មេអៀននី ១ មូលដ្ឋានគ្រឹះខ្លះៗនៃគណិតចិន្សា

១ ស្វ័យគុណ

ស្វ័យគុណត្រូវបានប្រើជាញឹកញាប់នៅក្នុងរូបវិទ្យា ពេលយើងសរសេរ 3^4 ដែល 4 ហៅថាស្វ័យគុណ ហើយ 3 ជាគោល។

សង្ខេបរូបមន្ត

9.
$$a^0 = 1$$
 $(a \neq 0)$

$$a^n = a \times a \times a \times \cdots \times a \quad (a \neq 0)$$

$$a^{-n} = \frac{1}{a^n} \quad (a \neq 0)$$

6.
$$a^m \cdot a^n = a^{m+n} \quad (a \neq 0, n \neq 0, m \neq 0)$$

b.
$$(a \cdot b)^n = a^n \cdot b^n \quad (n \neq 0)$$

11.
$$(a^m)^n = (a^n)^m = a^{m \cdot n}$$
 $(a \neq 0, n \neq 0, m \neq 0)$

$$\mathbf{G}. \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n} \quad (b \neq 0, n \neq 0)$$

$$\delta$$
. $\sqrt[n]{a^m} = a^{\frac{m}{n}}$ និង $\sqrt[n]{a} \times \sqrt[n]{b} = \sqrt[n]{a \times b}$

$$\mathbf{90.} \ \frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$$

២ ឯកលក្ខណៈភាពសំខាត់ៗ

សង្ខេបរូបមន្ត

9.
$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a-b)^2 = a^2 - 2ab + b^2$$

$$\mathbf{\Omega}$$
. $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$

6.
$$(a+b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

$$a^2 - b^2 = (a - b)(a - b)$$

b.
$$a^2 + b^2 = (a + b)^2 - 2ab$$

$$a^3 - b^3 = (a - b) (a^2 + ab + b^2)$$

G.
$$a^3 + b^3 = (a + b) (a^2 - ab + b^2)$$

៣ លត្តនោះខែប្រឆាគពីអស្ចឹត្តា

ជាទូទៅ

ឧបមាថាយើងមានប្រភាពពីរស្មើគ្នា $\frac{a}{h}=\frac{c}{d}$ ។ យើងអាចសរសេរបានដូចខាងក្រោមៈ

១.
$$\frac{d}{b} = \frac{c}{a}$$
 (ប្តូរត្ជូចុង)

$$\mathbf{c}$$
. $\frac{a}{c} = \frac{b}{d}$ (ប្តូរត្ចមធ្យម)

$$\mathbf{n}$$
. $a \cdot d = b \cdot c$ (ផលកុណត្ចូចុងស្មើនឹងផលកុណត្ចូមធ្យម)

៤.
$$\frac{a}{b} = \frac{c}{d} = \frac{a \pm c}{b \pm d}$$
 (លក្ខណៈផលធ្យេបស្មើតក្នា)

៤ សទីភារបន្ទាត់

សង្ខេចរួចមន្ត

សមីការបន្ទាត់មានរាង y=ax+b ដែល a ជាមេគុណប្រាប់ទិស និង b ជាចំនួនថេរ។ បើ b=0 នោះសមីការបន្ទាត់ មានរាង y=ax គេថាបន្ទាត់កាត់តាមគល់ 0។

មេគុណប្រាប់ទិសនៃបន្ទាត់គឺ :
$$a = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

៥ នារួមចំស្គច់ជានៃស្វ័យគុណ

ទម្រង់ស្តង់ដានៃស្វ័យកុណរបស់ចំនួនមួយគឺជាផលកុណនៃចំនួន A ដែល $1 \leq A < 10$ និងស្វ័យកុណ 10។ ដូចនេះទម្រង់ ស្តង់ដាមានរាង $A imes 10^n$ ដែល 1 imes A < 10 ហើយ n ជាចំនូំនគត់រឺឡាទីប។

ឧទាហរណ៍

សរសេរចំនួនខាងក្រោមជាទម្រង់ស្គង់ដាះ

 $5500000000 = 55 \times 10^7$

 \approx 0.000 000 000 004 $mm = 4 \times 10^{-12}mm$

 $2.0.000\ 000\ 343 = 343 \times 10^{-9}$

55. $300\ 000km/s = 3 \times 10^5 km/s$

រុន្ធិស្នីមនភូស៊ីនុស និ១ស៊ីនុស

ទ្រឹស្តីបទ

• រុន្តិស្តីមនភូស៊ីនុស

$$a^2 = b^2 + b^2 - 2bc \cos \alpha$$

$$b^2 = a^2 + c^2 - 2ac\cos\beta$$

$$c^2 = a^2 + b^2 - 2ab\cos\gamma$$

• រុន្តិស្តីមនស៊ីនុស

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2R$$

R ជាកាំរង្វង់ចរឹកក្រៅត្រីកោណ

ullet និលមុគមុំតូខនៃត្រីគោណ: $lpha+eta+\gamma=180^\circ$

រុមភាព ១. ត្រីកោរស់ខៃទ្រឹស្តីមឧត្តស៊ីនុស និចស៊ីនុស

៧ និលគុណស្ពាលែលពីទទិចន៍៖

ន់លគុណស្គាលែខែពីទៀបនំ៖ បើគេមានវ៉ិចទ័រពីរ \overrightarrow{A} និង \overrightarrow{B} ដែលផ្គុំគ្នាបានមុំ heta ដូចរូបខាងស្តាំ។ នោះគេអាចសរសេរ

ពេសរសេរ : $\overrightarrow{A} \cdot \overrightarrow{B} = |\overrightarrow{A}| |\overrightarrow{B}| \cos \theta$

ម្យ៉ាងទៀត : $\overrightarrow{A} \cdot \overrightarrow{B} = AB \cos \theta$

បើ : $\overrightarrow{A} \cdot \overrightarrow{B} = 0$ នោះ $\overrightarrow{A} \perp \overrightarrow{B}$

ដែល : $|\overrightarrow{A}| = A$ និង $|\overrightarrow{B}| = B$ ហៅថាណម ឬប្រវែងនៃវ៉ិចទ័រ

រួមនាព ២. នលគុណស្តាលែនៃពីទៀបន័រ

៤ នប្ខេស្មានៃដំចតិទុ ខ្ទុចអស់ម្នងខុម្ពីខ្មែរមាខាតានៃ

न नाम

តេមានការេ ABCD ដែលមានជ្រុង a ដូចរូប។ គេបាន

ម្រ៉ង់ :
$$|AB| = |BC| = |CD| = |DA| = a$$

អង្កត់ទ្រង :
$$|AC| = |BD| = a\sqrt{2}$$

ពីកំពូលទៅផ្ចិត :
$$|AO| = |BO| = |CO| = |DO| = \frac{a\sqrt{2}}{2}$$

បរិមាត្រ :
$$P = 4a$$

ផ្ទៃក្រឡា :
$$S = a \cdot a = a^2$$

ខ ខត្តគោណកែខ

គេមានចតុកោណកែង ABCD ដែលមានទទឹង a និងបណ្ដោយ b ដូចរូប។ គេបាន

ជ្រង :
$$|AD| = |BC| = a$$
, $|AB| = |DC| = b$

អង្កត់ទ្រង :
$$|AC| = |BD| = \sqrt{a^2 + b^2}$$

បរិមាត្រ :
$$P = 2a + 2b$$

ផ្ទៃក្រឡា :
$$S = a \cdot b$$

គ ប្រធេននៃទ្រឹកោណ

១. ត្រីនោណសាមញ្ញា

តេមានត្រីកោណ ABC ដែលមានកម្ពស់ h ដូចរូប។

គេអាចសរសេរ :
$$S = \frac{AC \times h}{2}$$

ម៉ំ :
$$\alpha + \beta + \theta = 180^{\circ}$$

🖒. ត្រីអោណកែ១ គេមានត្រីកោណកែង ABC ដែលមានកម្ពស់ h ដូចរូប។

យើងបានក្រឡាផ្ទៃ : $S = \frac{AC \times h}{2}$

ဗို :
$$\alpha + \beta + \theta = 180^{\circ}$$

ដែល :
$$\theta = 90^{\circ}$$

៣. ត្រីអោលសមល់ត គេមានត្រីកោណសមបាត ABC ដូចរូប។ យើងបាន

ជ្រុង :
$$|AB| = |BC| = |AC| \times \frac{\sqrt{2}}{2}$$

កម្ពស់ :
$$|BH| = |AH| = |HC| = \frac{AC}{2}$$

ម៉ឺ :
$$\alpha + \beta + \theta = 180^{\circ}$$

ដែល :
$$\theta = \beta = 45^{\circ}$$

រូបតាម ហេ. ត្រូមការយលេខវ

៤. ត្រីកោណសម័ខ្ស គេមានត្រីកោណសម័ង្ស ABC ដូចរូប។ យើងបានៈ

ប្រជុំង :
$$|AB| = |BC| = |AC| = a$$

កម្ពស់ :
$$|BH| = \frac{a\sqrt{3}}{2}$$

ម៉ំ :
$$\alpha + \beta + \theta = 180^{\circ}$$

ដែល :
$$\theta = \beta = \alpha = 60^{\circ}$$

ध्य श्रुष्ठे

រង្វង់មួយមានផ្ចិត O កាំ R និងអង្កត់ផ្ចិត D ដូចរូប

អង្កត់ផ្ចិត :
$$D = R + R = 2R$$

បរិមាត្រ :
$$P = \pi D = 2\pi R$$

ក្រឡាំផ្ទៃ :
$$S = \pi R^2 = \pi \frac{D^2}{4}$$

១ គូម

ក្លុបមួយមានទ្រនុង a ដូចរូប។ យើងបានមាឌរបស់វាជី $V=a\cdot a\cdot a=a^3$

ទ រួមលេពីម៉ែតតែខ

ប្រលេពីប៉ែតកែងមួយមានទ្រនុង a បណ្ដោយ b និងកម្ពស់ h ដូចរូប។ យើងបានមាឌរបស់វាគី $V=a\cdot b\cdot h$

រួមតាព ១១. រួមលេពីម៉ែតកែខ

ត ស៊ីឡាំ១

ស៊ីឡាំងមួយមានមុខកាត់ជារង្វង់ដែលមានកាំ R និងកម្ពស់ h ដូចរូប។ យើងបានមាឌ $V=S\cdot h=\pi R^2 h$

र हिंदु

ស្វ៊ែមួយមានកាំ R ដូចរូប។ យើងបានៈ

ក្រឡាំផ្ទៃ :
$$S = 4\pi R^2 = \pi D^2$$

មាឌ :
$$V = \frac{4}{3}\pi R^2$$

ឈ សមធាពនៃមុំ

១. ម៉ុនល់គំពូល

បើយើងរកឃើញ $\angle M_1$ និង $\angle M_2$ ជាមុំទល់កំពូល ឃើងបាន: $\angle M_1 = \angle M_2$

២. មុំមាលវ្តខ្លួចតែចម្បើចគ្នា

កាលណាយើងមានមុំពីរ $\angle x'ox$ និង $\angle y'oy$ ហើយយើង មានជ្រុង $ox' \perp oy'$ និង $ox \perp oy$ ។ យើងបាន $\angle x'ox = \angle y'oy$

៣. ធំដែលមានថ្លេ១ស្របផ្សេចគ្នា

បើ $ox \parallel o'x'$ និង $oy \parallel o'y'$ នោះមុំ $\angle xoy$ និង $\angle x'o'y'$ ហៅថាមុំមានជ្រឹងត្រវគ្នា ស្របរ្យេង់គ្នាដែល មានតម្លៃស្មើគ្នា។ យើងបាន $\alpha = \theta$

រួមតាព ១៦. ទុំដែលមានវត្ថទស្រមអៀចគ្នា

៤. គន្លះមន្ទាត់ពុះម៉្

បើយើងរកឃើញថា OI ជាកន្លះបន្ទាត់ពុះមុំ ∠xoy នោះ យើងបាន $\angle O_1 = \angle O_2$ ។

រុមនាព ១៧. គន្លះមន្ទាត់ពុះមុំ

$oldsymbol{d}$. ម៉ុន្តិដោយមន្ទាត់ពីរេស្រមគ្នានិទ្ទាត់មួយ $oldsymbol{v}$ $(d) \parallel (d')$ និង (Δ) ជាខ្នាត់យើងបាន:

$$\angle A_1 = \angle B_7$$
, $\angle A_2 = \angle B_8$ (មុំឆ្លាស់ក្នុង)
$$\angle A_3 = \angle B_5, \quad \angle A_4 = \angle B_6 \quad \text{(មុំឆ្លាស់ក្រៅ)}$$
 $\angle A_1 = \angle B_5, \ \angle A_2 = \angle B_6, \ \angle A_3 = \angle B_7, \ \angle A_4 = \angle B_8 \quad \text{(មុំត្រូវិជ្ជា)}$ $\angle A_1 = \angle A_3, \ \angle A_2 = \angle A_4, \ \angle B_5 = \angle B_7, \ \angle B_6 = \angle B_8 \quad \text{(មុំទល់កំពូល)}$

រុមតាព ១៨. ម៉ុន្តិដោយបន្ទាត់ពីរត្របគ្គានិចខ្លាត់មួយ

් මූහාෂ්ධියෙන් විධාන

បើយើងមានប្រលេឡក្រាម ABCD ដូចរូប។ យើងបាន $\angle A = \angle C$, $\angle B = \angle D$ (មុំឈមប្រលេឡូក្រាម)

តារា១ទុំនៃអនុគមន៍ត្រីកោណទាត្រ

α (°)	0°	30°	45°	60°	90°	120°	135°	180°
α (rad)	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	π
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	0
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	-1

ឧបមាថាយើងមានត្រីកោណកែង ABC ដូចបង្ហាញក្នុង រូបខាងស្ដាំ ។

ទំនាក់ទំនង់រវាង $\sin heta$ និង $\cos heta$ គឺ

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
 និង $\sin^2 \theta + \cos^2 \theta = 1$

៩ សន្ទុងរស្លេខិត្ត ស្ថិត សន្ទិត សន្ទិ

សមីការដីក្រេទី២ មានរាង: $ax^2 + bx + c = 0$ ដែល a ជាមេគុណទី១ ($a \neq 0$) b ជាមេគុណទី២ និង c ជាមេគុណទី៣ ហើយ x ជាអញ្ញាត។

