HYDROGEN AND PREHEAT MANAGEMENT IN WELDED HIGH STRENGTH STEEL FOR DEFENSE APPLICATIONS

(TTCP Workshop and Joint Seminar) Volume I: Workshop Report

FINAL REPORT

D.L. Olson*, J.L. Davidson** and B.F. Dixon**

January 28, 1997

U.S. ARMY RESEARCH OFFICE

* Grant No.: DAAH04-96-1-0336 Report No.: MT-CWJCR-097-008 Colorado School of Mines U.S.A.

U.S. FISC YOKOSUKA

** Navy Grant: N62649-96-1-0008

Defence Science and Technology Organisation

Australia

Approved for Public Release;

Distribution Unlimited.

THE VIEWS, OPINIONS, AND/OR FINDINGS CONTAINED IN THIS REPORT ARE THOSE OF THE AUTHOR(S) AND SHOULD NOT BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION, POLICY, DECISION, UNLESS SO DESIGNATED BY OTHER DOCUMENTATION.

THE UNITED STATES GOVERNMENT HAS A ROYALTY-FREE LICENSE THROUGHOUT THE WORLD IN ALL COPYRIGHTABLE MATERIAL CONTAINED HEREIN.

19970210 247

REPORT	DOC	CUMENTATION F	PAGE				Form Approved OMB NO. 0704-0188
Public reporting burden for this collection gathering and maintaining the data need collection of information, including sugge Davis Highway, Suite 1204, Arlington, V.	ded and co	ompleting and reviewing the collection of	of informatio	n Send comment	regarding	this hurder	estimates or any other aspect of this
1. AGENCY USE ONLY (Leave blan		2. REPORT DATE		3. REPORT	TYPE AN	ND DAT	ES COVERED
4. TITLE AND SUBTITLE		Jan 97		Final			31 Mar 97
			1 77 1	a		5. FUN	DING NUMBERS
Hydrogen and Prehea Steel for Defense A Seminar) Volume I: 6. AUTHOR(S)	.ppli	cations (TTCP Work					
D.L. Olson, J.L. Da	vids	on and B.F. Dixon				DA	AH04-96-1-0336
7. PERFORMING ORGANIZATION	NAMES	S(S) AND ADDRESS(ES)					FORMING ORGANIZATION
Colorado School of	Mine	s			0	REP	ORT NUMBER
Golden, CO	111110	•					
1							
9. SPONSORING / MONITORING	AGENC	Y NAME(S) AND ADDRESS	(EC)		-	40 CD/	ONE ORING / MONITORING
3. SI CINSCINING / MICHITORING	AGENC	T NAME(S) AND ADDRESS((ES)		İ		DNSORING / MONITORING ENCY REPORT NUMBER
U.S. Army Research Office	e						
P.O. Box 12211							
Research Triangle Park,, N	IC 277	709-2211					ARO 36099.1-MS-CF
11. SUPPLEMENTARY NOTES							
The views, opinions and	or find	dings contained in this re	eport are	e those of the	he auth	or(s) a	nd should not be construed as other documentation.
an official Department of t	he Arr	ny position, policy or de	ecision,	unless so de	esignat	ed by o	other documentation.
12a. DISTRIBUTION / AVAILABILIT	Y STAT	EMENT				12 h D	STRIBUTION CODE
						120.0	
							4-1
Approved for public releas	e; dis	tribution unlimited.				•	of all the
							ye year
13. ABSTRACT (Maximum 200 word	is)						
,							•
A joint sem	iinar ar	nd workshop on hydrogen	manage	ment in high	streno	th steel	weldments were
performed to assess	the sta	te of the art and science, to	o assess i	he progress	of the	TTCP-9	S11 research
activities, to make m	uid-cou	rse corrections to the resear	arch acti	vities and to	plan fo	or techn	ology transfer and
round-robin tests. A	chieve	ment highlights, the reorg	zanizatio	n of activitie	es to pr	omote c	cooperative
research and operation	on plar	are described.			•		·
14. SUBJECT TERMS							15. NUMBER IF PAGES
							16. PRICE CODE
47 CECURITY OF ACCIDINATION	40.00	OUDITAL A COURTE ATTENT	142 ==	OLIDITA CO	00/5/5	TICA	ON LIBERATION OF ADOTOLOG
17. SECURITY CLASSIFICATION OR REPORT		ECURITY CLASSIFICATION F THIS PAGE		CURITY CLAS ABSTRACT	SSIFICA	TION	20. LIMITATION OF ABSTRACT
UNCLASSIFIED		UNCLASSIFIED		UNCLASS	IFIED	1	AT THE BURGS

TABLE OF CONTENTS

Co	<u>ntents</u>	Page
	Abstract	1
1.0	Section I: Introduction	2
2.0	Section II: Operation of the Workshop	5
	2.1 Program Agenda	6
	2.2 Previous Interim (January 1996) Report	7
	2.2.1 Task 4: Research and Development of New Weld Metal Hydrogen Cracking Test	8
	2.2.2 Task A: Develop High Strength Steel Filler Metals to be used without Preheat	10
	2.2.3 Task 67: Determination Relationship between Weld Parameters Hydrogen Content and Multipass Weld Transverse Cracking	11
	2.3 Progress and Highlights	13
3.0	Section III: Reorganization of the Operating Assignment Tasks	14
	3.1 Interim Operating Assignment Report (October 25, 1996)3.1.1. Task 1: Research and Development of New Weld Metal Hydrogen	15
	Cracking Tests	
	3.1.2. Task 2: Determine Relationship Between Welding Parameters (Hydrogen Content) on Multiple Pass Weld Transverse Cracking	16
	3.1.3. Task 3: Develop High Strength Steel filler metals to be without preheat	17
	3.2 Milestone Chart	18
4.0	Section IV: Task 1: Research and Development of New Weld Hydrogen Cracking Tests	19
	4.1 Operating Assignments	20
	4.2 Results and Plans per activity in Task 1	21
5.0	Section V: Task 2: Influence of Welding Parameters and Hydrogen Content on Hydrogen Cracking	48
	5.1 Operating Assignments	49
	5.2 Results and Plans per activity in Task 2	50
6.0	Section VI: Task 3: Development of High Strength Steel Filler Metals	68
	6.1 Operating Assignments	69
	6.2 Results and Plans per activity in Task 3	70
7.0	Section VII: Manpower (man years) in 1996	131
8.0	Section VIII: List of Participants	133

ABSTRACT

A joint seminar and workshop on hydrogen management in high strength steel weldments were performed to assess the state of the art and science, to assess the progress of the TTCP-S11 research activities, to make mid-course corrections to the research activities and to plan for technology transfer and round-robin tests. Achievement highlights, the reorganization of activities to promote cooperative research and operation plan are described.

SECTION I

Introduction

INTRODUCTION

TTCP project (S-11) on "Management of Hydrogen and Preheat in High Strength Steel Weldment for Defense Applications" has been in progress for over three years. Various activities have been completed while others are in various stages of completion. In order to thoroughly evaluate the results and transfer technical achievements to practice a joint seminar and workshop was performed which was designed to accomplish the following:

- 1. establish the state-of-the-science (invited speakers)
- 2. assess progress of the various research activities;
- 3. make mid-course corrections to present research activities;
- 4. define and implement new activities to verify or advance the objectives;
- 5. organize technology transfer and plan for round-robin tests;
- 6. establish specifications for new testing methods.

The workshop was organized into two activities. The first activity being a one day joint seminar with internationally recognized hydrogen experts who were invited to the joint seminar and workshop to present a thorough state of the art review and to enhance our understanding of material behavior. This information set the stage for the second activity of systematically assessing the progress of 23 active programs. The workshop report is given in Volume 1. The seminar papers will be published into a Proceeding book by Welding Technology Institute of Australia (WTIA) and will be soon published. These papers are also given in Volume II of this report.

The workshop program evaluated the activities grouped into three task areas. The focus of each of these tasks is given as follows:

Task A. Develop a family of high strength steel filler metals that can deposit crack-free weld metal without the need for preheat or postheat weld soaks.

Task 4. Research and develop new hydrogen cracking tests that can evaluate the susceptibility of weld metal to transverse hydrogen cracking. Combined knowledge of hydrogen cracking behavior and mechanics will be used to propose new specimen configurations and loading concepts. After testing to determine the validity of the new concepts under conditions of know hydrogen content, microstructure, and mechanical stress state, the most promising design for defense fabrication applications will be selected.

Task 67. Determine the relationship between hydrogen content and transverse cracking susceptibility of multiple-pass weldments. The influence of welding parameters on weld metal hydrogen content and mechanical properties will be determined. Activities under this task can be divided into methodology for shipyard weld metal hydrogen cracking prediction, are elemental hydrogen sensors, hydrogen modeling, and relationships between welding variables and weld properties.

The two day workshop program agenda, the operating assignments as of January 1996 and the highlight for the progress made in 1996 are given in Section II. The first midcourse correction was to rearrange the activities into more consistent Tasks groups which is shown in Section III, where Task 1 is now titled "Research and Development of New Weld Hydrogen Cracking Tests", Task 2 is now titled "Determine Relationship between Welding Parameter (including hydrogen content) on Multiple Pass Weld Transverse Cracking", and Task 3 is now titled "Develop High Strength Steel Filler Metals to be used without Preheat". The milestone chart is also given in Section III. A complete description of the operating assignments, results and plans is given in Section IV, V, and VI. The man year used on this project by the various agencies is 10.7 with the distribution given in Section VII. Section VIII list the participants to the workshop and their affiliation.

