

# SUBJECT : ATOMIC STRUCTURE

| 1.                                                                                                          | Calculate the short                                                                                           | est wavelength in H <sub>2</sub> <sup>©</sup>                                                                          | spectrum of Lyman se    | ectrum of Lyman series when $R_H = 109,677 \text{cm}^{-1}$ . |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------|--|--|--|--|--|
|                                                                                                             | A)911.7 $A^{\circ}$                                                                                           | B)912.7 $A^{\circ}$                                                                                                    | C)91.7 $A^{\circ}$      | D)921.7 <i>A</i> °                                           |  |  |  |  |  |
| 2.                                                                                                          | What is the maximum number of emission lines when the excited electron of a H atom in n=6 drops               |                                                                                                                        |                         |                                                              |  |  |  |  |  |
| <ol> <li>3.</li> <li>4.</li> <li>6.</li> <li>7.</li> <li>8.</li> <li>9.</li> </ol>                          | to the ground state                                                                                           | ?                                                                                                                      |                         |                                                              |  |  |  |  |  |
|                                                                                                             | A)36                                                                                                          | B)6                                                                                                                    | C)15                    | D)10                                                         |  |  |  |  |  |
| 3.                                                                                                          | The ionization e                                                                                              | energy of H atom is                                                                                                    | s 13.6v. The ionizat    | ion energy of $Li^{2+}$ ion will be                          |  |  |  |  |  |
|                                                                                                             | A)54.4e V                                                                                                     | B)122.4e V                                                                                                             | C)13.6e V               | D)27.2e V                                                    |  |  |  |  |  |
| <ol> <li>1.</li> <li>2.</li> <li>3.</li> <li>4.</li> <li>7.</li> <li>8.</li> <li>9.</li> <li>10.</li> </ol> | What transition in                                                                                            | the hydrogen spectrui                                                                                                  | m would have the same   | e wavelength as the blamer transition                        |  |  |  |  |  |
|                                                                                                             | n=4 to n=2 in the $He^{\oplus}$ spectrum                                                                      |                                                                                                                        |                         |                                                              |  |  |  |  |  |
|                                                                                                             | A) $n=4$ to $n=2$                                                                                             | B) $n=3$ to $n=2$                                                                                                      | C) $n=3$ to $n=1$       | D) n=2 to n=1                                                |  |  |  |  |  |
| 5.                                                                                                          | The ionization ene                                                                                            | rgy of H atom is 13.6                                                                                                  | e V. What will be the i | onization energy of $He^{\oplus}$ ion                        |  |  |  |  |  |
|                                                                                                             | A)54.4ev                                                                                                      | B)52.4ev                                                                                                               | C)122.4ev               | D)54.1ev                                                     |  |  |  |  |  |
| 6.                                                                                                          | The circumference of the first bohr orbit in H atom is $3.322 \times 10^{-10}$ m. What is the velocity of the |                                                                                                                        |                         |                                                              |  |  |  |  |  |
|                                                                                                             | Electron of this orbit                                                                                        |                                                                                                                        |                         |                                                              |  |  |  |  |  |
|                                                                                                             | A)3                                                                                                           | B)4                                                                                                                    | C)9                     | D)12                                                         |  |  |  |  |  |
| 7.                                                                                                          | Calculate the radiu                                                                                           | s of the third orbit of                                                                                                | a hydrogen atom; the r  | radius of the first Bohr orbit of                            |  |  |  |  |  |
|                                                                                                             | hydrogen                                                                                                      |                                                                                                                        |                         |                                                              |  |  |  |  |  |
|                                                                                                             | Atom is $0.53 \stackrel{\circ}{A}$ .                                                                          |                                                                                                                        |                         |                                                              |  |  |  |  |  |
|                                                                                                             |                                                                                                               | D)1.50.40                                                                                                              | C)1.06 $A^0$            | $D_{12} 12 4^{0}$                                            |  |  |  |  |  |
| 0                                                                                                           | *                                                                                                             | ,                                                                                                                      | ,                       | <b>'</b>                                                     |  |  |  |  |  |
