Filter specifications and how to design a digital filter based on the given specifications

Prepared by: AYAD Boubakeur

Student ID: 201224070108

Professor: 林静然

Specifications of digital filters:

- The most important step in the development of a digital filter :Determine a realizable transfer function G(z)
- Digital Filter Specifications:
- (1) magnitude response specifications in the passband and the stopband are given with some acceptable tolerances.
- (2) A transition band is specified between the passband and the stopband to permit the magnitude to drop off smoothly.

- Passband edge frequency ω_p
- Stopband edge frequency ω_s
- Peak ripple value of passband δ_p
- Peak ripple value of stopband δ_s
- Peak passband ripple α_{p}
- Minimum stopband attenuation α_s
- Sample frequency F_T

Important laws:

$$\alpha_P = -20\log_{10}(1-\delta_P)dB$$

$$\alpha_s = -20\log_{10}(\delta_s)dB$$

$$\delta_{P} = 1 - 10^{-\alpha_{P}/20}$$

$$\delta_{\rm s} = 10^{-\alpha_{\rm s}/20}$$

$$\omega_P = \frac{\Omega_P}{F_T} = \frac{2\pi F_P}{F_T}$$

$$\omega_{S} = \frac{\Omega_{S}}{F_{T}} = \frac{2\pi F_{S}}{F_{T}}$$

Digital filters design:

> Selection of the Filter Type :

(1) The objective of digital filter design is to develop a causal transfer function H(z) meeting the frequency specifications.

(2)FIR and IIR Digital Filter:

FIR Digital Filter
$$H(z) = \sum_{n=0}^{N} h[n]z^{-n}$$

IIR Digital Filter
$$H(z) = \frac{p_0 + p_1 z^{-1} + p_2 z^{-2} + \dots + p_M z^{-M}}{d_0 + d_1 z^{-1} + d_2 z^{-2} + \dots + d_N z^{-N}}$$

The order N_{FIR} of an FIR filter is higher than the order N_{IIR} of an equivalent IIR filter meeting the same magnitude specifications.

The ratio $N_{\text{FIR}}/N_{\text{IIR}}$ is typically of the order of 10 or more (the IIR filter usually is computationally more efficient).

Basic Approaches to Digital Filter Design :

Step1: convert the digital filter specifications into analog lowpass prototype filter specifications

Step2: determine the analog lowpass filter transfer function $H_a(s)$

Step3: transform $H_a(s)$ into the desired digital filter transfer function G(z)

> Why analog?

- (1)Analog approximation techniques are highly advanced.
- (2) They usually yield closed-form solutions.
- (3)Extensive tables are available for analog filter design .
- (4)Many applications require the digital simulation of analog filters.

Estimation of the Filter Order:

IIR: The order of G(z) is determined from the transformation being used to convert $H_a(s)$ into G.

FIR(lowpass digital filter):
$$N \cong \frac{-20\log_{10}(\sqrt{\delta_p \delta_s})-13}{14.6(\omega_s - \omega_p)/2\pi}$$

For narrowband filter
$$N \cong \frac{-20\log_{10}(\delta_s) + 0.22}{(\omega_s - \omega_p)/2\pi}$$

For wideband filter
$$N \cong \frac{-20\log_{10}(\delta_p) + 5.94}{27(\omega_s - \omega_p)/2\pi}$$

Bilinear Transformation Method of IIR Filter Design

- Bilinear transformation is more commonly used to design IIR digital filters based on the conversion of analog prototype filters
- The Bilinear Transformation

S-plane to z-plane

G(z)= H_a(s)
$$|_{s=\frac{2}{T}(\frac{1-z^{-1}}{1+z^{-1}})}$$

The transformation is a one-to-one mapping. It maps a single point in the s-plane to a unique point in the z-plane

> Digital filter design procedure:

Step1: the invert bilinear transformation is applied to the digital filter specifications to arrive at the specifications of the analog filter function.

Step2: the bilinear transformation is employed to obtain the desired digital transfer function G(z) from the analog transfer function $H_a(s)$ desired to meet the analog filter specifications.

• When T=2(T has no effect on the G(z))

$$z = \frac{1+s}{1-s}$$

$$z = \frac{1+j\Omega_0}{1-j\Omega_0}$$

$$z = \frac{(1+\sigma_0)+j\Omega_0}{(1-\sigma_0)-j\Omega_0}$$

$$|z|^2 = \frac{(1+\sigma_0)^2+(\Omega_0)^2}{(1-\sigma_0)^2+(\Omega_0)^2}$$

If
$$\sigma_0 < 0$$
 then $|z| < 1$

If
$$\sigma_0 > 0$$
 then $|z| > 1$

When
$$s=j\Omega$$
 and $z=e^{j\omega}$
$$j\Omega=\frac{1-e^{-j\omega}}{1+e^{j\omega}}=j\tan(\frac{\omega}{2})$$

$$\Omega=\tan(\frac{\omega}{2})$$