The Dynamics of Car Sales: A Discrete Choice Approach

Adda and Cooper, 2006

Guo Zhang

WISE, Xiamen University

December 4, 2016

- Introduction
- Evidence on Aggregate Car Purchases
 - Facts: Car Sales and the Cross Sectional Distribution
 - Time Series
 Representations
 - ARMA(1,1) Representation
 - Impulse Response Functions(IRF)
 - Can the ARMA model match the IRFs?
- 3 Dynamic Discrete Choice Model
 - Household Behavior
 - Aggregate Implications

- 5 Decomposing the Results: What lies behind the Oscillations?
 - Sales
- 6 Robustness
 - Used Car Markets
 - Capital Markets
 - Robustness of Implied Dynamics of Car Sales
- Conclusion
- 8 Appendix
 - Estimation Results for Joint Process of Income and Prices
 - Extensions to Our Baseline Model
 - Used Car Markets
 - Capital Markets

- Introduction
- 2 Evidence on Aggregate Car Purchases
 - Facts: Car Sales and the Cross Sectional Distribution
 - Time Series
 Representations
 - ARMA(1,1) Representation
 - Impulse Response Functions(IRF)
 - Can the ARMA model match the IRFs?
- 3 Dynamic Discrete Choice Model
 - Household Behavior
 - Aggregate Implications

- Decomposing the Results:
 What lies behind the
 - Sales
- 6 Robustness
 - Used Car Markets
 - Capital Markets
 - Robustness of Implied Dynamics of Car Sales
- Conclusion
- Appendix
 - Estimation Results for Joint Process of Income and Prices
 - Extensions to Our Baseline Model
 - Used Car Markets
 - Capital Markets
 → □ → □ → □ → □

Introduction
Evidence on Aggregate Car Purchaes
Dynamic Discrete Choice Model
Estimation
Decomposing the Results: What lies behind the Oscillations?
Robustness
Conclusion
Appendix

Theme

 Behavior of household durable consumption expenditures over time

Motivation: Aggregate Perspective(dynamic)

- Mankiw puzzle(Mankiw 1982): permanent income hypothesis(PIH) is inconsistent with observed data
 - Theory: ARMA(1,1) process
 - Empirical results: AR(1) process; depreciation rate is 100%.

Motivation: Household's Perspective(heterogeneous, discrete)

- A model of heterogeneity and discrete adjustment can qualitatively match relevant parts of the data.
 - Lam(1991): households only occasionally adjust their stock of durables
 - Bar-llan and Blinder (1988,1992), Bertola and Caballero (1990) and Caballero (1990,1993): view aggregate observations on durable purchases as the outcome of the aggregation over heterogeneous microeconomic agents

Overview

- Framework: Determinants of the time series representation of durable expenditures in an explicit dynamic, discrete choice framework
 - ARMA(1,1) underlies the "Mankiw puzzle"
 - VAR of sales, price and income impulse reponse function
- Goals:
 - Confronting the Mankiw puzzle for car sales
 - Whether an aggregated discrete choice model can match and explain this rich time response to an income shock

Overview

- Model:
 - Basis: Adda and Cooper(2000a)
 - Difference: Drawn directly form the dynamic optimization problem without imposing any structure directly on agents' decision rules(specify (S,s) bands or "desired stock" directly)
 - Reasons:
 - PIH assumptions underling "desired stock" approach are not supported by data
 - More consistent theoretically

Introduction
Evidence on Aggregate Car Purchases
Dynamic Discrete Choice Model
Estimation
Decomposing the Results: What lies behind the Oscillations?
Robustness
Conclusion
Appendix

Overview

• Findings:

•

Overview

- Sources of these dynamics:
 - ۰
 - Sources of these dynamics
 - Fluctuations or shocks in the replacement probability most important
 - Evolution of the cross sectional distribution of car vintages surprisingly little

- Introduction
- 2 Evidence on Aggregate Car Purchases
 - Facts: Car Sales and the Cross Sectional Distribution
 - Time SeriesRepresentations
 - ARMA(1,1) Representation
 - Impulse Response Functions(IRF)
 - Can the ARMA model match the IRFs?
- 3 Dynamic Discrete Choice Model
 - Household Behavior
 - Aggregate Implications

5 Decomposing the Results: What lies behind the

Oscillations?

