Caitlin McHugh Oct 2014

I simulated 500 SNPs for 100 iterations of a 16-person pedigree for a total of 1,600 samples. The SNPs varied in frequency, with 100 SNPs each at the following frequencies: 0.01, 0.05, 0.1, 0.2, 0.25.



Figure 1: The 16-person pedigree used for the simulations.

I estimated the variance components for the autosomes and the X chromosome, using the true kinship matrix in both cases. I then fit the mixed model for a quantitative trait on the X chromosome, testing the genotypes simulated on the X chromosome.

|              | $\alpha$ =1e-04 | $\alpha$ =5e-04 | $\alpha$ =0.001 | $\alpha$ =0.01 |
|--------------|-----------------|-----------------|-----------------|----------------|
| auto + X adj | 0.00000         | 0.00043         | 0.00144         | 0.01249        |
| auto adj     | 0.00047         | 0.00217         | 0.00347         | 0.02405        |
| X adj        | 0.00000         | 0.00040         | 0.00150         | 0.01326        |

Table 1: Type I error rate for 5,000 independent simulations of 6 different parameter combinations for 30,000 total simulation runs.

|              | $\alpha$ =1e-04 | $\alpha$ =5e-04 | $\alpha = 0.001$ | $\alpha$ =0.01 |
|--------------|-----------------|-----------------|------------------|----------------|
| auto + X adj | 0.00000         | 0.00016         | 0.00128          | 0.01288        |
| auto adj     | 0.00012         | 0.00202         | 0.00314          | 0.02429        |
| X adj        | 0.00000         | 0.00012         | 0.00136          | 0.01385        |

Table 2: Type I error rate as above but excluding SNPs with a MAF $\leq$ 0.01 for a total of 25,770 simulations.



Figure 2: Power results for mixed models that either include or exclude adjustment for X chromosome kinship. Three values of  $\alpha$  are considered for 10,000 independent iterations each.

| $\beta_1$ | $h^2$ | р   | $\sigma_A^2$ | $\sigma_X^2$ | $\sigma_E^2$ |
|-----------|-------|-----|--------------|--------------|--------------|
| 0.04366   | 0.010 | 0.2 | 0.1          | 5            | 1            |
| 0.10919   | 0.025 | 0.2 | 0.1          | 5            | 1            |
| 0.21858   | 0.050 | 0.2 | 0.1          | 5            | 1            |
| 0.43881   | 0.100 | 0.2 | 0.1          | 5            | 1            |
| 0.89122   | 0.200 | 0.2 | 0.1          | 5            | 1            |
| 1.03186   | 0.230 | 0.2 | 0.1          | 5            | 1            |

Table 3: Parameters for the 6 different scenarios considered for the simulation runs.

The genetic relatedness (GR) values were calculated using equations presented in (GCTA software paper) and are the following:

$$GR(X_j, X_k) = \frac{1}{N} \sum_{i=1}^{N} \frac{(X_{ij} - 2p_i)(X_{ik} - 2p_i)}{2p_i(1 - p_i)}$$
(1)

$$GR(X_j, X_l) = \frac{1}{N} \sum_{i=1}^{N} \frac{(X_{ij} - 2p_i)(X_{il} - p_i)}{\sqrt{2}p_i(1 - p_i)}$$
(2)

$$GR(X_l, X_m) = \frac{1}{N} \sum_{i}^{N} \frac{(X_{il} - p_i)(X_{im} - p_i)}{p_i(1 - p_i)}$$
(3)

where  $X_j$  and  $X_k$  are females and  $X_l$  and  $X_m$  are males.

I simulated 500 SNPs for 100 iterations of a 16-person pedigree for a total of 1,600 samples with some relatedness structure, plus 500 unrelated samples (250 males, 250 females). There are a total of 5 founders per pedigree \* 100 pedigrees + 500 unrelateds = 1,000 unrelated samples in this set.

The model we assume when testing for association on X chromosome SNPs is

$$y = \beta_0 + \beta_1 SNP_x + g_A + g_X + \epsilon \tag{4}$$

$$g_A \sim MVN(0, \sigma_A^2 \Phi_A) \tag{5}$$

$$g_X \sim MVN(0, \sigma_X^2 \Phi_X)$$
 (6)

where  $SNP_x$  is the genotype vector of a SNP on the X chromosome that is being tested for association,  $\Phi_A$  is the genetic relatedness matrix as measured on the autosomes and  $\Phi_X$  is the genetic relatedness matrix on the X chromosome.