| 8.                                                                                                          |                                                                                                               | If an electron in H atom has an energy of $-78.4 \text{ kcal } mol^{-1}$ . The orbit in which the electron is present. |                         |                                                              |  |  |  |  |  |
|                                                                                                             | is.<br>A)1 <sup>st</sup>                                                                                      | B)2 <sup>nd</sup>                                                                                                      | C)3 <sup>rd</sup>       | D)4 <sup>th</sup>                                            |  |  |  |  |  |
| 0                                                                                                           | *                                                                                                             | ,                                                                                                                      | ,                       | ,                                                            |  |  |  |  |  |
| 9.                                                                                                          | If the radius of the second Bohr orbit of hydrogen atom is $r_2$ , the radius of the third Bohr orbit will be |                                                                                                                        |                         |                                                              |  |  |  |  |  |
|                                                                                                             | A) $\frac{4}{9}r_2$                                                                                           | B)4 $r_2$                                                                                                              | C) $\frac{9}{4}r_2$     | D)9 $r_2$                                                    |  |  |  |  |  |
|                                                                                                             |                                                                                                               |                                                                                                                        | 7                       |                                                              |  |  |  |  |  |
| 10.                                                                                                         |                                                                                                               | Sohr orbit is r then the                                                                                               | de Broglie wave lengt   | h of the electron in the third orbit will                    |  |  |  |  |  |
|                                                                                                             | be                                                                                                            |                                                                                                                        |                         |                                                              |  |  |  |  |  |
|                                                                                                             |                                                                                                               | 2                                                                                                                      | 2                       |                                                              |  |  |  |  |  |
|                                                                                                             | A)2 $\pi r$                                                                                                   | B) $\frac{2\pi r}{3}$                                                                                                  | C) $\frac{3\pi r}{3}$   | D)6 $\pi r$                                                  |  |  |  |  |  |
| 11                                                                                                          | Chaosa the correct                                                                                            | relations on the basis                                                                                                 | 3                       |                                                              |  |  |  |  |  |
| 11.                                                                                                         |                                                                                                               |                                                                                                                        |                         |                                                              |  |  |  |  |  |
|                                                                                                             | A) Velocity of electron $\alpha 1/n$<br>B)Frequency of revolution $\alpha 1/n^3$                              |                                                                                                                        |                         |                                                              |  |  |  |  |  |
|                                                                                                             | , ·                                                                                                           |                                                                                                                        |                         |                                                              |  |  |  |  |  |
|                                                                                                             | C)Radius of orbit                                                                                             |                                                                                                                        |                         |                                                              |  |  |  |  |  |
|                                                                                                             | D) Force on electro                                                                                           |                                                                                                                        |                         | -> / > / / >                                                 |  |  |  |  |  |
| 10                                                                                                          | A) (a) and (b)                                                                                                | B) (a) and (c)                                                                                                         | C) (b) and (c)          | D) (a) and (d)                                               |  |  |  |  |  |
| 12.                                                                                                         | If the speed of electron in the first Bohr orbit of hydrogen atom is x, then the speed of the electron in     |                                                                                                                        |                         |                                                              |  |  |  |  |  |
|                                                                                                             | the third Bohr orbit of hydrogen is                                                                           |                                                                                                                        |                         |                                                              |  |  |  |  |  |
|                                                                                                             | A) $\frac{x^2}{9}$                                                                                            | B) $\frac{x}{2}$                                                                                                       | C)3x                    | D)9x                                                         |  |  |  |  |  |
|                                                                                                             | У                                                                                                             | 1                                                                                                                      |                         |                                                              |  |  |  |  |  |

