Appunti di Matematica

Nicola Ferru

Indice

	0.1	Simboli	9
Ι	\mathbf{M}_{i}	atematica analisi 1	11
1	Cen	ni di teoria degli insiemi	13
		1.0.1 Operazioni tra gli insiemi	13
	1.1	Sottoinsiemi di R	13
		1.1.1 Definizione	13
	1.2	Funzione di una variabile	14
		1.2.1 Definizione	14
2	Stu	lio di funzione	17
	2.1	Grafica delle funzioni elementari	17
		2.1.1 Funzione lineare $y = mx + qm, q \in R$	17
		2.1.2 Funzione valore assoluto $y = x $	18
		2.1.3 Funzione potenza $y=x^n, n\in N, pari$	18
		2.1.4 Funzione potenza $y=x^{\alpha}, \alpha \in R \ (ma \ non \ razionale) \ . \ . \ . \ . \ . \ . \ . \ .$	19
		2.1.5 Funzione potenziale $y=x^{\frac{m}{n}}, m,n\in \mathbb{Z}$	19
		2.1.6 Funzione logaritmo $y = \log_a x$	19
		2.1.7 Le coniche: la circonferenza	20
		2.1.8 Le coniche: l'ellisse	21
		2.1.9 Le coniche: iperbole \dots	21
		2.1.10 Le coniche: iperbole equilattera	22
		2.1.11 Le coniche: parabola	22
		2.1.12 Le funzioni trigonometriche	23
		2.1.13 Le funzioni trigonometriche inverse	25
	2.2	Limiti	29
		2.2.1 Limite di una funzione	30
		2.2.2 Definizione di Limite destro	30
		2.2.3 Definizione di limite sinistro "da sinistra"	30
		2.2.4 Teorema d'unicità del limite "da destra"	30
		2.2.5 Teorema (algebra dei limiti)	32
		2.2.6 Convenzioni con ∞	32
		2.2.7 Forme indeterminate	33
		2.2.8 Teorema del confronto	33
		2.2.9 Limite di funzione composta	33
		2.2.10 Limiti Notevoli	33
		2.2.11 Infinitesimi e infiniti	34
		2.2.12 Funzioni continue	36
		2 2 13 Criteri di invertibilità	37

4 INDICE

2.3	Calcolo	o differenziale per funzioni di una variabile					
	2.3.1	Derivata di una funzione					
	2.3.2	Definizione					
	2.3.3	Continuità e derivabilità					
2.4	Punti di non derivabilità						
	2.4.1	Punto angoloso					
	2.4.2	Punto cuspude					
	2.4.3	Esempi di derivate					
	2.4.4	Teorema di derivazione della funzione composta					
	2.4.5	Teorema di derivazione della funzione inversa					
	2.4.6	Esercizio					
	2.4.7	Esercizio					
	2.4.8	Esercizio					
2.5	Massin	no e minimo assoluto					
2.6	Massin	no e minimo relativo (o estremi locali)					
	2.6.1	Punti Stazionari					
2.7	Teoren	na di Fermat					
2.8	Teoren	na di Rolle					
	2.8.1	Dimostrazione					
	2.8.2	Esercizio dimostrativo					
	2.8.3	Esercizio dimostrativo					
2.9	Teoren	na di Lagrange (o del valor medio)					
	2.9.1	Dimostrazione					
	2.9.2	Esempio					
	2.9.3	Esercizio dimostrativo					
	2.9.4	Esercizio dimostrativo					
2.10	Teorema di Cauchy						
	2.10.1	Dimostrazione					
2.11	Teoren	na di de l'Hopital					
2.12	Funzio	ni convesse e concave					
	2.12.1	Definizione di funziona convessa					
	2.12.2	Definizione di funziona concave					
	2.12.3	Derivata seconda					
	2.12.4	Criterio di convessità					
	2.12.5	Criterio per i punti di massimo e di minimo relativo					
2.13	Punti j	per lo svolgimento dello studio di funzione					
		Studio del grafico di f(x), Asintoti					
2.14		ssimazione di funzioni con polinomi					
		Polinomio di Taylor					
2.15		io d'esempio					

Elenco delle tabelle

Elenco delle figure

1.1	Granco di insieme di $f=x^2, g(x)=3x+2$
2.1	Grafico di Funzione lineare $y = mx + qm, q \in R$
2.2	Grafico di Funzione valore assoluto $y = x \dots \dots$
2.3	Grafico di Funzione potenza $y=x^n, n\in N, pari$ 18
2.4	Grafico di Funzione potenza $y = x^{\alpha}, \alpha \in R$ (ma non razionale)
2.5	Grafico di Funzione potenza $y = x^{\alpha}, \alpha \in R$ (ma non razionale)
2.6	Funzione logaritmo $y = \log_a x$
2.7	Le coniche: la circonferenza
2.8	Le coniche: l'ellisse
2.9	Le coniche: iperbole
2.10	Le coniche: iperbole equilattera
2.11	Le coniche: parabola
2.12	Le funzioni trigonometriche
2.13	Funzione $\sin x$
2.14	Funzione $\cos x$
2.15	Funzione $\tan x$
2.16	Funzione $\cot x$
2.17	Funzione $\arcsin x$
2.18	Funzione $\arccos x$
2.19	Funzione $\arctan x$
2.20	Operazione sul grafico: traslazione della asse X $\dots \dots $
2.21	Operazione sul grafico: traslazione della asse Y $\dots \dots $
2.22	Operazione sul grafico: contrazione e dilatazione in direzione verticale
	Operazione sul grafico: contrazione e dilatazione in direzione orizzontale
2.24	Operazione sul grafico: $y = f(x) $
2.25	Esempio limite di funzione
2.26	Esempio di limite di una funzione
2.27	Asintoto verticale
2.28	Asintoto orizzontale
2.29	Esempio di limite notevole di una funzione
2.30	Grafico di Funzione valore assoluto $y= x $ e quindi $f_+'(0)=1\neq f_+'=-1$
	Grafico di Funzione $x = x^2 - 1 $
2.32	Grafico di Funzione $f(x) = \frac{(x-3)^{\frac{2}{3}}}{3}$

0.1 Premesse...

In questo repository sono disponibili pure le dimostrazioni grafiche realizzate con Geogebra consiglio a tutti di dargli un occhiata e di stare attenti perché possono essere presenti delle modifiche per migliorare il contenuto degli stessi appunti, comunque solitamente vengono fatte revisioni tre/quattro volte alla

settimana perché sono in piena fase di sviluppo. Ricordo a tutti che questo è un progetto volontario e che per questo motivo ci potrebbero essere dei rallentamenti per cause di ordine superiore e quindi potrebbero esserci meno modifiche del solito oppure potrebbero esserci degli errori, chiedo la cortesia a voi lettori di contattarmi per apportare una modifica. Tengo a precisare che tutto il progetto è puramente open souce e infatti sono disponibili i sorgenti dei file allegati insieme ai PDF.

Cordiali saluti

0.2. SIMBOLI 9

0.2 Simboli

 $\in \operatorname{Appartiene}$ $\Rightarrow \mathrm{Implica}$ β beta $\not\in$ Non appartiene \Longleftrightarrow Se e solo se γ gamma \exists Esiste \neq Diverso Γ Gamma $\exists !$ Esiste unico \forall Per ogni δ, Δ delta \subset Contenuto strettamente \ni : Tale che ϵ epsilon $\subseteq Contenuto$ \leq Minore o uguale σ, Σ sigma \supset Contenuto strettamente \geq Maggiore o uguale ρ rho $\supseteq {\rm Contiene}$ α alfa

Parte I Matematica analisi 1

Capitolo 1

Cenni di teoria degli insiemi

Per rappresentare un insieme abbiamo tre possibilità:

- 1. Rappresentazione estensive A = [0, 1, 2, 3, 4]
- 2. Rappresentazione intensiva $A = [x|x \in Nex < 5]$
- 3. Rappresentazione con diagrammi di Eulero Venn

1.0.1 Operazioni tra gli insiemi

Un insieme può essere contenuto in un altro:

1.1 Sottoinsiemi di R

1.1.1 Definizione

- 1. Un punto x_0 si dice intero ad A se esiste un suo interno $I(x_0, \delta)$ con $\delta > 0$ contenuto in A.
- 2. Si dice esterno ad A se è interno al CA (A^c) .
- 3. Si dice di frontiera per A se non è né interno né esterno ad A.

Interno di A

A Insieme dei punti interni ad A.

Esempio se A = (1, 3], A = (1, 3)

 $\partial \mathbf{A}$, FA Insieme dei punti di frontiera di A

Esempio se A=(1,3], i punti di frontiera sono i punti x=1 e x=3

Osservazioni

- Se $x_0 \in {}^{\circ}A \Rightarrow x_0 \notin A$
- Se $x_0 \notin {}^{\circ}A$ (esterno) $\Rightarrow x_0 \notin A$
- Se $x_0 \in \partial A$ (frontiera) può essere $x_0 \in A$ oppure $x_0 \notin A$, in ogni caso per $\forall I(x_0.\delta)$ continue sia punti di A sia punti CA.

