东南大学电工电子实验中心 实验报告

课程名称:	数字逻辑电路实验
◇ ◇ / / / / / / /	X 1 2 17 10 10 10 10 10 10 10 10 10 10 10 10 10

第1、2次实验

实验名称	尔:		组合逻	辑电路	<u> </u>
院(系):	自动化	_ 专	业:	自动化
					08022311
实验室	室:	电子技术4室-	<u>-105</u> 实	验组别	J:
同组人员	灵:		实验	时间:	2023年11月2日
评定成约	责:		审阅]教师:	

一、实验目的

- 1、认识数字集成电路,能识别各种类型的数字器件和封装;
- 2、掌握小规模组合逻辑和逻辑函数的工程设计方法;
- 3、掌握常用中规模组合逻辑器件的功能和使用方法;
- 4、学习查找器件资料,通过器件手册了解器件;
- 5、了解实验箱的基本结构,掌握实验箱电源、逻辑开关和 LED 电平指示的用法;
- 6、学习基本的数字电路的故障检查和排除方法。

二、 实验原理 (预习报告内容)

- 1. 数值判别电路(只允许用与非门、非门设计电路)
 - a) 用与非门设计一个组合逻辑电路,接收 8421BCD 码 $B_3B_2B_1B_0$,当 $2 < B_3B_2B_1B_0$

<7 时输出 Y 为 1

根据要求列出真值表:

В3	B2	B1	В0	Υ
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	х
1	0	1	1	х
1	1	0	0	х
1	1	0	1	х
1	1	1	0	х
1	1	1	1	х

卡诺图以及根据卡诺图得到表达式:

根据表达式画出逻辑原理图:

预搭接硬件连接图 (实物连线拍照):

b) 用与非门设计一个组合逻辑电路,接收 4 位 2 进制数 $B_3B_2B_1B_0$,当 $2 < B_3B_2B_1B_0$ < 7 时输出 Y 为 1

根据要求列出真值表:

ВЗ	B2	В1	В0	Υ
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

卡诺图以及根据卡诺图得到表达式:

1-(b): B3B2 00 01 11 10	. Y= \overline{B_3}\overline{B_2}\overline{B_1}\overline{B_2}\overline{B_2}\overline{B_2}\overline{B_1}\overline{B_2}B
0 1 1	= B3B2B1B2+ B3B2BB
[0	= B3 B2 B1 B0 B3 B2 B1 B0

预搭接硬件连接图 (实物连线拍照):

2、用三种方案设计实现 3 位二进制原码转补码电路(3 位二进制数仅考虑 0 和负数, 且已省去符号位)

根据题意列出真值表

B2	B1	В0	Y2	Y1	Y0
0	0	0	0	0	0
0	0	1	1	1	1
0	1	0	1	1	0
0	1	1	1	0	1
1	0	0	1	0	0
1	0	1	0	1	1
1	1	0	0	1	0
1	1	1	0	0	1

a) 全部用门电路实现

卡诺图以及根据卡诺图得到表达式:

预搭接硬件连接图(实物连线拍照):

b) 用数据选择器 74151+门电路实现

结合 151 功能得到逻辑表达式:

预搭接硬件连接图 (实物连线拍照):

c) 用三八译码器 74138+门电路实现

结合 138 功能得到逻辑表达式:

预搭接硬件连接图 (实物连线拍照):

3、 人类有四种血型: A、B、AB 和 O 型。输血时,输血者与受血者必须符合下图的规定,否则有生命危险, 利用数据选择器和最少数量的与非门,完成血型配对任务。

设 01 (或 10,00,目的最简) 代表 A 型血, 代表 B 型血, 代表 O 型血, 代表 AB 型血, 代表输血, 代表受血, Y 代表输出。列出真值表:

变量设计:

输血者		受血者	代表 血型	
G1	G0	R1	R0	皿空
0	0	0	0	0
0	1	0	1	Α
1	0	1	0	В
1	1	1	1	AB

真值表:

G1	G0	R1	R0	S(能输血为 1
				不能输血为0)
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

得到卡诺图,并降维化简:

结合 74151 数据选择器的逻辑表达式:

*注:八选一数据选择器的输入理论上是三位二进制数,而本题中血型组合理论上应当是四位二进制数,这里的处理方法是将 G1、G0、R1 视为 74151 的输入,而 R0 会替代部分的数据备选项 D,根据上图表 2,每两行一组一个对应的 D 来看,无论 R0 取几有些 D 不受 R0 影响,例如: D0=D1=D5=1, D4=D6=0;而有些 D 与 R0 保持一致,例如: D2=D3=D7=R0。

