LAGRANŽO DAUGIKLIŲ METODU RASKITE FUNKCIJOS EKSTREMUMUS

1.	$z = (x-2)^2 + (y-3)^2$	kai x + y = 7.	2.	$z = x^2 + y^2$	kai x + y = 1.
3.	$z = 2(x-1)^2 + 3(y-3)^2$	$kai \ x + y = 6.$	4.	$z = x^2 - y^2$	$kai \ x - y = 4.$
5.	z = x + y	$kai (x-4)^2 + (y-3)^2 = 4.$	6.	$z = (x-3)^2 + (y-5)^2$	$kai \ y-2x=5.$
7.	$z = 3x^2 + 2y^2 - 3x + 1$	$kai \ x^2 + y^2 = 4.$	8.	$z = x_1 + x_2 + x_3$	$kai \ \frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} = 1.$
9.	$z = \frac{1}{x_1} + \frac{1}{x_2}$	$kai \ \frac{1}{x_1^2} + \frac{1}{x_2^2} = 1.$	10.	$z = x_1 \cdot x_2 \cdot x_3 \cdot x_4$	$kai \ x_1 + x_2 + x_3 + x_4 = 4.$
11.	$x_1 x_2 \\ z = 2x_1^2 + 3x_2^2 + x_3^2$	$kai \ x_1 + x_2 + x_3 = 8.$			
12.	$z = x_1 \cdot x_2 \cdot x_3$	kai $\begin{cases} x_1 + x_2 + x_3 = 6; \\ x_1 x_2 + x_1 x_3 + x_2 x_3 = 12. \end{cases}$	13.	$z = x_1^2 + x_2^2 + x_3^2$	$kai \ x_1 + x_2 + x_3 \le 12.$
14.	$z = x_1 \cdot x_2 \cdot x_3$	$kai \begin{cases} x_1 + x_2 + x_3 \le 6; \\ x_1 x_2 + x_1 x_3 + x_2 x_3 \le 12. \end{cases}$	15.	$z = x_1 - 2x_2 - 2x_3$	$kai \ x_1^2 + x_2^2 + x_3^2 \le 9.$
16.	$z = x_1^2 + 4x_2^2 - 4x_1x_2 - 2x_1x_3 - 2x_2x_3$	$kai \ 3x_1^2 + 6x_2^2 + 2x_3^2 \le 1.$	17.	$z = x_1 x_2 + x_1 x_3 + x_2 x_3$	$kai \ x_1 + x_2 + x_3 \le 4.$
18.	$z = x_1^2 x_2 + x_2^2 x_1 + x_1 x_2 x_3 + x_3^2$	$kai \ x_1 + x_2 + x_3 \le 15.$	19.	$z = x_1^2 - 2x_1x_2 + x_3^2$	$kai \ x_1 + 2x_2 + x_3 = 1.$
20.	$z = x_1 \cdot x_2 \cdot x_3$	$kai \begin{cases} x_1 + x_2 + x_3 = 6; \\ x_1 x_2 + x_1 x_3 + x_2 x_3 = 12. \end{cases}$	21.	$z = x_1^2 + x_2^2 + x_3^2$	$kai \ x_1 + x_2 + x_3 \le 12.$
22.	$z = x_1 \cdot x_2 \cdot x_3$	$kai \begin{cases} x_1 + x_2 + x_3 \le 6; \\ x_1 x_2 + x_1 x_3 + x_2 x_3 \le 12. \end{cases}$	23.	$z = x_1 - 2x_2 - 2x_3$	$kai \ x_1^2 + x_2^2 + x_3^2 \le 9.$
24.	$z = x_1^2 + 4x_2^2 - 4x_1x_2 - 2x_1x_3 - 2x_2x_3$	$kai \ 3x_1^2 + 6x_2^2 + 2x_3^2 \le 1.$	25.	$z = x_1 x_2 + x_1 x_3 + x_2 x_3$	$kai \ x_1 + x_2 + x_3 \le 4.$
26.	$z = x_1^2 x_2 + x_2^2 x_1 + x_1 x_2 x_3 + x_3^2$	$kai \ x_1 + x_2 + x_3 \le 15.$	27.	$z = x_1^2 - 2x_1x_2 + x_3^2$	$kai \ x_1 + 2x_2 + x_3 = 1.$
28.	$z = \frac{1}{x} + \frac{1}{y}$	$kai \ \frac{1}{x^2} + \frac{1}{y^2} \le 1.$	29.	$z = x^2 - y^2$	$kai \begin{cases} x - y = 4; \\ x^2 + y^2 \le 16. \end{cases}$