

Europäisches **Patentamt** 

European **Patent Office**  Office européen

des brevets 10 / 522565

19 JAN 2005

REC'D 04 SEP 2003 **WIPO** PCT

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application described on the following page, as originally filed.

Les documents fixés à cette attestation sont conformes à la version initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr. Patent application No. Demande de brevet nº .

02447145.0

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b) Der Präsident des Europäischen Patentamts; Im Auftrag

For the President of the European Patent Office Le Président de l'Office européen des brevets p.o.

R C van Dijk

BEST AVAILABLE COPY





Office européen des brevets



Anmeldung Nr:

Application no.: 02447145.0

Demande no:

Anmeldetag:

Date of filing:

24.07.02

Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

UNIVERSITE CATHOLIQUE DE LOUVAIN Place de l'Université, 1 B-1348 Ottignies (Louvain la Neuve) BELGIQUE Diatos S.A. 166, boulevard de Montparnasse 75014 Paris FRANCE

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention: (Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung. If no title is shown please refer to the description. Si aucun titre n'est indiqué se referer à la description.)

Method for the synthesis of anthracycline-peptide conjugates

In Anspruch genommene Prioriät(en) / Priority(ies) claimed /Priorité(s) revendiquée(s)
Staat/Tag/Aktenzeichen/State/Date/File no./Pays/Date/Numéro de dépôt:

Internationale Patentklassifikation/International Patent Classification/Classification internationale des brevets:

A61K47/48

Am Anmeldetag benannte Vertragstaaten/Contracting states designated at date of filing/Etats contractants désignées lors du dépôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

#### Method for the synthesis of anthracycline-peptide conjugates

#### Field of the invention

The present invention relates to a method for the synthesis of anthracycline-peptide conjugates. More in particular the present invention relates to a method for the synthesis of doxorubicin-peptide conjugates. The present invention further relates to anthracycline-peptide conjugates or pharmaceutically acceptable salt thereof obtained by said methods. Said invention further relates to the use of said anthracycline-peptide conjugates as medicaments 0 for treating cancer.

#### Background of the invention

Anthracycline compounds are among the most effective and widely used antitumor agents. The best-known members of this class of compounds are doxorubicin and daunorubicin. Daunorubicin is effective in treating acute leukemia. Doxorubicin is one of the most active antineoplastic ever identified. It is known to treat acute leukemia, Hodgkin's disease and non-Hodgkin's lymphomas, small cell and non-small cell lung cancer, cancers of the breast, ovaries, stomach, thyroid, and bladder, osteogenic and soft tissue sarcomas, and malignant melanoma. Although these compounds may be useful in the treatment of neoplasms and other disease states wherein a selected cell population is sought to be eliminated, their therapeutic efficacy is often limited by the dose-dependent toxicity associated with their administration. Furthermore, the existence of drug resistance in tumors results in decreased cytotoxicity of these compounds.

25

30

20

15

Peptide conjugates of anthracyclines are known, and different methods for their synthesis have been described. WO 00/78359 relates to a method and composition for treating cancer and chemotherapy-resistant cancers comprising an anthracycline conjugated to or coadministrated with a peptide. Therein the peptide is linked to the anthracycline either through an amide bond between the amino terminus of doxorubicin and the carboxy terminus of said peptide, or through an ester bond between the primary hydroxyl of doxorubicin and the carboxy terminus of said peptide. US Pat. No. 5,998,362 relates to chemical conjugates which comprises oligopeptides and know cytotoxic agents such as anthracyclines. Said oligopeptides are covalently attached either at the amino terminus or at the 14-hydroxyl of the

anthracycline. Although several useful new derivatives have been synthesized, there is still an urgent need to find analogues that can be easily prepared and in high quantities.

It is an object of the invention to provide new methods for the synthesis of anthracycline-peptide conjugates. It is another object of the present invention to provide easy to implement methods for the synthesis of said conjugates. It a further object to provide methods for the synthesis of said conjugates comprising a limited number of steps. It is yet another object to provide methods wherein said conjugates can be prepared cheaply from readily available starting materials and reagents. It is a further object to provide method for the synthesis of said conjugates wherein said conjugates are produced with good yields. It is another object of the invention to provide new anthracycline-peptide conjugates which are potent antitumor agents. It is yet another object of the invention to provide new anthracycline-peptide conjugates, which are useful in the treatment of multidrug resistant tumor.

### 15 Summary of the invention

According to a first aspect, the present invention relates to methods for the synthesis of anthracycline-peptide conjugates of formula (I) or pharmaceutically acceptable saits thereof and intermediates thereof,

20

25

5

10

wherein said method comprises the steps of reacting a compound of formula (II) at its 14 position with the thiol molety of a peptide of formula (III), optionally in the presence of a suitable linker, to obtain said compound of formula (I) wherein R³ represents OCH₃, OH or H; R⁴ represents H, or COCF₃; R⁵ represents OH, O-tetrahydropyranyl or H; R⁶ represents OH or H; R⊓ represents H, OH₁ OCO(CH₂)₃CH₃ or OCOCH(OC₂H₅)₂; Rⁿ represents OH or H; R⊓ represents OH, NH₂ or NH-peptide; R² represents H or –CO-peptide; and L is a suitable optional linker arm.

