Graph Theory and Complex Networks: An Introduction

Maarten van Steen

VU Amsterdam, Dept. Computer Science Room R4.20, steen@cs.vu.nl

Chapter 03: Extensions

Version: April 7, 2014

Directed graph

Idea: extend graphs by letting edges have an explicit direction:

- Representing one-way streets in a street plan
- Expressing asymmetry in social relationships (Alice likes Bob: $A \rightarrow B$)
- Expressing asymmetry in communication networks

Definitior

A directed graph or digraph D is a tuple (V,A) of vertices V, and a collection of arcs A where each arc $a = \langle \overrightarrow{u,V} \rangle$ joins a vertex (tail) $u \in V$ to another (not necessarily distinct) vertex (head) v.

Directed graph

Idea: extend graphs by letting edges have an explicit direction:

- Representing one-way streets in a street plan
- Expressing asymmetry in social relationships (Alice likes Bob: $A \rightarrow B$)
- Expressing asymmetry in communication networks

Definition

A directed graph or digraph D is a tuple (V, A) of vertices V, and a collection of arcs A where each arc $a = \langle \overrightarrow{u, v} \rangle$ joins a vertex (tail) $u \in V$ to another (not necessarily distinct) vertex (head) v.

Basic properties

Definition

For a vertex v of digraph D, the number of arcs with head v is called the indegree $\delta_{in}(v)$ of v. The outdegree $\delta_{out}(v)$ is the number of arcs having v as their tail.

Theorem

$$\forall D: \sum_{v \in V(D)} \delta_{in}(v) = \sum_{v \in V(D)} \delta_{out}(v) = |A(D)|$$

Proof

- Every arc in D has exactly one head and one tail.
- $\sum_{v \in V(D)} \delta_{in}(v)$ is the same as counting all arc heads
- $\sum_{v \in V(D)} \delta_{out}(v)$ is the same as counting all tails
- Both are equal to the total number of arcs.

Basic properties

Definition

For a vertex v of digraph D, the number of arcs with head v is called the indegree $\delta_{in}(v)$ of v. The outdegree $\delta_{out}(v)$ is the number of arcs having v as their tail.

Theorem

$$\forall D: \sum_{v \in V(D)} \delta_{in}(v) = \sum_{v \in V(D)} \delta_{out}(v) = |A(D)|$$

Proof

- Every arc in D has exactly one head and one tail.
- $\sum_{v \in V(D)} \delta_{in}(v)$ is the same as counting all arc heads
- $\sum_{v \in V(D)} \delta_{out}(v)$ is the same as counting all tails
- Both are equal to the total number of arcs.

Basic properties

Definition

For a vertex v of digraph D, the number of arcs with head v is called the indegree $\delta_{in}(v)$ of v. The outdegree $\delta_{out}(v)$ is the number of arcs having v as their tail.

Theorem

$$\forall D: \sum_{v \in V(D)} \delta_{in}(v) = \sum_{v \in V(D)} \delta_{out}(v) = |A(D)|$$

Proof

- Every arc in D has exactly one head and one tail.
- $\sum_{v \in V(D)} \delta_{in}(v)$ is the same as counting all arc heads
- $\sum_{v \in V(D)} \delta_{out}(v)$ is the same as counting all tails
- Both are equal to the total number of arcs.

Adjacency matrix

	<i>V</i> ₁	<i>V</i> ₂	<i>V</i> 3	<i>V</i> ₄	Σ
<i>V</i> ₁	1	1	0	0	2
<i>V</i> ₂	0	0	1	0	1
<i>V</i> 3	1	1	0	0	2
<i>V</i> ₄	0	0	1	1	2
Σ	2	2	2	1	7

Observations

- Adjacency matrix is *not* necessarily symmetric: in general, $\mathbf{A}[i,j] \neq \mathbf{A}[j,i]$.
- A digraph *D* is strict iff $A[i,j] \le 1$ and A[i,i] = 0.
- $\forall v_i : \sum_j \mathbf{A}[i,j] = \delta_{out}(v_i)$ and $\sum_j \mathbf{A}[j,i] = \delta_{in}(v_i)$.

