Covid Recovery Analysis - Figures and outputs

Cary Ni

```
# load the external dataset
load("recovery.rdata")
# change the variable type based on the reference
index_factor = c(3, 4, 5, 9, 10, 13, 14, 15)
index_numer = c(2, 6, 7, 8, 11, 12)
dat[, index_factor] = lapply(dat[, index_factor], as.factor)
# extract 2000+2000 samples for analysis
set.seed(2604)
dat_1 <- dat[sample(1:10000, 2000),]</pre>
set.seed(3508)
dat_2 <- dat[sample(1:10000, 2000),]</pre>
# merge the dataset for unique values
# create a new variable length_ind with 30 days as threshold
dat = rbind(dat_1, dat_2) %>%
 unique() %>%
  mutate(
   length ind = ifelse(recovery time>30, 1, 0),
   length_ind = as.factor(length_ind)
# seperate training set and test set
set.seed(2023)
train_row = createDataPartition(y = dat$recovery_time, p = 0.8, list = FALSE)
# create covariates matrix for training and test
predictors_train = model.matrix(recovery_time ~ ., data = dat[train_row, -c(1,17)])[, -1]
predictors_test = model.matrix(recovery_time ~ ., data = dat[-train_row, -c(1,17)])[, -1]
# create response vector for training and test
response_train = dat[train_row, -c(1,17)]$recovery_time
response_test = dat[-train_row, -c(1,17)] recovery_time
# create covariates matrix for training and test
predictors_train_new = model.matrix(length_ind ~ ., data = dat[train_row, -c(1,16)])[, -1]
predictors_test_new = model.matrix(length_ind ~ ., data = dat[-train_row, -c(1,16)])[, -1]
# create response vector for training and test
response_train_new = dat[train_row, -c(1,16)]$length_ind
response_test_new = dat[-train_row, -c(1,16)]$length_ind
```

Exploratory analysis and data visualization

summary statistics

dat %>%

skimr::skim() %>%
knitr::knit_print()

Table 1: Data summary

Piped data
3603
17
9
8
None

Variable type: factor

skim_variable	n_missing	complete_rate	ordered	n_unique	top_counts
gender	0	1	FALSE	2	0: 1867, 1: 1736
race	0	1	FALSE	4	1: 2350, 3: 720, 4: 358, 2: 175
smoking	0	1	FALSE	3	0: 2176, 1: 1072, 2: 355
hypertension	0	1	FALSE	2	0: 1886, 1: 1717
diabetes	0	1	FALSE	2	0: 3065, 1: 538
vaccine	0	1	FALSE	2	1: 2119, 0: 1484
severity	0	1	FALSE	2	0: 3252, 1: 351
study	0	1	FALSE	3	B: 2201, A: 718, C: 684
$length_ind$	0	1	FALSE	2	1: 2491, 0: 1112

Variable type: numeric

skim_variable n	_missing comple	ete_rat	e mean	sd	p0	p25	p50	p75	p100	hist
id	0	1	4979.49	2845.35	2.0	2528.0	4987.0	7438.0	9999.0	
age	0	1	60.10	4.46	45.0	57.0	60.0	63.0	79.0	
height	0	1	170.02	5.93	148.1	166.1	170.0	173.9	189.1	
weight	0	1	79.91	7.08	57.1	75.0	79.9	84.7	104.2	
bmi	0	1	27.71	2.77	19.6	25.8	27.6	29.4	38.4	
SBP	0	1	130.01	7.88	103.0	125.0	130.0	135.0	156.0	
LDL	0	1	110.51	19.83	32.0	97.0	111.0	125.0	173.0	
recovery_time	0	1	42.98	29.46	2.0	28.0	39.0	50.0	365.0	

Number of cases seperated by 30 days in recovery by Study Group:

Visualize potential relationship between reponse variable and numeric predictors

Visualize potential relationship between reponse variable and categorical predictors

Correlation plot to check collinearity between covariates (based on training data)

```
cor(predictors_train[, c(1, 8, 9, 10, 13, 14)]) %>% corrplot(
  method = "circle", type = "full",
  addCoef.col = 1, number.font =0.5,
  tl.col="black", tl.srt=90, tl.cex = 0.5,
  insig = "blank", diag=FALSE, number.cex = .3)
```


Model Training

Ordinary Least square

```
# set train method
ctrl_1 = trainControl(method = "repeatedcv", number = 10, repeats = 5)
# build the linear least squared model with caret
set.seed(1)
lm_model = train(predictors_train, response_train, method = "lm", trControl = ctrl_1)
par(mfrow = c(2, 2))
plot(lm_model$finalModel)
```


Elastic net regression

show the best lambda and alpha combination with lowest cv rmse elnet_model\$bestTune

```
## alpha lambda
## 1001 1 0.1353353
```

Partial least squares (PLS)

Generalized Additive Models (GAM)

Multivariate adaptive regression spline model (MARS)

summary(mars_model)

```
## Call: earth(x=matrix[2884,18], y=c(17,33,92,20,4...), keepxy=TRUE, degree=2,
##
               nprune=5)
##
##
                        coefficients
## (Intercept)
                           -2.941972
## vaccine1
                           -9.506054
## h(bmi-24.5)
                            7.647737
## h(30.6-bmi)
                            7.320881
## h(bmi-30.6) * studyB
                           20.811559
##
## Selected 5 of 24 terms, and 3 of 18 predictors (nprune=5)
## Termination condition: Reached nk 37
## Importance: bmi, studyB, vaccine1, age-unused, gender1-unused, ...
## Number of terms at each degree of interaction: 1 3 1
## GCV 516.0731
                   RSS 1477023
                                  GRSq 0.4041199
                                                     RSq 0.4082465
```

