March 7, 2022

MATH 300 Homework 7

Problem 1

(a) Both $A \setminus B$ and $A \cap \overline{B}$ have the same diagram:

Let A, B be sets.

Assume x is in $A \setminus B$. Then, by definition $x \in A$ and $x \notin B$.

Since $x \in A$ and $x \notin B$ is also the definition of $A \cap \overline{B}$, x is in $A \cap \overline{B}$. Thus, $A \setminus B \subseteq A \cap \overline{B}$.

Then assume x is in $A \cap \overline{B}$. Then, by definition $x \in A$ and $x \notin B$.

Since $x \in A$ and $x \notin B$ is also the definition of $A \setminus B$, x is in $A \setminus B$. Thus, $A \cap \overline{B} \subseteq A \setminus B$.

Therefore, since the sets are subsets of each other, they are equal.

(b) Both $A \setminus (B \cup C)$ and $(A \setminus B) \cap (A \setminus C)$ have the same diagram:

Let A, B be sets.

Assume x is in $A \setminus (B \cup C)$. Then, by definition, $x \in A \land \neg (x \in B \lor x \in C)$.

Using De Morgan's law, this is equivalent to $x \in A \land x \notin B \land x \notin C$. By the idempotent laws, this is equivalent to $(x \in A \land x \notin B) \land (x \in A \land x \notin C)$.

This is the definition of $(A \setminus B) \cap (A \setminus C)$, so x is in $(A \setminus B) \cap (A \setminus C)$. Thus, $A \setminus (B \cup C)$ is a subset of $(A \setminus B) \cap (A \setminus C)$.

Then assume x is in $(A \setminus B) \cap (A \setminus C)$. Then, by definition, $(x \in A \land x \notin B) \land (x \in A \land x \notin C)$. By the idempotent laws, this is equivalent to $x \in A \land x \notin B \land x \notin C$.

Using De Morgan's law, this is equivalent to $x \in A \land \neg (x \in B \lor x \in C)$. This is the definition of $A \setminus (B \cup C)$, so x is in $A \setminus (B \cup C)$. Thus, $(A \setminus B) \cap (A \setminus C)$ is a subset of $A \setminus (B \cup C)$.

Therefore, since the sets are subsets of each other, they are equal.

Problem 2

Let A, B be sets.

Assume $A \setminus B = \emptyset$. Then, by definition, there are no elements that are in A but not in B. Equivalently, every element in A is also in B. This is the definition of $A \subseteq B$, so $A \setminus B = \emptyset \Rightarrow A \subseteq B$.

Then, assume $A \setminus B \neq \emptyset$. Then, there is an element in A that is not in B. Thus, by the definition of subset, $A \nsubseteq B$. By the contrapositive, $A \subseteq B \Rightarrow A \setminus B = \emptyset$.

Therefore, since the propositions imply each other, $A \subseteq B \Leftrightarrow A \setminus B = \emptyset$.

Problem 3

(a) $R = \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,2), (2,4), (2,6), (3,3), (3,6), (4,4), (5,5), (6,6)\}$

Problem 4

- (a) No: R is not reflexive, because one cannot be taller than oneself.
- (b) Yes: R is reflexive because one is clearly born on the same day as oneself. R is symmetric because if person A is born on the same day as person B, then person B must be born on the same day as person A. R is transitive because if person A is born on the same day as person B and person B is born on the same day as person B, then person B is born on the same day as person B, then person B is born on the same day. Thus, B satisfies all three conditions and is an equivalence relation.
- (c) Yes: R is reflexive because one has the same first name as oneself. R is transitive because if person A has the same first name as person B, then person B will have the same first name as person A. B is transitive because if person B has the same first name as person B and person B has the same first name as person B, then person B has the same first name as person B, then person B has the same first name as person B, then person B has the same first name.

 Thus, B satisfies all three conditions and is an equivalence relation.
- (d) No: R is not transitive. For example, one has at least one grandparent in common with one's cousins, but not necessarily grandparents in common with all the cousins of one's cousins.

Problem 5

(a) Let A, B be sets and R be a relation from A to B.

Assume $(a, b) \in R$. Then, $(b, a) \in R^{-1}$. Additionally, $a \in Dom(R)$, so $(a, a) \in id_{Dom(R)}$.

Nathan Bickel

Since $R^{-1} \circ R = \{(c, e) : (\exists d) [(c, d) \in R \land (d, e) \in R^{-1}]\}, (a, a) \text{ is in } R^{-1} \circ R \text{ because choosing } d = b \text{ yields}$ the pair (a, a).

Therefore, if $(a, a) \in id_{\text{Dom}(R)}$, then $(a, a) \in R^{-1} \circ R$, so $id_{\text{Dom}(R)} \subseteq R^{-1} \circ R$.

