

West Nile Virus Prediction

DSI Project 4 Monthon, Peerawat, Piyapon

Problem Statement

WNV have effect on economic in Chicago. So, we will try to predicting WNV And prevent it to maximize cost benefit for USA government. Furthermore, we will specify the factor which impact the WNV the most and when to spray in Chicago.

What is West Nile Virus

West Nile Virus Transmission Cycle

Transfusions, transplants, and mother-to-child. During WNV transmission season, all donated blood is checked for WNV before being used. The risk of getting WNV through blood transfusions and organ transplants is very small, and should not prevent people from receiving units of blood for medical conditions or for other circumstances (American Red Cross).

Transmission during pregnancy from mother-to-baby or transmission to an infant via breastfeeding is extremely rare.

Not through touching. WNV is not spread through casual contact, such as touching or kissing a person with the virus.

effect of West nile virus

Febrile illness

About 1 in 5 people who are infected develop a fever with other symptoms such as headache, vomiting, diarrhea, or rash.

Serious symptoms

About 1 in 150 people who are infected develop a severe illness affecting the central nervous system

Number of cases 10 years

Figure 1. Number of reported confirmed and probable cases of West Nile virus among Chicago residents by year, 2002-2012.

- In 2002 don't spray the pesticides therefore, the spike number of WNV cases
- The average 2003 2012 is around 17 cases per year

Mosquitos life cycle

Culex tarsalis.

(a common mosquito in California)

14 days at 70° F 10 days at 80° F.

some species

(naturally adapted)

Minimum life cycle: 4 Days maximum: life cycle: 30 DAYS.

Data

Cost analysis of WNV

Cost estimate

Item	Cost per case†	No. cases to which cost applies‡	% Cases to which cost applies§	Total cost for all cases	Total cost if treatment/service were used in all cases
Inpatient treatment costs	\$33,143	46	100	\$1,524,570	\$1,524,570
Outpatient costs	Cost				
	per case¶				
Outpatient hospital treatment	\$333	17	36	\$5,668	\$15,337
Physician visits	\$450	46	100	\$20,708	\$20,708
Outpatient physical therapy	\$909	46	100	\$41,810	\$41,810
Occupational therapy	\$4,037	3	7	\$12,111	\$185,699
Speech therapy	\$588	1	1	\$588	\$27,032
Total				\$80,885	\$290,586
Nursing home	Cost#				
Nursing home stay**	\$190	2	4	\$36,195	\$36,195
Transportation	\$65	46	100	\$2,977	\$2,977
Home health aides, babysitters, etc.	\$1,569	7	14	\$10,983	\$505,211
Total				\$50,154	\$544,383
Total for WNND				\$2,140,409	\$2,844,339

A total of 46 WNND cases occurred in Sacramento County in 2005. Costs were ≈\$33,143 per inpatient and ≈\$6,317 per outpatient for all treatments (Table 2). Cost for each WNND patient estimated to have spent time in a nursing home was ≈\$18,097. Productivity loss during symptomatic WNND cost \$10,800 per patient <60 years of age and \$7,500 per patient >60 years of age (Table 3). Total medical costs accrued by all WNND patients was ≈\$2,140,409; total costs for all cases (medical cost plus productivity loss) was ≈\$2,844,338.

Benefit of preventing a case of WNV in humans: \$27,000 - \$133,000 with a mean of \$33,000.

Cost analysis of WNV

Cost SPRAY

The chemical used is Zenivex, applied at a rate of 1.5 fluid ounces per acre. That measure is approved by the U.S. EPA to control mosquitoes in outdoor residential and recreational areas.

Price is \$10,800 per gallon or \$4.2 per acres

SUMMARY OF DATA

Data Dictionary: clean_train.csv / clean_test.csv

Variables	Description	Example Value
date	Date which investigate trap.	2007-05-29
species	Species of mosquitos	CULEX RESTUANS / other
trap	Unique trap ID	T002, T015
latitude	Latitude of trap	41.954690
longitude	Longitude of trap	-87.800991
addressaccuracy	Accuracy of lat/long	8/9
nummosquitos	Number of mosquitos found in trap	1 / 25 / 50
week	Week of the year	0 / 24 / 52

Data Dictionary: clean_weather.csv

Variables	Description	Example Value
tavg	Temperature average on that day	45.0 / 67.0
depart	measure of climate change but tells us nothing about the effects of climate change.	-3 / 6 / 14
dewpoint	temperature to which air must be cooled to become saturated	29 / 35 / 51
heat	measure of how hot it really feels when relative humidity is factored in with the actual air temperature.	0/9/23
cool	measure of how cool it really feels when relative humidity is factored in with the actual air temperature.	0/6/25
dewpoint	the air needs to be cooled to (at constant pressure) in order to achieve a relative humidity	27 / 50 / 74
sealevel	the atmospheric pressure at sea level at a given location	29.23 / 30.05
averagespeed	Average speed of the wind	3.9 / 14.5 / 17.8
codesum	Weather event. For instance, SN – snow. We convert into 0 if no event and 1 if any event occur	0/1
snowfall	Height of snow	0 / 0.005 / 0.1
preciptotal	Measurement of water – rain / snow / blizzard / etc.	0.000 / 0.030 / 0.040
resultdir	Wind direction	2 / 4 / 25 / 27