We can calculate the variance for a given individual i to be the sum of the variances of the SNP being tested, the variance due to X chromosome, autosomes and environment (or error)

$$var(y_i) = \beta_1^2 2p(1-p) + \sigma_A^2 + \sigma_\epsilon^2 + \sigma_X^2$$

$$\tag{7}$$

The parameter of  $h_{snp}^2$  can be calculated from the equation

$$h_{snp}^{2} = \frac{\beta_{1}^{2} 2p(1-p)}{\beta_{1}^{2} 2p(1-p) + \sigma_{\epsilon}^{2} + \sigma_{A}^{2} + \sigma_{X}^{2}}$$
 (8)

where p is the allele frequency of the causal SNP. On the other hand, we can calculate the heritability of all SNPs on the X chromosome, which is

$$h_x^2 = \frac{\beta_1^2 2p(1-p) + \sigma_X^2}{\beta_1^2 2p(1-p) + \sigma_\epsilon^2 + \sigma_A^2 + \sigma_X^2}$$
 (9)

|          |                             | Autosomes     | X Chromosome                               |
|----------|-----------------------------|---------------|--------------------------------------------|
|          | Mother-Daughter             | $\frac{1}{2}$ | $\frac{1}{2}$                              |
| N        | Iother-Son, Father-Daughter | $\frac{1}{2}$ | $\frac{\sqrt{2}}{2}$                       |
|          | Father-Son                  | $\frac{1}{2}$ | 0                                          |
|          | Full sisters                | $\frac{1}{2}$ | $\frac{3}{4}$                              |
|          | Full brothers               | $\frac{1}{2}$ | $\frac{1}{2}$                              |
|          | Sister-Brother              | $\frac{1}{2}$ | $\frac{\sqrt{2}}{4}$                       |
|          | Aunt-Niece                  | $\frac{1}{4}$ | $\frac{6}{16}$                             |
|          | Aunt-Nephew                 | $\frac{1}{4}$ | $\frac{3\sqrt{2}}{8}$ $\frac{\sqrt{2}}{8}$ |
| T.       | Uncle-Niece                 | $\frac{1}{4}$ | $\frac{\sqrt{2}}{8}$                       |
| erna     | Uncle-Nephew                | $\frac{1}{4}$ | $\frac{1}{4}$                              |
| Materna  | Grandma-Granddaughter       | $\frac{1}{4}$ | $\frac{1}{4}$                              |
| ~        | Grandma-Grandson            | $\frac{1}{4}$ | $\frac{\sqrt{2}}{4}$ $\frac{\sqrt{2}}{4}$  |
|          | Grandpa-Granddaughter       | $\frac{1}{4}$ | $\frac{\sqrt{2}}{4}$                       |
|          | Grandpa-Grandson            | $\frac{1}{4}$ | $\frac{1}{2}$                              |
|          | Aunt-Niece                  | $\frac{1}{4}$ | $\frac{1}{4}$                              |
|          | Aunt-Nephew                 | $\frac{1}{4}$ | 0                                          |
| Ţ        | Uncle-Niece                 | $\frac{1}{4}$ | 0                                          |
| rna      | Uncle-Nephew                | $\frac{1}{4}$ | 0                                          |
| Paterna] | Grandma-Granddaughter       | $\frac{1}{4}$ | $\frac{1}{2}$                              |
| 14       | Grandma-Grandson            | $\frac{1}{4}$ | 0                                          |
|          | Grandpa-Granddaughter       | $\frac{1}{4}$ | 0                                          |
|          | Grandpa-Grandson            | $\frac{1}{4}$ | 0                                          |

Table 4: The theoretical genetic relatedness (GR) values stratified by X chromosome and autosomes. The autosomal GR value is twice the kinship coefficient =  $2(\frac{1}{2}\kappa_2 + \frac{1}{4}\kappa_1)$ , where  $\kappa_1$  and  $\kappa_2$  are the probabilities of sampling one and two alleles IBD, respectively. The X chromosome GR value for male-male pairs is  $\kappa_1$ , the probability of sampling one allele IBD. Female-female pairs yield an X chromosome GR value of twice  $\kappa_1$  as calculated on the X chromosome. For female-male pairs, the X chromosome GR value is  $\sqrt{2}\kappa_1$ .

