Appendix: Proofs

Proof of Proposition 1

Proof. It is easy to verify that each classification rule $R = \varphi_X \Rightarrow y$ (resp. $R = \varphi_X \Rightarrow \overline{y}$) satisfies $R(y) \equiv \top$ and $R(\overline{y}) \equiv \neg \varphi_X$ (resp. $R(\overline{y}) \equiv \top$ and $R(y) \equiv \neg \varphi_X$). It is then sufficient to replace R(y) and $R(\overline{y})$ by the equivalent expressions above in the definition of $\Sigma \star T$ and to simplify the result obtained to obtain the characterization given in the proposition.

Proof of Proposition 2

Proof. The proof is based on three lemmas. The first lemma shows that the classification rules that can be deduced from a classification circuit on $X \cup \{y\}$ are never conflicting (two classification rules are conflicting whenever they have consistent premises and distinct conclusions).

Lemma 1. Let $\Sigma = \Sigma_X \Leftrightarrow y$ be a classification circuit on $X \cup \{y\}$. Two classification rules $R_1 = \varphi_X^1 \Rightarrow y$ and $R_2 = \varphi_X^2 \Rightarrow \overline{y}$ that can be deduced from Σ are never conflicting.

Proof. $R_1=\varphi_X^1\Rightarrow y$ can be deduced from \varSigma iff $\varSigma\wedge\varphi_X^1\wedge\overline{y}$ is contradictory iff $(\varSigma_X\Leftrightarrow y)\wedge\varphi_X^1\wedge\overline{y}$ is contradictory iff $\overline{\varSigma_X}\wedge\varphi_X^1$ is contradictory iff we have $\varphi_X^1\models \varSigma_X$. Similarly, $R_2=\varphi_X^2\Rightarrow \overline{y}$ can be deduced from \varSigma iff $\varSigma\wedge\varphi_X^2\wedge y$ is contradictory iff $(\varSigma_X\Leftrightarrow y)\wedge\varphi_X^2\wedge y$ is contradictory iff $\varSigma_X\wedge\varphi_X^2$ is contradictory iff we have $\varphi_X^2\models\overline{\varSigma_X}$. Consequently, $\varphi_X^1\wedge\varphi_X^2$ is necessarily contradictory.

The second lemma shows that if R_1 and R_2 are two classification rules over y (resp. two classification rules over \overline{y}), then rectifying a classifier Σ by R_1 first and by R_2 then is equivalent to rectifying Σ by the conjunction $R_1 \wedge R_2$ of the two rules.

Lemma 2. Let $\Sigma = \Sigma_X \Leftrightarrow y$ be a classification circuit on $X \cup \{y\}$. Let R_1 and R_2 be two classification rules over y or two classification rules over \overline{y} . We have $\Sigma \star (R_1 \land R_2) \equiv (\Sigma \star R_1) \star R_2$.

Proof. Let us first assume that $R_1=\varphi_X^1\Rightarrow y$ and $R_2=\varphi_X^2\Rightarrow y$ are two classification rules over y. We have $R_1\wedge R_2\equiv (\varphi_X^1\vee\varphi_X^2)\Rightarrow y$, showing that $R_1\wedge R_2$ is equivalent to the classification rule $\varphi_X\Rightarrow y$ over y, with $\varphi_X\equiv (\varphi_X^1\vee\varphi_X^2)$. Next, we exploit the fact that $\varSigma_X^{R_1\wedge R_2}$ can be simplified to $\varSigma_X\vee\varphi_X^1\vee\varphi_X^2$. Furthermore, we have $\varSigma_X^{R_1}\equiv \varSigma_X\vee\varphi_X^1$ and $\varSigma_X^{R_1,R_2}\equiv \varSigma_X^{R_1}\vee\varphi_X^2$. Since $\varSigma_X^{R_1}\equiv \varSigma_X\vee\varphi_X^1$, we have $\varSigma_X^{R_1\wedge R_2}\equiv \varSigma_X^{R_1,R_2}$, which concludes the proof.

