_3R_Ls + C_LL_LR_Ls^2 + L_Ls + R_Ls^2}$$

10.438 INVALID-ORDER-438
$$Z(s) = \left(R_1, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \infty, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_3L_3s^2 + C_3R_3s + 1\right)\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_3C_LL_2L_Ls^4 + C_3C_LL_LR_3s^3 + C_3C_LL_LR_Ls^3 + C_3L_3s^2 + C_3L_Ls^2 + C_3R_3s + C_3R_Ls + C_LL_Ls^2 + 1}$$

10.439 INVALID-ORDER-439
$$Z(s) = \left(R_1, \frac{R_2\left(L_2s + \frac{1}{C_2s}\right)}{L_2s + R_2 + \frac{1}{C_2s}}, \infty, \infty, \infty, \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{R_L\left(C_LL_Ls^2 + 1\right)\left(C_3L_3s^2 + C_3R_3s + 1\right)}{C_3C_LL_2L_Ls^4 + C_3C_LL_3R_Ls^3 + C_3C_LL_LR_3s^3 + C_3C_LL_LR_1s^3 + C_3C_LR_3R_Ls^2 + C_3R_3s + C_3R_1s + C_LL_Ls^2 + C_LR_1s + 1}$$

10.440 INVALID-ORDER-440
$$Z(s) = \left(L_1 s, R_2, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L R_L s + 1\right)}{C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_L L_3 R_3 s^2 + C_L L_3 R_L s^2 + C_L R_3 R_L s + L_3 s + R_3}$$

10.441 INVALID-ORDER-441
$$Z(s) = \left(L_1 s, R_2, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 L_3 R_3 s^2 + C_L L_3 L_L s^3 + C_L L_3 R_3 s^2 + C_L L_L R_3 s^2 + L_3 s + R_3}$$

10.442 INVALID-ORDER-442
$$Z(s) = \left(L_1 s, \ R_2, \ \infty, \ \infty, \ \infty, \ L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L L_L s^2 + C_L R_L s + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_L L_3 L_L s^3 + C_L L_3 R_3 s^2 + C_L L_3 R_L s^2 + C_L L_1 R_3 s^2 + C_L R_3 R_L s + L_3 s + R_3 R_1 s^2 + C_L R_3 R_L s + L_3 R_1 s^2 + C_L R_3 R_L s + L_3 R_1 s^2 + C_L R_3 R_L s + L_3 R_1 s^2 + C_L R_3 R_1$$

10.443 INVALID-ORDER-443
$$Z(s) = \left(L_1 s, \ R_2, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 R_3 R_L s^2 + C_L L_3 L_L R_3 s^3 + C_$$

10.444 INVALID-ORDER-444
$$Z(s) = \left(L_1 s, R_2, \infty, \infty, \infty, \frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{L_3 R_3 R_L s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 R_3 R_L s^2 + C_L L_3 L_L R_3 s^3 + C_L L_3 L_L R_L s^3 + C_L L_3 R_3 R_L s^2 + C_L L_L R_3 R_L s^2 + L_3 R_3 s + L_3 R_L s + R_3 R_L s^2 + C_L L_3 R_3 R_L s^2 + C_L R_3 R_L s^2 +$$

10.445 INVALID-ORDER-445
$$Z(s) = \left(L_1 s, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 L_3 R_3 s^2 + L_3 s + R_3}{C_3 C_L L_3 R_3 s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L R_3 s + 1}$$

10.446 INVALID-ORDER-446 $Z(s) = \left(L_1 s, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$

$$H(s) = \frac{R_L \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_L L_3 R_L s^2 + C_L R_3 R_L s + L_3 s + R_3 + R_L}$$

10.447 INVALID-ORDER-447 $Z(s) = \left(L_1 s, \frac{1}{C_2 s}, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$

$$H(s) = \frac{\left(C_L R_L s + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.448 INVALID-ORDER-448
$$Z(s) = \left(L_1 s, \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_L s^2 + C_L R_3 s + 1}$$

10.449 INVALID-ORDER-449
$$Z(s) = \left(L_1 s, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_3 s^2 + C_L L_3 L_L s^3 + C_L L_L R_3 s^2 + L_3 s + L_L s + R_3}$$

10.450 INVALID-ORDER-450
$$Z(s) = \left(L_1 s, \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + C_L R_L s + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_1 s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.451 INVALID-ORDER-451
$$Z(s) = \left(L_1 s, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

10.452 INVALID-ORDER-452
$$Z(s) = \left(L_1 s, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_3L_3R_3s^2 + L_3s + R_3\right)\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_3C_LL_3L_LR_3s^4 + C_3C_LL_3L_LR_4s^4 + C_3L_3L_Ls^3 + C_3L_3R_3s^2 + C_3L_3R_Ls^2 + C_LL_3L_Ls^3 + C_LL_LR_3s^2 + C_LL_LR_Ls^2 + L_3s + L_Ls + R_3 + R_Ls^2}$$

10.453 INVALID-ORDER-453
$$Z(s) = \left(L_1 s, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_L L_L s^2 + 1 \right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_L L_3 L_L s^3 + C_L L_3 R_L s^2 + C_L L_L R_3 s^2 + C_L$$

10.454 INVALID-ORDER-454
$$Z(s) = \left(L_1 s, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1 \right)}{C_3 C_L L_3 R_3 s^3 + C_3 L_3 s^2 + C_3 R_3 s + C_L R_3 s + 1}$$

10.455 INVALID-ORDER-455
$$Z(s) = \left(L_1 s, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_3 L_3 s^2 + 1 \right)}{C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_3 R_3 R_L s + C_L R_3 R_L s + R_3 + R_L}$$

10.456 INVALID-ORDER-456
$$Z(s) = \left(L_1 s, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1 \right) \left(C_L R_L s + 1 \right)}{C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 C_L R_3 R_L s^2 + C_3 L_3 s^2 + C_3 R_3 s + C_L R_3 s + C_L R_L s + 1}$$

