3b. Abstiegsverfahren Konvergenz

Optimierung SoSe 2020 Dr. Alexey Agaltsov

Plan

- Globale Konvergenz
- Konvergenzgeschwindigkeit
- Gradientenverfahren

Globale Konvergenz

Minimiere
$$f(x)$$
 über $x \in \mathbb{R}^n$
 $f \in C^1(\mathbb{R}^n)$ strikt konvex

- Angenommen, x_* ist eine (eindeutige) optimale Lösung
- Ein Abstiegsverfahren erzeugt eine Folge $x_1, x_2, ...$ für ein gegebenes x_0
- Wir bezeichnen das Verfahren als global konvergent falls $\forall x_0 \in \mathbb{R}^n$:

$$x_k \to x_*$$

• $\nabla f(x_k) \to 0$ ist einfacher zu kontrollieren (x_*) ist nicht bekannt)

Lemma 3.4. Globale Konvergenz

- Sei $f \in C^1(\mathbb{R}^n)$ strikt konvex und x_* ihr Minimum
- Sei x_0, x_1, \dots ist eine beschränkte Folge mit $\nabla f(x_k) \to 0$

Dann $x_k \to x_*$

Bemerkung: Man kann zeigen, dass die Beschränktheit von (x_k) folgt aus der anderen Voraussetzungen

Beweis

Behauptung: Ist y_* ein Häufungspunkt von (x_k) , so ist $y_* = x_*$

Konvergenz der Gradienten

- Als nächstes werden wir die Bedingungen für $\nabla f(x_k) \to 0$ herleiten
- Wir wenden ein Abstiegsverfahren (oder kurz AV) an und erhalten:

Näherungslösungen (x_k)

Abstiegsrichtungen (d_k)

Schrittweiten (α_k)

• Hierbei ist der Winkel θ_k zwischen d_k und $-\nabla f(x_k)$ wichtig

$$\cos \theta_k = \frac{-\nabla f(x_k)^T d_k}{\|\nabla f(x_k)\|_2 \|d_k\|_2}$$

Satz 3.5. Satz von Zoutendijk

Sei $f \in C^1(\mathbb{R}^n)$. Seien (x_k) , (d_k) , (α_k) mit einem AV erzeugt. Angenommen:

- $\inf_{S} f > -\infty$, wobei $S = \{x \in \mathbb{R}^n : f(x) \le f(x_0)\}$
- (α_k) erfüllen die Wolfe-Bedingungen
- $\|\nabla f(x) \nabla f(y)\|_2 \le L\|x y\|_2 \text{ mit } L > 0 \ \forall x, y \in S$

Dann ist die Zoutendijk-Bedingung erfüllt:

$$\sum_{k=0}^{\infty} \cos^2(\theta_k) \|\nabla f(x_k)\|_2^2 < \infty$$

 \Rightarrow [NW, Theorem 3.2]

Beweis

Behauptung:
$$\alpha_k \geq \frac{v-1}{L} \frac{\nabla f(x_k)^T d_k}{\|d_k\|_2^2}$$
 mit $v \in (0,1)$

$$\nabla \nabla f(x_k)^T d_k \leq \nabla f(x_{k+1})^T d_k$$
 Krümmungsbedingung subtrahiere $\nabla f(x_k)^T d_k$

$$0 < \underbrace{(v-1)\nabla f(x_k)^T d_k}_{\text{Subtrahiere}} \leq \left(\nabla f(x_{k+1}) - \nabla f(x_k)\right)^T d_k$$
 Cauchy-Schwarz
$$< 0 < 0 \leq \|\nabla f(x_{k+1}) - \nabla f(x_k)\|_2 \|d_k\|_2$$
 Annahme
$$\leq L\|x_{k+1} - x_k\|_2 \|d_k\|_2$$
 Annahme
$$= L\alpha_k \|d_k\|_2^2$$

