Barème sur 15 points

Durée: 1 heure 45 minutes

Contrôle de géométrie analytique N°1

NOM:									
<i>k</i> .			6 8					Groupe	
DDENOM .									

1. Dans le plan, muni d'un repère orthonormé $(O, \vec{e_1}, \vec{e_2})$, on considère une droite $g = g(A, \vec{v})$ et un point D:

$$A(-2, -5), \quad \vec{v} = 3\vec{e}_1 + \vec{e}_2, \quad D(7, 8).$$

On condidère le trapèze $\ ABCD$ de bases $\ AB$ et $\ DC$ défini par les conditions suivantes :

- le sommet B appartient à la droite g,
- soit H le pied de la hauteur issue de D sur AB, le point B est défini par $(AH, B) = \frac{7}{3}$,
- le sommet C appartient à la bissectice intérieure de l'angle \widehat{BAD} .

Déterminer les coordonnées des sommets B et C.

6,5 pts

- **2.** Dans le plan muni d'une origine O, on considère deux points A et B, et on pose $\vec{a} = \overrightarrow{OA}$, $\vec{b} = \overrightarrow{OB}$ (\vec{a} et \vec{b} non colinéaires).
 - Soit I le point défini par $\overrightarrow{OI} = \frac{3}{2} \ \overrightarrow{a} \frac{2}{3} \ \overrightarrow{b}$.

 Déterminer si le point I appartient à la droite d = d(A, B).

 Justifier rigoureusement votre réponse à l'aide d'un calcul vectoriel.
- b) Soit C le point défini par $\overrightarrow{OC} = \vec{a} + \vec{b}$, P un point parcourant le segment BC et P' l'image de P par l'homothétie de centre A et de rapport k = -2. Déterminer, en fonction des données, l'équation vectorielle du lieu de P' lorsque P décrit le segment BC, puis caractériser géométriquement ce lieu.

Tourner la page

10 min

- 3. On considère une plaque homogène trouée dont le plan est donné ci-dessous. L'aire du trou circulaire vaut 28 unités d'aire.
 - a) Définir le centre de gravité $\,G\,$ de cette plaque à l'aide de la notion de barycentre.
 - b) Construire rigoureusement et avec soin (règle, équerre, compas) le point $\,G\,$ sur le plan ci-dessous. 4 pts

tot: 1h 12