- Sales
- Robustness
 - Used Car Markets
 - Capital Markets
 - Robustness of Implied Dynamics of Car Sales
- Conclusion
- Appendix
 - Estimation Results for Joint Process of Income and Prices
 - Extensions to Our Baseline Model
 - Used Car Markets
 - Capital Markets
 → □ → □ → □ → □

Facts: Car Sales and the Cross Sectional Distribution Fime Series Representations

Outline

- Show the raw data on sales and cross sectional distribution over sample period
- Test the ARMA(1,1) representation again
- Impulse response functions from VAR on car sales, income and prices
 - Illustrate why ARMA(1,1) is inadequate
 - Evaluate the time series implication of estimated model

- Introduction
- Evidence on Aggregate Car Purchases
 - Facts: Car Sales and the Cross Sectional Distribution
 - Time Series

Representations

- ARMA(1,1) Representation
- Impulse Response Functions(IRF)
- Can the ARMA model match the IREs?
- 3 Dynamic Discrete Choice Model
 - Household Behavior
 - Aggregate Implications

- Decomposing the Results:
 What lies behind the
 - Sales
 - Robustness
 - Used Car Markets
 - Capital Markets
 - Robustness of Implied Dynamics of Car Sales
 - Conclusion
 - Estimation Results for Joint Process of Income and
 Prices
 - Extensions to Our Baseline Model
 - Used Car Markets
 - Capital Markets
 → ★ ★ ★ ★ ■

Facts: Car Sales and the Cross Sectional Distribution Time Series Representations

Car Sales(Figure 1)

- Measured as registrations of new cars
- Considerable volatility

Facts: Car Sales and the Cross Sectional Distribution Time Series Representations

Cross Sectional Distribution(Figure 2)

Pattern:

- New -> Old(ripple) -> Scrapped or destroyed
- Echo effects: burst of sales -> bulge in the CDF; tempered by scrapping at earlier ages

Usage:

- Match moments from the CDF in the estimation of parameters
- Variations in the CDF plan a role in explaining time series variation in sales

- 1 Introduction
- Evidence on Aggregate Car Purchases
 - Facts: Car Sales and the Cross Sectional Distribution
 - Time Series Representations
 - ARMA(1,1) Representation
 - Impulse Response Functions(IRF)
 - Can the ARMA model match the IRFs?
- 3 Dynamic Discrete Choice Model
 - Household Behavior
 - Aggregate Implications

- Decomposing the Results:
 What lies behind the
 - Sales
 - Robustness
 - Used Car Markets
 - Capital Markets
 - Robustness of Implied Dynamics of Car Sales
- Conclusion
- Appendix
 - Estimation Results for Joint Process of Income and Prices
 - Extensions to Our Baseline Model
 - Used Car Markets
 - Capital Markets
 → ★ ★ ★ ★ ■

Facts: Car Sales and the Cross Sectional Distribution Time Series Representations

Extended Permanent income hypothesis model for durability

• A durable good: expenditure - e_t ; depreciation - δ

My Notes

- Uncertain income: innovation to income?? ε_t
- Quadratic utility function

$$e_{t+1} = \delta \alpha_0 + \alpha_1 e_t + \varepsilon_{t+1} - (1 - \delta) \varepsilon_t$$

Estimation Results

- Hypothesis that the rate of depreciation is close to 100% per year would not be rejected for most of the specifications
- robust across
 - Categories of durables
 - Countries
 - Time periods
 - Detrending method

Facts: Car Sales and the Cross Sectional Distribution Time Series Representations

Impulse Response Functions

- VAR model:
 - Reason: joint dynamics of durables, income and prices over time
 - Variables: automobile sales, automobile prices relative to the CPI, income
 - Order: income, prices, sales(innovations to income are exogenous, prices respond to both price and income innovations and sales respond to innovations in all three variables)
 - Imposed on actual data as well as the simulated data
 - No structural interpretation
- Empirical results(Figure 3, P31):
 - Income on sales: dampened oscillation around the baseline
 - Endogenous evolution of the stock of cars can potentially produce replacement cycles
 - Income and prices are serially correlated and have some cross

Facts: Car Sales and the Cross Sectional Distribution Time Series Representations

Can the ARMA model match the IRFs?

