

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Burcau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

5/00, 5/04	nternational Publication Date: 16 December 1999 (16.12.99) 1) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG,		
(22) International Filing Date: 26 May 1999 (26.05.99) (30) Priority Data: 60/088,549 8 June 1998 (08.06.98) US 60/125,073 17 March 1999 (17.03.99) US 60/125,054 18 March 1999 (18.03.99) US (71) Applicant: DCV, INC., doing business as BIO-TECHNICAL RESOURCES [US/US]; 1035 South Seventh Street, Mani-	BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG KP, KR, KZ, LC, LK, LK, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG		
RESOURCES [US/US]; 1035 South Seventh Street, Mani-	ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI pater		
(72) Inventors: BERRY, Alan; 126 Beverly Road, Bloomfield, NJ 07003 (US). RUNNING, Jeffrey, A.; 612 St. Clair Street, Manitowoc, WI 54220 (US). SEVERSON, David, K.; 1816 26th Street, Two Rivers, WI 54241 (US). BURLINGAME, Richard, P.; 808 North 9th Street, Manitowoc, WI 54220 (US).	Published With international search report. Before the expiration of the time limit for amending claims and to be republished in the event of the receip amendments.		

(54) Title: VITAMIN C PRODUCTION IN MICROORGANISMS AND PLANTS

(57) Abstract

A biosynthetic method for producing vitamin C (ascorbic acid, L-ascorbic acid, or AA) is disclosed. Such a method includes fermentation of a genetically modified microorganism or plant to produce L-ascorbic acid. In particular, the present invention relates to the use of microorganisms and plants having at least one genetic modification to increase the action of an enzyme involved in the ascorbic acid biosynthetic pathway. Included is the use of nucleotide sequences encoding epimerases, including the endogenous GDP-D-mannose:GDP-L-galactose epimerase from the L-ascorbic acid pathway and homologues thereof for the purposes of improving the biosynthetic production of ascorbic acid. The present invention also relates to genetically modified microorganisms, such as strains of microalgae, bacteria and yeast useful for producing L-ascorbic acid, and to genetically modified plants, useful for producing consumable plant food products.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM .	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	S7.	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Моласо	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GII	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece .		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Maii	TT	Trinklad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine ·
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	· MW	Malawi	us	United States of America
CA	Canada	ľľ	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Vict Nam
CG	Congo	KE	Kenya	NI.	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	7.W	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		•
CU	Cuba	KZ	Kazakstan	RO	Romania		Marie Carlo
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 99/64618 PCT/US99/11576

5

10

15

20

25

30

VITAMIN C PRODUCTION IN MICROORGANISMS AND PLANTS

FIELD OF THE INVENTION

The present invention relates to vitamin C (L-ascorbic acid) production using genetically modified microorganisms and plants. In particular, the present invention relates to the use of nucleotide sugar epimerase enzymes for the biological production of ascorbic acid in plants and microorganisms.

BACKGROUND OF THE INVENTION

Nearly all forms of life, both plant and animal, either synthesize ascorbic acid (vitamin C) or require it as a nutrient. Ascorbic acid was first identified to be useful as a dietary supplement for humans and animals for the prevention of scurvy. Ascorbic acid, however, also affects human physiological functions such as the adsorption of iron, cold tolerance, the maintenance of the adrenal cortex, wound healing, the synthesis of polysaccharides and collagen, the formation of cartilage, dentine, bone and teeth, the maintenance of capillaries, and is useful as an antioxidant.

For use as a dietary supplement, ascorbic acid can be isolated from natural sources, such as rosehips, synthesized chemically through the oxidation of L-sorbose, or produced by the oxidative fermentation of calcium D-gluconate by Acetobacter suboxidans. Considine, "Ascorbic Acid," Van Nostrand's Scientific Encyclopedia, Vol. 1, pp. 237-238, (1989). Ascorbic acid (predominantly intracellular) has also been obtained through the fermentation of strains of the microalga, Chlorella pyrenoidosa. See U.S. Patent No. 5,001,059 by Skatrud, which is assigned to the assignee of the present application. It is believed that ascorbic acid is produced inside the chloroplasts of photosynthetic microorganisms and functions to neutralize energetic electrons produced during photosynthesis. Accordingly, ascorbic acid production is known in photosynthetic organisms as a protective mechanism.

Therefore, products and processes which improve the ability to biosynthetically produce ascorbic acid are desirable and beneficial for the improvement of human health.

SUMMARY OF THE INVENTION

One embodiment of the present invention relates to a method for producing ascorbic acid or esters thereof in a microorganism. The method includes the steps of: (a)

10 -

15

20

25

culturing a microorganism having a genetic modification to increase the action of an enzyme selected from the group of hexokinase, glucose phosphate isomerase, phosphomannose isomerase, phosphomannomutase, GDP-D-mannose pyrophosphorylase, GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and/or L-galactono-γ-lactone dehydrogenase; and (b) recovering the ascorbic acid or esters produced by the microorganism. Preferably, the genetic modification is a genetic modification to increase the action of an enzyme selected from the group of GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and/or L-galactono-γ-lactone dehydrogenase. In one embodiment of the method of the present invention, the microorganism further includes a genetic modification to decrease the action of an enzyme having GDP-D-mannose as a substrate, other than GDP-D-mannose:GDP-L-galactose epimerase. Such a genetic modification can include, for example, a genetic modification to decrease the action of GDP-D-mannose-dehydrogenase.

In one embodiment, the genetic modification is a genetic modification to increase the action of an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose, which can include GDP-D-mannose:GDP-L-galactose epimerase. In one embodiment, the epimerase binds NADPH. In one embodiment of this method, the genetic modification includes transformation of the microorganism with a recombinant nucleic acid molecule that expresses the epimerase. Such an epimerase can have a tertiary structure that substantially conforms to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. Preferably, the epimerase has a structure having an average root mean square deviation of less than about 2.5 Å, and more preferably less than about 1 Å, over at least about 25% of Cα positions of the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.

In one embodiment, the epimerase comprises a substrate binding site having a tertiary structure that substantially conforms to the tertiary structure of the substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by

10

15

20

25

30

atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. Such a substrate binding site preferably has a tertiary structure with an average root mean square deviation of less than about 2.5 Å over at least about 25% of Ca positions of the tertiary structure of a substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.

In another embodiment, the epimerase comprises a catalytic site having a tertiary structure that substantially conforms to the tertiary structure of the catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. Such a catalytic site preferably has a tertiary structure with an average root mean square deviation of less than about 1 Å over at least about 25% of Cα positions of the tertiary structure of a catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. The catalytic site preferably includes the amino acid residues serine, tyrosine and lysine and in one embodiment, the tertiary structure positions of the amino acid residues serine, tyrosine and lysine substantially conform to tertiary structure positions of residues Ser107, Tyr136 and Lys140, respectively, as represented by atomic coordinates in Brookhaven Protein Data Bank Accession Code 1bws.

In yet another embodiment of this method, the epimerase comprises an amino acid sequence that aligns with SEQ ID NO:11 using a CLUSTAL alignment program, wherein amino acid residues in the amino acid sequence align with 100% identity with at least about 50%, and in another embodiment with at least about 75%, and in yet another embodiment with at least about 90% of non-Xaa residues in SEQ ID NO:11. In another embodiment, the epimerase comprises an amino acid sequence having at least 4 contiguous amino acid residues that are 100% identical to at least 4 contiguous amino acid residues of an amino acid sequence selected from the group of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8 and SEQ ID NO:10. In yet another embodiment, the recombinant nucleic acid molecule comprises a nucleic acid sequence comprising at least about 12 contiguous nucleotides having 100% identity with at least about 12

10

15

20

25

30

contiguous nucleotides of a nucleic acid sequence selected from the group of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 and SEQ ID NO:9.

In yet another embodiment of this method of the present invention, the epimerase comprises an amino acid sequence having a motif: Gly-Xaa-Xaa-Gly-Xaa-Xaa-Gly. In yet another embodiment, the recombinant nucleic acid molecule comprises a nucleic acid sequence that is at least about 15% identical, and in another embodiment, at least about 20% identical, and in another embodiment, at least about 25% identical, to a nucleic acid sequence selected from the group of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 and SEQ ID NO:9, as determined using a Lipman-Pearson method with Lipman-Pearson standard default parameters.

In yet another embodiment of this method of the present invention, the recombinant nucleic acid molecule comprises a nucleic acid sequence that hybridizes under stringent hybridization conditions to a nucleic acid sequence encoding a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase. The nucleic acid sequence encoding the GDP-4-keto-6-deoxy-D-mannose epimerase/reductase includes nucleic acid sequences selected from the group of SEQ ID NO:1, SEQ ID NO:3 and SEQ ID NO:5, and the GDP-4-keto-6-deoxy-D-mannose epimerase/reductase can include an amino acid sequence selected from the group of SEQ ID NO:2, SEQ ID NO:4 and SEQ ID NO:6.

In one embodiment of the method of the present invention, the microorganism is selected from the group of bacteria, fungi and microalgae. In one embodiment, the microorganism is acid-tolerant. Preferred bacteria include, but are not limited to Azotobacter and Pseudomonas. Preferred fungi include, but are not limited to, yeast, including, but not limited to Saccharomyces yeast. Preferred microalgae include, but are not limited to, microalgae of the genera Prototheca and Chlorella, with microalgae of the genus Prototheca being particularly preferred.

In yet another embodiment of the method of the present invention, the microorganism is acid-tolerant and the step of culturing is conducted at a pH of less than about 6.0, and more preferably, at a pH of less than about 5.5, and even more preferably, at a pH of less than about 5.0. The step of culturing can be conducted in a fermentation medium that comprises a carbon source other than D-mannose in one embodiment, and

10

15

20

25

30

in another embodiment, the step of culturing is conducted in a fermentation medium that comprises glucose as a carbon source.

In yet another embodiment of the present method, the step of culturing is conducted in a fermentation medium that is magnesium (Mg) limited. Preferably, the step of culturing is conducted in a fermentation medium that is Mg limited during a cell growth phase. In one embodiment, the fermentation medium includes less than about 0.5 g/L of Mg during a cell growth phase, and more preferably, less than about 0.2 g/L of Mg during a cell growth phase, and even more preferably, less than about 0.1 g/L of Mg during a cell growth phase.

Another embodiment of the present invention relates to a microorganism for producing ascorbic acid or esters thereof. The microorganism has a genetic modification to increase the action of an enzyme selected from the group of hexokinase, glucose phosphate isomerase, phosphomannose isomerase, phosphomannomutase, GDP-D-mannose pyrophosphorylase, GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and/or L-galactono-γ-lactone dehydrogenase. Preferably, the genetic modification is a genetic modification to increase the action of an enzyme selected from the group of GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and/or L-galactono-γ-lactone dehydrogenase, and even more preferably, to increase the action of GDP-D-mannose:GDP-L-galactose epimerase.

In one embodiment, the microorganism has been genetically modified to express a recombinant nucleic acid molecule encoding an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose, wherein the epimerase has a tertiary structure having an average root mean square deviation of less than about 2.5 Å over at least about 25% of Cα positions of the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. In another embodiment, the microorganism has been genetically modified to express a recombinant nucleic acid molecule encoding an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose, wherein the epimerase comprises an amino acid sequence that aligns with SEQ ID NO:11 using a

10

15

20

25

30

CLUSTAL alignment program, wherein amino acid residues in the amino acid sequence align with 100% identity with at least about 50% of non-Xaa residues in SEQ ID NO:11. Preferred microorganisms are disclosed as for the method discussed above.

Yet another embodiment of the present invention relates to a plant for producing ascorbic acid or esters thereof. Such a plant has a genetic modification to increase the action of an enzyme selected from the group of hexokinase, glucose phosphate isomerase, phosphomannose isomerase, phosphomannomutase, GDP-D-mannose pyrophosphorylase, GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and/or L-galactono-\gamma-lactone dehydrogenase. In a preferred embodiment, the genetic modification is a genetic modification to increase the action of an enzyme selected from the group of GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and/or L-galactono-\gamma-lactone dehydrogenase, and in a more preferred embodiment, the genetic modification is a genetic modification to increase the action of GDP-D-mannose:GDP-L-galactose epimerase.

In one embodiment, the plant further comprises a genetic modification to decrease the action of an enzyme having GDP-D-mannose as a substrate other than GDP-Dmannose:GDP-L-galactose epimerase. Such a genetic modification includes a genetic modification to decrease the action of GDP-D-mannose-dehydrogenase. Such a plant also includes a plant that has been genetically modified to express a recombinant nucleic acid molecule encoding an epimerase that catalyzes conversion of GDP-D-mannose to GDP-Lgalactose, wherein the epimerase has a tertiary structure having an average root mean square deviation of less than about 2.5 Å over at least about 25% of Cα positions of the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. In another embodiment, such a plant has been genetically modified to express a recombinant nucleic acid molecule encoding an epimerase that catalyzes conversion of GDP-Dmannose to GDP-L-galactose, wherein the epimerase comprises an amino acid sequence that aligns with SEQ ID NO:11 using a CLUSTAL alignment program, wherein amino acid residues in the amino acid sequence align with 100% identity with at least about 50% of non-Xaa residues in SEQ ID NO:11.

15

20

25

In one embodiment, a plant for producing ascorbic acid or esters thereof according to the present invention is a microalga. Preferred microalgae include, but are not limited to microalgae of the genera *Prototheca* and *Chlorella*, with microalga of the genus *Prototheca* being particularly preferred. In another embodiment, the plant is a higher plant, with consumable higher plants being more preferred.

BRIEF DESCRIPTION OF THE FIGURES

- Fig. 1A is a schematic drawing of the pathway from glucose to GDP-D-mannose in plants.
- Fig. 1B is a schematic drawing of the pathway from GDP-D-mannose to L-10 galactose-1-phosphate in plants.
 - Fig. 1C is a schematic drawing of the pathway from L-galactose to L-ascorbic acid in plants.
 - Fig. 2A is a schematic drawing of selected carbon flow from glucose in Prototheca.
 - Fig. 2B is a schematic drawing of selected carbon flow from glucose in *Prototheca*.
 - Fig. 3 is a schematic drawing that shows the lineage of mutants derived from *Prototheca moriformis* ATCC 75669, and their ability to produce L-ascorbic acid.
 - Fig. 4 is a bar graph illustrating the conversion of substrates by resting cells of strain NA45-3 following growth in media containing various magnesium concentrations and resuspension in media containing various magnesium concentrations.
 - Fig. 5 is a line graph showing the relationship between specific ascorbic acid formation in cultures of *Prototheca* strains and the specific activity of GDP-D-mannose:GDP-L-galactose epimerase in extracts prepared from cells harvested from the same cultures.
 - Fig. 6 is a line graph showing the relationship between specific epimerase activity and the degree of magnesium limitation in two strains, ATCC 75669 and EMS13-4.
 - Fig. 7 depicts the overall catalytic mechanism of GDP-D-mannose:GDP-L-galactose epimerase proposed by Barber (1979, J. Biol. Chem. 254:7600-7603).

10

15

20

25

30

Fig. 8A depicts the catalytic mechanism of GDP-D-mannose-4,6-dehydratase (converts GDP-D-mannose to GDP-4-keto-6-deoxy-D-mannose).

Fig. 8B depicts the catalytic mechanism of GDP-4-keto-6-deoxy-D-mannose epimerase/reductase (converts GDP-4-keto-6-deoxy-D-mannose to GDP-L-fucose) (Chang, et al., 1988, *J. Biol. Chem.* 263:1693-1697; Barber, 1980, *Plant Physiol.* 66:326-329).

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to a biosynthetic method and production microorganisms and plants for producing vitamin C (ascorbic acid, L-ascorbic acid, or AA). Such a method includes fermentation of a genetically modified microorganism to produce L-ascorbic acid. In particular, the present invention relates to the use of nucleotide sequences encoding epimerases, including the endogenous GDP-D-mannose:GDP-L-galactose epimerase from the L-ascorbic acid pathway, as well as epimerases having structural homology (e.g., by nucleotide/amino acid sequence and/or tertiary structure of the encoded protein) to GDP-4-keto-6-deoxy-D-mannose epimerase/reductases, or UDP-galactose 4-epimerases, for the purposes of improving the biosynthetic production of ascorbic acid. The present invention also relates to genetically modified microorganisms, such as strains of microalgae, bacteria and yeast useful for producing L-ascorbic acid, and to genetically modified plants, useful for producing consumable plant food products.

One embodiment of the present invention relates to a method to produce L-ascorbic acid by fermentation of a genetically modified microorganism. This method includes the steps of (a) culturing in a fermentation medium a microorganism having a genetic modification to increase the action of an enzyme selected from the group of hexokinase, glucose phosphate isomerase, phosphomannose isomerase, phosphomannomutase, GDP-mannose pyrophosphorylase, GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and L-galactono- γ -lactone dehydrogenase; and (b) recovering L-ascorbic acid or esters thereof. The various enzymes in this list represent the enzymes involved in the vitamin C biosynthetic pathway in plants. It is uncertain at this time

10

15

20

25

30

whether the enzyme represented by GDP-L-galactose phosphorylase is actually a phosphorylase or a pyrophosphorylase (i.e., GDP-L-galactose pyrophosphorylase). Therefore, use of the term "GDP-L-galactose phosphorylase" herein refers to either GDP-L-galactose phosphorylase or GDP-L-galactose pyrophosphorylase. In one aspect of the invention, this method includes the step of culturing in a fermentation medium a microorganism having a genetic modification to increase the action of an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose. This aspect of the present invention is discussed in detail below.

Another embodiment of the present invention relates to a genetically modified microorganism for producing L-ascorbic acid or esters thereof. Another embodiment of the present invention relates to a genetically modified plant for producing L-ascorbic acid or esters thereof. Both genetically modified microorganisms (e.g., bacteria, yeast, microalgae) and plants (e.g., higher plants, microalgae) have a genetic modification to increase the action of an enzyme selected from the group of hexokinase, glucose phosphate isomerase, phosphomannose isomerase, phosphomannomutase, GDP-mannose pyrophosphorylase, GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and/or L-galactono-γ-lactone dehydrogenase. In a preferred embodiment, both genetically modified microorganisms (e.g., bacteria, yeast, microalgae) and plants (e.g., higher plants, microalgae) have a genetic modification to increase the action of an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose. In one embodiment, the genetic modification includes the transformation of the microorganism or plant with the epimerase as described above.

To produce significantly high yields of L-ascorbic acid by the method of the present invention, a plant and/or microorganism is genetically modified to enhance production of L-ascorbic acid. As used herein, a genetically modified plant (such as a higher plant or microalgae) or microorganism, such as a microalga (*Prototheca*, *Chlorella*), *Escherichia coli*, or a yeast, is modified (i.e., mutated or changed) within its genome and/or by recombinant technology (i.e., genetic engineering) from its normal (i.e., wild-type or naturally occurring) form. In a preferred embodiment, a genetically modified plant or microorganism according to the present invention has been modified by

10

15

20

25

30

recombinant technology. Genetic modification of a plant or microorganism can be accomplished using classical strain development and/or molecular genetic techniques, include genetic engineering techniques. Such techniques are generally disclosed herein and are additionally disclosed, for example, in Sambrook et al., 1989, *Molecular Cloning:* A Laboratory Manual, Cold Spring Harbor Labs Press; Roessler, 1995, Plant Lipid Metabolism, pp. 46-48; and Roessler et al., 1994, in Bioconversion for Fuels, Himmel et al. eds., American Chemical Society, Washington D.C., pp 255-70). These references are incorporated by reference herein in their entirety.

In some embodiments, a genetically modified plant or microorganism can include a natural genetic variant as well as a plant or microorganism in which nucleic acid molecules have been inserted, deleted or modified, including by mutation of endogenous genes (e.g., by insertion, deletion, substitution, and/or inversion of nucleotides), in such a manner that the modifications provide the desired effect within the plant or microorganism. As discussed above, a genetically modified plant or microorganism includes a plant or microorganism that has been modified using recombinant technology.

As used herein, genetic modifications which result in a decrease in gene expression, an increase in inhibition of gene expression or inhibition of a gene product (i.e., the protein encoded by the gene), a decrease in the function of the gene, or a decrease in the function of the gene product can be referred to as inactivation (complete or partial), deletion, interruption, blockage, down-regulation, or decreased action of a gene. For example, a genetic modification in a gene which results in a decrease in the function of the protein encoded by such gene can be the result of a complete deletion of the gene encoding the protein (i.e., the gene does not exist, and therefore the protein does not exist), a mutation in the gene encoding the protein which results in incomplete or no translation of the protein (e.g., the protein is not expressed), or a mutation in the gene which decreases or abolishes the natural function of the protein (e.g., a protein is expressed which has decreased or no enzymatic activity).

Genetic modifications which result in an increase in gene expression or function can be referred to as amplification, overproduction, overexpression, activation, enhancement, addition, up-regulation or increased action of a gene. Additionally, a genetic modification to a gene which modifies the expression, function, or activity of the gene can

10

15

20

25

30

have an impact on the action of other genes and their expression products within a given metabolic pathway (e.g., by inhibition or competition). In this embodiment, the action (e.g., activity) of a particular gene and/or its product can be affected (i.e., upregulated or downregulated) by a genetic modification to another gene within the same metabolic pathway, or to a gene within a different metabolic pathway which impacts the pathway of interest by competition, inhibition, substrate formation, etc.

In general, a plant or microorganism having a genetic modification that affects L-ascorbic acid production has at least one genetic modification, as discussed above, which results in a change in the L-ascorbic acid production pathway as compared to a wild-type plant or microorganism grown or cultured under the same conditions. Such a modification in an L-ascorbic acid production pathway changes the ability of the plant or microorganism to produce L-ascorbic acid. According to the present invention, a genetically modified plant or microorganism preferably has an enhanced ability to produce L-ascorbic acid compared to a wild-type plant or microorganism cultured under the same conditions.

The present invention is based on the present inventors' discovery of the biosynthetic pathway for L-ascorbic acid (vitamin C) in plants and microorganisms. Prior to the present invention, the metabolic pathway by which plants produce L-ascorbic acid, was not completely elucidated. The present inventors have demonstrated that L-ascorbic acid production in plants, including L-ascorbic acid-producing microorganisms (e.g., microalgae), is a pathway which uses GDP-D-mannose and involves sugar phosphates and NDP-sugars. In addition, the present inventors have made the surprising discovery that both L-galactose and L-galactono-γ-lactone can be rapidly converted into L-ascorbic acid in L-ascorbic acid-producing microalgae, including Prototheca and Chlorella pyrenoidosa. The entire pathway for L-ascorbic acid production in plants is set forth in Figs. 1A-1C. More particularly, Fig. 1A shows that the production of L-ascorbic acid in plants proceeds through the production of mannose intermediates to GDP-D-mannose, followed by the conversion of GDP-D-mannose to GDP-L-galactose by GDP-Dmannose:GDP-L-galactose epimerase (also known as GDP-D-mannose-3,5-epimerase) (Fig. 1B), and then by the subsequent progression to L-galactose-1-P, L-galactose, Lgalactonic acid (optional), L-galactono-y-lactone, and L-ascorbic acid (Fig. 1C). Fig. 1B

10

15

20

25

30

also illustrates alternate pathways for the use of various intermediates, such as GDP-D-mannose. Certain aspects of this pathway have been independently described in a publication (Wheeler, et al., 1998, *Nature* 393:365-369), incorporated herein by reference in its entirety.

Points within the L-ascorbic acid production pathway which can be targeted by genetic modification to affect the production of L-ascorbic acid can generally be catagorized into at least one of the following pathways: (a) pathways affecting the production of GDP-D-mannose (e.g., pathways for converting a carbon source into GDP-D-mannose); (b) pathways for converting GDP-D-mannose into other compounds, (c) pathways associated with or downstream of the action of GDP-D-mannose:GDP-L-galactose epimerase, (d) pathways which compete for substrates involved in the production of any of the intermediates within the L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-galactose, L-galactose-1-phosphate, L-galactose, L-galactono-γ-lactone, and/or L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-galactose, L-galactose-1-phosphate, L-galactose, L-galactono-γ-lactone, and/or L-ascorbic acid.

A genetically modified plant or microorganism useful in a method of the present invention typically has at least one genetic modification in the L-ascorbic acid production pathway which results in an enhanced production of L-ascorbic acid. In one embodiment, a genetically modified plant or microorganism has at least one genetic modification that results in: (a) an enhanced production of GDP-D-mannose; (b) an inhibition of pathways which convert GDP-D-mannose into compounds other than GDP-L-galactose; (c) an enhancement of action of the GDP-D-mannose:GDP-L-galactose epimerase; (d) an enhancement of the action of enzymes downstream of the GDP-D-mannose:GDP-L-galactose epimerase; (e) an inhibition of pathways which compete for substrates involved in the production of any of the intermediates within the L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-galactose, L-galactose-l-phosphate, L-galactose, L-galactono-γ-lactone, and/or L-ascorbic acid; and (e) an inhibition of pathways which inhibit production of any of the intermediates within the L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-ascorbic acid production pathway.

10

15

20

25

30

galactose, L-galactose-1-phosphate, L-galactose, L-galactono-y-lactone, and/or L-ascorbic acid.

An enhanced production of GDP-D-mannose by genetic modification of the plant or microorganism can be achieved by, for example, overexpression of enzymes such as hexokinase, glucose phosphate isomerase, phosphomannose isomerase (PMI), phosphomannomutase (PMM) and/or GDP-D-mannose pyrophosphorylase (GMP). Inhibition of pathways which convert GDP-D-mannose to compounds other than GDP-Lgalactose can be achieved, for example, by modifications which inhibit polysaccharide synthesis, GDP-D-rhamnose synthesis, GDP-L-fucose synthesis and/or GDP-Dmannuronic acid synthesis. An increase in the action of the GDP-D-mannose:GDP-Lgalactose epimerase and of enzymes downstream of the epimerase in the L-ascorbic acid production pathway can be achieved by genetic modifications which include, but are not limited to: overexpression of the epimerase gene (i.e, by overexpression of a recombinant nucleic acid molecule encoding the epimerase gene or a homologue thereof (discussed in detail below), and/or by mutation of the endogenous or recombinant gene to enhance expression of the gene) and/or overexpression of genes downstream of the epimerase which encode subsequent enzymes in the L-ascorbic acid pathway. Finally, metabolic pathways which compete with or inhibit the L-ascorbic acid production pathway can be inhibited by deleting or mutating enzymes, substrates or products which either inhibit or compete for an enzyme, substrate or product in the L-ascorbic acid pathway.

As discussed above, a genetically modified plant or microorganism useful in the method of the present invention can have at least one genetic modification (e.g., mutation in the endogenous gene or addition of a recombinant gene) in a gene encoding an enzyme involved in the L-ascorbic acid production pathway. Such genetic modifications preferably increase (i.e., enhance) the action of such enzymes such that L-ascorbic acid is preferentially produced as compared to other possible end products in related metabolic pathways. Such genetic modifications include, but are not limited to, overexpression of the gene encoding such enzyme, and deletion, mutation, or downregulation of genes encoding competitors or inhibitors of such enzyme. Preferred enzymes for which the action of the gene encoding such enzyme can be genetically modified include: hexokinase, glucose phosphate isomerase, phosphomannose isomerase (PMI), phosphomannomutase

10

15

20

25

30

(PMM), GDP-D-mannose pyrophosphorylase (GMP), GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and/or L-galactono-γ-lactone dehydrogenase. More preferably, a genetically modified plant or microorganism useful in the present invention has a genetic modification which increases the action of an enzyme selected from the group of GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and/or L-galactono-γ-lactone dehydrogenase. Even more preferably, a genetically modified plant or microorganism useful in the present invention has a genetic modification which increases the action of GDP-D-mannose:GDP-L-galactose epimerase. These enzymes and the reactions catalyzed by such enzymes are illustrated in Figs. 1A-1C.

Prior to the present invention, without knowing the L-ascorbic acid biosynthetic (i.e., production) pathway, previous mutagenesis and screening efforts were limited in that only non-lethal mutations could be detected. One embodiment of the present invention relates to elimination of a key competing enzyme that diverts carbon flow from L-ascorbic acid synthesis. If such enzyme is absolutely required for growth on glucose, then mutants lacking the enzyme (and, therefore, having increased carbon flow to L-ascorbic acid) would have been nonviable and not have been detected during prior screening efforts. One such enzyme is phosphofructokinase (PFK) (See Fig. 2A). PFK is required for growth on glucose, and is the major step drawing carbon away from L-ascorbic acid biosynthesis (Fig. 2A). Elimination of PFK would render the cells nonviable on glucosebased media. Selection of a conditional mutant where PFK was inactivated by temperature shift, for example, may allow development of a L-ascorbic acid process where cell growth is achieved under permissive fermentation conditions, and L-ascorbic acid production (from glucose) is initiated by a shift to non-permissive condition. In this example, the temperature shift would eliminate carbon flow from glucose to glycolysis via PFK, thereby shunting carbon into the L-ascorbic acid branch of metabolism. This approach has application not only in natural L-ascorbic acid producing organisms, but also in L-ascorbic acid recombinant systems (genetically engineered plant or microorganisms) as discussed herein.

10

15

20

25

30

Knowing the identity and mechanism of the rate-limiting pathway enzymes in the L-ascorbic acid production pathway allows for design of specific inhibitors of the enzymes that are also growth inhibitory. Selection of mutants resistant to the inhibitors allows for the isolation of strains that contain L-ascorbic acid-pathway enzymes with more favorable kinetic properties. Therefore, one embodiment of the present invention is to identify inhibitors of the enzymes that are also growth inhibitory. These inhibitors are then used to select genetic mutants that overcome this inhibition and produce L-ascorbic acid at high levels. In this embodiment, the resultant plant or microorganism is a non-recombinant strain which can then be further modified by recombinant technology, if desired. In recombinant L-ascorbic acid producing strains, random mutagenesis and screening can be used as a final step to increase L-ascorbic acid production.

In yet another embodiment genetic modifications are made to an L-ascorbic acid producing organism directly. This allows one to build upon a base of data acquired during prior classical strain improvement efforts, and perhaps more importantly, allows one to take advantage of undefined beneficial mutations that occurred during classical strain improvement. Furthermore, fewer problems are encountered when expressing native, rather than heterologous, genes. The most advanced system for development of genetic systems for microalgae has been developed for Chlamydomonas reinhardtii. Preferably, development of such a genetically modified production organism would include: isolation of mutant(s) with a specific nutritional requirement for use with a cloned selectable marker gene (similar to the ura3 mutants used in yeast and fungal systems); a cloned selectable marker such as URA3 or alternatively, identification and cloning of a gene that specifies resistance to a toxic compound (this would be analogous to the use of antibiotic resistance genes in bacterial systems, and, as is the case in yeast and other fungi, a means of inserting/removing the marker gene repeatedly would be required, unless several different selectable markers were developed); a transformation system for introducing DNA into the production organism and achieving stable transformation and expression; and, a promoter system (preferably several) for high-level expression of cloned genes in the organism.

Another embodiment of the present invention, discussed in detail below, is to place key genes or allelic variants and homologues thereof from L-ascorbic acid producing

10

15

20

25

30

organisms (i.e., higher plants and microalgae) into a plant or microorganism that is more amenable to molecular genetic manipulation, including endogenous L-ascorbic acid producing microorganisms and suitable plants. For example, it is possible to identify a suitable non-pathogenic organism based on the requirement of growth (on glucose) at low pH (i.e., acid-tolerant organisms, discussed in detail below).

One suitable candidate for recombinant production in any suitable host organism is the gene (nucleic acid molecule) encoding GDP-D-mannose:GDP-L-galactose epimerase and homologues of the GDP-D-mannose:GDP-L-galactose epimerase, as well as any other epimerase that has structural homology at the primary (i.e., sequence) or tertiary (i.e., three dimensional) level, to a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase, or to a UDP-galactose 4-epimerase. Many microorganisms produce GDP-D-mannose as a precursor to exopolysaccharide and glycoprotein production, even though such organisms may not make L-ascorbic acid. This aspect of the present invention is discussed in detail below.

Referring to Figs. 1A-1C, at least some of the enzymes from glucose-6-phosphate to GDP-D-mannose are present in many organisms. In fact, the entire sequence is present in bacteria such as Azotobacter vinelandii and Pseudomonas aeruginosa, and make up the early steps in the biosynthesis of the exopolysaccharide alginate. In this regard, it is possible that the only thing preventing these organisms from producing L-ascorbic acid could be the lack of GDP-D-mannose:GDP-L-galactose epimerase. The presence of PMI, PMM and GMP (see Fig. 1A) in so many organisms is important for two reasons. First, these organisms themselves could serve as alternate hosts for L-ascorbic acid production, by building on the existing early pathway enzymes and adding the required cloned genes (the epimerase and possibly others). Second, the genes encoding PMI, PMM and GMP can be cloned into a new organism where, together with the cloned epimerase, they would encode the overall pathway from glucose-6-phosphate to GDP-L- galactose.

In order to screen genomic DNA or cDNA libraries from different organisms and to isolate nucleic acid molecules encoding these enzymes such as the GDP-D-mannose:GDP-L-galactose epimerase, one can use any of a variety of standard molecular and biochemical techniques. For example, the GDP-D-mannose:GDP-L-galactose epimerase can be purified from an organism such as *Prototheca*, the N-terminal amino

10

15

20

25

30

acid sequence can be determined (including, if necessary, the sequence of internal peptide fragments), and this information can be used to design degenerate primers for amplifying a gene fragment from the organism's DNA. This fragment would then be used to probe the library, and subsequently fragments that hybridize to the probe would be cloned in that organism or another suitable production organism. There is ample precedent for plant enzymes being expressed in an active form in bacteria, such as *E. coli*. Alternatively, yeast are also a suitable candidate for developing a heterologous system for L-ascorbic acid production.

It is to be understood that the present invention discloses a method comprising the use of a microorganism with an ability to produce commercially useful amounts of Lascorbic acid in a fermentation process (i.e., preferably an enhanced ability to produce Lascorbic acid compared to a wild-type microorganism cultured under the same conditions). This method is achieved by the genetic modification of one or more genes encoding a protein involved in an L-ascorbic acid pathway which results in the production (expression) of a protein having an altered (e.g., increased or decreased) function as compared to the corresponding wild-type protein. Preferably, such genetic modification is achieved by recombinant technology. It will be appreciated by those of skill in the art that production of genetically modified plants or microorganisms having a particular altered function as described elsewhere herein (e.g., an enhanced ability to produce GDP-D-mannose:GDP-L-galactose epimerase), such as by transformation of the plant or microorganism with a nucleic acid molecule which encodes a particular enzyme, can produce many organisms meeting the given functional requirement, albeit by virtue of a variety of different genetic modifications. For example, different random nucleotide deletions and/or substitutions in a given nucleic acid sequence may all give rise to the same phenotypic result (e.g., decreased enzymatic activity of the protein encoded by the sequence). The present invention contemplates any such genetic modification which results in the production of a plant or microorganism having the characteristics set forth herein.

A microorganism to be used in the fermentation method of the present invention is preferably a bacterium, a fungus, or a microalga which has been genetically modified according to the disclosure above. More preferably, a microorganism useful in the present

10

15

invention is a microalga which is capable of producing L-ascorbic acid, although the present invention includes microorganisms which are genetically engineered to produce L-ascorbic acid using the knowledge of the key components of the pathway and the guidance provided herein. Even more preferably, a microorganism useful in the present invention is an acid-tolerant microorganism, such as microalgae of the genera Prototheca and Chlorella. Acid-tolerant yeast and bacteria are also known in the art. Acid-tolerant microorganisms are discussed in detail below. Particularly preferred microalgae include microalgae of the genera, Prototheca and Chlorella, with Prototheca being most preferred. All known species of Prototheca produce L-ascorbic acid. Production of ascorbic acid by microalgae of the genera Prototheca and Chlorella is described in detail in U.S. Patent No. 5,792,631, issued August 11, 1998, and in U.S. Patent No. 5,900,370, issued May 4, 1999, both of which are incorporated herein by reference in their entirety. Preferred bacteria for use in the present invention include, but are not limited to, Azotobacter, Pseudomonas, and Escherichia, although acid-tolerant bacteria are more preferred. Preferred fungi for use in the present invention include yeast, and more preferably, yeast of the genus, Saccharomyces. A microorganism for use in the fermentation method of the present invention can also be referred to as a production organism. According to the present invention, microalgae can be referred to herein either as microorganisms or as plants.

20

A preferred plant to genetically modify according to the present invention is preferably a plant suitable for consumption by animals, including humans. More preferably, such a plant is a plant that naturally produces L-ascorbic acid, although other plants can be genetically modified to produce L-ascorbic acid using the guidance provided herein.

25

30

The L-ascorbic acid production pathways of the microalgae *Prototheca* and *Chlorella pyrenoidosa* will be addressed as specific embodiments of the present invention are described below. It will be appreciated that other plants and, in particular, other microorganisms, have similar L-ascorbic acid pathways and genes and proteins having similar structure and function within such pathways. It will also be appreciated that plants and microorganisms which do not naturally produce L-ascorbic acid can be modified according to the present invention to produce L-ascorbic acid. As such, the principles

10

15

20

25

30

discussed below with regard to *Prototheca* and *Chlorella pyrenoidosa* are applicable to other plants and microorganisms, including genetically modified plants and microorganisms.

In one embodiment of the present invention, the action of an enzyme in the Lascorbic acid production pathway is increased by amplification of the expression (i.e., overexpression) of an enzyme in the pathway, and particularly, the GDP-Dmannose:GDP-L-galactose epimerase, homologues of the epimerase, and/or enzymes downstream of the epimerase. Overexpression of an enzyme can be accomplished, for example, by introduction of a recombinant nucleic acid molecule encoding the enzyme. It is preferred that the gene encoding an enzyme in the L-ascorbic acid production pathway be cloned under control of an artificial promoter. The promoter can be any suitable promoter that will provide a level of enzyme expression required to maintain a sufficient level of L-ascorbic acid in the production organism. Preferred promoters are constitutive (rather than inducible) promoters, since the need for addition of expensive inducers is therefore obviated. The gene dosage (copy number) of a recombinant nucleic acid molecule according to the present invention can be varied according to the requirements for maximum product formation. In one embodiment, the recombinant nucleic acid molecule encoding a gene in the L-ascorbic acid production pathway is integrated into the chromosomes of the microorganism.

It is another embodiment of the present invention to provide a microorganism having one or more enzymes in the L-ascorbic acid production pathway with improved affinity for its substrates. An enzyme with improved affinity for its substrates can be produced by any suitable method of genetic modification or protein engineering. For example, computer-based protein engineering can be used to design an epimerase protein with greater stability and better affinity for its substrate. See for example, Maulik et al., 1997, Molecular Biotechnology: Therapeutic Applications and Strategies, Wiley-Liss, Inc., which is incorporated herein by reference in its entirety.

Recombinant nucleic acid molecules encoding proteins in the L-ascorbic acid production pathway can be modified to enhance or reduce the function (i.e., activity) of the protein, as desired to increase L-ascorbic acid production, by any suitable method of genetic modification. For example, a recombinant nucleic acid molecule encoding an

10

15

20

25

30

enzyme can be modified by any method for inserting, deleting, and/or substituting nucleotides, such as by error-prone PCR. In this method, the gene is amplified under conditions that lead to a high frequency of misincorporation errors by the DNA polymerase used for the amplification. As a result, a high frequency of mutations are obtained in the PCR products. The resulting gene mutants can then be screened for enhanced substrate affinity, enhanced enzymatic activity, or reduced/increased inhibitory ability by testing the mutant genes for the ability to confer increased L-ascorbic acid production onto a test microorganism, as compared to a microorganism carrying the non-mutated recombinant nucleic acid molecule.

Another embodiment of the present invention includes a microorganism in which competitive side reactions are blocked, including all reactions for which GDP-D-mannose is a substrate other than the production of L-ascorbic acid. In a preferred embodiment, a microorganism having complete or partial inactivation (decrease in the action of) of genes encoding enzymes which compete with the GDP-D-mannose:GDP-L-galactose epimerase for the GDP-D-mannose substrate is provided. Such enzymes include GDP-D-mannase and/or GDP-D-mannose-dehydrogenase. As used herein, inactivation of a gene can refer to any modification of a gene which results in a decrease in the activity (i.e., expression or function) of such a gene, including attenuation of activity or complete deletion of activity.

As discussed above, a particularly preferred aspect of the method to produce L-ascorbic acid by fermentation of a genetically modified microorganism of the present invention includes the step of culturing in a fermentation medium a microorganism having a genetic modification to increase the action of an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose. According to the present invention, such an epimerase can include the endogenous GDP-D-mannose:GDP-L-galactose epimerase from the L-ascorbic acid pathway, described above, as well as any other epimerase that has structural homology at the primary (i.e., sequence) or tertiary (i.e., three dimensional) level, to a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase, or to a UDP-galactose 4-epimerase. Such structural homology is discussed in detail below. Preferably, such an epimerase is capable of catalyzing the conversion of GDP-D-mannose to GDP-L-galactose. In one embodiment, the genetic modification includes transformation of the

10

15

20

25

30

microorganism with a recombinant nucleic acid molecule that expresses such an epimerase.

Therefore, the epimerase encompassed in the method and organisms of the present invention includes the endogenous epimerase which operates in the naturally occurring ascorbic acid biosynthetic pathway (referred to herein as GDP-Dmannose: GDP-L-galactose epimerase), GDP-4-keto-6-deoxy-D-mannose epimerase/ reductases, and any other epimerase which is capable of catalyzing the conversion of GDP-D mannose to GDP-L-galactose and which is structurally homologous to a GDP-4keto-6-deoxy-D-mannose epimerase/reductase or a UDP-galactose 4-epimerase. epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose according the present invention can be identified by biochemical and functional characteristics as well as structural characteristics. For example, an epimerase according to the present invention is capable of acting on GDP-D-mannose as a substrate, and more particularly, such an epimerase is capable of catalyzing the conversion of GDP-D-mannose to GDP-Lgalactose. It is to be understood that such capabilities need not necessarily be the normal or natural function of the epimerase as it acts in its endogenous (i.e., natural) environment. For example, GDP-4-keto-6-deoxy-D-mannose epimerase/reductase in its natural environment under normal conditions, catalyzes the conversion of GDP-D-mannose to GDP-L-fucose and does not act directly on GDP-D-mannose (See Fig. 8A, B), however, such an epimerase is encompassed by the present invention for use in catalyzing the conversion of GDP-D-mannose to GDP-L-galactose for production of ascorbic acid, to the extent that it is capable of, or can be modified to be capable of, catalyzing the conversion of GDP-D-mannose to GDP-L-galactose. Therefore, the present invention includes epimerases which have the desired enzyme activity for use in production of ascorbic acid, are capable of having such desired enzyme activity, and/or are capable of being modified or induced to have such desired enzyme activity.

In one embodiment, an epimerase according to the present invention includes an epimerase that catalyzes the reaction depicted in Fig. 7. In another embodiment, an epimerase according to the present invention includes an epimerase that catalyzes the first of the reactions depicted in Fig. 8B. In one embodiment, an epimerase according to the

10

15

20

25

30

PCT/US99/11576 WO 99/64618

present invention binds to NADPH. In another embodiment, an epimerase according to the present invention is NADPH-dependent for enzyme activity.

22

As discussed above, the present inventors have discovered that a key enzyme in L-ascorbic acid biosynthesis in plants and microorganisms is GDP-D-mannose: GDP-Lgalactose epimerase (refer to Figs. 1A-1C). One embodiment of the invention described herein is directed to the manipulation of this enzyme and structural homologues of this enzyme to increase L-ascorbic acid production in genetically engineered plants and/or microorganisms. More particularly, the GDP-D-mannose: GDP-L-galactose epimerase of the L-ascorbic acid pathway and GDP-4-keto-6-deoxy-D-mannose epimerase/reductases are believed to be structurally homologous at both the sequence and tertiary structure level; a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase is believed to be capable of functioning in the L-ascorbic acid biosynthetic pathway; and a GDP-4-keto-6-deoxy-Dmannose epimerase/reductase or homologue thereof may be superior to a GDP-Dmannose-GDP-L-galactose epimerase for increasing L-ascorbic acid production in genetically engineered plants and/or microorganisms. Furthermore, the present inventors disclose the use of a nucleotide sequence encoding all or part of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase as a probe to identify the gene encoding GDP-Dmannose:GDP-L-galactose epimerase. Similarly, the present inventors disclose the use of a nucleotide sequence of the gene encoding GDP-4-keto-6-deoxy-D-mannose epimerase/reductase to design oligonucleotide primers for use in a PCR-based strategy for identifying and cloning a gene encoding GDP-D-mannose: GDP-L-galactose epimerase.

Without being bound by theory, the present inventors believe that the following evidence supports the novel concept that the GDP-D-mannose:GDP-L-galactose epimerase and GDP-4-keto-6-deoxy-D-mannose epimerase/reductases have significant structural homology at the level of sequence and/or tertiary structure, and that the GDP-4keto-6-deoxy-D-mannose epimerase/reductases and/or homologues thereof would be useful for production of ascorbic acid and/or for isolating the endogenous GDP-Dmannose:GDP-L-galactose epimerase.

Although prior to the present invention, it was not known that the GDP-Dmannose: GDP-L-galactose epimerase enzyme (also known as GDP-D-mannose-3,5epimerase) plays a critical role in L-ascorbic acid biosynthesis, this enzyme was previously

10

15

20

25

30

described to catalyze the overall reversible reaction between GDP-D-mannose and GDP-L-galactose (Barber, 1971, Arch. Biochem. Biophys. 147:619-623; Barber, 1975, Arch. Biochem. Biophys. 167:718-722; Barber, 1979, J. Biol. Chem. 254:7600-7603; Hebda, et al., 1979, Arch. Biochem. Biophys. 194:496-502; Barber and Hebda, 1982, Meth. Enzymol., 83:522-525). Despite these studies, GDP-D-mannose:GDP-L-galactose epimerase has never been well characterized nor has the gene encoding this enzyme been cloned and sequenced. Since the original work by Barber, GDP-D-mannose:GDP-L-galactose epimerase activity has been detected in the colorless microalga Prototheca moriformis by the assignee of the present application, and in Arabidopsis thaliana and pea embryonic axes (Wheeler, et al., 1998, ibid.).

Barber (1979, J. Biol. Chem. 254:7600-7603) proposed a mechanism for GDP-D-mannose:GDP-L-galactose epimerase partially purified from the green microalga Chlorella pyrenoidosa. The overall conversion of GDP-D-mannose to GDP-L-galactose was proposed to proceed by oxidation of the hexosyl moiety at C-4 to a keto intermediate, ene-diol formation, and inversion of the configurations at C-3 and C-5 upon rehydration of the double bonds and stereospecific reduction of the keto group. The proposed mechanism is depicted in Fig. 7.

Based on Barber's work, Feingold and Avigad (1980, In *The Biochemistry of Plants*, Vol. 3: Carbohydrates; Structure and Function, P.K. Stompf and E.E. Conn, eds., Academic Press, NY) elaborated further on the proposed mechanism for GDP-D-mannose: GDP-L-galactose epimerase. This mechanism is based on the assumption that the epimerase contains tightly bound NAD⁺, and transfer of a hydride ion from C-4 of the substrate (GDP-D-mannose) to enzyme-associated NAD⁺ converts the enzyme to the reduced (NADH) form, generating enzyme-bound GDP-4-keto-D-mannose. The latter would then undergo epimerization by an ene-diol mechanism. The final product (GDP-L-galactose) would be released from the enzyme after stereospecific transfer of the hydride ion originally removed from C-4, simultaneously regenerating the oxidized form of the enzyme.

L-fucose (6-deoxy-L-galactose) is a component of bacterial lipopolysaccharides, mammalian and plant glycoproteins and polysaccharides of plant cell walls. L-fucose is synthesized *de novo* from GDP-D-mannose by the sequential action of GDP-D-mannose-

10

15

20

25

30

4,6-dehydratase (an NAD(P)-dependent enzyme), and a bifunctional GDP-4-keto-6-deoxy-D-mannose epimerase/reductase (NADPH-dependent), also referred to in scientific literature as GDP-fucose synthetase (Rizzi, et al., 1998, Structure 6:1453-1465; Somers, et al., 1998, Structure 6:1601-1612). This pathway for L-fucose biosynthesis appears to be ubiquitous (Rizzi, et al., 1998, Structure 6:1453-1465). The mechanisms for GDP-D-mannose-4,6-dehydratase and GDP-4-keto-6-deoxy-D-mannose epimerase/reductase are shown in Fig. 8A, B (Chang, et al., 1988, J. Biol. Chem. 263:1693-1697; Barber, 1980, Plant Physiol. 66:326-329).

Comparison of Figs. 7 and 8A, B reveals that Barber's proposed mechanism for GDP-D-mannose:GDP-L-galactose epimerase is analogous to the reaction mechanism for GDP-4-keto-6-deoxy-D-mannose epimerase/reductase. The same mechanism has also been demonstrated for the epimerization reaction that occurs in the biosynthesis of two TDP-6-deoxy hexoses, TDP-L-rhamnose and TDP-6-deoxy-L-talose, from TDP-D-glucose (Liu and Thorson, 1994, *Ann. Rev. Microbiol.* 48:223-256). In the latter cases, however, the final reduction at C-4 is catalyzed by NADPH-dependent reductases that are separate from the epimerase enzyme. These reductases have opposite stereospecificity, providing either TDP-L-rhamnose or TDP-6-deoxy-L-talose (Liu and Thorson, 1994, *Ann. Rev. Microbiol.* 48:223-256).

In all of the mechanisms described above, NAD(P)H is required for the final reduction at C-4 (refer to Fig. 8B). In the work of Hebda, et al. (1979, Arch. Biochem. Biophys. 194:496-502), it was reported that GDP-D-mannose:GDP-L-galactose epimerase from C. pyrenoidosa did not require NAD, NADP or NADH for activity. Strangely, NADPH was not tested. Based on the analogous mechanisms shown in Figs. 7 and 8A, B, the present inventors believe that it is likely that GDP-D-mannose:GDP-L-galactose epimerase from C. pyrenoidosa requires NADPH for the final reduction step. Why activity was detected in vitro without NADPH addition is not known, but tight *binding of NADPH to the enzyme could explain this observation. On the other hand, if the proposed mechanism of Feingold and Avigad (1980, in The Biochemistry of Plants, Vol. 3, p. 101-170: Carbohydrates, Structure and Function, P.K. Stompf and E.E. Conn, ed., Academic Press, NY) is correct, the reduced enzyme-bound cofactor generated in the first oxidation step of the epimerase reaction would serve as the source of electrons for

10

15

20

25

30

the final reduction of the keto group at C-4 back to the alcohol. Thus no addition of exogenous reduced cofactor would be required for activity in vitro.

Recently, a human gene encoding the bifunctional GDP-4-keto-6-deoxy-Dmannose epimerase/reductase was cloned and sequenced (Tonetti, et al., 1996, J. Biol. Chem. 271-27274-27279). This amino acid sequence of the human GDP-4-keto-6-deoxy-D-mannose epimerase/reductase shows significant homology (29% identity) to the E. coli GDP-4-keto-6-deoxy-D-mannose epimerase/reductase (Tonetti, et al., 1998, Acta Cryst. D54:684-686; Somers, et al., 1998, Structure 6:1601-1612, both of which are incorporated herein by reference in their entireties). Tonetti et al. and Somers et al. additionally disclosed the tertiary (three dimensional) structure of the E. coli GDP-4-keto-6-deoxy-D-mannose epimerase/reductase (also known as GDP-fucose synthetase), and noted significant structural homology with another epimerase, UDP-galactose 4-epimerase (GalE). These epimerases also share significant homology at the sequence level. Since no gene encoding a GDP-D-mannose:GDP-L-galactose epimerase has been cloned and sequenced, homology with genes encoding GDP-4-keto-6-deoxy-D-mannose epimerase/ reductases or with genes encoding a UDP-galactose 4-epimerase has not been demonstrated. However, based on the similarity of the reaction products for GDP-Dmannose:GDP-L-galactose epimerase and GDP-4-keto-6-deoxy-D-mannose epimerase/ reductase (i.e., GDP-L-galactose and GDP-6-deoxy-L-galactose [i.e., GDP-L-fucose], respectively) and the common catalytic mechanisms (Figs. 7 and 8A, B) the present inventors believe that the genes encoding the enzymes will have a high degree of sequence homology, as well as tertiary structural homology.

Significant structural homology between GDP-D-mannose:GDP-L-galactose epimerase and GDP-4-keto-6-deoxy-D-mannose epimerase/reductases may allow a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase, or a homologue thereof, to function in the L-ascorbic acid biosynthetic pathway, and a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase could potentially be even better than a GDP-D-mannose-GDP-L-galactose epimerase for increasing L-ascorbic acid production in genetically engineered plants and/or microorganisms. Furthermore, a nucleotide sequence encoding all or part of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase can be used as a probe to identify the gene encoding GDP-D-mannose:GDP-L-galactose epimerase. Likewise, the

10

15

20

25

30

nucleotide sequence of the gene encoding GDP-4-keto-6-deoxy-D-mannose epimerase/ reductase can be used to design oligonucleotide primers for use in a PCR-based strategy for identifying and cloning a gene encoding GDP-D-mannose:GDP-L-galactose epimerase.

The ability to substitute GDP-4-keto-6-D-mannose epimerase/reductase for GDP-D-mannose:GDP-L-galactose epimerase to enhance L-ascorbic acid biosynthesis in plants or microorganisms depends on the ability of GDP-4-keto-6-deoxy-D-mannose epimerase/ reductase to act directly on GDP-D-mannose to form GDP-L-galactose. Evidence supporting this possibility already exists. Arabidopsis thaliana murl mutants are defective in GDP-D-mannose-4,6-dehydratase activity (Bonin, et al., 1997, Proc. Natl. Acad. Sci. 94:2085-2090). These mutants are thus blocked in GDP-L-fucose biosynthesis, and consequently have less than 2% of the normal amounts of L-fucose in the primary cell walls of aerial portions of the plant (Zablackis, et al., 1996, Science 272:1808-1810). The murl mutants are more brittle than wild-type plants, are slightly dwarfed and have an apparently normal life cycle (Zablackis, et al., 272:1808-1810). When murl mutants are grown in the presence of exogenous L-fucose, the L-fucose content in the plant is restored to the wild-type state (Bonin, et al., 1997, Proc. Natl. Acad. Sci. 94:2085-2090). It was discovered (Zablackis, et al., 1996, Science 272:1808-1810) that murl mutants contain, in the hemicellulose xyloglucan component of the primary cell wall, L-galactose in place of the normal L-fucose. L-galactose is not normally found in the xyloglucan component, but in murl mutants L-galactose partly replaces the terminal L-fucosyl residue. Bonin, et al. (1997, Proc. Natl. Acad. Sci. 94:2085-2090) hypothesized that in the absence of a functional GDP-D-mannose-4,6-dehydratase in the murl mutants, the GDP-4-keto-6deoxy-D-mannose epimerase/reductase normally involved in L-fucose synthesis may be able to use GDP-D-mannose directly, forming GDP-L-galactose. Another possibility, however, is that the enzymes involved in L-ascorbic acid biosynthesis in A. thaliana are responsible for forming GDP-L-galactose in the murl mutant. If this were true, it would suggest that in the wild-type plant, some mechanism exists that prevents GDP-L-galactose formed in the L-ascorbic acid pathway from entering cell wall biosynthesis and substituting for (competing with) GDP-L-fucose for incorporation into the xyloglucan

10

15

20

25

30

component (since L-galactose is not present in the primary cell wall of the wild-type plant).

Because of the similar reaction mechanisms of GDP-D-mannose:GDP-L-galactose epimerase and GDP-4-keto-6-deoxy-D-mannose epimerase/reductase, and because of the evidence that GDP-4-keto-6-deoxy-D-mannose epimerase/reductase can act directly on GDP-D-mannose to form GDP-L-galactose, the present inventors believe that genes encoding all epimerases and epimerase/reductases that act on GDP-D-mannose have high homology. As such, one aspect of the present invention relates to the use of any epimerase (and nucleic acid sequences encoding such epimerase) having significant homology (at the primary, secondary and/or tertiary structure level) to a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase or to a UDP-galactose 4-epimerase for the purpose of improving the biosynthetic production of L-ascorbic acid.

Therefore, as described above, one embodiment of the present invention relates to a method for producing ascorbic acid or esters thereof in a microorganism, which includes culturing a microorganism having a genetic modification to increase the action of an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose. Also included in the present invention are genetically modified microorganisms and plants in which the genetic modification increases the action of an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose.

According to the present invention, an increase in the action of the GDP-D-mannose GDP-L-galactose epimerase in the L-ascorbic acid production pathway can be achieved by genetic modifications which include, but are not limited to overexpression of the GDP-D-mannose GDP-L-galactose epimerase gene, a homologue of such gene, or of any recombinant nucleic acid sequence encoding an epimerase that is homologous in primary (nucleic acid or amino acid sequence) or tertiary (three dimensional protein) structure to a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase or a UDP-galactose 4-epimerase, such as by overexpression of a recombinant nucleic acid molecule encoding the epimerase gene or a homologue thereof, and/or by mutation of the endogenous or recombinant gene to enhance expression of the gene.

According to the present invention, an epimerase that has a tertiary structure that is homologous to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/

10

15

20

25

30

reductase is an epimerase that has a tertiary structure that substantially conforms to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws (Table 12). In another embodiment, an epimerase that has a tertiary structure that is homologous to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/ reductase is an epimerase that has a tertiary structure that substantially conforms to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1GFS. As used herein, a "tertiary structure" or "three dimensional structure" of a protein, such terms being interchangeable, refers to the components and the manner of arrangement of the components in three dimensional space to constitute the protein. The use of the term "substantially conforms" refers to at least a portion of a tertiary structure of an epimerase which is sufficiently spatially similar to at least a portion of a specified three dimensional configuration of a particular set of atomic coordinates (e.g., those represented by Brookhaven Protein Data Bank Accession Code lbws) to allow the tertiary structure of at least said portion of the epimerase to be modeled or calculated (i.e., by molecular replacement) using the particular set of atomic coordinates as a basis for estimating the atomic coordinates defining the three dimensional configuration of the epimerase.

More particularly, a tertiary structure that substantially conforms to a given set of atomic coordinates is a structure having an average root-mean-square deviation (RMSD) of less than about 2.5 Å, and more preferably, less than about 2 Å, and, in increasing preference, less than about 1.5 Å, less than about 1 Å, less than about 0.5 Å, and most preferably, less than about 0.3 Å, over at least about 25% of the Cα positions as compared to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. In other embodiments, a structure that substantially conforms to a given set of atomic coordinates is a structure wherein such structure has the recited average root-mean-square deviation (RMSD) value over at least about 50% of the Cα positions as compared to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws, and in another embodiment, such structure has the

WO 99/64618 PCT/US99/11576

5

10

15

20

25

30

recited average root-mean-square deviation (RMSD) value over at least about 75% of the Cα positions as compared to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws, and in another embodiment, such structure has the recited average root-mean-square deviation (RMSD) value over about 100% of the Cα positions as compared to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. Methods to calculate RMSD values are well known in the art. Various software programs for determining the tertiary structural homology between one or more proteins are known in the art and are publicly available, such as OUANTA (Molecular Simulations Inc.).

A preferred epimerase that catalyzes conversion of GDP-D-mannose to GDP-Lgalactose according to the method and genetically modified organisms of the present invention includes an epimerase that comprises a substrate binding site having a tertiary structure that substantially conforms to the tertiary structure of the substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. Preferably, the tertiary structure of the substrate binding site of the epimerase has an average root-meansquare deviation (RMSD) of less than about 2.5 Å, and more preferably, less than about 2 Å, and, in increasing preference, less than about 1.5 Å, less than about 1 Å, less than about 0.5 Å, and most preferably, less than about 0.3 Å, over at least about 25% of the Cα positions as compared to the tertiary structure of the substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. In other embodiments, the tertiary structure of the substrate binding site of the epimerase has the recited average root-mean-square deviation (RMSD) value over at least about 50% of the Cα positions as compared to the tertiary structure of the substrate binding site of a GDP-4-keto-6deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code Ibws, and in another embodiment, the tertiary structure of the substrate binding site of the epimerase has the recited average root-mean-square deviation (RMSD) value over at least about 75% of the Cα positions

10

15

20

25

30

as compared to the tertiary structure of the substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws, and in another embodiment, the tertiary structure of the substrate binding site of the epimerase has the recited average root-mean-square deviation (RMSD) value over about 100% of the Cα positions as compared to the tertiary structure of the substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. The tertiary structure of the substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws is discussed in detail in Rizzi et al., 1998, *ibid*. Additionally, the tertiary structure of the substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1GFS is discussed in detail in Somers et al., 1998, *ibid*.

Another preferred epimerase according to the present invention includes an epimerase that comprises a catalytic site having a tertiary structure that substantially conforms to the tertiary structure of the catalytic site of a GDP-4-keto-6-deoxy-Dmannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. Preferably, the tertiary structure of the catalytic site of the epimerase has an average root-mean-square deviation (RMSD) of less than about 2.5 Å, and more preferably, less than about 2 Å, and, in increasing preference, less than about 1.5 Å, less than about 1 Å, less than about 0.5 Å, and most preferably, less than about 0.3 Å, over at least about 25% of the Ca positions as compared to the tertiary structure of the catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code lbws. In other embodiments, the tertiary structure of the catalytic site of the epimerase has the recited average root-mean-square deviation (RMSD) value over at least about 50% of the Ca positions as compared to the tertiary structure of the catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws, and in another embodiment, the tertiary structure of the catalytic site of the epimerase has the recited

10

15

20

25

30

average root-mean-square deviation (RMSD) value over at least about 75% of the Cα positions as compared to the tertiary structure of the catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws, and in another embodiment, the tertiary structure of the catalytic site of the epimerase has the recited average root-mean-square deviation (RMSD) value over 100% of the Cα positions as compared to the tertiary structure of the catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/ reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.

In one embodiment, an epimerase encompassed by the present invention includes an epimerase that has a catalytic site which includes amino acid residues: serine, tyrosine and lysine. In a preferred embodiment, the tertiary structure positions of the amino acid residues serine, tyrosine and lysine substantially conform to the tertiary structure position of residues Ser107, Tyr136 and Lys140, respectively, as represented by atomic coordinates in Brookhaven Protein Data Bank Accession Code 1bws. The tertiary structure of the catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws is discussed in detail in Rizzi et al., 1998, *ibid*. Additionally, the tertiary structure of the catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1GFS is discussed in detail in Somers et al., 1998, *ibid*.

In an even more preferred embodiment, the above definition of "substantially conforms" can be further defined to include atoms of amino acid side chains. As used herein, the phrase "common amino acid side chains" refers to amino acid side chains that are common to both the structures which substantially conforms to a given set of atomic coordinates and the structure that is actually represented by such atomic coordinates. Preferably, a tertiary structure that substantially conforms to a given set of atomic coordinates is a structure having an average root-mean-square deviation (RMSD) of less than about 2.5 Å, and more preferably, less than about 2 Å, and, in increasing preference, less than about 1.5 Å, less than about 1 Å, less than about 0.5 Å, and most preferably, less than about 0.3 Å over at least about 25% of the common amino acid side chains as

10

15

20

25

30

compared to the tertiary structure represented by the given set of atomic coordinates. In another embodiment, a structure that substantially conforms to a given set of atomic coordinates is a structure having the recited average root-mean-square deviation (RMSD) value over at least about 50% of the common amino acid side chains as compared to the tertiary structure represented by the given set of atomic coordinates, and in another embodiment, such structure has the recited average root-mean-square deviation (RMSD) value over at least about 75% of the common amino acid side chains as compared to the tertiary structure represented by the given set of atomic coordinates, and in another embodiment, such a structure has the recited average root-mean-square deviation (RMSD) value over 100% of the common amino acid side chains as compared to the tertiary structure represented by the given set of atomic coordinates.

A tertiary structure of an epimerase which substantially conforms to a specified set of atomic coordinates can be modeled by a suitable modeling computer program such as MODELER (A. Sali and T.L. Blundell, J. Mol. Biol., vol. 234:779-815, 1993 as implemented in the Insight II Homology software package (Insight II (97.0), MSI, San Diego)), using information, for example, derived from the following data: (1) the amino acid sequence of the epimerase; (2) the amino acid sequence of the related portion(s) of the protein represented by the specified set of atomic coordinates having a three dimensional configuration; and, (3) the atomic coordinates of the specified three dimensional configuration. Alternatively, a tertiary structure of an epimerase which substantially conforms to a specified set of atomic coordinates can be modeled using data generated from analysis of a crystallized structure of the epimerase. A tertiary structure of an epimerase which substantially conforms to a specified set of atomic coordinates can also be calculated by a method such as molecular replacement. Methods of molecular replacement are generally known by those of skill in the art (generally described in Brunger, Meth. Enzym., vol. 276, pp. 558-580, 1997; Navaza and Saludjian, Meth. Enzym., vol. 276, pp. 581-594, 1997; Tong and Rossmann, Meth. Enzym., vol. 276, pp. 594-611, 1997; and Bentley, Meth. Enzym., vol. 276, pp. 611-619, 1997, each of which are incorporated by this reference herein in their entirety) and are performed in a software program including, for example, XPLOR (Brunger, et al., Science, vol. 235, p. 458, 1987). In addition, a structure can be modeled using techniques generally described by, WO 99/64618

5

10

15

20

25

30

for example, Sali, Current Opinions in Biotechnology, vol. 6, pp. 437-451, 1995, and algorithms can be implemented in program packages such as Homology 95.0 (in the program Insight II, available from Biosym/MSI, San Diego, CA). Use of Homology 95.0 requires an alignment of an amino acid sequence of a known structure having a known three dimensional structure with an amino acid sequence of a target structure to be modeled. The alignment can be a pairwise alignment or a multiple sequence alignment including other related sequences (for example, using the method generally described by Rost, Meth. Enzymol., vol. 266, pp. 525-539, 1996) to improve accuracy. Structurally conserved regions can be identified by comparing related structural features, or by examining the degree of sequence homology between the known structure and the target structure. Certain coordinates for the target structure are assigned using known structures from the known structure. Coordinates for other regions of the target structure can be generated from fragments obtained from known structures such as those found in the Protein Data Bank maintained by Brookhaven National Laboratory, Upton, NY. Conformation of side chains of the target structure can be assigned with reference to what is sterically allowable and using a library of rotamers and their frequency of occurrence (as generally described in Ponder and Richards, J. Mol. Biol., vol. 193, pp. 775-791, 1987). The resulting model of the target structure, can be refined by molecular mechanics (such as embodied in the program Discover, available from Biosym/MSI) to ensure that the model is chemically and conformationally reasonable.

According to the present invention, an epimerase that has a nucleic acid sequence that is homologous at the primary structure level (i.e., is a homologue of) to a nucleic acid sequence encoding a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase or a UDP-galactose 4-epimerase includes any epimerase encoded by a nucleic acid sequence that is at least about 15%, and preferably at least about 20%, and more preferably at least about 25%, and even more preferably, at least about 30% identical to a nucleic acid sequence encoding a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase or a UDP-galactose 4-epimerase, and preferably to a nucleic acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 or SEQ ID NO:9. Similarly, an epimerase that has an amino acid sequence that is homologous to an amino acid sequence of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase or a UDP-

10

15

20

25

30

galactose 4-epimerase includes any epimerase having an amino acid sequence that is at least about 15%, and preferably at least about 20%, and more preferably at least about 25%, and even more preferably, at least about 30% identical to an amino acid sequence of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase or a UDP-galactose 4-epimerase, and preferably to an amino acid sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8 or SEQ ID NO:10.

According to one embodiment of the present invention, homology or percent identity between two or more nucleic acid or amino acid sequences is performed using methods known in the art for aligning and/or calculating percentage identity. To compare the homology/percent identity between two or more sequences as set forth above, for example, a module contained within DNASTAR (DNASTAR, Inc., Madison, Wisconsin) can be used. In particular, to calculate the percent identity between two nucleic acid or amino acid sequences, the Lipman-Pearson method, provided by the MegAlign module within the DNASTAR program, is preferably used, with the following parameters, also referred to herein as the Lipman-Pearson standard default parameters:

- (1) Ktuple = 2;
- (2) Gap penalty = 4;
- (3) Gap length penalty = 12.

Using the Lipman-Pearson method with these parameters, for example, the percent identity between the amino acid sequence for *E. coli* GDP-4-keto-6-deoxy-D-mannose epimerase/reductase (SEQ ID NO:4) and human GDP-4-keto-6-deoxy-D-mannose epimerase/reductase (FX) (SEQ ID NO:6) is 27.7%, which is comparable to the 27% identity described for these enzymes in Tonetti et al., 1998, *Acta Cryst.* D54:684-686.

According to another embodiment of the present invention, to align two or more nucleic acid or amino acid sequences, for example to generate a consensus sequence or evaluate the similarity at various positions between such sequences, a CLUSTAL alignment program (e.g., CLUSTAL, CLUSTAL V, CLUSTAL W), also available as a module within the DNASTAR program, can be used using the following parameters, also referred to herein as the CLUSTAL standard default parameters:

Multiple Alignment Parameters (i.e., for more than 2 sequences):

(1) Gap penalty = 10;

15

20

25

30

(2) Gap length penalty = 10;

Pairwise Alignment Parameters (i.e., for two sequences):

- (1) Ktuple = 1;
- (2) Gap penalty = 3;
- 5 (3) Window = 5;
 - (4) Diagonals saved = 5.

According to the present invention, a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase can be a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase from any organism, including Arabidopsis thaliana, Escherichia coli, and human. A nucleic acid sequence encoding a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase from Arabidopsis thaliana is represented herein by SEQ ID NO:1. SEQ ID NO:1 encodes a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase having an amino acid sequence represented herein as SEQ ID NO:2. A nucleic acid sequence encoding a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase from Escherichia coli is represented herein by SEQ ID NO:3. SEQ ID NO:3 encodes a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase having an amino acid sequence represented herein as SEQ ID NO:4. A nucleic acid sequence encoding a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase from homo sapiens is represented herein by SEQ ID NO:5. SEQ ID NO:5 encodes a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase from homo sapiens is represented herein by SEQ ID NO:5. SEQ ID NO:5 encodes a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase having an amino acid sequence represented herein as SEQ ID NO:6.

According to the present invention, a UDP-galactose 4-epimerase can be a UDP-galactose 4-epimerase from any organism, including *Escherichia coli* and human. A nucleic acid sequence encoding a UDP-galactose 4-epimerase from *Escherichia coli* is represented herein by SEQ ID NO:7. SEQ ID NO:7 encodes a UDP-galactose 4-epimerase having an amino acid sequence represented herein as SEQ ID NO:8. A nucleic acid sequence encoding a UDP-galactose 4-epimerase from *homo sapiens* is represented herein by SEQ ID NO:9. SEQ ID NO:9 encodes a UDP-galactose 4-epimerase having an amino acid sequence represented herein as SEQ ID NO:10.

In a preferred embodiment, an epimerase encompassed by the present invention has an amino acid sequence that aligns with the amino acid sequence of SEQ ID NO:11, for example using a CLUSTAL alignment program, wherein amino acid residues in the

10

15

20

25

30

amino acid sequence of the epimerase align with 100% identity with at least about 50% of non-Xaa residues in SEQ ID NO:11, and preferably at least about 75% of non-Xaa residues in SEQ ID NO:11, and more preferably, at least about 90% of non-Xaa residues in SEQ ID NO:11, and even more preferably 100% of non-Xaa residues in SEQ ID NO:11. The percent identity of residues aligning with 100% identity with non-Xaa residues can be simply calculated by dividing the number of 100% identical matches at non-Xaa residues in SEQ ID NO:11 by the total number of non-Xaa residues in SEQ ID NO:11. A preferred nucleic acid sequence encoding an epimerase encompassed by the present invention include a nucleic acid sequence encoding an epimerase having an amino acid sequence with the above described identity to SEQ ID NO:11. Such an alignment using a CLUSTAL alignment program is based on the same parameters as previously disclosed herein. SEQ ID NO:11 represents a consensus amino acid sequence of an epimerase which was derived by aligning at least portions of amino acid sequences SEQ ID NO:4, SEQ ID NO:6 and SEQ ID NO:8, as described in Somers et al., 1998, Structure 6:1601-1612, and can be approximately duplicated using CLUSTAL.

In another embodiment, an epimerase encompassed by the present invention includes an epimerase that has a catalytic site which includes amino acid residues: serine, tyrosine and lysine. Preferably, such serine, tyrosine and lysine residues are located at positions in the epimerase amino acid sequence which align using a CLUSTAL alignment program with positions Ser105, Tyr134 and Lys138 of consensus sequence SEQ ID NO:11, with positions Ser109, Tyr138 and Lys142 of sequence SEQ ID NO:2, with positions Ser107, Tyr136 and Lys140 of SEQ ID NO:4, with positions Ser114, Tyr143 and Lys147 of sequence SEQ ID NO:6, with positions Ser124, Tyr149 and Lys153 of sequence SEQ ID NO:8 or with positions Ser132, Tyr157 and Lys161 of sequence SEQ ID NO:10.

In another embodiment, an epimerase that has an amino acid sequence that is homologous to an amino acid sequence encoding a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase includes any epimerase that has an amino acid motif: Gly-Xaa-Xaa-Gly-Xaa-Xaa-Gly, which is found, for example in positions 8 through 14 of the consensus sequence SEQ ID NO:11, in positions 12 through 18 of SEQ ID NO:2, in positions 10 through 16 of SEQ ID NO:4, in positions 14 through 20 of SEQ ID NO:6, in positions

10

15

20

25

30

7 through 13 of SEQ ID NO:8, and in positions 9 through 15 of SEQ ID NO:10. Such a motif can be identified by its alignment with the same motif in the above-identified amino acid sequences using a CLUSTAL alignment program. Preferably, such motif is located within the first 25 N-terminal amino acids of the amino acid sequence of the epimerase.

In yet another embodiment, an epimerase encompassed by the present invention includes an epimerase that has a substrate binding site which includes amino acid residues that align using a CLUSTAL alignment program with at least 50% of amino acid positions Asn177, Ser178, Arg187, Arg209, Lys283, Asn165, Ser107, Ser108, Cys109, Asn133, Tyr136 and His179 of SEQ ID NO:4. Alignment with positions Ser107, Tyr136, Asn165, Arg209, is preferably with 100% identity (i.e., exact match of residue, under parameters for alignment).

In another embodiment of the present invention, an epimerase encompassed by the present invention comprises at least 4 contiguous amino acid residues having 100% identity with at least 4 contiguous amino acid residues of an amino acid sequence selected from the group of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8 or SEQ ID NO:10, as determined using a Lipman-Pearson method with Lipman-Pearson standard default parameters or by comparing an alignment using a CLUSTAL program with CLUSTAL standard default parameters. According to the present invention, the term "contiguous" means to be connected in an unbroken sequence. For a first sequence to have "100% identity" with a second sequence means that the first sequence exactly matches the second sequence with no gaps between nucleotides or amino acids.

In another embodiment of the present invention, an epimerase encompassed by the present invention is encoded by a nucleic acid sequence that comprises at least 12 contiguous nucleic acid residues having 100% identity with at least 12 contiguous nucleic acid residues of a nucleic acid sequence selected from the group of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 or SEQ ID NO:10, as determined using a Lipman-Pearson method with Lipman-Pearson standard default parameters or by comparing an alignment using a CLUSTAL program with CLUSTAL standard default parameters.

In another embodiment of the present invention, an epimerase encompassed by the present invention is encoded by a nucleic acid sequence that hybridizes under stringent

10

15

20

25

30

hybridization conditions to a nucleic acid sequence selected from the group of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 or SEQ ID NO:9. As used herein, stringent hybridization conditions refer to standard hybridization conditions under which nucleic acid molecules are used to identify similar nucleic acid molecules. Such standard conditions are disclosed, for example, in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Labs Press, 1989. Sambrook et al., *ibid.*, is incorporated by reference herein in its entirety (see specifically, pages 9.31-9.62). In addition, formulae to calculate the appropriate hybridization and wash conditions to achieve hybridization permitting varying degrees of mismatch of nucleotides are disclosed, for example, in Meinkoth et al., 1984, *Anal. Biochem.* 138, 267-284; Meinkoth et al., *ibid.*, is incorporated by reference herein in its entirety.

More particularly, stringent hybridization and washing conditions, as referred to herein, refer to conditions which permit isolation of nucleic acid molecules having at least about 70% nucleic acid sequence identity with the nucleic acid molecule being used to probe in the hybridization reaction, more particularly at least about 75%, and most particularly at least about 80%. Such conditions will vary, depending on whether DNA:RNA or DNA:DNA hybrids are being formed. Calculated melting temperatures for DNA:DNA hybrids are 10°C less than for DNA:RNA hybrids. embodiments, stringent hybridization conditions for DNA:DNA hybrids include hybridization at an ionic strength of 6X SSC (0.9 M Na⁺) at a temperature of between about 20°C and about 35°C, more preferably, between about 28°C and about 40°C, and even more preferably, between about 35°C and about 45°C. In particular embodiments, stringent hybridization conditions for DNA:RNA hybrids include hybridization at an ionic strength of 6X SSC (0.9 M Na⁺) at a temperature of between about 30°C and about 45°C, more preferably, between about 38°C and about 50°C, and even more preferably, between about 45°C and about 55°C. These values are based on calculations of a melting temperature for molecules larger than about 100 nucleotides, 0% formamide and a G+ C content of about 40%. Alternatively, T_m can be calculated empirically as set forth in Sambrook et al., supra, pages 9.31 to 9.62.

In another embodiment of the present invention, an epimerase encompassed by the present invention is encoded by a nucleic acid sequence that comprises a nucleic acid

10

15

20

25

30

sequence selected from the group of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 or SEQ ID NO:9 or a fragment thereof, wherein the fragment encodes a protein that is capable of catalyzing the conversion of GDP-D-mannose to GDP-L-galactose, such as under physiological conditions. In another embodiment, an epimerase encompassed by the present invention comprises an amino acid sequence selected from the group of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10 or a fragment thereof, wherein the fragment is capable of catalyzing the conversion of GDP-D-mannose to GDP-L-galactose. It is to be understood that the nucleic acid sequence encoding the amino acid sequences identified herein can vary due to degeneracies. As used herein, nucleotide degeneracies refers to the phenomenon that one amino acid can be encoded by different nucleotide codons.

One embodiment of the present invention relates to a method to identify an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose. Preferably, such a method is useful for identifying the GDP-D-mannose: GDP-L-galactose epimerase which catalyzes the conversion of GDP-D-mannose to GDP-L-galactose in the endogenous (i.e., naturally occurring L-ascorbic acid biosynthetic pathway of microorganisms and/or plants). Such a method can include the steps of: (a) contacting a source of nucleic acid molecules with an oligonucleotide at least about 12 nucleotides in length under stringent hybridization conditions, wherein the oligonucleotide is identified by its ability to hybridize under stringent hybridization conditions to a nucleic acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3 and SEQ ID NO:5; and, (b) identifying nucleic acid molecules from the source of nucleic acid molecules which hybridize under stringent hybridization conditions to the oligonucleotide. Nucleic acid molecules identified by this method can then be isolated from the source using standard molecular biology techniques. Preferably, the source of nucleic acid molecules is obtained from a microorganism or plant that has an ascorbic acid production pathway. Such a source of nucleic acid molecules can be any source of nucleic acid molecules which can be isolated from an organism and/or which can be screened by hybridization with an oligonucleotide such as a probe or a PCR primer. Such sources include genomic and cDNA libraries and isolated RNA.

10

15

20

25

30

In order to screen cDNA libraries from different organisms and to isolate nucleic acid molecules encoding enzymes such as the GDP-D-mannose:GDP-L-galactose epimerase and related epimerases, one can use any of a variety of standard molecular and biochemical techniques. For example, oligonucleotide primers, preferably degenerate primers, can be designed using the most conserved regions of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase nucleic acid sequence, and such primers can be used in a polymerase chain reaction (PCR) protocol to amplify the same or related epimerases, including the GDP-D-mannose:GDP-L-galactose epimerase from the ascorbic acid pathway, from nucleic acids (e.g., genomic or cDNA libraries) isolated from a desired organism (e.g., a microorganism or plant having an L-ascorbic acid pathway). Similarly, oligonucleotide probes can be designed using the most conserved regions of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase nucleic acid sequence and such probe can be used to identify and isolate nucleic acid molecules, such as from a genomic or cDNA library, that hybridize under conditions of low, moderate, or high stringency with the probe.

Alternatively, the GDP-D-mannose: GDP-L-galactose epimerase can be purified from an organism such as *Prototheca*, the N-terminal amino acid sequence can be determined (including the sequence of internal peptide fragments), and this information can be used to design degenerate primers for amplifying a gene fragment from the organism cDNA. This fragment would then be used to probe the cDNA library, and subsequently fragments that hybridize to the probe would be cloned in that organism or another suitable production organism. There is ample precedent for plant enzymes being expressed in an active form in bacteria, such as *E. coli*. Alternatively, yeast are also a suitable candidate for developing a heterologous system for L-ascorbic acid production.

As discussed above in general for increasing the action of an enzyme in the L-ascorbic acid pathway according to the present invention, in one embodiment of the present invention, the action of an epimerase that catalyzes the conversion of GDP-D-mannose to GDP-L-galactose is increased by amplification of the expression (i.e., overexpression) of such an epimerase. Overexpression of an epimerase can be accomplished, for example, by introduction of a recombinant nucleic acid molecule encoding the epimerase. It is preferred that the gene encoding an epimerase according to

10

15

20

25

30

the present invention be cloned under control of an artificial promoter. The promoter can be any suitable promoter that will provide a level of epimerase expression required to maintain a sufficient level of L-ascorbic acid in the production organism. Preferred promoters are constitutive (rather than inducible) promoters, since the need for addition of expensive inducers is therefore obviated. The gene dosage (copy number) of a recombinant nucleic acid molecule according to the present invention can be varied according to the requirements for maximum product formation. In one embodiment, the recombinant nucleic acid molecule encoding an epimerase according to the present invention is integrated into the chromosome of the microorganism.

It is another embodiment of the present invention to provide a microorganism having one or more epimerases according to the present invention with improved affinity for its substrate. An epimerase with improved affinity for its substrate can be produced by any suitable method of genetic modification or protein engineering. For example, computer-based protein engineering can be used to design an epimerase protein with greater stability and better affinity for its substrate. See for example, Maulik et al., 1997, Molecular Biotechnology: Therapeutic Applications and Strategies, Wiley-Liss, Inc., which is incorporated herein by reference in its entirety.

As noted above, in the method for production of L-ascorbic acid of the present invention, a microorganism having a genetically modified L-ascorbic acid production pathway is cultured in a fermentation medium for production of L-ascorbic acid. An appropriate, or effective, fermentation medium refers to any medium in which a genetically modified microorganism of the present invention, when cultured, is capable of producing L-ascorbic acid. Such a medium is typically an aqueous medium comprising assimilable carbon, nitrogen and phosphate sources. Such a medium can also include appropriate salts, minerals, metals and other nutrients. One advantage of genetically modifying a microorganism as described herein is that although such genetic modifications can significantly alter the production of L-ascorbic acid, they can be designed such that they do not create any nutritional requirements for the production organism. Thus, a minimal-salts medium containing glucose as the sole carbon source can be used as the fermentation medium. The use of a minimal-salts-glucose medium for the L-ascorbic acid fermentation will also facilitate recovery and purification of the L-ascorbic acid product.

10

15

20

25

30

In one mode of operation of the present invention, the carbon source concentration, such as the glucose concentration, of the fermentation medium is monitored during fermentation. Glucose concentration of the fermentation medium can be monitored using known techniques, such as, for example, use of the glucose oxidase enzyme test or high pressure liquid chromatography, which can be used to monitor glucose concentration in the supernatant, e.g., a cell-free component of the fermentation medium. As stated previously, the carbon source concentration should be kept below the level at which cell growth inhibition occurs. Although such concentration may vary from organism to organism, for glucose as a carbon source, cell growth inhibition occurs at glucose concentrations greater than at about 60 g/L, and can be determined readily by trial. Accordingly, when glucose is used as a carbon source the glucose concentration in the fermentation medium is maintained in the range of from about 1 g/L to about 100 g/L, more preferably in the range of from about 2 g/L to about 50 g/L, and yet more preferably in the range of from about 5 g/L to about 20 g/L. Although the carbon source concentration can be maintained within desired levels by addition of, for example, a substantially pure glucose solution, it is preferred to maintain the carbon source concentration of the fermentation medium by addition of aliquots of the original fermentation medium. The use of aliquots of the original fermentation medium are desirable because the concentrations of other nutrients in the medium (e.g. the nitrogen and phosphate sources) can be maintained simultaneously. Likewise, the trace metals concentrations can be maintained in the fermentation medium by addition of aliquots of the trace metals solution.

In an embodiment of the fermentation process of the present invention, a fermentation medium is prepared as described above. This fermentation medium is inoculated with

an actively growing culture of genetically modified microorganisms of the present invention in an amount sufficient to produce, after a reasonable growth period, a high cell density. Typical inoculation cell densities are within the range of from about 0.1 g/L to about 15 g/L, preferably from about 0.5 g/L to about 10 g/L and more preferably from about 1 g/L to about 5 g/L, based on the dry weight of the cells. The cells are then grown to a cell density in the range of from about 10 g/L to about 100 g/L preferably from about

WO 99/64618

5

10

15

20

25

30

20 g/L to about 80 g/L, and more preferably from about 50 g/L to about 70 g/L. The residence times for the microorganisms to reach the desired cell densities during fermentation are typically less than about 200 hours, preferably less than about 120 hours, and more preferably less than about 96 hours.

The microorganisms useful in the method of the present invention can be cultured in conventional fermentation modes, which include, but are not limited to, batch, fedbatch, and continuous. It is preferred, however, that the fermentation be carried out in fed-batch mode. In such a case, during fermentation some of the components of the medium are depleted. It is possible to initiate fermentation with relatively high concentrations of such components so that growth is supported for a period of time before additions are required. The preferred ranges of these components are maintained throughout the fermentation by making additions as levels are depleted by fermentation. Levels of components in the fermentation medium can be monitored by, for example, sampling the fermentation medium periodically and assaying for concentrations. Alternatively, once a standard fermentation procedure is developed, additions can be made at timed intervals corresponding to known levels at particular times throughout the fermentation. As will be recognized by those in the art, the rate of consumption of nutrient increases during fermentation as the cell density of the medium increases. Moreover, to avoid introduction of foreign microorganisms into the fermentation medium, addition is performed using aseptic addition methods, as are known in the art. In addition, a small amount of anti-foaming agent may be added during the fermentation.

The present inventors have determined that high levels of magnesium in the fermentation medium inhibits the production of L-ascorbic acid due to repression of enzymes early in the production pathway, although enzymes late in the pathway (i.e., from L-galactose to L-ascorbic acid) are not negatively affected (See Examples). Therefore, in a preferred embodiment of the method of the present invention, the step of culturing is carried out in a fermentation medium that is magnesium (Mg²⁺) limited. Even more preferably, the fermentation is magnesium limited during the cell growth phase. Preferably, the fermentation medium comprises less than about 0.5 g/L of Mg²⁺ during the cell growth phase of fermentation, and even more preferably, less than about 0.2 g/L of Mg²⁺, and even more preferably, less than about 0.1 g/L of Mg²⁺.

10

15

20

25

30

The temperature of the fermentation medium can be any temperature suitable for growth and ascorbic acid production, and may be modified according to the growth requirements of the production microorganism used. For example, prior to inoculation of the fermentation medium with an inoculum, the fermentation medium can be brought to and maintained at a temperature in the range of from about 20°C to about 45°C, preferably to a temperature in the range of from about 25°C to about 40°C, and more preferably in the range of from about 30°C to about 38°C.

It is a further embodiment of the present invention to supplement and/or control other components and parameters of the fermentation medium, as necessary to maintain and/or enhance the production of L-ascorbic acid by a production organism. For example, in one embodiment, the pH of the fermentation medium is monitored for fluctuations in pH. In the fermentation method of the present invention, the pH is preferably maintained at a pH of from about pH 6.0 to about pH 8.0, and more preferably, at about pH 7.0. In the method of the present invention, if the starting pH of the fermentation medium is pH 7.0, the pH of the fermentation medium is monitored for significant variations from pH 7.0, and is adjusted accordingly, for example, by the addition of sodium hydroxide. In a preferred embodiment of the present invention, genetically modified microorganisms useful for production of L-ascorbic acid include acid-tolerant microorganisms. Such microorganisms include, for example, microalgae of the genera *Prototheca* and *Chlorella* (See U.S. Patent No. 5,792,631, *ibid.* and U.S. Patent No. 5,900,370, *ibid.*).

The production of ascorbic acid by culturing acid-tolerant microorganisms provides significant advantages over known ascorbic acid production methods. One such advantage is that such organisms are acidophilic, allowing fermentation to be carried out under low pH conditions, with the fermentation medium pH typically less than about 6. Below this pH, extracellular ascorbic acid produced by the microorganism during fermentation is relatively stable because the rate of oxidation of ascorbic acid in the fermentation medium by oxygen is reduced. Accordingly, high productivity levels can be obtained for producing L-ascorbic acid with acid-tolerant microorganisms according to the methods of the present invention. In addition, control of the dissolved oxygen content to very low levels to avoid oxidation of ascorbic acid is unnecessary. Moreover, this

10

15

20

25

30

advantage allows for the use of continuous recovery methods because extracellular medium can be treated to recover the ascorbic acid product.

Thus, the present method can be conducted at low pH when acid-tolerant microorganisms are used as production organisms. The benefit of this process is that at low pH, extracellular ascorbic acid produced by the organism is degraded at a reduced rate than if the fermentation medium was at higher pH. For example, prior to inoculation of the fermentation medium with an inoculum, the pH of the fermentation medium can be adjusted, and further monitored during fermentation. Typically, the pH of the fermentation medium is brought to and maintained below about 6, preferably below 5.5, and more preferably below about 5. The pH of the fermentation medium can be controlled by the addition of ammonia to the fermentation medium. In such cases when ammonia is used to control pH, it also conveniently serves as a nitrogen source in the fermentation medium.

The fermentation medium can also be maintained to have a dissolved oxygen content during the course of fermentation to maintain cell growth and to maintain cell metabolism for L-ascorbic acid formation. The oxygen concentration of the fermentation medium can be monitored using known methods, such as through the use of an oxygen probe electrode. Oxygen can be added to the fermentation medium using methods known in the art, for example, through agitation and aeration of the medium by stirring or shaking. Preferably, the oxygen concentration in the fermentation medium is in the range of from about 20% to about 100% of the saturation value of oxygen in the medium based upon the solubility of oxygen in the fermentation medium at atmospheric pressure and at a temperature in the range of from about 30°C to about 40°C. Periodic drops in the oxygen concentration below this range may occur during fermentation, however, without adversely affecting the fermentation.

The genetically modified microorganisms of the present invention are engineered to produce significant quantities of extracellular L-ascorbic acid. Extracellular L-ascorbic acid can be recovered from the fermentation medium using conventional separation and purification techniques. For example, the fermentation medium can be filtered or centrifuged to remove microorganisms, cell debris and other particulate matter, and L-ascorbic acid can be recovered from the cell-free supernate by conventional methods, such

10

15

20

25

30

as, for example, ion exchange, chromatography, extraction, solvent extraction, membrane separation, electrodialysis, reverse osmosis, distillation, chemical derivatization and crystallization.

One such example of L-ascorbic acid recovery is provided in U.S. Patent No. 4,595,659 by Cayle, incorporated herein in its entirety be reference, which discloses the isolation of L-ascorbic acid from an aqueous fermentation medium by ion exchange resin adsorption and elution, which is followed by decoloration, evaporation and crystallization. Further, isolation of the structurally similar isoascorbic acid from fermentation medium by a continuous multi-bed extraction system of anion-exchange resins is described by K. Shimizu, Agr. Biol. Chem. 31:346-353 (1967), which is incorporated herein in its entirety by reference.

Intracellular L-ascorbic acid produced in accordance with the present invention can also be recovered and used in a variety of applications. For example, cells from the microorganisms can be lysed and the ascorbic acid which is released can be recovered by a variety of known techniques. Alternatively, intracellular ascorbic acid can be recovered by washing the cells to extract the ascorbic acid, such as through diafiltration.

