- 1) Include a screenshot of your interactive quality plot. Based on this plot, what values would you choose for --p-trunc-len and --p-trim-left for both the forward and reverse reads? Why have you chosen those numbers?
 - Reverse reads o for trim left and 160 trunc len
 - Reverse reads 3' good quality until 160 bp
 - Forward reads o for trim left and 190 for trunc len

Based on the interactive quality plots for both forward and reverse reads, the chosen settings for data trimming and truncation are well-aligned with the observed quality scores. For forward reads, a trimming value of --p-trim-left o and a truncation length of --p-trunc-len 190 are selected to use the consistently high-quality scores above 30 across the initial 190 bases. Similarly, for reverse reads, the settings of --p-trim-left o and --p-trunc-len 160 are chosen because the quality stays high up to 190 bases, beyond which there is a noticeable decline. These parameters ensure that the sequence data used in subsequent analyses are of high quality, reducing the potential for errors and improving the reliability of the results.

2) How would you modify the code above to truncate and trim in your desired way?

Edit the code to reflex parameters showing best quality regions of the reads. The command is configured to trim at position o for both forward and reverse reads and to truncate at 190 bases for forward reads and 160 bases for reverse reads. This setup ensures that only the high-quality portions of the reads are kept, enhancing the reliability and accuracy of the subsequent microbiome analysis.

--p-trim-left-f o \setminus

--p-trunc-len-f 190 \

--p-trim-left-r o \

--p-trunc-len-r 160 \

3) In the tutorial, you had to mv the files to rename them to just rep-seqs.qza, table.qza, and stats.qza. How could you modify the above code to skip that step? How do you need to modify qiime metadata tabulate in order to account for the renamed files being generated?

Specify output filenames such as rep-seqs.qza, table.qza, and stats.qza in the qiime dada2 denoise-paired command. Then, ensure the qiime metadata tabulate command references these filenames accurately, thus streamlining the process and reducing potential errors; essentially deleting DADA2 from the code will make it successful.

- --o-representative-sequences rep-seqs-dada2.qza \setminus
- --o-table table-dada2.qza \
- --o-denoising-stats stats-dada2.qza
- --o-representative-sequences rep-seqs.qza \
- --o-table table.qza \
- --o-denoising-stats stats.qza
- 4) Your metadata file has a different name than that in the tutorial. How do you adjust your code in order to use the metadata file you have been given?

Make it a txt file remove "sample" from tutorial code, also remove "sample" from the metadata default. To accommodate a metadata file with a different name and format in your QIIME2 analysis, first convert the file from Excel to a Unicode text file (.txt), then update your command line references by removing "sample" and specifying the new file name, metadata.txt.

sampleid	population	sex	timep		bird	flock	
#q2:types	categorical	categor		categor		categorical	categorical
4_S157_L001	resident	female	В	BIRD22		ntfemale	
13_S95_L001	resident	male	В	BIRD19	reside	ntmale	
18_S71_L001	resident	male	В	BIRD16	reside	ntmale	
61_S109_L001	migratory	female	В	BIRD03	migrat	oryfemale	
78_S46_L001	migratory	male	В	BIRD12	migrat	orymale	
84_S61_L001	migratory	female	В	BIRD06	migrat	oryfemale	
100_S359_L001	migratory	female	В	BIRD01	migrat	oryfemale	
104_S93_L001	migratory	male	В	BIRD09	migrat	orymale	
106_S98_L001	resident	female	В	BIRD23	reside	ntfemale	
125_S13_L001	migratory	female	В	BIRD02	migrat	oryfemale	
128_S36_L001	resident	male	В	BIRD18	reside	ntmale	
163_S60_L001	migratory	female	В	BIRD04	migrat	oryfemale	
168_S37_L001	migratory	female	В	BIRD05	migrat	oryfemale	
174_S146_L001	resident	female	В	BIRD24	reside	ntfemale	
189_S23_L001	resident	male	В	BIRD17	reside	ntmale	
212 S94 L001	resident	male	В	BIRD15	reside	ntmale	
245 S122 L001	resident	female	В	BIRD26	reside	ntfemale	
254 S69 L001	migratory	male	В	BIRD08	migrat	orymale	
265 S133 L001	resident	female	В	BIRD21	reside	ntfemale	
307_S70_L001	migratory	male	В	BIRD11	migrat	orymale	
309 S47 L001	resident	male	В	BIRD20	reside	ntmale	
364 S22 L001	migratory	male	В	BIRD10	migrat	orymale	
366 S45 L001	migratory	male	В	BIRD07	migrat	orymale	
385_S170_L001	resident	female	В	BIRD25	reside	ntfemale	

