Coût de péages dans le sud de la France

El Khmissi Mohamed Niasse Gueladio Fontana Quentin

13 Décembre 2021

Table of contents

- Le package deloqv
 - A savoir
 - Fonctionnalites
- Etapes de realisation du package deloqv
 - Preparation des donnees
 - Création de la Map
 - Algorithme du chemin le moins cher
 - Distribution des prix
- Presentaion de la Doc
 - Problem
 - Install
 - Aspect github
 - Packages utlies
 - Contact and Sources
 - Synthese

Outline

- Le package deloqv
 - A savoir
 - Fonctionnalites
- Etapes de realisation du package deloqv
 - Preparation des donnees
 - Création de la Map
 - Algorithme du chemin le moins cher
 - Distribution des prix
- Presentaion de la Doc
 - Problem
 - Install
 - Aspect github
 - Packages utlies
 - Contact and Sources
 - Synthese

A savoir

- **1** Langage de Programmation : Python
- Cible: Reseau autoroutier du Sud de la France (A9, A61, A62, A66, A75 et A709 entre Montpellier, Perpignan, Pamier et Toulouse).

Fonctionnalites

- Produire une Map interactive :
 - selections des gares de depart et d'arrivee parmis une liste de gares de peage aux choix,
 - visualisation geographique du chemin a parcourir,
 - information sur la distance et sur le cout du trajet.
- Proposer le trajet le moins cher en fonction du nombre d'arrets souhaites en cours de route.
- Produire une description de la distribution des prix entre deux gares de peage.

Outline

- Le package deloqv
 - A savoir
 - Fonctionnalites
- Etapes de realisation du package deloqv
 - Preparation des donnees
 - Création de la Map
 - Algorithme du chemin le moins cher
 - Distribution des prix
- Presentaion de la Doc
 - Problem
 - Install
 - Aspect github
 - Packages utlies
 - Contact and Sources
 - Synthese

Traitement puis importation des donnees dans VScode

- Creation du dataframe "prices.csv":

 -> conversion et sauvegarde en format .csv des donnees
 fournies a la page 3 du pdf:

 https://public-content.vinci-autoroutes.com/PDF/
 Tarifs-peage-asf-vf/ASF-C1-TARIFS-WEB-2021-maille-vf.pdf
- <u>Creation du dataframe "coordonnees.csv"</u>:

 -> Importation du fichier gares-peage-2019.csv disponible a l'url suivant :

 https://www.data.gouv.fr/en/datasets/gares-de-peage-du-reseau-routier-national-concede/
- Transformation du format des coordonnees "X" et "Y" du fichier coordonnees.csv : lambert93 (epsg :2154) -> GPS WGS84 (epsg :4326)

Completion et data-cleaning

- Suppression des lignes et des colonnes inutiles dans les fichiers coordonnees.csv et prices.csv
- Ajouts des gares de peages et de leurs données relatives dans le fichier coordonnées.csv

Voir code : data_cleaning.py

Création de la Map

- La partie dataframe : dans cette partie on a utiliser le package pandas pour lire et préparer les bases de données coordonneesclean.csv et pricesclean.csv et une liste contient les noms des 36 villes qu'on a.
- La partie visualisation : dans cette partie on a utiliser les packages folium, openrouteservice et ipywidgets pour visualiser la map interactive.

Probléme des distances d'aller-retour

Résolution du probléme des distances

```
#problem solving of different outward and return distances
if i < j:
    cor = [x, y]
    for i in range(0, len(cor)-1): ...
    return m
elif i > j:
    cor = [y, x]
    for i in range(0, len(cor)-1): ...
    return m
    print("Choisissez deux villes différentes")
```

Exemple du visualisation

Problematique

Comment determiner le trajet a parcourir lorsqu'un voyageur decide de s'arreter k fois en cours de route afin que ce trajet lui revienne le moins cher?

Generation du dataframe d'un trajet correctement indexe

- Partitionnement et regroupement des gares de peages
- 2 La fonction : nb_de_gare_sur_trajet(i,j) :
 - -> renvoie le nombre de gares qui separe la gare de depart et d'arrivee.
- 1 La fonction composee : Le_Trajet(tab_algo(i,j)) :
 - -> renvoie un dataframe ordonne constitue des gares presentes sur le trajet de la gare i a j et dont l'index va de 0 a nb_de_gare_sur_trajet(i,j)+1.

