Section 3.2 – Polynomial Functions

Polynomial Function

A *Polynomial function* P(x) in x is a sum of the form is given by:

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_2 x^2 + a_1 x + a_0$$

Where the coefficients a_n , a_{n-1} , ..., a_2 , a_1 , a_0 are real numbers and the exponents are whole numbers.

Leading Coefficient

Non-polynomial Functions:
$$\frac{1}{x} + 2x$$
; $\sqrt{x^2 - 3} + x$; $\frac{x - 5}{x^2 + 2}$

Degree of f	Form of f(x)	Graph of $f(x)$
0	$f(x) = a_0$	A horizontal line
1	$f(x) = a_1 x + a_0$	A line with slope a_1
2	$f(x) = a_2 x^2 + a_1 x + a_0$	A parabola with a vertical axis

All polynomial functions are *continuous functions*.

End Behavior $\left(a_n x^n\right)$

If n (degree) is even:

If $a_n < 0$ (in front x^n is negative), then the function falls from the left and right side

If $a_n > 0$ (in front x^n is positive), then the function rises from the left and right side

$$x \to -\infty \implies f(x) \to \infty$$

$$x \to \infty \implies f(x) \to \infty$$

If n (degree) is odd:

If $a_n < 0$ (negative), then the function rises from the left side and falls from the right side

$$x \to -\infty \implies f(x) \to \infty$$

$$x \to \infty \implies f(x) \to -\infty$$

If $a_n > 0$ (positive), then the function falls from the left side and rises from the right side

$$x \to -\infty \implies f(x) \to -\infty$$

$$x \to \infty \implies f(x) \to \infty$$

a < 0

Example

Determine the end behavior of the graph of the polynomial function $f(x) = -4x^5 + 7x^2 - x + 9$ **Solution**

Leading term: $-4x^5$ with 5th degree (*n* is odd)

$$x \to -\infty \implies f(x) = -(-)^5 = (-)(-) = + \to \infty \qquad f(x) \text{ rises left}$$

$$x \to \infty \implies f(x) \to -\infty$$
 $f(x)$ falls right

The Intermediate Value *Theorem*

For any polynomial function f(x) with real coefficients and $f(a) \neq f(b)$ for a < b, then f takes on every value between f(a) and f(b) in the interval [a, b]

f(a) and f(b) are the opposite signs. Then the function has a real zero between a and b.

Example

Using the intermediate value theorem, determine, if possible, whether the function has a real zero between a and b.

a)
$$f(x) = x^3 + x^2 - 6x$$
; $a = -4$, $b = -2$

b)
$$f(x) = x^3 + x^2 - 6x$$
; $a = -1$, $b = 3$

Solution

a)
$$f(x) = x^3 + x^2 - 6x$$
; $a = -4$, $b = -2$
 $f(-4) = (-4)^3 + (-4)^2 - 6(-4) = -24$
 $f(-2) = (-2)^3 + (-2)^2 - 6(-2) = 8$ $f(x)$ has a zero between -4 and -2

b)
$$f(x) = x^3 + x^2 - 6x$$
; $a = -1$, $b = 3$
 $f(-1) = (-1)^3 + (-1)^2 - 6(-1) = 6$
 $f(3) = (3)^3 + (3)^2 - 6(3) = 18$ Can't be determined

Example

Show that $f(x) = x^5 + 2x^4 - 6x^3 + 2x - 3$ has a zero between 1 and 2.

Solution

$$f(1) = (1)^5 + 2(1)^4 - 6(1)^3 + 2(1) - 3 = -4$$
$$f(2) = (2)^5 + 2(2)^4 - 6(2)^3 + 2(2) - 3 = 17$$

Since f(1) and f(2) have opposite signs; therefore, f(c) = 0 for at least one real number c between 1 and 2.

Exercises Section 3.2 – Polynomial Functions

Determine the end behavior of the graph of the polynomial function

1.
$$f(x) = 5x^3 + 7x^2 - x + 9$$

2.
$$f(x) = 11x^3 - 6x^2 + x + 3$$

3.
$$f(x) = -11x^3 - 6x^2 + x + 3$$

4.
$$f(x) = 5x^4 + 7x^2 - x + 9$$

5.
$$f(x)=11x^4-6x^2+x+3$$

6.
$$f(x) = -5x^4 + 7x^2 - x + 9$$

7.
$$f(x) = -11x^4 - 6x^2 + x + 3$$

Use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers.

8.
$$f(x) = x^3 - x - 1$$
; between 1 and 2

9.
$$f(x) = x^3 - 4x^2 + 2$$
; between 0 and 1

10.
$$f(x) = 2x^4 - 4x^2 + 1$$
; between -1 and 0

11.
$$f(x) = x^4 + 6x^3 - 18x^2$$
; between 2 and 3

12.
$$f(x) = x^3 + x^2 - 2x + 1$$
; between -3 and -2

13.
$$f(x) = x^5 - x^3 - 1$$
; between 1 and 2

14.
$$f(x) = 3x^3 - 10x + 9$$
; between -3 and -2

15.
$$f(x) = 3x^3 - 8x^2 + x + 2$$
; between 2 and 3

16.
$$f(x) = 3x^3 - 8x^2 + x + 2$$
; between 1 and 2

17.
$$f(x) = x^5 + 2x^4 - 6x^3 + 2x - 3$$
; between 0 and 1