COM3110/4115/6115: Text Processing

Information Retrieval: Evaluating IR systems

Mark Stevenson

Department of Computer Science University of Sheffield

Overview

- Definition of the information retrieval problem
- Approaches to document indexing
 - manual approaches
 - automatic approaches
- Automated retrieval models
 - boolean model
 - ranked retrieval methods (e.g. vector space model)
- Term manipulation:
 - stemming, stopwords, term weighting
- Evaluation

Evaluation of IR systems – Why?

- There are various retrieval models/algorithms/IR systems
 - How determine which is the best?
- What is the best component/technique for:
 - ♦ Ranking? (cosine, dot-product, ...)
 - Term selection? (stopword removal, stemming, ...)
 - ◆ Term weighting? (binary, TF, TF.IDF, ...)
- How far down the ranked list will a user need to look to find some/all relevant items?

Evaluation – Relevance

- Evaluation of effectiveness in relation to the relevance of the documents retrieved
- Relevance is judged in a binary way, even if it is in fact a continuous judgement
 - Impossible when the task is to rank thousands or millions of options: too subjective, too difficult
- Other factors could also be evaluated:
 - User effort/ease of use
 - Response time
 - Form of presentation

Evaluation – Relevance (Benchmarking)

- In IR research/development scenarios, one cannot afford humans looking at results of every system/variant of system
- Instead, performance measured/compared using a pre-created benchmarking corpus, a.k.a. gold-standard dataset, which provides:
 - a standard set of documents, and queries
 - a list of documents judged relevant for each query, by human subjects
 - relevance scores, usually treated as binary
- Example: TREC IR evaluation corpora (http://trec.nist.gov/)
 - ♦ TREC has run annually since 1991

Evaluation of IR systems – Metrics

- AIM:
 - 1. get as much good stuff as possible
 - 2. get as little junk as possible
- The two aspects of this aim are addressed by two separate measures — recall and precision

	Relevant	Non-relevant	Total
Retrieved	А	В	A+B
Not retrieved	С	D	C+D
Total	A+C	B+D	A+B+C+D

- Recall: $\frac{A}{A+C}$ = proportion of relevant documents returned
- Precision: $\frac{A}{A+B}$ = proportion of retrieved documents that are relevant
 - ♦ Both measures have range: [0...1]

Retrieved vs. Relevant Documents

 Precision and Recall address the relation between the retrieved and relevant sets of documents

 Various situations that arise can be pictorially represented in these terms

• High precision, low recall:

Low precision, low recall:

• Low precision, high recall:

• High precision, high recall:

Trade-off Between Recall and Precision

- There is always a trade-off between precision and recall
 - For IR: as more results are considered down the list, precision generally drops, while recall generally increases

Recall and Precision: System 1

	Rel	Non-rel
Ret	Α	В
Not ret	С	D

$$R_1 = \frac{A_1}{A_1 + C_1} = \frac{16}{28} = .57$$

 $P_1 = \frac{A_1}{A_1 + B_1} = \frac{16}{25} = .64$

- System 1 retrieves 25 items: $A_1+B_1=25$
- Relevant and retrieved items: A₁ = 16
- Relevant documents for query: $A_1+C_1=28$

Recall and Precision: System 2

	Rel	Non-rel
Ret	Α	В
Not ret	С	D

$$R_2 = \frac{A_2}{A_2 + C_2} = \frac{12}{28} = .43$$

 $P_2 = \frac{A_2}{A_2 + B_2} = \frac{12}{15} = .8$

- System 2 retrieves 15 items: $A_2+B_2=15$
- Relevant and retrieved items: $A_2 = 12$
- Relevant documents for query: $A_2+C_2=28$

Recall and Precision: Which is the better system?

$$R_1 = \frac{A_1}{A_1 + C_1} = \frac{16}{28} = .57$$

 $P_1 = \frac{A_1}{A_1 + B_1} = \frac{16}{25} = .64$

$$R_2 = \frac{A_2}{A_2 + C_2} = \frac{12}{28} = .43$$

 $P_2 = \frac{A_2}{A_2 + B_2} = \frac{12}{15} = .8$

Which did better: System 1 or System 2?

F-measure

 A way to combine precision and recall into a single figure, giving both equal weight:

$$\frac{2PR}{P+R}$$

• F is a harmonic mean – penalises low performance in one value more than averaging does (behaves differently to *arithmethic* mean):

	values	mean	F — measure
e.g.	P=0.5, R=0.5	0.5	0.5
	P=0.1, R=0.9	0.5	0.18

Previous example

System 1 F-measure: 0.603

System 2 F-measure: 0.559

Precision at a cutoff

- Measures how well a method ranks relevant documents before non-relevant documents
- E.g. there are **5 relevant documents** = **d1,d2,d3,d4,d5** compute precision at top 5

r	System 1		System 2		Syster	n 3
	d1:		d10:	×	d6:	×
	d2:	$\sqrt{}$	d9:	×	d1:	$\sqrt{}$
	d3:	$\sqrt{}$	d8:	×	d2:	$\sqrt{}$
	d4:	$\sqrt{}$	d7:	×	d10:	×
rank 5:	d5:	$\sqrt{}$	d6:	×	d9:	×
	d6:	×	d1:		d3:	
	d7:	×	d2:	$\sqrt{}$	d5:	$\sqrt{}$
	d8:	×	d3:	$\sqrt{}$	d4:	$\sqrt{}$
	d9:	×	d4:	$\sqrt{}$	d7:	×
rank 10:	d10:	×	d5:	$\sqrt{}$	d8:	×
precision at rank 5:	1.0)	0.0)	0.4	ļ
precision at rank 10:	0.5	5	0.5	5	0.5	,

