

PCT/DE2005/000160
2004P00850WOUS

- 1 -

1 Description

2

3 Compressed-gas-insulated switch-disconnector module and bushing
4 arrangement

5

6 The invention relates to a compressed-gas-insulated
7 switch-disconnector module having an electrically conductive
8 housing and having a main axis along which in each case one
9 first and one second electrical conductor which are connected
10 to an isolating gap extend.

11

12 A switch-disconnector module such as this is known, for
13 example, from US Patent No. 6,538,224 B2. In the known
14 arrangement, an interrupter unit of a circuit breaker is
15 arranged within a grounded encapsulating housing. Flanges are
16 arranged on the encapsulating housing, through which electrical
17 conductors are passed in order to make contact with the
18 interrupter unit. A switch-disconnector module is
19 flange-connected to each of the flanges. The electrical
20 conductors which are supplied can be electrically isolated from
21 the interrupter unit by means of the switch-disconnector
22 modules. The switch-disconnector modules are bounded by means
23 of partition insulators from adjacent compressed-gas-insulated
24 areas of the encapsulating housing of the circuit breaker and
25 from adjacent outdoor bushings. Since the outdoor bushings are
26 no longer directly flange-connected to the encapsulating
27 housing, the position of the outdoor connections changes over
28 the length of the switch-disconnector modules.

29

30 A circuit breaker which is equipped with switch-disconnector
31 modules such as this can, for example, no longer be used in
32 standardized switch panels.

1 The present invention is based on the object of designing a
2 compressed-gas-insulated switch-disconnector module of the type
3 mentioned in the introduction such that it has a short physical
4 length.

5

6 In the case of a compressed-gas-insulated switch-disconnector
7 module of the type mentioned in the introduction according to
8 the invention, the object is achieved in that the first phase
9 conductor passes through a first flange on the
10 switch-disconnector housing, and the second phase conductor
11 passes through a second flange on the switch-disconnector
12 housing. A tubular electrode is connected to the housing of the
13 switch-disconnector module, concentrically surrounds the first
14 phase conductor, is arranged radially on the inside of the
15 first flange, and projects beyond it.

16

17 The flange surfaces of the first flange are dielectrically
18 shielded by means of the tubular electrode. It is thus possible
19 to arrange the housing of the switch-disconnector module in a
20 small volume directly around the isolating gap of the switch
21 disconnector. This shortens the isolating gaps which govern the
22 physical size.

23

24 A further advantageous refinement can provide that the second
25 flange, which is arranged coaxially with respect to the first
26 flange at the opposite end of the housing, has a holding
27 device; onto which a toroidal transformer can be fitted, on its
28 outside.

29

30 The coaxial arrangement of the first and second flanges results
31 in the switch-disconnector module having an elongated shape.
32 All of the apparatuses which are required to form the
33 switch-disconnector module can extend along the main axis. In
34 addition to the flange function of the second flange, this may

1 also have a holding apparatus for a toroidal transformer on its
2 outside. This provides the capability to complete the
3 switch-disconnector module as a subassembly.

4

5 In this case, it is advantageously possible to provide for the
6 second flange to be arranged at the end of a tubular connecting
7 stub which at least partially supports the transformer.

8

9 The physical height of the switch-disconnector module can be
10 reduced by a combination of the second flange with a tubular
11 connecting stub. The transformers which are alternatively
12 fitted to intermediate housings or to a mating flange are now
13 associated with the switch-disconnector module. This makes it
14 possible to reduce the number of flange connections required.
15 This reduction allows the overall physical length of the
16 switch-disconnector module to be reduced.

17

18 It is advantageously also possible to provide for the first and
19 the second flange to be annular, and for the first flange to
20 have a larger circumference than the second flange.

21

22 If the circumference of the second flange is smaller than that
23 of the first flange, a toroidal transformer can be pushed onto
24 the second flange without any problems. Its external contour
25 corresponds approximately to the contour of the first flange.
26 This results in the overall structure of the
27 switch-disconnector module having an approximately cylindrical
28 external contour. Individual projecting assemblies are thus
29 avoided. At the same time, sufficient space is available in the
30 area of the first flange to shape the tubular electrode in a
31 suitable manner.

