

Prepoznavanje nomotopnih poremećaja na EKG snimku

Ivana Zeljković

Motivacija

Osnovni zadatak razvoja ovog softvera je bio da se utvrdi da li je i u kojoj meri moguće detektovati i klasifikovati nomotopne poremećaje u radu srca, sa EKG snimaka. Radi se o jednom podskupu poremećaja srčanog ritma, koji obuhvata: sinusnu tahikardiju, sinusnu bradikardiju i sinusnu aritmiju.

Razvoj ovakvog softvera bi mogao imati značajnu ulogu u domenu medicine, kao pomoćno sredstvo u dijagnostikovanju pomenutih poremećaja, kao verifikacija rezultata studentskih dijagnoza, ali i kao pomoć studentima pri spremanju ispita iz oblasti interne medicine.

Metodologije i tehnike

Na nivou projektnog rešenja, odrađena je detaljna analiza slike, koja uključuje:

- K-means algoritam kojim je obezbeđena klasterizacija signala sa slike
- Manipulaciju prostora boja u cilju izdvajanja mreže, na kojoj je predstavljen EKG signal, kao preduslov za iračunavanje frekvence srčanog ritma.
- Ručnu obradu sadržaja na slikama dobijenim u prethodna dva koraka:
 - 1) Pronalaženje koordinata vertikalnih linija mreže
 - 2) Pronalaženje koordinata vrhova svih R zubaca na izdvojenom EKG signalu – Postupak podrazumeva prvobitno određivanje granica svih R-R intervala, nakon čega se vrši izračunavanje sredina svakog od njih u cilju dobijanja prostora koji opisuje svaki od P-QRS-T kompleksa.

Nakon što su dobijene granice P-QRS-T kompleksa, upotrebom konture EKG signala, pronalaze se sve tačke koje pripadaju gornjoj trećini signala i predstavljaju potencijalni vrh R zubaca.

Za svaki od kompleksa, pojedinačno se vrši pronalaženje vrha korespodentnog R zupca, kao tačke koja pripada konturi signala i pritom ima najmanju vrednost y koordinate.

Nakon što su dobijene koordinate vrhova R zubaca, vrši se izračunavanje dužina svih R-R intervala, u cilju daljeg usmeravanja analize EKG signala. - Ukoliko su rastojanja svih R-R intervala približno jednaka (dozvoljena greška je +/- 10%), klasifikacija poremećaja se ograničava na sinusnu tahikardiju ili sinusnu bradikardiju. U suprotnom, proverava se zadovoljavanje kriterijuma za postojanje sinusne aritmije.

Opis problema

Normalan EKG se sastoji iz nekoliko elemenata: P talas, QRS kompleks (sacinjen od Q, R i S zupca) i T talasa. (Slika 1.) Pri tome je bitno da svakom QRS-kompleksu prethodi Ptalas, kao i da je rastojanje između R zubaca susednih QRS kompleksa (R-R interval – Slika 3.) jednako, zbog čega se kaže da je ritam sinusni (frekvenca 60-100 / minut). Ukoliko je dužina svih R-R intervala jednaka, sa dozvoljenim odstupanjem od +/- 10%, kaže se da je srčana radnja ritmična; ukoliko nije, imamo aritmiju. Takođe, da bismo ispravno ustanovili tip srčane aritmije, bitno je odrediti i frekvencu, tj. broj srčanih ciklusa koji se ostvare u minuti. Ona se određuje uz pomoć mreže, na kojoj je predstavljen EKG signal. Neophodno je pronaći R zubac (u nekom od prikazanih P-QRS-T kompleksa) koji se poklapa sa vertikalnom linijom mreže. Po pronalaženju, frekvenca se utvrđuje posmatrajući broj kvadrata mreže između posmatranog R zupca i R zupca susednog P-QRS-T kompleksa (broj kvadrata u jednom R-R intervalu), koristeći predefinisane vrednosti, pri svakom od prelaza između kvadratića. (Slika 2.)

Problem koji rešava projektovano rešenje je prepoznavanje jedne od 3 vrste nomotopnih poremećaja srčanog ritma na EKG snimku. Poremećaji srčanog ritma se dele na: poremećaje u stvaranju nadražaja i poremećaje u sprovođenju nadražaja. Nomotopni poremećaji predstavljaju grupu poremećaje srčanog ritma, koji nastaju zbog poremećaja u stvaranju srčanog nadražaja. Nadražaj se stvara na normalnom mestu (u SA čvoru), ali na nenormalna način (brže, sporije). Stoga će, svaki P-QRS-T kompleks biti pravilnog izgleda. Pored nomotopnih, ovoj grupi pripadaju i heterotopni poremećaji, gde se srčani nadražaj stvara na nekom drugom mestu,van SA čvora (AV čvor, negde u sprovodnom sistemu srca, u miokardu).

Nomotopnim poremećajima pripadaju : sinusna tahikardija, sinusna bradikardija i sinusna aritmija.

- Sinusna tahikardija podrazumeva stvaranje nadražaja mnogo brže, nego što je to uobičajeno (frekvenca 100-140 / minut)
- Sinusna bradikardija podrazumeva sporiji srčani ritam (frekvenca manjom od 60 / minut)
- Sinusna aritmija predstavlja kombinaciju prethodna dva poremećaja, ali pod uslovom da se oni pojavljuju naizmenično. U toku udaha, nastaje tahikardija, u toku izdaha bradikardija. Najčešći slučaj je duži period postojanja bradikardije, koji se prekida kraćim intervalima tahikardije.

Slika 2. – Određivanje frekvence

R-R Interval

Skup podataka

Skup podataka podrazumeva ručno definisani skup slika, prikupljenih sa interneta, na kojima je vršena validacija rada aplikacije.

Osim slika pomenutih poremećaja, u skup testnih podataka, ubačena je i slika EKG-a na kom je prikazan normalan srčani ritam (sinusni ritam), u cilju dodatne verifikacije.

Rezultati

Aplikacija je pokazala tačnost od 100% u prepoznavanju vrste poremećaja na analiziranoj slici, pri čemu je tačnost određivanja frekvence srčanog ritma neznatno niža, 99%. Razlog za to je upotreba nekompletne mreže na kojoj je predstavljen EKG signal (mreža je sačinjena od krupnijih podeoka - najčešće veličine 5mm, i sitnijih podeoka - veličine 1mm, koji povećavaju preciznost pri određivanju srčane aritmije, ali su zbog prevelike kompleksnosti i nerelevantnosti za analizirane vrste poremećaja izostavljeni na ovom nivou analize).

Budući rad

Osnovna ideja budućeg rada je proširenje postojeće aplikacije, tako da se omogući prepoznavanje svih 16 tipova srčanih poremećaja, pri čemu se pored analiziranja frekvence i dužina R-R intervala zahteva posmatranje ispravnosti svih P-QRS-T kompleksa, u pogledu provere postojanja svakog od elemenata kompleksa, kao i njihovog oblika.

Ovakav vid analize bi podrazumevao pravljenje specijalnog klasifikatora, u cilju postizanja što veće tačnosti u određivanju vrste poremećaja, kao i upotrebu složene neuronske mreže, uz maksimalnu automatizaciju obrade slike.