10/25/00

Docket No. ISPH-0518

Total Pages in this Submission

UTILITY PATENT APPLICATION TRANSMITTAL (Small Entity)

(Only for new nonprovisional applications under 37 CFR 1.53(b))

TO THE ASSISTANT COMMISSIONER FOR PATENTS Box Patent Application

Washington, D.C. 20231

					wasiiiigioi	i, D.C. 2023 i		:
Transmitted	herewith	for f	iling under 35	u.s	.C. 111(a) and	37 C.F.R. 1.53	(b) is a new utility patent a	pplication for an
nvention ent								pplication for an
ANTISEN	SE MOI	ULA	ATION OF T	NFRI	EXPRESSION	I		<u> </u>
and invented	by:							
Baker et a	l.							
If a CONTIN	IUATION	I AP	PLICATION,	chec	k appropriate b	ox and supply	the requisite information:	
☐ Contin	uation		Divisional	\boxtimes	Continuation	-in-part (CIP)	of prior application No.:	PCT/US99/13763
Which is a:								
☐ Contin	uation		Divisional		Continuation	-in-part (CIP)	of prior application No.:	
Which is a:		_						
☐ Contin	uation	П	Divisional	Ш	Continuation	-in-part (CIP)	of prior application No.:	
Enclosed an								
Enclosed an	€.				Application	n Elements		
1. 🗵 🛭	Hiling fee	as c	calculated and	d trar	smitted as des	cribed below		
2. 🗵 🤄	Specifica	tion	having		70	pages and i	ncluding the following:	
а. [⊠ Des	crinti	ive Title of the	. Inv	ention			
						(if applicable)		
					ed Applications			
			•				evelopment (if applicable)	
d. [opendix (if appl	icable)		
е. (⊠ Bac	kgro	und of the Inv	entic	n			
f. G	⊠ Brie	f Sur	mmary of the	Inve	ntion			
g. (☐ Brie	f Des	scription of th	e Dra	awings (if drawi	ings filed)		
h. (⊠ Deta	ailed	Description					
i. G	⊠ Clai	m(s)	as Classified	Belo	w			
i 6	XI Δhe	tract	of the Disclo	euro				

UTILITY PATENT APPLICATION TRANSMITTAL (Small Entity)

Docket No. ISPH-0518

(Only for new nonprovisional applications under 37 CFR 1.53(b))

Total Pages in this Submission

						Applica	tion E	lement	s (Cor	tinue	d)
3.		Dra	wing(s) (wher	ı nec	essa	ry as pres	cribed	by 35 U	ISC 11	3)	
	а	. 🗆	Formal	b.		Informal		Numbe	r of Sh	eets	
4.	×	Oat	th or Declaration	ən							
	a		Newly execu	ted (origii	nal or copy)	⊠ Ui	nexec	⊔ted	
	b.		Copy from a	prior	appl	ication (37	CFR	1.63(d))	(for co	ntinuat	fion/divisional application only)
	C.	×	With Power of	of Att	orne	y 🗆	Witho	ut Powe	r of At	torney	
	d.		DELETION (Signed state) see 37 C.F.F	ment	atta	ched delet	ing inv 3(b).	entor(s)	name	d in th	e prior application,
5.		The Box	orporation By F entire disclos 4b, is consider prorated by re	ure o derec	of the	prior appl being par	ication	i, from w	hich a	copy of the	of the oath or declaration is supplied under accompanying application and is hereby
6.		Con	nputer Progran	n in I	Micro	fiche					
7.	×	Gen	etic Sequence	Sub	miss	ion (if app	licable	, all mus	st be in	clude	d)
	a.	×	Paper Copy								
	b.	\boxtimes	Computer Re	adab	le C	ору					
	C.	X	Statement Ve	rifyin	ıg Ide	entical Pap	er and	l Compu	ıter Re	adable	е Сору
						Accom	anyin	g Appli	cation	Parts	;
8.		Assi	gnment Paper	s (cc	ver s	heet & do	cumen	nts)			
9.		37 C	FR 3.73(b) St	atem	ent (when ther	e is an	assigne	ee)		
10.		Engl	ish Translation	1 Doc	cume	nt <i>(if appli</i>	cable)				
11.		Infor	mation Disclos	sure :	State	ment/PTC)-1449		Copi	es of II	DS Citations
12.		Preli	minary Amend	men	t						
3.	X	Ackn	owledgment p	ostca	ard						
4.	X	Certif	ficate of Mailin	g							
			First Class [X	Expr	ess Mail (Specify	/ Label N	Vo.):]	EL550	127847US

UTILITY PATENT APPLICATION TRANSMITTAL (Small Entity)

Docket No. ISPH-0518

(Only for new nonprovisional applications under 37 CFR 1.53(b))

Total Pages in this Submission

		Accompanying Application Parts (Continued)
15.		Certified Copy of Priority Document(s) (If foreign priority is claimed)
16.	×	Small Entity Statement(s) - Specify Number of Statements Submitted:
17.		Additional Enclosures (please identify below):
		Request That Application Not Be Published Pursuant To 35 U.S.C. 122(b)(2)
18.		Pursuant to 35 U.S.C. 122(b)(2), Applicant hereby requests that this patent application not be published pursuant to 35 U.S.C. 122(b)(1). Applicant hereby certifies that the invention disclosed in this application has not and will not be the subject of an application filed in another country, or under a multilateral international agreement, that requires publication of applications 18 months after filing of the application.
		Warning
		An applicant who makes a request not to publish, but who subsequently files in a foreign country or under a multilateral international agreement specified in 35 U.S.C. 122(b)(2)(B)(i),

An applicant who makes a request not to publish, but who subsequently files in a foreign country or under a multilateral international agreement specified in 35 U.S.C. 122(b)(2)(B)(i), must notify the Director of such filing not later than 45 days after the date of the filing of such foreign or international application. A failure of the applicant to provide such notice within the prescribed period shall result in the application being regarded as abandoned, unless it is shown to the satisfaction of the Director that the delay in submitting the notice was unintentional.

UTILITY PATENT APPLICATION TRANSMITTAL (Small Entity)

(Only for new nonprovisional applications under 37 CFR 1.53(b))

Docket No. ISPH-0518

Total Pages in this Submission

Fee

Fee Calculation and Transmittal

#Extra

CLAIMS AS FILED

#Allowed

Total Claims	24	- 20 =	4	x	\$9.00	\$36.00
Indep. Claims	1	- 3 =	0	x	\$40.00	\$0.00
Multiple Dependent (Claims (check in	fapplicable)]			\$0.00
					BASIC FEE	\$355.00
OTHER FEE (specif	y purpose)					\$0.00
					TOTAL FILING FEE	\$391.00

A check in the amount of

For

\$391.00

to cover the filing fee is enclosed.

The Commissioner is hereby authorized to charge and credit Deposit Account No. as described below. A duplicate copy of this sheet is enclosed.

#Filed

12-1086

Charge the amount of

as filing fee.

- Credit any overpayment.
- □ Charge any additional filling fees required under 37 C.F.R. 1.16 and 1.17.
- ☐ Charge the issue fee set in 37 C.F.R. 1.18 at the mailing of the Notice of Allowance, pursuant to 37 C.F.R. 1.311(b).

Dated: October 24, 2000

Rate

Kathleen A. Tyrrell Reg. No. 38,350

Law Offices of Jane Massey Licata

66 E. Main Street Marlton, NJ 08053

Tel: 856-810-1515 Fax: 856-810-1454

CC:

	Not y	et assigned.	Herewith	r diei il 170.	lssue Date
i	Patentee:	Baker et al.			<u> </u>
	invention:	Antiscuse Modu	latioa of TNFR1 Expression		
	I hereby de	eclare that I am:			
AND REAL PROPERTY AND REAL PROPERTY.	Q ti ⊠ a	he owner of the sr in official of the sn	nali business concern identifica nali business concern empower	below: ed to act on behalf of the conc	ern identified below:
1	NAME OF	CONCERN: Isis	Phurmacouricals, Tue.		
Sec.			2292 Faraday Avenus, Carisbad		
The state of the s	of Title 35, not exceed average ov basis durin directly or it has the pov	United States Co 500 persons. Fo et the previous fi g each of the pa ndirectly, one con ver to control both	de, in that the number of employers of this statement, (1 says year of the concern of the year at the power controls or has the power of the fiscal year, at cern controls or has the power of the fiscal year.	indexin qualifies as a small busi poses of paying reduced flags i types of the concern, including the number of employees of persons employed on a full-bi- nd (2) concerns are stillates to to control the other, or a third	Inder Section 41(a) and (b) those of its affiliates, dose the business concern is the me, part-time or temporary of each other when either, party or parties controls or
15.0	I hereby de identified at	clare that rights u cove with regard t	nder contract or law have been o the aboye identified invention	conveyed to and remain with t described in:	he amali businese concern
1	図	the specification	filed horewith with title as listed	above,	
١		the application id	ientilied above.		
١	디	the patent identi	fied above.		
	derson, othe	of them the leaves	inn and the second	concern are not exclusive, ex- ext page and no rights to the un independent inventor under un under 37 CFR 1.9(d) or a no	IDVERTION are held by any

ISIS PATENT GROUP

ISIS PATENT CROUP

VERIFIED STATEMENT (DECLARATION) CLAIMING SMALL ENTITY

STATUS (37 CFR 1.9(f) AND 1.27 (c)) - SMALL BUSINESS CONCERN

Filing Date

→ LICATA

Patent No.

1760 931 0285

17686033828

PRINTERN TRADSMERK CERCE-U.S. BEPARTMENT OF COMMERCE

Ø1001

Ø 002

P.Ø2 Page 1 of 2

Docket No.

ISPH-0518

Issue Date

2/ 3

10/23/00 15:30 FAX 760 603 3820

Serial No.

19-23-00:12:35PM; | s/s - S Crooke

10/20/00 11:48 FAX 760 603 3820 I OCT-22-2020 12:39 FROM LAW OFFICES

0
91
4
u
100
Ú
Sale
Ξ
- Same
115
1 25
100
100 %
100

		0 603 3820	IS	IS PATENT	GROUP →	LICATA		Ø 002
10-23-00:1	2:36PM; 6	818 - 8 CFC	oke	•		:760 83	1 0285	# 3
20/22-11:4 0c1-20-20:0	9 FAX 760	603 3820 FROM LAL	IS LOFFICES	IS PATENT (ROUP To	1760	6033820	Ø 003 F. Ø3
								Page 2 of
bnu mitisgildo is on 🖾	er confract o uch person,	or law to assi . concern or o	n to which i i ign, grant, con organization ex or organization	ivey, or licens xists.	d, granted, conv e any rights in the	eyed, or lid a invention	censed or a	am under er cw:
÷ULL NAME	audi persu	и, сопрын с	i organization	is used bein	rv.			
ADDRESS								
		Individual		Small Pusines	a Concern		Nonprofit O	ganization
FULL NAME								_
ADDRESS								
		Individual		Small Busines	e Concern		Nonprofit O	ganization
FULL NAME								
ADDRESS .		Individual						
		individual .	u	Small Busines	a Concern		Nonprone D	ganization
FULL NAME ADDRESS								
- DD14LGG		Individual		Small Eugine	S Concern		Nonprefit O	oranization
invention ave	rring to their e the duty : o amail ent	to file, in thi	nali entities. (3 s application for to paylog	orpatent, no orpatent, no	erson, concern lification of any o me of paying, fi nilty is no longer;	change in s	status resu	iting in loss o
entitiement to								
entitisment to maintenance I hereby deci- information a willful false si Tile 18 of the	lare that ell nd belief an latements a United Sta	e believed to ind the like a ites Code, an	o be true; and o made are p id that such w	further that t unishable by illful false sta	nowledge are tru hese statements fine or Imprisonn tements may jeop stement is directe	were made nent, or bot	with the k	nowledge th
entitisment to maintenance I hereby deci- information a willful false si Tile 18 of the	are that all no belief an atements a United Sta atling thereo	e believed to ind the like a ites Code, an in, or any pat	o be true; and o made are p id that such w	furither that t unishable by illful false sta his verified ab	hese statements fine or Imprisonn tements may lecu	were made nent, or bot	with the k	nowledge th
entitiement to maintenance I hereby declinformation a willful false st Title 18 of the any patent iss	are that ell nd belief an atements a United Sta suing thereo	e believed to ind the like a ites Code, an in, or any pat ling:	o be true; and o made are p nd that such w tant to which th	furither that t unishable by illful false sta his verified ab	hese statements fine or Imprisonn tements may lecu	were made nent, or bot	with the k	nowledge th
entitiement to maintenance I hereby deci- information a writful false st Title 18 of the any patent iss	iare that all and belief an interests a united Statistical Statist	e believed to ind the like a ites Code, an in, or any pat ling:	o be true; and o made are p nd that such w tant to which th	further that t unishable by illful false sta his verified at sball	hese statements fine or Imprisonn tements may lecu	were made nent, or bot	with the k	nowledge th
entitlement to maintenance 1 hereby deci information a willful faise st Title 18 of the any patent issenance. NAME OF PERTITLE OF PERTIT	are that all nd belief an atements a a United Sta ating thereo RSON SIGN CONNER;	e believed to nd the like s des Code, en on, or any pat line:	to be true; and to made are p ad that such w tent to which the	further that t unishable by unishable by illiul false sta his verified at shau co President	hese statements fine or Imprisonn tements may lecu	were made nent, or bot	with the k	nowledge th
entitlement to maintenance I hereby deci information a wilful faise at Title 18 of the any patent less than the company of the thing of the any patent less than the company of the compa	are that all nd belief an atements a a United Sta ating thereo RSON SIGN CONNER;	e believed to nd the like s des Code, en on, or any pat line:	be true; and to made are p to made are to made are to that such w ant to which th B. Lynne Par Executive Via Isle Pharmace	further that t unishable by unishable by illiul false sta his verified at shau co President	hese statements fine or Imprisonn tements may lecu	were made nent, or bot	with the k	nowledge th
entitlement to maintenance I hereby deci information a wilful faise at Title 18 of the any patent less than the company of the thing of the any patent less than the company of the compa	are that all nd belief an atements a a United Sta ating thereo RSON SIGN CONNER;	e believed to nd the like s des Code, en on, or any pat line:	be true; and to made are p to made are to made are to that such w ant to which th B. Lynne Par Executive Via Isle Pharmace	further that t unishable by unishable by inis verified at shau co President outicals, Inc. scarch Center	hese statements fine or Imprisonn tements may lecu	were made nent, or bot	with the k	nowledge th
entitlement to maintenance I hereby deci information a wilful faise at Title 18 of the any patent less than the company of the thing of the any patent less than the company of the compa	are that all nd belief an atements a a United Sta ating thereo RSON SIGN CONNER;	e believed to nd the like s des Code, en on, or any pat line:	be true; and the true; and the true;	further that t unishable by unishable sta his verified at shau co President outseals, Inc. search Center y Avenue	hese statements fine or Imprisonn tements may lecu	were made nent, or bot	with the k	nowledge th
entitlement to maintenance I hereby deci information a wilful faise at Title 18 of the any patent less than the company of the thing of the any patent less than the company of the compa	are that all nd belief an atements a a United Sta ating thereo RSON SIGN CONNER;	e believed to nd the like s des Code, en on, or any pat line:	be true; and o made are p and that such which the street of the street o	further that t unishable by unishable sta his verified at shau co President outseals, Inc. search Center y Avenue	hese statements fine or Imprisonn tements may lecu	were made nent, or bot	with the k	nowledge th
entitlement to maintenance I hereby deci information a wilful faise at Title 18 of the any patent less than the company of the thing of the any patent less than the company of the compa	are that all nd belief an belief and	e believed to nd the like s des Code, en on, or any pat line:	be true; and o made are p and that such which the street of the street o	further that t unishable by unishable sta his verified at shau co President outseals, Inc. search Center y Avenue	hese statements fine or Imprisonn tements may lecu	were made not be needed to be needed.	e with the kith, under S validity of t	nowledge th
entitlement in maintenance I hereby declinformation a wilful false st Tille 18 of the any patent less NAME OF PER ITTLE OF PER OTHER THAN ADDRESS OF	are that all nd belief an belief and	e believed to nd the like s des Code, en on, or any pat line:	be true; and o made are p and that such which the street of the street o	further that t unishable by unishable sta his verified at shau co President outseals, Inc. search Center y Avenue	iese statements fine of Imprisoni tements may jeor atement is directs	were made nent, or bot	e with the kith, under S validity of t	nowledge th

CERTIFICATE OF EXPRESS MAILING

"Express Mail" Label No.EL550127847US Date of Deposit OCTOBER 24, 2000

I hereby certify that this paper is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 C.F.R 1.10 on the date indicated above and is addressed to the "BOX SEQUENCE", Assistant Commissioner for Patents, Washington, D.C. 20231.

- 1) Patent Application Transmittal Letter (2 copies);
- Application consisting of 70 pages of Specification, including three (3) pages of Claims, and one (1) page of Abstract;
- 3) Return Post Card;
- 4) Check in the amount of \$391.00;
- 5) Verified Statement Claiming Small Entity Status;
- 6) Unexecuted Declaration and Power of Attorney;
- 7) Statement to Support Filing and Submission in Accordance with 37 C.F.R. §§1.821-1.825;
- 8) Sequence listing; and
- Diskette containing computer readable copy of Sequence Listing.

KATHUR A. TYRKELL

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Attorney Docket No.:

ISPH-0518

Inventors:

Baker et al.

Serial No.:

Not yet assigned.

Filing Date:

Herewith

Examiner:

Not yet assigned.

Group Art Unit:

Not yet assigned.

Title:

Antisense Modulation of TNFR1 Expression

"Express Mail" Label No. EL550127847US Date of Deposit October 24, 2000

I hereby certify that this paper is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 3 CFR 1.10 on the date indicated above and is addressed to the Assistant Commissioner for Patents, Washington, D.C. 20231,

By <u>Northless A. Tyrel</u> Typed Name: Kathleen A. Tyrell

BOX SEQUENCE

Assistant Commissioner for Patents

Washington, D.C. 20231

Sir:

STATEMENT TO SUPPORT FILING AND SUBMISSION IN ACCORDANCE WITH 37 CFR §§ 1.821 THROUGH 1.825

- (XX) I hereby state, in accordance with the requirements of 37 C.F.R. §1.821(f), that the contents of the paper and computer readable copies of the Sequence Listing, submitted in accordance with 37 CFR §1.821(c) and (e), respectively are the same.
- () I hereby state that the submission filed in accordance with 37 CFR §1.821(g) does not include new matter.

- I hereby state that the submission filed in accordance with 37 CFR \$1.821(h) does not include new matter or go beyond the disclosure in the international application as filed.
- () I hereby state that the amendments, made in accordance with 37 CFR \$1.825(a), included in the substitute sheet(s) of the Sequence Listing are supported in the application, as filed, at pages ____. I hereby state that the substitute sheet(s) of the Sequence Listing does not include new matter.
- I hereby state that the substitute copy of the computer readable form, submitted in accordance with 37 CFR §1.825(b), is the same as the amended Sequence Listing.
- I hereby state that the substitute copy of the computer readable form, submitted in accordance with 37 CFR \$1.825(d), contains identical data to that originally filed.

Respectfully submitted,

Kathleen A. Tyrrell

Registration No. 38,350

Date: October 24, 2000

Law Offices of JANE MASSEY LICATA 66 E. Main Street Marlton, New Jersey 08053

(856) 810-1515

ISPH-0518 PATENT

ANTISENSE MODULATION OF THER1 EXPRESSION

This application is a continuation-in-part of PCT/US99/13763 filed June 17, 1999 which claims priority to US Application Serial No. 09/106,038 filed June 26, 1998, now 5 issued as U.S. Patent No. 6.007.995.

FIELD OF THE INVENTION

The present invention provides compositions and methods of modulating the expression of TNFR1. In particular, this invention relates to antisense compounds, particularly 10 oligonucleotides, specifically hybridizable with nucleic acids encoding human TNFR1. Such oligonucleotides have been shown to modulate the expression of TNFR1.

BACKGROUND OF THE INVENTION

One of the principal mechanisms by which cellular regulation is effected is through the transduction of extracellular signals into intracellular signals that in turn modulate blochemical pathways. Examples of such extracellular signaling molecules include growth factors, cytokines, and chemokines. The cell surface receptors of these molecules and their associated signal transduction pathways are therefore one of the principal means by which cellular behavior is regulated. Because cellular phenotypes are largely influenced by the activity of these pathways, it is currently believed that a number of disease states and/or disorders are a result of either aberrant activation or functional mutations in the molecular components of signal transduction pathways.

For example, the polypeptide cytokine tumor necrosis factor (TNF) is normally produced during infection, injury, or invasion where it serves as a pivotal mediator of the 30 inflammatory response. In recent years, a number of in vivo

DEPOS LIVERS

animal and human studies have demonstrated that overexpression TNF by the host in response to disease and infection is itself responsible for the pathological consequences associated with the underlying disease. For example, septic shock as a result 5 of massive bacterial infection has been attributed to infection-induced expression of TNF. Thus, systemic exposure to TNF at levels comparable to those following massive bacterial infection has been shown to result in a spectrum of symptoms (shock, tissue injury, capillary leakage, hypoxia, 10 pulmonary edema, multiple organ failure, and high mortality rate) that is virtually indistinguishable from septic shock syndrome. Tracey, 1994, Ann. Rev. Med. 45, 491-503. evidence has been provided in animal models of septic shock, in which it has been demonstrated that systemic exposure to 15 anti-TNF neutralizing antibodies block bacterial-induced sepsis. Tracey, 1994, Ann. Rev. Med. 45, 491-503. In addition to these acute effects, chronic exposure to low-dose TNF, results in a syndrome of cachexia marked by anorexia, weight loss, dehydration, and depletion of whole-body protein and Chronic production of TNF has been implicated in a 20 lipid. number of diseases including AIDS and cancer. Tracey, 1994, Ann. Rev. Med. 45, 491-503. To date, two distinct TNF cells surface receptors, known as TNFR1 and TNFR2, have been described. Molecular analysis of TNFR1 and TNFR2 have shown 25 that the two receptors share little homology in their intracellular domains and appear to activate distinct intracellular pathways. Tracey, 1994, Ann. Rev. Med. 45, 491-503.

Recent studies with transgenic TNFR1 knockout mice have 30 demonstrated that signalling through TNFR1 plays an important role in the clearing of low-level bacterial infection as well as TNF-induced septic shock following high-level bacterial infection. Lotz, 1996, J. Leukoc. Biol., 60, 1-7. These findings indicate that compositions of matter which can

inhibit signalling through the TNFR1 receptor may serve as useful targets for inhibition of TNF induced toxicities such as septic shock.

Antisense oligonucleotide inhibition of TNFR1 has proven 5 to be a useful tool in understanding the role of TNFR1 stimulation in cytokine induction and cell proliferation. Ojwang et. al. have disclosed partial phosphothicate antisense oligodeoxynucleotides contaning C-5 propynyl or hexynyl derivatives of 2'-deoxyuridine which caused attenuation of 10 TNFR1 mRNA and protein and inhibited TNF-alpha induced expression of IL-6 in MRC-5 cells. Ojwang, 1997, Biochemistry, 36, 6033-6045. These oligonucleotides were targeted to the poly (A) signal site of TNFR1 mRNA. A uniform phosphorothioate oligonucleotide targeted to the translation 15 initiation codon of TNFR1 was found to have no effect.

There remains a long-felt need for improved compositions and methods for inhibiting TNFR1 gene expression.

SUMMARY OF THE INVENTION

DOBOSTST. IOSTOD

The present invention is directed to antisense 20 compounds, particularly oligonucleotides, which are targeted to a nucleic acid encoding TNFR1, and which modulate the expression of TNFR1. Pharmaceutical and other compositions comprising the antisense compounds of the invention are also provided. Further provided are methods of modulating the 25 expression of TNFR1 in cells or tissues comprising contacting said cells or tissues with one or more of the antisense compounds or compositions of the invention. Further provided are methods of treating an animal, particularly a human, suspected of having or being prone to a disease or condition 30 associated with expression of TNFR1 by administering a therapeutically or prophylactically effective amount of one or more of the antisense compounds or compositions of the invention

DOMEST TOPHOD

DETAILED DESCRIPTION OF THE INVENTION

The present invention employs oligomeric antisense compounds, particularly oligonucleotides, for use modulating the function of nucleic acid molecules encoding 5 TNFR1, ultimately modulating the amount of TNFR1 produced. This is accomplished by providing antisense compounds which specifically hybridize with one or more nucleic acids encoding TNFR1. As used herein, the terms "target nucleic acid" and "nucleic acid encoding TNFR1" encompass DNA encoding TNFR1, 10 RNA (including pre-mRNA and mRNA) transcribed from such DNA, and also cDNA derived from such RNA. The specific hybridization of an oligomeric compound with its target nucleic acid interferes with the normal function of the nucleic acid. This modulation of function of a target nucleic 15 acid by compounds which specifically hybridize to it is generally referred to as "antisense." The functions of DNA to be interfered with include replication and transcription. The functions of RNA to be interfered with include all vital functions such as, for example, translocation of the RNA to 20 the site of protein translation, translation of protein from the RNA, splicing of the RNA to yield one or more mRNA species, and catalytic activity which may be engaged in or facilitated by the RNA. The overall effect of such interference with target nucleic acid function is modulation 25 of the expression of TNFR1. In the context of the present invention, "modulation" means either an increase (stimulation) or a decrease (inhibition) in the expression of a gene. In the context of the present invention, inhibition is the preferred form of modulation of gene expression and mRNA is a preferred 30 target.

It is preferred to target specific nucleic acids for antisense. "Targeting" an antisense compound to a particular nucleic acid, in the context of this invention, is a multistep process. The process usually begins with the identification of a nucleic acid sequence whose function is to be modulated.

DOMEST TOPHOO

This may be, for example, a cellular gene (or mRNA transcribed from the gene) whose expression is associated with a particular disorder or disease state, or a nucleic acid molecule from an infectious agent. In the present invention, 5 the target is a nucleic acid molecule encoding TNFR1. targeting process also includes determination of a site or sites within this gene for the antisense interaction to occur such that the desired effect, e.g., detection or modulation of expression of the protein, will result. Within the context 10 of the present invention, a preferred intragenic site is the region encompassing the translation initiation or termination codon of the open reading frame (ORF) of the gene. Since, as is known in the art, the translation initiation codon is typically 5'-AUG (in transcribed mRNA molecules; 5'-ATG in the 15 corresponding DNA molecule), the translation initiation codon is also referred to as the "AUG codon," the "start codon" or the "AUG start codon." A minority of genes have a translation initiation codon having the RNA sequence 5'-GUG, 5'-UUG or 5'-CUG, and 5'-AUA, 5'-ACG and 5'-CUG have been shown to 20 function in vivo. Thus, the terms "translation initiation codon" and "start codon" can encompass many codon sequences, even though the initiator amino acid in each instance is typically methionine (in eukaryotes) or formylmethionine (prokaryotes). It is also known in the art that eukaryotic and 25 prokaryotic genes may have two or more alternative start codons, any one of which may be preferentially utilized for translation initiation in a particular cell type or tissue, or under a particular set of conditions. In the context of the invention, "start codon" and "translation initiation 30 codon" refer to the codon or codons that are used in vivo to initiate translation of an mRNA molecule transcribed from a gene encoding TNFR1, regardless of the sequence(s) of such codons.