Definizione x_0 è un punto di accumulazione per A se in $\forall I(x_0, \delta)$ esiste un punti di A diverso da x_0 . (Cioè in ogni interno di $x_0 \exists$ infiniti elementi di A)

Esempio se A = (-2,3], x = -2 è accumulazione per A, ma anche $x = 3, x = 0, x = 1, \ldots$, cioè è di accumulazione per A, qualunque $x \in [2,3]$.

DA=A'=derivato di A è l'insieme dei punti di accumulazione per A. Se $x_0 \in DA$ allora può aversi $x_0 \in A$ oppure $x_0 \notin A$

Esercizio x = 1ex = 3 sono entrambi punti di accumulazione per l'intervallo (1.3], x = 3 appartiene all'intervallo dato, x=1 NO.

- 1. Se $x_0 \in A \Rightarrow x_0 \in DA$;
- 2. Se $x \notin DA$ allora x_0 si dice isolato;
- 3. Se $DA = \phi \Rightarrow A$ si dice discreto **Esempio** $A = \{1, 2, 3, 4\}$
- 4. Se $DA = A \Rightarrow A$ si dice perfetto **Esempio** A = [a, b]

Definizione Dato $A \subset R$ si definisce chiusura di A e si indica con \bar{A} , l'insieme: $\bar{A} = A \bigcup \partial A$ A è chiuso $\Leftrightarrow A = \bar{A}$

Esempio se A = (2, 5], allora $\bar{A} = [2, 5]$

Teorema di Bolzano Weierstrass

Ogni $A \subset \mathbb{R}^n$ limitato e finito possiede almeno un punto di accumulazione. Un insieme chiuso e limitato in \mathbb{R}^n ammette massimo e minimo assoluto.

Esempio $A = [1, 4], \max(A) = 4, \min(A) = 1 \ A = \{x \in R : x^2 \le 1\} \ \max(A) = 1, \min(A) = -1$

1.2 Funzione di una variabile

1.2.1 Definizione

Dati A, $B \subseteq R$ una funzione A in B è una legge (o relazione, o mappa) che ad ogni elemento x di A associa uno ed un solo elemento y di B. $f: A \to B$ oppure y = f(x) $x \in A$ e $y = f(x) \in R$

- \bullet A = dominio o insieme di definizione di f.
- B = codominio di f.

Il grafico di f è un insieme di punti del piano (generalmente una curva) che è sottoinsieme del prodotto cartesiano AxB costituito da (x, f(x)) con $x \in A, f(x) \in B$

Definizione di funzione Immagine L'immagine di A tramite f, f(A), è l'insieme dei valori di y tale che $\exists x \in A$ tale che $f(x) \in B$.

Esempio Se
$$f: A \to B$$
 $f(x) = x^2$ $A = R$, $f(A) = [0, +\infty)$

Definizione di funzione suriettiva Si dice che $f: A \to B$ è suriettiva se f(A) = B (cioè fissato $y \in B \exists x \in A : y = f(x)$)

Definizione di funzione iniettiva Si dice che $f: A \to B$ è iniettiva se $x_2 \neq x_1 \Rightarrow f(x_1) \neq f(x_2)$

Una funzione può essere sia iniettiva che suriettiva "biiettiva" Se f è sia suriettiva che iniettiva allora si dice biiettiva (cioè si ha un corrispondenza biunivoca tra A e B)

Quando una funzione è pari? Una funzione è pari se $\forall x \in A : f(x) = f(-x)$ quindi il grafico di f è simmetrico rispetto all'asse Y (es. $y = x^2$)

Quando una funzione è dispari? Una funzione è dispari se $\forall x \in A : f(-x) = -f(-x), f(x) = -f(-x)$ quindi il grafico di f è simmetrico rispetto all'origine (es. $y = x^3$)

Quando una funzione è periodica? Una funzione $A \to B$ è periodica di periodo T > 0, se $\forall x \in A, x + T \in A$ e f(x + T) = f(x)

Esempio Funzioni trigonometriche

Quando una funzione è limitata superiormente? Una funzione si dice limitata superiormente se $\exists M \in R : f(x) \leq M \ \forall x \in A \ (il grafico di f sta sotto la retta orizzontale <math>y = m)$

Quando una funzione è limitata inferiormente? Analogamente, al caso precedente, una funzione si dice limitata inferiormente se $\exists m \in R : f(x) \leq m \forall x \in A$ (il grafico di f sta sopra la retta orizzontale g = m. La funzione f si dirà limitata se è limitata sia inferiormente che superiormente).

Quando una funzione viene definita composta? Una funzione $A \to B \in B \to C$ si definisce composta di $f \in g$: g(f(x)) La funzione h: $A \to Ch = g^o f$

Esempio
$$f=x^2, g(x) = 3x + 2, (A \equiv B \equiv C \equiv R)g^o f = 3x^2 + 2$$

Esempio
$$f = x^2, g(x) = 3x + 2$$
 $g^{\circ}f = 3x^2 + 2$

L'operazione di composizione non è commutativa $(g^o f \neq f^o g)$. La composizione di due funzioni biiettive è biiettiva

Quando una funzione è inversa? Date $f: A \to B$ biiettiva, si definisce funzione inversa di $f: f^{-1}:_B \to A$ tale che f^{-1} o $f = I_A$ f o $f^{-1} = I_B$

Nota La funzione $y=x^2$ $(f\colon R\to R)$ non è biiettiva ma è stata "resa" biiettiva, quindi invertibile, restringendo il suo dominio (per l'iniettività) e codominio (per la suriettività). Nell'esempio il dominio è stato «rimpicciolito» in modo tale da avere una funzione strettamente crescente e quindi iniettiva. Il codominio è stata «rimpicciolito» all'intervallo massimale $[0,+\infty)$ e la funzione è diventata anche suriettiva.

Figura 1.1: Grafico di insieme di $f=x^2, g(x)=3x+2$

Quando una funzione viene definita monotona? Sia $f:A \to B$, f si dice monotona in A se verifica una delle seguenti condizioni $(\forall x_1, x_2 \in A)$

- 1. f strettamente crescente se $x_1 < x_2, f(x_1) < f(x_2)$
- 2. f crescente se $x_1 < x_2, f(x_1) \le f(x_2)$
- 3. f strettamente decrescente se $x_1 < x_2, f(x_1) < f(x_2)$
- 4. f decrescente se $x_1 < x_2, f(x_1) \ge f(x_2)$

Se si verificano la 1 e 3 allora la funzione f(x) è strettamente monotona.

Teorema. Una funzione $f:A \to B$ strettamente monotona in A, è invertibile in A. Inoltre la sua inversa è ancora strettamente monotona.

Capitolo 2

Studio di funzione

In analisi matematica la locuzione studio di funzione indica l'applicazione pratica dei teoremi e delle tecniche del calcolo infinitesimale nello specifico caso di una funzione di cui è nota l'espressione analitica. Lo studio di funzione è utile per ricavare esplicitamente le informazioni che descrivono il comportamento di una funzione nel suo dominio. Spesso, le informazioni ottenute mediante uno studio di funzione sono sufficienti per poter tracciare, anche a mano, un grafico qualitativo della funzione studiata e che in genere, per funzioni a valori reali di una variabile reale, viene rappresentato su un piano cartesiano, anche se in taluni casi potrebbe essere più semplice ricorrere un sistema di coordinate differente. In genere, con "studio di funzione" ci si riferisce implicitamente al solo e specifico caso delle funzioni reali di una sola variabile reale, ma con le opportune modifiche è comunque possibile adattare le considerazioni seguenti anche al caso delle funzioni di più variabili reali, nonché anche per le funzioni di una o più variabili complesse.

By Wikipedia

2.1 Grafica delle funzioni elementari

2.1.1 Funzione lineare $y = mx + qm, q \in R$

Figura 2.1: Grafico di Funzione lineare $y = mx + qm, q \in R$

 $C.E. \equiv R$ Non Limitata

2.1.2 Funzione valore assoluto y = |x|

Figura 2.2: Grafico di Funzione valore assoluto y=|x|

$$C.E. \equiv R \text{ Limitata inferiormente in } x = 0$$

$$|x| = \begin{cases} x & x \geq 0 \\ -x & x < 0 \end{cases}$$

2.1.3 Funzione potenza $y = x^n, n \in N, pari$

Figura 2.3: Grafico di Funzione potenza $y=x^n, n\in N, pari$

2.1.4 Funzione potenza $y = x^{\alpha}, \alpha \in R$ (ma non razionale)

Figura 2.4: Grafico di Funzione potenza $y=x^{\alpha}, \alpha \in R \ (ma\ non\ razionale)$

 $C.E.:\{x\in R:x\geq 0\}$ Limitata inferiormente da x=0non limitata superiormente Strettamente crescente

2.1.5 Funzione potenziale $y = x^{\frac{m}{n}}, m, n \in \mathbb{Z}$

Figura 2.5: Grafico di Funzione potenza $y = x^{\alpha}, \alpha \in R$ (ma non razionale)

2.1.6 Funzione logaritmo $y = \log_a x$

 $C.E. \equiv x > 0$ Non limitata, strettamente crescente se a > 1, Strettamente decrescente se 0 < a < 1.

