Производна на функция

Нека е дадена функцията $f:X \to \mathbb{R}, X \subset \mathbb{R}$ и нека x_0 е точка на сгъстяване на $X,x_0 \in X$.

Определение: Производна на функцията y = f(x) в точката x_0 се нарича границата

$$f'(x_0) \stackrel{def}{=} \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

при условие, че съществува, а функцията в този случай се нарича диференцируема в точката x_0 .

Основни правила за диференциране:

Нека са дадени функциите $f,g:X\to\mathbb{R}$ и нека са диференцируеми в точка от дефиниционното си множество. Тогава:

- (c.f)' = c.f', където c = const..
- $\bullet \quad (f \pm g)' = f' \pm g'.$
- $\bullet \quad (f.g)' = f'.g + f.g'.$
- $\bullet \quad \left(\frac{f}{g}\right)' = \frac{f' \cdot g f \cdot g'}{g^2}.$
- $(f(g))' = f_g'.g'$, където g = g(x).

Забележка: Производни на функции от вида f^g се намират като предварително се представят във вида $f^g = e^{g \ln f}$

Основни формули за диференциране:

1) (<i>const</i>)' = 0	$3a \ u = u(x)$
$2) (x^{\alpha})' = \alpha x^{\alpha - 1} , \qquad \alpha \in \mathbb{R}$	2) $(u^{\alpha})' = \alpha u^{\alpha-1} u', \qquad \alpha \in \mathbb{R}$
3) $(a^x)' = a^x . \ln a$, $0 < a \ne 1$	3) $(a^u)' = a^u . \ln a . u', \qquad 0 < a \ne 1$
4) $(e^x)' = e^x$	4) $(e^u)' = e^u . u'$
$5) (\log_a x)' = \frac{1}{x \ln a}, x > 0, \ 0 < a \ne 1$	5) $(\log_a u)' = \frac{1}{u \ln a} . u', u > 0, \ 0 < a \ne 1$
$(\ln x)' = \frac{1}{x}, \qquad x > 0$	$(\ln u)' = \frac{1}{u}.u', \qquad u > 0$
$6) (\sin x)' = \cos x$	$6) (\sin u)' = \cos u.u'$
$7) (\cos x)' = -\sin x$	$7) (\cos u)' = -\sin u.u'$
8) $(tgx)' = \frac{1}{\cos^2 x}, \ x \neq \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}$	8) $(tg u)' = \frac{1}{\cos^2 u} u', \ u \neq \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}$
9) $(\cot g x)' = -\frac{1}{\sin^2 x}, \ x \neq k\pi, \ k \in \mathbb{Z}$	$9)(\cot g u)' = -\frac{1}{\sin^2 u} u', \ u \neq k\pi, \ k \in \mathbb{Z}$
10) $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}, x \in (-1,1)$	10) $(\arcsin u)' = \frac{1}{\sqrt{1 - u^2}} . u', \ u \in (-1, 1)$
11) $(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}, \ x \in (-1,1)$	11) $(\arccos u)' = -\frac{1}{\sqrt{1-u^2}}.u', \ u \in (-1,1)$
12) $(arctg \ x)' = \frac{1}{1+x^2}$	12) $(arctg u)' = \frac{1}{1+u^2} . u'$
13) $(arccotg \ x)' = -\frac{1}{1+x^2}$	13) $(arccotg u)' = -\frac{1}{1+u^2}.u'$