MARKING SCHEME FOR ANSWERS TO THE THEORETICAL QUESTION IV

Part	MARKING SCHEME - THE THEORETICAL QUESTION IV- COMPTON SCATTERING	Total Scores
IV.	For: the situation before the first scattering of photon	7.0 points
	$ \begin{array}{ccc} \lambda_i, f_i & M \\ & & \\ & \\ $	
	first electron \overrightarrow{P}_{0e}	
	the momentum \vec{p}_i and the energy E_i of the initial photon $\begin{cases} \vec{P}_i = \frac{h}{\lambda_i} = \frac{h \cdot f_i}{C} \\ E_i = h \cdot f_i \end{cases}$ 0.3p	
	the frequency of initial photon $f_i = \frac{C}{\lambda_i}$ 0.1p	
	the momentum \vec{p}_{oe} and the energy E_{oe} of initial, free electron in motion $ \vec{P}_{oe} = m \cdot \vec{v}_{1e} = \frac{m_0 \cdot \vec{v}_{1e}}{\sqrt{1 - m_0^2}} $	
	$\begin{cases} \vec{P}_{oe} = m \cdot \vec{v}_{1e} = \frac{m_0 \cdot \vec{v}_{1e}}{\sqrt{1 - \beta^2}} \\ E_{oe} = m \cdot c^2 = \frac{m_0 \cdot c^2}{\sqrt{1 - \beta^2}} \end{cases}$ 0.3p	
	De Broglie wavelength of the first electron $\lambda_{oe} = \frac{h}{p_{0e}} = \frac{h \cdot m_0 \cdot v_{1e}}{m_0 \cdot v_{1e}} \sqrt{1 - \beta^2}$	
	the situation after the scattering of photon	
	the momentum \vec{p}_0 and the energy E_0 of the scattered photon $\begin{cases} \vec{P}_o = \frac{h}{\lambda_o} = \frac{h \cdot f_o}{c} \\ E_o = h \cdot f_o \end{cases}$ 0.3p	
	the frequency of scattered photon $f_o = \frac{C}{\lambda_0}$ 0.1p	

the principles of conservation of moments and energy $\begin{cases} \vec{P_i} + \vec{p}_{oe} = \vec{p}_0 \\ E_i + E_{0e} = E_0 + E_{1e} \end{cases}$ 0.3p

the conservation of moment on Ox direction $\frac{h \cdot f_i}{C} + m \cdot V_{1e} \cdot \cos \alpha = \frac{h \cdot f_0}{C} \cos \theta$ 0.3p

the conservation of moment on $Oy \quad m \cdot v_{1e} \cdot \sin \alpha = \frac{h \cdot f_0}{c} \sin \theta$ 0.3p

$$\frac{m_0^2 \cdot c^2}{1 - \left(\frac{V_{1e}}{c}\right)^2} \cdot V_{1e}^2 = h^2 \cdot \left(f_0^2 + f_1^2 - 2f_0 \cdot f_i \cdot \cos\theta\right)$$
 0.4p

The conservation of energy $m \cdot c^2 + h \cdot f_1 = m_0 \cdot c^2 + h \cdot f_0$ 0.3p

or
$$\frac{m_0 \cdot c^2}{\sqrt{1 - \left(\frac{V_{1e}}{C}\right)^2}} = m_0 \cdot c^2 + h \cdot (f_0 - f_1)$$
 0.2p

$$\frac{m_0^2 \cdot c^4}{1 - \left(\frac{V_{1e}}{c}\right)^2} = m_0^2 \cdot c^4 + h^2 \cdot (f_0 - f_1)^2 + m_0 \cdot h \cdot c^2 \cdot (f_0 - f_1)$$
0.2p

$$\frac{h}{m_0 \cdot c} (1 - \cos \theta) = \frac{c}{f_1} - \frac{c}{f_0}$$

$$\Lambda = \frac{h}{m_0 \cdot c}$$
 0.2p

the wavelength of scattered photon $\,\lambda_0 = \lambda_i - \Lambda \cdot \left(1 - \cos\theta\right)\,$

