第八章一元回归及简单相关分析

第一节 回归及相关的基本概念

第二节 一元线性回归

第三节 回归方程的检验

第四节 预测及应用

第五节 相关

第六节 可直线化的非线性回归

§ 8.1 回归与相关的基本概念

变量间的关系 (函数关系)

- 1. 是一一对应的确定关系
- 2. 设有两个变量 x 和 y ,变量 y 随变量 x 一起变化,并完 y 全依赖于 x ,当变量 x 取某 个数值时, y 依确定的关系 取相应的值,则称 y 是 x 的 函数,记为 y = f(x),其中 x 称为自变量,y 称为因变量

变量间的关系 (函数关系)

- →函数关系的例子
 - 某种商品的销售额(y)与销售量(x)之间的关系可表示为y = p x (p)为单价)
 - 圆的面积(S)与半径之间的关系可表示为 $S = \pi R^2$
 - 企业的原材料消耗额(y)与产量 (x_1) 、单位产量消耗 (x_2) 、原材料价格 (x_3) 之间的关系可表示为 $y = x_1 x_2 x_3$

变量间的关系 (相关关系)

- 1. 变量间关系不能用函数关系精确表达
- 2. 一个变量的取值不能由另一个变量唯一确定
- 3. 当变量 x 取某个值时,变量 y 的取值具有一个确定的分布

变量间的关系 (相关关系)

- → 相关关系的例子
 - 商品的消费量(y)与居民收入(x)之间的关系
 - 商品销售额(y)与广告费支出(x)之间的关系
 - 粮食亩产量(y)与施肥量 (x_1) 、降雨量 (x_2) 、温度 (x_3) 之间的关系
 - 收入水平(y)与受教育程度(x)之间的关系
 - 父亲身高(y)与子女身高(x)之间的关系

相关关系的图示

回归关系与相关关系的区别

- 1. 相关关系中,变量 x 变量 y 处于平等的地位;回 归关系中,变量 y 称为因变量,处在被解释的地位,x 称为自变量,用于预测因变量的变化
- 2. 相关分析中所涉及的变量 x 和 y 都是随机变量; 回归分析中, 因变量 y 是随机变量, 自变量 x 可 以是随机变量, 也可以是非随机的确定变量
- 3. 相关分析主要是描述两个变量之间线性关系的密切程度; 回归分析不仅可以揭示变量 x 对变量 y 的影响大小, 还可以由回归方程进行预测和控制

什么是回归分析?

- 1. 从一组样本数据出发,确定变量之间的数学 关系式
- 对这些关系式的可信程度进行各种统计检验, 并从影响某一特定变量的诸多变量中找出哪 些变量的影响显著,哪些不显著
- 3. 利用所求的关系式,根据一个或几个变量的 取值来预测或控制另一个特定变量的取值, 并给出这种预测或控制的精确程度

回归模型

- 1. 回答"变量之间是什么样的关系?"
- 2. 方程中运用
 - 1个数字的因变量(响应变量) 被预测的变量
 - 1个或多个数字的或分类的自变量 (解释变量) 用于预测的变量
- 3. 主要用于预测和估计

回归模型的类型

§ 8.2 一元线性回归

数据收集与整理

•例:土壤内NaCl含量对植物的生长有很大的影响,NaCl含量过高,将增加组织内无机盐的积累,抑制植物的生长。表中的数据,是每1000g土壤中所含NaCl的不同克数(X)对植物单位叶面积干物重的影响(Y)。

NaCL含量X /(g·kg ⁻¹)	0	0.8	1.6	2.4	3.2	4.0	4.8
干物重Y /(mg·dm ⁻²)	80	90	95	115	130	115	135

判断:

- 1) 两变量之间的关系是否密切;
- 2) 两变量之间的关系是呈一条直线还是某种曲线;
- 3)是否存在某个点偏离过大;
- 4)是否存在其他规律。

		NaCL含量X /(g·kg ⁻¹)						
		0	0.8	1.6	2.4	3.2	4.0	4.8
干物重Y /(mg·dm ⁻²) 重复观测值	1	80	90	95	115	130	115	135
	2	100	85	89	94	106	125	137
	3	75	107	115	103	103	128	128
	4	89	93	92	110	110	143	127
	5	91	103	115	113	128	132	155
	6	79	92	120	108	131	121	132
	7	101	78	95	121	117	129	148
	8	85	105	95	110	121	112	117
	9	83	93	105	108	114	120	134
	10	79	85	98	111	116	130	132
均值		86.2	93.1	101.9	109.3	117.6	125.5	134.5

一元线性回归模型

- 1. 当只涉及一个自变量时称为一元回归,若因变量 y 与自变量 x 之间为线性关系时称为一元线性回归
- 2. 对于具有线性关系的两个变量,可以用一条线性方程来表示它们之间的关系
- 3. 描述因变量 y 如何依赖于自变量 x 和误差项 ε 的方程称为回归模型