10.457 INVALID-ORDER-457
$$Z(s) = \left(L_1 s, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1 \right) \left(C_L L_L s^2 + 1 \right)}{C_3 C_L L_3 L_1 s^4 + C_3 C_L L_3 R_3 s^3 + C_3 C_L L_L R_3 s^3 + C_3 L_3 s^2 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + 1}$$

10.458 INVALID-ORDER-458
$$Z(s) = \left(L_1 s, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L R_3 s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_L R_3 s^2 + C_L L_L R_3 s^2 + L_L s + R_3}$$

10.459 INVALID-ORDER-459
$$Z(s) = \left(L_1 s, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + C_L R_L s + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 C_L L_R 3 s^3 + C_3 C_L R_3 R_L s^2 + C_3 L_3 s^2 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.460 INVALID-ORDER-460
$$Z(s) = \left(L_1 s, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_3 R_L s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 L_L R_L s^3 + C_3 L_3 R_3 R_L s^2 + C_3 L_L R_3 R_L s^2 + C_L L_L R_3 R_L s^2 + L_L R_3 s + L_L R_L s + R_3 R_L s^2 + C_L R_3 R_L s^2 + C_L$$

10.461 INVALID-ORDER-461
$$Z(s) = \left(L_1 s, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1\right) \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_2 L_L R_3 R_L s^3 + C_3 L_3 L_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_3 L_L R_3 s^2 + C_4 L_L R_3 s^2 + C_L L_L R_3 s^2 + C_L L_L R_3 s^2 + L_L s + R_3 + R_L R_3 r^2 + C_4 L_L R_3 r^2 + C_$$

10.462 INVALID-ORDER-462
$$Z(s) = \left(L_1 s, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 R_3 R_L s^3 + C_3 C_L L_R R_3 R_L s^3 + C_3 L_3 R_L s^2 + C_3 R_3 R_L s + C_L L_L R_3 s^2 + C_L L_L R_3 s^2 + C_L L_L R_3 s^2 + C_L R_3 R_L s + R_3 + R_L R_3 R_L s^2 + C_L R_3$$

10.463 INVALID-ORDER-463
$$Z(s) = \left(L_1 s, \ R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ R_L\right)$$

$$H(s) = \frac{R_3 R_L}{R_2 + R_L}$$

10.464 INVALID-ORDER-464
$$Z(s) = \left(L_1 s, \ R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3}{C_L R_2 s + 1}$$

10.465 INVALID-ORDER-465
$$Z(s) = \left(L_1 s, \ R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_3 R_L}{C_L R_3 R_L s + R_3 + R_L}$$

10.466 INVALID-ORDER-466
$$Z(s) = \left(L_1 s, \ R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L R_L s + 1\right)}{C_L R_3 s + C_L R_L s + 1}$$

10.467 INVALID-ORDER-467
$$Z(s) = \left(L_1 s, \ L_2 s + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ R_L\right)$$

$$H(s) = \frac{R_L}{C_2 R_L s + 1}$$

10.468 INVALID-ORDER-468
$$Z(s) = \left(L_1 s, \ L_2 s + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \frac{1}{C_L s}\right)$$

$$H(s) = \frac{1}{s (C_3 + C_L)}$$

10.469 INVALID-ORDER-469
$$Z(s) = \left(L_1 s, \ L_2 s + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L}{C_2 R_L s + C_L R_L s + 1}$$

10.470 INVALID-ORDER-470
$$Z(s) = \left(L_1 s, \ L_2 s + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L R_L s + 1}{s \left(C_3 C_L R_L s + C_3 + C_L\right)}$$

10.471 INVALID-ORDER-471
$$Z(s) = \left(L_1 s, \ L_2 s + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_L s^2 + 1}{s \left(C_3 C_L L_L s^2 + C_3 + C_L\right)}$$

10.472 INVALID-ORDER-472
$$Z(s) = \left(L_1 s, \ L_2 s + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s}{C_3 L_L s^2 + C_L L_L s^2 + 1}$$

10.473 INVALID-ORDER-473
$$Z(s) = \left(L_1 s, \ L_2 s + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_L s^2 + C_L R_L s + 1}{s \left(C_3 C_L L_L s^2 + C_2 C_L R_L s + C_3 + C_L\right)}$$

10.474 INVALID-ORDER-474
$$Z(s) = \left(L_1 s, \ L_2 s + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_3 C_L L_L R_L s^3 + C_3 L_L s^2 + C_3 R_L s + C_L L_L s^2 + 1}$$

10.475 INVALID-ORDER-475
$$Z(s) = \left(L_1 s, \ L_2 s + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_L R_L s^3 + C_3 R_L s + C_L L_L s^2 + C_L R_L s + 1}$$

10.476 INVALID-ORDER-476
$$Z(s) = \left(L_1 s, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ R_L\right)$$

$$H(s) = \frac{R_3 R_L}{C_3 R_3 R_L s + R_3 + R_L}$$

10.477 INVALID-ORDER-477
$$Z(s) = \left(L_1 s, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3}{C_3 R_3 s + C_L R_3 s + 1}$$

10.478 INVALID-ORDER-478
$$Z(s) = \left(L_1 s, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_3 R_L}{C_3 R_3 R_L s + C_L R_3 R_L s + R_3 + R_L}$$

10.479 INVALID-ORDER-479
$$Z(s) = \left(L_1 s, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_L R_3 s^3 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + 1}$$

10.480 INVALID-ORDER-480
$$Z(s) = \left(L_1 s, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + C_L R_L s + 1\right)}{C_3 C_L L_L R_3 s^3 + C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.481 INVALID-ORDER-481
$$Z(s) = \left(L_1 s, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 L_L R_3 s^2 + C_3 R_3 R_L s + C_L L_L R_3 s^2 + C_L L_L R_1 s^2 + L_L s + R_3 + R_L}$$

