Lab 6A: CNN Architectures and Transfer Learning

The learning objectives for this lab exercise are as follows:

- 1. Customize the standard CNN Network to a targeted task
- 2. Perform different kinds of transfer learning:
 - A. Train from scratch
 - B. Finetune the whole model
 - C. Finetune the upper layers of the model
 - D. As a feature extractor

In practice, it is common to use a **standard CNN architectures** such that ResNet, MNASNet, ResNeXt, EfficientNet, etc. to build a model. The effectiveness of these network architectures has been well attested for a wide range of applications.

Rather than training from scratch, it is advisable to use **transfer learning** by training on top of a standard model that has been **pretrained** on the ImageNet dataset. Transfer learning reduces overfitting and improves the generalization performance of the trained model, especially when the training set for the targeted task is small. The <u>torchvision.models</u> (https://pytorch.org/vision/stable/models.html) package contains these different network models that have been pre-trained on ImageNet.

We perform transfer learning in two ways:

- 1. Finetuning the convnet: Instead of random initialization, initialize the network with the pretrained network.
- 2. Fixed feature extractor: Freeze the weights for all of the layers of the network except for the final fully connected (fc) layer. Replace the last fc layer so that the output size is the same as the number of classes for the new task. The new layer is initialized with random weights and only this layer is trained.

Mount google drive onto virtual machine

```
In [ ]: from google.colab import drive
drive.mount('/content/gdrive')
```

Mounted at /content/gdrive

Change current directory to Lab 6

```
In []: cd "/content/gdrive/My Drive/UCCD3074_Labs/UCCD3074_Lab6"
    /content/gdrive/My Drive/UCCD3074_Labs/UCCD3074_Lab6

Load required libraries

In []: import numpy as np import torchvision.models as models
    import torch, torchvision import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.utils.data import DataLoader import torchvision.transforms as transforms from torchsummary import summary
    from cifar10 import CIFAR10
```

Helper Functions

Define the train function

```
In [ ]: loss_iter = 1
        def train(net, num_epochs, lr=0.1, momentum=0.9, verbose=True):
            history = []
            loss iterations = int(np.ceil(len(trainloader)/loss iter))
            # transfer model to GPU
            if torch.cuda.is_available():
                net = net.cuda()
            # set the optimizer
            optimizer = optim.SGD(net.parameters(), 1r=1r, momentum=momentum)
            # set to training mode
            net.train()
            # train the network
            for e in range(num epochs):
                running loss = 0.0
                running count = 0.0
                for i, (inputs, labels) in enumerate(trainloader):
                    # Clear all the gradient to 0
                    optimizer.zero grad()
                    # transfer data to GPU
                    if torch.cuda.is_available():
                        inputs = inputs.cuda()
                        labels = labels.cuda()
                    # forward propagation to get h
                    outs = net(inputs)
                    # compute Loss
                    loss = F.cross_entropy(outs, labels)
                    # backpropagation to get dw
```

Define the evaluate function

```
In [ ]: def evaluate(net):
            # set to evaluation mode
            net.eval()
            # running correct
            running corrects = 0
            for inputs, targets in testloader:
                # transfer to the GPU
                if torch.cuda.is available():
                    inputs = inputs.cuda()
                    targets = targets.cuda()
                # perform prediction (no need to compute gradient)
                with torch.no grad():
                    outputs = net(inputs)
                    _, predicted = torch.max(outputs, 1)
                    running corrects += (targets == predicted).double().sum()
            print('Accuracy = {:.2f}%'.format(100*running corrects/len(testloader.dataset)))
```

1. Load CIFAR10 dataset

Here, we use a sub-sample of CIFAR10 where we use a sub-sample of 1000 training and testing samples. The sample size is small and hence is expected to face overfitting issue. Using a pretrained model alleviates the problem.

```
In []: # transform the model
transforms.Resize(256)
    transforms.RandomCrop(224),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])

# dataset
trainset = CIFAR10(train=True, download=True, transform=transform, num_samples=1000)
testset = CIFAR10(train=False, download=True, transform=transform, num_samples=1000)

# dataloader]
trainloader = DataLoader(trainset, batch_size=32, shuffle=True, num_workers=2)
testloader = DataLoader(testset, batch_size=128, shuffle=True, num_workers=2)
```

