

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date
2 December 2004 (02.12.2004)

PCT

(10) International Publication Number
WO 2004/103369 A1

(51) International Patent Classification⁷: A61K 31/4406, 33/24, 31/282, 31/70, 31/4745, 31/513, 31/7068, 31/337, 31/555, 31/704, A61P 35/00, A61K 31/475

(74) Agents: AOKI, Atsushi et al.; A. Aoki, Ishida & Associates, Toranomon 37 Mori Bldg., 5-1, Toranomon 3-chome, Minato-ku, Tokyo 1058423 (JP).

(21) International Application Number:
PCT/JP2004/007562

(22) International Filing Date: 26 May 2004 (26.05.2004)

(25) Filing Language: English

(26) Publication Language: English

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(30) Priority Data:
2003-148073 26 May 2003 (26.05.2003) JP

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(71) Applicant (for all designated States except US): SCHERRING AKTIENGESELLSCHAFT [DE/DE]; Muellerstrasse 178, 13353 Berlin (DE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): NAKANISHI, Osamu [JP/JP]; 1656-13, Tokecho, Midori-ku, Chiba-shi, Chiba 2670061 (JP). SUGAWARA, Tatsuo [JP/JP]; 18-1, Oyuminoariyoshi, Midori-ku, Chiba-shi, Chiba 2660034 (JP). MIGITA, Hideyuki [JP/US]; 207 Shoreline Court, Richmond, CA 94804 (US). MATSUBA, Yasuhiro [JP/JP]; 9-4-802, Nakayacho, Nishinomiya-shi, Hyogo 6620868 (JP).

Published:

— with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 2004/103369 A1

(54) Title: PHARMACEUTICAL COMPOSITION CONTAINING HISTONE DEACETYLASE INHIBITOR

(57) Abstract: An anticancer drug having a synergistic effect by combined use of a histone acetylase derivative such as N-(2-aminophenyl)-4-[N-(pyridin-3-ylmethoxycarbonyl) aminomethyl]benzamide (MS-275) and another anticancer active substance.

- 1 -

DESCRIPTION

PHARMACEUTICAL COMPOSITION CONTAINING HISTONE DEACETYLASE
INHIBITOR

5

TECHNICAL FIELD

The present invention relates to a pharmaceutical composition or drug combination for treatment of cancer comprising a histone deacetylase inhibitor and another anticancer active substance.

10

BACKGROUND ART

At the present time, cancer is the first leading cause of death. Up until now, many researchs on cancer have been conducted and tremendous money and time have been spended on these researchs. However, despite research in methods of treatment spanning diverse fields such as surgery, radiotherapy, and thermotherapy, cancer has not been overcome. Among these, chemotherapy is a major sector and many anticancer drugs have been researched. For example, as chemotherapy drugs for cancer, cisplatin, etoposide, 5-fluorouracil, gemcitabine, paclitaxel, docetaxel, carboplatin, oxaliplatin, doxorubicin, vinblastin, etc. have been used.

15

Japanese Unexamined Patent Publication (Kokai) No. 10-152462 discloses a benzamide derivative. The following fact is disclosed; said benzamide derivative has a differentiation inducing action, is useful as a pharmaceutical for the treatment or alleviation of malignant tumors, autoimmune diseases, skin diseases, and parasitic infection, is particularly effective as an anticancer drug, and is effective against hematopoietic cancers and solid cancers.

20

Patent Document 1

25

Japanese Unexamined Patent Publication (Kokai) No. 10-152462

DISCLOSURE OF THE INVENTION

However, anticancer drugs have limitation at a dosage of a single drug due to their strong toxicity to normal cells. Except for some cancers, treatment by administration of a single drug is not enough to achieve 5 a sufficient efficacy.

The present invention was made to reduce the toxicity posing a problem in current chemotherapy and achieve a high treatment effect.

Accordingly, the present invention provides a 10 pharmaceutical composition or combination as active ingredients comprising:

(a) at least one of the benzamide derivatives represented by formula (1):

20 wherein A is an optionally substituted phenyl group or an optionally substituted heterocyclic group wherein the substituent(s) for the phenyl group or the heterocyclic group is (are) 1 to 4 substituents selected from the group consisting of a halogen atom, a hydroxyl group, an amino group, a nitro group, a cyano group, an alkyl group having 1 to 4 carbons, an alkoxy group having 1 to 4 carbons, an aminoalkyl group having 1 to 4 carbons, an alkylamino group having 1 to 4 carbons, an acyl group having 1 to 4 carbons, an acylamino group having 1 to 4 carbons, an alkylthio group having 1 to 4 carbons, a perfluoroalkyl group having 1 to 4 carbons, a perfluoroalkyloxy group having 1 to 4 carbons, a carboxyl group, an alkoxy carbonyl group having 1 to 4 carbons, a phenyl group and a heterocyclic group;

25

30

35 X is a bond or a moiety having a structure selected from those illustrated in formula (2):

- 3 -

wherein e is an integer of 1 to 4; g and m are independently an integer of 0 to 4; R4 is a hydrogen atom or an optionally substituted alkyl group having 1 to 4 carbons, or the acyl group represented by formula (3)

wherein R6 is an optionally substituted alkyl group having 1 to 4 carbons, a perfluoroalkyl group having 1 to 4 carbons, a phenyl group or a heterocyclic group; R5 is a hydrogen atom or an optionally substituted alkyl group having 1 to 4 carbons;

n is an integer of 0 to 4, provided that when X is a bond, n is not zero;

Q is a moiety having a structure selected from those illustrated in formula (4)

- 4 -

wherein R7 and R8 are independently a hydrogen atom or an optionally substituted alkyl group having 1 to 4 carbons;

R1 and R2 are independently a hydrogen atom, a halogen atom, a hydroxyl group, an amino group, an alkyl group having 1 to 4 carbons, an alkoxy group having 1 to 4 carbons, an aminoalkyl group having 1 to 4 carbons, an alkylamino group having 1 to 4 carbons, an acyl group having 1 to 4 carbons, an acylamino group having 1 to 4 carbons, an alkylthio group having 1 to 4 carbons, a perfluoroalkyl group having 1 to 4 carbons, a perfluoroalkyloxy group having 1 to 4 carbons, a carboxyl group or an alkoxycarbonyl group having 1 to 4 carbons;

R3 is a hydroxyl group or amino group or a pharmaceutically acceptable salt thereof as HDAC inhibiting substance, and

30 (b) at least one substance as another anti-cancer active substance selected from a group consisting of cisplatin, etoposide, camptothecin, 5-fluorouracil, gemcitabine, paclitaxel, docetaxel, carboplatin, oxaliplatin, doxorubicin and vinblastin.

The present invention further provides a cancer treatment kit comprising a pharmaceutical combination, which comprises:

(i) at least one of said ingredients (a) which is a

histone deacetylase inhibiting substance,

(ii) at least one of said ingredients (b) which is another anti-cancer active substance, and

5 (iii) an instruction for administration schedule for simultaneous or sequential administration according to a kind of cancer (for sequential administration to a patient at periodic intervals).

The "pharmaceutical combination" in the present invention means a combination of an ingredient (a) which 10 is a histone deacetylase inhibiting substance and an ingredient (b) which is another anti-cancer active substance, wherein the ingredient (a) and the ingredient (b) are administered simultaneously or at different times (or sequentially).

15 The present invention includes a method of treatment of cancer comprising administering said ingredient (a) and said ingredient (b) to patients simultaneously or at different times (or sequentially). In this situation, an administration sequence of said ingredient (a) and said 20 ingredient (b) is appropriately selected according to a kind of cancer and kinds of said ingredient (a) and said ingredient (b). Further, the present invention also includes use of said ingredient (a) and said ingredient (b) for producing a pharmaceutical composition or drug 25 combination of the present invention for treating cancer and use of said ingredient (a) and said ingredient (b) for producing the kit of the present invention.

The benzamide derivative which is a histone deacetylase inhibiting substance or pharmaceutically acceptable salts thereof is preferably selected from represented by the following formulas (5) to (8):

- 6 -

More preferably, the benzamide derivative is represented by the following formula (5) or pharmaceutically acceptable salt thereof:

In the pharmaceutical combination or composition in the present invention, said ingredient (b) which is another anti-cancer active substance is preferably cisplatin, more preferably the combination or composition which is for treatment of colon cancer, non-small cell lung cancer, ovarian cancer or pancreatic cancer.

Further, in the pharmaceutical combination or composition in the present invention, said ingredient (b) which is another anti-cancer active substance is preferably etoposide, more preferably the combination or composition which is for treatment of ovarian cancer.

Further, in the pharmaceutical combination or composition in the present invention, said ingredient (b) which is another anti-cancer active substance is preferably camptothecin, more preferably the combination or composition which is for treatment of colon cancer, non-small cell lung cancer, ovarian cancer or pancreatic cancer.