យើងអាចដោះស្រែយសមីការនេះបានដោយប្រើ ឌីសគ្រីមីណង់ $\Delta=b^2-4ab$ ។

ឌីសព្រីសមីណង់	សមីការ $ax^2 + bx + c = 0 \ (a \neq 0)$
បើ $\Delta = b^2 - 4ac > 0$	សមីការមានឬស $x_1, x_2 = \frac{-b \pm \sqrt{\Delta}}{2a}$ (សមីការមានឬសពីរផ្សេងគ្នា)
រំប៊ី $\Delta = b^2 - 4ac = 0$	la
ប៊ើ $\Delta = b^2 - 4ac < 0$	សមីការមានឬស $x_1, x_2 = \frac{-b \pm i\sqrt{\Delta}}{2a}$ (សមីការមានឬសពីរជាចំនួនកុំផ្លិច)

ខមំដោយសទ្ចេម

ध्यभिक्षे ध क्षेक्षेक्ष्य क्षेठक्षेक्षक्षार क

នំមាំទី២នៃ៖

ងូសូខ្នំឧង្គ

នឹយមន័យ

នំចាំទុំចន់៖ ជាទំហំដែលសំដែងជាតម្លៃពីជគណិត ហើយអាស្រ័យនីង ទិស ទិសដៅ។ វ៉ិចទ័រមួយជាអង្គត់ដែលមាន ទិសដៅ ភ្ជាប់ពីរចំណុចផ្សេងគ្នា ដែលចំណុចំណុចមួយជាគល់ ឬចំណុចចាប់ និងមួយទៀតជាចុងនៃវ៉ិចទ័រ។

ឧទាហរណ៍

ទំហំវ៉ិចទ័ររួមមានៈ កម្លាំង ល្បឿន សំទុះទំនាញដី ដែនម៉ាញេទិច។ ល។ យើងអាចលើកយកវ៉ិចទ័រ \overrightarrow{OA} មកសិក្សាៈ

- ចំណុចចាប់ ឬគល់ៈ ត្រង់ O
- ទិសៈ ស្ថិតលើបនាត់ OA
- ទិសដៅពី O ទៅ A(សម្គាល់ដោយព្រញ្ញ)
- អាំងតង់ស៊ីតេ ឬម៉ូឌុលៈ $|\overrightarrow{OA}|$

ទុំចន់រពីរស្នើគ្នា

ទុំចន់លើស្នើគ្នាៈ កាលណាវ៉ិចទ័រទាំងពីរនោះមានប្រវែងស្មើគ្នា និងមានទិសដៅដូចគ្នា។

ឧទាហរណ៍

ចូរពិនិត្យមើលវ៉ិចទ័រ \overrightarrow{A} និង \overrightarrow{B} ដូចរូបខាងក្រោម។ យើងឃើញថាវ៉ិចទ័រទាំងពីរនេះមានម៉ូឌុល ឬប្រវែងស្មើគ្នា និង មានទិសដៅដូចគ្នា។

រួមនាព ២. ទុំខន័រពីរស្នើគ្នា

ដូចនេះ វ៉ិចទ័រ \overrightarrow{A} ស្មើនឹង \overrightarrow{B} ឬវ៉ិចទ័រទាំងពីរនេះសមភាពគ្នា ទោះបីវាចេញពីគល់ផ្សេងគ្នាក៏ដោយ។

ពេសរសេរ: $\overrightarrow{A} = \overrightarrow{B}$

នាំឲ្យ :
$$|\overrightarrow{A}| = |\overrightarrow{B}|$$
 ឬ $A = B$

ឝ និលមុគទុំិចនំ៖

១. ដលមុកទុំចន់ពើមោននិស និចនិសដៅជួចគ្នា

គេមានវ៉ិចទ័រពីរ \overrightarrow{A} និង \overrightarrow{B} ដូចរូបខាងស្ដាំ។ យើងបានវ៉ិចទ័រផ្គូបនៃវ៉ិចទ័រ \overrightarrow{A} និង \overrightarrow{B} គឺ $\overrightarrow{C} = \overrightarrow{A} + \overrightarrow{B}$

រួមភាព ៣. ផលមុកទុំចន់លើមោននិស និចនិសដៅជុំចគ្នា

ក្នុងករណីដែលយើងចង់រកម៉ូឌុលនៃវ៉ិច \overrightarrow{C} យើងត្រូវលើកអង្គទាំងពីរជាការេ

ឃើងហ៊ុន :
$$\overrightarrow{C^2} = \left(\overrightarrow{A} + \overrightarrow{B}\right)^2 = \overrightarrow{A^2} + 2\overrightarrow{A}\overrightarrow{B} + \overrightarrow{B^2} = \overrightarrow{A^2} + 2AB\cos\left(\overrightarrow{A}, \overrightarrow{B}\right) + \overrightarrow{B^2}$$

ដោយ :
$$\overrightarrow{C^2} = C^2$$
, $\overrightarrow{A^2} = A^2$, $\overrightarrow{B^2} = B^2$, $(\overrightarrow{A}, \overrightarrow{B}) = 0$

ឃើងហ៊ុន :
$$C^2 = A^2 + 2AB + B^2 = (A+B)^2$$

ទាំឲ្យ :
$$C = \sqrt{(A+B)^2} = A + B$$

ជាទូទៅ

អាំងតង់ស៊ីតេវ៉ិចទ័រផ្គូបដែលមានទិសស្របគ្នា និងទិសដៅដូចគ្នាស្មើនឹងផលបូកអាំងតង់ស៊ីតេនៃវ៉ិចទ័រផ្គុំទាំងអស់។

🖒. ផលចុកទុំចន់ពើមោននិសជុចគ្នា និចនិសដៅផ្ទុយគ្នា

តេមានវ៉ិចទ័រពីរ \overrightarrow{A} និង \overrightarrow{B} ដូចរូបខាងស្ដាំ។ គេបានវ៉ិចទ័រ $\overrightarrow{C} = \overrightarrow{A} + \left(-\overrightarrow{B} \right) = \overrightarrow{A} - \overrightarrow{B} \Rightarrow \boxed{C = A - B}$

ដើម្បីសង់វ៉ិចទ័រផ្គួប \overrightarrow{C} យើងរំកិលវ៉ិចទ័រ \overrightarrow{B} ដោយរក្សា ទិសរបស់វាទៅដាក់លើទិសនៃវ៉ិចទ័រ \overrightarrow{A} ដោយដាក់គល់នៃ វ៉ិចទ័រ \overrightarrow{B} លើចុងស្លាបព្រួញនៃវ៉ិចទ័រ \overrightarrow{A} ។

រុមភាព ៤. ទុំចន់លើមោលនិសជុខគ្នា និ១និសដៅផ្ទុយគ្នា

វុមនាព ៥. ផលបូករ៉ិចទ័រពីរមានទិសដូចគ្នា និងទិសដៅផ្ទុយគ្នា

សម្ភាល់

ទិសដៅនៃវ៉ិចទ័រផ្គប់ពីដូចនឹងទិសដៅនៃវ៉ិចទ័រដែលមានអាំងតង់ស៊ីតេធំជាងគេ។

$oldsymbol{\Omega}$. និលបុគទុំចន័ះពីរមាននិសបច្ចើតខានទុំ $oldsymbol{ heta}$

គេមានវ៉ិចទ័រពីរ \overrightarrow{A} និង \overrightarrow{B} ដែលផ្គុំគ្នាបានមុំ θ ដូចរូប ខាងស្តាំ។ យើងបានវ៉ិចទ័រផ្គុបនៃវ៉ិចទ័រ \overrightarrow{A} និង \overrightarrow{B} គឺតាង ដោយ $\overrightarrow{C} = \overrightarrow{A} + \overrightarrow{B}$

មេដាព ៦. ដល់មុគទុំចន់ពើមោននិសមថ្មើតបានមុំ heta

យើងអាចលើកអង្គទាំងពីរនៃសមីការនេះជាការេ

ឃើងហ៊ុន :
$$\overrightarrow{C^2} = \left(\overrightarrow{A} + \overrightarrow{B}\right)^2 = \overrightarrow{A^2} + 2\overrightarrow{A}\overrightarrow{B} + \overrightarrow{B^2} = \overrightarrow{A^2} + 2AB\cos\left(\overrightarrow{A}, \overrightarrow{B}\right) + \overrightarrow{B^2}$$

ដោយ :
$$\overrightarrow{C^2} = C^2$$
, $\overrightarrow{A^2} = A^2$, $\overrightarrow{B^2} = B^2$, $(\overrightarrow{A}, \overrightarrow{B}) = \theta$

ឃើងហ៊ុន :
$$C^2 = A^2 + B^2 + 2AB\cos\theta$$

ទាំច្យ :
$$C = \sqrt{A^2 + B^2 + 2AB\cos\theta}$$

សមាល់

ដើម្បីសង់វ៉ិចទ័រផ្គូប \overrightarrow{C} ដែល $\overrightarrow{C} = \overrightarrow{A} + \overrightarrow{B}$ យើងត្រូវអនុវត្តតាមវិធានអង្កត់ទ្រុងប្រលេឡូក្រាម។

៤. ផលមុកទុំចង់លើមោលនិស សិចនិសល់កែចគ្នា

គេមានវ៉ិចទ័រពីរ \overrightarrow{A} និង \overrightarrow{B} ដែលផ្គុំគ្នាបានមុំ 90° ឬមាន ទិស និងទិសដៅកែងគ្នា ដូចរូបខាងស្តាំ។ យើងបានវ៉ិចទ័រ ផ្គប់នៃវ៉ិចទ័រ \overrightarrow{A} និង \overrightarrow{B} គឺតាងដោយ $\overrightarrow{C} = \overrightarrow{A} + \overrightarrow{B}$

វូម**នាព ៧**. ផលបូករ៉ិចទ័រពីរមានទិស និងទិសដៅកែងគ្នា

យើងអាចលើកអង្គទាំងពីរនៃសមីការនេះជាការេ

ឃើងហ៊ុន :
$$\overrightarrow{C^2} = \left(\overrightarrow{A} + \overrightarrow{B}\right)^2 = \overrightarrow{A^2} + 2\overrightarrow{A}\overrightarrow{B} + \overrightarrow{B^2} = \overrightarrow{A^2} + 2AB\cos\left(\overrightarrow{A}, \overrightarrow{B}\right) + \overrightarrow{B^2}$$

ដោយ :
$$\overrightarrow{C^2} = C^2$$
, $\overrightarrow{A^2} = A^2$, $\overrightarrow{B^2} = B^2$, $(\overrightarrow{A}, \overrightarrow{B}) = 90^\circ$

ឃើងបាន :
$$C^2 = A^2 + B^2$$

នាំឲ្យ :
$$C = \sqrt{A^2 + B^2}$$

នំមាំស្ពាលែ

នំចាំស្កាលែះ គឺជាបរិមាណចំនូន ឬទំហំក្នុងខ្នាតសមស្របមួយដែលគ្មានទិសដៅ។ នៅក្នុងរូបវិទ្យាទំហំដែលមិនទាក់ទង និីងទិសដៅ(ទំហំស្កាលែ) មានដូចជាៈ សីតុណ្ហភាព សម្ពាធ ថាមពល កម្មន្ត ម៉ាស រយៈពេល។ ល។

៣ ក្នុអរដៅនៅនទឹចនំរ

ឧបមាថាយើងមានត្រីកោណកែង ABC ដូចបង្ហាញក្នុង រូបខាងស្ដាំ ។

$$\sin \theta = \frac{\text{ជ្រុងឈម}}{\text{អ៊ីប៉ូពេនុស}}, \quad \cos \theta = \frac{\text{ជ្រុងជាប់}}{\text{អ៊ីប៉ូពេនុស}}, \quad \tan \theta = \frac{\text{ជ្រុងឈម}}{\text{ជ្រុងជាប់}}$$
 រួច**នាព ៤. នំនាក់នំនទក្ខុទត្រីកោណទាត្រ**

ទំនាក់ទំនង់រវាង $\sin heta$ និង $\cos heta$ គឺ

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
 $\hat{\mathbf{S}} \mathbf{a}$ $\sin^2 \theta + \cos^2 \theta = 1$

គេមានវ៉ិចទ័រ \overrightarrow{A} ស្ដិតក្នុងប្លង់ xy និងបង្កើតបានមុំ hetaជាមួយអ័ក្ស Ox ដូចរូប។ យើងចំណោលកែងវ៉ិចទ័រ \overrightarrow{A} លើអ័ក្យ Ox និង Oy យើង បានធាតុរបស់វា(Components of Vectors)គឺ $\overrightarrow{A_x}$ និង $\overrightarrow{A_y}$ ។ តាមលក្ខណៈនៃវ៉ិចទ័រយើងបាន: $\overrightarrow{A} = \overrightarrow{A_x} + \overrightarrow{A_y}$

រុមភាព ៩. ផលមុកទុំចន់រពីរមាននិស និ១និសដៅកែខគ្នា

សទ្ធ្រាយចត្តរាគ់.

