

Analog Integrated Systems Design

Lecture 05 Data Converters Specifications (2)

Dr. Hesham A. Omran

Integrated Circuits Lab (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

ADC and DAC

☐ ADC

DAC

05: Specifications (2) [Y. Chiu, EECT 7327, UTD]

Static (DC) Specifications

- ☐ Offset Error
- ☐ Gain Error
- Monotonicity
- Linearity
 - Differential Non-Linearity (DNL)
 - Integral Non-Linearity (INL)

Dynamic (AC) Specifications

- ☐ Signal-to-quantization noise ratio
- Signal-to-noise ratio (SNR)
- Total harmonic distortion (THD)
- ☐ Signal-to-noise-and-distortion ratio (SINAD or SNDR or THD+N)
- Spurious free dynamic range (SFDR)
- Effective no. of bits (ENOB)

Signal-to-Quantization Noise Ratio

$$SQNR = 10 \log \left(\frac{Signal\ Power}{Quantization\ Power} \right) = 20 \log \left(\frac{V_{sigrms}}{V_{Qnrms}} \right)$$

Signal Power =
$$\frac{\left(\frac{2^{N}V_{LSB}}{2}\right)^{2}}{2} = \frac{2^{2N}V_{LSB}^{2}}{8}$$

Quantization Power =
$$\frac{V_{LSB}^2}{12}$$

$$SQNR = 10 \log \left(\frac{Signal\ Power}{Quantization\ Power} \right) = 10 \log \left(\frac{3}{2} 2^{2N} \right)$$

$$SQNR = 6.02 \times N + 1.76 \ [dB]$$

Oversampling/Processing Gain

- \Box Quantization power is uniformly spread from 0 to $f_s/2$.
- ☐ If only part of the spectrum is useful, some quantization power can be filtered out (digital filtering).
- \square Select a bandwidth (BW) out of the available spectrum (0 to $f_s/2$):

$$SQNR = 10 \log \left(\frac{Signal\ Power}{Quantization\ Power \times \frac{BW}{f_s/2}} \right)$$

$$SQNR = 6.02 \times N + 1.76 + \mathbf{10} \log \left(\frac{f_s/2}{BW} \right)$$

Harmonic Distortion

SNR, SINAD (SNDR), and ENOB

- SNR (Signal-to-Noise Ratio, or Signal-to-Noise Ratio Without Harmonics:
 - The ratio of the rms signal amplitude to the mean value of the root-sum-squares (RSS) of all other spectral components, excluding the first 5 harmonics and DC
- SINAD (Signal-to-Noise-and-Distortion Ratio):
 - The ratio of the rms signal amplitude to the mean value of the root-sum-squares (RSS) of all other spectral components, including harmonics, but excluding DC.
- ♦ ENOB (Effective Number of Bits):

$$ENOB = \frac{SINAD - 1.76dB}{6.02}$$

Spurious Free Dynamic Range (SFDR)

☐ SFDR is the ratio of the rms signal amplitude to the rms value of the peak spurious spectral component over the bandwidth of interest

05: Specifications (2) [W. Kester, 2005]

Summary of Signal Quality Definitions

☐ Signal-to-noise ratio

$$SNR = 10 \log \left(\frac{Signal\ Power}{Random\ Noise\ Power} \right)$$

☐ Total harmonic distortion

$$THD = 10 \log \left(\frac{P_{distortion}}{P_{signal}} \right) = 20 \log \left(\frac{V_{distortion}}{V_{signal}} \right)$$

☐ Signal-to-noise-and-distortion ratio (SNDR or SINAD or THD+N)

$$SNDR = SINAD = 10 \log \left(\frac{Signal\ Power}{Power\ of\ all\ unwanted\ signals} \right)$$

☐ Spurious free dynamic range (SFDR) (spurious signal = unwanted)

$$SFDR(dBc) = 10 \log \left(\frac{Signal\ Power}{Power\ of\ highest\ spurious\ signal} \right)$$