Further, in the pharmaceutical combination or composition in the present invention, said ingredient (b) which is another anti-cancer active substance is preferably 5-fluorouracil, more preferably the combination or composition which is for treatment of breast cancer or colon cancer.

Further, in the pharmaceutical combination or composition in the present invention, said ingredient (b) which is another anti-cancer active substance is preferably gemcitabine, more preferably the combination or composition which is for treatment of non-small cell lung cancer, colon cancer or ovarian cancer.

Further, in the pharmaceutical combination or composition in the present invention, said ingredient (b) which is another anti-cancer active substance is preferably paclitaxel, more preferably the combination or composition which is for treatment of breast cancer, prostate cancer or ovarian cancer.

Further, in the pharmaceutical combination or

composition in the present invention, said ingredient (b) which is another anti-cancer active substance is preferably docetaxel, more preferably the combination or composition which is for treatment of non-small cell lung cancer, ovarian cancer, pancreatic cancer or prostate cancer.

Further, in the pharmaceutical combination or composition in the present invention, said ingredient (b) which is another anti-cancer active substance is preferably carboplatin, more preferably the combination or composition which is for treatment of non-small cell lung cancer, ovarian cancer or pancreatic cancer.

Further, in the pharmaceutical combination or composition in the present invention, said ingredient (b) which is another anti-cancer active substance is preferably oxaliplatin, more preferably the combination or composition which is for treatment of colon cancer or ovarian cancer.

Further, in the pharmaceutical combination or composition in the present invention, said ingredient (b) which is another anti-cancer active substance is preferably doxorubicin, more preferably the combination or composition which is for treatment of ovarian cancer.

Further, in the pharmaceutical combination or composition in the present invention, said ingredient (b) which is another anti-cancer active substance is preferably vinblastin, more preferably the combination or composition which is for treatment of non-small cell lung cancer.

Further, the pharmaceutical combination in the present invention is preferable, of which said ingredient (a) which is histone deacetylase inhibiting substance and said ingredient (b) which is another anti-cancer active substance are sequentially administered to patients.

Of the pharmaceutical combination, said ingredient (b) which is another anti-cancer active substance is preferably paclitaxel. As the administration sequence

thereof, it is preferable to administer paclitaxel and then said ingredient (a) which is a histone deacetylase inhibiting substance. The pharmaceutical combination for treatment of breast cancer or ovarian cancer is more preferable.

Further, of the pharmaceutical combination, said ingredient (b) which is another anti-cancer active substance is preferably cisplatin. As the administration sequence thereof, it is preferable to administer said ingredient (a) which is a histone deacetylase inhibiting substance, and then cisplatin. The pharmaceutical combination for treatment of non-small cell lung cancer is more preferable. Or, the administration sequence thereof is preferably cisplatin, and then said ingredient (a) which is a histone deacetylase inhibiting substance. The pharmaceutical combination for treatment of colon cancer, non-small cell lung cancer, ovarian cancer or pancreatic cancer is more preferable.

Further, of the pharmaceutical combination, said ingredient (b) which is another anti-cancer active substance is preferably gemcitabine. As the administration sequence thereof, it is preferable to administer said ingredient (a) which is a histone deacetylase inhibiting substance, and then gemcitabine. The pharmaceutical combination for treatment of non-small cell lung cancer is more preferable. Or, the administration sequence thereof is preferably gemcitabine, and then said ingredient (a) which is a histone deacetylase inhibiting substance. The pharmaceutical combination for treatment of colon cancer, non-small cell lung cancer, ovarian cancer or pancreatic cancer is more preferable.

Further, of the pharmaceutical combination, said ingredient (b) which is another anti-cancer active substance is preferably docetaxel. As the administration sequence thereof, it is preferable to administer docetaxel, and then said ingredient (a) which is a

histone deacetylase inhibiting substance. The pharmaceutical combination for treatment of non-small cell lung cancer, ovarian cancer, pancreatic cancer or prostate cancer is more preferable.

5 Further, of the pharmaceutical combination, said ingredient (b) which is another anti-cancer active substance is preferably carboplatin. As the administration sequence thereof, it is preferable to administer carboplatin, and then said ingredient (a) 10 which is a histone deacetylase inhibiting substance. The pharmaceutical combination for treatment of non-small cell lung cancer, ovarian cancer, pancreatic cancer or prostate cancer is more preferable.

15 Further, of the pharmaceutical combination, said ingredient (b) which is another anti-cancer active substance is preferably oxaliplatin. As the administration sequence thereof, it is preferable to administer oxaliplatin, and then said ingredient (a) 20 which is a histone deacetylase inhibiting substance. The pharmaceutical combination for treatment of colon cancer or ovarian cancer is more preferable.

25 Further, of the pharmaceutical combination, said ingredient (b) which is another anti-cancer active substance is preferably doxorubicin. As the administration sequence thereof, it is preferable to administer doxorubicin, and then said ingredient (a) which is a histone deacetylase inhibiting substance. The pharmaceutical combination for treatment of ovarian 30 cancer is more preferable.

30 Further, of the pharmaceutical combination, said ingredient (b) which is another anti-cancer active substance is preferably vinblastin. As the administration sequence thereof, it is preferable to administer vinblastin, and then said ingredient (a) which is a 35 histone deacetylase inhibiting substance. The pharmaceutical combination for treatment of non-small cell lung cancer is more preferable.

Further, of the pharmaceutical combination, said ingredient (b) which is another anti-cancer active substance is preferably 5-fluorouracil. As the administration sequence thereof, it is preferable to 5 administer 5-fluorouracil, and then said ingredient (a) which is a histone deacetylase inhibiting substance. The pharmaceutical combination for treatment of colon cancer is more preferable.

In the pharmaceutical composition of the present 10 invention, said ingredient (a) and said ingredient (b) may be made into the pharmaceutical composition using compound per se which are these active ingredients, may be made into the pharmaceutical composition using a preparation containing said ingredient (a) as an active 15 ingredient and a preparation containing said ingredient (b) as an active ingredient, or may be made into the pharmaceutical composition using the compound per se which is either of said ingredient (a) or said ingredient (b) and a preparation of the other prepared in advance. 20 And, in the pharmaceutical combination of the present invention, usually separately prepared preparations, that is, a preparation containing said ingredient (a) as an active ingredient and a preparation containing said 25 ingredient (b) as an active ingredient, are administered simultaneously or at a different time (or consecutively).

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a graph showing the principle of judgment of the existence of a synergistic action.

BEST MODE FOR CARRYING OUT THE INVENTION

30 The present invention relates to a pharmaceutical composition or combination comprising a benzamide derivative represented by formula (1) which is a histone deacetylase inhibiting substance and another anticancer active substance.

35 As used herein, "1 to 4 carbons" means a carbon number per a single substituent; for example, for dialkyl substitution it means 2 to 8 carbons.

A heterocycle in the compound represented by formula (1) is a monocyclic heterocycle having 5 or 6 members containing 1 to 4 nitrogen, oxygen or sulfur atoms or a bicyclic-fused heterocycle. The monocyclic heterocycle includes pyridine, pyrazine, pyrimidine, pyridazine, thiophene, furan, pyrrole, pyrazole, isoxazole, isothiazole, imidazole, oxazole, thiazole, piperidine, piperazine, pyrrolidine, quinuclidine, tetrahydrofuran, morpholine, thiomorpholine and the like. The bicyclic fused heterocycle includes quinoline; isoquinoline; naphthyridine; fused pyridines such as fuopyridine, thienopyridine, pyrrolopyridine, oxazolopyridine, imidazolopyridine and thiazolopyridine; benzofuran; benzothiophene; benzimidazole and the like. A halogen may be fluorine, chlorine, bromine or iodine. An alkyl having 1 to 4 carbons includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl and tert-butyl.

An alkoxy having 1 to 4 carbons includes methoxy, ethoxy, n-propoxy, isopropoxy, allyloxy, n-butoxy, isobutoxy, sec-butoxy, tert-butoxy and the like.

An aminoalkyl having 1 to 4 carbons includes aminomethyl, 1-aminoethyl, 2-aminopropyl and the like. An alkylamino having 1 to 4 carbons includes N-methylamino, N,N-dimethylamino, N,N-diethylamino, N-methyl-N-ethylamino, N,N-diisopropylamino and the like. An acyl having 1 to 4 carbons includes acetyl, propanoyl, butanoyl and like. An acylamino having 1 to 4 carbons includes acetylamino, propanoylamino, butanoylamino and the like. An alkylthio having 1 to 4 carbons includes methylthio, ethylthio, propylthio and the like. A perfluoroalkyl having 1 to 4 carbons includes trifluoromethyl, pentafluoroethyl and the like. A perfluoroalkyloxy having 1 to 4 carbons includes trifluoromethoxy, pentafluoroethoxy and the like. An alkoxycarbonyl having 1 to 4 carbons includes methoxycarbonyl and ethoxycarbonyl. An optionally substituted alkyl having 1 to 4 carbons includes methyl,

ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl and tert-butyl and these having 1 to 4 substituents selected from the group consisting of a halogen, hydroxyl, amino, nitro, cyano, phenyl and a heterocycle.

