שעור 2 משחקים בצורה אסטרטגית, שליטה ושיווי משקל נאש

2.1 הגדרה של משחק בצורה אסטרטגית

הגדרה 2.1 משחק בצורה אסטרטגית

הצורה אסטרטגית או צורה נורמלית של משחק -n שחקנים היא קבוצה

$$G = (N, (S_1, S_2, \dots, S_n), (u_1, u_2, \dots, u_n))$$

שבה

- ת. שחקנים סופית. $N = \{1, 2, \dots, n\}$ (1
- $(1 \leq i \leq n)$ היא קבוצת האסטרטגיות של אחקן S_i (2
 - :i היא פונקציית התשלום של שחקן u_i

$$u_i: S_1 \times S_2 \times \ldots \times S_n \to \mathbb{R}$$

(i אסטרטגיה אל אסטרטגיה (כאשר $s_i \in S_i$ כאשר אסטרטגיה של המשחק של המשחק אשר אסטרטגיה אסטרטגיה של אחקן ומחזירה מספר ממשי שווה לתשלום של שחקן ומחזירה אספר ממשי שווה לתשלום א

דוגמה 2.1 (משחק של מטבע וקלף משחק)

רשמו את הצורה אסטרטגית של הדוגמה הבאה שנתונה בצורה רחבה (ראו דוגמה 1.4).

פתרון:

ניתן לרשום את עץ המשחק בצורה רחבה אסטרטגית:

H,T שתי פעולות בין שתי מקבל החלטה בין אחד x_0 בו אחד לשחקן I

יש קבוצה ידיעה אחת: I יש קבוצה ידיעה אחת:

$$x_0(H,T)$$
.

לכן קבוצת האסטרטגיות של שחקן I הינה

$$S_I = (H, T)$$
.

לשקחן II יש שני קדקודים x_1,x_2 בהם הוא מקבל החלטה. אז לשחקן II יש 2 קבוצות ידיעה,

$$V_{II} = \{x_1(Q, K) , x_2(J, A) \}$$
.

 x_0 אשר מייצגות שתי אפשריות שונות המנובעות מההחלטה הקודמת של שחקן Iבקדקוד בקדקוד המנובעות מכיוון שלשחקן על יש שתי קבוצותצ ידיעה x_1,x_2 ובכל אחד יש שתי פעולות אפשריות, אז יש לבובל אסטרטגיות:

$$S_{II} = (Q/J, Q/A, K/J, K/A)$$

(נהוג לרשום את האסטרטגיות מלמעלה עד למטה ומשמאל לימון.) ניתן לרשום את המשחק **בצורה אסטרטגית**:

I	Q/J	Q/A	K/J	K/A
H	-10, 5	-10, 5	7, 13	7, 13
T	12,6	40, -30	12,6	40, -30

מכאן

$$G = (N, (S_I, S_{II}), (u_I, u_{II}))$$

כאשר הקבוצת שחקנים היא

$$N=\{$$
בוב,אליס $\}=\{I,II\}$,

היא I היא של אסטרטגיות אסטרטגיות אסטרטגיות האסטרטגיות אסטרטגיות אסטרטגיות האסטרטגיות אסטרטגיות אסטרטגיות האסטרטגיות אסטרטגיות אסטרטגיות האסטרטגיות אסטרטגיות אטטרטגיות אסטרטגיות אסטרטגיות אסטרטגיות אסטרטגיות אסטרטגיות אסטרטגיות אסטרטגיות אסטרטגיות אסטרטגיות אטטרטגיות אסטרטגיות אסטרטגיות אסטרטגיות אסטרטגיות אסטרטגיות אטטרטגיות אסטרטגיות אטטרטגיות אטטרטגיות אסטרטגיות אטטרטגיות אטטרטגיות אסטרטגיות אסטרטגיות אסטרטגיות אטטרטגיות אטטרטטערטע אטטרטגיות אטטרטגיות אטטרטטערטעערטעע אטטרטגיו

