INTELIGÊNCIA ARTIFICIAL

PARTE 2

Grafos e Algoritmos

de Busca Exaustiva

- Breadth-First Search
- Depth-First Search

Definições:

 Grafos são estruturas representadas por G(V, E), onde V é um conjunto não vazio de vértices e E é um conjunto de pares não orientados de V, chamado arestas (edges). Cada aresta é formada por um par de vértices.

Exemplo:

$$V = \{a, b, c, d, e, f, g\}$$

$$E = \{(a, c), (b, d), (b, e), (b, g), (d, e), (d, g), (e, f)\}$$

Propriedades:

- Vértices a e c são adjacentes. Vértices f e g não!
- Vértice b e aresta (b,g) são **incidentes**. Vértice f e aresta (b,g) não!
- A vizinhança de b é $N(b)=\{d,e,g\}$
- O grau do vértice $b \in 3$.

Grafo Não-orientado:

- Arestas são pares não-orientados (v,w), ou seja, a aresta (v,w) e a aresta (w,v) são a mesma aresta.
- Não há direção!

Este grafo representa 128 cidades dos EUA (extraído do livro *The Stanford GraphBase*.)

Grafo Orientado:

- Arestas são pares orientados (v,w), ou seja, a aresta (v,w)
 e a aresta (w,v) são diferentes.
- Aresta (v, w) é direcionada $v \rightarrow w$, onde v é a origem (source) e w é o alvo (target).

Este grafo representa um sistema produtivo através de uma linha de montagem serial, com 3 estágios e 5 períodos.

Árvores e Florestas:

Uma **árvore** é um grafo que é conectado e não contém ciclos.

Uma **floresta** é um grafo que não contém ciclos. Os componentes conectados de uma floresta são árvores

Inteligência Artificial – Parte 2 – Prof. Celso Gallão – Slide 7

- Assuma $V = \{1, 2, ..., n\}$
- Uma matriz de adjacências representa um grafo como uma matriz $A_{n \times n}$:

$$A[i,j]$$
 = 1 se aresta $(i,j) \in E$
= 0 se aresta $(i,j) \notin E$

Representação por MATRIZ de Adjacências:

• Exemplo de **grafo orientado**:

7	A	В	С	D
A	0	1	1	0
В	0	0	1	0
С	0	0	0	0
D	0	0	1	0

- A Matriz de Adjacências requer quanto de espaço?
 - Matriz tem tamanho $V \times V \rightarrow \Theta(V^2)$
 - A notação assintótica serve tanto para tempo de execução quanto para espaço de armazenamento.
 - Por exemplo, para o espaço $\Theta(g(n))$, revela o quanto a ocupação do espaço irá crescer quando n aumentar!

- Para um grafo não-orientado:
 - A Matriz de Adjacências é <u>simétrica</u>.
 - Podemos armazenar apenas metade da matriz.
- Exemplo de grafo <u>não-orientado</u>:

	A	В	С	D
A	0	1	1	0
В	1	0	1	0
С	1	1	0	1
D	0	0	1	0

- A Matriz de Adjacências:
 - Usualmente armazena muita informação para grafos grandes.
 - Pode ser muito eficiente para grafos pequenos.
 - Geralmente usado para grafos densos.

- Para um grafo ponderado, ou seja com pesos em suas arestas, representa-se uma aresta por meio de seu peso:
- Exemplo de grafo orientado ponderado:

7	A	В	С	D
A	0	12	15	0
В	0	0	6	0
С	0	0	0	0
D	0	0	10	0

Representação por LISTA de Adjacências:

• Para cada vértice $v \in V$, armazena-se a lista de vértices adjacentes a v.