5 A pharmaceutically acceptable salt of ingredient (a) as histone deacetylase inhibiting substance of this invention includes salts with an inorganic acid such as hydrochloric acid, hydrobromic acid, sulfuric acid and phosphoric acid; and with an organic acid such as acetic acid, lactic acid, tartaric acid, malic acid, succinic acid, fumaric acid, maleic acid, citric acid, benzoic acid, trifluoroacetic acid, p-toluenesulfonic acid and methanesulfonic acid.

15 The ingredient (a) which is a histone deacetylase inhibiting substance of this invention may be produced in accordance with the process of Japanese unexamined patent publication (Kokai) No. 10-152462. And, the ingredient (b) which is another anti-cancer active substance is commercially available or can be produced by known methods.

20 The pharmaceutical composition or combination of this invention is useful for cancer treatment. The composition itself may be used in the form of a general pharmaceutical formulation. And of the combination the ingredients (a) and (b) may be used in the form of a general pharmaceutical formulation.

25 The pharmaceutical composition comprising the active ingredient (a) and (b) is prepared with a generally used diluent or excipient such as filler, extender, binder, moisturizing agent, disintegrator, surfactant and lubricant. And the pharmaceutical combination is prepared by independent active ingredients, with a generally used diluent or excipient such as filler, extender, binder, moisturizing agent, disintegrator, surfactant and lubricant. The pharmaceutical formulation may have a variety of dosage forms such as tablet, pill, powder, solution, suspension, emulsion, granule, capsule,

injection (e.g., solution, suspension) and suppository.

For preparing tablets, a variety of carriers well-known in the art may be used. Such a carrier includes excipients such as lactose, glucose, starch, calcium carbonate, kaoline, crystalline cellulose and silicic acid; binders such as water, ethanol, propanol, simple syrup, glucose solution, starch solution, gelatin solution, carboxymethyl cellulose, shellac, methyl cellulose and polyvinyl pyrrolidone; disintegrators such as dried starch, sodium alginate, powdered agar, calcium carmelose, starch and lactose; disintegration retarders such as sucrose, cocoa butter and hydrogenated oil; absorption promoters such as quaternary ammonium base and sodium lauryl sulfate; moisturizing agents such as glycerin and starch; adsorbents such as starch, lactose, kaoline, bentonite, colloidal silicic acid; and glidants such as talc, stearates and polyethylene glycol. The tablet may be, if necessary, one coated with a common coating; for example, sugar-coated tablet, gelatin-coated tablet, enteric coated tablet, film-coated tablet, double-layer tablet and multilayer tablet.

In forming pills, a variety of carriers well-known in the art may be used. Such a carrier includes excipients such as crystalline cellulose, lactose, starch, hydrogenated vegetable oil, kaoline and talc; binders such as powdered acacia, powdered tragacanth gum and gelatin; disintegrators such as calcium carmelose and agar.

Capsule may be prepared by blending an active ingredient with a variety of the above carriers as usual and filling the resulting blend into, for example, a hard or soft gelatin capsule or the like.

For preparing injection, solution, emulsion and suspension are sterilized and preferably isotonic with blood. It may be prepared using diluents commonly used in the art; for example, water, ethanol, macrogol, propylene glycol, ethoxylated isostearyl alcohol, polyoxyisostearyl

alcohol and polyoxyethylene sorbitan fatty acid esters. The pharmaceutical preparation may contain sodium chloride necessary to prepare an isotonic solution, glucose or glycerin, as well as usual solubilizers, 5 buffers and soothing agents.

Suppository may be formed using a variety of well-known carriers; for example, semi-synthetic glyceride, cocoa butter, higher alcohols, higher alcohol esters and polyethylene glycol.

10 Furthermore, the pharmaceutical formulation may contain coloring agents, preservatives, perfumes, flavors, sweeteners and/or other drugs.

The volume ratio of the active ingredients (b) to 15 (a) to be included in the pharmaceutical composition of the present invention is not limited and is appropriately selected from a broad range of the volume ratios. In the case of cisplatin, the molar ratio is 0.001 to 10000, preferably 0.01 to 1000, to 1 of the benzamide derivative (said ingredient (a)). In the case of etoposide, the 20 molar ratio is 0.001 to 10000, preferably 0.01 to 1000, to 1 of the benzamide derivative.

In the case of camptothecin, the molar ratio is 25 0.00001 to 10, preferably 0.0001 to 1, to 1 of the benzamide derivative (said ingredient (a)). In the case of 5-fluorouracil, the molar ratio is 0.01 to 100000, preferably 0.1 to 10000, to 1 of the benzamide derivative. In the case of gemcitabine, the molar ratio is 0.00001 to 100, preferably 0.0001 to 10, to 1 of the benzamide derivative (said ingredient (a)). In the case 30 of paclitaxel, the molar ratio is 0.000001 to 0.01, preferably 0.00001 to 0.001, to 1 of the benzamide derivative (said ingredient (a)).

In the case of docetaxel, the molar ratio is 35 0.0000001 to 1, preferably 0.000001 to 0.1, to 1 of the benzamide derivative (said ingredient (a)).

In the case of carboplatin, the molar ratio is 0.001 to 10000, preferably 0.01 to 1000, to 1 of the benzamide

derivative (said ingredient (a)).

In the case of oxaliplatin, the molar ratio is 0.001 to 10000, preferably 0.01 to 1000, to 1 of the benzamide derivative (said ingredient (a)).

5 In the case of doxorubicin, the molar ratio is 0.000001 to 1, preferably 0.00001 to 0.1, to 1 of the benzamide derivative (said ingredient (a)).

10 In the case of vinblastin, the molar ratio is 0.000001 to 1, preferably 0.00001 to 0.1, to 1 of the benzamide derivative (said ingredient (a)).

An administration route of the pharmaceutical composition or combination is not limited, and selected depending on their dosage form, patient's age, sex, severity of disease and other conditions. For example, 15 tablet, pill, solution, suspension, emulsion, granule and capsule may be orally administered; injection may be intravenously administered solely or in combination with a common infusion fluid such as glucose, amino acids and the like, or if necessary, intramuscularly, 20 subcutaneously or intraperitoneally as a sole preparation. Suppository may be intrarectally administered.

Dose of the pharmaceutical composition or combination of this invention may be selected, depending 25 on their dosage form, patient's age, sex and severity of disease, and other conditions, as appropriate, and the amount of the active ingredients in the composition may be generally about 0.0001 to 1000 mg/kg a day. It is preferable that a unit dosage form may contain about 30 0.001 to 1000 mg of the active ingredient(s).

Further, in the case of pharmaceutical combinations, the amount of the active ingredient of the benzamide derivative (said ingredient (a)) may be about 0.0001 to 1000 mg per kg body weight. In the case of cisplatin, the 35 amount may be about 0.01 to 50 mg per kg body weight. In the case of etoposide, the amount may be about 0.1 to 10 mg per kg body weight. In the case of camptothecin, the

amount may be about 0.1 to 10 mg per kg body weight.

In the case of 5-fluorouracil, the amount may be about 0.1 to 200 mg per kg body weight.

5 In the case of gemcitabine, the amount may be about 1 to 300 mg per kg body weight. In the case of paclitaxel, the amount may be about 0.1 to 100 mg per kg body weight.

In the case of docetaxel, the amount may be about 0.1 to 50 mg per kg body weight.

10 In the case of carboplatin, the amount may be about 0.2 to 100 mg per kg body weight.

In the case of oxaliplatin, the amount may be about 0.1 to 50 mg per kg body weight.

15 In the case of doxorubicin, the amount may be about 0.1 to 50 mg per kg body weight.

In the case of vinblastin, the amount may be about 0.01 to 5 mg per kg body weight.

20 For administration of pharmaceutical combinations, in the case of simultaneous administration, the first active ingredient and the second active ingredient are administered without any time interval. In the case of administration at different times (consecutively), it is preferable to administer the first active ingredient and then administer the second active ingredient half a day
25 to 60 days later.

EXAMPLES

Next, the present invention will be explained with examples more specifically.

30 Examples. Confirmation of Synergistic Effect Between Histone Deacetylase Inhibitor and Known Anticancer Active Substances on Cancer Cell Proliferation

35 The synergistic effects in combined use of the histone deacetylase inhibitor of the present invention and various types of known anticancer active substances on various types of cancer cell lines were confirmed by the examples.

Test Substances

As the histone deacetylase inhibitor of the present invention, N-(2-aminophenyl)4-[N-(pyridin-3-ylmethoxycarbonyl)aminomethyl]benzamide (MS-275) represented by the following formula (5) was used.

