Lecture 21: Scharfetter-Gummel scheme

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Final presentation

Please show your plan for the final presentation.

Calendar

- Plan for remaining lectures
 - IEDM business trip
 - Four make-up sessions will be made.

Mon	Tue	Wed	Thu	Fri	Sat	Sun
		16 (L18)	17	18	19	20
21 (L19)	22	23 (L20)	24	25 (L21)	26	27
28 (No lecture)	29	30 (L22)	Dec.1	2 (L23)	3	4
5 (No lecture)	6	7 (No lecture)	8	9	10	11
12 (L24)	13	14 (L25)	15	16 (Final)	17	18

Summary

Continuity equation

$$\frac{\partial}{\partial t}n + \nabla_{r} \cdot \mathbf{F}_{n} = 0$$

Current density equation

$$\mathbf{J}_n = q\mu_n n\mathbf{E} + qD_n \nabla_r n$$

Scharfetter-Gummel

- "The equation that started it all"
 - 1D approximation
 - The current density is discretized as

$$J_{n,i+0.5} = qD_n \frac{1}{x_{i+1} - x_i} \left[n_{i+1} B\left(\frac{\phi_{i+1} - \phi_i}{V_T}\right) - n_i B\left(\frac{\phi_i - \phi_{i+1}}{V_T}\right) \right]$$

Here, the Bernoulli function is

$$B(x) = \frac{x}{e^x - 1}$$

SISPAD 2015, September 9-11, 2015, Washington, DC, USA

Drift-Diffusion and computational electronics – Still going strong after 40 years!

Reflections on computational electronics and the equation that started it all

Last Homework

Write a code for 1D drift-diffusion equation.