Exploration of CLEANED QT json file

Peter Steward

2024 - 07 - 01

Contents

Cleaned Data	1
Input data structure	1
Load the json file into R	2
Simple fields	
Livestock	4
Feed items	6
Fertilizer	8
Seasons	9
Feed basket	9
Seasons	9
Feed Basket	9
R-project datasets	10
GHG parameters	11
Livestock_parameters	11
Fertilizer table	13
IPCC Tables	13
Stock change	17
Grass factor variables	19
Cropland factor variables	19
mufindi	20

Loading required package: pacman

Cleaned Data

Input data structure

The aim of this markdown document is to summarize the structure of the .json object provided from the QT UI.

Load the json file into ${\bf R}$

Table 1: Summary of Level 1 of the JSON Object

field_name	class	length
annual_prec	integer	1
arable_tograssland	integer	1
climate_zone	character	1
$climate_zone_2$	character	1
cropland_orgmatter	character	1
$cropland_orgmatter_ipcc$	numeric	1
$\operatorname{cropland}$ _system	character	1
$cropland_system_ipcc$	numeric	1
cropland_tillage	character	1
cropland_tillage_ipcc	integer	1
$database_code$	character	1
et	integer	1
farm_code	character	1
farm_name	character	1
feed_basket	data.frame	2
$feed_items$	data.frame	65
fertilizer	data.frame	4
$grassland_implevel$	character	1
$grassland_implevel_ipcc$	integer	1
$grassland_management$	character	1
$grassland_management_ipcc$	integer	1
$grassland_toarable$	integer	1
livestock	data.frame	59
purchased_bedding	integer	1
purchased_compost	integer	1
purchased_manure	integer	1
purchased_organic_n	integer	1
rain_length	integer	1
region	character	1
seasons	data.frame	2
soil_bulk	integer	1
soil_c	integer	1
soil_clay	integer	1
soil_depth	integer	1
soil_description	character	1
soil_k_value	$\operatorname{numeric}$	1

field_name	class	length
soil_n	numeric	1
waste_consume_meat	integer	1
$waste_consume_milk$	integer	1
$waste_distribution_meat$	integer	1
$waste_distribution_milk$	integer	1
waste_processing_meat	integer	1
waste_processing_milk	integer	1
$waste_production_meat$	integer	1
$waste_production_milk$	integer	1

Simple fields

Table 2: Summary of simple fields containing a single value

field	value	class
annual_prec	1500	integer
arable_tograssland	0	integer
climate_zone	Temperate	character
climate_zone_2	Warm Temperate Dry	character
cropland_orgmatter	Low, temperate/boreal, dry	character
cropland_orgmatter_ipcc	0.95	numeric
cropland_system	Long term cultivated, temperate/boreal, dry	character
cropland_system_ipcc	0.8	numeric
cropland_tillage	Full	character
cropland_tillage_ipcc	1	integer
database_code	base	character
et	1460	integer
farm_code	001	character
farm_name	test 3	character
grassland_implevel	Medium	character
grassland_implevel_ipcc	1	integer
grassland_management	Nominally managed	character
grassland_management_ipcc	1	integer
grassland_toarable	0	integer
purchased_bedding	0	integer
purchased_compost	0	integer
purchased_manure	0	integer
purchased_organic_n	0	integer
rain_length	5	integer
region	AFRICA	character
soil_bulk	6	integer
soil_c	12	integer

field	value	class
soil_clay	45	integer
soil_depth	2	integer
soil_description	Lixisol	character
soil_k_value	0.25	numeric
soil_n	3.5	numeric
waste_consume_meat	2	integer
$waste_consume_milk$	2	integer
$waste_distribution_meat$	3	integer
$waste_distribution_milk$	3	integer
waste_processing_meat	5	integer
waste_processing_milk	5	integer
$waste_production_meat$	3	integer
waste_production_milk	3	integer

Livestock The json_data\$livestock of the json list is a data.table that contains information about livestock"]] herd structure and management, manure management and productivity.

Table 3: Transposed livestock herd data t(json_data\$livestock)

	$livetype_code_2$	livetype_code_1	livetype_code_5
adult_weight	800	400	0
annual_growth	0	0	90
annual_milk	3000	1500	0
annual_wool	0	0	0
birth_interval	1.166667	1.500000	0.000000
body_weight	600	350	200
body_weight_weaning	0	0	0
body_weight_year_one	0	0	0
carcass_fraction	0.48	0.00	0.48
cp_grazing	0	3	0
cp_growth	0.0	0.0	0.4
cp_lactation	5	2	0
cp_lactmilk	0.09	0.09	0.00
cp_maintenance	0.60	0.35	0.20
cp_pregnancy	12.21	9.64	0.00
distance_to_pasture	0.0	0.5	0.5
energy_eggcontent	0	0	0
energy_meatcontent	2200	2200	2200
energy_milkcontent	970	970	0
fat_content	4.3	5.8	0.0
grazing_displacement	0	2	0
herd_composition	2	5	0
ipcc_ef_category_t1	Dairy cattle	Other mature female	Other mature female-grazing
ipcc_ef_category_t2	Dairy cows	Dairy cows	Non-dairy
ipcc_meth_man_category	Dairy cows	Dairy cows	Other cattle
ipcc_n_exc_category	Dairy cattle	Dairy cattle	Other cattle
lactation_length	0	0	0
litter_size	0	0	0
livetype_code	2	1	5

	$livetype_code_2$	$livetype_code_1$	$livetype_code_5$
livetype_desc	Cattle - Cows	Cattle - Cows (local)	Cattle - Steers/heifers
<u> </u>	(improved)	` ,	,
lw_gain	Ò	0	0
manure_in_field	0	0	0
manure_in_non_roofed_enc	losure	0	0
manure_in_stable	1	0	0
manure_onfarm_fraction	1	0	0
manure_sales_fraction	0	0	0
manureman_non_roofed_end	el Sødid e storage	Solid storage	Solid storage
manureman_offfarm_grazing	Solid storage	Solid storage	Solid storage
manureman_onfarm_grazing	Solid storage	Pasture / range / paddock	Solid storage
manureman_stable	Solid storage	Solid storage	Solid storage
me_grazing	2.0	2.0	1.5
me_growth	0	0	50
me_lactation	5	2	0
$me_lactmilk$	5.5	5.5	0.0
me_maintenance	60.61547	40.45955	26.59148
me_pregnancy	1500	1260	0
$meat_product$	beef	beef	beef
milk_product	cow milk	cow milk	cow milk
n_content	0.029	0.029	0.029
piglets_relying_on_milk	0	0	0
proportion_growth	0	0	0
protein_meatcontent	26	26	26
protein_milkcontent	3.7	3.2	0.0
time_in_non_roofed_encloss	unde	0	0
time_in_offfarm_grazing	0	0	0
time_in_onfarm_grazing	0	1	1
time_in_stable	1	0	0
water_requirement	140	120	80
work_hour	0	0	0