5

10

And, as known anticancer activity substances used in conjunction with the above MS-275 compound, paclitaxel (PTX), camptothecin (CPT), etoposide (VP-16), cisplatin (CDDP), gemcitabine (GEM), 5-fluorouracil (5-FU), docetaxel (DTX), carboplatin (CBDCA), oxaliplatin (OXP), doxorubicin (DOX), or vinblastin (VBL) was used.

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
33510
33511
33512
33513
33514
33515
33516
33517
33518
33519
33520
33521
33522
33523
33524
33525
33526
33527
33528
33529
33530
33531
33532
33533
33534
33535
33536
33537
33538
33539
33540
33541
33542
33543
33544
33545
33546
33547
33548
33549
33550
33551
33552
33553
33554
33555
33556
33557
33558
33559
33560
33561
33562
33563
33564
33565
33566
33567
33568
33569
33570
33571
33572
33573
33574
33575
33576
33577
33578
33579
33580
33581
33582
33583
33584
33585
33586
33587
33588
33589
33590
33591
33592
33593
33594
33595
33596
33597
33598
33599
335100
335101
335102
335103
335104
335105
335106
335107
335108
335109
335110
335111
335112
335113
335114
335115
335116
335117
335118
335119
335120
335121
335122
335123
335124
335125
335126
335127
335128
335129
335130
335131
335132
335133
335134
335135
335136
335137
335138
335139
335140
335141
335142
335143
335144
335145
335146
335147
335148
335149
335150
335151
335152
335153
335154
335155
335156
335157
335158
335159
335160
335161
335162
335163
335164
335165
335166
335167
335168
335169
335170
335171
335172
335173
335174
335175
335176
335177
335178
335179
335180
335181
335182
335183
335184
335185
335186
335187
335188
335189
335190
335191
335192
335193
335194
335195
335196
335197
335198
335199
335200
335201
335202
335203
335204
335205
335206
335207
335208
335209
335210
335211
335212
335213
335214
335215
335216
335217
335218
335219
335220
335221
335222
335223
335224
335225
335226
335227
335228
335229
335230
335231
335232
335233
335234
335235
335236
335237
335238
335239
335240
335241
335242
335243
335244
335245
335246
335247
335248
335249
335250
335251
335252
335253
335254
335255
335256
335257
335258
335259
335260
335261
335262
335263
335264
335265
335266
335267
335268
335269
335270
335271
335272
335273
335274
335275
335276
335277
335278
335279
335280
335281
335282
335283
335284
335285
335286
335287
335288
335289
335290
335291
335292
335293
335294
335295
335296
335297
335298
335299
335300
335301
335302
335303
335304
335305
335306
335307
335308
335309
335310
335311
335312
335313
335314
335315
335316
335317
335318
335319
335320
335321
335322
335323
335324
335325
335326
335327
335328
335329
335330
335331
335332
335333
335334
335335
335336
335337
335338
335339
335340
335341
335342
335343
335344
335345
335346
335347
335348
335349
335350
335351
335352
335353
335354
335355
335356
335357
335358
335359
335360
335361
335362
335363
335364
335365
335366
335367
335368
335369
335370
335371
335372
335373
335374
335375
335376
335377
335378
335379
335380
335381
335382
335383
335384
335385
335386
335387
335388
335389
335390
335391
335392
335393
335394
335395
335396
335397
335398
335399
335400
335401
335402
335403
335404
335405
335406
335407
335408
335409
335410
335411
335412
335413
335414
335415
335416
335417
335418
335419
335420
335421
335422
335423
335424
335425
335426
335427
335428
335429
335430
335431
335432
335433
335434
335435
335436
335437
335438
335439
335440
335441
335442
335443
335444
335445
335446
335447
335448
335449
335450
335451
335452
335453
335454
335455
335456
335457
335458
335459
335460
335461
335462
335463
335464
335465
335466
335467
335468
335469
335470
335471
335472
335473
335474
335475
335476
335477
335478
335479
335480
335481
335482
335483
335484
335485
335486
335487
335488
335489
335490
335491
335492
335493
335494
335495
335496
335497
335498
335499
335500
335501
335502
335503
335504
335505
335506
335507
335508
335509
335510
335511
335512
335513
335514
335515
335516
335517
335518
335519
335520
335521
335522
335523
335524
335525
335526
335527
335528
335529
335530
335531
335532
335533
335534
335535
335536
335537
335538
335539
335540
335541
335542
335543
335544
335545
335546
335547
335548
335549
335550
335551
335552
335553
335554
335555
335556
335557
335558
335559
335560
335561
335562
335563
335564
335565
335566
335567
335568
335569
335570
335571
335572
335573
335574
335575
335576
335577
335578
335579
335580
335581
335582
335583
335584
335585
335586
335587
335588
335589
335590
335591
335592
335593
335594
335595
335596
335597
335598
335599
3355100
3355101
3355102
3355103
3355104
3355105
3355106
3355107
3355108
3355109
3355110
3355111
3355112
3355113
3355114
3355115
3355116
3355117
3355118
3355119
3355120
3355121
3355122
3355123
3355124
3355125
3355126
3355127
3355128
3355129
3355130
3355131
3355132
3355133
3355134
3355135
3355136
3355137
3355138
3355139
3355140
3355141
3355142
3355143
3355144
3355145
3355146
3355147
3355148
3355149
3355150
3355151
3355152
3355153
3355154
3355155
3355156
3355157
3355158
3355159
3355160
3355161
3355162
3355163
3355164
3355165
3355166
3355167
3355168
3355169
3355170
3355171
3355172
3355173
3355174
3355175
3355176
3355177
3355178
3355179
3355180
3355181
3355182
3355183
3355184
3355185
3355186
3355187
3355188
3355189
3355190
3355191
3355192
3355193
3355194
3355195
3355196
3355197
3355198
3355199
3355200
3355201
3355202
3355203
3355204
3355205
3355206
3355207
3355208
3355209
3355210
3355211
3355212
3355213
3355214
3355215
3355216
3355217
3355218
3355219
3355220
3355221
3355222
3355223
3355224
3355225
3355226
3355227
3355228
3355229
3355230
3355231
3355232
3355233
3355234
3355235
3355236
3355237
3355238
3355239
3355240
3355241
3355242
3355243
3355244
3355245
3355246
3355247
3355248
3355249
3355250
3355251
3355252
3355253
3355254
3355255
3355256
3355257
3355258
3355259
3355260
3355261
3355262
3355263
3355264
3355265
3355266
3355267
3355268
3355269
3355270
3355271
3355272
3355273
3355274
3355275
3355276
3355277
3355278
3355279
3355280
3355281
3355282
3355283
3355284
3355285
3355286
3355287
3355288
3355289
3355290
3355291
3355292
3355293
3355294
3355295
3355296
3355297
3355298
3355299
3355300
3355301
3355302
3355303
3355304
3355305
3355306
3355307
3355308
3355309
3355310
3355311
3355312
3355313
3355314
3355315
3355316
3355317
3355318
3355319
3355320
3355321
3355322
3355323
3355324
3355325
3355326
3355327
3355328
3355329
3355330
3355331
3355332
3355333
3355334
3355335
3355336
3355337
3355338
3355339
3355340
3355341
3355342
3355343
3355344
3355345
3355346
3355347
3355348
3355349
3355350
3355351
3355352
3355353
3355354
3355355
3355356
3355357
3355358
3355359
3355360
3355361
3355362
3355363
3355364
3355365
3355366
3355367
3355368
3355369
3355370
3355371
3355372
3355373
3355374
3355375
3355376
3355377
3355378
3355379
3355380
3355381
3355382
3355383
3355384
3355385
3355386
3355387
3355388
3355389
3355390
3355391
3355392
3355393
3355394
3355395
3355396
3355397
3355398
3355399
3355400
3355401
3355402
3355403
3355404
3355405
3355406
3355407
3355408
3355409
3355410
3355411
3355412
3355413
3355414
3355415
3355416
3355417
3355418
3355419
3355420
3355421
3355422
3355423
3355424
3355425
3355426
3355427
3355428
3355429
3355430
3355431
3355432
3355433
3355434
3355435
3355436
3355437
3355438
3355439
3355440
3355441
3355442
3355443
3355444
3355445
3355446
3355447
3355448
3355449
3355450
3355451
3355452
3355453
3355454
3355455
3355456
3355457
3355458
3355459
3355460
3355461
3355462
3355463
3355464
3355465
3355466
3355467
3355468
3355469
3355470
3355471
3355472
3355473
3355474
3355475
3355476
3355477
3355478
3355479
3355480
3355481
3355482
3355483
3355484
3355485
3355486
3355487
3355488
3355489
3355490
3355491
3355492
3355493
3355494
3355495
3355496
3355497
3355498
3355499
3355500
3355501
3355502
3355503
3355504
3355505
3355506
3355507
3355508
3355509
3355510
3355511
3355512
3355513
3355514
3355515
3355516
3355517
3355518
3355519
3355520
3355521
3355522
3355523
3355524
3355525
3355526
3355527
3355528
3355529
3355530
3355531
3355532
3355533
3355534
3355535
3355536
3355537
3355538
3355539
3355540
3355541
3355542
3355543
3355544
3355545
3355546
3355547
3355548
3355549
33555410
33555411
33555412
33555413
33555414
33555415
33555416
33555417
33555418
33555419
33555420
33555421
33555422
33555423
33555424
33555425
33555426
33555427
33555428
33555429
33555430
33555431
335

In this method, the test cancer cells were incubated for 72 to 120 hours in a medium containing a mixture of MS-275 and another known anticancer active substance, and then the surviving cancer cells were measured.