More in particular, the present invention relates to methods for the preparation of a compound of formula (I) or pharmaceutically acceptable salts thereof and intermediates thereof, comprising the steps of first halogenating a compound of formula (II), resulting in compound of formula (IIa),

secondly reacting a compound of formula (IIa) at its 14 position with the thiol molety of a peptide of formula (III), optionally in the presence of a suitable linker, to obtain said compound of formula (I)

10

15

5

wherein  $R^1$  represents OH,  $NH_2$  or NH-peptide;  $R^2$  represents H or -CO-peptide;  $R^3$  represents OCH<sub>3</sub>, OH or H;  $R^4$  represents H, or COCF<sub>3</sub>;  $R^5$  represents OH, O-tetrahydropyranyl or H;  $R^6$  represents OH or H;  $R^7$  represents H, OH, OCO(CH<sub>2</sub>)<sub>3</sub>CH<sub>3</sub> or OCOCH(OC<sub>2</sub>H<sub>5</sub>)<sub>2</sub>;  $R^8$  represents OH or H;  $R^9$  represents OH or H;  $R^{10}$  represents a halogen and L is a sultable optional linker arm.

According to an embodiment the present invention relates to a method wherein, said compound of formula (IIa) is reacted at its 14 position with a linker of formula (IV) to obtain compound of formula (V), wherein Z is a functional group able to react with a thiol, and X is a

bivalent radical selected from the group comprising an alkyl, an aralkyl, an alkenyl, a cycloalkyl and an aryl radical;

the compound of formula (V) is then coupled with the thiol moiety of a peptide of formula (III) to obtain the compound of formula (I),

wherein L represents a linker arm of the formula R-X-Y-, wherein R is -O-C(=O)-, Y is the product of Z upon reaction with the thiol moiety of compound of formula (III) and X, R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup>, R<sup>5</sup>, R<sup>8</sup> and R<sup>9</sup> have the same meaning as that defined above.

According to another embodiment, the present invention relates to a method wherein said compound of formula (IIa) is directly reacted at its 14 position with the thiol moiety of a peptide of formula (III) to obtain compound of formula (I) wherein R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup>, R<sup>5</sup>, R<sup>6</sup>, R<sup>8</sup>, R<sup>9</sup> have the same meaning as that defined above and L is absent as represented by compound of formula (Ia).

The present invention further relates in a second aspect to anthracycline-peptide conjugates and intermediates obtained by said methods. Said anthracycline-peptide conjugate of formula

10

15

5

(I) comprises a peptide containing at least one cysteine which is covalently linked to the 14-carbon group of said anthracycline via the side chain of said cysteine residue, optionally through a suitable linker.

5 Furthermore, the present invention relates to the use of said new anthracycline-peptide conjugates as medicaments in the treatment of cancer.

The present invention will be further disclosed in detail hereunder. Examples are given which will further support the description.

#### **Detailed description**

10

15

20

The present invention relates to methods for the synthesis of anthracycline-peptide conjugate of formula (I) or pharmaceutically acceptable salt thereof, wherein the peptide is covalently linked to the 14-carbon group of said anthracycline via the side chain of a cysteine residue, optionally through a suitable bifunctional linker L.

The linker arm L in compound of formula (I) may represents any bivalent radical between the methyl group (C14) and the thioether group in compound of formula (I). L is preferably of the formula R-X-Y-, wherein R represents an ester bond, X represents a bivalent radical selected from the group comprising an alkyl, an aralkyl, an alkenyl, a cycloalkyl and an aryl radical and Y is a functional group selected from the group comprising carbonyl, carboxy, carbamoyl and imidyl radical, or L may be absent in compound of formula (I) as illustrated by formula (Ia).

5

10

15

20

30

As used herein the term "alkyl" and the alkyl portion of aralkyl and similar terms, refers to saturated bivalent hydrocarbon radicals having straight, branched or cyclic moieties or combinations thereof and contains 1-20 carbon atoms, preferably 1-10 carbon atoms, more preferably 1-8 carbon atoms, still more preferably 1-6 carbon atoms, yet more preferably 1-4 carbon atoms. Preferred alkyl radicals are methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, pentyl, isoamyl, hexyl, cyclohexyl and the like. The term "aryl" as used herein, includes a bivalent organic radical derived from an aromatic hydrocarbon by removal of two hydrogen, and includes any monocyclic or bicyclic carbon ring of up to 7 members in each ring, wherein at least one ring is aromatic. Examples of such aryl elements include phenyl, naphthyl, tetrahydronaphthyl, indanyl, biphenyl, phenanthryl, anthryl or acenaphthyl. The term "aralkyl" as used herein, relates to a group of the formula alkyl-aryl in which alkyl is as defined above. Examples of aralkyl radicals include benzyl, phenethyl and the like. The term "cycloalkyl" as used herein is intended to include bivalent non-aromatic cyclic hydrocarbon groups. Examples of cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like. The term "alkenyl" as used herein, includes bivalent hydrocarbon radicals having one or several double bonds, having straight, branched or cyclic moieties or combinations thereof and contains 2-20 carbon atoms, preferably 2-10 carbon atoms, more preferably 2-8 carbon atoms, still more preferably 2-6 carbon atoms, yet more preferably 2-4 carbon atoms Examples of alkenyl groups include vinyl, allyl, isopropenyl, pentenyl, hexenyl, heptenyl, cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, 1-propenyl, 2-butenyl, 2-methyl-2butenyl, isoprenyl, farnesyl, geranyl, geranylgeranyl and the like.