ដែល :
$$A_x = A\cos\theta$$
 និង $A_y = A\sin\theta$

ឃើងហ៊ុន :
$$\overrightarrow{A^2} = \left(\overrightarrow{A_x} + \overrightarrow{A_y}\right)^2 = \overrightarrow{A_x^2} + 2\overrightarrow{A_x}\overrightarrow{A_y} + \overrightarrow{A_y^2} = \overrightarrow{A_x^2} + 2A_xA_y\cos\left(\overrightarrow{A_x},\overrightarrow{A_y}\right) + \overrightarrow{A_y^2}$$

ដោយ :
$$\overrightarrow{A^2} = A^2$$
, $\overrightarrow{A_x^2} = A_x^2$, $\overrightarrow{A_y^2} = A_y^2$, $(\overrightarrow{A_x}, \overrightarrow{A_y}) = 90^\circ$

ឃើងហ៊ុន :
$$A^2 = A_x^2 + A_y^2$$

នាំឲ្យ :
$$A = \sqrt{A_x^2 + A_y^2}$$

មេអៀលនី ៣ បន្ទុកអគ្គិសនី និខដែនអគ្គិសនី

១ អគ្គិសនីគម្

និព្រេន័ព្រ

អគ្គិសន៍គម្ភៈ ជាអំពើដែលធ្វើឲ្យអង្គធាតុមួយមានបន្ទុកអគ្គិសនី ពោលគឺធ្វើឲ្យវាលើស ឬខ្វះអេឡិចត្រុង។

- បើអង្គធាតុមួយលើសអេឡិចត្រុង វាផ្ទុកបន្ទុកអគ្គិសនីអវិជ្ជមាន។
- បើអង្គធាតុមួយខ្វះអេឡិចត្រុង វាផ្ទុកបន្ទុកអគ្គិសនីវិជ្ជមាន។

សម្ចាល់

គេបែងចែកអគ្គិសនីកម្មជាបីប្រភេទគឺ អគ្គីសនីកម្មដោយកកិត អគ្គិសនីកម្មដោយប៉ះ និងអគ្គិសនីកម្មដោយឥទ្ធិពល។

២ អាតូម និ១បន្ទុកអគ្គិសនិ

• អាតូម

និយមន័យ

នាតូទៈ គឺជាភាគល្អិតតូចបំផុតនៃរូបធាតុដែលមានលក្ខណៈដូចរូបធាតុដែរ។ រូបធាតុមួយមានប្រភេទអាតូម តែមួយគត់។

ឧទាហរណ៍

កាបូនផ្សំឡើងដោយអាតូបកាបូន មាសផ្សំឡើងដោយអាតូមមាស។

អង្គធាតុទាំងអស់ផ្សំឡើងដោយម៉ូលេកុល។ ក្នុងម៉ូលេកុលមានភាកល្អិតតូចៗជាច្រើន ហៅថាអាតូម។ នៅចំណុចកណ្ដាលនៃអាតូមនីមួយៗមានណ្ងៃយ៉ូ ដែល នៅក្នុងនោះមានប្រតុង និងណឺត្រុង។ នៅជុំវិញណ្វៃយ៉ូនោះ មានអេឡិចត្រុងធ្វើចលនាឥតឈប់ឈរ។ ប្រតុង និងអេឡិច ត្រុងផ្ទុកបន្ទុកអគ្គិសនីប្រភេទខុសក្នា។

• បន្ទូកអគ្គិសនិ

នឹយមន័យ

ចន្ទុកអគ្គិ សន៍: ពីជាលក្ខ ណៈ មូល ដ្ខាន មួយ(លក្ខណៈ អគ្គិសនី) នៃរូបធាតុ ដែល កើតមាន លើ អង្គធាតុ ជាក់លាក់ មួយចំនួន។ គេចែកបន្ទុកអគ្គិសនីជាពីរប្រភេទគឺ បន្ទុកអគ្គិសនីវិជ្ជមាន និងបន្ទុកអគ្គិសនីអវិជ្ជមាន។

• អេឡិចគ្រួ១ និទ្យម្ភតុ១

នឹយមន័យ

- អន្សិចគ្រុលៈ ជាធាតុបន្ទុកអគ្គិសនីដែលមានបន្ទុកអគ្គិសនីអវិជ្ជមាន។
- ទ្រូត្រុខៈ ជាធាតុបន្ទុកអគ្គិសនីដែលមានបន្ទុកអគ្គិសនីវិជ្ជមាន។

ធាតុបន្ទុកអគ្គិសនី	អេឡិចត្រុង	ប្រូតុង	លើត្រុង	
បន្ទុកអគ្គិសនី	$q_e = e^- = -1.60 \times 10^{-19} C$	$q_p = 1.60 \times 10^{-19} C$	$q_n = 0$	
ម៉ាស	$m_e = 9.11 \times 10^{-31} Kg$	$m_p = 1.673 \times 10^{-27} Kg$	$m_n = 1.675 \times 10^{-27} Kg$	

• អំពើខែមន្ទគអគ្គិសន៍ ឬលគូឈ:ខែមន្ទគអគ្គិសន៍

សម្ចាល់

- ១. បន្ទុកអគ្គិសនីដែលមានប្រភេទដូចគ្នា ដាក់ជិតគ្នាវាច្រានគ្នាចេញ។
- 😊. បន្ទុកអគ្គិសនីដែលមានប្រភេទខុសគ្នា ដាក់ជិតគ្នាវាទាញគ្នាចូល។

ជាទូទៅ

អាតូមនីមួយៗ មានចំនួនអេឡិចត្រុងស្មើនឹងចំនួនប្រតុងរបស់វាទាំងអស់ដែលធ្វើឲ្យអាតូមណឹតតាមន័យអគ្គិសនី។ ប៉ុន្តែ អេឡិចត្រុងឋិតនៅស្រទាប់ក្រៅដែលដាច់ចេញពីអាតូមដោយកកិត។

- ullet រួមទន្តមរិទារសមន្ត្តអអគ្គិសន៍របស់ស្វៃចម៉ូនៃអាតូទ: q=Ze ដែល Z ជាលេខលំដាប់នៃអាតូម។
- រុម**ទន្តបរិទាណបន្ទុកអគ្គិសន៍នៃអន្តជាគុ**ដែលលើស **ឬខ្វះអេស្បិចត្រូខ:** $q = \pm ne$ ដែល -n ប្រើចំពោះអង្គធាតុដែលលើសអេឡិចត្រុង និង +n ប្រើចំពោះអង្គធាតុដែលខ្វះអេឡិចត្រុង។
- ullet ្រុមមន្តមរិមាណមន្ទុកអគ្គិសន៍នៃចន្តេទេះ I ឆ្លួខគាត់ខ្សែចម្លួខត្ថុខយេះពេលt q=It
- ullet **ប**ន្ទុកអ៊ី**យ៉ុខ:** អ៊ីយ៉ុង SO_4^{--} មានបន្ទុក q=-2e អ៊ីយ៉ុង Cu^{++} មានបន្ទុក q=+2e

សម្គាល់

ស្វ៊ែស្ម៊ីសាច់ពីរប៉ុនគ្នាមានបន្ទុកអគ្គិសនី Q_A និង Q_B ក្រោយពេលប៉ះគ្នាស្វ៊ែនីមួយៗមានបន្ទុកអគ្គិសនីថ្មីដែល មានតម្លៃស្មើគ្នាគឺ $Q_A' = Q_B' = \frac{Q_A + Q_B}{2}$ ។

លំខាត់អនុទត្តន៍

- **១**. គេមានស្វ៊ែលោហៈពីរ ដែលស្វ៊ែទី១ លើសអេឡិចត្រុងចំនួន 4×10^{10} ហើយស្វ៊េទី២ ខ្វះអេឡិចត្រុង 5×10^8 ។ គណនាបន្ទកអគ្គិសនីលើស្វ៊ែនីមួយៗ។
- **២**. គេមានស្វ៊ែលោហៈពីរដែលស្វ៊ែទី១មានបន្ទុកអគ្គិសនី $Q_1 = -11.2 \times 10^{-7} C$ និងស្វ៊ែទី២មានបន្ទុកអគ្គិសនី $Q_2 = 17.6 \times 10^{-8} C$ ។ តើស្វ៊ែលោហៈនីមួយៗលើស ឬខ្វះអេឡិចត្រុង? រកចំនួនអេឡិចត្រុងដែលលើស ឬខ្វះ នោះ?
- **៣**. ស្វ៊េពីរមានមាឌប៉ុនគ្នា មានបន្ទុករ្យេងគ្នា $q_A = -2 \times 10^{-7} C$ និង $q_B = +8 \times 10^{-7} C$ ។ គេដាក់ស្វ៊ែពីរឲ្យប៉ះ

ក្នា ស្វ៊ែទាំងពីរធ្វើអគ្គិសនីកម្មដោយប៉ះរួចស្វ៊ែមានបន្ទុកអគ្គិសនីថ្មីគឺ q_A' និង q_B' ។ គណនាបន្ទុកអគ្គិសនីនៃស្វ៊ែនី មុយៗក្រោយពេលប៉ះគ្នា។

 $m{\epsilon}$. ស្វ៊ែលេហៈមួយមានបន្ទុកអគ្គិសនី $q_1 = +3 imes 10^{-7} C$ ត្រូវបានគេយកទៅប៉ះនីងស្វ៊ែមួយទៀតណឺតនិងមាន មាឌប៉ុនគ្នា។ គណនាបន្ទុកអគ្គិសនីនៃស្វ៊ែទាំងពីរក្រោយពេលប៉ះគ្នា។

៣ ច្បាច់គូផ្សុំ

ត ពំនោលច្បាច់គូផ្សុំ

ពំនោល

តម្លៃនៃកម្លាំងអគ្គិសនីដែលមានអំពើរវាងចំណុចបន្ទុកអគ្គិសនីពីរ q_A និង q_B ស្ថិតនៅចម្ងាយ r ពីគ្នាច្រាសសមាមាត្រ នឹងការេនៃចម្ងាយដែលឃ្លាតពីគ្នាហើយសមាមាត្រនិងតម្លៃដាច់ខាតនៃផលពុណបន្ទុកអគ្គិសនី q_A និង q_B ។

រួមតាព ២. អន្តរកម្មនៃមន្ទកអគ្គិសន៏ពីមោលប្រតេនជួចគ្នា និចខុសគ្នា

ខ គន្សោមគុន្ស៊ី

ភពេទ្ធមេសាំខត់ខំស៊ីតេខែកម្លាំខអគ្គិសន៍ តាមពំនាលច្បាប់កូឡំ

យើងហ៊ុន :
$$F \sim \frac{1}{r^2}$$
 និង $F \sim \left| q_A \times q_B \right|$ នោះ : $F \sim \frac{\left| q_A \times q_B \right|}{r^2}$

នាំឲ្យ :
$$F = k \frac{\left| q_A \times q_B \right|}{r^2}$$
, k ជាមេពុណសមាមាត្រ

ដែល q_A និង q_B គិតជា (C) (កូឡំ) r គិតជា (m) F គិតជា (N)។

សម្ចាល់

k អាស្រ័យនីងប្រព័ន្ធខ្នាតដែលគេជ្រើសរើសនិងអាស្រ័យនីងមជ្ឈដ្ខានឌីអេឡិចទ្រិចដែលបន្ទុកអគ្គិសនីស្ថិតនៅ។

រោយ
$$\tilde{n}$$
 : $k = \frac{1}{4\pi\epsilon}$ \Rightarrow $F = \frac{1}{4\pi\epsilon} \times \frac{|q_A \cdot q_B|}{r^2}$

 $\epsilon = \epsilon_0 \cdot \epsilon_r$ ហៅថា ពែមីទីវីតេនៃមជ្ឈដ្ឋានណាមួយ។

 ϵ_r ហៅថា ពែមីទីវីតេធ្យេបៃនៃមជ្ឈដ្ឋាន ហើយ ϵ_0 ជាពែមីទីវីតេនៃសុញ្ញាកាស។

ullet ក្នុងប្រព័ន្ធអន្តរជាតិ SI បើឌីអេឡិចទ្រិចជាខ្យល់ ឬសុញ្ញាកាសគេយក $\epsilon=\epsilon_0$

ពេហន :
$$F = \frac{1}{4\pi\epsilon_0} \times \frac{\left|q_A\cdot q_B\right|}{r^2}$$
 ដោយ $\epsilon_0 = \frac{1}{36\pi 10^9} \approx 8.85 \times 10^{-12} SI$ ពេហន : $\frac{1}{4\pi\epsilon_0} = 9 \times 10^9$ នាំឲ្យ : $F = 9 \times 10^9 \frac{\left|q_A\cdot q_B\right|}{r^2}$

២. ភាពស្វាមសំខគខ់ស៊ីគេខែកម្លាំខអគ្គិសន៍(មឡដ្ឋានដីអេឡិចន្ត្រឹច)

បើមជ្ឈដ្ឋានឌីអេឡិចទ្រិចខុសពីខ្យល់ ឬសុញ្ញាកាសកម្លាំងដែលមានអំពើទៅវិញទៅមកថយចុះ។ កម្លាំងថយចុះទៅតាម ទំហំមួយនៅក្នុងមជ្ឈដ្ឋានតាងដោយ ϵ_r ហៅថាថេរឌីអេឡិចទ្រិច ពែមីទីវើធ្យេប ឬអំណាចអាំងឌុចទ័រសម្គាល់។ គេយក $k=\frac{1}{4\pi\epsilon_0\epsilon_r}$

ពេញ ទេសវេសវ :
$$F = \frac{1}{4\pi\epsilon_0\epsilon_r} \times \frac{\left|q_A \cdot q_B\right|}{r^2}$$
 ឬ $F = \frac{1}{\epsilon_r} \times 9 \cdot 10^9 \times \frac{\left|q_A \cdot q_B\right|}{r^2}$

៣. ការស្វាមគុំបន់កេម្លាំ១អគ្គិសន៍

បើគេកំណត់យកវ៉ិចទ័រឯកតា $ec{u}$ មានទិស AB ហើយទិសដៅពី A ទៅ B គេបានកន្សោមវ៉ិចទ័រ

$$\overrightarrow{F}_{AB} = -\overrightarrow{F}_{BA} = \frac{1}{4\pi\epsilon} \times \frac{q_A \cdot q_B}{r^2} \overrightarrow{u} \text{ the part } F_{AB} = F_{BA} = \frac{1}{4\pi\epsilon} \times \frac{\left|q_A \cdot q_B\right|}{r^2}$$

$$A(q_A) \overrightarrow{u} \qquad r \qquad B(q_B)$$

$$\overrightarrow{F}_{AB}$$

$$A(q_A) \overrightarrow{u} \qquad r \qquad B(q_B)$$

$$\overrightarrow{F}_{AB}$$

រួមភាព ៣. កស្សេងទុំចន់រកម្លាំ១អគ្គិសន៍

សម្គាល់

 \overrightarrow{F}_{AB} តាងឲ្យកម្លាំងអគ្គិសនីដែលបន្ទុក q_A មានអំពើទៅលើបន្ទុក q_B នៅត្រង់ B។ កម្លាំងនេះមានទិស AB ហើយ មានទិសដៅអាស្រ័យនឹងសញ្ញានៃបន្ទុក q_A និង q_B ។

- បើបន្ទុក q_A និង q_B មានសញ្ញាដូចគ្នា $q_A\cdot q_B>0$ កម្លាំង \overrightarrow{F}_{AB} មានទិសដៅដូច \overrightarrow{u} គេថាកម្លាំង \overrightarrow{F}_{AB} ជា កម្លាំងចម្រានចេញដូចរូប។
- បើបន្ទុក q_A និង q_B មានសញ្ញាផ្ទុយគ្នា $q_A\cdot q_B<0$ កម្លាំង \overrightarrow{F}_{AB} មានទិសដៅផ្ទុយពី \overrightarrow{u} គេថាកម្លាំង \overrightarrow{F}_{AB} ជា កម្លាំងទំនាញចូលដូចរូប។

