Splošna definicija diferencirane zasebnosti

Metod Jazbec

Mentor: prof. dr. Aljoša Peperko

Fakulteta za matematiko in fiziko Univerza v Ljubljani

Diplomski seminar, 2018

Kazalo vsebine I

- Uvod opis teme
- Matematična priprava
 - Monotoni razredi
 - Kompaktnost metričnih prostorov
- Splošni podatkovni model
 - Podatkovna baza
 - Poizvedba (query)
 - Odzivni mehanizem
- Definicija diferencirane zasebnosti
- Omilitev zahtev definicije
 - Zadostne testne množice
 - Identična poizvedba
 - Poenostavitev na 1D baze
- 6 Laplacov mehanizem na numerične podatke
- Natančnost odzivnih mehanizmov

Uvod - opis teme

- Doba podatkov. Kako podatke primerno zaščititi?
- Veliko neprimernih metod, potreba po strogi matematični definiciji zasebnosti.
- Diferencirana zasebnost, lepa teorija a neuporabna v praksi?
- Objavljanje in rudarjenje podatkov.

Uvod - opis teme

'American Health Care Records' primer.

Figure 1: Metoda anonimizacije in napad s pomožno podatkovno bazo.

Uvod - opis teme

Pacient	Diabetes
Anja	1
Bojan	1
Cene	0
Darja	0
Edi	1

Table 1: Podatkovna baza z imeni pacientov in podatki o diabetesu.

- Apple primer ('data mining').
- Tema diplomskega dela: splošen model zasebnosti, ki omogoča enotno obravnavo različnih vrst podatkov.

Monotoni razredi

Definicija (Monoton razred)

Monoton razred \mathcal{M} je družina podmnožic Ω (torej $\mathcal{M} \subset \mathcal{P}(\mathcal{M})$) z naslednjima lastnostima:

- $\{A_i\}_{i=1,\dots\infty} \in \mathcal{M}, A_i \subseteq A_{i+1} \Rightarrow \bigcup_{i=1,\dots\infty} A_i \in \mathcal{M}$ (zaprtost za monotono naraščajoče števne unije),
- $\{A_i\}_{i=1,\dots\infty} \in \mathcal{M}, A_i \supseteq A_{i+1} \Rightarrow \bigcap_{i=1,\dots\infty} A_i \in \mathcal{M}$ (zaprtost za monotono padajoče števne preseke).
- Vsaka σ -algebra je monoton razred.

Monotoni razred

• Karakterizacija $\sigma(S)$ kot najmanjši monoton razred, ki vsebuje algebro S.

Izrek (O monotonih razredih)

Naj bo S algebra in M monoton razred na množici Ω . Naj velja še $S \subseteq M$. Potem sledi $\sigma(S) \subseteq M$.

7/25

Osnovno o metričnih prostorih

Definicija (Kompaktnost metričnih prostorov)

Metrični prostor (D, ρ) je *kompakten*, če ima vsako zaporedje v D konvergetno podzaporedje z limito prav tako v D (povedano drugače, vsako zaporedje v D ima vsaj eno stekališče vsebovano v D).

- Ni najbolj splošna definicija kompaktnosti.
- $a, b \in D^n$, $\rho_H(a, b) := \#$ mest, na katerih se vektorja razlikujeta (Hammingova razdalja/metrika)
- D kompakten, $diam(D) := \max_{d,d' \in D} \rho(d,d')$

Splošni podatkovni model

 (U,ρ) poljuben metrični prostor in $D\subseteq U$. Posamezni vnosi v opazovani podatkovni bazi so elementi množice D. Celotno bazo prikažemo z vektorjem $\mathbf{d}=(d_1,...,d_n)\in D^n$, kjer $d_i\in D$ predstavlja i-ti vnos oz. vrstico.

• Množico U opremimo z Borelovo σ -algebro, označimo jo z A_U .