Incidence matrix

$$\mathbf{M}[i,j] = \begin{cases} 1 \\ -1 \\ 0 \end{cases}$$

if vertex v_i is the tail of arc a_i $\mathbf{M}[i,j] = \begin{cases} -1 & \text{if vertex } v_i \text{ is the head of arc } a_j \\ 0 & \text{otherwise} \end{cases}$

Incidence matrix

	0	1	-1	0	0	0	0
<i>V</i> ₂	0	-1	0	-1	0 1 -1 0	0	0
<i>V</i> ₃	0	0	1	1	-1	-1	0
V_4	0	0	0	0	0	1	0

$$\mathbf{M}[i,j] = \begin{cases} 1 \\ -1 \\ 0 \end{cases}$$

 $\mathbf{M}[i,j] = \begin{cases} 1 & \text{if vertex } v_i \text{ is the tall of all } a_j \\ -1 & \text{if vertex } v_i \text{ is the head of arc } a_j \\ 0 & \text{otherwise} \end{cases}$

Observation

Incidence matrices for digraphs cannot capture loops, making these matrices being used less often compared to undirected graphs.

Connectivity

Definition

A directed $(\mathbf{v_0}, \mathbf{v_k})$ -walk is an alternating sequence $[v_0, a_0, v_1, a_1, \dots, v_{k-1}, a_{k-1}, v_k]$ with $a_i = \langle \overrightarrow{v_i, v_{i+1}} \rangle$.

- A directed trail is a directed walk with distinct arcs.
- a directed path is a directed trail with distinct vertices.
- a directed cycle is a directed trail with distinct vertices except for v₀ = v_k.

Definition

D is strongly connected if there exists a directed path between every pair of distinct vertices from *D*. *D* is weakly connected if its underlying (undirected) graph is connected.

Connectivity

Definition

A directed $(\mathbf{v_0}, \mathbf{v_k})$ -walk is an alternating sequence $[v_0, a_0, v_1, a_1, \dots, v_{k-1}, a_{k-1}, v_k]$ with $a_i = \langle \overrightarrow{v_i, v_{i+1}} \rangle$.

- A directed trail is a directed walk with distinct arcs.
- a directed path is a directed trail with distinct vertices.
- a directed cycle is a directed trail with distinct vertices except for v₀ = v_k.

Definition

D is strongly connected if there exists a directed path between every pair of distinct vertices from *D*. *D* is weakly connected if its underlying (undirected) graph is connected.

Definition

Vertex v is reachable from vertex u if there exists a directed (u, v)-path.

Algorithm (Reachable vertices

 $R_t(u)$ is set of reachable vertices from u found after t steps.

 $N_{out}(v)$ is out-neighbors of $v: N_{out}(v) = \{w \in V(D) | \exists \langle \overline{v, w} \rangle \in A(D) \}$

- \bigcirc Set $t \leftarrow 0$ and $R_0(u) \leftarrow \{u\}$.
- igoplus Construct the set $R_{t+1}(u) \leftarrow R_t(u) \cup \Big(\bigcup_{v \in R_t(u)} N_{out}(v) \Big)$
- If $R_{t+1}(u) = R_t(u)$, stop: $R(u) \leftarrow R_t(u)$. Otherwise, increment t and repeat the previous step.

Definition

Vertex v is reachable from vertex u if there exists a directed (u, v)-path.

Algorithm (Reachable vertices)

 $R_t(u)$ is set of reachable vertices from u found after t steps.

 $N_{out}(v)$ is out-neighbors of v: $N_{out}(v) = \{w \in V(D) | \exists \langle \overrightarrow{v,w} \rangle \in A(D) \}.$

- ① Set $t \leftarrow 0$ and $R_0(u) \leftarrow \{u\}$.
- ② Construct the set $R_{t+1}(u) \leftarrow R_t(u) \cup \left(\bigcup_{v \in R_t(u)} N_{out}(v)\right)$.
- ③ If $R_{t+1}(u) = R_t(u)$, stop: $R(u) \leftarrow R_t(u)$. Otherwise, increment t and repeat the previous step.

Definition

Vertex v is reachable from vertex u if there exists a directed (u, v)-path.

Algorithm (Reachable vertices)

 $R_t(u)$ is set of reachable vertices from u found after t steps.

$$N_{out}(v)$$
 is out-neighbors of v : $N_{out}(v) = \{w \in V(D) | \exists \langle \overrightarrow{v,w} \rangle \in A(D) \}.$

- Set $t \leftarrow 0$ and $R_0(u) \leftarrow \{u\}$.
- ② Construct the set $R_{t+1}(u) \leftarrow R_t(u) \cup \left(\bigcup_{v \in R_t(u)} N_{out}(v) \right)$.
- ③ If $R_{t+1}(u) = R_t(u)$, stop: $R(u) \leftarrow R_t(u)$. Otherwise, increment t and repeat the previous step.

Definition

Vertex v is reachable from vertex u if there exists a directed (u, v)-path.

