본 강의 동영상 및 자료는 대한민국 저작권법을 준수합니다. 본 강의 동영상 및 자 료는 상명대학교 대학생들의 수업목적으로 제작・배포되는 것이므로, 수업목적으로 내려받은 강의 동영상 및 자료는 수업목적 이외에 다른 용도로 사용할 수 없으며, 다른 장소 및 타인에게 복제, 전송하여 공유할 수 없습니다. 이를 위반해서 발생하는 모든 법적 책임은 행위 주체인 본인에게 있습니다."

공학설계와 공학설계 프로세스

Introduction to Engineering Design

공학설계입문

이번 주 강의 개요

이번주 강의에서는 공학설계와 공학설계 프로세스에 관련된 주제를 다룹니다.

- 공학설계의 기본적인 정의
- 공학설계 프로세스의 정의
- 7단계 공학설계 프로세스 모델링

공학설계와 공학설계 프로세스

공학설계란 무엇인가?

공학설계의 정의

- 공학설계: 공학 관련 설정 목표를 수행할 수 있는 계획된 제품화 과정
- 미국 공학교육인증위원회(ABET)의 정의

"공학설계란 필요한 것을 만들기 위해 시스템, 요소, 프로세스를 개발하는 과정이다. 즉 기초과학, 수학, 공학을 적용하여 자원을 목표에 부합하도록 가공하는 의사결정 과정이다."

- 공학자들이 정의하는 공학설계
 - 이전에는 없었던 새롭고 유용한 것을 만들어내는 창의적인 활동 레스윅(J. B. Reswick)
 - 공학적 도구로 요구사항을 만족시키는 계획으로 진화하는 과정 비도시치(J. P. Vidošić)
 - 기술적인 요소들로 요구사항을 만족시키려는 목적지향의 활동 아시모프(M. Asimow)

공학설계와 공학설계 프로세스

공학설계의 영역

공학설계에 있어서 지켜야 할 규칙과 고려해야 할 제한점

- 기능적 요소(어떤 기능들이 제대로 작동되어야 할까?)
- 질적 요소(높은 수준의 품질이 가능한가?)
- 경제적 요소(제품을 생산하는데 드는 비용은 적절한가?)
- 환경적 요소(공해 같은 것이 없는 환경친화적인가?)
- 지속적 요소(원자재는 언제나 충분히 구할 수 있을까?)
- 법적 요소(기존의 유사제품과 특허나 상표권의 문제는 없는가?)
- 심미적 요소(이 제품이 매력적으로 보이게 할 요소가 있는가?)
- 사용자 편의성(사용자가 이 상품을 쉽게 사용할 수 있을까?)
- 안정성(안전하게 사용할 수 있다는 확신을 가질 수 있을까?)

아이폰12에 각 요소들이 제대로 설계에 반영되었는지 살펴본다면?

- 기능적 요소 (●)
 - 아이폰 사상 첫 5G 지원
 - 바이오닉 A14 프로세서로 동급 최고 성능 유지
 - 더 커진 카메라 센서
- 지속적 요소 (●)
 - 출시 후 별다른 생산/재고 이슈 없이 7개월만에 판매량 1억대 돌파
- 법적 요소, 사용자 편의성, 안정성 (●)
 - 기존 아이폰 시리즈와 마찬가지로, 큰 이슈 없음
- 환경적 요소 (●)
 - 우리는 환경보호를 위해 충전기를 넣지 않았습니다 (???)

아이폰12에 각 요소들이 제대로 설계에 반영되었는지 살펴본다면?

- 경제적 요소 (_)
 - 5G 통신칩, OLED 디스플레이 등으로 생산원가 21% 상승
 - 하지만 그에 맞추어, 출고가도 기본모델 기준 14% 상승(\$699→\$799)시키고 충전기도 제외
- 심미적 요소 (●)
 - 다양한 색상 및 매끈한 측면/후면 디자인은 호평
 - 페이스ID를 위해 남아 있는 전면 노치는 아직 호불호
- 질적 요소 (●)
 - 일부 기기에서 디스플레이 녹조&홍조 현상 발생
 - <u>아이폰 12 화면 불량 당첨됐습니다;; [4K] YouTube</u>

