Projet Optimisation : Support Vector Machine

K. Kamtue & Cl. Réda

ENS Cachan

January 9, 2017

└- Sujet

- 1 Description du projet
 - Sujet
 - Le problème d'optimisation
 - Implémentation
- 2 Résultats
 - Détails de l'implémentation
 - Tracé de la frontière de classification

- 3 Extensions
- 4 Démonstration

- 1 Description du projet
 - Sujet
 - Le problème d'optimisation
 - Implémentation
- 2 Résultats
 - Détails de l'implémentation
 - Tracé de la frontière de classification
- 3 Extensions
- 4 Démonstration

Sujet

Support Machine Vector

Objectif

Faire de l'apprentissage supervisé

└ Sujet

Sujet

Support Machine Vector

Objectif

Faire de l'apprentissage supervisé

■ Appliqué à la classification binaire $(y_i \in \{1, -1\})$;

Sujet

Support Machine Vector

Objectif

Faire de l'apprentissage supervisé

- Appliqué à la classification binaire $(y_i \in \{1, -1\})$;
- Recherche d'une frontière linéaire $f: x \to \omega^T x$ vérifiant :

$$\forall i, y_i = -1 \Rightarrow f(x_i) < 0$$

$$\forall i, y_i = 1 \Rightarrow f(x_i) > 0$$

$$\Leftrightarrow \forall i, y_i \times f(x_i) > 0 (1)$$

∟Sujet

Sujet Support Machine Vector

Figure: Exemple avec deux classes (rouge et bleue)

Recherche du problème d'optimisation

Le problème d'optimisation (naïvement)

 γ : distance entre les droites f(x)=1 et f(x)=-1 (marge).

Recherche du problème d'optimisation

Le problème d'optimisation (naïvement)

 γ : distance entre les droites f(x)=1 et f(x)=-1 (marge).

$$max_w \ \gamma = \frac{2}{\|w\|}$$

avec $\forall i, y_i \times f(x_i) > 0$

Recherche du problème d'optimisation

Le problème d'optimisation (naïvement)

 γ : distance entre les droites f(x)=1 et f(x)=-1 (marge).

$$max_w \ \gamma = \frac{2}{\|w\|}$$

avec $\forall i, y_i \times f(x_i) > 0$

$$\Leftrightarrow \min_{w} \frac{1}{2} ||w||^2$$
avec $\forall i, y_i \times f(x_i) > 0$

Attention : si l'ensemble n'est pas séparable !

Recherche du problème d'optimisation

Figure: Exemple avec deux classes (rouge et bleue)

Adaptation au cas non séparable

Soit
$$z_i = max(0, 1 - y_i \times f(x_i))$$
 (perte de **Hinge**).

Adaptation au cas non séparable

Soit
$$z_i = max(0, 1 - y_i \times f(x_i))$$
 (perte de **Hinge**).

En rendant le problème toujours faisable et convexe

Pénaliser les erreurs de classification avec les $(z_i)_i$ et C:

$$\begin{aligned} \min_{w,z} \ & \frac{1}{2} \|w\|^2 + C \sum_{i \leq m} z_i \\ & \text{avec } \forall i, z_i \geq 0 \\ & \forall i, y_i \times (\omega^T x_i) \geq 1 - z_i \end{aligned}$$

- 1 Description du projet
 - Sujet
 - Le problème d'optimisation
 - Implémentation
- 2 Résultats
 - Détails de l'implémentation
 - Tracé de la frontière de classification
- 3 Extensions
- 4 Démonstration

Résolution du problème d'optimisation

■ Utilisation de la **méthode de Newton** pour trouver ω :

Rappel : Mise à jour du vecteur x cherché avec la **méthode de Newton**

$$x_{n+1} \leftarrow x_n + s \times \nabla^2 obj(x_n)^{-1} \nabla obj(x_n)$$

(ici, en cherchant s, taille du pas, par backtracking line search)

Résolution du problème d'optimisation

■ Utilisation de la **méthode de Newton** pour trouver ω :

Rappel : Mise à jour du vecteur x cherché avec la **méthode de Newton**

$$x_{n+1} \leftarrow x_n + s \times \nabla^2 obj(x_n)^{-1} \nabla obj(x_n)$$

(ici, en cherchant s, taille du pas, par backtracking line search)

Utiliser la méthode de la barrière logarithmique.

Résolution du problème d'optimisation

■ Utilisation de la **méthode de Newton** pour trouver ω :

Rappel : Mise à jour du vecteur x cherché avec la **méthode de Newton**

$$x_{n+1} \leftarrow x_n + s \times \nabla^2 obj(x_n)^{-1} \nabla obj(x_n)$$

(ici, en cherchant s, taille du pas, par backtracking line search)

- Utiliser la méthode de la barrière logarithmique.
- Rendre le problème indépendant de la dimension;

Implémentation

Indépendance en la dimension des points : problème dual

Après calcul du lagrangien et minimisation en $\boldsymbol{\omega}$:

Indépendance en la dimension des points : problème dual

Après calcul du lagrangien et minimisation en $\boldsymbol{\omega}$:

Problème dual

$$\begin{array}{l} \max_{\lambda \in \mathbb{R}^{+m}} - \frac{1}{2} \| \sum_{i} \lambda_{i} y_{i} x_{i} \|_{2}^{2} + \mathbf{1}^{T} \lambda \\ \text{avec } \forall i, 0 \leq \lambda_{i} \leq C \\ \text{(par les conditions de KKT)} \end{array}$$

Indépendance en la dimension des points : problème dual

Après calcul du lagrangien et minimisation en $\boldsymbol{\omega}$:

Problème dual

$$\begin{array}{c} \max_{\lambda \in \mathbb{R}^{+m}} - \frac{1}{2} \| \sum_{i} \lambda_{i} y_{i} x_{i} \|_{2}^{2} + \mathbf{1}^{T} \lambda \\ \text{avec } \forall i, 0 \leq \lambda_{i} \leq C \\ \text{(par les conditions de KKT)} \end{array}$$

Obtenir la solution du primal à partir de celle du dual

$$\omega^* = \sum_i \lambda_i^* y_i x_i$$

Rendre le problème indépendant de la dimension

Utilisation de l'astuce du noyau :

Problème dual

Soit
$$K = X^T X$$
 (noyau linéaire). Alors :

$$\max -\frac{1}{2}\lambda^T \operatorname{diag}(y) K \operatorname{diag}(y) \lambda + \mathbf{1}^T \lambda$$
$$\operatorname{avec} \forall i, 0 \leq \lambda_i \leq C$$

Implémentation

Supprimer les contraintes d'inégalité

Utilisation de la méthode de la barrière logarithmique :

Supprimer les contraintes d'inégalité

Utilisation de la méthode de la barrière logarithmique :

Fonction barrière pour éliminer les contraintes d'inégalité

$$\Phi(\lambda) = \sum_{i} (-\log(C - \lambda_i) - \log(\lambda_i))$$

= $-\sum_{i} \log((C - \lambda_i)\lambda_i)$

Supprimer les contraintes d'inégalité

Utilisation de la méthode de la barrière logarithmique :

Fonction barrière pour éliminer les contraintes d'inégalité

$$\Phi(\lambda) = \sum_{i} (-\log(C - \lambda_i) - \log(\lambda_i))$$

= $-\sum_{i} \log((C - \lambda_i)\lambda_i)$

Problème d'optimisation final

$$\max -\frac{1}{2}\lambda^T diag(y) K diag(y) \lambda + \mathbf{1}^T \lambda + \Phi(\lambda)$$

- 1 Description du projet
 - Sujet
 - Le problème d'optimisation
 - Implémentation
- 2 Résultats
 - Détails de l'implémentation
 - Tracé de la frontière de classification
- 3 Extensions
- 4 Démonstration

Détails de l'implémentation

Tracé de la convergence de la méthode de Newton

Détails de l'implémentation Dépendance en la taille de l'échantillon

Figure: Comparaison des temps de calcul selon n et d Ensemble $\mid C \mid d \mid n \mid$ Nb d'itérations \mid temps

1	5	40000	10	11	0,315
1	5	40	100	12	0,715
1	5	40	1000	?	į 10

Détails de l'implémentation

Accélération de la convergence quand C augmente

Figure: Evolution du temps de calcul en fonction de C

Test	С	D	N	N IT.	Temps (s)	Meilleur C	Echec (%)
1	1	40	10	11	25,414	1	0 (*)
1	5	40	10	11	0,177	1	0 (*)
1	10	40	10	11	0,168	1	0 (*)

- 1 Description du projet
 - Sujet
 - Le problème d'optimisation
 - Implémentation
- 2 Résultats
 - Détails de l'implémentation
 - Tracé de la frontière de classification
- 3 Extensions
- 4 Démonstration

Pour C = 5, n = 150, d = 200

Points centrés réduits avec des fonctions gaussiennes (2D) :

Pour C = 5, n = 150, d = 200

Points centrés réduits avec des fonctions gaussiennes (3D) :

Pour C = 5, n = 150, d = 200

Génération avec des fonctions gaussiennes (2D) :

Pour C = 5, n = 150, d = 200

Génération avec des fonctions gaussiennes (3D) :

- 1 Description du projet
 - Sujet
 - Le problème d'optimisation
 - Implémentation
- 2 Résultats
 - Détails de l'implémentation
 - Tracé de la frontière de classification
- 3 Extensions
- 4 Démonstration

Extensions

Extensions

Ajouts au projet

■ Validation croisée (choix de la meilleure valeur de C);

Extensions

Ajouts au projet

- Validation croisée (choix de la meilleure valeur de C);
- Implémentation de Coordinate Descent;

Extensions

Ajouts au projet

- Validation croisée (choix de la meilleure valeur de C);
- Implémentation de Coordinate Descent;
- Implémentation de ACCPM;

- 1 Description du projet
 - Sujet
 - Le problème d'optimisation
 - Implémentation
- 2 Résultats
 - Détails de l'implémentation
 - Tracé de la frontière de classification
- 3 Extensions
- 4 Démonstration

Démontration du SVM