The livestock are linked to the feed_basket\$feeds tables by the livetype_code keyfield.

json_data\$livestock[,c("livetype_code","livetype_desc")] # Codes in the feed_items table

lapply(json_data\$feed_basket\$feeds,"[[","livestock") # Codes in the feed_basket tables

```
## [[1]]
## [[1]][[1]]
## allocation livetype_code
## 1     40      2
## 2     17      1
## 3     40     5
```

```
##
## [[1]][[2]]
     allocation livetype_code
##
## 1
              25
## 2
              43
                              1
## 3
              20
                              5
##
## [[1]][[3]]
##
     allocation livetype_code
## 1
              35
## 2
              40
                              1
## 3
              40
                              5
##
##
## [[2]]
  [[2]][[1]]
##
     allocation livetype_code
## 1
              40
## 2
              17
                              1
## 3
                              5
              40
##
## [[2]][[2]]
##
     allocation livetype_code
## 1
              25
## 2
              43
                              1
## 3
              20
                              5
##
## [[2]][[3]]
##
     allocation livetype_code
## 1
              35
                              2
## 2
              40
                              1
## 3
              40
                              5
```

Feed items The json_data\$feed_items level of the json list is a data.table that contains information about the production management and context of feed production.

Table 4: Transposed feed item data t(json_data\$feed_items)

	$feed_item_code_65$	$feed_item_code_99$	feed_item_code_18
ammonia	0	0	0
$ammonium_nitrate$	0	0	0
$ammonium_sulfate$	0	0	0
$average_dbh25$	0	0	0
$average_dbh2550$	0	0	0
average_dbh50	0	0	0
category	cereal	cereal	legume
cp_content	13.60	3.85	18.40
cultivation_period	0	0	0
cut_carry_fraction	0	0	0
dap	0	0	0
diameter_breast	0	0	0
$dm_content$	89.00	91.88	90.00
dry_yield	30	15	8

	feed_item_code_65	feed_item_code_99	feed_item_code_18
ecosystem_type			
energy	0	360	336
$feed_item_code$	65	99	18
$feed_item_name$	Oats (Avena sativa) -	Rice (Oryza sativa) -	Cowpea (Vigna unguiculata) -
	grain IP	straw	crop residue
feed_type_code	$\overline{2}$	45	9
feed_type_name	Avena sativa	Rice	Cowpea
fraction_as_fertilize		1	0
fraction_as_manur		NA	NA
grassman	1	1	1
grassman_change_:	faktor	1	1
grassman_desc	Nominally managed	Nominally managed	Nominally managed
increase_dbh25	0	0	0
$\frac{-}{\text{dbh}2550}$	0	0	0
increase_dbh50	0	0	0
intercrop	0	0	0
intercrop fraction	0	0	0
kc_initial	0.10	1.05	0.15
kc_late	0.55	0.75	0.60
kc_midseason	1.10	1.20	1.05
land_cover	7	7	1
land_cover_desc	Cereals	Cereals	Dense forest
landcover_c_factor		0.150	0.001
	0.130	0.0090	0.0380
main_n			0.0380
main_product_rem	12.267324	1 5.640000	_
me_content			9.880848
n_content	0.2 N A	0.2 NA	0.0
n_fertilizer	NA 50		NA
n_solutions	50	300	100
npk	0	0	0
organic_amendmen		0	
residue_burnt	0	0	0
residue_dry_yield	0	0	6
residue_n	0.0	0.2	0.0
residue_removal	0.0	0.8	0.0
slope	1	1	1
slope_desc	Flat $(0-5\%)$	Flat $(0-5\%)$	Flat $(0-5\%)$
$slope_length$	0	0	0
$slope_p_factor$	0.11	0.11	0.11
source_type	Main	Residue	Main
$time_horizon$	0	0	0
trees_dhb	0	0	0
$trees_growth$	0	0	0
trees_ha	0	0	0
$trees_ha_dbh25$	0	0	0
$trees_ha_dbh2550$	0	0	0
$trees_ha_dbh50$	0	0	0
trees_removal	0	0	0
urea	400	700	200
usda_value	0	20450	16062
water_content	0.00	12.89	11.95

The feed_items are linked to the feed_basket\$feeds tables by the feed_item_code field.

```
json_data$feed_items[,c("feed_item_code", "feed_item_name")] # Codes in the feed_items table
```

lapply(json_data\$feed_basket\$feeds,"[[","feed_item_code") # Codes in the feed_basket tables

```
## [[1]]
## [1] "65" "99" "18"
##
## [[2]]
## [1] "65" "99" "18"
```

Other keyfields include feed_type_code and land_cover:

```
json_data$feed_items[,c("feed_type_code","feed_type_name","land_cover","land_cover_desc")]
```

```
##
     feed_type_code feed_type_name land_cover_land_cover_desc
## 1
                  2
                      Avena sativa
                                             7
                                                        Cereals
                                             7
## 2
                 45
                                                        Cereals
                              Rice
## 3
                  9
                             Cowpea
                                                  Dense forest
```

Fertilizer The json_data\$fertilizer level of the json list is a data.table that contains information about the production management and context of feed production.

Table 5: Fertilizer data input table (json_data\$fertilizer)

fertilizer_code	fertilizer_desc	fraction	percentage_n
4	Ammonium nitrate	0	12
6	N solutions	0	10

The values in fertilizer_code field do not appear directly correspond to any fields in the feed basket or feed item tables. However columns with similar names do appear in the field item tables

```
fertilizers<-json_data$fertilizer$fertilizer_desc
fi_cols<-colnames(json_data$feed_items)

# Reformat fertilizer names to match column names in the feed_items table
(fertilizers<-gsub(" ","_",tolower(json_data$fertilizer$fertilizer_desc)))</pre>
```

[1] "ammonium_nitrate" "n_solutions"

```
# Find matching columns
fi_cols[fi_cols %in% fertilizers]
```

[1] "ammonium_nitrate" "n_solutions"

Seasons The json_data\$season level of the input data is 2-column table that records the length of each season (adding up to 365 days max).

