Technologies mobiles

Olivier Levitt

24 janvier 2013

Sommaire

- 1 Présentation et objectifs du cours
 - Organisation administrative
 - Contexte et objectifs
- 2 Le développement mobile
 - Spécificités du développement mobile
 - Présentation des différents OS mobile
- 3 Le développement sur android
 - Mise en place
 - Architecture
 - IHM
 - Données

Contents

- Présentation et objectifs du cours
 Organisation administrative
 - Contexte et objectifs
- 2 Le développement mobile
 - Spécificités du développement mobile
 - Présentation des différents OS mobile
- Le développement sur android

 Mise en place
 - Architecture
 - MHI
 - Données

Planning

• 30 janvier : 3h de cours, 3h de TP

• 6 février : 3h de cours

13 février : 6h de TP

Validation des sujets de projet avant le 20 février

• 20 février : 6h de TP dédiées au projet

• ? mars : Soutenance du projet

Evaluation

- Projet : création d'une application
- Groupe de 2
- Sujet "libre"
- 6h de TP dédiées au projet + travail personnel
- Soutenance / Présentation de l'application

Evaluation, exemples de sujets

- PamplemousseViewer v2
- Gestion d'une bibliothèque
- Quiz
- Tape-taupes
- Serveur SMS

Contents

- Présentation et objectifs du cours
 Organisation administrative
 - Contexte et objectifs
- 2 Le développement mobile
 - Spécificités du développement mobile
 - Présentation des différents OS mobile
- Le développement sur android

 Mise en place
 - Architecture
 - IHM
 - Données

Contexte et objectifs

- Smartphones, tablettes et assimilés (TV, montre, autoradio, consoles de jeu . . .)
- Développement d'application, pas de dev de la plateforme
- 1ère partie : le développement mobile en général
- 2ème partie : application sous android

Contents

- Présentation et objectifs du cours
 - Organisation administrative
 - Contexte et objectifs
- 2 Le développement mobile
 - Spécificités du développement mobile
 - Présentation des différents OS mobile
- Le développement sur android

 Mise en place
 - Architecture
 - MHI
 - Données

Des appareils suréquipés

- Téléphonie (SMS, MMS, appels)
- Internet (GPRS, EDGE, 3G, 4G, WIFI)
- Réseaux locaux (Bluetooth, réseaux adhoc, NFC)
- Capteurs (Luminosité, proximité)
- Localisation (GPS, triangulation, SSID wifi)
- Notifications (Vibreur, haut-parleurs, LED)
- Photo / vidéo
- Stockage de données (Mémoire flash, SD externe, SQLite)
- Interactions (Ecran tactile, gestures, boutons physique)
- Et encore d'autres . . .

Et des API pour utiliser tout ça!

Des contraintes techniques importantes

- Processeur
- Mémoire RAM
- Stockage de données
- Gestion de la batterie
- Stabilité et débit de la connexion internet
- Cycle de vie de l'application
- Taille d'écran
- Inputs atypiques (clavier virtuel, gestures, peu de boutons ...)

Contraintes à garder en tête en permanence.

La fragmentation

Une application publiée sur le google playstore cible plus de 2400 appareils différents!

- "Write once, run everywhere"?
- Comment tester / débugger pour tous ces appareils?
- Eviter de géner l'utilisateur (versions HD, appareils non compatibles)
- S'adapter quand une fonctionnalité n'est pas disponible

La fragmentation, taille d'écran

Comment gérer toutes les tailles d'écran?

- Montres connectées : de 1 à 2 pouces
- Smartphones lowcost: 3 pouces (Galaxy pocket, galaxy Y)
- Smartphones high-end: 4 à 5 pouces (IPhone 5, HTC 8X, nexus 4)
- Phablets : 5 à 6 pouces (Galaxy note, HTC butterfly)
- Tablettes: 7 pouces (Nexus 7, IPad mini), 8 pouces (Archos 80g9), 10 pouces (Nexus 10, IPad)

De nombreuses autres sources de fragmentation

- Versions de l'OS
- Résolutions d'écran
- Elements hardware présents
- Puissance
- Modifications constructeur / "rom custom"
- . . .

Des Ecosystèmes forts

- Obligation d'utiliser le SDK fourni
- Suivre les guidelines
- Restrictions liées à la plateforme
- Utilisation des services de la plateforme
- Processus de déploiement des applications
- Règles des "store" (validation, monétisation . . .)

