Magnitudes y ixobres	b b b b							D D
Las magnitudes pueder cantidad + unidad.								
Mose. Densided, Volude de magnitud.	 	4	lon		id.	50~	<i>40</i>	wy v
Los vectores permiten elle	Nesar In c	(O	jas MG	درس	itu	des		

Los vectores permiten elpresar (os magnitudes. mos se pueden expresar solo con magnitudes. Por exemplo, el movimiento de un coche tiene ana magnitud y una dirección.

· Dirección: Se expresa con el ángulo del cector respecto al eye X (o Y).

· Sentido: Le expresa con el entremé de la flecha

fanddad de vectores

Critories de escueldat:

- les magnitudes han de ser iquales
- · Los direcciones hon de ser iguales
- · los sentidos pan ele ser iguales

Es decer, si cualquiera de estes se encumple, son déferents.

Métede gnospico

Si son iquales, las Lineas entre sus extremes son parallas.

Componentes de vectores y el plans cartesians

Ougan $\begin{cases} a_1 = 0 \\ a_2 = 0 \end{cases}$

Componentes de vectores desde Juera del origen

$$v_1$$
 v_2
 v_3
 v_4
 v_4
 v_5
 v_6
 v_7
 v_8
 v_8

$$\vec{AB} = \vec{a} = (L_1, L_2) - (a_1, a_2) = (L_1 - a_1, L_2 - a_2)$$

$$\vec{AB} = \vec{a} = (L_1, L_2) - (a_1, a_2) = (L_1 - a_1, L_2 - a_2)$$

$$\vec{AB} = \vec{a} = (L_1, L_2) - (a_1, a_2) = (L_1 - a_1, L_2 - a_2)$$

$$\vec{AB} = \vec{a} = (L_1, L_2) - (a_1, a_2) = (L_1 - a_1, L_2 - a_2)$$

$$E_{1}$$
: $B(2,7), A(1,5), UAB?$

$$\vec{NB}(2-1,1-5) = \vec{NB}(1,2)$$

$$\vec{NB}(2-1,1-5) = \vec{NB}(1,2)$$

$$E_{3}: G\left(\frac{-1}{2}, \frac{1}{3}\right), D\left(\frac{1}{2}, \frac{-3}{3}\right), CGD^{2} \to G$$

$$60 = (\frac{1}{2} - \frac{1}{2}, -3 - \frac{1}{3}) = (1, -\frac{10}{3})$$

1. Finding vector components

1) R6,10) Q(13,515)
$$R(\frac{1}{2},\frac{\sqrt{3}}{3})$$
 5 (4,2) M(0,12)

a)
$$\vec{Q}$$
 $\vec{S} = (4-15, 2-515)$ $\vec{S}) \vec{P} = (-2, -8)$

a)
$$\vec{a}_{S} = (4-15, 2-515)$$
 f) $\vec{p}_{S} = (-2, -8)$
b) $\vec{a}_{R} = (\frac{1}{2}-13, \frac{13}{3}-515)$ g) $\vec{s}_{M} = (-4, 10)$

a)
$$SQ = (13-7, 50)$$

e) $P/1 = (-\frac{1}{2}, 12-\frac{13}{3})$
f) $PS = (\frac{7}{2}, 12-\frac{13}{3})$

2) Détermination quadrat there vectors belong to

a)
$$b = (-3,4) \rightarrow \pi$$

$$c) = (\sqrt{3}, -4) - \pi$$

$$J = (s, 10) \rightarrow I$$

e)
$$\vec{t} = (0,0) - 30 \text{ misin}$$

e)
$$f = (0, -12 + 15) \rightarrow X \text{ Aris, arribar}$$

Suma de rédores

· Suma gráfica

· Ley del paralelognamo

· Suma con componentes

$$\vec{a} + \vec{L} = (a_1, a_1) + (b_1, b_2) = (a_1 + b_1, a_2 + b_2)$$
Componentes (es como la suma gráfica)

$$[\vec{a} = (7,5), \vec{b} = (1,-4)$$

$$\vec{a} + \vec{k} = (3,1)$$

Vector opvedos y reda de victores

$$\vec{a} = \vec{A}\vec{B}$$
 \vec{A}
 $\vec{a} = \vec{B}\vec{A}$
 \vec{A}
 $\vec{a} = \vec{B}\vec{A}$
 \vec{A}
 $\vec{$

$$\vec{\alpha} = (\alpha_1, \alpha_2) \longrightarrow \vec{\alpha} = (-\alpha_1, -\alpha_2)$$