SECTION II

Operation of the Workshop

HYDROGEN MANAGEMENT IN HIGH STRENGTH STEEL WELDMENTS FOR DEFENCE APPLICATIONS: DAYS 2 AND 3

DAY	Approximately 10 minutes will be allotted for each activity	
DAY 2		
0900 - 0910	Framework for the workshop	
0910 - 0940	Special Guest Presentations	
	Hydrogen behaviour in welded joints: A Review of Work Performed in	Prof. I.K. Pokhodnya
0940 - 1010	the E.O. Paton Electric Welding Institute Current Ideas on Mechanisms of Hydrogen Assisted Cracking	Stan Lynch (DSTO)
0940 - 1010	Current rucas on Michanisms of Hydrogen Assisted Clacking	Stan Lynch (DS10)
1010 -1300	Task 4 Research and Development of New Weld Metal Hydrogen	Session Chairman - Dr.
	Cracking Tests	A. Crowson
	1. Longitudinal Restraint Cracking Test	Aust DSTO
	2. Modified Gapped Bead on Plate Test	Aust DSTO
	3. Modified Cruciform Test	USA - NSWCCD
	4. Measurement of K _{ISCC}	USA - Army Benet Lab
1100	Coffee	
	5. J-integral fracture toughness test procedures	USA - Army Benet Lab
	6. Fatigue life in hydrogen environments7. Martensite start temperatures as hydrogen cracking indicator	USA - Army Benet Lab USA - NSWCCD
	8. Multiple pass weld metal properties	Aust CSIRO
	cooperative project	Table Oblive
	9. Inspection delay time for repair welds	Canada
	Task 4 "highlights", new activities and discussion of future directions	Discussion Leader: Dr.
		J. L. Davidson
1300 - 1400	Lunch	
1400 - 1430	Special Guest Presentation	
	Finite Element Modelling of Hydrogen Induced Cracking in Multipass Welds	Dr. W. Payton (ANSTO)
1430 - 1700	Task 67 Determine Relationship between Hydrogen Content and	Session Chairman - Dr.
	Multipass Weld Transverse Cracking	Julian Wu
	Hydrogen -induced subcritical cracking	Aust DSTO
	2. Effects of MMA welding parameters on zone toughness	Aust DSTO
	3. SAW properties and heat input relationships	Aust DSTO
1530	4. Risk evaluation of hydrogen cracking Coffee	Aust DSTO
	5. Hydrogen transfer from welding plasma.	USA - NSWCCD
	6. Weld pool shape and time-temperature profiles	UK - DRA
	7. Atmospheric exposure on Hydrogen pickup	USA - CSM
	8. Weld Metal Hydrogen Trapping	Discussion Leader: Dave
	Task 67 "highlights" and discussion of future directions	Olson
. <u>DAY 3</u>	Task A Develop High Strength steel filler metals to be used without	Session Chairman - Dr.
0000 1100	preheat 1. Review states of preheat free consumables	E. Chen Aust DSTO
0900 - 1100	2. Development of ULCB wires	USA - NSWCCD
	3. ULCB wire supplier	USA - NSWCCD
	4. Integration of all USN efforts of filler development	USA - NSWCCD
	5. Research Collaborations	USA - NSWCCD
	6. Eliminate Post weld heat treatment by a electrotransport practice	USA - CSM
	Task A "highlights" and discussion of future directions	Discussion Leader:
		Brian Dixon
1100	Coffee	
1120 - 1300	Preparation of workshop report	
1300 - 1400	Lunch	
1400 - 1700	Preparation of workshop report	•

Task A. Develop a family of high strength steel filler metals that can deposit crack-free weld metal without the need for preheat or postheat weld soaks. The effort focuses on weld metal from the ultralow carbon bainite (ULCB) system.

Task 4. Research and develop new hydrogen cracking tests that can evaluate the susceptibility of weld metal to transverse hydrogen cracking. Combined knowledge of hydrogen cracking behavior and mechanics will be used to propose new specimen configurations and loading concepts. After testing to determine the validity of the new concepts under conditions of know hydrogen content, microstructure, and mechanical stress state, the most promising design for defense fabrication applications will be selected.

Task 67. Determine the relationship between hydrogen content and transverse cracking susceptibility of multiple-pass weldments. The influence of welding parameters on weld metal hydrogen content and mechanical properties will be determined. Activities under this task can be divided into methodology for shipyard weld metal hydrogen cracking prediction, are elemental hydrogen sensors, hydrogen modeling, and relationships between welding variables and weld properties.

Task 4 Research and Development of New Weld Metal Hydrogen Cracking Tests

Activity Status Results Description	Status	Results	Description	Organization
1. Longitudinal Restraint Cracking Test	completed	LRC tests found to be unconservative	The LRC Test has been applied experimentally as a multipass hydrogen cracking test and was found to be unconservative. No cracks developed in LRC tests that were conducted under conditions which were known to produce transverse hydrogen cracks in full-scale multipass welds.	Aust DSTO
2. Modified Gapped Bead on Plate Test	completed	Modified GBOP test was found to be unconservative	A standard Gapped Bead on Plate (GBOP) test is known to be unconservative for the determination of safe welding parameters for multipass welding. Yield strength level stresses are developed in weld metal of the GBOP test, but the hydrogen concentration of a single pass is less than that which accumulates in multiple pass welds. An attempt was therefore made to make the GBOP test conservative by immersing the test piece in ice water 30 sec. after the arc was extinguished. The aim of the quench was to decrease the rate at which hydrogen would diffuse from the test weld. Despite the "quench" treatment the test was still found to be unconservative.	Aust DSTO
3. Modified Cruciform Test	in progress	Modified cruciform test is being developed for the determination of hydrogen cracking	A weldability test based on a modified cruciform design was developed. The specimen contains transverse and longitudinal notches to facilitate hydrogen crack initiation. The procedure involves deposition of several layers of weld beads to develop high restraint typical of multipass welding. An interpass temperature equal to the preheat temperatures under investigation is re-established between sets of fillet weld passes. Metallographic specimen are removed after completion of welding to inspect for cracking. All weld metal tensile specimens are also removed and tested to evaluate ductility loss. The initial results of these tests are consistent with a hydrogen cracking model developed using single pass weldability tests.	USA - NSWCCD

Task 4 (continued) Research and Development of New Weld Metal Hydrogen Cracking Tests

Activity	Status	Results	Description	Organization
4. Measurement of K _{ISCC}	completed	new bold-load K _{ISCC} ASTM test has been proposed	Measurements of K _{ISCC} for A723, 13-8 steel and 718 Ni-Fe alloy in acid and electrolytic cell hydrogen environments have been made for application to liquid propellant gun combustion environments. A new bold-load K _{ISCC} ASTM Test method has been proposed based on this work.	USA - Army Benet Lab
5. J-integral fracture toughness test procedures	in progress	small specimen J- Integral specimens being evaluated	J-integral fracture toughness test procedures for weld applications have been summarized with emphasis on simplified test methods suitable for small specimens cut from welds. Measurements of J _{IC} fracture toughness for cleavage in as welded 4130 steel HAZ have been made for application to armament component.	USA - Army Benet Lab
6. fatigue life in hydrogen environments	in progress	test and analysis is in progress	Test and analysis of fatigue life at hydrogen environments have been described for weld applications as a way to avoid difficulties of fatigue crack growth testing of welds affected by hydrogen.	USA - Army Benet Lab
7. Martensite start temperatures as hydrogen cracking indicator	in progress	preliminary results suggest value of using Ms temperatures Paper at ASM Gatlinburg Conference 95 and TMS Fall Mtg. 95.	MS temperatures was shown to delineated cracking tendencies of high strength steels in hydrogen environment. The difference in MS temperatures of base metal and weld metal can indicate whether cracking will occur in the weld or HAZ. The successful application of MS temperatures as a cracking induce results from the large differences in hydrogen solubility and diffusion coefficient between ferrite (martensite) and austenite.	USA - CSM USA - NSWCCD
8. Multiple pass weld metal properties cooperative project	in progress	AWS 96 (Chicago) fracture paper on multipass welds	A cooperative research project led by Ian French of CRSRO, has been initiated to better understand the influence of alloying additive on microstructural and mechanical properties of weld metal for shielded processes.	USA - CSM Aust CISRO

Task A Develop High Strength steel filler metals to be used without preheat.

Activity	Status	Status Results Descri	Description	
				Oi gainzauon
 Review states of preheat free consumables 	completed	Established a knowledge base and found source for experimental wires	Review present states of "preheat free" consumables and discuss test matrix with potential suppliers of experimental matrix.	Aust DSTO
2. Development of ULCB wires	in progress	Influence of nickel addition to weld deposit reported	Development of ULCB wires has shown that increasing the Ni content had a beneficial effect on impact toughness. Also decreasing inclusion volume fraction increased upper shelf energy and decreases 50% FATT.	USA - NSWCCD
3. ULCB wire supplier	completed	memorandum of understanding signed	A memorandum of understanding was signed with Hobart to develop 100 ksi yield metal-cored ULCB wires.	USA - NSWCCD
4. Integration of all USN efforts of filler development	completed	integrated plan is in place and working	A comprehensive program plan was put forth to integrate all U.S. Navy-funded efforts to develop filler metals that do no require preheat or post heat soaking.	USA - NSWCCD
5. Research Collaborations	initiated	potential acceleration of filler development and qualifications	Extensive collaborations were initiated with various program participants to design a matrix of solid, flux-cored, and metal covered wires. NSWCCD is performing weldability testing. Electric Boat division and Nat. Center for Excellence in Metalworking Tech. and Oregon Graduate Inst. are evaluating mechanical properties.	USA - NSWCCD USA - Electric Boat USA - NCEMT USA - QGI
 Eliminate Post weld heat treatment by a electrotransport practice 	completed	theoretically possible for small parts	The concept of using electrotransport to reduce diffusible hydrogen levels was evaluated using transport calculations. The application of electrotransport during the welding thermal cycle maybe useful in reducing hydrogen cracking susceptibility in small technical assemblies that might otherwise experience distortion or unacceptable microstructural changes as a result of conventional post weld soak.	USA - CSM

Task 67 Determine Relationship between Weld Parameters, Hydrogen Content and Multipass Weld Transverse Cracking

Activity	Status	Results	Status Results Description	
 Hydrogen -induced subcritical cracking 	in progress	Technique has been developed to determine relationships for ultrahigh strength steels	An experimental technique has been developed which promises to deliver fundamental information regarding the relationship between the hydrogen-induced sub-critical crack growth rate and both microstructures and diffusible hydrogen content. Presently working on deposits from E120S filler metal.	Organization Aust DSTO
 Effects of MMA welding parameters on zone toughness 	completed	comprehensive investigation has been completed and published	A comprehensive investigation on the effects of MMA welding parameters on zone toughness has been achieved. Greatest weld toughness occurred at high interpass temperatures (160C) and low heat inputs (1.2 kJ/mm). For HAZ regions, levels of toughness were similar when using high preheat/low input and low preheat/high heat input techniques.	Aust DSTO
3. SAW properties and heat input relationships	completed	Equations were developed for prediction of weld metal hardness from process parameters	For bead-on-plate submerged are welds, the rate of variation in HAZ hardness with increased heat input and interpass temperature was quantified.	Aust DSTO
4. Risk evaluation of hydrogen cracking	completed	No significant evidence of cracking	An experimental submarine section, which was welded using wide range of welding procedures, was evaluated as to the risk of hydrogen cracking and embrittlement.	Aust DSTO
5. Hydrogen transfer from welding plasma.	in progress	Model is being developed to allow prediction of weld metal hydrogen content	Hydrogen distribution and migration from the welding plasma to the solidified weld metal is being modeled. The model is being developed for GMA welding and will incorporate feed metal and resulting papilla characteristic of GMAW. The model utilized spectrographic data supplied by the hydrogen sensor to establish the initial hydrogen species in the plasma.	USA - NSWCCD

Task 67 (continued) Determine Relationship between Weld Parameters, Hydrogen Content and Multipass Weld Transverse Cracking

Organization	USA - NSWCCD	UK - DRA	USA - CSM
Activity Status Results Description	The arc sensing model (described above in #5) will be extended to determine weld pool shape and time-temperature profiles associated with GMA welding. Currently, relationships between weld metal microstructures and toughness are being established.	The effect of atmospheric exposure on the hydrogen pick-up of vacuum packaged Q1 (N) MMA consumables has been evaluated. Electrodes experienced very little hydrogen pick up and weld metal properties were unaffected.	A literature review of hydrogen trapping is in preparation. Experimental work to evaluated effective gettering on trapping alloy additions is in progress.
Results	Information necessary for weld metal microstructures and toughness prediction	weld metal properties were unaffected by storage of vacuum packaged MIMA electrodes	Manuscript nearly finished
Status	in progress	completed	in progress
Activity	6. Weld pool shape and time-temperature profiles	7. Atmospheric exposure on Hydrogen pickup	8. Weld Metal Hydrogen Trapping

TTCP OPERATING ASSIGNMENT PTP1 - 013 Progress and Highlights

Hydrogen Cracking Tests

Hydrogen cracking tests are being evaluated for their ability to relate cracking tendency to welding practice, weld configuration and associated materials. Efforts have been particularly focussed on transverse weld metal cracking. Some of this work has resulted in the modification of an ASTM Testing Specification. A new initiative will address criteria for the testing of weld repair procedures: the worst case scenario.

