Corrispondenza di Galois per estensioni di grado infinito

Candidato Giovanni Tognolini Relatore Prof. Andrea Caranti

Università di Trento

16 Luglio 2018

Indice

- Teoria di Galois
 - Separabilità e normalità
 - Corrispondenza di Galois: caso finito
- ② Gruppi topologici
 - Risultati elementari
- 3 Limiti inversi e gruppi profiniti
 - Sistemi e limiti inversi
 - Gruppi profiniti
 - Il gruppo di Galois come gruppo profinito
 - Topologia di Krull
- 4 Corrispondenza di Galois
 - Corrispondenza di Galois: caso infinito
 - Considerazioni conclusive

Teoria di Galois: separabilità e normalità

Definizione

Sia E/F un'estensione di campi. Denotiamo con

$$Gal(E/F) := \{f : E \to E \text{ automorfismi } | f|_F = id_F \}.$$

L'estensione E/F è detta di Galois se

$$E^{\operatorname{Gal}(E/F)} := \{\alpha \in E \mid f(\alpha) = \alpha \ \text{ per ogni } f \in \operatorname{Gal}(E/F)\} = F.$$

Teoria di Galois: separabilità e normalità

Definizione

Sia E/F un'estensione di campi. Denotiamo con

$$Gal(E/F) := \{f : E \to E \text{ automorfismi } | f|_F = id_F \}.$$

L'estensione E/F è detta di Galois se

$$E^{\operatorname{Gal}(E/F)} := \{\alpha \in E \mid f(\alpha) = \alpha \ \text{ per ogni } f \in \operatorname{Gal}(E/F)\} = F.$$

Proposizione

Sia E/F un'estensione finita di campi. Sono equivalenti

- 1 E/F è di Galois;
- 2 E/F è un'estensione normale e separabile;
- $3\,$ E è il campo di spezzamento di un polinomio separabile a coefficienti in F.

Teoria di Galois: separabilità e normalità

Definizione

Sia E/F un'estensione di campi. Denotiamo con

$$Gal(E/F) := \{f : E \to E \text{ automorfismi } | f_{|F} = id_F\}.$$

L'estensione E/F è detta di Galois se

$$E^{\operatorname{Gal}(E/F)} := \{ \alpha \in E \mid f(\alpha) = \alpha \text{ per ogni } f \in \operatorname{Gal}(E/F) \} = F.$$

Proposizione

Sia E/F un'estensione di campi. Sono equivalenti

- 1 E/Fè di Galois;
- 2 E/F è un'estensione normale e separabile;
- 3 E è il campo di spezzamento di una famiglia di polinomi separabili a coefficienti in F.

Teoria di Galois: Teorema Fondamentale

Teorema (Corrispondenza di Galois per estensioni di grado finito)

Sia E/F un'estensione di Galois finita e sia G := Gal(E/F). Allora le mappe

$$L \mapsto H := \operatorname{Gal}(E/L)$$
 $e \qquad H \mapsto L := E^{L}$

inducono una bi
iezione fra i sottocampi intermedi di E/F e i sottogruppi di G che rovescia le inclusioni. L'estensione L/F è di Galois se e solo se H è normale in G e in tal caso si ha $\operatorname{Gal}(L/F) \cong G/H$.

Teoria di Galois: Teorema Fondamentale

Teorema (Corrispondenza di Galois per estensioni di grado finito)

Sia E/F un'estensione di Galois finita e sia G := Gal(E/F). Allora le mappe

$$L \mapsto H := \operatorname{Gal}(E/L)$$
 $e H \mapsto L := E^H$

inducono una bi
iezione fra i sottocampi intermedi di E/F e i sottogruppi di G che rovescia le inclusioni. L'estensione L/F è di Galois se e solo se H è normale in G e in tal caso si ha $\operatorname{Gal}(L/F) \cong G/H$.