La resta de victores es una suma de opuestos:

$$\vec{a} - \vec{k} = \vec{a} + (-\vec{k}) = (\alpha_1 - l_1, \alpha_2 - l_1)$$

$$\vec{a}$$
 \vec{a} \vec{a}

$$E_{J}$$
: $\vec{a} = (2,5), \vec{u} = (1,-41, \vec{u} - \vec{u})$

$$\vec{a} - \vec{L} = (2-1, 5+4) = (1,9)$$

$$\vec{a} = (3, -4), \vec{L} = (2,5), \vec{c} = (-3, -1), \vec{d} = (3, \frac{1}{2})$$

1. find the opposites

$$-\vec{a} = (-3,4), -\vec{b} = (-2,-5), \vec{\tau} = (3,1), -\vec{d} = (3,-\frac{1}{2})$$

2.0 perate

Multiplicar un escalar por un ledor

$$\vec{a} : (a, a_1) \longrightarrow K \cdot \vec{a} : (Ka_1, Ka_2)$$

· Propiedades

Sean à un vetter y KEIR una contante...

- Si K10, el sentido de à y el de Koi son contrarios
- -Si K=0, Kā welough
- -SilkIII, Kasa (crece)
- -Si 141<1, Kàsà (encoye)

magnitud de à

- La magnitud de K-à es || K-à || = |K| · |a|

- Sean (,dEIR constantes, cda=(cd)a=c(da)

-(c+d) u = cu du, y (c·d)+u=(c+u)·(d+u)

(también se cumple sentituesendo vectores y constantes

$$E_{3} = (-1, -2)$$

$$E_3: \vec{l} = (12, -6), \vec{d} = (-4, \frac{1}{2}), (\vec{l}, +3\vec{d})$$

$$\frac{1}{5} = \frac{3}{3} - \frac{3}{5}, \quad k = (18, 17), \quad c = (-1, 17)$$

$$\frac{1}{2} = \frac{7}{3} =$$

$$\frac{1\vec{a} \cdot (6, -16)}{-\frac{7}{3}\vec{b} \cdot (-17, -8)}$$

$$\frac{1\vec{a} \cdot (6, -16)}{1\vec{a} \cdot (-17, -8)}$$

$$\frac{1\vec{a} \cdot (6, -16)}{1\vec{a} \cdot (-17, -8)}$$

$$\vec{c} = \vec{a} \cdot (S, -2) \cdot \vec{k} = (0, -S) \cdot ||\vec{a} + 2\vec{i}||^{2}$$

$$\vec{c} = \vec{a} \cdot 2\vec{i} = (S, -12)$$

$$|\vec{c}| = (S + 144) = \sqrt{169} = 13$$

G:
$$\alpha = (S, -2), U^{*}(0, -5), C^{*}(1, -1), U^{*}(0, -6), C^{*}(1, -1), U^{*}(0, -6), C^{*}(1, -1), U^{*}(0, -6), U^{*}(0, -6), C^{*}(1, -1), U^{*}(0, -6), U^{*}(0, -6)$$

1)
$$\vec{a} = (5, -2), \vec{0} = (1, 8), \vec{c} = (15, \sqrt{2}), d = (-1, 0)$$

$$e = (\frac{1}{2}, \frac{3}{2}), \vec{j} = (1, -3)$$

$$|\vec{a}| = \sqrt{25.44} = \sqrt{29}$$

$$|\vec{c}| = \sqrt{5}$$

$$|\vec{a}+5\vec{e}-3\vec{d}|=|(10,38)-3(-1,0)|=|(13,38)|=$$

$$=\sqrt{169+1444}=\sqrt{1613}$$

14.44

$$\vec{\alpha}$$
 = (5,2), d = (0,-5), $\vec{\ell}$ = (6,7), \vec{j} = (1,3)

$$\left| \left(9, (4) - \left(2, \frac{83}{3} \right) \right| = \left| \left(2, -\frac{31}{3} \right) \right| = \sqrt{49 \cdot \frac{961}{9}} =$$

$$\sqrt{\frac{441.961}{9}} = \sqrt{\frac{1402}{9}} = \frac{1}{5}\sqrt{1402} = \frac{17,48}{17,48}$$

Dirección y angulo de un vector

los angulos se miden en

sentido antihacemo desde el

lado pesitivo del eje x.