1 A further advantageous refinement makes it possible to provide
2 for the electrode to be supported by the housing, in particular
3 being cast onto it.

4

5 In order to ensure that the housing has adequate pressure
6 resistance, it must be manufactured from a mechanically robust
7 material, for example aluminum. At the same time, the housing
8 forms a framework for all of the assemblies which are attached
9 to it or installed in it, such as the isolating gap and the
10 transformer. Mechanical forces are introduced into the housing
11 structure via the first and the second flange. Casting the
12 electrode onto the housing allows particularly effective
13 manufacturing methods to be used to produce the housing. For
14 example this can thus be manufactured as an integral casting.
15 It is thus also possible to produce embodiments of the housing
16 with fine elements.

17

18 A further advantageous refinement makes it possible to provide
19 for one of the phase conductors to have the capability to be
20 grounded by means of a grounding switch in the interior of the
21 housing.

22

23 A compressed gas is applied to the interior that is surrounded
24 by the housing. This area is therefore not mechanically
25 accessible from the outside. If a grounding switch operates
26 incorrectly, fault arcs occur, which could adversely affect the
27 health of the operator. It is virtually impossible for a fault
28 arc to emerge from the interior of the housing. This makes it
29 possible to virtually preclude any hazard to the operator,
30 particularly in the case of manually operated grounding
31 switches. It is also possible to provide a plurality of
32 grounding switches in order, for example, to ground a first and
33 a second phase conductor.

1 In the prior art described in the introduction, outdoor
2 bushings are provided in order to connect the electrical lines
3 to the interrupter unit in the circuit breaker. The
4 conventional design of the known switch-disconnector module
5 makes it necessary to insert the switch-disconnector module
6 between an outdoor bushing and a connecting flange of the
7 encapsulating housing of the circuit breaker.

8

9 A further object of the invention is therefore to specify a
10 bushing arrangement which has a switch disconnector with an
11 isolating gap which has a compact physical shape.

12

13 In the case of a bushing arrangement having a
14 switch-disconnector with an isolating gap which is arranged
15 such that it is insulated by means of compressed gas within an
16 electrically conductive housing, the object is achieved
17 according to the invention in that a first phase conductor
18 which is passed through an electrically insulating casing that
19 is flange-connected to the housing passes through the casing in
20 the form of an outdoor bushing and is connected at one of its
21 ends to a switching contact of the isolating gap, with the
22 housing and the casing surrounding a common gas area.

23

24 The common gas area means that there is no need to use
25 partition insulators. These partition insulators increase the
26 physical volume of a bushing arrangement with the switch
27 disconnector by the physical height of each of the flanges that
28 are required and of the insulating partitions. The connection
29 of a switching contact of the isolating gap to the first phase
30 conductor allows the isolating gap and the first phase
31 conductor to be made adequately mutually mechanically robust.

32 The

1 first phase conductor may, for example, be held on the
2 insulating casing in the area in which it passes through the
3 wall of the casing. The common gas area also makes it possible
4 for the assemblies to jointly use sections of the electrically
5 conductive housing. Strict separation and splitting into
6 individual gas areas would make such flexible usage of the
7 space in the housing more difficult.

8

9 It is also advantageously possible to provide for the first
10 phase conductor to be supported on the housing by means of a
11 pillar support.

12

13 Depending on the configuration of the isolating gap and of the
14 phase conductor, the supporting pillar can be arranged very
15 flexibly in the interior of the housing. In this case, it is
16 possible to provide for the pillar support to be arranged
17 directly on the first phase conductor, or it is also
18 advantageously possible to provide for the first phase
19 conductor to be supported via a switching contact of the switch
20 disconnector.

21

22 The joint use of pillar supports in the interior of the housing
23 makes it possible to reduce the number of pillar supports
24 themselves. This in turn results in space areas in the interior
25 of the housing, which can be filled with further assemblies,
26 for example with conductor runs, switching contacts or else
27 grounding contacts.

28

29 It is advantageously also possible to provide for the gas area
30 to extend into a tubular connecting stub of the housing, around
31 which a toroidal transformer is arranged.

32

33 The filling of a tubular connecting stub with the compressed
34 gas from the gas area also allows the dielectric strength

1 of this area to be increased. The compressed-gas filling makes
2 it possible to reduce the circumference of the tubular
3 connecting stub. This makes it possible to push conventional
4 toroidal transformers with standardized openings onto the
5 tubular connecting stub of the housing.