៤. មខ្ពុំនៃទុំមន់រកម្លាំ១អគ្គិសនី

បើបន្ទុកអគ្គិសនី q រង់ទូវអំពើនៃបន្ទុកអគ្គិសនីច្រើន q_1,q_2,q_3,\cdots,q_n កម្លាំងដែលមានអំពើលើបន្ទុក q ត្រូវស្មើនឹង ផលបូកចរណីមាត្រនៃកម្លាំងនីមួយៗ ដែលមានអំពើទៅលើវាគឺ $\overrightarrow{F}=\overrightarrow{F}_1+\overrightarrow{F}_2+\overrightarrow{F}_3+\cdots+\overrightarrow{F}_N$ ។

សង្ខេចរួចមន្ត

១. ច្បាច់គុផ្សំ កម្លាំងច្រានគ្នា ឬទាញគ្នារវាងបន្ទុកពីរសមាមាត្រនឹងផលកុណបន្ទុកទាំងពីរ ហើយច្រាសសមាមាត្រ

នឹងការេនៃចម្ងាយបន្ទុកទាំងពីរ គឺ: $F=krac{\left|q_1\cdot q_2\right|}{r^2}$ ដែល $k=rac{1}{4\pi\epsilon}$ ហើយ $\epsilon=\epsilon_0 imes\epsilon_r,\epsilon_0pprox 8.85 imes 10^{-12}SI$

រុមភាព ៤. អន្តរកម្មនៃមន្ទកអគ្គិសនីពីរមានរួមគេនដុំមគ្គា និចខុសគ្នា

២. ភះឡាមច្បាច់គូឡឹ

ullet អរស៊ីនមឡាងសំខ្សាល់ ម៉ូស៊ីណាអាសៈ $k=9 imes 10^9 Nm^2/C^2$

ពេសរសេរ :
$$F = 9 \times 10^9 \frac{\left| q_1 \cdot q_2 \right|}{r^2}$$

- F ជាកម្លាំងអគ្គិសនីគិតជា (N)
- -r ជាចម្ងាយគិតជា (m)
- $-q_1$ និង q_2 ជាបន្ទុកអគ្គិសនីគិតជា (C) $-\epsilon = \epsilon_0 \cdot \epsilon_r$ ពែមីទីវីតេនៃមជ្ឈដ្ឋានណាមួយ
- ullet ករស៊ីនឡើដ្ឋានដែលមានថេះដីអេឡិចន្រឹច eta_r

ពេអាចសរសេរ :
$$F = \frac{1}{4\pi\epsilon_0\epsilon_r} \times \frac{\left|q_A\cdot q_B\right|}{r^2}$$
 ឬ $F = \frac{1}{\epsilon_r} \times 9\cdot 10^9 \times \frac{\left|q_A\cdot q_B\right|}{r^2}$

៤ លំខាត់អនុទត្តន៍

- $oldsymbol{9}$. គេយកចំណុចអគ្គិសនីពីរ $q_1=+2 imes 10^{-9}C$ និង $q_2=+8 imes 10^{-9}C$ ទៅដាក់ត្រង់ពីរចំណុច A និង B ដែលមាន ចម្លាយ a = 27cm ពីគ្នា។
 - 🙃 កណនាកម្លាំងអគ្គិសនីដែលមានអំពើរវាងបន្ទុកទាំងពីរ។
 - $oldsymbol{arrho}$. ចូរអ្នកកំណត់ទីតាំងនៃចំណុច M មួយស្ថិតនៅចន្លោះ A និង B ដើម្បីឲ្យបន្ទុក q>0 ដាក់នៅត្រង់ចំណុចនោះ មានលំនិំង។
- 😊. គេយកចំណុចបន្ទុកអគ្គិសនីពីរ $q_1 = +2nC$ និង $q_2 = +8nC$ ដាក់នៅត្រង់ពីរចំណុច A និង B ដែលមានចម្ងាយ d = 30cm ពីគ្នា។
 - 🙃 កណនាកម្លាំងអគ្គិសនីដែលមានអំពើរវាងចំណុចបន្ទុកអគ្គិសនីទាំងពីរ។
 - $oldsymbol{arrho}$. កំណត់ទីតាំងនៃចំណុច P មួយស្ថិតនៅចន្លោះ A និង B ដើម្បីឲ្យបន្ទុក q>0 ដាក់នៅត្រង់ចំណុចនោះមាន ពុះខ្លុំង។

- **៣**. ស្វ៊ែលេហៈពីរមានបន្ទុកអគ្គិសនីរៀងគ្នា $q_A = +2 \times 10^{-7} C$ និង $q_B = +4.5 \times 10^{-7} C$ មានអំពើរវាងគ្នានូវកម្លាំង អគ្គិសនី F = 0.1 N(ក្នុងសុញ្ញាកាស)។ គណនាចម្ងាយរវាងបន្ទុកទាំងពីរ។
- $m{\epsilon}$. ដោយប្រើលំហាត់ទី៣៖ បើគេបង្កើនបន្ទុក q_A ពីរដងនិងបង្កើនបន្ទុក q_B បីដង រួចចម្ងាយ $r' = rac{r}{2}$ ។ ចូរគណនាកម្លាំងអគ្គិសនីដែលមានអំពើរវាងបន្ទុកទាំងពីរ។
- **៥**. នៅត្រង់កំពូល A , B , C នៃត្រីកោណសម័ង្សដែលមានជ្រុង a=30cm គេដាក់ជាបន្តបន្ទាប់នូវចំណុចបន្ទុកអគ្គិសនី $q=+10^{-9}C$ ដូចគ្នា។
 - 🛱. គណនាកម្លាំងអគ្គិសនីដែលមានអំពើលើបន្ទុក q នៅត្រង់កំពូល A។
 - $oldsymbol{2}$. គេដាក់បន្ទុក q' មួយនៅត្រង់ផ្ចិត O នៃត្រីកោណ។ ចូរអ្នកកំណត់សញ្ញា និងតម្លៃនៃបន្ទុក q' ដើម្បីឲ្យបន្ទុក q នៅត្រង់កំពូល A មានលំនឹង។
- $oldsymbol{\delta}$. នៅត្រង់កំពូល A, B, C នៃត្រីកោណសម័ង្ស ABC ដែលមានជ្រុង a=30cm គេដាក់ជាបន្តបន្ទាប់នូវចំណុចបន្ទុកអគ្គិសនី q=+2nC ដូចគ្នា។ គណនាកម្លាំងអគ្គិសនីដែលមានអំពើលើបន្ទុក q នៅត្រង់កំពូល A។
- **៧**. នៅត្រង់កំពូល A , B , C , D នៃការេ ABCD ដែលមានជ្រុង a គេដាក់ជាបន្តបន្ទាប់នូវចំណុចបន្ទុកអគ្គិសនី q , 2q , 3q និង 4q ដែល q>0 ។
 - **គ**. រកន្សោមកម្លាំងអគ្គិសនីដែលមានអំពើលើបន្ទុក q'=q នៅត្រង់ផ្ចិត O។
 - $oldsymbol{2}$. គណនាតម្លៃនៃកម្លាំងនោះ បើគេឲ្យ a=10cm ហើយ q=1nC។
- **៤**. ចំណុចបន្ទុកអគ្គិសនី q_1 និង q_2 មានបន្ទុកសរុប q=4nC។ កាលណាវាស្ថិតនៅចម្ងាយ a=30cm វាច្រានគ្នាចេញ ដោយកម្លាំងអគ្គិសនី $3\times 10^{-7}N$ ។ គណនាបន្ទុកអគ្គិសនី q_1 និង q_2 ។
- $m{\delta}$. គេមានចំណុចបន្ទុកអគ្គិសនីពីរ $q_1 = +3 \times 10^{-9} C$ និង $q_2 = -4 \times 10^{-9} C$ ទៅដាក់ត្រង់ 2 ចំណុច A និង B ដែលមាន ចម្ងាយ AB = 5cm។ គណនាអាំងតង់ស៊ីតេនៃកម្លាំងអគ្គិសនីដែលមានអំពើលើបន្ទុក $q = +10^{-9} C$ ដាក់ត្រង់ចំណុច M មួយដែលមានចម្ងាយ 3cm ពី A និង 4cm ពី B។
- ${f 9O}$. គណនាកម្លាំងអគ្គិសនីដែលមានអំពើរវាងចំណុចបន្ទុកអគ្គិសនី $q_1=+3 imes 10^{-9}C$ និង $q_2=-5 imes 10^{-9}C$ ដាក់ នៅត្រង់ពីរចំណុច A និង B ដែលមានចម្ងាយពីគ្នា r=5cm ពីគ្នា ហើយស្ថិតនៅក្នុងប្រេងកាតដែលមានពែមីទីវិតេ ធ្យេប $\epsilon_r=2$ ។
- **១១**. នៅលើកំពូល A, B, C នៃត្រីកោណសម័ង្ស ABC ដែលមានរង្វាស់ 10cm គេដាក់បន្ទុកអគ្គិសនីដូចគ្នា q ដែល $q=10^{-9}C$ ។ នៅត្រង់កំពូល C គេដាក់បន្ទុកអគ្គិសនី q'។ គណនាអាំងតង់ស៊ីតេនៃកម្លាំងដែលមានអំពើលើបន្ទុក q ត្រង់ កំពូល A ក្នុងករណីៈ

$$\mathfrak{A}$$
. $q' = q$

2.
$$q' = -q$$

$$\mathbf{a}' = 2q$$

- ១២. គេមានចំណុចបន្ទុកអគ្គិសនីពីរ $q_1=20nC$ និង $q_2=80nC$ ដាក់រឿងគ្នាត្រង់ A, B ដែល a=|AB|=12cm។ កំណត់រកចំណុច M នៃ [AB] ដែលបន្ទុកវិជ្ជមាន q ដាក់ត្រង់ M រងនូវកម្លាំងផ្គុបស្មើសូន្យ។
- $\mathbf{900}$. គេមានបន្ទុកអគ្គិសនីវិជ្ជមានពីរ Q និង 4Q ស្ថិតរឿងគ្នាត្រង់ A និង B ដែលមានចម្ងាយ ℓ ពីគ្នា។
 - គ. កំណត់ P នៃ [AB] ដើម្បីឲ្យបន្ទុក q>0 ដាក់ត្រង់ P មានលំនឹង។
 - 🥝 តើលំនឹងខាងលើជាលំនឹងស៊ប់ឬទេ? រកលក្ខខ័ណ្ឌដើម្បីបានលំនឹងមិនស៊ប់។

- $oldsymbol{96}$. លេខលំដាប់នៃសារធាតុមួយក្នុងតារាងខូបស្មើ 20។ ណ្វៃយ៉ូនៃសារធាតុនេះ បានបែកចេញជាពីរផ្នែក។ ផ្នែកទី១ ស្ថិត ត្រង់ A មានបន្ទុកអគ្គិសនីស្មើ $\frac{1}{4}$ នៃបន្ទុកអគ្គិសនីរបស់ផ្នែកទី២ ដែលស្ថិតត្រង់ B ចម្ងាយពី A 16mm។ កំណត់កម្លាំង អគ្គិសនីដែលផ្នែកនីមួយៗរង។
- $oldsymbol{96}$. ស្វ៊ែលេហៈតូចពីរ ផ្ទុកបន្ទុកអគ្គិសនីវិជ្ជមានរ្យេងគ្នា $q_1,\ q_2$ ហើយច្រានគ្នាចេញដោយកម្លាំង F=180N កាលណាវា ស្ថិតនៅចម្ងាយ d=20cm ពីគ្នា។ គេដាក់ស្វ៊ែទាំងពីរឲ្យប៉ះគ្នា រួចដាក់វាចម្ងាយពីគ្នា d'=10cm គេបានកម្លាំងច្រាន គ្នាគឺ F'=810N។ គណនាបន្ទុកអគ្គិសនី $q_1,\ q_2$ ។
- $oldsymbol{90}$. អង្គធាតុចម្លងតូចមួយ A ផ្ទុកបន្ទុកអគ្គិសនី q_A ស្ថិតនៅលើបន្ទាត់ឈរចម្ងាយ 5cm ខាងក្រោមអង្គធាតុតូចមួយទៀត ដែលមានបន្ទុក $q_B=-25 imes 10^{-6}C$ ។ គេសង្កេតឃើញថាទម្ងន់របស់អង្គធាតុ A ថយចុះ 75N។ ចូររកតម្លៃពីជគណិត នៃបន្ទុក q_A ។
- **១៧**. ស្វ៊ែលេហៈពីរប៉ុនគ្នាដែលស្វ៊ែនីមួយៗមានម៉ាស $m=1_S$ ។ ស្វ៊ែ A ផ្ទុកបន្ទុកអគ្គិសនី $q_A=10nC$ នៅនឹង ស្វ៊ែ B មាន បន្ទុកអគ្គិសនី $q_B=-400nC$ ដាក់ក្រោមស្វ៊ែ A លើខ្សែឈរជាមួយគ្នា(ស្វ៊ែ B ចល់តតែតាមខ្សែឈរ)។
 - **ទ**ា. តើត្រូវដាក់ស្វ៊ែ B ចម្ងាយប៉ុន្មានពីស្វ៊ែ A ដើម្បីឲ្យវាមានលំនឹង? គេឲ្យះ $g=10m/s^2$ ។
 - 🥺 តើលំនឹងនៃស្វ៊ែ B ជាលំនឹងស៊ប់ប្អូទេ?
- ១៤. ស្វ៊ែពីរមានម៉ាសនីមួយៗ m = 0.01g ត្រូវបានគេព្យួរទៅនឹងចំណុចនឹងមួយ O ដោយខ្សែសូតពីរប្រវែងស្មើគ្នា 50cm(ម៉ាស នៃខ្សែចោលបាន)។ កាលណាស្វ៊ែទាំងពីរផ្ទុកអគ្គិសនីវិជ្ជមាន q ដូចគ្នា វាច្រានគ្នាចេញ ហើយស្ថិតក្នុងទីតាំងលំនឹងមួយ ចម្ងាយពីគ្នា 7cm។ គណនាបន្ទកអគ្គិសនី q នៃស្វ៊ែនីមួយៗ។ (g = 10m/s²)
- \mathfrak{S} 6. ស្វ៊ែពីរប៉ុនក្នាមានម៉ាសនីមួយៗ $m=100m_{\mathcal{S}}$ ត្រូវបានគេព្យួរទៅនឹងចំណុចនឹងមួយ O ដោយខ្សែសូត្រដែលមានប្រវែង ស្មើក្នា $\ell=30cm$ ដែលមានម៉ាសអាចចោលបាន ក្រោយពីបានទទួលបន្ទុកអគ្គិសនីវិជ្ជមាន q ដូចក្នា វាច្រានក្នា ហើយ មានលំនឹង កាលណាវ៉ាស្ថិតចម្ងាយ 1.8cm ពីក្នា។ ដោយសន្មត់មុំងាក α នៃស្វ៊ែប៉ោលមានតម្លៃតូច ចូរគណនាៈ
 - 🤧 កម្លាំងអគ្គិសនីដែលស្វ៊ែនីមួយៗរង
 - បន្ទកអគ្គិសនី q នៃស្វែនីមួយៗរង
 - គ. តំណឹងខ្សែដែលស្វ៊ែនីមួយៗរង។ គេឲ្យៈ $g=10m/s^2$
- **២೦**. ស្វ៊ែពីរប៉ុនក្នាមានម៉ាសនីមួយៗ m=1mg ត្រូវបានគេព្យួរទៅនឹងចំណុចនឹងមួយ O ដោយខ្សែសូត្រដែលមានប្រវែង ស្មើក្នា $\ell=50cm$ ដែលមានម៉ាសអាចចោលបាន ក្រោយពីបានទទួលបន្ទុកអគ្គិសនីវិជ្ជមាន q ដូចក្នាវាច្រានគ្នាចេញ ហើយមានលំនឹងមួយ កាលណាវាស្ថិតចម្ងាយ 7cm ពីក្នា។ ដោយសន្មត់មុំងាក α នៃស្វ៊ែប៉ោលមានតម្លៃតូច ចូរគណនាៈ
 - 🛪. កម្លាំងអគ្គិសនីដែលស្វ៊ែនីមួយៗរង

