

TD1 2021.2

Nome: Matrícula:	
------------------	--

Trabalho Computacional

1 Objetivo

O objetivo deste trabalho é de permitir que o acadêmico implemente, por meio da utilização de uma ferramenta computacional:

- A decomposição de sinais em parte par e ímpar.
- As operações de rebatimento, multiplicação e soma que ocorrem em um somatório de convolução.

2 Detalhamento

2.1 Decomposição de sinais

Implemente uma função que decomponha um sinal de tempo discreto x[n] em suas partes par $x_p[n]$ e impar $x_i[n]$. A função deve apresentar a seguinte interface:

- Entrada:
 - Sinal a ser decomposto x[n] (arranjo/vetor com os valores da variável dependente).
 - Valor do tempo inicial de referência n_0 (variável independente).
- Saída:
 - Sinal par $x_p[n]$ (arranjo/vetor com valores da variável dependente).
 - Sinal impar $x_i[n]$ (arranjo/vetor com valores da variável dependente).
 - Valor do tempo inicial n_0 (variável independente).

Realize testes com alguns sinais (escolha os sinais que julgar serem interessantes), apresentando sempre quatro gráficos:

- O sinal x[n]: $n \times x[n]$.
- A parte par $x_p[n]$: $n \times x_p[n]$.
- A parte impar $x_i[n]$: $n \times x_i[n]$.
- A soma entre as partes par e impar $x_p[n] + x_i[n]$: $n \times x_p[n] + x_i[n]$.

2.2 Soma de convolução

Implemente uma função que realize a convolução entre dois sinais de tempo discreto x[n] e h[n]. A função deve apresentar a seguinte interface:

- Entrada:
 - Sinal x[n] (arranjo/vetor com os valores da variável dependente).
 - Sinal h[n] (arranjo/vetor com os valores da variável dependente).
 - Valor do tempo inicial de referência n_0 (variável independente).
- Saída:
 - Sinal par y[n] (arranjo/vetor com valores da variável dependente).
 - Valor do tempo inicial n_0 (variável independente).

Realize testes com alguns sinais (escolha os sinais que julgar serem interessantes), apresentando sempre quatro gráficos:

- O sinal x[n]: $n \times x[n]$.
- O sinal h[n]: $n \times h[n]$.
- O sinal y[n]: $n \times y[n]$.

3 Entrega

O trabalho é individual e a forma de entrega será a submissão de um relatório em formado *pdf* no *Moodle* com os gráficos pedidos assim como o código implementado (*link* para o GitHub é uma opção válida).

4 Referência

Sinais e Sistemas | Prof. Dr. Renato Dourado Maia