第五讲、 极值问题

§5.1 基本极值与最值

极值的必要和充分条件

考虑定义在一个开区域 $D \subset \mathbf{R}^n$ 上的 n 元二次连续可微函数 $f(x_1, \dots, x_n)$. 设 $\mathbf{p}_0 =$ $(x_1^0, \dots, x_n^0) \in D$ 是 f 的一个极值点,那么其必要条件是: p_0 处的梯度向量 $\nabla f(p_0) = \mathbf{0}$.

由二阶 Taylor 展式

$$f(\boldsymbol{p}_{0}+\Delta\boldsymbol{x})=f(\boldsymbol{p}_{0})+\frac{1}{2!}\Delta\boldsymbol{x}\cdot\boldsymbol{Q}\cdot\Delta\boldsymbol{x}^{T}+\circ(\boldsymbol{r}^{2}),$$

可以根据二次型 $\Delta x \cdot Q \cdot \Delta x^T$ 的符号来确定 f(x) 能否在 p_0 处取到极值(其中 $Q = \left(\frac{\partial^2 f}{\partial x_i \partial x_i}\right)$ (p_0)), 即有如下的极值的充分条件:

设函数 f 在驻点 p_0 的某邻域内有二阶连续偏导数,则

- (1) 若 Q 是正定的,则 $f(p_0)$ 是极小值;
- (2) 若 Q 是负定的,则 $f(p_0)$ 是极大值;
- (3) 若 Q 是不定的(即既有正的特征值, 也有负的特征值), 则 p_0 点不是极值点;
- (4) 若 Q 是半定的(即所有特征值同号, 但有零特征值), 则需进一步判别.

注 Hesse 矩阵 Q 是否是正定、负定可以根据高代中学到的 Sylvester 准则来判断,即考虑 Q的各阶主子式的符号. 特别当 f 是二元函数 f(x,y) 时有

如 f(x,y) 在驻点 (x_0,y_0) 的某个邻域内有二阶连续偏导数, 并设 $A=f_{xx}(x_0,y_0),\ B=$ $f_{xy}(x_0,y_0), \quad \varphi = f_{\mathbb{R}} \circ (x_0,y_0) \overset{\mathrm{NLR}}{\hookrightarrow} \Delta - \widetilde{\Lambda} \overset{\mathrm{LL}}{\hookrightarrow} \overset{\mathrm{LL}}{\hookrightarrow$

- (1) 若 ム > 0, 1 > 0 则 方在 (** , 50) (4年)、小塩;
- (2) 右 $\Delta > 0, A < 0, 则 f$ 在 (x_0, y_0) 点有极大值;
- (3) 若 $\Delta < 0$, 则 f 在 (x_0, y_0) 点没有极值;
- (4) 若 $\Delta = 0$, 则需进一步判别.

求多元函数 $z = f(x_1, x_2, \dots, x_n)$ 的极值的步骤可归结如下:

- 1. 通过解方程组 $f_{x_i} = 0, i = 1, 2, \dots, n$,求出驻点 $p_0 = (x_1^0, \dots, x_n^0)$;
- 2. 如果函数 f 在驻点 p_0 的某邻域内有二阶连续偏导数, 则考查 Hesse 矩阵 Q= $\left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right)_{\substack{n \times n \\ -1 \text{ of } 1 \text{$
- 3. 考查 f_{x_i} 不存在的点是否为极值点;
- 4. 考查没有二阶连续偏导数的驻点是否为极值点.

最大、最小值的判定

以二元函数为例叙述如下:

- 1. 如果 f(x,y) 定义在有界闭区域 D上,则先求出 D 内部的全部驻点,不可导点及相应的函数值, 然后求出 $f \in \partial D$ 上的最值(可将边界曲线代入 f(x,y), 化为求一元函数的最值问题), 最后取所 有这些函数值的最大者为最大值, 最小者为最小值.
- 2. 如果 f(x,y) 定义在有界开区域 U上,有时需要先将 f(x,y) 的定义域连续延拓到 \overline{U} 上,然后 求有界闭区域上的最大最小值, 最后进行比较.
- 3. 如果 f(x,y) 定义在无界区域上,则去掉明显取不到最值的边界部分,使之成为有界区域上的最值 问题.

