MAC0329 – Álgebra booleana e aplicações

DCC / IME-USP — Primeiro semestre de 2018

Lista de exercícios 2 (Data para entrega: até 18/04/2018)

Entregar os exercícios: 2, 5d', 5e, 8, 11, 12, 13, 16a, 25, 27

Álgebra booleana e propriedades

- 1. Mostre que o conjunto B^n conforme definido nas notas de aula é uma álgebra booleana.
- 2. Seja $A = \{1, 2, 3, 5, 6, 10, 15, 30\}$, ou seja, o conjunto dos divisores de 30. Defina operações binárias $+ e \cdot e$ uma operação unária $\bar{}$ da seguinte forma: para quaisquer $a_1, a_2 \in A$,

 $a_1 + a_2 =$ o mínimo múltiplo comum entre a_1 e a_2

 $a_1 \cdot a_2 = 0$ máximo divisor comum entre a_1 e a_2

$$\overline{a}_1 = 30/a_1$$

Quais são os elementos identidade com respeito a + e \cdot ? Mostre que A, com as três operações acima, é uma álgebra booleana.

Dica: considere a decomposição dos elementos de A em fatores primos.

- 3. Explique o que é o princípio da dualidade.
- 4. Seja uma álgebra booleana $\langle A,+,\cdot,\bar{},0,1\rangle$ qualquer. Prove ou mostre um contra-exemplo: $(a+\bar{b})(\overline{a}+b)(\overline{a}+\bar{b})=\overline{a}+\bar{b}$
- 5. Seja uma álgebra booleana $\langle A, +, \cdot, \bar{}, 0, 1 \rangle$ qualquer. Sejam x, y, z três elementos de A. Prove, algebricamente, as seguintes igualdades. Justifique as passagens.
 - a) $x + \overline{x}y = x + y$
 - a') $x(\overline{x} + y) = xy$
 - b) $x + y = \overline{\overline{x}} \overline{\overline{y}}$
 - b') $xy = \overline{\overline{x} + \overline{y}}$
 - c) $(x+y)(x+\overline{y}) = x$
 - c') $xy + x\overline{y} = x$
 - d) (Teorema do consenso) $xy + yz + \overline{x}z = xy + \overline{x}z$
 - d') $(x + y) (y + z) (\overline{x} + z) = (x + y) (\overline{x} + z)$
 - e) yx = zx e $y\overline{x} = z\overline{x}$ implica que y = z
 - f) (x + y + z)(x + y) = x + y
 - g) $x \overline{y} = 0$ se, e somente se, x y = x.
- 6. Sejam a,b,c três elementos de uma álgebra booleana. A seguinte implicação está correta ? Explique.

$$a + b = a + c \Longrightarrow b = c$$

Funções e expressões booleanas (caso geral)

7. Simplifique, algebricamente, as seguintes expressões (tente encontrar expressões equivalentes "mais curtas"):

a) $y \overline{z}(\overline{z} + \overline{z}x) + (\overline{x} + \overline{y})(\overline{x}y + \overline{x}z)$

b) $x + xyz + yz\overline{x} + wx + \overline{w}x + \overline{x}y$

- 8. Dada a álgebra booleana $\langle A, +, \cdot, \bar{}, 0, 1 \rangle$ com $A = \{0, 1, a, \overline{a}\}$, construa a tabela-verdade da função correspondente à expressão $\overline{a}x + a\overline{y}$.
- 9. Deduza uma expressão booleana correspondente à função definida pela tabela-verdade do exercício anterior (a partir da tabela-verdade e não da expressão dada!). Dica: use o teorema de expansão de Boole e manipulação algébrica.
- 10. Seja $A = \{0, 1, a, \overline{a}\}$. Liste todas as funções booleanas de uma variável sobre A. Dica: use o teorema de expansão de Boole.

Termos produto e soma, formas canônicas

11. Considere três variáveis booleanas a, b e c. Assinale quais das expressões abaixo são produtos, conforme definição vista em sala de aula:

a) *ab*

c) *a*

e) a(b+c)

b) $a\overline{a}$

d) a a b

f) $\overline{a} \, \overline{b} \, \overline{c}$

12. Considere três variáveis booleanas a, b e c. Assinale quais das expressões abaixo são somas, conforme definição vista em sala de aula:

a) a+b

c) a

e) a + bc

b) $a + \overline{a}$

d) a + a + b

f) $\overline{a} + \overline{b} + \overline{c}$

13. Assinale quais das expressões abaixo são somas de produtos.

a) *a*

c) a + ab

e) ab + ab

b) ab + ac

d) $ab + \overline{ab}$

f) abc

- 14. Escreva todos os produtos canônicos em três variáveis $a, b \in c$.
- 15. Escreva as seguintes funções na forma SOP (soma de produtos). Não precisam ficar na forma canônica.

