Escuela de Ingeniería Electrónica

EL-5805 Procesamiento Digital de Señales

Prof.: Ing. José Miguel Barboza Retana, MSc.

Examen Corto #2. (11 puntos, 1pto c/u)

Nombre:	Carné:

- 1. Sea el sistema y(n)=2x(n+1) y la entrada $x(n)=\left\{2,\underbrace{1}_{\uparrow},0-1,-2\right\}$. La salida para dicha entrada es:
 - a) $\{4, 2, 0, -2, -4\}$
 - b) $\{4,2,0,\underbrace{-2}_{\uparrow},-4\}$
 - c) $\{-4, -2, \underbrace{0}_{\uparrow}, 2, 4\}$
 - d) $\{4,2,\underbrace{0}_{\uparrow},-2,-4\}$
 - e) Ninguna de las anteriores
- 2. El sistema y(n) = nx(n) x(n-1), donde x(n) es la entrada al sistema es:
 - a) Lineal e invariante en el tiempo
 - b) Lineal y variante en el tiempo
 - c) No lineal e invariante en el tiempo
 - d) No lineal y variante en el tiempo
 - e) No causal e invariante en el tiempo
 - f) Ninguna de las anteriores
- 3. El sistema $y(n) = ax(n) + nx^2(n)$ es:
 - a) Estático y lineal.
 - b) Dinámico y no lineal.
 - c) Estático y no lineal.
 - d) Dinámico y causal.
 - e) Variante en el tiempo y lineal.
 - f) Ninguna de las anteriores

- 4. Sea h(n) la respuesta impulsional de cierto sistema LTI. Si h(n) = 0 para $n \ge 0$ entonces:
 - a) El sistema es causal
 - b) El sistema es inestable
 - c) El sistema es estable
 - d) El sistema es no causal
 - e) El sistema es anticausal
 - f) Ninguna de las anteriores
- 5. La convolución de $x(n)=\{1,1,\underbrace{1}_{\uparrow},1,1\}$ con $h(n)=\left\{\underbrace{1}_{\uparrow},2,3\right\}$ resulta en la secuencia:
 - a) $\{0,1,3,6,3,1,0,0\}$
 - b) $\{0,1,3,6,6,6,5,0\}$
 - c) {1,3,6,6,6,6,5,3}
 - d) $\{0,1,3,\frac{3}{4},6,6,5,3\}$
 - e) $\{1,3,6,6,6,5,3,0\}$
 - f) Ninguna de las anteriores
- 6. Un sistema lineal responde ante la entrada $x_1(n) = \{1,2,0,-1\}$ con la salida $y_1(n) = \{1,3,2,-1,-1\}, \text{ y a la entrada } x_2(n) = \{-1,2,1,1\} \text{ con la salida } y_2(n) = \{-1,1,3,2,1\}.$ La respuesta impulsional del sistema es:
 - a) $h(n) = \left\{ \underbrace{2}_{\uparrow}, 1 \right\}$
 - b) $h(n) = \left\{ \underbrace{1}_{\uparrow}, 2 \right\}$
 - c) $h(n) = \left\{1, 2\right\}$
 - d) $h(n) = \left\{2, \underbrace{1}_{\uparrow}\right\}$
 - e) $h(n) = \left\{ \underbrace{2}_{\uparrow}, 2 \right\}$
 - f) Ninguna de las anteriores

- 7. Si para un sistema en tiempo discreto se puede describir su salida como la convolución de la respuesta impulsional con su entrada, entonces se puede afirmar que:
 - a) El sistema es causal.
 - b) Nada especial ocurre, puesto que esto es válido siempre.
 - c) El sistema es no lineal.
 - d) El sistema es variante en el tiempo.
 - e) El sistema es lineal e invariante en el tiempo.
 - f) Ninguna de las anteriores
- 8. El sistema especificado por la ecuación de diferencias $y(n) = \frac{1}{6}y(n-1) + \frac{1}{3}y(n-2) + x(n)$ tiene como solución homogénea con condiciones iniciales y(-1) = 1 y y(-2) = 0:
 - a) No tiene solución homogénea.

