This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PI WO 9606088 A1 19960229 (199615)* JA 51p C07D277-64 RW: AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE W: CA KR US

✓ JP 08109177 A 19960430 (199627) 11p C07D277-64

AB WO 9606088 A UPAB: 19960625

٠,

Benzothiazole sulphonamide cpds. and their acid addn. salts are new: A = 2-6C alkylene (opt. substd. by 1-4C alkyl); B = a gp. A or a bond; R1 = H or 1-4C alkyl; R2, R3 = H or 1-6C alkyl; or R2+R3 = 1-4C alkylene (opt. substd. by 1-4C alkyl). R4 = 3-7C cycloalkyl (opt. substd. by 1-4C alkyl).

USE - (I) inhibit abnormal IgE antibody levels and are useful for the treatment or propylaxis of e.g. asthma, or as a bronchodilator. Dwg.0/0

四公開特許公報(A)

(11)特許出願公開番号

特開平8-109177

(43)公開日 平成8年(1996)4月30日

(51) Int. Cl. 6

識別記号

庁内整理番号

FI

技術表示箇所

C 0 7 D 277/64

A 6 1 K 31/425

ACD

ACF

AED

審査請求 未請求 請求項の数8

OL

(全11頁)

(21)出願番号

特願平7-209408

(22)出願日

平成7年(1995)8月17日

(31)優先権主張番号 特願平6-193933

(32)優先日

平6(1994)8月18日

(33)優先権主張国

日本(JP)

(71)出願人 000000033

旭化成工業株式会社

大阪府大阪市北区堂島浜1丁目2番6号

(72) 発明者 利根川 健

静岡県富士市鮫島2番地の1 旭化成工業株

式会社内

(72)発明者 野崎 誉士秀

静岡県富士市鮫島2番地の1 旭化成工業株

式会社内

(54) 【発明の名称】シクロアルキルアルキルアミン誘導体およびその用途

(57) 【要約】

一般式(1) 【構成】

*【化1】

(式中、Aは炭素数1~4個のアルキル基で置換されて いてもよい炭素数2~6個のアルキレン基を示し、Bは 炭素数1~4個のアルキル基で置換されていてもよい炭 素数1~6個のアルキレン基を示すか、または単結合を 示し、R, は水素原子または炭素数1~4個のアルキル 基を示し、R2およびR3は各々独立に水素原子もしく は炭素数1~6個のアルキル基を示すか、またはR2 お よびR。は一緒にて炭素数1~4個のアルキル基で置換 されていてもよい炭素数1~4個のアルキレン基を示

し、R 4 は炭素数1~4個のアルキル基で置換されてい てもよい炭素数3~7個のシクロアルキル基を示す)で 表されるシクロアルキルアルキルアミン誘導体またはそ の酸付加塩並びにそれらを有効成分とすることを特徴と する医薬。

【効果】 気管平滑筋弛緩作用および I g E抗体産生抑 制作用に優れており、医薬、特に、喘息治療・予防剤、 気管支拡張剤またはIgE抗体レベルの異常により起こ る疾病の治療・予防剤として有用である。

*【化1】

【特許請求の範囲】

【請求項1】 一般式(1)

*
$$SO_2N-A-N-B-R_4$$
. R_2 R_3

(式中、Aは炭素数1~4個のアルキル基で置換されて いてもよい炭素数2~6個のアルキレン基を示し、Bは 炭素数1~4個のアルキル基で置換されていてもよい炭 素数1~6個のアルキレン基を示すか、または単結合を 示し、R1は水素原子または炭素数1~4個のアルキル 基を示し、R2およびR3は各々独立に水素原子もしく は炭素数1~6個のアルキル基を示すか、またはR2お よびR。は一緒にて炭素数1~4個のアルキル基で置換 されていてもよい炭素数1~4個のアルキレン基を示 し、R₄は炭素数1~4個のアルキル基で置換されてい てもよい炭素数3~7個のシクロアルキル基を示す)で 20 表される化合物またはその酸付加塩。

【請求項2】 一般式(1)において、Aはメチル基で 置換されていてもよいエチレン基かトリメチレン基を示 し、Bはメチレン基かエチレン基を示すか、または単結 合を示し、R、は水素原子かメチル基を示し、R2およ びR。は各々独立に水素原子を示し、R。は炭素数3~ 7個のシクロアルキル基を示し、該式中のベンゾチアゾ ール環の6位または7位に基;-SO₂-N(R₂)-A-N (R₃) -B-R₄ が結合している請求項1に記 載の化合物またはその酸付加塩。

【請求項3】 一般式(1)において、Aはメチル基で 置換されてもよいエチレン基かトリメチレン基を示し、 Bはメチレン基かエチレン基を示すか、または単結合を 示し、R、は水素原子を示し、R。およびR。は一緒に てエチレン基かトリメチレン基を示し、R。は炭素数3 ~ 7 個のシクロアルキル基を示し、該式中のベンゾチア ゾール環の 6 位または 7 位に基; - S O₂ - N (R₂) -A-N(R₃)-B-R₄が結合している請求項1に 記載の化合物またはその酸付加塩。

【請求項4】 一般式(1)で表される化合物が、N- 40 (7-ペンゾチアゾールスルホニル) -N' -シクロへ キシルメチル-エチレンジアミン; N-(7-ベンゾチ アゾールスルホニル) -N' -シクロペンチルメチル-エチレンジアミン: N-(7-ベンゾチアゾールスルホ ニル) -N' -シクロブロピルメチル-エチレンジアミ ン: N-(7-ベンゾチアゾールスルホニル) -N'-シクロヘプチルメチル-エチレンジアミン: N-(7-ベンゾチアゾールスルホニル)—N'—シクロヘキシル メチルートリメチレンジアミン: 1-(7-ベンゾチア

10 メチル--1, 4-ジアザプタン:N-(7-ベンゾチア ゾールスルホニル) -N' -シクロヘキシル-エチレン ジアミン: N- (7-ペンゾチアゾールスルホニル) -N'--(2-シクロヘキシルエチル)-エチレンジアミ ン:および、N-(6-ベンゾチアゾールスルホニル) 一N'ーシクロヘキシルメチルーエチレンジアミン;か らなる群より選ばれた化合物である請求項1または2に 記載の化合物または酸付加塩。