Precision at a cutoff (ctd)

• Note precision at top 5 for System 1: inner order of relevant documents doesn't matter as long as they are all relevant

	Syste	m 1	Syste	m 2	Syste	m 3
	d5:	$\sqrt{}$	d10:	×	d6:	×
	d4:	$\sqrt{}$	d9:	×	d1:	
	d3:	$\sqrt{}$	d8:	×	d2:	$\sqrt{}$
	d1:	$\sqrt{}$	d7:	×	d10:	×
rank 5:	d2:	$\sqrt{}$	d6:	×	d9:	×
	d6:	×	d1:		d3:	
	d7:	×	d2:	$\sqrt{}$	d5:	$\sqrt{}$
	d8:	×	d3:	$\sqrt{}$	d4:	$\sqrt{}$
	d9:	×	d4:	$\sqrt{}$	d7:	×
rank 10:	d10:	×	d5:	$\sqrt{}$	d8:	×
precision at rank 5:	1.0)	0.0)	0.4	ļ
precision at rank 10:	0.5	5	0.5	5	0.5	5

(Uninterpolated) Average Precision

- Aggregates many precision numbers into one evaluation figure
- Precision computed for each point a relevant document is found, and figures averaged

Custom 2

	5	ystem	1 1	5	yster	n 2	5	ystem	1 3
_	d1:		(1/1)	d10:	×		d6:	×	
	d2:	$\sqrt{}$	(2/2)	d9:	×		d1:	$\sqrt{}$	(1/2)
	d3:	$\sqrt{}$	(3/3)	d8:	×		d2:	$\sqrt{}$	(2/3)
	d4:		(4/4)	d7:	×		d10:	×	
	d5:		(5/5)	d6:	×		d9:	×	
_	d6:	×		d1:		(1/6)	d3:		(3/6)
	d7:	×		d2:	$\sqrt{}$	(2/7)	d5:	$\sqrt{}$	(4/7)
	d8:	×		d3:	$\sqrt{}$	(3/8)	d4:	$\sqrt{}$	(5/8)
	d9:	×		d4:		(4/9)	d7:	×	
_	d10:	×		d5:		(5/10)	d8:	×	
precision	at ran	k 5:	1.0			0.0			0.4
precision a			0.5			0.5			0.5
	avg. p	rec:	1.0			0.354			0.573

Interpolated Average Precision

- Compute an interpolated precision score for each of a range of different recall levels
 - usually, for the 11 recall levels: 0%, 10%, 20% . . . 90%, 100%
 - ♦ if a given recall level is not achieved, its precision is 0
 - these 11 scores are then averaged
 - this score more directly based on recall achieved

Steps:

- for the given recall level, compute the *highest* precision score observed *after* that recall level is reached
- based on assumption that typical user willing to look at more docs if would increase the %age of relevant docs amongst those viewed
- note: typically, precision of docs viewed will tend to go down as move down ranking, but sometimes it can go up

Interpolated Average Precision – example

- Compute interpolated precision scores for different recall levels, as given in right-hand table, using data in left-hand table – then average
 - e.g. for recall level 30%: discount data points for recalls below 30% (first two rows left-hand table), highest remaining precision is 0.667
 - e.g. for recall level 50%: discount data points for recalls below 50% (first five rows left-hand table), highest remaining precision is 0.625

Ranking	3	F	Recall	Precision		Rec.Level	Int.Prec	
d6:	X	0	(0%)	0	(0)		0%	.667
d1: 🐧	\checkmark	1/5	(20%)	.5	(1/2)		10%	.667
d2:	\checkmark	2/5	(40%)	.667	(2/3)		20%	.667
d10:	×	2/5	(40%)	.5	(2/4)		30%	.667
d9:	×	2/5	(40%)	.4	(2/5)		40%	.667
d3:	\checkmark	3/5	(60%)	.5	(3/6)		50%	.625
d5: 🕠	\checkmark	4/5	(80%)	.57	(4/7)		60%	.625
d4:	\checkmark	5/5	(100%)	.625	(5/8)		70%	.625
d7:	×	5/5	(100%)	.55	(5/9)		80%	.625
d8:	×	5/5	(100%)	.5	(5/10)		90%	.625
							100%	.625
						interp.	avg. prec:	0.644

Interpolated Average Precision – example #2

- As noted, score for this metric directly affected by recall
- Illustrate this with following example:
 - ♦ similar to last example, except one document (d5) is not found

Ranki	Ranking 4		Recall		Precision		Rec.Level	Int.Prec
d6:	×	0	(0%)	0	(0)		0%	.667
d1:		1/5	(20%)	.5	(1/2)		10%	.667
d2:		2/5	(40%)	.667	(2/3)		20%	.667
d10:	×	2/5	(40%)	.5	(2/4)		30%	.667
d9:	×	2/5	(40%)	.4	(2/5)		40%	.667
d3:		3/5	(60%)	.5	(3/6)		50%	.5
d11:	×	3/5	(60%)	.429	(3/7)		60%	.5
d4:		4/5	(80%)	.5	(4/8)		70%	.5
d7:	×	4/5	(80%)	.44	(4/9)		80%	.5
d8:	×	4/5	(80%)	.4	(4/10)		90%	0
							100%	0
						1.24.2		0.420

interp. avg. prec: 0.439

Summary

- Evaluation of Information Retrieval Systems
 - Comparison against gold standard
- Evaluation measures
 - Precision
 - Recall
 - F-measure
 - Precision at N
 - Average Precision
 - Interpolated Average Precision