Algorithm (Reachable vertices)

 $R_t(u)$ is set of reachable vertices from u found after t steps.

$$N_{out}(v)$$
 is out-neighbors of v : $N_{out}(v) = \{w \in V(D) | \exists \langle \overrightarrow{v,w} \rangle \in A(D) \}.$

- Set $t \leftarrow 0$ and $R_0(u) \leftarrow \{u\}$.
- **2** Construct the set $R_{t+1}(u) \leftarrow R_t(u) \cup \left(\bigcup_{v \in R_t(u)} N_{out}(v) \right)$.
- ③ If $R_{t+1}(u) = R_t(u)$, stop: $R(u) \leftarrow R_t(u)$. Otherwise, increment t and repeat the previous step.

Definition

Vertex v is reachable from vertex u if there exists a directed (u, v)-path.

Algorithm (Reachable vertices)

 $R_t(u)$ is set of reachable vertices from u found after t steps.

$$N_{out}(v)$$
 is out-neighbors of v : $N_{out}(v) = \{w \in V(D) | \exists \langle \overrightarrow{v,w} \rangle \in A(D) \}.$

- **①** Set $t \leftarrow 0$ and $R_0(u) \leftarrow \{u\}$.
- **2** Construct the set $R_{t+1}(u) \leftarrow R_t(u) \cup \left(\bigcup_{v \in R_t(u)} N_{out}(v) \right)$.
- ③ If $R_{t+1}(u) = R_t(u)$, stop: $R(u) \leftarrow R_t(u)$. Otherwise, increment t and repeat the previous step.

Note

An orientation D(G) of an undirected graph G is a directed graph in which edge from G has been assigned a direction.

Question

Given G, how many orientations can you construct?

Theorem

There exists an orientation D(G) for a connected undirected graph G that is strongly connected if and only if $\lambda(G) \ge 2$.

Proof: Strongly connected $\Rightarrow \lambda(G) \ge 2$

Note

An orientation D(G) of an undirected graph G is a directed graph in which edge from G has been assigned a direction.

Question

Given G, how many orientations can you construct?

Theorem

There exists an orientation D(G) for a connected undirected graph G that is strongly connected if and only if $\lambda(G) \ge 2$.

Proof: Strongly connected $\Rightarrow \lambda(G) \ge 2$

Note

An orientation D(G) of an undirected graph G is a directed graph in which edge from G has been assigned a direction.

Question

Given G, how many orientations can you construct?

Theorem

There exists an orientation D(G) for a connected undirected graph G that is strongly connected if and only if $\lambda(G) \ge 2$.

Proof: Strongly connected $\Rightarrow \lambda(G) \ge 2$

Note

An orientation D(G) of an undirected graph G is a directed graph in which edge from G has been assigned a direction.

Question

Given G, how many orientations can you construct?

Theorem

There exists an orientation D(G) for a connected undirected graph G that is strongly connected if and only if $\lambda(G) \ge 2$.

Proof: Strongly connected $\Rightarrow \lambda(G) \ge 2$

- $\lambda(G) \ge 2 \Rightarrow$ every edge lies on a cycle.
- $C = [v_1, v_2, \dots, v_n, v_1] \Rightarrow \langle v_i, v_{i+1} \rangle$ is replaced with arc $\langle \overrightarrow{v_i, v_{i+1}} \rangle$; $\langle v_n, v_1 \rangle$ by $\langle \overrightarrow{v_n, v_1} \rangle$. If V(C) = V(G), stop.
- $V(C) \neq V(G)$. Let $w \notin V(C)$. $\lambda(G) \geq 2 \Rightarrow$ there are two edge-independent (w, v_1) -paths P_1 and P_2 . Set orientation
- Repeat until $W = V(C) \cup V(P_1) \cup V(P_2) = V(G)$

- $\lambda(G) \ge 2 \Rightarrow$ every edge lies on a cycle.
- $C = [v_1, v_2, \dots, v_n, v_1] \Rightarrow \langle v_i, v_{i+1} \rangle$ is replaced with arc $\langle \overrightarrow{v_i, v_{i+1}} \rangle$; $\langle v_n, v_1 \rangle$ by $\langle \overrightarrow{v_n, v_1} \rangle$. If V(C) = V(G), stop.

- $V(C) \neq V(G)$. Let $w \notin V(C)$. $\lambda(G) \geq 2 \Rightarrow$ there are two edge-independent (w, v_1) -paths P_1 and P_2 . Set orientation
- Repeat until $W = V(C) \cup V(P_1) \cup V(P_2) = V(G)$

- $\lambda(G) \ge 2 \Rightarrow$ every edge lies on a cycle.
- $C = [v_1, v_2, \dots, v_n, v_1] \Rightarrow \langle v_i, v_{i+1} \rangle$ is replaced with arc $\langle \overrightarrow{v_i, v_{i+1}} \rangle$; $\langle v_n, v_1 \rangle$ by $\langle \overrightarrow{v_n, v_1} \rangle$. If V(C) = V(G), stop.

