Machine Learning

in 2018... Deep Learning!

Alfredo Canziani, Alexey Svyatkovskiy

@AlfredoCanziani, @asvyatko

Autoencoders

Unsupervised learning / Generative models

Autoencoder

$$egin{aligned} m{h} &= f(m{W_x x} + m{b_x}) \ \hat{m{x}} &= g(m{W_h h} + m{b_h}) \ m{x}, \hat{m{x}} &\in \mathbb{R}^n \ m{h} &\in \mathbb{R}^d \end{aligned}$$

$$oldsymbol{W_x} \in \mathbb{R}^{d imes n}$$

$$oldsymbol{W_h} \in \mathbb{R}^{n imes d}$$

If "tight weights", then

$$oldsymbol{W_h} \doteq oldsymbol{W_x}^ op$$

Reconstruction losses

$$\mathcal{L} = rac{1}{m} \sum_{j=1}^{m} \ell(oldsymbol{x}^{(j)}, ilde{oldsymbol{x}}^{(j)})$$

binary input
$$\ell(m{x}, ilde{m{x}}) = -\sum_{i=1}^n [x_i \log(\hat{x}_i) + (1-x_i) \log(1-\hat{x}_i)]$$

real valued input
$$\ell(oldsymbol{x}, ilde{oldsymbol{x}}) = rac{1}{2}\|oldsymbol{x} - ilde{oldsymbol{x}}\|^2$$

Under-/over-complete hidden layer

Denoising autoencoder

$$\tilde{\boldsymbol{x}} \sim p(\tilde{\boldsymbol{x}} \mid \boldsymbol{x})$$

We assume we are injecting the same noisy distribution we're going to observe in reality. In this way, we can learn how to robustly recover from it.

Contractive autoencoder

penalises sensitivity to the any direction

Auto-encoder (recap)

Variational auto-encoder

 $\operatorname{decoder}: \mathcal{Z} \to \mathbb{R}^n$

$$oldsymbol{z}\mapsto\hat{oldsymbol{x}}$$

encoder :
$$\mathcal{X} \to \mathbb{R}^{2d}$$

$$x\mapsto h$$

Variational auto-encoder

Generative adversarial nets

Unsupervised learning / Generative models

$$D: \mathbb{R}^n \to (0,1)$$

$$\boldsymbol{x} \vee \hat{\boldsymbol{x}} \mapsto \ell$$

$$G: \mathcal{Z}
ightarrow \hat{x}$$

Generative adversarial network

Value function

$$V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log(1 - D[G(\boldsymbol{z})])]$$

$$\min_{G} \max_{D} V(D,G)$$