Real-World Blur Dataset for Learning and Benchmarking Deblurring Algorithms

Jaesung Rim¹, Haeyun Lee¹, Jucheol Won², and Sunghyun Cho²

1 DGIST, Daegu, Korea
{jsrim,haeyun}@dgist.ac.kr
2 POSTECH, Pohang, Korea
{jcwon,s.cho}@postech.ac.kr

ECCV 2020

Presenter: Hao Wang

Advisor: Prof. Chia-Wen Lin

Introduction

(b) Magnified view of (a)

(c) GoPro dataset

(d) Magnified view of (c)

(e) Real-world lowlight blurred image

- Synthetic
 - well-lit environments
- Real world
 - saturated light streaks due to the limited dynamic range

Outline

- Introduction
- Method
- Experiment
- Conclusion

Image Acquisition Process

• Sharp

• Shutter speed to 1/80 sec

• Blur

- Blur: Shutter speed to 1/2 sec
- Same brightness: ISO value 40 times lower to capture blurred images
- Diverse shake: held system still or randomly moved the system

Image Acquisition Process

- consists of two subsets raw images, and JPEG images processed by the camera ISP
- including 4,556 pairs of blurred and ground truth sharp images of 232 low-light static scenes, blurred by camera shakes, such as streets at night, and indoor.

Image Acquisition System

• Sony A7RM3, Samyang 14mm F2.8 MF

- high-end mirrorless cameras
 - reflect the **in-camera processing** of conventional cameras into dataset (processed by camera ISPs are more common than raw)
- full-frame sensors
 - gather a **larger amount of light** than small sensors and narrow-angle lenses so they can more effectively **suppress noise**
- wide-angle lenses
 - also help avoid defocus blur that may adversely affect learning of motion deblurring
- physically aligned as much as possible
 - To evaluate, conducted **stereo calibration** and **estimated the baseline** between the cameras.

White balance & demosaicing

- parameters obtained from the cameras
- use the adaptive homogeneity-directed demosaicing [16]
- RealBlur-J are already performed by camera ISPs

• Cropping & lens distortion correction

- outside the beam splitter or inside the optical enclosure
- distortion parameters estimated in a **separate calibration step** [15]

Downsampling

- by 1/4 for each axis
- ➤ latest deep learning-based deblurring methods cannot handle such high-resolution images
- > high ISO values to capture sharp images, they have amplified noise
- > alignment of the cameras in our image acquisition system is not perfect

Denoising

• then apply the **BM3D** denoising method [10] on sharp image

• Geometric Alignment

alignment

based alignment

a reference homography

based alignment

• Geometric Alignment

1. homography

alignment

2. phase correlation

- due to their different shutter speeds, captures incoming lights while moving, causing misalignment
- use a **phase correlation-based approach** [35], that can robustly estimate a similarity transform under the presence of blur

3. center matching

- model-based approaches[37, 4, 9] to match the **center of an object** first
- estimate a blur kernel by minimizing the following energy function, then, compute the centroid of the estimated blur kernel k, and shift $E(k) = \|k * \nabla s \nabla b\|^2 + \lambda \|\nabla k\|^2$ 11

(a) Before geometric (b) After alignment using (c) After phase-correlation (d) After blur kernel-

based alignment

based alignment

a reference homography

• Photometric alignment

- although use cameras and lenses of the same models, their images may have slight **intensity difference**
- photometrically align s to b by applying a linear transform $\alpha s + \beta \approx b$, estimate them from the reference pair $\alpha = \sigma_1/\sigma_2$ and $\beta = \mu_1 \alpha \mu_2$, sigma is standard deviations of the reference images, and $\mu 1$ and $\mu 2$ are their means.
- each color channel independently

Outline

- Introduction
- Framework
- Method
- Experiment
- Conclusion

Training sets				Test sets (PSNR/SSIM)		
RealBlur- R	GoPro	BSD-B	Pre-trained	RealBlur-R	Köhler	GoPro
	✓			35.66/0.9472	26.79/0.7963	30.72/0.9074
		\checkmark		34.96/0.9132	28.07/0.8259	29.01/0.8768
✓				36.47/0.9515	24.72/0.7422	23.99/0.7675
✓	\checkmark			38.47/0.9632	26.96/0.7991	30.02/0.8946
✓		\checkmark		38.62/0.9649	27.99/0.8249	29.02/0.8774
✓	\checkmark	\checkmark		38.58/0.9646	28.00/0.8241	29.93/0.8931
✓			✓	38.73/0.9646	26.38/0.7942	26.56/0.8422
✓	\checkmark		✓	38.65/0.9646	27.04/0.8017	30.53/0.9045
✓		\checkmark	✓	38.71/0.9657	28.18/0.8294	29.22/0.8824
✓	\checkmark	\checkmark	✓	38.65/0.9652	28.14/0.8311	30.30/0.9006