一元线性回归模型

→ 对于只涉及一个自变量的简单线性回归模型可表示为

$$y = \beta_0 + \beta_1 x + \varepsilon$$

- 模型中, y 是 x 的线性函数(部分)加上误差项
- 线性部分反映了由于 x 的变化而引起的 y 的变化
- 误差项 ε 是随机变量 反映了除 x 和 y 之间的线性关系之外的随机因素对 y 的影响 是不能由 x 和 y 之间的线性关系所解释的变异性
- β_0 和 β_1 称为模型的参数

一元线性回归模型 (基本假定)

- 1. 误差项 ε 是一个期望值为0的随机变量,即 $E(\varepsilon)=0$ 。 对于一个给定的 x 值(x的误差可忽略),y 的 期望值为 $E(y)=\beta_0+\beta_1 x$
- 2. 对于所有的x值, ε 的方差 σ^2 都相同
- 3. 误差项 ε 是一个服从正态分布的随机变量,且相互独立。即 ε ~ $N(0,\sigma^2)$
 - 独立性意味着对于一个特定的 x 值,它所对应的 ε 与其他 x 值所对应的 ε 不相关
 - 对于一个特定的 x 值,它所对应的 y 值与其他 x 所对应的 y 值也不相关

回归方程

- 1. 描述 y 的平均值或期望值如何依赖于 x 的方程 称为回归方程
- 2. 简单线性回归方程的形式如下

$$E(y) = \beta_0 + \beta_1 x$$

- 方程的图示是一条直线,因此也称为直线回归方程
- β_0 是回归直线在 y 轴上的截距,是当 x=0 时 y 的期望值
- $m{\rho}_1$ 是直线的斜率,称为回归系数,表示当 x 每变动一个单位时,y 的平均变动值

估计(经验)的回归方程

- 1. 总体回归参数 β_0 和 β_1 是未知的,必需利用样本数据去估计
- 2. 用样本统计量 $\hat{\beta}_0$ 和 $\hat{\beta}_1$ 代替回归方程中的未知参数 $\hat{\beta}_0$ 和 $\hat{\beta}_1$,就得到了估计的回归方程
- 3. 简单线性回归中估计的回归方程为

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

其中: $\hat{\beta}_0$ 是估计的回归直线在 y 轴上的截距, $\hat{\beta}_1$ 是直线的斜率, 它表示对于一个给定的 x 的值, 是 y 的估计值, 也表示 x 每变动一个单位时, y 的平均变动值

参数 β_0 和 β_1 的 最小二乘估计

最小二乘法(图示)

最小二乘法

1. 使因变量的观察值与估计值之间的离差平方和 达到最小来求得 $\hat{\beta}_0$ 和 $\hat{\beta}_1$ 的方法。即

$$Q(\hat{\beta}_0, \hat{\beta}_1) = \sum_{i=1}^n (y_i - \hat{y})^2 = \sum_{i=1}^n e_i^2 = 最小$$

2. 用最小二乘法拟合的直线来代表x与y之间的 关系与实际数据的误差比其他任何直线都小

$$L = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} [y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)]^2$$

$$\begin{cases} \frac{\partial L}{\partial \hat{\beta}_{0}} = 0 \\ \frac{\partial L}{\partial \hat{\beta}_{1}} = 0 \end{cases} \Rightarrow \begin{cases} \sum_{i=1}^{n} (-2)[y_{i} - (\hat{\beta}_{0} + \hat{\beta}_{1}x_{i})] = 0 \\ \sum_{i=1}^{n} (-2)x_{i}[y_{i} - (\hat{\beta}_{0} + \hat{\beta}_{1}x_{i})] = 0 \end{cases}$$

$$\sum_{i=1}^{n} y_i = \sum_{i=1}^{n} (\hat{\beta}_0 + \hat{\beta}_1 x_i) = n\hat{\beta}_0 + \hat{\beta}_1 \sum_{i=1}^{n} x_i$$

$$\sum_{i=1}^{n} x_i y_i = \sum_{i=1}^{n} [x_i (\hat{\beta}_0 + \hat{\beta}_1 x_i)] = \hat{\beta}_0 \sum_{i=1}^{n} x_i + \hat{\beta}_1 \sum_{i=1}^{n} x_i^2$$

最小二乘法 (多,和)的计算公式)

→ 根据最小二乘法的要求,可得求解 $\hat{\boldsymbol{\beta}}_0$ 和 $\hat{\boldsymbol{\beta}}_1$ 的标准方程如下

$$\begin{cases}
\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} X_{i} y_{i} - \frac{1}{n} \left(\sum_{i=1}^{n} X_{i} \right) \left(\sum_{i=1}^{n} y_{i} \right)}{\sum_{i=1}^{n} X_{i}^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} X_{i} \right)^{2}} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X}) (y_{i} - \overline{y})}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}} \\
\hat{\beta}_{0} = \overline{y} - \hat{\beta}_{1} \overline{X}
\end{cases}$$

