Deep Generative Models

Lecture 4

Roman Isachenko

Moscow Institute of Physics and Technology Yandex School of Data Analysis

2024, Autumn

Forward KL for flow model

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})) + \log |\det(\mathbf{J}_{\mathbf{f}})|$$

Reverse KL for flow model

$$\mathit{KL}(p||\pi) = \mathbb{E}_{p(\mathbf{z})} \left[\log p(\mathbf{z}) - \log |\det(\mathbf{J_g})| - \log \pi(\mathbf{g_{\theta}}(\mathbf{z})) \right]$$

Flow KL duality

$$\mathop{\arg\min}_{\boldsymbol{\theta}} \mathit{KL}(\pi(\mathbf{x})||p(\mathbf{x}|\boldsymbol{\theta})) = \mathop{\arg\min}_{\boldsymbol{\theta}} \mathit{KL}(p(\mathbf{z}|\boldsymbol{\theta})||p(\mathbf{z}))$$

- \triangleright $p(\mathbf{z})$ is a base distribution; $\pi(\mathbf{x})$ is a data distribution;
- ightharpoonup $\mathbf{z} \sim p(\mathbf{z}), \ \mathbf{x} = \mathbf{g}_{\boldsymbol{\theta}}(\mathbf{z}), \ \mathbf{x} \sim p(\mathbf{x}|\boldsymbol{\theta});$
- $ightharpoonup \mathbf{x} \sim \pi(\mathbf{x}), \ \mathbf{z} = \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x}), \ \mathbf{z} \sim p(\mathbf{z}|\boldsymbol{\theta}).$

Bayes theorem

$$p(\mathbf{t}|\mathbf{x}) = \frac{p(\mathbf{x}|\mathbf{t})p(\mathbf{t})}{p(\mathbf{x})} = \frac{p(\mathbf{x}|\mathbf{t})p(\mathbf{t})}{\int p(\mathbf{x}|\mathbf{t})p(\mathbf{t})d\mathbf{t}}$$

- x observed variables, t unobserved variables (latent variables/parameters);
- $ightharpoonup p(\mathbf{x}|\mathbf{t}) likelihood;$
- $p(\mathbf{x}) = \int p(\mathbf{x}|\mathbf{t})p(\mathbf{t})d\mathbf{t}$ evidence;
- ho(t) prior distribution, p(t|x) posterior distribution.

Posterior distribution

$$p(\boldsymbol{\theta}|\mathbf{X}) = \frac{p(\mathbf{X}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\mathbf{X})} = \frac{p(\mathbf{X}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{\int p(\mathbf{X}|\boldsymbol{\theta})p(\boldsymbol{\theta})d\boldsymbol{\theta}}$$

Latent variable models (LVM)

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) d\mathbf{z} = \int p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) p(\mathbf{z}) d\mathbf{z}.$$

MLE problem for LVM

$$egin{aligned} oldsymbol{ heta}^* &= rg \max_{oldsymbol{ heta}} \log p(\mathbf{X}|oldsymbol{ heta}) = rg \max_{oldsymbol{ heta}} \sum_{i=1}^n \log p(\mathbf{x}_i|oldsymbol{ heta}) = rg \max_{oldsymbol{ heta}} \sum_{i=1}^n \log \int p(\mathbf{x}_i|\mathbf{z}_i,oldsymbol{ heta}) p(\mathbf{z}_i) d\mathbf{z}_i. \end{aligned}$$

Naive Monte-Carlo estimation

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) p(\mathbf{z}) d\mathbf{z} = \mathbb{E}_{p(\mathbf{z})} p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) \approx \frac{1}{K} \sum_{k=1}^{K} p(\mathbf{x}|\mathbf{z}_k, \boldsymbol{\theta}),$$
 where $\mathbf{z}_k \sim p(\mathbf{z})$.

