Функциональный анализ

Лектор: Сергей Петрович Коновалов Осень 2020 — весна 2021

Содержание

1	Метрические и топологические пространства	3
	Теорема 1.1	Į.
	Теорема 1.2	
	Теорема 1.3	F

1 Метрические и топологические пространства

Лекция от 16.09.2020

Введём начальную терминологию, которой мы будем пользоваться на протяжении всего курса. Несмотря на то, что третьекурсники уже сталкивались с частью ниже изложенных понятий, необходимо унифицировать используемый язык.

Начнём с метрического случая.

Опр. Метрическое пространство – пара (X, ρ) , где X – векторное пространство над полем скаляров \mathbb{K} , а ρ – метрика на нём.

Опр. Метрика – функция $\rho: X \longrightarrow \mathbb{R}$, удовлетворяющая трём условиям для любых $x, y, z \in X$:

- 1. $\rho(x,y) \ge 0, \ \rho(x,y) = 0 \iff x = y$
- 2. $\rho(x,y) = \rho(y,x)$
- 3. $\rho(x,y) \le \rho(x,z) + \rho(z,y).s$

 \mathbb{K} будет обозначать либо \mathbb{R} , либо \mathbb{C} . На выбор конкретного поля скаляров будет обращено особое внимание в тех местах, где этот будет существенен.

Опр. Топологическое пространство – пара (X, τ) . X – некоторое множество, а $\tau \in 2^X$ – топология на X, то есть система множеств, удовлетворяющая условиям:

- 1. $X, \emptyset \in \tau$
- 2. $\bigcup_{\alpha \in A} G_{\alpha} \in \tau$, ecau $\forall \alpha \in A : G_{\alpha} \in \tau$
- 3. $\bigcap_{k=1}^{N} G_k \in \tau$, echu ece $G_k \in \tau$.

В последующем и топологические, и метрические пространства будут часто обозначаться только первым символом множества из пары, если для неё из контекста повествования очевидна топология или метрика. Далее по тексту МП – метрическое пространство, ТП – топологическое пространство.

До введения следующих необходимых определений приведём сводную таблицу понятий-аналогов из метрического и топологического случаев.

МΠ	$ ext{T}\Pi$
Подпространство	+
Ограниченное множество	-
Расстояние м/у множествами	-
Замыкание множества	+
Замкнутые множество	+
Внутренная точка	+
Открытое ядро	+
Открытое множество	+
Сходящаяся последовательсноть	+, но не всегда

Опр. Подпространство метрического пространства Y – пара (X, ρ) , где $X \subset Y$, а ρ – метрика на Y. Метрику из подпространства называют индуцированной метрическим пространством Y.

Опр. Индуцированная топологическим пространством (Y, τ_Y) топология для $X \subset Y - \tau_X = \{G \cap X : G \in \tau_Y\}$. Пара (Y, τ_Y) называется подпространством (X, τ_X) .

Опр. Диаметром множества X в МП называют $d = \sup_{x,y \in X} \rho(a,y)$.

Опр. Множество X в $M\Pi$ называют ограниченным, если его диаметр меньше бесконечности.

Опр. Расстоянием между множествами A и B в $M\Pi$ называют $\rho(A,B) = \inf_{\substack{a \in A \\ b \in B}} \rho(a,b).$

Опр. Множество $B(x,r) = \{y \mid \rho(y,x) < r\}$ в метрическом пространстве при r > 0 называется открытым шаром.

Также для шаров могут встречаться обозначения $B_r(x)$ и B(x).

Опр. Множество $\overline{B}(x,r) = \{y \mid \rho(y,x) < r\}$ в метрическом пространстве при r > 0 называется замкнутым шаром.

Опр. Элемент x из МП X для множества $M \subset X$ называется точкой прикосновения, если $\rho(x,M) = 0$.

Опр. Элемент x из $T\Pi X$ для множества $M \subset X$ называется точкой прикосновения, если $\forall B(x) \cap M \neq \emptyset$.

Все точки прикосновения x множества M можно разделить на два вида:

- 1. Предельные точки, т.е. $\forall B(x) \exists m \in M \ m \in B(x), m \neq x;$
- 2. Изолированные точки множества M.

Опр. Замыканием множества называют его объединение с множеством точек прикосновения.

Опр. Множество M называют замкнутым, если $M=\overline{M}$.

В старых работах можно встретить обозначение замыкания множества через квадратные скобки: [M]. В этом курсе так будет обозначаться линейная оболочка.

Опр. Точка $m \in X$ называют внутренней для множества X, если $\exists B(x,r) : B(x,r) \subset X$.

Опр. Открытым ядром множества X называют множество его открытыт точек. Обозначения: $\operatorname{Int} M$, \mathring{M} .

Опр. Множество M называется открытым, если Int M = M.

Опр. Множество A называют плотным в B, если $B \subset \overline{A}$.

Опр. Множество A называют всюду плотным в B, если $B = \overline{A}$.

Опр. Множество A называют нигде не плотным в B, если A не плотно ни в одном шаре из B (или же \overline{A} не содержит ни одного шара).

Опр. Последовательность элементов $\{x_n\}$ из МП M называется сходящейся κ элементу $x_0 \in M$, если $\rho(x_n, x_0) \to 0$.

