	PASS/EQUIP 3.03.0.9 © OOO NTP «Truboprovod»
	GOST Calculation for steam generator
	GOST Calculation for steam generator
	CALCULATION REPORT GOST Calculation for steam generator
,e,	GOST Calculation for steam generator
Sign. and date	
Sig	
f copy	
Inv. Nº of copy	
Replace Inv. Nº	
Replace	
ate	
Sign. and date	
S	<enter value=""></enter>
Inv. Nº Sign.	2021
Inv. A	

TABLE OF CONTENTS

	General	
2	General calculation data	4
3	Summary tables	5
4	Drawings of forces and moments	8
5	Heat exchanger shell	9
	Tubesheet	
7	Separation wall	19
8	Tubes	20
9	References	22
1	23	
2.	Sheet of changes registration	24

Replace Inv. Nº									
ate									
Sign. and date	Cha	Shoot	No of doc	Sian	Data	GOST CALCULATION FOR STE	EAM GENE	RATOR	
Sign.	Chg.		№ of doc. <enter name=""></enter>	Sign.	Date		EAM GENEI	RATOR Page	Pages
Sign.	Desi	Sheet gner ervisor	<enter name=""></enter>	Sign.	Date	GOST CALCULATION FOR STEAM			Pages 24
Sign.	Desi Supe	gner	<enter name=""></enter>	Sign.	Date			Page	
Inv. Nº Sign.	Desi Supe Estin	gner ervisor	<enter name=""> <enter name=""></enter></enter>	Sign.	Date	GOST CALCULATION FOR STEAM		Page	24

Inv. Nº of copy

		Strei «Tru	ngth calculat boprovod».	ion is pro	ovideo	1 General susing «PASS/EQUIP 3.03.0.9» program, designed by OOO NT	ΓP
Sign. and date							
Inv. Nº of copy							
Replace Inv. №							
Sign. and date							
Inv. N <u>o</u> Sign.	Chg.	Sheet	№ of doc.	Sign.	Date	GOST CALCULATION FOR STEAM GENERATOR	Page 3

3 Summary tables

3.1 Basic components

Table 3.1.Input data

Component	Material	Diameter, mm	Wall thickness, mm	Length (height), mm	Total allowance, mm	Weld strength ratio
Heat exchanger shell	SA-516 Gr.70 Plate	1750	110	7111	3	1
Tubes	SA-213 Gr.T11 Smls. tube	25.4	2.77	ı	0	_
Tubesheet	SA-336 Gr.F22 Forgings	_	390		3	_

Table 3.2. Operating conditions (INTERNAL)

	Calculation	Calculation	Allowable	Effective thickness	Allowable	Strength
Component	temperature,	pressure,	stresses,	including allowances,	pressure,	condition
	°C	MPa	MPa	mm	MPa	condition
Heat exchanger shell	343	14.134	129.79	103.77	14.957	satisfied

Table 3.3.Operating conditions (EXTERNAL)

	Calculation	Calculation	Allowable	Effective thickness	Allowable	Ctuanath
Component	temperature,	pressure, stresses,		including allowances,	pressure,	Strength condition
	°C	MPa	MPa	mm	MPa	condition
Heat exchanger shell	200	(-0.103)	150	13.086	15.883	satisfied

Table 3.4.Test conditions

Component	Calculation pressure,	Allowable stresses,	Effective thickness including allowances,	Allowable pressure,	Strength condition
	MPa	MPa	mm	MPa	
Heat exchanger shell	22.017	238.18	84.803	28.172	satisfied

3.2 Filling calculation

Table 3.5.Operating conditions (INTERNAL)

Component	Full volume, m ³	Product volume, m ³	Product mass, kg	Height of product column, mm	Max. height of product column at 100%, mm	ξ
Main shell Bundle	Tube-side: 5.0678	5.0678	4054.2	1366.4	1366.4	1
	Shell- side:14.125	14.125	11300	1750	1750	1
Σ	19.192	19.192	15354	-	-	_

Table 3.6.Operating conditions (EXTERNAL)

					`	
Component	Full	Product	Product	Height of product	Max. height of product	ĸ
Component	volume, m³	e, m ³ volume, m ³ mass, kg column, mm column at 100%, mm side: 5.0678 0 1366.4 1366.4 1 1- 1- 125 14.125 0 1750 1750 1	ک			
Main shell Bundle	Tube-side: 5.0678	5.0678	0	1366.4	1366.4	1
	Shell- side:14.125	14.125	0	1750	1750	1
Σ	19.192	19.192	0	_	_	_

3.3 Vessel volumes

 $\begin{array}{l} \rho-fluid\ density \\ V_{full}-\ full\ volume \\ V_{fluid}-\ fluid\ volume \\ M-\ fluid\ mass \end{array}$

Inv. № of copy

Replace Inv. No

Chg.	Sheet	№ of doc.	Sign.	Date

GOST CALCULATION FOR STEAM GENERATOR

Table 3.7. Volumes filling

Component	Testing	Ptest, MPa	Fluid	ρ , kg/m ³	$V_{\rm full}$, m^3	V _{fluid} , m ³	M, kg	Fluid	H_2S
Main shell Bundle	Hydro	22	Yes	800	5.0678	5.0678	4054.2	water	No (-)
Heat exchanger shell	Hydro	22	Yes	800	14.125	14.125	11300	water	No (-)

Table 3.8. Volumes filling

Component	Testing	P _{test} , MPa	Fluid	ρ, kg/m³	V _{full} , m ³	V _{fluid} , m ³	M, kg	Fluid	H_2S
Main shell Bundle	Hydro	22	Yes	0	5.0678	5.0678	0		No (-)
Heat exchanger shell	Hydro	22	Yes	0	14.125	14.125	0		No (-)

3.4 Calculation of weights and centers of gravity

Table 3.9. Operating conditions (INTERNAL) (with the filling environment)

		The center of gravity position
Component	Weight, N	
		(relative to the model origin /)
Main shell Bundle	$8.6559 \cdot 10^5$	X = 0 mm, Y = 0 mm, Z = 3586.2 mm
\sum	8.6559·10 ⁵	X = 0 mm, Y = 0 mm, Z = 3586.2 mm

X = 0 mm, Y = 0 mm, Z = 3586.2 mm

Table 3.10. Operating conditions (EXTERNAL) (with the filling environment)

		The center of gravity position
Component	Weight, N	
		(relative to the model origin)
Main shell Bundle	$6.8652 \cdot 10^5$	X = 0 mm, Y = 0 mm, Z = 3676.7 mm
Σ	$6.8652 \cdot 10^5$	X = 0 mm, Y = 0 mm, Z = 3676.7 mm

Table 3.11.Test conditions (with the filling environment)**When the pneumatic test, or for the empty component, or for the absence of the testing, dry weight is

