Лабораторная работа №9

Системы случайных величин.

Системы двух независимых случайных величин.

Цель работы: изучение свойств систем независимых случайных величин

1. Общие понятия

Определение 1

Система случайных величин (как и каждая из ее составляющих) есть функция элементарного события (X, Y, ..., W)= $\varphi(\omega)$. Каждому элементарному событию ω ставится в соответствие несколько действительных чисел: значения, принятые случайными величинами X, Y, ..., W в результате опыта.

Определение 2

Функцией распределения (или «совместной» функцией распределения) системы двух случайных величин (X, Y) называется вероятность совместного выполнения двух неравенств: X < x; Y < y:

$$F(x, y) = P(X < x; Y < y)$$

Событие $\{X \le x; Y \le y\}$ означает произведение событий $\{X \le x\}$ и $\{Y \le y\}$:

$$\{X < x; Y < y\} = \{X < x\} \{Y < y\}$$

Определение 3

Вероятность попадания случайной точки (X, Y) в пределы прямоугольника R со сторонами, параллельными осям координат, ограниченного абсциссами (α, β) и ординатами (γ, δ) определяется согласно выражению

$$P\{(X,Y) \in R\} = F(\beta,\delta) - F(\alpha,\delta) - F(\beta,\gamma) + F(\alpha,\gamma)$$

Для систем двух дискретных случайных величин (X, Y) рассматривают понятия:

- Совместная вероятность (p_{ij}) вероятность того, что случайная величина X приняла значение x_i из набора $\{x_1, x_2, ..., x_n\}$, а случайная величина Y приняла значение y_i из набора $\{y_1, y_2, ..., y_m\}$
- Матрица распределения аналог ряда распределения для дискретной случайной величины, строки которой соответствуют возможным значениям случайной величины X, а столбцы возможным значениям случайной

величины Y. Элементы матрицы распределения соответствуют совместным вероятностям p_{ii} .

	<i>y</i> ₁	<i>y</i> ₂	•••	y_m
x_1	p_{11}	p_{12}	•••	p_{1m}
x_2	p_{21}	p_{22}	•••	p_{2m}
•••	• • •	•••	•••	•••
X_n	p_{n1}	p_{n2}	•••	p_{nm}

Положение 1

Сумма всех вероятностей p_{ij} , стоящих в матрице распределения, равна единице как сумма вероятностей полной группы несовместных событий:

$$\sum_{i=1}^{n} \sum_{j=1}^{m} p_{ij} = 1.$$

Положение 2

Функция распределения системы двух случайных величин находится суммированием элементов матрицы распределения p_{ij} , для которых $x_i < x$, $y_j < y$:

$$F(x,y) = \sum_{x_i < x} \sum_{y_j < y} P_{ij}.$$

Положение 3

Зная матрицу распределения системы дискретных случайных величин можно найти ряды распределения дискретных случайных величин, входящих в систему.

Так, для случайной величины X:

$$p_{x_i} = P\{X = x_i\} = \sum_{j=1}^m p_{ij}$$
 и, аналогично, $p_{y_i} = P\{X = y_j\} = \sum_{i=1}^n p_{ij}$

Положение 4

Элементы матрицы распределения $||p_{ij}||(i=1,2, ..., n;j=1,2, ..., m)$ системы 2-х **независимых дискретных случайных** величин X и Y выражаются через законы (ряды) распределения отдельных случайных величин X и Y.

$$p_{ij} = P(X = x_i)P(Y = y_j) = p_{x_i} p_{y_j}$$

2. Порядок выполнения работы

• Построить матрицу распределения системы двух независимых дискретных случайных величин по заданным рядам распределения этих величин. Проверить корректность построения.