Development of a microorganism with enhanced ability to produce L-ascorbic acid by genetic modification can be accomplished using both classical strain development and molecular genetic techniques, and particularly, recombinant technology (genetic engineering). In general, the strategy for creating a microorganism with enhanced L-ascorbic acid production is to (1) inactivate or delete at least one, and preferably more than one of the competing or inhibitory pathways in which production of L-ascorbic acid is negatively affected (e.g., inhibited), and more significantly to (2) amplify the L-ascorbic acid production pathway by increasing the action of a gene(s) encoding an enzyme(s) involved in the pathway.

In one embodiment, the strategy for creating a microorganism with enhanced L-ascorbic acid production is to amplify the L-ascorbic acid production pathway by increasing the action of GDP-D-mannose:GDP-L-galactose epimerase, as discussed above. Such strategy includes genetically modifying the endogenous GDP-D-mannose:GDP-L-galactose epimerase such that L-ascorbic acid production is increased, and/or expressing/overexpressing a recombinant epimerase that catalyzes the conversion

10

15

20

25

30

of GDP-D-mannose to GDP-L-galactose, which includes expression of recombinant GDP-D-mannose:GDP-L-galactose epimerase and/or homologues thereof, and of other recombinant epimerases such as GDP-4-keto-6-deoxy-D-mannose epimerase reductase and epimerases that share structural homology with such epimerase as discussed in detail above.

It is to be understood that a production organism can be genetically modified by recombinant technology in which a nucleic acid molecule encoding a protein involved in the L-ascorbic acid production pathway disclosed herein is transformed into a suitable host which is a different member of the plant kingdom from which the nucleic acid molecule was derived. For example, it is an embodiment of the present invention that a recombinant nucleic acid molecule encoding a GDP-D-mannose:GDP-L-galactose epimerase from a higher plant can be transformed into a microalgal host in order to overexpress the epimerase and enhance production of L-ascorbic acid in the microalgal production organism.

As previously discussed herein, in one embodiment, a genetically modified microorganism can be a microorganism in which nucleic acid molecules have been deleted, inserted or modified, such as by insertion, deletion, substitution, and/or inversion of nucleotides, in such a manner that such modifications provide the desired effect within the microorganism. A genetically modified microorganism is preferably modified by recombinant technology, such as by introduction of an isolated nucleic acid molecule into a microorganism. For example, a genetically modified microorganism can be transfected with a recombinant nucleic acid molecule encoding a protein of interest, such as a protein for which increased expression is desired. The transfected nucleic acid molecule can remain extrachromosomal or can integrate into one or more sites within a chromosome of the transfected (i.e., recombinant) host cell in such a manner that its ability to be expressed is retained. Preferably, once a host cell of the present invention is transfected with a nucleic acid molecule, the nucleic acid molecule is integrated into the host cell genome. A significant advantage of integration is that the nucleic acid molecule is stably maintained in the cell. In a preferred embodiment, the integrated nucleic acid molecule is operatively linked to a transcription control sequence (described below) which can be induced to control expression of the nucleic acid molecule.

10

15

20

25

30

A nucleic acid molecule can be integrated into the genome of the host cell either by random or targeted integration. Such methods of integration are known in the art. For example, an E coli strain ATCC 47002 contains mutations that confer upon it an inability to maintain plasmids which contain a ColE1 origin of replication. When such plasmids are transferred to this strain, selection for genetic markers contained on the plasmid results in integration of the plasmid into the chromosome. This strain can be transformed, for example, with plasmids containing the gene of interest and a selectable marker flanked by the 5'- and 3'-termini of the E coli lacZ gene. The lacZ sequences target the incoming DNA to the lacZ gene contained in the chromosome. Integration at the lacZ locus replaces the intact lacZ gene, which encodes the enzyme β -galactosidase, with a partial lacZ gene interrupted by the gene of interest. Successful integrants can be selected for β -galactosidase negativity.

A genetically modified microorganism can also be produced by introducing nucleic acid molecules into a recipient cell genome by a method such as by using a transducing bacteriophage. The use of recombinant technology and transducing bacteriophage technology to produce several different genetically modified microorganism of the present invention is known in the art.

According to the present invention, a gene, for example the GDP-D-mannose:GDP-L-galactose epimerase gene, includes all nucleic acid sequences related to a natural epimerase gene such as regulatory regions that control production of the epimerase protein encoded by that gene (such as, but not limited to, transcription, translation or post-translation control regions) as well as the coding region itself. In another embodiment, a gene, for example the GDP-D-mannose:GDP-L-galactose epimerase gene, can be an allelic variant that includes a similar but not identical sequence to the nucleic acid sequence encoding a given GDP-D-mannose:GDP-L-galactose epimerase gene. An allelic variant of a GDP-D-mannose:GDP-L-galactose epimerase gene which has a given nucleic acid sequence is a gene that occurs at essentially the same locus (or loci) in the genome as the gene having the given nucleic acid sequence, but which, due to natural variations caused by, for example, mutation or recombination, has a similar but not identical sequence. Allelic variants typically encode proteins having similar activity to that of the protein encoded by the gene to which they are being

10

15

20

25

30

compared. Allelic variants can also comprise alterations in the 5' or 3' untranslated regions of the gene (e.g., in regulatory control regions). Allelic variants are well known to those skilled in the art and would be expected to be found within a given microorganism or plant and/or among a group of two or more microorganisms or plants.

In accordance with the present invention, an isolated nucleic acid molecule is a nucleic acid molecule that has been removed from its natural milieu (i.e., that has been subject to human manipulation). As such, "isolated" does not reflect the extent to which the nucleic acid molecule has been purified. An isolated nucleic acid molecule can include DNA, RNA, or derivatives of either DNA or RNA. There is no limit, other than a practical limit, on the maximal size of a nucleic acid molecule in that the nucleic acid molecule can include a portion of a gene, an entire gene, or multiple genes, or portions thereof.

An isolated nucleic acid molecule of the present invention can be obtained from its natural source either as an entire (i.e., complete) gene or a portion thereof capable of forming a stable hybrid with that gene. An isolated nucleic acid molecule can also be produced using recombinant DNA technology (e.g., polymerase chain reaction (PCR) amplification, cloning) or chemical synthesis. Isolated nucleic acid molecules include natural nucleic acid molecules and homologues thereof, including, but not limited to, natural allelic variants and modified nucleic acid molecules in which nucleotides have been inserted, deleted, substituted, and/or inverted in such a manner that such modifications provide the desired effect within the microorganism. A structural homologue of a nucleic acid sequence has been described in detail above. Preferably, a homologue of a nucleic acid sequence encodes a protein which has an amino acid sequence that is sufficiently similar to the natural protein amino acid sequence that a nucleic acid sequence encoding the homologue is capable of hybridizing under stringent conditions to (i.e., with) a nucleic acid molecule encoding the natural protein (i.e., to the complement of the nucleic acid strand encoding the natural protein amino acid sequence). A nucleic acid molecule homologue encodes a protein homologue. As used herein, a homologue protein includes proteins in which amino acids have been deleted (e.g., a truncated version of the protein, such as a peptide), inserted, inverted, substituted and/or derivatized (e.g., by glycosylation, phosphorylation, acetylation, myristoylation, prenylation, palmitation,

10

15

20

25

30

amidation and/or addition of glycosylphosphatidyl inositol) in such a manner that such modifications provide the desired effect on the protein and/or within the microorganism (e.g., increased or decreased action of the protein).

A nucleic acid molecule homologue can be produced using a number of methods known to those skilled in the art (see, for example, Sambrook et al., *ibid*). For example, nucleic acid molecules can be modified using a variety of techniques including, but not limited to, classic mutagenesis techniques and recombinant DNA techniques, such as site-directed mutagenesis, chemical treatment of a nucleic acid molecule to induce mutations, restriction enzyme cleavage of a nucleic acid fragment, ligation of nucleic acid fragments, PCR amplification and/or mutagenesis of selected regions of a nucleic acid sequence, synthesis of oligonucleotide mixtures and ligation of mixture groups to "build" a mixture of nucleic acid molecules and combinations thereof. Nucleic acid molecule homologues can be selected from a mixture of modified nucleic acids by screening for the function of the protein encoded by the nucleic acid and/or by hybridization with a wild-type gene.

Although the phrase "nucleic acid molecule" primarily refers to the physical nucleic acid molecule and the phrase "nucleic acid sequence" primarily refers to the sequence of nucleotides on the nucleic acid molecule, the two phrases can be used interchangeably, especially with respect to a nucleic acid molecule, or a nucleic acid sequence, being capable of encoding a gene involved in an L-ascorbic acid production pathway.

Knowing the nucleic acid sequences of certain nucleic acid molecules of the present invention allows one skilled in the art to, for example, (a) make copies of those nucleic acid molecules and/or (b) obtain nucleic acid molecules including at least a portion of such nucleic acid molecules (e.g., nucleic acid molecules including full-length genes, full-length coding regions, regulatory control sequences, truncated coding regions). Such nucleic acid molecules can be obtained in a variety of ways including traditional cloning techniques using oligonucleotide probes to screen appropriate libraries or DNA and PCR amplification of appropriate libraries or DNA using oligonucleotide primers. Preferred libraries to screen or from which to amplify nucleic acid molecule include bacterial and yeast genomic DNA libraries, and in particular, microalgal genomic DNA libraries. Techniques to clone and amplify genes are disclosed, for example, in Sambrook et al., ibid.

10

15

20

25

30

The present invention includes a recombinant vector, which includes at least one isolated nucleic acid molecule of the present invention, inserted into any vector capable of delivering the nucleic acid molecule into a host microorganism of the present invention. Such a vector can contain nucleic acid sequences that are not naturally found adjacent to the isolated nucleic acid molecules to be inserted into the vector. The vector can be either RNA or DNA and typically is a plasmid. Recombinant vectors can be used in the cloning, sequencing, and/or otherwise manipulating of nucleic acid molecules. One type of recombinant vector, referred to herein as a recombinant molecule and described in more detail below, can be used in the expression of nucleic acid molecules. Preferred recombinant vectors are capable of replicating in a transformed bacterial cells, yeast cells, and in particular, in microalgal cells.

Transformation of a nucleic acid molecule into a cell can be accomplished by any method by which a nucleic acid molecule can be inserted into the cell. Transformation techniques include, but are not limited to, transfection, electroporation, microinjection and biolistics.

A recombinant cell is preferably produced by transforming a host cell with one or more recombinant molecules, each comprising one or more nucleic acid molecules operatively linked to an expression vector containing one or more transcription control sequences. The phrase, operatively linked, refers to insertion of a nucleic acid molecule into an expression vector in a manner such that the molecule is able to be expressed when transformed into a host cell. As used herein, an expression vector is a DNA or RNA vector that is capable of transforming a host cell and of effecting expression of a specified nucleic acid molecule. Preferably, the expression vector is also capable of replicating within the host cell. In the present invention, expression vectors are typically plasmids. Expression vectors of the present invention include any vectors that function (i.e., direct gene expression) in a yeast host cell, a bacterial host cell, and preferably a microalgal host cell.

Nucleic acid molecules of the present invention can be operatively linked to expression vectors containing regulatory sequences such as transcription control sequences, translation control sequences, origins of replication, and other regulatory sequences that are compatible with the recombinant cell and that control the expression

10

15

20

25

of nucleic acid molecules of the present invention. In particular, recombinant molecules of the present invention include transcription control sequences. Transcription control sequences are sequences which control the initiation, elongation, and termination of transcription. Particularly important transcription control sequences are those which control transcription initiation, such as promoter, enhancer, operator and repressor sequences. Suitable transcription control sequences include any transcription control sequence that can function in yeast or bacterial cells or preferably, in microalgal cells. A variety of such transcription control sequences are known to those skilled in the art.

It may be appreciated by one skilled in the art that use of recombinant DNA technologies can improve expression of transformed nucleic acid molecules by manipulating, for example, the number of copies of the nucleic acid molecules within a host cell, the efficiency with which those nucleic acid molecules are transcribed, the efficiency with which the resultant transcripts are translated, and the efficiency of posttranslational modifications. Recombinant techniques useful for increasing the expression of nucleic acid molecules of the present invention include, but are not limited to, operatively linking nucleic acid molecules to high-copy number plasmids, integration of the nucleic acid molecules into the host cell chromosome, addition of vector stability sequences to plasmids, substitutions or modifications of transcription control signals (e.g., promoters, operators, enhancers), substitutions or modifications of translational control signals, modification of nucleic acid molecules of the present invention to correspond to the codon usage of the host cell, deletion of sequences that destabilize transcripts, and use of control signals that temporally separate recombinant cell growth from recombinant enzyme production during fermentation. The activity of an expressed recombinant protein of the present invention may be improved by fragmenting, modifying, or derivatizing nucleic acid molecules encoding such a protein.

The following experimental results are provided for the purposes of illustration and are not intended to limit the scope of the invention.

EXAMPLES

Example 1

5

10

15

20

25

30

The present example describes the elucidation of the pathway from glucose to L-ascorbic acid through GDP-D-mannose in plants.

Since the present inventors have previously shown that *Prototheca* makes L-ascorbic acid (AA) from glucose, it was worthwhile to examine cultures for some of the early conversion products of glucose. In the past, the present inventors had concentrated on pathways from glucose to organic acids, based on the published pathway of L-ascorbic acid synthesis in animals and proposed pathways in plants. The present inventors demonstrate herein that the pathway from glucose to L-ascorbic acid involves not organic acids, but rather sugar phosphates and nucleotide diphosphate sugars (NDP-sugars).

Prior to the present invention, it was known that all cells synthesize polysaccharides by first forming NDP-sugars. The sugar moiety is then incorporated into polymer, while the cleaved NDP is recycled. A variety of polysaccharides are known, and are usually named based on the relative proportions of the sugar residues in the polymers. For example, a "galactomannan" contains mostly galactose, and to a lesser degree, mannose residues. The "biopolymer" from *Prototheca* strains isolated by the present inventors was analyzed and found to be 80% D-galactose, 18% rhamnose (D- or L-configuration not determined), and 2% L-arabinose. The present inventors provide evidence herein of how the respective NDP-sugars that make up the *Prototheca* biopolymer are formed, and what correlations exist between L-ascorbic acid synthesis and the formation of the NDP-sugar forms of the sugar residues found in the biopolymer.

The common NDP-sugar UDP-glucose is shown in Fig. 2B. This is formed in plants from glucose-I-P by the action of UDP-D-glucose pyrophosphorylase. UDP-glucose can be epimerized in plants to form UDP-D-galactose, using UDP-D-glucose-4-epimerase. UDP-D-galactose can also be formed by phosphorylation of D-galactose by galactokinase to form D-galactose-I-P, which can be converted to UDP-D-galactose by UDP-D-galactose pyrophosphorylase. These known routes were believed to account for the D-galactose in the *Prototheca* biopolymer. The UDP-L-arabinose can be formed by known reactions beginning with the oxidation of UDP-D-glucose to UDP-D-glucuronic acid (by UDP-D-glucose dehydrogenase), decarboxylation to UDP-D-xylose, and epimerization to UDP-L-arabinose. This accounts for the arabinose residues in the

10

15

20

25

30

biopolymer. UDP-L-rhamnose is known to be formed from UDP-D-glucose, thus all three of the sugar moieties in the *Prototheca* biopolymer can be accounted for by a pathway through glucose-1-P and UDP-glucose. Alternatively, if the rhamnose in the biopolymer is D-rhamnose, it is not formed via UDP-D-glucose, but by oxidation of GDP-D-mannose (See Fig. 1).

GDP-D-rhamnose is formed by converting glucose, in turn, to D-glucose-6-P, Dfructose-6-P, D-mannose-6-P, D-mannose-1-P, GDP-D-mannose, and GDP-D-rhamnose. It was of interest to the present inventors that this route passes through GDP-D-mannose. Exogenous mannose is known to be converted to D-mannose-6-P in plants, and can enter the path above. D-mannose is converted to L-ascorbic acid by Prototheca cells cultured by the present inventors as well or better than glucose (see Example 4). The mechanism of conversion, in Chlorella pyrenoidosa, of GDP-D-mannose to GDP-L-galactose by GDP-D-mannose: GDP-L-galactose epimerase, has been known for years (See, Barber, 1971, Arch. Biochem. Biophys. 147:619-623, incorporated herein by reference in its entirety). The present inventors have discovered herein that L-galactose and L-galactonoy-lactone are rapidly converted to L-ascorbic acid by strains of Prototheca and Chlorella pyrenoidosa. Prior to the present invention, it was known that L-galactono-y-lactone is converted to L-ascorbic acid in several plant systems, but the synthesis steps prior to this step were unknown. Based on the published literature and the present experimental evidence, the present inventors have determined that the L-ascorbic acid biosynthetic pathway in plants passes through GDP-D-mannose and involves sugar phosphates and NDP-sugars. The proposed pathway is shown in Fig. 1. Salient points relevant to the design and production of genetically modified microorganisms useful in the present method include:

- 1. The enzymes leading from D-glucose to D-fructose-6-P are well known enzymes in the first, uncommitted steps of glycolysis.
- 2. The enzymes involved in the conversion of D-fructose-6-P to GDP-D-mannose have been well characterized in plants, yeast, and bacteria, particularly Azotobacter vinelandii and Pseudomonas aeruginosa, which convert GDP-D-mannose to GDP-D-mannuronic acid, which is the precursor for alginate (See for example, Sa-Correia et al., 1987, J. Bacteriol. 169:3224-3231; Koplin et al., 1992, J. Bacteriol. 174:191-199; Oesterhelt et al., 1996, Plant Science 121:19-27; Feingold et al., 1980, The

10

15

20

25

30

Biochemistry of Plants: Vol 3: Carbohydrates, structure and function, P.K. Stampf & E.E. Conn, eds., Academic Press, New York, pp. 101-170; Smith et al., 1992, *Mol. Cell Biol.* 12:2924-2930; Boles et al., 1994, *Eur. J. Med.* 220:83-96; Hashimoto et al., 1997, *J. Biol. Chem.* 272:16308-16314, all of which are incorporated herein by reference in their entirety).

- 3. Barber (1971, *supra*, and 1975) identified in *Chlorella pyrenoidosa* the enzyme activities for the conversion of GDP-D-mannose to GDP-L-galactose and L-galactose-l-P.
- 4. The present inventors have shown herein the rapid conversion of L-galactose and L-galactono-γ-lactone to L-ascorbic acid by *Prototheca* cells.
- 5. L-galactono-γ-lactone and L-galactonic acid can be interconverted in solution by changing the pH of the solution; addition of base shifts the equilibrium to L-galactonic acid, while addition of acid shifts the equilibrium to the lactone. Cells may have an enzymatic means for this conversion in addition to this non-enzymatic route.
- 6. In plants, GDP-L-fucose is also formed from GDP-D-mannose, presumably for incorporation into polysaccharide. Roberts (1971) fed labeled D-mannose to corn root tips and found the label in polysaccharide, specifically in the residues of D-mannose, L-galactose, and L-fucose. No label was detected in D-glucose, D-galactose, L-arabinose, or D-xylose. *Prototheca and C. pyrenoidosa* cells have the ability to convert L-fucose (6-deoxy-L-galactose) to a dipyridyl-positive product that was shown by HPLC not to be L-ascorbic acid. The present inventors believe that it is was the 6-deoxy analog of L-ascorbic acid.

Example 2

This example shows that in *Prototheca*, like other plants (Loewus, F.A. 1988. In: J. Priess (ed.), The Biochemistry of Plants, 14:85-107. New York, Academic Press) and the green microalga *Chlorella pyrenoidosa* (Renstrom, et al., 1983. Plant Sci. Lett. 28:299-305), ascorbic acid (AA) production from glucose proceeds by a biosynthetic pathway that allows retention of the configuration of the carbon skeleton of glucose.

Cultures of the strain UV77-247 were grown to moderate cell density in shake flasks with 1-13C-labeled glucose as 10% of the total glucose (40 g/L). Incubation was

10

15

20

25

as per the standard Mg-limited screen (see Example 3). The culture supernates were clarified, deionized to remove salts, lyophilized, and subjected to nuclear magnetic resonance (nmr) analysis to determine where in the AA molecule the ¹³C was located. In each case, approximately 85% of the label was found at the C-1 position of AA, with most of the remaining label at the C-6 position. This strongly indicated that AA is synthesized from glucose by a pathway that retains the carbon chain configuration, i. e., C-1 of glucose becomes C-1 of AA. This has typically been observed in plants (Loewus, F.A. 1988. Ascorbic acid and its metabolic products. In: The Biochemistry of Plants, ed. J. Priess, 14:85-107. New York, Academic Press). Animals (Mapson, L.W. and F.A. Isherwood 1956. Biochem. J. 64:151-157; Loewus, F.A. 1960. J. Biol. Chem. 235(4):937-939) and protists such as Euglena (Shigeoka, S., et al., 1979. J. Nutr. Sci. Vitaminol. 25:299-307), on the other hand, synthesize AA by a pathway that involves the inversion of configuration, i. e., C-1 of glucose becomes C-6 of AA. Demonstration of the inversion/non-inversion nature of the pathway was an important step in determining the pathway of AA biosynthesis since the two types of pathways require different types of enzymatic reactions. The label found at C-6 of AA is thought to be due to metabolism of glucose and subsequent gluconeogenesis. The metabolism of glucose in glycolysis proceeds through triose-phosphate intermediates. After this, the C-1 and C-6 carbons of glucose become biochemically equivalent. Hexose phosphates can be regenerated from the triose phosphates by gluconeogenesis, which is essentially a reversal of the degradative pathway. Consequently, metabolism of C-1-labeled glucose to triose phosphates with subsequent gluconeogenesis would result in the formation of hexose phosphate molecules labeled at either or both C-1 and C-6. If those hexose phosphates were precursors to AA, one would expect the AA to be similarly labeled. Consistent with this type of "isotopic mixing" is the observation that sucrose obtained from 1-13C-labeled glucose was labeled at positions 1, 6, 1' and 6'.

Glucose can also be metabolized by the pentose phosphate pathway, the overall balanced equation for which is:

³ Glucose-6-phosphate → 2 Fructose-6-phosphate + Glyceraldehyde-3-phosphate + 3 CO₂

Based on the known biochemistry, it would then be expected that the label at each of the carbons in glucose (Table 1 left column) would appear at the positions for the other molecules shown, and that these patterns would be reflected in the AA formed from C-2-and C-3-labeled glucose.

TABLE 1

Predicted Carbon Labeling of Metabolites of Glucose in the Pentose Phosphate Pathway

Labeled Glucose	Position of Labeled Carbon in:				
Carbon	CO2	F6P(1)	F6P(2)	G3P	
1	+	-	-	-	
2	-	1,3	1	-	
3	-	2	2,3	_	
4	-	4	4	1	
5	-	5	5	2	
6	-	6	6	3	

AA recovered from cultures fed glucose labeled at C-2 or C-3 was also analyzed for its labeling patterns (Table 2).

TABLE 2
Labeling Pattern in AA after Cells were Fed 2-13C and 3-13C-glucose

6	sotopic enhancement	ent after growth on:
Carbon Position in AA	C-2 labeled glucose	C-3 labeled glucose
1	1.0	0.4
2	10.0	0.9
3	0.5	9.9
4	0	2.8
5	2.2	0.2
6	0	0

The data above again suggest a pathway from glucose to AA that proceeds by retention of configuration. As in the experiments with C-1 labeled glucose, approximately one-fifth of the label is present in "mirror image" position to the glucose label (C-5 for C-2 labeled glucose and C-4 for C-3 labeled glucose), indicating levels of gluconeogenesis

The small, but significant amount of enhancement observed in other positions is consistent with flux through the pentose phosphate pathway. As predicted above, carbon

consistent with those previously observed.

10

15

5

20

25

30

10

15

flux through this pathway would result in isotopic enhancement at positions 1 and 3 when cells were grown on 2-13C glucose and enhancement at position 2 when cells were grown on 3-13C glucose. This is indeed observed. That there is twice as much enhancement at C-1 as there is at C-3 after growth on 2-13C glucose is also predicted. These data indicate a small but measurable amount of carbon flux through the pentose phosphate pathway.

Example 3

This example shows the methods for generating, screening and isolating mutants of *Prototheca* with altered AA productivities compared to the starting strain ATCC 75669.

ATCC No. 75669, identified as *Prototheca moriformis* RSP1385 (unicellular green microalga), was deposited on February 8, 1994, with the American Type Culture Collection (ATCC), Rockville, Maryland, 20852, USA, under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure. Initial screening of *Prototheca* species and strains was reported in U.S. Patent No. 5,900,370, *ibid*. Table 3 lists the formulations of the media for growth and maintenance of the strains. Glucose for fermentors was supplied as glucose monohydrate and calculated on an anhydrous basis. The recipe for the trace metals solution is given in Table 4. The standard growth temperature was 35°C. All organisms were cultured axenically.

20

TABLE 3

Media for Growth and Maintenance of *Prototheca* Strains
All quantities are in g/L unless otherwise specified

	Li	quid		Agar	
Ingredient	Standard	Mg-limiting	Slants	Ferrozine Plates	Standard Plates
Potassium phosphate monobasic	1.3	1.3	2.0	0.27	2.0
Potassium phosphate dibasic	3.8	3.8	2.0	1.4	2.0
Trisodium citrate dihydrate	7.7	7.7	2.6	1.3	2.6
Magnesium sulfate heptahydrate	0.40	0.02	0.4	0.01	0.4
Ammonium sulfate	3.7	3.7	1.0	1.0	1.0
Trace Metals Solution	2 mL	2 mL	2 mL	2 mL	2 mL
Ferrous sulfate heptahydrate	1.5 mg	4.5 mg	1.5 mg	-	1.5 mg
Calcium chloride dihydrate	 -	0.25	-	-	-

25

30

	Li	Liquid		Agar		
Ingredient	Standard	Mg-limiting	Slants	Ferrozine Plates	Standard Plates	
Manganous sulfate monohydrate	-	0.08	•	-	-	
Yeast extract	-	-	2.5	-	-	
Agar	-	-	15	15 (Noble)	15	
pH before autoclaving	7.2	7.2	7.2	7.2	7.2	

Autociave, then add

Copper sulfate, pentahydrate, 100 g/L	•	-	-	2 mL	-
40 g/L Ferrozine in 5 mM phosphate (pH 7.5 final)	-	-	-	8.8 mL	-
Ferric ammonium sulfate dodecahydrate, 40 g/L	-	_	-	3.8 mL	-
50% glucose with 25 mg/L thiamine HCl	40 mL	60 mL	10 mL	10 mL	10 mL

TABLE 4
Trace Metals Solution

		Conc. of Individ.	mL Indiv. Stock per
Compound	Molecular Weight	Solutions, g/L	liter of Working Stock
Distilled Water		_	823
Hydrochloric Acid	-	Conc.	20
Cobalt Chloride hexahydrate	237.9	24.0	6.5
Boric acid	61.8	38.1	24
Zinc sulfate heptahydrate	287.5	35.3	50
Manganous sulfate	169.0	24.6	50
monohydrate			
Sodium molybdate dihydrate	242.0	23.8	2.0
Calcium chloride dihydrate	147.0		11.4 g
Vanadyl sulfate dihydrate	199.0	10.0	8.0
Nickel nitrate hexahydrate	290.8	5.0	8.0
Sodium selenite	173.0	5.0	8.0

Mutant isolates were generated by treatment with one or more of the following agents: nitrous acid (NA); ethyl methane sulfonate (EMS); or ultraviolet light (UV). Typically, glucose-depleted cells grown in standard liquid medium were washed and resuspended in 25 mM phosphate buffer, pH 7.2, diluted to approximately 10⁷ colony-forming units per mL (cfu/mL), exposed to the mutagen to achieve about 99% kill, incubated 4-8 hours in the dark, and spread onto standard agar medium, or agar media containing differential agents.

WO 99/64618

5

10

15

20

25

30

Some mutant colonies on standard agar medium were picked randomly and subcultured to master plates. Other isolation plates were inverted over chloroform to lyse cells on the surface of the colonies and allow them to release AA. Released AA was detected by spraying the treated plates with a solution of 2,6-dichrorophenol-indophenol (1.25 g/L in 70% EtOH). The ability of AA to reduce this blue redox dye to its colorless form is the basis for a standard assay of AA (Omaye, et al., 1979. Meth. Enzymol. 62:3-11.). Colonies derived from mutagenized cells were saved to master plates for further evaluation if their clear halos were significantly larger than the halos typical of the other mutants in that group. Other mutagenized cells were spread onto plates containing an AA detection system incorporated directly into the agar. This system is based on the ability of AA to reduce ferric iron to ferrous iron. The compound ferrozine (3-(2-pyridyl)-5,6- bis(4-phenylsulfonic acid)-1,2,4-triazine) was present in the agar to complex with the ferrous iron and give a violet color reaction. The ferrozine agar formulation is shown in Table 3. Colonies giving the darkest color reactions were master-plated. When screening for non-AA-producing strains (blocked mutants), white colonies were chosen against a background of relatively dark colonies.

For primary screening of tube cultures, cells were inoculated from master plates into 4 mL of Mg-limiting medium in 16 x 125 mm test tubes, and tubes were shaken in a slanted position on a rotary shaker at 300 rpm for four days. After both three and four days of incubation aliquots were removed for AA assay and cell density determination. Those for AA assay were centrifuged at 1500 x g for 5 min and the resulting supernates were removed for either colorimetric assay or high pressure liquid chromatography (HPLC). Promising isolates were retested in tube culture. Those passing the tube screen were tested in shake flasks.

For secondary screening of flask cultures, cells were inoculated into 50 mL of standard flask medium in 250 mL baffled shake flasks, and incubated on a rotary shaker at 180 rpm until glucose depletion (24-48 hours). A second series of flasks of Mg-sufficient standard medium was inoculated from the first set to a cell density of 0.15 A₆₂₀, and incubated for 24 hours. A third series of Mg-limiting flask medium was inoculated from the second set by a 1/50 dilution and incubated for 96 hours. Flasks were sampled for AA analysis and cell density measurements during this time as required.

10

15

20

Aliquots for supernatant AA analysis were centrifuged at 5000 x g for 5 min. Aliquots for total whole broth AA analysis were first extracted for 15 min with an equal volume of 5% trichloroacetic acid (TCA) before centrifugation. Aliquots of the resulting supernates were removed for either colorimetric assay or HPLC analysis.

For colorimetric assay of AA, a modification of the method of Omaye, et al. (1979. Meth. Enzymol. 62:3-11) was used. Twenty-five µL aliquots of culture supernates were added to wells of 96-well microplates, and 125 µL of color reagent was added. The color reagent consisted of four parts 0.5% aqueous 2,2'-dipyridyl and one part 8.3 mM ferric ammonium sulfate in 27 % (v/v) o-phosphoric acid, the two components being mixed immediately before use. After one hour, the absorbance at 520 nm was read. AA concentration was calculated by comparison of the absorbances of AA standards.

HPLC analysis was based on that of Running, et al., (1994). Supernates were chromatographed on a Bio-Rad HPX-87H organic acid column (Bio-Rad Laboratories, Richmond, CA) with 13 mM nitric acid as solvent, at a flow rate of 0.7 mL/min at room temperature. Detection was at either 254 nm using a Waters 441 detector (Millipore Corp., Milford, MA), or at 245 nm using a Waters 481 detector. This system can distinguish between the L- and D- isomers of AA.

For dry weight determinations of cell density, 5 mL whole broth samples were centrifuged at 5000 x g for 5 min, washed once with distilled water, and the pellet was washed into a tared aluminum weighing pan. Cells were dried for 8-24 h at 105°C. Cell weight was calculated by difference.

Table 5 shows the abilities of various mutants of Prototheca to synthesize AA.

TABLE 5

AA Synthesizing Ability of Various Protothece Mutants in Flask Screen

Strain	Specific AA Formation, mg AA per L/Culture A during Mg-limited Incubation			
	2 Days Incubation	· 4 Days incubation		
ATCC 75669	22	35		
EMS13-4	79	166		
UV213-1	0	0		
UV218-1	0	0		
UV244-1	0	0		

25

30

Strain	Specific AA Formation, mg AA per L/Cultur				
	during Mg-limited Incubation				
	2 Days Incubation	4 Days Incubation			
UV244-15	58	68			
UV77-247	56	83			
UV140-1	67	100			
UV164-6	91	131			
NA21-14	27	78			
UV82-21	0	0			
UV127-10	50	95			
SP2-3	3	4			

The genealogy of these isolates is presented graphically in the "family tree" of Fig. 10 3. ATCC No. _____, identified as Prototheca moriformis EMS13-4 (unicellular green microalga), was deposited on May 25, 1999, with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, VA 20110, USA, under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure. ATCC No. _____, identified as Prototheca 15 moriformis UV127-10 (unicellular green microalga), was deposited on May 25, 1999, with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, VA 20110, USA, under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure. ATCC No. _____, identified as Prototheca moriformis SP2-3 (unicellular green 20 microalga), was deposited on May 25, 1999, with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, VA 20110, USA, under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure.

25 Example 4

30

The following example shows that both growing and resting cells of *Prototheca* can rapidly convert L-galactose and L-galactono- γ -lactone to AA, and that conversion of D-mannose to AA by *Prototheca* is more rapid than conversion of D-glucose.

Shake flask cultures of the mutant strain UV77-247 were grown to glucose depletion in standard liquid medium (Table 3). Cells were washed twice and resuspended in complete medium with the glucose substituted by one of the compounds listed below.

Cell suspensions were incubated for 24 hours at 35° C with shaking, and the entire suspension was extracted with TCA as above and assayed for AA.

Tables 6-8 show that both growing and resting cells of strain UV77-247 can rapidly convert L-galactose and L-galactono-γ-lactone to AA. In these experiments, D-fructose and D-galactose were converted to AA at the same rate as D-glucose, suggesting that they are metabolized to AA through the same route as D-glucose. None of the organic acids suggested in the literature to be intermediates in the biosynthesis of AA were converted to AA, including sorbosone, which has been proposed as an intermediate by Saito et al. (1990 Plant Physiol. 94:1496-1500).

10

15

20

25

5

TABLE 6
Conversion of Compounds by Resting Cells of Strain UV77-247

		AA Relative to No
Substrate (50 mM)	Total AA, mg/L	Substrate Control
L-galactose	965	623
L-galactono-y-lactone	818	476
D-fructose	590	248
D-glucosone	589	247
D-glucose	584	242
D-galactose	542	200
D-glucose (10 mM)	388	46
D-gluconolactone	382	40
D-gulono-γ-lactone	366	24
D-glucuronate	364	22
L-sorbosone	342	0
None	342	0
2-keto-D-gluconic acid	341	-1
D-isoascorbic acid (10 mM)	330	-12
D-glucuronolactone	329	-13
D-gluconic acid	309	-33
D-galacturonic acid	297	-45
L-idonate	296	-46

30

35

Since strain UV77-247 converted L-galactose and L-galactono- γ -lactone to AA much more rapidly than it did glucose, it suggests that these compounds are intermediates in the AA biosynthetic pathway and that they are "downstream" from glucose.

The data in Tables 7 and 8 also show that growing and resting cells of UV77-247 consistently convert D-mannose to AA at a rate greater than that of glucose.

TABLE 7

Conversion of Compounds to AA by Resting Cells of Strain UV77-247

	A	scorbic Acid, m	g/L
Compound	25.5 h	30 h	47 h
L-galactose	667	718	620
-galactono-γ-lactone	644	681	749
D-glucosone	465	462	354
D-mannose	448	462	399
D-fructose	402	408	367
d-glucose	395	404	351
D-galactose	352	361	337
none	287	288	258

TABLE 8

Conversion of Compounds to AA by Growing Cells of Strain UV77-247

	Ascorbic /	Acid, mg/L	A ₆₂₀	AA/A ₆₂
Compound	25.5 h		44 h	
L-galactose	249	506	4.5	112
D-mannose	228	488	5.6	87
L-galactono-y-lactone	214	342	5.0	68
D-glucose	178	398	5.9	67
D-fructose	181	383	5.9	65
D-glucosone	176	362	5.7	64
D-galactose	185	380	5.9	64
none	182	249	4.4	57
D-gluconic acid (K)	178	262	5.0	52
L-idonate (Na)	182	232	4.7	49
2-keto-D-gluconic acid	182	255	5.3	48
2-deoxy-D-glucose	181	227	4.8	47
D-glucuronic acid lactone	165	218	5.0	44
D-glucuronic acid (Na)	173	241	5.6	43
L-gulono-γ-lactone	152	195	5.0	39
L-sorbosone	178	160	4.7	34
D-glucono-δ-lactone	130	190	5.7	33
D-galacturonic acid	130	180	6.0	30

These cells converted L-galactose, L-galactono-γ-lactone and D-mannose to AA more rapidly than they did glucose, suggesting that mannose exerts its effect in the biosynthetic pathway "downstream" from glucose.

Example 5

Using the methods described above, a collection of mutants was assembled. The specific AA formation for representative mutants are shown in Table 5. The genealogy of these isolates is presented graphically in the "family tree" of Fig. 3.

These isolates were tested for their ability to convert compounds which could be converted to AA by strain UV77-247. Testing was done as in Example 4. Results are shown in Table 9.

TABLE 9

Conversion of Compounds to AA by Resting Cells
of Mutant Strains of *Protothece* of Varying Abilities to Synthesize AA

	Absolute AA, mg/L							
Strain	Buffer	Glucose	L-galactose	L-gal-y-lact.	Mannose	Fructose		
EMS13-4	53	97	191	173	139	ND		
UV127-10	45	140	213	140	128	143		
SP2-3	19	19	204	146	24	27		
NA21-14	61	80	147	158	118	115		
UV82-21	15	16	183	175	18	17		
UV213-1	16	15	170	135	17	16		
UV218-1	16	18	136	176	19	21		
UV244-1	16	16	164	162	16	16		
UV244-15	26	77	30	21	94	89		
UV244-16	28	64	53	53	53	66		

ND = Not Determined

These data suggest that the mutational blocks in those strains which convert fructose and mannose to AA poorly are before ("upstream" from) L-galactose and L-galactono-γ-lactone in the pathway.

Example 6

The following example shows that magnesium inhibits early steps in the production of AA.

To address the question of whether magnesium actually inhibits AA synthesis, strain NA45-3 (ATCC 209681) was grown in magnesium (Mg)-limited and Mg-sufficient medium. ATCC No. 209681, identified as *Prototheca moriformis* NA45-3 (Source:

15

5

10

20

25

30

repeated mutagenesis of ATCC No. 75669; Eucaryotic alga. Division Chlorophyta, Class Chlorophyceae, Order Chlorococcales), was deposited on March 13, 1998, with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, VA 20110, USA, under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure. Cells from both cultures were harvested and resuspended in the cell-free supernate from the Mg-limited culture, and to half of each cell suspension additional magnesium was added in order to bring the level in the suspension to the Mg-sufficient level. The four conditions under which assays were run were as follows.

10 TABLE 10
Conditions Used to Test the Effect of Magnesium on AA Production

Condition	Magnesium concentration, g/L, during:	
	Growth	Assay
1Mg>1Mg	0.02	0.02
1Mg>10Mg	0.02	0.2
10Mg>1Mg	0.2	0.02
10Mg>10Mg	0.2	0.2

15

20

25

30

5

Substrates previously shown to lead to the formation of AA, namely D-glucose, D-glucosone, D-fructose. D-galactose, D-mannose, and L-galactono-γ-lactone, were added at 20 g/L to the four cell suspensions. Accumulation of AA after 24 hours was measured and compared to a control in which no substrate was added. The results of this study are shown graphically in Fig. 4.

When cells growing under magnesium-limited conditions were incubated with substrates in low-magnesium broth (1Mg>1Mg condition), all showed significant and similar accumulation of AA over the control condition. When the same cells were incubated in high magnesium broth (1Mg>10Mg condition), the accumulation of AA was reduced about 40% for all substrates except D-mannose and L-galactono-γ-lactone, suggesting that 1) the rate-limiting step in the conversion of D-glucose, D-glucosone, D-fructose, and D-galactose to AA is inhibited by magnesium or 2) magnesium stimulates an enzyme which results in the conversion of these compounds to some other compound(s), reducing the amount of substrate available for AA synthesis. On the other

10

15

20

25

hand, conversion of D-mannose and L-galactono- γ -lactone appeared to be unaffected by the presence of magnesium in the resuspension buffer, indicating that either 1) magnesium-inhibited enzymes are not involved in the conversion of these substrates to AA or 2) D-mannose and L-galactono- γ -lactone enter the pathway far enough downstream from the point where they can be siphoned off by side reactions involving Mg-requiring enzymes.

When cells were grown under magnesium-sufficient conditions, very little AA accumulation from any of the D-sugars was observed, regardless of the level of magnesium in the resuspension broth. Accumulation of AA from L-galactono- γ -lactone, however, was enhanced over that observed when cells are grown in Mg-limited conditions. This suggests that enzymes early in the pathway are repressed under Mg-sufficient conditions. Thus, the D-substrates all behaved similarly, with the exception of the apparent lack of magnesium inhibition of D-mannose conversion to AA. This would suggest that D-mannose enters the AA biosynthetic pathway at a point other than the other D-sugars.

Figs. 2A and 2B represent some of the fates of glucose in plants. The first enzymatic step in this scheme which commits carbon to glycolysis is the conversion of fructose-6-P to fructose-1,6-diP by phosphofructokinase (PFK). This reaction is essentially irreversible, and leads to the well known TCA cycle and oxidative phosphorylation, with concomitant ATP and NADH/NADPH generation. PFK has an absolute requirement for magnesium. If magnesium is limiting, this reaction could slow and eventually stop, blocking the flow of carbon through glycolysis and beyond, and would result in cessation of cell division even in the presence of excess glucose. One would expect fructose-6-P to accumulate under these conditions, fueling AA synthesis by the pathway shown in Figs. 1 and 2.

Example 7

The following example shows the correlation in *Prototheca* between AA production and the activity levels of the enzymes in the AA pathway.

10

15

20

25

Phosphomannose isomerase (PMI) Assay

PMI activity was first assayed (See Fig. 1). Ten strains representing a range of AA productivities were grown according to the standard protocol to measure AA-synthesizing ability. Cells were harvested 96 hours into magnesium-limited incubation, washed and resuspended in buffer containing 50 mM Tris/10 mM MgCl₂ pH 7.5. The suspended cells were broken in a French press, spun at 30,000 x g for 30 minutes, and desalted through Sephadex G-25 (Pharmacia PD-10 columns). Reactions were carried out in the reverse direction by adding various volumes of extracts to solutions of Tris/Mg buffer containing 0.15 U phosphoglucose isomerase (EC 5.3.1.9), 0.5 U glucose-6-phosphate dehydrogenase (EC 1.1.1.49), and 1.0 mM NADP. Reactions were initiated by addition of 3 mM (final) mannose-6-phosphate. Final reaction volume was 1.0 mL. All components were dissolved in Tris/Mg buffer. Activities were taken as the change in A₃₀/min. From these activities was subtracted the activities measured in identical reaction mixtures lacking the M-6-P substrate. Specific activities were calculated by normalizing the activities for protein concentration in the reactions. Protein in the original extracts was determined by the method of Bradford, using a kit from Bio-Rad Laboratories (Hercules, CA). All enzymes and nucleotides were purchased from Sigma Chemical Co. (St. Louis, MO).

Phosphomannomutase (PMM) Assay

Phosphomannomutase was measured in a similar manner in the same strains, but these assay reaction mixtures also contained 0.25 mM glucose-1,6-diphosphate, 0.5 U commercially available PMI, and the reactions were started with the addition of 3.0 mM (final) mannose-1-phosphate rather than mannose-6-phosphate.

Phosphofructokinase (PFK) Assay

To shed light on the possibility that the enhancement of AA concentration in cultures which were limited for magnesium was due to a diversion of carbon from normal metabolism by a reduced activity of the first committed step in glycolysis (PFK) the strains were also assayed to confirm the presence of this enzyme activity. Cells were cultured, washed and broken as above. Extracts were centrifuged at 100,000 x g for 90 min before

10

15

20

25

30

desalting. Reactions were carried out in the forward direction by adding various volumes of extracts to solutions of Tris/Mg buffer containing 1.5 mM dithiothreitol, 0.86 U aldolase (EC 4.1.2.13), 1.4 U α-glycerophosphate dehydrogenase (EC 1.1.1.8), 14 U triosephosphate isomerase (EC 5.3.1.1), 0.11 mM NADH, and 1.0 mM ATP. Reactions were initiated by addition of 5 mM (final) fructose-6-phosphate. Final reaction volume was 1.0 mL. All components were dissolved in Tris/Mg buffer. Activities were taken as the change in A₃₄₀/min. From these activities were subtracted the activities measured in identical reaction mixtures lacking the F-6-P substrate. Specific activities were calculated by normalizing the activities for protein concentration in the reaction. Protein in the original extracts was determined as above.

GDP-D-mannose pyrophosphorylase (GMP) Assay

These same mutant strains were assayed for the next enzyme in the proposed pathway, GMP. Strains were grown both according to the standard Mg-limiting protocol (harvested 43-48 hours into magnesium-limited incubation) and in standard Mg-sufficient medium (harvesting all cells before glucose depletion). Washed cell pellets were resuspended in 50 mM phosphate buffer, pH 7.0, containing 20% (v/v) glycerol and 0.1 M sodium chloride (3 mL buffer/g wet cells), and broken in a French press. Crude extracts were spun at 15,000 x g for 15 minutes. Reactions were carried out in the forward direction by adding various volumes of extracts to solutions of 50 mM phosphate/4 mM MgCl, buffer, pH 7.0, containing 1 mM GTP. Reactions were initiated by addition of 1 mM (final) mannose-1-phosphate. Final reaction volume was 0.1 mL. Reaction mixtures were incubated at 30 C for 10 min, filtered through a 0.45 µm PVDF syringe filter, and analyzed for GDP-mannose by HPLC. A Supelcosil SAX1 column (4.6 x 250 mm) was used with a solvent gradient (1 mL/min) of: A - 6 mM potassium phosphate, pH 3.6; B - 500 mM potassium phosphate, pH 4.5. The gradient was: 0-3 min, 100% A; 3-10 min, 79% A: 10-15 min, 29% A. Column temperature was 30 C. Two assays that showed enzyme activity proportional to the amount of protein were averaged. Control no-substrate and no-extract reactions were also run. Specific activity was calculated by normalizing the activity for protein concentration in the reaction. Protein in the original extracts was determined as above.

10

15

20

25

GDP-D-mannose:GDP-L-galactose Epimerase Assay

Further tests measured the activities of the next enzyme in the proposed pathway, GDP-D-mannose:GDP-L-galactose epimerase. Strains were grown according to the standard protocol, harvested 43-48 hours into magnesium-limited incubation, washed, and resuspended in buffer containing 50 mM MOPS/5 mM EDTA, pH 7.2. Washed pellets were broken in a French press, and spun at 20,000 x g for 20 min. Protein determinations were made as above and a dilution series of each was made, ranging from 0.4 to 2.2 mg protein/mL. 50 µL aliquots of these dilutions were added to 10 µL aliquots of 6.3 mM GDP-D-mannose in which a portion of this substrate was universally labeled with ¹⁴C in the mannose moiety. This substrate had an activity of 16 µCi/mL before dilution into the reaction mixture. Reactions were stopped after 10 min by transferring 20 µL of the mixture into microfuge tubes containing 20 µL of 250 mM trifluoroacetic acid (TFA) containing 1.0 g/L each D-mannose and L-galactose. These tubes were sealed and boiled for 10 min, cooled, spun for 60 sec in a Beckman Microfuge E, and 5 μL of each hydrolysate was spotted on 20 x 20 cm plastic-backed EM Science Silica gel 60 thin-layer chromatography plates (#5748/7), with 1 cm lanes created by scoring with a blunt stylus. After drying, plates were twice chromatographed for 2.5 hours in ethyl acetate:isopropanol:water, 65:22.3:12.7 (plates were dried between runs). Spots of free sugars were visualized by spraying dried plates with 0.5% p-anisaldehyde in a 62% ethanolic solution of 0.89 M sulfuric acid and 0.17 mM glacial acetic acid, and heating at 105 C for about 15 min. Spots of L-galactose and D-mannose were cut from the plates and counted in a scintillation counter (Beckman model 2800). For time-zero control counts, 16.7 µL of each extract dilution was added to 23.3 µL of the labeled substrate above, which had been diluted 1:7 with the TFA/mannose/galactose solution.

Table 11 summarizes the results of the five enzyme assays for the strains tested, along with their specific AA formations.

TABLE 11
Specific Enzyme Activities (mU)* of Selected Mutant Prototheca Strains

						G			
	Strain	AA Specific Form, mg/g	PMI	PMM	PFK	Mg- Mg- limited sufficien		Epimerase	
	UV164-6	78.4						0.79	
5	EMS13-4	73.7	10.8	69.6	13.5	2.6	6.8	0.78	
	UV140-1	69.9						0.78	
	NA45-3	61.4						0.58	
	UV77-247	44.4]	0.52	
	UV127-10	40.1	11.1	45.8	24.4	4.3	5.9	0.39	
10	UV244-15	24.5	14.3	41.5		3.1	5.3	0.42	
	NA21-14	23.6	12.1	60.3	47.4	2.4	7.6	0.27	
	ATCC 75669	21.9						0.28	
	UV244-16	5.0	16.5	85.6		4.3	5.2	1	
	SP2-3	2.0	17.7	47.0	64.5	2.0	7.5	0.03	
15	UV218-1	0.4	15.9	72.1		2.7	7.0	0.83	
	UV213-1	0.1	19.7	47.7	32.6	3.2	6.7	0,60	
	UV82-21	0.0	14.6	70.6	30.4	4.1	7.5	0.15	
	UV244-1	0.0	18.2	51.1		5.5	12	0.15	

Units: PMI and PMM, nmoles NADP reduced per min/mg protein; PFK, nmoles NADH oxidized per min/mg protein; GMP, nmoles GDP-D-mannose formed per min/mg protein; epimerase, nmoles GDP-L-galactose formed per min/mg protein.

The only enzyme which showed a strong correlation between activity and the ability to synthesize AA was the GDP-D-mannose:GDP-L-galactose epimerase. This correlation is depicted in Fig. 5. All of the strains which produced measurable amounts of AA had measurable amounts of epimerase activity. The converse was not true: four of the strains which synthesize little or no AA had significant epimerase activities. These strains are candidates for having mutations which affect enzymatic steps downstream from the epimerase. Since all of the strains tested can synthesize AA from L-galactose and L-galactono-γ-lactone (see Examples 4 and 5), the genetic lesion(s) in these four mutants must lie between GDP-L-galactose and free L-galactose.

Example 8

25

30

35

The next example shows the relationship between GDP-D-mannose:GDP-L-galactose epimerase activity and the degree of magnesium limitation in two strains, the original unmutagenized parent strain ATCC 75669, and one of the best AA producers, EMS13-4 (ATCC _____).

5

10

15

20

25

30

Four flasks of each strain were grown according to the standard protocol. One culture of each was harvested 24 hours into magnesium-limited incubation, and every 24 hours thereafter for a total of four days. One flask of each strain was also harvested 24 hours into magnesium sufficient incubation. All cultures had glucose remaining when harvested. Fig. 6 shows graphically the AA productivity and epimerase activity in EMS13-4 and ATCC 75669 as the cultures became Mg-limited. Epimerase activity in EMS13-4 was significantly greater than that in ATCC 75669 at all time points. There was also a concurrent rapid rise in both AA productivity and epimerase activity in EMS13-4 as the cultures became increasingly Mg-limited. While there was a moderate increase in AA productivity in ATCC 75669 as Mg became more limiting, there was no effect on epimerase activity.

Example 9

The following example shows the results of epimerase assays performed with extracts of two *E. coli* strains into which were cloned the *E. coli* gene for GDP-4-keto-6-deoxy-D-mannose epimerase/reductase.

The E. coli K12 wca gene cluster is responsible for cholanic acid production; wcaG encodes a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase.

The E. coli wcaG sequence (nucleotides 4 through 966 of SEQ ID NO:3) was amplified by PCR from E. coli W3110 genomic DNA using primers WG EcoRI 5 (5' TAGAATTCAGTAAACAACGAGTTTTTATTGCTGG 3'; SEQ ID NO:12) and WG Xhol 3 (5' AACTCGAGTTACCCCCAAAGCGGTCTTGATTC 3'; SEQ ID NO:13). The 973-bp PCR product was ligated into the vector pPCR-Script SK(+) (Stratagene, LaJolla, CA). The 973-bp ExoRII/XhoI fragment was moved from this plasmid into the ExoRII/XhoI sites of pGEX-5X-1 (Amersham Pharmacia Biotech, Piscataway, NJ), creating plasmid pSW67-1. Plasmid pGEX-5X-1 is a GST gene fusion vector which adds a 26-kDa GST moiety onto the N-terminal end of the protein of interest. E. coli BL21(DE3) was transformed with pSW67-1 and pGEX-5X-1, resulting in strains BL21(DE3)/pSW67-1 and BL21(DE3)/pGEX-5X-1.

The E. coli wcaG sequence (nucleotides 1 through 966 of SEQ ID NO:3) was also amplified by PCR from E. coli W3110 genomic DNA using primers WG EcoRI 5-2 (5' CTGGAGTCGAATTCATGAGTAAACAACGAG 3'; SEQ ID NO:14) and WG PstI 3

5

10

15

20

25

30

(5' AACTGCAGTTACCCCCGAAAGCGGTCTTGATTC 3', SEQ ID NO:15). The 976-bp PCR product was ligated into a pPCR-Script (Stratagene). The 976-bp ExoRII/PstI fragment was moved from this plasmid into the ExoRII/PstI sites of expression vector pKK223-3 (Amersham Pharmacia Biotech), creating plasmid pSW75-2. *E. coli* JM105 was transformed with pKK223-3 and pSW75-2, resulting in strains JM105/pKK223-3 and JM105/pSW75-2.

All six strains were grown in duplicate at 37°C with shaking in 2X YTA medium until an optical density of 0.8-1.0 at 600 nm was reached (about three hours). 2X YTA contains 16 g/L tryptone, 10 g/L yeast extract, 5 g/L sodium chloride and 100 mg/L ampicillin. One of each culture was induced by adding isopropyl β-D-thiogalactopyranoside (IPTG) to 1 mM final concentration. All 12 cultures were incubated for an additional four hours, washed in 0.9% NaCl, and the cells were frozen at -80°C. Prior to pelleting the cells for preparation of extracts, a portion of each culture was used for a plasmid DNA miniprep to confirm the presence of the appropriate plasmids in these strains. A protein preparation of each culture was also run on SDS gels to confirm expression of a protein of the appropriate size where expected. Frozen pellets were thawed, resuspended in 2.5 mL MOPS/EDTA buffer, pH 7.2, broken in a French Press (10,000 psi), spun for 20 min at 20,000 x g, assayed for protein as above and diluted to 0.01, 0.1, 1.0 and 3 mg/mL protein.

Induction of the strain BL21(DE3)/pGEX-5X-1 resulted in high-level expression of a 26-kDa protein indicating the synthesis of the native GST protein. Induction of strain BL21(DE3)/pSW67-1 resulted in high-level expression of a 62-kDa protein, indicating the synthesis of the native GST protein (26K) fused to the wcaG gene product (36K). An aliquot of the fusion protein was treated with the protease Factor Xa (New England Biolabs, Beverly, MA), which cleaves near the GST/wcaG junction. Induction of the strain JM105/pSW75-2 resulted in high level expression of a 36-kDa protein, indicating the synthesis of the wcaG gene product. No such protein was detected in JM105/pKK223-3 (vector only).

Next, it was of interest to test extracts in the standard epimerase assay described in Example 7 to determine if any of the extracts containing the wcaG product could bring

about the conversion of GDP-D-mannose to GDP-L-galactose. The extracts to be assayed are:

BL21(DE3) Group

- 1. BL21(DE3) uninduced
- 5 2. BL21(DE3) induced with 1mM IPTG
 - 3. BL21(DE3)/pGEX-5X-1 uninduced
 - 4. BL21(DE3)/pGEX-5X-1 induced with 1mM IPTG
 - 5. BL21(DE3)/pSW67-1 uninduced
 - 6. BL21(DE3)/pSW67-1 induced with 1 mM IPTG; fusion protein intact
- 10 7. BL21(DE3)/pSW67-1 induced with 1 mM IPTG; GST moiety cleaved

JM105 Group

20

25

30

35

- JM105 uninduced
- JM105 induced with 1mM IPTG
- 3. JM105/pKK223-3 uninduced
- 15 4. JM105/pKK223-3 induced with 1 mM IPTG
 - 5. JM105/pSW75-2 uninduced
 - 6. JM105/pSW75-2 induced with 1 mM IPTG

Extracts 1 and 7 from the BL21(DE3) group and extracts 1 and 6 from the JM105 group were tested for GDP-D-mannose: GDP-L-galactose epimerase-like activity in a pilot experiment. In this initial experiment, no epimerase activity was detected in any of the extracts. At this time, such a result can be attributed to a number of possibilities. First, it is possible that the wcaG gene product is incapable of catalyzing the conversion of GDP-D-mannose to GDP-L-galactose, although this conclusion can not be reached until several other parameters are tested. Second, it is possible that under the assay conditions which are satisfactory to measure activity for the endogenous GDP-D-mannose: GDP-Lgalactose epimerase, the wcaG gene product does not have GDP-D-mannose:GDP-Lgalactose epimerase-like activity. Therefore, alternate conditions should be tested. Additionally, confirmation experiments should be performed to confirm the accuracy of the pilot conditions. Third, although the BL21(DE3) and the JM105 clones produce proteins of the expected size, the constructs have not been sequenced to confirm the proper coding sequence for the wcaG gene product and thereby rule out PCR or cloning errors which may render the wcaG gene product inactive. Fourth, the protein formed from the cloned sequence is full-length, but inactive, for example, due to incorrect tertiary structure (folding). Fifth, the gene is overexpressed, resulting in accumulation of insoluble and inactive protein products (inclusion bodies). Future experiments will attempt to determine whether the constructs have or can be induced to have the ability to catalyze the conversion of GDP-D-mannose to GDP-L-galactose, and to use the sequences to isolate the endogenous GDP-D-mannose:GDP-L-galactose epimerase.

Table 12 provides the atomic coordinates for Brookhaven Protein Data Bank

5 Accession Code 1bws:

TABLE 12

	HEADER	EPIMERASE/REDUCTASE 27-SEP-98 1BWS
	TITLE	CRYSTAL STRUCTURE OF GDP-4-KETO-6-DEOXY-D-MANNOSE
	TITLE	2 EPIMERASE/REDUCTASE FROM ESCHERICHIA COLI A KEY ENZYME IN
10	TITLE	3 THE BIOSYNTHESIS OF GDP-L-FUCOSE
	COMPND	MOL_ID: 1:
	COMPND	2 MOLECULE: GDP-4-KETO-6-DEOXY-D-MANNOSE EPIMERASE/REDUCTASE;
	COMPND	3 CHAIN: A:
	COMPND	4 ENGINEERED: YES;
15	COMPND	5 BIOLOGICAL UNIT: HOMODIMER
	SOURCE	MOI_ID: 1:
	SOURCE	2 ORGANISM_SCIENTIFIC: ESCHERICHIA COLI;
	SOURCE	3 EXPRESSION SYSTEM: ESCHERICHIA COLI
	KEYWDS	EPIMERASE/REDUCTASE, GDP-L-FUCOSE BIOSYNTHESIS
20	EXPDTA	X-RAY DIFFRACTION
	AUTHOR	DE M.RIZZITONETTIFLORA
	REVDAT	1 13-JAN-99 1BWS 0
	JRNL	AUTH DE D.RIZZITONETTIVIGEVANISTURLABISSOFLORA
	JRNL	TITL GDP-4-KETO-6-DEOXYD-MANNOSE EPIMERASE/REDUCTASE
25	JRNL	TITL 2 FROM ESCHERICHIA COLI, A KEY ENZYME IN THE
	JRNL	TITL 3 BIOSYNTHESIS OF GDP-L-FUCOSE, DISPLAYS THE
	JRNI.	TITL 4 STRUCTURAL CHARACTERISTICS OF THE RED PROTEIN
	JRNL_	TITL 5 HOMOLOGY SUPERFAMILY
	JRNL	REF STRUCTURE (LONDON) 1998
30	JRNL	REFN 9999
	REMARK	1
	REMARK	2
	REMARK	2 RESOLUTION. 2.2 ANGSTROMS.
	REMARK	3
35	REMARK	3 REFINEMENT.
	REMARK	3 PROGRAM : TNT
	REMARK	3 AUTHORS : TRONRUD. TEN EXCK. MATTHEWS
	REMARK	3
	REMARK	3 DATA USED IN REFINEMENT.
40	REMARK	3 RESOLUTION RANGE HIGH (ANGSTROMS) : 2.2
	REMARK	3 RESOLUTION RANGE LOW (ANGSTROMS) : 15.0

	REMARK 3 DATA CUTOFF (SIGNA(F)): 0.0
	REMARK 3 COMPLETENESS FOR RANGE (%): 99.7
	REMARK 3 NUMBER OF REFLECTIONS : 24481
	REMARK 3
5	REMARK 3 USING DATA ABOVE SIGNA CUTOFF.
J	REMARK 3 CROSS-VALIDATION METHOD : NONE
	REMARK 3 FREE R VALUE TEST SELECTION : NULL
	REMARK 3 R VALUE (WORKING + TEST SET) : NULL
	REMARK 3 R VALUE (WORKING SET) : NONE
10	REMARK 3 PREE R VALUE : NULL
10	REMARK 3 FREE R VALUE TEST SET SIZE (%): NONE
	REMARK 3 FREE R VALUE TEST SET COUNT : NULL
	REMARK 3
	REMARK 3 USING ALL DATA, NO SIGMA CUTOFF.
15	REMARK 3 R VALUE (WORKING + TEST SET, NO CUTOFF) ; NULL
••	REMARK 3 R VALUE (WORKING SET, NO CUTOFF); 0.202
	REMARK 3 FREE R VALUE (NO CUTOFF) : 0.287
	REMARK 3 FREE R VALUE TEST SET SIZE (%, NO CUTOFF) : NULL
	REMARK 3 FREE R VALUE TEST SET COUNT (NO CUTOFF) : NULL
20	REMARK 3 TOTAL NUMBER OF REFLECTIONS (NO CUTOFF) : NULL
	REMARK 3
	REMARK 3 NUMBER OF NON-HYDROGEN ATOMS USED IN REFINEMENT.
	REMARK 3 PROTEIN ATOMS : 2527
	REMARK 3 NUCLEIC ACID ATOMS : NULL
25	REMARK 3 OTHER ATOMS : 109
	REMARK 3
	REMARK 3 WILSON B VALUE (FROM FCALC, A**2) : NULL
	REMARK 3
	REMARK 3 RMS DEVIATIONS FROM IDEAL VALUES. RMS WEIGHT COUNT
30	REMARK 3 BOND LENGTHS (A): 0.016; NULL; NULL
	REMARK 3 BOND ANGLES (DEGREES) : 1.65 ; NULL ; NULL
	REMARK 3 TORSION ANGLES (DEGREES) : NULL ; NULL ; NULL
	REMARK 3 PSEUDOROTATION ANGLES (DEGREES) : NULL ; NULL ; NULL
	REMARK 3 TRIGONAL CARBON PLANES (A); NULL; NULL; NULL
35	REMARK 3 GENERAL PLANES (A) : NULL : NULL : NULL
	REMARK 3 ISOTROPIC THERMAL FACTORS (A**2) : NULL : NULL : NULL
	REMARK 3 NON-BONDED CONTACTS (A) : NULL ; NULL ; NULL
	REMARK 3
	REMARK 3 INCORRECT CHIRAL-CENTERS (COUNT) : NULL
40	REMARK 3
	REMARK 3 BULK SOLVENT MODELING.
	REMARK 3 METHOD USED : NULL
	REMARK 3 KSOL : NULL
	REMARK 3 BSOL : NULL
45	REMARK 3

	RK 3 RESTRAINT LIBRARIES.
REM	RK 3 STEREOCHEMISTRY: NULL
REM	RK 3 ISOTROPIC THERMAL FACTOR RESTRAINTS : NULL
REP	RK 3
REA	RK 3 OTHER REFINEMENT REMARKS: NULL
REN	RK 4
REN	RK 4 1BWS COMPLIES WITH FORMAT V. 2.2, 16-DEC-1996
REA	ARK 5
REN	ARK 5 WARNING
REN	ARK 5 1BWS: THIS IS LAYER 1 RELEASE.
RE	ARK 5
RE	ARK 5 PLEASE NOTE THAT THIS ENTRY WAS RELEASED AFTER DEPOSITOR
RE	ARK 5 CHECKING AND APPROVAL BUT WITHOUT PDB STAFF INTERVENTION.
RE	ARK 5 AN AUXILIARY FILE, AUXIBWS.RPT, IS AVAILABLE FROM THE
RE	ARK 5 PDB FTP SERVER AND IS ACCESSIBLE THROUGH THE 3DB BROWSER.
RE	ARK 5 THE FILE CONTAINS THE OUTPUT OF THE PROGRAM WHAT CHECK AND
RE	ARK 5 OTHER DIAGNOSTICS.
RE	ARK 5
RE	ARK 5 NOMENCLATURE IN THIS ENTRY, INCLUDING HET RESIDUE NAMES
RE	ARK 5 AND HET ATOM NAMES, HAS NOT BEEN STANDARDIZED BY THE PDB
RE	ARK 5 PROCESSING STAFF. A LAYER 2 ENTRY WILL BE RELEASED SHORTLY
RE	ARK 5 AFTER THIS STANDARDIZATION IS COMPLETED AND APPROVED BY THE
RE	ARK 5 DEPOSITOR. THE LAYER 2 ENTRY WILL BE TREATED AS A
RE	ARK 5 CORRECTION TO THIS ONE, WITH THE APPROPRIATE REVDAT RECORD.
RE	ARK 5
RE	ARK 5 FURTHER INFORMATION INCLUDING VALIDATION CRITERIA USED IN
RE	ARK 5 CHECKING THIS ENTRY AND A LIST OF MANDATORY DATA FIELDS
RE	MARK 5 ARE AVAILABLE FROM THE PDB WEB SITE AT
RE	ARK 5 HTTP://WWW.PDB.BNL.GOV/.
RI	PARK 200
RI	TARK 200 EXPERIMENTAL DETAILS
B	TARK 200 EXPERIMENT TYPE : X-RAY DIFFRACTION
R	MARK 200 DATE OF DATA COLLECTION : AUG-1997
RI	MARK 200 TEMPERATURE (KELVIN) : 120
RI	ORK 200 PH : 6.5
R	MARK 200 NUMBER OF CRYSTALS USED : 1
R	1ARK 200
R	YARK 200 SYNCHROTRON (Y/N): N
R	MARK 200 RADIATION SOURCE : NONE
R	MARK 200 BEAMLINE : NULL
B	MARK 200 X-RAY GENERATOR MODEL : RIGAKU RU200
B	MARK 200 MONOCHROMATIC OR LAUE (M/L) : M
	MARK 200 WAVELENGTH OR RANGE (A): 1.5418
_ ₺	
	MARK 200 MONOCHROMATOR : NULL

	REMARK 200
	REMARK 200 DETECTOR TYPE : IMAGE PLATE
	REMARK 200 DETECTOR MANUFACTURER : RAXIS
	REMARK 200 INTENSITY-INTEGRATION SOFTWARE : MOSFIM
	REMARK 200 DATA SCALING SOFTWARE : SCALA
	REMARK 200
	REMARK 200 NUMBER OF UNIQUE REFLECTIONS : 24481
	REMARK 200 RESOLUTION RANGE HIGH (A): 2.2
	REMARK 200 RESOLUTION RANGE LOW (A): 15.0
	REMARK 200 REJECTION CRITERIA (SIGMA(I)) : NONE
	REMARK 200
	REMARK 200 OVERALL.
	REMARK 200 COMPLETENESS FOR RANGE (%): 99.7
	REMARK 200 DATA REDUNDANCY : 4.3
	REMARK 200 R MERGE (I): 0.057
	REMARK 200 R SYM (I) : NONE
	REMARK 200 <1/SIGMA(I)> FOR THE DATA SET : 13,6
	REMARK 200
	REMARK 200 IN THE HIGHEST RESOLUTION SHELL.
	REMARK 200 HIGHEST RESOLUTION SHELL, RANGE HIGH (A) : NULL
	REMARK 200 HIGHEST RESOLUTION SHELL, RANGE LOW (A) : NULL
	REMARK 200 COMPLETENESS FOR SHELL (%) : NULL
	REMARK 200 DATA REDUNDANCY IN SHELL : NULL
	REMARK 200 R MERGE FOR SHELL (I) : NULL
	REMARK 200 R SYM FOR SHELL (I) : NULL
	REMARK 200 <i sigma(i)=""> FOR SHELL : NULL</i>
	REMARK 200
	REMARK 200 DIFFRACTION PROTOCOL: NULL
	REMARK 200 METHOD USED TO DETERMINE THE STRUCTURE: MIR
	REMARK 200 SOFTWARE USED: NULL
	REMARK 200 STARTING MODEL: NULL
	REMARK 200
	REMARK 200 REMARK: NULL
	REMARK 280
	REMARK 280 CRYSTAL
	REMARK 280 SOLVENT CONTENT, VS (%); NULL
	REMARK 280 MATTHEWS COEFFICIENT, VM (ANGSTROMS**3/DA): NULL
	REMARK 280
	REMARK 280 CRYSTALLIZATION CONDITIONS: NULL
)	REMARK 290
	REMARK 290 CRYSTALLOGRAPHIC SYMMETRY
	REMARK 290 SYMMETRY OPERATORS FOR SPACE GROUP: P 32 2 1
	REMARK 290
	REMARK 290 SYMOP SYMMETRY
5	REMARK 290 NINIMM OPERATOR

	REMARK 290 1555 X.Y.Z
	REMARK 290 2555 -Y.X-Y.Z+2/3
	REMARK 290 3555 Y-X,-X,Z+1/3
	REMARK 290 4555 Y.XZ
5	REMARK 290 5555 X-Y,-Y,1/3-Z
,	REMARK 290 6555 -X, Y-X, 2/3-Z
	REMARK 290
	REMARK 290 WHERE NNN -> OPERATOR NUMBER
	REMARK 290 MMM -> TRANSLATION VECTOR
10	REMARK 290
	REMARK 290 CRYSTALLOGRAPHIC SYMMETRY TRANSFORMATIONS
	REMARK 290 THE FOLLOWING TRANSFORMATIONS OPERATE ON THE ATOM/HETATM
	REMARK 290 RECORDS IN THIS ENTRY TO PRODUCE CRYSTALLOGRAPHICALLY
	REMARK 290 RELATED MOLECULES.
15	REMARK 290 SMTRY1 1 1.000000 0.000000 0.000000
	REMARK 290 SMTRY2 1 0.000000 1.000000 0.000000 0.00000
	REMARK 290 SMTRY3 1 0.000000 0.000000 1,000000 0.00000
	REMARK 290 SMTRY1 2 -0.500045 -0.865974 0.000000 0.00000
	REMARK 290 SMTRY2 2 0.866077 -0.499955 0.000000 0.00000
20	REMARK 290 SMITRY3 2 0.000000 0.000000 1.000000 50.58553
	REMARK 290 SMTRY1 3 -0.499955 0.865974 0.000000 0.00000
	REMARK 290 SMTRY2 3 -0.866077 -0.500045 0.000000 0.00000
	REMARK 290 SMTRY3 3 0.000000 0.000000 1.000000 25.29276
	REMARK 290 SMTRY1 4 -0.500045 0.865922 0.000000 0.00000
25	REMARK 290 SMTRY2 4 0.866077 0.500045 0.000000 0.00000
	REMARK 290 SMIRY3 4 0.000000 0.000000 -1.000000 0.00000
	REMARK 290 SMTRY1 5 1.000000 0.000104 0.000000 0.00000
	REMARK 290 SMTRY2 5 0.000000 -1.000000 0.000000 0.00000
	REMARK 290 SMTRY3 5 0.000000 0.000000 -1.000000 25.29276
30	REMARK 290 SMTRY1 6 -0.499955 -0.866026 0.000000 0.00000
	REMARK 290 SMTRY2 6 -0.866077 0.499955 0.000000 0.00000
	ACTION 220 SHAND V C.XXXXX
	REMARK 290
25	REMARK 290 REMARK: NULL
35	REMARK 465
	REMARK 465 MISSING RESIDUES REMARK 465 THE FOLLOWING RESIDUES WERE NOT LOCATED IN THE
	REMARK 465 EXPERIMENT. (M=MODEL NUMBER: RES=RESIDUE NAME: C=CHAIN
	REMARK 465 IDENTIFIER; SSSEO-SEQUENCE NUMBER; I=INSERTION CODE):
40	REMARK 465
40	REMARK 465 M RES C SSSEQI
	REMARK 465 MET A 1
	REMARK 465 SER A 2
	REMARK 465 ASP A 317
45	REMARK 465 ARG A 318

REMARK 465 PHE A 319
REMARK 465 ARG A 320
REMARK 465 GLY A 321
REMARK 800
5 REMARK 800 SITE
REMARK 800 SITE IDENTIFIER: CAT
REMARK 800 SITE DESCRIPTION:
REMARK 800 CATALYTIC RESIDUE
REMARK 800
10 REMARK 800 SITE IDENTIFIER: CAT
REMARK 800 SITE DESCRIPTION:
REMARK 800 CATALYTIC RESIDUE
REMARK 800
REMARK 800 SITE_IDENTIFIER: CAT
15 REMARK 800 SITE DESCRIPTION:
REMARK 800 CATALYTIC RESIDUE
REMARK 800
DBREF 1BWS A 3 316 SWS P32055 FCL ECOLI
SEORES 1 A 321 MET SER LYS GLN ARG VAL PHE ILE ALA GLY HIS ARG GLY
20 segres 2 a 321 met val gly ser ala ile arg arg gln leu glu gln arg
SEORES 3 A 321 GLY ASP VAL GLU LEU VAL LEU ARG THR ARG ASP GLU LEU
SEORES 4 A 321 ASN LEU LEU ASP SER ARG ALA VAL HIS ASP PHE PHE ALA
SEORES 5 A 321 SER GLU ARG ILE ASP GLN VAL TYR LEU ALA ALA ALA LYS
SEORES 6 A 321 VAL GLY GLY ILE VAL ALA ASN ASN THR TYR PRO ALA ASP
25 SEORES 7 A 321 PHE ILE TYR GLN ASN MET MET ILE GLU SER ASN ILE ILE
SEORES 8 A 321 HIS ALA ALA HIS GIN ASN ASP VAL ASN LYS LEU LEU PHE
SEORES 9 A 321 LEU GLY SER SER CYS ILE TYR PRO LYS LEU ALA LYS GLN
SEORES 10 A 321 PRO MET ALA GLU SER GLU LEU LEU GLN GLY THR LEU GLU
SEORES 11 A 321 PRO THR ASN GLU PRO TYR ALA ILE ALA LYS ILE ALA GLY
30 SEORES 12 A 321 ILE LYS LEU CYS GLU SER TYR ASN ARG GLN TYR GLY ARG
SEORES 13 A 321 ASP TYR ARG SER VAL MET PRO THR ASN LEU TYR GLY PRO
SEORES 14 A 321 HIS ASP ASN PHE HIS PRO SER ASN SER HIS VAL ILE PRO
SEORES 15 A 321 ALA LEU LEU ARG ARG PHE HIS GLU ALA THR ALA GLN ASN
SEORES 16 A 321 ALA PRO ASP VAL VAL VAL TRP GLY SER GLY THR PRO MET
35 SEORES 17 A 321 ARG GLU PHE LEU HIS VAL ASP ASP MET ALA ALA ALA SER
SEORES 18 A 321 ILE HIS VAL MET GLU LEU ALA HIS GLU VAL TRP LEU GLU
SEORES 19 A 321 ASN THR GLN PRO MET LEU SER HIS ILE ASN VAL GLY THR
SEORES 20 A 321 GLY VAL ASP CYS THR ILE ARG ASP VAL ALA GLN THR ILE
SEORES 21 A 321 ALA LYS VAL VAL GLY TYR LYS GLY ARG VAL VAL PHE ASP
40 <u>seores 22 a 321 ala ser lys pro asp gly thr pro arg lys leu leu asp</u>
SEORES 23 A 321 VAL THR ARG LEU HIS GLN LEU GLY TRP TYR HIS GLU ILE
SEORES 24 A 321 SER LEU GLU ALA GLY LEU ALA SER THR TYR GLN TRP PHE
SEORES 25 A 321 LEU GLU ASN GLN ASP ARG PHE ARG GLY
HET NDP 1 0
45 HETNAM NDP NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE

,	HETSYN NDP NADP	
	FORMUL 2 NDP C21 H23 N7 017 P3 3-	
	FORMUL 3 HOH *109 (H2 O1)	
	HELIX 1 1 MET A 14 GLN A 25 1	12
5	HELIX 2 2 SER A 44 GLU A 54 1	_11
	HELIX 3 3 ILE A 69 THR A 74 1	6
	HELIX 4 4 PRO A 76 ASN A 97 1	22
	HELIX 5 5 SER A 108 ILE A 110 5	3
	HELIX 6 6 GLU A 121 GLU A 123 5	3
10	HELIX 7 7 GLU A 134 TYR A 154 1	21
	HELIX 8 8 VAL A 180 ALA A 193 1	14
	HELIX 9 9 VAL A 214 GLU A 225 1	13
	HELIX 10 10 HIS A 229 GLU A 234 1	6
	HELIX 11 11 ILE A 253 VAL A 264 1	_12
15	HELIX 12 12 THR A 208 GLN A 292 1	5
	HELIX 13 13 LEU A 301 GLU A 314 1	14_
	SHEET 1 A 6 VAL A 29 VAL A 32 0	
	SHEET 2 A 6 GLN A 4 ALA A 9 1 N GLN A 4 O GLU A 30	
	SHEET 3 A 6 GLN A 58 LEU A 61 1 N GLN A 58 O PHE A 7	
20	SHEET 4 A 6 LYS A 101 LEU A 105 1 N LYS A 101 O VAL A 59	
	SHEET 5 A 6 ASP A 157 PRO A 163 1 N ASP A 157 O LEU A 102	
	SHEET 6 A 6 ILE A 243 VAL A 245 1 N ILE A 243 O MET A 162	
	SHEET 1 B 2 ASN A 165 TYR A 167 0	
	SHRET 2 B 2 PHE A 211 HIS A 213 1 N LEU A 212 O ASN A 165	
25	SHRET 1 C 2 ASP A 198 TRP A 202 0	
	SHEET 2 C 2 ARG A 269 ASP A 273 1 N ARG A 269 O VAL A 199	
	SITE 1 CAT 1 TYR 136	
	SITE 2 CAT 1 LYS 140	
30	SITE 3 CAT 1 SER 107 CRYST1 104.200 104.200 75.880 90.00 90.00 120.00 P 32 2 1 6	
30		
	ORIGX2 0.000000 1.000000 0.000000 0.000000 ORIGX3 0.000000 0.000000 1.000000 0.000000	
	SCALE1 0.009597 0.005541 0.000000 0.00000	
35	SCALE2 0.000000 0.011081 0.000000 0.000000	
33	SCALE3 0.000000 0.000000 0.013179 0.00000	
	HETATM 1 0 HOH 1 55.652 -16.806 22.535 1.00 8.73	0
	HETATM 2 0 HOH 3 58.494 -10.639 18.740 1.00 13.17	0
	HETATM 3 0 HOH 4 58.230 -11.715 27.770 1.00 19.07	
40	HETATM 4 0 HOH 5 57.252 -3.759 30.107 1.00 11.21	0
-	HETATM 5 0 HOH 6 58.298 -10.011 25.527 1.00 15.74	0
	HETATM 6 0 HOH 7 49.321 6.583 38.815 1.00 19.33	0
	HETATM 7 0 HOH 8 53.785 -4.262 22.464 1.00 10.94	0
	HETATM 8 0 HOH 10 74,652 2,888 9,141 1,00 17,80	0
45	HETAIM 9 0 HOH 11 49.761 0.826 32.896 1.00 22.02	0

							
	HETATM	_10_	0	нон	12	55.530 -11.162 28.526 1.00 11.39	<u> </u>
	HETATM	_11_	٥	нон	13	75.027 7.034 27.353 1.00 16.30	0
	HETATM	12	0	нон	14	49.994 -2.314 11.032 1.00 21.33	0
	HETATM	_13	_0_	нон	15	61.323 -8.959 29.657 1.00 22.84	
5	HETATM	14	0	нон	16	61.029 -11.560 29.131 1.00 21.24	<u> </u>
	HETATM	15	0	нон	17	50,684 5.881 10.130 1.00 15.88	_0
	HETATM	16	0	нон	18	64.506 -6.302 32.989 1.00 21.05	0
	HETATM	17	0	нон	19	57.856 -16.398 25.085 1.00 22.86	0
	HETATM	18	Q	нон	20	38.979 26.536 19.070 1.00 21.08	0
10	HETATM	19	0	нон	21	38.042 33.487 21.909 1.00 19.01	0
	HETATM	20	0	нон	24	38.172 35.775 20,827 1.00 33.46	0
	HETATM	21	0	нон	25	70.916 -11.128 15.244 1.00 31.37	0
	HETATM	22	0	нон	26	54.205 19.360 28.396 1.00 35.76	0
	HETATM	23	0	нон	27	50.436 2.654 16.783 1.00 12.25	0
15	HETATM	24	0	нон	28	69.692 19.108 38.979 1.00 49.77	0
	HETATM	25	0	нон	29	56.432 -8.877 19.303 1.00 22.52	0
	HETATM	26	0	нон	30	60.832 3.415 42.349 1.00 17.39	0
	HETATM	27	0	нон	31	53.889 -12.706 29.764 1.00 22.40	0
	HETATM	28_	0	нон	32	37.887 26.373 28.058 1.00 18.09	0
20	HETATM	29	0	нон	33	49.201 11.173 26.867 1.00 33.95	0
	HETATM	30	0	нон	34	46.762 -0.278 31.394 1.00 20.63	<u> </u>
	HETATM	31	0	нон	35	41.731 27.568 43.302 1.00 27.39	Q
	HETATM	32	0	нон	36	66.827 11.202 28.929 1.00 13.23	<u> </u>
	HETATM	33	0	нон	37	46.834 14.396 40.819 1.00 46.02	0
25	METATM	34	0	нон	38	61.342 1.064 43.868 1.00 26.68	0
	HETATM	35	0	нон	42	70.597 16.422 37.837 1.00 19.26	0
	HETATM	36	0	нон	44	72.275 -9.089 33.407 1.00 22.11	0
	HETATM	37	0	нон	45	42.685 34.461 33.955 1.00 17.32	0
	HETATM	38	0	нон	46	53,480 13,394 38,364 1.00 20,19	0
30	HETATM	39	0_	нон	47	56.085 21.757 44.744 1.00 33.50	<u> </u>
	HETATM	40	0	нон	48	35.741 32.691 23.517 1.00 19.49	0
	HETATM	41	<u> </u>	нон	49	40.458 36.700 34.312 1.00 34.53	0
	HETATM	42	0	нон	50	75.440 7.267 29.948 1.00 18.07	0
	HETATM	43	Q	HOH	51	47.476 18.347 20.851 1.00 34.16	0
35	HETATM	44	0	нон	53	52.837 -16.344 19.587 1.00 25.92	0
	HETATM	45	0	нон	55	46,415 9.073 20.108 1.00 31.91	
	HETATM	46	0	нон	57	45,912 35,170 36,133 1,00 35,55	0
	HETATM	47	0	нон	58	60.247 -2.880 41.919 1.00 16.85	0
40	HETATM	48		нон	60	64.974 6.086 24.501 1.00 32.16	0
40	HETATM	49	O	нон	61	52.103 4.683 4.978 1.00 35.72	
	HETATM	50	0	нон	62	50.888 40.154 36.463 1.00 38.35	0
	HETATM	51	_ 0	нон	63	44,373 31.233 37,336 1,00 20,07	0
	HETATM	52	Q.	- нон	64		<u> </u>
	HETATM	53	0	нон	- 65	58,409 23,769 45,517 1,00 58,42	
45	HETATM	54	<u> </u>	нон	66	68.690 -11.764 35.335 1.00 57.07	

	HETATM	55	0	нон	67	42.746 25.153 23.465 1.00 27.05	0
	HETATM	56	0	нон	68	53.638 -16.457 32.292 1.00 31.71	0
	HETATM	57	0	нон	69	33.390 41.716 31.408 1.00 29.92	<u> </u>
	HETATM	58	0	нон	.70	57.768 17.897 42.434 1.00 25.75	0
5	HETATM	59	0	нон	_71	75.647 9.164 11.766 1.00 35.13	0
	HETATM	60	0	нон	72	62.032 33.292 44.749 1.00 46.18	0
	HETATM	61	0_	нон	73	47.310 14.312 34.285 1.00 31.18	0
	HETATM	62	0_	нон	74	79.660 -3.947 15.913 1.00 34.63	0
	HETATM	63	0	нон	75	46,929 5.343 4.550 1.00 23.14	0
10	HETATM	64	0	нон	76	73.475 12.039 28.412 1.00 27.26	0
	HETATM	65	Q	нон	77	46.297 -6.982 30.032 1.00 43.41	0
	HETATM	66	0	нон	78	68.528 -3.422 40.869 1.00 38.47	<u> </u>
	HETATM	67	٥	нон	79	62.080 -1.448 42.803 1.00 24.60	0
	HETATM	68	0	нон	80	65.330 18.150 40.726 1.00 41.00	0
15	HETATM	69	0	нон	81	51.775 16.128 37.607 1.00 25.11	0
	HETATM	70	0	нон	83	54.266 28.682 43.313 1.00 27.61	0
	HETATM	71	0	нон	8.5	73.291 -15.479 20.603 1.00 37.54	0
	HETATM	72	0	нон	86	34.760 21.479 28.544 1.00 43.87	0
	HETATM	73	0_	нон	87	37.326 24.131 29.677 1.00 24.47	0
20	HETATM	74	0	нон	88	65,168 20,148 6,735 1,00 26,10	0
	HETATM	75	0_	нон	89	59.196 12.089 13.630 1.00 25.24	0
	HETATM	76	0	нон	91	66.576 -6.235 40.279 1.00 43.11	0
	HETATM	77	0	нон	93	37.339 29.394 25.515 1.00 27.56	0
	HETATM	78	0.	нон	94	52.339 -17.014 42.271 1.00 48.96	0
25	HETATM	79	0	нон	95	40.511 32.927 31.717 1.00 22.46	0
	HETATM	80	0	нон	96	78.580 13.121 34.138 1.00 27.98	0
	HETATM	81	0	нон	97	65.090 15.704 34.876 1.00 18.96	0
	HETATM	82	0	нон	99	84.562 2.951 27.181 1.00 35.92	0
	HETATM	83	0	нон	100	50.386 9.761 9.646 1.00 23.18	0
30	HETATM	84	0	нон	101	67,649 -0.851 38.764 1.00 24.99	0
	HETATM	85	0	нон	102	44.001 4.293 34.315 1.00 31.13	0
	HETATM	86	0	нон	103	59.306 -5.071 26.211 1.00 29.10	0
	HETATM	87	۰	нон	104	77.364 4.745 41.506 1.00 35.32	0
	HETATM	88	٥	нон	105	59.034 21.201 32.414 1.00 23.43	0
35	HETATM	89	0	нон	106	42.463 34.698 14.327 1.00 38.86	0
	HETATM	90	0	нон	107	70.217 14.292 20.864 1.00 42.39	Q
	HETATM	91	0	нон	108	76.999 8.130 25.862 1.00 32.91	0
	HETATM		2 0	нон	109	49.766 29.937 22.173 1.00 42.52	0
	HETATM	9:	3 0	нон	110	72,473 13,536 38,823 1,00 33,32	0
40	HETATM	94	1 0	нон	111	64.328 -12.084 38.608 1.00 37.99	0
	HETATM	9:	5 Q	нон	112	60,161 16,382 42,682 1.00 35,68	0
	HETATM				113	47.602 13.639 27.016 1.00 26.01	00
	HETATM		7 0		115	64.606 11.644 40.107 1.00 30.33	0
	HETATM		8 C	нон	116	61.231 -15.137 27.255 1.00 38.76	
45	HETAT		9 C	нон	117	65,324 -11,223 35,098 1.00 30,45	

