OPERATOR SPLITTING METHODS FOR COMPUTATION OF EIGENVALUES OF REGULAR STURM-LIOUVILLE PROBLEMS

İsmail GÜZEL

Sturm J.C.F

ismailgzel@gmail.com

Dokuz Eylül University

İZMİR

13/06/2016

Liouville J.

Outline

- 1 Introduction
- The Sequential Splitting Method for Cauchy Problem
- 3 The Symmetrical Weighted Sequential Splitting Method
- 4 Application The Symmetrical Weighted Sequential Splitting Method To Regular SLP
- 5 Asymptotic Behaviour for Eigenvalues of SLP
- 6 Numerical Results
- 7 References

Introduction

We discuss the computation of higher eigenvalues of regular Sturm-Liouville problem (SLP) in canonical Liouville normal form

$$-y''(t) + q(t)y(t) = \lambda y(t) \tag{1}$$

with Dirichlet boundary conditions

$$y(0) = y(1) = 0 (2)$$

for $q(t) \in C[0,1]$ and $t \in [0,1]$.

Concerning numerical solution of the Sturm-Liouville problems, finite difference methods are very popular.

Generally speaking, finite difference methods (including asymptotic correction techniques, (Anderssen&De Hoog)¹, (Andrew)², extrapolation, (Somali&Oger)³ have the advantage of simplicity and programming ease.

But it is inefficient for computation of higher eigenvalues. Asymptotic correction has proved most successful when the derivatives of q(t) are small.

³Somali,S.,&Oger,V.(2005).Improvement of eigenvalues of Sturm-Liouville problem with t-periodic boundary conditions. Journal of Computational and Applied mathematics, 180(2),433-441

¹Anderssen,R.S.,& De Hoog,F.R.(1984). On the correction of finite difference eigenvalue approximations for Sturm-Liouville problems with general boundary conditions. BIT Numerical Mathematics,24(4),401-412.

²Andrew,A.L.(1988)Correction of finite element eigenvalues for problems with natural or periodic boundary conditions. BIT Numerical Mathematics, 28(2), 254-269. 2

The Sequential Splitting Method for Cauchy Problem

The main idea of the splitting method is to lead the complex problem to the sequence of sub-problems with simpler structure. (Geiser)⁴

$$\frac{dY(t)}{dt} = (A+B) Y(t) t \in [0,T] with Y(0) = Y_0, (3)$$

where $A,B\in\mathbb{R}^{m\times m}$ are constant matrices, $Y=(y_1,\ldots,y_m)^T$ is the solution vector, the initial condition $Y_0\in\mathbb{R}^m$ is a given constant vector.

The solution is given as

$$Y(t) = e^{t(A+B)}Y_0.$$

⁴Geiser, J. (2011) Iterative splitting methods for differential equations. CRC Press.

The method solves two subproblems sequentially an subintervals $[t_i,t_{i+1}]$, for $i=0,1,\ldots,N-1$,

$$\frac{dU(t)}{dt} = A U(t) \quad \text{with} \quad U(t_i) = Y_{sp,i} \tag{4}$$

$$\frac{dV(t)}{dt} = B V(t) \quad \text{with} \quad V(t_i) = U(t_{i+1}), \tag{5}$$

where $Y_{sp,0} = Y_0$ and $Y_{sp,i+1} = V(t_{i+1})$, $t_0 = 0$ and $t_N = T$.

1170-1250

The exact solutions of the equation (4) and (5) respectively are

$$U(t_{i+1}) = e^{(t_{i+1} - t_i)A} Y_{sp,i}$$

and

$$V(t_{i+1}) = e^{(t_{i+1} - t_i)B} U(t_{i+1})$$
$$= e^{(t_{i+1} - t_i)B} e^{(t_{i+1} - t_i)A} Y_{sp,i}$$

The approximate split solution at the point t_{i+1} is defined as $Y_{sp,i+1} = V(t_{i+1})$. That is

$$Y_{sp,i+1} = e^{hB} e^{hA} Y_{sp,i} ,$$

where $h = t_{i+1} - t_i$ is the stepsize.