It is also known in the art that a translation 35 termination codon (or "stop codon") of a gene may have one of

CARANT TOOLEOU

three sequences, i.e., 5'-UAA, 5'-UAG and 5'-UGA (the corresponding DNA sequences are 5'-TAA, 5'-TAG and 5'-TGA, respectively). The terms "start codon region" and "translation initiation codon region" refer to a portion of such an mRNA or gene that encompasses from about 25 to about 50 contiguous nucleotides in either direction (i.e., 5' or 3') from a translation initiation codon. Similarly, the terms "stop codon region" and "translation termination codon region" refer to a portion of such an mRNA or gene that encompasses 10 from about 25 to about 50 contiguous nucleotides in either direction (i.e., 5' or 3') from a translation termination codon.

The open reading frame (ORF) or "coding region," which is known in the art to refer to the region between the 15 translation initiation codon and the translation termination codon, is also a region which may be targeted effectively. Other target regions include the 5' untranslated region (5'UTR), known in the art to refer to the portion of an mRNA in the 5' direction from the translation initiation codon, 20 and thus including nucleotides between the 5' cap site and the translation initiation codon of an mRNA or corresponding nucleotides on the gene) and the 3' untranslated region (3'UTR), known in the art to refer to the portion of an mRNA in the 3' direction from the translation termination codon, 25 and thus including nucleotides between the translation termination codon and 3' end of an mRNA or corresponding nucleotides on the gene). The 5' cap of an mRNA comprises an N7-methylated guanosine residue joined to the 5'-most residue of the mRNA via a 5'-5' triphosphate linkage. The 5' cap 30 region of an mRNA is considered to include the 5' cap structure itself as well as the first 50 nucleotides adjacent to the cap. The 5' cap region may also be a preferred target region.

Although some eukaryotic mRNA transcripts are directly 35 translated, many contain one or more regions, known as

DOSOSTAL TOPHOO

"introns," which are excised from a transcript before it is translated. The remaining (and therefore translated) regions are known as "exons" and are spliced together to form a continuous mRNA sequence. mRNA splice sites, i.e., intron-exon junctions, may also be preferred target regions, and are particularly useful in situations where aberrant splicing is implicated in disease, or where an overproduction of a particular mRNA splice product is implicated in disease. Aberrant fusion junctions due to rearrangements or deletions are also preferred targets. It has also been found that introns can also be effective, and therefore preferred, target regions for antisense compounds targeted, for example, to DNA or pre-mRNA.

Once one or more target sites have been identified,
15 oligonucleotides are chosen which are sufficiently
complementary to the target, i.e., hybridize sufficiently well
and with sufficient specificity, to give the desired effect.

In the context of this invention, "hybridization" means hydrogen bonding, which may be Watson-Crick, Hoogsteen or 20 reversed Hoogsteen hydrogen bonding, between complementary nucleoside or nucleotide bases. For example, adenine and thymine are complementary nucleobases which pair through the formation of hydrogen bonds. "Complementary," as used herein, refers to the capacity for precise pairing between two 25 nucleotides. For example, if a nucleotide at a certain position of an oligonucleotide is capable of hydrogen bonding with a nucleotide at the same position of a DNA or RNA molecule, then the oligonucleotide and the DNA or RNA are considered to be complementary to each other at that position. 30 The oligonucleotide and the DNA or RNA are complementary to each other when a sufficient number of corresponding positions in each molecule are occupied by nucleotides which can hydrogen bond with each other. Thus, "specifically hybridizable" and "complementary" are terms which are used to

35 indicate a sufficient degree of complementarity or precise

DOMADL TOWACC

pairing such that stable and specific binding occurs between the oligonucleotide and the DNA or RNA target. It is understood in the art that the sequence of an antisense compound need not be 100% complementary to that of its target 5 nucleic acid to be specifically hybridizable. An antisense compound is specifically hybridizable when binding of the compound to the target DNA or RNA molecule interferes with the normal function of the target DNA or RNA to cause a loss of utility, and there is a sufficient degree of complementarity 10 to avoid non-specific binding of the antisense compound to non-target sequences under conditions in which specific binding is desired, i.e., under physiological conditions in the case of in vivo assays or therapeutic treatment, or in the case of in vitro assays, under conditions in which the assays 15 are performed.

Antisense compounds are commonly used as research reagents and diagnostics. For example, antisense oligonucleotides, which are able to inhibit gene expression with exquisite specificity, are often used by those of 20 ordinary skill to elucidate the function of particular genes. Antisense compounds are also used, for example, to distinguish between functions of various members of a biological pathway. Antisense modulation has, therefore, been harnessed for research use.

The specificity and sensitivity of antisense is also harnessed by those of skill in the art for therapeutic uses. Antisense oligonucleotides have been employed as therapeutic moieties in the treatment of disease states in animals and man. Antisense oligonucleotides have been safely and offectively administered to humans and numerous clinical trials are presently underway. It is thus established that oligonucleotides can be useful therapeutic modalities that can be configured to be useful in treatment regimes for treatment of cells, tissues and animals, especially humans.

OSSUELL LEFTON

In the context of this invention, the term "oligonucleotide" refers to an oligomer or polymer of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA) or mimetics thereof. This term includes oligonucleotides composed of naturally-occurring nucleobases, sugars and covalent internucleoside (backbone) linkages as well as oligonucleotides having non-naturally-occurring portions which function similarly. Such modified or substituted oligonucleotides are often preferred over native forms because of desirable properties such as, for example, enhanced cellular uptake, enhanced affinity for nucleic acid target and increased stability in the presence of nucleases.

While antisense oligonucleotides are a preferred form of antisense compound, the present invention comprehends other 15 oligomeric antisense compounds, including but not limited to oligonucleotide mimetics such as are described below. The antisense compounds in accordance with this invention preferably comprise from about 8 to about 30 nucleobases. Particularly preferred are antisense oligonucleotides 20 comprising from about 8 to about 30 nucleobases (i.e. from about 8 to about 30 linked nucleosides). As is known in the art, a nucleoside is a base-sugar combination. portion of the nucleoside is normally a heterocyclic base. The two most common classes of such heterocyclic bases are the 25 purines and the pyrimidines. Nucleotides are nucleosides that further include a phosphate group covalently linked to the sugar portion of the nucleoside. For those nucleosides that include a pentofuranosyl sugar, the phosphate group can be linked to either the 2', 3' or 5' hydroxyl moiety of the 30 sugar. In forming oligonucleotides, the phosphate groups covalently link adjacent nucleosides to one another to form a linear polymeric compound. In turn the respective ends of this linear polymeric structure can be further joined to form a circular structure, however, open linear structures are 35 generally preferred. Within the oligonucleotide structure,

the phosphate groups are commonly referred to as forming the internucleoside backbone of the oligonucleotide. The normal linkage or backbone of RNA and DNA is a 3' to 5' phosphodiester linkage.

Specific examples of preferred antisense compounds useful in this invention include oligonucleotides containing modified backbones or non-natural internucleoside linkages. As defined in this specification, oligonucleotides having modified backbones include those that retain a phosphorus atom in the backbone and those that do not have a phosphorus atom in the backbone. For the purposes of this specification, and as sometimes referenced in the art, modified oligonucleotides that do not have a phosphorus atom in their internucleoside backbone can also be considered to be oligonucleosides.

15 Preferred modified oligonucleotide backbones include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphortiesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates including 3'-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3'-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionophosphoramidates, thionophosphoramidates, thionophosphoramidates, and boranophosphates having normal 3'-5' linkages, 2'-5' linked analogs of these, and those having inverted polarity wherein the adjacent pairs of nucleoside units are linked 3'-5' to 5'-3' or 2'-5' to 5'-2'. Various salts, mixed salts and free acid forms are also included.

Representative United States patents that teach the preparation of the above phosphorus-containing linkages

30 include, but are not limited to, U.S. Patents: 3,687,808; 4,469,863; 4,476,301; 5,023,243; 5,177,196; 5,188,897; 5,264,423; 5,276,019; 5,278,302; 5,286,717; 5,321,131; 5,399,676; 5,405,939; 5,453,496; 5,455,233; 5,466,677; 5,476,925; 5,519,126; 5,536,821; 5,541,306; 5,550,111; 35 5,563,253; 5,571,799; 5,587,361; 5,625,050; and 5,697,248,

DOM DENKE INDIVE

certain of which are commonly owned with this application, and each of which is herein incorporated by reference.

Preferred modified oligonucleotide backbones that do not include a phosphorus atom therein have backbones that are 5 formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages. These include those having morpholino linkages (formed in part from 10 the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; methylene formacetvl thioformacetyl backbones; alkene containing backbones; sulfamate backbones; methyleneimino and methylenehydrazino 15 backbones; sulfonate and sulfonamide backbones; backbones; and others having mixed N, O, S and ${\rm CH_2}$ component parts.

Representative United States patents that teach the preparation of the above oligonucleosides include, but are not limited to, U.S. Patents: 5,034,506; 5,166,315; 5,185,444; 5,214,134; 5,216,141; 5,235,033; 5,264,562; 5,264,564; 5,405,938; 5,434,257; 5,466,677; 5,470,967; 5,489,677; 5,541,307; 5,561,225; 5,596,086; 5,602,240; 5,610,289; 5,602,240; 5,608,046; 5,610,289; 5,618,704; 5,623,070; 5,663,312; 5,633,360; 5,677,437; and 5,677,439, certain of which are commonly owned with this application, and each of which is herein incorporated by reference.

In other preferred oligonucleotide mimetics, both the sugar and the internucleoside linkage, i.e., the backbone, of the nucleotide units are replaced with novel groups. The base units are maintained for hybridization with an appropriate nucleic acid target compound. One such oligomeric compound, an oligonucleotide mimetic that has been shown to have excellent hybridization properties, is referred to as a peptide nucleic acid (PNA). In PNA compounds, the sugar-

DESCRIPTION OF STREET

backbone of an oligonucleotide is replaced with an amide containing backbone, in particular an aminoethylglycine backbone. The nucleobases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone. Representative United States patents that teach the preparation of PNA compounds include, but are not limited to, U.S. Patents: 5,539,082; 5,714,331; and 5,719,262, each of which is herein incorporated by reference. Further teaching of PNA compounds can be found in Nielsen et al., Science, 10 1991, 254, 1497-1500.

Most preferred embodiments of the invention are oligonucleotides with phosphorothioate backbones and oligonucleosides with heteroatom backbones, and in particular -CH₂-NH-O-CH₂-, -CH₂-N(CH)₃-O-CH-₂ [known as a methylene (methylimino) or MMI backbone], -CH₂-O-N(CH₃)-CH₂-, -CH₂-N(CH₃)-N(CH₃)-CH₂- and -O-N(CH)-CH₃-CH-₂ [wherein the native phosphodiester backbone is represented as -O-P-O-CH₂-] of the above referenced U.S. patent 5,489,677, and the amide backbones of the above referenced U.S. Patent 5,602,240. Also preferred are oligonucleotides having morpholino backbone structures of the above-referenced U.S. Patent 5,034,506.

Modified oligonucleotides may also contain one or more substituted sugar moieties. Preferred oligonucleotides comprise one of the following at the 2' position: OH; F; O-, 25 S-, or N-alkyl, O-, S-, or N-alkenyl, O, S- or N-alkynyl, or O-alkyl-O-alkyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted C_1 to C_{10} alkyl or C_2 to C_{10} alkenyl and alkynyl. Particularly preferred are $O[(CH_2)_nO]_mCH_3$, O(CH2) DOCH3, O(CH2),NH2, O(CH₂)_nCH₃, O(CH2)nONH2, 30 $O(CH_2)_nON[(CH_2)_nCH_3)]_2$, where n and m are from 1 to about 10. Other preferred oligonucleotides comprise one of the following at the 2' position: C1 to C10 lower alkyl, substituted lower alkyl, alkaryl, aralkyl, O-alkaryl or O-aralkyl, SH, SCH3, OCN, Cl, Br, CN, CF3, OCF3, SOCH3, SO2CH3, ONO2, NO2, N3, NH2, 35 heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, poly-

alkylamino, substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving the pharmacokinetic properties of an oligonucleotide, or a group improving the pharmacodynamic properties of 5 oligonucleotide, and other substituents having similar A preferred modification includes properties. methoxyethoxy (2'-O-CH2CH2OCH3, also known as methoxyethyl) or 2'-MOE) (Martin et al., Helv. Chim. Acta, 1995, 78, 486-504) i.e., an alkoxyalkoxy group. A further 10 preferred modification includes 2'-dimethylaminooxyethoxy, i.e., a $O(CH_2)_2ON(CH_3)_2$ group, also known as 2'-DMAOE, as described in United States patent application Serial Number 09/016,520, filed on January 30, 1998, which is commonly owned with the instant application and the contents of which are 15 herein incorporated by reference.

Other preferred modifications include 2'-methoxy (2'-O- $\mathrm{CH_3})\,,$ 2'-aminopropoxy (2'-OCH2CH2CH2NH2) and 2'-fluoro (2'-F). Similar modifications may also be made at other positions on the oligonucleotide, particularly the 3' position of the sugar 3' terminal nucleotide or in 2'-5' oligonucleotides and the 5' position of 5' nucleotide. Oligonucleotides may also have sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar. Representative United States patents that teach the 25 preparation of such modified sugars structures include, but are not limited to, U.S. Patents: 4,981,957; 5,118,800; 5,319,080: 5,359,044; 5,393,878; 5,446,137; 5,466,786; 5,514,785; 5,519,134; 5,567,811; 5,576,427; 5,591,722; 5,597,909; 5,610,300; 5,627,0531 5,639,873; 5,646,265; 30 5,658,873; 5,670,633; and 5,700,920, certain of which are commonly owned with the instant application, and each of which is herein incorporated by reference, and U.S. Patent 5,859,221, which is commonly owned with the instant application and is also herein incorporated by reference.

35 Oligonucleotides may also include nucleobase (often

referred to in the art simply as "base") modifications or substitutions. As used herein, "unmodified" or "natural" nucleobases include the purine bases adenine (A) and quanine (G), and the pyrimidine bases thymine (T), cytosine (C) and 5 uracil (U). Modified nucleobases include other synthetic and natural nucleobases such as 5-methylcytosine (5-me-C), 5hydroxymethyl cytosine, xanthine, hypoxanthine, aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine 10 and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl and other 8-substituted adenines and quanines, 15 particularly 5-bromo, 5-trifluoromethyl and other substituted uracils and cytosines, 7-methylguanine and 7methyladenine, 8-azaquanine and 8-azaadenine, 7-deazaquanine and 7-deazaadenine and 3-deazaguanine and 3-deazaadenine. Further nucleobases include those disclosed in U.S. Patent 20 3,687,808, those disclosed in The Concise Encyclopedia Of Polymer Science And Engineering, pages 858-859, Kroschwitz, J.I., ed. John Wiley & Sons, 1990, those disclosed by Englisch et al., Angewandte Chemie, International Edition, 1991, 30, 613, and those disclosed by Sanghvi, Y.S., Chapter 15, 25 Antisense Research and Applications, pages 289-302, Crooke, S.T. and Lebleu, B. , ed., CRC Press, 1993. Certain of these nucleobases are particularly useful for increasing the binding affinity of the oligomeric compounds of the invention. These include 5-substituted pyrimidines, 6-azapyrimidines and N-2, 30 N-6 and O-6 substituted purines, including 2-aminopropyl-5-propynyluracil and 5-propynylcytosine. methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2°C (Sanghvi, Y.S.,

Crooke, S.T. and Lebleu, B., eds., Antisense Research and

Applications, CRC Press, Boca Raton, 1993, pp. 276-278) and are presently preferred base substitutions, even more particularly when combined with 2'-O-methoxyethyl sugar modifications.

Representative United States patents that teach the preparation of certain of the above noted modified nucleobases as well as other modified nucleobases include, but are not limited to, the above noted U.S. Patent 3,687,808, as well as U.S. Patents: 4,845,205; 5,130,302; 5,134,066; 5,175,273; 10 5,367,066; 5,432,272; 5,457,187; 5,459,255; 5,484,908; 5,502,177; 5,525,711; 5,552,540; 5,587,469; 5,594,121, 5,596,091; 5,614,617; and 5,681,941, certain of which are commonly owned with the instant application, and each of which is herein incorporated by reference, and U.S. Patent 5 5,750,692, which is commonly owned with the instant application and also herein incorporated by reference.

19635451 . 102400

Another modification of the oligonucleotides of the invention involves chemically linking to the oligonucleotide one or more moieties or conjugates which enhance the activity, 20 cellular distribution or cellular uptake oligonucleotide. Such moieties include but are not limited to lipid moieties such as a cholesterol moiety (Letsinger et al., Proc. Natl. Acad. Sci. USA, 1989, 86, 6553-6556), cholic acid (Manoharan et al., Bioorg. Med. Chem. Let., 1994, 4, 25 1053-1060), a thioether, e.g., hexyl-S-tritylthiol (Manoharan et al., Ann. N.Y. Acad. Sci., 1992, 660, 306-309; Manoharan et al., Bioorg. Med. Chem. Let., 1993, 3, 2765-2770), a thiocholesterol (Oberhauser et al., Nucl. Acids Res., 1992, 20, 533-538), an aliphatic chain, e.g., dodecandiol or undecyl 30 residues (Saison-Behmoaras et al., EMBO J., 1991, 10, 1111-1118; Kabanov et al., FEBS Lett., 1990, 259, 327-330; Svinarchuk et al., Biochimie, 1993, 75, 49-54), a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethylammonium 1,2-di-O-hexadecyl-rac-glycero-3-H-phosphonate

 (Manoharan et al., Tetrahedron Lett., 1995, 36, 3651-3654; Shea et al., Nucl. Acids Res., 1990, 18, 3777-3783), a polyamine or a polyethylene glycol chain (Manoharan et al., Nucleosides & Nucleotides, 1995, 14, 969-973), or adamantane acetic acid (Manoharan et al., Tetrahedron Lett., 1995, 36, 3651-3654), a palmityl moiety (Mishra et al., Biochim. Biophys. Acta, 1995, 1264, 229-237), or an octadecylamine or hexylamino-carbonyl-oxycholesterol moiety (Crooke et al., J. Pharmacol. Exp. Ther., 1996, 277, 923-937.

10 Representative United States patents that teach the preparation of such oligonucleotide conjugates include, but are not limited to, U.S. Patents: 4,828,979; 4,948,882; 5,218,105; 5,525,465; 5,541,313; 5,545,730; 5,552,538; 5,578,717, 5,580,731; 5,580,731; 5,591,584; 5,109,124; 15 5,118,802; 5,138,045; 5,414,077; 5,486,603; 5,512,439; 5,578,718; 5,608,046; 4,587,044; 4,605,735; 4,667,025; 4,762,779; 4,789,737; 4,824,941; 4,835,263; 4,876,335; 4,904,582; 4,958,013; 5,082,830; 5,112,963; 5,214,136; 5,082,830; 5,112,963; 5,214,136; 5,245,022; 5,254,469; 20 5,258,506; 5,262,536; 5,272,250; 5,292,873; 5,317,098; 5,371,241, 5,391,723; 5,416,203, 5,451,463; 5,510,475; 5,512,667; 5,514,785; 5,565,552; 5,567,810; 5,574,142; 5,585,481; 5,587,371; 5,595,726; 5,597,696; 5,599,923; 5,599,928 and 5,688,941, certain of which are commonly owned 25 with the instant application, and each of which is herein incorporated by reference.

It is not necessary for all positions in a given compound to be uniformly modified, and in fact more than one of the aforementioned modifications may be incorporated in a single compound or even at a single nucleoside within an oligonucleotide. The present invention also includes antisense compounds which are chimeric compounds. "Chimeric" antisense compounds or "chimeras," in the context of this invention, are antisense compounds, particularly

oligonucleotides, which contain two or more chemically distinct regions, each made up of at least one monomer unit, i.e., a nucleotide in the case of an oligonucleotide compound. These oligonucleotides typically contain at least one region 5 wherein the oligonucleotide is modified so as to confer upon oligonucleotide increased resistance to degradation, increased cellular uptake, and/or increased binding affinity for the target nucleic acid. An additional region of the oligonucleotide may serve as a substrate for 10 enzymes capable of cleaving RNA:DNA or RNA:RNA hybrids. way of example, RNase H is a cellular endonuclease which cleaves the RNA strand of an RNA: DNA duplex. Activation of RNase H, therefore, results in cleavage of the RNA target, thereby greatly enhancing the efficiency of oligonucleotide 15 inhibition of gene expression. Consequently, comparable results can often be obtained with shorter oligonucleotides when chimeric oligonucleotides are used, compared to phosphorothicate deoxyoligonucleotides hybridizing to the same target region. Cleavage of the RNA target can be routinely 20 detected by gel electrophoresis and, if necessary, associated nucleic acid hybridization techniques known in the art.

Chimeric antisense compounds of the invention may be formed as composite structures of two or oligonucleotides, modified oligonucleotides, oligonucleosides 25 and/or oligonucleotide mimetics as described above. compounds have also been referred to in the art as hybrids or gapmers. Representative United States patents that teach the preparation of such hybrid structures include, but are not limited to, U.S. Patents: 5,013,830; 5,149,797; 5,220,007; 30 5,256,775; 5,366,878; 5,403,711; 5,491,133; 5,565,350; 5,623,065; 5,652,355; 5,652,356; and 5,700,922, certain of which are commonly owned with the instant application, and each of which is herein incorporated by reference, and U.S. Patent 5,955,589 which is commonly owned with the instant 35 application and also herein incorporated by reference.

by reference.

The antisense compounds used in accordance with this invention may be conveniently and routinely made through the well-known technique of solid phase synthesis. Equipment for such synthesis is sold by several vendors including, for 5 example, Applied Biosystems (Foster City, CA). Any other means for such synthesis known in the art may additionally or alternatively be employed. It is well known to use similar techniques to prepare oligonucleotides such as the phosphorothioates and alkylated derivatives.

The antisense compounds of the invention are synthesized in vitro and do not include antisense compositions of biological origin, or genetic vector constructs designed to direct the in vivo synthesis of antisense molecules.

The compounds of the invention may also be admixed,

15 encapsulated, conjugated or otherwise associated with other
molecules, molecule structures or mixtures of compounds, as
for example, liposomes, receptor targeted molecules, oral,
rectal, topical or other formulations, for assisting in
uptake, distribution and/or absorption. Representative United

20 States patents that teach the preparation of such uptake,

distribution and/or absorption assisting formulations include, but are not limited to, U.S.Patents: 5,108,921; 5,354,844; 5,416,016; 5,459,127; 5,521,291; 5,543,158; 5,547,932; 5,583,020; 5,591,721; 4,426,330; 4,534,899; 5,013,556; 25 5,108,921; 5,213,804; 5,227,170; 5,264,221; 5,356,633; 5,395,619; 5,416,016; 5,417,978; 5,462,854; 5,469,854; 5,512,295; 5,527,528; 5,534,259; 5,543,152; 5,556,948; 5,580,575; and 5,595,756, each of which is herein incorporated

The antisense compounds of the invention encompass any pharmaceutically acceptable salts, esters, or salts of such esters, or any other compound which, upon administration to an animal including a human, is capable of providing (directly or indirectly) the biologically active metabolite or residue thereof. Accordingly, for example, the disclosure is also

DORDERST TOPHOD

drawn to prodrugs and pharmaceutically acceptable salts of the compounds of the invention, pharmaceutically acceptable salts of such prodrugs, and other bioequivalents.

The term "prodrug" indicates a therapeutic agent that

5 is prepared in an inactive form that is converted to an active
form (i.e., drug) within the body or cells thereof by the
action of endogenous enzymes or other chemicals and/or
conditions. In particular, prodrug versions of the
oligonucleotides of the invention are prepared as SATE

10 [(S-acetyl-2-thioethyl) phosphate] derivatives according to
the methods disclosed in WO 93/24510 to Gosselin et al.,
published December 9, 1993 or in WO 94/26764 to Imbach et al.

The term "pharmaceutically acceptable salts" refers to physiologically and pharmaceutically acceptable salts of the 15 compounds of the invention: i.e., salts that retain the desired biological activity of the parent compound and do not impart undesired toxicological effects thereto.

Pharmaceutically acceptable base addition salts are formed with metals or amines, such as alkali and alkaline 20 earth metals or organic amines. Examples of metals used as cations are sodium, potassium, magnesium, calcium, and the like. Examples of suitable amines N,N'-dibenzylethylenediamine, chloroprocaine, choline. diethanolamine, dicyclohexylamine, ethylenediamine, 25 N-methylglucamine, and procaine (see, for example, Berge et al., "Pharmaceutical Salts," J. of Pharma Sci., 1977, 66, 1-19). The base addition salts of said acidic compounds are prepared by contacting the free acid form with a sufficient amount of the desired base to produce the salt in the 30 conventional manner. The free acid form may be regenerated by contacting the salt form with an acid and isolating the free acid in the conventional manner. The free acid forms differ from their respective salt forms somewhat in certain physical properties such as solubility in polar solvents, but 35 otherwise the salts are equivalent to their respective free

acid for purposes of the present invention. As used herein. a "pharmaceutical addition salt" includes a pharmaceutically acceptable salt of an acid form of one of the components of the compositions of the invention. These include organic or 5 inorganic acid salts of the amines. Preferred acid salts are the hydrochlorides, acetates, salicylates, nitrates and phosphates. Other suitable pharmaceutically acceptable salts are well known to those skilled in the art and include basic salts of a variety of inorganic and organic acids, such as, 10 for example, with inorganic acids, such as for example hydrochloric acid, hydrobromic acid, sulfuric acid or phosphoric acid; with organic carboxylic, sulfonic, sulfo or phospho acids or N-substituted sulfamic acids, for example acetic acid, propionic acid, glycolic acid, succinic acid, 15 maleic acid, hydroxymaleic acid, methylmaleic acid, fumaric acid, malic acid, tartaric acid, lactic acid, oxalic acid, gluconic acid, glucaric acid, glucuronic acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, salicylic acid, 4-aminosalicylic acid, 2-phenoxybenzoic acid, 2-acetoxybenzoic 20 acid, embonic acid, nicotinic acid or isonicotinic acid; and with amino acids, such as the 20 alpha-amino acids involved in the synthesis of proteins in nature, for example glutamic acid or aspartic acid, and also with phenylacetic acid, methanesulfonic acid, ethanesulfonic acid. 25 2-hydroxyethanesulfonic acid, ethane-1,2-disulfonic acid, benzenesulfonic acid, 4-methylbenzenesulfonic naphthalene-2-sulfonic acid, naphthalene-1,5-disulfonic acid, 3-phosphoglycerate, glucose-6-phosphate, N-cyclohexylsulfamic acid (with the formation of cyclamates), 30 or with other acid organic compounds, such as ascorbic acid. Pharmaceutically acceptable salts of compounds may also be prepared with a pharmaceutically acceptable cation. Suitable pharmaceutically acceptable cations are well known to those

skilled in the art and include alkaline, alkaline earth,

ammonium and quaternary ammonium cations. Carbonates or hydrogen carbonates are also possible.

For oligonucleotides, preferred examples of pharmaceutically acceptable salts include but are not limited 5 to (a) salts formed with cations such as sodium, potassium, ammonium, magnesium, calcium, polyamines such as spermine and spermidine, etc.; (b) acid addition salts formed with inorganic acids, for example hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, nitric acid and the 10 like; (c) salts formed with organic acids such as, for example, acetic acid, oxalic acid, tartaric acid, succinic acid, maleic acid, fumaric acid, gluconic acid, citric acid, malic acid, ascorbic acid, benzoic acid, tannic acid, palmitic acid, alginic acid, polyglutamic acid, 15 naphthalenesulfonic acid. methanesulfonic acid. p-toluenesulfonic acid. naphthalenedisulfonic acid. polygalacturonic acid, and the like; and (d) salts formed from elemental anions such as chlorine, bromine, and iodine. The antisense compounds of the present invention can be utilized 20 for diagnostics, therapeutics, prophylaxis and as research reagents and kits. For therapeutics, an animal, preferably a human, suspected of having a disease or disorder which can be treated by modulating the expression of TNFR1 is treated by administering antisense compounds in accordance with this 25 invention. The compounds of the invention can be utilized in pharmaceutical compositions by adding an effective amount of antisense compound to a suitable pharmaceutically acceptable diluent or carrier. Use of the antisense compounds methods of the invention may also 30 prophylactically, e.g., to prevent or delay infection, inflammation or tumor formation, for example.

