Instructor: J. Zarnett

A. (Partial) "University" Database Definition

```
student( <u>student_id</u>, firstname, lastname, date_of_birth, userid )
course( <u>course_code</u>, name, calendar_desc, credits)
section( <u>course_code</u>, <u>section_number</u>, <u>term</u>, instructor_id )
enrolment( <u>student_id</u>, <u>course_code</u>, <u>section_number</u>, <u>term</u>, grade )
instructor( <u>id</u>, firstname, lastname, peng, department_id, salary )
department( <u>id</u>, name, faculty_id, budget )
faculty( <u>id</u>, name )
```

Table Name	Foreign Key(s)				
section	$course_code \to course_code$				
	$\verb instructor_id \rightarrow \verb instructor.id $				
enrolment	$\verb student_id \to \verb student_id $				
	$course_code, \ section_number, \ term \rightarrow section.course_code, \ section_number, \ term$				
instructor	$department_id \to department.id$				
department	$faculty_id o faculty.id$				

B. Relational Algebra

Symbol	Meaning	Symbol	Meaning	Symbol	Meaning
σ	Selection	П	Projection	U	Union
×	Cartesian Product	_	Minus (Difference)	ρ	Rename
\cap	Intersection	←	Assignment	×	Join
$\supset\!$	Left Outer Join	M	Right Outer Join	M	Full Outer Join

C. Armstrong's Axioms & Derived Rules

- Reflexivity: If α is a set of attributes and β is contained within α , then $\alpha \to \beta$ holds.
- Augmentation: If $\alpha \to \beta$ holds and γ is a set of attributes, then $\gamma \alpha \to \gamma \beta$ holds.
- Transitivity: If $\alpha \to \beta$ holds and $\beta \to \gamma$ holds, then $\alpha \to \gamma$ holds.
- Union: If $\alpha \to \beta$ holds and $\alpha \to \gamma$ holds, then $\alpha \to \beta \gamma$ holds.
- **Decomposition**: If $\alpha \to \beta \gamma$ holds, then $\alpha \to \beta$ holds and $\alpha \to \gamma$ holds (reverse of previous rule).
- Pseudotransitivity: If $\alpha \to \beta$ holds and $\gamma\beta \to \delta$ holds, then $\alpha\gamma \to \delta$ holds.

D. Query Transformation Rules

- 1. Conjunctive Selection: $\sigma_{\theta_1 \wedge \theta_2}(E) = \sigma_{\theta_1}(\sigma_{\theta_2}(E))$
- 2. Selection Commutes: $\sigma_{\theta_1}(\sigma_{\theta_2}(E)) = \sigma_{\theta_2}(\sigma_{\theta_1}(E))$
- 3. Projection Redundancy Elimination: $\Pi_{L_1}(\Pi_{L_2}(\Pi_{L_3}(E))) = \Pi_{L_1}(E)$
- 4. Commuting Selection and Projection: $\Pi_L(\sigma_{\theta}(E)) = \sigma_{\theta}(\Pi_L(E))$
- 5. Selection Combination
 - (a) $\sigma_{\theta}(E_1 \times E_2) = E_1 \bowtie_{\theta} E_2$
 - (b) $\sigma_{\theta_1}(E_1 \bowtie_{\theta_2} E_2) = E_1 \bowtie_{\theta_1 \land \theta_2} E_2$
- 6. Theta Joins Commute: $E_1 \bowtie_{\theta} E_2 = E_2 \bowtie_{\theta} E_1$
- 7. Natural Join Associates:
 - (a) $(E_1 \bowtie E_2) \bowtie E_3 = E_1 \bowtie (E_2 \bowtie E_3)$.
 - (b) $(E_1 \bowtie_{\theta_1} E_2) \bowtie_{\theta_2 \wedge \theta_3} E_3 = E_1 \bowtie_{\theta_1 \wedge \theta_3} (E_2 \bowtie_{\theta_2} E_3).$
 - (c) $(E_1 \times E_2) \times E_3 = E_1 \times (E_2 \times E_3)$.
- 8. Selection Distribution:
 - (a) $\sigma_{\theta_0}(E_1 \bowtie_{\theta} E_2) = (\sigma_{\theta_0}(E_1)) \bowtie_{\theta} E_2$
 - (b) $\sigma_{\theta_1 \wedge \theta_2}(E_1 \bowtie_{\theta} E_2) = (\sigma_{\theta_1}(E_1)) \bowtie_{\theta} (\sigma_{\theta_2}(E_2))$
- 9. Projection Distribution:
 - (a) $\Pi_{L_1 \cup L_2}(E_1 \bowtie_{\theta} E_2) = (\Pi_{L_1}(E_1)) \bowtie_{\theta} (\Pi_{L_2}(E_2))$
 - (b) $\Pi_{L_1 \cup L_2}(E_1 \bowtie_{\theta} E_2) = \Pi_{L_1 \cup L_2}((\Pi_{L_1 \cup L_3}(E_1)) \bowtie_{\theta} (\Pi_{L_2 \cup L_4}(E_2)))$
- 10. Set Operations Commute:
 - (a) $E_1 \cup E_2 = E_2 \cup E_1$
 - (b) $E_1 \cap E_2 = E_2 \cap E_1$
- 11. Set Operations Associate:
 - (a) $(E_1 \cup E_2) \cup E_3 = E_1 \cup (E_2 \cup E_3)$
 - (b) $(E_1 \cap E_2) \cap E_3 = E_1 \cap (E_2 \cap E_3)$
- 12. Selection Distribution 2:
 - (a) $\sigma_{\theta}(E_1 \cup E_2) = \sigma_{\theta}(E_1) \cup \sigma_{\theta}(E_2)$
 - (b) $\sigma_{\theta}(E_1 \cap E_2) = \sigma_{\theta}(E_1) \cap \sigma_{\theta}(E_2)$
 - (c) $\sigma_{\theta}(E_1 E_2) = \sigma_{\theta}(E_1) \sigma_{\theta}(E_2)$
- 13. Projection Distribution 2: $\Pi_L(E_1 \cup E_2 = (\Pi_L(E_1)) \cup (\Pi_L(E_2))$