

Features

- Split Gate Trench MOSFET technology
- Excellent package for heat dissipation
- High density cell design for low RDS(ON)

Product Summary

BVDSS	RDSON	ID
100V	2.0 mΩ	300A

Applications

- DC-DC Converters
- Power management functions
- Synchronous-rectification applications

TOLL-8L Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units	
V _{DS}	Drain-Source Voltage	100	V	
V _{GS}	Gate-Source Voltage	±20	V	
I _D @T _C =25°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	300	А	
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	163	А	
I _{DM}	Pulsed Drain Current ²	1028	А	
EAS	Single Pulse Avalanche Energy ³	583	mJ	
las	Avalanche Current	54	А	
P _D @T _C =25°C	Total Power Dissipation ⁴	379	W	
T _{STG}	Storage Temperature Range	-55 to 150	°C	
TJ	Operating Junction Temperature Range	-55 to 150	°C	

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit	
Reja	Thermal Resistance Junction-Ambient ¹		59	°C/W	
Rejc	Thermal Resistance Junction-Case ¹		0.33	°C/W	

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} =0 V , I_D =250 u A	100			V
$\triangle BV_{DSS}/\triangle T_{J}$	BV _{DSS} Temperature Coefficient	Reference to 25°C , I _D =1mA				V/°C
R _{DS(ON)}	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =20A		2.0	2.6	mΩ
V _{GS(th)}	Gate Threshold Voltage	\/ -\/ -250uA	2	3	4	V
$\Delta V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	$-V_{GS}=V_{DS}$, $I_D=250uA$				mV/°C
1	V _{DS} =100V , V _{GS} =0V , T _J =25°C	V _{DS} =100V , V _{GS} =0V , T _J =25°C			1	
I _{DSS}	Drain-Source Leakage Current	V _{DS} =100V, V _{GS} =0V , T _J =100°C			100	uA
I _{GSS}	Gate-Source Leakage Current	$V_{GS} = \pm 20V$, $V_{DS} = 0V$			±100	nA
gfs	Forward Transconductance	V _{DS} =10V , I _D =20A		76		S
R _g	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		2.3		Ω
Q_g	Total Gate Charge	V _{DS} =50V , V _{GS} =10V , I _D =20A		150		
Q_{gs}	Gate-Source Charge			32.5		nC
Q_{gd}	Gate-Drain Charge			49		
T _{d(on)}	Turn-On Delay Time	VGS=10V, VDD=50V, RG=3Ω, ID=20A		27		
Tr	Rise Time			78.5		
T _{d(off)}	Turn-Off Delay Time			110		ns
T _f	Fall Time			86		
C _{iss}	Input Capacitance	V _{DS} =50V , V _{GS} =0V , f=1MHz		9030		
Coss	Output Capacitance			1505		pF
C _{rss}	Reverse Transfer Capacitance			40		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
ls	Continuous Source Current ^{1,4}	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\			300	Α
lsм	Pulsed Source Current ^{2,4}	V _G =V _D =0V , Force Current			1000	Α
VsD	Diode Forward Voltage ²	V _{GS} =0V , I _S =1A , T _J =250			1.2	V
t _{rr}	Reverse Recovery Time	IF = 20A, di/dt =100A/μs		90		nS
Q _{rr}	Reverse Recovery Charge			175		nC

Note:

FÈ he Ádata Ádested Áby Ásurface Ámounted Ábn Áa Ál Ánch² FR-4 Áboard Ávith Á2 OZ Ácopper.

ĠŤheÁlataÁestedÁsyÁpulsedÁÁpulseÁvidthÁ: 300usÁÁlutyÁsycleÁ: 2% HŤheÁEASÁlataÁshowsÁMax.ÁatingÁŤheÁestÁsonditionÁsÁ/RÁMÁG »Ô,VDD=50V, VGS=10V, L=0.4mH, IAS=54A. I ĚheÁpowerÁlissipationÁsÁimitedÁsyÁ 50°C junctionÁemperature

Í È heÁdataÁsÁheoreticallyÁheÁsameÁssÁo,andÁo_{MÁ}ÁnÁtealÁspplicationsÁÁshouldÁseÁimitedÁsyÁotalÁsowerÁ dissipation.

Typical Characteristics

Figure 1. Output Characteristics

Figure 3. Forward Characteristics of Reverse

Figure 5. $R_{DS(ON)}$ vs. I_D

Figure 2. Transfer Characteristics

Figure 4. $R_{DS(ON)}$ vs. V_{GS}

Figure 6. Normalized $R_{\text{DS(on)}}$ vs. Temperature

Figure 7. Capacitance Characteristics

Figure 8. Gate Charge Characteristics

Figure 9. Power Dissipation

Figure 10. Safe Operating Area

Figure 11. Normalized Maximum Transient Thermal Impedance

Test Circuit

N-Ch 100V Fast Switching MOSFETs

Figure A. Gate Charge Test Circuit & Waveforms

Figure B. Switching Test Circuit & Waveforms

Mechanical Dimensions for TOLL-8L

BOTTTOM VIEW

COMMON DIMENSIONS

SYMBOL	MM		
STIVIDOL	MIN	MAX	
А	2.20	2.40	
b	0.60	0.90	
b1	9.70	9.90	
С	0.40	0.60	
D	10.20	10.60	
D1	3.10	3.50	
D2	4.45	4.75	
Е	9.70	10.10	
E1	7.80BSC		
E2	0.50	0.70	
е	1.200 BSC		
Н	11.45	11.90	
H1	6.75 BSC		
K	3.10 REF		
L	1.70	2.10	
L1	0.60 0.80		
L2	L2 0.50 0.70		
θ	10° REF		
	•		