

Discrete POWER & Signal **Technologies**

FFB2222A

FMB2222A

MMPQ2222A

NPN Multi-Chip General Purpose Amplifier

This device is for use as a medium power amplifier and switch requiring collector currents up to 500 mA. Sourced from Process 19.

Absolute Maximum Ratings* T_A = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{CEO}	Collector-Emitter Voltage	40	V
V _{CBO}	Collector-Base Voltage	75	V
V _{EBO}	Emitter-Base Voltage	6.0	V
Ic	Collector Current - Continuous	500	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

These ratings are based on a maximum junction temperature of 150 degrees C.
 These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics $T_{\Delta} = 25^{\circ}$ C unless otherwise noted

Symbol	Characteristic	Max			Units
		FFB2222A	FMB2222A	MMPQ2222A	
P _D	Total Device Dissipation Derate above 25°C	300 2.4	700 5.6	1,000 8.0	mW mW/°C
R _{0JA}	Thermal Resistance, Junction to Ambient Effective 4 Die Each Die	415	180	125 240	°C/W °C/W °C/W

(continued)

Flectrica	l Chara	cteristics
LICCUICA	ı Cılala	しにいらいしる

 $T_A = 25$ °C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
OFF CHA	RACTERISTICS					
$V_{(BR)CEO}$	Collector-Emitter Breakdown Voltage*	$I_C = 10 \text{ mA}, I_B = 0$	40			V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_C = 10 \mu\text{A}, I_E = 0$	75			V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_E = 10 \mu A, I_C = 0$	6.0			V
I _{CEX}	Collector Cutoff Current	$V_{CE} = 60 \text{ V}, V_{EB(OFF)} = 3.0 \text{ V}$			10	nA
I _{CBO}	Collector Cutoff Current	$V_{CB} = 60 \text{ V}, I_E = 0$ $V_{CB} = 60 \text{ V}, I_E = 0, T_A = 125^{\circ}\text{C}$			0.01 10	μA μA
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 3.0 \text{ V}, I_{C} = 0$			10	nA
I _{BL}	Base Cutoff Current	$V_{CE} = 60 \text{ V}, V_{EB(OFF)} = 3.0 \text{ V}$			20	nA

ON CHARACTERISTICS

h _{FE}	DC Current Gain	$I_C = 0.1 \text{ mA}, V_{CE} = 10 \text{ V}$	35		
		$I_C = 1.0 \text{ mA}, V_{CE} = 10 \text{ V}$	50		
		$I_C = 10 \text{ mA}, V_{CE} = 10 \text{ V}$	75		
		$I_{C}= 10 \text{ mA}, V_{CE}= 10 \text{ V}, T_{A}= -55^{\circ}\text{C}$	35		
		$I_C = 150 \text{ mA}, V_{CE} = 10 \text{ V}^*$	100	300	
		$I_C = 150 \text{ mA}, V_{CE} = 1.0 \text{ V}^*$	50		
		$I_C = 500 \text{ mA}, V_{CE} = 10 \text{ V}^*$	40		
V _{CE(sat)}	Collector-Emitter Saturation Voltage*	$I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$		0.3	V
		$I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$		1.0	V
V _{BE(sat)}	Base-Emitter Saturation Voltage*	$I_C = 150 \text{ mA}, I_B = 1.0 \text{ mA}$	0.6	1.2	V
(55.7)		$I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$		2.0	V

SMALL SIGNAL CHARACTERISTICS

f⊤	Current Gain - Bandwidth Product	$I_C = 20 \text{ mA}, V_{CE} = 20 \text{ V},$ f = 100 MHz	300) MHz
C _{obo}	Output Capacitance	$V_{CB} = 10 \text{ V}, I_E = 0, f = 100 \text{ kHz}$	4.0) pF
C _{ibo}	Input Capacitance	$V_{EB} = 0.5 \text{ V}, I_C = 0, f = 100 \text{ kHz}$	20	pF
NF	Noise Figure	$I_C = 100 \mu A$, $V_{CE} = 10 V$, $R_S = 1.0 kΩ$, $f = 1.0 kHz$	2.0) dB

SWITCHING CHARACTERISTICS

t _d	Delay Time	$V_{CC} = 30 \text{ V}, V_{BE(OFF)} = 0.5 \text{ V},$	8	ns
tr	Rise Time	$I_C = 150 \text{ mA}, I_{B1} = 15 \text{ mA}$	20	ns
ts	Storage Time	$V_{CC} = 30 \text{ V}, I_{C} = 150 \text{ mA},$	180	ns
t _f	Fall Time	$I_{B1} = I_{B2} = 15 \text{ mA}$	40	ns

^{*}Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%

(continued)

Typical Characteristics

(continued)

Typical Characteristics (continued)

Turn On and Turn Off Times vs Collector Current

Switching Times vs Collector Current

Power Dissipation vs Ambient Temperature

(continued)

Test Circuits

FIGURE 1: Saturated Turn-On Switching Time

FIGURE 2: Saturated Turn-Off Switching Time