5 Consecutively Combined Use:

In this method, the test cancer cells were incubated for 24 hours in a medium containing one of the test substances, and the medium containing said test substance was aspirated at this point of time. Then the cells were 10 incubated for 24 hours in a medium containing the other of the test substances, the medium containing said test substance was aspirated at this point of time, then the cells were incubated for another 72 hours in a medium not containing the test substances, and then the surviving 15 cancer cells were measured. In the consecutively combined use, the MS-275 was made to act in the first 24 hours and the other known anticancer active substance was made to act in the succeeding 24 hours. And in the reversed order of what was made to act this experiment was performed. 20 Further, in the single administration control for the combined use, the test substance was made to act in only the initial 24 hours or the succeeding 24 hours. In another 24 hour period and the final 72 hours, the cells were incubated in the absence of the test substance, and 25 then the surviving cancer cells were measured.

Method of Measurement of Surviving Cancer Cells

After the above treatment (incubation) of the cancer cells by the test substances was ended, the surviving cells were measured by one of the following two methods.

30 Neutral Red Assay:

In this measurement method the following property is utilized; only surviving cells can take a water soluble dye, Neutral Red, into the cells. The above treatment of cancer cells by the test substance was performed in 35 wells. A Neutral Red solution (1 mg/ml in PBS) was added into the wells after the end of the treatment (incubation). The incubation at 37°C for one hour allowed

the Neutral Red to be taken into the cells. The solution was aspirated and 100% ethanol and 0.1M NaH₂PO₄ were added to the wells. The Neutral Red taken into the cells was extracted from the cells and then the extracted
5 Neutral Red was measured by a microplate reader at 540 nm.

MTS Assay:

This method is to investigate cell survivability by utilizing the fact that MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenol)-2-(4-sulfonyl)-2H-tetrazoliumm) is metabolized to formazan by mitochondria dehydrogenase existing in surviving cells. In this method the experiment was performed using a Cell Titer 96
10 (trademark) aqueous one solution cell proliferation assay (trademark) of Promega in accordance with the instructions attached to the reagents.
15

Combined Ratio of Test Substances and Judgment of Synergism

The combined ratio of the test substances was determined as follows: In the graph of FIG. 1, the abscissa shows the log (Log M) of the concentrations of the test substances, and the ordinate shows the relative survival rate in the case indexed to the surviving tested cancer cells in the case of zero concentration of test
20 substances. Graphs of the concentration of the test substances and the relative survival rate of the tested cancer cells in the case of the test substances alone were made. The concentrations of the test substances in the case of relative survival rates of 50%, IC₅₀, were
25 calculated.
30

Regarding the IC₅₀'s of the test substances A and B for which the existence of a synergistic effect was desired to be learned, in the case that the IC₅₀ of the test substance A was 1 μM and 0.01 μM as the IC₅₀ of the test substance B was 0.01 μM, since the anticancer effect
35 of the test substance B was 100 times that of the test

substance A, the combined ratio of the test substance A and test substance B was made 100:1. This ratio was kept constant across the various total concentrations of the test substances. However, the IC₅₀ of a test substance
5 differed according to the tested cancer cells, so the combined ratio needed to be determined for each test substance and for each type of tested cancer cells.

In FIG. 1, the "concentration-survival rate curve" of the test substance A was shown in a solid line, and
10 the "concentration-survival rate curve" of the test substance B was shown in a dotted line. Further, given that the test substance A and test substance B were used in a constant ratio (for example, 100:1) and at various total concentrations and that the combined effect of the
15 test substances was "additive", a "concentration-survival rate curve" could be drawn for the case of combined use by calculation. For example, in FIG. 1, this could be shown in a series of black dots.

On the other hand, an actual "concentration-survival rate curve" could be drawn by calculating from the actually measured values in the case of use of the test substance A and test substance B at a constant ratio (for example, 100:1) but at various total concentrations. When the curve is present at the left side from the
20 "concentration-survival rate curve" drawn by calculation under the assumption of "additive" as shown for example by a series of black squares in FIG. 1, the combined effects of the test substance A and the test substance B were judged to be "synergistic". Meanwhile, when the
25 actual "concentration-survival rate curve" was drawn at the right side from the "concentration-survival rate curve" drawn by calculation under the assumption of "additive" as shown for example by a series of black triangles in FIG. 1, the combined effects of the test substance A and the test substance B were judged to be
30 "antagonistic".

In actuality, the combination index (CI) was

calculated from the measurement results by the method described in Chou TC et al., *Adv. Enzyme Regul.* 22: 27-55 (1984) (Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors). In this case, when the combined effects of the test substance A and test substance B were additive, CI=1. When CI was less than 1, the effects were synergistic. When CI was more than one, the effects were antagonistic. Further, the following were judged; the smaller a value less than 1 was the higher the "synergism" was. And the greater a value more than 1 was, the higher the "antagonism" was.

Further, the relationship between the range of the CI value and the degree of synergism and antagonism is expressed as follows:

Table 1

Range of CI value	Symbol	Description
<0.1	++++	Very strongly synergistic
0.1 to 0.3	+++	Strongly synergistic
0.3 to 0.7	++	Synergistic
0.7 to 0.85	+	Moderately synergistic
0.85 to 0.9	+	Slightly synergistic
0.9 to 1.1	±	Additive
1.1<	-	Antagonistic

RESULTS

The ratios between MS-275 and other anticancer active substances with respect to each tested cancer cell line in the case of simultaneous combined use are as follows:

- 23 -

Table 2

Ratio of MS-275 and Other Anticancer Active Substances
(X) in Simultaneous Combined Use

Cancer cell line		Time (hr)	Ratio (MS-275:X)					
			PTX	CPT	VP-16	CDDP	GEM	5-FU
Colon cancer	HT-29	72		30:1		1:5	5:1	1:10
	HCT116	72		50:1	1:1	1:10	100:1	1:10
Non-small cell lung cancer	NCI-H522	72	200:1				500:1	
		120	400:1				2000:1	
Ovarian cancer	A549	72	100:1			1:10	40:1	
	SK-OV-3	72	1000:1	100:1	1:1	1:2		
		120	1000:1	100:1	1:1	1:2		
Pan-creatic cancer	OVCAR-3	120	1000:1	100:1	4:1	1:1	200:1	
	PANC-1	72	2000:1	200:1		1:1	200:1	1:1
		120	2000:1	400:1		1:1	200:1	1:1
Breast cancer	MCF-7	72	400:1					1:10
		120	400:1					1:10
Prostate cancer	PC-3	72	100:1		1:40			
		120	10:1		1:50			

5

The results in the case of simultaneous combined use are as follows:

Table 3

Synergistic Effect in Combined Use of MS-275 and Other
Anticancer Active Substances in Simultaneous Combined Use

Cancer cell line	Time (hr)	Other anticancer active substance					
		PTX	CPT	VP-16	CDDP	GEM	5-FU
Colon cancer	HT-29	72	-	-	-	-	-
		72					+++
HCT116	72		-	-	-	-	-
Non-small cell lung cancer	NCI-H522	72	-			±	
		120	-			-	
		72				±	
	A549	72	-			-	-
		72				+++	
	Calu-1	72				+++	
	Calu-3	72				+++	
	A-427	72				-	
	NCI-H23	72				+++	
	NCI-H358	72				±	
	NCI-H460	72				+++	
Ovarian cancer	SK-OV-3	72	-	-	+++	++	
		120	-	-	±	-	
OVCAR-3	120	-	-	-	-	-	
Pan-creatic cancer	PANC-1	72	-	+++		++	+++
		120	-	-		++	-
Breast cancer	MCF-7	72					+++
		120	-				++
Pro-state cancer	PC-3	72	-		-		
		120	++		-		

5 As explained above, the combined effects of MS-275 and another known anticancer drug PTX, CPT, VP-16, GEM, or 5-FU were detected in specific cancer cells. Further, the combined effects of MS-275 and CDDP were detected in a broad range of cancer cells.

