Random Forest - kyphosis Classification Project

Nawal Obaid

9/9/2022

PROBLEM STATEMENT

Kyphosis is an abnormally excessive convex curvature of the spine. The kyphosis data frame
has 81 rows and 4 columns. representing data on children who have had corrective spinal
surgery. Dataset contains 3 inputs and 1 output

INPUTS:

- · Age: in months
- Number: the number of vertebrae involved
- Start: the number of the first (topmost) vertebra operated on.

OUTPUTS:

- Kyphosis: a factor with levels absent present indicating if a kyphosis (a type of deformation) was present after the operation.
- Link to the dataset: https://www.kaggle.com/abbasit/kyphosis-dataset (https://www.kaggle.com/abbasit/kyphosis-dataset)
- Source: John M. Chambers and Trevor J. Hastie eds. (1992) Statistical Models in S, Wadsworth and Brooks/Cole, Pacific Grove, CA.

STEP #0: LIBRARIES IMPORT

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

STEP #1: IMPORT DATASET

```
In [2]: Kyphosis_df = pd.read_csv("kyphosis.csv")
```

In [3]: Kyphosis_df.head(10)

Out[3]: Kyphosis Age Number Start

		_		
0	absent	71	3	5
1	absent	158	3	14
2	present	128	4	5
3	absent	2	5	1
4	absent	1	4	15
5	absent	1	2	16
6	absent	61	2	17
7	absent	37	3	16
8	absent	113	2	16
9	present	59	6	12

In [4]: Kyphosis_df.tail()

Out[4]:

	Kyphosis	Age	Number	Start
76	present	157	3	13
77	absent	26	7	13
78	absent	120	2	13
79	present	42	7	6
80	absent	36	4	13

In [5]: Kyphosis_df.describe()

Out[5]:

	Age	Number	Start
count	81.000000	81.000000	81.000000
mean	83.654321	4.049383	11.493827
std	58.104251	1.619423	4.883962
min	1.000000	2.000000	1.000000
25%	26.000000	3.000000	9.000000
50%	87.000000	4.000000	13.000000
75%	130.000000	5.000000	16.000000
max	206.000000	10.000000	18.000000

In [6]: Kyphosis_df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 81 entries, 0 to 80
Data columns (total 4 columns):
Kyphosis 81 non-null object
Age 81 non-null int64
Number 81 non-null int64
Start 81 non-null int64
dtypes: int64(3), object(1)
memory usage: 2.6+ KB
```

STEP #2: VISUALIZE DATASET

```
In [7]: sns.countplot(Kyphosis_df['Kyphosis'], label = "Count")
```

Out[7]: <matplotlib.axes._subplots.AxesSubplot at 0x20ec0a550f0>


```
In [8]: from sklearn.preprocessing import LabelEncoder, OneHotEncoder
LabelEncoder_y = LabelEncoder()
Kyphosis_df['Kyphosis'] = LabelEncoder_y.fit_transform(Kyphosis_df['Kyphosis'])
```

In [9]: Kyphosis_df

Out[9]:	9]:
---------	-----

	Kyphosis	Age	Number	Start
0	0	71	3	5
1	0	158	3	14
2	1	128	4	5
3	0	2	5	1
4	0	1	4	15
5	0	1	2	16
6	0	61	2	17
7	0	37	3	16
8	0	113	2	16
9	1	59	6	12
10	1	82	5	14
11	0	148	3	16
12	0	18	5	2
13	0	1	4	12
14	0	168	3	18
15	0	1	3	16
16	0	78	6	15
17	0	175	5	13
18	0	80	5	16
19	0	27	4	9
20	0	22	2	16
21	1	105	6	5
22	1	96	3	12
23	0	131	2	3
24	1	15	7	2
25	0	9	5	13
26	0	8	3	6
27	0	100	3	14
28	0	4	3	16
29	0	151	2	16
51	0	9	2	17
52	1	139	10	6
53	0	2	2	17
54	0	140	4	15

	Kyphosis	Age	Number	Start
55	0	72	5	15
56	0	2	3	13
57	1	120	5	8
58	0	51	7	9
59	0	102	3	13
60	1	130	4	1
61	1	114	7	8
62	0	81	4	1
63	0	118	3	16
64	0	118	4	16
65	0	17	4	10
66	0	195	2	17
67	0	159	4	13
68	0	18	4	11
69	0	15	5	16
70	0	158	5	14
71	0	127	4	12
72	0	87	4	16
73	0	206	4	10
74	0	11	3	15
75	0	178	4	15
76	1	157	3	13
77	0	26	7	13
78	0	120	2	13
79	1	42	7	6
80	0	36	4	13

81 rows × 4 columns

In [13]: plt.figure(figsize=(10,10))
 sns.heatmap(Kyphosis_df.corr(), annot=True)

Out[13]: <matplotlib.axes._subplots.AxesSubplot at 0x20ec1c3e748>

STEP #3: CREATE TESTING AND TRAINING DATASET/DATA CLEANING

