Descrição: Construção de código computacional em linguagem C capaz de obter a solução numérica da equação de conservação de energia, dadas: a condição inicial do campo de temperatura e as condições de contorno. A malha euleriana base para a discretização espacial da equação é não estruturada, o que permite trabalhar com geometrias complexas; esta é importada do código *Triangle*. A estrutura de dados do código é construída com base em *hash table*, de forma a possibilitar futura implementação de refinamento adaptativo e mapeamento volume-a-volume de partículas (e.g., particulados e/ou estocásticas); diferentes implementações de discretizações temporal e espacial são também possíveis.

Detalhamento:

Módulo: misc

Print_VTK
Print_Screen_Scalar
Print_Screen_Flux
Print_Screen_Rate

Módulo: boundary

Rect_Scalar_Dirichlet
Distance_Edge_Centroid
PlateCase_Temperature_Init
PlateCase_HeatSource_Init
PlateCase_Boundary

Módulo: init

Vertex_Init
Edge_Init
Volume_Init
Edge_Geom
Edge_Vol_Assign
Volume_Centroid_Init
Volume_Area_Init
Edge_Lenght_Init
PlateCase_Gama_Init

Módulo: numerical

Flux_Diffusive
Rate_Diffusive
Flux_Sign
Euler_Explicit_Scalar
PlateCase_Unsteady
Resultados:

Os resultados são obtidos com os valores das variáveis estabelecidos no problema proposto do *chip* em placa retangular. As condições de contorno são aquelas requisitadas pelo modelo físico.

A malha gerada possui 342 volumes discretos. O regime estacionário é alcançado através de uma discretização temporal explícita. Tal abordagem não é recomendada devido a restrição do passo de tempo.

Uma subestimativa do campo de temperatura é alcançada, o que pode ter origem na aproximação do fluxo difusivo na discretização em malha não estruturada.

Uma vez que o campo de difusividade térmica é dado pelo arquivo de *input* da geometria a ser gerada a malha, uma distribuição diferente da distribuição degrau é gerada para esta propriedade física nos volumes discretos (Figura 1). O campo de temperatura para a configuração citada é mostrado na Figura 2.

Figura 2

Um novo resultado foi obtido para um campo uniforme de difusividade térmica de valor 5 W/m.K (Figura 3).

Figura 3