Student ID Number:

Graph Theory, Discrete Mathematics, and Optimization Graph Theory and Discrete Mathematics module

1	2	3	4	5	6
c	b	b	c	b	a

Exam duration: one hour. The test is composed by 6 multiple-choice questions (one point each), and one open question (up to two points). For the multiple-choice questions please insert the correct answer into the above grid. No cheating or collaboration is allowed. Good luck!

1. (2 point) The rank of the following matrix

$$\begin{bmatrix} 1 & -3 & 2 & -4 \\ -3 & -9 & -1 & 5 \\ 2 & -6 & 4 & -3 \\ -4 & 12 & 2 & 7 \end{bmatrix}$$

is

2. (2 point) The following system (t is a real parameter)

$$\begin{cases}
-tx_1 & +(t-1)x_2 & +x_3 & = 1 \\
& +(t-1)x_2 & +tx_3 & = 1 \\
2x_1 & & +x_3 & = 5
\end{cases}$$

is consistent for

a)
$$t < 0$$
 c) $t > 0$

b)
$$t \neq 1, 2$$
 d) for all real values t

3. (2 point) The dimension of the subspace S of \mathbb{R}^3 spanned by the vector

$$\mathbf{v}_1 = \begin{bmatrix} 2 \\ -8 \\ 6 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 3 \\ -7 \\ -1 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} -1 \\ 6 \\ -7 \end{bmatrix},$$

is

$$a) = 1 c) = 4$$

b) =
$$2$$
 d) = 3

4. (2 point) Let $\mathbf{x} = [1 \ 2 \ 3]^T$, and

$$\mathbf{y}_1 = \left[egin{array}{c} 1 \\ 0 \\ 1 \end{array}
ight], \ \mathbf{y}_2 = \left[egin{array}{c} 1 \\ 0 \\ -1 \end{array}
ight], \ \mathbf{y}_3 = \left[egin{array}{c} 0 \\ 1 \\ 0 \end{array}
ight].$$

We have $\mathbf{x} = c_1 \mathbf{y}_1 + c_2 \mathbf{y}_2 + c_3 \mathbf{y}_3$,

a) only for $c_1 = 1$, $c_2 = 2$, $c_3 = 3$ c) only for $c_1 = 2$, $c_2 = -1$, $c_3 = 2$

b) only for $c_1 = 3$, $c_2 = 2$, $c_3 = 1$ d) for no possible value of c_1 , c_2 and c_3

5. (2 point) The following vector is one eigenvector for the given matrix corresponding to the given eigenvalue,

$$\begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix}, \ \lambda = 2,$$

a) $[1 \ 1 \ 1]^T$ c) $[1 \ 2 \ 2]^T$

b) $[-5 \ 2 \ 2]^T$ **d)** $[0 \ 0 \ 0]^T$

6. (2 point) The following real matrix (α , and β are real parameters)

$$A = \begin{bmatrix} 0 & \beta & 0 \\ \alpha & -\alpha & 1 \\ \beta & 0 & 0 \end{bmatrix}$$

is orthogonal

a) only for $\alpha = 0$, $\beta = 1$ c) for any value of β , and $\alpha = 0$

b) for any value of α , and $\beta = 0$ d) for no possible value of α and β

Exercise. (4 points) Find the eigenvalues and eigenvectors of the following matrix A

$$A = \begin{bmatrix} 7 & 2 \\ -4 & 1 \end{bmatrix}.$$

$$|A - \lambda I| = \begin{vmatrix} 7 - \lambda & 2 \\ -4 & 1 - \lambda \end{vmatrix} = \lambda^2 - 8\lambda + 15$$

then

$$\lambda^2 - 8\lambda + 15 = 0 \iff \lambda = 4 \pm 1.$$

The matrix A has two distinct eigenvalues: $\lambda_1 = 5$, and $\lambda_2 = 3$. Eigenvector $\mathbf{V}_1 = (x_1, x_2)^T$ corresponding to λ_1 :

$$(A-5I)\mathbf{V}_1 = \mathbf{0} \Longrightarrow \begin{bmatrix} 2 & 2 \\ -4 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

So $x_1 = -x_2$ and (we have chosen x_2 as a free variable),

$$\mathbf{V}_1 = x_2 \left[\begin{array}{c} -1 \\ 1 \end{array} \right] \ x_2 \in \mathbb{R}.$$

2

Eigenvector $\mathbf{V}_2 = (x_1, x_2)^T$ corresponding to λ_2 :

$$(A-3I)$$
 $\mathbf{V}_2 = \mathbf{0} \Longrightarrow \left[\begin{array}{cc} 4 & 2 \\ -4 & -2 \end{array} \right] \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] = \left[\begin{array}{c} 0 \\ 0 \end{array} \right].$

So $x_2 = -2x_1$ and (we have chosen x_1 as a free variable),

$$\mathbf{V}_2 = x_1 \left[\begin{array}{c} 1 \\ -2 \end{array} \right] \ x_1 \in \mathbb{R}.$$