# Maxwell: bringing cloud-powered electromagnetic simulations to Matlab

### Advanced interface tutorial

- Advanced interface quick-start
- Examples: Maxwell in action
- How Maxwell uses the cloud (EC2)
- How Maxwell solves electromagnetics

## **Definitions**

- What is Maxwell?
  - a Matlab toolset
  - that uses Amazon's Elastic Compute Cloud (EC2)
  - to solve 3D frequency-domain electromagnetic simulations.

#### • Features:

- Cryptographically-secure communication (https)
- Full control over all simulation parameters
- GPU-acceleration provided by Nvidia Tesla GPUs
- Queueing system to allow for full usage of cluster
- Scalable to hundreds of simultaneous simulations running on hundreds of nodes.

Maxwell provides two user interfaces: Advanced and other

- advanced:
- other:

This presentation covers the advanced interface

## Advanced interface quick-start

• Sign up at

```
% Download maxwell.m
>> urlwrite('m.lightlabs.co', 'maxwell.m');
% Provide AWS credentials and launch a 2-node cluster.
>> maxwell.aws_credentials('aws-access-id', 'aws-secret-key');
>> maxwell.launch('cluster-name', 2);
% Run simulation on 1 node.
>> [E, H] = maxwell.solve('cluster-name', 1, ...);
% Terminate cluster
>> maxwell.terminate('cluster-name');
```

## Wait, what just happened?

- urlwrite() downloaded the advanced interface for Maxwell,
- maxwell.aws\_credentials() provided the AWS credentials that
- maxwell.launch() needed to create a cluster on EC2.
- maxwell.solve() solved the electromagnetic simulation on the cluster and downloaded the resulting electromagnetic fields, and
- maxwell.terminate() terminated the EC2 cluster.

# **Examples: Maxwell in action**

# How Maxwell uses the cloud (EC2)

- Maxwell uses your Amazon Web Services (AWS) account to
  - Create a custom Amazon EC2 cluster, and
  - Solve electromagnetic simulations on it;

all without leaving your local Matlab environment.

- To get started, you need to
  - sign up for an AWS account,
  - retrieve your AWS security credentials, and
  - purchase the custom Maxwell Amazon Machine Image (AMI).

For detailed instructions see Website.

- Maxwell's advanced interface comprises of just five commands:
  - maxwell.aws\_credentials()
  - maxwell.launch()
  - maxwell.solve()
  - maxwell.solve\_async()
  - maxwell.terminate()

for full documentation use "doc maxwell.command" in Matlab.

- maxwell.aws\_credentials('aws-key-id', 'aws-secret-key');
  - Stores the security credentials linked to your AWS account locally
  - Security credentials are used to launch and terminate clusters
  - Transmitted over https and never stored on server-side
  - Tutorial on obtaining your credentials at Website.



- maxwell.launch('cluster-name', num\_nodes);
  - Creates an EC2 cluster consisting of 1 master node and num\_nodes worker nodes

- 'cluster-name' parameter allows for using multiple clusters at once.
- The launch can be monitored manually from the EC2 Management Console at console.aws.amazon.com/ec2

#### The master node is launched

- with the paid Maxwell Amazon Machine Image (AMI),
- as an on-demand instance, and
- as an m1.medium instance.

#### The worker nodes are launched

- using a public (free) AMI,
- as spot request instances (in order to achieve up to 80% savings), and
- as cg1.4xlarge instances.

Note that the use of spot requests for worker nodes may result in sudden cluster termination, in this case the cluster will need to be terminated and a new cluster should be started.

- Naturally, a cluster can only run simulations on the nodes that it contains (i.e. you can't run a 5-node simulation on a 4-node cluster)
- However, each cluster contains a built-in queueing system that allows for multiple jobs to be handled simultaneously (i.e. 10 2-node simulations on a 4-node cluster is okay)
- Lastly, Amazon, by default, caps the number of worker nodes allows at 10; to request more, go to aws.amazon.com/contact-us/ec2-request/ and request the limit of cg1.4xlarge spot requests to be increased for your account.