Los cinques pueden dansem grades (m°) of nadianes (m nad). I 180°: 2x rad

Cálcula de componentes y angula

Se prieden averigues las componentes (x, y) de un crete saliendo su magnitud y dirección.

$$Y = |\vec{U}| \cos(\theta)$$
 $Y = |\vec{U}| \sin(\theta)$
 $Y = |\vec{U}| \sin(\theta)$

I se puede averignar et angulo sacando la pendiente $(\frac{y}{x})$:

$$\frac{Y}{X} = \frac{16T \text{ son}(\theta)}{16T \text{ con}(\theta)} = t \text{ an}(\theta) \longleftrightarrow \theta = \text{ and an}(\frac{Y}{X})$$

$$||a=x,b=y|$$
 and $an(\frac{b}{a})=andan(\frac{-b}{-a})$

NO ES CORRECTO, ya que etan en guadrantes diferents (I y III), por lo que no pueden tener el musmo ánquelo.

11 a=x, b=y andan (=) = andan (= a)

NO ES CORRECTO, ya que etan en quadrantes
diferents (I y III), por lo que no preden tener el
mismo angulo.

Por lants, en ver de que θ rea respecto al la do pesitivo del eje x y calcular arctan $\left(\frac{x}{y}\right)$, se calcula θ = arctan $\left(\frac{|x|}{|y|}\right)$ y se ajusta el angulo de acuerdo al avadrante:

$$\alpha = \pi + \theta$$

$$G : \vec{a} = (5,15) \ d \text{ ain suld?}$$

$$G = \arctan(\frac{15}{5}) = \arctan(3) \approx 1,25 \text{ nad} = 71,57^{\circ}$$

$$\vec{d} = (-5, -6), \vec{L} = (3,4), \vec{c} = (-7,7), \vec{d} = (5, -8), \vec{c} = (5,72)$$

$$\vec{f} = (4, -5)$$

1. a)
$$\vec{c}$$
 when $\vec{H} \rightarrow \theta = \pi + \arctan(\frac{6}{5}) \approx 4,02 \text{ nod}$

b) \vec{l} when $\vec{l} \rightarrow \theta = \arctan(\frac{4}{3}) \approx 0,93 \text{ nod}$

c) \vec{c} when $\vec{l} \rightarrow \theta = \pi - \arctan(\frac{2}{3}) \approx 1,25 \text{ nod}$

d) \vec{d} when $\vec{l} \rightarrow \theta = 2\pi - \arctan(\frac{8}{5}) \approx 5,27 \text{ nod}$

e) \vec{e} when $\vec{l} \rightarrow \theta = \arctan(1) = 45^{\circ} \approx 0,785 \text{ nod}$

f) \vec{l} when $\vec{l} \rightarrow \theta = 2\pi - \arctan(\frac{5}{4}) \approx \frac{1}{5} \approx 0,785 \text{ nod}$

g) \vec{l} when $\vec{l} \rightarrow \theta = 2\pi - \arctan(\frac{5}{4}) \approx \frac{1}{5} \approx 0.785 \text{ nod}$

$$\vec{a} = (-5, -6), \vec{L} = (3,4), \vec{c} = (-2,7), \vec{d} = (5, -8), \vec{e} = (52,62)$$

$$\vec{f} = (4, -5)$$

$$L = 8d = (18, 24) - (16, 57) = (34, 33) \sim I$$

 $\theta = andan(\frac{33}{34}) = 0, 17 \text{ nad}$

c)
$$\sqrt{\frac{2}{5}} \cdot \frac{2}{5} \cdot \frac{2}{5} = (\frac{4}{5}, -1) + (\frac{2\sqrt{2}}{3}, \frac{2\sqrt{2}}{3}) = (\frac{4}{5}, \frac{2\sqrt{2}}{3}, -1) \cdot \frac{2\sqrt{2}}{3}) = (\frac{12 \cdot 10\sqrt{2}}{5}, \frac{-3 \cdot 2\sqrt{2}}{3}) \sim -1 + \frac{2\sqrt{2}}{3} \cdot (0 \to 1)$$

$$\theta=2\pi-ancton\left(\left(\frac{-3+2\sqrt{2}}{3}-\frac{12+10\sqrt{2}}{15}\right)\right)=$$

Converlin grades in radianes

$$\pi nod = 180^{\circ}$$
 $x nod = 90^{\circ}$

$$\frac{X}{X} = \frac{180}{90} \implies 180x = 90x \implies = \frac{90x}{180} = \frac{\pi}{2}$$

$$ytnod = 180^{\circ}$$
 $xnod = a^{\circ}$

$$\frac{x}{x} = \frac{180}{a} \implies \pi \alpha = 180x \iff x = \frac{\pi \alpha}{180} \iff \alpha = \frac{180x}{\pi}$$

$$\alpha^{\circ} \rightarrow x \mod x \mod x \mod x \mod x$$