Semiparametric robust mean estimations based on the orderliness of quantile averages

Tuban Lee

This manuscript was compiled on June 18, 2023

semiparametric | mean-median-mode inequality | asymptotic | unimodal | Hodges—Lehmann estimator

 \square Proof.

Inequalities related to weighted averages

- So far, it is quite natural to hypothesize that the value of
- 4 ϵ, γ -trimmed mean should be monotonically related to the
- breakdown point in a semiparametric distribution, since it is
- a linear combination of quantile averages as shown in Section
- 7 ??. Analogous to the γ -orderliness, the γ -trimming inequality
- 8 for a right-skewed distribution is defined as $\forall 0 \leq \epsilon_1 \leq \epsilon_2 \leq$
- $\frac{1}{1+\gamma}$, $TM_{\epsilon_1,\gamma} \geq TM_{\epsilon_2,\gamma}$. γ -orderliness is a sufficient condition
- for the γ -trimming inequality, as proven in the SI Text. The
- next theorem shows a relation between the ϵ, γ -quantile average and the ϵ, γ -trimmed mean under the γ -trimming inequality,
- and the e, y-trimmed mean under the y-trimming mequanty
- $_{13}$ $\,$ suggesting the $\gamma\text{-}\mathrm{orderliness}$ is not a necessary condition for
- the γ -trimming inequality.
- Data Availability. Data for Figure ?? are given in SI Dataset
- 16 S1. All codes have been deposited in GitHub.
- ACKNOWLEDGMENTS. I sincerely acknowledge the insightful
- 18 comments from the editor which considerably elevated the lucidity
- 19 and merit of this paper.