Austenite Decomposition Temperature

A new concept using the austenite decomposition temperature as an indice for predicting diffusible hydrogen content and distribution is being developed. Comparison of the austenite decomposition between the weld deposit and the base material has been shown to predict whether the hydrogen distribution will promote cracking in the weld metal or in the heat affected zone. This indice will be of value in the selection of the proper welding consumable for a given high strength steel.

Hydrogen Arc Sensor

A hydrogen arc sensor has been developed which is able to determine the hydrogen content in the arc. These hydrogen arc signals have been directly related to the weld metal hydrogen content. This in process hydrogen analysis will greatly improve quality assurance and gives an indication of improper hydrogen conditions while the welding is being performed. It is anticipated that with further development involving evaluation of the resiliency of this analytical practice to variation in the welding parameters and some round robin testing, this sensor will be ready for introduction to the fabrication operation involving automatic welding of high strength steels.

Arc Plasma Chemistry for Low Hydrogen Uptake,

The introduction of small amounts of fluorine into the welding plasma under controlled oxygen contents has been shown through both theoretical and experimental investigations to reduce the diffusible hydrogen content in high strength steel weld deposits. The fluorine is introduced as controlled amounts of specific fluorides in the welding consumable. Implementation of this approach of hydrogen management will require further research and the close cooperation with the welding consumable manufacturers.

Hydrogen Trapping

The concept of using specific hydrogen traps in weld metal has been shown theoretically to be a promising method of reducing and controlling diffusible hydrogen in high strength weldments. The shared knowledge of the diffusible and residual hydrogen contents, obtained by the various TTCP members has given preliminary indications that this concept will work if properly applied. Experimental work involving specially prepared welding consumables is in progress and will evaluate our ability to put this concept into practice.

SECTION III

Reorganization of the Operating Assignment Tasks

RESEARCH AND DEVELOPMENT OF NEW WELD HYDROGEN CRACKING TESTS

- Longitudinal Restraint Cracking Test Australia-DSTO
- 2. Modified Gapped Bead on Plate Test Australia-DSTO
- 3. Modified WIC Test
 USA-NSWCCD
- Measurement of Kieac USA-Army Benet Lab.
- 5. J-integral Fracture Toughness Test Procedures USA-Army Benet Lab.
- 6. Fatigue Life in Hydrogen Environments USA- Army Benet Lab.
- 7. To Survey Worst Case Scenario for Hydrogen Cracking in Fabrication
 Australia-DSTO
 Australia-ASC
 USA-NSWCCD
- 8. Develop Testing Criterion for Weld Repair Australia-DSTO Australia-ASC
- 9. Modelling of Electronic Bonding of Hydrogen in the Zone Ahead of Sub-critical Cracks in Ferrous Alloys USA-Army ARL USA-CSM

DETERMINE RELATIONSHIP BETWEEN WELDING PARAMETERS (INCLUDING HYDROGEN CONTENT) ON MULTIPLE PASS WELD TRANSVERSE CRACKING

- 1. Hydrogen Induced Subcritical Cracking Australia-DSTO
- 2. Hydrogen Cracking and Heat Input Australia-DSTO
- 3. Risk Evaluation of Hydrogen Cracking Australia-DSTO
- 4. Hydrogen Arc Sensing and Modelling to Predict Weld Metal Hydrogen Content USA-NSWCCD
- 5. Modelling of Hydrogen Cracking Behavior in a Repair Weld Canada-DREA
- 6. Eliminate Post Weld Heat Treatment by a Electrotransport Practice USA-CSM
- 7. Characterisation of Undermatched Weldments USA-NSWCCD

DEVELOP HIGH STRENGTH STEEL FILLER METALS TO BE USED WITHOUT PREHEAT

- 1. Preheat Free MMA and FCA Welding Consumables
 Australia-DSTO
- 2. Development of ULCB Wires USA-NSWCCD
- 3. ULCB Wire Evaluation USA-NSWCCD
- 4. Evaluation of ULCB MCAW Consumables USA-NSWCCD
- 5. Fluoride Additions to Control Weld Hydrogen Content USA-CSM
- 7. Multiple Pass Weld Metal Properties Cooperative Project

Australia-CISRO USA-CSM

- 8. Reduction of Diffusible Hydrogen Through The Use of Weld Metal Traps USA-CSM
- 9. Analytical Methods to Evaluate Weld Hydrogen Distribution USA-CSM USA-SUNY Albany

02 03																											
ō	ļ										-			*********													
Q2 Q3 Q					İ										I												
01 02 03 04 01 02 03 04]																								
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q)					•	×	< -	~								¥					μ				******
)										•)			••••••				••••						
Q1 Q2 Q3 Q4					· · · · · · · · · · · · · · · · · · ·	-4																					
Old Task ID	Task 4-1	Task 4-2	Task 4-3	Task 4-4	Task 4-5	Task 4-6	NA	NA	AN	NA	Task 67-1	Task 67-3	Task 67-4	Task 67-5	AN	Task A-6	AN	A A	Task A-1	Task A-2,3	NA	NA	NA	Task 4-7	Task 4-8	Task 67-8	
R&D of New Weld H-Cracking Tests	aint Cracking Test	Bead on Plate Test	Modified WIC Test	Measurement of KIEAC	hness procedures	Fatigue life in H-environments	cking in fabrication	ion for weld repair	nding of hydrogen	ansverse cracking	ubcritical cracking	Hydrogen cracking and heat input	nydrogen cracking	ing and modelling	ur in a repair weld	electrotransport practice	atched weldments	ed without preheat	ing Consumables	Development of ULCB wires	ULCB wire evaluation	AW consumables	ol weld H-content	cracking indicator	ooperative project	reld metal H-traps	/eld H-distribution
&D of New Weld H	Longitudinal Restraint Crackin	Modified Gapped Bead on Plat		Meas	J-integral fracture toughness procedures	Fatigue life	Worst case scenario for H-cracking in fabr	Develop Testing criterion for weld	Modelling of electronic bonding of hyd	Weld param. on multi-pass transverse cracking	Hydrogen induced subcritical cracking	Hydrogen crack	Risk evaluation of hydrogen cracking	Hydrogen arc sensing and modelling	H-cracking behaviour in a repair weld	electro	Charact. of undermatched weld	HS-steel filler metals to be used without preheat	Preheat free MMA & FCA Welding Consumables	Developm	חונ	Evaluation of ULCB MCAW consumables	Fluorite additions to control weld H-content	Aust. decomposition T as H-cracking indicator	Multi-pass weld metal prop. cooperative project	Reduct. of DiffH thru the use weld metal H	Anal. method to evaluate weld H-distril
1					7		Worst ca		Mod	Weld pa								HS-steel	Preheat fr			ĒV	Fluc	Aust. d	Multi-pa	Reduct. of	Anal
							-		-	+-	 	+						1		1	1	1			T .		
1.0 Task 1	1.1 Task 1 Activity 1	1.2 Task 1 Activity 2	1.3 Task 1 Activity 3	1.4 Task 1 Activity 4	1.5 Task 1 Activity 5	1.6 Task 1 Activity 6	1.7 Task 1 Activity 7	1.8 Task 1 Activity 8	1.9 Task 1 Activity 9	2.0 Task 2	2.1 Task 2 Activity 1	2.2 Task 2 Activity 2	2.3 Task 2 Activity 3	2.4 Task 2 Activity 4	2.5 Task 2 Activity 5	2.6 Task 2 Activity 6	2.7 Task 2 Activity 7	3.0 Task 3	3.1 Task 3 Activity 1	3.2 Task 3 Activity 2	3.3 Task 3 Activity 3	3.4 Task 3 Activity 4	3.5 Task 3 Activity 5	3.6 Task 3 Activity 6	3.7 Task 3 Activity 7	3.8 Task 3 Activity 8	3.9 Task 3 Activity 9

SECTION IV

TASK 1

Research and Development of New Weld Hydrogen Cracking Tests

RESEARCH AND DEVELOPMENT OF NEW WELD HYDROGEN CRACKING TESTS

- 1. Longitudinal Restraint Cracking Test
 Australia-DSTO
- 2. Modified Gapped Bead on Plate Test Australia-DSTO
- 3. Modified WIC Test USA-NSWCCD

USA-NSWCCD

- 4. Measurement of Kieac
 USA-Army Benet Lab.-ARDEC
- 5. J-integral Fracture Toughness Test Procedures USA-Army Benet Lab.-ARDEC
- 6. Fatigue Life in Hydrogen Environments
 USA- Army Benet Lab.-ARDEC
 UK-Univ. of Cranfield
- 7. To Survey Worst Case Scenario for Hydrogen Cracking in Fabrication Australia-DSTO Australia-ASC
- 8. Develop Testing Criterion for Weld Repair Australia-DSTO Australia-ASC
- 9. Modeling of Electronic Bonding of Hydrogen in the Zone Ahead of Sub-critical Cracks in Ferrous Alloys USA-Army ARL USA-CSM Australia-DSTO

OPERATING ASSIGNMENT PTP1 - 013 (October 25, 1996)