HETATH 101 0 NOH 119				_
HETATM 102 0 HOH 123 63.391 16.801 26.898 1.00 38.46 0 HETATM 103 0 HOH 123 63.391 16.801 26.898 1.00 38.46 0 HETATM 105 0 HOH 124 42.567 6.134 32.635 1.00 31.56 0 HETATM 105 0 HOH 125 72.485 13.236 35.059 1.00 29.61 0 HETATM 106 0 HOH 126 65.229 3.650 44.032 1.00 36.86 0 HETATM 107 0 HOH 127 37.089 7.148 31.083 1.00 34.97 0 HETATM 108 0 HOH 128 73.327 10.546 12.123 1.00 34.97 0 HETATM 109 0 HOH 129 74.450 10.299 26.598 1.00 34.97 0 HETATM 110 A05* NDP A 1 67.524 13.055 26.692 1.00 36.42 0 HETATM 111 AC5* NDP A 1 68.089 12.297 25.514 1.00 20.80 0 HETATM 111 AC5* NDP A 1 69.091 12.124 25.859 1.00 36.42 0 HETATM 113 A04* NDP A 1 70.193 11.258 24.848 1.00 22.87 0 HETATM 114 AC3* NDP A 1 70.494 13.390 25.873 1.00 17.83 C HETATM 115 A03* NDP A 1 71.373 13.220 24.656 1.00 11.46 C HETATM 116 AC2* NDP A 1 71.373 13.220 24.656 1.00 11.46 C HETATM 117 A05* NDP A 1 71.373 13.220 24.656 1.00 11.46 C HETATM 118 AC3* NDP A 1 71.373 13.220 24.656 1.00 11.46 C HETATM 119 AC4* NDP A 1 63.336 13.590 25.873 1.00 20.59 0 HETATM 119 AC5* NDP A 1 71.510 11.702 24.656 1.00 11.46 C HETATM 119 AC4* NDP A 1 63.336 13.590 25.873 1.00 20.59 0 HETATM 110 AC5* NDP A 1 71.510 11.702 24.656 1.00 11.46 C HETATM 110 AC5* NDP A 1 63.336 13.590 25.873 1.00 20.59 0 HETATM 120 NOS* NDP A 1 63.336 13.590 25.129 1.00 20.59 0 HETATM 120 NOS* NDP A 1 63.356 11.934 25.366 1.00 11.46 C HETATM 120 NOS* NDP A 1 63.356 11.934 25.366 1.00 31.79 C HETATM 120 NOS* NDP A 1 63.467 9.546 25.686 1.00 31.79 C HETATM 120 NOS* NDP A 1 63.467 9.546 25.686 1.00 31.79 C HETATM 124 NOS* NDP A 1 63.467 9.546 25.686 1.00 31.79 C HETATM 124 NOS* NDP A 1 63.467 9.546 25.686 1.00 31.79 C HETATM 124 NOS* NDP A 1 63.467 9.546 25.686 1.00 31.79 C HETATM 124 NOS* NDP A 1 63.467 9.546 25.686 1.00 31.79 C HETATM 124 NOS* NDP A 1 66.686 14.257 26.393 1.00 28.82 0 HETATM 124 NOS* NDP A 1 66.660 14.257 26.393 1.00 33.95 P HETATM 127 NOS* NDP A 1 66.660 14.257 26.393 1.00 33.95 P HETATM 130 AOPL NDP A 1 66.660 14.257 26.393 1.00 33.95 P HETATM 130 AOPL NDP A 1 66.660 14.257 26.393 1.00		HETATM 100 O HOH 119	56.602 17.219 44.932 1.00 36.53	0
HETATM 103			37.564 19.860 23.135 1.00 31.27	
Second S		<u>HETATM 102 O HOH 121</u>	64.845 5.057 21.132 1.00 45.57	0
HETATM 105		<u>HETATM 103 O HOH 123</u>	63.391 16.801 26.898 1.00 38.46	0
HETATH 106 O MOH 126 65.229 3.650 44.032 1.00 36.86 O HETATH 107 O HOH 127 37.089 7.148 31.083 1.00 39.58 O HETATH 108 O HOH 128 73.227 10.546 12.123 1.00 30.80 O HETATH 109 O HOH 129 74.450 10.299 26.598 1.00 30.80 O HETATH 110 A05* NDP A 1 67.524 13.055 26.692 1.00 36.42 O HETATH 111 AC5* NDP A 1 68.089 12.297 25.614 1.00 9.30 C HETATH 112 AC4* NDP A 1 68.089 12.297 25.614 1.00 9.30 C HETATH 113 AO4* NDP A 1 70.193 11.258 24.848 1.00 22.87 O HETATH 114 AC3* NDP A 1 70.193 11.258 24.848 1.00 22.87 O HETATH 115 AO3* NDP A 1 71.192 13.436 27.066 1.00 17.83 C HETATH 117 AO2* NDP A 1 71.192 13.436 27.066 1.00 16.11 O HETATH 117 AO2* NDP A 1 71.373 13.220 24.626 1.00 16.12 O HETATH 117 AO2* NDP A 1 71.510 11.702 24.656 1.00 19.02 C HETATH 118 AC1* NDP A 1 71.510 11.702 24.556 1.00 19.02 C HETATH 119 O3 NDP A 63.536 13.590 26.129 1.00 20.559 O HETATH 121 NC5* NDP A 63.536 13.590 26.129 1.00 24.89 O HETATH 122 NC5* NDP A 63.467 9.646 25.686 1.00 31.79 C HETATH 123 NO4* NDP A 63.467 9.646 25.686 1.00 31.79 C HETATH 124 NC3* NDP A 63.467 9.646 25.686 1.00 31.79 C HETATH 125 NO1* NDP A 63.467 9.646 25.686 1.00 31.79 C HETATH 127 NO2* NDP A 63.467 9.646 25.686 1.00 31.79 C HETATH 128 NO1* NDP A 66.881 7.662 24.715 1.00 24.89 O HETATH 128 NO1* NDP A 66.881 7.662 24.715 1.00 24.30 O HETATH 128 NO1* NDP A 66.686 14.795 25.383 1.00 37.84 O HETATH 136 ANY NDP A 66.686 14.795 25.393 1.00 36.66 O HETATH 137 AO2* NDP A 66.686 14.795 25.393 1.00	5	HETATM 104 O HOH 124	42.567 6.134 32.635 1.00 31.56	0
HETATH 108 0 HOH 127 37.089 7.148 31.083 1.00 39.58 0 HETATH 108 0 HOH 128 73.327 10.546 12.123 1.00 34.97 0 HETATH 110 20 HOH 129 74.450 10.299 26.598 1.00 36.80 0 HETATH 110 AO5* NDP 1 67.524 13.055 26.692 1.00 36.42 0 HETATH 111 AC5* NDP 1 68.089 12.297 25.614 1.00 9.30 0 HETATH 112 AC4* NDP 1 69.601 12.124 25.858 1.00 27.73 C HETATH 113 AO4* NDP 1 70.193 11.258 24.848 1.00 27.73 C HETATH 113 AO4* NDP 1 70.193 11.258 24.848 1.00 27.73 C HETATH 115 AO3* NDP 1 70.484 13.390 25.873 1.00 17.83 C HETATH 115 AO3* NDP 1 71.373 13.222 24.526 1.00 11.46 C HETATH 116 AC2* NDP 1 71.373 13.222 24.526 1.00 11.46 C HETATH 117 AO2* NDP 1 71.510 11.702 24.556 1.00 11.96 C HETATH 119 O3 NDP 1 65.336 11.943 26.129 1.00 20.59 O HETATH 120 NDF 1 63.356 11.943 26.448 1.00 28.99 O HETATH 121 NC5* NDF 1 64.328 10.843 25.957 1.00 24.89 C HETATH 122 NC4* NDF 1 63.467 9.646 25.686 1.00 11.79 C HETATH 124 NC3* NDF 1 62.837 9.337 26.908 1.00 28.82 O HETATH 125 NO4* NDF 1 62.891 9.402 23.461 1.00 28.60 O HETATH 126 NC2* NDF 1 62.891 9.402 23.461 1.00 28.60 O HETATH 127 NO2* NDF 1 62.891 9.402 23.461 1.00 28.60 O HETATH 128 NC1* NDF 1 62.891 9.402 23.461 1.00 28.60 O HETATH 126 NC2* NDF 1 63.666 14.257 26.580 1.00 37.84 O HETATH 127 NO2* NDF 1 63.686 14.795 25.138 1.00 37.84 O HETATH 128 NO1* NDF 1 63.666 14.257 26.393 1.00 37.84 O HETATH 128 AOF NDF 1 74.500 15.309 24.208 1.00 37.84 O HETATH 136 AOF NDF 1 74.500 15.309 24.208 1.00 37.84 O HETATH 136 AOF NDF 1 74.500		HETATM 105 O HOH 125	72,485 13,236 35,059 1,00 29,61	0
HETATH 108 0 HOH 128 73,327 10,546 12,123 1,00 34,97 0 HETATH 109 0 HOH 129 74,450 10,299 26,598 1,00 30,80 0 HETATH 111 ACS* NDP A 1 67,524 13,055 26,692 1,00 36,42 0 HETATH 111 ACS* NDP A 1 68,089 12,297 25,614 1,00 9,30 C HETATH 112 ACS* NDP A 1 69,601 12,124 25,858 1,00 27,73 C HETATH 113 AOS* NDP A 1 70,193 11,258 24,848 1,00 22,87 0 HETATH 113 AOS* NDP A 1 70,494 13,390 25,873 1,00 17,83 C HETATH 115 AO3* NDP A 1 71,192 13,435 27,066 1,00 16,11 0 HETATH 116 ACZ* NDP A 1 71,192 13,435 27,066 1,00 16,11 0 HETATH 116 ACZ* NDP A 1 71,373 13,220 24,626 1,00 11,46 C HETATH 116 ACZ* NDP A 1 72,623 13,886 24,655 1,00 13,96 0 HETATH 118 ACZ* NDP A 1 71,510 11,702 24,656 1,00 19,02 C HETATH 120 NDP A 1 63,336 13,590 26,129 1,00 20,59 0 HETATH 120 NDP A 1 63,336 13,590 26,129 1,00 20,59 0 HETATH 121 NOS* NDP A 1 63,467 9,645 25,567 1,00 24,89 C HETATH 122 NC4* NDP A 1 63,467 9,645 25,568 1,00 11,79 C HETATH 123 NO4* NDP A 1 62,837 9,337 24,665 1,00 11,79 C HETATH 123 NO4* NDP A 1 62,837 9,337 24,655 1,00 11,50 C HETATH 125 NC2* NDP A 1 62,891 9,402 23,461 1,00 28,60 0 HETATH 127 NC2* NDP A 1 61,152 8,995 25,138 1,00 28,13 C HETATH 127 NC2* NDP A 1 61,547 8,875 26,580 1,00 31,35 C HETATH 128 NC1* NDP A 1 61,681 7,662 24,715 1,00 24,30 0 HETATH 127 NC2* NDP A 1 61,547 8,875 26,580 1,00 31,97 0 HETATH 131 AOPZ NDP A 1 61,547 8,875 26,580 1,00 31,97 0 HETATH 132 AOPZ NDP A 1 71,758 15,985 24,308 1,00 31,97 0 HETATH 133 AOPZ NDP A 1 71,758 10,835 1,00 31,363 X4 HETATH 136 ANY NDP A 1 66,439		<u>HETATM 106 O HOH 126</u>	65.229 3.650 44.032 1.00 36,86	0
10 HETATM 109 0 HOH 129 74.150 10.299 26.598 1.00 30.80 0 HETATM 110 AOS* NDP A 1 67.524 13.055 26.692 1.00 36.42 0 HETATM 111 ACS* NDP A 1 68.089 12.297 25.614 1.00 9.30 C HETATM 113 AO4* NDP A 1 69.601 12.124 25.858 1.00 27.73 C HETATM 113 AO4* NDP A 1 70.193 11.258 24.848 1.00 22.87 0 NETATM 114 AC3* NDP A 1 70.193 11.258 24.848 1.00 22.87 0 NETATM 115 AO3* NDP A 1 70.193 11.258 24.848 1.00 22.87 0 HETATM 116 AC2* NDP A 1 70.193 11.258 24.848 1.00 21.713 C HETATM 115 AO3* NDP A 1 71.92 13.436 27.066 1.00 15.11 0 HETATM 116 AC2* NDP A 1 71.931 31.220 24.626 1.00 11.46 C HETATM 117 AO2* NDP A 1 71.510 11.702 24.655 1.00 31.96 0 HETATM 118 AC1* NDP A 1 71.510 11.702 24.655 1.00 31.96 0 HETATM 120 NO5* NDP A 1 65.336 13.590 26.129 1.00 20.59 0 HETATM 121 NC5* NDP A 1 63.536 11.943 26.448 1.00 28.99 0 HETATM 122 NC4* NDP A 1 64.328 10.843 25.957 1.00 24.89 C HETATM 122 NC4* NDP A 1 62.437 9.637 24.695 1.00 31.79 C HETATM 123 NC5* NDP A 1 62.837 9.337 26.908 1.00 24.89 C EHETATM 124 NC3* NDP A 1 62.831 9.837 24.665 1.00 31.79 C HETATM 125 NO3* NDP A 1 62.831 9.837 24.665 1.00 31.50 C HETATM 126 NC2* NDP A 1 62.831 9.837 24.665 1.00 31.50 C HETATM 127 NO2* NDP A 1 62.831 9.837 24.665 1.00 31.50 C HETATM 128 NC3* NDP A 1 62.831 9.837 24.665 1.00 31.50 C HETATM 128 NC3* NDP A 1 62.831 9.837 24.665 1.00 31.50 C HETATM 128 NC3* NDP A 1 62.831 9.837 24.655 1.00 31.50 C HETATM 128 NC3* NDP A 1 62.831 9.837 24.655 1.00 31.50 C HETATM 128 NC3* NDP A 1 62.831 9.837 24.655 1.00 31.50 C HETATM 130 AOP1 NDP A 1 61.56 C HETATM 130 AOP1 NDP A 1 61.57 8.835 1.00 28.11 C HETATM 131 AO2* NDP A 1 61.57 8.835 1.00 31.59 C HETATM 130 AOP1 NDP A 1 61.56 C HETATM 131 AO2* NDP A 1 62.831 9.835 1.00 32.96 P HETATM 131 AO2* NDP A 1 66.660 14.757 26.3393 1.00 32.96 P HETATM 133 AOP NDP A 1 71.758 10.835 21.161 1.00 15.31 XX HETATM 136 AN9 NDP A 1 71.758 10.835 21.161 1.00 15.71 XX HETATM 138 AN7 NDP A 1 71.758 10.835 21.161 1.00 15.71 XX HETATM 140 AC6 NDP A 1 71.650 9.461 19.819 1.00 12.59 XX HETATM 143 AC2		HETATM 107 O HOH 127	37.089 7.148 31.083 1.00 39.58	0
HETATM 110 AOS* NDP A 1 67.524 13.055 26.692 1.00 36.42 0 HETATM 111 ACS* NDP A 1 68.089 12.297 25.614 1.00 9.30 C HETATM 113 AO4* NDP A 1 69.601 12.124 25.858 1.00 27.73 C HETATM 113 AO4* NDP A 1 70.193 11.258 24.848 1.00 22.87 O IS HETATM 113 AO3* NDP A 1 70.484 13.390 25.873 1.00 17.83 C HETATM 115 AO3* NDP A 1 70.484 13.390 25.873 1.00 17.83 C HETATM 115 AO3* NDP A 1 71.192 13.436 27.066 1.00 15.11 O HETATM 116 AC2* NDP A 1 72.623 13.886 24.626 1.00 11.46 C HETATM 117 AO2* NDP A 1 72.623 13.886 24.625 1.00 11.46 C HETATM 118 AO1* NDP A 1 72.623 13.886 24.655 1.00 31.96 O HETATM 118 O3 NDP A 1 65.336 13.590 26.129 1.00 20.55 O HETATM 120 NO5* NDP A 1 65.336 13.590 26.129 1.00 20.55 O HETATM 122 NC4* NDP A 1 63.536 11.943 26.448 1.00 28.99 C HETATM 122 NC4* NDP A 1 63.467 9.646 25.686 1.00 31.79 C HETATM 122 NC4* NDP A 1 62.837 9.337 26.908 1.00 24.89 C HETATM 124 NC3* NDP A 1 62.837 9.337 26.908 1.00 24.89 C HETATM 126 NC2* NDP A 1 62.837 9.337 26.908 1.00 28.82 O SHETATM 127 NO2* NDP A 1 62.837 9.337 26.908 1.00 28.82 O HETATM 128 NO4* NDP A 1 62.837 9.337 26.908 1.00 28.82 O HETATM 126 NC2* NDP A 1 62.837 9.337 26.908 1.00 28.82 O HETATM 127 NO2* NDP A 1 61.547 9.646 25.686 1.00 31.79 C HETATM 128 NO4* NDP A 1 62.837 9.337 26.908 1.00 28.82 O HETATM 127 NO2* NDP A 1 61.547 9.867 25.686 1.00 31.79 C HETATM 128 NO4* NDP A 1 61.547 9.869 23.831 1.00 32.96 P HETATM 129 AP2* NDP A 1 61.547 8.895 25.138 1.00 31.79 C HETATM 129 NDP A 1 61.547 8.895 25.138 1.00 31.79 C HETATM 130 AOP1 NDP A 1 61.566 1.547 8.895 25.138 1.00 33.94 O HETATM 131 AOP2 NDP A 1 66.686 14.795 25.047 1.00 26.17 XX HETATM 132 AOP3 NDP A 1 66.686 14.795 25.047 1.00 15.31 XX HETATM 135 AOP1 NDP A 1 66.686 14.795 25.047 1.00 15.31 XX HETATM 136 AN9 NDP A 1 66.680 14.795 25.047 1.00 15.31 XX HETATM 136 AN9 NDP A 1 71.758 10.835 21.161 1.00 31.35 XX HETATM 137 AC8 NDP A 1 71.758 10.835 21.161 1.00 31.35 XX HETATM 140 AC6 NDP A 1 71.759 9.969 20.21.942 1.00 17.56 XX HETATM 143 AC2 NDP A 1 75.078 9.280 21.949 1.00 15.544		HETATM 108 O HOH 128	73.327 10.546 12.123 1.00 34.97	0
HETATM 111 ACS* NDP A 1 68.089 12.297 25.614 1.00 9.30 C HETATM 112 AC4* NDP A 1 69.601 12.124 25.858 1.00 27.73 C HETATM 113 AO4* NDP A 1 70.193 11.258 24.848 1.00 22.87 O HETATM 114 AC3* NDP A 1 70.193 11.258 24.848 1.00 22.87 O HETATM 115 AO3* NDP A 1 71.192 13.436 27.066 1.00 16.11 O HETATM 116 AC2* NDP A 1 71.373 13.220 24.626 1.00 11.46 C HETATM 117 AO2* NDP A 1 71.373 13.220 24.626 1.00 11.46 C HETATM 118 AC1* NDP A 1 71.510 11.702 24.656 1.00 19.02 C HETATM 119 O3 NDP A 1 65.336 13.590 26.129 1.00 20.59 O HETATM 120 NOS* NDP A 1 63.356 11.940 26.149 1.00 28.99 O HETATM 121 NC5* NDP A 1 64.328 10.843 25.957 1.00 24.89 C HETATM 122 NO3* NDP A 1 65.346 10.843 25.957 1.00 24.89 C HETATM 123 NO4* NDP A 1 62.837 9.337 26.908 1.00 31.79 C HETATM 124 NC3* NDP A 1 62.847 9.646 25.686 1.00 11.50 C HETATM 125 NO3* NDP A 1 62.840 9.837 24.665 1.00 11.50 C HETATM 126 NC2* NDP A 1 62.840 9.837 24.665 1.00 13.79 C HETATM 127 NO2* NDP A 1 62.840 9.837 24.655 1.00 13.79 C HETATM 128 NC1* NDP A 1 60.881 7.662 24.715 1.00 24.30 O HETATM 128 NC1* NDP A 1 60.881 7.662 24.715 1.00 24.30 O HETATM 129 AP2* NDP A 1 60.881 7.662 24.715 1.00 24.30 O HETATM 130 AOP1 NDP A 1 60.881 7.662 24.715 1.00 24.30 O HETATM 130 AOP1 NDP A 1 60.881 7.662 24.715 1.00 24.30 O HETATM 130 AOP1 NDP A 1 60.881 7.662 24.715 1.00 24.30 O HETATM 130 AOP1 NDP A 1 60.881 7.662 24.715 1.00 24.30 O HETATM 130 AOP1 NDP A 1 60.881 7.662 24.715 1.00 24.30 O HETATM 130 AOP1 NDP A 1 74.500 15.302 24.308 1.00 35.35 C HETATM 131 AOP2 NDP A 1 72.797 14.925 22.348 1.00 36.66 O HETATM 131 AOP2 NDP A 1 72.797 14.925 22.348 1.00 37.84 O HETATM 133 AP NDP A 1 66.866 14.795 25.2047 1.00 15.31 XX HETATM 134 AO1 NDP A 1 71.820 11.224 23.353 1.00 12.91 XX HETATM 137 ACE NDP A 1 71.820 11.224 23.353 1.00 12.91 XX HETATM 130 AOP1 NDP A 1 71.820 11.224 23.353 1.00 12.617 XX HETATM 130 ACS NDP A 1 71.820 11.224 23.353 1.00 12.51 XX HETATM 130 ACS NDP A 1 71.650 9.464 19.819 1.00 12.55 XX HETATM 142 ANN NDP A 1 74.053 9.657 21.140 1.00 12.55 XX HETATM 142 ANN NDP A 1 74.053 9.	10	нетати 109 о нон 129	74.450 10.299 26.598 1.00 30.80	0
HETATM 112 AC4* NDP A 1 69.601 12.124 25.858 1.00 27.73 C HETATM 113 AO4* NDP A 1 70.193 11.258 24.848 1.00 22.87 O HETATM 114 AC3* NDP A 1 70.484 13.390 25.873 1.00 17.83 C HETATM 115 AO3* NDP A 1 71.192 13.436 27.066 1.00 16.11 O HETATM 116 AC2* NDP A 1 71.192 13.436 27.066 1.00 16.11 O HETATM 116 AC2* NDP A 1 72.623 13.886 24.626 1.00 11.96 C HETATM 118 AC1* NDP A 1 72.623 13.886 24.655 1.00 31.96 O HETATM 119 AC1* NDP A 1 71.510 11.702 24.656 1.00 19.02 C HETATM 120 NO5* NDP A 1 65.336 13.590 26.129 1.00 20.59 O HETATM 121 NC5* NDP A 1 63.536 11.943 26.448 1.00 28.99 Q HETATM 121 NC5* NDP A 1 63.467 3.646 25.686 1.00 31.79 C HETATM 122 NC4* NDP A 1 62.837 9.337 26.908 1.00 28.82 Q 25 HETATM 124 NC3* NDP A 1 62.837 9.337 26.908 1.00 28.82 Q HETATM 125 NO3* NDP A 1 62.837 9.337 26.908 1.00 28.80 Q HETATM 126 NC2* NDP A 1 66.881 7.662 23.138 1.00 28.60 Q HETATM 127 NO2* NDP A 1 66.881 7.662 24.715 1.00 24.30 Q HETATM 128 NC1* NDP A 1 66.881 7.662 24.715 1.00 24.30 Q HETATM 127 NO2* NDP A 1 66.881 7.662 24.715 1.00 31.79 C HETATM 128 NC1* NDP A 1 66.881 7.662 24.715 1.00 31.97 Q HETATM 130 AOPI NDP A 1 61.547 8.875 26.580 1.00 31.99 P HETATM 131 AOPZ NDP A 1 66.660 14.277 23.958 1.00 31.97 Q HETATM 132 AOP3 NDP A 1 74.500 15.308 24.308 1.00 37.94 Q HETATM 132 AOP3 NDP A 1 74.500 15.308 24.308 1.00 37.94 Q HETATM 133 AP NDP A 1 66.660 14.257 26.393 1.00 36.66 Q HETATM 134 AOP NDP A 1 74.500 15.308 24.308 1.00 37.94 Q HETATM 135 AOP NDP A 1 66.690 14.257 26.393 1.00 34.39 XX HETATM 136 ANS NDP A 1 71.104 11.316 22.200 1.00 12.41 XX HETATM 138 ANS NDP A 1 71.758 10.835 21.161 1.00 15.71 XX HETATM 139 AC5 NDP A 1 71.053 9.657 21.100 1.00 15.51 XX HETATM 139 AC5 NDP A 1 71.053 9.657 21.100 10.25.59 XX HETATM 140 AC6 NDP A 1 71.053 9.657 21.100 11.544 XX HETATM 140 AC6 NDP A 1 74.505 9.464 19.819 1.00 12.55 XX HETATM 142 ANS NDP A 1 74.505 9.464 19.819 1.00 12.55		HETATM 110 AO5* NDP A 1	67.524 13.055 26.692 1.00 36.42	Q
HETATM 113 AO4* NDP A 1 70.193 11.258 24.848 1.00 22.87 0 HETATM 114 AC3* NDP A 1 70.484 13.390 25.873 1.00 17.83 C HETATM 115 AO3* NDP A 1 71.192 13.436 27.066 1.00 16.11 0 HETATM 116 AC2* NDP A 1 71.373 13.220 24.626 1.00 11.46 C HETATM 117 AO2* NDP A 1 72.623 13.886 24.655 1.00 31.96 0 HETATM 118 AC1* NDP A 1 71.510 11.702 24.656 1.00 19.02 C HETATM 119 O3 NDP A 1 65.336 13.590 26.129 1.00 20.59 0 HETATM 120 NO5* NDP A 1 65.336 11.943 26.448 1.00 28.99 0 HETATM 121 NC5* NDP A 1 63.467 9.646 25.686 1.00 31.79 C HETATM 122 NC4* NDP A 1 62.387 9.337 26.908 1.00 28.82 0 HETATM 123 NO4* NDP A 1 62.387 9.337 26.908 1.00 28.82 0 HETATM 126 NC2* NDP A 1 62.837 9.337 26.908 1.00 28.82 0 HETATM 126 NC2* NDP A 1 66.881 7.662 24.715 1.00 28.80 0 HETATM 127 NO2* NDP A 1 66.881 7.662 24.715 1.00 28.30 0 HETATM 128 NC1* NDP A 1 63.547 8.875 26.590 1.00 35.35 C HETATM 129 AP2* NDP A 1 61.547 8.875 26.590 1.00 37.94 0 HETATM 129 AP2* NDP A 1 66.660 14.257 26.393 1.00 37.94 0 HETATM 131 AOP1 NDP A 1 74.500 15.308 24.308 1.00 37.94 0 HETATM 132 AOP3 NDP A 1 74.500 15.308 24.308 1.00 37.94 0 HETATM 133 AOP1 NDP A 1 66.660 14.257 26.393 1.00 37.94 0 HETATM 134 AOP1 NDP A 1 66.660 14.257 26.393 1.00 37.94 0 HETATM 137 AC8 NDP A 1 72.163 16.217 23.958 1.00 37.94 0 HETATM 138 AOP1 NDP A 1 66.660 14.257 26.393 1.00 37.94 0 HETATM 139 AOP1 NDP A 1 72.163 16.217 23.958 1.00 37.94 0 HETATM 139 AOP1 NDP A 1 72.163 16.217 23.958 1.00 37.94 0 HETATM 139 AOP1 NDP A 1 72.163 16.217 23.958 1.00 37.94 0 HETATM 139 AOP1 NDP A 1 72.163 16.217 23.958 1.00 37.94 0 HETATM 139 AOP1 NDP A 1 72.163 16.217 23.958 1.00 37.94 0 HETATM 139 AOP1 NDP A 1 72.163 16.217 23.958 1.00 37.94 0 HETATM 139 AOP1 NDP A 1 72.163 16.217 23.958 1.00 37.94 0 HETATM 139 AOP1 NDP A 1 74.500 15.307 27.521 1.00 34.39 XX HETATM 139 AOP1 NDP A 1 74.509 15.308 21.108 1.00 37.94 0 HETATM 139 AOP1 NDP A 1 74.509 15.309 22.116 1.00 15.571 XX HETATM 140 AC6 NDP A 1 71.053 9.657 21.140 1.00 15.571 XX HETATM 142 ANN NDP A 1 74.509 9.657 21.140 1.00 12.55 XX HETATM 142 ANN NDP A 1 74		HETATM 111 AC5* NDP A 1	68.089 12.297 25.614 1.00 9.30	c
15 HETATM 114 AC3* NDP A 1 70.484 13.390 25.873 1.00 17.83 C HETATM 115 AO3* NDP A 1 71.192 13.436 27.066 1.00 16.11 0 HETATM 116 AC2* NDP A 1 71.373 13.220 24.626 1.00 11.46 C HETATM 117 AO2* NDP A 1 72.623 13.886 24.655 1.00 31.96 0 HETATM 118 AC1* NDP A 1 72.623 13.886 24.655 1.00 31.96 0 HETATM 119 O3 NDP A 1 65.336 13.590 26.129 1.00 20.59 0 HETATM 120 NO5* NDP A 1 65.336 13.590 26.129 1.00 20.59 0 HETATM 120 NO5* NDP A 1 63.536 11.943 25.957 1.00 24.89 C HETATM 122 NC4* NDP A 1 63.286 10.843 25.957 1.00 24.89 C HETATM 123 NO4* NDP A 1 63.467 9.646 25.686 1.00 31.79 C HETATM 124 NC3* NDP A 1 62.837 9.337 26.908 1.00 28.82 0 HETATM 125 NC3* NDP A 1 62.891 9.402 23.461 1.00 28.60 0 HETATM 126 NC2* NDP A 1 60.881 7.662 24.715 1.00 24.30 0 HETATM 127 NO2* NDP A 1 60.881 7.662 24.715 1.00 24.30 0 HETATM 128 NC1* NDP A 1 60.881 7.662 24.715 1.00 24.30 0 HETATM 129 AP2* NDP A 1 61.557 8.875 25.586 1.00 35.35 C 30 HETATM 130 AOP1 NDP A 1 74.500 15.308 24.308 1.00 35.35 C HETATM 131 AOP2 NDP A 1 74.500 15.308 24.308 1.00 35.35 C HETATM 132 ADP3 NDP A 1 74.500 15.308 24.308 1.00 36.66 O HETATM 133 AP NDP A 1 66.660 14.257 26.393 1.00 36.66 O HETATM 134 AO1 NDP A 1 66.660 14.257 26.393 1.00 36.35 XX HETATM 135 AOP NDP A 1 71.104 11.316 22.200 1.00 15.31 XX HETATM 138 ANT NDP A 1 71.104 11.316 22.200 1.00 15.31 XX HETATM 138 ANT NDP A 1 71.104 11.316 22.200 1.00 15.31 XX HETATM 139 AC5 NDP A 1 71.004 11.316 22.200 1.00 15.31 XX HETATM 139 AC5 NDP A 1 72.933 10.313 21.101 1.00 15.71 XX HETATM 130 AOP1 NDP A 1 74.505 9.464 19.819 1.00 12.59 XX HETATM 142 ANS NDP A 1 74.505 9.464 19.819 1.00 12.59 XX HETATM 142 ANS NDP A 1 74.505 9.464 19.819 1.00 12.59 XX HETATM 140 AC6 NDP A 1 74.505 9.464 19.819 1.00 12.59 XX HETATM 141 AN6 NDP A 1 74.505 9.464 19.819 1.00 12.59 XX HETATM 143 AC2 NDP A 1 74.053 9.657 21.140 1.00 15.544 XX		HETATM 112 AC4* NDP A 1	69,601 12,124 25,858 1.00 27.73	c
HETATM 115 A03* NDP A 1 71.192 13.436 27.066 1.00 16.11 0 HETATM 116 AC2* NDP A 1 71.373 13.220 24.626 1.00 11.46 C HETATM 117 A02* NDP A 1 72.623 13.886 24.655 1.00 31.96 0 HETATM 118 AC1* NDP A 1 72.623 13.886 24.655 1.00 31.96 0 HETATM 119 03 NDP A 1 65.336 13.590 26.129 1.00 20.59 0 HETATM 120 NOS* NDP A 1 65.336 13.590 26.129 1.00 20.59 0 HETATM 120 NOS* NDP A 1 63.536 11.943 26.449 1.00 28.99 0 HETATM 121 NC5* NDP A 1 63.536 11.943 25.957 1.00 24.89 C HETATM 122 NC4* NDP A 1 63.467 9.646 25.686 1.00 31.79 C HETATM 123 NO4* NDP A 1 62.837 9.337 26.908 1.00 28.82 0 16 HETATM 124 NC3* NDP A 1 62.891 9.402 23.461 1.00 28.60 0 HETATM 126 NC2* NDP A 1 66.881 7.662 24.715 1.00 24.30 0 HETATM 127 NO2* NDP A 1 60.881 7.662 24.715 1.00 35.35 C 30 HETATM 128 NC1* NDP A 1 61.547 8.875 26.580 1.00 35.35 C HETATM 130 A091 NDP A 1 73.104 15.069 23.823 1.00 35.35 C HETATM 131 A092 NDP A 1 74.500 15.308 24.308 1.00 35.35 C HETATM 132 AD93 NDP A 1 66.660 14.257 26.393 1.00 26.17 XX HETATM 135 AND NDP A 1 66.660 14.257 26.393 1.00 26.17 XX HETATM 136 NDP A 1 66.690 14.257 26.393 1.00 26.17 XX HETATM 137 AC8 NDP A 1 71.004 11.316 22.200 1.00 15.31 XX HETATM 138 ANY NDP A 1 71.004 11.316 22.200 1.00 13.63 XX HETATM 139 AC5 NDP A 1 71.004 11.316 22.200 1.00 15.71 XX HETATM 139 AC5 NDP A 1 72.933 10.313 21.100 15.71 XX HETATM 130 AC6 NDP A 1 74.505 9.260 21.901 1.00 31.35 XX HETATM 134 A01 NDP A 1 74.505 9.657 21.100 15.31 XX HETATM 138 ANY NDP A 1 74.505 9.657 21.100 15.71 XX HETATM 139 AC5 NDP A 1 74.053 9.657 21.100 15.31 XX HETATM 130 AC6 NDP A 1 74.505 9.657 21.100 15.31 XX HETATM 142 ANG NDP A 1 74.053 9.657 21.100 17.56 XX HETATM 140 AC6 NDP A 1 74.053 9.657 21.100 17.56 XX HETATM 141 ANG NDP A 1 74.053 9.657 21.100 17.56 XX HETATM 143 AC2 NDP A 1 74.053 9.657 21.100 17.56 XX HETATM 143 AC2 NDP A 1 74.053 9.657 21.100 17.56 XX		HETATM 113 A04* NDP A 1	70.193 11.258 24.848 1.00 22.87	0
HETATM 116 AC2* NDP A 1 71.373 13.220 24.626 1.00 11.46 C HETATM 117 AO2* NDP A 1 72.623 13.886 24.655 1.00 31.96 Q HETATM 118 AC1* NDP A 1 71.510 11.702 24.656 1.00 19.02 C 10 HETATM 119 03 NDP A 1 65.336 13.590 26.129 1.00 20.59 Q HETATM 120 NO5* NDP A 1 63.536 11.943 26.448 1.00 28.99 Q HETATM 121 NC5* NDP A 1 63.280 10.843 25.957 1.00 24.89 C HETATM 122 NC4* NDP A 1 63.467 9.646 25.686 1.00 31.79 C HETATM 123 NO4* NDP A 1 62.837 9.337 26.908 1.00 28.82 Q 25 HETATM 124 NC3* NDP A 1 62.837 9.337 24.665 1.00 11.50 C HETATM 125 NO3* NDP A 1 62.891 9.402 23.461 1.00 28.60 Q HETATM 126 NC2* NDP A 1 60.881 7.662 24.715 1.00 24.30 Q HETATM 128 NC1* NDP A 1 60.881 7.662 24.715 1.00 24.30 Q HETATM 129 AP2* NDP A 1 61.547 8.875 26.580 1.00 35.35 C 30 HETATM 129 AP2* NDP A 1 74.500 15.308 24.308 1.00 32.96 P HETATM 130 AOP1 NDP A 1 74.500 15.308 24.308 1.00 37.84 Q HETATM 131 AOP2 NDP A 1 72.797 14.925 22.348 1.00 36.66 Q HETATM 132 AOP3 NDP A 1 66.660 14.257 26.393 1.00 31.97 Q HETATM 133 AP NDP A 1 66.660 14.257 26.393 1.00 31.97 Q HETATM 136 ANP NDP A 1 66.660 14.257 26.393 1.00 31.97 Q HETATM 137 AC8 NDP A 1 66.660 14.257 26.393 1.00 31.97 X HETATM 138 ANT NDP A 1 66.660 14.257 26.393 1.00 31.97 X HETATM 139 AO2 NDP A 1 71.04 11.316 22.200 1.00 15.31 XX HETATM 130 AOP1 NDP A 1 71.04 11.316 22.200 1.00 12.41 XX HETATM 130 AC8 NDP A 1 71.04 11.316 22.200 1.00 12.41 XX HETATM 130 AC8 NDP A 1 71.04 11.316 22.200 1.00 12.41 XX HETATM 130 AC8 NDP A 1 74.503 9.657 21.140 1.00 15.71 XX HETATM 142 ANS NDP A 1 74.913 9.657 21.140 1.00 15.59 XX HETATM 143 AC2 NDP A 1 74.915 9.464 19.819 1.00 12.59 XX HETATM 144 AC2 NDP A 1 74.916 9.464 19.819 1.00 12.59 XX HETATM 143 AC2 NDP A 1 74.916 9.464 19.819 1.00 12.59 XX HETATM 143 AC2 NDP A 1 74.916 9.946 19.819 1.00 12.59 XX HETATM 143 AC2 NDP A 1 74.917 9.578 23.251 1.00 15.644 XX	15	HETATM 114 AC3* NDP A 1	70.484 13.390 25.873 1.00 17.83	c
HETATM 117 A02* NDP A 1 72.623 13.886 24.655 1.00 31.96 0 HETATM 118 AC1* NDP A 1 71.510 11.702 24.656 1.00 19.02 C 20 HETATM 119 03 NDP A 1 65.336 13.590 26.129 1.00 20.59 0 HETATM 120 NO5* NDP A 1 63.536 11.943 26.448 1.00 28.99 0 HETATM 121 NC5* NDP A 1 63.467 9.646 25.686 1.00 31.79 C HETATM 122 NC4* NDP A 1 63.467 9.646 25.686 1.00 31.79 C HETATM 123 NO4* NDP A 1 62.837 9.337 26.908 1.00 28.82 0 HETATM 124 NC3* NDP A 1 62.837 9.337 24.665 1.00 11.50 C HETATM 125 NO3* NDP A 1 62.891 9.402 23.461 1.00 28.60 0 HETATM 126 NC2* NDP A 1 61.152 8.996 25.138 1.00 28.11 C HETATM 128 NC1* NDP A 1 60.881 7.662 24.715 1.00 24.30 0 HETATM 129 AP2* NDP A 1 73.104 15.069 23.823 1.00 35.35 C HETATM 130 A0P1 NDP A 1 74.500 15.308 24.308 1.00 37.84 0 HETATM 131 A0P2 NDP A 1 72.797 14.925 22.348 1.00 36.66 0 HETATM 132 A0P3 NDP A 1 66.886 14.795 25.047 1.00 15.31 XX HETATM 133 AP NDP A 1 66.439 15.207 27.521 1.00 34.39 XX HETATM 134 A01 NDP A 1 66.439 15.207 27.521 1.00 34.39 XX HETATM 135 A02 NDP A 1 71.04 11.316 22.200 1.00 34.39 XX HETATM 136 AN9 NDP A 1 72.933 10.313 21.710 1.00 15.71 XX HETATM 137 AC8 NDP A 1 71.04 11.316 22.200 1.00 15.71 XX HETATM 139 AC9 NDP A 1 72.933 10.313 21.710 1.00 15.71 XX HETATM 139 AC9 NDP A 1 72.933 10.313 21.710 1.00 15.71 XX HETATM 131 ANG NDP A 1 72.933 10.313 21.710 1.00 15.71 XX HETATM 134 A05 NDP A 1 72.933 10.313 21.710 1.00 15.71 XX HETATM 134 A06 NDP A 1 72.933 10.313 21.710 1.00 15.71 XX HETATM 134 AC6 NDP A 1 74.655 9.464 19.819 1.00 31.35 XX HETATM 140 AC6 NDP A 1 74.953 9.657 21.140 1.00 15.75 XX HETATM 140 AC6 NDP A 1 74.953 9.657 21.140 1.00 15.75 XX HETATM 141 AN6 NDP A 1 74.953 9.657 21.140 1.00 15.75 XX HETATM 142 AN1 NDP A 1 74.955 9.464 19.819 1.00 12.59 XX HETATM 142 AN1 NDP A 1 74.955 9.464 19.819 1.00 17.56 XX HETATM 143 AC2 NDP A 1 74.953 9.657 21.140 1.00 15.75 XX		HETATM 115 A03* NDP A 1	71.192 13.436 27.066 1.00 16.11	0
HETATM 117 A02* NDP A 1 72.623 13.886 24.655 1.00 31.96 0 HETATM 118 AC1* NDP A 1 71.510 11.702 24.656 1.00 19.02 C DETAIL 119 03 NDP A 1 65.336 13.590 26.129 1.00 20.59 0 HETATM 120 NO5* NDP A 1 63.536 11.943 26.448 1.00 28.99 0 HETATM 121 NC5* NDP A 1 63.467 9.646 25.686 1.00 31.79 C HETATM 122 NC4* NDP A 1 63.467 9.646 25.686 1.00 31.79 C HETATM 123 NO4* NDP A 1 62.837 9.337 26.908 1.00 28.82 0 DETAIL 124 NC3* NDP A 1 62.837 9.337 24.665 1.00 11.50 C HETATM 125 NO3* NDP A 1 62.891 9.402 23.461 1.00 28.60 0 HETATM 126 NC2* NDP A 1 61.152 8.996 25.138 1.00 28.11 C HETATM 127 NO2* NDP A 1 60.881 7.662 24.715 1.00 24.30 0 HETATM 128 NC1* NDP A 1 61.547 8.875 26.580 1.00 35.35 C 30 HETATM 130 A0P1 NDP A 1 73.104 15.069 23.823 1.00 32.96 P HETATM 131 A0P2 NDP A 1 72.797 14.925 22.348 1.00 37.84 0 HETATM 132 A0P3 NDP A 1 66.680 14.257 26.393 1.00 36.66 0 HETATM 133 AP NDP A 1 66.886 14.795 25.047 1.00 15.31 XX HETATM 136 ANS NDP A 1 66.439 15.207 27.521 1.00 34.39 XX HETATM 137 AC8 NDP A 1 71.04 11.316 22.200 1.00 15.71 XX HETATM 138 ANT NDP A 1 72.933 10.313 21.710 1.00 15.71 XX HETATM 139 AC8 NDP A 1 72.933 10.313 21.710 1.00 15.71 XX HETATM 139 AC8 NDP A 1 72.933 10.313 21.710 1.00 15.71 XX HETATM 139 AC8 NDP A 1 72.933 10.313 21.710 1.00 15.71 XX HETATM 139 AC8 NDP A 1 72.933 10.313 21.710 1.00 15.71 XX HETATM 139 AC8 NDP A 1 72.933 10.313 21.710 1.00 15.71 XX HETATM 139 AC8 NDP A 1 72.933 10.313 21.710 1.00 15.71 XX HETATM 140 AC6 NDP A 1 74.953 9.657 21.140 1.00 31.35 XX HETATM 141 ANG NDP A 1 74.165 9.464 19.819 1.00 12.59 XX HETATM 142 ANI NDP A 1 74.165 9.464 19.819 1.00 15.544 XX		HETATM 116 AC2* NDP A 1	71.373 13.220 24.626 1.00 11.46	c
HETATM 118 AC1* NDP A 1 71.510 11.702 24.656 1.00 19.02 C				Q
20 HETATM 119 03 NDP A 1 65.336 13.590 26.129 1.00 20.59 0 HETATM 120 NO5* NDP A 1 63.536 11.943 26.448 1.00 28.99 0 HETATM 121 NC5* NDP A 1 64.328 10.843 25.957 1.00 24.89 C HETATM 122 NC4* NDP A 1 63.467 9.646 25.686 1.00 31.79 C HETATM 123 NO4* NDP A 1 62.837 9.337 26.908 1.00 28.82 0 25 HETATM 124 NC3* NDP A 1 62.837 9.337 24.665 1.00 11.50 C HETATM 125 NO3* NDP A 1 62.891 9.402 23.461 1.00 28.60 0 HETATM 126 NC2* NDP A 1 61.552 8.996 25.138 1.00 28.11 C HETATM 127 NO2* NDP A 1 60.881 7.662 24.715 1.00 24.30 0 HETATM 128 NC1* NDP A 1 61.547 8.875 26.580 1.00 35.35 C 30 HETATM 129 AP2* NDP A 1 74.500 15.308 24.308 1.00 32.96 P HETATM 131 AOP1 NDP A 1 72.797 14.925 22.348 1.00 36.66 0 HETATM 132 AOP3 NDP A 1 66.660 14.257 26.393 1.00 36.66 0 HETATM 133 AP NDP A 1 66.660 14.257 26.393 1.00 36.17 XX HETATM 136 AND NDP A 1 66.439 15.207 27.521 1.00 34.39 XX HETATM 137 AC8 NDP A 1 71.758 10.835 21.161 1.00 13.63 XX HETATM 138 ANT NDP A 1 71.758 10.835 21.161 1.00 13.63 XX HETATM 139 AC5 NDP A 1 72.933 10.313 21.710 1.00 15.71 XX HETATM 139 AC6 NDP A 1 74.053 9.657 21.140 1.00 31.35 XX HETATM 139 AC6 NDP A 1 74.053 9.657 21.140 1.00 31.35 XX HETATM 142 ANI NDP A 1 74.053 9.657 21.140 1.00 31.35 XX HETATM 142 ANI NDP A 1 74.053 9.657 21.140 1.00 31.35 XX HETATM 142 ANI NDP A 1 74.053 9.657 21.140 1.00 15.54 XX HETATM 142 ANI NDP A 1 74.053 9.657 21.140 1.00 15.54				с
HETATM 120 NO5* NDP A 1 63.536 11.943 26.448 1.00 28.99 0 HETATM 121 NC5* NDP A 1 64.328 10.843 25.957 1.00 24.89 C HETATM 122 NC4* NDP A 1 63.467 9.646 25.686 1.00 31.79 C HETATM 123 NO4* NDP A 1 62.837 9.337 26.908 1.00 28.82 0 25 HETATM 124 NC3* NDP A 1 62.837 9.337 24.665 1.00 11.50 C HETATM 125 NO3* NDP A 1 62.891 9.402 23.461 1.00 28.60 0 HETATM 126 NC2* NDP A 1 61.52 8.995 25.138 1.00 28.11 C HETATM 127 NO2* NDP A 1 60.881 7.662 24.715 1.00 24.30 0 HETATM 128 NC1* NDP A 1 61.547 8.875 26.580 1.00 35.35 C 30 HETATM 129 AP2* NDP A 1 73.104 15.069 23.823 1.00 32.96 P HETATM 130 AOP1 NDP A 1 74.500 15.308 24.308 1.00 37.84 0 HETATM 131 AOP2 NDP A 1 72.163 16.217 23.958 1.00 31.97 0 HETATM 133 AP NDP A 1 66.680 14.257 26.393 1.00 26.17 XX HETATM 135 AO2 NDP A 1 66.439 15.207 27.521 1.00 34.39 XX HETATM 136 AN9 NDP A 1 71.820 11.224 23.353 1.00 13.63 XX HETATM 137 AC8 NDP A 1 71.04 11.316 22.200 1.00 15.31 XX HETATM 138 ANT NDP A 1 71.058 10.835 21.161 1.00 15.71 XX HETATM 138 ANT NDP A 1 71.058 10.835 21.161 1.00 15.71 XX HETATM 138 ANT NDP A 1 74.053 9.657 21.140 1.00 15.71 XX HETATM 138 ANT NDP A 1 74.053 9.657 21.140 1.00 15.71 XX HETATM 140 AC6 NDP A 1 74.053 9.657 21.140 1.00 31.35 XX HETATM 141 AN6 NDP A 1 74.053 9.657 21.140 1.00 12.59 XX HETATM 142 AN1 NDP A 1 74.053 9.657 21.140 1.00 12.59 XX HETATM 142 AN1 NDP A 1 75.078 9.280 21.942 1.00 17.566 XX HETATM 142 AN1 NDP A 1 75.078 9.280 21.942 1.00 17.566 XX HETATM 142 AN1 NDP A 1 75.078 9.280 21.942 1.00 17.566 XX HETATM 142 AN1 NDP A 1 75.078 9.280 21.942 1.00 17.566 XX	20 .			
HETATM 121 NC5* NDP A 1 64.328 10.843 25.957 1.00 24.89 C HETATM 122 NC4* NDP A 1 63.467 9.646 25.686 1.00 31.79 C HETATM 123 NO4* NDP A 1 62.837 9.337 26.908 1.00 28.82 O 25 HETATM 124 NC3* NDP A 1 62.340 9.837 24.665 1.00 11.50 C HETATM 125 NO3* NDP A 1 62.891 9.402 23.461 1.00 28.60 O HETATM 126 NC2* NDP A 1 651.152 8.996 25.138 1.00 28.11 C HETATM 127 NO2* NDP A 1 60.881 7.662 24.715 1.00 24.30 O HETATM 128 NC1* NDP A 1 661.547 8.875 26.580 1.00 35.35 C 30 HETATM 129 AP2* NDP A 1 73.104 15.069 23.823 1.00 32.96 P HETATM 130 AOP1 NDP A 1 74.500 15.308 24.308 1.00 37.84 O HETATM 131 AOP2 NDP A 1 72.797 14.925 22.348 1.00 36.666 O HETATM 133 AP NDP A 1 66.660 14.257 26.393 1.00 26.17 XX 35 HETATM 134 AO1 NDP A 1 66.680 14.795 25.047 1.00 15.31 XX HETATM 135 AO2 NDP A 1 71.820 11.224 23.353 1.00 13.63 XX HETATM 137 AC8 NDP A 1 71.820 11.224 23.353 1.00 13.63 XX HETATM 138 ANT NDP A 1 71.958 10.835 21.161 1.00 15.71 XX 40 HETATM 139 AC5 NDP A 1 72.933 10.313 21.710 1.00 15.71 XX HETATM 139 AC5 NDP A 1 72.933 10.313 21.710 1.00 15.71 XX HETATM 140 AC6 NDP A 1 74.053 9.657 21.140 1.00 31.35 XX HETATM 141 AN6 NDP A 1 74.053 9.657 21.140 1.00 15.75 XX HETATM 142 ANI NDP A 1 74.053 9.657 21.140 1.00 31.35 XX HETATM 142 ANI NDP A 1 74.053 9.657 21.140 1.00 12.59 XX HETATM 142 ANI NDP A 1 74.165 9.464 19.819 1.00 12.59 XX HETATM 142 ANI NDP A 1 75.078 9.280 21.942 1.00 17.566 XX HETATM 142 ANI NDP A 1 75.078 9.280 21.942 1.00 17.565 XX				
HETATM 122 NC4* NDP A 1 63.467 9.646 25.686 1.00 31.79 C HETATM 123 NO4* NDP A 1 62.837 9.337 26.908 1.00 28.82 0 25 HETATM 124 NC3* NDP A 1 62.840 9.837 24.665 1.00 11.50 C HETATM 125 NO3* NDP A 1 62.891 9.402 23.461 1.00 28.60 0 HETATM 126 NC2* NDP A 1 60.881 7.662 24.715 1.00 24.30 0 HETATM 128 NC1* NDP A 1 60.881 7.662 24.715 1.00 24.30 0 HETATM 129 AP2* NDP A 1 73.104 15.069 23.823 1.00 32.96 P HETATM 130 AOP1 NDP A 1 74.500 15.308 24.308 1.00 37.84 0 HETATM 131 AOP2 NDP A 1 72.797 14.925 22.348 1.00 36.66 0 HETATM 133 AP NDP A 1 66.660 14.257 26.393 1.00 31.97 0 HETATM 134 AO1 NDP A 1 66.660 14.257 26.393 1.00 26.17 XX HETATM 135 AO2 NDP A 1 66.439 15.207 27.521 1.00 34.39 XX HETATM 136 AN9 NDP A 1 71.820 11.224 23.353 1.00 13.63 XX HETATM 138 AN7 NDP A 1 71.820 11.224 23.353 1.00 13.63 XX HETATM 138 AN7 NDP A 1 72.933 10.313 21.710 1.00 15.71 XX HETATM 139 AC5 NDP A 1 72.933 10.313 21.710 1.00 15.71 XX HETATM 140 AC6 NDP A 1 74.655 9.464 19.819 1.00 12.59 XX HETATM 141 AN6 NDP A 1 74.165 9.464 19.819 1.00 12.59 XX HETATM 142 AN1 NDP A 1 74.165 9.464 19.819 1.00 17.56 XX HETATM 142 AN1 NDP A 1 74.165 9.464 19.819 1.00 17.56 XX HETATM 142 AN1 NDP A 1 74.971 9.578 23.251 1.00 15.44 XX				
HETATM 123 NO4* NDP A 1 62.837 9.337 26.908 1.00 28.82 0 HETATM 124 NC3* NDP A 1 62.340 9.837 24.665 1.00 11.50 C HETATM 125 NO3* NDP A 1 62.891 9.402 23.461 1.00 28.60 0 HETATM 126 NC2* NDP A 1 61.52 8.996 25.138 1.00 28.11 C HETATM 127 NO2* NDP A 1 60.881 7.662 24.715 1.00 24.30 0 HETATM 128 NC1* NDP A 1 61.547 8.875 26.580 1.00 35.35 C HETATM 129 AP2* NDP A 1 73.104 15.069 23.823 1.00 32.96 P HETATM 130 AOP1 NDP A 1 74.500 15.308 24.308 1.00 37.84 0 HETATM 131 AOP2 NDP A 1 72.797 14.925 22.348 1.00 36.66 0 HETATM 132 AOP3 NDP A 1 72.163 16.217 23.958 1.00 31.97 0 HETATM 133 AP NDP A 1 66.660 14.257 26.393 1.00 26.17 XX HETATM 136 AN9 NDP A 1 66.439 15.207 27.521 1.00 34.39 XX HETATM 137 AC8 NDP A 1 71.820 11.224 23.353 1.00 13.63 XX HETATM 138 AN7 NDP A 1 72.933 10.313 21.710 1.00 15.71 XX HETATM 139 AC5 NDP A 1 72.933 10.313 21.710 1.00 15.71 XX HETATM 141 AN6 NDP A 1 74.053 9.657 21.140 1.00 31.35 XX HETATM 141 AN6 NDP A 1 74.053 9.657 21.140 1.00 31.35 XX HETATM 141 AN6 NDP A 1 74.053 9.657 21.140 1.00 31.35 XX HETATM 141 AN6 NDP A 1 74.053 9.657 21.140 1.00 31.35 XX HETATM 142 AN1 NDP A 1 74.053 9.657 21.140 1.00 15.71 XX HETATM 142 AN1 NDP A 1 74.053 9.657 21.140 1.00 15.75 XX HETATM 143 AC2 NDP A 1 74.053 9.657 21.140 1.00 15.55 XX HETATM 142 AN1 NDP A 1 74.053 9.657 21.140 1.00 15.55 XX HETATM 142 AN1 NDP A 1 74.053 9.657 21.140 1.00 17.56 XX HETATM 143 AC2 NDP A 1 74.053 9.657 21.140 1.00 17.56 XX				
25 HETATM 124 NG3* NDP A 1 62.340 9.837 24.665 1.00 11.50 C HETATM 125 NG3* NDP A 1 62.891 9.402 23.461 1.00 28.60 O HETATM 126 NG2* NDP A 1 61.152 8.995 25.138 1.00 28.11 C HETATM 127 NO2* NDP A 1 60.881 7.662 24.715 1.00 24.30 O HETATM 128 NG1* NDP A 1 61.547 8.875 26.580 1.00 35.35 C 30 HETATM 129 AP2* NDP A 1 73.104 15.069 23.823 1.00 32.96 P HETATM 130 AOP1 NDP A 1 74.500 15.308 24.308 1.00 37.84 O HETATM 131 AOP2 NDP A 1 72.797 14.925 22.348 1.00 36.66 O HETATM 132 AOP3 NDP A 1 72.163 16.217 23.958 1.00 31.97 O HETATM 133 AP NDP A 1 66.660 14.257 26.393 1.00 26.17 XX 35 HETATM 134 AO1 NDP A 1 66.439 15.207 27.521 1.00 34.39 XX HETATM 135 AO2 NDP A 1 71.820 11.224 23.353 1.00 13.63 XX HETATM 137 AC8 NDP A 1 71.820 11.224 23.353 1.00 13.63 XX HETATM 138 AN7 NDP A 1 71.758 10.835 21.161 1.00 15.71 XX 40 HETATM 139 AC5 NDP A 1 72.933 10.313 21.710 1.00 15.71 XX HETATM 130 AC6 NDP A 1 74.053 9.657 21.100 10.0 12.41 XX HETATM 140 AC6 NDP A 1 74.053 9.657 21.100 1.00 12.59 XX HETATM 141 AN6 NDP A 1 74.053 9.657 21.100 17.56 XX HETATM 142 AN1 NDP A 1 74.053 9.657 21.100 17.56 XX HETATM 143 AC2 NDP A 1 74.971 9.578 23.251 1.00 17.56 XX HETATM 143 AC2 NDP A 1 74.971 9.578 23.251 1.00 17.56 XX				
HETATM 125 NO3* NDP A 1 62.891 9.402 23.461 1.00 28.60 0 HETATM 126 NC2* NDP A 1 61.152 8.996 25.138 1.00 28.11 C HETATM 127 NO2* NDP A 1 60.881 7.662 24.715 1.00 24.30 0 HETATM 128 NC1* NDP A 1 61.547 8.875 26.580 1.00 35.35 C 30 HETATM 129 AP2* NDP A 1 73.104 15.069 23.823 1.00 32.96 P HETATM 130 AOP1 NDP A 1 74.500 15.308 24.308 1.00 37.84 0 HETATM 131 AOP2 NDP A 1 72.797 14.925 22.348 1.00 36.66 0 HETATM 132 AOP3 NDP A 1 72.163 16.217 23.958 1.00 31.97 0 HETATM 133 AP NDP A 1 66.660 14.257 26.393 1.00 26.17 XX 35 HETATM 134 AO1 NDP A 1 66.886 14.795 25.047 1.00 15.31 XX HETATM 135 AOZ NDP A 1 71.820 11.224 23.353 1.00 34.39 XX HETATM 136 AN9 NDP A 1 71.820 11.224 23.353 1.00 13.63 XX HETATM 138 AN7 NDP A 1 71.820 11.224 23.353 1.00 13.63 XX HETATM 138 AN7 NDP A 1 71.758 10.835 21.161 1.00 15.71 XX 40 HETATM 139 AC5 NDP A 1 72.933 10.313 21.710 1.00 16.17 XX HETATM 140 AC6 NDP A 1 74.053 9.657 21.140 1.00 31.35 XX HETATM 141 AN6 NDP A 1 74.053 9.657 21.140 1.00 31.35 XX HETATM 142 AN1 NDP A 1 74.053 9.657 21.140 1.00 31.35 XX HETATM 142 AN1 NDP A 1 74.053 9.657 21.140 1.00 12.59 XX HETATM 143 AC2 NDP A 1 74.053 9.280 21.942 1.00 17.56 XX HETATM 143 AC2 NDP A 1 74.971 9.578 23.251 1.00 17.56 XX	25		•	
HETATM 126 NC2* NDP A 1 61.152 8.996 25.138 1.00 28.11 C HETATM 127 NO2* NDP A 1 60.881 7.662 24.715 1.00 24.30 O HETATM 128 NG1* NDP A 1 61.547 8.875 26.580 1.00 35.35 C 30 HETATM 129 AP2* NDP A 1 73.104 15.069 23.823 1.00 32.96 P HETATM 130 AOP1 NDP A 1 74.500 15.308 24.308 1.00 37.84 O HETATM 131 AOP2 NDP A 1 72.797 14.925 22.348 1.00 36.66 O HETATM 132 AOP3 NDP A 1 72.163 16.217 23.958 1.00 31.97 O HETATM 133 AP NDP A 1 66.660 14.257 26.393 1.00 26.17 XX 35 HETATM 134 AO1 NDP A 1 66.886 14.795 25.047 1.00 15.31 XX HETATM 135 AO2 NDP A 1 66.439 15.207 27.521 1.00 34.39 XX HETATM 136 AN9 NDP A 1 71.820 11.224 23.353 1.00 13.63 XX HETATM 138 AN7 NDP A 1 71.820 11.224 23.353 1.00 13.63 XX HETATM 139 AC5 NDP A 1 71.758 10.835 21.161 1.00 15.71 XX 40 HETATM 139 AC5 NDP A 1 72.933 10.313 21.710 1.00 15.71 XX HETATM 140 AC6 NDP A 1 74.053 9.657 21.140 1.00 31.35 XX HETATM 141 AN6 NDP A 1 74.165 9.464 19.819 1.00 12.59 XX HETATM 142 ANI NDP A 1 75.078 9.280 21.942 1.00 17.56 XX HETATM 143 AC2 NDP A 1 74.971 9.578 23.251 1.00 15.44 XX	23			
HETATM 127 NO2* NDP A 1 60.881 7.662 24.715 1.00 24.30 0 HETATM 128 NC1* NDP A 1 61.547 8.875 26.580 1.00 35.35 C 30 HETATM 129 AP2* NDP A 1 73.104 15.069 23.823 1.00 32.96 P HETATM 130 AOP1 NDP A 1 74.500 15.308 24.308 1.00 37.84 0 HETATM 131 AOP2 NDP A 1 72.797 14.925 22.348 1.00 36.66 O HETATM 132 AOP3 NDP A 1 72.163 16.217 23.958 1.00 31.97 O HETATM 133 AP NDP A 1 66.660 14.257 26.393 1.00 26.17 XX 35 HETATM 134 AO1 NDP A 1 66.886 14.795 25.047 1.00 15.31 XX HETATM 135 AO2 NDP A 1 66.439 15.207 27.521 1.00 34.39 XX HETATM 136 AN9 NDP A 1 71.820 11.224 23.353 1.00 13.63 XX HETATM 137 AC8 NDP A 1 71.104 11.316 22.200 1.00 12.41 XX HETATM 138 AN7 NDP A 1 71.758 10.835 21.161 1.00 15.71 XX 40 HETATM 139 AC5 NDP A 1 72.933 10.313 21.710 1.00 16.17 XX HETATM 140 AC6 NDP A 1 74.053 9.657 21.140 1.00 31.35 XX HETATM 141 AN6 NDP A 1 74.165 9.464 19.819 1.00 12.59 XX HETATM 142 AN1 NDP A 1 75.078 9.280 21.942 1.00 17.56 XX HETATM 143 AC2 NDP A 1 74.971 9.578 23.251 1.00 15.44 XX				
HETATM 128 NC1* NDP A 1 61.547 8.875 26.580 1.00 35.35 C HETATM 129 AP2* NDP A 1 73.104 15.069 23.823 1.00 32.96 P HETATM 130 AOP1 NDP A 1 74.500 15.308 24.308 1.00 37.84 O HETATM 131 AOP2 NDP A 1 72.797 14.925 22.348 1.00 36.66 O HETATM 132 AOP3 NDP A 1 72.163 16.217 23.958 1.00 31.97 O HETATM 133 AP NDP A 1 66.660 14.257 26.393 1.00 26.17 XX HETATM 135 AO2 NDP A 1 66.886 14.795 25.047 1.00 15.31 XX HETATM 136 AN9 NDP A 1 66.439 15.207 27.521 1.00 34.39 XX HETATM 137 AC8 NDP A 1 71.820 11.224 23.353 1.00 13.63 XX HETATM 138 AN7 NDP A 1 71.758 10.835 21.161 1.00 15.71 XX 40 HETATM 139 AC5 NDP A 1 72.933 10.313 21.710 1.00 16.17 XX HETATM 140 AC6 NDP A 1 74.053 9.657 21.140 1.00 15.71 XX HETATM 141 AN6 NDP A 1 74.053 9.657 21.140 1.00 31.35 XX HETATM 142 AN1 NDP A 1 75.078 9.280 21.942 1.00 17.56 XX HETATM 142 AN1 NDP A 1 75.078 9.280 21.942 1.00 17.56 XX HETATM 143 AC2 NDP A 1 74.971 9.578 23.251 1.00 15.44 XX				
HETATM 129 AP2* NDP A 1 73.104 15.069 23.823 1.00 32.96 P				
HETATM 130 AOP1 NDP A 1 74.500 15.308 24.308 1.00 37.84 0 HETATM 131 AOP2 NDP A 1 72.797 14.925 22.348 1.00 36.66 0 HETATM 132 AOP3 NDP A 1 72.163 16.217 23.958 1.00 31.97 0 HETATM 133 AP NDP A 1 66.660 14.257 26.393 1.00 26.17 XX HETATM 134 AO1 NDP A 1 66.886 14.795 25.047 1.00 15.31 XX HETATM 135 AO2 NDP A 1 66.439 15.207 27.521 1.00 34.39 XX HETATM 136 AN9 NDP A 1 71.820 11.224 23.353 1.00 13.63 XX HETATM 137 AC8 NDP A 1 71.104 11.316 22.200 1.00 12.41 XX HETATM 138 AN7 NDP A 1 71.758 10.835 21.161 1.00 15.71 XX HETATM 139 AC5 NDP A 1 72.933 10.313 21.710 1.00 16.17 XX HETATM 140 AC6 NDP A 1 74.053 9.657 21.140 1.00 31.35 XX HETATM 141 AN6 NDP A 1 74.165 9.464 19.819 1.00 12.59 XX HETATM 142 AN1 NDP A 1 75.078 9.280 21.942 1.00 17.56 XX HETATM 143 AC2 NDP A 1 74.971 9.578 23.251 1.00 15.44 XX	20			
HETATM 131 AOP2 NDP A 1 72.797 14.925 22.348 1.00 36.66 0 HETATM 132 AOP3 NDP A 1 72.163 16.217 23.958 1.00 31.97 0 HETATM 133 AP NDP A 1 66.660 14.257 26.393 1.00 26.17 XX 35 HETATM 134 AO1 NDP A 1 66.886 14.795 25.047 1.00 15.31 XX HETATM 135 AO2 NDP A 1 66.439 15.207 27.521 1.00 34.39 XX HETATM 136 AN9 NDP A 1 71.820 11.224 23.353 1.00 13.63 XX HETATM 137 AC8 NDP A 1 71.104 11.316 22.200 1.00 12.41 XX HETATM 138 AN7 NDP A 1 71.758 10.835 21.161 1.00 15.71 XX 40 HETATM 139 AC5 NDP A 1 72.933 10.313 21.710 1.00 16.17 XX HETATM 140 AC6 NDP A 1 74.053 9.657 21.140 1.00 31.35 XX HETATM 141 AN6 NDP A 1 74.165 9.464 19.819 1.00 12.59 XX HETATM 142 AN1 NDP A 1 75.078 9.280 21.942 1.00 17.56 XX HETATM 143 AC2 NDP A 1 74.971 9.578 23.251 1.00 15.44 XX	30			
HETATM 132 AOP3 NDP A 1 72.163 16.217 23.958 1.00 31.97 O HETATM 133 AP NDP A 1 66.660 14.257 26.393 1.00 26.17 XX HETATM 134 AO1 NDP A 1 66.886 14.795 25.047 1.00 15.31 XX HETATM 135 AO2 NDP A 1 66.439 15.207 27.521 1.00 34.39 XX HETATM 136 AN9 NDP A 1 71.820 11.224 23.353 1.00 13.63 XX HETATM 137 AC8 NDP A 1 71.104 11.316 22.200 1.00 12.41 XX HETATM 138 AN7 NDP A 1 71.758 10.835 21.161 1.00 15.71 XX HETATM 139 AC5 NDP A 1 72.933 10.313 21.710 1.00 16.17 XX HETATM 140 AC6 NDP A 1 74.053 9.657 21.140 1.00 31.35 XX HETATM 141 AN6 NDP A 1 74.165 9.464 19.819 1.00 12.59 XX HETATM 142 AN1 NDP A 1 75.078 9.280 21.942 1.00 17.56 XX HETATM 143 AC2 NDP A 1 74.971 9.578 23.251 1.00 15.44 XX				
HETATM 133 AP NDP A 1 66.660 14.257 26.393 1.00 26.17 XX HETATM 134 A01 NDP A 1 66.886 14.795 25.047 1.00 15.31 XX HETATM 135 A02 NDP A 1 66.439 15.207 27.521 1.00 34.39 XX HETATM 136 AN9 NDP A 1 71.820 11.224 23.353 1.00 13.63 XX HETATM 137 AC8 NDP A 1 71.104 11.316 22.200 1.00 12.41 XX HETATM 138 AN7 NDP A 1 71.758 10.835 21.161 1.00 15.71 XX HETATM 139 AC5 NDP A 1 72.933 10.313 21.710 1.00 16.17 XX HETATM 140 AC6 NDP A 1 74.053 9.657 21.140 1.00 31.35 XX HETATM 141 AN6 NDP A 1 74.165 9.464 19.819 1.00 12.59 XX HETATM 142 AN1 NDP A 1 75.078 9.280 21.942 1.00 17.56 XX HETATM 143 AC2 NDP A 1 74.971 9.578 23.251 1.00 15.44 XX		HETATM 131 AOP2 NDP A 1		
35 HETATM 134 AO1 NDF A 1 66.886 14.795 25.047 1.00 15.31 XX HETATM 135 AO2 NDF A 1 66.439 15.207 27.521 1.00 34.39 XX HETATM 136 AN9 NDF A 1 71.820 11.224 23.353 1.00 13.63 XX HETATM 137 AC8 NDF A 1 71.104 11.316 22.200 1.00 12.41 XX HETATM 138 AN7 NDF A 1 71.758 10.835 21.161 1.00 15.71 XX 40 HETATM 139 AC5 NDF A 1 72.933 10.313 21.710 1.00 16.17 XX HETATM 140 AC6 NDF A 1 74.053 9.657 21.140 1.00 31.35 XX HETATM 141 AN6 NDF A 1 74.165 9.464 19.819 1.00 12.59 XX HETATM 142 AN1 NDF A 1 75.078 9.280 21.942 1.00 17.56 XX HETATM 143 AC2 NDF A 1 74.971 9.578 23.251 1.00 15.44 XX				
HETATM 135 AO2 NDF A 1 66.439 15.207 27.521 1.00 34.39 XX HETATM 136 AN9 NDF A 1 71.820 11.224 23.353 1.00 13.63 XX HETATM 137 AC8 NDF A 1 71.104 11.316 22.200 1.00 12.41 XX HETATM 138 AN7 NDF A 1 71.758 10.835 21.161 1.00 15.71 XX 40 HETATM 139 AC5 NDF A 1 72.933 10.313 21.710 1.00 16.17 XX HETATM 140 AC6 NDF A 1 74.053 9.657 21.140 1.00 31.35 XX HETATM 141 AN6 NDF A 1 74.165 9.464 19.819 1.00 12.59 XX HETATM 142 AN1 NDF A 1 75.078 9.280 21.942 1.00 17.56 XX HETATM 143 AC2 NDF A 1 74.971 9.578 23.251 1.00 15.44 XX		110 61101 45 1 10 10 10 10 10 10 10 10 10 10 10 10 1		
HETATM 136 AN9 NDP A 1 71.820 11.224 23.353 1.00 13.63 XX HETATM 137 AC8 NDP A 1 71.104 11.316 22.200 1.00 12.41 XX HETATM 138 AN7 NDP A 1 71.758 10.835 21.161 1.00 15.71 XX 40 HETATM 139 AC5 NDP A 1 72.933 10.313 21.710 1.00 16.17 XX HETATM 140 AC6 NDP A 1 74.053 9.657 21.140 1.00 31.35 XX HETATM 141 AN6 NDP A 1 74.165 9.464 19.819 1.00 12.59 XX HETATM 142 AN1 NDP A 1 75.078 9.280 21.942 1.00 17.56 XX HETATM 143 AC2 NDP A 1 74.971 9.578 23.251 1.00 15.44 XX	35	HETATM 134 AO1 NDP A 1	66.086 14.795 25.047 1.00 15.31	XX
HETATM 137 AC8 NDP A 1 71.104 11.316 22.200 1.00 12.41 XX HETATM 138 AN7 NDP A 1 71.758 10.835 21.161 1.00 15.71 XX 40 HETATM 139 AC5 NDP A 1 72.933 10.313 21.710 1.00 16.17 XX HETATM 140 AC6 NDP A 1 74.053 9.657 21.140 1.00 31.35 XX HETATM 141 AN6 NDP A 1 74.165 9.464 19.819 1.00 12.59 XX HETATM 142 AN1 NDP A 1 75.078 9.280 21.942 1.00 17.56 XX HETATM 143 AC2 NDP A 1 74.971 9.578 23.251 1.00 15.44 XX		HETATM 135 A02 NDP A 1		XX
HETATM 138 AN7 NDP A 1 71.758 10.835 21.161 1.00 15.71 XX 40 HETATM 139 AC5 NDP A 1 72.933 10.313 21.710 1.00 16.17 XX HETATM 140 AC6 NDP A 1 74.053 9.657 21.140 1.00 31.35 XX HETATM 141 AN6 NDP A 1 74.165 9.464 19.819 1.00 12.59 XX HETATM 142 AN1 NDP A 1 75.078 9.280 21.942 1.00 17.56 XX HETATM 143 AC2 NDP A 1 74.971 9.578 23.251 1.00 15.44 XX		HETATM 136 AN9 NDP A 1		XX
40 HETATM 139 AC5 NDP A 1 72.933 10.313 21.710 1.00 16.17 XX HETATM 140 AC6 NDP A 1 74.053 9.657 21.140 1.00 31.35 XX HETATM 141 AN6 NDP A 1 74.165 9.464 19.819 1.00 12.59 XX HETATM 142- AN1 NDP A 1 75.078 9.280 21.942- 1.00 17.56 XX HETATM 143 AC2 NDP A 1 74.971 9.578 23.251 1.00 15.44 XX		HETATM 137 ACS NDP A 1	71.104 11.316 22.200 1.00 12.41	XX
HETATM 140 AC6 NDP A 1 74.053 9.657 21.140 1.00 31.35 XX HETATM 141 AN6 NDP A 1 74.165 9.464 19.819 1.00 12.59 XX HETATM 142- AN1 NDP A 1 -75.078 9.280 21.942- 1.00 17.56 XX HETATM 143 AC2 NDP A 1 74.971 9.578 23.251 1.00 15.44 XX		HETATM 138 ANT NDP A 1	71.758 10.835 21.161 1.00 15.71	XX
HETATM 141 AN6 NDP A 1 74.165 9.464 19.819 1.00 12.59 XX HETATM 142 AN1 NDP A 1 75.078 9.280 21.942 1.00 17.56 XX HETATM 143 AC2 NDP A 1 74.971 9.578 23.251 1.00 15.44 XX	40	HETATM 139 ACS NDP A 1	72.933 10.313 21.710 1.00 16.17	XX
HETATM 142- ANI NDP A 1 -75.078 9.280 21.942- 1.00 17.56 XX HETATM 143 AC2 NDP A 1 74.971 9.578 23.251 1.00 15.44 XX		HETATM 140 AC6 NDP A 1	74.053 9.657 21.140 1.00 31.35	XX
HETATM 143 AC2 NDP A 1 74.971 9.578 23.251 1.00 15.44 XX		HETATM 141 ANG NDP A 1	74.165 9.464 19.819 1.00 12.59	XX
		HETATM 142- ANI NDP A - 1	75.078 9.280 21.942 1.00 17.56	- XX
45 HETATM 144 ANS NDP A 1 74.027 10.302 23.889 1.00 24.82 XX		HETATM 143 AC2 NDP A 1	74,971 9,578 23,251 1,00 15,44	XX
	45	HETATM 144 ANS NDP A 1	74.027 10.302 23.889 1.00 24.82	XX

WO 99/64618

	HETATM	145	AC4	NDP	λ	1	73.036 10.653 23.047 1.00 17.48 XX
	HETATM	146	NP	NDP	λ	1	64.183 13.106 27.191 1.00 25.47 N
	HETATM	147	NO1	NDP	Α	1_	63.142 14.169 27.253 1.00 28.69 N
	HETATM	148	NO2	NDP	λ	1	64.837 12.643 28.492 1.00 24.32 N
5	HETATM	149	NN1	NDP	Α	1	60.598 9.775 27.109 1.00 23.63 N
	<u>HETATM</u>	150	NC2	NDP	Α	1	60.143 10.905 26.442-99.00 78.36 N
	HETATM	151	NC3	NDP	A_	1	59.070 11.648 27.007-99.00100.00 N
	<u>HETATM</u>	152	NC7	NDP	Α	1	58.497 13.017 26.528-99.00100.00 N
	HETATM	153	NO7	NDP	λ	1	59.358 13.703 25.972-99.00100.00 N
10	HETATM	154	NN7	NDP	λ	1	57.207 13.400 26.912-99.00 84.38 N
	HETATM	155	NC4	NDP	λ_	1_	58.442 11.146 28.137-99.00100.00 N
	HETATM	156	NC5	NDP	λ_	1_	58.912 9.963 28.754-99.00100.00 N
	HETATM	157	NC6	NDP	λ	1	59.951 9.266 28.147-99.00100.00 N
	ATOM	158	N	LYS	Α_	3	76.227 -5.632 44.315 1.00 61.49 N
15	MOTA	159	CA	LYS	Α_	3	76.152 -4.302 43.684 1.00 58.00 C
	MOTA	160	<u> </u>	LYS	Α_	3	75.985 -4.421 42.171 1.00 52.79 C
	MOTA	161	_0_	LYS	Α	3	76.921 -4.737 41.419 1.00 44.76 0
	MOTA	162	СВ	LYS	Α	3	77.359 -3.417 44.030 1.00 59.74 C
	MOTA	163	CG	LYS	Α	3	77.011 -1.944 44.314 1.00 50.87 C
20	ATOM	164	CD	LYS	Α_	3	78.208 -1.161 44.894 1.00 61.21 C
	MOTA	165	CE	LYS	Α	3	77.855 -0.377 46.186 1.00100.00 C
	MOTA	166	NZ	LYS	Δ_	3	78.857 -0.401 47.343 1.00 70.61 N
	ATOM	167	N	GLN	Α_	4	74.746 -4.242 41.747 1.00 45.15 N
	ATOM	168	CA	GLN	Α	4	74.408 -4.326 40.347 1.00 37.18 C
25	ATOM	169	С	GLN	Α	4	74.983 -3.166 39.561 1.00 34.93 C
	MOTA	170	0	GLN	Α	_4	75.127 -2.050 40.087 1.00 28.48 0
	MOTA	171	СВ	GLN	<u>A</u>	4	72.915 -4.445 40.221 1.00 34.65 C
	MOTA	172	CG	GLN	Α.	4	72.456 -5.854 40.584 1.00 31.82 C
	MOTA	173	CD	GLN	_λ_	4	72.570 -6.788 39.405 1.00 79.25 C
30	MOTA	174	OE :	GLN	Α	4	72,165 -6.452 38.286 1.00100.00 0
	MOTA	175	NE	GLN	Α_	4	73.206 -7.925 39.623 1.00 80.24 N
	MOTA	176	N	ARG	Α	5	75.475 -3.495 38.375 1.00 27.16 N
	MOTA	177	_CA	ARG	Α	5	76,146 -2.546 37.483 1.00 39.16 C
	MOTA	178	Ç	ARG	Α	_5	75.191 -2.018 36.433 1.00 38.22 C
35	MOTA	179	0	ARG	Δ_	5	74.938 -2.698 35.438 1.00 32.44 0
	ATOM	180	СВ	ARG	λ	5	77.398 -3.163 36.826 1.00 41.76 C
	ATOM	181	CG	ARG	Α_	5	78.692 -2.954 37.663 1.00 37.34 C
	MOTA	182	CD	ARG	A	5	80.015 -3.236 36.876 1.00 32.99 C
	MOTA	183	NE	ARG	A	5	81.036 -2.203 37.125 1.00 25.71 N
40	MOTA	184	CZ	ARG	Α	5	81,617 -1.488 36,169 1.00 32.53 C
	MOTA	185	NH	1_ARG	A	5	81.293 -1.704 34.904 1.00 40.07 N
	MOTA	186		2 ARG		5	82,516 -0.551 36,474 1.00100.00 N
	ATOM	. 187	N	VAI	Α.	- 6	74,743 -0.773- 36.659- 1-00-32-08 N
	MOTA	188	_CA	VAI	Α	6	
45	MOTA	189				6_	74.161 1.021 34.897 1.00 29.37 C
	-		-				

	ATOM	190	ó	VAL A	66	74.745	2.041	35.274	1.00 22.50	0
	MOTA	191	СВ	VAL A	6	72.577	0.378	36.813	1.00 23.52	c
	MOTA	192	_CG1	VAL A	6	71.366	0.960	36.006	1.00 20.29	c
	MOTA	193	CG2	VAL A	6	72.108	-0.852	37.644	1.00 18.45	<u>C</u>
5	MOTA	194	N	PHE A	7_	73.948	0.749	33.615	1.00 22.92	N
	ATOM	195	CA	PHE A	_7_	74.267	1,710	32.573	1.00 27.15	C
	MOTA	196	c	PHE A	_7_	72.975	2.423	32.192	1.00 20.24	<u>C</u>
	MOTA	197	0	PHE A	7_	71.994	1.788	31.815	1.00 20.71	0
	ATOM	198	СВ	PHE A	7	74.864	1.004	31.374	1.00 18.98	<u> </u>
0	MOTA	199	CG	PHE A	_7_	74.916	1.836	30.115	1.00 21.83	c
	ATOM	200	CD1	PHE A	7	75,521	3.087	30.108	1,00 19.36	c
	MOTA	201	CD2	PHE A	7	74.483	1.284	28.886	1.00 23.50	<u>c</u>
	MOTA	202	CE1	PHE A	7.	75.614	3.828	28.902	1.00 27.52	c
	MOTA	203	CE2	PHE A	7_	74.548	1.996	27.685	1.00 19.33	c
15	MOTA	204	CZ	PHE A	7	75.128	3.255	27.673	1.00 18.59	c
	MOTA	205	N	ILE A	8	72.959	3.727	32.454	1.00 18.75	и
	ATOM	206	CA	ILE A	В	71.844	4.588	32,112	1.00 14.25	c
	ATOM	207	_C	ILE A	8	72.337	5.351	30.909	1.00 11.22	c
	ATOM	208	0	ILE A	8	73.259	6,165	30.998	1.00 17.76	0
20	ATOM	209	СВ	ILE A	8	71.507	5,605	33.212	1.00 14.15	<u>C</u>
	MOTA	210	CG1	ILE A	. 8	71.356	4.949	34,582	1.00 8.24	<u>c</u>
	MOTA	211	CG2	ILE A	8	70.183	6.342	32.874	1.00 16.85	<u> </u>
	ATOM	212	CD1	ILE A	8	71.091	5.961	35.707	1.00 10.32	c
	MOTA	213	N.	ALA A	9	71.896	4.906	29.752	1.00 16.42	N
25	MOTA	214	CA_	ALA A	9	72.256	5.559	28.513	1.00 18.74	c
	MOTA	215	_c	<u> </u>	9	71.530	6.913	28.511	1.00 28.45	c
	MOTA	216	•	ALA A	9	70.411	7.032	29.045	1.00 22.39	0
	MOTA	217	CB	ALA A	9_	71,808	4,731	27.311	1.00 14.43	<u>c</u>
	ATOM	218	N_	GLY A	10	72,199	7,922	27.940	1.00 20.06	N
30	ATOM	219	CA	GLY A	10	71,706	9,284	27.911	1.00 18.62	c
	MOTA	220	c_	GLY A	10	71,407	9,819	29.305	1.00 16.40	<u>c</u>
	ATOM	221	0_	GLY A	10	70.379	10.448	29.481	1.00 17.36	0
	ATOM	222	N	HIS A		72.295	9.581	30.272	1.00 10.32	N
	MOTA	223	<u>CA</u>	HIS A		72,068	9.966			c
35	MOTA	224	C	HIS A	11_				1.00 21.52	
	MOTA			HIS A					1.00 13.22	
	MOTA	226	CB	HIS A	11_				1.00 14.88	
	MOTA	227	CG	HIS A	11_				1.00 23.73	c
	MOTA	228	ND	1 HIS A	11_				1.00 24.90	N
40	ATOM	229	CD	2 HIS A	11_	75.167	10.952	32.956	1.00 16.35	c
	MOTA	230	CE	1 HIS A	11				1.00 22.54	
	MOTA	231		2 HIS A					1.00 17.56	N
	MOTA	232	- N	- ARG A	12				1.00 22.31	
	MOTA			ARG A					1.00 18.90	
45	MOTA	234	С	ARG A	12	70.851	14.244	30.495	1.00 26.34	

	ATOM	235 0	ARG A 12	70.572 15.426 30.604 1.00 25.37	0
	ATOM	236 CB	ARG A 12	73.352 14.418 30.587 1.00 25.93	<u>c</u>
	ATOM	237 CG	ARG A 12	74.582 13.943 31.279 1.00 53.87	c
	MOTA	238 CD	ARG A 12	75.757 14.619 30.699 1.00 32.53	c
5	ATOM	239 NE	ARG A 12	76.359 15.576 31.605 1.00 69.90	N
	MOTA	240 CZ	ARG A 12	76.971 16.675 31.178 1.00100.00	С
	MOTA	241 NH	1 ARG A 12	77,001 16,948 29,867 1,00100,00	N
	MOTA	242 NH	2 ARG A 12	77.526 17.508 32.056 1.00100.00	н
	ATOM	243 N	GLY A 13	70.078 13.420 29.800 1.00 18.25	и
10	MOTA	244 CA	GLY A 13	68.802 13.904 29.258 1.00 16.50	c
	ATOM	245 C	GLY A 13	67.849 14.144 30.428 1.00 18.88	C
	MOTA	246 0	GLY A 13	68.202 13.902 31.624 1.00 14.04	0
	ATOM	247 N	MET A 14	66.653 14.632 30.103 1.00 16.00	N
	MOTA	248 CA	MET A 14	65.688 14.981 31.128 1.00 13.49	С
15	MOTA	249 C	MET A 14	65.293 13.760 31.901 1.00 14.02	c
	ATOM	250 O	MET A 14	65,408 13.713 33.145 1.00 17.06	0
	MOTA	251 CB	MET A 14	64.442 15.605 30.524 1.00 11.57	С
	ATOM	252 CG	MET A 14	63,320 15,628 31,559 1,00 20,77	c
	ATOM	253 SD	MET A 14	61.926 16.766 31.110 1.00 29.16	s
20	ATOM	254 CE		62,527 17.108 29.574 1.00 30.68	С
	ATOM	255 N	VAL A 15	64.798 12.769 31.158 1.00 25.23	N
	ATOM	256 CA	VAL A 15	64.439 11.468 31.738 1.00 20.90	C
	ATOM	257 C	VAL A 15	65,654 10,713 32,378 1,00 17,26	c
	ATOM	258 0	VAL A 15	65,590 10.239 33.524 1.00 18,41	
25	ATOM	259 СВ		63.752 10.550 30,680 1.00 23.25	
	MOTA	260 CG		63.330 9.253 31.310 1.00 15.71	Ç
	MOTA		2 VAL A 15	62.528 11.193 30.183 1.00 13.40	
	ATOM	262 N	GLY A 16	66.784 10.642 31.665 1.00 20.39	N
	MOTA	263 CA		67.941 9.904 32.186 1.00 19.54	C
30	MOTA	264 C	GLY A 16	68.522 10.432 33.492 1.00 29.29	c
	ATOM	265 O	GLY A 16	68.896 9.659 34.434 1.00 16.91	
	MOTA	266 N	SER A 17	68.642 11.755 33.499 1.00 12.53	N
	MOTA	267 CA		69.154 12.460 34.650 1.00 21.93	C
	MOTA	268 C	SER A 17	68.209 12.214 35.818 1.00 13.35	c
35	MOTA	269 O			0
	MOTA	270 CB			С
	MOTA		SER A 17		
	MOTA	272 N			N
	ATOM		ALA A 18		c
40	MOTA	274 C			c
	ATOM	275 0	ALA A 18		
	ATOM	276 CE			c
	ATOM	277 N			и
•	ATOM	278 C2			R
45	MOTA	279 C			c
	444.41		<u> </u>	V1. V1. V1. V2. V2. V2. V2. V2. V2. V2. V2. V2. V2	

		_							_
ATOM.	280			_19	68.018	7.530	38.820	1.00 20.73	0
MOTA	281	CB	ILE A	_19	66.804	7.079	35.710	1.00 17.58	<u>c</u>
MOTA	282	-	ILE A	_19	65.444	6.812	35,162	1.00 10.09	<u>c</u>
MOTA	283	CG2	ILE A	19	67.309	5.666	36.133	1.00 21.60	c
MOTA	284	CD1	ILE A	19	65.528	6.361	33.741	1.00 19.05	<u>C</u>
MOTA	285	Ŋ	ARG A	20	68.984	8.771	37.198	1.00 18.13	и
MOTA	286	CA.	ARG A	20	70.286	8.897	37.836	1.00 20.25	<u>c</u>
ATOM	287	<u> </u>	ARG A	20	70.231	9.491	39.242	1.00 30.62	c
ATOM	288	0	ARG A	20	70.957	9.091	40.129	1.00 33.00	0
ATOM	289	СВ	ARG A	20	71.201	9.743	36.957	1.00 11.71	<u>C</u>
MOTA	290	CG	ARG A	20	72.610	9.781	37.449	1.00 23.79	<u>c</u>
MOTA	291	CD	ARG A	20	72.881	11.107	38.060	1.00 36.76	с
MOTA	292	NE	ARG A	20	74.297	11,443	38.062	1.00 4B.34	N
MOTA	293	CZ	ARG A	20	74.990	11.841	36,988	1.00100.00	c
MOTA	294	NH1	ARG A	20	74.393	11.931	35.808	1.00100.00	и
MOTA	295	NH2	ARG A	20	76.289	12.139	37.076	1.00100.00	N
MOTA	296	N	ARG A	21	69.368	10.461	39,439	1.00 22.10	N
MOTA	297	CA	ARG A	21	69.216	11.052	40.750	1.00 17.45	<u>c</u>
MOTA	298	С	ARG A	21	68.721	10.007	41.730	1.00 26.71	C
MOTA	299	0	ARG A	21	69.147	10.001	42.885	1.00 30.27	<u> </u>
MOTA	300	СВ	ARG A	21	68.142	12.144	40.708	1.00 17.93	<u>c</u>
MOTA	301	CG	ARG A	21	68.682	13.522	40.321	1.00 27.57	C
MOTA	302	ÇD	ARG A	21	67.586	14.599	40.130	1.00 23.02	c
MOTA	303	NE_	ARG A	21	67.619	15.000	38.743	1.00 55.12	N
MOTA	304	CZ	ARG A	21	66,538	15.103	37.995	1.00 10.55	<u>C</u>
MOTA	305	NHI	ARG A	21	65.343	14.974	38.552	1.00 29.80	N
ATOM	306	NH2	ARG A	21	66.665	15.435	36.715	1.00 61.45	N
MOTA	307	N	GLN A	22	67.713	9.223	41.345	1.00 27.48	N
MOTA	308	CA	GLN A	22	67.167	8.257	42.313	1.00 24,79	с
ATOM	309	С	GLN A	2.2	68.137	7.127	42.547	1.00 31.37	с
MOTA	310	0	GLN A	22	68.394	6.724	43.685	1.00 27.47	0
ATOM	311	СВ	GLN A	22	65.818	7.706	41.894	1.00 17.11	с
MOTA	312	CG	GLN A	22	64.921	8.745	41.243	1.00 66.14	c
ATOM	313	CD	GLN A	_ 22	63,425	8.456	41.397	1.00 41.27	с
ATOM	314	OE)	GLN A	22	63.002	7.329	41.762	1.00 29.34	0
MOTA	315		GLN A		62.610	9,464		1.00 20.12	N
ATOM	316		LEU A		68.697	6.652		1.00 27.99	
MOTA	317	CA	LEU A		69.649			1.00 24.48	c
ATOM	318		LEU A		70.828	5.971		1,00 28.87	c
MOTA	319		LEU A		71.288	5.218		1.00 30.79	
MOTA	320		LEU A		70,036			1.00 22.72	Ç
MOTA	321		LEU A		68,966			1.00 26.16	
 MOTA			l-LEU A					- 1.00-24-80	
ATOM	323		LEU A		68,427			1.00 22.91	C
ATOM			GLU A		71.279			1.00 28.77	•
THE PLANE			A)						

	ATOM	325	CA.	GLU A	24	72,419	7.675	42.909	1.00 33,79	С
	MOTA	326	С	GLU A	24	72.363	7.388	44.412	1.00 35.94	<u>C</u>
	ATOM	327	0	GLU A	24	73.381	7.140	45.031	1.00 39.07	0
	MOTA	328	СВ	GLU A	24	72.647	9.165	42.653	1.00 36.21	c
5	MOTA	329	CG	GLU A	24	74.068	9.482	42.243	1.00 42.54	C
	MOTA	330	CD	GLU A	24	74.158	10.689	41.333	1.00 89.51	C
	ATOM	331	OE1	GLU A	24	73.386	11.663	41.549	1.00 43.21	0
	MOTA	332	OE2	GLU A	24	74.994	10.646	40.398	1.00 66.28	0
	ATOM	333	N	GLN A	25	71.182	7.422	45.000	1.00 45.70	N
10	ATOM	334	CA	GLN A	25	71.039	7.152	46.432	1.00 47.57	c
	MOTA	335	C	GLN A	25	70.887	5.669	46.740	1.00 67.34	<u>c</u>
	MOTA	336	0	GLN A	25	70.285	5.286	47.726	1.00 74.06	0
	ATOM	337	СВ	GLN A	25	69.783	7.842	46.905	1.00 51.85	c
	MOTA	338	CG	GLN A	25	69.500	9,084	46.109	1.00 44.91	<u>c</u>
15	MOTA	339	CD	GLN A	25	68.419	9.913	46.742	1.00100.00	c
	ATOM	340	OE1	GLN A	25	68.271	9.947	47.972	1.00100.00	0
	MOTA	341	NE2	GLN A	25	67.624	10.602	45.911	1.00100.00	<u>n</u>
	MOTA	342	N	ARG A	26	71.322	4.831	45.825	1.00 75.37	N
	MOTA	343	CA	ARG A	26	71,182	3,407	46.026	1.00 74.87	C
20	ATOM	344	С	ARG A	26	72.568	2.791	46.147	1.00 74.08	c
	ATOM	345	0	ARG A	26	73.440	2.997	45.289	1.00 77.00	0
	ATOM	346	СВ	ARG A	26	70.390	2,790	44.885	1.00 52.44	c
	ATOM	347	CĢ	ARG A	26	68.916	2,927	45.070	1.00 43.51	с
	MOTA	348	CD	ARG A	26	68.428	1.752	45.864	1.00 40.70	C
25	ATOM	349	NE	ARG A	26	67.200	1.176	45,338	1.00 42.33	N
	ATOM	350	cz	ARG A	26	67.126	0.508	44.196	1.00 32.07	c
	MOTA	351	NH1	ARG A	26	68.215	0.324	43.486	1.00 44.02	и
	ATOM	352	NH2	ARG A	26	65.968	0.017	43,771	1.00 77.32	N
	MOTA	353	N	GLY A	27	72.778	2.114	47.266	1.00 46.30	N
30	MOTA	354	CA	GLY A	27	74.060	1.531	47.549	1.00 46.82	c
	ATOM	355	<u> </u>	GLY A	27	74.140	0.165	46,923	1.00 55.45	c
	MOTA	356	0	GLY A	27	75.204	-0.453	46,877	1.00 64.43	· Q
	MOTA	357	N.	ASP A	28	73.017	-0.315	46.428	1.00 40.98	м
	ATOM	358	CA	ASP A	28	73.016	-1.647	45.861	1.00 40.35	c
35	MOTA	359	С	ASP A	28	73.266	-1.536	44.400	1.00 39.55	С
	MOTA	360	0	ASP A	28	73.109	-2,518	43,654	1.00 48.80	0
	ATOM	361	СВ	ASP A	28	71,680	-2.335	46.127	1.00 47.80	c
	MOTA	362	CG	ASP A	28	70.503	-1.373	46.064	1.00 35.34	с
	MOTA	363	OD	ASP A		70.705	-0.140	46.095	1.00 39.23	0
40	ATOM	364	OD2	ASP P	28	69.383	-1.870	45.872	1.00 69.86	0
	MOTA	365	N	VAL A	29	73,651	-0.329	43,996	1.00 31.03	N
	MOTA	366	CA	VAL A	29	73.881	-0,050	42.591	1.00 28.44	c
	ATOM	367	Ç	VAL 7	\ 29-	75,166	0.676	42.281	1.00-28.00	
	MOTA	368	0	VAL	29	75,505	1,699	42.892	1.00 34.83	0
45	MOTA	369	СВ	VAL A	29	72,696	0.760	42,000	1.00 30,68	с

