Communication protocol-QM-UPS1601

一、Physical interface

This protocol supports QUCC BMS RS485/RS232/UART interface general protocol, consistent with the host computer protocol, baud rate of 9600BPS or other customized rates.

二、Frame structure

Host send:

Start bit	Address	Status	Command	Length	Date content	Calibration	Stop bit
			code				
0xDD	Device	0xA5-read	Command	Indicates the length of	Data content, when the	The checksum of the status code + data segment	0x77
	address	0x5A-write	code	the data, not including	length is 0, is skipped	content + length byte + command code byte is then	
				itself	here	negated and added by 1, with the high bit first and the	
						low bit last	

BMS Reply:

Start bit	Address	Command	Status	Length	Date content	Calibration	Stop bit
		code					
0xDD	Device	Command	0	Indicates the length of	Data content, when the	The checksum of the status code + data segment	0x77
	address	code		the data, not including	length is 0, is skipped	content + length byte + command code byte is then	
				itself	here	negated and added by 1, with the high bit first and the	
						low bit last	

Ξ 、Command interpretation

Command code: Read 03 to read basic information and status

Read 04 to read the battery cell voltage

The host sends instructions 0x03 read basic information

0xDD	0xA5		0x03	0	(If not, empty)	checksum	0x77
------	------	--	------	---	-----------------	----------	------

The BMS responds with instructions 0x03 read basic information

0xDD	00	0x03	Status, 0	Indicates the length of	Data content, when the	checksum	0x77
			table	the data, excluding	length is 0, is skipped		
			correct	itself, and the	here		
				response is written			
				with a length of 0			
			If there is	0		checksum	0x77
			an error,				
			the 0x80 is				
			returned				

Host send: DD 00 A5 03 00 FF 58 77

BMS response: DD 00 03 00 1B 17 00 00 00 02 D0 03 E8 00 00 20 78 00 00 00 00 00 10 48 03 0F 02 0B 76 0B 82 FB FF 77

The data and validation behind this example are incorrect, and are only used to parse the protocol

*Red is the check byte, the sum of all bytes; The next two are the check results, which negate the +1 result for the sum of all the previous checks. In the above results: 03 represents the command code, 00 represents the status code, and 1B represents the data field length.

The contents of the data fields are explained below

Data content	Byte size	description
Total voltage	2BYTE,Unit 10mV, high byte	
	first, the same below	
Current	2BYTE, Unit 10mA	Signed type 16 decimal number, the battery charge and discharge state is judged by the current,
		the charge is positive, and the discharge is negative.
Capacity remaining	2BYTE, Unit 10mAh	

Full capacity	2BYTE, Unit 10mAh	
Number of cycles	2BYTE	
Date of manufacture	2BYTE	Use 2 bytes to transfer such as 0x2068, where the date is the lowest 5: 0x2028&0x1f = 8 means the date;
		Month (0x2068>>5) &0x0f = 0x03 means March; The year is 2000+ (0x2068>>9) = 2000 + 0x10 = 2016;
Balanced state	2BYTE	Each bit means that each string is balanced, 0 is off, 1 is open means 1~16 strings
Balanced state_high	2BYTE	Each bit means that each string is balanced, 0 is off, 1 is open means 17~32 strings, up to 32 strings
		are supported V0 version is added
Protection status	2BYTE	Each bit represents a protection state, 0 is unprotected, and 1 occurs protection See Note 1 for
		details:
Software version	1byte	0x10 indicates version 1.0
RSOC	1byte	Represents the percentage of capacity remaining
FET Control status	1byte	MOS indicates status, bit0 means charge, bit1 means discharge, 0 means MOS off, and 1 means on
Number of battery strings	1byte	Number of battery strings
Alarm status	2 byte	Each bit represents an alarm status, 0 is not occurring, and 1 alarm has occurred See Note 2 for
		details:
Ambient temperature	2 byte , Unit 0.1K, high in	Using absolute temperature transmission, 2731+ (actual temperature * 10), 0 degrees = 2731 25
	front	degrees = 2731 + 25 * 10 = 2981
FET temperature	2 byte , Unit 0.1K, high in	Using absolute temperature transmission, 2731+ (actual temperature * 10), 0 degrees = 2731 25
	front	degrees = 2731 + 25 * 10 = 2981
NTC Number of N	1byte	Number of NTC
N 个 NTC content	2*N, Unit 0.1K, high in front	Using absolute temperature transmission, 2731+ (actual temperature * 10), 0 degrees = 2731 25
		degrees = 2731 + 25 * 10 = 2981

