Analyzing Neighborhoods of Two Cities

Capstone Project – The Battle of the Neighborhoods

Applied Data Science Capstone – IBM/Coursera

By

Rachel Olufunmilayo Olokungbemi

June 13, 2021

Table of Contents

• Introduction: Business Problem

- Data Description
- Methodology
- Analysis
- Results and Discussions
- Conclusion

1. Introduction: Business Problem

1.1 Background

In this Capstone Project – The Battle of the Neighborhoods, I chose to analyze neighborhoods of two cities by comparing the neighborhoods of City of Toronto and New York City to determine how similar or dissimilar they are. The City of Toronto and New York City are both culturally and economically diverse, they are the financial capitals of their respective countries. The standard of living in each city is expensive compared to the rest of the country and in terms of population, Toronto is the largest city in Canada while New York City is the largest city in the United States. On the contrary, New York City is a Coastal City while Toronto is a Great Lakes City. NYC is built on series of islands while Toronto is completely built on the mainland. The way of life in NYC is more fast-paced, intense and feels like it has more "energy". NYC is a lot more crowded, especially in the city center, while Toronto is actually a governmental capital, the public transportation is of low degree compared to NYC's and really isn't that extensive. If you don't live in Toronto's core, you need a car. Not so in NYC.

1.2 Interested Stakeholders

- Investors who want to know more about each of these cities in order to make informed decisions about the location that is best for their investment would be interested in this analysis.
- Individuals or group of people who want to make decisions about which city meets their preferences of work-lifestyle-balance would definitely benefit.
- Moreover, a contractor who wants to start a business would be helped with the analysis of
 these two cities in terms of getting some preliminary understanding of the location data
 that shows the venues in these cities in order to determine venue categories that will best
 serve their business interest.

2. Data Description

2.1 Data Sources

The Toronto neighborhood data is not readily available on the internet like the New York data, therefore I acquired the data by scraping this Wikipedia page; https://en.wikipedia.org/wiki/List of postal codes of Canada: M for all the information needed to explore the neighborhoods.

Moreover, I acquired the New York City dataset provided on the server for this course from https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-DS0701EN-SkillsNetwork/labs/newyork data.json

I imported the csv file containing the latitude and longitudes of various postal codes in Canada from https://cocl.us/Geospatial_data

I used the Geopy library - Geocoder Python package to get the latitude and longitude values of the City of Toronto and New York City.

Also, I used Foursquare API to explore neighborhoods in Toronto and New York City.

2.2 Data Wrangling

2.2.1 Toronto Dataset

For the city of Toronto, I scraped the Wikipedia page using BeautifulSoup Library of Python, retrieved the URL and created a BeautifulSoup object. With this, I was able to display the raw Wikipedia page contents consisting of postal codes, boroughs and neighborhoods information.

The next process was to display the table contents, I first created an empty list and found the table and the table data, I created a dictionary having three keys; PostalCode, Borough and Neighborhood, I extracted the postal codes containing up to three characters. Then I used split, strip and replace functions to get Borough and Neighborhood information and appended to the list. In the next task, I created a dataframe with the list of table contents. I used the DataFrame function to transform the data into a pandas dataframe with the resulting dataframe shape of 103rows x 3columns.

2.2.2 New York City Dataset

The New York City dataset contains the 5 boroughs and the neighborhoods that exist in each borough as well as the latitude and longitude coordinates of each neighborhood. This dataset was provided on the server for this course and running a wget command enabled me to access the data. I loaded the data, extracted all the relevant data in the features key and transformed the data of nested Python dictionaries into a pandas dataframe by looping through the data and filling the dataframe one row at a time. The resulting dataframe has all the 5 boroughs and 306 neighborhoods.

2.3 Data Exploration

2.3.1.1 Exploring the Neighborhoods of City of Toronto

I created a new dataframe that includes the geographical coordinates of each postal code. First I got the geographical coordinates of the neighborhoods by importing the csv file containing the latitudes and longitudes of each postal code in Canada and then merged the geospatial table with the existing dataframe. I displayed the number of boroughs and neighborhoods of the dataframe resulting in 15 boroughs and 103 neighborhoods.

I used the geopy library to get the latitude and longitude values of the City of Toronto, the geographical coordinates are 43.6534817, -79.3839347. I then use these coordinates to create the map of Toronto with neighborhoods superimposed on top.

2.3.1.2 Exploring the Neighborhoods in Downtown Toronto

To simplify the above map, I decided to explore only the boroughs of Downtown Toronto. In that instance, I sliced the original dataframe and created a new dataframe of the Downtown data.

