#### **Greek characters**

| Name    | Symbol                      | Typical use(s)    |
|---------|-----------------------------|-------------------|
| alpha   | $\alpha$                    | angle, constant   |
| beta    | $\beta$                     | angle, constant   |
| gamma   | $\gamma$                    | angle, constant   |
| delta   | $\delta$                    | limit definition  |
| epsilon | $\epsilon$ or $\varepsilon$ | limit definition  |
| theta   | $\theta$ or $\vartheta$     | angle             |
| pi      | $\pi \text{ or } \pi$       | circular constant |
| phi     | $\phi$ or $\varphi$         | angle, constant   |

## Named sets

| empty set     | Ø              |
|---------------|----------------|
| real numbers  | R              |
| ordered pairs | $\mathbb{R}^2$ |

| integers          | $\mathbf{Z}$      |
|-------------------|-------------------|
| positive integers | $\mathbf{Z}_{>0}$ |
| positive reals    | $\mathbf{R}_{>0}$ |

# Set symbols

| Meaning      | Symbol    |
|--------------|-----------|
| is a member  | $\in$     |
| subset       | $\subset$ |
| intersection | $\cap$    |

| Meaning    | Symbol            |
|------------|-------------------|
| union      | U                 |
| complement | $superscript^{C}$ |
| set minus  | \                 |

# Logic symbols

| Meaning  | Symbol     |
|----------|------------|
| negation | _          |
| and      | $\wedge$   |
| or       | V          |
| implies  | $\implies$ |

| Meaning      | Symbol |
|--------------|--------|
|              | Symbol |
| equivalent   | =      |
| iff          | $\iff$ |
| for all      | A      |
| there exists | ∃      |

# Arithmetic properties of ${f R}$

$$\begin{array}{ll} (\forall a,b \in \mathbf{R})(a+b=b+a) & \text{commutivity} \\ (\forall a,b,c \in \mathbf{R})(a+(b+c)=(a+b)+c) & \text{associative} \\ (\forall a,b \in \mathbf{R})(ab=ba) & \text{commutivity} \\ (\forall a,b,c \in \mathbf{R})(a(bc)=(ab)c) & \text{associative} \\ (\forall a,b,c \in \mathbf{R})(a(b+c)=ab+ac) & \text{distributive} \end{array}$$

#### **Intervals**

For numbers a and b, we define the intervals

$$\begin{split} (a,b) &= \{x \in \mathbf{R} \mid a < x < b\} \\ [a,b) &= \{x \in \mathbf{R} \mid a \le x < b\} \\ (a,b] &= \{x \in \mathbf{R} \mid a < x \le b\} \\ [a,b] &= \{x \in \mathbf{R} \mid a \le x \le b\} \end{split}$$

## Distance & Midpoint

The distance between the points  $(x_1, y_1)$  and  $(x_2, y_2)$  is

$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$

The midpoint is the point

$$\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right).$$

# Exponents

For a, b > 0 and m, n real:

$$a^{0} = 1,$$
  $0^{a} = 0$   
 $1^{a} = 1,$   $a^{n}a^{m} = a^{n+m}$   
 $a^{n}/a^{m} = a^{n-m},$   $(a^{n})^{m} = a^{n \cdot m}$   
 $a^{-m} = 1/a^{m},$   $(a/b)^{m} = a^{m}/b^{m}$ 

#### Radicals

$$\sqrt[n]{a} = a^{1/n}$$

$$\sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b} \quad \text{(provided } a, b \ge 0\text{)}$$

$$\sqrt[m]{\sqrt[n]{a}} = \sqrt[m]{a}$$

$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

$$\sqrt[n]{a^n} = \begin{cases} a & n \text{ odd} \\ |a| & n \text{ even} \end{cases}$$

## Identities

$$\begin{split} a(b+c) &= ab + ac \\ ((a+b)(c+d)) &= ac + ad + bc + bd \\ \frac{ab+ac}{a} &= b+c \quad \text{(provided } a \neq 0\text{)} \\ \frac{\frac{a}{b}}{\frac{c}{d}} &= \frac{ad}{bc} \quad \text{(provided } b, d \neq 0\text{)} \\ \sqrt{ab} &= \sqrt{a}\sqrt{b} \quad \text{(provided } a \geq 0, b \geq 0\text{)} \\ \ln(ab) &= \ln(a) + \ln(b) \quad \text{(provided } a \geq 0, b \geq 0\text{)} \end{split}$$