Files already downloaded and verified Files already downloaded and verified

2. The ResNet50 model

In this section, we shall build our network using a standard network architectures. We customize a pre-trained ResNet50 (https://pytorch.org/vision/stable/models/generated/torchvision.models.resnet50.html#resnet50) by replacing its classifier layer, i.e., the last fully connected layer with our own. The original ImageNet classifier is designed to classify 1000 output classes whereas our CIFAR10 classifier handles only 10 classes.

Using the pre-trained models

First, let's learn how to load and use a pre-trained model as it is. The following table lists the pretrained models for ResNet50 together their reported accurcies on ImageNet-1K with single crops.

weight	Acc@1	Acc@5	Params
ResNet50_Weights.IMAGENET1K_V1	76.13	92.862	25.6MB
ResNet50 Weights.IMAGENET1K V2	80.858	95.434	25.6MB

where IMAGENET1K_V2 improves upon IMAGENET1K_V1 by using a new <u>training recipe (https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/)</u>

To specify the pretrained model, you can use the predefined constant:

Inferencing with the pretrained model

Some pretrained model needs specific preprocessing steps (e.g., resize into a specific resolution / rescale the values, etc.). The preprocessing steps vary depending on how the model was trained. The necessary information for inference transforms are provided on the weight documentation. But to simplify inference, TorchVision also bundle a transform utility into ResNet.Weights.

```
In [ ]: weight = ResNet50_Weights.IMAGENET1K_V2
    preprocess = weight.transforms()

In [ ]: from torchvision.io import read_image
    img = read_image('img1.jpg')
    print('Shape of x (before preprocessing)', img.shape)

    x = preprocess(img)
    print('Shape of x after preprocessing:', x.shape)

    x = x.unsqueeze(0)
    print('Shape of x after unsqueezing:', x.shape)

Shape of x (before preprocessing) torch.Size([3, 162, 288])
    Shape of x after preprocessing: torch.Size([3, 224, 224])
    Shape of x after unsqueezing: torch.Size([1, 3, 224, 224])
```

Perform inference with the pretrained model. The classes of the pretrained model can be found at weights.meta['categories'].

```
In [ ]: score = net(x)
    predicted = score.argmax(axis=1)[0]
    print('Predicted label =', weight.meta['categories'][predicted])
```

Customizing ResNet50

In the following, we shall replace the last layer with a new classifier layer. The pre-trained model is designed to classify ImageNet's 1000 image categories. In the following, we shall customize it to classify Cifar10's 10 classes. First, let's look at how ResNet50 is implemented in PyTorch.

```
In [ ]: print(net)
        ResNet(
          (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
          (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
          (relu): ReLU(inplace=True)
          (maxpool): MaxPool2d(kernel size=3, stride=2, padding=1, dilation=1, ceil mode=False)
          (laver1): Sequential(
            (0): Bottleneck(
              (conv1): Conv2d(64, 64, kernel size=(1, 1), stride=(1, 1), bias=False)
              (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
              (conv2): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
              (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
              (conv3): Conv2d(64, 256, kernel size=(1, 1), stride=(1, 1), bias=False)
              (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
              (relu): ReLU(inplace=True)
              (downsample): Sequential(
                (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
```

Here are some observations:

- conv1, bn1, relu and maxpool are the stem network
- There are 4 blocks in the network, namely layer1, layer2, layer3 and layer4.
- Each of the block contains two convolutional layers.
- The second last layer (avgpool) performs *global average pooling* to average out the spatial dimensions.
- The last layer (fc) is a linear layer that functions as a classifier. This is the layer that we want to replace to fit our model.

