Assignment Project Exam Help Oracle Vlachines https://powcoder.com/

Add Reyond C.E. sets powcoder

Assignment Project Exam Help Gother Steel Level 1981

From before

• C.e. sets are those a **computer** can list

Assignment Project Exam Help

• Computable: a computer can list them, and can also list their complements https://powcoder.com

Add WeChat powcoder

• The set $K = \{x: \varphi_x(x) \downarrow \}$ is c.e. but not computable

• \overline{K} (the complement of K) is not c.e.

About c.e. sets

- We first defined a set to be c.e. if (means iff) it is empty or the range of a computable function Assignment Project Exam Help
- We showed that a set is c.e. iff it is the range of a partial computable function

 Add WeChat powcoder
- We also showed that a set is c.e. iff it is the **domain** of a partial computable function

Proof:

Let A be a c.e. set

If A is empty, then AAssthendomtaProjethEemptyelpnction given by the program which doesn't halt on any input https://powcoder.com

If A is not empty, then it is the range of a computable function, say $A = \{f(0), f(1), f(2), \dots\}$.

Let $\varphi(x) = \mu y [f(y) = x]$. Then $dom(\varphi) = A$

Let's analyze the last definition of C.E.

• A is c.e. iff it is the domain of a p.c. function *f*.

Assignment Project Exam Help

• Given any x, if x is in A, then the $f(x) \downarrow$, and if x is not in A, then $f(x) \uparrow$ https://powcoder.com

Add WeChat powcoder

 So basically, we have a program that will confirm that YES if x is in A, and otherwise the program tells us nothing

Notation

• The domain of φ_e is denoted by W_e

Assignment Project Exam Help

• W_e is the e-th c.e. set

https://powcoder.com

C.E. and 3

- There is a strong relationship between c.e. and the existential quantifier
 Assignment Project Exam Help
- If A is c.e., then for some e, x is in A iff $\exists s \varphi_{e,s}(x) \downarrow$ Where, roughly, $\varphi_{e,s}(x)$ Adde with the code putation halts within s

steps (or stages).

• Note that $\{(e,s,x): \varphi_{e,s}(x)\downarrow\}$ can be regarded as a relation $R(x_1,x_2,x_3)$

Computable Relations

• Recall, a binary relation over sets X, Y is a subset of the Cartesian product $X \times Y$

Assignment Project Exam Help

- More generally, an *n*-ary relation over sets $X_1, ..., X_n$ is a subset of https:/xpowcoder.com
- An n-ary relation on $\mathbb N$ is one for which $X_1=\cdots=X_n=\mathbb N$
- A relation on N is computable if it is computable as a set
- We say a relation is c.e. if it is c.e. as a set.

Example

• $R = \{(x, y, z) \in \mathbb{N}^3 : x < y \text{ and } z = 2x\}$

We have R(1,2,2), R(0,3,0), R(10,11,20) ject Exam Help But $\neg R(0,2,2)$, $\neg R(0,0,0)$, $\neg R(10,1,1,1,1)$ coder.com

Here ¬ means negation Add WeChat powcoder

- R is clearly computable. There's a program which when given any tuple (a,b,c) it can decide if R(a,b,c) or $\neg R(a,b,c)$
- Note that we can regard relations as Boolean valued functions

• $R_2 = \{(x, e) \in \mathbb{N}^2 : \varphi_e(x) \downarrow \}$

Not computable (whx?) ignment Project Exam Help

https://powcoder.com But it is c.e. because, for any given values a,b, if $R_2(a,b)$ then we can confirm that computably Add WeChat powcoder

Special Cases

Note that a function is a binary relation

Assignment Project Exam Help

- A non-empty subset of X is a unary (1-ary) relation on X. https://powcoder.com
- There are 0-ary relations (TRUE and FALSE) der
- There is the empty relation Ø which is the same as FALSE (holds for nothing)

Deeper analysis of $\varphi_e(x) \downarrow$

- We assume s > x and sign when we write on the property of the state of the state
- When we write $\varphi_{e,s}(x) \downarrow = y$, we assume that s is greater than x,e,y Add WeChat powcoder
- Recall that the following ternary relation is computable $\{(e,s,x): \varphi_{e,s}(x)\downarrow\}$

One can prove that:

```
A relation R(x, y) is c.e. iff there exists a computable relation C(a, x, y) https://powcoder.com such that for all x, y Add WeChat powcoder R(x, y) \Leftrightarrow \exists a C(a, x, y)
```

Assignment Project Exam Help

https://powcoder.com

The Arithmetical Hierarchy

- We use Σ^0_1 to denote the class of relations (formulas) obtained as $\exists \bar{a} \ \mathcal{C}(\bar{a},\bar{x})$ using some computable relation \mathcal{C} Assignment Project Exam Help
- Π_1^0 denotes the class of relations (formulas) obtained as $\forall \bar{a} \ C(\bar{a}, \bar{x})$ using some computable relations (formulas)
- Note that if a set is Σ^0_1 then its complement is Π^0_1 , and vice versa

