functional analysis study note

Zehao Li

September 2025

Let X, Y be normed spaces. Define

$$B(X,Y) := \{T: X \to Y \mid T \text{ is linear and bounded}\}.$$

If X = Y, we denote B(X) := B(X, X), which forms a Banach algebra under operator composition.

For $T \in B(X,Y)$, the operator norm is defined by

$$||T|| := \sup_{||x||=1} ||T(x)||.$$

Equivalently,

$$||T|| = \sup_{\|x\| \le 1} ||T(x)|| = \sup_{x \ne 0} \frac{||T(x)||}{||x||} = \inf\{c > 0 : ||T(x)|| \le c||x|| \ \forall x \in X\}.$$

Proof. Let c > 0 be such that $||T(x)|| \le c||x||$ for all $x \in X$. In particular, if $||x|| \le 1$, then $||T(x)|| \le c$. Hence

$$\sup\{\|T(x)\|: \|x\| \le 1\} \le \inf\{c > 0: \|T(x)\| \le c\|x\| \ \forall x \in X\}.$$

For the reverse inequality, take any $x \neq 0$. Then

$$||T(x)|| = ||T(\frac{x}{||x||})|| ||x|| \le (\sup_{||y||=1} ||T(y)||) ||x|| = c||x||.$$

Thus

$$\sup\{\|T(x)\|: \|x\| \le 1\} \ge \inf\{c > 0: \|T(x)\| \le c\|x\| \ \forall x \in X\}.$$

Bounded operators and the C^* -identity

Proposition 1. Let X be a Banach space and denote

$$B(X) = \{T : X \to X \mid T \text{ is linear and bounded}\}.$$

Equipped with operator addition, scalar multiplication, composition and the operator norm

$$||T|| := \sup_{||x||=1} ||Tx||,$$

the space B(X) is a Banach algebra.

Sketch of proof. Completeness: if (T_n) is Cauchy in operator norm then for each fixed $x \in X$ the sequence $(T_n x)$ is Cauchy in X; define $Tx = \lim_n T_n x$ and check $T \in B(X)$ and $||T_n - T|| \to 0$. Algebra property: operator composition is associative and continuous; the norm satisfies $||ST|| \le ||S|| ||T||$, so B(X) is a Banach algebra.

Proposition 2. Let H be a Hilbert space. For every $T \in B(H)$ the adjoint operator $T^* \in B(H)$ exists and satisfies, for all $x \in H$,

$$||Tx||^2 = \langle T^*Tx, x \rangle \le ||T^*T|| \, ||x||^2.$$

Consequently,

$$||T||^2 \le ||T^*T|| \le ||T^*|| \, ||T|| = ||T||^2,$$

and hence

$$||T^*T|| = ||T||^2.$$

Therefore $(B(H), +, \circ, ^*, \|\cdot\|)$ is a unital C^* -algebra (with involution $T \mapsto T^*$).

Proof. For any unit vector $x \in H$,

$$||Tx||^2 = \langle Tx, Tx \rangle = \langle T^*Tx, x \rangle \le ||T^*T|| \, ||x||^2 = ||T^*T||.$$

Taking supremum over ||x|| = 1 yields $||T||^2 \le ||T^*T||$.

On the other hand, by submultiplicativity of the operator norm,

$$||T^*T|| < ||T^*|| ||T||.$$

and

$$||T(x)||^2 \le ||T^*T|| \le ||T||^2 ||x||^2$$

so

$$||T^*T|| \le ||T||^2.$$

Combining the two inequalities gives $||T^*T|| = ||T||^2$, which is the C^* -identity.

 T^*T is a self-adjoint matrix diagonalizable.

There are value $\lambda_1, \lambda_2 \dots \lambda_n$ and an orthorgonormal basis of vectors $\{x_1, x_2 \dots x_n\}$ such that $T^*T(x_i) = \lambda_i x_i$

Then exists unitary matrix $u \in \Sigma(C)$ such that $uT^*Tu^* = D$

Note: $(T^*T(x_i)|x_i) = \lambda_i(x_i|x_i) = \lambda_i = (T(x_i)|T(x_i)) = ||T(x_i)||^2$

Thus, $\lambda = \max\{\lambda_i\}$

Claim
$$||T|| = \sqrt{\lambda}$$
 since $uT^*Tu^* = D$, $T^*T = u^*Du$. $||T^*T|| = ||u^*Du|| \le ||u||^2 ||D|| = ||D||$
LET $x = \sum_{i=1}^n \alpha_i e_i$ then

$$||D(x)||^2 = ||\sum_{i=1}^n \alpha_i e_i \lambda_i||^2 = \sum_{i=1}^n \lambda_i^2 |\alpha_i|^2 \le \lambda^2 \sum_{i=1}^n |\alpha_i|^2 = \lambda^2 ||x||^2$$

thus

$$||D|| \le \lambda, ||T^*T|| \le \lambda$$

also

$$||T^*T(x_i)|| = \lambda_i \le ||T^*T|| ||x_i|| = ||T^*T||$$

hence, $||T^*T|| = \lambda$, indeed, $||T|| = \sqrt{\lambda}$ which is the biggest eigenvalue.

Definition 1. Let $(X, \|\cdot\|)$ be a normed space. The dual space of X, denoted by X^* , is defined as

$$X^* := B(X, \mathbb{C}),$$

the set of all continuous linear functionals $f: X \to \mathbb{C}$.