2

【請求項5】 一般式(1)で表される化合物が、N-(7-ベンゾチアゾールスルホニル) -N' -シクロペ ンチルーエチレンジアミン;1-(7-ペンゾチアゾー ルスルホニル) -4-シクロプロピルメチル-3-メチ ルー1, 4-ジアザブタン;および、N-(7-ベンゾ チアゾールスルホニル) -N' -シクロブチルメチル-エチレンジアミン:からなる群より選ばれた化合物であ る請求項1または2に記載の化合物または酸付加塩。

【請求項6】 N-(7-ベンゾチアゾールスルホニ ル) -N' -シクロヘキシルメチル-エチレンジアミン またはその酸付加塩である請求項1または2または4に 記載の化合物またはその酸付加塩。

【請求項7】 請求項1から6に記載のいずれか1つの 30 化合物またはその薬理学上許容される酸付加塩を有効成 分とすることを特徴とする医薬。

【請求項8】 請求項1から6に記載のいずれか1つの 化合物またはその薬理学上許容される酸付加塩を有効成 分とすることを特徴とする喘息予防・治療剤、気管支拡 張剤またはIgE抗体レベルの異常により起こる疾病の 予防・治療剤。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、新規なシクロアルキル (アルキル) アミノ基を含むベンゾチアゾールスルホン アミド誘導体およびその医薬用途に関するものである。 [0002]

【従来の技術】WO92―14712号国際公開明細書 (特開平5-1037号公報)には、抗ヒスタミン作用 に基づく気管支平滑筋弛緩作用を有するベンゾチアゾー ルスルホニルアミノエチル誘導体、具体的には、化合物 (20) として1-(6-ベンゾチアゾールスルホニル アミノエチル) -4-(3-(フェノキシ) プロピル) ゾールスルホニル) ―4 ―シクロヘキシルメチル―3― 50 ピペラジン、即ち、1 ―〔2 ― (6 ―ペンゾチアゾール

スルホニルアミノ) エチル] -4-(3-フェノキシブ ロビル) ピペラジンが開示されているが、その作用は未 だ十分でない。

[0003]

【発明が解決しようとする課題】喘息などの呼吸器疾患 に対する臨床治療薬としてキサンチン系薬物やβ受容体 刺激薬等の気管支拡張薬が繁用されている。これらの薬 物は細胞内のサイクリック アデノシン31,51一モ ノホスフェート(cyclic adenosine 3′, 5′—monophosphate) 濃度を増加 10 させると考えられている。キサンチン系薬物の代表化合 物としてアミノフィリンを挙げることができ、β受容体 刺激薬としてイソブレテノールを挙げることができる。

【0004】しかしながら、キサンチン系薬物やβ受容 体刺激薬等は心臓等への副作用、これらの薬物で寛解し ない耐性型喘息の出現などにより必ずしも臨床家の欲求 を満足させるものではない。また、イムノグロブリンE (IgE) の産生異常上昇で惹起される病気として、ア トピー型喘息、アトピー性皮膚炎、鼻アレルギー等のア レルギー性疾患が知られている。従来、アレルギー性疾 20 患の治療は、肥満細胞または好塩基球の脱顆粒および化 学伝達物質の遊離を抑制する方法、および/または遊離*

* した化学伝達物質によって惹起されるアレルギー反応を その拮抗作用によって抑える方法などの対症療法が行わ れているに過ぎなかった。これらの対症療法はアレルギ 一反応の根本であるIgE抗体の過度の産生を抑制する ものではないので、その効果には限界があった。

【0005】近年 I g E 抗体産生抑制物質が開発・報告 されているが、喘息の治療においてこうした抗アレルギ 一剤の単独投与では限界があることも周知の事実であ る。このような状況下、より優れた気管平滑筋弛緩作用 とIgE抗体産生抑制作用とを合わせ持つ新規化合物を 提供することも好ましいものと思われる。

[0006]

【課題を解決するための手段】前記課題を解決するため に、本発明者らは鋭意研究した結果、新規化合物である 後記一般式で示されるシクロアルキルアルキルアミン誘 導体が優れた気管平滑筋弛緩作用およびIgE産生抑制 作用を有することを見出し、本発明を完成したものであ る。

【0007】すなわち、本発明は、一般式(1) [0008] 【化2】

$$R_1$$
 $SO_2N-A-N-B-R_4$ R_2 R_3

[0009] (式中、Aは炭素数1~4個のアルキル基 30 で置換されていてもよい炭素数2~6個のアルキレン基 を示し、Bは炭素数1~4個のアルキル基で置換されて いてもよい炭素数1~6個のアルキレン基を示すか、ま たは単結合を示し、R, は水素原子または炭素数1~4 個のアルキル基を示し、R2 およびR3 は各々独立に水 素原子もしくは炭素数1~6個のアルキル基を示すか、 またはR。およびR。は一緒にて炭素数1~4個のアル キル基で置換されていてもよい炭素数1~4個のアルキ レン基を示し、R。は炭素数1~4個のアルキル基で置 換されていてもよい炭素数3~7個のシクロアルキル基 40 を示す) で表される化合物 (以下、単に「目的化合物 (1)」と称することがある〕またはその酸付加塩を提

【0010】また、本発明は、前記一般式(1)で表さ れる化合物またはその薬理学上許容される酸付加塩を有 効成分とすることを特徴とする医薬を提供することを目 的とするものである。前記一般式(1)における基A は、1~4個のアルキル基で置換されていてもよい炭素 数2~6個のアルキレン基として定義される。炭素数2 ~ 6 個のアルキレン基としては、例えば、エチレン、ト $^-$ 50 $^-$ ル、ブロピル、イソブロピル、ブチル、イソブチル、 $^-$

供することを目的とするものである。

リメチレン、テトラメチレン、ペンタメチレン、ヘキサ メチレン基が挙げられるが、エチレン基およびトリメチ レン基が特に好ましい。このアルキレン基はそのいずれ かの置換位置に直鎖または分鎖の炭素数1~4個のアル キル基、例えば、メチル、エチル、プロピル、イソブロ ピル、ブチル、イソブチル、1ーメチルブロピル、tー ブチル基等で置換されていてもよく、メチル基が好まし い例として挙げられ、例えばエチレン基の場合は3位に メチル基が入っている1-(7-ベンゾチアゾールスル ホニル) -4-シクロヘキシルメチル-3-メチルー 1. 4ージアザブタンなどが好ましい。

