REGLAS DE INFERENCIA LÓGICA

MODUS PONENDO PONENS (MP) MODUS TOLLENDO TOLLENS (MT) $P \rightarrow Q$ $P \rightarrow Q$ $\neg Q$ ∴ ¬P ∴ Q **MODUS TOLLENDO PONENS (MTP)** SIMPLIFICACIÓN (S) $P \lor Q$ $P \wedge Q$ $\neg P$ ∴ Q ∴ P ∴ Q **ADJUNCIÓN (A)** SILOGISMO HIPOTÉTICO (SH) P $P \rightarrow Q$ Q $Q \rightarrow R$ $\therefore P \rightarrow R$ ∴ P∧O ADICIÓN (LA) **SILOGISMO DISYUNTIVO (SD)** P $P \lor Q$ $\neg P \lor R$ ∴ P ∨ Q ∴ Q ∨ R **DILEMA DESTRUCTIVO (DD) DILEMA CONSTRUCTIVO (DC)** $P \rightarrow Q$ $P \rightarrow Q$ $R \rightarrow S$ $R \rightarrow S$ P V R $\neg Q \lor \neg S$ $\therefore \neg P \lor \neg R$ ∴ Q V S **REGLA DE ABSORCIÓN (RA)** $P \rightarrow Q$

 $\therefore P \rightarrow (P \land Q)$

EQUIVALENCIAS LÓGICA

1. CONMUTATIVA

$$P \wedge Q \equiv Q \wedge P$$

$$P \vee Q \equiv Q \vee P$$

$$P \oplus Q \equiv Q \oplus P$$

$$P \leftrightarrow Q \equiv Q \leftrightarrow P$$

$$P \downarrow Q \equiv Q \downarrow P$$

$$P \mid Q \equiv Q \mid P$$

CONTRAPOSICION O CONTRARECIPROCA

$$P \to Q \equiv \sim Q \to \sim P$$

$$P \leftrightarrow Q \equiv \sim Q \leftrightarrow \sim P$$

 $P \Delta Q \equiv \sim Q \Delta \sim P$

ASOCIATIVA

$$(P \lor Q) \lor R \equiv P \lor (Q \lor R)$$

 $(P \land Q) \land R \equiv P \land (Q \land R)$

$$(P \leftrightarrow Q) \leftrightarrow R \equiv P \leftrightarrow (Q \leftrightarrow R)$$