a) $f(a, b, c) = \overline{a \, b \, c}$

b) f(a, b, c) = a + b + c

c) f(a, b, c, d) = (a + b)(b + c + d)

d) $f(a,b,c) = \overline{(\overline{a+b}) + c}$

16. Escreva as seguintes funções na forma POS (produto de somas). Não precisam ficar na forma canônica.

a) $f(a, b, c) = \overline{a + b + c}$

b) f(a,b,c) = abc

Minimização de expressões

- 17. O que é uma expressão na forma SOP minimal? Qual a importância dessa forma na realização dessa função por circuito digital?
- 18. Sejam 4 variáveis binárias a, b, c, d. Para quais valores dessas variáveis o produto $\overline{a} \, b \, \overline{c} \, d$ toma valor 1?
- 19. Sejam 3 variáveis binárias a, b, c. Qual é o produto que toma valor 1 quando a = 0, b = 1, e c = 1? Qual é o produto que toma valor 1 para ambos a = 0, b = 1, c = 1 e a = 0, b = 1, c = 0?
- 20. Quais são os elementos no intervalo [0010,0110]? A qual produto corresponde esse intervalo?
- 21. Para quais elementos de B^4 (isto é, valores de (a,b,c,d)) o produto \overline{a} c \overline{d} toma valor 1 ? A qual "intervalo" correspondem esses elementos ?
- 22. Sejam 3 variáveis $a, b \in c$.
 - (a) Qual é o produto correspondente ao intervalo [010, 110]?
 - (b) Qual é o intervalo correspondente ao cubo XX0?
 - (c) Qual é o produto correspondente ao cubo 010 ?
 - (d) Qual é o intervalo correspondente ao produto $a\bar{c}$?
- 23. Minimize a função $f(a,b,c) = \sum m(1,2,3,4,5,6)$ usando mapa de Karnaugh (minimizar na forma SOP).
- 24. Para a função do exercício anterior, desenhe o circuito lógico 2-níveis correspondente à expressão inicial dada e à expressão obtida após a minimização. Como os ciruitos se comparam em termos de quantidade de portas (AND e OR) utilizadas e também em termos de entradas em cada uma das portas ?
- 25. Minimize a função $f(a, b, c, d) = \sum m(0, 2, 3, 6, 7, 8, 9, 10, 13)$ usando mapa de Karnaugh (minimizar na forma SOP).
- 26. Minimize na forma POS a função $f(x, y, z) = \prod M(0, 1, 6, 7)$ usando o mapa de Karnaugh.
- 27. Minimize a função $f(a,b,c,d) = \sum m(0,2,8,12,13) = \prod M(1,3,4,5,6,7,9,10,11,14,15)$, na forma SOP e na forma POS. Como se comparam as duas formas minimais em termos de quantidade de operações AND e OR ?
- 28. Minimize a função $f(w, x, y, z) = \sum m(0, 7, 8, 10, 12) + d(2, 6, 11)$, na qual d() indica o conjunto de don't cares (isto é, entradas para as quais o valor da função não importa).
- 29. Minimize na forma SOP a função $f(a,b,c,d) = \sum m(0,2,8,9) + d(1,13)$
- 30. Minimizar conjuntamente as funções abaixo. Na escolha dos implicantes, pode-se considerar que a implementação será em PLA e portanto o custo dos implicantes pode ser ignorado.

$$f_1(a, b, c, d) = \sum m(0, 2, 6, 7, 15) + d(8, 10, 14)$$

$$f_2(a, b, c, d) = \sum m(0, 1, 3, 7, 15) + d(8, 10, 14)$$

Pode existir outra solução melhor (de menor custo)? Explique (não é preciso exibir tal solução, caso exista).

Projeto / interpretação de circuitos lógicos

31. Escreva a expressão correspondente à saída do circuito abaixo e explique qual o papel das entradas $s_1 s_2$ na parte inferior do circuito.

- 32. Escreva a tabela-verdade da função $f(a,b,c)=a\,\overline{(b+\overline{a}\,\overline{c})}$. Desenhe o circuito que realiza f, reproduzindo fielmente a expressão.
- 33. Considere números binários com 4 bits, denotados *a b c d*. Suponha que desejamos projetar um circuito para detectar números de 4 bits que correspondem a múltiplos de 3.
 - (a) Escreva a tabela verdade da função detectora de múltiplos de 3 (o número 0000 (zero) não deve ser considerado múltiplo de 3).
 - (b) Minimize a função, tanto na forma SOP como POS.
 - (c) Há diferença de custos entre as soluções SOP e POS no item anterior? Comente.
- 34. Deseja-se projetar um circuito com quatro entradas e duas saídas e que realiza a adição módulo 4. Por exemplo, (3+3)mod 4 = 2, etc. Os números a serem adicionados são dados em binário respectivamente por $x_2 x_1$ e $y_2 y_1$. A saída também deve ser dada em binário $(z_2 z_1 = 00 \text{ se a soma } é 0, z_2 z_1 = 01 \text{ se a soma } é 1, \text{ etc})$.
 - a) determine uma função na forma SOP canônica para z_1 e para z_2
 - b) Simplifique-as na forma SOP individualmente
 - c) Simplifique-as em conjunto na forma SOP
 - d) Compare e discuta as soluções obtidas em (b) e (c).

35.	Cádia
	C(A)

Código BCD refere-se à codificação de dígitos decimais de 0 a 9 pela respectiva representação binária. Para tanto são necessários 4 bits. As combinações binárias de 0000 a 1001 são utilizadas para codificação e as demais não são utilizadas. O incremento por 1 do código BCD pode ser definido pela tabela-verdade ao lado.

abcd	wxyz
0000	0001
0001	0010
0010	0011
0011	0100
0100	0101
0101	0110
0110	0111
0111	1000

Ou seja, pode-se pensar esta tabela-verdade como representando 4 funções $(w,\,x,\,y,\,{\rm e}\,z)$ com 4 entradas.

1001	0000
1010	XXXX
1111	XXXX

1000 | 1001

Escolha uma das funções (saídas w, x, y ou z) e minimize-a.

36. Considere um subtrator para números de dois bits. As entradas ab e cd definem dois números binários N_1 e N_2 (i.e., $N_1 = ab$ e $N_2 = cd$). Suponha que $N_1 \ge N_2$. As saídas fg do circuito corsespondem à diferença $N_1 - N_2$ (i.e., $fg = N_1 - N_2$).

Escreva a tabela-verdade para $f\,g$