CSE 2500-01: Homework 6

Arturo Salinas-Aguayo

Spring 2025

Electrical and Computer Engineering Department

College of Engineering, University of Connecticut $_{\text{Coded in } \textsc{LAT}_{\textsc{EX}}}$

Problems

Theorem 1

For all integers k with $k \ge 4$, $2k^2 - 5k + 2$ is not prime.

Proof. Suppose k is any integer such that k > 4.

By definition of prime, a number $p \in \mathbb{Z}^+$ is prime if and only if p > 1, and for all positive integers x and y such that xy = p, either x = 1 and y = p, or x = p and y = 1.

$$2k^2 - 5k + 2 = (2k - 1)(k - 2)$$
 (by factoring)

Since $k \ge 4$

$$k-2 \ge 2$$
$$2k > 8 \Rightarrow 2k-1 > 7$$

Let a=2k-1 and b=k-2. Then $a \cdot b=2k^2-5k+2$, and both $a,b \in \mathbb{Z}^+$ with $a \geq 7$ and $b \geq 2$.

Hence, $2k^2 - 5k + 2$ is a product of two positive integers greater than 1.

It follows by definition that $2k^2 - 5k + 2$ is not prime.

QED

Theorem 2

If m and n are positive integers and mn is a perfect square, then m and n are both perfect squares.

This is **False**

Disproof by Counterexample. Let $m = n = 2 \rightarrow m \cdot n = 4$

By definition of perfect squares, 4 is a perfect square since $4 = 2^2$ but neither m = 2 nor n = 2 is a perfect square. QED

Theorem 3

Given two rational numbers r and s where r < s, there exists another rational number between r and s.

Proof. Suppose r and s are any two distinct rational numbers.

By definition of rational numbers, $r = \frac{a}{b}$ and $s = \frac{c}{d}$ for some integers a, b, c, and d with $b \neq 0$ and $d \neq 0$

Then,

$$\frac{r+s}{2} = \frac{\frac{a}{b} + \frac{c}{d}}{2}$$

$$= \frac{\frac{ad+bc}{bd}}{2}$$

$$= \frac{ad+bc}{2bd}$$
(By Substitution.)
(By Algebra.)

Note that ad+cd and 2bd are integers since a, b, c, and d are all integers and the product of integers and sums of integers is an integer. Also, $2bd \neq 0$ by the zero product property.

It goes to say that by the definition of rational numbers,

$$\frac{r+s}{2} \tag{1}$$

is rational.

Suppose e and f are any real numbers such that e < f. Dividing into cases and by the properties of inequalities, Case I (adding a f to both sides.)

$$(e+f) < 2f \rightarrow \text{Dividing by Two},$$

 $\frac{e+f}{2} < 2$

Case II (adding an e to both sides.)

$$2e < (e+f) \rightarrow \text{Dividing by Two},$$

 $e < \frac{e+f}{2}$

Thus, by combination,

$$e < \frac{e+f}{2} < f \tag{2}$$

Let $y = \frac{r+s}{2}$ where by (1) y is rational, and by (2), r < y < s. Hence there exists another rational number between r and s.

QED

Theorem 4

Let $a, b, c, d \in \mathbb{Z}$ with $a \neq c$, and let $x \in \mathbb{R}$ satisfy the equation

$$\frac{ax+b}{cx+d} = 1.$$

Then $x \in \mathbb{Q}$; that is, x is rational.

Proof. Suppose a, b, c, and d are integers and $a \neq c$. Suppose $x \in \mathbb{R}$ and $\frac{ax+b}{cx+d} = 1$. Then,

$$\frac{ax+b}{cx+d} = 1$$
 (Starting Point)

$$ax+b = cx+d$$
 (By Multiplication)

$$x(a-c) = (d-b)$$
 (Separation of Variables)

$$x = \frac{d-b}{a-c}$$
 (Algebra)

Let $t = \frac{d-b}{a-c}$. Note that t is rational because it is the difference of two integers d and b. Also, $a - c \neq 0$ since $a \neq c$.

It follows by the definition of rational numbers, t is quotient of integers with a non-zero denominator which makes x a rational number since x = t. QED

Theorem 5: Unique Factorization of Integers Theorem.