Component	Weight, N	The center of gravity position
1		(relative to the model origin /)
Main shell Bundle	$8.9597 \cdot 10^5$	X = 0 mm, Y = 0 mm, Z = 3606.4 mm
\sum	$8.9597 \cdot 10^5$	X = 0 mm, Y = 0 mm, Z = 3606.4 mm
		Table 3.12.Mounting conditions (dry weight)
Component	Weight, N	The center of gravity position (relative to the model origin)
Main shell Bundle	$6.8652 \cdot 10^5$	X = 0 mm, Y = 0 mm, Z = 3676.7 mm
$\overline{\Sigma}$	$6.8652 \cdot 10^5$	X = 0 mm, Y = 0 mm, Z = 3676.7 mm

3.5 Materials using

Table 3.13.Components materials

Component	Material	Quantity	Surface area (inside+outside)
Main shell Bundle			
	SA-213 Gr.T11 Smls. tube	23340 kg	2085.9 m ²
	SA-336 Gr.F22 Forgings	4158.3 kg	56.026 m ²
	SA-387 Gr.22 Plate	89.849 kg	1.0282 m²
	SA-516 Gr.70 Plate	42415 kg	138.23 m ²

In total:

Sign. and date

Inv. № of copy

Replace Inv. No

Sign. and date

SA-213 Gr.T11 Smls. tube	23340 kg	2085.9 m ²
SA-336 Gr.F22 Forgings	4158.3 kg	56.026 m ²
SA-387 Gr.22 Plate	89.849 kg	1.0282 m ²
SA-516 Gr.70 Plate	42415 kg	138.23 m ²

Chg.	Sheet	№ of doc.	Sign.	Date

GOST CALCULATION FOR STEAM GENERATOR

3.6 Testing pressure calculation as per GOST 34347, hydro

Table 3.14.Pressure values by components (INTERNAL)

There exists response the series of components (in the series of the ser				
Component	Testing pressure, MPa			
Main shell Bundle	25.931			
	$P_{\text{test},\text{min}} = 25.931$			
Main shell Bundle	21.992			
Heat exchanger shell	23.759			
	$P_{\text{test,min}} = 21.992$			

Table 3.15.Pressure values by components (EXTERNAL)

	, , , , , , , , , , , , , , , , , , ,
Component	Testing pressure, MPa
Main shell Bundle	0.12879
	$P_{\text{test,min}} = 0.12879$
Main shell Bundle	0.11853
Heat exchanger shell	0.11853
	$P_{\text{test,min}} = 0.11853$

Table 3.16. Equipment category as per CU TR 032/2013

			±		J I	
Assigned component	Only liquid inside (ξ>0.99)	Operating fluid group	Capacity, m ³	The product of the maximum allowable operating pressure and capacity, MPa·m³	Maximum allowable operating pressure, MPa	Equipment category
Main shell Bundle	Yes	II	5.0678	84.433	16.661	1
Heat ex- changer shell	Yes	II	14.125	199.63	14.134	1

Note: in accordance with claim 2, 3 CU TR 032/2013 the category of equipment intended for use with design temperature above the beginning creep temperature of the material is increased by 1 (except category 4). The beginning creep temperature is:

400°C - for carbon and low-alloy Si-Mn steel;

450°C - for low-alloy Cr-Mo and Mo-V steels;

525°C - for alloyed high-chromium martensitic and austenitic steels;

575°C - for Fe-Ni and nickel-based alloys.

3.7MDMT

Required MDMT: -36 °C

Inv. № of copy

Replace Inv. No

Table 3.17. Operating conditions (INTERNAL)

Component	Code	Material	Curve	Governing thickness, mm	MDMT,	R _{ts}	MDMT reduction. °C	Note
name				unckness, mm	Table 3.18	ratio 3.Operatin	g conditions (EXTE	RNAL)
Component	Code	Material	Curve	Governing	MDMT,	R _{ts}	MDMT	Note
name				thickness, mm	٠.	ratio	reduction, °C	

Chg.	Sheet	№ of doc.	Sign.	Date

GOST CALCULATION FOR STEAM GENERATOR

4 Drawings of forces and moments

4.1 Calculation of wind loads as per GOST 34283-2017 (RUS)

Wind load applied to the i-th section:

$$P_{vi} = 1.8 \cdot q_0 \cdot \theta_i \cdot D_i \cdot h_i$$

where q_0 – regulatory value of wind pressure;

D_i – outside diameter of the i-th section;

 h_i - length of the i-th section;

 θ_i – coefficient, considering wind pressure changing throughout the vessel height:

$$\theta_{i} = \left(\frac{y_{i} + y_{och}}{10}\right)^{0}$$

where y_i – distance from foundation to gravity centre of the i-th section.

Calculation in operating conditions (INTERNAL)

The model is not fixed

Calculation in operating conditions (EXTERNAL)

The model is not fixed

Calculation in test conditions (Hydrotesting conditions)

The model is not fixed

Sign.							
Inv. Nº of copy							
Replace Inv. №							
Sign. and date							
Inv. N <u>e</u> Sign.	Chg.	Sheet	№ of doc.	Sign.	Date	GOST CALCULATION FOR STEAM GENERATOR	age 8
			_		•	THE PROGRAMM PASS/EQUIP 3.03.0.9. OOO «NTP TRUBOP	ROVOD

Fig.5.1.Component sketch

5.2 Input data

Material: SA-516 Gr.70 Plate Inside diameter,D: 1750 mm
Nominal thickness, s: 110 mm

Corrosion and erosion allowance, c₁:

Negative tolerance, c₂:

Technological allowance, c₃:

To him

3 mm

0 mm

Technological allowance, c₃:

Total allowance to the effective nominal thickness, c:

3 mm

Shell length, L: 7111 mm
Weld strength ratios:

Longitudinal weld: $^{\phi_{\mathbf{P}}}$ 1
Circular weld: $^{\phi_{\mathbf{T}}}$ 1

Loading conditions:

and date

Inv. № of copy

Replace Inv. No

Calculation temperature, T: 343 °C
Calculation internal overpressure, p: 14.134 MPa
Calculation bending moment, M: 0 N·m
Calculation transverse force, Q: 0 N
Calculation axial tensile force, F: 0 N

Calculation of strength and buckling as per GOST 34233.2-2017

Allowable stresses for material SA-516 Gr.70 Plate at a temperature of 343 °C (operating conditions):

$$[\sigma] = \min \left(\frac{R_{e/t}}{n_{T}}; \frac{R_{m/t}}{n_{E}} \right) = \min\{194.68 / 1.5; 483 / 2.4\} = 129.79 \text{ MPa}$$

Module of longitudinal elasticity at a temperature of T = 343 °C:

 $E = 1.7984 \cdot 10^5 \text{ MPa}$

Slick shells loaded with internal overpressure

Effective nominal thickness including allowances:

$$s_p + c = \frac{p \cdot D}{2 \cdot [\sigma] \cdot \phi_p - p} + c = \frac{(14.134 * 1750)}{(2 * 129.79 * 1 - 14.134) + 3} = 103.77 \text{ mm}$$

 $103.77 \text{ mm} \le 110 \text{ mm}$

Conclusion: Condition of operability is satisfied.

