Class 09: Halloween Mini-Project

Andres Vasquez (PID:16278181

In today's class we will examine some data

1. Importing Candy Data

```
candy_file <- "candy-data.csv"

candy = read.csv(candy_file, row.names=1)
head(candy)</pre>
```

	choco	late	fruity	caramel	peanut	valmondv	nougat	crispedr	icewafer
100 Grand		1	0	1	•	0	0	1	1
3 Musketeers		1	0	0		0	1		0
One dime		0	0	0		0	0		0
One quarter		0	0	0		0	0		0
Air Heads		0	1	0		0	0		0
Almond Joy		1	0	0		1	0		0
	hard	bar]	pluribus	sugarpe	ercent	priceper	cent wi	npercent	
100 Grand	0	1	C)	0.732	0	.860	66.97173	
3 Musketeers	0	1	C)	0.604	0	.511	37.60294	
One dime	0	0	C)	0.011	0	.116	32.26109	
One quarter	0	0	C)	0.011	0	.511 4	46.11650	
Air Heads	0	0	C)	0.906	0	.511 !	52.34146	
Almond Joy	0	1	C)	0.465	0	.767	50.34755	

Data Exploration

Q1. How many different candy types are in this dataset?

There are 85 candy in this dataset

```
nrow(candy)
[1] 85
     Q2. How many fruity candy types are in the dataset?
There are 4554.4649233 fruity candy types in the dataset
   sum(candy[,2])
[1] 38
   # sum(candy$fruity) works as well
     How many chocolate candys are in the dataset?
  sum(candy[, 1])
[1] 37
   # sum(candy$chocolate) works too
2. What is your favorite candy?
     Q3. What is your favorite candy in the dataset and what is it's winpercent value?
   candy["Snickers", ]$winpercent
[1] 76.67378
     Q4. What is the winpercent value for "Kit Kat"?
   candy["Kit Kat", ]$winpercent
[1] 76.7686
     Q5. What is the winpercent value for "Tootsie Roll Snack Bars"?
```

candy["Tootsie Roll Snack Bars",]\$winpercent

[1] 49.6535

library(skimr)
skim(candy)

Table 1: Data summary

Name	candy
Number of rows	85
Number of columns	12
Column type frequency:	12
Group variables	None

Variable type: numeric

skim_variable n_	_missingcomp	lete_ra	tmean	sd	p0	p25	p50	p75	p100	hist
chocolate	0	1	0.44	0.50	0.00	0.00	0.00	1.00	1.00	
fruity	0	1	0.45	0.50	0.00	0.00	0.00	1.00	1.00	
caramel	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
peanutyalmondy	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
nougat	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
crispedricewafer	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
hard	0	1	0.18	0.38	0.00	0.00	0.00	0.00	1.00	
bar	0	1	0.25	0.43	0.00	0.00	0.00	0.00	1.00	
pluribus	0	1	0.52	0.50	0.00	0.00	1.00	1.00	1.00	
sugarpercent	0	1	0.48	0.28	0.01	0.22	0.47	0.73	0.99	
pricepercent	0	1	0.47	0.29	0.01	0.26	0.47	0.65	0.98	
winpercent	0	1	50.32	14.71	22.45	39.14	47.83	59.86	84.18	

skimr::skim(candy) works too

Q6. Is there any variable/column that looks to be on a different scale to the majority of the other columns in the dataset?

The winpercent column is scaled significantly higher than the other columns in the dataset.

- Q7. What do you think a zero and one represent for the candy\$\text{chocolate column}? Represents if the candy contains that trait.
 - Q8. Plot a histogram of winpercent values

```
library(ggplot2)
c <- ggplot(candy) + aes(winpercent) +geom_histogram(bins = 7) +theme_bw()
c</pre>
```


Q9. Is the distribution of winpercent values symmetrical?

The distribution is not symmetrical.

Q10. Is the center of the distribution above or below 50%?

It is below 50%

```
summary(candy$winpercent)
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 22.45 39.14 47.83 50.32 59.86 84.18
```

Q11. On average is chocolate candy higher or lower ranked than fruit candy?

-first find all chocolate candy -find their winpercent values - calculate the mean of these values

• then do the same for fruity candy and compare On average, the fruit candy is ranked higher than the chocolate candy

```
chocolate.inds <- candy$chocolate == 1
chocolate.win <- candy[chocolate.inds, ]$winpercent
c <- mean(chocolate.win)

fruity.inds <- candy$fruity == 1
fruity.win <- candy[fruity.inds, ]$winpercent
f <- mean(fruity.win)</pre>
c > f
```

[1] TRUE

Chocolate candy is ranker higher than fruit candy, on average. >Q12. Is this difference statistically significant?

```
t.test(chocolate.win, fruity.win)

Welch Two Sample t-test

data: chocolate.win and fruity.win
t = 6.2582, df = 68.882, p-value = 2.871e-08
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
11.44563 22.15795
sample estimates:
mean of x mean of y
60.92153 44.11974
```

Yes, the difference is statistically significant based on the low p-value.

