کد فرم : FR/FY/11 ویرایش : صفر

(فرم طرح سئوالات امتحانات پایان ترم) دانشکده ریاضی

گروه آموزشی : **ریاضی** امتحان درس : **معادلات دیفرانسیل (۷ گروه هماهنگ**) نیمسال (**اول**/دوم) ۹۴–۱۳۹۳ نام مدرس : نام و نام خانوادگی : شماره دانشجویی : شماره دانشجویی : ۱۳۵۳/۱۰/۱۴ وقت : ۱۳۵۵ دقیقه

توجه:

از نوشتن با مداد خودداری نمایید. استفاده از هرگونه ماشین حساب ممنوع است. در طول برگزاری امتحان به هیچ سوالی پاسخ داده نمی شود.

سوال ۱۵
$$(x \tan \frac{y}{x} + y)dx - xdy = \cdot$$
 : معادله دیفرانسیل مرتبه اول مقابل را حل کنید -1 نمره

سوال ۲- جواب عمومی معادله اویلر
$$x^{\mathsf{r}}y'' + xy' - y = x^{\mathsf{r}}e^x$$
 را بیابید.

سوال
$$y= ext{Te}^{ ext{Tx}}$$
 معادله مرتبه دوم مقابل را به کمک عملگر D حل کنید : D معادله مرتبه دوم مقابل را به کمک عملگر

سوال ۴- جواب معادله ديفرانسيل
$$y'' - (1+x^7)y = \cdot \; ; \; y(\cdot) = \Lambda \; , y'(\cdot) = 9$$
 نمره را به صورت سری حول $x = \cdot \;$ بيابيد. (حداقل α جمله غير صفر نوشته شود.)

رمون ۲۰
$$\begin{cases} x' = \Delta x - \mathcal{F}y + 1 \\ y' = \mathcal{F}x - \mathbf{V}y + 1 \end{cases}, \begin{cases} x(\cdot) = \mathbf{V} \\ y(\cdot) = \mathbf{F} \end{cases}$$
 نمره : سوال ۲۰ معادلات مقابل را حل کنید : $y(\cdot) = \mathbf{F}$

$$\cdot f(t) = \begin{cases} e^{-t} & \cdot \leq t < 1 \\ \cdot & 1 \leq t \end{cases}$$
 سوال ۶- اگر $x'' + 7x' + 7x = f(t)$; $x(\cdot) = \%$, $x'(\cdot) = \%$ معادله دیفرانسیل با شرایط اولیه $x'' + 7x' + 7x = f(t)$; $x(\cdot) = \%$, $x''(\cdot) = \%$ معادله دیفرانسیل با شرایط اولیه حل کنید.

موفق باشيد

پاسخ سوالات امتحان پایان ترم درس معادلات دیفرانسیل (۷ گروه هماهنگ) نیمسال اول ۹۴–۱۳۹۳

سوال ۱- اگر معادله را به صورت $\frac{dy}{dx} = \tan \frac{y}{x} + \frac{y}{x}$ بنویسیم می بینیم که یک معادله مرتبه اول همگن است.

با تغییر متغیر $xu' = \tan u$ که یک معادله جدایی پذیر است $u + xu' = \tan u + u$ داریم y = xu

یعنی داریم
$$\frac{du}{\tan u} = \int \frac{du}{\tan u} = \int \frac{dx}{x}$$
 یعنی داریم انتگرال می گیریم $\frac{du}{\tan u} = \frac{dx}{x}$ و داریم

$$\ln \sin u = \ln(ax) \rightarrow \sin u = ax \rightarrow u = \frac{y}{x} = \arcsin(ax) \rightarrow y = x\arcsin(ax)$$

سوال ۲– روش اول : ابتدا معادله همگن را حل می کنیم. y'' + xy' - y = 0 معادله مشخصه آن عبارت است از

برای .
$$y_h=ax+rac{b}{x}$$
 یعنی $r=\pm 1$ که دو ریشه $r=\pm 1$ دارد پس جواب معادله همگن عبارت است از $r(r-1)+r-1=0$

$$h(x) = e^x$$
 و چون $w(y_1, y_1) = \frac{-7}{x}$ و در نتیجه $y_1 = \frac{1}{x}$ و چون $y_2 = x$ و چون

$$y_p = -y_1 \int \frac{y_1 h(x)}{w} dx + y_2 \int \frac{y_1 h(x)}{w} dx = -x \int \frac{\frac{1}{x} e^x}{\frac{-1}{x}} dt + \frac{1}{x} \int \frac{x e^x}{\frac{-1}{x}} dt$$
 : جواب خصوصی معادله عبارت است از :

$$=\frac{x}{7}\int e^x dt - \frac{1}{7x}\int x^7 e^x dt = \frac{x}{7}e^x - \frac{1}{7x}(x^7 - 7x + 7)e^x = (1 - \frac{1}{x})e^x$$

$$y_g = ax + \frac{b}{x} + (1 - \frac{1}{x})e^x$$
 : است از عمومی معادله عبارت است از