【0011】基Bは炭素数1~4個のアルキル基で置換 されていてもよい炭素数1~6個のアルキレン基を示す か、または単結合として定義される。炭素数1~6個の アルキレン基としては、例えば、メチレン、エチレン、 トリメチレン、テトラメチレン、ペンタメチレン、ヘキ サメチレン基が挙げられるが、メチレン基およびエチレ ン基がとくに好ましい。このアルキレン基は、上述の説 明と同様にそのいずれかの置換位置に直鎖または分鎖の 炭素数1~4個のアルキル基、例えば、メチル、エチ

一メチルプロピル、tーブチル基等で置換されていても よくメチル基が好ましい例として挙げられる。また基B としては、単結合も好ましい。

【0012】基R, において定義される炭素数1~4個 のアルキル基としては、分鎖を有していてもよく、例え ば、メチル、エチル、ブロピル、イソプロピル、ブチ ル、イソプチル、1-メチルプロピル、t-プチル基等 が挙げられるが、メチル基が好ましい一例である。また 基R, としては、水素原子も大変に好ましい。基R2 お よびR3において定義される炭素数1~6個のアルキル 10 基としては、分鎖を有していてもよく、例えば、メチ ル、エチル、ブロピル、イソブロピル、ブチル、イソブ チル、1-メチルプロピル、t-ブチル、ペンチル、ヘ キシル基等が挙げられるが、メチル、エチル、プロピル 基が好ましい。また基尺2 および尺3 としては、各々に 独立した水素原子も大変に好ましい。

【0013】また基R2およびR3は一緒にて炭素数1 ~4個のアルキレン基である場合もある。このアルキレ ン基としては、例えば、メチレン、エチレン、トリメチ レン、テトラメチレン基が挙げられるが、エチレン、ト 20 一シクロへブチルメチル―エチレンジアミン リメチレン基が好ましい。このアルキレン基はそのいず れかの置換位置に直鎖または分鎖の炭素数1~4個のア ルキル基、例えば、メチル、エチル、ブロピル、イソブ ロピル、プチル、イソプチル、1ーメチルプロピル、t ―ブチル基等で置換されていてもよく、メチル基、エチ ル基が好ましい一例である。

【0014】更にまた、基R。は炭素数1~4個のアル キル基で置換されていてもよい炭素数3~7個のシクロ アルキル基として定義される。このシクロアルキル基と しては例えば、シクロプロピル、シクロプチル、シクロ 30 ペンチル、シクロヘキシル、シクロヘブチル基が挙げら れるがシクロプチル、シクロペンチル、シクロヘキシル 基が特に好ましい。このシクロアルキル基はそのいずれ かの置換位置に直鎖または分鎖の炭素数1~4個のアル キル基、例えば、メチル、エチル、プロピル、イソプロ ピル、ブチル、イソプチル、1ーメチルプロピル、tー ブチル基等で置換されていてもよく、メチル基が好まし い一例である。

【0015】また、一般式(1)において、式中のペン ゾチアゾール環の 4位、5位、6位または 7位に基; - 40 N' —シクロブチルメチル—エチレンジアミン SO₂ -N(R₂) -A-N(R₃) -B-R₄ が結合 すると定義されるが、6位または7位に結合することが 好ましく、特に7位が好ましい。本発明をして好ましい 範囲は、一般式(1)において、Aはメチル基で置換さ れていてもよいエチレン基かトリメチレン基を示し、B はメチレン基かエチレン基を示すか、または単結合を示 し、RIは水素原子かメチル基を示し、RIおよびRI は各々独立に水素原子を示し、R₄は炭素数3~7個の シクロアルキル基を示し、該式中のベンゾチアゾール環 の6位または7位に基; $-SO_2-N$ (R_2) -A-N 50 加塩も包含されることは言うまでもない。

(R₃) -B-R₄ が結合している請求項1に記載の化 合物またはその酸付加塩であるかあるいは、一般式

(1) において、Aはメチル基で置換されてもよいエチ レン基かトリメチレン基を示し、Bはメチレン基かエチ レン基を示すか、または単結合を示し、R、は水素原子 を示し、R2 およびR3 は一緒にてエチレン基かトリメ チレン基を示し、R。は炭素数3~7個のシクロアルキ ル基を示し、該式中のベンゾチアゾール環の6位または 7位に基; -SO₂ -N(R₂) -A-N(R₃) -B - R. が結合している請求項1に記載の化合物またはそ の酸付加塩である。本発明の目的化合物(1)の具体例 として、以下の化合物を挙げることができる。

- (1) N − (7 − ベンゾチアゾールスルホニル) −N' ―シクロヘキシルメチル―エチレンジアミン
- (2) N-(7-ベンゾチアゾールスルホニル)-N' ーシクロペンチルメチルーエチレンジアミン
- (3) N − (7 −ペンゾチアゾールスルホニル) —N' ーシクロプロピルメチルーエチレンジアミン
- (4) N- (7-ベンゾチアゾールスルホニル) **-**N'
- (5) N- (7-ペンゾチアゾールスルホニル) —N' ―シクロヘキシルメチル―トリメチレンジアミン
- (6) 1-(7-ベンゾチアゾールスルホニル) -4-シクロヘキシルメチル-3-メチル-1, 4-ジアザブ
- (7) N − (7 − ベンゾチアゾールスルホニル) -N¹ ーシクロヘキシルーエチレンジアミン
- (8) N- (7-ベンゾチアゾールスルホニル) —N' — (2一シクロヘキシルエチル)一エチレンジアミン
- (9) 1-(7-ベンゾチアゾールスルホニル)-4-シクロヘキシルメチルホモピペラジン
- (10) N-(6-ペンゾチアゾールスルホニル)-N'ーシクロヘキシルメチルーエチレンジアミン
- (11) N-(7-ベンゾチアゾールスルホニル)-N'--シクロペンチル--エチレンジアミン
- (12) 1- (7-ベンゾチアゾールスルホニル) -4 **―シクロブロピルメチル―3―メチル―1,4―ジアザ** ブタン
- (13) N-(7-ベンゾチアゾールスルホニル)-
- (14) N-(2-メチル-7-ベンゾチアゾールスル ホニル) -N' -シクロヘキシルメチル-エチレンジア