$$S_I = (H, T)$$

והקבוצת אסטרטגיות של שחקן II היא

$$S_{II} = (Q/J, Q/A, K/J, K/A) ,$$

והפונקציות תשלומים הן

$$u_I(H, Q/J) = -10$$
,
 $u_I(H, Q/A) = -10$,
 $u_I(H, K/J) = 7$,
 $u_I(H, K/A) = 7$,
 $u_I(T, Q/J) = 12$,
 $u_I(T, Q/A) = 40$,
 $u_I(T, K/J) = 12$,
 $u_I(T, K/J) = 12$,

$$u_{II}(H,Q/J) = 5$$
,
 $u_{II}(H,Q/A) = 5$,
 $u_{II}(H,K/J) = 13$,
 $u_{II}(H,K/A) = 13$,
 $u_{II}(T,Q/J) = 6$,
 $u_{II}(T,Q/A) = -30$,
 $u_{II}(T,K/J) = 6$,
 $u_{II}(T,K/A) = -30$.

2.2 סימונים

<u>הגדרה 2.2</u>

תהי A_i תהי $i\in N$ קבוצת סופית, ולכל $N=\{1,\dots,n\}$ קבוצה כלשהי. נסמן ב- A_i

$$A = \sum_{i \in N} A_i = A_1 \times A_2 \times \ldots \times A_n$$

 A_i את המכפלה הקרטיזית של כל הקבוצות

לכל $i \in N$ לכל

$$A_{-i} = \underset{\substack{j \in N \\ i \neq i}}{\times} A_j = A_1 \times A_2 \times A_{i-1} \times A_{i+1} \dots \times A_n$$

 A_i את המכפלה הקרטיזית של כל הקבוצות למעט הקבוצה את המכפלה הקרטיזית של כל הקבוצות A_j מסומן ב-

$$x_{-i} = (a_1, a_2, \dots, a_{i-1}, a_{i+1}, \dots, x_n)$$
.

2.3 מושג השליטה

הגדרה $\, \, 2.3 \,$ אסטרטגיה נשלטת חזק במשחק $\, n \,$ שחקנים

אסטרטגיה i של שחקן i נקראת נשלטת חזק אם קיימת אסטרטגיה און נקראת נקראת נשלטת אסטרטגיה אסטרטגיות אחקנים מתקיים מתקיים אסטרטגיות s_{-i} של שאר השחקנים מתקיים

$$u_i(s_i, s_{-i}) < u_i(t_i, s_{-i})$$
.

במילים אחרות, s_i נשלטת חזק ע"י אם מתקיים

$$u_i(s_1, \ldots, s_{i-1}, s_i, s_{i+1}, \ldots, s_n) < u_i(s_1, \ldots, s_{i-1}, t_i, s_{i+1}, \ldots, s_n)$$

לכל ווקטור אסטרטגיות $(s_1,\ldots,s_{i-1},s_{i+1},\ldots,s_n)$ של שאר השחקנים. s_i נאמר ש- s_i נשלטת חזק על ידי t_i , או ש- t_i שולטת חזק על s_i

למה 2.1 אסטרטגיה נשלטת חזק במשחק 2 שחקנים

1של שחקנים, אסטרטגיה t_1 אסטרטגיה חזק t_2 שחקנים, אסטרטגיה שחקן t_3 שחקנים, אסטרטגיה לפי הגדרה אסטרטגיה איינע איינע

$$u_1(s_1, s_2) < u(t_1, s_2)$$

 $\cdot \cdot \cdot \cdot \cdot = s_2$ של שחקן לכל אסטרטגיה

באותה מידה אסטרטגיה t_2 של שחקן 2 נשלטת חזק ע"י אסטרטגיה s_2 של שחקן s_2 אם

$$u_1(s_1, s_2) < u(s_1, t_2)$$

1 של שחקן אסטרטגיה ולכל אסטרטגיה

דוגמה 2.2 (אסטרטגיות נשלטות חזק)

נתון המשחק הבא בצורה אסטקטגית.