Table 6: Feed items data input table (json_data\$season)

season_length	season_name
200 165	Wet season Dry season
	21) 5005011

The season_name field is the key field that links to the feed basket.

```
json_data$feed_basket$season_name
```

```
## [1] "Wet season" "Dry season"
```

Feed basket The json_data\$feed_basket level of the input data contains a futher 2 list levels called feeds and season_name. These sub-levels appear to be the same length: feeds = 2, season_name = 2.

Seasons The json_data\$feed_basket\$season object is simple, being a vector containing the names of the seasons:

```
Table 7: Feed basket/season data input table (json data feed_b asketseason)
```

x Wet season Dry season

Feed Basket The json_data\$feed_basket\$feed object is the most structurally complex element of the input json data containing several levels of nesting.

str(json_data\$feed_basket\$feeds)

```
## List of 2
   $ :'data.frame':
                        3 obs. of
                                  3 variables:
     ..$ feed_item_code: chr [1:3] "65" "99" "18"
##
##
     ..$ feed_type_code: chr [1:3]
                                   "2" "45" "9"
     ..$ livestock
##
                       :List of 3
##
     ....$:'data.frame': 3 obs. of 2 variables:
     .. ... ..$ allocation
##
                           : int [1:3] 40 17 40
##
     .. .. ..$ livetype_code: chr [1:3] "2" "1" "5"
##
     ....$:'data.frame': 3 obs. of 2 variables:
     .. ... $ allocation
##
                           : int [1:3] 25 43 20
     .. .. ..$ livetype_code: chr [1:3] "2" "1" "5"
##
     ....$ :'data.frame': 3 obs. of 2 variables:
##
##
     .. .. ..$ allocation
                            : int [1:3] 35 40 40
     .. .. ..$ livetype_code: chr [1:3] "2" "1" "5"
##
   $ :'data.frame': 3 obs. of 3 variables:
     ..$ feed_item_code: chr [1:3] "65" "99" "18"
##
```

```
..$ feed_type_code: chr [1:3] "2" "45" "9"
##
##
     ..$ livestock
                       :List of 3
     ....$ :'data.frame': 3 obs. of 2 variables:
##
##
     .. ... s allocation
                            : int [1:3] 40 17 40
     .....$ livetype_code: chr [1:3] "2" "1" "5"
##
##
     ....$:'data.frame': 3 obs. of 2 variables:
     .. .. ..$ allocation
##
                            : int [1:3] 25 43 20
     .....$ livetype_code: chr [1:3] "2" "1" "5"
##
##
     ....$ :'data.frame': 3 obs. of 2 variables:
##
     .. .. ..$ allocation
                            : int [1:3] 35 40 40
     .. .. ..$ livetype_code: chr [1:3] "2" "1" "5"
##
```

Each feed basket table (e.g., json_data\$feed_basket\$feeds[[1]]) is constructed using key fields that describe feed items found in the json_data\$feed_items table, specifically feed_item_code and feed_type_code. The feeds are then allocated to the herd elements described in the json_data\$livestock table.

Table 8: Feed basket/feed data input table tablejson_data $feed_basket$ feeds[[1]]

feed_item_code	feed_type_code	livestock
65	2	40, 17, 40, 2 , 1 , 5
99	45	25, 43, 20, 2, 1, 5
18	9	35, 40, 40, 2, 1, 5

The livestock field in the feed basket table contains a list with 3 elements, indicating a one-to-many relationship between the diet item and elements of the livestock herd. Each feed item represented by a row in the feed basket table is allocated to different herd elements, with the livetype_code field serving as the key field linking the two tables.

 $\begin{table} \caption{Feed basket/feed/livestock data input table tablejson_data feed_basketfeeds[[1]]$livestock}$

allocation	livetype_code	allocation	livetype_code	allocation	livetype_code
40	2	25	2	35	2
17	1	43	1	40	1
40	5	20	5	40	5

 \end{table}

The first element of the livestock list contains no further nesting:

str(json_data\$feed_basket\$feeds[[1]]\$livestock[[1]])

```
## 'data.frame': 3 obs. of 2 variables:
## $ allocation : int 40 17 40
## $ livetype_code: chr "2" "1" "5"
```

R-project datasets

```
rda_files<-list.files(".rda")
```

GHG parameters The ghg para object (cleaned/data/ghg_para.rda) is a list of tables that appear to refer to IPCC equations, livestock parameters and fertilizers.

Table 9: Tables within ghg_names list

field_name	dim
livestock_parameters	18, 7
Table_10.12	6, 2
$table_10.17$	3, 2
$table_10.19$	12, 3
$table_10.21$	3, 2
$table_10.22$	7, 4
$table_10A_9$	18, 3
table_11.1_&_table_11.3	10, 5
$table_2.5$	5, 2
fertilizer_table	5, 5
table_5.11	NULL
$table_5.12$	8, 4
$table_5.13$	5, 3
table_5.14	6, 2

The exception is ghg_para\$table_5.11 which is a list:

```
ghg_para$table_5.11
```

```
## $baseline_emission_factor
## [1] 1.3
##
## $soil_type_scaling_factor
## [1] 1
```

Livestock_parameters Note there is an invalid character in this table:

```
ghg_para$livestock_parameters$`IPCC Category - methane emissions enteric fermentation - Tier 2`[11]<-"O
kable(ghg_para$livestock_parameters,caption="ghg_para$livestock_parameters")</pre>
```

Table 10: ghg_para\$livestock_parameters

livestock_ca	(legionayr	y r aselme r	IPCC Category - methane emissions enteric fermentation -	IPCC Category - methane emissions enteric fermentation - Tier 2	IPCC Category - methane emissions manure - Tier 1	IPCC- Category - Default N-excretion rates Tier 1
Cows (local)	0.04	0.08	Other mature female	Dairy cattle	Dairy cows	Dairy cattle
Cows (im- proved)	0.04	0.08	Dairy cattle	Dairy cattle	Dairy cows	Dairy cattle
Cows (high productive)	0.04	0.08	Dairy cattle	Dairy cattle	Dairy cows	Dairy cattle
Adult cattle - male	0.04	0.08	Other draft bull	Other Cattle and Buffaloes that are primarily fed low quality crop residues and byproducts	Other cattle	Other cattle
Steers/heifer	s 0.04	0.08	Other Mature female-grazing	Other Cattle and Buffaloes that are primarily fed low quality crop residues and byproducts	Other cattle	Other cattle
Steers/heifer (im- proved)	s 0.04	0.08	Other Mature female-grazing	Other Cattle and Buffaloes that are primarily fed low quality crop residues and byproducts	Other cattle	Other cattle
Calves	0.04	0.08	Other young	Other Cattle and Buffaloes that are primarily fed low quality crop residues and byproducts	Other cattle	Other cattle
Calves (improved)	0.04	0.08	Other young	Other Cattle and Buffaloes that are primarily fed low quality crop residues and byproducts	Other cattle	Other cattle
Buffalo (dairy)	0.04	0.08	Other draft bull	Other Cattle or Buffalo - grazing	Buffalo	Other cattle
Buffalo steers/heifers	0.04	0.08	Other young	Other Cattle or Buffalo - grazing	Buffalo	Other cattle
Buffalo calves	0.04	0.08	Other young	Other Cattle or Buffalo - grazing	Buffalo	Other cattle
Sheep/Goats	0.04	0.08	Goats	Sheep	Sheep	Sheep
Ewes/Does						

