Graph Theory Basics

CME4422, I. ATAKAN KUBILAY, PHD.

Outline

- Definitions I
 - Graph Definition
 - ▶ Eccentricity, Diameter, Radius
 - Periphery, Center
- Graph Types
 - Directed\Undirected Graphs
 - Weighted\Non-weighted Graphs
 - Signed Graphs
- Definitions II
 - Path
 - Eulerian Walk
 - Neighborhood
 - Connected/Disconnected Graphs
 - Bridge and Hub
- Graph Representations
 - Adjacency Matrix
 - Adjacency List
 - Edge List
 - ▶ Incidence Matrix

Graph Definition

▶ The set of Vertices (nodes) in a graph are given as:

$$V = \{v_1, v_2, \cdots v_n\}$$

- ▶ For our graph1 above $V = \{A, B, C, D, E, F\}$
- The size n of a graph is denoted by |V| and for graph |V| = 6
- ▶ The set of Edges in a graph are given as: $E = \{e_1, e_2, ..., e_n\}$
- The size m of a graph is denoted by |E| and for graph m = |E| = 5

Simple Graph

- ► A simple graph has no loops.
- ▶ At most one edge between the nodes.

Mathematical Notation

- The mathematical notation for an undirected, unweighted graph is given by G(V,E).
- ► For graph1:
- $\blacktriangleright V = \{A,B,C,D,E,F\}$
- $\blacktriangleright E = \{AB, BC, CE, ED, DA\}$

Eccentricity, Diameter and Radius

Eccentricity

- Eccentricity is defined individually for every node in the graph.
- ▶ It's the maximum distance from the node to any other node.

Diameter and Radius

- ▶ <u>Diameter</u> and <u>Radius</u> are defined for the entire graph.
- ▶ Diameter is the maximum eccentricity of the graph.
- Radius is the minimum eccentricity of the graph.

Radius: 2

Radius ≤ Diameter ≤ 2Radius

$$e(V_1) = 3$$
 $e(V_2) = 2$
 $e(V_3) = 2$
 $e(V_4) = 2$
 $e(V_5) = 3$

Periphery and Center

Periphery

- If a node's eccentricity is equal to the diameter of the graph, then it's a peripheral node.
- ▶ The set of all such nodes is the <u>periphery</u> of the graph.

Center

- If a node's eccentricity is equal to the radius of the graph, then it's a <u>central node</u>.
- ▶ The set of all such nodes is the <u>center</u> of the graph.

Example

- ▶ Find the eccentricities of all nodes.
- Find the diameter and radius for the graph.
- Find the periphery and center for the graph.

$$e(a)=1 \rightarrow radius$$

 $e(b)=e(c)=e(d)=2 \rightarrow diometer$

For a node e(V)=1 iff V is adjacent to all other nodes.

Graph Types

DIRECTED/UNDIRECTED GRAPHS, WEIGHTED/UNWEIGHTED GRAPHS

Directed/Undirected Graphs

Ex. Friendship.

Ex. Following.

Weighted/Unweighted Graphs

Ex. Crow's Flight Distance.

Weighted Graphs

- ▶ Weighted Graphs are mathematically denoted by G(V, E, W) such that |W| = |E|.
- In our example:
- $\longrightarrow W = \{3, 5, 20, 3, 1\}$
- $\triangleright E = \{AB, BC, CE, ED, DA\}$
- $\overline{\triangleright V} = \{A, B, C, D, E, F\}$

Directed and Weighted

Ex. Highway distance between cities.

Signed Graphs

Ex. Friendship(+) and Animosity(-).

Path

- ► A <u>path</u> is the sequence of nodes that travel from one node to another without a loop or repetition.
- ▶ There can be several paths from one node to another.

Bridges of Königsberg

Eulerian Walk

- In order to pass each edge precisely once, we need one of the following conditions:
- All nodes have even degree. OR
- Only the start and end nodes have odd degree.