| 13.                               | The ratio of the difference between the first and second Bohr orbit energies to that between second and third Bohr orbit energies is                                                                                    |                                                                                                                                           |                                               |                                                           |  |  |  |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------|--|--|--|
|                                   | A) $\frac{1}{2}$                                                                                                                                                                                                        | B) $\frac{1}{3}$                                                                                                                          | C) $\frac{27}{5}$                             | D) $\frac{5}{27}$                                         |  |  |  |
| 14.                               | The $\lambda$ of $H_{\alpha}$ line of the Balmer series is 6500 A. What is the $\lambda$ of $H_{\beta}$ line of the Balmer series                                                                                       |                                                                                                                                           |                                               |                                                           |  |  |  |
|                                   | A)481.48 $A^{\circ}$                                                                                                                                                                                                    | B)481.5 $A^{\circ}$                                                                                                                       | C)481 A°                                      | D)4814.8 A° 7                                             |  |  |  |
| 15.                               | <del>-</del> -                                                                                                                                                                                                          | tron in H atom is given<br>e electron from ground<br>B)656 KJ                                                                             |                                               | $/ n^2 \text{KJ } mol^{-1}$ , then the energy S D)1312 KJ |  |  |  |
| 16.                               | ,                                                                                                                                                                                                                       | i of the three Bohr orbi                                                                                                                  | ,                                             | D)1312 IW                                                 |  |  |  |
|                                   | A) 1:1/2:1/3                                                                                                                                                                                                            | B) 1:2:3                                                                                                                                  | C) 1:4:9                                      | D) 1:8:27                                                 |  |  |  |
|                                   | the                                                                                                                                                                                                                     |                                                                                                                                           |                                               |                                                           |  |  |  |
|                                   | first Balmer line of $Li^{2+}$ ion is<br>A)15200 $cm^{-1}$ B)60800 $cm^{-1}$ C)76000 $cm^{-1}$ D)136800 $cm^{-1}$                                                                                                       |                                                                                                                                           |                                               |                                                           |  |  |  |
| 10                                |                                                                                                                                                                                                                         |                                                                                                                                           |                                               |                                                           |  |  |  |
| 18.                               |                                                                                                                                                                                                                         |                                                                                                                                           |                                               | e X of $H_{\beta}$ line of Balmer series                  |  |  |  |
|                                   | A) $X \frac{108}{80} A^0$                                                                                                                                                                                               | B) $X \frac{80}{108} A^0$ C) $\frac{1}{X} \frac{80}{108} A^0$ D) d longest wave number in $H_2^{\oplus}$ spectrum of Lyman ser            |                                               | D) $\frac{1}{X} \frac{108}{80} A^0$                       |  |  |  |
| 19.                               | The shortest and lon                                                                                                                                                                                                    | gest wave number in I                                                                                                                     | $H_2^{\oplus}$ spectrum of Lyman              | series is (R= Rydberg constant)                           |  |  |  |
|                                   | A) $\frac{3}{4}R$ , $R$                                                                                                                                                                                                 | B) $\frac{1}{R}, \frac{4}{3}R$                                                                                                            | C) $R, \frac{4}{3}R$                          | D) $R, \frac{3}{4}R$                                      |  |  |  |
| 20.                               |                                                                                                                                                                                                                         | The radius of the first Bohr orbit for $He^{\oplus}$ is                                                                                   |                                               |                                                           |  |  |  |
|                                   | A) $0.529 A^0$                                                                                                                                                                                                          |                                                                                                                                           | C) $0.132 A^0$                                | D) $0.176 A^0$                                            |  |  |  |
| 21.                               |                                                                                                                                                                                                                         |                                                                                                                                           |                                               | ion to that of 4000 $A^0$ radiation is                    |  |  |  |
|                                   | A)1/4                                                                                                                                                                                                                   | B)4                                                                                                                                       | C)1/2                                         | D)2                                                       |  |  |  |
| 22.                               | Energy of electron is given by $E = -2.178 \times 10^{-18} J \left[ \frac{Z^2}{n^2} \right]$ Wavelength of light required to excite an                                                                                  |                                                                                                                                           |                                               |                                                           |  |  |  |
|                                   | electron in an hydrogen atom from level n=1 to n=2 will be: $(h = 6.62 \times 10^{-34} \text{ Js and } c = 3.0 \times 10^8 \text{ ms}^{-1})$                                                                            |                                                                                                                                           |                                               |                                                           |  |  |  |
|                                   | A) $2.816 \times 10^{-7} m$                                                                                                                                                                                             | B) $6.500 \times 10^{-7} m$                                                                                                               | C) $8.500 \times 10^{-7} m$                   | D) $1.214 \times 10^{-7} m$                               |  |  |  |
| 23.                               | The angular momentum of an electron is 4s orbital, 3p orbital, and 4 <sup>th</sup> orbit are                                                                                                                            |                                                                                                                                           |                                               |                                                           |  |  |  |
|                                   | A) $0, \frac{1}{\sqrt{2}} \frac{h}{\pi}, \frac{2h}{\pi}$                                                                                                                                                                | $B) \frac{1}{\sqrt{2}} \frac{h}{2}, \frac{2h}{\pi}, 0$                                                                                    | C) $0, \frac{\sqrt{2h}}{\pi}, \frac{4h}{\pi}$ | $D) \frac{\sqrt{2h}}{\pi}, \frac{4h}{\pi}, 0$             |  |  |  |
| 24.                               | Permissible solution                                                                                                                                                                                                    | Which combination of quantum numbers n,l,m and s for the electron in an atom does not provide a Permissible solution to the wave equation |                                               |                                                           |  |  |  |
|                                   | A)3,22,+ $\frac{1}{2}$                                                                                                                                                                                                  | B)3,3,1,- $\frac{1}{2}$                                                                                                                   | C)3,2,1,+ $\frac{1}{2}$                       | D)3,1,1,- $\frac{1}{2}$                                   |  |  |  |
| <ul><li>25.</li><li>26.</li></ul> | If the value of $n + l = 7$ , then what should be the increasing order of energy of the possible sub-shell A)75>6p>5d>4f B)75>5d>6p>4f C)6p>75>5d>4f D)75=9p=5d=4f What is the orbital angular momentum of a d electron |                                                                                                                                           |                                               |                                                           |  |  |  |
|                                   | A) $\sqrt{2} \frac{h}{2\pi}$                                                                                                                                                                                            | B) $\sqrt{2} \frac{h}{4\pi}$                                                                                                              | C) $\sqrt{6} \frac{h}{2\pi}$                  | D) $\sqrt{6} \frac{h}{\pi}$                               |  |  |  |
| 27.                               |                                                                                                                                                                                                                         | ing radial distribution ş                                                                                                                 |                                               | l = 2 for H atom for the least value                      |  |  |  |



