Akademia Górniczo-Hutnicza

Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej

Modele kolejkowe

Sprawozdanie: System kolejkowy.

Temat: Sieć kolejkowa do symulacji obsługi pacjentów w przychodni

Kierunek: Automatyka i Robotyka

Dawid Maziarski

Piotr Mamos

1. Cel projektu

Celem projektu jest opracowanie i implementacja sieci kolejkowej służącej do symulowania procesów obsługi pacjentów w przychodni.

Symulacja uwzględnia pełną ścieżkę pacjenta — od momentu rejestracji, przez wizyty u odpowiednich lekarzy, aż po finalizację wizyty w kasie. Każdy system w sieci reprezentuje kolejkę do innego specjalisty, a obsługa w poszczególnych systemach odbywa się na podstawie określonych parametrów, takich jak czas obsługi czy priorytety pacjentów.

Aby przyspieszyć symulację i ułatwić analizę wyników, rzeczywiste czasy obsługi zostały znacznie skrócone (1 sekunda symulacji odpowiada 15 minutom czasu rzeczywistego), jednakże implementacja umożliwia dostosowanie parametrów do bardziej realistycznych danych.

2. Wstęp teoretyczny

1. Intensywność zgłoszeń

Dla każdego systemu j, intensywność zgłoszeń (λ_j) można wyznaczyć na podstawie zgłoszeń wpływających bezpośrednio do systemu oraz przejść z innych systemów:

$$\lambda_{j} = \lambda_{j}^{we} + \sum_{i} \lambda_{j} * p_{ij}$$

gdzie:

- λ_j^{we} intensywność zgłoszeń napływających bezpośrednio do systemu j (w naszym wypadku tylko do rejestracji),
- $\lambda_{j} * p_{ij}$ j intensywność zgłoszeń przekazywanych z systemu i do j,
- ullet p_{ij} prawdopodobieństwo przejścia zgłoszenia z systemu i do j.

2. Obciążenie systemu

Obciążenie $(\rho_{_{j}})$ określa, w jakim stopniu dany system jest zajęty:

$$\rho_j = \frac{\lambda_j}{s_i^* \mu_j}$$

gdzie:

- λ_{j} intensywność zgłoszeń w systemie j,
- s_i liczba stanowisk obsługowych w systemie j,

• μ_j – intensywność obsługi jednego stanowiska (np. liczba zgłoszeń obsługiwanych w jednostce czasu).

Dla ρ_j <1, system działa bez przeciążenia, natomiast ρ_j ≥1 oznacza przeciążenie i tworzenie się kolejek.

3. Średnia liczba zgłoszeń w systemie

Zgodnie z prawem Little'a, średnia liczba zgłoszeń w systemie (L_j) jest powiązana z intensywnością zgłoszeń oraz średnim czasem przebywania zgłoszenia w systemie (T_i):

$$L_j = \lambda_j^* T_j$$

4. Prawdopodobieństwo stanu zerowego

Prawdopodobieństwo, że system j nie obsługuje żadnego zgłoszenia (P(0)), wyznacza się dla kolejki M/M/s w następujący sposób:

$$P(0) = \frac{1}{\sum_{n=0}^{s-1} \frac{{\binom{\lambda_{j}}{\mu_{j}}}^{n}}{n!} + \frac{{\binom{\lambda_{j}}{\mu_{j}}}^{s}}{s!(1-\rho_{j})}}$$

gdzie:

• $\frac{\lambda_j}{\mu_j}$ – natężenie ruchu w systemie.

5. Prawdopodobieństwo stanu zajętości

Prawdopodobieństwo, że dokładnie n stanowisk obsługowych jest zajętych, można wyrazić wzorem:

$$P(n) = P(0)^* \frac{\left(\frac{\lambda_j}{\mu_j}\right)^n}{n!}$$

6. Średnia liczba zgłoszeń w kolejce

Średnia liczba zgłoszeń oczekujących w kolejce ($L_{kolejka}$) jest funkcją prawdopodobieństwa zajętości wszystkich stanowisk obsługowych (P(s)) oraz obciążenia:

$$L_{kolejka} = P(s) \cdot \frac{\rho_j}{1-\rho_j}$$

7. Średni czas oczekiwania

Średni czas oczekiwania zgłoszenia w kolejce (W_j) można wyznaczyć jako stosunek średniej liczby zgłoszeń w kolejce do intensywności zgłoszeń:

$$W_{j} = \frac{L_{kolejka}}{\lambda_{i}}$$

3. Założenia symulacji

Program symulacji kolejek pacjentów w klinice wykorzystuje podejście oparte na różnych systemach obsługi, w których pacjenci są przypisani do odpowiednich kategorii i są obsługiwani przez lekarzy. System jest zaprojektowany z wykorzystaniem języka C# i platformy .NET. Zakładamy, że 1 sekunda symulacji odpowiada 15 minutom w prawdziwym życiu.

