§2. Логические символы. Прямая, обратная и противоположная теоремы. Необходимые и достаточные условия

При записи математических предложений (определений, формулировок теорем и т.п.) вместо часто повторяющихся слов и целых выражений удобно использовать экономную символику из математической логики. Ниже приводятся наиболее простые и употребительные символы.

Пусть $\alpha, \beta, ...$ – некоторые высказывания или утверждения, относительно каждого из которых можно сказать истинно оно или ложно.

Запись $\bar{\alpha}$ означает «не α », т. е. отрицание утверждения α .

Запись $\alpha \Rightarrow \beta$ означает «из утверждения α следует утверждение β »(символ \Rightarrow – символ *импликации*).

Запись $\alpha \Leftrightarrow \beta$ означает «утверждение α эквивалентно утверждению β », т.е.

из аследует β и наоборот: из β следует α (символ \Leftrightarrow —символ эквивалентности).

Запись $\alpha \wedge \beta$ означает « α и β »(символ \wedge – символ *конъюкции*).

Запись $\alpha \vee \beta$ означает « α или β »(символ \vee – символ *дизъюнкции*).

Запись $\forall x \in X : \alpha(x)$ означает: для любого элемента x из множества X справедливо утверждение $\alpha(x)$ (символ \forall – квантор всеобщности, \forall – перевёрнутая первая буква английского слова Any – любой, всякий).

Запись $\exists x \in X : \alpha(x)$ означает: существует элемент $x \in X$, для которого справедливо утверждение $\alpha(x)$ (символ \exists – квантор существования, \exists – перевёрнутая первая буква английского слова Existence – существование).

математическое предложение, истинность доказывается. Она записывается в виде: «если α , то β »(или $\alpha \Rightarrow \beta$), где α – условие, а β – заключение теоремы. Поменяв местами условие и заключение, получим *обратную теорему* «если β , то α »(или $\beta \Rightarrow \alpha$), теорема «если α , то называется контексте прямой. Так, в таком теореме «если четырёхугольник – параллелограмм, то его противоположные стороны попарно равны» условие α: четырёхугольник – параллелограмм, заключение в: его противоположные стороны попарно равны. Обратная теорема: «если противоположные стороны четырёхугольника попарно равны, то этот четырёхугольник – параллелограмм» Здесь верны обе теоремы: прямая и обратная, однако, так бывает не всегда. Для теоремы «если два угла вертикальные, то они равны» обратная теорема неверна.

Теорема «если не α , то не β » (или $\overline{\alpha} \Rightarrow \overline{\beta}$) называется *противоположной* по отношению к теореме «если α , то β » (или $\alpha \Rightarrow \beta$). Противоположная теорема всегда верна, если верна обратная теорема.

Пусть верна теорема «если α , то β » (или $\alpha \Rightarrow \beta$), тогда α называется достаточным условием β , а β – необходимым условием α в том смысле, что выполнение а достаточно для выполнения В, а В всегда (т.е. необходимо) справедливо при выполнении α. Когда верна обратная теорема «если β, то α »(или $\beta \Rightarrow \alpha$), β оказывается достаточным условием α , а α – необходимым условием В. Необходимые и достаточные условия иначе называют признаками. Если верны обе теоремы – прямая и обратная, их формулировки можно объединить: «для того чтобы выполнялось α, необходимо и достаточно, чтобы выполнялось β »(или « α выполняется в том и только том случае, если выполняется выполняется тогда и только тогда, когда выполняется β », $\alpha \Leftrightarrow \beta$). Например, объединим формулировки теорем о параллелограмме: ≪для того чтобы данный четырёхугольник параллелограммом, необходимо и достаточно, чтобы его противоположные стороны были попарно равны». Понятно, что при такой формулировке надо доказывать две теоремы: прямую и обратную.