6

7 It is advantageously also possible to provide for an electrode
8 to extend coaxially with respect to the first phase conductor,
9 and for the electrode to shield the connecting area between the
10 insulating casing and the housing.

11

12 The use of the electrode allows a junction area from the
13 grounded housing to the insulating casing to be shortened. In
14 this case, the electrical fields are influenced by the
15 electrode in such a way that the connecting area between the
16 electrically insulating casing and the housing of the first
17 flange is not subject to unacceptable electrical loading.

18

19 The invention will be described in more detail in the following
20 text with reference to one exemplary embodiment, and is
21 illustrated schematically in a drawing, in which:

22

23 figure 1 shows a first embodiment variant of a bushing
24 arrangement as well as a switch-disconnector
25 module,

26

27 figure 2 shows a second embodiment variant of a bushing
28 arrangement with a switch-disconnector module,

figure 3 shows a third embodiment variant of a bushing arrangement with a switch-disconnector module,

figure 4 shows a fourth embodiment variant of a bushing arrangement with a switch-disconnector module,

figure 5 shows a fifth embodiment variant of a bushing arrangement with a switch-disconnector module, and

figure 6 shows a sixth embodiment variant of a bushing arrangement with a switch-disconnector module.

Figure 1 shows a first variant of a bushing arrangement 1. The bushing arrangement 1 has a compressed-gas-insulated switch-disconnector housing 2. The switch-disconnector housing 2 is arranged to be essentially rotationally symmetrical around a main axis 3. A first flange 4 is arranged on the switch-disconnector housing 2, coaxially with respect to the main axis 3. A second flange 5 is arranged on the switch-disconnector housing 2, likewise coaxially with respect to the main axis 3, in the direction facing away from the first flange 4. The second flange 5 is arranged at the end of a tubular connecting stub 6 on the switch-disconnector housing 2. A first electrical phase conductor 7 and a second electrical phase conductor 8 are also arranged along the main axis 3. The first electrical phase conductor 7 is inserted into the interior of the switch-disconnector housing 2 through the first flange 4. The second electrical phase conductor 8 is inserted into the interior of the switch-disconnector housing 2

1 through the second flange 5. The two electrical phase
2 conductors 7, 8 are arranged coaxially with respect to one
3 another.

4

5 A tubular electrode 9 is arranged on the switch-disconnector
6 housing 2 internally and radially on the first flange 4. The
7 tubular electrode 9 surrounds the first electrical phase
8 conductor 7. An electrically insulating casing 10 is
9 flange-connected to the first flange 4. The electrically
10 insulating casing 10 is in the form of an outdoor bushing, in a
11 known manner. The casing 10 may, for example, be manufactured
12 from a porcelain or from a plastic. The electrically insulating
13 casing 10 is a rotationally symmetrical hollow body which is
14 arranged coaxially with respect to the main axis 3. The first
15 electrical phase conductor 7 passes through the free end of the
16 electrically insulating casing 10. Outside the electrically
17 insulating casing 10, the first phase conductor 7 forms a first
18 connecting point 11. By way of example, an overhead line may be
19 electrically conductively connected to the first connecting
20 point 11.

21

22 The tubular electrode 9 is integrally connected to the
23 switch-disconnector housing 2 and is cast on in a casting
24 process during the manufacture of the switch-disconnector
25 housing 2.

26

27 An isolating gap 12 is arranged in the interior of the
28 switch-disconnector housing 2. The isolating gap 12 has a first
29 switching contact 13 which is mounted on the
30 switch-disconnector housing 2 in a fixed position by means of a
31 supporting insulator 14. The isolating gap 12 also has a
32 movable switching contact 15. The movable switching contact 15
33 is in the form of a bolt. A rotary movement can be transmitted
34 via an electrically insulating shaft 16 from outside the
35 switch-disconnector housing 2 into the interior of the
36 switch-disconnector housing 2.

