Name: Set:

BRITISH COLUMBIA INSTITUTE OF TECHNOLOGY - Midterm Examination

Program: Computer Systems Technology **Course Name:** Applied Mathematics for CST

Course Number: COMP 1113

Date: Comp 1113

October 26, 2015

Time Allotted: 50 minutes

Exam Pages 6 (Including this page)
Total Marks 25 (25% of this course)

Special Instructions:

- 1.) All work is to be done in this examination booklet.
- 2.) Students are NOT permitted the use of an electronic calculator.
- 3.) Textbooks and Notes are NOT allowed!
- 4.) Boolean theorems and postulates are provided.
- 5.) Please turn off your cell phone and put it away.
- 6.) Stay in your seat until instructed to hand-in your paper.

- 1.) [4 marks] Convert each of the following numbers from the base in which they are given to the indicated base.
 - a.) $(1\ 1\ 0\ 0\ 1\ 0\ 1\ 0.\ 0\ 1\ 1\ 1\ 1\ 1)_2$ to Hexadecimal.

b.) $(27.4)_8$ to base 5.

2.) [2] Convert the following sequence of decimal numbers to hexadecimal.

Decimal	152	153	154	155	156	157	158	159	160	161
Hexadecimal										

- 3.) [3 marks]
 - a.) Add the following 8-bit two's complement numbers. **Indicate whether or not overflow occurred.**

b.) What is the decimal result of your addition in part a.).

4.) [4] Use a **5-bit** representation to write the following decimal numbers in each of the listed representations, where possible. Indicate if it is not possible to represent the number in a particular representation. Show your work in the space provided.

Decimal Number	Sign Magnitude	Two's Complement	Excess	Bias 15
13				
-16				

5.) [4] Express the following decimal numbers in a floating point representation according to the mini-standard. Indicate for each whether the floating point representation *exactly* records the decimal number. If not, indicate what decimal number the floating point representation does record exactly (1 sign bit, 4 exponent bits, and 5 mantissa bits with the exponent recorded in bias 7).

Decimal Number	Sign	Exponent	Mantissa	Decimal Number Recorded Exactly
-∞				
1/256 + 1/4096 = 17/4096				

- 6.) [6] Complete parts a.) through d.) to add the following decimal numbers in a mini-standard floating point representation.
 - a.) Express each decimal number in **normalized** form in the mini-standard. If it is not possible to express the given number in normalized form, use unnormalized form. Indicate (yes/no) whether any loss of precision occurred in representing either number in the mini-standard.

Decimal	Normalized/Unnormalized form			Loss?
7.6 =				
204 =				

b.) **Standardize** the numbers to the same exponent being sure to show the 'hidden' bit.. Indicate (yes/no) whether any loss of precision occurred in either number while standardizing.

Decimal	Standardized	Loss Here?
7.6 =		
204 =		

c.) Add, and renormalize if necessary to give your result in **normalized** form in the ministandard. If it is not possible to express the result in normalized form, use unnormalized form. Indicate (yes/no) whether any loss of precision occurred in this step of the process.

Decimal	Normalized/Renomalized			Loss Here?
7.6 + 204				

d.) Determine what decimal number the result represents **exactly** (which may or may not be the same as the result of the addition/subtraction problem).

Decimal Answer:	Decimal Answer:		

7.) Given the following Boolean expression:

$$z*(x + y) = y*z + x * y * z$$

[2] Prove that the expression is true using a truth table. Do not simplify or use any Boolean theorems.

\boldsymbol{x}	y	z	
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	