记:

$$S_{XY} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$
 校正交叉乘积和

$$S_{XX} = \sum_{i=1}^{n} (x_i - \bar{x})^2$$
 X的校正平方和

$$S_{YY} = \sum_{i=1}^{n} (y_i - \bar{y})^2$$
 Y的校正平方和

$$\hat{\beta}_1 = \frac{S_{XY}}{S_{XX}}$$

估计方程的求法

NaCL含量X /(g·kg ⁻¹)	0	0.8	1.6	2.4	3.2	4.0	4.8
干物重Y /(mg·dm ⁻²)	80	90	95	115	130	115	135

$$\begin{cases}
\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X}) (y_{i} - \overline{y})}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}} \\
\hat{\beta}_{0} = \overline{y} - \hat{\beta}_{1} \overline{x}
\end{cases}$$

$$\downarrow \hat{\beta}_{1} = 11.16 \\
\hat{\beta}_{0} = 81.79$$

估计方程

干物重对NaCl含量的回归方程为

$$\hat{y} = 81.79 + 11.16x$$

§ 8.3 回归方程的显著性检验

一元回归的方差分析

离差分解

离差平方和的分解

1. 从图上看有

$$y - \overline{y} = (y - \hat{y}) + (\hat{y} - \overline{y})$$

2. 两端平方后求和有

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y})^2$$

总变差平方和
(SST) 回归平方和 残差平方和
(SSE)

$$SST = SSR + SSE$$

(三个平方和的意义)

1. 总平方和(SST)

• 反映因变量的 n 个观察值与其均值的总离差

2. 回归平方和(SSR)

• 反映自变量 x 的变化对因变量 y 取值变化的影响,或者说,是由于 x 与 y 之间的线性关系引起的 y 的取值变化,也称为可解释的平方和

3. 残差平方和(SSE)

反映除 x 以外的其他因素对 y 取值的影响,也 称为不可解释的平方和或剩余平方和

样本决定系数 (判定系数 r²)

1. 回归平方和占总离差平方和的比例

$$r^{2} = \frac{SSR}{SST} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \overline{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y})^{2}}{\sum_{i=1}^{n} (\hat{y}_{i} - \overline{y})^{2}}$$

- 2. 反映回归直线的拟合程度
- 3. 取值范围在[0,1]之间
- 4. $r^2 \rightarrow 1$,说明回归方程拟合的越好, $r^2 \rightarrow 0$,说明回归方程拟合的越差

回归方程的显著性检验(线性关系的检验)

- 1. 检验自变量和因变量之间的线性关系是否显著
- 2. 具体方法是将回归离差平方和(SSR)同剩余离差平方和(SSE)加以比较,应用F检验来分析二者之间的差别是否显著
 - 如果是显著的,两个变量之间存在线性关系
 - 如果不显著,两个变量之间不存在线性关系

回归方程的显著性检验(检验的步骤)

- 1. 提出假设
 - H_0 : β_1 =0 (线性关系不显著)
- 2. 计算检验统计量F

$$F = \frac{SSR/1}{SSE/n - 2} = \frac{\sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2 / 1}{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 / n - 2} \sim F(1, n - 2)$$

- 3. 确定显著性水平 α ,并根据分子自由度1和分母自由度n-2找出临界值 F_{α}
- 4. 作出决策: $若F \ge F_{\alpha}$, 拒绝 H_{0} , $若F < F_{\alpha}$,接受 H_{0}

回归方程的显著性检验(方差分析表)

NaCL含量X /(g·kg ⁻¹)	0	0.8	1.6	2.4	3.2	4.0	4.8
干物重Y /(mg·dm ⁻²)	80	90	95	115	130	115	135

方差来源	平方和SS	自由度df	均方MS	F 值
回归	2232	1	2232	31.55
残差	353.71	5	7 0. 74	
总和	2585.71	6		

因为 $F > F_{0.01}(1,5) = 16.26$,所以拒绝原假设。 变量具有极显著的线性回归关系。

估计标准误差 S_y

- 1. 实际观察值与回归估计值离差平方和的均方根
- 2. 反映实际观察值在回归直线周围的分散状况
- 3. 从另一个角度说明了回归直线的拟合程度
- 4. 计算公式为

$$S_{y} = \sqrt{\frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{n-2}} = \sqrt{MSE}$$

注:上例的计算结果为8.4107

基于参数的检验

- 1. 检验 x 与 y 之间是否具有线性关系,或者说,检验自变量 x 对因变量 y 的影响是否显著
- 2. 理论基础是回归系数 $\hat{\beta}_1$ 的抽样分布
- 3. 在一元线性回归中,等价于回归方程的显著性检验

回归系数的显著性检验(样本统计量)的分布)

- 1. $\hat{\beta}_1$ 的分布具有如下性质
 - 分布形式: 正态分布
 - 数学期望: $E(\hat{\beta}_1) = \beta_1$
 - 标准差: $\sigma_{\hat{\beta}_i} = \frac{\sigma}{\sqrt{\sum (X_i \bar{X})^2}} = \frac{\sigma}{\sqrt{S_{XX}}}$

$$E(MSE) = \sigma^2$$

电于σ未知,需用其估计量 S_y 来代替,得到 $\hat{\beta}_1$ 的估计的标准差 C

$$S_{\hat{\beta}_1} = \frac{S_y}{\sqrt{S_{XX}}} = \sqrt{\frac{MSE}{S_{XX}}}$$

回归系数的显著性检验 (样本统计量 Â的分布)

回归系数的显著性检验 (样本统计量Â的分布)