Allowable pressure:

$$[p] = \frac{2 \cdot [\sigma] \cdot \varphi_p \cdot (s - c)}{D + (s - c)} = 2 * 129.79 * 1 * (110 - 3) / (1750 + 110 - 3) = 14.957 \text{ MPa}$$

14.957 MPa ≥ 14.134 MPa

Conclusion: Condition of strength is satisfied.

Minimum distance between "single" nozzles:

$$b_0 = 2 \cdot \sqrt{D \cdot (s-c)} = 2 * (1750 * (110 - 3))^{1/2} = 865.45 mm$$

Chg.	Sheet	№ of doc.	Sign.	Date

$$P_{\text{rep}} = 1.25 \cdot p \cdot \frac{[\sigma]_{20}}{[\sigma]_{\text{t}}} - p_{\text{H}} = 1.25 * 16.661 * 174.67 / 125.47 - 0.013401 = 28.979 \text{ MPa}$$

Hydraulic test pressure, when the component is under internal pressure, GOST 34347-2017:

$$P_{\text{rp}} = 1.25 \cdot p \cdot \frac{[\sigma]_{20}}{[\sigma]_{t}} - p_{\text{H}} = 1.25 * 16.661 * 206.67 / 165.89 - 0.013401 = 25.931 \text{ MPa}$$

Hydraulic test pressure, when the component is under internal pressure, GOST 34347-2017:

$$P_{\text{rp}} = 1.25 \cdot p \cdot \frac{[\sigma]_{20}}{[\sigma]_{\text{t}}} - p_{\text{H}} = 1.25 * 14.134 * 174.67 / 125.47 - 0.017162 = 24.578 \text{ MPa}$$

Hydraulic test pressure, when the component is under internal pressure, GOST 34347-2017:

$$P_{\text{TIP}} = 1.25 \cdot p \cdot \frac{[\sigma]_{20}}{[\sigma]_{\text{t}}} - p_{\text{H}} = 1.25 * 14.134 * 206.67 / 165.89 - 0.017162 = 21.992 \text{ MPa}$$

Undervise test pressure, when the component is under interval pressure, COST 2434

Hydraulic test pressure, when the component is under internal pressure, GOST 34347-2017:

$$P_{\text{rep}} = 1.25 \cdot p \cdot \frac{[\sigma]_{20}}{[\sigma]_{t}} - p_{\text{H}} = 1.25 * 14.134 * 174.67 / 129.79 - 0.017162 = 23.759 \text{ MPa}$$

Loading conditions:

Calculation temperature, T: 200 °C Calculation external overpressure, p: 0.103 MPa $0 \text{ N} \cdot \text{m}$ Calculation bending moment, M: Calculation transverse force, Q: 0 NCalculation axial tensile force, F: 0 N

Calculation of strength and buckling as per GOST 34347, hydro

Allowable stresses for material SA-516 Gr.70 Plate at a temperature of 200 °C (operating conditions):

$$[\sigma] = \min \left(\frac{R_{e/t}}{n_{\pi}}; \frac{R_{m/t}}{n_{e}} \right) = \min\{225/1.5; 483/2.4\} = 150 \text{ MPa}$$

Module of longitudinal elasticity at a temperature of T = 200 °C:

$$E = 1.92 \cdot 10^5 \text{ MPa}$$

A slick shell loaded with external pressure

Effective length for calculation of pressure influence:

$$l_p = 7111 \text{ mm}$$

and date

Inv. № of copy

Replace Inv.

읭

$$B = \max \left\{ 1; 0.47 \cdot \left(\frac{p}{10^{-5} \cdot E} \right)^{0.067} \cdot \left(\frac{1}{D} \right)^{0.4} \right\} \\ = \max\{1; 0.47 * (0.103 / (10^{-5} * 1.92 \cdot 10^{5}))^{0.067} * (7111 / 1750)^{0.4}\} \\ = 10^{-5} \cdot E \cdot \left(\frac{1}{D} \right)^{0.4} \cdot \left(\frac{1}{D} \right)^{0.4}$$

Effective shell nominal thickness including allowances:

$$s_{p} + c = \max \left\{ 1.06 \cdot \frac{10^{-2} \cdot D}{B} \cdot \left(\frac{p}{10^{-5} \cdot E} \cdot \frac{1}{D} \right)^{0.4}; \frac{1.2 \cdot p \cdot D}{2 \cdot [\sigma] - p} \right\} \quad = \max \{ 1.06 \cdot \frac{10^{-2} \cdot 1750 / 1 \cdot (0.103 / (10^{-5} \cdot 1.92 \cdot 10^{5}))^{-5}}{9 \cdot 7111 / 1750 / (10^{-5} \cdot 1.2 \cdot 0.103 \cdot 1750 / (10^{-5} \cdot 1.92 \cdot 10^{5}))^{-5}} \quad = 13.086 \text{mm}$$

 $13.086 \text{ mm} \le 110 \text{ mm}$

Conclusion: Condition of operability is satisfied.

$$B_1 = \min \left\{ 1.0; \ 9.45 \cdot \frac{D}{1} \cdot \sqrt{\frac{D}{100 \cdot (s-c)}} \right\} = \min\{1.0; \ 9.45 * 1750 / 7111 * (1750 / (100 * (110 - 3)))^{1/2}\} = 0.94052$$

Allowable external pressure from buckling condition:

$$[p]_{e} = \frac{2.08 \cdot 10^{-5} E}{n_{y} \cdot B_{1}} \cdot \frac{D}{1} \cdot \left[\frac{100 \cdot (s-c)}{D}\right]^{2.5} = \frac{2.08 \cdot 10^{-5} \cdot 1.92 \cdot 10^{5} \cdot 1750 / (2.4 \cdot 0.94052 \cdot 7111) \cdot (100 \cdot (110) - (110) - (110)}{-3.3 / (1750)^{2.5}} = 40.249 MPa$$

Allowable external pressure from strength condition:

$$[p]_{\pi} = \frac{2 \cdot [\sigma] \cdot (s - c)}{D + (s - c)} = 2 * 150 * (110 - 3) / (1750 + 110 - 3) = 17.286 MPa$$

Chg.	Sheet	№ of doc.	Sign.	Date

 $15.883 \text{ MPa} \ge 0.103 \text{ MPa}$

Conclusion: Condition of strength and buckling is satisfied.