$$\begin{cases} \lambda_i < \lambda_0 \\ E_i > E_0 \end{cases}$$
 0.1p

the situation before the second collision

the situation after this scattering process

	The conservation principle for moment in the scattering process		
	$\int \frac{h}{a} = \frac{h}{a} \cos \theta + m \cdot v_{2e} \cdot \cos \beta$		
	$\begin{cases} \lambda_0 & \lambda_f \\ \lambda_f & \end{cases}$	0.3p	
	$\begin{cases} \frac{h}{\lambda_0} = \frac{h}{\lambda_f} \cos \theta + m \cdot v_{2e} \cdot \cos \beta \\ \frac{h}{\lambda_f} \sin \theta - m \cdot v_{2e} \cdot \sin \beta = 0 \end{cases}$		
	$\left(\frac{h}{\lambda_f}\right)^2 + \left(\frac{h}{\lambda_0}\right)^2 - \frac{2 \cdot h^2}{\lambda_0 \cdot \lambda_f} \cos \theta = (m \cdot v_{2e})^2$	0.3p	
	$\begin{cases} \frac{h}{m_0 \cdot c} \cdot (1 - \cos \theta) = \lambda_f - \lambda_0 \\ \lambda_f - \lambda_0 = \Lambda \cdot (1 - \cos \theta) \end{cases}$	0.5p	
	$\begin{cases} \lambda_f - \lambda_0 = \Lambda \cdot (1 - \cos \theta) \\ \lambda_f = \lambda_f \end{cases}$		
	$\begin{cases} \lambda_f > \lambda_0 \\ E_f < E_0 \end{cases}$	0.1p	
	$\begin{cases} 2 & -125 \times 10^{-10} m \end{cases}$		
	$\begin{cases} \lambda_f = 1,25 \times 10^{-111} \\ 6.6 \times 10^{-34} \end{cases}$	0.2p	
	$\begin{cases} \lambda_f = 1.25 \times 10^{-10} m \\ \Lambda = \frac{6.6 \times 10^{-34}}{9.1 \times 10^{-31} \cdot 3 \times 10^8} m = 2.41 \times 10^{-12} m = 0.02 \times 10^{-10} m \end{cases}$	•	
	the value of wavelength of photon before the second scattering $\lambda_0 = 1.23 \times 10^{-10} m$	0.1p	
	$\lambda_{_{i}}=\lambda_{_{f}}$	0.3p	
	$\begin{cases} \vec{p}_{1e} = \vec{p}_{2e} \\ E_{1e} = E_{2e} \end{cases}$	0.2p	
	$\Big \Big \Big \Big \Big E_{1e}=E_{2e}$	0. 2 p	
	the moment of final electron		
	$p_{2e} = h \sqrt{\frac{1}{\lambda_f^2} + \frac{1}{(\lambda_f - \Lambda(1 - \cos\theta))^2} - \frac{2 \cdot \cos\theta}{\lambda_f \cdot (\lambda_f - \Lambda(1 - \cos\theta))}}$	0.4p	
	The de Broglie wavelength of second electron after scattering (and of first electron before scatter	ring)	
	$\lambda_{1e} = \lambda_{2e} = 1 / \left(\sqrt{\frac{1}{\lambda_f^2} + \frac{1}{(\lambda_f - \Lambda(1 - \cos\theta))^2} - \frac{2 \cdot \cos\theta}{\lambda_f \cdot (\lambda_f - \Lambda(1 - \cos\theta))}} \right)$	0.3p	
	final result: $\lambda_{1e} = \lambda_{2e} = 1.24 \times 10^{-10} m$	0.2p	
			7.0
Total score theoretical question IV			points

Professor Delia DAVIDESCU, National Department of Evaluation and Examination—Ministry of Education and Research-Bucharest, Romania Professor Adrian S.DAFINEI, PhD, Faculty of Physics – University of Bucharest, Romania