공학, 과학, 사회의 관계

- 공학, 과학, 사회의 관계 간의 싸이클
 - 이를 통한 지속적인 기술의 발전을 통해, 인류는 더 풍부한 물질문명을 누릴 수 있게 됨

그림 4.2 공학, 과학, 사회의 관계

공학설계와 공학설계 프로세스 <mark>공학설계입문</mark>

공학설계에 필요한 핵심 요소 (4C)

- 창의성 (Creativity)
 - 이전에는 이 세상에 존재하지 않았거나,
 설계자 머리에 전혀 떠오르지 않았던 창의성 필요
- 복잡성 (Complexity)
 - 수많은 변수와 매개변수들 때문에, 복잡하지만 적절한 결정이 필요
- 선택 (Choice)
 - 기본 개념에서부터 세세한 부분까지,
 모든 수준에서의 여러가지 가능한 해결법 중에서의 선택 필요
- 타협 (Compromise)
 - 여러 개 요구사항들의 균형을 맞추거나,
 모순되거나 상충되는 여러 사항들 중
 경우에 따라 적절하게 절충하여 타협하는 것이 필요

그림 4.3 공학설계에서의 4가지 핵심 요소(4C)

공학설계적 방법과 과학적 방법의 비교

그림 4.4 공학설계적 방법과 과학적 방법의 비교(Percy Hill)

공학설계와 공학설계 프로세스 <mark>공학설계입문</mark>

공학, 설계, 공학설계의 관계

• 공학설계는 공학과 설계의 특징을 결합시켜 융합된 작용을 기대

공학	설계	공학설계
시간이 걸리는 활동	정신적인 활동	정신적 활동으로 시작하여 시간이 걸리는 활동
물질적	개념적	개념적으로 개발된 물질적 제품
과학에 가까움	예술에 가까움	과학적 원리에 기반을 둔 창의적 작업
방법론적	직관적	직관적으로 시작하는 방법론
문제 해결	문제 생성	문제와 해결법 사이의 순환고리

공학설계와 공학설계 프로세스 <mark>공학설계입문</mark>

공학설계 프로세스란 무엇인가?

공학설계 프로세스 (Engineering Design Process)

- 정의
 - 엔지니어가 문제해결의 해답을 얻기 위해 적용하는 과정
 - 창의적 제품을 만드는 여러 단계의 체계적이고 방법론적인 과정
 - 주어진 자원을 최적의 제품으로 변환시키는 의사결정 과정
- 기본 요소
 - 목표의 설정, 판단 기준, 분석, 구성, 테스트, 평가 등
 - 종종 각 단계가 반복되기도 함

그림 4.5 공학설계 프로세스와 경험적 프로세스

3단계 공학설계 프로세스

- 가장 간단한 공학설계 프로세스
- [1단계] 아이디어 만들기(Ideate): 개념적 해답의 생성
- [2단계] 실행하기(Implement): 자세한 해법의 수행
- [3단계] 테스트하기(Test): 테스트 및 평가

15

5단계 공학설계 프로세스

- 미국 초등/중등교육에서 소개하는 방법
 - 나사(NASA)의 교육 자료에서도 이를 기반한 방법 소개 630754main NASAsBESTActivityGuide6-8.pdf
- [1단계] 질의(Ask): 문제가 무엇인가? 제약조건은 무엇인가?
- [2단계] 상상(Imagine): 어떤 해결책들이 있을까?
- [3단계] 계획(Plan): 다이어그램 그린 후 필요한 물건 나열
- [4단계] 생성(Create): 계획에 따라 필요한 것을 생성 후 테스트
- [5단계] 개선(Improve): 어떻게 하면 더 나아질 수 있을까?
- 유연한 적용 가능
 - 출발점/도착점이 없고, 전후 자유로운 이동 가능
 - 싸이클과 같이 순환, 반복 적용 가능

Engineering Design Process Magnets | STEM & Classroom Kits | Decorative Crafts | Crafting Supplies | Art Supplies & Crafts | Nasco (enasco.com)

16

- 공학설계 프로세스는 다양한 방법으로 표현됨
 - 응용 분야, 학자, 문헌에 따라 각기 다름
- 교재에서는 몇몇 모델들을 종합적으로 분석, 공통점을 바탕으로 7단계 모델링을 제안
- 이전 슬라이드의 5단계 모델링과 비교
 - '상상' 단계가 '정보수집'과 '해결책 생성'으로 분화
 - '생성' 단계가 '프로토타입 만들기'와 '설계구현과 생산계획'으로 분화
 - 3-6단계가 반복 가능

