CHINESE REMAINDER THEOREM (P4)

d)
$$x \equiv 5 \pmod{9}$$
 $4 \quad x \equiv 6 \pmod{10}$ $4 \quad x \equiv 7 \pmod{11}$

By the CRT, there exists a unique solution modulo 990, since $990 = 9 \times 10 \times 11$.

We can start with the solution x=5 to substitute in the second congruence, $x=6 \pmod{10}$, as x=5+9y:

$$5+9y \equiv 6 \pmod{10}$$

$$9y \equiv 1 \pmod{10}$$

$$y \equiv 9 \pmod{10}$$

$$y \equiv 9 \pmod{10}$$

$$y \equiv 9 \pmod{10}$$

$$y \equiv 9 \pmod{10}$$

$$x = 5 + 9y = 5 + 9(9) = 36$$

Now, the solution to the first two congruences, $x = 86 + 90 \, z$, can be substituted in $x = 7 \pmod{11}$:

$$86 + 90 = 7 \pmod{11}$$

find the inverse $907 = 7 - 86 \pmod{11}$

of 90 modulo ||:

guess of check $907 = 79 \pmod{11}$
 $907 = 6 \pmod{11}$
 $907 = 9 \pmod{11}$
 $907 = 9 \pmod{11}$
 $907 = 9 \pmod{11}$

Now, we can substitute z = 10 into x = 36 + 90z to get: x = 86 + 90(10) = 986