Econ 703 Homework 4

Fall 2008, University of Wisconsin-Madison

Prof. Raymond Deneckere Due on Oct. 2, Thu. (in the class)

1. Prove the following two statements:

(a)
$$(\cap_{i\in I}X_i)\cup(\cap_{j\in J}Y_j)=\cap_{i\in I, j\in J}(X_i\cup Y_j);$$

(b)
$$(\bigcup_{i \in I} X_i) \cap (\bigcup_{j \in J} Y_j) = \bigcup_{i \in I, j \in J} (X_i \cap Y_j),$$

where I and J are arbitrary indexsets.

- **2.** Consider the metric space $(\mathbb{R}^n, \|\cdot\|_2)$, where $\|\cdot\|_2$ is the l_2 -norm. Under what conditions is $\|x+y\|_2 = \|x\|_2 + \|y\|_2$? Prove your statement.
- **3.** Consider the two metric spaces (\mathbb{R}^n, d_2) and (\mathbb{R}^n, d_∞) , where d_2 and d_∞ are the metrics derived from the l_2 and the l_∞ norm, respectively. Prove that an open ball in (\mathbb{R}^n, d_2) is an open set in (\mathbb{R}^n, d_∞) , and conversely that an open ball in (\mathbb{R}^n, d_∞) is an open set in (\mathbb{R}^n, d_2) . Use this result to prove that the collection of open subsets of (\mathbb{R}^n, d_2) is the same as the collection of open subsets of (\mathbb{R}^n, d_∞) .
- **4.** Prove that every open set in (\mathbb{R}^n, d_2) is infinite. (Hint: Use the result from problem 3)
- **5.** Is every point of every open subset E of (\mathbb{R}^n, d_2) a limit point of E? What if E is closed?