EEC 130A HW1 Solutions Winter Quarter 2013

Problem 1.-

Problem 1.1 A 2-kHz sound wave traveling in the *x*-direction in air was observed to have a differential pressure $p(x,t) = 10 \text{ N/m}^2$ at x = 0 and $t = 50 \mu \text{ s}$. If the reference phase of p(x,t) is 36°, find a complete expression for p(x,t). The velocity of sound in air is 330 m/s.

Solution: The general form is given by Eq. (1.17),

$$p(x,t) = A\cos\left(\frac{2\pi t}{T} - \frac{2\pi x}{\lambda} + \phi_0\right),\,$$

where it is given that $\phi_0 = 36^\circ$. From Eq. (1.26), $T = 1/f = 1/(2 \times 10^3) = 0.5$ ms. From Eq. (1.27),

$$\lambda = \frac{u_{\rm p}}{f} = \frac{330}{2 \times 10^3} = 0.165 \,\mathrm{m}.$$

Also, since

$$p(x = 0, t = 50 \,\mu\text{s}) = 10 \,(\text{N/m}^2) = A\cos\left(\frac{2\pi \times 50 \times 10^{-6}}{5 \times 10^{-4}} + 36^{\circ} \frac{\pi \,\text{rad}}{180^{\circ}}\right)$$
$$= A\cos(1.26 \,\text{rad}) = 0.31A,$$

it follows that $A = 10/0.31 = 32.36 \text{ N/m}^2$. So, with t in (s) and x in (m),

$$p(x,t) = 32.36\cos\left(2\pi \times 10^6 \frac{t}{500} - 2\pi \times 10^3 \frac{x}{165} + 36^\circ\right) \quad \text{(N/m}^2\text{)}$$

= 32.36\cos(4\pi \times 10^3 t - 12.12\pi x + 36^\circ) \quad \text{(N/m}^2\text{)}.

Problem 2.

Problem 1.7 A wave traveling along a string in the +x-direction is given by

$$y_1(x,t) = A\cos(\omega t - \beta x),$$

where x = 0 is the end of the string, which is tied rigidly to a wall, as shown in Fig. P1.7. When wave $y_1(x,t)$ arrives at the wall, a reflected wave $y_2(x,t)$ is generated. Hence, at any location on the string, the vertical displacement y_5 is the sum of the incident and reflected waves:

$$y_5(x,t) = y_1(x,t) + y_2(x,t)$$
.

- (a) Write an expression for y₂(x,t), keeping in mind its direction of travel and the fact that the end of the string cannot move.
- (b) Generate plots of $y_1(x,t)$, $y_2(x,t)$ and $y_5(x,t)$ versus x over the range $-2\lambda \le x \le 0$ at $\omega t = \pi/4$ and at $\omega t = \pi/2$.

Figure P1.7: Wave on a string tied to a wall at x = 0 (Problem 1.7).

Solution:

(a) Since wave $y_2(x,t)$ was caused by wave $y_1(x,t)$, the two waves must have the same angular frequency ω , and since $y_2(x,t)$ is traveling on the same string as $y_1(x,t)$, the two waves must have the same phase constant β . Hence, with its direction being in the negative x-direction, $y_2(x,t)$ is given by the general form

$$y_2(x,t) = B\cos(\omega t + \beta x + \phi_0), \tag{1}$$

where B and ϕ_0 are yet-to-be-determined constants. The total displacement is

$$y_5(x,t) = y_1(x,t) + y_2(x,t) = A\cos(\omega t - \beta x) + B\cos(\omega t + \beta x + \phi_0).$$

Since the string cannot move at x = 0, the point at which it is attached to the wall, $y_5(0,t) = 0$ for all t. Thus,

$$y_s(0,t) = A\cos\omega t + B\cos(\omega t + \phi_0) = 0. \tag{2}$$

- (i) Easy Solution: The physics of the problem suggests that a possible solution for
- (2) is B = -A and $\phi_0 = 0$, in which case we have

$$y_2(x,t) = -A\cos(\omega t + \beta x). \tag{3}$$

(ii) Rigorous Solution: By expanding the second term in (2), we have

$$A\cos\omega t + B(\cos\omega t\cos\phi_0 - \sin\omega t\sin\phi_0) = 0,$$

or

$$(A + B\cos\phi_0)\cos\omega t - (B\sin\phi_0)\sin\omega t = 0. \tag{4}$$

This equation has to be satisfied for all values of t. At t = 0, it gives

$$A + B\cos\phi_0 = 0, \tag{5}$$

and at $\omega t = \pi/2$, (4) gives

$$B \sin \phi_0 = 0.$$
 (6)

Equations (5) and (6) can be satisfied simultaneously only if

$$A = B = 0 \tag{7}$$

or

$$A = -B$$
 and $\phi_0 = 0$. (8)

Clearly (7) is not an acceptable solution because it means that $y_1(x,t) = 0$, which is contrary to the statement of the problem. The solution given by (8) leads to (3).

