# Практическая работа №7 Анализ данных с использованием графических возможностей R

**Цель:** изучить графические возможности языка программирования R, получить навык построения графиков (диаграмм рассеивания, гистограмм, столбчатых графиков, диаграмм размаха, спинограмм, круговых диаграмм). Изучить основные графические параметры.

#### Задания

1. Построить график функции из таблицы с помощью команды **plot()**:

| № студента<br>в журнале | Вариант<br>задания | Функция                 | Отрезок         | Цвет       | Толщина<br>линии |
|-------------------------|--------------------|-------------------------|-----------------|------------|------------------|
| 1,17                    | 1                  | Синус – sin(x)          | $[-\pi, 2\pi]$  | Оранжевый  | 3                |
| 2,18                    | 2                  |                         | $[-2\pi, 2\pi]$ | Зеленый    | 2                |
| 3,19                    | 3                  | Косинус – <b>cos(x)</b> | $[-\pi, 3\pi]$  | Желтый     | 4                |
| 4,20                    | 4                  |                         | $[-2\pi, 3\pi]$ | Синий      | 3                |
| 5,21                    | 5                  | Арккосинус –            | $[-2\pi,\pi]$   | Красный    | 2                |
| 6,22                    | 6                  | acos(x)                 | $[-\pi, 2\pi]$  | Розовый    | 4                |
| 7,23                    | 7                  | Арксинус – asin(x)      | $[-\pi, 3\pi]$  | Коричневый | 3                |
| 8,24                    | 8                  |                         | $[-\pi, 2\pi]$  | Фиолетовый | 2                |
| 9,25                    | 9                  | Тангенс – <b>tan(x)</b> | $[-\pi, 2\pi]$  | Серый      | 4                |
| 10,26                   | 10                 |                         | $[-\pi,\pi]$    | Оранжевый  | 3                |
| 11,27                   | 11                 | Арктангенс –            | $[-2\pi,\pi]$   | Зеленый    | 2                |
| 12,28                   | 12                 | atan(x)                 | $[-\pi, 3\pi]$  | Желтый     | 4                |
| 13,29                   | 13                 | Логарифмическая         | [0,4]           | Синий      | 3                |
| 14,30                   | 14                 | $-\log(x)$              | [0,3]           | Красный    | 2                |
| 15,31                   | 15                 | Экспоненциальная        | [-3,2]          | Фиолетовый | 4                |
| 16,32                   | 16                 | $-\exp(x)$              | [-2,5]          | Розовый    | 3                |

### 2. Задать основные графические параметры:

- заголовок графика,
- подзаголовок,
- подписать оси графика,
- цвет линии,
- тип линии,

- размер и тип символов,
- толщину линии,
- размах значений на осях графика,
- тип графика,
- отображение осей и их названий,
- рамка графика.
- 3. Создать произвольную функцию, построить график.
- 4. Изменить параметры графика (цвет, тип линии, размер и тип символов и т.д.).
- 5. На том же графике построить пунктирные линии, проходящие через критические точки функции.
- 6. Задать вид точки на графике, используя параметр **pch** = номер\_варианта.
- 7. Сохранить полученный график в трёх различных форматах (выбрать любой из следующих: pdf(), bmp(), jpg(), png() или tiff()).
- 8. Изучить различные форматы, используя **?Devices**.
- 9. С помощью команды par() создать графическое окно для двух графиков.
- 10. Загрузить в **R** встроенный набор данных **mtcars**.

#### 11. Построить графики:

- 1) Столбчатую диаграмму количества автомобилей в наборе данных **mtcars** с различным числом карбюраторов (**carb**). По оси х указать число карбюраторов.
- 2) Штабелированный график количества автомобилей с разным числом карбюраторов (**carb**, расположить по оси у) и разным числом цилиндров (**cyl**, по оси х). Добавить легенду, подписать оси и название графика.
- 12. Условия построения следующих двух графиков в графическом окне:
  - 1) Столбчатый график для определенного типа двигателя (vs) с добавлением автоматической легенды.
  - 2) Горизонтальный столбчатый график для числа автомобилей с определенным количеством карбюраторов (carb).
- 13. Создать графическое окно на один график.

- 14. Построить точечный график зависимости расхода топлива (**mpg**) от веса автомобиля (**wt**). На график добавить подписи точек из названий автомобилей с помощью функции **text()**.
- 15. Построить столбчатый групповой график количества автомобилей с различным числом карбюраторов (**carb**) для разных типов двигателя(**vs**). Добавить на график легенду про типы двигателя.
- 16. Создать спинограмму для времени прохождения одной четвертой мили **(qsec)** по количеству передних передач **(gear)**.
  - 17.Используя функции **pie3D** (пакет **plotrix**), построить трёхмерную круговую диаграмму распределения количества автомобилей по указанным в таблице группам:

|          | vs | cyl |
|----------|----|-----|
| 1 группа | 0  | 4   |
| 2 группа | 0  | 6   |
| 3 группа | 0  | 8   |
| 4 группа | 1  | 4   |
| 5 группа | 1  | 6   |



Числовой вектор, который будет использован для построения диаграммы распределения автомобилей по пяти вышеуказанным группам, построить с использованием функции which() и логического оператора &. Функция which() определяет индекс элементов по заданному в ней условию. Например, чтобы определить какие автомобили входят в первую группу, можно использовать код which (mtcars\$vs==0 & mtcars\$cyl==4). Получим вектор, состоящий из номеров всех строк, в которых условие выполняется. А чтобы определить количество таких элементов, нужно найти длину вектора: length(which (mtcars\$vs==0 & mtcars\$cyl==4)).

- 18. Создать диаграмму размаха для переменной мили на шаллон (**mpg**) по числу цилиндров (**cyl**). Закрасить диаграмму в синий цвет.
- 19. Построить гистограмму переменной объем двигателя (**disp**). Озаглавить гистограмму, отметить по оси X название переменной, задать цвет из варианта.
- 20. Задать количество разбиений гистограммы из п.19 вручную (число разбиений=2+ номер варианта).
- 21. Создать график плотности распределения переменной объем двигателя (disp).
- 22. Сохранить график из п.21 в файл.

#### Контрольные вопросы

- 1. Какие форматы графических изображений используются для работы в **R**?
- 2. Назовите основную функцию для построения простого графика в **R**?
- 3. Перечислите основные графические параметры.
- 4. Какие аргументы создают заголовок графика, подписи его осей, подзаголовок?
- 5. Как в **R** создать собственную функцию?
- 6. Какой командой установить параметры графического окна?
- 7. Какая функция добавляет на график линию? Опишите её параметры.
- 8. Какой аргумент отвечает за вид точки на графике в **R**?
- 9. Какую функцию на графике выполняет легенда?
- 10. Какие команды применяются для сохранения изображений в **R**?
- 11. Что такое выбросы? Как избавиться от выбросов на графике?
- 12. Перечислите основные характеристики различных типов графиков (диаграммы рассеивания, гистограммы, столбчатых графиков, диаграммы размаха, спинограммы, круговой диаграммы).

## Домашнее задание

- 1. Оформить отчет по практической работе №7 (шаблон отчета взять из практической работы №3).
- 2. Загрузить в R встроенный набор данных **mtcars**.
- 3. В графическом окне на 3 графика построить цветные диаграммы размахов для переменной мили на галлон (**mpg**) по числу цилиндров (**cyl**). Для этого:
  - создать числовой вектор переменной мили на галлон (mpg) для разного

количества цилиндов;

- установить размер графического окна 1 на 3;
- заполнить графические окна диаграммами размахов.