10.482 INVALID-ORDER-482
$$Z(s) = \left(L_1 s, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 R_3 R_L s + C_L L_L R_3 s^2 + C_L L_L R_L s^2 + C_L R_3 R_L s + R_3 + R_L}$$

10.483 INVALID-ORDER-483
$$Z(s) = \left(L_1 s, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L (C_3 R_3 s + 1)}{C_3 R_3 s + C_3 R_L s + 1}$$

10.484 INVALID-ORDER-484
$$Z(s) = \left(L_1 s, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 R_3 s + 1}{s \left(C_3 C_L R_3 s + C_3 + C_L \right)}$$

10.485 INVALID-ORDER-485
$$Z(s) = \left(L_1 s, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_L R_L s + 1)}{s (C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L)}$$

10.486 INVALID-ORDER-486
$$Z(s) = \left(L_1 s, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_L L_L s^2 + 1)}{s (C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 + C_L)}$$

10.487 INVALID-ORDER-487
$$Z(s) = \left(L_1 s, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 R_3 s + 1\right)}{C_3 C_L L_L R_3 s^3 + C_3 L_L s^2 + C_3 R_3 s + C_L L_L s^2 + 1}$$

10.488 INVALID-ORDER-488
$$Z(s) = \left(L_1 s, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) \left(C_L L_L s^2 + C_L R_L s + 1\right)}{s \left(C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.489 INVALID-ORDER-489
$$Z(s) = \left(L_1 s, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 R_3 s + 1\right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 L_L R_3 s^2 + C_3 L_L R_L s^2 + C_3 R_3 R_L s + C_L L_L R_L s^2 + L_L s + R_L}$$

$$\begin{aligned} \textbf{10.490} \quad \textbf{INVALID-ORDER-490} \ \ Z(s) &= \left(L_1 s, \ \ \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \ \infty, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right) \\ H(s) &= \frac{\left(C_3 R_3 s + 1\right) \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_L R_3 s^3 + C_3 C_L L_L R_L s^3 + C_3 L_L s^2 + C_3 R_3 s + C_3 R_L s + C_L L_L s^2 + 1} \end{aligned}$$

10.491 INVALID-ORDER-491
$$Z(s) = \left(L_1 s, \ \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \ \infty, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_3 R_3 s + 1\right) \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_L R_3 s^3 + C_3 C_L L_L R_L s^3 + C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_3 R_L s + C_L L_L s^2 + C_L R_L s + 1}$$

10.492 INVALID-ORDER-492
$$Z(s) = \left(L_1 s, \frac{R_2\left(L_2 s + \frac{1}{C_2 s}\right)}{L_2 s + R_2 + \frac{1}{C_2 s}}, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + 1}{s \left(C_3 C_L L_3 s^2 + C_3 + C_L\right)}$$

10.493 INVALID-ORDER-493
$$Z(s) = \left(L_1 s, \frac{R_2 \left(L_2 s + \frac{1}{C_2 s}\right)}{L_2 s + R_2 + \frac{1}{C_2 s}}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_3 R_L s + C_L R_L s + 1}$$

10.494 INVALID-ORDER-494
$$Z(s) = \left(L_1 s, \frac{R_2\left(L_2 s + \frac{1}{C_2 s}\right)}{L_2 s + R_2 + \frac{1}{C_2 s}}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L R_L s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.495 INVALID-ORDER-495
$$Z(s) = \left(L_1 s, \frac{R_2 \left(L_2 s + \frac{1}{C_2 s}\right)}{L_2 s + R_2 + \frac{1}{C_2 s}}, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 + C_L\right)}$$

10.496 INVALID-ORDER-496
$$Z(s) = \left(L_1 s, \frac{R_2 \left(L_2 s + \frac{1}{C_2 s}\right)}{L_2 s + R_2 + \frac{1}{C_2 s}}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 L_3 s^2 + C_3 L_L s^2 + C_L L_L s^2 + 1}$$

10.497 INVALID-ORDER-497
$$Z(s) = \left(L_1 s, \frac{R_2 \left(L_2 s + \frac{1}{C_2 s}\right)}{L_2 s + R_2 + \frac{1}{C_2 s}}, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + C_L R_L s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.498 INVALID-ORDER-498
$$Z(s) = \left(L_1 s, \frac{R_2 \left(L_2 s + \frac{1}{C_2 s}\right)}{L_2 s + R_2 + \frac{1}{C_2 s}}, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L R_L s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_L s^2 + C_3 L_L R_L s^2 + L_L s + R_L s^2}$$

10.499 INVALID-ORDER-499
$$Z(s) = \left(L_1 s, \frac{R_2 \left(L_2 s + \frac{1}{C_2 s}\right)}{L_2 s + R_2 + \frac{1}{C_2 s}}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_L R_L s^3 + C_3 L_3 s^2 + C_3 L_L s^2 + C_3 R_L s + C_L L_L s^2 + 1}$$

10.500 INVALID-ORDER-500
$$Z(s) = \left(L_1 s, \frac{R_2 \left(L_2 s + \frac{1}{C_2 s}\right)}{L_2 s + R_2 + \frac{1}{C_2 s}}, \infty, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_L s^3 + C_3 C_L L_L R_L s^3 + C_3 L_3 s^2 + C_3 R_L s + C_L L_L s^2 + C_L R_L s + 1}$$

10.501 INVALID-ORDER-501
$$Z(s) = \left(\frac{1}{C_1 s}, \ R_2, \ \infty, \ \infty, \ \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 s}{C_3 L_3 s^2 + C_L L_3 s^2 + 1}$$

10.502 INVALID-ORDER-502
$$Z(s) = \left(\frac{1}{C_1 s}, R_2, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 s \left(C_L R_L s + 1\right)}{C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L R_L s + 1}$$

10.503 INVALID-ORDER-503
$$Z(s) = \left(\frac{1}{C_1 s}, R_2, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_L s^2 + 1}$$

