Analyse expérimentale des algorithmes de jointure:

Graphiques des performances des différents algorithmes:

Conclusion:

Jointure par tri fusion:

Avantages:

- Bonne performance pour des petites relations ou des relations déjà triées.
- Peut fonctionner efficacement même avec des données non triées.

Inconvénients:

• Le tri initial peut être coûteux en termes de temps et de ressources, en particulier pour de grandes relations.

Jointure par hachage simple:

Avantages:

• Performances généralement élevées, en particulier pour de grandes relations.

Inconvénients:

• Les performances peuvent être affectées si les données ne sont pas uniformément distribuées et entraînent des collisions de hachage.

Produit cartésien:

Inconvénients:

- La complexité temporelle est généralement élevée, car elle nécessite de parcourir toutes les combinaisons possibles de tuples des relations.
- Le coût de calcul peut être prohibitif pour de grandes relations, car le nombre de tuples dans le produit cartésien croît rapidement avec la taille des relations.

Produit cartésien indexé (ou jointure par fusion d'index) :

Avantages:

- Performances généralement élevées, surtout pour de grandes relations.
- Peut gérer efficacement des relations non triées.

Inconvénients:

- Nécessite la construction d'index ou de tables de hachage, ce qui peut être coûteux en termes de mémoire et de ressources lors de la phase de prétraitement.
- Les performances peuvent être affectées si les données ne sont pas uniformément distribuées, entraînant des collisions d'index.