- 1. $\hat{\beta}_0$ 的分布具有如下性质
 - 分布形式:正态分布
 - 数学期望: $E(\hat{\boldsymbol{\beta}}_0) = \boldsymbol{\beta}_0$

$$E(\hat{\beta}_0) = \beta_0$$

标准差:

$$\sigma_{\hat{\beta}_0} = \sigma \sqrt{\frac{1}{n} + \frac{\bar{X}^2}{S_{XX}}}$$

用估计量 S_v 来代替 σ

$$S_{\hat{\beta}_0} = \sqrt{MSE\left(\frac{1}{n} + \frac{\overline{X}^2}{S_{XX}}\right)}$$

- 1. 提出假设
 - $H_0: \beta_1 = 0$ (没有线性关系)
 - H₁: β₁ ≠ 0 (有线性关系)
- 2. 计算检验的统计量

$$t = \frac{\hat{\beta}_1 - \beta_1}{S_{\hat{\beta}_1}} = \frac{\hat{\beta}_1}{\sqrt{MSE / S_{XX}}} \sim t(n-2)$$

- 3. 确定显著性水平α,并进行决策
 - $|t| > t_{\alpha/2}$, 拒绝 H_0 ; $|t| < t_{\alpha/2}$, 接受 H_0

- ☞对前例的回归系数进行显著性检验(α=0.01)
- 1. 提出假设
 - H_0 : $\beta_1 = 0$ 干物重与NaCl含量之间无线性关系
 - H_1 : $\beta_1 \neq 0$ 干物重与NaCl含量之间有线性关系
- 2. 计算检验的统计量

$$t = \frac{11.16}{\sqrt{70.74/17.92}} = 5.61$$

3. t=5.61 > $t_{\alpha/2}$ (5)=4.032,拒绝 H_0 ,表明干物重关于NaCl含量的回归极显著。

- 1. 提出假设
 - H_0 : $\beta_1 = 7$
 - $H_1: \beta_1 \neq 7$
- 2. 计算检验的统计量

$$t = \frac{\hat{\beta}_1 - 7}{\sqrt{\text{MSE}/S_{XX}}} = \frac{11.16 - 7}{1.99} = 2.09$$

3. $t=2.05 < t_{\alpha/2}(5)=2.571$,接受 H_0 。结论是 $\hat{\beta}_1$ 有可能来自 β_1 =7的总体。

- 1. 提出假设
 - H_0 : β_0 = a
 - H_1 : $\beta_0 \neq a$
- 2. 计算检验的统计量

$$t = \frac{\hat{\beta}_0 - \beta_0}{S_{\hat{\beta}_0}} = \frac{\hat{\beta}_0 - a}{\sqrt{MSE\left(\frac{1}{n} + \frac{\bar{X}^2}{S_{XX}}\right)}} \sim t(n-2)$$

- 3. 确定显著性水平α,并进行决策
 - $|t| > t_{\alpha/2}$,拒绝 H_0 ; $|t| < t_{\alpha/2}$,接受 H_0

对
$$\beta_0$$
、 β_1 的估计

$$t = \frac{\hat{\beta}_1 - \beta_1}{\sqrt{MSE / S_{XX}}} \sim t(n-2)$$

$$t = \frac{\hat{\beta}_0 - \beta_0}{\sqrt{MSE\left(\frac{1}{n} + \frac{\overline{X}^2}{S_{XX}}\right)}} \sim t(n-2)$$

 β_1 和 β_0 的 $1-\alpha$ 置信区间分别为:

$$\hat{\beta}_1 \pm t_{\alpha/2} \sqrt{\frac{MSE}{S_{XX}}} \quad \text{fl} \quad \hat{\beta}_0 \pm t_{\alpha/2} \sqrt{MSE\left(\frac{1}{n} + \frac{\bar{x}^2}{S_{XX}}\right)}$$

两个回归方程的比较

•例:在优质育种工作中,为了快速筛选优良原始材料,采用染料结合(DBC)法测定种子中的碱性氨基酸含量。它的原理是:一种染料orange G与碱性氨基酸结合,使原来染料浓度降低。再通过测定染料减少的量,来估计碱性氨基酸的含量。已经计算出碱性氨基酸含量与DBC法测得结果之间有显著回归。实验测定了大麦和黑麦每千克(kg)试样的染料结合力(DBC)与碱性氨基酸含量,结果如下:

大麦	Х	91	93	94	96	98	102	105	108
麦	Υ	66	68	69	71	73	78	82	85
黑	X	80	82	85	87	89	91	95	
麦	Υ	55	57	60	62	64	67	71	

X表示每kg试样中DBC的mmol数;

Y表示每kg试样中碱性氨基酸的mmol数。

	大麦	黑麦
n	8	7
$\bar{\mathcal{X}}$	98.4	87.0
$\bar{\mathcal{y}}$	74	62.3
S_{XX}	257.9	162.0
S_{YY}	336.0	187.4
S_{XY}	294.0	174.0
MSE	0.140	0.244
Ŷ	$\hat{Y} = -38.16 + 1.14X$	$\hat{Y} = -31.16 + 1.07X$

