OBIAI: Ontological Bayesian Intelligence Architecture

Infrastructure

Technical Documentation Framework v2.0

Nnamdi Michael Okpala OBINexus Computing Aegis Framework Division

June 2025

Abstract

This document presents the comprehensive technical architecture for OBIAI (Ontological Bayesian Intelligence Architecture Infrastructure), implementing a non-monolithic, version-tiered modular system for safety-critical AI deployment. The framework incorporates mathematically verified cost functions, inverted triangle reasoning protocols, and tier-isolated component management aligned with the Aegis waterfall methodology.

Contents

1	Con	Component Architecture Tree					
	1.1	Active Component Hierarchy	3				
	1.2	Repository Structure Mapping	3				
2	Stal	ble Tier Components	4				
	2.1	Mathematical Foundation Components	4				
		2.1.1 AEGIS-PROOF-1.1: Cost-Knowledge Function	4				
		2.1.2 AEGIS-PROOF-1.2: Traversal Cost Function	4				
		2.1.3 Swapper Engine Core	4				
3	Exp	perimental Tier Components	4				
	3.1	Advanced Reasoning Components	4				
		3.1.1 Triangle Convergence Logic	4				
		3.1.2 Uncertainty Handling Framework	-				
		3.1.3 Filter-Flash Integration					
4	Leg	gacy Tier Components	Ę				
	4.1	Archived Implementations	-				
		4.1.1 Archived Proof Concepts	-				
		4.1.2 Historical Implementation Archive	١				
5	Act	ive Tier Summary	Į				
	5.1	Current Production Configuration					
	5.2	Semantic Versioning Status					

6	Cos	t Function Framework Integration	6
	6.1	Import-Driven Cost Model	6
		Tier-Aware Cost Computation	
7	Run	ntime Compatibility Matrix	6
	7.1	Component Interaction Validation	6
	7.2	Non-Commutative Version Constraints	
	7.3	Swapper Engine Compatibility Validation	7
8	Dep	ployment Safety Protocols	7
	8.1	Clinical Deployment Readiness	7
9	Imp	plementation Roadmap	7
	9.1	Phase Progression Timeline	7
	9.2	Critical Success Factors	
10	Tecl	hnical References	8
	10.1	Collaborative Development Team	8

1 Component Architecture Tree

The OBIAI system implements a three-tier component isolation architecture:

- Stable Tier: Production-verified components with mathematical proof validation
- Experimental Tier: Development components under active testing and peer review
- Legacy Tier: Archived components maintained for audit replay and compatibility

1.1 Active Component Hierarchy

Component	Tier	Version	Dependencies
Cost-Knowledge	[STABLE] Stable	v1.1.0	None
Function			
Traversal Cost	[STABLE] Stable	v1.2.0	v1.1.0
Function			
Triangle Conver-	[EXPERIMENTAL]	v1.5.0	v1.2.0
gence	Experimental		
Uncertainty Han-	[EXPERIMENTAL]	v1.6.0	v1.5.0
dling	Experimental		
Filter-Flash Inte-	[EXPERIMENTAL]	v1.5.1	v1.5.0
gration	Experimental		
Swapper Engine	[STABLE] Stable	v2.0.0	v1.2.0
Core			

Figure 1: OBIAI Component Tier Assignments and Dependencies

1.2 Repository Structure Mapping

Component source location: https://github.com/obinexus/obiai

```
obiai/
|-- stable/
| |-- cost_function_stable.tex
| |-- traversal_cost_stable.tex
| +-- swapper_engine_stable.tex
|-- experimental/
| |-- triangle_convergence_experimental.tex
| |-- uncertainty_handling_experimental.tex
| +-- filter_flash_experimental.tex
+-- legacy/
| |-- proof_concepts_legacy.tex
+-- archived_implementations_legacy.tex
```

