Interrupts On Firebird-V Robot

e-Yantra Team

Embedded Real-Time Systems (ERTS) Lab Indian Institute of Technology, Bombay

Agenda for Discussion

- Overview
 - What is an Interrupt
 - Sources of Interrupt
 - External Interrupt
 - Interrupt Pins
 - Position Encoder
 - Interrupt Calculation
- 2 Registers
 - SREG
 - EIMSK
 - FICRA
 - EICRB
 - ISR
 - C-Code

What is an Interrupt Sources of Interrupt External Interrupt Interrupt Pins Position Encoder Interrupt Calculation

What is an Interrupt

What is an Interrupt

Any signal that causes break in continuity of some ongoing process

What is an Interrupt

- Any signal that causes break in continuity of some ongoing process
- In microcontrollers interrupt signal halts the execution of main program and dedicates processor to another task

Main program exceution

```
while ( ) {
    Instruction 1
    Instruction 2
    Instruction 3
    Instruction 4
    Instruction 5
    Instruction 6
    }
```


What is an Interrupt

While main program is running, if an interrupt occurs, execution of main program is stopped, and program counter goes to address of ISR

What is an Interrupt

- While main program is running, if an interrupt occurs, execution of main program is stopped, and program counter goes to address of ISR
- Interrupt Service Routine: Program that needs to be executed when interrupt occurs

What is an Interrupt

Sources of Interrupt in ATmega2560

Sources of Interrupt

Sources of Interrupt in ATmega2560

ATmega 2560 has Fifty-Seven different sources for Interrupt generation

Sources of Interrupt in ATmega2560

ATmega 2560 has Fifty-Seven different sources for Interrupt generation

• RESET Interrupt - [1]

Sources of Interrupt in ATmega2560

ATmega 2560 has Fifty-Seven different sources for Interrupt generation

- RESET Interrupt [1]
- 2 External hardware Interrupt [8]

Sources of Interrupt in ATmega2560

ATmega 2560 has Fifty-Seven different sources for Interrupt generation

- RESET Interrupt [1]
- 2 External hardware Interrupt [8]
- 3 Pin Change Interrupt Request [3]

Sources of Interrupt in ATmega2560

ATmega 2560 has Fifty-Seven different sources for Interrupt generation

- RESET Interrupt [1]
- 2 External hardware Interrupt [8]
- Open Pin Change Interrupt Request [3]
- Timer/Counter Interrupts

ATmega 2560 has Fifty-Seven different sources for Interrupt generation

- RESET Interrupt [1]
- ② External hardware Interrupt [8]
- Open Pin Change Interrupt Request [3]
- 4 Timer/Counter Interrupts
 - Timer/Counter0 [3]
 - Timer/Counter1 [5]
 - Timer/Counter2 [3]
 - Timer/Counter3 [5]
 - Timer/Counter4 [5]
 - Timer/Counter5 [5]

ATmega 2560 has Fifty-Seven different sources for Interrupt generation

- RESET Interrupt [1]
- ② External hardware Interrupt [8]
- 3 Pin Change Interrupt Request [3]
- 4 Timer/Counter Interrupts
 - Timer/Counter0 [3]
 - Timer/Counter1 [5]
 - Timer/Counter2 [3]
 - Timer/Counter3 [5]
 - Timer/Counter4 [5]
 - Timer/Counter5 [5]
- Serial Interrupts

ATmega 2560 has Fifty-Seven different sources for Interrupt generation

- RESET Interrupt [1]
- External hardware Interrupt [8]
- Pin Change Interrupt Request [3]
- Timer/Counter Interrupts
 - Timer/Counter0 [3]
 - Timer/Counter1 [5]
 - Timer/Counter2 [3]
 - Timer/Counter3 [5]
 - Timer/Counter4 [5]
 - Timer/Counter5 [5]
- Serial Interrupts
 - USART0 [3]
 - USART1 [3]
 - USART2 [3]
 - USART3 [3]

