

INTELIGENCIA ARTIFICIAL (1INF24)

Unidad 2: Fundamentos de *Machine Learning* y redes neuronales artificiales

Tema 4: Algoritmos Básicos para Clasificación

Dr. Edwin Villanueva Talavera

Contenido

- El problema de clasificación
- Métricas de clasificación
- Clasificación K-NN
- Arboles de Clasificación

El conjunto de datos para clasificación

Variables de entrada (variables preditivas)

(Nom.	Temp.	Edad	Peso	Altura	Clase (target)
Registros (ejemplos)	Juan	37	70	94	190	Saludable
	Maria	38	65	60	172	Enfermo
	José	39	19	70	185	Enfermo
	Silvia	38	25	65	160	Saludable
	Pedro	37	70	90	168	Enfermo

¿Cómo clasificar?

Clasificador lineal

- ▲ Saludable
- Enfermo

$$f(x) = \theta_0 + \theta_1 x$$

¿Cómo clasificar?

Clasificación no lineal

Riesgo: sobre ajuste (Overfitting)

 El modelo falla al reconocer un nuevo dato porque no tiene valores similares a las muestras de entrenamiento. El modelo no genera la salida deseada frente a un nuevo dato por falta de ajuste del modelo. No puede generalizar.

compromise

Matriz de confusión

La matriz de confusión es una matriz de tamaño $m \times m$

m indica el número de clases

 C_{ij} indica el número de instancias de la clase real i que fueron etiquetados (predichos) como clase j por el modelo.

Clase predicha

-	Clase₁	Clase ₂	 Clase _m
Clase ₁	C _{1,1}	C _{1,2}	 C _{1,m}
Clase ₂	C _{2,1}	C _{2,2}	 $C_{2,m}$
	•••		
Clase _m	<i>C_{m,1}</i>	$C_{m,2}$	 $C_{m,m}$

Clase real

Idealmente, la mayoría de las instancias deben estar representadas a lo largo de la diagonal de la matriz de confusión.

Métricas de clasificación

Matriz de confusión

Clase predicha \hat{y}

Si

No

Si

Clase real y

No Falsos Positivos Verdaderos Negativos (TN) (FP) **Falsos Negativos** Verdaderos **Positivos** (FN) (TP)

negativos correctamente Verdaderos negativos (TN):

etiquetados como negativos

positivos correctamente Verdaderos positivos (TP):

etiquetados como positivos

positivos incorrectamente Falsos negativos (FN):

etiquetados como negativos

negativos incorrectamente Falsos positivos (FP):

etiquetados como positivos

Métricas de clasificación

Clase predicha \hat{y}

acc (Accuracy)

$$acc = \frac{TN + TP}{TN + TP + FP + FN}$$

P (Precision)

$$P = \frac{TP}{FP + TP}$$

• R (Recall)

$$R = \frac{TP}{FN + TP}$$

• F1 (F1-score)

$$F1 = \frac{2 (R \times P)}{R + P}$$

Balanced-accuracy

$$0.5\left(\frac{TN}{TN+FP}+\frac{TP}{FN+TP}\right)$$

Ejemplo:

		_	nosticada No erma (sana)	Diagnosticad a Enferma		
			- (0)	+ (1)		
			No	Si		
Sano	- (0)	No	79 (TN)	1 (FP)		
Enferma	+ (1)	Si	12 (FN)	28 (TP)		

Calcular las métricas:

Algoritmos de Clasificación

Lineales

Logistic Regression

No lineales

- k-Nearest Neighbors (KNN).
- Decision Trees.
- Support Vector Machines
- Redes Neuronales, etc.

PUCP

Regresión Logística

Regresión Lineal

Regresión Logística

Caso mulivariado

Caso

univariado

Notación general:

$$heta^T x = heta_0 + heta_1 x_1 + heta_2 x_2 + \dots + heta_n x_n$$

- θ es un vector de parámetros $[\theta_0, \theta_1, \theta_2, \dots, \theta_n]$.
- x es un vector de características $[1, x_1, x_2, \ldots, x_n]$

Función de perdida (entropía cruzada):

$$J(heta) = -rac{1}{m} \sum_{i=1}^m \left[y^{(i)} \log(h_ heta(x^{(i)})) + (1-y^{(i)}) \log(1-h_ heta(x^{(i)}))
ight]$$

Optimización (gradiente descendente):

$$heta_j := heta_j - lpha rac{\partial J(heta)}{\partial heta_j}$$

Clasificación KNN

- ☐ KNN (k-Nearest Neighbors) es un algoritmo usado para problemas de clasificación y regresión.
- □ Se debe seleccionar un valor K, el cual indica la cantidad de vecinos cercanos que se consideran para etiquetar un nuevo dato.
- ☐ Para conocer cuales son los vecinos más cercanos se usará una función de distancia.