Note1: Description of the protection status bit0 Single over voltage protection bit1 Single under voltage protection bit2 Whole over voltage protectionbit3 Whole voltage protectionbit4 Charging over temperature protection

bit5 Charging low temperature protectionbit6 Discharge over temperature protectionbit7 Discharge low temperature protection

bit8	Charge over current protection	bit11	Front end detection IC error	bit14	Low ambient temperature
bit9	Discharge over current protection	bit12	Software locked MOS	bit15	FET high temperature
bit10	Short-circuit protection	bit13	High ambient temperature		
Note	2: Description of the protection status				
bit0	Single low voltage alarm	bit6	Charging high temperature alarm	bit12	PCB high temperature alarm
bit1	Single high voltage alarm	bit7	Charging low temperature alarm	bit13	Large differential pressure alarm
bit2	Whole low voltage alarm	bit8	Discharge high temperature alarm	bit14	Low capacity alarms
bit3	Whole high voltage alarm	bit9	Low temperature discharge alarm	bit15	empty
bit4	Charging over current alarm	bit10	Ambient high temperature alarm		
bit5	Discharge over current alarm	bit11	Ambient low temperature alarm		

The host sends a command to read unit voltage 0x04

				<u> </u>				
	0xDD	00	0xA5	0x04	0	(empty if not)	checksum	0x77
В	BMS respond to commands 0x04 read basic information							
	0xDD	00	0x04	Status, 0 table	Represents the length of the data, not	Data content, when the length	checksum	0x77
				correct	including itself, and the response is written	is 0, is skipped here		
					at the length of the response 0			
				An error returns a	0		checksum	0x77
				0x80				

Host send: DD 00 A5 04 00 FF 57 77

BMS response: DD 00 04 00 1E 0F 66 0F 63 0F 63 0F 64 0F 3E 0F 63 0F 37 0F 5B 0F 65 0F 3B 0F 63 0F 63 0F 3C 0F 66 0F 3D F9 F5 77 Red is the check byte, the sum of all bytes. The next two are the check results, which negate the +1 result for the sum of all the previous checks.

The data and validation behind this example are incorrect, and are only used to parse the protocol.

Red is the check byte, the sum of all bytes. The next two are the check results, which negate the +1 result for the sum of all the previous checks. In the above results: 04 represents the command code, 00 represents the status code, and 1E represents the data field length.

Interpretation of data content

Data length	The data length is the number of battery strings N multiplied by 2
The first string of monomer voltages	2Byte, unit mV, high first
The second string of monomer voltages	2Byte, unit mV, high first
The third string of monomer voltages	2Byte, unit mV, high first
0 0 0 0	
The Nth string monomer voltage	2Byte, unit mV, high first

五、Protocol data examples:

The host sends a command to read the monomer voltage 0x04, and the BMS returns the data description:

DD --Frame header, starting byte

00- address

04 -- Command code, read the monomer voltage

00 --Status code, non-0 is an error, 0 is correct

22 -- The short length of the data is 34 data, which means that the battery pack has 17 strings, a string of 2 data

0EC8 -- Section 1 monomer voltage 3784

0EC8 -- Section 2 monomer voltage 3784

0ECB --Section 3 monomer voltage

0ECF -- Section 4 Cell voltage

0ECA -- Section 5 monomer voltage

0EC7 --Section 6 Cell voltage

0ECA --Section 7 Monomer voltage

0ECD --Section 8 Monomer voltage

```
0EC9 -- Section 9 Monomer voltage
```

- 0ECA --Section 10 monomer voltage
- 0ECB --Section 11 monomer voltage
- 0ECB --Section 12 monomer voltage
- 0EC8 --Section 13 Motive Voltage
- 0ECC --Section 14 monomer voltage
- 0EC8 -- Section 15 monomer voltage
- 0EC9 --Section 16 Monomer Voltage
- 0EC9 -- Section 17 Monomer Voltage
- F187 -- Check digit, subject to the actual value
- 77 -- End code

The host sends instructions 0x03 read basic information, and the BMS returns the data description:

- DD --Start
- 00-address
- 03 -- Name code
- 00 --Status code
- 25 -- Data length
- 19DF -- Total voltage = 6623 = 66.23V, The units are 10mV
- F824 --Total current = 63524, the highest bit is 1, which is the discharge, Current value = 65536-63524 = 2012 in 10mA, so the final current is -20.12A
- 0DA5 -- Remaining capacity = 3493 in 10mAH, and the final remaining capacity value is 34930mAH
- 0FA0 --Nominal capacity = 4000 because the unit is 10mAH, all final capacity is 40000mAH
- 0002 -- Number of cycles. 2 times
- 2491 -- Date of manufacture

```
0000 --Balanced - Low
```

0000 --Balanced - High

0000 -- Protection status

12 --Software version

57 -- Remaining capacity percentage 87

03 --MOS state

11 -- Number of battery strings 17

0000 -Alarm status

0B98 --Ambient temperature 2968 -2731 =247, The units are 0.1°C = 24.7 $^{\circ}\text{C}$

0B98 --PCB temperature 2968 -2731 =247, The units are 0.1° C = 24.7 $^{\circ}$ C

04 -- Number of temperature probes

0B98 --First temperature 2968 -2731 =247, The units are 0.1° C = 24.7 $^{\circ}$ C

0BA9 --2nd temperature

0B96 --3rd temperature

0B97 --4th temperature

F89A --Check Code

77 --End Code