Expectation - Variance

January 15, 2021

1. A large industrial firm purchases several new word processors at the end of each year, the exact number depending on the frequency of repairs in the previous year. Suppose that the number of word processors, X, purchased each year has the following probability distribution:

If the cost of the desired model is \$1200 per unit and at the end of the year a refund of $50X^2$ dollars will be issued, how much can this firm expect to spend on new word processors during this year?

- 2. A salesperson for a medical device company has two appointments on a given day. At the first appointment, he believes that he has a 70% chance to make the deal, from which he can earn \$1000 commission if successful. On the other hand, he thinks he only has a 40% chance to make the deal at the second appointment, from which, if successful, he can make \$1500. What is his expected commission based on his own probability belief? Assume that the appointment results are independent of each other.
- 3. An insurance company writes a policy to the effect that an amount of money A must be paid if some event E occurs within a year. If the company estimates that E will occur within a year with probability p, what should it charge the customer so that its expected profit will be 10 percent of A?
- 4. A total of 4 buses carrying 148 students from the same school arrive at a football stadium. The buses carry, respectively, 40, 33, 25, and 50 students. One of the students is randomly selected. Let X denote the number of students that were on the bus carrying this randomly selected student. One of the 4 bus drivers is also randomly selected. Let Y denote the number of students on her bus.
 - (a) Which of E[X] or E[Y] do you think is larger? Why?
 - (b) Compute E[X] and E[Y]
- 5. The length of time, in minutes, for an airplane to obtain clearance for takeoff at a certain airport is a random variable Y = 3X 2, where X has the density function

$$f(x) = \begin{cases} 4e^{-\frac{x}{4}}, & x > 0\\ 0, & \text{elsewhere} \end{cases}$$

1

Find the mean and variance of the random variable Y.