HYDROGEN MANAGEMENT IN HIGH STRENGTH STEEL WELDMENTS FOR DEFENCE APPLICATIONS

Task 1 Research and Development of New Weld Metal Hydrogen Cracking Tests

Ossociation	Organisation Aust DSTO	Aust DSTO	USA - NSWCCD
riyarogen Cracking Lests Description	The longitudinal restraint cracking (LRC) test has been trialed as a multipass hydrogen cracking test and was found to be unconservative. LRC test were conducted under conditions which were known to produce transverse hydrogen cracks in full scale multipass welds, yet no cracks were developed in the tests. Future work will include increasing the length of the weld to increase the longitudinal residual stress.	The standard Gapped Bead on Plate (GBOP) test is known to be unconservative for determining safe welding parameters for multipass welding. Yield strength level stresses are developed in the weld metal of the GBOP test, however, the hydrogen concentration of a single pass is less than that which accumulates in multipass welds. An attempt was therefore made to make the GBOP test conservative by immersing the test piece in ice water 30s after the welding arc was extinguished. The aim of the "quench" was to decrease the rate at which hydrogen could diffuse from the test weld. Despite the "quench" treatment the test was still found to be unconservative.	Design of a modified WIC test to rapidly assess highly weldable material.
	LRC tests found to be unconservative	Modified GBOP test was found to be unconservative	Modified cruciform test is being developed for the determination of hydrogen cracking
Status	in progress	completed	in progress
Activity Status Results	1. Longitudinal Restraint Cracking Test	2. Modified Gapped Bead on Plate Test	3. Modified WIC Test

Lask I (continued) Research and Development of New Weld Metal Hydrogen Cracking Tests	n and Developi	ment of New Weld Metal	Hydrogen Cracking Tests	
Activity	Status	Results	Description	Organisation
4. Measurement of K _{EAC}	in progress	new bolt-load K _{EAC} ASTM test has been accepted	A large effect of yield stress on the K _{BAC} on A723 steel has been observed. K _{BAC} tests on A723 steels at yield strength levels between 1130 and 1275MPa are being performed. K _{BAC} tests are also being investigated on isothermally processed A723 steel.	USA - Army Benet Lab
5. J-integral fracture toughness test procedures	in progress	small specimen J- Integral bend test has been evaluated	Dynamic J_{1C} tests will be conducted on A723 steel as part of ASTM round robin study.	USA - Army Benet Lab
6. Fatigue life in hydrogen environments	in progress	fatigue life test and analysis methods are being studied	A new analysis has been described for characterising fatigue life, including local stresses and initial crack. This work is being conducted jointly with U.Parker (Univ. of Cranfield, UK) "Fatigue Intensity Factor" concept shows significant effect of hydrogen environment on fatigue life of high strength steel armament structures 9th International Conference on Fracture April 1997.	USA - Army Benet Lab
7. To survey worst case scenario for hydrogen cracking in fabrication	Initiating	group consensus of need	As a basis for determining the most appropriate test procedure, seek descriptions of worst case scenarios for hydrogen cracking in fabrication. The descriptions are to be circulated for comment.	Aust DSTO Aust ASC USA - NSWCCD
8. Develop testing criterion for weld repair	initiated	group consensus for need	The progressive aging of existing Naval platforms has necessitated the development of hydrogen cracking tests for weld repair. This condition potentially represents a worst case scenario for hydrogen cracking susceptibility.	Aust DSTO Aust ASC
9. Modelling of Electronic bonding of hydrogen in the zone ahead of sub-critical cracks in ferrous alloys	initiated	application of new modelling approaches	Determine relative energies of interstitials to migrate into this zone. Characterise the intraplanar bonds when interstitials are present (eg. Establish if these interstitials change the nature of these bonds by promoting/hindering crack tip propagation in this zone)	US Army - ARL

Task 1: Hydrogen Cracking Tests

Activity 1: The Longitudinal Restraint Cracking Test

Australia-DSTO

The Longitudinal Restaint Cracking Test (LRC) has been applied experimentally as a multipass hydrogen cracking test.

Results: The LRC test was found to be unconservative. No cracks developed in LRC tests that were conducted under conditions which were known to produce transverse hydrogen cracks in full-scale multipass welds.

Plans: Future work will include increasing the length of the weld to increase the longitudinal residual stress.

Status: in progress

Completion: 1996, Q4

previously

Task 4 Activity 1

Longitudinal restraint cracking test

Task 1: Hydrogen Cracking Tests

Activity 2: Modified Gapped Bead on Plate Test

Australia-DSTO

The standard Gapped Bead on Plate (GBOP) test is known to be unconservative for determining safe welding parameters for multipass welding. Yield strength level stresses are developed in the weld metal of the GBOP test specimen, however, the hydrogen concentration of a single pass is less than that which accumulates in multipass welds. An attempt was therefore made to make the GBOP test conservative by immersing the test piece in ice water 30s after the welding was extinguished. The aim of the "quench" was to decrease the rate at which hydrogen could diffuse from the test weld.

During laboratory scale preheat free welding tests only the first pass is preheat free. Thereafter the temperature of the small test piece is elevated by the previous pass or passes. Subsequent passes may then be deposited soon after the first, at an elevated interpass temperature or after the piece has cooled to some low pre-defined temperature. If time is allowed for the test piece to cool then hydrogen from earlier passes will have time to diffuse from the weld and the effects of hydrogen buildup will be reduced. If a pass is deposited soon after the previous pass then the previous pass will have effectively preheated the test piece and the test is not really a test of preheat free welding. While preheating by earlier passes will also occur in a full scale structure, the effect will be reduced by the greater heat sink offered by the surrounding parent metal.

Results: Despite the "quench" treatment the test was still found to be unconservative.

Status: completed

previously

Task 4 Activity 2

Hydrogen Induced Cracking of a Flux Cored Arc Weld Metal - GBOP Test

Ship Structures and Materials Division

Hydrogen Induced Cracking of a Flux Cored Arc Weld Metal - Multipass Weld

Ship Structures and Materials Division

Task 1: Hydrogen Cracking Tests

Activity 3: Modified Cruciform Test

USA-NSWCCD

Design of a modified WIC test to rapidly assess highly weldable new materials for cracking, including hydrogen cracking. The modified cruciform test has been found successful in detecting the propensity for transverse cracking in multipass welds and weld metal embrittlement (via loss of ductility in all weld metal tensile specimen). Research on the development of new hydrogen cracking test by designing a modified WIC type of test is in progess. The major differences between present practice and the modified approach being investigated is that the modified approach will use thicker plate and modified joint design to increase the thermal severity of the test. A test fixture will be developed to restrain the specimen during the test. Previously the specimen was welded to the plate. This practice required additional work to remove and inspect the specimen.

The modified specimens are being designed to evaluate both the longitudinal and transverse cracking. The specimen contains transverse and longitudinal notches to facilitate hydrogen crack initiation. The procedure involves deposition of several layers of weld beads to develop high restraint typical of multipass welding. An interpass temperature equal to the preheat temperature under investigation is being used between sets of fillet weld passes. Metallographic specimen are removed after completion of welding to inspect for cracking. All weld metal tensile specimens are also removed and tested to evaluate ductility loss.

Results: The initial results of these tests are consistent with a hydrogen cracking model developed using single pass weldability tests.

Plans: A document describing the modified cruciform test procedures using AWS B.4 format will be prepared.

Status: in progress

Completion: 1997, Q2

Previously

Task 4 Activity 3

Longitudinal Notch

Transverse Notch

Modified Cruciform Specimen

Hydrogen Cracking Response Surface

23 Oc

Fracture Surface of Hydrogen Crack (Weld Metal)

Activity 4: Measurement of Kieac for Higher Strength Steels

USA-Army Benet Laboratory-ARDEC

Kieac tests on A723 steels at yield strength levels between 1130 and 1275 MPa are being performed. Kieac tests are also being used to investigate isothermally processed A723 steel.

Results: A large effect of yield stress on the Kieac for A723 steel has been observed.

Plans: work in progress

Status: in progress

Completion: 1997, Q3

Previously

Task 4 Activity 4

ACID CRACKING RESULTS

K_{APPLIED} VERSUS TIME FOR A723 STEELS

ACID CRACKING RESULTS

da/dt VERSUS KAPPLIED FOR A723 STEELS

ELECTROCHEMICAL CELL RESULTS

da/dt VERSUS KAPPLIED

Activity 5: J-integral Fracture Toughness Test Procedures

USA-Army Benet Laboratory-ARDEC

J-integral fracture toughness test procedures for weld applications are being investigated with emphasis on simplified test methods suitable for small specimens cut from welds.

Results: Measurements of Jic fracture toughness for cleavage in as welded AISI 4130 steel HAZ have been made for applications to armament components.

Plans: Dynamic Jic tests will be conducted on A723 steel as part of ASTM round robin study.

Status: in progress

Completion: 1998, Q3

previously

Task 4 Activity 5

HEAT TREATED WELD

Activity 6: Fatigue Life Analysis in Hydrogen Environments

USA-Army Benet Laboratory-ARDEC UK-Univ. of Cranfield

A new analysis has been described for characterising fatigue life, including local stresses and initial crack. This work is being conducted jointly with U. Parker (Univ. of Cranfield, U. K.).

Results: "Fatigue Intensity Factor" concept shows significant effect of hydrogen environment on fatigue life of high strength steel armament structures.

Plans: Test and analysis is in progress. The results will be reported at the 9th International Conference on Fatigue, April 1997.

Status: in progress

Completion: 1997, Q3

previously

Task 4 Activity 6

Activity 7: To Survey The Worst Case Scenaros for Hydrogen Cracking in Fabrication

Australia-DSTO Australia-ASC USA-NSWCCD

As a basis for determining the most appropriate test procedure, descriptions of worst case scenarios for hydrogen cracking in fabrication are being sought.

Results: A new initative which has much cooperative interest among group members.

Plans: Descriptions are being requested and will be circulated for comment.

Status: initated

Completion: 1997, Q4

Standardisation of Laboratory Welding Tests

- first pass is preheat free
- the test piece has then been heated for subsequent passes
- trade off
 - allow specimen to cool=> increase diffusion time for H removal
 - weld without delay=>less time for H removal but different microstructures
 - hydrogen build up not as severe
 - full scale structure cooling rates are higher

Activity 8: Development of Testing Criteria for Weld Repair

Australia-DSTO Australia-ASC

The progressive aging of existing Naval platforms has necessitated the development of hydrogen cracking tests for weld repair. This condition potentially represents a worst case scenario for hydrogen cracking susceptibility.

Results: A new initative which has much cooperative interest among group members.

Plans: Identify the worst case weld repair scenarios on Naval structures and develop a test plan which will evaluate the various hydrogen cracking testing procedures to assess these repairs.

Status: initated

Completion: 1997, Q4

Activity 9: Modelling of Electronic Bonding of Hydrogen in the Zone Ahead of Sub-critical Crack in (BCC) Ferrous Alloys

USA-Army ARL USA-CSM Australia-DSTO

This investigation will determine the relative energies of interstitials which can migrate to the zone of sub-critical crack in ferrous alloys. It will characterize the intra planar bonds when interstitials are present (e.g. establish if these interstitials change the nature of these bonds promoting/hindering crack tip propagation in the zone).