- I מצאו אסטרטגיה הנשלטת חזק של מצאו (א
- II מצאו אסטרטגיה הנשלטת חזק של מצאו (ב

I	L	M	R
T	1,0	1, 2	4,1
В	0,3	0, 1	2,0

פתרון:

(N

$$0 = u_I(B, L) < u_I(T, L) = 1$$
,

$$0 = u_I(B, M) < u_I(T, M) = 1$$
,

$$2 = u_I(B, R) < u_I(T, R) = 4$$
.

לכן אסטרטגיה B נשלטת חזק על ידי לכן אסטרטגיה

$$B \prec T$$
.

(1

$$1 = u_{II}(T, R) < u_{II}(T, M) = 2$$
,

$$0 = u_{II}(B, R) < u_{II}(B, M) = 1.$$

:M נשלטת חזק על ידי R

$$R \prec M$$
.

2.4 הנחות של רציונליות בתורת המשחקים

משפט 2.1 הנחות של רציונליות בתורת המשחקים

- 1) שחקן רציונלי לא ישתמש באסטרטגיה נשלטת חזק.
 - 2) כל השחקנים במשחק רציונליים.
- 3) העובדה שכל השחקנים רציונליים היא ידיעה משותפת בין כל השחקנים.

2.5 סילוק חוזר

תחת הנחות של משפט 2.1, ניתן לסלק אסטרטגיוה נשלטת חזק, ולהגיע לפתרון של המשחק.

דוגמה 2.3 (סילוק חוזר)

נתון המשחק הבא, מצאו את הפתרון באסטרטגיות שולטות חזק, והתשלום הסופי של המשחק.

I	L	M	R
T	1,0	1,2	0,1
В	0, 3	0, 1	2,0

פתרון:

M ישתמש באסטרטגיה I ישתמש באסטרטגיה וישתמש באסטרטגיה רציונליים, שחקנים רציונליים, שחקו וישתמש באסטרטגיה והתשלום הסופי יהיה:

$$u_I(T, M) = 1$$
, $u_{II}(T, M) = 2$.

דוגמה 2.4 (דילמה האסיר)

משחק פשוט מאוד, ויחד עם זאת מהרבה בחינות, הוא המשחק הידוע בשם "דילמה האסיר". המשחק מופיע בספרות בצורת הסיפור הבא.

שני עבריינים אליס (שחקן 1) ובוב (שחקן 2) ביצעו פשע חמור ונעצרו. בהעדר כל הוכחות אחרות, הדרך היחידה שבה יכולה המשטרה להשיג הרשעה על עבירה זו היא שאחד העצורים (או שניהם) מודה. בביצוע

המעשה. בחקירתם העמידה המשטרה כל אחד מהעצורים בפני ההחלטה הבאה:

- . אם אליס מלשינה ובוב שותק אליס יוצאת חופשי ובוב מקבל 10 שנים מאסר.
- ullet אם בוב מלשין ואליס שותקת, בוב יוצא חופשי ואליס מקבלת 10 שנים מאסר.
- אם שניהם שותקים, יש בידי המשטרה ראיות להרשעתם בעבירות פחותות (למשל, העלמת מס) שמוביל למאסר של שנה אחת לכל אחד.
- אם שניהם מלשינים המשטרה מבקשת להתחשב בשיתוף הפעולה שלהם ולגזור את עונשם ל־6 שנות מאסר לכל אחד.

רשמו את המשחק בצורה אסטרטגית ומצאו את הפתרון באסטרטגיות שולטות חזק.