Gruppi topologici: risultati elementari

Definizione

Un gruppo topologico è una terna (G,\cdot,τ) , dove (G,\cdot) è un gruppo e τ è una topologia su G tale che renda continue le mappe

$$\varphi : (G, \tau) \longrightarrow (G, \tau) \qquad \qquad \psi : (G \times G, \xi) \longrightarrow (G, \tau)$$

$$g \longmapsto g^{-1} \qquad \qquad (g_1, g_2) \longmapsto g_1 g_2$$

$$(1)$$

dove abbiamo indicato con ξ la topologia prodotto su $G \times G$.

Proposizione

Sia $\{G_i, \cdot_i, \tau_i\}_{i \in I}$ una famiglia di gruppi topologici, allora lo spazio topologico $(\prod_i G_i, \cdot, \xi)$, dove · è l'operazione definita componente per componente, e ξ è la topologia prodotto, è un gruppo topologico.

Osservazione

Se H è un sottogruppo di G e H è munito della topologia indotta, allora H è un gruppo topologico.

Gruppi topologici: risultati elementari

Definizione

Un gruppo topologico è una terna (G,\cdot,τ) , dove (G,\cdot) è un gruppo e τ è una topologia su G tale che renda continue le mappe

$$\varphi \colon (G,\tau) \longrightarrow (G,\tau) \qquad \qquad \psi \colon (G \times G,\xi) \longrightarrow (G,\tau)$$

$$g \longmapsto g^{-1} \qquad (g_1,g_2) \longmapsto g_1 g_2$$

$$(1)$$

dove abbiamo indicato con ξ la topologia prodotto su $G \times G$.

Proposizione

Sia $\{G_i, \cdot_i, \tau_i\}_{i \in I}$ una famiglia di gruppi topologici, allora lo spazio topologico $(\prod_i G_i, \cdot, \xi)$, dove · è l'operazione definita componente per componente, e ξ è la topologia prodotto, è un gruppo topologico.

Osservazion

Se H è un sottogruppo di G e H è munito della topologia indotta, allora H è un gruppo topologico.

Gruppi topologici: risultati elementari

Definizione

Un gruppo topologico è una terna (G, \cdot, τ) , dove (G, \cdot) è un gruppo e τ è una topologia su G tale che renda continue le mappe

$$\varphi \colon (G,\tau) \longrightarrow (G,\tau) \qquad \qquad \psi \colon (G \times G,\xi) \longrightarrow (G,\tau)$$

$$g \longmapsto g^{-1} \qquad (g_1,g_2) \longmapsto g_1 g_2$$

$$(1)$$

dove abbiamo indicato con ξ la topologia prodotto su $G \times G$.

Proposizione

Sia $\{G_i, \cdot_i, \tau_i\}_{i \in I}$ una famiglia di gruppi topologici, allora lo spazio topologico $(\prod_i G_i, \cdot, \xi)$, dove · è l'operazione definita componente per componente, e ξ è la topologia prodotto, è un gruppo topologico.

Osservazione

Se H è un sottogruppo di G e H è munito della topologia indotta, allora H è un gruppo topologico.

Definizione

Sia (Λ, \leq) un insieme parzialmente ordinato; diremo che (Λ, \leq) è diretto se per ogni $a, b \in \Lambda$ esiste $c \in \Lambda$ tale che $a \leq c$ e $b \leq c$.

Definizione (Sistema inverso)

Sia (Λ, \leq) un insieme parzialmente ordinato diretto. Un sistema inverso di gruppi su Λ è una famiglia $\{G_a, \varphi_{ab}\}_{a \leq b}$, dove G_a è un gruppo per ogni a, e $\forall a \leq b$, $\varphi_{ab} : G_b \to G_a$ è un morfismo di gruppi tale che $\varphi_{aa} = id$ e il diagramma

commuta per ogni $a \le b \le c$.