Contents

- Présentation et objectifs du cours
- Organisation administrative
- Contexte et objectifs
- Le développement mobile
 - Spécificités du développement mobile
 - Présentation des différents OS mobile
- 3 Le développement sur android
 - Mise en placeArchitecture
 - MHI
 - Données

i05

- Soutenu par Apple
- Présenté le 9 janvier 2007
- Dédié aux produits apple (iPhone, iPad, iPod)
- 400 millions d'appareils (Septembre 2012)
- Programmation en objective-C, sur mac OS X uniquement
- ullet Appstore : validation + 100\$ / an

Android

- Soutenu par Google
- 1.0 en septembre 2008, 1.5 en avril 2009
- Plus de 2400 appareils officiellement supportés, + de 50 constructeurs
- 480 millions d'appareils activés (Septembre 2012)
- Programmation en JAVA, sur windows / OS X / linux
- Open-source
- Google playstore : pas de validation + 25\$

Windows phone 8

- Soutenu par Microsoft
- Présentation au public le 29 octobre 2012
- Successeur de windows phone 7 (logique)
- Plusieurs constructeurs dont Nokia, HTC et Samsung
- Programmation en C# sur windows
- ullet Windows marketplace : validation + 100\$ / an

Blackberry 10

≅ BlackBerry10

- Soutenu par RIM (Research in motion)
- Présentation au public le 30 janvier 2012 (!)
- Appareils produits par RIM
- C / C++, HTML5, Adobe AIR, Portage android
- Blackberry appworld : validation + gratuit

Ubuntu for phones

- Soutenu par Canonical
- Teaser le 2 janvier 2012, testable sur galaxy nexus fin février
- Premiers ubuntu phones promis pour début 2014
- Facilement utilisable sur les téléphones android?
- \bullet HTML5, C/C++ + QML
- Open-source
- Peu d'infos sur le store

Firefox OS

- Soutenu par Mozilla
- Premiers téléphones présentés le 22 janvier (geeksphone), disponibles en février?
- Simulateur sous forme d'addon firefox
- HTML5
- Open-source
- Peu d'infos sur le store

Contents

- Présentation et objectifs du cours
 - Organisation administrativeContexte et objectifs
- 2 Le développement mobile
 - Spécificités du développement mobile
 - Présentation des différents OS mobile
- Le développement sur android
 - Mise en place
 - Architecture
 - MHI
 - Données

Les marque-page

- www.frandroid.com (actu FR)
- www.androidpolice.com (actu EN)
- www.androidcentral.com (actu EN)
- www.d.android.com (la bible EN)
- www.stackoverflow (Q/A EN)
- #android et #android-dev sur freenode (chat irc EN)
- www.breizhjug.org et www.paug.fr (communautés FR)
- www.google.fr (réservoir à tutoriels)

Avant de commencer, la checklist

Obligatoire:

- Des (bonnes) bases de programmation en JAVA
- Un ordinateur (Windows, Linux, Mac OS X)

Conseillé:

- Un appareil android (l'émulateur est . . . moyen)
- Parler anglais
- Suivre l'actualité

Les niveaux d'API

Version	Nom	API level	Distribution	Cumulé
1.5	Cupcake	3	0%	0%
1.6	Donut	4	0.2%	0.2%
2.1	Eclair	7	2.4%	2.6%
2.2	Froyo	8	9%	11.6%
2.3	Gingerbread	9/10	47.6%	59.2%
3.X	Honeycomb	12/13	1.5%	60.7%
4.0.X	Ice cream sandwich	15	29.1%	89.8%
4.1	Jelly bean	16	9%	98.8%
4.2	Jelly bean	17	1.2%	100%

TABLE: Répartition des versions pour les accès au google play sur la dernière quinzaine de 2012

Présentation du SDK android

Téléchargement gratuit : www.d.android.com/sdk

docs

platform-tools

system-images

Présentation du SDK android

- add-ons : Google APIs
- docs : Copie de la documentation disponible sur d.android.com
- extras : Lib de compatibilité, lib pour les achats in-app . . .
- platform-tools : Binaires de communication avec les appareils android (adb, fastboot ...)
- platforms : 1 dossier par niveau d'API téléchargé
- samples : Exemples de projets
- sources : Sources de chaque niveau d'API
- system-images : Images pour l'émulateur
- temp
- tools : Outils pour le dev (ddms, apkbuilder, lint . . .)