10.504 INVALID-ORDER-504
$$Z(s) = \left(\frac{1}{C_1 s}, R_2, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_3 L_L s}{C_3 L_3 L_L s^2 + C_L L_3 L_L s^2 + L_3 + L_L}$$

10.505 INVALID-ORDER-505
$$Z(s) = \left(\frac{1}{C_1 s}, R_2, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3s\left(C_LL_Ls^2 + C_LR_Ls + 1\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_3R_Ls^3 + C_3L_3s^2 + C_LL_3s^2 + C_LL_Ls^2 + C_LR_Ls + 1}$$

10.506 INVALID-ORDER-506
$$Z(s) = \left(\frac{1}{C_1 s}, R_2, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{L_3s\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_3C_LL_3L_LR_Ls^4 + C_3L_3L_Ls^3 + C_3L_3R_Ls^2 + C_LL_3L_Ls^3 + C_LL_LR_Ls^2 + L_3s + L_Ls + R_L}$$

10.507 INVALID-ORDER-507
$$Z(s) = \left(\frac{1}{C_1 s}, R_2, \infty, \infty, \infty, \frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{L_3 R_L s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_L s^4 + C_3 L_3 R_L s^2 + C_L L_3 L_L s^3 + C_L L_3 R_L s^2 + C_L L_L R_L s^2 + L_3 s + R_L}$$

10.508 INVALID-ORDER-508
$$Z(s) = \left(\frac{1}{C_1 s}, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + C_3 R_3 s + 1}{s \left(C_3 C_L L_3 s^2 + C_3 C_L R_3 s + C_3 + C_L \right)}$$

10.509 INVALID-ORDER-509
$$Z(s) = \left(\frac{1}{C_1 s}, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{C_3 C_L L_3 R_L s^3 + C_3 C_L R_3 R_L s^2 + C_3 L_3 s^2 + C_3 R_3 s + C_3 R_L s + C_L R_L s + 1}$$

10.510 INVALID-ORDER-510
$$Z(s) = \left(\frac{1}{C_1 s}, \frac{1}{C_2 s}, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_L R_L s + 1) (C_3 L_3 s^2 + C_3 R_3 s + 1)}{s (C_3 C_L L_3 s^2 + C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L)}$$

10.511 INVALID-ORDER-511
$$Z(s) = \left(\frac{1}{C_1 s}, \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 + C_L\right)}$$

10.512 INVALID-ORDER-512
$$Z(s) = \left(\frac{1}{C_1 s}, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_L R_3 s^3 + C_3 L_3 s^2 + C_3 L_L s^2 + C_3 R_3 s + C_L L_L s^2 + 1}$$

10.513 INVALID-ORDER-513
$$Z(s) = \left(\frac{1}{C_1 s}, \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + C_3 R_3 s + 1\right) \left(C_L L_L s^2 + C_L R_L s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.514 INVALID-ORDER-514
$$Z(s) = \left(\frac{1}{C_1 s}, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{C_3 C_L L_3 L_L R_L s^4 + C_3 C_L L_L R_3 R_L s^3 + C_3 L_3 L_L s^3 + C_3 L_3 R_L s^2 + C_3 L_L R_3 s^2 + C_3 L_L R_3 s^2 + C_3 R_3 R_L s + C_L L_L R_L s^2 + L_L s + R_L R_2 r^2 + C_3 R_3 R_L s + C_4 R_4 R_4 r^2 + C_4 R_4 R_4$$

10.515 INVALID-ORDER-515
$$Z(s) = \left(\frac{1}{C_1 s}, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_3L_3s^2 + C_3R_3s + 1\right)\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_LR_3s^3 + C_3C_LL_LR_Ls^3 + C_3L_3s^2 + C_3L_Ls^2 + C_3R_3s + C_3R_Ls + C_LL_Ls^2 + 1}$$

10.516 INVALID-ORDER-516
$$Z(s) = \left(\frac{1}{C_1 s}, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_L L_L s^2 + 1 \right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_L s^3 + C_3 C_L L_L R_3 s^3 + C_3 C_L L_L R_L s^3 + C_3 C_L R_3 R_L s^2 + C_3 R_3 s^2 + C_3 R_3 s + C_3 R_L s + C_L L_L s^2 + C_L R_L s + 1}$$

10.517 INVALID-ORDER-517
$$Z(s) = \left(\frac{1}{C_1 s}, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L R_L s + 1\right)}{C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_L L_3 R_3 s^2 + C_L L_3 R_L s^2 + C_L R_3 R_L s + L_3 s + R_3}$$

10.518 INVALID-ORDER-518
$$Z(s) = \left(\frac{1}{C_1 s}, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 L_3 R_3 s^2 + C_L L_3 L_L s^3 + C_L L_3 R_3 s^2 + C_L L_L R_3 s^2 + L_3 s + R_3}$$

10.519 INVALID-ORDER-519
$$Z(s) = \left(\frac{1}{C_1 s}, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L L_L s^2 + C_L R_L s + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_L L_3 L_L s^3 + C_L L_3 R_3 s^2 + C_L L_3 R_L s^2 + C_L L_4 R_3 s^2 + C_L L_3 R_L s^2 + C_L L_4 R_3 s^2 + C_L R_3 R_L s + L_3 s + R_3}$$

10.520 INVALID-ORDER-520
$$Z(s) = \left(\frac{1}{C_1 s}, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 R_3 R_L s^2 + C_L L_3 L_L R_3 s^3 + C_L L_3 L_L R_3 r^3 + C_L L_3 L_L R_3 r^3 + C_L L_3 R_4 r^3 + C_L L_3 R_4 r^3 + C_L R_3 r^3 + C_L$$

10.521 INVALID-ORDER-521
$$Z(s) = \left(\frac{1}{C_1 s}, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{L_3 R_3 R_L s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 R_3 R_L s^2 + C_L L_3 L_L R_3 s^3 + C_L L_3 L_L R_3 s^3 + C_L L_3 R_3 R_L s^2 + C_L L_L R_3 R_L s^2 + L_3 R_3 s + L_3 R_L s + R_3 R_L s^2}$$