The dissociation energy of  $H_2$  is 430.53 KJ  $mol^{-1}$ . If  $H_2$  is dissociated by illumination with radiation 28. of Wavelength 253.7 nm, the fraction of the radiant energy Which will be converted into kinetic energy is given by

A)8.86%

B)2.33%

C)1.3%

D)90%

In a photoelectric effect experiment, irradiation of a metal with light of frequency  $5.2 \times 10^{14} \ s^{-1}$ 29. yields electrons with maximum kinetic energy  $1.3 \times 10^{-19}$  J. calculate the threshold frequency  $(v_0)$  for the metal

A)  $3.24 \times 10^{15} s^{-1}$ 

B)  $3.42 \times 10^{14} s^{-1}$ 

C)  $3.24 \times 10^{14} s^{-1}$ 

D)  $3.3 \times 10^{14} s^{-1}$ 

The threshold frequency  $v_0$  for a metal is  $7.0 \times 10^{14} \, s^{-1}$ . Calculate the kinetic energy of an electron 30. emitted when radiation of frequency  $v = 1.0 \times 10^{15} \, s^{-1}$ 

A)  $1.97 \times 10^{-19} J$ 

B)  $1.988 \times 10^{-19} J$ 

C)  $1.988 \times 10^{-12} J$ 

D)  $1.99 \times 10^{19} J$ 

Calculate and compare the energies of two radiations, one with a wavelength of 300 nm and the other 31. with 600 nm

A)  $E_1 = E_2$ 

B)  $E_1 = 4E_2$ 

C)  $E_2 = 2E_1$ 

D)  $E_1 = 2E_2$ 

A 100-watt bulb emits monochromatic light of wavelength 400 nm. Calculate the number of photons 32. emitted per second by the bulb

A)  $20.12 \times 10^{20} S^{-1}$ 

B)  $2.012 \times 10^{20} S^{-1}$ 

C)  $2.012 \times 10^{19} S^{-1}$ 

D)  $2.012 \times 10^{20} s^{-1}$ 

What is the ratio of the velocities of  $CH_4$  and  $O_2$  molecules so that they are associated with de 33. **Broglie** 

waves of equal wavelength

A)  $V_{CHY} = 2V_{0_2}$  B)  $V_{CHY} = V_{0_2}$  C)  $V_{CH2} = 4V_{0_2}$  D)  $V_{CHY} = 3V_{0_2}$ 

A microscope using suitable photons is employed to locate an electron in an atom within a distance 34. of 0.1 A. What is the uncertainty involved in the measurement of its velocity

