CS3102 Theory of Computation

Warm up:

 $XOR = \{x \in \{0,1\}^* | x \text{ has an odd number of 1s} \}$

Write a regex for XOR^c (i.e. \overline{XOR} , i.e. the complement of XOR)

AND to NAND

AND:

- $Q = \{start, No0s, Some0s\}$
- $-q_0 = start$
- $F = \{start, No0s\}$
- $-\delta$ defined as the arrows
- NAND:
 - $-Q, q_0, \delta$ don't change
 - -F=Q-F
- In general, If we can compute a language L with a FSA, we can compute L^{c} as well

Logistics

- Homework released tomorrow
 - See submission page for deadlines (I'm still processing your quiz 3)
- Quiz will be released Thursday, due Tuesday

Last Time

- Languages and decision problems
 - A different way of thinking about functions
- Introducing Finite State Automata
 - DFA: Deterministic finite state automaton
 - Language of a FSA: The set of strings for which that automaton returns 1

Regular Expressions

Name	Decision Problem	Function	Language
Regex	Does this string match this pattern?	$f(b) = \begin{cases} 0 & \text{the string matches} \\ 1 & \text{the string doesn't} \end{cases}$	$\{b \in \Sigma^* b \text{ matches the pattern}\}$

- A way of describing a language
- Give a "pattern" of the strings, every string matching that pattern is in the language
- Examples:
 - -(a|b)c matches: ac and bc
 - $-(a|b)^*c$ matches: c, ac, bc, aac, abc, bac, bbc, ...

FSA = Regex

- Finite state Automata and Regular Expressions are equivalent models of computing
- Any language I can represent as a FSA I can also represent as a Regex (and vice versa)
- How would I show this?

Showing FSA ≤ Regex

- Show how to convert any FSA into a Regex for the same language
- We're going to skip this:
 - It's tedious, and people virtually never go this direction in practice, but you can do it (see textbook theorem 9.12)

Showing Regex ≤ FSA

- Show how to convert any regex into a FSA for the same language
- Idea: show how to build each "piece" of a regex using FSA

"Pieces" of a Regex

Empty String:

- Matches just the string of length 0
- Notation: ε or ""

Literal Character

- Matches a specific string of length 1
- Example: the regex a will match just the string a

Alternation/Union

- Matches strings that match at least one of the two parts
- Example: the regex $a \mid b$ will match a and b

Concatenation

- Matches strings that can be dividing into 2 parts to match the things concatenated
- Example: the regex (a|b)c will match the strings ac and bc

Kleene Star

- Matches strings that are 0 or more copies of the thing starred
- Example: $(a|b)c^*$ will match a, b, or either followed by any number of c's

FSA for the empty string

FSA for a literal character

FSA for Alternation/Union

- Tricky...
- What does it need to do?

Recall: AND to NAND

AND:

- $Q = \{start, No0s, Some0s\}$
- $-q_0 = start$
- $F = \{start, No0s\}$
- $-\delta$ defined as the arrows

NAND:

- $-Q, q_0, \delta$ don't change
- -F = Q F
- In general, If we can compute a language L with a FSA, we can compute L^{c} as well

Computing Complement

- If FSA $M = (Q, \Sigma, \delta, q_0, F)$ computes L
- Then FSA $M'=(Q,\Sigma,\delta,q_0,Q-F)$ computes \overline{L}
- Why?
 - − Consider string $w \in \Sigma^*$
 - $-w \in L$ means it ends at some state $f \in F$, which will be non-final in M' and therefore it will return False
 - $-w \notin L$ means it ends at some state $q \notin F$, which will be final in M' and therefore it will return True

Computing Union

- Let FSA $M_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1)$ compute L_1
- Let $M_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2)$ compute L_1
- Will there always be some automaton $M_{\rm U}$ to compute L_1 U L_2
- What must M_{\cup} do?
 - Somehow end up in a final state if either M_1 or M_2 did
 - Idea: build $M_{\rm U}$ to "simulate" both M_1 and M_2

• $AND \cup XOR$

Example

— What is the resulting language?

Cross-Product Construction

• 2 machines at once!

Cross-Product Construction

• 2 machines at once!

Cross Product Construction

- Let FSA $M_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1)$ compute L_1
- Let $M_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2)$ compute L_1
- $M_{\rm U}=(Q_1\times Q_2,\Sigma,\delta_{\rm U},(q_{01},q_{02}),F_{\rm U})$ computes $L_1\cup L_2$
 - $-\delta_{\cup}((q_1,q_2),\sigma) = (\delta_1(q_1,\sigma),\delta_2(q_2,\sigma))$
 - $-F_{\cup} = \{(q_1, q_2) \in Q_1 \times Q_2 | q_1 \in F_1 \text{ or } q_2 \in F_2\}$
- How could we do intersection?

Non-determinism

- Things could get easier if we "relax" our automata
- So far:
 - Must have exactly one transition per character per state
 - Can only be in one state at a time
- Non-deterministic Finite Automata:
 - Allowed to be in multiple (or zero) states!
 - Can have multiple or zero transitions for a character
 - Can take transitions without using a character
 - Models parallel computing

Nondeterminism

Driving to a friend's house Friend forgets to mention a fork in the directions Which way do you go?

Example Non-deterministic Finite Automaton

• $ThirdLast1 = \{w \in \{0,1\}^* | \text{ the third from last character is a } 1\}$

Non-Deterministic Finite State Automaton

Implementation:

- Finite number of states
- One start state
- "Final" states
- Transitions: (partial) function mapping state-character (or epsilon) pairs to sets of states

Execution:

- Start in the initial "state"
- Enter every state reachable without consuming input (ε -transitions)
- Read each character once, in order (no looking back)
- Transition to new states once per character (based on current states and character)
- Enter every state reachable without consuming input (ε -transitions)
- Return True if any state you end is final
 - Return False if every state you end in is non-final

Union Using Non-Determinism

Union Using Non-Determinism

What's the language?

NFA Example

 $\{w \in \{0,1\}^* | w \text{ contains } 0101\}$