1 A pinion is arranged on the electrically insulating shaft 16
2 and is operatively connected to a tooth system arranged on the
3 movable isolating contact 15. The movable isolating contact 15
4 is moved when the electrically insulating shaft 16 carries out
5 a corresponding rotary movement. When the isolating gap 12 is
6 in the open state, the movable isolating contact 15 has been
7 pulled into a recess in the second electrical phase conductor
8 8. The movable isolating contact 15 is mounted on the second
9 electrical phase conductor 8. The second electrical phase
10 conductor 8 and the movable isolating contact 15 are supported
11 by means of a further supporting insulator 14a.

12
13 In order to monitor an electric current which flows through the
14 first and second electrical phase conductors 7, 8,
15 respectively, the second flange 5 is provided with a holding
16 apparatus onto which a toroidal current transformer 17 can be
17 pushed. For this purpose, the second flange 5 has a cylindrical
18 external circumference. The toroidal transformer can now touch
19 the cylindrical outer surface formed in this way, at least in
20 places. A further outer surface 18 with a cylindrical
21 circumference is also integrally formed on the tubular
22 connecting stub 6. The toroidal current transformer 17 is
23 additionally mounted on this outer surface 18 with a
24 cylindrical circumference. The outer surface 18 with the
25 cylindrical circumference is immediately adjacent to a
26 projection on the compressed-gas-insulated switch-disconnector
27 housing 2, thus forming a stop which limits the extent to which
28 the toroidal current transformer can be pushed onto the tubular
29 connecting stub 6. The wall thickness of the tubular connecting
30 stub 6 is reduced between the outer surface 18, which has a
31 cylindrical circumference, and the second flange 5, thus
32 forming a circumferential recess. This recess makes it easier
33 to push the toroidal current transformer 17

1 on. Furthermore, this area is available for circulation of a
2 cooling medium. The bushing arrangement can be connected by
3 means of the second connecting stub 5 to a second encapsulating
4 housing, for example an encapsulating housing of a high-voltage
5 circuit breaker.

6
7 Furthermore, the switch-disconnector housing 2 has optically
8 transparent but gas-tight observation openings 19. The
9 observation openings 19 allow the isolating gap 12 to be viewed
10 from outside the compressed-gas-insulated switch-disconnector
11 housing 2.

12
13 The volume which is formed by the compressed-gas-insulated
14 switch-disconnector housing 2 and the electrically insulating
15 casing 10 as well as the tubular connecting stub 6 represents a
16 common gas area. This gas area is filled with an insulating gas
17 at an increased pressure, for example sulfurhexafluoride. It is
18 possible for the insulating gas to circulate on the basis of
19 convection, for example from the tubular connecting stub 6
20 through the switch-disconnector housing 2 into the area of the
21 free end of the electrically insulating casing 10.

22
23 Figure 2 illustrates one embodiment variant of a bushing
24 arrangement. In principle, this corresponds to the variant
25 illustrated in figure 1. Only the specific refinements will
26 therefore now be indicated. Assemblies having the same effect
27 are provided with the same reference signs as in figure 1. The
28 compressed-gas-insulated switch-disconnector housing 2 is
29 additionally provided with a grounding switch 20. The grounding
30 switch 20 has a grounding contact 20a, which makes permanent
31 contact with the electrically conductive switch-disconnector
32 housing 2, which is at ground potential. This grounding contact
33 20a is moved radially

1 with respect to the main axis 3. A mating contact is associated
2 with the grounding contact 20a on the fixed-position switching
3 contact 13 (which in the present exemplary embodiment is
4 attached to the second electrical phase conductor 8). The
5 electrical phase conductor 8 can be grounded via this mating
6 contact and the fixed-position switching contact 13. In
7 comparison to the variant illustrated in figure 1, the
8 installation locations of the fixed-position switching contact
9 13 and of the movable switching contact 15 have been
10 interchanged for the isolating gap 12.

11
12 The third embodiment variant of a bushing arrangement as
13 illustrated in figure 3 shows an alternative embodiment of the
14 drive for the movable contact piece 15 for the isolating gap
15 12. The movable isolating contact 15 can be moved by means of a
16 rocker 21, which is mounted such that it can pivot. A manually
17 operable grounding switch 22, which is arranged on the
18 compressed-gas-insulated switch-disconnector housing 2, is also
19 illustrated, in the form of a section. A grounding contact 22a
20 is sealed from the switch-disconnector housing 2 by means of a
21 bellows 23. The grounding contact 22a can be moved into a
22 mating contact with the bellows 23 being deformed, and with its
23 mating contact being electrically conductively connected to the
24 movable isolating contact 15 and to the second electrical phase
25 conductor 8.