4. 也可利用

$$\max f = \max_x \max_y f \ \ \vec{\boxtimes} \ \max_y \max_x f,$$

对 x,y 累次求最值.

例 1 求 $f(x,y) = x^2 - xy + y^2 - 2x + y$ 在 \mathbb{R}^2 上的最大值与最小值.

例 2 证明: 当 $t \ge 1$, $s \ge 0$ 时, 成立不等式

$$ts \leqslant t \ln t - t + e^s$$
.

§5.2 条件极值与条件最值

目标函数 $f(x_1, \dots, x_n)$ 在限制条件 $\varphi_i(x_1, x_2, \dots, x_n) = 0, i = 1, \dots, m(m < n)$ 下的极值问题, 可归结为对 Lagrange 函数

$$L(x_1, \dots, x_n) = f(x_1, \dots, x_n) + \sum_{i=1}^m \lambda_i \varphi_i(x_1, \dots, x_n)$$

$$(5)$$

求普通极值的问题, 其中 λ_i , $i=1,\cdots,m$ 为参数因子. 这种方法称为 Lagrange 乘子法.

Lagrange 乘子法的具体步骤是:

- 1. 作出Lagrange 函数 (5),
- 2. 由 $L_{x_i}=0,\ i=1,\cdots,n$ 与 $\varphi_i=0,\ i=1,\cdots,m$ 联立解出 L 的全部驻点与 $\lambda_i,\ i=1,\cdots,m$ 的具体值, 并要求驻点处矩阵

的秩为 m.

- 3. 对每个驻点 p_0 , 算出 Hesse 矩阵 $H(p_0) = \left(\frac{\partial^2 L}{\partial x_i \partial x_j}\right)_{n \times n} (p_0)$.
- (1) 若 $H(p_0)$ 正定,则 p_0 点为(条件) 极小值点.
- (2) 若 $H(p_0)$ 负定,则 p_0 点为(条件) 极大值点.
- (3) 若 $H(p_0)$ 既不是正定, 也不是负定, 则由

$$d\varphi_i(x_1,\dots,x_n) = \frac{\partial \varphi_i}{\partial x_i} dx_i = 0, \quad i = 1,\dots,m$$

以及矩阵 (6) 的秩为 m, 解出 $\mathrm{d}x_1,\cdots,\mathrm{d}x_n$ 中的 m 个, 不妨设可解出 $\mathrm{d}x_1,\cdots,\mathrm{d}x_m$, 将其代入 n 元二次型

$$(\mathrm{d}x_1\frac{\partial}{\partial x_1}+\cdots+\mathrm{d}x_n\frac{\partial}{\partial x_n})^2L(\boldsymbol{p}_0)$$

中, 化为 (n-m) 元二次型

$$\sum_{i,j=1}^{n-m} a_{ij} \mathrm{d}x_i \mathrm{d}x_j.$$

令 $A = (a_{ij})_{(n-m)\times(n-m)}$. 若 A 是正定的,则 p_0 点为(条件)极小值点. 若 A 是负定的,则 p_0 点为(条件)极大值点. 若 A 是不定的,则 p_0 不是(条件)极值点. 若 A 是半定的,则需进一步判定.

如此看来, 若出现 $H(p_0)$ 既不正定, 也不负定的情况下, 计算将相当复杂.

在实际问题中, 更多的是条件最值问题. 我们往往用一些比较灵活又方便的判断方法替代上述讨论 (不必考虑 Hesse 矩阵). 在《数学分析习题课讲义(下)》中有系统的总结.

例 1 求拋物面 $z = x^2 + y^2$ 与平面 x + y + z = 1的交线 L上的点到原点的最大与最小距离.

例 2 椭球面 $\frac{x^2}{3} + y^2 + \frac{z^2}{2} = 1$ 被通过原点的平面 2x + y + z = 0 截成一个椭圆 Π . 求此椭圆的面积.

例 3 证明二次型 $f(x,y,z)=Ax^2+By^2+Cz^2+2Dyz+2Ezx+2Fxy$ 在单位球面 $S=\{(x,y,z)|\ x^2+y^2+z^2=1\}$ 上的最大值与最小值恰为矩阵

$$\Phi \equiv \left(\begin{array}{ccc} A & F & E \\ F & B & D \\ E & D & C \end{array} \right)$$

的最大特征值与最小特征值.