Minimum distance between "single" nozzles:

$$b_0 = 2 \cdot \sqrt{D \cdot (s - c)} = 2 * (1750 * (110 - 3))^{1/2} = 865.45 \text{mm}$$

A shell working under a combined action of loads

A shell working under a combined action of external pressure, compressing axial force, bending moment and transverse

Buckling condition testing
$$\left(\frac{p}{[p]} + \frac{F}{[F]} + \frac{M}{[M]} + \left(\frac{Q}{[Q]}\right)^2 \le 1\right)$$

$$\frac{p}{[p]} + \frac{F}{[F]} + \frac{M}{[M]} + \left(\frac{Q}{[Q]}\right)^2 = 0.103 / 15.883 + 0 / 0 + 0 / 0 + (0 / 0)^2 = 0.0064849 \le 1$$

Conclusion: Condition of buckling is satisfied.

Testing pressure calculation as per GOST 34347, hydro

Tube side:

Hydraulic test pressure, when the component is under vacuum (design pressure is taken equal to 0.1 MPa in the test pressure calculation), GOST 34347-2017:

$$P_{\text{rp}} = 1.25 \cdot p \cdot \min \left\{ \frac{[\sigma]_{20}}{[\sigma]_{\text{t}}}; \frac{E_{20}}{E_{\text{t}}} \right\} - p_{\text{H}} = 1.25 * 0.10197 * \min\{174.67/125.47; 2.0235 \cdot 10^5/1.758 \cdot 10^5 \text{ }] - 0.013401 = 0.13331 \text{ MPa}$$

Hydraulic test pressure, when the component is under vacuum (design pressure is taken equal to 0.1 MPa in the test pressure calculation), GOST 34347-2017:

ressure calculation), GOST 34347-2017:
$$P_{\text{rmp}} = 1.25 \cdot p \cdot min \left\{ \frac{[\sigma]_{20}}{[\sigma]_{\text{t}}}, \frac{E_{20}}{E_{\text{t}}} \right\} - p_{\text{H}} \quad = 1.25 * 0.10197 * min \{206.67/165.89; 2.1035 \cdot 10^5/1.8856 \cdot 10^5 \} - 0.013401 \quad = 0.12879 \text{ MPa}$$

and date

Inv. № of copy

Replace Inv. No

Hydraulic test pressure, when the component is under external pressure, GOST 34347-2017:

$$P_{\text{rp}} = 1.25 \cdot p \cdot \min \left\{ \frac{[\sigma]_{20}}{[\sigma]_{\text{t}}}; \frac{E_{20}}{E_{\text{t}}} \right\} - p_{\text{H}} = 1.25 * 0.103 * \min\{174.67/125.47; 2.0235 \cdot 10^5/1.758 \cdot 10^5 \} - 0.017162 = 0.13103 \text{ MPa}$$

Hydraulic test pressure, when the component is under external pressure, GOST 34347-2017:

$$P_{\text{rp}} = 1.25 \cdot p \cdot \min \left\{ \frac{[\sigma]_{20}}{[\sigma]_{\text{t}}}; \frac{E_{20}}{E_{\text{t}}} \right\} - p_{\text{H}} = 1.25 * 0.103 * \min\{206.67/165.89; 2.1035 \cdot 10^5/1.8856 \cdot 10^5\} - 0.017162 = 0.12647 \text{ MPa}$$

Hydraulic test pressure, when the component is under external pressure, GOST 34347-2017:

$$P_{\text{TIP}} = 1.25 \cdot p \cdot \min \left\{ \frac{[\sigma]_{20}}{[\sigma]_{\text{t}}}; \frac{E_{20}}{E_{\text{t}}} \right\} - p_{\text{H}} = 1.25 * 0.103 * \min\{174.67/150; 2.0235 \cdot 10^5/1.92 \cdot 10^5 \text{ } \} - 0.017162 = 0.11853 \text{ MPa}$$

5.3 Calculation in test conditions (Hydrotesting conditions)

Loading conditions for tests:

Calculation temperature, T: 20°C

Calculation internal overpressure (including hydrostatic), p: 22.017 MPa

Calculation bending moment, M: $0 \text{ N} \cdot \text{m}$ Calculation transverse force, Q: 0 N

0 NCalculation axial tensile force, F:

As per GOST 34233.1-2017, strength calculation in test conditions was not made, if the following condition is satisfied:

$$P_{\text{max}} < 1.35 \cdot P_{\text{pace}} \cdot \frac{[\sigma]_{20}}{[\sigma]}$$

1.35 ·
$$\mathbb{P}_{\mathbf{pace}}$$
 · $\frac{[\sigma]_{20}}{[\sigma]}$ = 1.35 * 14.134 *174.67 / 129.79 = 25.679 MPa \geq 22.017 MPa

Chg.	Sheet	№ of doc.	Sign.	Date

Calculation of strength and buckling as per GOST 34347, hydro

Allowable stresses for material SA-516 Gr.70 Plate at a temperature of 20 °C (hydrotesting conditions):

$$[\sigma]^{20} = \frac{R_{e/t}}{n_{\tau}} = 262 / 1.1 = 238.18 \text{ MPa}$$

Module of longitudinal elasticity at a temperature of T = 20 °C:

$$E^{20} = 2.0235 \cdot 10^5 \text{ MPa}$$

Slick shells loaded with internal overpressure

Effective nominal thickness including allowances:

$$s_p + c = \frac{p \cdot D}{2 \cdot [\sigma] \cdot \phi_p - p} + c = \frac{(22.017 * 1750)}{(2 * 238.18 * 1 - 22.017) + 0} = 84.803 \text{ mm}$$

 $84.803~mm \leq 110~mm$

Conclusion: Condition of operability is satisfied.

Allowable pressure:

$$[p] = \frac{2 \cdot [\sigma] \cdot \varphi_{p} \cdot (s - c)}{D + (s - c)} = 2 * 238.18 * 1 * (110 - 0) / (1750 + 110 - 0) = 28.172 \text{ MPa}$$

 $28.172 \text{ MPa} \ge 22.017 \text{ MPa}$

Conclusion: Condition of strength is satisfied.

Minimum distance between "single" nozzles:

$$b_0 = 2 \cdot \sqrt{D \cdot (s-c)} = 2 * (1750 * (110-0))^{1/2} = 877.5 \text{mm}$$

Inv. № of copy

Replace Inv. No

GOST CALCULATION FOR STEAM GENERATOR

6 Tubesheet

Fig.6.2.Connection sketch

6.2 Input data

Tubesheet:

Material: SA-336 Gr.F22 Forgings

Thickness, s-p: 390 mm Total allowance to the calculated sheet thickness, cp: 3 mm Availability of separation wall: Yes

Sheet thickness in a place of groove, s_n:

Groove width, b_n:

Transitional shell:

Material: Diameter, D:

Thickness, s₁: Corrosion allowance, c_1 : Negative tolerance, c₂:

Technological allowance, c₃:

Total allowance, c:

Length, l₁:

Sign. and date

Inv. Nº of copy

Replace Inv. No

Separation wall

Material: SA-387 Thickness, s_{nep}: 25 mm Total allowance, c_n: 3 mm 1750 mm Width, b_{nep}: Length, L_{nep}: 265 mm

SA-516 Gr.70 Plate

1750 mm 110 mm 3 mm 0 mm0 mm3 mm 900 mm

380 mm

11 mm

Chg.	Sheet	№ of doc.	Sign.	Date

Fig.6.3. Tube bundle sketch

Maximum radius of tube zone: 828.65 mm Holes interval, t_p: 31.75 mm 25.65 mm Hole diameter, d₀: Height of upper segment of tube zone, h₁: 715 mm Height of lower segment of tube zone, h₂: 715 mm Distance between rows of holes, t_n 76.2 mm

Tubes

and date

Inv. № of copy

Replace Inv.

