Machine Learning

- Intro to Recurrent Neural Networks -

Recurrent Neural Networks: Process Sequences

Recurrent Neural Networks: Process Sequences

Recurrent Neural Networks: Process Sequences

e.g. Sentiment Classification Sequence of words → sentiment

Recurrent Neural Networks: Process Sequences

e.g. Translation
Sequence of words → sequence of words

Recurrent Neural Networks: Process Sequences

e.g. Video classification on frame level

RNN Model

Vanilla RNN Model

- Current state depends on current inputs and previous state
- RNNs can yield outputs at each time step

$$h^{(t)} = f_{w_{hh}}(h^{(t-1)}, f_{w_{ih}}(x^{(t)}))$$

 $y^{(t)} = f_{w_{ho}}(h^{(t)}), \forall t \in \{1... \tau\}$

Unfolding RNN in time

Source: NN Lectures, Tudor

Berariu, 2016

Unfolding RNN in time

Source: NN Lectures, Tudor

Berariu, 2016

Unfolding RNN in time

Source: NN Lectures, Tudor

Berariu, 2016

Truncated Backpropagation through time

Run forward and backward through chunks of the sequence instead of whole sequence

Truncated Backpropagation through time

Carry hidden states forward in time forever, but only backpropagate for some smaller number of steps

Truncated Backpropagation through time

Truncated BPTT

- Used in practice
- Summary of the algorithm:
 - Present a sequence of k1 timesteps of input and output pairs to the network.
 - Unroll the network then calculate and accumulate errors across k2 timesteps.
 - Roll-up the network and update weights.
 - Repeat

Teacher Forcing and Warm-start

- When training a RNN to generate a sequence, often, the predictions (outputs $y^{(t)}$) of a RNN cell are used as the input of the cell at the next timestamp
- Teacher Forcing: at training time, use the targets of the sequence, instead of RNN predictions, as inputs to the next step

 Warm-start: when using an RNN to predict a next value conditioned on previous predictions, it is sometimes necessary to give the RNN some context (known ground truth elements) before letting it predict on its own

LSTM

LSTM Cell

Img source: https://medium.com/ @kangeugine/

- Input Gate (i in (0, 1) sigmoid) scales input to cell (write)
- Output Gate (o in (0, 1) sigmoid) scales output from cell (read)
- Forget Gate (f in (0, 1) sigmoid) scales old cell values (reset mem)

LSTM Cell - Equations

$$i_t = \sigma(\theta_{xi} x^{(t)} + \theta_{hi} h^{(t-1)} + b_i)$$

$$f_t = \sigma(\theta_{xf} x^{(t)} + \theta_{hf} h^{(t-1)} + b_f)$$

$$o_t = \sigma(\theta_{xo} x^{(t)} + \theta_{ho} h^{(t-1)} + b_o)$$

$$g_t = \tanh\left(\theta_{xg} x^{(t)} + \theta_{hg} h^{(t-1)} + b_g\right)$$

$$c_t = f_t \odot c_{(t-1)} + i_t \odot g_t$$

 $h_t = o_t \odot \tanh(c_t)$, where \odot is elementwise multiplication

LSTMs in practice

- Sutskever et al, Sequence to Sequence Learning with Neural Networks, NIPS 2014
 - Models are huge :-)
 - 4 layers, 1000 LSTM cells per layer
 - Input vocabulary of 160k
 - Output vocabulary of 80k
 - 1000 dimensional word embeddings