🛎 តំណឹងខ្សែដែលស្វ៊ែនីមួយៗរង។

បន្ទុកអគ្គិសនី q នៃស្វែនីមួយៗរង

រុមភាព ៥. រុមសម្រាម់គណនាលំខាាត់នី ១៨ ១៩ និខ ២O

២១. គេមានត្រីកោណកែងសមបាតមួយដែលមានជ្រុង a=10cm(ដូច្សូប)។ នៅត្រង់ចំណុច M;N;P គេដាក់បន្ទុកអគ្គិសនី រៀងគ្នា $q_1=5\mu C\;;\;q_2=-5\mu C\;;\;q=2\mu C$ ។ ចូរកំណត់កម្លាំងដែលមានអំពើលើបន្ទុក q។

២២. ចំណុចបន្ទុកអគ្គិសនីបីត្រូវបានដាក់លើកំពូលនៃត្រីកោណសម័ង្សមួយ ដូចបង្ហាញក្នុងរូប។

ជណនា កម្លាំង អគ្គិសនី ផ្គុប ដែល មាន លើ បន្ទុកអគ្គិសនី 7.00μC។

២៣. គេមានបន្ទុកអគ្គិសនី Q, −2Q, 3Q និង −4Q ត្រូវបានគេយកទៅដាក់ត្រង់កំពូលនៃចតុកោណកែងមួយដែលមាន វិមាត្រ 3a និង 4a ។

កណនាតម្លៃ និងទិសដៅនៃកម្លាំងផ្គូបដែលមានអំពើលើ បន្ទុកអគ្គិសនី Q។

 $oldsymbol{ol}}}}}}}}}}}}}}}}}}}}}}}}}$

កណនាអាំង តង់ ស៊ី តេ និង ទិសដៅ នៃ កម្លាំង ផ្គុប ដែល មានអំពើលើបន្ទុកអគ្គិសនីមួយ។

២៤. ចំណុចបន្ទុកអគ្គិសនីបូនស្ថិតក្នុងប្រព័ន្ធកូអរដោនេ xy ដូចតទៅ៖

$$Q_1 = -1mc$$
 ស្ថិតិត្រង់ $(-3cm, 0cm)$: $Q_2 = -1mc$ ស្ថិតិត្រង់ $(+3cm, 0cm)$

$$Q_3 = +1.024mc$$
 ស្ថិតត្រង់ $(0cm, 0cm)$: $Q_4 = +2mc$ ស្ថិតត្រង់ $(0cm, -4cm)$

កណនាកម្លាំងផ្គុបដែល Q_1,Q_2 និង Q_3 មានអំពើលើបន្ទុកអគ្គិសនី Q_4

- **២៦**. ស្វ៊ែរបន្ទុកអគ្គិសនីឯកលក្ខណ៍ពីរត្រូវបានគេព្យួរទៅនឹងចំណុចនឹងមួយ ដោយខ្សែមិនយឺតនិងមិនគិតម៉ាសដែលមាន ប្រវែង ℓ = 1.50m (ដូចរូប)។ បន្ទុកអគ្គិសនី q = 25.0μC ត្រូវបានបញ្ជូនទៅឲ្យកូនបាល់នីមួយៗ ក្រោយមកវា ច្រានចេញគ្នាបានមុំ 25.0° ជាមួយអ័ក្សឈរ។ តើម៉ាសរបស់កូនបាល់នីមួយមានតម្លៃប៉ុន្មាន?
- **២៧**. ស្វ៊ែរតូចពីរមានម៉ាសដូចក្នាតី 0.681kg និងមានបន្ទុកអគ្គិសនីឯកលក្ខណ៍ 18.0μC គេព្យួរវាទាំងពីរទៅនឹងចំណុចនឹង មួយ ដោយខ្សែពីរមិនយឺត និងមិនគិតម៉ាសមានប្រវែងដូចគ្នា ដូចបានបង្ហាញក្នុងរូប។ បើមុំដែលផ្គុំគ្នារវាងខ្សែជាមួយ ខ្សែឈរបានមុំ 20.0°។ តើខ្សែដែលយកមកព្យួរស្វ៊ែរតូចទាំងពីរនោះមានប្រវែងប៉ុន្មាន?
- **២៤**. ស្វ៊ែតូចពីរឯកលក្ខណ៍ និងផ្ទុកបន្ទុកអគ្គិសនីអវិជ្ជមានដូចគ្នា។ ស្វ៊ែរនីមួយៗមានម៉ាស 0.50m ត្រវិបានព្យួរនឹងខ្សែឆ្មារ ប្រវែង 0.15m ដូចបង្ហាញក្នុងរូបខាងក្រោម។ ស្វ៊ែរទាំងពីរច្រានគ្នាចេញ និងមានលំនឹងដោយបង្កើតបានមុំ 10° ជាមួយនឹង ខ្សែឈរ។
 - **ភ**. ចូរកំណត់បន្ទុកលើស្វ៊ែរនីមួយៗ។
 - $oldsymbol{2}$. កណនាចំនួនអេឡិចត្រុងដែលលើសក្នុងស្វ៊ែនីមួយៗ។ គេឲ្យៈ $K=9.0 imes10^9Nm^2/C^2$ និង g=9.8N/kg។

ម្តែងរាល ១ ខែសុរិស្តាតុងឃាងឃ្លាំងង្ហ ៣៨ ៣១ មួច ៣៧

២៩. ដូចបង្ហាញក្នុងរូប គេមានចំណុចបន្ទុកអគ្គិសនីទី១ 3.94μC ត្រូវបានដាក់ត្រង់ $x_1 = -4.7m$ និងចំណុចបន្ទុកអគ្គិសនី ទី២ 6.14μ C ត្រូវបានដាក់ត្រង់ $x_2 = 12.2m$ ។ តើតម្លៃនៃអាប់ស៊ីស x ដែលធ្វើឲ្យកម្លាំងផ្គួបរវាងបន្ទុកអគ្គិសនីទាំងពីរ មានអំពើលើបន្ទុកអគ្គិសនី មួយទៀត 0.300μ C ស្មើសូន្យ?

- onous ្តុកអគ្គិសនីពីរ -q និង +q ស្ថិតនៅរៀងគ្នាត្រង់ A និង B ដែល AB = 2a ។

 M ជាចំណុចមួយនៅលើមេដ្យាទ័រនៃ [AB] ចម្ងាយ y ពីចំណុច O កណ្ដាល [AB] ។
 គណនាកម្លាំងអគ្គិសនីដែលមានអំពើលើបន្ទុកអគ្គិសនី Q > 0 ដាក់ត្រង់ចំណុច M ជាអនុគមន៍នៃ Q, q, a និង y។
- **៣១**. ចំណុចបន្ទុកអគ្គិសនីពីរ q_1 និង q_2 ស្ថិតក្នុងមជ្ឈដ្ឋានដែលមាន $\epsilon_r=4$ ចម្ងាយពីគ្នា d=10.0cm ពីគ្នា ហើយទាញគ្នា ចូលដោយកម្លាំង $F=9\times 10^{-6}N$ ។ គណនាបន្ទុក q_1 និង q_2 បើផលបូកវាស្មើ 3nC។
- **៣២**. ប៉ោលពីរឯកលក្ខណ៍ព្យួរត្រង់ចំណុច O ដូចគ្នា។ ប៉ោលនីមួយៗមានម៉ាស m=0.1g និងមានបន្ទុក $q=10^{-8}C$ ដូចគ្នា វាច្រានគ្នា ហើយមានលំនឹងកាលណាវ៉ាស្ថិតនៅចម្ងាយ d=30cm ពីគ្នា។ គណនាមុំលំងាក α នៃប៉ោលនីមួយៗ។ យក $g=10m/s^2$

ह रिश्वसङ्ग्रहीकर्छ

គ. ដែលអគ្គិសន៍

និយមន័យ

ដែលអគ្គិសន៍: ជាលំហំដែលកើតមានជុំវិញបន្ទុកអគ្គិសនី និងតាមរយៈដែននេះអាចឲ្យបន្ទុកមួយមានអំពើលើ បន្ទុកមួយទៀត។

ឧបមាថា គេយកចំណុចបន្ទុកអគ្គិសនី q>0 ទៅដាក់ត្រង់ចំណុច A មួយ។ បើគេយកបន្ទុកសាក q_1,q_2,q_3,\cdots,q_n ទៅដាក់នៅត្រង់ចំណុច B មួយ វារងនូវកម្លាំង $\overrightarrow{F}_1,\overrightarrow{F}_2,\overrightarrow{F}_3,\cdots,\overrightarrow{F}_n$ ។ ផលធ្យើបរវាងកម្លាំងអគ្គិសនីនឹងបន្ទុកអគ្គិសនីមានតម្លៃថេរ។

ពេសរសេរ : $\frac{\overrightarrow{F}_1}{q_1} = \frac{\overrightarrow{F}_2}{q_2} = \frac{\overrightarrow{F}_3}{q_3} = \cdots = \frac{\overrightarrow{F}_n}{q_n} =$ ថេរ

រុមតាព ៧. ទុំចន់រកម្លាំ១អគ្គិសនិ

គេតាងតម្លៃថេរដោយវ៉ិចទ័រ \overrightarrow{E} ហៅថាវ៉ិចទ័រដែនអគ្គិសនី $\overrightarrow{E}=\frac{\overrightarrow{F}}{q}$ ឬ $\overrightarrow{F}=q\overrightarrow{E}$

សម្គាល់

អាំងតង់ស៊ីតេដែនអគ្គិសនីជាទំហំវ៉ិចទ័រដែលមានលក្ខណៈសម្គាល់ដូចជាៈ

- ចំណុចចាប់នៅត្រង់ចំណុចបន្ទកអគ្គិសនី
- ullet ទិសជាទិសនៃកម្លាំងអគ្គិសនី \overrightarrow{F}
- ullet ទិសដៅដូចកម្លាំង \overrightarrow{F} បើ q>0 ហើយផ្ទុយពីកម្លាំង \overrightarrow{F} បើ q<0
- អាំងតង់ស៊ីតេ $E = \frac{F}{|q|}$ ដែល F គិតជា (N), q គិតជា (C) និង E គិតជា (N/C) ឬ (V/m)

ខ. ន្រីស្ពីមនសម្រាម់គណនាលំមាាត់

- ullet បន្ទុកអគ្គិសនី Q>0 បង្គិតត្រង់ចំណុចនីមួយៗជុំវិញវានូវដែន \overrightarrow{E} ចាកផ្ចិត។
- ullet បន្ទុកអគ្គិសនី Q < 0 បង្គិតត្រង់ចំណុចនីមួយៗជុំវិញវានូវដែន \overrightarrow{E} ចូលផ្ចិត។

ត ដែលអគ្គិសនីមច្ចើតដោយចំណុចមន្ទកអគ្គិសនីតែមួយ

១. ការស្សាមដែលអគ្គិសនិ

- គេដាក់បន្ទុក q ត្រង់ B វ៉ារងនូវកម្លាំងអគ្គិសនិ $\overrightarrow{F} = K \frac{Q \times q}{r^2} \overrightarrow{u}$
- តាមនិយមន័យ: $\overrightarrow{E} = \frac{\overrightarrow{F}_{A/B}}{q} = K \frac{Q}{r^2} \overrightarrow{u}$
- ullet ជាម៉ូឌុលៈ $E=Krac{Q}{r^2}$ ដែល $K=rac{1}{4\pi\epsilon}$

រួមភាព ៩. កល្សេងទុំចន់រំដែលអគ្គិសនិ

- ករណីឌីអេឡិចទ្រិចជាសុញ្ញាកាសៈ $E=9 imes 10^9 rac{Q}{r^2}$ ព្រោះ $K=rac{1}{4\pi\epsilon_0}=9 imes 10^9 SI$
- ករណីឌីអេឡិចទ្រិចមិនមែនជាសុញ្ញាកាសៈ $E=rac{1}{\epsilon_r}9 imes 10^9rac{Q}{r^2}$ ព្រោះ $K=rac{1}{4\pi\epsilon_0\epsilon_r}$

២. ខ្សែដែនអគ្គិសនិ

នឹយមន័យ

ខ្សែដែនអគ្គសន៍ គឺជាខ្សែដែលប៉ះនឹងវ៉ិចទ័រដែនអគ្គិសនី \overrightarrow{E} ត្រង់ចំណុចនីមួយៗរបស់វា។

(គ). ខ្សែដែលលៃមន្ទគតិថ្ងមាន

(គ). ខ្សែដែលលែបល្អគពីរដែលមាលសញ្ញាផ្ទុយគ្នា

(୬). ខ្សែដែលលៃមលូកអតិជួមាល

(ឃ). ខ្សែដែលលៃមន្ទុកពីរដែលមាលសញ្ញាជុំចត្លា

៦ លំខាាត់អនុចត្តន៍

១. គេយកចំណុចបន្ទុកអគ្គិសនី q = +2 × 10⁻⁹C ទៅដាក់ ត្រង់កំពូល A នៃត្រីកោណសម័ង្ស ABC ដែលមានជ្រុង a = 30cm។ គណនាដែនអគ្គិសនីដែលកើតមានត្រង់ ចំណុចកណ្ដាល M នៃបាត BC។