Figura 2.6: Funzione logaritmo $y = \log_a x$

2.1.7 Le coniche: la circonferenza

Figura 2.7: Le coniche: la circonferenza

2.1.8 Le coniche: l'ellisse

Figura 2.8: Le coniche: l'ellisse

2.1.9 Le coniche: iperbole

Figura 2.9: Le coniche: iperbole

${\bf 2.1.10}\quad {\bf Le\ coniche:\ iperbole\ equilattera}$

Figura 2.10: Le coniche: iperbole equilattera

2.1.11 Le coniche: parabola

Figura 2.11: Le coniche: parabola

2.1.12 Le funzioni trigonometriche

Funzioni trigonometriche elementati: $y=\sin x, y=\cos x, y=\tan x, y=\cot x$ Relazioni fondamentali: $(\sin x)^2+(\cos x)^2=1$, $\tan x=\frac{\sin x}{\cos x}$, $\cot x=\frac{\cos x}{\sin x}$

Figura 2.12: Le funzioni trigonometriche

Funzione $\sin x$

Figura 2.13: Funzione $\sin x$

Funzione $\cos x$

Figura 2.14: Funzione $\cos x$

Funzione $\tan x$

Figura 2.15: Funzione $\tan x$

Funzione $\cot x$

Figura 2.16: Funzione $\cot x$

${\bf 2.1.13}\quad {\bf Le\ funzioni\ trigonometriche\ inverse}$

Funzione $\arcsin x$

Figura 2.17: Funzione $\arcsin x$

Funzione $\arccos x$

Figura 2.18: Funzione $\arccos x$

Funzione $\arctan x$

Figura 2.19: Funzione $\arctan x$

Operazione sul grafico: traslazione della asse ${\bf X}$

Figura 2.20: Operazione sul grafico: traslazione della asse X

Operazione sul grafico: traslazione della asse ${\bf Y}$

Figura 2.21: Operazione sul grafico: traslazione della asse Y

Operazione sul grafico: contrazione e dilatazione in direzione verticale

Figura 2.22: Operazione sul grafico: contrazione e dilatazione in direzione verticale

Operazione sul grafico: contrazione e dilatazione in direzione orizzontale

Figura 2.23: Operazione sul grafico: contrazione e dilatazione in direzione orizzontale

2.2. LIMITI 29

Operazione sul grafico: y = |f(x)|

Figura 2.24: Operazione sul grafico: y = |f(x)|

2.2 Limiti

Figura 2.25: Esempio limite di funzione

Il limite di una funzione è un operazione, o meglio un operatore, che permette di studiare il comportamento di una funzione nell'intorno di un punto x_0 .

Mediamente il limite è possibile stabilire a quale valore tende la funzione man mano che i valori della variabile si approssimano al punto x_0 .

Figura 2.26: Esempio di limite di una funzione

2.2.1 Limite di una funzione

Sia f(x) definita in $A \in R$, e sia x_0 un punto di accumulazione per A. Si dice che f(x) ha limite l per x che tende a x_0 , se $V\varepsilon > 0 \exists \delta_\varepsilon > 0 : |f(x) - l| = \varepsilon \Rightarrow x \in I(x_0, \delta_\varepsilon)$ escluso al più x_0 cioè $|x - x_0| < \delta_\varepsilon$

- $l \varepsilon < f(x) < l + \varepsilon$
- $x_0 \varepsilon < x < x_0 + \delta_{\varepsilon}$

In simboli

$$\lim_{x \to x_0} f(x) = l \ f(x) \xrightarrow{x \to x_0} l$$

2.2.2 Definizione di Limite destro

 l_1 si definisce limite destro di f(x) per x che tende a x_0^+ : $\lim_{x \to x_0^+ f(x) = l_1}$ se $\forall \varepsilon > 0 \exists \delta_{\varepsilon} > 0 : |f(x) - l_1| < \varepsilon \Rightarrow x_0 < x < x_0 + \delta_{\varepsilon}$ cioè $x \in (x_0, x_0 + \delta_{\varepsilon})$

2.2.3 Definizione di limite sinistro "da sinistra"

 l_2 si definisce limite sinistro di f(x) per x che tende a x_0^- : $\lim_{x\to x_0^-} f(x) = l^2$ se $\forall \varepsilon>0 \exists \delta_\varepsilon>0$: $|f(x)-l_2|<\varepsilon\Rightarrow x_0-\delta_\varepsilon< x< x_0$ cioè $x\in (x_0-\delta_\varepsilon,x_0)$

2.2.4 Teorema d'unicità del limite "da destra"

Se $\lim_{x\to x_0} f(x) = l \Rightarrow l$ è unico

Dimostrazione. Per assurdo: supponiamo che $\exists l_1, l_2 : l_1 \neq l_2$ con $l_1 = \lim_{x \to x_0} f(x)$ in $I(x_0, \delta_{1\varepsilon}), l_2 = \lim_{x \to x_0} f(x)$ in $I(x_0, \delta_{2\varepsilon})$

Fissato
$$\varepsilon = \frac{|l_1 - l_2|}{2}$$

$$2\varepsilon = |l_1 - l_2| = |l_1 - f(x) + f(x) - l_2| \le |f(x) - l_2| + |f(x) - l_2| < 2\varepsilon \text{ in } I(x_0, \delta_{\varepsilon}), \ \delta_{\varepsilon} = min(\delta_{1\varepsilon}, \delta_{2\varepsilon})$$

Assurdo! $\Rightarrow l_1 = l_2$

2.2. LIMITI 31

Esempi

$$\begin{array}{ll} y = \frac{|x|}{x} & C.E. = R \backslash \{0\} \\ \lim_{x \to 0^+} \frac{|x|}{x} = 1 \\ \lim_{x \to 0^-} \frac{|x|}{x} = -1 & \nexists \text{ limitate} \end{array}$$

Definizione Sia f(x) definita in $A \in R$, e sia x_0 un punto di accumulazione per A. Si dice che f(x) ha limite $+\infty$ per x che tende a x_0 , se $\forall M > 0$, $\exists \delta_M > 0 : \forall x \in I(x_0, \delta_m) \Rightarrow f(x) > M$

$$\lim_{x \to x_0} f(x) = +\infty$$

Definizione Sia f(x) definita in $A \in R$, e sia x_0 un punto di accumulazione per A. Si dice che f(x) ha limite $-\infty$ per x che tende a x_0 , se $\forall M > 0$, $\exists \delta_M > 0 : \forall x \in I(x_0, \delta_m)$ risulta f(x) < -M.

$$\lim_{x \to x_0} f(x) = -\infty$$

Definizione di Asintoto verticale Se $\lim_{x\to x_0} f(x) = \infty$ allora la retta verticale $x=x_0$ si chiama asintoto verticale

Figura 2.27: Asintoto verticale

Sia f(x) definita in $A \in R$, si dice che f(x) ha limite l, per x che tende a $+\infty$, se: $\forall_{\varepsilon} > 0, \exists K_{\varepsilon} > 0 : \forall x \in I(K_{\varepsilon}, +\infty)$ risulta $|f(x) - l| < \varepsilon$ $|\lim_{x \to +\infty} f(x) = l$

Definizione di Asintoto orizzontale Se $\lim_{x\to\infty} f(x) = l$ Allora la retta orizzontale y=l si chiama Asintoto orizzontale

Figura 2.28: Asintoto orizzontale

Sia f(x) definita in $A \in R$, si dice che f(x) ha limite $+\infty$, per x che tende a $+\infty$, se: $\forall M > 0, \exists K_M > 0$: $\forall x \in (K_M, +\infty)$ risulta $f(x) \in (M, +\infty)$ | $\lim_{x \to +\infty} f(x) = +\infty$ |

2.2.5 Teorema (algebra dei limiti)

Se:

- $\lim_{x \to x_0} f(x) = l_1 \lim_{x \to x_0} g(x) = l_2$
- $\lim_{x \to x_0} f(x) \pm g(x) = l_1 \pm l_2$
- $\lim_{x \to x_0} f(x) * g(x) = l_1 * l_2$
- $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{l_1}{l_2}, g(x), l_2 \neq 0$

2.2.6 Convenzioni con ∞

- $\forall a > 0, a \pm \infty = \pm \infty$
- $\bullet \ +\infty +\infty =+\infty$
- $\bullet \ -\infty -\infty = -\infty$
- $\forall a > 0, a * (\pm \infty) = \pm \infty$
- $\forall b < 0, b * (\pm \infty) = \mp \infty$
- $\bullet \ (\pm \infty) * (\pm \infty) = +\infty$
- $(\pm \infty) * (\mp \infty) = -\infty$

Convenzioni con ∞

$$\frac{a}{\infty} = 0$$
 $\frac{a}{0} = \infty$

2.2.7 Forme indeterminate

$$+\infty-\infty$$
 $\frac{\infty}{\infty}$ $\frac{0}{0}$ 1^{∞} $e^{+\infty*0}$ $0-\infty$

•
$$a^{+\infty} = \begin{cases} +\infty, & a > 1 \\ 0, & 0 < a < 1 \end{cases}$$

$$\bullet \ a^{-\infty} = \begin{cases} 0, & a > 1 \\ +\infty, & 0 < a < 1 \end{cases}$$

2.2.8 Teorema del confronto

Siano $f(x), f_1(x), f_2(x)$ tre funzioni definite in $A \subseteq R$ sia x_0 un punto di accumulazione per A e $f_1(x) \le f(x) \le f_2(x)$ se $\lim_{x \to x_0} f_1(x) = \lim_{x \to x_0} f_2(x) = l$ allora $\lim_{x \to x_0} f(x) = l$