- ARMA(1,1) cannot reproduce the oscillations
- ARMA(1,1) model is structurally unable to deliver a "depreciation rate" low enough to be credible - Mankiw puzzle

- Introduction
- Evidence on Aggregate Car Purchases
 - Facts: Car Sales and the Cross Sectional Distribution
 - Time SeriesRepresentations
 - ARMA(1,1) Representation
 - Impulse Response Functions(IRF)
 - Can the ARMA model match the IRFs?
- 3 Dynamic Discrete Choice Model
 - Household Behavior
 - Aggregate Implications

- 5 Decomposing the Results: What lies behind the
 - Sales
 - 6 Robustness
 - Used Car Markets
 - Capital Markets
 - Robustness of Implied Dynamics of Car Sales
 - Conclusion
 - AppendixEstimation Results for Joint
 - Prices

 Prices

 Extensions to Our Baseline
 - Used Car Markets
 - Capital Markets
 □ Capital Markets

- Introduction
- Evidence on Aggregate Car Purchases
 - Facts: Car Sales and the Cross Sectional Distribution
 - Time SeriesRepresentations
 - ARMA(1,1) Representation
 - Impulse Response Functions(IRF)
 - Can the ARMA model match the IRFs?
- 3 Dynamic Discrete Choice Model
 - Household Behavior
 - Aggregate Implications

- 5 Decomposing the Results: What lies behind the
 - Sales
- 6 Robustness
 - Used Car Markets
 - Capital Markets
 - Robustness of Implied Dynamics of Car Sales
- Conclusion
 - Estimation Results for Joint Process of Income and
 - Extensions to Our Baseline Model
 - Used Car Markets
 - Capital Markets
 → ★ ★ ★ ★ ■

Household Behavior Aggregate Implications

Starting Point

- An agent with a car of age i=0,1,....
- State(z,Z):
 - z: vector of household specific taste shocks
 - $Z \equiv (p, Y, \varepsilon)$: vector of aggregate state variables

My Notes

- p: relative price of the durable good
- Y: aggregate income
- ε: taste shock

Household Decision

• Decision: whether to retain a car of age i or scrap it

My Notes

- Scrap: receive the scrap value of π ; purchase a new car.
- Retain: receive the flow of services; cannot purchase another car by assumption
- Choices influenced by a choice specific i.i.d shock z_i , j=k,r
- Constant utility gain, α_k , from keeping the car

Household Behavior Aggregate Implications

Initial Restrictions

- No second-hand market
- No borrowing or lending

• $V_i(z,Z)$: value of having a car of age i to a household

My Notes

- $V_i^k(z,Z)$ and $V_i^k(z,Z)$: values from keeping and scrapping an age i car in state (z,Z)
- δ : probability of car destroyed
- $p' \pi$: Cost of a new car
- scrap value independent of replacement value

$$V_i(z,Z) = \max[V_i^k(Z) + \alpha_k + z_k, V^r(Z) + z_r]$$
(1)

My Notes

where

$$V_{i}^{k} = u(s_{i}, Y, \varepsilon) + \beta(1 - \delta)E_{(Z', z|Z, z)}V_{i+1}(z', Z') + \beta\delta E_{Z'|Z}V''(Z')$$
(2)

and

$$V^{r} = u(s_{1}, Y - p + \pi, \varepsilon) + \beta(1 - \delta)E_{(Z',z|Z,z)}V_{2}(z',Z') + \beta\delta E_{Z'|Z}V^{r}(Z',Z')$$
(3)

Utility function separable between durables and nodurables:

$$u(s_i,c) = \left[i^{-\gamma} + \varepsilon \frac{(c/\lambda)^{1-\xi}}{1-\xi}\right] \tag{4}$$

- c: consumption of non-durable goods
- γ: curvature for the service flow of car ownership

Appendix My Notes

- ξ : curvature for consumption
- λ: scale factor
- ullet Taste shock arepsilon influences the contemporaneous marginal rate of substitution between car services and nondurables