- $V(C) \neq V(G)$. Let $w \notin V(C)$. $\lambda(G) \geq 2 \Rightarrow$ there are two edge-independent (w, v_1) -paths P_1 and P_2 . Set orientation.
- Repeat until $W = V(C) \cup V(P_1) \cup V(P_2) = V(G)$

- $\lambda(G) \ge 2 \Rightarrow$ every edge lies on a cycle.
- $C = [v_1, v_2, \dots, v_n, v_1] \Rightarrow \langle v_i, v_{i+1} \rangle$ is replaced with arc $\langle \overrightarrow{v_i}, \overrightarrow{v_{i+1}} \rangle$; $\langle v_n, v_1 \rangle$ by $\langle \overrightarrow{v_n}, \overrightarrow{v_1} \rangle$. If V(C) = V(G), stop.

- $V(C) \neq V(G)$. Let $w \notin V(C)$. $\lambda(G) \geq 2 \Rightarrow$ there are two edge-independent (w, v_1) -paths P_1 and P_2 . Set orientation.
- Repeat until $W = V(C) \cup V(P_1) \cup V(P_2) = V(G)$

- $\lambda(G) \ge 2 \Rightarrow$ every edge lies on a cycle.
- $C = [v_1, v_2, \dots, v_n, v_1] \Rightarrow \langle v_i, v_{i+1} \rangle$ is replaced with arc $\langle \overrightarrow{v_i}, \overrightarrow{v_{i+1}} \rangle$; $\langle v_n, v_1 \rangle$ by $\langle \overrightarrow{v_n}, \overrightarrow{v_1} \rangle$. If V(C) = V(G), stop.

- $V(C) \neq V(G)$. Let $w \notin V(C)$. $\lambda(G) \geq 2 \Rightarrow$ there are two edge-independent (w, v_1) -paths P_1 and P_2 . Set orientation.
- Repeat until $W = V(C) \cup V(P_1) \cup V(P_2) = V(G)$

Definition

In a weighted graph G each edge e has an associated real-valued weight $w(e) < \infty$. For $H \subseteq G$, $w(H) = \sum_{e \in E(H)} w(e)$.

- Start with a set $S = \{v_0\}$, and add vertex closest to v_0
- Expand S by adding vertex closest to v₀ through one of the vertices in S.
- Stop when there are no more vertices left

Definition

In a weighted graph G each edge e has an associated real-valued weight $w(e) < \infty$. For $H \subseteq G$, $w(H) = \sum_{e \in E(H)} w(e)$.

- Start with a set $S = \{v_0\}$, and add vertex closest to v_0 .
- Expand S by adding vertex closest to v₀ through one of the vertices in S.
- Stop when there are no more vertices left

Definition

In a weighted graph G each edge e has an associated real-valued weight $w(e) < \infty$. For $H \subseteq G$, $w(H) = \sum_{e \in E(H)} w(e)$.

- Start with a set $S = \{v_0\}$, and add vertex closest to v_0 .
- Expand S by adding vertex closest to v₀ through one of the vertices in S.
- Stop when there are no more vertices left

Definition

In a weighted graph G each edge e has an associated real-valued weight $w(e) < \infty$. For $H \subseteq G$, $w(H) = \sum_{e \in E(H)} w(e)$.

- Start with a set $S = \{v_0\}$, and add vertex closest to v_0 .
- Expand S by adding vertex closest to v₀ through one of the vertices in S.
- Stop when there are no more vertices left

Definition

In a weighted graph G each edge e has an associated real-valued weight $w(e) < \infty$. For $H \subseteq G$, $w(H) = \sum_{e \in E(H)} w(e)$.

- Start with a set $S = \{v_0\}$, and add vertex closest to v_0 .
- Expand S by adding vertex closest to v₀ through one of the vertices in S.
- Stop when there are no more vertices left.

Edge colorings

Basic idea

Assign colors to edges such that two edges incident to the same vertex have different colors:

 $\forall \langle u, v \rangle, \langle v, w \rangle \in E(G) : col(\langle u, v \rangle) \neq col(\langle v, w \rangle).$

Application

Consider *n* storage devices, but that we need to move data between devices (e.g., to balance the load).