The antisense compounds of the invention are useful for research and diagnostics, because these compounds hybridize to nucleic acids encoding TNFR1, enabling sandwich and other assays to easily be constructed to exploit this fact.

TOROUNET LICENSO

Hybridization of the antisense oligonucleotides of the invention with a nucleic acid encoding TNFR1 can be detected by means known in the art. Such means may include conjugation of an enzyme to the oligonucleotide, radiolabelling of the oligonucleotide or any other suitable detection means. Kits using such detection means for detecting the level of TNFR1 in a sample may also be prepared.

The present invention also includes pharmaceutical compositions and formulations which include the antisense 10 compounds of the invention. The pharmaceutical compositions of the present invention may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including ophthalmic and to mucous membranes 15 including vaginal and rectal delivery), pulmonary, e.g., by inhalation or insufflation of powders or aerosols, including by nebulizer; intratracheal, intranasal, epidermal and transdermal), oral or parenteral. Parenteral administration includes intravenous. intraarterial, subcutaneous, 20 intraperitoneal or intramuscular injection or infusion; or intracranial. e.g., intrathecal or intraventricular, administration. Oligonucleotides with at least one 2'-Omethoxyethyl modification are believed to be particularly useful for oral administration.

25 Pharmaceutical compositions and formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary 30 or desirable. Coated condoms, gloves and the like may also be useful

Compositions and formulations for oral administration include powders or granules, suspensions or solutions in water or non-aqueous media, capsules, sachets or tablets.

by reference.

Thickeners, flavoring agents, diluents, emulsifiers, dispersing aids or binders may be desirable.

Compositions and formulations for parenteral, intrathecal or intraventricular administration may include 5 sterile aqueous solutions which may also contain buffers, diluents and other suitable additives such as, but not limited to, penetration enhancers, carrier compounds and other pharmaceutically acceptable carriers or excipients.

Pharmaceutical compositions and/or formulations
comprising the oligonucleotides of the present invention may
also include penetration enhancers in order to enhance the
alimentary delivery of the oligonucleotides. Penetration
enhancers may be classified as belonging to one of five broad
categories, i.e., fatty acids, bile salts, chelating agents,
surfactants and non-surfactants (Lee et al., Critical Reviews
in Therapeutic Drug Carrier Systems, 1991, 8, 91-192;
Muranishi, Critical Reviews in Therapeutic Drug Carrier
Systems, 1990, 7, 1-33). One or more penetration enhancers
from one or more of these broad categories may be included.
Penetration enhancers are described in pending United States
patent application 08/886,829, filed on July 1, 1997, and
U.S.Patent 6,083,923 both of which are commonly owned with the
instant application and both of which are herein incorporated

Various fatty acids and their derivatives which act as penetration enhancers include, for example, oleic acid, lauric acid, capric acid, myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, recinleate, monoolein (a.k.a. 1-monooleoy1-rac-glycerol), dilaurin, caprylic acid, arichidonic acid, glyceryl 1-monocaprate, 1-dodecylazacycloheptan-2-one, acylcarnitines, acylcholines, mono- and di-glycerides and physiologically acceptable salts thereof (i.e., oleate, laurate, caprate, myristate, palmitate, stearate, linoleate, etc.) (Lee et al.,

COPARAT TURBUCO

Critical Reviews in Therapeutic Drug Carrier Systems, 1991, 8:2, 91-192; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7:1, 1-33; El-Hariri et al., J. Pharm. Pharmacol., 1992, 44, 651-654). Examples of some presently preferred fatty acids are sodium caprate and sodium laurate, used singly or in combination at concentrations of 0.5 to 5%.

Preferred penetration enhancers are disclosed in pending United States patent application 08/886,829, filed on July 1, 1997, which is commonly owned with the instant application and 10 which is herein incorporated by reference.

The physiological roles of bile include the facilitation of dispersion and absorption of lipids and fat-soluble vitamins (Brunton, Chapter 38 In: Goodman & Gilman's The Pharmacological Basis of Therapeutics, 9th Ed., Hardman et al., eds., McGraw-Hill, New York, NY, 1996, pages 934-935). Various natural bile salts, and their synthetic derivatives, act as penetration enhancers. Thus, the term "bile salt" includes any of the naturally occurring components of bile as well as any of their synthetic derivatives. Preferred bile salts are described in pending United States patent application 08/886,829, filed on July 1, 1997, which is commonly owned with the instant application and which is herein incorporated by reference. A presently preferred bile salt is chenodeoxycholic acid (CDCA) (Sigma Chemical Company, 25 St. Louis, MO), generally used at concentrations of 0.5 to 2%.

Complex formulations comprising one or more penetration enhancers may be used. For example, bile salts may be used in combination with fatty acides to make complex formulations. Preferred combinations include CDCA combined with sodium 30 caprate or sodium laurate (generally 0.5 to 5%).

Chelating agents include, but are not limited to, disodium ethylenediaminetetraacetate (EDTA), citric acid, salicylates (e.g., sodium salicylate, 5-methoxysalicylate and homovanilate), N-acyl derivatives of collagen, laureth-9 and

09695451 .102400

N-amino acyl derivatives of beta-diketones (enamines) (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, 8:2, 92-192; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7:1, 1-33; Buur et al., J. Control Rel., 1990, 14, 43-51). Chelating agents have the added advantage of also serving as DNase inhibitors.

Surfactants include, for example, sodium lauryl sulfate, polyoxyethylene-9-lauryl ether and polyoxyethylene-20-cetyl ether (Lee et al., Critical Reviews in Therapeutic Drug 10 Carrier Systems, 1991, 8:2, 92-191); and perfluorochemical emulsions, such as FC-43 (Takahashi et al., J. Pharm. Phamacol., 1988, 40, 252-257).

Non-surfactants include, for example, unsaturated cyclic ureas, 1-alkyl- and 1-alkenylazacyclo-alkanone derivatives

15 (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, 8:2, 92-191); and non-steroidal anti-inflammatory agents such as diclofenac sodium, indomethacin and phenylbutazone (Yamashita et al., J. Pharm. Pharmacol., 1987, 39, 621-626).

As used herein, "carrier compound" refers to a nucleic 2.0 acid, or analog thereof, which is inert (i.e., does not possess biological activity per se) but is recognized as a nucleic acid by in vivo processes that reduce the bioavailability of a nucleic acid having biological activity 25 by, for example, degrading the biologically active nucleic acid or promoting its removal from circulation. coadministration of a nucleic acid and a carrier compound. typically with an excess of the latter substance, can result in a substantial reduction of the amount of nucleic acid 30 recovered in the liver, kidney or other extracirculatory reservoirs, presumably due to competition between the carrier compound and the nucleic acid for a common receptor. For example, the recovery of a partially phosphorothicated oligonucleotide in hepatic tissue is reduced when it is

DSESSIFI . IDERUD

coadministered with polyinosinic acid, dextran sulfate, polycytidic acid or 4-acetamido-4'-isothiocyano-stilbene-2,2'-disulfonic acid (Miyao et al., Antisense Res. Dev., 1995, 5, 115-121; Takakura et al., Antisense & Nucl. Acid Drug Dev., 5 1996, 6, 177-183).

In contrast to a carrier compound, a "pharmaceutically acceptable carrier" (excipient) is a pharmaceutically acceptable solvent, suspending agent or anv other pharmacologically inert vehicle for delivering one or more 10 nucleic acids to an animal. The pharmaceutically acceptable carrier may be liquid or solid and is selected with the planned manner of administration in mind so as to provide for the desired bulk, consistency, etc., when combined with a nucleic acid and the other components of a given 15 pharmaceutical composition. Typical pharmaceutically acceptable carriers include, but are not limited to, binding agents (e.g., pregelatinized maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose, etc.); fillers (e.q., lactose and other sugars, microcrystalline cellulose, 20 pectin. gelatin, calcium sulfate, ethyl cellulose, polyacrylates or calcium hydrogen phosphate, etc.); lubricants (e.g., magnesium stearate, talc, silica, colloidal silicon dioxide, stearic acid, metallic stearates, hydrogenated vegetable oils, corn starch, polyethylene glycols, sodium 25 benzoate, sodium acetate, etc.); disintegrates (e.g., starch, sodium starch glycolate, etc.); or wetting agents (e.g., sodium lauryl sulphate, etc.). Sustained release oral delivery systems and/or enteric coatings for orally administered dosage forms are described in U.S. Patents: 30 4,704,295; 4,556,552; 4,309,406; and 4,309,404.

The compositions of the present invention may additionally contain other adjunct components conventionally found in pharmaceutical compositions, at their art-established usage levels. Thus, for example, the compositions may contain additional compatible pharmaceutically-active materials such

ISESTALL INFACT

as, e.g., antipruritics, astringents, local anesthetics or anti-inflammatory agents, or may contain additional materials useful in physically formulating various dosage forms of the composition of present invention, such as dyes, flavoring agents, preservatives, antioxidants, opacifiers, thickening agents and stabilizers. However, such materials, when added, should not unduly interfere with the biological activities of the components of the compositions of the invention.

10 compounds of the invention are introduced into a patient,

Regardless of the method by which the antisense

colloidal dispersion systems may be used as delivery vehicles to enhance the in vivo stability of the compounds and/or to target the compounds to a particular organ, tissue or cell Colloidal dispersion systems include, but are not 15 limited macromolecule complexes. to, nanocapsules. microspheres, beads and lipid-based systems including oil-inwater emulsions, micelles, mixed micelles, liposomes and lipid:oligonucleotide complexes of uncharacterized structure. A preferred colloidal dispersion system is a plurality of 20 liposomes. Liposomes are microscopic spheres having an aqueous core surrounded by one or more outer layer(s) made up of lipids arranged in a bilayer configuration (see, generally, Chonn et al., Current Op. Biotech., 1995, 6, 698-708). Liposome preparation is described in U.S. Patent 6,083,923, 25 which is commonly owned with the instant application and which

Certain embodiments of the invention provide for liposomes and other compositions containing (a) one or more antisense compounds and (b) one or more other chemotherapeutic 30 agents which function by a non-antisense mechanism. Examples of such chemotherapeutic agents include, but are not limited to, anticancer drugs such as daunorubicin, dactinomycin, doxorubicin, bleomycin, mitomycin, nitrogen mustard, chlorambucil, melphalan, cyclophosphamide, 6-mercaptopurine, 35 6-thioguanine, cytarabine (CA), 5-fluorouracil (5-FU),

is herein incorporated by reference.

floxuridine (5-FUdR), methotrexate (MTX), colchicine, vincristine, vinblastine, etoposide, teniposide, cisplatin and diethylstilbestrol (DES). See, generally, The Merck Manual of Diagnosis and Therapy, 15th Ed., Berkow et al., eds., 1987, Rahway, N.J., pages 1206-1228). Antiinflammatory drugs, including but not limited to nonsteroidal anti-inflammatory drugs and corticosteroids, and antiviral drugs, including but not limited to ribivirin, vidarabine, acyclovir and ganciclovir, may also be combined in compositions of the 10 invention. See, generally, The Merck Manual of Diagnosis and Therapy, 15th Ed., Berkow et al., eds., 1987, Rahway, N.J., pages 2499-2506 and 46-49, respectively). Other non-antisense chemotherapeutic agents are also within the scope of this invention. Two or more combined compounds may be used together or sequentially.

In another related embodiment, compositions of the invention may contain one or more antisense compounds, particularly oligonucleotides, targeted to a first nucleic acid and one or more additional antisense compounds targeted 20 to a second nucleic acid target. Examples of antisense oligonucleotides include, but are not limited to, those directed to the following targets as disclosed in the indicated U.S. Patents, or pending U.S. applications, which are commonly owned with the instant application and are hereby 25 incorporated by reference, or the indicated published PCT applications: raf (WO 96/39415, WO 95/32987 and U.S. Patent 5,563,255, issued October 8, 1996, and 5,656,612, issued August 12, 1997), the p120 nucleolar antigen (WO 93/17125 and U.S. Patent No. 5,656,743, issued August 12, 1997), protein 30 kinase C (WO 95/02069, WO 95/03833 and WO 93/19203), multidrug resistance-associated protein (WO 95/10938 and U.S. Patent 5,510,239, issued March 23, 1996), subunits of transcription factor AP-1 (pending application U.S. Serial No. 08/837,201, filed April 14, 1997), Jun kinases (pending application U.S. 35 Serial No. 08/910,629, filed August 13, 1997), MDR-1

(multidrug resistance glycoprotein; pending application U.S.
Serial No. 08/731,199, filed September 30, 1997), HIV (U.S.
Patents 5,166,195, issued November 24, 1992 and 5,591,600,
issued January 7, 1997), herpesvirus (U.S. Patent 5,248,670,
issued September 28, 1993 and U.S. Patent 5,514,577, issued
May 7, 1996), cytomegalovirus (U.S. Patents 5,442,049, issued
August 15, 1995 and 5,591,720, issued January 7, 1997),
papillomavirus (U.S. Patent 5,457,189, issued October 10,
1995), intercellular adhesion molecule-1 (ICAM-1) (U.S. Patent
10 5,514,788, issued May 7, 1996), 5-lipoxygenase (U.S. Patent
5,530,114, issued June 25, 1996) and influenzavirus (U.S.
Patent 5,580,767, issued December 3, 1996). Two or more
combined compounds may be used together or sequentially.

The formulation of therapeutic compositions and their 15 subsequent administration is believed to be within the skill of those in the art. Dosing is dependent on severity and responsiveness of the disease state to be treated, with the course of treatment lasting from several days to several months, or until a cure is effected or a diminution of the 20 disease state is achieved. Optimal dosing schedules can be calculated from measurements of drug accumulation in the body of the patient. Persons of ordinary skill can easily determine optimum dosages, dosing methodologies and repetition rates. Optimum dosages may vary depending on the relative 25 potency of individual oligonucleotides, and can generally be estimated based on EC_{so} s found to be effective in in vitro and in vivo animal models. In general, dosage is from 0.01 μq to 100 g per kg of body weight, and may be given once or more daily, weekly, monthly or yearly, or even once every 2 to 20 30 years. Persons of ordinary skill in the art can easily estimate repetition rates for dosing based on measured residence times and concentrations of the drug in bodily fluids or tissues. Following successful treatment, it may be desirable to have the patient undergo maintenance therapy to 35 prevent the recurrence of the disease state, wherein the

DOSSERVE TORKOL

oligonucleotide is administered in maintenance doses, ranging from 0.01 :g to 100 g per kg of body weight, once or more daily, to once every 20 years.

While the present invention has been described with specificity in accordance with certain of its preferred embodiments, the following examples serve only to illustrate the invention and are not intended to limit the same.

EXAMPLES

Example 1

10 Nucleoside Phosphoramidites for Oligonucleotide Synthesis Deoxy and 2'-alkoxy amidites

2'-Deoxy and 2'-methoxy beta-cyanoethyldiisopropyl phosphoramidites were purchased from commercial sources (e.g. Chemgenes, Needham MA or Glen Research, Inc. Sterling VA).

15 Other 2'-O-alkoxy substituted nucleoside amidites are prepared as described in U.S. Patent 5,506,351, herein incorporated by reference. For oligonucleotides synthesized using 2'-alkoxy amidites, the standard cycle for unmodified oligonucleotides was utilized, except the wait step after pulse delivery of tetrazole and base was increased to 360 seconds.

Oligonucleotides containing 5-methyl-2'-deoxycytidine (5-Me-C) nucleotides were synthesized according to published methods [Sanghvi, et. al., Nucleic Acids Research, 1993, 21, 3197-3203] using commercially available phosphoramidites (Glen Research, Sterling VA or ChemGenes, Needham MA).

2'-Fluoro amidites

2'-Fluorodeoxyadenosine amidites

2'-fluoro oligonucleotides were synthesized as described previously [Kawasaki, et. al., J. Med. Chem., 1993, 36, 831-30 841] and U.S. Patent 5,670,633, herein incorporated by reference. Briefly, the protected nucleoside N6-benzovl-2'-

deoxy-2'-fluoroadenosine was synthesized utilizing commercially available 9-beta-D-arabinofuranosyladenine as starting material and by modifying literature procedures whereby the 2'-alpha-fluoro atom is introduced by a S_N2-5 displacement of a 2'-beta-trityl group. Thus N6-benzoyl-9-beta-D-arabinofuranosyladenine was selectively protected in moderate yield as the 3',5'-ditetrahydropyranyl (THP) intermediate. Deprotection of the THP and N6-benzoyl groups was accomplished using standard methodologies and standard methods were used to obtain the 5'-dimethoxytrityl- (DMT) and 5'-DMT-3'-phosphoramidite intermediates.

2'-Fluorodeoxyguanosine

The synthesis of 2'-deoxy-2'-fluoroguanosine was accomplished using tetraisopropyldisiloxanyl (TPDS) protected 9-beta-D-arabinofuranosylguanine as starting material, and conversion to the intermediate diisobutyryl-arabinofuranosylguanosine. Deprotection of the TPDS group was followed by protection of the hydroxyl group with THP to give diisobutyryl di-THP protected arabinofuranosylguanine. Selective O-deacylation and triflation was followed by treatment of the crude product with fluoride, then deprotection of the THP groups. Standard methodologies were used to obtain the 5'-DMT- and 5'-DMT-3'-phosphoramidites.

2'-Fluorouridine

25 Synthesis of 2'-deoxy-2'-fluorouridine was accomplished by the modification of a literature procedure in which 2,2'-anhydro-1-beta-D-arabinofuranosyluracil was treated with 70% hydrogen fluoride-pyridine. Standard procedures were used to obtain the 5'-DMT and 5'-DMT-3'phosphoramidites.

30 2'-Fluorodeoxycytidine

2'-deoxy-2'-fluorocytidine was synthesized via amination of 2'-deoxy-2'-fluorouridine, followed by selective protection

10

to give N4-benzoyl-2'-deoxy-2'-fluorocytidine. Standard procedures were used to obtain the 5'-DMT and 5'-DMT-3'phosphoramidites.

2'-0-(2-Methoxyethyl) modified amidites

2'-O-Methoxyethyl-substituted nucleoside amidites are prepared as follows, or alternatively, as per the methods of Martin, P., Helvetica Chimica Acta, 1995, 78, 486-504.

2,2'-Anhydro[1-(beta-D-arabinofuranosyl)-5methyluridine]

5-Methyluridine (ribosylthymine, commercially available through Yamasa, Choshi, Japan) (72.0 g, 0.279 M), diphenylcarbonate (90.0 g, 0.420 M) and sodium bicarbonate (2.0 g, 0.024 M) were added to DMF (300 mL). The mixture was heated 15 to reflux, with stirring, allowing the evolved carbon dioxide gas to be released in a controlled manner. After 1 hour, the slightly darkened solution was concentrated under reduced pressure. The resulting syrup was poured into diethylether (2.5 L), with stirring. The product formed a gum. The ether 20 was decanted and the residue was dissolved in a minimum amount of methanol (ca. 400 mL). The solution was poured into fresh ether (2.5 L) to yield a stiff qum. The ether was decanted and the gum was dried in a vacuum oven (60°C at 1 mm Hg for 24 h) to give a solid that was crushed to a light tan powder (57 25 q, 85% crude yield). The NMR spectrum was consistent with the structure, contaminated with phenol as its sodium salt (ca. 5%). The material was used as is for further reactions (or it can be purified further by column chromatography using a gradient of methanol in ethyl acetate (10-25%) to give a white 30 solid, mp 222-4°C).

2'-O-Methoxyethyl-5-methyluridine

2,2'-Anhydro-5-methyluridine (195 q, 0.81 M), tris(2methoxyethyl)borate (231 q, 0.98 M) and 2-methoxyethanol (1.2 L) were added to a 2 L stainless steel pressure vessel and 5 placed in a pre-heated oil bath at 160°C. After heating for 48 hours at 155-160°C, the vessel was opened and the solution evaporated to dryness and triturated with MeOH (200 mL). The residue was suspended in hot acetone (1 L). The insoluble salts were filtered, washed with acetone (150 mL) and the 10 filtrate evaporated. The residue (280 g) was dissolved in CH₂CN (600 mL) and evaporated. A silica gel column (3 kg) was packed in CH₂Cl₂/acetone/MeOH (20:5:3) containing 0.5% Et₃NH. The residue was dissolved in CH_2Cl_2 (250 mL) and adsorbed onto silica (150 g) prior to loading onto the column. The product 15 was eluted with the packing solvent to give 160 g (63%) of product. Additional material was obtained by reworking impure fractions.

2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methyluridine

2'-O-Methoxyethyl-5-methyluridine (160 g, 0.506 M) was 20 co-evaporated with pyridine (250 mL) and the dried residue dissolved in pyridine (1.3 L). A first aliquot of dimethoxytrityl chloride (94.3 q, 0.278 M) was added and the mixture stirred at room temperature for one hour. A second aliquot of dimethoxytrityl chloride (94.3 g, 0.278 M) was 25 added and the reaction stirred for an additional one hour. Methanol (170 mL) was then added to stop the reaction. HPLC showed the presence of approximately 70% product. The solvent was evaporated and triturated with CH3CN (200 mL). residue was dissolved in CHCl3 (1.5 L) and extracted with 30 2x500 mL of saturated NaHCO3 and 2x500 mL of saturated NaCl. The organic phase was dried over Na2SO4, filtered and evaporated. 275 g of residue was obtained. The residue was purified on a 3.5 kg silica gel column, packed and eluted with EtOAc/Hexane/Acetone (5:5:1) containing 0.5% EtaNH. The pure ISBUSKET INCES

5

fractions were evaporated to give 164 g of product. Approximately 20 g additional was obtained from the impure fractions to give a total yield of 183 g (57%).

3'-0-Acetyl-2'-0-methoxyethyl-5'-0-dimethoxytrityl-5methyluridine

2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methyluridine (106 g, 0.167 M), DMF/pyridine (750 mL of a 3:1 mixture prepared from 562 mL of DMF and 188 mL of pyridine) and acetic anhydride (24.38 mL, 0.258 M) were combined and stirred at 10 room temperature for 24 hours. The reaction was monitored by tlc by first quenching the tlc sample with the addition of MeOH. Upon completion of the reaction, as judged by tlc, MeOH (50 mL) was added and the mixture evaporated at 35°C. residue was dissolved in CHCl3 (800 mL) and extracted with 15 2x200 mL of saturated sodium bicarbonate and 2x200 mL of saturated NaCl. The water layers were back extracted with 200 mL of CHCl1. The combined organics were dried with sodium sulfate and evaporated to give 122 g of residue (approx. 90% product). The residue was purified on a 3.5 kg silica gel 20 column and eluted using EtOAc/Hexane(4:1). Pure product fractions were evaporated to yield 96 q (84%). An additional 1.5 g was recovered from later fractions.

3'-0-Acety1-2'-0-methoxyethy1-5'-0-dimethoxytrity1-5-methy1-4-triazoleuridine

A first solution was prepared by dissolving 3'-O-acetyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methyluridine (96 g, 0.144 M) in CH₃CN (700 mL) and set aside. Triethylamine (189 mL, 1.44 M) was added to a solution of triazole (90 g, 1.3 M) in CH₃CN (1 L), cooled to -5°C and stirred for 0.5 h using an overhead stirrer. POCl₃ was added dropwise, over a 30 minute period, to the stirred solution maintained at 0-10°C, and the resulting mixture stirred for an additional 2 hours. The

DESENSIBL MINISTER

25

first solution was added dropwise, over a 45 minute period, to the later solution. The resulting reaction mixture was stored overnight in a cold room. Salts were filtered from the reaction mixture and the solution was evaporated. The residue 5 was dissolved in EtOAc (1 L) and the insoluble solids were removed by filtration. The filtrate was washed with 1x300 mL of NaHCO₃ and 2x300 mL of saturated NaCl, dried over sodium sulfate and evaporated. The residue was triturated with EtOAc to give the title compound.

10 2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methylcytidine

A solution of 3'-O-acetyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methyl-4-triazoleuridine (103 g, 0.141 M) in dioxane (500 mL) and NH4OH (30 mL) was stirred at room temperature for 2 hours. The dioxane solution was evaporated and the residue azeotroped with MeOH (2x200 mL). The residue was dissolved in MeOH (300 mL) and transferred to a 2 liter stainless steel pressure vessel. MeOH (400 mL) saturated with NH3 gas was added and the vessel heated to 100°C for 2 hours (tlc showed complete conversion). The vessel contents were evaporated to dryness and the residue was dissolved in EtOAc (500 mL) and washed once with saturated NaCl (200 mL). The organics were dried over sodium sulfate and the solvent was evaporated to give 85 g (95%) of the title compound.

N4-Benzoyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5methylcytidine

2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methylcytidine
(85 g, 0.134 M) was dissolved in DMF (800 mL) and benzoic
anhydride (37.2 g, 0.165 M) was added with stirring. After
stirring for 3 hours, tlc showed the reaction to be
30 approximately 95% complete. The solvent was evaporated and
the residue azeotroped with MeOH (200 mL). The residue was
dissolved in CHCl, (700 mL) and extracted with saturated NaHCO₃
(2x300 mL) and saturated NaCl (2x300 mL), dried over MgSO₄ and

evaporated to give a residue (96 g). The residue was chromatographed on a 1.5 kg silica column using EtOAc/Hexane (1:1) containing 0.5% Et₃NH as the eluting solvent. The pure product fractions were evaporated to give 90 g (90%) of the 5 title compound.

N4-Benzoyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methylcytidine-3'-amidite

N4-Benzoyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5methylcytidine (74 g, 0.10 M) was dissolved in CH₂Cl₂ (1 L).

10 Tetrazole diisopropylamine (7.1 g) and 2-cyanoethoxy-tetra(isopropyl)phosphite (40.5 mL, 0.123 M) were added with
stirring, under a nitrogen atmosphere. The resulting mixture
was stirred for 20 hours at room temperature (tlc showed the
reaction to be 95% complete). The reaction mixture was
15 extracted with saturated NaHCO₃ (1x300 mL) and saturated NaCl
(3x300 mL). The aqueous washes were back-extracted with CH₂Cl₂
(300 mL), and the extracts were combined, dried over MgSO₄ and
concentrated. The residue obtained was chromatographed on a
1.5 kg silica column using EtOAc\Hexane (3:1) as the eluting
20 solvent. The pure fractions were combined to give 90.6 g
(87%) of the title compound.

2'-(Aminooxyethyl) nucleoside amidites and 2'-(dimethylaminooxyethyl) nucleoside amidites

Aminooxyethyl and dimethylaminooxyethyl amidites are prepared as per the methods of U.S. Patent applications serial numbers 10/037,143, filed February 14, 1998, and 09/016,520, filed January 30, 1998, each of which is commonly owned with the instant application and is herein incorporated by reference.

Example 2

Oligonucleotide synthesis

Unsubstituted and substituted phosphodiester (P=O) oligonucleotides are synthesized on an automated DNA synthesizer (Applied Biosystems model 380B) using standard phosphoramidite chemistry with oxidation by iodine.