Results: There is evidence from prior calculations (CSM - Mark Eberhart) that much understanding can be determine as to the nature of hydrogen damage from these fundamental atomic scale calculations.

Plans: Establish a research team of internationally respected investigators, both theoretical and experimental scientists, and propose the scope and work statements for this project to be submitted to the appropriate funding agencies. Dr. Genrich Krasko, US Army Research Laboratory was proposed as primary Principal Investigator.

Status: Initiated

Completion: 1999, Q2

SECTION V

TASK 2

Influence of Welding Parameters and Hydrogen Content on Hydrogen Cracking

TASK 2

INFLUENCE OF WELDING PARAMETERS AND HYDROGEN CONTENT ON HYDROGEN CRACKING

- 1. The Relationship Between Hydrogen Content and Susceptibility to Hydrogen Cracking Australia-DSTO
- 2. Hydrogen Cracking and Heat Input Australia-DSTO
- 3. Risk Evaluation of Hydrogen Cracking Australia-DSTO
- 4. Hydrogen Arc Sensing and Modelling to Predict Weld Metal Hydrogen Content USA-NSWCCD USA-Penn. State Univ.
- 5. Modeling of Hydrogen Cracking Behavior in a Repair Weld Canada-DREA
- 6. Use of Electrotransport to Reduce the Diffusible Hydrogen Content
 USA-CSM
- 7. Characterization of Undermatched Weldments
 USA-NSWCCD
 Australia-DSTO

Task 2 Determine Relationship Between Welding Parameters (hyd

Activity	Status	Pouling Farameters (myur	Activity Course Cracking Parameters (nyarogen content) on Multiple Pass Weld Transverse Cracking	
	Status	Kesuits	Description	Organisation
Hydrogen -induced subcritical cracking	in progress	Technique has been developed to determine	An experimental approach is proposed which promises to deliver fundamental information regarding the relationship between the hydrogen-induced sub-critical crack growth rate	Aust DSTO
		relationships for ultrahigh strength steels	and both microstructures and diffusible hydrogen content. Presently working on deposits from E120S filler metal.	
2. Hydrogen cracking and heat input	in progress	higher heat input welds crack at lower hardness	The influence of heat input on hydrogen cracking hs been investigated for a submerged arc consumable. The resistance to hydrogen cracking increase with heat input. The hardness at which hydrogen cracking occurred decreased with the heat input.	Aust DSTO
3. Risk evaluation of hydrogen cracking	completed	No significant evidence of cracking	An experimental submarine section, which was welded using wide range of welding procedures, was evaluated as to the risk of hydrogen cracking.	Aust DSTO
4. Hydrogen arc sensing and modelling to predict weld metal hydrogen content	in progress	Model is being developed to allow prediction of weld metal hydrogen content	The arc sensing model will be extended to determine weld pool shape and time-temperature profiles associated with GMA welding. Currently, relationships between weld metal microstructures and toughness are being established. Hydrogen distribution and migration from the welding plasma to the solidified weld metal is being modelled. The model is being developed for GMA welding and will incorporate feed metal and resulting papilla characteristic of GMAW. The model	USA - NSWCCD
			establish the initial hydrogen species in the plasma.	

0
٤.
-5
-2
٠
2
Š
6
23
-
끚
Š
v
28
.5
=
Σ
B
a
nt
ā
O
0
5
0
Þ
Ŧ
=
8
₹
2
9
콗
Ë
Ę
믔
×
e
Ē
Ë
ö
Δ
Ŧ
<u>8</u>
=
Iţi
8
ت
7
송
먑

	_				
	Organisation	Canada - DREA	USA - CSM	US - NSWCCD	· ·
Activity Status Results Description	TOTAL DITOR	Determination of the length of time necessary after repair welding before inspection for hydrogen cracking should be performed	The concept of using electrotransport to reduce diffusible hydrogen levels was evaluated using transport calculations. The application of electrotransport during the welding thermal cycle maybe useful in reducing hydrogen cracking susceptibility	In targe structual components. The use of undermatching weld metal may improve productivity of welding high strength steels by reduction or elimination of preheat	
Results		high group interest in project	with use of homopolar generator it may be possible to treat thick section materials	potential for reduction or elimination of preheat	
Status		minated	in progress	initiated	
Activity	S Madelling of harden	5. Modelling of hydrogen cracking behaviour in a repair weld	6. Eliminate Post weld heat treatment by a electrotransport practice	7. Characterisation of undermatched weldments	

Activity 1: The Relationship Between Hydrogen Content and The Susceptibilty to Hydrogen Cracking

Australia-DSTO

An experimental technique has been developed to determine the relationship between the hydrogen induced sub-critical crack growth rate and both the microstructural constituents and diffusible hydrogen content.

Results: The technique has been tried successfully using an ultra high strength steel.

Plans: The trial will be extended to include an E120S filler metal.

Status: in progress

Completion: 1998, Q3

previously

Task 67 Activity 1

Longitudinal Restraint Cracking

Gapped Bead on Plate

X Known Stress IntensityX Known Hydrogen ConcentrationX Constant Microstructure

Controlled Cracking Approach

Known Stress Intensity
Known Hydrogen Concentration
Constant Microstructure

Crack Rate

Hydrogen Concentration

Activity 2: Hydrogen Cracking and Heat Input

Australia-DSTO

The influence of heat input on hydrogen cracking has been investigated for a submerged arc consumable.

Results: The resistance to hydrogen cracking increases with heat input. The hardness at which hydrogen cracking occurred decreased with the heat input.

Plans: work continuing

Status: in progress

Completion: 1998, Q3

previously

Task 67 Activity 3

Cracking and Hardness As Functions of Welding Parameters

- "A" HV=330 "B" HV=360
- Cracking occurs at "A" but not at "B"

Ship Structures and Materials Division

Contours calculated on basis of empirical fit to data $(1.86X10^{-4}\ T-0.13328)$ Hv = $(350.6-0.244T)^*HI$

Preheat (°C)

Preheat Temperature (°C)

Preheat Temperature

Activity 3: Risk Evaluation of Hydrogen Cracking

Australia-DSTO

Control of weld metal hydrogen cracking in a 690 MPa yield strength steel during Australian submarine construction is an essential requirement. To evaluate the risk of hydrogen cracking and embrittlement, an experimental submarine section (7.8 m diameter, 2.4 m long, containing five stiffening ring frames) was fabricated using "high" carbon equivalent electrodes (Pcm= 0.283 versus typical values of 0.26) and a wide range of welding procedures. The effect of carbon content on cracking risk was also examined. The welds were examined both non-destructively and destructively.

Results: No significant evidence of cracking was found. An increase in carbon content from 0.07 to 0.10 wt. Pct. was found to have little effect on yield stress. Assessment of welds in a test fabrication showed that a wide range of techniques and procedures can be used without a risk of cracking.

Status: completed

previously

Task 67 Activity 4

Observations:

From analysis of the yield stress data provided by weld procedure qualification records for 690 MPa steels:

1/ Considerable scatter in yield stress value may occur when welding with the same nominalwelding electrodes

The scatter in results cannot be attributed to minor variations in weld metal carbon content.

3/ For identical consumables and welding procedures, reproducibility of tensile test results is not good

4/ Examination of welds on a test can and routine inspection of welds on the submarines has revealed little evidence of cracking

5/ Noting that:

a) the formulae were developed as a measure of parent metal hardenability, and

this work casts doubt on the validity of using conventional carbon equivalent b) the random scatter in yield stress results is sufficient to swamp the formulae alone for the assessment of crack sensitivity, effect of minor variations in filler metal composition,

Risk Evaluation

Four out of 188 procedures gave yield stress values over 900 MPa.

2/ Two of the four were used

Both of these gave high elongations and an AF microstructure

Re-testing of these welding procedures gave significantly lower yield

6/ Isolated examples of cracking have been found during fabrication. These have been investigated to identify the cause of cracking and all A wide range of welding techniques were used on the COLLINS practice can and negligable evidence of cracking was found have been repaired

Activity 4: Hydrogen Arc Sensing and Modelling to Predict Weld Metal Hydrogen Content

USA-NSWCCD USA-Penn. State Univ.

The arc sensing model will be extended to determine weld pool shape and time-temperature profiles associated with GMA welding. Currently, relationship between weld metal microstructures and toughness are being established.

Hydrogen distribution and migration from the welding plasma to the solidified weld metal is being modeled. The model is being developed for GMA welding and will incorporate feed metal and resulting papilla characteristic of GMAW. The model utilised spectrographic data supplied by the hydrogen sensor to establish the initial species in the plasma.

Results: Hydrogen emissions data was used to predict diffusible hydrogen test results using the Penn. State Univ. model. A cylindrical heat source has been developed for model development. The cylindrical heat source produced a papilla consistent with GMAW.

Plans: The weld pool shapes and resulting thermal profiles will be validated. The effect of variations in welding parameters will be evaluated.

Status: in progress

completion: 1997, Q3

previously

Task 67 Activity 5

Activity 5: Modeling of Hydrogen Cracking Behavior in Repaired welds

Canada-DREA

The question of how long after repair welding inspection for hydrogen cracking should be delayed is being examined by modeling and experiments. Dr. Lalit Malik of Fleet Technology and Dr, Brian Graville of Graville Associcates have received a DREA research contract to address this question. Numerical modeling is being done estimate the temperature history, diffusion/distribution and thermal/residual stresses generated as a result of a multipass repair weld. Experiments are being done to determine the critical local hydrogen concentration for causing cracking for a given stress and microstructure. Essentially the experiments will allow the model to be calibrated for crack prediction. Experiments and modeling will focus on 9 mm thick A517 grade F steel, welded with E11018 electrodes. The critical hydrogen content for causing cracking for a give stress and hydrogen content will be determined by: placing a Charpy V notch in the heat affected zone of a multipass single V weld; gouging out part of the top of the weld, and rewelding, (simulating a repair weld); heat treating, if necessary, to cause some redistribution of hydrogen; and loading the specimen and determining if and when, crack growth

Results: High group interest in this project. Work in progress.

Plans: work in progress

Status: in progress

Completion: 1998, Q2

Activity 6: Use of Electrotransport to Reduce The Diffusible Hydrogen Content

USA-CSM

The concept of using electrotransport to reduce diffusible hydrogen levels was evaluated using transport calculations.

Results: The application of electrotransport during the welding thermal cycle may be useful in reducing hydrogen cracking susceptability in small technical assemblies that might otherwise experience distortion or unacceptable microstructural changes as a result of conventional post weld heat treatment.

Plans: Due to the requirement of excessively high current, if electrotransport methods are to be applied to heavy section weldments, this technique initially appeared useful for only small weldments such as those welds found in precision assemblies. Discussions are in progress with the Center of Electromechanics of the Univ. of Texas to set up an industrial demonstration project to illustrate that homopolar power sources can produce sufficient current and are portable enough to work in combination with the welding practice associated with heavy section weldments.

