中国科学技术大学

2023—2024学年第一学期考试试卷

	考试科目	概率论与数理统	<u>计</u>	导分			
	所在院	系 姓名		学号			
	考试时	间: 2024年1月17日上	二午 8:30-10:30;	可使用简单计算器			
— ,	(30分, 每小题3分	·) 填空题或单选题,	答案可以直接5	写在试卷上.			
	1. 设 $P(A) = 0$	1. 设 $P(A) = 0.7, P(B) = 0.4, P(A B) = 0.5,$ 则 $P(B A \cup \bar{B}) =$					
	2. 下述表述正确	角的是()					
	(A) 分布函数	女连续的随机变量即 为	连续型随机变	量			
	` '	 机变量加上一个常数					
			= =	参数落入该区间的概率是 0.95			
	` ′			犯第一类错误的概率至多为 0.02			
			- , , , - , ,	且均连续, 而对应的分布函数分别 、			
	, , , ,	x), 则下列中一定为密 (P) 2 (() C()	,				
				(D) $f(x)G(x) + F(x)g(x)$			
		[X,Y] 相互独立正均版 $[X)]=$	(外多级 <i>为 入</i> f	为 Poisson 分布, 若记 $S = X + Y$,			
	2 \ 1	, ,	为到随却	K,则下述表述正确的是()			
	$(A) \lim_{n \to \infty} X_n$	` ,		$\mathbf{X}(x) = \mathbf{P}(X \le x), \ \forall x \in \mathbb{R}$			
				$-X \le \varepsilon) = 1, \ \forall \varepsilon > 0$			
			$n \to \infty$	$ A \leq c - 1$, $ C > 0$			
		下述表述正确的是() (A) 两个正态分布随机变量之和服从正态分布					
	* *	可近似为标准正态分布					
	* *	S分布的尾部比 t 分布					
	* *	(D) 标准正态分布密度的峰比 t 分布密度的峰要低					
	7. 下述表述错误	吴的是()					
	(A) 矩估计量	量一般不唯一	(B) 无	偏估计总是优于有偏估计			
	(C) 相合性是	是一个估计量应具有的	性质 (D) 最	大似然估计可以不存在			
				单随机样本, 其中 $\theta > 0$ 为未知参			
			$\{x_n\}$,若使损失	函数 $h(c) = \mathbb{E}[(cX_{(n)} - \theta)^2]$ 最小,			
	则 $c =$						
				$\frac{1}{2}$ $\frac{1}{2}$ 和置信水平不变,则对不同的			
				(填 "保持不变"或"会改变").			
			** * *	羊本,考虑假设检验问题 $H_0: \mu =$			
	$0\leftrightarrow H_1:\mu=$	= U.5. 如禾安氺位验?	心弗一尖和弗-	二类错误的概率均不超过 0.05, 则			

样本量 n 至少为_____.

二、(20分) 设 $n (n \ge 3)$ 维随机向量 (X_1, X_2, \dots, X_n) 的密度函数为

$$f(x_1, x_2, \dots, x_n) = 1 + \prod_{i=1}^n x_i, \quad -0.5 \le x_i \le 0.5, \quad i = 1, 2, \dots, n.$$

