Ehrhart Polynomials

VIII Encuentro Colombiano De Combinatoria

Day II: Generating Functions & Complexity

(1) Compute the generating functions for

$$P_{\leq n} := \{\lambda \in \mathbb{Z}^n : 0 \leq \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n\},$$

partitions into at most n parts. Adjust your computations for partitions into exactly n parts.

- (2) Compute the integer-point transform of the cone $\mathbb{R}_{\geq 0} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + \mathbb{R}_{\geq 0} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + \mathbb{R}_{\geq 0} \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$.
- (3) Let $n \ge 3$ and

$$T_n := \{(\lambda_1, \dots, \lambda_n) \in \mathbb{Z}^n : \lambda_n \ge \dots \ge \lambda_1 \ge 1 \text{ and } \lambda_1 + \dots + \lambda_{n-1} > \lambda_n\},$$

the set of all "n-gon partitions."

- (a) Compute the generating function for T_3 .
- (b) What makes your computation more complicated for n > 3?
- (c) Compute the generating function for

$$\widetilde{T}_n := \{(\lambda_1, \dots, \lambda_n) \in \mathbb{Z}^n : \lambda_n \ge \dots \ge \lambda_1 \ge 1 \text{ and } \lambda_1 + \dots + \lambda_{n-1} \le \lambda_n \},$$

and conclude from it the generating function for T_n .

(4) Recall the lecture-hall partitions

$$LH_n := \left\{ \lambda \in \mathbb{Z}^n : 0 \le \frac{\lambda_1}{1} \le \frac{\lambda_2}{2} \le \dots \le \frac{\lambda_n}{n} \right\}.$$

Compute the generators of the underlying cone, and verify the first few instances of the Lecture-Hall Theorem:

$$\sum_{\lambda \in \mathrm{LH}_n} q^{\lambda_1 + \dots + \lambda_n} \; = \; \frac{1}{(1-q)(1-q^3) \cdots (1-q^{2n-1})} \, .$$

- (5) Pick five points in \mathbb{Z}^3 and let \mathcal{P} be their convex hull (in \mathbb{R}^3). Compute the Ehrhart polynomial of \mathcal{P} .
- (6) [research problem] Choose d+1 of the 2^d vertices of the unit d-cube, and let Δ be the simplex defined by their convex hull.
 - (a) Which choice of vertices maximizes vol Δ ?
 - (b) What is the maximum volume of such a Δ ?

- (7) Give an explicit bijection between the faces (including \varnothing) of a given polytope \mathcal{P} and the faces (excluding \varnothing) of its homogenization cone(\mathcal{P}).
- (8) Suppose $\mathcal{P} \subset \mathbb{R}^m$ and $\mathcal{Q} \subset \mathbb{R}^n$ are lattice polytopes. Prove that the *convolution* of their Ehrhart polynomials,

$$L(t) := \sum_{s=0}^{t} L_{\mathcal{P}}(s) L_{\mathcal{Q}}(t-s)$$

equals the Ehrhart quasipolynomial of the polytope given by the convex hull of $\mathcal{P} \times \{\mathbf{0}_n\} \times \{0\}$ and $\{\mathbf{0}_m\} \times \mathcal{Q} \times \{1\}$. Here $\mathbf{0}_d$ denotes the origin in \mathbb{R}^d .

(9) Verify (parts of) the classification picture of degree-2 Ehrhart polynomials $c_2t^2 + c_1t + 1$: every half-integral point in the figure below corresponds to an Ehrhart polynomial.

- (10) [research problem] Give the corresponding classification picture of degree-3 Ehrhart polynomials.
- (11) This exercise constructs triangulations. Given a polytope $\mathcal{P} \subseteq \mathbb{R}^d$ with vertices $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$, randomly choose $h_1, h_2, \dots, h_n \in \mathbb{R}$, and define the new polytope $\mathcal{Q} \subseteq \mathbb{R}^{d+1}$ as the convex hull of $(\mathbf{v}_1, h_1), (\mathbf{v}_2, h_2), \dots, (\mathbf{v}_n, h_n)$. The *lower hull* of \mathcal{Q} consists of all points that are *visible from below*: all points $(x_1, x_2, \dots, x_{d+1}) \in \mathcal{Q}$ for which there is no $\epsilon > 0$ such that $(x_1, x_2, \dots, x_{d+1} \epsilon) \in \mathcal{Q}$. A *lower face* of \mathcal{Q} is a face of \mathcal{Q} that is in the lower hull. Let $\pi : \mathbb{R}^{d+1} \to \mathbb{R}^d$ be the projection that forgets the last coordinate. Show that all lower faces of \mathcal{Q} are simplices, and that their projections under π form a triangulation of \mathcal{P} .