K-Nearest Neighbors (KNN)

k ## 9 13

Generalized Boosted Regression

Regression Tree (CART)

create a plot of the tree using the rpart.plot() function
rpart.plot(rpart_model\$finalModel)

Random Forest

Models comparsion based on cross validation error

```
# compare model performance through sampling method
resamp = resamples(list(
    lm = lm_model,
    enet = elnet_model,
    pls = pls_model,
    gam = gam_model,
    mars = mars_model,
    knn = knn_model,
    gbm = gbm_model,
    cart = rpart_model,
    rf = rf_model
))
# plot resampling rmse
parallelplot(resamp, metric = "RMSE")
```


bwplot(resamp, metric = "Rsquared")

bwplot(resamp, metric = "RMSE")

summary(resamp)

```
##
## Call:
## summary.resamples(object = resamp)
## Models: lm, enet, pls, gam, mars, knn, gbm, cart, rf
## Number of resamples: 50
##
## MAE
##
                  1st Qu.
                                       Mean 3rd Qu.
                            Median
                                                          Max. NA's
## lm
        15.16547 16.10302 16.78177 16.83446 17.42209 19.04602
## enet 14.56452 15.92803 16.52216 16.46752 17.01105 18.64227
                                                                  0
  pls
       15.16548 16.10302 16.78177 16.83446 17.42208 19.04604
                                                                  0
       14.35229 15.33438 15.83680 15.95120 16.56241 17.79521
## mars 13.93931 14.88663 15.26803 15.37548 15.95721 17.55273
                                                                  0
       13.77991 14.91692 15.66110 15.73718 16.40355 18.31290
                                                                  0
## gbm 13.21976 14.36055 14.86937 14.97374 15.48263 16.78132
                                                                  0
  cart 14.24679 14.87635 15.29857 15.47210 16.11928 17.75836
                                                                  0
## rf
        13.54828 14.39094 14.84221 15.05416 15.75639 17.39155
                                                                  0
##
## RMSE
##
                  1st Qu.
            Min.
                            Median
                                       Mean
                                             3rd Qu.
        19.74488 23.43892 25.17216 25.24668 27.21931 32.18024
## lm
## enet 19.46546 23.14204 25.30888 25.71390 27.81579 33.96273
                                                                  0
        19.74490 23.43892 25.17216 25.24668 27.21931 32.18025
                                                                  0
## pls
## gam
        19.14744 22.27447 23.50243 24.21183 26.16733 31.05932
## mars 18.46040 21.55759 22.41118 23.11308 24.68399 27.78102
                                                                  0
       18.37738 23.09791 24.94296 26.01258 29.24863 36.95880
## knn
                                                                  0
       18.29410 20.81975 22.38344 22.50542 24.02405 26.85158
## cart 18.92266 21.53195 22.80303 23.55843 25.57517 30.80530
                                                                  0
        17.88756 20.96764 22.45933 22.80951 24.91435 28.78803
                                                                  0
## rf
##
```

```
## Rsquared
##
              Min.
                     1st Qu.
                                Median
                                            Mean
                                                   3rd Qu.
                                                                Max. NA's
        0.08620897 0.1900059 0.2572871 0.2531044 0.3099187 0.4654627
## enet 0.08078819 0.1811701 0.2277041 0.2290413 0.2731629 0.3775725
                                                                        0
## pls 0.08620900 0.1900061 0.2572879 0.2531045 0.3099185 0.4654625
## gam 0.12269099 0.2416508 0.3294108 0.3350657 0.4183874 0.6223217
                                                                        0
## mars 0.07601256 0.2807337 0.3859944 0.3750641 0.4765129 0.6877643
## knn 0.06268675 0.1685928 0.2095025 0.2280360 0.2800124 0.4727332
                                                                        0
## gbm 0.07642602 0.3251101 0.3895383 0.4023679 0.5004710 0.7109789
                                                                        0
## cart 0.05216633 0.2359045 0.3635301 0.3517752 0.4471816 0.6223333
                                                                        0
       0.08652982 0.3224828 0.3928160 0.3915504 0.4790679 0.6056875
                                                                        0
```

Results

Test Mean Squared Error

```
# get test mse
predict_value = predict(gbm_model, newdata = predictors_test)
test_mse = mean((predict_value - response_test)^2)
test_mse %>% knitr::knit_print()
```

[1] 479.9529

Variable importance plots


```
var_df %>%
  as.data.frame() %>%
  dplyr::select(-var) %>%
  knitr::kable()
```

	rel.inf
bmi	61.3499576
studyB	11.0818448
weight	5.1468465
LDL	5.0259253
height	4.5435387
vaccine1	4.1495410
age	1.9610485
SBP	1.9116559
severity1	1.0737375
gender1	1.0317295
smoking2	0.7984746
race2	0.5512056
smoking1	0.4402374
race4	0.4217472
hypertension1	0.3594399
diabetes1	0.1530700
race3	0.0000000
studyC	0.0000000

Partial dependance plots