읭

Material: SA-213 Gr.T11 Smls. tube Outside diameter, d_T: 25.4 mm Nominal thickness, s_T: 2.77 mm Total allowance, c_T: 0 mmNumber of tubes in tubesheet, i: 2304 Design length of tubes, L_T: 6200 mm Number of holes, n 2304 Distance from the shell axis to the axis 815.84 mm

of the furthermost tube, a₁

Diameter of the circle inscribed in 381.25 mm maximum tubeless area, DE

6.3 Calculation in operating conditions (INTERNAL)

Loading conditions:

Tube-side overpressure, p_T: 16.661 MPa Shell-side overpressure, p_M: 14.134 MPa Calculation temperature, T_p: 343 °C

Calculation of strength and buckling as per GOST 34233.7-2017

tube material properties:

Module of longitudinal elasticity at a temperature of T = 370 °C:

 $E = 1.814 \cdot 10^5 \text{ MPa}$

Thermal expansion at a temperature of T = 370 °C:

 $\alpha = 0.1368 \cdot 10^{-4} 1/^{\circ} C$

Shell material properties:

Module of longitudinal elasticity at a temperature of T = 343 °C:

 $E = 1.7984 \cdot 10^5 \text{ MPa}$

Thermal expansion at a temperature of T = 343 °C:

 $\alpha = 0.13544 \cdot 10^{-4} 1/^{\circ} C$

Tubesheet material properties:

Module of longitudinal elasticity at a temperature of T = 343 °C:

 $E_p = 1.8856 \cdot 10^5 \text{ MPa}$

Chg.	Sheet	№ of doc.	Sign.	Date

GOST CALCULATION FOR STEAM GENERATOR

Shell flange material properties:

Minimum length of transitional shell:

$$[1_1] = 2 \cdot \sqrt{D \cdot s_1}$$
 = $2 * (1750 * 110)^{1/2}$ = 877.5 mm

Length condition of transitional shell: $1_1 \ge [1_1]$

 $900 \text{ mm} \ge 877.5 \text{ mm}.$

Module of longitudinal elasticity at a temperature of T = 370 °C:

 $E_{f1} = 1.758 \cdot 10^5 \text{ MPa}$

Chamber flange material properties:

Module of longitudinal elasticity at a temperature of T = 370 °C:

 $E_{f2} = 1.758 \cdot 10^5 \text{ MPa}$

Shell material properties:

Module of longitudinal elasticity at a temperature of T = 343 °C:

 $E_1 = 1.7984 \cdot 10^5 \text{ MPa}$

Chamber material properties:

Module of longitudinal elasticity at a temperature of T = 20 °C:

$$E^{20}_{2} = 2.0235 \cdot 10^{5} \text{ MPa}$$

Sheet material properties:

Allowable stresses for material SA-336 Gr.F22 Forgings at a temperature of 343 °C (operating conditions):

$$\label{eq:continuous_problem} \left[\sigma\right]_{p} = min\left(-\frac{R_{e/t}}{n_{m}}; \frac{R_{m/t}}{n_{E}} - \right) = min(248.84/1.5; 488.12/2.4) = 165.89 \; MPa$$

Tubesheet strength

and date

Inv. № of copy

Replace Inv.

and date

Calculated pressure (is taken equal to maximum possible difference of pressures influencing the tubesheet):

$$p_R = \max\{|p_T|, |p_M|, |p_T - p_M|\} = \max\{|16.661|, |14.134|, |16.661 - 14.134|\} = 16.661 \text{ MPa}$$

Fig.6.4.Tubes layout sketch

Calculated sheet thickness in the tubeless zone:

$$s_{pp} = 0.5D_{E}\sqrt{\frac{p_{R}}{[\sigma]_{p}}} = 0.5*381.25*(16.661/165.89)^{1/2} = 60.41 \text{ mm}$$

Strength condition: $S_p \ge S_{pp} + C_p$

 $390 \text{ mm} \ge 60.41 + 3 = 63.41 \text{ mm.Condition of strength is satisfied.}$

For tubesheets with tubes fixed along full width of the tubesheet:

$$d_{\mathbf{E}} = d_0 - 2s_{\mathbf{T}} = 25.65 - 2 * 2.77 = 20.11 \text{ mm}$$

Effective reduction factor:

$$\varphi_{\mathbf{E}} = 1 - \frac{d_{\mathbf{E}}}{t_{\mathbf{p}}} = 1 - \frac{1 - 20.11 / 31.75}{1 - 20.36661}$$

1					
	Chg.	Sheet	№ of doc.	Sign.	Date

$$\mathbf{s}_{\mathbf{p}}^{\mathbf{p}} = \frac{D_{\mathbf{c}\mathbf{\pi}}}{3.4} \cdot \sqrt{\frac{p_{\mathbf{R}}}{\varphi_{\mathbf{E}} \cdot [\sigma]_{\mathbf{p}}}} = 1750 / 3.4 * (16.661 / (0.36661 * 165.89))^{1/2} = 269.39 \text{ mm}$$

Strength condition: $s_p \ge s_p^p + c_p$

 $390 \text{ mm} \ge 269.39 + 3 = 272.39 \text{ mm.Condition of strength is satisfied.}$

Calculated tubesheet thickness from the strength condition in the groove section:

$$\mathbf{s_{rp}} = \mathbf{s_p^p} \max \left\{ \left[1 - \sqrt{\frac{d_0}{b_n} \left(\frac{t_n}{t_p} - 1 \right)} \right]; \ \sqrt{\phi_E} \right\} = 269.39 * max\{ [1 - (25.65/11*(76.2/31.75 - 1))^{1/2}; 0.36661^{1/2} \} = 163.11 \text{ mm} \right\}$$

Strength condition: $s_n \ge s_{np} + c_p$

 $380 \text{ mm} \ge 163.11 + 3 = 166.11 \text{ mm.Condition of strength is satisfied.}$

6.4 Calculation in operating conditions (EXTERNAL)

Loading conditions:

Tube-side overpressure, p_T : (-1·10⁻⁴) MPa Shell-side overpressure, p_M : (-0.103) MPa Calculation temperature, T_p : 200 °C

Calculation of strength and buckling as per GOST 34233.7-2017

tube material properties:

Module of longitudinal elasticity at a temperature of T = 20 °C:

 $E^{20} = 2.043 \cdot 10^5 \text{ MPa}$

Thermal expansion at a temperature of T = 20 °C:

$$\alpha^{20} = 0.115 \cdot 10^{-4} 1 / {^{\circ}C}$$

Shell material properties:

Module of longitudinal elasticity at a temperature of T = 200 °C:

 $E = 1.92 \cdot 10^5 \text{ MPa}$

Thermal expansion at a temperature of T = 200 °C:

 $\alpha = 0.127 \cdot 10^{-4} 1/^{\circ} C$

and date

Inv. № of copy

ľ.

