```
In [28]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import scipy.stats as st
from sklearn.model_selection import train_test_split
%matplotlib inline
import statsmodels.api as sm
```

```
In [2]: df = pd.read_csv('heart.csv')
    df.head()
```

Out[2]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1

In [3]: df.isna().sum()

```
Out[3]: age
                      0
                      0
         sex
                      0
         ср
                      0
         trestbps
         chol
                      0
         fbs
                      0
         restecq
         thalach
                      0
         exang
                      0
         oldpeak
                      0
         slope
                      0
         ca
                      0
         thal
                      0
         target
         dtype: int64
```

```
In [4]: #determine majority class
        y train = df.target
        y train.value counts(normalize=True)
Out[4]: 1
             0.544554
             0.455446
        Name: target, dtype: float64
In [5]: #Majority class for every prediction
        majority class = y train.mode()[0]
        y_pred = [majority_class] * len(y_train)
        print(len(y pred))
        303
In [6]: | # Accuracy of majority class baseline =
        #frequency of majority class
        from sklearn.metrics import accuracy score
        accuracy score(y train, y pred)
Out[6]: 0.5445544554455446
        Train/Validat/Test Split
In [7]: X train = df.drop('target', axis=1)
        y train = df.target
        X train.shape, y train.shape
Out[7]: ((303, 13), (303,))
In [8]: X train, X val, y train, y_val = train_test_split(X_train, y_train, trail
        X train.shape, X val.shape, y train.shape, y val.shape
        /anaconda3/lib/python3.7/site-packages/sklearn/model selection/ split.
        py:2179: FutureWarning: From version 0.21, test size will always compl
        ement train size unless both are specified.
          FutureWarning)
```

Out[8]: ((242, 13), (61, 13), (242,), (61,))

```
In [9]: y_train.value_counts(normalize=True)
 Out[9]: 1
               0.549587
               0.450413
         Name: target, dtype: float64
In [10]: y_val.value_counts(normalize=True)
Out[10]: 1
               0.52459
               0.47541
         Name: target, dtype: float64
In [11]: | #Begin with baseline: fast, first models
          X train num = X train.select dtypes('number')
          X val num = X val.select dtypes('number')
In [12]:
           X train num.isnull().sum()
Out[12]: age
                      0
                      0
         sex
                      0
         ср
         trestbps
                      0
         chol
                      0
         fbs
                      0
         restecq
                      0
                      0
         thalach
                      0
         exang
         oldpeak
                      0
         slope
                      0
                      0
         ca
                      0
         thal
         dtype: int64
```

```
In [13]: # Fit logistic Regression on trai data
         from sklearn.linear model import LogisticRegressionCV
         model = LogisticRegressionCV(n jobs=-1)
         model.fit(X train num, y train)
         /anaconda3/lib/python3.7/site-packages/sklearn/model selection/ split.
         py:2053: FutureWarning: You should specify a value for 'cv' instead of
         relying on the default value. The default value will change from 3 to
         5 in version 0.22.
           warnings.warn(CV WARNING, FutureWarning)
         /anaconda3/lib/python3.7/site-packages/sklearn/linear model/logistic.p
         y:758: ConvergenceWarning: lbfgs failed to converge. Increase the numb
         er of iterations.
           "of iterations.", ConvergenceWarning)
Out[13]: LogisticRegressionCV(Cs=10, class_weight=None, cv='warn', dual=False,
                    fit intercept=True, intercept scaling=1.0, max iter=100,
                    multi class='warn', n jobs=-1, penalty='12', random state=N
         one,
                    refit=True, scoring=None, solver='lbfgs', tol=0.0001, verbo
         se=0)
In [14]: | y pred = model.predict(X val num)
         accuracy score(y val, y pred)
Out[14]: 0.8688524590163934
In [15]: y pred
Out[15]: array([0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1,
         0,
                0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
         1,
                1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0])
In [16]: y pred prob = model.predict proba(X val num)
         y pred prob
Out[16]: array([[0.91718075, 0.08281925],
                [0.24399618, 0.75600382],
                [0.15474074, 0.84525926],
                [0.94721257, 0.05278743],
                [0.0958871 , 0.9041129 ],
                [0.10145698, 0.89854302],
                [0.44546624, 0.55453376],
                [0.99589874, 0.00410126],
                [0.99068834, 0.00931166],
```

```
[0.50678639, 0.49321361],
[0.31376236, 0.68623764],
[0.87612942, 0.12387058],
[0.10499386, 0.89500614],
[0.96385716, 0.03614284],
[0.02465185, 0.97534815],
[0.06918942, 0.93081058],
[0.02620327, 0.97379673],
[0.92164942, 0.07835058],
[0.98716307, 0.01283693],
[0.97997464, 0.02002536],
[0.27669803, 0.72330197],
[0.98489439, 0.01510561],
[0.89205054, 0.10794946],
[0.19931863, 0.80068137],
[0.10264677, 0.89735323],
[0.30157395, 0.69842605],
[0.16358865, 0.83641135],
[0.35053159, 0.64946841],
[0.98612855, 0.01387145],
[0.11516732, 0.88483268],
[0.94889996, 0.05110004],
[0.94377746, 0.05622254],
[0.98893551, 0.01106449],
[0.89557743, 0.10442257],
[0.3388751 , 0.6611249 ],
[0.89050338, 0.10949662],
[0.34393316, 0.65606684],
[0.13538587, 0.86461413],
[0.16396614, 0.83603386],
[0.17685447, 0.82314553],
[0.42215651, 0.57784349],
[0.21210364, 0.78789636],
[0.24299353, 0.75700647],
[0.31545218, 0.68454782],
[0.1608941 , 0.8391059 ],
[0.98707846, 0.01292154],
[0.32772783, 0.67227217],
[0.06077374, 0.93922626],
[0.89875602, 0.10124398],
[0.95406139, 0.04593861],
[0.8996671 , 0.1003329 ],
[0.97742329, 0.02257671],
[0.24133302, 0.75866698],
[0.03242391, 0.96757609],
[0.6973755 , 0.3026245 ],
[0.99607544, 0.00392456],
[0.91042108, 0.08957892],
[0.05656502, 0.94343498],
[0.96913201, 0.03086799],
```

```
[0.98972238, 0.01027762],
[0.94953469, 0.05046531]])
```

```
In [17]: pd.Series(y_pred).value_counts(normalize=True)
```