פתרון:

נסמן:

."מלשינה" אליס שאליס האסטרטגיה C_1

"שותקת" האסטרטגיה שאליס האסטרטגיה D_1

."מלשין "מרטגיה שבוב "מלשין" $-C_2$

"שותק" שבוב אסטרטגיה שבוב D_2

המשחק בצורה אסטרטגית הינו:

2 בוב 2 1 אליס	C_2	D_2
C_1	-6, -6	0, -10
D_1	-10, 0	-1, -1

$\frac{2}{1}$	C_2	D_2
C_1	-6, -6	0, -10
D_1	-10, -10	-1, -1

$\frac{2}{2}$	C_2	
C_I	-6, -6	$D_I \prec 0$
\mathcal{I}_{I}	-10, -10	

$\frac{2}{1}$	C_2
C_1	-6, -6

 C_{II} ישתמש באסטרטגיה אחקן ישתמש באסטרטגיה וער ישתמש באסטרטגיה רציונליים, שחקו לכן לפי הכללים של והתשלום הסופי יהיה:

$$u_1(C_1, C_2) = -6$$
, $u_2(C_1, C_2) = -6$.

2.6 שיווי משקל נאש

הגדרה $\, n \,$ משובה טובה ביותר במשחק $\, n \,$ שחקנים

נתון משחק n שחקנים. יהי s_{-i} וקטור אסטרטגיות של השחקנים ללא i. אסטרטגיה s_i של שחקן i נקראת תשובה טובה ביותר ל- s_{-i} אם מתקיים

$$u_i\left(s_i, s_{-i}\right) = \max_{t_i \in S_i} u_i\left(t_i, s_{-i}\right) .$$

$$u_i(s_1, s_2, \dots s_{i-1}, s_i, s_{i+1}, \dots, s_n) = \max_{t_i \in S_i} u_i(s_1, s_2, \dots s_{i-1}, t_i, s_{i+1}, \dots, s_n)$$
.

הוא

למה $\, 2.2 \,$ תשובה טובה ביותר במשחק $\, 2 \,$ שחקנים

לפי הגדרה 2.4, במשחק 2 שחקנים, אסטרטגיה s_1 של שחקן 1 היא התשובה הטובה ביותר בתגובה לאסטרטגיה s_2 של שחקן 2 אם מתקיים

$$u_1(s_1, s_2) = \max_{t_1 \in S_1} u_1(t_1, s_2) ,$$

או במילים אחרות

$$u_1(s_1, s_2) \ge u_1(t_1, s_2) \quad \forall t_1 \in S_1 .$$

1 של שחקן s_1 של אסטרטגיה ביותר בתגובה הטובה הטובה s_2 של שחקן אסטרטגיה s_2 של שחקן מתקיים אם מתקיים

$$u_2(s_1, s_2) = \max_{t_2 \in S_2} u_1(s_1, t_2) ,$$

או במילים אחרות

$$u_2(s_1, s_2) \ge u_2(s_1, t_2) \quad \forall t_2 \in S_2 .$$

הגדרה 2.5 שיווי משקל נאש

נתון משחק n שיווי משקל נאש אם לכל שחקן געוון משחק $s^*=(s_1^*,\dots,s_n^*)$ וקטור אסטרטגיות וקטור אסטרטגיות אסטרטגיות ולכל אסטרטגיה אחקן $i\in N$

$$u_i\left(s^*\right) \ge u_i\left(s_i, s_{-i}^*\right) .$$

i אם כל השחקנים משחקים לפי הוקטור אסטרטגיות של השיווי משקל $s^*=(s_1^*,\dots,s_n^*)$ אם שחקן אם כל השחקנים משחקים לפי הוקטור שלו(שלה) תמיד יהיה פחות מהתשלום שהוא מקבל ע"י הוקטור בכל אסטרטגיה אחרת s_i , התשלום שלו(שלה) אסטרטגיות של השיווי משקל s^* :

$$u_i\left(s_1^*,\ldots,s_{i-1}^*,s_i^*,s_{i+1}^*,\ldots,s_n^*\right) \ge u_i\left(s_1^*,\ldots,s_{i-1}^*,s_i,s_{i+1}^*,\ldots,s_n^*\right)$$

i לכל אסטרטגיה s_i של שחקן

וקטור התשלום $u\left(s^{*}\right)$ נקרא תשלום שיווי משקל.