livestock_cat	ēgio rņry	/18æhrer	IPCC Category - methane emissions enteric fermentation -	IPCC Category - methane emissions enteric fermentation - Tier 2	IPCC Category - methane emissions manure - Tier 1	IPCC- Category - Default N-excretion rates Tier 1
Sheep/Goats	0.04	0.08	Goats	Sheep	Sheep	Sheep
Breeding Rams/Bucks Sheep/Goats - Fattening Rams/Bucks	0.04	0.08	Goats	Sheep	Sheep	sheep
Sheep/Goats	0.04	0.08	Goats	lambs (less 1 yr old)	Sheep	sheep
- Lambs/Kids Pigs - lactat- ing/pregnant	0.02	0.08	Pigs	N/A	Swine	pigs
sows Pigs - dry	0.02	0.08	Pigs	N/A	Swine	nice
sows/boars	0.02	0.00	1 189	IV/ A	Swine	pigs
Pigs - growers	0.02	0.08	Pigs	N/A	Swine	pigs

kable(ghg_para\$fertilizer_table,caption="ghg_para\$fertilizer_table")

Fertilizer table

Table 11: ghg_para\$fertilizer_table

	emission	n_factor_kg_CO2eq_pe	r_kg	
fertilizer_ty	pe percent_N	$N ext{ kg}_N$	per_1_kg_of_efieritsisizeons	s_factor_kg_CO2_eq_per_kg_fe
DAP	18	2.80	0.18	0.5040
CAN	27	8.66	0.27	2.3382
Urea	NA	NA	NA	0.7850
NPK	NA	NA	NA	1.2100
Lime-	NA	NA	NA	NA
application				

 ${\bf IPCC\ Tables}\quad {\bf Table_10.12}$

kable(ghg_para\$Table_10.12)

animal_category_ipcc	methane_conversion_factor
Dairy cattle	6.5
Other Cattle and Buffaloes that are primarily fed low quality crop residues and	6.5
byproducts	
Other Cattle or Buffalo - grazing	6.5
sheep	6.5
lambs (less 1 yr old)	4.5
N/A	0.0

 $table_10.17$

kable(ghg_para\$table_10.17)

system	$mcf_by_average_annual_temperature$
Pasture / range / paddock	0.015
solid storage	0.040
dry lot	0.015

 $table_10.19$

kable(ghg_para\$table_10.19)

anaimal_category	Continent	n_rate
Dairy cattle	LATIN AMERICA	0.48
Dairy cattle	AFRICA	0.60
Dairy cattle	ASIA	0.47
Other cattle	LATIN AMERICA	0.37
Other cattle	AFRICA	0.63
Other cattle	ASIA	0.34
Sheep	LATIN AMERICA	1.17
Sheep	AFRICA	1.17
Sheep	ASIA	1.17
Pigs	LATIN AMERICA	1.64
Pigs	AFRICA	1.64
Pigs	ASIA	0.50

 $table_10.21$

kable(ghg_para\$table_10.21)

system	$direct_nitrous_oxide_factor$
Pasture / range / paddock solid storage	$0.010 \\ 0.005$
dry lot	0.020

 $table_10.22$

kable(ghg_para\$table_10.22)

anaimal_category	system	fraction_n_los	ss_mms	range
Dairy cows	pit storage		0.28	(10-40)
Dairy cows	dry lot		0.20	(10-35)
Dairy cows	solid storage		0.30	(10-40)
Dairy cows	daily spread		0.07	(5-60)
Other cattle	dry lot		0.30	(20-50)
Other cattle	solid storage		0.45	(10-65)
Other cattle	deep bedding		0.30	(20-40)

 $table_10A_9$

kable(ghg_para\$Table_10.12)

animal_category_ipcc	methane_conversion_factor
Dairy cattle	6.5
Other Cattle and Buffaloes that are primarily fed low quality crop residues and byproducts	6.5
Other Cattle or Buffalo - grazing	6.5
sheep	6.5
lambs (less 1 yr old) N/A	$4.5 \\ 0.0$

 $table_11.1_\&_table_11.3$

kable(ghg_para\$`table_11.1_&_table_11.3`)

$emission \underline{\mathbf{m}} \mathbf{fa} ctors$		description	n2o_emissio ns<u>c</u>ertaii<u>ntyna</u>rangeel _soi		
EF1	kg N2O-N (kg	emission factor for N2O emissions from N	0.0100	0.003-0.03	
	N input)-1	inputs			
EF2	kg N2O-N	emission factor for N2O emissions from	16.0000	5 TO 48	
	ha-1 yr-1	drained/managed organic soils			
EF3P	R R g N2O-N (kg	emission factor for N2O emissions from	0.0200	0.007-0.06	
CPP	N input)-1	urine and dung N deposited on pasture,			
		range and paddock by grazing animals			
EF3P	R R g N2O-N (kg	emission factor for N2O emissions from	0.0100	0.003-0.03	
SO	N input)-1	urine and dung N deposited on pasture,			
	- /	range and paddock by grazing animals			
EF4	[kg N-N2O (kg	emission factor for N2O emissions from	0.0100	0.002-0.05	
	NH3-N +	atmospheric deposition of N on soils and			
	NOx-N	water surfaces			
	volatilised)-1]				
EF5	kg N2O-N (kg	emission factor for N2O emissions from N	0.0075	0.005-0.025	
	N leached and	leaching and runoff			
	runoff)-1	0			

emission <u>in</u> factors	description	n2o_emissio us<u>ac</u>∉rtani<u>ntyna</u>ranggel _so
EF1R kg N2O-N (kg N input)-1	emission factor for N2O emission from N inputs for flooded rice	0.0030
FracGASF N volatilised (kg of N applied)-1	fraction of synthetic fertilzer N that volatilises as NH3 and NOx	0.1000 0.03-0.3
FracGASMN volatilised (kg of N applied or deposited)-1	fraction of applied organic N fertiliser materials (FON) and of urine and dung N deposited by grazing animals (FPRP) that volatilises as NH3 and NOx	0.2000 0.05-0.5
FracLEAGN-(kg of N (H) additions)-1	fraction of all N added to/mineralised in managed soils in regions where leaching/runoff occurs that is lost through leaching and runoff	0.3000 if sum of rain - sum of PE > soil water holding capacity during rainy season

