PURE MATHEMATICS 212

Multivariable Calculus

CONTENTS

		Page	,
1.	Assignment Summary	i	
2.	Summary	1	
3	Assignments	2	,

PMTH212, Multivariable Calculus

${\bf Assignment\ Summary-2012}$

For External Students

Assignment	Date to be Posted	Description	
Number			
1	5 March	Problems	
2	12 March	Problems	
3	19 March	Problems	
4	26 March	Problems	
5	2 April	Problems	
6	10 April	Problems	
7	30 April	Problems	
8	7 May	Problems	
9	14 May	Problems	
10	21 May	Problems	
11	28 May	Problems	

This assignment summary may be detached for your notice board.

PURE MATHEMATICS 212

Multivariable Calculus

Summary

Please refer to the online resources at http://moodle.une.edu.au and http://turing.une.edu.au/pmth212 for detailed information.

Lecture Notes and Reference Book

Lecture notes will be provided.

The reference book is Calculus Late Transcendentals Combined, Ninth Edition by H. Anton, I. Bivens, S. Davis, Wiley, ISBN-13 978-0470183496. You may also use older editions.

Assessment

The 11 assignments contribute 30% of the final assessment. You must submit reasonable attempts on at least 8 assignments.

The final examination is compulsory. It contributes 70% of the final assessment. You must achieve at least 40% in the examination.

Examination

The examination will be of three hours duration. You are allowed to bring with you three A4 sized pieces of paper of hand-written notes. Both sides can be used. No printed and photocopied materials are allowed.

Unit Coordinator

Dr. Gerd Schmalz

Email: gerd@turing.une.edu.au

- 1. Find the initial point of $\mathbf{v} = \mathbf{i} + 2\mathbf{j} 3\mathbf{k}$ if the terminal point is (-2, 1, 4).
- 2. Find the distance from the point (4,5,3) to the
 - (a) xz-plane (b) y-axis.
- 3. Find the area of the parallelogram spanned by the vectors $\mathbf{v} = \langle 1, 1, -3 \rangle$, and $\mathbf{w} = \langle -1, 2, -1 \rangle$.
- 4. Find a vector **n** which is perpendicular to the plane determined by the points A(0, -2, 1), B(1, -1, -2), and C(-1, 1, 0).
- 5. Find parametric equations for the line in \mathbb{R}^2 through (1,1) and parallel to the line x = -5 + t, y = 1 2t;
- 6. Determine whether the planes are perpendicular.
 - (a) x 3y 2z 2 = 0, 2x + z = 1
 - (b) 3x 2y + z = 1, 4x + 5y + 2z = 4.
- 7. Find equations of the planes.
 - (a) Through (-1, 4, -3) and perpendicular to the line

$$x - 2 = t$$
, $y + 3 = 2t$, $z = -t$

(b) Through (-1, 2, -5) and perpendicular to the planes 2x - y + z = 1 and x + y - 2z = 3.

- 1. Name and sketch the surface: $z = 4x^2 + y^2 + 8x 2y + 4z$
- 2. Find a parametric equation of the curve of intersection of the paraboloid $z=4-x^2-y^2$ and the parabolic cylinder $z=3y^2$ (Hint. Use the parametrization $y=\sin t$). Compute the orthogonal projection of this curve to the xy-plane.
- 3. The curves below are given by their vector equations. Describe them in Cartesian coordinates. What are their geometric names?

(a)
$$\mathbf{r} = (3\sin 2t)\mathbf{i} + (3\cos 2t)\mathbf{j}$$
. (b) $\mathbf{r} = -2\mathbf{i} + t\mathbf{j} + (t^2 - 1)\mathbf{k}$.

4. For which values of the parameter t is the curve

$$\mathbf{r} = t\cos(t^2)\mathbf{i} + \sin(t)\mathbf{j} + t^2\mathbf{k}$$

smooth?

5. Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be differentiable vector-valued functions of t. Prove that

$$\frac{d}{dt}[\mathbf{u} \cdot [\mathbf{v} \times \mathbf{w})] = \frac{d\mathbf{u}}{dt} \cdot [\mathbf{v} \times \mathbf{w}] + \mathbf{u} \cdot [\frac{d\mathbf{v}}{dt} \times \mathbf{w}] + \mathbf{u} \cdot [\mathbf{v} \times \frac{d\mathbf{w}}{dt}]$$

- 6. (a) Evaluate $\int [(t \sin t) \mathbf{i} + \log t \mathbf{j}] dt$;
 - (b) Find the arc length of the curve $\mathbf{r}(t) = (3\cos t)\mathbf{i} + (3\sin t)\mathbf{j} + 4t\mathbf{k}$; $0 \le t \le 2\pi$.

- 1. Find the unit tangent vector **T** and the principal unit normal vector **N** for the given value of t: $x = \cosh t$, $y = \sinh t$, z = t; $t = \ln 2$.
- 2. Find the curvature at the indicated point: $x = e^t, y = e^{-t}, z = t; t = 0.$
- 3. Show that for a plane curve described by y = f(x) the curvature $\kappa(x)$ is

$$\kappa(x) = \frac{|d^2y/dx^2|}{[1 + (dy/dx)^2]^{3/2}}$$

[Hint: Let x be the parameter so that $\mathbf{r}(x) = x\mathbf{i} + y\mathbf{j} = x\mathbf{i} + f(x)\mathbf{j}$.]

- 4. Let $f(x,y) = x + (xy)^{1/3}$. Find
 - (a) $f(t, t^2)$, (b) $f(x, x^2)$, (c) $f(2y^2, 4y)$.
- 5. Find g(u(x,y), v(x,y)) if $g(x,y) = y\sin(x^2y)$, $u(x,y) = x^2y^3$, $v(x,y) = \pi xy$.
- 6. Let f(x, y, z) = zxy + x. Find
 - (a) $f(x+y, x-y, x^2)$, (b) f(xy, y/x, xz).
- 7. Determine the level surfaces passing through the point (1, 1, 1).
 - (a) f(x, y, z) = 3x y + 2z (b) $f(x, y, z) = z x^2 y^2$.

- 1. Find the natural domains of the functions below. Determine where the function f is continuous. Justify your asnwer using the properties of continuous functions.
 - (a) $f(x,y) = (x-y)^{1/2}$.
 - (b) $f(x,y) = \cos(\frac{xy}{1+x^2+y^2}).$
- 2. Find the limit, if it exists.
 - (a) $\lim_{(x,y)\to(0,0)} \frac{x^3 + 8y^3}{x + 2u}$.
 - (b) $\lim_{(x,y)\to(0,0)} \frac{\ln(1+x^2+y^2)}{x^2+y^2}$.
- 3. (a) Show that the value of $\frac{x^3y}{2x^6+y^2}$ approaches 0 as $(x,y) \to (0,0)$ along any straight line y = mx, or along any parabola $y = kx^2$.

(b) Show that $\lim_{(x,y)\to(0,0)} \frac{x^3y}{2x^6+y^2}$ does not exist. [Hint: Let $(x,y)\to(0,0)$ along the curve $y=x^3$, and then compare the result with the

- 4. Find f_x , f_y and f_z : $f(x, y, z) = z \ln(x^2 y \cos z)$.
- 5. (a) Show that $f(x,y) = \ln(x^2 + y^2)$ satisfies

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0.$$

This is called the **Laplace's Equation**.

(b) Show that $u(x,y) = e^x \cos y$ and $v(x,y) = e^x \sin y$ satisfy

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

These are called the Cauchy-Riemann Equations.

6. Let $f(x,y) = (x^2 + y^2)^{2/3}$. Show that $f_x(0,0) = 0$. [Hint. Use the definition $f_x(0,0) = \lim_{h\to 0} \frac{f(h,0) - f(0,0)}{h}$.]