3. Overall Candy Rankings

Q13. What are the five least liked candy types in this set?

The order() function returns the indices that make the input sorted.

 $\label{lem:nead} \verb| head(candy[order(candy$winpercent),], n=5)| \\$

	chocolate	fruity	caran	nel 1	oeanutyalm	nondy 1	nougat	
Nik L Nip	0			0	. •	Ö	0	
Boston Baked Bear	s 0	0		0		1	0	
Chiclets	0	1		0		0	0	
Super Bubble	0	1		0		0	0	
Jawbusters	0	1		0		0	0	
	crispedri	cewafer	${\tt hard}$	bar	pluribus	sugar	percent	pricepercent
Nik L Nip		0	0	0	1		0.197	0.976
Boston Baked Bear	s	0	0	0	1		0.313	0.511
Chiclets		0	0	0	1		0.046	0.325
Super Bubble		0	0	0	0		0.162	0.116
Jawbusters		0	1	0	1		0.093	0.511
	winpercen	t						
Nik L Nip	22.4453	4						
Boston Baked Bear	s 23.4178	2						
Chiclets	24.5249	9						
Super Bubble	27.3038	6						
Jawbusters	28.1274	4						

Q14. What are the top 5 all time favorite candy types out of this set?

head(candy[order(candy\$winpercent, decreasing = T),], n=5)

	${\tt chocolate}$	fruity	cara	nel j	${\tt peanutyaln}$	nondy	nougat
Reese's Peanut Butter cup	1	0		0		1	0
Reese's Miniatures	1	0		0		1	0
Twix	1	0		1		0	0
Kit Kat	1	0		0		0	0
Snickers	1	0		1		1	1
	crispedrio	cewafer	${\tt hard}$	bar	pluribus	sugai	rpercent
Reese's Peanut Butter cup		0	0	0	0		0.720
Reese's Miniatures		0	0	0	0		0.034
Twix		1	0	1	0		0.546

Kit Kat		1	0	1	0	0.313
Snickers		0	0	1	0	0.546
pr:	icepercent	winpe	rcent			
Reese's Peanut Butter cup	0.651	84.	18029			
Reese's Miniatures	0.279	81.	86626			
Twix	0.906	81.	64291			
Kit Kat	0.511	76.	76860			
Snickers	0.651	76.	67378			

Q15. Make a first barplot of candy ranking based on winpercent values.

ggplot(candy) + aes(winpercent, rownames(candy)) +geom_col()

Q16. This is quite ugly, use the reorder() function to get the bars sorted by winpercent?

ggplot(candy) + aes(winpercent, reorder(rownames(candy), winpercent)) +geom_col() +theme_b


```
my_cols=rep("grey", nrow(candy))
my_cols[as.logical(candy$chocolate)] = "blue"
my_cols[as.logical(candy$bar)] = "navy"
my_cols[as.logical(candy$fruity)] = "purple"

gg <- ggplot(candy) +
   aes(winpercent, reorder(rownames(candy),winpercent)) +
   geom_col(fill=my_cols) + theme_bw()
gg + labs(title = "People's Favorite Candy", x = "Preference", y = "Candy") + theme(axis.templot.title = element_text(hjust = 0.5, size = 25, face = "bold"))</pre>
```

People's Favorite Cand

ggsave("mybarplot.png", height = 10)

Saving 5.5×10 in image

People's Favorite Cand

> Q17. What is the worst

ranked chocolate candy?

Sixlets

Q18. What is the best ranked fruity candy?

Starburst

4. Taking a look at pricepercent

Plot of winpercent vs pricepercent

```
ggplot(candy) +
  aes(winpercent, pricepercent, label = rownames(candy)) + geom_point(col = my_cols) +
  theme_bw() +geom_text(col = my_cols)
```


There are too many labels in this above plot to be readable. We can use the ggrepel package to do a better job of placing labels so they minimize text overlap.

```
library(ggrepel)
ggplot(candy) +
  aes(winpercent, pricepercent, label = rownames(candy)) + geom_point(col = my_cols) +
```

```
theme_bw() +geom_text_repel(col = my_cols, max.overlaps = 5, size = 3.3)
```

Warning: ggrepel: 65 unlabeled data points (too many overlaps). Consider increasing max.overlaps