Phosphorothioates (P=S) are synthesized as for the phosphodiester oligonucleotides except the standard oxidation bottle was replaced by 0.2 M solution of 3H-1,2-benzodithiole10 3-one 1,1-dioxide in acetonitrile for the stepwise thiation of the phosphite linkages. The thiation wait step was increased to 68 sec and was followed by the capping step. After cleavage from the CPG column and deblocking in concentrated ammonium hydroxide at 55°C (18 hr), the oligonucleotides were purified by precipitating twice with 2.5 volumes of ethanol from a 0.5 M NaCl solution. Phosphinate oligonucleotides are prepared as described in U.S. Patent 5,508,270, herein incorporated by reference.

Alkyl phosphonate oligonucleotides are prepared as 20 described in U.S. Patent 4,469,863, herein incorporated by reference.

3'-Deoxy-3'-methylene phosphonate oligonucleotides are prepared as described in U.S. Patents 5,610,289 or 5,625,050, herein incorporated by reference.

25 Phosphoramidite oligonucleotides are prepared as described in U.S. Patent, 5,256,775 or U.S. Patent 5,366,878, herein incorporated by reference.

Alkylphosphonothioate oligonucleotides are prepared as described in published PCT applications PCT/US94/00902 and 30 PCT/US93/06976 (published as WO 94/17093 and WO 94/02499, respectively), herein incorporated by reference.

3'-Deoxy-3'-amino phosphoramidate oligonucleotides are prepared as described in U.S. Patent 5,476,925, herein incorporated by reference.

Phosphotriester oligonucleotides are prepared as described in U.S. Patent 5,023,243, herein incorporated by reference.

Borano phosphate oligonucleotides are prepared as 5 described in U.S. Patents 5,130,302 and 5,177,198, both herein incorporated by reference.

Example 3

Oligonucleoside Synthesis

Methylenemethylimino linked oligonucleosides, 10 identified as MMI linked oligonucleosides, methylenedimethylhydrazo linked oligonucleosides, also identified as MDH linked methylenecarbonylamino oligonucleosides, and linked identified amide-3 oligonucleosides, also as linked oligonucleosides, and methyleneaminocarbonyl linked oligo-15 nucleosides, also identified as amide-4 linked oligonucleosides, as well as mixed backbone compounds having, for instance, alternating MMI and P=O or P=S linkages are prepared as described in U.S. Patents 5,378,825, 5,386,023, 5,489,677, 5,602,240 and 5,610,289, all of which are herein incorporated 20 by reference.

Formacetal and thioformacetal linked oligonucleosides are prepared as described in U.S. Patents 5,264,562 and 5,264,564, herein incorporated by reference.

Ethylene oxide linked oligonucleosides are prepared as 25 described in U.S. Patent 5,223,618, herein incorporated by reference.

Example 4

PNA Synthesis

Peptide nucleic acids (PNAs) are prepared in accordance
30 with any of the various procedures referred to in Peptide
Nucleic Acids (PNA): Synthesis, Properties and Potential
Applications, Bioorganic & Medicinal Chemistry, 1996, 4, 5-23.

They may also be prepared in accordance with U.S. Patents 5,539,082, 5,700,922, and 5,719,262, herein incorporated by reference.

Example 5

5 Synthesis of Chimeric Oligonucleotides

Chimeric oligonucleotides, oligonucleosides or mixed oligonucleotides/oligonucleosides of the invention can be of several different types. These include a first type wherein the "gap" segment of linked nucleosides is positioned between 10 5' and 3' "wing" segments of linked nucleosides and a second "open end" type wherein the "gap" segment is located at either the 3' or the 5' terminus of the oligomeric compound. Oligonucleotides of the first type are also known in the art as "gapmers" or gapped oligonucleotides. Oligonucleotides of the second type are also known in the art as "hemimers" or "wingmers."

[2'-0-Me] -- [2'-deoxy] -- [2'-0-Me] Chimeric Phosphorothioate Oligonucleotides

having 2'-0-alkvl Chimeric oligonucleotides 20 phosphorothicate and 2'-deoxy phosphorothicate oligonucleotide segments are synthesized using an Applied Biosystems automated DNA synthesizer Model 380B, as above. Oligonucleotides are synthesized using the automated synthesizer and 2'-deoxy-5'dimethoxytrityl-3'-O-phosphoramidite for the DNA portion and 25 5'-dimethoxytrityl-2'-O-methyl-3'-O-phosphoramidite for 5' and 3' wings. The standard synthesis cycle is modified by increasing the wait step after the delivery of tetrazole and base to 600 s repeated four times for RNA and twice for 2'-Omethyl. The fully protected oligonucleotide is cleaved from 30 the support and the phosphate group is deprotected in 3:1 Ammonia/Ethanol at room temperature overnight then lyophilized to dryness. Treatment in methanolic ammonia for 24 hrs at room temperature is then done to deprotect all bases and sample was again lyophilized to dryness. The pellet is resuspended in 1M TBAF in THF for 24 hrs at room temperature to deprotect the 2' positions. The reaction is then quenched with 1M TEAA and the sample is then reduced to 1/2 volume by rotovac before being desalted on a G25 size exclusion column. The oligo recovered is then analyzed spectrophotometrically for yield and for purity by capillary electrophoresis and by mass spectrometer.

[2'-0-(2-Methoxyethyl)]--[2'-deoxy]--[2'-0(Methoxyethyl)] Chimeric Phosphorothicate Oligonucleotides

[2'-0-(2-methoxyethyl)]--[2'-deoxy]--[-2'-0-(methoxyethyl)] chimeric phosphorothioate oligonucleotides were prepared as per the procedure above for the 2'-0-methyl chimeric oligonucleotide, with the substitution of 2'-0-(methoxyethyl) amidites for the 2'-0-methyl amidites.

[2'-0-(2-Methoxyethyl)Phosphodiester]--[2'-deoxyPhosphorothioate]--[2'-0-(2-Methoxyethyl)Phosphodiester]Chimeric Oligonucleotides

- [2'-O-(2-methoxyethyl phosphodiester]--[2'-deoxy phosphorothioate]--[2'-O-(methoxyethyl) phosphodiester] chimeric oligonucleotides are prepared as per the above procedure for the 2'-O-methyl chimeric oligonucleotide with the substitution of 2'-O-(methoxyethyl) amidites for the 2'-O-methyl amidites, oxidization with iodine to generate the phosphodiester internucleotide linkages within the wing portions of the chimeric structures and sulfurization utilizing 3,H-1,2 benzodithiole-3-one 1,1 dioxide (Beaucage Reagent) to generate the phosphorothioate internucleotide linkages for the center gap.
 - Other chimeric oligonucleotides, chimeric oligonucleosides and mixed chimeric oligonucleotides/oligonucleosides are

synthesized according to U.S. Patent 5,623,065, herein incorporated by reference.

Example 6

Oligonucleotide Isolation

5 After cleavage from the controlled pore glass column (Applied Biosystems) and deblocking in concentrated ammonium hydroxide at 55°C for 18 hours, the oligonucleotides or oligonucleosides are purified by precipitation twice out of 0.5 M NaCl with 2.5 volumes ethanol. Synthesized oligonucleotides were analyzed by polyacrylamide gel electrophoresis on denaturing gels and judged to be at least 85% full length material. The relative amounts of phosphorothioate and phosphodiester linkages obtained in synthesis were periodically checked by ³¹P nuclear magnetic resonance spectroscopy, and for some studies oligonucleotides were purified by HPLC, as described by Chiang et al., J. Biol. Chem. 1991, 266, 18162-18171. Results obtained with HPLC-purified material were similar to those obtained with non-HPLC purified material.

Example 7

20 Oligonucleotide Synthesis - 96 Well Plate Format

Oligonucleotides were synthesized via solid phase P(III) phosphoramidite chemistry on an automated synthesizer capable of assembling 96 sequences simultaneously in a standard 96 well format. Phosphodiester internucleotide linkages were afforded by oxidation with aqueous iodine. Phosphorothioate internucleotide linkages were generated by sulfurization utilizing 3,H-1,2 benzodithiole-3-one 1,1 dioxide (Beaucage Reagent) in anhydrous acetonitrile. Standard base-protected beta-cyanoethyldiisopropyl phosphoramidites were purchased from commercial vendors (e.g. PE-Applied Biosystems, Foster City, CA, or Pharmacia, Piscataway, NJ). Non-standard nucleosides are synthesized as per known literature or

patented methods. They are utilized as base protected betacyanoethyldiisopropyl phosphoramidites.

Oligonucleotides were cleaved from support and deprotected with concentrated $\mathrm{NH_4OH}$ at elevated temperature 5 (55-60°C) for 12-16 hours and the released product then dried in vacuo. The dried product was then re-suspended in sterile water to afford a master plate from which all analytical and test plate samples are then diluted utilizing robotic pipettors.

10 Example 8

Oligonucleotide Analysis - 96 Well Plate Format

The concentration of oligonucleotide in each well was assessed by dilution of samples and UV absorption spectroscopy. The full-length integrity of the individual products was evaluated by capillary electrophoresis (CE) in either the 96 well format (Beckman P/ACE^{MMDQ}) or, for individually prepared samples, on a commercial CE apparatus (e.g., Beckman P/ACE^{MMDQ} 5000, ABI 270). Base and backbone composition was confirmed by mass analysis of the compounds 20 utilizing Electrospray-Mass Spectroscopy. All assay test plates were diluted from the master plate using single and multi-channel robotic pipettors. Plates were judged to be acceptable if at least 85% of the compounds on the plate were at least 85% full length.

25 Example 9

Cell culture and oligonucleotide treatment

The effect of antisense compounds on target nucleic acid expression can be tested in any of a variety of cell types provided that the target nucleic acid is present at measurable 30 levels. This can be routinely determined using, for example, PCR or Northern blot analysis. The following four cell types

are provided for illustrative purposes, but other cell types can be routinely used.

T-24 cells:

The transitional cell bladder carcinoma cell line T-24

5 was obtained from the American Type Culture Collection (ATCC)
(Manassas, VA). T-24 cells were routinely cultured in
complete McCoy's 5A basal media (Gibco/Life Technologies,
Gaithersburg, MD) supplemented with 10% fetal calf serum
(Gibco/Life Technologies, Gaithersburg, MD), penicillin 100

10 units per mL, and streptomycin 100 micrograms per mL
(Gibco/Life Technologies, Gaithersburg, MD). Cells were
routinely passaged by trypsinization and dilution when they
reached 90% confluence. Cells were seeded into 96-well plates
(Falcon-Primaria #3872) at a density of 7000 cells/well for
15 use in RT-PCR analysis.

For Northern blotting or other analysis, cells may be seeded onto 100 mm or other standard tissue culture plates and treated similarly, using appropriate volumes of medium and oligonucleotide.

20 A549 cells:

The human lung carcinoma cell line A549 was obtained from the American Type Culture Collection (ATCC) (Manassas, VA). A549 cells were routinely cultured in DMEM basal media (Gibco/Life Technologies, Gaithersburg, MD) supplemented with 10% fetal calf serum (Gibco/Life Technologies, Gaithersburg, MD), penicillin 100 units per mL, and streptomycin 100 micrograms per mL (Gibco/Life Technologies, Gaithersburg, MD). Cells were routinely passaged by trysinization and dilution when they reached 90% confluence.

30 NHDF cells:

Human neonatal dermal fibroblast (NHDF) were obtained from the Clonetics Corporation (Walkersville MD). NHDFs were

routinely maintained in Fibroblast Growth Medium (Clonetics Corporation, Walkersville MD) supplemented as recommended by the supplier. Cells were maintained for up to 10 passages as recommended by the supplier.

5 HEK cells:

Human embryonic keratinocytes (HEK) were obtained from the Clonetics Corporation (Walkersville MD). HEKs were routinely maintained in Keratinocyte Growth Medium (Clonetics Corporation, Walkersville MD) formulated as recommended by the 10 supplier. Cell were routinely maintained for up to 10 passages as recommended by the supplier.

b.END cells:

The mouse brain endothelial cell line b.END was obtained from Dr. Werner Risau at the Max Plank Instititute (Bad 15 Nauheim, Germany). b.END cells were routinely cultured in DMEM, high glucose (Gibco/Life Technologies, Gaithersburg, MD) supplemented with 10% fetal calf serum (Gibco/Life Technologies, Gaithersburg, MD). Cells were routinely passaged by trypsinization and dilution when they reached 90% confluence. Cells were seeded into 96-well plates (Falcon-Primaria #3872) at a density of 3000 cells/well for use in RT-PCR analysis.

For Northern blotting or other analyses, cells may be seeded onto 100 mm or other standard tissue culture plates and 25 treated similarly, using appropriate volumes of medium and oligonucleotide.

Treatment with antisense compounds:

When cells reached 80% confluency, they were treated with oligonucleotide. For cells grown in 96-well plates, wells 30 were washed once with 200 µL OPTI-MEM™-1 reduced-serum medium (Gibco BRL) and then treated with 130 µL of OPTI-MEM™-1 containing 3.75 µg/mL LIPOFECTIN™ (Gibco BRL) and the desired

20

oligonucleotide at a final concentration of 150 nM. After 4 hours of treatment, the medium was replaced with fresh medium. Cells were harvested 16 hours after oligonucleotide treatment.

Example 10

5 Antisense inhibition of TNFR1 expression- phosphorothioate oligodeoxynucleotides

In accordance with the present invention, a series of oligonucleotides were designed to target different regions of the human TNFR1 RNA, using published sequences (GenBank 10 accession number X55313, incorporated herein as SEQ ID NO: 1). The oligonucleotides are shown in Table 1. Target sites are indicated by nucleotide numbers, as given in the sequence source reference (Genbank accession no. X55313), to which the oligonucleotide binds. All compounds in Table 1 are 15 oligodeoxynucleotides with phosphorothicate backbones (internucleoside linkages) throughout. The compounds were analyzed for effect on TNFR1 mRNA levels by quantitative realtime PCR as described in subsequent examples. Data are averages from three experiments.

Table 1
Inhibition of TNFR1 mRNA levels by phosphorothicate oligodeoxynucleotides

	ISIS#	RE	JION	TARGET	SEQUENCE	%	SEQ ID
				SITE		Inhibition	NO.
	18875	5'	UTR	37	TTCTCTGGACTGAGGCTC	19	8
25	18876	5 '	UTR	68	TCCCCTCCTCTCTGCTTT	5	9
	18877	5 '	UTR	109	AGACTCGGGCATAGAGAT	0	10
	18878	5 '	UTR	114	GGTTGAGACTCGGGCATA	40	11
	18879	5'	UTR	118	TGAGGGTTGAGACTCGGG	2	12
	18880	5'	UTR	123	ACAGTTGAGGGTTGAGAC	30	13
30	18881	5 '	UTR	127	GGTGACAGTTGAGGGTTG	8	14
	18882	5 '	UTR	196	GCAGTGTGGCAGCGGCAG	53	15
	18883	5 '	UTR	199	AGGGCAGTGTGGCAGCGG	53	16