The local splitting error of the sequential splitting method is obtained as

$$\begin{aligned} \mathsf{Err}_{local} &= (e^{h(A+B)} - e^{hB}e^{hA})Y_{sp,i} \\ &= \frac{1}{2}h^2 \; (BA - AB) \; Y_{sp,i} \; + \; \mathcal{O}(h^3) \end{aligned}$$

and then the global error of the method

$$Err_{alobal} = \mathcal{O}(h)$$

when $AB \neq BA$. The splitting error is O(h). So, it is called **First-Order Splitting Method**

The Symmetrical Weighted Sequential Splitting Method

We consider the *Cauchy Problem* (3) and define the splitting of the operator on the time interval $[t_i, t_{i+1}]$ as the following

$$\begin{split} \frac{dU_1(t)}{dt} &= A \; U_1(t) \quad \text{with} \quad U_1(t_i) = Y_{sp,i} \\ \frac{dV_1(t)}{dt} &= B \; V_1(t) \quad \text{with} \quad V_1(t_i) = U_1(t_{i+1}) \end{split}$$

and

$$\begin{split} \frac{dU_2(t)}{dt} &= B \ U_2(t) \quad \text{with} \quad U_2(t_i) = Y_{sp,i} \\ \frac{dV_2(t)}{dt} &= A \ V_2(t) \quad \text{with} \quad V_2(t_i) = U_2(t_{i+1}) \ , \end{split}$$

where $Y_{sp,0} = Y_0$.

The approximate split solution at the point $t_{i+1} = t_i + h$ is defined as

$$Y_{sp,i+1} = \frac{1}{2} \{ V_1(t_{i+1}) + V_2(t_{i+1}) \}$$

$$= \frac{1}{2} \{ e^{hB} e^{hA} + e^{hA} e^{hB} \} Y_{sp,i} .$$
(6)

1623-1662

The local spliting error of the symmetrical weighted splitting method is

$$\operatorname{Err}_{local} = \left(e^{h(A+B)} - \frac{1}{2} \left[e^{hB} e^{hA} + e^{hA} e^{hB} \right] \right) Y_{sp,i} ,$$

$$= \mathcal{O}(h^3) ,$$

and

$$\mathsf{Err}_{qlobal} = \mathcal{O}(h^2) \; ,$$

The splitting error is $O(h^2)$ if $AB \neq BA$. So, it is called Second-Order Splitting Method

1643-1727

The diagram of splitting methods

Application The Symmetrical Weighted Sequential Splitting Method To Regular SLP

Sturm-Liouville problem (1) and (2) are equivalent with the first order system by $y^\prime=z$

$$Y'(t) = A(t)Y(t)$$
 , $0 \le t \le 1$, (7)

$$C_1Y(0)+C_2Y(1)=\mathbf{0}$$
, (8)

Application The Symmetrical Weighted Sequential Splitting Method To Regular SLP

Sturm-Liouville problem (1) and (2) are equivalent with the first order system by $y^\prime=z$

$$Y'(t) = A(t)Y(t)$$
 , $0 \le t \le 1$, (7)

$$C_1Y(0)+C_2Y(1)=\mathbf{0}$$
, (8)

where

$$Y(t) = \begin{bmatrix} y(t) \\ z(t) \end{bmatrix} \quad , \quad A(t) = \begin{bmatrix} 0 & 1 \\ q(t) - \lambda & 0 \end{bmatrix},$$

$$C_1 = egin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 and $C_2 = egin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$.

1655-1705

The matrix A(t) is splitted as a sum of M and q(t)N

$$A(t) = M + q(t)N,$$

where

$$M = \begin{bmatrix} 0 & 1 \\ -\lambda & 0 \end{bmatrix} \quad \text{and} \quad N = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}.$$

We consider the partition of the interval [0,1]

$$t_i = ih$$
 , $i = 0, 1, \dots, n$, $h = \frac{1}{n}$.

The symmetrical weighted sequential splitting of the system on time interval $[t_i, t_{i+1}]$ is defined as in the following algorithm,

$$U'_1(t) = M \ U_1(t)$$
 $U_1(t_i) = Y_{sp,i}$
 $V'_1(t) = q(t)N \ V_1(t)$ $V_1(t_i) = U_1(t_{i+1})$

and

$$U'_2(t) = q(t)N \ U_2(t)$$
 $U_2(t_i) = Y_{sp,i}$
 $V'_2(t) = M \ V_2(t)$ $V_2(t_i) = U_2(t_{i+1}),$

for $i = 0, 1, \dots, n-1$ and $Y_{sp,0}$ is a vector to be determined.

The approximate split solution at the point t_{i+1} is defined as

$$\begin{split} Y_{sp,i+1} &= \frac{1}{2} \left\{ V_1(t_{i+1}) + V_2(t_{i+1}) \right\} \;, \\ &= \frac{1}{2} \left\{ e^{s_{i+1}N} e^{hM} + e^{hM} e^{s_{i+1}N} \right\} Y_{sp,i} \;\;, \end{split}$$

where $s_{i+1} = \int_{t_i}^{t_{i+1}} q(\xi) d\xi$, $i = 0, 1, \dots, n-1$.

