SISTEMAS DE CONTROL EN ROBÓTICA

Notas de Clase

Mauricio Arias Correa

Medellín, 2021

Atribución - No comercial - Sin derivar

Esta obra puede ser descargada y compartida con otras personas, siempre y cuando se den los créditos respectivos al autor. La obra no puede ser intervenida, no pueden generarse obras derivadas ni obtener beneficios comerciales.

Transformada Z Modificada

Transformada Z modificada

La transformada Z modificada, se utiliza cuando la función de transferencia de un sistema presenta tiempo muerto o retardo: θ ,

Se parte del hecho de que la función de transferencia del sistema está dada por:

$$G_p(S) = G(S)e^{-\theta'S} \quad (1)$$

En donde G(S), no contiene tiempo muerto y -por otro lado-, θ ' es el tiempo muerto del sistema, entonces el procedimiento para evaluar la *transformada Z* es el siguiente:

Sea:
$$\theta'=NT+\theta$$
 (2)

Donde T es el periodo de muestreo y N es la parte entera del cociente:

$$N = \theta'/T \tag{3}$$

Sustituyendo (2) en (1):
$$G_p(S) = G(S)e^{-(NT+\theta)S}$$
 (4)

Aplicando la Transformada Z a (4):
$$G_p(z) = \Im\{G(S)e^{-(NT+\theta)S}\}$$
 (5)

Sea: $\theta'=NT+\theta$

Donde T es el periodo de muestreo y N es la parte entera del cociente:

$$N=\theta'/T$$

Aplicando propiedades de la Transformada Z:

$$G_p(z) = \Im\{G(S)e^{-(NT+\theta)S}\}$$

Por tanto:

$$G_p(z) = z^{-N} \Im \{G(S)e^{-\theta S}\}$$
(6)

El término: $\Im\{G(S)e^{-\theta S}\}$, se define como la *Transformada Z modificada de G(S)*

Y se denota por:
$$\mathfrak{I}_m\{G(S)\}=G(z,m)$$
 (7)

Entonces:
$$G_p(z) = z^{-N} \Im_m \{G(S)\} = z^{-N} G(z, m)$$
 (8)

Donde:
$$m = 1 - \frac{\theta}{T}$$
 (9)

Tabla de Transformada Z modificada

Nº	f(t)	F(kT)	F(S)	F(z) Modificada
1	u(t)	U(kT)	$\frac{1}{S}$	$\frac{1}{z-1}$
2	t	kT	$\frac{1}{S^2}$	$\frac{mT}{z-1} - \frac{T}{(z-1)^2}$
3	t ²	(<i>kT</i>) ²	$\frac{2}{S^3}$	$T^{2}\left[\frac{m^{2}}{z-1}+\frac{2m+1}{(z-1)^{2}}+\frac{2}{(z-1)^{3}}\right]$
4	t^{n-1}	$(kT)^{n-1}$	$\frac{(n-1)!}{S^n}$	$\lim_{a\to 0} (-1)^{n-1} \frac{\partial^{n-1}}{\partial a^{n-1}} \left[\frac{e^{-amT}}{z - e^{-aT}} \right]$
5	e^{-at}	e^{-akT}	$\frac{1}{S+a}$	$\frac{e^{-amT}}{z - e^{-aT}}$
6	te ^{-at}	(kT)e ^{−akT}	$\frac{1}{(s+a)^2}$	$\frac{Te^{-amT}[e^{-aT} + m(z - e^{-aT})]}{(z - e^{-aT})^2}$
7	$1-e^{-at}$	$1 - e^{-akT}$	$\frac{a}{S(S+a)}$	$\frac{1}{z-1} - \frac{e^{-amT}}{z-e^{-aT}}$
8	$at - 1 + e^{-at}$	$akT - 1 + e^{-akT}$	$\frac{a^2}{S^2(S+a)}$	$\frac{aT}{(z-1)^2} + \frac{amT - 1}{z-1} + \frac{e^{-amT}}{z - e^{-aT}}$