| Adjustment | $\alpha$ =0.01 | $\alpha = 0.005$ | $\alpha = 0.001$ | $\alpha$ =5e-4 | $\alpha$ =1e-4 |
|------------|----------------|------------------|------------------|----------------|----------------|
| X          | 0.01343        | 0.00782          | 0.00201          | 0.00115        | 0.00041        |
| Auto       | 0.01503        | 0.00896          | 0.00262          | 0.00163        | 0.00041        |
| X + auto   | 0.01313        | 0.00803          | 0.00211          | 0.00123        | 0.00041        |

Table 5: Type I error for varying heritability and variance values. These were calculated from 119,760 iterations.

|                | th               | 0     | 0     | 0     | 0     | 6     | 0     | 0     | 0     | 0     | 0     | 0     | 6     | 0     | П     | 0     | 0     | 0     | 0     | 1     | 6     | 2     | 6     | 0     | 6     | 49     | 4e-4               |
|----------------|------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------------------|
| - 4            | Both             |       | _     | _     | _     |       | _     | _     | _     |       | _     | _     | _     |       |       | _     | _     | _     | _     |       | _     |       | _     | _     | _     |        |                    |
| $\alpha = 1e$  | A                | 0     | 0     | 0     | U     | 00    | 0     | 0     | 0     | 0     | 0     | 0     | 01    | 0     | _     | 0     | 0     | 0     | 0     | 1     | 6     | 2     | 03    | 0     | 03    | 49     | 4e-4               |
|                | ×                | 0     | 0     | 0     | 0     | 6     | 0     | 0     | 0     | 0     | 0     | 0     | 6     | 0     | 1     | 0     | 0     | 0     | 0     | 1     | 6     | 2     | 6     | 0     | 6     | 49     | 4e-4               |
|                | Both             | 0     | 0     | 0     | 0     | 6     | 0     | 0     | 6     | 0     | 6     | 6     | 18    | 0     | 10    | 0     | П     | 18    | 1     | 8     | 29    | 12    | 10    | 0     | 6     | 147    | 0.0012             |
| = 5e - 4       | A                | 0     | 0     | 6     | 6     | 6     | 0     | 0     | 6     | 0     | 6     | 0     | 18    | 0     | 10    | 10    | 1     | 18    | 10    | 21    | 29    | 12    | 10    | 1     | 10    | 195    | 0.0016             |
| σ              | ×                | 0     | 0     | 0     | 0     | 6     | 0     | 0     | 6     | 0     | 6     | 6     | 6     | 0     | 10    | 0     | 0     | 19    | 1     | က     | 19    | 13    | 19    | 0     | 6     | 138    | 0.0012             |
|                | Both             | 0     | 0     | 0     | 6     | 6     | 0     | 0     | 6     | 0     | 6     | 6     | 27    | 0     | 20    | -     | П     | 20    | 10    | 30    | 30    | 22    | 19    | 0     | 28    | 253    | 0.0021             |
| = 0.001        | A                | 6     | 0     | 6     | 6     | 18    | 0     | 0     | 6     | 6     | 10    | 0     | 27    | 6     | 20    | 11    | 1     | 20    | 11    | 22    | 49    | 23    | 19    | 1     | 28    | 314    | 0.0026             |
| σ              | ×                | 0     | 0     | 0     | 6     | 6     | 0     | 0     | 6     | 0     | 6     | 6     | 27    | 0     | 11    | 1     | 1     | 19    | 1     | 30    | 29    | 22    | 28    | 0     | 27    | 241    | 0.0020             |
|                | Both             | 36    | 11    | 30    | 18    | 47    | 36    | 38    | 6     | 20    | 41    | 28    | 74    | 47    | 31    | 13    | 19    | 23    | 23    | 129   | 63    | 81    | 57    | 30    | 22    | 962    | 0.0080             |
| = 0.005        | A                | 36    | 12    | 23    | 18    | 75    | 36    | 47    | 28    | 48    | 20    | 29    | 84    | 56    | 31    | 30    | 38    | 22    | 34    | 66    | 55    | 83    | 48    | 31    | 09    | 1073   | _                  |
