Construindo Modelo de Machine Learning

Grupo 150

Sumário:

- 1. Aquisição de dados e tratamento (Willian)
- 2. Estratégia de engenharia de atributos (Arthur)
- 3. Análise Exploratória (Jackson)
- 4. Definição do Modelo (Luis)
- 5. Justificativa e métricas de desempenho (Sofia)

Aquisição e Tratamento de Dados do IBOVESPA

Objetivo do Projeto

- Desenvolver um modelo preditivo para a tendência diária do IBOVESPA (alta/baixa).
- Meta de acurácia mínima: 75% no conjunto de teste (últimos 30 dias).

Aquisição dos Dados

- Fonte: Dados históricos do IBOVESPA, disponíveis publicamente no br.investing.com.
- Período: 18 de janeiro de 2008 a 18 de junho de 2025 (aproximadamente 17 anos de dados).
- Formato Inicial: Arquivo CSV, lido com Pandas.
- Estruturação: Data definida como índice do DataFrame para análise temporal

Tratamento dos Dados

- Propósito: Transformar dados brutos em formato adequado para Machine Learning.
- Renomeação de Colunas:
 Padronização para termos de mercado: 'close', 'open', 'high', 'low', 'volume', 'daily_return'.
- Verificação de Duplicatas:
 Nenhuma duplicata encontrada.
- Tratamento de Nulos.
- Ajuste de Tipos de Dados: 'daily_return' (variação percentual) convertida para float

Estratégia de engenharia de atributos

Indicadores de Mercado

- RSI: Mede o momentum da ação
- Bandas de Bollinger: Identifica sobrecompra e sobrevenda com base nos valores da acão
- MACD: Mudanças no momentum e tendência da ação
- ADX: Força da tendência (positiva ou negativa)
- Z-Score: Distância do valor médio da ação

Lags e janelas

- Retorno da ação: avaliar ritmo odas variações (1, 2, 3 e 5 dias)
- Consistência do momentum: olhando se a variação dos últimos 3 dias é positiva
- Mudanças na volatilidade: comparando volatilidade recente com a histórica
- Variação absoluta (delta) com relação ao dia anterior
- Média móvel exponencial de 10 dias
- Defasagem: (lag) no valor de fechamento e target

Resultado Final

Após avaliação das features utilizando **análise exploratória** e **testes estatísticos** chegamos a <u>21 features</u> que foram utilizadas no modelo

Análises exploratória iniciais

	target	close	open	high
count	2.593.000.000	2.593.000.000	2.593.000.000	2.593.000.000
mean	0.521404	93.888.234.092	93.854.124.180	94.691.504.049
std	0.499638	27.587.726.441	27.587.881.807	27.700.706.970
min	0.000000	37.497.000.000	37.501.000.000	38.031.000.000
25%	0.000000	68.355.000.000	68.344.000.000	68.846.000.000
50%	1.000.000	101.031.000.000	101.017.000.000	102.100.000.000
75%	1.000.000	116.677.000.000	116.667.000.000	117.701.000.000
max	1.000.000	140.110.000.000	140.109.000.000	140.382.000.000

Análise de Correção da Features

Decomposição da série

Fechamento

Valor-p do Teste ADF: 0.8539703036576209

Não rejeitar a hipótese nula: a série NÃO é estacionária

Retorno diário

Valor-p do Teste ADF: 0.0

Rejeitar a hipótese nula: a série é estacionária

Escolha do modelo

- Regressão x Classificação
- XGBoost, Random Forest
- Principais Features: Tendências de preço, Volatilidade e Momentum.

Avaliação do modelo

Modelo	Acurácia	Precisão	Recall	F1-Score
XGBoost	80.00 %	80.54 %	80.00 %	79.91 %
Random Forest	80.00 %	80.54 %	80.00 %	79.91 %
Logistic Regression	76.67 %	77.78 %	76.67 %	76.43 %
SVM	70.00 %	70.09 %	70.00 %	69.97 %
Decision Tree	56.67 %	56.70 %	56.67 %	56.62 %

Dentre cinco algoritmos avaliados, o **XGBoost** e o Random Forest superaram os demais algoritmos de classificação em todas as métricas. Com esses dados de teste nunca vistos, ambos conseguiu alcançar uma acurácia de **80**%.

Avaliação do modelo

De acordo com a Matriz de Confusão, o XGBoost modelo acertou 24 de 30 previsões. Analisando mais a fundo, o modelo acertou 11 dos 15 dias de baixa e 13 dos 15 dias de alta. Isso nos deu um F1-Score de 79.9%, o que indica um excelente equilíbrio entre precisão e a capacidade de identificar corretamente ambas as tendências.

Melhor acurácia na validação cruzada do XGBoost: 77.71%

Relatório de classificação do XGBoost:

	Precisão	Recall	F1-Score	Suporte
0.0 (Baixa)	0.86	0.80	0.83	15
1.0 (Alta)	0.81	0.87	0.84	15
acurácia			0.83	30
média macro	0.83	0.83	0.83	30
média ponderada	0.83	0.83	0.83	30

Depois de escolher os melhores hiperparâmetros e as features mais relevantes, o XGBoost conseguiu atingir uma acurácia de 83% nos dados de teste dos últimos 30 dias, superando então a nossa meta inicial de 75%.

OBRIGADO