Tabla de Transformada Z modificada

9	$1-(1+at)e^{-at}$	$1 - (1 + akT)e^{-akT}$	$\frac{a^2}{S(S+a)^2}$	$\frac{1}{z-1} - \left[\frac{1 + amT}{z - e^{-aT}} + \frac{aTe^{-aT}}{(z - e^{-aT})^2} \right]$
10	$e^{-at} - e^{-bt}$	$e^{-akT} - e^{-bkT}$	$\frac{b-a}{(S+a)(S+b)}$	$\frac{e^{-amT}}{z - e^{-aT}} - \frac{e^{-bmT}}{z - e^{-bT}}$
11	sin(bt)	sin(bkT)	$\frac{b}{S^2 + b^2}$	$\frac{z.\sin(bmT) + \sin(1-m)bT}{z^2 - 2z\cos(bT) + 1}$
12	cos(bt)	cos(bkT)	$\frac{S}{S^2 + b^2}$	$\frac{z.\cos(bmT) - \cos(1-m)bT}{z^2 - 2z\cos(bT) + 1}$
13	e ^{-at} sin(bt)	$e^{-akT}sin(bkT)$	$\frac{b}{(S+a)^2+b^2}$	$\frac{[z.\sin(bmT) + e^{-aT}\sin(1-m)bT]e^{-amT}}{z^2 - 2ze^{-aT}\cos(bT) + e^{-2aT}}$
14	$e^{-at}cos(bt)$	$e^{-akT}cos(bkT)$	$\frac{S+a}{(S+a)^2+b^2}$	$\frac{[z.\cos(bmT) + e^{-aT}\sin(1-m)bT]e^{-amT}}{z^2 - 2ze^{-aT}\cos(bT) + e^{-2aT}}$

Ejemplo:

Hallar la transformada Z de:

$$G_p(S) = \frac{5e^{-1.33}}{(S+3)^2}$$

Asumiendo un periodo de muestreo: T=1 seg

Solución:

$$N = \frac{\theta'}{T} = \frac{1.3}{1} = 1$$

$$\theta = \theta' - NT = 1.3 - 1 = 0.3$$

$$m = 1 - \frac{\theta}{T} = 1 - \frac{0.3}{1} = 0.7$$

Utilizando tablas de transformada I modificada:

$$\Im\left\{\frac{1}{(S+a)^2}\right\} = \frac{Te^{-amT}[e^{-aT} + m(z - e^{-aT})]}{(z - e^{-aT})^2}$$

Con N=1 y con:
$$G(S) = 5/(S+3)^2$$

$$G_p(z) = z^{-1} \Im_m \left\{ \frac{5}{(S+3)^2} \right\} = \frac{5 * 0.12245[0.04978 + 0.7(z - 0.04978)]}{(z - 0.04978)^2}$$

Simplificando la ecuación:

$$G_p(z) = \frac{0.42857(z + 0.02133)}{(z - 0.04978)^2}$$

Con **N=1** y con:
$$G(S) = 5/(S+3)^2$$

$$G_p(z) = z^{-1} \Im_m \left\{ \frac{5}{(S+3)^2} \right\} = \frac{5 * 0.12245[0.04978 + 0.7(z - 0.04978)]}{(z - 0.04978)^2}$$

Simplificando la ecuación:

$$G_p(z) = \frac{0.42857(z + 0.02133)}{(z - 0.04978)^2}$$

Referencias

- [1] Landau, I. D., & Zito, G. (2007). *Digital control systems: design, identification and implementation*. Springer Science & Business Media.
- [2] García, L., (2006). Sistemas de Control Digital.
- [3] Ogata, K. (1995). *Discrete-time control systems* (Vol. 2, pp. 446-480). Englewood Cliffs, NJ: Prentice Hall.