Dimostrazione

Se $\lim_{x\to x_0} f_1(x) = \lim_{x\to x_0} f_2(x) = l$ allora per definizione di limite:

- $\exists \delta_1 : |f_1(x) l| < \varepsilon \ \forall x \in I(x_0, \delta_1)$
- $\exists \delta_2 : |f_2(x) l| < \varepsilon \ \forall x \in I(x_0, \delta_2)$

$$\Rightarrow l - \varepsilon < f_1(x) \le f(x) \le f_2(x) < l + \varepsilon$$

$$\forall x \in I(x_0, \delta_2), \delta = \min(\delta_1, \delta_2)$$

Casi particolari di $\lim_{x\to x_0} f(x) * g(x)$

Teorema Se $\lim_{x\to x_0} f(x) = x$; $|g(x)| \le M$ per $x \in I(x_0, \delta) \Rightarrow \lim_{x\to x_0} f(x) * g(x) = 0$

Esempio
$$\lim_{x\to x_0} x * \sin \frac{1}{x} = 0$$

2.2.9 Limite di funzione composta

Siano
$$g: A \to B: B \to R: \lim_{x \to x_0} g(x) = y_0$$
 e $\lim_{y \to y_0} f(y) = l$ con $l = f(y_0)$ (se $f \in continua$) $\Rightarrow \lim_{x \to x_0} f[g(x)] = l$

2.2.10 Limiti Notevoli

$$\bullet \quad \lim_{x \to x_0} \frac{\sin(x)}{x} = 1$$

$$\bullet \left[\lim_{x \to x_0} \frac{\tan(x)}{x} = 1 \right]$$

$$\bullet \left[\lim_{x \to x_0} \frac{1 - \cos(x)}{x} = \frac{1}{2} \right]$$

$$\bullet \left[\lim_{x \to x_0} \left(1 + \frac{1}{x} \right) = e \right]$$

$$\bullet \quad \lim_{x \to x_0} \frac{\log_a(1+x)}{x} = \log_a e$$

$$\bullet \quad \lim_{x \to x_0} \frac{a^x - 1}{x} = \log_e a$$

Esempi

1.
$$\lim_{x \to x_0^+} x e^x + e^{-\frac{1}{x}} = 0$$

2.
$$\lim_{x \to x_0^-} xe^x + e^{-\frac{1}{x}} = \infty$$

3.
$$\lim_{x \to x_0} \frac{1 - \cos(x)}{x^2} = \lim_{x \to x_0} \frac{(1 - \cos(x))(1 + \cos(x))}{x^2(1 + \cos x)} = \frac{1}{2}$$

4.
$$\lim_{x \to +\infty} \frac{1}{x} + \arctan x = \frac{\pi}{2}$$

Figura 2.29: Esempio di limite notevole di una funzione

2.2.11Infinitesimi e infiniti

Definizione Una funzione f(x) su dice <u>infinitesima</u> per $x \to x_0$ (per $x \to \infty$), x_0 punto di accumulazione per il dominio di f(x), se: $\lim_{x\to x_0} f(x) = 0$ (oppure $\lim_{x\to\infty} f(x) = 0$).

Esempi

- $y = e^x$ è un infinitesimo per $x \to -\infty$
- $y = \ln x$ è un infinitesimo per $x \to 1$
- $y = \sin x$ è un infinitesimo per $x \to 0$ (ma anche per $x \to \pi, 2\pi$, etc.)
- $y = \ln 1 + x$ è un infinitesimo per $x \to 1$

Ordine di infinitesimo

Siano f(x) e g(x) infinitesimi per $x \to x_0$ (o per $x \to \infty$), con $g(x) \neq 0$. Se $\exists \alpha R +$ e $l \in R$, $l \neq 0$ tale che $\lim_{x \to x_0} = \frac{f(x)}{[g(x)]^{\alpha}} = l$ (oppure $\lim_{x \to \infty} = \frac{f(x)}{[g(x)]^{\alpha}} = l$)
Allora, si dice che per $x \to x_0$ (o per $x \to \infty$), f(x) è un infinitesimo di ordine α rispetto all'infinitesimo

campione q(x).

Esempi

- $y = \sin x$ è un infinitesimo per $x \to 0$ di ordine 1 rispetto all'infinitesimo campione g(x) = x, infatti, $\lim_{x\to 0} = \frac{\sin x}{x^{\alpha}} = 1$ solo se $\alpha = 1$
- $y = \tan^2 x$ è un infinitesimo di ordine 2 rispetto ad x, per $x \to 0$
- $ord(l \cos x) = 2$ rispetto ad x per $x \to 0$

2.2. LIMITI 35

Confronto tra infinitesimi

Siano f(x) e g(x) infinitesime per $x \to x_0$,

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \begin{cases} l \neq 0 & ord(f) = ord(g) \\ \pm \infty & ord(f) < ord(g) \\ 0 & ord(f) > ord(g) \end{cases}$$
non esiste, f e g non confrontabile

Stesso risultato se f(x) e g(x) sono infinitesime per $x \to \infty$. Utilizzando il confronto tra infinitesimi nel calcolo dei limiti del tipo $\lim_{x\to x_0} \frac{f_1+f_2}{g_1+g_2}$, dove f_1, f_2, g_1, g_2 sono funzioni infinitesime per $x\to x_0$, si possono trascurare gli infinitesimi di ordine maggiore (analogo discorso per funzioni infinitesime $x\to \infty$).

esempio
$$\lim_{x\to 0} \frac{x^2 + x^3 + 2\tan x}{(e^x - 1)^2 + \sin x} = \lim_{x\to 0} \frac{2\tan x}{\sin x} = 2$$

Definizione di funzioni asintotiche Si dice che due funzioni f,g sono asintotiche per $x \to x_0$ se $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$ e si scrive $f \sim g$ per $x \to x_0$

esempi

- $\sin x \sim x \text{ per } x \to 0$
- $\ln(1+x) \sim x \text{ per } x \to 0$
- $e^x 1 \sim x \text{ per } x \to 0$

Definizione di funzioni infinite Una funzione f(x) si dice infinita per $x \to x_0$ (o per $x \to \infty$), x_0 punto di accumulazione per il dominio di f(x), (o per $x \to \infty$) se:

$$\lim_{x\to x_0} f(x) = \infty$$
 (oppure $\lim_{x\to\infty} f(x) = \infty$)

Esempi

- $y = e^x$ è un infinito per $x \to +\infty$
- $y = \ln x$ è un infinito per $x \to 0^+$
- $y = x^2 + x$ è un infinito per $x \to \infty$

Regole aritmetiche Siano $f(x) = o(x^{\alpha})$ (si legge «o piccolo di») e $g(x) = o(x^{\beta})$ due funzioni infinitesime rispettivamente di ordine α e β per $x \to 0$ Allora si ha

- $cf(x))o(x^{\alpha}), \forall c \in R$
- $x^{\lambda} f(x) = o(x^{\lambda + \alpha})$
- $f(x)g(x) = o(x^{\alpha+\beta})$
- $f(x) + g(x) = o(x^y), \gamma = min(\alpha, \beta)$

Ordine di infinito Siamo f(x) e g(x) infiniti per $x \to x_0$ (o per x), con $g \ne 0$. Se $\exists \alpha \in R + e \ l \in R$, $l \ne 0$ tale che

$$\lim_{x \to x_0} \frac{f(x)}{[g(x)]^2} = l \text{ (o } \lim_{x \to \infty} \frac{f(x)}{[g(x)]^{\alpha}} = l)$$

Allora, per $x \to x_0$ (o per $x \to \infty$), f(x) è un infinito di ordine α rispetto all'infinito compone g(x).

Esempi

- $ord(\sqrt{x}) = \frac{1}{2}$ rispetto ad x per $x \to +\infty$
- $ord(\frac{1}{\sin x}) = 1$ rispetto ad $\frac{1}{x}$ per $x \to 0$
- $ord(\frac{1}{e^x-1}) = 1$ rispetto ad $\frac{1}{x}$ per $x \to 0$

Cofronto tra infiniti Siamo f(x) e g(x) infiniti per $x \to x_0$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \begin{cases} l \neq 0 & ord(f) = ord(g) \\ \pm \infty & ord(f) > ord(g) \\ 0 & ord(f) < ord(g) \\ \text{non esiste,} & \text{f e g non confrontabile} \end{cases}$$

Stesso risultato se f(x) e g(x) sono infinite per $x \to \infty$. Utilizzando il confronto tra infiniti nel calcolo dei limiti del tipo $\lim_{x\to x_0} \frac{f_1+f_2}{g_1+g_2}$, deve f_1, f_2, g_1, g_2 sono funzioni infinite per $x\to x_0$, si possono trascurare gli infiniti di ordine minore (analogo discorso per funzione infinito $x\to \infty$).

Esempio
$$\lim_{x \to +\infty} \frac{x^2 + x^3 + 3\sqrt{x}}{x^2(2x-1) + \sqrt{3x}} = \lim_{x \to +\infty} \frac{x^3}{2x^3} = \frac{1}{2}.$$

Gerarchia degli infiniti Per $x \to +\infty$ si ha $(\log_{\alpha} x)^{\alpha} << x^{\beta} << b^{x}$, con $\alpha, \beta > 0, a, b > 1$ Non sempre è possibile calcolare l'ordine di infinito (o di infinitesimo) rispetto alla funzione campione usuale.