Specify the stochastic process for income, prices and the aggregate taste shocks:

Appendix My Notes

$$Y_{t} = \mu_{y} + \rho_{YY} Y_{t-1} + \rho_{Yp} p_{t-1} + u_{Yt}$$

$$p_{t} = \mu_{p} + \rho_{pYt-1} + \rho_{pp} p_{t-1} + u_{pt}$$

$$\varepsilon_{t} = \mu_{\varepsilon} + \rho_{\varepsilon Y} Y_{t-1} + \rho_{\varepsilon p} p_{t-1} + u_{\varepsilon t}$$

Covariance matrix of the innovations $u = \{u_{Yt}, u_{pt}, u_{\varepsilon t}\}$:

$$\Omega = egin{bmatrix} m{arphi}_Y & m{arphi}_{Yp} & 0 \ m{arphi}_{pY} & m{arphi}_p & 0 \ 0 & 0 & m{arphi}_{arepsilon} \end{bmatrix}$$

Household Behavior Aggregate Implications

Formal Model

- Introduction
- Evidence on Aggregate Car Purchases
 - Facts: Car Sales and the Cross Sectional Distribution
 - Time SeriesRepresentations
 - ARMA(1,1) Representation
 - Impulse Response Functions(IRF)
 - Can the ARMA model match the IRFs?
- 3 Dynamic Discrete Choice Model
 - Household Behavior
 - Aggregate Implications

- Decomposing the Results:
 What lies behind the
 - Sales
- Robustness
 - Used Car Markets
 - Capital Markets
 - Robustness of Implied Dynamics of Car Sales
- Conclusion
- Appendix
 - Estimation Results for Joint Process of Income and Prices
 - Extensions to Our Baseline Model
 - Used Car Markets
 - Capital Markets
 → ★ ★ ★ ★ ■

Evidence on Aggregate Car Purchases

Dynamic Discrete Choice Model

Estimation

Decomposing the Results: What lies behind the Oscillations?

Robustness

Conclusion

Appendix

Household Behavior Aggregate Implications

- Introduction
- 2 Evidence on Aggregate Car Purchases
 - Facts: Car Sales and the Cross Sectional Distribution
 - Time Series Representations
 - ARMA(1,1) Representation
 - Impulse Response Functions(IRF)
 - Can the ARMA model match the IRFs?
- 3 Dynamic Discrete Choice Model
 - Household Behavior
 - Aggregate Implications

- Decomposing the Results:
 What lies behind the
 - Sales
 - Robustness
 - Used Car Markets
 - Capital Markets
 - Robustness of Implied Dynamics of Car Sales
- Conclusion
- Appendix
 - Estimation Results for Joint Process of Income and Prices
 - Extensions to Our Baseline Model
 - Used Car Markets
 - Capital Markets
 → ★ ★ ★ ★ ■

- Introduction
- 2 Evidence on Aggregate Car Purchases
 - Facts: Car Sales and the Cross Sectional Distribution
 - Time Series Representations
 - ARMA(1,1) Representation
 - Impulse Response Functions(IRF)
 - Can the ARMA model match the IRFs?
- 3 Dynamic Discrete Choice Model
 - Household Behavior
 - Aggregate Implications

- Decomposing the Results:
 What lies behind the
 - Sales
 - Robustness
 - Used Car Markets
 - Capital Markets
 - Robustness of Implied Dynamics of Car Sales
- Conclusion
- Appendix
 - Estimation Results for Joint Process of Income and Prices
 - Extensions to Our Baseline Model
 - Used Car Markets
 - Capital Markets
 → ★ ★ ★ ★ ■

Estimation Steps

 Step 1: Parameters for the joint process of aggregate income and prices(Appendix A)

My Notes

• Step 2: Parameters from the policy functions

Estimation Strategy

 Strategy: To find the parameters that bring data from the simulated model as close as possible to the data

My Notes

- γ: matching three moments characterizing the cross sectional distribution as well as three moments characterizing the probability of scrapping a car(hazard function)
- θ: find the one to minimize the distance between the actual and simulated data
- Types of observations:
 - Time series observations on sales, prices and income to match the sales predicted by our model
 - 0