The term "carbonyl" as used herein refers to a bivalent radical of formula -C(=O)alkyl -, being a straight, branched or cyclic radical or combinations thereof.

25 The term "carboxy" as used herein refers to a bivalent radical of formula –C(=O)O-alkyl being a straight, branched or cyclic radical or combinations thereof.

The term "carbamoyl" as used herein refers to a bivalent radical of formula -N(alkyl)C(=O)O-alkyl-being a straight, branched or cyclic radical or combinations thereof.

The term "imidyl" as used herein refers to a bivalent radical of formula -N(C(=O)-alkyl)<sub>2</sub>-being a straight, branched or cyclic radical or combinations thereof such as succinimide.

As used herein "compound", includes within its scope not just the specific compound(s) listed or described but also alternative forms of the compound. The compounds may have asymmetric centers, occur as racemates, racemic mixtures, and as individual

diastereoisomers, with all possible stereochemical isomers including optical isomers, being included in the present invention.

The starting material in said methods is an anthracycline, more preferably an anthracycline of formula (II), wherein R<sup>7</sup> represents H, OH, -OCO(CH<sub>2</sub>)<sub>3</sub>CH<sub>3</sub> or -OCOCH(OC<sub>2</sub>H<sub>5</sub>)<sub>2</sub>, and R<sup>3</sup>, R<sup>4</sup>, R<sup>5</sup>, R<sup>6</sup>, R<sup>8</sup> and R<sup>9</sup> have the same meaning as that defined above.

5

10

15

According to a preferred embodiment, said anthracycline of formula (II) is selected from the group comprising doxorubicin, daunorubicin, detorubicin, carminomycin, idarubicin, epirubicin, esorubicin, pirarucibin (THP) and AD-32. More preferably, said anthracycline is daunorubicin, idarubicin, or carminomycin. Yet more preferably said compound of formula (II) is daunorubicin.

The first step of said methods for the preparation of anthracycline-peptide conjugate of formula (I), consist of halogenating the anthracycline of formula (II) at the 14 position. Said halogenation step results in compound of formula (IIa), wherein R<sup>10</sup> represents a halogen and R<sup>3</sup>, R<sup>4</sup>, R<sup>5</sup>, R<sup>6</sup>, R<sup>8</sup> and R<sup>9</sup> have the same meaning as that defined above. According to an embodiment of the present invention, R<sup>10</sup> is Br.

The halogenating agent is preferably the molecular or atomic halogen. The term halogen or halo includes fluoro, chloro, bromo and iodo. According to a preferred embodiment, the halogenation is done with bromine. In general, this halogenation step takes place at a temperature of between 0 °C and 100 °C, for example in the region of a point between 0 °C and 50 °C, and preferably between 0°C and 20°C. Generally, the halogenation reaction may

be performed in a suitable solvent, such as for example dioxane or chlorinated or simply polar solvents or in a mixture of such solvents. For example, said halogenation may be performed in a mixture of dioxane and methanol.

Said halogenation is preferably done simultaneously with a ketalization step of the 13-ketone of anthracycline of formula (II) in order to protect said ketone function. The ketalization step may be conducted in any suitable manner, but is preferably undertaken by reacting the anthracycline of formula (II) with an alcohol.

Any suitable alcohol may be used in the reaction. Such alcohol should further be provided in excess with respect to the carbonyl groups being ketalized, such as to favor the formation of the ketal. A preferred alcohol for this reaction is methanol. Various orthoesters are suitable for use in the foregoing reaction, the orthoesters functioning to chemically remove the water from the reaction and drive the reaction to completion. Orthoformate esters are advantageously utilized because they provide high yields. Preferred orthoformate esters include triisobutyl orthoformate, triisopropyl orthoformate and triethyl orthoformate, with trimethyl orthoformate being most preferred.

Conversion of the ketal back to the ketone, is accomplished by treatment with aqueous acids.

20 In a preferred embodiment, said aqueous acid is hydrobromic acid.

The next step in said method consists of condensing said halogenated anthracycline of formula (IIa) with the thiol moiety of a peptide of formula (III) according to two alternative routes:

the first route consists of reacting compound of formula (IIa) with a suitable linker of formula (IV) prior to reaction with the peptide of formula (III); the second route consists of reacting compound of formula (IIa) directly with the peptide of formula (III) thereby obtaining compound of formula (I) wherein L is absent, represented herein by the formula (Ia).

