Econ 703 Fall 2007 Homework 5

Due Tuesday, October 23.

- 1. Let $X = \mathbb{R}^n$, and define the function $d_2: X \times X \longrightarrow \mathbb{R}_+$ by $d_2(x,y) = \max_i |x_i y_i|$.
 - (a) Prove that d_2 is a metric on X.
 - (b) What are the basic open sets in (X, d_2) ?
 - (c) Prove that A is an open subset of (X, d_2) if and only if it is an open subset of (X, d_1) where d_1 is the Euclidean metric on X. (Thus, d_2 and d_1 induce the same collection of open subsets on X.)
- 2. Let $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be defined by:

$$f(x,y) = xy/(x_2 + y_2)$$
, if (x,y) differs from $(0,0)$
= 0 if $(x,y) = (0,0)$.

- (a) Show that f is continuous in each variable separately.
- (b) Compute the function g(x) = f(x, x).
- (c) Does $f(x, x + \varepsilon)$ converge uniformly to f(x, x) as $\varepsilon \downarrow 0$?
- (d) Show that f is not continuous.
- 3. A subset A of \mathbb{R}^n is star-shaped around the origin if $x \in A$ implies $\lambda x \in A$ for all $\lambda \in [0,1]$. Prove that a star-shaped set is connected.
- 4. Let $f, g : [0, 1] \to \mathbb{R}$ be continuous functions, and suppose that f(x) > g(x) for all $x \in [0, 1]$. Prove or disprove the following statement: there exists A > 0 such that $f(x) \ge g(x) + A$ for all $x \in [0, 1]$.

What if instead f and g were only left continuous?