 $table_2.5$

kable(ghg_para\$table_2.5)

ghg_gas	burnt_emission_factor
CO2	1515.00
CO	92.00
CH4	2.70
N2O	0.07
Nox	2.50

 $table_5.12$

kable(ghg_para\$table_5.12)

ecosystem	ecosystem type	aggregated_scaling_fact@lisaggrega	ted scaling factor v
irrigated	Irrigated-Continuously flooded	0.78	1.00
irrigated	intermittently flooded-single aeration	0.78	0.60
irrigated	Intermittently flooded-multiple aeration	0.78	0.52
Rain fed and deep water	Rainfed-regular rainfed	0.27	0.28
Rain fed and deep water	Rainfed-drought prone	0.27	0.25
Rain fed and deep water	Rainfed-deep water	0.27	0.31
Upland	Upland	0.00	0.00
None	None	0.00	0.00

 $table_5.13$

kable(ghg_para\$table_5.13)

water_regime	aggregated_scaling_fa dtisa g g reg	gated_scaling_factor_p
non-flooded pre-season <180 days(often in double	1.22	1.00
cropping of rice)		
non-flooded pre-season >180 days (single rice crop	1.22	0.68
following a dry fallow period)		
flooded pre-season (>30 days)	1.22	1.90
flooded pre-season (<30 days)	1.22	0.00
None	0.00	0.00

 $table_5.14$

kable(ghg_para\$table_5.14)

organic_amendment	conversion_factor
straw incorporated in soil shortly (<30 days) before cultivation	1.00
straw incorporated in soil long (>30 days) before cultivation	0.29
Compost	0.05
Farm yard manure	0.14
green manure	0.50
None	0.00

Stock change The stock change object (cleaned/data/stock_change_para.rda) is a series of nested lists that describe: 1) landuse, management, and input factor_variables for grassland; and 2) landuse, tillage, and input input factor_variables for cropland.

```
load("stock_change_para.rda")
str(stock_change_para)
```

```
## List of 2
   $ cropland :'data.frame':
##
                              1 obs. of 3 variables:
    ..$ landuse:List of 1
##
##
    ....$ :'data.frame': 1 obs. of 1 variable:
    .. .. ..$ factor_variables:List of 1
##
##
    .. .. ... :'data.frame':
                                 1 obs. of 10 variables:
     ..... Long term cultivated, temperate/boreal, dry
##
                                                                                : num 0.8
    ..... Long term cultivated, temperate/boreal, moist
                                                                                : num 0.69
##
    .. .. .. .. $ Long term cultivated, tropical, dry
                                                                                : num 0.58
##
    .. .. ... $ Long term cultivated, tropical, moist/wet
                                                                                : num 0.48
     ..... Long term cultivated, tropical montane, all
##
                                                                                : num 0.64
##
    .. .. .. ... Paddy rice
                                                                                : num 1.1
    .. .. .. .. Perennial/tree crop
##
                                                                                : int 1
    ..... Set aside (< 20 years), temperate/boreal and tropical, dry
                                                                                : num 0.93
##
    ..... Set aside (< 20 years), temperate/boreal and tropical, moist/wet: num 0.82
##
##
    ..... Set aside (< 20 years), tropical montane, all
                                                                                : num 0.88
##
    ..$ tillage:List of 1
##
    ....$:'data.frame': 1 obs. of 1 variable:
```

```
##
    .. .. ..$ factor_variables:List of 1
##
    ..... s:'data.frame': 1 obs. of 11 variables:
    .. .. .. .. ..$ Full
##
    ..... Reduced, temperate/boreal, dry : num 1.02
##
##
    ..... Reduced, temperate/boreal, moist: num 1.08
    .. .. .. .. .. Reduced, tropical, dry
##
    .. .. .. ... Reduced, tropical, moist
    ..... Reduced, tropical montane, all: num 1.09
##
##
    ..... S No-till, temperate/boreal, dry : num 1.1
##
    ..... No-till, temperate/boreal, moist: num 1.15
    .. .. .. ... No-till, tropical, dry
    .. .. .. .. .. No-till, tropical, moist/wet
##
                                                 : num 1.22
    ..... S No-till, tropical montane, all : num 1.16
##
##
    ..$ input :List of 1
##
    ....$ :'data.frame': 1 obs. of 1 variable:
##
    .. .. ..$ factor_variables:List of 1
##
    .. .. ... :'data.frame':
                                 1 obs. of 12 variables:
##
    .. .. .. .. $ Low, temperate/boreal, dry
                                                                         : num 0.95
##
    ..... Low, temperate/boreal, moist
                                                                         : num 0.92
    .. .. .. .. $ Low, tropical, dry
##
                                                                         : num 0.95
##
    .. .. .. .. $ Low, tropical, moist
                                                                         : num 0.92
    .. .. .. .. $ Low, tropical montane, all
                                                                         : num 0.94
##
    .. .. .. .. Medium, all
                                                                         : int 1
    ..... S High w/OUT manure, temperate/boral and tropical, dry
                                                                         : num 1.04
    ..... High w/OUT manure, temperate/boral and tropical, moist/wet: num 1.11
##
    .. .. ... $ High w/OUT manure, tropical montane
                                                                         : num 1.08
##
    ..... High with manure, temperate/boral and tropical, dry
                                                                         : num 1.37
    ..... $ High with manure, temperate/boral and tropical, moist/wet : num 1.44
##
    ..... High with manure, tropical montane
                                                                         : num 1.41
                             1 obs. of 3 variables:
   $ grassland:'data.frame':
##
    ..$ landuse
                :List of 1
##
    ....$:'data.frame': 1 obs. of 1 variable:
##
    .. .. .. $ factor_variables:List of 1
    .. .. ... :'data.frame':
##
                                 1 obs. of 1 variable:
    .. .. .. ... $ All: int 1
##
##
    ..$ management:List of 1
##
    ....$:'data.frame': 1 obs. of 1 variable:
##
    .. .. ..$ factor_variables:List of 1
                                 1 obs. of 8 variables:
##
    .. .. .. ..$ :'data.frame':
##
    .. .. .. .. .. Nominally managed
                                                               : num 1
    ..... Moderately degraded grassland, temperate/boreal: num 0.95
##
    ..... Moderately degraded grassland, tropical
                                                              : num 0.97
    ..... Moderately degraded grassland, tropical montane: num 0.96
    .. .. .. .. Severely degraded
##
                                                              : num 0.7
    ..... Improved grassland, temperate/boreal
                                                              : num 1.14
    ..... S Improved grassland, tropical
##
                                                               : num 1.17
    ..... Improved grassland, tropical montane
##
                                                              : num 1.16
##
                 :List of 1
    ..$ input
##
    ....$:'data.frame': 1 obs. of 1 variable:
    .. .. ..$ factor_variables:List of 1
##
    .. .. ...$ :'data.frame':
##
                                 1 obs. of 3 variables:
    .. .. .. .. .. Medium: int 1
##
##
    .. .. .. .. .. .. High : num 1.11
    .. .. .. ... $ none : int 1
##
```