10.522 INVALID-ORDER-522
$$Z(s) = \left(\frac{1}{C_1 s}, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 L_3 R_3 s^2 + L_3 s + R_3}{C_2 C_1 L_2 R_2 s^3 + C_2 L_2 s^2 + C_1 L_2 s^2 + C_2 L_2 s^2 + C_3 L_3 s + 1}$$

10.523 INVALID-ORDER-523
$$Z(s) = \left(\frac{1}{C_1 s}, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_L L_3 R_L s^2 + C_L R_3 R_L s + L_3 s + R_3 + R_L R_3 R_L s^2 + C_L R_3 R_L s + L_3 R_L R_3 R_L R_$$

10.524 INVALID-ORDER-524
$$Z(s) = \left(\frac{1}{C_1 s}, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L R_L s + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.525 INVALID-ORDER-525
$$Z(s) = \left(\frac{1}{C_1 s}, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_L s^2 + C_L R_3 s + 1}$$

10.526 INVALID-ORDER-526
$$Z(s) = \left(\frac{1}{C_1 s}, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_3 s^2 + C_L L_3 L_L s^3 + C_L L_L R_3 s^2 + L_3 s + L_L s + R_3}$$

10.527 INVALID-ORDER-527
$$Z(s) = \left(\frac{1}{C_1 s}, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + C_L R_L s + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_1 s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.528 INVALID-ORDER-528
$$Z(s) = \left(\frac{1}{C_1 s}, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 L_L R_L s^3 + C_3 L_3 R_L s^2 + C_L L_3 L_L R_3 s^2 + L_3 L_L s^2 + L_3 L_L s^2 + L_3 R_L s + L_L R_3 s + L_L R_L s + R_3 R_L s^2 + L_3 R_$$

10.529 INVALID-ORDER-529
$$Z(s) = \left(\frac{1}{C_1 s}, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_3L_3R_3s^2 + L_3s + R_3\right)\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_3C_LL_3L_LR_3s^4 + C_3C_LL_3L_LR_4s^4 + C_3L_3L_Ls^3 + C_3L_3R_3s^2 + C_3L_3R_Ls^2 + C_LL_3L_Ls^3 + C_LL_LR_3s^2 + C_LL_LR_4s^2 + L_Ls + R_3 + R_L}$$

10.530 INVALID-ORDER-530
$$Z(s) = \left(\frac{1}{C_1 s}, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_L L_L s^2 + 1 \right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_L s^2 + C_L L_3 L_L s^3 + C_L L_3 R_L s^2 + C_L L_L R_3 s^2 + C_L$$

10.531 INVALID-ORDER-531
$$Z(s) = \left(\frac{1}{C_1 s}, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 (C_3 L_3 s^2 + 1)}{C_3 C_L L_3 R_3 s^3 + C_3 L_3 s^2 + C_3 R_3 s + C_L R_3 s + 1}$$

10.532 INVALID-ORDER-532
$$Z(s) = \left(\frac{1}{C_1 s}, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_3 L_3 s^2 + 1 \right)}{C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_3 R_3 R_L s + C_L R_3 R_L s + R_3 + R_L}$$

10.533 INVALID-ORDER-533
$$Z(s) = \left(\frac{1}{C_1 s}, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1 \right) \left(C_L R_L s + 1 \right)}{C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 C_L R_3 R_L s^2 + C_3 L_3 s^2 + C_3 R_3 s + C_L R_3 s + C_L R_L s + 1}$$

10.534 INVALID-ORDER-534
$$Z(s) = \left(\frac{1}{C_1 s}, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1 \right) \left(C_L L_L s^2 + 1 \right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 C_L L_L R_3 s^3 + C_3 L_3 s^2 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + 1}$$

10.535 INVALID-ORDER-535
$$Z(s) = \left(\frac{1}{C_1 s}, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L R_3 s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_L R_3 s^2 + C_L L_L R_3 s^2 + L_L s + R_3}$$

10.536 INVALID-ORDER-536
$$Z(s) = \left(\frac{1}{C_1 s}, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1 \right) \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 C_L L_1 R_3 s^3 + C_3 C_L R_3 R_L s^2 + C_3 L_3 s^2 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.537 INVALID-ORDER-537
$$Z(s) = \left(\frac{1}{C_1 s}, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_3 R_L s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 L_L R_2 s^3 + C_3 L_3 R_3 R_L s^2 + C_3 L_L R_3 R_L s^2 + C_L L_L R_3 R_L s^2 + L_L R_3 s + L_L R_L s + R_3 R_L s^2 + L_L R_3 R_L s^2 + L_L$$

10.538 INVALID-ORDER-538
$$Z(s) = \left(\frac{1}{C_1 s}, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1\right) \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_L R_3 R_L s^3 + C_3 L_3 L_L s^3 + C_3 L_3 R_1 s^2 + C_3 L_3 R_L s^2 + C_3 L_L R_3 s^2 + C_4 L_L R_3 s^2 + C_L L_L R_3 s^2 + C_L L_L R_2 s^2 + L_L s + R_3 + R_L r_3 r_4 + C_4 L_L R_4 r_4 + C_4 L_$$

10.539 INVALID-ORDER-539
$$Z(s) = \left(\frac{1}{C_1 s}, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$R_3R_L\left(C_3L_3s^2+1\right)\left(C_LL_Ls^2+1\right)$$

$$H(s) = \frac{R_3 R_L \left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 R_4 R_L s^3 + C_3 C_L L_L R_3 R_L s^3 + C_3 L_3 R_L s^2 + C_3 L_3 R_L s^2 + C_4 L_L R_3 s^2 + C_L L_L R_3 s^2 +$$

10.540 INVALID-ORDER-540
$$Z(s) = \left(\frac{1}{C_1 s}, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ R_L\right)$$

$$H(s) = \frac{R_3 R_L}{R_3 + R_L}$$

10.541 INVALID-ORDER-541
$$Z(s) = \left(\frac{1}{C_1 s}, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3}{C_L R_3 s + 1}$$