2 Stable Tier Components

2.1 Mathematical Foundation Components

2.1.1 AEGIS-PROOF-1.1: Cost-Knowledge Function

Status: [STABLE] Stable v1.1.0 Mathematical Foundation:

$$C(K_t, S) = H(S) \cdot \exp(-K_t) \tag{1}$$

Verification: Monotonicity proven, boundary conditions validated

Dependencies: None

Deployment Clearance: Clinical Production Ready

2.1.2 AEGIS-PROOF-1.2: Traversal Cost Function

Status: [STABLE] Stable v1.2.0

Mathematical Foundation:

$$C(Node_i \to Node_j) = \alpha \cdot KL(P_i \parallel P_j) + \beta \cdot \Delta H(S_{i,j})$$
(2)

Verification: Non-negativity proven, stability confirmed

Dependencies: Cost-Knowledge Function v1.1.0 **Deployment Clearance**: Clinical Production Ready

2.1.3 Swapper Engine Core

Status: [STABLE] Stable v2.0.0

Function: Tier isolation enforcement and component compatibility validation

Verification: Runtime tier validation confirmed **Dependencies**: Traversal Cost Function v1.2.0

Deployment Clearance: Production Infrastructure Ready

3 Experimental Tier Components

Warning: Experimental components are under active development and have not achieved production verification status. They are loaded in shadow-mode for testing and validation purposes only.

3.1 Advanced Reasoning Components

3.1.1 Triangle Convergence Logic

Status: [EXPERIMENTAL] Experimental v1.5.0

Development Phase: Inverted triangle cost reasoning implementation

Core Algorithm:

$$S_k = \{Node_i \in S_{k-1} | Import_Critical_Costs(Node_i) \le Threshold_k\}$$
 (3)

Dependencies: Traversal Cost Function v1.2.0

Testing Status: Component integration under validation

Deployment Clearance: Development Only

3.1.2 Uncertainty Handling Framework

Status: [EXPERIMENTAL] Experimental v1.6.0

Development Phase: Three-tier uncertainty classification system

Classification Zones: Known-Knowns, Known-Unknowns, Unknown-Unknowns

Dependencies: Triangle Convergence v1.5.0 Testing Status: Architectural specification phase Deployment Clearance: Development Only

3.1.3 Filter-Flash Integration

Status: [EXPERIMENTAL] Experimental v1.5.1

Development Phase: Consciousness-aware inference triggering

Integration Protocol: Filter/Flash threshold modulation with cost functions

Dependencies: Triangle Convergence v1.5.0 Testing Status: Algorithm design validation Deployment Clearance: Development Only

4 Legacy Tier Components

Security Notice: Legacy components are maintained in strict isolation for audit replay purposes only. They cannot interact with active inference cycles and are prohibited from live deployment.

4.1 Archived Implementations

4.1.1 Archived Proof Concepts

Status: [LEGACY] Legacy v0.x.x

Archive Date: Pre-AEGIS validation framework

Content: Initial mathematical explorations and proof-of-concept implementations

Security Isolation: Strict sandboxing enforced

Interaction Policy: Audit replay only, no live inference integration Access Control: Legacy tier components prohibited from production use

4.1.2 Historical Implementation Archive

Status: [LEGACY] Legacy v0.x.x

Archive Date: Pre-component tier architecture

Content: Deprecated algorithms and experimental approaches **Preservation Purpose**: Audit trail and compatibility reference

Security Notice: Cannot interact with Stable or Experimental components

Documentation Status: Maintained for regulatory compliance only

5 Active Tier Summary

5.1 Current Production Configuration

5.2 Semantic Versioning Status

• Stable Release Branch: v1.2.x - Production ready

Component Name	Tier	Status	Deployment Clear- ance
AEGIS-PROOF-1.1	[STABLE] Stable	Active	Clinical Deployment
AEGIS-PROOF-1.2	[STABLE] Stable	Active	Clinical Deployment
Triangle Inference	[EXPERIM Experimen-	ETestiag.]	Development Only
Uncertainty Framework	[EXPERIM Experimen-	EPestiAg.]	Development Only
Filter-Flash Logic	[EXPERIM Experimen-	Erestiag.]	Development Only
Legacy Proof Systems	tal [LEGACY] Legacy	Archived	Audit Only

Table 1: OBIAI Tier Status Matrix

- Experimental Development: v1.5.x-1.6.x Under validation
- Legacy Archive: v0.x.x Maintenance mode