目的化合物(1)の酸付加塩としては、薬学上許容され る塩が好ましく、例えば、塩酸、臭化水素酸、リン酸、 硫酸等の無機酸との酸付加塩、酢酸、クエン酸、酒石 酸、乳酸、コハク酸、フマル酸、マレイン酸、メタンス ルホン酸、グルタミン酸、アスパラギン酸等の有機酸と の酸付加塩を挙げることができる。他の公知の酸との付

【0016】本発明の目的化合物(1)は、種々の方法 で製造することができる。例えば、化合物 (1) は、一 般式 (2)

[0017]

[化3]

$$R_1$$
 SO_2X (2)

【0018】(式中、Xはハロゲン原子を示し、R」は 前記と同じ意味を有する)で表される化合物〔以下、単 に「化合物(2)」と称する〕を不活性溶媒中、一般式 (3)

[0019]

【化4】

[0020] (式中、R2、R3、R4、AおよびBは 前記と同じ意味を有する)で表されるアミン(3) 〔以 下、単に「アミン(3)」と称する〕を反応させること により得られる。アミン(3)はそれ自体公知の方法、 例えば実験化学講座第4版20巻284頁(丸善株式会 社、1992年発行)、Synthesis (197 5) 135-146 †Tetrahedron Let ters, 29 (1988) 50, 6651-6654 およびJ. Org. Chem. 58 (1993) 14. 3736-3741に記載の方法などに準じて合成でき 30

【0021】上記化合物(2)は一般式(4)

[0022]

【化5】

【0023】(式中、R」は前記と同じ意味を有する) で表されるスルホン酸 (4) を、例えば J. Medic al Chemistry 32, 42-46 (198 9) 等に記載の公知の方法によりスルホニルハロゲナイ ドに変換することにより得られる。例えば、塩化チオニ ルでクロル化する方法は好適な一例である。スルホン酸 (4) はそれ自体公知の方法、例えばBul1. So c. Chim. Belges. 80, 43-58 (19 71) に記載の方法などにより合成できる。

用される不活性溶媒としては、例えば、ジクロロメタ ン、クロロホルム等のハロゲン化炭化水素、テトラヒド ロフラン、ジオキサン、ジエチルエーテル等のエーテル 類、ジメチルスルホキシド、N, N-ジメチルホルムア ミド、アセトニトリル等が挙げられる。これらは単独、 あるいは混合溶媒として用いることができる。不活性溶 媒の使用量は、化合物(2)に対して重量比で1-10 0倍、好ましくは5-50倍が例示される。

【0025】化合物(2)とアミン(3)との反応は、 10 酸受容体の存在下で行うのが好ましい。用いられる酸受 容体としては、例えば、炭酸水素ナトリウム、水酸化ナ トリウム、炭酸カリウム、炭酸ナトリウム、水酸化カリ ウム、ナトリウムメチラート等のアルカリ金属化合物、 ピリジン、トリメチルアミン、トリエチルアミン等の有 機第3級アミンが挙げられる。酸受容体の使用量は、化 合物 (2) に対して通常 0. 3-10倍モル、好ましく は1-3倍モルが例示される。

【0026】上記反応におけるアミン(3)の使用量 は、化合物(2)に対し、1~20倍モル、好ましくは 20 1~10倍モルである。酸受容体の非存在下では2.5 ~5倍モルであることが特に好ましく、酸受容体の存在 下では1~3倍モルであることが特に好ましい。反応温 度は、一般的には一30~120℃であり、好ましくは -20~50℃である。反応時間は一般的には0.5~ 48時間であり、好ましくは0.5~6時間であるが、 薄層クロマトグラフィー(TLC)、高速液体クロマト グラフィー(HPLC)等により反応経過を追跡するこ とが可能であるから、化合物 (2) の消失を待って適宜 反応を終了させればよい。

【0027】このようにして得られた反応液から目的化 合物 (1) を遊離塩基の状態で採取するには、反応溶媒 が親水性溶媒である場合には、該溶媒を留去し、残渣を 非親水性溶媒に溶解した後、弱アルカリ水溶液、水等で 洗浄して、溶媒を留去することにより行われる。反応溶 媒が非親水性溶媒である場合には、そのまま弱アルカリ 水溶液、水等で洗浄した後、溶媒を留去することにより 行われる。

【0028】本発明の目的化合物(1)は公知の方法に より酸付加塩を形成することができる。例えば、目的化 40 合物(1)をメタノール、エタノールなどのアルコール 類に溶解し、当量もしくは数倍量の酸を加えることによ り、それらの酸付加塩を得ることができる。用いられる 酸としては、塩酸、臭化水素酸、リン酸、硫酸等の無機 酸、酢酸、クエン酸、酒石酸、乳酸、コハク酸、フマル 酸、マレイン酸、メタンスルホン酸、グルタミン酸、ア スパラギン酸等の有機酸を挙げることができる。勿論、 他の公知の酸も使用できることは言うまでもない。

【0029】本発明の化合物(1)を酸付加塩とするこ とにより、保存安定性が向上する;水溶性が高まること 【0024】化合物(2)とアミン(3)との反応で使 50 により経口投与がしやすくなる;精製・結晶化が容易に なり品質・規格を一定に維持しやすくなる等の利点が生 じるが、所望であれば、上記酸付加塩から、例えば実験 化学講座第4版20巻284頁(丸善株式会社、199 2年発行) 等に記載の公知の方法によりアルカリ処理す ることにより目的化合物(1)を再び遊離塩基の状態で 得ることもできる。その酸付加塩としては、薬理学的に 許容される酸付加塩が好ましい。得られた目的化合物

(1) またはその酸付加塩をさらに精製する場合には、 公知の方法、例えば、再結晶化、シリカゲル等の公知の 担体を用いるカラムクロマトグラフィーにより行うこと 10 ができる。