공학설계와 공학설계 프로세스

공학설계입문

- [1단계] 문제 정의(Define the problem)
 - 문제의 목표를 명확하게 정의하고 제약조건들을 파악
 - 설계 단계에 있어서의 여러 가지 기능과 요구사항들을 설정

- [2단계] 정보 수집(Collect information)
 - 자료들을 인터넷, 관련 도서, 참고 문헌 등을 활용하여 수집

정월 보름날에 날릴 연(鳶)을 만들자. 튼튼하고 하늘 높이 날 수 있는 연을 만들자.

구글, 네이버 등의 검색엔진을 통하여 연과 관련된 다양한 정보를 수집한다.

- [3단계] 해결책 생성(Generate multiple solutions)
 - 브레인스토밍 등을 통해 다양한 아이디어와 해결 방안 생성

팀원들이 모여 어떤 형태, 크기, 문양으로 연을 만들 것인지를 의논한다.

- [4단계] 분석과 선택(Analyze and select)
 - 해결책들을 분석하고 이를 바탕으로 최적의 방법 선택

사각형 모양의 방패연을 만들기로 결정하고, 연의 모양, 크기, 문양 등을 스케치한다. 또한 종이, 댓가지, 풀, 연실, 얼레 등 필요한 재료들을 준비한다.

20

- [5단계] 프로토타입 만들기(Build a Prototype)
 - 실제와 같은 기능과 요구사항을 만족시키는 프로토타입 만들기

계획에 따라 방패연을 만든다.

- [6단계] 테스트와 성능 개선(Test and improve)
 - 프로토타입의 설계 목표에 대한 부합 여부 테스트
 - 개선되어야 할 점이 있으면 [3단계]나 [4단계]로 되돌아감

연을 한번 날려봐서 연이 올라가는 높이, 균형감, 견고성 등의 요구사항을 만족시키는지를 테스트한다. 만약 미비한 점이 발견되면 이전 단계로 되돌아가 성능을 개선한다.

21

리퀴글라이드 (LiquiGlide)

- MIT 기계공학과에서 내용물이 잘 나오는 용기 개발
 - 꿀이 용기 안쪽에 붙어 마지막 내용물까지 사용하기가 어려움에 착안
 - 특수 코팅된 윤활제를 발라 내용물이 쉽게 미끄러지게 함
- 기술 상용화를 위해 '리퀴글라이드(LiquiGlide)' 법인 설립
- 타임(Time)에서 선정한 '2012 최고의 발명품'중 하나 Best Inventions of the Year 2012 | TIME.com
- 2021년 4월 Colgate-Palmolive사에서 이 용기를 사용한 Elixir 치약 브랜드 발매
 - 가격은 80ml에 2만원

그림 4.9 꿀이 나오는 용기의 비교

그림 4.10 일반 용기와 리퀴글라이드 코팅 용기의 차이(출처: liquiglide.com)

리퀴글라이드 (LiquiGlide)

• <u>LiquiGlide: Nonstick coatings leave zero waste behind - YouTube</u>

공학설계와 공학설계 프로세스 <mark>공학설계입문</mark>

리퀴글라이드 응용문제 – [1단계] 문제 정의

토마토케첩 잔량이 벽면에 붙어 짜내기가 불편한 리퀴글라이드 문제를 공학설계의 7단계를 통해 단계별로 살펴본다.

- 토마토케첩 등을 사용할 때 겪는 문제점 파악
 - 잔량이 조금 남았을 때 내용물이 잘 나오지 않음
 - 용기를 쥐어짜거나 비트는 것은 근본적인 문제 해결법이 아님
 - 따라서 부드럽게 잘 흘러내리는 용기를 새롭게 설계해야 함

• 제품에서의 제한 요소와 고려되어야 할 사항들

- 일회용 용기이므로 소비자 가격 고려
- 병에 무언가를 덧붙여 만들면 무거워지는 문제점 발생 가능성
- 내용물이 먹는 음식이므로 인체에 전혀 무해한 물질 사용