检验两回归线有无显著差异。

解: (1) 检验 MSE_1 和 MSE_2 有无显著差异:

$$H_0: \sigma_1^2 = \sigma_2^2$$
 $H_1: \sigma_1^2 \neq \sigma_2^2$

$$F = \frac{MSE_2}{MSE_1} = \frac{0.244}{0.140} = 1.74$$

$$F < F_{0.025}(5,6) = 5.99$$

所以可以认为两者具有相同的总体方差。

$$MSE = \frac{(n_1 - 2)MSE_1 + (n_2 - 2)MSE_2}{(n_1 - 2) + (n_2 - 2)} = 0.187$$

(2) 检验回归系数 β_1 和 β_1 有无显著差异:

$$H_0: \beta_1 - \beta_1' = 0$$
 $H_1: \beta_1 - \beta_1' \neq 0$

$$t = \frac{\beta_1 - \beta_1'}{\sqrt{MSE(\frac{1}{S_{XX}} + \frac{1}{S_{XX}'})}} = \frac{1.14 - 1.07}{\sqrt{0.187(\frac{1}{257.9} + \frac{1}{162})}}$$
$$= 1.61$$

$$t < F_{0.05}(11) = 2.201$$

所以可以认为两者具有共同的总体回归系数。

$$\tilde{\beta}_1 = \frac{S_{XX}\beta_1 + S'_{XX}\beta'_1}{S_{XX} + S'_{XX}} = 1.11$$

- (3) 检验回归系数 β_0 和 β_0 有无显著差异:
- (i) 若差异显著,两回归线差异显著。
- (ii) 若差异不显著,两回归方程可合并。

$$\bar{x} = \frac{n_1 \bar{x}_1 + n_2 \bar{x}_2}{n_1 + n_2}$$
 $\bar{y} = \frac{n_1 \bar{y}_1 + n_2 \bar{y}_2}{n_1 + n_2}$

$$\tilde{\beta}_0 = \bar{y} - \tilde{\beta}_1 \bar{x}$$

§ 8.4 预测及应用

利用回归方程进行估计和预测

- 1. 根据自变量x的取值估计或预测因变量y的取值
- 2. 估计或预测的类型
 - 点估计
 - y的平均值的点估计
 - y的个别值的点估计
 - 区间估计
 - y的平均值的置信区间估计
 - y的个别值的预测区间估计

利用回归方程进行估计和预测(点估计)

y 的平均值的点估计

利用估计的回归方程,对于自变量x的一个给定值 x_0 ,求出因变量y的平均值的一个估计值 $\mu_{Y\cdot X=x_0}$,就是平均值的点估计

$$E(\hat{y}_0) = E(\hat{\beta}_0 + \hat{\beta}_1 x_0)$$

$$= E(\hat{\beta}_0) + E(\hat{\beta}_1) x_0$$

$$= \beta_0 + \beta_1 x_0$$

$$= \mu_{Y \cdot X = x_0}$$

$$var(\hat{y}_{0}) = var(\hat{\beta}_{0} + \hat{\beta}_{1}x_{0})$$

$$= var((\bar{y} - \hat{\beta}_{1}\bar{x}) + \hat{\beta}_{1}x_{0})$$

$$= var(\bar{y}) + (x_{0} - \bar{x})^{2}var(\hat{\beta}_{1})$$

$$= \frac{\sigma^{2}}{n} + (x_{0} - \bar{x})^{2}\frac{\sigma^{2}}{S_{XX}}$$

$$= \sigma^{2}(\frac{1}{n} + \frac{(x_{0} - \bar{x})^{2}}{S_{XX}})$$

$$\hat{y}_{0} \sim N\left(\mu_{Y \cdot X = x_{0}}, \sigma^{2}(\frac{1}{n} + \frac{(x_{0} - \bar{x})^{2}}{S_{YY}})\right)$$

利用回归方程进行估计和预测(点估计)

ℊ y 的个别值的点估计

利用估计的回归方程,对于自变量 x 的一个给定值 x_0 ,求出因变量 y 的一个个别值的估计值,就是个别值的点估计

$$E(y_0 - \hat{y}_0) = E(\beta_0 + \beta_1 x_0 + \varepsilon - \hat{\beta}_0 - \hat{\beta}_1 x_0)$$

$$= \beta_0 + \beta_1 x_0 + E(\varepsilon) - E(\hat{\beta}_0) - E(\hat{\beta}_1) x_0$$

$$= \beta_0 + \beta_1 x_0 - E(\hat{\beta}_0) - E(\hat{\beta}_1) x_0$$

$$= 0$$

$$var(y_0 - \hat{y}_0) = var(y_0) + var(\hat{y}_0)$$

$$= \sigma^2 + \sigma^2 \left(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{XX}}\right)$$

$$= \sigma^2 \left(1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{XX}}\right)$$

$$y_0 - \hat{y}_0 \sim N\left(0, \sigma^2\left(1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{XX}}\right)\right)$$

利用回归方程进行估计和预测(区间估计)

- 1. 点估计不能给出估计的精度,点估计值与实际值之间是有误差的,因此需要进行区间估计
- 2. 对于自变量 x 的一个给定值 x_0 ,根据回归方程 得到因变量 y 的一个估计区间
- 3. 区间估计有两种类型
 - 置信区间估计
 - 预测区间估计

