CSDS 440: Machine Learning

Soumya Ray (he/him, sray@case.edu)
Olin 516

Office hours T, Th 11:15-11:45 or by appointment

Recap

 In the dual form of the SVM, examples appear as a d_____ p____. We define the k_____ function K(x,y) as ____ dot ____. In many cases, K can be computed more efficiently than the dot product of the feature maps. This is called the k_____ t____. Intuitively, a kernel function measures the s_____ between examples. To be a valid kernel function, a function must satisfy M____ conditions. These say that the kernel matrix must be s_____ p____ s____ Kernels can be applied to many other problems using the R_____t___. This says that any optimization program of the form $min_f(A) + (B)$ has a solution which is $f=sum_i(a)(b)(c)$. The SVM uses the H loss function whereas LR uses the L loss function. What are some of the pros of SVMs? Cons? An ensemble is a c of c combined with v .

Today

• Part 2: Ensemble Methods

Single vs. multiple classifiers

- Suppose for some problem we have k classifiers $h_1, ..., h_k$ that:
 - Each has error less than chance: $\varepsilon_i < \frac{1}{2}$
 - Make uncorrelated errors on new examples
- Suppose we combine their predictions on a new example via majority vote
- What is the error rate of the combined system?

Single vs. multiple classifiers

 Since we combine using majority voting, to get an example wrong, at least half the classifiers must be wrong

 Since the errors of each classifier is uncorrelated, we can treat each classifier as an "independent trial" for the new example

Single vs. multiple classifiers

- Assume all the classifiers have the same error rate ϵ
 - No loss of generality—can choose max error over all classifiers to get upper bound on error rate of combined system
- Then the number of wrong classifiers follows a Binomial distribution with parameters ε , k

Example: $\varepsilon = 0.3, k = 21$

"Ensembles" of Classifiers

- A collection of classifiers combined using some sort of voting scheme is called an "ensemble"
- Getting classifiers that have error less than chance is (usually) easy
 - Note that this is generalization error
- Getting classifiers that make uncorrelated errors is usually not
 - But even if not, ensembles can outperform single classifiers in practice

Why ensembles do well in practice (1)

 Many classifiers are a result of some search procedure (e.g. gradient descent) which can get stuck in local optima

 Averaging these "local optimum" classifiers can provide a better approximation to the target function

Picture

Why ensembles do well in practice (2)

- An ensemble of classifiers may have a more complex decision boundary than any single classifier
 - E.g. an ensemble of voting linear classifiers is not (generally) a linear classifier

Why ensembles do well in practice (3)

Consider probabilistic classification

• Given a training sample D, what is the most probable classification for a new instance

$$\mathbf{x}_{new}$$
?

- i.e. what is $Pr(Y_{new} = y \mid D, \mathbf{x}_{new})$?
- Assume you are investigating a hypothesis class H

Bayesian Model Averaging

$$\begin{split} \Pr(Y_{new} = y \mid D, \mathbf{x}_{new}) \\ &= \sum_{h \in H} \Pr(Y_{new} = y \mid D, h, \mathbf{x}_{new}) \Pr(h \mid D, \mathbf{x}_{new}) \\ &= \sum_{h \in H} \Pr(Y_{new} = y \mid h, \mathbf{x}_{new}) \Pr(h \mid D) \\ &\text{Classification according to } h \end{split}$$

- Also called Bayes optimal classification
- Cannot be outperformed on average by any single hypothesis in ${\cal H}$

The downsides

- How large an ensemble to use is not well understood
 - Too small—no effect, too large—tends to overfit
- An ensemble is usually much harder to interpret than a single classifier
 - E.g. a decision tree vs a set of trees
- Computation time, memory etc. all increase
 - (sometimes we can parallelize)

General Ensemble Construction

- Can construct ensembles in several ways
 - Modifying the training set
 - Modifying the set of attributes
 - Modifying the outputs
 - Randomizing the learning algorithm

Modifying the Training Set

- General idea:
 - Create multiple training sets, each different from the others in some way
 - Apply learning algorithm to each set
 - Resulting classifiers vote on new examples
- Works best for "unstable" algorithms
 - Small change to data can lead to large change in solution
- Two important methods
 - Bagging
 - Boosting

Bagging (BREIMAN 96)

- "Bootstrap Aggregation"
- Each training sample is a bootstrap replicate of the initial set
 - If the set has size m, sample m examples uniformly with replacement from it
- To classify a new example, use majority voting