Rodriguez Filla José Enancel	
1)- les digites serán x,412 x+y+z=17 (1) $x^2+y^2+z^2=109$ (2)	5)
100x+10y+2-495 = 1007+10y+X	_(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$(542)^{2} + (12-22) + 2^{2} = 109$ $25 + 103 + 2^{2} + 144 - 482 + 423 + 2^{2}$ $62^{2} - 382 + 60 = 0$	
z=38±14 - 38±2 2	21 = 10 32 = 3
el número es $\begin{bmatrix} 863 \end{bmatrix}$	5+2,5 8 5+2,5 8
	(colon - fr. (colon)
	· W
CL855	

2) Calcular
$$\vec{v} \cdot (\vec{v} \times \vec{w})$$

 $\vec{v} = (2, -1, 3)$ $\vec{v} = (0, 2, -3)$ $\vec{w} = (1, -1, 2)$

$$\vec{\nabla} \times \vec{w} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 2 & -5 \end{vmatrix} = -\hat{i} - 5\hat{j} - 2\hat{k} = (-1, -5, -2)$$

3)
$$A = \begin{pmatrix} 5 & 5 & 0 \\ 2 & 2 & 1 \\ 3 & 3 & 2 \end{pmatrix}$$
 $B = \begin{pmatrix} 0 & -1 & -1 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{pmatrix}$

$$AB = \begin{pmatrix} -5 & -5 & -10 \\ -2 & -2 & -5 \\ -3 & -3 & -8 \end{pmatrix}$$

$$BA = \begin{pmatrix} -5 & -5 & -3 \\ -8 & -8 & -2 \\ -3 & -3 & -2 \end{pmatrix}$$

$$A = \begin{cases} 3a & 5b & -2c \\ a & 3b & -c \\ -2a & -5b & 2c \end{cases}$$

$$m = \frac{9e-9}{2} = \frac{-4-1}{2} = \frac{-5}{2} = -5$$

HEST CLASS

6)
$$\lim_{x \to 2} \frac{x^2 - 3x + 10}{x^2 - 4}$$

$$\frac{x^2 - 3x + 10}{x^2 - 4} = (x \times 2)(x - 5) = x - 5$$

$$\frac{x^2 - 4}{x^2 - 4} = (x \times 2)(x + 2) = x + 2$$

$$\lim_{x \to 2} \frac{x^2 - 7x + 10}{x^2 - 4} = \lim_{x \to 2} \frac{x - 5}{x + 2} = \frac{3}{4}$$

$$\lim_{x \to 2} \frac{x^2 - 7x + 10}{x^2 - 4} = \lim_{x \to 2} \frac{x - 5}{x + 2} = \frac{3}{4}$$

$$\lim_{x \to 2} \frac{x^2 - 7x + 10}{x^2 - 4} = \lim_{x \to 2} \frac{x - 5}{x + 2} = \frac{3}{4}$$

$$\lim_{x \to 2} \frac{x^2 - 7x + 10}{x^2 - 4} = \lim_{x \to 2} \frac{x - 5}{x + 2} = \frac{3}{4}$$

$$\lim_{x \to 2} \frac{x^2 - 7x + 10}{x^2 - 4} = \lim_{x \to 2} \frac{x - 5}{x + 2} = \frac{3}{4}$$

$$\lim_{x \to 2} \frac{x^2 - 7x + 10}{x^2 - 4} = \lim_{x \to 2} \frac{x - 5}{x + 2} = \frac{3}{4}$$

$$\lim_{x \to 2} \frac{x^2 - 7x + 10}{x^2 - 4} = \lim_{x \to 2} \frac{x - 5}{x + 2} = \frac{3}{4}$$

$$\lim_{x \to 2} \frac{x - 7x + 10}{x^2 - 4} = \lim_{x \to 2} \frac{x - 5}{x + 2} = \frac{3}{4}$$

$$\lim_{x \to 2} \frac{x - 7x + 10}{x^2 - 4} = \lim_{x \to 2} \frac{x - 5}{x + 2} = \frac{3}{4}$$

