遐4-5中山大學本科生考试草稿纸如光~101.

警办。《中山大学授予学士学位工作细 P.215.1. 求 $f(x) = \chi \cdot e^{-\chi}$ 的丹凹性区间以接点:

福: $f(x) = e^{-x^2} + x \cdot e^{-x^2} \cdot (-2x) = e^{-x^2} (1-2x^2)$

 $f'(x) = -4xe^{-x^2} + (1-2x^2) \cdot e^{-x^2} \cdot (-2x) = e^{-x^2} (-bx + 4x^3) = e^{-x} \cdot 2x \cdot (2x^2 - 3)$

 $\sqrt{3} f'(\alpha) = 0$, $\mathcal{L} | \chi \cdot (2\chi^2 - 3) = 0$, $\chi = -\frac{3}{2}$, $\chi = 0$, $\chi = \frac{3}{2}$.

 χ (-∞, -1=)-= (-1=, 0) 0 (0, 1=) [=, 1∞, 1∞] (1=, 1∞) 乃[[[] (-∞, -1=)] U(0, 1=) f(x) 一 0 + 0 - 0 + 凹陷间(堰,0) U([$\overline{\xi}$,+ ω) f(x) 八 拔匠 U 拔匠 $\chi=0$, $\chi=\pm$ [$\overline{\xi}$].

P.215.2 作图: $y = x^2 - \frac{x^2}{3}$, $(-\infty, +\infty)$

 $y' = 2\chi - \chi^2 = \chi(2-\chi), \quad \text{if } y' = 0, \text{ if } \chi = 0, \chi = 2.$

 $y'' = 2 - 2x = 2(1-x), \quad xy' = 0, \quad xx = 1.$

 $\alpha = \lim_{\alpha \to +\infty} \frac{f(\alpha)}{\chi} = \lim_{\alpha \to +\infty} \frac{\chi^2 - \frac{\chi^2}{3}}{\chi} = \lim_{\alpha \to +\infty} (\chi - \frac{\chi^2}{3}) = -\infty$, $\lambda = \lim_{\alpha \to +\infty} \chi = \lim_{\alpha \to$

 $\lim_{x\to+\infty} f(x) = \lim_{x\to+\infty} (x^2 - \frac{x^3}{3}) = -\infty, \lim_{x\to+\infty} f(x) = \lim_{x\to-\infty} (x^2 - \frac{x^3}{3}) = +\infty$

ス	(-00,07	0	(0,1)	1	(1, 2)	2	(2,+(>)
f'a)	_	0	+	+	7	0	-9
f"(x)	+	+	+	0			_
f(x)	3	祖子(0,0)	1	找点(1,3)		$(2,\frac{4}{3})$	7

 $\frac{\cancel{4}}{\cancel{5}}$: (0,0). (1, $\frac{2}{3}$), (2, $\frac{4}{3}$), (-1, $\frac{4}{3}$)