Given any integer n > 1, there exist a positive integer k, distinct prime numbers p_1, p_2, \dots, p_k and positive integers e_1, e_2, \dots, e_k such that

$$n = p_1^{e_1} p_2^{e_2} p_3^{e_3} \cdots p_k^{e_k}$$

and any other expression for n as a product of prime numbers is identical to this except, perhaps, for the order in which the factors are written.

(a) 1176

$$1176 = 2^3 \cdot 3 \cdot 7^2$$

(b) 5733

$$5733 = 3^2 \cdot 7^2 \cdot 13$$

(c) 3675

$$3675 = 3 \cdot 5^2 \cdot 7^2$$

Theorem 6

The square of any integer has the form 4k or 4k + 1 for some integer k.

Proof. Suppose n is any integer.

By the Quotient-Remainder Theorem with a divisor equal to 2, n=2q or n=2q+1 for some integer q.

Case I (n=2q)

$$n^2 = (2q)^2$$
 (By Substitution)
= $4q^2$ (By Algebra.)

Let $k = q^2$. Note that k is an integer because it is a product of integers. It follows $n^2 = 4k$ for some integer k.

Case II (n = 2q + 1)

$$n^2 = (2q+1)^2$$
 (By Substitution)
= $(4q^2 + 4q + 1)$
= $4(q^2 + q) + 1$ (By Algebra.)

Let $k = q^2 + q$. Note that k is an integer because it is a product of integers. It follows $n^2 = 4k + 1$ for some integer k.

Hence, for both cases, there exists an integer k such that $n^2 = 4k$ or $n^2 = 4k+1$. **QED**

Problem 7

"For all integers a and b, if $3 \mid (a+b)$, then $3 \mid (a-b)$." This is **False**.

Theorem 7

There exists integers a and b such that $3 \mid (a+b)$ and $3 \nmid (a-b)$.

Disproof by Counterexample. Let a = 2 and b = 1. Then,

$$a+b=2+1=3$$
 (By Substitution)

Thus, 3|(a+b) because $3=3\cdot 1$. Also,

$$a - b = 2 - 1 = 1$$
 (By Substitution)

But, $3 \nmid 1$ because $\frac{1}{3}$ is not an integer. Thus it is shown that $3 \nmid (a - b)$.

 \overline{QED}

Theorem 8

If n is any nonnegative integer whose decimal representation ends in 5, then $5 \mid n$.

Proof. Suppose n is a nonnegative integer whose decimal representation ends in 5. Let n = 10m + 5 for some integer, m.

$$n = 10m + 5$$

= $5(2m + 1)$ (By Factoring.)

Note that the quantity (2m+1) is an integer since it is the product and sum of integers. Thus, by definition of divisibility, n is divisible by 5. **QED**

Problem 9

Given any integer n > 3, could n, n + 2, and n + 4 all be prime? Prove or give a counterexample.

They cannot all be prime

Theorem 9

There exists an integer n > 3 such that n, n + 2, or n + 4 is not prime.

Disproof by Counterexample. Suppose n is any integer with n > 3.

Let d=3.

By the quotient-remainder theorem,

n = 3q, or n = 3q + 1, or n = 3q + 2 for some integer q.

Note that since n > 3, either

$$q > 1$$
 or (1)

$$q = 1$$
 and $n = 4 = 3q + 1$ or (2)

$$q = 1$$
 and $n = 5 = 3q + 2$ (3)

Case I (q > 1 and n = 3q)

n is not prime because it is a product of 3 and q, and both 3 and q are greater than 1. Case II $(q \ge 1 \text{ and } n = 3q + 1)$

$$n+2 = (3q+1)+2$$
 (By substitution)
= $3q+3$
= $3(q+1)$ (By algebra)

So n+2 is not prime because it is a product of 3 and q+1, and both 3 and q+1 are greater than 1.

Case III $(q \ge 1 \text{ and } n = 3q + 2)$

$$n+4 = (3q+2)+4$$
 (By substitution)
= $3q+6$
= $3(q+2)$ (By algebra)

So n+4 is not prime because it is a product of 3 and q+2, and both 3 and q+2 are greater than 1.

Conclusion: In all three cases, at least one of n, n + 2, or n + 4 is not prime. **QED**