Neural Architecture Search

Neural Networks Design And Application

Manually designed architectures

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

VGG-16

Inception (GoogLeNet)

ResNet

6

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Q: what about other settings?

Image credit:

Elsken, Thomas, Jan Hendrik Metzen, and Frank Hutter. "Neural architecture search: A survey." *J. Mach. Learn. Res.* 20, no. 55 (2019): 1-21. https://arxiv.org/pdf/1808.05377.pdf

3 22

23

25

A RNN network

A RNN network

Defining search space

A RNN network

Defining search space

Defining search space

LeNet-5

Q: The definition of sequential layer-wise operations works for LeNet-like networks?

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

LeNet-5

Q: The definition of sequential layer-wise operations works for LeNet-like networks?

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

AlexNet

Q: The definition of sequential layer-wise operations works for AlexNet-like networks?

AlexNet

Q: The definition of sequential layer-wise operations works for AlexNet-like networks?

Q: The definition of sequential layer-wise operations works for ResNet-like networks?

Q: The definition of sequential layer-wise operations works for ResNet-like networks? Yes, but the scalability?

Training details: The controller RNN is a two-layer LSTM with 35 hidden units on each layer. It is trained with the ADAM optimizer (Kingma & Ba, 2015) with a learning rate of 0.0006. The weights of the controller are initialized uniformly between -0.08 and 0.08. For the distributed training, we set the number of parameter server shards S to 20, the number of controller replicas K to 100 and the number of child replicas M to 8, which means there are 800 networks being trained on 800 GPUs concurrently at any time.

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

Q: The definition of sequential layer-wise operations works for ResNet-like networks? Yes, but the scalability?

Training details: The controller RNN is a two-layer LSTM with 35 hidden units on each layer. It is trained with the ADAM optimizer (Kingma & Ba, 2015) with a learning rate of 0.0006. The weights of the controller are initialized uniformly between -0.08 and 0.08. For the distributed training, we set the number of parameter server shards S to 20, the number of controller replicas K to 100 and the number of child replicas M to 8, which means there are 800 networks being trained on 800 GPUs concurrently at any time.

28 days

Q: The definition of sequential layer-wise operations works for ResNet-like networks? Yes, but the scalability?

ImageNet

Architecture

Softmax

Best cells on CIFAR-10 with B = 5

Performance of NAS models