Esempio
$$\lim_{x\to +\infty} \frac{a^x}{x^a} = +\infty, \forall \alpha > 0, a > 1, \lim_{x\to +\infty} \frac{(\log_a x)^\beta}{x^a} = +\infty, \forall \alpha, \beta > 0, a > 1$$

Regole aritmetiche Siano f(x) e g(x) due funzioni infinite di ordine rispettivamente α e β . Allora si ha

- $ord(f(x) + g(x)) = \max \alpha, \beta$
- $ord(f(x) * g(x)) = \alpha + \beta$
- $ord((f(x))^{\gamma}) = \alpha \gamma$

2.2.12 Funzioni continue

Una funzione continua è una funzione che, intuitivamente, fa corrispondere ad elementi sufficientemente vicini del dominio elementi arbitrariamente vicini del codominio.

Definizione Una funzione
$$f(x)$$
 è continua in x_0 , se: $l_1 = \lim_{x \to x_0^+} = \lim_{x \to x_0} f(x) = l_2 = \lim_{x \to x_0} f(x) = f(x_0)$ ossia $\forall \in > 0 \exists \delta_{\mathcal{E}} > 0$: $|f(x) - f(x_0)| < \mathcal{E} \ \forall_x \in I(x_0, \delta_{\mathcal{E}}) \ (l = f(x_0))$

Teorema della permanenza del segno

Sia f(x) definita almeno in un intorno di x_0 e continua in x_0 . Se $f(x_0) > 0$ allora $\exists \delta > 0 : f(x) > 0 \forall x \in (x_0 - \delta, x_0 + \delta)$

Teorema degli zeri

Sia f(x) continua in [a,b] f(a)*f(b)<0 allora $\exists x_0\in(a,b):f(x_0)=0$. Se f è anche strettamente monotona, lo zero è unico.

Teorema dell'esistenza dei valori intermedi (conseguenza del teorema degli zeri) Una funzione f(x) continue in [a,b] assume tutti i valori compresi tra f(a) ed f(b).

Teorema di Wierstrass (sul massimo e il minimo)

Sia f(x) continua in [a, b]. Allora f(x) assume massimo e il minimo assoluto in [a, b], cioé $\exists x_1, x_2 \in [a, b]$: $f(x_1) \leq f$

2.2.13 Criteri di invertibilità

Una funzione continua e strettamente monotona in [a,b] è invertibile in tale intervallo. Dimostrazione.

2.3 Calcolo differenziale per funzioni di una variabile

Sia $f:(a,b)\to R$, si definisce derivata di f nel punto $x_0\in(a,b)$ il numero, se \exists finito:

$$f(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

$$f(x_0), y(x_0), \frac{df}{dx}|_{x_0}, \frac{dy}{dx}|_{x_0}, Df(x_0), Dy(x_0)$$

2.3.1 Derivata di una funzione

Significato geometrico della derivata in un punto e equazione della retta tangente Sia $x_0 \in (a,b): x_0 + h \in (a,b)$

Si definisce Rapporto incrementale $\frac{\Delta f}{\Delta x} = \frac{f(x_0 + h) + f(x_0)}{h} = \tan \beta$

Sia β l'angolo che la retta r forma con l'asse delle x, considerando il triangolo ABC possiamo scrivere $f(x+h)-f(x_0)=\tan\beta[x_0+h-x_0]$ Ossia: $\tan\beta=\frac{f(x_0+h)-f(x_0)}{h}$ Ma $m=\frac{f(x_0+h)-f(x_0)}{h}$ È il coefficiente angolare della retta f passante per AB

Per cui $\tan \beta = m$ Ossia $\tan \beta$ è il coefficiente angolare della retta secante per AB

Quando $h \to 0$ in punto B si sposta sulla curva avvicinandosi ad A, la retta r diventa tangente alla curva in A e si ha: $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h} = f'(x_0) = \tan\alpha$ coefficiente angolare di t Equazione della retta tangente dal grafico di f(x) nel punto di ascissa $x_0 \colon y = f'(x_0)(x-x_0) + f(x_0)$ Infatti, tra tutte le rette del fascio proprio passanti $A(x_0, f(x_0))dieq.\ y - f(x_0) = m(x-x_0)$ per $m = f'(x_0)$ si ottiene l'equazione di t. Se f'(x) è definita $\forall x \in (a,b)$ allora f(x) è derivabile in (a,b) e risulta definita la funzione $f': (a,b) \to R$ detta derivata prima di f(x)

f(x) è derivabile in [a,b], se è derivabile $\forall x \in (a,b)$ e ammette derivata destra in x=a (si scrive $f'_+(a)$) e derivata sinistra in x=b (si scrive $f'_-(b)$)

2.3.2 Definizione

- Derivata destra $\lim_{h\to 0^+} \frac{f(x_0+h)-f(x_0)}{h} = f_+^{,}(x_0)$
- Derivata sinistra $\lim_{h\to 0^-}\frac{f(x_0+h)-f(x_0)}{h}=f_-^!(x_0)$

Se $f'_{+}(x) = f'_{-}(x) f \ e \ derivabile in x$

2.3.3 Continuità e derivabilità

Teorema

Sia $f:(a,b)\to R$. Se f è derivabile in $x_0\in(a,b)$ allora f è continua in $x_0,x+h\in(a,b)$: $\lim_{h\to 0}f(x_0+h)-f(x_0)=\lim_{h\to 0}\frac{f(x_0+h)-f(x_0)}{h}*h=0$. Da cui $\lim_{h\to 0}f(x_0+h)=f(x_0)$ che è la continuità di f in x_0 .

Quindi $derivabilità \Rightarrow continuità$ Occhio non è vero il contrario perché non per forza una funzione continua è derivabile.

Esempio y = |x| è continua ma non è derivabile in x = 0. Infatti,

$$y = |x| =$$

$$\begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$$
e $y' = \frac{|x|}{x} =$

$$\begin{cases} 1 & x > 0 \\ -1 & x < 0 \end{cases}$$

2.4 Punti di non derivabilità

2.4.1 Punto angoloso

Se $f'_+(x) \neq f'_-(x)$ e almeno un \exists finita x_0 si dice punto angoloso, in quanto le rette tangenti alla f(x) nel punto di ascissa x_0 formano un angolo.

Esempio

Figura 2.30: Grafico di Funzione valore assoluto y=|x| e quindi $f_+^{,}(0)=1\neq f_+^{,}=-1$

Un altro esempio

Figura 2.31: Grafico di Funzione $x=\left|x^{2}-1\right|$

2.4.2 Punto cuspude

Se $f'_+(x) \neq f'_-(x)$ sono ∞ , x_0 si dece punto cuspide; la retta tangente alla f(x) nel punto di ascissa x_0 è verticale.

Figura 2.32: Grafico di Funzione $f(x) = \frac{(x-3)^{\frac{2}{3}}}{2}$

Punto di flesso a tangente verticale

Se $f'_+(x_0) = f'_-(x_0) = \pm \infty$ sono ∞ , x_0 si dice punto di flesso a tangente verticale; la retta tangente alla f(x) nel punto di ascissa x_0 è verticale.

2.4.3 Esempi di derivate

 $D(x^n) = n * x^{n-1}$

• $D(\log_a x = \frac{1}{x} \log_a e)$

• $D(a^x) = a^x \ln a$

• $D(\sin x) = \cos x$

• $D(\cos x) = -\sin x$

• D(k) = 0

• $D(\ln x) = \frac{1}{x}$

• $D(e^x) = e^x$

• $D(\tan x) = \frac{1}{\cos^2 x} = 1 + \tan^2 x$

• $D(\arcsin x) = \frac{1}{\sqrt{1-x^2}}$

• $D(\arccos x) = -\frac{1}{\sqrt{1-x^2}}$

• $D(\arctan x) = \frac{1}{1+x^2}$

Qualche esercizio dimostrativo

Utilizzando la definizione calcolare la derivata di

1.
$$f(x) = k$$

 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{k - k}{h} = 0$

2.
$$f(x) = e^x$$

 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{e^x(e^h - 1)}{h} = e^x$

3.
$$f(x) = \ln x$$

 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\ln(x+h) \ln x}{h} = \frac{\ln(1+\frac{h}{x})}{h} = \frac{1}{x}$

4.
$$f(x) = \cos x$$

 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\cos(x+h) - \cos(x)}{h} = \lim_{h \to 0} \frac{\cos x \cdot \cos h - \sin x \cdot \sin h - \cos(x)}{h} = \lim_{h \to 0} \frac{\cos x (\cos h - 1)}{h} - \frac{\sin x \sin h}{h} = -\sin x$

5.
$$f(x) = \sin x$$

 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h} = \frac{\sin x \cos h + \sin h \cos x - \sin x}{h} = \lim_{h \to 0} \frac{\sin x (\cos h - 1)}{h} + \lim_{h \to 0} \frac{\sin h \cos x}{h} = \cos x$

Se f e g sono derivabile in x, allora sono derivabili in x anche la somma, la differenza, il prodotto, il quoziente (con il denominatore \neq 0) e si ha:

