Applied Data Science with Python

Course-end Project

Customer Service Requests Analysis

Objectives:

- To assess the data and prepare a fresh dataset for training and prediction
- To plot a bar graph to identify the relationship between two variables
- To visualize the major types of complaints in each city

Problem Statement:

You've been asked to analyze data on service request (311) calls from New York City. You've also been asked to utilize data wrangling techniques to understand the patterns in the data and visualize the major types of complaints.

Domain: Technology

Content: Dataset name: 311-service-requests-nyc.csv

Fields in the data:

• Unique Key: The unique identification number

Created Date: The date when the request was created

• Closed Date: The date when the request was closed

Agency: The agency that handled the case

- Agency Name: The full name of the agency that handled the case
- Complaint Type : The type of complaint received
- Descriptor : The description of the complaint
- Location Type: The type of location where the incident occurred
- Incident Zip: The zip code of the location
- Incident Address: The location at which the incident occurred
- Street Name : The name of the street
- Cross Street 1: The cross of the street 1
- Cross Street 2 : The cross of street 2
- Intersection Street 1 : The first point of intersection of both streets
- Intersection Street 2 : The second point of intersection of both streets
- Address Type : The type of the address
- City: The city where the incident occurred
- Landmark: The landmark near the incident that occurred
- Facility Type : The type of the facility
- Status :The status of the complaint
- Due Date : The due date of the complaint
- Resolution Description: The resolution provided by the police department

- Resolution Action Updated Date : The date at which the resolution was provided
- Community Board : The location of the community board
- Borough: The town, or area inside a large town, that has some form of local government
- X Coordinate (State Plane) : The X coordinate of the plane
- Y Coordinate (State Plane): The Y coordinate of the plane
- Park Facility Name : The name of the park facility
- Park Borough: The park town, or area inside a large town, that has some form of local government
- School Name: The name of the school (optional)
- School Number: Number of the school (optional)
- School Region : Region of the school (optional)
- School Code : Code of the school (optional)
- School Phone Number : Contact information of the school (optional)
- School Address : Address of the school (optional)
- School City: City at which the school is located (optional)
- School State: State in which the school is located (optional)
- School Zip: Zip code of the school (optional)
- School Not Found: Valid if the school is not found (optional)
- School or Citywide Complaint: Contains the complaint of the school (optional)
- Vehicle Type: Type of vehicle used (optional)
- Taxi Company Borough: Information on the taxi company (optional)
- Taxi Pick Up Location : Pick up location of the taxi (optional)
- Bridge Highway Name: Name of the highway bridge (optional)
- Bridge Highway Direction: Direction of the highway bridge (optional)
- Road Ramp: Information on the road ramp (optional)
- Bridge Highway Segment : Segment of the bridge (optional)
- Garage Lot Name : Name of the garage (optional)
- Ferry Direction : Ferry direction information (optional)
- Ferry Terminal Name: Name of the ferry terminal (optional)
- Latitude: Latitude value
- Longitude : Longitude value
- Location : Location information

Steps to perform:

- 1. Understand the dataset:
 - 1.1 Identify the shape of the dataset
 - 1.2 Identify variables with null values

- 2. Perform basic data exploratory analysis:
 - 2.1 Utilize missing value treatment
 - 2.2 Analyze the date column and remove the entries if it has an incorrect timeline
 - 2.2.1 Draw a frequency plot for city-wise complaints
 - 2.2.2 Draw scatter and hexbin plots for complaint concentration across Brooklyn
- 3. Find major types of complaints:
 - 3.1 Plot a bar graph of count vs. complaint types
 - 3.2 Find the top 10 types of complaints
 - 3.3 Display the types of complaints in each city in a separate dataset
- 4. Visualize the major types of complaints in each city
- 5. Check if the average response time across various types of complaints

Solution

1. Import Libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

2. Load the data file

```
df=pd.read_csv("/Users/david/Downloads/Customer_Service_Requests
_Analysis_Dataset/Customer_Service_Requests_Analysis_Dataset/311
-service-requests-
nyc/311_Service_Requests_from_2010_to_Present.csv",low_memory=Fa
lse) 1.
```