Tubesheet material properties:

Module of longitudinal elasticity at a temperature of T = 200 °C:

 $E_p = 1.99 \cdot 10^5 \text{ MPa}$

Joint materials properties:

Shell flange material properties:

Minimum length of transitional shell:

$$[1_1] = 2 \cdot \sqrt{D \cdot s_1}$$
 = $2 * (1750 * 110)^{1/2}$ = 877.5 mm

Length condition of transitional shell: $1_1 \ge [1_1]$

 $900 \text{ mm} \ge 877.5 \text{ mm}.$

Module of longitudinal elasticity at a temperature of T = 20 °C:

 $E^{20}_{fl} = 2.0235 \cdot 10^5 \text{ MPa}$

Chamber flange material properties:

Module of longitudinal elasticity at a temperature of T = 20 °C:

 $E^{20}_{f2} = 2.0235 \cdot 10^5 \text{ MPa}$

Shell material properties:

Module of longitudinal elasticity at a temperature of T = 200 °C:

 $E_1 = 1.92 \cdot 10^5 \text{ MPa}$

Chamber material properties:

Module of longitudinal elasticity at a temperature of T = 20 °C:

 $E^{20}_{2} = 2.0235 \cdot 10^5 \text{ MPa}$

Sheet material properties:

Allowable stresses for material SA-336 Gr.F22 Forgings at a temperature of 200 °C (operating conditions):

$$[\sigma]_p = \min\left(-\frac{R_{e/t}}{n_{T}}; \frac{R_{m/t}}{n_{E}}\right) = \min(263/1.5; 498/2.4) = 175.33 \text{ MPa}$$

Chg.	Sheet	№ of doc.	Sign.	Date

Calculated pressure (is taken equal to maximum possible difference of pressures influencing the tubesheet):

$$p_{R} = \max\{|p_{T}|, |p_{M}|, |p_{T} - p_{M}|\}$$

$$= \max\{|(-1.10^{4})|, |(-0.103)|, |(-1.10^{4}) - (-0.103)|, |(-1.10^{4}) - (-0.103)|, |(-1.10^{4}) - (-0.103)|, |(-1.10^{4}) - (-0.103)|, |(-1.10^{4}) - (-0.103)|, |(-1.10^{4}) - (-0.103)|, |(-1.10^{4}) - (-0.103)|, |(-1.10^{4}) - (-0.103)|, |(-1.10^{4}) - (-0.103)|, |(-0.103)|, |(-1.10^{4}) - (-0.103)|, |$$

Diameter of the circle inscribed in

381.25 mm

maximum tubeless area, D_E

Calculated sheet thickness in the tubeless zone:

$$\mathbf{s_{pp}} = 0.5 \, \mathrm{D_E} \sqrt{\frac{p_R}{|\sigma|_p}} \quad = \quad 0.5 * 381.25 * (0.103 \, / \, 175.33)^{1/2} \quad = 4.6202 \; \mathrm{mm}$$

Strength condition: $s_p \ge s_{pp} + c_p$

390 mm \geq 4.6202 +3 = 7.6202 mm. Condition of strength is satisfied.

For tubesheets with tubes fixed along full width of the tubesheet:

$$d_{E} = d_{0} - 2s_{T} = 25.65 - 2 * 2.77 = 20.11 \text{ mm}$$

Effective reduction factor:

$$\varphi_{\mathbf{E}} = 1 - \frac{d_{\mathbf{E}}}{d_{\mathbf{D}}} = 1 - \frac{20.11}{31.75} = 0.36661$$

Calculated tubesheet thickness in the perforation zone:

$$s_{p}^{p} = \frac{D_{\alpha\pi}}{3.4} \cdot \sqrt{\frac{p_{R}}{\phi_{E} \cdot [\sigma]_{p}}} \quad = \quad 1750 \, / \, 3.4 * \, (0.103 \, / (0.36661 * 175.33))^{1/2} \quad = 20.603 \ mm$$

Strength condition: $s_p \ge s_p^p + c_p$

390 mm \ge 20.603 +3 = 23.603 mm.Condition of strength is satisfied.

Calculated tubesheet thickness from the strength condition in the groove section:

$$s_{\text{rp}} = s_{\text{p}}^{\text{p}} \max \left\{ \left[1 - \sqrt{\frac{d_0}{b_n} \left(\frac{t_n}{t_p} - 1 \right)} \right]; \sqrt{\phi_{\text{E}}} \right\} \\ = 20.603 * \max\{ [1 - (25.65 / 11 * (76.2 / 31.75 - 1))^{1/2}; 0.36661^{1/2}\} \\ = 12.475 \text{ mm} \right\}$$

Strength condition: $s_n \ge s_{np} + c_p$

 $380 \text{ mm} \ge 12.475 + 3 = 15.475 \text{ mm.Condition of strength is satisfied.}$

6.5 Calculation in test conditions (Hydrotesting conditions)

Loading conditions for tests:

Tube-side overpressure, p_T : 22.013 MPa Shell-side overpressure, p_M : 22.017 MPa Calculation temperature, T_p : 20 °C

Calculation of strength and buckling as per GOST 34233.7-2017

tube material properties:

and date

Inv. № of copy

ľ.

Replace

Module of longitudinal elasticity at a temperature of T = 20 °C:

 $E^{20} = 2.043 \cdot 10^5 \text{ MPa}$

Thermal expansion at a temperature of T = 20 °C:

 $\alpha^{20} = 0.115 \cdot 10^{-4} 1 / {^{\circ}C}$

Shell material properties:

Module of longitudinal elasticity at a temperature of T = 20 °C:

 $E^{20} = 2.0235 \cdot 10^5 \text{ MPa}$

Thermal expansion at a temperature of T = 20 °C:

 $\alpha^{20} = 0.115 \cdot 10^{-4} 1/^{\circ} C$

Tubesheet material properties:

Module of longitudinal elasticity at a temperature of T = 20 °C:

 $E^{20}_{p} = 2.1035 \cdot 10^5 \text{ MPa}$

Joint materials properties:

Shell flange material properties:

Minimum length of transitional shell:

$$[1_1] = 2 \cdot \sqrt{D \cdot s_1}$$
 = $2 * (1750 * 110)^{1/2}$ = 877.5 mm

Chg.	Sheet	№ of doc.	Sign.	Date

900 mm \geq 877.5 mm.

