

Parallel Discrete Event Simulation: A Pedestrian View

Daniel Topa daniel.topa@hii.com

Huntington Ingalls Industries Mission Technologies

December 23, 2024

Outline I

- Case for PDES
- **2** Core Concepts
- **3** Toy Problems
- 4 Building and Scaling
- **10** HPC and PDE

PDES Fundamentals Literature Survey Tools for PDES

Relevance for SDA

- Define Parallel Discrete Event Simulation
- 2 Space domain application
- Parallelism challenges and opportunities

PDES Fundamentals Literature Survey Tools for PDES

Approaches

PDES Fundamentals
Literature Survey
Tools for PDES

Original Papers

PDES Fundamentals Literature Survey Tools for PDES

Experiment

Essential Background Knowledge

- Conservative vs. optimistic mechanisms
- ② Deadlock management strategies
- Parallelism challenges and opportunities

Approaches

Deadlock Management

Lam slide

Parallelism: Problems and Promise

Lam slide

MM1 Queue Simulation Traffic Flow Epidemic Modeling Predator-prey Dynamics

Essential Background Knowledge

- MM1 Queue Simulation
- Traffic flow
- Epidemic modeling
- Predator-prey dynamics
- Scripts: Python, Julia, Octave

MM1 Queue Simulation Traffic Flow Epidemic Modeling Predator-prey Dynamics

Approaches

MM1 Queue Simulation Traffic Flow Epidemic Modeling Predator-prey Dynamics

Deadlock Management

MM1 Queue Simulation Traffic Flow **Epidemic Modeling** Predator-prey Dynamics

SIR models with discrete events

MM1 Queue Simulation Traffic Flow Epidemic Modeling Predator-prey Dynamics

Predator-prey dynamics

From Toy Models

- Conservative vs. optimistic mechanisms
- ② Deadlock management strategies
- Parallelism challenges and opportunities

Libraries File System Tools Profiling

Libraries

- Adevs
- BigSim
- JiST

Deadlock Management

- Adevs
- BigSim
- JiST

Parallelism: Problems and Promise

- NVIDIA
- TAU
- Vampir

Essential Background Knowledge

- Benefits of distributed and parallel systems
- 4 HPC pipelines: MPI or OpenMP
- **10** HPC pipelines: Coarrays
- 4 HPC workflows

distributed and parallel systems MPI OpenMP Coarrays

Approaches

distributed and parallel systems MPI
OpenMP
Coarrays

Message Passing Interface: MPI

distributed and parallel systems MPI OpenMP Coarrays

OpenMP

distributed and parallel systems MPI OpenMP Coarrays

Coarrays

Bibliography I

- [1] R. E. Bryant. Simulation of packet communication architecture computer systems. Tech. rep. USA, 1977.
- [2] Bernard P. Zeigler. Multifacetted modelling and discrete event simulation. USA: Academic Press Professional, Inc., 1984. ISBN: 0127784500.

Parallel Discrete Event Simulation: A Pedestrian View

Daniel Topa daniel.topa@hii.com

Huntington Ingalls Industries Mission Technologies

December 23, 2024