Опр. Пространство называется сепарабельным, если в нём существует счётное всюду плотное множество.

Упражнение. Докажите эквивалентность утверждений:

- x точка прикосновения M
- $\exists \{m_k\} \subset M : m_k \to x$

Упражнение. Докажите, что C[a,b] сепарабельно. Метрика: $\rho(f,g) = \max_{x} (f(x) - g(x))$. Указание: рассмотрите множество полиномов с рациональными коэффициентами.

Сформулируем первые три теоремы.

Теорема 1.1 (X, ρ) – $M\Pi$. $F \subset X$ – замкнутое множество $\iff X \setminus F$ – открытое множество.

Доказательство.

Выберем любую точку $x \in X \setminus F$. Если удастся окружить её открытой окрестностью, не имеющей пересечений c F, то теорема будет доказана. Раз $x \notin F$, то x – не точка прикосновения F. Значит, $\exists B(x) \cap F = \varnothing$ u $B(x) \subset X \setminus F$. \blacksquare

Со времён «Теории множеств» Хаусдорфа (немецкий математик, основатель топологии, 1868-1942) за открытыми множествами закрепилось обозначение G, за замкнутыми – F.

Открытое ядро M – это наибольшее открытое множество в M, и потому оно может быть записано в виде $\bigcup_{G \subset M} G$.

Замыкание M – наименьшее замкнутое множество, содержащее M, и потому оно может быть записано в виде $\bigcap_{M\subset F} F$.

Теорема 1.2 (X, ρ) – $M\Pi$. $\{G_{\alpha}\}$ – семейство открытых множеств, $\{F_{\alpha}\}$ – семейство замкнутых множеств, $\alpha \in A$. Тогда

$\bigcup G_{\alpha}$ – $om\kappa pumoe$	$\bigcap F_{lpha}$ – замкнутое
$\bigcap_{k=1}^n G_k$ – $om\kappa p \omega moe$	$igcup_{k=1}^n F_k$ – замкнутое

Доказательство.

Докажем верхнюю строчку таблица, нижняя оставляется в качестве упражнения. Нам пригодятся две формулы де Моргана (шотландский математик, 1806-1871): $C \bigcup B_{\alpha} = \bigcap CB_{\alpha}$ и $C \bigcap B_{\alpha} = \bigcup CB_{\alpha}$, где C обозначает операцию дополнения.

- 1. Для любой точки $x \in \bigcup G_{\alpha}$ можно выбрать $\exists \alpha_0 : x \in G_{\alpha_0}$. Так как G_{α_0} открыто, то $\exists B(x) \subset G_{\alpha_0}$. Значит, $B(x) \subset \bigcup G_{\alpha}$.
- 2. Обозначим $G_{\alpha} \stackrel{\text{def}}{=} CF_{\alpha}$. Тогда воспользуемся формулой де Моргана: $\bigcap F_{\alpha} = \bigcap CG_{\alpha} = C \bigcup G_{\alpha}$. Так как $\bigcap G_{\alpha}$ открыто, то по $T.1.1\ C \bigcup G_{\alpha}$ замкнуто.

Теорема 1.3 X – $M\Pi$. Тогда верны следующие утверждения:

- 1. B(x,r) открытое множество
- 2. Int M открытое множество
- $3. \ \overline{M}$ замкнутое множество
- 4. $\overline{B}(x,r)$ замкнутое множество

Доказательство.

- 1. Для любой точки $y \in B(x,r)$ имеем оценку расстояния от центра шара до неё: $\rho(x,y) = r \varepsilon$. Выберем окрестность точки y: $B(y,\frac{\varepsilon}{2})$. Теперь рассмотрим точки из этой окрестности. Для любой $z \in B(y,\frac{\varepsilon}{2})$: $\rho(z,x) \leq \rho(z,y) + \rho(y,x) = r \frac{\varepsilon}{2} < r$. Значит, вся выбранная окрестность точки y лежит в B(x,r), то есть B(x,r) открыт.
- 2. Простое замечание: $M_1 \subset M_2 \Rightarrow \operatorname{Int} M_1 \subset \operatorname{Int} M_2$. Перейдём к доказательству пункта. $\forall x \in \operatorname{Int} M \Rightarrow \exists B(x) \subset M \Rightarrow \operatorname{Int} B(x) \subset \operatorname{Int} M$. А раз B(x) открыто, то и $\operatorname{Int} M$ открыто.

Интересно сравнить два объекта: $\overline{B}(x,r)$ и $\overline{B(x,r)}$. Всегда ли они равны? Оказывается, в данном случае опыт просто устроенных пространств не соответствует общему случаю, эти два объекта не обязаны быть равными. Контрпримером служит пространство (X,ρ) , где |X|>2 и $\rho(x,y)=\mathbb{I}[x=y]$.

Докажем полезный в дальнейшем факт о локальной топологии точчки прикосновения.

Утверждение x – точка прикосновения множества $M \iff \forall G(x): G(x) \cap M \neq \varnothing$, где G(x) – открытая окрестность точки x.

Доказательство.

- \Rightarrow) Рассмотрим произвольную открытую окрестность точки x. Тогда $\exists B(x,r) \subset G$. По изначальному предположению: $B(x,r) \cap M \neq \emptyset$. Значит, $G \cap M \neq \emptyset$.
- *⇐) Очевидно.* ■