ELBO derivation 1 (inequality)

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log \int p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) d\mathbf{z} \geq \mathbb{E}_q \log \frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z})} = \mathcal{L}_{q,\boldsymbol{\theta}}(\mathbf{x})$$

ELBO derivation 2 (equality)

$$\mathcal{L}_{q,\theta}(\mathbf{x}) = \int q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z})} d\mathbf{z} = \int q(\mathbf{z}) \log \frac{p(\mathbf{z}|\mathbf{x}, \theta)p(\mathbf{x}|\theta)}{q(\mathbf{z})} d\mathbf{z} = \\ = \log p(\mathbf{x}|\theta) - KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x}, \theta))$$

Variational decomposition

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \mathcal{L}_{q,\boldsymbol{\theta}}(\mathbf{x}) + KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})) \geq \mathcal{L}_{q,\boldsymbol{\theta}}(\mathbf{x}).$$

Variational lower Bound (ELBO)

$$\log p(\mathbf{x}|oldsymbol{ heta}) = \mathcal{L}_{q,oldsymbol{ heta}}(\mathbf{x}) + \mathit{KL}(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x},oldsymbol{ heta})) \geq \mathcal{L}_{q,oldsymbol{ heta}}(\mathbf{x}).$$

$$\mathcal{L}_{q,\theta}(\mathbf{x}) = \int q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z})} d\mathbf{z} = \mathbb{E}_q \log p(\mathbf{x}|\mathbf{z}, \theta) - KL(q(\mathbf{z})||p(\mathbf{z}))$$

Log-likelihood decomposition

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \mathbb{E}_q \log p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta}) - KL(q(\mathbf{z})||p(\mathbf{z})) + KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})).$$

Instead of maximizing incomplete likelihood, maximize ELBO

$$\max_{\boldsymbol{\theta}} p(\mathbf{x}|\boldsymbol{\theta}) \quad \rightarrow \quad \max_{\boldsymbol{q},\boldsymbol{\theta}} \mathcal{L}_{\boldsymbol{q},\boldsymbol{\theta}}(\mathbf{x})$$

 Maximization of ELBO by variational distribution q is equivalent to minimization of KL

$$rg \max_{q} \mathcal{L}_{q, heta}(\mathbf{x}) \equiv rg \min_{q} \mathit{KL}(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x}, heta)).$$

EM-algorithm
 Amortized inference
 ELBO gradients, reparametrization trick

- 2. Variational autoencoder (VAE)
- 3. Normalizing flows as VAE model
- 4. Discrete VAE latent representations

1. EM-algorithm

Amortized inference ELBO gradients, reparametrization trick

- Variational autoencoder (VAE)
- Normalizing flows as VAE model
- 4. Discrete VAE latent representations

1. EM-algorithm

Amortized inference

ELBO gradients, reparametrization trick

- Variational autoencoder (VAE)
- Normalizing flows as VAE model
- 4. Discrete VAE latent representations

Amortized variational inference

E-step

$$q(\mathbf{z}) = rg \max_{q} \mathcal{L}_{q, \theta^*}(\mathbf{x}) = rg \min_{q} \mathit{KL}(q||p) = p(\mathbf{z}|\mathbf{x}, \theta^*).$$

 $q(\mathbf{z})$ approximates true posterior distribution $p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}^*)$, that is why it is called **variational posterior**.

- $ightharpoonup p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}^*)$ could be **intractable**;
- $ightharpoonup q(\mathbf{z})$ is different for each object \mathbf{x} .

Variational Bayes

Restrict a family of all possible distributions $q(\mathbf{z})$ to a parametric class $q(\mathbf{z}|\mathbf{x}, \phi)$ conditioned on samples \mathbf{x} with parameters ϕ .

► E-step

$$\phi_k = \phi_{k-1} + \eta \cdot
abla_{\phi} \mathcal{L}_{\phi, \theta_{k-1}}(\mathbf{x}) ig|_{\phi = \phi_{k-1}}$$

M-step

$$oldsymbol{ heta}_k = oldsymbol{ heta}_{k-1} + \left. \eta \cdot
abla_{oldsymbol{ heta}} \mathcal{L}_{oldsymbol{\phi}_k,oldsymbol{ heta}}(\mathbf{x})
ight|_{oldsymbol{ heta} = oldsymbol{ heta}_{k-1}}$$

Variational EM illustration

E-step

$$oldsymbol{\phi}_k = oldsymbol{\phi}_{k-1} + oldsymbol{\eta}
abla_{oldsymbol{\phi}} \mathcal{L}_{oldsymbol{\phi}, oldsymbol{ heta}_{k-1}}(\mathbf{x})ig|_{oldsymbol{\phi} = oldsymbol{\phi}_{k-1}}$$

