More about Proximal Operator

Jingchang Liu

January 3, 2019

University of Science and Technology of China

Table of Contents

Introductions

Inexact PG

Generation of proximal operator with a non-Euclidean distance measure

Conclusions

Q & A

Introductions

Problems

Formulation

$$\min_{x \in \mathbb{R}^d} f(x) := g(x) + h(x),$$

where g and h are convex functions but only g is smooth.

Example: ℓ_1 – regularized least squares

$$\min_{x \in \mathbb{R}^d} \frac{1}{2} ||Ax - b||^2 + \lambda ||x||_1.$$

Proximal gradient

$$x^{k+1} = \operatorname{prox}_{h}^{\gamma}(x^{k} - \gamma \nabla g(x^{k})),$$

where $\operatorname{prox}_h^{\gamma}(y) = \arg\min_{x \in \mathbb{R}^d} \frac{1}{2\gamma} ||x - y||^2 + h(x).$

Algorithms

Accelerated proximal gradient

$$x^{k+1} = \operatorname{prox}_{h}^{\gamma}(y^{k} - \gamma \nabla g(y^{k})),$$

where $y^k = x^k + \beta^k (x^k - x^{k-1})$, and the sequence (β^k) is chosen appropriately.

Convergence rates (convex, smooth)

- PG: $\mathcal{O}(1/k)$.
- Accelerated PG: $\mathcal{O}(1/k^2)$.
- Strongly convex: linear rate.

Cases

Exact proximal

• $h(x) = \gamma ||x||_1$, soft-thresholding

$$\operatorname{prox}_h^{\gamma}(y) = \operatorname{sign}(y) \times \max\{|y| - \gamma, 0\}.$$

Inexact proximal

Overlapping group lasso

$$h(w) = \lambda \sum_{k=1}^{K} ||w_{g_k}||,$$

where g_k is a group (subset) of variables.

· Graph-guide lasso

$$h(w) = \lambda \sum_{\{k_1, k_2\} \in E} |x_{k_1} - x_{k_2}|,$$

where E is the set of edges for the graph defined on the d variates

Inexact PG

Inexact PG

Iterations

$$x^{k+1} = \operatorname{prox}_{h}^{\gamma}(x^{k} - \gamma \{\nabla g(x^{k}) + e^{k}\}),$$

where e^k is the error in the calculation of the gradient, and the proximal operator is solved inexactly:

$$\frac{1}{2\gamma} \|x^k - y\|^2 + h(x^k) \le \epsilon^k + \min_{x \in \mathbb{R}^d} \left\{ \frac{1}{2\gamma} \|x - y\|^2 + h(x) \right\}.$$

Propositions 1

Basic PG, convexity For all $k \ge 1$, we have

$$f\left(\frac{1}{k}\sum_{i=1}^{k}x^{i}\right)-f(x^{*})\leq \frac{L}{2k}\left(\|x^{0}-x^{*}\|+2A_{k}+\sqrt{2B_{k}}\right)^{2},$$

with
$$A_k = \sum_{i=1}^k \left(\frac{\|e_i\|}{L} + \sqrt{\frac{2\epsilon_i}{L}} \right)$$
, $B_k = \sum_{i=1}^k \frac{\epsilon_i}{L}$.

Conclusion

 $\mathcal{O}(1/k)$ convergence rate still holds when both $(\|e_k\|)$ and $(\|\sqrt{\epsilon_k}\|)$ are summable.

Proposition 2

Accelerated PG, convexity

$$y^k = x^k + \frac{k-1}{k+2}(x^k - x^{k-1})$$
, for all $k \ge 1$, we have

$$f(x^k) - f(x^*) \le \frac{2L}{(k+1)^2} \left(\|x^0 - x^*\|^2 + 2\tilde{A}_k + \sqrt{2\tilde{B}_k} \right)^2,$$

with
$$\tilde{A}_k = \sum_{i=1}^k \left(\frac{\|e_i\|}{L} + \sqrt{\frac{2\epsilon_i}{L}} \right)$$
, $\tilde{B}_k = \sum_{i=1}^k \frac{i^2 \epsilon_i}{L}$.

Conclusion

 $\mathcal{O}(1/k^2)$ convergence rate still holds when both $(k||e_k||)$ and $(k||\sqrt{\epsilon_k}||)$ are summable.

Proposition 3

Basic PG, strong convexity

For all $k \geq 1$, we have

$$||x^k - x^*|| \le (1 - \gamma)^k (||x^0 - x^*|| + \tilde{A}_k),$$

with
$$\bar{A_k} = \sum_{i=1}^k (1-\gamma)^{-i} \left(\frac{\|\mathbf{e}_i\|}{L} + \sqrt{\frac{2\epsilon_i}{L}} \right)$$
.

Conclusion

We obtain a linear rate, provided that $||e_k||$ and $\sqrt{\epsilon_k}$ decrease linearly to 0.

Proposition 4

Accelerated PG, strong convexity

$$y^{k} = x^{k} + \frac{k-1}{k+2}(x^{k} - x^{k-1})$$
, for all $k \ge 1$, we have

$$f(x^k) - f(x^*) \le (1 - \sqrt{\gamma})^k \left(\sqrt{2(f(x^0) - f(x^*))} + \hat{A}_k \sqrt{\frac{2}{\mu}} + \sqrt{\hat{B}_k} \right)^2,$$

with
$$\hat{A}_k = \sum_{i=1}^k \left(\|e_i\| + \sqrt{2L\epsilon_i} \right) (1 - \sqrt{\gamma})^{-i/2}$$
, $\hat{B}_k = \sum_{i=1}^k \epsilon_i (1 - \sqrt{\gamma})^{-i}$.

Conclusion

We obtain a linear rate, provided that $||e_k||^2$ and ϵ_k decrease linearly to 0.