Estimating θ

Overall criterion:

$$L(\theta) = \phi L^{1}(\theta) + L^{2}(\theta)$$

 First component: standard nonlinear least square criterion measuring the squared distance between observed and average predicted values of the variables

$$L^{1}(\theta)$$

Second piece:

$$L^2(\theta)$$

My Notes

- Introduction
- 2 Evidence on Aggregate Car Purchases
 - Facts: Car Sales and the Cross Sectional Distributio
 - Representations
 - ARMA(1,1) Representation
 - Impulse Response Functions(IRF)

Time Series

- Can the ARMA model match the IREs?
- 3 Dynamic Discrete Choice Model
 - Household Behavior
 - Aggregate Implications

- Decomposing the Results:
 What lies behind the
 - Sales
- 6 Robustness
 - Used Car Markets
 - Capital Markets
 - Robustness of Implied Dynamics of Car Sales
- Conclusion
- Appendix
 - Estimation Results for Joint Process of Income and Prices
 - Extensions to Our Baseline Model
 - Used Car Markets
 - Capital Markets

Estimation Results(Table 2)

• Rate of depreciation of service flow(γ): 34% for France, 41% for US; significant

Appendix My Notes

- Curvature estimates from nondurable consumption(ξ): 1.7-1.8
- Actual and predicted moments
- Probability of car breakdown(δ):1-2%
- R²:
- Over-identifying restrictions:

- Introduction
- 2 Evidence on Aggregate Car Purchases
 - Facts: Car Sales and the Cross Sectional Distributio
 - Representations
 - ARMA(1,1) Representation
 - Impulse Response Functions(IRF)

Time Series

- Can the ARMA model match the IREs?
- 3 Dynamic Discrete Choice Model
 - Household Behavior
 - Aggregate Implications

- Decomposing the Results:
 What lies behind the
 - Sales
- 6 Robustness
 - Used Car Markets
 - Capital Markets
 - Robustness of Implied Dynamics of Car Sales
- Conclusion
- Appendix
 - Estimation Results for Joint Process of Income and Prices
 - Extensions to Our Baseline Model
 - Used Car Markets
 - Capital Markets

Appendix

Method Estimation Results

ARMA Representation(Table 3

- Methods:
 - •
- Results:
 - •

Introduction
Evidence on Aggregate Car Purchases
Dynamic Discrete Choice Model
Estimation
Decomposing the Results: What lies behind the Oscillations?
Robustness

Method

- Introduction
- Evidence on Aggregate Car Purchases
 - Facts: Car Sales and the Cross Sectional Distribution
 - Time SeriesRepresentations
 - ARMA(1,1) Representation
 - Impulse Response Functions(IRF)
 - Can the ARMA model match the IRFs?
- 3 Dynamic Discrete Choice Model
 - Household Behavior
 - Aggregate Implications

- 5 Decomposing the Results: What lies behind the Oscillations?
 - Sales
 - 6 Robustness
 - Used Car Markets
 - Capital Markets
 - Robustness of Implied Dynamics of Car Sales
 - Conclusion
 - Appendix
 - Estimation Results for Joint Process of Income and Prices
 - Extensions to Our Baseline Model
 - Used Car Markets

Sales

Sources of the dynamics

- A shock to income produces a dynamic in durable expenditures as agents respond differentially(i.e, agents with younger cars are less likely to respond to income variations than are agents with older cars)
- Dynamics induced by prices and income as these processes are serially correlated. Movements in these variables are represented by shifts in the probability of adjustment(hazard)

- Introduction
- Evidence on Aggregate Car Purchases
 - Facts: Car Sales and the Cross Sectional Distribution
 - Time SeriesRepresentations
 - ARMA(1,1) Representation
 - Impulse Response Functions(IRF)
 - Can the ARMA model match the IRFs?
- 3 Dynamic Discrete Choice Model
 - Household Behavior
 - Aggregate Implications

- 5 Decomposing the Results: What lies behind the Oscillations?
 - Sales
 - Robustness
 - Used Car Markets
 - Capital Markets
 - Robustness of Implied Dynamics of Car Sales
 - Conclusion
 - Appendix
 - Estimation Results for Joint Process of Income and Prices
 - Extensions to Our Baseline Model
 - Used Car Markets
 - Capital Markets

