2주 2강

데이터의 2진수 표현

데이터의 2진수 표현

- 일반적인 디지털 장치에서는 2진수로 양의 정수, 음의 정수 그리고 소수를 표현
- 2 2진수는 0, 1, 부호 및 소수점의 기호를 이용하여 수를 표현
- 부호가 있고 소수점을 포함하는 동일 값의 10진수와 2진수를 나타낸 예 (-13.625)₁₀ = (-1101.101)₂
- 4 2진법으로 부호를 갖는 정수와 소수를 표현하려면 추가적으로 부호와 소수점의 기호를 사용하여야 하므로 단순한 진법 변환으로 해결되지 않는다.

1. 정수의 표현

🗾 부호가 존재하는 2진 정수의 표현

- 디지털 장치에서는 부호를 구분할 수 있는 (+)와 (-)같은 별도의 기호는 존재하지 않고 최상위 비트 자리를 부호 비트로 할당하고 0이면 양수의 의미를, 1이면 음수의 의미를 갖는다.
- 나머지 비트들은 적절한 형태로 크기 값을 표현

부호화 - 크기 표현(signed-magnitude representation)

1의 보수 표현(1's complement representation)

2의 보수 표현(2's complement representation)

2. 보수를 이용한 부호를 갖는 2진수의 표현 (1)

- 1의 보수(1's complement) 표현: 모든 비트들을 반전 (0 → 1, 1 → 0)
- 2
 2의 보수(2's complement) 표현: 모든 비트들을 반전하고,

 결과값에 1을 더한다.
 - 보수를 이용한 2진수의 부호 변경

$$(+9)_{10} = (0\ 0001001)_2$$
 $(+35)_{10} = (0\ 0100011)_2$ $(-9)_{10} = (1\ 1110110)_2$ $(1의 보수)$ $(-35)_{10} = (1\ 1011100)_2$ $(1의 보수)$ $(-9)_{10} = (1\ 1110111)_2$ $(2의 보수)$

2. 보수를 이용한 부호를 갖는 2진수의 표현 (2)

- 물로 보수를 이용하면 부호비트가 자연스럽게 변경되고 그 크기도 적절한 형태로 변경된다.
- 4 2의 보수는 0에 대한 표현이 하나만 존재한다. 그리고 앞 절의 부호 없는 뺄셈 연산에서 보았던 것처럼 산술 연산이 용이하다.
- 2의 보수는 가장 효율적이기 때문에 컴퓨터를 비롯한 디지털 장치에 부호를 갖는 2진수를 표현하는데 사용이 된다.

3. 10진수의 2의 보수로 표현된 2진수 변환 과정 (1)

10진수 (-25)₁₀를 2의 보수로 표현된 2진수를 변환하는 과정

1단계. 10진수를 부호가 없는 2진수로 변환한다.

$$(25)_{10} = (11001)_2$$

2단계. 부호 비트를 삽입한다.

$$(25)_{10} = (011001)_2$$

3단계. 1의 보수를 구한다.

$$(011001)_2 \Rightarrow (100110)_2$$

3. 10진수의 2의 보수로 표현된 2진수 변환 과정 (2)

10진수 (-25)₁₀를 2의 보수로 표현된 2진수를 변환하는 과정

4단계. 2의 보수를 구한다.

$$(100110)_2 \Rightarrow (100111)_2$$

따라서 다음 결과를 얻을 수 있다.

$$(-25)_{10} \Rightarrow (100111)_2$$

4. 2의 보수로 표현된 2진수를 10진수로 변환 (1)

- 2의 보수로 표현된 양의 정수(최상위 비트: a_{n-1} = 0)는 부호 비트를 제외한 크기의 비트들은 실제의 크기를 나타낸다.
- 부호 없는 2진수를 10진수로 변환하는 방법과 동일

$$A = a_{n-2} \times 2^{n-2} + a_{n-3} \times 2^{n-3} + ... a_1 \times 2^1 + a_0 \times 2^0$$

4. 2의 보수로 표현된 2진수를 10진수로 변환 (2)

2의 보수로 표현된 음의 정수(최상위 비트: a_{n-1} = 1)

부호 비트의 해당하는 최상위 비트의 자릿수를 2의 승수로 표현하고(-)를 붙여서 음수가 되도록 한다. 나머지 비트는 양의 정수와 동일

$$A = -2^{n-1} + (a_{n-2} \times 2^{n-2} + a_{n-3} \times 2^{n-3} + ... \ a_1 \times 2^1 + a_0 \times 2^0)$$

$$(10101110)_2$$

= -128 + $(1 \times 2^5 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1)$
= $(-82)_{10}$

4. 2의 보수로 표현된 2진수를 10진수로 변환 (3)

2의 보수로 표현된 음의 정수(최상위 비트: a_{n-1} = 1)

2진수 음의 정수를 보수를 이용하여 양의 정수로 만들고 이것을
 10진수로 변환. 그리고 최종 단계에서 (-) 부호를 붙이는 방식이다.

1단계: 2의 보수를 이용하여 음수를 양수로 변환 (10101110 → 01010010)

2단계:
$$(01010010)_2$$

= - $(1 \times 2^6 + 1 \times 2^4 + 1 \times 2^1)$
= - $(64 + 16 + 2) = (-82)_{10}$

5. 2진수의 표현 범위 (1)

2의 보수를 사용한 3비트 이진수 표현의 예

$$+3 = (011)_2$$

 $+2 = (010)_2$
 $+1 = (001)_2$
 $+0 = (000)_2$
 $-1 = (111)_2$
 $-2 = (110)_2$
 $-3 = (101)_2$
 $-4 = (100)_2$

표현할 수 있는 수의 범위는 -4 ~ 3이 된다.
 이것은 -2³⁻¹ ~ 2³⁻¹-1로 표현된다.

5. 2진수의 표현 범위 (2)

기 미비트 데이터의 경우로 일반화해서 수의 범위를 나타내면 다음과 같다.

$$-2^{n-1} \le N \le 2^{n-1}-1$$

6. 부호가 있는 8비트 이진수의 표현 (1)

- 부호화-크기 표현: (2⁷ 1) ~ + (2⁷ 1)
- 1의 보수: (2⁷ 1) ~ + (2⁷ 1)
- **2**의 보수: 2⁷ ~ + (2⁷ 1)

6. 부호가 있는 8비트 이진수의 표현 (2)

십진수	부호화-크기 표현	1 의 보수	2의 보수
127	01111111	01111111	01111111
126	01111110	01111110	01111110
:	:	:	:
:	:	1	:
1	0000001	0000001	0000001
+0	00000000	00000000	00000000
-0	10000000	11111111	х
-1	10000001	11111110	11111111
-2	10000010	11111101	11111110
:	:	:	:
:	:	:	:
-126	11111110	10000001	10000010
-127	11111111	10000000	10000000
-128	×	Х	10000000

2주 3강. 문자데이터 표현과 2진 연산