Out[17]: 1 0.52459 0 0.47541 dtype: float64

In [18]:

X_train.describe(include='number')

Out[18]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalac
nt	242.000000	242.000000	242.000000	242.000000	242.000000	242.000000	242.000000	242.00000
an	54.462810	0.657025	0.991736	130.359504	246.842975	0.128099	0.553719	150.11570
td	9.204492	0.475687	1.022533	16.828858	52.795465	0.334893	0.530410	22.35239
in	29.000000	0.000000	0.000000	94.000000	131.000000	0.000000	0.000000	88.00000
%	48.000000	0.000000	0.000000	120.000000	212.000000	0.000000	0.000000	136.00000
%	55.500000	1.000000	1.000000	130.000000	239.500000	0.000000	1.000000	154.00000
%	61.000000	1.000000	2.000000	140.000000	274.750000	0.000000	1.000000	165.75000
ах	77.000000	1.000000	3.000000	192.000000	564.000000	1.000000	2.000000	202.00000

```
In [19]: from sklearn.linear_model import LinearRegression as lm
    model = lm().fit(X_train, y_train)
    predictions = model.predict(X_val_num)
    plt.xlabel('True values')
    plt.ylabel('Predictions')
    plt.scatter(y_val, predictions);
    plt.show();
```


age

sex

In [20]: df.groupby('target').mean()

ср

Out[20]:

target									
0	56.601449	0.826087	0.478261	134.398551	251.086957	0.159420	0.449275	139.101449	0

1 52.496970 0.563636 1.375758 129.303030 242.230303 0.139394 0.593939 158.466667 0

chol

fbs

restecg

thalach

trestbps

```
In [21]: pd.crosstab(df.age,df.target).plot.bar( figsize=(20,6))
    plt.title('Heart Disease Frequency for Ages')
    plt.xlabel('Age')
    plt.ylabel('Frequency')
    plt.savefig('heartDiseaseAndAges.png')
    plt.show()
```



```
In [22]: X_train_num.isnull().sum()
```

```
Out[22]: age
                        0
                        0
          sex
                        0
          ср
          trestbps
                        0
          chol
                        0
                        0
          fbs
                        0
          restecq
          thalach
                        0
          exang
                        0
          oldpeak
                        0
          slope
                        0
          ca
                        0
                        0
          thal
          dtype: int64
```

```
In [23]: def histograms(dataframe, features, rows, cols):
    fig=plt.figure(figsize=(20,20))
    for i, feature in enumerate(features):
        ax=fig.add_subplot(rows,cols,i+1)
        dataframe[feature].hist(bins=20,ax=ax,facecolor='grey')
        ax.set_title(feature+" Distribution",color='black')

    fig.tight_layout()
    plt.show()
    histograms(df,df.columns,6,3)
```



```
In [24]: df.target.value_counts()
```

Out[24]: 1 165 0 138

Name: target, dtype: int64

In [25]: sns.countplot(x='target', data=df);

