AMATH 581: Homework 3

November 5, 2018

A is a numerical approximation to the Laplacian: $\partial_x^2 + \partial_y^2$.

- use the five point stencil (second-order central difference)
- $\Delta x = \Delta y = (10 (-10))/n = 20/8$.
- *A* is $N \times N$, where N = 8 * 8 = 64.
- For derivation: see notes page 36-38. Code sample: page 55-56.

B is an approximation to the operator: ∂_x , C approximates ∂_y .

• use the second-order approximation:

$$\frac{\partial \omega}{\partial x} = \frac{\omega(x + \Delta x, y) - \omega(x - \Delta x, y)}{2\Delta x}$$
$$\frac{\partial \omega}{\partial y} = \frac{\omega(x, y + \Delta y) - \omega(x, y - \Delta y)}{2\Delta y}$$

- B and C are 64×64 .
- Derivation: notes page 60-61.

- Fmat is a Fourier matrix of size 400×400 .
- Only the center piece (80×80) should be permuted back. The center Fmat(161:240,161:240) is divided into 16 blocks of size 20×20 .
- Use the permutation vector to permute these 16 blocks.
 i.e. place the 7th block in the location of the first block, place the 11th block in the location of the second block, etc.
- Take the absolute value of the permuted Fmat and save as A4.dat

- Use ifftshift to shift the permuted matrix (without absolute value) from center to corners.
- Use ifft2 to perform inverse Fourier transform.
- Take the absolute value of the transformed matrix and save as A5.dat
- To visualize, use uint8(abs(transformed matrix)).