3. Identify the shape of the dataset

```
df.shape
```

```
#Identify the shape of the dataset df.shape (364558, 53)
```

4. Identify variables with null values

```
df.isnull().sum()
```

#Identify variables with null values df.isnull().sum() Unique Key 0 Created Date 0 Closed Date 2381 Agency 0 Agency Name 0 Complaint Type 0 Descriptor 6501 Location Type 133 Incident Zip 2998 Incident Address 51699 Street Name 51699 Cross Street 1 57188 Cross Street 2 57805 Intersection Street 1 313438 Intersection Street 2 314046 Address Type 3252 City 2997 Landmark 364183 Facility Type 2389 Status 0 Due Date 3 Resolution Description 0 Resolution Action Updated Date 2402

5. Perform basic data exploratory analysis:

a. Utilize missing value treatment

• df.isnull().sum()/len(df)*100

#Utilize missing value treatment	
df.isnull().sum()/len(df)*100	
Unique Key	0.000000
Created Date	0.00000
Closed Date	0.653120
Agency	0.00000
Agency Name	0.000000
Complaint Type	0.00000
Descriptor	1.783255
Location Type	0.036483
Incident Zip	0.822366
Incident Address	14.181283
Street Name	14.181283
Cross Street 1	15.686941
Cross Street 2	15.856187
Intersection Street 1	85.977540
Intersection Street 2	86.144317
Address Type	0.892039
City	0.822091
Landmark	99.897136
Facility Type	0.655314
Status	0.000000
Due Date	0.000823
Resolution Description	0.000000
Resolution Action Updated Date	0.658880

• To plot a bar graph of missing values

df.isnull().sum().plot(kind="bar", figsize=(10,5), title=("Missing Values"))

df.isnull().sum().plot(kind="bar",figsize=(10,5),title=("Missing Values"))

<Axes: title={'center': 'Missing Values'}>

Dropping columns that are not needed

df.drop(un col,axis=1,inplace=True)

df.drop(un_col,axis=1,inplace=True)

df.isnull().sum()/len(df)*100

df.isnull().sum()/len(df)*100

Unique Key	0.000000
Created Date	0.000000
Closed Date	0.653120
Agency	0.000000
Agency Name	0.000000
Complaint Type	0.000000
Descriptor	1.783255
Location Type	0.036483
Incident Zip	0.822366
Incident Address	14.181283
Street Name	14.181283
Cross Street 1	15.686941
Cross Street 2	15.856187
Address Type	0.892039
City	0.822091
Facility Type	0.655314
Status	0.000000
Due Date	0.000823
Resolution Description	0.000000
Resolution Action Updated Date	0.658880
Community Board	0.000000
Borough	0.000000
X Coordinate (State Plane)	1.105448
Y Coordinate (State Plane)	1.105448
Park Facility Name	0.000000
Park Borough	0.000000
School Name	0.000000
School Number	0.000000

```
School Region
                                      0.000274
School Code
                                      0.000274
School Phone Number
                                    0.000000
School Address
                                    0.000000
School City
                                    0.000000
School State
                                     0.000000
School Zip
                                    0.000274
                                    0.000000
School Not Found
                                     1.105448
Latitude
Longitude
                                      1.105448
Location
                                      1.105448
dtype: float64
df=df[['Unique Key','Created Date','Closed Date','Agency',
          'Complaint Type', 'Descriptor', 'Location Type', 'Incident
Zip','City','Status',
          'Resolution
Description', 'Borough', 'Latitude', 'Longitude', 'Location']]
df.info()
 df=df[['Unique Key','Created Date','Closed Date','Agency',
         'Complaint Type','Descriptor','Location Type','Incident Zip','City','Status',
        'Resolution Description','Borough','Latitude','Longitude','Location']]
 df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 364558 entries, 0 to 364557
Data columns (total 15 columns):
                   Non-Null Count Dtype
O Unique Key

364558 non-null int64

1 Created Date

364558 non-null object

Closed Date

362177 non-null object

Agency

4 Complaint Type

5 Descriptor

6 Location Type

7 Incident Zip

8 City

9 Status

364558 non-null object

364625 non-null object

364625 non-null object

364625 non-null object

364625 non-null object

361560 non-null float64

361561 non-null object

364558 non-null object

364558 non-null object
 # Column
 10 Resolution Description 364558 non-null object
 11 Borough 364558 non-null object
 12 Latitude
                               360528 non-null float64
                           360528 non-null float64
 13 Longitude
 14 Location
                                360528 non-null object
dtypes: float64(3), int64(1), object(11)
memory usage: 41.7+ MB
```