M-step

$$oldsymbol{ heta}_k = oldsymbol{ heta}_{k-1} + \left. \eta
abla_{oldsymbol{ heta}} \mathcal{L}_{oldsymbol{\phi}_k, oldsymbol{ heta}}(\mathbf{x})
ight|_{oldsymbol{ heta} = oldsymbol{ heta}_{k-1}}$$

Variational EM-algorithm

ELBO

$$\log p(\mathbf{x}|\theta) = \mathcal{L}_{\phi,\theta}(\mathbf{x}) + KL(q(\mathbf{z}|\mathbf{x},\phi)||p(\mathbf{z}|\mathbf{x},\theta)) \ge \mathcal{L}_{\phi,\theta}(\mathbf{x}).$$

$$\mathcal{L}_{q,\theta}(\mathbf{x}) = \mathbb{E}_q \log p(\mathbf{x}|\mathbf{z},\theta) - KL(q(\mathbf{z}|\mathbf{x},\phi)||p(\mathbf{z}))$$

► E-step

$$\phi_k = \phi_{k-1} + \eta \cdot \nabla_{\phi} \mathcal{L}_{\phi, \theta_{k-1}}(\mathbf{x}) \big|_{\phi = \phi_{k-1}},$$

where ϕ – parameters of the variational posterior distribution $q(\mathbf{z}|\mathbf{x},\phi)$.

M-step

$$\theta_k = \theta_{k-1} + \eta \cdot \nabla_{\theta} \mathcal{L}_{\phi_k, \theta}(\mathbf{x})|_{\theta = \theta_{k-1}}$$

where θ – parameters of the generative distribution $p(\mathbf{x}|\mathbf{z}, \theta)$.

Now all that is left is to obtain **unbiased** Monte Carlo estimates of the gradients: $\nabla_{\phi} \mathcal{L}_{\phi,\theta}(\mathbf{x})$, $\nabla_{\theta} \mathcal{L}_{\phi,\theta}(\mathbf{x})$.

1. EM-algorithm

Amortized inference ELBO gradients, reparametrization trick

- Variational autoencoder (VAE)
- Normalizing flows as VAE model
- 4. Discrete VAE latent representations

ELBO gradients, (M-step, $\nabla_{\theta} \mathcal{L}_{\phi,\theta}(\mathbf{x})$)

$$\mathcal{L}_{q,\theta}(\mathbf{x}) = \mathbb{E}_q \log p(\mathbf{x}|\mathbf{z},\theta) - \mathit{KL}(q(\mathbf{z}|\mathbf{x},\phi)||p(\mathbf{z}))$$

M-step: $\nabla_{\theta} \mathcal{L}_{\phi,\theta}(\mathbf{x})$

$$\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\boldsymbol{\phi}, \boldsymbol{\theta}}(\mathbf{x}) = \nabla_{\boldsymbol{\theta}} \int q(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi}) \log p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) d\mathbf{z} =$$

$$= \int q(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi}) \nabla_{\boldsymbol{\theta}} \log p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) d\mathbf{z} \approx$$

$$\approx \nabla_{\boldsymbol{\theta}} \log p(\mathbf{x}|\mathbf{z}^*, \boldsymbol{\theta}), \quad \mathbf{z}^* \sim q(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi}).$$

Naive Monte-Carlo estimation

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) p(\mathbf{z}) d\mathbf{z} \approx \frac{1}{K} \sum_{k=1}^{K} p(\mathbf{x}|\mathbf{z}_k, \boldsymbol{\theta}), \quad \mathbf{z}_k \sim p(\mathbf{z}).$$

The variational posterior $q(\mathbf{z}|\mathbf{x}, \phi)$ assigns typically more probability mass in a smaller region than the prior $p(\mathbf{z})$.