- $oldsymbol{\Box}$. គេយកចំណុចបន្ទុកអគ្គិសនីពីរគឺ $q_1 = -10nC$ និង $q_2 = 40nC$ ទៅដាក់ត្រង់ពីរចំណុច A និង B ដែលមានចម្ងាយ 5cm ពីក្នា។
 - 🥱. កណនាដែនអគ្គិសនីត្រង់ចំណុច M មួយស្ថិតនៅចម្ងាយ 3cm ពី A និង 4cm ពី B។
 - $oldsymbol{2}$. គណនាកម្លាំងអគ្គិសនីរងដោយបន្ទុក $q'=-10^{-9}C$ ដាក់ត្រង់ M
- ${\bf m}$. ចំណុចបន្ទុកអគ្គិសនីពីរ $q_A=5nC$ និង $q_B=-2nC$ ស្ថិតនៅរ្យេងគ្នាត្រង់ A និង B ដែល AB=10cm ។
 - 🙃 កណនាកម្លាំងអគ្គិសនីដែលមានអំពើលើបន្ទុកអគ្គិសនីនីមួយៗ
 - 🥺 ទាញរកតម្លៃនៃដែនអគ្គិសនីត្រង់ A និងត្រង់ B។
- $m{\epsilon}$. ចំណុចបន្ទុកអគ្គិសនីពីរ $q_A=-25nC$ និង $q_B=5nC$ ស្ថិតនៅរ្យេងគ្នាត្រង់ A និង B ដែល AB=5cm។
 - គ. គណនាដែនអគ្គិសនីត្រង់ A បង្កើតដោយបន្ទុក q_B
 - $oldsymbol{arrho}$. គណនាដែនអគ្គិសនីត្រង់ B បង្កើតដោយបន្ទុក q_A
 - $m{lpha}$. ទាញរកកម្លាំងអគ្គិសនីដែមានអំពើលើបន្ទុក q_A និង q_B រួចធ្វើការសន្និដ្ឋាន។
- **៥**. នៅក្នុងមជ្ឈដ្ឋានមួយមានពែមីទីវិតេធ្យេប $\epsilon_r=3$ គេមានចំណុចបន្ទុកអគ្គិសនីពីរ $q_A=4\mu C$ និង $q_B=2\mu C$ ស្ថិតនៅ រឿងគ្នាត្រង់ចំណុច A និង B ដែល AB=20cm។ គណនាដែនអគ្គិសនីត្រង់ចំណុច O កណ្ដាល [AB]។
- f b. ចំណុចបន្ទុកអគ្គិសនីពីរ $q_A=2nC$ និង $q_B=-2nC$ ស្ថិតនៅរឿងគ្នាត្រង់ A និង B ដែល AB=6cm។ នៅត្រង់ O កណ្ដាល [AB] គេដាក់ចំណុចបន្ទុកអគ្គិសនី $q=-1\mu C$ ។
 - **ភ**. គណនាដែនអគ្គិសនីត្រង់ចំណុច O។
 - ១. ទាញរកកម្លាំងអគ្គិសនីដែលមានអំពើលើបន្ទក q។
- **៧**. ចំណុចបន្ទុកអគ្គិសនី q<0 ស្ថិតត្រង់ចំណុច O បានបង្កើតដែនអគ្គសនីតម្លៃ $10\times 10^4 N/C$ ត្រង់ចំណុច A។ គណនាដែនអគ្គិសនីបង្កើតដោយបន្ទុក q នៅត្រង់ចំណុច B ដែល OB=2OA រួចទាញរកកម្លាំងអគ្គិសនីដែល មានអំពើលើបន្ទុក Q=-2pC ដាក់ត្រង់ B។
- **៤**. ចំណុចបន្ទុកអគ្គិសនី (+) ពីរ 4Q និង Q ស្ថិតនៅរឿងគ្នាត្រង់ A និង B ដែល AB=30cm។ កំណត់ទីតាំងនៃចំណុច M មួយលើ [AB] ដែលត្រង់ M មានដែនអគ្គិសនីផ្គុបសូន្យ។

មេអៀននី ៤ ម៉ូត់១ស្យែល និ១ថាមពលម៉ូត់១ស្យែលអគ្គិសនី

ध्वरागुं सर्वे दे सुरुद्य हे हमा देश

ෂෛ්ටු බස් ලෙප

ខម់ដោយសខ្ទេម!!!

មេអៀលនី ៦ មន្តេអគ្គិសនី អេស៊ីស្ងខ់ សិខកម្លាំ១អគ្គិសនិចលក់

មេឡើនសច្ចេម

១ អានុភាព និ១ថាមពល

 \mathbf{a} . អានុភាពអគ្គិសនី $P_e = VI$

 $oldsymbol{2}$. ថាមពលអគ្គិសនី $W_e = P_e t = VIt$

២ អន្តនាតុចម្ងច់អូម

ភ. តង់ស្យងរវាងកោលអង្គធាតុចម្លងអូម V=RI

 $oldsymbol{2}$. អានុភាពអគ្គិសនីអង្គធាតុចម្លងអូម $P_e=VI=RI^2$

គ. ថាមពលអគ្គិសនីអង្គធាតុចម្លងអូម $W_e=P_e t=VIt=RI^2 t$

🥴. ទិន្នផលអង្គធាតុចម្លងៈ អង្គធាតុចម្លងផ្តល់ទិន្នផល 100%

៣ ត្រៀចននួលគំរុ (ម៉ូនរ និចនើចចិតាគ):

លក្ខខណ្ឌដើម្បីឲ្យគ្រឿងទទ្ទល ដំណើរការៈ V>E'

ភ. តង់ស្យុងរវាងពោលក្រឿងទទួលគំរូះ V=E'+Ir'

 $oldsymbol{2}$. អានុភាពអគ្គិសនីគ្រឿងទទួលគំរ្វះ $P_e=P_U+P_J=E'I+r'I^2$

គ. ទិន្នផលត្រឿងទទួលគំរ្វៈ $R_d = \frac{W_U}{W_e} = \frac{P_U}{P_e} = \frac{E'}{V}$

$oldsymbol{\mathcal{C}}$ ករណីម៉ូនំគោំ១ ឬនើ១ទីតាគមានលតុតុតុតអាណុតលោយ: V=r'I

៥ ៩និតាមខ្មេញម៉ះ(អាគុយ និ១ថ្មពិល) ឡើ១ DC

គ. តង់ស្យង់គោលជនិតាចរន្តជាប់ៈ V=E-Ir

ullet បើ r=0 នោះ V=E=ថេរ ជនិតាជាប្រភពអ៊ីដេអាល់នៃតង់ស្យង។

• បើ I=0 នោះ V=E ជាស្យេត្វិចំហរគ្មានចរន្តឆ្លងកាត់។

• បើ V=0 នោះ $I_{CC}=\frac{E}{r}$ (បាតុភូតឆ្លងភ្លើង)

៦. ចំណុះអាគុយ-រដ្ឋអាគុយៈ

មេរៀនទី ៦. ចរន្តអគ្គិសនី បស៊ីស្ងង់ និងកម្លាំងអគ្គិសនីចលករ

 $oldsymbol{2}$. អានភាពអគ្គិសនី នៃជនិតា $P_g=P_e+P_J$

ដែល : $P_g = EI$ ជាអានុភាពគីមីនៃជនិតាគិតជា W

 $: P_e = VI$ ជាអានុភាពអគ្គិសនីបញ្ចេញដោយជនិតាគិតជា W

: $P_I = rI^2$ ជាអានុភាពកម្ដៅបញ្ចេញដោយជនិតាគិតជា W

- គ. ថាមពលអគ្គិសនី នៃជនិតាះ $W_g = W_e + W_J$
- \mathfrak{S} . ទិន្នផលជនិតាចរន្តជាប់: $R_d = \frac{W_e}{W_g} = \frac{P_e}{P_g} = \frac{V}{E}$

៦ ចំណុះអាគុយ-ចន្តអាគុយ:

- **គ**. អាពុយពេលសាកភ្លើង(បញ្ចូលភ្លើង): V=E+Ir
- $oldsymbol{2}$. អាកុយពេលប្រើះ V=E-Ir

៧ ចរន្តអគ្គិសន៏:

- **ភ**. ចរន្តឆ្លងកាត់ខ្សែចម្លង: $I=rac{q}{t}$
- $oldsymbol{2}$. ទំនាក់ទំនង់រវាងចរន្ត និងល្បឿនអេឡិចត្រុង: I=nAve

ដែល : $n=rac{V}{N}$ ជាចំនួនអេឡិចត្រុងក្នុងមួយខ្នាតមាឌ m^{-3}

 $:\;N\;$ ជាចំនួនអេឡិចត្រុងសរុបឆ្លងកាត់ផ្ទៃ A

: V = AL ជាមាឌខ្សែ m^3

: v ជាល្បឿនអេឡិចត្រុង m/s

ចច់ដោយសទ្វេប!!!

៤ សំណូរ និ១លំចាត់អនុទត្ត

- **១**. ខ្សែចម្លងមួយមានប្រវែង $\ell = 100m$ មុខកាត់ $A = 250mm^2$ មានរេស៊ីស្ទីវីតេ $\rho = 2.5 \times 10^{-8} \Omega m$ ។ កណនារេស៊ីស្ទង់នៃខ្សែចមួង។
- **២**. គណនាប្រវែងខ្សែចម្លងមួយដែលមានរេស៊ីស្តង់ $R=2\Omega$ មានមុចកាត់ $0.1cm^2$ និងមានរេស៊ីស្ទីវិតេ $\rho=2.5\times 10^{-8}\Omega m$ ។
- **៣**. ខ្សែចម្លងមួយមានអង្កត់ផ្ចិត d=1mm មានប្រវែង $\ell=314m$ ហើយមានរេស៊ីស្ទីវីតេ $\rho=1.6\times 10^{-8}\Omega m$ ។ គណនារេស៊ីស្គង់នៃខ្សែចម្លងនេះ។
- $\dot{\bf c}$. ប៊ូបីនមួយមានអង្កតិផ្ចិត D=5cm រុំនឹងខ្សែចម្លងមួយដែលមានអង្កតិផ្ចិត d=0.8mm មានរេស៊ីស្ទីវីតេ $ho=1.6 \times 10^{-8} \Omega m$ និងមានចំនួនស្ពៀ 1000 ស្ពៀ។ គណនារេស៊ីស្តង់នៃប៊ូបីន។
- $m{\&}$. គេធ្វើឲ្យចរន្តអគ្គិសនី I=2A ឆ្លងកាត់មុខកាត់នៃខ្សែចម្លងមួយក្នុងរយៈពេល t=30s ។
 - 🛪. កណនាបរិមាណបន្ទកអគ្គិសនីដែលឆ្លងកាត់ខ្សែចម្លង។
 - $oldsymbol{2}$. កណនាចំនួនអេឡិចត្រុងដែលឆ្លងកាត់ខ្សែចម្លង បើ $|-e|=1.6 imes10^{-19}C$
- f b. គណនាល្បឿនអេឡិចត្រុងរត់ក្នុងខ្សែទង់ដែង ដែលមានមុខកាត់ $2mm^2$ ឆ្លងកាត់ដោយចរន្ត 2A។ គេឲ្យម៉ាសម៉ូលនៃ ខ្សែទង់ដែង 63.5g/mol ម៉ាសមាឌទង់ដែង $ho=8.9\times 10^3 kg/m^3$ និងចំនួនអាវ៉ូកាដ្រូ $N_A=6.02\times 10^{23}$ បើអាតូម នីមួយៗមានអេឡិចត្រុងស៊េរីចំនួនមួយ។
- **៧**. ម៉ូទ័រអគ្គិសនីមួយមានកម្លាំងច្រាសអគ្គិសនីចលករ E'=24V និងរេស៊ីស្តង់ $r'=2\Omega$ ប្រើក្រោមតង់ស្យុង V=48V។ គណនាអានុភាពមេកានិចបញ្ចេញដោយម៉ូទ័រ។
- **៤**. គេភ្ជាប់ប៉ូលទាំងពីរនៃជនិតាមួយដែលមានកម្លាំងអគ្គិសនីចលករ E=12V និងមានរេស៊ីស្តង់ក្នុង $r=1\Omega$ ទៅឲ្យម៉ូទ័រ អគ្គិសនីមួយដែលមានកម្លាំងច្រាសអគ្គិសនីចលករ E'=3V និងរេស៊ីស្តង់។
 - 🧸 គណនាអាំងតង់ស៊ីតេចរន្តដែលឆ្លងកាត់ស្យេគ្វី។
 - 활. គណនាតង់ស្យងនៃជនិតា។
- $m{\epsilon}$. តង់ស្យុងរវាងប៉ូលទាំងពីរនៃជនិតាមួយមានតម្លៃ $V_1=10V$ កាលណាវាបញ្ចេញចរន្ត $I_1=3A$ ហើយវាមានតង់ស្យុង $V_2=8.8V$ កាលណាវាបញ្ចេញចរន្ត $I_2=5A$ ។ គណនាកម្លាំងអគ្គិសនីចលករ E និងរេស៊ីស្តង់ r របស់ជនិតា។
- $oldsymbol{9O}$. គេភ្ជាប់ប៉ូលទាំងពីរនៃជនិតាមួយដែលមានកម្លាំងអគ្គិសនីចលករ E=12V និងរេស៊ីស្តង់ $r=1\Omega$ ទៅស្យេីត្តីក្រៅដែល មានកំស្យេីរអគ្គិសនីមួយមានរេស៊ីស្តង់ $R=200\Omega$ ។
 - 🛪. កណនាអាំងតង់ស៊ីតេចរន្តឆ្លងកាត់ស្យេត្វី និងតង់ស្យងរវាងប៉ូលនៃជនិតា។
 - គណនាថាមពលអគ្គិសនីស៊ីដោយក់ស្យៀវក្នុងរយៈពេល 30mn។
- **១១**. ម៉ូទ័រអគ្គិសនីមួយមានកម្លាំងច្រាសអគ្គិសនីចលករ E'=15V ផ្តល់កម្មន្តមេកានិច $W_U=420J$ ក្នុងរយៈពេល t=9mn20s ។
 - 🥰 គណនាអនុភាពមេកានិច និងអាំងតង់ស៊ីតេចរន្តឆ្លងកាត់ម៉ូទ័រ។
 - គណនារេស៊ីស្តង់ក្នុងម៉ូទ័រ បើម៉ូទ័រផ្តល់ទិន្នផល 75%។