To customize the network, we need to replace the fc layer with our own classifier layer.

```
In [ ]: def build_network(weights=None):
    net = resnet50(weights=weights)
    in_c = net.fc.in_features
    net.fc = nn.Linear(in_c, 10)
    return net
```

Let's visualize what we have built. Note that the last layer of the network (fc) now has 10 instead of 1000 neurons.

```
In [ ]: print(build_network())
```

Model 1: Training from scratch

Let's build the network without loading the pretrained model. To do this, we set weights=None .

```
In [ ]: net1 = build_network(weights=None)
```

```
Train the model and save the training loss history into history1.
In [ ]: history1 = train(net1, num epochs=30, lr=0.01, momentum=0.8)
                              32/32]: train loss = 4.4605
         [Epoch 1/30 Iter
         [Epoch 2/30 Iter
                              32/32]: train loss = 2.8071
         [Epoch 3/30 Iter
                              32/32]: train loss = 2.6078
         [Epoch 4/30 Iter
                              32/32]: train loss = 2.2501
         [Epoch 5/30 Iter
                              32/32]: train loss = 2.1665
         [Epoch 6/30 Iter
                              32/32]: train loss = 2.0636
                              32/32]: train loss = 2.0430
         [Epoch 7/30 Iter
         [Epoch 8/30 Iter
                              32/32]: train loss = 1.9960
         [Epoch 9/30 Iter
                              32/32]: train loss = 1.9771
        [Epoch 10/30 Iter
                              32/32]: train loss = 1.8862
         [Epoch 11/30 Iter
                              32/32]: train loss = 1.9134
         [Epoch 12/30 Iter
                              32/32]: train loss = 1.8538
         [Epoch 13/30 Iter
                              32/32]: train loss = 1.8350
         [Epoch 14/30 Iter
                              32/32]: train loss = 1.8004
         [Epoch 15/30 Iter
                              32/32]: train loss = 1.7669
         [Epoch 16/30 Iter
                              32/32]: train loss = 1.6987
        [Epoch 17/30 Iter
                              32/32]: train loss = 1.7374
         [Epoch 18/30 Iter
                              32/32]: train loss = 1.6700
         [Epoch 19/30 Iter
                              32/32]: train loss = 1.7457
         [Epoch 20/30 Iter
                              32/32]: train loss = 1.6286
        [Epoch 21/30 Iter
                              32/32]: train loss = 1.6843
         [Epoch 22/30 Iter
                              32/32]: train loss = 1.5599
         [Epoch 23/30 Iter
                              32/32]: train loss = 1.5442
         [Epoch 24/30 Iter
                              32/32]: train loss = 1.5833
         [Epoch 25/30 Iter
                              32/32: train loss = 1.5343
        [Epoch 26/30 Iter
                              32/32]: train loss = 1.5184
         [Epoch 27/30 Iter
                              32/32]: train loss = 1.5077
         [Epoch 28/30 Iter
                              32/32]: train loss = 1.4209
         [Epoch 29/30 Iter
                              32/32]: train loss = 1.4528
        [Epoch 30/30 Iter
                              32/32]: train_loss = 1.4286
```

Evaluate the model

```
In [ ]: evaluate(net1)
Accuracy = 40.50%
```

Model 2: Finetuning the pretrained model

Typically, a standard network come with a pretrained model trained on ImageNet's large-scale dataset for the image classification task.

- In the following, we shall load resnet50 with the pretrained model and use it to initialize the network. To do this, we set pretrained=True.
- The training will update the parameters all layers of the network.