Пример:

Пусть даны ряды распределения случайных величин X и Y.

$$Y: \begin{array}{|c|c|c|c|c|}\hline 0 & 1 & 4 \\ \hline 0,3 & 0,3 & 0,4 \\ \hline \end{array}$$

Матрица распределения будет иметь вид:

	0	1	4
2	P(2,0)	P(2,1)	P(2,4)
5	P(5,0)	P(5,1)	P(5,4)
6	P(6,0)	P(6,1)	P(6,4)
10	P(10,0)	P(10,1)	P(10,4)

$$P(i,j) = P(X=x_i)P(Y=y_i)$$

• Получить значения совместной функции распределения системы независимых дискретных случайных величин по матрице распределения.

Пример:Матрица распределения имеет вид

	0	1	4
2	0,06	0,06	0,08
5	0,03	0,03	0,04
6	0,09	0,09	0,12
10	0,12	0,12	0,16

Совместную функцию распределения можно представить в виде квадратной матрицы $(\min(X,Y);\max(X,Y))$:

	0	1	2	3	4	5	6	7	8	9	10
0	F(0,0)	F(0,1)	F(0,2)	F(0,1)	F(0,4)	F(0,5)	F(0,6)	F(0,7)	F(0,8)	F(0,9)	F(0,10)
1	F(1,0)	F(1,1)	F(1,2)	F(1,1)	F(1,4)	F(1,5)	F(1,6)	F(1,7)	F(1,8)	F(1,9)	F(1,10)
2	F(2,0)	F(2,1)	F(2,2)	F(2,1)	F(2,4)	F(2,5)	F(2,6)	F(2,7)	F(2,8)	F(2,9)	F(2,10)
3	F(3,0)	F(3,1)	F(3,2)	F(3,1)	F(3,4)	F(3,5)	F(3,6)	F(3,7)	F(3,8)	F(3,9)	F(3,10)
4	F(4,0)	F(4,1)	F(4,2)	F(4,1)	F(4,4)	F(4,5)	F(4,6)	F(4,7)	F(4,8)	F(4,9)	F(4,10)
5	F(5,0)	F(5,1)	F(5,2)	F(5,1)	F(5,4)	F(5,5)	F(5,6)	F(5,7)	F(5,8)	F(5,9)	F(5,10)
6	F(6,0)	F(6,1)	F(6,2)	F(6,1)	F(6,4)	F(6,5)	F(6,6)	F(6,7)	F(6,8)	F(6,9)	F(6,10)
7	F(7,0)	F(7,1)	F(7,2)	F(7,1)	F(7,4)	F(7,5)	F(7,6)	F(7,7)	F(7,8)	F(7,9)	F(7,10)
8	F(8,0)	F(8,1)	F(8,2)	F(8,1)	F(8,4)	F(8,5)	F(8,6)	F(8,7)	F(8,8)	F(8,9)	F(8,10)
9	F(9,0)	F(9,1)	F(9,2)	F(9,1)	F(9,4)	F(9,5)	F(9,6)	F(9,7)	F(9,8)	F(9,9)	F(9,10)
10	F(10,0)	F(10,1)	F(10,2)	F(10,1)	F(10,4)	F(10,5)	F(10,6)	F(10,7)	F(10,8)	F(10,9)	F(10,10)

$$F(i,j) = \sum_{i=1}^{n} \sum_{j=1}^{m} p_{ij} (x_i < x; y_j < y)$$

• По матрице распределения получить ряды распределения случайных величин, входящих в систему.

Матрица распределения имеет вид

	0	1	4
2	0,06	0,06	0,08
5	0,03	0,03	0,04
6	0,09	0,09	0,12
10	0,12	0,12	0,16

Ряд распределения случайной величины X представляется в виде:

<i>X</i> :	2	5	6	10
	P(2,0)+P(2,1)+P(2,4)	P(5,0)+P(5,1)+P(5,4)	P(6,0)+P(6,1)+P(6,4)	P(10,0)+P(10,1)+P(10,4)

Ряд распределения случайной величины У представляется в виде:

