Tехнология 3D

Мониторы, проекторы, телевизоры, очки и конвертация 2D→3D.

Студентка группы П23

Бобрецова Т. С.

Преподаватель:

Савичев А. В.

Введение

Что такое 3D-технологии?

Это технологии, создающие иллюзию глубины изображения за счет стереоскопического эффекта.

Применение:

Кинотеатры (IMAX, RealD).

Телевизоры и мониторы.

Виртуальная реальность (VR).

Медицина, образование, игры.

Основные устройства: 3D-телевизоры, проекторы, очки (активные/пассивные), автостереоскопические дисплеи.

История создания Первые шаги 3D (XIX век)

XIX век: рождение стереоскопии

1838 г. – Чарльз Уитстон изобрел **стереоскоп** – устройство для просмотра объемных изображений.

1844 г. – Дэвид Брюстер улучшил дизайн, сделав его компактным.

1850-е – массовое производство стереофотографий (популярны в викторианскую эпоху).

Развитие в XX веке

XX век: от немого кино до IMAX

1922 г. – Первый 3D-фильм *«The Power of Love»* (анаглифные красно-синие очки).

1950-е – «Золотая эра» 3D-кино: *«House of Wax»* (1953) – первый цветной 3D-фильм.

1980-е – Появление **IMAX 3D** (большие экраны, высокая четкость).

Современная эра (XXI век)

XXI век: 3D в каждом доме

2009–2012 – Бум 3D-телевизоров (Samsung, Sony, LG).

2010-е – Развитие **VR** (Oculus Rift, HTC Vive) и **AR** («дополненная реальность»)(Microsoft HoloLens).

2020-е – Лазерные проекторы (Sony VPL-GTZ380), голографические дисплеи.

Проблемы: Снижение популярности 3D-TVs из-за дороговизны и отсутствия контента.

Виды, типы, технологии Основные технологии 3D

Какие бывают 3D-технологии?

1. Стереоскопия

Требует специальных очков. Два отдельных изображения для левого и правого глаза.

Пример: 3D-кинотеатры.

2. Автостереоскопия

Не требует очков. Использует **параллакс**- **барьеры** или **лентикулярные линзы** для разделения изображений.

Пример: Nintendo 3DS, некоторые 3D-телевизоры.

3. Голография

Записывает и воспроизводит световое поле объекта. Полностью объемное изображение без необходимости разделения на кадры.

Пример: голографические дисплеи, защитные элементы на банкнотах.

Стереоскопические технологии

3D с очками: как это работает?

1. Анаглиф (красно-синие очки):

Дешево, но низкое качество цветопередачи.

2. Поляризационные очки (пассивные):

Используются в кинотеатрах (RealD, IMAX).

Вертикальная и круговая поляризация.

3. Активные затворные очки:

Быстрое затемнение линз (120 Гц).

Высокая цена, но лучшая четкость (NVIDIA 3D Vision).

Автостереоскопические дисплеи

3D без очков

Лентикулярные линзы (Nintendo 3DS):

Микролинзы направляют свет в разные глаза.

Параллаксные барьеры (некоторые смартфоны):

Черные полосы разделяют изображения.

Недостатки:

Маленькие углы обзора.

Снижение яркости.

Голография

Голография — это метод получения объёмного изображения объекта путём регистрации и последующего восстановления волн.

Существует два метода создания голограмм:

Физический метод. Лазерный луч направляют на объект. При помощи зеркала лазерный луч разделяется на две части, образуя две волны — опорную и объектную. Объектная волна попадает на предмет и отражается на фотопластине, создавая интерференционную картину, а опорная направляется напрямую на фотопластину. Голограмма появляется в месте соединения лучей в одну точку.

Компьютерный метод. Для цифровой голограммы не всегда нужен реальный объект. Достаточно задать необходимые параметры, и программа сама вычислит волновой фронт и «нарисует» интерференционную картину.

3D-проекторы

Как работают 3D-проекторы?

DLP-Link (активные очки):

Синхронизация по вспышкам проектора.

Поляризационные проекторы:

Два объектива для разных поляризаций.

Лазерные 3D-проекторы:

Яркость до 10,000 люмен (Sony VPL-GTZ380).

Принцип действия Анаглифная технология

Анаглиф: просто и дешево

Принцип:

Левое изображение – красный фильтр, правое – синий. Мозг объединяет картинки в объем.

Плюсы:

Низкая стоимость очков.

Минусы:

Искажение цветов, усталость глаз.

Пример: Старые 3D-комиксы и фильмы.

Поляризационная технология

Поляризация: стандарт кинотеатров

Принцип:

Два изображения с разной поляризацией (вертикальная/горизонтальная или круговая).

Очки блокируют «чужое» изображение для каждого глаза.

Плюсы:

Нет мерцания, дешевые очки.

Минусы:

Требуется серебряный экран.

Пример: Кинотеатры IMAX, RealD.