The first route consists of reacting the halogenated anthracycline of formula (IIa) with a linker of formula (IV), thereby producing compound of formula (V);

30

wherein X represents a bivalent radical selected from the group comprising an alkyl, an aralkyl, an alkenyl, a cycloalkyl and an aryl radical, Z represents a functional group capable of reacting with a thiol and R<sup>3</sup>, R<sup>4</sup>, R<sup>5</sup>, R<sup>6</sup>, R<sup>8</sup> and R<sup>9</sup> have the same meaning as that defined above.

5

10

15

20

25

peptide is non-oxidized.

In a preferred embodiment, the linker of formula (IV) has a functional group Z which is selected from the group comprising  $\alpha,\beta$ -unsaturated carbonyl, carboxy, carbamoyl and imidyl radical. More preferably, said functional group Z is a maleimidyl radical. In an embodiment, X is a  $C_{1-8}$  alkyl group. In a preferred embodiment, X is a  $C_{1-4}$  alkyl group. According to a more preferred embodiment, X is selected from the group comprising methyl, ethyl, propyl and butyl. Yet, more preferably X is propyl.

According to an embodiment, the linker of formula (IV) is selected from the group comprising 2-chloro-5-maleimidobenzoic acid, 3-maleimidobenzoic acid, 3-maleimidopropionic acid, 4-maleimidosalicylic acid, 6-maleimidobexanoic acid, beta-maleimidopropionic acid, epsilon-maleimidocaproic acid and gamma-maleimidobutyric acid-, or the salts thereof. According to a preferred embodiment, said linker of formula (IV) is maleimidobutyric acid such as for example gamma-maleimidobutyric acid.

The next step in said process consists of coupling said compound of formula (V) with the thiol moiety of a peptide of formula (III) resulting in the compound of formula (II), wherein L represents a linker arm of the formula R-X-Y-, wherein R is -O-C(=O)-, Y is the product of Z upon reaction with the thiol moiety of compound of formula (III) and X,  $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^4$ ,  $R^5$ ,  $R^6$ ,  $R^8$  and  $R^9$  have the same meaning as that defined above. According to an embodiment, said

Said peptide of formula (III) may contain one or several cysteine residues. Cysteine residues provide for the attachment of the linker to the peptide. The use of a cysteine residue for the

coupling enhances the selectivity of the coupling. Cysteine residue(s) may be located at either end of the peptide or be internal to the peptide chain, provided that attachment at this site does not interfere with the structure and the properties of the peptide. Irrespective of the cysteine amount, it is preferred that one cysteine residue be located at the N- or C- terminal end. Examples of suitable peptides have a cysteine residue at the C- terminal end of said peptide.

Said peptide of formula (III) may be chemically synthesized or produced by recombinant means. Either method can be achieved conventionally. Said peptide includes those with unnatural or non-amino acids. These peptides, which would be made by chemical synthesis, include those with modified amino acids or other moieties in place of amino acids. Such other moieties include but are not limited to fluorine, chlorine, and organic compounds such as alcohols, organic ring structures and hydroxyacids. Amino acids or peptides in the Dorientation can also be used, as can peptides in the reverse orientation. Peptidomimetics and peptoids are also encompassed in the present invention, wherein "peptidomimetic" as used herein represents a molecule which mimics the biological activity of a peptide, by substantially duplicating the pharmacologically relevant portion of the conformation of the peptide, but is not a peptide. The term "peptoid" as used herein represents an analogue of a peptide in which one or more of the peptide bonds are replaced by pseudopeptide bonds, which may be the same or different. Such pseudopeptide bonds may be. carba Ψ (CH₂-CH₂); depsi Ψ (C(=O)O); hydroxyethylene  $\Psi$  (CHOH-CH<sub>2</sub>); ketomethylene  $\Psi$  (CO-CH<sub>2</sub>); methylene-oxy CH<sub>2</sub>-O-; reduced CH<sub>2</sub>-NH; thiomethylene CH<sub>2</sub>-S-; thiopeptide CS-NH; N-modified -NRCO-; retroinverso -CO-NH-. A single peptoid molecule may include more than one kind of pseudopeptide bond. It may also include normal peptide bonds.

25

5

10

15

20

According to a preferred embodiment said peptide of formula (III) contains from 1 to 100 amino acids, preferably from 10 to 50, more preferably from 10 to 40, yet more preferably from 10 to 30 amino acids.

Examples of suitable peptide of formula (III) include but are not limited to those that contain amino acids selected from the group comprising non-polar amino acid, positively charged amino acid, polar uncharged amino acid and negatively charged amino acid. For example, said peptide of formula (III) may contain at least 3 positively charged amino acids.

Other suitable examples of peptide of formula (III) include but are not limited to those that contain from 45% to 90 % positively charged amino acids, preferably from 45% to 80 %, more preferably from 45% to 70 %, most preferably from 45% to 60 %.

- For example said peptide of formula (III) may consist of the following sequence of amino acid. Cys N N P N P B P P N P P P P A P N B P B N P B P B B N, wherein 'N' is a non-polar amino acid, 'B' is positively charged amino acid, 'P' is a polar uncharged amino acid and 'A' is an negatively charged amino acid.
- As used herein non-polar amino acids are A, I, L, M, F, P, W and V. Polar uncharged amino acids are N, C, Q, G, S, T and Y. Positively charged amino acids are R, H and K. Negatively charged amino acids are D and E.

