Measuring Credit and Property Price Gaps

Nam Nguyen

UWM

April 16, 2022

Credit and House Prices Cycles

Table of content

Introduction

- Motivation
- Contribution
- Literature Review

Methodology

- Data
- Empirical Model
- Results

Conclusion

Introduction

Motivation

The study of housing prices has become more important in understanding financial market stability. We also observed increasing use of monetary policies, growth in macro balance sheet, credit.

Contribution

Relationship between housing prices and household credit

- Apply Unobserved Component Model (Clark 1987) to extract information about trends and cycles
 - ⇒ Focus on the dynamics between transitory cycle components
- Specify cycles to be VAR process (cross-cycle) rather than univariate AR process
 - \Rightarrow Test if past movement of one cycle has predictive power over another cycle

Literature Review

- 1. Credit cycles generation:
 - Kiyotaki & Moore (1997), Myerson (2012), Guerrieri & Uhlig (2016), Boissay et al (2016).
- 2. Dynamics of house prices changes:
- Hong & Stein (1999), Glaeser et al (2008) (2017), Kishor, Kumari, & Song (2015)
- 3. House price cycles generates credit cycles:
 - Bernanke & Gertler (1989), Kiyotaki & Moore (1997), Mian & Sufi (2018)
 - Empirical Evidence: Fitzpatrick and McQuinn (2007),
 Berlinghieri (2010), Gimeno and Martinez-Carrascal (2010),
 Anundsen and Jansen (2013), for evidence from Ireland, USA,
 Spain and Norway, respectively.

Literature Review

- 4. Credit cycles genereates house price cycles:
 - Agnello & Schuknecht (2011), Kermani (2012), Justiniano et al (2019), Schularick et al (2012) (2016)
- 5. Macro prudential DSGE model
- Quint & Rabanal (2018), Paries et al (2018).

Data

Bank of International Settlement (BIS)

- Household Credit to GDP: Total Credit to non-financial sector (household)
- House Price Index: Residential property prices: selected series (real value)
- 2 countries: US & UK
- Time frame: 1990:Q1 2019:Q3

Unobserved Component Model

$$100*In\frac{Credit}{GDP} = y_t = \tau_{yt} + c_{yt}$$
 (1)

$$100*InHPI = h_t = \tau_{ht} + c_{ht}$$
 (2)

• Trends: $\tau_{yt} \& \tau_{ht}$

$$au_{yt} = au_{yt-1} + \eta_{yt}, \qquad \eta_{yt} \sim iidN(0, \sigma_{\eta y}^2)$$

$$au_{ht} = au_{ht-1} + \eta_{ht}, \qquad \eta_{ht} \sim iidN(0, \sigma_{nh}^2)$$

Unobserved Component Model

• Cycles: c_{vt} & c_{ht}

$$\begin{split} c_{yt} &= \phi_y^1 c_{yt-1} + \phi_y^2 c_{yt-2} + \phi_y^{x1} c_{ht-1} + \phi_y^{x2} c_{ht-1} + \varepsilon_{yt} \\ & \varepsilon_{yt} \sim \textit{iidN}(0, \sigma_{\varepsilon y}^2) \\ c_{ht} &= \phi_h^1 c_{ht-1} + \phi_h^2 c_{ht-2} + \phi_h^{x1} c_{yt-1} + \phi_h^{x2} c_{yt-1} + \varepsilon_{ht} \\ & \varepsilon_{ht} \sim \textit{iidN}(0, \sigma_{\varepsilon h}^2) \end{split}$$