Exemplo:

$$-Adj[1] = \{2,3\}$$

$$-Adj[2] = \{3\}$$

$$-Adj[3] = \{\}$$

$$-Adj[4] = \{3\}$$

Representação por LISTA de Adjacências:

- A Lista de Adjacências requer quanto de espaço?
 - O grau de cada vértice v é igual a quantidade de arestas incidentes, sendo assim, é necessário $\Theta(V+E)$ de espaço para armazenamento:
 - Para **grafos orientados**, o número de itens na lista de adjacências é a somatória do grau de <u>saída</u> (v) = |E|. É preciso armazenar cada vértice $v \in V$ mais a lista de arestas E, portanto, $\Theta(V + E)$.
 - Para **grafos não-orientados**, o número de itens na lista de adjacências é a somatória do grau (v) = 2/E/, que também é $\Theta(V+E)$.

Características dos Algoritmos de Busca em Grafos:

- Algoritmos de Busca são técnicas de Inteligência Artificial aplicadas à problemas de alta complexidade teórica que não são resolvidos com técnicas de programação convencionais, principalmente as de natureza puramente numérica.
- A complexidade de um problema está diretamente relacionada ao tamanho do seu Espaço de Busca correspondente.

Objetivos dos Algoritmos de Busca em Grafos:

- Seja um grafo G = (V,E), orientado ou não, o objetivo é explorar metodologicamente <u>cada vértice</u> e <u>cada aresta</u> do grafo, ou apenas <u>construir uma árvore</u>.
- Para tanto, toma-se um vértice como sendo a raiz e <u>escolhe-se as arestas</u> apropriadas para produzir a árvore. Pode-se construir uma floresta se o grafo não for conectado.

Busca em Largura ou Amplitude (<u>Breadth-First Search</u>)

2.1 - Características:

Em uma **busca exaustiva em largura** a partir do vértice *v*, espera-se que todos os vizinhos de *v* sejam visitados antes de continuar a busca mais profundamente:

- BFS encontra a menor distância até um certo nó, ou seja, o número mínimo de arestas.
- BFS constroi uma árvore na qual os caminhos de cada nó são os menores até a raiz.

5

2.1 - Características:

- **Explora-se** todo o grafo, tornando-o uma árvore de busca:
 - Um vértice por vez.
 - Expande em largura a fronteira de vértices explorados.
 - Busca exaustiva (todos os nós são visitados).
- Constrói-se a árvore de busca sobre o grafo:
 - Toma-se um vértice pai como raiz (Geração 0),
 - Descobre-se todos os filhos (Geração 1),
 - Para cada filho (Geração 1) descobre-se todos os seus filhos (Geração 2), e assim por diante.

2.2 - Metodologia BFS:

- Colorindo os vértices:
 - Vértices brancos ainda não foram considerados
 Todos começam como branco.
 - Vértices cinza foram considerados mas não totalmente explorados

Eles podem ser adjacentes de vértices brancos.

- Vértices pretos foram totalmente explorados
 São vértices adjacentes a vértices pretos ou cinzas.
- Explorando vértices escaneando a lista de adjacências de vértices cinzas.

Exemplo BFS (iniciando no vértice s):

2.3 - O Método BFS:

- 1. Definir o vértice inicial s.
- 2. Explorar as arestas do grafo para descobrir todos os vértices alcançáveis a partir de s.
- 3. Computar a distância (menor número de arestas) de *s* para todos os vértices alcançáveis.
- 4. Produzir uma árvore de amplitude cuja raiz é s e contém todos os vértices alcançáveis.
- 5. Para todo vértice *v* alcançável a partir de *s*, o caminho na árvore de amplitude corresponde ao menor caminho de *s* para *v* no grafo.

2.4 - O Algoritmo BFS:

- Assumir que o grafo G = (V, E) é representado com lista de adjacências.
- Para cada vértice no grafo, o algoritmo mantém estruturas auxiliares:
 - A variável cor[v'] mantém a informação sobre a cor de cada vértice.
 - A variável pai[v'] mantém a informação do predecessor de cada vértice. Quando não existe predecessor pai[v'] = NIL.
 - A variável d[v'] mantém o valor da distância entre o vértice inicial e v'.

