क्रम संयोगाय विकारमञ्जू	School:Campus:		
RATE THROUGH HUMBER	Academic Year: Subject Name:	Subject Code:	
CENTURION UNIVERSITY Shaping Lives			
Empowering Communities:	Date:		

Applied and Action Learning

(Learning by Doing and Discovery)

Name of the Experiment: Build the Network – Peer-to-Peer Simulation *Coding Phase: Pseudo Code / Flow Chart / Algorithm

1. Initialize Network

- > Define the number of nodes (peers) participating in the network.
- Assign each node a unique ID and an empty ledger/memory.

2. Create Connections

- Each node connects to a few other nodes randomly to simulate a mesh network.
- Maintain a list of peers each node can send/receive messages from.

3. Message Broadcast

- ➤ One node (the initiator) sends a transaction or message to its peers.
- Each peer forwards the message to its connected nodes (except the sender).

4. Verification Process

- Each node validates the message (e.g., checks if it's new and not already received).
- > Invalid or duplicate messages are ignored.

5. Ledger Update

➤ If the message (transaction/block) is valid, it is added to the node's ledger.

6. Consensus (Optional)

➤ If simulating consensus, use a simple rule such as: the first valid message received by a majority is accepted; nodes reject conflicting data.

7. End Simulation

> Display how many nodes successfully received and accepted the message and show that the network synchronized without a central server.

* Software used:

- Metamask Wallet
- > Vs code
- Word editor
- Microsoft edge for research

Page	No
------	----

* Implementation Phase: Final Output (no error)

Input:

- Number of peers (e.g., 6).
- > Establish peer connections.
- Node 1 broadcasts a message.
- Nodes 2–6 receive and validate the message.
- Ledger updated in each node.

Output:

- ➤ Message broadcast from Node 1.
- ➤ Node 2 received message from Node 1.
- ➤ Node 3 received message from Node 2.
- ➤ Node 4 received message from Node 3.
- ➤ All nodes synchronized successfully.

* Observation:

- ➤ The message reaches all nodes without any central server.
- Duplicate messages are automatically avoided using validation.
- The network demonstrates decentralization, fault tolerance, and equal node importance.
- Communication delay or missing peers can affect synchronization similar to real blockchain
- > networks.
- When consensus rules are added, the simulation behaves like a mini blockchain environment.

ASSESSMENT

Rubrics	Full Mark	Marks Obtained	Remarks
Concept	10		
Planning and Execution/Practical Simulation/ Programming	10		
Result and Interpretation	10		
Record of Applied and Action Learning	10		
Viva	10		
Total	50		

_				c. 1		
	เคท	aturo	of the	Stud	ont .	
	ıuıı	uluic	UI LIIC	JLUU	CIIL.	

Name:

Signature of the Faculty: Regn. No. :

^{*} As applicable according to the experiment.

Two sheets per experiment (10-20) to be used