Beweis

$$\alpha_k \ge \frac{\nu - 1}{L} \frac{\nabla f(x_k)^T d_k}{\|d_k\|_2^2}$$

Behauptung:
$$\sum_{k=0}^{\infty} \cos^{2}(\theta_{k}) \|\nabla f(x_{k})\|_{2}^{2} < \infty$$

$$f(x_{k+1}) \leq f(x_{k}) + \overline{\mu}\alpha_{k}\nabla f(x_{k})^{T}d_{k} \quad \text{Armijo-Bedingung}$$

$$\leq f(x_{k}) + \mu \frac{\nu-1}{L} \frac{\left(\nabla f(x_{k})^{T}d_{k}\right)^{2}}{\|d_{k}\|_{2}^{2}}$$

$$\leq f(x_{k}) + \mu \frac{\nu-1}{L} \cos^{2}(\theta_{k}) \|\nabla f(x_{k})\|_{2}^{2}$$

$$\leq f(x_{k}) + \mu \frac{\nu-1}{L} \cos^{2}(\theta_{k}) \|\nabla f(x_{k})\|_{2}^{2}$$

$$\sup_{k=0}^{\infty} \cos^{2}(\theta_{k}) \|\nabla f(x_{k})\|_{2}^{2} \leq f(x_{0}) - f(x_{N+1}) \qquad \text{wither } k$$

$$N \to \infty \qquad \leq f(x_{0}) - \inf_{x \in S} f(x) \leq \infty$$
Annahme

Richtungswahl

• Angenommen, f und (α_k) erfüllen die Bedingungen von Satz 3.5

$$\Rightarrow \sum_{k=0}^{\infty} \cos^2(\theta_k) \|\nabla f(x_k)\|_2^2 < \infty$$

• Für welche (d_k) ist das Abstiegsverfahren global konvergent?

$$cos(\theta_k) \ge \delta > 0 \quad \forall k \implies \nabla f(x_k) \to 0$$

globale Konvergenz für strikt konvexe *f*

Lemma 3.4

Beispiel: Gradientenverfahren

$$d_k = -\nabla f(x_k)$$

$$\cos(\theta_k) = \frac{-\nabla f(x_k)^T d_k}{\|\nabla f(x_k)\|_2 \|d_k\|} = 1$$
global konvergent

Beispiel: Newton-artige Verfahren

$$d_{k} = -B_{k}\nabla f(x_{k})$$

$$mI \leq B_{k} \leq MI$$

$$M > m > 0$$

$$\cos(\theta_{k}) = \frac{-\nabla f(x_{k})^{T} d_{k}}{\|\nabla f(x_{k})\|_{2} \|d_{k}\|_{2}}$$

$$= \frac{\nabla f(x_{k})^{T} B_{k} \nabla f(x_{k})}{\|\nabla f(x_{k})\|_{2} \|B_{k} \nabla f(x_{k})\|_{2}} \geq \frac{m}{M} > 0$$

$$\text{global konvergent}$$

Plan

- Globale Konvergenz
- Konvergenzgeschwindigkeit
- Gradientenverfahren

Konvergenzgeschwindigkeit

- Sei x_0, x_1, \dots eine durch ein Optimierungsverfahren erzeugte Folge
- Der Fortschritt des Verfahrens wird durch eine Fehlerfunktion gemessen:

$$e(x_k) = ||x_k - x_*||_2$$

$$e(x_k) = f(x_k) - f_*$$

$$e(x_k) = ||\nabla f(x_k)||_2$$

Nächstes Ziel: Wie kann die Konvergenzgeschwindigkeit von $z_k = e(x_k)$ gegen 0 qualitativ gemessen werden?

Konvergenzordnung

- Sei $(z_k) \subseteq \mathbb{R}$ mit $z_k \to z_*$
- z_k konvergiert mit der Q-Ordnung (wenigstens) p, falls $\exists c > 0$:

$$|z_{k+1} - z_*| \le c|z_k - z_*|^p \quad \forall k \ge 0$$

Quadratische Konvergenz

• Für p = 2 spricht man von der quadratischen Konvergenz

$$|z_{k+1} - z_*| \le c|z_k - z_*|^2$$

• $z_k = 0.1^{2^k}$ konvergiert quadratisch gegen $z_* = 0$: $|z_{k+1}| = |z_k|^2$

0.1, 0.01, 0.0001, 0.00000001, ... \rightarrow 0.0000000 die Anzahl von signifikanten Dezimalstellen wird \approx verdoppelt in jedem Schritt

Lineare Konvergenz

• Für p = 1 unterscheidet man drei Fälle je nach β :

$$\limsup_{k \to \infty} \frac{|z_{k+1} - z_*|}{|z_k - z_*|} = \beta$$

 $\beta \in (0,1)$ lineare Konvergenz

 $\beta = 1$ unterlineare Konvergenz

 $\beta = 0$ superlineare Konvergenz

Lineare Konvergenz

• $z = 0.1^k$ konvergiert linear gegen $z_* = 0$:

$$\frac{|z_{k+1}|}{|z_k|} = \frac{0.1^{k+1}}{0.1^k} = 0.1 \qquad \Rightarrow \beta = 0.1$$