In [26]: from statsmodels.tools import add_constant as add_constant
 target_const = add_constant(df)
 target_const.head()

Out[26]:

	const	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal
0	1.0	63	1	3	145	233	1	0	150	0	2.3	0	0	1
1	1.0	37	1	2	130	250	0	1	187	0	3.5	0	0	2
2	1.0	41	0	1	130	204	0	0	172	0	1.4	2	0	2
3	1.0	56	1	1	120	236	0	1	178	0	8.0	2	0	2
4	1.0	57	0	0	120	354	0	1	163	1	0.6	2	0	2

```
In [29]: st.chisqprob = lambda chisq, df: st.chi2.sf(chisq, df)
    cols=target_const.columns[:-1]
    model=sm.Logit(df.target, target_const[cols])
    result=model.fit()
    result.summary()
```

Optimization terminated successfully.

Current function value: 0.348904

Iterations 7

Out[29]:

Logit Regression Results

Dep. Varia	able:	ta	arget N	lo. Obse	rvations:	303
Me	odel:	L	_ogit	Df Residuals:		289
Met	thod:	!	MLE		of Model:	13
[Date: Fri,	, 27 Sep 2	2019	Pseudo	o R-squ.:	0.4937
T	ime:	09:4	1:45	Log-Lil	kelihood:	-105.72
conver	ged:		True		LL-Null:	-208.82
				LLR	p-value:	7.262e-37
	coef	std err	_	P> z	[0.025	0.975]
const	3.4505	2.571			-1.590	8.490
age	-0.0049				-0.050	0.041
sex	-1.7582				-2.677	-0.839
ср	0.8599	0.185	4.638	0.000	0.496	1.223
trestbps	-0.0195	0.010	-1.884	0.060	-0.040	0.001
chol	-0.0046	0.004	-1.224	0.221	-0.012	0.003
fbs	0.0349	0.529	0.066	0.947	-1.003	1.073
restecg	0.4663	0.348	1.339	0.181	-0.216	1.149
thalach	0.0232	0.010	2.219	0.026	0.003	0.044
exang	-0.9800	0.410	-2.391	0.017	-1.783	-0.177
oldpeak	-0.5403	0.214	-2.526	0.012	-0.959	-0.121
slope	0.5793	0.350	1.656	0.098	-0.106	1.265
ca	-0.7733	0.191	-4.051	0.000	-1.147	-0.399
thal	-0.9004	0.290	-3.104	0.002	-1.469	-0.332

```
In [32]: result.summary()
```

303

target No. Observations:

Out[32]:

Logit Regression Results

Dep. Variable:

•			J				
Model:		I	Logit	Df R	esiduals	: 296	
Method:			MLE		Of Model	: 6	
ı	Date: Fri	, 27 Sep 2	2019	Pseud	o R-squ.	0.4651	
7	Γime:	09:4	2:34	Log-Lil	kelihood	: -111.71	
conve	rged:		True		LL-Null	-208.82	
				LLR	p-value	: 3.209e-39	
	coef	std err	z	P> z	[0.025	0.975]	
sex	-1.3898	0.405	-3.431	0.001	-2.184	-0.596	
ср	0.7861	0.174	4.509	0.000	0.444	1.128	
thalach	0.0261	0.004	5.905	0.000	0.017	0.035	
exang	-1.0130	0.376	-2.695	0.007	-1.750	-0.276	
oldpeak	-0.7262	0.176	-4.130	0.000	-1.071	-0.382	
ca	-0.7053	0.173	-4.087	0.000	-1.043	-0.367	

```
In [33]: params = np.exp(result.params)
    conf = np.exp(result.conf_int())
    conf['OR'] = params
    pvalue=round(result.pvalues,3)
    conf['pvalue']=pvalue
    conf.columns = ['CI 95%(2.5%)', 'CI 95%(97.5%)', 'Odds Ratio','pvalue']
    print ((conf))
```

	CI 95%(2.5%)	CI 95%(97.5%)	Odds Ratio	pvalue
sex	0.112623	0.551073	0.249126	0.001
ср	1.559575	3.088655	2.194764	0.000
thalach	1.017567	1.035326	1.026408	0.000
exang	0.173839	0.758508	0.363123	0.007
oldpeak	0.342750	0.682775	0.483757	0.000
ca	0.352232	0.692750	0.493973	0.000
thal	0.252918	0.697612	0.420046	0.001

```
In [34]: from sklearn.metrics import confusion_matrix
    cm=confusion_matrix(y_val,y_pred)
    conf_matrix=pd.DataFrame(data=cm,columns=['Predicted:0','Predicted:1'],i
    plt.figure(figsize = (8,5))
    sns.heatmap(conf_matrix, annot=True,fmt='d',cmap="YlGnBu")
```