State Space Representation

• Transition equation:

$$\beta_t = F\beta_{t-1} + \tilde{\mathbf{v}}_t \tag{3}$$

Where the transitory components are:

$$\begin{bmatrix} \tau_{yt} \\ c_{yt} \\ c_{yt-1} \\ \tau_{ht} \\ c_{ht} \\ c_{ht-1} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \phi_y^1 & \phi_y^2 & 0 & \phi_y^{\times 1} & \phi_y^{\times 2} \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & \phi_h^{\times 1} & \phi_h^{\times 2} & 0 & \phi_h^1 & \phi_h^2 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \tau_{yt-1} \\ c_{yt-1} \\ c_{yt-2} \\ \tau_{ht-1} \\ c_{ht-1} \\ c_{ht-1} \\ c_{ht-2} \end{bmatrix} + \begin{bmatrix} \eta_{yt} \\ \varepsilon_{yt} \\ 0 \\ \eta_{ht} \\ \varepsilon_{ht} \\ 0 \end{bmatrix}$$

$$(4)$$

Unobserved Component Model

$$Q = \begin{bmatrix} \sigma_{\eta y}^2 & 0 & 0 & \sigma_{\eta y \eta h} & 0 & 0 \\ 0 & \sigma_{\varepsilon y}^2 & 0 & 0 & \sigma_{\varepsilon y \varepsilon h} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \sigma_{\eta y \eta h} & 0 & 0 & \sigma_{\eta h}^2 & 0 & 0 \\ 0 & \sigma_{\varepsilon y \varepsilon h} & 0 & 0 & \sigma_{\varepsilon h}^2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

(5)

Empirical Results

Results Regression Table: United States

Parameters	VAF	R(2)	VA	R(2) 1st-cross-lag	VAR(2) 2-cross-lags		
	Estimate	Std. Error	Estimate	Std. Error	Estimate	Std. Error	
ϕ_y^1 ϕ_y^2	1.8497	0.0645	1.3050	0.1048	1.5502	0.0622	
ϕ_{ν}^{2}	-0.8917	0.0639	-0.5099	0.0696	-0.5754	0.0642	
$\phi_{\nu}^{\times 1}$			0.0332	0.0027	0.0141	0.0083	
$\phi_v^{\times 2}$					0.0037	0.0114	
ϕ_h^1	1.7847	0.0345	2.0529	0.0421	1.8338	0.0658	
ϕ_h^2	-0.8034	0.0345	-1.2469	0.0731	-0.9358	0.0611	
$\phi_h^{\times 1}$			1.0795	0.2918	1.7429	0.4406	
$\phi_h^{\times 2}$					-1.6544	0.4175	
σ_{ny}	0.4793	0.0244	0.4718	0.0241	0.4195	0.0206	
$\sigma_{e_{V}}$	0.0281	0.0154	0.0256	0.0136	0.0375	0.0132	
σ_{nh}	0.4549	0.0440	0.4742	0.0383	0.4937	0.0367	
σ_{eh}	0.2566	0.0323	0.0876	0.0756	0.0966	0.0478	
σ_{eyeh}	-1.0000	0.0001	1.0000	8.5939×10^{-5}	1.0000	2.5743×10^{-6}	
σ_{nynh}	0.3974	0.0721					
Log-likelihood value	-339.7258		-346.9160		-332.0706		

Weights of likelihood function: w1 = 0.6, w2 = 0.4, w3 = 0.004, w4 = 0.003 $I(\theta) = -w1\sum_{t=1}^T In[(2\pi)^2|f_{t|t-1}]] - w2\sum_{t=1}^T \eta_{t|t-1}'f_{t|t-1}^{-1}\eta_{t|t-1} - w3 * \sum_{t=1}^T (c_{pt}^2) - w4 * \sum_{t=1}^T (c_{ht}^2)$

