Equipo:

Tania Patiño Javier Sagastuy Ernesto Valdés Víctor Peña

¿Cuál de las siguientes expresiones es θ(n²)?, encontrar c₁, c₂, n.

```
• a) 60 \text{ n}^2 + 5 \text{n} + 1
```

for
$$j = 1$$
 to i
for $k = 1$ to i

$$x = x+1$$

a)
$$60 n^2 + 5n + 1$$

Demostración:

$$60n^2 + 5n + 1$$

$$c_1 n^2 < 60n^2 + 5n + 1 < c_2 n^2$$

$$c_1 < 60 + \frac{1}{n} + \frac{1}{n^2} < c_2$$

Sabemos que la n más pequeña para que la expresión tenga sentido es n=1 por lo que:

$$c_1 < 60 + 1 + 1 < c_2$$

$$c_1 < 62 < c_2$$

$$c_2 = 62$$

a) $60 n^2 + 5n + 1$ (continuación)

Ahora si hacemos tender a n a infinito observamos que los factores $\frac{1}{n}$ y $\frac{1}{n^2}$ se vuelven cero, por lo que:

$$c_1 < 60 < c_2$$

$$c_1 = 60$$

En conclusión $60n^2$ +5n +1 queda perfectamente acotada con $c_1=60$ y $c_2=62$ demostrando que la función es de orden $\theta(n^2)$.

b) $3n^2 + 2 n \lg n$

Demostración: Buscamos constantes positivas c₁ y c₂ y un natural n tal que

$$c_1 n^2 \le 3n^2 + 2n \lg n \le c_2 n^2$$

esto es,

$$c_1 \le 3 + \frac{2\lg n}{n} \le c_2$$

Si
$$n \ge 1 \implies \frac{2\lg n}{n} \ge 0 \implies 3 + \frac{2\lg n}{n} \ge 3 = c_1$$

b) $3n^2 + 2 n Ign (continuación)$

Analicemos e intentemos acotar superiormente la siguiente función:

$$f(n) = \frac{\lg n}{n} = \frac{1}{\ln 2} \cdot \frac{\ln n}{n}$$

Derivando:

$$f'(n) = \frac{1}{\ln 2} \cdot \left(\frac{\frac{1}{n}(n) - (1)(\ln n)}{n^2} \right) = \frac{1}{\ln 2} \cdot \left(\frac{1 - \ln n}{n^2} \right)$$

Buscamos los puntos críticos:

$$f'(n) = 0 \iff 1 - \ln n = 0 \iff \ln n = 1 \iff n = e$$

b) $3n^2 + 2 n lgn (continuación)$

Derivamos nuevamente para obtener:

$$f''(n) = \frac{1}{\ln 2} \cdot \left(\frac{-\frac{1}{n}(n^2) - (1 - \ln n)(2n)}{n^4} \right)$$

Evaluamos en el punto crítico:

$$f''(e) = \frac{1}{\ln 2} \cdot \left(\frac{-\frac{1}{e}(e^2) - (1 - \ln e)(2e)}{e^4} \right) = \frac{1}{\ln 2} \cdot \left(\frac{-e - 0}{e^4} \right) < 0$$

Por lo tanto, en n=e tenemos un mínimo local, pero como:

$$\lim_{n \to \infty} \frac{\ln n}{n} = 0$$

Entonces el mínimo es global.

b) $3n^2 + 2 n lgn (continuación)$

De este modo,

$$f(n) = \frac{\lg n}{n} \le \frac{1}{e \ln 2}$$

esto implica que

$$3 + \frac{2 \lg n}{n} \le 3 + \frac{2}{e \ln 2} \le 3 + 2 = 5 = c_2$$

Finalmente:

$$3 \le 3 + \frac{2\lg n}{n} \le 5 \implies 3n^2 \le 3n^2 + 2n\lg n \le 5n^2 \quad \forall n \ge 1$$

$$\therefore 3n^2 + 2n \lg n \in \Theta(n^2)$$

• Buscar c_1 , c_2 y n que cumplan con $\theta(n^2)$.

