CPSC 4210 - Final Paper

R. Lowry, C. Rabl, R. Rana

Abstract

his paper explores the use of genetic programming in conjunction with a shared cube representation of reversible cascades to minimize the gate count and quantum cost of arbitrary reversible circuits. Rather than optimizing for either quantum cost or cascade length, we utilize a feature vector approach to minimize both aspects. A recent approach by Nayeem and Rice provides a foundation for the shared-cube approach to reversible logic synthesis. Due to the complexity of these operations, we expand on this foundation, combining it with a genetic algorithm to yield a solution. This approach allows us to achieve a solution more quickly than by performing a brute-force search over the problem space. We demonstrate the use of a shared cube representation from Nayeem and Rice [2011] and apply an evolutionary algorithm to find optimized representations. We consider an implementation that uses a subset of the ordering rules in Rice and Nayeem [2011] as a guideline for implementing our mutation function. We present an implementation of this approach and selected examples using the Python programming language, and compare our results to those achieved in the literature as applied to Revlib benchmarks Wille et al. [2008].

1 Unitary Matrices

Every quantum gate can be represented by a unitary transformation (in the form of a unitary matrix) whose entries are complex variables corresponding to the complex coefficients of a given particle's wave function. Unitary transformations allow us to perform actual computations with qubits since they can be realized using technologies like NMR, for instance: a qubit in an NMR machine undergoes state changes due to a changing magnetic field. These magnetic field changes are, in turn, represented by unitary matrices (Lukac et al. [2003]). Constructing useful quantum circuits in this way is analogous to early computer programmers who "programmed" massive machines like ENIAC by physically connecting relays and vacuum tubes with wires. How far we have come since then...

Definition 1. A unitary matrix is an $n \times n$ matrix of complex coefficients which, when multiplied by its Hermitian, gives the identity matrix. Thus, for a unitary matrix U, it is true that $(U^T)^* = U^{-1}$ where $(\cdot)^*$ denotes complex conjugation.

In addition, every 2×2 unitary matrix can be expressed using the following product (?). This representation is particularly useful since it corresponds to the exact rotation matrix which can be applied to the Bloch sphere representation of a qubit:

$$\begin{bmatrix} e^{i\delta} & 0 \\ 0 & e^{i\delta} \end{bmatrix} * \begin{bmatrix} e^{\frac{i\alpha}{2}} & 0 \\ 0 & e^{\frac{-i\alpha}{2}} \end{bmatrix} * \begin{bmatrix} \cos\theta/2 & \sin\theta/2 \\ -\sin\theta/2 & \cos\theta/2 \end{bmatrix} \times \begin{bmatrix} e^{i\beta/2} & 0 \\ 0 & e^{-i\beta/2} \end{bmatrix}$$

In order to create useful operations out of "quantum primitives", we can compose unitary transformations in order to come up with a permutation representation of a gate or cascade of gates. We can use the "Square-Root-of-NOT" gate to construct a NOT gate, for instance:

$$\sqrt{\text{NOT}} = \frac{1+i}{2} \begin{bmatrix} 1 & -i \\ -i & 1 \end{bmatrix} \Rightarrow \sqrt{\text{NOT}} * \sqrt{\text{NOT}} = \left(\frac{1+i}{2}\right)^2 \begin{bmatrix} 1 & -i \\ -i & 1 \end{bmatrix} * \begin{bmatrix} 1 & -i \\ -i & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

There are many other unitary matrices: more examples may be found in Lukac et al. [2003]. Gates such as the Pauli-X, Pauli-Y, Pauli-Z, are interesting examples to play around with.

2 Permutation Matrices

Definition 2. A **permutation matrix** P is an $n \times n$ matrix created by permuting the rows of the identity matrix I_n . It is the case that $P * P^T = P^T * P = I$ and that det(P) = 1.

Rather than deal with extremely large and unwieldy unitary transformations all the time, we can use permutation matrices, as described by Williams [1999]. These are a powerful tool, since an $n \times n$ permutation matrix can be used to represent a $2^n \times 2^n$ unitary operation. Additionally, since permutation matrices are sparse, they can be computed with and stored more efficiently than full matrices. As an aside, some unitary matrices are also permutation

matrices (such as the NOT gate), but the gates which are "true quantum primitives", as described in Lukac et al. [2003] are only unitary.

In brief, permutation matrices encode the rows of a circuit or gate's truth table. Given the truth table for a CNOT gate, for instance, it is quite simple to construct its permutation matrix: we begin by encoding the inputs and outputs of the gate as decimal numbers, and create a mapping between them. Then, we use this mapping to construct the permutation matrix, using the following rule:

$$P = [p_{ij}]$$
 where $p_{ij} = \begin{cases} 1 & \text{if } i = n \text{ and } j = M(n) & \forall n \in \mathbb{Z}_k \\ 0 & \text{otherwise} \end{cases}$

In this case, $k = 2^w$ where w is the "width" of the gate, or the number of inputs. Since CNOT has a width of 2, that means $k = 2^2 = 4$, in this case.