- Insieme parzialmento ordinato diretto: (\mathbb{N}, R) , dove $(m, n) \in R \Leftrightarrow m|n$;
- Insieme di gruppi indicizzati su \mathbb{N} : $\{\mathbb{Z}/n\mathbb{Z}\}_{n\in\mathbb{N}}$;
- Famiglia di morfismi: $\varphi_{mn}: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ mappe di proiezione naturale;

Definizione

Sia (Λ, \leq) un insieme parzialmente ordinato; diremo che (Λ, \leq) è diretto se per ogni $a, b \in \Lambda$ esiste $c \in \Lambda$ tale che $a \leq c$ e $b \leq c$.

Definizione (Sistema inverso)

Sia (Λ, \leq) un insieme parzialmente ordinato diretto. Un sistema inverso di gruppi su Λ è una famiglia $\{G_a, \varphi_{ab}\}_{a \leq b}$, dove G_a è un gruppo per ogni a, e $\forall a \leq b$, $\varphi_{ab}: G_b \to G_a$ è un morfismo di gruppi tale che $\varphi_{aa} = id$ e il diagramma

commuta per ogni $a \le b \le c$.

- Insieme parzialmento ordinato diretto: (\mathbb{N}, R) , dove $(m, n) \in R \Leftrightarrow m|n$;
- Insieme di gruppi indicizzati su \mathbb{N} : $\{\mathbb{Z}/n\mathbb{Z}\}_{n\in\mathbb{N}}$;
- Famiglia di morfismi: $\varphi_{mn}: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ mappe di proiezione naturale;

Definizione

Sia (Λ, \leq) un insieme parzialmente ordinato; diremo che (Λ, \leq) è diretto se per ogni $a, b \in \Lambda$ esiste $c \in \Lambda$ tale che $a \leq c$ e $b \leq c$.

Definizione (Sistema inverso)

Sia (Λ, \leq) un insieme parzialmente ordinato diretto. Un sistema inverso di gruppi su Λ è una famiglia $\{G_a, \varphi_{ab}\}_{a \leq b}$, dove G_a è un gruppo per ogni a, e $\forall a \leq b$, $\varphi_{ab} : G_b \to G_a$ è un morfismo di gruppi tale che $\varphi_{aa} = id$ e il diagramma

commuta per ogni $a \le b \le c$.

- Insieme parzialmento ordinato diretto: (\mathbb{N}, R) , dove $(m, n) \in R \Leftrightarrow m|n$;
- Insieme di gruppi indicizzati su \mathbb{N} : $\{\mathbb{Z}/n\mathbb{Z}\}_{n\in\mathbb{N}}$;
- Famiglia di morfismi: $\varphi_{mn}: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ mappe di proiezione naturale;

Definizione

Sia (Λ, \leq) un insieme parzialmente ordinato; diremo che (Λ, \leq) è diretto se per ogni $a, b \in \Lambda$ esiste $c \in \Lambda$ tale che $a \leq c$ e $b \leq c$.

Definizione (Sistema inverso)

Sia (Λ, \leq) un insieme parzialmente ordinato diretto. Un sistema inverso di gruppi su Λ è una famiglia $\{G_a, \varphi_{ab}\}_{a \leq b}$, dove G_a è un gruppo per ogni a, e $\forall a \leq b$, $\varphi_{ab} : G_b \to G_a$ è un morfismo di gruppi tale che $\varphi_{aa} = id$ e il diagramma

commuta per ogni $a \le b \le c$.

- Insieme parzialmento ordinato diretto: (\mathbb{N}, R) , dove $(m, n) \in R \Leftrightarrow m|n$;
- Insieme di gruppi indicizzati su \mathbb{N} : $\{\mathbb{Z}/n\mathbb{Z}\}_{n\in\mathbb{N}}$;
- Famiglia di morfismi: $\varphi_{mn}: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ mappe di proiezione naturale;

Definizione

Sia (Λ, \leq) un insieme parzialmente ordinato; diremo che (Λ, \leq) è diretto se per ogni $a, b \in \Lambda$ esiste $c \in \Lambda$ tale che $a \leq c$ e $b \leq c$.