Finding the missing value columns

```
df.isnull().sum()
```

df.isnull().sum() Unique Key 0 Created Date 0 Closed Date 2381 Agency 0 Complaint Type 0 Descriptor 6501 Location Type 133 Incident Zip 2998 2997 City Status 0 Resolution Description 0 0 Borough Latitude 4030 Longitude 4030 Location 4030

df.isnull().sum()/len(df)*100
df.isnull().sum()/len(df)*100

dtype: int64

Unique Key	0.000000
Created Date	0.000000
Closed Date	0.653120
Agency	0.000000
Complaint Type	0.000000
Descriptor	1.783255
Location Type	0.036483
Incident Zip	0.822366
City	0.822091
Status	0.000000
Resolution Description	0.000000
Borough	0.000000
Latitude	1.105448
Longitude	1.105448
Location	1.105448
dtype: float64	

df.dropna(inplace=True)
df.isnull().sum()/len(df)*100

```
df.dropna(inplace=True)
df.isnull().sum()/len(df)*100
Unique Key
                         0.0
Created Date
                         0.0
Closed Date
                         0.0
Agency
                         0.0
Complaint Type
                         0.0
Descriptor
                         0.0
Location Type
                         0.0
Incident Zip
                         0.0
City
                         0.0
Status
                         0.0
Resolution Description
                         0.0
Borough
                         0.0
Latitude
                         0.0
Longitude
                         0.0
Location
                         0.0
dtype: float64
```

Dropped missing values has they are less than 5 %

5. Analyze the date column and remove the entries if it has an incorrect timeline

```
df.head()
```

```
df.head()
```

			.											
	Unique Key	Created Date	Closed Date	Agency	Complaint Type	Descriptor	Location Type	Incident Zip	City	Status	Resolution Description	Borough	Latitude	Lo
0	32310363	12/31/2015 11:59:45 PM	01/01/2016 12:55:15 AM	NYPD	Noise - Street/Sidewalk	Loud Music/Party	Street/Sidewalk	10034.0	NEW YORK	Closed	The Police Department responded and upon arriv	MANHATTAN	40.865682	- 73
1	32309934	12/31/2015 11:59:44 PM	01/01/2016 01:26:57 AM	NYPD	Blocked Driveway	No Access	Street/Sidewalk	11105.0	ASTORIA	Closed	The Police Department responded to the complai	QUEENS	40.775945	-73
2	32309159	12/31/2015 11:59:29 PM	01/01/2016 04:51:03 AM	NYPD	Blocked Driveway	No Access	Street/Sidewalk	10458.0	BRONX	Closed	The Police Department responded and upon arriv	BRONX	40.870325	-73
3	32305098	12/31/2015 11:57:46 PM	01/01/2016 07:43:13 AM	NYPD	Illegal Parking	Commercial Overnight Parking	Street/Sidewalk	10461.0	BRONX	Closed	The Police Department responded to the complai	BRONX	40.835994	- 73
4	32306529	12/31/2015 11:56:58 PM	01/01/2016 03:24:42 AM	NYPD	Illegal Parking	Blocked Sidewalk	Street/Sidewalk	11373.0	ELMHURST	Closed	The Police Department responded and upon arriv	QUEENS	40.733060	- 73

```
df['Created Date']=pd.to_datetime(df['Created Date'])
df['Closed Date']=pd.to_datetime(df['Closed Date'])
df.info()
```

```
df['Created Date']=pd.to_datetime(df['Created Date'])
df['Closed Date']=pd.to_datetime(df['Closed Date'])
df.info()
<class 'pandas.core.frame.DataFrame'>
 Int64Index: 353891 entries, 0 to 364557
Data columns (total 15 columns):
                                             Non-Null Count
  # Column
                                                                              Dtype
0 Unique Key 353891 non-null int64
1 Created Date 353891 non-null datetime64[ns]
2 Closed Date 353891 non-null object
3 Agency 353891 non-null object
4 Complaint Type 353891 non-null object
5 Descriptor 353891 non-null object
6 Location Type 353891 non-null object
7 Incident Zip 353891 non-null float64
8 City 353891 non-null object
9 Status 353891 non-null object
  10 Resolution Description 353891 non-null object
 11 Borough 353891 non-null object
12 Latitude 353891 non-null float64
13 Longitude 353891 non-null float64
14 Location 353891 non-null chieft
  14 Location
                                                 353891 non-null object
dtypes: datetime64[ns](2), float64(3), int64(1), object(9)
memory usage: 43.2+ MB
```

