PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Ayudante: Nicholas Mc-Donnell

Email: namcdonnell@uc.cl

Ayudantía 13

MAT1106 — Introducción al Cálculo Fecha: 2020-10-13

Problema 1:

Demuestre que las siguientes sucesiones convergen a cero:

1)
$$x_n = \frac{1+2+\ldots+n}{n^3}$$

2)
$$x_n = \frac{1+3+\ldots+(2n-1)}{n^3}$$

3)
$$x_n = \frac{1+4+\ldots+n^2}{n^4}$$

Solución problema 1:

1) Notemos que $x_n = \frac{1}{n^3} \sum_{k=1}^n k$, luego veamos que

$$|x_n| = \frac{1}{n^3} \sum_{k=1}^n k$$

$$\leq \frac{1}{n^3} \sum_{k=1}^n n$$

$$\leq \frac{1}{n^3} \cdot n^2$$

$$\leq \frac{1}{n}$$

Dado $\varepsilon > 0$ sea $n_0 = \left\lfloor \frac{1}{\varepsilon} \right\rfloor + 1$, se nota que para $n \ge n_0$ se tiene que $\frac{1}{n} < \varepsilon$, por lo que por transitividad se tiene que $|x_n| < \varepsilon$. Lo que nos dice que $\lim_{n \to \infty} x_n = 0$.

2) Notemos que $x_n = \frac{1}{n^3} \sum_{k=1}^n 2k - 1$, luego veamos que

$$|x_n| = \frac{1}{n^3} \sum_{k=1}^n 2k - 1$$

$$\leq \frac{1}{n^3} \sum_{k=1}^n 2n - 1$$

$$\leq \frac{1}{n^3} (2n^2 - n)$$

$$\leq \frac{2}{n} - \frac{1}{n^2}$$

$$\leq \frac{2}{n} + \frac{1}{n^2}$$

$$\leq \frac{2}{n} + \frac{1}{n}$$

$$\leq \frac{3}{n}$$

Dado $\varepsilon > 0$ sea $n_0 = \left\lfloor \frac{3}{\varepsilon} \right\rfloor + 1$, se nota que para $n \ge n_0$ se tiene que $\frac{3}{n} < \varepsilon$, por lo que por transitividad se tieneque $|x_n| < \varepsilon$. Lo que nos dice que $\lim_{n \to \infty} x_n = 0$.

3) Notemos que $x_n = \frac{1}{n^4} \sum_{k=1}^n k^2$, luego veamos que

$$|x_n| = \frac{1}{n^3} \sum_{k=1}^n k^2$$

$$\leq \frac{1}{n^4} \sum_{k=1}^n n^2$$

$$\leq \frac{1}{n^4} \sum_{k=1}^n n^2$$

$$\leq \frac{1}{n^4} \cdot n^3$$

$$\leq \frac{1}{n}$$

Usando el mismo argumento que se usa para 1), se tiene que $\lim_{n\to\infty}x_n=0$.

Problema 2:

Sea x_n una sucesión. Demuestre que $\lim_{n\to\infty} x_n = 0$ si y solo si para todo $k \in \mathbb{R}$ $\lim_{n\to\infty} k \cdot x_n = 0$.

Solución problema 2: Se nota que \Leftarrow es trivial tomando k = 1.

Para \Longrightarrow , si k=0, se tiene trivialmente, por lo que para $k\neq 0$ sea $\varepsilon>0$ se tiene que existe un $n_0\in\mathbb{N}$ tal que para $n\geq n_0$ se tiene que $|x_n|<\frac{\varepsilon}{|k|}$ lo que es equivalente a $|k\cdot x_n|<\varepsilon$, por lo que $\lim_{n\to\infty}k\cdot x_n=0$.

Problema 3:

Sea x_n tal que $\lim_{n\to\infty} x_n = 0$, y sea y_n una sucesión acotada, demuestre que $\lim_{n\to\infty} x_n y_n = 0$.

Solución problema 3: Por definición de acotado de tiene que $\exists M \in \mathbb{R}$ tal que $\forall n \in \mathbb{N}$ $0 \le |y_n| < M$, por lo que dado un $\varepsilon > 0$ existe un $n_0 \in \mathbb{N}$ tal que $n \ge n_0$ da que $|x_n| < \frac{\varepsilon}{M}$, ahora se ve que $|y_n x_n| < M |x_n| < M \cdot \frac{\varepsilon}{M} = \varepsilon$, por lo que se tiene que $\lim_{n \to \infty} x_n y_n = 0$.

Problema 4:

Sea x_n tal que $x_n \neq 0$ para todo $n \in \mathbb{N}$. Demuestre que si $\lim_{n \to \infty} x_n = 0$, entonces $\frac{1}{x_n}$ no está acotada.

Solución problema 4: Usando contrapositiva, si $\frac{1}{x_n}$ es acotada, se tiene que existe un $M \in \mathbb{R}$ tal que para todo $n \in \mathbb{N}$ se tiene $\left|\frac{1}{x_n}\right| < M$, esto se puede reescribir como $\frac{1}{M} < |x_n|$, por lo que se tiene que x_n no puede converger a 0.