ATmega 2560 has Fifty-Seven different sources for Interrupt generation

- RESET Interrupt [1]
- External hardware Interrupt [8]
- Pin Change Interrupt Request [3]
- Timer/Counter Interrupts
 - Timer/Counter0 [3]
 - Timer/Counter1 [5]
 - Timer/Counter2 [3]
 - Timer/Counter3 [5]
 - Timer/Counter4 [5]
 - Timer/Counter5 [5]
- Serial Interrupts
 - USART0 [3]
 - USART1 [3]
 - USART2 [3]
 - USART3 [3]
- Others [7] such as Analog Comparator, ADC Conversion Complete

What is an External Hardware Interrupt

What is an External Hardware Interrupt

1 It is an interrupt signal sent to the controller from an external device, like a disk controller or an external peripheral.

What is an External Hardware Interrupt

- ① It is an interrupt signal sent to the controller from an external device, like a disk controller or an external peripheral.
- ② ATmega2560 has 8 hardware interrupt pins (namely INTn where n can be 0 to 7).

What is an External Hardware Interrupt

- ① It is an interrupt signal sent to the controller from an external device, like a disk controller or an external peripheral.
- ② ATmega2560 has 8 hardware interrupt pins (namely INTn where n can be 0 to 7).
- **3** To use an external interrupt, the pin has to be configured as a standard IO input.

What is an External Hardware Interrupt

- ① It is an interrupt signal sent to the controller from an external device, like a disk controller or an external peripheral.
- ATmega2560 has 8 hardware interrupt pins (namely INTn where n can be 0 to 7).
- To use an external interrupt, the pin has to be configured as a standard IO input.
- 4 If pin is used as an input, external hardware device can be used to interrupt the controller.

What is an External Hardware Interrupt

- It is an interrupt signal sent to the controller from an external device, like a disk controller or an external peripheral.
- ② ATmega2560 has 8 hardware interrupt pins (namely INTn where n can be 0 to 7).
- To use an external interrupt, the pin has to be configured as a standard IO input.
- If pin is used as an input, external hardware device can be used to interrupt the controller.
- **6** Pin can also be used as an output, but in this case the interrupt is generated by the controller itself.

What is an Interrupt Sources of Interrupt External Interrupt Interrupt Pins Position Encoder Interrupt Calculation

Interrupt pins

Interrupt pins

Sr. no	Interrupt	Pin	Firebird V Connection
1	INT0	PD0	-
2	INT1	PD1	-
3	INT2	PD2	-
4	INT3	PD3	-
5	INT4	PE4	Left encoder
6	INT5	PE5	Right encoder
7	INT6	PE6	-
8	INT7	PE7	Interrupt switch

Interrupt pins

Sr. no	Interrupt	Pin	Firebird V Connection
1	INT0	PD0	-
2	INT1	PD1	-
3	INT2	PD2	-
4	INT3	PD3	-
5	INT4	PE4	Left encoder
6	INT5	PE5	Right encoder
7	INT6	PE6	-
8	INT7	PE7	Interrupt switch

What is an Interrupt
Sources of Interrupt
External Interrupt
Interrupt Pins
Position Encoder
Interrupt Calculation

What is an Interrupt Sources of Interrupt External Interrupt Interrupt Pins Position Encoder Interrupt Calculation

What is an Interrupt Sources of Interrupt External Interrupt Interrupt Pins Position Encoder Interrupt Calculation

 Encoder consists of IR LED and photo transistor placed opposite of each other

- Encoder consists of IR LED and photo transistor placed opposite of each other
- When IR light is interrupted by encoder disc, its output state changes (high to low or low to high)

- Encoder consists of IR LED and photo transistor placed opposite of each other
- When IR light is interrupted by encoder disc, its output state changes (high to low or low to high)
- Output of the encoder is connected to the interrupt pin of the microcontroller

- Encoder consists of IR LED and photo transistor placed opposite of each other
- When IR light is interrupted by encoder disc, its output state changes (high to low or low to high)
- Output of the encoder is connected to the interrupt pin of the microcontroller
- Left encoder is connected to INT4 and Right encoder is connected to INT5

What is an Interrupt Sources of Interrupt External Interrupt Interrupt Pins Position Encoder Interrupt Calculation

Some Mathematics...