(b) At $\omega t = \pi/4$,

$$\begin{split} y_1(x,t) &= A\cos(\pi/4 - \beta x) = A\cos\left(\frac{\pi}{4} - \frac{2\pi x}{\lambda}\right), \\ y_2(x,t) &= -A\cos(\omega t + \beta x) = -A\cos\left(\frac{\pi}{4} + \frac{2\pi x}{\lambda}\right). \end{split}$$

Plots of y_1 , y_2 , and y_3 are shown in Fig. P1.7(b).

Figure P1.7: (b) Plots of y_1 , y_2 , and y_5 versus x at $\omega t = \pi/4$.

At $\omega t = \pi/2$,

$$\begin{aligned} y_1(x,t) &= A\cos(\pi/2 - \beta x) = A\sin\beta x = A\sin\frac{2\pi x}{\lambda}, \\ y_2(x,t) &= -A\cos(\pi/2 + \beta x) = A\sin\beta x = A\sin\frac{2\pi x}{\lambda}. \end{aligned}$$

Plots of y_1 , y_2 , and y_3 are shown in Fig. P1.7(c).

Problem 3.

Problem 1.11 The vertical displacement of a string is given by the harmonic function:

$$y(x,t) = 2\cos(16\pi t - 20\pi x)$$
 (m),

where x is the horizontal distance along the string in meters. Suppose a tiny particle were attached to the string at x = 5 cm. Obtain an expression for the vertical velocity of the particle as a function of time.

Solution:

$$y(x,t) = 2\cos(16\pi t - 20\pi x)$$
 (m).

$$u(0.05,t) = \frac{dy(x,t)}{dt} \Big|_{x=0.05}$$

$$= 32\pi \sin(16\pi t - 20\pi x)|_{x=0.05}$$

$$= 32\pi \sin(16\pi t - \pi)$$

$$= -32\pi \sin(16\pi t) \quad \text{(m/s)}.$$

Problem 4.

Problem 1.13 The voltage of an electromagnetic wave traveling on a transmission line is given by $v(z,t) = 5e^{-\alpha z}\sin(4\pi \times 10^9 t - 20\pi z)$ (V), where z is the distance in meters from the generator.

- (a) Find the frequency, wavelength, and phase velocity of the wave.
- (b) At z = 2 m, the amplitude of the wave was measured to be 2 V. Find α .

Solution:

(a) This equation is similar to that of Eq. (1.28) with $\omega = 4\pi \times 10^9$ rad/s and $\beta = 20\pi$ rad/m. From Eq. (1.29a), $f = \omega/2\pi = 2 \times 10^9$ Hz = 2 GHz; from Eq. (1.29b), $\lambda = 2\pi/\beta = 0.1$ m. From Eq. (1.30),

$$u_{\rm p} = \omega/\beta = 2 \times 10^8 \,{\rm m/s}.$$

(b) Using just the amplitude of the wave,

$$2 = 5e^{-\alpha 2}$$
, $\alpha = \frac{-1}{2 \text{ m}} \ln \left(\frac{2}{5}\right) = 0.46 \text{ Np/m}.$

Problem 5

Problem 1.22 If z = 3 - j5, find the value of $\ln(z)$.

Solution:

$$|z| = +\sqrt{3^2 + 5^2} = 5.83, \quad \theta = \tan^{-1}\left(\frac{-5}{3}\right) = -59^{\circ},$$

$$z = |z|e^{j\theta} = 5.83e^{-j59^{\circ}},$$

$$\ln(z) = \ln(5.83e^{-j59^{\circ}})$$

$$= \ln(5.83) + \ln(e^{-j59^{\circ}})$$

$$= 1.76 - j59^{\circ} = 1.76 - j\frac{59^{\circ}\pi}{180^{\circ}} = 1.76 - j1.03.$$