	0	1	4
Y:	P(2,0)+P(5,0)+P(6,0)+	P(2,1)+P(5,1)+P(6,1)+	P(2,4)+P(5,4)+P(6,4)+
	+ <i>P</i> (10,0)	+ <i>P</i> (10,1)	+P(10,4)

Полученные ряды распределения должны совпадать с исходными рядами распределения

3. Индивидуальные задания

1	1
1	,
	_

V·	3	6	7	9	10	12
Λ .	0,2	0,1	0,1	0,05	0,5	0,05

V.	5	6	7	9	11	12	13
1.	0,1	0,2	0,1	0,2	0,1	0,1	0,2

2)

V.	2	5	6	8	9	12
Λ :	0,2	0,1	0,1	0,05	0,5	0,05

V·	4	5	6	8	10	11	12
1.	0,1	0,2	0,1	0,2	0,1	0,1	0,2

3)

V·	4	7	8	10	11	13
Λ.	0,2	0,1	0,1	0,05	0,5	0,05

V.	6	7	8	9	11	13	14
1.	0,1	0,2	0,1	0,2	0,1	0,1	0,2

4)

V·	5	6	7	11	12	14
Λ .	0,2	0,1	0,1	0,05	0,5	0,05

V.	7	8	9	10	12	14	15
1.	0,1	0,2	0,1	0,2	0,1	0,1	0,2

5)

<i>V</i> .	1	2	4	6	9	11
Λ.	0,2	0,1	0,1	0,05	0,5	0,05

V·	4	5	6	7	9	10	11
1.	0.1	0.2	0.1	0.2	0.1	0.1	0.2

6)

V.	3	6	7	9	10	12
Λ .	0,2	0,2	0,3	0,1	0,1	0,1

V·	5	6	7	9	11	12	13
I.	0,05	0,05	0,2	0,1	0,3	0,2	0.1

7)

V·	2	5	6	8	9	12
Λ .	0,3	0,2	0,1	0,1	0,1	0,2

V·	4	5	6	8	10	11	12
1.	0,04	0,3	0,06	0,1	0,1	0,1	0,3

8)								
	<i>X</i> :	4	7	8	10	11	13	
	Λ.	0,1	0,3	0,1	0,01	0,4	0,09	
		,		1				
	<i>Y</i> :	6	7	8	9	11	13	14
	1.	0,2	0,1	0,1	0,2	0,1	0,1	0,2
9)								
7)		5	6	7	11	12	14	
	<i>X</i> :	0,03	0,1	0,1	0,07	0,2	0,5	
		1 _		T -			1	
	<i>Y</i> :	7	8	9	10	12	14	15
		0,1	0,2	0,1	0,2	0,1	0,1	0,2
10)								
	17	1	2	4	6	9	11	
	<i>X</i> :	0,2	0,3	0,1	0,05	0,3	0,05	
		1	5		7	0	10	11
	Y:	4	5	0,3	7	9	10	11
		0,1	0,2	0,3	0,1	0,1	0,1	0,1
11)								
	X:	3	4	6	7	10	12	
	Λ.	0,2	0,1	0,1	0,05	0,5	0,05	
		5	6	7	8	0	12	12
	<i>Y</i> :	5	6	7	-	9		13
		0,1	0,2	0,1	0,2	0,1	0,1	0,2
12)								
	V.	2	4	5	7	9	12	
	<i>X</i> :	0,2	0,1	0,1	0,05	0,5	0,05	
								•
	<i>Y</i> :	3	5	6	8	9	11	12
	1.	0,1	0,2	0,1	0,2	0,1	0,1	0,2
13)								
10)		4	5	7	11	12	13	
	<i>X</i> :	0,2	0,1	0,1	0,05	0,5	0,05	
		- 9	- 9	,	1 - 9	- 9-	- 9	<u> </u>
	V.	5	6	7	9	10	13	14
	<i>Y</i> :	0,1	0,2	0,1	0,2	0,1	0,1	0,2
14)		T = 1		T =		1.0		1
	<i>X</i> :	5	6	7	8	10	14	
		0,2	0,1	0,1	0,05	0,5	0,05	
		7	O	0	11	12	12	1.5
	<i>Y</i> :	7	8	9	11	12	13	15
		0,1	0,2	0,1	0,2	0,1	0,1	0,2