b)
$$y(n) = \left[\frac{-3}{14}\left(-\frac{2}{3}\right)^n + \frac{8}{21}\left(\frac{1}{2}\right)^n\right]u(n)$$

c)
$$y(n) = \left[\frac{-3}{14} \left(\frac{2}{3}\right)^n + \frac{8}{21} \left(\frac{-1}{2}\right)^n\right] u(n)$$

d)
$$y(n) = \left[\frac{8}{21} \left(-\frac{2}{3}\right)^n + \frac{3}{14} \left(\frac{1}{2}\right)^n\right] u(n)$$

e)
$$y(n) = \left[\frac{8}{21} \left(\frac{2}{3}\right)^n + \frac{3}{14} \left(\frac{-1}{2}\right)^n\right] u(n)$$

- f) Ninguna de las anteriores
- 9. La solución particular de la ecuación de diferencias:

$$y(n) = -\frac{1}{3}y(n-1) + \frac{1}{2}y(n-2) - \frac{1}{2}x(n)$$

para la función $x(n) = \left(\frac{1}{3}\right)^n$ es:

a)
$$y_p(n) = \left(\frac{1}{3}\right)^n u(n)$$

b)
$$y_p(n) = \frac{1}{3} \left(\frac{1}{3}\right)^n u(n)$$

c)
$$y_p(n) = \frac{1}{3}u(n)$$

d)
$$y_p(n) = 2\left(\frac{1}{3}\right)^n u(n)$$

e)
$$y_p(n) = \frac{1}{5}u(n)$$

f) Ninguna de las anteriores

10. Un sistema descrito por la ecuación de diferencias

$$y(n) = \frac{3}{10}y(n-1) + \frac{1}{10}y(n-2) + \frac{1}{8}x(n-2),$$

tiene como respuesta al impulso:

a)
$$h(n) = \left[\frac{5}{14} \left(\frac{1}{2}\right)^n + \frac{25}{28} \left(\frac{-1}{5}\right)^n\right] u(n)$$

b)
$$h(n) = \left[\frac{5}{28} \left(\frac{1}{2}\right)^{n-1} + \frac{5}{28} \left(\frac{-1}{5}\right)^{n-1}\right] u(n-1)$$

c)
$$h(n) = \left[\frac{5}{28} \left(\frac{1}{2}\right)^{n-1} - \frac{5}{28} \left(\frac{-1}{5}\right)^{n-1}\right] u(n-1)$$

d)
$$h(n) = \left[\frac{5}{14} \left(\frac{1}{2}\right)^n - \frac{25}{28} \left(\frac{-1}{5}\right)^n\right] u(n)$$

- e) Ninguna de las anteriores
- 11. Indique cuál de las siguientes secuencias puede representar la autocorrelación de una secuencia real de longitud 4:

a)
$$\{1,2,3,4,1,2,3\}$$

b)
$$\{1,2,3 \underbrace{0}_{\uparrow}, 3,2,1\}$$

c)
$$\{-1, -2, -3, 4, 1, 2, 3\}$$

d)
$$\{1,2,3,4,\underbrace{2}_{\uparrow},4,3,2,1\}$$

e)
$$\{2,3,4,\underbrace{2}_{\uparrow},4,3,2\}$$

- f) Ninguna de las anteriores
- 12. La correlación cruzada entre las señales x(n) y y(n) resulta en la secuencia $\left\{1,3,2,-1,\underbrace{2},1,-2\right\}$. La correlación cruzada entre y(n) y x(n) es entonces:

a)
$$\left\{1,3,2-1,\underbrace{2}_{\uparrow},1,-2\right\}$$

b)
$$\left\{1, -2, 2, -1, 2, 3, 1\right\}$$

c)
$$\left\{2, -1, 2, 1, -2, -3, -1\right\}$$

d)
$$\left\{-2,1,\underbrace{2}_{\uparrow},-1,2,3,1\right\}$$

e)
$$\left\{-1, -3, -2, 1, \frac{2}{1}, -1, 2\right\}$$