## Solution of Equations

#### Algebraic

$$\begin{split} \left[ab=0\right] &\equiv \left[a=0 \text{ or } b=0\right] \\ \left[a^2=b^2\right] &\equiv \left[a=b \text{ or } a=-b\right] \\ \left[\frac{a}{b}=0\right] &\equiv \left[a=0 \text{ and } b\neq 0\right] \\ \left[\frac{a}{b}=\frac{c}{d}\right] &\equiv \left[ad=bc \text{ and } b\neq 0 \text{ and } d\neq 0\right] \\ \left[|a|=|b|\right] &\equiv \left[a=b \text{ or } a=-b\right] \\ \left[\sqrt{a}=b\right] &\equiv \left[a=b^2 \text{ and } b\geq 0\right] \end{split}$$

For  $a \neq 0$ ,

$$\left[ax^{2} + bx + c = 0\right] \equiv \left[x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}\right]$$

#### Exponential

$$\begin{bmatrix} \ln(a) = 0 \end{bmatrix} \equiv \begin{bmatrix} a = 1 \end{bmatrix}$$
$$\begin{bmatrix} e^a = 1 \end{bmatrix} \equiv \begin{bmatrix} a = 0 \end{bmatrix}$$
$$\begin{bmatrix} \ln(a) = b \end{bmatrix} \equiv \begin{bmatrix} a = e^b \end{bmatrix}$$

# Logarithms

$$\log_a(x) = \frac{\ln(x)}{\ln(a)}$$

# **Graph Translations**

For the graph of F(x, y) = 0

- The graph of F(x-h,y)=0 is the graph of F(x,y)=0 translated h units to the right.
- The graph of F(x, y k) = 0 is the graph of F(x, y) = 0 translated k units up.
- The graph of F(x/c, y) = 0 is the graph of F(x, y) = 0 stretched a factor of c horizontally.
- The graph of F(x,y/c)=0 is the graph of F(x,y)=0 stretched a factor of c vertically.

## Parabolas & Lines

The vertex of the parabola  $ax^2 + bx + c = y$  is

$$\left(x = -\frac{b}{2a}, y = c - \frac{b^2}{4a}\right).$$

An equation of the line that contains the points  $(x = x_1, y = y_1), (x = x_2, y = y_2)$  is

$$y - y_1 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)(x - x_1).$$

The number  $\frac{y_2 - y_1}{x_2 - x_1}$  is the slope.

# **Function notation**

| dom(F)   | domain of function $F$ |
|----------|------------------------|
| range(F) | range of function $F$  |

## Domains, Ranges, and Zeros

| Function    | Domain             | Range              | Zeros  |
|-------------|--------------------|--------------------|--------|
| $\ln, \log$ | $(0,\infty)$       | $(-\infty,\infty)$ | 1      |
| $\exp$      | $(-\infty,\infty)$ | $(0,\infty)$       | Ø      |
| abs         | $(-\infty,\infty)$ | $(0,\infty)$       | 0      |
| $\sqrt{}$   | $(0,\infty)$       | $(0,\infty)$       | 0      |
| 3/          | $(-\infty,\infty)$ | $(-\infty,\infty)$ | 0      |
| floor       | $(-\infty,\infty)$ | ${f Z}$            | [0, 1) |
| ceiling     | $(-\infty,\infty)$ | ${f Z}$            | (-1,0] |

## **Compound Interest**

Interest rate r compounded n times per year

$$A = P(1 + r/n)^{nt}$$

Continuous compounding:

$$A = Pe^{rt}$$

# **Exponential Growth**

The exponential function that contains the points  $(t = t_o, y = y_o)$  and  $(t = t_1, y = y_1)$  is

$$y = y_o \left(\frac{y_1}{y_o}\right)^{\frac{t-t_o}{t_1-t_o}}.$$

## Graphs

Graph of natural logarithm



Graph of natural exponential



#### **Common Errors**

| Error                              | Correct or Example                               |
|------------------------------------|--------------------------------------------------|
| x/0 = 0  or  x                     | x/0 is undefined                                 |
| $-x^2 = x^2$                       | $-x^2 = -(x^2)$                                  |
| a/(b+c) = a/b + a/c                | $\frac{1}{(1+1)} \neq \frac{1}{1} + \frac{1}{1}$ |
| a+bx/a = 1 + bx                    | a+bx/a = 1 + bx/a                                |
| $(a+b)^2 = a^2 + b^2$              | $(a+b)^2 = a^2 + 2ab + b^2$                      |
| $\sqrt{a+b} = \sqrt{a} + \sqrt{b}$ | $\sqrt{1+1} \neq \sqrt{1} + \sqrt{1}$            |

Revised January 18, 2023by Barton Willis. This work is licensed under Attribution 4.0 International (CC BY 4.0)

For the current version of this document, visit