ELBO gradients, (E-step, $\nabla_{\phi} \mathcal{L}_{\phi,\theta}(\mathbf{x})$)

E-step:
$$\nabla_{\phi} \mathcal{L}_{\phi,\theta}(\mathbf{x})$$

Difference from M-step: density function $q(\mathbf{z}|\mathbf{x}, \phi)$ depends on the parameters ϕ , it is impossible to use the Monte-Carlo estimation:

$$\nabla_{\phi} \mathcal{L}_{\phi,\theta}(\mathbf{x}) = \nabla_{\phi} \int q(\mathbf{z}|\mathbf{x},\phi) \log p(\mathbf{x}|\mathbf{z},\theta) d\mathbf{z} - \nabla_{\phi} KL(q(\mathbf{z}|\mathbf{x},\phi)||p(\mathbf{z}))$$

$$\neq \int q(\mathbf{z}|\mathbf{x},\phi) \nabla_{\phi} \log p(\mathbf{x}|\mathbf{z},\theta) d\mathbf{z} - \nabla_{\phi} KL(q(\mathbf{z}|\mathbf{x},\phi)||p(\mathbf{z}))$$

Reparametrization trick (LOTUS trick)

Suppose that $\mathbf{z} \sim q(\mathbf{z}|\mathbf{x}, \phi)$ is a random variable that is induced by the random variable $\epsilon \sim p(\epsilon)$ using the deterministic transform $\mathbf{z} = \mathbf{g}_{\phi}(\mathbf{x}, \epsilon)$. Then

$$\mathbb{E}_{\mathsf{z} \sim q(\mathsf{z}|\mathsf{x},\phi)} \mathsf{f}(\mathsf{z}) = \mathbb{E}_{\epsilon \sim r(\epsilon)} \mathsf{f}(\mathsf{g}_{\phi}(\mathsf{x},\epsilon))$$

Note that LHS takes the expectation by the parametric distribution $q(\mathbf{z}|\mathbf{x},\phi)$ and the RHS uses non-parametric distribution $p(\epsilon)$.

ELBO gradients, (E-step, $\nabla_{\phi} \mathcal{L}_{\phi,\theta}(\mathbf{x})$)

Reparametrization trick (LOTUS trick)

$$\nabla_{\phi} \int q(\mathbf{z}|\mathbf{x}, \phi) \mathbf{f}(\mathbf{z}) d\mathbf{z} = \nabla_{\phi} \int p(\epsilon) \mathbf{f}(\mathbf{g}_{\phi}(\mathbf{x}, \epsilon)) d\epsilon$$
$$= \int p(\epsilon) \nabla_{\phi} \mathbf{f}(\mathbf{g}_{\phi}(\mathbf{x}, \epsilon)) d\epsilon \approx \nabla_{\phi} \mathbf{f}(\mathbf{g}_{\phi}(\mathbf{x}, \epsilon^{*})),$$

where $\epsilon^* \sim p(\epsilon)$.

Variational assumption

$$p(\epsilon) = \mathcal{N}(0, \mathbf{I}); \quad \mathbf{z} = \mathbf{g}_{\phi}(\mathbf{x}, \epsilon) = \sigma_{\phi}(\mathbf{x}) \odot \epsilon + \mu_{\phi}(\mathbf{x});$$

$$q(\mathbf{z}|\mathbf{x}, \phi) = \mathcal{N}(\mu_{\phi}(\mathbf{x}), \sigma_{\phi}^{2}(\mathbf{x})).$$

Here $\mu_{\phi}(\cdot), \sigma_{\phi}(\cdot)$ are parameterized functions (outputs of neural network).

We will say that $q(\mathbf{z}|\mathbf{x}, \phi) = NN_e(\mathbf{x}, \phi)$ is the **encoder**.

ELBO gradient (E-step, $\nabla_{\phi} \mathcal{L}_{\phi,\theta}(\mathbf{x})$)

$$\nabla_{\phi} \mathcal{L}_{\phi, \theta}(\mathbf{x}) = \nabla_{\phi} \int q(\mathbf{z}|\mathbf{x}, \phi) \log p(\mathbf{x}|\mathbf{z}, \theta) d\mathbf{z} - \nabla_{\phi} KL(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z}))$$

Reconstruction term

$$egin{aligned}
abla_{\phi} & \int q(\mathbf{z}|\mathbf{x},\phi) \log p(\mathbf{x}|\mathbf{z},\theta) d\mathbf{z} = \int p(\epsilon)
abla_{\phi} \log p(\mathbf{x}|\mathbf{g}_{\phi}(\mathbf{x},\epsilon),\theta) d\epsilon & pprox \\
abla_{\phi} & \log p\left(\mathbf{x}|\sigma_{\phi}(\mathbf{x}) \odot \epsilon^* + \mu_{\phi}(\mathbf{x}), \theta\right), \quad \text{where } \epsilon^* \sim \mathcal{N}(0,\mathbf{I}) \end{aligned}$$

Let the generative distibution $p(\mathbf{x}|\mathbf{z}, \theta)$ be the neural network. We will say that $p(\mathbf{x}|\mathbf{z}, \theta) = NN_d(\mathbf{z}, \theta)$ is the **decoder**.

