PROJECT TITLE: AUTONOMOUS EMERGENCY VEHICLE DETECTION AND RESPONSE SYSTEM

TEAM MEMBERS: ANUSHA.B

ESWARARAJU SNEHA

GUIDE : Dr. S . MANJU

KEY OBJECTIVES

- 1. Enable the autonomous car to detect and respond to an approaching ambulance by:
- ➤ Moving aside safely.
- ➤ Avoiding obstacles while giving way.
- 2. Allow the ambulance to:
- ➤ Signal its presence to nearby vehicles.
- Interact with traff it lights to ensure smooth passage.
- 3. Traffic Signal Management:
- Turn red lights green when the ambulance approaches.

ABSTRACT

- Traff is congestion is one of the primary reasons for delays in emergency medical response.
- ➤ This project proposes an intelligent autonomous system where ambulances can communicate with traffic signals and autonomous vehicles to clear a path.
- ➤ The system integrates V2V (Vehicle-to-Vehicle) and V2I (Vehicle-to-Infrastructure) communication, using NodeMCU (ESP8266) microcontrollers, ultrasonic sensors, and IR sensors.
- A prototype demonstrates how an autonomous vehicle reacts to an ambulance's signal, ensuring a green corridor for emergency vehicles.
- The project aims to reduce emergency response time, minimize human intervention, and enhance traffic management efficiency.

LITERATURE SURVEY

📌 State-of-the-Art Review on Traffic Control Strategies for Emergency Vehicles

Published in: IEEE Access, October 2022

Explores modern traffic control methods to improve emergency vehicle movement efficiency.

makes | Exploring Different Approaches for Automated Vehicle Detection:

A Comprehensive Review Published in: ICCS 2023, May 5, 2023Compares AI-based techniques for detecting vehicles in real time for better traffic management.

A Survey of Autonomous Vehicles: Enabling Communication Technologies and Challenges Published in: Sensors, January 2021

Discusses vehicle-to-vehicle and vehicle-to-infrastructure communication for self-driving cars.

Vehicle Detection Techniques for Collision Avoidance Systems:

A Review Published in: IEEE Transactions on Intelligent Transportation Systems, March 2020 Reviews sensor-based detection methods used in collision prevention for autonomous vehicles.

Various Acoustic-Based Emergency Vehicle Detection Techniques:

A Review Published in: IEEE Access, June 2019

Analyzes sound-based recognition methods to detect approaching ambulances in noisy environments.

FLOW CHART

Autonomous Car and Ambulance Communication System

This project showcases collaboration between autonomous cars and ambulance vehicles to manage urban traffic.

Between Vehicles

RF and Wi-Fi/Bluetooth methods serve as the primary communication links between cars and ambulances.

Working Process

Outline the step-by-step process for how the system integrates vehicles and traffic management.

Communication Mechanisms

Discuss the communication methods employed between components for effective coordination.

With Traffic Lights

Ambulances utilize Wi-Fi signals to communicate changes with traffic light systems seamlessly.

Edit with WPS Office

Initial State

Autonomous cars navigate roads while traffic lights operate under normal conditions.

Ambulance Activation

The ambulance sends an emergency signal to cars and traff ic lights. activating the system.

Signal Reception

The autonomous car receives signals and adjusts its movement to ensure safety while clearing the path.

Traffic Response

Traffic lights respond by changing to green for the ambulance, ensuring a clear passage.

HARDWARE DESCRIPTION

FUR AUTUNUMOUS

CAR

- ➤ NodeMCU (ESP8266): For processing and
- Wi-Fi communication.
- ➤ Ultrasonic Sensor (HC-SRO4): Detect front obstacles.
- ➤ IR Sensors (x2):

 Detect side

 obstacles or lines.
- ➤ L298N Motor Driver: Control BO motors.
- ➤ BO Motors (x4):

Enable movement.

FUR AMBULANCE

ROVER

- NodeMCU (ESP8266):
 For signal
 transmission and
 obstacle detection.
- Ultrasonic Sensor (HC -SRO4): For navigation.
- ➤ LED Indicators: Simulate sirens or signals.

FOR TRAFFIC SIGNAL:

- ➤ NodeMCU (ESP8266): Receives signals from the ambulance.
- ➤ LEDs: Red(x2), Green(x2), Yellow(x2) Simulate traffic lights

Edit with WPS Officel

RESULTS

- > Successfully implemented a working prototype demonstrating real-time vehicle-to-vehicle communication.
- ➤ Autonomous vehicle correctly identifies an approaching ambulance and moves aside.
- Traffic signal system dynamically adjusts to prioritize emergency vehicle movement.
- The system significantly reduces ambulance response time in simulated scenarios.

FUTURE ENHANCEMENTS

- ➤ Integration with GPS: Use real-world GPS data for location-based signal control.
- Advanced Communication with V2X Technology: Implement Vehicle-to-Everything (V2X) communication for enhanced accuracy.
- ➤ Al & Machine Learning for Smarter Decisions: Train
 Al models to optimize autonomous car movements.
- Four-Lane Traffic Signal System Expansion:

 Implement at a busy traffic junction with multiple
 lanes and traffic lights.

 Edit with WPS Office

DEMO VIDEO OF PROTOTYPE

Autonomous
vehicle
emergency
detection
and
response system

REFERENCES

- [1] M. Maurer, J. C. Gerdes, B. Lenz, and H. Winner, *Autonomous Driving: Technical, Legal and Social Aspects*, 1st ed. Berlin, Germany: Springer, 2016.
- [2] J. K. Lin and T. M. Chen, "A real-time vehicle-to-infrastructure communication system for emergency response," *in Proc. IEEE Int. Conf. Intell. Transp. Syst. (ITSC)*, Paris, France, 2023, pp. 221–225.
- [3] B. Rajasekaran and L. Wang, "Machine learning-driven traffic signal control for autonomous vehicle prioritization," *IEEE Trans. Intell. Transp. Syst.*, vol. 23, no. 4, pp. 2341–2352, Apr. 2023. DOI: 10.1109/TITS.2023.1234567.
- [4] R. Patel, "Autonomous vehicles in urban environments," *IEEE Xplore*, Jan. 10, 2024. [Online]. Available: https://ieeexplore.ieee.org/document/9603201. [Accessed: Mar. 7, 2025].
- [5] M. Wright, "Future of autonomous cars in urban settings," *TechCrunch*, Jan. 20, 2025. [Online]. Available: https://techcrunch.com/2025/01/20/autonomous-cars. [Accessed: Mar. 7, 2025].
- [6] A. Kumar, "Autonomous car detection system," GitHub, 2024. [Online]. Available: https://github.com/author/repo. [Accessed: Mar. 7, 2025].
- [7] S. Mehta, *Autonomous Systems in Urban Transport*, Tech Research Inst., Report no. 1234, 2024. [Online]. Available: https://techresearchinstitute.org/autonomous-report.pdf.
- [8] IEEE Standard for Wireless Access in Vehicular Environments (WAVE) Multi-Channel Operation, IEEE Standard 1609.4, 2016. DOI: 10.1109/IEEESTD.2016.7553344.

THANK YOU!

