260617US0PCT.ST25 SEQUENCE LISTING

<110>	NAKAJIMA, HIDENORI OHKUBO, MITSURU YOSHIMURA, SEJI NISHIO, NOBUYA NISHIO, KAORI											
<120>	NOVEL 35 KD PROTEIN											
<130>	260617US0PCT											
	10/511,270 2004-10-20											
	PCT/JP03/05431 2003-04-28											
	JP 2002-126107 2002-04-26											
<160>	9											
<170>	PatentIn version 3.3											
<210><211><212><213>	1 1061 DNA Homo sapiens											
<400> gaagtc	1 tatg ctgggtcccc	aagtctggtc	ttctgtgagg	caggggctaa	gcaggagctt	60						
gtccag	gaat gtgggggtct	gggcctcagg	ggaggggaag	aaggtggaca	ttgcgggtat	120						
ctaccc	cctg tgaccacccc	cttcactgcc	actgcagagg	tggactatgg	ggaaactgga	180						
ggagaa	tctg cacaaactgg	gcaccttccc	cttccgaggc	ttcgtggtcc	agggctccaa	240						
tggcga	gttt cctttcctga	ccagcagtga	gcgcctcgag	gtggtgagcc	gtgtgcgcca	300						
ggccate	gccc aagaacaggc	tcctgctagc	tggctccgga	tgcgagtcca	ctcaagccac	360						
agtgga	gatg accgtcagca	tggcccaggt	cggggctgac	gcggccatgg	tggtgacccc	420						
ttgcta	ctat cgtggccgca	tgagcagtgc	ggccctcatt	caccactaca	ccaaggttgc	480						
tgatct	ctct ccaatccctg	tggtgctgta	cagtgtccca	gccaacacag	ggctggacct	540						
gcctgt	ggat gcagtggtca	cgctttccca	gcacccgaat	attgtgggca	tgaaggacag	600						
cggtgg [.]	tgat gtgaccagga	ttgggctgat	tgttcacaag	accaggaagc	aggattttca	660						
ggtgtt	ggct ggatcggctg	gctttctgat	ggccagctat	gccttgggag	ctgtgggggg	720						
cgtctg	cgcc ctggccaatg	tcctgggggc	tcaggtgtgc	cagctggagc	gactgtgctg	780						
cacggg	gcaa tgggaagatg	cccagaaact	gcagcaccgc	ctcattgagc	caaacgctgc	840						
ggtgac	ccgg cgctttggga	tcccagggct	gaagaaaatc	atggactggt	ttggctacta	900						
tggagg	cccc tgccgcgccc	ccttgcagga	gctgagcccc	gctgaggagg	aggcactgcg	960						
catgga	tttc accagcaacg	gctggctctg	agggcaggca	gggtccatgg	ctggcctgag	1020						
_						1001						