Distancia de Minkowski: $d(A,B) = \sum_{i=1}^{p} \sum_{i=1}^{n} (|A(x_i) - B(x_i)|)^p$, $p \ge 1$

Clasificación KNN

- Algoritmo de entrenamiento (construccion del arbol)
- 1) Inicio: Comienza colocando todos los datos en un nodo (nodo raíz)
- 2) Evaluar divisiones: Para cada nodo hoja con datos D, el algoritmo evalúa cada variable y posible división (D1, D2) en cuanto a su ganancia_de_pureza (D, D1, D2)
- 3) Escoge la mejor división: Elige el nodo y la mejor división (la variable y división que maximiza la ganancia en pureza) y crear 2 nodos hijos con los datos de dicha división
- 4) Repetir: Repetir pasos 2 y 3 hasta que se cumpla una condición de parada (se llega a un mínimo de datos en los nodos; profundidad máxima del árbol, etc.)
- Prediccion en nuevos datos

Para predecir el valor de salida para un nuevo punto de datos, sigue el árbol de decisiones basado en las características de ese punto de datos y termina en una de las hojas. El valor predicho es simplemente la clase mayoritaria de los puntos de datos en esa hoja.

ganancia_de_pureza (D, D1, D2):

= Impureza(D) - (w1*Impureza(D1) + w2*Impureza(D2))

donde:

w1 y w2 son las proporciones de datos correspondientes a D1 y D2

Ejemplo de construcción del árbol:

Nodo Raíz

15 instancias14 instancias

Ejemplo de construcción del árbol:

Ejemplo de construcción del árbol:

Ejemplo de construcción del árbol:

Medidas de impureza

$$Gini = 1 - \sum_{i=1}^{c} (p_i)^2$$

 $= 1 - (probabilidad\ clase\ 1)^2 - (probabilidad\ clase\ 2)^2$

$$p(\stackrel{\bullet}{)} = 1 \quad p(\stackrel{\bullet}{)} = 0$$

$$1 - \left(\frac{10}{10}\right)^2 - \left(\frac{0}{10}\right)^2 = 0$$

$$1 - \left(\frac{7}{10}\right)^2 - \left(\frac{3}{10}\right)^2 = 0.4$$

$$1 - \left(\frac{5}{10}\right)^2 - \left(\frac{5}{10}\right)^2 = 0.5$$

$$1 - \left(\frac{3}{10}\right)^2 - \left(\frac{3}{10}\right)^2 - \left(\frac{4}{10}\right)^2 = 0.7$$

$$\begin{array}{c|c} \bullet \bullet \bullet \bullet \\ \bullet \bullet \bullet \bullet \end{array} \qquad 1 - \left(\frac{1}{10}\right)^2 - \dots - \left(\frac{1}{10}\right)^2 \approx 1$$

$$Gini = 0$$
 Igualdad total $Gini = 1$ Max. desigualdad

$$Entropy = \sum_{i=1}^{c} -p_i \log p_i$$

Entropia =
$$0$$

Entropia =
$$0.8$$

$$Entropy = 0$$
 Orden total $Entropy = 1$ Max. desorden

■ Parámetros importantes

♦ max_Depth = {None} → hasta que las hojas sean puras o tengan un mínimo de muestras

Regularización por poda

max_Depth = 5 Se genera el árbol hasta una profundidad máxima de 5

Bibliografía

- ❖ J. Watt and R. Borhani and A. Katsaggelos (2020). Machine Learning Refined: Foundations, Algorithms, and Applications. 2nd Edition. Cambridge: Cambridge University Press.
- ❖ C. Bishop (2006). Pattern Recognition and Machine Learning. Springer, New York.
- S. Raschka & V. Mirjalili (2019). *Python Machine Learning*. Third Edition. California: O'Reilly Media.

Sugerencia de links interesantes:

DERIVADAS - Clase Completa: Explicación Desde Cero https://www.youtube.com/watch?v=_6-zwdrqD3U

DERIVADAS: Las Famosas Reglas EXPLICADAS https://www.youtube.com/watch?v=06PeN5SJxzk

iGracias!