Similarly, suppose that $R_1=\varphi_X^1\Rightarrow \overline{y}$ and $R_2=\varphi_X^2\Rightarrow \overline{y}$ are two classification rules over \overline{y} . We have $R_1\wedge R_2\equiv (\varphi_X^1\vee\varphi_X^2)\Rightarrow \overline{y}$, showing that $R_1\wedge R_2$ is equivalent to the classification rule $\varphi_X\Rightarrow \overline{y}$ over \overline{y} , with $\varphi_X\equiv (\varphi_X^1\vee\varphi_X^2)$. Next, we exploit the fact that $\varSigma_X^{R_1\wedge R_2}$ can be simplified to $\varSigma_X\wedge\neg(\varphi_X^1\vee\varphi_X^2)$, which is equivalent to $\varSigma_X\wedge\neg\varphi_X^1\wedge\neg\varphi_X^2$. On the other hand, we have $\varSigma_X^{R_1}\equiv \varSigma_X\wedge\neg\varphi_X^1$ and $\varSigma_X^{R_1,R_2}\equiv \varSigma_X^{R_1}\wedge\neg\varphi_X^2$. Since $\varSigma_X^{R_1}\equiv \varSigma_X\wedge\neg\varphi_X^1$, we have $\varSigma_X^{R_1\wedge R_2}\equiv \varSigma_X^{R_1,R_2}$, which concludes the proof.

Since conjunction is commutative, the resulting circuit is equivalent to Σ rectified by R_2 first and by R_1 then, that is, we have $\Sigma \star (R_1 \wedge R_2) \equiv (\Sigma \star R_2) \star R_1$. In other words, the rectification order does not matter.

The third lemma concerns classification rules having contradictory premises and contradictory conclusions $(y \text{ and } \overline{y})$. For such rules R_1 and R_2 , here again, rectifying a classification circuit Σ by the conjunction $R_1 \wedge R_2$ amounts to rectify Σ by R_1 first and by R_2 then. And since conjunction is commutative, the rectification order actually does not matter.

Lemma 3. Let $\Sigma = \Sigma_X \Leftrightarrow y$ be a classification circuit on $X \cup \{y\}$. Let $R_1 = \varphi_X^1 \Rightarrow y$ and $R_2 = \varphi_X^2 \Rightarrow \overline{y}$ be two classification rules such that $\varphi_X^1 \wedge \varphi_X^2$ is contradictory. We have $\Sigma \star (R_1 \wedge R_2) \equiv (\Sigma \star R_1) \star R_2$.

Proof. On the one hand, we have

$$\Sigma_X^{R_1 \wedge R_2} \equiv (\Sigma_X \wedge \neg ((R_1 \wedge R_2)(\overline{y}) \wedge \neg (R_1 \wedge R_2)(y))) \vee ((R_1 \wedge R_2)(y) \wedge \neg (R_1 \wedge R_2)(\overline{y})).$$

Since $(R_1 \wedge R_2)(\overline{y})$ is equivalent to $R_1(\overline{y}) \wedge R_2(\overline{y})$ and $(R_1 \wedge R_2)(y)$ is equivalent to $R_1(y) \wedge R_2(y)$, $\Sigma_X^{R_1 \wedge R_2}$ is equivalent to

$$(\Sigma_X \wedge \neg (R_1(\overline{y}) \wedge R_2(\overline{y}) \wedge \neg (R_1(y) \wedge R_2(y)))).$$

Now, we exploit the facts that $R_1(y) \equiv R_2(\overline{y}) \equiv \top$, that $R_1(\overline{y}) \equiv \neg \varphi_X^1$, and that $R_2(y) \equiv \neg \varphi_X^2$ to simplify the previous formula. We obtain that

$$\varSigma_X^{R_1 \wedge R_2} \equiv (\varSigma_X \wedge \neg (\neg \varphi_X^1 \wedge \varphi_X^2)) \vee (\varphi_X^1 \wedge \neg \varphi_X^2).$$

Since $\varphi_X^1 \wedge \varphi_X^2$ is contradictory, we have $\neg \varphi_X^1 \wedge \varphi_X^2 \equiv \varphi_X^2$ and $\varphi_X^1 \wedge \neg \varphi_X^2 \equiv \varphi_X^1$. Thus, $\Sigma_X^{R_1 \wedge R_2}$ is equivalent to $(\Sigma_X \wedge \neg \varphi_X^2) \vee \varphi_X^1$.

