

Department of Mathematics MODEL QUESTION PAPER -I

Semester	:	1st sem B.Tech	Maximum marks	:	100
Course Title	:	Linear Algebra and Calculus	Duration	••	3 hours
Course Code	:	24BEELY102	(P Cycle)		

Part-A

Answer any Ten questions 10X02=20What are the conditions for the equation AX = B have unique solution and 02 1 infinite solution. Find the rank of the matrix $\begin{bmatrix} 1 & 5 \\ 3 & 9 \end{bmatrix}$. 2 02 Find the eigen vector of $X^{(1)}$ for $A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$ by using Rayleigh power method. 02 3 Write the n^{th} derivative of the function e^{ax+b} . 02 State Leibnitz theorem for the n^{th} derivative of a product of two functions. 02 5 Find the n^{th} derivative of the function $y = e^{3x}$. 02 6 Define Partial derivative of a function u = f(x, y). 02 If x = uv and $y = \frac{u}{v}$ then find $J\left(\frac{x,y}{u,v}\right)$. 02 If $u = \sin(xy)$ find $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$. 9 02 Evaluate $\int_{1}^{2} \int_{1}^{3} xy^{2} dxdy$. 02 10 Find the complimentary function for $(D^2 - 6D + 9)y = 0$. 02 11 Find the Integrating factor for $\frac{dt}{dx} - \frac{t}{x} = -x$. 02 **12**

Part-B

	Answer any seven questions	07X05=35
13	Solve the following system of equations by using Gauss Elimination Method	05
	3x + 4y + 5z = 18; $2x - y + 8z = 13$; $5x - 2y + 7z = 20$.	
14	Solve the following system of equations by using Gauss-Seidel Method	05
	28x + 4y - z = 32; $2x + 17y + 4z = 35$; $x + 3y + 10z = 24$ carryout 3 iterations	;
	correct to 3 decimal places.	
15	Determine the angle between the radius vector and tangent to the curve	05
	$r = a(1 - \cos \theta).$	
16	Determine the pedal equation of the curve $r^m = a^m(\cos m\theta + \sin m\theta)$.	05
17	If $u = log(\frac{x^2 + y^2}{x + y})$, show that $xu_x + yu_y = 1$.	05

18	If $u = x^2 + y^2 + z^2$, $v = xy + yz + zx$, $w = x + y + z$, find the value of				
	$\frac{\partial(u)}{\partial(x)}$	$\frac{(v,w)}{(y,z)}$.			
19	Evaluate $\int_0^1 \int_0^{\sqrt{1-y^2}} x^3 y dx dy.$				
20	Solve $xy(1 + xy^2)\frac{dy}{dx} = 1$ by using Bernoulli's differential equation.				
21	If $\frac{dy}{dx} + \frac{y \cos x + \sin y + y}{\sin x + x \cos y + y} = 0$, verify the differential equation is exact or not.				
		Part-C			
	1	· ·	X15=45		
22	a)	Find the Rank of the matrix [91 92 93 94 95] 92 93 94 95 96 93 94 95 96 97 94 95 96 97 98 95 96 97 98 99	07		
	b)	Find the largest eigenvalue and the corresponding eigenvector of the matrix $A = \begin{bmatrix} 4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5 \end{bmatrix}$ by Rayleigh's Power Method by taking the initial	08		
		approximation to the eigen vector as $[1, 0.8, -0.8]^T$. Perform 5 iterations.			
23	a)	If $y = \log(x + \sqrt{1 + x^2})$, prove that $(1 + x^2)y_{n+2} + (2n+1)xy_{n+1} + n^2y_n = 0.$	07		
	b)	Show that the following pair of curves intersect each other orthogonally: $r^n = a^n \cos n\theta$ and $r^n = b^n \sin n\theta$.	08		
	a)	If $u = \log(\tan x + \tan y + \tan z)$, show that $\sin 2x u_x + \sin 2y u_y +$	07		
24	<i>u)</i>	$\sin 2z u_z = 2 .$	01		
	b)	If $u = f(2x - 3y, 3y - 4z, 4z - 2x)$, show that $6\frac{\partial u}{\partial x} + 4\frac{\partial u}{\partial y} + 3\frac{\partial u}{\partial z} = 0$.	08		
25	a)	Evaluate $\int_0^{\frac{\pi}{6}} \cos^4 3x \sin^2 6x dx$.	07		
	b)	Evaluate $\int_{-c}^{c} \int_{-b}^{b} \int_{-a}^{a} (x^2 + y^2 + z^2) dz dy dx$.	08		
26	a)	Solve $\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = x^2 - 4x - 6$.			
	b)	Solve $\frac{dy}{dx} - y \tan x = \frac{\sin x \cos^2 x}{y^2}$.	08		