Primeri različnih vrst podatkov

- Kategorični podatki: množica hobijev, $\mathcal{H} = \{nogomet, kitara, ...\},$ $D = 2^{\mathcal{H}}$, diskretna metrika
- Numerični podatki: RGB slike dimenzije $n \times m$, $D = \mathbb{R}^{n \times m \times 3}$, $\rho(A, B) = \sum_{i,j,k} |a_{i,j,k} b_{i,j,k}|$, $A_D = \{A_1 \times A_2 \times A_3 | A_1 \in \mathcal{B}(\mathbb{R}^n), A_2 \in \mathcal{B}(\mathbb{R}^m), A_3 \in \mathcal{B}(\mathbb{R}^3)\}$

Primeri različnih vrst podatkov

- 'Mešani' podatki: zdravstevni podatki, $D = \{1, 2, ..., st.pacientov\} \times \{1, ..., 120\} \times \{M, Z\} \times \{Ljubljana, ...\} \times \{0, 1\}^n$, ρ in σ -algebra podobno kot zgoraj (one-hot encoding)
- Funkcijski podatki: merjenje porabe elektrike, $D = I_{\infty}$ ali $D = L_2([0, T])$, Banachovi prostori

Metod Jazbec (FMF)

11/25

Sosednje podatkovne baze

Pravimo da sta dve podatkovni bazi, $\mathbf{d} = (a_1, ..., a_n)$ in $\mathbf{d}' = (b_1, ..., b_n)$, sosednji, če se razlikujeta v natanko enem vnosu. Torej:

- obstaja $j \in \{1, ...n\}$, da velja $a_i \neq b_i$,
- za vsak $i \in \{1, ..., n\} \setminus j$ velja $a_i = b_i$.

Sosednji bazi označimo z $\mathbf{d} \sim \mathbf{d}'$.

Poizvedba

- Poizvedba (query) je način pridobitve željenih informacij iz podatkovne baze (SQL ...).
- Metrični prostor vseh možnih odgovor (angl. set of all possible responses) na posamezno poizvedbo (E_Q , ρ_Q , A_Q)
- Poizvedba merljiva funkcija $Q:U^n\to E_Q$, torej $Q^{-1}(A)\in \mathcal{A}_{U^n}$ za vsako $A\in \mathcal{A}_Q$.

Odzivni mehanizem

- Prehod iz determinističnih na probabilistične odgovore.
- $(\Omega, \mathcal{F}, \mathbb{P})$ verjetnostni prostor, $\mathbf{d} \in D^n$ opazovana podatkovna baza
- Q(n) množica (možnih oz. dovoljenih) poizvedb.

Odzivni mehanizem (za izbran nabor poizvedb $\mathcal{Q}(n)$) je definiran kot družina slučajnih spremenljivk

$$\{X_{Q,\mathbf{d}}:\Omega\to E_Q|Q\in\mathcal{Q}(n),\mathbf{d}\in\mathcal{D}^n\}.$$
 (1)

14/25

Perturbacija podatkovne baze

Potrebujemo družino merljivih preslikav (slučajnih vektorjev) $\{Y_{\mathbf{d}}:\Omega\to U^n|\mathbf{d}\in D^n\}$ Če taka družina obstaja, potem ima odzivni mehanizem obliko kompozituma.

$$X_{Q,\mathbf{d}} = Q \circ Y_{\mathbf{d}} \tag{2}$$

V praksi se ponavadi to izvede prek t. i. dodajanja šuma, torej $X_d = \mathbf{d} + N$, kjer je N slučajni vektor z vrednostmi v U^n .

Perturbacija odgovorov na poizvedbo

Podana je poizvedba $Q:U^n\to E_Q$. V primeru da obstaja družina merljivih preslikav $\{Z_q:\Omega\to E_Q|q\in E_Q\}$, je odzivni mehanizem definiran kot

$$X_{Q,\mathbf{d}} = Z_{Q(\mathbf{d})} \tag{3}$$

Definicija diferencirane zasebnosti

Definicija (Diferencirana zasebnost za posamezno poizvedbo)

Naj bo $\epsilon>0$ in $0\leq\delta\leq1$. Odzivni mehanizem je (ϵ,δ) -diferencirano zaseben za poizvedbo Q, če za vse $\mathbf{d}\sim\mathbf{d}'\in\mathcal{D}^n$ in za vse $A\in\mathcal{A}_Q$ velja

$$\mathbb{P}(X_{Q,\mathbf{d}} \in A) \le e^{\epsilon} \mathbb{P}(X_{Q,\mathbf{d}'} \in A) + \delta \tag{4}$$

- Simetričnost definicije!
- Zahtevnost testiranja.

Zadostne testne množice

Izrek 1

Naj bosta podana odzivni mehanizem (1) in poizvedba (E_Q, A_Q, Q) . Naj bo $S \subset A_Q$ algebra in naj velja $\sigma(S) = A_Q$. Če (4) velja za vse $A \in S$, potem velja za vse $A \in A_Q$.