cccatctcag cctcctgcct tgcacttgca gcctgaattc c

1061

260617US0PCT.ST25

<210> 2

<211> 327

<212> PRT

<213> Homo sapiens

<400> 2

Met Leu Gly Pro Gln Val Trp Ser Ser Val Arg Gln Gly Leu Ser Arg 1 10 15

Ser Leu Ser Arg Asn Val Gly Val Trp Ala Ser Gly Glu Gly Lys Lys 20 25 30

Val Asp Ile Ala Gly Ile Tyr Pro Pro Val Thr Thr Pro Phe Thr Ala 35 40 45

Thr Ala Glu Val Asp Tyr Gly Lys Leu Glu Glu Asn Leu His Lys Leu . 50 55 60

Gly Thr Phe Pro Phe Arg Gly Phe Val Val Gln Gly Ser Asn Gly Glu 65 70 75 80

Phe Pro Phe Leu Thr Ser Ser Glu Arg Leu Glu Val Val Ser Arg Val 85 90 95

Arg Gln Ala Met Pro Lys Asn Arg Leu Leu Leu Ala Gly Ser Gly Cys 100 105 110

Glu Ser Thr Gln Ala Thr Val Glu Met Thr Val Ser Met Ala Gln Val 115 120 125

Gly Ala Asp Ala Ala Met Val Val Thr Pro Cys Tyr Tyr Arg Gly Arg 130 135 140

Met Ser Ser Ala Ala Leu Ile His His Tyr Thr Lys Val Ala Asp Leu 145 150 155 160

Ser Pro Ile Pro Val Val Leu Tyr Ser Val Pro Ala Asn Thr Gly Leu 165 170 175

Asp Leu Pro Val Asp Ala Val Val Thr Leu Ser Gln His Pro Asn Ile 180 185 190

Val Gly Met Lys Asp Ser Gly Gly Asp Val Thr Arg Ile Gly Leu Ile 195 200 205

Val His Lys Thr Arg Lys Gln Asp Phe Gln Val Leu Ala Gly Ser Ala 210 215 220

Gly Phe Leu Met Ala Ser Tyr Ala Leu Gly Ala Val Gly Gly Val Cys 230 235 240

Ala Leu Ala Asn Val Leu Gly Ala Gln Val Cys Gln Leu Glu Arg Leu Page 2

1017

Cys Cys Thr Gly Gln Trp Glu Asp Ala Gln Lys Leu Gln His Arg Leu 260 265 270

Ile Glu Pro Asn Ala Ala Val Thr Arg Arg Phe Gly Ile Pro Gly Leu 275 280 285

Lys Lys Ile Met Asp Trp Phe Gly Tyr Tyr Gly Gly Pro Cys Arg Ala 290 295 300

Pro Leu Gln Glu Leu Ser Pro Ala Glu Glu Glu Ala Leu Arg Met Asp 305 310 315 320

Phe Thr Ser Asn Gly Trp Leu 325

<210> 3 <211> 1017 <212> DNA

<213> Rattus sp.

<400> 60 cgggatccat gctgggcccc caaatctggg cctccatgag gcaggggctg agcaggggct 120 tgtctaggaa cgtgaagggg aagaagatag acattgccgg catctaccca cccgtgacca 180 ccccattcac cgccaccgca gaagtagact atgggaaact ggaagagaac ctgaacaaac tggccgcctt cccctttcga ggcttcgtgg tccagggctc tactggagag tttccattcc 240 300 tgaccagcct tgagcgccta gaggtggtga gccgagtgcg ccaggccata cccaaggaca 360 agctcctgat agccggctct ggctgcgagt ccacgcaagc cacagtagag atgactgtca 420 gcatggctca ggtgggtgct gatgccgcca tggtggtgac cccttgttac tatcgcggcc 480 gcatgaacag cgctgccctc attcaccact acaccaaggt tgctgatctt tctccaatcc 540 cggtggtgct gtacagtgtc ccaggcaaca cgggtctaga gctgcctgtg gatgccgtgg 600 tcacattgtc tcagcaccca aatatcattg gcttgaagga cagtggtgga gatgtgacca 660 ggactgggct gattgttcac aagaccagca agcaggattt ccaggtgttg gctgggtcag 720 ttggcttcct cctggccagc tatgctgtgg gagctgttgg gggcatatgt ggcctggcca 780 atgtcttggg ggcccaggtg tgccagctgg agagactctg cctcacaggg cagggggaag 840 ctgcccagag actgcagcac cgcctcatcg agcccaacac tgcggtgacc cggcgctttg 900 gaataccagg gctgaagaaa accatggact ggtttggcta ctatggaggt ccctgccgtg 960 ccccttgca ggagttgagc ccctcagagg aagaggcgct tcgcttggat ttcagcaaca

atggctggct ttaatgacaa gcgggggaca cctggtctga gctgtctcag aattccg

<210> 4 <211> 321

<212> PRT

<213> Rattus sp.