Module of longitudinal elasticity at a temperature of T = 20 °C:

$$E^{20}_{f1} = 2.0235 \cdot 10^5 \text{ MPa}$$

Chamber flange material properties:

Module of longitudinal elasticity at a temperature of T = 20 °C:

$$E^{20}_{f2} = 2.0235 \cdot 10^5 \text{ MPa}$$

Shell material properties:

Module of longitudinal elasticity at a temperature of T = 20 °C:

$$E^{20}_{1} = 2.0235 \cdot 10^{5} \text{ MPa}$$

Chamber material properties:

Module of longitudinal elasticity at a temperature of T = 20 °C:

$$E^{20}_{2} = 2.0235 \cdot 10^{5} \text{ MPa}$$

Sheet material properties:

Allowable stresses for material SA-336 Gr.F22 Forgings at a temperature of 20 °C (hydrotesting conditions):

$$[\sigma]^{20}_{p} = \frac{R_{e/t}}{n_{t}} = 310/1.1 = 281.82 \text{ MPa}$$

Tubesheet strength

Calculated pressure (is taken equal to maximum possible difference of pressures influencing the tubesheet):

$$p_{R} = \max\{|p_{T}|, |p_{M}|, |p_{T} - p_{M}|\} = \max\{|22.013|, |22.017|, |22.013 - 22.017|\} = 22.017 \text{ MPa}$$

Calculated sheet thickness in the tubeless zone:

$$\mathbf{s_{pp}} = 0.5 D_{\mathbf{E}} \sqrt{\frac{p_{\mathbf{R}}}{|\sigma|_{\mathbf{p}}}} = 0.5 *381.25 * (22.017/281.82)^{1/2} = 53.281 \text{ mm}$$

Strength condition: $s_p \ge s_{pp} + c_p$

 $390 \text{ mm} \ge 53.281 + 0 = 53.281 \text{ mm.Condition of strength is satisfied.}$

For tubesheets with tubes fixed along full width of the tubesheet:

$$d_{\mathbf{E}} = d_0 - 2s_{\mathbf{T}} = 25.65 - 2 * 2.77 = 20.11 \text{ mm}$$

Effective reduction factor:

and date

Inv. № of copy

Replace Inv.

읭

$$\varphi_{\mathbf{E}} = 1 - \frac{d_{\mathbf{E}}}{t_{\mathbf{p}}} = 1 - \frac{1 - 20.11 / 31.75}{t_{\mathbf{p}}} = 0.36661$$

Calculated tubesheet thickness in the perforation zone:

$$\mathbf{s}_{\mathbf{p}}^{\mathbf{p}} = \frac{D_{\mathbf{c}\pi}}{3.4} \cdot \sqrt{\frac{p_{\mathbf{R}}}{\phi_{\mathbf{E}} \cdot [\sigma]_{\mathbf{p}}}} = 1750 / 3.4 * (22.017 / (0.36661 * 281.82))^{1/2} = 237.6 \text{ mm}$$

Strength condition: $s_p \ge s_p^p + c_p$

390 mm \geq 237.6 +0 = 237.6 mm.Condition of strength is satisfied.

Calculated tubesheet thickness from the strength condition in the groove section:

$$\mathbf{s_{np}} = \mathbf{s_p^p} \max \left\{ \left[1 - \sqrt{\frac{d_0}{b_n} \left(\frac{t_n}{t_p} - 1 \right)} \right], \ \sqrt{\phi_E} \right\} = 237.6 * max[[1 - (25.65/11 * (76.2/31.75 - 1))^{1/2}; 0.36661^{1/2}] = 143.87 \text{ mm}$$

Strength condition: $s_n \ge s_{np} + c_p$

 $380 \text{ mm} \ge 143.87 + 0 = 143.87 \text{ mm.Condition of strength is satisfied.}$

7 Separation wall

7.1 Calculation in operating conditions (INTERNAL)

Loading conditions:

Calculation temperature, T: 343 °C Differential pressure, Δp: 0.5 MPa

Calculation of strength and buckling as per GOST 34233.7-2017

Allowable stresses for material SA-387 Gr.22 Plate at a temperature of 343 °C (operating conditions):

$$[\sigma]_{n} = \min \left(\begin{array}{c} \frac{R_{e/t}}{n_{T}}; \frac{R_{m/t}}{n_{E}} \end{array} \right) = \min\{248.84/1.5; 488.12/2.4\} = 165.89 \text{ MPa}$$

$$\mathbf{f_n} = \frac{1}{1 + \frac{b_{\text{mep}}}{L_{\text{mep}}} + \left(\frac{b_{\text{mep}}}{L_{\text{mep}}}\right)^2} = \frac{1/(1 + 1750/265 + (1750/265)^2)}{1 + \frac{b_{\text{mep}}}{L_{\text{mep}}}} = 0.019526$$

Design thickness of separation wall:

$$\mathbf{s_{nep}^p} = 0.71 \ \mathbf{b_{nep}} \sqrt{\frac{\Delta \mathbf{pf_n}}{\sigma_{\mathbf{ln}}}} = 0.71 \ \mathbf{b_{nep}} \sqrt{\frac{\Delta \mathbf{pf_n}}{\sigma_{\mathbf{ln}}}} = 0.71 \ *1750 \ *(0.5 \ *0.019526 / 165.89)^{1/2} = 9.5318 \ \mathrm{mm}$$

 $\mbox{Strength condition:} \qquad \qquad \mbox{$\mathfrak{s}_{nep} \geq \mathfrak{s}_{nep}^p + \mathfrak{c}_n$}$

 $25 \text{ mm} \ge 9.5318 + 3 = 12.532 \text{ mm.Condition}$ is satisfied.

Sign. and date	
Inv. Nº of copy	
Replace Inv. Nº	
Sign. and date	

Chg.	Sheet	№ of doc.	Sign.	Date

Loading conditions:

Axial force influencing the tube, N_T: 5161.1 N

Bending moment influencing the tube, M_T : $0 \text{ N} \cdot \text{m}$

Calculated pressure (is taken equal to maximum possible difference of pressures influencing the tubesheet):

$$p_R = \max\{|p_T|, |p_M|, |p_T - p_M|\} = \max\{|16.661|, |14.134|, |16.661 - 14.134|\} = 16.661 \text{ MPa}$$

Tubes material properties:

Allowable stresses for material SA-213 Gr.T11 Smls. tube at a temperature of 370 °C (operating conditions):

$$\label{eq:total_total_total_total_total} \left[\sigma\right]_{T} = min\left(-\frac{R_{\text{e/t}}}{n_{\text{m}}}; \, \frac{R_{\text{m/t}}}{n_{\text{g}}} - \right) = min\{155.6 \, / \, 1.5 \, ; \, 414 \, / \, 2.4\} = 103.73 \; MPa$$

Module of longitudinal elasticity at a temperature of T = 370 °C:

 $E = 1.814 \cdot 10^5 \text{ MPa}$

Calculated stresses in tubes

Axial membrane stresses:

$$\sigma_{mT} = \frac{\left| N_T \right|}{\pi \cdot \left(d_T - s_T \right) \cdot \left(s_T - c_T \right)} = \frac{/5161.1 / / (3.1416 * (25.4 - 2.77) * (2.77 - 0))}{(3.1416 * (25.4 - 2.77) * (2.77 - 0))} = 26.208 \text{ MPa}$$

Circumferential stresses:

$$\sigma_{\theta T} = \frac{\left(d_{T} - s_{T}\right)p_{R}}{2\cdot\left(s_{T} - c_{T}\right)} = (25.4 - 2.77)*16.661/(2*(2.77 - 0)) = 68.056 \text{ MPa}$$

Strength of tubes

Static strength condition of tubes: $\max \{\sigma_{mT}; \sigma_{\theta T}\} \leq [\sigma]_T$ $\max \{26.208; 68.056\}$ MPa ≤ 103.73 MPa.Condition of strength is satisfied.