Finally, we can write the approximate split solution of (7) at $t_n=1$ as

$$Y_{sp,n} = KY_{sp,0} \approx Y(1)$$
,

where K is 2×2 matrix

$$K = \frac{1}{2^n} \left\{ \prod_{i=0}^{n-1} [e^{s_{n-i}N} e^{hM} + e^{hM} e^{s_{n-i}N}] \right\}.$$

It is apparent that

$$M^{2j} = (-1)^j \lambda^j I , \qquad (9)$$

$$M^{2j+1} = (-1)^j \lambda^j M$$
 for $j = 0, 1, \dots$ (10)

Using (9) and (10), we have

$$e^{tM} = \cos(\sqrt{\lambda}t)I_{2\times 2} + \frac{1}{\sqrt{\lambda}}\sin(\sqrt{\lambda}t)M$$

$$= \begin{bmatrix} \cos(\sqrt{\lambda}t) & \frac{1}{\sqrt{\lambda}}\sin(\sqrt{\lambda}t) \\ -\sqrt{\lambda}\sin(\sqrt{\lambda}t) & \cos(\sqrt{\lambda}t) \end{bmatrix}.$$

1706-1749

Since N is nilpotent matrix of index 2 ($N^k=0\,,\,k\geq 2$), it is clear that

$$e^{s_{n-i}N} = I + s_{n-i}N . (11)$$

We obtained that

$$K = \frac{1}{2^n} \left\{ \prod_{i=0}^{n-1} \left[2e^{hM} + s_{n-i}[b(\lambda)I + 2a(\lambda)N] \right] \right\}.$$

where

$$a(\lambda) = \cos(\sqrt{\lambda}h)$$
 and $b(\lambda) = \frac{\sin(\sqrt{\lambda}h)}{\sqrt{\lambda}}$.

The solution $Y_{sp,n}$ will be the solution of (7) and (8)

$$C_1 Y_{sp,0} + C_2 Y_{sp,n} = \mathbf{0}$$

 $(C_1 + C_2 K) Y_{sp,0} = \mathbf{0}$.

For a non-trivial solution $Y_{sp,0}$, the determinant of C_1+C_2K must be zero. It follows that

$$Q(\lambda) = \det(C_1 + C_2 K)$$

is the approximate characteristic function of SLP (7). Note that; $Q(\lambda)$ is the $(1,2)^{th}$ entry of K.

If q(t) = 0, then $s_i = 0$. Since nh = 1, we have

$$K = \frac{1}{2^n} \prod_{i=0}^{n-1} 2e^{hM} = e^M.$$

From $\det(C_1+C_2K)=0$, we get the characteristic equation of the original SLP

$$\frac{1}{\sqrt{\lambda}}\sin(\sqrt{\lambda}) = 0$$

and then the eigenvalues of SLP (1) and (2) are $\lambda_k=k^2\pi^2$, $k=1,2,\ldots$

Now, we consider the case q(t) is constant that is q(t)=q, then K will be

$$K = \frac{1}{2^n} [2e^{hM} + qh(bI + 2aN)]^n$$
$$= \frac{1}{2^n} L^n,$$

where
$$L=\begin{bmatrix}2a+qhb&2b\\-2\lambda b+2aqh&2a+qhb\end{bmatrix}$$
 and $a(\lambda):=a,\ b(\lambda):=b$ for simplicity.

From the determinant of matrix $(C_1 + \frac{1}{2^n}C_2L^n)$, we have the characteristic function $Q(\lambda) \in \mathbb{R}$ as the following

$$Q(\lambda) = \frac{-1}{2^{n+1}} \frac{b\sqrt{n}}{\sqrt{aqb - b^2 n\lambda}} (\mu_2^n - \mu_1^n), \tag{12}$$

where

$$\mu_1^n = \left(\frac{1}{n}\right)^n \left[2an + qb + 2\sqrt{bn(-\lambda bn + aq)}\right]^n$$

and

$$\mu_2^n = \left(\frac{1}{n}\right)^n \left[2an + qb - 2\sqrt{bn(-\lambda bn + aq)}\right]^n.$$

We get limit of the characteristic equation $Q(\lambda)$ as

$$\lim_{n \to \infty} Q(\lambda) = \frac{1}{\sqrt{\lambda - q}} \left\{ \frac{e^{i\sqrt{\lambda - q}} - e^{-i\sqrt{\lambda - q}}}{2i} \right\},$$
$$= \frac{1}{\sqrt{\lambda - q}} \sin \sqrt{\lambda - q},$$

where $\lambda - q > 0$.