- (1) 对任意 $1 \le k \le n$, 试求 X_k 的边缘分布.
- (2) 试求概率 $P(X_1 > 0, X_2 > 0, \dots, X_n > 0)$.
- (3) 对任一整数 $2 \le m < n$, 证明: X_1, \dots, X_m 相互独立, 但 X_1, \dots, X_n 不相互独立.
- (4) 设随机向量 $\mathbf{X}^{(1)} = (X_1, \dots, X_m), \mathbf{X}^{(2)} = (X_{m+1}, \dots, X_n), 1 \leq m < n.$ 对给定的常数 $-0.5 \leq x_{m+1}, \dots, x_n \leq 0.5$, 证明在条件 $\mathbf{X}^{(2)} = (x_{m+1}, \dots, x_n)$ 下, $\mathbf{X}^{(1)}$ 的条件密度函数 $f(x_1, \dots, x_m | x_{m+1}, \dots, x_n)$ 与 $f(x_1, x_2, \dots, x_n)$ 具有相同表达式.
- 三、 (15分) 设随机变量 X 和 Y 相互独立且均服从正态分布 $\mathcal{N}(0,\sigma^2)$. 记随机变量 $U = (X^2 + Y^2)/\sigma^2$ 及 V = |Y|/X. 试求 (U,V) 的联合密度函数, 指出 U 和 V 各自服从的具体分布, 并证明两者相互独立.
- 四、 (15分) 设 X_1, X_2, \cdots, X_n 为来自总体 X 的简单随机样本, 且 X 的密度函数为 $f(x) = \frac{1}{\sigma}e^{-(x-\theta)/\sigma}I_{[\theta,\infty)}(x)$, 其中 $\sigma > 0$ 为一已知的常数, 而 θ 为未知参数.
 - (1) 试求 θ 的矩估计 $\hat{\theta}$ 和最大似然估计 $\tilde{\theta}$.
 - (2) 问 $\hat{\theta}$ 和 $\tilde{\theta}$ 是否为 θ 的无偏估计? 若是, 请证明之; 若否, 请修正之.
 - (3) 试求常数 b, 使对任意 $x \in \mathbb{R}$, 均有 $\lim_{n \to \infty} P(\sqrt{n}(\hat{\theta} \theta)/b \le x) = \Phi(x)$ 成立, 其中 $\Phi(x)$ 为标准正态分布函数.
- 五、 (12分) 某种内服药有使病人血压增高的副作用, 且血压增高值的分布为 N(22,84.64). 现研制出一种新药, 通过测试 10 名服用新药病人的血压, 发现血压增高的样本均值和样本方差分别为 17.9 和 25.4. 在检验水平 $\alpha=0.05$ 下,
 - (1) 通过比较均值, 所测数据能否支持"新药的副作用显著变小"这一结论?
 - (2) 所测数据能否支持"新药的方差显著变小"这一结论?
- 六、(8分) 英国女作家Jane Austen(1775–1817)的作品有 $Sense\ and\ Sensibility,\ Pride\ and\ Prejudice$ 和 Emma 等, 她哥哥在她去世后主持了遗作Persuasion 和 $Northanger\ Abbey$ 两部作品出版. 下面表格收集了 $Sense\ and\ Sensibility,\ Emma\ 和\ Persuasion\ 三部作品 前两章中常用代表词的出现频数, 根据你所学统计知识, 我们能否认为这三部作品在 选择这些常用词的习惯没有差异? (检验水平 <math>\alpha=0.05$)

单词	Sense and Sensibility	Emma	Persuasion
a	147	186	184
an	25	26	40
this	32	39	30
that	94	105	59

附录 标准正态分布函数: $\Phi(1.645) = 0.95$, $\Phi(1.96) = 0.975$

上分位数: $t_9(0.025) = 2.2622$, $t_9(0.05) = 1.8331$,

 $\chi_6^2(0.05) = 12.592, \ \chi_6^2(0.95) = 1.635, \ \chi_9^2(0.05) = 16.919, \ \chi_9^2(0.95) = 3.325,$

参考答案

一、 每小题 3 分.

$$\begin{bmatrix} 1-5 \end{bmatrix}$$
 $\frac{1}{4}$; D; D; λ ; C;

[6-10] B; B; $\frac{n+2}{n+1}$; 保持不变; 44.

- 二、 每小题 5 分.
 - (1) 对任意 1 < k < n, 由

$$f_k(x_k) = \int_{-1/2}^{1/2} \cdots \int_{-1/2}^{1/2} \left(1 + \prod_{i \neq k} x_i \right) dx_1 \cdots dx_{k-1} dx_{k+1} \cdots dx_n = 1, \quad -\frac{1}{2} \le x_k \le \frac{1}{2},$$

知 $X_k \sim U(-1/2, 1/2)$, 即 X_k 服从区间 (-1/2, 1/2) 上的均匀分布.

(2) 由密度函数的基本性质可知

$$P(X_1 > 0, X_2 > 0, \dots, X_n > 0) = \int_0^{1/2} \dots \int_0^{1/2} \left(1 + \prod_{i=1}^n x_i \right) dx_1 \dots dx_n$$
$$= \frac{1}{2^n} + \left(\int_0^{1/2} x dx \right)^n = \frac{1}{2^n} + \frac{1}{8^n} = \frac{4^n + 1}{8^n}.$$

(3) 对 $2 \le m < n$, 类似 (1) 可知 X_1, X_2, \dots, X_m 的联合密度函数为

$$f_{1,2,\dots,m}(x_1,x_2,\dots,x_m)=1, \quad -\frac{1}{2} \le x_1,x_2,\dots,x_m \le \frac{1}{2}.$$

再由 (1) 可知 X_1, X_2, \cdots, X_m 相互独立. 而当 x_1, x_2, \cdots, x_n 均不为 0 时, 联合密度函数 $f(x_1, x_2, \cdots, x_n) \neq 1$, 从而知 X_1, X_2, \cdots, X_n 不相互独立.

(4) 设 $f_{m+1,\dots,n}(x_{m+1},\dots,x_n)$ 为 $X^{(2)}$ 的边缘密度函数,则类似于 (3) 中结论可知 $f_{m+1,\dots,n}(x_{m+1},\dots,x_n)=1, -1/2 \leq x_{m+1},\dots,x_n \leq 1/2$. 故由条件密度基本公式

$$f(x_1, \dots, x_m | x_{m+1}, \dots, x_n) = \frac{f(x_1, x_2, \dots, x_n)}{f_{m+1, \dots, n}(x_{m+1}, \dots, x_n)},$$

可知结论成立.