Effective Number of Bits (ENOB)

$$SQNR = 1.76 + 6.02 \times N$$

$$SNDR = SINAD = 10 \log \left(\frac{Signal\ Power}{Power\ of\ all\ unwanted\ signals} \right)$$

$$ENOB = \frac{SNDR - 1.76}{6.02}$$

- ☐ A good 8-bit ADC will have ENOB around 7.5-bit (0.5-bit loss).
- ☐ A good 12-bit ADC will have ENOB around 11-bit (1-bit loss).
- ☐ For high frequency, undersampling ADCs, and high-resolution ADCs, the ENOB loss can be much higher (may be > 4-bit)

SINAD/ENOB Example

- ☐ AD9226 12-bit, 65-MSPS ADC SINAD and ENOB
 - SINAD/ENOB degrades as frequency increases
 - 2V better than 1V (ideally by 6 dB, but limited by distortion)
 - Differential better than SE at high frequency

05: Specifications (2)

ANALOG INPUT FREQUENCY (MHz)

[W. Kester, 2005]

12

SFDR Example

- ☐ AD6645 14-bit, 80 MSPS ADC SFDR for 69.1 MHz Input
 - SFDR can be improved by injecting a small out-of-band dither signal—at the expense of a slight degradation in SNR.

05: Specifications (2) FREQUENCY (MHz) [W. Kester, 2005]

13

ADCs Figures-of-Merit

- ☐ Different ADCs have different resolution, speed, power consumption, etc.
- How to compare them together?
 - Use a "normalized" figure-of-merit (FoM) to compare the most important specs "combined together"
 - 1. Resolution: ENOB or SNR
 - 2. Speed: BW or f_S
 - 3. Power consumption

Speed vs Power

- Assume we want to double the speed of a thermal noise limited circuit.
 - This means GBW must be doubled.
 - If the capacitance (noise) is constant, this means G_m must be doubled.
 - Current is doubled as well.
 - Power consumption is doubled.
- lacktriangle Conclusion: Power consumption is proportional to speed (bandwidth or $f_{\mathcal{S}}$)
 - The ratio $\frac{f_S}{Power}$ tends to be constant.
 - This can be a good FoM (for a constant SNR).

ENOB vs Power

☐ Assume we want to increase the ENOB of a thermal noise limited design by 1-bit.

$$2^{ENOB} = \frac{V_{REF}}{LSB} = \frac{V_{REF}}{\sqrt{kT/C}} \rightarrow 2^{ENOB+1} = 2 \times \frac{V_{REF}}{\sqrt{kT/C}} = \frac{V_{REF}}{\sqrt{kT/4C}}$$

- The capacitance is quadrupled.
- To maintain same speed (GBW), G_m must be quadrupled.
 - Current is quadrupled as well.
 - Power consumption is quadrupled.
- Conclusion: Adding one more bit means quadrupling the power.
 - The ratio $\frac{Power}{2^{ENOB}}$ does not seem to be a good FoM.
 - But it is the most widely used ADCs FoM in the literature!

Walden Figure-of-Merit (FoM_W)

$$FoM_W = \frac{P_{ADC}}{2^{ENOB} \times f_S}$$

- ☐ Empirical formula, but fits well with practical ADCs.
 - Not all ADCs are thermal noise limited.
- Better used to compare ADCs of same resolution.
- \blacksquare Unit of FoM_W is fJ/conversion-step
 - State-of-the-art in the industry is around 100 fJ/step
 - State-of-the-art in the academia is less than 1 fJ/step
 - Note that for FoM_W , the lower the better.

Walden Figure-of-Merit (FoM_W)

- ☐ ISSCC papers from 1997 to 2016.
 - State-of-the-art ADCs have FoM better than 1fJ/Step!