2.4 - O Algoritmo BFS:

- Assumir que o grafo G = (V, E) é representado com lista de adjacências.
- Para cada vértice no grafo, o algoritmo mantém estruturas auxiliares:
 - Uma fila Q com política FIFO para gerenciar a lista de vértices de cor cinza.
 - O vértice inicial é s.
 - O vértice observado é v².

2.4 - O Algoritmo BFS:

```
BFS(G, s)
for \forall v' \in V[G] - \{s\} do
         cor[v'] \leftarrow BRANCO
         d[v'] \leftarrow \infty
         pai[v'] \leftarrow NIL
cor[s] \leftarrow CINZA
d[s] \leftarrow 0
pai[s] \leftarrow NIL
Q \leftarrow \{s\}
```

2.4 - O Algoritmo BFS:

BFS(G, s)

for
$$\forall v' \in V[G] - \{s\}$$
 do
 $cor[v'] \leftarrow BRANCO$
 $d[v'] \leftarrow \infty$
 $pai[v'] \leftarrow NIL$

Inicia variáveis auxiliares para cada um dos vértices, com exceção da origem.

$$cor[s] \leftarrow CINZA$$
 $d[s] \leftarrow 0$
 $pai[s] \leftarrow NIL$
 $Q \leftarrow \{s\}$

2.4 - O Algoritmo BFS:

```
BFS(G, s)

for \forall v' \in V[G] - \{s\} do

cor[v'] \leftarrow BRANCO

d[v'] \leftarrow \infty

pai[v'] \leftarrow NIL
```

$$cor[s] \leftarrow CINZA$$
 $d[s] \leftarrow 0$
 $pai[s] \leftarrow NIL$
 $Q \leftarrow \{s\}$

Inicia variáveis auxiliares da origem s e a fila Q.

2.4 - O Algoritmo BFS:

while $Q \neq \emptyset$ do

 $v' \leftarrow Desenfileira[Q]$

for $\forall v \in Adjacente[v']$ do

if
$$cor[v] = BRANCO$$
 then
 $cor[v] \leftarrow CINZA$
 $d[v] \leftarrow d[v'] + 1$
 $pai[v] \leftarrow v'$
 $Enfileira(Q, v)$

Se o vértice adjacente é branco, significa que ele nunca foi visitado. Deve ser pintado de CINZA e enfileirado para posterior processamento.

 $cor[v'] \leftarrow PRETO$

2.4 - O Algoritmo BFS:

while
$$Q \neq \emptyset$$
 do
 $v' \leftarrow Desenfileira[Q]$
for $\forall v \in Adjacente[v']$ do
if $cor[v] = BRANCO$ then
 $cor[v] \leftarrow CINZA$
 $d[v] \leftarrow d[v'] + 1$
 $pai[v] \leftarrow v'$
 $Enfileira(Q, v)$

 $cor[v'] \leftarrow PRETO$

Quando todos os adjacentes de *v'* forem processados, ele passa a ser PRETO.

2.5 – Exercícios de BFS: 1) iniciar em x.

2.5 – Exercícios de BFS: 2) iniciar em x.

2.5 – Exercícios de BFS: 3) iniciar em x.

3.1 - Características DFS:

Em uma **busca exaustiva em profundidade** a partir de um vértice v, espera-se que todos os filhos, e os filhos dos filhos de v sejam visitados antes de continuar a busca no vizinho:

Inteligência Artificial – Parte 2 – Prof. Celso Gallão – Slide 44

3.1 - Características DFS:

- Explora-se todo o grafo, tornando-o árvore de busca:
 - Um vértice por vez, expandindo em profundidade a fronteira de vértices explorados.
 - Busca exaustiva (todos os nós são visitados).
- Constrói-se a árvore de busca sobre o grafo:
 - Toma-se um vértice pai como raiz (Geração 0),
 - Descobre-se apenas 1 filho (Geração 1),
 - Para este filho (Geração 1) descobre-se apenas 1 filho (Geração
 2), e assim sucessivamente, até não haver mais Gerações.
 - Quando todas as arestas de um vértice já foram exploradas retorna (backtracking) à geração anterior e descobre-se outro filho, e assim por diante.

