Welcome to ICS 111 Lab

Section 3 and 4

Week 8

Read through HW7 Assignment

Tuesday Outline

- Recursion
- Hexadecimal
- HW 7

Recursion:

- A recursion (recursive function) is a function that calls itself.
- To solve a recursive function:
 - 1. Divide the problem into subproblems
 - 2. Specify base case to stop the recursion.
- Structure (for factorial example):

```
function() {
    if() { //base case (2)
    ... return}
    else{... return} //recursive call (1)
}
```

Recursion: Factorial Example

Recursion: Factorial Pattern Example

```
5! = 5 * 4 * 3 * 2 * 1

4!= 4 * 3 * 2 * 1

3!= 3 * 2 * 1

2!= 2 * 1

1!= 1
```

Recursion: Factorial Subproblem

$$n! = n * (n-1)!$$

Recursion: Where is the base case?

1!= 1

Recursion: base case

Note: Base case will be evaluated in the if() condition, to end the recursion.

Recursion: Factorial Subproblem

$$n! = n * (n-1)!$$

Factorial:

Base Case: Return without making recursive call and stop function.

Recursive Call: Function calls itself.

Factorial:

Factorial: intToString()

```
intToString(val)
String higherdigits = "";
if(val>=10) {
higherdigits=intToString(val/10);
}
return higherdigits + (val%10); }
```

Activity: Draw diagram of recursive function/ Describe what is happening.

Factorial: intToString(): Diagram Solution

Hexadecimal:

- 0-9 : Same as decimal (unit)
- 10-15: A-F (unit)
- 16...

16 Unit

	4 bit	bits
Decimal	Hexadecimal	Binary
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
10	Α	1010
11	В	1011
12	С	1100
13	D	1101
14	Е	1110
15	F	1111
16	10	0001 0000

Hexadecimal: Resources

See chart: https://kb.iu.edu/d/afdl

Counting in Hex: https://www.electronics-tutorials.ws/binary/bin_3.html

Week 8: Resources

- HW 7: http://www2.hawaii.edu/~esb/2022spring.ics111/hw07.html
- Neso Academy -Recursive Functions: https://www.youtube.com/watch?v=ggk7HbcnLG8
- Geeks for Geeks Recursive Function types: https://www.geeksforgeeks.org/types-of-recursions/
- Textbook PDF: <u>http://bedford-computing.co.uk/learning/wp-content/uploads/2015/09/Java-for-Everyone-Late-Obects.pdf</u>