KL term

 $p(\mathbf{z})$ is the prior distribution on the latent variables \mathbf{z} . Let assume $p(\mathbf{z}) = \mathcal{N}(0, \mathbf{I})$.

$$\nabla_{\phi} \textit{KL}(q(\mathbf{z}|\mathbf{x},\phi)||p(\mathbf{z})) = \nabla_{\phi} \textit{KL}\left(\mathcal{N}(\mu_{\phi}(\mathbf{x}),\sigma_{\phi}^{2}(\mathbf{x}))||\mathcal{N}(\mathbf{0},\mathbf{I})\right)$$

This expression has analytical formula.

1. EM-algorithm

Amortized inference ELBO gradients, reparametrization trick

- 2. Variational autoencoder (VAE)
- 3. Normalizing flows as VAE model
- 4. Discrete VAE latent representations

Generative models zoo

Variational autoencoder (VAE)

Final EM-algorithm

- ▶ pick random sample \mathbf{x}_i , $i \sim U[1, n]$.
- compute the objective:

$$egin{aligned} oldsymbol{\epsilon}^* &\sim r(oldsymbol{\epsilon}); & \mathbf{z}^* = \mathbf{g}_{oldsymbol{\phi}}(\mathbf{x}, oldsymbol{\epsilon}^*); \end{aligned}$$
 $\mathcal{L}_{oldsymbol{\phi}, oldsymbol{ heta}}(\mathbf{x}) &pprox \log p(\mathbf{x}|\mathbf{z}^*, oldsymbol{ heta}) - \mathit{KL}(q(\mathbf{z}^*|\mathbf{x}, oldsymbol{\phi})||p(\mathbf{z}^*)). \end{aligned}$

ightharpoonup compute a stochastic gradients w.r.t. ϕ and heta

$$abla_{\phi} \mathcal{L}_{\phi, \theta}(\mathbf{x}) pprox
abla_{\phi} \log p(\mathbf{x}|\mathbf{g}_{\phi}(\mathbf{x}, \epsilon^*), \theta) -
abla_{\phi} \mathsf{KL}(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z})); \\
\nabla_{\theta} \mathcal{L}_{\phi, \theta}(\mathbf{x}) pprox
abla_{\theta} \log p(\mathbf{x}|\mathbf{z}^*, \theta).$$

• update θ , ϕ according to the selected optimization method (SGD, Adam, etc):

$$\phi := \phi + \eta \cdot \nabla_{\phi} \mathcal{L}_{\phi,\theta}(\mathbf{x}),$$

$$\theta := \theta + \eta \cdot \nabla_{\theta} \mathcal{L}_{\phi,\theta}(\mathbf{x}).$$

Variational Autoencoder

$$\mathcal{L}_{\phi, heta}(\mathbf{x}) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \phi)} \left[\log p(\mathbf{x}|\mathbf{z}, heta) - \log rac{q(\mathbf{z}|\mathbf{x}, \phi)}{p(\mathbf{z})}
ight]
ightarrow \max_{\phi, heta}.$$

Variational autoencoder (VAE)

- lacksquare Encoder $q(\mathbf{z}|\mathbf{x},\phi) = \mathsf{NN}_e(\mathbf{x},\phi)$ outputs $\mu_\phi(\mathbf{x})$ and $\sigma_\phi(\mathbf{x})$.
- ▶ Decoder $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \mathsf{NN}_d(\mathbf{z}, \boldsymbol{\theta})$ outputs parameters of the sample distribution.

Variational autoencoder (VAE)

- ▶ VAE learns stochastic mapping between **x**-space, from complicated distribution $\pi(\mathbf{x})$, and a latent **z**-space, with simple distribution.
- The generative model learns a joint distribution $p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) = p(\mathbf{z})p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})$, with a prior distribution $p(\mathbf{z})$, and a stochastic decoder $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})$.
- The stochastic encoder $q(\mathbf{z}|\mathbf{x}, \phi)$ (inference model), approximates the true but intractable posterior $p(\mathbf{z}|\mathbf{x}, \theta)$ of the generative model.