Status: in progress

Completion: 1998, Q3

previously

Task A Activity 6

Activity 7: Characterization of Undermatched Weldments

USA-NSWCCD Australia-DSTO

The use of undermatching weld metals may improve productivity of welding high strength steels by reduction or elimination of preheat.

Plans: The scope and work statements will be defined and work will proceed.

Status: initated

Completion: 1998, Q4

SECTION VI

TASK 3

Development of High Strength Steel Filler Metals

TASK 3

DEVELOPMENT OF HIGH STRENGTH STEEL FILLER METALS

- 1. Preheat Free MMA and FCA Welding Consumables
 Australia-DSTO
 Australia-CISRO-DMT
- 2. Development of ULCB Wires USA-NSWCCD
- 3. ULCB Wire Evaluation USA-NSWCCD
- 4. Evaluation of ULCB MCAW Consumables USA-NSWCCD
- 5. Use of Flourine and Optimal Oxygen to The Welding Plasma to Assist in Hydrogen Management USA-CSM
- 6. Use of Austenite Decomposition Start Temperatures to Predict Weld Hydrogen Distribution and Cracking Behaviour USA-CSM USA-NSWCCD
- 7. MultiPass Weld Metal Properties

Australia-CISRO USA-CSM

- 8. Use of Weld Metal Traps for Hydrogen Management USA-CSM
- 9. Analytical Methods to Evaluate Weld Hydrogen Distribution USA-CSM USA-SUNY Albany

Task 3 Develop High Strength steel filler metals to be used without preheat.

Activity	Chaters	P. 1.	ordinat.	
1 Prohost free MMA and	Status	Kesuits	Description	Organisation
FCA Welding Consumables	in progress	Consumables	The review of the status of preheat free consumables is continuing. Experimental MMA and FCA consumables, each at 2 different chemistry levels has been received from DMT/CSIRO, Adelaide.	Aust DSTO
2. Development of ULCB wires	in progress	welds have been fabricated with various shielding gases and thermal processing to produce various levels of oxygen, nitrogen and grain size.	Development of ULCB wires has shown that increasing the Ni content had a beneficial effect on impact toughness. Also decreasing inclusion volume fraction increased upper shelf energy and decreases 50% FATT.	USA - NSWCCD
3. ULCB wire evaluation	in progress	Several solid wires have met required specification	Mechanical property and weldability evaluations of ULCB weld deposits from specially designed wires are being determined	USA - NSWCCD
4. Evaluation of ULCB MCAW consumables	initiated	continuation of ULCB wire investigation	This task will evaluate 4 MCAW wires produced to meet weld deposit chemistries specified by NSWCCD	USA - NSWCCD
5. Fluorite additions to control weld hydrogen content	initiated	theoretical and experimental evidence indicates the possibility of obtaining low hydrogen contents	Use of fluorite and optimal amounts of oxygen introduced to the welding plasma to control weld hydrogen content is being evaluated.	USA - CSM
 Austenite decomposition temperatures as hydrogen cracking indicator 	in progress	preliminary results suggest value of using Ms temperatures	MS temperatures was shown to delineate cracking tendencies of high strength steels in hydrogen environment. The difference in MS temperatures of base metal and weld metal can indicate whether cracking will occur in the weld or HAZ. The successful application of MS temperatures as a cracking induce results from the large differences in hydrogen solubility and diffusion coeff. between ferrite (martensite) and austenite.	US - CSM US - NSWCCD

Aust - CSIRO US - CSM	US - CSM	US - CSM
A cooperative research project between CSIRO and CSM is in progress to better understand the influence of alloying additives on the microstructural and mechanical properties of weld metal for shielded arc welding processes. The work is proceeding at each institution and visitations have been made to share data, to discuss alloying and thermal processing models, and to design needed experiments.	the use of weld metal hydrogen traps to reduce the available diffusible hydrogen content is being investigated.	Laser Induced Breakdown Spectroscopy has been used to demonstrate that the weld hydrogen content is not uniform in its distribution but has localised high contents which should be of major concern to the integrity of high strength steel welds. These localised hydrogen contents are most likely the cause in the spread of the measured hydrogen cracking results in welds that have acceptably low measured diffusible hydrogen contents.
AWS 96 (Chicago) fracture paper on multipass welds	trapping elements selection has been completed and an experiments to evaluate this concept for hydrogen management is progress	preliminary results using LIBS demonstrate the ability to measure weld hydrogen distribution
in progress	in progress	initiated
7. Multiple pass weld metal properties cooperative project	8. Reduction of diffusible hydrogen through the use weld metal hydrogen traps	9. Analytical method to evaluate weld hydrogen distribution

Activity 1: Preheat Free MMA and Flux Cored Arc Welding Consumables

Australia-DSTO
Australia-CISRO-DMT

The review of the status of preheat free consumables is continuing. Experimental MMA and FCA consumables, each at two different composition levels has been received from DMT/CSRRO, Adelaide.

Results: The first batch of consumables has been received. The all weld metal compositions for the two FCA consumables were:

Elements (wt, pct.) A (600-690 MPa yield) B (700-800 MPa yield)

С	0.04	0.04
Mn	1.6	1.01
Si	0.16	0.17
Ni	2.9	5.6
Mo	0.54	0.73
Ti	0.004	0.005
Cr	0.01	0.27
Al	0.009	0.011

Plans: Evaluation of weld metal properties, viz all weld metal tensiles, transverse tensiles, Charpy toughness and metallography is about to commence. The next stage involves a new iberation of consumable compositions after discussions with NSWCCD. Obtaining core material of very low carbon content (0.02 wt, pct.) has been identified as a critical issue and this need will be pursued concurrently with the new iberation of compositions.

Status: in progress

Completion: 1997, Q3

previously

Task A Activity 1

TASK A: "PREHEAT FREE WELDING CONSUMABLES

- Review status of "preheat free" high strength welding consumables
- Identify supplier, and obtain experimental quantities of MMA and FCAW consumables

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

"PREHEAT FREE" CONSUMABLES

Ċ Target Chemistry M_0 Z Si Mn C Target Yield Strength (MPa)

0.50 0.005 alap alap 2.65 1.6 0.25 0.02069 - 009

0.70 0.005 0.25 alap 5.50 1.0 0.25 0.02700 - 800

alap = as low as possible

"PREHEAT FREE" WELDING CONSUMABLES

Actual compositions: 1.2 mm diameter flux cored arc consumables

Target Yield Actual Chemistry
Strength (MPa) C Mn Si Ni Mo Ti

0.54 0.004 0.01 0.009 0.16 2.9 1.6 0.04 069 - 009

0.005 0.27 0.011 0.73 5.6 0.17 1.01 0.04 700 - 800

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

"PREHEAT FREE" WELDING CONSUMABLES

Actual compositions minor elements: 1.2 mm diameter flux cored consumables

< 0.0005 0.007 0.001 <0.0005 0.007 0.002 g 0.04 0.030.010 0.016 0.017 0.010S Strength (MPa Target Yield 069 - 009 700 - 800

"PREHEAT FREE" WELDING CONSUMABLES

Next Stage: For FCA and MMA

Weld metal properties:

- All weld metal tensiles
- Transverse tensiles
- Charpy toughness
- Metallography

DEPARTMENT OF DEFENCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

"PREHEAT FREE" WELDING CONSUMABLES

Future work:

- Next iteration of experimental FCA and MMA consumables after discussions with NSWC
- Obtain low carbon core material for:
 FCA 12 mm wide and 0.04 mm thick
 MMA 3.2 and 4.0 mm diameter rod

Activity 2: Development of Ultra Low Carbon Bainite (ULCB) Wires

USA-NSWCCD

Development of ULCB wires has been shown that increasing the nickel content had a beneficial effect on impact toughness. Also these materials decrease the inclusion fraction, increase the upper shief energy and decrease 50% FATT.

Results: Welds have been fabricated with various shielding gases and welding thermal cycles to produce weld metal of various oxygen and nitrogen contents and grain sizes. Work is progressing in throughly characterizing these weld metals.

Plans: work in progress

Status: in progress

Completion: 1997, Q3

previously

Task A Activity 2,3

RESULTS (Act.. 2)

→ Evaluate effects of O and G.S.

→ Thermal Cycle to Achieve Various G.S. A.W., 60μm, 30μm, 17μm

→ Evaluate Effects of N

Development of ULCB Weldmetals

NSWC - Act. 2 Navy Wide - Act. 5 Evaluation of Hobart Wires

- from Act. 3
- Add New

PARTICIPANTS

NSWC, EB, CTC, OGI, ESAB, HOBART, LINCOLN, NRL, NNS

REQUIRMENTS

- 82* min. Y.S. HY or HSLA-80 NAS 88* min Y.S. - HY or HSLA-100 - Aircraft Carrier
- 35 ft-lbs @ -60°F* 60 ft-lbs @ 0°F*
- No Preheat
- * 5-100°F/s @ 1000°F

Activity 3: Ultra Low Carbon Bainite Wire Evaluation

USA-NSWCCD

Several solid wires met the required properties. Some of the wires experienced hydrogen damage. The lean wire compositions are not meeting strength properties.

Results: work is in progress.

Plans: continuation of mechanical property and weldability evaluations. Determination of optiminal chemical compositions using neural network analysis is in progress.

Status: in progress

Completion: 1997, Q3

TEST MATRIX

WIRE- LEAN NOM. RICH

PLATE- HY80, HSLA80, HY100, HSLA100

 $\underline{\text{C.R.-}}$ 3/8" PLATE \rightarrow 2" PLATE

65 KJ/IN 30 KJ/IN

300°F P&I 50°F P&I

WIRE CHEMISTRY GOALS

 $C \le 0.02\%$

Mn 0.75-2.40%

Mo 0.3-1.5%

Ni 1.9-5.0%

Nb 0-0.05%

Cr 0-0.3%

Ti 0-0.030%

<u>VIM</u>

N < 10 ppm

O < 120 ppm?

RESULTS (Act. 5)

Solid Wires - Most Progress

Several met Targets:

- Ltec-N OK except < °F/s low strength
- CTC-N- H Damage in 2" HSLA-100
- All lean chems. Trouble meeting σ_y
- WIC 1" Thick CEN = 0.4, HD - 3.5 ml/100g - No Crack CEN = 0.45, HD - 4.0 ml/100g - Cracking
- Redefine Rich & Lean?

Iso-t100, min Contours of the Hydrogen Cracking Response Surface

 $t_{100\text{-min}} = 34.1 \text{ (CEN)} + (Hd - 5)/3.5 - 9.1$

23 Oct 1996

Activity 4: Evaluation of ULCB MCA Welding Consumables

USA-NSWCCD

This activity will evaluate four MCA welding wires produced to meet weld deposit compositions specified by NSWCCD.