1.
$$(f \pm g)' = f' \pm g'$$

2.
$$(f * q)' = f' * q + f * q'$$

3.
$$(\frac{f}{g})' = \frac{f' * g - f * g'}{g^2}, g \neq 0$$

• Dimostriamo la 2)
$$(f*g)' = f'*g + f*g'$$

 $(f*g)' = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h} = \lim_{h \to 0} \frac{f(x+h)g(x+h) \pm f(x)g(x+h) - f(x)g(x)}{h} = \lim_{h \to 0} \frac{g(x+h)[f(x+h) - f(x)]}{h} + \lim_{h \to 0} \frac{f(x)[f(x+h) - f(x)]}{h}$
Per ipotesi f e g sono derivabile, quindi continue in x, perciò:

$$\lim_{h\to 0} g(x+h) = g(x),$$

$$(f * g)' = \dots = f'(x) * g(x) + f(x) * g'(x)$$

$$\begin{array}{l} \bullet \ \ Dimostriamo \ la \ 3) \\ (\frac{f}{g})' = \frac{\frac{f(x+h)}{g(x+h)} - \frac{f(x)}{g(x)}}{\frac{f(x)}{g(x)}} = \frac{f(x+h)g(x) - f(x)g(x+h)}{g(x+h)g(x)*h} = \frac{f(x+h)g(x) - f(x)g(x+h) \pm f(x)g(x)}{g(x+h)g(x)*h} \\ \frac{[f(x+h) - f(x)]g(x) - f(x)[g(x+h) - g(x)]}{g(x+h)g(x)*h} = \frac{\frac{[f(x+h) - f(x)]g(x)}{h} - \frac{f(x)[g(x+h) - g(x)]}{h}}{g(x+h)g(x)*h} = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2*h} \end{array}$$

Esercizio

- Calcolare la derivata di $f(x) = \sin x \ln x$ $f'(x) = \cos x \ln x + \frac{\sin x}{x}$
- Scrivere l'equazione della retta tangente alla curva di eq $f(x) = 2e^x \sqrt[3]{x}$ nel punto di ascissa x=1 $f'(x) = 2e^x \sqrt[3]{x} + 2\frac{e^x}{3\sqrt[3]{x^2}}$

2.4.4 Teorema di derivazione della funzione composta

Sia g(x) una funzione derivabile in x, e se f(x) è una funzione derivabile nel punto g(x), allora la funzione composta f(g(x)) è derivabile in x, e si ha:

$$[f(q(x))]' = f'(q(x)) * q'(x)$$

Dimostrazione. Se $h \neq 0$ si ha $\lim_{h\to 0} \frac{f(g(x+h))-f(g(x))}{h} = \lim_{h\to 0} \frac{f(g(x+h))-f(g(x))}{h} * \frac{g(x+h)-g(x)}{h} = f'(g(x)) * g'(x)$ in quanto se $h\to 0$ allora $k\to 0$ con k=g(x+h)-g(x), essendo g(x) continua in x. Se h=0, il teorema continua a valere.

Esercizio

- 1. Calcolare la derivata di $f(x) = \ln(\sin x)$. $f'(x) = \frac{\cos x}{\sin x} = \cot x$
- 2. Calcolare la derivata di $f(x) = e^{\sqrt{2x^3+x}}$. $f'(x) = e^{\sqrt{x^3+x}} \frac{6x^2+1}{2\sqrt{2x^3+x}}$

3. Calcolare la derivata di $f(x) = \sin(\ln x)$ $f'(x) = \frac{\cos(\ln x)}{-}$

Scrivere l'equazione della retta alla curva di equazione $f(x) = (xe^{2x} - 1)^3$ nel punto di ascissa x=0, L'eq. Retta tangente a f(x) in $x = x_0 : y = f'(x_0)(x - x_0) + f(x_0)$

Per noi $x_0 = 0$

$$f'(x) = 3(xe^{2x} - 1)^2(e^{3x} + xe^{2x}) \Rightarrow f'(0) = 3$$

$$f(0) = -1$$

Quindi l'equazione è: y = 3x - 1

2.4.5 Teorema di derivazione della funzione inversa

Sia f(x) una funzione continua e strettamente monotona in [a,b]. Se f è derivabile in $x_0 \in (a,b)$ e se allora anche la funzione inversa di f^{-1} è derivabile nel punto $y_0 = f(x_0)$, e la derivata vale:

$$[f^{-1}(y_0)]' = \frac{1}{f'(x_0)}$$

Dimostrazione. Si ha $\frac{f^{-1}(y_0+k)-f^{-1}(y_0))}{k}=\frac{h}{f(x_0+h)-f(x_0)}$ Se $k\to 0$ anche $h\to 0$ in quanto f' è continua

2.4.6 Esercizio

Utilizzando il teorema di derivazione della funzione inversa, dimostrare che:

$$D[\arcsin(y)] = \frac{1}{\sqrt{1-y^2}}$$

 $x = \arcsin(y)$ è la funzione inversa di $y = \sin(x)$ quest'ultima è invertibile per $x \in [-\frac{\pi}{2}; \frac{\pi}{2}]$. Applichiamo il teorema della funzione inversa, $f^{-1}(y) = \frac{1}{f'(x)}$

$$[\arcsin(y)]' = \frac{1}{[\sin(x)]'} = \frac{1}{\cos(x)}$$

$$[\arcsin(y)]' = \frac{1}{[\sin(x)]'} = \frac{1}{\cos(x)}$$
Ma sappiamo che: $\cos(x) = \sqrt{1 - \sin^2 x}$

$$[\arcsin(y)]' = \frac{1}{\sqrt{1 - \sin^2 x}} = \frac{1}{\sqrt{1 - y^2}}$$

2.4.7 Esercizio

Calcolare la derivata della funzione $y = e^x$ vista come funzione inversa di $f(x) = \ln x$. Per x > 0, si ha $x = f^{-1}(y) = e^y$ $f(x) = \ln x \Rightarrow f'(x) = \frac{1}{x}$ Perciò, per il teorema della derivata della funzione inversa si ha $(f^{-1}(y))' = \frac{1}{f'(x)} \Rightarrow (e^y)' = x = e^y$. Quindi $(e^x)' = e^x$

2.4.8 Esercizio

Utilizzando il teorema di derivazione della funzione inversa, dimostrare che (arctan x)' = $\frac{1}{1+x^2}$. Sia f(x) = $\tan x$, in $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ si ha $x = f^{-1}(x) = \arctan y$

 $f(x) = \tan x \Rightarrow f'(x) = 1 + \tan^2 x$. Perciò, per il teorema della derivata della funzione inversa si ha $(f^{-1}(y))' = \frac{1}{f'(x)} \Rightarrow (\arctan y)' = \frac{1}{1 + \tan^2 x} = \frac{1}{1 + y^2}$

2.5 Massimo e minimo assoluto

Sia $f:[a,b]\to R$, si dice M è massimo assoluto (o globale) di f in [a,b] e $x_0\in[a,b]$ è un punto di massimo se

$$f(x_0) = M > f(x), \forall x \in [a, b]$$

in modo analogo: Si dice che m è un minimo assoluto (o globale) di f in [a,b] e $x_1 \in [a,b]$ è punto di minimo se

$$f(x_1) = M \le f(x), \forall x \in [a, b]$$

2.6 Massimo e minimo relativo (o estremi locali)

Sia $f:[a,b]\to R$, si dice che $x_0\in[a,b]$ è un punto di massimo relativo (o locale) per f(x) se $\exists I(x_0,\delta)$:

$$f(x_0) \ge f(x), \forall x \in I(x_0, \delta)$$

In modo analogo: si dice che $x_0 \in [a,b]$ è un punto di minimo relativo (o locale) per f(x) se $\exists I(x_0,\delta)$:

$$f(x_0) \le f(x), \forall x \in I(x_0, \delta)$$

2.6.1 Punti Stazionari

I punti in cui f(x) ha derivata nulla (f'=0) Si dice punti stazionari o critici.

2.7 Teorema di Fermat

Sia f(x) definita in [a,b] e derivabile in $x_0 \in (a,b)$. Se x_0 è un punto di estremo locale allora

$$f'(x_0) = 0$$

Dimostrazione Sia x_0 un punto di massimo relativo, cioè $\exists I(x_0, \delta) : f(x_0) \leq f(x_0 + h), \forall h : |h| < \delta$ si ha: $\frac{f(x_0+h)+f(x_0)}{h}$ $\begin{cases} \leq 0 & \text{se } 0 < h < \delta \\ \geq 0 & \text{se } -\delta < h < 0 \end{cases}$

- $\lim_{h\to 0^+} \frac{f(x_0+h)-f(x_0)}{h} = f'_+ \le 0$
- $\lim_{h\to 0^-} \frac{f(x_0+h)-f(x_0)}{h} = f'_- \ge 0$

Ma essendo f(x) derivabile in x_0 :

$$f'_{+}(x_0) = f'_{-}(x_0) \Rightarrow f' = 0$$

Se $x_0 = a$ allora $0 < h < \delta$ e se x_0 è un punto di massimo relativo si ha $\lim_{h \to 0^+} \frac{f(a+h)-f(x)}{h} = f'(a) \le 0$. Mentre, se parliamo del minimo relativo in $x_0 = a$: $\lim_{h \to 0^-} \frac{f(a+h)-f(x)}{h} = f'(a) \le 0$ In modo analogo: se $x_0 = b$ è punto di massimo relativo (con $-\delta < h < 0$) allora $f'(b) \ge 0$, se invece $x_0 = b$ è un punto di minimo relativo, allora $f'(b) \le 0$

2.8 Teorema di Rolle

Sia $f:[a,b]\to R$.

