08.30 Lecture Notes

Math 403/503

September 2, 2022

Recall: F = R or C (these are scalars).V = a vector space over F. This means addition and scalar multiplication are supported and several axioms state that they behave as expected.

Definition: Given vectors $v_1, v_2, ... v_m$ in V, a <u>linear combination</u> is any expression $x_1v_1 + ... + x_mv_m$ where $x_i \in F$.

Definition: Given vectors $v_1, v_2, ...v_m$ in V, the span of $v_1, ..., v_m$ is the set of all linear combinations of $v_1, ..., v_m$. Terminology (could be a verb): If the span of $v_1, ..., v_m$ equals all of V we say that $v_1, ..., v_m$ spans V.

E.G. In F^3 the vectors $v_1 = (1,0,0)$ $v_2 = (0,1,0)$. The span of of v_1, v_2 consists of the xy-plane because linear combinations have the form x(1,0,0) + y(0,1,0) or (x,y,0). The vectors $v_1 = (1,0,0), v_2 = (0,1,0), v_3 = (0,0,1)$ span F^3 .

Definition: The <u>dimension</u> of V is the smallest number of vectors $v_1, ..., v_m$ that spans V. If there is no such number (so no finite list of vectors spans V) then V is said to be infinite dimensional.

- E.G. F^3 is finite dimensional because (1,0,0),(0,1,0),(0,0,1) span it. F^N is not finite dimensional.
- E.G. A polynomial is an expression of the form $a_0 + a_1 z + a_2 z^2 + ... + a_m z^m$ where $a_0, a_1, ... \epsilon F$. The degree of the polynomial is the highest power n of z such that the coefficient $\overline{a_m \neq 0}$.

If V = the space of polynomials of degree $\leq m$ then V is finite dimensional. If W = the space of all polynomials then W is infinite dimensional. To see this let $w_1, w_2, ..., w_k$ be any list of elements of W. Each w_i has a degree, m_i . Let m = the maximum of these degrees m_i . Then the polynomial $z^{(m+1)}$ cannot be written as a linear combination of $w_1, ..., w_k$. Thus, no list $w_1, ..., w_k$ spans W.

Linear Independence

Given any vectors $v_1, ..., v_m$ in some space V, the 0 vector is always a linear combination: $0 = 0v_1 + 0v_2 + ... + 0v_m$.

Definition: A set of vectors $v_1, ..., v_m$ is called <u>linearly independent</u> if the only way to write 0 as a combination of $v_1, ..., v_m$ is with all coefficients being 0. If

there is more than one way, we say $v_1,...,v_m$ is linearly dependent.

Lemma: A set of vectors $v_1, ..., v_m$ is linearly independent if and only if none of the vectors v_j can be written as a combination of the rest. The proof of this statement is homework.

statement is homework. E.G. In F^2 consider the vectors $v_1=(1,2), v_2=(2,3), v_3=(3,7)$. This list is linearly dependent: (0,0)=5(1,2)+-1(2,3)+-1(3,7). Alternatively this could be written as: (1,2)=1/5(2,3)+1/5(3,7).