Evidence on Aggregate Car Purchases
Dynamic Discrete Choice Model
Estimation
Decomposing the Results: What lies behind the Oscillations?
Robustness
Conclusion
Appendix

Sales

Sales

- Introduction
- Evidence on Aggregate Car Purchases
 - Facts: Car Sales and the Cross Sectional Distribution
 - Time SeriesRepresentations
 - ARMA(1,1) Representation
 - Impulse Response Functions(IRF)
 - Can the ARMA model match the IRFs?
- 3 Dynamic Discrete Choice Model
 - Household Behavior
 - Aggregate Implications

- 5 Decomposing the Results: What lies behind the Oscillations?
 - Sales
 - 6 Robustness
 - Used Car Markets
 - Capital Markets
 - Robustness of Implied Dynamics of Car Sales
 - Conclusion
 - Appendix
 - Estimation Results for Joint Process of Income and Prices
 - Extensions to Our Baseline Model
 - Used Car Markets

Sales

Decomposing the IRFs

- Introduction
- Evidence on Aggregate Car Purchases
 - Facts: Car Sales and the Cross Sectional Distribution
 - Time Series Representations
 - ARMA(1,1) Representation
 - Impulse Response Functions(IRF)
 - Can the ARMA model match the IRFs?
- 3 Dynamic Discrete Choice Model
 - Household Behavior
 - Aggregate Implications

- Decomposing the Results:
 What lies behind the
 - Sales
- 6 Robustness
 - Used Car Markets
 - Capital Markets
 - Robustness of Implied Dynamics of Car Sales
- Conclusion
- Appendix
 - Estimation Results for Joint Process of Income and Prices
 - Extensions to Our Baseline Model
 - Used Car Markets ● Capital Markets

Used Car Markets Capital Markets Robustness of Implied Dynamics of Car Sales

Robustness

Restriction relaxed:

- Market for the sale of used cars
- Borrow and lend

Methods:

- ARMA(1,1)
- Impulse response functions from a linear VAR model.

My Notes

- Introduction
- Evidence on Aggregate Car Purchases
 - Facts: Car Sales and the Cross Sectional Distribution
 - Representations
 - ARMA(1,1) Representation
 - Impulse Response Functions(IRF)

Time Series

- Can the ARMA model match the IRFs?
- 3 Dynamic Discrete Choice Model
 - Household Behavior
 - Aggregate Implications

- Decomposing the Results:
 What lies behind the
 - Sales
 - 6 Robustness
 - Used Car Markets
 - Capital Markets
 - Robustness of Implied Dynamics of Car Sales
- Conclusion
- Appendix
 - Estimation Results for Joint Process of Income and Prices
 - Extensions to Our Baseline Model
 - Used Car Markets
 - Capital Markets
 → ★ ★ ★ ★ ■

Evidence on Aggregate Car Purchases

Dynamic Discrete Choice Model
Estimation
Decomposing the Results: What lies behind the Oscillations?
Robustionss

Used Car Markets
Capital Markets
Robustness of Implied Dynamics of 6

Used Car Markets

Appendix

- Introduction
- Evidence on Aggregate Car Purchases
 - Facts: Car Sales and the Cross Sectional Distribution
 - Time Series
 Representations
 - ARMA(1,1) Representation
 - Impulse Response Functions(IRF)
 - Can the ARMA model match the IREs?
- 3 Dynamic Discrete Choice Model
 - Household Behavior
 - Aggregate Implications

- 5 Decomposing the Results:
 What lies behind the
 - Sales
 - 6 Robustness
 - Used Car Markets
 - Capital Markets
 - Robustness of Implied Dynamics of Car Sales
- Conclusion
- Appendix
 - Estimation Results for Joint Process of Income and Prices
 - Extensions to Our Baseline Model
 - Used Car Markets
 - Capital Markets
 → ★ ★ ★ ★ ■

Used Car Markets Capital Markets Robustness of Implied Dynamics of Car Sales

Capital Markets

 Cost of buying a durable good cannot be spread over time, thus implicity increasing the cost of such expenditures.