Symulacja:

 Program tworzy instancję symulacji z czasem aktualizacji 0,1 sekundy, oraz wyłączeniem generowania nowych zgłoszeń po 26 sekundach (6,5 godziny w prawdziwym życiu). Symulacja trwa aż do czasu kiedy po wyłączeniu generacji wszystkie zgłoszenia opuszczą sieć.

Systemy kolejkowe:

- Program definiuje 8 systemów (kolejek do poszczególnych dziedzin lekarzy), które reprezentują różne obszary obsługi pacjentów w klinice. Każdy system ma przypisanych lekarzy (kanały obsługi), którzy go obsługują.
- Wszystkie systemy można oznaczyć jako M/M/n/FIFO/∞, niektóre z nich są priorytetowe.
- Zdefiniowane systemy z domyślnymi ustawieniami:
 - Rejestracja FIFO, 1 kanał obsługi (początek)
 - Pediatra FIFO, 2 kanały obsługi
 - Internista FIFO priorytetowe, 3 kanały obsługi
 - Kardiolog FIFO priorytetowe, 1 kanał obsługi
 - Dermatolog FIFO priorytetowe, 1 kanał obsługi
 - Laryngolog FIFO priorytetowe, 1 kanał obsługi

- Chirurg FIFO, 1 kanał obsługi
- Kasa FIFO, 1 kanał obsługi (koniec)
- Dla systemów priorytetowych pacjenci są obsługiwani w zależności od ich priorytetu. Pacjenci (zgłoszenia) są obsługiwani w sposób FIFO, ale aby mógł zostać wzięty pacjent o niższym priorytecie, w kolejce nie może być już nikogo o wyższym priorytecie. Obsługa nie jest jednak przerywana po przyjściu pacjenta o wyższym priorytecie.

Lekarze (kanały obsługi):

- Domyślnie istnieje zestaw 11 lekarzy, z których każdy ma przypisany unikalny czas obsługi pacjenta (domyślnie od 0,1 do 5,0 sekundy) oraz przypisane systemy (kolejki pacjentów).
- Lekarze są przypisani do różnych systemów w zależności od ich specjalizacji (np. pediatra, internista, chirurg, itp.).
- Lekarze obsługują pacjentów w ramach FIFO (First In, First Out), z priorytetami w systemach: internista, kardiolog, dermatolog, laryngolog.

Klasy pacjentów:

Klasy pacjentów obejmują różne grupy wiekowe. Każda klasa pacjentów ma przypisane:

- Prawdopodobieństwo przejścia między systemami dla każdego systemu z którego pacjent wychodzi określa, do jakiego systemu pacjent może przejść z jakim prawdopodobieństwem, bazując na jego klasie.
- Prawdopodobieństwo priorytetów wskazuje prawdopodobieństwo na każdy priorytet z którym może pojawić się pacjent danej klasy (wysoki, średni, niski).
- **Prawdopodobieństwo wystąpienia** wskazuje prawdopodobieństwo na to że nowe zgłoszenie w systemie zostanie zgłoszeniem akurat tej klasy

Zdefiniowane klasy to:

- Dziecko (Child) z domyślnym prawdopodobieństwem 25%, Domyślne prawdopodobieństwa priorytetów: niski 0%, średni 50%, wysoki 50%
- Dorosły (Adult) z domyślnym prawdopodobieństwem 40%, Domyślne prawdopodobieństwa priorytetów: niski 60%, średni 25%, wysoki 15%
- Starszy (Elder) z domyślnym prawdopodobieństwem 35%, Domyślne prawdopodobieństwa priorytetów: niski - 40%, średni - 40%, wysoki - 20%

Generator pacjentów:

- Generator próbuje generować pacjentów w każdej aktualizacji symulacji, z określonym prawdopodobieństwem na utworzenie i dodanie nowego pacjenta do systemu początkowego (rejestracji). Prawdopodobieństwo to jest obliczane na podstawie ustalonego średniego czasu pojawiania się zgłoszeń.
- Każdy pacjent jest generowany na podstawie szansy, która decyduje o tym, do jakiej trafi klasy i jaki będzie jego priorytet.