Definizione (Sistema inverso)

Sia (Λ, \leq) un insieme parzialmente ordinato diretto. Un sistema inverso di gruppi su Λ è una famiglia $\{G_a, \varphi_{ab}\}_{a \leq b}$, dove G_a è un gruppo per ogni a, e $\forall a \leq b$, $\varphi_{ab} : G_b \to G_a$ è un morfismo di gruppi tale che $\varphi_{aa} = id$ e il diagramma

commuta per ogni $a \le b \le c$.

- Insieme parzialmento ordinato diretto: (\mathbb{N}, R) , dove $(m, n) \in R \Leftrightarrow m|n$;
- Insieme di gruppi indicizzati su \mathbb{N} : $\{\mathbb{Z}/n\mathbb{Z}\}_{n\in\mathbb{N}}$;
- Famiglia di morfismi: $\varphi_{mn}: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ mappe di proiezione naturale;

Definizione

Sia (Λ, \leq) un insieme parzialmente ordinato; diremo che (Λ, \leq) è diretto se per ogni $a, b \in \Lambda$ esiste $c \in \Lambda$ tale che $a \leq c$ e $b \leq c$.

Definizione (Sistema inverso)

Sia (Λ, \leq) un insieme parzialmente ordinato diretto. Un sistema inverso di gruppi su Λ è una famiglia $\{G_a, \varphi_{ab}\}_{a \leq b}$, dove G_a è un gruppo per ogni a, e $\forall a \leq b$, $\varphi_{ab} : G_b \to G_a$ è un morfismo di gruppi tale che $\varphi_{aa} = id$ e il diagramma

commuta per ogni $a \le b \le c$.

- Insieme parzialmento ordinato diretto: (\mathbb{N}, R) , dove $(m, n) \in R \Leftrightarrow m|n$;
- Insieme di gruppi indicizzati su \mathbb{N} : $\{\mathbb{Z}/n\mathbb{Z}\}_{n\in\mathbb{N}}$;
- Famiglia di morfismi: $\varphi_{mn}: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ mappe di proiezione naturale;

Definizione (Limite inverso)

Un limite inverso del sistema inverso $\{G_a, \varphi_{ab}\}_{a \leq b}$ è definito come

$$\lim_{\substack{\longleftarrow \\ a \in \Lambda}} G_a := \bigg\{ (g_a)_{a \in \Lambda} \in \prod_{a \in \Lambda} G_a : g_a = \varphi_{ab}(g_b) \text{ per ogni } a \leq b \bigg\}.$$

Esempio

- Insieme parzialmento ordinato diretto: (\mathbb{N}, \leq)
- Insieme di gruppi indicizzati su \mathbb{N} : $\{\mathbb{Z}/p^n\mathbb{Z}\}_{n\in\mathbb{N}}$;
- Famiglia di morfismi: $\varphi_{mn}: \mathbb{Z}/p^n\mathbb{Z} \to \mathbb{Z}/p^m\mathbb{Z}$ mappe di proiezione naturale;

Tale struttura definisce un sistema inverso. Denotiamo il limite inverso associato con

$$\mathbb{Z}_p := \varprojlim \mathbb{Z}/p^n \mathbb{Z} = \left\{ (a_n) \in \prod \mathbb{Z}/p^n \mathbb{Z} \text{ coerenti} \right\}.$$

$$\mathbb{Z}/p\mathbb{Z}$$
 \times $\mathbb{Z}/p^2\mathbb{Z}$ \times $\mathbb{Z}/p^3\mathbb{Z}$ \times \cdots a_0 $a_0 + pa_1$ $a_0 + pa_1 + p^2a_2$ \cdots

Definizione (Limite inverso)