TRAIN -

```
Species = train['species'].map({
    'CULEX PIPIENS/RESTUANS': 'CULEX PIPIENS/RESTUANS',
    'CULEX RESTUANS': 'CULEX RESTUANS',
    'CULEX PIPIENS': 'CULEX PIPIENS',
    'CULEX TERRITANS': 'other',
    'CULEX SALINARIUS': 'other',
    'CULEX TARSALIS': 'other',
    'CULEX ERRATICUS': 'other'})
```

```
train['Species'].value_counts()
```

CULEX PIPIENS/RESTUANS 4752
CULEX RESTUANS 2740
CULEX PIPIENS 2699
other 315
Name: Species, dtype: int64

Majority of number mosquitos in each trap have a low number.

```
train['NumMosquitos'].hist()
<AxesSubplot:>

5000
4000
2000
1000
2000
300 30 40 50
```

TRAIN – Date

```
train['Date'] = pd.to_datetime(train['Date'])
train['day'] = train['Date'].dt.day
train['month'] = train['Date'].dt.month
train['year'] = train['Date'].dt.year
train['week'] = train['Date'].dt.weekofyear
```

TRAIN – duplicated row

train[98:100]												
	Date	Species	Trap	Latitude	Longitude	AddressAccuracy	NumMosquitos	WnvPresent	day	month	year	week
98	2007-06-26	CULEX PIPIENS/RESTUANS	T086	41.688324	-87.676709	8	1	0	26	6	2007	26
99	2007-06-26	CULEX PIPIENS/RESTUANS	T086	41.688324	-87.676709	8	1	0	26	6	2007	26

- If number of mosquitos go above 50 will generate new record
- Some are 2 record in same day with 4 nummosquitos and 6 nummosquitos

TRAIN – duplicated row

```
duplicateDFRow = train[train.duplicated(['Date', 'Species', 'Trap'])]
```

Looking for duplicate row

```
index_dup = (duplicateDFRow.index).tolist()
len(index_dup)
```

Take the index

```
for index in index_dup:
    train['NumMosquitos'][index-1] += train['NumMosquitos'][index]
```

Sum number of duplicated row together

```
train.drop(index_dup,inplace=True)
```

Drop index which duplicated

TRAIN – duplicated

rand

train[98:101]

	Date	Species	Trap	Latitude	Longitude	AddressAccuracy	NumMosquitos	WnvPresent	day	month	year	week
98	2007-06-26	CULEX PIPIENS/RESTUANS	T086	41.688324	-87.676709	8	1	0	26	6	2007	26
99	2007-06-26	CULEX PIPIENS/RESTUANS	T086	41.688324	-87.676709	8	1	0	26	6	2007	26
100	2007-06-26	CULEX RESTUANS	T086	41.688324	-87.676709	8	2	0	26	6	2007	26

train[98:101]

	Date	Species	Trap	Latitude	Longitude	AddressAccuracy	NumMosquitos	WnvPresent	day	month	year	week
98	2007-06-26	CULEX PIPIENS/RESTUANS	T086	41.688324	-87.676709	8	2	0	26	6	2007	26
100	2007-06-26	CULEX RESTUANS	T086	41.688324	-87.676709	8	2	0	26	6	2007	26
101	2007-06-26	CULEX RESTUANS	T096	41.731922	-87.677512	8	5	0	26	6	2007	26

WEATHER – Missing value

```
for index, row in weather.iterrows():
    if weather['Tavg'][index]=='M':
        weather['Tavg'][index] = (weather['Tmin'][index] + weather['Tmax'][index])/2

temp_mean = weather[weather['StnPressure']!='M']
mean_stnpressure = temp_mean['StnPressure'].astype(float).mean()
mean_stnpressure

29.28442857142859

weather['StnPressure'] = weather['StnPressure'].replace('M',mean_stnpressure)
```

- 1. Filling with average value / mean value
- Tavg
- StnPressure
- SeaLevel
- AvgSpeed

WEATHER – Missing value

- 2. Dropout columns due to it is all missing value
- Water1
- Depth

WEATHER – Missing value

weather[['Station','Depart']].value_counts()											
Station	Depart										
2	Μ	1472									
1	2	93									
	-1	84									
	- 2	80									
	5	77									
	1	76									
	7	76									
	3	75									
	0	74									
	2	70									

