L9 - Modelagem Inteira & Branch and Bound

1 Modelagem Inteira

1. Considere a decisão de investimento em 8 projetos. O investimento em cada projeto gera um retorno líquido ao longo do tempo, e também tem um custo de investimento. Os dados são mostrados na Tabela 1.

			I	Proje	etos			
	1	2	3	4	5	6	7	8
Investimento	41	33	14	25	32	32	9	19
Retorno líquido	47	40	17	27	34	23	5	44

Tabela 1: Investimentos e retornos esperados em projetos

O investidor tem um total de 100 unidades disponíveis para investir.

- (a) Determine o modelo de PI para o problema.
- (b) Escreva o modelo genérico (conjuntos, parâmetros, variáveis) para o problema.
- 2. Modele as seguintes novas condições impostas ao modelo anterior:
 - (a) Se o investimento 1, 3 ou 4 forem escolhidos, os investimento 7 e 8 também devem ser escolhidos.
 - (b) Se o investimento 2 é escolhido, então o investimento 3 não pode ser escolhido.
- 3. (Problema da designação generalizado) O setor de PCP de uma indústria precisa determinar quais produtos serão produzidos por quais máquinas. Existem 4 produtos (colunas da Tabela 3) que podem ser processados em 2 máquinas (linhas da Tabela 3). A Tabela 3 indica o tempo necessário para processar cada produto em cada máquina, bem como o limite de tempo disponível em cada máquina.

Produtos						
Máquinas	1	2	3	4	Limite de tempo	
1	9	13	17	18	40	
2	15	25	28	18	55	

Tabela 2: Tempos de processamento das peças nas máquinas

Cada processamento de produto nas máquinas gera um gasto de energia elétrica, dados pela Tabela 3.

- (a) Determine o modelo de PI que aloca as peças nas máquinas ao menor gasto energético.
- (b) Escreva o modelo genérico (conjuntos, parâmetros, variáveis) para o problema.
- 4. Considere a rede de distribuição, como mostrada na Figura 1, em que os arcos indicam as distâncias entre os vértices. Determine o modelo de PI que determina o menor caminho para se sair do vértice 0 e chegar ao 8.

	Produtos					
Máquinas	1	2	3	4		
1	10	15	17	16		
2	20	25	21	19		

Tabela 3: Consumo de energia pelo processamento das peças nas máquinas

Figura 1: Rede de distribuição

5. Uma empresa de distribuição de bebidas possui 3 grandes clientes (j = 1..3) e 2 centros de distribuição (i = 1..2). Cada cliente possui uma demanda de bebidas (d_j) , dada por d = [3, 4, 3]. Ainda, existe um custo variável de entrega das bebidas de cada depósito para cada centro, bem como um custo fixo por depósito, caso o mesmo realize entregas a pelo menos um cliente. Cada depósito possui uma capacidade máxima de fornecimento. A Tabela 4 mostra os custos variáveis, fixos e as capacidades de entrega:

Depósitos	Clientes		tes	Custo fixo	Capacidade
	1	2	3		
1	2	4	3	100	9
2	1	2	1	150	10

Tabela 4: Custos variáveis, fixos e capacidades dos depósitos

Se um depósito é alocado para um cliente, toda a demanda do cliente deve ser atendida por esse depósito. Considere que todos os clientes devem ser atendidos por um depósito. Escreva o modelo que descreve o problema. **Não se esqueça do domínio das variáveis**.

6. Considere uma variação do modelo anterior, em que existe um depósito extra para realizar as entregas, não é permitido que os 3 depósitos sejam utilizados ao mesmo tempo, somente 2 ou menos. Como ficaria esse modelo? Considere as informações com o novo depósito como na tabela abaixo:

Depósitos	Clientes		tes	Custo fixo	Capacidade
	1	2	3		
1	2	4	3	100	9
2	1	2	1	150	10
3	3	2	1	70	7

Tabela 5: Custos variáveis, fixos e capacidades dos depósitos

7. (Caso BRF) Uma empresa alimentícia aluga veículos para realizar as suas entregas. O setor de PCP junto ao dep. de logística faz o dimensionamento de toda carga que deve ser alocada a cada veículo, bem como a sua rota. Dessa forma, sabe-se, para cada dia de um horizonte de planejamento, quantos veículos serão necessários. Esse dado é mostrado pela Tabela 6.

			Dias	5	
	1	2	3	4	5
Demanda	2	3	2	1	3

Tabela 6: Demanda de veículos por dia

Cada contrato por um veículo permite que o mesmo seja utilizado por uma quantidade limitada de dias no horizonte de planejamento, e existe um custo associado ao contrato. O custo do contrato independe do número de dias que o veículo é alocado pela empresa. A Tabela 7 mostra os tipos de contrato existentes:

Contrato	Cobertura (dias)	Custo fixo
1	3	500
2	1	400

Tabela 7: Demanda de veículos por dia

- (a) Determine o modelo de PI para o problema de contratação e alocação de frota da BRF.
- (b) Escreva o modelo genérico (conjuntos, parâmetros, variáveis) para o problema.
- 8. (Caso Ek. simplificado P1) Uma empresa precisa determinar as configurações da sua malha logística a longo prazo. A malha funciona da seguinte forma: existe um conjunto de fornecedores capazes de entregar diferentes produtos em diferentes períodos de tempo. Os produtos podem ser entregues diretamente aos clientes, ou deixados em depósitos e posteriormente enviados aos clientes (havendo assim uma consolidação de carga). Os clientes possuem uma demanda dos diferentes produtos a cada período e os fornecedores possuem uma capacidade de fornecimento dos também por período. Os depósitos possuem capacidades volumétricas/período e custos fixos de abertura, se forem utilizados. Existe um custo por volume transportado associado a cada par de nós da rede (fornecedor-depósito),(fornecedor-cliente),(depósito,cliente). A malha logística pode ser simplificada pelo diagrama abaixo (Figura 2).

Figura 2: Malha logística: 2 clientes, 1 depósito e 1 fornecedor

Considerando a malha exemplo da Figura, um horizonte de planejamento de 4 períodos, 2 produtos, e as informações abaixo, crie o modelo de programação inteira para o caso da empresa.

	Período				
Produto	1	2	3	4	
1	10	5	5	4	
2	10	7	5	10	

Tabela 8: Demanda do cliente

Depósito	Custo Fixo	Capacidade/período (m^3)	E0 P1	E0 P2
1	100	15	5	3

Tabela 9: Informações depósitos

	P1	P2	Produto	Volume (m ³
Fornecedor 1	12	13	1	0.4
Fornecedor 2	8	9	2	0.8

Tabela 10: Capacidades de fornecimento

Tabela 11: Volumes produtos

2 Branch and Bound

1. Considere o modelo abaixo:

For.	Dep.	$\mathbf{Custo}/(m^3)$
1	1	2
2	1	3

Tabela 12: Custos de transporte - Forn. Depósitos

Forn.	Cli.	$\mathbf{Custo}/(m^3)$
1	1	7
2	1	7

Tabela 13: Custos de transporte - Forn. Cliente

Dep.	Cli.	$Custo/(m^3)$
1	1	2

Tabela 14: Custos de transporte - Depósito Cliente

max
$$Z=3x_1+2x_2$$
 Sujeito à
$$2x_1+5x_2\leq 9$$

$$4x_1+2x_2\leq 9$$

$$x_1,x_2\in Z^+$$

- (a) Represente a região factível do problema
- (b) Resolva o problema usando o algoritmo Branch and Bound, representando a árvore a cada iteração, bem como o algoritmo Dual-Simplex para aproveitar as tabelas ótimas já encontradas.