Universidad del Valle de Guatemala

Departamento de Matemática Licenciatura en Matemática Aplicada

Estudiante: Rudik Roberto Rompich

Correo: rom19857@uvg.edu.gt

Carné: 19857

MM2035 - Álgebra Moderna - Catedrático: Ricardo Barrientos 29 de octubre de 2022

Tarea 20

Problemas 4, 5, 8 y 11, sección 3.11.

Problema 1 (Problema 4). If R is an integral domain with unit element, prove that any unit in R[x] must already be a unit in R.

Demostración. Supóngase que $f(x) = a_0 + a_1x + a_2 + \cdots + a_nx^n$ es un elemento unitario en $R[x] \implies$ por definición $\exists g(x) = b_0 + b_1x + b_2 + \cdots + b_nx^n \ni f(x)g(x) = 1$. De esto, nótese que el grado de los polinomios,

$$gr(f(x)g(x)) = gr(1)$$
$$= 0$$

Como $\operatorname{gr}(f(x)), \operatorname{gr}(g(x)) \geq 0$, entonces $\operatorname{gr}(f(x)) = \operatorname{gr}(g(x)) = 0 \implies f(x) = a_0$ y $g(x) = b_0$ para $a_0, b_0 \in R$, es decir $a_0b_0 = 1$. Por lo tanto, cualquier unidad en R[x] debe ser una unidad en R.

Problema 2 (Problema 5). Let R be a commutative ring with no nonzero nilpotent elements (that is, $a^n = 0$ implies a = 0). If $f(x) = a_0 + a_1x + \cdots + a_mx^m$ in R[x] is a zero-divisor, prove that there is an element $b \neq 0$ in R such that $ba_0 = ba_1 = \cdots = ba_m = 0$.

Demostración. Sea $f(x) = a_0 + a_1x + \cdots + a_mx^m$ en R[x] el cual es un divisor de cero, entonces debe existir para $i \in \mathbb{N}_0$, $g(x) = b_ix^i + b_{i+1}x^{i+1} + \cdots + b_nx^n \neq 0$ en R[x] tal que f(x)g(x) = 0. Entonces,

$$f(x)g(x) = (a_0 + a_1x + \dots + a_mx^m)(b_ix^i + b_{i+1}x^{i+1} + \dots + b_nx^n)$$

$$= a_0 \left[b_ix^i + b_{i+1}x^{i+1} + \dots + b_nx^n\right] + a_1x \left[b_ix^i + b_{i+1}x^{i+1} + \dots + b_nx^n\right] + \dots + a_mx^m \left[b_ix^i + b_{i+1}x^{i+1} + \dots + b_nx^n\right]$$

$$= (a_0b_ix^i + a_0b_{i+1}x^{i+1} + \dots + a_0b_nx^n) + (a_1b_ix^{i+1} + a_1b_{i+1}x^{i+2} + \dots + a_1b_nx^{n+1}) + \dots + (a_mb_ix^{i+m} + a_mb_{i+1}x^{i+1+m} + \dots + a_mb_nx^{n+m})$$

$$= a_0b_ix^i + (a_0b_{i+1} + a_1b_1)x^{i+1} + (a_0b_{i+2} + a_1b_{i+1} + a_2b_i)x^{i+2} + \dots + a_mb_nx^{m+n}$$

$$= 0$$

Nótese que los coeficientes deben ser 0, en donde $k \in \{0, 1, \dots, m\}$ es decir:

$$a_0b_i = 0$$

$$a_0b_{i+1} + a_1b_1 = 0$$

$$a_0b_{i+2} + a_1b_{i+1} + a_2b_i = 0$$

$$\vdots$$

$$a_0b_{i+k} + a_1b_{i+(k-1)} + \cdots + a_2k_i = 0$$

Entonces, por hipótesis, tenemos $a^i = 0 \implies a = 0$, es decir que $b_n^i \neq 0 \implies b_n \neq 0$ y si $b := b_i^{m+1}$ tenemos que:

$$ba_0 = ba_1 = \dots = ba_m = 0$$

Problema 3 (Problema 8). Prove that when F is a field, $F[x_1, x_2]$ is not a principal ideal ring.

Demostración. Por reducción al absurdo, supóngase que $F[x_1, x_2]$ es un anillo de anillos principales $\implies (x_1, x_2) = (f(x_1, x_2))$ para un $f(x_1, x_2) \in F[x_1, x_2] \implies x_1, x_2$ son irreducibles tal que $x_1 = k_1 f(x_1, x_2)$ y $x_2 = k_2 f(x_1, x_2)$. Entonces, de x_1 , $f(x_1, x_2)$ no debe tener coeficientes 0 de x_1 y de x_2 , k_2 no tiene coeficientes 0 ($\rightarrow \leftarrow$) ya que entonces no se cumpliría $x_1 = k_1 f(x_1, x_2)$. Por lo tanto, $F[x_1, x_2]$ no es un ideal de anillos principales.

Problema 4 (Problema 11). If R is an integral domain, and if F is its field of quotients, prove that any element f(x) in F[x] can be written as $f(x) = (f_0(x)/a)$, where $f_0(x) \in R[x]$ and where $a \in R$.

Demostración. Sea $f(x) \in F[x]$ tal que

$$f(x) = \sum_{i=0}^{k} \frac{a_i}{b_i} x^i,$$

en donde $a_i, b_i \neq 0 \in R$, entonces:

$$f(x) = \sum_{i=0}^{k} \frac{a_i}{b_i} x^i$$

$$= \frac{a_0}{b_0} + \frac{a_1}{b_1} x + \dots + \frac{a_k}{b_k} x^k$$

$$= \frac{a_0 b_1 b_2 \dots b_k}{b_0 b_1 b_2 \dots b_k} + \frac{a_1 b_0 b_2 \dots b_k}{b_0 b_1 b_2 \dots b_k} x + \dots + \frac{a_k b_0 b_1 b_2 \dots b_{k-1}}{b_0 b_1 b_2 \dots b_k} x^k$$

$$= \frac{a_0 b_1 b_2 \dots b_k + a_1 b_0 b_2 \dots b_k x + \dots + a_k b_0 b_1 b_2 \dots b_{k-1} x^k}{b_0 b_1 b_2 \dots b_k}$$

$$:= \frac{f_0(x)}{a}$$

En donde $f_0(x) \in R[x]$ y $a \in R$.