Tópicos de Matemática

	primeiro te	ste - versão	A :: 18 de ja	neiro	de 2012 —				
IMPORT	ANTE: A	A duração (do teste é de	2 h	oras. O test	te é composto p	or nove	e exercício	os.
Os exercío	ios 15.	devem se	r resolvidos	no	enunciado.	Os exercícios	69.	devem s	ser

resolvidos numa folha separada. Nos exercícios em que a cotação não é indicada no enunciado, cada resposta certa conta 0,5 valores e cada resposta errada desconta 0,2 valores.

Nome: Número:	

exercício 1. Indique, de entre as correspondências seguintes, as que são funções (F) e as que não o são (N)

- F Ν
- A correspondência $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ definida por f(n,m) = n - m.
- A correspondência $g \colon \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ definida por $g(X) = \begin{cases} \emptyset, & \text{se } X \subseteq \{1,2\} \\ \mathbb{N}, & \text{se } \{1,2\} \subseteq X \end{cases}$.

 A correspondência $h \colon \mathbb{R} \to \mathbb{R}$ definida por $h(x) = \begin{cases} 2, & \text{se } x^2 \geq 4 \\ 1, & \text{se } x < 3 \end{cases}$.
- A correspondência $p: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ definida por p(n,m) =

exercício 2. Considere os conjuntos $X = \{1, 2, 3, 4\}, Y = \{a, b, c, d\}$ e $Z = \{x, y, z\}$. Indique quais das seguintes afirmações são verdadeiras (V) e quais são falsas (F):

- V F
- Existe uma função injetiva de X em Z.
- Existe uma função sobrejetiva de X em Z.
- Existe uma função bijetiva de X em Y.
- Existe uma função sobrejetiva e não injetiva de X em Y.

exercício 3. Sejam $A = \{1, 2, 3, 4, 5\}$ e $B = \{3, 4, 5\}$. Considere as relações binárias R, de A em B, e S, em A, dadas por

$$R = \{(1,3), (1,5), (2,4), (3,5)\}, \qquad S = \{(1,1), (3,3), (5,5)\}.$$

Indique quais das seguintes afirmações são verdadeiras (V) e quais são falsas (F):

- V F
- R é antissimétrica e transitiva.
- \square S é simétrica e antissimétrica.
- \square $S \circ R = R$.
- \Box id_B \cup R é uma relação de equivalência em A.

exercício 4. Considere o conjunto $C = \{a, b, c, d, e\}$. Indique quais das seguintes afirmações são verdadeiras (V) e quais são falsas (F):

V F \square Existe uma relação de equivalência \sim em C tal que $C/\sim=\{\{a,c,e\},\{b\},\{d\}\}\}$. \square Existe uma relação de equivalência \sim em C tal que $C/\sim=\mathcal{P}(C)$. \square Existe uma relação de equivalência em C tal que $[b]_{\sim}=\{a,b,c\}$ e $[c]_{\sim}=\{c,d,e\}$. \square Existe uma relação de equivalência em C tal que $[a]_{\sim}=\emptyset$.

exercício 5. Seja $X=\{a,b,c,d,e,f,g\}$. Considere o c.p.o. (X,\leq) representado pelo seguinte diagrama de Hasse:

Indique quais das seguintes afirmações são verdadeiras (V) e quais são falsas (F):

exercício 6. Considere as funções $f \colon \mathbb{N} \to \mathbb{N}$ e $g \colon \mathbb{Z} \to \mathbb{N}$ dadas por

$$f(n) = \begin{cases} 3n - 2, & n = 2 \lor n = 4 \\ 2n, & n \neq 2 \land n \neq 4 \end{cases}, \qquad g(n) = |n| + 5.$$

- (a) (1 valor) Determine $f(\{1,2,3,4,5\})$ e $f^{\leftarrow}(\{7,8,9\})$.
- (b) (1 valor) Determine $g(\mathbb{Z})$ e $g^{\leftarrow}(\{1, 2, 3, 4, 5, 6\})$.
- (c) (0,75 valores) Diga, justificando, se f é injetiva e/ou sobrejetiva.
- (d) (0,75 valores) Indique a função composta $f \circ g$.

exercício 7. Considere o conjunto $A=\{2,3,4,6,8,9,10,15,30,35,42\}$ e a relação de equivalência \sim definida em A por

 $x \sim y \iff x \in y$ têm o mesmo número de divisores primos (distintos).

- (a) (0.75 valores) Determine $[2]_{\sim}$.
- (b) (0,75 valores) Determine o conjunto quociente A/\sim .
- (c) (0,75 valores) Dê exemplo, ou justifique que não existe, uma partição Π de A tal que $\sim \subsetneq R_\Pi \subsetneq \omega_A$

exercício 8. Sejam a, b dois números naturais e seja $A = \{1, 2, 3, 6, 9, 20, 36, 81, 180, a, b\}$. Seja | a relação "divide" definida em A por

$$x \mid y \iff \exists k \in \mathbb{N} : y = kx$$
 $(x, y \in A).$

O diagrama de Hasse associado a (A, |) é o seguinte:

- (a) (0.75 valores) Indique, justificando, os elementos maximais e minimais de A.
- (b) (1,5 valores) Sejam $X = \{6, 20, b\}$ e $Y = \{2, 6, 9\}$. Indique, justificando, o conjunto dos majorantes e o conjunto dos minorantes de X e de Y em A e, caso existam, o supremo e o ínfimo de X e de Y.
- (d) (0,75 valores) Dê exemplo de dois números $a, b \in \mathbb{N}$ tais que o diagrama de Hasse associado a (A, |) seja o representado anteriormente.

exercício 9. (1.25 valores) Prove que, para cada $n \in \mathbb{N}$,

$$3 + 3 \times 5^{1} + 3 \times 5^{2} + \ldots + 3 \times 5^{n} = 3 \times \frac{5^{n+1} - 1}{4}.$$