Un limite inverso del sistema inverso $\{G_a, \varphi_{ab}\}_{a \leq b}$ è definito come

$$\lim_{\substack{\longleftarrow \\ a \in \Lambda}} G_a := \bigg\{ (g_a)_{a \in \Lambda} \in \prod_{a \in \Lambda} G_a : g_a = \varphi_{ab}(g_b) \text{ per ogni } a \le b \bigg\}.$$

Esempio

- Insieme parzialmento ordinato diretto: (\mathbb{N}, \leq) ;
- Insieme di gruppi indicizzati su \mathbb{N} : $\{\mathbb{Z}/p^n\mathbb{Z}\}_{n\in\mathbb{N}}$;
- Famiglia di morfismi: $\varphi_{mn}: \mathbb{Z}/p^n\mathbb{Z} \to \mathbb{Z}/p^m\mathbb{Z}$ mappe di proiezione naturale;

Tale struttura definisce un sistema inverso. Denotiamo il limite inverso associato con

$$\mathbb{Z}_p := \varprojlim \mathbb{Z}/p^n \mathbb{Z} = \bigg\{ (a_n) \in \prod \mathbb{Z}/p^n \mathbb{Z} \text{ coerenti} \bigg\}.$$

$$\mathbb{Z}/p\mathbb{Z}$$
 \times $\mathbb{Z}/p^2\mathbb{Z}$ \times $\mathbb{Z}/p^3\mathbb{Z}$ \times \cdots $a_0 + pa_1 + p^2a_2$ \cdots

Definizione (Limite inverso)

Un limite inverso del sistema inverso $\{G_a, \varphi_{ab}\}_{a \leq b}$ è definito come

$$\lim_{\substack{\longleftarrow \\ a \in \Lambda}} G_a := \bigg\{ (g_a)_{a \in \Lambda} \in \prod_{a \in \Lambda} G_a : g_a = \varphi_{ab}(g_b) \text{ per ogni } a \leq b \bigg\}.$$

Esempio

- Insieme parzialmento ordinato diretto: (\mathbb{N}, \leq) ;
- Insieme di gruppi indicizzati su \mathbb{N} : $\{\mathbb{Z}/p^n\mathbb{Z}\}_{n\in\mathbb{N}}$;
- Famiglia di morfismi: $\varphi_{mn}: \mathbb{Z}/p^n\mathbb{Z} \to \mathbb{Z}/p^m\mathbb{Z}$ mappe di proiezione naturale;

Tale struttura definisce un sistema inverso. Denotiamo il limite inverso associato con

$$\mathbb{Z}_p := \varprojlim \mathbb{Z}/p^n \mathbb{Z} = \bigg\{ (a_n) \in \prod \mathbb{Z}/p^n \mathbb{Z} \text{ coerenti} \bigg\}.$$

$$\mathbb{Z}/p\mathbb{Z}$$
 \times $\mathbb{Z}/p^2\mathbb{Z}$ \times $\mathbb{Z}/p^3\mathbb{Z}$ \times \cdots $a_0 + pa_1 + p^2a_2$ \cdots

Definizione (Limite inverso)

Un limite inverso del sistema inverso $\{G_a, \varphi_{ab}\}_{a \leq b}$ è definito come

$$\lim_{\substack{\longleftarrow \\ a \in \Lambda}} G_a := \left\{ (g_a)_{a \in \Lambda} \in \prod_{a \in \Lambda} G_a : g_a = \varphi_{ab}(g_b) \text{ per ogni } a \leq b \right\}.$$

Esempio

- Insieme parzialmento ordinato diretto: (\mathbb{N}, \leq) ;
- Insieme di gruppi indicizzati su \mathbb{N} : $\{\mathbb{Z}/p^n\mathbb{Z}\}_{n\in\mathbb{N}}$;
- Famiglia di morfismi: $\varphi_{mn}: \mathbb{Z}/p^n\mathbb{Z} \to \mathbb{Z}/p^m\mathbb{Z}$ mappe di proiezione naturale;