Fourier 1768-1830

Asymptotic Behaviour for Eigenvalues of SLP

In order to derive the error estimate $e_s=\wedge_s-\lambda_s^{(p+1)}$, it is necessary to examine in some details of the asymptotic behaviour of e_s for constant case q(t)=q. Let

$$|e_s| = |\wedge_s - \lambda_s^{(p+1)}| = \left| \wedge_s - \left\{ \lambda_s^{(p)} - F(\lambda_s^{(p)}) \right\} \right|,$$

where $\lambda_s^{(p)}$ is the s^{th} approximate eigenvalue to the s^{th} eigenvalues \wedge_s of the original SLP that obtained by Newton method at p^{th} step, $F(\lambda)$ is the reduced rational function to $\frac{Q(\lambda)}{Q'(\lambda)}$ such that $F(\lambda_s^{(p)})$ is defined, $Q(\lambda)$ in (12) is approximate characteristic equation that obtained from the symmetrical weighted splitting method.

 $Q(\lambda)$ is zero whenever λ is an eigenvalue depending on n (number of intervals), but it is also zero when $\lambda=n^2k^2\pi^2,\,k=1,2,\ldots$, which are not eigenvalues for q(t)=q.

Therefore, the removing these extraneous zeros, we will discuss the error formula in two cases.

Case i : Let s=nk+j, $\lambda_s^{(0)}=(nk+j)^2\pi^2$ and $j=\frac{n}{2}$, n is even number of interval, then

$$|e_s| = |e_{\frac{n}{2}(2k+1)}| \le \frac{|c_1|}{\lambda_s^{(0)}},$$
 (13)

where $c_1 = (q^2 - \frac{1}{12}q^3) + \mathcal{O}(\frac{1}{n})$,

$$s > \frac{\sqrt{|q^2 - \frac{1}{12}q^3|}}{\pi},$$

for any even $n \geq 2$.

Case ii : Let s = nk + j, $\lambda_s^{(0)} = (nk + j)^2 \pi^2$ and $j \neq \frac{n}{2}$, we get

$$|e_s| = |e_{nk+j}| \le \frac{|d_1|}{\sqrt{\lambda_s^{(0)}}},$$
 (15)

where

$$d_1 = \frac{\cos^3(\frac{j}{n}\pi)q^2}{4n\sin(\frac{j}{n}\pi)} + \mathcal{O}(\frac{1}{n^2}),$$

$$s > \frac{q^2}{4\pi^2}.$$

As a result, from the asymptotic expansion of the error formula, we obtain that

$$|\wedge_s - \lambda_s^{(p+1)}| = \begin{cases} \mathcal{O}(\frac{1}{s^2}), & s = \frac{n}{2}(2k+1), \quad n : \text{even}, \\ \mathcal{O}(\frac{1}{s}), & s = nk+j, \quad j \neq \frac{n}{2}, \end{cases}$$
(17)

satisfying the conditions (14) and (16) corresponding to the choosen n

For the constant case q(t)=q, we use forward difference technique to correct the eigenvalues using the property,

$$\Delta^3 \wedge_k = 0.$$

Suppose that for s+4 values,

$$\lambda_k = \wedge_k + \delta, \quad k = s + 1, \dots, s + 4,$$

where δ is sufficiently small and

$$\lambda_k = \wedge_k + \epsilon_k, \quad k = 1, 2, \dots, s,$$

where ϵ_k is the error for each k.

Using the forward difference formula, we obtain that

$$\begin{array}{lll} \Delta^3 \lambda_s &= -\epsilon_s + \delta \approx \epsilon_s \\ \Delta^3 \lambda_{s-1} &= 2\epsilon_s + \Delta \epsilon_{s-1} \\ \Delta^3 \lambda_{s-2} &= -\epsilon_s - \Delta \epsilon_{s-1} - \Delta^2 \epsilon_{s-2} \\ \Delta^3 \lambda_k &= \Delta^3 \epsilon_k, & k = 1, 2, \dots, s-3. \end{array}$$

Solving all errors from ϵ_s to ϵ_1 , we correct the first k eigenvalues $\lambda_k^{(c)}$ with the accuracy δ of \wedge_r for $r \geq s+1$, in the following formula

$$\lambda_k^{(c)} = \lambda_k - \epsilon_k, \quad k = 1, \dots, s.$$

Numerical Results

For the numerical results, the observed orders are obtained the following formulas

$$order = \log\left(\frac{\wedge_s - \lambda_{s,n}}{\wedge_r - \lambda_{r,n}}\right) / \log\left(\frac{r}{s}\right) \tag{18}$$

or

$$order = \log\left(\frac{\lambda_{s,n} - \lambda_{s,m}}{\lambda_{r,n} - \lambda_{r,m}}\right) / \log\left(\frac{r}{s}\right), \tag{19}$$

where $\lambda_{s,n}$ and $\lambda_{s,m}$ are the approximate eigenvalues to \wedge_s for n,m respectively.