	MOTA	370	CG1	VAL A	29	72.93	1.088	40.549	1.00	23.65	C
	MOTA	371	CG2	VAL A	29	71.41	5 -0.02 B	42.156	1.00	27.95	C
	MOTA	372	N_	GLU A	30	75.82	0.219	41.230	1.00	30.76	N
	MOTA	373	CA	GLU A	30	76.99	0.924	40.736	1.00	28.38	с
5	ATOM	374	С	GLU A	30	76.67	1.471	39.332	1.00	31.03	c
	MOTA	375	0	GLU A	30	76.36	0.720	38.397	1.00	26.64	0
	ATOM	376	СВ	GLU A	30	78.19	9 0.006	40.722	1.00	31.84	С
	ATOM	377	CG	GLU A	30	79.35	5 0.539	41.533	1.00	89.26	c
	ATOM	378	CD	GLU A	30	80.66	7 0.264	40.858	1,001	00.00	С
10	ATOM	379	0E1	GLU A	30	81.08	2 -0.922	40.872	1.00	88.94	0
	ATOM	380	OE2	GLU A	30	81.20	2 1.206	40.219	1.001	00.00	0
	ATOM	381	N_	LEU A	31	76.66	5 2.789	39.207	1.00	22.24	N N
	ATOM	382	CA	LEU A	31	76.26	9 3.391	37,945	1.00	29.37	c
	MOTA	383	Ç	LEU A	31	77.40	4 3.507	36.941	1.00	25.79	c
15	MOTA	384	<u>o</u>	LEU A	31	78.48	5 3.969	37.256	1.00	29.41	0
	MOTA	385	СВ	LEU A	31	75.63	2 4.760	38.191	1.00	30.20	<u>c</u>
	MOTA	386	CG	LEU A	31	74.32	9 4.763	38,994	1.00	29.37	c
	MOTA	387	CD1	LEU A	31	73.84	1 6.143	39.240	1.00	23.43	С
	MOTA	388	CD2	LEU A	31	73,27	5 3.962	38.281	1,00	23.04	ç
20	MOTA	389	N	VAL A	32	77.14	6 3.100	35,711	1.00	21.94	N
	MOTA	390	CA	VAL A	32	78.14	3 3.265	34.685	1.00	25,48	<u>c</u>
	ATOM	391	Ç	VAL A	32	77.53	5 4.242	33.669	1.00	38.76	c
	MOTA	392	0	VAL A	32	76,42	9 3.999	33,180	1.00	29.70	0
	MOTA	393	СВ	VAL A	32	78.51	7 1.902	34.055	1,00	34.25	c
25	MOTA	394	CG1	VAL A	32	79,58	7 2.079	32.970	1.00	30.56	c
	ATOM	395	CG2	VAL A	32	79.00	3 0.950	35.139	1.00	25.27	c
	ATOM	396	_N	LEU A	33	78.21	9 5.375	33.457	1.00	30.19	и
	MOTA	397	CA	LEU A	33	77.73	2 6.463	32.621	1.00	22.71	<u>C</u>
	MOTA	398	С	LEU A	33	78,72	7 6.979	31.645	1.00	29.55	c
30	MOTA	399	0	LEU A	33	79.89	6 7.152	31.988	1.00	30.09	0
	MOTA	400	CB	LEU A	33	77.42	3 7.635	33.514	1.00	19.75	<u>C</u>
	MOTA	401	CG	LEU A	_33	76,72	9 7.200	34,779	1.00	19.38	<u>c</u>
	MOTA	402	CD1	LEU A	33	76.81	4 8.344	35.762	1.00	27.24	C
	MOTA	403	CD2	LEU A	33	75.27	1 6,913	34.444	1.00	22.07	c
35	MOTA	404	N	ARG A	34	78.23	9 7.421	30.496	1.00	15.09	N
	MOTA	405	CA	ARG A	. 34	79.15	4 8.008	29.541	1.00	26.04	c
	ATOM	406	C	ARG A	34	78.46	9 9,173	28.916	1.00	36.57	c
	MOTA	407	0	ARG A	34	77.28	8 9.130	28.651	1.00	38.59	Q
	ATOM	408	СВ	ARG A	34_	79.48	6 7.048	28.398	1.00	22.89	<u>c</u>
40	MOTA	409	CG	ARG A	34	80.57	9 6.081	28.706	1,00	23.29	c
	MOTA	410	ÇD	ARG A	34	81.37	0 6.575	29.860	1.00	52.06	c
	MOTA	411		ARG A		81.78		30.711			
	ATOM	4-12	CZ	ARG A	34	82.64	6 4,530	-30.323	1,00	41,94	<u> </u>
	MOTA	413	NH1	ARG A	34	83.17	4.596	29.104	1.00	53.02	N
45	MOTA	414	NH2	ARG A	34	82.98	3.547	31.148	1.00	25.56	и

	ATOM	415	N_	THR A	35	79.248	10.156	28.539	1.00 31.58	N
	MOTA	416	CA	THR A	35	78.703	11.282	27.833	1.00 29.33	c
	MOTA	417	С	THR A	35	78.719	10.951	26.340	1.00 32.53	c
	ATOM	418	0	THR A	35	79.350	9.944	25.962	1.00 28.08	0
5	MOTA	419	СВ	THR A	35	79.527	12.527	28.145	1.00 37.49	c
	ATOM	420	0G1	THR A	35	80.844	12,429	27.560	1.00 31.91	0
	MOTA	421	CG2	THR A	35	79.627	12.642	29.651	1.00 19.38	c
	ATOM	422	N	ARG A	36	78.032	11.780	25,529	1.00 30.02	и
	ATOM	423	CA	ARG A	36	78.002	11.639	24.056	1.00 29.37	<u>c</u>
10	ATOM	424	С	ARG A	36	79.406	11.765	23,503	1.00 31.46	c
	MOTA	425	0	ARG A	36	79.772	11.012	22,591	1.00 36.56	0
	ATOM	426	СВ	ARG A	36	77.054	12.650	23.354	1.00 37.34	<u> </u>
	MOTA	427	CG	ARG A	36	76.937	12,465	21.846-	99.00 49.47	<u>c</u>
	MOTA	428	CD	ARG A	36	76.020	13.515	21.232-	99.00 63.09	C
15	MOTA	429	NE	ARG A	36	75.528	13.124	19,915-	99.00 75.23	N
	ATOM	430	_cz	ARG A	36	74.381	13.549	19.391	99.00 91.44	c
	MOTA	431	NH1	ARG A	36	73.605	14.375	20.079	99.00 79.32	N
	MOTA	432	NH2	ARG A	36	74.009	13.144	18.185	99.00 78.73	N
	ATOM	433	N	ASP A	37	80.217	12.677	24.063	1.00 41.30	и
20	MOTA	434	CA	ASP A	37	81.606	12.710	23,601	1.00 44.91	C
	ATOM	435	<u> </u>	ASP A	37	82.410	11,481	24.043	1.00 24.99	<u>c</u>
	MOTA	436	0	ASP A	37	83.211	10.978	23.261	1.00 42.22	<u>Q</u>
	MOTA	437	СВ	ASP A	37	82.347	14.048	23.718	-99.00 47.07	<u>c</u>
	MOTA	438	CG	ASP A	37	81.881	14.887	24.876	-99.00 62.99	<u>C</u>
25	MOTA	439	OD:	ASP A	37	80,679	14.839	25.204	-99.00 64.45	0
	ATOM	440	OD2	ASP A	. 37	82.711	15.638		<u>-99.00 69.84</u>	
	ATOM	441	Ŋ	GLU A	38	B2.129	10.950	25.235		N
	MOTA	442	CA	GLU Y		82.790	9.717	25.682		<u>c</u>
	MOTA	443	<u> </u>	GLU A		B2.203	8.527	24.901	1.00 37.14	<u>C</u>
30	MOTA	444	0	GLU A		82.873	7,511	24.699		0
	MOTA	445	СВ	GLU A		82.691	9.435	27,207		<u>C</u>
	MOTA	446		GLU A		83.116	10.549	28.183		<u>c</u>
	MOTA	447		GLU A		82.807	10.212	29.655		c
2.5	MOTA	448				81.623	9.997			0
35	ATOM			2 GLU A		83,757			1.00 25.52	O
	MOTA	450		LEU A		80.948			1.00 23.32	
	ATOM		CA			80,440			1.00 20.34	
	ATOM_	452		LEU 2		79.291			1.00 26.35	
40	ATOM	453		LEU /		78.152		24.65		
40	MOTA	454				80.123				
	MOTA	455		LEU /		79,410			1,00 18,84	
	ATOM	450		1 LEU /		80.205 78.890			1.00 10.04	
	ATOM	45		2 LEU 2		78.890			3 1.00 16.73	
15	MOTA	451		ASN		78.548			0 1.00 21.55	
45	MOTA	459	z <u></u>	ASN	A 40	10.540		E V . V 7		×

ATOM	460 C	ASN A	40	77.798	6.649	20.308	1.00 24.53	с
ATOM	461 0	A NEA	40	78.328	5.720	19.688	1.00 19.96	0
ATOM	462 CB	ASN A	40	79.130	8.367	19.216	1.00 18.45	<u> </u>
MOTA	463 CG	A NEA	40	78.054	B.727	18.225	1.00 42.19	<u>c</u>
MOTA	464 OD	A NEK 1	40	78.327	9.093	17.080	1.00 38.89	0
MOTA	465 ND	2 ASN A	40	76.827	8.730	18.697	1.00.23.71	N
MOTA	466 N	LEU A	41	76.543	6.622	20.754	1.00 21.08	N
ATOM	467 CA	LEU A	41	75.649	5.465	20.650	1.00 15.03	c
MOTA	468 C	LEU A	41	75.225	5.068	19.213	1.00 18.22	<u>c</u>
ATOM	469 0	LEU A	41	74.681	3.971	18,980	1.00 15.72	0
ATOM	470 CB	LEU A	41	. 74.426	5.705	21.532	1.00 15.85	<u>c</u>
ATOM	471 CG	LEU A	41	74.822	6.029	22.974	1.00 21.90	<u>C</u>
ATOM	472 CD	1 LEU A	41	73.604	6.413	23,749	1.00 20.59	<u>C</u>
MOTA	473 CD	2 LEU A	41	75.481	4,796	23,609	1.00 17.97	<u>c</u>
ATOM	474 N	LEU A	42	75,542	5,916	18.238	1.00 12.45	<u>N</u>
MOTA	475 CA	LEU A	42	75.256	5,607	16.831	1.00 15.99	c
MOTA	476 C	LEU A	42	76.290	4.680	16.280	1.00 26.18	с
ATOM	477 0	LEU A	42	76.066	4.039	15.257	1.00 22.41	0
ATOM	478 CE	LEUA	42	75.282	6.873	15.984	1.00 17.85	с
MOTA	479 CG	LEU A	42	74:180	7.854	16.399	1.00 30.70	ç
MOTA	480 CI	1 LEU A	42	74.318	9.184	15.704	1.00 24.31	<u>_</u>
MOTA	481 CI	O2 LEU A	42	72.764	7.241	16.208	1.00 31.13	
MOTA	482 N	ASP A	43	77,462	4.705	16.911	1,00 26,87	
MOTA	483 C/	A ASP A	43	78.579	3.875	16.486	1,00 19.29	
ATOM	484 C	ASP A	43	78.583	2.519	17.163	1.00 13.33	
MOTA	485 0	ASP A	43_	79.051	2.348	18.297	1.00 18.75	
ATOM	486 C	B ASP A	43	79.870	4.580	16,776	1.00 31.06	
MOTA	487 C	G ASP A	43	81.083	3,758	16.380	1.00 30.68	
ATOM	488 0	D1 ASP A	43	80.971	2.551	16.082	1.00 32.36	
MOTA	489 0	D2 ASP A	43	82.187	4.308	16.499	1.00 37.83	
MOTA	490 N	SER A	44	78.139	1.544	16.377	1.00 16.89	
MOTA	491 C	A SER A	44	77.978	0.173	16.789	1.00 17.67	
MOTA	492 C	SER A	44	79.237	-0.463	17.392	1.00 20.40	
MOTA	<u>493 o</u>	SER A	44	79.206	-1.126	18,444	1.00 26.27	
MOTA	494 C	B SER A	44	77.504	-0.617	15.581	1.00 13.85	
MOTA	495 O	G SER A	44_	76.800			1.00 43.83	
MOTA	496 N	ARG /	45	80.335	-0.301	16,682	1.00 15.63	
MOTA	497 C	A ARG /	45	81.616	-0.788			
MOTA	498 C	:_ARG /	45	81.910	-0.225	18.521	1.00 29.48	
MOTA	<u>499</u> C	ARG	45	82.244	-0.937	19,457	1.00 27.65	
MOTA	500 C	B ARG	45	82,684	-0.261	16.203		
ATOM	501 0	G ARG	A 45	83.463	-1.338		1.00 92.03	
ATOM	502 C	D ARG	A 45	84.854			1.00100.00	
ATOM	503 N	TE ARG	A 45	85.636			1.00100.00	
ATOM	504	Z ARG	A 45	86.092	-3.570	16.23	1.00100.00	

	ATOM	505 NH1 ARG A 45	85.791 -3	3.695 17	1.547	1.00100.00	_N
	MOTA					1.00100.00	N
	MOTA					1.00 31.04	_N
	ATOM				_	1.00 24.72	<u>_</u>
5	ATOM					1.00 17.73	_ <u>c</u>
,	ATOM					1.00 22.73	0
	ATOM					1.00 27.16	c
	ATOM					1.00 17.54	N
	ATOM				1.508	1.00 21.41	c
10	ATOM					1.00 30.25	c
10	MOTA					1.00 15.85	0
	MOTA	·			0.989	1.00 18.59	C
	MOTA	517 CG1 VAL A 47			2.012	1.00 16.88	C
	ATOM	518 CG2 VAL A 47			0.756	1.00 16.28	c
15	ATOM	519 N HIS A 48			0.920	1.00 21.00	<u>N</u>
13	ATOM	520 CA HIS A 48		2.969 2	1.192	1.00 20.17	·c
	ATOM	521 C HIS A 48			2.117	1,00 32,98	c
	ATOM	522 O HIS A 48		-	3.102	1.00 28.20	0
	ATOM	523 CB HIS A 48		3.801 1	9.855	1.00 14.93	С
20	ATOM	524 CG HIS A 48		4.172 1	9.338	1.00 26.67	<u>C</u>
	MOTA	525 ND1 HIS A 48		5.394 1	9.600	1.00 28.83	N
	ATOM	526 CD2 HIS A 48		3.448 1	8.659	1.00 25.56	<u> </u>
	ATOM	527 CE1 HIS A 48	76.887 -	5.430 1	9.043	1.00 20.08	c
	ATOM	528 NE2 HIS A 48	76.660 -	4.260 1	8.475	1.00 25.22	N
25	ATOM	529 N ASP A 49	82.217 -	2.170 2	1.902	1.00 22.62	N
	ATOM	530 CA ASP A 49	83.455 -	2.169 2	2.674	1.00 24.23	<u>C</u>
	MOTA	531 C ASP A 49	83.171 -	1.899 2	4.122	1.00 38.72	Ç
	MOTA	532 O ASP A 49	83.708 -	2.551 2	5.027	1.00 35.44	0
	MOTA	533 CB ASP A 49	84.396 -	-1.112 2	22.127	1.00 30.29	<u>C</u>
30	MOTA	534 CG ASP A 49	84,991 -	-1.503_2	20.775	1.00 52.45	<u> </u>
	MOTA	535 OD1 ASP A 49	85.007 -	-2.726 2	20.449	1.00 42.67	0
	MOTA	536 OD2 ASP A 49	85.416 -	-0.587 2	20.029	1.00 73.76	0
	MOTA	537 N PHE A 50	82.294 -	-0.929 2	24.324	1.00 32.19	<u>N</u>
	ATOM	538 CA PHE A 50	81.902 -	-0.550	25.649	1.00 29.76	<u>c</u>
35	ATOM	539 C PHE A 50	81.299 -	-1.765	26.359	1,00 30,31	<u> </u>
	MOTA	540 O PHE A 50	81.715	-2.124	27.449	1.00 29.22	0
	MOTA	541 CB PHE A 50	80.892	0.610	25.576	1.00 23.82	<u>_</u>
	MOTA	542 CG PHE A 50	80.137	0.843	26.859	1.00 19.13	<u>c</u>
	MOTA	543 CD1 PHE A 50	80.740	1.515	27.931	1.00 20.14	<u>c</u>
40	MOTA	544 CD2 PHE A 50	78.835	0.360	27.018	1.00 13.99	<u>C</u>
	MOTA	545 CE1 PHE A 50	80.034	1.742	29.129	1.00 25.81	<u>c</u>
	MOTA	546 CE2 PHE A 50	78.114	0.553	28.212	1.00 22.84	<u>.c</u>
	MOTA	547 CZ PHE A 50	78.698			1,00 23,40	
	ATOM	548 N PHE A 51	80,280			1.00 21.75	N
45	MOTA	549 CA PHE A 51	79.655	-3.451	26.457	1.00 22.61	<u> </u>

	MOTA	550	_ <u>C</u>	PHE A	_51	80.646	-4.603	26.612	1.00 34.01	с
	MOTA	551	0	PHE A	51	80.550	-5.401	27.590	1.00 25.28	0
	MOTA	552	CB	PHE A	51	78.389	-3.898	25.751	1.00 22.63	<u>c</u>
_	MOTA	553	CG	PHE A	_51	77.158	-3.140	26.170	1.00 27.58	<u>C</u>
5	MOTA	554	CDl	PHE A	51	76,426	-3,525	27.280	1.00 21.78	<u>c</u>
	MOTA	555	CD2	PHE A	51	76.663	-2,100	25.380	1.00 19.55	с
	MOTA	556	CE1	PHE A	51	75.267	-2.796	27.662	1.00 28.34	<u>C</u>
	ATOM	557	CE2	PHE A	_51	75.492	-1.403	25.734	1.00 14.47	¢
	ATOM	558	CZ	PHE A	_51	74.797	-1.744	26.878	1.00 14.55	c
10	ATOM	559	N	ALA A	52	81.576	-4.706	25.659	1.00 26.43	N
	MOTA	560	CA	AIA A	52	82.587	-5.793	25.714	1.00 29.44	<u>c</u>
	MOTA	561	С	ALA A	52	83.687	-5.560	26.768	1.00 43.76	C
	MOTA	562	.0	ALA A	52	84.502	-6.446	27.022	1.00 40.33	0
	ATOM	563	СВ	ALA A	52	83.228	-6.049	24.344	1.00 24.25	c
15	ATOM	564	_N_	SER A	53	83.702	-4.382	27.385	1.00 31.96	<u>N</u>
	MOTA	565	CA	SER A	53	84.705	-4.090	28.377	1.00 21.06	<u>c</u>
	MOTA	566	С	SER A	53	84.196	-3,625	29,709	1.00 26.41	Ç
	MOTA	567	0	SER A	_ 53	84.985	-3.492	30.611	1.00 36.12	0
	MOTA	568	СВ	SER A	53	85,709	-3.088	27.843	1.00 14.22	c
20	ATOM	569	QG_	SER A	53	85.140	-1.807	27,790	1.00 56.90	0
	ATOM	570	N_	GLU A	54	82.892	-3.431	29.874	1.00 22.38	N
	ATOM	571	CA	GLU A	54	82.380	-2.893	31.139	1.00 17.27	c
	ATOM	572	Ç	GLU A	54	81.584	-3.735	32,118	1.00 26.32	· c
	ATOM	573	0_	GLU A	54	81.229	-3.281	33,191	1.00 37.43	0
25	ATOM	574	СВ	GLU A	54	81,677	-1.563	30.906	1.00 27.30	c
	MOTA	575	CG	GLU A	54	82.573	-0.543	30.262	1.00 44.77	c
	MOTA	576	CD	GLU A	54	83.669	-0.142	31.194	1.00 86.31	c
	MOTA	577	OE:	GLU A	54	83.392	-0.232	32.428	1.00 50.11	0
	MOTA	578	OE?	GLU A	54	84.785	0.198	30,692	1.00 50.99	0
30	MOTA	579	N	ARG A	55	81.268	-4.971	31.804	1.00 29.63	и
	MOTA	580	ÇĄ.	ARG A	55	80.636	-5,748	32,854	1.00 33.32	c
	ATOM	581	С	ARG A	55	79.347	-5.149	33.378	1.00 38.45	c
	MOTA	582	0	ARG A	55	79.214	-4.897	34.576	1.00 40.18	0
	ATOM	583	СВ	ARG A	_ 55	81.621	-5.875	34.045	1.00 57.61	<u>c</u>
35	ATOM	584	CG	ARG A		82.666	-7.028	33.960	1.00100.00	C
	ATOM	585				82.805	-7.805	35.305	1.00100.00	<u>c</u>
	ATOM	586	NE	ARG A		82.838	-9.270	35.146	1.00100.00	N
	ATOM	587		ARG A		83,206	-10.129	36.102	1.00100.00	с
	MOTA	588		1 ARG A		83,583	-9.681	37.301	1,00100.00	
40	ATOM	589		2 ARG A			-11.440			
	MOTA	590					-5.029		1.00 42.25	
	MOTA	591					-4,434		1.00 25.49	
	MOTA			ILE A			5:474		- 1.00 20.18	
	MOTA	593				75.897			1.00 24.74	
45	ATOM	594		ILE A		76.672			1.00 26.89	
. •										

	MOTA	595		ILE A	56				1.00 18.30	<u>c</u>
	MOTA	<u> 596</u>	CG2	ILE A	_56		-3.016		1.00 19.84	<u>e</u>
	ATOM	597	CD1		56				1.00 60.42	<u>C</u>
_	MOTA	598	N_	ASP A	_57		-5.133	34.237	1.00 16.84	N
5	MOTA	599	_CA_	ASP A	57		-5.999	34.630	1.00 16.33	c
	MOTA	600	<u></u>	ASP A	57	72.676	-5.451	34.123	1.00 28.40	<u>c</u>
	MOTA	601	0	A 9EA	57	71.836	-6.198	33.657	1.00 25.50	
	MOTA	602	CB	A PEA	57	74.009	-6.194	36.164	1.00 16.94	<u> </u>
	ATOM	603	CG	ASP A	57	75.369	-6.720	36.703	1.00 34.27	<u>c</u>
10	ATOM	604	OD1	ASP A	_57	75.875	-7.729	36.141	1.00 31.76	
	ATOM	605	OD2	ASP A	57	76.040	-6.007	37.499	1.00 28.36	o
	MOTA	606	N_	GIN A	58	72.443	-4.152	34.220	1.00 28.91	N
	ATOM_	607	CA	GIN A	58	71.183	-3.590	33.755	1.00 25.68	<u>C</u>
	MOTA	608	<u> </u>	GLN A	58	71.425	-2.364	32.881	1.00 23.21	<u>C</u>
15	ATOM	609	0_	GLN A	58	72,403	-1.620	33.067	1.00 18.16	0
	ATOM	610	СВ	GLN A	58	70.342	-3.151	34.946	1.00 33.14	<u>c</u>
	ATOM	611	CG	GLN A	58	69.798	-4.241	35.807	1,00 30,00	<u>c</u>
	ATOM	612	CD	GLN A	58	69.226	-3.712	37.105	1.00 27.18	<u>c</u>
	MOTA	613	OE1	GLN A	58	68,722	-2.601	37.161	1.00 31.20	<u> </u>
20	MOTA	614	NE2	GLN A	58	69.455	-4.436	38.186	1.00 16.89	и
	MOTA	615	N	VAL A	59	70.496	-2.138	31.961	1.00 18.35	
	MOTA	616	_CA	VAL A	59	70.562	-0.998	31.045	1.00 15.59	C
	MOTA	617	C_	VAL A	59	69,238	-0.240	31.039	1.00 26.28	<u>c</u>
	MOTA	618	٥	VAL A	59	68.178	-0.820	30.762	1.00 19.51	0
25	MOTA	619	СВ	VAL A	59	70.707	-1.456	29.601	1.00 15.32	c
	ATOM	620	CG:	1 VAL A	59	70,477	-0.274	28.649	1.00 11.93	<u>c</u>
	ATOM	621	CG:	VAL A	59	72.080	-2.111	29.364	1.00 15.83	<u>C</u>
	ATOM	622	N	TYR A	60	69.306	1.064	31.293	1.00 21.71	М
	MOTA	623	CA	TYR A	60	68.113	1.927	31.197	1.00 21.40	c
30	MOTA	624	С	TYR A	60	68.289	2.756	29.928	1.00 18.69	<u>C</u>
	MOTA	625	0	TYR A	60	69,250	3,532	29.796	1.00 15.51	0
	ATOM	626	СВ	TYR A	60	68.021	2,817	32.413	1.00 17.24	<u>C</u>
	ATOM	627	ÇG	TYR A	60	67.493	2.131	33.658	1.00 19.71	c
	ATOM	628	CD	1 TYR A	. 60	68.345	1.583	34.586	1.00 21.14	c
35	ATOM	629	CD	2 TYR A	60	66,154	2,223	33.991	1.00 20.16	c
	MOTA	630		1 TYR A		67.835	1.080	35.794	1.00 19.11	с
	MOTA	631		2 TYR A		65.648			1.00 10.77	
	MOTA	632		TYR A		66,476			1.00 20.07	
	MOTA	633		TYR A		65.921	0.585	37.248	1.00 16.04	0
40	MOTA	634				67,491		28.916	1.00 17.46	у
	MOTA	635				67,685			1.00 20.17	
	ATOM	63 (LEU 2		67.003			1.00 23,36	
	ATOM	63				65.925			1.00 14.86	
	MOTA	638		LEU 2		67,267			1.00 14.78	
45	MOTA	63		LEU		68,117			1.00 15.52	
40	a.un	0.3	كاعلى	, <u>444</u>	, V.					

	MOTA	640 CD1 LEU A	61	67.815	1.010	24.109	1.00 7.75	<u>C</u>
	MOTA	641 CD2 LEU A	61	68.087	3.541	24.580	1.00 15.20	<u>c</u>
	MOTA	642 N ALA A	62	67.656	5.434	27.956	1.00 20.35	N
	ATOM	643 CA ALA A	62	67.120	6.784	27.963	1.00 18.55	<u>C</u>
5 .	ATOM	644 C ALA A	62	67.779	7.739	26.949	1.00 18.57	C
	MOTA	645 O ALA A	62	67.455	8.924	26.920	1.00 24.31	0
	MOTA	646 CB ALA A	62	67.071	7.377	29,439	1.00 11.69	c
	MOTA	647 N ALA A	63	68.681	7,231	26.101	1.00 14.09	N
	MOTA	648 CA ALA A	63	69.249	8.095	25.052	1.00 12.84	c
10	MOTA	649 C ALA A	63	68.310	8,005	23,877	1.00 27.00	<u>C</u>
	MOTA	650 O ALA A	63	67.845	6.916	23.511	1.00 24.51	0
	MOTA	651 CB ALA A	63	70.665	7.660	24.634	1.00 4.89	с
	ATOM	652 N ALA A	64	68.076	9.148	23.262	1.00 21.05	N
	ATOM	653 CA ALA A	64	67.202	9.286	22.086	1.00 13.50	c
15	MOTA	654 C ALA A	64	67.435	10.664	21.416	1.00 28.08	<u>c</u>
	ATOM	655 O ALA A	64	67.987	11.600	22.021	1.00 26.63	0
	MOTA	656 CB ALA A	64	65.642	9.171	22.518	1.00 7.63	<u>c</u>
	MOTA	657 N LYS A	65	66.953	10.781	20.182	1.00 23.98	N
•	MOTA	658 CA LYS A	65	66.966	12.012	19,409	1.00 20.47	<u>_</u>
20	MOTA	659 C LYS A	65	65.488	12.443	19.551	1.00 24.37	<u>c</u>
	MOTA	660 O LYS A	65	64.594	11.807	18.976	1.00 20.29	0
	MOTA	661 CB LYS A	65	67.317	11.658	17.951	1.00 25.59	c
	MOTA	662 CG LYS A	65	66.808	12.630	16,923	1.00 27.54	<u>C</u>
	MOTA	663 CD LYS A	65	67.518	13.926	17.169	1.00 21.08	<u>c</u>
25	MOTA	664 CE LYS A	65	67.316	14,905	16.029	1.00 55.15	c
	MOTA	665 NZ LYS A	65	67.876	16,263	16,392	1.00 81.63	N
	MOTA	666 N VAL A	66	65.228	13.362	20.485	1.00 22.47	<u>N</u>
	MOTA	667 CA VAL A	66	63.873	13.850	20.755	1.00 18.99	c
	MOTA	668 C VAL A	66	63.711	15.343	20.394	1.00 31.44	c
30	MOTA	669 O VAL A	66	64.665	16.107	20.460	1.00 34.61	0
	MOTA	670 CB VAL A	66	63.440	13.623	22.204	1.00 16.66	<u> </u>
	MOTA	671 CG1 VAL A	66	64.269	12.623	22,869	1.00 15.01	<u>c</u>
	MOTA	672 CG2 VAL A	66	63.379	14.904	22.950	1.00 19.21	<u>c</u>
	MOTA	673 N GLY A	67	62.514	15.755	19.994	1.00 18.03	<u>N</u>
35	MOTA	674 CA GLY A	67	62.298	17.149	19.614	1.00 14.90	c
	MOTA	675 C GLY A	67	60.792	17.518	19,585	1.00 32.35	<u>C</u>
	MOTA	676 O GLY A	67	59,922	16.666	19.888	1.00 18.88	Q
	MOTA	677 N GLY A	68	60.503	18,787	19.256	1.00 23.21	N
	MOTA	678 CA GLY A	68	59,132	19.288	19.183	1.00 23.83	C
40	MOTA	679 C GLY A	68	58.540	19,137	17,771	1.00 19.31	<u>c</u>
	MOTA	680 O GLY A	68	59,165	18.550	16.870	1.00 30.64	0
	MOTA	681 N ILE A	69	57.343	19.684	17.588	1.00 15.20	<u>N</u>
	MOTA	682 CA ILE A	69	56.595	19.632	16.317	1.00 16.80	s
	MOTA	683 C ILE A	69	57.387			1.00 19.33	
45	ATOM	684 O ILE A	69	57,425	19,519	14.06	1.00 14.66	0

	MOTA	695	СВ	ILE A	69	55,257 20,432 16,480 1.00 30.11	
	MOTA	686	CG1	ILE A	69	54.271 19.683 17.385 1.00 24.27	<u>c</u>
	MOTA	687	CG2	ILE A	69	54.610 20.749 15.181 1.00 47.53	<u>c</u>
	MOTA	688	CD1	ILE A	69	53.259 20.608 18.056 1.00 85.71	<u>c</u>
5	MOTA	689	N	VAL A	70	58.010 21.327 15.269 1.00 23.03	и
	MOTA	690	CA	VAL A	70	58.797 21.913 14.183 1.00 19.34	<u>c</u>
	MOTA	691	С	VAL A	70	59.983 21.011 13.840 1.00 24.42	<u>c</u>
	MOTA	692	0	VAL A	70	60.335 20.829 12.662 1.00 24.14	0
	MOTA	693	СВ	VAL A	70_	59,304 23.404 14.467 1.00 21.37	<u>c</u>
10	MOTA	694	CG1	VAL A	70	60.137 23.907 13.281 1.00 17.79	<u>c</u>
	ATOM	695	CG2	VAL A	70	58.136 24.410 14.678 1.00 15.74	с
	MOTA	696	N_	ALA A	_71	60,621 20,450 14,861 1,00 19,68	и
	ATOM	697	CA	ALA A	_71	61.782 19.617 14.572 1.00 16.57	c
	ATOM	698	С	ALA A	71	61.427 18.289 13.910 1.00 23.36	<u>c</u>
15	ATOM	699	0_	λίλ λ	71	61,980 17.923 12.849 1.00 21.84	0
	MOTA	700	СВ	ALA A	71	62,685 19,439 15,805 1,00 9,36	<u>C</u>
	MOTA	701	_N_	A NEA	72	60,463 17.598 14.511 1.00 16.80	<u>N</u>
	MOTA	702	CA	A MEA	72	59,998 16.357 13.923 1.00 18.84	c
	MOTA	703		ASN A	72	59,608 16,539 12,440 1,00 23.87	c
20	ATOM	704	0	ASN A	72	59.919 15.696 11.593 1.00 21.52	0
	MOTA	705	СB	ASN A	72	58,835 15,806 14,738 1.00 8.60	<u>c</u>
	ATOM	706	CG	ASN A	72	59,309 15.013 15.911 1.00 23.75	<u>C</u>
	ATOM	707	OD:	L ASN A	72	59.558 13.809 15.810 1.00 23.98	0
	MOTA	708	ND2	ASN A	72_	59.572 15.701 16.996 1.00 9.96	<u>N</u>
25	MOTA	709	_N_	ASN A	73	58.931 17.647 12.138 1.00 23.07	N
	MOTA	710	CA	ASN A	73		с
	ATOM	711	c	ASN A	. 73		<u>c</u>
	MOTA	712	0_	ASN A	73	59,613 18.276 8.569 1.00 22,13	0
	ATOM	713	ÇВ	ASN A	73		с
30	MOTA	714	CG	ASN A	. 73	56.015 18.349 10.987 1.00 19.88	<u>c</u>
	ATOM	715	OD	1 ASN A	73	55,620 17,468 10,217 1.00 27.02	0
	MOTA	716	ND	2 ASN A	. 73	55.322 18.732 12.051 1.00 20.78	N
	MOTA	717	N_	THR A	74		N
	MOTA	718	CA	THR A			C
35	MOTA	719	<u> </u>	THR A			c
	MOTA	720	0	THR A	74		0
	ATOM	721					C
	MOTA	722		1 THR A			0
	MOTA	723	CG	2 THR 1			<u>C</u>
40	MOTA	724	N_	· ·			N
	MOTA	725	C2		<u>75</u>	_	c
	MOTA	726			A 75		c
	MOTA	727			A 75		0
	MOTA	728		TYR			
45	MOTA	729		TYR	A 75	5 65.779 18.234 11.252 1.00 27.12	c

						, -				
	MOTA	730 C	D1_TYR	Α.	75	66.712	18.696	10.321	1.00 28.46	с
	ATOM	731 C	D2 TYR	_A_	75	65.234	19,151	12.173	1.00 24.83	с
	MOTA	732 C	Bl TYR	A	75	67.117	20.045	10.305	1.00 28.34	C
	MOTA	733 C	B2 TYP	A	75	65.652	20.523	12.180	1.00 21.00	c
	MOTA	734 C	Z TYF	لهـ	75	66.593	20.940	11.234	1.00 45,42	С
	MOTA	735 O	H TYP	A	75	67.066	22.230	11.215	1.00 35.37	<u> </u>
	ATOM	736 N	PRO	A.	76	62.759	14.775	9.532	1.00 13.30	N
	MOTA	737 C	A PRO	A	76	62.185	13.438	9.742	1.00 14.64	c
	ATOM	738 C	PRO	A	76	63.209	12.264	9.618	1.00 14.40	c
	MOTA	739 0	PRO	2.A.	76	63.157	11.335	10.409	1.00 20.54	<u>Q</u>
	ATOM	740 C	B PRO	A	76	61.055	13.366	8.709	1.00 7.83	c
	MOTA	741 C	G PRO	<u> </u>	76	61.447	14.388	7.617	1.00 12.61	Ç
	MOTA	742 C	D PRO	2.A.	7.6	62.068	15.504	8.455	1.00 11.18	<u>C</u>
	MOTA	743 N	I AT	A.A.	77	64.163	12.339	8.681	1.00 15.25	N
	MOTA	744 0	A AL	A	77	65.206	11.312	8.538	1.00 6.79	<u>c</u>
	ATOM	745 C	AL	A A	_77	66.053	11.166	9.820	1.00 17.22	c
	MOTA	746) AL	A.A	77	66.306	10.069	10.292	1.00 18.74	0
	ATOM	747 _ 9	B AL	A.A	77	66.097	11.601	7.330	1.00 9.04	<u>C</u>
	ATOM	748	ı As	P.A	78	66.466	12.267	10.424	1.00 10.92	N
	ATOM	749	CA AS	PΑ	78	67.256	12.191	11.659	1.00 11.87	c
	MOTA	750	Z AS	PΑ	78	66.572	11.486	12.827	1.00 16.09	c
	ATOM	751	O AS	PΑ	78	67.212	10.741	13.601	1.00 18.07	0
	ATOM	752	CB AS	РΑ	78	67.578	13.609	12.088	1.00 19.16	c
	ATOM	753	CG AS	РΑ	78	68.424	14.325	11.068	1.00 26.82	c
	ATOM	754	OD1 AS	РΑ	78	68.836	13.694	10.044	1.00 33.93	0
	ATOM	755	OD2 AS	P A	78	68.673	15.514	11.316	1.00 32.06	<u> </u>
	ATOM	756	N PE	Eλ	79	65.279	11,771	12.975	1.00 14.70	N
	MOTA	757	CA PH	E_A	79	64.471	11.192	14.044	1.00 20.69	<u> </u>
	MOTA	758	C PE	EΑ	79	64.224	9.707	13.876	1.00 20.22	<u> </u>
	MOTA	759	O PE	Œ A	79	64.269	8.987	14.862	1.00 22.3	0
	ATOM	760	CB PH	EΑ	79	63.144	11.933	14.219	1.00 27.38	<u>C</u>
	ATOM	761	CG PE	EΑ	79	63.264	13.218	14.990	1.00 28.59	<u> </u>
	ATOM	762	CD1 PH	E A	79	63.137	13.230	16.386	1.00 27.49	<u> </u>
	ATOM	763	CD2 PF	Œ A	79	63,509	14.415	14.325	1.00 28.2	<u> </u>
	ATOM	764	CEl PH	Œ_A	79	63.281	14.413	17.109	1.00 21.7	6C
	MOTA	765	CE2 PI	IE_A	79	63.625	15.593	15.037	1.00 31.4	<u> </u>
	ATOM	766	CZ P	Œ. λ	79	63.509	15.582	16.439	1.00 26.3	<u> </u>
	MOTA				80	63.942	9.249	12.650	1.00 10.7	9 N
	MOTA	768		LE A		63.828	7.795	12.410	1.00 18.1	2
	MOTA	769	c I	ίΕ_ <i>2</i>	80	65,197	7.052	12.432	1.00 10.9	7
	MOTA	770	0 I	LE 2	80	65.406	6.090	13.195	1.00 8.9	2 C
	MOTA	771	CB I	LE_F	80	62,944	7.408	11.148	1.00 17.4	1 0
	MOTA	772	CG1 I	LE Z	80	62.651	5.88	5 11.105	1.00 10.1	6 <u>C</u>
	MOTA	773	CG2 I			63.583	7.888	9.901	1.00 17.4	6 C
5	MOTA	774	CD1 I	LE Z	80	61.722	5.410	9.980	1.00 7.3	0 0

	MOTA	775 N	TYR A 8	66,151	7.539	11.658	1.00 11.18	N
	MOTA	776 CA	TYR A 8	67.488	6.902	11.630	1.00 15.06	c
	MOTA	777 C	TYR A B	1 68.237	6.782	12.959	1.00 16.83	C
	ATOM	778 O	TYR A 8	1 68.714	5.702	13.383	1.00 16.74	0
5	ATOM	779 CB	TYR A B	1 68.384	7.599	10.616	1.00 9.43	<u>c</u>
	ATOM	780 CG	TYR A 8	1 69.749	6.966	10.541	1.00 22.54	C
	ATOM	781 CD	TYR A 8	1 69.963	5.824	9.747	1.00 22.37	с
	ATOM	782 CD	TYR A B	1 70.818	7.466	11.299	1.00 18.07	<u>c</u>
	ATOM	783 CE	TYR A B	1 71.202	5.163	9.746	1.00 15.02	c
0	MOTA	784 CE	TYR A 8	1 72.080	6.893	11.201	1.00 17.37	c
	MOTA	785 CZ	TYR A 8	1 72.255	5.698	10.472	1.00 24.27	c
	ATOM	786 OH	TYR A 8	1 73,491	5.063	10.409	1.00 19.57	0
	ATOM	787 N	GLN A 8	2 68.385	7.918	13.612	1.00 11.39	N
	ATOM	788 CA	GLN A 8	2 69.193	7.930	14.810	1.00 12.23	C
15	MOTA	789 C	GLN A 8	2 68.544	7.089	15,834	1.00 14.18	C
	ATOM	790 0	GLN A 8	2 69.180	6.415	16.631	1.00 11.35	0
	ATOM	791 CB	GLN A 8	2 69.280	9.354	15.291	1.00 18.73	<u>C</u>
	MOTA	792 CG	GLN A E	69.986	10,209	14.250	1.00 13.54	c
	MOTA	793 CD	GLN A E	70.285	11.617	14.736	1.00 26.00	c
20	ATOM	794 OE	I GLN A E	70,410	11.850	15.927	1.00 22.99	0
	ATOM	795 NE	2 GLN A E	70.404	12.561	13.808	1.00 16.59	N
	ATOM	796 N	ASN A	67.235	7.181	15.869	1.00 11.35	
	MOTA	797 CZ	ASN A	83 66.549	6.408	16.860	1.00 13.71	С
	ATOM	798 C	ASN A	83 66.623	4.902	16.557	1.00 21.43	c
25	MOTA	799 0	ASN A	83 66.831	4.101	17.463	1.00 12.10	0
	MOTA	800 CI	ASN A	83 65.132	6.945	17.074	1.00 13.51	<u>c</u>
	ATOM	801 C	ASN A	83 65.131	8.245	17.871	1.00 28.91	c
	MOTA	802 0	Ol ASN A	83 65.628	8.263	18.990	1.00 22.28	0
	MOTA	803 N	D2 ASN A	83 64.756	9.354	17.237	1.00 20.17	<u> </u>
30	ATOM	804 N	MET A	84 66.592	4.517	15.290	1.00 15.63	N
	MOTA	805 C	A MET A	84 66.704	3.101	15.007	1.00 15.66	<u>c</u>
	MOTA	806 C	MET A	84 68.054	2,588	15.348	1.00 14.66	
	ATOM	807 0	MET A	84 68.148	1.514	15.902	1.00 11.45	0
	MOTA	808 C	B MET A	84 66.418	2.815	13.563	1.00 17.59	<u>C</u>
35	MOTA	809 C	G MET A	84 64.911	2.894	13.220	1.00 14.40	c
	MOTA	810 S	D MET A	84 64.638	2.811	11.387	1.00 15.99	<u>s</u>
	MOTA	811 C	E MET A	84 65.164	1.105	10.952	1.00 8.90	<u>c</u>
	MOTA	812 N	MET A	85 69.098	3,338	15.024	1.00 11.20	N
	MOTA		A MET A	85 70.468	2.879	15.321	1.00 11.67	<u></u> c
40	MOTA	814 0	MET A	85 70.779	2.831			
	MOTA	815 C	MET A	85 71.355	9 1.893	17.265	1.00 15.26	Q
	MOTA	816	B MET A	85 71.525	3.798	14.693	1.00 15.07	c
	MOTA	817	G MET A	85 71.530		13.173		c
	ATOM	818 5	D MET A	85 71.91			1.00 37.79	
45	MOTA	819	E MET A	85 73.37	9 1.801	13.320	1.00 15.94	c

	ATOM .	820	N_	ILE A	86	70.471	3.892	17.481	1.00 13.92	N
	MOTA	821	_CA_	ILE A	86	70.760	3.893	18.912	1.00 12.58	<u>C</u>
	MOTA	822	<u> </u>	ILE A	86	70.159	2.662	19.591	1.00 21.61	<u>C</u>
	ATOM	823	0	ILE A	86	70.813	1.981	20.362	1.00 18.68	0
5	MOTA	824	CB	ILE A	86	70.225	5.189	19.606	1.00 11.84	<u>C</u>
	MOTA	825	CG1	ILE A	8.6	70.978	6.429	19,119	1.00 19.78	ç
	ATOM	826	CG2	ILE A	86	70.435	5.132	21.112	1.00 6.59	<u>c</u>
	MOTA	827	CD1	ILE A	86	70.505	7.694	19.772	1.00 20.37	<u>C</u>
	MOTA	828	N.	GLU A	87	68.893	2.383	19.316	1.00 18.78	и
0	MOTA	829	_CA_	GLU A	87	68.263	1.237	19.930	1.00 14.00	<u>C</u>
	MOTA	830	С	GLU A	87	68.797	-0.116	19.454	1.00 15.93	c
	MOTA	831	0	GLU A	87_	69.017	-0.991	20.268	1.00 11.04	0
	MOTA	832	СВ	GLU A	87	66.734	1,324	19.900	1.00 14.89	Ç
	MOTA	833	CG	GLU A	87	66.085	1.327	18.538	1.00 28.96	<u>c</u>
5	MOTA	834	CD	GLU A	87	64.635	1.922	18.544	1.00 11.12	c
	MOTA	835	OE1	GLU A	87	64.307	2.801	19.376	1.00 25.46	0
	MOTA	836	OE2	GLU A	87	63.845	1.547	17.663	1.00 29.87	0
	ATOM	837	N	SER A	88	69.054	-0.259	18.155	1,00 16.18	N
	ATOM	838	CA	SER A	9.8	69,650	-1.482	17.569	1.00 19.52	<u>C</u>
0	ATOM	839	С	SER A	88	71.029	-1.792	18.160	1.00 22.54	c
	MOTA	840	0_	SER A	88	71.313	-2.929	18,592	1.00 13.80	0
	ATOM	841	СВ	SER A	88	69.815	-1.326	16.023	1.00 14.61	C
	MOTA	842	0G	SER A	88	68.551	-1.201	15.355	1.00 15.41	0
	MOTA	843	N_	A NEA_	8.9	71.884	-0,773	18.143	1.00 22.63	N N
5	ATOM	844	CA	ASN A	89	73.227	-0.869	18.693	1.00 27.23	c
	ATOM	845	С	A NEA	_89	73.195	-1.363	20.134	1.00 21.34	c
	MOTA	846	0	ASN A	89	73.795	-2.384	20.476	1.00 23.68	0
	ATOM	847	СВ	ASN A	89	73.980	0.487	18.597	1.00 13.71	C
	MOTA	848	ÇĢ	ASN A	89	74.440	0.825	17.168	1.00 20.40	С
0	ATOM	849	OD:	1 ASN A	89	74.305	-0.006	16.255	1.00 14.93	0
	MOTA	850	ND	2 ASN A	89	74.937	2,067	16,960	1.00 13.32	И
	ATOM	851	N	ILE A	90	72,488	-0.646	20.979	1.00 16.55	и
	ATOM	852	CA.	ILE A	90	72.437	-1.014	22.398	1.00 21.51	с
	MOTA	853	С	ILE A	90	71,876	-2.421	22.729	1.00 26.50	с
5	ATOM	854	0	ILE A		72.384	-3.159	23.590	1.00 19.71	0
	ATOM	855				71.670			1.00 13.32	c
	ATOM	856		1 ILE A		72.539	1,299	23.401	1.00 11.05	С
	ATOM	857		2 ILE A		71.371	-0.445	24.637	1.00 7.54	<u>C</u>
	MOTA	858		1 ILE A		71,749	2.597	23.668	1.00 20.71	
0	MOTA	859		ILE A		70.755	-2.733	22.114	1.00 14.98	N
-	MOTA	8 60				70.047			1.00 21.33	
	MOTA	861		ILE A		70.927			1.00 26.27	C
	MOTA	8 6 2				71.211			1.00 26.56	
	MOTA	B 63				68,556			1.00 20.39	
15	ATOM	B 6 4		1 ILE A					1.00 13.51	
	444									

	MOTA	865 CG2 ILE A	91	67.841	-5.316	21.845	1.00 11.31	
	ATOM	866 CD1 ILE A	91	66,320	-2.648	21.907	1.00 16.23	c
	ATOM	867 N HIS A	92	71.446	-4.983	20,785	1.00 24.12	
	MOTA	868 CA HIS A	92	72,293	-6.015	20.243	1.00 26.71	<u>c</u>
5	ATOM	869 C HIS A	92	73.609	-6.251	21.071	1.00 29.30	с
	ATOM	870 O HIS A	92	73.983	-7.366	21.443	1.00 18.58	Q
	ATOM	871 CB HIS A	92	72.561	-5.682	18.775	1.00 22.23	<u>C</u>
	MOTA	872 CG HIS A	92	73.366	-6.720	18.077	1.00 26.32	ç
	MOTA	873 ND1 HIS A	92	72.798	-7.711	17.307	1.00 27.19	и
10	MOTA	874 CD2 HIS A	92	74.699	-6.978	18.106	1.00 21.95	c
	ATOM	875 CE1 HIS A	92	73.755	-8.487	16.826	1.00 23.66	c
	MOTA	876 NE2 HIS A	92	74.918	-8.062	17.296	1.00 17.36	N N
	ATOM	877 N ALA 2	93	74.328	-5.187	21.333	1.00 15.66	N
	MOTA	B7B CA ALA 2	93_	75.530	-5.301	22.110	1.00 11.88	С
15	ATOM	879 C ALA 2	93	75.222	-5,900	23.512	1.00 28.78	c
	ATOM	880 O ALA 2	93	75.912	-6.790	24.037	1.00 25.23	0
	MOTA	881 CB ALA 2	93	76.139	-3.959	22.221	1.00 6.30	С
	MOTA	882 N ALA	94	74.142	-5,442	24.113	1.00 18.82	N
	ATOM	883 CA ALA	94	73,777	-5.971	25.399	1.00 15.61	Ç
20	MOTA	884 C ALA	A 94	73.593	-7.503	25.301	1.00 28.39	C
	MOTA	885 O ALA	A 94	74.133	-8.263	26.099	1.00 21.67	<u> </u>
	MOTA	886 CB ALA	A 94	72.449	-5.279	25.911	1.00 18.46	<u>c</u>
	ATOM	887 N HIS	A 95	72.814	-7.966	24.329	1.00 26.35	N
	MOTA	888 CA HIS	A 95	72.551	-9.396	24.271	1.00 24.89	c
25	MOTA	889 C HIS	A 95	73.845	-10.176	24.140	1.00 22.81	c
	MOTA	890 O HIS	A 95	74.077	-11.136	24.865	1.00 21.44	0
	MOTA	891 CB HIS	A 95	71.571	-9.778	23,129	1.00 22.39	C
	MOTA	892 CG HIS	A 95	71.554	-11.250	22.831	1.00 28.73	c
	MOTA	893 ND1 HIS	A 95	70.979	-12.182	23.682	1.00 22.83	N
30	MOTA	894 CD2 HIS	A 95	72.159	-11,964	21.845	1.00 25.22	C
	ATOM	895 CE1 HIS	A 95	71.171	-13,397	23.196	1.00 22.72	<u>C</u>
	MOTA	896 NE2 HIS	A 95	71.911	-13.296	22.101	1.00 24.80	N
	MOTA	897 N GLN	A 96	74.709	-9.658	23.281	1.00 19.97	й
	MOTA	898 CA GLN	A 96	75.960	-10.299	22.917	1.00 22.27	<u> </u>
35	ATOM	899 C GLN	A 96	76.877	-10.353	24.086	1.00 26.58	
	MOTA	900 O GLN	A 96	77.836	-11.093	24.088	1.00 24.17	0
	MOTA	901 CB GLN	A 96	76.642	-9.492	21.818	1.00 23.38	<u>C</u>
	MOTA	902 CG GLN	A 96	77,043	-10.299	20.596	1.00 61.06	<u>C</u>
	MOTA	903 CD GLN	A 96	78,033	-9.557	19.675	1.00 75.83	С
40	MOTA	904 OE1 GLN	A 96	78.999	-8.941	20.131	1.00 56.89	0
	MOTA	905 NE2 GLN	A 96	77.815	-9.668	18.366	1.00100.00	N
	MOTA	906 N ASN	A 97	76,652	-9.500	25,060	1.00 22.15	N
	MOTA	907 CA ASN	A 97	77.537	-9.536	26.208	1.00 14.74	<u>c</u>
	MOTA	908 C ASN	A 97	76.732	-10.022	27.387	1,00 29.78	C
45	MOTA	909 O ASN	A 97	77,049	-9.762	28.564	1.00 27.09	0 0

	MOTA	910 CB ASN A 97	78.241 -8.201 26.462 1.00 12.93	<u>c</u>
	ATOM	911 CG ASN A 97	79.260 -7.897 25.407 1.00 24.91	<u>c</u>
	MOTA	912 OD1 ASN A 97	80.331 -8.518 25.375 1.00 57.17	<u>o</u>
	MOTA	913 ND2 ASN A 97	78.839 -7.135 24.392 1.00 34.88	N
5	ATOM	914 N ASP A 98	75,666 -10.732 27.055 1.00 27.98	N
	MOTA	915 CA ASP A 98	74.907 ~11.361 28.089 1.00 29.25	<u>C</u>
	ATOM	916 C ASP A 98	74,400 -10,379 29,164 1.00 37,53	<u>c</u>
	ATOM	917 O ASP A 98	74.505 -10.634 30.367 1.00 36.42	0
	ATOM	918 CB ASP A 98	75.791 -12.450 28.700 1.00 36.37	<u>c</u>
10	ATOM	919 CG ASP A 98	75.016 -13.712 29.053 1.00 88.62	c
	ATOM	920 OD1 ASP A 98	73.775 -13.749 28.877 1.00 82.53	0
	MOTA	921 OD2 ASP A 98	75.656 ~14.670 29.542 1.00100.00	0
	MOTA	922 N VAL A 99	73.879 -9.235 28.730 1.00 27.13	N
	ATOM	923 CA VAL A 99	73.157 -8.351 29.635 1.00 21.57	<u>c</u>
15	MOTA	924 C VAL A 99	71.706 -8.868 29,530 1.00 16.15	<u>.</u> <u>C</u>
	ATOM	925 O VAL A 99	71.159 -9.088 28.422 1.00 19.47	<u> </u>
	MOTA	926 CB VAL A 99	73.264 -6.900 29.206 1.00 24.18	<u>c</u>
	MOTA	927 CG1 VAL A 99	72.517 -6.015 30.198 1.00 14.58	<u>C</u>
	MOTA	928 CG2 VAL A 99	74.720 -6.515 29.225 1.00 30.10	<u></u> c
20	MOTA	929 N ASN A 100	71.149 -9.262 30.662 1.00 17.39	N
	MOTA	930 CA ASN A 100	69.852 -9.925 30.613 1.00 25.77	<u>c</u>
	ATOM	931 C ASN A 100	68.648 -9.034 30.910 1.00 24.95	c
	MOTA	932 O ASN A 100	67.498 -9.377 30.582 1.00 20.88	0
	ATOM	933 CB ASN A 100	69.846 -11.157 31.527 1.00 14.98	<u>c</u>
25	MOTA	934 CG ASN A 100	68.724 -12.112 31.180 1.00 20.38	<u>c</u>
	MOTA	935 OD1 ASN A 100	68.737 -12.709 30.100 1.00 29.59	0
	MOTA	936 ND2 ASN A 100	67,716 -12,240 32,076 1.00 16,35	N
	MOTA	937 N LYS A 101	68.941 -7.923 31.584 1.00 17.91	N
	MOTA	938 CA LYS A 101	67,970 ~6.916 31,994 1.00 25.43	<u>C</u>
30	MOTA	939 C LYS A 101	68,107 -5.510 31.323 1.00 25.29	<u>c</u>
	MOTA	940 O LYS A 101	69.151 -4.850 31,377 1.00 19.88	0
	MOTA	941 CB LYS A 101	67,996 -6,807 33,521 1.00 29.28	c
	MOTA	942 CG LYS A 101	67,464 -8.054 34.205 1.00 9.31	<u>c</u>
	MOTA	943 CD LYS A 101	67,218 -7,719 35,668 1,00 38,93	c
35	MOTA	944 CE LYS A 101	66.206 -6.569 35.885 1.00 13.38	c
	<u>ATOM</u>	945 NZ LYS A 101	64.750 -7.006 35.825 1.00 15.26	N
	MOTA	946 N LEU A 102	67.013 -5.043 30.732 1.00 22.22	N
	MOTA	947 CA LEU A 102	67,003 -3.744 30.092 1.00 15.40	c
	MOTA	948 C LEU A 102	65,612 -3.115 30,156 1,00 18.55	
40	MOTA	949 O LEU A 102	64.590 -3,811 30,102 1.00 18.92	0
	MOTA	950 CB LEU A 102	67,465 -3,898 28,636 1,00 11,23	c
	MOTA	951 CG LEU A 102	67.553 -2.711 27.651 1.00 15.51	
	MOTA	952 CD1 LEU A 102	68.628 -2.985 26.559 1.00 9.65	
	MOTA	953 CD2 LEU A 102	66,162 -2,407 26,995 1,00 13,10	c
45	MOTA	954 N LEU A 103	65.595 -1.798 30.318 1.00 17.05	N

	ATOM	955	CA_	LEU	A 103	64	356	-1.036	30.265	1.00	16.23	<u>C</u>
	ATOM	956	_C	LEU	A 103	64	346	-0.072	29.046	1,00	19.65	<u>C</u>
	ATOM	957	0	LEU	A 103	65	.215	0.789	28.875	1.00	19.68	0
	ATOM	958	СВ	LEU	A 103	64	.099	-0.289	31.562	1.00	12.28	<u>C</u>
5	MOTA	959	CG	LEU	A 103	62	.686	0.259	31.594	1.00	14.13	C
	MOTA	960	CD1	LEU	A 103	61	.645	-0.822	31.902	1.00	10.31	c
	ATOM	961	CD2	LEU	A 103	62	.646	1.360	32.601	1.00	12.30	c
	ATOM	962	N	PHE	A 104	63	.417	-0.333	28,140	1.00	16.41	N
	MOTA	963	CA	PHE	A 104	63	.215	0.486	26.956	1.00	18.32	с
10	MOTA	964	С	PHE	A 104	52	.126	1.546	27.249	1,00	21.85	c
	MOTA	965	0_	PHE	A 104	. 61	.168	1.271	27.992	1.00	18.36	0
	MOTA	966	СВ	PHE	A 104	62	.796	-0.386	25.793	1.00	9.86	c
	MOTA	967	CG	PHE	A 104	62	.732	0.348	24.508	1.00	16.81	. <u>c</u>
	MOTA	968	CD1	PHE	A 104	63	,894	0,714	23.840	1.00	25.04	c
15	ATOM	969	CD2	PHE	A 104	61	.511	0.795	24.005	1.00	22.59	С
	ATOM	970	CE1	PHE	A 104	63	.836	1.448	22.619	1.00	31.26	c
	ATOM	971	CE2	PHE	A 104	61	.449	1.535	22.814	1.00	15.59	Ç
	ATOM	972	CZ	PHE	A 104	62	.625	1.895	22.139	1.00	11.67	Ç
	MOTA	973	N	LEU	A 105	62	.341	2.762	26.734	1.00	20.33	N
20	ATOM	974	CA	LEU	A 105	61	.416	3.897	26.904	1.00	18.10	c
	MOTA	975	С	LEU	A 105	60	.711	4.237	25.634	1.00	17.04	c
	MOTA	976	٥	LEU	A 105	61	.315	4.680	24.665	1.00	18.83	0
	MOTA	977	СВ	LEU	A 105	62	.178	5,146	27.214	1.00	17.49	c
	MOTA	978	ÇG	LEU	A 105	62	.434	5.544	28.644	1.00	27.17	c
25	ATOM	979	CD1	LEU	A 105	62	.630	4.349	29.574	1.00	19.16	
	MOTA	980	CD2	LEU	A 105	63	688	6.347	28.529	1.00	23.59	с
	MOTA	981	N	GLY	A 106	55	407	4.153	25.652	1,00	20.66	N
	MOTA	982	ÇA	GLY	A 106	58	3.679	4.536	24.455	1.00	21.03	С
	MOTA	983	С	GLY	A 106	51	080	5.935	24.597	1.00	17,32	c
30	MOTA	984	<u> </u>	GLY	A 106	5	3.690	6.858	25.113	1.00	26.89	0
	MOTA	985	N	SER	A 107	51	5.831	6.047	24.219	1.00	22,05	N
	MOTA	986	CA	SER	A 107	5	5,177	7.317	24.288	1.00	22.12	<u>C</u>
	ATOM	987	С	SER	A 107	5	1.686	7.212	23.923	1.00	19.06	Ç
	MOTA	988	0	SER	A 107	5	4.314	6.545	22.963	1.00	27.42	0
35	MOTA	989	СВ	SER	A 107	5	6.882	8.232	23.300	1.00	20.99	c
	MOTA	990	OG.	SER	A 107	. 5	5.947	9.133	22,776	1.00	42.85	0
	MOTA	991	N	SER	A 108	5	3.826	7.890	24.671	1.00	27.42	N
	MOTA	992	CA	SER	A 108	5	2.382	7.947	24.339	1.00	26.43	ç
	MOTA	993	С	SER	A 108	5	2.144	8.259	22.842	1.00	30.97	ç
40	MOTA	994	0	SER	A 108	5	1.242	7.709	22.217	1.00	33.46	0
	MOTA	995	СВ	SER	A 108	5	1.710	9.072	25.144	1,00	19.87	c
	MOTA	996	OG	SER	A 108	5	2.495	10.266	25,071	1.00	70.88	
	MOTA	997	N_	CYS	A 109	5	2.927	9.180	22.278	1.00	24.73	N
	ATOM	998	CA	CY5	A 109	5	2.728	9.549	20,880	1.00	25.61	c
45	MOTA	999	C	CYS	A 109	5	2.970	8,482	19.815	1,00	21,29	с