Exemple

Alfonse est a Perpignan Sud (13) et veut se rendre a Beziers Ouest (7).

Generation de k+1 sous-trajets

- Fonction liste_des_tuples(p,n):
 - -> renvoie la liste de tout les arrangements ordonnes possibles de *p* parmis *n* allant de 0 à l'index de la gare d'arrivee.

- Ponction suite_de_trajet(p,n):
 - -> renvoie pour chaque arrangement possible generes par la fonction precedente une suite de couple representant la suite de k+1 sous-trajets.

Exemple

```
liste des tuples(4,7) ...
[(0, 1, 2, 6),
(0, 1, 3, 6),
(0, 1, 4, 6),
(0, 1, 5, 6),
(0, 2, 3, 6),
(0, 2, 4, 6),
(0, 2, 5, 6),
(0, 3, 4, 6),
(0, 3, 5, 6),
 (0, 4, 5, 6)
```

```
suite de trajet(4,7) ...
[[(0, 1), (1, 2), (2, 6)],
 [(0, 1), (1, 3), (3, 6)],
 [(0, 1), (1, 4), (4, 6)],
 [(0, 1), (1, 5), (5, 6)],
 [(0, 2), (2, 3), (3, 6)],
 [(0, 2), (2, 4), (4, 6)],
 [(0, 2), (2, 5), (5, 6)],
 [(0, 3), (3, 4), (4, 6)],
 [(0, 3), (3, 5), (5, 6)],
 [(0, 4), (4, 5), (5, 6)]]
```

Chemin le moins cher

- Fonction cout_minimum(data,depart,arrivee):
 - arguments :
 - data = Le_Trajet(tab_algo(i,j))
 - depart = 0
 - arrivee = nb_de_gare_sur_trajet(i,j)+1
 - -> renvoie le cout d'un trajet lorsqu'il se fait sans arret.

Chemin le moins cher

- Fonction cout_minimum_tuple(depart,arrivee,k,data) :
 arguments :
 - data = Le Trajet(tab algo(i,j))
 - depart = 0
 - arrivee = nb_de_gare_sur_trajet(i,j)+1
 - k = nombre d'arrets
 - \rightarrow renvoie le cout minimum d'un trajet en fonction de k.

Exemple

Alfonse decide de s'arreter deux fois en cours de route. Il voudrait savoir a quelle gare de peage sortir afin que le cout de son trajet soit minimise. Il utilise donc notre algorithme.

```
chemin_moins_cher(7,13,2) ...
Si vous sortez aux gares :
  (Leucate,Perpignan nord), votre trajet vous coutera 7.0 €.
Vous aurez ainsi fait une economie de 1.4 € sur le coût des péages.
```

Preparation des donnees Création de la Map Algorithme du chemin le moins cher **Distribution des prix**

Objectif

Determiner la distribution des prix des peages par kilometre suivant un trajet donne.

Principe

- Choisir un trajet a etudier
- Rechercher dans le dataframe des prix la donnee relative au cout de peage entre chaque gares successives presentes sur le trajet.
- Oiviser respectivement chacun des prix retenus par la distance en kilometres qui separe les gares.
- Rapprocher tout les resultats sous la forme d'une courbe de densitee dans un plot a l'aide de la fonction kdeplot fournie par le package seaborn.

Exemple

Outline

- Le package deloqv
 - A savoir
 - Fonctionnalites
- Etapes de realisation du package deloqu
 - Preparation des donnees
 - Création de la Map
 - Algorithme du chemin le moins cher
 - Distribution des prix
- Presentaion de la Doc
 - Problem
 - Install
 - Aspect github
 - Packages utlies
 - Contact and Sources
 - Synthese

- Objectif du project

- Pandas
- Folium
- osmix
- networkx

Outline

- Le package deloqv
 - A savoir
 - Fonctionnalites
- 2 Etapes de realisation du package deloqv
 - Preparation des donnees
 - Création de la Map
 - Algorithme du chemin le moins cher
 - Distribution des prix
- Presentaion de la Doc
 - Problem
 - Install
 - Aspect github
 - Packages utlies
 - Contact and Sources
 - Synthese