Grass factor variables Grassland: landuse

x<-unlist(stock_change_para\$grassland\$landuse[[1]]\$factor_variables)
kable(data.frame(variable=names(x), value=as.numeric(x)))</pre>

variable	value
All	1

Grassland: management

x<-unlist(stock_change_para\$grassland\$management[[1]]\$factor_variables)
kable(data.frame(variable=names(x),value=as.numeric(x)))</pre>

variable	value
Nominally managed	1.00
Moderately degraded grassland, temperate/boreal	0.95
Moderately degraded grassland, tropical	0.97
Moderately degraded grassland, tropical montane	0.96
Severely degraded	0.70
Improved grassland, temperate/boreal	1.14
Improved grassland, tropical	1.17
Improved grassland, tropical montane	1.16

Grassland: input

x<-unlist(stock_change_para\$grassland\$input[[1]]\$factor_variables)
kable(data.frame(variable=names(x),value=as.numeric(x)))</pre>

variable	value
Medium	1.00
High	1.11
none	1.00

Cropland factor variables Cropland: landuse

x<-unlist(stock_change_para\$cropland\$landuse[[1]]\$factor_variables)
kable(data.frame(variable=names(x),value=as.numeric(x)))</pre>

variable	value
Long term cultivated, temperate/boreal, dry	0.80
Long term cultivated, temperate/boreal, moist	0.69
Long term cultivated, tropical, dry	0.58
Long term cultivated, tropical, moist/wet	0.48
Long term cultivated, tropical montane, all	0.64
Paddy rice	1.10

variable	value
Perennial/tree crop	1.00
Set aside (< 20 years), temperate/boreal and tropical, dry	0.93
Set aside (< 20 years), temperate/boreal and tropical, moist/wet	0.82
Set aside (< 20 years), tropical montane, all	0.88

Cropland: tillage

x<-unlist(stock_change_para\$cropland\$tillage[[1]]\$factor_variables)
kable(data.frame(variable=names(x),value=as.numeric(x)))</pre>

variable	value
Full	1.00
Reduced, temperate/boreal, dry	1.02
Reduced, temperate/boreal, moist	1.08
Reduced, tropical, dry	1.09
Reduced, tropical, moist	1.15
Reduced, tropical montane, all	1.09
No-till, temperate/boreal, dry	1.10
No-till, temperate/boreal, moist	1.15
No-till, tropical, dry	1.17
No-till, tropical, moist/wet	1.22
No-till, tropical montane, all	1.16

Cropland: input

x<-unlist(stock_change_para\$cropland\$input[[1]]\$factor_variables)
kable(data.frame(variable=names(x), value=as.numeric(x)))</pre>

variable	value
Low, temperate/boreal, dry	0.95
Low, temperate/boreal, moist	0.92
Low, tropical, dry	0.95
Low, tropical, moist	0.92
Low, tropical montane, all	0.94
Medium, all	1.00
High w/OUT manure, temperate/boral and tropical, dry	1.04
High w/OUT manure, temperate/boral and tropical, moist/wet	1.11
High w/OUT manure, tropical montane	1.08
High with manure, temperate/boral and tropical, dry	1.37
High with manure, temperate/boral and tropical, moist/wet	1.44
High with manure, tropical montane	1.41