ATCM 1000 C CYS A 109 53.367 8.737 18.623 1.00 31.31 0 ATCM 1001 CB CYS A 109 53.369 10.899 20.544 1.00 39.55 C ATCM 1002 BG CYS A 109 53.165 11.077 20.847 1.00 49.24 S ATCM 1002 N ILE A 110 53.101 7.264 20.258 1.00 18.31 N 5 ATCM 1003 C LILE A 110 53.229 6.150 19.379 1.00 28.10 C ATCM 1005 C ILE A 110 53.879 3.715 19.072 1.00 18.31 S ATCM 1006 C ILE A 110 51.895 4.592 18.268 1.00 16.52 O ATCM 1007 CE ILE A 110 51.895 4.592 18.268 1.00 16.52 O ATCM 1009 CG1 ILE A 110 53.604 5.510 20.136 1.00 40.455 C ATCM 1009 CG2 ILE A 110 53.879 3.715 19.875 1.00 61.33 C ATCM 1010 CD1 ILE A 110 53.879 3.715 19.875 1.00 61.33 C ATCM 1010 CD1 ILE A 110 50.895 5.822 18.289 1.00 14.91 N ATCM 1011 N TYR A 111 49.530 5.227 19.678 1.00 13.96 C ATCM 1011 C TTR A 111 49.563 5.262 1.00 10.92.74 C ATCM 1013 C TTR A 111 49.563 5.227 19.678 1.00 13.96 C ATCM 1013 C TTR A 111 49.302 5.271 19.678 1.00 13.96 C ATCM 1015 CB TTR A 111 49.302 5.227 19.678 1.00 13.96 C ATCM 1015 CB TTR A 111 49.303 5.231 18.459 1.00 14.91 N ATCM 1016 CD2 TTR A 111 49.303 5.221 10.00 3.63 C ATCM 1016 CD2 TTR A 111 49.303 5.468 20.921 1.00 9.73 C ATCM 1017 CD1 TYR A 111 49.303 5.468 20.921 1.00 9.73 C ATCM 1018 CD2 TTR A 111 49.305 5.483 1.00 14.94 C ATCM 1018 CD2 TTR A 111 49.303 5.468 20.921 1.00 9.73 C ATCM 1018 CD2 TTR A 111 49.303 5.468 20.921 1.00 9.73 C ATCM 1018 CD2 TTR A 111 49.303 5.468 20.921 1.00 9.73 C ATCM 1020 CE2 TTR A 111 49.303 5.468 20.921 1.00 9.73 C ATCM 1020 CE2 TTR A 111 49.303 5.468 20.921 1.00 9.73 C ATCM 1020 CE2 TTR A 111 49.303 5.468 20.921 1.00 9.73 C ATCM 1020 CE2 TTR A 111 49.303 5.468 20.921 1.00 9.73 C ATCM 1020 CE2 TTR A 111 49.303 1.559 21.939 1.00 9.73 C ATCM 1020 CE2 TTR A 111 49.303 1.559 21.939 1.00 9.73 C ATCM 1020 CE2 TTR A 111 49.303 1.559 21.939 1.00 9.73 C ATCM 1020 CE2 TTR A 111 49.879 1.00 1.00 1.00 6.53 C ATCM 1022 C D FRO A 112 46.895 3.343 16.769 1.00 11.97 C ATCM 1022 C D FRO A 112 46.895 3.343 16.769 1.00 11.97 C ATCM 1023 C LYS A 113 41.946 9.887 1.159 1.00 11.97 C ATCM 1034 C				_	100	E2 063	0 727	10 622	1 00 21 21	0
ATCH 1002 SG CYS A 109 55.153 11.077 20.847 1.00 49.24 S ATCH 1003 N ILE A 110 53.101 7.264 20.258 1.00 18.31 N 5 ATCH 1005 CA INE A 110 53.101 7.264 20.258 1.00 18.31 N ATCH 1005 C INE A 110 51.977 5.489 19.022 1.00 15.38 G ATCH 1006 O INE A 110 51.977 5.489 19.022 1.00 15.38 G ATCH 1006 O INE A 110 51.875 4.592 18.268 1.00 16.52 O ATCH 1007 CB INE A 110 54.154 5.153 20.206 1.00 40.45 C ATCH 1009 CGI INE A 110 53.879 3.715 19.875 1.00 39.02 C 10 ATCH 1009 CGI INE A 110 53.879 3.715 19.875 1.00 56.133 C ATCH 1010 CDI INE A 110 56.429 4.338 20.549 1.00 40.45 C ATCH 1010 CDI INE A 111 50.951 5.824 19.854 1.00 14.91 N ATCH 1011 CTYR A 111 49.500 5.227 19.678 1.00 13.96 C ATCH 1011 C TYR A 111 49.505 5.831 18.459 1.00 20.40 C 15 ATCH 1013 C TYR A 111 49.302 6.933 18.056 1.00 11.71 O ATCH 1015 CB TYR A 111 49.302 6.933 18.056 1.00 11.71 O ATCH 1017 CDI TYR A 111 49.755 5.088 20.921 1.00 9.63 C ATCH 1017 CDI TYR A 111 49.755 5.088 21.216 1.00 11.94 C ATCH 1017 CDI TYR A 111 49.755 5.088 21.216 1.00 11.94 C ATCH 1017 CDI TYR A 111 49.875 5.227 23.014 1.00 9.73 C ATCH 1010 CDI TYR A 111 49.875 5.788 21.938 1.00 9.73 C ATCH 1017 CDI TYR A 111 49.875 5.088 21.216 1.00 14.94 C ATCH 1017 CDI TYR A 111 49.875 5.088 21.216 1.00 14.95 C ATCH 1019 CDI TYR A 111 49.873 2.787 24.171 1.00 9.73 C ATCH 1020 CE2 TYR A 111 49.873 2.787 24.171 1.00 14.96 C ATCH 1020 CE2 TYR A 111 49.873 2.787 24.171 1.00 17.86 C ATCH 1020 CE2 TYR A 111 49.873 2.787 24.171 1.00 17.96 C ATCH 1020 CE2 TYR A 111 49.873 2.787 24.171 1.00 17.96 C ATCH 1020 CE2 TYR A 111 49.873 2.787 24.171 1.00 17.96 C ATCH 1021 CX TYR A 111 49.873 2.787 24.171 1.00 17.96 C ATCH 1023 C C PRO A 112 46.895 3.343 16.769 1.00 22.56 N ATCH 1024 CA PRO A 112 47.279 5.743 16.721 1.00 23.94 C ATCH 1027 CB PRO A 112 46.895 3.343 16.769 1.00 22.99 C ATCH 1027 CB PRO A 112 46.895 3.343 16.769 1.00 23.60 C ATCH 1031 C LYS A 113 44.966 9.887 17.524 1.00 46.14 C ATCH 1031 C LYS A 113 44.966 9.007 16.655 1.00 34.28 C ATCH 1033 C LYS A 113 44.966 9.007 16.655 1.00 34.28 C ATCH 1031 C LYS A		ATOM	1000	<u> </u>	CYS A 109	52.967				
ATCH 1003 N TIE A 110 53.101 7.264 20.258 1.00 18.31 N ATCH 1004 CA ILE A 110 53.329 6.150 19.379 1.00 28.10 C ATCH 1005 C ILE A 110 51.895 6.150 19.379 1.00 28.10 C ATCH 1006 O ILE A 110 51.895 4.592 18.268 1.00 16.52 O ATCH 1007 CB ILE A 110 54.154 5.153 20.206 1.00 40.45 C ATCH 1007 CB ILE A 110 54.154 5.153 20.206 1.00 40.45 C ATCH 1009 CG2 ILE A 110 55.604 5.510 20.136 1.00 39.02 C 10 ATCH 1010 CD1 ILE A 110 56.429 4.338 20.549 1.00 82.74 C ATCH 1010 CD1 ILE A 111 50.951 5.842 19.854 1.00 14.91 N ATCH 1011 N TYR A 111 50.951 5.842 19.854 1.00 14.91 N ATCH 1012 CA TYR A 111 49.630 5.227 19.678 1.00 11.3.96 C ATCH 1013 C TYR A 111 49.302 6.933 18.056 1.00 11.71 O ATCH 1016 CG TYR A 111 49.302 6.933 18.056 1.00 11.71 O ATCH 1017 CD1 TYR A 111 49.304 2.523 2.2365 1.00 14.94 C ATCH 1018 CD2 TYR A 111 49.304 2.232 3.150 2.238 1.00 9.73 C ATCH 1019 CG2 TYR A 111 49.304 2.232 3.150 2.236 1.00 14.94 C ATCH 1017 CD1 TYR A 111 49.304 2.273 23.014 1.00 9.73 C ATCH 1018 CD2 TYR A 111 49.344 2.273 23.014 1.00 14.96 C ATCH 1020 CE2 TYR A 111 49.344 2.272 1.00 14.96 C ATCH 1021 CZ TYR A 111 49.344 2.272 1.00 14.96 C ATCH 1021 CZ TYR A 111 49.344 2.272 2.100 14.96 C ATCH 1021 CZ TYR A 111 49.345 2.185 24.272 1.00 13.66 C ATCH 1022 OH TYR A 111 49.344 2.273 23.014 1.00 14.96 C ATCH 1023 N PRO A 112 46.589 7.111 16.988 1.00 17.82 C ATCH 1024 CA PRO A 112 46.589 7.111 16.988 1.00 17.82 C ATCH 1025 C PRO A 112 46.599 7.111 16.988 1.00 17.82 C ATCH 1027 CB PRO A 112 46.895 3.333 16.056 1.00 14.94 C ATCH 1028 CG PRO A 112 46.895 3.333 16.056 1.00 17.82 C ATCH 1027 CB PRO A 112 46.599 7.111 16.988 1.00 17.82 C ATCH 1027 CB PRO A 112 46.599 7.111 16.988 1.00 17.82 C ATCH 1028 CG PRO A 112 46.599 7.111 16.988 1.00 17.82 C ATCH 1027 CB PRO A 112 46.599 7.111 16.988 1.00 17.82 C ATCH 1031 CA LYS A 113 44.966 9.887 17.524 1.00 23.94 C ATCH 1032 CB LYS A 113 44.966 9.887 17.524 1.00 23.66 C ATCH 1033 O LYS A 113 44.966 9.887 17.524 1.00 24.37 C ATCH 1034 CB LYS A 113 44.969 9.887 17.526 1.00 18.40 C										
5 AROM 1004 CA ILLA 110 53,329 6,150 19,379 1,00 28,10 G AROM 1005 C ILLA 110 51,977 5,489 19,082 1,00 15,38 C AROM 1006 C ILLA 110 51,855 4,592 18,268 1,00 16,52 D AROM 1007 CB ILLA 110 51,855 4,592 18,268 1,00 16,52 D AROM 1008 CGI ILLA 110 53,879 3,715 19,875 1,00 40,45 C AROM 1009 CGZ ILLA 110 53,879 3,715 19,875 1,00 61,33 C AROM 1009 CGZ ILLA 110 53,879 3,715 19,875 1,00 61,33 C AROM 1010 CDI ILLA 110 56,429 4,338 20,549 1,00 82,74 C AROM 1011 N TYR A 111 49,630 5,227 19,678 1,00 13,96 C AROM 1012 CA TRA 111 49,630 5,227 19,678 1,00 13,96 C AROM 1013 C TYR A 111 48,956 5,831 18,459 1,00 20,40 C AROM 1013 C TYR A 111 48,956 5,831 18,459 1,00 20,40 C AROM 1015 CB TYR A 111 48,956 5,462 20,921 1,00 9,63 C AROM 1016 CG TYR A 111 48,956 5,462 20,921 1,00 9,73 C AROM 1016 CG TYR A 111 48,955 5,468 20,921 1,00 9,73 C AROM 1018 CD TYR A 111 48,955 5,468 20,921 1,00 9,73 C AROM 1018 CD TYR A 111 48,955 5,468 20,921 1,00 14,94 C AROM 1018 CD TYR A 111 48,955 5,468 20,921 1,00 9,73 C AROM 1019 CEI TRA 111 48,955 5,468 20,921 1,00 14,94 C AROM 1018 CD TYR A 111 48,955 5,468 20,921 1,00 14,96 C AROM 1019 CD TYR A 111 48,955 5,468 20,921 1,00 14,96 C AROM 1010 CD TYR A 111 48,955 5,468 20,921 1,00 14,96 C AROM 1010 CD TYR A 111 48,955 5,468 20,921 1,00 14,96 C AROM 1017 CDI TYR A 111 48,955 5,468 20,921 1,00 14,96 C AROM 1019 CDI TYR A 111 48,955 5,103 23,125 1,00 14,96 C AROM 1020 CEZ TYR A 111 49,344 2,273 23,014 1,00 6,53 C AROM 1020 CEZ TYR A 111 49,755 5,038 23,125 1,00 11,96 C AROM 1020 CEZ TYR A 111 49,873 2,787 24,171 1,00 17,86 C AROM 1021 CX TYR A 111 49,873 2,787 24,171 1,00 17,86 C AROM 1022 CH TYR A 111 49,873 2,787 25,177 1,00 13,66 C AROM 1025 C PRO A 112 46,589 7,111 16,988 1,00 17,82 C AROM 1026 C PRO A 112 46,589 7,111 16,988 1,00 17,82 C AROM 1027 CB PRO A 112 46,589 7,113 16,981 1,00 17,86 C AROM 1028 CG PRO A 112 46,589 7,113 16,988 1,00 17,82 C AROM 1030 N INYS A 113 44,496 9,887 7,752 1,00 15,69 C AROM 1031 CA INYS A 113 44,946 9,887 7,753 16,655 1,00 34,28 C AROM 1036 CD INS A 113 44,969 9,077 1										
ATOM 1005 C IIR A 110 51.875 5.489 19.082 1.00 15.38 C ATOM 1006 O ILE A 110 51.895 4.592 18.268 1.00 16.52 C ATOM 1007 CR IIR A 110 54.154 5.153 20.206 1.00 40.45 C ATOM 1008 CG1 ILE A 110 55.604 5.510 20.136 1.00 39.02 C 10 ATOM 1008 CG1 ILE A 110 55.604 5.510 20.136 1.00 39.02 C 10 ATOM 1009 CG2 IIR A 110 55.604 5.510 20.136 1.00 39.02 C 110 ATOM 1010 CD1 ILE A 110 56.429 4.338 20.549 1.00 82.74 C 10 ATOM 1010 CD1 ILE A 110 56.429 4.338 20.549 1.00 82.74 C 10 ATOM 1011 N TIR A 111 50.951 5.892 19.651 1.00 14.91 N 10 ATOM 1012 CA TIR A 111 49.530 5.227 19.678 1.00 14.91 N 10 ATOM 1013 C TIR A 111 49.556 5.831 18.459 1.00 20.40 C 15 ATOM 1013 C TIR A 111 49.956 5.831 18.459 1.00 20.40 C 15 ATOM 1013 C TIR A 111 49.956 5.831 18.459 1.00 9.63 C 17 ATOM 1016 CG TIR A 111 49.751 5.008 10.92 1.00 9.63 C 17 ATOM 1016 CG TIR A 111 49.717 4.550 22.065 1.00 14.94 C 17 ATOM 1016 CG TIR A 111 49.751 5.038 20.921 1.00 9.63 C 17 ATOM 1016 CG TIR A 111 49.751 5.038 20.921 1.00 9.73 C 17 ATOM 1016 CG TIR A 111 49.755 5.038 20.216 1.00 14.96 C 17 ATOM 1016 CG TIR A 111 49.755 5.038 20.216 1.00 14.96 C 17 ATOM 1019 CE1 TIR A 111 49.755 5.038 20.216 1.00 14.96 C 17 ATOM 1019 CE2 TIR A 111 49.755 5.038 20.216 1.00 14.96 C 17 ATOM 1019 CE2 TIR A 111 50.146 4.155 24.272 1.00 13.65 C 17 ATOM 1020 CE2 TIR A 111 50.266 1.927 25.157 1.00 13.65 C 17 ATOM 1020 CE2 TIR A 111 50.266 1.927 25.157 1.00 13.65 C 17 ATOM 1020 CE2 TIR A 111 50.266 1.927 25.157 1.00 13.65 C 17 ATOM 1020 CE2 TIR A 111 50.266 1.927 25.157 1.00 13.65 C 17 ATOM 1020 CE2 TIR A 111 50.266 1.927 25.157 1.00 13.65 C 17 ATOM 1020 CE2 TIR A 111 49.873 2.787 24.171 1.00 17.86 C 17 ATOM 1020 CE2 TIR A 111 49.873 2.787 24.171 1.00 17.86 C 17 ATOM 1020 CE2 TIR A 111 49.873 2.787 24.171 1.00 17.85 C 17 ATOM 1020 C PRO A 112 46.895 3.743 16.751 1.00 19.49 C 17 ATOM 1020 C PRO A 112 46.895 3.743 16.751 1.00 19.49 C 17 ATOM 1020 C PRO A 112 46.895 3.743 16.751 1.00 19.49 N 1 ATOM 1020 C 175 A 113 46.418 7.865 15.915 1.00 19.49 N 1 ATOM 1031 CA ITS A 113 46.418 7.865 15.915 1.00 1	-									
ATOM 1006 0 ILE A 110 51.895 4.592 18.268 1.00 16.52 0 ATOM 1007 CB ILE A 110 54.154 5.153 20.206 1.00 40.45 C ATOM 1008 CGI ILE A 110 55.604 5.510 22.136 1.00 39.02 C 10 ATOM 1009 CG2 ILE A 110 55.604 5.510 22.136 1.00 39.02 C ATOM 1010 CD1 ILE A 110 56.429 4.338 20.549 1.00 82.74 C ATOM 1011 N TTR A 111 50.951 5.842 19.854 1.00 14.91 N ATOM 1012 CA TTR A 111 49.630 5.227 19.678 1.00 13.96 C ATOM 1013 C TTR A 111 49.630 5.227 19.678 1.00 14.91 N ATOM 1014 O TTR A 111 49.702 6.933 18.056 1.00 11.71 O ATOM 1015 CB TTR A 111 49.102 6.933 18.056 1.00 11.71 O ATOM 1016 CG TTR A 111 49.117 4.550 22.065 1.00 14.94 C ATOM 1017 CD1 TTR A 111 49.395 5.1038 23.216 1.00 14.94 C ATOM 1018 CD2 TTR A 111 49.395 5.1038 23.216 1.00 14.95 C ATOM 1019 CEI TTR A 111 49.394 2.273 23.014 1.00 6.53 C ATOM 1020 CE2 TTR A 111 50.146 4.155 24.272 1.00 13.66 C ATOM 1021 CZ TTR A 111 50.266 1.927 25.157 1.00 13.65 C ATOM 1022 CR TTR A 111 50.266 1.927 25.157 1.00 13.65 C ATOM 1023 N PRO A 112 47.974 5.145 16.988 1.00 13.94 C ATOM 1024 CA PRO A 112 46.599 7.111 1.69.88 1.00 13.94 C ATOM 1026 CF PRO A 112 46.597 7.453 18.151 1.00 19.72 C ATOM 1027 CB PRO A 112 46.597 7.153 18.151 1.00 19.72 C ATOM 1028 CG PRO A 112 46.597 7.153 18.151 1.00 19.72 C ATOM 1020 CF PRO A 112 46.597 7.153 18.151 1.00 19.72 C ATOM 1020 CF PRO A 112 46.597 7.153 18.151 1.00 19.72 C ATOM 1023 CF PRO A 112 46.597 7.153 18.151 1.00 19.72 C ATOM 1024 CA PRO A 112 46.597 7.153 18.151 1.00 19.72 C ATOM 1025 CF PRO A 112 46.597 7.153 18.151 1.00 19.72 C ATOM 1030 N LYS A 113 46.418 7.866 15.915 1.00 14.98 C ATOM 1030 CF PRO A 112 46.597 7.153 18.155 1.00 19.38 N ATOM 1030 CF PRO A 112 46.597 7.153 18.086 1.00 16.10 C ATOM 1030 N LYS A 113 46.418 7.866 15.915 1.00 19.78 C ATOM 1030 N LYS A 113 46.595 1.343 16.759 1.00 23.50 C ATOM 1030 N LYS A 113 46.919 1.124 14.477 1.00 43.78 C ATOM 1030 CF LYS A 113 46.919 1.124 14.477 1.00 43.78 C ATOM 1030 CF LYS A 113 46.919 1.124 14.477 1.00 43.78 C ATOM 1030 N LYS A 113 46.919 1.124 14.477 1.00 43.78 C ATOM 1030 CF LYS A 113	>									
ATOM 1007 CB ILE A 110 54.154 5.153 20.206 1.00 40.45 C ATOM 1008 CG1 ILE A 110 55.604 5.510 20.136 1.00 39.02 C ATOM 1009 CG2 ILE A 110 53.879 3.715 19.875 1.00 61.33 C ATOM 1011 N TYR A 111 50.951 5.842 4.338 20.549 1.00 82.74 C ATOM 1011 N TYR A 111 50.951 5.842 19.854 1.00 14.91 N ATOM 1012 CA TYR A 111 49.630 5.227 19.678 1.00 13.96 C ATOM 1013 C TYR A 111 49.956 5.831 18.459 1.00 20.40 C ATOM 1014 O TYR A 111 49.302 6.933 18.056 1.00 11.71 O ATOM 1015 CB TYR A 111 49.302 6.933 18.056 1.00 11.71 O ATOM 1016 CG TYR A 111 49.117 4.550 22.065 1.00 14.94 C ATOM 1017 CD1 TYR A 111 49.755 5.038 23.216 1.00 14.96 C ATOM 1018 CD2 TYR A 111 49.755 5.038 23.216 1.00 14.96 C ATOM 1019 CE1 TYR A 111 49.344 2.273 23.014 1.00 6.53 C ATOM 1020 CE2 TYR A 111 49.887 2.787 24.171 1.00 17.86 C ATOM 1020 CE2 TYR A 111 49.887 2.787 24.171 1.00 17.86 C ATOM 1020 CE2 TYR A 111 49.887 2.787 24.171 1.00 17.86 C ATOM 1020 CE2 TYR A 111 50.146 4.155 24.272 1.00 13.666 C ATOM 1020 CE2 TYR A 111 50.266 1.927 25.157 1.00 11.37 O ATOM 1020 CE2 TYR A 112 47.279 5.743 16.721 1.00 23.44 C ATOM 1020 CE PRO A 112 47.279 5.743 16.721 1.00 23.44 C ATOM 1020 CE PRO A 112 47.593 3.733 18.115 1.00 19.78 C ATOM 1020 CE PRO A 112 46.589 7.111 16.988 1.00 17.82 C ATOM 1020 CE PRO A 112 46.589 7.111 16.988 1.00 17.82 C ATOM 1020 CE PRO A 112 46.589 7.111 16.988 1.00 17.82 C ATOM 1020 CE PRO A 112 46.589 7.111 16.988 1.00 17.82 C ATOM 1020 CE PRO A 112 46.589 7.111 16.988 1.00 17.82 C ATOM 1020 CE PRO A 112 46.589 7.111 16.988 1.00 17.82 C ATOM 1020 CE PRO A 112 46.589 7.111 16.988 1.00 17.82 C ATOM 1020 CE PRO A 112 46.589 7.111 16.988 1.00 17.82 C ATOM 1020 CE PRO A 112 46.589 7.111 16.988 1.00 17.82 C ATOM 1020 CE PRO A 112 46.590 7.111 16.988 1.00 17.82 C ATOM 1020 CE PRO A 112 46.590 7.111 16.988 1.00 17.82 C ATOM 1020 CE PRO A 112 46.590 7.111 16.988 1.00 17.82 C ATOM 1030 CE PRO A 112 46.590 7.111 16.988 1.00 17.82 C ATOM 1030 CE PRO A 112 46.590 7.111 16.988 1.00 17.82 C ATOM 1030 CE PRO A 112 46.590 7.111 16.988 1.00 17.82 C ATOM 1030 CE PRO										
ATCH 1008 CG1 ILE A 110 55.604 5.510 20.136 1.00 39.02 C ATCH 1009 CG2 ILE A 110 53.879 3.715 19.875 1.00 61.33 C ATCH 1010 CD1 ILE A 110 56.429 4.338 20.549 1.00 82.74 C ATCH 1011 N TYR A 111 50.951 5.842 19.854 1.00 14.91 N ATCH 1012 CA TYR A 111 49.630 5.227 19.678 1.00 13.96 C ATCH 1013 C TYR A 111 49.530 5.227 19.678 1.00 13.96 C ATCH 1014 O TYR A 111 49.302 6.933 18.056 1.00 11.71 O ATCH 1015 CB TYR A 111 49.763 5.469 20.921 1.00 9.63 C ATCH 1016 CD TYR A 111 49.763 5.469 20.921 1.00 9.63 C ATCH 1017 CD1 TYR A 111 49.755 5.038 23.216 1.00 14.94 C ATCH 1019 CE1 TYR A 111 49.393 2.787 24.272 1.00 14.96 C ATCH 1019 CE2 TYR A 111 49.394 2.273 23.014 1.00 6.53 C ATCH 1020 CE2 TYR A 111 49.394 2.273 23.014 1.00 6.53 C ATCH 1021 CZ TYR A 111 49.873 2.787 24.271 1.00 13.66 C ATCH 1022 OH TYR A 111 49.873 2.787 24.271 1.00 13.66 C ATCH 1022 OH TYR A 111 50.166 1.927 25.157 1.00 11.37 O ATCH 1023 N PRO A 112 47.974 5.145 17.872 1.00 23.44 C ATCH 1027 CB PRO A 112 46.599 7.111 1.00 17.86 C ATCH 1027 CB PRO A 112 46.599 7.111 1.00 17.82 C ATCH 1027 CB PRO A 112 46.599 7.111 1.00 17.80 C ATCH 1028 CG PRO A 112 46.599 7.111 1.00 17.80 C ATCH 1029 CD PRO A 112 46.599 7.111 1.00 17.85 C ATCH 1020 CD PRO A 112 46.599 7.111 1.00 17.80 C ATCH 1023 N PRO A 112 46.599 7.111 1.00 17.80 C ATCH 1023 C PRO A 112 46.99 4.644 16.252 1.00 15.69 C ATCH 1023 C PRO A 112 46.99 4.644 16.252 1.00 15.69 C ATCH 1023 C PRO A 112 46.99 4.644 16.252 1.00 17.82 C ATCH 1023 C PRO A 112 46.99 4.644 16.252 1.00 15.69 C ATCH 1033 C D LYS A 113 44.96 9.887 17.524 1.00 23.44 C ATCH 1033 C D LYS A 113 44.96 9.887 17.524 1.00 23.44 C ATCH 1033 C D LYS A 113 44.96 9.887 17.525 1.00 19.48 N ATCH 1036 CD LYS A 113 44.96 9.887 17.525 1.00 19.48 N ATCH 1036 CD LYS A 113 44.96 9.887 17.525 1.00 19.48 N ATCH 1036 CD LYS A 113 44.96 9.887 17.525 1.00 10.00 C ATCH 1037 CE LYS A 113 45.91 1.194 1.124 1.477 1.00 46.14 O ATCH 1036 N LEU A 114 43.995 8.103 1.625 1.00 24.37 C ATCH 1040 C LEU A 114 43.995 8.103 1.00 1.00 24.37 C										
10 ATCM 1019 CG2 ILE A 110 53.879 3.715 19.875 1.00 61.33 C ATCM 1011 CD1 ILE A 110 56.429 4.338 20.549 1.00 82.74 C ATCM 1011 N TYR A 111 50.951 5.842 19.854 1.00 14.91 N ATCM 1012 CA TYR A 111 49.630 5.227 19.678 1.00 13.96 C ATCM 1013 C TYR A 111 49.630 5.227 19.678 1.00 13.96 C ATCM 1013 C TYR A 111 49.530 5.227 19.678 1.00 13.96 C ATCM 1014 O TYR A 111 49.302 6.933 18.056 1.00 11.71 D ATCM 1015 CB TYR A 111 49.302 6.933 18.056 1.00 11.71 D ATCM 1016 CG TYR A 111 49.302 6.933 18.056 1.00 11.71 D ATCM 1017 CD1 TYR A 111 49.177 4.550 22.065 1.00 14.94 C ATCM 1018 CD2 TYR A 111 49.755 5.038 23.216 1.00 14.94 C ATCM 1019 CE1 TYR A 111 49.755 5.038 23.216 1.00 14.96 C ATCM 1019 CE1 TYR A 111 49.755 5.038 23.216 1.00 14.96 C ATCM 1020 CE2 TYR A 111 49.755 5.038 23.216 1.00 14.96 C ATCM 1021 CZ TYR A 111 49.873 2.787 24.171 1.00 13.66 C ATCM 1022 CH TYR A 111 49.873 2.787 24.171 1.00 13.66 C ATCM 1022 CH TYR A 111 49.873 2.787 24.171 1.00 13.66 C ATCM 1022 CH TYR A 111 49.873 2.787 24.171 1.00 13.66 C ATCM 1022 CH TYR A 111 50.146 4.155 24.272 1.00 13.66 C ATCM 1022 CH TYR A 112 49.873 2.787 24.171 1.00 13.86 C ATCM 1022 CH TYR A 112 49.873 1.7872 1.00 23.44 C ATCM 1025 C PRO A 112 47.974 5.145 17.872 1.00 23.44 C ATCM 1025 C PRO A 112 47.974 5.145 17.872 1.00 23.44 C ATCM 1025 C PRO A 112 46.895 7.111 1.6988 1.00 17.82 C ATCM 1026 C PRO A 112 46.895 7.111 1.6988 1.00 17.82 C ATCM 1027 CB PRO A 112 46.895 3.343 16.769 1.00 22.83 C ATCM 1028 CG PRO A 112 46.895 3.343 16.769 1.00 23.94 C ATCM 1030 N INS A 113 46.418 7.866 15.915 1.00 19.48 N ATCM 1030 N INS A 113 46.418 7.866 15.915 1.00 19.48 N ATCM 1030 C LYS A 113 45.759 3.733 18.086 1.00 16.10 C ATCM 1030 C LYS A 113 45.759 3.735 18.055 1.00 34.28 C ATCM 1035 CG LYS A 113 45.875 9.735 14.593 1.00 30.04 C ATCM 1035 CG LYS A 113 45.875 9.735 14.593 1.00 30.04 C ATCM 1035 CG LYS A 113 45.875 9.735 14.593 1.00 30.00 C ATCM 1035 CG LYS A 113 45.875 9.735 14.593 1.00 20.00 C ATCM 1035 CG LYS A 113 45.875 9.735 14.593 1.00 20.00 C ATCM 1035 CG LYS A 113 45.865 1.00 13.		MOTA								
ATCM 1010 CDJ ILE A 110 56.429 4.338 20.549 1.00 82.74 C ATCM 1011 N TYR A 111 50.951 5.842 19.854 1.00 14.91 N ATCM 1012 CA TYR A 111 49.630 5.227 19.678 1.00 14.91 N ATCM 1013 C TYR A 111 49.630 5.227 19.678 1.00 14.91 N ATCM 1013 C TYR A 111 49.956 5.831 18.459 1.00 20.40 C ATCM 1014 O TYR A 111 49.763 5.468 20.921 1.00 9.63 C ATCM 1015 CB TYR A 111 49.763 5.468 20.921 1.00 9.63 C ATCM 1016 CG TYR A 111 49.917 4.550 22.065 1.00 14.94 C ATCM 1017 CDJ TYR A 111 49.755 5.038 23.216 1.00 14.95 C ATCM 1018 CDZ TYR A 111 49.755 5.038 23.216 1.00 14.95 C ATCM 1019 CEI TYR A 111 49.755 5.038 23.216 1.00 14.95 C ATCM 1020 CEZ TYR A 111 49.873 2.787 24.171 1.00 17.86 C ATCM 1022 CZ TYR A 111 49.873 2.787 24.171 1.00 17.86 C ATCM 1022 CZ TYR A 111 50.266 1.927 25.157 1.00 11.37 O ATCM 1022 CH TYR A 111 50.266 1.927 25.157 1.00 11.37 O ATCM 1022 CH TYR A 112 47.974 5.145 17.872 1.00 22.56 N ATCM 1024 CA PRO A 112 47.974 5.145 17.872 1.00 22.56 N ATCM 1025 C PRO A 112 46.899 7.111 16.988 1.00 17.82 C ATCM 1026 O PRO A 112 46.899 7.111 16.988 1.00 17.82 C ATCM 1027 CB PRO A 112 46.895 3.343 16.769 1.00 22.03 C ATCM 1028 CG PRO A 112 46.895 3.373 18.155 1.00 19.77 O ATCM 1020 N LYS A 113 46.418 7.866 15.915 1.00 19.72 O ATCM 1030 N LYS A 113 46.793 3.733 18.086 1.00 16.10 C ATCM 1031 CA LYS A 113 46.793 9.167 15.994 1.00 23.50 C ATCM 1033 C LYS A 113 46.793 9.167 15.994 1.00 23.50 C ATCM 1033 C LYS A 113 46.793 9.167 15.994 1.00 23.50 C ATCM 1034 CR LYS A 113 45.793 9.167 15.994 1.00 23.50 C ATCM 1035 CG LYS A 113 46.219 11.124 19.477 1.00 43.78 C ATCM 1036 CD LYS A 113 45.381 11.991 13.515 1.0010.00 C ATCM 1037 CE LYS A 113 43.480 13.625 13.304 1.00100.00 C ATCM 1038 NZ LYS A 113 43.980 13.625 13.304 1.00100.00 C ATCM 1039 N LEU A 114 43.981 8.103 16.750 1.00 26.33 N ATCM 1040 CA LEU A 114 42.083 6.792 17.750 1.00 18.44 C ATCM 1040 CA LEU A 114 42.083 6.792 17.750 1.00 18.44 C		MOTA								
ATCM 1011 N TYR A 111 50.951 5.842 19.854 1.00 14.91 N ATCM 1012 CA TYR A 111 49.630 5.227 19.678 1.00 13.96 C ATCM 1013 C TYR A 111 49.930 5.227 19.678 1.00 13.96 C ATCM 1014 O TYR A 111 49.302 6.933 18.056 1.00 11.71 D ATCM 1015 CB TYR A 111 49.302 6.933 18.056 1.00 11.71 D ATCM 1016 CG TYR A 111 49.1763 5.468 20.921 1.00 9.63 C ATCM 1016 CG TYR A 111 49.174 4.550 22.065 1.00 14.94 C ATCM 1017 CD1 TYR A 111 49.755 5.038 23.216 1.00 9.73 C ATCM 1018 CD2 TYR A 111 49.755 5.038 23.216 1.00 14.96 C ATCM 1019 CE1 TYR A 111 49.344 2.273 23.014 1.00 6.53 C ATCM 1020 CE2 TYR A 111 49.887 23.273 23.014 1.00 6.53 C ATCM 1021 CZ TYR A 111 49.873 2.787 24.771 1.00 13.66 C ATCM 1022 CD TYR A 111 50.146 4.155 24.272 1.00 13.66 C ATCM 1022 OH TYR A 111 50.266 1.927 25.157 1.00 11.37 C ATCM 1023 N PRO A 112 47.974 5.145 17.872 1.00 22.56 N ATCM 1024 CA PRO A 112 47.279 5.743 16.721 1.00 23.94 C ATCM 1025 C PRO A 112 46.589 7.111 16.988 1.00 17.82 C ATCM 1027 CB FRO A 112 46.895 3.343 16.769 1.00 19.72 C ATCM 1028 CG PRO A 112 46.895 3.343 16.769 1.00 19.72 C ATCM 1028 CG PRO A 112 46.895 3.343 16.769 1.00 19.72 C ATCM 1028 CG PRO A 112 46.990 4.644 16.252 1.00 15.69 C ATCM 1030 N LYS A 113 46.418 7.866 15.915 1.00 19.72 C ATCM 1030 C LYS A 113 44.396 9.077 16.655 1.00 14.94 C ATCM 1031 CA LYS A 113 44.396 9.077 16.655 1.00 34.28 C ATCM 1032 C LYS A 113 44.396 9.077 16.655 1.00 34.28 C ATCM 1034 CB LYS A 113 44.396 9.077 16.655 1.00 34.28 C ATCM 1035 CG LYS A 113 44.396 9.077 16.655 1.00 34.28 C ATCM 1036 CD LYS A 113 44.396 9.077 16.655 1.00 34.28 C ATCM 1037 CE LYS A 113 43.480 13.625 13.304 1.00100.00 N ATCM 1039 N LEU A 114 43.591 8.103 16.250 1.00 23.50 C ATCM 1039 N LEU A 114 43.591 8.103 16.250 1.00 23.50 C ATCM 1039 N LEU A 114 43.591 8.103 16.250 1.00 23.50 C ATCM 1039 N LEU A 114 43.591 8.103 16.250 1.00 26.633 N ATCM 1040 CA LEU A 114 42.267 7.957 16.833 1.00 34.04 C	10	MOTA	1009	CG2						
ATCH 1012 CA TYR A 111 49.630 5.227 19.678 1.00 13.96 C ATCH 1013 C TYR A 111 48.956 5.831 18.459 1.00 20.40 C 15 ATCM 1014 0 TYR A 111 49.302 6.933 18.056 1.00 11.71 0 ATCM 1015 CB TYR A 111 49.763 5.468 20.921 1.00 9.63 C ATCM 1016 CG TYR A 111 49.117 4.550 22.065 1.00 14.94 C ATCM 1017 CD1 TYR A 111 49.717 4.550 22.065 1.00 14.96 C ATCM 1018 CD2 TYR A 111 49.755 5.038 23.216 1.00 14.96 C ATCM 1019 CE1 TYR A 111 49.755 5.038 23.216 1.00 14.96 C ATCM 1020 CE2 TYR A 111 49.873 2.787 24.171 1.00 5.53 C ATCM 1021 CZ TYR A 111 49.873 2.787 24.171 1.00 17.86 C ATCM 1022 CH TYR A 111 49.873 2.787 24.171 1.00 17.86 C ATCM 1022 CH TYR A 111 49.873 2.787 24.171 1.00 17.86 C ATCM 1022 CH TYR A 112 47.974 5.145 17.872 1.00 23.94 C ATCM 1025 C PRO A 112 46.589 7.111 15.988 1.00 17.82 C ATCM 1027 CB PRO A 112 46.290 4.644 16.252 1.00 15.69 C ATCM 1027 CB PRO A 112 46.895 3.343 16.769 1.00 22.83 C ATCM 1028 CG PRO A 112 46.895 3.343 16.769 1.00 22.83 C ATCM 1028 CG PRO A 112 46.895 3.373 18.086 1.00 17.82 C ATCM 1028 CG PRO A 112 46.99 4.644 16.252 1.00 15.69 C ATCM 1030 N 1YS A 113 46.418 7.866 15.915 1.00 19.48 N ATCM 1031 CA 1YS A 113 46.418 7.866 15.915 1.00 19.48 N ATCM 1032 C 1YS A 113 46.99 9.077 16.655 1.00 34.28 C ATCM 1034 CB 1YS A 113 45.675 9.725 14.593 1.00 23.50 C ATCM 1036 CD 1YS A 113 44.096 9.077 16.655 1.00 34.28 C ATCM 1038 NZ 1YS A 113 44.096 9.077 16.655 1.00 34.28 C ATCM 1039 N 1YS A 113 45.675 9.725 14.593 1.00 10.00 00 C ATCM 1039 N 1YS A 113 44.361 12.836 14.250 1.00100.00 C ATCM 1039 N 1EU A 113 43.80 13.625 13.304 1.00100.00 C ATCM 1039 N 1EU A 114 42.267 7.957 16.833 1.00 20.655 C ATCM 1042 C LEU A 114 42.267 7.957 16.833 1.00 24.37 C		MOTA		CD1						
NTON		ATOM		N						
15 ATOM 1014 O TYR A 111 49,302 6.933 18.056 1.00 11.71 0 ATOM 1015 CB TYR A 111 48.763 5.468 20.921 1.00 9.63 C ATOM 1016 CG TYR A 111 49.117 4.550 22.065 1.00 14.94 C ATOM 1017 CD1 TYR A 111 48.985 3.159 21.938 1.00 9.73 C ATOM 1018 CD2 TYR A 111 49.755 5.038 23.216 1.00 14.96 C ATOM 1019 CE1 TYR A 111 49.344 2.273 23.014 1.00 6.53 C ATOM 1020 CE2 TYR A 111 49.843 22.73 23.014 1.00 6.53 C ATOM 1020 CE2 TYR A 111 49.843 22.73 23.014 1.00 13.66 C ATOM 1021 CZ TYR A 111 49.873 27.87 24.171 1.00 17.86 C ATOM 1022 OH TYR A 111 50.266 1.927 25.157 1.00 11.37 O ATOM 1023 N PRO A 112 47.974 5.145 17.872 1.00 22.56 N ATOM 1024 CA PRO A 112 47.279 5.743 16.721 1.00 23.44 C ATOM 1025 C PRO A 112 46.589 7.111 16.988 1.00 17.82 C ATOM 1026 OF PRO A 112 46.197 7.453 18.115 1.00 19.72 O ATOM 1027 CB PRO A 112 46.895 3.343 16.769 1.00 19.72 O ATOM 1029 CD PRO A 112 46.895 3.343 16.769 1.00 15.69 C ATOM 1030 N LY3 A 113 46.418 7.866 15.915 1.00 19.48 N ATOM 1031 CA LYS A 113 44.916 9.887 17.524 1.00 34.28 C ATOM 1032 C LYS A 113 44.916 9.887 17.524 1.00 34.28 C ATOM 1034 CB LYS A 113 44.916 9.887 17.524 1.00 34.78 C ATOM 1035 CG LYS A 113 44.965 9.077 16.655 1.00 34.28 C ATOM 1036 CD LYS A 113 44.965 9.077 16.655 1.00 34.28 C ATOM 1037 CE LYS A 113 44.965 9.077 16.655 1.00 34.28 C ATOM 1038 NZ LYS A 113 44.965 9.077 16.655 1.00 34.78 C ATOM 1039 N LEU A 114 43.591 11.24 14.977 1.00 93.78 C ATOM 1039 N LEU A 114 43.591 11.24 14.977 1.00 93.78 C ATOM 1039 N LEU A 114 43.591 11.251 11.2010.00 N ATOM 1039 N LEU A 114 43.591 11.00 13.655 1.00 10.00 N ATOM 1039 N LEU A 114 43.591 8.103 16.250 1.00 26.33 N ATOM 1040 CA LEU A 114 43.591 8.103 16.250 1.00 26.33 N ATOM 1040 CA LEU A 114 42.267 7.957 16.833 1.00 20.665 C ATOM 1041 C LEU A 114 42.267 7.957 16.833 1.00 24.637 C		MOTA	1012	CA.	TYR A 111				-	
ATOM 1015 CB TTR A 111		ATOM	1013	_C	TYR_A 111					
ATOM 1016 CG TYR A 111 49.117 4.550 22.065 1.00 14.94 C ATOM 1017 CD1 TYR A 111 48.985 3.159 21.938 1.00 9.73 C ATOM 1018 CD2 TYR A 111 49.755 5.038 23.216 1.00 14.96 C 20 ATOM 1019 CE1 TYR A 111 49.344 2.273 23.014 1.00 6.53 C ATOM 1020 CE2 TYR A 111 49.873 2.787 24.171 1.00 13.66 C ATOM 1021 CZ TYR A 111 49.873 2.787 24.171 1.00 17.86 C ATOM 1022 OH TYR A 111 50.266 1.927 25.157 1.00 11.377 O ATOM 1023 N PRO A 112 47.974 5.145 17.872 1.00 22.56 N ATOM 1024 CA PRO A 112 47.279 5.743 16.721 1.00 23.44 C ATOM 1025 C PRO A 112 46.589 7.111 16.988 1.00 17.82 C ATOM 1026 O PRO A 112 46.895 7.111 16.988 1.00 17.82 C ATOM 1027 CB PRO A 112 46.895 3.343 16.769 1.00 29.93 C ATOM 1029 CD PRO A 112 46.895 3.343 16.769 1.00 22.93 C ATOM 1029 CD PRO A 112 47.793 3.733 18.086 1.00 15.69 C ATOM 1029 CD PRO A 112 46.895 3.373 18.086 1.00 15.69 C ATOM 1029 CD PRO A 113 46.418 7.866 15.915 1.00 19.48 N ATOM 1030 N LYS A 113 46.418 7.866 15.915 1.00 19.48 N ATOM 1031 CA LYS A 113 45.793 9.167 15.994 1.00 23.50 C ATOM 1032 C LYS A 113 44.096 9.887 17.524 1.00 46.14 Q ATOM 1033 O LYS A 113 44.096 9.887 17.524 1.00 46.14 Q ATOM 1033 C LYS A 113 44.096 9.887 17.524 1.00 46.14 Q ATOM 1039 N LYS A 113 44.361 12.836 14.250 1.00100.00 C ATOM 1039 N LYS A 113 44.361 12.836 14.250 1.00100.00 C ATOM 1039 N LYS A 113 43.980 13.625 13.304 1.00100.00 C ATOM 1039 N LYS A 113 43.980 13.625 13.304 1.00100.00 C ATOM 1039 N LYS A 113 43.980 13.625 13.304 1.00100.00 C ATOM 1039 N LEU A 114 43.591 8.103 16.250 1.00 26.33 N ATOM 1039 N LEU A 114 43.591 8.103 16.250 1.00 26.33 N ATOM 1030 C LEU A 114 43.591 8.103 16.250 1.00 26.33 N ATOM 1040 C LEU A 114 42.083 6.792 17.760 1.00 18.444 C ATOM 1041 C LEU A 114 42.083 6.792 17.760 1.00 18.44	15.	MOTA		0				-		
ATOM 1017 CD1 TYR A 111 48.985 3.159 21.938 1.00 9.73 C ATOM 1018 CD2 TYR A 111 49.755 5.038 23.216 1.00 14.96 C 20 ATOM 1019 CE1 TYR A 111 49.344 2.273 23.014 1.00 6.53 C ATOM 1020 CE2 TYR A 111 50.146 4.155 24.272 1.00 13.66 C ATOM 1021 CZ TYR A 111 49.873 2.787 24.171 1.00 17.86 C ATOM 1022 OH TYR A 111 50.266 1.927 25.157 1.00 11.37 O ATOM 1023 N PRO A 112 47.974 5.145 17.872 1.00 22.56 N ATOM 1024 CA PRO A 112 47.974 5.145 17.872 1.00 23.44 C ATOM 1025 C PRO A 112 46.589 7.111 16.988 1.00 17.82 C ATOM 1026 O PRO A 112 46.589 7.111 16.988 1.00 17.82 C ATOM 1027 CB PRO A 112 46.890 4.644 16.252 1.00 15.69 C ATOM 1028 CG PRO A 112 46.895 3.343 16.769 1.00 22.93 C 30 ATOM 1029 CD PRO A 112 47.593 3.733 18.086 1.00 15.69 C ATOM 1031 CA LYS A 113 46.418 7.866 15.915 1.00 19.48 N ATOM 1032 C LYS A 113 44.96 9.887 17.524 1.00 19.48 N ATOM 1033 O LYS A 113 44.96 9.887 17.524 1.00 46.14 O ATOM 1034 CB LYS A 113 45.675 9.735 19.593 1.00 30.04 C ATOM 1035 CG LYS A 113 45.675 9.735 19.593 1.00 30.04 C ATOM 1036 CD LYS A 113 44.961 12.836 14.250 1.00 10.00 C ATOM 1037 CE LYS A 113 45.675 9.735 19.593 1.00 30.04 C ATOM 1038 NZ LYS A 113 44.961 12.836 14.250 1.00 10.00 C ATOM 1039 N LEU A 114 43.591 11.941 13.515 1.00100.00 C ATOM 1039 N LEU A 114 42.267 7.957 16.833 1.00 20.65 C ATOM 1040 CA LEU A 114 42.083 6.792 17.760 1.00 18.44 C ATOM 1040 CA LEU A 114 42.083 6.792 17.760 1.00 18.44 C		MOTA	1015	CB						
ATOM 1018 CD2 TYR A 111		MOTA	1016	CG	TYR A 111	49.117	4.550			
20 ATOM 1019 CEI TYR A 111		MOTA	1017	CD1	TYR A 111		3.159			
ATCM 1020 CE2 TYR A 111 50.146 4.155 24.272 1.00 13.66 C ATCM 1021 CZ TYR A 111 49.873 2.787 24.171 1.00 17.86 C ATCM 1022 OH TYR A 111 50.266 1.927 25.157 1.00 11.37 O ATCM 1023 N PRO A 112 47.974 5.145 17.872 1.00 22.56 N 25 ATCM 1024 CA PRO A 112 46.589 7.111 16.988 1.00 17.82 C ATCM 1026 O PRO A 112 46.589 7.111 16.988 1.00 17.82 C ATCM 1027 CB PRO A 112 46.990 4.644 16.252 1.00 15.69 C ATCM 1028 CG PRO A 112 46.895 3.343 16.769 1.00 22.83 C ATCM 1029 CD PRO A 112 47.593 3.733 18.086 1.00 16.10 C ATCM 1030 N LYS A 113 46.418 7.866 15.915 1.00 19.48 N ATCM 1031 CA LYS A 113 45.793 9.167 15.994 1.00 23.50 C ATCM 1033 O LYS A 113 44.396 9.077 16.655 1.00 34.28 C ATCM 1035 CG LYS A 113 44.966 9.887 17.524 1.00 46.14 O ATCM 1035 CG LYS A 113 45.675 9.735 14.593 1.00 30.04 C C ATCM 1037 CE LYS A 113 45.675 9.735 14.593 1.00 30.04 C C ATCM 1038 NZ LYS A 113 45.675 9.735 14.593 1.00 30.04 C C ATCM 1037 CE LYS A 113 43.480 13.625 13.304 1.00100.00 C ATCM 1038 NZ LYS A 113 43.480 13.625 13.304 1.00100.00 C ATCM 1039 N LEU A 114 43.591 8.103 16.250 1.00 26.33 N ATCM 1040 CA LEU A 114 42.267 7.957 16.833 1.00 20.655 C ATCM 1041 C LEU A 114 42.083 6.792 17.760 1.00 18.44 C ATCM 1042 O LEU A 114 42.083 6.792 17.760 1.00 18.44 C		MOTA	1018	CD2	TYR A 111	49.755	5.038			
ATOM 1021 CZ TYR A 111 49.873 2.787 24.171 1.00 17.86 C ATOM 1022 OH TYR A 111 50.266 1.927 25.157 1.00 11.37 O ATOM 1023 N PRO A 112 47.974 5.145 17.872 1.00 22.56 N ATOM 1024 CA PRO A 112 47.279 5.743 16.721 1.00 23.44 C ATOM 1025 C PRO A 112 46.589 7.111 16.988 1.00 17.82 C ATOM 1026 O PRO A 112 46.197 7.453 18.115 1.00 19.72 O ATOM 1027 CB PRO A 112 46.895 3.343 16.769 1.00 22.89 C ATOM 1028 CG PRO A 112 46.895 3.343 16.769 1.00 22.89 C ATOM 1029 CD PRO A 112 47.593 3.733 18.086 1.00 16.10 C ATOM 1030 N LYS A 113 46.418 7.866 15.915 1.00 19.48 N ATOM 1031 CA LYS A 113 44.396 9.077 16.655 1.00 34.28 C ATOM 1032 C LYS A 113 44.046 9.887 17.524 1.00 46.14 O ATOM 1034 CB LYS A 113 45.675 9.735 14.593 1.00 30.04 C ATOM 1035 CG LYS A 113 44.046 9.887 17.524 1.00 46.14 O ATOM 1037 CE LYS A 113 43.6219 11.124 14.477 1.00 43.78 C ATOM 1038 NZ LYS A 113 43.480 13.625 13.304 1.00100.00 C ATOM 1039 N LEU A 114 43.591 8.103 16.250 1.00100.00 C ATOM 1039 N LEU A 114 43.591 8.103 16.250 1.00100.00 C ATOM 1039 N LEU A 114 43.591 8.103 16.250 1.00 26.33 N ATOM 1040 CA LEU A 114 42.267 7.957 16.833 1.00 20.655 C ATOM 1041 C LEU A 114 42.083 6.792 17.760 1.00 18.44 C ATOM 1043 CB LEU A 114 41.002 6.278 17.918 1.00 34.04 O	20	MOTA	1019	CE1	TYR A 111	49.344	2.273	23.014		
ATOM 1022 OH TYR A 111 50.266 1.927 25.157 1.00 11.37 Q ATOM 1023 N PRO A 112 47.974 5.145 17.872 1.90 22.56 N ATOM 1024 CA PRO A 112 47.279 5.743 16.721 1.00 23.44 C ATOM 1025 C PRO A 112 46.589 7.111 16.988 1.00 17.82 C ATOM 1027 CB PRO A 112 46.197 7.453 18.115 1.00 19.72 O ATOM 1027 CB PRO A 112 46.895 3.343 16.769 1.00 22.83 C ATOM 1028 CG PRO A 112 46.895 3.343 16.769 1.00 22.83 C ATOM 1029 CD PRO A 112 47.593 3.733 18.086 1.00 15.69 C ATOM 1029 CD PRO A 112 47.593 3.733 18.086 1.00 16.10 C ATOM 1030 N LYS A 113 46.418 7.866 15.915 1.00 19.48 N ATOM 1031 CA LYS A 113 45.793 9.167 15.994 1.00 23.50 C ATOM 1032 C LYS A 113 44.396 9.077 16.655 1.00 34.28 C ATOM 1033 O LYS A 113 44.046 9.887 17.524 1.00 46.14 O ATOM 1034 CB LYS A 113 45.675 9.735 19.593 1.00 30.04 C ATOM 1035 CG LYS A 113 46.219 11.124 19.477 1.00 43.78 C ATOM 1037 CE LYS A 113 43.81 11.941 13.515 1.00100.00 C ATOM 1038 NZ LYS A 113 43.480 13.625 13.304 1.00100.00 C ATOM 1039 N LEU A 114 43.591 8.103 16.250 1.00 26.33 N ATOM 1040 CA LEU A 114 43.591 8.103 16.250 1.00 26.33 N ATOM 1041 C LEU A 114 42.083 6.792 17.760 1.00 18.44 C ATOM 1042 O LEU A 114 42.083 6.792 17.760 1.00 18.44 C ATOM 1043 CB LEU A 114 41.002 6.278 17.918 1.00 34.04 O ATOM 1043 CB LEU A 114 41.002 6.278 17.918 1.00 34.04		ATOM	1020	CE2	TYR A 111	50,146	4.155	24.272		
ATOM 1023 N PRO A 112 47.974 5.145 17.872 1.00 22.56 N ATOM 1024 CA PRO A 112 47.279 5.743 16.721 1.00 23.94 C ATOM 1025 C PRO A 112 46.589 7.111 16.988 1.00 17.82 C ATOM 1026 O PRO A 112 46.197 7.453 18.115 1.00 19.72 O ATOM 1027 CB PRO A 112 46.895 3.343 16.769 1.00 15.69 C ATOM 1028 CG PRO A 112 46.895 3.343 16.769 1.00 22.83 C ATOM 1029 CD PRO A 112 47.593 3.733 18.086 1.00 16.10 C ATOM 1030 N LYS A 113 46.418 7.866 15.915 1.00 19.48 N ATOM 1031 CA LYS A 113 45.793 9.167 15.994 1.00 23.50 C ATOM 1032 C LYS A 113 44.396 9.077 16.655 1.00 34.28 C ATOM 1033 O LYS A 113 44.046 9.887 17.524 1.00 46.14 O ATOM 1035 CG LYS A 113 45.675 9.735 14.593 1.00 30.04 C ATOM 1036 CD LYS A 113 45.381 11.941 13.515 1.00100.00 C ATOM 1037 CE LYS A 113 43.480 13.625 13.304 1.00100.00 C ATOM 1038 NZ LYS A 113 43.480 13.625 13.304 1.00100.00 C ATOM 1039 N LEU A 114 43.591 8.103 16.250 1.00100.00 C ATOM 1030 CA LEU A 114 42.083 6.792 17.760 1.00 18.44 C ATOM 1040 CA LEU A 114 42.083 6.792 17.760 1.00 18.44 C ATOM 1042 O LEU A 114 42.083 6.792 17.760 1.00 18.44 C ATOM 1042 C LEU A 114 42.083 6.792 17.760 1.00 34.04 O ATOM 1042 C LEU A 114 41.002 6.278 17.918 1.00 34.04 O ATOM 1043 CB LEU A 114 41.002 6.278 17.918 1.00 34.04 O		ATOM	1021	CZ	TYR A 111	49.873	2.787			
25 ATOM 1024 CA PRO A 112 47.279 5.743 16.721 1.00 23.44 C ATOM 1025 C PRO A 112 46.589 7.111 16.988 1.00 17.82 C ATOM 1026 O PRO A 112 46.197 7.453 18.115 1.00 19.72 O ATOM 1027 CB PRO A 112 46.290 4.644 16.252 1.00 15.69 C ATOM 1028 CG PRO A 112 46.895 3.343 16.769 1.00 22.83 C ATOM 1029 CD PRO A 112 47.593 3.733 18.086 1.00 16.10 C ATOM 1030 N LYS A 113 46.418 7.866 15.915 1.00 19.48 N ATOM 1031 CA LYS A 113 45.793 9.167 15.994 1.00 23.50 C ATOM 1032 C LYS A 113 44.396 9.077 16.655 1.00 34.28 C ATOM 1034 CB LYS A 113 45.675 9.735 14.593 1.00 30.04 C ATOM 1036 CD LYS A 113 46.219 11.124 14.477 1.00 43.78 C ATOM 1037 CE LYS A 113 45.381 11.941 13.515 1.00100.00 C ATOM 1038 NZ LYS A 113 44.361 12.836 14.250 1.00100.00 C ATOM 1039 N LEU A 114 43.591 8.103 16.250 1.00 26.33 N ATOM 1030 CA LEU A 114 42.083 6.792 17.760 1.00 18.44 C ATOM 1040 CA LEU A 114 42.083 6.792 17.760 1.00 34.04 O ATOM 1041 C LEU A 114 42.083 6.792 17.760 1.00 34.04 O ATOM 1042 O LEU A 114 41.902 6.278 17.918 1.00 34.04 O ATOM 1043 CB LEU A 114 41.902 6.278 17.918 1.00 34.04 O ATOM 1043 CB LEU A 114 41.902 6.278 17.918 1.00 34.04 O		MOTA	1022	OH	TYR A 111	50.266	1.927	25.157		
ATOM 1025 C PRO A 112 46.589 7.111 16.988 1.00 17.82 C ATOM 1026 O PRO A 112 46.197 7.453 18.115 1.00 19.72 O ATOM 1027 CB PRO A 112 46.290 4.644 16.252 1.00 15.69 C ATOM 1028 CG PRO A 112 46.895 3.343 16.769 1.00 22.83 C ATOM 1029 CD PRO A 112 47.593 3.733 18.086 1.00 16.10 C ATOM 1030 N LYS A 113 46.418 7.866 15.915 1.00 19.48 N ATOM 1031 CA LYS A 113 45.793 9.167 15.994 1.00 23.50 C ATOM 1032 C LYS A 113 44.396 9.077 16.655 1.00 34.28 C ATOM 1033 O LYS A 113 45.675 9.887 17.524 1.00 46.14 O ATOM 1035 CG LYS A 113 45.675 9.735 14.593 1.00 30.04 C ATOM 1036 CD LYS A 113 45.381 11.941 13.515 1.00100.00 C ATOM 1037 CE LYS A 113 44.361 12.836 14.250 1.00100.00 C ATOM 1038 NZ LYS A 113 43.480 13.625 13.304 1.00100.00 C ATOM 1039 N LEU A 114 43.591 8.103 16.250 1.00 26.33 N ATOM 1040 CA LEU A 114 42.083 6.792 17.760 1.00 18.44 C ATOM 1041 C LEU A 114 42.083 6.792 17.760 1.00 18.44 C ATOM 1042 O LEU A 114 41.002 6.278 17.918 1.00 34.04 O ATOM 1043 CB LEU A 114 41.002 6.278 17.918 1.00 34.04 O ATOM 1043 CB LEU A 114 41.194 8.002 15.780 1.00 24.37 C		MOTA	1023	N_	PRO A 112	47,974	5,145			
ATOM 1026 O PRO A 112 46.197 7.453 1B.115 1.00 19.72 C ATOM 1027 CB PRO A 112 46.290 4.644 16.252 1.00 15.69 C ATOM 1028 CG PRO A 112 46.895 3.343 16.769 1.00 22.83 C ATOM 1029 CD PRO A 112 47.593 3.733 1B.086 1.00 16.10 C ATOM 1030 N LYS A 113 46.418 7.866 15.915 1.00 19.48 N ATOM 1031 CA LYS A 113 45.793 9.167 15.994 1.00 23.50 C ATOM 1032 C LYS A 113 44.396 9.077 16.655 1.00 34.28 C ATOM 1033 O LYS A 113 44.046 9.887 17.524 1.00 46.14 O 35 ATOM 1034 CB LYS A 113 45.675 9.735 19.593 1.00 30.04 C ATOM 1035 CG LYS A 113 46.219 11.124 19.477 1.00 43.78 C ATOM 1036 CD LYS A 113 45.381 11.941 13.515 1.00100.00 C ATOM 1038 NZ LYS A 113 43.480 13.625 13.304 1.00100.00 C ATOM 1039 N LEU A 114 43.591 8.103 16.250 1.00 26.33 N ATOM 1040 CA LEU A 114 42.083 6.792 17.760 1.00 18.44 C ATOM 1041 C LEU A 114 42.083 6.792 17.760 1.00 18.44 C ATOM 1042 O LEU A 114 41.002 6.278 17.918 1.00 34.04 O ATOM 1043 CB LEU A 114 41.002 6.278 17.918 1.00 34.04 O ATOM 1043 CB LEU A 114 41.002 6.278 17.918 1.00 34.04 O ATOM 1043 CB LEU A 114 41.002 6.278 17.918 1.00 34.04 O ATOM 1043 CB LEU A 114 41.002 6.278 17.918 1.00 34.04 O	25	MOTA	1024	CA	PRO A 112	47.279	5.743			
ATCM 1027 CB PRO A 112 46.290 4.644 16.252 1.00 15.69 C ATCM 1028 CG PRO A 112 46.895 3.343 16.769 1.00 22.83 C 30 ATCM 1029 CD PRO A 112 47.593 3.733 18.086 1.00 16.10 C ATCM 1030 N LYS A 113 46.418 7.866 15.915 1.00 19.48 N ATCM 1031 CA LYS A 113 45.793 9.167 15.994 1.00 23.50 C ATCM 1032 C LYS A 113 44.396 9.077 16.655 1.00 34.28 C ATCM 1033 O LYS A 113 44.046 9.887 17.524 1.00 46.14 O 35 ATCM 1034 CB LYS A 113 45.675 9.735 14.593 1.00 30.04 C ATCM 1035 CG LYS A 113 46.219 11.124 14.477 1.00 43.78 C ATCM 1036 CD LYS A 113 45.381 11.941 13.515 1.00100.00 C ATCM 1037 CE LYS A 113 44.361 12.836 14.250 1.00100.00 C ATCM 1038 NZ LYS A 113 43.480 13.625 13.304 1.00100.00 N 40 ATCM 1039 N LEU A 114 43.591 8.103 16.250 1.00 26.33 N ATCM 1041 C LEU A 114 42.267 7.957 16.833 1.00 20.65 C ATCM 1042 O LEU A 114 42.083 6.792 17.760 1.00 18.44 C ATCM 1043 CB LEU A 114 41.002 6.278 17.918 1.00 34.04 Q ATCM 1043 CB LEU A 114 41.194 8.002 15.780 1.00 24.377 C		MOTA	1025	<u> </u>	PRO A 112	46,589	7,111	16.988		
ATOM 1028 CG PRO A 112 46.895 3.343 16.769 1.00 22.83 C ATOM 1029 CD PRO A 112 47.593 3.733 18.086 1.00 16.10 C ATOM 1030 N LYS A 113 46.418 7.866 15.915 1.00 19.48 N ATOM 1031 CA LYS A 113 45.793 9.167 15.994 1.00 23.50 C ATOM 1032 C LYS A 113 44.396 9.077 16.655 1.00 34.28 C ATOM 1033 O LYS A 113 44.046 9.887 17.524 1.00 46.14 O ATOM 1034 CB LYS A 113 45.675 9.735 14.593 1.00 30.04 C ATOM 1035 CG LYS A 113 46.219 11.124 14.477 1.00 43.78 C ATOM 1036 CD LYS A 113 45.381 11.941 13.515 1.00100.00 C ATOM 1037 CE LYS A 113 44.361 12.836 14.250 1.00100.00 C ATOM 1038 NZ LYS A 113 43.480 13.625 13.304 1.00100.00 N 40 ATOM 1039 N LEU A 114 43.591 8.103 16.250 1.00 26.33 N ATOM 1041 C LEU A 114 42.083 6.792 17.760 1.00 18.44 C ATOM 1042 O LEU A 114 41.002 6.278 17.918 1.00 34.04 O ATOM 1043 CB LEU A 114 41.002 6.278 17.918 1.00 34.04		MOTA	1026	0	PRO A 112	46,197	7,453			
ATOM 1029 CD PRO A 112 47.593 3.733 18.086 1.00 16.10 C ATOM 1030 N LYS A 113 46.418 7.866 15.915 1.00 19.48 N ATOM 1031 CA LYS A 113 45.793 9.167 15.994 1.00 23.50 C ATOM 1032 C LYS A 113 44.396 9.077 16.655 1.00 34.28 C ATOM 1033 O LYS A 113 44.046 9.887 17.524 1.00 46.14 Q 35 ATOM 1034 CB LYS A 113 45.675 9.735 14.593 1.00 30.04 C ATOM 1035 CG LYS A 113 46.219 11.124 14.477 1.00 43.78 C ATOM 1036 CD LYS A 113 45.381 11.941 13.515 1.00100.00 C ATOM 1037 CE LYS A 113 44.361 12.836 14.250 1.00100.00 C ATOM 1038 NZ LYS A 113 43.480 13.625 13.304 1.00100.00 N 40 ATOM 1039 N LEU A 114 43.591 8.103 16.250 1.00 26.33 N ATOM 1040 CA LEU A 114 42.267 7.957 16.833 1.00 20.65 C ATOM 1041 C LEU A 114 42.083 6.792 17.760 1.00 18.44 C ATOM 1043 CB LEU A 114 41.002 6.278 17.918 1.00 34.04 Q ATOM 1043 CB LEU A 114 41.194 8.002 15.780 1.00 24.37		MOTA	1027	CB	PRO A 112	46.290	4.644	16.252	1.00 15.69	
ATOM 1030 N LYS A 113 46.418 7.866 15.915 1.00 19.48 N ATOM 1031 CA LYS A 113 45.793 9.167 15.994 1.00 23.50 C ATOM 1032 C LYS A 113 44.396 9.077 16.655 1.00 34.28 C ATOM 1033 O LYS A 113 44.046 9.887 17.524 1.00 46.14 O 35 ATOM 1034 CB LYS A 113 45.675 9.735 14.593 1.00 30.04 C ATOM 1035 CG LYS A 113 46.219 11.124 14.477 1.00 43.78 C ATOM 1036 CD LYS A 113 45.381 11.941 13.515 1.00100.00 C ATOM 1037 CE LYS A 113 44.361 12.836 14.250 1.00100.00 C ATOM 1038 NZ LYS A 113 43.480 13.625 13.304 1.00100.00 N 40 ATOM 1039 N LEU A 114 43.591 8.103 16.250 1.00 26.33 N ATOM 1040 CA LEU A 114 42.267 7.957 16.833 1.00 20.65 C ATOM 1041 C LEU A 114 42.083 6.792 17.760 1.00 18.44 C ATOM 1042 O LEU A 114 41.002 6.278 17.918 1.00 34.04 O ATOM 1043 CB LEU A 114 41.194 8.002 15.780 1.00 24.37 C		ATOM	1028	CG	PRO A 112	46.895	3.343	16.769	1.00 22.83	
ATOM 1031 CA LYS A 113 45.793 9.167 15.994 1.00 23.50 C ATOM 1032 C LYS A 113 44.396 9.077 16.655 1.00 34.28 C ATOM 1033 O LYS A 113 44.046 9.887 17.524 1.00 46.14 Q 35 ATOM 1034 CB LYS A 113 45.675 9.735 14.593 1.00 30.04 C ATOM 1035 CG LYS A 113 46.219 11.124 14.477 1.00 43.78 C ATOM 1036 CD LYS A 113 45.381 11.941 13.515 1.00100.00 C ATOM 1037 CE LYS A 113 44.361 12.836 14.250 1.00100.00 C ATOM 1038 NZ LYS A 113 43.480 13.625 13.304 1.00100.00 N 40 ATOM 1039 N LEU A 114 43.591 8.103 16.250 1.00 26.33 N ATOM 1040 CA LEU A 114 42.267 7.957 16.833 1.00 20.65 C ATOM 1041 C LEU A 114 42.083 6.792 17.760 1.00 18.44 C ATOM 1042 O LEU A 114 41.002 6.278 17.918 1.00 34.04 Q ATOM 1043 CB LEU A 114 41.194 8.002 15.780 1.00 24.37 C	30	MOTA	1029	CD	PRO A 112	47.593	3.733	18,086	1.00 16.10	<u>c</u>
ATOM 1032 C LYS A 113 44.396 9.077 16.655 1.00 34.28 C ATOM 1033 O LYS A 113 44.046 9.887 17.524 1.00 46.14 Q 35 ATOM 1034 CB LYS A 113 45.675 9.735 14.593 1.00 30.04 C ATOM 1035 CG LYS A 113 46.219 11.124 14.477 1.00 43.78 C ATOM 1036 CD LYS A 113 45.381 11.941 13.515 1.00100.00 C ATOM 1037 CE LYS A 113 44.361 12.836 14.250 1.00100.00 C ATOM 1038 NZ LYS A 113 43.480 13.625 13.304 1.00100.00 N 40 ATOM 1039 N LEU A 114 43.591 8.103 16.250 1.00 26.33 N ATOM 1040 CA LEU A 114 42.267 7.957 16.833 1.00 20.65 C ATOM 1041 C LEU A 114 42.083 6.792 17.760 1.00 18.44 C ATOM 1042 O LEU A 114 41.002 6.278 17.918 1.00 34.04 Q ATOM 1043 CB LEU A 114 41.194 8.002 15.780 1.00 24.37 C		MOTA	1030	_N_	LYS A 113	46.418	7.866	15.915	1.00 19.48	N
ATOM 1033 O LYS A 113 44.046 9.887 17.524 1.00 46.14 Q ATOM 1034 CB LYS A 113 45.675 9.735 14.593 1.00 30.04 C ATOM 1035 CG LYS A 113 46.219 11.124 14.477 1.00 43.78 C ATOM 1036 CD LYS A 113 45.381 11.941 13.515 1.00100.00 C ATOM 1037 CE LYS A 113 44.361 12.836 14.250 1.00100.00 C ATOM 1038 NZ LYS A 113 43.480 13.625 13.304 1.00100.00 N 40 ATOM 1039 N LEU A 114 43.591 8.103 16.250 1.00 26.33 N ATOM 1040 CA LEU A 114 42.267 7.957 16.833 1.00 20.65 C ATOM 1041 C LEU A 114 42.083 6.792 17.760 1.00 18.44 C ATOM 1042 O LEU A 114 41.002 6.278 17.918 1.00 34.04 Q ATOM 1043 CB LEU A 114 41.194 8.002 15.780 1.00 24.37 C		MOTA	1031	CA	LYS A 113	45.793	9.167	15.994	1.00 23.50	<u>C</u>
ATOM 1034 CB LYS A 113 45.675 9.735 14.593 1.00 30.04 C ATOM 1035 CG LYS A 113 46.219 11.124 14.477 1.00 43.78 C ATOM 1036 CD LYS A 113 45.381 11.941 13.515 1.00100.00 C ATOM 1037 CE LYS A 113 44.361 12.836 14.250 1.00100.00 C ATOM 1038 NZ LYS A 113 43.480 13.625 13.304 1.00100.00 N 40 ATOM 1039 N LEU A 114 43.591 8.103 16.250 1.00 26.33 N ATOM 1040 CA LEU A 114 42.267 7.957 16.833 1.00 20.65 C ATOM 1041 C LEU A 114 42.083 6.792 17.760 1.00 18.44 C ATOM 1042 O LEU A 114 41.002 6.278 17.918 1.00 34.04 Q ATOM 1043 CB LEU A 114 41.194 8.002 15.780 1.00 24.37 C		MOTA	1032	_c_	LYS A 113	44.396	9.077	16,655	1.00 34.28	<u>c</u>
ATOM 1035 CG LYS A 113 46.219 11.124 14.477 1.00 43.78 C ATOM 1036 CD LYS A 113 45.381 11.941 13.515 1.00100.00 C ATOM 1037 CE LYS A 113 44.361 12.836 14.250 1.00100.00 C ATOM 1038 NZ LYS A 113 43.480 13.625 13.304 1.00100.00 N 40 ATOM 1039 N LEU A 114 43.591 8.103 16.250 1.00 26.33 N ATOM 1040 CA LEU A 114 42.267 7.957 16.833 1.00 20.65 C ATOM 1041 C LEU A 114 42.083 6.792 17.760 1.00 18.44 C ATOM 1042 O LEU A 114 41.002 6.278 17.918 1.00 34.04 O ATOM 1043 CB LEU A 114 41.194 8.002 15.780 1.00 24.37 C		MOTA	1033	0	LYS A 113	44.046	9.887			0
ATOM 1036 CD LYS A 113 45.381 11.941 13.515 1.00100.00 C ATOM 1037 CE LYS A 113 44.361 12.836 14.250 1.00100.00 C ATOM 1038 NZ LYS A 113 43.480 13.625 13.304 1.00100.00 N 40 ATOM 1039 N LEU A 114 43.591 8.103 16.250 1.00 26.33 N ATOM 1040 CA LEU A 114 42.267 7.957 16.833 1.00 20.65 C ATOM 1041 C LEU A 114 42.083 6.792 17.760 1.00 18.44 C ATOM 1042 O LEU A 114 41.002 6.278 17.918 1.00 34.04 Q ATOM 1043 CB LEU A 114 41.194 8.002 15.780 1.00 24.37 C	35	MOTA	1034	СВ	LYS A 113	45.675	9.735	14.593	1.00 30.04	c
ATOM 1037 CE LYS A 113 44.361 12.836 14.250 1.00100.00 C ATOM 1038 NZ LYS A 113 43.480 13.625 13.304 1.00100.00 N 40 ATOM 1039 N LEU A 114 43.591 8.103 16.250 1.00 26.33 N ATOM 1040 CA LEU A 114 42.267 7.957 16.833 1.00 20.65 C ATOM 1041 C LEU A 114 42.083 6.792 17.760 1.00 18.44 C ATOM 1042 O LEU A 114 41.002 6.278 17.918 1.00 34.04 Q ATOM 1043 CB LEU A 114 41.194 8.002 15.780 1.00 24.37 C		ATOM	1035	ÇĢ	LYS A 113	46.219	11.124	14.477	1.00 43.78	c
ATOM 1038 NZ LYS A 113 43.480 13.625 13.304 1.00100.00 N 40 ATOM 1039 N LEU A 114 43.591 8.103 16.250 1.00 26.33 N ATOM 1040 CA LEU A 114 42.267 7.957 16.833 1.00 20.65 C ATOM 1041 C LEU A 114 42.083 6.792 17.760 1.00 18.44 C ATOM 1042 O LEU A 114 41.002 6.278 17.918 1.00 34.04 Q ATOM 1043 CB LEU A 114 41.194 8.002 15.780 1.00 24.37 C		MOTA	1036	CD	LYS A 113	45.381	11.941	13.515	1.00100.00	<u>c</u>
40 ATOM 1039 N LEU A 114 43.591 8.103 16.250 1.00 26.33 N ATOM 1040 CA LEU A 114 42.267 7.957 16.833 1.00 20.65 C ATOM 1041 C LEU A 114 42.083 6.792 17.760 1.00 18.44 C ATOM 1042 O LEU A 114 41.002 6.278 17.918 1.00 34.04 O ATOM 1043 CB LEU A 114 41.194 8.002 15.780 1.00 24.37 C		MOTA	1037	CE	LYS A 113	44.361	12.836	14.250	1.00100.00	<u>c</u>
ATOM 1040 CA LEU A 114 42.267 7.957 16.833 1.00 20.65 C ATOM 1041 C LEU A 114 42.083 6.792 17.760 1.00 18.44 C ATOM 1042 O LEU A 114 41.002 6.278 17.918 1.00 34.04 Q ATOM 1043 CB LEU A 114 41.194 8.002 15.780 1.00 24.37 C		ATOM	1038	NZ	LYS A 113	43,480	13.625	13.304	1,00100.00	N
ATOM 1041 C LEU A 114 42.083 6.792 17.760 1.00 18.44 C ATOM 1042 O LEU A 114 41.002 6.278 17.918 1.00 34.04 Q ATOM 1043 CB LEU A 114 41.194 8.002 15.780 1.00 24.37 C	40	MOTA	1039	_N	LEU A 114	43.591	8.103	16.250	1.00 26.33	N
ATOM 1042 O LEU A 114 41.002 6.278 17.918 1.00 34.04 Q ATOM 1043 CB LEU A 114 41.194 8.002 15.780 1.00 24.37 C		MOTA	1040	CA	LEU A 114	42.267	7.957	16,833	1.00 20.65	<u>C</u>
ATOM 1043 CB LEU A 114 41.194 8.002 15.780 1.00 24.37 C		MOTA	1041		LEU A 114	42.0B3	6.792	17.760	1.00 18,44	C
AND AVIE OF BRY II		MOTA	1042	_ 0	LEU A 114	41.002	6.278	17.918	1.00 34.04	Q
45 ATOM 1044 CG LEU A 114 41.587 9,122 14.830 1.00 40,86 C		MOTA	1043	СВ	LEU A 114	41,194	8.002	15.780	1.00 24.37	Ç
	45	MOTA	1044	CG	LEU A 114	41.587	9,122	14.830	1.00 40.86	<u>C</u>

	MOTA	1045	CD1	LEU A 114	40.991	8.797	13.504	1.00 49.29	<u>_</u>
	MOTA	1046	CD2	LEU A 114	41.139	10.512	15.300	1.00 26.85	c
	ATOM	1047	N_	ALA A 115	43.103	6.473	18.527	1.00 29.00	н
	MOTA	104B	_CA_	ALA A 115	42.920	5.446	19.528	1.00 25.66	c
5	MOTA	1049	С	ALA A 115	41.722	5.727	20.454	1.00 28.76	C
	MOTA	1050	0	ALA A 115	41.364	6.855	20.682	1.00 24.12	0
	MOTA	1051	СВ	ALA A 115	44.177	5.272	20.326	1.00 16.86	c
	MOTA	1052	N	LYS A 116	41.137	4.675	20.998	1.00 30.21	N
	MOTA	1053	CA	LYS A 116	40.036	4.792	21.928	1.00 25.85	<u>C</u>
10	MOTA	1054	С	LYS A 116	40.668	5.248	23.195	1.00 14.18	c
	MOTA	1055	0	LYS A 116	41.750	4.781	23.535	1.00 23.51	0
	MOTA	1056	CB	LYS A 116	39.369	3.415	22.116	1.00 22.05	C
	MOTA	1057	CG	LYS A 116	39.053	3.032	23.524	1.00 55.38	C
	MOTA	1058	CD	LYS A 116	37,963	1.955	23.549	1.00100.00	<u>c</u>
15	ATOM	1059	CE	LYS A 116	37.120	1.953	24.835	1.00100.00	<u> </u>
	ATOM	1060	NZ	LYS A 116	35.767	1.310	24.630	1.00100.00	N
	ATOM	1061	N	GLN A 117	40.021	6.208	23.856	1.00 18.23	N
	ATOM	1062	CA	GLN A 117	40.456	6.757	25.180	1.00 21.01	c
	ATOM	1063	<u> </u>	GLN A 117	39,695	6.178	26.383	1.00 30.96	<u>c</u>
20	MOTA	1064	0	GLN A 117	38.483	6.009	26.345	1.00 27.66	0
	MOTA	1065	СВ	GLN A 117	40.215	8.263	25.179	1.00 11.32	<u>C</u>
	MOTA	1066	CG	GLN A 117	40.849	8.912	23.948	1.00 12.12	<u>C</u>
	MOTA	1067	CD	GLN A 117	42.404	8.823	23.954	1.00 24.10	c
	MOTA	1068	OE I	GLN A 117	43.041	8.628	22.896	1.00 47.88	0
25	ATOM	1069	NE:	GLN A 117	43.001	8.953	25.131	1.00 14.24	<u> </u>
	MOTA	1070	N_	PRO A 118	40.374	5.992	27.499	1.00 30.02	N
	ATOM	1071	CA	PRO A 118	41.826	6.194	27.655	1.00 26.44	<u>c</u>
	MOTA	1072	C	PRO A 118	42.450	5.050	26.899	1.00 24.37	c
	MOTA	1073	0	PRO A 118	41.792	4.027	26.726	1.00 25.34	0
30	MOTA	1074	СВ	PRO A 118	42.055	5.994	29.167	1,00 23.89	<u>c</u>
	MOTA	1075	CG	PRO A 118	40.847	5.240	29.654	1.00 23.20	c
	MOTA	1076	CD	PRO A 118	39.695	5,519	28.709	1.00 15.79	c
	ATOM	1077	N.	MET A 119	43.684	5.228	26.432	1.00 16.00	N
	ATOM	1078	CA	MET A 119	44.372	4,215	25.644	1.00 10.80	<u>C</u>
35	MOTA	1079	_ c_	MET A 119	45.062	3.083	26.444	1.00 23.61	c
	ATOM	1080	0	MET A 119	46.013	3.281	27.209	1.00 18.02	0
	ATOM	1081	СВ	MET A 119	45.384	4.894	24.791	1.00 13.52	c
	MOTA	1082	cg	MET A 119	44.801	6.014	23.989	1.00 18.52	c
	MOTA	1083	S SD	MET A 119	46.157	7.054	23.271	1.00 26.27	
40	MOTA	1084	CE	MET A 119	46.26	6.524	21.845	1.00 33.79	c
	MOTA	1085	5 N	ALA A 120	44.559	1.875	26.271	1.00 26.64	N
	MOTA	1086	5 <u>CA</u>	ALA A 120	45,17	0.712	26.884	1.00 29.17	
	MOTA	108	7 C	ALA A 120	46,356	0.306	25.984	1.00 23.21	c
	MOTA	1088	3 0	ALA A 120	46.439	0.759	24.833	1.00 20.19	0
45	ATOM	1089	9 CE	ALA A 120	44.169	-0.419	26.94	1.00 26.02	

	MOTA	1090	N	GLU A 121	47.238	-0.553	26.507	1.00 12.30	N
	MOTA	1091	CA	GLU A 121	48,427	-1.009	25.788	1.00 9.45	c
	ATOM	1092	С	GLU A 121	48.070	-1.697	24.450	1.00 11.68	С
	MOTA	1093	0	GLU A 121	48.828	-1.670	23.450	1.00 14.84	0
5	MOTA	1094	СВ	GLU A 121	49.321	-1.883	26.715	1.00 16.74	<u>c</u>
	ATOM	1095	CG	GLU A 121	50.132	-1.122	27.763	1.00 18.14	c
	MOTA	1096	CD	GLU A 121	49.458	-1.000	29.137	1.00 13.00	C
	MOTA	1097	OE1	GLU A 121	48.252	-1.294	29.276	1.00 20.79	0
	MOTA	1098	OE2	GLU A 121	50.123	-0.521	30.080	1.00 17.86	0
10	ATOM	1099	N.	SER A 122	46.887	-2.273	24.409	1.00 11.79	<u>N</u>
	MOTA	1100	_CA	SER A 122	46.427	-2.977	23.218	1.00 12.16	c
	ATOM	1101	С	SER A 122	46.030	-2.058	22.100	1.00 11.70	c
	MOTA	1102	0	SER A 122	45.717	-2.529	21.010	1.00 13.91	0
	MOTA	1103	СВ	SER A 122	45.186	-3.781	23.568	1.00 21.50	c
15	MOTA	1104	OG	SER A 122	44.143	-2.908	23.976	1.00 28.52	0
	MOTA	1105	N	GLU A 123	46.041	-0.754	22.341	1.00 14.65	N
	MOTA	1106	CA	GLU A 123	45.783	0.202	21.243	1.00 17.15	<u> </u>
	MOTA	1107	С	GLU A 123	46,959	0.313	20.240	1.00 11.48	С
	ATOM	1108	0	GLU A 123	46.821	0.844	19.141	1.00 11.19	0
20	MOTA	1109	СВ	GLU A 123	45.481	1.600	21.805	1.00 21.66	C
	MOTA	1110	CG	GLU A 123	44.127	1.694	22.523	1.00 24.68	<u>c</u>
	MOTA	1111	CD	GLU A 123	42,984	1,374	21.585	1.00 35.56	<u>C</u>
	MOTA	1112	OE I	GLU A 123	43.019	1.865	20.426	1.00 41.73	0
	MOTA	1113	OE2	GLU A 123	42.158	0.497	21.940	1.00100.00	
25	MOTA	1114	N	LEU A 124	48.134	-0.185	20.618	1.00 14.02	И
	MOTA	1115	_CA	LEU A 124	49.296	-0.082	19.740	1.00 15.32	<u>c</u>
	MOTA	1116	_c_	LEU A 124	49.082	-0.754	18,458	1.00 17.76	<u>c</u>
	ATOM	1117	_0_	LEU A 124	48.752	-1.917	18.445	1.00 18.91	0
	MOTA	1118	СВ	LEU A 124	50.564	-0.680	20.362	1.00 18.07	<u>C</u>
30	MOTA	1119	CG	LEU A 124	51.922	-0.222	19.803	1.00 21.52	<u>C</u>
	MOTA	1120	CD	1 LEU A 124	52.080	1.258	20,117	1.00 20.35	<u>C</u>
	MOTA	1121	CD	2 LEU A 124	53.042	-0.919	20.550	1.00 14.07	C
	MOTA	1122	N	LEU A 125	49.514	-0.071	<u> 17.409</u>	1.00 18.44	N
	MOTA	1123	<u>CA</u>	LEU A 125	49.445	-0.564	16,052	1.00 19.92	C
35	MOTA	1124	С	LEU A 125	48.034	-0.754		1.00 25,56	<u>C</u>
	MOTA	1125	0	LEU A 125	47.854	-1.188	14.364	1,00 18,26	0
	MOTA	1126	CB	LEU A 125	50.355	-1.800	15.840	1.00 20.79	c
	ATOM	1127	CG	LEU A 125	51.890	-1.511		1.00 17.21	
	MOTA	1128	CD	1 LEU A 125	52.744	-2.649	16.316	1.00 19.95	c
40	MOTA	1129	CD	2 LEU A 125	52,334	-1.219	14.338	1.00 5.81	<u>c</u>
	MOTA	1130	N.	GLN A 126	47.027	-0.327	-	1.00 21.97	
	MOTA	1131	CA	GLN A 126	45.652	-0.504	15.790	1.00 19.97	
	MOTA	1132	C	GLN A 126	45,213	0.447		1.00 28.31	
	MOTA	1133	0	GLN A 126	44.076			1.00 47.49	
45	ATOM	1134	CE	GLN A 126	44,652	-0.404	16.911	1.00 19.87	C

	ATOM 113	5 CG	GLN A 126	44.949	-1.312	18.048	1.00 18.39	с
	ATOM 113	6 CD	GLN A 126	44.319	-2.626	17.835	1.00 66.80	С
	ATOM 113	7 OE1	GLN A 126	44.064	-3.376	18.792	1.00 40.75	0
	ATOM 113	8 NE2	GLN A 126	44.015	-2.952	16.565	1.00 71.74	и
5	ATOM 113	9 N	GLY A 12	46.080	1.330	14.270	1.00 28.29	<u>N</u>
	ATOM 114	O CA	GLY A 127	45.627	2.260	13.252	1.00 23.31	<u>_</u>
	ATOM 114	1 C	GLY A 12	46.662	3.315	12.953	1.00 22.90	с
	ATOM 114	2 0	GLY A 12	47.755	3.254	13.474	1.00 25.30	0
	ATOM 114	3 N	THR A 120	46.311	4,219	12.046	1.00 19.51	N
0	ATOM 114	4 CA	THR A 125	47,149	5.314	11.588	1.00 22.12	c
	ATOM 114	15 C	THR A 121	47.705	6.219	12.695	1.00 22.60	<u> </u>
	ATOM 114	6 0	THR A 12	47.061	6,461	13.731	1.00 18.58	0
	ATOM 114	7 CB	THR A 12	46.392	6.182	10.544	1.00 35,98	c
	ATOM 114	8 OG1	THR A 12	46.533	5.594	9.239	1.00 58.05	0
5	ATOM 114	19 CG2	THR A 12	8 46.942	7.639	10.542	1.00 43.41	c
•	ATOM 115	50 N	LEU A 12	9 48.907	6.715	12,425	1.00 18.32	N
	ATOM 11	51 CA	LEU A 12	9 49.674	7.534	13.356	1.00 16.76	<u>C</u>
	ATOM 11	52 C	LEU A 12	9 49.504	8.959	12.967	1.00 4.89	Ç
	ATOM 11:	53 0	LEU A 12	9 49.232	9,260	11.814	1.00 16.14	0
20	ATOM 11	54 CB	LEU A 12	9 51.205	7.191	13.261	1.00 17.91	c
	ATOM 11	55 CG	LEU A 12	9 51.769	5.804	13.752	1.00 18.21	<u>c</u>
	ATOM 11	56 CD1	LEU A 12	9 53.132	5.379	13.193	1.00 12.12	c
•	ATOM 11	57 CD2	LEU A 12	9 51.683	5.532	15.251	1.00 3.89	c
	ATOM 11	58 N	GLU A 13	0 49.816	9.827	13.917	1.00 10.23	<u> </u>
25	ATOM 11	59 CA	GLU A 13	0 49.912	11.268	13.691	1.00 13.22	<u>C</u>
	ATOM 11	60 C	GLU A 13	0 51.128	11.544	12.775	1.00 23.44	c
	ATOM 11	61 0	GLU A 13	0 52.249	11.162	13.090	1.00 21.23	0
	ATOM 11	62 CB	GLU A 13	0 50.150	11,979	15.035	1.00 18.48	C
	ATOM 11	63 C G	GLU A 13	50.754	13.376	14.886	1.00 77.44	<u></u>
30	ATOM 11	64 CD	GLU A 13	0 49.833	14.328	14,121	1.00100.00	C
	ATOM 11	65 OE	1 GLU A 13	10 48,588	14.205	14.340	1.00 36.19	0
		66 OE	2 GLU A 13	50.347	15.161	13.295	1,00 21.03	0
		67 N	PRO A 1	50.920	12.219	11.648	1,00 21.35	N
		68 CA	PRO A 13		12.409	10.731	1.00 14.78	c
35		69 C			13.132	11.265	1.00 14.98	C
-		70 O			12.847		1.00 20.99	
		71 CB			13.154		1.00 14.76	
			PRO A 1				1.00 20.99	
			PRO A 1				1.00 17.25	
40		174 N			6 14.095		1,00 18.77	
		175 CA					1.00 16.44	
		176 C			2 13.951		1.00 21.9	 -
		177 0					1.00 24.1	
		178 CF			6 15.907		1.00 23.4	
45			THE A 1				1.00 31.1	
てン	D VII	~						

	MOTA	1180	CG2	THR A 132	54.969	16.519	14.341	1.00 9.28	c
	MOTA	1181	N_	ASN A 133	54.551	12.970	14.122	1.00 28.59	N
	ATOM	1182	CA	ASN A 133	55,359	12.007	14.875	1.00 26.38	c
	ATOM	1183	С	ASN A 133	55.666	10.682	14.207	1.00 14.85	c
5	MOTA	1184	0	ASN A 133	56.446	9.884	14.755	1.00 18.67	0
	ATOM	1185	СВ	ASN A 133	54.661	11.699	16.168	1.00 23.70	c
	ATOM	1186	CG	ASN A 133	54,480	12.894	16.968	1.00 50.55	<u>c</u>
	ATOM	1187	OD1	ASN A 133	53.354	13.272	17.252	1.00 40.07	<u> </u>
	MOTA	1188	ND2	ASN A 133	55.568	13.638	17.163	1.00 40.36	N
10	MOTA	1189	N	GLU A 134	55.100	10.469	13.022	1.00 9.98	N
	MOTA	1190	CA	GLU A 134	55.237	9.210	12.365	1.00 9.66	<u>.</u>
	MOTA	1191	С	GLU A 134	56.648	8.530	12.274	1.00 13.86	с
	MOTA	1192	0	GLU A 134	56.814	7.388	12.706	1.00 22.89	0
	MOTA	1193	СВ	GLU A 134	54.448	9.200	11.070	1.00 17.55	<u>C</u>
15	MOTA	1194	CG	GLU A 134	54.750	7.930	10.227	1.00 20.89	<u>C</u>
•	MOTA	1195	CD	GLU A 134	53.926	7.868	8.970	1.00 13.59	C
	MOTA	1196	OE1	GLU A 134	52.678	7.738	9.085	1.00 35.28	0
	MOTA	1197	OE2	GLU A 134	54.497	8.048	7.869	1.00 13.44	Q
	ATOM	1198	N	PRO A 135	57.680	9.222	11.789	1.00 15.72	N
20	ATOM	1199	CA	PRO A 135	59.014	B.600	11.699	1.00 18.91	c
	MOTA	1200	С	PRO A 135	59.544	8.174	13.073	1.00 18.68	c
	MOTA	1201	0	PRO A 135	60.072	7.069	13.271	1.00 15.69	0
	MOTA	1202	СВ	PRO A 135	59.896	9,755	11.169	1.00 13.84	Ç
	MOTA	1203	CG	PRO A 135	59.036	10.514	10.350	1.00 9.78	c
25	MOTA	1204	CD	PRO A 135	57.594	10.395	10.908	1.00 14.43	c
	MOTA	1205	N	TYR A 136	59,449	9.117	13.994	1.00 8.64	и
	MOTA	1206	CA.	TYR A 136	59.873	8.915	15.324	1.00 13.27	<u>c</u>
	MOTA	1207	С	TYR A 136	59.056	7.728	15.907	1.00 16.84	C
•	ATOM	1208	0	TYR A 136	59.578	6.903	16.658	1.00 12.90	0
30	ATOM	1209	СВ	TYR A 136	59.604	10.234	16.100	1.00 15.51	C
	ATOM	1210	CG	TYR A 136	59,912	10.168	17.614	1.00 18.26	<u>c</u>
	ATOM	1211	CD:	1 TYR A 136	61.200	10,062	18.072	1.00 20.53	<u>c</u>
	MOTA	1212	CD	2 TYR A 136	58,904	10.150	18.568	1.00 17.38	Ç
	ATOM	1213	CE	1 TYR A 136	61.484	9.959	19.440	1.00 30.44	c
35	MOTA	1214	CE	2 TYR A 136	59.184	10,084	19.953	1.00 9.85	c
	MOTA	1215	СZ	TYR A 136	60,476	9.949	20.377	1.00 20.65	c
	MOTA	1216	ОН	TYR A 136	60.792	9,873	21.734	1.00 24.41	0
	MOTA	1217	N	ALA A 137	57.760	7.687	15.638	1.00 7.19	и
	ATOM	1218	_ CA	ALA A 137	56.923	6.633	16.227	1.00 12.68	c
40	ATOM	1219	С	ALA A 137	57,345	5.265	15,737	1.00 15.21	<u> </u>
	MOTA	1220	0	ALA A 137	57,425	4.272	16,488	1.00 14.58	0
	MOTA	1221	СВ	AJA A 137	55,517	6.849	15.871	1.00 11.40	<u>C</u>
	MOTA	1222	_N_	ILE A 138	57.567	5,213	14.447	1.00 8.93	N
	MOTA	1223	CA	ILE A 138	57.954	3.971	13.831	1.00 11.77	<u>c</u>
45	MOTA	1224	Ç	ILE A 138	59.246	3.494	14.492	1,00 16.20	Ç

	MOTA	1225		ILE A 138	59.307	2.377	14.970	1.00 13.79	0
	ATOM	1226	В	ILE A 138	58.064	4.172	12.316	1.00 17.85	<u>c</u>
	MOTA	1227 (:G1	ILE A 138	56.680	4.473	11.757	1.00 28.21	<u>c</u>
	MOTA	1228	:G2	ILE A 138	58.674	2.986	11.602	1.00 9.81	<u>C</u>
5	MOTA	1229	D1	ILE A 138	55.695	3.376	11.970	1.00 18.17	c
	MOTA	1230	N	ALA A 139	60.243	4.361	14.625	1.00 11.54	N
	MOTA	1231	ca_	ALA A 139	61.494	3.937	15.288	1.00 13.22	C
	MOTA	1232	<u> </u>	ALA A 139	61.256	3.364	16.675	1.00 18.73	2
	MOTA	1233	0	ALA A 139	61.791	2.318	17.031	1.00 20.44	<u> </u>
10	MOTA	1234	СВ	ALA A 139	62.434	5.073	15.390	1.00 13.62	С
	MOTA	1235	N	LYS A 140	60.397	4.033	17.448	1.00 16.36	N
	MOTA	1236	CA_	LYS A 140	60.0B3	3.600	18.815	1.00 15.14	<u> </u>
	ATOM	1237	<u>c</u>	LYS A 140	59.392	2.262	18.824	1.00 15.18	<u>c</u>
	MOTA	1238	0	LYS A 140	59.824	1.346	19,475	1.00 21.42	<u> </u>
15	MOTA	1239	CB_	LYS A 140	59,193	4.606	19.525	1.00 17.86	c
	MOTA	1240	CG	LYS A 140	59.925	5.806	20.152	1.00 21.11	c
	MOTA	1241	CD	LYS A 140	61.208	5.478	20.958	1.00 16.75	C
	MOTA	1242	CE	LYS A 140	61.664	6.735	21.835	1.00 10.06	<u>C</u>
	MOTA	1243	NZ	LYS A 140	62.688	6.496	22.921	1.00 14.40	N
20	ATOM	1244_	N_	ILE A 141	58.356	2.116	18.027	1.00 11.49	N
	MOTA	1245	CA	ILE A 141	57.703	0.828	17.977	1.00 17.92	<u>c</u>
	MOTA	1246	C	ILE A 141	58.729	-0.282	17.577	1.00 13.46	<u>C</u>
	MOTA	1247	0	ILE A 141	58,730	-1.374	18.148	1.00 13.92	0
	MOTA	1248	СВ	ILE A 141	56.497	0.925	17.019	1.00 22.59	<u>C</u>
25	MOTA	1249	CG1	ILE A 141	55.466	1,906	17,557	1.00 17.61	<u>c</u>
	ATOM	1250	CG2	ILE A 141	55.863	-0,411	16.700	1.00 10.49	c
	MOTA	1251	CD)	ILE A 141	54.530	2.327	16.449	1.00 13.43	c
	MOTA	1252	N	ALA A 142	59,637	0.028	16.650	1.00 10.29	N
	MOTA	1253	CA	ALA A 142	60.657	-0.931	16.228	1.00 7.15	c
30	MOTA	1254	С	ALA A 142	61,456	-1.301	17.456	1.00 16.58	<u>c</u>
	MOTA	1255	0	ALA A 142	61.839	-2.454	17.621	1.00 13.04	o
	MOTA	1256	CB	ALA A 142	61,604	-0.288	15.130	1.00 4.44	<u>C</u>
	MOTA	1257	N_	GLY_A 143	61.703	-0.307			N
	MOTA	1258	CA	GLY A 143	62.448	-0.525			C
35	MOTA	1259	<u></u>	GLY A 143	61.770			1.00 16.36	
	MOTA	1260	0	GLY A 143	62.392			1.00 14.11	
	MOTA	1261	N	ILE A 144	60.476			1.00 20.33	
	MOTA	1262	_CV	ILE A 144				1.00 15.35	
	MOTA	1263	<u></u>	ILE A 144	59.706			1.00 19.84	c
40	MOTA	1264	_0_	ILE A 144	-			1.00 17.93	
	MOTA	1265	CB			-1.819		1.00 10.60	
	MOTA	1266		1 ILE A 144	58.311			5 1.00 9.80	
	MOTA	1267		2 ILE A 144	57.410			1.00 9.60	
. =	MOTA			1 ILE A 144	57.022			7 1.00 18.32	
45	MOTA	1269	Ŋ	LYS A 145	59.520	3.841	19.55	6 1.00 7.20	N

	ATOM 1270 CA LYS A 145	59,459 -5,139 18,926 1,00 7,64	c
	ATOM 1271 C LYS A 145	60.840 -5.788 18.931 1.00 15.32	<u>c</u>
	ATOM 1272 O LYS A 145	60.923 -6.989 18.981 1.00 14.76	0
	ATOM 1273 CB LYS A 145	58.891 -5.001 17.516 1.00 11.25	<u>C</u>
5	ATOM 1274 CG LYS A 145	57.414 -4.581 17.489 1.00 12.13	c
	ATOM 1275 CD LYS A 145	56.642 -5.434 18.495 1.00 25.23	<u>c</u>
	ATOM 1276 CE LYS A 145	55.189 -4.995 18.692 1.00 13.64	c
	ATOM 1277 NZ LYS A 145	54.441 ~6.111 19.392 1.00 11.94	N
	ATOM 1278 N LEU A 146	61.934 -5.011 18.986 1.00 26.98	N
10	ATOM 1279 CA LEU A 146	63.261 -5.642 19.167 1.00 19.72	<u> </u>
	ATOM 1280 C LEU A 146	63.262 -6.316 20.542 1.00 18.20	Ç
	ATOM 1281 O LEU A 146	63.590 -7.511 20.703 1.00 19.86	0
	ATOM 1282 CB LEU A 146	64,398 -4,618 19.150 1.00 13.56	<u>c</u>
	ATOM 1283 CG LEU A 146	64.895 -4.258 17.759 1.00 21.84	<u>c</u>
15	ATOM 1284 CD1 LEU A 146	65.672 -2.945 17.817 1.00 17.94	<u>C</u>
	ATOM 1285 CD2 LEU A 146	65.745 -5.397 17.102 1.00 16.10	<u>C</u>
	ATOM 1286 N CYS A 147	62.931 -5.523 21.548 1.00 7.91	N
	ATOM 1287 CA CYS A 147	62.875 -6.064 22.893 1.00 9.14	<u>C</u>
	ATOM 1288 C CYS A 147	62,072 -7,378 22,945 1.00 22,72	
20	ATOM 1289 O CYS A 147	62.568 -8.401 23.383 1.00 16.90	0
	ATOM 1290 CB CYS A 147	62.232 -5.058 23.809 1.00 12.63	<u>c</u>
	ATOM 1291 SG CYS A 147	63,411 -3.823 24.316 1.00 15.02	<u>\$</u>
	ATOM 1292 N GLU A 148	60.823 -7.352 22.508 1.00 20.03	
	ATOM 1293 CA GLU A 148	60.016 -8.555 22.567 1.00 16.09	c
25	ATOM 1294 C GLU A 148	60.685 -9.715 21.802 1.00 22.61	<u>c</u>
	ATOM 1295 O GLU A 148	60.651 -10.888 22.226 1.00 12.05	0
	ATOM 1296 CB GLU A 148	58.597 -8.268 22.046 1.00 14.66	ç
	ATOM 1297 CG GLU A 148	57.864 -7.189 22.840 1.00 11.45	<u>c</u>
	ATOM 1298 CD GLU A 148	56.471 -6.821 22.277 1.00 11.75	<u>c</u>
30	ATOM 1299 OE1 GLU A 148	56,117 -7.055 21.080 1.00 11.65	0
	ATOM 1300 OE2 GLU A 148	55,728 -6.231 23.081 1.00 22.56	0
	ATOM 1301 N SER A 149	6].368 -9.377 20.715 1.00 15.57	N
	ATOM 1302 CA SER A 149	61,938 -10,428 19,887 1,00 10.21	<u>C</u>
	ATOM 1303 C SER A 149	63.040 -11.245 20.502 1.00 15.83	<u>C</u>
35	ATOM 1304 0 SER A 149	63.102 -12.458 20.291 1.00 12.72	0
	ATOM 1305 CB SER A 149	62,270 -9,936 18,488 1.00 9,44	c
	ATOM 1306 OG SER A 149	61.053 -9.650 17.782 1.00 15.91	0
	ATOM 1307 N TYR A 150	63.910 -10.546 21.224 1.00 18.44	<u>N</u>
	ATOM 1308 CA TYR A 150	65.065 -11.100 21.948 1.00 20.50	
40	ATOM 1309 C TYR A 150	64.514 -11.848 23.158 1.00 21.87	c
	ATOM 1310 O TYR A 150	64.939 -12,949 23,486 1.00 31,39	0
	ATOM 1311 CB TYR A 150	66.005 -9.950 22.425 1.00 13.71	c
	ATOM 1312 CG TYR A 150	66.994 -9.509 21.365 1.00 14.13	Ç
	ATON 1313 CD1 TYR A 150	66,611 -8.673 20.317 1.00 14.64	c
4 5	ATOM 1314 CD2 TYR A 150	68,288 -10,000 21,360 1.00 18.32	

	ATOM 1315 CE1 TYR A 150	67.487 -8.390 19.278 1.00 11.91	c
	ATOM 1316 CE2 TYR A 150	69.198 -9.682 20.345 1.00 11.10	c
	ATOM 1317 CZ TYR A 150	68.804 -8.900 19.326 1.00 20.95	
	ATOM 1318 OH TYR A 150	69.739 -8.685 18.333 1.00 27.73	
5	ATOM 1319 N ASN A 151	63.536 -11.249 23.801 1.00 14.83	и
	ATOM 1320 CA ASN A 151	62,903 -11.889 24.937 1.00 23,62	<u>s</u>
	ATOM 1321 C ASN A 151	62.417 -13.244 24.410 1.00 28.53	с
	ATOM 1322 0 ASN A 151	62.630 -14.248 25.072 1.00 25.89	0
	ATOM 1323 CB ASN A 151	61.655 -11.113 25.439 1.00 20.95	c
10	ATOM 1324 CG ASN A 151	61.988 -9.867 26.284 1.00 15.07	<u>C</u>
	ATOM 1325 OD1 ASN A 151	61,126 -9,020 26,466 1.00 26,72	0
	ATOM 1326 ND2 ASN A 151	63.231 -9.709 26.700 1.00 6.31	N
	ATOM 1327 N ARG A 152	61.731 -13.249 23.259 1.00 19.91	N
	ATOM 1328 CA ARG A 152	61.129 -14.465 22.687 1.00 17.62	<u>c</u>
15	ATOM 1329 C ARG A 152	62.090 -15.523 22.188 1.00 21.34	c
	ATOM 1330 O ARG A 152	61.959 -16.687 22.542 1.00 15.44	0
	ATOM 1331 CB ARG A 152	60.086 -14.148 21.610 1.00 15.30	с
	ATOM 1332 CG ARG A 152	58.672 -13.754 22.157 1.00 17.22	<u>c</u>
	ATOM 1333 CD ARG A 152	57.652 -13.297 21.049 1.00 9.11	<u>c</u>
20	ATOM 1334 NE ARG A 152	57,161 -14,419 20.241 1.00 21.05	N
	ATOM 1335 CZ ARG A 152	57,159 -14,447 18,912 1.00 28,61	<u>c</u>
	ATOM 1336 NH1 ARG A 152	57.590 -13.387 18.221 1.00 21.98	N
	ATOM 1337 NH2 ARG A 152	56,717 -15.528 18.262 1.00 26.11	N
	ATOM 1338 N GLN A 153	63.098 -15.104 21.434 1.00 16.54	N
25	ATOM 1339 CA GLN A 153	64.044 -16.036 20.842 1.00 9.74	_
	ATOM 1340 C GLN A 153	65.082 -16.443 21.807 1.00 16.70	<u>c</u>
	ATOM 1341 0 GLN A 153	65.529 -17.545 21.763 1.00 24.35	0
	ATOM 1342 CB GLN A 153	64.789 -15.372 19.714 1.00 8.99	c
	ATOM 1343 CG GLN A 153	65.935 -16.225 19.116 1.00 4.63	c
30	ATOM 1344 CD GLN A 153	66.315 -15.637 17.762 1.00 14.17	c
	ATOM 1345 OE1 GLN A 153	65.611 -14.763 17.254 1.00 12.53	0
	ATOM 1346 NE2 GLN A 153	67.466 -16.024 17.228 1.00 13.38	и
	ATOM 1347 N TYR A 154	65,566 -15,518 22,608 1,00 14,35	N
	ATOM 1348 CA TYR A 154	66.677 -15.839 23.483 1.00 12.16	
35	ATOM 1349 C TYR A 154	66.323 -15.930 24.954 1.00 19.06	c
	ATOM 1350 0 TYR A 154	67.185 -16.207 25.777 1.00 25.59	0
	ATOM 1351 CB TYR A 154	67.829 -14.816 23.326 1.00 16.89	
	ATOM 1352 CG TYR A 154	68,418 -14,733 21,943 1,00 17,53	
	ATOM 1353 CD1 TYR A 154	69.259 -15.726 21.467 1.00 18.91	
40	ATOM 1354 CD2 TYR A 154	68.080 -13.712 21.091 1.00 13.97	
	ATOM 1355 CE1 TYR A 154	69.782 -15.686 20.190 1.00 10.98	
	ATOM 1356 CE2 TYR A 154	68,621 -13.639 19.806 1.00 23.81	
	ATOM 1357 CZ TYR A 154	69,488 -14.634 19.380 1.00 23.08	
	ATOM 1358 OH TYR A 154	70.002 -14.619 18.118 1.00 23.87	
45	ATOM 1359 N GLY A 155	65,080 -15.686 25.313 1.00 12.08	

		·	
	ATOM 1360 CA GLY A 155	64.747 -15.702 26.731 1.00 15.80	<u>c</u>
	ATOM 1361 C GLY A 155	65.323 -14.498 27.580 1.00 33.97	<u>C</u>
	ATOM 1362 O GLY A 155	65.491 -14.640 28.789 1.00 25.76	0
	ATOM 1363 N ARG A 156	65.564 -13.318 26.981 1.00 25.91	N
5	ATOM 1364 CA ARG A 156	66.066 -12.146 27.734 1.00 14.13	<u>C</u>
	ATOM 1365 C ARG A 156	64.971 -11.486 28.581 1.00 16.23	<u>c</u>
	ATOM 1366 O ARG A 156	63.802 -11.919 28.583 1.00 22.61	0
	ATOM 1367 CB ARG A 156	66.601 -11.124 26.750 1.00 13.16	<u>c</u>
	ATOM 1368 CG ARG A 156	67.875 -11.570 26.099 1.00 15.18	c
10	ATOM 1369 CD ARG A 156	68.930 -11.418 27.121 1.00 26.42	C
	ATOM 1370 NE ARG A 156	70.200 -11.912 26.633 1.00 21.25	N
	ATOM 1371 CZ ARG A 156	71.092 -12.555 27.386 1.00 42.25	<u>c</u>
	ATOM 1372 NH1 ARG A 156	70,870 -12,795 28,679 1.00 20.02	N
	ATOM 1373 NH2 ARG A 156	72.221 -12.966 26.843 1.00 20.88	N
15	ATOM 1374 N ASP A 157	65.343 -10.446 29.321 1.00 16.00	<u> </u>
	ATOM 1375 CA ASP A 157	64.370 -9.749 30.166 1.00 16.20	<u>C</u>
	ATOM 1376 C ASP A 157	64.444 -8.245 29.841 1.00 19.20	С
	ATOM 1377 O ASP A 157	64.865 -7.429 30.650 1.00 10.71	0
	ATOM 1378 CB ASP A 157	64.609 -10.061 31.652 1.00 16.50	c
20	ATOM 1379 CG ASP A 157	63.489 -9.560 32.566 1.00 26.45	c
	ATOM 1380 OD1 ASP A 157	62.433 -9.060 32.108 1.00 26.82	0
	ATOM 1381 OD2 ASP A 157	63,673 -9,653 33,784 1.00 21.88	0
	ATOM 1382 N TYR A 158	64.038 -7.921 28.620 1.00 19.41	N
	ATOM 1383 CA TYR A 158	64.099 -6,564 28.083 1.00 18,96	c
25	ATOM 1384 C TYR A 158	62.688 -5.977 28.127 1.00 22.62	C
	ATOM 1385 O TYR A 158	61,854 -6.296 27.282 1.00 10.12	0
	ATOM 1386 CB TYR A 158	64.562 -6.661 26.631 1.00 16.34	C
	ATOM 1387 CG TYR A 158	65,982 -7.166 26,484 1.00 12.04	Ç
	ATOM 1388 CD1 TYR A 158	66.789 -7.415 27.621 1.00 13.76	c
30	ATOM 1389 CD2 TYR A 158	66,544 -7,349 25.218 1.00 16.35	<u>c</u>
	ATOM 1390 CE1 TYR A 158	68,135 -7,786 27,482 1.00 8.18	<u>c</u>
	ATOM 1391 CE2 TYR A 158	67.886 -7.732 25.060 1.00 13.73	с
	ATOM 1392 CZ TYR A 158	68.676 -7.942 26.186 1.00 24.45	<u>C</u>
	ATOM 1393 OH TYR A 158	69,993 -8,338 25,997 1.00 14.36	Q
35	ATOM 1394 N ARG A 159	62,423 -5,200 29,175 1.00 23.53	N
	ATOM 1395 CA ARG A 159		С
	ATOM 1396 C ARG A 159	60.930 -3.172 28.878 1.00 23.55	<u>c</u>
	ATOM 1397 O ARG A 159		o
	ATOM 1398 CB ARG A 159		c
40	ATOM 1399 CG ARG A 159	60.986 -6.029 31.722 1.00 16.41	с
	ATOM 1400 CD ARG A 159	_	Ç
	ATOM 1401 NE ARG A 159		N
	ATOM 1402 CZ ARG A 159		<u>c</u>
	ATOM 1403 NH1 ARG A 159	60.886 -6.776 35.962 1.00 15.32	N
45	ATOM 1404 NH2 ARG A 159		и

		4405		ann > 160	ED 600	-2.661	28 859	1.00 24.44	N
	ATOM	1405	_N	SER A 160		-1.393	28.200	1.00 21.59	C
	MOTA	1406	_CA_	SER A 160		-0.577	28.950	1.00 25.07	c
	MOTA	1407	<u> </u>	SER A 160 SER A 160		-1.127	29.454	1.00 17.02	
_	MOTA	1408	<u> </u>			-1.747	26.797	1.00 13.05	
5	MOTA	1409	_CB	SER A 160	59.7B2	-1.897	25.885	1.00 37.57	
	MOTA	1410	_0 <u>G</u> _	SER A 160	58.378	0.742	28.927	1.00 21.01	N
	MOTA	_1411_	_N	VAL A 161	57.369	1.644	29.509	1.00 9.70	
	MOTA	1412	<u>CA</u>	<u>VAL A 161</u>	57.068	2,747	28.504	1.00 16.77	c
10	ATOM	1413	<u>-</u>	VAL A 161	57.955	3,149	27.729	1.00 16.33	
10	MOTA	1414	<u> </u>	VAL A 161 VAL A 161	57.806	2.248	30.862	1.00 17.94	C
	MOTA	1415	CB CC1		57.873	1.185	31.984	1.00 16.16	c
	MOTA	1416		VAL A 161	59.137	2.992	30.750	1.00 21.10	С
	MOTA	<u> 1417</u>		VAL A 161	55.794	3.147	28,443	1.00 22.46	N
15	MOTA	1418	<u>N</u>	MET A 162 MET A 162	55.296	4.185	27.513	1.00 19.23	C
15	ATOM	1419	CA_	MET A 162	54,880	5.312	28.397	1.00 25.19	С
	ATOM	1420	<u> </u>	MET A 162	53.788	5.269	28.961	1.00 18.35	
	MOTA	1421	_0_		53.979	3.796	26.850	1.00 15.55	c
	MOTA	1422	CB CC	MET A 162 MET A 162	54.013	2.630	25.949	1.00 37.79	c
20	MOTA	1423	CG SD	MET A 162	54.354	3.100	24.235	1.00 52.07	s
20	MOTA	<u> 1424</u> 1425	CE	MET A 162	56.193	3.134	24.410	1,00 36.30	c
	MOTA MOTA	1426	N_	PRO A 163	55.730	6.313		1,00 18.43	N
		1427	n_ CA	PRO A 163	55.390	7.472	29.337	1.00 17.76	C
	MOTA MOTA	1428	u n	PRO A 163	54.300	8.384	28,667	1.00 21.23	c
25	ATOM	1429		PRO A 163	54.208	8.448	27.433	1.00 15.20	o
23	ATOM	1430			56.727	8.196	29,423	1.00 11.43	Ç
	ATOM	1431			57.352	7.874	28.031	1.00 13.99	c
	MOTA	1432			57,086	6,401	27.949	1.00 12.24	C
	ATOM	1433		THR A 164	53,478	9.060	29,478	1.00 13.95	N
30	ATOM	1434			52.581	10,121	28.963	1.00 25.82	c
50	ATOM	1435		THR A 164	53,406	11,441	28.781	1.00 19.67	c
	ATOM	1436		THR A 164	54.633	11.393	28.868	1,00 13.97	0
	ATOM	1437			51.373	10.391	29.903	1.00 25.51	
	ATOM	1438			50,470	11.321	29.26	1.00 14.77	o
35	ATOM				51.818	10.886	31.298	1.00 9.06	c
	ATOM			ASN A 165				1.00 14.99	N
	MOTA			ASN A 165				1 1.00 7.83	
	ATOM			ASN A 165				1.00 11.21	
	MOTA					13.929	9 30.89	4 1.00 17.66	0
40	ATOM			3 ASN A 165	52.434	15.06	1 28.41	6 1.00 14.48	c
	ATOM			3 ASN A 165	51.492	14.94	1 27.26	2 1.00 23.70	c
	ATOM			01 ASN A 165				9 1.00 22.37	0
	MOTA			D2 ASN A 165				9 1.00 27.22	N
	MOTA			LEU A 166	55,418	14.49	0 29,77	7 1.00 8.23	<u>N</u>
45	ATOM			A LEU A 166		14.60	4 30.99	4 1.00 14.40	c
	· ·								

	ATOM_	1450		LEU A 166	56.629	16.017	31.120	1.00 25.05	C
	MOTA	1451	<u> </u>	LEU A 166	56.624	16.718	30.125	1.00 25.09	0
	MOTA	1452	СВ	LEU A 166	57.460	13.743	30.870	1.00 17.48	C
	MOTA	1453	CG_	LEU A 166	57.423	12.218	30.652	1.00 16.63	<u>c</u>
5	MOTA	1454	CD1	LEU A 166	58.837	11.639	31.000	1,00 22.52	С
	MOTA	1455	CD2	LEU A 166	56.336	11.539	31.514	1.00 7.46	<u>c</u>
	MOTA	1456	N	TYR A 167	57.146	16.391	32.300	1.00 19.78	N
	MOTA	1457	CA_	TYR A 167	57.678	17.760	32.511	1.00 18.58	<u>C</u>
	MOTA	1458	<u></u>	TYR A 167	58.534	17.763	33.767	1.00 15.53	C
10	MOTA	1459	0	TYR A 167	58.474	16.852	34.575	1,00 16.71	0
	MOTA	1460	CB_	TYR A 167	56.509	18.778	32.665	1.00 18.33	c
	MOTA	1461	CG	TYR A 167	55.671	18.561	33.931	1.00 14.23	<u>C</u>
	MOTA	1462	CD1	TYR A 167	54.624	17.618	33.977	1.00 13.35	<u>C</u>
	MOTA	1463	CD2	TYR A 167	55.984	19.258	35.106	1.00 16.52	<u>C</u>
15	MOTA	1464	CE1	TYR A 167	53.889	17.446	35.146	1.00 21.17	<u>C</u>
	MOTA	1465	CE2	TYR A 167	55.302	19.084	36.264	1.00 8.26	<u> </u>
	MOTA	1466	CZ	TYR A 167	54.228	18.203	36.296	1.00 23.56	<u>c</u>
	MOTA	1467	OH	TYR A 167	53.526	18.078	37.504	1.00 22.81	0
	ATOM	1468	N	GLY A 168	59.334	18.797	33.952	1.00 16.59	N.
20	MOTA	1469	CA	GLY A 168	60.158	18.817	35,152	1.00 18.21	<u>c</u>
	MOTA	1470	Ç	GLY A 168	61.534	19.428	34.880	1.00 13.69	<u>c</u>
	MOTA	1471	0	GLY A 168	61.746	20.028	33.837	1.00 16.52	
	MOTA	1472	N	PRO A 169	62.473	19.263	35.817	1.00 20.33	N
	MOTA	1473	CA	PRO A 169	63.801	19.822	35.656	1.00 16.07	c
25	MOTA	1474	C	PRO A 169	64.430	19.353	34.387	1.00 27.18	c
	MOTA		0	PRO A 169	64.305	18.186	33.981	1.00 21.23	0
	ATOM		CB	PRO A 169	64.595	19,206	36.805	1.00 17.28	c
	ATOM		CG	PRO A 169	63.649	18,919	37.830	1.00 19.89	<u>c</u>
20	ATOM		CD	PRO A 169	62.263	18,772	37,189	1.00 22.47	· C
30	MOTA		<u> N</u>	HIS A 170	65.226	20.235	33.829	1.00 19.48	<u> </u>
	MOTA	1480	CA	HIS A 170	65.952	19.877	32.638	1.00 25.56	C
	MOTA		<u> </u>	HIS A 170	65.096	19.707	31.428	1.00 29.15	<u>c</u>
	MOTA		Q	HIS A 170	65,553	19.091	30.479	1.00 29.71	0
25	MOTA		СВ	HIS A 170	66.783	18.600	32.845	1.00 28.94	ç
35	MOTA	1484	CG	HIS A 170	67.703		34.034	1.00 33.88	с
	MOTA			HIS A 170	68.975			1.00 25.46	N
	ATOM	1486		HIS A 170	67.518			1.00 34.77	<u>c</u>
	MOTA	1487		HIS A 170	69.531		35.166		<u>C</u>
40	MOTA	1488		HIS A 170	68.673				<u>N</u>
40	MOTA	1489			63.881			1.00 21.52	N
	ATOM	1490		ASP A 171	63.041			1.00 28.63	<u>c</u>
	MOTA.	1491	<u> </u>	ASP A 171	63.630 64.534				<u>c</u>
	ATOM.	1492	O CB	ASP A 171	64.534			1.00 29.69	0
45	MOTA	1493	CB	ASP A 171 ASP A 171	61.552				<u>c</u>
7.7	ATOM	<u> 1494</u>	ÇĢ	V25 W 1/1	60.552	20.097	29.540	1.00 22.32	c