- 1 Let $f(x,y) = e^{xy^2}$. Find f_{xyx} , f_{xxy} and f_{yxx} and verify their equality.
- 2. Let z = 3x 2y, where $x = v \ln u$, $y = u^2 v \ln v$. Find $\frac{\partial z}{\partial v}$ and $\frac{\partial z}{\partial u}$ by the chain rule.
- 3. Show that if u(x,y) and v(x,y) satisfy the Cauchy-Riemann equations (See Assignment 4, Question 5), and if $x = r \cos \theta$ and $y = r \sin \theta$, then

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}, \quad \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}.$$

- 4. Find equations for the tangent plane and normal line to the surface given by $z = e^{x^2+y^2}$ at the point P(0,0,1).
- 5. Find a unit vector **u** that is perpendicular at P(2, -3) to the level curve of $f(x, y) = 3x^2y xy$ through P.
- 6. Find a unit vector in the direction in which $f(x, y, z) = (x 3y + 4z)^{1/2}$ increases most rapidly at P(0, -3, 0), and find the rate of increase of f in that direction.
- 7. Let $G(u,v) = \int_u^v f(t) dt$. Show that $\frac{\partial G}{\partial u} = -f(u)$, $\frac{\partial G}{\partial v} = f(v)$;

- 1. Write down the second order Taylor polynomial of $f(x,y) = e^{\sin x + y}$ at P(0,0).
- 2. Locate all relative maxima, relative minima and saddle points: $f(x,y) = x^2 + xy 2y 2x + 1$.
- 3. Find the absolute maximum and minimum of f(x,y) = xy 2x on the triangle with vertices (0,0), (0,4) and (4,0).
- 4. Use Lagrange multipliers to find the maximum and minimum values of $f(x, y) = x^2 y$ subject to the constraint: $x^2 + y^2 = 25$.
- 5. Find the point on the line x + 2y = 5 that is closest to the origin.

- 1. Evaluate the iterated integral: $\int_0^1 \int_0^x e^{x^2} dy dx$.
- 2. Evaluate the double integral.
 - (a) $\iint_R (x+y) dA$; R is the region enclosed between the curves $y=x^2$ and $y=x^{1/2}$.
 - (b) $\iint_R x \cos y \, dA$; R is the triangular region bounded by y=x, y=0 and x= π .
- 3. Evaluate the integral by first reversing the order of integration.

(a)
$$\int_0^2 \int_{y/2}^1 \cos(x^2) \, dx \, dy$$
,

(b)
$$\int_{1}^{3} \int_{0}^{\ln x} x \, dy \, dx$$
.

- 4. (a) Use polar coordinates to evaluate $\iint_R (9 x^2 y^2)^{1/2} dA$, where R is the region in the first quadrant within the circle $x^2 + y^2 = 9$.
 - (b) Evaluate the iterated integral by converting to polar coordinates.

$$\int_{-2}^{2} \int_{-(4-y^2)^{1/2}}^{(4-y^2)^{1/2}} e^{-(x^2+y^2)} \, dx \, dy.$$

5. Find the surface area of the portion of the plane 2x + 2y + z = 8 in the first octant that is cut off by the three coordinate planes.

1. Evaluate the triple integral $\iiint_R \cos(z/y) dV$, where R is defined by

$$\pi/6 \le y \le \pi/2$$
, $y \le x \le \pi/2$, $0 \le z \le xy$.

2. Express the integral as an equivalent integral in which the z-integration is performed first, the y-integration second and the x-integration last:

$$\int_0^3 \int_0^{(9-z^2)^{1/2}} \int_0^{(9-y^2-z^2)^{1/2}} f(x,y,z) \, dx \, dy \, dz.$$

3. Let G be the rectangular box defined by $a \leq x \leq b, c \leq y \leq d, k \leq z \leq l$. Show that

$$\iiint_G f(x)g(y)h(z) \, dV = [\int_a^b f(x) \, dx] [\int_c^d g(y) \, dy] [\int_k^l h(z) \, dz].$$

- 4. (a) Use cylindrical coordinates to find the volume of the solid bounded above and below by the sphere $x^2 + y^2 + z^2 = 9$ and laterally by the cylinder $x^2 + y^2 = 4$.
- (b) Use spherical coordinates to find the volume of the solid bounded above by the sphere $\rho=4$ and below by the cone $\phi=\pi/3$.