Empirical Results

Results Regression Table: United Kingdom

				0			
Parameters	VAF	R(2)	VA	R(2) 1st-cross-lag	VAR(2) 2-cross-lags		
	Estimate	Std. Error	Estimate	Std. Error	Estimate	Std. Error	
ϕ_{ν}^{1}	1.9725	0.0234	1.8820	0.0005	1.8895	0.0002	
$\begin{array}{l} \phi_y^1 \\ \phi_y^2 \end{array}$	-0.9827	0.0263	-0.8160	0.0022	-0.8743	0.0026	
$\phi_{v}^{\times 1}$			-0.0240	0.0004	0.1756	0.0008	
$\phi_y^{\times 1}$ $\phi_y^{\times 2}$					-0.1964	0.0035	
ϕ_h^1	1.5048	0.1019	1.5748	0.0056	1.5742	0.0643	
ϕ_h^2	-0.5608	0.1252	-0.7094	0.0077	-0.7364	0.0586	
$\phi_h^{\times 1}$			0.3783	0.0171	0.7214	0.0492	
$\phi_h^{\times 2}$					-0.5959	0.0442	
σ_{ny}	0.7063	0.0600	0.7017	0.0353	0.6040	0.0374	
σ_{ey}	0.0004	0.0104	0.1127	0.0052	0.0160	0.0063	
σ_{nh}	1.8676	0.1617	1.6429	0.1023	1.9038	0.1115	
σ_{eh}	0.6568	0.2583	0.6323	0.0193	0.1289	0.0269	
$\sigma_{\it eyeh}$	0.6888	13.1231	1.0000	$7.0580 imes 10^{-6}$	0.9998	0.0061	
σ_{nynh}	0.5680	0.1125					
Log-likelihood value	-454.6450		-464.0793		-456.5685		

Weights of likelihood function: w1 = 0.8, w2 = 0.2, w3 = 0.003, w4 = 0.004 $I(\theta) = -w1\sum_{t=1}^T In[[2\pi]^2|f_{t|t-1}|] - w2\sum_{t=1}^T \eta_{t|t-1}f_{t|t-1}^{-1}\eta_{t|t-1} - w3 * \sum_{t=1}^T (c_{yt}^2) - w4 * \sum_{t=1}^T (c_{ht}^2)$

Results Regression Graphs: United States VAR(2)

Results Regression Graphs: United Kingdom VAR(2)

Comparison with other decomposition methods: US

Comparison with other decomposition methods: UK

Conclusion

Dynamics of temporary components in housing and credit

- Evidence showing that past movement of a cycle has predictive power over the other cycle
- Extracting temporary and permanent components information gave insights on the dynamics of the two series

Measuring Credit Gaps

Table of content

Introduction

- Motivation
- Contribution

Methodology

- Data
- Empirical Model
- Results

Conclusion

Introduction

Motivation

There is no unanimity on how to measure excessive credit. Bank for International Settlements uses HP filter to create a credit gap measurement that performs well in predicting future financial crises. However, there are other competing gap measurements in alternative settings.

Nelson (2008) that the deviation of a non-stationary variable from its long-run trend should predict future changes of opposite sign in the variable. We utilize this idea and forecast combination method to propose a synthesized credit gap measurement that has a high predictive power.

Contribution

Since different trend-cycle decomposition methods of credit-to-GDP ratio provide us different credit gap measures, we handle the model uncertainty by assigning weights on these different credit gap measures based on its relative out-of-sample predictive power based on Bates and Granger (1969) forecast combination method.

 Our proposed credit gap measure dominates the alternate credit gaps in terms of its relative out-of-sample predictive power.

Methodology

Data

The measure of credit is total credit to the private non-financial sector, as published in the BIS database, capturing total borrowing from all domestic and foreign sources.

Quarterly data from 1983:Q1-2020:Q2

All these trend-cycle decomposition methods are based on the premise that a non-stationary series is the sum of a trend and a stationary cyclical component:

$$y_t = \tau_t + c_t \tag{6}$$

Trend-cycle decomposition models

HP filter

$$min_{\tau} \left(\sum_{t=1}^{T} (y_t - \tau_t)^2 + \lambda \sum_{t=2}^{T-1} [(\tau_{t-1} - \tau_t) - (\tau_t - \tau_{t-1})]^2 \right)$$
 (7)

• λ will be set at 1600, 3000, 400000 in our models

Unobserved-Component model: Clark(1987)

$$\tau_t = \tau_{t-1} + \eta_t, \eta_t \tilde{iid}(0, \sigma_{\eta}^2)$$

$$c_t = \Phi(L)c_t + u_t, u_t \tilde{iid}(0, \sigma_u^2)$$
(8)

