Information Retrieval & Text Mining

System Implementation Inverted Index Construction

Dr. Saeed UI Hassan Information Technology University

Implementation of Text Retrieval Systems

Constructing Inverted Index

- The main difficulty is to build a huge index with limited memory
- Memory-based methods: not usable for large collections
- Sort-based methods:
 - Step 1: Collect local (termID, docID, freq) tuples
 - Step 2: Sort local tuples (to make "runs")
 - Step 3: Pair-wise merge runs
 - Step 4: Output inverted file

doc1

doc2

doc300

Mapping Strings to integer>>

Term Lexicon:

the 1 campaign 2 news 3

a 4

DocID

Lexicon:

doc1 1 doc2 2 doc3 3

. .

Parse & Count

Term Lexicon:

the 1 campaign 2 news 3 a 4

DocID Lexicon:

doc1 1 doc2 2 doc3 3

...

Term Lexicon:

the 1 campaign 2 news 3 a 4

DocID Lexicon:

doc1 1 doc2 2 doc3 3

• • •

Term Lexicon:

the 1 campaign 2 news 3 a 4

DocID Lexicon:

doc1 1 doc2 2 doc3 3

Inverted Index Compression

- In general, leverage skewed distribution of values and use variable-length encoding
- TF compression
 - Small numbers tend to occur far more frequently than large numbers (why?)
 - Fewer bits for small (high frequency) integers at the cost of more bits for large integers
- Doc ID compression
 - "d-gap" (store difference): d1, d2-d1, d3-d2,...
 - Feasible due to sequential access

Information Retrieval & Text Mining

System Implementation Fast Search

Dr. Saeed UI Hassan Information Technology University

Implementation of Text Retrieval Systems

How to Score Documents Quickly

General Form of Scoring Function

Final score adjustment

$$f(q, d) = f_a(h(g(t_1, d, q), ..., g(t_k, d, q)), f_d(d), f_q(q))$$

Weight aggregation

Weight a matched query term in d

$$f(d,q)=g(t_1,d,q)+...+g(t_k,d,q)$$
 where $g(t_i,d,q)=c(t_i,d)$

Query = "info security" Info:
$$(d1, 3), (d2, 4), (d3, 1), (d4, 5)$$

$$f(d,q)=g(t_1,d,q)+...+g(t_k,d,q)$$
 where $g(t_i,d,q)=c(t_i,d)$

Query = "info security" Info: (d1, 3), (d2, 4), (d3, 1), (d4, 5)

Accumulators: d1	d2	d3	d4	d5
0	0	0	0	0
(d1.3) = 3	0	0	0	0

$$f(d,q)=g(t_1,d,q)+...+g(t_k,d,q)$$
 where $g(t_i,d,q)=c(t_i,d)$

Query = "info security" Info: (d1, 3), (d2, 4), (d3, 1), (d4, 5)Security: (d2, 3), (d4,1), (d5, 3)

Accumulators: d1	d2	d3	d4	d5
0	0	0	0	0
(d1,3) => 3	0	0	0	0
(d2.4) = 3	4	0	0	0

$$f(d,q)=g(t_1,d,q)+...+g(t_k,d,q)$$

where $g(t_i,d,q) = c(t_i,d)$

Info: (d1, 3), (d2, 4), (d3, 1), (d4, 5)

Accumulators: d1	d2	d3	d4	d5
0	0	0	0	0
(d1,3) => 3	0	0	0	0
(d2,4) = 3	4	0	0	0
(d3,1) => 3	4	1	0	0

$$f(d,q)=g(t_1,d,q)+...+g(t_k,d,q)$$
 where $g(t_i,d,q)=c(t_i,d)$

Query = "info security"

Info:
$$(d1, 3), (d2, 4), (d3, 1), (d4, 5)$$

Accumulators: d1	d2	d3	d4	d5
0	0	0	0	0
(d1,3) => 3	0	0	0	0
(d2,4) = 3	4	0	0	0
(d3,1) => 3	4	1	0	0
(d4,5) = 3	4	1	5	0

$$f(d,q)=g(t_1,d,q)+...+g(t_k,d,q)$$
 where $g(t_i,d,q)=c(t_i,d)$

Query = "info security"