利用回归方程进行估计和预测(置信区间估计)

- ℊ y 的平均值的置信区间估计
- 1. 利用估计的回归方程,对于自变量x的一个给定值 x_0 ,求出因变量y的平均值 $\mu_{Y\cdot X=x_0}$ 的估计区间,这一估计区间称为**置信区间**
- 2. $\mu_{Y\cdot X=x_0}$ 在1- α 置信水平下的置信区间为

$$\hat{y}_0 \pm t_{\alpha/2} \sqrt{MSE} \left(\frac{1}{n} + \frac{\left(X_0 - \overline{X} \right)^2}{S_{XX}} \right)$$

利用回归方程进行估计和预测

【例】根据前例,求出NaCl含量取不同值时,对应的平均干物重的0.95置信区间。

解: 根据前面的计算结果

$$\bar{x} = 2.4$$
, $S_{XX} = 17.92$, MSE=70.74, $t_{\alpha/2}(5) = 2.571$

NaCL含量X /(g·kg ⁻¹)	0	0.8	1.6	2.4	3.2	4.0	4.8
干物重Y /(mg·dm ⁻²)	80	90	95	115	130	115	135
\hat{y}	81.79	90.72	99.65	108.57	117.50	126.43	135.36
置信区间 (土)	14.73	11.56	9.14	8.17	9.14	11.56	14.73

利用回归方程进行估计和预测 (预测区间估计)

- ℊ y 的个别值的预测区间估计
- 1. 利用估计的回归方程,对于自变量x的一个给定值 x_0 ,求出因变量y的一个个别值的估计区间,这一区间称为*预测区间*
- 2. y_0 在1- α 置信水平下的预测区间为

$$\hat{y}_0 \pm t_{\alpha/2} \sqrt{MSE} \left(1 + \frac{1}{n} + \frac{\left(x_0 - \overline{x} \right)^2}{S_{XX}} \right)$$

$$\cancel{\hat{x}} \approx ! \#$$

利用回归方程进行估计和预测(置预测区间估计:算例)

【例】根据前例,求出NaCl含量取不同值时,对应的干物重的0.95置信区间。

解:

NaCL含量X /(g·kg ⁻¹)	0	0.8	1.6	2.4	3.2	4.0	4.8
干物重Y /(mg·dm ⁻²)	80	90	95	115	130	115	135
$\hat{\mathcal{Y}}$	81.79	90.72	99.65	108.57	117.50	126.43	135.36
预测区间 (±)	26.17	24.52	23.48	23.12	23.48	24.52	26.17

置信区间、预测区间、回归方程

影响区间宽度的因素

$$\hat{y}_0 \pm t_{\alpha/2} \sqrt{MSE \left(1 + \frac{1}{n} + \frac{(X_0 - \bar{X})^2}{S_{XX}}\right)}$$

- 1. 置信水平 (1 α) 区间宽度随置信水平的增大而增大
- 2. 数据的离散程度 (s) 区间宽度随离散程度的增大而增大
- 3. 样本容量 区间宽度随样本容量的增大而减小
- 4. 用于预测的 x_0 与 x_0 的差异程度 区间宽度随 x_0 与 x_0 的差异程度的增大而增大

回归分析的应用

- 描述两个变量的依存关系
- 在一定范围内对因变量进行预测
- 通过控制自变量来对因变量进行控制

- •注意问题:
- 1、回归变量的确定
- 2、回归方程应进行检验
- 3、预测和外推要谨慎

§ 8.5 相关系数及其计算

相关关系的测度(相关系数)

- 1. 对变量之间关系密切程度的度量
- 2. 对两个变量之间线性相关程度的度量称为简单相关系数
- 3. 若相关系数是根据总体全部数据计算的,称为总体相关系数,记为 ρ
- 4. 若是根据样本数据计算的,则称为样本相关系数,记为r

(相关系数:皮尔逊相关系数)

→ 样本相关系数的计算公式

$$r = \frac{1}{N} \sum \left[\left(\frac{x - \bar{x}}{\sigma_x} \right) \left(\frac{y - \bar{y}}{\sigma_y} \right) \right]$$
$$= \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2 \cdot \sum (y - \bar{y})^2}}$$

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X}) (y_{i} - \overline{y})}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}} = \frac{S_{XY}}{S_{XX}}$$

$$SSE = \sum (y_i - \hat{y}_i)^2 = \sum (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$
$$= \sum ((y_i - \bar{y}) - \hat{\beta}_1 (x_i - \bar{x}))^2 = SST - \hat{\beta}_1 S_{XY}$$

$$SSR = SST - SSE = \hat{\beta}_1 S_{XY} = \frac{S_{XY}^2}{S_{XX}}$$

$$r^{2} = \left(\frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^{2} \cdot \sum (y - \bar{y})^{2}}}\right)^{2} = \frac{S_{XY}^{2}}{S_{XX}SST} = \frac{SSR}{SST}$$