- **១២**. គេឲ្យស្យេីក្តីមួយមានជនិតាដែលមានកម្លាំងអគ្គិសនីចលករ E=12V និងរេស៊ីស្តង់ក្នុង $r=1\Omega$ អង្គធាតុចម្លងអូម $R=5\Omega$ និងម៉ូទ័រដែលមានកម្លាំងច្រាសអគ្គិសនីចលករ E'=10V និងរេស៊ីស្តង់ក្នុង $r'=2\Omega$ ។
 - 🛪. កណនាអាំងតង់ស៊ីតេចរន្តក្នុងស្យេក្វី។
 - គណនាអានុភាពកម្ដៅដែលភាយចេញ
 ពីរេស៊ីស្ដង់ R។
 - 🛎 គណនាអានុភាពអគ្គិសនីស៊ីដោយម៉ូទ័រ។

- **១៣**. រេស៊ីស្តង់មួយឆ្លងកាត់ដោយចរន្ត I=0.5A មានផលសងប៉ូតង់ស្យែល V=12V។ គណនាតម្លៃរេស៊ីស្តង់នេះ។
- ១៤. ខ្សែចម្លងមួយមានអង្គត់ផ្ចិត 0.20mm ឆ្លងកាត់ដោយចរន្ត I=2A ក្នុងរយៈពេល 20s ។
 - 🛪. គណនាបរិមាណបន្ទុកអគ្គិសនីឆ្លងកាត់ខ្សែចម្លង។
 - 활. កណនាចំនួនអេឡិចត្រងឆ្លងកាត់ខ្សែចម្លង។
 - ᇘ គណនាដង់ស៊ីតេចរន្តធ្យេបនឹងផ្ទៃមុខកាត់ខ្សែចម្លង។
- **១៤**. ខ្សែចម្លងមានមាឌថេរ $R_0=5\Omega$ ដំបូងមានរេស៊ីស្តង់ បន្ទាប់មកគេយកវាទៅបូតជាលួស អង្កត់ផ្ចិតមុខកាត់វាថយចុះពីរ ដង។ គណនារេស៊ីស្តង់ថ្មីរបស់ខ្សែនោះ។
- **១៦**. ម៉ូទ័រអគ្គិសនីមួយមានរេស៊ីស្តង់ $r' = 3\Omega$ ឆ្លងកាត់ដោយចរន្ត I = 20A នៅពេលដំណើរការ វាផ្តល់កម្មន្ត $W = 2 \times 10^5 kg/m$ ក្នុងរយៈពេល t = 16mn20s។ គណនា៖
 - **គ**. អានុភាពមេកានិចនៃម៉ូទ័រ។

- 🙇 បរិមាណកម្ដៅនៃម៉ូទ័រក្នុងរយៈពេលខាងលើ។
- កម្លាំងច្រាសអគ្គិសនីចលករនៃម៉ូទ័រ។
- **១៧**. ម៉ូទ័រអគ្គិសនីមួយមានរេស៊ីស្តង់ $r' = 2\Omega$ ប្រើក្រោមតង់ស្យុង V = 48V ហើយមានអាំងតង់ស៊ីតេចរន្តដែលឆ្លងកាត់ម៉ូទ័រ ស្មើនឹង 10A។ គណនាអានុភាពមេកានិចបញ្ចេញដោយម៉ូទ័រនោះ។
- ១៨. ម៉ទ័រអគ្គិសនីមួយមានកម្លាំងច្រាសអគ្គិសនីចលករ E'=1.5V បានផ្តល់កម្មន្តមេកានិច $W_U=420J$ ក្នុងរយៈពេល t=9mm20s។
 - 🙃 គណនាអនុភាពមេកានិច និងអាំងតង់ស៊ីតេចរន្តឆ្លងកាត់ម៉ូទ័រ។
 - គេដឹងថាម៉ូទ័រផ្តល់ទិន្នផល 60% គណនារេស៊ីស្តង់នៃម៉ូទ័រ។
- ១៩. ផើងវិភាពមួយមានកម្លាំងច្រាសអគ្គិសនីចលករ E'=8V និងរេស៊ីស្តង់ក្នុង $r'=2\Omega$ ។ ផើងវិភាពនេះឆ្លងកាត់ដោយ ចរន្ត I=0.5A។
 - 🤻 សរសេរតុល្យភាពអានុភាពរបស់ផើងវិភាគ។
 - 🥺 គណនាទិន្នផលរបស់ផើងវិភាគនេះ

- គ. ផើងវិភាគនេះ ដំណើរការក្នុងរយៈពេល 1h30mn។ គណនាថាមពលអគ្គិសនី ដែលផើងវិភាគទទូល និង ថាមពលបានការរបស់វា។
- oxdotsO. ជនិតាមួយមាន E=200V។ វាផ្តល់ថាមពលសរុប 240kWh ទៅក្នុងស្យេត្រឹមួយក្នុងរយៈពេល 5ថ្ងៃ។
 - 🤧 គណនាអាំងតង់ស៊ីតេចរន្តដែលឆ្លងកាត់ស្យេគ្វី។
 - $oldsymbol{2}$. គណនាថាមពលក្នុង និងរេស៊ីស្តង់ក្នុង r នៃជនិតា។ បើទិន្នផលនៃស្យេត្វី Rd=90%។

෪෪෯෧෪෪෪

១ ដំរូម៉ូលេគូលស៊ីនេនិចនៃខ្វស្នំនមវិសុន្ធ

យើងសិក្សាចលនាម៉ូលេកុលក្នុងធុងមួយ។ យើងបានសម្ពាធដែលសង្កត់លើផ្ទៃធុងគឺជាកម្លាំងទង្គិចរបស់ចលនាម៉ូលេកុល

ឃើងហ៊ុន :
$$P = \frac{F}{A}$$
 ដោយ: $F = m \frac{\Delta v_x}{\Delta t} = \frac{m \times 2v_x}{\frac{2L}{v_x}} = \frac{mv_x^2}{L}$

ឃើងបាន :
$$P = \frac{mv_x^2}{AL} = \frac{mv_x^2}{V}$$

ពែ :
$$(v^2)_{av} = (v_x^2)_{av} + (v_y^2)_{av} + (v_z^2)_{av} = 3(v_x^2)_{av}$$

ដែល :
$$(v = v_x = v_y = v_z = \mathfrak{V})$$

ទាំឲ្យ :
$$\left(v_x^2\right)_{av} = \frac{1}{3}\left(v^2\right)_{av}$$

យើងបានសម្ពាធលើផ្ទៃខាងនីមួយៗ កំណត់ដោយៈ
$$P=rac{1}{3} imesrac{m}{V}\left(v^{2}
ight)_{av}$$
 ឬ $P=rac{1}{3}
ho\left(v^{2}
ight)_{av}$

ដែល :
$$\rho = \frac{m}{V}$$
 (ម៉ាសមាឌ)

ម្យ៉ាងទ្វេត :
$$m=m_0N$$

យើងហ៊ុន :
$$P = \frac{1}{3} \times \frac{Nm_0}{V} \left(v^2\right)_{av} = \frac{2N}{3V} \times \frac{1}{2} m_0 \left(v^2\right)_{av}$$

ដូចនេះ :
$$P = \frac{2}{3} \times \frac{N}{V} K_{av}$$

២ សមីគារគាពខែខ្វស្វ័ន

តាមពិសោធន៍បង្ហាញថាៈ

ullet សម្ពាធសមាមាត្រនឹងសីតុណ្ហភាព: $P \propto T$

ullet សម្ពាធសមាមាត្រនឹងចំនួនម៉ូលេកុល: $P \propto N$

ullet សម្ពាធច្រាសសមាមាត្រនឹងមាឌ: $P \propto rac{1}{V}$

យើងបាន :
$$P \propto \frac{NT}{V}$$
 ឬ $P = k_B \frac{NT}{V}$ នោះ $PV = Nk_BT$

ដែល :
$$k_B = 1.38 \times 10^{-23} J/K$$
 (ថេរបុលស្មាន់)

តែ :
$$N = nN_A$$
 នោះ $PV = nk_BN_AT$

តាង :
$$R=k_BN_A$$
 ដែល $N_A=6.02\times 10^{23}$ ម៉ូលេកុល $/mol\left($ ចំនួនអាវ៉ូកាដ្រូ

ដូចនេះ :
$$PV = Nk_BT = nRT = \frac{2}{3}NK_{av}$$

🤋 សមីភារមព្រែមច្រូលភាពនៃខ្វស្នំឧមវិសុន្ធ:

បើឧស្ម័នប្រែប្រលភាព ពីភាពដើម 1 ទៅភាពស្រេច 2 យើងបានៈ

$$ullet$$
 នៅភាពដើម $1\colon P_1V_1=nRT_1$ ឬ $rac{P_1V_1}{T_1}=nR$

• នៅភាពដើម 1: $P_1V_1 = nRT_1$ ឬ $\frac{P_1V_1}{T_1} = nR$ • នៅភាពស្រេច 2: $P_2V_2 = nRT_2$ ឬ $\frac{P_2V_2}{T_2} = nR$

ឃើងបាន :
$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2} = nR = ថេរ$$

ច្បាប់ប៊យ-ម៉ារ្យ៉ិត :
$$P_1V_1=P_2V_2$$
 (សីតុណ្ហភាពថេរ $T_1=T_2$)

ច្បាប់សាល :
$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$
 (មាឌថេរ $V_1 = V_2$)

ច្បាប់កេលុយសាក់ :
$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

សង្ខេប្បមន្ត

 $oldsymbol{9}$. ម៉ាសមាឌ ឬដង់ស៊ីតេមាឌនៃឧស្ម័នៈ $ho=rac{m}{V}=rac{m_0N}{V}$ ដែល ho គិតជា $\left(kg/m^3
ight)$

m ជាម៉ាសឧស្ម័ន គិតជា (kg)

 m_0 ម៉ាសមូលេគុល គិតជា (kg)

V មាឌឧស្ម័ន គិតជា $\left(m^3
ight)$

 $oxdot{c}$. ចំនួនម៉ូលៈ $n=rac{m}{M}=rac{N}{N_A}=rac{V}{V_{mol}}$ ដែល M ម៉ាសម៉ូលគិតជា $\left(kg/mol
ight)$

N ចំនួនម៉ូលេកុលសរុប

 V_{mol} ជាមាឌឧស្ម័នក្នុងមួយម៉ូល $\left(m^3/mol
ight)$

V មាឌឧស្ម័ន $\left(m^3
ight)$

- \mathbf{n} . ចំនួនម៉ូលេកុលសរុបនៃឧស្ត័នៈ $N=rac{m}{m_0}=nN_A=rac{m}{M} imes N_A$ ដែល n ចំនួនម៉ូល គិតជា (mol)
- $oldsymbol{\epsilon}$. មាឌម៉ូលនៃឧស្ម័នក្នុងលក្ខខ័ណ្ឌគំរូដែលមានសម្ពាធ $P_0=1 atm$ និងសីតុណ្ហភាព T=273K

 $oldsymbol{\&}$. មាឌឧស្ម័នក្នុងមួយម៉ូល $V=V_0\left(1+lpha T
ight)$ ដែល $lpha=\gamma=rac{1}{273}$

៣ លំខាងអនុទង្គនំ

- $m{9}$. ក្នុងធុងបិទជិតមួយមានឧស្ម័នអ៊ីដ្រូសែន $(\mathrm{H}_2)~0.2mol$ និងមានម៉ាសម៉ូល 2.0g/mol។ បើគេដឹងថា ចំនួនអាវ៉ូកាដ្រ $N_A=6.022 \times 10^{23}$ ម៉ូលេកុល/mol។
 - 🛪. កណនាចំនួនម៉ូលេកុលអ៊ីដ្រូសែនក្នុងធុងនេះ។
 - 활. កណនាម៉ាសសរុបរបស់ឧស្ម័នអ៊ីដ្រសែន។
- **២**. ក្នុងធុងបិទជិតមួយមានឧស្ម័ន 0.25mol និងមានម៉ាសសរុប 7.0_S ។ បើគេដឹងថា ចំនួនអាវ៉ូកាដ្រួ $N_A=6.022\times 10^{23}$ ម៉ូលេគុល/mol។
 - 🛪. កណនាចំនួនម៉ូលេកុលសរុបរបស់ឧស្ម័នក្នុងធុងនេះ។
 - 🤏 តើឧស្ម័ននេះជាឧស្ម័នអ្វី?
- **៣**. ក្នុងធុងបិទជិតមួយមានឧស្ម័នពេញ មានម៉ាសសរុប 64.0g និងមានចំនួនម៉ូលេគុលសរុបគឺ 12.044×10^{23} ម៉ូលេគុល។ បើគេដឹងថា ចំនួនអាវ៉ូកាដ្រួ $N_A = 6.022 \times 10^{23}$ ម៉ូលេគុល/mol។
 - 🛪. កណនាចំនូនម៉ូលរបស់ឧស្ម័នក្នុងធុងនេះ។
 - 🥹. តើឧស្ម័ននេះជាឧស្ម័នអ្វី?
- $m{\epsilon}$. ក្នុងធុងបិទជិតមួយមានផ្ទុក ឧស្ម័ន \mathbf{H}_2 ពេញមានម៉ាសសរុប 1.0g។ ដោយឧស្ម័ននេះមានម៉ាសម៉ូល 2.0g/mol និង ចំនួនអាវ៉ូកាដ្រូ $N_A=6.022 \times 10^{23}$ ម៉ូលេកុលmol។
 - 🛪. គណនាចំនួនម៉ូលេកុលសរុបរបស់ឧស្ម័នក្នុងធុងនេះ។
 - 🤏 កណនាចំនួនម៉ូលរបស់ឧស្ម័ន H2។
- **៥**. ដបមួយផ្ទុកឧស្ម័នមានមាឌថេរក្រោមសម្ពាធថេរ $P_0=1.0atm$ នៅសីតុណ្ហភាព $17^{\circ}C$ ។ តើគេត្រូវកម្តៅឧស្ម័ននេះដល់ សីតុណ្ហភាពប៉ុន្មានដើម្បីឧ្យសម្ពាធកើនឡើងដល់ 1.5atm?
- **៧**. គេយកបំពង់អុកស៊ីសែនមួយដែលមានចំណុះ 20ℓ ក្រោមសម្ពាធ $P_1=200atm$ នៅសីតុណ្ហភាព $20^{\circ}C$ ទៅដាក់ក្នុង បាឡុងកៅស៊ូស្តើងមួយ។ គណនាមាឌបាឡុង បើឧស្ម័នក្នុងបឡុងមានសម្ពាធ $P_2=1atm$ និងសីតុណ្ណភាព $9^{\circ}C$ ។
- **៤**. ប្រអប់មួយផ្តុកឧស្ម័នបរិសុទ្ធមានមាឌ $V=200cm^3$ មានសម្ពាធ P=10atm នៅសីតុណ្ហភាព $27^{\circ}C$ ។ គណនាចំនួន ម៉ូលកុលក្នុងប្រអប់បើថេរសកលនៃឧស្ម័នបរិសុទ្ធ $R=8.31 J/mol\cdot K$ ។
- ៩. ម៉ាស៊ីនបូមខ្យល់មួយបូមខ្យល់បាន 66ℓ ដាក់បញ្ចូលទៅក្នុងធុងដែលមានចំណុះ 6ℓ ដោយសីតុណ្ហភាពឥតផ្លាស់ប្តូរស្តិត ក្រោមសម្ពាធ 1atm ។ គណនាសម្ពាធចុងក្រោយរបស់ខ្យល់ក្នុងធុង។
- **១០**. នៅសីកុណ្ហភាព 293K និងសម្ពាធ 5atm ឧស្ម័នមេតាន 1kmol មានម៉ាស 16.0kg។ កណនាម៉ាសមាឌនៃមេតានក្នុង លក្ខខណ្ឌខាងលើ បើ $R=8.314J/mol\cdot K$ ។

