

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática

Disciplina: MTM5812 - H-Álgebra II **Professora:** Melissa Weber Mendonça

3a Lista de Exercícios

1. Prove que se $A, B : E \to F$ são transformações lineares e $\alpha \in \mathbb{R}$, então A + B e αA são transformações lineares.

2. Seja $A: \mathbb{R}^2 \to \mathbb{R}^2$ a projeção sobre o eixo x, paralelamente à reta y = ax $(a \neq 0)$. Isto significa que, para todo v = (x, y), temos que Av = (x', 0), tal que Av - v pertence à reta y = ax. Exprima x' em função de x e y e escreva a matriz de A relativamente à base canônica do \mathbb{R}^2 .

3. Dados os vetores $u_1 = (2,-1)$, $u_2 = (1,1)$ $u_3 = (-1,-4)$, $v_1 = (1,3)$, $v_2 = (2,3)$ e $v_3 = (-5,-6)$, decida se existe ou não um operador linear $A: \mathbb{R}^2 \to \mathbb{R}^2$ tal que $Au_1 = v_1$, $Au_2 = v_2$ e $Au_3 = v_3$. Mesma pergunta com $v_3 = (5,-6)$ e $v_3 = (5,6)$.

4. Seja $A: \mathbb{R}^2 \to \mathbb{R}^3$ uma transformação linear tal que A(-1,1)=(1,2,3) e A(2,3)=(1,1,1). Encontre a matriz de A relativamente às bases canônicas do \mathbb{R}^2 e \mathbb{R}^3 .

5. Quais das transformações abaixo são lineares?

a)
$$A: \mathbb{R}^3 \to \mathbb{R}^3$$
, $(x, y, z) \mapsto (x, 2^y, 2^z)$

b)
$$A: \mathbb{R}^4 \to \mathbb{R}^3$$
, $(x, y, z, w) \mapsto (x - w, y - w, x + z)$

c)
$$A: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}, \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto \begin{bmatrix} a & c \\ b & d \end{bmatrix}$$

d)
$$A: \mathcal{M}_{2\times 2} \to \mathbb{R}, \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto \det \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

e)
$$A: \mathbb{R} \to \mathbb{R}, x \mapsto |x|$$
.

6. Se R(x, y) = (2x, x - y, y) e S(x, y, z) = (y - z, z - x), ache $R \circ S$ e $S \circ R$.

- 7. Seja $A: \mathbb{R}^3 \to \mathbb{R}^3$ dado por A(x, y, z) = (ay + bz, cz, 0). Mostre que $A^3 = 0$.
- 8. Dado o operador $A: \mathbb{R}^2 \to \mathbb{R}^2$ com A(x, y) = (3x 2y, 2x + 7y), ache um vetor não nulo v = (x, y) tal que Av = 5v.
- 9. Sejam $A, B : E \to E$ operadores lineares. Suponha que existam vetores $u, v \in E$ tais que Au e Av sejam linearmente dependentes. Prove que BAu e BAv também são linearmente dependentes.
- 10. Seja $A: E \to E$ um operador linear. Para quaisquer vetores $u \in \mathcal{N}(A)$ e $v \in \text{Im}(A)$, prove que se tem $Au \in \mathcal{N}(A)$ e $Av \in \text{Im}(A)$.
- 11. Escreva a expressão de um operador $A : \mathbb{R}^2 \to \mathbb{R}^2$ cujo núcleo seja a reta y = x e cuja imagem seja a reta y = 2x.
- 12. Defina um operador $A: \mathbb{R}^2 \to \mathbb{R}^2$ que tenha como núcleo e imagem o eixo x.
- 13. Considere a transformação linear $A: \mathbb{R}^4 \to \mathbb{R}^3$ dada por

$$A(x, y, z, t) = (x + y + z + 2t, x - y + 2z, 4x + 2y + 5z + 6t).$$

Encontre um vetor $b \in \mathbb{R}^3$ que não pertença à imagem de A e com isso exiba um sistema linear de três equações com quatro incógnitas que não tem solução.