 $0.1, 0.01, 0.001, 0.0001, ... \rightarrow 0.000000$

Eine weitere signifikante Dezimalstelle in jedem Schritt

Plan

- Globale Konvergenz
- Konvergenzgeschwindigkeit
- Gradientenverfahren

Gradientenverfahren

- 1. *Initialisierung:* Startwert x_0 , Toleranzwert ϵ
- 2. for k = 0,1,2,... do:
- 3. if $\|\nabla f(x_k)\|_2 < \epsilon$ then break
- 4. bestimme eine Schrittweite α_k
- 5. $x_{k+1} = x_k \alpha_k \nabla f(x_k)$
- 6. end for
- Minimierungsregel:

$$\alpha_k \in \operatorname{Argmin}_{\alpha \ge 0} f(x_k - \alpha \nabla f(x_k))$$

Satz 3.6. Konvergenzrate des GVs

Seien $f \in C^2(\mathbb{R}^n)$, sei x_* ein globales Minimum und $f_* = f(x_*)$

Seien $x_0 \in \mathbb{R}^n$ und $S = \{x : f(x) \le f(x_0)\}$. Angenommen:

starke Konvexität
$$\uparrow$$
 1. $mI \stackrel{>}{\neq} \nabla^2 f(x) \stackrel{>}{\neq} MI \text{ mit } M \geq m > 0 \ \forall x \in S \quad \uparrow \kappa \left(\nabla^2 f(x)\right) \leq \frac{M}{m}$

2. Seien (x_k) , (α_k) mit dem GV mit der Minimierungsregel erzeugt

Dann gilt:

$$f(x_{k+1}) - f_* \le c(f(x_k) - f_*)$$

 $c = 1 - \frac{m}{M}$

Beweis

Behauptung:
$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{M}{2} ||y - x||_2^2 \ \forall x, y \in S$$

Taylor-Formel für
$$x, y \in S$$

$$\exists z \in [x, y]$$

$$f(y) = f(x) + \nabla f(x)^T (y - x) + \frac{1}{2} (y - x)^T \nabla^2 f(z) (y - x)$$

$$\leq MI$$

Beweis

letzte Abschätzung
$$f(x_{k+1}) \leq f(x_k + \alpha \overline{d_k}) \quad \forall \alpha \geq 0 \quad \text{(Minimierungsregel)}$$

$$\leq f(x_k) + \alpha \overline{\nabla} f(x_k)^T d_k + \frac{M}{2} \alpha^2 \|d_k\|_2^2$$

$$= f(x_k) + \left(-\alpha + \frac{M}{2} \alpha^2\right) \|\overline{\nabla} f(x_k)\|_2^2 \quad \left(d_k = -\overline{\nabla} f(x_k)\right)$$

$$f(x_{k+1}) \leq f(x_k) - \frac{1}{2M} \|\overline{\nabla} f(x_k)\|_2^2 \qquad \alpha = \frac{1}{M}$$

$$f(x_{k+1}) - f_* \leq f(x_k) - f_* - \frac{1}{2M} \|\overline{\nabla} f(x_k)\|_2^2 \qquad \text{subtrahiere } f_*$$

$$\geq 2m(f(x_k) - f_*) \quad \text{(Lemma 2.22)}$$

$$f(x_{k+1}) - f_* \leq c(f(x_k) - f_*) \quad \text{mit } c = 1 - \frac{m}{M}$$

Interpretation

$$mI \leq \nabla^2 f \leq MI \text{ auf } S \implies f(x_k) - f_* \leq \left(1 - \frac{m}{M}\right)^K (f(x_0) - f_*)$$

$$S = \{x: f(x) \leq f(x_0)\}$$
Satz 2.23
$$\kappa(S) \leq \frac{M}{m}$$

schnelle Konvergenz

langsame Konvergenz

Quadratische Zielfunktion

Minimiere
$$f(x) = \frac{1}{2}x^TQx - c^Tx + r$$
 über $x \in \mathbb{R}^n$ $Q \in \mathbb{S}^n_{\succ}$ $\nabla^2 f(x) = Q$ Min. Eigenwert Max. Eigenwert $mI \lessdot Q \lessdot MI$ Satz 3.6 $f(x_k) - f_* \leq c^k (f(x_0) - f_*)$ $k \geq 0$ $c = 1 - \frac{1}{\kappa(Q)}$ $\kappa(Q) = \frac{M}{m}$ Kondition von Q