<pre>weather[['Station','Sunrise']].value_counts()</pre>											
Station	Sunrise										
2	-	1472									
1	0416	104									
	0417	64									
	0419	40									
	0425	32									
		• • •									
	0542	8									
	0543	8									
	0544	8									
	0545	8									
	0517	8									

- 3. Filling with other station
- Depart
- Heat / Cool
- Sunset / Sunrise
- Wetbulb

	Station	Date	Tmax	Tmin	Tavg	Depart	DewPoint	WetBulb	Heat	Cool
7	2	2007- 05-04	78	51	64.5	4	42	50	М	М
505	2	2008- 07-08	86	46	66	5	68	71	М	М
675	2	2008- 10-01	62	46	54	-4	41	47	М	М
1637	2	2011- 07-22	100	71	85.5	5	70	74	М	М
2067	2	2012- 08-22	84	72	78	-1	51	61	М	М
2211	2	2013- 05-02	71	42	56.5	-5	39	45	М	М
2501	2	2013- 09-24	91	52	71.5	-1	48	54	М	М
2511	2	2013- 09-29	84	53	68.5	1	48	54	М	М
2525	2	2013- 10-06	76	48	62	-1	44	50	М	М
2579	2	2014- 05-02	80	47	63.5	-4	43	47	М	М
2811	2	2014- 08-26	86	49	67.5	8	68	71	М	М

WEATHER - CodeSum

```
weather['CodeSum'].value_counts()
                     1609
                      296
RΑ
RA BR
                      238
BR
                      110
TSRA RA BR
                       92
RA BR VCFG
TS RA BR HZ
BR VCTS
RA DZ FG+ BCFG BR
TSRA FG+ BR HZ
Name: CodeSum, Length: 98, dtype: int64
```

```
new_code_sum = []
for i in weather['CodeSum']:
    if i == ' ':
        new_code_sum.append(0)
    else:
        new_code_sum.append(1)

weather['CodeSum'] = new_code_sum
```

CodeSum represent event that occur in that day whether it be, snow, rain, duststrom, freezing, etc. Therefore, we will mapping into 0 if no event occur in that they, and 1 if any event occur

EDA

Why we not use SPRAY.csv

- 1. Data train occur 5 years and spray have only 2 years if we merge together data will be lose.
- 2. Other reason is as you can see on spray record after spray in area number of mosquitos sometimes increase sometimes decrease. So, we think spray will not significantly effect

Data Correlate redundant variable?

- We drop tmax / tmin becuase using only tavg to decrease redundant data
- We drop wetbulb because have a strong correlate with dewpoint (to decrease number of feature).
- We drop stnpressure because have a strong correlate with sealevel (to decrease number of feature).
- We drop resultspeed because have a strong correlate with averagespeed (to decrease number of feature).

Most effected feature

Number of Mosquitos V.S. WNVpresent

set(train.columns)-set(test.columns)

{'nummosquitos', 'wnvpresent'}

train[['wnvpresent', 'nummosquitos']].corr()

 wnvpresent
 nummosquitos

 wnvpresent
 1.000000
 0.183891

 nummosquitos
 0.183891
 1.000000

Need Prediction of Number of Mosquitos in **Test.csv**

Due to we looking through the number of mosquitos have some relation on WNV. We will try to predict number of mosquitos on file test and using it as a feature in model.

NUMMOSQuITOS

Predicting numosquitos on test file

```
X = train_df.drop(columns='nummosquitos')
y = train_df['nummosquitos']
X_test = test_df
```

Set target variable as a nummosquitos and the rest as a predictors.

After try on LinearRegression, Ridge, Lasso. Ridge perform the best (least error). However, it's some wrong prediction number of mosquitos can't be negative. There fore, I map lower than 0 to be 0 and round up to be number of mosquitos on test file

```
test['nummosquitos'].describe()
         116293.000000
count
             10.416499
mean
std
              5.982979
min
            -21.658359
25%
              6.850677
50%
             10.770048
75%
             14.458843
             30.564687
max
```

```
test['nummosquitos'] = test['nummosquitos'].clip(lower=0)
test['nummosquitos'].describe()
count
         116293.000000
             10.602921
mean
              5.533111
std
              0.000000
min
25%
              6.850677
50%
             10.770048
             14.458843
             30.564687
max
Name: nummosquitos, dtype: float64
```

Model & Tuning

Maximize Sensitivity

If we predicting that area not have WNV but it's actually have (False negative)

- Cost that government pay to cure patient and improductive \$ 33,000 per cases
- While if we spray in all Chicago areas the costs will be \$610,260 (\$4.2 per acre)