5.1 Draw a frequency plot for city-wise complaints

```
plt.figure(figsize=(15,12))
sns.countplot(data=df,y='City')
plt.title("City Wise Total Complain")
plt.show()

#Draw a frequency plot for city-wise complaints

plt.figure(figsize=(15,12))
sns.countplot(data=df,y='City')
plt.title("City Wise Total Complain")
plt.show()
```


5.2 Draw scatter and hexbin plots for complaint concentration across Brooklyn

	Unique Key	Created Date	Closed Date	Agency	Complaint Type	Descriptor	Location Type	Incident Zip	City	Status	Resolution Description	Borough	Latitude	Lc
5	32306554	2015- 12-31 23:56:30	2016- 01-01 01:50:11	NYPD	Illegal Parking	Posted Parking Sign Violation	Street/Sidewalk	11215.0	BROOKLYN	Closed	The Police Department responded and upon arriv	BROOKLYN	40.660823	-7:
9	32308391	2015- 12-31 23:53:58	2016- 01-01 01:17:40	NYPD	Blocked Driveway	No Access	Street/Sidewalk	11219.0	BROOKLYN	Closed	The Police Department responded and upon arriv	BROOKLYN	40.623793	-7:
13	32305074	2015- 12-31 23:47:58	2016- 01-01 08:18:47	NYPD	Illegal Parking	Posted Parking Sign Violation	Street/Sidewalk	11208.0	BROOKLYN	Closed	The Police Department responded to the complai	BROOKLYN	40.687511	-7:
17	32310273	2015- 12-31 23:44:52	2016- 01-01 00:36:10	NYPD	Noise - Commercial	Loud Music/Party	Club/Bar/Restaurant	11217.0	BROOKLYN	Closed	The Police Department responded to the complai	BROOKLYN	40.679154	-7:
18	32306617	2015- 12-31 23:40:59	2016- 01-01 02:37:28	NYPD	Noise - Commercial	Loud Music/Party	Club/Bar/Restaurant	11234.0	BROOKLYN	Closed	The Police Department responded to the complai	BROOKLYN	40.616550	-7:

df_brooklyn[['Latitude','Longitude']].plot(kind='hexbin',x='Long
itude',y='Latitude',

Constartion across Brooklyn",

figsize=(10,8),
gridsize=40,
colormap='jet',
mincnt=1)

title="Complain

 $: \ \ \, < \texttt{Axes: title=\{'center': 'Complain Constartion across Brooklyn'\}, xlabel='Longitude', ylabel='Latitude'> } \\$

_ .._ . .. _ ..

6. Find major types of complaints:

6.1 Plot a bar graph of count vs. complaint types

df['Complaint Type'].value counts()

df['Complaint Type'].value_counts()

Blocked Driveway 100455

Illegal Parking 91057 Noise - Street/Sidewalk 50791 Noise - Commercial 43623 Derelict Vehicle 21419 Noise - Vehicle 19122 Animal Abuse 10500 Traffic 5161 Vending 4162 Noise - Park 3994 Drinking 1399 Noise - House of Worship 1059 Posting Advertisement 678 Disorderly Youth 314 Graffiti 157 Name: Complaint Type, dtype: int64

df['Complaint

Type'].value_counts().plot(kind="bar",figsize=(10,6),title="Most
Common Complaints")

Highest complaint type is Blocked Driveway from graph.

