

Network Optimization

Part II Branch-and-bound algorithm
Wolsey, Integer Programming Chapter 7

Integer Program: feasible region

$$z^* := \max c' x$$
$$x \in P$$

$$x \in \mathbb{Z}^n$$

$$P = \{x \in \mathbb{R}^n : Ax \le b, x \ge 0\}$$

P bounded and not empty

 $S = P \cap \mathbb{Z}^n$ set of feasible points

 x^* optimal solution of value z^*

⁺ Linear Relaxation

$$z^{\text{LP}} := \max c' x$$
$$Ax \le b$$
$$x \ge 0$$

If the optimal solution x^{LP} of the linear relaxation is integral, then x^{LP} is also optimal for the IP

$$\begin{cases} z^{\text{LP}} = c'x^{\text{LP}} \ge z^* \text{ (Relaxation)} \\ x^{\text{LP}} \in S, \text{ i.e. } c'x^{\text{LP}} \le z^* \text{ (Feasibility)} \end{cases} \Rightarrow c'x^{\text{LP}} = z^*$$

Example: x^{LP} is **integer**

Example: x^{LP} is **fractional**

* x^{LP} is fractional

 $S \subseteq P$ implies that:

$$z^{\text{LP}} = \max_{x \in P} c'x \ge \max_{x \in S} c'x = z^*$$

 z^{LP} is an **upper bound** on z^*

Note

The value z^H of any integer feasible solution x^H is a **lower bound** on z^*

* x^{LP} is **fractional** (minimization case)

 $S \subseteq P$ implies that:

$$z^{\text{LP}} = \min_{x \in P} c'x \le \min_{x \in S} c'x = z^*$$

 z^{LP} is a **lower bound** on z^*

Note

The value z^H of any integer feasible solution x^H is an **upper bound** on z^*

* x^{LP} is fractional: **branching**

Given the solution x^{LP} , **select** a **fractional component** x_h and **partition** the original problem into two supbroblems:

$$z_1^* := \max c' x$$

$$Ax \le b$$

$$x \ge 0$$

$$x_h \le \lfloor x_h^{\text{LP}} \rfloor$$

$$x \in \mathbb{Z}^n$$

$$z_{2}^{*} := \max c' x$$

$$Ax \leq b$$

$$x \geq 0$$

$$x_{h} \geq \lceil x_{h}^{\text{LP}} \rceil$$

$$x \in \mathbb{Z}^{n}$$

* x^{LP} is fractional: **branching**

The branching defines two subproblems and two relaxations:

$$P_1 = \{x \in P : x_h \le \lfloor x_h^{LP} \rfloor\} \qquad P_2 = \{x \in P : x_h \ge \lceil x_h^{LP} \rceil\}$$
$$S_1 = P_1 \cap \mathbb{Z}_+^n \qquad S_2 = P_2 \cap \mathbb{Z}_+^n$$

$$P_2 = \{ x \in P : x_h \ge \lceil x_h^{LP} \rceil \}$$
$$S_2 = P_2 \cap \mathbb{Z}_+^n$$

Properties

$$x^{\text{LP}} \not\in P_1 \text{ and } x^{\text{LP}} \not\in P_2$$

 $S_1 \cup S_2 = S, S_1 \cap S_2 = \emptyset$
 $z^* = \max\{z_1^*, z_2^*\}$

Example: subproblem S₁

Example: subproblem S_2

* Enumeration tree

Subproblems can be represented by an enumeration tree

+ Enumeration tree

In the binary case $x \in \{0,1\}^n$ by applying recursively the partion scheme one can obtain 2ⁿ leaves

* Combining the scheme with the linear relaxation: implicit enumeration

Consider subproblem S_2 .

 $S_2[P_2]$ is **empty**: one can avoid to explore the tree from S_2 . The node is **pruned by infeasibility**

* Combining the scheme with the linear relaxation: implicit enumeration

Consider subproblem S_{1:}

$$z_1^{\text{LP}} = \max 4x_1 - x_2$$
 $7x_1 - 2x_2 \le 14$
 $x_2 \le 3$
 $2x_1 - 2x_2 \le 3$
 $x_1 \le 2$
 $x_1, x_2 \ge 0$

$$z_1^{\text{LP}} = \frac{15}{2}$$
$$x_1^{\text{LP}} = \left(2, \frac{1}{2}\right)$$

x₁^{LP} is fractional: **branching**

* Subproblem S_4

$$z_4^{\text{LP}} = \max 4x_1 - x_2$$
 $7x_1 - 2x_2 \le 14$
 $x_2 \le 3$
 $2x_1 - 2x_2 \le 3$
 $x_1 \le 2$
 $x_2 \ge 1$

 $x_1, x_2 > 0$

$$z_4^{\text{LP}} = 7$$

 $x_4^{\text{LP}} = (2, 1)$

 x_{4}^{LP} is integer

- 1. S_{4} is pruned by optimality
- 2. z_a^{LP} is better than the current **incumbent** z^H , the incumbent is updated to 7

x₁^{LP} is fractional: **branching**

$$z^{H} = -\infty$$

$$z^{LP} = \frac{59}{7}$$

$$x_{1}^{LP} = \frac{15}{2}$$

$$x_{1} \ge 3$$

$$x_{1}^{LP} = \left(2, \frac{1}{2}\right)$$

$$x_{2} \le 0$$

$$x_{2} \ge 1$$

$$x_{3}$$

Active node

* Subproblem S_3

$$z_3^{\text{LP}} = \max 4x_1 - x_2$$
 $7x_1 - 2x_2 \le 14$
 $x_2 \le 3$
 $2x_1 - 2x_2 \le 3$
 $x_1 \ge 2$
 $x_2 \le 0$
 $x_1, x_2 \ge 0$

$$z_3^{\text{LP}} = 6$$
$$x_3^{\text{LP}} = \left(\frac{3}{2}, 0\right)$$

 x_3^{LP} is **fractional** but $z_3^{LP} < z^{H} = 7$ S_3 can be **pruned by bound**

x₁^{LP} is fractional: **branching**

Pruned by **bound**

Pruned by optimality

Pruning by infeasibility

Let S_t be the current subproblem and P_t be its linear relaxation

If P_t is **empty** then S_t is empty

Consequence

The node corresponding to S_t can be **pruned by** infeasibility

Pruning by optimality

If x_t^{LP} is **integral** then it is the **optimal** for the subproblem S_t .

Consequence

The node corresponding to S_t can be **pruned by** optimality.

Note

If x_t^{LP} is integral, then it is **feasible** also for SIf z_t^{LP} improves the current incumbent z^H , then the incumbent is **updated** $z^{H} = z^{LP}$

+ Pruning by bound

 x_t^{LP} is **fractional** and $z^{\text{LP}}_t \leq z^{\text{H}}$

Consequence

 S_t can be **pruned by bound**.

Branching

If x_t^{LP} is **fractional** and $z^{LP}_t > z^H$ then **branch**

LP-based Branch-and-Bound

{0,1} example