(b) Let A, B be sets and R be a relation from A to B.

Assume $(a, b) \in R$. Then, $(b, a) \in R^{-1}$. Additionally, $b \in \text{Ran}(R)$, so $(b, b) \in id_{\text{Ran}(R)}$.

Since $R \circ R^{-1} = \{(c, e) : (\exists d)[(c, d) \in R^{-1} \land (d, e) \in R]\}, (b, b)$ is in $R \circ R^{-1}$ because choosing d = b yields the pair (b, b).

Therefore, if $(b,b) \in id_{\text{Ran}(R)}$, then $(b,b) \in R^{-1} \circ R$, so $id_{\text{Ran}(R)} \subseteq R \circ R^{-1}$.

Problem 6

24,48. To see that the n^{th} term from A divides 48, multiply it by the n^{th} term from the set of integers A'= $\{-1, -2, -3, -4, -6, -8, -12, -16, -24, -48, 48, 24, 16, 12, 8, 6, 4, 3, 2, 1\}$ to get 48. For all other integers z, $\frac{48}{\sim}$ does not equal an integer, so these are the only factors.

(a) We claim $Dom(R) = \mathbb{Z}$ and $Ran(R) = \mathbb{Z}$.

Since R is a relation on \mathbb{Z} , by definition $\text{Dom}(R) \subseteq \mathbb{Z}$. Then, assume $x \in \mathbb{Z}$. The pair (x, x - 2) is in the relation, because x - (x - 2) = 2 is even, so x is in Dom(R) and thus $\mathbb{Z} \subseteq Dom(R)$. Therefore, $Dom(R) = \mathbb{Z}$.

Since R is a relation on \mathbb{Z} , by definition $\operatorname{Ran}(R) \subseteq \mathbb{Z}$. Then, assume $y \in \mathbb{Z}$. The pair (y+2,y) is in the relation, because y+2-y=2 is even, so y is in $\operatorname{Ran}(R)$ and thus $\mathbb{Z}\subseteq\operatorname{Ran}(R)$. Therefore, $\operatorname{Ran}(R)=\mathbb{Z}$. \square

(b) We claim Dom(S) = Ran(S) = A (see definition of A above).

First, assume $a \in A$. Then, $\left(a, \frac{48}{a}\right)$ and $\left(\frac{48}{a}, a\right)$ are both in S because $\frac{48 \times a}{a} = \frac{a \times 48}{a} = 48$. Thus, $A \subseteq \text{Dom}(S)$ and $A \subseteq \operatorname{Ran}(S)$.

Then, assume $a \in Dom(S)$. The only way to multiply two integers to obtain 48 is if the first number is a factor of 48, which is how A was defined, so $Dom(S) \subseteq A$.

Finally, assume $a \in \text{Ran}(S)$. The only way to multiply two integers to obtain 48 is if the second number is a factor of 48, which is how A was defined, so $Ran(S) \subseteq A$.

Thus, both equalities are verified, because the sets are subsets of each other.

(c) $R \circ S = \{(a, c) \in \mathbb{Z} \times \mathbb{Z} : (\exists b) [(a, b) \in S \land (b, c) \in R] \}$

Since ab = 48 as $(a,b) \in S$, $b = \frac{48}{a}$. Thus, $R \circ S = \{(a,c) \in \mathbb{Z} \times \mathbb{Z} : (a,\frac{48}{a}) \in S \land (\frac{48}{a},c) \in R \land \frac{48}{a} \in \mathbb{Z}\}$. As $\left(a, \frac{48}{a}\right) \in S$ is defined on $\mathbb{Z} \times \mathbb{Z}$, the only way for $\frac{48}{a}$ to be an integer is if a|48. Also, as $\left(\frac{48}{a}, c\right) \in R$, $2\left|\left(\frac{48}{a}-c\right)\right|$.

Therefore, $R \circ S = \{(a, c) \in \mathbb{Z} \times \mathbb{Z} : a | 48 \wedge 2 | \left(\frac{48}{a} - c\right) \}.$

(d) We claim $Dom(R \circ S) = A$ and $Ran(R \circ S) = \mathbb{Z}$. The first equality follows directly from the definition of $R \circ S$ at the end of (c), because $a|48 \Leftrightarrow a \in A$ since A is the factors of 48.

Assume $c \in \text{Ran}(R \circ S)$. Then, $2|(\frac{48}{a}-c)$, so there exists a $k \in \mathbb{Z}$ such that $2k = \frac{48}{a}-c$. So $c = \frac{48}{a}-2k$, and since it the difference of 2 integers, $c \in \mathbb{Z}$. Thus, $\operatorname{Ran}(R \circ S) \subseteq \mathbb{Z}$.