```
In [15]: # Let's drop the target label coloumns
X = Kyphosis_df.drop(['Kyphosis'],axis=1)
y = Kyphosis_df['Kyphosis']
```

Out[16]:

	Age	Number	Start
0	71	3	5
1	158	3	14
2	128	4	5
3	2	5	1
4	1	4	15
5	1	2	16
6	61	2	17
7	37	3	16
8	113	2	16
9	59	6	12
10	82	5	14
11	148	3	16
12	18	5	2
13	1	4	12
14	168	3	18
15	1	3	16
16	78	6	15
17	175	5	13
18	80	5	16
19	27	4	9
20	22	2	16
21	105	6	5
22	96	3	12
23	131	2	3
24	15	7	2
25	9	5	13
26	8	3	6
27	100	3	14
28	4	3	16
29	151	2	16
51	9	2	17
52	139	10	6
53	2	2	17
54	140	4	15

	Age	Number	Start
55	72	5	15
56	2	3	13
57	120	5	8
58	51	7	9
59	102	3	13
60	130	4	1
61	114	7	8
62	81	4	1
63	118	3	16
64	118	4	16
65	17	4	10
66	195	2	17
67	159	4	13
68	18	4	11
69	15	5	16
70	158	5	14
71	127	4	12
72	87	4	16
73	206	4	10
74	11	3	15
75	178	4	15
76	157	3	13
77	26	7	13
78	120	2	13
79	42	7	6
80	36	4	13

81 rows × 3 columns

```
In [17]: y
Out[17]: 0
                 0
          1
                 0
          2
                 1
          3
                 0
          4
                 0
          5
                 0
          6
                 0
          7
                 0
          8
                 0
          9
                 1
          10
                 1
          11
                 0
          12
                 0
          13
                 0
          14
                 0
          15
                 0
          16
                 0
          17
                 0
          18
                 0
          19
                 0
          20
                 0
          21
                 1
          22
                 1
          23
                 0
          24
                 1
          25
                 0
          26
                 0
          27
                 0
          28
                 0
          29
                 0
          51
                 0
          52
                 1
          53
                 0
          54
                 0
          55
                 0
          56
                 0
          57
                 1
          58
                 0
          59
                 0
          60
                 1
          61
                 1
          62
                 0
          63
                 0
          64
                 0
          65
                 0
          66
                 0
          67
                 0
          68
                 0
          69
                 0
          70
                 0
          71
                 0
          72
                 0
          73
                 0
```

```
75
               0
         76
               1
         77
         78
               0
         79
               1
         80
         Name: Kyphosis, Length: 81, dtype: int64
In [18]: | from sklearn.model_selection import train_test_split
In [19]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
In [20]: # from sklearn.preprocessing import StandardScaler
         # sc = StandardScaler()
         # X train = sc.fit transform(X train)
         # X test = sc.transform(X test)
```

STEP#4: TRAINING THE MODEL

```
In [21]: |X_train.shape
Out[21]: (56, 3)
In [22]: y_train.shape
Out[22]: (56,)
In [23]: X_test.shape
Out[23]: (25, 3)
In [24]: y_test.shape
Out[24]: (25,)
In [25]: from sklearn.tree import DecisionTreeClassifier
         decision_tree = DecisionTreeClassifier()
         decision_tree.fit(X_train,y_train)
Out[25]: DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,
                     max_features=None, max_leaf_nodes=None,
                     min_impurity_decrease=0.0, min_impurity_split=None,
                     min samples leaf=1, min samples split=2,
                     min_weight_fraction_leaf=0.0, presort=False, random_state=None,
                     splitter='best')
In [26]: feature_importances = pd.DataFrame(decision_tree.feature_importances_,
                                             index = X train.columns,
                                              columns=['importance']).sort_values('importan')
```

In [27]:	feature_importances		
Out[27]:		importance	
	Start	0.523935	
	Age	0.337200	
	Number	0.138866	

STEP#5: EVALUATING THE MODEL

```
In [28]: from sklearn.metrics import classification_report, confusion_matrix
```

```
In [29]: y_predict_train = decision_tree.predict(X_train)
y_predict_train
cm = confusion_matrix(y_train, y_predict_train)
sns.heatmap(cm, annot=True)
```

Out[29]: <matplotlib.axes._subplots.AxesSubplot at 0x20ec291de10>


```
In [30]: # Predicting the Test set results
    y_predict_test = decision_tree.predict(X_test)
    cm = confusion_matrix(y_test, y_predict_test)
    sns.heatmap(cm, annot=True)
```

Out[30]: <matplotlib.axes._subplots.AxesSubplot at 0x20ec2ac9cc0>

In [31]: | print(classification_report(y_test, y_predict_test)) precision recall f1-score support 0 0.95 0.78 0.86 23 1 0.17 0.50 0.25 2 avg / total 0.88 0.76 0.81 25

STEP#6: IMPROVING THE MODEL

```
In [32]: from sklearn.ensemble import RandomForestClassifier
RandomForest = RandomForestClassifier(n_estimators=150)
RandomForest.fit(X_train, y_train)
```

```
In [33]: y_predict_train = RandomForest.predict(X_train)
y_predict_train
cm = confusion_matrix(y_train, y_predict_train)
sns.heatmap(cm, annot=True)
```

Out[33]: <matplotlib.axes._subplots.AxesSubplot at 0x20ec2bf4128>

Out[34]: <matplotlib.axes._subplots.AxesSubplot at 0x20ec2c68780>

In [35]: print(classification_report(y_test, y_predict_test))

support	f1-score	recall	precision		
23	0.84	0.78	0.90	0	
2	0.00	0.00	0.00	1	
25	0.77	0.72	0.83	avg / total	