10.542 INVALID-ORDER-542
$$Z(s) = \left(\frac{1}{C_1 s}, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_3 R_L}{C_L R_3 R_L s + R_3 + R_L}$$

10.543 INVALID-ORDER-543
$$Z(s) = \left(\frac{1}{C_1 s}, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 (C_L R_L s + 1)}{C_L R_3 s + C_L R_L s + 1}$$

10.544 INVALID-ORDER-544
$$Z(s) = \left(\frac{1}{C_1 s}, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L}{C_3 R_L s + 1}$$

10.545 INVALID-ORDER-545
$$Z(s) = \left(\frac{1}{C_1 s}, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{1}{s(C_2 + C_L)}$$

10.546 INVALID-ORDER-546
$$Z(s) = \left(\frac{1}{C_1 s}, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L}{C_2 R_L s + C_L R_L s + 1}$$

10.547 INVALID-ORDER-547
$$Z(s) = \left(\frac{1}{C_1 s}, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L R_L s + 1}{s \left(C_3 C_L R_L s + C_3 + C_L\right)}$$

10.548 INVALID-ORDER-548
$$Z(s) = \left(\frac{1}{C_1 s}, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_L s^2 + 1}{s \left(C_3 C_L L_L s^2 + C_3 + C_L\right)}$$

10.549 INVALID-ORDER-549
$$Z(s) = \left(\frac{1}{C_1 s}, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s}{C_2 L_L s^2 + C_L L_L s^2 + 1}$$

10.550 INVALID-ORDER-550
$$Z(s) = \left(\frac{1}{C_1 s}, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_L s^2 + C_L R_L s + 1}{s \left(C_3 C_L L_L s^2 + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.551 INVALID-ORDER-551
$$Z(s) = \left(\frac{1}{C_1 s}, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_3 C_L L_L R_L s^3 + C_3 L_L s^2 + C_3 R_L s + C_L L_L s^2 + 1}$$

10.552 INVALID-ORDER-552
$$Z(s) = \left(\frac{1}{C_1 s}, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_L R_L s^3 + C_3 R_L s + C_L L_L s^2 + C_L R_L s + 1}$$

10.553 INVALID-ORDER-553
$$Z(s) = \left(\frac{1}{C_1 s}, \frac{R_2\left(L_2 s + \frac{1}{C_2 s}\right)}{L_2 s + R_2 + \frac{1}{C_2 s}}, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_3 R_L}{C_3 R_3 R_L s + R_3 + R_L}$$

10.554 INVALID-ORDER-554
$$Z(s) = \left(\frac{1}{C_1 s}, \frac{R_2 \left(L_2 s + \frac{1}{C_2 s}\right)}{L_2 s + R_2 + \frac{1}{C_2 s}}, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3}{C_3 R_3 s + C_L R_3 s + 1}$$

10.555 INVALID-ORDER-555
$$Z(s) = \left(\frac{1}{C_1 s}, \frac{R_2 \left(L_2 s + \frac{1}{C_2 s}\right)}{L_2 s + R_2 + \frac{1}{C_2 s}}, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_3 R_L}{C_3 R_3 R_L s + C_L R_3 R_L s + R_3 + R_L}$$

10.556 INVALID-ORDER-556
$$Z(s) = \left(\frac{1}{C_1 s}, \frac{R_2 \left(L_2 s + \frac{1}{C_2 s}\right)}{L_2 s + R_2 + \frac{1}{C_2 s}}, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_L R_3 s^3 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + 1}$$

10.557 INVALID-ORDER-557
$$Z(s) = \left(\frac{1}{C_1 s}, \frac{R_2 \left(L_2 s + \frac{1}{C_2 s}\right)}{L_2 s + R_2 + \frac{1}{C_2 s}}, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + C_L R_L s + 1\right)}{C_3 C_L L_L R_3 s^3 + C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.558 INVALID-ORDER-558
$$Z(s) = \left(\frac{1}{C_1 s}, \frac{R_2\left(L_2 s + \frac{1}{C_2 s}\right)}{L_2 s + R_2 + \frac{1}{C_2 s}}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{R_3\left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 L_L R_3 s^2 + C_3 R_3 R_L s + C_L L_L R_3 s^2 + C_L L_L R_L s^2 + L_L s + R_3 + R_L}$$

10.559 INVALID-ORDER-559
$$Z(s) = \left(\frac{1}{C_1 s}, \frac{R_2\left(L_2 s + \frac{1}{C_2 s}\right)}{L_2 s + R_2 + \frac{1}{C_2 s}}, \infty, \infty, \infty, \frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_3 R_L\left(C_L L_L s^2 + 1\right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 R_3 R_L s + C_L L_L R_3 s^2 + C_L L_L R_L s^2 + C_L R_3 R_L s + R_3 + R_L}$$

10.560 INVALID-ORDER-560
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, R_2, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L (C_3 R_3 s + 1)}{C_3 R_3 s + C_3 R_L s + 1}$$

10.561 INVALID-ORDER-561
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, R_2, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 R_3 s + 1}{s \left(C_3 C_L R_3 s + C_3 + C_L \right)}$$

10.562 INVALID-ORDER-562
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, R_2, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_L R_L s + 1)}{s (C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L)}$$

10.563 INVALID-ORDER-563
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, R_2, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_L L_L s^2 + 1)}{s (C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 + C_L)}$$

10.564 INVALID-ORDER-564
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, R_2, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s (C_3 R_3 s + 1)}{C_3 C_L L_L R_3 s^3 + C_3 L_L s^2 + C_3 R_3 s + C_L L_L s^2 + 1}$$

10.565 INVALID-ORDER-565
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, R_2, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_L L_L s^2 + C_L R_L s + 1)}{s (C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L)}$$