例 4 在 $x_1+x_2+\cdots+x_n=1$, $x_i>0$, $i=1,2,\cdots,n$ 条件下求 $\max u,\ u=x_1^{\alpha_1}x_2^{\alpha_2}\cdots x_n^{\alpha_n}$, 其中 $\alpha_i>0$, $i=1,2,\cdots,n$.

例 5 设函数 F(x,y) 连续可偏导, F(x,y)=0 是不自交的封闭曲线,记为 Γ. 设 $F_x^2+F_y^2\neq 0$ 在 Γ 上处处成立. 证明:若 AB 是 Γ 的极大弦,则 Γ 在 A, B 处的两条切线平行.

$$2x^2 + y^2 + z^2 + 2xy - 2x - 2y - 4z + 4 = 0$$

所确定的函数 z = z(x, y) 的极值.

第五讲练习题

- 1. 求 $z = \cos^2 x + \cos^2 y$ 满足条件 $x y = \frac{\pi}{4}$ 时的极值.
- 2. 求曲面 z = xy 1 上与原点最近的点的坐标.
- 3. 过椭圆 $3x^2 + 2xy + 3y^2 = 1$ 上任意点作此椭圆的切线, 求切线与两坐标轴围成的三角形面积最小者.
- 4. 在抛物线 $y = x^2$ 的所有与法线重合的弦中求长度最短的弦.
- 5. 设函数 F(x,y) 连续可偏导, Γ 是由 F(x,y) = 0 确定的不自交的封闭曲线. 设 $F_x^2 + F_y^2 \neq 0$ 在 Γ 上处处成立. 若 (x_0,y_0) 是 Γ 外的一定点, (x_1,y_1) 是 Γ 上到 (x_0,y_0) 最 近的点. 求 Γ 在 (x_1,y_1) 处的法线方程.
- 6. 设函数 F(x,y,z) 连续可偏导,S 是由 F(x,y,z)=0 确定的不自交的光滑封闭曲面. 设 $F_x^2+F_y^2+F_z^2\neq 0$ 在 S 上处处成立. 证明:若 A, B 是 S 的两点,且使 A 和 B 的 距离是 S 任两点间距离的最大值. 证明 S 在 A, B 处的两个切平面平行,且均垂直于 A 和 B 的连线.

7. 用条件极值的方法证明 Hölder 不等式

$$\sum_{i=1}^{n} a_i x_i \leqslant \left(\sum_{i=1}^{n} a_i^p\right)^{1/p} \left(\sum_{i=1}^{n} x_i^q\right)^{1/q},$$

其中 $a_i \ge 0, x_i \ge 0, i = 1, \dots, n; p, q > 1, \frac{1}{p} + \frac{1}{q} = 1.$

- 8. 求 $f(x,y) = \sin x \sin y \sin(x+y)$ 在 $D = \{(x,y) | x \ge 0, y \ge 0, x+y \le \pi\}$ 上的最大、最小值.
- 9. 求 $z = x^2 xy + y^2$ 在 $|x| + |y| \le 1$ 中的最大、最小值.
- 10. 求函数 $z = 2x^2 + 12xy + y^2$ 在椭圆盘 $\{(x,y): x^2 + 4y^2 \le 25\}$ 上的最小值.
- 11. 设 $A = (a_{ij})$ 是 n 阶方阵,且设 $\sum_{i=1}^{n} (a_{ij})^2 = H_j, j = 1, 2, \dots, n$, 其中 H_1, \dots, H_n 是 n 个确定的非负实数.
 - (a) 证明: 如果矩阵 A 的行向量是 \mathbf{R}^n 中两两正交的向量,则 $(\det A)^2$ 取到极值;
 - (b) 根据等式 $(\det A)^2 = \det A \cdot \det A^*$, 其中 A^* 是矩阵 A 的转置矩阵, 证明:

$$\max_{A} \det^2 A = \prod_{j=1}^n H_j;$$

(c) 证明: 对任意的矩阵 $B = (b_{ij})$ 有 Hadamard 不等式

苏州大学数学学院

(d) 给 Hadamard 不等式以直观的几何解释.

讨论专题 (可阅读《数学分析习题课讲义》)

- 一、 多元函数和高维映射的中值定理.
- 二、 多元函数增长最快的方向.
- 三、 整体隐函数的存在性.
- 四、 条件极值的充分性判据.