

Visit the BESTEC booth (no.16) for information about more spectrometers.

INSTRUMENTATION FOR SYNCHROTRON RADIATION

High-efficiency and compact von Hamos spectrometer for the soft X-ray range

Filip Fuchs¹, Tatjana Gießel¹, Franz Schäfers², Burkhard Langer³, Eckart Rühl³ ¹Bestec GmbH, Am Studio 2b, D-12489 Berlin, Germany,

²Helmholtz-Zentrum Berlin (HZB) BESSY II, Albert-Einstein-Str. 15, D-12489 Berlin, Germany,

³Freie Universität Berlin, Takustr. 3, D-14195 Berlin, Germany

Introduction & Motivation

Samples illuminated by pulsed soft X-rays with a large number of photons per pulse (XFEL, Laser-plasma sources) often restrict analytical methods to ph-in-ph-out techniques, since ph-in-e-out techniques can suffer severely from space charge.

We introduce a compact and large angle acceptance soft X-ray spectrometer for an energy range of 1-3 keV suitable for experiments under the above conditions.

Concept

The spectrometer uses a von Hamos optical design and covers a simultaneous energy window of >300 eV over the whole energy range.

Principle of the von Hámos design, where a thin crystal is bent to a cylindrical surface [1,2].

Performance defining criteria:

- Crystal lattice constant
- Bragg reflex line width
- Crystal radius

Mica crystal

structure.

- Spatial detector resolution
- Crystal figure error
- Alignment & stability

- → Choice of crystal: Mica, 40 mm radius
- → Target effective tangent error: <100 µrad

Material	Lattice constant
Graphite	0.335 nm
Quartz	0.425 nm
Mica	0.99 nm
KAP	1.332 nm

Bundesministerium für Bildung und Forschung

Camera & objective on translation stage Layout MCP detector & deflection mirror

Using a high speed camera (500.000 frames/s at 1024x16 pixels) up to 400 spectra can be recorded within a macro bunch (10 Hz) of the European XFEL.

Performance test results

Mica

crystal

Spectrometer

alignment stages

Diffraction from a thin mica crystal measured at the Optics beamline at BESSY/HZB.

Internal mechanics of the von Hamos spectrometer.

Specifications

Parameter	Typical value
Energy range	800 – 2300 eV
Energy resolution	0.6 - 2.5 eV
Energy spectrum width	~300 eV (simultaneous)
Azimuthal acceptance	>100°
Crystal	Mica
Crystal radius / length	40mm / 25 mm
Detector	MCP
Mechanical repeatability	$< 0.5 \mu rad /< 0.1 \mu m$
Mechanical stability	$< 0.2 \mu rad / < 0.1 \mu m$
Dimensions without camera	DN250 CF x 650 mm
Dimensions with camera	DN250 CF x 1800 mm

References

[1] L. von Hámos, Naturwissenschaften 20, 705 (1932).

[2] A. P. Shevelko et al., Review of Scientific Instruments 73, 3458 (2002).

Financial support by the BMBF (contract no.: 05K13KE2) is gratefully acknowledged.