260617US0PCT.ST25

<400> 4

Met Leu Gly Pro Gln Ile Trp Ala Ser Met Arg Gln Gly Leu Ser Arg 10 Gly Leu Ser Arg Asn Val Lys Gly Lys Lys Ile Asp Ile Ala Gly Ile 20 25 30 Tyr Pro Pro Val Thr Thr Pro Phe Thr Ala Thr Ala Glu Val Asp Tyr Gly Lys Leu Glu Glu Asn Leu Asn Lys Leu Ala Ala Phe Pro Phe Arg Gly Phe Val Val Gln Gly Ser Thr Gly Glu Phe Pro Phe Leu Thr Ser Leu Glu Arg Leu Glu Val Val Ser Arg Val Arg Gln Ala Ile Pro Lys Asp Lys Leu Leu Ile Ala Gly Ser Gly Cys Glu Ser Thr Gln Ala Thr 100 Val Glu Met Thr Val Ser Met Ala Gln Val Gly Ala Asp Ala Ala Met 115 120 Val Val Thr Pro Cys Tyr Tyr Arg Gly Arg Met Asn Ser Ala Ala Leu 130 Ile His His Tyr Tyr Lys Val Ala Asp Leu Ser Pro Ile Pro Val Val 160 150 Leu Tyr Ser Val Pro Gly Asn Thr Gly Leu Glu Leu Pro Val Asp Ala 165 170 Val Val Thr Leu Ser Gln His Pro Asn Ile Ile Gly Leu Lys Asp Ser 180 185 Gly Gly Asp Val Thr Arg Thr Gly Leu Ile Val His Lys Thr Ser Lys Gln Asp Phe Gln Val Leu Ala Gly Ser Val Gly Phe Leu Leu Ala Ser 210 Tyr Ala Val Gly Ala Val Gly Gly Ile Cys Gly Leu Ala Asn Val Leu 225 240 Gly Ala Gln Val Cys Gln Leu Glu Arg Leu Cys Leu Thr Gly Gln Gly Glu Ala Ala Gln Arg Leu Gln His Arg Leu Ile Glu Pro Asn Thr Ala Page 4

260617US0PCT.ST25 265

270

260

Val Thr Arg Arg Phe Gly Ile Pro Gly Leu Lys Lys Thr Met Asp Trp 275 280 285

Phe Gly Tyr Tyr Gly Gly Pro Cys Arg Ala Pro Leu Gln Glu Leu Ser 290 295 300

Pro Ser Glu Glu Glu Ala Leu Arg Leu Asp Phe Ser Asn Asn Gly Trp 305 310 315

Leu

<210> 5

<211> 202

<212> PRT

<213> Rattus sp.

<220>

<221> misc_feature

<222> (165)..(165)

<223> Xaa can be any naturally occurring amino acid

<400> 5

Gly Arg Met Asn Ser Ala Ala Leu Ile His His Tyr Thr Lys Val Ala 1 10 15

Asp Leu Ser Pro Ile Pro Val Val Leu Tyr Ser Val Pro Gly Asn Thr 20 25 30

Gly Leu Glu Leu Pro Val Asp Ala Val Val Thr Leu Ser Gln His Pro 45

Asn Ile Ile Gly Leu Lys Asp Ser Gly Gly Asp Val Thr Arg Thr Gly 50 60

Leu Ile Val His Lys Thr Ser Lys Gln Asp Phe Gln Val Leu Ala Gly 65 75 80

Ser Val Gly Phe Leu Leu Ala Ser Tyr Ala Val Gly Ala Val Gly Gly 85 90 95

Ile Val Gly Leu Ala Asn Val Leu Gly Ala Gln Val Cys Gln Leu Glu 100 105 110

Arg Leu Cys Leu Thr Gly Gln Gly Glu Ala Ala Gln Arg Leu Gln His 115 120 125

Arg Leu Ile Glu Pro Asn Thr Ala Val Thr Arg Arg Phe Gly Ile Pro 130 140

											r.st						
	Gly Lei 145	ı Lys	Lys	Thr	Met 150	Asp	Trp						Gly	Pro	Cys 160		
	Arg Ala	a Pro	Leu	Xaa 165	Glu	Leu	Ser	Pro	Ser 170	Glu	Glu	Glu	Ala	Leu 175	Arg		
	Leu Ası) Phe	Ser 180	Asn	Asn	Gly	Trp	Leu 185	Gln	Ala	Gly	Asp	Thr 190	Trp	Ser		
	Glu Lei	ser 195	Gln	Thr	Leu	val	Pro 200	Thr	val								
<210> 6																	
<400> 6 cgggatccaa tgctgggccc ccaaatctgg												30					
	<210> <211> <212> <213>	DNA	ıs sp) .													
<400> 7 cggaattctg agacagctca gacc												24					
	<210> <211> <212> <213>	DNA	sapi	iens													
<400> 8 gaagatctat gctgggtccc caagtctgg												29					
	<210><211><211><212><213>	9 30 DNA Homo	sapi	iens													
	<400> ggaatte	9 cagg d	ctgca	aagto	gc aa	aggca	aggag	3									30