【0030】本発明の目的化合物(1)およびその薬理 学的に許容される酸付加塩〔以下、単に「本発明化合 物」ということがある〕は、強い気管平滑筋弛緩作用を 示し、またIgE抗体産生抑制作用を有すること、ラッ トに300mg/kg経口投与しても死亡例は認められ なかったことから、医薬として使用しても安全な化合物 であり、医薬品の活性成分として有用な物質である。従 って、本発明の他の態様によれば、本発明化合物の有効 量を薬理学的に投与可能な担体とを含有する医薬組成物 が提供される。この医薬組成物は、喘息予防・治療剤、 気管支拡張剤、またはIgE抗体レベルの異常上昇(以 下、異常と示すことがある)により起こる疾病の予防・ 治療剤として使用することができる。IgE抗体レベル の異常により起こる疾病は、IgEの産生異常で惹起さ れる病気であり、例えば、アトピー型喘息、アトピー性 皮膚炎、鼻アレルギー等のアレルギー性疾患が挙げられ

【0031】上記医薬組成物の製剤化のための剤形とし ては、錠剤、散剤、顆粒剤、シロップ剤、座剤、懸濁 剤、カブセル剤、注射剤、吸入剤等が挙げられるが、そ の製造のためには、これらの製剤に応じた各種担体が使 用される。例えば、経口剤の担体としては、乳糖、白 糖、ブドウ糖、でんぷん、結晶セルロース等の賦形剤; ヒドロキシブロピルセルロース、カルボキシメチルセル ロース、でんぷん、アラビアゴム、ゼラチン、ブドウ 糖、白糖、トラガント、アルギン酸ナトリウム等の結合 剤;カルボキシメチルセルロース、でんぷん、炭酸カル シウム等の崩壊剤;ステアリン酸、精製タルク、蔗糖脂 肪酸エステル、水素添加植物油、ステアリン酸マグネシ 40 ウム、ステアリン酸カルシウム等の滑沢剤;ラウリル硫 酸ナトリウム、大豆レシチン、蔗糖脂肪酸エステル、ポ リソルペート80等の界面活性剤:レシチン、大豆油、 グリセリン等の添加剤、流動性促進剤、着色剤を挙げる ことができる。

【0032】本発明化合物を注射剤等の非経口剤とする 場合には、担体としての希釈剤、例えば、注射用蒸留 水、生理食塩水、ブドウ糖水溶液、注射用植物油、ブロ ピレングリコール、ポリエチレングリコール等を使用す ることができる。さらに必要に応じて、殺菌剤、防腐

剤、安定剤、等張化剤、無痛化剤等を加えてもよい。ま た吸入剤の調製の際には、ポリクロルモノフルオロメタ ン等を溶媒として用いることができる。

10

【0033】本発明化合物をヒトに投与する際には、錠 剤、散剤、顆粒剤、坐剤、懸濁剤、カブセル剤の形で経 口投与することができ、また、点滴を含む注射剤、さら にはクリームまたはスプレーの形で非経口投与すること ができる。その投与量は、適用症、投与形態、患者の年 齢、体重、症状の度合いによって異なるが、一般的には 成人1日当たり3~300mgを1~3回に分けて投与 される。投与期間は数日~2カ月の連日投与が一般的で あるが、患者の症状により、1日投与量、投与期間共に 増減することができる。

[0034]

【発明の効果】次に、本発明化合物の薬理作用について 述べる。

A. モルモットより摘出した気管標本におけるKCI収 縮に対する気管平滑筋弛緩作用

(1) KCI収縮に対する阻害試験方法モルモットの摘 出気管標本を用いる方法(高木、小沢;薬物学実験、1 00-102頁、1960年、南山堂、藤原、柴田;薬 理学基礎実験法、131-134頁1982年、杏林出 版)に従って、本発明化合物の気管平滑筋弛緩作用を測 定した。

【0035】350~500gの雄性モルモット(ハー トレート系、黒田純系動物)の摘出気管標本をクレプス ·ヘンスライト栄養液(インドメタシン3μM含有)を 満たしたマグヌス装置(容量20ml)に等尺性(初期 負荷1.5g)に吊るし、95%酸素、5%炭酸ガス通 気下、液温を37℃に保ちながら、KCⅠ水溶液(終濃 度20mM)をマグヌス管内に適用して気管標本を収縮 させた。

【0036】収縮が安定した後、蒸留水または生理食塩 水に溶かした後述の実施例に記載の本発明化合物をマグ ヌス管内に累積的に加え、その弛緩作用を観察し、用量 反応曲線を得た。測定終了後、パパペリン100μM添 加により最大弛緩を求め、その時の弛緩率を100%と した。標本数は全て3とした。対照品としてWO92一 14712号国際公開明細書に記載の1-(2-(6-ベンソチアソールスルホニルアミノ) エチル] -4-(3-フェノキシブロピル)ピペラジン二塩酸塩を用い

(2) 測定結果

測定結果は表 1 に示す通りである。

[0037]

【表1】

30

被	験	薬	弛緩率 ((%)
化合物 1	(塩酸	塩)	70.	1
化合物 2	(塩酸	塩)	41.	6
化合物 3	(塩酸	塩)	40.	7
化合物 4	(塩酸	塩)	31.	4
化合物 5	(塩酸	塩)	53.	1
化合物 6	(塩酸	塩)	44.	0
化合物 7	(塩酸	塩)	42.	0
化合物 8	(塩酸	塩)	47.	3
化合物 9	(塩酸	塩)	13.	0
化合物 1	0 (塩	酸塩)	12.	5
化合物 1	1 (塩	酸塩)	81.	5
化合物 1	2 (塩	酸塩)	37.	8
化合物 1	3 (塩	酸塩)	91.	0
対照品			6.	8

【0038】上記表1の結果から明らかな通り、本発明 化合物はモルモット摘出気管におけるKCI収縮に対す 4712号国際公開明細書に記載の対照品は、本試験条 件下においては殆ど気管平滑筋弛緩作用を有さないこと が認められた。従って、本発明の目的化合物 (1) また はその薬理学上許容される酸付加塩は、モルモット摘出 気管標本におけるKCI収縮に対する気管平滑筋弛緩作 用を有するので、気管支拡張剤として、ひいては喘息予 防・治療剤として有用である。