- [E, H] = maxwell.solve('cluster-name', n, ...);
  - Solves an electromagnetic simulation on n nodes of cluster
     'cluster-name'

- Additional simulation parameters "..." described in following section
- Returns as solution both electric and magnetic fields
- For full documentation of this function see Website
- maxwell.solve() proceeds as follows:
  - Transfers simulation parameters to the specified cluster
  - Waits for worker nodes to be provisioned for the simulation
  - Continues to wait as simulation is executed on worker nodes
  - Retrieves simulation results back to Matlab
- maxwell.solve() features
  - complete integration within Matlab
  - no need to deal with simulations files
  - real-time plot of simulation progress



- callback = maxwell.solve\_async('cluster-name', n, ...);
  - Asynchronous solve that returns a callback function instead of waiting for the simulation to complete

 The callback function is then used to check for solve completion and to retrieve the simulation results:

```
[is_finished, E, H] = callback();
```

- If the solve has not finished, is\_finished is set to false and E and H both return empty cell arrays
- If the solve has indeed finished, is\_finished is set to true and E
   and H contain the solution fields to the problem
- The additional simulation parameters "..." are identical to those used in maxwell.solve() and are detailed in the following section

• The purpose of maxwell.solve\_async() is to allow even single-threaded Matlab users to simultaneously execute a virtually unlimited number of simulations.

```
% Start n simulations.
cb{1} = maxwell.solve_async(...);
...
cb{n} = maxwell.solve_async(...);

% Wait for the simulations to complete.
[is_finished, E, H] = cb{1}();
...
CHECK THIS!!
```

- maxwell.terminate('cluster-name');
  - Terminates the cluster 'cluster-name'
  - Note that AWS instances are charged by the hour and that partial hours are charged the full hour.
- Terminations (and launches) can be monitored manually from the EC2 management console at console.aws.amazon.com/ec2
- Terminations can also be executed manually from the console, although it is recommended to perform the full termination from Matlab in order to tie up all loose ends.

## How Maxwell solves electromagnetics

- In this section we detail the simulation parameters used by the maxwell.solve() and maxwell.solve\_async() functions
- Along with the 'cluster-name' and n parameters, both functions support the following parameters which describe the physical simulation:
  - omega
  - d\_prim, d\_dual, s\_prim, s\_dual
  - mu, epsilon
  - E, J
  - max\_iters, err\_thresh

and can be understood from the master equation:

$$\nabla \times \mu^{-1} \nabla \times E - \omega^2 \epsilon E = -i\omega J \tag{1}$$

- Frequency parameter: omega
  - The angular frequency of the simulation
  - Since Maxwell employs a frequency-domain solver, the exact frequency for the simulation can be set with this parameter
  - is equal to  $2\pi f$  where f is in units of Hz

# The Yee cell



- Spatial grid parameters: d\_prim, d\_dual, s\_prim, s\_dual
  - Controls the spatial grid of the simulation
  - d\_prim and d\_dual are typically used to set the spatial grid within the simulation
  - s\_prim and s\_dual are typically used to set the spatial grid within the absorbing layers at the edges of the simulation.
  - In the end, both d and s parameters are essentially interchangeable
  - d\_prim and s\_prim refer to the distances between  $E_w$  in direction w where w=x,y,z (e.g. distances between  $E_x$  in the x direction)
  - d\_dual and s\_dual refer to the distances in directions other than w of adjacent  $E_w$  (e.g. distances between  $E_y$  in the x direction)
  - Lastly, Maxwell uses a periodic wrap-around grid, so that the first \_prim and last \_dual entries correspond to the the wrap-around distances from the last to the first Yee cells

- Material parameters: mu, epsilon
  - defined at H- and E- field points on the Yee grid respectively
- Field parameters: E, J
  - E allows you to set the initial value of the E-field for the solver.
  - E = 0 works for most cases, but a random initial field is needed in other cases.
  - J describes the current source in the master equation and is situated at the E-field point on the Yee grid.
- Convergence parameters: max\_iters, err\_thresh
  - max\_iters determines the maximum number of iterations before the solver terminates
  - err\_thresh determines the error threshold below with the solver termiantes, typically set to 1e-6.