- 1. Let $\mathbf{F} = (3x+2y)\mathbf{i} + (2x-y)\mathbf{j}$. Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ where C is
 - (a) the line segment from (0,0) to (1,1);
 - (b) the curve $y = x^2$ from (0,0) to (1,1)
- 2. Find the work done by a force $\mathbf{F}(\mathbf{x},\mathbf{y},\mathbf{z})=\mathbf{x}\mathbf{y}\mathbf{i}+\mathbf{y}\mathbf{z}\mathbf{j}+\mathbf{x}\mathbf{z}\mathbf{k}$ acting on a particle that moves along the curve $\mathbf{r}(t)=t\mathbf{i}+t^2\mathbf{j}+t^3\mathbf{k}, 0\leq t\leq 1$.
- 3. Show that $\int_{(0,1)}^{(\pi,-1)} y \sin x \, dx \cos x \, dy$ is independent of the path, and evaluate the integral by
 - (a) using the fundamental theorem of line integrals;
 - (b) integrating along the line segment from (0,1) to $(\pi,-1)$.
- 4. Show that the integral $\int_{(0,0)}^{(1,\pi/2)} e^x \sin y \, dx + e^x \cos y \, dy$ is independent of the path, and find its value by any method.
- 5. Use Green's Theorem to calculate $\int_C (e^x + y^2) dx + (e^y + x^2) dy$, where C is the boundary of the region between $y = x^2$ and y = x oriented counterclockwise.

- 1. Evaluate the surface integral $\iint_{\sigma} xyz \, dS$ where σ is the portion of the plane x+y+z=1 lying in the first octant.
- 2. Evaluate the surface integral $\iint_{\sigma} (x^2 + y^2) dS$, where σ is the portion of the sphere $x^2 + y^2 + z^2 = 4$ above the plane z = 1.
- 3. Evaluate $\iint_{\sigma} \mathbf{F} \cdot \mathbf{n} \, dS$ where

 $\mathbf{F}(x,y,z) = (x+y)\mathbf{i} + (y+z)\mathbf{j} + (z+x)\mathbf{k}$ and σ is the portion of the plane x+y+z=1 in the first octant, oriented by unit normals with positive components.

- 4. Use the Divergence Theorem to evaluate $\iint_{\sigma} \mathbf{F} \cdot \mathbf{n} \, dS$, where \mathbf{n} is the outer unit normal to σ .
 - (a) $\mathbf{F}(x, y, z) = 2x\mathbf{i} + 2y\mathbf{j} + 2z\mathbf{k}$, σ is the sphere $x^2 + y^2 + z^2 = 9$.
 - (b) $\mathbf{F}(x, y, z) = z^3 \mathbf{i} x^3 \mathbf{j} + y^3 \mathbf{k}$, σ is the sphere $x^2 + y^2 + z^2 = a^2$.

- 1. Use Stokes' Theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where
- $\mathbf{F}(x,y,z) = -3y^2\mathbf{i} + 4z\mathbf{j} + 6x\mathbf{k}$, C is the triangle in the plane $z = \frac{1}{2}y$ with vertices (2,0,0), (0,2,1) and (0,0,0), with a counterclockwise orientation looking down the positive z-axis.
- 2. Show that if the components of \mathbf{F} and their first- and second-order partial derivatives are continuous, then $\operatorname{div}(\operatorname{curl} \mathbf{F}) = 0$.
- 3. Find the net volume of the fluid that crosses the surface σ in the direction of the orientation in one unit of time where the flow field is given by $\mathbf{F}(x,y,z) = x^2\mathbf{i} + yx\mathbf{j} + zx\mathbf{k}$, σ is the portion of the plane $6\mathbf{x}+3\mathbf{y}+2\mathbf{z}=6$ in the first octant oriented by upward unit normals.