Enhancement NMOS

$$K = \frac{1}{2} \,\mu_n C_{ox} \, \frac{W}{L}$$

W=> Width L=> Length C_{ox}=> Oxide Capacitance $\mu_n =>$ Electron Mobility

$$i_{DS} = K[2(v_{GS} - v_t) v_{DS} - v_{DS}^2]$$

 $v_{GS} = V_t + 2.0$

 $V_{DS}(V)$

Saturation:
$$v_{DS} > v_{GS} - v_t$$

$$i_{DS} = K (v_{GS} - v_t)^2$$

Depletion NMOS

Pre-manufactured channel

$$v_{GS}$$
= 0 Conduction

 v_{GS} <- v_t Channel dissapears

NMOS Loads

Enhancement load:

Device acts as a Nonlinear resistor !!!

Depletion load:

NMOS Inverter

Resistive Load

$$v_{ln} = OV \rightarrow v_{ln} < v_t$$
 $v_{ln} = Vdd$

Enhancement Load

- ➤ Much more practical than the resistor loaded inverter, because the resistors are thousand of times larger size than a MOSFET.
- ➤ Wide range of inputs where the output is not determined

Depletion Load

➤ The dynamic margin is much better even though the W/L ratio for the output is small.

NMOS Logic Gates

NMOS logic circuits are constructed by connecting driver transistors in parallel, series or combinations to produce required output logic function.

- Transistors in serial make logic products
- Transistors in parallel make logic additions
- Output is inverted
- 2 transistors in serial make a NAND gate
- 2 transistors in parallel make a NOR gate

NMOS Logic Gates

NAND GATE $f=\overline{a \cdot b}$

- > Transistors in **serial** make **logic products**
- > Transistors in parallel make logic additions
- Output is inverted

NMOS Logic Gates

NOR GATE $f=\overline{a+b}$

а	b	f
0	0	1
0	1	0
1	0	0
1	1	0

$$f = \overline{(a \cdot b) + c}$$

$$f = \overline{(a+b) \cdot c}$$

- Transistors in serial make logic products
- Transistors in parallel make logic additions
- Output is inverted

NMOS gates characteristics Propagation delay

Transitions are not perfect, they are delayed because of **parasitic capacitances** and **resistors**. The considered model for the NMOS inverter is:

Calculation of τ_{PHL}

$\tau_{PHL} = (R_L || R_{On}) \cdot C_L$

Calculation of τ_{PLH}

$$\tau_{PLH} >> \tau_{PHL}$$

Asymetric propagation times iiii

NMOS gates characteristics Power Consumption

There is static power consumption in NMOS technologies

No consumption[[[]] (high output)

Consumption[[[]] (low output)

Α	В	NAND	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

25% of cases drain power

Α	В	NOR
0	0	1
0	1	0
1	0	0
1	1	0

75% of cases drain power

- Better implementation of NMOS circuits with NAND than NOR
- NMOS technologies are not commonly used because teh static power consumption

PMOS

- ➤ Same equations than NMOS, changing current and voltaje signs
- ➤ Not widely used as NMOS because hole movility (PMOS) is lower than electron mobility (NMOS)
- To get the same current, usually we need a bigger transistor ($\mu_n = 2.5 \cdot \mu_p$)

Complementary MOS Technologies (CMOS)

- CMOS has replaced NMOS at all level of integration because power dissipation in CMOS logic circuits is much lower than in NMOS circuits.
- Instead of using a load, we use a dual network with NMOS and PMOS.

CMOS Inverter

CMOS logic Gates

NAND GATE $f=\overline{a \cdot b}$

CMOS Logic Gates

- > Transistors in **serial** make **logic products**
- > Transistors in parallel make logic additions
- Output is inverted

CMOS gates characteristics

Delay

(a) Low-to-high

We can manufacture transistors so that $R_p = R_n$

 $\tau_{PLH} = \tau_{PHL}$ Symetric propagation times [[[]]]

CMOS gates characteristics Power Consumption

CMOS gates characteristics

Logic gates Size

- \triangleright We know that $\mu_n = 2.5 \cdot \mu_p$
- > Usually transistors are designed so that L is as small as possible
 - $L_n = L_p$
 - W must be different => Width of P must be bigger

•
$$\frac{1}{2} \frac{W_n}{L_n} \mu_n C_{ox} = \frac{1}{2} \frac{W_p}{L_p} \mu_p C_{ox}$$

> PMOS transistors need to be 2.5 times (W) bigger than NMOS

Pass transistors

Use of transistors as switches between driving circuits and load circuits are called pass transistors

CMOS Transmissions gates

- ➤ A CMOS transmission gate can be constructed by parallel combination of NMOS and PMOS with complementary gate signals.
- ➤ The main advantage of the CMOS transmission gate compared to pass transistors is to allow the input signal to be transmitted to the output without the threshold voltage attenuation

CA	A f	
0 0	0 Z	
1	1 Z	
L 0	0 0	l A
1	1 1	

Triestate buffer

CMOS Transmissions gates

Logic gates with Transmissions gates

Multiplexer

С	Α	В	f	
0	0	0	0]
0	0	1	0	
0	1	0	1	A
0	1	1	1	
1	0	0	0	1
1	0	1	1	D
1	1	0	0	- B
1	1	1	1	

$$C=0 \rightarrow f=A$$

 $C=1 \rightarrow f=B$

- 6 transistorsiii
- 4 for Transmission gates
- 2 for Inverter

Logic gates with Transmissions gates

8 Transistorsiiii

Logic gates with Transmissions gates

D-latch (level triggered bistable)

