

The state of the s

Fig. 3

Fig. 7

Fig 9.1a

Fig. 9.1b

Fig. 9.1 System Characteristics

Fig. 9.2 BROADBAND INTERFERENCE

Fig. 9.3 Initialization & Priority Setting

Fig. 9.4 Highest PRIORITY: TRANSMISSION Speed

Fig. 9.5 Highest priority for: Required Bit Error Rate

Fig. 9.6 Highest Priority for: TRANSMITTER POWER

Fig. 9.7 System Parameters

SUBMINISTER OF STREET

Fig 9.9 Resource Allocation for Sampling System w/ TDMA

Fig. 9.10 Example of RECEIVED SIGNAL

$$U_{S0 \text{ out}} = \sqrt{\frac{8 \cdot T \cdot P_{S0} \cdot R_{0}}{A \text{link } 0}} \qquad 230$$

$$U_{S1 \text{ out}} = \sqrt{\frac{2 \cdot P_{S1} \cdot R_{0}}{A \text{link } 1}} \qquad 231$$

$$U_{S2 \text{ out}} = \sqrt{\frac{4 \cdot P_{S2} \cdot R_{0}}{A \text{link } 2}} \qquad 232$$

$$U_{S3 \text{ out}} = \sqrt{\frac{1 \cdot P_{S3} \cdot R_{0}}{A \text{link } 3}} \qquad 233$$

$$U_{S4 \text{out}} = \sqrt{\frac{1 \cdot P_{S4} \cdot R_{0}}{A \text{link } 4}} \qquad 234$$

$$U_{Sm \text{ out}} = \sqrt{\frac{1 \cdot P_{Sm} \cdot R_{0}}{A \text{link } m}} \qquad 235$$

Fig. 9.11 Example of Received Signal (cont.)

$$\frac{1}{\text{slot 0}}$$
 $\frac{1}{\text{slot 1}}$ $\frac{1}{\text{slot 2}}$ $\frac{1}{\text{slot 3}}$ $\frac{1}{\text{slot 4}}$ $\frac{1}{\text{slot m}}$ $\frac{1}{\text{slo$

Fig. 9.12 RE-ALLOCATION OF RESOURCES

$$US0 \text{ out } = \sqrt{\frac{8 \cdot \text{T} \cdot \text{PS} \cdot \text{R} \cdot \text{O}}{\text{Alink } 0}} \qquad 250$$

$$US1 \text{ out } = \sqrt{\frac{2 \cdot \text{PS} \cdot \text{R} \cdot \text{O}}{\text{Alink } 1}} \qquad 251$$

$$US2 \text{ out } = \sqrt{\frac{4 \cdot \text{PS} \cdot \text{R} \cdot \text{O}}{\text{Alink } 2}} \qquad 252$$

$$US3 \text{ out } = \sqrt{\frac{1 \cdot \text{PS} \cdot \text{R} \cdot \text{O}}{\text{Alink } 3}} \qquad 253$$

$$US4 \text{ out } = \sqrt{\frac{2 \cdot \text{PS} \cdot \text{R} \cdot \text{O}}{\text{Alink } 4}} \qquad 254$$

$$USm \text{ out } = \sqrt{\frac{1 \cdot \text{PS} \cdot \text{R} \cdot \text{O}}{\text{Alink } 4}} \qquad 255$$

Fig 9.13 RE-ALLOCATION OF RESources (contd.)

Fig. 9.14 Chirp Pulse Overlapping

9/22 (MARK-UP) २०५ 203 200 ANDS BER DATA RATE PER CHANNEL Fig. 9.1a Uout(t) $U_{out}(t)$ $U_{s out} = U_{s} \cdot \sqrt{10}$ $U_{s \text{ out}} = U_{s} \cdot \sqrt{4}$ $\Delta t = 10 \cdot \delta$

Fig. 9.1b

Fig. 9.1 System Characteristics

 $\Delta t = 4 \cdot \delta$

TRESOURCE Attocation arranged and controlled on the time exis enabling full system capacity to be used at all times to provide best efficiency Example of Resource Allocation in Toma systems: Allocated resources are: Bignal Jower for each timeslot auration of each time slot Channel measuring Slot Organization slot Pamit Traffic slot

 P_{Sm}

 T_{Sm}

 S_{m}

S4

TS4

S₃;

TS3

PS2

 S_2

 $n_1, n_2, \dots, n_m > 1$

TS2

T۴

P_{max}-

So

TSO

 $n_0 = 1$

PS1

TS1

S₁

Fig. 9.10 Example of RECEIVED SIGNAL

Example of received signal according to the time despreading method (conta.)

