المتجهات في الفضاء

عناصر متجهة

و B نقطتین مختلفتین من الفضاء.

- (AB) هو المستقيم (\overline{AB} هو المستقيم
 - B المنحى : منحى المتجهة \overrightarrow{AB} من
- $\|\overrightarrow{AB}\| = AB$ و نكتب AB هو طولعا أي المسافة AB و نكتب \overline{AB} ه. المنظم:

تساوى متجهتين

تكون متجهتان متساويتان إذا كان لهما نفس الإتجاه ، نفس المنحى و نفس المنظم

 $\overrightarrow{AM} = \overrightarrow{u}$: من الفضاء بحيث فقطة وحيدة M من الفضاء بحيث من الفضاء بحيث ككل متجهة \overrightarrow{u}

$$\overrightarrow{AB} = \overrightarrow{DC} \iff ABCD$$
متوازي الأضلاع

علاقة شال

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$
: النينا ، الفضاء ، لاينا C و B و A

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

-2/2017

لتكن
$$A$$
 و B و D أربع نقط من الفضاء لدينا : $\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AD}$

$$\vec{u} = \overrightarrow{AB}$$

$$\vec{v} = \overrightarrow{AC}$$

$$\vec{u} + \vec{v} = \overrightarrow{AD}$$

: لتكن \vec{u} و \vec{v} و \vec{v} و \vec{v} و \vec{v} و \vec{u} النفا \vec{u} + \vec{v} = \vec{v} + \vec{u} •

$$\vec{u} + \vec{v} = \vec{v} + \vec{u}$$

$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w}) \quad \bullet$$

$$\vec{u} + \vec{0} = \vec{0} + \vec{u} = \vec{u}$$
 •

$$\vec{u} + (-\vec{u}) = (-\vec{u}) + \vec{u} = \vec{0}$$
 •

منتصف قطعة

$$\overrightarrow{IA}+\overrightarrow{IB}=\overrightarrow{0}$$
 منتصف القطعة $\left[AB
ight]$ إذا و فقط إذا كان I

2/4 -2/2017

ضرب عدد حقیقی فی متجهة

 $k\in\mathbb{R}^*$ لتكن \vec{u} متجهة غير منعدمة و ليكن \vec{u} عي المتجهة k في المتجهة \vec{u} عي المتجهة المعرفة بما يلي :

k < 0

- لهما نفس الإتجاه \vec{u} لهما نفس الإتجاه
- لهما منحیان متعاکسان $k \; ec{u} \;
 ight)$ و $ec{u}$
 - $||k \vec{u}|| = (-k)||\vec{u}|| \bullet$

k > 0

- لهما نفس الإتجاه \vec{u} و \vec{u} لهما نفس الإتجاه
- لهما نفس المنحى \vec{u} و \vec{u} لهما نفس المنحى
 - $||k \vec{u}|| = k ||\vec{u}|| \bullet$

التكن \vec{v} و \vec{v} عددين حقيقيين ، لدينا : \vec{v} و \vec{v} عددين حقيقيين ، لدينا :

- $\alpha \cdot (\vec{u} + \vec{v}) = \alpha \vec{u} + \alpha \vec{v}$ •
- $(\alpha + \beta)\vec{u} = \alpha\vec{u} + \beta\vec{u}$ •
- $(\alpha \times \beta)\vec{u} = \alpha.(\beta\vec{u})$
 - $1\vec{u} = \vec{u}$ •

 $\overrightarrow{v}=k\ \overrightarrow{u}$: بحيث بحيث وفقط إذا وفقط إذا وجد عدد حقيقي k بحيث و \overrightarrow{v}

المستقيم في الفضاء

لتكن A نقطة من الفضاء و \overrightarrow{u} متجهة غير منعدمة A من الفضاء حيث $\overrightarrow{aM}=t$ \overrightarrow{u} عيد المستقيم المار من A و الموجه بالمتجهة \overrightarrow{u} و نرمز له $D\left(A,\overrightarrow{u}\right)$: ب

الإستوائية

ليكن P مستوى من الفضاء و لتكن A و B و C ثلاث نقط غير مستقيمية من المستوى A . نقول أن A هو المستوى المار من A و الموجه بالمتجهتين A و A هو المستوى المار من A و الموجه بالمتجهتين A

 $(P) = P(A, \vec{u}, \vec{v})$ المستوى المار من \vec{v} و الموجه بالمتجهتين \vec{v} و \vec{v} و الموجه بالمتجهتين المار من \vec{v}

لتكن \vec{u} و \vec{v} و \vec{w} ثلاث متجهات من الفضاء . نقول أن المتجهات \vec{u} و \vec{v} و \vec{v} مستوانية إذا وفقط إذا وجدت أربعع نقط \vec{v} و \vec{v} و \vec{v} و \vec{v} = \vec{A} و \vec{v} و \vec{v} = \vec{A} و \vec{v} = \vec{v} = \vec{v} و \vec{v} = $\vec{$

 \vec{u} لتكن \vec{v} متجهتين غير مستقيميتين و لتكن \vec{w} متجهة من الفضاء . $(\exists (x,y) \in \mathbb{R}^2): \ \vec{w} = x\vec{u} + y\vec{v} \Leftrightarrow \vec{w}$ مستوانية \vec{w} و \vec{v} و \vec{v}

A و B و C و D اربع نقط من الفضاء $\overline{AD}=\alpha \overline{AB}+\beta \overline{AC}$ فإن النقط A و B و C و D مستوانية إذا وجد عددين حقيقيين α و B بحيث :

-2/2017