The second route consists of reacting the halogenated anthracycline of formula (IIa) with the thiol moiety of the peptide of formula (III) as described above, thereby obtaining compound of formula (I) wherein L is absent as represented in formula (Ia).

20

25

30

Said reaction may be performed in the presence of a suitable solvent such as methanol. The reaction is suitably performed under basic condition such as pH 10 or above. The reaction condition can be rendered basic by the addition of a suitable base such as potassium carbonate.

One skilled in the art understands that in the synthesis of compounds of the invention, one may need to protect various reactive functionalities on the starting compounds and intermediates while a desired reaction is carried out on other portions of the molecule. After the desired reactions are complete, or at any desired time, normally such protecting groups will be removed by, for example, hydrolytic or hydrogenolytic means. Such protection and deprotection steps are conventional in organic chemistry (Protective Groups in Organic Chemistry, McOmie, ed., Plenum Press, NY, N.Y. (1973); and, Protective Groups in Organic Synthesis, Greene, ed., John Wiley & Sons, NY, N.Y. (1981)).

In the method described herein, the compounds and intermediates may be further purified according to methodologies generally known in the art such as, for example, extraction, crystallization, trituration and chromatography.

Another aspect of the present invention relates to intermediates and compounds obtained by the above-described methods.

More in particular, the present invention relates to compounds having the formula (Ia), wherein R³ represents OCH₃, OH or H, R⁴ represents H or COCF₃, R⁵ represents OH, Otetrahydropyranyl or H, R⁶ represents OH or H, R⁶ represents OH or H, R⁶ represents OH or H; R¹ represents OH, NH₂ or NH-peptide and R² represents H or -CO-peptide.

- According to another embodiment, the present invention relates to compounds of formula (Ia) wherein R³ represents OCH<sub>3</sub>, OH or H, R4 is H, R⁵ represents OH, O-tetrahydropyranyl or H, R⁵ represents OH or H, R⁵ is H, R⁵ is H; R¹ represents OH, NH<sub>2</sub> or NH-peptide and R² represents H or –CO-peptide.
- According to yet another embodiment, the present invention relates to compounds of formula (Ia) wherein R<sup>s.</sup> represents OCH<sub>3</sub>, OH or H, R<sup>4</sup> is H, R<sup>5</sup> is OH, R<sup>6</sup> is H, R<sup>8</sup> is H, R<sup>9</sup> represents H; R<sup>1</sup> represents OH, NH<sub>2</sub> or NH-peptide and R<sup>2</sup> represents H or -CO-peptide.

According to a further embodiment, the present invention relates to compound of formula (lb), wherein R¹ and R² have the same meaning as that defined above.

Said new compound according to the invention may contain from 1 to 100 amino acids, preferably from 10 to 50, more preferably from 10 to 30 amino acids. According to an embodiment, said compound may contain at least 3 positively charged amino acids.

The compounds according to the invention may contain amino acids selected from the group comprising non-polar amino acid, polar uncharged amino acid and positively or negatively charged amino acid.

For example said new compound may contain from 45% to 90 % positively charged amino acids, preferably from 45% to 80 %, more preferably from 45% to 70 %, most preferably from 45% to 60 %.

The compounds according to the invention may contain the following sequence of amino acid Cys N N P N P B P P N P P P P A P N B P B N P B P B B N, wherein 'N' is a non-polar amino acid, 'B' is a positively charged amino acid, 'P' is a polar uncharged amino acid and 'A' is an negatively charged amino acid.

15

20

25

The present invention also encompasses alternative forms of said compounds such as pharmaceutically acceptable salts, solvates, hydrates, and the like. The pharmaceutically acceptable salts of the compounds of this invention include the conventional non-toxic salts of the compounds of this invention as formed, e.g., from non-toxic inorganic or organic acids. For example, such conventional non-toxic salts include those derived from inorganic acids such as hydrochloric, hydrobromic, sulfuric, sulfamle, phosphoric, nitric and the like: and the salts prepared from organic acids such as acetic, propionic, succinic, glycolic, stearic, lactic, malic, tartaric, citric, ascorbic, pamoic, maleic, hydroxymaleic, phenylacetic, glutamic, benzoic, salicylic, sulfanilic, 2-acetoxybenzoic, fumaric, toluenesulfonic, methanesulfonic, ethane disulfonic, oxalic, isethionic, trifluoroacetic and the like.

The new compounds or pharmaceutical compositions thereof are useful as medicament and more particularly as medicament for the treatment of cancer and drug resistant cancer. The intermediates according to the invention are also useful as a precursor in the preparation of antitumor agent.

Said new compounds conjugates of the invention, or pharmaceutically acceptable sait thereof, can be administered to a patient in the form of a pharmaceutical composition comprising a pharmaceutical carrier and a therapeutically effective amount of said above-described compounds. Said composition may further include thickeners, diluents, buffers, preservatives, surface active agents, liposomes, or lipid formulations, and the like. Said pharmaceutical composition may also include one or more additional active ingredients such as other chemotherapy agents, antimicrobial agents, anti-inflammatory agents, anesthetics, and the like.

