# Peer Prediction on Peer Grading System

National Taiwan University,
Department of Electrical Engineering
R07921036@ntu.edu.tw
Cheng-Yu Shih

# Outline

- Peer Prediction
- Previous Work
- Peer Grading Re-model
- Truthfulness
- Conclusion
- Reference



- Ask participants for feedback on questions
  - Elicit information without verification
- Example:
  - Peer-grading
  - Labeling in a machine learning task
- Encourage truthfulness and efforts





#### Previous Work

- Shao-Heng Ko [2017]
  - Peer Grading
  - Encouraging Conditions
    - ⇒ At least one pure Nash equilibrium
  - Homogeneous
    - $\Rightarrow$  pure Nash  $\{t_1^*, t_2^*, ..., t_N^*\}, t_1^* = t_2^* = \cdots = t_N^*$

- Agents:  $a_0, a_1, ..., a_n$
- Signals:  $(s_0, s_1, ..., s_n) \sim S$
- Noise:  $\epsilon_i$ ,  $\forall i \in [0, n]$ 
  - Mean = 0, variance =  $\sigma_i^2$
  - Independent
  - No-bias
  - Effort time  $t_i \ \widehat{1} \Rightarrow \sigma_i \ \overline{\downarrow}$
- Received Signal =  $s_i + \epsilon_i$  = Report  $r_i$ 
  - Always Truthful



- Mechanism
  - Each agent is paired with another agent randomly
  - Difference in reports  $\hat{1} \Rightarrow \text{Reward } \emptyset$
  - Mean Square Error:

$$E\left[\left(r_i-r_j\right)^2\right]$$

• Expected Utility:

$$U_i = U - C_i - f(t_i)$$

- *U*: constant
- *C<sub>i</sub>*: report difference
- $f(t_i)$ : effort cost
- $\max U_i$ 
  - Unrelated to others ⇒ **Dominant Strategy**
  - If  $\sigma$ , f are homogeneous to every agent  $\Rightarrow t_0^* = t_1^* = \dots = t_n^*$

- Encouraging Condition
  - (0) EC-1
    - Suppose  $\sigma_i(t_i)$  is positive, convex, decreasing
  - (X) EC-2
- Encourage efforts?
  - Suppose  $f(t_i) = k \cdot t_i$
  - Effort cost ratio  $k \Downarrow \Rightarrow$  effort time  $t_i \Lsh$

#### What's the difference

|                        | Shao-Heng Ko [2017]    | This Work                   |
|------------------------|------------------------|-----------------------------|
| Signal Distribution    | $F_p(v_i, t_j^i)$      | $s_i + \epsilon_i$          |
| Encouraging Conditions | Yes                    | No                          |
| Settings               | Gaussian Distributions | $\epsilon_i$ is independent |

- What's the same
  - Pure Nash Equilibrium exists
  - homogeneous ⇒ symmetric equilibrium
  - Encourage efforts

- What if agents can be untruthful
  - Everyone always reports the same feedback
  - (No effort,  $r^*$ )  $\leftarrow$  Best equilibrium



- Dasgupta and Ghosh [2013]
  - Reward = agreement on **common tasks** agreement on **separate tasks**
  - (All effort, truthful) and (no effort, random guess) are both equilibrium
  - (All effort, truthful) ← Best equilibrium
- Kong and Schoenebeck [2016]
  - Mutual Information MI(X; Y)
  - $MI(M(X); Y) \leq MI(X; Y)$

- Allow verification
  - TA score in peer grading
  - Minimize TA's workload
- Dasgupta and Ghosh [2013]
  - Reward = agreement on <u>common tasks</u> agreement on <u>separate tasks</u>  $\propto \rho(r_i, r_j)$
  - Assume:  $\rho(M(r_i), r_j) \le \rho(r_i, r_j)$ 
    - Any **independent** modification ⇒ the correlation coefficient û
    - Mutual Information (Kong and Schoenebeck [2016])

|                                   | Dasgupta and Ghosh [2013]                                    | This Work                                             |
|-----------------------------------|--------------------------------------------------------------|-------------------------------------------------------|
| Signal Type                       | Discrete                                                     | Continuous                                            |
| Agreement                         | Exactly the same                                             | Negative correlation to<br>Squared Euclidean Distance |
| Assumption                        | $\Pr[s_j = s   s_i] < \Pr[s_j = s],$<br>$\forall s \neq s_i$ | $\rho(M(r_i), r_j) \le \rho(r_i, r_j)$                |
| Best Equilibrium (no effort cost) | (All effort, truthful)                                       | (All effort, truthful)                                |

#### Conclusion

- Describe effort as a noise to the real signal
- No need to be Gaussian
- Always truthful ⇒ relaxed
- Discrete ⇒ Continuous

#### Reference

- [1] Dasgupta, Anirban, and Arpita Ghosh. "Crowdsourced judgement elicitation with endogenous proficiency." Proceedings of the 22nd international conference on World Wide Web. ACM, 2013.
- [2] Kong, Yuqing, and Grant Schoenebeck. "An information theoretic framework for designing information elicitation mechanisms that reward truth-telling." ACM Transactions on Economics and Computation (TEAC) 7.1 (2019): 2.