第九节 闭区间上连续函数的性质

习题 1-9

- 1. 证明方程 $x^4 4x 1 = 0$ 至少有一个根介于1和2之间.
- 证 令 $f(x) = x^4 4x 1$,易知函数在[1,2]上连续,又

$$f(1) = 1^4 - 4 \times 1 - 1 = -4 < 0$$
, $f(2) = 2^4 - 4 \times 2 - 1 = 7 > 0$,

即 f(1) 与 f(2) 异号,于是,由零点定理,至少存在一点 $\xi \in (1,2)$,使得 $f(\xi) = 0$,即方程 $x^4 - 4x - 1 = 0$ 至少有一个根介于1和2之间.

2. 证明方程 $x + e^x = 0$ 在区间 (-1, 1) 内有唯一的根.

证 令 $f(x) = x + e^x$, 易知函数在[-1,1]上连续, 又

 $f(-1) = -1 + e^{-1} < 0$, f(1) = 1 + e > 0,即 f(-1) 与 f(1) 异号,于是,由零点定理,至少存在一点 $\xi \in (-1,1)$,使得 $f(\xi) = 0$,又 $f(x) = x + e^x$ 在 (-1,1) 上单调递增,故满足 $f(\xi) = 0$ 的 ξ 是唯一的,即方程 $x + e^x = 0$ 在区间 (-1,1) 内存在唯一的根.

3. 证明: 若 f(x) 在 $(-\infty, +\infty)$ 内连续,且 $\lim_{x\to\infty} f(x)$ 存在,则 f(x) 必在 $(-\infty, +\infty)$ 内有界.

证 令 $\lim_{x\to\infty} f(x) = A$,则对给定的 $\varepsilon > 0$, $\exists X > 0$,只要 |x| > X,就有 $|f(x) - A| < \varepsilon$,即 $A - \varepsilon < f(x) < A + \varepsilon$.又因为 f(x) 在 [-X, X] 上连续,根据有界性定理,存在 $M_1 > 0$,使得 $|f(x)| \le M_1$, $x \in [-X, X]$,取 $M = \max\{M_1, |A - \varepsilon|, |A + \varepsilon|\}$,则 $|f(x)| \le M$, $x \in (-\infty, +\infty)$,即 f(x) 在 $(-\infty, +\infty)$ 内有界.

4. 设 f(x) 在开区间 (a,b) 内连续,且 $\lim_{x\to a^+} f(x) = -\infty$, $\lim_{x\to b^-} f(x) = +\infty$,证明 $\exists \xi \in (a,b)$,使 $f(\xi) = 0$.

证 由 $\lim_{x \to a^+} f(x) = -\infty$,知对给定的 M > 0, ∃ $\delta_1 > 0$,当 $0 < x - a < \delta_1$ 时,

$$f(x) < -M$$
, $\partial f(a + \frac{\delta_1}{2}) < -M < 0$.

由 $\lim_{x \to b^-} f(x) = +\infty$,知对上述 M > 0, $\exists \delta_2 > 0$, $\dot{\Delta} 0 < b - x < \delta_2$ 时, f(x) > M, 故

$$f(b-\frac{\delta_2}{2}) > M > 0.$$

考虑区间 $[a+\frac{\delta_1}{2},b-\frac{\delta_2}{2}]$,易知函数 f(x) 在此区间内连续,且 $f(a+\frac{\delta_1}{2})<0$,

$$f(b-\frac{\delta_2}{2})>0\ ,\ \textbf{由零点定理},\ \exists \xi\in(a+\frac{\delta_1}{2},b-\frac{\delta_2}{2})\subset(a,b)\ ,\ \textbf{使得}\ f(\xi)=0.$$

5. 设 f(x), g(x) 都是闭区间 [a,b] 上的连续函数, 并且 f(a) > g(a), f(b) < g(b),

证明至少存在一点 $\xi \in (a,b)$,使 $f(\xi) = g(\xi)$.

证 构造函数 F(x) = f(x) - g(x),易知函数 F(x) 在 [a,b] 上连续,且 F(a) = f(a) - g(a) > 0,F(b) = f(b) - g(b) < 0,由零点定理,存在 $\xi \in (a,b)$,使得 $F(\xi) = 0$,即 $f(\xi) = g(\xi)$.

6. 假设函数 f(x) 在区间 I 上连续, 证明: 如果函数没有零点, 那么函数 f(x) 在区间 I 上要么处处为正, 要么处处为负.

证 不妨设 f(x) 在区间 I 上有正有负,比如 f(a)>0, f(b)<0, (a<b), (当 a>b 时类似可证), $[a,b]\subset I$,故 f(x) 在 [a,b] 上连续,由零点定理,至少存在一点 $\xi\in [a,b]\subset I$,使得 $f(\xi)=0$,这与 f(x) 在区间 I 上没有零点矛盾,故 f(x) 在区间 I 上要么处处为正,要么处处为负.