10 Further, the results in the case of consecutive combined use are shown in Table 4 (combined use of MS-275 and PTX), Table 5 (combined use of MS-275 and GEM), Table 6 (combined use of MS-275 and CDDP), Table 7 (combined use of MS-275 and CPT), Table 8 (combined use of MS-275 and DTX), Table 9 (combined use of MS-275 and CBDCA), Table 10 (combined use of MS-275 and OXP), Table 11 (combined use of MS-275 and DOX), Table 12 (combined use of MS-275 and VBL), and Table 13 (combined use of MS-275

- 25 -

and 5-FU). Note that in these tables, "Ratio 275:XS" means the ratio of MS-275 and another anticancer active substance (X), while "275->X->f" indicates treatment by MS-275 in the initial treatment period of 24 hours, 5 treatment by another anticancer active substance in the following treatment period of 24 hours, then incubation in a medium not containing the test substance for 72 hours. Further, "X->275->f" indicates treatment by another anticancer active substance in the initial 10 treatment period of 24 hours, treatment by MS-275 in the following treatment period of 24 hours, then incubation in a medium not containing the test substance for 72 hours. Further, the numerical values showing the synergistic effect show the CI values.

15

Table 4
Synergistic Effect in Consecutive Combined Use of MS-275
and PTX

Cancer cell line		Time (hr)	Ratio 275:X	Order of consecutive combined use	
				275->X->f	X->275->f
Ovarian cancer	SK-OV-3	24+24+72	1000:1	1.1< -	0.76 ++
Breast cancer	T-47D	24+24+72	1000:1		0.71 ++

- 26 -

Table 5

Synergistic Effect in Consecutive Combined Use of MS-275
and GEM

Cancer cell line		Time (hr)	Ratio 275:X	Order of consecutive combined use	
				275->X->f	X->275->f
Colon cancer	HT-29	24+24+72	200:1	1.1< - -	0.48 +++
Non-small cell lung cancer	NCI-H522	24+24+72	200:1	0.75 ++	1.1< - -
	NCI-H522	24+24+72	3000:1		0.77 ++
	A549	24+24+72	100:1	1.1< - -	0.69 +++
Ovarian cancer	OVCAR-3	24+24+72	400:1	1.1 - -	0.54 +++
	SK-OV3	24+24+72	5000:1		0.56 +++
Pancreatic cancer	PANC-1	24+24+72	50000:1		0.59 +++

5

Table 6

Synergistic Effect in Consecutive Combined Use of MS-275
and CDDP

Cancer cell line		Time (hr)	Ratio 275:X	Order of consecutive combined use	
				275->X->f	X->275->f
Colon cancer	HCT116	24+24+72	1:8	0.63 +++	0.95 ±
	HT-29	24+24+72	4:1		0.89 +
Non-small cell lung cancer	NCI-H522	24+24+72	1:1	0.55 +++	0.69 +++
	A549	24+24+72	1:4	0.66 +++	0.42 +++
Ovarian cancer	SK-OV3	24+24+72	1:1	0.43 +++	0.57 +++
	OVCAR-3	24+24+72	1:1	0.77 ++	0.61 +++
Pancreatic cancer	PANC-1	24+24+72	8:1	0.96 ±	0.45 +++
	Capan-1	24+24+72	1:1	0.53 +++	0.63 +++

- 27 -

Table 7

Synergistic Effect in Consecutive Combined Use of MS-275
and CPT

Cancer cell line		Time (hr)	Ratio 275:X	Order of consecutive combined use	
				275->X->f	X->275->f
Colon cancer	HCT116	24+24+72	100:1	0.91 ±	0.85 ++
Non-small cell lung cancer	NCI-H522	24+24+72	100:1	0.31 +++	0.92 ±
	A549	24+24+72	25:1	1.1< -	0.79 ++
Ovarian cancer	OVCAR-3	24+24+72	200:1	1.05 ±	0.26 +***
	SK-OV3	24+24+72	2000:1		0.72 ++
Pancreatic cancer	Capan-1	24+24+72	200:1	1.1< -	0.49 +**

5

Table 8

Synergistic Effect in Consecutive Combined Use of MS-275 and DTX (Docetaxel)

Cancer cell line		Time (hr)	Ratio 275:X	Order of consecutive combined use	
				275->X->f	X->275->f
Non-small cell lung cancer	A549	24+24+72	10000:1		0.87 +
Ovarian cancer	SK-OV3	24+24+72	20000:1		0.87 +
Pancreatic cancer	Capan-1	24+24+72	3000:1		0.87 +
Prostate cancer	PC-3	24+24+72	300:1		0.89 +

Table 9

Synergistic Effect in Consecutive Combined Use of MS-275
Compound and CBDCA (Carboplatin)

Cancer cell line		Time (hr)	Ratio 275:X	Order of consecutive combined use	
				275->X->f	X->275->f
Non-small cell lung cancer	A549	24+24+72	1:10		0.31 +++
	NCI-H522	24+24+72	1:2		0.86 +
Ovarian cancer	SK-OV3	24+24+72	3:2		0.59 +++
Pancreatic cancer	Capan-1	24+24+72	1:1		0.47 +++
	PANC-1	24+24+72	1:1		0.30 ++++

5

Table 10

Synergistic Effect in Consecutive Combined Use of MS-275
and OXP (Oxaliplatin)

Cancer cell line		Time (hr)	Ratio 275:X	Order of consecutive combined use	
				275->X->f	X->275->f
Colon cancer	HT-29	24+24+72	5:1		0.77 ++
Ovarian cancer	SK-OV3	24+24+72	2:1		0.83 ++

Table 11

10 Synergistic Effect in Consecutive Combined Use of MS-275
and DOX (Doxorubicin)

Cancer cell line		Time (hr)	Ratio 275:X	Order of consecutive combined use	
				275->X->f	X->275->f
Ovarian cancer	SK-OV3	24+24+72	300:1		0.86 +

- 29 -

Table 12

Synergistic Effect in Consecutive Combined Use of MS-275
and VBL (Vinblastin)

Cancer cell line	Time (hr)	Ratio 275:X	Order of consecutive combined use	
			275->X->f	X->275->f
Non-small cell lung cancer	A549	24+24+72	300:1	0.89 +

5

Table 13

Synergistic Effect in Consecutive Combined Use of MS-275
and 5-FU (5-Fluorouracil)

Cancer cell line	Time (hr)	Ratio 275:X	Order of consecutive combined use	
			275->X->f	X->275->f
Colon cancer	HT-29	24+24+72	2:3	0.79 ++

In each case of each of the tested anticancer active substances, synergistic effects due to combined use with MS-275 were detected.

10

INDUSTRIAL APPLICABILITY

15

As explained above, synergistic effects are recognized in in vitro tests between histone deacetylase inhibitors as represented by MS-275 and other various types of known anticancer active substances, so it is suggested that synergistic effects will be obtained in treatment for human cancer patient as well.

CLAIMS

1. A pharmaceutical composition or a combination comprising, as active ingredients:

5 (a) at least one of the benzamide derivatives which is a histone deacetylase inhibiting substance, or a pharmaceutically acceptable salt thereof, represented by the following formula (1):

15 wherein A is an optionally substituted phenyl group or an optionally substituted heterocyclic group wherein the substituent(s) for the phenyl group or the heterocyclic group is (are) 1 to 4 substituents selected from the group consisting of a halogen atom, a hydroxyl group, an amino group, a nitro group, a cyano group, an alkyl group having 1 to 4 carbons, an alkoxy group having 1 to 4 carbons, an aminoalkyl group having 1 to 4 carbons, an alkylamino group having 1 to 4 carbons, an acyl group having 1 to 4 carbons, an acylamino group having 1 to 4 carbons, an alkylthio group having 1 to 4 carbons, a perfluoroalkyl group having 1 to 4 carbons, a perfluoroalkyloxy group having 1 to 4 carbons, a carboxyl group, an alkoxy carbonyl group having 1 to 4 carbons, a phenyl group and a heterocyclic group;

20

25 X is a bond or a moiety having a structure selected from those illustrated in formula (2):

- 31 -

wherein e is an integer of 1 to 4; g and m are independently an integer of 0 to 4; R4 is a hydrogen atom or an optionally substituted alkyl group having 1 to 4 carbons, or the acyl group represented by formula (3)

wherein R6 is an optionally substituted alkyl group having 1 to 4 carbons, a perfluoroalkyl group having 1 to 4 carbons, a phenyl group or a heterocyclic group; R5 is a hydrogen atom or an optionally substituted alkyl group having 1 to 4 carbons;

n is an integer of 0 to 4, provided that when X is a bond, n is not zero;

Q is a moiety having a structure selected from those illustrated in formula (4)

wherein R7 and R8 are independently a hydrogen atom or an optionally substituted alkyl group having 1 to 4 carbons;

15 R1 and R2 are independently a hydrogen atom, a halogen atom, a hydroxyl group, an amino group, an alkyl group having 1 to 4 carbons, an alkoxy group having 1 to 4 carbons, an aminoalkyl group having 1 to 4 carbons, an alkylamino group having 1 to 4 carbons, an acyl group having 1 to 4 carbons, an acylamino group having 1 to 4 carbons, an alkylthio group having 1 to 4 carbons, a perfluoroalkyl group having 1 to 4 carbons, a perfluoroalkyloxy group having 1 to 4 carbons, a carboxyl group or an alkoxy carbonyl group having 1 to 4 carbons;

20 R3 is a hydroxyl group or amino group, and

25 (b) at least one of the substances which is another anti-cancer active substance selected from a group consisting of cisplatin, etoposide, camptothecin, 5-fluorouracil, gemcitabine, paclitaxel, docetaxel, carboplatin, oxaliplatin, doxorubicin and vinblastin.

