Revisão de Álgebra Linear e Cálculo

Afshine Amidi e Shervine Amidi

13 de Outubro de 2018

Traduzido por Gabriel Fonseca. Revisado por Leticia Portella.

Notações gerais

 \square Vetor – Indicamos por $x \in \mathbb{R}^n$ um vetor com n elementos, onde $x_i \in \mathbb{R}$ é o $i^{\acute{e}simo}$ elemento:

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$$

 $\hfill\Box$ Matriz – Indicamos por $A\in\mathbb{R}^{m\times n}$ uma matriz com m linhas e n colunas, onde $A_{i,j}\in\mathbb{R}$ é o elementos localizado na $i^{\acute{e}sima}$ linha e $j^{\acute{e}sima}$ coluna:

$$A = \begin{pmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & & \vdots \\ A_{m,1} & \cdots & A_{m,n} \end{pmatrix} \in \mathbb{R}^{m \times n}$$

Observação: o vetor x defindo acima pode ser visto como uma matriz $n \times 1$ e é mais particularmente chamado de vetor coluna.

 \square Matriz identidade – A matriz identidade $I \in \mathbb{R}^{n \times n}$ é uma matriz quadrada com uns na sua diagonal e zeros nas demais posições:

$$I = \left(\begin{array}{cccc} 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{array}\right)$$

Observação: para todas as matrizes $A \in \mathbb{R}^{n \times n}$, nós temos $A \times I = I \times A = A$.

 \square Matriz diagonal – Uma matriz diagonal $D \in \mathbb{R}^{n \times n}$ é uma matriz quadrada com valores não nulos na sua diagonal e zeros nas demais posições:

$$D = \begin{pmatrix} d_1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & d_n \end{pmatrix}$$

Observação: nós também indicamos D como diag $(d_1,...,d_n)$.

Operações de matriz

□ Vetor-vetor – Há dois tipos de produtos vetoriais:

• Produto interno: para $x,y \in \mathbb{R}^n$, temos:

$$x^T y = \sum_{i=1}^n x_i y_i \in \mathbb{R}$$

• Produto tensorial: para $x \in \mathbb{R}^m, y \in \mathbb{R}^n$, temos :

$$xy^{T} = \begin{pmatrix} x_{1}y_{1} & \cdots & x_{1}y_{n} \\ \vdots & & \vdots \\ x_{m}y_{1} & \cdots & x_{m}y_{n} \end{pmatrix} \in \mathbb{R}^{m \times n}$$

□ Matriz-vetor – O produto de uma matriz $A \in \mathbb{R}^{m \times n}$ e um vetor $x \in \mathbb{R}^n$ é um vetor de tamanho \mathbb{R}^n , de tal modo que:

$$Ax = \begin{pmatrix} a_{r,1}^T x \\ \vdots \\ a_{r,m}^T x \end{pmatrix} = \sum_{i=1}^n a_{c,i} x_i \in \mathbb{R}^n$$

onde $a_{r,i}^T$ são vetores linhas e $a_{c,j}$ vetores colunas de A, e x_i são os elementos de x.

□ Matriz-matriz – O produto das matrizes $A \in \mathbb{R}^{m \times n}$ e $B \in \mathbb{R}^{n \times p}$ é uma matriz de tamanho $\mathbb{R}^{n \times p}$, de tal modo que:

$$AB = \begin{pmatrix} a_{r,1}^T b_{c,1} & \cdots & a_{r,1}^T b_{c,p} \\ \vdots & & \vdots \\ a_{r,m}^T b_{c,1} & \cdots & a_{r,m}^T b_{c,p} \end{pmatrix} = \sum_{i=1}^n a_{c,i} b_{r,i}^T \in \mathbb{R}^{n \times p}$$

onde $a_{r,i}^T, b_{r,i}^T$ são vetores linhas e $a_{c,j}, b_{c,j}$ vetores colunas de A e B respectivamente.

 \Box Transposta – A transposta de uma matriz $A\in\mathbb{R}^{m\times n},$ indicada por $A^T,$ é tal que suas linhas são trocadas por suas colunas:

$$\forall i, j, \qquad A_{i,j}^T = A_{j,i}$$

Observação: para matrizes A, B, temos $(AB)^T = B^T A^T$.

 \square Inversa – A inversa de uma matriz quadrada inversível A é indicada por A^{-1} e é uma matriz única de tal modo que:

$$AA^{-1} = A^{-1}A = I$$

Observação: nem todas as matrizes quadrada são inversíveis. Também, para matrizes A,B, temos $(AB)^{-1}=B^{-1}A^{-1}$.

 \square Traço – O traço de uma matriz quadrada A, indicado por $\mathrm{tr}(A),$ é a soma dos elementos de sua diagonal:

$$tr(A) = \sum_{i=1}^{n} A_{i,i}$$

Observação: para matrizes A, B, temos $tr(A^T) = tr(A)$ e tr(AB) = tr(BA).

□ Determinante – A determinante de uma matriz quadrada $A \in \mathbb{R}^{n \times n}$, indicada por |A| ou det(A) é expressa recursivamente em termos de $A_{\backslash i, \backslash j}$, a qual é a matriz A sem a sua $i^{\acute{e}sima}$ linha e $j^{\acute{e}sima}$ coluna, como se segue:

$$\det(A) = |A| = \sum_{j=1}^{n} (-1)^{i+j} A_{i,j} |A_{\setminus i,\setminus j}|$$

Observação: A é inversível se e somente se $|A| \neq 0$. Além disso, |AB| = |A||B| e $|A^T| = |A|$.