$$\lim_{x \to 2} \frac{x - 7x + 10}{x + 2} = \lim_{x \to 2} \frac{x - 5}{x + 2} = \frac{3}{4}$$

$$\lim_{x \to 2} \frac{x - 7x + 10}{x + 2} = \lim_{x \to 2} \frac{x - 5}{x + 2} = \frac{3}{4}$$

$$\lim_{x \to 2} \frac{x - 7x + 10}{x + 2} = \lim_{x \to 2} \frac{x - 5}{x + 2} = \frac{3}{4}$$

$$\lim_{x \to 2} \frac{x - 7x + 10}{x + 2} = \frac{3}{x + 2} = \frac{3}{4}$$

$$\lim_{x \to 2} \frac{x - 7x + 10}{x + 2} = \frac{3}{x + 2} = \frac{3}{4}$$

$$\lim_{x \to 2} \frac{x - 7x + 10}{x + 2} = \frac{3}{x + 2} = \frac{3}{4}$$

$$\lim_{x \to 2} \frac{x - 7x + 10}{x + 2} = \frac{3}{x + 2} = \frac{3}{4}$$

$$\lim_{x \to 2} \frac{x - 7x + 10}{x + 2} = \frac{3}{x + 2} = \frac{3}{4}$$

$$\lim_{x \to 2} \frac{x - 7x + 10}{x + 2} = \frac{3}{x + 2} = \frac{3}{4}$$

$$\lim_{x \to 2} \frac{x - 7x + 10}{x + 2} = \frac{3}{x + 2} = \frac{3}{4}$$

$$\lim_{x \to 2} \frac{x - 7x + 10}{x + 2} = \frac{3}{x + 2} = \frac{3}{4}$$

$$\lim_{x \to 2} \frac{x - 7x + 10}{x + 2} = \frac{3}{x + 2} = \frac{3}{4}$$

$$\lim_{x \to 2} \frac{x - 7x + 10}{x + 2} = \frac{3}{x + 2} = \frac{3}{x + 2}$$

$$\lim_{x \to 2} \frac{x - 7x + 10}{x + 2} = \frac{3}{x + 2} = \frac{3}{x + 2}$$

$$\lim_{x \to 2} \frac{x - 7x + 10}{x + 2} = \frac{3}{x + 2} = \frac{3}{x + 2}$$

$$\lim_{x \to 2} \frac{x - 7x + 10}{x + 2} = \frac{3}{x + 2} = \frac{3}{x + 2}$$

$$\lim_{x \to 2} \frac{x - 7x + 10}{x + 2} = \frac{3}{x + 2} = \frac{3}{x + 2}$$

$$\lim_{x \to 2} \frac{x - 7x + 10}{x + 2} = \frac{3}{x + 2} = \frac{3}{x + 2}$$

$$\lim_{x \to 2} \frac{x - 7x + 10}{x + 2} = \frac{3}{x + 2} = \frac{3}{x + 2}$$

$$\lim_{x \to 2} \frac{x - 7x + 10}{x + 2} = \frac{3}{x + 2} = \frac{3$$

voluent T2 = 0.00026 kg2

desu estandar T = T0.00026 = 0.016 kg

程を作り、新聞

9) Hacer la matriz de adjucencia e incidencia

Adjacencia

	12345
1	1 1 1 1 1
2	10 111
3	1-11-040 411
4	11001
5	1110

Inaconas

	1 a	6	С	4	e	f	9	h	i	j
i	11	1	0	0	1	0	0	7	0	-
2		0	- 1	0	0	0	1	0	1	0
3	0	0	0	0	l_	l	1	\mathcal{O}	0	0
4	0	-1-	0	-	0	0	0	0	1	0
5	0	0	1	1	0	1	0	1	0	0
								Aug A		

$(PV \sim Q) \wedge E(Q \rightarrow R) \wedge \sim P \rightarrow R$	\mathcal{R}
$P \neq V Q \rightarrow R PV \land Q (Q \rightarrow R) \land NP PV V F F V F V F V F V F V F V F V F V F V F V V$	
	18