18885 S UTR 207 TTGGGCTCAGGGCAGTGT 0 18 18886 S UTR 210 CATTTGGGCTCAGGGCAG 9 19 19 18887 Coding 262 GTCAGGCAGGTGAGG 0 20 20 20 20 20 20 2							
18886 S' UTR 210 CATTTGGGCTCAGGGCAG 9 19 18887 Coding 262 GTCAGGCACGGTGGAGAG 0 20 20 18888 Coding 266 GCAGGTCAGGCACGGTGG 16 21 18889 Coding 272 GCAGCAGCAGGTGGAGAG 0 23 18890 Coding 276 AGCGGCAGCAGGCAGGTCA 0 23 18891 Coding 280 CACCAGCGGCAGCAGGCAG 21 24 18892 Coding 286 CAGGAGCACGCAGGCAG 21 24 24 24 24 24 24 24		18884	5' UTR	202	CTCAGGGCAGTGTGGCAG	61	17
18887 Coding 262 GTCAGGCAGGTGGAGG Coding Codi		18885	5' UTR	207		•	
1888 Coding 266 GCAGGTCAGGCAGGTTG 16 21		18886				-	
18889 Coding 272 GCAGCAGCAGCAGCAG 37 22 18890 Coding 276 AGCGGCAGCAGCAGCAG 0 23 18891 Coding 286 CACCAGCGGCAGCAGCAG 21 24 24 25 26 28 28 CACCAGCGGCAGCAGG 21 24 25 26 28 28 CACCAGCGGCAGCAGG 25 26 26 28 26 26 26 27 27 27 27 27		18887	Coding	262			
18890 Coding 276 AGCGGCAGCAGGTCA 0 23 18891 Coding 280 CACCAGCGGCAGCAG 21 24 18892 Coding 286 CAGGAGCAGCAGCAG 21 24 18893 Coding 306 TATATTCCACCAACAGC 25 26 18894 Coding 306 TATATTCCCACCAACAGC 25 26 18895 Coding 306 TATATTCCCACCAACAGC 25 26 18896 Coding 403 ATTATTTGAGGGTGAT 13 27 18895 Coding 435 GTTCCTTTGTGCACTTG 12 29 18897 Coding 440 AGTAGGTTCCTTGTGGC 46 30 18898 Coding 440 AGTAGGTTCCTTGTGGC 46 30 18899 Coding 480 CAGTCCGTATCTTGTGC 26 32 18900 Coding 500 AGCCGCTCTCACACTCCC 36 33 18901 Coding 516 TCTGAAGCGGTGAAGGAG 0 34 18902 Coding 521 GGTTTTCTGAAGCGGTGA 17 35 18903 Coding 525 AGGTGGTTTTCTGGGTA 17 35 18904 Coding 530 GTCTGAGGTGGTTTTCTG 34 37 18905 Coding 530 GTCTGAGGTGGTGG 0 36 18906 Coding 537 AGGCAGTTCTAGAGTGG 0 38 18907 Coding 565 CATTTCCTTTCGGCATTT 13 40 25 18908 Coding 569 GACCCATTTCCTTTCGGC 26 41 18909 Coding 574 CACCTGACCCATTTCCTT 46 42 18910 Coding 654 TTTCACCCAATAATGC 0 44 18911 Coding 653 GGTACTGGTTCTTCTCTT 46 42 18912 Coding 693 CCATTGAGTCGATTTCCTT 46 42 18913 Coding 693 CCATTGAGGCAGGTTCCTTCCTTC 7 18914 Coding 694 CAGTGGACCATTTCCTTC 7 18915 Coding 693 CCATTGAGGCAGGCTG 48 45 18916 Coding 732 ACGGTGTTCTTCTTCTCT 7 18917 Coding 802 GCTTTCCTTTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCT	5	18888	Coding	266	GCAGGTCAGGCACGGTGG		
18891 Coding 280 CACCAGGGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCA		18889	Coding	272			
18892 Coding 286 CAGGAGCACCAGCGGCAG 46 25		18890	Coding	276	AGCGGCAGCAGCAGGTCA	-	
18893 Coding 306		18891		280	CACCAGCGGCAGCAGCAG	21	
18894 Coding 356 TCTTCTCCCTGTCCCCTA 13 27 18895 Coding 403 ATTATTTTGAGGGTGAT 0 28 18896 Coding 435 GTTCCTTTGTGCACTTG 12 29 18897 Coding 440 AGTAGGTTCTTTGTGGC 46 30 18898 Coding 440 AGTAGGTCCTTTGTGGC 46 30 18899 Coding 480 GCCTGGACAGTCATTGTA 0 31 18899 Coding 480 CAGTCCGTATCCTGCCC 26 32 18900 Coding 500 AGCCGGTCTCACACTCCC 36 33 18901 Coding 516 TCTGAAGCGGTGAAGGAG 0 34 18902 Coding 521 GGTTTTCTGAAGCGG 0 36 18903 Coding 525 AGGTGGTTTTCTGAAGCG 0 36 18904 Coding 530 GTCTGAGGTGGTTTTCTG 34 37 18905 Coding 537 AGGCAGTCTTGAGGTGG 0 38 18906 Coding 542 AGCTGAGGTGTTGAGGTGG 0 38 18907 Coding 565 CATTTCCTTTCGGCATTT 13 40 25 18908 Coding 569 GACCCATTTCCTT 46 42 18909 Coding 574 CACCTGACCCATTTCTT 46 42 18910 Coding 635 GGTACTGGTTCTTCTGC 26 41 18911 Coding 654 TTTTCACTCCAATAATGC 0 44 18912 Coding 659 ACGGTTCTTCTTCTCTC 14 43 18913 Coding 659 ACGGTTTCTTTCTCTC 14 43 18914 Coding 659 ACGGTTTCTTTCTCTC 14 43 18915 Coding 693 CCATTGAGGCAGGTTCTCTC 14 43 18916 Coding 732 ACGGTGTTCTTTTCTCT 28 48 18916 Coding 732 ACGGTGTTCTTTTCTCT 28 48 18916 Coding 796 CTACAGGAGACACCTCC 28 48 18917 Coding 802 GCTTTTCTTTCTACAGG 21 49 18919 Coding 802 GCTTTCTTTCTACAGG 21 49 18910 Coding 807 TCCAGGCTTTTCTTACAGG 0 52 18920 Coding 873 ACTGTGGTCCTTACAGGA 21 49 18921 Coding 807 TCCAGGCTTTTCTTACAGG 0 52 18920 Coding 873 ACTGTGGTGCCTAGAGACCCATCG 31 53 18921 Coding 807 TCCAGGCTTTTCTTACAGGT 29 54 18922 Coding 911 AAAGCCAAAGAAAAACGCAA 22 56 18924 Coding 929 CAATGAAGACCAAAGGAA 22 56 18924 Coding 929 CAATGAAGACCAAAGGAA 22 56 18925 Coding 935 TTAAACCAATGAAGGAA 28		18892		286	CAGGAGCACCAGCGGCAG	46	
18895 Coding 403 ATTATTTTAGGGTGGAT 0 28 18896 Coding 445 GTTCCTTTGTGGCACTTG 12 29 18897 Coding 440 AGTAGGTTCCTTTGTGGC 46 30 31 18898 Coding 460 GCCTGGACAGTGTTATA 0 31 18899 Coding 480 CAGTCCGTATCCTCC 26 32 18900 Coding 500 AGCCGCTGACACTCCC 36 33 18901 Coding 516 TCTGAAGCGGTGAAGGAG 0 34 18902 Coding 521 GGTTTTCTGAAGCGGTGA 17 35 18902 Coding 525 AGGTGGTTTTCTGAAGCGG 0 36 18904 Coding 530 GTCTGAGGTGATTTCTG 34 37 18905 Coding 530 GTCTGAGGTGGTGTGAGGGG 0 38 18906 Coding 537 AGGCAGTTCTGAGGTGG 0 38 18906 Coding 542 AGCTGAGGTGTGAGGTG 27 39 18906 Coding 565 CATTTCCTTTCGGCATTT 13 40 40 18909 Coding 569 GACCCATTTCCTTT 46 42 18909 Coding 574 CACCTGACCCATTTCCTT 46 42 18910 Coding 654 TTTTCACTCTATATGC 0 44 43 18912 Coding 654 TTTTCACTCTATATGC 0 44 43 18912 Coding 693 CCATTGAGGCAGAGGCTG 48 45 45 45 45 45 45 45	10	18893	Coding	306	TATATTCCCACCAACAGC	25	26
18896 Coding 440 AGTAGGTTCTTTGTGGC 46 30		18894	Coding	356	TCTTCTCCCTGTCCCCTA	13	27
18897 Coding 440 ACTAGGTTCTTTGTGC 46 30		18895	Coding	403	ATTATTTTGAGGGTGGAT	0	28
18898 Coding 460 GCCTGGACAGTCATTGTA 0 31		18896	Coding	435	GTTCCTTTGTGGCACTTG	12	29
18899 Coding 480 CAGTCGGTATCCTGCCC 26 32 18900 Coding 500 AGCCGCTCTCACACTCCC 36 33 18901 Coding 516 TCTGAAGCGGTGAAGGAG 0 34 18902 Coding 521 GGTTTTCTGAAGCGGTGA 17 35 18903 Coding 525 AGGTGGTTTTCTGAAGCGG 0 36 18904 Coding 530 GTCTGAGGTGGTTTTCTG 34 37 18905 Coding 537 AGGCAGTGTTGAGGTGG 0 38 18906 Coding 542 AGCTGAGGTGTTGAGGTGG 0 38 18907 Coding 565 CATTTCCTTTCGGCATTT 13 40 18908 Coding 569 GACCCATTTCCTTT 14 40 18909 Coding 574 CACCTGACCCATTTCCTT 46 42 18910 Coding 635 GGTACTGGTTCTCTGC 14 43 18911 Coding 654 TTTTCACTCCAATAATGC 0 44 18912 Coding 693 CCATTGAGGCAGGCTG 48 45 18913 Coding 699 ACGGTCCCATTGCTCTC 7 47 18914 Coding 732 ACGGTGTTCTGTTCTCC 28 48 18915 Coding 786 CTACAGGAGACACTCC 28 48 18916 Coding 796 CTACAGGAGACACTCC 28 48 18917 Coding 802 GCTTTCTTCTACAGGA 21 49 18919 Coding 807 TCCAGGGCTTTTCTTCTACAGGA 21 49 18919 Coding 807 TCCAGGCTTTTCTTCTACAGGA 21 49 18919 Coding 807 TCCAGGCTTTTCTTCTACAGGA 21 49 18919 Coding 807 TCCAGGCTTTTCTTCTCAGGA 25 18920 Coding 873 ACTGTTGGTGCCTGAGTCC 31 53 18921 Coding 873 ACTGTTGGTGCCTGAGTCC 31 53 18922 Coding 873 ACTGTTGGTGCCTGAGGTCC 31 53 18924 Coding 921 AGAGGCAAAAACGAAAA 22 56 18924 Coding 921 AGAGGGAGAGGGGTTA 21 57 18925 Coding 935 TTAAACCAATGAAGAGAA 28 58		18897	Coding	440	AGTAGGTTCCTTTGTGGC	46	30
18900 Coding 500 AGCCGCTCTCACACTCCC 36 33 33 18901 Coding 516 TCTGAAGCGTGAAGGAG 0 34 18902 Coding 521 GGTTTTCTGAAGCGTGA 17 35 35 36 37 35 36 37 36 37 36 37 36 38 37 38 37 38 37 38 37 38 37 38 37 38 38	15	18898	Coding	460	GCCTGGACAGTCATTGTA	0	31
18901 Coding 516		18899	Coding	480	CAGTCCGTATCCTGCCCC	26	32
18902 Coding 521 GOTTITICTGAAGCGGTGA 17 35		18900	Coding	500	AGCCGCTCTCACACTCCC	36	33
18903 Coding 525 AGGTGGTTTTCTGAAGGG 0 36 18904 Coding 530 GTCTGAGGTGGTTTTCTG 34 37 18905 Coding 537 AGGCAGTGTTTCTG 34 37 18906 Coding 537 AGGCAGTGTTGAGGTGG 0 38 18906 Coding 542 AGCTGAGGCAGTTCTGA 27 39 18907 Coding 565 CATTTCCTTTCGGCATTT 13 40 18908 Coding 569 GACCCATTTCCTTT 46 42 18909 Coding 574 CACCTGACCCATTTCCTT 46 42 18910 Coding 635 GGTACTGGTTCTTCTGC 14 43 18911 Coding 654 TTTTCACTCCAATAATGC 0 44 18912 Coding 693 CCATTGAGGCAGGCTG 48 45 18913 Coding 699 ACGGTCCCATTGAGGCAG 34 46 18914 Coding 732 ACGGTGTTCTTCTCC 7 47 18915 Coding 786 CTACAGGAGACACACTCC 28 48 18916 Coding 796 CTTACAGTTACTACAGGA 21 49 18917 Coding 802 GCTTTTCTTACAGTTACT 10 50 18918 Coding 807 TCCAGGCTTTTCTACAG 0 51 18919 Coding 845 TAACATTCTCAGTCCC 31 53 18920 Coding 873 ACTGTGGTGCCTGAGTCC 31 53 18921 Coding 906 CAAAGACCAAAGACCCAAGACGCCCCCCCCCCCCCCC		18901	Coding	516	TCTGAAGCGGTGAAGGAG	0	34
18904 Coding 530 GTCTGAGGTGGTTTTCTG 34 37 18905 Coding 537 AGGCAGTGTTTGTGGGTGG 0 38 18906 Coding 542 AGCTGAGGCAGTGTCTGA 27 39 18907 Coding 565 CATTTCCTTTCGGCATT 13 40 18908 Coding 569 GACCCATTTCCTT 46 42 18909 Coding 574 CACCTGACCCATTTCCTT 46 42 18910 Coding 635 GGTACTGGTTCTGC 14 43 18911 Coding 635 GGTACTGGTTCTTCCTC 14 43 18912 Coding 664 TTTTCACTCCAATAATGC 0 44 18912 Coding 699 ACGGTCCCATTGCGT 48 45 18913 Coding 699 ACGGTCCCATTGGGCAG 34 46 18914 Coding 732 ACGGTGTTCTTCTCC 7 47 18915 Coding 786 CTACAGGAGACACTCC 28 48 18916 Coding 786 CTACAGGAGACACTCG 28 48 18917 Coding 802 GCTTTTCTTACAGGA 21 49 18919 Coding 802 GCTTTTCTTACAGTTACT 10 50 18918 Coding 807 TCCAGGCTTTTCTTACAG 0 51 18919 Coding 845 TAACATTCTCAATCTGGG 0 52 18920 Coding 873 ACTGTGGTGCCTGAGTCC 31 53 18921 Coding 873 ACTGTGGTGCCTGAGTCC 31 53 18922 Coding 873 ACTGTGGTGCCTGAGTCC 31 53 18923 Coding 921 AGGAGGAACACAAGA 31 55 18924 Coding 929 CAATGAAGACCAAAGA 22 56 18924 Coding 929 CAATGAAGACGAAG 25 58 18925 Coding 935 TTAAACCAATGAAGAGA 28 58		18902	Coding	521	GGTTTTCTGAAGCGGTGA	17	35
18905 Coding 537 AGGCAGTGTCTGAGGTGG 0 38 18906 Coding 542 AGCTGAGGCAGTTCTGAGGTGG 0 38 18907 Coding 565 CATTTCCTTTCGGCATTT 13 40 40 40 40 40 40 40 4	20	18903	Coding	525	AGGTGGTTTTCTGAAGCG	0	36
18906 Coding 542 AGCTGAGGCAGTCTCTGA 27 39 18907 Coding 565 CATTTCCTTTCGGCATTT 13 40 18908 Coding 569 GACCCATTTCCTTTCGGC 26 41 18909 Coding 574 CACCTGACCCATTTCCTT 46 42 18910 Coding 635 GGTACTGGTTCTTCTGC 14 43 18911 Coding 654 TTTTCACTCCAATAATGC 0 44 18912 Coding 693 CCATTGAGGCAGGGTG 48 45 18913 Coding 699 ACGGTCCATTGAGGCAG 34 46 18914 Coding 699 ACGGTCCATTGAGGCAG 34 46 18915 Coding 699 ACGGTCCATTGAGGCAG 34 46 18916 Coding 732 ACGGTGTTCTTCTCC 7 47 18915 Coding 786 CTACAGGAGACACACTCC 28 48 18916 Coding 796 CTTACAGTTACTACAGGA 21 49 18917 Coding 802 GCTTTTCTTACAGTTACT 10 50 18918 Coding 807 TCCAGGCTTTTCTACAG 0 51 18919 Coding 845 TAACATTCTCAATCTGG 0 52 18920 Coding 873 ACTGTGGTGCCTGAGTCC 31 53 18921 Coding 906 CAAAGACCAAAGAA 31 55 18922 Coding 911 AAAGGCCAAAGAA 22 56 18924 Coding 929 CAATGAAGACGAAA 22 56 18924 Coding 929 CAATGAAGACGAAGA 28 58	20	18904	Coding	530	GTCTGAGGTGGTTTTCTG	34	37
18907 Coding 565 CATTTCCTTTCGCATTT 13 40		18905	Coding	537	AGGCAGTGTCTGAGGTGG	0	38
25 18908 Coding 569 GACCCATTTCCTTTCGGC 26 41 18909 Coding 574 CACCTGACCCATTTCCTT 46 42 18910 Coding 635 GGTACTGGTTCTTCCTC 14 43 18911 Coding 654 TTTTCCATCCAATAATGC 0 44 18912 Coding 693 CCATTGAGGCAGAGGCTG 48 45 18913 Coding 699 ACGGTCCCATTGAGGCAG 34 46 18914 Coding 732 ACGGTGTTCTTTCTCC 7 47 18915 Coding 786 CTACAGGAGACACTCG 28 48 18916 Coding 786 CTACAGGAGACACTCG 28 48 18917 Coding 802 GCTTTCTACAGGA 21 49 18918 Coding 802 GCTTTCTACAGTTACT 10 50 18919 Coding 807 TCCAGGCTTTTCTTACAG 0 51 18919 Coding 845 TAACATTCTCAATCTGG 0 52 18920 Coding 873 ACTGTGGTGCCTGAGTCC 31 53 18921 Coding 873 ACTGTGGTGCCTGAGTCC 31 53 18922 Coding 911 AAAGGCAAAGACAAGA 31 55 18923 Coding 921 AGGAGGGATAAAAGGCAA 22 56 18924 Coding 929 CAATGAAGACGAGAGA 22 56 18925 Coding 935 TTAAACCAATGAAGAGA 28 58		18906	Coding	542	AGCTGAGGCAGTGTCTGA	27	39
18909 Coding 574		18907	Coding	565	CATTTCCTTTCGGCATTT	13	40
18910 Coding 635 GGTACTGGTTCTTCCTGC 14 43 18911 Coding 654 TTTTCACTCCAATAATGC 0 44 18912 Coding 693 CCATTGAGGCAGAGGCTG 48 45 18912 Coding 699 ACGGTCCCATTGAGGCAG 34 46 18914 Coding 732 ACGGTCCCATTGAGGCAG 34 46 18915 Coding 786 CTACAGGAGACACTCG 28 48 18916 Coding 796 CTTACAGTTACTACAGGA 21 49 18917 Coding 802 GCTTTTCTTCACAGTACT 10 50 18918 Coding 807 TCCAGGCTTTCTACAG 0 51 18919 Coding 845 TAACATTCTCAATCTGG 0 52 18920 Coding 873 ACTGTGGTGCCTGAGTCC 31 53 18921 Coding 906 CAAAGACCAAAGAAAATG 29 54 18922 Coding 911 AAAGGCAAAGACCAAGA 31 55 18923 Coding 921 AGGAGGGATAAAAGGCAA 22 56 18924 Coding 929 CAATGAAGACGAGGAG 28 58	25	18908	Coding	569	GACCCATTTCCTTTCGGC	26	41
18911 Coding 654 TITTCACTCCAATAATGC 0 44 18912 Coding 693 CCATTGAGGCAGAGGCTG 48 45 18913 Coding 699 ACGGTCCCATTGAGGCAG 34 46 18914 Coding 732 ACGGTGTTCTGTTTCTCC 7 47 18915 Coding 786 CTACAGGAGACACACTCG 28 48 18916 Coding 796 CTTACAGTACTACAGGA 21 49 18917 Coding 802 GCTTTCTTACAGTACT 10 50 18918 Coding 807 TCCAGGCTTTTCTACAG 0 51 18919 Coding 845 TAACATTCCTAATCTGG 0 52 18920 Coding 873 ACTGTGGTGCCTGAGTCC 31 53 18921 Coding 906 CAAAGACCAAAGAAAATG 29 54 18922 Coding 911 AAAGGCAAAGACACAAGA 31 55 18923 Coding 921 AGGAGGGATAAAAGGCAA 22 56 18924 Coding 929 CAATGAAGAGGAGGAA 22 56 18925 Coding 935 TTAAACCAATGAAGAGA 28 58		18909	Coding	574	CACCTGACCCATTTCCTT	46	42
18912 Coding 693 CCATTGAGGCAGAGGCTG 48 45		18910	Coding	635	GGTACTGGTTCTTCCTGC	14	43
18913 Coding 699 ACGGTCCCATTGAGGCAG 34 46		18911	Coding	654	TTTTCACTCCAATAATGC	0	44
18914 Coding 732 ACGGTGTTCTGTTTCTCC 7 47 18915 Coding 786 CTACAGGAGACACTCG 28 48 18916 Coding 796 CTTACAGTTACTACAGGA 21 49 18917 Coding 802 GCTTTTCTTACAGTTACT 10 50 18918 Coding 807 TCCAGGCTTTTCTACAG 0 51 18919 Coding 845 TAACATTCTCAATCTGGG 0 52 18920 Coding 873 ACTGTGGTGCCTGAGTCC 31 53 18921 Coding 906 CAAAGGCAAAGAAAAATG 29 54 18922 Coding 911 AAGGAGCAAAGACCAAAGA 31 55 18923 Coding 921 AGGAGGGATAAAAGGCAA 22 56 18924 Coding 929 CAATGAAGAGGAGGAGGATA 21 57 18925 Coding 935 TTAAACCAATGAAGAGA 28 58		18912	Coding	693	CCATTGAGGCAGAGGCTG	48	45
18915 Coding 786 CTACAGGAGACACACTCG 28 48 18916 Coding 796 CTTACAGTACTACAGGA 21 49 18917 Coding 802 GCTTTCTTACAGTACT 10 50 50 50 50 50 50 50	30	18913	Coding	699	ACGGTCCCATTGAGGCAG	34	46
18916 Coding 796 CITACAGTTACTACAGGA 21 49 18917 Coding 802 GCTTTCTTACAGTTACT 10 50 18918 Coding 807 TCCAGGCTTTTCTTACAG 0 51 18919 Coding 845 TAACATTCTCAATCTGGG 0 52 18920 Coding 873 ACTGTGGTGCCTGAGTCC 31 53 18921 Coding 906 CAAAGACCAAAGACAAAATG 29 54 18922 Coding 911 AAAGGCAAAGACAAAGA 31 55 18923 Coding 921 AGAGGGATAAAAAGGCAA 22 56 18924 Coding 929 CAATGAAGAGGAGGATA 21 57 18925 Coding 935 TTAAACCAATGAAGAGA 28 58		18914	Coding	732	ACGGTGTTCTGTTTCTCC	7	47
18917 Coding 802 GCTTTTCTTACAGTTACT 10 50		18915	Coding	786	CTACAGGAGACACACTCG	28	48
18918 Coding 807 TCCAGGCTTTTCTTACAG 0 51		18916	Coding	796	CTTACAGTTACTACAGGA	21	49
18919 Coding 845 TAACATTCTCAATCTGGG 0 52		18917	Coding	802	GCTTTTCTTACAGTTACT	10	50
18920 Coding 873 ACTGTGGTGCCTGAGTCC 31 53 18921 Coding 906 CAAAGACCAAAGAAAATG 29 54 18922 Coding 911 AAAGGCAAAGACCAAAGA 31 55 40 18923 Coding 921 AGGAGGGATAAAAGCCAA 22 56 18924 Coding 929 CAATGAAGAGGGAAA 22 57 18925 Coding 935 TTAAACCAATGAAGAG 28 58	35	18918	Coding	807	TCCAGGCTTTTCTTACAG	0	51
18921 Coding 906		18919	Coding	845	TAACATTCTCAATCTGGG	0	52
18922 Coding 911 AAAGGCAAAGACCAAAGA 31 55 40 18923 Coding 921 AGGAGGGATAAAAGGCAA 22 56 18924 Coding 929 CAATGAAGAGGAGGATA 21 57 18925 Coding 935 TTAAACCAATGAAGAGGA 28 58		18920	Coding	873	ACTGTGGTGCCTGAGTCC	31	53
40 18923 Coding 921 AGGAGGATAAAAGGCAA 22 56 18924 Coding 929 CAATGAAGAGGAGGATA 21 57 18925 Coding 935 TTAAACCAATGAAGAGA 28 58		18921	Coding	906	CAAAGACCAAAGAAAATG	29	54
18924 Coding 929 CAATGAAGAGGAGGATA 21 57 18925 Coding 935 TTAAACCAATGAAGAGA 28 58		18922	Coding	911	AAAGGCAAAGACCAAAGA	31	55
18925 Coding 935 TTAAACCAATGAAGAGGA 28 58	40	18923	Coding	921	AGGAGGGATAAAAGGCAA	22	56
10323 COULTY 333 IIIIIICOIIIIGII		18924	Coding	929	CAATGAAGAGGAGGGATA	21	57
19926 Coding 952 CCCTTCCTACCCATACAT 20 59		18925	Coding	935	TTAAACCAATGAAGAGGA	28	58
110320 COUTING 322 CONTINUES AND SA		18926	Coding	952	CCGTTGGTAGCGATACAT	30	59

Local Control
43
01
U
1
1700
Ü
ļ.,
8
ļ.
N
4
(00)

	18927	Coding	992	TCGATTTCCCACAAACAA	1	60
	18928	Coding	1033	CTTAGTAGTAGTTCCTTC	15	61
	18929	Coding	1075	GAAGCCTGGAGTGGGACT	48	62
15	18930	Coding	1098	GGACTGAAGCCCAGGGTG	12	63
5	18931	Coding	1113	GTGGAACTGGGCACGGGA	4	64
	18932	Coding	1118	TGAAGGTGGAACTGGGCA	27	65
	18933	Coding	1127	AGCTGGAGGTGAAGGTGG	0	66
	18934	Coding	1162	CGCAAAGTTGGGACAGTC	30	67
	18935	Coding	1184	GTGCCACCTCTCTGCGGG	0	68
10	18936	Coding	1269	CTGTCCTCCCACTTCTGA	16	69
	18937	Coding	1290	AGGCTCTGTGGCTTGTGG	47	70
	18938	Coding	1389	TCGTGGTCGCTCAGCCCT	28	71
	18939	Coding	1465	CCGCCTCCAGGTCGCCAG	0	72
	18940	Coding	1537	GCAGCCCAGCAGGTCCAT	32	73
15	18941	Coding	1545	TCCTCCAGGCAGCCCAGC	41	74
15	18942	Coding	1604	ATCTGAGAAGACTGGGCG	0	75
	18943	Coding	1707	GCTCCTGCTTGCCCCTGC	43	76
	18944	Coding	1732	GTTAGCACCAAGTAGGCG	11	77
	18945	Coding	1842	CGCAAACCACCCACTCAG	51	78
20	18946	Coding	1847	ATCCTCGCAAACCACCCA	29	79
	18947	Coding	1859	ATAGCGTCCCTCATCCTC	34	80
	18948	Coding	1925	CTCAGGGACGAACCAGGG	3	81
	18949	Coding	1930	AAAGGCTCAGGGACGAAC	42	82
	18950	Coding	1979	ACAAAACAAAACAAAACA	27	83
25	18951	Coding	2016	GCCAAGTTTCTATTAGTG	10	84
	18952	Coding	2033	GCAGAGGGCACAGGAGTG	24	85
	18953	Coding	2039	GTCCAGGCAGAGGGCACA	21	86
	18954	Coding	2043	GCTTGTCCAGGCAGAGGG	18	87
	18955	Coding	2071	TGCCTTAGGACAGTTCAG	20	88
30	18956	Coding	2085	TCCGTGCTCGCCCCTGCC	19	89
	18957	Coding	2089	TTGTTCCGTGCTCGCCCC	41	90
	18958	Coding	2097	AGGCCCCATTGTTCCGTG	0	91

As shown in Table 1, SEQ ID NOs 11, 15, 16, 17, 22, 25, 30, 33, 42, 45, 62, 70, 74, 76, 78, 82 and 90 demonstrated at least 35% inhibition of TNFR1 expression in this assay and are therefore preferred.

Example 11

Analysis of oligonucleotide inhibition of TNFR1 expression

Antisense modulation of TNFR1 expression can be assayed in a variety of ways known in the art. For example, TNFR1 mRNA 5 levels can be quantitated by, e.g., Northern blot analysis, competitive polymerase chain reaction (PCR), or real-time PCR (RT-PCR). Real-time quantitative PCR is presently preferred. RNA analysis can be performed on total cellular RNA or poly(A) + mRNA. Methods of RNA isolation are taught in, for 10 example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 1, pp. 4.1.1-4.2.9 and 4.5.1-4.5.3, John Wiley & Sons, Inc., 1993. Northern blot analysis is routine in the art and is taught in, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 1, pp. 4.2.1-15 4.2.9, John Wiley & Sons, Inc., 1996. Real-time quantitative (PCR) can be conveniently accomplished using the commercially available ABI PRISM™ 7700 Sequence Detection System, available from PE-Applied Biosystems, Foster City, CA and used according to manufacturer's instructions. Other methods of PCR are also 20 known in the art.

TNFR1 protein levels can be quantitated in a variety of ways well known in the art, such as immunoprecipitation, Western blot analysis (immunoblotting), ELISA or fluorescence-activated cell sorting (FACS). Antibodies directed to TNFR1 25 can be identified and obtained from a variety of sources, such as the MSRS catalog of antibodies (Aerie Corporation, Birmingham, MI), or can be prepared via conventional antibody generation methods. Methods for preparation of polyclonal antisera are taught in, for example, Ausubel, F.M. et al., 30 Current Protocols in Molecular Biology, Volume 2, pp. 11.12.1-11.2.9, John Wiley & Sons, Inc., 1997. Preparation of monoclonal antibodies is taught in, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 11.4.1-11.11.5, John Wiley & Sons, Inc., 1997.

DONOUNT TOURSD

Immunoprecipitation methods are standard in the art and can be found at, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 10.16.1-10.16.11, John Wiley & Sons, Inc., 1998. Western blot (immunoblot) analysis is standard in the art and can be found at, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 10.8.1-10.8.21, John Wiley & Sons, Inc., 1997. Enzyme-linked immunosorbent assays (ELISA) are standard in the art and can be found at, for example, 10 Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 11.2.1-11.2.22, John Wiley & Sons, Inc., 1991.

Example 12

Poly(A) + mRNA isolation

Poly(A) + mRNA was isolated according to Miura et al., 15 Clin. Chem., 1996, 42, 1758-1764. Other methods for poly(A)+ mRNA isolation are taught in, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 1, pp. 4.5.1-4.5.3, John Wiley & Sons, Inc., 1993. Briefly, for cells grown on 96-well plates, growth medium was removed from the 20 cells and each well was washed with 200 μL cold PBS. 60 μL lysis buffer (10 mM Tris-HCl, pH 7.6, 1 mM EDTA, 0.5 M NaCl, 0.5% NP-40, 20 mM vanadyl-ribonucleoside complex) was added to each well, the plate was gently agitated and then incubated at room temperature for five minutes. 55 μL of lysate was 25 transferred to Oligo d(T) coated 96-well plates (AGCT Inc., Irvine CA). Plates were incubated for 60 minutes at room temperature, washed 3 times with 200 μL of wash buffer (10 mM Tris-HCl pH 7.6, 1 mM EDTA, 0.3 M NaCl). After the final wash, the plate was blotted on paper towels to remove excess wash 30 buffer and then air-dried for 5 minutes. 60 μL of elution buffer (5 mM Tris-HCl pH 7.6), preheated to 70°C was added to each well, the plate was incubated on a 90° hot plate for 5

CONSCIPL TOSTO

minutes, and the eluate was then transferred to a fresh 96well plate.

Cells grown on 100 mm or other standard plates may be treated similarly, using appropriate volumes of all solutions.

5 Example 13

Total RNA Isolation

Total mRNA was isolated using an RNEASY 96™ kit and buffers purchased from Oiagen Inc. (Valencia CA) following the manufacturer's recommended procedures. Briefly, for cells 10 grown on 96-well plates, growth medium was removed from the cells and each well was washed with 200 μL cold PBS. 100 μL Buffer RLT was added to each well and the plate vigorously agitated for 20 seconds. 100 μL of 70% ethanol was then added to each well and the contents mixed by pippeting three times 15 up and down. The samples were then transferred to the RNEASY 96 $^{\text{\tiny{IM}}}$ well plate attached to a QIAVAC $^{\text{\tiny{IM}}}$ manifold fitted with a waste collection tray and attached to a vacuum source. Vacuum was applied for 15 seconds. 1 mL of Buffer RW1 was added to each well of the RNEASY $96^{\text{\tiny M}}$ plate and the vacuum again applied 20 for 15 seconds. 1 mL of Buffer RPE was then added to each well of the RNEASY 96™ plate and the vacuum applied for a period of 15 seconds. The Buffer RPE wash was then repeated and the vacuum was applied for an additional 10 minutes. The plate was then removed from the QIAVAC™ manifold and blotted 25 dry on paper towels. The plate was then re-attached to the $QIAVAC^{TM}$ manifold fitted with a collection tube rack containing 1.2 mL collection tubes. RNA was then eluted by pipetting 60 μL water into each well, incubating 1 minute, and then applying the vacuum for 30 seconds. The elution step was 30 repeated with an additional 60 µL water.

Example 14

Real-time Quantitative PCR Analysis of TNFR1 mRNA Levels

Quantitation of TNFR1 mRNA levels was determined by realtime quantitative PCR using the ABI PRISM™ 7700 Sequence 5 Detection System (PE-Applied Biosystems, Foster City, CA) according to manufacturer's instructions. This is a closedtube, non-gel-based, fluorescence detection system which allows high-throughput quantitation of polymerase chain reaction (PCR) products in real-time. As opposed to standard 10 PCR, in which amplification products are quantitated after the PCR is completed, products in real-time quantitative PCR are quantitated as they accumulate. This is accomplished by including in the PCR reaction an oligonucleotide probe that anneals specifically between the forward and reverse PCR 15 primers, and contains two fluorescent dyes. A reporter dye (e.g., JOE or FAM, PE-Applied Biosystems, Foster City, CA) is attached to the 5' end of the probe and a quencher dye (e.g., TAMRA, PE-Applied Biosystems, Foster City, CA) is attached to the 3' end of the probe. When the probe and dyes are intact, 20 reporter dye emission is quenched by the proximity of the 3' quencher dye. During amplification, annealing of the probe to the target sequence creates a substrate that can be cleaved by the 5'-exonuclease activity of Taq polymerase. During the extension phase of the PCR amplification cycle, cleavage of 25 the probe by Taq polymerase releases the reporter dye from the remainder of the probe (and hence from the quencher moiety) and a sequence-specific fluorescent signal is generated. With each cycle, additional reporter dye molecules are cleaved from their respective probes, and the fluorescence intensity is 30 monitored at regular (six-second) intervals by laser optics built into the ABI PRISM™ 7700 Sequence Detection System. In each assay, a series of parallel reactions containing serial dilutions of mRNA from untreated control samples generates a standard curve that is used to quantitate the percent

inhibition after antisense oligonucleotide treatment of test samples.

PCR reagents were obtained from PE-Applied Biosystems, Foster City, CA. RT-PCR reactions were carried out by adding 5 25 μL PCR cocktail (1x TAQMAN™ buffer A, 5.5 mM MgCl₂, 300 μM each of dATP, dCTP and dGTP, 600 μM of dUTP, 100 nM each of forward primer, reverse primer, and probe, 20 Units RNAse inhibitor, 1.25 Units AMPLITAQ GOLD™, and 12.5 Units MuLV reverse transcriptase) to 96 well plates containing 25 μL poly(A) mRNA solution. The RT reaction was carried out by incubation for 30 minutes at 48°C. following a 10 minute incubation at 95°C to activate the AMPLITAQ GOLD™, 40 cycles of a two-step PCR protocol were carried out: 95°C for 15 seconds (denaturation) followed by 60°C for 1.5 minutes 15 (annealing/extension).

For TNFR1 the PCR primers were:
forward primer: GCTTCAGAAAACCACCTCAGACA (SEQ ID No. 2)
reverse primer: CCGGTCCACTGTGCAAGAA (SEQ ID No. 3) and the PCR
probe was: FAM-TCAGCTGCTCCAAATGCCGAAAGG-TAMRA

20 (SEQ ID No. 4) where FAM (PE-Applied Biosystems, Foster City, CA) is the fluorescent reporter dye) and TAMRA (PE-Applied Biosystems, Foster City, CA) is the quencher dye.

For GAPDH the PCR primers were:

forward primer: GAAGGTGAAGGTCGGAGTC (SEQ ID No. 5)

25 reverse primer: GAAGATGGTGATGGGATTTC (SEQ ID No. 6) and the PCR
probe was: 5' JOE-CAAGCTTCCCGTTCTCAGCC- TAMRA 3' (SEQ ID No.
7) where JOE (PE-Applied Biosystems, Foster City, CA) is the
fluorescent reporter dye) and TAMRA (PE-Applied Biosystems,
Foster City, CA) is the quencher dye.

30 Example 15

Northern blot analysis of TNFR1 mRNA levels

Eighteen hours after antisense treatment, cell monolayers were washed twice with cold PBS and lysed in 1 mL RNAZOL™ (TEL-TEST "B" Inc., Friendswood, TX). Total RNA was prepared

OSESSASI . CORADO

following manufacturer's recommended protocols. Twenty micrograms of total RNA was fractionated by electrophoresis through 1.2% agarose gels containing 1.1% formaldehyde using a MOPS buffer system (AMRESCO, Inc. Solon, OH). RNA was 5 transferred from the gel to HYBOND^{IM}-N+ nylon membranes (Amersham Pharmacia Biotech, Piscataway, NJ) by overnight capillary transfer using a Northern/Southern Transfer buffer system (TEL-TEST "B" Inc., Friendswood, TX). RNA transfer was confirmed by UV visualization. Membranes were fixed by UV 10 cross-linking using a STRATALINKER^{IM} UV Crosslinker 2400 (Stratagene, Inc. La Jolla, CA).

Membranes were probed using QUICKHYB™ hybridization solution (Stratagene, La Jolla, CA) using manufacturer's recommendations for stringent conditions with a TNFR1 specific 15 probe prepared by PCR using the forward GCTTCAGAAAACCACCTCAGACA (SEQ ID No. 2) and the reverse primer CCGGTCCACTGTGCAAGAA (SEQ ID No. 3). To normalize for variations in loading and transfer efficiency membranes were probed for glyceraldehyde-3-phosphate and stripped 20 dehydrogenase (G3PDH) RNA (Clontech, Palo Alto, CA). Hybridized membranes were visualized and quantitated using a PHOSPHORIMAGER™ and IMAGEQUANT™ Software V3.3 (Molecular Dynamics, Sunnyvale, CA). Data was normalized to G3PDH levels in untreated controls.

25 Example 16

Western blot analysis of TNFR1 protein levels

Western blot analysis (immunoblot analysis) is carried out using standard methods. Cells are harvested 16-20 hr after oligonucleotide treatment, washed once with PBS, suspended 30 in Laemmli buffer (100µl/well), boiled for 5 minutes and loaded on a 16% SDS-PAGE gel. Gels are run for 1.5 hours at 150 V, and transferred to membrane for western blotting. Appropriate primary antibody directed to TNFR1 is used, with a radiolabelled or fluorescently labeled secondary antibody

OSCASIFIE INCHOL

directed against the primary antibody species. Bands are visualized using a PHOSPHORIMAGER $^{\text{IM}}$ (Molecular Dynamics, Sunnyvale CA).

