Lista 1

Diogo Wolff Surdi Finanças Quantitativas FGV

26 de Fevereiro de 2020

Questão 1

1.1)

Dado x, $F_1(x) \leq F_2(x)$ indica que a probabilidade de f_1 assumir valores menores do que x é menor do que a de f_2 , logo a cauda inferior de F_2 é mais pesada do que a de F_1 .

1.2)

Analogamente, temos que $1 - F_1(x) > 1 - F_2(x)$, logo a cauda superior de F_1 é mais pesada do que a de F_2 .

1.3)

A distribuição F_2 apresenta cauda inferior mais pesada, logo a perda esperada para ela é maior, isto é, o VaR será maior.

Questão 2

2.1; 2.2

```
valores <- rexp(1024, rate=0.2)
hist(valores, density=20, breaks=30, prob=TRUE, ylim=c(0, 0.2))
curve(dexp(x, rate=0.2), add=TRUE)</pre>
```

Histogram of valores

2.3

```
valores <- rexp(1024, rate=0.2)
dens <- density(valores, bw = 0.2)
plot(dens$x,dens$y,type="l",main="KDE with bw=.2")
curve(dexp(x, rate=0.2), add=TRUE)</pre>
```

KDE with bw=.2

2.4

Ambos utilizam todos os dados, porém as "lombadas" do histograma independem dos dados, enquanto as do KDE se baseiam neles. A suavidade do histograma depende apenas de suas bins, enquanto que dependem do tamanho da banda utilizada no KDE. Apesar de distorções causadas pela variância da função, o KDE tende a ser mais suave, sendo então uma função melhor para a visualização.

Questão 3

3.1

O gráfico 1 apresenta curvas acima da diagonal para quantis superiores e abaixo dela para quantis inferiores, indicando que π_1 tem caudas mais finas que π_2 .

3.2

O gráfico 2 apresenta curva abaixo da diagonal para quantis inferiores, indicando π_1 com cauda inferior mais fina. Para quantis superiores, a curva aparenta seguir a diagonal, indicando caudas superiores parecidas.

3.3

Análise análoga à 3.2, com resultados invertidos.

3.4

Análise semelhante à 3.2.

Questão 4

4.1.1

A curva está sempre acima da diagonal, indicando que a cauda inferior teórica cresce mais rapidamente do que a amostral, enquanto que a cauda superior teórica está abaixo da cauda superior amostral. Com isso, pode-se afirmar que a amostra é inclinada para a direita do que a distribuição normal.

4.1.2

A curva está abaixo da diagonal para quantis inferiores e acima dela para quantis superiores, logo a cauda amostral é mais pesada do que a cauda teórica, e a distribuição tem mais peso para pontos extremos do que a distribuição normal.

4.2.1


```
x <- rlnorm(1000, meanlog = 0, sdlog = 1)
y <- rnorm(1000, mean = 0, sd = 1)
qqplot(x, y,
xlab = 'lognormal',
ylab = 'gaussian')</pre>
```


Questão 5

5.1

A inversa da distribuição exponencial é $F^{-1}(x) = -log(1-u)/\lambda$.

```
myrexp <- function(n, lambda){
    vetor <- runif(n)
    print(vetor)
    for (i in 1:n){
        vetor[i] <- -log(1-vetor[i])/lambda}
    return (vetor)
}</pre>
```

5.2

O valor esperado da exponencial é $1/\lambda$.

Q-Q plot

A curva aparenta estar seguindo a linha diagonal, indicando que as distribuições podem ser sim as mesmas, conforme esperado.