- 1. $f \in continua \ in \ [a,b],$
- 2. $f
 i derivabile in (a,b)_{f(a)=f(b)}$
- 3. f(a) = f(b)

Allora $\exists x_0 \in (a,b): f'(x_0) = 0$ Per il Teorema di Rolle esistono almeno un punto a tangente orizzontale.

2.8.1 Dimostrazione

Per il Teorema di Weiestrass, f ha massimo e minimo assoluti in [a, b] $(x_1, x_2 \in [a, b])$:

$$f(x_1) \le f(x) \le f(x_2).$$

Se uno dei due è interno ad [a,b], per esempio x_1 allora per il Teorema di Fermat $f'(x_1) = 0$. Se invece nessuno dei due è interno ad [a,b] per esempio $x_1 = a$, $x_2 = b$. Dall'ipotesi f(a) = f(b) si ottiene minimo=massimo, cioè f(x) è costante $\forall x \in [a,b]$ e quindi f'(x) = 0 $\forall x \in [a,b]$.

2.8.2 Esercizio dimostrativo

Testo

Dire se la funzione $f(x) = e^{x^2-1}$ soddisfa il teorema di Rolle nell'intervallo [-1,1] e in caso affermativo calcolare il punto (o i punto del Teorema.)

Soluzione

Sono verificate tutte le ipotesi del teorema di Rolle, infatti:

- 1. $f(x) = e^{x^2-1}$ è continua in tutte R e quindi anche in [-1,1]
- 2. f(x) è derivabile in tutto R, quindi anche in (-1,1),
- 3. f(-1) = f(1)

Allora $\forall x_0 \in (-1,1): f'(x_0) = 0$ x_0 Si ricava facendo il calcolo: $f'(x_0) = 0$, cioè $2xe^{x^2-1} = 0 \Rightarrow x_0 = 0$

2.8.3 Esercizio dimostrativo

Testo

Dire se la funzione $f(x) = \ln |x|$ soddisfa il teorema di Rolle nell'intervallo [-e,e].

Soluzione

Il teorema di Rolle non è applicabile perché $f(x) = \ln |x|$ non è definita in x = 0, quindi non è né continua né definita in x = 0 e perciò non soddisfa tutte le ipotesi del teorema.

2.9 Teorema di Lagrange (o del valor medio)

Sia $f: [a, b] \to R$.

- 1. $f \in continua \ in \ [a, b],$
- 2. f
 in derivabile in (a, b),

Allora $\forall x_0 \in (a, b) : f'(x_0) = \frac{f(b) - f(a)}{b - a}$

Per il Teorema di Lagrange \exists almeno un punto $(x_0, f(x_0))$ sul grafico di f(x) in cui la retta tangente t è parallela alla retta r secante la curva in (a, f(a)) e b, f(b).

2.9.1 Dimostrazione

Si considera la funzione ausiliaria

$$g(x) = f(x) - \left[f(a) + \frac{f(b) - f(a)}{b - a}(x - a)\right]$$

Per g(x) vale il Teorema di Rolle, infatti:

- 1. g(x) è continua in [a,b] perché lo è f(x) (l'altro pezzo è lineare);
- 2. g(x) è derivabile in (a,b) perché f(x) (l'altro pezzo è lineare);
- 3. q(a) = q(b) = 0.
- $\bullet \Rightarrow x_0: g'(x) = 0$
- $g'(x_0) = f'(x_0) \frac{f(b) f(a)}{b a} = 0$
- $\Rightarrow f'(x_0) = \frac{f(b) f(a)}{b a}$

2.9.2 Esempio

 $f(x) = x^2$ in [a, b], per il Teorema di Lagrange $\forall x_0 \in [a, b]$:

$$\frac{b^2-a^2}{b-a}=2x_0\Rightarrow x_0=\frac{b+a}{2}$$
 Media aritmetica di a e b

2.9.3 Esercizio dimostrativo

Testo

Dire se è applicabile in Teorema di Lagrange alla funzione $f(x) = \arcsin x$ nell'intervallo [-1,1] e in caso affermativo calcolare i punti teorema.

Soluzione

La funzione data soddisfa tutte le ipotesi del teorema di Lagrange, infatti:

- 1. f è continua in [-1,1] (è il suo campo di esistenza),
- 2. f è derivabile in (-1,1)Allora $\forall x_0 \in (-1,1): f'(x_0) = \frac{f(1)-f(-1)}{2} \Rightarrow \frac{1}{\sqrt{1-x_0^2}} = \frac{\pi}{2} \Rightarrow x_0 = \pm \frac{\sqrt{\pi^2-4}}{\pi}$

2.9.4 Esercizio dimostrativo

Testo

Determinare un intervallo in cui è applicabile il Teorema di Lagrange alla funzione $f(x) = |x - \frac{1}{x}|$.

Soluzione

- 1. La funzione data è contenuta nel suo campo di esistenza cioè nell'insieme: $A = \{x \in R : x \neg 0\}$
- 2. f è derivabile nell'insieme $B = \{x \in \mathbb{R} : x \neq 0, \pm 1\}$ con derivata: $f'(x) = \left|\frac{x^2 1}{x}\right| \frac{x^2 + 1}{x(x^2 1)}$

Perciò un intervallo in cui f soddisfa il teorema di Lagrange, è un qualunque intervallo [a,b] che contiene x=0 e tale che punti x=-1 non siano interni ad esso (potrebbero stare agli estremi) Per esempio: [1,2] (f è continua in [1,2] e derivabile in (1,2), da notare che è derivabile anche in x=2 ma non serve...) oppure [-4,-3]. etc...

1. Criterio di monotonia

Sia $f(x):[a,b]\to R$, continue in [a,b], è derivabile in (a,b). Allora:

- f è crescente in $[a, b] \Leftrightarrow f'(x) \ge 0 \forall x \in [a, b];$
- f è crescente in $[a,b] \Leftrightarrow f'(x) \leq 0 \forall x \in [a,b]$.

Dimostrazione Sia $f'(x) \ge 0$ e siano $x_1, x_2 \in [a, b]$ con $x_2 > x_1$. Per il Teorema di Lagrange $\forall x_0 \in (x_1, x_2)$:

$$f(x_2) - f(x_1) = f'(x_0)(x_2 - x_1)$$

ma
$$f'(x_0) \ge 0$$
 e $x_2 - x_1 > 0 \Rightarrow f(x_2) \ge f(x_1)$

Viceversa Sia f(x) crescente in [a,b]. Allora $\forall x, x+h \in (a,b)$, si ha $\frac{f(x+h)-f(x)}{h} \geq 0$ Facendo il limite per $h \to 0$ si ha

$$f'(x) \ge 0$$

Analoga dimostrazione per

f è decrescente in
$$[a,b] \Leftrightarrow f' \leq 0 \forall x \in [a,b]$$

Analoga dimostrazione per f è decrescente in $[a,b]\Leftrightarrow f'(x)\leq 0 \forall x\in [a,b]$ Si ha inoltre

- $f'(x) > 0 \Rightarrow$ strettamente crescente
- $f'(x) < 0 \Rightarrow$ strettamente decrescente
- 2. Sia $f(x): [a,b] \to R$, derivabile in (a,b).

f è costante
$$Leftrightarrow f'(x) = 0 \forall x \in (a, b)$$

3. Sia $x_0 \in (a, b)$ e $f'(x_0) = 0$ Se esiste un intorno destro (sinistro), in cui f'(x) > 0 e un intorno sinistro (destro) in cui f'(x) < 0, allora x_0 è un punto di minimo (massimo) relativo.

2.10 Teorema di Cauchy

Siamo $f, g : [a, b] \to R$:

- 1. f e g sono continue in [a, b]
- 2. f e g sono derivabili in (a, b).