그림 4.12 제품에서의 제한 요소나 고려되어야 할 사항들

공학설계와 공학설계 프로세스

리퀴글라이드 응용문제 – [2단계] 정보 수집

- 인터넷 관련 사이트와 관련 업체 뉴스 검색
 - 특허기술이나 유용한 정보들을 가능한 한 많이 수집
 - 핫도그 케이스의 절단면을 이용하는 등의 다양한 정보 수집

그림 4.13 컴퓨터를 통한 정보 수집

그림 4.14 핫도그 케이스의 절단면의 이용

공학설계와 공학설계 프로세스 <mark>공학설계입문</mark>

리퀴글라이드 응용문제 – [3단계] 해결책 생성

- 브레인스토밍 등을 통해 해결 방안 모색 및 토의
 - 액체를 고체화
 - 용기의 하단부를 잘라서 사용
 - 용기 내부의 마찰 줄이기

26

리퀴글라이드 응용문제 – [4단계] 분석과 선택

- 해결책 생성 단계에서 제안된 해결법을 철저히 검토
- 가장 근본적이고 합리적인 방안 선택
 - 용기 내부의 마찰력을 줄이는 방법 선택
- 액체와 유사한 성질의 고체 물질로 코팅하는 방법이 최종 선정

27

리퀴글라이드 응용문제 – [5단계] 프로토타입 만들기

• 유리병 내부에 코팅 소재를 붙여서 그림과 같이 프로토타입 제작

공학설계와 공학설계 프로세스 <mark>공학설계입문</mark>

리퀴글라이드 응용문제 – [6단계] 테스트와 성능 개선

- 제작된 프로토타입의 목표로 한 기준에 대한 부합 여부 테스트
- 코팅 물질을 접착하여 내용물이 쉽고 깔끔하게 흘러나오는 것이 입증
- 기준에 미치지 못하는 항목이 있을 경우 [3단계]나 [4단계]로 되돌아감

공학설계와 공학설계 프로세스 <mark>공학설계입문</mark>

리퀴글라이드 응용문제 – [7단계] 설계 구현과 상품화

- 제품 완성 테스트와 피드백을 통한 성능 개선 후 완성형 제품 만듦
- 문서화 프로토타입과 완성된 용기에 대한 결과를 문서화
- 상품화 상업용 생산인 경우에는 상품화 준비

30

그림 4.20 제품 완성, 문서화, 상품화

자동 먹이 공급기 응용문제 – [1단계] 문제 정의

어항의 물고기에게 먹이를 자동 공급하는 장치를 7단계로 설계해 본다.

- 문제점 파악
 - 장기간 집을 비울 때 사료를 주지 못하여 폐사하는 문제 발생
 - 부재중 먹이를 많이 넣어두면 한꺼번에 먹고 죽을 수도 있음
- 제한 요소 및 고려 사항들
 - 일정한 시간마다 일정한 양의 먹이를 공급해야 함
 - 어항에 설치해야 하므로 가벼운 재료 사용
 - 먹이가 나올 수 있는 전기 등의 동력이 필요

자동 먹이 공급기 응용문제 – [2단계] 정보 수집

- 인터넷의 관련 사이트, 특허기술, 관련 업체 뉴스 등에서 시중에서 사용중인 방식들 검색
 - 어항 위에 설치, 먹이를 떨어뜨려 물고기에게 공급
 - 먹이 공급은 진동/회전 모터를 이용

공학설계와 공학설계 프로세스 <mark>공학설계입문</mark>

자동 먹이 공급기 응용문제 - [3단계] 해결책 생성

- 먹이가 나올 수 있도록 회전 모터 또는 진동 모터 사용이 적합
 - 진동 모터를 사용한다면 진동이 잘되는 폐 핸드폰 이용 가능
- 일정한 시간마다 작동되어야 하므로, 알람 기능을 가진 물품 사용
- 먹이통에 먹이가 적당히 나오도록 먹이통에 구멍을 뚫어 제작

공학설계와 공학설계 프로세스 <mark>공학설계입문</mark>

자동 먹이 공급기 응용문제 – [4단계] 분석과 선택

- 회전 모터 방식으로 제작하면 기술적인 어려움이 있음 > 진동 모터를 사용하여 제작
- 진동 모터 사용과 알람 이용을 위해 폐 핸드폰 활용
- 먹이통은 진동이 쉽게 가해지는 플라스틱 재질 이용