Going higher

- Π^0_2 denotes the class of relations (formulas) obtained as $\forall \overline{a} \exists \overline{b} \ C(\overline{a}, \overline{b}, \overline{x})$ using some computable relation C Assignment Project Exam Help Or equivalently $\forall \overline{a} \ D(\overline{a}, \overline{x})$ for some Σ^0_1 relation D https://powcoder.com
- Σ^0_2 denotes the class of relations (for the solution of the solution of

In general

- Π^0_{n+1} denotes the class of relations (formulas) obtained as $\forall \bar{a} \ D(\bar{a}, \bar{x})$ for some Σ^0_n relation DAssignment Project Exam Help
- Σ_{n+1}^0 denotes the class of relations (formulas) obtained as $\exists \bar{a} \ D(\bar{a}, \bar{x})$ for some Π_n^0 relation $D_{\mbox{Add}}$ WeChat powcoder
- Note that, for all n, $\Sigma_n^0 \cup \Pi_n^0 \subsetneq \Sigma_{n+1}^0 \cap \Pi_{n+1}^0$

Recall we mentioned that

A relation R(x, y) is c.e. iff there exists a computable relation C(a, x, y) such that for all x, y Assignment Project Exam Help

https://powcoder.com

• This means that C.E. = $\sum_{i=0}^{\infty} did WeChat powcoder$

• BTW, Computable = $\Sigma_0^0 = \Pi_0^0$

The Normal Form Theorem for C.E. Sets

• The following are equivalent:

Assignment Project Exam Help

A is c.e.

https://powcoder.com

- A is Σ_1^0
- A = W_e for some $e \in \mathbb{N}^{Add}$ WeChat powcoder

Relative Computability

• We have just seen that C.E. = Σ_1^0

Assignment Project Exam Help

- How about Σ_2^0 ? Or more generally, Σ_{n+1}^0 ? https://powcoder.com
- Are they c.e. in some sense W.r.t. some higher level?
- Indeed, it is all about the computable function which enumerates the set

Oracle Machines and Relative Computability

- Imagine a function which is computable but only after giving it certain knowledge
 Assignment Project Exam Help
- Imagine its program which allows using the indicator function of some set A (not necessarily computable) coder
- Such a function is said to be (relatively) computable from A

Assignment Project Exam Help

https://powcoder.com

Turing Reducibility

- A set S is said to be Turing reducible to a set B ($S \leq_T B$) if the characteristic function of S is computable from B.

 Assignment Project Exam Help
- If $S \leq_T B$ and $S \geq_T B$, then we write $S \stackrel{\text{com}}{=_T} B$ and say they are Turing equivalent Add WeChat powcoder
- \leq_T is a partial order, and \equiv_T is an equivalence relation

Turing Degrees

• The equivalence classes corresponding to The called the Turing degrees (often denoted by bold lowercase **a**, **b**, **c**, ..)

https://powcoder.com

• They are also known as Aded Ne es of au psolvobility

All computable sets have the same Turing degree (why?)

Structure of the set of Turing Degrees

• Partially ordered but not linearly ordered (there are incomparable degrees)

https://powcoder.com

• There is a smallest Turingle degree hat policy to the empty set (which is also the Turing degree of any computable set)

Notation

• P_e^A , $\mathbf{\Phi}_e^A$, W_e^A

Program with oracle Aspection; with praction with oracle Aspection with oracle aspec

https://powcoder.com

How to get higher degrees? (the Jump operator)

Given a set A, consider the halting set with respect to A:

$$A'$$
Assignmento A' Assignmen

- This set is called the *jump of A* and we have that $A <_T A'$ Add WeChat powcoder
- $\emptyset' = K$
- $A \equiv_T B$ implies $A' \equiv_T B'$
- A' is A-c.e. but not A-computable

Iterating the jump

•
$$\emptyset^{(2)} = \emptyset''$$

• $\emptyset^{(n)}$

Assignment Project Exam Help

https://powcoder.com

• $deg(\emptyset) = \mathbf{0}$

Assignment Project Exam Help

• $\deg(A)'$ is defined as $\deg(A')$ https://powcoder.com

• $deg(\emptyset^{(n)}) = \mathbf{0}^{(n)}$ Add WeChat powcoder

Assignment Project Exam Help

https://powcoder.com

Other Reducibilities

- Note that Turing reducibility does not distinguish a set from its complement (for any set A, $A \equiv_T \bar{A}$)
 Assignment Project Exam Help
- But clearly both sets can be very different in terms of computability properties. Example: K_{And} \overline{W}_{e} Chat powcoder
- Similar properties can be maintained by stronger reducibilities

m-reducibility (many-one reducibility)

• $A \leq_m B$ (A is m-reducible to B) if there exists a computable function f such that: for every $x \in \mathbb{N}$,

Assignment Project Exam Help

https://powcoder.com
Add WeChat powcoder