Identična poizvedba

- Javna objava celotne podatkovne baze.
- $I_n: D^n \to D^n$, $I_n(\mathbf{d}) = \mathbf{d}$

Izrek 2

Naj bo odzivni mehanizem s perturbacijo podatkovne baze (ϵ, δ) -diferencirano zaseben glede na identično poizvedbo $(U^n, \mathcal{A}_{U^n}, I_n)$. Potem sledi, da je tak mehanizem (ϵ, δ) -diferencirano zaseben glede na katerokoli poizvedbo (E_O, \mathcal{A}_O, Q) .

• Pomen tega tega, da v izreku ne postavimo nobenih omejitev na množico možnih odgovorov E_O .

Perturbacija podatkovne baze po komponentah

Predpostavimo, da obstaja družina slučajnih spremenljivk (merljivih preslikav) oblike $\{Y_d: \Omega \to U | d \in D\}$. Potem za $\mathbf{d} = (d_1, ..., d_n)$ definiramo odzivni mehanizem Y_d kot

$$Y_{\mathbf{d}}(\omega) = (Y_{d_1}(\omega), ..., Y_{d_n}(\omega)), \tag{5}$$

kjer so Y_{d_i} med sabo neodvisne.

Poenostavitev na 1D baze

Izrek 3

Naj bo podana družina 1-dimenzionalnih diferencirano zasebnih mehanizmov $\{Y_d: \Omega \to U | d \in D\}$. Velja torej

$$\mathbb{P}(Y_d \in A) \leq e^{\epsilon} \mathbb{P}(Y_d \in A) + \delta$$

za vse $d, d' \in D, A \in \mathcal{A}_D$. Če definiramo n-dimenzionalni odzivni mehanizem kot (5), potem sledi, da je tudi ta diferencirano zaseben:

$$\mathbb{P}(Y_{\mathsf{d}} \in A) \leq e^{\epsilon} \mathbb{P}(Y_{\mathsf{d}'} \in A) + \delta$$

za vse $\mathbf{d} \sim \mathbf{d'} \in D^n$, $A \in D^n$.

Uporaba na diskretnem metričnem prostoru.

(□ > ◀륜 > ◀분 > 분)도 되도 되었다.

- $D \subset \mathbb{R}$, kompakten.
- $L: \Omega \to \mathbb{R}$ Laplacovo porazdeljena slučajna spremenljivka s parametroma (0, b), b > 0. Verjetnostna gostota ima potem obliko $f(x) = \frac{1}{2b}e^{-\frac{|x|}{b}}$.
- Za vsak $d \in D$ potem definirajmo 1-dimenzionalni mehanizem kot $Y_d(\omega) = d + L(\omega)$.
- Parameter b izberimo tako da

$$b \geq \frac{diam(D)}{\epsilon - \log(1 - \delta)}.$$

Potem sledi, da je vsak n-dimenzionalen mehanizem oblike (5) (ϵ, δ) diferencirano zaseben za vsako n-dimenzionalno podatkovno bazo D^n in vsako poizvedbo.

Natančnost odzivnih mehanizmov

- $\rho(X_d, d)$ nenegativna slučajna spremenljivka.
- $\gamma := \max_{d \in D} \mathbb{E}[\rho(X_d, d)]$. maksimalna pričakovana napaka danega mehanizma X_d .

Lema

Naj bo podana družina 1-dimenzionalnih diferencirano zasebnih mehanizmov $\{Y_d:\Omega\to U|d\in D\}$ (glej definicijo 1) in naj velja $0\leq\delta<1$. Potem sledi $\gamma>0$.

Natančnost odzivnih mehanizmov

Izrek 4

Naj bo podana družina 1-dimenzionalnih diferencirano zasebnih mehanizmov $\{Y_d: \Omega \to U | d \in D\}$. Potem velja

$$\gamma \geq (1-\delta)(rac{ extit{diam}(extit{D})}{2(1+ extit{e}^{\epsilon})})$$

• (Ponovimo) **Neenakost Markova:** Naj bo X nenegativna slučajna spremenljivka in a > 0. Potem velja $\mathbb{P}(X \ge a) \le \frac{\mathbb{E}(X)}{a}$.

Viri in literatura I

Naoise Holohan, Douglas J. Leith, Oliver Mason Differential privacy in metric spaces: Numerical, categorical and functional data under the one roof *Information Sciences, Volume 305*, 256-268, 2015.