A)  $5.69 \times 10^6 \, \text{ms}^{-1}$ 

B)  $5.78 \times 10^6 ms^{-1}$ 

C)  $5.69 \times 10^6 \text{ ms}^{-1}$  D)  $5.79 \times 10^6 \text{ ms}^{-1}$ 

35. Match the items in Column-I with those in column-II

| Column-I                            | Column-II                                         |
|-------------------------------------|---------------------------------------------------|
| A)Radius of electron in nth orbit   | P)= $2.18 \times 10^6 \times \frac{Z}{n} ms^{-1}$ |
| B)Energy of electron in nth orbit   | Q) $mvr = \frac{nh}{2\pi}$                        |
| C)velocity of electron in nth orbit | $R) = 13.6ev \times \frac{Z^2}{n^2}$              |
| D)Angular momentum in an orbit is   | $S) = 0.529  \mathring{A} \times \frac{n^2}{Z}$   |

- A) A-R, B-Q, C-P, D-S
- B) A-Q, B-Q, C-R, D-P
- C) A-S, B-P, C-R, D-S
- D) A-S, B-R, C-P, D-Q
- 36. Match the items in column –I with those in columns –II

| Column-I                | Column-II              |  |  |  |
|-------------------------|------------------------|--|--|--|
| A)Radial probability is | P)  n-l-1              |  |  |  |
| B)Radial nodes          | Q) = l                 |  |  |  |
| C)Angular nodes         | R) = l                 |  |  |  |
| D)Total number of nodes | S) $= n-1$             |  |  |  |
| E)nodal planes          | $T) = 4\pi r^2 dr 4^2$ |  |  |  |

- A) A-S, B-Q, C-P, D-R, E-T
- B) A-T, B-P, C-Q, D-S, E-R
- C) A-T, B-Q, C-P, D-S, E-R
- D) A-R, B-S, C-P, D-Q, E-T
- 37. Match the items in column –I with those in columns –II

| Column-I                     | Column-II                       |
|------------------------------|---------------------------------|
| A) $n = 2, l = 1, m = -1$    | P) $2p_x$ or $2p_y$             |
| B) $n = 4, l = 2, m = 0$     | Q) $4dZ^2$                      |
| C) $n = 3, l = 1, m = \pm 1$ | R) $3p_x$ or $3p_y$             |
| D) $n = 4, l = 0, m = 0$     | S) 4S                           |
| E) $n = 3, l = 2, m = \pm 2$ | T) $3d_x 2_{-y} 2$ or $3d_{xy}$ |

- A) A-p, B-R, C-Q, D-S
- B) A-R, B-P, C-S, D-Q
- C) A-Q, B-P, C-S, D-R
- D) A-P, B-Q, C-R, D-S
- 38. Match the items in column –I with those in columns –II



- A) A-p, b-q, c-r, d-s
- B) A-q, b-p, c-r, d-s
- C) A-p, b-r, c-q, d-s
- D) A-s, b-p, c-r, d-q
- 39. Match the items in column –I with those in columns –II

| Column-I                    | Column-II           |
|-----------------------------|---------------------|
| A) Orbit angular momentum   | P) $\sqrt{n(n+2)}$  |
| B) Orbital angular momentum | Q) $nh/2\pi$        |
| C) Spin angular momentum    | R) $\sqrt{s(s+1)}h$ |
| D)Magnetic moment           | S) $\sqrt{l(l+1)}h$ |
|                             | T) $\sqrt{n(n+1)}h$ |

- A) A-s, B-q, C-r, d-p
- B) A-q, B-s, C-r, d-p
- C) A-r, B-p, C-q, d-s
- D) A-p, B-q, C-s, d-r

#### **CHEMISTRY**

| 1  | A | 2  | С | 3  | В | 4  | D | 5  | A |
|----|---|----|---|----|---|----|---|----|---|
| 6  | В | 7  | A | 8  | В | 9  | С | 10 | В |
| 11 | D | 12 | В | 13 | С | 14 | В | 15 | C |
| 16 | С | 17 | D | 18 | В | 19 | A | 20 | В |
| 21 | D | 22 | D | 23 | A | 24 | В | 25 | A |
| 26 | C | 27 | C | 28 | A | 29 | C | 30 | В |
| 31 | D | 32 | В | 33 | A | 34 | D | 35 | D |
| 36 | В | 37 | D | 38 | A | 39 | В | 40 |   |

## **SOLUTIONS**

## **CHEMISTRY:-**

1 For Lyman series,  $n_1 = 1$ .

For the shortest Lyman series, the energy difference in two levels showing transition should be maximum (i.e.,  $n_2 = \infty$ ).