Then, assume $c \in \mathbb{Z}$.

Nathan Bickel

Case 1: Choose a=48, as it is in $\text{Dom}(R\circ S)$. Then, $2|\left(\frac{48}{48}-c\right)\equiv 2|(1-c)$. Any odd c will satisfy this proposition, because the difference of two odds is even and 1 is odd.

Case 2: Choose a=1, as it is in $\text{Dom}(R\circ S)$. Then, $2|\left(\frac{48}{1}-c\right)\equiv 2|(48-c)$. Any even c will satisfy this proposition, because the difference of two evens is even and 48 is even. Thus, any odd or even c is in $\operatorname{Ran}(R \circ S)$, so $\mathbb{Z} \subseteq \operatorname{Ran}(R \circ S)$.

Therefore, the second inequality is verified because they are subsets of each other.

(e)
$$R \circ S = \{(a, c) \in \mathbb{Z} \times \mathbb{Z} : (\exists b) [(a, b) \in R \land (b, c) \in S] \}$$

Since bc = 48 as $(b,c) \in S$, $b = \frac{48}{c}$. Thus, $R \circ S = \{(a,c) \in \mathbb{Z} \times \mathbb{Z} : (a,\frac{48}{c}) \in R \land (\frac{48}{c},c) \in S\}$. As $(\frac{48}{c},c) \in S$ is defined on $\mathbb{Z} \times \mathbb{Z}$, the only way for $\frac{48}{c}$ to be an integer is if c|48. Also, as $\left(a, \frac{48}{c}\right) \in \mathbb{R}$, $2|\left(a - \frac{48}{c}\right)$.

Therefore,
$$R \circ S = \{(a, c) \in \mathbb{Z} \times \mathbb{Z} : 2 | (a - \frac{48}{c}) \wedge c | 48 \}.$$

(f) We claim $Dom(S \circ R) = \mathbb{Z}$ and $Ran(S \circ R) = A$. The second equality follows directly from the definition of $S \circ R$ at the end of (e), because $c \mid 48 \Leftrightarrow c \in A$ since A is the factors of 48.

Assume $a \in \text{Dom}(S \circ R)$. Then, $2|(a-\frac{48}{c})$, so there exists a $k \in \mathbb{Z}$ such that $2k = a - \frac{48}{c}$. So $a = \frac{48}{a} + 2k$, and since it the sum of 2 integers, $a \in \mathbb{Z}$. Thus, $Dom(S \circ R) \subseteq \mathbb{Z}$.

Then, assume $a \in \mathbb{Z}$.

Case 1: Choose c=48, as it is in Ran $(S \circ R)$. Then, $2|(a-\frac{48}{48}) \equiv 2|(a-1)$. Any odd a will satisfy this proposition, because the difference of two odds is even and 1 is odd.

Case 2: Choose c=1, as it is in $\operatorname{Ran}(S\circ R)$. Then, $2|(a-\frac{48}{1})\equiv 2|(a-48)$. Any even a will satisfy this proposition, because the difference of two evens is even and 48 is even. Thus, any odd or even a is in $Dom(S \circ R)$, so $\mathbb{Z} \subseteq Ran(S \circ R)$.

Therefore, the second inequality is verified because they are subsets of each other.

(g) We claim $R \circ R = R$.

By definition, $R \circ R = \{(a,c) \in \mathbb{Z} \times \mathbb{Z} : (\exists b)[(a,b) \in R \land (b,c) \in R]\}$. Assume $(a,c) \in R \circ R$. Then, there is a b such that 2|(a-b), so 2m=a-b for some integer m. Rearranging, b=a-2m. It is also stipulated that 2|(b-c) and thus 2n=b-c for some n, so b=2n+c. Equating the values of b, $a-2m=2n+c\Rightarrow a-c=2(m+n)$. Since m+n is an integer as it is the sum of two integers, 2|(a-c).

Since R is defined as $\{(x,y) \in \mathbb{Z} \times \mathbb{Z} : 2|(x-y)\}$, $R \circ R = R$ because for any pair $(a,c) \in R \circ R$, 2|(a-c). \square

(h) We claim $S \circ S = id_A$.

By definition, $S \circ S = \{(a,c) \in \mathbb{Z} \times \mathbb{Z} : (\exists b)[(a,b) \in S \land (b,c) \in S]\}$. Assume $(a,c) \in S \circ S$. Then, $b = \frac{48}{a}$ since ab=48. Also, $b=\frac{48}{c}$ since bc=48. So, $\frac{48}{a}=\frac{48}{c}$, and thus a=c if $(a,c)\in S\circ S$.