26
27 Furthermore, figure 3 shows an alternative embodiment of the
28 tubular electrode 9. Divided by the main axis 3, the
29 illustration shows on the one hand an embodiment of the tubular
30 electrode 9 in the form of a sheet-metal body, which can be
31 screwed to the switch-disconnector housing 2 by means of screw
32 connections. Alternatively, an embodiment of the tubular
33 electrode 9 in the form of casting is also illustrated. The way
34 in which the first phase conductor 7 is passed through the

1 electrically insulating casing 10 by means of a fitting body 24
2 can also be seen, in the form of a section. The use of a
3 fitting body 24 makes it easier to seal the electrically
4 insulating casing in the area in which the first phase
5 conductor passes through it, since the first electrical phase
6 conductor 7 is inserted into the fitting body 24. This avoids
7 the need for an interface, which additionally needs to be
8 sealed, in the area in which the first electrical phase
9 conductor 7 passes through the electrically insulating casing
10 10.

11
12 Figures 4, 5 and 6 each show embodiment variants which are
13 based on a development of the embodiment variant of a bushing
14 arrangement as illustrated in figure 1. The basic design of the
15 bushing arrangements illustrated in figures 4, 5 and 6 in each
16 case corresponds to that of the first embodiment variant
17 illustrated in figure 1. The only difference is that different
18 variants are shown in the form of the isolating gap in the
19 switch disconnector, and an associated grounding device. The
20 following text will therefore describe only the respective
21 embodiments of the isolating gap and grounding apparatus.

22
23 The isolating gap 25 illustrated in figure 4 has a stationary
24 switching contact 13 as well as a movable switching contact 15.
25 The movable switching contact 15 can be moved via a rocker 26.
26 Furthermore, a grounding contact 27 can be moved via the rocker
27 26. During an opening movement of the isolating gap, and during
28 a movement associated with this of the movable switching
29 contact 15, the rocker 26 is moved further after the movable
30 switching contact 15 reaches the switched-off position, as a
31 result of which a grounding contact 27 can be moved into a
32 mating contact 28 which is arranged on the switch-disconnector
33 housing 2. The second electrical phase conductor 8 can be
34 grounded by the

1 further movement of the rocker 26. The grounding contact 27 is
2 in this case moved at an angle to the direction of the main
3 axis 3.

4

5 Figure 5 shows a further modification of the isolating gap
6 within the switch-disconnector housing 2. The movable isolating
7 contact 30 is in the form of a bolt which can be moved along
8 the bolt longitudinal axis, at an angle to the main axis 3. A
9 rocker 31 is provided for this purpose, and is mounted such
10 that it can pivot. The movable isolating contact 30 may in this
11 case be moved beyond its switched-off position during the
12 course of a switching-off movement, with its end facing away
13 from the isolating gap being inserted into a mating contact on
14 the switch-disconnector housing 2. This insertion into the
15 mating contact allows the second electrical phase conductor 8
16 to be grounded.

17

18 Figure 6 shows a further variant of an isolating gap. A movable
19 isolating contact 40 is mounted on the second electrical phase
20 conductor 8. This movable isolating contact 40 is in the form
21 of a blade which can pivot and, in its neutral position, is
22 covered by shielding shrouds which make contact with the second
23 electrical phase conductor 8. When the isolating gap is closed,
24 the movable isolating contact 40 is inserted into a mating
25 contact 41 which is in the form of a slot and makes contact
26 with a second electrical phase conductor 9. During a
27 switching-off process of the movable isolating contact 40, this
28 contact 40 is pivoted out of the mating contact 41 and can be
29 inserted via its neutral position into a mating contact which
30 is electrically conductively connected to the
31 switch-disconnector housing 2. This mating contact allows the
32 second electrical phase conductor 8 to have a ground potential
33 applied to it.

1 Details of the individual embodiment variants can be combined
2 with one another thus making it possible to create different
3 embodiment variants which are not illustrated in figures 1 to
4 6.

5