Using the expression

$$\frac{1}{\lambda} = R_H \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

We get

$$\frac{1}{\lambda} = 109677 \left( \frac{1}{1^2} - \frac{1}{\infty^2} \right) \text{cm}^{-1} = 109677 \text{cm}^{-1}$$

Or 
$$\lambda = 911.7 \times 10^{-8} cm = 911.7 \times 10^{-10} m = 911.7 \text{ A}$$

- 2. The number of liens produced when an electron from then nth shell drops to the ground state is  $\frac{n(n-1)}{2}$  So the required number of emission lines is  $\frac{6(6-1)}{2} = 15$
- 3.  $E_1 \text{ for } Li^{2+} = E_1 \text{ for } H \times Z^2$

$$=13.6 \times 9 = 122.4 \text{ e V}$$

4. 
$$\overline{v} = \frac{1}{\lambda} = \left(\frac{1}{2^2} - \frac{1}{4^2}\right) RZ^2 = \frac{3}{4}R$$

In H spectrum for the same  $\bar{v}$  or  $\lambda$  as Z=1, n=1,  $n_2 = 2$ 

5. Ionizations energy of H atom =13.6V

Ionizations energy of 
$$He^{\oplus}$$
 =IE for  $H \times Z^2$   
=13.6 × 4=54.4e V

Ionization energy for 
$$Li^{2+}$$
=IE for H × $Z^2$ 

$$=13.6 \times 9 = 122.4 \text{ e V}$$

$$mvr = \frac{nh}{2\pi}$$
; Given n=1 and  $2\pi$  (circumference)

$$=3.322\times10^{-10}\,\mathrm{m}$$

$$v = \frac{nh}{2\pi mr} = \frac{1 \times (6.626 \times 10^{-36} J s)}{(9.1 \times 10^{-31} kg) \times 3.322 \times 10^{-10} m}$$
$$= 2.19 \times 10^6 m s^{-1}$$

#### 7. We know that

$$r_n = n^2 r_0 = (3)^2 \times 0.53 = 4.77 \text{ A}$$

8. 
$$E_n = \frac{-13.6}{n^2} \text{ e V}$$

When n=2 
$$E_2 = \frac{-13.6}{4} = -3.4 \text{ e V}$$

Hence, (a) is the correct answer.

$$9. r = \frac{n^2 h^2}{4\pi^2 m Z e^2}$$

$$\therefore \frac{r_2}{r_3} = \frac{2^2}{3^2}$$

$$\therefore r_3 = \frac{9}{4}r_2$$

## 10. Bohr radius=r

Bohr velocity, 
$$V = \frac{nh}{2\pi mr}$$

de-Broglie wavelength, 
$$\lambda = \frac{h}{mV}$$

$$\therefore \lambda = \frac{h}{\frac{m \times 3h}{2\pi mr}} = \frac{2\pi r}{3}$$

12. velocity, 
$$V\alpha \frac{Z}{n}$$

If velocity of electron in first orbit =x

Then velocity in  $3^{rd}$  orbit= $\frac{x}{3}$ 

13. 
$$\Delta E = -2.18 \times 10^{-18} \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \text{J atom}^{-1}$$

$$\therefore \Delta E_{2\to 1} = -2.18 \times 10^{-18} \left( \frac{1}{1^2} - \frac{1}{2^2} \right)$$

$$=-2.18\times10^{-18}\left(\frac{3}{4}\right)$$

$$\therefore \Delta E_{3\to 2} = -2.18 \times 10^{-18} \left(\frac{5}{36}\right)$$

$$\therefore \frac{\Delta E_{2\to 1}}{\Delta E_{3\to 2}} = \frac{3}{4} \times \frac{36}{5} = \frac{27}{5}$$

Hence answer is (c)

14. For 
$$H_{\alpha}$$
 line of the Balmer series,  $n_1 = 2$ ,  $n_2 = 3$ 

For  $H_{\beta}$  line of the Balmer series,  $n_1 = 2$ ,  $n_2 = 4$ 

$$\therefore \frac{1}{\lambda_{H\alpha}} = R_H \left[ \frac{1}{2^2} - \frac{1}{3^2} \right]$$

and 
$$\frac{1}{\alpha_{H\alpha}} = R_H \left[ \frac{1}{2^2} - \frac{1}{4^2} \right]$$

By equations (i) and (ii), we get

$$\therefore \frac{\lambda_{\beta}}{\lambda_{\alpha}} = \frac{\frac{1}{4} - \frac{1}{9}}{\frac{1}{4} - \frac{1}{16}}$$

$$\therefore \lambda_{\beta} = \lambda_{\alpha} \times \left[\frac{80}{108}\right] = 6500 \times \frac{80}{108} = 4814.8 \stackrel{\circ}{A}$$