- 1. r的取值范围是 [-1,1]
- 2. |r|=1, 为完全相关
 - r=1,为完全正相关
 - r=-1,为完全负正相关
- 3. r=0,不存在线性相关关系
- 4. -1≤r<0, 为负相关
- 5. 0<*r*≤1,为正相关
- 6. |r|越趋于1表示关系越密切; |r|越趋于0表示关系 越不密切

【例】在研究我国人均消费水平的问题中,把全国人均消费额记为y,把人均国民收入记为x。我们收集到1981~1993年的样本数据 (x_i, y_i) ,i=1,2,...,13,数据见表1,计算相关系数。

表1 我国人均国民收入与人均消费金额数据 _{单位:元}										
年份	人均 国民收入	人均 消费金额	年份	人均 国民收入	人均 消费金额					
1981	393.8	249	1988	1068.8	643					
1982	419.14	267	1989	1169.2	690					
1983	460.86	289	1990	1250.7	713					
1984	544.11	329	1991	1429.5	803					
1985	668.29	406	1992	1725.9	947					
1986	737.73	451	1993	2099.5	1148					
1987	859.97	513								

解: 根据样本相关系数的计算公式有

$$r = \frac{n\sum xy - \sum x\sum y}{\sqrt{n\sum x^2 - (\sum x)^2} \cdot \sqrt{n\sum y^2 - (\sum y)^2}}$$

$$= \frac{13 \times 9156173.99 - 12827.5 \times 7457}{\sqrt{13 \times 16073323.77 - (12827.5)^2} \cdot \sqrt{13 \times 5226399 - (7457)^2}}$$

$$= 0.9987$$

人均国民收入与人均消费金额之间的相关系数为 **0.9987**,表明人均收入与人均消费之间呈正相关,即人均收入越高,人均消费越多。

 r^2 =0.9974表明y的变异有99.74%可用y与x之间的线性关系来解释。

相关系数的显著性检验

- 1. 检验两个变量之间是否存在线性相关关系
- 2. 等价于对回归系数 β_1 的检验
- 3. 采用 t 检验
- 4. 检验的步骤为
 - 提出假设: H_0 : $\rho = 0$; H_1 : $\rho \neq 0$
 - 计算检验的统计量: $t = \frac{r \rho}{\sqrt{\frac{1 r^2}{n 2}}} \sim t(n 2)$
 - 确定显著性水平α,并作出决策
 - 若|t|> $t_{\alpha/2}$,拒绝 H_0
 - 若|t|< $t_{\alpha/2}$,接受 H_0

- → 对前例计算的相关系数进行显著性检验(α=0.05)
- 1. 提出假设: H_0 : $\rho = 0$; H_1 : $\rho \neq 0$
- 2. 计算检验的统计量

$$t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}} = \frac{0.9987\sqrt{13-2}}{\sqrt{1-0.9987^2}} = 64.9809$$

3. 根据显著性水平 α =0.05,由于 |t|=64.9809> $t_{\alpha/2}$ (13-2)=2.201,拒绝 H_0 ,人均消费 金额与人均国民收入之间的相关关系显著

(相关系数检验表的使用)

- 注意:
- 1、两个变量都应服从正态分布。
- 2、相关系数应进行检验。
- 3、观测值尽可能多。
- 4、正确理解相关系数的含义。

相关分析的Spss过程

- 菜单式操作
- Correlate:

Bivariate功能项、

Partial功能项、

Distance功能项

§ 8.6 可直线化的一元非线性回归

确定曲线类型

$$R^{2} = 1 - \frac{\sum (y - \hat{y})^{2}}{\sum (y - \bar{y})^{2}}$$

决定系数也称作相关指数。反映了回归曲线拟合度的高低。

如果不确定曲线类型,最好多试几种,分别计算 并比较R²。

1、倒数函数

函数形式

变换

$$\hat{y} = \frac{a + bx}{x}$$

$$y' = xy$$

$$\hat{y} = \frac{1}{a + bx}$$

$$y' = 1/y$$

$$\hat{y}' = a + bx$$

$$\hat{y} = \frac{x}{a + bx}$$

$$y' = x/y$$

注意:不能有使分母为0的观测值

2、对数变换

•例:细菌生长数量(Y)与时间(X)

$$Y = ae^{bX}$$
 指数函数

将等式两边取对数:

$$\ln Y = \ln a + bX$$

 $\Rightarrow Y' = \ln Y, a' = \ln a,$ 则变换为:
 $Y' = a' + bX$

$$Y = ab^{X}$$
 $Y' = \ln Y, a' = \ln a, b' = \ln b$ $Y' = a' + b'X$

• 幂函数 $Y = dX^b$ 将等式两边取对数: $\ln Y = \ln d + b \cdot \ln X$ $\Rightarrow Y' = \ln Y, a' = \ln d, X' = \ln X, 则有: <math display="block">Y' = a' + bX$

• 对数函数 $Y = a + b \cdot \lg X$ 令 $X' = \lg X$,有: Y = a + bX'

•例:在突变实验中,用不同剂量的射线照射植物的种子,发现苗期高度与成活株之间有一定的关系。用X线照射大麦的种子,记处理株第一叶平均高度占对照株高度的百分数为X,存活百分数为Y,得到结果:

X	28	32	40	50	60	72	80	80	85
Y	8	12	18	28	30	55	61	85	80

(1) 绘制散点图, 判断曲线类型:

(2) 进行对数变换,得到回归方程:

 $\phi Y' = \lg Y, X' = \lg X$, 进行线性回归分析:

X	,	1.45	1.51	1.60	1.70	1.78	1.86	1.90	1.90	1.93
Y	,	0.90	1.08	1.26	1.45	1.48	1.74	1.79	1.93	1.90

回归方程
$$\hat{Y}' = -1.9582 + 1.9932X'$$

$$\lg \hat{Y} = -1.9582 + 1.9932 \cdot \lg X$$

$$\hat{Y} = 0.011X^{1.9932}$$

(3) 直线化回归方程的假设检验:

$$F = \frac{SSR/1}{SSE/n - 2} = \frac{\sum_{i=1}^{n} (\hat{y}'_{i} - \overline{y}')^{2}/1}{\sum_{i=1}^{n} (y'_{i} - \hat{y}'_{i})^{2}/7}$$

X'	1.45	1.51	1.60	1.70	1.78	1.86	1.90	1.90	1.93
Y'	0.90	1.08	1.26	1.45	1.48	1.74	1.79	1.93	1.90
\widehat{Y}'	0.93	1.05	1.23	1.43	1.59	1.75	1.83	1.83	1.89

$$F = \frac{1.038/1}{0.027/7} = 268.63 > F_{0.01}(1,7) = 12.25$$

回归关系极显著。

(4) 计算曲线回归方程的决定系数:

$$\hat{Y} = 0.011X^{1.9932}$$

X	28	32	40	50	60	72	80	80	85
Y	8	12	18	28	30	55	61	85	80
Ŷ	8.43	11.00	17.16	26.78	38.51	55.39	68.33	68.33	77.11

$$R^{2} = 1 - \frac{\sum (y - \hat{y})^{2}}{\sum (y - \bar{y})^{2}} = 1 - \frac{415.90}{6794.89} = 0.9388$$

表明苗期高度与存活百分比的回归关系用该指数函数进行描述,决定系数达0.9388,该函数拟合较好。

3、Logistic生长曲线

$$y = \frac{K}{1 + ae^{-bx}}$$

大草履虫实验种群的增长和用逻辑斯谛方程拟合的结果 (仿Allee等,1949)

$$y = \frac{K}{1 + ae^{-bx}} \qquad \longrightarrow \qquad \frac{K - y}{y} = ae^{-bx}$$

两边取对数:
$$\ln \frac{K - y}{y} = \ln a - bx$$

$$\Rightarrow Y' = \ln \frac{K-y}{y}, a' = \ln a, b' = -b, 则有:$$
 $y' = a' + b'x$

- K 值的确定:
- 1) 若y是累积频率,可用K=100;
- 2) 若y表示生长量时,可取3对 x 等间距的观测值 (x_1,y_1) 、 (x_2,y_2) 和 (x_3,y_3) ,代入Logistic方程可得:

$$\frac{y_2(K-y_1)}{y_1(K-y_2)} = \left[\frac{y_3(K-y_2)}{y_2(K-y_3)}\right]^{\frac{x_1-x_2}{x_2-x_3}}$$

$$K = \frac{y_2^2(y_1 + y_3) - 2y_1y_2y_3}{y_2^2 - y_1y_3}$$

• 例:下表示测定某种肉鸡在良好的生长条件下生长过程的数据资料。试配合Logistic生长曲线方程。

x/周次	2	4	6	8	10	12	14
Y /kg	0.3	0.86	1.73	2.2	2.47	2.67	2.8

解: (1) 求K值

取x为等间距的 $x_1=2$, $x_2=8$, $x_3=14$, 由公式得:

$$K = \frac{2.2^2 \times (0.3 + 2.8) - 2 \times 0.3 \times 2.2 \times 2.8}{2.2^2 - 0.3 \times 2.8} = 2.827$$

x/周次	2	4	6	8	10	12	14
Y /kg	0.3	0.86	1.73	2.2	2.47	2.67	2.8
Υ'	2.131	0.827	-0.456	-1.255	-1.934	-2.834	-4.642

(3) 计算 x 和 y' 的相关系数:

$$r = \frac{\sum (x - \bar{x})(y - \bar{y}')}{\sqrt{\sum (x - \bar{x})^2 \cdot \sum (y - \bar{y}')^2}} = -0.9914$$

$$|r| = 0.9914 > r_{0.01}(5) = 0.874$$

说明 x 与 y' 的直线关系是极显著的,用Logistic 生长曲线拟合原数据是合适的。

(4) 求a和b值,建立Logistic方程:

$$b' = \frac{S_{XY'}}{S_{XX}} = \frac{-58.2363}{112} = -0.520$$

$$a' = \bar{y}' - b'\bar{x} = -1.166 - (-0.520) \times 8 = 2.994$$

$$a = e^{a'} = e^{2.994} = 19.965$$

$$b = -b' = 0.52$$

所以,有:

$$\hat{y} = \frac{2.827}{1 + 19.965e^{-0.52x}}$$

The End