

UMass Lowell 16.480/552 Microprocessor Design II and Embedded Systems

Revision: 10/21/2017

Lab 3: Building Linux Kernel and Controlling an I²C Device

Due Date: See the course syllabus and Piazza announcements.

Objectives:

- Understand I²C bus protocol
- Be able to control an I²C device using Linux on a Galileo board
- Be able to capture, store and process camera images on Linux

Description:

You should now have a working sensor device interfaced with the Galileo development board via GPIO ports. We would like to add a couple of new devices to the system so that your embedded system has richer functions. The devices are as follows:

- (1) (Undergrad Teams only) A temperature sensor (TMP102). This is an I^2C device that measures ambient temperature to a resolution of $0.0625^{\circ}C$. The IC is provided on a breakout board for easy connection. Its details can be found in [2].
- (2) (**Grad Teams only**) A gesture sensor (APDS9960). This is an I²C device that supports gesture detection, proximity detection and many advanced features. The IC is also provided on a breakout board for easy connection. Its details can be found in [3]. {Required only for teams recruited by students in EECE.5520}
- (3) A USB webcam to capture images and videos

This lab consists of three objectives:

- (1) programming I^2C devices from Linux. You will use the same Galileo Linux image as Lab 2 to boot and operate your Galileo board in order to program the I^2C devices using Linux I^2C libraries and APIs. Note: The gesture sensor is required only for students in EECE.5520.
- (2) programming on Linux to access and handle the provided webcam and capture images. Store the images on the SD card and prepare for further processing (in lab 4).
- (3) use temperature sensor or gesture sensor to trigger the capture of images from webcam. You need to define a threshold and check if the sensor data exceed the threshold. If so, capture images and save them to the file system.

Connecting I²C devices to Galileo

Refer to datasheets for the schematic. Your I²C devices should be connected to A4 (SDA) and A5 (SCL) of Galileo's expansion I/O ports.

You **do not have** to wire the pull-up resistors or enable pull-up resistors on Galileo Board for the I^2C bus since the sensor breakout boards already have them.

Programming I²C Devices from Linux

Linux has mature I²C drivers and libraries for programming I2C devices. Please refer to the official documentation on I2C development:

https://www.kernel.org/doc/Documentation/i2c/dev-interface

There are also other related tutorials, for example:

http://blog.chrysocome.net/2013/03/programming-i2c.html

Programming webcam and connecting Wifi on Linux

Instructions are provided in a text file as a part of the github repo:

https://github.com/yanluo-uml/micro2/

Deliverables

A zipped file containing:

- 1. Schematic of the design (in png/jpg/pdf format)
- 2. Source code (for Galileo Board) written in C/C++
- 3. Lab Reports in PDF format (All the team members' Lab Reports)

Zip filename should be in the following format: "GroupXX_LAB3.zip"

(XX is the group number, for more details see at the Github posted Micro2_Lab_Introduction_version_4.pdf presentation and Piazza related announcements)

References

[1] Linux I²C library documentation,

https://www.kernel.org/doc/Documentation/i2c/dev-interface

- [2] Temperature sensor, https://www.sparkfun.com/products/11931
- [3] Gesture sensor, https://www.sparkfun.com/products/12787