Riemann 1826-1866

Comparison of the eigenvalues

For $n=2$, $j=1$ and $n=6$, $j=3$ with $q(t)=2$.					
s	$ \lambda_{s,2} - \wedge_s $	$ \lambda_{s,6} - \wedge_s $	order		
3	1.28236E-2				
15	5.24858E-4				
63	2.97812E-5				
141	5.94571E-6				
219	2.46457E-6				
321	1.14716E-6				
411	6.99656E-7				
501	4.70784E-7				

 \wedge_s The s^{th} exact eigenvalue.

 $\lambda_{s,n}$ The computed s^{th} approximate eigenvalue for choosen n.

Comparison of the eigenvalues

For $n=2$, $j=1$ and $n=6$, $j=3$ with $q(t)=2$.					
s	$ \lambda_{s,2} - \wedge_s $	$ \lambda_{s,6} - \wedge_s $	order		
3	1.28236E-2	1.12130E-2			
15	5.24858E-4	4.58239E-4			
63	2.97812E-5	2.59995E-5			
141	5.94571E-6	5.19070E-6			
219	2.46457E-6	2.15159E-6			
321	1.14716E-6	1.00129E-6			
411	6.99656E-7	6.10249E-7			
501	4.70784E-7	4.11179E-7			

 \wedge_s The s^{th} exact eigenvalue.

 $\lambda_{s,n}$ The computed s^{th} approximate eigenvalue for choosen n.

Comparison of the eigenvalues

For $n=2$, $j=1$ and $n=6$, $j=3$ with $q(t)=2$.					
s	$ \lambda_{s,2} - \wedge_s $	$ \lambda_{s,6} - \wedge_s $	order		
3	1.28236E-2	1.12130E-2	-1.97920		
15	5.24858E-4	4.58239E-4	-1.99793		
63	2.97812E-5	2.59995E-5	-1.99986		
141	5.94571E-6	5.19070E-6	-1.99991		
219	2.46457E-6	2.15159E-6	-1.99661		
321	1.14716E-6	1.00129E-6	-1.98059		
411	6.99656E-7	6.10249E-7	-2.04767		
501	4.70784E-7	4.11179E-7	-2.05363		

 \wedge_s The s^{th} exact eigenvalue.

 $\lambda_{s,n}$ The computed s^{th} approximate eigenvalue for choosen n.

	For $n = 2$, $j = 1$ and $n = 6$, $j = 3$ with $q(t) = 5$.					
s	$ \lambda_{s,2} - \wedge_s $	$ \lambda_{s,6} - \wedge_s $	order			
3	9.34553E-2					
15	3.97642E-3					
63	2.25996E-4					
141	1.36722E-4					
219	1.87049E-5					
321	8.70635E-6					
411	5.31063E-6					
501	3.57348E-6					

 \wedge_s The s^{th} exact eigenvalue.

	For $n=2$, $j=1$ and $n=6$, $j=3$ with $q(t)=5$.				
s	$ \lambda_{s,2} - \wedge_s $	$ \lambda_{s,6} - \wedge_s $	order		
3	9.34553E-2	6.96624E-2			
15	3.97642E-3	2.93801E-3			
63	2.25996E-4	1.66916E-4			
141	1.36722E-4	3.33262E-5			
219	1.87049E-5	1.38147E-5			
321	8.70635E-6	6.43008E-6			
411	5.31063E-6	3.92250E-6			
501	3.57348E-6	2.63983E-6			

 \wedge_s The s^{th} exact eigenvalue.

	For $n=2$, $j=1$ and $n=6$, $j=3$ with $q(t)=5$.				
s	$ \lambda_{s,2} - \wedge_s $	$ \lambda_{s,6} - \wedge_s $	order		
3	9.34553E-2	6.96624E-2	-1.94583		
15	3.97642E-3	2.93801E-3	-1.99442		
63	2.25996E-4	1.66916E-4	-1.99966		
141	1.36722E-4	3.33262E-5	-1.99992		
219	1.87049E-5	1.38147E-5	-1.99989		
321	8.70635E-6	6.43008E-6	-2.00110		
411	5.31063E-6	3.92250E-6	-2.00297		
501	3.57348E-6	2.63983E-6	-2.00277		

 \wedge_s The s^{th} exact eigenvalue.

	For $n=3$, $j=1$ and $n=5$, $j=1$ with $q(t)=2$.					
s	$ \lambda_{s,3} - \wedge_s $	$ \lambda_{s,5} - \wedge_s $	order			
1	8.18589E-2					
16	5.09730E-4					
61	2.20290E-4					
121	1.18749E-4					
211	7.00104E-5					
301	4.96161E-5					
436	3.45239E-5					
541	2.79178E-5					

 \wedge_s The s^{th} exact eigenvalue.