Plugin android pour eclipse : ADT

Installation comme un plugin eclipse classique https://dl-ssl.google.com/android/eclipse/ ADT fait le lien entre eclipse et le SDK android

L'émulateur

- Utile pour tester certaines configurations
- ((très) très) lent
- Utiliser un appareil android à la place quand c'est possible

Alternative à l'émulateur

- Problème : émuler de l'ARM sur nos machines x86
- Résultat : émulateur ((très) très) lent
- Solution proposée : porter android sur x86
- http://www.android-x86.org/

Contents

- Présentation et objectifs du cours
 - Organisation administrative
 - Contexte et objectifs
- Le développement mobile
 - Spécificités du développement mobile
 - Présentation des différents OS mobile
- Le développement sur android
 - Mise en place Architecture
 - MHI

 - Données

Organisation d'un projet android

```
material = # com.ensai.technomobile
   MainActivity.iava
Generated Iava Files
  mail: ## com.ensai.technomobile

■ Di BuildConfig.iava

☐ 

■ Android 4.2

 i android.iar - /home/gon/Desktop/sdk/platforms/android-4.2
android-support-v4.jar - /home/gon/Desktop/workspace/TechnoMobile/libs
🖭 🔓 bin
□ ♣ libs
    android-support-v4.jar
res
 🕒 📂 drawable-hdpi
   □ (⇒ layout
      activity main.xml
 a strings.xml
      a styles.xml

⊕ values-v11

⊕ values-v14

  AndroidManifest.xml
  proguard-project.txt
  project.properties
```

Détail de l'organisation

- src : code source java
- gen : identifiants des ressources (généré par le sdk)
- Android 4.2 : jar correspondant à l'API cible
- Android Dependencies : jar rajoutés, correspond à libs
- assets : fichiers fournis avec l'app
- bin : résultat de la compilation (dont l'apk)
- libs : jar rajoutés
- res : ressources (layouts, strings, images . . .)
- AndroidManifest.xml : métadonnées sur l'application, composants, permissions . . .
- proguard-project.txt : configuration de proguard
- project.properties : généré par le sdk

AndroidManifest.xml : le coeur de l'application

```
<?xml version="1.0" encoding="utf-8"?>
manifest xmlns:android="http://schemas.android.com/apk/res/android"
     package="com.ensai.technomobile"
     android:versionCode="1"
     android:versionName="1.0" >
     <uses-sdk
         android:minSdkVersion="8"
         android:targetSdkVersion="17" />
     <application
         android:allowBackup="true"
         android:icon="@drawable/ic launcher"
         android: label="@string/app name"
         android:theme="@style/AppTheme" >
             android:name="com.ensai.technomobile.MainActivity"
             android:label="@string/app name" >
             <intent-filter>
                 <action android:name="android.intent.action.MAIN" />
                 <category android:name="android.intent.category.LAUNCHER" />
         </activity>
     </application>
 </manifest>
```

- Déclaration des composants
- Déclaration des permissions
- Déclaration d'autres métadonnées de l'application
- Analysé par l'OS à l'installation

Le système de ressources

```
public final class R {
    public static final class attr {
        public static final class drawable {
            public static final lnt ic_launcher=0x7f020000;
    }
    public static final class id {
            public static final lnt menu_settings=0x7f070000;
    }
    public static final class layout {
            public static final lnt activity_main=0x7f030000;
    }
    public static final class menu {
            public static final int activity_main=0x7f060000;
    }
    public static final class string {
            public static final lnt app_name=0x7f040000;
            public static final int app_name=0x7f040001;
            public static final int menu_settings=0x7f040002;
    }
}
```

- Un identifiant est généré pour chaque ressource (drawable, layout, menu, values, style . . .)
- Nom de l'identifiant = nom de la ressource sans l'extension
- Utiliser des ressources différentes en fonction de la configuration (values et values-fr, drawable et drawable-hdpi)

Déployer l'application

- Une application android = un APK (+/- équivalent d'un jar)
- Une application android doît être signée
- Attention à ne pas perdre la clé!
- Création et signature de l'APK simple sous eclipse (export)

Processus de déploiement en dev

- ullet Comme pour une application JAVA classique, ctrl + F11
- Eclipse demande au SDK de builder l'APK
- Eclipse signe l'APK avec la clé debug
- Eclipse demande à adb (SDK) d'installer l'application
- Soit sur un appareil android connécté soit sur un émulateur

Distribuer l'application

- Distribution directe de l'APK (ex : pour tester, béta fermée)
- Publication sur le playstore, 25\$ à l'inscription
- Application gratuite ou payante (30% pour google)

Déboguer l'application

Unfortunately, TechnoMobile has stopped. ок

- Si une exception n'est pas rattrapée, android tue l'application
- On parle de "force close" (FC)
- Comment déboguer une application qui tourne sur un appareil (ou émulateur)?