Example 17:

5 Antisense inhibition of TNFR1 expression- phosphorothioate 2'MOE gapmer oligonucleotides

In accordance with the present invention, a second series of oligonucleotides targeted to human TNFR1 were synthesized. The oligonucleotide sequences are shown in Table 2. Target 10 sites are indicated by nucleotide numbers, as given in the sequence source reference (Genbank accession no. X55313), to which the oligonucleotide binds.

All compounds in Table 2 are chimeric oligonucleotides ("gapmers") 18 nucleotides in length, composed of a central 15 "gap" region consisting of ten 2'-deoxynucleotides, which is flanked on both sides (5' and 3' directions) by four-nucleotide "wings." The wings are composed of 2'-methoxyethyl (2'-MOE)nucleotides. The internucleoside (backbone) linkages are phosphorothioate (P=S) throughout the oligonucleotide. 20 Cytidine residues in the 2'-MOE wings are 5-methylcytidines.

Data were obtained by real-time quantitative PCR as described in previous examples and are averaged from three experiments.

Table 2

25 Inhibition of TNFR1 mRNA levels by chimeric phosphorothicate oligonucleotides having 2'-MOE wings and a decay gap

	ISIS#	REGION	TARGET	SEQUENCE	%	SEQ ID
			SITE		Inhibition	NO.
	19463	5' UTR	37	TTCTCTGGACTGAGGCTC	72	8
30	19464	5' UTR	68	TCCCCTCCTCTCTGCTTT	9	9
	19465	5' UTR	109	AGACTCGGGCATAGAGAT	18	10

	19466	5' UTR	114	GGTTGAGACTCGGGCATA	95	11
	19467	5' UTR	118	TGAGGGTTGAGACTCGGG	28	12
	19468	5' UTR	123	ACAGTTGAGGGTTGAGAC	66	13
	19469	5' UTR	127	GGTGACAGTTGAGGGTTG	42	14
5	19470	5' UTR	196	GCAGTGTGGCAGCGGCAG	78	15
	19471	5' UTR	199	AGGGCAGTGTGGCAGCGG	76	16
	19472	5' UTR	202	CTCAGGGCAGTGTGGCAG	90	17
	19473	5' UTR	207	TTGGGCTCAGGGCAGTGT	48	18
	19474	5' UTR	210	CATTTGGGCTCAGGGCAG	70	19
10	19475	Coding	262	GTCAGGCACGGTGGAGAG	66	20
	19476	Coding	266	GCAGGTCAGGCACGGTGG	91	21
	19477	Coding	272	GCAGCAGCAGGTCAGGCA	85	22
	19478	Coding	276	AGCGGCAGCAGCAGGTCA	93	23
	19479	Coding	280	CACCAGCGGCAGCAGCAG	65	24
15	19480	Coding	286	CAGGAGCACCAGCGGCAG	60	25
	19481	Coding	306	TATATTCCCACCAACAGC	58	26
	19482	Coding	356	TCTTCTCCCTGTCCCCTA	42	27
	19483	Coding	403	ATTATTTTGAGGGTGGAT	75	28
	19484	Coding	435	GTTCCTTTGTGGCACTTG	88	29
20	19485	Coding	440	AGTAGGTTCCTTTGTGGC	78	30
	19486	Coding	460	GCCTGGACAGTCATTGTA	80	31
	19487	Coding	480	CAGTCCGTATCCTGCCCC	66	32
	19488	Coding	500	AGCCGCTCTCACACTCCC	86	33
	19489	Coding	516	TCTGAAGCGGTGAAGGAG	52	34
25	19490	Coding	521	GGTTTTCTGAAGCGGTGA	92	35
	19491	Coding	525	AGGTGGTTTTCTGAAGCG	82	36
	19492	Coding	530	GTCTGAGGTGGTTTTCTG	91	37
	19493	Coding	537	AGGCAGTGTCTGAGGTGG	96	38
	19494	Coding	542	AGCTGAGGCAGTGTCTGA	79	39
30	19495	Coding	565	CATTTCCTTTCGGCATTT	41	40
	19496	Coding	569	GACCCATTTCCTTTCGGC	93	41
	19497	Coding	574	CACCTGACCCATTTCCTT	63	42
	19498	Coding	635	GGTACTGGTTCTTCCTGC	79	43
	19499	Coding	654	TTTTCACTCCAATAATGC	9	44
35	19500	Coding	693	CCATTGAGGCAGAGGCTG	0	45
	19501	Coding	699 732	ACGGTCCCATTGAGGCAG ACGGTGTTCTGTTTCTCC	81 77	46 47
	19502	Coding	786	CTACAGGAGACACACTCG	81	47
	19503	Coding		CTACAGGAGACACACTCG	61	49
4.0	19504	Coding Coding	796 802	GCTTTCTTACAGTTACT	93	50
40	19505 19506	Coding	802	TCCAGGCTTTTCTTACAG	93 71	50
	19506	Coding	845	TAACATTCTCAATCTGGG	0	52
	19507	Coding	845	ACTGTGGTGCCTGAGTCC	74	53
	19208	Leourng	0/3	MCIGIGGIGCCIGAGICC	/4	رر

The state of the s

ſ	19509	Coding	906	CAAAGACCAAAGAAAATG	29	54
- 1		Coding	911	AAAGGCAAAGACCAAAGA	45	55
- }		Coding	921	AGGAGGGATAAAAGGCAA	67	56
	19512	Coding	929	CAATGAAGAGGAGGGATA	55	57
5		Coding	935	TTAAACCAATGAAGAGGA	25	58
J	19514	Coding	952	CCGTTGGTAGCGATACAT	93	59
1	19515	Coding	992	TCGATTTCCCACAAACAA	16	60
-	19516	Coding	1033	CTTAGTAGTAGTTCCTTC	70	61
	19517	Coding	1075	GAAGCCTGGAGTGGGACT	0	62
10	19518	Coding	1098	GGACTGAAGCCCAGGGTG	31	63
- "	19519	Coding	1113	GTGGAACTGGGCACGGGA	41	64
	19520	Coding	1118	TGAAGGTGGAACTGGGCA	51	65
	19521	Coding	1127	AGCTGGAGGTGAAGGTGG	59	66
	19522	Coding	1162	CGCAAAGTTGGGACAGTC	80	67
15	19523	Coding	1184	GTGCCACCTCTCTGCGGG	40	68
	19524	Coding	1269	CTGTCCTCCCACTTCTGA	67	69
	19525	Coding	1290	AGGCTCTGTGGCTTGTGG	79	70
	19526	Coding	1389	TCGTGGTCGCTCAGCCCT	75	71
	19527	Coding	1465	CCGCCTCCAGGTCGCCAG	57	72
20	19528	Coding	1537	GCAGCCCAGCAGGTCCAT	68	73
	19529	Coding	1545	TCCTCCAGGCAGCCCAGC	80	74
	19530	Coding	1604	ATCTGAGAAGACTGGGCG	19	75
	19531	Coding	1707	GCTCCTGCTTGCCCCTGC	89	76
	19532	Coding	1732	GTTAGCACCAAGTAGGCG	80	77
25	19533	Coding	1842	CGCAAACCACCCACTCAG	79	78
	19534	Coding	1847	ATCCTCGCAAACCACCCA	42	79
	19535	Coding	1859	ATAGCGTCCCTCATCCTC	52	80
	19536	Coding	1925	CTCAGGGACGAACCAGGG	92	81
	19537	Coding	1930	AAAGGCTCAGGGACGAAC	41	82
30	19538	Coding	1979	ACAAAACAAAACAAAACA	0	83
	19539	Coding	2016	GCCAAGTTTCTATTAGTG	87	84
	19540	Coding	2033	GCAGAGGGCACAGGAGTG	59	85
	19541	Coding	2039	GTCCAGGCAGAGGGCACA	72	86
	19542	Coding	2043	GCTTGTCCAGGCAGAGGG	58	87
35	19543	Coding	2071	TGCCTTAGGACAGTTCAG	69	88
	19544	Coding	2085	TCCGTGCTCGCCCCTGCC	62	89
	19545	Coding	2089	TTGTTCCGTGCTCGCCCC	57	90
	19546	Coding	2097	AGGCCCCATTGTTCCGTG	79	91

As shown in Table 2, SEQ ID NOs 11, 15, 16, 17, 21, 22, 40 23, 28, 29, 30, 31, 33, 35, 36, 37, 38, 39, 41, 43, 46, 47, 48, 50, 59, 67, 70, 71, 74, 76, 77, 78, 81, 84 and 91

demonstrated at least 75% inhibition of TNFR1 expression in this experiment and are therefore preferred.

Example 18:

Antisense inhibition of TNFR1 expression- phosphorothioate 2'5 MOE gapmer oligonucleotides

In accordance with the present invention, a third series of oligonucleotides were designed to target different regions of the human TNFR1, using published sequences (GenBank accession number X55313, incorporated herein as SEQ ID NO: 1, 10 GenBank accession number AA460610, incorporated herein as SEQ ID NO: 92, and GenBank accession number F13533, incorporated herein as SEQ ID NO: 93). The oligonucleotides are shown in "Target site" indicates the first (5'-most) Table 3. nucleotide number on the particular target sequence to which 15 the oligonucleotide binds. All compounds in Table 3 are chimeric oligonucleotides ("gapmers") 18 nucleotides in length, composed of a central "gap" region consisting of ten 2'-deoxynucleotides, which is flanked on both sides (5' and 3' directions) by four-nucleotide "wings". The wings are 20 composed of 2'-methoxyethyl (2'-MOE) nucleotides. internucleoside (backbone) linkages are phosphorothioate (P=S) throughout the oligonucleotide. All cytidine residues are 5methylcytidines. The compounds were analyzed for their effect on human TNFR1 mRNA levels by quantitative real-time PCR as 25 described in other examples herein. Data are averages from two experiments. If present, "N.D." indicates "no data".

Table 3

Inhibition of TNFR1 mRNA levels by chimeric phosphorothicate oligonucleotides having 2'-MOE wings and a deoxy gap

-	TOTO	DEGLOV	TARGET	TARGET	SEQUENCE	%	SEO
5	ISIS 26089	FEGION 5' UTR		111	TGAGACTCGGGCATAGAG	39	94
		5' UTR	1	116	AGGGTTGAGACTCGGGCA	43	95
	26091 26092	5' UTR	1	119	TTGAGGGTTGAGACTCGG	59	96
	26092	5' UTR	1	121	AGTTGAGGGTTGAGACTC	11	97
10	26094	5' UTR	1	125	TGACAGTTGAGGGTTGAG	42	98
ΤU	26094	5' UTR	1	194	AGTGTGGCAGCGCAGTG	35	99
	26099	5' UTR	1	201	TCAGGGCAGTGTGGCAGC	45	100
	26100	5' UTR	1	203	GCTCAGGGCAGTGTGGCA	48	101
	26100	5' UTR	1	205	GGGCTCAGGGCAGTGTGG	39	102
15	26101	5' UTR	1	209	ATTTGGGCTCAGGGCAGT	41	103
12	26104	5' UTR	1	211	CCATTTGGGCTCAGGGCA	48	104
	26124	Coding	1	653	TTTCACTCCAATAATGCC	1	105
	26125	Coding	1	655	GTTTTCACTCCAATAATG	7	106
	26126	Coding	1	657	AGGTTTTCACTCCAATAA	9	107
20	26127	Coding	1	659	AAAGGTTTTCACTCCAAT	32	108
20	26128	Coding	1	671	TGAAGCACTGGAAAAGGT	28	109
	26129	Coding	1	673	ATTGAAGCACTGGAAAAG	20	110
	26133	Coding	1	727	GTTCTGTTTCTCCTGGCA	63	111
	26134	Coding	1	729	GTGTTCTGTTTCTCCTGG	52	112
25	26135	Coding	1	731	CGGTGTTCTGTTTCTCCT	70	113
25	26136		1	775	ACACTCGTTTTCTCTTAG	20	114
	26137		1	779	AGACACACTCGTTTTCTC	28	115
	26138		1	781	GGAGACACACTCGTTTTC	5	116
		Coding	1	803	GGCTTTTCTTACAGTTAC	57	117
3.0	26140	Coding	1	805	CAGGCTTTTCTTACAGTT	44	118
50	26141	Coding	1	846	TTAACATTCTCAATCTGG	11	119
	26142	Coding	1	899	CAAAGAAAATGACCAGGG	0	120
	26143		1	903	AGACCAAAGAAAATGACC	0	121
	26144	Coding	1	905	AAAGACCAAAGAAAATGA	0	122
35	26145		1	909	AGGCAAAGACCAAAGAAA	15	123
,,,	26147	Coding	1	915	GATAAAAGGCAAAGACCA	17	124
	26148		1	917	GGGATAAAAGGCAAAGAC	18	125
	26149		1	919	GAGGGATAAAAGGCAAAG	11	126
	26150	Coding	1	923	AGAGGAGGGATAAAAGGC	35	127
40	26151	Coding	1	925	GAAGAGGAGGATAAAAG	0	128
	26152	Coding	1	927	ATGAAGAGGAGGATAAA	0	129
	26153	Coding	1	931	ACCAATGAAGAGGAGGGA	21	130
	26154	Coding	1	933	AAACCAATGAAGAGGAGG	32	131
	26156	Coding		950	GTTGGTAGCGATACATTA	58	132
45	26157	Coding	1	952	CCGTTGGTAGCGATACAT	73	133
	26158	Coding	11	954	CACCGTTGGTAGCGATAC	40	134
	26159		1	982	ACAAACAATGGAGTAGAG	2	135
	26160	Coding	1	990	GATTTCCCACAAACAATG	34	136
	26161	Coding	1	992	TCGATTTCCCACAAACAA	13	137
50				1222	GGCTGTCGCAAGGATGGG	27	138
	26115	Coding	1	1270	GCTGTCCTCCCACTTCTG	19	139

ELIST WE WELL
1
4
U
No.
100
and the
25
į.
L
PER PER
-
-
1

	26116	Coding	1	1272	GCGCTGTCCTCCCACTTC	44	140
	26117	Coding	1	1287	CTCTGTGGCTTGTGGGCG	17	141
	26118	Coding	1	1289	GGCTCTGTGGCTTGTGGG	25	142
	26119	Coding	1	1291	TAGGCTCTGTGGCTTGTG	34	143
5	26120	Coding	1	1293	TCTAGGCTCTGTGGCTTG	37	144
	26105	Coding	92	226	TGAAGGACGGTGGAGAGG	2	145
	26106	Coding	92	228	GGTGAAGGACGGTGGAGA	0	146
	26107	Coding	92	230	GAGGTGAAGGACGGTGGA	_ 1	147
	26108	Coding	92	231	GGAGGTGAAGGACGGTGG	0	148
10	26109	Coding	92	233	CTGGAGGTGAAGGACGGT	15	149
	26110	Coding	92	235	AGCTGGAGGTGAAGGACG	1	150
	26111	Coding	92	275	GGAGCCGCAAAGTTGGTA	11	151
	26112	Coding	92	276	GGGAGCCGCAAAGTTGGT	3	152
	26114	Coding	92	332	GAGGCTGTCGCAAGGATG	14	153
15	26121	Coding	92	495	CTTGGTCGCTCAGCCCTA	26	154
	26122	Coding	92	497	CTCTTGGTCGCTCAGCCC	0	155
	26123	Coding	92	500	GATCTCTTGGTCGCTCAG	13	156
	26130	Coding	93	43	GTCCCATTGAGCAGAGGC	18	157
	26131	Coding	93	45	CGGTCCCATTGAGCAGAG	32	158
20	26132	Coding	93	49	TGCACGGTCCCATTGAGC	34	159

As shown in Table 3, SEQ ID NOs 94, 95, 96, 98, 99, 100, 101, 102, 103, 104, 108, 111, 112, 113, 117, 118, 127, 131, 132, 133, 134, 136, 140, 143, 144, 158 and 159 demonstrated at least 30% inhibition of TNFR1 expression in this experiment 25 and are therefore preferred.

Example 19

Real-time Quantitative PCR Analysis of mouse TNFR1 mRNA Levels

Quantitation of mouse TNFR1 mRNA levels was determined by real-time quantitative PCR using the ABI PRISM™ 7700

30 Sequence Detection System (PE-Applied Biosystems, Foster City, CA) according to manufacturer's instructions. This is a closed-tube, non-gel-based, fluorescence detection system which allows high-throughput quantitation of polymerase chain reaction (PCR) products in real-time. As opposed to standard PCR, in which amplification products are quantitated after the PCR is completed, products in real-time quantitative PCR are quantitated as they accumulate. This is accomplished by including in the PCR reaction an oligonucleotide probe that anneals specifically between the forward and reverse PCR primers, and contains two fluorescent dyes. A reporter dye

TOROGRAM INTERIO

(e.g., JOE or FAM, PE-Applied Biosystems, Foster City, CA) is attached to the 5' end of the probe and a quencher dye (e.g., TAMRA, PE-Applied Biosystems, Foster City, CA) is attached to the 3' end of the probe. When the probe and dyes are intact, 5 reporter dye emission is quenched by the proximity of the 3' quencher dye. During amplification, annealing of the probe to the target sequence creates a substrate that can be cleaved by the 5'-exonuclease activity of Taq polymerase. During the extension phase of the PCR amplification cycle, cleavage of 10 the probe by Tag polymerase releases the reporter dye from the remainder of the probe (and hence from the quencher moiety) and a sequence-specific fluorescent signal is generated. With each cycle, additional reporter dye molecules are cleaved from their respective probes, and the fluorescence intensity is 15 monitored at regular (six-second) intervals by laser optics built into the ABI PRISM™ 7700 Sequence Detection System. In each assay, a series of parallel reactions containing serial dilutions of mRNA from untreated control samples generates a standard curve that is used to quantitate the percent 20 inhibition after antisense oligonucleotide treatment of test samples.

PCR reagents were obtained from PE-Applied Biosystems,
Foster City, CA. RT-PCR reactions were carried out by adding
25 µL PCR cocktail (1x TAQMAN™ buffer A, 5.5 mM MgCl₂, 300 µM
25 each of dATP, dCTP and dGTP, 600 µM of dUTP, 100 nM each of
forward primer, reverse primer, and probe, 20 Units RNAse
inhibitor, 1.25 Units AMPLITAQ GOLD™, and 12.5 Units MuLV
reverse transcriptase) to 96 well plates containing 25 µL
poly(A) mRNA solution. The RT reaction was carried out by
30 incubation for 30 minutes at 48°C. following a 10 minute
incubation at 95°C to activate the AMPLITAQ GOLD™, 40 cycles
of a two-step PCR protocol were carried out: 95°C for 15
seconds (denaturation) followed by 60°C for 1.5 minutes
(annealing/extension).

Descript Inchin

Probes and primers to mouse TNFR1 were designed to hybridize to a mouse TNFR1 sequence, using published sequence information (GenBank accession number X57796, incorporated herein as SEQ ID NO:160). For mouse TNFR1 the PCR primers

5 were:

forward primer: AAGTATGTCCATTCTAAGAACAATTCCA (SEQ ID NO: 161) reverse primer: CTCGGACAGTCACCCAAGTAG (SEQ ID NO: 162) and the PCR probe was: FAM- TGCTGCACCAAGTGCCACAAGGA-TAMRA

(SEQ ID NO: 163) where FAM (PE-Applied Biosystems, Foster
10 City, CA) is the fluorescent reporter dye) and TAMRA (PEApplied Biosystems, Foster City, CA) is the quencher dye. For
mouse GAPDH the PCR primers were:

forward primer: GGCAAATTCAACGGCACAGT (SEQ ID NO: 164)

reverse primer: GGGTCTCGCTCCTGGAAGCT (SEQ ID NO: 165) and the
15 PCR probe was: 5' JOE-AAGGCCGAGAATGGGAAGCTTGTCATC- TAMRA 3'
(SEQ ID NO: 166) where JOE (PE-Applied Biosystems, Foster
City, CA) is the fluorescent reporter dye) and TAMRA (PEApplied Biosystems, Foster City, CA) is the quencher dye.

Example 20

20 Northern blot analysis of mouse TNFR1 mRNA levels

Eighteen hours after antisense treatment, cell monolayers were washed twice with cold PBS and lysed in 1 mL RNAZOL™ (TEL-TEST "B" Inc., Friendswood, TX). Total RNA was prepared following manufacturer's recommended protocols. Twenty micrograms of total RNA was fractionated by electrophoresis through 1.2% agarose gels containing 1.1% formaldehyde using a MOPS buffer system (AMRESCO, Inc. Solon, OH). RNA was transferred from the gel to HYBOND™-N+ nylon membranes (Amersham Pharmacia Biotech, Piscataway, NJ) by overnight capillary transfer using a Northern/Southern Transfer buffer system (TEL-TEST "B" Inc., Friendswood, TX). RNA transfer was confirmed by UV visualization. Membranes were fixed by UV cross-linking using a STRATALINKER™ UV Crosslinker 2400 (Stratagene, Inc, La Jolla, CA).

Membranes were probed using QUICKHYB™ hybridization solution (Stratagene, La Jolla, CA) using manufacturer's recommendations for stringent conditions with a mouse TNFR1 specific probe prepared by PCR using the forward primer:

5 AAGTATGTCCATTCTAAGAACAATTCCA (SEQ ID NO: 161)
reverse primer: CTCGGACAGTCACTCACCAAGTAG (SEQ ID NO: 162).
To normalize for variations in loading and transfer efficiency
membranes were stripped and probed for glyceraldehyde-3phosphate dehydrogenase (G3PDH) RNA (Clontech, Palo Alto, CA).

10 Hybridized membranes were visualized and quantitated using a PHOSPHORIMAGER™ and IMAGEQUANT™ Software V3.3 (Molecular Dynamics, Sunnyvale, CA). Data was normalized to G3PDH levels in untreated controls.

Example 21

15 Antisense inhibition of mouse TNFR1 expressionphosphorothioate 2'-MOE gapmer oligonucleotides

In accordance with the present invention, a series of oligonucleotides were designed to target different regions of the mouse TNFR1, using published sequences (GenBank accession 20 number X57796, incorporated herein as SEQ ID NO: 160). oligonucleotides are shown in Table 4. "Target site" indicates the first (5'-most) nucleotide number on the particular target sequence to which the oligonucleotide binds. All compounds in Table 4 are chimeric oligonucleotides 25 ("gapmers") 20 nucleotides in length, composed of a central "gap" region consisting of ten 2'-deoxynucleotides, which is flanked on both sides (5' and 3' directions) by fivenucleotide "wings". The wings are composed of 2'-methoxyethyl (2'-MOE) nucleotides. The internucleoside (backbone) linkages 30 are phosphorothicate (P=S) throughout the oligonucleotide. All cytidine residues are 5-methylcytidines. The compounds were analyzed for their effect on mouse TNFR1 mRNA levels by quantitative real-time PCR as described in other examples herein. Data are averages from two experiments. If present, "N.D." indicates "no data".

Table 4

Inhibition of mouse TNFR1 mRNA levels by chimeric phosphorothicate oligonucleotides having

2'-MOE wings and a deoxy gap

	ISIS	REGION	TARGET	SEOUENCE	%	SEQ
	10840	5' UTR	1	AGAAGGTAGGAGCGGAATTC	9	167
10	10840	5' UTR	4.0	GTTCGGAAAACTCGGAGAAA	52	168
	10840	5' UTR	54	GATCATGAGCCAGAGTTCGG	38	169
	10840	5' UTR	62	GTAGGCCCGATCATGAGCCA	57	170
	10840	5' UTR	69	GCACCCAGTAGGCCCGATCA	61	171
	10840	5' UTR	89	GTACAGTCCTCCAGGACCTC	9 52 38 57	172
15	10841	5' UTR	110	CAGAGGCAGATAGAGATCAG	52	173
	10841	5' UTR	129	AGTTCGAGAAGCTGAAAGTC	51	174
	10841	5' UTR	149	CGATGGCAGCCTGGGCCTCG	56	175
	10841	5' UTR	169	ATCGGACCAGGTGGCCCGGG	40	176
	10841	5' UTR	189	CTCGTGAATGAAGTAAGATG	68	177
20	10841	5' UTR	208	AGGGCAGCAATTGACAACGC	60	178
	10841	5' UTR	258	CCCATGTCCGGCCGGCAGTG	50	179
	10841	Coding	295	CACCAGTGACAGCAGCAGGC	72	180
	10841	Coding	314	CCATCAGCAGAGCCAGGAGC	63	181
	10841	Coding	333	ACCCCTGATGGATGTATCCC	64	182
25	10842	Coding	353	GAGAAGGGACTAGTCCAGTG	46	183
	10842	Coding	373	CCTCTTCTCCCGGTCACCAA	74	184
	10842	Coding	410	TAGAATGGACATACTTTCCT	67	185
	10842	Coding	430	GCAGCAGATGGAATTGTTCT	79	186
	10842	Coding	458	CCAAGTAGGTTCCTTTGTGG	44	187
3.0	10842	Coding	487	ATCCCGCCCTGGGCTCGGAC	63	188
	10842	Coding	515	TGCCCTTTTCACACTCCCTG	86	189
	10842	Coding	543	CTGAGGTAATTCTGGGAAGC	64	190
	10842	Coding	571	CCGACATGTCTTGCAACTGA	45	191
	10842	Coding	600	GGAGAGATCTCCACCTGGGA	62	192
35	10843	Coding	628	ACACACCGTGTCCTTGTCAG	65	193
	10843	Coding	655	GCGTTGGAACTGGTTCTCCT	51	194
	10843	Coding	683	CGCACTGGAAGTGTGTCTCA	62	195
	10843	Coding	744	GTGTTCTGAGTCTCCTTACA	74	196
	10843	Coding	772	AAAGAACCCTGCATGGCAGT	59	197
40	10843	Coding	800	TGCAAGGGACGCACTCACTT	64	198
	10843	Coding	844	AGGTAGGCACAACTTCATAC	68	199
	10843	Coding	889	CGCAGTACCTGAGTCCTGGG	53	200
	10843	Coding	933	GATAGAAGGCAAAGACCTAG	59	201
	10843	Coding	960	CGGCACATTAAACTGATGAA	64	202
45	10844	Coding	1005	TCCCTACAAATGATGGAGTA	41	203
	10844	Coding	1032	GCCTTCTCCTCTTTGACAGG	62	204
	10844	Coding	1170	TTACTAGGACCGAAGATGGG		205
	10844	Coding	1199	CCTCACTGACAGGTGGCATG	50	206

Г						
	10844	Coding	1227	AGAGGGTCAGCTCCCTGGGT	47	207
Ī	10844	Coding	1254	GGCACGGAGCAGAGTGATTC	57	208
f	10844	Coding	1296	GGGTGGGCGGAGTCTTCCCA	43	209
Ī	10844	Coding	1320	AGGTCTGCATTGTCAGGACG	20	210
5	10844	Coding	1344	TCCACCACAGCATACAGAAT	67	211
	10844	Coding	1367	TCCAGCGCGCTGGAGGCACG	21	212
ı	10845	Coding	1391	GCCCCATGAAACGCATGAAC	73	213
İ	10845	Coding	1414	CCTCTCGATCTCGTGCTCGC	85	214
Ī	10845	Coding	1436	AGCGCCCGTTCTGCATCTCC	58	215
10	10845	Coding	1460	TGCTGTACTGAGCCTCGCGC	25	216
	10845	Coding	1484	TGCGGCGCCGCCAGGCTTCC	48	217
ı	10845	Coding	1503	GTGTCCTCGTGGCGCGGCGT	58	218
ı	10845	Coding	1524	ACGAGGCCCACTACTTCCAG	37	219
t	10845	Coding	1546	AGCCAGGTTCATCTTGGAAA	48	220
15	10845	Coding	1567	GAGGATATTCTCCAGGCACC	59	221
	10845	Coding	1589	GGGCGGGATTTCTCAGAGCC	74	222
ŀ	10846	Coding	1629	TGGGTGTGGCTTTATCGCGG	26	223
ı	10846	3' UTR	1651	CAAGTCCCTCTTCCTAAGGT	65	224
t	10846	3' UTR	1672	AGCAGAATGGTCCTTGAAGT	52	225
20	10846	3' UTR	1694	ACCCACAGGGAGTAGGGCAT	57	226
	10846	3' UTR	1713	AGACCTTTGCCCACTTTTCA	73	227
1	10846	3' UTR	1733	AGCTCGAGCCTTCCCCTTAG	37	228
	10846	3' UTR	1752	CACCAAGGAAGTGGCTACCA	67	229
- 1	10846	3' UTR	1770	TGTACACCAAGTTGGTAGCA	43	230
25	10846	3' UTR	1790	TCGGCGGCTGAGAAAAGCTA	51	231
	10846	3' UTR	1809	TGGCTGGCTCAGGCAGTCCT	70	232
	10847	3' UTR	1830	CATCTCCCTGCCACTCACAA	68	233
	10847	3' UTR	1849	TGGCCAGGAGCTGATGGTAC	46	234
	10847	3' UTR	1870	CCTGTCTTTGGCACCCTCAG	53	235
30	10847	3' UTR	1891	ATTGTGCCTTTCCTCTACAA	68	236
- 0	10847	3' UTR	1912	TCCCAAGTGGGCACCAGATA	76	237
	10847	3' UTR	1933	GCTTGGCTTGGGCCCTGTGC	65	238
	10847	3' UTR	1953	CACTGAGGAGGCCCTGAGAA	41	239
	10847	3' UTR	1988	GATTGCTTATCAAAAGTGAA	43	240
35	10847	3' UTR	2008	TGTGATATAATTGATACAAA	20	241
	10847	3' UTR	2027	TACACAGTTCATCCATTAGT	77	242
	10848	3' UTR	2047	TTCTATGCTTGTCCTTACCT	79	243
	10848	3' UTR	2067	TCCAGCTGGAGACCCCGCCT	58	244
	10848	3' UTR	2087	TATTTACAAGAGTCGAGGGC	26	245
40	10848	3' UTR	2102	TTTAGACGTTTAGTGTATTT	63	246

As shown in Table 4, SEQ ID NOs 168, 170, 171, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 206, 207, 208, 209, 211, 212, 213, 214, 215, 217, 218, 220, 221, 222, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 242, 243, 244 and 246 demonstrated at least 40% inhibition

of mouse TNFR1 expression in this experiment and are therefore preferred.