Said pharmaceutical composition may be administered in a number of ways depending on whether local or systemic treatment is desired, and on the area to be treated. Administration may be topically including on the skin, ophthalmically, vaginally, rectally, intranasally, orally, by inhalation, or parenterally, for example by intravenous drip, subcutaneous, intratumor, intraperitoneal, intralymphatic or intramuscular injection. The preferred mode of administration is parenterally.

With formulations for topical administration may include ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners, and the like may be necessary or desirable. Compositions for oral administration include powders or granules, suspensions or solutions in water or non-aqueous media, capsules, or tablets. Thickeners, flavorings, diluents, emulsifiers, dispersing aids or binders may be desirable. Formulations for parenteral administration may include sterile aqueous solutions optionally containing buffers, liposomes, diluents and other suitable additives.

25

30

20

5

The "therapeutically effective amount" of said above-described new compounds relates to the amount or quantity of compound according to the invention which is sufficient to elicit the required or desired therapeutic response, or in other words, the amount which is sufficient to elicit an appreciable biological response when administered to a patient. Dosing is dependent on the severity and responsiveness of the condition to be treated, with course of treatment lasting from several days to several months or until a cure is effected or a diminution of disease state is achieved. Optimal dosing schedules and dosing amounts can be calculated based on the chemotherapy agent alone. The conjugated compound or the co-administered compound can then be compared to the chemotherapy agent alone, and the dosages can be

adjusted accordingly. For instance, optimal dosages are generally 10x below the lethal dose. Optimal dosing schedules can also be calculated from measurements of drug accumulation in the body. Persons of ordinary skill in the art can easily determine optimum dosages, and dosing methods.

5

The new compounds or pharmaceutical compositions thereof are useful as medicament and more particularly as medicament for the treatment of cancer and drug resistant cancer. Said new compounds are therefore useful as antitumor agent, and may be used for the preparation of medicament for treating cancer.

10

The present invention furthermore relates to a method of treating a patient suffering from cancer, wherein an anthracycline-peptide conjugate as described above is administered to the patient.

The following examples are meant to be illustrative of the present invention. These examples are presented to exemplify the invention and are not to be construed as limiting the invention's scope.

Example 1. Synthesis of anthracycline-peptide conjugates of formula (lc) starting from daunorubicin as illustrated in Scheme 1.

14-Bromo-daunorubicin via 14-bromo-13-dimethylketal-daunorubicin: Daunorubicin.HCl (1.065 mmol) is dissolved in a mixture of dry methanol (6 ml) and dry dloxane (6 ml). Trimethyl orthoformate (4.896 mmol, 4.6 eq.) is then added followed by bromine (1.404 mmol, 1.31 eq.). The mixture is stirred one hour at 15°C under argon. Propylene oxide (2.748 mmol, 2.57 eq.) is then added, and after 30 minutes at 4°C, isopropylether (65 ml) is added. A precipitate of 14-bromo-13-dimethylketal-daunorubicin immediately forms and is recovered by centrifugation (5 minutes, 1000 g). This precipitate is further washed with a second portion of isopropylether (8.4 ml) and dried under argon.

5

10

15

20

25

30

14-Bromo-13-dimethylketal-daunorubicin is suspended in acetone (22.8 ml) and a 0.25 M HBr aqueous solution (22 ml) is added. The solution is stirred 45 hours at room temperature under argon, then diluted with water (27 ml) and extracted with chloroform (2 x 65 ml). Saturated NaCl (6 ml) is added to the aqueous layer that is then extracted with n-butanol (24 ml for each extraction step) until it becomes colorless. The organic layers are combined and solvent is evaporated (high vacuum pump, 30-35°C) until precipitation of 14-bromo-daunorubicin. N-Hexane (50 ml) is added, and the precipitate is recovered by filtration, washed with n-hexane and dried (yield, 80%).

Doxorubicin-14-maleimidobutyrate: 14-bromo-daunorubicin (0.851 mmol) is suspended in acetone (80 ml) and sodium maleimydobutyrate (4.91 mmol, 5.77 eq.) is added. The mixture is refluxed 2 hours, cooled down to room temperature, and filtered on quantitative paper. The precipitate is washed with acetone and the combined filtrates are evaporated (bath: 30°C). The residue is dissolved in water and incubated with an anion-exchange resin (Amberlite IRA-402CI) in order to remove excess maleimidobutyrate. Alternatively, a YMC silica gel may also be used. After lyophilization, doxorubicin-14-maleimidobutyrate is obtained in 79% yield.

Doxorubicin-peptide conjugate. Doxorubicin-14-maleimidobutyrate (0.076 mmol) is dissolved in DMF (5 ml) and the non-oxidized peptide (0.7 eq., 0.053 mmol taking into account actual peptide content) previously dissolved in dimethylformamide (DMF, 5 ml) is added. After a 3-hour to 24-hour stirring (depending on the peptide) at room temperature and under argon,

water (10 ml) is added and the solution is extracted with dichloromethane (DCM, 6 x 20 ml). The aqueous layer is lyophilized to give the doxorubicin-peptide conjugate. The reaction can also be done in water (9 ml). After stirring, the mixture is extracted with DCM/DMF: 9/1 (25 x 9 ml) then with DCM (6 x9 ml).