B. マウス脾臓細胞における I g E抗体産生抑制効果 (1) 測定方法

Cellular Immunology, <u>145</u>, 2 30 99-310 (1992) またはImmunology Letters, <u>34</u>, 99-104 (1992) に 記載の方法に準じて、本発明化合物の【gE抗体産生抑 制作用を評価した。すなわち、6-8週齢の雌性AKR マウス (Charles River社製) の腹腔内に 4mg水酸化アルミニウムゲル (PIERCE社製) に 吸着させた 10μ gのジニトロフェニル化コンアルブミ ン (dinitrophenylconalbumi n、DNP-conalbumin) (幅誠二;免疫実 験操作法B、1129頁、日本免疫学会編に従って調製 40 したもの)を投与した。4週間経過後、脾臓を摘出し、 すりつぶして得た脾臓細胞とClick、SMEM培地 (Irvine scientific社製) にて浮遊 液を調製した。

【0039】この脾臓細胞1×104 個及びマウスTh 2 クローン細胞 (D 1 0. G 4. 1) (A T C C 社製) 2×10 6 個を200μlの10%牛胎児血清を含む c lick's MEM培地中でlng/mlのDNPconalbuminとともに7日間培養後、その上清 を回収した。International Archi 50

ves of Allergy and Applie d Immunology, <u>85</u>, 47-54, (19 88) に記載の方法に準じて、本発明化合物の I g E 抗 体産生量を測定した。すなわち、上清中の「gE抗体は 至適濃度のラット抗マウスIgEモノクローナル抗体 $(2 \mu g/m i)$ とピオチン標識ラット抗マウス IgE抗体モノクローナル抗体(2μg/m1)およびアビジ ンペルオキシダーゼ(2.5 μg/ml)(フナコシ社 製)を用いる酵素免疫測定法によって定量した。2種類 10 のラット抗マウス I g E モノクローナル抗体は I n t e rnational Archivesof Alle rgy and Applied Immunolog y, 8547-54(1988) に記載の方法に従って 調製し、そのうちの1種類をピオチン標識キット(米国 American Qualex社製)を用いてピオ チン標識した。本発明化合物は1μg/mlの濃度で培 養全期間に渡って培地中に添加した。対照品(1)とし てWO92-14712号国際公開明細書に記載の1-「2-(6-ベンゾチアゾールスルホニルアミノ) エチ る気管平滑筋弛緩作用を有するのに対し、WO92-120 ル] -4-(3-7) フェノキシブロピル)ピペラジン二塩 酸塩、対照品(2)、(3)としてW〇94―1933 6号国際公開明細書に記載の以下の化合物を用いた。 対照品(1)1-{2-(6-ベンゾチアゾールスルホ ニルアミノ) エチル] -4-(3-フェノキシブロピ ル) ピペラジン二塩酸塩

対照品(2) N--[2-(3, 4-メチレンジオキシベ ンジルアミノ) エチル] ー7ーベンゾチアゾールスルホ ンアミドー塩酸塩

対照品(3) N-[2-(3-フルオロベンジルアミ ノ) エチル] - 7 - ベンゾチアゾールスルホンアミドー 塩酸塩

(2) 測定結果

測定結果は表2に示す通りである。

[0040]

【表2】

被發蒸	I g B 産生抑制率 (%)
化合物 1 (塩酸塩)	5 1
化合物2(塩酸塩)	7 5
化合物3(塩酸塩)	3 0
化合物 4 (塩酸塩)	8 5
化合物5(塩酸塩)	5 2
化合物 6 (塩酸塩)	7 8
化合物7(塩酸塩)	5 0
化合物 8(塩酸塩)	5 2
化合物 9(塩酸塩)	7 2
化合物 10(塩酸塩)	2 4
化合物 1 1 (塩酸塩)	4 3
化合物 1 2 (塩酸塩)	2 3
化合物 13(塩酸塩)	39
対照品(1)	≤ 1 0
対照品 (2)	≤ 1 0
対照品(3)	≤10

条件下において本発明化合物はWO92-14712号 国際公開明細書に記載の対照品、WO94-19336 号国際公開明細書に記載の対照品に比べて著しく強い I g E 抗体産生抑制作用を有することが認められた。従っ て、本発明の目的化合物(1)またはその薬理学上許容 される酸付加塩はIgE抗体産生抑制作用を有するの で、IgE抗体産生抑制剤、あるいはIgE抗体レベル の異常により起こる疾病の予防・治療剤として有用であ る。また喘息治療・予防剤としても有用である。

【0042】以上の通り本発明化合物は、従来公知のW ○92-14712号に開示される化合物に比較して顕 著に強い気管平滑筋弛緩作用を示し、末端にシクロアル キルアルキルアミド基を有さないベンゾチアゾールスル ホンアミド誘導体にはない強い【g E 抗体産生抑制作用 を有することから、新規且つ進歩性を有する物質である ことが認められた。

[0043]

【実施例】次に、実施例を挙げて、本発明化合物の製造 例について更に詳細に説明する。尚、以下の実施例で得 られた目的化合物(1)の塩酸塩の核磁気共鳴スペクト 40 実施例4 ル(NMR)および質量分析スペクトル(FabMS) は後記の表3及び表4に記載する。

実施例1

N- (7-ベンゾチアゾールスルホニル) -N' -シク ロヘキシルメチル-エチレンジアミン(化合物1)およ びその塩酸塩

7-ベンゾチアゾールスルホン酸12gに塩化チオニル 120mlとジメチルホルムアミド1.2mlを加え3 時間加熱還流した。反応後、減圧下、塩化チオニルを留 去した。残渣を氷水100mlで溶解し、飽和炭酸ナト 50 実施例5 14

リウム水溶液でpH6に調整し、ジクロロメタン100 m1で抽出した。このジクロロメタン層を氷冷下、N-シクロヘキシルメチル-エチレンジアミン26.1gを 含むジクロロメタン100mlの溶液に30分で滴下 し、0~5℃で1時間撹拌した。