For Windows system, the pretrained model will be saved to the following directory: C:\Users\<user name>\.cache\torch\checkpoints . A PyTorch model has an extension of .pt or .pth .

```
In [ ]: net2 = build_network(weights='IMAGENET1K_V2')
```

By default, all the layers are set to requires_grad=True

```
In [ ]: for name, param in net2.named parameters():
            print(name, ':', param.requires_grad)
        conv1.weight : True
        bn1.weight : True
        bn1.bias : True
        layer1.0.conv1.weight : True
        layer1.0.bn1.weight : True
        layer1.0.bn1.bias : True
        layer1.0.conv2.weight : True
        layer1.0.bn2.weight : True
        layer1.0.bn2.bias : True
        layer1.0.conv3.weight : True
        layer1.0.bn3.weight : True
        layer1.0.bn3.bias : True
        layer1.0.downsample.0.weight : True
        layer1.0.downsample.1.weight : True
        layer1.0.downsample.1.bias : True
        layer1.1.conv1.weight : True
        layer1.1.bn1.weight : True
        layer1.1.bn1.bias : True
        layer1.1.conv2.weight : True
```

Train the model and save into history2.

```
In [ ]: history2 = train(net2, num epochs=30, lr=0.01, momentum=0.8)
        [Epoch 1/30 Iter
                              32/32]: train loss = 1.9645
                              32/32]: train_loss = 1.0289
        [Epoch 2/30 Iter
                              32/32]: train loss = 0.5807
        [Epoch 3/30 Iter
        [Epoch 4/30 Iter
                              32/32]: train loss = 0.3406
        [Epoch 5/30 Iter
                              32/321: train loss = 0.2320
                             32/32]: train loss = 0.1732
        [Epoch 6/30 Iter
        [Epoch 7/30 Iter
                              32/32]: train loss = 0.1001
        [Epoch 8/30 Iter
                              32/32]: train loss = 0.0991
        [Epoch 9/30 Iter
                              32/32]: train loss = 0.0664
        [Epoch 10/30 Iter
                             32/32]: train loss = 0.0696
        [Epoch 11/30 Iter
                              32/321: train loss = 0.0682
        [Epoch 12/30 Iter
                              32/32]: train loss = 0.0461
                             32/32]: train loss = 0.0342
        [Epoch 13/30 Iter
        [Epoch 14/30 Iter
                              32/32]: train loss = 0.0549
        [Epoch 15/30 Iter
                              32/32]: train loss = 0.0681
        [Epoch 16/30 Iter
                              32/32]: train loss = 0.0402
        [Epoch 17/30 Iter
                              32/32]: train loss = 0.0547
        [Epoch 18/30 Iter
                              32/321: train loss = 0.0390
                              32/32]: train loss = 0.0977
        [Epoch 19/30 Iter
        [Epoch 20/30 Iter
                              32/32]: train loss = 0.0600
        [Epoch 21/30 Iter
                              32/32]: train loss = 0.0325
        [Epoch 22/30 Iter
                              32/32]: train loss = 0.0353
        [Epoch 23/30 Iter
                              32/32]: train loss = 0.0356
                              32/32]: train loss = 0.0212
        [Epoch 24/30 Iter
        [Epoch 25/30 Iter
                              32/32]: train loss = 0.0112
        [Epoch 26/30 Iter
                              32/32]: train loss = 0.0105
        [Epoch 27/30 Iter
                              32/32]: train loss = 0.0176
        [Epoch 28/30 Iter
                              32/32]: train loss = 0.0373
        [Epoch 29/30 Iter
                              32/321: train loss = 0.0305
                             32/32]: train loss = 0.0128
        [Epoch 30/30 Iter
        Evaluate the network
```

Accuracy = 85.10%

In []: evaluate(net2)

Model 3: As a fixed feature extractor

When the dataset is too small, fine-tuning the model may still incur overfitting. In this case, you may want to try to use the pretrained as a fixed feature extractor where we train only the classifier layer (i.e., **last layer**) that we have newly inserted into the network.

```
In [ ]: # Load the pretrained model
net3 = build_network(weights='IMAGENET1K_V2')
```