三、 记 Z=|Y|, 函数 $u=\frac{1}{\sigma^2}(x^2+z^2), v=z/x$. 注意到 $(x,z)\longmapsto (u,v)$ 为一一映射, 且 Jacobi 行列式为

$$J^{-1}=\left|\frac{\partial(u,v)}{\partial(x,z)}\right|=\left|\begin{array}{cc}2x/\sigma^2 & 2z/\sigma^2\\ -z/x^2 & 1/x\end{array}\right|=\frac{2}{\sigma^2}\Big(1+\frac{z^2}{x^2}\Big)=\frac{2(1+v^2)}{\sigma^2}.$$

由 (X,Z) 的联合密度函数为 $f(x,z)=\frac{1}{\pi\sigma^2}e^{-(x^2+z^2)/(2\sigma^2)}, \ -\infty < x < \infty, z>0$ 及密度变换公式可知 (U,V) 的联合密度为

$$g(u,v) = f(x,z)|J| = \frac{1}{2\pi(1+v^2)}e^{-u/2}, \quad u > 0, -\infty < v < \infty.$$

(注: 变量取值范围不写或写错扣 1 分.) 由 g(u,v) 可分离变量知, U 服从参数为 1/2 的指数分布 (或自由度为 2 的 χ^2 分布), V 服从 Cauchy 分布, 且两者相互独立.

四、 每小题 5 分.

(1) 由 $EX = \theta + \sigma$ 可知所求矩估计 $\hat{\theta} = \overline{X} - \sigma$, 其中 \overline{X} 为样本均值. 再由似然函数

$$L(\theta) = \frac{1}{\sigma^n} \exp \left\{ -\sum_{i=1}^n \frac{x_i - \theta}{\sigma} \right\} I_{[\theta, \infty)}(x_1, x_2, \cdots, x_n)$$

可知最大似然估计 $\tilde{\theta} = X_{(1)} = \min\{X_1, \dots, X_n\}$.

- (2) 通过计算知 $E(\hat{\theta}) = \theta$ 及 $E(\tilde{\theta}) = \theta + \sigma/n$, 故 $\hat{\theta}$ 是 θ 的无偏估计, 而 $\tilde{\theta}$ 则不是, 可 修正为 $\tilde{\theta}^* = X_{(1)} \sigma/n$.
- (3) 由 $\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} (X_i \sigma)$ 及独立同分布场合下的中心极限定理可知

$$b/\sqrt{n} = \sqrt{\operatorname{Var}(\hat{\theta})} = \sigma/\sqrt{n},$$

故 $b = \sigma$.

- 五、 每小题 6 分. 注意 H_0 , H_1 的设置 $(1 \, \mathcal{G})$, 检验统计量的选取 $(1 \, \mathcal{G})$, 数值计算 $(1 \, \mathcal{G})$, 分 位数的使用 $(1 \, \mathcal{G})$, 决策结果 $(2 \, \mathcal{G})$ 各步骤是否正确.
 - (1) $H_0: \mu \ge \mu_0 = 22$ (或 $\mu = \mu_0$) $\leftrightarrow H_1: \mu < \mu_0$. 由检验统计量

$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} = \frac{17.9 - 22}{\sqrt{25.4/10}} = -2.57 < -t_9(0.05) = -1.8331,$$

故拒绝 H_0 , 即可以认为新药的副作用显著变小.

(2) $H_0: \sigma^2 \geq \sigma_0^2 = 84.64$ (或 $\sigma^2 = \sigma_0^2$) $\leftrightarrow H_1: \sigma^2 < \sigma_0^2$. 由检验统计量

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2} = \frac{9 \times 25.4}{84.64} = 2.7 < \chi_9^2(0.95) = 3.325,$$

故拒绝 H_0 , 即可以认为新药的方差显著变小.

六、 齐次性检验. 原假设 H_0 : 这三部作品在选择这些常用词的习惯没有差异. 检验统计量为

$$\chi^2 = \sum_{i=1}^4 \sum_{j=1}^3 \frac{(n_{ij} - n_{i \cdot} n_{\cdot j}/n)^2}{n_{i \cdot} n_{\cdot j}/n}.$$

在原假设成立条件下, 该统计量的极限分布是自由度为 $(4-1) \times (3-1) = 6$ 的卡方分布. 代入数据计算可得

$$\chi^2 = 19.722 > \chi^2_{0.05}(6) = 12.592,$$

故在 $\alpha = 0.05$ 下,我们可以拒绝原假设,即认为这三部作品在选择常用词的习惯上有显著差异.