Since $b = \frac{48}{a} = \frac{48}{c}$, a and c must be factors of 48. This is how A is defined, so $a \in A \land c \in A$. Thus, $S \circ S = \{(a, a) \in \mathbb{Z} \times \mathbb{Z} : a \in A\}$. This is the definition of id_A .

(i) We claim both are true.

Assume $(x,y) \in S$. Since xy = 48, yx = 48, so $(y,x) \in S^{-1}$. Thus, $S \subseteq S^{-1}$. Then, assume $(x,y) \in S^{-1}$. Since yx = 48, xy = 48, so $(y, x) \in S$. Thus, $S^{-1} \subseteq S$. Therefore, since the sets are subsets of each other, $S = S^{-1}$.

Assume $(x,y) \in R$. Then, 2|(x-y), so there exists a $k \in \mathbb{Z}$ such that 2k = x-y. Negating this, y-x = -2k. Since k is an integer, so is -k, so 2|(y-x) and $(y,x) \in S^{-1}$. Thus, $R \subseteq R^{-1}$. Then, assume $(x,y) \in R$. Homework 7 MATH 300

Then, 2|(x-y), so there exists a $k \in \mathbb{Z}$ such that 2k = x - y and consequentially -2k = y - x. Then, 2|(y-x) and $(y,x) \in S$. Thus, $R^{-1} \subseteq R$. Therefore, since the sets are subsets of each other, $R = R^{-1}$. \square

Nathan Bickel

Problem 7

(a)
$$R^{-1} = \{(1,1), (1,2), (3,3), (7,4), (4,7), (3,7)\}$$

(b)
$$Dom(R) = \{1, 2, 3, 4, 7\}$$

 $Ran(R) = \{1, 3, 4, 7\}$

(c)
$$R \circ R = \{(1,1), (2,1), (3,3), (4,4), (4,3), (7,7), (7,3)\}$$

 $\mathrm{Dom}(R \circ R) = \{1, 2, 3, 4, 7\}$

 $Ran(R \circ R) = \{1, 3, 4, 7\}$

(d)
$$R^{-1} \circ R = \{(1,1), (3,3), (7,7), (4,4), (4,3), (3,4)\}$$

(e)
$$R \circ R^{-1} = \{(1,1), (1,2), (2,1), (2,2), (3,3), (3,7), (4,4), (7,7), (7,3)\}$$

Problem 8

(a) Let A be a set and S be a relation on A.

Assume $(a,c) \in S \circ S$. By definition, $S \circ S = \{(a,c) \in A \times A : (\exists b)[(a,b) \in S \wedge (b,c) \in S]\}$. Since S is transitive, $(a,b) \in S \wedge (b,c) \in S \Rightarrow (a,c) \in S$ by definition, so $(a,c) \in S$. Therefore, $(S \circ S) \subseteq S$.

(b) Assume $S^{-1} = S$. Then, by definition of set equality, any $(a,b) \in S$ means $(a,b) \in S^{-1}$, because $S \subseteq S^{-1}$. Additionally, any $(b,a) \in S^{-1}$ means $(b,a) \in S$ because $S^{-1} \subseteq S$. By the definition of inverse, if (a,b) is in S then (b,a) is in S^{-1} , and since $S^{-1} \subseteq S$, $(b,a) \in S$. This is the definition of a relation being symmetric, so $S^{-1} = S \Rightarrow S$ is symmetric.

Then, assume S is symmetric. Assume $(a,b) \in S$. By definition of being symmetric, $(b,a) \in S$, and by definition of inverse $(a,b) \in S^{-1}$. So $S \subseteq S^{-1}$, since every element in S is in S^{-1} . Finally, assume $(b,a) \in S^{-1}$. Then, $(a,b) \in S$, and by definition of being symmetric $(b,a) \in S$. So $S^{-1} \subseteq S$, since every element in S^{-1} is in S. Thus, $S^{-1} = S \Leftarrow S$ is symmetric.

Therefore, $S^{-1} = S \Leftrightarrow S$ is symmetric. \square

Problem 9

Let S be a relation from A to B and R be a relation from B to C.

$$(R \circ S)^{-1} = \{(c, a) : (\exists b)[(a, b) \in S \land (b, c) \in R]\}$$
 (by definition)

$$= \{(c, a) : (\exists b)[(b, c) \in R \land (a, b) \in S]\}$$
 (commutative property)

$$= \{(a, c) : (\exists b)[(b, a) \in R \land (c, b) \in S]\}$$
 (renaming variables)

$$= \{(a, c) : (\exists b)[(a, b) \in R^{-1} \land (b, c) \in S^{-1}]\}$$
 (definition of inverse)

$$= S^{-1} \circ R^{-1}$$
 (definition of composition)

Thus, the sets are equal because they are defined in the same way.