The algebraic dual of X is the set of all linear functionals $f:X\to\mathbb{C}$, without the continuity requirement.

Note 1. The dual space X^* is itself a Banach space, equipped with the operator norm

$$||f|| = \sup\{ |f(x)| : x \in B_1(0) \subset X \},\$$

where $B_1(0)$ denotes the closed unit ball in X.

Definition 2. Let X,Y be normed spaces. A linear operator $T:X\to Y$ is called an isomorphism if

- T is bijective,
- both T and T^{-1} are continuous (equivalently, bounded).

Definition 3. A linear operator $T: X \to Y$ is called an isometry if

$$||T(x)|| = ||x||$$
 for all $x \in X$.

An isometry is always injective, but it may fail to be surjective.

Definition 4. If T is a surjective isometry, then T is called a unitary operator. In this case, T^{-1} exists on Y and satisfies

$$||T^{-1}(y)|| = ||T^{-1}(T(x))|| = ||x|| = ||T(x)|| = ||y||, \quad \forall y \in Y.$$

Remark 1. In infinite-dimensional spaces, there exist non-unitary isometries (i.e., isometries that are not surjective).

Definition 5 (Quotient Space). Let X be a normed space and $M \subset X$ a closed subspace. The quotient space X/M is defined as the set of cosets

$$X/M := \{ x + M : x \in X \}.$$

We can turn X/M into a normed space by defining the quotient norm as

$$||x + M|| := \inf\{||x + y|| : y \in M\}, x \in X.$$

Notation 1. For $x \in X$, we denote its coset by $\hat{x} := x + M$. The map

$$\pi: X \to X/M, \quad \pi(x) = x + M$$

is called the quotient homomorphism.

Fact 1.

1. $(X/M, \|\cdot\|)$ is a normed space, where

$$||x + M|| := \inf\{||x + y|| : y \in M\}.$$

Indeed, if ||x + M|| = 0, then there exists a sequence $\{y_n\} \subset M$ such that $||x + y_n|| \to 0$.

2. If M is a proper subspace, then $\pi: X \to X/M$ is a bounded linear operator with $\|\pi\| = 1$.

Proof. For any $y \in M$,

$$\|\pi(x)\| = \|x + M\| = \inf_{y \in M} \|x + y\| \le \|x + y\|.$$

In particular, for y = 0, we get $||\pi(x)|| \le ||x||$, hence $||\pi|| \le 1$.

Now suppose $\|\pi\| < 1$. Then there exists r < 1 such that $\|\pi(x)\| < r$ for all $x \in X$. By definition, there exists a sequence $\{y_n\} \subset M$ such that

$$||x + y_n|| \to ||x + M|| = ||\pi(x)|| < r.$$

Thus some $y \in M$ satisfies ||x + y|| < r. But then $\pi(x) = \pi(x + y)$ lies in the ball B_r in X/M. If $X/M \neq \{0\}$, this contradicts the assumption $||\pi|| < 1$. Hence $||\pi|| = 1$.

3. If X is a Banach space, then X/M is also a Banach space.

Proof. Let (\hat{x}_n) be a Cauchy sequence in X/M. Choose a subsequence (\hat{x}_{n_k}) such that

$$\|\hat{x}_{n_{k+1}} - \hat{x}_{n_k}\| < 2^{-k}, \quad k = 1, 2, \dots$$

Define

$$y_k := \hat{x}_{n_{k+1}} - \hat{x}_{n_k}, \qquad ||y_k|| < 2^{-k}.$$

Then

$$\sum_{k=1}^{\infty} \|y_k\| < \infty,$$

so the series $\sum y_k$ converges absolutely in X/M.

Lifting to X, we can represent $y_k = \hat{z}_k$ with $z_k \in X$ and $||z_k|| < 2^{-k}$. Since X is complete, $\sum z_k$ converges in X. Denote its sum by z.

Therefore,

$$\hat{x}_{n_{k+1}} - \hat{x}_{n_1} = \sum_{j=1}^{k} y_j \to \hat{z} \text{ in } X/M.$$

Hence (\hat{x}_n) converges in X/M, proving that X/M is complete.

Property 1. Let X be a vector space with a seminorm $\|\cdot\|$, and let X carry the topology induced by $\|\cdot\|$. Then

$$M := \{ x \in X : ||x|| = 0 \}$$

is a closed subspace of X, and the quotient space X/M with the norm

$$||x + M|| := ||x||, \quad x \in X,$$

is a normed space.

Proof. First, M is a subspace:

- If $x \in M$ and $\lambda \in \mathbb{K}$, then $||\lambda x|| = |\lambda| ||x|| = 0$, hence $\lambda x \in M$.
- If $x, y \in M$, then $||x + y|| \le ||x|| + ||y|| = 0$, so $x + y \in M$.

To see that M is closed: suppose $x_n \in M$ and $x_n \to x$ in X (with respect to $\|\cdot\|$). Then

$$|||x_n|| - ||x||| \le ||x_n - x|| \to 0,$$

but $||x_n|| = 0$ for all n, so ||x|| = 0 and $x \in M$. Thus M is closed. Finally, define on X/M:

$$||x + M|| := ||x||.$$

This is well-defined: if x+M=y+M, then $x-y\in M$, hence $\|x-y\|=0$, which implies $\|x\|=\|y\|$.

Thus $\|\cdot\|$ on X/M is a norm, and $(X/M, \|\cdot\|)$ is a normed space.