5. Exploring the Correltation Structure

```
library(corrplot)
```

corrplot 0.92 loaded

	chocolate	fruity	caramel	peanutyalmondy	nougat
chocolate	1.0000000	-0.74172106	0.24987535	0.37782357	0.25489183
fruity	-0.7417211	1.00000000	-0.33548538	-0.39928014	-0.26936712

```
0.2498753 -0.33548538
                                       1.00000000
                                                      0.05935614
                                                                 0.32849280
caramel
peanutyalmondy
                 0.3778236 -0.39928014
                                       0.05935614
                                                      1.00000000
                                                                 0.21311310
                 0.2548918 -0.26936712
                                       0.32849280
                                                                  1.00000000
nougat
                                                      0.21311310
crispedricewafer
                 0.3412098 -0.26936712
                                                     -0.01764631 -0.08974359
                                       0.21311310
hard
                -0.3441769
                           0.39067750 -0.12235513
                                                     -0.20555661 -0.13867505
bar
                 0.5974211 -0.51506558
                                       0.33396002
                                                      0.26041960 0.52297636
pluribus
                -0.3396752 0.29972522 -0.26958501
                                                     -0.20610932 -0.31033884
sugarpercent
                 0.1041691 -0.03439296
                                       0.22193335
                                                      0.08788927
                                                                 0.12308135
                 0.5046754 -0.43096853
                                       0.25432709
                                                      0.30915323
pricepercent
                                                                 0.15319643
                 0.6365167 -0.38093814
winpercent
                                       0.21341630
                                                      0.40619220 0.19937530
                                       hard
                crispedricewafer
                                                           pluribus
                                                    bar
                      0.34120978 -0.34417691
                                             0.59742114 -0.33967519
chocolate
                     fruity
caramel
                      0.21311310 -0.12235513 0.33396002 -0.26958501
peanutyalmondy
                     -0.01764631 -0.20555661
                                             0.26041960 -0.20610932
                     -0.08974359 -0.13867505 0.52297636 -0.31033884
nougat
crispedricewafer
                      1.00000000 -0.13867505
                                             0.42375093 -0.22469338
hard
                     -0.13867505
                                 1.00000000 -0.26516504 0.01453172
bar
                      0.42375093 -0.26516504
                                             1.00000000 -0.59340892
pluribus
                     sugarpercent
                      0.06994969
                                 0.09180975
                                             0.09998516 0.04552282
pricepercent
                      0.32826539 -0.24436534
                                             0.51840654 -0.22079363
winpercent
                      0.32467965 -0.31038158
                                             0.42992933 -0.24744787
                sugarpercent pricepercent winpercent
chocolate
                  0.10416906
                                0.5046754 0.6365167
fruity
                 -0.03439296
                               -0.4309685 -0.3809381
                               0.2543271 0.2134163
caramel
                  0.22193335
peanutyalmondy
                  0.08788927
                               0.3091532 0.4061922
                                          0.1993753
nougat
                  0.12308135
                               0.1531964
crispedricewafer
                  0.06994969
                               0.3282654
                                          0.3246797
hard
                  0.09180975
                               -0.2443653 -0.3103816
bar
                  0.09998516
                                0.5184065 0.4299293
pluribus
                  0.04552282
                               -0.2207936 -0.2474479
sugarpercent
                  1.0000000
                               0.3297064 0.2291507
pricepercent
                  0.32970639
                                1.0000000
                                          0.3453254
winpercent
                  0.22915066
                                0.3453254 1.0000000
```

corrplot(cij)

Q22. Examining this plot what two variables are anti-correlated (i.e. have minus values)?

Chocolate and fruity are anti-correlated > Q23. Similarly, what two variables are most positively correlated?

Chocolate and winpercent

6. Principal Component Analysis

We will perform a PCA of the candy. Key-question: do we need to scale the data before PCA?

```
pca <- prcomp(candy, scale = T)
summary(pca)</pre>
```

Importance of components:

```
PC2
                                          PC3
                                                  PC4
                                                         PC5
                                                                  PC6
                           PC1
                                                                          PC7
Standard deviation
                        2.0788 1.1378 1.1092 1.07533 0.9518 0.81923 0.81530
Proportion of Variance 0.3601 0.1079 0.1025 0.09636 0.0755 0.05593 0.05539
                        0.3601\ 0.4680\ 0.5705\ 0.66688\ 0.7424\ 0.79830\ 0.85369
Cumulative Proportion
                            PC8
                                    PC9
                                            PC10
                                                    PC11
                                                             PC12
```

