Lista Teórica 7

1. Determine se W é um subespaço de V, nos seguintes casos:

(a)
$$V = \mathbb{R}^3$$
, $W = \left\{ \begin{bmatrix} a \\ 0 \\ a \end{bmatrix}, a \in \mathbb{R} \right\}$.

(b)
$$V = \mathbb{R}^3$$
, $W = \left\{ \begin{bmatrix} a \\ -a \\ 2a \end{bmatrix} ; a \in \mathbb{R} \right\}$.

- (c) $V = \mathbb{M}_{22}$ o espaço das matrizes quadradas 2×2 , $W = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix}; a, b, c, d \in \mathbb{R} \right\}$.
- (d) $V = \mathbb{M}_{nn}$ o espaço das matrizes quadradas $n \times n$, $W = \{A \in \mathbb{M}_{nn}; \det(A) = 1\}$.
- (e) $V = \mathbb{P}_2$ o espaço dos polinômios de grau menor ou igual a 2, $W = \{bx + cx^2; b, c \in \mathbb{R}\}.$
- 2. Determine se o conjunto B é uma base do espaço vetorial V, nos seguintes casos:

(a)
$$V = \mathbb{R}^2$$
, $B = \left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 2\\4 \end{bmatrix} \right\}$.

(b)
$$V = \mathbb{P}_2$$
, $B = \{1, x - 1, (x - 1)^2\}$.

(c)
$$V = \mathbb{M}_{22}$$
, $B = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \right\}$.

(d)
$$V = \mathbb{M}_{22}$$
, $B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \right\}$.

- 3. Qual a nulidade da transformação linear $T: \mathbb{M}_{22} \to \mathbb{R}$ definida por $T(A) = \operatorname{tr}(A)$, em que $\operatorname{tr}(\cdot)$ é a função traço? E no caso de $A \in \mathbb{M}_{nn}$?
- 4. Verifique se T é uma transformação linear, onde:

(a)
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
, definida por $T(x) = yx^Ty$ para $y = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

(b)
$$T: \mathbb{M}_{nn} \to \mathbb{M}_{nn}$$
, definida por $T(X) = X^T X$.

- 5. Sejam $T: \mathbb{P}_1 \to \mathbb{R}^2$ e $S: \mathbb{R}^2 \to \mathbb{R}^2$ transformações lineares, onde $T(p(x)) = \begin{bmatrix} p(0) \\ p(1) \end{bmatrix}$ e $S\left(\begin{bmatrix} a \\ b \end{bmatrix}\right) = \begin{bmatrix} a-2b \\ 2a-b \end{bmatrix}$. Encontre a matriz da transformação $S \circ T$.
- 6. Determine a matriz mudança de base de B para C, onde B e C são bases do espaço vetorial \mathbb{R}^2 dadas por:

(a)
$$B = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$$
 e $C = \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$.

(b)
$$B = \left\{ \begin{bmatrix} -2\\1 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix} \right\} \in C = \left\{ \begin{bmatrix} 1\\-1 \end{bmatrix}, \begin{bmatrix} 3\\4 \end{bmatrix} \right\}.$$

7. Dada uma transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^2$, definida como $T\left(\begin{bmatrix} a \\ b \end{bmatrix}\right) = \begin{bmatrix} -4b \\ a+5b \end{bmatrix}$, encontre uma base C em \mathbb{R}^2 tal que a matriz [T] seja diagonal em relação à base C.