Vonat is an Interrupt Sources of Interrupt External Interrupt Interrupt Pins Position Encoder Interrupt Calculation

Some Mathematics...

• Number of slots in disc = 30

What is an Interrupt Sources of Interrupt External Interrupt Interrupt Pins Position Encoder Interrupt Calculation

Some Mathematics...

- \bigcirc Number of slots in disc = 30
- 2 Number of Pulse/rotation = 30

What is an Interrupt Sources of Interrupt External Interrupt Interrupt Pins Position Encoder Interrupt Calculation

Some Mathematics...

- Number of slots in disc = 30
- ② Number of Pulse/rotation = 30
- 3 Diameter of wheel = 52mm

Some Mathematics...

- Number of slots in disc = 30
- ② Number of Pulse/rotation = 30
- 3 Diameter of wheel = 52mm
- 4 Resolution of position encoder

What is an Interrupt Sources of Interrupt External Interrupt Interrupt Pins Position Encoder Interrupt Calculation

Some Mathematics...

- Number of slots in disc = 30
- ② Number of Pulse/rotation = 30
- 3 Diameter of wheel = 52mm
- 4 Resolution of position encoder

Some Mathematics...

- Number of slots in disc = 30
- ② Number of Pulse/rotation = 30
- **3** Diameter of wheel = 52mm
- 4 Resolution of position encoder

$$= (\pi *d)/30 = 5.44$$

Some Mathematics...

- Number of slots in disc = 30
- ② Number of Pulse/rotation = 30
- 4 Resolution of position encoder

$$= (\pi *d)/30 = 5.44$$

6 Pulse count

$$= distance/5.44$$

Outline Overview Registers SREG EIMSK EICRA EICRB ISR

SREG- AVR Status Register

This register is used to Globally Enable all Interrupt

SREG- AVR Status Register

This register is used to Globally Enable all Interrupt

Bit	Symbol	Description	Bit Value
7		Global Interrupt Enable bit	1
6	Т	Bit Copy Storage bit	0
5	Н	Half Carry Flag	0
4	S	Sign Bit	0
3	V	Two's Complement Overflow Flag	0
2	N	Negative Flag	0
1	Z	Zero Flag	0
0	С	Carry Flag	0

SREG- AVR Status Register

This register is used to Globally Enable all Interrupt

Bit	Symbol	Description	Bit Value
7		Global Interrupt Enable bit	1
6	Т	Bit Copy Storage bit	0
5	Н	Half Carry Flag	0
4	S	Sign Bit	0
3	V	Two's Complement Overflow Flag	0
2	N	Negative Flag	0
1	Z	Zero Flag	0
0	С	Carry Flag	0

Note: cli() and sei() are used to clear and set global interrupt respectively

SREG- AVR Status Register

This register is used to Globally Enable all Interrupt

Bit	Symbol	Description	Bit Value
7		Global Interrupt Enable bit	1
6	Т	Bit Copy Storage bit	0
5	Н	Half Carry Flag	0
4	S	Sign Bit	0
3	V	Two's Complement Overflow Flag	0
2	N	Negative Flag	0
1	Z	Zero Flag	0
0	С	Carry Flag	0

Note: cli() and sei() are used to clear and set global interrupt respectively

(defined in <avr/interrupt.h> header file)

SREG EIMSK EICRA EICRB ISR

EIMSK- External Interrupt Mask Register

This register is Used to enable Individual External Interrupt

EIMSK- External Interrupt Mask Register

This register is Used to enable Individual External Interrupt

Bit	Symbol	Description	Bit Value
7	INT7	External Interrupt Request 7	0
6	INT6	External Interrupt Request 6	0
5	INT5	External Interrupt Request 5	1
4	INT4	External Interrupt Request 4	1
3	INT3	External Interrupt Request 3	0
2	INT2	External Interrupt Request 2	0
1	INT1	External Interrupt Request 1	0
0	INT0	External Interrupt Request 0	0