6 Cost Function Framework Integration

6.1 Import-Driven Cost Model

The OBIAI cost framework implements the following hierarchical structure:

$$C_{total}(Node_i \to Node_j) = Import_Critical_Costs(Node_j) + C_{path}(Node_i \to Node_j)$$
(4)

$$Import_Critical_Costs(Node_j) = \lambda_1 \cdot FairnessPenalty(Node_j)$$
(5)

$$+ \lambda_2 \cdot EntropyPenalty(Node_j)$$
(6)

$$+ \lambda_3 \cdot ConsciousnessRisk(Node_j)$$
(7)

6.2 Tier-Aware Cost Computation

7 Runtime Compatibility Matrix

7.1 Component Interaction Validation

7.2 Non-Commutative Version Constraints

The OBIAI architecture enforces non-commutative versioning where:

$$V(component_a) + V(component_b) \neq V(component_b) + V(component_a)$$
 (8)

This constraint ensures that component loading order determines system behavior and maintains deterministic inference pathways.

Cost Compo-	Implementation Tier	Validation Status
nent		
Base Cost Func-	[STABLE] Stable	Mathematically Verified
tion	v1.1.0	
KL Divergence	[STABLE] Stable	Production Ready
Computation	v1.2.0	
Fairness Penalty	[EXPERIMENTAL]	Under Testing
Logic	Experimental v1.5.0	
Entropy Penalty	[EXPERIMENTAL]	Under Testing
System	Experimental v1.5.1	
Consciousness	[EXPERIMENTAL]	Development Phase
Risk Assessment	Experimental v1.6.0	

Table 2: Cost Function Component Implementation Status

	Stable	Experimental	Legacy	Status
Stable	✓ Allowed	▲ Test Only	Prohibited	Production
Experimental	✓ Allowed	✓ Allowed	Prohibited	Development
Legacy	Prohibited	Prohibited	Audit Only	Archived

Table 3: Tier Interaction Compatibility Matrix

7.3 Swapper Engine Compatibility Validation

- 1. **Tier Isolation Enforcement**: Runtime validation prevents cross-tier component interaction
- 2. **Semantic Version Verification**: Automated compatibility checking using semiver signatures
- 3. Dependency Chain Validation: Topological sorting with chronological constraints
- 4. Safety Circuit Breaker: Automatic fallback to stable-only component stacks on tier violations

8 Deployment Safety Protocols

8.1 Clinical Deployment Readiness

9 Implementation Roadmap

9.1 Phase Progression Timeline

- 1. Phase 1.5: Triangle convergence logic promotion to stable tier
- 2. Phase 1.6: Uncertainty handling framework validation
- 3. Phase 2.0: Clinical dataset integration and validation
- 4. Phase 2.1: Production deployment with full tier isolation

Safety Requirement	Status	Validation Method	
Mathematical Verifica-	Complete	AEGIS-PROOF-1.1, 1.2 validation	
tion			
Bias Reduction (85%	Verified	Demographic parity testing	
target)			
Real-time Performance	Testing	Clinical workflow integration	
Tier Isolation Security	Implemented	Swapper Engine validation	
Failure Mode Handling	Development	Bounded abort protocols	
Human Override Inte-	Specification	Clinical safety requirements	
gration			

Table 4: Clinical Deployment Safety Checklist

9.2 Critical Success Factors

- Maintaining mathematical rigor throughout component development
- \bullet Preserving 85% bias reduction requirement across all tier transitions
- Ensuring real-time performance constraints for clinical deployment
- Implementing comprehensive audit trails for regulatory compliance

10 Technical References

- OBIAI Repository: https://github.com/obinexus/obiai
- AEGIS-PROOF-1.1: Monotonicity of Cost-Knowledge Function
- AEGIS-PROOF-1.2: Traversal Cost Function Verification
- Triangle Convergence Specification: Phase 1.5 Documentation
- Uncertainty Handling Framework: Phase 1.6 Specification

10.1 Collaborative Development Team

- Lead Mathematician: Nnamdi Michael Okpala
- Technical Engineering: Claude (Systems Architecture)
- Organization: OBINexus Computing Aegis Framework Division

Document Classification: Technical Implementation Specification

Security Level: Internal Development

Last Updated: June 2025

Next Review: Component promotion to Phase 1.6