6.2 Find the top 10 types of complaints

```
df['Complaint
Type'].value counts().sort values(ascending=False)[:10]
df['Complaint Type'].value_counts().sort_values(ascending=False)[:10]
Blocked Driveway
                         100455
Illegal Parking
                          91057
Noise - Street/Sidewalk
                          50791
Noise - Commercial
                          43623
Derelict Vehicle
                          21419
Noise - Vehicle
                          19122
Animal Abuse
                          10500
Traffic
                           5161
Vending
                           4162
Noise - Park
Name: Complaint Type, dtype: int64
```

6.3 Display the types of complaints in each city in a separate dataset

```
df2=df.groupby(['City','Complaint
Type']).size().unstack().fillna(0)
```

df2

2														
Complaint Type	Animal Abuse	Blocked Driveway	Derelict Vehicle	Disorderly Youth	Drinking	Graffiti	Illegal Parking	Noise - Commercial	Noise - House of Worship	Noise - Park	Noise - Street/Sidewalk	Noise - Vehicle	Posting Advertisement	Tra
City														
ARVERNE	46.0	50.0	32.0	2.0	1.0	1.0	62.0	2.0	14.0	2.0	29.0	9.0	0.0	
ASTORIA	170.0	3436.0	426.0	5.0	43.0	4.0	1337.0	1640.0	21.0	64.0	408.0	236.0	3.0	6
Astoria	0.0	159.0	14.0	0.0	0.0	0.0	277.0	310.0	0.0	0.0	145.0	0.0	0.0	
BAYSIDE	53.0	513.0	231.0	2.0	1.0	3.0	635.0	47.0	3.0	3.0	17.0	24.0	0.0	
BELLEROSE	15.0	138.0	120.0	2.0	1.0	0.0	131.0	38.0	1.0	1.0	13.0	11.0	1.0	
BREEZY POINT	2.0	3.0	3.0	0.0	1.0	0.0	16.0	4.0	0.0	0.0	1.0	1.0	0.0	
BRONX	1966.0	17048.0	2398.0	66.0	205.0	15.0	9853.0	2941.0	90.0	523.0	9118.0	3544.0	17.0	42
BROOKLYN	3185.0	36414.0	6242.0	79.0	291.0	60.0	33446.0	13847.0	387.0	1557.0	13943.0	5932.0	58.0	125

7. Visualize the major types of complaints in each city

```
df.groupby(['City','Complaint
Type']).size().unstack().fillna(0).plot(kind='bar',figsize=(10,6))

df.groupby(['City','Complaint Type']).size().unstack().fillna(0).plot(kind='bar',figsize=(10,6))

<Axes: xlabel='City'>
```


8. Check if the average response time across various types of complaints

```
df['Resolution Time'] = (df['Closed Date'] - df['Created
Date']).dt.days
(df['Closed Date']-df['Created Date']).dt.days
df['Resolution_Time']=(df['Closed Date']-df['Created Date']).dt.days
(df['Closed Date']-df['Created Date']).dt.days
1
          0
2
          0
3
          0
4
          0
364553
364554
364555
          0
364556
          0
364557
          0
Length: 353891, dtype: int64
df['Resolution Time'].value counts()
```

```
df['Resolution_Time'].value_counts()
0
      350061
         3172
1
          445
2
3
          126
5
           34
4
           30
6
           13
8
24
            3
            2
9
            1
21
            1
Name: Resolution_Time, dtype: int64
```

df.groupby('Complaint
Type')['Resolution_Time'].mean().plot(kind='bar')

df.groupby('Complaint Type')['Resolution_Time'].mean().plot(kind='bar')

<Axes: xlabel='Complaint Type'>