ATCH 1496 DOZ ASP A 171 59.427 19.719 29.916 1.00 42.13 Q ATCH 1497 N ASN A 172 63.141 21.712 28.137 1.00 42.08 N ATCH 1498 CA ASN A 172 63.616 22.893 27.388 1.00 35.95 C 5 ATCH 1499 C ASN A 172 61.616 22.893 27.388 1.00 33.71 C ATCH 1500 Q ASN A 172 61.586 24.102 27.104 1.00 32.69 Q ATCH 1501 CR ASN A 172 63.632 22.667 25.869 1.00 41.60 C ATCH 1502 CG ASN A 172 63.632 22.667 25.869 1.00 41.60 C ATCH 1503 DDI ASN A 172 63.807 23.987 24.347 24.259 1.00 81.94 Q ATCH 1503 DDI ASN A 172 63.807 23.987 24.347 24.259 1.00 81.94 Q ATCH 1503 DDI ASN A 172 64.855 24.740 25.188 1.00 55.07 N ATCH 1505 C FIE A 173 63.021 24.953 28.583 1.00 51.07 N ATCH 1506 CA FIE A 173 62.022 26.030 28.944 1.00 48.24 C ATCH 1507 C FIE A 173 62.226 26.459 30.390 1.00 43.43 C ATCH 1509 CB FIE A 173 62.226 26.459 30.390 1.00 43.43 C ATCH 1509 CB FIE A 173 62.826 25.25 26.459 30.30 1.30 43.19 C ATCH 1510 CG FIE A 173 62.826 25.848 31.751 1.00 24.68 C ATCH 1511 CDI FIE A 173 62.622 25.354 31.325 1.00 34.19 C ATCH 1513 CEL FIE A 173 62.226 26.459 30.30 1.00 43.43 C ATCH 1514 CE2 FIE A 173 62.225 26.459 30.30 1.00 43.43 C ATCH 1515 CE FIE A 173 62.225 26.459 30.30 1.00 43.43 C ATCH 1516 CE FIE A 173 62.225 26.459 30.30 1.00 43.43 C ATCH 1516 CE FIE A 173 62.225 26.459 30.30 1.00 43.43 C ATCH 1516 CE FIE A 173 60.621 25.354 31.925 1.00 24.68 C ATCH 1517 CA EIS A 174 63.610 27.035 26.81 1.00 24.89 C ATCH 1516 CP EIS A 173 60.352 27.868 32.894 1.00 31.32 C ATCH 1516 CP EIS A 174 63.610 27.035 26.81 1.00 68.16 N ATCH 1510 CP EIS A 174 63.635 27.868 25.229 1.00 22.64 C ATCH 1520 CP EIS A 174 63.60 27.035 26.81 1.00 69.133 C ATCH 1520 CP EIS A 174 63.80 27.936 24.356 32.804 1.00 73.20 C ATCH 1520 CP EIS A 174 63.80 27.936 24.356 32.804 1.00 73.20 C ATCH 1520 CP EIS A 174 63.80 27.936 24.356 32.804 1.00 73.20 C ATCH 1520 CP EIS A 174 63.60 27.936 26.81 1.00 68.16 N ATCH 1520 CP EIS A 174 63.80 27.806 25.229 1.00 92.29 C ATCH 1520 CP EIS A 174 63.80 27.806 25.229 1.00 92.29 C ATCH 1520 CP EIS A 174 63.80 27.806 25.229 1.00 92.29 C ATCH 1520 CP EIS A 174				0
ATOM 1497 N ASM A 172 63.141 21.712 28.137 1.00 42.08 N ATOM 1498 CA ASM A 172 62.655 24.056 27.388 1.00 35.95 C ATOM 1499 C ASM A 172 62.655 24.056 27.574 1.00 33.71 C ATOM 1500 O ASM A 172 63.632 22.657 25.869 1.00 41.60 C ATOM 1501 CB ASM A 172 63.632 22.657 25.869 1.00 41.60 C ATOM 1502 CG ASM A 172 63.807 23.987 25.086 1.00 39.09 C ATOM 1503 ODI ASM A 172 64.855 24.740 25.418 1.00 55.07 N ATOM 1505 N PHE A 173 63.021 24.953 28.583 1.00 31.93 N ATOM 1505 N PHE A 173 63.021 24.953 28.583 1.00 31.93 N ATOM 1506 CA PHE A 173 62.082 26.030 28.941 1.00 48.24 C ATOM 1508 OPHE A 173 62.082 26.030 28.941 1.00 48.24 C ATOM 1508 O PHE A 173 62.282 26.655 20.045 1.00 69.01 C ATOM 1508 O PHE A 173 62.282 26.459 30.390 1.00 43.43 C ATOM 1501 CG PHE A 173 62.252 26.459 30.390 1.00 43.43 C ATOM 1501 CG PHE A 173 62.252 26.459 30.390 1.00 43.43 C ATOM 1501 CG PHE A 173 62.252 26.459 30.390 1.00 43.43 C ATOM 1501 CG PHE A 173 62.252 26.459 30.390 1.00 43.43 C ATOM 1501 CG PHE A 173 62.252 26.459 30.390 1.00 43.43 C ATOM 1501 CG PHE A 173 62.252 26.459 30.390 1.00 43.43 C ATOM 1501 CG PHE A 173 62.252 26.459 30.390 1.00 43.43 C ATOM 1501 CG PHE A 173 62.252 26.459 30.390 1.00 43.43 C ATOM 1501 CG PHE A 173 62.253 23.457 31.355 1.00 24.84 C ATOM 1501 CG PHE A 173 62.800 24.488 31.751 1.00 24.68 C ATOM 1501 CG PHE A 173 62.524 23.548 32.682 1.00 24.64 C ATOM 1501 CG PHE A 173 62.524 23.548 32.682 1.00 24.64 C ATOM 1501 CG PHE A 173 62.524 23.548 32.682 1.00 24.64 C ATOM 1501 CG PHE A 173 62.524 23.548 32.682 1.00 23.64 C ATOM 1501 CG PHE A 173 62.525 22.354 31.925 1.00 24.89 C ATOM 1501 CG PHE A 173 62.526 23.456 32.683 1.00 24.89 C ATOM 1501 CG PHE A 173 62.526 23.456 32.683 1.00 23.64 C ATOM 1501 CG PHE A 173 62.526 23.456 32.683 1.00 23.64 C ATOM 1502 CG PHE A 173 62.600 22.255 22.250 1.00 23.64 C ATOM 1502 CG PHE A 173 62.600 22.255 22.250 1.00 23.64 C ATOM 1502 CG PHE A 173 62.600 22.255 22.250 1.00 23.64 C ATOM 1502 CG PHE A 173 62.600 22.255 22.250 1.00 23.20 C ATOM 1502 CG PHE A 174 62.500 22.255 22.250 1.00 24.23 C AT			60.890 20.067 28.325 1.00 32.03	
ATOM 1498 CA ASN A 172 63.616 22.893 27.388 1.00 35.95 C ATOM 1499 C ASN A 172 62.665 24.056 27.674 1.00 33.71 C ATOM 1500 O ASN A 172 63.682 22.667 27.104 1.00 33.71 C ATOM 1501 CB ASN A 172 63.682 22.667 25.889 1.00 41.60 C ATOM 1502 CG ASN A 172 63.807 23.987 25.086 1.00 39.09 C ATOM 1503 ODI ASN A 172 63.807 23.987 25.086 1.00 39.09 C ATOM 1504 ND2 ASN A 172 62.973 24.377 24.259 1.00 83.94 Q 10 ATOM 1505 CA FRE A 173 63.021 24.953 28.583 1.00 31.93 N ATOM 1506 CA FRE A 173 62.082 26.030 28.944 1.00 65.07 N ATOM 1507 C FRE A 173 62.082 26.030 28.944 1.00 65.07 N ATOM 1508 O FRE A 173 62.982 26.030 28.944 1.00 69.01 C ATOM 1509 CB FRE A 173 62.282 26.330 28.944 1.00 48.24 C ATOM 1500 CB FRE A 173 62.282 26.330 28.944 1.00 48.24 C ATOM 1500 CB FRE A 173 62.282 26.330 28.944 1.00 48.24 C ATOM 1501 CB FRE A 173 62.282 26.330 28.944 1.00 48.24 C ATOM 1502 CB FRE A 173 62.882 37.260 28.045 1.00 69.01 C ATOM 1503 CB FRE A 173 62.282 28.395 28.465 1.00 34.19 C ATOM 1511 CD1 FRE A 173 62.812 22.825 26.459 30.390 1.00 43.43 C ATOM 1512 CD2 FRE A 173 60.621 25.354 31.925 1.00 24.68 C ATOM 1513 CEI FRE A 173 60.621 25.354 31.925 1.00 24.84 C ATOM 1514 CE2 FRE A 173 60.321 23.357 33.192 1.00 24.80 C ATOM 1516 N HIS A 174 61.610 27.035 26.831 1.00 68.16 N ATOM 1517 CA HIS A 174 61.610 27.035 26.831 1.00 68.16 N ATOM 1517 CA HIS A 174 61.401 28.109 25.871 1.00 64.53 C ATOM 1518 C HIS A 174 61.401 28.109 25.871 1.00 64.53 C ATOM 1519 CD HIS A 174 64.921 27.539 24.400 1.00 31.32 C ATOM 1510 CD HIS A 174 64.921 27.539 24.400 1.00 71.58 C ATOM 1520 CD HIS A 174 65.032 27.868 25.229 1.00 53.29 C ATOM 1510 CD HIS A 175 59.973 28.221 25.400 1.00 71.58 C ATOM 1520 CD HIS A 175 59.973 28.221 25.400 1.00 71.59 C ATOM 1520 CD HIS A 175 59.973 28.221 25.400 1.00 71.59 C ATOM 1520 CD HIS A 175 59.973 28.221 25.400 1.00 71.59 C ATOM 1520 CD HIS A 175 59.966 26.955 21.343 1.00 05.71 N ATOM 1520 CD HIS A 175 59.469 29.465 1.00 69.5.71 N ATOM 1520 CD HIS A 175 59.469 29.465 1.00 69.5.99 C ATOM 1530 CD FRO				
5 ATOM 1499 C ASN A 172 62.655 24.056 27.674 1.00 33.71 C ATOM 1500 O ASN A 172 61.586 24.102 27.104 1.00 32.69 O ATOM 1501 CB ASN A 172 63.632 22.667 25.869 1.00 41.60 C ATOM 1502 CG ASN A 172 63.632 22.667 25.869 1.00 32.69 C ATOM 1503 ODI ASN A 172 62.973 24.347 24.259 1.00 83.94 O ATOM 1503 ODI ASN A 172 62.973 24.347 24.259 1.00 83.94 O ATOM 1503 ODI ASN A 172 62.973 24.347 24.259 1.00 83.94 O ATOM 1505 N EFIR A 173 62.927 26.935 28.583 1.00 31.93 N ATOM 1506 CA FIRE A 173 62.022 26.930 28.941 1.00 48.24 C ATOM 1507 C FIRE A 173 61.989 27.260 28.045 1.00 69.01 C ATOM 1507 C FIRE A 173 62.282 26.030 28.941 1.00 69.01 C ATOM 1509 C FIRE A 173 62.282 26.459 30.390 1.00 43.43 C ATOM 1500 C FIRE A 173 62.282 26.459 30.390 1.00 43.43 C ATOM 1500 C FIRE A 173 62.282 26.459 30.390 1.00 43.43 C ATOM 1500 C FIRE A 173 62.252 26.459 30.390 1.00 43.43 C ATOM 1510 C FIRE A 173 62.252 26.459 30.390 1.00 43.43 C ATOM 1510 C FIRE A 173 62.810 24.488 31.751 1.00 24.68 C ATOM 1511 CDI FIRE A 173 60.621 25.349 31.356 1.00 34.19 C ATOM 1511 CDI FIRE A 173 60.621 25.354 31.925 1.00 24.68 C ATOM 1513 CEI FIRE A 173 60.621 25.354 31.925 1.00 24.68 C ATOM 1514 CEZ FIRE A 173 60.621 25.354 31.925 1.00 24.68 C ATOM 1514 CEZ FIRE A 173 60.621 25.354 31.925 1.00 24.84 C ATOM 1515 CZ FIRE A 173 60.621 25.354 31.925 1.00 24.30 C ATOM 1514 CEZ FIRE A 173 60.305 24.366 32.804 1.00 31.32 C ATOM 1515 CZ FIRE A 173 60.305 24.366 32.804 1.00 31.32 C ATOM 1515 C FIRE A 174 61.510 27.035 28.221 25.400 1.00 71.58 C ATOM 1512 C FIRE A 174 61.510 27.035 28.221 25.400 1.00 71.58 C ATOM 1512 C FIRE A 174 61.510 27.036 26.831 1.00 68.16 N ATOM 1522 C B HIS A 174 64.921 27.539 24.440 1.00100.00 N ATOM 1522 C B HIS A 174 64.921 27.539 24.440 1.00100.00 C ATOM 1522 C B FIRE A 175 68.035 27.868 25.229 1.00 92.29 C ATOM 1522 C B FIRE A 175 68.035 27.868 25.299 1.00 92.29 C ATOM 1522 C B FIRE A 175 68.035 27.868 25.299 1.00 92.29 C ATOM 1522 C B FIRE A 175 68.035 27.866 25.295 21.00 95.71 N ATOM 1522 C B FIRE A 175 68.035 27.866 21.447 1.00 73.20 C ATOM 1				
ATOM 1500 O ASN A 172 61.586 24.102 27.104 1.00 32.69 0 ATOM 1501 CB ASN A 172 63.632 22.667 25.869 1.00 41.60 C ATOM 1502 CG ASN A 172 63.807 23.987 25.085 1.00 39.09 C ATOM 1503 CDI ASN A 172 64.855 24.740 25.418 1.00 55.07 N ATOM 1504 NDZ ASN A 172 64.855 24.740 25.418 1.00 55.07 N ATOM 1505 N PHE A 173 63.021 24.953 28.583 1.00 31.93 N ATOM 1506 CA PHE A 173 62.082 26.030 28.944 1.00 49.24 C ATOM 1507 C PHE A 173 62.082 26.030 28.944 1.00 49.24 C ATOM 1508 O PHE A 173 62.278 28.395 28.465 1.00 59.01 C ATOM 1509 CB PHE A 173 62.278 28.395 28.465 1.00 58.79 O ATOM 1500 CB PHE A 173 62.278 28.395 28.465 1.00 43.43 C ATOM 1501 CG PHE A 173 62.252 26.459 30.390 1.00 43.43 C ATOM 1510 CG PHE A 173 62.282 26.459 30.390 1.00 43.43 C ATOM 1511 CDI PHE A 173 62.282 24.488 31.751 1.00 24.68 C ATOM 1513 CEI PHE A 173 60.621 25.354 31.925 1.00 24.84 C ATOM 1514 CE2 PHE A 173 60.621 25.354 31.925 1.00 24.84 C ATOM 1515 CZ PHE A 173 60.322 23.546 32.804 1.00 31.32 C ATOM 1516 CA PHE A 173 60.322 23.546 32.804 1.00 31.32 C ATOM 1516 CA PHE A 173 60.322 23.457 33.192 1.00 24.80 C ATOM 1517 CA PHE A 173 60.323 23.457 33.192 1.00 24.80 C ATOM 1516 CA PHE A 173 61.263 23.457 33.192 1.00 24.30 C ATOM 1516 CA PHE A 173 60.305 24.366 32.804 1.00 31.32 C ATOM 1516 CA PHE A 173 60.324 23.457 33.192 1.00 24.30 C ATOM 1516 CA PHE A 173 60.324 28.109 25.871 1.00 64.53 C ATOM 1516 CA PHE A 173 60.326 23.456 32.804 1.00 31.32 C ATOM 1516 CA PHE A 173 60.326 23.457 33.192 1.00 24.30 C ATOM 1517 CA PHE A 173 60.326 23.457 33.192 1.00 24.30 C ATOM 1518 C PHE A 173 60.326 23.457 33.192 1.00 24.30 C ATOM 1517 CA PHE A 173 60.326 23.457 33.192 1.00 64.53 C ATOM 1517 CA PHE A 174 61.401 28.109 25.871 1.00 64.53 C ATOM 1518 C PHE A 173 60.262 23.450 1.00 10.00 11.71 C ATOM 1520 CB PHE A 174 61.401 28.109 25.871 1.00 64.53 C ATOM 1520 CB PHE A 174 64.338 28.133 26.463 1.00 100.00 N ATOM 1520 CB PHE A 174 66.932 27.868 25.229 1.00 92.29 C ATOM 1520 CB PHE A 175 68.828 28.132 28.212 10.00 65.71 N ATOM 1520 CB PHE A 175 60.282 27.868 25.229 1.00 65	_			
ATCH 1501 C ASN A 172 63.632 22.667 25.869 1.00 41.60 C ATCH 1503 CD ASN A 172 63.807 23.987 25.086 1.00 39.09 C ATCH 1503 CD ASN A 172 62.973 24.347 24.259 1.00 81.94 C 10 ATCH 1504 ND2 ASN A 172 64.855 24.740 25.418 1.00 65.07 N ATCH 1506 CA PHE A 173 63.021 24.953 28.583 1.00 31.93 N ATCH 1506 CA PHE A 173 62.082 26.030 28.944 1.00 48.24 C ATCH 1507 C PHE A 173 62.282 26.030 28.944 1.00 48.24 C ATCH 1508 C PHE A 173 62.282 26.030 28.944 1.00 58.79 C 15 ATCH 1508 C PHE A 173 62.282 26.030 28.944 1.00 58.79 C ATCH 1510 CG PHE A 173 62.282 26.459 30.390 1.00 43.43 G ATCH 1510 CG PHE A 173 62.282 26.465 30.390 1.00 43.41 C ATCH 1510 CG PHE A 173 62.283 28.465 1.00 24.86 G ATCH 1511 CDI PHE A 173 62.810 24.488 31.751 1.00 24.66 G ATCH 1512 CD2 PHE A 173 60.621 25.354 31.925 1.00 24.86 G ATCH 1513 CEI PHE A 173 60.621 25.354 31.925 1.00 24.86 G ATCH 1515 CE PHE A 173 60.252 25.252 26.452 30.390 1.00 31.32 C ATCH 1515 CE PHE A 173 60.621 25.354 31.925 1.00 24.86 G ATCH 1515 CEI PHE A 173 60.621 25.354 31.925 1.00 24.86 G ATCH 1515 CEI PHE A 173 60.621 25.354 31.925 1.00 24.86 G ATCH 1515 CEI PHE A 173 61.263 23.457 33.192 1.00 24.86 G ATCH 1515 CEI PHE A 173 61.263 23.457 33.192 1.00 24.86 G ATCH 1515 CEI PHE A 174 61.610 27.036 26.831 1.00 68.16 N ATCH 1517 CA HIS A 174 61.610 28.109 25.871 1.00 68.16 N ATCH 1519 C HIS A 174 64.921 27.539 24.400 1.00 71.58 C ATCH 1520 CB HIS A 174 64.921 27.539 24.400 1.00 71.58 C ATCH 1520 CB HIS A 174 64.921 27.539 24.400 1.00 71.58 C ATCH 1520 CB HIS A 174 64.921 27.539 24.400 1.00 71.58 C ATCH 1520 CB HIS A 174 65.833 29.927 24.366 1.00 190.00 N ATCH 1520 CB HIS A 174 65.832 27.866 25.229 1.00 95.71 N ATCH 1520 CB HIS A 174 65.833 29.927 23.267 1.00 75.83 C ATCH 1520 CB HIS A 174 65.833 29.927 23.267 1.00 75.83 C ATCH 1520 CB PRO A 175 59.669 29.461 25.262 1.00 65.71 N ATCH 1520 CB PRO A 175 59.669 29.461 25.262 1.00 65.71 N ATCH 1520 CB PRO A 175 59.660 26.955 21.991 1.00 95.09 N ATCH 1530 CB PRO A 175 59.660 26.955 21.991 1.00 95.09 N ATCH 15	5			
ATCH 1502 CG ANN A 172 63.807 23.987 25.086 1.00.39.09 C ATCH 1503 ODI ANN A 172 62.973 24.347 24.259 1.00 83.94 Q ATCH 1503 ODI ANN A 172 62.973 24.347 24.259 1.00 83.94 Q ATCH 1505 N FHE A 173 63.021 24.953 28.583 1.00 31.93 N ATCH 1505 N FHE A 173 62.082 26.030 28.944 1.00 48.24 C ATCH 1507 C PHE A 173 61.989 27.260 28.045 1.00 69.01 C ATCH 1509 O PHE A 173 62.278 28.395 28.465 1.00 58.79 Q ATCH 1509 CB PHE A 173 62.278 28.395 28.465 1.00 58.79 Q ATCH 1509 CF PHE A 173 62.278 28.395 1.305 1.00 43.43 G ATCH 1510 CG PHE A 173 62.261 24.488 31.751 1.00 24.68 G ATCH 1511 CDI PHE A 173 62.810 24.488 31.751 1.00 24.68 G ATCH 1512 CD2 PHE A 173 60.621 25.354 31.925 1.00 24.84 G ATCH 1513 CEI PHE A 173 62.524 23.548 32.662 1.00 23.64 G ATCH 1514 CE2 PHE A 173 60.305 24.366 32.804 1.00 31.32 G ATCH 1515 CE PHE A 173 61.263 23.457 33.192 1.00 24.80 G ATCH 1515 CE PHE A 173 61.263 23.457 33.192 1.00 24.80 G ATCH 1516 N HIS A 174 61.510 27.036 26.831 1.00 68.16 N ATCH 1517 CA HIS A 174 61.263 23.457 33.192 1.00 24.30 G ATCH 1518 C HIS A 174 61.401 28.109 25.871 1.00 68.16 N ATCH 1519 C HIS A 174 63.835 27.866 1.00 71.71 C ATCH 1520 CB HIS A 174 64.338 22.12 25.400 1.00 71.71 C ATCH 1520 CB HIS A 174 64.338 22.12 25.400 1.00 71.71 C ATCH 1520 CB HIS A 174 64.338 28.133 26.463 1.00 71.71 C ATCH 1520 CB HIS A 174 64.338 28.133 26.463 1.00 10.00 N ATCH 1522 NDI HIS A 174 64.338 28.133 26.463 1.00 10.00 N ATCH 1522 NDI HIS A 174 64.338 28.133 26.463 1.00 10.00 N ATCH 1522 NDI HIS A 174 64.338 28.133 26.463 1.00 00.00 N ATCH 1526 C FRO A 175 58.233 29.297 23.257 1.00 95.72 G ATCH 1520 CB HIS A 174 65.035 27.866 25.299 1.00 95.72 G ATCH 1520 CD FRO A 175 59.660 26.955 27.981 26.393 1.00100.00 N ATCH 1520 CD FRO A 175 59.660 26.955 27.981 26.393 1.00100.00 N ATCH 1520 CD FRO A 175 59.660 26.955 27.981 26.393 1.00100.00 N ATCH 1520 CD FRO A 175 59.660 26.955 27.991 20.00 95.79 Q ATCH 1530 CD FRO A 175 59.660 26.955 27.991 1.00 95.79 Q ATCH 1530 CD FRO A 175 59.660 26.955 27.991 1.00 95.79 Q ATCH 1530 CD FRO A 175 59.660 26.955 2		ATOM 1500 O ASN A 172		
ATOM 1503 OD ASN A 172 62.973 24.347 24.259 1.00 83.94 0 ATOM 1504 ND2 ASN A 172 64.855 24.740 25.418 1.00 65.07 N ATOM 1505 N PRE A 173 63.021 24.953 28.583 1.00 31.93 N ATOM 1506 CA PRE A 173 62.082 26.030 28.944 1.00 48.24 C ATOM 1506 C PRE A 173 62.982 26.030 28.944 1.00 48.24 C ATOM 1508 O PRE A 173 62.982 26.030 28.045 1.00 58.079 0 ATOM 1508 O PRE A 173 62.278 28.395 28.455 1.00 38.19 ATOM 1500 C PRE A 173 62.278 28.395 28.455 1.00 38.19 ATOM 1510 CG PRE A 173 62.275 26.459 30.390 1.00 43.43 C ATOM 1510 CG PRE A 173 60.867 25.399 31.356 1.00 34.19 G ATOM 1511 CD1 PRE A 173 60.867 25.399 31.356 1.00 34.19 G ATOM 1512 CD2 PRE A 173 60.621 25.354 31.925 1.00 24.88 G ATOM 1513 CR1 PRE A 173 60.305 24.366 32.804 1.00 31.32 G ATOM 1515 CR PRE A 173 60.305 24.366 32.804 1.00 31.32 G ATOM 1515 CR PRE A 173 61.263 23.457 33.192 1.00 24.80 G ATOM 1516 N HIS A 174 61.510 27.036 26.831 1.00 68.16 N ATOM 1517 CA HIS A 174 61.401 28.109 25.871 1.00 68.53 G ATOM 1519 O HIS A 174 62.401 28.109 25.871 1.00 68.53 G ATOM 1510 CB HIS A 174 63.401 28.109 25.871 1.00 71.58 G 25 ATOM 1519 O HIS A 174 64.401 28.109 25.871 1.00 71.58 G ATOM 1520 CB HIS A 174 64.921 27.139 24.361 1.00 71.58 G ATOM 1520 CB HIS A 174 64.921 27.139 24.361 1.00 71.58 G ATOM 1520 CB HIS A 174 64.921 27.139 24.361 1.00 71.58 G ATOM 1520 CB HIS A 174 64.921 27.139 24.361 1.00 71.58 G ATOM 1520 CB HIS A 174 64.921 27.139 24.361 1.00 71.58 G ATOM 1520 CB HIS A 174 64.921 27.139 24.361 1.00 71.58 G ATOM 1520 CB HIS A 174 66.032 27.186 25.229 1.00 92.29 G ATOM 1520 CB HIS A 174 66.932 27.868 25.229 1.00 75.83 G ATOM 1520 CB HIS A 175 69.86 25.229 1.00 75.83 G ATOM 1520 CB HIS A 175 69.86 25.225 1.00 1.00 71.58 G ATOM 1520 CB HIS A 175 69.86 25.225 1.00 65.71 N ATOM 1520 CB FRO A 175 59.66 26.85 21.343 1.00 69.59 G ATOM 1530 CB FRO A 175 59.268 31.190 24.901 1.00 49.59 G ATOM 1530 CB FRO A 175 59.268 31.190 24.901 1.00 49.59 G ATOM 1530 CB FRO A 175 59.268 31.190 24.901 1.00 49.59 G ATOM 1530 CB FRO A 175 59.660 26.955				
10 ATCM				
ATOM 1505 N PRE A 173 63.021 24.953 28.583 1.00 31.93 N ATOM 1506 CA PHE A 173 62.082 26.030 28.944 1.00 48.24 C ATOM 1507 C PHE A 173 61.989 27.260 28.045 1.00 69.01 C ATOM 1508 O PHE A 173 62.278 28.395 28.465 1.00 58.79 Q ATOM 1509 CB PHE A 173 62.278 28.395 28.465 1.00 58.79 Q ATOM 1510 CG PHE A 173 61.867 25.399 31.356 1.00 34.43 C ATOM 1511 CD1 PHE A 173 60.867 25.399 31.356 1.00 34.419 C ATOM 1512 CD2 PHE A 173 60.621 25.354 31.925 1.00 24.68 C ATOM 1513 CEI PHE A 173 60.621 25.354 31.925 1.00 24.68 C ATOM 1513 CEI PHE A 173 60.621 25.354 31.925 1.00 24.84 C ATOM 1514 CE2 PHE A 173 60.305 24.365 32.804 1.00 31.32 C ATOM 1515 CZ PHE A 173 60.305 24.365 32.804 1.00 31.32 C ATOM 1515 CZ PHE A 173 60.305 24.365 32.804 1.00 31.32 C ATOM 1515 CZ PHE A 173 60.305 24.365 32.804 1.00 31.32 C ATOM 1515 CZ PHE A 174 61.501 27.036 26.831 1.00 68.16 N ATOM 1517 CA HIS A 174 61.401 28.109 25.871 1.00 64.53 C ATOM 1519 O HIS A 174 59.973 28.221 25.400 1.00 71.58 C ATOM 1510 CB HIS A 174 63.835 27.868 25.229 1.00 22.29 C ATOM 1520 CB HIS A 174 64.338 28.133 26.465 1.00 71.71 C ATOM 1523 CD2 HIS A 174 66.032 27.868 25.229 1.00 92.29 C ATOM 1520 CB HIS A 174 66.032 27.868 25.229 1.00 92.29 C ATOM 1523 CD2 HIS A 174 66.032 27.858 25.229 1.00 92.29 C ATOM 1524 CEI HIS A 174 66.032 27.628 25.160 1.00100.00 C ATOM 1525 NEZ HIS A 174 65.705 27.981 26.393 1.00100.00 C ATOM 1526 C PRO A 175 58.233 29.297 23.267 1.00 75.83 C ATOM 1527 CA PRO A 175 59.469 29.461 25.262 1.00 65.71 N ATOM 1528 C PRO A 175 59.469 29.461 25.262 1.00 65.71 N ATOM 1520 CB PRO A 175 59.288 31.190 24.901 1.00 49.59 C ATOM 1530 CB PRO A 175 59.288 31.190 24.901 1.00 49.59 C ATOM 1533 CG PRO A 175 59.266 27.981 26.393 1.00100.00 C ATOM 1533 CB PRO A 175 59.266 27.981 26.393 1.00100.00 S ATOM 1530 CB PRO A 175 59.266 27.688 24.770 1.00 55.72 C ATOM 1533 CG PRO A 175 59.266 27.981 26.393 1.00100.00 S ATOM 1530 CB PRO A 175 59.266 27.981 26.393 1.00100.00 S ATOM 1530 CB PRO A 175 59.268 30.695 25.109 1.00 49.59 C ATOM 1533 CG PRO A 175 59.660 28.666 21.447 1.0		ATOM 1503 OD1 ASN A 172		
ATOM: 1506 CA FIE A 173 62.082 26.030 28.944 1.00 48.24 C ATOM: 1507 C FIE A 173 62.082 26.030 28.944 1.00 48.24 C ATOM: 1508 O FIE A 173 62.225 26.459 20.058 1.00 69.01 C ATOM: 1508 O FIE A 173 62.225 26.459 20.390 1.00 43.43 C ATOM: 1510 CG FIE A 173 62.225 26.459 20.390 1.00 43.43 C ATOM: 1510 CG FIE A 173 62.810 24.488 31.751 1.00 24.68 C ATOM: 1511 CD1 FIE A 173 62.524 23.548 31.751 1.00 24.68 C ATOM: 1512 CD2 FIE A 173 60.621 25.354 31.925 1.00 24.88 C ATOM: 1513 CEI FIE A 173 60.521 25.354 31.925 1.00 24.88 C ATOM: 1514 CE2 FIE A 173 60.305 24.366 32.804 1.00 31.32 C ATOM: 1515 CZ FIE A 173 60.305 24.366 32.804 1.00 31.32 C ATOM: 1516 N HIS A 174 61.560 27.036 26.831 1.00 64.53 C ATOM: 1518 C HIS A 174 61.401 28.109 25.871 1.00 64.53 C ATOM: 1519 O HIS A 174 62.418 27.870 24.736 1.00 71.58 C ATOM: 1512 CG HIS A 174 62.418 27.870 24.736 1.00 71.58 C ATOM: 1512 CG HIS A 174 64.921 27.539 24.440 1.0071.58 C ATOM: 1512 CG HIS A 174 64.921 27.539 24.440 1.0070.00 N ATOM: 1522 NDI HIS A 174 64.921 27.539 24.440 1.00100.00 N ATOM: 1523 CD2 HIS A 174 66.328 27.870 24.736 1.00 71.71 C ATOM: 1524 CEI HIS A 174 66.328 27.870 24.736 1.00 71.71 C ATOM: 1525 ND2 HIS A 174 65.705 27.866 25.229 1.00 92.29 C ATOM: 1527 CA FIE A 175 58.109 27.658 25.100 1.0070.00 N ATOM: 1526 N PRO A 175 59.469 29.461 25.262 1.00 65.71 N ATOM: 1527 CA FIE A 175 58.233 29.297 23.267 1.00 75.83 C ATOM: 1528 C FIE A 175 59.469 29.461 25.262 1.00 65.71 N ATOM: 1529 O FRO A 175 59.469 29.461 25.262 1.00 65.71 N ATOM: 1520 CB FIE A 175 59.268 27.991 26.393 1.00100.00 N ATOM: 1520 CB FIE A 175 59.268 27.991 26.393 1.00100.00 N ATOM: 1520 CB FIE A 175 59.268 27.991 26.393 1.00100.00 N ATOM: 1520 CB FIE A 175 59.268 27.991 26.393 1.00100.00 N ATOM: 1520 CB FIE A 175 59.268 27.991 26.393 1.00100.00 N ATOM: 1520 CB FIE A 175 59.268 27.991 26.393 1.00100.00 N ATOM: 1520 CB FIE A 175 59.268 27.991 26.393 1.00100.00 N ATOM: 1520 CB FIE A 175 59.268 27.991 26.393 1.00100.00 N ATOM: 1530 CB FIE A 175 59.660 28.656 21.447 1.00 75.83 CB ATOM: 1533 CB FIE A	10	ATOM 1504 ND2 ASN A 172		
ATOM 1500 SC PHE A 173 61.989 27.260 28.045 1.00 69.01 C ATOM 1508 0 PHE A 173 62.278 28.395 28.465 1.00 58.79 0 15 ATOM 1509 CB PHE A 173 62.225 26.459 30.390 1.00 43.43 C ATOM 1510 CG PHE A 173 62.820 26.459 30.390 1.00 43.43 C ATOM 1511 CDI PHE A 173 62.810 24.488 31.751 1.00 24.68 C ATOM 1511 CDI PHE A 173 62.810 24.488 31.751 1.00 24.68 C ATOM 1513 CEI PHE A 173 60.621 25.354 31.925 1.00 24.84 C ATOM 1513 CEI PHE A 173 60.305 24.366 32.804 1.00 31.32 C ATOM 1515 CV PHE A 173 60.305 24.366 32.804 1.00 31.32 C ATOM 1515 CV PHE A 173 60.305 24.366 32.804 1.00 31.32 C ATOM 1516 N HIS A 174 61.510 27.036 26.831 1.00 64.53 C ATOM 1517 CA HIS A 174 61.510 27.036 26.831 1.00 64.53 C ATOM 1518 C HIS A 174 59.93 28.221 25.400 1.00 71.58 C ATOM 1520 CB HIS A 174 62.418 27.870 24.736 1.00 71.71 C ATOM 1520 CB HIS A 174 63.835 27.866 25.229 1.00 92.29 C ATOM 1520 CB HIS A 174 64.921 27.539 24.440 1.00100.00 N ATOM 1520 CB HIS A 174 64.921 27.539 24.440 1.00100.00 N ATOM 1520 CB HIS A 174 64.921 27.539 24.440 1.00100.00 N ATOM 1520 CB HIS A 174 66.032 27.668 25.229 1.00 92.29 C ATOM 1520 CB HIS A 174 66.032 27.668 25.229 1.00 92.29 C ATOM 1520 CB HIS A 174 66.032 27.668 25.229 1.00 92.29 C ATOM 1520 CB HIS A 174 66.032 27.668 25.229 1.00 92.29 C ATOM 1520 CB HIS A 174 65.705 27.981 26.393 1.00100.00 N ATOM 1520 CB HIS A 174 65.032 27.668 25.229 1.00 92.29 C ATOM 1520 CB HIS A 174 65.705 27.981 26.393 1.00100.00 N ATOM 1520 CB HIS A 174 65.705 27.981 26.393 1.00100.00 N ATOM 1520 CB HIS A 174 65.705 27.981 26.393 1.00100.00 N ATOM 1520 CB HIS A 175 66.032 27.668 25.229 1.00 65.71 N ATOM 1520 CB PRO A 175 59.469 29.461 25.262 1.00 65.71 N ATOM 1520 CB PRO A 175 59.469 29.461 25.262 1.00 65.71 N ATOM 1520 CB PRO A 175 59.268 29.461 25.262 1.00 65.71 N ATOM 1530 CB PRO A 175 59.268 30.695 25.109 1.00 49.59 C ATOM 1530 CB PRO A 175 59.666 31.142 25.026 1.00 49.14 C ATOM 1531 CB PRO A 175 59.268 30.695 25.109 1.00 49.59 C ATOM 1536 CB PRO A 175 59.660 28.954 22.575 1.00 75.03 CB ATOM 1536 CB PRO A 175 59.660 28.954 22.575 1.		ATOM 1505 N PHE A 173		
ATOM 1509 O PHE A 173 62.278 28.395 28.465 1.00 58.79 O ATOM 1509 CB PHE A 173 62.225 26.459 30.390 1.00 43.43 C ATOM 1510 CG PHE A 173 62.810 24.488 31.751 1.00 24.68 C ATOM 1511 CD1 PHE A 173 62.810 24.488 31.751 1.00 24.68 C ATOM 1512 CD2 PHE A 173 62.524 23.548 32.682 1.00 23.64 C ATOM 1513 CE1 PHE A 173 62.524 23.548 32.682 1.00 23.64 C ATOM 1513 CE2 PHE A 173 60.305 24.366 32.804 1.00 31.32 C ATOM 1516 N HIS A 174 61.510 27.036 26.831 1.00 68.16 N ATOM 1517 CA HIS A 174 61.401 28.109 25.871 1.00 64.53 C ATOM 1519 O HIS A 174 59.973 28.221 25.400 1.00 71.58 C ATOM 1510 CB HIS A 174 62.418 27.870 24.736 1.00 71.71 C ATOM 1520 CB HIS A 174 63.835 27.868 25.229 1.00 92.29 C ATOM 1522 ND1 HIS A 174 64.338 28.133 26.463 1.00100.00 N ATOM 1523 CD2 HIS A 174 64.338 28.133 26.463 1.00100.00 N ATOM 1524 CE1 HIS A 174 66.032 27.628 25.160 1.00100.00 N ATOM 1526 N PRO A 175 58.60 29.658 24.770 1.00 55.72 C ATOM 1527 CA PRO A 175 58.23 29.272 23.267 1.00 75.83 C ATOM 1520 CD PRO A 175 58.23 29.272 23.267 1.00 75.83 C ATOM 1520 CD PRO A 175 59.469 29.461 25.269 1.00 92.29 C ATOM 1520 CD PRO A 175 58.23 29.272 23.267 1.00 55.72 C ATOM 1520 CD PRO A 175 59.469 29.461 25.262 1.00 69.59 C ATOM 1527 CA PRO A 175 59.469 29.461 25.262 1.00 69.59 C ATOM 1530 CD PRO A 175 59.469 29.461 25.262 1.00 69.59 C ATOM 1530 CD PRO A 175 59.469 29.461 25.262 1.00 69.59 C ATOM 1531 CG PRO A 175 59.469 29.461 25.262 1.00 69.59 C ATOM 1530 CD PRO A 175 59.469 29.461 25.262 1.00 69.59 C ATOM 1530 CD PRO A 175 59.666 31.492 25.026 1.00 49.14 C ATOM 1530 CD PRO A 175 59.469 29.461 25.262 1.00 69.59 C ATOM 1530 CD PRO A 175 59.660 26.965 21.343 1.00 73.90 C ATOM 1530 CD PRO A 175 59.660 26.965 21.343 1.00 73.90 C ATOM 1530 CD PRO A 175 59.660 26.965 21.343 1.00 73.90 C ATOM 1530 CD PRO A 175 59.660 26.965 21.343 1.00 73.90 C ATOM 1530 CD PRO A 175 59.660 26.965 21.343 1.00 73.90 C ATOM 1530 CD PRO A 175 59.660 26.965 21.347 1.00 73.90 C ATOM 1530 CD PRO A 176 59.660 26.965 21.347 1.00 73.90 C ATOM 1530 CD PRO		ATOM 1506 CA PHE A 173		
15 ATOM		ATOM 1507 C PHE A 173		
ATOM 1510 CG PHE A 173 61.867 25.399 31.356 1.00 34.19 C ATOM 1511 CD1 PHE A 173 62.810 24.488 31.751 1.00 24.68 C ATOM 1512 CD2 PHE A 173 60.621 25.354 31.925 1.00 24.84 C ATOM 1513 CE1 PHE A 173 62.524 23.548 32.682 1.00 23.64 C ATOM 1514 CE2 PHE A 173 60.305 24.366 32.804 1.00 31.22 C ATOM 1515 CZ PHE A 173 61.263 23.457 33.192 1.00 24.80 C ATOM 1516 N HIS A 174 61.510 27.036 26.831 1.00 68.16 N ATOM 1517 CA HIS A 174 61.401 28.109 25.871 1.00 64.53 C ATOM 1518 C HIS A 174 59.973 28.221 25.400 1.00 71.58 C ATOM 1519 O HIS A 174 62.418 27.870 24.736 1.00 71.71 C ATOM 1520 CB HIS A 174 63.835 27.868 25.229 1.00 92.29 C ATOM 1521 CG HIS A 174 64.921 27.539 24.440 1.00100.00 N ATOM 1523 CD2 HIS A 174 66.032 27.628 25.160 1.00100.00 S ATOM 1524 CE1 HIS A 174 66.032 27.628 25.160 1.00100.00 C ATOM 1525 NE2 HIS A 174 66.032 27.628 25.160 1.00100.00 C ATOM 1526 CP RO A 175 59.469 29.658 24.770 1.00 55.72 C ATOM 1520 CB RO A 175 59.469 29.658 24.770 1.00 55.72 C ATOM 1520 CB RO A 175 59.268 31.790 24.901 1.00 49.59 O ATOM 1520 CB RO A 175 59.268 31.790 24.901 1.00 49.59 O ATOM 1520 CB RO A 175 59.268 31.790 24.901 1.00 49.14 C ATOM 1520 CB RO A 175 59.268 31.790 24.901 1.00 49.23 CB ATOM 1520 CB RO A 175 59.268 31.790 24.901 1.00 49.14 CB ATOM 1520 CB RO A 175 59.268 31.790 24.901 1.00 49.23 CB ATOM 1520 CB RO A 175 59.268 31.790 24.901 1.00 49.59 O ATOM 1530 CB RO A 175 59.268 31.790 24.901 1.00 49.23 CB ATOM 1530 CB RO A 175 59.268 31.790 24.901 1.00 49.59 O ATOM 1530 CB RO A 175 59.268 31.790 24.901 1.00 49.59 O ATOM 1530 CB RO A 175 59.268 31.790 24.901 1.00 49.59 O ATOM 1530 CB RO A 175 59.268 31.790 24.901 1.00 49.23 CB ATOM 1530 CB RO A 175 59.268 31.790 24.901 1.00 49.14 CB ATOM 1530 CB RO A 175 59.660 26.965 21.343 1.00 73.90 CB ATOM 1530 CB RO A 175 59.660 26.965 21.343 1.00 73.90 CB ATOM 1530 CB RO A 176 69.960 26.965 21.343 1.00 73.90 CB ATOM 1530 CB RO A 176 69.960 26.965 21.343 1.00 73.90 CB ATOM 1530 CB RO A 176 69.960 26.965 21.347 1.00 51.93 CB		ATOM 1508 O PHE A 173	62.278 28.395 28.465 1.00 58.79	
ATOM 1511 CD1 PHE A 173 62.810 24.488 31.751 1.00 24.88 C ATOM 1512 CD2 PHE A 173 60.621 25.354 31.925 1.00 24.84 C ATOM 1513 CE1 PHE A 173 60.621 25.354 31.925 1.00 24.84 C ATOM 1514 CE2 PHE A 173 60.305 24.366 32.804 1.00 31.32 C ATOM 1515 CZ PHE A 173 61.263 23.457 33.192 1.00 24.30 C ATOM 1516 N HIS A 174 61.510 27.036 26.831 1.00 68.16 N ATOM 1517 CA HIS A 174 61.401 28.109 25.871 1.00 64.53 C ATOM 1518 C HIS A 174 69.401 28.109 25.871 1.00 73.58 C ATOM 1519 O HIS A 174 62.418 27.870 24.736 1.00 73.20 O ATOM 1520 CP HIS A 174 63.835 27.868 25.229 1.00 73.20 C ATOM 1520 CP HIS A 174 64.921 27.539 24.440 1.00100.00 N ATOM 1521 CG HIS A 174 64.921 27.539 24.440 1.00100.00 C ATOM 1524 CE1 HIS A 174 66.032 27.628 25.160 1.00100.00 C ATOM 1525 NE2 HIS A 174 65.705 27.868 25.229 1.00 65.71 N ATOM 1527 CA PRO A 175 59.469 29.461 25.262 1.00 65.71 N ATOM 1528 C PRO A 175 59.209 29.558 24.770 1.00 75.83 C ATOM 1529 O PRO A 175 59.209 29.558 24.770 1.00 75.83 C ATOM 1530 CB PRO A 175 59.268 31.142 25.026 1.00 49.14 C ATOM 1531 CG PRO A 175 59.268 31.142 25.026 1.00 49.14 C ATOM 1530 CB PRO A 175 59.268 31.142 25.026 1.00 49.14 C ATOM 1530 CB PRO A 175 59.469 29.451 25.026 1.00 49.19 C ATOM 1530 CB PRO A 175 59.469 29.256 22.559 1.00 49.14 C ATOM 1530 CB PRO A 175 59.268 31.142 25.026 1.00 49.14 C ATOM 1530 CB PRO A 175 59.268 31.142 25.026 1.00 49.14 C ATOM 1530 CB PRO A 175 59.469 29.451 25.026 1.00 49.14 C ATOM 1530 CB PRO A 175 59.469 29.451 25.026 1.00 49.14 C ATOM 1530 CB PRO A 175 59.268 31.190 24.901 1.00 55.09 N ATOM 1530 CB PRO A 175 59.268 31.190 24.901 1.00 49.23 C ATOM 1530 CB PRO A 175 59.468 26.965 21.343 1.00 73.90 C ATOM 1530 CB PRO A 175 59.468 26.965 21.343 1.00 73.90 C ATOM 1530 CB PRO A 176 59.461 26.458 20.213 1.00 57.03 C ATOM 1530 CB PRO A 176 69.468 29.349 22.578 1.00 51.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03	15	ATOM 1509 CB PHE A 173		
ATOM 1512 CD2 PHE A 173 60.621 25.354 31.925 1.00 24.84 C ATOM 1513 CEI PHE A 173 62.524 23.548 32.682 1.00 23.64 C ATOM 1514 CE2 PHE A 173 60.305 24.366 32.804 1.00 31.32 C ATOM 1515 CZ PHE A 173 61.263 23.457 33.192 1.00 24.30 C ATOM 1516 N HIS A 174 61.510 27.036 26.831 1.00 68.16 N ATOM 1517 CA HIS A 174 61.401 28.109 25.871 1.00 64.53 C ATOM 1518 C HIS A 174 59.973 28.221 25.400 1.00 71.58 C ATOM 1519 O HIS A 174 62.418 27.870 24.736 1.00 71.71 C ATOM 1520 CB HIS A 174 63.35 27.868 25.229 1.00 73.20 O ATOM 1521 CG HIS A 174 64.921 27.539 24.440 1.00100.00 N ATOM 1522 CD HIS A 174 64.338 28.133 26.463 1.00100.00 C ATOM 1523 CD2 HIS A 174 64.338 28.133 26.463 1.00100.00 C ATOM 1524 CEI HIS A 174 65.032 27.628 25.160 1.00100.00 C ATOM 1525 NE2 HIS A 174 65.705 27.981 26.393 1.00100.00 N ATOM 1526 N PRO A 175 59.469 29.461 25.262 1.00 65.71 N ATOM 1528 C PRO A 175 58.233 29.297 23.267 1.00 75.83 C ATOM 1530 CB PRO A 175 57.266 31.142 25.026 1.00 49.14 C ATOM 1531 CG PRO A 175 57.866 31.142 25.026 1.00 49.14 C ATOM 1533 N SER A 176 59.954 28.474 21.548 1.00 69.59 C ATOM 1533 C SER A 176 59.960 26.965 21.343 1.00 73.90 C ATOM 1533 C SER A 176 59.960 26.965 21.343 1.00 73.90 C ATOM 1530 CB SER A 176 59.660 26.965 21.343 1.00 73.90 C		ATOM 1510 CG PHE A 173	61.867 25.399 31.356 1.00 34.19	
ATOM 1513 CE1 PHE A 173 62.524 23.548 32.682 1.00 23.64 C ATOM 1514 CE2 PHE A 173 60.305 24.366 32.804 1.00 31.32 C ATOM 1515 CZ PHE A 173 61.263 23.457 33.192 1.00 24.30 C ATOM 1516 N HIS A 174 61.510 27.036 26.831 1.00 68.16 N ATOM 1517 CA HIS A 174 61.401 28.109 25.871 1.00 64.53 C ATOM 1518 C HIS A 174 59.973 28.221 25.400 1.00 71.58 C ATOM 1519 O HIS A 174 59.309 27.186 25.249 1.00 71.58 C ATOM 1520 CB HIS A 174 63.835 27.868 25.229 1.00 71.71 C ATOM 1521 CG HIS A 174 64.338 28.133 26.463 1.00100.00 N ATOM 1523 CD2 HIS A 174 64.338 28.133 26.463 1.00100.00 C ATOM 1524 CE1 HIS A 174 66.032 27.628 25.160 1.00100.00 C ATOM 1525 NE2 HIS A 174 65.705 27.981 26.393 1.00100.00 N ATOM 1527 CA PRO A 175 59.469 29.461 25.262 1.00 65.71 N ATOM 1528 C PRO A 175 58.233 29.287 23.267 1.00 75.83 C ATOM 1530 CB PRO A 175 57.224 29.226 22.554 1.00 69.59 Q ATOM 1531 CB PRO A 175 59.268 31.142 25.026 1.00 49.14 C ATOM 1533 CB PRO A 175 59.258 31.790 24.901 1.00 49.59 C ATOM 1533 N SER A 176 59.954 28.474 21.548 1.00 69.59 C ATOM 1533 N SER A 176 59.954 28.474 21.548 1.00 69.59 C ATOM 1533 CB PRO A 175 59.954 28.474 21.548 1.00 69.59 C ATOM 1533 CB PRO A 175 59.954 28.474 21.548 1.00 69.59 C ATOM 1533 CB PRO A 175 59.954 28.474 21.548 1.00 69.59 C ATOM 1533 CB PRO A 175 59.958 31.790 24.901 1.00 49.59 C ATOM 1533 N SER A 176 59.960 26.965 21.343 1.00 73.90 C ATOM 1533 CB PRO A 175 59.954 28.474 21.548 1.00 69.59 C ATOM 1533 CB PRO A 175 59.954 28.474 21.548 1.00 69.59 C ATOM 1533 CB PRO A 175 59.956 28.954 22.879 1.00 85.09 N ATOM 1533 CB PRO A 175 59.956 28.954 22.879 1.00 85.09 N ATOM 1533 CB PRO A 175 59.958 28.474 21.548 1.00 69.18 C ATOM 1533 CB PRO A 175 59.958 28.474 21.548 1.00 69.59 C ATOM 1533 CB PRO A 175 59.958 28.474 21.548 1.00 69.18 C ATOM 1533 CB PRO A 175 59.958 28.474 21.548 1.00 69.18 C ATOM 1534 CB PRO A 175 59.958 28.474 21.548 1.00 69.18 C ATOM 1536 CB PRO A 175 59.959 28.874 1.00 69.18 CB		ATOM 1511 CD1 PHE A 173	62.810 24.488 31.751 1.00 24.68	<u>c</u>
ATOM 1514 CE2 PHE A 173 60.305 24.366 32.804 1.00 31.32 C ATOM 1515 CZ PHE A 173 61.263 23.457 33.192 1.00 24.30 C ATOM 1516 N HIS A 174 61.510 27.036 26.831 1.00 68.16 N ATOM 1517 CA HIS A 174 61.510 27.036 26.831 1.00 68.16 N ATOM 1517 CA HIS A 174 61.401 28.109 25.871 1.00 64.53 C ATOM 1518 C HIS A 174 59.973 28.221 25.400 1.00 71.58 C ATOM 1519 O HIS A 174 59.309 27.186 25.249 1.00 73.20 O ATOM 1520 CB HIS A 174 62.418 27.870 24.736 1.00 71.71 C ATOM 1521 CG HIS A 174 64.921 27.539 24.440 1.00100.00 N ATOM 1522 ND1 HIS A 174 64.921 27.539 24.440 1.00100.00 C ATOM 1523 CD2 HIS A 174 64.938 28.133 26.463 1.00100.00 C ATOM 1524 CE1 HIS A 174 66.032 27.628 25.160 1.00100.00 C ATOM 1525 NE2 HIS A 174 65.705 27.981 26.393 1.00100.00 N ATOM 1526 C PRO A 175 59.469 29.461 25.262 1.00 65.71 N ATOM 1528 C PRO A 175 58.109 29.658 24.770 1.00 55.72 C ATOM 1530 CB PRO A 175 59.258 31.790 24.901 1.00 49.14 C ATOM 1531 CG PRO A 175 59.258 31.790 24.901 1.00 49.14 C ATOM 1531 CG PRO A 175 59.258 31.790 24.901 1.00 49.59 C ATOM 1532 CD PRO A 175 59.258 31.790 24.901 1.00 49.14 C ATOM 1531 CG PRO A 175 59.258 31.790 24.901 1.00 49.59 C ATOM 1531 CG PRO A 175 59.258 31.790 24.901 1.00 49.59 C ATOM 1532 CD PRO A 175 59.258 31.790 24.901 1.00 49.59 C ATOM 1533 N SER A 176 59.960 28.954 22.859 1.00 85.09 N ATOM 1530 CB PRO A 175 59.268 30.695 25.109 1.00 49.59 C ATOM 1531 CG PRO A 175 59.268 30.695 25.109 1.00 49.59 C ATOM 1533 C SER A 176 59.960 26.965 21.343 1.00 73.90 C ATOM 1530 C SER A 176 59.960 26.965 21.343 1.00 73.90 C ATOM 1530 C SER A 176 59.960 26.965 21.343 1.00 73.90 C ATOM 1530 C SER A 176 61.493 28.666 21.447 1.00 71.32 C ATOM 1530 C SER A 176 61.493 28.666 21.447 1.00 71.32 C ATOM 1530 C SER A 176 61.493 28.666 21.447 1.00 71.32 C ATOM 1530 C SER A 176 61.493 28.666 21.447 1.00 71.32 C ATOM 1538 OG SER A 176 61.493 28.666 21.447 1.00 71.32		ATOM 1512 CD2 PHE A 173	60,621 25,354 31,925 1,00 24,84	<u>c</u>
ATOM 1516 CZ PHE A 173		ATOM 1513 CE1 PHE A 173	62.524 23.548 32.682 1.00 23.64	
ATOM 1516 N HIS A 174 61.510 27.036 26.831 1.00 68.16 N ATOM 1517 CA HIS A 174 61.401 28.109 25.871 1.00 64.53 C ATOM 1518 C HIS A 174 59.973 28.221 25.400 1.00 71.58 C ATOM 1519 O HIS A 174 59.309 27.186 25.249 1.00 73.20 O ATOM 1520 CB HIS A 174 62.418 27.870 24.736 1.00 71.71 C ATOM 1521 CG HIS A 174 63.835 27.868 25.229 1.00 92.29 C ATOM 1522 ND1 HIS A 174 64.921 27.539 24.440 1.00100.00 N ATOM 1523 CD2 HIS A 174 66.032 27.628 25.160 1.00100.00 C ATOM 1524 CEI HIS A 174 66.032 27.628 25.160 1.00100.00 C ATOM 1525 NE2 HIS A 174 65.705 27.981 26.393 1.00100.00 N ATOM 1526 N PRO A 175 59.469 29.461 25.262 1.00 65.71 N ATOM 1527 CA PRO A 175 58.109 29.658 24.770 1.00 55.72 C ATOM 1529 O PRO A 175 57.224 29.226 22.554 1.00 69.59 O ATOM 1530 CB PRO A 175 57.266 31.142 25.026 1.00 49.14 C ATOM 1531 CG PRO A 175 59.466 31.142 25.026 1.00 49.14 C ATOM 1533 N SER A 176 59.480 28.954 22.879 1.00 84.23 C ATOM 1533 C SER A 176 59.960 28.955 21.343 1.00 73.90 C ATOM 1536 O SER A 176 59.660 26.965 21.343 1.00 73.90 C ATOM 1537 CB SER A 176 61.493 28.666 21.447 1.00 73.20 C ATOM 1537 CB SER A 176 61.493 28.666 21.447 1.00 73.20 C ATOM 1538 OG SER A 176 62.048 29.349 22.578 1.00 57.03 C	20	ATOM 1514 CE2 PHE A 173	60.305 24.366 32.804 1.00 31.32	<u>C</u>
ATOM 1510 A HIS A 174 61.401 28.109 25.871 1.00 64.53 C ATOM 1518 C HIS A 174 59.973 28.221 25.400 1.00 71.58 C ATOM 1519 O HIS A 174 59.309 27.186 25.249 1.00 73.20 O ATOM 1520 CB HIS A 174 62.418 27.870 24.736 1.00 71.71 C ATOM 1521 CG HIS A 174 63.835 27.868 25.229 1.00 92.29 C ATOM 1522 ND1 HIS A 174 64.921 27.539 24.440 1.00100.00 N ATOM 1523 CD2 HIS A 174 64.338 28.133 26.463 1.00100.00 C ATOM 1524 CEI HIS A 174 66.032 27.628 25.160 1.00100.00 C ATOM 1525 NE2 HIS A 174 65.705 27.981 26.393 1.00100.00 N ATOM 1526 N PRO A 175 59.469 29.461 25.262 1.00 65.71 N ATOM 1527 CA PRO A 175 58.109 29.658 24.770 1.00 55.72 C ATOM 1529 O PRO A 175 57.224 29.226 22.554 1.00 69.59 O ATOM 1531 CG PRO A 175 59.268 31.790 24.901 1.00 49.14 C ATOM 1531 CG PRO A 175 59.268 31.790 24.901 1.00 49.59 C ATOM 1533 N SER A 176 59.480 28.954 22.879 1.00 85.09 N ATOM 1536 O SER A 176 59.660 26.965 21.343 1.00 73.90 C ATOM 1537 CB SER A 176 61.493 28.666 21.447 1.00 71.32 C ATOM 1538 OG SER A 176 61.493 28.666 21.447 1.00 71.32 C ATOM 1537 CB SER A 176 61.493 28.666 21.447 1.00 71.32 C		ATOM 1515 CZ PHE A 173	61.263 23.457 33.192 1.00 24.30	<u>c</u>
ATOM 1518 C HIS A 174 59.973 28.221 25.400 1.00 71.58 C ATOM 1519 O HIS A 174 59.309 27.186 25.249 1.00 73.20 O ATOM 1520 CB HIS A 174 62.418 27.870 24.736 1.00 71.71 C ATOM 1521 CG HIS A 174 63.835 27.868 25.229 1.00 92.29 C ATOM 1522 ND1 HIS A 174 64.921 27.539 24.440 1.00100.00 N ATOM 1523 CD2 HIS A 174 64.338 28.133 26.463 1.00100.00 C ATOM 1524 CEI HIS A 174 66.032 27.628 25.160 1.00100.00 C ATOM 1525 NE2 HIS A 174 65.705 27.981 26.393 1.00100.00 N ATOM 1526 N PRO A 175 59.469 29.461 25.262 1.00 65.71 N ATOM 1527 CA PRO A 175 58.109 29.658 24.770 1.00 55.72 C ATOM 1529 O PRO A 175 57.224 29.226 22.554 1.00 69.59 O ATOM 1530 CB PRO A 175 57.866 31.142 25.026 1.00 49.14 C ATOM 1531 CG PRO A 175 59.469 28.474 21.548 1.00 49.59 C ATOM 1533 N SER A 176 59.480 28.954 22.879 1.00 85.09 N ATOM 1534 CA SER A 176 59.954 28.474 21.548 1.00 89.509 N ATOM 1535 C SER A 176 59.954 28.474 21.548 1.00 87.09 N ATOM 1537 CB SER A 176 61.493 28.666 21.447 1.00 73.90 C ATOM 1537 CB SER A 176 61.493 28.666 21.447 1.00 73.90 C		ATOM 1516 N HIS A 174	61.510 27.036 26.831 1.00 68.16	и
25 ATOM 1519 O HIS A 174 59.309 27.186 25.249 1.00 73.20 O ATOM 1520 CB HIS A 174 62.418 27.870 24.736 1.00 71.71 C ATOM 1521 CG HIS A 174 63.835 27.868 25.229 1.00 92.29 C ATOM 1522 ND1 HIS A 174 64.921 27.539 24.440 1.00100.00 N ATOM 1523 CD2 HIS A 174 64.388 28.133 26.463 1.00100.00 C ATOM 1524 CE1 HIS A 174 66.032 27.628 25.160 1.00100.00 C ATOM 1525 NE2 HIS A 174 65.705 27.981 26.393 1.00100.00 N ATOM 1526 N PRO A 175 59.469 29.461 25.262 1.00 65.71 N ATOM 1527 CA PRO A 175 58.109 29.658 24.770 1.00 55.72 C ATOM 1528 C PRO A 175 58.233 29.297 23.267 1.00 75.83 C ATOM 1529 O PRO A 175 57.224 29.226 22.554 1.00 69.59 ATOM 1530 CB PRO A 175 57.866 31.142 25.026 1.00 49.14 C ATOM 1531 CG PRO A 175 59.469 31.790 24.901 1.00 49.59 C ATOM 1533 N SER A 176 59.469 28.954 22.879 1.00 85.09 N ATOM 1533 CB PRO A 175 59.469 28.954 22.879 1.00 85.09 N ATOM 1533 CB PRO A 175 59.258 31.790 24.901 1.00 49.59 C ATOM 1533 CB PRO A 175 59.258 31.790 24.901 1.00 49.59 C ATOM 1533 CB PRO A 175 59.460 28.954 22.879 1.00 85.09 N ATOM 1533 CB PRO A 175 59.660 26.965 21.343 1.00 73.90 CB ATOM 1533 CB PRO A 175 59.660 26.965 21.343 1.00 73.90 CB ATOM 1537 CB SER A 176 59.660 26.965 21.343 1.00 73.90 CB ATOM 1537 CB SER A 176 59.660 26.965 21.343 1.00 73.90 CB ATOM 1537 CB SER A 176 59.617 26.458 20.213 1.00 57.03 CB ATOM 1538 OG SER A 176 61.493 28.666 21.447 1.00 71.32 CB ATOM 1538 OG SER A 176 61.493 28.666 21.447 1.00 71.32 CB ATOM 1538 OG SER A 176 61.493 28.666 21.447 1.00 71.32 CB ATOM 1538 OG SER A 176 61.493 28.666 21.447 1.00 71.32 CB ATOM 1538 OG SER A 176 62.048 29.349 22.578 1.00 51.93		ATOM 1517 CA HIS A 174	61.401 28.109 25.871 1.00 64.53	c
ATOM 1520 CB HIS A 174 62.418 27.870 24.736 1.00 71.71 C ATOM 1521 CG HIS A 174 63.835 27.868 25.229 1.00 92.29 C ATOM 1522 ND1 HIS A 174 64.921 27.539 24.440 1.00100.00 N ATOM 1523 CD2 HIS A 174 66.032 27.628 25.160 1.00100.00 C ATOM 1524 CE1 HIS A 174 66.032 27.628 25.160 1.00100.00 C ATOM 1525 NE2 HIS A 174 65.705 27.981 26.393 1.00100.00 N ATOM 1526 N PRO A 175 59.469 29.461 25.262 1.00 65.71 N ATOM 1527 CA PRO A 175 58.109 29.658 24.770 1.00 55.72 C ATOM 1529 O PRO A 175 57.224 29.226 22.554 1.00 69.59 O ATOM 1530 CB PRO A 175 57.866 31.142 25.026 1.00 49.14 C ATOM 1531 CG PRO A 175 59.258 31.790 24.901 1.00 49.23 C ATOM 1532 CD PRO A 175 59.480 28.954 22.879 1.00 85.09 N ATOM 1533 N SER A 176 59.480 28.954 22.879 1.00 85.09 N ATOM 1534 CA SER A 176 59.954 28.474 21.548 1.00 81.18 CA ATOM 1535 C SER A 176 59.660 26.965 21.343 1.00 73.90 C ATOM 1537 CB SER A 176 61.493 28.666 21.447 1.00 71.32 CA ATOM 1537 CB SER A 176 62.048 29.349 22.578 1.00 57.03		ATOM 1518 C HIS A 174	59.973 28.221 25.400 1.00 71.58	
ATOM 1521 CG HIS A 174 63.835 27.868 25.229 1.00 92.29 C ATOM 1522 ND1 HIS A 174 64.921 27.539 24.440 1.00100.00 N ATOM 1523 CD2 HIS A 174 64.338 28.133 26.463 1.00100.00 C ATOM 1524 CE1 HIS A 174 65.032 27.628 25.160 1.00100.00 C ATOM 1525 NE2 HIS A 174 65.705 27.981 26.393 1.00100.00 N ATOM 1526 N PRO A 175 59.469 29.461 25.262 1.00 65.71 N ATOM 1527 CA PRO A 175 58.109 29.658 24.770 1.00 55.72 C ATOM 1528 C PRO A 175 58.233 29.297 23.267 1.00 75.83 C ATOM 1529 O PRO A 175 57.224 29.226 22.554 1.00 69.59 O ATOM 1530 CB PRO A 175 57.264 31.142 25.026 1.00 49.14 C ATOM 1531 CG PRO A 175 59.258 31.790 24.901 1.00 42.23 C ATOM 1532 CD PRO A 175 60.286 30.695 25.109 1.00 49.59 C ATOM 1533 N SER A 176 59.480 28.954 22.879 1.00 85.09 N ATOM 1535 C SER A 176 59.660 26.965 21.343 1.00 73.90 C ATOM 1536 O SER A 176 59.660 26.965 21.343 1.00 73.90 C ATOM 1537 CB SER A 176 61.493 28.666 21.447 1.00 71.32 C ATOM 1537 CB SER A 176 62.048 29.349 22.578 1.00 51.93 C	25	ATOM 1519 0 HIS A 174	59.309 27.186 25.249 1.00 73.20	
ATOM 1522 ND1 HIS A 174 64.921 27.539 24.440 1.00100.00 N ATOM 1523 CD2 HIS A 174 64.338 28.133 26.463 1.00100.00 C 30 ATOM 1524 CE1 HIS A 174 65.032 27.628 25.160 1.00100.00 C ATOM 1525 NE2 HIS A 174 65.705 27.981 26.393 1.00100.00 N ATOM 1526 N PRO A 175 59.469 29.461 25.262 1.00 65.71 N ATOM 1527 CA PRO A 175 58.109 29.658 24.770 1.00 55.72 C ATOM 1528 C PRO A 175 58.233 29.297 23.267 1.00 75.83 C 35 ATOM 1529 O PRO A 175 57.224 29.226 22.554 1.00 69.59 O ATOM 1530 CB PRO A 175 57.866 31.142 25.026 1.00 49.14 C ATOM 1531 CG PRO A 175 59.258 31.790 24.901 1.00 42.23 C ATOM 1532 CD PRO A 175 59.258 31.790 24.901 1.00 49.59 C ATOM 1533 N SER A 176 59.480 28.954 22.879 1.00 85.09 N ATOM 1535 C SER A 176 59.954 28.474 21.548 1.00 81.18 ATOM 1536 O SER A 176 59.660 26.965 21.343 1.00 73.90 C ATOM 1537 CB SER A 176 61.493 28.666 21.447 1.00 71.32 C ATOM 1538 OG SER A 176 62.048 29.349 22.578 1.00 57.03		ATOM 1520 CB HIS A 174	62.418 27.870 24.736 1.00 71.71	<u>c</u>
ATOM 1523 CD2 HIS A 174 64.338 28.133 26.463 1.00100.00 C ATOM 1524 CE1 HIS A 174 66.032 27.628 25.160 1.00100.00 C ATOM 1525 NE2 HIS A 174 65.705 27.981 26.393 1.00100.00 N ATOM 1526 N PRO A 175 59.469 29.461 25.262 1.00 65.71 N ATOM 1527 CA PRO A 175 58.109 29.658 24.770 1.00 55.72 C ATOM 1528 C PRO A 175 58.233 29.297 23.267 1.00 75.83 C ATOM 1529 O PRO A 175 57.224 29.226 22.554 1.00 69.59 O ATOM 1530 CB PRO A 175 57.224 29.226 22.554 1.00 69.59 O ATOM 1531 CG PRO A 175 59.258 31.790 24.901 1.00 42.23 C ATOM 1533 N SER A 176 59.480 28.954 22.879 1.00 85.09 N 40 ATOM 1534 CA SER A 176 59.954 28.474 21.548 1.00 81.18 C ATOM 1535 C SER A 176 59.660 26.965 21.343 1.00 73.90 C ATOM 1537 CB SER A 176 61.493 28.666 21.447 1.00 71.32 C ATOM 1538 OG SER A 176 62.048 29.349 22.578 1.00 51.93		ATOM 1521 CG HIS A 174	63.835 27.868 25.229 1.00 92.29	<u>C</u>
ATOM 1524 CE1 HIS A 174 66.032 27.628 25.160 1.00100.00 C ATOM 1525 NE2 HIS A 174 65.705 27.981 26.393 1.00100.00 N ATOM 1526 N PRO A 175 59.469 29.461 25.262 1.00 65.71 N ATOM 1527 CA PRO A 175 58.109 29.658 24.770 1.00 55.72 C ATOM 1528 C PRO A 175 58.233 29.297 23.267 1.00 75.83 C ATOM 1529 O PRO A 175 57.224 29.226 22.554 1.00 69.59 O ATOM 1530 CB PRO A 175 57.866 31.142 25.026 1.00 49.14 C ATOM 1531 CG PRO A 175 59.258 31.790 24.901 1.00 42.23 C ATOM 1532 CD PRO A 175 60.286 30.695 25.109 1.00 49.59 C ATOM 1533 N SER A 176 59.480 28.954 22.879 1.00 85.09 N 40 ATOM 1534 CA SER A 176 59.954 28.474 21.548 1.00 81.18 C ATOM 1535 C SER A 176 59.660 26.965 21.343 1.00 73.90 C ATOM 1537 CB SER A 176 61.493 28.666 21.447 1.00 71.32 C ATOM 1538 OG SER A 176 62.048 29.349 22.578 1.00 51.93		ATOM 1522 ND1 HIS A 174	64.921 27.539 24.440 1.00100.00	й
ATOM 1525 NE2 HIS A 174 65.705 27.981 26.393 1.00100.00 N ATOM 1526 N PRO A 175 59.469 29.461 25.262 1.00 65.71 N ATOM 1527 CA PRO A 175 58.109 29.658 24.770 1.00 55.72 C ATOM 1528 C PRO A 175 58.233 29.297 23.267 1.00 75.83 C ATOM 1529 O PRO A 175 57.224 29.226 22.554 1.00 69.59 ATOM 1530 CB PRO A 175 57.866 31.142 25.026 1.00 49.14 C ATOM 1531 CG PRO A 175 59.258 31.790 24.901 1.00 42.23 ATOM 1532 CD PRO A 175 60.286 30.695 25.109 1.00 49.59 ATOM 1533 N SER A 176 59.480 28.954 22.879 1.00 85.09 N ATOM 1535 C SER A 176 59.954 28.474 21.548 1.00 81.18 ATOM 1535 C SER A 176 59.660 26.965 21.343 1.00 73.90 ATOM 1537 CB SER A 176 59.617 26.458 20.213 1.00 57.03 ATOM 1537 CB SER A 176 61.493 28.666 21.447 1.00 71.32 ATOM 1538 OG SER A 176 62.048 29.349 22.578 1.00 51.93		ATOM 1523 CD2 HIS A 174	64.338 28.133 26.463 1.00100.00	<u>c</u>
ATOM 1526 N PRO A 175 59.469 29.461 25.262 1.00 65.71 N ATOM 1527 CA PRO A 175 58.109 29.658 24.770 1.00 55.72 C ATOM 1528 C PRO A 175 58.233 29.297 23.267 1.00 75.83 C ATOM 1529 O PRO A 175 57.224 29.226 22.554 1.00 69.59 ATOM 1530 CB PRO A 175 57.866 31.142 25.026 1.00 49.14 C ATOM 1531 CG PRO A 175 59.258 31.790 24.901 1.00 42.23 C ATOM 1532 CD PRO A 175 60.286 30.695 25.109 1.00 49.59 C ATOM 1533 N SER A 176 59.480 28.954 22.879 1.00 85.09 N 40 ATOM 1534 CA SER A 176 59.954 28.474 21.548 1.00 81.18 C ATOM 1536 O SER A 176 59.660 26.965 21.343 1.00 73.90 C ATOM 1537 CB SER A 176 61.493 28.666 21.447 1.00 71.32 C ATOM 1538 OG SER A 176 62.048 29.349 22.578 1.00 51.93 C	30	ATOM 1524 CE1 HIS A 174	66.032 27.628 25.160 1.00100.00	<u>c</u>
ATOM 1527 CA PRO A 175 58.109 29.658 24.770 1.00 55.72 CA ATOM 1528 C PRO A 175 58.233 29.297 23.267 1.00 75.83 C ATOM 1529 O PRO A 175 57.224 29.226 22.554 1.00 69.59 O ATOM 1530 CB PRO A 175 57.866 31.142 25.026 1.00 49.14 C ATOM 1531 CG PRO A 175 59.258 31.790 24.901 1.00 42.23 C ATOM 1532 CD PRO A 175 60.286 30.695 25.109 1.00 49.59 C ATOM 1533 N SER A 176 59.480 28.954 22.879 1.00 85.09 N ATOM 1535 C SER A 176 59.660 26.965 21.343 1.00 73.90 C ATOM 1536 O SER A 176 59.660 26.965 21.343 1.00 73.90 C ATOM 1537 CB SER A 176 61.493 28.666 21.447 1.00 71.32 C ATOM 1538 OG SER A 176 62.048 29.349 22.578 1.00 51.93 C		ATOM 1525 NE2 HIS A 174	65,705 27.981 26.393 1.00100.00	N
ATOM 1528 C PRO A 175 58.233 29.297 23.267 1.00 75.83 C ATOM 1529 O PRO A 175 57.224 29.226 22.554 1.00 69.59 O ATOM 1530 CB PRO A 175 57.866 31.142 25.026 1.00 49.14 C ATOM 1531 CG PRO A 175 59.258 31.790 24.901 1.00 42.23 C ATOM 1532 CD PRO A 175 60.286 30.695 25.109 1.00 49.59 C ATOM 1533 N SER A 176 59.480 28.954 22.879 1.00 85.09 N ATOM 1535 C SER A 176 59.660 26.965 21.343 1.00 73.90 C ATOM 1536 O SER A 176 59.660 26.965 21.343 1.00 73.90 C ATOM 1537 CB SER A 176 61.493 28.666 21.447 1.00 71.32 C ATOM 1538 OG SER A 176 62.048 29.349 22.578 1.00 51.93 C		ATOM 1526 N PRO A 175	59,469 29,461 25,262 1.00 65.71	N
35 ATOM 1529 O PRO A 175 57.224 29.226 22.554 1.00 69.59 O ATOM 1530 CB PRO A 175 57.866 31.142 25.026 1.00 49.14 C ATOM 1531 CG PRO A 175 59.258 31.790 24.901 1.00 42.23 CD ATOM 1532 CD PRO A 175 60.286 30.695 25.109 1.00 49.59 ATOM 1533 N SER A 176 59.480 28.954 22.879 1.00 85.09 N 40 ATOM 1534 CA SER A 176 59.954 28.474 21.548 1.00 81.18 CA ATOM 1535 C SER A 176 59.660 26.965 21.343 1.00 73.90 CA ATOM 1536 O SER A 176 59.617 26.458 20.213 1.00 57.03 CA ATOM 1537 CB SER A 176 61.493 28.666 21.447 1.00 71.32 CA ATOM 1538 OG SER A 176 62.048 29.349 22.578 1.00 51.93		ATOM 1527 CA PRO A 175	58.109 29.658 24.770 1.00 55.72	c
ATOM 1530 CB PRO A 175 57.866 31.142 25.026 1.00 49.14 C ATOM 1531 CG PRO A 175 59.258 31.790 24.901 1.00 42.23 C ATOM 1532 CD PRO A 175 60.286 30.695 25.109 1.00 49.59 C ATOM 1533 N SER A 176 59.480 28.954 22.879 1.00 85.09 N ATOM 1534 CA SER A 176 59.954 28.474 21.548 1.00 81.18 C ATOM 1535 C SER A 176 59.660 26.965 21.343 1.00 73.90 C ATOM 1536 O SER A 176 59.617 26.458 20.213 1.00 57.03 C ATOM 1537 CB SER A 176 61.493 28.666 21.447 1.00 71.32 C ATOM 1538 OG SER A 176 62.048 29.349 22.578 1.00 51.93		ATOM 1528 C PRO A 175	58,233 29,297 23,267 1.00 75.83	<u>c</u>
ATOM 1531 CG PRO A 175 59.258 31.790 24.901 1.00 42.23 CG ATOM 1532 CD PRO A 175 60.286 30.695 25.109 1.00 49.59 CG ATOM 1533 N SER A 176 59.480 28.954 22.879 1.00 85.09 N 40 ATOM 1534 CA SER A 176 59.954 28.474 21.548 1.00 81.18 CG ATOM 1535 C SER A 176 59.660 26.965 21.343 1.00 73.90 CG ATOM 1536 O SER A 176 59.617 26.458 20.213 1.00 57.03 CG ATOM 1537 CB SER A 176 61.493 28.666 21.447 1.00 71.32 CG ATOM 1538 OG SER A 176 62.048 29.349 22.578 1.00 51.93 CG	35	ATOM 1529 0 PRO A 175	57.224 29.226 22.554 1.00 69.59	0
ATOM 1532 CD PRO A 175 60.286 30.695 25.109 1.00 49.59 CO ATOM 1533 N SER A 176 59.480 28.954 22.879 1.00 85.09 N 40 ATOM 1534 CA SER A 176 59.954 28.474 21.548 1.00 81.18 ATOM 1535 C SER A 176 59.660 26.965 21.343 1.00 73.90 CO ATOM 1536 O SER A 176 59.617 26.458 20.213 1.00 57.03 ATOM 1537 CB SER A 176 61.493 28.666 21.447 1.00 71.32 ATOM 1538 OG SER A 176 62.048 29.349 22.578 1.00 51.93		ATOM 1530 CB PRO A 175	57,866 31.142 25,026 1,00 49,14	c
ATOM 1533 N SER A 176 59.480 28.954 22.879 1.00 85.09 N 40 ATOM 1534 CA SER A 176 59.954 28.474 21.548 1.00 81.18 C ATOM 1535 C SER A 176 59.660 26.965 21.343 1.00 73.90 C ATOM 1536 O SER A 176 59.617 26.458 20.213 1.00 57.03 ATOM 1537 CB SER A 176 61.493 28.666 21.447 1.00 71.32 C ATOM 1538 OG SER A 176 62.048 29.349 22.578 1.00 51.93		ATOM 1531 CG PRO A 175	59,258 31.790 24.901 1.00 42.23	
40 ATOM 1534 CA SER A 176 59.954 28.474 21.548 1.00 81.18 CATOM 1535 C SER A 176 59.660 26.965 21.343 1.00 73.90 CATOM 1536 O SER A 176 59.617 26.458 20.213 1.00 57.03 CATOM 1537 CB SER A 176 61.493 28.666 21.447 1.00 71.32 CATOM 1538 OG SER A 176 62.048 29.349 22.578 1.00 51.93		ATOM 1532 CD PRO A 175	60.286 30.695 25.109 1.00 49.59	C
ATOM 1535 C SER A 176 59.660 26.965 21.343 1.00 73.90 C ATOM 1536 O SER A 176 59.617 26.458 20.213 1.00 57.03 C ATOM 1537 CB SER A 176 61.493 28.666 21.447 1.00 71.32 ATOM 1538 OG SER A 176 62.048 29.349 22.578 1.00 51.93		ATOM 1533 N SER A 176	59.480 28.954 22.879 1.00 85.09	N
ATOM 1536 O SER A 176 59.617 26.458 20.213 1.00 57.03 CATOM 1537 CB SER A 176 61.493 28.666 21.447 1.00 71.32 CATOM 1538 OG SER A 176 62.048 29.349 22.578 1.00 51.93	40	ATOM 1534 CA SER A 176	59.954 28.474 21.548 1.00 B1.18	С
ATOM 1538 OG SER A 176 61.493 28.666 21.447 1.00 71.32 C		ATOM 1535 C SER A 176	59,660 26.965 21.343 1.00 73.90	c
ATOM 1537 CB SER A 176 61.493 28.666 21.447 1.00 71.32 C		ATOM 1536 O SER A 176	59,617 26,458 20,213 1,00 57.03	0
45 CO			61,493 28,666 21,447 1,00 71,32	
15 20 20 20 20 20 20 10 10 66 23		ATOM 1538 OG SER A 176	62,048 29,349 22,578 1.00 51,93	
	45	ATOM 1539 N ASN A 177	59.520 26,276 22,480 1.00 66.23	1

			50 074	04 047	22 610	1.00 56.41	c
MOTA	_1540CA		59.274	24.847			
MOTA	1541 C	ASN A 177	57.810	24.497	22.353	1.00 60.91	
MOTA	1542 0	ASN A 177	56.914	25.215	22.811	1.00 55.58	
MOTA	1543 CB		59.619	24.469	24.065	1.00 50.45	<u>C</u>
ATOM	1544 CG		59.562	22.970	24.319	1.00 66.57	<u>c</u>
ATOM	1545 OD	1 ASN A 177	59.095	22.216	23.476	1.00100.00	0
MOTA	_1546ND	2 ASN A 177	60.099	22.546	25.464	1.00 35.61	N
MOTA	1547 N	SER A 178	57,583	23.387	21.627	1,00 57.10	<u> </u>
MOTA	1548 CA	SER A 178	56.234	22.853	21.279	1.00 50.50	<u>C</u>
MOTA	1549 C	SER A 178	55.557	22,159	22,491	1.00 76.24	c
MOTA	1550 O	SER A 178	54.575	21,400	22.304	1.00 99.63	<u> </u>
MOTA	1551 CF	SER A 178	56.316	21.800	20.118	1.00 10.17	<u>c</u>
MOTA	1552 00	SER A 178	57.397	22.112	19.217	1.00 71.69	0
MOTA	1553 พ	HIS A 179	56.134	22.284	23.694	1.00 37.39	и
MOTA	1554 C	HIS A 179	55.569	21.587	24.855	1.00 30.96	с
MOTA	1555 C	HIS A 179	54.961	22.616	25.767	1.00 21.93	<u>c</u>
ATOM	<u> 1556 0</u>	HIS A 179	55.641	23.598	26.138	1.00 25.17	O
ATOM	1557 C	B HIS A 179	56.634	20,683	25.575	1.00 36.20	<u>c</u>
MOTA	1558 C	5 HIS A 179	56.973	19.419	24.835	1.00 42.90	<u>c</u>
MOTA	1559 · N	D1 HIS A 179	56.973	19.335	23.457	1.00 49.52	и
MOTA	1560 C	D2 HIS A 179	57.323	18.190	25.278	1.00 52.42	c
MOTA	1561 C	E1 HIS A 179	57,283	18.109	23.084	1.00 44.78	<u>_</u>
MOTA	1562 N	E2 HIS A 179	57.500	17.393	24.168	1.00 50.49	
MOTA	1563 N	VAL A 180	53.661	22.454	26,038	1.00 19.14	
MOTA	1564 C	A VAL A 180	52,886	23,449	26,789	1.00 29.03	c
MOTA	1565 C	VAL A 180	53.373	23.890	28,142	1.00 31.29	<u>C</u>
MOTA	<u> 1566 0</u>	VAL A 180	53,348	25.075	28.447	1.00 19.55	0
MOTA	1567 C	B VAL A 180	51,403	23.115	26.914	1.00 35.47	c
MOTA	1568 C	G1 VAL A 180	50.630	24.399	27.217	1.00 35.84	c
MOTA	1569 C	G2 VAL A 180	50.923	22.550	25.663	1.00 36.11	c
MOTA	1570 N	ILE A 181	53.684	22.935	29.005	1.00 26.57	и
MOTA	1571 C	A ILE A 181	54.138	23.285	30.360	1.00 24.49	c
MOTA	1572 C	: ILE A 181	55.371	24.213	30.361	1.00 16.51	С
ATOM	1573 C	ILE A 181	55.326	25.315	30.909	1.00 24.42	<u>_</u> 0
MOTA	1574 C	B ILE A 181	54.285	22.018	31.264	1.00 20.20	C
ATOM		G1 ILE A 181				1.00 18.22	Ç
HOTA	1576 0	G2 ILE A 181	55.014	22.315	32.581	1.00 13.37	c
ATOM		D1 ILE A 181				1.00 8.03	c
ATOM	1578					1.00 22.21	N
ATOM		A PRO A 182				1.00 22.07	с
ATOM		PRO A 182				1.00 24.18	С
MOTA		D PRO A 182				1.00 18.35	0
MOTA		CB PRO A 182				1.00 24.97	с
MOTA		CG PRO A 182				1.00 25.77	Ç
ATOM		CD PRO A 182				1.00 18.23	<u> </u>
11441		Y &					

	MOTA	1585	N	<u>ata a 183</u>	56.628	25.707	27.729	1.00 21.45	N
	MOTA	1586	CA	ALA A 183	56.261	26.896	26.943	1.00 21.66	c
	MOTA	1587	С	ALA A 183	55,464	27.900	27.811	1.00 26.10	<u>c</u>
	MOTA	1588	0	ALA A 183	55.773	29.091	27.856	1.00 19.50	0
5	MOTA	1589	CB	ALA A 183	55.473	26.513	25.703	1.00 13.26	<u>c</u>
	MOTA	1590	N	LEU A 184	54.472	27.389	28.543	1.00 23.34	N
	MOTA	1591	CA	LEU A 184	53.642	28.215	29.401	1.00 19.05	С
	ATOM	1592	C	LEU A 184	54.312	28.693	30.655	1.00 21.91	<u>C</u>
	ATOM	1593	0	LEU A 184	54.017	29,771	31.158	1.00 19.71	0
10	MOTA	1594	СВ	LEU A 184	52.309	27.553	29.715	1.00 14.41	<u>c</u>
	ATOM	1595	CG	LEU A 184	51.342	27.595	28.525	1.00 23.42	c
	MOTA	1596	CD1	LEU A 184	49.918	27.244	28,928	1.00 31.06	c
	MOTA	1597	CD2	LEU A 184	51.380	28.896	27.690	1.00 21.73	c
	MOTA	1598	N_	LEU A 185	55.178	27.879	31.213	1.00 18.39	N
15	MOTA	1599	CA	LEU A 185	55.833	28.332	32.417	1.00 16.39	Ç
	MOTA	1600	С	LEU A 185	56.669	29.528	31.985	1.00 23.67	Ç
	ATOM	1601	0	LEU A 185	56.681	30.590	32.644	1.00 29.38	·O
	ATOM	1602	СВ	LEU A 185	56.723	27.233	33,015	1.00 15.05	c
	ATOM	1603	CG	LEU A 185	56.021	26,348	34.041	1.00 15.56	<u></u>
20	ATOM	1604	CD1	LEU A 185	56.819	25.022	34.301	1.00 21.06	<u>c</u>
	MOTA	1605	CD2	LEU A 185	55,722	27.113	35,321	1.00 11.02	<u>c</u>
	MOTA	1606	_N	ARG A 186	57.337	29.397	30.852	1,00 17.09	N
	MOTA	1607	_CA	ARG A 186	58.137	30.523	30.429	1.00 18.82	_ <u>c</u>
	ATOM	1608	С	ARG A 186	57,308	31.752	30.069	1.00 29.00	<u>C</u>
25	ATOM	1609	0	ARG A 186	57,629	32.880	30.476	1.00 23.91	0
	ATOM	1610	СВ	ARG A 186	59.026	30.146	29,281	1.00 22.06	c
	ATOM	1611	CG	ARG A 186	59,653	31.365	28.652	1.00 38.46	С
	MOTA	1612	CD	ARG A 186	60.825	31.804	29.462	1.00 83.66	c
	MOTA	1613	_NE	ARG A 186	62,012	31.861	28.631	1.00 70.77	и
30	MOTA	1614	СZ	ARG A 186	63.058	32.622	28.904	1.00 91.68	с
	MOTA	1615	NH	1 ARG A 186	63.053	33.386	29.995	1.00 56.56	<u>N</u>
	ATOM	1616	NH	2 ARG A 186	64.098	32.639	28.082	1.00100.00	N
	MOTA	1617	N	ARG A 187	56,234	31.544	29.310	1,00 20.96	N
	MOTA	1618	CA	ARG A 187	55,361	32.662	28.941	1.00 19.32	c
35	MOTA	1619	С	ARG A 187	54.765	33.453	30.142	1.00 28.41	с
	ATOM	1620	_0_	ARG A 187	54.823	34.700	30.193	1.00 17.23	0
	MOTA	1621	СВ	ARG A 187	54.270	32.223	27.957	1.00 17.05	c
	MOTA	1622	CG	ARG A 187	54.813	31.546	26.720	1.00 61.42	<u>c</u>
	MOTA	1623	CD	ARG A 187	53.696	31.244	25.757	1.00 44.57	<u>C</u>
40	ATOM	1624	NE	ARG A 187	53.033	32.472	25.354	1.00 29.47	и
	ATOM	1625	CZ	ARG A 187	51.831	32.534	24.790	1.00 17.82	c
	MOTA			1 ARG A 187		31.427	7 24.54	1.00 24.95	N
	MOTA			2 ARG A 187		33.716	5 24.44	1.00 37,77	N
	ATOM	1628	N N	PHB A 188	54.192	32.734	31.10	1.00 23.48	N
45	ATOM	1629	<u></u>	PHE A 188	53.604	33.399	32.259	1.00 21.24	<u>c</u>