SREG EIMSK EICRA EICRB ISR

EIMSK- External Interrupt Mask Register

This register is Used to enable Individual External Interrupt

Bit	Symbol	Description	Bit Value
7	INT7	External Interrupt Request 7	0
6	INT6	External Interrupt Request 6	0
5	INT5	External Interrupt Request 5	1
4	INT4	External Interrupt Request 4	1
3	INT3	External Interrupt Request 3	0
2	INT2	External Interrupt Request 2	0
1	INT1	External Interrupt Request 1	0
0	INT0	External Interrupt Request 0	0

SREG EIMSK EICRA EICRB ISR

Interrupt Sense Control Bits

Interrupt Sense Control Bits

ISC _n 1	ISC _n 0	Description
0	0	The low level of INTn generates an Interrupt request
0	1	Any edge of INTn generates asynchronously an interrupt request
1	0	The falling edge of INTn generates asynchronously an interrupt request
1	1	The rising edge of INTn generates asynchronously an interrupt request

where n = External Interrupt Number (For Atmega 2560: <math>n = 0-7)

For External Interrupt = 0 Interrupt Sense Control Bit = ISC01 and ISC00

EICRA- External Interrupt Control Register A

This register is Used to generate Interrupt Signal

EICRA- External Interrupt Control Register A

This register is Used to generate Interrupt Signal

Bit	Symbol	Description	Bit Value
7	ISC31	Interrupt Sense control bit for Ext. Interrupt 3	0
6	ISC30	Interrupt Sense control bit for Ext. Interrupt 3	0
5	ISC <mark>2</mark> 1	Interrupt Sense control bit for Ext. Interrupt 2	0
4	ISC20	Interrupt Sense control bit for Ext. Interrupt 2	0
3	ISC <mark>1</mark> 1	Interrupt Sense control bit for Ext. Interrupt 1	0
2	ISC10	Interrupt Sense control bit for Ext. Interrupt 1	0
1	ISC <mark>0</mark> 1	Interrupt Sense control bit for Ext. Interrupt 0	0
0	ISC00	Interrupt Sense control bit for Ext. Interrupt 0	0

EICRA- External Interrupt Control Register A

This register is Used to generate Interrupt Signal

Bit	Symbol	Description	Bit Value
7	ISC31	Interrupt Sense control bit for Ext. Interrupt 3	0
6	ISC30	Interrupt Sense control bit for Ext. Interrupt 3	0
5	ISC21	Interrupt Sense control bit for Ext. Interrupt 2	0
4	ISC20	Interrupt Sense control bit for Ext. Interrupt 2	0
3	ISC11	Interrupt Sense control bit for Ext. Interrupt 1	0
2	ISC10	Interrupt Sense control bit for Ext. Interrupt 1	0
1	ISC <mark>0</mark> 1	Interrupt Sense control bit for Ext. Interrupt 0	0
0	ISC00	Interrupt Sense control bit for Ext. Interrupt 0	0

 $EICRA = 0 \times 00$

SREG EIMSK EICRA EICRB ISR

EICRB- External Interrupt Control Register B

This register is Used to generate Interrupt Signal

EICRB- External Interrupt Control Register B

This register is Used to generate Interrupt Signal

Bit	Symbol	Description	Bit Value
7	ISC71	Interrupt Sense control bit for Ext. Interrupt 7	0
6	ISC70	Interrupt Sense control bit for Ext. Interrupt 7	0
5	ISC <mark>6</mark> 1	Interrupt Sense control bit for Ext. Interrupt 6	0
4	ISC60	Interrupt Sense control bit for Ext. Interrupt 6	0
3	ISC51	Interrupt Sense control bit for Ext. Interrupt 5	1
2	ISC50	Interrupt Sense control bit for Ext. Interrupt 5	0
1	ISC41	Interrupt Sense control bit for Ext. Interrupt 4	1
0	ISC40	Interrupt Sense control bit for Ext. Interrupt 4	0