With out Spray

2002 with out Spray, found 225 WNV cases

Cost of ameliorate and cure is $225 \times 33,000 = 7,425,000$

With Spray

Total Area Chicago 145,300 acres
Cost for Spray
145,300 x 4.2= \$610,260
Not included wage

Average WMV case in (2003-2012) is 17 cases per year

Cost of ameliorate and cure is $17 \times $33,000 = $561,000$ Total cost is \$1.171.260

CLASSIFICATION MODEL

Goal: Minimize False Negative

Minimize wrong prediction that West Nile virus is not present but actually it's occur in that area

CLASSIFICATION MODEL

West Nile Virus Present

- 0: West Nile Virus Not Present
- 1: West Nile Virus Present

Assign Variable

🌳 Split Data

- X_train
- X_val (X_test of train data)
- y_train
- y_val (y_test of train data)

Target Variable

```
In [993]: y_train.value_counts(normalize = True)
Out[993]: 0     0.956344
     1     0.043656
     Name: wnvpresent, dtype: float64

In [994]: y_val.value_counts(normalize = True)
Out[994]: 0     0.956049
     1     0.043951
     Name: wnvpresent, dtype: float64
```

Standardization

Balance Target Variable

```
In [997]: sm = SMOTE()
    Xsm_train, ysm_train = sm.fit_resample(X_train_sc, y_train)
    Xsm_val, ysm_val = sm.fit_resample(X_val_sc, y_val)

In [999]: ysm_train.value_counts(normalize = True)

Out[999]: 1    0.5
    0    0.5
    Name: wnvpresent, dtype: float64
```

Model 1 : All features in file train and weather

Model & accuracy

Model	Train Score	CrossVal Score	Test Score	AUC	Sensitivity	False Negative	Kaggle Score
Baseline	50%	50%	50%	-	-	-	
Adaboost	89.4%	88.7%	88.7%	0.95	91.3%	176	0.668
LR	80.3%	80.1%	83.6%	0.90	89.9%	205	0.732
Naive- Bayes	69.9%	70.1%	69.7%	0.82	73.4%	538	0.668
Random Forest	100%	96.2%	83.7%	0.95	71.4%	579	0.733
KNeighbors	95.6%	93.4%	76.4%	0.81	63.0%	747	0.584

Feature engineering

1. Add Humidity


```
# Create function to calculate relative humidity
def cal_rh(temperature, dewpoint):
    Tavg_C = ((temperature - 32) * 5 / 9)
    DewPoint_C = ((dewpoint - 32) * 5 / 9)
    VapPress_Sat = np.exp((17.625 * Tavg_C) / (Tavg_C + 243.04))
    VapPress_Act = np.exp((17.625 * DewPoint_C) / (DewPoint_C + 243.04))
    R_Humidity = (VapPress_Act / VapPress_Sat) * 100
    return R_Humidity
```

2. Add Lagging of time of features

Tavg V.S. WNVpresent

Dewpoint V.S. WNVpresent

High correlate Features – (top 40 Features use in Model)

Number of mosquitos

Dewpoint previous 1 day

Temperature previous 21 day

Humidity previous 1 day

ROC CURVE

- Adding humidity and time lag features

- All models have higher AUC score, better on distinguishing between classes.

Model 2: TOP high corr feature from lag and humidity

Model & accuracy

Model	Train Score	CrossVal Score	Test Score	AUC	Sensitivity	False Negative	Kaggle Score
Baseline	50%	50%	50%	-	-	-	
LR	81.3%	81.1%	84.7%	0.91	92.3%	155	0.782
Adaboost	89.5%	89.0%	89.7%	0.95	91.8%	165	0.629
Naive- Bayes	73.5%	73.7%	76.3%	0.86	81.0%	385	0.646
Random Forest	99.9%	94.4%	80.9%	0.95	66.9%	670	0.716
KNeighbors	94.7%	92.3%	78.2%	0.81	65.3%	702	0.537

Big improve in Sensitivity, small degrade in Specificity

LR Model 2

TOP Coefficient Features – [Seasonal features]

TOP Coefficient Features – [Lagging Time features]

Conclusion

Conclusion

- WNV is highly seasonal, most occur in end of July and mid of September (week31-week38)
- WNV outbreak are more serious in summer (high temperature) and high perciption (humidity, dewpoint, etc.)
- Therefore, we need to spray before week 31 to maximize cost benefit.

Best scoring model

- LogisticRegression()
- Kaggle score: **0.782**

Furthermore improvement

- Go deep down in weather: streaks of weather like rain 7 days in a row
- Spatial area correlation is neighbor area effect.
- Spatial time series correlation is neighbor temperature effect or not.

Thank You

Do you have any question?

C

Figure 1. Number of reported confirmed and probable cases of West Nile virus among Chicago residents by year, 2002-2012.