Example 22

Effect of TNFR1 Antisense Oligonucleotides in an Endotoxin and 5 D(+)-Galactosamine-induced Murine Model of Fulminant Hepatitis and Liver Injury

The lipopolysaccharide/D-galactosamine or LPS/GalN model is a well known experimental model of toxin-induced hepatitis. Injection of the endotoxin, lipopolysaccharide (LPS), induces 10 septic shock death in the mouse, though with LPS alone, the mouse liver does not sustain major damage. Injection of D-Galactosamine (GalN), while metabolized in liver causing depletion of UTP, is not lethal to mice. It does, however, sensitize animals to TNF- α or LPS-induced endotoxic shock by 15 over 1,000 fold. In the presence of GalN, LPS induces apoptotic cell death in liver, thymus, spleen, lymph nodes and the kidney and results in fulminant death in animals. The liver injury is known to be transferable via the serum, suggesting a mechanism of action under TNF- α control. Further 20 support for this mechanism is provided by the finding that TNFR1 knockout mice are resistant to LPS/GalN-induced liver injury and death.

Eight-week-old female Balb/c mice were used to assess the activity of TNFR1 antisense oligonucleotides in the endotoxin 25 and D(+)-Galactosamine-induced murine model of fulminant hepatitis and liver injury. Mice were intraperitoneally pretreated with 24mg/kg of ISIS 108426 (SEQ ID NO. 189) four times a day for 2 days. Control mice were injected with saline. One day after the last dose of oligonucleotide, mice were injected intraperitoneally with 5ng LPS (DIFCO laboratories) and 20mg D-Galactosamine (Sigma) per animal in saline. At time intervals of 5.5, 7.5, 9.5, 21.5, 30, 45 and

53 hours after the final dose, animals were monitored for survival rates. Results are shown in Table 5.

TABLE 5

Protective Effects of TNFR1 Antisense Chimeric (deoxy

gapped) Phosphorothicate Oligonuclectides in Endotoxin and
D(+)-Galactosamine-induced Murine Model of Hepatitis
and Liver Injury

Tsis #	SEO			% 5	Survival			
(TDID W	DLQ	5.5	7.5	9.5	21.5	30	45	53
Saline		100	100	20	20	10	10	10
10 108426	189	100	100	100	100	100	100	100

The data show that antisense inhibitors of TNFR1 can protect against death in this model of toxin-induced hepatitis. While not wishing to be bound by theory, this is believed to indicate that the biological consequences of TNF activation can be blocked through antisense mediated target reduction of TNFR1 in mouse.

The level of TNFR1 RNA was also measured at intervals of 0, 2, 4, 6, and 9 hours after the last endotoxin challenge. Mice were sacrificed and the livers were removed from the 20 animals and analyzed for TNFR1 mRNA expression. RNA was extracted using the RNEASY™ kit (Qiagen, Santa Clarita, CA) and quantitated by ribonuclease protection assay. Ribonuclease protection experiments were conducted using RIBOQUANT™ kits and the mAPO-2 Custom Probe Set set according to the manufacturer's instructions (Pharmingen, San Diego, CA). mRNA levels were quantitated using a PhosphorImager (Molecular Dynamics, Sunnyvale, CA). Target levels of TNFR1 were reduced by 86% in animals treated with ISIS 108426 compared to control saline treated mice.

 An antisense compound 8 to 30 nucleotides in length targeted to a nucleic acid molecule encoding TNFR1, wherein said antisense compound inhibits the expression of TNFR1.

5

0

TOPPOT LOPPOT

- 2. The antisense compound of claim 1 which is an antisense oligonucleotide.
- 3. The oligonucleotide of claim 2 comprising at least 10 an 8-nucleobase portion of SEQ ID NO 11, 15, 16, 17, 21, 22, 23, 25, 28, 29, 30, 31, 33, 35, 36, 37, 38, 39, 41, 42, 43, 45, 46, 47, 48, 50, 59, 62, 67, 70, 71, 74, 76, 77, 78, 81, 82, 84, 90, 91, 94, 95, 96, 98, 99, 100, 101, 102, 103, 104, 108, 111, 112, 113, 117, 118, 127, 131, 132, 133, 134, 136, 140, 143, 15 144, 158, 159, 168, 170, 171, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 206, 207, 208, 209, 211, 212, 213, 214, 215, 217, 218, 220, 221, 222, 224, 225, 226, 227, 229, 230, 231, 232, 20 233, 234, 235, 236, 237, 238, 239, 240, 242, 243, 244 or 246.
 - 4. The oligonucleotide of claim 2 comprising SEQ ID NO: 11, 15, 16, 17, 22, 30, 33, 70, 74, 76 and 78.
 - 5. The oligonucleotide of claim 2 which comprises at least one modified internucleoside linkage.

25

- The oligonucleotide of claim 5 wherein the modified internucleoside linkage is a phosphorothioate linkage.
- 7. The oligonucleotide of claim 2 which comprises at least one modified sugar moiety.

DOMONTHIE TOPHOO

- 8. The oligonucleotide of claim 7 wherein the modified sugar moiety is a 2'-O-methoxyethyl sugar moiety.
- The oligonucleotide of claim 2 which comprises at least one modified nucleobase.
- 5 10. The oligonucleotide of claim 9 wherein the modified nucleobase is a 5-methylcytosine.
 - 11. The oligonucleotide of claim 2 which is a chimeric oligonucleotide.
- 12. A pharmaceutical composition comprising the 10 antisense compound of claim 1 and a pharmaceutically acceptable carrier or diluent.
 - 13. The pharmaceutical composition of claim 12 comprising a colloidal dispersion system.
- $$14\,.$$ The pharmaceutical composition of claim 12 wherein 15 the antisense compound is an antisense oligonucleotide.
 - 15. A method of inhibiting the expression of TNFR1 in cells or tissues comprising contacting said cells or tissues with the antisense compound of claim 1 so that expression of TNFR1 is inhibited.
- 20 16. The method of claim 15 wherein said cells or tissues are human cells or tissues or murine cells or tissues.
- 17. A method of treating an animal having a disease or condition associated with TNFR1 comprising administering to said animal a therapeutically or prophylactically effective amount of the antisense compound of claim 1 so that expression of TNFR1 is inhibited.

DGESSISI . LOSIGO

- 18. The method of claim 17 wherein said animal is a human.
- 19. The method of claim 17 wherein the disease or 5 condition is a liver disease.
 - 20. The method of claim 19 wherein the liver disease is hepatitis.
- 21. The method of claim 17 wherein the disease or 10 condition is liver injury.
 - 22. The method of of claim 17 wherein the disease or condition is a hyperproliferative disorder.
 - $23.\ \ \mbox{The}$ method of claim 22 wherein the hyperproliferative disorder is cancer.
- $_{\rm 15}$ $_{\rm 24}.$ The method of of claim 23 wherein the cancer is liver cancer.

ABSTRACT

Antisense compounds, compositions and methods are provided for modulating the expression of TNFR1. The compositions comprise antisense compounds, particularly antisense oligonucleotides, targeted to nucleic acids encoding TNFR1. Methods of using these compounds for modulation of TNFR1 expression and for treatment of diseases associated with expression of TNFR1 are provided.

SEQUENCE LISTING

```
<110> Brenda F. Baker
      Lex M. Cowsert
      Hong Zhang
      Nicholas M. Dean
<120> ANTISENSE MODULATION OF THER EXPRESSION
<130> ISPH-0518
<150> US 09/106.038
<151> 1998-06-26
<150> PCT/US99/13763
<151> 1999-06-17
<160> 246
<170> FastSEO for Windows Version 4.0
<210> 1
<211> 2161
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (256)...(1623)
<400> 1
eggeecagtg atettgaace ecaaaggeea gaactggage eteagteeag agaattetga 60
gaaaattaaa gcagagagga ggggagagat cactgggacc aggccgtgat ctctatgccc 120
gagteteaac ceteaactgt caceecaagg caettgggac gteetggaca gaeegagtee 180
cgggaagccc cagcactgcc gctgccacac tgccctgagc ccaaatgggg gagtgagagg 240
ccatagetgt etgge atg gge etc tec ace gtg cet gae etg etg etg eeg 291
                  Met Gly Leu Ser Thr Val Pro Asp Leu Leu Leu Pro
ctg gtg ctc ctg gag ctg ttg gtg gga ata tac ccc tca ggg gtt att Leu Val Leu Leu Glu Leu Val Gly Ile Tyr Pro Ser Gly Val Ile
                                                                      339
                                                                      387
gga ctg gtc cct cac cta ggg gac agg gag aag aga gat agt gtg tgt
Gly Leu Val Pro His Leu Gly Asp Arg Glu Lys Arg Asp Ser Val Cys
                                                                      435
ccc caa qqa aaa tat atc cac cct caa aat aat tcg att tgc tgt acc
Pro Gln Gly Lys Tyr Ile His Pro Gln Asn Asn Ser Ile Cys Cys Thr
aaq tqc cac aaa gga acc tac ttg tac aat gac tgt cca ggc ccg ggg
                                                                      483
Lys Cys His Lys Gly Thr Tyr Leu Tyr Asn Asp Cys Pro Gly Pro Gly
cag gat acg gac tgc agg gag tgt gag agc ggc tcc ttc acc gct tca
Gln Asp Thr Asp Cys Arg Glu Cys Glu Ser Gly Ser Phe Thr Ala Ser
gaa aac cac ctc aga cac tgc ctc agc tgc tcc aaa tgc cga aag gaa
Glu Asn His Leu Arg His Cys Leu Ser Cys Ser Lys Cys Arg Lys Glu
                              100
```

atg gg Met G	gt ca ly GI 10	ag gtg ln Val	gag Glu	atc Ile	tct Ser 115	tct Ser	tgc Cys	aca Thr	gtg Val	gac Asp 120	cgg Arg	gac Asp	acc Thr	gtg Val	627
tgt gg Cys Gl 125	gc to ly Cy	gc agg ys Arg	aag Lys	aac Asn 130	cag Gln	tac Tyr	cgg Arg	cat His	tat Tyr 135	tgg Trp	agt Ser	gaa Glu	aac Asn	ctt Leu 140	675
ttc ca Phe G															723
tcc to Ser Cy	gc ca ys Gl	ag gag ln Glu 160	Lys	cag Gln	aac Asn	acc Thr	gtg Val 165	tgc Cys	acc Thr	tgc Cys	cat His	gca Ala 170	ggt Gly	ttc Phe	771
ttt ct Phe Le	eu Ai	ga gaa rg Glu 75	aac Asn	gag G1u	tgt Cys	gtc Val 180	tcc Ser	tgt Cys	agt Ser	aac Asn	tgt Cys 185	aag Lys	aaa Lys	agc Ser	819
ctg ga Leu G	ag to lu Cy 90	gc acg ys Thr	aag Lys	ttg Leu	tgc Cys 195	cta Leu	ccc Pro	cag Gln	att Ile	gag Glu 200	aat Asn	gtt Val	aag Lys	ggc Gly	867
act ga Thr G	ag ga lu As	ac tca sp Ser	ggc	acc Thr 210	aca Thr	gtg Val	ctg Leu	ttg Leu	ccc Pro 215	ctg Leu	gtc Val	att Ile	ttc Phe	ttt Phe 220	915
ggt c	tt to eu Cy	gc ctt ys Leu	tta Leu 225	tcc Ser	ctc Leu	ctc Leu	ttc Phe	att Ile 230	ggt Gly	tta Leu	atg Met	tat Tyr	ege Arg 235	tac Tyr	963
caa co Gln A	gg to rg Ti	gg aag rp Lys 240	Ser	aag Lys	ctc Leu	tac Tyr	tcc Ser 245	att Ile	gtt Val	tgt Cys	Gly 999	aaa Lys 250	tcg Ser	aca Thr	1011
cct ga Pro G	lu Ly	aa gag ys Glu 55	gly ggg	gag Glu	ctt Leu	gaa Glu 260	gga Gly	act Thr	act Thr	act Thr	aag Lys 265	ccc Pro	ctg Leu	gcc Ala	1059
Pro A	ac co sn Pi 70	ca ago ro Ser	ttc Phe	agt Ser	ccc Pro 275	act Thr	cca Pro	ggc Gly	ttc Phe	acc Thr 280	ccc Pro	acc Thr	ctg Leu	ggc Gly	1107
ttc as Phe Se 285	gt co er Pi	ec gtg ro Val	ccc Pro	agt Ser 290	tcc Ser	acc Thr	ttc Phe	acc Thr	tcc Ser 295	agc Ser	tcc Ser	acc Thr	tat Tyr	acc Thr 300	1155
ecc g	gt ga	ac tgt sp Cys	Pro 305	aac Asn	ttt Phe	gcg Ala	gct Ala	ccc Pro 310	cgc Arg	aga Arg	gag Glu	gtg Val	gca Ala 315	cca Pro	1203
ecc t Pro T	at ca yr G	ag ggg ln Gly 320	Ala	gac Asp	ccc Pro	atc Ile	ctt Leu 325	gcg Ala	aca Thr	gcc Ala	ctc Leu	gcc Ala 330	tcc Ser	gac Asp	1251
ccc a Pro I	1e P:	cc aac ro Asr 35	ccc Pro	ctt Leu	cag G1n	aag Lys 340	tgg Trp	gag Glu	gac Asp	agc Ser	gcc Ala 345	cac His	aag Lys	cca Pro	1299
Gln S	gc c er L 50	ta gad eu Asp	act Thr	gat Asp	gac Asp 355	ccc Pro	gcg Ala	acg Thr	ctg Leu	tac Tyr 360	gcc Ala	gtg Val	gtg Val	gag Glu	1347

aac Asn 365	gtg Val	ccc Pro	ccg Pro	ttg Leu	ege Arg 370	tgg Trp	aag Lys	gaa Glu	ttc Phe	gtg Val 375	cgg Arg	cgc Arg	cta Leu	gly aaa	ctg Leu 380	1395
agc Ser	gac Asp	cac His	gag Glu	atc Ile 385	gat Asp	cgg Arg	ctg Leu	gag Glu	ctg Leu 390	cag Gln	aac Asn	999 999	cgc Arg	tgc Cys 395	ctg Leu	1443
ege Arg	gag Glu	gcg Ala	caa Gln 400	tac Tyr	agc Ser	atg Met	ctg Leu	gcg Ala 405	acc Thr	tgg Trp	agg Arg	cgg Arg	cgc Arg 410	acg Thr	ccg Pro	1491
egg Arg	cgc Arg	gag Glu 415	gcc Ala	acg Thr	ctg Leu	gag Glu	ctg Leu 420	ctg Leu	gga Gly	cgc Arg	gtg Val	ctc Leu 425	cgc Arg	gac Asp	atg Met	1539
gac Asp	ctg Leu 430	ctg Leu	ggc Gly	tgc Cys	ctg Leu	gag Glu 435	gac Asp	atc Ile	gag Glu	gag Glu	gcg Ala 440	ctt Leu	tgc Cys	ggc Gly	ccc Pro	1587
	gcc Ala										tga *	ggct	tgeg	ccc		1633
aag cga gag tat gtc tgt tgt cac ttc <21 <21 <21 <22	ctgcgggcag ctctaaggac cgtcctgcga gatcgccttc caacccact tttttctgga aaggagggt cctgcaggg caagcaggag ctagcagccg cctaattggt gctaaccct cgatgtacat agcttttctc agctgctgc gcgcgcqca cagtcagcgc tytgcgcg gagagaggtg cccctgaggc tcaagcagct gagtgggtg tttgcgagga tgagggacgc tatgcctcat gcccgtttg ggtgtcctca ccagcaaggc tgctcggggg ccctgtttg ggtgtcctca gaacttggc ctttttttgtttttttttt													1753 1813 1873 1933 1993 2053		
gct <21 <21 <21	0 > 3 1 > 1: 2 > DI 3 > A:	9 NA														23
<22 <22	0> 3> P	CR P	rime	r												
	0> 3 gtcc	act (gtge	aaga	ā											19
<21 <21	0 > 4 1 > 2 2 > DI 3 > A	NA.	icia	l Se	quen	ce										
<22	0 >															

<223> PCR Probe	
<400> 4 tcagctgctc caaatgccga aagg	24
<210> 5 <211> 19 <212> DWA <213> Artificial Sequence	
<220> <223> PCR Primer	
<400> 5 gaaggtgaag gtcggagtc	19
<210> 6 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Primer	
<400> 6 gaagatggtg atgggatttc	20
<210> 7 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Probe	
<400> 7 caagetteee gtteteagee	20
<210> 8 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 8 ttctctggac tgaggctc	18
<210> 9 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 9 teccetecte tetgettt	18
<210> 10 <211> 18 <212> DNA	

<213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 10 agactcgggc atagagat	18
<210> 11 <221> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 11 ggttgagact cgggcata	18
<210> 12 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 12 tgagggttga gactcggg	18
<210> 13 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 13 acagttgagg gttgagac	18
<210> 14 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 14 ggtgacagtt gagggttg	18
<210> 15 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 15 gcagtgtggc agcggcag	18

<210> 16 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 16 agggcagtgt ggcagcgg	18
<210> 17	
<211> 18	
<212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 17	18
ctcagggcag tgtggcag	10
<210> 18	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 18	
ttgggctcag ggcagtgt	18
<210> 19	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 19	
catttgggct cagggcag	18
<210> 20 <211> 18	
<211> 10 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 20	18
gtcaggcacg gtggagag	10
<210> 21	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	

<400> 21 gcaggtcagg cacggtgg	18
<210> 22 <211- 18 <212- DNA	
<213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 22	18
geageageag gteaggea	18
<210> 23	
<211> 18	
<212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 23	
ageggeagea geaggtea	18
<210> 24	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 24	
caccagogge agcagcag	18
<210> 25	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 25	
caggagcacc agcggcag	18
<210> 26	
<211> 18	
<212> DNA <213> Artificial Sequence	
(SIS) Withington pedacine	
<220>	
<223> Antisense Oligonucleotide	
<400> 26	1.
tatattccca ccaacagc	18
<210> 27	
<211> 18	
<212> DNA <213> Artificial Sequence	
(SID) WILTITCIAL DEGREENCE	

<220> <223> Antisense Oligonucleotide	
<400> 27 tettetecet gtecceta	18
<210> 28 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 28 attattttga gggtggat	18
<210> 29 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 29 gttcctttgt ggcacttg	18
<210> 30 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 30 agtaggttcc tttgtggc	18
<210> 31 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 31 gcctggacag tcattgta	18
<210> 32 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 32 cagteegtat eetgeece	18
<210> 33 <211> 18	

<212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 33 ageogetete acaetece	18
<210> 34 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 34 tetgaagegg tgaaggag	18
<210> 35 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 35 ggttttctga agcggtga	18
<210> 36 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 36 aggtggtttt ctgaagcg	18
<210> 37 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 37 gtctgaggtg gttttctg	18
<210> 38 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 38 aggcagtgtc tgaggtgg	18

<210> 39 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 39 agctgaggca gtgtctga	18
<210> 40 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 40 catttccttt cggcattt	18
<210> 41 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 41 gacccatttc ctttcgge	18
<210> 42 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 42 caectgacec attteett	18
<210> 43 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 43 ggtactggtt cttcctgc	18
<210> 44 <211> 18 <212> DNA <213> Artificial Sequence	
<220>	

<400> 44 ttttcactcc aataatgc	18
<210> 45 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 45 ccattgaggc agaggctg	18
<210> 46 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 46 acggtcccat tgaggcag	18
<210> 47 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 47 acggtgttct gtttctcc	18
<210> 48 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 48 ctacaggaga cacactcg	18
<210> 49 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 49 cttacagtta ctacagga	18
<210> 50 <211> 18 <212> DNA <213> Artificial Sequence	

<220> <223> Antisense Oligonucleotide	
<400> 50 gcttttctta cagttact	18
<210> 51 <221> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 51 tccaggcttt tcttacag	18
<210> 52 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 52 taacattctc aatctggg	18
<210> 53 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 53 actgtggtgc ctgagtcc	18
<210> 54 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 54 caaagaccaa agaaaatg	18
<210> 55 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 55 aaaggcaaag accaaaga	18
<210> 56 <211> 18	

<212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 56 aggagggata aaaggcaa	18
<210> 57 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 57 caatgaagag gagggata	18
<210> 58 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 58 ttaaaccaat gaagagga	18
<210> 59 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 59 ccgttggtag cgatacat	18
<210> 60 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 60 togatttccc acaaacaa	18
<210> 61 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 61 cttagtagta gttccttc	18

```
<210> 62
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Antisense Oligonucleotide
<400> 62
                                                                   18
gaageetgga gtgggaet
<210> 63
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Antisense Oligonucleotide
<400> 63
                                                                   18
ggactgaagc ccagggtg
<210> 64
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Antisense Oligonucleotide
<400> 64
                                                                    18
gtggaactgg gcacggga
<210> 65
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Antisense Oligonucleotide
<400> 65
                                                                    18
tgaaggtgga actgggca
<210> 66
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Antisense Oligonucleotide
<400> 66
                                                                    18
agctggaggt gaaggtgg
<210> 67
<211> 18
 <212> DNA
 <213> Artificial Sequence
 <220>
<223> Antisense Oligonucleotide
```

<400> 67 cgcaaagttg ggacagtc	18
<210> 68 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 68 gtgccacctc tctgcggg	18
<210> 69 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 69 ctgtcctccc acttctga	18
<210> 70 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 70 aggetetgtg gettgtgg	18
<210> 71 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 71 tcgtggtcgc tcagccct	18
<210> 72 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 72 cogcotecag gtogcoag	18
<210> 73 <211> 18 <212> DNA <213> Artificial Sequence	

<220> <223> Antisense Oligonucleotide	
<400> 73 geageceage aggteeat	18
<210> 74 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 74 tectecagge ageccage	18
<210> 75 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 75 atotgagaag actgggcg	18
<210> 76 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 76 gctcctgctt gcccctgc	18
<210> 77 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<pre><400> 77 gttagcacca agtaggcg</pre>	18
<210> 78 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 78 cgcaaaccac ccactcag	18
<210> 79 <211> 18	

<212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 79 atcctcgcaa accaccca	18
<2110> 80 <2111> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 80 atagegtee teatecte	18
<210> 81 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 81 ctcagggacg aaccaggg	18
<210> 82 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 82 aaaggctcag ggacgaac	18
<210> 83 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 83 acaaaacaaa acaaaaca	18
<210> 84 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 84 gccaagtttc tattagtg	18

<211> 85 <211> 18 <212> DNA	
<213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 85 gcagagggca caggagtg	18
<210> 86 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 86 gtccaggcag agggcaca	18
<210> 87 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 87 gcttgtccag gcagaggg	18
<210> 88 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 88 tgccttagga cagttcag	18
<210> 89 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 89 teegtgeteg cecetgee	18
<210> 90 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	