The doxorubicin-peptide conjugates can be purified by reverse phase high-pressure liquid chromatography. For example, a 250 x 21.2 mm, 10 µ Luna column (Phenomenex) can be used with 0.1% trifluoroacetic acid in water and 0.1% trifluoroacetic acid (TFA) in acetonitrile as solvents. A 20-40% acetonitrile gradient in 70 minutes (with a flow rate of 6 ml/min) allows an appropriate separation. A maximum of the acetonitrile and trifluoroacetic acid content is removed from fractions containing the conjugate by bubbling with nitrogen or argon prior to lyophilization.

Scheme 1. Synthesis of doxorubicin-peptide conjugates starting from daunorubicin wherein  $R^1$ = -OH, -NH<sub>2</sub>, or -NH-peptide;  $R^2$  = -H or -CO-peptide.

5

10

**Example 2.** Synthesis of anthracycline-peptide conjugates of formula (**Ib**) as illustrated in Scheme 2.

14-Bromo-daunorubicin (0.350 mmol) is dissolved in dry methanol (12 ml) in a round-bottom flask and peptide (0.85 eq. taking peptide content into account) is added followed by K<sub>2</sub>CO<sub>3</sub> (1.3 eq.) (pH must reach 10, if not, potassium carbonate is added). The reaction mixture is stirred for 30 to 90 min (depending on the peptide) under argon and protected from light. Work-up is initiated by the addition of a 0.5 M Tris-HCl buffer pH 9 (1/10 of methanol volume) and extractions with chloroform (6 x 1 volume) until the organic layer becomes colorless. The aqueous layer is then loaded on a YMC ODS-A solid-phase extraction resin (5 g/100 mg of crude compound) preconditioned with methanol and water in a glass frit. After washes with 0.1% TFA in water, the conjugate is recovered by elution with methanol. Methanol is evaporated, the residue is dissolved in water and the resulting solution is then lyophilized to yield the crude thioether conjugate.

Scheme 2. Synthesis of daunorubicin-peptide conjugates starting from daunorubicin wherein  $R^1 = -OH$ ,  $-NH_2$ , or -NH-peptide;  $R^2 = -H$  or -CO-peptide.

15

5

10

In summary, these examples have shown that the anthracycline-peptide conjugates of the present invention can be prepared through easy to implement methods comprising reduced number of steps. Furthermore, said conjugates can be prepared cheaply from readily available starting materials and reagents.

5

10

15

These synthetic methods according to the invention have the advantage of being the most interesting route to the synthesis of such compounds for different reasons. First, there are no protection/deprotection steps involved in the synthesis of these compounds. Second, the Intermediate compounds can be produced in high quantities and are stable several weeks (bromodaunorubicin in a dessicator at room temperature, doxorubicin-14-maleimidobutyrate at -20°C). It should be noticed that the stability of bromodaunorubicin at room temperature in a dessicator is something that was unexpected. As a matter of fact, this compound is known as particularly unstable in most conditions (see EP 0 295 119 B1). The intermediate compounds prepared according to the methods of the invention, have a good stability, which make them useful intermediates for the anthracycline-peptide conjugates production purposes.

More over, in the cases of the preparation of the anthracycline-peptide conjugates of formula
(la) and (lb), the reaction of haloanthracyclines with the thiol moiety of the peptides used in
the present method proved to work very well despite the size of the peptide (MW > 2500).

#### Claims

5

10

15

1. Method for the preparation of a compound of formula (I) or pharmaceutically acceptable salts thereof and intermediates thereof, comprising the steps of:

a) halogenating a compound of formula (II), resulting in compound of formula (IIa),

b) reacting a compound of formula (IIa) at its 14 position with the thiol moiety of a peptide of formula (III), optionally in the presence of a suitable linker, to obtain said compound of formula (I),

wherein R¹ represents OH, NH₂ or NH-peptide; R² represents H or -CO-peptide; R³ represents OCH₃, OH or H; R⁴ represents H, or COCF₃; R⁶ represents OH, O-tetrahydropyranyl or H; R⁶ represents OH or H; R⁶ represents H, OH, OCO(CH₂)₃CH₃ or OCOCH(OC₂H₅)₂; R⁶ represents OH or H; R⁶ represents OH or H; R⁶ represents a halogen and L is an optional suitable linker arm.

2. Method according to claim 1, comprising the step of
... a) halogenating the compound of formula (II), resulting in compound of formula (IIa),

b) reacting said compound of formula (IIa) at its 14 position with a linker of formula (IV) to obtain compound of formula (V), wherein Z is a functional group able to react with a thiol, and X represents a bivalent radical selected from the group comprising an alkyl, an aralkyl, an alkenyl, a cycloalkyl and an aryl radical

5

10

c) coupling said compound of formula (V) with the thiol moiety of a peptide of formula (III) to obtain compound of formula (I),

wherein L represents a linker arm of the formula R-X-Y-, wherein R is -O-C(=O)-, Y is the product of Z upon reaction with the thiol moiety of compound of formula (III) and X, R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup>, R<sup>5</sup>, R<sup>8</sup>, R<sup>8</sup>, R<sup>9</sup> and R<sup>10</sup> have the same meaning as that defined above.