load("mufindi.rda") str(mufindi)

```
## List of 48
                                 : int 0
## $ cba_discount_rate
## $ cba years
                                 : int 0
                                 : chr "High w/OUT manure, temperate/boral and tropical, moist/wet"
## $ cropland_orgmatter
   $ cropland_system
                                 : chr "Long term cultivated, temperate/boreal, moist"
## $ cropland_tillage
                                 : chr "Reduced, tropical, moist"
## $ farm_code
                                 : chr "ddd"
                                  : chr "000"
## $ farm_name
                                  :'data.frame':
## $ feed basket
                                                  2 obs. of 2 variables:
##
    ..$ feeds
                   :List of 2
    ....$:'data.frame': 4 obs. of 3 variables:
     .....$ feed_item_code: chr [1:4] "16" "31" "51" "82"
##
##
    .. .. ..$ feed_type_code: chr [1:4] "8" "17" "29" "40"
    .. ... $\text{livestock}
                           :List of 4
##
##
    .. .. .. ..$ :'data.frame':
                                   2 obs. of 2 variables:
    ..... sallocation : int [1:2] 2 10
##
    .. .. ... ... $\text{livetype_code: chr [1:2] "3" "6"}
##
##
    .. .. ... : 'data.frame':
                                   2 obs. of 2 variables:
     ..... sallocation : int [1:2] 20 10
##
    .. .. .. ... $\text{livetype_code: chr [1:2] "3" "6"}
##
    .. .. ... ..$ :'data.frame':
                                   2 obs. of 2 variables:
##
##
    .. .. .. .. $ allocation : int [1:2] 30 10
##
     .. .. .. ... $\text{livetype_code: chr [1:2] "3" "6"}
    .. .. ... : 'data.frame':
                                   2 obs. of 2 variables:
##
                               : int [1:2] 48 70
##
    .. .. .. ... allocation
     .. .. .. ... $\text{livetype_code: chr [1:2] "3" "6"}
##
     ....$ :'data.frame': 4 obs. of 3 variables:
##
##
    .. .. ..$ feed_item_code: chr [1:4] "16" "31" "51" "82"
     .. .. ..$ feed_type_code: chr [1:4] "8" "17" "29" "40"
##
    .. ... ..$ livestock
##
                          :List of 4
     .. .. ... : 'data.frame':
                                   2 obs. of 2 variables:
##
##
    .. .. .. ... $ allocation
                                : int [1:2] 70 50
##
    .....$ livetype code: chr [1:2] "3" "6"
##
     .. .. ... ... :'data.frame':
                                   2 obs. of 2 variables:
    ..... sallocation : int [1:2] 20 5
##
    .. .. ... ... livetype_code: chr [1:2] "3" "6"
##
##
    .. .. ... : 'data.frame':
                                   2 obs. of 2 variables:
     ..... sallocation : int [1:2] 5 5
##
     ...... s livetype_code: chr [1:2] "3" "6"
##
    .. .. ...$ :'data.frame':
                                   2 obs. of 2 variables:
##
     .. .. .. ... allocation
                               : int [1:2] 5 40
     .. .. .. ... $\text{livetype_code: chr [1:2] "3" "6"}
##
    ..$ season name: chr [1:2] "Dry season" "Wet season"
##
##
   $ feed items
                                  :'data.frame': 4 obs. of 64 variables:
                             : int [1:4] 14 0 0 8
    ..$ ammonia
##
     ..$ ammonium nitrate
                             : int [1:4] 11 0 5 0
                             : int [1:4] 12 6 0 0
##
    ..$ ammonium_sulfate
##
                             : num [1:4] 0.05 0.117 0.05 0.027
    ..$ c factor
                             : chr [1:4] "" "legume" "cereal" "grass"
##
    ..$ category
                              : num [1:4] 1.81 16.29 8.9 11
##
     ..$ cp content
```

```
: num [1:4] 1.61 15.17 7.3 1.65
##
     ..$ cp_fresh
##
    ..$ crop_coefficient
                              : num [1:4] 0 0.633 0.533 0.917
    ..$ cut_carry_fraction : int [1:4] 2 0 0 0
##
##
    ..$ dap
                              : int [1:4] 10 0 0 4
##
     ..$ de
                              : num [1:4] 0.71 0.433 0.674 0.652
##
    ..$ dm content
                              : num [1:4] 88.8 93.1 82 15
                              : num [1:4] 5.04 1.16 8.6 6
    ..$ dry_yield
##
     ..$ emission_factor
                             : int [1:4] 0 0 0 0
##
##
     ..$ energy
                              : int [1:4] 160 567 365 0
##
     ..$ energy_dm
                              : num [1:4] 397 606 407 0
     ..$ establishment_cost
                              : int [1:4] 0 0 0 20
     ..$ establishment_labour : int [1:4] 0 0 0 6
##
                              : chr [1:4] "16" "31" "51" "82"
##
     ..$ feed_item_code
##
    ..$ feed_item_name
                              : chr [1:4] "Cassava (Manihot esculenta) - tubers" "Groundnut (Arachis h
                              : chr [1:4] "8" "17" "29" "40"
##
     ..$ feed_type_code
##
     ..$ feed_type_name
                              : chr [1:4] "Cassava" "Groundnut" "Maize" "Pennisetum purpureum"
##
    ..$ fraction_as_fertilizer: int [1:4] 7 1 0 0
##
    ..$ fresh_yield
                              : num [1:4] 12.5 1.22 10 20
##
                              : chr [1:4] "1" "1" "1" "1"
     ..$ grassman
##
     ..$ grassman change factor: int [1:4] 1 1 1 1
##
    ..$ harvest_index
                            : num [1:4] 0.5 0.29 0.47 0.9
##
    ..$ intercrop
                              : int [1:4] 1 0 0 1
##
     ..$ intercrop_fraction : int [1:4] 1 0 0 2
##
    ..$ kc initial
                              : num [1:4] 0 0.15 0.15 0.6
##
    ..$ kc late
                              : num [1:4] 0 0.6 0.3 1.05
    ..$ kc_midseason
                             : num [1:4] 0 1.15 1.15 1.1
##
     ..$ land_cover
                              : chr [1:4] "1" "1" "1" "1"
     ..$ landcover_c_factor : num [1:4] 0.001 0.001 0.001
##
                              : num [1:4] 0.004 0.037 0.017 0.023
##
     ..$ main_n
##
     ..$ main_product_removal : int [1:4] 4 0 0 0
                              : num [1:4] 10.76 6.56 10.22 9.88
##
     ..$ me_content
                              : num [1:4] 9.56 6.11 8.38 1.48
##
    ..$ me_fresh
##
    ..$ n_fertilizer
                             : int [1:4] 15 0 9 0
##
                              : num [1:4] 0 38.2 0 0
     ..$ n_fixation
                              : int [1:4] 13 0 7 0
##
     ..$ n_solutions
##
                             : int [1:4] 9 0 3 0
    ..$ npk
    ..$ operational_cost : int [1:4] 0 0 0 18
##
     ..$ operational_labour : num [1:4] 0 0 0.203 0.5
##
##
     ..$ residue_burnt
                              : int [1:4] 6 0 0 0
     ..$ residue_dm_content : num [1:4] 0.403 0.935 0.896 0.85
##
##
    ..$ residue_dry_yield
                              : num [1:4] 5.04 2.79 3 0
     ..$ residue_fresh_yield : num [1:4] 12.5 2.99 3.5 2.22
##
                              : int [1:4] 0 0 0 0
##
     ..$ residue_n
##
                              : num [1:4] 0.003 0.012 0.007 0.023
    ..$ residue_n_dm
                              : int [1:4] 5 0 0 0
##
    ..$ residue_removal
                              : chr [1:4] "1" "1" "1" "1"
##
     ..$ slope
     ..$ slope_length
                              : int [1:4] 3 0 0 0
##
##
    ..$ slope_p_factor
                              : num [1:4] 0.11 0.11 0.11 0.11
##
    ..$ trees_dhb
                              : int [1:4] 0 0 0 0
##
    ..$ trees_growth