$$P \rightarrow Q \equiv \sim P \vee Q$$

$$P \to Q \equiv {\sim} (P \land {\sim} Q)$$

$$P \rightarrow Q \equiv Q \leftarrow P$$

DISTRIBUTIVA

$$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$$

$$P \lor (Q \land R) = (P \lor Q) \land (P \lor R)$$

$$P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)$$

 $P \rightarrow (Q \land R) \equiv (P \rightarrow Q) \land (P \rightarrow R)$

$$P \rightarrow (Q \lor R) \equiv (P \rightarrow Q) \lor (P \rightarrow R)$$

$$P \leftrightarrow Q \equiv (P \to Q) \land (Q \to P)$$

$$P \leftrightarrow Q \equiv (P \land Q) \lor (\sim P \land \sim Q)$$

$$P \leftrightarrow Q \equiv \sim (P \Delta Q)$$

IDEMPOTENCIA

$$P \vee P \equiv P$$

$$P \wedge P \equiv P$$

COMPLEMENTO

$$P \lor \sim P \equiv V$$

$$P \land \sim P \equiv F$$

$$\sim V \equiv F$$

$$\sim F \equiv V$$

DOBLE NEGACION O INVOLUCION

$$\sim \sim P \equiv P$$

IDENTIDAD

$$P \vee F \equiv P$$

$$P \wedge F \equiv F$$

$$P \vee V \equiv V$$

$$P \wedge V \equiv P$$

LEY DE MORGAN

$$\sim (P \land Q) \equiv \sim P \lor \sim Q \equiv P \mid Q$$

$$\sim (P \lor Q) \equiv \sim P \land \sim Q \equiv P \lor Q$$

$$P \wedge Q \equiv \sim (\sim P \vee \sim Q)$$

$$P \lor Q \equiv \sim (\sim P \land \sim Q)$$

$$P \land \sim Q \equiv \sim (\sim P \lor Q)$$
$$\equiv \sim (P \to Q)$$

DISYUNCION FUERTE

$$P \oplus Q \equiv (P \vee Q) \wedge (\sim P \vee \sim Q)$$

$$P \oplus Q \equiv (P \land \sim Q) \lor (\sim P \land Q)$$

$$P \oplus Q \equiv \sim (P \leftrightarrow Q)$$

$$\equiv \sim P \leftrightarrow Q$$

$$\equiv P \leftrightarrow \sim Q$$

LEY DE ABSORCION I

$$(P \wedge Q) \vee P \equiv P$$

$$(P \lor Q) \land P \equiv P$$

$$P \wedge (P \vee Q) \equiv P$$

LEY DE ABSORCION II

$$(\sim P \land Q) \lor P \equiv P \lor Q$$

$$(\sim P \lor Q) \land P \equiv P \land Q$$

 $P \lor (\sim P \land Q) \equiv P \lor Q$

LEY DE EXPORTACION

$$(P \land Q) \rightarrow R \equiv P \rightarrow (Q \rightarrow R)$$

LEY DE MUTACION

$$P \rightarrow (Q \rightarrow R) \equiv Q \rightarrow (P \rightarrow R)$$

OPERACIONES DE CONJUNTOS

1. Unión (A ∪ **B)**

La unión de dos conjuntos A y B es el conjunto de todos los elementos que pertenecen a A, a B o a ambos.

1.1. Definición

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

1.2. Propiedades de la Unión

1. Conmutativa:	$A \cup B = B \cup A$
2. Asociativa:	$(A \cup B) \cup C = A \cup (B \cup C)$
3. Idempotente:	$A \cup A = A$
4. Elemento Neutro:	$A \cup \emptyset = A$
5. Dominación:	$A \cup U = U$ (donde U es el universo)
6. Complemento:	$A \cup A^c = U$
7. Absorción:	$A \cup (A \cap B) = A$

8. Distributiva con intersección: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

2. Intersección (A \cap B)

La intersección de dos conjuntos A y B es el conjunto de todos los elementos que pertenecen a ambos.

2.1. Definición

$$A \cap B = \{ x \mid x \in A \land x \in B \}$$

2.2. Propiedades de la Intersección

1. Conmutativa:	$A \cap B = B \cap A$
2. Asociativa:	$(A \cap B) \cap C = A \cap (B \cap C)$
3. Idempotente:	$A \cap A = A$
4. Elemento Neutro:	$A \cap U = A$
5. Dominación:	$A \cap \emptyset = \emptyset$
6. Complemento:	$A \cap A^{c} = \emptyset$
7. Absorción:	$A \cap (A \cup B) = A$
0 71 11 11	

8. Distributiva con unión: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

3. Diferencia (A − B o A \ B)

La diferencia de conjuntos A y B es el conjunto de elementos que están en A pero no en B.

3.1. Definición:

$$A - B = \{ x \mid x \in A \land x \notin B \}$$

3.2. Propiedades de la Diferencia:

1. Identidad:	$A - \emptyset = A$
2. Complemento:	$A - U = \emptyset$
3. Diferencia con sí mismo:	$A - A = \emptyset$
4. Diferencia del universo:	$U - A = A^{c}$

4. Complemento (Ac o A)

El complemento de un conjunto A es el conjunto de todos los elementos del universo U que no están en A.

4.1. Definición:

$$A^c = \{ x \mid x \notin A \}$$

4.2. Propiedades del Complemento:

1. Complemento doble:	$(A^c)^c = A$
2. Leyes de morgan:	
	$(A \cup B)^c = A^c \cap B^c$
	$(A \cap B)^c = A^c \cup B^c$
3. Complemento del universo:	$U^c = \emptyset$
4. Complemento del vacío:	$\phi^c = U$

5. Diferencia Simétrica (A \triangle B)

La diferencia simétrica entre A y B es el conjunto de elementos que están en A o en B, pero no en ambos.

5.1. Definición:

$$A \triangle B = (A - B) \cup (B - A)$$

5.2. Propiedades de la Diferencia Simétrica:

1. Conmutativa:	$A \triangle B = B \triangle A$
2. Asociativa:	$(A \triangle B) \triangle C = A \triangle (B \triangle C)$
3. Elemento Neutro:	$A \triangle \emptyset = A$
4. Diferencia Simétrica con sí mismo:	$A \triangle A = \emptyset$
5. Relación con la unión e intersección:	$A \triangle B = (A \cup B) - (A \cap B)$