공학설계와 공학설계 프로세스 <mark>공학설계입문</mark>

자동 먹이 공급기 응용문제 – [5단계] 프로토타입 만들기

• 선택된 아이디어에 따른 설계에 따라 프로토타입 제작

공학설계와 공학설계 프로세스 <mark>공학설계입문</mark>

자동 먹이 공급기 응용문제 – [6단계] 테스트와 성능 개선

- 먹이의 양이 과다하게 나오는 문제점 발견
- 고깔을 덧붙여 먹이의 양이 적게 나오도록 수정

공학설계와 공학설계 프로세스 <mark>공학설계입문</mark>

자동 먹이 공급기 응용문제 – [7단계] 설계 구현과 상품화

• 테스트와 성능 개선을 거친 후 이를 바탕으로 완성형 제품 제작

공학설계와 공학설계 프로세스 <mark>공학설계입문</mark>

어항 자동 먹이 급여기 DIY (3D 프린터 이용)

• <u>어항 자동 먹이 급여기 만들기, 수족관 자동 사료 급여기 | 수족관 DIY - YouTube</u>

공학설계와 공학설계 프로세스 <mark>공학설계입문</mark>

다양한 공학설계 모델링

- 설계자의 성향과 응용 분야에 따라 다양한 공학설계 프로세스 가능
- 6단계와 8단계 공학설계 프로세스

그림 4.28 6단계의 공학설계 프로세스

그림 4.30 8단계의 공학설계 프로세스

39

창의적 공학설계

- '창의적' 공학설계
 - 공학설계는 기존의 것을 개선하거나
 새로운 아이디어를 적용하여 제품 제작
 - 원천적으로 새롭고 참신한 '창의성'을 필요로 함

그림 4.34 창의적 공학설계의 개념

• 창의성은 각 단계별 프로세스에서 중요한 역할 담당

40

마무리

마무리

이번 시간에는 아래 내용을 다루었습니다.

- 공학설계의 정의, 영역, 제한 요소 등
- 다양한 공학설계 프로세스들 (3, 5, 6, 7, 8단계 등)
- 7단계 공학설계 프로세스의 각 단계
- 7단계 공학설계 프로세스의 응용 예 리퀴글라이드와 자동 먹이 공급기

프로젝트 계획 발표

다음 시간에는 각 팀별 프로젝트 계획 발표로 강의를 구성할 예정입니다.

- 각 팀별로 발표 동영상을 녹화하여 중간 발표 과제란에 제출
 - 방법 1: 파워포인트 슬라이드별로 음성을 녹음한 후, 동영상으로 변환
 - 방법 2: OBS Studio와 같은 프로그램 이용
 OBS Studio 다운로드 / 사용법 : 네이버 블로그 (naver.com)
 - 방법 3: 강의실에서 개인 스마트폰이나 캠으로 발표 내용을 동영상으로 녹화
- 제출 기한: 10월 5일(화요일)
 - 10월 8일(금요일) 0시까지 딜레이 제출 허용
 - 단, 딜레이 제출시 하루당 -1점 (0시 1분부터 딜레이로 집계)
- 분량: 5~10분
 - 분량이 모자라거나 넘칠 경우 -1점

프로젝트 계획 발표

- 채점 기준
 - 10점 만점으로, 7~10점으로 평가할 예정
 - 아이디어의 창의성, 구현 계획의 적정성, 발표의 명료함 등으로 평가
 - 발표에 너무 성의가 없거나 독창성이 전혀 없으면 6점 이하의 점수도 부여 가능
 - 성적에 10% 반영
- 논문, 책, 오픈소스, 웹페이지 등에서 참고한 내용이 있으면, 이를 정확히 기재해 주시기 바랍니다.
 - 참고사항의 존재는 감점 요인이 아님
 - 참고문헌 기재 없이 표절하는 것이 큰 문제
- 음성 녹음에 신경 써 주시기 바랍니다.
 - 노트북이나 캠의 마이크 성능에 따라, 잡음이 섞이거나 음량이 낮을 수 있음
 - 너무 녹음 품질이 안 좋은 경우, 스마트폰으로 녹음 후 파워포인트에 삽입하는 방법도 사용 가능 스마트폰의 음성녹음파일을 파워포인트에서 오디오로 사용하기 – YouTube