My Notes

- Introduction
- 2 Evidence on Aggregate Car Purchases
 - Facts: Car Sales and the Cross Sectional Distribution
 - Time SeriesRepresentations
 - ARMA(1,1) Representation
 - Impulse Response Functions(IRF)
 - Can the ARMA model match the IREs?
- 3 Dynamic Discrete Choice Model
 - Household Behavior
 - Aggregate Implications

- Decomposing the Results:
 What lies behind the
 - Sales
 - 6 Robustness
 - Used Car Markets
 - Capital Markets
 - Robustness of Implied Dynamics of Car Sales
 - Conclusion
 - Appendix
 - Estimation Results for Joint Process of Income and Prices
 - Extensions to Our Baseline Model
 - Used Car Markets

 Capital Markets

 E

Introduction
Evidence on Aggregate Car Purchases
Dynamic Discrete Choice Model
Estimation
Decomposing the Results: What lies behind the Oscillations?
Robustness
Conclusion

Used Car Markets
Capital Markets
Robustness of Implied Dynamics of Car Sales

Robustness of Implied Dynamics of Car Sales

Appendix My Notes

- Introduction
- 2 Evidence on Aggregate Car Purchases
 - Facts: Car Sales and the Cross Sectional Distribution
 - Time Series
 Representations
 - ARMA(1,1) Representation
 - Impulse Response Functions(IRF)
 - Can the ARMA model match the IREs?
- 3 Dynamic Discrete Choice Model
 - Household Behavior
 - Aggregate Implications

- 5 Decomposing the Results: What lies behind the
 - Oscillations?
 - Sales
 - 6 Robustness
 - Used Car Markets
 - Capital Markets
 - Robustness of Implied Dynamics of Car Sales
- Conclusion
 - Estimation Results for Joint Process of Income and
 - Extensions to Our Baseline Model
 - Used Car Markets

Conclusion

- Theme: aggregate time series implications of a model of consumption of both durables and nondurables at the household level
- Model: Dynamic discrete choice, infrequent purchases of durables - impulse response functions
- Contribution:
 - Solving the "durables puzzle" of Mankiw(1982)
 - Focus on the underlying parameters of the individuali \(\bar{\parameter}^{\frac{1}{2}}\bar{\parameter}^{\frac{1}{
 - Emphasized properties of the cross sectional distribution of car ages;
 - Time series implications that match certain features of the data
- Decomposition: hazard function(most) and evolution of the cross.

- Introduction
- Evidence on Aggregate Car Purchases
 - Facts: Car Sales and the Cross Sectional Distributio
 - Time Series
 Representations
 - ARMA(1,1) Representation
 - Impulse Response Functions(IRF)
 - Can the ARMA model match the IRFs?
- 3 Dynamic Discrete Choice Model
 - Household Behavior
 - Aggregate Implications

- Decomposing the Results: What lies behind the
 - Oscillations?
 - Sales
 - Robustness
 - Used Car Markets
 - Capital Markets
 - Robustness of Implied Dynamics of Car Sales
 - Conclusion
 - AppendixEstimation Results for Joint
 - Process of Income and
 - Extensions to Our Baseline
 - Used Car Markets
 - Capital Markets
 □ Capital Markets

- Introduction
- Evidence on Aggregate Car Purchases
 - Facts: Car Sales and the Cross Sectional Distribution
 - Time Series
 - Representations
 - ARMA(1,1) Representation
 - Impulse Response Functions(IRF)
 - Can the ARMA model match the IREs?
- 3 Dynamic Discrete Choice Model
 - Household Behavior
 - Aggregate Implications

- 5 Decomposing the Results: What lies behind the
 - Sales
- Robustness
 - Used Car Markets
 - Capital Markets
 - Robustness of Implied Dynamics of Car Sales
- Conclusion
- 8 Appendix
 - Estimation Results for Joint Process of Income and Prices
 - Extensions to Our Baseline Model
 - Used Car Markets
 - Capital Markets
 → ★ ★ ★ ★ ■

Estimation Results for Joint Process of Income and Prices Extensions to Our Baseline Model

Estimation Results for Joint Process

- Introduction
- Evidence on Aggregate Car Purchases
 - Facts: Car Sales and the Cross Sectional Distribution
 - Representations
 - ARMA(1,1) Representation
 - Impulse Response Functions(IRF)