Out[34]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1d99ad30>


```
In [35]:
         TN=cm[0,0]
         TP=cm[1,1]
         FN=cm[1,0]
         FP=cm[0,1]
         sensitivity=TP/float(TP+FN)
         specificity=TN/float(TN+FP)
In [36]: print('The accuracy of the model = TP+TN/(TP+TN+FP+FN) = ',(TP+TN)/float
         'The Missclassification = 1-Accuracy = ',1-((TP+TN)/float(TP+TN+FP+FN)),
         'Sensitivity or True Positive Rate = TP/(TP+FN) = ',TP/float(TP+FN),'\n'
         'Specificity or True Negative Rate = TN/(TN+FP) = ',TN/float(TN+FP),'\n'
         'Positive Predictive value = TP/(TP+FP) = ',TP/float(TP+FP),'\n',
         'Negative predictive Value = TN/(TN+FN) = ',TN/float(TN+FN),'\n',
         'Positive Likelihood Ratio = Sensitivity/(1-Specificity) = ',sensitivity
         'Negative likelihood Ratio = (1-Sensitivity)/Specificity = ',(1-sensitiv
         The accuracy of the model = TP+TN/(TP+TN+FP+FN) = 0.8688524590163934
          The Missclassification = 1-Accuracy = 0.1311475409836066
          Sensitivity or True Positive Rate = TP/(TP+FN) = 0.875
          Specificity or True Negative Rate = TN/(TN+FP) =
                                                            0.8620689655172413
          Positive Predictive value = TP/(TP+FP) = 0.875
          Negative predictive Value = TN/(TN+FN) = 0.8620689655172413
          Positive Likelihood Ratio = Sensitivity/(1-Specificity) = 6.34374999
         9999997
          Negative likelihood Ratio = (1-Sensitivity)/Specificity = 0.14500000
         00000002
```

```
In [37]: from sklearn.linear_model import LogisticRegression
    logr=LogisticRegression()
    logr.fit(X_train,y_train)
    y_pred=logr.predict(X_val)
```

/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.p
y:433: FutureWarning: Default solver will be changed to 'lbfgs' in 0.2
2. Specify a solver to silence this warning.
 FutureWarning)

Out[38]:

	Prob of no heart disease (0)	Prob of Heart Disease (1)
0	0.922471	0.077529
1	0.261241	0.738759
2	0.144341	0.855659
3	0.971653	0.028347
4	0.060461	0.939539

```
from sklearn.preprocessing import binarize
In [39]:
         for i in range(1,5):
             cm2=0
             y pred prob yes=logr.predict proba(X val num)
             y pred2=binarize(y pred prob yes,i/10)[:,1]
             cm2=confusion matrix(y val,y pred2)
             print ('With',i/10,'threshold the Confusion Matrix is ','\n',cm2,'\n
                     'with',cm2[0,0]+cm2[1,1],'correct predictions and',cm2[1,0],
                   'Sensitivity: ',cm2[1,1]/(float(cm2[1,1]+cm2[1,0])),'Specifici
         With 0.1 threshold the Confusion Matrix is
          [[23 6]
          [ 3 29]]
          with 52 correct predictions and 3 Type II errors (False Negatives)
          Sensitivity: 0.90625 Specificity: 0.7931034482758621
         With 0.2 threshold the Confusion Matrix is
          [[24 5]
          [ 3 29]]
          with 53 correct predictions and 3 Type II errors (False Negatives)
          Sensitivity: 0.90625 Specificity: 0.8275862068965517
         With 0.3 threshold the Confusion Matrix is
          [[25 4]
          [ 3 29]]
          with 54 correct predictions and 3 Type II errors (False Negatives)
          Sensitivity: 0.90625 Specificity: 0.8620689655172413
         With 0.4 threshold the Confusion Matrix is
          [[25 4]
          [ 3 29]]
          with 54 correct predictions and 3 Type II errors (False Negatives)
          Sensitivity: 0.90625 Specificity: 0.8620689655172413
```

```
In [40]: from sklearn.metrics import roc_curve
    fpr, tpr, thresholds = roc_curve(y_val, y_pred_prob_yes[:,1])
    plt.plot(fpr,tpr)
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.0])
    plt.title('ROC curve for Heart disease classifier')
    plt.xlabel('False positive rate (1-Specificity)')
    plt.ylabel('True positive rate (Sensitivity)')
    plt.grid(True)
```



```
In [41]: import sklearn
In [42]: sklearn.metrics.roc_auc_score(y_val,y_pred_prob_yes[:,1])
Out[42]: 0.927801724137931
In [ ]:
In [ ]:
```