- Represent each storage device by a vertex.
- Divide all data into equally sized data blocks.
- If data block *b* needs to be moved from device *i* to *j*: add arc $\langle \overrightarrow{i,j} \rangle$. Note: we may have multiple arcs from *i* to *j*.

Edge colorings

Basic idea

Assign colors to edges such that two edges incident to the same vertex have different colors:

 $\forall \langle u, v \rangle, \langle v, w \rangle \in E(G) : col(\langle u, v \rangle) \neq col(\langle v, w \rangle).$

Application

Consider *n* storage devices, but that we need to move data between devices (e.g., to balance the load).

- Represent each storage device by a vertex.
- Divide all data into equally sized data blocks.
- If data block *b* needs to be moved from device *i* to *j*: add $\text{arc } \langle \overrightarrow{i,j} \rangle$. Note: we may have multiple arcs from *i* to *j*.

Edge colorings: example

Problem

Can we devise a **migration schedule** that does the job as quickly as possible, under the assumption that each device can move/accept only one block at a time?

Edge colorings: example

Problem

Can we devise a **migration schedule** that does the job as quickly as possible, under the assumption that each device can move/accept only one block at a time?

Edge colorings: example

Problem

Can we devise a **migration schedule** that does the job as quickly as possible, under the assumption that each device can move/accept only one block at a time?

Edge colorings: formalities

Definition

G, connected and loopless, is **k-edge colorable** if E(G) can be partitioned into k disjoint sets E_1, \ldots, E_k such that $\forall E_i : e_1, e_2 \in E_i \Rightarrow e_1, e_2$ are not incident with the same vertex.

Edge chromatic number: minimal k for which G is k-edge colorable: $\chi'(G)$.

Theorem (Vizing)

For any simple graph G, either $\chi'(G) = \Delta(G)$ or $\chi'(G) = \Delta(G) + 1$, with $\Delta(G) = \max_{v \in V(G)} \delta(v)$

Note

For all graphs we have $\chi'(G) \geq \Delta(G)$

Edge colorings: formalities

Definition

G, connected and loopless, is **k-edge colorable** if E(G) can be partitioned into k disjoint sets E_1, \ldots, E_k such that $\forall E_i : e_1, e_2 \in E_i \Rightarrow e_1, e_2$ are not incident with the same vertex.

Edge chromatic number: minimal k for which G is k-edge colorable: $\chi'(G)$.

Theorem (Vizing)

For any simple graph
$$G$$
, either $\chi'(G) = \Delta(G)$ or $\chi'(G) = \Delta(G) + 1$, with $\Delta(G) = \max_{v \in V(G)} \delta(v)$

Note

For all graphs we have $\chi'(G) \geq \Delta(G)$

Edge colorings: formalities

Definition

G, connected and loopless, is k-edge colorable if E(G) can be partitioned into k disjoint sets E_1, \ldots, E_k such that $\forall E_i : e_1, e_2 \in E_i \Rightarrow e_1, e_2$ are not incident with the same vertex.

Edge chromatic number: minimal k for which G is k-edge colorable: $\chi'(G)$.

Theorem (Vizing)

For any simple graph G, either $\chi'(G) = \Delta(G)$ or $\chi'(G) = \Delta(G) + 1$, with $\Delta(G) = \max_{v \in V(G)} \delta(v)$

Note

For all graphs we have $\chi'(G) \ge \Delta(G)$

Vertex colorings

Definition

G, simple and connected, is k-vertex colorable if V(G) can be partitioned into k disjoint sets V_1, \ldots, V_k such that $\forall V_i, \ \forall x, y \in V_i : \ \langle x, y \rangle \notin E(G)$.

Chromatic number: minimal k for which G is k-vertex colorable: $\chi(G)$.

Problem

Finding $\chi(G)$ is a notoriously difficult problem: no efficient general solution exists, meaning we need to essentially try all possible combinations.

Vertex colorings

Definition

G, simple and connected, is k-vertex colorable if V(G) can be partitioned into k disjoint sets V_1, \ldots, V_k such that $\forall V_i, \ \forall x, y \in V_i : \ \langle x, y \rangle \notin E(G)$.

Chromatic number: minimal k for which G is k-vertex colorable: $\chi(G)$.

Problem

Finding $\chi(G)$ is a notoriously difficult problem: no efficient general solution exists, meaning we need to essentially try all possible combinations.

Theorem

For any (simple, connected) graph $G: \chi(G) \leq \Delta(G) + 1$.