Wyświetlanie i zapisywanie informacji:

- W trakcie symulacji program wyświetla i na bieżąco, w czasie rzeczywistym, aktualizuje informacje o stanie systemu, takie jak liczba pacjentów o danych klasach (oznaczone kolorami) i priorytetach (oznaczone cyframi) w różnych systemach, czas oczekiwania oraz dostępność lekarzy.
- Na końcu symulacji program zapisuje dane o zajętości kolejek w czasie, oraz dane o każdym pacjencie do pliku .cls, oraz wyświetla liczbę obsłużonych pacjentów dla każdego lekarza.

Domyślne ustawienia i parametry:

Powyższe są domyślnymi ustawieniami, a parametrami konfigurowalnymi są:

- Prawdopodobieństwa wystąpienia każdej z klas.
- Prawdopodobieństwa przejść do danych systemów w obrębie klasy.
- Prawdopodobieństwo każdego z priorytetów w obrębie klasy.
- Średni czas przybywania zgłoszenia.
- Liczba kanałów obsługi danego systemu.
- Czas obsługi w obrębie każdego systemu.

Te parametry można dostosować w celu przeprowadzenia różnych scenariuszy symulacji i analizy wydajności systemu. Parametry klas są odczytywane z pliku Excel (SimulationData/patientClasses.xlsx).

Rys. 1 Schemat domyślnego działania sieci dla dziecka

Rys. 2 Schemat domyślnego działania sieci dla dorosłego

Rys. 3 Schemat domyślnego działania sieci dla osoby starszej

Klasy pacjentów nie są obsługiwane niezależnie i współistnieją ze sobą, zostały one przedstawione na oddzielnych diagramach z powodu czytelności.

Strzałki mają różne kolory również z powodu czytelności, pacjenci nigdy nie zmieniają swojej klasy podczas przebywania w sieci.

4. Wyniki Symulacji

Podczas symulacji pacjenci oznaczani są różnokolorowymi liczbami, gdzie kolor oznacza klasę (zielony - dziecko, niebieski - dorosły, fioletowy - starszy), a liczba oznacza priorytet (0 - niski, 1 - średni, 2 - wysoki).

```
Czas symulacji: 9,10 --- Rzeczywisty czas: 02 h 16 min --- Generacja zgłoszeń: Włączona, średni czas zgłoszeń = 0,20
Kolejka Rejestracja: <mark>2212</mark>
Lekarz 0, czas obsługi: 0,1s, stan: Leczy pacjenta o priorytecie 0
Koleika Pediatra: 2
 ekarz 10, czas obsługi: 1,1s, stan: Leczy pacjenta o priorytecie 1
ekarz 11, czas obsługi: 1,1s, stan: Leczy pacjenta o priorytecie 2
Koleika Internista:
Lekarz 20, czas obsługi: 1s, stan: Leczy pacjenta o priorytecie 1
Lekarz 21, czas obsługi: 1s, stan: Czeka...
Lekarz 22, czas obsługi: 1s, stan: Czeka...
Kolejka Kardiolog: 001
 ekarz 30, czas obsługi: 1s, stan: Leczy pacjenta o priorytecie 1
Kolejka Dermatolog: 00
Lekarz 40, czas obsługi: 1,2s, stan: Leczy pacjenta o priorytecie 1
Kolejka Laryngolog: 0010
Lekarz 50, czas obsługi: 1s, stan: Leczy pacjenta o priorytecie 1
Kolejka Chirurg:
Lekarz 60, czas obsługi: 5s, stan: Leczy pacjenta o priorytecie 0
Koleika Kasa:
 ekarz 70, czas obsługi: 0,1s, stan: Leczy pacjenta o priorytecie 2
```