| σ              | ×                | 36    | 11    | 30    | 18    | 47    | 19    | 38    | 6     | 20    | 42    | 28    | 47    | 47    | 32    | 13    | 19    | 22    | 21    | 138   | 61    | 79    | 20    | 30    | 59    | 936    | 0.0078             |
|                | Both             | 46    | 13    | 62    | 19    | - 62  | 55    | 26    | 39    | 61    | 20    | 49    | 117   | 99    | 33    | 33    | 47    | 25    | 48    | 196   | 99    | 134   | 119   | 51    | 68    | 1573   | _                  |
| 0.01           | A B              | 65    | 13    | 35    | 27    | 90    | 55    | 103   |       | 20    |       |       |       | 37    | 52    | 30    | 22    | 25    | 48    | 89    | 95    | 52    | 110   | 75    |       |        |                    |
| $\alpha = 0.0$ |                  |       |       |       |       | ī     |       | ī     | ,     |       |       |       |       |       |       | _     |       |       | *     |       |       | ī     |       |       |       | 1800   | _                  |
|                | ×                | 56    | 13    | 62    | 19    | 28    | 55    | 47    | 40    | 62    | 71    | 49    | 117   | 29    | 32    | 24    | 48    | 34    | 49    | 197   | 75    | 131   | 142   | 42    | 86    | 1608   | 0.013              |
|                | sims             | 4990  | 4990  | 4990  | 4990  | 4990  | 4990  | 4990  | 4990  | 4990  | 4990  | 4990  | 4990  | 4990  | 4990  | 4990  | 4990  | 4990  | 4990  | 4990  | 4990  | 4990  | 4990  | 4990  | 4990  | Totals | Rates              |
|                | $\sigma_{E}^{7}$ | 1     | 1     | 1     | 1     | _     | 1     | 1     | П     | 1     | 1     | 1     | 1     | _     | 1     | 1     | П     | 1     | -     | 1     | -     | _     | 1     | 1     | 1     |        | Type I Error Rates |
|                | ο<br>×2          | 0.3   | 0.3   | 8.0   | 8.0   | 0.3   | 0.3   | 8.0   | 8.0   | 0.3   | 0.3   | 8.0   | 8.0   | 0.3   | 0.3   | 8.0   | 8.0   | 0.3   | 0.3   | 8.0   | 8.0   | 0.3   | 0.3   | 8.0   | 8.0   |        | Type I             |
|                | ρ<br>242         | 0.3   | 8.0   | 0.3   | 8.0   | 0.3   | 8.0   | 0.3   | 8.0   | 0.3   | 8.0   | 0.3   | 8.0   | 0.3   | 8.0   | 0.3   | 8.0   | 0.3   | 8.0   | 0.3   | 8.0   | 0.3   | 8.0   | 0.3   | 8.0   |        |                    |
|                | Ф                | 0.5   | 0.5   | 0.5   | 0.2   | 0.2   | 0.5   | 0.5   | 0.5   | 0.5   | 0.5   | 0.5   | 0.5   | 0.2   | 0.5   | 0.5   | 0.5   | 0.5   | 0.5   | 0.5   | 0.5   | 0.2   | 0.5   | 0.5   | 0.5   |        |                    |
|                | $h_{snp}^2$      | 0.010 | 0.010 | 0.010 | 0.010 | 0.025 | 0.025 | 0.025 | 0.025 | 0.050 | 0.050 | 0.050 | 0.050 | 0.100 | 0.100 | 0.100 | 0.100 | 0.200 | 0.200 | 0.200 | 0.200 | 0.230 | 0.230 | 0.230 | 0.230 |        |                    |
|                | $\beta_1$        | 0.022 | 0.026 | 0.026 | 0.029 | 0.056 | 0.064 | 0.064 | 0.071 | 1112  | .128  | .128  | 143   | 1.225 | 1.258 | .258  | 1.287 | 1.456 | .523  | .523  | .582  | .529  | .605  | .605  | 0.674 |        |                    |
|                | $h_x^2$          |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |                    |

edness, and adjustment for both. Five values of  $\alpha$  were considered, although the final two are quite small. The bottom row is the total number of false positives for each column and the corresponding type I error rates averaged across all parameter Table 6: Counts of false postives for varying parameter values, stratified by adjustment for X relatedness, autosomal relatvalues considered. These are precisely the values shown in Table 5.