- n = 1: trivial as $\chi = 1$ and $\Delta = 0$.
- Assume OK for k > 0 and consider G with |V(G)| = k + 1.
- Consider $v \in V$ with $\delta(v) = \Delta(G)$. $G^* = G v \Rightarrow$ exists c-vertex coloring C^* of G^* with $\chi(G^*) = c \le \Delta(G^*) + 1$.
- $\Delta(G) = \Delta(G^*) \Rightarrow$ worst case $c = \Delta(G^*) + 1$. $|N(v)| = \Delta(G) = c - 1 \Rightarrow$ there is a color left over that we can use for v.
- $\Delta(G) > \Delta(G^*) \Rightarrow$ introduce new color for v and at worst $\chi(G) = \chi(G^*) + 1 \le \Delta(G^*) + 2 \le \Delta(G) + 1$.

Theorem

For any (simple, connected) graph $G: \chi(G) \leq \Delta(G) + 1$.

- n = 1: trivial as $\chi = 1$ and $\Delta = 0$.
- Assume OK for k > 0 and consider G with |V(G)| = k + 1.
- Consider $v \in V$ with $\delta(v) = \Delta(G)$. $G^* = G v \Rightarrow$ exists c-vertex coloring C^* of G^* with $\chi(G^*) = c \le \Delta(G^*) + 1$.
- $\Delta(G) = \Delta(G^*) \Rightarrow$ worst case $c = \Delta(G^*) + 1$. $|N(v)| = \Delta(G) = c - 1 \Rightarrow$ there is a color left over that we can use for v.
- $\Delta(G) > \Delta(G^*) \Rightarrow$ introduce new color for v and at worst $\chi(G) = \chi(G^*) + 1 \le \Delta(G^*) + 2 \le \Delta(G) + 1$.

Theorem

For any (simple, connected) graph $G: \chi(G) \leq \Delta(G) + 1$.

- n = 1: trivial as $\chi = 1$ and $\Delta = 0$.
- Assume OK for k > 0 and consider G with |V(G)| = k + 1.
- Consider $v \in V$ with $\delta(v) = \Delta(G)$. $G^* = G v \Rightarrow$ exists *c*-vertex coloring C^* of G^* with $\gamma(G^*) = c < \Delta(G^*) + 1$.
- $\Delta(G) = \Delta(G^*) \Rightarrow$ worst case $c = \Delta(G^*) + 1$. $|N(v)| = \Delta(G) = c - 1 \Rightarrow$ there is a color left over that we can use for v.
- $\Delta(G) > \Delta(G^*) \Rightarrow$ introduce new color for v and at worst $\chi(G) = \chi(G^*) + 1 \le \Delta(G^*) + 2 \le \Delta(G) + 1$.

Theorem

For any (simple, connected) graph $G: \chi(G) \leq \Delta(G) + 1$.

- n = 1: trivial as $\chi = 1$ and $\Delta = 0$.
- Assume OK for k > 0 and consider G with |V(G)| = k + 1.
- Consider $v \in V$ with $\delta(v) = \Delta(G)$. $G^* = G v \Rightarrow$ exists c-vertex coloring C^* of G^* with $\chi(G^*) = c \le \Delta(G^*) + 1$.
- $\Delta(G) = \Delta(G^*) \Rightarrow$ worst case $c = \Delta(G^*) + 1$. $|N(v)| = \Delta(G) = c - 1 \Rightarrow$ there is a color left over that we can use for v.
- $\Delta(G) > \Delta(G^*) \Rightarrow$ introduce new color for v and at worst $\chi(G) = \chi(G^*) + 1 \le \Delta(G^*) + 2 \le \Delta(G) + 1$.

Theorem

For any (simple, connected) graph $G: \chi(G) \leq \Delta(G) + 1$.

- n = 1: trivial as $\chi = 1$ and $\Delta = 0$.
- Assume OK for k > 0 and consider G with |V(G)| = k + 1.
- Consider $v \in V$ with $\delta(v) = \Delta(G)$. $G^* = G v \Rightarrow$ exists c-vertex coloring C^* of G^* with $\chi(G^*) = c \le \Delta(G^*) + 1$.
- $\Delta(G) = \Delta(G^*) \Rightarrow$ worst case $c = \Delta(G^*) + 1$. $|N(v)| = \Delta(G) = c - 1 \Rightarrow$ there is a color left over that we can use for v.
- $\Delta(G) > \Delta(G^*) \Rightarrow$ introduce new color for v and at worst $\chi(G) = \chi(G^*) + 1 \le \Delta(G^*) + 2 \le \Delta(G) + 1$.

Theorem

For any (simple, connected) graph $G: \chi(G) \leq \Delta(G) + 1$.