Alink 0. Alink 1. Alink m damping of transmitterer receiver link and the effective frequency bandwidth of the system for time slots 0, 1, 2, ... m

GO, GS1, G2,, Gm - Additional system gain for time slots 0, 2, ... m

k0, k1, k2,, km - distance between symbols (expressed as integral multiples of the or time) for time slots 0, 1, 2, ... m

BO - nominal value of the load resistance

T - duration of chirp signal

Δ10, Δ1, Δ12,, Δ1m - intersymbol dictance for times slots 0, 1, 2... m

USP out. US1 out,, USm out - amplitude of the de-spread symbol for time slots number 0, 1, 2, ... m (e.g. output of the dispensive delay line -> see Fig 1.2)

B - effective frequency bandwidth of the system.

 $US0 \text{ out} = \sqrt{\frac{B \cdot T \cdot PS0 \cdot R0}{A link 0}}$ $US1 \text{ out} = \sqrt{\frac{2 \cdot PS1 \cdot R0}{A link 1}}$ $US2 \text{ out} = \sqrt{\frac{4 \cdot PS2 \cdot R0}{A link 2}}$ $US3 \text{ out} = \sqrt{\frac{1 \cdot PS3 \cdot R0}{A link 3}}$ $US3 \text{ out} = \sqrt{\frac{1 \cdot PS3 \cdot R0}{A link 3}}$ $US4 \text{ out} = \sqrt{\frac{1 \cdot PS4 \cdot R0}{A link 4}}$ $US4 \text{ out} = \sqrt{\frac{1 \cdot PS4 \cdot R0}{A link 4}}$ $US4 \text{ out} = \sqrt{\frac{1 \cdot PS4 \cdot R0}{A link 4}}$ $US4 \text{ out} = \sqrt{\frac{1 \cdot PS4 \cdot R0}{A link 4}}$ $US4 \text{ out} = \sqrt{\frac{1 \cdot PS4 \cdot R0}{A link 4}}$ $US4 \text{ out} = \sqrt{\frac{1 \cdot PS4 \cdot R0}{A link 4}}$ $US4 \text{ out} = \sqrt{\frac{1 \cdot PS4 \cdot R0}{A link 4}}$ $US4 \text{ out} = \sqrt{\frac{1 \cdot PS4 \cdot R0}{A link 4}}$

Fig. 9.11 Example of RECEIVED Signal (contd.)

1005 C 11 1100

Modified Allocation of resources according to changed system Reguirements esstime Allocatea fortime slot Sz And Sz power allocated for time stat S3 Altocated for time stot Sq Organization slot P_{xmit} TRAFFIC SLOT -Channel measuring Pmax 51 W PSo Si S So \$4 Sm S2 ! S3 TSO TSI TS2 TS4 TSm $n_0 = 1$ $n_1, n_2, \dots, n_m > 1$ TF The received signal wafter apresented Schematical AS Shoun below: Uout(t) USO out US1 out 240 $\Delta t_0 \ge T$ tine slot 1 Fig. 9.12 RE-ALLOCATION OF RESOURCES

Example of RECEIVED Signal After Attocation of resources (conta.)

Amplitude of the time - despiead signal

$$US0 \text{ out} = \sqrt{\frac{8 \cdot T \cdot PS0 \cdot R0}{A link 0}}$$

$$US1 \text{ out} = \sqrt{\frac{2 \cdot PS1 \cdot R0}{A link 1}}$$

$$US2 \text{ out} = \sqrt{\frac{4 \cdot PS2 \cdot R0}{A link 2}}$$

$$US3 \text{ out} = \sqrt{\frac{4 \cdot PS2 \cdot R0}{A link 3}}$$

$$US3 \text{ out} = \sqrt{\frac{1 \cdot PS3 \cdot R0}{A link 3}}$$

$$US4 \text{ out} = \sqrt{\frac{2 \cdot PS4 \cdot R0}{A link 4}}$$

$$US4 \text{ out} = \sqrt{\frac{2 \cdot PS4 \cdot R0}{A link 4}}$$

$$US4 \text{ out} = \sqrt{\frac{1 \cdot PS3 \cdot R0}{A link 4}}$$

$$US4 \text{ out} = \sqrt{\frac{1 \cdot PSm \cdot R0}{A link 4}}$$

$$US4 \text{ out} = \sqrt{\frac{1 \cdot PSm \cdot R0}{A link 4}}$$

$$US4 \text{ out} = \sqrt{\frac{1 \cdot PSm \cdot R0}{A link 4}}$$

$$US4 \text{ out} = \sqrt{\frac{1 \cdot PSm \cdot R0}{A link 4}}$$

Fig. 9.13 RE-Allocation of Resources (conta.)

WITH THE STATE OF THE STATE OF

22/22 (MARK-UP)
END OF POWER Envelope for the transmitted signal after
Time Spreading
Powerewetope for the specification of fig 9.9.

Fig. 9.14 Chirp Pulse Overlapping