	For $n=3$, $j=1$ and $n=5$, $j=1$ with $q(t)=2$.				
s	$ \lambda_{s,3} - \wedge_s $	$ \lambda_{s,5} - \wedge_s $	order		
1	8.18589E-2	4.30804E-2			
16	5.09730E-4	3.15470E-3			
61	2.20290E-4	9.10733E-4			
121	1.18749E-4	4.66494E-4			
211	7.00104E-5	2.69345E-4			
301	4.96161E-5	1.89325E-4			
436	3.45239E-5	1.30962E-4			
541	2.79178E-5	1.05634E-4			

 \wedge_s The s^{th} exact eigenvalue.

	For $n=3$, $j=1$ and $n=5$, $j=1$ with $q(t)=2$.				
s	$ \lambda_{s,3} - \wedge_s $	$ \lambda_{s,5} - \wedge_s $	order		
1	8.18589E-2	4.30804E-2	-0.96848		
16	5.09730E-4	3.15470E-3	-1.00459		
61	2.20290E-4	9.10733E-4	-1.00170		
121	1.18749E-4	4.66494E-4	-1.00076		
211	7.00104E-5	2.69345E-4	-1.00048		
301	4.96161E-5	1.89325E-4	-1.00034		
436	3.45239E-5	1.30962E-4	-1.00026		
541	2.79178E-5	1.05634E-4	-1.00023		

 \wedge_s The s^{th} exact eigenvalue.

	For $n=3$, $j=1$ and $n=5$, $j=1$ with $q(t)=5$.					
s	$ \lambda_{s,3} - \wedge_s $	$ \lambda_{s,5} - \wedge_s $	order			
1	4.76135E-1					
16	2.70402E-3					
61	1.34364E-3					
121	7.33757E-4					
211	4.34797E-4					
301	3.08740E-4					
436	2.15123E-4					
541	1.74061E-4					

 \wedge_s The s^{th} exact eigenvalue.

	For $n=3$, $j=1$ and $n=5$, $j=1$ with $q(t)=5$.				
s	$ \lambda_{s,3} - \wedge_s $	$ \lambda_{s,5} - \wedge_s $	order		
1	4.76135E-1	2.61196E-1			
16	2.70402E-3	1.93971E-2			
61	1.34364E-3	5.67137E-3			
121	7.33757E-4	2.91039E-3			
211	4.34797E-4	1.68170E-3			
301	3.08740E-4	1.18245E-3			
436	2.15123E-4	8.18115E-4			
541	1.74061E-4	6.59956E-4			

 \wedge_s The s^{th} exact eigenvalue.

	For $n=3$, $j=1$ and $n=5$, $j=1$ with $q(t)=5$.				
s	$ \lambda_{s,3} - \wedge_s $	$ \lambda_{s,5} - \wedge_s $	order		
1	4.76135E-1	2.61196E-1	-0.92165		
16	2.70402E-3	1.93971E-2	-1.01109		
61	1.34364E-3	5.67137E-3	-1.00420		
121	7.33757E-4	2.91039E-3	-1.00188		
211	4.34797E-4	1.68170E-3	-1.00120		
301	3.08740E-4	1.18245E-3	-1.00083		
436	2.15123E-4	8.18115E-4	-1.00063		
541	1.74061E-4	6.59956E-4	-1.00051		

 \wedge_s The s^{th} exact eigenvalue.

Correction of the errors of the eigenvalues

	For $n=2$, $j=1$ and $n=6$, $j=3$ with $q(t)=2$.				
s	$ \lambda_{s,2} - \wedge_s $	$ \lambda_{s,2}^{(c)} - \wedge_s $	$ \lambda_{s,6} - \wedge_s $	$ \lambda_{s,6}^{(c)} - \wedge_s $	
3	1.2824E-2	5.3594E-5		·	
9	1.4554E-3	5.2534E-5			
15	5.2485E-4	5.1483E-5			
21	2.6791E-4	5.0444E-5			
27	1.6210E-4	4.9415E-5			
33	1.0852E-4	4.8397E-5			
39	7.7706E-5	4.7390E-5			
45	5.8368E-5	4.6393E-5			

 $[\]wedge_s$ The s^{th} exact eigenvalue.

 $\lambda_{s,n}$ The computed s^{th} approximate eigenvalue for choosen n.