- EM-algorithm
 Amortized inference
 ELBO gradients, reparametrization trick
- 2. Variational autoencoder (VAE)
- 3. Normalizing flows as VAE model
- 4. Discrete VAE latent representations

VAE vs Normalizing flows

	VAE	NF
Objective	ELBO $\mathcal L$	Forward KL/MLE
Encoder	stochastic $\mathbf{z} \sim q(\mathbf{z} \mathbf{x}, oldsymbol{\phi})$	$\begin{aligned} deterministic \\ \mathbf{z} &= \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x}) \\ q(\mathbf{z} \mathbf{x}, \boldsymbol{\theta}) &= \delta(\mathbf{z} - \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})) \end{aligned}$
Decoder	$egin{aligned} stochastic \ x \sim p(x z, oldsymbol{ heta}) \end{aligned}$	$\begin{aligned} & \text{deterministic} \\ & \mathbf{x} = \mathbf{g}_{\boldsymbol{\theta}}(\mathbf{z}) \\ & p(\mathbf{x} \mathbf{z}, \boldsymbol{\theta}) = \delta(\mathbf{x} - \mathbf{g}_{\boldsymbol{\theta}}(\mathbf{z})) \end{aligned}$
Parameters	$\phi, oldsymbol{ heta}$	$ heta \equiv \phi$

Theorem

MLE for normalizing flow is equivalent to maximization of ELBO for VAE model with deterministic encoder and decoder:

$$\rho(\mathbf{x}|\mathbf{z},\boldsymbol{\theta}) = \delta(\mathbf{x} - \mathbf{f}_{\boldsymbol{\theta}}^{-1}(\mathbf{z})) = \delta(\mathbf{x} - \mathbf{g}_{\boldsymbol{\theta}}(\mathbf{z}));$$

$$q(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}) = p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}) = \delta(\mathbf{z} - \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})).$$

Nielsen D., et al. SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows. 2020

Normalizing flow as VAE

Proof

1. Dirac delta function property

$$\mathbb{E}_{\delta(\mathbf{x}-\mathbf{y})}\mathbf{f}(\mathbf{x}) = \int \delta(\mathbf{x}-\mathbf{y})\mathbf{f}(\mathbf{x})d\mathbf{x} = \mathbf{f}(\mathbf{y}).$$

2. CoV theorem and Bayes theorem:

$$p(\mathbf{x}|\boldsymbol{\theta}) = p(\mathbf{z})|\det(\mathbf{J_f})|;$$

$$p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta}) = \frac{p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta})p(\mathbf{z})}{p(\mathbf{x}|\boldsymbol{\theta})}; \quad \Rightarrow \quad p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta}) = p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})|\det(\mathbf{J}_{\mathbf{f}})|.$$

3. Log-likelihood decomposition

$$\log p(\mathbf{x}|\theta) = \mathcal{L}_{\theta}(\mathbf{x}) + \frac{KL(q(\mathbf{z}|\mathbf{x},\theta)||p(\mathbf{z}|\mathbf{x},\theta))}{E(\mathbf{z}|\mathbf{x},\theta)} = \mathcal{L}_{\theta}(\mathbf{x}).$$

Normalizing flow as VAE

Proof

ELBO objective:

$$\mathcal{L} = \mathbb{E}_{q(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})} \left[\log p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta}) - \log \frac{q(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})}{p(\mathbf{z})} \right]$$

$$= \mathbb{E}_{q(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})} \left[\log \frac{p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta})}{q(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})} + \log p(\mathbf{z}) \right].$$

1. Dirac delta function property:

$$\mathbb{E}_{q(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})}\log p(\mathbf{z}) = \int \delta(\mathbf{z} - \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x}))\log p(\mathbf{z})d\mathbf{z} = \log p(f_{\boldsymbol{\theta}}(\mathbf{x})).$$

2. CoV theorem and Bayes theorem:

$$\mathbb{E}_{q(\mathbf{z}|\mathbf{x},\theta)} \log \frac{p(\mathbf{x}|\mathbf{z},\theta)}{q(\mathbf{z}|\mathbf{x},\theta)} = \mathbb{E}_{q(\mathbf{z}|\mathbf{x},\theta)} \log \frac{p(\mathbf{z}|\mathbf{x},\theta)|\det(\mathbf{J_f})|}{q(\mathbf{z}|\mathbf{x},\theta)} = \log |\det \mathbf{J_f}|.$$

