

Deep Residual Downscaling of Remote Sensing Imagery for Flood Hazard Assessment

Akshay Aravamudan, Zimeena Rasheed, Xi Zhang, Georgios C. Anagnostopoulos, Witold F. Krajewski, Efthymios I. Nikolopoulos

High quality **Flood Inundation Maps** (FIMs) help improve understanding of flood hazards over long term temporal scales

- We investigate deep learning architectures to downscale (by **I0x**) low-resolution FIMs (at **300m**) to high-resolution FIMs (at **30m**).
- We evaluate the use of out-of-the-box super-resolution methods for this purpose.
- We investigate the viability of **topographic** information in enhancing downscaling fidelity.

Model Selection:

- We chose to adopt a Residual Dense Network (Zhang et. al. 2018) based network for this task.
- State-of-the-art performance.
- We explore two different instances of these RDN-based models: with and without topographic features.

Learning to Downscale

Loss function: Average Cross-Entropy (for binary classification)

Coarse Res	High-res GT	LapSRN	Bicubic	Lanczos	RDN
Classification metric : Mathew's Correlation Coefficient		0.6069	0.6336	0.6367	0.74

Akshay Aravamudan

aaravamudan2014@my.fit.edu