5) Include a screenshot of the table summary from visualizing your table and a screenshot of the sequence length statistics from the rep-seqs file.

The first graph is individual birds, the second graph represents the population.

Rep seq file

Table summary

6) Jump down to taxonomy. Once you have generated your taxonomy visualization, sort it by confidence. What are your top hits?

Confidence table

284687df97108624c1f6a3d57668cba0	k_Bacteria; p_Proteobacteria; c_Alphaproteobacteria; o_Rickettsiales; t_mitochondria	1.00000000000000
f52cc1224cac807cd42d9a901ed53c9b	k_Bacteria; p_Proteobacteria; c_Alphaproteobacteria; o_Rickettsiales; f_milochondria	1.000000000000000049
a52970705dfd5642085748f4646b3b18	k_Bacteria; p_Proteobacteria; c_Alphaproteobacteria; o_Rickettsiales; f_mitochondria	1.0000000000000013
1b87abf52962fbe31cf34d77729d1b4c	k_Bacteria; p_Planctomycetes; c_Ptanctomycetia; o_Germatales; f_Isosphaeraceae	1.0000000000000000000000000000000000000
025f8d52bf0fe507d3355b96f306b99b	k_Bacteria; p_Bacteroidetes; c_Cytophagia; o_Cytophagates; f_Cytophagaceae; g_Runella; s_	1.0
1524b090dbd05a604d54ed8c2ced1acb	k_Bacteria; p_Fusobacteria; o_Fusobacteria; o_Fusobacteriales; f_Leptotrichiaceae; g_Leptotrichia; s_	1.0
1e781834af10358b3ddaaecde4c15959	k_Bacteria; p_Firmicutes; c_Clostridia; o_Clostridiales; t_Tissierellaceae]; g_Anaerococcus; s_	1.0
245b2aa3f0304ce3a64102493b4261a1	k_Bacteria; p_Bacteroidetes; c_Cytophagia: o_Cytophagales; f_Cytophagaceae; g_Emilicia; s_	1.0
26ce2cd3e526fbd0e26604d642886a16	k_Bacteria; p_Proteobacteria; o_Deitaproteobacteria; o_MIZ48; f_; g_; s_	1.0
317c1c60d1c49b3857282ad38125cb7f	k_Bacteria; p_Verrucomicrobia; c_Methylacidiphilae); o_Methylacidiphilales; f_; g_; s_	1.0
41f3f39a0335a7392afa80327caf0f77	k_Bacteria; p_Firmicutes; c_Clostridia; o_Clostridiales; t_Tissierellaceae]; g_Anaerococcus; s_	1.0
46e9544e9c5e7ed6d90a7b50a8a9c990	k_Bacteria; p_Firmicutes; c_Clostridia; o_Clostridiales; f_Tissierellaceae]; g_Anaerococcus; s_	1.0
6db3b7eb4f438072f8fe720b9745ceb6	k_Bacteria; p_Armatimonadetes; c_SHA-37; o_; f_; g_; s_	1.0
74db75e62fcd4c68be66d7a5cb9b55c5	k_Bacteria; p_Verrucomicrobia; c_Methylacidiphilae); o_Methylacidiphilales; f_; g_; s_	1.0
7982f10e7208509a6591f1ee1d91ee3b	k_Bacteria; p_Verrucomicrobia; c_Verrucomicrobiae; o_Verrucomicrobiales; f_Verrucomicrobiaesae; g_Akkermansia; s_	1.0
809ce338577e7bcbed5ae3101fea51ff	k_Bacteria; p_Verrucomicrobia; c_Methylacidiphilae); o_Methylacidiphilales; f_; g_; s_	1.0
8fd253d51e7aca7bbc43bae8dcd26435	k_Bacteria; p_Fibrobacteres; c_Fibrobacteria; o_258ds10; f_; g_; s_	1.0
2bc5b2b80439ea1819f948224ea6be69	k Bacteria; p. Proteobacteria; c. Alphaproteobacteria; o. Rickettsiales; f. milochondria	0.999999999999978
0d5395792eadbf5f62e8ffb14fa0262	k_Bacteria; p_Proteobacteria; c_Alphaproteobacteria; o_Rickettsiales; f_mitochondria	0.9999999999999
ce60a6ff9d1ebb20bc5c414825cd8833	k_Bacteria; p_Planctomycetes; c_Planctomycetia; o_Gemmatales; f_Isosphaeraceae	0.99999999999956
99108a0151b211c8963bed3a74a06f15	k_Bacteria; p_Proteobacteria; c_Alphaproteobacteria; o_Rickettsiales; f_mitochondria	0.99999999999953
9011737255se3168945sdf05114808sb	k Bacteria; p. Proteobacteria; c. Alphaproteobacteria; o. Rickettsiales; f. mitochondria	0.999999999999947