<400> 90 ttgtteegtg etegeece	18
<210> 91 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 91 aggccccatt gttccgtg	18
<210> 92 <211> 562 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (1)(560)	
<400> 92 ttt tct cag aat tct ctg gac tga ggc tcc agt tct ggc ctt tgg ggt Phe Ser Gln Asn Ser Leu Asp * Gly Ser Ser Ser Gly Leu Trp Gly 1 5 10 15	48
tca aga tca ctg gga cca ggc cgt gat ctc tat gcc cga gtc tca acc Ser Arg Ser Leu Gly Pro Gly Arg Asp Leu Tyr Ala Arg Val Ser Thr 20 25 30	96
ctc aac tgt cac ccc aag gca ctt ggg acg tcc tgg aca gac cga gtc Leu Asn Cys His Pro Lys Ala Leu Gly Thr Ser Trp Thr Asp Arg Val $\begin{array}{cccccccccccccccccccccccccccccccccccc$	144
ccg gga agc ccc agc act gcc gct gcc aca ctg ccc tga gcc caa atg Pro Gly Ser Pro Ser Thr Ala Ala Ala Thr Leu Pro * Ala Gln Met 50 55 60	192
ggg gag tga gag gcc ata gct gtc tgg cat ggg cct ctc cac cgt cct Gly Glu * Glu Ala Ile Ala Val Trp His Gly Pro Leu His Arg Pro 65 70 75	240
tca cct cca gct cca cct ata ccc ccg gtg act gta cca act ttg cgg Ser Pro Pro Ala Pro Pro Ile Pro Pro Val Thr Val Pro Thr Leu Arg 80 85 90	288
ctc ccc gca gag agg tgg cac cac cct atc agg ggg ctg acc cca tcc Leu Pro Ala Glu Arg Trp His His Pro Ile Arg Gly Leu Thr Pro Ser 95 100 105	336
ttg cga cag cct cgc ctc cga ccc cat ccc caa ccc cct tca gaa gtg Leu Arg Gln Pro Arg Leu Arg Pro His Pro Gln Pro Pro Ser Glu Val 110 115 120 120	384
gga gga cag cgc cca caa gcc aca gag cct aga cac tga tga ccc cgc Gly Gly Gln Arg Pro Gln Ala Thr Glu Pro Arg His * * Pro Arg 130 135	432
gac gct gta cgc cgt ggt gga gaa cgt gcc ccc gtt gcg ctg gaa gga Asp Ala Val Arg Arg Gly Gly Glu Arg Ala Pro Val Ala Leu Glu Gly 140 145 150	480

att Ile	cgt Arg	gcg Ala	Ala	cct Pro 160	agg Arg	gct Ala	gag Glu	cga Arg	cca Pro 165	aga Arg	gat Asp	cga Arg	tcg Ser	gct Ala 170	gga Gly	528
gct Ala	gca Ala	gaa Glu	cgg Arg 175	gcg Ala	ctg Leu	ctg Leu	cgc Arg	aag Lys 180	gcc Ala	aa t	.a					562
<210 <211 <212 <213	> 36 > Di	0 IA	заріє	ns												
<220 <221 <222	> CI		. (360))												
<400 ggc Gly 1	- 4. 4.		gga Gly	gtg Val 5	aaa Lys	acc Thr	ttt Phe	tcc Ser	agt Ser 10	gct Ala	tca Ser	att Ile	gca Ala	gcc Ala 15	tct Ser	48
gct Ala	caa Gln	tgg Trp	gac Asp 20	cgt Arg	gca Ala	cct Pro	ctc Leu	ctg Leu 25	cca Pro	gga Gly	gaa Glu	aca Thr	gaa Glu 30	cac His	cgt Arg	96
gtg Val	cac His	ctg Leu 35	Pro	tgc Cys	agt Ser	ntt Xaa	ctt Leu 40	tct Ser	aag Lys	aga Arg	aaa Lys	cga Arg 45	gtg Val	tgt Cys	ctc Leu	144
ctg Leu	tng Xaa 50	taa *	ctg Leu	taa *	gaa Glu	aag Lys	cct Pro	ggn Gly 55	gtg Val	cac His	gaa Glu	gtt Val	gtg Val 60	cct Pro	acc Thr	192
cca Pro	gat Asp	tga *	gaa Glu 65	tgt Cys	taa *	ggg ggg	cac His	tga *	ggn Gly	ctc Leu 70	agg Arg	cac His	cac His	agt Ser	gct Ala 75	240
gtt Val	gcc Ala	cct Pro	ggt Gly	cat His 80	ttt Phe	ctt Leu	tgg Trp	tct Ser	ttg Leu 85	cct Pro	ttt Phe	atc Ile	cct Pro	cct Pro 90	ctt Leu	288
cat His	tgg Trp	ttt Phe	aat Asn 95	gta Val	tcg Ser	cta Leu	cca Pro	acg Thr 100	vai	gaa Glu	gtc Val	caa Gln	gct Ala 105	cta Leu	ctc Leu	336
cat His	tgt Cys	tto Leu	tgg Trp	gaa Glu	ato Ile	gac Asp	acc Thr									360
<21 <21	0 > 9 1 > 1 2 > E 3 > P	8 NA	≣icia	1 Se	equen	ıce										
<22 <22		ntis	sense	Oli	.gonu	clec	tide	1								
	0 > 9 gact		gcat	agag	I											18

<210> 95 <221> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 95 agggttgaga ctcgggca	18
<210> 96 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 96 ttgagggttg agactcgg	18
<210> 97 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 97 agttgagggt tgagactc	18
<210> 98 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 98 tgacagttga gggttgag	18
<210> 99 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 99 agtgtggcag cggcagtg	18
<210> 100 <211> 18 <212> DNA <213> Artificial Sequence	
<220>	

<400> 100 tcagggcagt gtggcagc	18
<210> 101 <221> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 101 gctcagggca gtgtggca	18
<210> 102 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 102 gggctcaggg cagtgtgg	18
<210> 103 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 103 atttgggctc agggcagt	18
<210> 104 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 104 ccatttgggc tcagggca	18
<210> 105 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 105 tttcactcca ataatgcc	18
<210> 106 <211> 18 <212> DNA <213> Artificial Sequence	

<220> <223> Antisense Oligonucleotide	
<400> 106 gttttcactc caataatg	18
<210> 107 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 107 aggttttcac tccaataa	18
<210> 108 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 108 aaaggttttc actccaat	18
<210> 109 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 109 tgaagcactg gaaaaggt	18
<210> 110 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 110 attgaagcac tggaaaag	18
<210> 111 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 111 gttctgtttc tcctggca	18
<210> 112 <211> 18	

<212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 112 gtgttctgtt tctcctgg	18
<210> 113 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 113 cggtgttctg tttctcct	18
<210> 114 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 114 acactcgttt tctcttag	18
<210> 115 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 115 agacacactc gttttctc	18
<210> 116 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 116 ggagacacac tcgttttc	18
<210> 117 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 117 ggcttttctt acagttac	18

<210> 118 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 118 caggetttte ttacagtt	18
<210> 119 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 119 ttaacattct caatctgg	18
<210> 120 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 120 caaagaaaat gaccaggg	18
<210> 121 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 121 agaccaaaga aaatgacc	18
<210> 122 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 122 aaagaccaaa gaaaatga	18
<210> 123 <211> 18 <212> DNA <213> Artificial Sequence	
<pre><220> <223> Antisense Oligonucleotide</pre>	

<400> 123 aggcaaagac caaagaaa	18
<210> 124 <221> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 124 gataaaaggc aaagacca	18
<210> 125 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 125 gggataaaag gcaaagac	18
<210> 126 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 126 gagggataaa aggcaaag	18
<210> 127 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 127 agaggaggga taaaaggc	18
<210> 128 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 128 gaagaggagg gataaaag	18
<210> 129 <211> 18 <212> DNA <213> Artificial Sequence	

<220> <223> Antisense Oligonucleotide	
<400> 129 atgaagagga gggataaa	18
<210> 130 <221> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 130 accaatgaag aggaggga	18
<210> 131 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 131 aaaccaatga agaggagg	18
<210> 132 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 132 gttggtagcg atacatta	18
<210> 133 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 133 ccgttggtag cgatacat	18
<210> 134 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 134 caccgttggt agcgatac	18
<210> 135 <211> 18	

<212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 135 acaaacaatg gagtagag	18
<210> 136 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 136 gatttcccac aaacaatg	18
<210> 137 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 137 tegatttecc acaaacaa	18
<210> 138 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 138 ggctgtcgca aggatggg	18
<210> 139 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 139 gctgtcctcc cacttctg	18
<210> 140 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 140 gcgctgtcct cccacttc	18

<210> 141 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 141 ctctgtggct tgtgggcg	18
<210> 142 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 142 ggctctgtgg cttgtggg	18
<210> 143 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 143 taggetetgt ggettgtg	18
<210> 144 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 144 tctaggctct gtggcttg	18
<210> 145 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 145 tgaaggacgg tggagagg	18
<210> 146 <211> 18 <212> DNA <213> Artificial Sequence	
<220>	

<400> 146 ggtgaaggac ggtggaga	18
<210> 147 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 147 gaggtgaagg acggtgga	18
<210> 148 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 148 ggaggtgaag gacggtgg	18
<210> 149 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 149 ctggaggtga aggacggt	18
<210> 150 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 150 agctggaggt gaaggacg	18
<210> 151 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 151 ggagocgcaa agttggta	18
<210> 152 <211> 18 <212> DNA <213> Artificial Sequence	

<220> <223> Antisense Oligonucleotide	
<400> 152 gggagccgca aagttggt	18
<210> 153 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 153 gaggctgtcg caaggatg	18
<210> 154 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 154 cttggtcgct cagcccta	18
<210> 155 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 155 ctcttggtcg ctcagccc	18
<210> 156 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
4400> 156 gatetettgg tegeteag	18
<210> 157 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 157 gtcccattga gcagaggc	18
<210> 158 <211> 18	

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Antisense Oligonucleotide
<400> 158
                                                                   18
cggtcccatt gagcagag
<210> 159
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Antisense Oligonucleotide
<400> 159
                                                                   18
tgcacggtcc cattgagc
<210> 160
<211> 2179
<212> DNA
<213> Mus musculus
<220>
<221> CDS
<222> (273)...(1637)
<400> 160
gaatteeget ectacettet eteteceete agettaaatt tteteegagt ttteegaact 60
ctggctcatg atcgggccta ctgggtgcga ggtcctggag gactgtaccc tgatctctat 120
ctgcctctga ctttcagctt ctcgaactcg aggcccaggc tgccatcgcc cgggccacct 180
ggtccgatca tcttacttca ttcacgagcg ttgtcaattg ctgccctgtc cccagcccca 240
atgggggagt gagaggccac tgccggccgg ac atg ggt ctc ccc acc gtg cct
                                    Met Gly Leu Pro Thr Val Pro
ggc ctg ctg ctg tca ctg gtg ctc ctg gct ctg ctg atg ggg ata cat
Gly Leu Leu Leu Ser Leu Val Leu Leu Ala Leu Leu Met Gly Ile His
         10
                             15
cca tca ggg gtc act gga cta gtc cct tct ctt ggt gac cgg gag aag
Pro Ser Gly Val Thr Gly Leu Val Pro Ser Leu Gly Asp Arg Glu Lys
     25
agg gat agc ttg tgt ccc caa gga aag tat gtc cat tct aag aac aat
Arg Asp Ser Leu Cys Pro Gln Gly Lys Tyr Val His Ser Lys Asn Asn
tee ate tge tge ace aag tge cae aaa gga ace tae ttg gtg agt gae
Ser Ile Cys Cys Thr Lys Cys His Lys Gly Thr Tyr Leu Val Ser Asp
tgt ccg agc cca ggg cgg gat aca gtc tgc agg gag tgt gaa aag ggc
Cys Pro Ser Pro Gly Arg Asp Thr Val Cys Arg Glu Cys Glu Lys Gly
acc ttt acg get tee cag aat tae ete agg eag tgt ete agt tge aag
Thr Phe Thr Ala Ser Gln Asn Tyr Leu Arg Gln Cys Leu Ser Cys Lys
aca tgt cgg aaa gaa atg tcc cag gtg gag atc tct cct tgc caa gct
```

Thr	105					110					115					
gac Asp 120	aag Lys	gac Asp	acg Thr	gtg Val	tgt Cys 125	ggc Gly	tgt Cys	aag Lys	gag Glu	aac Asn 130	cag Gln	ttc Phe	caa Gln	cgc Arg	tac Tyr 135	677
ctg Leu	agt Ser	gag Glu	aca Thr	cac His 140	ttc Phe	cag Gln	tgc Cys	gtg Val	gac Asp 145	tgc Cys	agc Ser	ccc Pro	tgc Cys	ttc Phe 150	aac Asn	725
ggc Gly	acc Thr	gtg Val	aca Thr 155	atc Ile	ccc Pro	tgt Cys	aag Lys	gag Glu 160	act Thr	cag Gln	aac Asn	acc Thr	gtg Val 165	tgt Cys	aac Asn	773
tgc Cys	cat His	gca Ala 170	ggg ggg	ttc Phe	ttt Phe	ctg Leu	aga Arg 175	gaa Glu	agt Ser	gag Glu	tgc Cys	gtc Val 180	cct Pro	tgc Cys	agc Ser	821
cac His	tgc Cys 185	aag Lys	aaa Lys	aat Asn	gag Glu	gag Glu 190	tgt Cys	atg Met	aag Lys	ttg Leu	tgc Cys 195	cta Leu	cct Pro	cct Pro	ccg Pro	869
ctt Leu 200	gca Ala	aat Asn	gtc Val	aca Thr	aac Asn 205	ccc Pro	cag Gln	gac Asp	tca Ser	ggt Gly 210	act Thr	gcg Ala	gtg Val	ctg Leu	ttg Leu 215	917
ccc Pro	ctg Leu	gtt Val	atc Ile	ttg Leu 220	cta Leu	ggt Gly	ctt Leu	tgc Cys	ctt Leu 225	cta Leu	tcc Ser	ttt Phe	atc Ile	ttc Phe 230	atc Ile	965
agt Ser	tta Leu	atg Met	tgc Cys 235	cga Arg	tat Tyr	ccc Pro	cgg Arg	tgg Trp 240	agg Arg	ccc Pro	gaa Glu	gtc Val	tac Tyr 245	tcc Ser	atc Ile	1013
att Ile	tgt Cys	agg Arg 250	Asp	ccc Pro	gtg Val	cct Pro	gtc Val 255	aaa Lys	gag Glu	gag Glu	aag Lys	gct Ala 260	gga Gly	aag Lys	ccc Pro	1061
cta Leu	act Thr 265	Pro	gcc Ala	ccc Pro	tcc Ser	cca Pro 270	gcc Ala	ttc Phe	agc Ser	pro	acc Thr 275	tcc Ser	ggc Gly	ttc Phe	aac Asn	1109
ccc Pro 280	Thr	ctg Leu	ggc Gly	ttc Phe	agc Ser 285	Thr	cca Pro	ggc	ttt Phe	agt Ser 290	Ser	cct Pro	gtc Val	tcc Ser	agt Ser 295	1157
acc Thr	ecc	ato Ile	ago Ser	Pro 300	Ile	ttc Phe	ggt	cct Pro	agt Ser 305	Asr	tgg Trp	cac His	ttc Phe	atg Met 310	Pro	1205
cct Pro	gto Val	agt Ser	gag Glu 315	ı Val	gtc Val	cca Pro	acc Thr	Glr 320	ιGIy	gct Ala	gac Asp	cct Pro	Leu 325	. ьес	tac Tyr	1253
gaa Glu	tca Ser	cto Leu 330	ı Cys	tco Ser	gto Val	cca Pro	gco Ala 335	Pro	acc Thr	tct Ser	gtt Val	cag Glr 340	Lys	tgg Trp	gaa Glu	1301
gac	tco Ser 345	: Ala	cac a His	e eeg	g caa Glr	cgt Arg 350	g Pro	gao Asp	aat Asr	gca Ala	a gad a Asp 355) тес	geg Ala	att Ile	ctg ELeu	1349

	tat Tyr 360	gct Ala	gtg Val	gtg Val	gat Asp	ggc Gly 365	gtg Val	cct Pro	cca Pro	gcg Ala	ege Arg 370	tgg Trp	aag Lys	gag Glu	ttc Phe	atg Met 375	1397
	cgt Arg	ttc Phe	atg Met	gly ggg	ctg Leu 380	agc Ser	gag Glu	cac His	gag Glu	atc Ile 385	gag Glu	agg Arg	ctg Leu	gag Glu	atg Met 390	cag Gln	1445
	aac Asn	gly ggg	cgc Arg	tgc Cys 395	ctg Leu	cgc Arg	gag Glu	gct Ala	cag Gln 400	tac Tyr	agc Ser	atg Met	ctg Leu	gaa Glu 405	gcc Ala	tgg Trp	1493
	cgg Arg	cgc Arg	cgc Arg 410	acg Thr	ccg Pro	ege Arg	cac His	gag Glu 415	gac Asp	acg Thr	ctg Leu	gaa Glu	gta Val 420	gtg Val	ggc Gly	ctc Leu	1541
	gtg Val	ctt Leu 425	tcc Ser	aag Lys	atg Met	aac Asn	ctg Leu 430	gct Ala	61Å 888	tgc Cys	ctg Leu	gag Glu 435	aat Asn	atc Ile	ctc Leu	gag Glu	1589
	gct Ala 440	ctg Leu	aga Arg	aat Asn	ccc Pro	gcc Ala 445	ccc Pro	tcg Ser	tcc Ser	acg Thr	acc Thr 450	cgc Arg	ctc Leu	ccg Pro	cga Arg	taa *	1637
agccacaccc acaaccttag gaagagggac ttgaacttca aggaccattc tgctagatgc cctactccct gtgggtgaaa agtgggcaaa ggttctcaag gggaaggctc gagctggtag caacttcctt ggtgctacca acttggtgta catagctttc tcagccgcc gaggacggcc tgagccagcc acttgtgagt ggcagggaga tgtaccatca gctcctggcc aggtaggacg gccaaagcacagactgttaga ggaaaggaca aatptatctg gtgcccatt ggggccaagc caagcttctc agggcctcct cagtgggttt ctgggccttt ttcacttttg ataagcaatc tttgtatcaa ttatacaac ctaatggatg actgtgaaggac agcatgagaa gggggtct ccagctggag ccctcgactc ttgtaaatac actaaacgtc taaaaatgat aaaaaaaaaa aaaaaaaaa aaaaaaaa									1757 1817 1877 1937 1997 2057 2117								
	aag <21 <21	0> 1 tatg 0> 1 1> 2	tee 62 4	attc	taag	aa c	aatt	cca									28
	<21	2 > D 3 > A 0 > 3 > P	rtif			quen	.ce										
	< 40	0 > 1 ggac	62			aa g	ıtag										24
	<21 <21	.0> 1 .1> 2 .2> E	4 NA	icia!	ıl Se	quer	ıce										
	<22	0 >															

<223> PCR Probe	
<400> 163 tgctgcacca agtgccacaa agga	24
<210> 164 <221> 20 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Primer	
<400> 164 ggcaaattca acggcacagt	20
<210> 165 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Primer	
<400> 165 gggtctcgct cctggaagct	20
<210> 166 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Probe	
<400> 166 aaggccgaga atgggaagct tgtcatc	27
<210> 167 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 167 agaaggtagg agcggaattc	20
<210> 168 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 168 gttcggaaaa ctcggagaaa	20
<210> 169 <211> 20 <212> DNA	

<213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 169 gatcatgagc cagagttcgg	20
<210> 170 <211> D0 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 170 gtaggcccga tcatgagcca	20
<210> 171 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 171 gcacccagta ggcccgatca	20
<210> 172 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 172 gtacagtcct ccaggacctc	20
<210> 173 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 173 cagaggcaga tagagatcag	20
<210> 174 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 174 agttcgagaa gctgaaagtc	20

<210> 175 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 175 cgatggcagc ctgggcctcg	20
<210> 176 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 176 atcggaccag gtggcccggg	20
<210> 177 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 177 ctcgtgaatg aagtaagatg	20
<210> 178 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 178 agggcagcaa ttgacaacgc	20
<210> 179 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 179 cccatgtecg gccggcagtg	20
<210> 180 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	

<400> 180 caccagtgac agcagcaggc	20
<210> 181 <2211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 181 ccatcagcag agccaggagc	20
<210> 182 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 182 acccctgatg gatgtatccc	20
<210> 183 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 183 gagaagggac tagtccagtg	20
<210> 184 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 184 cctcttctcc cggtcaccaa	20
<210> 185 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 185 tagaatggac atactttcct	20
<210> 186 <211> 20 <212> DNA <212> DNA	

<220> <223> Antisense Oligonucleotide	
<400> 186 gcagcagatg gaattgttct	20
<210> 187 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 187 ccaagtaggt tcctttgtgg	20
<210> 188 <211> 20 <212> DWA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 188 atcccgccct gggctcggac	20
<210> 189 <211> 20 <212> DNA <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 189 tgcccttttc acactccctg	20
<210> 190 <211> 20 <212> DNA <212> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 190 ctgaggtaat tctgggaagc	20
<210> 191 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 191 ccgacatgtc ttgcaactga	20
<210> 192 <211> 20	

<212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 192 ggagagatet ceacetggga	20
<210> 193 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 193 acacaccgtg tccttgtcag	20
<210> 194 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 194 gcgttggaac tggttctcct	20
<210> 195 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 195 cgcactggaa gtgtgtctca	20
<210> 196 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 196 gtgttctgag tctccttaca	20
<210> 197 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 197 aaagaaccct gcatggcagt	20

<210> 198 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 198 tgcaagggac gcactcactt	20
<210> 199 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 199 aggtaggcac aacttcatac	20
<210> 200 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 200 cgcagtacct gagtcctggg	20
<210> 201 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 201 gatagaaggc aaagacctag	20
<210> 202 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 202 cggcacatta aactgatgaa	20
<210> 203 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
	<pre>2212</pre>

<400> 203 tccctacaaa tgatggagta	20
<210> 204 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 204 gccttctcct ctttgacagg	20
<210> 205 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 205 ttactaggac cgaagatggg	20
<210> 206 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 206 cctcactgac aggtggcatg	20
<210> 207 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 207 agagggtcag ctccctgggt	20
<210> 208 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 208 ggcacggagc agagtgattc	20
<210 > 209 <211 > 20 <212 > DNA	

<220> <223> Antisense Oligonucleotide	
<400> 209 gggtgggcgg agtcttccca	20
<210> 210 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 210 aggtetgeat tgteaggaeg	20
<210> 211 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 211 tccaccacag catacagaat	20
<210> 212 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 212 tccagcgcgc tggaggcacg	20
<210> 213 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 213 gececatgaa aegeatgaac	20
<210> 214 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 214 cctctcgatc tcgtgctcgc	20
<210> 215 <211> 20	

<212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 215 agegecegtt etgeatetee	20
<210> 216 <211> 20 <212> DNA <213> Artificial Sequence	
<pre><220> <223> Antisense Oligonucleotide</pre>	
<400> 216 tgctgtactg agcctcgcgc	20
<210> 217 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 217 tgeggegeeg ccaggettee	20
<210> 218 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 218 gtgtcctcgt ggcgcggcgt	20
<210> 219 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 219 acgaggecca ctacttccag	20
<210> 220 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 220	20

<210> 221 <221> 20 <212> DMA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 221 gaggatattc tccaggcace	20
<210> 222 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 222 gggggggatt tctcagagcc	20
<210> 223 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 223 tgggtgtggc tttatcgcgg	20
<210> 224 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 224 caagtccctc ttcctaaggt	20
<210> 225 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 225 agcagaatgg tccttgaagt	20
<210> 226 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	

<400> 226 acccacaggg agtagggcat	20
<210> 227 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 227 agacctttgc ccacttttca	20
<210> 228 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 228 agctcgagcc ttccccttag	20
<210> 229 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 229 caccaaggaa gtggctacca	20
<210> 230 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 230 tgtacaccaa gttggtagca	20
<210> 231 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 231 tcggcggctg agaaaagcta	20
<210> 232 <211> 20 <212> DNA <213> Artificial Sequence	

<220> <223> Antisense Oligonucleotide	
<400> 232 tggctggctc aggcagtcct	20
<210> 233 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 233 catetecetg ccaeteacaa	20
<210> 234 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 234 tggccaggag ctgatggtac	20
<210> 235 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 235 cctgtctttg gcaccctcag	20
<210> 236 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 236 attgtgcctt tcctctacaa	20
<210> 237 <221> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 237 tcccaagtgg gcaccagata	20
<210> 238 <211> 20	

<212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 238 gcttggcttg ggccctgtgc	20
<210> 239	
<211> 20	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 239	20
cactgaggag gccctgagaa	
<210> 240	
<211> 20 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 240	20
gattgcttat caaaagtgaa	
<210> 241	
<211> 20	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 241 tgtgatataa ttgatacaaa	20
Egggatataa etgavasaaa	
<210> 242	
<211> 20 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 242	20
tacacagttc atccattagt	
<210> 243	
<211> 20 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 243	20
b-b-est atacttacct	

<210> 244 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 244 tccagctgga gaccccgcct	20
<210> 245 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 245 tatttacaag agtcgagggc	20
<210> 246 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 246 tttagacgtt tagtgtattt	20

Docket No. ISPH-0518

Declaration and Power of Attorney For Patent Application English Language Declaration

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name,

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled

ANTISENSE MODULATION OF TNFR1 EXPRESSION

the specification of which

(check one)

is attached hereto.			
□ was filed on		as United States Application No.	or PCT International
Application Numbe	r		
and was amended	on		
		(if applicable)	
I hereby state that I had including the claims, as	ave reviewed and un s amended by any a	derstand the contents of the above in mendment referred to above.	dentified specification,
I acknowledge the dut known to me to be n Section 1.56.	y to disclose to the naterial to patentabi	United States Patent and Trademark lity as defined in Title 37, Code of	Office all information Federal Regulations,
Section 365(b) of any any PCT International listed below and have	foreign application(application which de also identified below r PCT International a	nder Title 35, United States Code, s) for patent or inventor's certificate signated at least one country other t , by checking the box, any foreign a application having a filing date before	, or Section 365(a) of han the United States, pplication for patent or
Prior Foreign Applicati	on(s)		Priority Not Claimed
(Number)	(Country)	(Day/Month/Year Filed)	_
(Number)	(Country)	(Day/Month/Year Filed)	
(Number)	(Country)	(Day/Month/Year Filed)	J
PTO-SB-01 (9-95) (Modified)		P02/REV02 Patent and Trademark	Office-U.S. DEPARTMENT OF COM

PCT/HS00/13763

I hereby claim the benefit under application(s) listed below:	35 U.S.C. Section 11	9(e) of any United	States provisional
(Application Serial No.)	(Filing Date)	_	
(Application Serial No.)	(Filing Date)	_	
(Application Serial No.)	(Filing Date)	_	

I hereby claim the benefit under 35 U. S. C. Section 120 of any United States application(s), or Section 365(c) of any PCT International application designating the United States, listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT International application in the manner provided by the first paragraph of 35 U.S.C. Section 112, I acknowledge the duty to disclose to the United States Patent and Trademark Office all information known to me to be material to patentability as defined in Title 37, C. F. R., Section 1.56 which became available between the filing date of the prior application and the national or PCT International filing date of this application:

1 0 1/00///10/00	oune 17, 1555	
(Application Serial No.)	(Filing Date)	(Status) (patented, pending, abandoned)
09/106,038	June 26, 1998	patented
(Application Serial No.)	(Filing Date)	(Status) (patented, pending, abandoned)
(Application Serial No.)	(Filing Date)	(Status) (patented, pending, abandoned)

June 17, 1999

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

POWER OF ATTORNEY: As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith. (list name and registration number)

Jane Massey Licata, Reg. No. 32,257

Kathleen A. Tyrrell, Reg. No. 38,350

Laura Plunkett, Reg. No. 45,015

of the firm

Law Offices of Jane Massey Licata

66 E. Main Street Marlton, NJ 08053 Herb Boswell, Reg. No. 27,311

Laurel Spear Bernstein, Reg. No. 37,280 Robert S. Andrews, Reg. No. 44,508 April Logan, Reg. No. 33,950

Neil S. Bartfeld, Reg. No. 39,901

of the firm

Isis Pharmaceuticals, Inc. Carlsbad Research Center 2292 Faraday Avenue

Send Correspondence to: Jane Massey Licata

Law Offices of Jane Massey Licata

66 E. Main Street Marlton, NJ 08053

Direct Telephone Calls to: (name and telephone number)

Jane Massey Licata Tel: 856-810-1515

Full name of sole or first inventor Brenda F. Baker	
Sole or first inventor's signature	Date
Residence Carlsbad, CA	
Citizenshlp US	
Post Office Address 2147 Avenida Toronja	
Carlsbad, CA	

Full name of second inventor, if any Lex M. Cowsert	
Second inventor's signature	Date
Residence	
Carlsbad, CA	
Ditizenship	
US	
Post Office Address	
3008 Newshire Street	

Full name of third inventor, if any Hong Zhang	
Third inventor's signature	Date
Residence Carlsbad, CA	
Citizenship US	
Post Office Address 3339 Cadencia Street	
Carlsbad, CA	
Full name of fourth inventor, if any Nicholas M. Dean	
Fourth inventor's signature	Date
Residence Olivenhain, CA	
Citizenship GB	
Post Office Address 2110 Whisperwind Lane	
Olivenhain, CA	
Full name of fifth inventor, if any	
Fifth inventor's signature	Date
Residence	
Citizenship	
Post Office Address	
full name of sixth inventor, if any	
Sixth inventor's signature	Date
Residence	
Citizenship	
Post Office Address	