Multi-Task Learning for Longitudinal PET Quantification in Pediatric Hodgkin Lymphoma

AAPM 2024 July 21, 2024

Xin Tie, Muheon Shin, Changhee Lee, Scott B. Perlman, Zachary Huemann, Sharon M. Castellino, Kara M. Kelly, Junjie Hu, Steve Y. Cho, Tyler J. Bradshaw

Department of Radiology University of Wisconsin

Disclosures

No disclosures

Quantitative PET biomarkers in guiding **lymphoma** treatment strategies

Limited clinical use!

^{1.} Cottereau AS, et al. J Nucl Med. 2020; 61(1):40-45.

^{2.} Rossi C, et al. J Nucl Med. 2014; 55(4):569-573.

- Deep learning (DL) for automatic PET analysis
 - Quantify baseline tumor burden

- Interim PET analysis
 - Response assessments
 - Guide treatment

Challenges of Interim PET analysis

- Subtle tumor uptake
- Difficult to differentiate from inflammatory activity

Physicians rely on cross comparison with baseline PET

Purpose

To develop a **longitudinally-aware** segmentation network (LAS-Net) that can segment disease on **baseline PET** as well as detect residual lymphoma on **interim PET**

Dataset

- Children's Oncology Group (COG) AHOD1331 clinical trial
 - Phase 3 trial
 - Pediatric patients diagnosed with high-risk Hodgkin lymphoma
 - 200 labeled cases

Labeled Interim PET

- Longitudinal-aware segmentation network (LAS-Net)
 - 3D SwinUNETR
 - Dual-branch with longitudinal cross-attention

- Longitudinal-aware segmentation network (LAS-Net)
 - 3D SwinUNETR
 - <u>Dual-branch</u> with longitudinal cross-attention

- Longitudinal-aware segmentation network (LAS-Net)
 - 3D SwinUNETR
 - Dual-branch with <u>longitudinal cross-attention</u>

- Longitudinal-aware segmentation network (LAS-Net)
 - 3D SwinUNETR
 - Dual-branch with longitudinal cross-attention
 - One-way information flow

- Longitudinal-aware segmentation network (LAS-Net)
 - 3D SwinUNETR
 - Dual-branch with longitudinal cross-attention
 - One-way information flow

Training and Evaluation

- Multi-Task Learning strategy
 - Joint optimization for baseline and interim PET segmentation
- Evaluation metrics
 - Dice scores for baseline PET
 - Detection F1 scores for interim PET

Training and Evaluation

- Multi-Task Learning strategy
 - Joint optimization for baseline and interim PET segmentation
- Evaluation metrics
 - Dice scores for baseline PET
 - Detection F1 scores for interim PET
 - PET biomarkers: TMTV, TLG, △SUVmax, qPET
- Method Comparison
 - DynUNet, SegResNet, SwinUNETR
 - Deformable Registration (DR)

Results – Detection Performance on Interim PET

Without DR, the detection F1 score was 0.61

- **●** Without DR
- With DR

Results – Detection Performance on Interim PET

- Without DR, the detection F1 score was 0.61
- With DR, no increase in the F1 score

● Without DR

With DR

Results – Quantitative Interim Biomarkers

- Agreement with physician measurements
 - Δ**SUVmax**: ρ=0.80

Results – Quantitative Interim Biomarkers

- Agreement with physician measurements
 - Δ**SUVmax**: ρ=0.80
 - **qPET**: ρ=0.78

Results – Performance on Baseline PET

- Mean Dice score was 0.77
- Comparable performance to the best method (DynUNet)

Results – Quantitative Baseline Biomarkers

TLG: Spearman's $\rho = 0.96$

Results – Sample Case

Results – Sample Case

Conclusions

- Our study introduced a novel method that detect residual lesions on interim PET without sacrificing the ability to quantify baseline PET tumor burden
- Longitudinal awareness in analyzing multi-time-point imaging datasets

Thank you

xtie@wisc.edu

How about Deformable Registration?

Mask Propagation through Deformable Registration (MPDR)

Predicted baseline

Baseline PET

Predicted Interim

Interim PET

How about Deformable Registration?

Mask Propagation through Deformable Registration (MPDR)

^{1.} Weisman AJ, et al. J Nucl Med (supplement 1). 2020; 1434

How about Deformable Registration?

Mask Propagation through Deformable Registration (MPDR)