Allora se $g'(x) \neq 0, \forall x \in (a,b), \exists x_0 \in (a,b) : \frac{f'(x_0)}{g'(x_0)} = \frac{f(b) - f(a)}{g(b) - g(a)}$

2.10.1 Dimostrazione

Si consideri la funzione ausiliaria

$$\varphi(x) = f(x) - [f(a) + \frac{f(b) - f(a)}{g(b) - g(a)} - (g(b) - g(a))]$$

Essendo $g' \neq 0, \forall x \in (a, b)$, allora $g(b) \neq g(a)$. Inoltre

- 1. $\varphi(x)$ è continua in [a,b];
- 2. $\varphi(x)$ è derivabile in (a, b);
- 3. $\varphi(a) = \varphi(b)$

$$\Rightarrow \exists x_0 \in (a,b) : \varphi'(x_0) = 0$$

Cioè

$$\frac{f'(x_0)}{g'(x_0)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

2.11 Teorema di de l'Hopital

 $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$ oppure $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) = \infty$ Se esiste il limite $\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = l$ finito e limitato. Allora $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$ Il teorema è valido anche per $x \to x_0^+$ o $x \to x_0^-$ e per $x \to \pm \infty$ (f e g derivabili in intervalli illimitati)

2.12 Funzioni convesse e concave

2.12.1 Definizione di funziona convessa

Sia $f(x):[a,b]\to R$, si chiama epigrafico (o sopragrafico) di f l'insieme

$$epif := \{(x, y) \in R^2 : x \in [a, b] \text{ e } y \le f(x)\}$$

f è convessa in [a, b] se il suo epigrafico è un insieme convesso

Analogamenente: f
in concava in [a, b] se il suo epigrafico in concava Sia f(x) derivabile in [a, b], f
in convesse in <math>[a, b]
in f(x)
in f(

Cioè $\forall x_0$ il grafico di f sta al di sopra della retta tangente ad f(x) in $(x_0, f(x_0))$

2.12.2 Definizione di funziona concave

Sia f(x) derivabile in [a,b], $f \in concava$ in $[a,b] \Leftrightarrow f(x) \leq f(x_0) + f'(x_0)(x-x_0), \forall x, x_0 \in [a,b]$

Cioè $\forall x_0$ il grafico di f sta al di sopra della retta tangente ad f(x) in $(x_0, f(x_0))$

2.12.3 Derivata seconda

La derivata seconda di una funzione f(x) rappresenta la velocità di variazione della pendenza del grafico di f(x).

$$f''(0) = \frac{1}{R}$$
 Curvatura del grafico di $f(x)$ in $x=0$

2.12.4 Criterio di convessità

Sia $f:[a,b]\to R$,

1. Se f è derivabile in (a, b) allora

f è convessa (concava)
$$\Rightarrow f'(x)$$
 è crescente (decrescente)

2. Se f è derivabile due volte in (a, b) allora

f è convessa (concava)
$$\Rightarrow f''(x) < 0 (f''(x) > 0), \forall x \in (a, b)$$

Utilizzando il segno di f''(x) si può stabilire se x_0 è un punto di massimo i un punto di minimo relativo per f(x).

Sia f(x) derivabile due volte con derivata continua in un intorno di $x_0 \in (a,b)$:

- se $f'(x_0) = 0, f''(x) > 0 \Rightarrow x_0$ è punto di minimo relativo;
- se $f'(x_0) = 0, f''(x) < 0 \Rightarrow x_0$ è punto di massimo relativo.

Infatti, supponiamo che $f'(x_0) = 0$, f''(x) > 0 con f'' continua. Per il Teorema della permanenza del segno: f''(x) > 0 in $I(x_0, \delta) \Rightarrow$ è convessa in I:

$$f(x) > f(x_0) + f'(x_0)(x - x_0).$$

Ma $f'(x_0)$, $\Rightarrow f(x) \Rightarrow f(x) \geq f(x_0)$, $\forall x, x_0 \in (x_0 - \delta, x_0 + \delta)$ cioè x_0 è di minimo relativo per f.

2.12.5 Criterio per i punti di massimo e di minimo relativo

Sia $f:(a,b)\to R$, derivabile n volte in $x_0\in(a,b), n\geq 2$, tale che in x_0 tutte le derivate tranne l'n-esime siano nulle. Allora:

se n pari è
$$\begin{cases} f^{(n)}(x_0) > 0 & x_0 \text{ è di minimo relativo} \\ f^{(n)}(x_0) < 0 & x_0 \text{ è di massimo relativo} \end{cases}$$

Se n è dispari x_0 non è punto di estremo (si dice flesso a tangente orizzontale).

Definizione

Sia $f:(a,b) \to R$ e $x_0 \in (a,b)$ un punto di derivabilità per f(x) oppure $f'(x_0) = \pm \infty$. x_0 si dice di flesso se esiste un intorno destro di x_0 in cui f è convessa (concava) ed un intorno sinistro in cui f è concava (convessa).

Se x_0 è di flesso per f, ed esiste $f''(x_0)$, allora $f''(x_0) = 0$

2.13 Punti per lo svolgimento dello studio di funzione

Per svolgere correttamente lo studio di funzione, bisogna suddividere il tutto in punti per svolgere correttamente lo studio in modo ordinato ed efficiente. Se effettivamente.

- 1. Determinazione del Campo di esistenza;
- 2. Determinazione del tipo di funzione;
- 3. Intersezione con gli assi;
- 4. Valori agli estremi del campo di esistenza;
- 5. Positività e negatività;
- 6. Determinazione degli asintoti;
- 7. Determinazione della derivata prima;
- 8. Crescenza e decrescenza;
- 9. Determinazione dei Massimi e minimi;
- 10. Determinazione della derivata seconda;
- 11. Determinazione della concavità, convessità e flessi;
- 12. Determinazione di eventuali ulteriori punti appartenenti alla funzione;
- 13. Grafico della funzione;
- 14. Qualche esempio di studio completo di funzione.

2.13.1 Studio del grafico di f(x), Asintoti

Se esiste una retta di equazione y = mx + q:

$$\lim_{x \to \infty} \{ f(x) - (mx + q) \} = 0$$

Allora y = mx + q si definisce asintoto obliquo per f(x). Si ha

$$m = \lim_{x \to \infty} \frac{f(x)}{x}; q = \lim_{x \to \infty} f(x) - mx$$

Se $\lim_{x\to\infty} f(x) = l, y = l$ si chiama asintoto orizzontale. Se l'asintoto orizzontale non c'è (il limite sopra è infinito) allora potrebbe esserci quello obliquo. Se $\lim_{x\to x_0} f(x) = \infty, x = x_0$ si chiama asintoto verticale con x_0 punto di accumulazione per f.

2.14 Approssimazione di funzioni con polinomi

2.14.1 Polinomio di Taylor

Data una funzione f derivabile n volte in x_0 , esiste uno e un solo polinomio

$$T_n(x_0) = f(x_0), T'_n(x_0) = f'(x_0), \dots, T^{(n)}(x_0) = f^{(n)}(x_0).$$

Tale polinomio si chiama polinomio di Taylor ed è

$$T_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2 + \dots + \frac{f''(x_0)}{n!}(x - x_0)^n$$

Polinomio di centro x_0 e grado n

$$T_n(x) = \sum_{k=0}^n \frac{f^{(b)}(x_0)(x-x_0)^k}{k!} (x-x_0)^k$$

Se $x_0 = 0T_n(x)$ è detto polinomio di Mac Laurin di grado n. $R_n(x) =$ errore che si commette quando si approssima f(x) con $T_n(x)$:

Si ha: $R_n(x) = f(x) - T_n(x)$

- $R_n(x) = o((x-x_0)^n)$ per $x \to x_0$, Formula di Peano cioè $\lim_{x \to x_0} \frac{R_n(x)}{(x-x_0)^n} = 0$
- Se f è derivabile n+1 volte in (a,b) ecluso al più x_0 , $\forall x \in (a,b), \exists c$ compreso tra $x \in x_0$: $R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-x_0)^{n+1} \text{ Formula di Lagrange}$ <++>

2.15 Esercizio d'esempio

$$f(x) = \frac{x^3}{2(1+x)^2}$$

1. Dominio: $\forall x \in \mathbb{R} - \{-1\}$ **Denominatore** $\neq 0$: $2(x+1)^2 \neq 0 \Rightarrow x \neq -1$

2. Intersezione con gli assi:

asse
$$\mathbf{x}$$

$$\begin{cases} y = 0 \\ \frac{x^3}{2(1+x)^2} = 0 \end{cases}$$

$$\begin{cases} y = 0 \\ x^3 = 0 \Rightarrow \sqrt[3]{x^3} = 0 \Rightarrow x = 0 \end{cases}$$
asse \mathbf{y}

$$\begin{cases} x = 0 \\ \frac{0^3}{2(1+0)^2} = 0 \end{cases}$$

$$\begin{cases} y = 0 \\ x = 0 \end{cases}$$

nel caso dello studio del intersezione con gli assi si può escludere lo studio del denominatore

3. Segno: f(x) > 0

- Numeratore: $x^3 > 0 \Rightarrow \sqrt[3]{x^3} > 0 \Rightarrow x > 0$
- Denominatore: $2(x+1)^2 > 0 \Rightarrow x \neq -1$
- 4. Simmetrie: $f(x)=f(-x)=\frac{-x^3}{2(1-x)^2} \text{ La funzione non è ne pari ne dispari.}$
- 5. Asintoto verticale:

$$\lim_{x \to -1^+} \frac{x^3}{2(1+x)^2} = \frac{(-1)^3}{2(1+(-1^+))^2} = \frac{-1}{0} = -\infty$$

$$\lim_{x \to -1^-} \frac{x^3}{2(1+x)^2} = \frac{(-1)^3}{2(1+(-1^-))^2} = \frac{-1}{0} = -\infty$$

6. Asintoto orizzontale:

Assistated offizionicale.
$$\lim_{x\to +\infty} = \frac{x^3}{2(1+x)^2} = \frac{(+\infty)^3}{2(1+(+\infty))^2} = \frac{\infty}{\infty}$$

$$\lim_{x\to +\infty} \frac{f^\cdot(x)}{g^\cdot(x)} = \lim_{x\to +\infty} \frac{3x^2}{4(1+x)} = \frac{\infty}{\infty} = \frac{6x}{4} = \infty$$