Results: work initating

Plans: four selected MCA wire compositions will be prepared into welding wire and evaluated.

Status: initated

Completion: 1997, Q3

Activity 5: Use of Flourine and Optimal Oxygen Additions to the Welding Plasma to Assist in Hydrogen Management

USA-CSM

The use of selected flouride and oxide additions to welding consumables to promote a plasma chemistry that reduces the weld pool hydrogen content is being investigated.

Results: Effective use of the water and HF reactions in the plasma to reduce weld pool hydrogen content has been demonstrated. Various flouride additions are being added to the electrode covering and the resulting welds are being evaluated. Flourides are being carefully selected based on their physical stability and their predicted pyrochemical behaviour.

Plans: Further characterization of the influence of specific flouride additions on the resulting diffusible hydrogen content will continue. With the determination of the most promising flouride additions more extensive evaluation will be preformed to determine the optimum flouride content and weld metal oxygen content necessary for various sets of welding parameters.

Status: in progress

Completion: 1998, Q3

Thermo-chemical Reaction in Arc Plasma

Hydrogen absorption control by hydrogen - oxygen reaction

Weld Metal Hydrogen-Oxygen Relationship

•
$$H_2(g) + 1/2 O_2(g) = H_2O(g)$$

-
$$k = \exp(-\Delta G^0 / RT) = \frac{P_{H_2}O}{P_{H_2}(P_{O_2})^{1/2}}$$

•
$$H_2(g) = 2 H$$

•
$$O_2(g) = 20$$

Transition Points of Fluorides

Thermo-chemical Reaction in Arc Plasma

Hydrogen absorption control by hydrogen - fluorine reaction

Weld Metal Hydrogen - Fluorine Relationship

•
$$H_2(g) + F_2(g) = 2 HF(g)$$

-
$$k = \exp(-\Delta G^0 / RT) = \frac{(PHF)^2}{PH_2.PF_2}$$

$$H_2(g) = 2 H$$

Effect of fluoride additions on diffusible hydrogen content

Activity 6: Use of Austenitic Decomposition Start Temperatures to Predict Weld Hydrogen Distribution and Cracking Behaviour

USA-CSM USA-NSWCCD

A practice of comparing calculated austenitic decomposition start temperatures of the base metal and weld metal to predict the hydrogen distribution and cracking behaviour of high strength steel welds has been demonstrated. The practice uses the differences of the calculated martensite temperatures to predict whether cracking will occur in the weld or heat affected zone. The successful application of this indicator results from the large differences in hydrogen solubility and diffusion coefficient between ferrite (martensite) and austenite.

Results: Preliminary results indicate that this analytical approach can qualitatively make predictions of weld hydrogen behaviour.

Plans: Efforts to refine this proposed practice will proceed. Work will expand the range of steel compositions of both plate materials and welding consumables used in this analysis to achieve more quantitative correlations. The thermomechanical simulator (Gleeble) will be used to determine measured austenitic decomposition start temperatures for the various high strength steel plates and weld deposits (welding consumables) of interest. Efforts will be made to promote welding consumable manufacturers to test this proposed practice.

Status: in progress

Completion; 1998, Q3

previously

Task 4 Activity 7 Ms (Andrews) = 539 - 423 C - 30.4 Mn - 17.7 Ni - 12.1 Cr - 7.5 Mo

Self et al. (1986)

a) wrought metal

M_s = 521 - 350C - 14.3Cr - 17.5Ni - 28.9Mn - 37.6Si - 29.5Mo - 1.19CrNi + 23.1(Cr+Mo)C

b) weld metal

 $M_s = 521 - 350C - 13.6Cr - 16.6Ni - 25.1Mn - 30.1Si - 40.4Mo - 40Al -$ 1.07CrNi + 21.9(Cr+0.73Mo)C

Figure 10 Hydrogen cracking indicated by the martensite start tmperature difference between weldment and base metal.

Weld Undermatching and Overmatching: Non-Uniform Hydrogen Distribution Weld Cracking Susceptibility - AHdif

Activity 7: Multipass Weld Metal Properties

Australia-CISRO USA-CSM

A cooperative research project between CISRO and CSM is in progress to better understand the influence of alloying additives on the microstructural and mechanical properties of weld metal for flux and metal cored welding. The work is proceeding at each institution and visitations have been made to share data, to discuss alloying and thermal processing models, and to design needed experiments.

Results: Consumables are being made and weld properties are being characterized. The following data is from CISRO efforts.

Plans: work in progress

Status: in progress

Conclusion: 1998, Q3

previously

Task 4 Activity 8

60% As-deposited weld metal 40% Re-heated weld metal

WIRE COMPOSITION MATRIX

Weld Metal Analysis

	Г			Т				_	_	_				_	_			
		z	%	2	.0047	0083		.0057	0000	8800.	0116	2	0000		.0106	040	20.	4700
	•	>	%	0.0	Sco.	.055) (.047	070	040	OAB	2	.044	0,70	.042	057	200	670
	۵	۵	%	1000	<.0005	<.0005		×.0005	1000		< 0010		<.0005	1000	<.000.×	7 0005	000./	< 000 ×
	<	<u> </u>	%	0123	00.00	.0123	7070	45.10.	0148	0	.0130) (.0158	0440	0+10.	0120	01	0139
			%	1														
	Š	2	%	2000	0	.0010	000	2000.	< 0.1		.005	3	- - - -	5	,	, 0.		v.01
	>	è	%	0058		7900.	0063		<u>.</u>		800.	č		5	2	<u>.</u>		5.
	ວີ	è	0	0.	2	5	5		<u>.</u>	000	800.	č	5	C		5	3	5.
	Θ	6	0	×.01	č		v 0.	,	0.	000	200.	5		0.	3	5 V	3	5.
6	כ	6	0	0	č	5	0		5	040	ى ئ	Ç		0.	č		č	5
2	Ξ	%	2	.02	C	3	0.	C	, ,	0.10	5.	000		20.	S	, V	S	Z
٥	L	%		.014	017	5	.016	0	0.0	017	?	.017		910.	0+0	0.00	017	2
U	ס	%	2	210.	012	2 6	\ 00:	500	50.	014	2	600.	000)))	000	000	000	3
Ü	5	%	3	40.	30	1 (,c.	77	5	84		8.	73	ò.	34	5	34	
ž		%	1 24		1.45		3	1 64		1.66	9 6	1.21	1 07	17.	ď)	1.40	
U) ;	%	2		40.	2	5	0		.048		ა ი	2	<u>+</u>	.05) (0.	
Wire			MC001		MC002	MCOOS	200	MC005		9000E	10001		MCOM		MC009		MC010	

Mechanical Properties

Wire	400								
2	Len	Ē	AS(EI.)	Z(R.A.)		Mean A	Absorbed F	nordy 1 st	ړ
	MPa	MPa	%	%	20		200	nergy, o at	; >
MCOOT	507	527	6			>	07.	-40	9-
	200	/00	S S	2	229	205	150	115	40
MC002	499	541	20	7.0	001	1	2 !	2	1
) (24	7/	707	1/6	127	40	28
MC003	459	504	ဓ	9/	284	203	7) ;
MOOR	074	000		. !		3	5	/7	Ξ
200	248	288	87	_	204	186	153	07	000
MCOM	721	604	10	ř	1)		5	9
	5	200	17	?	112.7	73.7	24	23.4	Ç
MC007	510	274	a t	2	1		· !		2
	- 1	5	2	47	<i>\\</i>	159	120	20	24
MC008	521	574	14	;	166	145	0		; '
2000	700				2	2	8	200	တ
1000 M	469	523	2	26	220	189	142	αV	c
MC010	473	FOF	90	1) (1	2	D
	2	363	20	9/	234	238	174	80	42

CHARPY-V NOTCH IMPACT CURVES

Page 1

CHARPY-V NOTCH IMPACT ENERGY CORRESPONDING TO 100 J

Page 1

Page 1

AVERAGE COLUMNAR GRAIN WIDTH

Wire	Grain Size Number	Calculated Dia. Of
		Average Grain Size mm
MC001	2.715	0.135
MC002	2.37	0.150
MC003	2.5	0.144
MC005	2.57	0.140
MC006	2.78	0.130
MC007	2.68	0.134
MC008	2.67	0.134
MC009	2.57	0.140
MC010	2.58	0.140

MICROSTRUCTURE OF AS-DEPOSITED WELD METAL

Wire	Primary Ferrite	Ferrite with Second	Acicular Ferrite	
	(PF) %	Phase (FS) %	(AF) %	
MC001	29.9	6.9	62.4	_
MC002	27.2	11.8	61.0	
MC003	33.6	16.5	49.9	_
MC005	20.7	10.2	69.1	
MC006	19.6	8.6	70.6	_
MC007	37.1	7.9	55.0	-
MC008	27.3	8.8	63.9	
MC009	36.5	12.5	51.0	
MC010	28.5	12.7	58.8	

MICROSTRUCTURE OF AS-DEPOSITED WELD METAL (0.6Si)

Task 3: Development of High Strength Steel Filler Metals

Activity 8: Use of Weld Metal Traps for Hydrogen Management

USA-CSM

The use of weld metal hydrogen traps to reduce the available diffusible hydrogen content is being investigated. From literature reported and theoretically calculated binding energy values calculations have been made to assist in the selection of the most promising ferroadditions to be added to welding consumables.

Results: Selected ferroadditions of various transition metals and rare earths were made by CSM. Lincoln Electric Company has made metal filled cored wires with these additions at various content levels. A reproducible method to introduce a specific hydrogen content into the weld metal was developed to allow for the evaluation of this concept of hydrogen management. An analytical arrangement and procedures to measure the hydrogen evolution rate as a function of weldment have been set up. Efforts have begun to measure the effectiveness of the Lincoln Electric produced experimental (with trapping additions) consumables. Preliminary results have shown drops in the diffusible hydrogen content due to trapping.

Plans: The investigation will continue with a thorough hydrogen analysis of the Lincoln Electric prepared consumables. The weld metal microstructure will be characterized to determine the type, sise, size distribution and amount of weld metal traps. It is anticipated that after this first phase is completed another set of experimental consumables will be made using the addition which demonstrated the most promise. The second set of consumables should allow for optiminization of content of the consumable trapping addition, weld metal oxygen content, and alloying contents for a specific welding heat input range.