On the other hand, we have $\Sigma_X^{R_1} \equiv \Sigma_X \vee \varphi_X^1$ since R_1 is a classification rule over

On the other hand, we have $\Sigma_X^{R_1} \equiv \Sigma_X \vee \varphi_X^1$ since R_1 is a classification rule over y. So, given that R_2 is a classification rule over \overline{y} , we have $\Sigma_X^{R_1,R_2} \equiv \Sigma_X^{R_1} \wedge \neg \varphi_X^2 \equiv (\Sigma_X \vee \varphi_X^1) \wedge \neg \varphi_X^2 \equiv (\Sigma_X \wedge \neg \varphi_X^2) \vee (\varphi_X^1 \wedge \neg \varphi_X^2)$. Since $\varphi_X^1 \wedge \neg \varphi_X^2 \equiv \varphi_X^1$, this last formula is equivalent to $(\Sigma_X \wedge \neg \varphi_X^2) \vee \varphi_X^1$. Therefore, $\Sigma_X^{R_1 \wedge R_2}$ is equivalent to $\Sigma_X^{R_1,R_2}$, and this concludes the proof.

Lemma 1 shows that we can take advantage of Lemma 3 whenever two rules $R_1=\varphi_X^1\Rightarrow y$ and $R_2=\varphi_X^2\Rightarrow \overline{y}$ are deduced from a classification circuit $\Phi_X\Leftrightarrow y$ where Φ_X is a binary classifier. Indeed, Lemma 1 ensures that for such rules, $\varphi_X^1\wedge\varphi_X^2$ is contradictory (otherwise, the two rules would conflict).

Finally, a simple induction on k can be used to obtain the desired result from Lemma 2 and Lemma 3.

Proof of Proposition 3

Proof. Let $R=t\Rightarrow y$. If t is an abductive explanation for x given C, then we have $t\models C_X$. Equivalently, $\neg C_X\models \neg t$ holds. Since $y\not\in X$, this is equivalent to $\neg C_X\vee y\models \neg t\vee y$, i.e., $C_X\Rightarrow y\models t\Rightarrow y$. Since $\Phi\models C_X\Rightarrow y$, we have $\Phi\models R$. The case when $R=t\Rightarrow \overline{y}$ is similar.

Proof of Proposition 4

Proof. By construction, $(I_X \Leftrightarrow y) \star R$ is a classification circuit that classifies every instance $x' \in X$ as the classification circuit $I_X \Leftrightarrow y$, except those instances x' such that $I(x') \neq R(x')$, which are classified by $(I_X \Leftrightarrow y) \star R$ in the same way as they are classified by R [16]. Let us consider any instance $x' \in X_{I^R}^{\pm}$. Then x' is not covered by R, otherwise we would have $I^R(x') = P(x')$ given that R is implied by the classification circuit $P_X \Leftrightarrow y$. Therefore, x' is classified by I^R in the same way as it is classified by I, so that we also have $x' \in X_I^{\pm}$. To prove that the inclusion $X_{I^R}^{\pm} \subset X_I^{\pm}$ is strict, it is enough to observe that R covers at least one instance that belongs to X_I^{\pm} , namely the instance x that triggered the correction step. This instance is classified by I^R in the same way as it is classified by R, thus in the same way as it is classified by P since R is implied by the classification circuit $P_X \Leftrightarrow y$. Accordingly, $x \notin X_{I^R}^{\pm}$, which completes the proof.