3. Log-likelihood decomposition

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \mathcal{L}_{\boldsymbol{\theta}}(\mathbf{x}) = \log p(f_{\boldsymbol{\theta}}(\mathbf{x})) + \log |\det \mathbf{J}_{\mathbf{f}}|.$$

- EM-algorithm
 Amortized inference
 ELBO gradients, reparametrization trick
- 2. Variational autoencoder (VAE)
- 3. Normalizing flows as VAE model
- 4. Discrete VAE latent representations

Discrete VAE latents

Motivation

- Previous VAE models had continuous latent variables z.
- ▶ Discrete representations z are potentially a more natural fit for many of the modalities.
- Powerful autoregressive models (like PixelCNN) have been developed for modelling distributions over discrete variables.
- All cool transformer-like models work with discrete tokens.

ELBO

$$\mathcal{L}_{\phi, oldsymbol{ heta}}(\mathbf{x}) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, oldsymbol{\phi})} \log p(\mathbf{x}|\mathbf{z}, oldsymbol{ heta}) - \mathit{KL}(q(\mathbf{z}|\mathbf{x}, oldsymbol{\phi}) || p(\mathbf{z}))
ightarrow \max_{\phi, oldsymbol{ heta}}.$$

- Reparametrization trick to get unbiased gradients.
- Normal assumptions for $q(\mathbf{z}|\mathbf{x}, \phi)$ and $p(\mathbf{z})$ to compute KL analytically.

Discrete VAE latents

Assumptions

▶ Let $c \sim \text{Categorical}(\pi)$, where

$$\pi = (\pi_1, \ldots, \pi_K), \quad \pi_k = P(c = k), \quad \sum_{k=1}^K \pi_k = 1.$$

Let VAE model has discrete latent representation c with prior $p(c) = \text{Uniform}\{1, \dots, K\}$.

ELBO

$$\mathcal{L}_{\phi, heta}(\mathbf{x}) = \mathbb{E}_{q(c|\mathbf{x}, \phi)} \log p(\mathbf{x}|c, \theta) - \frac{\mathsf{KL}(q(c|\mathbf{x}, \phi)||p(c))}{\phi, \theta} o \max_{\phi, \theta}.$$

$$KL(q(c|\mathbf{x}, \phi)||p(c)) = \sum_{k=1}^{K} q(k|\mathbf{x}, \phi) \log \frac{q(k|\mathbf{x}, \phi)}{p(k)} =$$

$$= \sum_{k=1}^{K} q(k|\mathbf{x}, \phi) \log q(k|\mathbf{x}, \phi) - \sum_{k=1}^{K} q(k|\mathbf{x}, \phi) \log p(k) =$$

$$= -H(q(c|\mathbf{x}, \phi)) + \log K.$$

Discrete VAE latents

$$\mathcal{L}_{\phi, oldsymbol{ heta}}(\mathbf{x}) = \mathbb{E}_{q(c|\mathbf{x}, \phi)} \log p(\mathbf{x}|c, oldsymbol{ heta}) + H(q(c|\mathbf{x}, \phi)) - \log K
ightarrow \max_{\phi, oldsymbol{ heta}}.$$

- ▶ Our encoder should output discrete distribution $q(c|\mathbf{x}, \phi)$.
- We need the analogue of the reparametrization trick for the discrete distribution $q(c|\mathbf{x}, \phi)$.
- Our decoder $p(\mathbf{x}|c,\theta)$ should input discrete random variable c.

Summary

- Amortized variational inference allows to efficiently compute the stochastic gradients for ELBO using Monte-Carlo estimation.
- The reparametrization trick gets unbiased gradients w.r.t to the variational posterior distribution $q(\mathbf{z}|\mathbf{x}, \phi)$.
- The VAE model is an LVM with two neural network: stochastic encoder $q(\mathbf{z}|\mathbf{x}, \phi)$ and stochastic decoder $p(\mathbf{x}|\mathbf{z}, \theta)$.
- ▶ NF models could be treated as VAE model with deterministic encoder and decoder.
- Discrete VAE representations is a natural form of latent variables.