	ATOM	1630	c_	PHE A	188	54.638	34.080	33.095	1.00	21.39	<u>c</u>
	MOTA	1631	0_	PHE A	188	54.394	35.126	33.626	1.00	23.90	0
	MOTA	1632	СВ	PHE A	188	52.723	32.466	33.077	1.00	19.95	<u>C</u>
	MOTA	1633	CG	PHE A	188	51.389	32.215	32.435	1.00	22.28	<u>C</u>
5	ATOM	1634	CD1	PHE A	188	50.440	33.229	32.375	1.00	19.42	<u>C</u> .
	MOTA	1635	CD2	PHE A	188	51.144	31,038	31.734	1.00	23.82	<u>c</u>
	MOTA	1636	CE1	PHE A	188	49.191	33.026	31.742		24.77	c
	MOTA	1637	CE2	PHE A	188	49.936	30.826	31.057	1.00	20.17	<u>c</u>
	MOTA	1638	CZ	PHE A	188	48.945	31.815	31.068	1.00	23.14	<u>c</u>
10	MOTA	1639	N	HIS A	189	55.831	33.513	33.118	1.00	24.15	N
	MOTA	1640	CA	HIS A	189	56.933	34.122	33.837	1.00	28.79	<u>c</u>
	MOTA	1641	<u></u>	HIS A	189	57.303	35.506	33.315	1.00	28.58	C
	MOTA	1642	0	HIS A	189	57,480	36.463	34.083	1.00	20.07	0
	ATOM	1643	CB	HIS A	189	58.148	33.268	33.641	1.00	31.38	<u>c</u>
15	MOTA	1644	CG	HIS A	189	59.364	33.844	34.290	1.00	29.98	2
	MOTA	1645	ND1	HIS A	189	59.548	33.833	35.658	1.00	31.00	<u>N</u>
	MOTA	1646	CD2	HIS A	189	60.449	34.464	33.766	1.00	21.79	<u>c</u>
	ATOM	1647	CE1	HIS A	189	60.722	34.371	35.945	1.00	24.04	c
	MOTA	1648	NE2	HIS A	189	61.257	34.815	34.821	1.00	19.53	и
20	MOTA	1649	N_	GLU A	190	57.539	35.561	32.006	1.00	28.43	N
	MOTA	1650	CA	GLU A	190	57.876	36.816	31.324	1.00	27.72	<u>c</u>
	MOTA	1651		GLU A	190	56.725	37.829	31.437	1.00	32.56	<u>c</u>
	ATOM	1652	0	GLU A	190	56.949	38.995	31.717	1,00	27.06	0
	ATOM	1653	CB	GLU A	190	58.122	36.529	29.849		28.55	<u>C</u>
25	MOTA	1654	CG	GLU A	190	59.150		29.614		35.29	<u>_</u>
	MOTA	1655	ÇD	GLU A	190	60.55	35.941	29.892		99.81	<u>C</u>
	ATOM	1656	OE:	I GLU A	190_	60,91	3 36.037	31.085	1.00	86,56	0
	MOTA	1657	OE:	2 GLU A	190	61.29	3 36.167			100.00	0
	MOTA	1658	_N_	ALA A	191	55.49		31.196		32.67	N
30	MOTA	1659	ca	ALA A	191	54.34	9 38.286			25.30	c
	MOTA	1660	<u>c</u>	ALA ?	191	54.28	7 38.795			36.20	<u>c</u>
	MOTA	1661	0	ALA A	191	53.92	0 39.924	33.014	1.00	27.52	0
	MOTA	1662	CB	ALA J	191	53.05	5 37.563			16,48	c
	MOTA	1663	N.	THR I	192	54.54				29.39	N
35	MOTA	1664	CA	THR A	192	54.39	5 38.386	35.041			<u>C</u>
	ATOM	1665	Ç	THR /	192	55,42				44.78	
	MOTA	1666	Q		192	55,09		35.839			
	MOTA	1667			192			5 35.983			
	MOTA	1668		1 THR			0 36.34			34.36	
40	MOTA	1669	CG	2 THR		54.46				21.15	
	MOTA	1670	<u> </u>				7 39.31			48.58	
	MOTA	1671	ca					6 34.90			
	MOTA	1672	<u></u>		A 193		6 41.61			54.42	
	MOTA	1673	0	ALA	A 193	57.95					
45	MOTA	1674	CE	ALA	A 193	59.04	7 39.64	0 34.49	6 1.00	51.78	<u>c</u>

	MOTA	1675	N	GLN A 194	56.810	41.530	33.022	1.00 43.16	N
	ATOM	1676	_CA	GLN A 194	56.586	42.722	32.242	1.00 38.03	c
	ATOM	1677	С	GLN A 194	55.264	43.389	32.576	1.00 40.85	<u>c</u>
	MOTA	1678	0_	GLN A 194	54.830	44.284	31.845	1.00 51.20	0
5	MOTA	1679	СВ	GLN A 194	56.599	42.358	30.750	1.00 35.96	c
	ATOM	1680	CG	GLN A 194	57.910	41.692	30.290	1.00100.00	с
	ATOM	1681	CD	GLN A 194	57.715	40.661	29.158	1.00100.00	c
	ATOM	1682	OE1	GLN A 194	56.619	40.546	28.579	1.00100.00	0
	ATOM	1683	NE2	GLN A 194	58.782	39.904	28.848	1.00100.00	N
10	ATOM	1684	N	GLY A 195	54.583	42.949	33.630	1.00 32.29	N
	ATOM	1685	CA	GLY A 195	.53.236	43.464	33.864	1.00 36.26	
	ATOM	1686	С	GLY A 195	52.299	43.332	32.593	1.00 45.33	c
	ATOM	1687	0	GLY A 195	51.515	44.242	32.346	1.00 45.16	0
	ATOM	1688	N.	GLY A 196	52.405	42.245	31.788	1.00 36.33	N
15	ATOM	1689	СЯ	GLY A 196	51.515	41.965	30.608	1.00 19.06	C
	MOTA	1690	С	GLY A 196	50.037	41.958	31,117	1.00 22.49	C
	ATON	1691	0_	GLY A 196	49,724	41.479	32.223	1.00 33.09	<u> </u>
	MOTA	1692	N	PRO A 197	49.144	42.657	30.431	1.00 29.22	N
	ATOM	1693	CA	PRO A 197	47.790	42.732	30.953	1.00 25.29	ç
20	ATOM	1694	C_	PRO A 197	47.091	41.413	30.674	1.00 24.64	C
	MOTA	1695	0	PRO A 197	46.192	40.991	31.411	1.00 24.75	0
	ATOM	1696	СВ	PRO A 197	47.162	43.911	30.176	1.00 26.31	c
	ATOM	1697	ce	PRO A 197	48.188	44.407	29.252	1.00 26.56	C
	ATOM	1698	CD	PRO A 197	49.307	43.454	29.203	1.00 30.25	С
25	ATOM	1699	N.	ASP A 198	47,572	40.723	29.658	1,00 16.88	N
	ATOM	1700	CA	ASP A 198	47.067	39.418	29.405	1.00 21.65	C
	MOTA	1701	Ç	ASP A 198	48.046	38.522	28,677	1.00 31.28	<u>C</u>
	ATOM	1702	0	ASP A 198	49.062	38.978	28.172	1.00 34.57	0
	ATOM	1703	СВ	ASP A 198	45.739	39.507	28.669	1.00 32.80	C
30	ATOM	1704	ÇG	ASP A 198	45,868	40.055	27.256	1.00 46.13	С
	ATOM	1705	OD	1 ASP A 198	46.982	40.230	26.725	1.00 57.45	0
	ATOM	1706	OD	2 ASP A 198	44.817	40.271	26.640	1.00 67.61	0
	ATOM	1707	N	VAL A 199	47.713	37.234	28.614	1.00 38.67	N
	ATOM	1708	СA	VAL A 199	48,499	36.226	27.901	1.00 27.79	с
35	MOTA	1709	C	VAL A 199	47.462	35.469	27.065	1.00 25.88	·c
	MOTA	1710		VAL A 199					0
	MOTA			VAL A 199		35.229	28,905	1.00 24.37	c
	ATOM	1712		1 VAL A 199				1.00 20.28	c
	MOTA	1713		2 VAL A 199		35.942	29.835	1.00 22.25	C
40	MOTA	1714	N	VAL A 200	47.661	35.386	5 25.757	1.00 23.72	N
	MOTA	1715							<u>c</u>
	ATOM	1716					6 24.499	1.00 22.85	C
	ATOM	1717						1,00 29,77	
	ATOM	1718					8 23.680	1.00 23.11	c
45	MOTA			1 VAL A 200				1.00 16.25	

	MOTA	1720	CG2	VAL A 200	45.652 36.823 24.130 1.00 27.86 C
	MOTA	1721	N	VAL A 201	46.296 32.278 24.632 1.00 27.39 N
	MOTA	1722	Cλ	VAL A 201	46.588 30.893 24.265 1.00 9.63 C
	ATOM	1723	С	VAL A 201	45.653 30.529 23.165 1.00 19.63 C
5	MOTA	1724	0	VAL A 201	44.452 30.755 23.312 1.00 17.61 Q
	MOTA	1725	СВ	VAL A 201	46.306 29.952 25.426 1.00 19.95 C
	MOTA	1726	CG1	VAL A 201	46.703 28.519 25.054 1.00 20.85 C
	MOTA	1727	CG2	VAL A 201	47.086 30.439 26.661 1.00 16.73 C
	MOTA	1728	_N	TRP A 202	46.210 30.080 22.030 1.00 14.36 N
10	MOTA	1729	СУ	TRP A 202	45.422 29.693 20.865 1.00 18.97 C
	MOTA	1730	С	TRP A 202	44.495 28.572 21.313 1.00 36.22 C
	MOTA	1731	_0	TRP A 202	44.934 27.694 22.057 1.00 31.46 0
	MOTA	1732	СВ	TRP A 202	46.292 29.055 19.823 1.00 19.14 C
	MOTA	1733	CG	TRP A 202	47.243 29.894 19.066 1.00 33.65 C
15	MOTA	1734	CD1	TRP A 202	48.391 29.463 18.429 1.00 35.28 C
	MOTA	1735	CD2	TRP A 202	47.126 31.282 18.772 1.00 39.90 C
	MOTA	1736	NE)	TRP A 202	48.941 30.481 17.693 1.00 37.86 N
	ATOM	1737	CE2	TRP A 202	48.228 31.624 17.922 1.00 38.35 C
	ATOM	1738	CE3	TRP A 202	46.206 32.281 19.138 1.00 39.39 C
20	ATOM	1739	ÇZ2	TRP A 202	48,380 32,884 17,367 1.00 36,15 C
	MOTA	1740	CZ3	TRP A 202	46,356 33.542 18,578 1.00 39,60 C
	MOTA	1741	CH2	TRP A 202	47.428 33.828 17.684 1.00 40.99 C
	MOTA	1742	N.	GLY A 203	43.245 28.564 20.842 1.00 25.59 N
	ATOM	1743	CA	GLY A 203	42.332 27.483 21.169 1.00 13.09 C
25	MOTA	1744	_ c	GLY A 203	41,260 27,813 22,193 1,00 21,12 C
	MOTA	1745	0	GLY A 203	41.340 28.815 22.886 1.00 22.86 O
	MOTA	1746	_N_	SER A 204	40.270 26.919 22.262 1.00 16.88 N
	MOTA	1747	ÇA	SER A 204	39.163 26.979 23.192 1.00 18.36 C
	MOTA	1748	<u>C</u>	SER A 204	39.561 26.664 24.659 1.00 22.07 C
30	MOTA	1749	0.	SER A 204	38.888 27.096 25.604 1.00 34.39 O
	MOTA	1750	СВ	SER A 204	38.053 25.998 22.740 1.00 9.99 C
	MOTA	1751	OG-	SER A 204	38.237 24.695 23.291 1.00 16.37 O
	MOTA	1752	N	GLY A 205	40.562 25.813 24.854 1.00 12.42 N
	ATOM	1753	CA	GLY A 205	40.963 25,411 26.208 1.00 11.64 C
35	ATOM	1754	C	GLY A 205	40.208 24.178 26.711 1.00 19.49 C
	MOTA	1755	0	GLY A 205	40.422 23.723 27.838 1.00 13.59 Q
	MOTA	175€	· N	THR A 206	
	MOTA	1757	<u> </u>	THR A 206	38.432 22.594 26.281 1.00 10.80 C
	MOTA	1758) C	THR A 206	
40	MOTA	1759	0	THR A 206	
	MOTA	1760	CE	THR A 206	
	MOTA	176	1 00	1 THR A 206	
	MOTA	176	2 C	2 THR A 206	
	MOTA	176	3 N	PRO A 207	
45	MOTA	176	4 C2	PRO A 207	40.658 19.743 25.175 1.00 18.15 C

	ATOM 1765 C PRO A 207	41.316 19.181 26.423 1.00 21.75	<u>c</u>
	ATOM 1766 0 PRO A 207	41.951 19.925 27.215 1.00 20.65	0
	ATOM 1767 CB PRO A 207	41.638 19.909 24.013 1.00 17.51	<u>c</u>
	ATOM 1768 CG PRO A 207	41.146 21.213 23.307 1.00 21.45	c
5	ATOM 1769 CD PRO A 207	40.698 22.062 24.431 1.00 23.44	<u>C</u>
	ATOM 1770 N MET A 208	41.112 17.876 26.624 1.00 15.60	N
	ATOM 1771 CA MET A 208	41,694 17,167 27,775 1.00 22.94	c
	ATOM 1772 C MET A 208	43.058 16.427 27.579 1.00 21.90	<u>C</u>
	ATOM 1773 0 MET A 208	43.248 15.677 26.633 1.00 23.16	0
10	ATOM 1774 CB MET A 208	40.645 16.273 28.386 1.00 32.86	c
	ATOM 1775 CG MET A 208	39.630 17.057 29.223 1.00 46.17	<u>c</u>
	ATOM 1776 SD MET A 208	38.301 15.990 29.826 1.00 57.85	<u>\$</u>
	ATOM 1777 CE MET A 208	37.999 15.028 28.343 1.00 58.23	C
	ATOM 1778 N ARG A 209	44.022 16.681 28.456 1.00 17.75	N
15	ATOM 1779 CA ARG A 209	45.318 16.042 28.324 1.00 19.88	c
	ATOM 1780 C ARG A 209	45.871 15.534 29.639 1.00 16.92	<u>C</u>
	ATOM 1781 0 ARG A 209	45,433 15,946 30,697 1,00 16,58	0
	ATOM 1782 CB ARG A 209	46.340 16.963 27.658 1.00 21.07	<u>c</u>
	ATOM 1783 CG ARG A 209	45,980 17.478 26.275 1.00 22.57	<u>_</u>
20	ATOM 1784 CD ARG A 209	45.833 16.357 25.282 1.00 28.26	<u>c</u>
	ATOM 1785 NE ARG A 209	45.586 16.819 23.906 1.00 23.15	N
	ATOM 1786 CZ ARG A 209	44.420 16.742 23.267 1.00 34.52	<u></u>
	ATOM 1787 NH1 ARG A 209	43.336 16.267 23.890 1.00 18.03	N
	ATOM 1788 NH2 ARG A 209	44.339 17.175 22.012 1.00 29.78	N
25	ATOM 1789 N GLU A 210	46,878 14,675 29,547 1.00 20.87	и
	ATOM 1790 CA GLU A 210	47.530 14.079 30.720 1.00 17.37	<u>C</u>
	ATOM 1791 C GLU A 210	49.031 14.490 30.851 1.00 20.96	<u>C</u>
	ATOM 1792 O GLU A 210	49.748 14.622 29.841 1.00 22.44	0
	ATOM 1793 CB GLU A 210	47,400 12,562 30,571 1.00 16.26	c
30	ATOM 1794 CG GLU A 210	47.807 11.785 31.809 1.00 19.91	<u>C</u>
	ATOM 1795 CD GLU A 210	48.057 10.304 31.531 1.00 27.81	c
	ATOM 1796 OE1 GLU A 210	48.111 9.919 30.343 1.00 17.29	
	ATOM 1797 OE2 GLU A 210	48,268 9.540 32,494 1.00 21,63	0
	ATOM 1798 N PHE A 211	49,504 14,712 32,084 1.00 14,02	N
35	ATOM 1799 CA PHE A 211	50.887 15,159 32,353 1.00 17.48	c
	ATOM 1800 C PHE A 211	51.458 14.414 33.531 1.00 33.62	<u>c</u>
•	ATOM 1801 O PHE A 211	50.716 14.031 34.443 1.00 27.96	0
	ATOM 1802 CB PHE A 211	50,933 16,677 32,644 1.00 17.78	<u>c</u>
	ATOM 1803 CG PHE A 211	50.303 17.490 31.541 1.00 21.49	<u>C</u>
40	ATOM 1804 CD1 PHE A 211	51.009 17.676 30.320 1.00 17.36	c
	ATOM 1805 CD2 PHE A 211	48,933 17,844 31.618 1.00 15.09	c
	ATOM 1806 CE1 PHE A 211	50.399 18.334 29.237 1.00 16.37	<u>c</u>
	ATOM 1807 CE2 PHE A 211	48,288 18,491 30,533 1,00 9,61	<u>c</u>
	ATOM 1808 CZ PHE A 211	49.053 18.756 29.344 1.00 12.71	<u>c</u>
45	ATOM 1809 N LEU A 212	52,761 14,161 33,495 1,00 23,76	N

			_
	ATOM 1810 CA LEU A 212	53,405 13.448 34.603 1.00 21.24	<u>s</u>
	ATOM 1811 C LEU A 212	54.772 14.053 34.898 1.00 14.00	
	ATOM 1812 O LEU A 212	55,519 14.398 33.985 1.00 13.99	
	ATOM 1813 CB LEU A 212	53.548 11.954 34.294 1.00 21.52	<u>c</u>
	ATOM 1814 CG LEU A 212	54.033 11.039 35.406 1.00 21.09	عــــــ
	ATOM 1815 CD1 LEU A 212	52.866 10.634 36.280 1.00 20.84	<u>c</u>
	ATOM 1816 CD2 LEU A 212	54,768 9.829 34.832 1.00 13.18	
	ATOM 1817 N HIS A 213	55,023 14.302 36.175 1.00 9.60	Х
	ATOM 1818 CA HIS A 213	56.290 14.864 36.555 1.00 13.66	<u>c</u>
	ATOM 1819 C HIS A 213	57,380 13.828 36.293 1.00 20.37	<u>C</u>
	ATOM 1820 O HIS A 213	57.238 12.614 36.542 1.00 16.08	0
	ATOM 1821 CB HIS A 213	56,280 15,250 38,002 1,00 18,72	c
	ATOM 1822 CG HIS A 213	57.491 16.017 38.408 1.00 21.22	<u>c</u>
	ATOM 1823 ND1 HIS A 213	58,703 15,406 38,656 1,00 24,29	Ŋ
	ATOM 1824 CD2 HIS A 213	57.716 17.353 38.499 1.00 23.67	
	ATOM 1825 CE1 HIS A 213	59.615 16.331 38.917 1.00 19.13	<u>c</u>
	ATOM 1826 NE2 HIS A 213	59.041 17.523 38.847 1.00 21.99	<u> </u>
	ATOM 1827 N VAL A 214	58.459 14.295 35.698 1.00 21.07	N
	ATOM 1828 CA VAL A 214	59.532 13.383 35.361 1.00 19.23	<u>C</u>
	ATOM 1829 C VAL A 214	60,067 12,523 36,551 1.00 27,20	<u>c</u>
	ATOM 1830 O VAL A 214	60.604 11.444 36.359 1.00 22.23	0
	ATOM 1831 CB VAL A 214	60.625 14.125 34.566 1.00 11.84	<u>c</u>
	ATOM 1832 CG1 VAL A 214	61.390 15.199 35.485 1.00 8.52	c
	ATOM 1833 CG2 VAL A 214	61,560 13,097 33,902 1.00 12,39	c
	ATOM 1834 N ASP A 215	59,893 12.984 37.790 1.00 25.29	N
	ATOM 1835 CA ASP A 215	60,406 12,228 38,936 1.00 18,19	<u>c</u>
	ATOM 1836 C ASP A 215	59.530 11.023 39.230 1.00 13.85	<u>c</u>
	ATOM 1837 O ASP A 215	59,988 9,981 39,666 1,00 17,44	0
	ATOM 1838 CB ASP A 215	60.575 13.129 40.155 1.00 16.27	c
,	ATOM 1839 CG ASP A 215	61.859 13.979 40.068 1.00 30.73	<u>c</u>
	ATOM 1840 OD1 ASP A 215	62.782 13.614 39.308 1.00 23.02	0
	ATOM 1841 OD2 ASP A 215	61,957 15,029 40.730 1.00 26.00	0
	ATOM 1842 N ASP A 216	58,276 11,136 38,863 1.00 20.08	Ŋ
	ATOM 1843 CA ASP A 216	57,378 10,017 39.016 1.00 18.78	c
5	ATOM 1844 C ASP A 216		c
	ATOM 1845 O ASP A 216		0
	ATOM 1846 CB ASP A 216	_	<u>C</u>
	ATOM 1847 CG ASP A 216		c
	ATOM 1848 OD1 ASP A 216		0
0	ATOM 1849 OD2 ASP A 216		0
-	ATOM 1850 N MET A 21		N
	ATOM 1851 CA MET A 21		C
	ATOM 1852 C MET A 21		c
	ATOM 1853 O MET A 21		
5	ATOM 1854 CB MET A 21		

ATCM 1855 CG MET A 217 59.478 8.918 33.287 1.00 16.37 ATCM 1856 SD MET A 217 58.962 7.412 32.473 1.00 30.51 ATCM 1857 CE MET A 217 57.465 7.608 32.391 1.00 19.57 ATCM 1858 N ALA A 218 60.561 8.562 36.623 1.00 19.09 5 ATCM 1859 CA ALA A 218 61.774 7.841 37.002 1.00 13.65 ATCM 1860 C ALA A 218 61.934 5.670 37.967 1.00 19.36 ATCM 1861 O ALA A 218 62.809 8.780 37.579 1.00 19.36 ATCM 1863 N ALA A 218 62.809 8.780 37.579 1.00 19.34 10 ATCM 1863 N ALA A 219 60.605 7.109 39.000 1.00 19.34 10 ATCM 1865 C ALA A 219 59.630 4.901 39.413 1.00 23.57 ATCM 1866 O ALA A 219 59.781 3.777 39.898 1.00 22.71 ATCM 1866 O ALA A 219 59.387 6.678 41.083 1.00 10.11 ATCM 1866 N ALA A 220 58.753 5.174 38.454 1.00 18.99 15 ATCM 1869 CA ALA A 220 58.753 3.213 37.034 1.00 18.99 16 ATCM 1870 C ALA A 220 58.753 3.213 37.034 1.00 25.33 ATCM 1870 C B ALA A 220 58.753 3.213 37.034 1.00 25.33 ATCM 1870 C B ALA A 220 58.753 3.213 37.034 1.00 25.33 ATCM 1870 C B ALA A 220 58.753 3.213 37.034 1.00 25.33 ATCM 1870 C B ALA A 220 58.753 3.213 37.034 1.00 25.33 ATCM 1870 C B ALA A 220 58.753 3.213 37.034 1.00 20.63 ATCM 1870 C B ALA A 220 58.753 3.213 37.034 1.00 20.63 ATCM 1870 C B ALA A 220 58.753 3.213 37.034 1.00 20.63 ATCM 1870 C B ALA A 220 58.753 3.213 37.034 1.00 20.63 ATCM 1870 C B ALA A 220 58.753 3.213 37.034 1.00 20.63 ATCM 1870 C B ALA A 220 58.753 3.213 37.034 1.00 20.90 ATCM 1871 C B SER A 221 59.770 3.772 36.379 1.00 23.92 20 ATCM 1879 C B SER A 221 61.683 0.799 35.983 1.00 19.84 ATCM 1879 C B SER A 221 61.694 3.985 34.804 1.00 10.67 ATCM 1879 C B SER A 221 61.604 3.985 34.804 1.00 10.67 ATCM 1879 C B SER A 221 61.604 3.985 34.804 1.00 10.67 ATCM 1881 C ILE A 222 62.083 2.476 37.463 1.00 18.12 ATCM 1883 CB ILE A 222 62.083 2.476 37.463 1.00 18.12 ATCM 1883 CB ILE A 222 62.083 2.476 37.463 1.00 18.15 ATCM 1883 CB ILE A 222 62.086 1.644 38.381 1.00 21.56 ATCM 1883 CB ILE A 222 62.086 3.473 39.068 1.00 29.10	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
ATCM 1857 CE MET A 217 57.465 7.608 32.391 1.00 19.57 ATCM 1858 N ALA A 218 60.561 8.562 36.623 1.00 19.09 5 ATCM 1859 CA ALA A 218 61.774 7.841 37.002 1.00 13.65 ATCM 1860 C ALA A 218 61.436 6.778 38.028 1.00 22.61 ATCM 1861 O ALA A 218 61.934 5.670 37.967 1.00 19.36 ATCM 1862 CB ALA A 218 62.809 8.780 37.579 1.00 19.36 ATCM 1863 N ALA A 219 60.605 7.109 39.000 1.00 19.34 10 ATCM 1864 CA ALA A 219 60.310 6.105 40.023 1.00 18.01 ATCM 1865 C ALA A 219 59.630 4.901 39.413 1.00 23.57 ATCM 1866 O ALA A 219 59.781 3.777 39.898 1.00 22.71 ATCM 1868 N ALA A 219 59.387 6.678 41.083 1.00 10.11 ATCM 1869 CA ALA A 220 58.753 5.174 38.454 1.00 18.99 15 ATCM 1869 CA ALA A 220 58.753 3.213 37.034 1.00 25.33 ATCM 1871 O ALA A 220 58.753 3.213 37.034 1.00 25.33 ATCM 1872 CB ALA A 220 56.796 4.798 37.023 1.00 8.53 ATCM 1873 N SER A 221 59.770 3.772 36.379 1.00 29.90 ATCM 1874 CA SER A 221 60.702 3.011 35.556 1.00 18.38 ATCM 1877 CB SER A 221 61.683 0.799 35.983 1.00 19.84 ATCM 1877 CB SER A 221 61.604 3.985 34.804 1.00 19.67 ATCM 1879 N ILE A 222 62.866 1.644 38.381 1.00 21.56 ATCM 1881 C ILE A 222 62.866 1.644 38.381 1.00 21.56 ATCM 1882 O ILE A 222 62.504 -0.566 39.307 1.00 19.03 ATCM 1883 CB ILE A 222 62.504 -0.566 39.307 1.00 19.03	2 2 2 2 2 2 2 2 2 2
ATOM 1858 N ALA A 218 60.561 8.562 36.623 1.00 19.09 ATOM 1859 CA ALA A 218 61.774 7.841 37.002 1.00 13.65 ATOM 1860 C ALA A 218 61.436 6.778 38.028 1.00 22.61 ATOM 1861 O ALA A 218 61.934 5.670 37.967 1.00 19.36 ATOM 1862 CB ALA A 218 62.809 8.780 37.579 1.00 19.36 ATOM 1863 N ALA A 219 60.605 7.109 39.000 1.00 19.34 10 ATOM 1864 CA ALA A 219 60.605 7.109 39.000 1.00 19.34 10 ATOM 1865 C ALA A 219 59.630 4.901 39.413 1.00 23.57 ATOM 1866 O ALA A 219 59.781 3.777 39.898 1.00 22.71 ATOM 1867 CB ALA A 219 59.387 6.678 41.083 1.00 10.11 ATOM 1868 N ALA A 220 58.753 5.174 38.454 1.00 18.99 15 ATOM 1869 CA ALA A 220 58.753 3.213 37.034 1.00 25.33 ATOM 1870 C ALA A 220 58.581 3.213 37.034 1.00 25.33 ATOM 1871 O ALA A 220 58.585 3.213 37.034 1.00 25.33 ATOM 1872 CB ALA A 220 56.796 4.798 37.023 1.00 8.53 ATOM 1873 N SER A 221 59.770 3.772 36.379 1.00 23.92 20 ATOM 1874 CA SER A 221 60.702 3.011 35.556 1.00 18.38 ATOM 1875 C SER A 221 61.537 1.989 36.353 1.00 20.90 ATOM 1877 CB SER A 221 61.683 0.799 35.983 1.00 19.84 ATOM 1879 N ILE A 222 62.083 2.476 37.463 1.00 19.67 ATOM 1879 N ILE A 222 62.086 1.644 38.381 1.00 21.56 ATOM 1881 C ILE A 222 62.000 0.554 39.068 1.00 29.10 ATOM 1882 O ILE A 222 62.504 -0.566 39.307 1.00 19.03 ATOM 1883 CB ILE A 222 62.504 -0.566 39.307 1.00 19.03	N C C C N C C C C C C C C C C C C C C C
5 ATCM 1859 CA ALA A 218 61.774 7.841 37.002 1.00 13.65 ATCM 1860 C ALA A 218 61.436 6.778 38.028 1.00 22.61 ATCM 1861 O ALA A 218 61.934 5.670 37.967 1.00 19.36 ATCM 1862 CB ALA A 218 62.809 8.780 37.579 1.00 12.23 ATCM 1863 N ALA A 219 60.605 7.109 39.000 1.00 19.34 10 ATCM 1864 CA ALA A 219 60.310 6.105 40.023 1.00 18.01 ATCM 1865 C ALA A 219 59.630 4.901 39.413 1.00 23.57 ATCM 1866 O ALA A 219 59.781 3.777 39.898 1.00 22.71 ATCM 1867 CB ALA A 219 59.387 6.678 41.083 1.00 10.11 ATCM 1868 N ALA A 220 58.753 5.174 38.454 1.00 18.99 15 ATCM 1869 CA ALA A 220 57.905 4.158 37.855 1.00 14.12 ATCM 1870 C ALA A 220 58.753 3.213 37.034 1.00 25.33 ATCM 1871 O ALA A 220 58.584 2.006 37.114 1.00 20.63 ATCM 1872 CB ALA A 220 56.796 4.798 37.023 1.00 8.53 ATCM 1873 N SER A 221 59.770 3.772 36.379 1.00 23.92 20 ATCM 1876 O SER A 221 61.633 0.799 35.983 1.00 19.84 ATCM 1877 CB SER A 221 61.683 0.799 35.983 1.00 19.84 ATCM 1877 CB SER A 221 61.604 3.985 34.804 1.00 18.12 ATCM 1879 N ILE A 222 62.866 1.644 38.381 1.00 19.67 ATCM 1881 C ILE A 222 62.866 1.644 38.381 1.00 21.56 ATCM 1881 C ILE A 222 62.000 0.554 39.068 1.00 29.10 ATCM 1882 O ILE A 222 62.504 -0.566 39.307 1.00 24.56	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 3 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3
ATOM 1860 C ALA A 218 61.436 6.778 38.028 1.00 22.61 ATOM 1861 O ALA A 218 61.934 5.670 37.967 1.00 19.36 ATOM 1862 CB ALA A 218 62.809 8.780 37.579 1.00 12.23 ATOM 1863 N ALA A 219 60.605 7.109 39.000 1.00 19.34 10 ATOM 1864 CA ALA A 219 60.310 6.105 40.023 1.00 18.01 ATOM 1865 C ALA A 219 59.630 4.901 39.413 1.00 23.57 ATOM 1866 O ALA A 219 59.781 3.777 39.898 1.00 22.71 ATOM 1866 C ALA A 219 59.387 6.678 41.083 1.00 10.11 ATOM 1866 N ALA A 220 58.753 5.174 38.454 1.00 18.99 15 ATOM 1869 CA ALA A 220 58.753 5.174 38.454 1.00 18.99 15 ATOM 1870 C ALA A 220 58.753 3.213 37.034 1.00 25.33 ATOM 1871 O ALA A 220 58.584 2.006 37.114 1.00 20.63 ATOM 1872 CB ALA A 220 56.796 4.798 37.023 1.00 8.53 ATOM 1873 N SER A 221 59.770 3.772 36.379 1.00 23.92 20 ATOM 1874 CA SER A 221 60.702 3.011 35.556 1.00 18.38 ATOM 1877 CB SER A 221 61.683 0.799 35.983 1.00 19.84 ATOM 1877 CB SER A 221 61.604 3.985 34.804 1.00 19.84 ATOM 1879 N ILE A 222 62.080 2.476 37.463 1.00 18.12 ATOM 1879 N ILE A 222 62.083 2.476 37.463 1.00 18.12 ATOM 1880 CA ILE A 222 62.000 0.554 39.068 1.00 29.10 ATOM 1881 C ILE A 222 62.000 0.554 39.068 1.00 29.10 ATOM 1882 O ILE A 222 62.504 -0.566 39.307 1.00 24.56	
ATCM 1861 O ALA A 218 61.934 5.670 37.967 1.00 19.36 ATCM 1862 CB ALA A 218 62.809 8.780 37.579 1.00 12.23 ATCM 1863 N ALA A 219 60.605 7.109 39.000 1.00 19.34 10 ATCM 1864 CA ALA A 219 50.310 6.105 40.023 1.00 18.01 ATCM 1865 C ALA A 219 59.630 4.901 39.413 1.00 23.57 ATCM 1866 O ALA A 219 59.781 3.777 39.898 1.00 22.71 ATCM 1866 C ALA A 219 59.387 6.678 41.083 1.00 10.11 ATCM 1868 N ALA A 220 58.753 5.174 38.454 1.00 18.99 15 ATCM 1869 CA ALA A 220 57.905 4.158 37.855 1.00 14.12 ATCM 1870 C ALA A 220 58.753 3.213 37.034 1.00 25.33 ATCM 1871 O ALA A 220 58.584 2.006 37.114 1.00 20.63 ATCM 1872 CB ALA A 220 56.796 4.798 37.023 1.00 8.53 ATCM 1873 N SER A 221 59.770 3.772 36.379 1.00 23.92 20 ATCM 1874 CA SER A 221 60.702 3.011 35.556 1.00 18.38 ATCM 1875 C SER A 221 61.537 1.989 36.353 1.00 20.90 ATCM 1876 O SER A 221 61.604 3.985 34.804 1.00 19.84 ATCM 1877 CB SER A 221 61.604 3.985 34.804 1.00 19.84 ATCM 1878 OG SER A 221 60.847 4.744 33.867 1.00 19.84 ATCM 1879 N ILE A 222 62.080 2.476 37.463 1.00 18.12 ATCM 1880 CA ILE A 222 62.020 0.554 39.068 1.00 29.10 ATCM 1881 C ILE A 222 62.020 0.554 39.068 1.00 29.10 ATCM 1882 O ILE A 222 62.504 -0.566 39.307 1.00 19.03 ATCM 1882 O ILE A 222 62.504 -0.566 39.307 1.00 19.03	
ATOM 1862 CB ALA 218 62.809 8.780 37.579 1.00 12.23 ATOM 1863 N ALA A 219 60.605 7.109 39.000 1.00 19.34 10 ATOM 1864 CA ALA A 219 50.310 6.105 40.023 1.00 18.01 ATOM 1865 C ALA A 219 59.630 4.901 39.413 1.00 23.57 ATOM 1866 O ALA A 219 59.781 3.777 39.898 1.00 22.71 ATOM 1867 CB ALA A 219 59.387 6.678 41.083 1.00 10.11 ATOM 1869 CA ALA A 220 58.753 5.174 38.454 1.00 18.99 15 ATOM 1869 CA ALA A 220 57.905 4.158 37.855 1.00 14.12 ATOM 1870 C ALA A 220 58.753 3.213 37.034 1.00 25.33 ATOM 1871 O ALA A 220 58.584 2.006 37.114 1.00 20.63 ATOM 1872 CB ALA A 220 56.796 4.798 37.023 1.00 8.53 ATOM 1873 N SER A 221 59.770 3.772 36.379 1.00 23.92 20 ATOM 1874 CA SER A 221 60.702 3.011 35.556 1.00 18.38 ATOM 1875 C SER A 221 61.537 1.989 36.353 1.00 20.90 ATOM 1876 O SER A 221 61.683 0.799 35.983 1.00 19.84 ATOM 1878 OG SER A 221 60.847 4.744 33.867 1.00 15.61 25 ATOM 1879 N ILE A 222 62.083 2.476 37.463 1.00 18.12 ATOM 1880 CA ILE A 222 62.020 0.554 39.068 1.00 29.10 ATOM 1881 C ILE A 222 62.000 0.554 39.068 1.00 29.10 ATOM 1882 O ILE A 222 62.504 -0.566 39.307 1.00 19.03 ATOM 1883 CB ILE A 222 62.504 -0.566 39.307 1.00 19.03	C C C C C C C C C C C C C C C C C C C
ATCM 1863 N ALA A 219 60.605 7.109 39.000 1.00 19.34 10 ATCM 1864 CA ALA A 219 50.310 6.105 40.023 1.00 18.01 ATCM 1865 C ALA A 219 59.630 4.901 39.413 1.00 23.57 ATCM 1866 O ALA A 219 59.781 3.777 39.898 1.00 22.71 ATCM 1867 CB ALA A 219 59.387 6.678 41.083 1.00 10.11 ATCM 1868 N ALA A 220 58.753 5.174 38.454 1.00 18.99 15 ATCM 1869 CA ALA A 220 58.753 3.213 37.034 1.00 25.33 ATCM 1870 C ALA A 220 58.753 3.213 37.034 1.00 25.33 ATCM 1871 O ALA A 220 58.584 2.006 37.114 1.00 20.63 ATCM 1872 CB ALA A 220 56.796 4.798 37.023 1.00 8.53 ATCM 1873 N SER A 221 59.770 3.772 36.379 1.00 23.92 20 ATCM 1874 CA SER A 221 60.702 3.011 35.556 1.00 18.38 ATCM 1875 C SER A 221 61.537 1.989 36.353 1.00 20.90 ATCM 1877 CB SER A 221 61.604 3.985 34.804 1.00 19.84 ATCM 1879 N ILE A 222 62.086 1.644 38.381 1.00 19.67 ATCM 1880 CA ILE A 222 62.866 1.644 38.381 1.00 29.10 ATCM 1881 C ILE A 222 62.504 -0.566 39.307 1.00 19.03 ATCM 1882 O ILE A 222 62.504 -0.566 39.307 1.00 19.03	N
10 ATCM 1869 CA ALA A 219 59.630 4.901 39.413 1.00 18.01 ATCM 1865 C ALA A 219 59.630 4.901 39.413 1.00 23.57 ATCM 1866 O ALA A 219 59.781 3.777 39.898 1.00 22.71 ATCM 1867 CB ALA A 219 59.387 6.678 41.083 1.00 10.11 ATCM 1868 N ALA A 220 58.753 5.174 38.454 1.00 18.99 15 ATCM 1869 CA ALA A 220 57.905 4.158 37.855 1.00 14.12 ATCM 1870 C ALA A 220 58.753 3.213 37.034 1.00 25.33 ATCM 1871 O ALA A 220 58.753 3.213 37.034 1.00 25.33 ATCM 1872 CB ALA A 220 58.584 2.006 37.114 1.00 20.63 ATCM 1873 N SER A 221 59.770 3.772 36.379 1.00 8.53 ATCM 1874 CA SER A 221 60.702 3.011 35.556 1.00 18.38 ATCM 1875 C SER A 221 61.537 1.989 36.353 1.00 20.90 ATCM 1876 O SER A 221 61.683 0.799 35.983 1.00 19.84 ATCM 1877 CB SER A 221 60.847 4.744 33.867 1.00 19.67 ATCM 1879 N ILE A 222 62.083 2.476 37.463 1.00 19.67 ATCM 1880 CA ILE A 222 62.866 1.644 38.381 1.00 21.56 ATCM 1881 C ILE A 222 62.504 -0.566 39.307 1.00 19.03 ATCM 1883 CB ILE A 222 63.467 2.516 39.432 1.00 24.56	C C
ATOM 1865 C ALA A 219 59.630 4.901 39.413 1.00 23.57 ATOM 1866 O ALA A 219 59.781 3.777 39.898 1.00 22.71 ATOM 1867 CB ALA A 219 59.387 6.678 41.083 1.00 10.11 ATOM 1868 N ALA A 220 58.753 5.174 38.454 1.00 18.99 15 ATOM 1869 CA ALA A 220 57.905 4.158 37.855 1.00 14.12 ATOM 1870 C ALA A 220 58.753 3.213 37.034 1.00 25.33 ATOM 1871 O ALA A 220 58.584 2.006 37.114 1.00 20.63 ATOM 1872 CB ALA A 220 56.796 4.798 37.023 1.00 8.53 ATOM 1873 N SER A 221 59.770 3.772 36.379 1.00 23.92 20 ATOM 1874 CA SER A 221 60.702 3.011 35.556 1.00 18.38 ATOM 1875 C SER A 221 61.537 1.989 36.353 1.00 20.90 ATOM 1876 O SER A 221 61.683 0.799 35.983 1.00 19.84 ATOM 1877 CB SER A 221 61.604 3.985 34.804 1.00 19.84 ATOM 1879 N ILE A 222 62.083 2.476 37.463 1.00 18.12 ATOM 1880 CA ILE A 222 62.083 2.476 37.463 1.00 18.12 ATOM 1881 C ILE A 222 62.504 -0.566 39.307 1.00 19.03 ATOM 1882 O ILE A 222 62.504 -0.566 39.307 1.00 19.03 ATOM 1883 CB ILE A 222 63.467 2.516 39.432 1.00 24.56	С О С И
ATCM 1866 O ALA A 219 59.781 3.777 39.898 1.00 22.71 ATCM 1867 CB ALA A 219 59.387 6.678 41.083 1.00 10.11 ATCM 1868 N ALA A 220 58.753 5.174 38.454 1.00 18.99 15 ATCM 1869 CA ALA A 220 57.905 4.158 37.855 1.00 14.12 ATCM 1870 C ALA A 220 58.753 3.213 37.034 1.00 25.33 ATCM 1871 O ALA A 220 58.584 2.006 37.114 1.00 20.63 ATCM 1872 CB ALA A 220 56.796 4.798 37.023 1.00 8.53 ATCM 1873 N SER A 221 59.770 3.772 36.379 1.00 23.92 20 ATCM 1874 CA SER A 221 60.702 3.011 35.556 1.00 18.38 ATCM 1875 C SER A 221 61.537 1.989 36.353 1.00 20.90 ATCM 1876 O SER A 221 61.683 0.799 35.983 1.00 19.84 ATCM 1877 CB SER A 221 61.604 3.985 34.804 1.00 10.67 ATCM 1878 OG SER A 221 60.847 4.744 33.867 1.00 15.61 25 ATCM 1879 N ILE A 222 62.083 2.476 37.463 1.00 18.12 ATCM 1880 CA ILE A 222 62.083 2.476 37.463 1.00 21.56 ATCM 1881 C ILE A 222 62.000 0.554 39.068 1.00 29.10 ATCM 1882 O ILE A 222 62.504 -0.566 39.307 1.00 24.56	O N C
ATOM 1867 CB ALA A 219 59.387 6.678 41.083 1.00 10.11 ATOM 1868 N ALA A 220 58.753 5.174 38.454 1.00 18.99 15 ATOM 1869 CA ALA A 220 57.905 4.158 37.855 1.00 14.12 ATOM 1870 C ALA A 220 58.753 3.213 37.034 1.00 25.33 ATOM 1871 O ALA A 220 58.584 2.006 37.114 1.00 20.63 ATOM 1872 CB ALA A 220 56.796 4.798 37.023 1.00 8.53 ATOM 1873 N SER A 221 59.770 3.772 36.379 1.00 23.92 20 ATOM 1874 CA SER A 221 60.702 3.011 35.556 1.00 18.38 ATOM 1875 C SER A 221 61.537 1.989 36.353 1.00 20.90 ATOM 1876 O SER A 221 61.683 0.799 35.983 1.00 19.84 ATOM 1877 CB SER A 221 61.604 3.985 34.804 1.00 10.67 ATOM 1878 OG SER A 221 60.847 4.744 33.867 1.00 15.61 25 ATOM 1879 N ILE A 222 62.083 2.476 37.463 1.00 18.12 ATOM 1880 CA ILE A 222 62.080 2.476 37.463 1.00 29.10 ATOM 1881 C ILE A 222 62.020 0.554 39.068 1.00 29.10 ATOM 1882 O ILE A 222 62.504 -0.566 39.307 1.00 24.56	Д С
ATOM 1868 N ALA A 220 58.753 5.174 38.454 1.00 18.99 15 ATOM 1869 CA ALA A 220 57.905 4.158 37.855 1.00 14.12 ATOM 1870 C ALA A 220 58.753 3.213 37.034 1.00 25.33 ATOM 1871 O ALA A 220 58.584 2.006 37.114 1.00 20.63 ATOM 1872 CB ALA A 220 56.796 4.798 37.023 1.00 8.53 ATOM 1873 N SER A 221 59.770 3.772 36.379 1.00 23.92 20 ATOM 1874 CA SER A 221 60.702 3.011 35.556 1.00 18.38 ATOM 1875 C SER A 221 61.537 1.989 36.353 1.00 20.90 ATOM 1876 O SER A 221 61.683 0.799 35.983 1.00 19.84 ATOM 1877 CB SER A 221 61.604 3.985 34.804 1.00 10.67 ATOM 1879 N ILE A 222 62.083 2.476 37.463 1.00 18.12 ATOM 1880 CA ILE A 222 62.866 1.644 38.381 1.00 21.56 ATOM 1881 C ILE A 222 62.00 0.554 39.068 1.00 29.10 ATOM 1882 O ILE A 222 62.504 -0.566 39.307 1.00 19.03 ATOM 1883 CB ILE A 222 62.504 -0.566 39.307 1.00 19.03	N
15 ATOM 1869 CA ALA A 220 57.905 4.158 37.855 1.00 14.12 ATOM 1870 C ALA A 220 58.753 3.213 37.034 1.00 25.33 ATOM 1871 O ALA A 220 58.584 2.006 37.114 1.00 20.63 ATOM 1872 CB ALA A 220 56.796 4.798 37.023 1.00 8.53 ATOM 1873 N SER A 221 59.770 3.772 36.379 1.00 23.92 20 ATOM 1874 CA SER A 221 60.702 3.011 35.556 1.00 18.38 ATOM 1875 C SER A 221 61.537 1.989 36.353 1.00 20.90 ATOM 1876 O SER A 221 61.683 0.799 35.983 1.00 19.84 ATOM 1877 CB SER A 221 61.604 3.985 34.804 1.00 10.67 ATOM 1878 OG SER A 221 60.847 4.744 33.867 1.00 15.61 25 ATOM 1879 N ILE A 222 62.083 2.476 37.463 1.00 18.12 ATOM 1880 CA ILE A 222 62.866 1.644 38.381 1.00 21.56 ATOM 1881 C ILE A 222 62.020 0.554 39.068 1.00 29.10 ATOM 1883 CB ILE A 222 62.504 -0.566 39.307 1.00 19.03 ATOM 1883 CB ILE A 222 63.467 2.516 39.432 1.00 24.56	c
ATOM 1870 C ALA A 220 58.753 3.213 37.034 1.00 25.33 ATOM 1871 O ALA A 220 58.584 2.006 37.114 1.00 20.63 ATOM 1872 CB ALA A 220 56.796 4.798 37.023 1.00 8.53 ATOM 1873 N SER A 221 59.770 3.772 36.379 1.00 23.92 20 ATOM 1874 CA SER A 221 60.702 3.011 35.556 1.00 18.38 ATOM 1875 C SER A 221 61.537 1.989 36.353 1.00 20.90 ATOM 1876 O SER A 221 61.683 0.799 35.983 1.00 19.84 ATOM 1877 CB SER A 221 61.604 3.985 34.804 1.00 10.67 ATOM 1878 OG SER A 221 60.847 4.744 33.867 1.00 15.61 25 ATOM 1879 N ILE A 222 62.083 2.476 37.463 1.00 18.12 ATOM 1880 CA ILE A 222 62.083 2.476 37.463 1.00 21.56 ATOM 1881 C ILE A 222 62.020 0.554 39.068 1.00 29.10 ATOM 1882 O ILE A 222 62.504 -0.566 39.307 1.00 19.03 ATOM 1883 CB ILE A 222 63.467 2.516 39.432 1.00 24.56	
ATOM 1871 O ALA A 220 58.584 2.006 37.114 1.00 20.63 ATOM 1872 CB ALA A 220 56.796 4.798 37.023 1.00 8.53 ATOM 1873 N SER A 221 59.770 3.772 36.379 1.00 23.92 20 ATOM 1874 CA SER A 221 60.702 3.011 35.556 1.00 18.38 ATOM 1875 C SER A 221 61.537 1.989 36.353 1.00 20.90 ATOM 1876 O SER A 221 61.683 0.799 35.983 1.00 19.84 ATOM 1877 CB SER A 221 61.604 3.985 34.804 1.00 10.67 ATOM 1878 OG SER A 221 60.847 4.744 33.867 1.00 15.61 25 ATOM 1879 N ILE A 222 62.083 2.476 37.463 1.00 18.12 ATOM 1880 CA ILE A 222 62.866 1.644 38.381 1.00 21.56 ATOM 1881 C ILE A 222 62.020 0.554 39.068 1.00 29.10 ATOM 1882 O ILE A 222 62.504 -0.566 39.307 1.00 19.03 ATOM 1883 CB ILE A 222 63.467 2.516 39.432 1.00 24.56	c
ATOM 1872 CB ALA A 220 56.796 4.798 37.023 1.00 8.53 ATOM 1873 N SER A 221 59.770 3.772 36.379 1.00 23.92 20 ATOM 1874 CA SER A 221 60.702 3.011 35.556 1.00 18.38 ATOM 1875 C SER A 221 61.537 1.989 36.353 1.00 20.90 ATOM 1876 O SER A 221 61.683 0.799 35.983 1.00 19.84 ATOM 1877 CB SER A 221 61.604 3.985 34.804 1.00 10.67 ATOM 1878 OG SER A 221 60.847 4.744 33.867 1.00 15.61 25 ATOM 1879 N ILE A 222 62.083 2.476 37.463 1.00 18.12 ATOM 1880 CA ILE A 222 62.866 1.644 38.381 1.00 21.56 ATOM 1881 C ILE A 222 62.020 0.554 39.068 1.00 29.10 ATOM 1882 O ILE A 222 62.504 -0.566 39.307 1.00 19.03 ATOM 1883 CB ILE A 222 63.467 2.516 39.432 1.00 24.56	
ATOM 1873 N SER A 221 59.770 3.772 36.379 1.00 23.92 ATOM 1874 CA SER A 221 60.702 3.011 35.556 1.00 18.38 ATOM 1875 C SER A 221 61.537 1.989 36.353 1.00 20.90 ATOM 1876 O SER A 221 61.683 0.799 35.983 1.00 19.84 ATOM 1877 CB SER A 221 61.604 3.985 34.804 1.00 10.67 ATOM 1878 OG SER A 221 60.847 4.744 33.867 1.00 15.61 25 ATOM 1879 N ILE A 222 62.083 2.476 37.463 1.00 18.12 ATOM 1880 CA ILE A 222 62.866 1.644 38.381 1.00 21.56 ATOM 1881 C ILE A 222 62.020 0.554 39.068 1.00 29.10 ATOM 1882 O ILE A 222 62.504 -0.566 39.307 1.00 19.03 ATOM 1883 CB ILE A 222 63.467 2.516 39.432 1.00 24.56	0
20 ATOM 1874 CA SER A 221 60.702 3.011 35.556 1.00 18.38 ATOM 1875 C SER A 221 61.537 1.989 36.353 1.00 20.90 ATOM 1876 O SER A 221 61.683 0.799 35.983 1.00 19.84 ATOM 1877 CB SER A 221 61.604 3.985 34.804 1.00 10.67 ATOM 1878 OG SER A 221 60.847 4.744 33.867 1.00 15.61 25 ATOM 1879 N ILE A 222 62.083 2.476 37.463 1.00 18.12 ATOM 1880 CA ILE A 222 62.866 1.644 38.381 1.00 21.56 ATOM 1881 C ILE A 222 62.020 0.554 39.068 1.00 29.10 ATOM 1882 O ILE A 222 62.504 -0.566 39.307 1.00 19.03 ATOM 1883 CB ILE A 222 63.467 2.516 39.432 1.00 24.56	<u>C</u>
ATCM 1875 C SER A 221 61.537 1.989 36.353 1.00 20.90 ATOM 1876 O SER A 221 61.683 0.799 35.983 1.00 19.84 ATOM 1877 CB SER A 221 61.604 3.985 34.804 1.00 10.67 ATOM 1878 OG SER A 221 60.847 4.744 33.867 1.00 15.61 25 ATOM 1879 N ILE A 222 62.083 2.476 37.463 1.00 18.12 ATOM 1880 CA ILE A 222 62.866 1.644 38.381 1.00 21.56 ATOM 1881 C ILE A 222 62.020 0.554 39.068 1.00 29.10 ATOM 1882 O ILE A 222 62.504 -0.566 39.307 1.00 19.03 ATOM 1883 CB ILE A 222 63.467 2.516 39.432 1.00 24.56	N
ATOM 1876 O SER A 221 61.683 0.799 35.983 1.00 19.84 ATOM 1877 CB SER A 221 61.604 3.985 34.804 1.00 10.67 ATOM 1878 OG SER A 221 60.847 4.744 33.867 1.00 15.61 25 ATOM 1879 N ILE A 222 62.083 2.476 37.463 1.00 18.12 ATOM 1880 CA ILE A 222 62.866 1.644 38.381 1.00 21.56 ATOM 1881 C ILE A 222 62.020 0.554 39.068 1.00 29.10 ATOM 1882 O ILE A 222 62.504 -0.566 39.307 1.00 19.03 ATOM 1883 CB ILE A 222 63.467 2.516 39.432 1.00 24.56	<u>c</u>
ATOM 1877 CB SER A 221 61.604 3.985 34.804 1.00 10.67 ATOM 1878 OG SER A 221 60.847 4.744 33.867 1.00 15.61 25 ATOM 1879 N ILE A 222 62.083 2.476 37.463 1.00 18.12 ATOM 1880 CA ILE A 222 62.866 1.644 38.381 1.00 21.56 ATOM 1881 C ILE A 222 62.020 0.554 39.068 1.00 29.10 ATOM 1882 O ILE A 222 62.504 -0.566 39.307 1.00 19.03 ATOM 1883 CB ILE A 222 63.467 2.516 39.432 1.00 24.56	c
ATOM 1878 OG SER A 221 60.847 4.744 33.867 1.00 15.61 25 ATOM 1879 N ILE A 222 62.083 2.476 37.463 1.00 18.12 ATOM 1880 CA ILE A 222 62.866 1.644 38.381 1.00 21.56 ATOM 1881 C ILE A 222 62.020 0.554 39.068 1.00 29.10 ATOM 1882 O ILE A 222 62.504 -0.566 39.307 1.00 19.03 ATOM 1883 CB ILE A 222 63.467 2.516 39.432 1.00 24.56	0
25 ATOM 1879 N ILE A 222 62.083 2.476 37.463 1.00 18.12 ATOM 1880 CA ILE A 222 62.866 1.644 38.381 1.00 21.56 ATOM 1881 C ILE A 222 62.020 0.554 39.068 1.00 29.10 ATOM 1882 O ILE A 222 62.504 -0.566 39.307 1.00 19.03 ATOM 1883 CB ILE A 222 63.467 2.516 39.432 1.00 24.56	c
ATOM 1880 CA ILE A 222 62.866 1.644 38.381 1.00 21.56 ATOM 1881 C ILE A 222 62.020 0.554 39.068 1.00 29.10 ATOM 1882 O ILE A 222 62.504 -0.566 39.307 1.00 19.03 ATOM 1883 CB ILE A 222 63.467 2.516 39.432 1.00 24.56	0
ATOM 1881 C ILE A 222 62.020 0.554 39.068 1.00 29.10 ATOM 1882 O ILE A 222 62.504 -0.566 39.307 1.00 19.03 ATOM 1883 CB ILE A 222 63.467 2.516 39.432 1.00 24.56	<u>N</u>
ATOM 1882 O ILE A 222 62.504 -0.566 39.307 1.00 19.03 ATOM 1883 CB ILE A 222 63.467 2.516 39.432 1.00 24.56	<u>C</u>
ATOM 1883 CB ILE A 222 63.467 2.516 39.432 1.00 24.56	<u>C</u>
	<u> </u>
30 army 1884 CG1 TER 3 222 64 465 3 473 38.765 1.00 32.13	<u>c</u>
20 DIAL 1001 CAL THE U TEE 01-100 20-100 TO A 1-40 AF-100	C
ATOM 1885 CG2 ILE A 222 64.129 1.671 40.500 1.00 28.26	c
ATOM 1886 CD1 ILE A 222 64.973 4.585 39.649 1.00 15.61	<u>c</u>
ATOM 1887 N HIS A 223 60.772 0.907 39.384 1.00 19.34	N
ATOM 1888 CA HIS A 223 59.829 -0.031 39.996 1.00 20.46	<u>C</u>
35 ATOM 1889 C HIS A 223 59.599 -1.097 38.964 1.00 24.82	C
ATOM 1890 O HIS A 223 59.723 -2.283 39.270 1.00 24.66	0
ATOM 1891 CB HIS A 223 58.465 0.637 40.359 1.00 19.53	<u>C</u>
ATOM 1892 CG HIS A 223 57.373 -0.333 40.759 1.00 28.64	Ç
ATOM 1893 ND1 HIS A 223 57.021 -0.564 42.082 1.00 24.16	N
40 ATOM 1894 CD2 HIS A 223 56.497 -1.062 40.004 1.00 30.39	c
ATOM 1895 CE1 HIS A 223 55.983 -1.399 42.112 1.00 30.39	<u>C</u>
ATOM 1896 NE2 HIS A 223 55.652 -1.727 40.869 1.00 28.13	и
ATOM 1897 N VAL A 224 59.354 -0.684 37.725 1.00 22.06	N
ATOM 1898 CA VAL A 224 59.111 -1.657 36.652 1.00 19.15	c
45 ATOM 1899 C VAL A 224 60.350 -2.490 36.333 1.00 25.89	c

	MOTA	1900	0_	VAL 2	224	60.282	-3.709	36.250	1.00 22	.37	0	
	MOTA	1901	СВ	VAL A	224	58.559	-1.022	35.377	1.00 22	2.59	<u>c</u>	,
	MOTA	1902	CG1	VAL A	224	58.512	-2.050	34.231	1.00 2	2.61	c	
	MOTA	1903	CG2	VAL A	224	57.161	-0.491	35.650	1.00 2	3.44	с	
5	MOTA	1904	N	MET A	225	61.499	-1.838	36.255	1.00 2	7.83	<u> </u>	
	MOTA	1905	CA	MET A	225	62.710	-2.577	36.004	1.00 2	3.69	c	
	MOTA	1906	С	MET A	225	62.896	-3.678	37.071	1.00 3	1.95	с	
	MOTA	1907	0_	MET A	225	63.290	-4.805	36.785	1.00 2	1.33	0	
	MOTA	1908	СВ	MET A	225	63.902	-1.604	36.056	1.00 2	1.34	C	
10	MOTA	1909	CG	MET A	225	65.295	-2.296	35.999	1.00 1	7,83	c	,
	MOTA	1910	SD	MET A	225	65.750	-2.958	34.306	1.00 2	3,33		
	MOTA	1911	CE	MET A	225	67.080	-1.896	33.785	1.00 1	6.46	- <u>c</u>	
	MOTA	1912	N_	GLU A	226	62.644	-3.319	38.316	1.00 1	9.54	N	
	MOTA	1913	CA	GLU A	226	62.988	-4.161	39.428	1.00 2	1.58	c	
15	MOTA	1914	С	GLU A	226	61,999	-5.200	39.918	1.00 3	0.77		
	ATOM	1915	0	GLU A	226	62.308	-6.012	40.780	1.00 2	9.39	0	<u>)</u>
	MOTA	1916	СВ	GLU 1	226	63.613	-3.323	40.547	1.00 2	0.47		:
	MOTA	1917	CG	GLU /	226	64.937	-2.673	40.122	1.00 2	3.03		2
	MOTA	1918	CD	GLU /	226	65.504	-1.809	41.208	1.00 3	2.62		-
20	MOTA	1919	OE I	GLU /	226	64.721	-1.455	42.122	1.00 2	6.12		2
	MOTA	1920	OE2	GLU /	226	66.711	-1.479	41.152	1.00 1	7.67		2
	MOTA	1921	N	LEU	227	60.837	-5.2 <u>48</u>	39.295	1.00 3	4.11		Ī
	MOTA	1922	CA	LEU	227	59.883	-6.296	39.642	1.00 3	5.26		2
	MOTA	1923	Ç	LEU	A 227	60.537	-7.644	39.320	1.00 2	7.91		È
25	MOTA	1924	Q .	LEU	A 227	61.291	-7.766	38.340	1.00 1	9.89		2
	MOTA	1925	СВ	LEU	A 227	58.693	-6.236	38.678	1.00 3	6.48		-
	MOTA	1926	ÇĢ	LEU	A 227	57.381	-5.569	38.955	1,00 4	0.30		2
	MOTA	1927	CD	LEU	A 227	57.697	-4.194	39.382	1.00 4	2.04		2
	MOTA	1928	CD.	LEU	A_227	56.610	-5.577	37.647	1.00 4	6.21		2
30	ATOM	1929	N	ALA	A 228	60.026	-8.608	39.955	1.00 2	7.15		Z
	MOTA	1930	CA.	ALA	A 228	60.425	-10.051	39.616	1.00 2	5.26		2
	MOTA	1931	<u> </u>	ALA	A 228	59.801	-10.435	38.279	1.00 2	7.93		C
	MOTA	1932	0	ALA	A 228	58.624	-10.093	37.934	1.00 3	1,26		0
	MOTA	1933	CB	ALA	A_228	60.003	-11.052	40.703	1.00 2	2.05		Ç
35	ATOM	1934	N	HIS	A 229	60.624	-11.160	37.539	1.00 2	7.05		N
	MOTA	1935	CA	HIS	A 229	60.275	-11.605	36.222	1.00 2	4.42		<u>C</u>
	MOTA	1936	C	HIS	A 229	58.905	-12.260	36.184	1.00 2	1,74		Ç
	MOTA	1937	0	HIS	A 229	58.015	-11.851	35.398	1.00 2	2.22		Q
	MOTA	1938	CB	HIS	A 229	61.351	-12.520	35.698	1.00_1	7.71		C
40	MOTA	1939	CG	HIS	A_229	61.284	-12.701	34.220	1.00 2	7.24		C
	MOTA	1940	ND	1 HIS	A 229	61.060	-11.650	33.350	1.00	34.38		И
	MOTA	1941	CD	2 HIS	A 229	61.292	-13.821	33.465	1.00	31.45		C
	MOTA	1942	ĊE	1 HIS	A 229	60.992	-12.113	32.115	1.00	30.50		Ç
	MOTA	1943	NE	2 HIS	A 229	61.124	-13,427	32,159	1.00	35.23		N
45	MOTA	1944	N	GLU	A 230	58.681	-13.161	37.140	1.00	20.24		N

	ATOM	1945	CA	GLU A 230	57.425 -13.895	37.209	1.00 29.41	с
	MOTA	1946	_C	GLU A 230	56.181 -13.051	37.341	1.00 22.20	<u>C</u>
	MOTA	1947	0	GLU A 230	55.159 -13.359	36.679	1.00 17.78	0
	MOTA	1948	СВ	GLU A 230	57.464 -14.997	38.274	1.00 38.51	c
5	MOTA	1949	CG	GLU A 230	58.085 -14.582	39.567	1.00 63.09	c
	MOTA	1950	CD	GLU A 230	57.036 -14.473	40.661	1.00100.00	c
	MOTA	1951	OE1	GLU A 230	55.859 -14.872	40.400	1.00100.00	0
	MOTA	1952	OE2	GLU A 230	57.409 -14.003	41.768	1.00 81.48	0
	MOTA	1953	N	VAL A 231	56.272 -12.004	38.182	1.00 16.53	N
10	MOTA	1954	CA	VAL A 231	55.202 -11.029	38.356	1.00 20.23	c
	ATOM	1955	С	VAL A 231	55.009 -10.164	37.102	1.00 24.45	c
	ATOM	1956	0	VAL A 231	53.864 -9.834	36.705	1.00 21.00	0
	MOTA	1957	СВ	VAL A 231	55.541 -10.057	39.426	1.00 28.61	<u>c</u>
	MOTA	1958	CG1	VAL A 231	54.362 -9.098	39.610	1.00 29.78	c
15	MOTA	1959	CG2	VAL A 231	55.881 -10.757	40.677	1.00 28:96	Ç
	MOTA	1960	N	TRP A 232	56.133 -9.798	36.486	1.00 17.17	N
	ATOM	1961	CA	TRP A 232	56.052 -9.044	35.262	1.00 21.52	<u>c</u>
	ATOM	1962	С	TRP A 232	55.388 -9.844	34.156	1.00 20.53	c
	MOTA	1963	Q	TRP A 232	54.588 -9.306	33.380	1.00 24.31	0
20	MOTA	1964	СВ	TRP A 232	57.438 -8.644	34.801	1.00 29.88	с
	ATOM	1965	CG	TRP A 232	57.430 -7.843	33.500	1.00 27.65	c
	MOTA	1966	CD1	TRP A 232	57.184 -6.464	33.356	1.00 25.42	c
	ATOM	1967	CD2	TRP A 232	57.714 -8.336	32.169	1.00 27.75	c
	MOTA	1968	NE1	TRP A 232	57.325 -6.095	32.033	1.00 22.53	N
25	MOTA	1969	CE2	TRP A 232	57.655 -7.203	31.279	1.00 25.11	c
	MOTA	1970	CE3	TRP A 232	5B.037 -9.603	31,640	1.00 22.72	c
	MOTA	1971	CZ2	TRP A 232	57.917 -7.316	29.879	1.00 17.23	C
	MOTA	1972	CZ3	TRP A 232	58.238 -9.720	30.223	1.00 25,97	c
	MOTA	1973	CH2	TRP A 232	58.154 -8.581	29.368	1.00 22.07	Ç
30	MOTA	1974	N	LEU A 233	55.749 -11.121	34.018	1,00 23.80	N
	MOTA	1975	CA	LEU A 233	55.141 -11.949	32.937	1.00 24.78	c
	MOTA	1976	С	LEU A 233	53.652 -12.118	33.122	1.00 24.51	c
	ATOM	1977	0	LEU A 233	52.865 -12.075	32.163	1.00 28.50	0
	MOTA	1978	СВ	LEU A 233	55,765 -13.348	32.820	1.00 26.20	C
35	HOTA	1979	ÇG	LEU A 233	57.250 -13.505	32.503	1.00 19.39	C
	MOTA	1980	CD1	LEU A 233	57.745 -14.850	33.023	1.00 19.90	C
	MOTA	1981	CD2	LEU A 233	57.561 -13.287	31.017	1.00 16.01	с
	MOTA	1982	_N_	GLU A 234	53.298 -12.343	34.372	1.00 25.45	N
	MOTA	1983	CA	GLU A 234	51.929 -12.523	34.822	1.00 30.04	c
40	MOTA	1984	С	GLU A 234	51.128 -11.319	34.367	1.00 35.69	C
	MOTA	1985	0	GLU A 234	49.926 -11.390	34.052	1.00 28.25	0
	MOTA	1986	СВ	GLU A 234	52.007 -12.468	36.344	1.00 37.30	Ç
	MOTA	1987	CG	GLU A 234	50.908 -13.133	37.118	1.00 45.39	<u>C</u>
	MOTA	1988	CD	GLU A 234	51.112 -12.881	38.601	1.00100.00	c
45	MOTA	1989	OE:	GLU A 234	52.240 -13.137	39.104	1.00 99.09	0

	MOTA	1990	OE2	GLU A 234	50.211 -1	2.257	39,211	1.00100.00	0
	ATOM	1991	N	ASN A 235	51.802 -1	0.184	34.364	1.00 25.04	N
	ATOM	1992	CA	ASN A 235	51.109 -	8.986	33.992	1.00 26.17	C
	MOTA	1993	С	ASN A 235	51.280 -	8.494	32.571	1.00 30,46	c
5	ATOM	1994	0	ASN A 235	50.824 -	7.393	32.259	1.00 22,90	0
	ATOM	1995	СВ	ASN A 235	51.427 -	7.895	34.981	1.00 29.23	<u>C</u>
	ATOM	1996	CG	ASN A 235	50.878 -	8.197	36.342	1.00 39.27	c
	MOTA	1997	OD1	ASN A 235	49.722 -	7.882	36.628	1.00 29.06	0
	MOTA	1998	ND2	ASN A 235	51.653 -	8.934	37.140	1.00 40.22	N
10	MOTA	1999	N	THR A 236	51.935 -	9.268	31.708	1.00 20.97	N
	MOTA	2000	CA	THR A 236	52.108 -	8.795	30.344	1.00 22.30	С
	MOTA	2001	С	THR A 236	51.867 -	9.943	29,419	1.00 29.74	с
	MOTA	2002	0	THR A 236	51.551 -1	1.033	29.895	1.00 21.23	0
	MOTA	2003	СВ	THR A 236	53.545 -	8.306	30.161	1.00 22.73	<u>C</u>
15	MOTA	2004	OG1	THR A 236	54.422 -	9.325	30.636	1.00 21.23	0
	MOTA	2005	CG2	THR A 236	53.801 -	7.048	31.041	1.00 19.69	C
	MOTA	2006	N	GLN A 237	52.003 -	9.699	28.109	1.00 22.23	N N
	ATOM	2007	CA	GLN A 237	52.097 -1	.0.783	27.122	1.00 16.69	C
	MOTA	2008	c_	GLN A 237	53.335 -1	0.507	26.331	1.00 21.02	c
20	ATOM	2009	0	GLN A 237	53.729 -	9.362	26.204	1.00 22.19	0
	ATOM	2010	СВ	GLN A 237	50.913 -1	0.999	26.189	1.00 8.23	c
	ATOM	2011	CG	GLN A 237	49.639 -1	1.096	26.904	1.00 21.04	c
	ATOM	2012	CD	GLN A 237	48,907 -	9.862	26.606	1.00 62.07	c
	MOTA	2013	OE1	GLN A 237	48,437 -	9.712	25.460	1.00 59.32	0
25	MOTA	2014	NE2	GLN A 237	49.220 -	8.847	27.388	1.00 37.82	N
	MOTA	2015	N	PRO A 238	54.002 -1	11.579	25.917	1.00 28.76	N
	MOTA	2016	CA	PRO A 238	<u> 55.275 -1</u>	11.438	25.246	1.00 30.28	C
	MOTA	2017	С	PRO A 238	55.194 -1	10,643	23.958	1.00 29.08	C
	MOTA	2018	0	PRO A 238	56.181 -1	10.029	23.600	1.00 15.95	0
30	MOTA	2019	CB	PRO A 238	<u> 55.733 -1</u>	12.879	25,011	1.00 22.54	<u>c</u>
	MOTA	2020	ÇĢ	PRO A 238	54.898 -	13.710	25,886	1.00 18.92	<u>C</u>
	MOTA	2021	CD	PRO A 238	53.626 -	12.998	26.068	1.00 11.75	<u>_</u>
	MOTA	2022	N	MET A 239	54.041 -:	10.635	23.286	1.00 17.26	N
	ATOM	2023	CA	MET A 239	53.924 -	-9.807	22,104	1.00 17.85	Ç
35	MOTA	2024	С	MET A 239	53.109 -	-8.509	22.362	1.00 18.63	<u>C</u>
	ATOM	2025	0	MET A 239	52.792	7.741	21.419	1.00 16.82	0
	ATOM	2026	СВ	MET A 239	53.460 -	10.588	20.881	1.00 15.22	c
	ATOM	2027	ÇĢ	MET A 239	54.536 -	11.534	20.261	1.00 12.90	c
•	ATOM	2028	SD	MET A 239	53.994 -	12.534	18.808	1.00 17.49	s
40	<u>ATOM</u>	2029	CE	MET A 239	54.350 -	11.357	17.422	1.00 13.12	ç
	ATOM	2030	N_	LEU A 240	52.847	-8.252	23.646	1.00 18.55	N
	ATOM	2031	CA	LEU A 240	52.159	-7.037	24.131	1.00 16.6B	c
	MOTA	2032	С	LEU A 240	52.774	-6.733	25.493	1.00 11.82	<u> </u>
	MOTA	2033	0	LEU A 240	52.124	-6.803	26.549	1.00 13.84	0
45	MOTA	2034	СВ	LEU A 240	50.645	-7.249	24.240	1,00 16.91	c

	MOTA	2035	CG	LEU A 240	49.646	-6.120	23.852	1.00 22.29	С
	MOTA	2036	CD1	LEU A 240	48.968	-5.488	25.033	1.00 25.51	c
	MOTA	2037	CD2	LBU A 240	50.070	-5.059	22.815	1.00 28.07	С
	MOTA	2038	N	SER A 241	54.076	-6.467	25.456	1.00 13.09	N
5	MOTA	2039	CA	SER A 241	54.842	-6.315	26.682	1.00 24.20	c
	MOTA	2040	С	SER A 241	54.947	-4.938	27.377	1.00 30.52	<u>c</u>
	MOTA	2041	0	SER A 241	55.363	-4.854	28.547	1.00 17.02	<u> </u>
	MOTA	2042	СВ	SER A 241	56.247	-6.900	26.495	1.00 14.04	c
	MOTA	2043	OG	SER A 241	57.062	-6.144	25.598	1.00 13.95	0
10	MOTA	2044	N	HIS A 242	54.661	-3.861	26.659	1.00 17.87	N
	MOTA	2045	CA_	HIS A 242	54.894	-2.548	27.221	1.00 13.55	c
	MOTA	2046	С	HIS A 242	53.990	-2.254	28.373	1.00 13.70	ç
	ATOM	2047	0	HIS A 242	52.974	-2.885	28.539	1.00 13.29	Q
	ATOM	2048	СВ	HIS A 242	54.826	-1.430	26.130	1.00 16.05	C
15	ATOM	2049	CG	HIS A 242	53.595	-1.504	25.272	1.00 18.88	<u> </u>
	ATOM	2050	ND1	HIS A 242	52.591	-0.553	25.326	1.00 23.24	N
	ATOM	2051	CD2	HIS A 242	53.165	-2.461	24.413	1.00 13.19	C
	ATOM	2052	CE1	HIS A 242	51.629	-0.887	24.483	1.00 17.44	C
	MOTA	2053	NE2	HIS A 242	51.962	-2.031	23.901	1.00 19.54	N
20	MOTA	2054	N	ILE A 243	54.310	-1.203	29.095	1.00 15.84	N
	ATOM	2055	CA	ILE A 243	53,492	-0.809	30.192	1.00 19.10	<u></u>
	MOTA	2056	_Ç	ILE A 243	53.336	0.714	30.191	1.00 23.23	<u>C</u>
	ATOM	2057	0	ILE A 243	54.312	1.406	30.385	1.00 12.10	0
	MOTA	2058	СВ	ILE A 243	54.166	-1.273	31.482	1.00 24.62	c
25	MOTA	2059	CG1	ILE A 243	54.014	-2.783	31.576	1.00 25.60	<u>C</u>
	ATOM	2060	CG2	ILE A 243	53,497	-0.665	32.735	1.00 17.37	C
	ATOM	2061	CD1	ILE A 243	54,725	-3.365	32.714	1.00 14.82	
	MOTA	2062	И	ASN A 244	52.112	1.217	30.013	1.00 16.43	N
	ATOM	2063	CA	ASN A 244	51.824	2.689	30.038	1.00 18.99	C
30	MOTA	2064	С	ASN A 244	\$2.252	3.292	31.348	1.00 18.83	c
	MOTA	2065	0_	ASN A 244	51.965	2,727	32.405	1.00 19.58	<u> </u>
	MOTA	2066	СВ	ASN A 244	50.304	2.987	29.910	1.00 15.67	Ç
	MOTA	2067	CG	ASN A 244	49.768	2.702	28.517	1.00 14.57	<u> </u>
	MOTA	2068	OD1	ASN A 244	50.546	2.583	27.580	1.00 13.64	0
35	MOTA	2069	ND2	ASN A 244	48,443	2.491	28.393	1.00 10.16	N
	MOTA	2070	N	VAL A 245	52.800	4.499	31.326	1.00 13.50	N
	MOTA	2071	CA_	VAL A 245	53.159	5.134	32.602	1.00 13.49	с
	MOTA	2072	С	VAL A 245	52.528	6.566	32.644	1.00 16.25	c
	MOTA	2073	0	VAL A 245	52,786	7,405	31.770	1.00 15.20	0
40	MOTA	2074	СВ	VAL A 245	54.754	5.163	32.810	1.00 21.07	c
	MOTA	2075	CG1	VAL A 245	55.154	6.085	33.937	1.00 15.08	c
	MOTA	2076	CG2	VAL A 245	55.280	3.817	33.143	1,00 15,82	c
	MOTA	2077	N -	GLY A 246	51.696	6.843	33.649	1.00 14.03	N
	ATOM	2078	CA	GLY A 246	51,027	8,136	33.707	1.00 16.87	C
45	ATOM	2079	<u> </u>	GLY A 246	50,146	8.203	34.939	1.00 26.95	<u>C</u>

	MOTA	2080	0	GLY A	246_	50.323	7.401	35.850	1.00 23.0	4 0
	MOTA	2081	N	THR A	247	49,207	9.161	34.963	1.00 21.4	4 N
	MOTA	2082	CA	THR A	247	48.232	9.276	36.063	1.00 21.3	9 <u> </u>
	MOTA	2083		THR A	247	46.868	8.677	35.673	1.00 24.0	8 C
5	MOTA	2084	0	THR A	247	46.069	8.306	36.508	1.00 21.0	3 0
	MOTA	2085	СВ	THR A	247	47.988	10.730	36.404	1.00 22.2	4 C
	MOTA	2086	0G1	THR A	247	47.409	11.389	35.265	1.00 18.6	2 0
	ATOM	2087	CG2	THR A	247	49.275	11.378	36.724	1.00 18.9	9 C
	ATOM	2088	N	GLY A	248	46.583	8.651	34.384	1.00 24.9	5 N
10	ATOM	2089	CA	GLY A	248	45,319	8.143	33.924	1.00 22.6	1 C
	MOTA	2090	С	GLY A	248	44.223	9.160	34.226	1.00 21.4	2 <u>C</u>
	ATOM	2091		GLY A	248	43.059	8.866	34.137	1.00 25.7	0 0
	MOTA	2092	N_	VAL A	249	44.615	10.386	34.521	1.00 30.7	12 N
	MOTA	2093	CA	VAL A	249_	43.673	11.464	34.827	1.00 26.0	9 <u>c</u>
15	MOTA	2094	С	VAL A	249	43,747	12.596	33.786	1.00 32.7	<u> </u>
	ATOM	2095	0	VAL A	249	44.853	13.006	33.387	1.00 26.9	02 0
	ATOM	2096	СВ	VAL A	249	44.020	12.085	36.214	1.00 38.5	59 C
	MOTA	2097	CG1	VAL A	249	43.225	13.324	36.470	1.00 36.1	<u> </u>
	MOTA	2098	CG2	VAL A	249	43.782	11.083	37.306	1.00 41.3	30 C
20	MOTA	2099	_N	ASP A	250	42.581	13.125	33.397	1.00 27.9	95 N
	MOTA	2100	CA.	ASP A	250	42.488	14.232	32.439	1.00 20.	54 <u>C</u>
	MOTA	2101	С	ASP A	250	42,611	15.581	33,155	1.00 27.	53C
	MOTA	2102	0_	ASP A	250	42.188	15.783	34.308	1.00 26.	23 0
	MOTA	2103	CB	ASP A	250	41.075	14.302	31.827	1.00 23.1	39 C
25	MOTA	2104	CG	ASP A	250	40.768	13.180	30.850	1.00 39.	52 C
	MOTA	2105	OD1	ASP A	250	41.283	13.184	29.688	1.00 39.	960
	MOTA	2106	OD2	ASP A	250	39,767	12.501	31.153	1.00 45.	34 0
	MOTA	2107	_N_	CYS 7	251	43.029	16,566	32,388	1.00 20.	12 N
	MOTA	2108	CA.	CYS 7	251	42.962	17.906	32.851	1.00 27.	20 C
30	MOTA	2109	C	CYS ?	251	42.918	18.779	31.577	1.00 26.	47 <u>C</u>
	ATOM	2110	0	CYS 7	251	43,699	18.560	30.633	1.00 19.	4 5 O
	MOTA	2111	CB	CYS 7	251	44.148	18.157	33.778	1.00 34.	86 C
	MOTA	2112	5G	CYS A	251	45.129	19.619	33.453	1.00 29.	47 s
	MOTA	2113	N	THR I	A 252	41.932	19.673	31.494	1.00 14.	85 N
35	MOTA	2114	CA	THR 2	252	41.834	20.588	30.335	1.00 21.	21 C
	MOTA	2115	<u> </u>	THR	A 252	42,999	21.592	30.236	1.00 20.	53 C
	MOTA	2116	0	THR	A 252	43.657	21.926	31.249	1.00 15.	24 0
	MOTA	2117	CB	THR	A 252	40.506	21,407	30.329	1,00 32.	08 <u>C</u>
	MOTA	2118	OG:	THR I	A 252	40.460	22.304	31.447	1.00 19.	<u>26 </u>
40	MOTA	2119	CG	2_THR_	A_252_	39.309	20.495	30.372	1.00 13.	<u>91 c</u>
	MOTA	2120	N	ILE	A 253	43.228	22.095	29.024	1.00 14.	81 N
	MOTA	2121	CA	ILE	A 253	44.264	23.118	28.812	1.00 16.	90 c
	MOTA	2122	C	ILE	A 253	43.934	24.383	29.627	1.00 23.	<u>41 c</u>
	ATOM	2123	0	ILE	A 253	44.834	25.012	30.247	1.00 15.	
45	MOTA	2124	CB	ILE	A 253	44.404	23.452	27.302	1.00 24.	05 C

	ATOM _	2125	CG1	ILE A 253	44.862	22.200	26.561	1.00 27.33	c
	ATOM	2126		ILE A 253	45.473	24.479	27.077	1.00 9.22	C
	ATOM	2127		ILB A 253	45.662	21.276	27.452	1.00 49.56	c
	ATOM	2128	N.	ARG A 254	42.637	24.709	29.707	1.00 19.56	N.
;	ATOM	2129	CA	ARG A 254	42,228	25.865	30.522	1.00 19.41	C
,		2130		ARG A 254	42.712	25.713	31.970	1.00 18.10	c
	MOTA_	2131	0	ARG A 254	43.311	26.616	32.515	1.00 13.89	
	MOTA		СВ	ARG A 254	40.704	26.101	30,480	1.00 15.98	C
	MOTA	2132		ARG A 254	40.282	27.378	31.255	1.00 9.96	· c
`	MOTA	2133	CG		38.809	27.702	31.218	1.00 24.79	C
)	MOTA	2134	CD	ARG A 254	38,498	28.414	29.997	1,00 29,42	N N
	ATOM	2135	NE_	ARG A 254		29.723	29.794	1.00 59.85	Ç
	ATOM	2136	_CZ_	ARG A 254	38.693		30.732	1.00 42.58	и
	ATOM	2137	NH1	ARG A 254	39.194	30.527		1.00 18.44	N N
_	MOTA	2138	NH2		38.377	30.245	28.620		N
5	MOTA	2139	<u> </u>	ASP A 255	42.406	24.564	32.586 33.974	1.00 20.22	
	MOTA	2140	CA	ASP A 255	42.795	24.205		1.00 16.48	c
	ATOM	2141	<u> </u>	ASP A 255	44.321	24.372	34.069	1.00 22.43	
	ATOM	2142	0	ASP A 255	_44.868_	24.897	35.060	1.00 18.53	
_	ATOM	2143	СВ	ASP A 255	42.478	22.686	34.157	1.00 19.17	<u>c</u>
0	MOTA	2144	CG	ASP A 255	42.144	22.246	35.610	1.00 47.08	<u>c</u>
	ATOM	2145	OD1	ASP A 255	41.780	23.090	36.429	1.00 49.66	<u>0</u>
	MOTA	2146	OD2	ASP A 255	42.020	21.016	35.880	1.00 48.12	0
	MOTA	2147	_ N	LEU A 256	45.014	23.809	33.078	1.00 15.98	N
_	MOTA	2148	_CA	LEU A 256	46.465	23.844	33.069	1.00 21.76	ç
5	MOTA	2149	C	LEU A 256	47.020	25.275	33.076	1.00 16.79	<u>c</u>
	ATOM	2150	0	LEU A 256	47.825	25.697	33.946	1.00 15.24	0
	MOTA	2151	CB	LEU A 256	46.967	23.056	31,859	1.00 23.33	<u>C</u>
	MOTA	2152	CG	LEU A 256	48.491	23.100	31.765	1.00 26.80	<u>C</u>
	MOTA	2153	CD:	LEU A 256	49.171	22.334	32.984	1.00 17.13	c
0	MOTA	2154	CD2	LEU A 256	49,040	22,724	30.346	1.00 15.42	<u>c</u>
	MOTA	2155	N	ALA A 257	46.520	26.048	32.140	1.00 13.77	N
	ATOM	2156	_CA	ALA A 257	46.938	27.436	32.025	1.00 12.70	<u>c</u>
	MOTA	2157	С	ALA A 257	46.656	28.237	33.267	1.00 10.73	<u>c</u>
	MOTA	2158	0	ALA A 257	47.451	29.073	33.672	1.00 20.33	0
5	MOTA	2159	СВ	ALA A 257	46.208	28.073	30.834	1.00 13.34	c
	MOTA	2160	N	GLN A 258	45.470	28.080	33.835	1.00 12.40	N
	MOTA	2161	CA.	GLN A 258	45.102	28.911	34.981	1.00 8.39	<u>c</u>
	MOTA	2162	C.	GLN A 258	45.879	28.480	36.166	1.00 13.48	C
	MOTA	2163	0	GLN A 258	46.178	29.281	37.025	1.00 22.96	o
0	ATOM	2164	СВ	GLN A 258	43,614	28.761	35.30	1.00 16.12	ç
	ATOM	2165	CG	GLN A 258	42.674	29.096	34.130	1,00 30.19	с
	ATOM	2166	CD	GLN A 258	42.574	30.585	33.78	1.00 37.29	<u>c</u>
	ATOM	2167	OE	1 GLN A 258	42.911	31.471	34.61	1.00 21.24	0
	MOTA		NE	2 GLN A 256	42.021	30.876	32.57	1.00 15.94	N
45	ATOM			THR A 259		27.182	36.23	1.00 16.21	N

	ATOM 21	70 CA	THR A 259	46.982	26.678	37.336	1.00 16.85	<u>C</u>
	ATOM 21	71 C	THR A 259	48,410	27.186	37.233	1.00 20.56	c
	ATOM 21	72 0	THR A 259	49.002	27.621	38.214	1.00 21.44	Q
	ATOM 21	73 CB	THR A 259	47.066	25.192	37.361	1.00 27.56	c
5	ATOM 21	74 OG1	THR A 259	45.752	24.620	37.509	1.00 20.92	0
	ATOM 21	75 CG2	THR A 259	47.936	24.796	38.545	1.00 12.85	Ç
	ATOM 21	76 ม	ILE A 260	48.952	27.170	36.028	1.00 19.96	N
	ATOM 21	77 CA	ILE A 260	50.292	27.704	35.839	1.00 23.01	C
	ATOM 21	78 C	ILE A 260	50.313	29,180	36.225	1.00 31.73	C
10	ATOM 21	179 0	ILE A 260	51.211	29.627	36.993	1.00 25.90	0
	ATOM 2	180 CB	ILE A 260	50.835	27.456	34.390	1.00 22.46	<u>C</u>
	ATOM 21	L81 CG1	ILE A 260	51.153	25.940	34.232	1.00 24.12	<u> </u>
	ATOM 2	LB2 CG2	ILE A 260	52.099	28.361	34.106	1.00 13.47	С
	ATOM 2	183 CD1	ILE A 260	51.501	25.443	32.810	1.00 12.58	<u> </u>
15	ATOM 2	184 N	ALA A 26	49,280	29.910	35.764	1.00 15.35	N N
	ATOM 2	185 CA	ALA A 26	1 49.177	31.355	36.048	1.00 16.00	<u> </u>
	ATOM 2	186 C	ALA A 26	1 49.316	31.604	37.550	1.00 20.58	С
	ATOM 2	187 0	ALA A 26	50.104	32.443	37.987	1.00 16.09	0
	ATOM 2	188 CB	ALA A 26	47.832	31.958	35.487	1.00 13.65	<u> </u>
20	ATOM 2	189 N	LYS A 26	2 48.551	30.843	38.323	1.00 11.50	
	ATOM 2	190 CA	LYS A 26	2 48.578	30.905	39.770	1.00 10.13	<u> </u>
	ATOM 2	191 C	LYS A 26	2 49,968	30.460	40.296	1.00 28.08	<u> </u>
	ATOM 2	192 0	LYS A 26	2 50.503	31.084	41.205	1.00 29.3	7 0
	ATOM 2	193 CB	LYS A 26	2 47.453	30.032	40.335	1.00 12.50	<u> </u>
25	ATOM 2	194 CG	LYS A 26	2 47.332	29.962	41.888	1.00 16.53	<u> </u>
	ATOM 2	195 CD	LYS A 26	2 46.092	29.092	42.371	1.00 46.63	с
	ATOM 2	196 CE	LYS A 26	2 46,344	27.555	42.661	1.00 99.70	<u> </u>
	ATOM 2	197 NZ	LYS A 26	2 45.157	26.703	43.200	1.00 36.5	99
	ATOM 2	198 N	VAL A 26	3 50.589	29,443	39.705	1.00 17.4	<u>1 </u>
30	ATOM 2	199 CA	VAL A 26	3 51,915	29.039	40.171	1.00 18.7	<u>c</u>
	ATOM 2	200 C	VAL A 26	3 52.997	30.170	39,997	1.00 32.1	2 <u> </u>
	ATOM 2	201 0	VAL A 26	3 53.871	30.412	40.834	1.00 21.1	0
	ATOM 2	202 CB	VAL A 26	3 52.389	27.709	39.476	1.00 16.3	5 <u>C</u>
	ATOM 2	203 CG	1 VAL A 26	3 53.920	27.518	39,647	1.00 11.8	3 <u> </u>
35	ATOM 2	204 CG	2 VAL A 26	3 51.646	26.522	40.093	1.00 14.9	9 <u>C</u>
	ATOM 2	205 ท	VAL A 26	52.913	30.899	38.909	1.00 21.7	5 N
	ATOM 2	206 CA	VAL A 26	53.917	31.877		1.00 19.B	
	ATOM 2	207 C	VAL A 26			39.377	1.00 35.7	9 <u> </u>
	ATOM Z	208 0	VAL A 26			39,482	1.00 28.9	
40	ATOM 2	2209 CB	VAL A 26	54.059	32.014		1.00 24.2	
	ATOM 2	210 CG	1 VAL A 26	54.728			1.00 33.5	
	MOTA	2211 CG	2 VAL A 26	54 54.840	30.808		1.00 23.0	
	ATOM	2212 N	GLY A 2	55 52.550	33.378		1.00 25.3	
	ATOM	2213 CA	GLY A 2	55 52.241	34.620		1.00 24.1	
45	MOTA	2214 C	GLY A 2	55 51.730	35.694	39.632	1.00 35.0	3 c

										•
	MOTA	2215	0	GLY A 2		51.773	36.911		1.00 33.71	0
	ATOM	2216	N.	TYR A 2		51.294	35,257	38.428	1.00 26.25	N
	MOTA	2217_	CA	TYR A 2	66	50.698	36.151	37.373	1,00 26.55	<u>c</u>
_	MOTA	2218	С	TYR A 2	66	49.364	36.745	37.818	1.00 31.01	<u>C</u>
5	MOTA	2219	0_	TYR A 2	66	48.532	36.067	38.456	1.00 27.99	0
	MOTA	2220	CB	TYR A 2	66	50.501	35.463	36.008	1.00 24.31	c
	MOTA	2221	CG	TYR A 2	66	49.994	36.381	34.884	1.00 28.64	<u>C</u>
	MOTA	2222	CD1	TYR A 2	66	50,670	37.582	34.542	1.00 35.05	<u>.</u> c
	MOTA	2223	CD2	TYR A 2	66	48.860	36.038	34.118	1.00 22.60	<u>c</u>
10	MOTA	2224	CE1	TYR A 2	66	50.212	38.434	33.472	1.00 20.73	c
	MOTA	2225	CE2	TYR A 2	66	48.428	36.859	33.012	1.00 20.91	<u>c</u>
	MOTA	2226	CZ	TYR A 2	66	49.088	38.062	32.735	1.00 23.85	<u>C</u>
	ATOM	2227	OH	TYR A 2	66	48,622	38.851	31.710	1.00 33.40	Q
	MOTA	2228	N_	LYS A	267	49.217	38.043	37.604	1.00 25.72	и
15	MOTA	2229	CA	LYS A	67	47.988	38,697	38.009	1.00 30.77	<u>c</u>
	MOTA	2230	<u></u>	LYS A	267	47.217	39.280	36.798	1.00 28.85	c
	ATOM	2231	0_	LYS A	267	46.179	39.894	36.949	1.00 31.17	0
	MOTA	2232	СВ	LYS A	267	48.279	39.741	39.092	1.00 27.13	c
	MOTA	2233	ÇG	LYS A	267	48,728	39,128	40,403	1.00 23.18	c
20	ATOM	2234	CD	LYS A	267	48.420	40.096	41.562	1.00 30.98	c
	MOTA	2235	CE	LYS A	267	47.933	39.358	42.820	1.00 48.52	<u> </u>
	MOTA	2236	NZ	LYS A	267	47,005	38.208	42.505	1.00100.00	N
	ATOM	2237	_N	GLY A	268	47.716	39.054	35,594	1.00 22.67	N
	MOTA	2238	CA	GLY A	268	47.019	39.518	34.394	1,00 21.38	c
25	MOTA	2239	С	GLY A	2 68	45.856	38.568	34.085	1.00 31.03	c
	MOTA	2240	0_	GLY A	268	45.455	37.728	34.911	1.00 19.71	0
	MOTA	2241	N	ARG A	269	45.387	38.645	32.849	1.00 30.40	<u>N</u>
	MOTA	2242	CA	ARG A	269	44.263	37.846	32.399	1.00 26.47	c
	MOTA	2243	С	ARG A	269	44.680	36.705	31.489	1.00 22.35	<u>c</u>
30	ATOM	2244	Q_	ARG A	269	45.378	36.926	30.524	1.00 22.75	0
	MOTA	2245	СВ	ARG A	269	43,297	38.753	31.626	1.00 22.65	c
	ATOM	2246	CG	ARG A	269	42.201	39.390	32.463	1.00 24.21	c
	ATOM	2247	CD	ARG A	269	40,936	39.465	31.568	1.00 83.45	c
	MOTA	2248	NE	ARG A	269	40,113	40.676	31.762	1,00100.00	и
35	ATOM	2249	CZ	ARG A	269	38.808	40.751	31.431	1.00100.00	<u> </u>
	MOTA	2250	NH	1 ARG A	269	38,201	39.691	30.921	1.00 99.93	N
	MOTA	2251	NH	2 ARG A	269	38.094	41.865	31.663	1,00100.00	<u> </u>
	MOTA	2252	N	VAL A	270	44,195	35.494	31.758	1.00 19.87	<u> </u>
	ATOM	2253	CA	VAL A	270	44.468	34.389	30.856	1.00 24.82	Ç
40	MOTA	2254	С	VAL A	270	43.319	34.456	29.824	1.00 22.5	c
	ATOM	2255	<u>و ن</u>	VAL_A	270	42.145	34.501	30.181	1.00 25.79	<u> </u>
	ATOM	2256	CE	VAL A	270	44.436	32,979	31.571	1.00 24.0	3 <u> </u>
	ATOM	225	, ce	1 VAL A	270	44.576	31.861	30,533	1.00 20.7	<u> </u>
	MOTA	2256	3 CG	2 VAL A	270	45.506	32.849	32,639	1.00 11.2	7S
45	MOTA	225	N (VAL A	271	43.660	34,409	28.554	1.00 25.1	8 <u>N</u>

