Handwritten Chinese OCR

By: Cary Wu, Hudson Chou

Motivation

OCR system for recognizing handwritten Chinese characters.

Train a model to surpass human accuracy

Original database

Provided by National Laboratory of Pattern Recognition (NLPR) and Institute of Automation of Chinese Academy of Sciences (CASIA).

3,755 classes of characters and a total of **300 different writers** for each class

Our Dataset

Number of classes: 70 characters

['祝', '铰', '联', '瑟', '坑', '挑', '研', '件', '哀', '静', '儒', '藐', '瞪', '拿', '赡', '逞', '疫', '蜘', '山', '舟', '训', '圣', '毁', '舶', '煌', '骂', '假', '轮', '谍', '榆', '鼎', '硅', 'ম', '半', '迄', '促', '绎', '觅', '勺', '戳', '酵', '撕', '盂', '弘', '忘', '砧', '蝴', '燎', '题', '亳', '谭', '订', '矗', '襟', '踪', '麓', '规', '挨', '恤', '聪', '卞', '丁', '岔', '租', '充', '各', '猴', '缩', '枚']

Description of datasets

Dataset Purpose	Number of samples per label	Size of each image
Training	118	64 x 64
Validation	55	64 x 64
Testing	55	64 x 64

Our Model

CNN

Max Pooling

Drop Out

Categorical Cross Entropy

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			

Layer (type)	Output	Shape	Param #
conv2d_44 (Conv2D)	(None,	62, 62, 64)	640
max_pooling2d_40 (MaxPooling	(None,	31, 31, 64)	0
conv2d_45 (Conv2D)	(None,	29, 29, 32)	18464
max_pooling2d_41 (MaxPooling	(None,	14, 14, 32)	0
conv2d_46 (Conv2D)	(None,	12, 12, 32)	9248
max_pooling2d_42 (MaxPooling	(None,	6, 6, 32)	0
dropout_13 (Dropout)	(None,	6, 6, 32)	0
flatten_17 (Flatten)	(None,	1152)	0
dense_17 (Dense)	(None,	70)	80710
Total params: 109,062 Trainable params: 109,062			

Non-trainable params: 0

Manipulating Our Data

Image Augmentation

Random Shuffling

RMSProp vs ADAM

```
ImageDataGenerator(
    zoom_range=0.2,
    width_shift_range=0.1,
    height_shift_range=0.1,
```

Results

Validation Loss: 0.25

Validation Accuracy: 0.93

Predicting similar characters

Predicting Our Own Handwriting


```
words = ["shang", "hai", "niu", "yue", "da", "xue"]
for word in words:
    path = r"C:\Users\caryw\Documents"+"\\"+word+".jpg"
    imgtest = Pil.open(path.encode('utf-8'))
    gray = imgtest.convert('L')
    bw = gray.point(lambda x: 0 if x<128 else 255, '1')</pre>
    imgtest = np.array(bw.resize((64, 64)))
   imgtest = imgtest.reshape(1, 64, 64, 1)
    a = model.predict(imgtest)
    a = (a == a.max(axis=1, keepdims=1)).astype(float)
   for i in range(len(a)):
        ind = np.where(a[i] == 1)
        ind = ind[0][0]
        itemindex = np.where(Y test[i]==1)
        itemindex = itemindex[0][0]
        print("Predicted: ", newdict[ind])
```

Predicted: 海 Predicted: 纽 Predicted: 约 Predicted: 大 Predicted: 学

Predicted:

If we had infinite time and a supercomputer...

Using more samples and predicting more characters

Open CV (Open Source Computer Vision Library)

Predicting sentences and even full on paragraphs of text

References

http://cs231n.github.io/convolutional-networks/

https://computersciencewiki.org/index.php/Max-pooling_/_Pooling

www.nlpr.ia.ac.cn/databases/download/ICDAR2011-CASIA databases.pdf. (database)

https://en.wikipedia.org/wiki/Pleco_Software_ (pleco logo)

https://www.researchgate.net/figure/Three-Chinese-characters-written-in-different-styles_fig1_261499993

https://www.farmcottages.com/new-translator-widget/google-translate-logo/(google translate logo)

https://www.semanticscholar.org/paper/Recognition-of-Handwritten-Similar-Chinese-by-Fu-Xu/124812ab483bc718aedb4036f3f8595dc51b3ffe/figure/0