We set requires_grad=False for all parameters except for the newly replaced layer fc , i.e., the last two parameters in resnet.parameters().

```
In [ ]: parameters = list(net3.parameters())
for param in parameters[:-2]:
    param.requires_grad = False
```

```
In [ ]: for name, param in net3.named parameters():
            print(name, ':', param.requires_grad)
        conv1.weight : False
        bn1.weight : False
        bn1.bias : False
        layer1.0.conv1.weight : False
        layer1.0.bn1.weight : False
        layer1.0.bn1.bias : False
        layer1.0.conv2.weight : False
        layer1.0.bn2.weight : False
        layer1.0.bn2.bias : False
        layer1.0.conv3.weight : False
        layer1.0.bn3.weight : False
        layer1.0.bn3.bias : False
        layer1.0.downsample.0.weight : False
        layer1.0.downsample.1.weight : False
        layer1.0.downsample.1.bias : False
        layer1.1.conv1.weight : False
        layer1.1.bn1.weight : False
        layer1.1.bn1.bias : False
        layer1.1.conv2.weight : False
```

Train the model and save into $\,$ history3 $\,.$

```
In [ ]: history3 = train(net3, num epochs=30, lr=0.01, momentum=0.8)
        [Epoch 1/30 Iter
                              32/32]: train loss = 2.0736
                              32/32]: train_loss = 1.6097
        [Epoch 2/30 Iter
                              32/32]: train loss = 1.3621
        [Epoch 3/30 Iter
        [Epoch 4/30 Iter
                              32/32]: train loss = 1.2497
        [Epoch 5/30 Iter
                              32/32]: train loss = 1.1367
                             32/32]: train loss = 1.0983
        [Epoch 6/30 Iter
        [Epoch 7/30 Iter
                              32/32]: train loss = 1.0367
        [Epoch 8/30 Iter
                              32/32]: train loss = 0.9963
        [Epoch 9/30 Iter
                              32/32]: train loss = 0.9157
        [Epoch 10/30 Iter
                             32/32]: train loss = 0.9017
        [Epoch 11/30 Iter
                              32/32]: train loss = 0.9024
        [Epoch 12/30 Iter
                              32/32]: train loss = 0.8587
                              32/32]: train loss = 0.8654
        [Epoch 13/30 Iter
        [Epoch 14/30 Iter
                              32/32]: train loss = 0.8663
        [Epoch 15/30 Iter
                              32/32]: train loss = 0.7999
        [Epoch 16/30 Iter
                              32/32]: train loss = 0.7995
        [Epoch 17/30 Iter
                              32/32]: train loss = 0.7702
        [Epoch 18/30 Iter
                              32/32]: train loss = 0.7750
        [Epoch 19/30 Iter
                              32/32]: train loss = 0.7872
        [Epoch 20/30 Iter
                              32/32]: train loss = 0.7529
        [Epoch 21/30 Iter
                              32/32]: train loss = 0.7194
        [Epoch 22/30 Iter
                              32/32]: train loss = 0.7264
                              32/32]: train loss = 0.7533
        [Epoch 23/30 Iter
                              32/32]: train loss = 0.7054
        [Epoch 24/30 Iter
        [Epoch 25/30 Iter
                              32/32]: train loss = 0.7212
        [Epoch 26/30 Iter
                              32/32]: train loss = 0.7063
        [Epoch 27/30 Iter
                              32/32]: train loss = 0.6903
        [Epoch 28/30 Iter
                              32/32]: train loss = 0.6863
        [Epoch 29/30 Iter
                              32/32]: train loss = 0.6490
                             32/32]: train loss = 0.6389
        [Epoch 30/30 Iter
        Evaluate the model
```