Stacktrace of GTFO

Logcat, le sauveur

- Le SDK fournit un outil très pratique : logcat
- On appelle logcat par adb : adb logcat ou on utilise la vue LogCat du plugin ADT
- Logcat affiche l'ensemble des logs, système et application

Logcat, exemple

Contents

- Présentation et objectifs du cours
 - Organisation administrative
 - Contexte et objectifs
- 2 Le développement mobile
 - Spécificités du développement mobile
 - Présentation des différents OS mobile
- Le développement sur android
 - Mise en placeArchitecture
 - Architectur
 - IHM
 - Données

Activity, le composant de base

- 1 activity ∼ un écran
- Une application peut avoir 0-n activities
- A ajouter dans le manifest
- Créer une classe java héritant de Activity

Cycle de vie d'une activity

Créer une activity : étendre Activity

```
public Class MyActivity extends Activity {

coverride
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
}
}
```

- onCreate est appellé à la création de l'activity (cf cycle de vie)
- appel obligatoire à super.onCreate
- le bundle savedInstanceState contient les informations en cas de relancement de l'activity
- savedInstanceState est null s'il s'agit du premier lancement

L'organisation d'une activity : les layouts

2

4 5

6

7 8

g 10

11

```
<LinearLayout
1
  xmlns:android="http://schemas.android.com/apk/res/android"
       android:layout_width="match_parent"
3
       android:layout_height="match_parent">
      <TextView
           android:layout_width="wrap_content"
           android: layout_height="wrap_content"
           android:text="@string/hello_world"/>
  </LinearLayout>
```

- Ils sont définis en XML dans le dossier res/layout
- Ils définissent l'organisation des vues
- Eviter au maximum de modifier / créer les layouts au runtime

Les Views

Une vue = un élement à l'écran

- TextView = Un texte
- EditText = Un champ de texte remplissable
- ImageView = Une image
- Button
- CheckBox
- Plein d'autres views de base dans android
- Possibilité de créer ses propres views en étendant View ou SurfaceView

Les ViewGroups

- LinearLayout
- RelativeLayout
- ListView
- Plein d'autres
- Les vôtres :)

Manipuler les éléments de l'Ul en java

Etape 1 : donner un identifiant à la vue

```
<LinearLayout
1
   xmlns:android="http://schemas.android.com/apk/res/android"
       android:layout_width="match_parent"
3
       android:layout_height="match_parent"
        android:id="@+id/monlayout">
5
6
7
       <Button
            android:layout_width="wrap_content"
8
            android: layout_height="wrap_content"
g
            android: id="@+id/monbouton"
10
            android:text="@string/hello_world"/>
11
12
13
   </LinearLayout>
```

Manipuler les éléments de l'UI en java

Etape 2 : récupérer les réferences vers les views

```
public Class MyActivity extends Activity {
1
2
   ViewGroup layout = null;
3
   Button bouton = null;
5
   Olverride
6
   protected void onCreate(Bundle savedInstanceState) {
7
   super.onCreate(savedInstanceState);
   setContentView(R.layout.activity_main);
   layout = (ViewGroup) findViewById(R.id.monlayout);
10
   bouton = (Button) findViewById(R.id.monbouton);
11
12
13
```

Manipuler les éléments de l'UI en java

```
public Class MyActivity extends Activity {
1
2
   ViewGroup layout = null;
3
   Button bouton = null:
5
6
   Olverride
7
   protected void onCreate(Bundle savedInstanceState) {
   super.onCreate(savedInstanceState);
8
   setContentView(R.layout.activity_main);
9
   layout = (ViewGroup) findViewById(R.id.monlayout);
10
   bouton = (Button) findViewById(R.id.monbouton);
11
12
13
   public void changerTexte(String texte) {
14
   bouton.setText(texte);
15
16
17
   public void cacherTout() {
18
   layout.setVisibility(View.INVISIBLE);
19
20
21
```