למה $\, 2.3 \,$ שיווי משקל נאש במשחק $\, 2 \,$ שחקנים

לפי שיווי משקל שיווי משקל אם איווי $s^*=(s_1^*,s_2^*)$ הוא אסטרטגיות פחקנים, שחקנים, עבור אסטרטגיות לפי הגדרה 2.5, איווי משקל אם אסטרטגיות אסטרטגיות אסטרטגיות אסטרטגיות משקל אם אסטרטגיות אסטרטגיות אסטרטגיות משקל אם אסטרטגיות אטטרטגיות אסטרטגיות אסטרטגיות אסטרטגיות אסטרטגיות אסטרטגיות אסטרטגיות אטטרטגיות אסטרטגיות אסטרטגיות איינע איינע אסטרטגיות אסטרטגיות אסטרטגיות אסטרטגיות אסטרטגיות אסטרטגיות אסטרטגיות אסטרטגיות אטטרטגיות אסטרטגיות אטטרטגיות אטטרטגי

$$u_1(s_1^*, s_2^*) \ge u_1(s_1, s_2^*) \quad \forall s_1 \in S_1,$$

$$u_2(s_1^*, s_2^*) \ge u_1(s_1^*, s_2) \qquad \forall s_2 \in S_2.$$

משפט 2.2 שיווי משקל הוא תשובה טובה ביותר לכל שחקן

נתון משחק n שחקנים. וקטור אסטרטגיות $s^*=(s_1^*,s_2^*)$ הוא שיווי משקל אם לכל שחקן i האסטרטגיה $s_{-i}^*=\left(s_1^*,s_2^*,\ldots,s_{i-1}^*,s_{i+1}^*,\ldots,s_n^*\right)$ היא תשובה טובה ביותר ל- s_i^*

הוכחה: תרגיל בית.

דוגמה 2.5 (שיווי משקל נאש במשחק 2 שחקנים)

נתון המשחק בצורה אסטרטגית הבא:

2	x	y	z
a	2,1	0,0	$\boxed{1,2}$
b	0, 3	2,2	3, 1
c	1, 1	3, 2	2,2

פתרון:

2	x	y	z
a	2, 1	0,0	1,2
b	0, 3	2, 2	3, 1
c	1, 1	3, 2	[2, 2]

לכן ווקטור אסטרטגיות של שיווי משקל נאש הינו

$$(s_1^*, s_2^*) = (c, y)$$
.

דוגמה 2.6 (שיווי משקל משחק 2 שחקנים)

פתרון:

:I קבוצת אסטרטגיות של אסטרטגיו

$$S_I = (L/K , M/K , R/K , L/N , M/N , R/N) .$$

:II קבוצת אסטרטגיות של אסטרטגיו

$$S_{II}=(l,r)$$
.

מכאן הצורה אסטרטגית של המשחק היא:

I	l	r
L/K	0,2	0,2
M/K	2, 1	1, 2
R/K	8, 1	3,9
L/N	0,2	0,2
M/N	1,8	1, 2
R/N	8, 1	3,9

נשתמש בשיטת תשובה טובה ביותר כדי למצוא את השיווי משקל של המשחק:

II I	l	r
L/K	0, 2	0, 2
M/K	2,1	1, 2
R/K	8, 1	3,9
L/N	0, 2	0, 2
M/N	1, 8	1,2
R/N	8, 1	3,9

לכן הווקטור אסטרטגיות

$$(s_1^*, s_2^*) = (R/N, r)$$

שיווי משקל וגם הווקטור אסטרטגיות

$$(s_1^*, s_2^*) = (R/K, r)$$

שיווי משקל.

2.7 משפט השקילות שין אסטרטגיה השולטת חזק יחידה ושיווי משקל

משפט 2.3

אם הווקטור אסטרטגיות $s^*=(s_1^*,\dots,s_n^*)$ שיווי משקל נאש, אז אז הוא פתרון באסטרטגיות השולטות חזק.

הוכחה:

משפט זו אומר שאם הווקטור אסטרטגיות $s^*=(s_1^*,\dots,s_n^*)$ הוא שיווי משקל נאש, אז אומר אסטרטגיות משפט זו אומר אסטרטגיות הנשלטות חזק.