- n = 1: trivial as $\chi = 1$ and $\Delta = 0$.
- Assume OK for k > 0 and consider G with |V(G)| = k + 1.
- Consider $v \in V$ with $\delta(v) = \Delta(G)$. $G^* = G v \Rightarrow$ exists c-vertex coloring C^* of G^* with $\chi(G^*) = c \le \Delta(G^*) + 1$.
- $\Delta(G) = \Delta(G^*) \Rightarrow$ worst case $c = \Delta(G^*) + 1$. $|N(v)| = \Delta(G) = c - 1 \Rightarrow$ there is a color left over that we can use for v.
- $\Delta(G) > \Delta(G^*) \Rightarrow$ introduce new color for v and at worst $\chi(G) = \chi(G^*) + 1 \le \Delta(G^*) + 2 \le \Delta(G) + 1$.

Coloring planar graphs

Theorem

For any planar graph G, $\chi(G) \leq 4$.

Observation

If this theorem holds, we should be able to color any map with only four different colors.

Problem

- Conjectured in 1852 and specific cases proved to hold.
- Only in 1976 the theorem was proved to be true, but...
- A computer program was needed:
 - Split problem into 2000 different cases
 - Write a program for each case separately
 - Were the programs correct?

Coloring planar graphs

Theorem

For any planar graph G, $\chi(G) \leq 4$.

Observation

If this theorem holds, we should be able to color any map with only four different colors.

Problem

- Conjectured in 1852 and specific cases proved to hold.
- Only in 1976 the theorem was proved to be true, but...
- A computer program was needed:
 - Split problem into 2000 different cases
 - Write a program for each case separately
 - Were the programs correct?

Map coloring

Map coloring

Theorem

Every planar graph has a vertex v with $\delta(v) \le 5$.

- Consider only n > 7 vertices (otherwise trivial);
- $m = |E(G)| \Rightarrow \sum_{v \in V(G)} \delta(v) = 2m$.
- Assume no vertex exists with $\delta(v) \le 5 \Rightarrow 6n \le 2m$
- *G* planar $\Rightarrow m \le 3n 6 \Rightarrow 6n \le 6n 12$. Contradiction

Theorem

Every planar graph has a vertex v with $\delta(v) \le 5$.

- Consider only $n \ge 7$ vertices (otherwise trivial);
- $m = |E(G)| \Rightarrow \sum_{v \in V(G)} \delta(v) = 2m$.
- Assume no vertex exists with $\delta(v) \le 5 \Rightarrow 6n \le 2m$.
- *G* planar $\Rightarrow m \le 3n 6 \Rightarrow 6n \le 6n 12$. Contradiction.

Theorem

Every planar graph has a vertex v with $\delta(v) \leq 5$.

- Consider only $n \ge 7$ vertices (otherwise trivial);
- $m = |E(G)| \Rightarrow \sum_{v \in V(G)} \delta(v) = 2m$.
- Assume no vertex exists with $\delta(v) \le 5 \Rightarrow 6n \le 2m$.
- *G* planar $\Rightarrow m \le 3n 6 \Rightarrow 6n \le 6n 12$. Contradiction.

Theorem

Every planar graph has a vertex v with $\delta(v) \le 5$.

- Consider only $n \ge 7$ vertices (otherwise trivial);
- $m = |E(G)| \Rightarrow \sum_{v \in V(G)} \delta(v) = 2m$.
- Assume no vertex exists with $\delta(v) \le 5 \Rightarrow 6n \le 2m$.
- *G* planar $\Rightarrow m \le 3n 6 \Rightarrow 6n \le 6n 12$. Contradiction.

Theorem

Every planar graph has a vertex v with $\delta(v) \le 5$.

- Consider only $n \ge 7$ vertices (otherwise trivial);
- $m = |E(G)| \Rightarrow \sum_{v \in V(G)} \delta(v) = 2m$.
- Assume no vertex exists with $\delta(v) \le 5 \Rightarrow 6n \le 2m$.
- *G* planar $\Rightarrow m \le 3n 6 \Rightarrow 6n \le 6n 12$. Contradiction.

Theorem

For any planar graph G, $\chi(G) \leq 5$.

- n = 1: obviously true. Assume correct for all graphs with k > 1 vertices
- Consider *G* with k+1 vertices. Let v have $\delta(v) \le 5$
- $G^* = G v$ has k vertices \Rightarrow exists 5 coloring with colors c_1, \dots, c_5
- Not all colors used in $N(v) \Rightarrow$ assign unused color to v. Done.

Theorem

For any planar graph G, $\chi(G) \leq 5$.