Demostración: Tenemos que $C_1 \le 2+4+6+...+2n \le C_2$

Por inducción:

$$2(1+2+3+...+n) = 2(n(n+1))/2$$

= n (n+1)
= n + n
$$2$$
= n + n
$$2$$
C2* n <= n + n <= C1* n

Entonces

Para C₁ tenemos que

$$C_1 * 1 + 1/n <= 1+1 = 2$$

$$C_{1} = 2$$

Para C₂ tenemos que

$$C_2 = 1$$
 $\therefore \theta(n^2)$

Solución:

1) Analizar cuántas veces se ejecuta x = x+1

Por lo tanto, x=x+1 se ejecuta:

$$\sum_{i=1}^{n} i^2 = n(n+1)(2n+1)/6$$

2) Tomando la ecuación se probará que no es cuadrática:

$$c1n^2 \le n(n+1)(2n+1)/6 \le c2n^2$$

Si desarrollamos llegamos a:

3) Se probará que es cúbica:

$$c1n^3 \le (2n^3 + 3n^2 + n)/6 \le c2n^3$$

$$c1 \le (2 + 3/n + 1/n^2)/6 \le c2$$

Si n tiende a infinito:

Por lo tanto c1=2/6 y c2=1

Entonces es una función cúbica

Logaritmo iterado

Definimos el logaritmo iterado como sigue:

$$\lg^*(n) = \begin{cases} 0 & n \le 1 \\ 1 + \lg^*(\lg(n)) & n > 1 \end{cases}$$

O alternativamente:

$$\lg^*(n) = \min\{i \ge 0 | \lg^{(i)}(n) \le 1\}$$

Lista de funciones: Una posible manera de ordenar las funciones donde $g_i \in O(g_j) \ \forall i < j$

$$g_1(n) = 1$$

$$g_{10}(n) = \lg^2(n)$$

$$g_{19}(n) = (\lg(n))^{\lg(n)} = n^{\lg(\lg n)}$$

$$g_2(n) = n^{1/\lg(n)} = 2$$
 $g_{11}(n) = 2^{\sqrt{2\lg(n)}}$

$$g_{11}(n) = 2^{\sqrt{2\lg(n)}}$$

$$g_{20}(n) = \left(\frac{3}{2}\right)^n$$

$$g_3(n) = \lg(\lg^*(n))$$

$$g_{12}(n) = \sqrt{2}^{\lg(n)} = \sqrt{n} \ g_{21}(n) = 2^n$$

$$g_4(n) = \lg^*(\lg(n))$$

$$g_{13}(n) = 2^{\lg(n)} = n$$

$$g_{22}(n) = e^n$$

$$g_5(n) = \lg^*(n)$$

$$g_{14}(n) = \lg(n!)$$

$$g_{23}(n) = n!$$

$$g_6(n) = 2^{\lg^*(n)}$$

$$g_{15}(n) = n \lg(n)$$

$$g_{24}(n) = (n+1)!$$

$$g_7(n) = \ln(\ln(n))$$

$$g_{16}(n) = 4^{\lg(n)} = n^2$$

$$g_{25}(n) = n \cdot 2^n$$

$$g_8(n) = \sqrt{\lg(n)}$$

$$g_{17}(n) = n^3$$

$$g_{26}(n) = 2^{2^n}$$

$$g_9(n) = \lg(n)$$

$$g_{18}(n) = (\lg(n))!$$

$$g_{27}(n) = 2^{2^{n+1}}$$

Clasificación de las funciones por orden de crecimiento

• O(1)	• O(lg * n)	• O(lg lg n)	• O(lg n)	• O(n k)
1	lg * n	In (In n)	In n	√2 ^{lg n}
n ^{1/lg n}	lg *(lg n)	2 ^{lg*n}	√(lg n)	lg² n
	lg(lg* n)			2 ^{√(2lg n)}

Clasificación de las funciones por orden de crecimiento

• O(n)	• O(n lg n)	• O(n ^k), _{k>1}	• O(c ⁿ)	• O(n!)
n	n log n	$n^2 - \theta(n^2)$	e ⁿ	(n+1)!
2 ^{lgn}	lg² n	$n^3 - \theta(n^3)$	2 ⁿ	n!
	lg (n!)	4 lgn - $\theta(n^2)$	(3/2) ⁿ	
			(lg n)!	
			(lg n) ^{lg n} = n ^{lg(lg n)}	

Clasificación de las funciones por orden de crecimiento

• O(n ⁿ)	• O(2 ² ^n)		
n 2 ⁿ	2 ^{2^n}		
	2 ^{2^(n +1)}		