In []: evaluate(net3)
Accuracy = 68.90%

Model 4: Finetuning the top few layers

We can also tune the top few layers of the network. The following tunes all the layers in the block layer 4 as well as the fc layer.

```
In [ ]: # Load the pretrained model
        net4 = build network(weights='IMAGENET1K V2')
        Then, we freeze all tha layers except for layer4 and fc layers
In [ ]: for name, param in net4.named parameters():
            if not any(name.startswith(ext) for ext in ['layer4', 'fc']):
                param.requires grad = False
In [ ]: for name, param in net4.named parameters():
            print(name, ':', param.requires grad)
        conv1.weight : False
        bn1.weight : False
        bn1.bias : False
        layer1.0.conv1.weight : False
        layer1.0.bn1.weight : False
        layer1.0.bn1.bias : False
        layer1.0.conv2.weight : False
        layer1.0.bn2.weight : False
        layer1.0.bn2.bias : False
        layer1.0.conv3.weight : False
        layer1.0.bn3.weight : False
        layer1.0.bn3.bias : False
        layer1.0.downsample.0.weight : False
        layer1.0.downsample.1.weight : False
        layer1.0.downsample.1.bias : False
        layer1.1.conv1.weight : False
        layer1.1.bn1.weight : False
        layer1.1.bn1.bias : False
        layer1.1.conv2.weight : False
```

Train the model and save into history4.

```
In [ ]: history4 = train(net4, num epochs=30, 1r=0.01, momentum=0.8)
        [Epoch 1/30 Iter
                              32/32]: train loss = 2.0133
        [Epoch 2/30 Iter
                              32/32]: train loss = 1.2797
                              32/32]: train loss = 0.9507
        [Epoch 3/30 Iter
        [Epoch 4/30 Iter
                              32/32]: train loss = 0.7146
                              32/32]: train loss = 0.6157
        [Epoch 5/30 Iter
        [Epoch 6/30 Iter
                             32/32]: train loss = 0.4763
        [Epoch 7/30 Iter
                              32/32]: train loss = 0.4160
        [Epoch 8/30 Iter
                              32/32]: train loss = 0.3392
                              32/32]: train loss = 0.3121
        [Epoch 9/30 Iter
        [Epoch 10/30 Iter
                              32/32]: train loss = 0.2908
        [Epoch 11/30 Iter
                              32/32]: train loss = 0.1961
        [Epoch 12/30 Iter
                              32/32]: train loss = 0.2080
        [Epoch 13/30 Iter
                              32/32]: train loss = 0.1907
        [Epoch 14/30 Iter
                              32/32]: train loss = 0.1722
        [Epoch 15/30 Iter
                              32/32]: train loss = 0.1200
        [Epoch 16/30 Iter
                              32/32]: train loss = 0.1057
                              32/32]: train loss = 0.0885
        [Epoch 17/30 Iter
        [Epoch 18/30 Iter
                              32/32]: train loss = 0.0946
                              32/32]: train loss = 0.0897
        [Epoch 19/30 Iter
        [Epoch 20/30 Iter
                              32/32]: train loss = 0.0970
                              32/32]: train loss = 0.0947
        [Epoch 21/30 Iter
        [Epoch 22/30 Iter
                              32/32]: train loss = 0.0927
        [Epoch 23/30 Iter
                              32/32]: train loss = 0.0659
        [Epoch 24/30 Iter
                              32/32]: train loss = 0.0653
        [Epoch 25/30 Iter
                              32/32]: train loss = 0.0803
        [Epoch 26/30 Iter
                              32/32]: train loss = 0.0768
        [Epoch 27/30 Iter
                             32/32]: train loss = 0.0575
        [Epoch 28/30 Iter
                              32/32]: train loss = 0.0389
                             32/32]: train loss = 0.0831
        [Epoch 29/30 Iter
                             32/32]: train loss = 0.0705
        [Epoch 30/30 Iter
```

Evaluate the model

Plotting training loss

Lastly, we plot the training loss history for each of the training schemes above.

```
In []: import matplotlib.pyplot as plt

plt.plot(history1, label='From scratch')
plt.plot(history2, label='Finetuning the pretrained model')
plt.plot(history3, label='As a fixed extractor')
plt.plot(history4, label='Finetuning the top few layers')
plt.legend()
plt.show()
```


Exercise

You can try with different network architectures (e.g., <u>EfficientNet-B0 (https://pytorch.org/vision/stable/models/efficientnet.html)</u>) and see if it results in higher test accuracy.

The list of all pre-trained models in PyTorch is listed in this <u>Table (https://pytorch.org/vision/stable/models.html#table-of-all-available-classification-weights)</u>.