15. 
$$\frac{-1321}{4} - \left(\frac{1312}{1}\right) = 984KJ$$

16. 
$$r = \frac{n^2 a_0}{z}$$
, (when  $n = 1, Z = 1$ 

$$r_1 = a_0$$

$$r_2 = 4a_0$$
 (when  $n = 2, Z = 1$ )

$$r_3 = 9a_0$$
 (when  $n = 3, Z = 1$ )

Hence, ratio is 1:4:9

17. 
$$v_{H_{2^{\oplus}}} = R \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right) = 15200 cm^{-1}$$

$$\frac{1}{v_{Li^{2+}}}RZ^2\left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right) = 3^2 \times 15200$$

$$=136800cm^{-1}$$

18.  $H_{\alpha}$  line of Balmer series means first line of blamer series

$$n_1 = 2 n_2 = 3$$

$$\overline{v} = \frac{1}{\lambda_{\alpha}} = R \left( \frac{1}{2^2} - \frac{1}{3^2} \right) = \frac{5R}{36}$$

$$\therefore \lambda_{\alpha} = \frac{36}{5R} = X$$

 $H_{\beta}$  line of Balmer series means, second line of Balmer series,  $n_1 = 2, n_2 = 4$ 

$$\bar{v} = \frac{1}{\lambda_{\beta}} = R \left( \frac{1}{2^2} - \frac{1}{4^2} \right) = \frac{3R}{16}$$

$$\therefore \lambda_{\beta} = \frac{16}{3R} = X$$

When 
$$\frac{36}{3R} = X$$

Then 
$$\frac{16}{3R} = \frac{X \times 5R \times 16}{36 \times 3R} = \frac{80X}{108} A^0$$

19. Shortest  $\overline{v}$  means shortest E and vice versa.

When, 
$$n = 1, n_2 = 2$$

$$\overline{v} = \left(\frac{1}{1^2} - \frac{1}{2^2}\right) = \frac{3}{4}R$$

Longest  $\overline{v}$  means longest E

When  $n_1 = 1, n_2 = \infty$ 

$$\overline{v} = R \left( \frac{1}{1^2} - \frac{1}{\infty^2} \right) = R$$

20. 
$$r_1$$
 for  $He^{\oplus} = \frac{0.529 \times 1^2}{2} = 0.264 A^0$ 

21. 
$$E = \frac{hc}{\lambda} = 2.178 \times 10^{-18} \times Z^2 \left[ \frac{1}{1^2} - \frac{1}{2^2} \right]$$

$$\lambda = 1.214 \times 10^{-7} \, m$$

- 24. 3,3,1-1/2 in the combination n = 3, 1 = 3, m = 1, s = -1/2 since 1 cannot have a value equal to n.
- 25. Given that n + l = 7

Hence 
$$7 + 0 = 7s$$

$$6+1=6p$$

$$5 + 2 = 5d$$

$$4+3=4f$$

Thus the order of energy is 4f < 5d < 6p < 7s

26. Orbital angular momentum = 
$$\sqrt{l(l+1)} \frac{h}{2\pi}$$

For d electron, l = 2

: Orbital, angular momentum

$$=\sqrt{2(2+1)}\frac{h}{2\pi}=\sqrt{6}\frac{h}{2\pi}$$

27. Option (c) represents the distribution of l = 2 for H atom

Two nodes: 
$$(n-l-1) = 2$$
,  $(n-2-1) = 2$ 

$$\therefore n = 5 \text{ (high value of n)}$$

One node: 
$$(n-2-1)=1, n=4$$

Zero node: 
$$(n-2-1)=0$$
,  $n=3$  (minimum value of n which  $l=2$  is allowed)

Graph does not correspond to any radial distribution curve

28. 
$$\frac{hc}{\lambda} = \frac{430.53 \times 10^3}{6.023 \times 10^{23}} + \text{KE}$$

$$KE = \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{253.7 \times 10^{-9}}$$

$$=\frac{430.53\times10^3}{6.023\times10^{23}}=6.9\times10^{-20}$$

$$\therefore \text{Fraction} = \frac{6.9 \times 10^{-20}}{7.83 \times 10^{-19}} = 0.088 = 8.86$$

