

Session-Based Recommendation

Anthony Huang, Jasper Liu, Ping Zhang, Shubham Singh, Vinay Pahwa

Table of Contents

Introduction

Main Objective: To propose a new neural network that incorporates time and assigns corresponding weights to distant time periods

Why Session-Based RS?

User's preference is not static and may change over time

Reflects short-term and long-term preferences within a session

Ensures dynamic preferences

Better accuracy on predictions

Drawbacks of Traditional RSs

User/Item cold start

Learn each user's long-term and static preferences

Assume all of the historical interactions of a user are equally important

Dataset - Retailrocket

Source:

Kaggle

Industry:

E-Commerce

Dataset Type:

Website Visitor Actions (Clicks, Add to Cart, Transaction)

4.5 months....

Time Span (Whole dataset)

7

Features

- Visitor ID
- Item ID
- Events
- Transaction ID
- Timestamp
- Item Property
- Property Value

131,533

Unique Items

2,756,101

Events:

- Views: 2 664 312

- AddtoCart: 69 332

- Transaction: 22 457

How to define 'Session'?

Session Length

Dynamic Session Length Max time between actions: 30 min Max number of actions: 30 actions

Max time of a session: 900 min

Minimizes static session length drawbacks: long sessions include noisy information, short sessions contains limited information

Internal Order

Flexible Ordered Sessions

Order between actions is not strict. not unordered, but flexible

User Information Anonymity

Anonymous Sessions

Once sessions are created, user information is not necessary for predictions

Action Type

Multi-type Action Sessions Three types of actions: view, addtocart, transaction

Macro-behavior vs. Micro-behavior

Micro-behavior Session-based

Recommendation System

Items: GGNN

‡1

Convert item sequences into directed graphs and feed into GGNN model.

Micro-behavior

#3

Concatenate output from GGNN and GRU to form a micro-behavior embeddings

Prediction

#5

Train the model and evaluate the prediction accuracy

C

Operations: GRU

#2

Feed operation sequences into GRU model.

Sessions: Attention

#4

Combine global preference and local preference into session representations.

Step 1: Item Embeddings Learning

An example of a session graph and the connection matrix As

Step 2: Operation Embeddings Learning

Step 3-4: Session Representations

Item Embeddings

Soft-Attention Mechanism

Local preference: \mathbf{m}_L

Global preference:

1. Attention Weight

$$\alpha_t = \boldsymbol{\beta}^{\top} \sigma (\mathbf{W}_1 \mathbf{m}_L + \mathbf{W}_2 \mathbf{m}_t + \mathbf{b}_{\alpha})$$

2. Global Representation of a Session

$$\mathbf{s}_g = \sum_{t=1}^L \alpha_i \mathbf{m}_t$$

Final Representation of a Session

$$\mathbf{s} = \mathbf{W}_3[\mathbf{m}_L; \mathbf{s}_g] \in \mathbb{R}^d$$

Step 5: Training and Prediction

Softmax Operation

 $\hat{y}_{sj} = softmax(MLP(\mathbf{s} \oplus \mathbf{i}_j))$

Loss Function

$$\mathcal{L}_S = -\sum_{s \in \mathcal{S}} \sum_{j \in \mathcal{I}} \left\{ y_{sj} \log(\hat{y}_{sj}) + (1 - y_{sj}) \log(1 - \hat{y}_{sj}) \right\}$$

Full Model

Performance

Hit@k

It is the proportion of hit samples to all samples that have the correct next interacted item in the top-k ranking lists.

MRR@k

The average reciprocal rank of the correct next interacted item in the top-k ranking list, set to zero if the correct item is ranked behind top-k.

NN Based Matrix Factorization Model

BASELINE MODEL

Label Encoding

User 2

Event Weights

Add to Cart

Purchase 10

Model Formulation

IDEATION STEPS

- So we wish to capture the dynamic operations of items and users using our customized encoded labels
- Next we intended to encode the non-linear association of item and user
- And we wish to prepare vectors that forms a good representation of user-item entities

Experimentation

EVENT ENCODE-VIEW:0.1,ADDtoCART:1,Trasaction:10

Summation of events for all combination of user-items

Bin based rating → [0.1-0.2):1, [0.2-1):2, [1-10):3, [10-Large value):4

Fraction of 0.1 encode based users to be assigned pseudo user label

Parallelly fraction of 1 rating users that we wish to train on Number of epochs → between 5 and 10 for majority of experiments

Momentum based SGD→

LR:0.8,momentum = 0.9

Prediction Methods

DIRECT USE of RATING Scores

One straightforward way of user based prediction is to evaluate ratings for each item and then select from the sorted values

Hit rate@20 - Quite low ~5%

-Sample set of 50 most active users along with 30 most used products

-Can use more robust selection criterion

-Each entity is explained in terms of 10 latent factors

-A magnitude invariant cosine similarity score is computed for all pairs

-Weighted multiplication of user-user and user-item similarity can help to formulate basic recommender system

Cosine similarity between users

-Determine un/associated users

-Encode similarity in behaviour to capture information about more indirect products

-Helps in determination of weights for upcoming item selection

Food for Thought

- Limitations & Solutions
- Business Insights
- Key takeaways

Limitations & Solutions

Limitations

- User cold start is eliminated through sessions, but item cold start is still present
- Model results might only be applicable to e-commerce Industry
- Only used Hit@20 and MRR@20 scores to evaluate performance. Limitations applies to both metrics

- By implementing a knowledge graph to our model, item-based cold start may be minimized
- Training our model with datasets of other industries such as movies, books, music would improve the robustness of our model
- Accuracy is not the only relevant quality factor in practice.

 Additional measurements includes coverage and popularity bias.

Business Insights & Applications

Incorporating user micro-behaviors in session-based recommendation systems increases the accuracy of prediction Improve Customer Retention Wide scope of applications: Netflix Ex: User receive tailored Recommendation, Trip Planner, Route 02 recommendation to renew their Suggestions subscription **Increase Sales** Ex: Learn what sells what does not 03 **Easily Analyze Market** Businesses can utilize it to ensure they offer similarity competitive **Enhance User Experience** Feed recommendation to customer that suits their tastes to improve business reputation

Key Takeaways

Thank you!

Any questions?

Appendix: Knowledge Graph

Trains an item-properties network to reduce item cold-start

References

- https://en.wikipedia.org/wiki/Matrix_factorization_(recomm ender systems)
- https://en.wikipedia.org/wiki/Kronecker_product
- https://en.wikipedia.org/wiki/Vectorization_(mathematics)
- Incorporating User Micro-behaviors and Item Knowledge into Multi-task Learning for Session-based Recommendation (Wenjing Meng, Deqing Yang, Yanghua Xiao)
- Session-based Recommendation with Graph Neural Networks (Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, Tianniu Tan)
- A Survey on Session-based Recommender Systems (Shoujin Wang, Longbing Cao, Yan Wang, Quan Z. Sheng, Mehmet A. Orgun, Defu Lian)