Info: (d1, 3), (d2, 4), (d3, 1), (d4, 5)

Accumulators: d1	d2	d3	d4	d5
0	0	0	0	0
(d1,3) => 3	0	0	0	0
(d2,4) = 3	4	0	0	0
(d3,1) => 3	4	1	0	0
(d4,5) = 3	4	1	5	0
(d2,3) = 3	7	1	5	0

$$f(d,q)=g(t_1,d,q)+...+g(t_k,d,q)$$

where $g(t_i,d,q) = c(t_i,d)$

Info: (d1, 3), (d2, 4), (d3, 1), (d4, 5)

Accumulators:	d1	d2	d3	d4	d5
	0	0	0	0	0
(d1,3) =>	3	0	0	0	0
(d2,4) =>	3	4	0	0	0
(d3,1) =>	3	4	1	0	0
(d4,5) =>	3	4	1	5	0
(d2,3) =>	3	7	1	5	0
(d4,1) =>	3	7	1	6	0

$$f(d,q)=g(t_1,d,q)+...+g(t_k,d,q)$$
 where $g(t_i,d,q)=c(t_i,d)$

Info:
$$(d1, 3), (d2, 4), (d3, 1), (d4, 5)$$

Accumulators:	d1	d2	d3	d4	d5
	0	0	0	0	0
(d1,3) =>	3	0	0	0	0
(d2,4) =>	3	4	0	0	0
(d3,1) =>	3	4	1	0	0
(d4,5) =>	3	4	1	5	0
(d2,3) =>	3	7	1	5	0
(d4,1) =>	3	7	1	6	0
(d5,3) =>	3	7	1	6	3

$$f(d,q)=g(t_1,d,q)+...+g(t_k,d,q)$$

where $g(t_i,d,q) = c(t_i,d)$

Query = "info security"

Info: (d1, 3), (d2, 4), (d3, 1), (d4, 5)

15

A	Accumulators:	d1	d2	d3	d4	d5
	(0	0			0
	$\begin{cases} (d1,3) => 3 \\ (d2,4) => 3 \\ (d3,1) => 3 \\ (d4,5) => 3 \end{cases}$	3	0	0	0	0
: C-	(d2,4) => 3	3	4	0	0	0
1 n 10	(d3,1) => 3	3	4	1	0	0
	(d4,5) => 3	3	4	1	5	0
	$(d2,3) \Rightarrow 3$	3	7	1	5	0
security	$\begin{cases} (d2,3) => 1 \\ (d4,1) => 1 \\ (d5,3) => 1 \end{cases}$	3	7	1	6	0
·	(d5,3) => 3	3	7	1	6	3

Further Improving Efficiency

Caching (e.g., query results, list of inverted index)

Keep only the most promising accumulators

Scaling up to the Web-scale? (need parallel processing)

Some Text Retrieval Toolkits

- Lucene: http://lucene.apache.org/
- Lemur/Indri: http://www.lemurproject.org/
- Terrier: http://terrier.org/
- MeTA: http://meta-toolkit.github.io/meta/
- More can be found at http://timan.cs.uiuc.edu/resources

Summary of System Implementation

- Inverted index and its construction
 - Preprocess data as much as we can
 - Compression when appropriate
- Fast search using inverted index
 - Exploit inverted index to accumulate scores for documents matching a query term
 - Exploit Zipf's law to avoid touching many documents not matching any query term
 - Can support a wide range of ranking algorithms
- Great potential for further scaling up using distributed file system, parallel processing, and caching

Additional Readings

- Ian H. Witten, Alistair Moffat, Timothy C. Bell: Managing Gigabytes: Compressing and Indexing Documents and Images, Second Edition. Morgan Kaufmann, 1999.
- Stefan Büttcher, Charles L. A. Clarke, Gordon V. Cormack: Information Retrieval - Implementing and Evaluating Search Engines. MIT Press, 2010.