Standard deviation 0.74530 0.67824 0.62349 0.43974 0.39760 Proportion of Variance 0.04629 0.03833 0.03239 0.01611 0.01317 Cumulative Proportion 0.89998 0.93832 0.97071 0.98683 1.00000

```
plot(pca$x[, 1], pca$x[,2], col = my_cols, pch = 16)
```


my_data <- cbind(candy, pca\$x[,1:3])
head(my_data)</pre>

	choco	olate	fruity	caramel	peanu	tyalmondy	nougat	crisped	ricewafer
100 Grand		1	0	1		0	0		1
3 Musketeers		1	0	0		0	1		0
One dime		0	0	0		0	0		0
One quarter		0	0	0		0	0		0
Air Heads		0	1	0		0	0		0
Almond Joy		1	0	0		1	0		0
	hard	bar j	pluribus	sugarpe	ercent	priceper	cent wi	npercent	PC1
100 Grand	0	1	C)	0.732	0	.860	66.97173	-3.8198617
3 Musketeers	0	1	C)	0.604	0	.511	67.60294	-2.7960236
One dime	0	0	C)	0.011	0	.116	32.26109	1.2025836

```
One quarter
                                      0.011
                                                   0.511
                    0
                             0
                                                           46.11650 0.4486538
Air Heads
                0
                    0
                             0
                                      0.906
                                                   0.511
                                                           52.34146 0.7028992
Almond Joy
                             0
                                      0.465
                                                   0.767
                                                           50.34755 -2.4683383
                    1
                    PC2
                               PC3
100 Grand
             -0.5935788 -2.1863087
3 Musketeers -1.5196062
                        1.4121986
One dime
              0.1718121 2.0607712
              0.4519736 1.4764928
One quarter
Air Heads
             -0.5731343 -0.9293893
Almond Joy
              0.7035501 0.8581089
```

```
ggplot(my_data) +aes(PC1, PC2, label = rownames(my_data)) + geom_point(col = my_cols)
```


Warning: ggrepel: 59 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Halloween Candy PCA Space

Colored by type: chocolate bar (dark brown), chocolate other (light brown),

Data from 538

p

library(plotly)

```
Attaching package: 'plotly'

The following object is masked from 'package:ggplot2':
    last_plot

The following object is masked from 'package:stats':
    filter

The following object is masked from 'package:graphics':
    layout

#ggplotly(p)
```

How do the original variables contribute to our PCs? For this we look at the loadings component of our results object i.e. the pca\$rotation object

head(pca\$rotation)

	PC1	PC2	PC3	PC4	PC5
chocolate	-0.4019466	0.21404160	0.01601358	-0.016673032	0.06603585
fruity	0.3683883	-0.18304666	-0.13765612	-0.004479829	0.14353533
caramel	-0.2299709	-0.40349894	-0.13294166	-0.024889542	-0.50730150
peanutyalmondy	-0.2407155	0.22446919	0.18272802	0.466784287	0.39993025
nougat	-0.2268102	-0.47016599	0.33970244	0.299581403	-0.18885242
crispedricewafer	-0.2215182	0.09719527	-0.36485542	-0.605594730	0.03465232
	PC6	PC7	PC8	PC9	PC10
chocolate	-0.09018950	-0.08360642	-0.4908486	-0.151651568	0.10766136
fruity	-0.04266105	0.46147889	0.3980580	-0.001248306	0.36206250
caramel	-0.40346502	-0.44274741	0.2696345	0.019186442	0.22979901
peanutyalmondy	-0.09416259	-0.25710489	0.4577145	0.381068550	-0.14591236
nougat	0.09012643	0.36663902	-0.1879396	0.385278987	0.01132345
crispedricewafer	-0.09007640	0.13077042	0.1356774	0.511634999	-0.26481014
	PC11	PC12			

```
chocolate0.10045280.69784924fruity0.17494900.50624242caramel0.13515820.07548984peanutyalmondy0.11244280.12972756nougat-0.38954470.09223698crispedricewafer-0.22615620.11727369
```

Make a barplot with ggplot and order the bars by their value. Recall that you need a data.frame as input for ggplot

```
res <- as.data.frame(pca$rotation)
ggplot(res) + aes(PC1, reorder(rownames(res), PC1)) +geom_col() + theme_bw()</pre>
```



```
par(mar=c(8,4,2,2))
barplot(pca$rotation[,1], las=2, ylab="PC1 Contribution")
```


Q24. What original variables are picked up strongly by PC1 in the positive direction? Do these make sense to you?

Fruity, hard, and pluribus are in the positive direction. These do make sense based on the correlation structure in the dataset. If you are a fruity candy you will tend to be hard and come in a packet with multiple candies in it.