Kondition und Konvergenzrate

$$f(x_k) - f_* \le c^k (f(x_0) - f_*), \quad c = 1 - \frac{1}{\kappa(Q)}$$

- Aufgabe. $N = \log(0.1)/\log(c)$ Schritte pro signifikante Dezimalstelle
- $N \approx -\kappa(Q)/\log(0.1) \approx 0.43\kappa(Q)$ für großes $\kappa(Q)$

N	C	$\kappa(Q)$
1	0.1	1.11
10	0.79	4.86
100	0.98	43.93
1000	0.998	434.79

Beispiel

$$f(x) = x^T Q x$$
, $Q = \begin{bmatrix} 10 & 5 \\ 5 & 20 \end{bmatrix}$
 $\kappa(Q) = 2.78$, $c = 0.64$

k	$ x_k - x_* _2$	$f(x_k) - f_*$	c_k
0	10	530	
1	5	110	0,21
2	2,1	23	0,21
3	1	4,8	0,21
4	0,44	1	0,21
5	0,22	0,21	0,21
6	0,092	0,044	0,21
7	0,046	0,0093	0,21
8	0,019	0,0019	0,21
9	0,0097	0,00041	0,21

$$f(x_k) - f_* = c_k (f(x_{k-1}) - f_*)$$

 $c_k \approx 0.21 < 0.64$

Beispiel

$$f(x) = x^T Q x, \qquad Q = \begin{bmatrix} 1 & 0 \\ 0 & 20 \end{bmatrix}$$
$$\kappa(Q) = 20, \qquad c = 0.95$$

x_0	=	(1	0,	0.5)
770		(–	– ,	-	

k	$ x_k - x_* _2$	$f(x_k) - f_*$	c_k
0	10	52	
1	9,1	43	0,82
2	8,2	35	0,82
3	7,4	29	0,82
4	6,7	24	0,82
5	6,1	19	0,82
6	5,5	16	0,82
7	5	13	0,82
8	4,5	11	0,82
9	4,1	8,7	0,82

$$f(x_k) - f_* = c_k (f(x_{k-1}) - f_*)$$

 $c_k \approx 0.82 < 0.95$

Koordinatentransformation

$$mI \lessdot \nabla^2 f(x) \lessdot MI \implies f(x_{k+1}) - f_* \leq \left(1 - \frac{m}{M}\right)^k \left(f(x_0) - f_*\right)$$

$$\bar{x} \coloneqq P^{1/2}x \text{ mit } P \in \mathbb{S}^n_{\succ}$$

$$\bar{f}(\bar{x}) \coloneqq f(P^{-1/2}\bar{x}) = f(x)$$

$$\nabla^2 \bar{f}(\bar{x}) = P^{-1/2}\nabla^2 f(x)P^{-1/2}$$

- Ist $P \approx \nabla^2 f(x_*)$, so $\nabla^2 \bar{f}(\bar{x}) \approx I$ für $\bar{x} \approx \bar{x_*} = P^{1/2} x_*$ Gradientenverfahren in \bar{x} konvergiert schneller als in x
- Gradientenverfahren in \bar{x} entspricht der Methode des steilsten Abstiegs in x bezüglich der Norme $||x||_P = \sqrt{x^T P x}$

Geometrische Interpretation

$$f(x) \approx f_* + \frac{1}{2}(x - x_*)^T \nabla^2 f(x_*)(x - x_*), \ x \approx x_*$$

$$\{x: f(x) \le \alpha\} \approx \{x: (x - x_*)^T \nabla^2 f(x_*)(x - x_*) \le 2(\alpha - f_*)\}$$

$$\alpha \approx f_*$$

$$\{\bar{x}: \bar{f}(\bar{x}) \le \alpha\} \approx \{\bar{x}: ||\bar{x} - \bar{x}_*||_2^2 \le 2(\alpha - f_*)\}$$

Zusammenfassung

- Globale Konvergenz
- Konvergenzgeschwindigkeit
- Gradientenverfahren

Nächstes Video

• 4a. Newtonartige Verfahren: Das Newton-Verfahren