DoSA-2D User Manual

Solenoid Example

2022-03-19 GiTae Kweon (zgitae@gmail.com)

DoSA Structure

Program Structure

Toolbar

1. Operations

✓ New : Create a new design

✓ Open : Open previous design

✓ Save : Save the design

✓ SaveAs : Save in different name

2. Design

✓ Coil : Add a coil and specification design

✓ Magnet : Add a magnet and determine specifications

✓ Steel : Add a steel and determine specifications

3. Virtual Test

✓ Force : Magnetic force estimation

✓ Stroke : Magnetic force estimation for each stroke

✓ Current : Magnetic force estimation for each current

Analysis Model

Analysis Model

1. Model Shape

2. Product Specifications

가. Coil Turns

• Coil Turns: 1040 turns

• Coil Resistance: 15.2 Ohm

나. Power

• Voltage : 14.5V

(Work Example Files : DoSA-2D Install Directory > Samples > Solenoid)

New design

1. Toolbar > Click New Button

2. Design Name: "Solenoid"

3. Click OK

Parts Design

Add a Coil

1. Toolbar > Click Coil button

2. Coil Name: "coil"

3. Coil Shape Input

✓ Coil Location : Base_X 4.8, Base_Y -2

✓ Left-Down Point : X 0, Y 0

(Relative Coordinates)

✓ Right-Upper Point : X 6, Y 16

(Relative Coordinates)

4. Screen Adjustment : Use Fit All Button

5. Click OK Button

6. Check Shape (FEMM Window)

Coil Design

1. Input Coil specifications

✓ Copper Diameter: 0.27

✓ Horizontal Coefficient : 0.9 (Enameled Type)

✓ Vertical Coefficient : 0.98 (Enameled Type)

✓ Resistance Coefficient : 1 (Enameled Type)

2. Calculate the coil specification

✓ Click "Coil Design" button

3. Check the coil specification

Add a plunger

1. Toolbar > Click Steel Button

2. Steel Name: "plunger"

3. Face Type: **RECTANGLE**

4. Plunger Shape

✓ Plunger Location : Base_X 0, Base_Y -12

✓ Left-Down Point: X 0, Y 0

(Relative Coordinates)

4

✓ Right-Upper Point: X 4, Y 12

(Relative Coordinates)

5. Screen Adjustment: Use Fit All Button

6. Click OK Button

7. Check Shape (FEMM Window)

- 0

Plunger Settings

8. Plunger setting

✓ Part Material: 430 Stainless Steel

✓ Moving Parts : MOVING

[BH curve]

Add a core

- 1. Toolbar > Click Steel Button
- 2. Steel Name: "core"
- 3. Add input lines of point
 - ✓ Click the 'A' button two times
- 4. Core Shape
 - ✓ Core Location : Base_X 0, Base_Y 1.2
 - ✓ 1 point : X 0, Y 0
 - ✓ 2 point : X 4, Y 0
 - ✓ 3 point : X 4, Y 13.6
 - ✓ 4 point : X 15.6, Y 13.6
 - ✓ 5 point : X 15.6, Y 18
 - ✓ 6 point : X 0, Y 18
- 5. Screen Adjustment: Use Fit All Button
- 6. Click OK Button

Core Settings

- 7. Check Shape (FEMM Window)
- 8. Core setting
 - ✓ Part Material: 430 Stainless Steel

Add a case

- 1. Toolbar > Click Steel Button
- 2. Steel Name: "case"
- 3. Add input lines of point
 - ✓ Click the 'A' button two times
- 4. Case Shape
 - ✓ Case Location : Base_X 4.4, Base_Y -10.4
 - ✓ 1 point : X 0, Y 0
 - ✓ 2 point : X 11.2, Y 0
 - ✓ 3 point : X 11.2, Y 25.2
 - ✓ 4 point : X 7.4, Y 25.2
 - ✓ 5 point : X 7.4, Y 7.6
 - ✓ 6 point : X 0, Y 7.6
- 5. Screen Adjustment: Use Fit All Button
- 6. Click OK Button

Case Setting

- 7. Check Shape (FEMM Window)
- 8. Case setting
 - ✓ Part Material: 1010 Steel

Virtual Test

Test of the magnetic force

- 1. Toolbar > Click Force Button
- 2. Force Test Name: "force"
- 3. Click OK Button
- 4. Test Setting
 - ✓ Voltage: 14.5 V
- 5. Click "Force Test" Button

Results of the magnetic force

- 6. Force: 12.766 N
- 7. Magnetic Density
 - ✓ Click the B Magnitude button
- 8. Vector of Magnetic Density
 - ✓ Click the B Vector button

Test of the stroke-magnetic force

1. Toolbar > Click Stroke Button

2. Stroke Test Name: "stroke"

3. Click OK Button

4. Test Settings

✓ Voltage: 14.5

✓ Initial Stroke: 0.0

✓ Final Stroke: 1.0

✓ Step Count: 5

Results of the stroke-magnetic force

5. Click "Stroke Test" button

Test of the current-magnetic force

1. Toolbar > Click Current Button

2. Current Test Name: "current"

3. Click OK Button

4. Test Settings

✓ Initial Current: 0.0

✓ Final Current: 1.5

✓ Step Count: 5

Results of the current-magnetic force

5. Click "Current Test" button

Tips

Open design

- 1. Toolbar > Click Open Button
- 2. Double click the design directory.
- 3. Double click the design file.

Thank You