29. We know that

$$hv = hv_0 + KE$$

Or 
$$v_0 = v - \frac{KE}{h}$$

$$KE = 1.3 \times 10^{-19} \text{ J}; \ \nu = 5.2 \times 10^{14} \, \text{s}^{-1};$$

$$h = 6.626 \times 10^{-34} \,\mathrm{J s}$$

:. Threshold frequency

$$v_0 = 5.2 \times 10^{14} \, s^{-1} - \frac{1.3 \times 10^{19} \, J}{6.626 \times 10^{-34} \, J \, s}$$

$$=5.2\times10^{14}\,\mathrm{s}^{-1}-1.96\times10^{14}\,\mathrm{s}^{-1}$$

$$=3.24\times10^{14}\,s^{-1}$$

30. According to Einstein's equation

Kinetic energy = 
$$\frac{1}{2}meV^2$$

$$=h(v-v_0)$$

$$= (6.626 \times 10^{-34} Js) \times$$

$$(1.0 \times 10^{15} s^{-1} - 7.0 \times 10^{14} s^{-1})$$

$$=(6.626\times10^{-34}Js)\times$$

$$(10\times10^{14} Js^{-1} - 7.0\times10^{14} s^{-1})$$

$$= (6.626 \times 10^{-34} Js) \times$$

$$(3.0 \times 10^{14} \, s^{-1})$$

$$=1.988\times10^{-19}J$$

31. Energy of radiation 
$$(E) = hv = \frac{hc}{\lambda}$$

$$\therefore E_1 = \frac{hc}{\lambda_1} = \frac{6.626 \times 10^{-34} \, Js \times 3 \times 10^8 \, m \, s^{-1}}{300 \times 10^{-9} \, m}$$

$$=6.626\times10^{-19}J$$

and 
$$E_2 = \frac{hc}{\lambda_2} = \frac{6.626 \times 10^{-34} Js \times 3 \times 10^8 m s^{-1}}{600 \times 10^{-9} m}$$

$$=3.313\times10^{-19} \,\mathrm{J}$$

The ratio of  $E_1$  and  $E_2$  is

$$\frac{E_1}{E_2} = \frac{6.626 \times 10^{-19} J}{3.313 \times 10^{-19} J} = 2$$

$$\therefore E_1 = 2E_2$$

32. Power of the bulb = 100 watt

$$= 100 Js^{-1}$$

Energy of one photon:

$$E = hv = hc / \lambda$$

$$=\frac{6.626\times10^{-34}Js\times3\times10^{8}ms^{-1}}{400\times10^{-9}m}$$

$$=4.969\times10^{-19}\,\mathrm{J}$$

Number of photon emitted

$$=\frac{100Js^{-1}}{4.969\times10^{-19}J}=2.012\times10^{20}s^{-1}$$

33. From the de Broglie relationship

$$\lambda = \frac{h}{mv}$$

For 
$$CH_4$$
,  $\lambda_{CH_4} = \frac{h}{m_{CH_4} \times v_{CH_4}}$ 

For 
$$O_2$$
,  $\lambda_{o_2} = \frac{h}{m_{o_2} \times v_{o_2}}$ 

Wavelength of  $CH_4$  and  $O_2$  is equal, hence

$$\frac{h}{m_{CH_4} \times v_{CH_4}} = \frac{h}{m_{o_2} \times v_{o_2}}$$

$$\Rightarrow \frac{v_{CH_4}}{v_{o_2}} = \frac{m_{o_2}}{m_{CH_4}} = \frac{32}{16} = 2$$

$$\therefore v_{CH_4} = 2v_{o_2}$$

The velocity of  $CH_4$  molecule is two times the velocity of  $O_2$  molecule

34. 
$$\Delta x \times \Delta p = \frac{h}{4\pi}$$

Or 
$$\Delta x \times m\Delta v = \frac{h}{4\pi}$$

$$\Delta v = \frac{h}{4\pi \times \Delta x \times m}$$

$$\frac{6.626\times10^{-34}\,Js}{4\times3.14\times1\times10^{-10}\,m\times9.11\times10^{-31}Kg}$$

$$= 0.579 \times 10^7 \, ms^{-1}$$

$$=5.79\times10^6 ms^{-1}$$

- 35. Formula based
- 36. Formula based
- 37. Formula based
- 38. Formula based
- 39. Formula based