- 3. Method according to claim 1, comprising the step of 15 a) halogenating the compound of formula (II), resulting in compound of formula (IIa),

b) reacting the compound of formula (iia) at its 14 position with the thiol moiety of a peptide of formula (iii) to obtain compound of formula (i)

- wherein R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup>, R<sup>5</sup>, R<sup>8</sup>, R<sup>8</sup> and R<sup>10</sup> have the same meaning as that defined above and –L- is absent as represented by formula (Ia).
  - 4. Method according to any of claims 1 to 3, wherein R<sup>10</sup> is Br.
- 10 5. Method according to any of claims 1 to 4, wherein the halogenation step is done simultaneously with a ketalization step of the 13-ketone of the compound of formula (II) in the presence of a suitable alcohol.
- 6. Method according to claim 5, wherein the ketalization step is performed in the presence of a suitable orthoester.
  - 7. Method according to claim 2, wherein the functional group Z is selected from the group comprising  $\alpha,\beta$ -unsaturated carbonyl, carboxy, carbamoyl and imidyl radical.
- 8. Method according to claim 7, wherein the functional group Z is a maleimidyl radical.
  - 9. Method according to claim 2, wherein said linker of formula (IV) is malelmidobutyric acid.
- 10. Method according to any of claims 1 to 9, wherein the compound of formula (II) is daunorubicin, carminomycin or idarubicin.

- 11. Method according to claim 10, wherein the compound of formula (II) is daunorubicin.
- 12. Method according to any of claims 1 to 11, wherein the peptide of formula (III) contains from 1 to 100 amino acids.
  - 13. Method according to claim 12, wherein the peptide of formula (III) contains from 10 to 30 amino acids.
- 10 14. Intermediates obtained by the methods of claims 1 to 13.
  - 15. Compounds obtained by the methods of claims 1 to 13.
  - 16. Compounds having the formula (la),

15

5

wherein R³ represents OCH₃, OH or H, R⁴ represents H or COCF₃, R⁵ represents OH, O-tetrahydropyranyl or H, R⁵ represents OH or H, R¹ represents OH, NH₂ or NH-peptide and R² represents H or -CO-peptide.

- 20 17. Compounds according to claim 16, wherein R³ represents OCH₃, OH or H, R⁴ represents H, R⁵ represents OH, O-tetrahydropyranyl or H, R⁶ represents OH or H, R⁶ is H, R⁰ is H; R¹ represents OH, NH₂ or NH-peptide and R² represents H or -CO-peptide.
- 18. Compounds according to claim 17, wherein R³ represents OCH₃, OH or H, R⁴ is H, R⁵ is OH, R⁶ is H, R⁶ is H, R⁶ is H; R¹ represents OH, NH₂ or NH-peptide and R² represents H or –CO-peptide.
  - 19. Compounds according to claim 18, having the formula (Ib),

wherein R<sup>1</sup> and R<sup>2</sup> have the same meaning as that defined above.

- 20. Compound according to any of claims 15 to 19, wherein said compound contains from 1 to 100 amino acids.
  - 21. Compound according to claim 20, wherein said compound contains from 10 to 30 amino acids.
- 10 22. Pharmaceutical composition comprising a pharmaceutical carrier and a therapeutically effective amount of a compound according to any of claims 15 to 21.
  - 23. Compound according to any of claims 15 to 21, for use as a medicament.
- 15 24. Use of compound according to any of claims 15 to 21, for use as an antitumor agent.
  - 25. Use of compound according to claim 14, as a precursor in the preparation of antitumor agent.
- 20 26. Use of compound according to any of claims 15 to 21, for the preparation of a medicament for the treatment of cancer.

#### **Abstract**

## Method for the synthesis of anthracycline-peptide conjugates

The present invention relates to a method for the preparation of a compound of formula (I) or pharmaceutically acceptable salts thereof and intermediates thereof, comprising the steps of:

a) halogenating a compound of formula (II), resulting in compound of formula (IIa),

10

b) reacting a compound of formula (IIa) at its 14 position with the thiol moiety of a peptide of formula (III), optionally in the presence of a suitable linker, to obtain said compound of formula (I),

15

wherein R¹ represents OH, NH₂ or NH-peptide; R² represents H or –CO-peptide; R³ represents OCH₃, OH or H; R⁴ represents H, or COCF₃; R⁵ represents OH, O-tetrahydropyranyl or H; R⁶ represents OH or H; R⁶ represents H, OH, OCO(CH₂)₃CH₃ or OCOCH(OC₂H₅)₂; R⁶ represents OH or H; R⁶ represents OH or H; R¹⁰ represents a halogen and L is an optional suitable linker arm.

20

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

## IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.