- **១១**. ធុងសាំងមួយមានចំណុះ $0.025m^3$ មានបរិមាណអាសូត $0.084k_{\it g}$ កើនសម្ពាធបាន 3.17atm គណនាសីតុណ្ហភាពរបស់ ឧស្ម័នអាសូត (N_2) បើសម្ពាធបរិយាកាស $P_{atm}=1atm$ និងថេរសកលនៃឧស្ម័នបរិសុទ្ធ $R=8.31J/mol\cdot K$ ។
- ១២. នៅក្រោមសម្ពាធ 1atm នៅសីតុណ្ហភាព $15^{\circ}C$ ខ្យល់មានមាឌ 2ℓ ។ គណនាសម្ពាធនៅសីតុណ្ហភាព $20^{\circ}C$ និងមានមាឌ ដដែល។
- **១៣**. គណនាចំនួនម៉ូលេគុលសរុបដែលមាននៅក្នុង 500g នៃខ្យល់។ បើគេដឹងថាក្នុងខ្យល់មានអុកស៊ីសែន 22% និងមានអាសូត 78% ជាម៉ាស។
- $\mathbf{96}$. ក្នុងធុងបិទជិតមួយមានមាឌសរុប $16.62dm^3$ មានផ្ទុកឧស្ម័នបរិសុទ្ធពេញស្ថិតក្រោមសម្ពាធ 3×10^5Pa និងមានសីតុណ្ហភាព $47^{\circ}C$ ។ គេឲ្យថេរឧស្ម័នបរិសុទ្ធ $R=8.31J/mol\cdot K$ ។ គណនាចំនួនម៉ូលនៃឧស្ម័នបរិសុទ្ធក្នុងធុងនោះ។
- ១៥. បាឡុងពីរត្រូវបានតភ្ជាប់គ្នាដោយបំពង់មួយមានរ៉ូពីនេបិទជិត។ ដោយបាឡុងទី១ មានផ្ទុកឧស្ម័នដែលមានសម្ពាធ 5atm និងមានមាឌ 6L ចំណែកបាឡុងទី២នៅទទេមានមាឌ 4L។ គេចាប់ផ្តើមបើករ៉ូពីនេ(បើគេដឹងថាបាឡុងនីមួយៗមានសីតុណ្ហភាពថេរ)។ គណនាសម្ពាធរបស់បាឡុងនីមួយៗ ក្រោយពេលគេបើករ៉ូពីនេ។
- ១៦. បាឡុងពីរត្រូវបានតភ្ជាប់គ្នាដោយបំពង់មួយមានរ៉ូពីនេបិទជិត។ ដោយបាឡុងទី១ មានផ្ទុកឧស្ម័នដែលមានសម្ពាធ 6atm និងមានមាឌ 5L ចំណែកបាឡុងទី២ មានផ្ទុកឧស្ម័នដូចគ្នាដែលមានសម្ពាធ 4atm និងមានមាឌ 3L។ គេចាប់ផ្តើមបើករ៉ូពីនេ(បើគេដឹងថាបាឡុងនីមួយៗមានសីតុណ្ហភាពថេរ)។ គណនាសម្ពាធរបស់បាឡុងនីមួយៗ ក្រោយពេលគេបើករ៉ូពីនេ។
- **១៧**. ឧស្ម័នអុកស៊ីសែនមួយម៉ូលមានសម្ពាធ P_1 នៅសីតុណ្ហភាព $27.0^{\circ}C$ ។
 - 🛪. បើឧស្ម័នត្រូវបានកម្ដៅដោយរក្សាមាឌថេររហូតដល់សម្ពាធកើនឡើងបីដង ចូរគណនាសីតុណ្ហភាពនៃឧស្ម័ន។
 - 🥝 បើឧស្ម័នមានសម្ពាធ និងមាឌកើនឡើងពីរដង ចូរគណនាសីតុណ្ហភាពរបស់ឧស្ម័ន។
- **១៤**. នៅក្រោមផ្ទៃទឹកសមុទ្រជម្រៅ 25.0m មានម៉ាសមាឌ $\rho = 1025k_g/m^3$ មានសីតុណ្ហភាព 5°C។ ពពុះខ្យល់មួយមាន មាឌ 1cm³ ផុសចេញមកលើផ្ទៃទឹកដែលមានសីតុណ្ហភាព 20°C។ គណនាមាឌរបស់ពពុះខ្យល់ពេលរៀបបែកចូលក្នុងខ្យល់។
- $oldsymbol{96}$. គេដាក់ទឹក 9.0g ទៅក្នុងធុងដែលមានចំណុះ 2.0L រួចដុតកម្ដៅដល់សីតុណ្ហភាព $500^{\circ}C$ ។ គណនាសម្ពាធក្នុងធុង។
- **២೦**. សវិនដ្ខានមូយមានវិមាត្រ $10.0m \times 20.0m \times 30.0m$ ។ គណនាចំនួនម៉ូលេកុលខ្យល់នៅក្នុងសវិនដ្ខាននោះនៅកម្រិតសីតុណ្ហភាព $20.0^{\circ}C$ និងសម្ពាធ 101kPa។
- **២១**. **គ**. បង្ហាញឲ្យឃើញថា ម៉ាសមាឌឧស្ម័នបរិសុទ្ធដែលមានមាឌ V មានទំនាក់ទំនង់ $\rho = \frac{PM}{RT}$ ដែល P ជាសម្ពាធឧស្ម័ន M ជាម៉ាសម៉ូលឧស្ម័ន T ជាសីតុណ្ហភាពឧស្ម័ន និង R ជាថេរសកលនៃឧស្ម័ន។
 - 활. គណនាម៉ាសមាឌនៃឧស្ម័នអុកស៊ីសែននៅសម្ពាធធម្មតា និងសីតុណ្ហភាព 20.0°C។

២២. មាសមានម៉ាសម៉ូល 197g/mol។

- **ភ**. កណនាចំនួនម៉ូលនៃអាតូមមាសក្នុងកម្រុមាសសុទ្ធ 2.50g។
- 🥹. កណនាចំនួនអាតូមដែលមានក្នុងកម្រុខាងលើ។
- **២៣**. គណនាៈ ចំនួនម៉ូល និងចំនួនម៉ូលេគុលក្នុង $1.00cm^3$ នៃឧស្ម័នបរិសុទ្ធនៅសម្ពាធ 100Pa និងសីតុណ្ហភាព 220K។

छ्छानु कर्वे दं छ्छका सुरुष्ठु छ

១ លំខាាត់អនុទត្តនំ

- **១**. ចំណុចរូបធាតុមួយផ្លាស់ទីពីទីតាំងទី១ ដែល $\vec{r_1} = (-3.0m)\vec{i} + (2.0m)\vec{j}$ ទៅទីតាំងទី២ ដែល $\vec{r_2} = (9.0m)\vec{i} + (3.0m)\vec{j}$ ។ រកបម្លាស់ទីរបស់ចំណុចរូបធាតុដែលផ្លាស់ទីពីទីតាំងទី១ ទៅទីតាំងទី២ ព្រមទាំងគូសក្រាបបញ្ជាក់ពីបម្លាស់ទី។
- $oldsymbol{ol}oldsymbol{ol}oldsymbol{oldsymbol{oldsymbol{ol}oldsymbol{oldsymbol{ol}}}}}}}}}}}}}}}}}}}}}$
- **៣**. ចំណុចរូបធាតុមួយផ្លាស់ទីពីចំណុច A ដែល $\vec{r_A}\left[(0.0m)\,\vec{i} + (2.0m)\,\vec{j}\right]$ ទៅចំណុច B ដែល $\vec{r_B}\left[(3.0m)\,\vec{i} + (6.0m)\,\vec{j}\right]$ ក្នុងរយៈពេល 2.0s ។
 - គ. កូសទីតាំង A និងទីតាំង B នៃចំណុចរូបធាតុ។
 - 🥺 កណនាបម្លាស់ទីពី A ទៅ B។
 - 🛎 ជាមាន្នាវិទ័រល្បឿនមធ្យមរបស់ចំណុចរូបធាតុ។
- ៤. ចល័តមួយផ្លាស់ទីពីទីតាំងទី១ $x_1 = (2+5t)\,m$ និង $y_1 = (-4+2t)\,m$ ទៅទីតាំងទី២ $x_2 = (4+5t)\,m$ និង $y_2 = (-4-2t)\,m$ ។ កណនាបម្លាស់ទីនៃចល័តនោះនៅខណៈ t = 2.0s ។
- ${\bf \&}$. នៅខណៈ t វ៉ិទ័រល្បឿន ${\vec v}=(5.0m/s)\,{\vec i}+(2.0m/s)\,{\vec j}$ ។ ចូររកតម្លៃនៃវ៉ិទ័រល្បឿននៅខណៈនោះ។
- $oldsymbol{\delta}$. គេចោលគ្រាប់ក្រុសមួយដោយល្បឿនដើម $v_0=2m/s$ ដែលមានទិសបង្កើតជាមួយទិសដេកបានមុំ 30° ។
 - **ភ**. សរសេរសមីការពន្លង
 - គណនា y បើ x = 2m ។
- **៧**. នៅខណៈ t=0 គេទាត់បាល់មួយចេញពីចំណុច 0 ដោយវ៉ិចទ័រល្បឿនដែលមានទិសបង្កើតបានមុំ 45° ធ្យើបនឹងអ័ក្ស ដេក \overrightarrow{Ox} និងមានតម្លៃ v=8.0m/s ។ គណនា៖
 - **ភ**. ចម្ងាយធ្លាក់ ។
 - 🥹. កម្ពស់ឡើង ។
 - 🙇 ខណៈដែលបាល់ទៅដល់កំពូល s នៃប៉ារ៉ាបូល និងកន្លែងបាល់ធ្លាក់ ។
- **៤**. យន្តហោះជូយសង្គ្រោះមួយ ហោះតាមទិសដេកដោយល្បឿនថេរ 180km/h នៅរយៈកម្ពស់ 490m ពីផ្ទៃទឹក។ អ្នកជួយ សង្គ្រោះចង់ចាកចេញពីយន្តហោះទៅជួយស្រង់អ្នករងគ្រោះម្នាក់ដោយគាត់លិចទូក ដែលកំពុងព្យាយាមហែលទឹក។ គេ ចាត់ទុកកម្លាំងទប់នៃខ្យល់លើអ្នកជួយសង្គ្រោះអាចចោលបាន។
 - គ. តើមុំ α មានតម្លៃស្មើនឹងប៉ុន្មាន?
 - $m{2}$. នៅខណៈដែលអ្នកជូយសង្គ្រោះមកដល់ផ្ទៃទឹក តើវ៉ិចទ័រល្បឿនមានទិសបង្កើតជាមួយខ្សែដេកបានមុំ $m{ heta}$ មានតម្លៃស្មើនឹង ប៉ុន្មាន? តើវ៉ិចទ័រល្បឿនមានទិសបង្កើតជាមួយខ្សែដេកបានមុំ $m{ heta}$ មានតម្លៃស្មើនឹង ប៉ុន្មាន? គេឲ្យ៖ $g=9.8m/s^2$

- ៩. អង្គធាតុមួយមានចលនាវង់ស្មើដោយល្បឿនថេរ 10m/s។ កន្លងវង់នោះមានកាំ 15m។ រកសំទុះចូរផ្ចិតនៃចលនារបស់អង្គធាតុនោះ។
- f 9O. ចល័តមួយផ្លាស់ទីលើរង្វង់មួយដែលមានកាំ 5m ដោយចលនាស្មើ។ វាវិលបាន 2 ជុំក្នុងរយៈពេល 4s។
 - 🤧 រករយៈពេលដែលចល័តនោះវិលបានមួយជុំ។
 - 🤏 កណនាល្បឿនរង្វិលរបស់ចល័ត។
 - 🛎 គណនាសំទុះចូរផ្ចិត។
- $oldsymbol{99}$. ចល័តមួយផ្លាស់ទីតាមទិសដែលបង្កើតបានមុំ 30° ជាមួយទិសដេក។ ដោយវ៉ិចទ័រល្បឿន v=35m/s។ ចូររកវ៉ិចទ័ រូប្បឿន v_x តាមទិសដេក និងតាមទិសឈរ v_y ។
- ១២. រថភ្លើងមួយផ្លាស់ទីក្នុងពេលមានភ្លៀងនិងខ្យល់សំដៅទិសខាងត្បូងដោយល្បឿនថេរ 27.0m/s ធ្យេបនឹងដី។ អ្នកសង្កេត ម្នាក់ដែលឈរនៅលើដីឃើញតំណក់ទីកភ្លៀងធ្លាក់មានទិសបង្កើតជាមួយទិសឈរបានមុំ 60°C ។ អ្នកសង្កេតម្នាក់ទៀត នៅអង្គុយក្នុងរថភ្លើងឃើញតំណក់ទីកភ្លៀងធ្លាក់តាមទិសឈរ។ ចូរកំណត់ល្បឿនតំណក់ទីកភ្លៀងធ្លាក់ធ្យេបនឹងដី។