- 14. Determine uma base para a imagem e uma base para o núcleo de cada uma das transformações lineares abaixo e indique quais são sobrejetivas:
 - (a) $A: \mathbb{R}^2 \to \mathbb{R}^2$, A(x, y) = (x y, x y)
 - (b) $B: \mathbb{R}^4 \to \mathbb{R}^4$, B(x, y, z, t) = (x + y, z + t, x + z, y + t)
 - (c) $C: \mathbb{R}^3 \to \mathbb{R}^3$, $C(x, y, z) = (x + \frac{y}{2}, y + \frac{z}{2}, z + \frac{x}{2})$
 - (d) $E: \mathcal{P}_n \to \mathcal{P}_{n+1}$, E(p(x)) = xp(x).
- 15. Dê, quando possível, exemplos de transformações lineares satisfazendo:
 - a) $T: \mathbb{R}^3 \to \mathbb{R}^2$ sobrejetora
 - b) $T: \mathbb{R}^3 \to \mathbb{R}^2 \text{ com } \mathcal{N}(T) = \{0\}$
 - c) $T: \mathbb{R}^3 \to \mathbb{R}^2$ com Im $(T) = \{0\}$

- d) $T: \mathbb{R}^2 \to \mathbb{R}^2 \text{ com } \mathcal{N}(T) = \{(x, y) \in \mathbb{R}^2 \mid x = y\}$
- e) $T: \mathbb{R}^3 \to \mathbb{R}^3$ com $\mathcal{N}(T) = \{(x, y, z) \in \mathbb{R}^3 \mid z = -x\}$
- 16. Sem fazer hipóteses sobre as dimensões de E e F, sejam $A: E \to F$ e $B: F \to E$ transformações lineares. Se AB é inversível, prove que A é sobrejetiva e B é injetiva.
- 17. Prove ou dê um contra-exemplo: Se A, B: $E \rightarrow F$ são operadores de mesmo posto r, então o produto BA tem posto r.
- 18. Seja $A: E \to E$ fixo, e seja C(A) o conjunto de todos os operadores lineares $X: E \to E$ que comutam com A (ou seja, AX = XA). Prove que C(A) é um subespaço vetorial e que se $X, Y \in C(A)$, então $XY \in C(A)$.
- 19. Seja $E = C^0(\mathbb{R})$ o espaço das funções contínuas $f : \mathbb{R} \to \mathbb{R}$. Defina o operador linear $A : E \to E$ que associa, a cada $f \in E$, $Af = \varphi$, onde

$$\varphi(x) = \int_0^x f(t) dt, \quad x \in \mathbb{R}.$$

Determine o núcleo e a imagem do operador A.

- 20. Prove que os operadores lineares E_{11} , E_{12} , E_{21} , E_{22} : $\mathbb{R}^2 \to \mathbb{R}^2$, definidos por $E_{11}(x,y) = (x,0)$, $E_{12}(x,y) = (0,x)$, $E_{21}(x,y) = (y,0)$ e $E_{22}(x,y) = (0,y)$ constituem uma base para o espaço vetorial $\mathcal{L}(\mathbb{R}^2)$. Prove ainda que outra base deste espaço pode ser formada com os operadores A, B, C, I, onde A(x,y) = (x+3y,y), B(x,y) = (x,0), C(x,y) = (x+y,x-y) e I(x,y) = (x,y).
- 21. Seja ν um vetor não nulo de um espaço vetorial E, de dimensão finita. Dado qualquer espaço vetorial $F \neq \{0\}$, mostre que existe uma transformação linear $A: E \to F$ tal que $A\nu \neq 0$.
- 22. Seja $A: E \to E$ um operador nilpotente (isto é, existe $k_0 \in \mathbb{N}$ tal que $A^k = 0$ para todo $k \ge k_0$). Prove que existe algum vetor $v \ne 0$ em E tal que Av = 0.
- 23. Seja $0_{k \times \ell}$ a matriz nula em $\mathbb{R}^{k \times \ell}$. Sejam $A \in \mathbb{R}^{m \times m}$ uma matriz de posto r e $B \in \mathbb{R}^{n \times n}$ uma matriz de posto s. Prove que a matriz

$$\begin{pmatrix} A & 0_{m \times n} \\ 0_{n \times m} & B \end{pmatrix} \in \mathbb{R}^{(m+n) \times (m+n)}$$

tem posto r + s.