Introduction to R

Session 1 – Introduction

Statistical Consulting Centre

consulting@stat.auckland.ac.nz The Department of Statistics The University of Auckland

19 July, 2017

SCIENCE
DEPARTMENT OF STATISTICS

Wednesday

Each session comprises two parts: lecture and practice.

Session	Time	Session
1	09:00am - 10:30am	Introduction
	10:30am - 10:50am	Break
2	10:50am - 01:00pm	Subsetting data
	01:00pm - 02:00pm	Lunch break
3	02:00pm - 03:00pm	Data manipulation
	03:00pm - 03:20pm	Break
4	03:20pm - 04:30pm	Data exploration

Thursday

Each session comprises two parts: lecture and practice.

Session	Time	Session
1	09:00am - 10:30am	Graphics
	10:30am - 10:50am	Break
2	10:50am - 01:00pm	Advanced Graphics (ggplot2)
	01:00pm - 02:00pm	Lunch break
3	02:00pm - 03:00pm	Simple analysis
	03:00pm - 03:20pm	Break
4	03:20pm - 04:30pm	R Markdown

- R was initially written by Robert Gentleman and Ross Ihaka R & R of the **Department of Statistics**, **University of Auckland**.
- Three members of the R Development Core Team are in UoA's Department of Statistics.

SCIENCE
DEPARTMENT OF STATISTICS

Ross Ihaka and Robert Gentleman

Paul Murrell and Thomas Lumley

What does this mean?

If you want to learn R, you are talking to the right people!

Chris Triggs
Director Consulting Services
Phone: +64 9 373 7599 ext 88856
Email: triggs@stat.auckland.ac.nz
For more information, please see Chris's
profile.

Yannan Jiang Senior Research Fellow Phone: +64 9 373 7599 ext 84725 Email: y.jiang@auckland.ac.nz For more information, please see Yannan's profile.

Kathy Ruggiero Senior Lecturer Phone: +64 9 373 7599 ext 89456 Email: k.ruggiero@auckland.ac.nz For more information, please see Kathy's profile.

Jessica McLay
Research Fellow
Phone: +64 9 373 7599 ext 73678 or
85313
Email: jessica.mclay@auckland.ac.nz
For more information, please see
Jessica's profile.

Rachel Chen Research Fellow Phone: +64 9 373 7599 ext 89384 Email: rachel.chen@auckland.ac.nz For more information, please see Rachel's profile.

Avinesh Pillai Research Fellow Phone: +64 9 373 7599 ext 82368 (Mon-Wed) or ext 81169 (Thurs & Fri) Email: a.pillai@auckland.ac.nz For more information, please see Avinesh's profile.

What is 'R'?

What does this mean?

R is a free software environment for statistical computing and graphics"

Key words:

- FRFF!
- Statistical computing
- Graphics (much more flexible than SAS, SPSS, JMP, etc.)
- Support from communities of different fields, i.e. R packages.
 https://cran.r-project.org/web/views/ and Bioconductor https://www.bioconductor.org/.
- Even Microsoft is in it: Microsoft R Open. https://mran.microsoft.com/open/.

What is R? (IEEE Spectrum's ranking 2016)

Language Rank Types		Types	Spectrum Ranking
1. (С		100.0
2	Java	\bigoplus \square \square	98.1
3.	Python	⊕ 🖵	98.0
4. (C++		95.9
5.	R	_	87.9
6. (C#	\bigoplus \square \square	86.7
7.	PHP		82.8
8	JavaScript		82.2
9. 1	Ruby	⊕ 🖵	74.5
10. (Go	⊕ 🖵	71.9

What is 'R'?

What does this mean?

R is a free software environment for statistical computing and graphics"

R and the biological sciences:

- Many applications of statistical methods to biological datasets are implemented in R
- These R packages are publically available on the web for immediate download and use.
- E.g. Next Generation Sequencing, Genomics (Bioconductor).

How to download and install R

- Go to the CRAN (Comprehensive R Archive Network) cran.stat.auckland.ac.nz.
- 2 Download the relevant version for Linux/Mac/Windows.
 - We will only look at R in the Windows environment today.
- Install it on your computer (for Windows only):
 - Choose "Yes (customized startup)" in Startup options.
 - Choose "SDI (separate windows)" in Display mode.
 - Choose "HTML help" in Help .

Using the R editor

- The R GUI is not menu driven.
- Commands can be typed at the console.
 - OK for simple calculations requiring few lines of code
 - Painful for anything more!
- We strongly recommend using an R editor
 - Great for reproducible analyses and research.
 - Best editor for you depends on whether you are a(n)...
 - Beginner: Built-in R editor,
 - 2 Advanced user: Rstudio, Tinn-R, Notepad++, and many others.
 - 3 R geek: Emacs

Rstudio

- Helps in write better R code.
- Produce reports (Rmarkdown).
- Produce interactive reports/tools (Shiny).
- Develope R packages.

Using R as a calculator

```
1 + 2
## [1] 3
1 + 3^2
## [1] 10
log(15) - sqrt(3.4)
## [1] 0.8641413
pnorm(1.96)
```

[1] 0.9750021

Variable assignment

- <- is the "assign to" operator, made up of < and without a space.
- E.g., x <- 2 is read as "The value 2 is assigned to the object x".

```
x <- 2
y <- 3
x^2 - 3 * y + 5
```

```
## [1] 0
```

 \bullet <- has a direction, from right to left, x <- 2 means assigning 2 to x,

Variable assignment

- -> operates from left to right, assigning x to 2.
 - 2 is a real value so you can not do that.

```
2 <- x
```

```
## Error in 2 <- x: invalid (do_set) left-hand side to assign</pre>
```

- = has no direction and can be confusing sometimes.
- It is good programming practice to use <-.
- The most important thing is to keep consistent.

