

Department of Computer Science & Engineering

Machine Learning

UE22CS352A

Orange Program

Name: Mohammed Hassan

Srn: PES2UG22CS317

Date: 30/09/2024

1. Fine-Tuned Model Parameters:

'hidden_layer_sizes': [(128,64,64,32),(64,64,32,32)],

'activation': ['tanh', 'relu'],

'solver': ['sgd', 'adam'],

'alpha': [0.0001, 0.05],

'learning_rate': ['constant','adaptive'],

'learning_rate_init': [0.001, 0.01, 0.1]

This dictionary defines the hyperparameters to be tuned and their possible values:

- hidden_layer_sizes: Different configurations of neurons in the hidden layers.
- activation: Activation functions to be used.
- solver: Optimization algorithms.
- alpha: Regularization parameter.
- learning_rate: Learning rate schedule.
- learning_rate_init: Initial learning rate.

2. Analysis of Metrics:

Original Model	. Performan	ce:		
	precision		f1-score	support
0	0.65	0.65	0.65	34
1	0.79	0.69	0.74	45
2	0.64	0.66		38
3	0.71	0.71	0.71	38
4	0.58	0.50	0.54	42
5	0.80	0.84	0.82	43
6	0.45	0.61	0.52	28
7	0.67	0.65	0.66	40
accuracy			0.67	308
macro avg	0.66	0.66	0.66	308
weighted avg	0.67	0.67	0.67	308
Confusion Matr	ix:			
[[22 0 6 1	1 1 0	3]		
[03120	0 4 8	0]		
[2 1 25 2	4 1 1	2]		
[0 1 1 27	5 0 4	0]		
[7033	21 0 5	3]		
[0400	0 36 2	1]		
[0201	1 3 17	4]		
[3024	4 0 1 2	6]]		

Best Model		rmance: ecision	recall	f1-score	support
	0	0.68	0.79	0.73	34
	1	0.80	0.71	0.75	45
	2	0.61	0.61	0.61	38
	3	0.65	0.74	0.69	38
	4	0.63	0.45	0.53	42
	5	0.67	0.81	0.74	43
	6	0.56	0.64	0.60	28
	7	0.61	0.50	0.55	40
accura	су			0.66	308
macro a	vg	0.65	0.66	0.65	308
weighted a	vg	0.66	0.66	0.65	308

```
Confusion Matrix:
           000
                   0]
            0 7
    0 23 3
            3 0
                3
                   51
    1 1 28 3 0 3
                   0]
    1 2 6 19 4
                2
                   31
    5 2 0 0 35 1
   1 0 2
            1 3 18 3]
    0 4 3 4
                1 20]]
```

3. K-Fold Cross Validation:

from sklearn.model_selection import cross_val_score

```
# Evaluate the original model using 5-fold cross-validation
cv_scores_original = cross_val_score(model_mlp, X_train, y_train, cv=5,
scoring='accuracy')
print(f"Original Model Cross-Validation Scores: {cv_scores_original}")
print(f"Original Model Average Cross-Validation Score:
{np.mean(cv_scores_original):.2f}")
```

Evaluate the best model using 5-fold cross-validation
cv_scores_best = cross_val_score(best_mlp_model, X_train, y_train, cv=5,
scoring='accuracy')
print(f"\nBest Model Cross-Validation Scores: {cv_scores_best}")
print(f"Best Model Average Cross-Validation Score: {np.mean(cv_scores_best):.2f}")

```
Original Model Cross-Validation Scores: [0.60162602 0.63821138 0.58536585 0.5877551 0.54285714]
Original Model Average Cross-Validation Score: 0.59

Best Model Cross-Validation Scores: [0.58943089 0.63821138 0.60569106 0.58367347 0.57959184]
Best Model Average Cross-Validation Score: 0.60
```

- Cross-Validation: A technique to evaluate the performance of a model by splitting the data into multiple folds and training/testing the model on these folds.
- ii. 5-Fold Cross-Validation: The data is split into 5 parts, and the model is trained on 4 parts and tested on the remaining part. This process is repeated 5 times, each time with a different part as the test set.
- iii. Accuracy: The metric used to evaluate the model's performance.
- iv. Original Model: The initial MLP model before hyperparameter tuning.

- v. Best Model: The MLP model with the best hyperparameters found using Grid Search.
- 4. **Comparative Study:** comparative study of model performance with respect to SVM and KNN.

Classification Reports

- SVM Model:
 - o Precision, recall, F1-score, and support for each class.
 - o Overall accuracy, macro average, and weighted average.
- KNN Model:
 - o Precision, recall, F1-score, and support for each class.
 - o Overall accuracy, macro average, and weighted average.

Confusion Matrices

- SVM Model:
 - o Shows the number of correct and incorrect predictions for each class.
 - Helps identify which classes are being misclassified.
- KNN Model:
 - o Shows the number of correct and incorrect predictions for each class.
 - o Helps identify which classes are being misclassified.

Cross-Validation Scores

- SVM Model:
 - o Cross-validation scores for each fold.
 - o Average cross-validation score.
- KNN Model:
 - o Cross-validation scores for each fold.
 - o Average cross-validation score.

SVM Model Performance:					
	precision	recall	f1-score	support	
0	0.42	0.29	0.34	34	
1	0.78	0.87	0.82	45	
2	0.60	0.68	0.64	38	
3	0.43	0.63	0.51	38	
4	0.60	0.43	0.50	42	
5	0.79	0.86	0.82	43	
6	0.56	0.50	0.53	28	
7	0.64	0.53	0.58	40	
accuracy			0.61	308	
macro avg	0.60	0.60	0.59	308	
weighted avg	0.61	0.61	0.61	308	

		-11			
KNN Model Per	rformance:				
	precision	recall	f1-score	support	
0	0.67			34	
1					
2				38	
3					
4				42	
5					
6					
7	0.58	0.55	0.56	40	
accuracy			0.61	308	
_	0.62				
weighted avg	0.62	0.61	0.61	308	
Confusion Ma	tniv.				
[[22 0 2 2 2 2 1 3]					
[0301		-			
[2 1 26		-			
-		4]			
[1 0 6		4]			
[0 3 1 3		0]			
-	2 1 5 12	-			
[5 0 3					
[] 0] .		11			

```
SVM Model Cross-Validation Scores: [0.57723577 0.62601626 0.57317073 0.5755102 0.5877551 ]
SVM Model Average Cross-Validation Score: 0.59

KNN Model Cross-Validation Scores: [0.50813008 0.55691057 0.54065041 0.59183673 0.53469388]
KNN Model Average Cross-Validation Score: 0.55
```