Propriedades da matriz

 \square Decomposição simétrica – Uma dada matriz A pode ser expressa em termos de suas partes simétricas e assimétricas como a seguir:

$$A = \underbrace{\frac{A + A^T}{2}}_{\text{Simétrica}} + \underbrace{\frac{A - A^T}{2}}_{\text{Assimétrica}}$$

 $\hfill\Box$ Norma – Uma norma é uma função $N:V\longrightarrow [0,+\infty[$ onde V é um vetor espaço, e de tal modo que para todo $x,y\in V,$ nós temos:

- $N(x+y) \leq N(x) + N(y)$
- N(ax) = |a|N(x) para a escalar
- se N(x) = 0, então x = 0

Para $x \in V$, as mais comumente utilizadas normas estão resumidas na tabela abaixo:

Norma	Notação	Definição	Caso de uso
Manhattan, L^1	$ x _{1}$	$\sum_{i=1}^{n} x_i $	LASSO
Euclidean, L^2	$ x _{2}$	$\sqrt{\sum_{i=1}^{n} x_i^2}$	Ridge
p -norme, L^p	$ x _p$	$\left(\sum_{i=1}^{n} x_i^p\right)^{\frac{1}{p}}$	Inégalité de Hölder
Infini, L^{∞}	$ x _{\infty}$	$\max_{i} x_i $	Convergence uniforme

□ Dependência linear – Um conjunto de vetores é dito ser linearmente dependete se um dos vetores no conjunto puder ser definido como uma combinação linear dos demais.

Observação: se nenhum vetor puder ser escrito dessa maneira, então os vetores são ditos serem linearmente independentes.

 \square Posto da matriz – O posto de uma dada matriz A é indicada por rank(A) e é a dimensão do vetor espaço gerado por suas colunas. Isso é equivalente ao número máximo de colunas linearmente independentes de A.

□ Matriz positiva semi-definida – Uma matriz $A \in \mathbb{R}^{n \times n}$ é positiva semi-definida (PSD) e é indicada por $A \succeq 0$ se tivermos:

$$A = A^T$$
 e $\forall x \in \mathbb{R}^n, x^T A x \geqslant 0$

Observação: de forma similar, uma matriz A é dita ser positiva definida, e é indicada por $A \succ 0$ se ela é uma matriz (PSD) que satisfaz todo vetor x não nulo, $x^TAx > 0$.

□ Autovalor, autovetor – Dada uma matriz $A \in \mathbb{R}^{n \times n}$, λ é dita ser um autovalor de A se existe um vetor $z \in \mathbb{R}^n \setminus \{0\}$, chamado autovetor, nós temos:

$$Az = \lambda z$$

□ Teorema spectral – Seja $A \in \mathbb{R}^{n \times n}$. Se A é simétrica, então A é diagonalizável por uma matriz ortogonal $U \in \mathbb{R}^{n \times n}$. Indicando $\Lambda = \operatorname{diag}(\lambda_1,...,\lambda_n)$, nós temos:

$$\exists \Lambda \text{ diagonal}, \quad A = U \Lambda U^T$$

 \square Decomposição em valor singular – Para uma dada matriz A de dimensões $m\times n,$ a decomposição em valor singular (SVD) é uma técnica de fatorização que garante a existência de matrizes unitária U $m\times m,$ diagonal Σ $m\times n$ e unitária V $n\times n,$ de tal modo que:

$$A = U\Sigma V^T$$

Cálculo com matriz

□ Gradiente – Seja $f: \mathbb{R}^{m \times n} \to \mathbb{R}$ uma função e $A \in \mathbb{R}^{m \times n}$ uma matriz. O gradiente de f a respeito a A é a matriz $m \times n$, indicada por $\nabla_A f(A)$, de tal modo que:

$$\left(\nabla_A f(A)\right)_{i,j} = \frac{\partial f(A)}{\partial A_{i,j}}$$

 $Observação:\ o\ gradiente\ de\ f\ \acute{e}\ somente\ definido\ quando\ f\ \acute{e}\ uma\ função\ que\ retorna\ um\ escalar.$

□ Hessiano – Seja $f: \mathbb{R}^n \to \mathbb{R}$ uma função e $x \in \mathbb{R}^n$ um vetor. O hessiano de f a respeito a x uma matriz simétrica $n \times n$, indicada por $\nabla_x^2 f(x)$, de tal modo que:

$$\left(\nabla_x^2 f(x)\right)_{i,j} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}$$

 $Observação:\ o\ hessiano\ de\ f\ \'e\ somente\ definifo\ quando\ f\ \'e\ uma\ função\ que\ retorna\ um\ escalar.$

 \square Operações com gradiente – Para matrizes A,B,C, as seguintes propriedade de gradiente valem a pena ter em mente:

$$\nabla_{A} \operatorname{tr}(AB) = B^{T} \qquad \nabla_{A^{T}} f(A) = (\nabla_{A} f(A))^{T}$$

$$\nabla_{A} \operatorname{tr}(ABA^{T}C) = CAB + C^{T}AB^{T} \qquad \nabla_{A} |A| = |A|(A^{-1})^{T}$$