30 2. A pharmaceutical composition or a combination according to claim 1 wherein said benzamide derivative is selected from formulas (5) to (8) or a pharmaceutically acceptable salt thereof.

- 33 -

3. A pharmaceutical composition or a combination according to claim 1 or 2 wherein said benzamide derivative is represented by formula (5) or a pharmaceutically acceptable salt thereof.

5

(5)

4. A pharmaceutical composition or a combination
10 according to any one of claims 1 to 3 wherein a substance
selected from a group of substances consisting of said
ingredient (b) which is another anti-cancer active
substance is cisplatin.

5. A pharmaceutical composition or a combination
15 according to claim 4, which is used for treatment of non-
small cell lung cancer, ovarian cancer, colon cancer or
pancreatic cancer.

6. A pharmaceutical composition or a combination
20 according to any one of claims 1 to 3 wherein a substance
selected from a group of substances consisting of said
ingredient (b) which is another anti-cancer active
substance is etoposide.

7. A pharmaceutical composition or a combination
25 according to claim 6, which is used for treatment of
ovarian cancer.

8. A pharmaceutical composition or a combination
according to any one of claims 1 to 3 wherein a substance
selected from a group of substances consisting of said
ingredient (b) which is another anti-cancer active
30 substance is camptothecin.

9. A pharmaceutical composition or a combination
according to claim 8, which is used for treatment of non-
small cell lung cancer, ovarian cancer, colon cancer or
pancreatic cancer.

35 10. A pharmaceutical composition or a combination
according to any one of claims 1 to 3 wherein a substance
selected from a group of substances consisting of said

ingredient (b) which is another anti-cancer active substance is 5-fluorouracil.

5 11. A pharmaceutical composition or a combination according to claim 10, which is used for treatment of breast cancer or colon cancer.

10 12. A pharmaceutical composition or a combination according to any one of claims 1 to 3 wherein a substance selected from a group of substances consisting of said ingredient (b) which is another anti-cancer active substance is gemcitabine.

15 13. A pharmaceutical composition or a combination according to claim 12, which is used for treatment of non-small cell lung cancer, ovarian cancer, colon cancer or pancreatic cancer.

20 14. A pharmaceutical composition or a combination according to any one of claims 1 to 3 wherein a substance selected from a group of substances consisting of said ingredient (b) which is another anti-cancer active substance is paclitaxel.

25 15. A pharmaceutical composition or a combination according to claim 14, which is used for treatment of breast cancer, ovarian cancer or prostate cancer.

30 16. A pharmaceutical composition or a combination according to any one of claims 1 to 3 wherein a substance selected from a group of substances consisting of said ingredient (b) which is another anti-cancer active substance is docetaxel.

35 17. A pharmaceutical composition or a combination according to claim 16, which is used for treatment of non-small cell lung cancers, ovarian cancer, pancreatic cancer and prostate cancer.

40 18. A pharmaceutical composition or a combination according to any one of claims 1 to 3 wherein a substance selected from a group of substances consisting of said ingredient (b) which is another anti-cancer active substance is carboplatin.

45 19. A pharmaceutical composition or a combination

according to claim 18, which is used for treatment of non-small cell lung cancer, ovarian cancer, or pancreatic cancer.

20. A pharmaceutical composition or a combination
5 according to any one of claims 1 to 3 wherein a substance selected from a group of substances consisting of said ingredient (b) which is another anti-cancer active substance is oxaliplatin.

21. A pharmaceutical composition or a combination
10 according to claim 20, which is used for treatment of colon cancer or ovarian cancer.

22. A pharmaceutical composition or a combination according to any one of claims 1 to 3 wherein a substance selected from a group of substances consisting of said 15 ingredient (b) which is another anti-cancer active substance is doxorubicin.

23. A pharmaceutical composition or a combination according to claim 22, which is used for treatment of ovarian cancer.

20 24. A pharmaceutical composition or a combination according to any one of claims 1 to 3 wherein a substance selected from a group of substances consisting of said ingredient (b) which is another anti-cancer active substance is vinblastin.

25 25. A pharmaceutical composition or a combination according to claim 24, which is used for treatment of non-small cell lung cancer.

30 26. A pharmaceutical combination according to any one of claims 1 to 25, of which said ingredient (a) which is a histone deacetylase inhibiting substance and said ingredient (b) which is another anti-cancer active substance are sequentially administered to patients.

27. A pharmaceutical combination according to claim 35 26, wherein said ingredient (b) which is another anti-cancer active substance is paclitaxel.

28. A pharmaceutical combination according to claim 27, of which the administration sequence is paclitaxel

and then said ingredient (a) which is a histone deacetylase inhibiting substance.

29. A pharmaceutical combination according to claim 28, which is used for treatment of ovarian cancer or
5 breast cancer.

30. A pharmaceutical combination according to claim 26, wherein said ingredient (b) which is another anti-cancer active substance is cisplatin.

31. A pharmaceutical combination according to claim 10 30, of which the administration sequence is said ingredient (a) which is a histone deacetylase inhibiting substance and then cisplatin.

32. A pharmaceutical combination according to claim 15 31, which is used for treatment of non-small cell lung cancer, ovarian cancer, colon cancer or pancreatic cancer.

33. A pharmaceutical combination according to claim 20 30, of which the administration sequence is cisplatin and then said ingredient (a) which is a histone deacetylase inhibiting substance.

34. A pharmaceutical combination according to claim 33, which is used for treatment of non-small cell lung cancer, ovarian cancer, colon cancer or pancreatic cancer.

25 35. A pharmaceutical combination according to claim 26, wherein said ingredient (b) which is another anti-cancer active substance is camptothecin.

30 36. A pharmaceutical combination according to claim 35, of which the administration sequence is said ingredient (a) which is a histone deacetylase inhibiting substance and then camptothecin.

37. A pharmaceutical combination according to claim 36, which is used for treatment of non-small cell lung cancer.

35 38. A pharmaceutical combination according to claim 35, of which the administration sequence is camptothecin and then said ingredient (a) which is a histone

deacetylase inhibiting substance.

39. A pharmaceutical combination according to claim 38, which is used for treatment of non-small cell lung cancer, ovarian cancer, colon cancer or pancreatic cancer.

5 40. A pharmaceutical combination according to claim 26, wherein said ingredient (b) which is another anti-cancer active substance is gemcitabine.

10 41. A pharmaceutical combination according to claim 40, of which the administration sequence is said ingredient (a) which is a histone deacetylase inhibiting substance and then gemcitabine.

15 42. A pharmaceutical combination according to claim 41, which is used for treatment of non-small cell lung cancer.

43. A pharmaceutical combination according to claim 40, of which the administration sequence is gemcitabine and then said ingredient (a) which is a histone deacetylase inhibiting substance.

20 44. A pharmaceutical combination according to claim 43, which is used for treatment of non-small cell lung cancer, ovarian cancer, pancreatic cancer or colon cancer.

25 45. A pharmaceutical combination according to claim 26, wherein said ingredient (b) which is another anti-cancer active substance is 5-fluorouracil.

30 46. A pharmaceutical combination according to claim 45, of which the administration sequence is 5-fluorouracil and then said ingredient (a) which is a histone deacetylase inhibiting substance.

47. A pharmaceutical combination according to claim 46 which is used for treatment of colon cancer.

35 48. A pharmaceutical combination according to claim 26, wherein said ingredient (b) which is another anti-cancer active substance is docetaxel.

49. A pharmaceutical combination according to claim 48, of which the administration sequence is docetaxel and

then said ingredient (a) which is a histone deacetylase inhibiting substance.

5 50. A pharmaceutical combination according to claim 49 which is used for treatment of non-small cell lung cancer, ovarian cancer, pancreatic cancer or prostate cancer.

10 51. A pharmaceutical combination according to claim 26, wherein said ingredient (b) which is another anti-cancer active substance is carboplatin.

15 52. A pharmaceutical combination according to claim 51, of which the administration sequence is carboplatin and then said ingredient (a) which is a histone deacetylase inhibiting substance.

53. A pharmaceutical combination according to claim 15 52 which is used for treatment of non-small cell lung cancer, ovarian cancer or pancreatic cancer.

54. A pharmaceutical combination according to claim 26, wherein said ingredient (b) which is another anti-cancer active substance is oxaliplatin.

