• Understanding fixed-income risk and return

Understanding fixed-income risk and return

Sources of return fixed-rate bond

- Coupon and principal payments
- Reinvest coupon
- Capital gain or loss is sold prior to maturity
 - o Bond held to maturity has no such gain or loss

Assumption

Interest rate earned on reinvested coupon equals to YTM

Conclusions

- YTM1: YTM of the bond when it is purchased
- Largest gain of a zero-coupon bond held to maturity is interest income
- Hold to maturity -> return = YTM1
- Sell bond prior to maturity and YTM is unchanged -> return = YTM1
- Market YTM for the bond, assumed reinvestment rate, **increases** after the bond is purchased but before the first coupon date (YTM 增加)
 - o Hold to maturity (longer) -> return > YTM1 (more reinvested) 持有长回报高
 - Hold for **short** time -> return < YTM1 (less reinvested) 短期持有回报小
- Market YTM for the bond, assumed reinvestment rate, decreases after the bond is purchased but before the first coupon date
 - o Hold to maturity (longer) -> return < YTM1 (less reinvested) 持有到期回报少
 - o Hold for **short** time -> return > YTM1 (more capital gain) 短期持有回报高

Carrying value 市值

- Value of a bond between its purchase and sale
- Capital gain or loss is measured relative to carrying value

At the **middle** of holding period 0 < t < T

- Carrying value (backward) 未来值的折现
 - \circ N= $\mathbf{T}-\mathbf{t}$ (TTM), PMT=C, I/Y=YTM, FV=100-> PV
- Coupon interest
 - \circ t \times C
- Coupon interest and reinvested interest (forward) coupon 的复利和未来值
 - \circ N = t, PMT=C, I/Y=YTM, PV=**0** -> FV
 - o Reinvested income: $FV t \times C$

Risks

- Market price risk 市场价格风险
 - Uncertainty about price due to YTM
- Reinvestment risk 再投资风险

- Uncertainty about total coupon payments and invested income due to uncertainty about future reinvestment rates
- Long time horizon (reinvestment risk > market price risk)
 - o Price converges to par, so no interest rate risk
 - More reinvestment risks
- Short investment horizon (market price risk > reinvestment risk)
 - o Interest rate risk increase, reinvestment risk decreases
 - Yield decrease -> price increase -> more gain
 - Yield increase -> price decrease -> less return

Duration (衡量利率风险)

- Measure bond's interest rate risk or sensitivity of its full price to its change in yield
- For option-free bonds
- Macaulay Duration
 - Weighted average of the number of years until each of the bond's

$$o \quad D_{\text{macaulay}} = \frac{\sum_{t} t \times PV_{t}}{\sum_{t} PV_{t}}$$

- o Semi-annual bond: weighted semi-annual periods
- Not best estimation of interest rate sensitivity
- o Nonconvertible perpetual bond

• macaulay =
$$\frac{1+Y}{Y}$$

Modified Duration

$$\quad \circ \quad D_{modified} = \frac{D_{macaulay}}{1 + \frac{\gamma}{m}}$$

- Discount one more period
- o Percentage change in bond's price

•
$$\frac{\Delta P/P}{\Delta Y} = -D_{modified} \rightarrow \frac{\Delta P}{P} = -D_{modified} \times \Delta Y$$

Approximate Modified Duration

$$\begin{array}{ccc} \circ & \mathrm{D_{modified}} = \frac{V_{-} - V_{+}}{2 \times \Delta Y \times V_{0}} \\ & & \bullet & \frac{\Delta P}{\Delta Y} = \frac{V_{+} - V_{-}}{2 \times \Delta Y} \to \mathrm{D_{modified}} = & -\frac{\Delta P}{\Delta Y} \times \frac{1}{V_{0}} \end{array}$$

Linear estimation, good estimate for small change

Effective Duration (curve parallel shift 曲线的平移, embedded bonds)

- Bonds with embedded options
 - o Callable bond, puttable bond
 - o mortgage-backed bond, a prepayment option, similar to a call option
- bond price
 - o based on **path** of interest rates
 - o should use **effective duration** to estimate interest risk
 - o it is based on bond price from a pricing model
 - o bond price based on YTM cannot be used because uncertain future cash flow
- effective duration is used to measure interest rate sensitivity
 - o change not the YTM, but the benchmark yield curve 基于 curve 的平移
- $D_{\text{effective}} = \frac{V_- V_+}{2 \times \Delta curve \times V_0}$
- Separate
 - Changes in benchmark yields
 - o changes in **yield spread** for credit and liquidity risk
- modified duration
 - o no distinction between changes in benchmark yield and changes in spread
- effective duration
 - reflects only the sensitivity of bond's value to changes in benchmark yield curve
 - o credit duration: changes in credit spread
- effective duration does not necessarily provide better estimate for smaller changes in yield, maybe large change in yield produce more predictable prepayments or calls than small changes

Key Rate Duration (non-parallel shift)

• Key Rate Duration / partial duration

- o Measure impact of nonparallel shift
- Key rate durations 一次改变一个 maturity
 - A key rate duration is the sensitivity of bond value changes to spot rate for a specific maturity, holding other spot rates constant
 - A key rate duration can be calculated for each maturity on the spot rate curve
 - o For a portfolio, sum the individual effects to get overall effects