Longitude	Latitude	Neighborhood	Borough	ostalCode	PostalCode	
-79.360636	43.654260	Regent Park, Harbourfront	Downtown Toronto	м5А	0	
-79.378937	43.657162	Garden District, Ryerson	Downtown Toronto	м5В	1	
-79.375418	43.651494	St. James Town	Downtown Toronto	M5C	2	
-79.373306	43.644771	Berczy Park	Downtown Toronto	M5E	3	
-79.387383	43.657952	Central Bay Street	Downtown Toronto	M5G	4	
-79.422564	43.669542	Christie	Downtown Toronto	M6G	5	
-79.384568	43.650571	Richmond, Adelaide, King	Downtown Toronto	мян	6	
-79.381752	43.640816	Harbourfront East, Union Station, Toronto Islands	Downtown Toronto	M5J	7	
-79.381576	43.647177	Toronto Dominion Centre, Design Exchange	Downtown Toronto	M5K	8	
-79.379817	43.648198	Commerce Court, Victoria Hotel	Downtown Toronto	M5L	9	
-79.400049	43.662696	University of Toronto, Harbord	Downtown Toronto	M58	10	
-79.400049	43.653206	Kensington Market, Chinatown, Grange Park	Downtown Toronto	MST	11	
-79.394420	43.628947	CN Tower, King and Spadina, Railway Lands, Har	Downtown Toronto	M5V	12	
-79.377529	43.679563	Rosedale	Downtown Toronto	M4W	13	
-79.36767	43.667967	St. James Town, Cabbagetown	Downtown Toronto	M4X	14	
-79.38228	43.648429	First Canadian Place, Underground city	Downtown Toronto	M5X	15	

Using the geopy library, I got the geographical coordinates of Downtown Toronto, 43.6541737, -79.38081162653639 and then I use these coordinates to create the map to visualize the neighborhoods of Downtown Toronto.

I utilized the Foursquare API to explore the neighborhoods of Downtown Toronto and segment them. I used a function to get the nearby venues of all the neighborhoods and then run the function on each neighborhood, and created a new dataframe called DtToronto_venues. I displayed the size of the resulting dataframe of 1070rows x 7columns and Downtown Toronto venues.

2.3.2.1 Exploring the Neighborhoods of New York City

First, I displayed the shape of the dataframe and wrote a script to confirm that the dataframe has 5 boroughs and 306 neighborhoods.

	Borough	Neighborhood	Latitude	Longitude	
0	Bronx	Wakefield	40.894705	-73.847201	
2	Bronx	Co-op City	40.874294	-73.829939	
2	Bronx	Eastchester	40.887556	-73.827806	
3	Bronx	Fieldston	40.895437	-73.905643	
4	Bronx	Riverdale	40.890834	***************************************	
Exp	oloring			-73.912585 s of New	York City
		the Neighb	orhood	s of New	York City
Dispi	aying the	the Neighb	orhoods	s of New	York City

I used the geopy library to get the latitude and longitude values of the New York City, with the geographical coordinates of 40.7127281, -74.0060152. I then use these coordinates to create the map of New York City with neighborhoods superimposed on top.

2.3.2.2 Exploring the Neighborhoods in Manhattan

To simplify the above map, I chose to explore only the borough of Manhattan in order to compare it to Downtown Toronto since part of Manhattan is often referred to as Downtown as well. In that instance, I sliced the original dataframe and created a new dataframe of the Manhattan data.

	Borough	Neighborhood	Latitude	Longitude
0	Manhattan	Marble Hill	40.876551	-73.910660
1	Manhattan	Chinatown	40.715618	-73.994279
2	Manhattan	Washington Heights	40.851903	-73.936900
3	Manhattan	Inwood	40.867684	-73.921210
4	Manhattan	Hamilton Heights	40.823604	-73.949688
G	setting the g	geographical coord	inates of M	anhattan.

Using the geopy library, I got the geographical coordinates of Manhattan, 40.7896239, -73.9598939 and then I use these coordinates to create the map to visualize the neighborhoods of Manhattan.

I utilized the Foursquare API to explore the neighborhoods of Manhattan and segment them. I used the same previous function to get the nearby venues of all the neighborhoods and then run the function on each neighborhood, and created a new dataframe called Manhattan_venues. I displayed the size of the resulting dataframe of 2999rows x 7columns and Manhattan venues.