20 55. A pharmaceutical combination according to claim 54, of which the administration sequence is oxaliplatin and then said ingredient (a) which is a histone deacetylase inhibiting substance.

25 56. A pharmaceutical combination according to claim 55 which is used for treatment of colon cancer or ovarian cancer.

57. A pharmaceutical combination according to claim 26, wherein said ingredient (b) which is another anti-cancer active substance is doxorubicin.

30 58. A pharmaceutical combination according to claim 57, of which the administration sequence is doxorubicin and then said ingredient (a) which is a histone deacetylase inhibiting substance.

35 59. A pharmaceutical combination according to claim 58 which is used for treatment of ovarian cancer.

60. A pharmaceutical combination according to claim 26, wherein said ingredient (b) which is another anti-

cancer active substance is vinblastin.

61. A pharmaceutical combination according to claim 60, of which the administration sequence is vinblastin and then said ingredient (a) which is a histone deacetylase inhibiting substance.

5 62. A pharmaceutical combination according to claim 61 which is used for treatment of non-small cell lung cancer.

10 63. A cancer treatment kit comprising a pharmaceutical combination according to any one of claims 1 - 62, which comprises:

(i) at least one of said ingredients (a) which is a histone deacetylase inhibiting substance,

15 (ii) at least one of said ingredients (b) which is another anti-cancer active substance, and

(iii) an instruction for administration schedule for simultaneous or sequential administration according to a kind of cancer (for sequential administration to a patient at periodic intervals).

1/1

Fig.1

INTERNATIONAL SEARCH REPORT

International Application No

PCT/JP2004/007562

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 A61K31/4406 A61K33/24 A61K31/282 A61K31/70 A61K31/4745
A61K31/513 A61K31/7068 A61K31/337 A61K31/555 A61K31/704
A61P35/00 A61K31/475
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, BIOSIS, EMBASE, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 1 273 296 A (WARNER LAMBERT CO) 8 January 2003 (2003-01-08) paragraphs '0003!, '0004!, '0011! - '0013!, '0032!; claims -----	1, 16, 17, 26, 48-50, 63
X	US 2003/083366 A1 (GROVE WILLIAM RICHARD ET AL) 1 May 2003 (2003-05-01) paragraphs '0007! - '0011!; claims -----	1, 16, 17, 26, 48-50, 63
X	WO 01/34131 A (WARNER LAMBERT CO ; KLOHS WAYNE DANIEL (US); MERRIMAN RONALD LYNN (US)) 17 May 2001 (2001-05-17) the whole document -----	1, 14, 15, 18, 19, 26-29, 51-53, 63 -/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
---	--

18 August 2004

02/09/2004

Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer
--	--------------------

Paul Soto, R

INTERNATIONAL SEARCH REPORT

International Application No

PCT/JP2004/007562

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 00/18393 A (GROVE WILLIAM RICHARD ; WARNER LAMBERT CO (US); KLOHS WAYNE DANIEL (US) 6 April 2000 (2000-04-06) the whole document -----	1,4,5, 12,13, 26, 30-34, 40-44,63
X	US 6 469 058 B1 (GROVE WILLIAM RICHARD ET AL) 22 October 2002 (2002-10-22) the whole document -----	1,4,5, 12,13, 26, 30-34, 40-44,63
A	DATABASE WPI Section Ch, Week 200366 Derwent Publications Ltd., London, GB; Class B02, AN 2003-692297 XP002292854 & JP 2003 137866 A (SANKYO CO LTD) 14 May 2003 (2003-05-14) abstract -----	1-63
A	SAITO ET AL: "A synthetic inhibitor of histone deacetylase, MS-27-275, with marked in vivo antitumor activity against human tumors" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, NATIONAL ACADEMY OF SCIENCE. WASHINGTON, US, vol. 96, no. 8, 1999, pages 4592-4597, XP002158228 ISSN: 0027-8424 the whole document -----	1-63
A	WO 02/085400 A (DIMARTINO JORGE ; SUPERGEN INC (US)) 31 October 2002 (2002-10-31) page 7, line 19 - page 9, line 7; claims 8,11,28-33,39,42 page 22, line 3 - page 24, line 4 page 27, lines 1-19 -----	1-63

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/JP2004/007562

Patent document cited in search report		Publication date	Patent family member(s)	Publication date
EP 1273296	A	08-01-2003	AT 254915 T CA 2391753 A1 CN 1394601 A CZ 20022216 A3 DE 60200101 D1 DK 1273296 T3 EP 1273296 A2 ES 2208626 T3 HU 0202120 A2 JP 2003055208 A PL 354825 A1 PT 1273296 T SK 9342002 A3 US 2003083366 A1 ZA 200205216 A	15-12-2003 02-01-2003 05-02-2003 14-05-2003 08-01-2004 01-03-2004 08-01-2003 16-06-2004 28-01-2003 26-02-2003 13-01-2003 31-03-2004 01-07-2003 01-05-2003 10-02-2004
US 2003083366	A1	01-05-2003	AT 254915 T CA 2391753 A1 CN 1394601 A CZ 20022216 A3 DE 60200101 D1 DK 1273296 T3 EP 1273296 A2 ES 2208626 T3 HU 0202120 A2 JP 2003055208 A PL 354825 A1 PT 1273296 T SK 9342002 A3 ZA 200205216 A	15-12-2003 02-01-2003 05-02-2003 14-05-2003 08-01-2004 01-03-2004 08-01-2003 16-06-2004 28-01-2003 26-02-2003 13-01-2003 31-03-2004 01-07-2003 10-02-2004
WO 0134131	A	17-05-2001	AU 1583201 A CA 2386876 A1 CN 1387438 T EP 1229916 A2 HU 0203153 A2 JP 2003513912 T NZ 518668 A PL 355170 A1 WO 0134131 A2 US 2003134893 A1 ZA 200202780 A	06-06-2001 17-05-2001 25-12-2002 14-08-2002 28-01-2003 15-04-2003 30-04-2004 05-04-2004 17-05-2001 17-07-2003 09-07-2003
WO 0018393	A	06-04-2000	AT 225655 T AU 762079 B2 AU 5092199 A BG 105470 A BR 9913952 A CA 2342981 A1 CN 1319009 T CZ 20010905 A3 DE 69903458 D1 DE 69903458 T2 DK 1115391 T3 EE 200100187 A EP 1115391 A1 ES 2185378 T3 HR 20010225 A1	15-10-2002 19-06-2003 17-04-2000 31-12-2001 12-06-2001 06-04-2000 24-10-2001 15-08-2001 14-11-2002 10-07-2003 10-02-2003 15-08-2002 18-07-2001 16-04-2003 30-04-2002

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/JP2004/007562

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 0018393	A	HU 0103640 A2		29-06-2002
		ID 30046 A		01-11-2001
		JP 2002525320 T		13-08-2002
		NO 20011493 A		23-05-2001
		NZ 510504 A		26-09-2003
		PL 348673 A1		03-06-2002
		PT 1115391 T		28-02-2003
		SI 1115391 T1		28-02-2003
		SK 3602001 A3		02-07-2002
		TR 200100859 T2		21-08-2001
		WO 0018393 A1		06-04-2000
		US 2003170300 A1		11-09-2003
		US 2003086965 A1		08-05-2003
		US 6469058 B1		22-10-2002
		ZA 200102233 A		18-06-2002
US 6469058	B1 22-10-2002	US 2003170300 A1		11-09-2003
		US 2003086965 A1		08-05-2003
		AT 225655 T		15-10-2002
		AU 762079 B2		19-06-2003
		AU 5092199 A		17-04-2000
		BG 105470 A		31-12-2001
		BR 9913952 A		12-06-2001
		CA 2342981 A1		06-04-2000
		CN 1319009 T		24-10-2001
		CZ 20010905 A3		15-08-2001
		DE 69903458 D1		14-11-2002
		DE 69903458 T2		10-07-2003
		DK 1115391 T3		10-02-2003
		EE 200100187 A		15-08-2002
		EP 1115391 A1		18-07-2001
		ES 2185378 T3		16-04-2003
		HR 20010225 A1		30-04-2002
		HU 0103640 A2		29-06-2002
		ID 30046 A		01-11-2001
		JP 2002525320 T		13-08-2002
		NO 20011493 A		23-05-2001
		NZ 510504 A		26-09-2003
		PL 348673 A1		03-06-2002
		PT 1115391 T		28-02-2003
		SI 1115391 T1		28-02-2003
		SK 3602001 A3		02-07-2002
		TR 200100859 T2		21-08-2001
		WO 0018393 A1		06-04-2000
		ZA 200102233 A		18-06-2002
JP 2003137866	A 14-05-2003	NONE		
WO 02085400	A 31-10-2002	CA 2443560 A1		31-10-2002
		EP 1389127 A1		18-02-2004
		WO 02085400 A1		31-10-2002