7) What do you think this code is doing? Why do you think this is a necessary or important step?

```
qiime taxa filter-table \
--i-table table.qza \
--i-taxonomy taxonomy.qza \
--p-exclude mitochondria,chloroplast \
--o-filtered-table table.qza
```

The code provided uses the QIIME2 qiime taxa filter-table command to filter out mitochondrial and chloroplast DNA from the analysis table, based on the taxonomy classifications. This step is crucial as it enhances the specificity and accuracy of microbial community analysis by focusing solely on bacterial (prokaryotic) sequences, thereby eliminating non-bacterial DNA which could skew the results and interpretations of the microbial ecosystem being studied.

8) Re-do your table visualization and re-do your taxonomy commands. Do you have any differences now in the hits with the highest confidence? Why or why not? Really think about what the code is doing.

After filtering out mitochondrial and chloroplast DNA and redoing the table visualization and taxonomy commands, there were no differences in the hits correlated to the highest confidence. This is because the filtering process only affects the abundance table and taxonomy classification, not the underlying sequence data in the representative sequences file. Thus, any high-confidence mitochondrial or chloroplast sequences still appear in results if not explicitly excluded from all data files used in the analysis. The end result did not remove mitochonial DNA from our rep seq file only from our taxonomy and table.

9) Looking at taxa bar plots, what are your top 2 phyla? Include a screenshot. What are the top 5 most abundant classes? Include a screenshot. (Color bars level 1 and level 2)

- 10) What is the difference between alpha and beta diversity? You will have to read outside resources to answer this question. Your response should be in your own words.
 - Alpha diversity refers to the diversity within a single ecological community or sample, measuring the variety and abundance of species present. It often includes metrics like species richness, evenness, and the Shannon diversity index, providing insights into the ecological complexity within a single habitat.
 - Beta diversity, on the other hand, compares the diversity between different communities or ecosystems. It measures the difference in species composition across environmental gradients or geographic locations, highlighting how distinct the communities are from each other. Metrics like Bray-Curtis dissimilarity and Jaccard index are commonly used to quantify these differences, offering a view of species turnover or shared species between habitats.

Together, alpha and beta diversity contribute to a comprehensive understanding of biodiversity across studies and populations.

11) Before you calculate your diversity metrics, you have to choose a sampling depth. What file previously generated will you use to help you determine what to choose? Defend your choice of sampling depth. How many samples do you retain and how many do you lose?