8.2 Calculation in operating conditions (EXTERNAL)

Loading conditions:

and date

Inv. № of copy

Replace Inv. No

⋛

Axial force influencing the tube, N_T : (-0.030978) N

Bending moment influencing the tube, M_T : 0 N·m

Calculated pressure (is taken equal to maximum possible difference of pressures influencing the tubesheet):

$$p_{R} = \max\{|p_{T}|, |p_{M}|, |p_{T} - p_{M}|\} = \max\{|(-1\cdot10^{4})|, |(-0.103)|, |(-1\cdot10^{4}) - (-0.103)|\} = 0.103 \text{ MPa}$$

Tubes material properties:

Allowable stresses for material SA-213 Gr.T11 Smls. tube at a temperature of 20 °C (operating conditions):

$$\label{eq:continuous} \left[\sigma\right]^{20} = min \left(-\frac{R_{\text{e/t}}}{n_{\text{T}}}; \, \frac{R_{\text{m/t}}}{n_{\text{R}}} \right) = min(207/1.5; 414/2.4) = 138 \; MPa$$

Module of longitudinal elasticity at a temperature of T = 20 °C:

 $E^{20} = 2.043 \cdot 10^5 \text{ MPa}$

Calculated stresses in tubes

Axial membrane stresses:

$$\sigma_{mT} = \frac{\left| N_T \right|}{\pi \cdot \left(d_T - s_T \right) \cdot \left(s_T - c_T \right)} = \frac{|(-0.030978)|}{(3.1416 * (25.4 - 2.77) * (2.77 - 0))} = 0.1573 \cdot 10^{-3} \text{ MPa}$$

Circumferential stresses

$$\sigma_{\theta T} = \frac{\left(d_T - s_T\right)p_R}{2 \cdot \left(s_T - c_T\right)} = (25.4 - 2.77) * 0.103 / (2 * (2.77 - 0)) = 0.42074 \text{ MPa}$$

Strength of tubes

Static strength condition of tubes: $\max \{\sigma_{mT}; \sigma_{\theta T}\} \leq [\sigma]_T$ $\max \{0.1573 \cdot 10^{-3}; 0.42074\}$ MPa ≤ 138 MPa.Condition of strength is satisfied.

8.3 Calculation in test conditions

Loading conditions for tests:

Axial force influencing the tube, N_T: 6819.2 N Bending moment influencing the tube, M_T : 0 N·m

Calculated pressure (is taken equal to maximum possible difference of pressures influencing the tubesheet):

$$p_{R} = \max\{|p_{T}|, |p_{M}|, |p_{T} - p_{M}|\} = \max\{|22.013|, |22.017|, |22.013 - 22.017|\} = 22.017 \text{ MPa}$$

Tubes material properties:

Allowable stresses for material SA-213 Gr.T11 Smls. tube at a temperature of 20 °C (hydrotesting conditions):

$$\left[\Box\right]^{20}_{T} = \frac{R_{e/t}}{n_{_{T}}} = 207 / 1.1 = 188.18 \text{ MPa}$$

Module of longitudinal elasticity at a temperature of T = 20 °C:

$$E^{20} = 2.043 \cdot 10^5 \text{ MPa}$$

Calculated stresses in tubes

Axial membrane stresses:

$$\sigma_{mT} = \frac{|N_T|}{\pi \cdot (d_T - s_T) \cdot (s_T - c_T)} = \frac{|6819.2| / (3.1416 * (25.4 - 2.77) * (2.77 - 0))}{(3.1416 * (25.4 - 2.77) * (2.77 - 0))} = 34.628 \text{ MPa}$$

Circumferential stresses:

$$\sigma_{\theta T} = \frac{\left(d_{T} - s_{T}\right)p_{R}}{2 \cdot \left(s_{T} - c_{T}\right)} = (25.4 - 2.77) * 22.017/(2 * (2.77 - 0)) = 89.937 \text{ MPa}$$

Strength of tubes

Static strength condition of tubes: $\max \{\sigma_{mT}; \sigma_{\theta T}\} \leq [\sigma]_T$ max{34.628; 89.937} MPa ≤ 188.18 MPa.Condition of strength is satisfied.

Sign. and date	
Inv. Nº of copy	
Replace Inv. Nº	
Sign. and date	

Chg.	Sheet	№ of doc.	Sign.	Date			

GOST CALCULATION FOR STEAM GENERATOR

9 References

- 1) GOST 34233.1-2017. Vessels and apparatus. Norms and methods of strength calculation. General requirements.
- 2) GOST 34233.2-2017. Vessels and apparatus. Norms and methods of strength calculation. Calculation of cylindric and conic, shells convex and flat bottoms and covers.
- 3) GOST 34233.7-2017. Vessels and apparatus. Norms and methods of strength calculation. Heat exchangers.
- 4) GOST 34283-2017. Vessels and apparatus. Norms and methods of strength calculation from wind loads, seismic influence and other external loads.
- 5) GOST 34347-2017. Steel welded vessels and apparatus. General specifications

Sign. and date						
Inv. Nº of copy						
Replace Inv. Nº						
Sign. and date						
Inv. Nº Sign.	Chg. Sheet	№ of doc.	Sign.	Date	GOST CALCULATION FOR STEAM GENERATOR THE PROGRAMM PASS/EQUIP 3.03.0.9.000 «NTP TO	Page 22

	1			
Sign. and date				
ши. № от сору				
Replace IIIV. № IIIV. № 01 copy				
Sign. and date				
Inv. Nº Sign.	Chg. Sheet № of doc.	Sign. Date	GOST CALCULATION FOR STEAM GENERATOR	Page

2 Sheet of changes registration Numbers of sheets (pages) Incoming № and Total sheets Nº date (pages) in doc-Signature Date of accompanying Changed Replaced Inserted Deleted of document ument document Sign. and date Inv. № of copy Replace Inv. No Sign. and date Inv. № Sign. Page **GOST CALCULATION FOR STEAM GENERATOR** 24 Sheet Date № of doc. Sign.