Rys. 4 Zrzut ekranu z losowego momentu przykładowego przebiegu symulacji dla domyślnych parametrów.

```
Statystyki lekarzy:

Lekarz 0 - Rejestracja, obsłużono 132 pacjentów:
31 dzieci, 50 dorosłych i 51 starszych.

Lekarz 10 - Pediatra, obsłużono 15 pacjentów:
15 dzieci, 0 dorosłych i 0 starszych.

Lekarz 11 - Pediatra, obsłużono 17 pacjentów:
17 dzieci, 0 dorosłych i 0 starszych.

Lekarz 20 - Internista, obsłużono 22 pacjentów:
0 dzieci, 15 dorosłych i 7 starszych.

Lekarz 21 - Internista, obsłużono 18 pacjentów:
0 dzieci, 11 dorosłych i 7 starszych.

Lekarz 22 - Internista, obsłużono 24 pacjentów:
0 dzieci, 12 dorosłych i 12 starszych.

Lekarz 30 - Kardiolog, obsłużono 35 pacjentów:
4 dzieci, 8 dorosłych i 23 starszych.

Lekarz 40 - Dermatolog, obsłużono 11 pacjentów:
2 dzieci, 8 dorosłych i 1 starszych.

Lekarz 50 - Laryngolog, obsłużono 26 pacjentów:
3 dzieci, 10 dorosłych i 13 starszych.

Lekarz 60 - Chirurg, obsłużono 4 pacjentów:
1 dzieci, 2 dorosłych i 1 starszych.

Lekarz 70 - Kasa, obsłużono 132 pacjentów:
31 dzieci, 50 dorosłych i 51 starszych.
```

Rys. 5 Statystyki lekarzy wyświetlane na konsoli po zakończeniu symulacji

Dla domyślnych wartości parametrów otrzymaliśmy poniższe statystyki:

Nazwa systemu	Rejestracja	Pediatra	Internista	Kardiolog	Dermatolog	Laryngolog	Chirurg	Kasa
Średnia liczba zgłoszeń w kolejce	2.23640	0.30969	0.53664	4.81323	0.06855	1.66430	0.09692	0.59338
Średnia liczba zgłoszeń w systemie	2.74231	1.18912	2.10638	5.67612	0.39243	2.30732	0.57446	1.11347

Średnia liczba zgłoszeń w każdej kolejce i systemie (od początku symulacji do opróżnienia sieci po wyłączeniu generacji zgłoszeń).

5. Podsumowanie

- Przedstawione powyżej badania zostały przeprowadzone na domyślnych parametrach systemu, które dobraliśmy, uznając je za zbliżone do rzeczywistego procesu obsługi pacjentów w przychodni. Symulacja jest jednak bardzo uproszczona, można ją rozwijać poprzez dodawanie większej liczby klas i systemów.
- Parametry systemu można dowolnie modyfikować bez ponownej kompilacji programu, co daje użytkownikowi możliwość przeprogramowania symulacji w prosty sposób. Nie można jedynie dodawać nowych klas, priorytetów i systemów.
- Przez zastosowanie zdarzeń i zrównoleglenie działania wszystkich obiektów symulacji, jest ona w niektórych aspektach nieprzewidywalna, co naszym zdaniem dobrze odzwierciedla funkcjonowanie typowej przychodni.
- Czas obsługi pacjentów dla danego systemu jest zawsze taki sam i nie ma on żadnej wariancji. Generowanie zgłoszeń jest dużo bardziej chaotyczne, ponieważ w każdej aktualizacji programu istnieje prawdopodobieństwo na pojawienie się nowego zgłoszenia w sieci. Prawdopodobieństwo to jest dobierane na podstawie podanego przez użytkownika średniego czasu między zgłoszeniami, domyślnie 0,2s (z czego wynika, że co 0,1 sekundy jest 50% szans na pojawienie się zgłoszenia).
- W statystykach lekarzy można zauważyć, że w niektórych przypadkach zostało
 przetworzonych więcej zgłoszeń niż weszło do sieci (dobrze to widać w przypadku
 pediatry i klasy dzieci). Jest to spowodowane faktem, że te same zgłoszenia mogą
 wielokrotnie przechodzić przez te same systemy (zgodnie z macierzą
 prawdopodobieństw).
- Zajętość systemów jest prawdopodobnie źle odczytywana, ponieważ przez sposób implementacji, przejście z kolejki do kanału obsługi zajmuje pewien czas (czas do następnej aktualizacji programu) i jeżeli pomiar został zrobiony w tym czasie, to zgłoszenie nie zostanie zarejestrowane. Z tego powodu łączny czas zajętości systemu rejestracji i kasy są od siebie różne (choć w teorii powinny być takie same).
- W symulacji występuje niewyjaśniony błąd, który sprawia, że niewielki odsetek zgłoszeń znika, kiedy powinny przejść do ostatniego systemu (Kasy). Zgłoszenia te są usuwane z danych symulacji, aby nie zakłócać wyników.