Minimizing Chan-Vese type energies using Finsler minimal paths.

Jean-Marie Mirebeau

December 18, 2015

1 Introduction

To each domain $\Omega \subset \mathbb{R}^2$ attach the energy

$$\mathcal{E}(\Omega) := \int_{\Omega} \rho + \int_{\partial\Omega} \sigma,$$
 (1) eqdef: E0 mega

where $\rho: \mathbb{R}^2 \to \mathbb{R}$ has arbitrary sign, and $\sigma: \mathbb{R}^2 \to \mathbb{R}_+^*$ is strictly positive. If ρ has negative sign, then the integral over Ω acts as a balloon force. The objective is to (locally) minimize \mathcal{E} among domains $\Omega \subset \mathbb{R}^2$.

Definition 1. Let $\Omega \subset \mathbb{R}^2$ be open, simply connected, with Lipschitz boundary, and let $x_0, x_1 \in \partial \Omega$. Then one can parametrize $\partial \Omega$ as the union of two Lipschitz curves γ_+, γ_- , with common endpoints $\gamma_+(0) = \gamma_-(0) = x_0$ and $\gamma_+(1) = \gamma_-(1) = x_1$, going respectively counter-clockwise and clockwise. We write

$$\Omega = [\gamma_+, \gamma_-].$$

Conversely, let γ_+, γ_- be two curves which are Lipschitz, without self intersections, and which do not intersect each other except at their common endpoints. Then perhaps exchanging the roles of γ_+ and γ_- for orientation one has $\Omega = [\gamma_+, \gamma_-]$.

Let $\Omega = [\gamma_+, \gamma_-]$, and let $x_0 = \gamma_+(0) = \gamma_-(0)$, $x_1 = \gamma_+(1) = \gamma_-(1)$. We design neighborhoods V_+, V_- of γ_+, γ_- , path lengths length₊, length₋ with respect to adequate Finsler metrics on V_+, V_- , and a potential function $p: V_+ \cap V_- \to \mathbb{R}$. Then for any curves Γ_+, Γ_- within V_+, V_- , originating from $x_0 = \Gamma_+(0) = \Gamma_-(0)$, and with common endpoint X_1 one has

$$\mathcal{E}([\Gamma_+, \Gamma_-]) = \operatorname{length}_+(\Gamma_+) + \operatorname{length}_-(\Gamma_-) - p(X_1) + p(x_0).$$

Denote by d_+, d_- the geodesic distance from x_0 with respect to length₊, length₋. Then for improving (1) it suffices to minimize

$$d_{+}(X_1) + d_{-}(X_1) - p(X_1)$$

and then extract shortest paths Γ_+, Γ_- . The paths are then reversed and exchanged $[-\Gamma_-, -\Gamma_+] = [\Gamma_+, \Gamma_-]$, in order to exchange the roles of x_0, X_1 , and the procedure is repeated.

2 Defining the metrics

Lemma 2. (*Which are the correct spaces? What estimates on the growth of Ω ?*) Let $V \subset \mathbb{R}^2$ be a bounded domain, let $\gamma : [0,1] \to \mathbb{R}^2$ be a Lipschitz curve without self-intersections, and let $\rho: V \to \mathbb{R}^2$. Then there exists $\omega: V \to \mathbb{R}^2$ such that (*?? Probably not, but what is the right estimate ??*) $|\omega(x)| \leq ||\rho||_{\infty} d(x, \gamma)$.

Let V_+ (resp. V_-) be a neighborhood of γ_+ (resp. γ_-), and $\omega_+:V_+\to\mathbb{R}^2$ (resp. ω_-) a solution to

$$rot \,\omega_+ = \rho, \qquad rot \,\omega_- = -\rho.$$

We choose these vector fields

We denoted rot $\omega := \partial_1 \omega_2 - \partial_2 \omega_1$. By construction one has $\operatorname{rot}(\omega_+ + \omega_-) = 0$ on $V_+ \cap V_-$, hence there exists $p: V_+ \cap V_- \to \mathbb{R}$ such that

$$\omega_+ + \omega_- = \nabla p.$$

The solution ω_+ to rot $\omega_+ = \rho$ can be extended globally on \mathbb{R}^2 , hence denoting by τ the counter-clockwise tangent vector to $\partial\Omega$ we can write

$$\begin{split} \int_{\Omega} \rho &= \int_{\Omega} \operatorname{rot} \omega_{+} \\ &= \int_{\partial \Omega} \langle \omega_{+}, \tau \rangle \\ &= -\int_{0}^{1} \langle \omega_{+}, \gamma'_{+} \rangle + \int_{0}^{1} \langle \omega_{+}, \gamma'_{-} \rangle \\ &= -\int_{0}^{1} \langle \omega_{+}, \gamma'_{+} \rangle + \int_{0}^{1} \langle \nabla p - \omega_{-}, \gamma'_{-} \rangle \\ &= -\int_{0}^{1} \langle \omega_{+}, \gamma'_{+} \rangle - \int_{0}^{1} \langle \omega_{-}, \gamma'_{-} \rangle + p(y) - p(x). \end{split}$$

For any path (*...*)

$$\mathcal{E}([\gamma_+, \gamma_-]) = \text{length}_+(\gamma_+) + \text{length}_-(\gamma_-).$$

Remark 3 (Divergence theorem). Denoting by R the counter-clockwise rotation by $\pi/2$, one has rot $\omega = \nabla \cdot R\omega$ and $\tau = Rn$ where n is the exterior normal. Thus using the identity $R^T = -R$

$$\int_{\Omega} \operatorname{rot} \omega = \int_{\Omega} \nabla \cdot R \omega = \int_{\partial \Omega} \langle R \omega, n \rangle = \int_{\partial \Omega} \langle \omega, R^T n \rangle = -\int_{\partial \Omega} \langle \omega, \tau \rangle.$$

3 Implementation