10.566 INVALID-ORDER-566
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, R_2, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 R_3 s + 1\right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 L_L R_3 s^2 + C_3 L_L R_L s^2 + C_3 R_3 R_L s + C_L L_L R_L s^2 + L_L s + R_L}$$

10.567 INVALID-ORDER-567
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, R_2, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_{3}R_{3}s+1\right)\left(C_{L}L_{L}R_{L}s^{2}+L_{L}s+R_{L}\right)}{C_{3}C_{L}L_{L}R_{3}s^{3}+C_{3}C_{L}L_{L}R_{L}s^{3}+C_{3}L_{L}s^{2}+C_{3}R_{3}s+C_{3}R_{L}s+C_{L}L_{L}s^{2}+1}$$

10.568 INVALID-ORDER-568
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, R_2, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_3 R_3 s + 1 \right) \left(C_L L_L s^2 + 1 \right)}{C_3 C_L L_L R_3 s^3 + C_3 C_L L_L R_L s^3 + C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_3 R_L s + C_L L_L s^2 + C_L R_L s + 1}$$

10.569 INVALID-ORDER-569
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + 1}{s \left(C_3 C_L L_3 s^2 + C_3 + C_L \right)}$$

10.570 INVALID-ORDER-570
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + 1 \right)}{C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_3 R_L s + C_L R_L s + 1}$$

10.571 INVALID-ORDER-571
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \frac{1}{C_2 s}, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L R_L s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.572 INVALID-ORDER-572
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 + C_L\right)}$$

10.573 INVALID-ORDER-573
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 L_3 s^2 + C_3 L_L s^2 + C_L L_L s^2 + 1}$$

10.574 INVALID-ORDER-574
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + C_L R_L s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.575 INVALID-ORDER-575
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L R_L s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_L s^2 + C_3 L_L R_L s^2 + C_L L_L R_L s^2 + L_L s + R_L}$$

10.576 INVALID-ORDER-576
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_3L_3s^2 + 1\right)\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_LR_Ls^3 + C_3L_3s^2 + C_3L_Ls^2 + C_3R_Ls + C_LL_Ls^2 + 1}$$

10.577 INVALID-ORDER-577
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_L s^3 + C_3 C_L L_L R_L s^3 + C_3 L_3 s^2 + C_3 R_L s + C_L L_L s^2 + C_L R_L s + 1}$$

10.578 INVALID-ORDER-578
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 s}{C_3 L_3 s^2 + C_L L_3 s^2 + 1}$$

10.579 INVALID-ORDER-579
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 s \left(C_L R_L s + 1\right)}{C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L R_L s + 1}$$

10.580 INVALID-ORDER-580
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_L s^2 + 1}$$

10.581 INVALID-ORDER-581
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_3 L_L s}{C_3 L_3 L_L s^2 + C_L L_3 L_L s^2 + L_3 + L_L}$$

10.582 INVALID-ORDER-582
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3s \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_L s^2 + C_L R_L s + 1}$$

10.583 INVALID-ORDER-583
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{L_3s \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_3 C_L L_3 L_L R_L s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_L s^2 + C_L L_3 L_L s^3 + C_L L_L R_L s^2 + L_3 s + L_L s + R_L}$$

10.584 INVALID-ORDER-584
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{L_3 R_L s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_L s^4 + C_3 L_3 R_L s^2 + C_L L_3 L_L s^3 + C_L L_3 R_L s^2 + C_L L_L R_L s^2 + L_3 s + R_L}$$

10.585 INVALID-ORDER-585
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + C_3 R_3 s + 1}{s \left(C_3 C_L L_3 s^2 + C_3 C_L R_3 s + C_3 + C_L \right)}$$

10.586 INVALID-ORDER-586
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{C_3 C_L L_3 R_L s^3 + C_3 C_L R_3 R_L s^2 + C_3 L_3 s^2 + C_3 R_3 s + C_3 R_L s + C_L R_L s + 1}$$

10.587 INVALID-ORDER-587
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_L R_L s + 1) (C_3 L_3 s^2 + C_3 R_3 s + 1)}{s (C_3 C_L L_3 s^2 + C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L)}$$

10.588 INVALID-ORDER-588
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 + C_L\right)}$$

10.589 INVALID-ORDER-589
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_L R_3 s^3 + C_3 L_3 s^2 + C_3 L_L s^2 + C_3 R_3 s + C_L L_L s^2 + 1}$$

10.590 INVALID-ORDER-590
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + C_3 R_3 s + 1\right) \left(C_L L_L s^2 + C_L R_L s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.591 INVALID-ORDER-591
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{C_3 C_L L_3 L_L R_4 s^4 + C_3 C_L L_L R_3 R_L s^3 + C_3 L_3 R_L s^2 + C_3 L_L R_3 s^2 + C_3 L_L R_3 s^2 + C_3 L_L R_4 s^2 + C_4 L_L R_4 s^2 + L_L s + R_L R_4 s^2 + L_L R_4$$

10.592 INVALID-ORDER-592
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_3L_3s^2 + C_3R_3s + 1\right)\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_LR_3s^3 + C_3C_LL_LR_Ls^3 + C_3L_3s^2 + C_3L_Ls^2 + C_3R_3s + C_3R_Ls + C_LL_Ls^2 + 1}$$

10.593 INVALID-ORDER-593
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_L L_L s^2 + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{C_3 C_L L_2 L_2 L_3 L_4 s^4 + C_3 C_L L_3 R_4 s^3 + C_3 C_L L_4 R_4 s^3 + C_3 C_L L_3 R_4 s^2 + C_3 R_3 s + C_3 R_4 s + C_4 L_4 s^2 + C_4 R_4 s + 1}$$

10.594 INVALID-ORDER-594
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L R_L s + 1\right)}{C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_L L_3 R_3 s^2 + C_L L_3 R_L s^2 + C_L R_3 R_L s + L_3 s + R_3}$$

10.595 INVALID-ORDER-595
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 L_3 R_3 s^2 + C_L L_3 L_L s^3 + C_L L_3 R_3 s^2 + C_L L_L R_3 s^2 + L_3 s + R_3}$$