Time Series

- Can the ARMA model match the IRFs?
- 3 Dynamic Discrete Choice Model
 - Household Behavior
 - Aggregate Implications

- Decomposing the Results: What lies behind the
 - Oscillation
 - SalesRobustness
 - Used Car Markets
 - Capital Markets
 - Robustness of Implied Dynamics of Car Sales
 - Conclusion
 - 8 Appendix
 - Estimation Results for Joint Process of Income and Prices
 - Extensions to Our Baseline Model
 - Used Car Markets
 - Capital Markets
 → ★ ★ ★ ★ ■

Estimation Results for Joint Process of Income and Prices Extensions to Our Baseline Model

Used Car Markets

Estimation Results for Joint Process of Income and Prices Extensions to Our Baseline Model

Capital Markets

- - Facts: Car Sales and the
 - Time Series
 - ARMA(1,1) Representation
 - Impulse Response
 - Can the ARMA model match.
- - Household Behavior
 - Aggregate Implications

- - Sales
 - - Used Car Markets
 - Capital Markets
- - Estimation Results for Joint
 - Extensions to Our Baseline
 - Used Car Markets

- - Facts: Car Sales and the
 - Time Series
 - ARMA(1,1) Representation
 - Impulse Response
 - Can the ARMA model match.
- - Household Behavior
 - Aggregate Implications

- - Sales
 - - Used Car Markets
 - Capital Markets
- - Estimation Results for Joint
 - Extensions to Our Baseline
 - Used Car Markets

Economic Notes
Mathematical Notes

Permanent Income Hypothesis(PIH)

- Definition: a person's consumption at a point in time is determined not just by their current income but also by their expected income in future years" ¿ ½ 1/2 their "permanent income"
- Permanent income: expected long-term average income.

My Notes

- Introduction
- Evidence on Aggregate Car Purchases
 - Facts: Car Sales and the Cross Sectional Distributio
 - Time SeriesRepresentations
 - ARMA(1,1) Representation
 - Impulse Response Functions(IRF)
 - Can the ARMA model match the IRFs?
- 3 Dynamic Discrete Choice Model
 - Household Behavior
 - Aggregate Implications

- Decomposing the Results: What lies behind the
 - Sales
 - Robustness
 - Used Car Markets
 - Capital Markets
 - Robustness of Implied Dynamics of Car Sales
 - Conclusion
 - Appendix
 - Estimation Results for Joint Process of Income and Prices
 - Extensions to Our Baseline Model
 - Used Car Markets

Economic Notes
Mathematical Notes

Autoregressive(AR) Model¹

AR(p):

$$y_t = c + \sum_{i=1}^{p} \varphi_i y_{t-i} + \sigma v_t + \varepsilon_t$$

Appendix My Notes

- φ_i: parameters of the model
- c: constant
- ε_t : white noise

⁰https://en.wikipedia.org/wiki/Autoregressive_model

Economic Notes
Mathematical Notes

Moving-Average(MA) Model²

MA(q):

$$X_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + ... + \theta_q \varepsilon_{t-q}$$

My Notes

- μ: mean of the series
- θ_i : parameters of the model
- ε_{t-i} : white noise

¹https://en.wikipedia.org/wiki/Moving-average_model

Autoregressive-Moving-Average Model

ARMA(p,q): the model with p autoregressive terms and q moving-average terms

My Notes

$$X_t = c + \varepsilon_t + \sum_{t=1}^{p} X_{t-i} + \sum_{i=1}^{q} \theta_i \varepsilon_{t-i}$$

Vector Autoregression(VAR)

VAR(p): evolution of a set of k endogenous variables over the same sample period

My Notes

$$y_t = c + \sum_{i=1}^p A_i y_{t-i} + e_t$$

y_t: k*1 vector

VAR: structural vs. reduced form

Structural:

$$B_0 y_t = c_0 + \sum_{i=1}^{p} B_i y_{t-i} + \varepsilon_t$$

Reduced-form:

$$y_t = c + \sum_{i=1}^p A_i y_{t-i} + e_t$$

My Notes