Ecouter les évenements

- Système de listeners (cf swing)
- Il se passe quelque chose sur la vue (touch, focus ...) : le listener est prévenu
- Pour simplifier, sur android on a en général qu'un listener par évenement et par view (setXListener au lieu de addXListener sous swing)

Ecouter les évenements, guide du bon listener

Etape 1: Les interfaces XListener

```
public Interface OnClickListener {
void onClick(View v);
}
```

Etape 2 : Implémenter l'interface

```
public MaClasse implements OnClickListener {
public void onClick(View v) {
   //Un click a ete fait sur la vue v
}
}
```

Ecouter les évenements, guide du bon listener

Etape 3 : S'enregistrer comme listener

```
public Class MyActivity extends Activity implements
       OnClickListener {
2
   Button bouton = null;
3
4
       Olverride
5
        protected void onCreate(Bundle savedInstanceState) {
6
            super.onCreate(savedInstanceState);
7
            setContentView(R.layout.activity_main);
8
            bouton = (Button) findViewById(R.id.monbouton);
9
            bouton.setOnClickListener(this);
10
11
12
        public void onClick(View v) {
13
            //Un Click a ete fait sur la vue v
14
15
16
```

Ecouter les évenements, quelques feintes

Feinte 1 : Utiliser des listeners anonymes

```
public Class MyActivity extends Activity implements
1
       OnClickListener {
2
3
       Button bouton = null:
       Olverride
        protected void onCreate(Bundle savedInstanceState) {
6
            super.onCreate(savedInstanceState);
7
            setContentView(R.layout.activity_main);
8
            bouton = (Button) findViewById(R.id.monbouton);
9
            bouton.setOnClickListener(new OnClickListener() {
10
                     public void onClick(View v) {
11
                     //Un Click a ete fait sur la vue v
12
13
                });
14
15
16
```

Ecouter les évenements, quelques feintes

Feinte 2 : Définir le listener directement dans le layout

```
<LinearLayout
1
   xmlns:android="http://schemas.android.com/apk/res/android"
       android:layout_width="match_parent"
3
       android:layout_height="match_parent"
4
        android:id="@+id/monlayout">
5
6
7
       <Button
            android:layout_width="wrap_content"
8
            android:layout_height="wrap_content"
g
            android:id="@+id/monbouton"
10
            android:text="@string/hello_world"
11
            android:onClick="clickSurLeBouton" />
12
13
   </LinearLayout>
14
```

```
public void clickSurLeBouton(View v) //dans MyActivity
```

La classe abstraite context

- La plupart des fonctions d'android (accéder à une ressource, lancer une activité . . .) nécessitent une instance de Context
- Un Context regroupe des informations globales sur l'environnement de l'application
- Android se charge de créer les contextes
- Activity hérite (indirectement) de Context
- Les views ont toutes une réference vers un context

Affichage d'un court message : le toast

Les intents

- On déclare son intention, android réagit en conséquence
- Intents implicites "Je veux ouvrir la page web https://twitter.com/Ensai35"
- "Je veux envoyer un mail à jlegouic@ensai.fr avec le titre URGENT : FOOT"
- Intents explicites "Je veux lancer l'activity MyActivity"

Lancer un intent implicite

```
public MyActivity extends Activity {
1
       public void envoyerMail() {
3
           Intent i = new Intent(Intent.ACTION_SEND);
           i.setType("message/rfc822");
5
           i.putExtra(Intent.EXTRA_EMAIL , "annee2@ensai.fr");
6
           i.putExtra(Intent.EXTRA_SUBJECT, "URGENT : FOOT");
           i.putExtra(Intent.EXTRA_TEXT , "...");
           trv
                startActivity(i);
10
11
           catch (ActivityNotFoundException ex) {
12
                //Pas de client mail installe
13
14
15
16
```

Lancer un intent explicite

```
public MyActivity extends Activity {

public void lancerMyActivity2() {
    Intent intent = new Intent(this, MyActivity2.class);
    //this fait reference a un context
    startActivity(intent);
}
```

Contents

- Présentation et objectifs du cours
 - Organisation administrativeContexte et objectifs
- 2 Le développement mobile
 - Spécificités du développement mobile
 - Présentation des différents OS mobile
- 3 Le développement sur android
 - Mise en placeArchitecture
 - IHM
 - Données