10.596 INVALID-ORDER-596
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L L_L s^2 + C_L R_L s + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_L L_3 L_L s^3 + C_L L_3 R_3 s^2 + C_L L_3 R_L s^2 + C_L R_3 R_L s + L_3 s + R_3 R_L s + R_3 R_L$$

10.597 INVALID-ORDER-597
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 R_3 R_L s^2 + C_L L_3 L_L R_3 s^3 + C_$$

10.598 INVALID-ORDER-598
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \ L_2 s + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{L_3 R_3 R_L s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 R_3 R_L s^2 + C_L L_3 L_L R_3 s^3 + C_L L_3 L_L R_L s^3 + C_L L_3 R_3 R_L s^2 + C_L L_L R_3 R_L s^2 + L_3 R_3 s + L_3 R_L s + R_3 R_L s^3 + C_L L_3 R_3 R$$

10.599 INVALID-ORDER-599
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 L_3 R_3 s^2 + L_3 s + R_3}{C_3 C_L L_3 R_3 s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L R_3 s + 1}$$

10.600 INVALID-ORDER-600
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_L L_3 R_L s^2 + C_L R_3 R_L s + L_3 s + R_3 + R_L}$$

10.601 INVALID-ORDER-601
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L R_L s + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.602 INVALID-ORDER-602
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_L s^2 + C_L R_3 s + 1}$$

10.603 INVALID-ORDER-603
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_3 s^2 + C_L L_3 L_L s^3 + C_L L_L R_3 s^2 + L_3 s + L_L s + R_3}$$

10.604 INVALID-ORDER-604
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + C_L R_L s + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_2 s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.605 INVALID-ORDER-605
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 L_L R_L s^3 + C_3 L_3 R_L s^2 + C_L L_3 L_L R_3 s^2 + C_L L_L R_3 R_L s^2 + L_3 L_L s^2 + L_3 R_L s + L_L R_3 s + L_L R_4 s + R_3 R_L s^2 + L_3 R_4 s^2 + L_3 R_4 s^2 + L_4 R_4 s^2$$

10.606 INVALID-ORDER-606
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_3L_3R_3s^2 + L_3s + R_3\right)\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_3C_LL_3L_LR_3s^4 + C_3C_LL_3L_LR_3s^4 + C_3L_3L_Ls^3 + C_3L_3R_3s^2 + C_3L_3R_Ls^2 + C_LL_3L_Ls^3 + C_LL_LR_3s^2 + C_LL_2R_3s^2 + C_LL_2R_3s^2$$

10.607 INVALID-ORDER-607
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_L L_L s^2 + 1 \right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_L s^2 + C_L L_3 L_L s^3 + C_L L_3 R_L s^2 + C_L L_L R_3 s^2 + C_L L_L R_2 s^2 + C_L L_R R_3 s^2 + C_L R_3 R_L s + L_3 s + R_3 + R_L R_2 r^2 + C_L R_3 R_L s^2 + C_L R_3 R_L s^$$

10.608 INVALID-ORDER-608
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 (C_3 L_3 s^2 + 1)}{C_3 C_L L_3 R_3 s^3 + C_3 L_3 s^2 + C_3 R_3 s + C_L R_3 s + 1}$$

10.609 INVALID-ORDER-609
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_3 L_3 s^2 + 1 \right)}{C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_3 R_3 R_L s + C_L R_3 R_L s + R_3 + R_L}$$

10.610 INVALID-ORDER-610
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1 \right) \left(C_L R_L s + 1 \right)}{C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 C_L R_3 R_L s^2 + C_3 L_3 s^2 + C_3 R_3 s + C_L R_3 s + C_L R_L s + 1}$$

10.611 INVALID-ORDER-611
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1 \right) \left(C_L L_L s^2 + 1 \right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 C_L L_L R_3 s^3 + C_3 L_3 s^2 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + 1}$$

10.612 INVALID-ORDER-612
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L R_3 s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_L R_3 s^2 + C_L L_L R_3 s^2 + L_L s + R_3}$$

10.613 INVALID-ORDER-613
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1 \right) \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 C_L L_3 R_L s^3 + C_3 C_L L_3 R_L s^2 + C_3 L_3 s^2 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.614 INVALID-ORDER-614
$$Z(s) = \left(\frac{R_1}{C_1R_1s+1}, \frac{L_2s}{C_2L_2s^2+1} + R_2, \infty, \infty, \infty, \frac{1}{C_Ls+\frac{1}{R_L}+\frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_LR_3R_Ls\left(C_3L_3s^2+1\right)}{C_3C_LL_3L_LR_3R_Ls^4 + C_3L_3L_LR_3s^3 + C_3L_3L_LR_Ls^3 + C_3L_3R_3R_Ls^2 + C_3L_LR_3R_Ls^2 + C_LL_LR_3R_Ls^2 + L_LR_3s + L_LR_Ls + R_3R_Ls^2}$$

10.615 INVALID-ORDER-615
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1\right) \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_2 R_2 s^4 + C_3 L_L R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_3 L_L R_3 s^2 + C_4 L_L R_3 s^2 + C_L L_L R_3 s^2 + L_L s + R_3 + R_L R_3 s^2 + C_4 R_3 R_L s^2 + C_4 R_4 R_L s^2 + C_4 R_$$

10.616 INVALID-ORDER-616
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \frac{L_2 s}{C_2 L_2 s^2 + 1} + R_2, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 R_L R_L s^3 + C_3 C_L L_L R_3 R_L s^3 + C_3 L_3 R_L s^3 + C_3 L_3 R_L s^2 + C_3 R_3 R_L s + C_L L_L R_3 s^2 + C_L L_L R_3 s^2 + C_L L_L R_3 s^2 + C_L R_3 R_L s + R_3 + R_L R_2 r^2 + C_L R_3 R_L s^2 + C_$$