

# **PLENARY EXERCISES - TMA4145**

Week 38, Wednesday 20. September 2023

#### **Problem 1**

Let  $(V, \langle \cdot, \cdot \rangle)$  be an inner product space over  $\mathbb{C}$ , and consider  $||x||^2 = \langle x, x \rangle$ , the induced norm on V.

**1.** Show that  $\|\cdot\|$  satisfies the parallelogram law.

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2),$$

for all  $x, y \in V$ .

**2.** For  $n \ge 3$ , let  $\omega$  be a  $n^{th}$  root of unity, i.e.  $\omega^n = 1$  and  $\omega^k \ne 1$  for k < n. Show that

$$\langle x, y \rangle = \frac{1}{n} \sum_{k=1}^{n} \omega^{k} ||x + \omega^{k} y||^{2}.$$

**3.** Show that

$$\langle x,y\rangle = \int_{0}^{1} e^{2\pi i \varphi} \|x + e^{2\pi i \varphi}y\|^{2} d\varphi.$$

#### Hint:

- 1. Write the norms in terms of inner products, and expand.
- **2.** Recall that a finite geometric series, with  $a \neq 1$ , can be written as

$$\sum_{k=1}^n a^k = \frac{a(1-a^n)}{1-a}.$$

1

### **Problem 2**

Let  $(W, \langle \cdot, \cdot \rangle)$  be a finite dimensional inner product space, and  $U, V \subseteq W$  be a subspace of W.

1. Show that

$$(U+V)^{\perp}=U^{\perp}\cap V^{\perp}$$

- **2.** Show that *U* and *V* are direct, i.e.  $U + V = U \oplus V$ , if and only if  $U^{\perp} + V^{\perp} = W$ .
- **3.** Show that  $W = U \oplus V$  if and only if  $W = U^{\perp} \oplus V^{\perp}$ .

### Hint:

- **1.**  $x \in U^{\perp}$  if  $\langle x, u \rangle = 0$  for all  $u \in U$ .
- **2.**  $(U^{\perp})^{\perp} = U$ .

## Problem 3 (Riesz representation Theorem)

Let  $(V, \langle \cdot, \cdot \rangle)$  be a finite dimensional inner product space, and let  $T: V \to \mathbb{K}$  be linear. Show that there exists  $u \in V$  such that

$$T(v) = \langle v, u \rangle,$$
 for all  $v \in V$ .

**Hint:** There are several ways to solve the problem, here are a few options:

- **1.** What is the singular value decomposition of *T*?
- **2.** Recall that for any  $x \in V$  can be written on the form  $x = \sum_{i=1}^{n} \langle x, e_i \rangle e_i$ , where  $\{e_i\}_{i=1}^{n}$  is a orthonormal basis of V.
- **3.** Choose a basis of V. What is the corresponding matrix representation of V?