逻辑原理图

预搭接硬件连接图 (实物连线拍照):

4、选做实验

保险箱数字密码锁

设计一个保险箱的数字密码锁,该锁有规定的 4 位代码 A1, A2, A3, A4 的输入端和一个开箱钥匙孔信号 E 的输出端,锁的代码由实验者自编(例如 1011),当用钥匙开箱时(E=1),如果输入代码符合锁规定代码,保险箱被打开(Z1=1);如果不符,电路将发生报警信号(Z2=1)。要求使用最少数量的与非门实现电路,检测并记录实验结果

设置密码为 1011 ,根据要求列出真值表:

Е	A0	A1	A2	А3	Z1	Z2
0	0	0	0	0	0	0
0	0	0	0	1	0	0
0	0	0	1	0	0	0
0	0	0	1	1	0	0
0	0	1	0	0	0	0
0	0	1	0	1	0	0
0	0	1	1	0	0	0
0	0	1	1	1	0	0
0	1	0	0	0	0	0
0	1	0	0	1	0	0
0	1	0	1	0	0	0
0	1	0	1	1	0	0
0	1	1	0	0	0	0
0	1	1	0	1	0	0
0	1	1	1	0	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	1
1	0	0	0	1	0	1
1	0	0	1	0	0	1
1	0	0	1	1	0	1
1	0	1	0	0	0	1
1	0	1	0	1	0	1
1	0	1	1	0	0	1
1	0	1	1	1	0	1
1	1	0	0	0	0	1
1	1	0	0	1	0	1

1	1	0	1	0	0	1
1	1	0	1	1	1	0
1	1	1	0	0	0	1
1	1	1	0	1	0	1
1	1	1	1	0	0	1
1	1	1	1	1	0	1

卡诺图以及根据卡诺图得到表达式:

预搭接硬件连接图 (实物连线拍照):

三、 实验仪器 (实验过程中用到的仪器设备型号,使用情况,使用软件)

EPI-EWB204+面包板:用于电路的搭接、输入输出效果验收

Multisim: 用于绘制原理图,以及仿真电路功能

Fritzing: 用于绘制硬件连接图

四、 实验记录

1、数值判别电路

a) 8421BCD 码

В3	B2	B1	В0	理论Y	实验 Y
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	0
0	0	1	1	1	1
0	1	0	0	1	1
0	1	0	1	1	1
0	1	1	0	1	1
0	1	1	1	0	0
1	0	0	0	0	0
1	0	0	1	0	0
1	0	1	0	х	х
1	0	1	1	х	X
1	1	0	0	х	Х
1	1	0	1	Х	х
1	1	1	0	Х	Х
1	1	1	1	х	х

b) 4位2进制数

验证表格如下:

ВЗ	B2	B1	В0	理论Y	实验 Y
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	0
0	0	1	1	1	1
0	1	0	0	1	1
0	1	0	1	1	1
0	1	1	0	1	1
0	1	1	1	0	0
1	0	0	0	0	0
1	0	0	1	0	0
1	0	1	0	0	0
1	0	1	1	0	0
1	1	0	0	0	0
1	1	0	1	0	0
1	1	1	0	0	0
1	1	1	1	0	0

2、二进制原码转补码电路

a) 全部用门电路实现

B2	B1	В0	理论	实验	理论	实验	理论	实验
			Y2	Y2	Y1	Y1	Y0	Y0
0	0	0	0	0	0	0	0	0
0	0	1	1	1	1	1	1	1
0	1	0	1	1	1	1	0	0
0	1	1	1	1	0	0	1	1
1	0	0	1	1	0	0	0	0
1	0	1	0	0	1	1	1	1
1	1	0	0	0	1	1	0	0
1	1	1	0	0	0	0	1	1

b) 用数据选择器 **74151**+门电路实现 验证表格如下:

	42122 \$41474. 1								
B2	B1	В0	理论	实验	理论	实验	理论	实验	
			Y2	Y2	Y1	Y1	Y0	Y0	
0	0	0	0	0	0	0	0	0	
0	0	1	1	1	1	1	1	1	
0	1	0	1	1	1	1	0	0	
0	1	1	1	1	0	0	1	1	
1	0	0	1	1	0	0	0	0	
1	0	1	0	0	1	1	1	1	
1	1	0	0	0	1	1	0	0	
1	1	1	0	0	0	0	1	1	

c) 用三八译码器 74138+门电路实现

B2	B1	ВО	理论	实验	理论	实验	理论	实验
			Y2	Y2	Y1	Y1	Y0	Y0
0	0	0	0	0	0	0	0	0
0	0	1	1	1	1	1	1	1
0	1	0	1	1	1	1	0	0
0	1	1	1	1	0	0	1	1
1	0	0	1	1	0	0	0	0
1	0	1	0	0	1	1	1	1
1	1	0	0	0	1	1	0	0
1	1	1	0	0	0	0	1	1

3、血型判别

G1	G0	R1	R0	理论S	实验S
0	0	0	0	1	1
0	0	0	1	1	1
0	0	1	0	1	1
0	0	1	1	1	1
0	1	0	0	0	0
0	1	0	1	1	1
0	1	1	0	0	0
0	1	1	1	1	1
1	0	0	0	0	0
1	0	0	1	0	0
1	0	1	0	1	1
1	0	1	1	1	1
1	1	0	0	0	0
1	1	0	1	0	0
1	1	1	0	0	0
1	1	1	1	1	1

4、选做实验密码锁

E	衣帽 3 A0	A1	A2	A3	理论 Z1	实验 Z1	理论 Z2	实验 Z2
0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0
0	0	0	1	0	0	0	0	0
0	0	0	1	1	0	0	0	0
0	0	1	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0
0	0	1	1	0	0	0	0	0
0	0	1	1	1	0	0	0	0
0	1	0	0	0	0	0	0	0
0	1	0	0	1	0	0	0	0
0	1	0	1	0	0	0	0	0
0	1	0	1	1	0	0	0	0
0	1	1	0	0	0	0	0	0
0	1	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0	0
0	1	1	1	1	0	0	0	0
1	0	0	0	0	0	0	1	1
1	0	0	0	1	0	0	1	1
1	0	0	1	0	0	0	1	1
1	0	0	1	1	0	0	1	1
1	0	1	0	0	0	0	1	1
1	0	1	0	1	0	0	1	1
1	0	1	1	0	0	0	1	1
1	0	1	1	1	0	0	1	1
1	1	0	0	0	0	0	1	1
1	1	0	0	1	0	0	1	1
1	1	0	1	0	0	0	1	1
1	1	0	1	1	1	1	0	0
1	1	1	0	0	0	0	1	1

1	1	1	0	1	0	0	1	1
1	1	1	1	0	0	0	1	1
1	1	1	1	1	0	0	1	1

五、实验分析 (根据实验记录分析描述各实验结果是否符合设计要求)

通过对 四、实验记录 中表格中输出项的理论值和实验值的真值表对比可得,实验结果符合各题干要求,并且课上当场验收也都通过。

六、 实验小结(总结实验完成情况,对设计方案和实验结果做必要的讨论,简述实验 收获和体会)

实验题目全部完成,包括选做实验,预习报告和现场验收均已通过。

在设计电路时,应该根据逻辑函数的特点选择合适的芯片,比如异或门的使用、四输入二输入与非门的选择;逻辑化简这一步很重要,能减少芯片数量,使电路更简单清晰;数据选择器的 D 可以和一个输入项进行融合化简,这样一来可以让八选一三位二进制数据选择器处理四位二进制输入数据,通过观察真值表,可识别出合适的输入项和 D 融合化简,例如本实验中血型那道题的 RO。

在实物搭接时,可以将输入信号连在同一组开关上,而输出则是分开的两组灯,这样方便自己检验老师验收。

七、 参考资料 (记录实验过程阅读的有关资料,包含资料名称、作者等)

[1]史占花,何丽娟,梁小青等.基于 Multisim10.0 的组合逻辑电路分析与仿真研究[J].电子世界,2022(02):66-68.DOI:10.19353/j.cnki.dzsj.2022.02.027.

[2]秦鹏,靳国宝,章乐乐等.机械类专业"电工与电子技术"课程教学实践与探索——以"组合逻辑电路设计"章节中"三人表决器"的设计为例[J].南方农机,2023,54(03):174-177.

[3]宋昕,李梅梅.学·悟·思·践——以数字电子技术基础课"组合逻辑电路"为例[J].中华历史与传统文化论丛,2022(00):529-535.