【0044】反応終了後、反応混合液を水200mlで 洗浄し、無水硫酸マグネシウムで乾燥した後、減圧下溶 媒を留去した。残渣をシリカゲル(和光ゲルC-20 0、和光純薬社製、日本国、600g)カラムにチャー 10 ジし、溶出溶媒としてメタノールークロロホルム混合溶 媒(5~10%メタノール)を用いるカラムクロマトグ ラフィーにより精製し、表題の化合物1を得た。収量1 0.8g(収率55%)。

【0045】得られた化合物1(10.8g)をメタノ ール100mlに溶解し、当量の塩酸水を加え10分間 撹拌した。減圧下溶媒を留去して化合物 1 の塩酸塩を得 た。収量11.2g(収率94%)。

実施例2

1- (7-ベンゾチアゾールスルホニル) -4-シクロ **【0041】上記表2の結果から明らかな通り、本試験 20 ヘキシルメチル―3―メチル―1.4―ジアザブタン** (化合物6) およびその塩酸塩

> 実施例1において、N-シクロヘキシルメチル-エチレ ンジアミン26.1gの代わりに1一シクロヘキシルメ チル-2-メチル-1, 4-ジアザブタン28.2gを 用いる以外は実施例1と実質的に同様の方法で、表題の 化合物 6 を得た。収量 1 0. 2 g (収率 5 0%) また、 化合物6の塩酸塩を実施例1と同様にして得た。収量1 0.1g(収率90%)

実施例3

N- (7-ベンゾチアゾールスルホニル)-N'-(2 ―シクロヘキシルエチル)―エチレンジアミン(化合物 8) およびその塩酸塩

実施例1において、N―シクロヘキシルメチル―エチレ ンジアミン26. 1gの代わりにN-2-シクロヘキシ ルエチル―エチレンジアミン28.2gを用いる以外は 実施例1と実質的に同様の方法で、表題の化合物8を得 た。収量9.4g(収率46%)また、化合物8の塩酸 塩を実施例1と同様にして得た。収量8.5g(収率8 2%)

N-(6-ベンゾチアゾールスルホニル)-N'-シク ロヘキシルメチル-エチレンジアミン(化合物10)お よびその塩酸塩

実施例1において、7―ペンゾチアゾールスルホン酸1 2gの代わりに6一ペンゾチアゾールスルホン酸12g を用いる以外は実施例1と実質的に同様の方法で、表題 の化合物10を得た。収量9.6g(収率49%)ま た、化合物10の塩酸塩を実施例1と同様にして得た。 収量10.1g(収率93%)

N- (7-ベンゾチアゾールスルホニル) -N' -シク ロベンチルメチルーエチレンジアミン(化合物2)およ びその塩酸塩

実施例1において、N―シクロヘキシルメチル―エチレ ンジアミン26.1gの代わりにN-シクロペンチルメ チル-エチレンジアミン23.8gを用いる以外は実施 例1と実質的に同様の方法で、表題の化合物2を得た。 収量9.4g(収率49%)また、化合物2の塩酸塩を 実施例1と同様にして得た。収量10.0g(収率96 %)

実施例6

N- (7-ベンゾチアゾールスルホニル) -N'-シク ロブロピルメチル―エチレンジアミン(化合物3)およ びその塩酸塩

実施例1において、N-シクロヘキシルメチル-エチレ ンジアミン26.1gの代わりにN-シクロプロピルメ. チル―エチレンジアミン19. 1gを用いる以外は実施 例1と実質的に同様の方法で、表題の化合物3を得た。 収量8.8g(収率51%)また、化合物3の塩酸塩を 実施例1と同様にして得た。収量8.6g(収率87 %)

実施例7

N- (7-ベンゾチアゾールスルホニル) -N' -シク ロヘブチルメチル―エチレンジアミン(化合物4)およ びその塩酸塩

実施例1において、N-シクロヘキシルメチル-エチレ ンジアミン26. 1gの代わりにN―シクロヘブチルメ チル―エチレンジアミン28.4gを用いる以外は実施 例1と実質的に同様の方法で、表題の化合物4を得た。 収量11.4g(収率56%)また、化合物4の塩酸塩 30 を実施例1と同様にして得た。収量11.2g(収率8 9%)

実施例8

N-- (7-ペンゾチアゾールスルホニル) -N'-シク ロヘプチルメチルートリメチレンジアミン(化合物5) およびその塩酸塩

実施例1において、N-シクロヘキシルメチル-エチレ ンジアミン26. 1gの代わりにN-シクロヘキシルメ チル―トリメチレンジアミン28.4gを用いる以外は 実施例1と実質的に同様の方法で、表題の化合物5を得 40 びその塩酸塩 た。収量9.7g(収率47%)また、化合物5の塩酸 塩を実施例1と同様にして得た。収量10.2g(収率 96%)

実施例9

N- (7-ベンゾチアゾールスルホニル) -N' -シク ロヘキシル―エチレンジアミン(化合物7)およびその 塩酸塩

実施例1において、N-シクロヘキシルメチル-エチレ ンジアミン26. 1gの代わりにN-シクロヘキシルー

実質的に同様の方法で、表題の化合物7を得た。収量 9.9g(収率52%)また、化合物7の塩酸塩を実施 例1と同様にして得た。収量9.7g(収率88%)

16

1-(7-ペンゾチアゾールスルホニル)-4-シクロ ヘキシルメチルホモピペラジン(化合物9)およびその 塩酸塩

実施例1において、Nーシクロヘキシルメチル―エチレ ンジアミン26.1gの代わりに4-シクロヘキシルメ 10 チルホモピペラジン32.8gを用いる以外は実施例1 と実質的に同様の方法で、表題の化合物9を得た。収量 12.9g(収率59%)また、化合物9の塩酸塩を実 施例1と同様にして得た。収量12.7g(収率90

実施例11

N- (7-ベンゾチアゾールスルホニル)-N'-シク ロペンチル―エチレンジアミン(化合物11)およびそ の塩酸塩

実施例1において、N―シクロヘキシルメチル―エチレ 20 ンジアミン26.1gの代わりにN-シクロペンチルー エチレンジアミン21.4gを用いる以外は実施例1と 実質的に同様の方法で、表題の化合物11を得た。収量 10.2g(収率56%)また、化合物11の塩酸塩を 実施例1と同様にして得た。収量9.7g(収率85