- n = 1: obviously true. Assume correct for all graphs with k > 1 vertices.
- Consider *G* with k+1 vertices. Let v have $\delta(v) \le 5$.
- $G^* = G v$ has k vertices \Rightarrow exists 5 coloring with colors c_1, \ldots, c_5 .
- Not all colors used in $N(v) \Rightarrow$ assign unused color to v. Done.

Theorem

For any planar graph G, $\chi(G) \leq 5$.

- n = 1: obviously true. Assume correct for all graphs with k > 1 vertices.
- Consider *G* with k+1 vertices. Let v have $\delta(v) \le 5$.
- $G^* = G v$ has k vertices \Rightarrow exists 5 coloring with colors c_1, \ldots, c_5 .
- Not all colors used in $N(v) \Rightarrow$ assign unused color to v. Done.

Theorem

For any planar graph G, $\chi(G) \leq 5$.

- n = 1: obviously true. Assume correct for all graphs with k > 1 vertices.
- Consider *G* with k+1 vertices. Let ν have $\delta(\nu) \le 5$.
- $G^* = G v$ has k vertices \Rightarrow exists 5 coloring with colors c_1, \dots, c_5 .
- Not all colors used in $N(v) \Rightarrow$ assign unused color to v. Done.

Theorem

For any planar graph G, $\chi(G) \leq 5$.

- n = 1: obviously true. Assume correct for all graphs with k > 1 vertices.
- Consider *G* with k+1 vertices. Let ν have $\delta(\nu) \le 5$.
- $G^* = G v$ has k vertices \Rightarrow exists 5 coloring with colors c_1, \dots, c_5 .
- Not all colors used in $N(v) \Rightarrow$ assign unused color to v. Done.

Theorem

For any planar graph G, $\chi(G) \leq 5$.

- n = 1: obviously true. Assume correct for all graphs with k > 1 vertices.
- Consider *G* with k+1 vertices. Let ν have $\delta(\nu) \le 5$.
- $G^* = G v$ has k vertices \Rightarrow exists 5 coloring with colors c_1, \dots, c_5 .
- Not all colors used in $N(v) \Rightarrow$ assign unused color to v. Done.

Proof cnt'd: assume all colors used for $N(v) \Rightarrow \delta(v) = 5$

Idea: Rearrange the colors in $N(v) = \{v_1, v_2, ..., v_5\}$. Let $col(v_i) = c_i$.

Assume no (v_1, v_3) -path in G^* with only c_1, c_3 : Consider (v_1, w) -paths in G^* colored with only c_1, c_3

- For the induced subgraph H, we know that $v_3 \notin V(H)$
- Also: $N(v_3) \cap V(H) = \emptyset$.

Solution: interchange c_1 and c_3 in $H \Rightarrow$ use c_1 for v.

Proof cnt'd: assume all colors used for $N(v) \Rightarrow \delta(v) = 5$

Idea: Rearrange the colors in $N(v) = \{v_1, v_2, ..., v_5\}$. Let $col(v_i) = c_i$.

Assume no (v_1, v_3) -path in G^* with only c_1, c_3 : Consider (v_1, w) -paths in G^* colored with only c_1, c_3

- For the induced subgraph H, we know that $v_3 \notin V(H)$
- Also: $N(v_3) \cap V(H) = \emptyset$.

Solution: interchange c_1 and c_3 in $H \Rightarrow$ use c_1 for v.

Proof cnt'd: assume all colors used for $N(v) \Rightarrow \delta(v) = 5$

Assume there exists (v_1, v_3) -path P in G^* with only c_1, c_3 : Consider cycle $C = [v_3, v, v_1, P]$. C encloses v_2 , or otherwise v_4 and $v_5 \Rightarrow$ no (v_2, v_4) -path with only colors c_2, c_4 . Consider all (v_2, w) -paths with only colors c_2, c_4 . Induce subgraph H' of G^* .

Solution: interchange colors c_2 and c_4 in $H' \Rightarrow$ use c_2 for V.

Proof cnt'd: assume all colors used for $N(v) \Rightarrow \delta(v) = 5$

Assume there exists (v_1, v_3) -path P in G^* with only c_1, c_3 : Consider cycle $C = [v_3, v, v_1, P]$. C encloses v_2 , or otherwise v_4 and $v_5 \Rightarrow$ no (v_2, v_4) -path with only colors c_2, c_4 . Consider all (v_2, w) -paths with only colors c_2, c_4 . Induce subgraph H' of G^* .

Solution: interchange colors c_2 and c_4 in $H' \Rightarrow$ use c_2 for v.