Training sets				Test sets (PSNR/SSIM)		
RealBlur-J	GoPro	BSD-B	Pre-trained	RealBlur- J	Köhler	GoPro
	✓			28.56/0.8674	26.79/0.7963	30.72/0.9074
		\checkmark		28.68/0.8675	28.07/0.8259	29.01/0.8768
✓				31.02/0.8987	26.57/0.7986	26.68/0.8403
✓	\checkmark			31.21/0.9018	26.94/0.8044	29.91/0.8923
✓		\checkmark		31.30/0.9058	27.88/0.8249	28.97/0.8785
✓	\checkmark	\checkmark		31.37/0.9063	27.74/0.8229	29.90/0.8926
✓			✓	31.32/0.9070	26.77/0.8044	27.18/0.8603
✓	\checkmark		✓	31.40/0.9078	27.13/0.8113	30.46/0.9034
✓		\checkmark	✓	31.44/0.9105	28.06/0.8319	29.21/0.8842
✓	\checkmark	✓	✓	31.38/0.9091	27.82/0.8260	30.30/0.9004

RealBlur-	J	RealBlur- R		
Methods	PSNR/SSIM	Methods	PSNR/SSIM	
SRN-DeblurNet* [42]	31.38/0.9091	SRN-DeblurNet* [42]	38.65/0.9652	
DeblurGAN-v2* [22]	29.69/0.8703	DeblurGAN-v2* [22]	36.44/0.9347	
DeblurGAN-v2 [22]	28.70/0.8662	Zhang <i>et al.</i> [49]	35.70/0.9481	
SRN-DeblurNet [42]	28.56/0.8674	SRN-DeblurNet [42]	35.66/0.9472	
Zhang et al. [49]	28.42/0.8596	Zhang <i>et al.</i> [48]	35.48/0.9466	
DeblurGAN [21]	27.97/0.8343	DeblurGAN-v2 [22]	35.26/0.9440	
Nah <i>et al.</i> [31]	27.87/0.8274	Xu et al. [46]	34.46/0.9368	
Zhang <i>et al.</i> [48]	27.80/0.8472	Pan <i>et al.</i> [33]	34.01/0.9162	
Pan <i>et al.</i> [33]	27.22/0.7901	DeblurGAN [21]	33.79/0.9034	
Xu et al. [46]	27.14/0.8303	Hu et al. [18]	33.67/0.9158	
Hu et al. [18]	26.41/0.8028	Nah <i>et al.</i> [31]	32.51/0.8406	

24.76/0.8381

28.53/0.8707

24.79/0.8478

16

31.12/0.9089

23.47/0.8453

26.68/0.8988

23.56/0.8507

29.42/0.9321

- Handle dynamic
 scenes with moving objects?
- collected a set of real blurred images with moving objects without ground truth sharp images, used a camera of a different model (Sony A7M2) and different lenses (SEL85F18, SEL1635Z)

(b) Nah et al. [31]

(c) Zhang et al. [48]

(d) SRN-DeblurNet [42]

(e) DeblurGAN [21]

(f) DeblurGAN-v2 [22]

(g) SRN-DeblurNet [42] RealBlur-J

(h) SRN-DeblurNet [42] RealBlur-J+GoPro+BSD-B

(i) Blurred Image

(j) Nah et al. [31]

(k) Zhang et al. [48]

(1) SRN-DeblurNet [42]

(m) DeblurGAN [21]

(n) DeblurGAN-v2 [22]

(o) SRN-DeblurNet [42] RealBlur-J

(p) SRN-DeblurNet [42] RealBlur-J+GoPro+BSD-B

Outline

- Introduction
- Framework
- Method
- Experiment
- Conclusion

Conclusion

• Presented the **RealBlur** dataset, which is the **first large-scale real-world blur dataset** building an image acquisition.

• Developed a postprocessing method to produce high-quality ground truth images.

• Experiments showed that the dataset can **greatly improve the performance** of deep learning-based deblurring approaches on real-world blurred images by camera shakes and moving objects.