3.2 - Metodologia DFS:

- Colorindo os vértices:
 - Vértices brancos ainda não foram considerados
 Todos começam como branco.
 - Vértices cinza foram considerados mas não totalmente explorados

Eles podem ser adjacentes de vértices brancos.

- Vértices pretos foram totalmente explorados
 São vértices adjacentes a vértices pretos ou cinzas.
- Explorando vértices escaneando a lista de adjacências de vértices cinzas.

Exemplo DFS (iniciando no vértice s):

Exemplo DFS:

árvore

3.3 – O Algoritmo DFS:

- Assumir que o grafo G = (V, E) é representado com lista de adjacências.
- Para cada vértice no grafo, o algoritmo mantém estruturas auxiliares:
 - A variável cor[v'] mantém a informação sobre a cor de cada vértice.
 - A variável pai[v'] mantém a informação do predecessor de cada vértice. Quando não existe predecessor pai[u] = NIL.

3.3 – O Algoritmo DFS:

- Assumir que o grafo G = (V, E) é representado com lista de adjacências.
- Para cada vértice no grafo, o algoritmo mantém estruturas auxiliares:
 - A variável d[v'] mantém o valor do tempo quando v' foi visitado pela primeira vez.
 - A variável F[v'] mantém o valor do tempo quando v' foi totalmente explorado.
 - O vértice inicial é s.
 - O vértice observado é v'.

3.3 – O Algoritmo DFS:

```
DFS(G)
for \forall u \in V[G] do
         cor[v'] \leftarrow BRANCO
         pai[v'] \leftarrow NIL
tempo \leftarrow 0
for \forall v' \in V[G] do
         if cor[v'] = BRANCO then
                   VisitaDFS(u)
```

```
VisitaDFS(u)
cor[v'] \leftarrow CINZA
d[v'] \leftarrow tempo \leftarrow tempo+1
for \forall v \in Adjacente[v'] do
if cor[v] = BRANCO then
pai[v] \leftarrow v'
VisitaDFS(v)
cor[v'] \leftarrow PRETO
F[v'] \leftarrow tempo \leftarrow tempo+1
```

3.4 – Exercícios de DFS: 1) início em x:

3.4 – Exercícios de DFS: 2) início em x:

3.4 – Exercícios de DFS: 3) início em x:

Bibliografias

Obrigatórias:

- 1. CORMEN, LEISERSON, RIVEST, STEIN, **Algoritmos: Teoria e Prática**. 2ª ed. Rio de Janeiro: Campus, 2002: Capítulo 22 e Parte VIII Apêndice B.4.
- 2. RUSSELL, Stuart J; NORVIG, Peter. **Inteligência Artificial.** 2ª ed. Rio de Janeiro: Campus, 2004, Capítulos 1 e 2.
- 3. LUGER, George. Inteligência Artificial: Estruturas e Estratégias para a Resolução de Problemas Complexos. 4ª ed. Porto Alegre: Bookman, 2004, Capítulo 1.

Bibliografias

Recomendadas:

- 1. CORMEN, LEISERSON, RIVEST, STEIN, **Algoritmos: Teoria e Prática**. 2ª ed. Rio de Janeiro: Campus, 2002: Capítulo 3.
- 2. ARTERO, Almir Olivette, **Inteligência Artificial: Teórica e Prática**. 1ª ed. São Paulo: Livraria da Física, 2009: Capítulo 4.
- 3. ROSA, João Luis Garcia, **Fundamentos da Inteligência Artificial**. 1ª ed. Rio de Janeiro: LTC, 2011: Capítulo 2.