                              : int [1:4] 0 0 0 0
##
                             : int [1:4] 0 0 0 0
    ..$ trees_ha
                            : int [1:4] 0 0 0 0
##
    ..$ trees_removal
##
    ..$ urea
                             : int [1:4] 8 2 0 0
                              : int [1:4] 11134 16067 20314 0
##
    ..$ usda value
```

```
##
       ..$ water_content : num [1:4] 59.7 6.5 10.4 0
##
      ..$ wfp_blue
                                         : num [1:4] 0 0 0.002 0
      ..$ wfp green
                                         : num [1:4] 0 0 0.199 0
##
                                         : num [1:4] 0 0 0.002 0
##
       ..$ wfp_grey
## $ ferlitizer
                                                :'data.frame': 1 obs. of 5 variables:
##
      ..$ cost
                              : int 2
      ..$ fertilizer_code: chr "4"
       ..$ fertilizer_desc: chr "Ammonium nitrate"
##
      ..$ fraction : int 3
##
##
                               : int 1
       ..$ quantity
                                            : chr "High": chr "Moderately degraded grassland, tropical montane"
     $ grassland_implevel
## $ grassland_management
                                               : int 0
## $ land_oppcost
## $ livestock
                                               :'data.frame':
                                                                         2 obs. of 53 variables:
##
      ..$ annual_growth
                                                     : int [1:2] 3 9
##
      ..$ annual_milk
                                                     : int [1:2] 2 10
                                           : num [1:2] 1.17 0
##
      ..$ birth_interval

      ...$ birth_interval
      : num [1:2] 1.17 0

      ...$ body_weight
      : int [1:2] 600 300

      ...$ carcass_fraction
      : num [1:2] 0.45 0.49

      ...$ cp_grazing
      : int [1:2] 0 0

      ...$ cp_growth
      : num [1:2] 0 0.4

      ...$ cp_lactation
      : int [1:2] 0 0

      ...$ cp_lactmilk
      : num [1:2] 0.09 0

      ...$ cp_maintenance
      : num [1:2] 0.6 0.3

      ...$ cp_pregnancy
      : int [1:2] 15 0

      ...$ distance_to_pasture
      : int [1:2] 8 4

      ...$ energy_eggcontent
      : int [1:2] 2200 2200

      ...$ energy_milkcontent
      : int [1:2] 970 0

      ...$ er_grazing
      : num [1:2] 2 1.5

##
##
##
##
##
##
##
##
##
##
      ##
##
##
##
##
##
##
##
##
       ..$ ipcc_meth_ef_t1
##
                                                     : int [1:2] 68 46
                                              : num [1:2] 6.5 6.5
: num [1:2] 0.47 0.34
       ..$ ipcc_meth_ef_t2
##
##
       ..$ ipcc_meth_exc
       ..$ ipcc_meth_man
##
                                                    : int [1:2] 19 1
                                             : int [1:2] 0 0
: int [1:2] 0 0
       ..$ lactation_length
##
##
       ..$ litter_size
                                                    : chr [1:2] "3" "6"
##
       ..$ livetype_code
       ..$ livetype_desc
                                                    : chr [1:2] "Cows (high productive)" "Steers/heifers (improved)"
##
                                                     : int [1:2] 0 0
##
       ..$ lw_gain
      ..$ manure_in_field
##
                                                     : int [1:2] 11 1
       ..$ manure_in_non_roofed_enclosure: int [1:2] 10 2
      ..$ manure_in_stable
..$ meat_price
..$ meat_product
..$ milk_price
##
                                                     : int [1:2] 9 3
##
                                                     : int [1:2] 23 23
                                                    : chr [1:2] "beef" "beef"
##
##
                                                    : num [1:2] 1.04 1.04
       ..$ milk_product
                                                      : chr [1:2] "cow milk" "cow milk"
##
```

```
: num [1:2] 0.029 0.029
##
     ..$ n content
##
    ..$ oneoff_cost
                                     : int [1:2] 6400 3450
    ..$ oneoff labour
##
                                     : int [1:2] 0 0
##
     ..$ operational_cost
                                     : int [1:2] 4000 1650
##
     ..$ operational_labour
                                      : num [1:2] 50.7 7.6
##
    ..$ proportion growth
                                     : int [1:2] 0 0
##
    ..$ protein meatcontent
                                      : int [1:2] 26 26
##
     ..$ protein_milkcontent
                                      : num [1:2] 3.7 0
##
    ..$ time_in_non_roofed_enclosure : int [1:2] 5 7
##
    ..$ time_in_offfarm_grazing
                                      : int [1:2] 7 5
##
    ..$ time_in_onfarm_grazing
                                      : int [1:2] 6 6
##
                                      : int [1:2] 4 8
     ..$ time_in_stable
                                      : int [1:2] 160 100
##
    ..$ water_requirement
## $ manure_onfarm_fraction
                                 : int 1
## $ manure_sales_fraction
                                  : int 2
## $ manureman_pasture
                                  : chr "Pasture / range / paddock"
## $ manureman_stable
                                 : chr "Solid storage"
## $ manureman yard
                                 : chr "Dry slot"
## $ purchased_bedding
                                 : int 6
##
   $ purchased compost
                                 : int 4
                                 : int 3
##
   $ purchased_manure
## $ purchased_organic_n
                                  : int 5
## $ region
                                  : chr "ASIA"
##
   $ seasons
                                  :'data.frame':
                                                  2 obs. of 2 variables:
##
    ..$ season_length: int [1:2] 200 165
    ..$ season name : chr [1:2] "Dry season" "Wet season"
## $ txt_annual_prec
                                  : int 1
## $ txt_arable_tograssland
                                  : int 16
## $ txt_cropland_orgmatter_ipcc : num 1.11
## $ txt_cropland_system_ipcc
                                  : num 0.69
## $ txt_cropland_tillage_ipcc
                                  : num 1.15
## $ txt_et
                                  : int 9
## $ txt_grassland_implevel_ipcc : num 1.11
## $ txt_grassland_management_ipcc: num 0.96
## $ txt grassland toarable
                                 : int 15
                                 : int 2
## $ txt_rain_length
## $ txt soil bulk
                                 : int 7
## $ txt_soil_c
                                 : int 5
## $ txt_soil_clay
                                 : int 6
## $ txt_soil_depth
                                 : int 8
## $ txt soil k value
                                 : num 0.25
## $ txt soil n
                                 : int 4
## $ waste consume milk
                                 : int 0
## $ waste_distribution_meat
                                 : int 0
## $ waste_distribution_milk
                                 : int 0
## $ waste_processing_meat
                                  : int 0
## $ waste_processing_milk
                                 : int 0
## $ waste_production_meat
                                 : int 0
## $ waste_production_milk
                                 : int 0
```