EICRB- External Interrupt Control Register B

This register is Used to generate Interrupt Signal

Bit	Symbol	Description	Bit Value
7	ISC71	Interrupt Sense control bit for Ext. Interrupt 7	0
6	ISC70	Interrupt Sense control bit for Ext. Interrupt 7	0
5	ISC <mark>6</mark> 1	Interrupt Sense control bit for Ext. Interrupt 6	0
4	ISC60	Interrupt Sense control bit for Ext. Interrupt 6	0
3	ISC51	Interrupt Sense control bit for Ext. Interrupt 5	1
2	ISC50	Interrupt Sense control bit for Ext. Interrupt 5	0
1	ISC41	Interrupt Sense control bit for Ext. Interrupt 4	1
0	ISC40	Interrupt Sense control bit for Ext. Interrupt 4	0

 $EICRB = 0 \times 0 A$

SREG EIMSK EICRA EICRB ISR

ISR-Interrupt Service Routine

SREG EIMSK EICRA EICRB ISR

ISR-Interrupt Service Routine

The format of ISR for external interrupt is

ISR-Interrupt Service Routine

The format of ISR for external interrupt is

```
ISR Format
```


ISR-Interrupt Service Routine

The format of ISR for external interrupt is

```
ISR Format

ISR(INTn_vect)
{
    code
}
```


ISR-Interrupt Service Routine

The format of ISR for external interrupt is

```
ISR Format

ISR(INTn_vect)
{
    code
}

Where n = External Interrupt Number (For Atmega2560: n=0-7)
```


Outline Overview Registers SREG EIMSK EICRA EICRB ISR C-Code

Syntax for C-Program

Port Initialization

SREG EIMSK EICRA EICRB ISR C-Code

Syntax for C-Program

Port Initialization

Left Encoder Port Initialization

SREG EIMSK EICRA EICRB ISR C-Code

Syntax for C-Program

Port Initialization

Left Encoder Port Initialization

```
void left_encoder_pin_config (void) //Configure Interrupt 4
{

DDRE = DDRE & OxEF; //Set the direction of the PORTE 4 pin as input
PORTE = PORTE | Ox10; //Enable internal pull-up for PORTE 4 pin
}
```


Syntax for C-Program

Port Initialization

Left Encoder Port Initialization

```
void left_encoder_pin_config (void) //Configure Interrupt 4
{

DDRE = DDRE & OxEF; //Set the direction of the PORTE 4 pin as input
PORTE = PORTE | Ox10; //Enable internal pull-up for PORTE 4 pin
}
```

Right Encoder Port Initialization

Syntax for C-Program

Port Initialization

Left Encoder Port Initialization

```
void left_encoder_pin_config (void) //Configure Interrupt 4
{

DDRE = DDRE & OxEF; //Set the direction of the PORTE 4 pin as input
PORTE = PORTE | Ox10; //Enable internal pull-up for PORTE 4 pin
}
```

Right Encoder Port Initialization

```
void right_encoder_pin_config (void) //Configure Interrupt 5
{

DDRE = DDRE & OxDF; //Set the direction of the PORTE 5 pin as input
PORTE = PORTE | Ox20; //Enable internal pull-up for PORTE 5 pin
```


Outline Overview Registers SREG EIMSK EICRA EICRB ISR C-Code

Syntax for C-Program

Interrupt Initialization

Outline Overview Registers SREG EIMSK EICRA EICRB ISR C-Code

Syntax for C-Program

Interrupt Initialization

Left-Encoder Interrupt Initialization

SREG EIMSK EICRA EICRB ISR C-Code

Syntax for C-Program

Interrupt Initialization

Left-Encoder Interrupt Initialization

Syntax for C-Program

Interrupt Initialization

Left-Encoder Interrupt Initialization

Right-Encoder Interrupt Initialization

Syntax for C-Program

Interrupt Initialization

Left-Encoder Interrupt Initialization

Right-Encoder Interrupt Initialization

EIMSK EICRA EICRB ISR C-Code

Thank You!

Post your queries on: support@e-yantra.org

