Image Masking and Cell Segmentation

BY JOSHUA PAIK

Outline of Today's Talk

- ▶ Introduction to the Kaggle Data Science Bowl 2018
- Exploratory Data Analysis
- Explanation of UNET
- Data Augmentation
- My Solution
- Winning Solutions

Introduction to the Kaggle Data Science Bowl 2018

- ▶ GOAL? Identify cell nuclei from microscopy data.
- ▶ WHY? To advance research. As the nuclei contains DNA, it is important to locate it in genetic and biological research.
- ► HOW? Use existing neural network architecture platforms and image processing techniques

Goal: Create image masks for each cells

More Sample Data

EDA: Distribution of image masks width, height, area

EDA: Distribution of number of nuclei in each images

EDA: Image with most number of nuclei

EDA: Image with Least number of nuclei

EDA: Smallest nuclei problem

EDA: Smallest Nuclei Problem: Dependent on Scaling

EDA: Overlapping cell problem

There are a lot of overlapping cells

More Overlapping Cells

EDA: K Means Classification Fluorescent: 81.5%

EDA: K Means Classification Histological: 16.1%

EDA: K Means Classification Bright-field: 2.4%


```
def parametric pipeline(img green,
             invert thresh pd = 10,
             circle size x = 7,
             circle size y = 7,
             ):
circle size x = np.clip(int(circle size x), 1, 30)
circle size y = np.clip(int(circle size y), 1, 30)
 #green channel happends to produce slightly better results
#than the grayscale image and other channels
#morphological opening (size tuned on training data)
circle7=cv2.getStructuringElement(cv2.MORPH ELLIPSE,(circle size x, circle size y))
img open=cv2.morphologyEx(img green, cv2.MORPH OPEN, circle7)
#Otsu thresholding
img th=cv2.threshold(img open,0,255,cv2.THRESH OTSU)[1]
#Invert the image in case the objects of interest are in the dark side
if(np.sum(img th==255)>((invert thresh pd/10.0)*np.sum(img th==0))):
    img th=cv2.bitwise not(img th)
 #second morphological opening (on binary image this time)
bin open=cv2.morphologyEx(img th, cv2.MORPH OPEN, circle7)
#connected components
cc=cv2.connectedComponents(bin open)[1]
#cc=segment on dt(bin open,20)
 return cc
```

Non Machine Learning Approach

What type of problem is the Kaggle DSBowl

Explanation of UNET

https://arxiv.org/pdf/1505.04597.pdf

Max Pool

Up Convolution or Transpose Convolution

Conv 3x3 ReLU

UNET - Overlapping Tile Strategy

UNET – Accuracy and Method

First Implementation

Pre Process: Data Augmentation Elastic Deformations

What did the winners do?

- Clache, Sharpen, Emboss
- Gaussian Noise
- Color to Gray
- Inverting
- Remapping grayscale images to random color images
- ▶ Blur, Median Blur, Motion Blur
- contrast and brightness
- random scale, rotates and flips
- ▶ Heavy geometric transformations: Elastic Transform, Perspective Transform, Piecewise Affine transforms, pincushion distortion
- Random HSV
- ▶ Channel shuffle I guess this one was very important due to the nature of the data
- Nucleus copying on images. That created a lot of overlapping nuclei. It seemed to help networks to learn better borders for overlapping nuclei.

Post Processing: Watershed Algorithm

Analysis of Results

Analysis of Results

Data Variation in Stage 2!!!

Video of predictions

https://drive.google.com/open?id=1ZdNzQOTR83vrqNPeynUYuelWF RxJ-35i