: روش دوم در معادله اویلر داده شده تغییر متغیر متغیر $x=e^t$ را اعمال می کنیم. یعنی قرار میدهیم

$$xy' = \frac{dy}{dt}$$
, $x'y'' = \frac{d'y}{dt'} - \frac{dy}{dt}$

$$x^{\mathsf{T}}y'' + xy' - y = x^{\mathsf{T}}e^{x} \quad \to \quad \frac{d^{\mathsf{T}}y}{dt^{\mathsf{T}}} - \frac{dy}{dt} + \frac{dy}{dt} - y = e^{\mathsf{T}t}e^{e^{t}} \quad \to \quad y'' - y = e^{\mathsf{T}t}e^{e^{t}}$$

 $m^{7}-1=0$ این یک معادله غیر همگن با ضرایب ثابت است. معادله مشخصه معادله همگن نظیر آن عبارت است از

$$y_h=ae^t+be^{-t}$$
 : که دو ریشه $m_{ au}=0$ و ارد. جواب معادله همگن عبارت است از $m_{ au}=0$ و $m_{ au}=0$

برای استفاده از روش تغییر پارامتر قرار می دهیم. $y_1 = e^{t}$ و $y_2 = e^{t}$ و در نتیجه $w(y_1, y_2) = -1$ و در نتیجه $y_1 = e^{t}$ و چون $y_2 = e^{t}$ جواب خصوصی معادله عبارت است از :

$$y_{p} = -y_{1} \int \frac{y_{1}h(t)}{w} dt + y_{1} \int \frac{y_{1}h(t)}{w} dt = -e^{t} \int \frac{e^{-t}e^{\tau t}e^{e^{t}}}{-\tau} dt + e^{-t} \int \frac{e^{t}e^{\tau t}e^{e^{t}}}{-\tau} dt$$

$$= \frac{e^{t}}{\tau} \int e^{t}e^{e^{t}} dt - \frac{e^{-t}}{\tau} \int e^{\tau t}e^{e^{t}} dt = \frac{e^{t}}{\tau}e^{e^{t}} - \frac{e^{-t}}{\tau}(e^{\tau t} - \tau e^{t} + \tau)e^{e^{t}} = (1 - e^{-t})e^{e^{t}}$$

$$y_{\sigma} = ae^{t} + be^{-t} + (1 - e^{-t})e^{e^{t}}$$
 : برابر است با ضرایب ثابت برابر است با غیر همگن با ضرایب ثابت برابر است با

$$y_g = ax + \frac{b}{x} + (1 - \frac{1}{x})e^x$$
 : و چون $x = e^t$ جواب معادله اوبلر داده شده عبارت است از

پاسخ سوالات امتحان پایان ترم درس معادلات دیفرانسیل (۷ گروه هماهنگ) نیمسال اول ۹۴–۱۳۹۳

 $D^{\mathsf{Y}} - \mathsf{Y}D = \mathsf{Y}$ ابتدا معادله همگن $P^{\mathsf{Y}} - \mathsf{Y}D = \mathsf{Y}$ را حل می کنیم. معادله مشخصه برابر است با $P^{\mathsf{Y}} - \mathsf{Y}D = \mathsf{Y}$ را حل می کنیم. $P^{\mathsf{Y}} - \mathsf{Y}D = \mathsf{Y}D =$

$$\sum_{n=1}^{\infty} n(n-1)a_n x^{n-1} - (1+x^{\mathsf{T}}) \sum_{n=1}^{\infty} a_n x^n = \mathbf{1}$$