Конвертация 2D в 3D

1. Принцип конвертации:

Создание карты глубины (depth map) – анализ расстояний между объектами.

Разделение изображения на слои (передний/задний план).

2. Методы преобразования:

Алгоритмические (анализ перспективы, движения, теней).

Искусственный интеллект (нейросети, например, Sony Bravia XR).

3. Примеры технологий:

NVIDIA 3DTV Play – для игр и видео.

TriDef 3D – софт для конвертации фильмов.

Режим "2D→3D" в телевизорах (Samsung, LG).

4. Проблемы:

Артефакты (ошибки в определении глубины).

Менее реалистично, чем нативное 3D.

Характеристика ЗД Монитора

1. Разрешение: 3840×2160 (4K UHD) / 5120×2880 (5K)

2. Технология 3D:

- Активная (NVIDIA 3D Vision 2, 120-144 Гц)

- Пассивная (поляризационная)

3. Частота обновления: 120-240 Гц

4. **Яркость**: 400-1400 нит

5. Контрастность: 1000:1 - 1,000,000:1 (HDR)

6. Угол обзора: 160-178°

7. Интерфейсы: DisplayPort 1.4, HDMI 2.1

Характеристика ЗД Проектора

1. Разрешение: 1920×1080 - 4096×2160

2. Технология 3D: DLP-Link (активная) Поляризационная

3. Яркость: 2000-30000 люмен

4. Контрастность: 5000:1 - 2,000,000:1

5. Источник света: Лазер/LED/Лампа

6. Проекционное расстояние: 0.5-20 м

7. Цветовой охват: 100% DCI-P3

Характеристика ЗД Телевизора

1. Разрешение: 3840×2160 (4K) / 7680×4320 (8K)

2. Технология 3D:

Активная (затворная)
Пассивная (поляризационная)

3. Частота обновления: 100-240 Гц

4. **Яркость**: 800-3000 нит (OLED/QD-OLED)

5. Контрастность: 1 000 000:1 (OLED)

6. Угол обзора: 178°

Характеристика ЗД Очков

1. Тип:

Активные (затворные)
Пассивные (поляризационные)

2. Совместимость:

Кинотеатры (IMAX, RealD) Домашние системы

3. Частота обновления: 48-144 Гц

4. Вес: 15-80 г

5. Автономность: 50-100 часов

ASUS ROG Swift PG32UQX

Технология 3D: NVIDIA 3D Vision 2 (активные затворные

очки)

Разрешение: 4K UHD (3840×2160)

Частота обновления: 144 Гц (с G-Sync Ultimate)

Яркость: 1400 нит (Mini-LED с 1152 зонами подсветки)

Контрастность: 1,000,000:1 (HDR1400)

Угол обзора: 178°

Цена: 365 659

Acer Predator X27

Технология 3D: Поддержка NVIDIA 3D Vision

Разрешение: 4K HDR (3840×2160)

Частота: 120 Гц (разгон до 144 Гц)

Яркость: 1000 нит (Quantum Dot)

Контрастность: 100,000:1

Цена: 250 000

Sony VPL-GTZ380 (Лазерный 4K SXRD)

Технология 3D: Активная (DLP-Link)

Разрешение: Нативное 4K (4096×2160)

Яркость: 10,000 люмен

Контрастность: 2,000,000:1

Цветовой охват: 100% DCI-P3

Лазерный источник: Срок службы 20,000 часов

Цена: 12 036 622

JVC DLA-NZ9

Технология 3D: Поляризационная (с

пассивными очками)

Разрешение: 8K-апскейлинг (7680×4320)

Яркость: 3,000 люмен

Контрастность: 1,000,000:1 (лазер +

диафрагма)

HDR: HDR10+, HLG

Цена: 2 297 990

LG Signature OLED Z3 (8K 88")

Технология 3D: Пассивная (поляризационные

очки)

Разрешение: 8K (7680×4320)

Процессор: Al Alpha 9 Gen6 (2D→3D

конвертация)

Яркость: 2000 нит (OLED EVO)

Угол обзора: 178°

Цена: 4 000 000

Sony Bravia XR A95L QD-OLED

Технология 3D: Активная (с опциональными очками)

Разрешение: 4K (3840×2160)

Процессор: Cognitive Processor XR

Яркость: 1500 нит

Контрастность: Бесконечная (QD-OLED)

Цена: 505 990

Xpand 3D X105-RF (Премиум)

- → Тип: Активные затворные (RFсинхронизация)
- → Совместимость: Кинотеатры IMAX, проекторы Barco
- → Частота: 144 Гц
- Линзы: Ударопрочные, антибликовое покрытие
- → Автономность: 80 часов (сменные батарейки)
- → Цена: 87 799

RealD Ultimate 3D Glasses

Тип: Пассивные (круговая поляризация)

Совместимость: Кинотеатры RealD, LG 3D TV

Линзы: Ультралегкие (15 г), 100% УФ-защита

Угол обзора: 180° без искажений

Цена: 3 000