Status: in progress

Completion: 1998, Q3

previously

Task 67 Activity 8

Hydrogen Trapping Assessment of Trapping Parameters Hydrogen - trap site binding (interaction) energy

Table 1. Hydrogen trapping in Iron. Reference state : \underline{H} in perfect lattice

Trap Site	Binding Energy (kJ/mol)	Matrix	Assessment Method	Ref.
H-dislocation elastic stress field H-dislocation core (screw) H-dislocation H-dislocation core (mixed)	0 - 20.2 20 - 30 26 59	Iron Iron Iron Iron	calculated calculated thermal analysis permeation	19 11 20 21
H-grain boundary H-grain boundary H-grain boundary H-Free surface H-Free surface	18 - 20 60 59 70 95	C-Mn Steel Iron Iron Iron Iron	thermal analysis thermal analysis permeation permeation permeation	20 22 21,23 24 25
β-NiAl H-PdAl interface H-Fe-oxide interface H-AlN interface H-MnS interface H-Al ₂ O ₃ interface H-Fe ₃ C interface H-TiC interface H-TiC interface	27 34 47 65 72 79 84 87 95	Steel * Steel * C-Mn Steel Iron C-Mn Steel C-Mn Steel C-Mn Steel Iron C-Mn Steel	permeation permeation thermal analysis permeation thermal analysis thermal analysis permeation thermal analysis permeation	26 25 27 28 29 30 23,31 32 33
H-Nd	129	Iron	calculated	34

^{*} Matrix element is precipitation hardened martensitic stainless steel.

The role irreversible trap sites in preventing hydrogen induced cracking Hydrogen Trapping

- Before a dislocation pass through an irreversible trap site
 - Treversione trap site

 High dislocation velocity
- High potential for hydrogen accumulation at the crack tip

- After a dislocation pass through an irreversible trap site
- Low dislocation velocity
- Low potential for hydrogen accumulation at the crack tip

Ab-initio predictions of Hydrogen trap depths

- 1) For the traps modeled (carbides of Ti, Nb, V and Mo and oxides of Ce and Y) ab-initio calculations have shown that hydrogen trapping occurs at the bulk-trap interface.
- 2) A correlation between the type of bonding at the trapbulk interface and the hydrogen to trap binding energy has been seen.

Effective traps are those where the Fermi energy is dominated by trap electronic states with little or no contribution from the bulk.

Of these, the most effective traps are those where the Fermi energy orbitals display σ or π type bonding across the trap-bulk interface. Less effective are those that where the Fermi energy orbitals display δ type bonding across the interface.

- 3) These facts are interpreted as indicating that H s-orbitals overlap strongly where there is available trap electron density across the interface giving rise to strong trap-H bonds.
- 4) From this correlation the effectiveness of the modeled materials as hydrogen traps decreases through the series

CeO₂>TiC>Y₂O₃>VC>NbC>Mo₂C

Hydrogen Trapping

Trap occupation by hydrogen as predicted by Fermi-Dirac distribution

Fraction of trap occupation as a function of temperature for various type of traps at hydrogen partial pressure $P_{H2} = 0.0545 Pa$

1. Open system: $\frac{1}{2}H_2 = \underline{H}$, at H_2 pressure = P

$$c_{U} = 0.00185\sqrt{P} \exp\left(\frac{28600}{RT}\right),$$
 [P:atm]

2. Trapping: $\underline{H} + X = H_x$

$$\frac{c}{1-c} = \frac{c_{II}}{1-c_{II}} exp\left(\frac{E_b}{RT}\right) \approx c_{II} exp\left(\frac{E_b}{RT}\right), \quad \{E_b : kJ/mol\}$$

where $E_b = Trap - H$ binding energy

1+2.
$$\frac{c}{1-c} = 0.00185\sqrt{P} \exp\left(\frac{E_b - 28600}{RT}\right)$$

Effect of Trap Binding Energy

Initial Diffusible Hydrogen Content = 15 ml/100 gr Ms = 400C

 $\Delta t_{8/5} = 5$ seconds

 $Nt = 5 \times 10^{19} \#/cc$

Effect of Trap Density

Initial Diffusible Hydrogen = 15 ml/100 gr

Eb = 100 kJ/mol

 $\Delta t_{8/5} = 5$ seconds

Ms = 400C

Effect of Cooling Rate

Initial Diffusible Hydrogen Content = 15 ml/100 gr Ms = 400C

Effect of Ms Temperature Initial Diffusible Hydrogen = 15 ml/100 gr

Eb = 100 kJ/mol $\Delta t_{8/5} = 5$ seconds

EXPERIMENTAL

- Materials
- HSLA 100 Steel Base Plate
- Metal-Cored Electrodes (Lincoln Electric, Co.)
 - Transition Metal Elements: Ti, V
- Rare Earth Elements: Y, Ce, Nd, Er
- Process
- GMAW
- Hydrogen Introduced Through Shielding Gas

Hydrogen Gettering (ONR) Direct Study

HSLA 100 Base Metal and Corresponding HSLA 100 Electrode

Table II Metal Cored Electrode Designations for Rare Earth and Transition Metal Gettering Study

Electrode Designation	Rare Earth Elements	Weld Deposit Composition (wt. %)
GE-Y1	Yttrium	0.08%Y (500ppm), (other)*
GE-Y2	Yttrium	0.16%Y (1000ppm), (other)*
GE-Y3	Yttrium	0.32%Y (2000pm), (other)*
GE-Cel	Cerium	0.13%Ce (500ppm), (other)*
GE-Ce2	Cerium	0.25%Ce (1000ppm), (other)*
GE-Ce3	Cerium	0.50%Ce (2000ppm), (other)*
GE-Nd1	Neodymium	0.13%Nd (500ppm), (other)*
GE-Nd2	Neodymium	0.26%Nd (1000ppm), (other)*
GE-Nd3	Neodymium	0.52%Nd (2000ppm), (other)*
GE-Er1	Erbium	0.15%Er (500ppm), (other)*
GE-Er2	Erbium	0.30%Er (1000ppm), (other)*
GE-Er3	Erbium	0.60%Er (2000ppm), (other)*
Electrode Designation	Transition Metal Elements	Weld Deposit Composition (ppm)
GE-Til	Titanium	200ppm Ti, (other)*
GE-Ti2	Titanium	300ppm Ti, (other)*
GE-Ti3	Titanium	400ppm Ti, (other)*
GE-V1	Vanadium	200ppm V, (other)*
GE-V2	Vanadium	300ppm V, (other)*
GE-V3	Vanadium	400ppm V, (other)*

NOTE: (other)* - remaining composition for HSLA 100 Electrode

HYDROGEN CONTENT

- Total Hydrogen Content
- Diffusible Hydrogen Content

OXYGEN EFFECT

- Vary weld metal oxygen through shielding gas to simulate variation in the range of welding conditions.
- The oxygen tests are to evaluate the stability and effectiveness of the best predominating getter addition and content determined in the first experiment.

CHARACTERIZATION

- SEM
- * Microstructure
- TEM
- * Inclusions
- Count or Density
- Size Distribution
- Chemical Analysis
- * Dislocation Substructure
- Weld Composition

Assessment of Trapping Parameter Hydrogen Trapping Permeation Technique

Sample containing both the reversible and the irreversible traps.

The presence of the traps is indicated by the

plateau in the hydrogen flux.

Sample containing reversible traps only.

•<u>°</u>

- ploarization and the second one depends on the The areal difference between the first number of the irreversible traps.
- contribute to the apparent hydrogen diffusivity Irreversible traps are saturable and do not

diffusivity of hydrogen in the alloy is due to

reversible traps

Evidently show that reversible traps are not saturable and thus show that the apparent

Hydrogen Trapping
Assessment of Trapping Parameters
Thermal Analysis

Thermal analysis: typical equipment set up

Hydrogen Trapping Assessment of Trapping Parameters Thermal Analysis

S.M. Lee and J.Y. Lec, 1987

Thermal analysis result: effect of precipitates interface coherency on the depth of its trapping capacity

- The effect of the degree of coherency of TiC precipitate interface on trapping binding energy.
 - O Sample containing coherent TiC precipitates with lowest binding energy but largest number of trap sites.
 - Sample containing incoherent TiC precipitates with the highest binding energy but fewest number of trap sites.

Hydrogen Trapping Assessment of Trapping Parameters Thermal Analysis

S.M. Lee and J.Y. Lee, 1987

Typical thermal analysis result: hydrogen evolution from different types of traps

- Hydrogen gas evolves form a hydrogen charged sample, which is heated with a constant heating rate.
- The peak evolution rate of hydrogen occurs at a temperature closely related to the trap binding energy.
- The higher the binding energy, the higher the peak evolution temperature.
- From the above figure, the lower peak evolution temperature corresponds to hydrogen released from grain boundary whose binding energy is 20-60 kJ/mol. The higher peak evolution temperature corresponds to hydrogen released from TiC precipitates, which are irreversible traps with binding energy of 90 kJ/mol.

Task 3: Development of High Strength Steel Filler Metals

Activity 9: Analytical Methods to Evaluate Weld Hydrogen Distribution

USA-CSM USA-SUNY-Albany

The hydrogen distribution in a weld becomes significantly more important as the acceptable diffusible hydrogen contents decrease. With the ever increasing use of steels of higher strength analytical techniques need to be developed to measure hydrogen distribution across the weld. These localized hydrogen contents are most likely the cause in the spread of the correlation between the measured diffusible hydrogen contents and cracking tendencies. Two methods that have been able to measure hydrogen distributions are laser induced breakdown spectroscopy (LIBS) and MeV ion Beam Analysis.

Results: Preliminary results for both techniques have successfully measured hydrogen distributions.

Plans: Efforts will be made to develop an analytical practice to supplement the information presently reported by the diffusible hydrogen measurements.

Status: in progress

Completion: 1999, Q3

Figure 4 Hydrogen distribution across the weld fusion line (17).

Non-uniform distribution of hydrogen across the center line of a weldment. Intensities of hydrogen spectral emission are proportional to the hydrogen concentration

SECTION VII

Manpower (man years) in 1996

Manpower	man years
USA-NSWCCD	4.5
USA ARMY-Benet	1.2
USA ARMY-ARL	0.3
USA-CSM	2.0
AUST. DSTO	1.2
AUST. CISRO	1.0
AUST. ASC	0.1
Canadian	0.4
U.K.	0.0
N.Z.	0.0
Total	10.7

SECTION VIII

List of Participants

NAME	AFFILIATION
Len Davidson	DSTO
Brian Dixon	DSTO
Bob Phillips	DSTO
Stan Lynch	DSTO
John Ritter	DSTO
Steve Burke	DSTO
Ahmit Majumdar	DSTO
Alan Cuthbert	WTIA
Dave Olson	Colorado School of Mines
Mark Eberhart	Colorado School of Mines
	Naval Surface Warfare Center or NSWC
Joe Blackburn	Naval Surface Warfare Center or NSWC
	US Army CERL
	Lincoln Electric Co.
	State Univ. of New York
Gregory Vigilante	US Army ARDEC
	E.O. Paton Welding Inst.
Andrew Crowson	US Army Research Office
	US Army Research Office
Liang Chen	University of Wollongong
Nazmul Alam	University of Wollongong
	Defence Research Establishment
Ralph Adler	US Army Research Laboratory