肺部電腦斷層掃描之非小細胞癌 PD-L1 表現預測: 結合多任務自監督學習與生成對抗網路

TAI, WEI HSUAN

August 2025

Outline

- 研究動機
- 研究背景
- 模型介紹
- 研究方法
- 結果與討論
- 結論與展望

Section 1

研究動機

研究動機

- 癌症是全球主要的死亡原因之一,肺癌是其中最
- 肺癌是台灣癌症死亡率最高的癌症類型。
- 台灣每年有超過1萬人死於肺癌

研究動機

113年十大癌症死因						
癌症別	死亡人數 (人) 年增率 (%)		死亡率 (每十萬人口) 年增率 (%)		標準化死亡率 (毎十萬人口) 年増率 (%)	
所有癌症死亡原因	54,032	1.7	230.8	1.4	113.3	-1.9
1.氣管、支氣管和肺癌	10,495	1.4	44.8	1.1	21.2	-2.2
2.肝和肝內膽管癌	7,513	-2.7	32.1	-3.0	15.3	-6.3
3.結腸、直腸和肛門癌	7,007	3.2	29.9	2.9	14.2	-0.4
4.女性乳癌	3,050	2.6	25.7	2.2	13.2	-0.8
5.前列腺(攝護腺)癌	1,897	4.5	16.4	4.4	7.8	1.5
6.口腔癌	3,687	2.1	15.7	1.8	8.5	-1.5
7.胰臟癌	2,970	3.2	12.7	2.9	6.1	-0.9
8.胃癌	2,221	-4.6	9.5	-4.8	4.5	-8.3
9.食道癌	2,076	0.6	8.9	0.3	4.7	-2.4
10.卵巢癌	799	6.4	6.7	5.9	3.6	5.1

Figure: 113 年台灣癌症統計資料

Section 2

研究背景

研究背景

- 癌症的早期診斷和預後評估對於提高治療效果至關重要。
- 免疫檢查點抑制劑(Immune checkpoint inhibitors, ICIs)已成為治療 肺癌的重要手段。
- PD-L1 表達水平是評估 ICIs 治療效果的關鍵生物標誌物。
- 傳統的 PD-L1 評估方法依賴於組織切片,存在侵入性和時間延

癌症的分類

- 非小細胞肺癌 (Non-small-cell lung carcinoma, NSCLC):
 - 佔肺癌的約 85 %。
 - 包括腺癌、鱗狀細胞癌和大細胞癌等類型。
 - 生長較慢,預後較好。
- 小細胞肺癌(Small-cell lung carcinoma, SCLC):
 - 佔肺癌的約 15 %。
 - 通常與吸煙有關。
 - 生長迅速,易於轉移。

Section 3

模型介紹

模型介紹

本專題使用或參考了以下的幾個模型及架構:

- Mask Image Model (MIM)
- Masked Autoencoder (MAE)
- Vision Transformer (ViT)
- Multi-task Masked Autoencoder (MT-MAE)
- Simple Contrastive Learning (SimCLR)
- Global Contrastive Masked Autoencoder (GCMAE)
- Contrastive Masked Autoencoder (CMAE)

Masked Image Model (MIM)

- 分成 pretrain, finetune
- 利用 Transfer Learning 的概念,將 pretrain 的 encoder 應用於下游任務
- pretrain 階段,將輸入影像隨機遮蔽一部分,並預測被遮蔽的部分 以學習特徵

Masked Autoencoder (MAE)

- MIM 的一種變體
- 利用 Autoencoder 補全被遮蔽的部分以學習特徵
- 將 pretrain 的 encoder 應用於下游任務(如:應用於 ViT 模型以進行 分類任務)

Figure: Masked Autoencoder (MAE) 的架構

圖片來源:周姵妤學姐的碩士論文

Vision Transformer (ViT)

- 將影像分割成 patches,並將其視為序列輸入到 Transformer 模型中
- 利用自注意力機制學習影像特徵
- 使用 CLS token 或是 GAP 處理 token 之後丟到 linear layer 進行分類

Figure: Vision Transformer (ViT) 的架構

圖片來源:https://arxiv.org/abs/2010.11929

Multi-task Masked Autoencoder (MT-MAE)

- 使用大量 GAN 生成的影像進行 pretrain
- 在 pretrain 階段將 MAE 與分割任務結合,使用混合的 Loss 進行優化
- 使用訓練好的 encoder 作為下游分割任務的 backbone

Figure: Multi-task Masked Autoencoder (MT-MAE) 的架構

圖片來源:周姵妤學姐的碩士論文

Simple Contrastive Learning (SimCLR)

- 诱過對比學習學習影像特徵
- 對同一張影像進行不同的增強,並將其視為正樣本;將不同的影像 視為負樣本,使模型學習拉折正樣本,遠離負樣本
- 使用 NT-Xent loss 進行優化

$$\ell_{i,j} = -\log \frac{\exp(\operatorname{sim}(\mathbf{z}_i, \mathbf{z}_j)/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{k \neq i} \exp(\operatorname{sim}(\mathbf{z}_i, \mathbf{z}_k)/\tau)}$$

Figure: SimCLR 架構圖

Global Contrastive Masked Autoencoder (GCMAE)

- 結合 MAE 與 SimCLR 的思想
- 利用 MAE 學習局部特徵;結合 GCLR 學習全局特徵

Figure: Global Contrastive Masked Autoencoder (GCMAE) 的架構

圖片來源:https://arxiv.org/abs/2205.09048

Contrastive Masked Autoencoder (CMAE)

- 一樣結合 MAE 與對比學習
- 利用孿生網路結構,將 MAE 的 encoder 與對比學習的 encoder 結合

Figure: Contrastive Masked Autoencoder (CMAE) 的架構

圖片來源:https://arxiv.org/abs/2207.13532

Section 4

研究方法

預訓練階段

- 使用 SimCLR 繼續訓練 MTMAE 的 encoder
- ② 純粹使用 SimCLR 訓練 encoder
- ⑤ 將 encoder 替換成 CMAE 的 encoder

微調的方法

Figure: 微調階段的架構

Reference

- https://github.com/tianyicui/pack/blob/master/V2.pdf
- https://oi-wiki.org/dp/
- https://atcoder.jp/contests/dp/tasks
- https://leetcode.com/problem-list/dynamic-programming/