این جواب را در معادله قرار میدهیم :

$$\sum_{n=1}^{\infty} n(n-1)a_n x^{n-1} - \sum_{n=1}^{\infty} a_n x^n - \sum_{n=1}^{\infty} a_n x^{n+1} = \cdot \longrightarrow \sum_{n=1}^{\infty} (n+1)(n+1)a_{n+1} x^n - \sum_{n=1}^{\infty} a_n x^n - \sum_{n=1}^{\infty} a_{n-1} x^n = \cdot$$

$$\rightarrow \qquad \forall a_{\tau} + \beta a_{\tau} x - a_{\cdot} - a_{\tau} x + \sum_{n=\tau}^{\infty} [(n+\tau)(n+1)a_{n+\tau} - a_{n} - a_{n-\tau}]x^{n} = \bullet$$

 $\mathsf{Y} a_\mathsf{Y} - a_\mathsf{L} = \mathsf{L}$, $\mathsf{P} a_\mathsf{Y} - a_\mathsf{L} = \mathsf{L}$, $(n+\mathsf{Y})(n+\mathsf{L}) a_{n+\mathsf{Y}} - a_n - a_{n-\mathsf{Y}} = \mathsf{L}$, $n = \mathsf{Y}, \mathsf{Y}, \mathsf{Y}, \cdots$

$$a_{\mathsf{Y}} = \frac{a_{\mathsf{Y}}}{\mathsf{Y}} \;\; , \;\; a_{\mathsf{Y}} = \frac{a_{\mathsf{Y}}}{\mathsf{Y}} \;\; , \;\; a_{\mathsf{N}+\mathsf{Y}} = \frac{a_{\mathsf{N}} + a_{\mathsf{N}-\mathsf{Y}}}{(n+\mathsf{Y})(n+\mathsf{Y})} \;\; , \quad n = \mathsf{Y}, \mathsf{Y}, \mathsf{Y}, \cdots$$
 : يعنى

$$a_{\cdot}=\mathsf{A}$$
 , $a_{\mathsf{Y}}=\mathsf{F}$, $a_{\mathsf{Y}}=\mathsf{F}$, $a_{\mathsf{Y}}=\mathsf{Y}$ داريم $y'(\cdot)=\mathsf{F}=a_{\mathsf{Y}}$ و $y(\cdot)=\mathsf{A}=a_{\mathsf{Y}}$

$$a_{\varphi} = \frac{17}{17} = 1$$
, $a_{\Delta} = \frac{7}{7}$, $a_{\varphi} = \frac{\Delta}{7} = \frac{1}{9}$, ...

 $y = \lambda + \vartheta x + \vartheta x^{\mathsf{T}} + x^{$

 $\begin{cases} (D-\Delta)x + \mathcal{F}y = 1 \\ -\mathcal{F}x + (D+Y)y = 1 \end{cases}$ داریم: D داریم:

$$\varphi$$
 $\begin{cases}
(D-\Delta)x + \varphi y = 1 \\
(D-\Delta) - \varphi x + (D+Y)y = 1
\end{cases}$ $\Rightarrow (D^Y + YD + 1)y = 1$: با حذف مجهول x داریم :

 $D^{\mathsf{r}} + \mathsf{r}D + \mathsf{l} = \mathsf{r}$ ابتدا معادله همگن را حل می کنیم یعنی $y = \mathsf{r}$ یعنی $y = \mathsf{r}$ معادله مشخصه عبارت است از

 $y_h = (a+bt)e^{-t}$: که ریشه مضاعف D=-1 دارد و جواب معادله همگن عبارت است از

 $y_g = (a+bt)e^{-t} + 1$: برابر است با دوم معادله مرتبه دوم

$$x_g = \frac{1}{5}(y_g' + \forall y_g - 1) = \frac{1}{5}[(fa + b + fbt)e^{-t} + f]$$
 با قرار دادن این جواب در معادله دوم دستگاه داریم :

$$x_g = (a + \frac{b}{5} + bt)e^{-t} + 1$$

پاسخ سوالات امتحان پایان ترم درس معادلات دیفرانسیل (۷ گروه هماهنگ) نیمسال اول ۹۴-۱۳۹۳

$$\begin{cases} x_g = (a + \frac{b}{9} + bt)e^{-t} + 1 \\ y_g = (a + bt)e^{-t} + 1 \end{cases} \rightarrow \begin{cases} \Upsilon = a + \frac{b}{9} + 1 \\ \Upsilon = a + 1 \end{cases} \rightarrow \begin{cases} b = -9 \\ a = \Upsilon \end{cases}$$

به کمک شرایط اولیه ضرایب را محاسبه می کنیم.

$$\begin{cases} x_g = (\Upsilon - \Re t)e^{-t} + 1 \\ y_g = (\Upsilon - \Re t)e^{-t} + 1 \end{cases}$$