 $\lambda_{s,n}^{(c)}$ The corrected eigenvalue obtained from forward difference technique

Correction of the errors of the eigenvalues

	For $n=2$, $j=1$ and $n=6$, $j=3$ with $q(t)=2$.				
s	$ \lambda_{s,2} - \wedge_s $	$ \lambda_{s,2}^{(c)} - \wedge_s $	$ \lambda_{s,6} - \wedge_s $	$ \lambda_{s,6}^{(c)} - \wedge_s $	
3	1.2824E-2	5.3594E-5	1.1213E-2	1.8836E-5	
9	1.4554E-3	5.2534E-5	1.2708E-3	1.8710E-5	
15	5.2485E-4	5.1483E-5	4.5824E-4	1.8584E-5	
21	2.6791E-4	5.0444E-5	2.3390E-4	1.8459E-5	
27	1.6210E-4	4.9415E-5	1.4152E-4	1.8334E-5	
33	1.0852E-4	4.8397E-5	9.4745E-5	1.8210E-5	
39	7.7706E-5	4.7390E-5	6.7839E-5	1.8085E-5	
45	5.8368E-5	4.6393E-5	5.0956E-5	1.7962E-5	

 $[\]wedge_s$ The s^{th} exact eigenvalue.

 $[\]lambda_{s,n}^{(c)}$ The corrected eigenvalue obtained from forward difference technique

 $[\]lambda_{s,n}$ The computed s^{th} approximate eigenvalue for choosen n.

Finite Difference Method

	For $n=2$ with $q(t)=2$.					
s	\wedge_s	$ \wedge_s - \lambda_{s,20}^{(f)} $	$ \wedge_s - \lambda_{s,2} $			
1	11.8696044	2.0277E-2	9.7745E-2			
3	90.8264396	1.6317	1.2824E-2			
5	248.740110	12.4255	4.6873E-3			
7	485.610615	46.8030	2.4017E-3			
9	801.437956	124.5855	1.4554E-3			
11	1196.22213	269.0746	9.7516E-4			
13	1669.96314	504.7707	6.9855E-4			
15	2222.66099	854.9756	5.2486E-4			

 $[\]wedge_s$ The s^{th} exact eigenvalue.

 $\lambda_{s,n}^{(f)}$ The eigenvalue obtained from finite difference approximation for choos

 $[\]lambda_{s,n}$ The computed $s^{ar{t}h}$ approximate eigenvalue for choosen n.

$-y''(t) + e^t y(t) = \lambda y(t), \qquad y(0) = y(1) = 0$					
s	n	λ_s^*	$ \lambda_{s,39}^{(f)} - \lambda^* $	$ \lambda_{s,n} - \lambda_s^* $	
1	6	11.5424	0.0057	0.1543E-1	
2	4	41.1867	0.0813	0.8668E-2	
3	6	90.5404	0.4106	0.3988E-2	
4	6	159.6296	1.2954	0.7742E-2	
5	2	248.4569	3.1544	0.1902E-2	
6	4	357.023	6.5261	0.1114E-2	
7	2	485.3281	12.0593	0.9407E-3	
8	5	633.3724	20.5083	0.2615E-2	
9	6	801.1558	32.7373	0.5008E-3	
10	4	988.6783	49.7023	0.3562E-3	

 $[\]lambda_s^*$ The eigenvalues are in (Paine, de Hoog,& Anderssen)⁵.

 $\lambda_{s,n}^{(f)}$ The eigenvalue obtained from finite difference approximation for choosen n.

⁵Paine, J. W., de Hoog, F.R.& Anderssen, R. S.(1981). On the correction of finite difference eigenvalue approximations for Sturm-Liouville problems. Computing,26(2), 123-139

The greater than ten eigenvalues

For $n=2$, $j=1$ and $n=6$, $j=3$ with $q(t)=e^t$.					
s	$\lambda_{s,2}$	$ \lambda_{s,2} - \lambda_{s,6} $	order		
15	2222.3788924	4.10845E-5	-1.99823		
21	4354.2136289	2.09740E-5	-1.99936		
45	19987.667151	4.56988E-6	-1.99981		
69	46990.904817	1.94387E-6	-1.99997		
87	74704.753982	1.22272E-6	-2.		
129	164241.80511	5.56145E-7	-2.00039		
237	554367.52788	1.64728E-7	-2.00442		
351	1215946.8500	7.49715E-8	-1.99589		
405	1618863.5801	5.63450E-8	-1.91204		
513	2597375.6389	3.58559E-8	-2.20865		

$-y''(t) + t^2 y(t) = \lambda y(t), \qquad y(0) = y(1) = 0$						
s	n	λ_s^*	$ \lambda_{s,20}^{(f)}-\lambda_s^* $	$ \lambda_{s,n} - \lambda_s^* $		
1	7	10.1511643	2.0291E-2	5.99769E-3		
2	7	39.7993930	3.2365E-1	5.39722E-3		
3	5	89.1543424	1.6316885	3.00800E-3		
4	6	158.243961	5.1273118	1.80503E-3		
5	2	247.071500	12.425603	1.82758E-3		
6	4	355.637743	25.534059	2.68230E-3		
7	2	483.942959	46.803153	9.30714E-4		
8	5	631.987257	78.868467	1.39727E-3		
9	2	799.770691	124.58579	5.62593E-4		
10	7	987.293288	186.96079	7.50294E-5		

 $[\]lambda_s^*$ The eigenvalues are in (Birkhoff & Varga)⁶.

