1

Assignment 14

Pulkit Saxena

1 Problem Hoffman pg213 Q1

Let \mathbb{V} be a finite-dimensional vector space and let \mathbb{W}_1 be any subspace of \mathbb{V} .Prove that there is a subspace \mathbb{W}_2 of \mathbb{V} such that $\mathbb{V} = \mathbb{W}_1 \oplus \mathbb{W}_2$

2 Solution

Assumption and Claim	Let $\beta = \{\mathbf{u}_1,, \mathbf{u}_n\}$ be a basis for \mathbb{W}_1 . Since \mathbb{W}_1 is the subspace of \mathbb{V} .
	therefore let us take $\alpha = \{\mathbf{u}_1,, \mathbf{u}_n, \mathbf{u}_{n+1},, \mathbf{u}_m\}$ the basis of \mathbb{V}
	So \mathbb{W}_2 =span({ $\mathbf{u}_{n+1},,\mathbf{u}_m$ })
	Claim that $\mathbb{V} = \mathbb{W}_1 \oplus \mathbb{W}_2$.
Proof of $\mathbb{V} = \mathbb{W}_1 + \mathbb{W}_2$	if $\mathbf{v} \in \mathbb{V}$, then
	$\mathbf{v} = \sum_{i=1}^{m} a_i \mathbf{u}_i = \sum_{i=1}^{n} a_i \mathbf{u}_i + \sum_{i=n+1}^{m} a_i \mathbf{u}_i \in \mathbb{W}_1 + \mathbb{W}_2 \text{ for scalar } a_i, i = 1,, m$
	This implies that $\mathbb{V} \subseteq \mathbb{W}_1 + \mathbb{W}_2$ But by the defination of $\mathbb{W}_1 + \mathbb{W}_2$
	we know that $\mathbb{W}_1 + \mathbb{W}_2 \subseteq \mathbb{V}$.
	Hence $\mathbb{V} = \mathbb{W}_1 + \mathbb{W}_2$
Proof of $\mathbb{W}_1 \cap \mathbb{W}_2 = \{0\}$	Let $\mathbf{u} \in \mathbb{W}_1 \cap \mathbb{W}_2$
	Then $\mathbf{u} = \sum_{i=1}^{n} b_i \mathbf{u}_i = \sum_{i=n+1}^{m} c_i \mathbf{u}_i$ for some scalar $b_1,, b_n, c_{n+1},, c_m$
	Then $\mathbf{u} = \sum_{i=1}^{n} b_i \mathbf{u}_i = \sum_{i=n+1}^{m} c_i \mathbf{u}_i$ for some scalar $b_1, b_n, c_{n+1},, c_m$ $\implies \sum_{i=1}^{n} b_i \mathbf{u}_i + \sum_{i=n+1}^{m} (-c_i) \mathbf{u}_i = 0$
	But α is linearly independent ,since α is a basis.
	Hence $b_1 = = b_n = c_{n+1} = c_m = 0$. This implies $\mathbf{u} = 0$.
	Thus $\mathbb{W}_1 \cap \mathbb{W}_2 = \{0\}$
Combining Both the proof	$\mathbb{V} = \mathbb{W}_1 + \mathbb{W}_2$
	$\mathbb{W}_1 \cap \mathbb{W}_2 = \{0\}$

From the above two condition we can say that $\mathbb V$ is the direct sum of
subspaces \mathbb{W}_1 and \mathbb{W}_2 . Hence it is represented as
$\mathbb{V} = \mathbb{W}_1 \oplus \mathbb{W}_2$
Hence Proved.

TABLE 2: Solution Table