BRAC University

Department of Computer Science and Engineering

Midterm Exam Full Marks: 15 x 3 = 45 Time: 1 hour 30 minutes Date: 11th November 2022

Semester: Fall 2022 Course Code: CSE460 Course Title: VLSI Design

Set B

Student ID:	Name:	Section:

[Answer any **THREE** questions out of **FOUR**. Each question carries equal marks.]

[After the exam, the question paper should be turned in along with the answer script.]

1. (CO2) 2. (CO2)	(a)	(a) Design a CMOS compound gate that implements the following function: $Y = (A.B + C.D)$. E														6				
	(b)	 Imagine a gate-level logic circuit with 1 output f, and 4 inputs x1, x0, y1, and y0 Let X = x1 x0 be a two-digit binary number, where the four possible values of X are 00, 01, 10, and 11, which represent the four decimal numbers 0, 1, 2, and 3 respectively. Let Y = y1 y0 be another number with the same four possible values. The output f should be 1 if the sum of numbers represented by X and Y less than decimal 3. Otherwise, the output f should be 0. 												ible nal ies.						
		i) Create a truth table for all 16 combinations of the 4 inputs.														3				
		ii) Derive the boolean expression of the output using k-map.														4				
		iii) Implement the function f with logic gates.												2						
	Given is a pattern for a sequence detector. CLK t_1 t_2 t_3 t_4 t_5 t_6 t_7 t_8 t_9 t_{10} t_{11} t_{12} t_{13} t_{14} t_{15} t_{16} t_{17} t_{18} t_{18}											\prod								
	w	1	1	1	0	1	0	1	$\frac{\iota_8}{1}$	0	0	1	0	1	0	0	0	1	0	1
	z	0	1	1	0	0	0	0	1	0	1	0	0	0	0	1	1	0	0	1
	(a) Identify the sequence and the type of FSM for the above input-output combinations. [Hint: The above table contains two sequences]													1+ 1						
	(b) Design the state diagram, state table, gray encoded state assigned table. [Overlapping allowed].														3+ 2+ 2					
	(c) Determine the logic expressions of the next state and output variables using K-map.																			
	(c) D	eter	min	e the	e log	gic e	xpr	essi	ons	of t	he n	ext s	tate a	and o	utput	varia	ıbles	using	g K-map.	6