 $\binom{(f)}{s,n}$ The eigenvalue obtained from finite difference approximation for choosen n.

 $^{^6}$ Birkhoff, G., & Varga, R. S. (1970). Numerical solution of field problems in continuum physics, volume 2. Rhode Island: American Mathematical Society

The greater than ten eigenvalues

For $n=2$, $j=1$ and $n=6$, $j=3$ with $q(t)=t^2$.					
s	$\lambda_{s,2}$	$ \lambda_{s,2} - \lambda_{s,6} $	order		
21	4352.8288676	1.08987E-7	-1.99972		
27	7195.2749377	6.59347E-8	-2.00004		
33	10748.332523	4.41378E-8	-1.99971		
45	19986.282244	2.37414E-8	-2.00125		
51	25671.174379	1.84809E-8	-2.00180		
63	39172.793200	1.21217E-8	-2.00679		
81	64754.807808	7.34872E-9	-1.99191		
87	74703.369044	6.37374E-9	-2.01201		
105	108812.72185	4.36557E-9	-2.02980		
147	213272.61483	2.24099E-9	-2.02787		

OPERATOR SPLITTING METHOD FOR COMPUTATION OF EIGENVALUES OF REGULAR SLP

- Anderssen, R. S., & De Hoog, F. R. (1984). On the correction of finite difference eigenvalue approximations for Sturm-Liouville problems with general boundary conditions. *BIT Numerical Mathematics*, 24(4), 401–412.
- Andrew, A. L. (1988). Correction of finite element eigenvalues for problems with natural or periodic boundary conditions. *BIT Numerical Mathematics*, 28(2), 254–269.
- Correction of finite difference eigenvalues of periodic Sturm-Liouville problems. The Journal of the Australian Mathematical Society. Series B. Applied Mathematics, 30(04), 460–469.

- Andrew, A. L. (1994). Asymptotic correction of computed eigenvalues of differential equtions. *Annals Numerical Mathematics*, 1(41-51), C328.
- Andrew, A. L., & Paine, J. W. (1985). Correction of Numerov's eigenvalue estimates. *Numerische Mathematik*, 47(2), 289–300.
- Andrew, A. L., & Paine, J. W. (1986). Correction of finite element estimates for Sturm-Liouville eigenvalues. *Numerische Mathematik*, 50(2), 205–215.
- Birkhoff, G., & Varga, R. S. (1970). *Numerical solution of field problems in continuum physics*, volume 2. Rhode Island: American Mathematical Society.

- Fulton, C. T., & Pruess, S. A. (1994). Eigenvalue and eigenfunction asymptotics for regular Sturm-Liouville problems. *Journal of Mathematical Analysis and Applications*, 188(1), 297–340.
- Gartland, E. C. (1984). Accurate approximation of eigenvalues and zeros of selected eigenfunctions of regular Sturm-Liouville problems. *Mathematics of Computation*, 42(166), 427–439.
- Geiser, J. (2011). Iterative splitting methods for differential equations. Boca Raton, Florida: Chapman & Hall/CRC Press.

- Ghelardoni, P., & Gheri, G. (2001). Improved shooting technique for numerical computations of eigenvalues in Sturm-Liouville problems. *Nonlinear Analysis: Theory, Methods & Applications*, 47(2), 885–896.
- Keller, H. (1968). *Numerical methods for two-point boundary value problems*. Waltham, Massachusetts: Blaisdell Publishing Company.
- Kincaid, D. R., & Cheney, E. W. (1996). *Numerical Analysis:* The Mathematics of Scientific Computing. Pacific Grove, California: Brooks/Cole.

- Paine, J. W., de Hoog, F. R., & Anderssen, R. S. (1981). On the correction of finite difference eigenvalue approximations for Sturm-Liouville problems. *Computing*, 26(2), 123–139.
- Somali, S., & Oger, V. (2005). Improvement of eigenvalues of Sturm-Liouville problem with t-periodic boundary conditions, *Journal of Computational and Applied Mathematics*, 180(2), 433–441.