Tale struttura definisce un sistema inverso. Denotiamo il limite inverso associato con

$$\mathbb{Z}_p := \varprojlim \mathbb{Z}/p^n \mathbb{Z} = \bigg\{ (a_n) \in \prod \mathbb{Z}/p^n \mathbb{Z} \text{ coerenti} \bigg\}.$$

$$\mathbb{Z}/p\mathbb{Z}$$
 \times $\mathbb{Z}/p^2\mathbb{Z}$ \times $\mathbb{Z}/p^3\mathbb{Z}$ \times \cdots $a_0 + pa_1 + p^2a_2$ \cdots

Definizione (Limite inverso)

Un limite inverso del sistema inverso $\{G_a, \varphi_{ab}\}_{a \leq b}$ è definito come

$$\lim_{\substack{\longleftarrow \\ a \in \Lambda}} G_a := \bigg\{ (g_a)_{a \in \Lambda} \in \prod_{a \in \Lambda} G_a : g_a = \varphi_{ab}(g_b) \text{ per ogni } a \leq b \bigg\}.$$

Esempio

- Insieme parzialmento ordinato diretto: (\mathbb{N}, \leq) ;
- Insieme di gruppi indicizzati su \mathbb{N} : $\{\mathbb{Z}/p^n\mathbb{Z}\}_{n\in\mathbb{N}}$;
- Famiglia di morfismi: $\varphi_{mn}: \mathbb{Z}/p^n\mathbb{Z} \to \mathbb{Z}/p^m\mathbb{Z}$ mappe di proiezione naturale;

Tale struttura definisce un sistema inverso. Denotiamo il limite inverso associato con

$$\mathbb{Z}_p := \varprojlim \mathbb{Z}/p^n \mathbb{Z} = \left\{ (a_n) \in \prod \mathbb{Z}/p^n \mathbb{Z} \text{ coerenti} \right\}.$$

$$\mathbb{Z}/p\mathbb{Z}$$
 \times $\mathbb{Z}/p^2\mathbb{Z}$ \times $\mathbb{Z}/p^3\mathbb{Z}$ \times \cdots $a_0 + pa_1 + p^2a_2 \cdots$

Definizione (Limite inverso)

Un limite inverso del sistema inverso $\{G_a, \varphi_{ab}\}_{a \leq b}$ è definito come

$$\lim_{\substack{\longleftarrow \\ a \in \Lambda}} G_a := \bigg\{ (g_a)_{a \in \Lambda} \in \prod_{a \in \Lambda} G_a : g_a = \varphi_{ab}(g_b) \text{ per ogni } a \leq b \bigg\}.$$

Esempio

- Insieme parzialmento ordinato diretto: (\mathbb{N}, \leq) ;
- Insieme di gruppi indicizzati su \mathbb{N} : $\{\mathbb{Z}/p^n\mathbb{Z}\}_{n\in\mathbb{N}}$;
- Famiglia di morfismi: $\varphi_{mn}: \mathbb{Z}/p^n\mathbb{Z} \to \mathbb{Z}/p^m\mathbb{Z}$ mappe di proiezione naturale;

Tale struttura definisce un sistema inverso. Denotiamo il limite inverso associato con

$$\mathbb{Z}_p := \varprojlim \mathbb{Z}/p^n \mathbb{Z} = \left\{ (a_n) \in \prod \mathbb{Z}/p^n \mathbb{Z} \text{ coerenti} \right\}.$$

$$\mathbb{Z}/p\mathbb{Z}$$
 \times $\mathbb{Z}/p^2\mathbb{Z}$ \times $\mathbb{Z}/p^3\mathbb{Z}$ \times \cdots $a_0 + pa_1 + p^2a_2$ \cdots

Definizione

Un gruppo G si dice essere un gruppo profinito se $G = \varprojlim G_a$ per un certo sistema inverso $\{G_a, \varphi_{ab}\}$, dove ogni G_a è un gruppo finito.