נוכיח את הטענה דרך השלילה.

נניח כי (s_1^*,\dots,s_n^*) שיווי משקל נאש אבל הוא לא פתרון באסטרטגיות שולטות חזק. אם כן אז תהי s_i^* האסטרטגיה הראשונה שיורדת בתהליך סילוק חוזר.

כלומר היימת אסטרטגיה $t_i \in S_i$ אשר אסטרטגיה ז"א קיימת

$$u_i(s_1, \dots, s_i^*, \dots, s_n) < u_i(s_1, \dots, t_i, \dots, s_n)$$
 (#1)

. לכל בתהליך אשר עדיין נשארות $s_1, \ldots, s_{i-1}, s_{i+1}, \ldots, s_n$ לכל

בפרט, מכיוון שהאסטרטגיות $s_i^*,\dots,s_{i-1}^*,s_{i+1}^*,\dots,s_n^*$ עדיין נשארות מחיקת אסטרטגיות בפרט, מכיוון שהאסטרטגיות לפי (#1) מתקיים

$$u_i(s_1^*, \dots, s_i^*, \dots, s_n^*) < u_i(s_1^*, \dots, t_i, \dots, s_n^*)$$
 (#2)

בסתירה לכך ש $s^*=(s_1^*,\ldots,s_n^*)$ הוא שיווי משקל.

משפט 2.4

אם ווקטור אסטרטגיות s^* אז השיווי משקל $s^*=(s_1^*,\dots,s_n^*)$ הוא השיווי משקל הוקטור אסטרטגיות אסטרטגיות השיווי משקל.

הובחה: נוכיח את הטענה דרך השלילה.

נניח כי (s_1^*,\dots,s_n^*) הוא הווקטור אסטרטגיות היחיד שנשאר אחרי סילוק חוזר, אבל הוא לא שיווי משקל. אם כי אז בהכרח קיימת אסטרטגיה s_i של שחקן עבורה

$$u_i(s_1^*, \dots, s_i^*, \dots, s_n^*) < u_i(s_1^*, \dots, s_{i-1}^*, s_i, s_{i+1}^*, \dots, s_n^*)$$
 (*1)

. האסטרטגיה s_i נמחקה במהלך התהליך סילוק

לכן היימת אסטרטגיה אשר אשר אשר s_i^\prime אסטרטגיה קיימת לכן בהכרח לכן לכן א

$$u_i(s_1, \dots, s_i, \dots, s_n) < u_i(s_1, \dots, s_i', \dots, s_n)$$
 (*2)

. לכל אסטרטגיות בתהליך סילוק אשר $s_1,\ldots,s_{i-1},s_{i+1},\ldots s_n$ לכל

 s_i^* נשארות בתהליך אפילו אחרי שהורדנו $\left(s_1^*,\dots,s_{i-1}^*,s_{i+1}^*,\dots,s_n^*
ight)$ נשארות בתרט, האסטרטגיות לכן, לפי

$$u_i(s_1^*, \dots, s_i, \dots, s_n^*) < u_i(s_1^*, \dots, s_i', \dots, s_n^*)$$
 (*3)

.(*1) אם $s_i' = s_i^*$ אז (*3) אם $s_i' = s_i^*$

 s_i' -ב שולטת שולטת אסטרטגיה אחרת s_i'' אשר אסטרטגיה אסטרטגיה לכן במקום (2*) ו- (3*) (**) לכן במקום

$$u_i(s_1, \dots, s'_i, \dots, s_n) < u_i(s_1, \dots, s''_i, \dots, s_n)$$
 (*2')

$$u_i(s_1^*, \dots, s_i', \dots, s_n^*) < u_i(s_1^*, \dots, s_i'', \dots, s_n^*)$$
 (*3')

.(*1) אם $s_i''=s_i^*$ אז (*1). אם אז התהליך ממשיך עד שנגיע לסתירה ל- (*1). אם אז (*3) אז (*3)