Getting help

- Google!!!!
 e.g. How to calculate the mean in R? The search results tell you that the function mean() would be helpful.
- Quick-R: http://www.statmethods.net/
- R-bloggers: https://www.r-bloggers.com/

Getting help

- ?
 e.g. ?mean brings up the help file for this function. It will tell you
 (almost) everything you need to know to use mean().
- ??
 e.g. ??mean searches for everything related to mean in your computer.
- RSiteSearch(" ")
 Searches everything on CRAN as well as your computer.

Data, files, statisticians and R

- Statisticians prefer (read: want) rectangular data files
 - Each case in its own row
 - Data collected on each variable in its own column
 - Variable names in the first row of each column
 - No blanks, e.g. fill with NA, *, 99999, anything but a blank!
- R likes (read: *needs*) this too!
- R prefers to read data files in Comma Separated Value (CSV) format.
- This does not mean R only reads files stored in csv format.

Getting data into R

Try your best to save your data in a csv or txt format.

- Most datasets are saved in an Excel spreadsheet.
- Do as much data cleaning as you can in Excel. No comments, no formatting, no colours, no fancy fonts.
- Convert it into csv by clicking on Save As. Change the Save as type from xlsx or xls into CSV (Comma Delimited).
- CSV can have one worksheet only. If you have multiple worksheets, it saves the active worksheet.

Read and Check

- Always set a working directory using setwd(), this can be a directory where you store the data and/or outputing the results.
- Use read.csv to read a CSV file into R.
- dim(): Returns the number of observations (rows) and variables (columns).
- head()/tail(): Returns the first/last few rows of a data set.
- str(): Returns the structure of the dataset, e.g., dimension, column names, type of data object, first few values of each variable.
- names(): Returns the names of the variables contained in a dataset.

Growth.df

Five variables:

- CO2: current or double (the current) CO₂ level.
- Species: Psidium guajava (PG), Archontophoenix cunninghamiana (AC) and Scheffera actinophylla (SA).
- root: root biomass
- shoot: shoot biomass
- biomass: total biomass

Reading data into R

```
setwd("your working directory")
Growth.df <- read.csv("Growth.csv")
head(Growth.df)</pre>
```

```
## CO2 Species root shoot biomass
## 1 current SA 2.0203 6.8292 8.8495
## 2 current SA 1.0681 5.2047 6.2728
## 3 current SA 2.0499 NA 9.3255
## 4 current SA 2.6797 5.6128 8.2925
## 5 current AC 0.5098 1.8772 2.3870
## 6 current AC 1.0511 4.1917 5.2428
```

dim() and str()

```
dim(Growth.df)
str(Growth.df)
## [1] 144
## 'data.frame': 144 obs. of 5 variables:
##
   $ CO2 : Factor w/ 2 levels "current". "double": 1 1 1 1
   $ Species: Factor w/ 3 levels "AC", "PG", "SA": 3 3 3 3 1 1
##
   $ root : num 2.02 1.07 2.05 2.68 0.51 ...
##
##
   $ shoot : num 6.83 5.2 NA 5.61 1.88 ...
##
   $ biomass: num 8.85 6.27 9.33 8.29 2.39 ...
```

names(Growth.df)

```
# Names of the variables
names(Growth.df)
```

```
## [1] "CO2" "Species" "root" "shoot" "biomass"
```

- Anything following the # symbol is treated as a comment and ignored by R.
- Writing comments is a very good habit to develop!

Descriptive statistics

Calculate the mean of biomass:

```
mean(biomass)
```

Error in mean(biomass): object 'biomass' not found

You must tell R that biomass is a variable (column) within Growth.df, i.e.

```
mean(Growth.df$biomass)
```

```
## [1] NA
```

You must also tell R how to deal with missing values: remove them before calculating the mean, i.e.

```
mean(Growth.df$biomass, na.rm = TRUE)
```

table of counts

```
# One-way table of counts
table(Growth.df$Species)
##
```

AC PG SA ## 48 48 48

table of proportions

```
# Total count
total <- sum(table(Growth.df$Species))
total
## [1] 144</pre>
```

```
# Proportions of total
table(Growth.df$Species)/total
```

```
##
## AC PG SA
## 0.3333333 0.3333333 0.3333333
```

One-way tables with less typing

Tired of typing Growth.df\$ over and over again? Use the with function.

```
Species.table <- with(Growth.df, table(Species))
Species.table</pre>
```

```
## Species
## AC PG SA
## 48 48 48
```

```
total <- sum(Species.table)
Species.table/total</pre>
```

```
## Species
## AC PG SA
## 0.3333333 0.3333333 0.3333333
```

One-way tables with less typing

```
# Convert to percentages
Species.pct <- 100 * Species.table/total
Species.pct
## Species
##
         AC
                 PG
                           SA
## 33.3333 33.3333 33.33333
# Round to 1 decimal place
round(Species.pct, 1)
```

```
## Species
## AC PG SA
## 33.3 33.3 33.3
```

Two-way frequency tables

```
Species.C02.tab <- with(Growth.df, table(Species, C02))
Species.C02.tab</pre>
```

```
## CO2
## Species current double
## AC 24 24
## PG 24 24
## SA 24 24
```

Two-way frequency tables

```
# Calculate proportion with respect to 'margin' total margin =
# or 2 (column total)
perc.Species.CO2 <- prop.table(Species.CO2.tab, margin = 2)
perc.Species.CO2</pre>
```

Two-way frequency tables

```
# Tabulate as percentages
round(100 * perc.Species.C02, 1)
```

```
## CO2
## Species current double
## AC 33.3 33.3
## PG 33.3 33.3
## SA 33.3 33.3
```

Summary

- Quick introduction to R
- Getting data into R
- Frequency tables