Reproducible, flexible and high throughput data extraction from primary literature: The **metaDigitise**R package

Supplementary Materials

Joel L. Pick, Shinichi Nakagawa & Daniel W.A. Noble

February 27, 2018

S1 Comparison with existing software

Function	metaDigitise	$GraphClick^1$	$DataThief^2$	$DigitizeIt^3$	$MebPlotDigitizer^4$	$ m metagear^5$	$\operatorname{digitize}^6$
Scatterplots	>	>	>	>	>	7.	>
Mean/error plots	>	>	>	×	×	77	×
Boxplots	>	×	×	×	×	×	×
Histograms	>	×	×	×	^ 1	×	×
Graph rotation ⁸	>	>	>	>	>	×	×
Groups	>	>	×	>	>	×	×
Entry of metadata	>	×	×	×	×	×	×
Summarising data	>	×	×	×	×	×	×
Multiple image processing	>	×	×	×	×	×	×
${ m Reproducable}^9$	>	>	>	×	>	×	×
Automated point detection	×	>	×	>	>	>	×
Line extraction	×	>	>	>	>	×	×
Zoom	×	>	>	>	>	×	×
Log axis	×	>	>	>	>	×	×
Dates	×	×	>	×	>	×	×
Asymmetric error bars	×	×	>	×	×	×	×
Freeware	\checkmark 10	\checkmark^{11}	\checkmark^{11}	\times^{11}	\checkmark^{11}	\checkmark 10	\checkmark^{10}
T & (2000) 2 T.	G (2006)	. 1 D 4 D 1	1 -1 -1 (0017) 5 1	(00100)	() 6 D := + (9011)		

 $^{^{1}}$ Arizona-Software (2008) 2 Tummers (2006) 3 Bormann (2012) 4 Rohatgi (2017) 5 Lajeunesse (2016) 6 Poisot (2011)

Table S1: Comparison of functionality between different digitisation softwares.

 $^{^{7}}$ Only automated, no manual extraction.

 $^{^8}$ Or handles rotated graphs.

 $^{^{9}}$ Allows saving, re-plotting and editing of data extraction.

¹⁰ R package.

 $^{^{11}}$ Standalone software.

S2 Derivation of mean, standard deviation and sample size from different plot types

S2.1 Mean/Error Plots

The standard deviation is calculated depending on the type of error presented. The user can choose from standard deviation (SD, σ), standard error (SE) or 95% confidence intervals (CI95). Standard deviation is calculated from standard error as

$$\sigma = SE\sqrt{n} \tag{S1}$$

and from 95% confidence intervals as

$$\sigma = \frac{CI}{1.96} \sqrt{n} \tag{S2}$$

S2.2 Box Plots

The mean (μ) and SD are calculated sing the maximum (b), upper quartile (q_3) , median (m), lower quartile (q_1) and minimum (a) as

$$\mu = \frac{(n+3)(a+b) + 2(n-1)(q_1 + m + q_3)}{8n}$$
 (S3)

following Bland (2015) and

$$\sigma = \frac{b - a}{4\Phi^{-1}(\frac{n - 0.375}{n + 0.25})} + \frac{q_3 - q_1}{4\Phi^{-1}(\frac{0.75n - 0.125}{n + 0.25})}$$
(S4)

where $\Phi^{-1}(z)$ is the upper zth percentile of the standard normal distribution, following Wan et al. (2014).

S2.3 Histograms

For each bar, the user click two point (the top of the bar). Using these points, a midpoint (m; mean x coordinates) and a frequency (f; mean y coordinates, rounded to the nearest integer) is calculated for each bar. The sample size, mean and SD are calculated as:

$$n = \sum_{i=1}^{n} f_i \tag{S5}$$

$$\mu = \frac{\sum_{i=1}^{n} m_i f_i}{n} \tag{S6}$$

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (m_i f_i - \mu f_i)^2}{n-1}}$$
 (S7)

S3 Tutorial

References

Arizona-Software (2008) GraphClick Software, Version 3.0.

Bland, M. (2015) Estimating Mean and Standard Deviation from the Sample Size, Three Quartiles, Minimum, and Maximum. *International Journal of Statistics in Medical Research*, 4, 57–64.

Bormann, I. (2012) Digitizelt Software, Version 2.0. Braunschweig, Germany.

Lajeunesse, M.J. (2016) Facilitating systematic reviews, data extraction, and metaanalysis with the metagear package for R. *Methods in Ecology and Evolution*, **7**, 323–330.

Poisot, T. (2011) The digitize package: extracting numerical data from scatterplots. *The R Journal*, **3**, 25–26.

Rohatgi, A. (2017) WebPlotDigitizer Software, Version 4.0. Austin, Texas, USA.

Tummers, B. (2006) DataThief Software, Version 3.0.

Wan, X., Wang, W., Liu, J. & Tong, T. (2014) Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. *BMC Medical Research Methodology*, **14**, 135.