Trend-cycle decomposition models

Beveridge-Nelson

$$y_t = y_0 + \mu t + \Psi(1) \sum_{k=1}^t u_t + \widetilde{u_t} - \widetilde{u_0}$$
 (9)

Hamilton filter (2018)

$$y_{t+h} = \alpha + \beta_1 y_{t-1} + \beta_2 y_{t-2} + \dots + \beta_p y_{t-p} + v_{t+h}$$
 (10)

Forecasting model:

$$\Delta y_t = \alpha + \beta(L)\Delta y_{t-1} + \gamma(L)GAP_{t-1} + \nu_t \tag{11}$$

Forecast combination

$$w_m = \frac{\widehat{\sigma}_m^2}{\widehat{\sigma}_1^2 + \widehat{\sigma}_2^2 + \dots \widehat{\sigma}_M^2}$$
 (12)

• where $\widehat{\sigma}_m^2$ is inverted out-of-sample forecast error variance of forecast M based on the cyclical component M.

Empirical Results

We perform these estimations recursively to preserve the 1-sided nature of the credit gap.

Our first estimation sample runs from 1983:Q1-1988:Q4 and saves the last estimate of the cycle. We keep adding one more observation to the estimation sample and keep saving the last observation of the cycle for different methods.

 This approach provides us with a 1-sided estimate of the credit gap from different methods.

Empirical Results:

Forecasting Performance of Credit Gap Models (U.S.)

Horizon	HP	RU	BIS	Hamilton	Linear	Quadratic	BN	UC	Average	Bates-Granger
1	0.993	0.987	1.012	0.994	1.028	1.005	1.010	0.985	0.962	0.959
2	0.974	0.963	1.016	0.980	1.058	1.014	0.975	0.961	0.924	0.917
3	0.966	0.953	1.023	1.011	1.055	1.036	0.965	0.937	0.906	0.896
4	0.982	0.966	1.022	1.029	1.055	1.045	1.033	0.910	0.922	0.910
1 - 4	0.964	0.945	1.030	1.005	1.081	1.041	0.978	0.913	0.882	0.872

The table shows the ratio of RMSEs of different models in comparison to the benchmark AR(1) model. The first set of forecasts is for 1994:Q1-1994:Q4; the final set is for 2019:Q3-2020:Q2. Q=1-4 denotes averages over next 4-quarters. HP is Hodrick-Prescott, RU is Ravn-Uhlig, BIS is based on Borio and Lowe (2002), BN is Beveridge-Nelson, UC is Unobserved Component Model.

Empirical Results:

Forecasting Performance of Credit Gap Models (U.K.)

Horizon	HP	RU	BIS	Hamilton	Linear	Quadratic	BN	UC	Average	Bates-Granger
1	1.001	0.990	1.001	0.992	1.010	0.979	1.028	1.009	0.977	0.979
2	0.979	0.970	1.007	0.969	1.016	0.962	1.028	0.999	0.962	0.957
3	0.979	0.971	1.018	0.969	1.055	0.966	1.009	0.989	0.959	0.955
4	0.990	0.987	1.028	1.005	1.055	0.981	1.019	0.981	0.972	0.967
1 - 4	0.972	0.952	1.034	0.960	1.081	0.929	1.054	0.985	0.918	0.910

The table shows the ratio of RMSEs of different models in comparison to the benchmark AR(1) model. The first set of forecasts is for 1994:Q1-1994:Q4; the final set is for 2019:Q3-2020:Q2. Q=1-4 denotes averages over next 4-quarters. HP is Hodrick-Prescott, RU is Ravn-Uhlig, BIS is based on Borio and Lowe (2002), BN is Beveridge-Nelson, UC is Unobserved Component Model.

Credit-to-GDP Ratios

Credit Gap Comparison (U.S.)

Credit Gap Comparison (U.K.)

Conclusion

Our results show that this method of combining credit gaps yield us a credit gap measure that dominates credit gaps from different trend-cycle decomposition methods in terms of superior out-of-sample forecasting of changes in credit-to-GDP ratio.

Thank You

I look forward to your questions and comments