Neighborhood

- For each vertex v_i the set of all vertices that are connected to v_i are called the neighborhood $N(v_i)$ of v_i .
- ► For graph1:
- $\blacktriangleright N(B) = \{A, C\}$
- \blacktriangleright $N(C) = \{B, E\}$
- $ightharpoonup N(D) = \{A, E\}$
- $\blacktriangleright N(E) = \{D, C\}$
- $\blacktriangleright N(F) = \{\}$

Neighborhood for Directed Graphs

- Now we have to consider both incoming neighbors $N_{in}(v_i)$ and outgoing neighbors $N_{out}(v_i)$.
- $lackbox{N}_{in}(A) = \{B,D\} ext{ and } N_{out}(A) = \{B\}$
- $ightharpoonup N_{in}(B) = \{A\} \text{ and } N_{out}(B) = \{A,C\}$
- $ightharpoonup N_{in}(C)=\{B,E\} ext{ and } N_{out}(C)=\{\}$
- $ightharpoonup N_{in}(D) = \{E\} ext{ and } N_{out}(D) = \{A,E\}$
- $ightharpoonup N_{in}(E)=\{D\} ext{ and } N_{out}(E)=\{D,C\}$
- $ightharpoonup N_{in}(F) = \{\} \ {
 m and} \ N_{out}(F) = \{\}$

Example

- ▶ Paths between A and E:
- ► ABE, ADE, ABCE, ADBE, ABDE,

ADBCE

- ▶ Shortest Paths:
- ► ABE, ADE
- ► All edges are taken as having length 1 in unweighted graphs.

Undirected Graphs: Connected vs. Disconnected

- Connected Graph: There is a path from every node to every other node.
- Disconnected Graph: Some nodes can't be reached from all other nodes.

Directed Graphs:

Disconnected, Weakly Connected, Strongly Connected

- ▶ If a path from any node to any other node may be found considering the directions, this is a <u>strongly connected</u> graph.
- ▶ If a path from any node to any other node may be found only if we ignore the directions, this is a <u>weakly connected</u> graph.

	Α	В	C	D	Е	F
Α		✓	✓	✓	✓	✓
В	✓		✓	✓	✓	✓
С	✓	✓		✓	✓	✓
D	✓	✓	✓		✓	✓
E	✓	✓	✓	✓		✓
F	✓	✓	✓	✓	√	

	Α	В	С	D	E
Α		✓	✓	✓	✓
В	<u>©</u>		✓	✓	<u>©</u>
С	③	✓		✓	③
D	③	✓	✓		<u>©</u>
E	✓	✓	✓	✓	

Connected Components

Connected Component

Connected Component, Also <u>Singleton</u>

Bridge and Hub

Bridge 1

- An edge that would separate the graph into connected components if removed is called a <u>bridge</u>.
- ▶ The node with most connections is called a <u>hub</u>.

Graph Representation Types

Adjacency Matrix

	A	В	С	D	E	F
Α	0	1	0	1	0	0
В	1	0	1	0	0	0
С	0	1	0	0	1	0
D	1	0	0	0	1	0
Е	0	0	1	1	0	0
F	0	0	0	0	0	0

For an undirected graph, the adjacency matrix is symmetric along the diagonal.

There can be a 1 at the diagonal only if there is a loop connection from a vertex to itself.

	A	В	С	D	E	F
A	0	1	0	0	0	0
В	1	0	1	0	0	0
С	0	0	0	0	0	0
D	1	0	0	0	1	0
E	0	0	1	1	0	0
F	0	0	0	0	0	0

IN

For a directed graph, the adjacency matrix may not be symmetric along the diagonal.

Sparse Matrix

- Sparse matrix has most of its elements valued 0.
- ▶ If there is a large number of vertices (nodes) but few connections, the adjacency matrix associated with that graph will be a sparse matrix.
- ► To avoid keeping all values of a sparse matrix most of which are 0, we can use an adjacency list.

Adjacency List

Vertex(node)	Neighbors
A	B,D
В	A,C
С	B,E
D	A,E
E	D,C
F	-

Edge List

A,B
A,D
B,C
C,E
D,E

Edge List (Directed Graph)

Edge

A,B

B,A

B,C

E,C

D,A

D,E

E,D

Incidence Matrix

	e 1	e2	e 3	e4	e 5
Α	1	0	0	0	1
В	1	1	0	0	0
С	0	1	1	0	0
D	0	0	0	1	1
Е	0	0	1	1	0
F	0	0	0	0	0

Not suitable for large graphs.

