|  | Mathématiques         |
|--|-----------------------|
|  | Devoir de contrôle N1 |

Prof : S.latrach Niveau :  $1^{iere} S_1$ Durée : 45 minutes

## **Exercice 1(6points)**

1) Calculer: 
$$A = \frac{(\frac{-1}{2})^3 \times (-8)}{(\frac{1}{3}) \times (-3)}$$
;  $B = \frac{(\frac{5}{2})^{-2} \times (\frac{2}{5})}{(5)^{-1}}$ ;  $C = \frac{(-3)^3 \times (-\frac{1}{3})^5}{\frac{1}{9} \times (-2)}$ 

2) Mettre les nombres suivants sous la forme  $a \times 10^n$  où  $a \in N$  et  $n \in \mathbb{Z}$ .

$$A = 0.125 \times 10^{-3}$$
;  $B = 1.323 \times 10^{3}$ ;  $C = 11.13 \times 10$ 

3) Soient , 
$$X = \frac{\frac{3}{5}}{\frac{6}{2}} - \frac{1}{3}$$
 et  $Y = \frac{\frac{2}{3}}{\frac{1}{3}} - \frac{1}{2}$ 

- a) Calculer X et Y.
- b) Calculer X+Y

## **Exercice 2(6points)**

1) Ecrire sans radicaux aux dénominateurs les nombres :  $A = \frac{\sqrt{2}}{1-\sqrt{3}}$  et  $B = \frac{3}{\sqrt{2}}$ 

2) On pose : 
$$E = \sqrt{3} - 2$$
 et  $F = \sqrt{3} + 2$ 

- a) Calculer  $E \times F$
- b) Calculer  $E^{2018} \times F^{2019}$

3) on pose : 
$$a = 10 - 3\sqrt{11}$$
 et  $b = 10 + 3\sqrt{11}$ 

- a) Montrer que a est l'inverse de b.
- b) En déduire que  $10 > 3\sqrt{11}$  .

## **Exercice 3(8points)**

Dans la figure ci-dessous BC=CD et (AB) //(DC)



- 1) Calculer  $\widehat{BCD}$  .Justifier
- 2) Calculer  $\widehat{ABC}$  .Justifier
- 3) Calculer  $\widehat{OBD}$  .Justifier
- 4) Calculer  $\widehat{ODC}$  .Justifier
- 5) Calculer  $\widehat{OBC}$  .Justifier