جواب نهایی دستگاه برابر است با :

$$\begin{cases} L\{x'\} = L\{\Delta x\} - L\{\mathcal{V}y\} + L\{\mathcal{V}\} \\ L\{y'\} = L\{\mathcal{V}x\} - L\{\mathcal{V}y + L\{\mathcal{V}\}\} \end{cases} \to \begin{cases} sL\{x\} - \mathcal{V} = \Delta L\{x\} - \mathcal{V}L\{y\} + \frac{1}{s} \\ sL\{y\} - \mathcal{V} = \mathcal{V}L\{y\} + \frac{1}{s} \end{cases} \to \vdots$$
 : $sL\{y\} - \mathcal{V}L\{y\} + \frac{1}{s}$

$$\varphi \begin{cases}
(s-\Delta)L\{x\} + \varphi L\{y\} = \Psi + \frac{1}{s} \\
-\varphi L\{x\} + (s+\Psi)L\{y\} = \Psi + \frac{1}{s}
\end{cases}
\rightarrow (s^{\Upsilon} + \Upsilon s + 1)L\{y\} = \Psi s - 1 + \frac{1}{s} \rightarrow L\{y\} = \frac{\Psi s^{\Upsilon} - s + 1}{s(s+1)^{\Upsilon}} = \frac{\Psi}{s+1} - \frac{\varphi}{(s+1)^{\Upsilon}} + \frac{1}{s}$$

$$\rightarrow x(t) = \Upsilon e^{-t} - \Im t e^{-t} + \Upsilon e^{-t}$$

: سوال -8 تبدیل لاپلاس تابع f را محاسبه می کنیم

$$L\{f(t)\} = \int_{\cdot}^{1} e^{-st} e^{-t} dt = \frac{-1}{s+1} e^{-(s+1)t} \mid \frac{1}{s+1} = \frac{-1}{s+1} (e^{-s-1} - 1) = \frac{1}{s+1} (1 - e^{-s-1})$$
: محاسبه مستقیم

.
$$L\{f(t)\} = L\{e^{-t} - u_{\scriptscriptstyle 1}(t)e^{-t}\} = L\{e^{-t}\} - L\{u_{\scriptscriptstyle 1}(t)e^{-t}\} = \frac{1}{s+1} - e^{-s}L\{e^{-t-1}\} = \frac{1}{s+1}(1-e^{-s-1}) : 1 + 2s = \frac{1}{s+1}(1-e^{-s-1}$$

$$L\{x'' + \Upsilon x' + \Upsilon x\} = L\{f(t)\}$$

تبديل لاپلاس طرفين معادله را محاسبه مي كنيم.

$$s^{r}L\{x\} - rs - r + rsL\{x\} - r + rL\{x\} = \frac{1}{s+1}(1 - e^{-s-1})$$

$$(s^{7} + 7s + 7)L\{x\} = 7s + 1 \cdot + \frac{1}{s+1}(1 - e^{-s-1}) \rightarrow L\{x\} = \frac{7s+1}{s^{7} + 7s + 7} + \frac{1}{(s+1)(s^{7} + 7s + 7)}(1 - e^{-s-1})$$

$$\rightarrow L\{x\} = \frac{rs+1\cdot}{s^{r}+rs+r} + (\frac{1}{s+1} - \frac{s+1}{s^{r}+rs+r})(1-e^{-s-1})$$

$$\to L\{x\} = L\{e^{-t}(Y\cos t + V\sin t + 1)\} - e^{-s-1}L\{e^{-t}(1-\cos t)\}$$

$$\to L\{x\} = L\{e^{-t}(\Upsilon\cos t + \Upsilon\sin t + 1)\} - e^{-t}L\{u_1(t)e^{-t+1}(1-\cos(t-1))\}$$

$$\to L\{x\} = L\{e^{-t}(7\cos t + 7\sin t + 1) - u_1(t)e^{-t}(1 - \cos(t - 1))\}$$

$$\rightarrow x(t) = e^{-t} [\Upsilon \cos t + \Upsilon \sin t + 1 - u_1(t)(1 - \cos(t - 1))]$$

$$x(t) = \begin{cases} e^{-t} [\Upsilon \cos t + \Upsilon \sin t + 1] & \cdot \le t < 1 \\ e^{-t} [\Upsilon \cos t + \Upsilon \sin t + \cos(t - 1)] & 1 \le t \end{cases}$$