実施例12

1-(7-ベンゾチアゾールスルホニル) ―4―シクロ プロピルメチル-3-メチル-1, 4-ジアザブタン (化合物12) およびその塩酸塩

実施例1において、N―シクロヘキシルメチル―エチレ ンジアミン26.1gの代わりに1―シクロプロピルメ チルー2-メチルー1、4-ジアザプタン21.4gを 用いる以外は実施例1と実質的に同様の方法で、表題の 化合物12を得た。収量9.9g(収率54%)また、 化合物12の塩酸塩を実施例1と同様にして得た。収量 9.3g(収率84%)

実施例13

N- (7-ベンゾチアゾールスルホニル) -N'-シク ロブチルメチル―エチレンジアミン(化合物13)およ

実施例1において、N―シクロヘキシルメチル―エチレ ンジアミン26.1gの代わりにN―シクロプチルメチ ルーエチレンジアミン21.4gを用いる以外は実施例 1と実質的に同様の方法で、表題の化合物13を得た。 収量10.5g(収率58%)また、化合物13の塩酸 塩を実施例1と同様にして得た。収量9.9g(収率8

実施例14

N- (2-メチル-7-ペンゾチアゾールスルホニル) エチレンジアミン23.8gを用いる以外は実施例1と 50 —N'—シクロヘキシルメチル—エチレンジアミン(化

合物14) およびその塩酸塩

実施例1において、7-ベンゾチアゾールスルホン酸1 2gの代わりに2-メチル-7-ベンゾチアゾールスル ホン酸12.8gを用いる以外は実施例1と実質的に同 様の方法で、表題の化合物14を得た。収量11g(収* *率54%) また、化合物14の塩酸塩を実施例1と同様にして得た。収量9.9g(収率82%) 【0046】 【表3】

18

化合物 番号	NMR (δρρm) (DMSOd./D.O. TMS)	Pab MS (MH *)
1	0. 9-1. 0 (2H) \ 1. 1-1. 2 (3H) \ 1. 7-1. 8 (6H) \ 2. 7 (2H) \ 3. 0 \ (2H) \ 3. 1 (2H) \ 7. 8 (1H) \ 8. 4 (1H) \ 9. 6 (1H)	354
2	1. 1-1. 3 (2H), 1. 4-1. 8 (6H), 2. 1 (2H), 2. 9 (2H), 3. 0 (2H), 3. 1 (2H), 7. 8 (1H), 8. 0 (1H), 8. 4 (1H), 9. 6 (1H)	3 4 0
3	0. 3-0. 4 (2H), 0. 5-0. 6 (2H), 0. 9-1. 1 (1H), 2. 8 (2H), 2. 9-3. 0 (2H), 3. 0-3. 1 (2H), 7. 8 (1H), 8. 0 (1H), 8. 4 (1H), 9. 6 (1H)	3 1 2
4	1. 0-1. 9 (1 3 H) 2. 8 (2 H) 2. 9 -3. 2 (4 H) 7. 8 (1 H) 8. 0 (1 H) 8. 4 (1 H) 9. 6 (1 H)	368
5	0. 8-1. 0 (2H) 1. 0-1. 3 (3H) 1. 5-1. 9 (8H) 2. 7 (2H) 2. 8-3. 0 (4H) 7. 8 (1H) 8. 0 (1H) 8. 4 (1H) 9. 6 (1H)	368
6	0. 8 (3H), 0. 8-1. 0 (2H), 1. 1- 1. 3 (3H), 1. 6-1. 8 (6H), 2. 6- 2. 8 (2H), 2. 8-2. 9 (2H), 3. 6- 3. 8 (1H), 7. 8 (1H), 8. 1 (1H), 8. 4 (1H), 9. 6 (1H)	368
7	1. 0-1. 3 (5H), 1. 6 (1H), 1. 6- 1. 8 (2H), 1. 9-2. 0 (2H), 3. 0 (2H), 3. 1 (2H), 7. 8 (1H), 8. 0 (1H), 8. 4 (1H), 9. 6 (1H)	340
8	0. 8-1. 0 (2 H) 1. 1-1. 4 (4 H) 1. 4-1. 5 (2 H) 1. 5-1. 7 (5 H) 2. 8-3. 1 (6 H) 7. 8 (1 H) 8. 0 (1 H) 8. 4 (2 H) 9. 6 (1 H)	368
9	0. 8-1. 0 (2H) \ 1. 0-1. 3 (3H) \ 1. 5-1. 9 (6H) \ 2. 0-2. 2 (2H) \ 2. 9 (2H) \ 3. 1-3. 3 (2H) \ 3. 3-3. 7 (5H) \ 3. 9 (1H) \ 7. 8 (1H) \ 8. 4 (1H) \ 9. 6 (1H)	394

[0047]

【表4】

(つづき)

1 0	0. 8-1. 0 (2H) 1. 1-1. 3 (3H) 354 1. 5-1. 7 (6H) 2. 7 (2H) 3. 0 (2H) 3. 1 (1H) 8. 8 (1H) 8. 3 (1H)
11	1. 4-1. 8 (6H), 1. 8-2. 0 (2H), 2. 9-3. 0 (2H), 3. 0-3. 2 (2H), 3. 4 (1H), 7. 8 (1H), 8. 0 (1H), 8. 4 (1H), 9. 6 (1H)
1 2	0. 3 (2 H) , 0. 5 (2 H) , 0. 9 (3 H) , 3 2 6 1. 1 (1 H) , 2. 8 (2 H) , 2. 9 (2 H) , 3. 7 (1 H) , 7. 8 (1 H) , 8. 1 (1 H) , 8. 4 (1 H) , 9. 6 (1 H)
1 3	1. 6-2. 1 (6H), 2. 5-2. 6 (1H), 2. 9-3. 0 (4H), 3. 0-3. 1 (2H), 7. 8 (1H), 8. 0 (1H), 8. 4 (1H), 9. 5 (1H)
1 4	0. 8-1. 0 (2H) 1. 0-1. 3 (3H) 368 1. 5-1. 8 (6H) 2. 7-2. 8 (2H) 2. 8 (3H) 2. 9-3. 0 (2H) 3. 0-1 3. 2 (2H) 7. 7 (1H) 7. 9 (1H) 8. 2 (1H)