Interest rate risk

- Increase maturity -> increase risk
 - o Payment further are more sensitive to changes in discount rate
 - Special
 - A discount coupon bond, increase maturity -> decrease Macaulay duration
 - Duration first increase with longer maturity, and then decreases over a range of relatively long maturities until it approaches the duration of a perpetuity, which is (1+Y)/Y
- Increase coupon rate -> decrease risk
 - More bond value will be paid sooner
 - o Duration of a zero-coupon bond > duration of a coupon bond
- Increase YTM -> decrease risk
 - Use slope as proxy for risk, higher yield, slope is flatter
- Call or put provision -> decrease risk (effective duration)
 - Call option
 - Yield fall -> value increase
 - Callable bond price = straight bond call option
 - o Put option

Special Bond durations

- Perpetual bond
 - Macaulay Duration = $\frac{1+Y}{Y} = 1 + \frac{1}{Y}$
 - $\circ \quad \text{Modified Duration} = \frac{1}{Y}$
- Zero-coupon bond
 - Macaulay Duration = TTM
 - $\circ \quad \text{Effective Duration} = \frac{\text{TTM}}{1+Y}$

Portfolio Duration

- Cash flow approach
 - Weighted average number of periods until portfolio's cash flow will be received
 - Theoretically correct
 - o The yield is cash flow yield, the IRR of bond portfolio
 - o Inconsistent with duration capturing the relationship between YTM and price
 - o Not work for portfolio with embedded bonds since cash flow are unknown
- Weighted average of duration
 - Weighted average of durations of individual bonds

•
$$D_{portfolio} = \sum_{i} w_i \times D_i$$

■
$$D_{portfolio} = \sum_{i} w_{i} \times D_{i}$$

• $w_{i} = \frac{bond\ full\ price}{portfolio\ full\ price}$

- o Practical approximation, often used in practice
- Work with bonds with embedded options using effective durations
- Limitation
 - YTM of every bond should change by the same amount to create a parallel shift
- The same duration when yield curve is flat
- less accurate when there is greater variation in yields

Money Duration

- money duration is duration in currency
 - o money duration = annual modified duration × bond full price

- money duration of 100 par value (每 100 平价对应的 money duration)
 - \circ money duration per 100 of par value = annual modified duration \times bond full price per 100 of par value
- change in bond value
 - \circ Δ bond value = money duration $\times \Delta$ YTM

Per value of a basis point (PVBP)

• Money change in full price of a bond when its YTM changes by one basis point (0.1%)

• PVBP =
$$\Delta P = -D_{\text{modified}} \times P \times \Delta Y = \frac{V_{-} - V_{+}}{2}$$

$$\Delta Y = 0.01\%$$

• If paid semi-annual, the BP is still 0.01%

$$y_{+} = 0.5 \times (y \pm 0.01\%)$$

Convexity

- Linear estimation underestimate price
- Convexity is percentage change in secondary derivative

$$\circ \quad \textbf{Convexity} = \frac{\Delta^2 P}{\Delta Y^2 \times P} = \frac{V_- + V_+ - 2V_0}{(\Delta Y)^2 \times V_0}$$

Effective convexity (bonds with embedded options)

$$\circ \quad \text{Effective Convexity} = \frac{\Delta^2 P}{\Delta \text{Curve}^2 \times P} = \frac{V_- + V_+ - 2V_0}{(\Delta Curve)^2 \times V_0}$$

- Factors (similar to duration)
 - Longer maturity, lower coupon rate, lower yield -> increase convexity
 - Two bonds with equal duration, more dispersed cash flow -> high convexity
- Convexity
 - o Option-free: positive
 - Callable: negative when yield is small
 - Puttable: greater convexity when yield is large

Figure 3: Price-Yield Function of a Callable vs. an Option-Free Bond

Percentage change in Price

•
$$\frac{\Delta P}{P} = -D \times \Delta Y + \frac{1}{2} \times C \times (\Delta Y)^2$$

Term Structure of yield volatility

- Relation between volatility of bond yields and their times to maturity
- Volatility of bond's price
 - o Sensitivity of bond's price to a given change in yield
 - Volatility of bond's yield
- Short-term more volatility than long-term
 - o Short-term could have more price volatility than a longer-term

Duration – HPR and investment horizon

- If investment horizon and Macaulay duration are matched
 - o A parallel shift in yield curve prior to first coupon payment will not affect HPR
 - o Market price risk and reinvestment risk offset each other

- Increase in yield
 - o Short-term: less capital gain and small increase in reinvestment income
 - o **Long-term**: more reinvestment income
- Decrease in yield
 - o Short-term: more capital gain and small decrease in reinvestment income
 - o Long-term: less reinvestment income
- Duration gap
 - Gap = Macaulay duration investment horizon
 - Positive gap
 - Macaulay duration > investment horizon
 - More market price risk from increasing interest rate
 - 利息上升导致价格下降
 - o Negative gap
 - Macaulay duration < investment horizon
 - More reinvestment risk from decreasing interest rate
 - 利率下降导致再投资下降

Credit and liquidity spread

- Benchmark interest = real rate of return + expected inflation
- Bond's spread = credit premium + liquidity premium
- Change in a spread

$$0 \frac{\Delta P}{P} = -D \times \Delta spread + \frac{1}{2} \times C \times (\Delta spread)^{2}$$