To calculate diversity metrics accurately, I will use a sampling depth of 10,000 based on the sequence data in the table.qzv file, which provides a summary of sequence counts per sample. This depth ensures high-quality data by excluding samples with fewer than 10,000 sequences, thus minimizing the impact of low-coverage data on the analysis. By setting this threshold, I kept 28 samples for indepth analysis and exclude only 6, effectively balancing data quality with the number of samples analyzed.

Sample ID	Frequency
106_S98_L001	65,047
13_S95_L001	50,303
174_S146_L001	46,672
4_S157_L001	46,157
364_S22_L001	44,702
307_S70_L001	36,809
18_S71_L001	36,618
309_S47_L001	35,816
78_S46_L001	34,625
128_S36_L001	33,524
212_S94_L001	32,387
366_S45_L001	27,170
61_S109_L001	20,540
163_S60_L001	19,460
385_S170_L001	19,311
245_S122_L001	18,620
84_S61_L001	11,072
254_S69_L001	10,101
168_S37_L001	8,991
265_S133_L001	6,858
100_S359_L001	4,100
125_S13_L001	3,620
104_S93_L001	1,436
189_S23_L001	476

12) For alpha diversity, you need to create visualizations for Shannon diversity and Observed features. This will require you to modify the alpha-group-significance code. For which metadata values were graphs generated? Were any of those comparisons significant? How do you know whether they were or were not significant? Briefly describe what Shannon diversity and Observed features are measuring (less than 1 paragraph).

Based on the provided boxplot for Shannon diversity grouped by population, and the accompanying Kruskal-Wallis test results, it's clear that there are no significant differences in alpha diversity across different populations, as indicated by the p-value of 0.1615. This p-value, being greater than 0.05, suggests that any observed variations in Shannon diversity across populations are not statistically significant and could be due to chance.

Shannon diversity is a metric that evaluates both the richness (the total number of different species) and evenness (how evenly the individuals are distributed among those species) within a community. The Observed features metric, on the other hand, merely counts the number of distinct species present in a sample, without accounting for their abundance. Neither showed significant differences across the groups defined by sex, population, and flock, indicating uniformity in species richness and distribution patterns among these groups within the studied community.

Alpha Diversity Boxplots

13) For beta diversity, you will need to create visualizations for Bray Curtis dissimilarity. This will require your to modify the beta-group-significance code. You should have one visualization for sex, one for population, and one for flock. Include a screenshot of each visualization. Is there any significance? Regardless of significance, how can you interpret these results (hint: what is beta diversity looking at?)

The Bray-Curtis dissimilarity visualizations show varied microbial community compositions across groups based on sex, population, and flock. The statistical analysis reveals that differences in microbial communities between sexes (p=0.167) and between migratory and resident populations (p=0.994) are not statistically significant, suggesting that these factors do not strongly influence microbial diversity. However, differences between flocks are statistically significant (p=0.003), indicating that the flock environment significantly affects microbial community structure

Group significance plots

dime2view

Overview

	PERMANOVA results
method name	PERMANOVA
test statistic name	pseudo-F
sample size	19
number of groups	2
test statistic	1.168064
p-value	0.167
number of permutations	999

Group significance plots

Download raw data as TSV

dime2view

_			
OVE			

	PERMANOVA results
method name	PERMANOVA
test statistic name	pseudo-F
sample size	19
number of groups	2
test statistic	1.435619
p-value	0.034
number of permutations	999

14) The core-metrics-phylogeny command generates a file called bray-curtisemporer.qzv. Include 3 screenshots total (1 where the points are colored based on sex, one on population, one on flock). How do these results help you make sense of the results you got from question 13?

The Emperor PCoA plots from the bray-curtis-emporer.qzv file, colored by sex, population, and flock, visually reinforce the statistical outcomes from the PERMANOVA tests. The plots show no significant clustering by sex (p=0.167) or population (p=0.994), showing that these factors do not influence microbial community structures significantly. In contrast, the significant clustering by flock (p=0.003) visually shows that flock-specific environmental or social factors have a substantial impact on shaping microbial communities, confirming the statistical analysis results.

Population

Flock

Sex