	MOTA	2260	_cv_	VAL A 271	42,666	34.492	27.487	1.00 2B.32	<u>C</u>
	MOTA	2261	С	VAL A 271	42.819	33.370	26.442	1.00 24.89	<u>C</u>
	MOTA	2262	0	VAL A 271	43.923	33,115	25.900	1.00 21.98	0
	MOTA	2263	_CB_	VAL A 271	42.901	35.813	26.736	1.00 29.25	c
5	MOTA	2264	CG1	VAL A 271	42.256	35.773	25.370	1.00 31.91	c
	MOTA	2265	CG2	VAL A 271	42.421	36.989	27.565	1.00 18.72	Ç
	MOTA	2266	N_	PHE A 272	41.716	32.758	26.019	1.00 26.14	N N
	MOTA	2267	CA	PHE A 272	41.752	31.747	24.963	1.00 24.34	<u>c</u>
	MOTA	2268	С	PHE A 272	41.236	32.266	23.623	1.00 28.95	<u>c</u>
10	MOTA	2269	0	PHE A 272	40.155	32.826	23.582	1.00 22.01	0
	MOTA	2270	СВ	PHE A 272	40.960	30,506	25.391	1.00 20.97	<u>c</u>
	MOTA	2271	CG	PHE A 272	41.764	29.570	26.243	1.00 21.77	<u>c</u>
	ATOM_	2272	CD1	PHE A 272	41.940	29.842	27.610	1.00 14.60	<u>c</u>
	MOTA	2273	CD2	PHE A 272	42.504	28.550	25.656	1.00 22.19	с
15	ATOM	2274	CE1	PHE A 272	42.763	29.041	28.434	1.00 17.89	c
	ATOM	2275	CE2	PHE A 272	43.336	27.726	26.454	1.00 27.64	<u>_</u>
	MOTA	2276	CZ	PHE A 272	43.478	27.979	27.851	1.00 25.14	<u>C</u>
	ATOM	2277	N.	ASP A 273	42.012	32.114	22.542	1.00 29.45	и
	MOTA	2278	CA	ASP A 273	41.557	32.536	21.214	1.00 22.33	<u>c</u>
20	MOTA	2279	С	ASP A 273	40.896	31.365	20.493	1.00 25.67	<u>C</u>
	MOTA	2280	0	ASP A 273	41,539	30.570	19.793	1.00 17.81	0
	MOTA	2281	СВ	ASP A 273	42.672	33.114	20.343	1.00 21.45	c
	MOTA	2282	CG	ASP A 273	42.131	33.626	18.990	1.00 26.89	<u>C</u>
	ATOM	2283	OD1	ASP A 273	40.975	33,249	18.598	1.00 27.76	0
25	ATOM	2284	OD2	ASP A 273	42,838	34,421	18.327	1.00 30.06	0
	MOTA	2285	N.	ALA A 274	39.589	31,284	20.649	1.00 15.59	N
	ATOM	2286	CA	ALA A 274	38.932	30.128	20.128	1.00 23.75	<u> </u>
	MOTA	2287	C	ALA A 274	38.853	30,168	18.653	1.00 32.30	<u>c</u>
	MOTA	2288	0	ALA A 274	38.284	29.256	18.029	1.00 29.37	0
30	MOTA	2289	СВ	ALA A 274	37.567	29,905	20.777	1.00 18.87	C
	MOTA	2290	N	SER A 275	39.372	31.243	18.081	1.00 21.10	<u>n</u>
	MOTA	2291	CA	SER A 275	39.343	31.288	16.631	1.00 26.90	c
	MOTA	2292	_c_	SER A 275	40.390	30,300	16.116	1.00 43.37	C
	MOTA	2293	<u>.</u> o_	SER A 275	40,421	29,949	14.927	1.00 46.32	0
35	MOTA	2294	СВ	SER A 275	39.547	32,683	16.074	1.00 15.19	c
	MOTA	2295	OG	SER A 275	40.904	33.070	16.078	1.00 28.71	0
	ATOM	2296	N	LYS A 276	41,192	29,780	17.037	1.00 22.98	N
	MOTA	2297	CA	LYS A 276	42,178	28.791	16.638	1.00 23.28	C
	ATOM	2298	С	LYS A 276	41.645	27.405	16.976	1.00 29.73	c
40	ATOM	2299	0	LYS A 276	40.992	27.206	18.010	1.00 25.10	. 0
	MOTA	2300	CB	LYS A 276	43.544	29.051	17.275	1.00 19.19	с
	MOTA	2301	CG	LYS A 276	43.957	30.496	17.218	1.00 32.11	<u>C</u>
	MOTA	2302	CD	LYS A 276	44.062	30.852	15.798	1.00 22.43	c
	MOTA	2303	CE	LYS A 276	44.930			1.00 23.18	
45	MOTA	2304	NZ	LYS A 276	45.454	32.117	14.152	1.00 29.42	N

	ATOM	2305	N_	PRO A 277	41.892 26.47	6 16.055	1.00 36.04	N
	ATOM	2306	CA	PRO A 277	41.446 25.08	7 16.170	1.00 35.93	c
	MOTA	2307	С	PRO A 277	42.022 24.33	2 17.363	1.00 29.30	c
	ATOM	2308	0	PRO A 277	43.103 24.65	0 17.885	1.00 30.54	0
5	ATOM	2309	СВ	PRO A 277	41.975 24.45	3 14.878	1.00 39.65	c
	ATOM	2310	CG	PRO A 277	43.249 25.26	1 14.566	1.00 42.90	с
	MOTA	2311	CD	PRO A 277	42.787 26.67	0 14.892	1,00 37.84	c
	ATOM	2312	<u>N</u>	ASP A 278	41.273 23.33	9 17.809	1.00 22.35	<u> </u>
	ATOM	2313	CA	ASP A 278	41.745 22.50	1 18.903	1.00 22.16	с
10	ATOM	2314	С	ASP A 278	42.184 21.18	9 18.272	1.00 19.66	с
	MOTA	2315	0	ASP A 278	41.905 20.91	7 17.117	1.00 23.49	0
	ATOM	2316	СВ	ASP A 278	40.636 22.24	19.971	1.00 15.09	c
	ATOM	2317	CG	ASP A 278	40.216 23.50	3 20.702	1.00 22.86	c
	MOTA	2318	OD1	ASP_A 278	41.113 24.25	4 21.096	1.00 25.18	0
15	MOTA	2319	OD2	ASP A 278	38.999 23.76		1.00 39.55	0
	ATOM	2320	N	GLY A 279	42.846 20.35		1.00 30.65	. И
	ATOM	2321	CA	GLY A 279	43.229 19.03		1.00 33.78	C
	ATOM	2322	С	GLY A 279	42.115 18.09		1.00 38.10	Ç
	ATOM	2323	0	GLY A 279	40.963 18.51		1.00 47.52	. 0
20	ATOM	2324	N	THR A 280	42,419 16.83		1.00 29.44	N
	ATOM	2325	_CA	THR A 280	41,328 15.99		1.00 26.68	C
	ATOM	2326	С	THR A 280	40.889 16.43		1.00 23.52	C
	MOTA	2327	0.	THR A 280	41.670 17.00		1.00 23.62	0
	MOTA	2328	СВ	THR A 280	41.695 14.49		1.00 40.78	
25	ATOM	2329	0G1	THR A 280	42.889 14.2		1.00 25.56	0
	ATOM	2330	CG2		41.893 14.05		1.00 27.71	c
	MOTA	2331	N	PRO A 281	39.672 16.0		1.00 25.54	N
	MOTA	2332	CA	PRO A 281	39.129 16.4		1.00 25.72	c
	MOTA	2333	c	PRO A 281	39.776 15.7		1.00 26.02	C
30	MOTA	2334	0	PRO A 281	39.752 16.3		1.00 22.68	0
	ATOM	2335	СВ	PRO A 281	37.650 15.9		1.00 28.89	c
	MOTA	2336	CG	PRO A 281	37.417 15.5		1.00 29.39	C
	MOTA	2337	CD	PRO A 281	38.761 15.13		1.00 26.82	_
	ATOM	2338	N.	ARG A 282	40.281 14.5		1.00 27.88	
35	ATOM	2339		ARG A 282	40.806 13.8			N
55	ATOM	2340		ARG A 282	41.977 12.9			
	ATOM	2341		ARG A 282			1.00 27.62	
	ATOM	2342		ARG A 282	41.913 12.1		1,00 23.83	•
		2343		ARG A 282	39.676 13.0		1.00 20.89	
40	ATOM				40.035 12.4			<u>S</u>
70	ATOM ATOM	2344		ARG A 282	38.762 11.9		1.00 26.77	<u>C</u>
	ATOM_	2345		ARG A 282	38.963 11.3		1.00 36.48	
	ATOM	2346		ARG A 282	38.518 10.1		1.00 37,74	
	ATOM	2347		ARG A 282	37.813 9.3		1.00 28.45	
15	ATOM	2348		ARG A 282	38.754 9.7		1.00 27.25	
45	MOTA	2349	_N_	LYS A 283	43.016 12.9	<u>63 25.223</u>	1.00 28.91	N

	MOTA	2350	CA	LYS A 283	44.217	12.171	25.051	1.00 24.32	c
	ATOM	2351	С	LYS A 283	44.796	11.766	26.404	1.00 29.57	c
	ATOM	2352	0	LYS A 283	45.262	12.626	27.138	1.00 33.16	0
	ATOM	2353	СВ	LYS A 283	45.226	13.008	24.287	1.00 21.93	C
5	ATOM	2354	CG	LYS A 283	46.111	12.251	23.316	1.00 32.38	C
	MOTA	2355	CD	LYS A 283	46.526	13.171	22.143	1.00 95.77	<u>C</u>
	ATOM	2356	CE	LYS A 283	45.710	12.937	20.836	1.00100.00	<u>C</u>
	ATOM	2357	NZ	LYS A 283	46.418	13.332	19.535	1.00100.00	N
	ATOM	2358	N	LEU A 284	44.747	10.467	26.734	1.00 23.37	N
10	MOTA	2359	CA	LEU A 284	45.327	9,905	27.997	1.00 16.08	c
	MOTA	2360	С	LEU A 284	45,463	8.386	28.047	1.00 20.46	c
	MOTA	2361	0	LEU A 284	44.679	7.655	27.446	1.00 25.45	0
	MOTA	2362	СВ	LEU A 284	44.641	10.387	29.284	1.00 16.30	<u>c</u>
	MOTA	2363	CG	LEU A 284	43,334	9,700	29.714	1.00 25.97	С
15	MOTA	2364	CD1	LEU A 284	42.881	10.089	31.152	1.00 22.11	С
	MOTA	2365	CD2	LEU A 284	42.203	9.953	28.693	1.00 23.92	<u></u>
	MOTA	2366	N	LEU A 285	46.453	7.939	28.820	1.00 18.51	N
	MOTA	2367	CA	LEU A 285	46.792	6.527	29.003	1.00 16.77	С
	MOTA	2368	С	LEU A 285	45.880	5.865	30.006	1.00 30.75	C
20	ATOM	2369	o	LEU A 285	45.576	6.439	31.058	1.00 22.02	0
	MOTA	2370	СВ	LEU A 285	48,229	6.389	29,585	1.00 15.85	C
	ATOM	2371	CG	LEU A 285	49.307	6.970	28,672	1.00 21.51	c
	ATOM	2372	CDI	LEU A 285	50.703	6.705	29.122	1.00 15.15	Ç
	ATOM	2373	CD2	LEU A 285	49.051	6.368	27,330	1.00 16.94	c
25	MOTA	2374	N	ASP A 286	45.565	4.599	29.734	1.00 26.62	N.
	MOTA	2375	CA	ASP A 286	44,945	3.726	30,698	1.00 10.90	c
	MOTA	2376	С	ASP A 286	46.128	3.055	31.498	1.00 20.54	c
	ATOM	2377	0	ASP A 286	46.991	2.372	30.938	1.00 23.38	0
	MOTA	2378	СВ	ASP A 286	44.073	2.702	29.970	1.00 14.65	<u>C</u>
-30	MOTA	2379	CG	ASP A 286	43.409	1.699	30.943	1.00 24.60	<u>c</u>
	MOTA	2380	OD:	ASP A 286	43,932	1.437	32.083	1.00 24,60	0
	MOTA	2381	OD2	2 ASP A 286	42.316	1.231	30.583	1.00 26.03	<u> </u>
	MOTA	2382	N	VAL A 287	46.230	3.317	32.791	1.00 15.44	<u>N</u>
	MOTA	2383	ÇΆ	VAL A 287	47.354	2.816	33.556	1.00 15.58	c
35	MOTA	2384	С	VAL A 287	46.973	1.695	34.521	1.00 16.48	
	MOTA	2385	0	VAL A 287	47.613	1,473	35.572	1.00 16.63	0
	ATOM	2386	СВ	VAL A 287	48.101	4.006	34.260	1.00 29.84	
	MOTA	2387	CG	1 VAL A 287	48.534	5.085	33.224	1.00 18.39	C
	MOTA	2388	CG	2 VAL A 287	47.173	4.670	35,258	1.00 37.79	c
40	MOTA	2389	N	THR A 288	45.904	0.992	34.152	1.00 22.27	<u>N</u>
	MOTA	2390	CA	THR A 288	45.428	-0.152	34.956	1.00 19.34	C
	MOTA	2391	С_	THR A 288	46,561	-1.177	35.227	1.00 27.47	<u>c</u>
	MOTA	2392	0	THR A 288	46.778	-1.586	36.365	1.00 24.87	<u> </u>
	MOTA	2393	СВ	THR A 288	44.288	-0.909	34.244	1.00 22.86	ç
45	MOTA	2394	OG.	1 THR A 288	43,120	-0.096	34.106	1.00 24.84	0

	MOTA	2395	CG2	THR A	288	43.	916	-2.113	35.024	1.00	25.08	С
	MOTA	2396	N	ARG A	289	47	.290	-1.585	34.179	1.00	26.08	N
	ATOM	2397	CA	ARG A	289	48	428	-2.506	34.319	1.00	16.92	C
	MOTA	2398	<u>c</u>	ARG A	289	49	405	-2.037	35.408	1.00	22.96	c
5	MOTA	2399	0	ARG A	289	49	.847	-2.790	36.275	1.00	23.03	0
	MOTA	2400	СВ	ARG A	289	49.	.208	-2.607	32,976	1.00	12.43	С
	MOTA	2401	CG	ARG A	289	48.	.934	-3.804	32.103	1.00	29,39	c
	ATOM	2402	CD	ARG A	289	50.	.016	-4.102	31.037	1.00	25.88	c
	ATOM	2403	NE	ARG A	289	49.	.441	-4.996	30.020	1.00	17.26	<u>n</u>
10	MOTA	2404	CZ	ARG A	289	50	.053	-5.459	28.930	1.00	38.82	C
	ATOM	2405	NH1	ARG A	289	· 51,	306	-5.153	28.660	1.00	13.51	N
	MOTA	2406	NH2	ARG A	289	49	400	-6.262	28.096	1.00	37.68	N
	MOTA	2407	N	LEU A	290	49	815	-0.786	35.306	1.00	26.60	N
	ATOM	2408	CA	LEU A	290	50	.809	-0.254	36.219	1.00	25.42	c
15	MOTA	2409	c	LEU A	290	50	.324	-0.376	37.656	1.00	24.17	c
	MOTA	2410	0	LEU A	290	51	.072	-0.759	38.574	1.00	19.94	0
	ATOM	2411	СВ	LEU A	290	51	.000	1,219	35.876	1.00	24.66	c
	MOTA	2412	ÇĢ	LEU A	290	52	-281	2,019	36.066	1,00	24.67	c
	MOTA	2413	CD1	LEU A	290	51	.992	3.479	36.504	1.00	29.25	с
20	ATOM	2414	CD2	LEU A	290	53	.450	1.335	36.788	1.00	15.82	C
	MOTA	2415	N	HIS A	291	49	.093	0.075	37.868	1.00	30.10	N
	ATOM	2416	CA	HIS A	291	48	.513	0.074	39.212	1.00	34.17	c
	ATOM	2417	Ç	HIS A	291	48	.411	-1.367	39.730	1.00	43.41	C
	MOTA	2418	0	HIS A	291	48	.621	-1,654	40.929	1.00	38.81	o
25	ATOM	2419	СВ	HIS A	291	47	.113	0.674	39.143	1.00	28.01	C
	ATOM	2420	CG	HIS A	291	47	.097	2.153	38.984	1.00	29.68	c
	ATOM	2421	ND1	HIS A	291	48	.242	2.921	39.015	1.00	35.63	и
	ATOM	2422	CD2	HIS A	291	46	.068	3.024	38.855	1.00	31.18	c
	ATOM	2423	CE1	HIS A	291	47	.926	4.197	38.845	1.00	24.20	<u>c</u>
30	ATOM	2424	NE2	HIS A	291	46	.612	4.289	38.747	1,00	21.92	N
	MOTA	2425	N	GLN A	292	48	.048	-2.260	38.821	1,00	30.71	N
	MOTA	2426	CA	GLN A	292	47	.950	-3.654	39.181	1.00	34.82	c
	MOTA	2427	c	GLN A	292	49	.287	-4.197	39.622	1.00	36.93	с
	MOTA	2428	0	GLN A	292	49	.323	-5.040	40.510	1.00	27.56	o
35	MOTA	2429	СВ	GLN A	292	47	.322	-4.487	38.069	1.00	28.23	с
	MOTA	2430	CG	GLN A	292	45	.798	-4.405	38.171	1.00	81.15	c
	MOTA	2431	CD	GLN A	292	45	.023	-4.954	36.963	1.00	100.00	с
	MOTA	2432	OE1	GLN A	292	45	.597	-5.410	35.951	1.00	99.65	0
	MOTA	2433	NE2	GLN A	292	43	,687	-4.895	37.073	1.00	40.86	N
40	MOTA	2434	N	LEU A	293	50	375	-3.658	39.058	1.00	31.75	N
	MOTA	2435	CA	LEU A	293		.750	-4.072	39.383	1.00	22.67	Ç
	MOTA	2436	c_	LEU A	293	52	.238	-3.323	40.613	1.00	28.64	C
	MOTA	2437	0	LEU A	293	53	420	-3.377	41.017	1.00	22.27	
	MOTA	2438	СВ	LEU A	293	52	,665	-3.769	38.205	1.00	25.57	c
45	ATOM	2439	ÇĢ	LEU A	293				37.016			

	MOTA	2440	CD1	LEU A	293	53.306	-4.170	35.836	1.00 2	28.25	C
	ATOM	2441	CD2	LEU A	293	52.965	-6.110	37.439	1.00	7.81	C
	ATOM	2442	N	GLY A	294	51.316	-2.510	41,111	1.00	33.08	N
	MOTA	2443	CA	GLY A	294	51.488	-1.793	42.347	1.00	24.90	<u>_</u>
5	MOTA	2444	С	GLY A	294	52.272	-0.512	42.326	1,00	29.31	<u>C</u>
	MOTA	2445	0	GLY A	294	53.070	-0.249	43.223	1.00	25.25	0
	MOTA	2446	N	TRP A	295	52.000	0.347	41.368	1,00	27.83	N
	MOTA	2447	CA	TRP A	295	52.687	1.623	41.385	1.00	19.45	<u>C</u>
	MOTA	2448	С	TRP A	295	51.684	2.731	41.081	1.00	25.79	C
10	MOTA	2449	0	TRP A	295	50.765	2.527	40.297	1.00	20.43	0
	ATOM	2450	СВ	TRP A	295	53.961	1.614	40.524	1.00	12.85	<u>C</u>
	ATOM	2451	CG	TRP A	295	54.750	2,911	40.618	1.00	23.04	<u> </u>
	MOTA	2452	CD1	TRP A	295	55.897	3.161	41.368	1.00	23.68	<u> </u>
	ATOM	2453	CD2	TRP A	295	54.415	4.159	39.979	1.00	20.72	<u> </u>
15	MOTA	2454	NE1	TRP A	295	56.258	4.493	41.244	1.00	18.67	N
	ATOM	2455	CE2	TRP A	295	55.389	5.113	40.373	1.00	20.95	С
	ATOM	2456	CE3	TRP A	295	53,406	4.550	39.102	1.00	21.47	<u>c</u>
	MOTA	2457	CZ2	TRP A	295	55.338	6.439	39.958	1.00	17.58	<u>c</u>
	MOTA	2458	CZ3	TRP A	295	53.403	5.873	38.632	1.00	21.57	Ç
20	ATOM	2459	CH2	TRP A	295	54.368	6.787	39.058	1.00	19.45	<u> </u>
	MOTA	2460	N.	TYR A	296	51.709	3.797	41.884	1.00	25.17	N
	MOTA	2461	CA	TYR A	296	50.720	4.883	41.731	1.00	24.90	<u></u> c
	MOTA	2462	<u></u>	TYR A	296	51.517	6,178	41.857	1.00	30.85	<u>c</u>
	MOTA	2463	0	TYR A	296	52.363	6.272	42.745	1.00	21.27	0
25	ATOM	2454	СВ	TYR A	296	49.654	4.813	42.840	1.00	25.18	c
	MOTA	2465	CG	TYR A	296	48.685	3,651	42.744	1.00	23.04	ç
	MOTA	2466	CD1	TYR A	296	49.078	2.343	43.088	1.00	31.62	<u>c</u>
	MOTA	2467	CD2	TYR_A	296	47.380	3.853	42.289	1.00	26.02	<u>C</u>
	ATOM	2468	CE1	TYR A	296	48.203	1.268	42.935	1.00	24.42	<u>c</u>
30	MOTA	2469	CE2	TYR A	296	46.493	2.770	42.127	1.00	24.81	<u>c</u>
	MOTA	2470	CZ	TYR A	296	46.902	1.483	42.464	1.00	39.41	<u>c</u>
	MOTA	2471	OH	TYR_	296	45.984	0.434	42.337	1.00	66.19	0
	ATOM	2472	N	HIS A	297	51.324	7.123	40.924	1.00	20.95	<u> </u>
	MOTA	2473	CA	HIS 2	297	52.130	8.343	40.938	1.00	26.86	c
35	MOTA	2474	С	HIS A	297	51,947	9.175	42.210	1.00	35.01	c
	MOTA	2475	0_	_HIS A	297	50.885	9,132	42.874	1.00	26.92	0
	MOTA	2476	СВ	HIS A	297	51.819	9.192	39,733	1.00	25.77	c
	MOTA	2477	CG	HIS 7	297	50.489	9.842	39.803	1.00	31,16	<u>c</u>
	MOTA	2478	_ND]	HIS 7	297	49.314	9.145	39.633	1.00	34.21	N
40	MOTA	2479	CD2	HIS /	297	50.135	11.094	40.167	1.00	25.83	c
	MOTA	2480	CE	HIS A	297	48.290	9.972	39.776	1.00	24.14	<u>c</u>
	MOTA	2481	NE.	HIS A	297	48.761	11.164	40.087	1.00	23.35	<u>N</u>
	MOTA	2482	N	GLU]	298	52.983	9.926	42.554	1.00	24.98	N
	ATOM	2483	<u></u> CA_	GLU	298	52.957	10.683	43.798	1.00	27.65	C
45	MOTA	2484	<u></u>	GLU	A 298	52.831	12.187	43.741	1.00	36.86	<u>C</u>

	MOTA	2485	0	GLU A 29	8 52.433	12.792	44.718	1.00 43.61	0
	ATOM	2486	СВ	GLU A 29	8 54.153	10.319	44.686	1.00 22.02	<u> </u>
	ATOM	2487	CG	GLU A 29	8 54.004	8,943	45.285	1.00 36,42	c
	MOTA	2488	CD	GLU A 29	8 54.9 99	8.664	46.406	1.00100.00	<u> </u>
5	ATOM	2489	OE1	GLU A 29	8 56.223	8.561	46.152	1.00 44.79	0
	ATOM	2490	OE2	GLU A 29	8 54.526	8.470	47.547	1.00100.00	0
	ATOM	2491	N	ILE A 29	9 53.232	12.800	42.639	1.00 23.49	<u> </u>
	ATOM	2492	CA	ILE A 29	9 53.268	14.244	42.562	1.00 13.25	C
	ATOM	2493	С	ILE A 29	9 52.016	14.848	41.906	1.00 27.05	С
10	MOTA	2494	0	ILE A 29	9 51.681	14.530	40.757	1.00 26.73	0
	MOTA	2495	СВ	ILE A 29	9 54.586	14.711	41.862	1.00 15.93	C
	MOTA	2496	CG1	ILE A 29	9 55.836	14.183	42.606	1.00 23.83	с
	MOTA	2497	CG2	ILE A 29	9 54.596	16.213	41.541	1.00 17.37	<u> </u>
	MOTA	2498	CD1	ILE A 29	9 57.232	14.221	41.787	1.00 21.32	c
15	MOTA	2499	N	SER A 30	0 51,323	15,716	42.648	1.00 18.55	N
	MOTA	2500	CA	SER A 30	0 50.177	16.449	42.091	1.00 19.58	Ç
	MOTA	2501	С	SER A 30	0 50.714	17.415	41.042	1.00 17.29	Ç
	MOTA	2502	٥	SER A 30	0 51.824	17.941	41.178	1.00 21.06	<u> </u>
	ATOM	2503	СВ	SER A 30	0 49.542	17.307	43,181	1.00 16.78	
20	MOTA	2504	OG-	SER A 30	00 50.548	17.969	43.923	1.00 75.80	<u> </u>
	ATOM	2505	N	LEU A 30	1 49.870	17.755	40.075	1.00 16.13	N N
	ATOM	2506	CA	LEU A 30	50.246	18.675	39.014	1.00 17.70	<u> </u>
	MOTA	2507	_C_	LEU A 30	50.689	19.964	39.646	1.00 20.11	<u>C</u>
	ATOM	2508	0	LEU A 30	51.714	20.568	39.303	1.00 20.46	5 0
25	ATOM	2509	СВ	LEU A 30	18.990	18.981	38.197	1.00 17.92	<u>c</u>
	ATOM	2510	CG	LEU A 30	1 49.182	20.030	37.112	1.00 25.15	<u> </u>
	ATOM	2511	CD1	LEU A 30	50,233	19.552	36.086	1.00 18.82	<u>C</u>
	MOTA	2512	CD2	LEU A 30	17.854	20.177	36.436	1.00 25.88	3c
	MOTA	2513	_N	GLU A 30	02 49.845	20.398	40.554	1.00 27.03	<u> </u>
30	MOTA	2514	CA	GLU A 30	50.053	21.636	41.280	1.00 37.72	<u>c</u>
	MOTA	2515	<u> </u>	GLU A 30	02 51.410	21.618	41.996	1.00 29.99	<u> </u>
	MOTA	2516	٥	GLU A 30	02 52.245	22.514	41.798	1.00 27.1	5 0
	MOTA	2517	CB	GLU A 30	2 48.899	21.841	42,275	1.00 43.10	о с
	MOTA	2518	CG	GLU A 30	02 49.061	23.061	43.174	1.00 90.8	<u> </u>
35	MOTA	2519	CD	GLU A 30	02 48.451	24.324	42.580	1.00100.0	0 с
	MOTA	2520	OE1	GLU A 30	02 47,566	24.209	41.706	1.00100.0	0 0
	MOTA	2521	OE2	GLU A 30	02 48.808	25.432	43.036	1.00 64.5	00
	ATOM	2522	N	ALA A 30	03 51.646	20.591	42.801	1.00 8.7	2 <u>N</u>
	MOTA	2523	CA	ALA A 30	03 52.937	20.455	43.459	1.00 15.0	3 <u> </u>
40	MOTA	2524	<u></u>	ALA A 3	03 <u>54.102</u>	20.355	42.450	1.00 19.8	5 <u>c</u>
	MOTA	2525	0_	ALA A 31	03 55,104	21.090	42.553	1.00 22.2	4 0
	MOTA	2526	СВ	ALA A 30	03 52,938	19.258	44,410	1.00 18.9	7 <u>c</u>
	MOTA	2527	_И_	GLY A 30	04 53,953	19.472	41.467	1.00 13.0	5 N
	MOTA	2528	CA	GLY A 30	04 54.970	19.321	40.448	1.00 8.9	<u>4 </u>
45	MOTA	2529	Ç	GLY A 3	04 55,239	20.621	39.695	1.00 20.3	<u>1c</u>

	ATOM 2530 O GLY A 304	56.394 20.900 39.322 1.00 14.30	0
	ATOM 2531 N LEU A 305	54.191 21.383 39.361 1.00 10.76	N
	ATOM 2532 CA LEU A 305	54.483 22.622 38.611 1.00 20.29	<u>c</u>
	ATOM 2533 C LEU A 305	55.281 23.669 39.456 1.00 28.92	<u>c</u>
5	ATOM 2534 O LEU A 305	56.194 24.385 38.974 1.00 17.69	0
	ATOM 2535 CB LEU A 305	53.202 23.245 38.033 1.00 24.03	c
	ATOM 2536 CG LEU A 305	52.357 22.647 36.880 1.00 27.66	c
	ATOM 2537 CD1 LEU A 305	50.975 23.384 36.789 1.00 13.44	<u> </u>
	ATOM 2538 CD2 LEU A 305	53.079 22.724 35.543 1.00 18.39	Ç
10	ATOM 2539 N ALA A 306	54.904 23.757 40.724 1.00 19.94	N
	ATOM 2540 CA ALA A 306	55.544 24.660 41.655 1.00 24.79	c
	ATOM 2541 C ALA A 306	57.035 24.380 41.743 1.00 27.51	<u>c</u>
	ATOM 2542 O ALA A 306	57.852 25.280 41.662 1.00 29.68	0
	ATOM 2543 CB ALA A 306	54.937 24.471 43.002 1.00 17.87	c
15	ATOM 2544 N SER A 307	57.378 23.137 42.011 1.00 18.46	<u> </u>
	ATOM 2545 CA SER A 307	58.793 22.756 42.162 1.00 16.31	С
	ATOM 2546 C SER A 307	59.547 22.885 40.832 1.00 22.66	c
	ATOM 2547 O SER A 307	60.742 23.212 40.786 1.00 28.47	0
	ATOM 2548 CB SER A 307	58.851 21.304 42.622 1.00 20.47	С
20	ATOM 2549 OG SER A 307	58.517 20.454 41.526 1.00 29.03	0
	ATOM 2550 N THR A 308	58.849 22.631 39.735 1.00 27.31	N
•	ATOM 2551 CA THR A 308	59.458 22.738 38.413 1.00 22.89	C
	ATOM 2552 C THR A 308	59.757 24.216 38.107 1.00 26.06	C
	ATOM 2553 O THR A 308	60.819 24.546 37.591 1.00 29.89	Q
25	ATOM 2554 CB THR A 308	58.536 22.115 37.318 1.00 18.72	c
	ATOM 2555 OG1 THR A 308	58.356 20.714 37.545 1.00 20.17	0
	ATOM 2556 CG2 THR A 308	59.094 22.330 35.923 1.00 12.37	c
	ATOM 2557 N TYR A 309	58.846 25.118 38.453 1.00 28.20	N
	ATOM 2558 CA TYR A 309	59.110 26.549 38.241 1.00 31.09	с
30	ATOM 2559 C TYR A 309	60.383 27.059 39.045 1.00 16.31	<u>c</u>
	ATOM 2560 O TYR A 309	61,179 27.858 38.577 1.00 16.91	0
	ATOM 2561 CB TYR A 309	57.819 27.373 38.533 1.00 31.19	c
	ATOM 2562 CG TYR A 309	57.944 28.895 38.392 1.00 14.57	с
	ATOM 2563 CD1 TYR A 309	58.397 29.457 37.224 1.00 17.51	
35	ATOM 2564 CD2 TYR A 309	57.575 29.757 39.442 1.00 24.99	c
	ATOM 2565 CE1 TYR A 309	58.527 30.801 37.100 1.00 18.41	<u>C</u>
	ATOM 2566 CE2 TYR A 309	57.744 31.129 39.351 1.00 19.04	С
	ATOM 2567 CZ TYR A 309	58.212 31.641 38.164 1.00 29.13	<u>c</u>
	ATOM 2568 OH TYR A 309	58.300 33.004 37.966 1.00 28.22	0
40	ATOM 2569 N GLN A 310	60.560 26.579 40.260 1.00 15.41	н
	ATOM 2570 CA GLN A 310	61,705 26,964 41.087 1.00 22.35	с
	ATOM 2571 C GLN A 310	63,001 26.492 40.446 1.00 31.46	c
	ATOM 2572 O GLN A 310	64,009 27,191 40,442 1,00 33,42	0
	ATOM 2573 CB GLN A 310	61.587 26.335 42.482 1.00 17.67	<u>.</u>
45	ATOM 2574 CG GLN A 310	62,579 26,921 43,461 1.00 57.58	<u>C</u>

WO 99/64618 PCT/US99/11576

	ATOM	2575	CD	GLN A	310	62.287	28.370	43.782	1.00	65.14	C
	MOTA	2576	OE1	GLN 7	310	61.134	28.754	44.000	1.00	41.94	0
	MOTA	2577	NE.2	GLN A	310	63.330	29.194	43.801	1.00	99.09	N
	ATOM	2578	N	TRP /	311	62.957	25.321	39.830	1.00	28.76	N
5	ATOM	2579	CA	TRP /	311	64,146	24.822	39.163	1,00	26.29	c
	ATOM	2580	С	TRP /	311	64.474	25.769	38.040	1.00	17.91	c
	ATOM	2581	۰.	TRP 7	311	65.599	26.193	37.880	1.00	22.89	0
	ATOM	2582	СВ	TRP /	311	63.938	23.383	38.643	1.00	27.53	c
	MOTA	2583	CG	TRP	311	65.176	22.784	38.119	1.00	17.82	С
10	MOTA	2584	CD1	TRP /	311	66.132	22.090	38.826	1.00	20.21	<u>c</u>
	MOTA	2585	CD2	TRP /	311	65,652	22.881	36.784	1.00	17.99	С
	MOTA	2586	NE1	TRP	A 311	67.197	21.776	37,992	1.00	20.39	и
	MOTA	2587	CE2	TRP	A 311	66.933	22.284	36.746	1.00	19.57	С
	MOTA	2588	CE3	TRP	A 311	65.141	23.461	35.621	1.00	20.26	<u>c</u>
15	MOTA	2589	CZ2	TRP	A 311	67.686	22.236	35.599	1.00	14.25	C
	MOTA	2590	CZ3	TRP	A 311	65.901	23.446	34.501	1.00	18.59	С
	MOTA	2591	CH2	TRP	A 311	67.169	22.831	34.494	1.00	16.86	<u>c</u>
	MOTA	2592	N_	PHE	A 312	63.469	26.109	37.256	1.00	17.47	<u>N</u>
	MOTA	2593	CA	PHE	A 312	63,665	27.064	36.179	1.00	20.14	C
20	MOTA	2594		PHE	A 312	64.224	28.371	36.733	1.00	18.33	<u>c</u>
	MOTA	2595	0	PHE	A 312	65.080	29.024	36.104	1.00	24.76	o
	MOTA	2596	СВ	PHE	A_312	62.328	27.318	35.458	1.00	29.51	<u>c</u>
	MOTA	2597	CG	PHE	A 312	62.328	28.544	34.603	1.00	28.52	c
	MOTA	2598	CD1	PHE	A 312	62.883	28,508	33.338	1.00	30.53	<u>c</u>
25	MOTA	2599	CD2	PHE	A_312	61.825	29.758	35.104	1.00	29.31	c
	MOTA	2600	CE1	PHE	A 312	62.936	29.660	32.554	1.00	34.73	c
	MOTA	2601	CEZ	PHE	A_312	61.900	30.904	34.362	1.00	38,40	<u>C</u>
	MOTA	2602	CZ	PHE	A 312	62,432	30.860	33.063	1.00	40.73	
	MOTA	2603	N	LEU	A 313	63.697	28.787	<u>37.876</u>	1.00	22.46	<u>N</u>
30	MOTA	2604	CA	LEU	A 313	64.170	30.025	38.516	1.00	28.47	<u>C</u>
	MOTA	2605	С.	LEU	A 313	65.627	29.827	38.898	1.00	37.53	<u>C</u>
	MOTA	2606	0	LEU	A 313	66.452	30.693	38.629	1.00	34.20	Q
	MOTA	2607	СВ	LEU	A 313	63.375	30.410	39.783	1.00	20.44	ç
	MOTA	2608	CG	LEU	A 313	61.955	30.897	39.555	1.00	16.29	c
35	MOTA	2609	CD:	LEU	A 313	61.499	31.399	40.871	1.00	15.94	с
	MOTA	2610	CD:	LEU	A 313	61,959				14.44	c
	MOTA	2611	N	GLU	A 314	65.953	28.685	39,508	1.00	30.70	N
	MOTA	2612	CA	GLU	A 314	67.353		39.875			<u>c</u>
	MOTA	2613	<u> </u>	GLU	A 314	68.291	28.149	38.703	1.00	36.34	<u>c</u>
40	MOTA	2614	0	GLU	A 314	69.485	28.047	38.890	1.00	43.10	0
	MOTA	2615	CB	GLU	A 314		27.366				<u>C</u>
	MOTA	2616	CG	GLU	A 314			42.141			
	MOTA	2617	CD	GLU	A 314			43.182			c
	MOTA	2618	OE	1 GLU	A 314			43.085			0
45	ATOM	2619	0E	2 GLU	A 314	65,634	26.872	44.125	1.00	46.20	Q

									*				
	MOTA	2620	N	A NEA	315			28.114	37.479	1.00	40.17		N
	ATOM	2621	CA	ASN A	315		68.637	27.802	36.343	1.00	37.76		<u>c</u>
	MOTA	2622	<u></u>	ASN A	315		68.383	28.578	35.112	1.00	43.75	· · · · · · · · · · · · · · · · · · ·	c
	ATOM	2623	_0	ASN A	315		68.591	28.001	34.047	1.00	39.15		0
5	MOTA	2624	CB	ASN A	315		68.425	26.360	35.884	1.00	33.74		
	MOTA	2625	CG	ASN A	315		69.028	25.383	36.801	1.00	53.18		<u>C</u>
	MOTA	2626	OD1	ASN A	315		68.456	25.087	37.835	1.00	49.13		
	ATOM	2627	ND2	ASN A	315		70.239	24.926	36.479	1.00	97.72		N
	ATOM	2628	N	GLN A	316		67.852	29.803	35.197	1.00	49.87		<u>N</u>
10	MOTA	2629	CA	GLN A	316		67.627	30.550	33.957	1.00	77.90		c
	MOTA	2630	С	GLN A	316		68.797	31.448	33.525	1.001	00.00		С
	MOTA	2631	0_	GLN A	316		69.272	31,387	32,375	1.00	51.33		0
	MOTA	2632	СВ	GLN A	316		66.280	31.276	33.902	1.00	75.89		Ç
	ATOM	2633	CG	GLN A	316		65.683	31.589	35.231	1.00	80.97		c
15	ATOM	2634	CD	GLN A	316		65.233	33.036	35.350	1.00	54.58		Ç
	ATOM	2635	OE1	GLN A	316		64.881	33.699	34.367	1.00	46.46		0
	MOTA	2636	NE2	GLN A	316		65.257	33.538	36.566	1.00	33.46	 	N
	TER	2637		GLN A	316								
	CONEC	r 110	_111						··				
20	CONEC	r 111	110	112									
	CONEC	r 112	111	113	114								
	CONEC	r 113	112	118									
	CONEC	T 114	112	115	116								
	CONEC'	T 115	114								.,		
25	CONEC	т 116	114	117	118								
	CONEC	T 117	116	129									
	CONEC	T 118	113	116									
	CONEC	T 120	121										
	CONEC	T 121	120	122									
30	CONEC	T 122	121	123	124							 	
	CONEC	T 123	122	128									
	CONEC	T 124	122	125	126								
	CONEC	T 125	124	L									
	CONEC	T 126	124	127	128								
35	CONEC	T 127	126	5									
	CONEC	T 128	123	126									
	CONEC	T 129	_117	7 130	131	132		,					
	CONEC	T 130	129)		<u> </u>							
		T 131											
40	CONEC	T 132	125)									
	MASTE	IR .	208	0	1_	13	10	0 3	6 263	6 1	22	25	
	END												

5

While various embodiments of the present invention have been described in detail, it is apparent that modifications and adaptations of those embodiments will occur to those skilled in the art. However, it is to be expressly understood that such modifications and adaptations are within the spirit and scope of the present invention, as set forth in the following claims.

5

10

15

20

25

30

What is claimed:

- 1. A method for producing ascorbic acid or esters thereof in a microorganism, comprising culturing a microorganism having a genetic modification to increase the action of an enzyme selected from the group consisting of hexokinase, glucose phosphate isomerase, phosphomannose isomerase, phosphomannomutase, GDP-D-mannose pyrophosphorylase, GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and L-galactono-γ-lactone dehydrogenase, and recovering said ascorbic acid or esters thereof.
- 2. A method, as claimed in Claim 1, wherein said genetic modification is a genetic modification to increase the action of an enzyme selected from the group consisting of GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and L-galactono-γ-lactone dehydrogenase.
- 3. A method, as claimed in Claim 1, wherein said genetic modification is a genetic modification to increase the action of an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose.
- 4. A method, as claimed in Claim 3, wherein said genetic modification is a genetic modification to increase the action of GDP-D-mannose:GDP-L-galactose epimerase.
- 5. The method of Claim 3, wherein said genetic modification comprises transformation of said microorganism with a recombinant nucleic acid molecule that expresses said epimerase.
- 6. The method of Claim 5, wherein said epimerase has a tertiary structure that substantially conforms to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.
- 7. The method of Claim 5, wherein said epimerase has a structure having an average root mean square deviation of less than about 2.5 Å over at least about 25% of Cα positions of the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/ reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.

10

15

20

25

- 8. The method of Claim 5, wherein said epimerase has a tertiary structure having an average root mean square deviation of less than about 1 Å over at least about 25% of Cα positions of the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.
- 9. The method of Claim 5, wherein said epimerase comprises a substrate binding site having a tertiary structure that substantially conforms to the tertiary structure of the substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.
- 10. The method of Claim 9, wherein said substrate binding site has a tertiary structure with an average root mean square deviation of less than about 2.5 Å over at least about 25% of Cα positions of the tertiary structure of a substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.
- 11. The method of Claim 5, wherein said epimerase comprises a catalytic site having a tertiary structure that substantially conforms to the tertiary structure of the catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.
- 12. The method of Claim 11, wherein said catalytic site has a tertiary structure with an average root mean square deviation of less than about 2.5 Å over at least about 25% of Cα positions of the tertiary structure of a catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.
- 13. The method of Claim 11, wherein said catalytic site comprises the amino acid residues serine, tyrosine and lysine.
- 14. The method of Claim 13, wherein tertiary structure positions of said amino acid residues serine, tyrosine and lysine substantially conform to tertiary structure positions of residues Ser107, Tyr136 and Lys140, respectively, as represented by atomic coordinates in Brookhaven Protein Data Bank Accession Code 1bws.
 - 15. The method of Claim 5, wherein said epimerase binds NADPH.

10

15

20

25

- 16. The method of Claim 5, wherein said epimerase comprises an amino acid sequence that aligns with SEQ ID NO:11 using a CLUSTAL alignment program, wherein amino acid residues in said amino acid sequence align with 100% identity with at least about 50% of non-Xaa residues in SEQ ID NO:11.
- 17. The method of Claim 5, wherein said epimerase comprises an amino acid sequence that aligns with SEQ ID NO:11 using a CLUSTAL alignment program, wherein amino acid residues in said amino acid sequence align with 100% identity with at least about 75% of non-Xaa residues in SEQ ID NO:11.
- 18. The method of Claim 5, wherein said epimerase comprises an amino acid sequence that aligns with SEQ ID NO:11 using a CLUSTAL alignment program, wherein amino acid residues in said amino acid sequence align with 100% identity with at least about 90% of non-Xaa residues in SEQ ID NO:11.
 - 19. The method of Claim 5, wherein said epimerase comprises an amino acid sequence having at least 4 contiguous amino acid residues that are 100% identical to at least 4 contiguous amino acid residues of an amino acid sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8 and SEQ ID NO:10.
 - 20. The method of Claim 5, wherein said recombinant nucleic acid molecule comprises a nucleic acid sequence comprising at least about 12 contiguous nucleotides having 100% identity with at least about 12 contiguous nucleotides of a nucleic acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 and SEQ ID NO:9.
 - 21. The method of Claim 5, wherein said epimerase comprises an amino acid sequence having a motif: Gly-Xaa-Xaa-Gly-Xaa-Xaa-Gly.
 - 22. The method of Claim 5, wherein said recombinant nucleic acid molecule comprises a nucleic acid sequence that is at least about 15% identical to a nucleic acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 and SEQ ID NO:9, as determined using a Lipman-Pearson method with Lipman-Pearson standard default parameters.
 - 23. The method of Claim 5, wherein said recombinant nucleic acid molecule comprises a nucleic acid sequence that is at least about 20% identical to a nucleic acid

15

sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 and SEQ ID NO:9, as determined using a Lipman-Pearson method with Lipman-Pearson standard default parameters.

- 24. The method of Claim 5, wherein said recombinant nucleic acid molecule comprises a nucleic acid sequence that is at least about 25% identical to a nucleic acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 and SEQ ID NO:9, as determined using a Lipman-Pearson method with Lipman-Pearson standard default parameters.
- 25. The method of Claim 5, wherein said recombinant nucleic acid molecule comprises a nucleic acid sequence that hybridizes under stringent hybridization conditions to a nucleic acid sequence encoding a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase.
 - 26. The method of Claim 25, wherein said nucleic acid sequence encoding said GDP-4-keto-6-deoxy-D-mannose epimerase/reductase is selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3 and SEQ ID NO:5.
 - 27. The method of Claim 25, wherein said GDP-4-keto-6-deoxy-D-mannose epimerase/reductase comprises an amino acid sequence selected from the group consisting of SEO ID NO:2, SEO ID NO:4 and SEO ID NO:6.
- 28. A method, as claimed in Claim 1, wherein said microorganism is selected from the group consisting of bacteria, fungi and microalgae.
 - 29. A method, as claimed in Claim 1, wherein said microorganism is acid-tolerant.
 - 30. A method, as claimed in Claim 1, wherein said microorganism is a bacterium.
- 25 31. A method, as claimed in Claim 30, wherein said bacterium is selected from the group consisting of Azotobacter and Pseudomonas.
 - 32. A method, as claimed in Claim 1, wherein said microorganism is a fungus.
 - 33. A method, as claimed in Claim 32, wherein said microorganism is a yeast.
- 34. A method, as claimed in Claim 33, wherein said yeast is selected from the group consisting of Saccharomyces yeast.

15

- 35. A method, as claimed in Claim 1, wherein said microorganism is a microalga.
- 36. A method, as claimed in Claim 35, wherein said microalga is selected from the group consisting of microalgae of the genera *Prototheca* and *Chlorella*.
- 37. A method, as claimed in Claim 36, wherein said microalga is selected from the genus *Prototheca*.
 - 38. A method, as claimed in Claim 1, wherein said microorganism further comprises a genetic modification to decrease the action of an enzyme having GDP-D-mannose as a substrate, other than GDP-D-mannose:GDP-L-galactose epimerase.
- 10 39. A method, as claimed in Claim 38, wherein said genetic modification to decrease the action of an enzyme having GDP-D-mannose as a substrate, other than GDP-D-mannose:GDP-L-galactose epimerase is a genetic modification to decrease the action of GDP-D-mannose-dehydrogenase.
 - 40. A method, as claimed in Claim 1, wherein said microorganism is acidtolerant and said step of culturing is conducted at a pH of less than about 6.0.
 - 41. A method, as claimed in Claim 1, wherein said microorganism is acid-tolerant and said step of culturing is conducted at a pH of less than about 5.5.
 - 42. A method, as claimed in Claim 1, wherein said microorganism is acid-tolerant and said step of culturing is conducted at a pH of less than about 5.0.
 - 43. A method, as claimed in Claim 1, wherein said step of culturing is conducted in a fermentation medium that is magnesium (Mg) limited.
 - 44. A method, as claimed in Claim 1, wherein said step of culturing is conducted in a fermentation medium that is Mg limited during a cell growth phase.
- 45. A method, as claimed in Claim 1, wherein said step of culturing is conducted in a fermentation medium that comprises less than about 0.5 g/L of Mg during a cell growth phase.
 - 46. A method, as claimed in Claim 1, wherein said step of culturing is conducted in a fermentation medium that comprises less than about 0.2 g/L of Mg during a cell growth phase.

- 47. A method, as claimed in Claim 1, wherein said step of culturing is conducted in a fermentation medium that comprises less than about 0.1 g/L of Mg during a cell growth phase.
- 48. A method, as claimed in Claim 1, wherein said step of culturing is conducted in a fermentation medium that comprises a carbon source other than D-mannose.
 - 49. A method, as claimed in Claim 1, wherein said step of culturing is conducted in a fermentation medium that comprises glucose as a carbon source.
- 50. A microorganism for producing ascorbic acid or esters thereof, wherein said microorganism has a genetic modification to increase the action of an enzyme selected from the group consisting of hexokinase, glucose phosphate isomerase, phosphomannose isomerase, phosphomannomutase, GDP-D-mannose pyrophosphorylase, GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and L-galactono-γ-lactone dehydrogenase.
 - 51. A microorganism, as claimed in Claim 50, wherein said genetic modification is a genetic modification to increase the action of an enzyme selected from the group consisting of GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and L-galactono-γ-lactone dehydrogenase.
 - 52. A microorganism, as claimed in Claim 50, wherein said genetic modification is a genetic modification to increase the action of GDP-D-mannose:GDP-L-galactose epimerase.
- 53. A microorganism, as claimed in Claim 50, wherein said microorganism has been genetically modified to express a recombinant nucleic acid molecule encoding an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose, wherein said epimerase has a tertiary structure having an average root mean square deviation of less than about 2.5 Å over at least about 25% of Cα positions of the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.

20

25

- 54. A microorganism, as claimed in Claim 50, wherein said microorganism is selected from the group consisting of bacteria, fungi and microalgae.
- 55. A microorganism, as claimed in Claim 50, wherein said microorganism is a bacterium.
- 5 56. A microorganism, as claimed in Claim 55, wherein said bacterium is selected from the group consisting of Azotobacter and Pseudomonas.
 - 57. A microorganism, as claimed in Claim 50, wherein said microorganism is a fungus.
- 58. A microorganism, as claimed in Claim 57, wherein said microorganism is 10 a yeast.
 - 59. A microorganism, as claimed in Claim 58, wherein said yeast is selected from the group consisting of Saccharomyces yeast.
 - 60. A plant for producing ascorbic acid or esters thereof, wherein said plant has a genetic modification to increase the action of an enzyme selected from the group consisting of hexokinase, glucose phosphate isomerase, phosphomannose isomerase, phosphomannomutase, GDP-D-mannose pyrophosphorylase, GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and L-galactono-γ-lactone dehydrogenase.
 - 61. A plant, as claimed in Claim 60, wherein said genetic modification is a genetic modification to increase the action of an enzyme selected from the group consisting of GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and L-galactono-y-lactone dehydrogenase.
 - 62. A plant, as claimed in Claim 60, wherein said genetic modification is a genetic modification to increase the action of GDP-D-mannose:GDP-L-galactose epimerase.
 - 63. A plant, as claimed in Claim 60, wherein said plant has been genetically modified to express a recombinant nucleic acid molecule encoding an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose, wherein said epimerase has a tertiary structure having an average root mean square deviation of less than about 2.5 Å over at least about 25% of Cα positions of the tertiary structure of a GDP-4-keto-6-

10

15

20

25

30

deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.

- 64. A plant, as claimed in Claim 60, wherein said plant further comprises a genetic modification to decrease the action of an enzyme having GDP-D-mannose as a substrate other than GDP-D-mannose:GDP-L-galactose epimerase.
- 65. A plant, as claimed in Claim 60, wherein said genetic modification to decrease the action of an enzyme having GDP-D-mannose as a substrate other than GDP-D-mannose:GDP-L-galactose epimerase is a genetic modification to decrease the action of GDP-D-mannose-dehydrogenase.
 - 66. A plant, as claimed in Claim 60, wherein said plant is a microalga.
- 67. A plant, as claimed in Claim 66, wherein said plant is selected from the group consisting of microalgae of the genera *Prototheca* and *Chlorella*.
- 68. A plant, as claimed in Claim 66, wherein said microalga is selected from the genus *Prototheca*.
 - 69. A plant, as claimed in Claim 60, wherein said plant is a higher plant.
- 70. A plant, as claimed in Claim 60, wherein said plant is a consumable higher plant.
- 71. A microorganism for producing ascorbic acid or esters thereof, wherein said microorganism has been genetically modified to express a recombinant nucleic acid molecule encoding an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose, wherein said epimerase comprises an amino acid sequence that aligns with SEQ ID NO:11 using a CLUSTAL alignment program, wherein amino acid residues in said amino acid sequence align with 100% identity with at least about 50% of non-Xaa residues in SEQ ID NO:11.
- A plant for producing ascorbic acid or esters thereof, wherein said plant has been genetically modified to express a recombinant nucleic acid molecule encoding an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose, wherein said epimerase comprises an amino acid sequence that aligns with SEQ ID NO:11 using a CLUSTAL alignment program, wherein amino acid residues in said amino acid sequence align with 100% identity with at least about 50% of non-Xaa residues in SEQ ID NO:11.

Proposed Pathway from Glucose to L-Ascorbic Acid through GDP-D-Mannose

Proposed Pathway from Glucose to Ascorbic Acid through GDP-D-Mannose GDP-L-galactose-1-P to L-Ascorbic Acid

FIG. 1C

Selected Carbon Flow from Glucose in Prototheca

Selected Carbon Flow from Glucose in Prototheca, con't

FIG. 2B

Genealogy of Selected Isolates

Conversion of Substrates by Resting Cells of NA45-3 (ATCC 209681) Growth/Resuspension in Various Mg Concentrations

, , ,

Average Specific Epimerase Activity vs. Average Whole Broth AA Specific Formation

Average Specific AA Formation, mg AA per L/Culture A620

Fig. 5

L/Culture A620 Specific AA Formation, mg AA per

Proposed Mechanism for the Conversion of GDP-D-mannose to GDP-L-galactose in *Chlorella pyrenoidosa* (Barber)

Published Mechanism for the Conversion of GDP-D-mannose to GDP-4-keto-6-deoxy-D-mannose

Fig. 8A

Published Mechanism for the Conversion of GDP-4-keto-6-deoxy-D-mannose to GDP-L-fucose

SEQUENCE LISTING

<110> Berry, Alan
Running, Jeffrey A.
Severson, David K.
Burlingame, Richard P.

<120> "VITAMIN C PRODUCTION IN MICROORGANISMS AND PLANTS"

<130> 3161-24-PCT

<140> not yet assigned

<141> 1999-05-25

<150> 60/125,073

<151> 1999-03-17

<150> 60/125,054

<151> 1999-03-18

<150> 60/088,549

<151> 1998-06-08

<160> 15

<170> PatentIn Ver. 2.0

<210> 1

<211> 1583

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (49)..(993)

<400> 1

tagtotttaa tttogcagog tttttataat tgtgcagagg tttogtoo atg tot gac 57 Met Ser Asp

1

aaa tot goo aaa ato tto gto gog ggt cat cgt ggt ttg gtt gga tot 105 Lys Ser Ala Lys Ile Phe Val Ala Gly His Arg Gly Leu Val Gly Ser 5 10 15

gcc att gtc cgc aag ctt cag gaa caa ggt ttc acc aat ctc gtt ctt 153
Ala Ile Val Arg Lys Leu Gln Glu Gln Gly Phe Thr Asn Leu Val Leu
20 25 30 35

								act Thr							201
				-				tat Tyr 60		_					249
-								acc Thr							297
-								gtg Val							345
								gga Gly							393
	-		-					tct Ser	_	_			-		441
-								att Ile 140							489
			Ala					cac His							537
,		Thr					Pro	aat Asn	-			_			585
	Val			-		Met					Glu			aat Asn 195	633
					Cys					Lys				gaa Glu	681
			-	His	-	-	-	_	Ala	_			Phe	ttg Leu	729

-	_			-			-			-				agt Ser		777
														gtt Val		825
														ggc Gly		873
-				_	_	_		_				_		tgg Trp 290		921
	-	-			_	_		_	-				_	tgg Trp		969
_			gtt Val						aatg	gtt	tctc	ttct	ca t	atat	acaca	1023
act	attg	agt	ctca	ggta	aa t	cagc	ttat	c ac	caca	ttgt	gat	ttaa	acc	tttc	tttgag	1083
att	cgag	aat	tgct	tttt	tt t	ttat	caaa	a tt	gatt	catt	tag	agat	aag	actt	gcttct	1143
tta	taca	aca	ttgt	ctga	gg a	attt	taat	t tt	ggat	ctcc	gag	tatg	gtc	tatt	attagc	1203
tct	cttc	tat	acaa	atta	tc a	aaac	agtt	g ta	agaa	gttt	caa	gaaa	aac	attt	gatatc	1263
tca	ctaa	ttt	ggct	atcc	tt g	caag	ttgc	a ac	gcta	aaat	gac	aaat	aat	gaat	tctcgg	1323
ccc	aatg	ggc	ttac	acaa	gc c	ttgt	taaa	g at	agcg	tgaa	caa	aacg	cgg	ctca	ctagec	1383
cta	acct	gtc	tctc	tttc	gc t	tacc	ttct	t ct	tcgt	cttc	gtt	ggct	cag	tcac	ttgact	1443
tca	.cggc	ccg	ctca	agct	.ct g	acac	gaaa	ic to	attt	caaa	tta	attt	aat	aaaa	ccttaa	1503
tca	caaa	agg	ggca	aaag	ica a	tcgc	cggc	g at	tatg	cctt	ctc	ctcc	ggt	gccg	gagacg	1563
gtt	gtga	gcc	aacc	cgtt	cg						•					1583

<210> 2 <211> 314 <212> PRT

<213> Arabidopsis thaliana

<400> 2

Met Ser Asp Lys Ser Ala Lys Ile Phe Val Ala Gly His Arg Gly Leu

1 5 10 15

Val Gly Ser Ala Ile Val Arg Lys Leu Gln Glu Gln Gly Phe Thr Asn 20 25 30

Leu Val Leu Lys Thr His Ala Glu Leu Asp Leu Thr Arg Gln Ala Asp 35 40 45

Val Glu Ser Phe Phe Ser Gln Glu Lys Pro Val Tyr Val Ile Leu Ala 50 55 60

Ala Ala Lys Val Gly Gly Ile His Ala Asn Asn Thr Tyr Pro Ala Asp
65 70 75 80

Phe Ile Gly Val Asn Leu Gln Ile Gln Thr Asn Val Ile His Ser Ala 85 90 95

Tyr Glu His Gly Val Lys Lys Leu Leu Phe Leu Gly Ser Ser Cys Ile
100 105 110

Tyr Pro Lys Phe Ala Pro Gln Pro Ile Pro Glu Ser Ala Leu Leu Thr 115 120 125

Ala Ser Leu Glu Pro Thr Asn Glu Trp Tyr Ala Ile Ala Lys Ile Ala 130 135 140

Gly Ile Lys Thr Cys Gln Ala Tyr Arg Ile Gln His Gly Trp Asp Ala 145 150 150 155 160

Ile Ser Gly Met Pro Thr Asn Leu Tyr Gly Pro Asn Asp Asn Phe His
165 170 175

Pro Glu Ser His Val Leu Pro Ala Leu Met Arg Arg Phe His Glu Ala 180 185 190

Lys Val Asn Trp Ser Gly Gly Ser Cys Gly Val Gly Tyr Lys Val Val

Pro Leu Glu Gly Lys Phe Leu His Val Asp Asp Leu Ala Asp Ala Cys 210 215 220

Val Phe Leu Leu Asp Arg Ile Gln Arg Gly Leu Glu His Val Asn Ile
225 230 235 240

Gly Ser Gly Gln Glu Val Thr Ile Arg Glu Leu Ala Glu Leu Val Lys 250 Glu Val Val Gly Phe Glu Gly Lys Leu Gly Trp Asp Cys Thr Lys Pro 260 265 Asp Gly Thr Pro Arg Lys Leu Met Asp Ser Ser Lys Leu Ala Ser Leu 280 Gly Trp Thr Pro Lys Val Ser Leu Arg Asp Gly Leu Ser Gln Thr Tyr 295 Asp Trp Tyr Leu Lys Asn Val Cys Asn Arg 310 <210> 3 <211> 966 <212> DNA <213> Escherichia coli <220> <221> CDS <222> (1)..(966) <400> 3 atq aqt aaa caa cga gtt ttt att gct ggt cat cgc ggg atg gtc ggt Met Ser Lys Gln Arg Val Phe Ile Ala Gly His Arg Gly Met Val Gly 10 tcc gcc atc agg cgg cag ctc gaa cag cgc ggt gat gtg gaa ctg gta Ser Ala Ile Arg Arg Gln Leu Glu Gln Arg Gly Asp Val Glu Leu Val 20 25 144 tta cgc acc cgc gac gag ctg aac ctg ctg gac agc cgc gcc gtg cat Leu Arg Thr Arg Asp Glu Leu Asn Leu Leu Asp Ser Arg Ala Val His 35 gat the the goo age gas ogt att gas cag gto tat etg gog gog 192 Asp Phe Phe Ala Ser Glu Arg Ile Asp Gln Val Tyr Leu Ala Ala Ala 55 240 aaa gtg ggc ggc att gtt gcc aac aac acc tat ccg gcg gat ttc atc Lys Val Gly Gly Ile Val Ala Asn Asn Thr Tyr Pro Ala Asp Phe Ile 70

tac cag aac atg atg att gag agc aac atc att cac gcc gcg cat cag

WU	77/04	1019													rc I/C	1379/113/
туr	Gln	Asn	Met	Met 85	Ile	Glu	Ser	Asn	11e 90	Ile	His	Ala	Ala	H1s 95	Gln	
			aac Asn 100													336
			aaa Lys													384
_	-		act Thr													432
	_	-	gaa Glu				-	_			-	_				480
-	-	_	acc Thr												Ser	528
	_		gtg Val 180											Ala		576
			gcg					Val					Thr			624
-	-	Phe	ctg Leu				Asp					Ser			gtc Val	672
-	Glu					Val					Thr				ttg Leu 240	720
					. Gly					Cys					gtg Val	768
				e Ala					Туг					Va.	t ttt l Phe	816
gat	gco	ago	c aaa	a cc	g gat	gg c	acq	g ccg	cgc	aaa	a cto	g ct	g gat	gt:	g acg	864

Asp Ala Ser Lys Pro Asp Gly Thr Pro Arg Lys Leu Leu Asp Val Thr 275 280 285

cgc ctg cat cag ctt ggc tgg tat cac gaa atc tca ctg gaa gcg ggg 912
Arg Leu His Gln Leu Gly Trp Tyr His Glu Ile Ser Leu Glu Ala Gly
290 295 300

ctt gcc agc act tac cag tgg ttc ctt gag aat caa gac cgc ttt cgg 960 Leu Ala Ser Thr Tyr Gln Trp Phe Leu Glu Asn Gln Asp Arg Phe Arg 305 310 315 320

ggg taa 966 Gly

<210> 4 <211> 321 <212> PRT

<213> Escherichia coli

<400> 4

Met Ser Lys Gln Arg Val Phe Ile Ala Gly His Arg Gly Met Val Gly 1 5 10 15

Ser Ala Ile Arg Arg Gln Leu Glu Gln Arg Gly Asp Val Glu Leu Val 20 25 30

Leu Arg Thr Arg Asp Glu Leu Asn Leu Leu Asp Ser Arg Ala Val His $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Asp Phe Phe Ala Ser Glu Arg Ile Asp Gln Val Tyr Leu Ala Ala 50 55 60

Lys Val Gly Gly Ile Val Ala Asn Asn Thr Tyr Pro Ala Asp Phe Ile 65 70 75 80

Tyr Gln Asn Met Met Ile Glu Ser Asn Ile Ile His Ala Ala His Gln 85 90 95

Asn Asp Val Asn Lys Leu Leu Phe Leu Gly Ser Ser Cys Ile Tyr Pro 100 105 110

Lys Leu Ala Lys Gln Pro Met Ala Glu Ser Glu Leu Leu Gln Gly Thr 115 120 125

Leu Glu Pro Thr Asn Glu Pro Tyr Ala Ile Ala Lys Ile Ala Gly Ile 130 135 140

WO 99/64618	•	PCT/US99/11576
-------------	---	----------------

Lys Leu Cys Glu Ser Tyr Asn Arg Gln Tyr Gly Arg Asp Tyr Arg Ser 145 150 155 160

Val Met Pro Thr Asn Leu Tyr Gly Pro His Asp Asn Phe His Pro Ser 165 170 175

Asn Ser His Val Ile Pro Ala Leu Leu Arg Arg Phe His Glu Ala Thr 180 185 190

Ala Gln Asn Ala Pro Asp Val Val Trp Gly Ser Gly Thr Pro Met 195 200 205

Arg Glu Phe Leu His Val Asp Asp Met Ala Ala Ala Ser Ile His Val 210 215 220

Met Glu Leu Ala His Glu Val Trp Leu Glu Asn Thr Gln Pro Met Leu 225 230 235 240

Ser His Ile Asn Val Gly Thr Gly Val Asp Cys Thr Ile Arg Asp Val 245 250 255

Ala Gln Thr Ile Ala Lys Val Val Gly Tyr Lys Gly Arg Val Val Phe 260 265 270

Asp Ala Ser Lys Pro Asp Gly Thr Pro Arg Lys Leu Leu Asp Val Thr 275 280 285

Arg Leu His Gln Leu Gly Trp Tyr His Glu Ile Ser Leu Glu Ala Gly 290 295 300

Leu Ala Ser Thr Tyr Gln Trp Phe Leu Glu Asn Gln Asp Arg Phe Arg 305 310 315 320

Gly

<210> 5

<211> 1340

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (75)..(1040)

<400> 5

ctagaattca gcggccgctg aattctagct agaattcagc ggccgctgaa ttctagaacc 60

wo	99/6	4618									•	•			PC17U	599/115/0
cagg	tgca	ac t			ggt Gly								-		_	110
					ctg Leu											158
					cct Pro											206
					gat Asp 50											254
					gtc Val											302
				Lys	tac Tyr									Val		350
			Asn		ctg Leu			Ala								398
		Ser					Cys					_ Lys			tac Tyr	446
	Ile					Ile					Pro				aat Asn 140	4 94
					Ala					Asp					gcc gAla	542
				туі					Thi					Th:	c aac r Asn	590
			y Pro					e Asr					y Hi		g ctg l Leu	638

wo	99/6	4618												•	PCT/US	99/11576
cct Pro	ggc Gly 190	ctc Leu	atc Ile	cac His	aag Lys	gtg Val 195	cac His	ctg Leu	gcc Ala	aag Lys	agc Ser 200	agc Ser	Gly	tcg Ser	gcc Ala	686
ctg Leu 205	acg Thr	gtg Val	tgg Trp	ggt Gly	aca Thr 210	G] A	aat Asn	ccg Pro	cgg Arg	agg Arg 215	cag Gln	ttc Phe	ata Ile	tac Tyr	tcg Ser 220	734
											cgg Arg					782
											gat Asp					830
aag Lys	gag Glu	gca Ala 255	gcc Ala	gag Glu	gcg Ala	gtg Val	gtg Val 260	gag Glu	gcc Ala	atg Met	gac Asp	ttc Phe 265	cat His	ggg	gaa Glu	878 .
		Phe									ttt Phe 280	Lys				926
	: Asn					Thr									ccc Pro 300	974
tto Phe	aag Lys	g caç Glr	g gcç	g gtç a Val 305	Lys	gag Glu	acc Thr	tgt Cys	gct Ala 310	Trp	tto Phe	act Thi	gac Asp	aac Ası 31	tac Tyr	1022
- '		-	-	y Lys		a ago	tgga	aaga	cago	gatca	agg t	gcca	gcg	ga		1070
cca	atcg	gctg	gca	gagc	cca (gcggd	cac	ca co	ccgto	caac	c ct	gcca	ggag	ctg	agggca	c 1130
ca	ccca	gcaa	cct	gggc	ctg	catto	cat	cc g	ctct	gcag	c cc	caag	catc	ttt	ccagtg	g 1190
gg	cccc	catt	cac	gttg	gtc	ctca	ggga	aa c	cagg	gtcc	g gg	gcag	gccc	ggc	gctttg	c 1250
tc	ссса	cacc	agc	cccc	tgc	gcgt	gtcc	ac t	ctga	tect	g ca	tccc	actc	cct	gggagc	c 1310
aa	taaa	gtgc	att	ttca	cag	aaaa	aaaa	aa								1340

<211> 321

<212> PRT

<213> Homo sapiens

<400> 6

Met Gly Glu Pro Gln Gly Ser Met Arg Ile Leu Val Thr Gly Gly Ser

Gly Leu Val Gly Lys Ala Ile Gln Lys Val Val Ala Asp Gly Ala Gly
20 25 30

Leu Pro Gly Glu Asp Trp Val Phe Val Ser Ser Lys Asp Ala Asp Leu 35 40 45

Thr Asp Thr Ala Gln Thr Arg Ala Leu Phe Glu Lys Val Gln Pro Thr 50 55 60

His Val Ile His Leu Ala Ala Met Val Gly Gly Leu Phe Arg Asn Ile 65 70 75 80

. Lys Tyr Asn Leu Asp Phe Trp Arg Lys Asn Val His Met Asn Asp Asn 85 90 95

Val Leu His Ser Ala Phe Glu Val Gly Ala Arg Lys Val Val Ser Cys 100 105 110

Leu Ser Thr Cys Ile Phe Pro Asp Lys Thr Thr Tyr Pro Ile Asp Glu 115 120 125

Thr Met Ile His Asn Gly Pro Pro His Asn Ser Asn Phe Gly Tyr Ser 130 135 140

Tyr Ala Lys Arg Met Ile Asp Val Gln Asn Arg Ala Tyr Phe Gln Gln 145 150 155 160

Tyr Gly Cys Thr Phe Thr Ala Val Ile Pro Thr Asn Val Phe Gly Pro 165 170 175

His Asp Asn Phe Asn Ile Glu Asp Gly His Val Leu Pro Gly Leu Ile 180 185 190

His Lys Val His Leu Ala Lys Ser Ser Gly Ser Ala Leu Thr Val Trp 195 200 205

Gly Thr Gly Asn Pro Arg Gln Phe Ile Tyr Ser Leu Asp Leu Ala 210 215 220

Gln Leu Phe Ile Trp Val Leu Arg Glu Tyr Asn Glu Val Glu Pro Ile

225 230 235 240

Ile Leu Ser Val Gly Glu Glu Asp Glu Val Ser Ile Lys Glu Ala Ala 245 250 255

Glu Ala Val Val Glu Ala Met Asp Phe His Gly Glu Val Thr Phe Asp 260 265 270

Thr Thr Lys Ser Asp Gly Gln Phe Lys Lys Thr Ala Ser Asn Ser Lys 275 280 285

Leu Arg Thr Tyr Leu Pro Asp Phe Arg Phe Thr Pro Phe Lys Gln Ala 290 295 300

Val Lys Glu Thr Cys Ala Trp Phe Thr Asp Asn Tyr Glu Gln Ala Arg 305 310 315 320

Lys

<210> 7

<211> 1017

<212> DNA

<213> Escherichia coli

<220>

<221> CDS

<222> (1)..(1017)

<400> 7

atg aga gtt ctg gtt acc ggt ggt agc ggt tac att gga agt cat acc

Met Arg Val Leu Val Thr Gly Gly Ser Gly Tyr Ile Gly Ser His Thr

1 5 10 15

tgt gtg caa tta ctg caa aac ggt cat gat gtc atc att ctt gat aac 96
Cys Val Gln Leu Leu Gln Asn Gly His Asp Val Ile Ile Leu Asp Asn
20 25 30

ctc tgt aac agt aag cgc agc gta ctg cct gtt atc gag cgt tta ggc 144
Leu Cys Asn Ser Lys Arg Ser Val Leu Pro Val Ile Glu Arg Leu Gly
35 40 45

ggc aaa cat cca acg ttt gtt gaa ggc gat att cgt aac gaa gcg ttg 192 Gly Lys His Pro Thr Phe Val Glu Gly Asp Ile Arg Asn Glu Ala Leu 50 55 60

atg acc gag atc ctg cac gat cac gct atc gac acc gtg atc cac ttc 240 Met Thr Glu Ile Leu His Asp His Ala Ile Asp Thr Val Ile His Phe

cac atc tac aac ctc ggc gct ggc gta ggc aac agc gtg ctg gac gtg

His Ile Tyr Asn Leu Gly Ala Gly Val Gly Asn Ser Val Leu Asp Val

260 265 270

gtt aat gcc ttc agc aaa gcc tgc ggc aaa ccg gtt aat tat cat ttt 864
Val Asn Ala Phe Ser Lys Ala Cys Gly Lys Pro Val Asn Tyr His Phe
275 280 285

gca ccg cgt cgc gag ggc gac ctt ccg gcc tac tgg gcg gac gcc agc 912
Ala Pro Arg Arg Glu Gly Asp Leu Pro Ala Tyr Trp Ala Asp Ala Ser
290 295 300

aaa gcc gac cgt gaa ctg aac tgg cgc gta acg cgc aca ctc gat gaa 960 Lys Ala Asp Arg Glu Leu Asn Trp Arg Val Thr Arg Thr Leu Asp Glu 305 310 315 320

atg gcg cag gac acc tgg cac tgg cag tca cgc cat cca cag gga tat 1008 Met Ala Gln Asp Thr Trp His Trp Gln Ser Arg His Pro Gln Gly Tyr 325 330 335

ccc gat taa 1017 Pro Asp

<210> 8

<211> 338

<212> PRT

<213> Escherichia coli

<400> 8

Met Arg Val Leu Val Thr Gly Gly Ser Gly Tyr Ile Gly Ser His Thr 1 5 10 15

Cys Val Gln Leu Leu Gln Asn Gly His Asp Val Ile Ile Leu Asp Asn 20 25 30

Leu Cys Asn Ser Lys Arg Ser Val Leu Pro Val Ile Glu Arg Leu Gly
35 . 40 45

Gly Lys His Pro Thr Phe Val Glu Gly Asp Ile Arg Asn Glu Ala Leu 50 55 60

Met Thr Glu Ile Leu His Asp His Ala Ile Asp Thr Val Ile His Phe
65 70 75 80

Ala Gly Leu Lys Ala Val Gly Glu Ser Val Gln Lys Pro Leu Glu Tyr 85 90 95

Tyr Asp Asn Asn Val Asn Gly Thr Leu Arg Leu Ile Ser Ala Met Arg 100 105 110

Ala	Ala	Asn	٧al	Lys	Asn	Phe	Ile	Phe	Ser	Ser	Ser	Ala	Thr	Val	Tyr
		115					120					125			

- Gly Asp Gln Pro Lys Ile Pro Tyr Val Glu Ser Phe Pro Thr Gly Thr 130 135 140
- Pro Gln Ser Pro Tyr Gly Lys Ser Lys Leu Met Val Glu Gln Ile Leu 145 150 155 160
- Thr Asp Leu Gln Lys Ala Gln Pro Asp Trp Ser Ile Ala Leu Leu Arg 165 170 175
- Tyr Phe Asn Pro Val Gly Ala His Pro Ser Gly Asp Met Gly Glu Asp 180 185 190
- Pro Gln Gly Ile Pro Asn Asn Leu Met Pro Tyr Ile Ala Gln Val Ala 195 200 205
- Val Gly Arg Arg Asp Ser Leu Ala Ile Phe Gly Asn Asp Tyr Pro Thr 210 215 220
- Glu Asp Gly Thr Gly Val Arg Asp Tyr Ile His Val Met Asp Leu Ala 225 230 235 240
- Asp Gly His Val Val Ala Met Glu Lys Leu Ala Asn Lys Pro Gly Val 245 250 255
- His Ile Tyr Asn Leu Gly Ala Gly Val Gly Asn Ser Val Leu Asp Val 260 265 270
- Val Asn Ala Phe Ser Lys Ala Cys Gly Lys Pro Val Asn Tyr His Phe 275 280 285
- Ala Pro Arg Arg Glu Gly Asp Leu Pro Ala Tyr Trp Ala Asp Ala Ser 290 295 300
- Lys Ala Asp Arg Glu Leu Asn Trp Arg Val Thr Arg Thr Leu Asp Glu 305 310 315 320
- Met Ala Gln Asp Thr Trp His Trp Gln Ser Arg His Pro Gln Gly Tyr 325 330 335

Pro Asp

<210> 9 <211> 1047

<212> DNA <213> Homo sapiens

<220> <221> CDS <222> (1)..(1047)

<400> 9

atg gca gag aag gtg ctg gta aca ggt ggg gct ggc tac att ggc agc 48
Met Ala Glu Lys Val Leu Val Thr Gly Gly Ala Gly Tyr Ile Gly Ser
1 5 10 15

cac acg gtg ctg gag ctg ctg gag gct ggc tac ttg cct gtg gtc atc 96
His Thr Val Leu Glu Leu Glu Ala Gly Tyr Leu Pro Val Val Ile
20 25 30

gat aac ttc cat aat gcc ttc cgt gga ggg ggc tcc ctg cct gag agc 144
Asp Asn Phe His Asn Ala Phe Arg Gly Gly Gly Ser Leu Pro Glu Ser
35 40 45

ctg cgg cgg gtc cag gag ctg aca ggc cgc tct gtg gag ttt gag gag 192 Leu Arg Arg Val Gln Glu Leu Thr Gly Arg Ser Val Glu Phe Glu Glu + 50 55 60

atg gac att ttg gac cag gga gcc cta cag cgt ctc ttc aaa aag tac 240 Met Asp Ile Leu Asp Gln Gly Ala Leu Gln Arg Leu Phe Lys Lys Tyr 65 70 75 80

agc ttt atg gcg gtc atc cac ttt gcg ggg ctc aag gcc gtg ggc gag 288 Ser Phe Met Ala Val Ile His Phe Ala Gly Leu Lys Ala Val Gly Glu 85 90 95

tcg gtg cag aag cct ctg gat tat tac aga gtt aac ctg acc ggg acc 336 Ser Val Gln Lys Pro Leu Asp Tyr Tyr Arg Val Asn Leu Thr Gly Thr 100 105 110

atc cag ctt ctg gag atc atg aag gcc cac ggg gtg aag aac ctg gtg 384

Ile Gln Leu Leu Glu Ile Met Lys Ala His Gly Val Lys Asn Leu Val

115 120 125

ttc agc agc tca gcc act gtg tac ggg aac ccc cag tac ctg ccc ctt 432
Phe Ser Ser Ser Ala Thr Val Tyr Gly Asn Pro Gln Tyr Leu Pro Leu
130 135 140

gat gag gcc cac ccc acg ggt ggt tgt acc aac cct tac ggc aag tcc 480
Asp Glu Ala His Pro Thr Gly Gly Cys Thr Asn Pro Tyr Gly Lys Ser
145 150 155 160

PCT/US99/11576 WO 99/64618 ang tto tto ato gag gan atg ato egg gan etg tgo eag gen gan ang Lys Phe Phe Ile Glu Glu Met Ile Arg Asp Leu Cys Gln Ala Asp Lys 170 165 act tgg aac gta gtg ctg ctg cgc tat ttc aac ccc aca ggt gcc cat Thr Trp Asn Val Val Leu Leu Arg Tyr Phe Asn Pro Thr Gly Ala His 185 180 ged tot gge tge att ggt gag gat eec cag gge ata eec aac aac etc 624 Ala Ser Gly Cys Ile Gly Glu Asp Pro Gln Gly Ile Pro Asn Asn Leu 200 195 atg cct tat gtc tcc cag gtg gcg atc ggg cga cgg gag gcc ctg aat 672 Met Pro Tyr Val Ser Gln Val Ala Ile Gly Arg Arg Glu Ala Leu Asn 210 gtc ttt ggc aat gac tat gac aca gag gat ggc aca ggt gtc cgg gat Val Phe Gly Asn Asp Tyr Asp Thr Glu Asp Gly Thr Gly Val Arg Asp 230 768 tac atc cat gtc gtg gat ctg gcc aag ggc cac att gca gcc tta agg Tyr Ile His Val Val Asp Leu Ala Lys Gly His Ile Ala Ala Leu Arg 245 250 aag ctg aaa gaa cag tgt ggc tgc cgg atc tac aac ctg ggc acg ggc Lys Leu Lys Glu Gln Cys Gly Cys Arg Ile Tyr Asn Leu Gly Thr Gly 260 aca ggc tat tca gtg ctg cag atg gtc cag gct atg gag aag gcc tct 864 Thr Gly Tyr Ser Val Leu Gln Met Val Gln Ala Met Glu Lys Ala Ser 275 ggg aag aag atc ccg tac aag gtg gtg gca cgg cgg gaa ggt gat gtg 912 Gly Lys Lys Ile Pro Tyr Lys Val Val Ala Arg Arg Glu Gly Asp Val 295 300 gca gcc tgt tac gcc aac ccc agc ctg gcc caa gag gag ctg ggg tgg 960 Ala Ala Cys Tyr Ala Asn Pro Ser Leu Ala Gln Glu Glu Leu Gly Trp 310 305 aca gca gcc tta ggg ctg gac agg atg tgt gag gat ctc tgg cgc tgg 1008 Thr Ala Ala Leu Gly Leu Asp Arg Met Cys Glu Asp Leu Trp Arg Trp 325 330 335 cag aag cag aat cct tca ggc ttt ggc acg caa gcc tga 1047 Gln Lys Gln Asn Pro Ser Gly Phe Gly Thr Gln Ala

<210> 10

<211> 348

<212> PRT

<213> Homo sapiens

<400> 10

Met Ala Glu Lys Val Leu Val Thr Gly Gly Ala Gly Tyr Ile Gly Ser

1 5 10 15

His Thr Val Leu Glu Leu Leu Glu Ala Gly Tyr Leu Pro Val Val Ile 20 25 30

Asp Asn Phe His Asn Ala Phe Arg Gly Gly Gly Ser Leu Pro Glu Ser 35 40 45

Leu Arg Arg Val Gln Glu Leu Thr Gly Arg Ser Val Glu Phe Glu Glu 50 55 60

Met Asp Ile Leu Asp Gln Gly Ala Leu Gln Arg Leu Phe Lys Lys Tyr 65 70 75 80

Ser Phe Met Ala Val Ile His Phe Ala Gly Leu Lys Ala Val Gly Glu 85 90 95

Ser Val Gln Lys Pro Leu Asp Tyr Tyr Arg Val Asn Leu Thr Gly Thr 100 105 110

Ile Gln Leu Leu Glu Ile Met Lys Ala His Gly Val Lys Asn Leu Val 115 120 125

Phe Ser Ser Ser Ala Thr Val Tyr Gly Asn Pro Gln Tyr Leu Pro Leu 130 135 140

Asp Glu Ala His Pro Thr Gly Gly Cys Thr Asn Pro Tyr Gly Lys Ser 145 150 155 160

Lys Phe Phe Ile Glu Glu Met Ile Arg Asp Leu Cys Gln Ala Asp Lys 165 170 175

Thr Trp Asn Val Val Leu Leu Arg Tyr Phe Asn Pro Thr Gly Ala His 180 185 190

Ala Ser Gly Cys Ile Gly Glu Asp Pro Gln Gly Ile Pro Asn Asn Leu 195 200 205

Met Pro Tyr Val Ser Gln Val Ala Ile Gly Arg Arg Glu Ala Leu Asn 210 215 220

Val Phe Gly Asn Asp Tyr Asp Thr Glu Asp Gly Thr Gly Val Arg Asp 225 230 235 240

Tyr Ile His Val Val Asp Leu Ala Lys Gly His Ile Ala Ala Leu Arg 245 250 255

Lys Leu Lys Glu Gln Cys Gly Cys Arg Ile Tyr Asn Leu Gly Thr Gly 260 265 270

Thr Gly Tyr Ser Val Leu Gln Met Val Gln Ala Met Glu Lys Ala Ser 275 280 285

Gly Lys Lys Ile Pro Tyr Lys Val Val Ala Arg Arg Glu Gly Asp Val 290 295 300

Ala Ala Cys Tyr Ala Asn Pro Ser Leu Ala Gln Glu Glu Leu Gly Trp 305 310 315 320

Thr Ala Ala Leu Gly Leu Asp Arg Met Cys Glu Asp Leu Trp Arg Trp 325 330 335

Gln Lys Gln Asn Pro Ser Gly Phe Gly Thr Gln Ala 340 345

<210> 11

<211> 317

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: CONSENSUS

<400> 11

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Val Xaa Xaa Xaa Ala Xaa Xaa Xaa 50 55 60

WO 99/64618 Xaa Xaa Xaa Xaa Xaa Xaa Xaa Ser Xaa Pro Xaa Xaa Glu Xaa Xaa Xaa Xaa Gly Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Tyr Xaa Xaa Xaa Lys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asn Xaa Xaa Gly Xaa His Xaa Gly Xaa Gly Xaa Xaa Xaa Arg Xaa Xaa Xaa Xaa Xaa Asp Xaa Ala Xaa Xaa Xaa Xaa Xaa Xaa Xaa

Xaa Thr Xaa Xaa Trp Xaa Xaa Xaa Xaa Xaa Xaa Xaa

WO 99/64618	PCT/US99/11576
<210> 12	
<211> 34	
<212> DNA	
<213> Escherichia coli	
<400> 12	
tagaattcag taaacaacga gtttttattg ctgg	34
<210> 13	
<211> 32	
<212> DNA	
<213> Escherichia coli	
<400> 13	
aactcgagtt acccccaaag cggtcttgat tc	32
<210> 14	
<211> 30	
<212> DNA	·
<213> Escherichia coli	
<400> 14	
ctggagtcga attcatgagt aaacaacgag	30
<210> 15	
<211> 33	
<212> DNA	
<213> Escherichia coli	
<400> 15	
aactgcagtt acccccgaaa gcggtcttga ttc	33

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/11576

IPC(6) :C	IPC(6) :C12P 19/00, 17/04; C12N 1/12, 1/20, 5/00, 5/04									
US CL :4	US CL :435/72, 126, 252.1, 252.3, 410, 419 According to International Patent Classification (IPC) or to both national classification and IPC									
	THE STANDARD									
B. FIELD	cumentation searched (classification system followed by	y classification symbols)								
	35/72, 126, 252.1, 252.3, 410, 419									
Documentation	on searched other than minimum documentation to the ex	ctent that such documents are included i	in the fields searched							
	ta base consulted during the international search (name	e of data base and, where practicable,	search terms used)							
APS, MED	DLINE, EMBASE, BIOSIS, SCISEARCH, BIOTECHD	S, NTIS, WPIDS, HCAPLUS								
C. DOC	UMENTS CONSIDERED TO BE RELEVANT									
Category*	Citation of document, with indication, where appro-	opriate, of the relevant passages	Relevant to claim No.							
Y	WO 85/01745 A1 (KRAFT, INC.) 25 Apentire document specially ages 4-7.	oril 1985 (23.04.85), see the	1-72							
Y	NIKISHIMI et al. Occupance in Yeast of L-Galactonolactone Oxidase which is similar to a key enzyme for Ascorbic Acid biosynthesis in animals, L-Gulonolactone Oxidase. Arch. Biocem. Biophys. December 1978, Vol. 191, No. 2, pages 479-486, see the entire article, specially abstract and introduction sections.									
A,P	WO 99/33995 A1 (ASCORBX LIMITE see the entire article.	(D) 08 July 1999 (08.07.99),	1-72							
	1	See patent family annex.	· ·							
	her documents are listed in the continuation of Box C.		turnel Gline data or princips							
1	pecial outegories of eited documents:	*T* inter document published after the m date and not in conflict with the ap the primoiple or theory underlying t	bhospou priceires to mostamos							
	comment defining the general state of the art which is not considered to be of particular relevance artier document published on or after the international filing date	*X* document of particular relevance; considered novel or cannot be considered.	the claimed invention cannot be							
	comment which may throw doubts on priority claim(s) or which is ited to establish the publication date of another citation or other	when the document is taken slone	d. alaimed incoming access by							
-	peciel reseau (m specified)	eye document of particular relevance; considered to involve an invention	A NEW MANAGE CON CONTRACTOR IN							
•	loossessit referring to an oral disolosure, use, anhibition or other seems	combined with one or more other st being obvious to a person skilled in	n the ext							
٠٣ و	comment published prior to the international filing date but later than the priority date claimed	"A" document member of the same per								
	e actual completion of the international search	Date of mailing of the international s	earch report							
23 AUG	UST 1999	2 2 OCT 1999								
Box PCT	mailing address of the ISA/US ioner of Patents and Trademarks	Authorized officer MARYAM MONSHIPOURI	JOYCE BRIDGERS PAPI' PECIALIST							
Washing	ton, D.C. 20231 No. (703) 305-3230	Telephone No. (703) 308-0196	Chicklical MATRIX							
i racsimile	NO. (103)307-3430	1 · · · · · · · · · · · · · · · · · · ·								

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/11576

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be scarched by this Authority, namely:
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
Please See Extra Sheet.
1. X As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest.
No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/11576

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

This international Preliminary Examining Authority has found 2 inventions claimed in the International application covered by the claims indicated below:

Group I, claims 1-59 and 71, drawn to a method of producing ascorbic acid or esters thereof in a microorganism comprising culturing a microorganism having a genetic modification to increase the action of an enzyme selected from the group consisting of hexokinase, glucose phosphate isomerase etc. as well as a microorganism genetically modified for producing ascorbic acid.

Group II, claims 60-70 and 72, drawn to a plant for producing ascorbic acid or esters thereof, wherein said plant has a genetic modification to increase the action of an enzyme selected from the group consisting of hexokinase, glucose phosphate isomerase etc.

The inventions listed as Groups I-II do not relate to a single inventive concept because they are considered to be two different categories of invention and are not drawn to combination of categories (i.e. categories 1-5), specified in 37 CFR section 1.475(b).