Experiments

Figure 1: Objective function against number of proximal iterations for the accelerated proximal gradient method with different strategies for terminating the approximate proximity calculation. The top row is for the 9 Tumors data, the bottom row is for the Brain Tumor1 data.

measure

with a non-Euclidean distance

Generation of proximal operator

The proximal framework

Problem

$$\min_{\mathbf{x} \in \mathbb{R}^d} \psi(\mathbf{x}).$$

Proximal minimization

$$x^{k+1} = \text{prox}_{\psi}^{\gamma}(x^k), k = 0, 1, 2, \dots$$

where

$$\operatorname{prox}_{\psi}^{\gamma}(y) = \arg\min_{x \in \mathbb{R}^d} \frac{1}{2\gamma} \|x - y\|^2 + \psi(x).$$

Proximal iteration with non-Euclidean distance measure

$$x^{k+1} = \arg\min_{x} \left\{ \frac{1}{\lambda} D(x, x^k) + \psi(x) \right\}.$$

The Bregman distance

Definition: Legendre function

A function h, which is proper, lsc, strictly convex and essentially smooth will be called a Legendre function.

Definition: Bregman distance

Let h be a Legendre function. The Bregman distance associated to h, denoted by \mathcal{D}_h is defined by

$$D_h(x,y) := h(x) - h(y) - \langle \nabla h(y), x - y \rangle.$$

Properties

- Non-negative of D_h : h is convex if and only if $D_h(x, y) \ge 0$.
- Separability: if $h(x) = \sum_{j=1}^{n} h_j(x_j)$, then $D_h(x, y) = \sum_{j=1}^{n} D_{h_j}(x_j, y_j)$.
- Three Points Identity:

$$D_h(z,x) - D_h(z,y) - D_h(y,x) = \langle \nabla h(x) - \nabla h(y), y - z \rangle,$$

which is the generation of

$$||z - x||^2 - ||z - y||^2 - ||x - y||^2 = 2 < x - y, y - z >.$$

Bregman distance generated from some convex functions

Table 1: Bregman divergences generated from some convex functions.

Domain	$\varphi(\mathbf{x})$	$d_{\mathbf{\phi}}(\mathbf{x}, \mathbf{y})$	Divergence
\mathbb{R}	x^2	$(x-y)^2$	Squared loss
\mathbb{R}_+	$x \log x$	$x\log(\frac{x}{y}) - (x-y)$	
[0,1]	$x\log x + (1-x)\log(1-x)$	$x\log(\frac{x}{y}) + (1-x)\log(\frac{1-x}{1-y})$	Logistic loss ³
\mathbb{R}_{++}	$-\log x$	$\frac{x}{y} - \log(\frac{x}{y}) - 1$	Itakura-Saito distance
\mathbb{R}	e^{x}	$e^x - e^y - (x - y)e^y$	
\mathbb{R}^d	$ \mathbf{x} ^2$	$\ \mathbf{x} - \mathbf{y}\ ^2$	Squared Euclidean distance
\mathbb{R}^d	$\mathbf{x}^T A \mathbf{x}$	$(\mathbf{x} - \mathbf{y})^T A(\mathbf{x} - \mathbf{y})$	Mahalanobis distance 4
d-Simplex	$\sum_{j=1}^{d} x_j \log_2 x_j$	$\sum_{j=1}^{d} x_j \log_2(\frac{x_j}{y_j})$	KL-divergence
\mathbb{R}^d_+	$\sum_{j=1}^{d} x_j \log x_j$	$\sum_{j=1}^{d} x_{j} \log(\frac{x_{j}}{y_{j}}) - \sum_{j=1}^{d} (x_{j} - y_{j})$	Generalized I-divergence

Figure 2: Bregman distance generated from some convex functions.

Lipschitz-like Condition (LC)

Definition

 $\exists L > 0$ with Lh - g convex.

NoLips Descent Lemma

Take L > 0, the following statements are equivalent:

- 1. Lh g is convex, i.e. LC hold.
- 2. $D_g(x,y) \leq LD_h(x,y) \leftrightarrow D_{Lh-g}(x,y) \geq 0$.

Proof

Simply follows from the gradient inequality for the convex function Lh-g, and the fact that $0 \le D_{Lh-g}(x,y) = LD_h(x,y) - D_g(x,y)$.

Linear Rate

Let $\{x^k\}$ be the sequence generated by Bregman proximal iterations with $\lambda=L^{-1}$, and assume that $g-\sigma h$ is convex for some $\sigma>0$. Then, for any $n\geq 0$,

$$\psi(x^{n+1}) - \psi^* \leq \left(1 - \frac{\sigma}{L}\right)^{n+1} LD_h(x^*, x^0).$$

Composition

Formulation

$$\min_{x \in \mathbb{R}^d} f(x) := g(x) + \psi(x),$$

where g and h are convex functions but only g is smooth.

Bregman proximal gradient iterations

$$\begin{aligned} x^{k+1} &=& \operatorname{prox}_{\psi}^{\gamma}(x^k - \gamma \nabla g(x^k)) \\ &=& \operatorname{arg\,min}_{x} \left\{ g(x^k) + \left\langle \nabla g(x^k), x - x^k \right\rangle + \frac{1}{\lambda} D_h(x, x^k) + \psi(x) \right\}. \end{aligned}$$

Previous iterations

$$x^{k+1} = \arg\min_{x} \left\{ g(x^k) + \left\langle \nabla g(x^k), x - x^k \right\rangle + \frac{1}{2\lambda} \|x - x^k\|^2 + \psi(x) \right\}$$

Conclusions

Conclusions

- Algorithms with inexact proximal calculation may also work under some conditions.
- Bregman distance based proximal iterations need more efforts to be studied.

Q & A