A useful property of permutation matrices is that they allow us to "compose" permutations. In order to do this, we use the following identity: $P_{\sigma\circ\pi}=P_\pi*P_\sigma$. Note that the order of the matrix multiplication matters, as matrices do not typically commute under multiplication. Having this composition operator makes it easy to represent cascades in a unique way. We can check that two cascades realize the same function if their output permutation matrices are identical. This provides circuit designers with an efficient way to "equate" cascades and determine which is "better".

3 Quantum Cost

Since we can represent operations on qubits using unitary transformations (which conveniently correspond to exactly one quantum operation each), we can devise a metric called "quantum cost" in order to determine whether the transformations we perform constitute an efficient synthesis of a given operation. In an NMR system, each electromagnetic pulse to which we subject a qubit has a cost: whether it is the amount of energy required to create the pulse, or the risk of the qubit decohering into a useless state (through vibrations, or other environmental perturbations), these factors may be treated as unitless "cost" variables which must be taken into account.

As quantum cost is a unitless quantity which corresponds directly to the number of unitary operations in a quantum circuit, it is a very useful metric for calculating the efficiency of an

implementation of a circuit. In order to determine the quantum cost of a gate or cascade, we need to break it down into "quantum primitives" (unitary transformations). For instance, we can break down a 3-input Toffoli gate like so:

Of course, it is not immediately obvious why this construction gives us a Toffoli gate. Note that the $\sqrt{\text{NOT}}$ gates (and their Hermitian friend) do not get activated unless their control lines are 1.

So, if we pass a=0 and b=0 through our gate, c remains unchanged, as do a and b. If a=0 and b=1, then the gate that gets applied to c will be $V_0*V^+=I$, which is the identity, so c will be unchanged. If a=1 and b=0, then the gate that gets applied to c will be $V_1*V^+=I$, so c will be unchanged, and finally, if a=1 and b=1, c will be inverted because the gate that gets applied will be $V_0*V_1=NOT$. And thus, we have shown that a 3-input Toffoli gate may be simulated by at least five quantum primitives, and so it has a quantum cost of 5. This result is due to DiVincenzo and Smolin [1994].

References

- Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo, Norman Margolus, Peter Shor, Tycho Sleator, John A. Smolin, and Harald Weinfurter. Elementary gates for quantum computation. *Phys. Rev. A*, 52:3457–3467, Nov 1995. doi: 10.1103/PhysRevA.52.3457. URL http://link.aps.org/doi/10.1103/PhysRevA.52.3457.
- David P. DiVincenzo and J. Smolin. Results on two-bit gate design for quantum computers. In *Physics and Computation*, 1994. *PhysComp '94, Proceedings., Workshop on*, pages 14–23, Nov 1994. doi: 10.1109/PHYCMP.1994.363704.
- Martin Lukac, Marek Perkowski, Hilton Goi, Mikhail Pivtoraiko, Chung Hyo Yu, Kyusik Chung, Hyunkoo Jeech, Byung-Guk Kim, and Yong-Duk Kim. Evolutionary approach to quantum and reversible circuits synthesis. *Artif. Intell. Rev.*, 20(3-4):361–417, December 2003. ISSN 0269-2821. doi: 10.1023/B:AIRE.0000006605.86111.79. URL http://dx.doi.org/10.1023/B:AIRE.0000006605.86111.79.
- N. M. Nayeem and J. E. Rice. A shared-cube approach to esop-based synthesis of reversible logic. Facta Universitatis Series: Electronics and Energetics, 24:385–403, 2011. ISSN 0353-3670.
- J.E. Rice and N. M. Nayeem. Ordering techniques for esop-based toffoli cascade generation. In *Communications, Computers and Signal Processing (PacRim), 2011 IEEE Pacific Rim Conference on*, pages 274–279, Aug 2011. doi: 10.1109/PACRIM.2011.6032905.
- R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler. RevLib: An online resource for reversible functions and reversible circuits. In *Int'l Symp. on Multi-Valued Logic*, pages 220–225, 2008. RevLib is available at http://www.revlib.org.
- C.P. Williams. Quantum Computing and Quantum Communications: First NASA International Conference, QCQC '98, Palm Springs, California, USA, February 17-20, 1998, Selected Papers. Lecture Notes in Computer Science. Springer, 1999. ISBN 9783540655145. URL http://books.google.ca/books?id=4QuAhlwj2icC.