15)								
13)	V.	1	2	3	5	9	10	
	<i>X</i> :	0,2	0,1	0,1	0,05	0,5	0,05	
		1 -	ı .		1 -		T	
	<i>Y</i> :	2	4	5	6	8	10	11
		0,1	0,2	0,1	0,2	0,1	0,1	0,2
16)								
10)	17	3	6	7	9	10	12	
	<i>X</i> :	0,1	0,1	0,3	0,2	0,2	0,1	
	<i>Y</i> :	5	6	7	9	11	12	13
		0,02	0,08	0,1	0,2	0,1	0,2	0,3
17)								
1/)		2	5	6	8	9	12	
	<i>X</i> :	0,1	0,2	0,2	0,1	0,1	0,2	
			,		1		,	
	V.	4	5	6	8	10	11	12
	<i>Y</i> :	0,01	0,03	0,06	0,1	0,4	0,1	0,3
18)		1 4		0	10	11	12	
	<i>X</i> :	0,1	7	8	10	11	13	
		0,1	0,1	0,3	0,01	0,4	0,09	
	***	6	7	8	9	11	13	14
	<i>Y</i> :	0,2	0,1	0,1	0,1	0,2	0,1	0,2
19)		1	1	T	1	T		i
	<i>X</i> :	5	6	7	11	12	14	
		0,03	0,01	0,2	0,06	0,2	0,5	
		7	8	9	10	12	14	15
	<i>Y</i> :	0,1	0,04	0,1	0,06	0,4	0,1	0,2
		0,1	,,,,	0,1	, ,,,,	٠,٠		<u> </u>
20)								
	X:	1	2	4	6	9	11	
	21,	0,1	0,2	0,3	0,05	0,3	0,05	
		1		(1 7	0	10	1.1
	Y:	0,1	5 0,1	0,2	7 0,2	9 0,2	10 0,1	0,1
		0,1	0,1	0,2	0,2	0,2	0,1	0,1
21)								
,	V.	5	6	7	8	10	14	
	<i>X</i> :	0,2	0,1	0,1	0,05	0,5	0,05	
	<i>Y</i> :	7	8	9	11	12	13	15
		0,1	0,2	0,1	0,2	0,1	0,1	0,2

22)								
	V.	1	2	3	5	9	10	
	<i>X</i> :	0,2	0,1	0,1	0,05	0,5	0,05	
	<i>Y</i> :	2	4	5	6	8	10	11
	1.	0,1	0,2	0,1	0,2	0,1	0,1	0,2
23)								
	<i>X</i> :	3	6	7	9	10	12	
	Λ.	0,2	0,1	0,1	0,05	0,5	0,05	
	<i>Y</i> :	5	6	7	9	11	12	13
	1.	0,1	0,2	0,1	0,2	0,1	0,1	0,2
24)								
	<i>X</i> :	2	5	6	8	9	12	
	21.	0,2	0,1	0,1	0,05	0,5	0,05	
		1			ı		1	
	<i>Y</i> :	4	5	6	8	10	11	12
		0,1	0,2	0,1	0,2	0,1	0,1	0,2
25)								
	<i>X</i> :	1	2	4	6	9	11	
	Λ,	0,1	0,1	0,3	0,01	0,4	0,09	
							,	
	<i>Y</i> :	4	5	6	7	9	10	11
		0,2	0,1	0,1	0,1	0,2	0,1	0,2

7

0,2

7

0,1

9

0,06

9

0,06

10

0,2

11

0,4

12

0,5

12

0,1

13

0,2

26)

3

0,03

5 0,1

X:

Y:

6

0,01

6

0,04