05: Specifications (2) [M. Pelgrom, 2017]

18

Walden Figure-of-Merit (FoM_W)

- ☐ ISSCC and VLSI Symp. papers from 1998 to 2013.
 - Clear trend towards better energy efficiency
 - State-of-the-art ADCs have FoM better than 1fJ/Step

05: Specifications (2) [Murmann, 2013]

19

Power Consumption Estimation

- \square FoM_W can be used to get a quick estimate of power consumption
 - Ex: Assume the ADC has $FoM_W = \frac{P_{ADC}}{2^{ENOB} \times f_S} \sim 30 fJ/Step$. $P_{ADC} \sim 30 fJ/Step \times 2^{ENOB} \times f_S$

SNR vs Power

- Assume we want to increase the ENOB of a thermal noise limited design by 1-bit (SNR increased by 6dB \rightarrow quadrupled).
 - $2^{ENOB} = \frac{V_{REF}}{LSB} = \frac{V_{REF}}{\sqrt{kT/C}} \rightarrow 2^{ENOB+1} = 2 \times \frac{V_{REF}}{\sqrt{kT/C}} = \frac{V_{REF}}{\sqrt{kT/4C}}$
 - The capacitance is quadrupled.
 - To maintain same speed (GBW), G_m must be quadrupled.
 - Current is quadrupled as well.
 - Power consumption is quadrupled.
- Conclusion: Power consumption is proportional to SNR
 - The ratio $\frac{SNR}{Power}$ tends to be constant.
 - This can be a good FoM (for a constant speed).

Schreier Figure-of-Merit (FoM_S)

$$FoM_S = 10 \log \left(\frac{SNR \times f_S/2}{P_{ADC}} \right) = SNR_{dB} + 10 \log \left(\frac{f_S/2}{P_{ADC}} \right)$$

☐ It can be shown that min ADC power is given by

$$P_{ADC.min} = 16 \times kT \times f_s/2 \times SNR$$

lacktriangle The theoretical limit on $FoM_{S,max}$ is

$$FoM_{S,max} = 10\log\frac{1}{16kT} \approx 192 dB$$

- ☐ Schreier FoM best fits thermal noise limited designs.
 - ADCs with high resolution (> 14-bit) and modest speed.
 - Use SNDR (SINAD) instead of SNR to include distortion effects.
- \square Note that for FoM_S , the higher the better.

Schreier Figure-of-Merit (FoM_S)

- B. Murmann, "The race for the extra decibel: a brief review of current ADC performance trajectories." *IEEE Solid-State Circuits Magazine* 7.3 (2015): 58-66.
- ☐ ISSCC and VLSI Symp. papers from 1997 to 2015 (after 2010 in red)
 - Best practical ADCs are > 10 dB away from the limit.

05: Specifications (2) [B. Murmann, 2015]

References

- ☐ M. Pelgrom, Analog-to-Digital Conversion, Springer, 3rd ed., 2017.
- W. Kester, The Data Conversion Handbook, ADI, Newnes, 2005.
- ☐ B. Boser and H. Khorramabadi, EECS 247 (previously EECS 240), Berkeley.
- ☐ B. Murmann, EE 315, Stanford.
- ☐ Y. Chiu, EECT 7327, UTD.

Thank you!

Equivalent Input Referred Noise

☐ If the input of the ADC is grounded, the output is a distribution of codes due to noise → Grounded input histogram

05: Specifications (2) [W. Kester, 2005]

Noise-Free and Effective Resolution

- ♦ Effective Input Noise = e_{n rms}
- Peak-to-Peak Input Noise = 6.6 e_{n rms}
- ♦ Noise-Free Code Resolution = log₂ Peak-to-Peak Input Range Peak-to-Peak Input Noise

◆ "Effective Resolution" = log₂ Peak-to-Peak Input Range RMS Input Noise

$$= \log_2 \left[\frac{2^{N}}{RMS \text{ Input Noise (LSBs)}} \right]$$

= Noise-Free Code Resolution + 2.7 bits

Nyquist vs Oversampling ADCs

- \square Nyquist ADCs: $f_s \ge 2 \times BW$
- \square Oversampling ADCs: $f_s \gg 2 \times BW$
 - Quantization noise reduced by digital filter and noise shaping
 - Very high SNR is possible.

