Universitatea Babeș-Bolyai, Facultatea de Matematică și Informatică Analiză reală – Curs

Matematică, Matematică și Informatică, anul universitar: 2021/2022

Curs 11

Spaţii L^p

Definiția 1. Fie V un spațiu vectorial real. O $norm \check{a}$ pe V este o funcție $\|\cdot\|: V \to [0, \infty)$ care satisface următoarele proprietăți pentru orice $x, y \in V$ și orice $\alpha \in \mathbb{R}$:

- (N1) $||x|| = 0 \iff x = 0;$
- (N2) $\|\alpha x\| = |\alpha| \|x\|$ (omogenitate absolută);
- (N3) $||x + y|| \le ||x|| + ||y||$ (subaditivitate).

Perechea $(V, \|\cdot\|)$ se numește spațiu (vectorial) normat.

Observația 1. Dacă $(V, \|\cdot\|)$ este un spațiu normat, atunci $d: V \times V \to [0, \infty)$ definită prin $d(x, y) = \|x - y\|$ este o metrică pe V.

Exemplul 1. (i) Norma valoare absolută pe \mathbb{R} : $|\cdot|$.

(ii) Norma ℓ^p pe \mathbb{R}^n , $n \in \mathbb{N}$ și $1 \le p < \infty$: pentru $x = (x_1, \dots, x_n) \in \mathbb{R}^n$,

$$||x||_p = (|x_1|^p + \ldots + |x_n|^p)^{1/p}$$
.

Norma ℓ^2 se numește norma euclidiană. Norma ℓ^1 se numește norma Manhattan (sau "taxicab").

(iii) Norma maximum (sau ℓ^{∞}) pe \mathbb{R}^n , $n \in \mathbb{N}$: pentru $x = (x_1, \dots, x_n) \in \mathbb{R}^n$,

$$||x||_{\infty} = \max_{i=\overline{1,n}} |x_i|.$$

(iv) Fie Y o mulțime nevidă și $B(Y)=\{f:Y\to\mathbb{R}\mid f$ mărginită $\}$. Atunci B(Y) este un spațiu vectorial real în raport cu operațiile uzuale, iar $\|\cdot\|_\infty:B(Y)\to[0,\infty)$ definită prin $\|f\|_\infty=\sup\{|f(y)|\mid y\in Y\}$ pentru orice $f\in B(Y)$ este o normă pe B(Y).

Fie (X, \mathcal{A}, μ) un spațiu cu măsură. Notăm

$$\mathcal{L}^1(X, \mathcal{A}, \mu) = \{ f : X \to \mathbb{R} : f \text{ este integrabil} \}.$$

Reamintim că $f \in \mathcal{L}^1(X, \mathcal{A}, \mu)$ dacă și numai dacă f este \mathcal{A} -măsurabilă și $|f| \in \mathcal{L}^1(X, \mathcal{A}, \mu)$ (a se vedea Propoziția 4 din Cursul 9).

Folosind Propoziția 3 din Cursul 9, deducem că $\mathcal{L}^1(X, \mathcal{A}, \mu)$ este un spațiu vectorial real. Funcția $f \in \mathcal{L}^1(X, \mathcal{A}, \mu) \mapsto \int |f| d\mu$ satisface condițiile (N2), (N3) din definiția unei norme, dar (N1) nu are loc deoarece, dacă de exemplu f este o funcție \mathcal{A} -măsurabilă astfel încât f = 0 μ -a.p.t., atunci f este integrabilă și $\int |f| d\mu = 0$, însa s-ar putea ca f să nu fie funcția constantă egală cu 0.

Pentru a înlătura această problemă, se va introduce o relație de echivalență care va identifica funcțiile egale a.p.t.:

$$f \sim g \iff f = g \text{ μ-a.p.t.}, \quad f, g: X \to \mathbb{R}.$$

În general, notăm pentru $1 \le p < \infty$,

$$\mathcal{L}^p(X,\mathcal{A},\mu) = \{f: X \to \mathbb{R}: f \text{ este } \mathcal{A}\text{-măsurabilă şi } |f|^p \text{ este integrabilă} \}$$

şi

$$\mathcal{L}^{\infty}(X,\mathcal{A},\mu) = \{f: X \to \mathbb{R}: f \text{ este } \mathcal{A}\text{-măsurabilă şi există } M \in [0,\infty) \text{ a.î. } |f| \leq M \text{ μ-a.p.t.} \}.$$

Definim $L^p(X, \mathcal{A}, \mu) = \mathcal{L}^p(X, \mathcal{A}, \mu) / \infty$. Astfel $L^p(X, \mathcal{A}, \mu)$ conţine clasele de echivalență ale relației \sim : $L^p(X, \mathcal{A}, \mu) = \{[f] \mid f \in \mathcal{L}^p(X, \mathcal{A}, \mu)\}$, unde $[f] = \{g \in \mathcal{L}^p(X, \mathcal{A}, \mu) \mid g \sim f\}$. De asemenea, când spaţiul cu măsură este subînţeles, vom folosi şi notaţiile $\mathcal{L}^p(X, \mathcal{A}, \mu) = \mathcal{L}^p(X) = \mathcal{L}^p$ şi $L^p(X, \mathcal{A}, \mu) = L^p(X) = L^p$.

Propoziția 1. $L^p(X, \mathcal{A}, \mu)$, unde $1 \leq p \leq \infty$, este un spațiu vectorial real în raport cu operațiile uzuale definite prin reprezentanți: pentru $[f], [g] \in L^p(X, \mathcal{A}, \mu)$ și $\alpha \in \mathbb{R}$ definim

$$[f] + [g] = [f + g], \quad \alpha[f] = [\alpha f].$$

Definim funcția $\|\cdot\|_p:L^p(X,\mathcal{A},\mu)\to\mathbb{R}$ astfel: dacă $1\leq p<\infty,$

$$||[f]||_p = \left(\int |f|^p d\mu\right)^{1/p},$$

iar

$$||[f]||_{\infty} = \inf\{M : |f| \le M \ \mu\text{-a.p.t.}\}.$$

Observăm că $\|\cdot\|_p$ este bine definită în sensul că dacă $f,g\in\mathcal{L}^p$ cu $f\sim g,$ atunci:

- dacă $1 \le p < \infty$, $(\int |f|^p d\mu)^{1/p} = (\int |g|^p d\mu)^{1/p}$;
- dacă $p=\infty,\,\{M:|f|\leq M\,\,\mu\text{-a.p.t.}\}=\{M:|g|\leq M\,\,\mu\text{-a.p.t.}\}.$

Observația 2. În continuare, vom privi elementele din L^p ca fiind funcții identificând astfel o clasă de echivalență cu un reprezentant și vom scrie simplu f în loc de [f]. Astfel, vom scrie $||f||_p$ în loc de $||[f]||_p$, respectiv $||f||_\infty$ în loc de $||[f]||_\infty$.

Vom arăta că $\|\cdot\|_p$, unde $1 \leq p \leq \infty$, este o normă pe $L^p(X, \mathcal{A}, \mu)$.