上海交通大学试卷

(2020 至 2021 学年 第 2 学期期末考试)

班级:	学号:	姓名:	_
课程名称:_	组合数学	成绩:	
一 (10 分)、	求字符串 123456 排列的个数,	使得其中没有出现序列 12、23、34、45、	56.

二 (10 分)、一个盒子里有 30 个红球、40 个蓝球和 50 个白球,相同颜色的球是无法区分的。从盒子中取出 70 个球,有多少种不同的取法?

我承诺,我将严格 遵守考试纪律。

题号	 =	三	四	五.	六	七	八	九	+
得分									
批阅人									
(流水阅)									

承诺人: _____

Ξ	(10	分)	`	
---	-----	----	---	--

- (1) 求集合 $A_1, A_2, \cdots A_k$ 选取的方法数,使得 $\emptyset \subseteq A_1 \subseteq \cdots \subseteq A_k \subseteq [n]$ 。
- (2) 求 [n] 的子集 $A_1, A_2, \cdots A_k$ 选取的方法数,使得 $A_1 \cap \cdots \cap A_k = \emptyset$ 。

四 (10 分)、设 |X| = n 且 \mathcal{F} 是 $X^{(k)}$ 的子集。定义 $\nabla \mathcal{F} = \{T \in X^{(k+1)} \mid \exists S \in \mathcal{F}$ 使得 $S \subsetneq T\}$ 。证明如果 $k \leq \frac{n-1}{2}$,则有 $|\nabla \mathcal{F}| \geq |\mathcal{F}|$ 。其中, $X^{(i)}$ 表示 X 的所有 i 元子集所 组成的集系。

1

 $(10 \, f)$ 、证明 $R^{(2)}(\underbrace{3,3,3,\ldots,3}_{k \, f}) \leq 3k!$,其中 k 为正整数,R 代表广义 Ramsey 数记号。

 $(10 \ \mathcal{G})$ 、记 $2n(n \ge 4)$ 的最大分部至多是 4 且有 n 个分部的分拆的个数为 A,记 2n 的最大分部至多是 n 且有 3 个分部的分拆的个数为 B。求证 A-B=1。

七 $(10 \ \beta)$ 、令 m 和 n 为正整数,m < n。证明 $m \le \frac{1}{2}n$ 是存在一个 n 阶拉丁阵包含一个 m 阶的子拉丁方阵的充分必要条件。

- 八 $(10 \, f)$ 、我们称一个 (0,1) 方阵 k-完美,如果一个矩阵含 1 的数量与这个矩阵的线秩都等于 k。(如 n 阶置换阵为 n-完美矩阵。)如果两个同阶的 (0,1) 方阵没有相同的位置都是 1,则称这两个矩阵不交。
 - (1) 求 n 阶 k-完美矩阵的个数。其中 $k \le n$ 。
 - (2) $A_1, A_2, \dots A_{n-2}$ 是 n-2 个不交的 n 阶置换阵,求与 A_i 均不交的 n 阶 k-完美矩阵 的个数的表达式 f(n,k)。其中 $k \le n$ 。

 $(10 \ \ \ \)$ 、设 $A = \{1, 2, 3, ..., 2020\}$ 。求最小的 n,满足 A 的任意 n 元子集都存在四个不同数 x, y, z, w 使得 x + y + z = w,并给出证明。

 $(10 \ \mathcal{G})$ 、令 g(n) 是将 $2 \times n$ 矩形用任意的 $a \times b$ 矩形平铺的方法数,a,b 为正整数。(设 g(0) = 1。)例如,g(2) = 8。请你写出其生成函数的一个简单表达式。