Vorremmo dotare un gruppo prifinito di una buona topologia, che lo renda un gruppo topologico. Procediamo in questo modo:

- Consideriamo un sistema inverso $(G_a, \varphi_{ab})_{\Lambda}$ di gruppi finiti;
- \bullet Dotiamo ogni G_a della topologia discreta;
- Dotiamo $\prod G_a$, della topologia prodotto ξ ;
- Dotiamo il gruppo profinito $\varprojlim G_a$ della topologia indotta da ξ ;

Proposizione

Definizione

Un gruppo G si dice essere un gruppo profinito se $G = \varprojlim G_a$ per un certo sistema inverso $\{G_a, \varphi_{ab}\}$, dove ogni G_a è un gruppo finito.

Vorremmo dotare un gruppo prifinito di una buona topologia, che lo renda un gruppo topologico. Procediamo in questo modo:

- Consideriamo un sistema inverso $(G_a, \varphi_{ab})_{\Lambda}$ di gruppi finiti;
- \bullet Dotiamo ogni G_a della topologia discreta;
- Dotiamo $\prod G_a$, della topologia prodotto ξ ;
- Dotiamo il gruppo profinito $\varprojlim G_a$ della topologia indotta da ξ ;

Proposizione

Definizione

Un gruppo G si dice essere un gruppo profinito se $G = \varprojlim G_a$ per un certo sistema inverso $\{G_a, \varphi_{ab}\}$, dove ogni G_a è un gruppo finito.

Vorremmo dotare un gruppo prifinito di una buona topologia, che lo renda un gruppo topologico. Procediamo in questo modo:

- Consideriamo un sistema inverso $(G_a, \varphi_{ab})_{\Lambda}$ di gruppi finiti;
- Dotiamo ogni G_a della topologia discreta;
- Dotiamo $\prod G_a$, della topologia prodotto ξ ;
- Dotiamo il gruppo profinito $\varprojlim G_a$ della topologia indotta da ξ ;

Proposizione

Definizione

Un gruppo G si dice essere un gruppo profinito se $G = \varprojlim G_a$ per un certo sistema inverso $\{G_a, \varphi_{ab}\}$, dove ogni G_a è un gruppo finito.

Vorremmo dotare un gruppo prifinito di una buona topologia, che lo renda un gruppo topologico. Procediamo in questo modo:

- Consideriamo un sistema inverso $(G_a, \varphi_{ab})_{\Lambda}$ di gruppi finiti;
- Dotiamo ogni G_a della topologia discreta;
- Dotiamo $\prod G_a$, della topologia prodotto ξ ;
- Dotiamo il gruppo profinito $\varprojlim G_a$ della topologia indotta da ξ ;

Proposizione

Definizione

Un gruppo G si dice essere un gruppo profinito se $G = \varprojlim G_a$ per un certo sistema inverso $\{G_a, \varphi_{ab}\}$, dove ogni G_a è un gruppo finito.

Vorremmo dotare un gruppo prifinito di una buona topologia, che lo renda un gruppo topologico. Procediamo in questo modo:

- Consideriamo un sistema inverso $(G_a, \varphi_{ab})_{\Lambda}$ di gruppi finiti;
- Dotiamo ogni G_a della topologia discreta;
- Dotiamo $\prod G_a$, della topologia prodotto ξ ;
- Dotiamo il gruppo profinito $\varprojlim G_a$ della topologia indotta da ξ ;

Proposizione

Definizione

Un gruppo G si dice essere un gruppo profinito se $G = \varprojlim G_a$ per un certo sistema inverso $\{G_a, \varphi_{ab}\}$, dove ogni G_a è un gruppo finito.

Vorremmo dotare un gruppo prifinito di una buona topologia, che lo renda un gruppo topologico. Procediamo in questo modo:

- Consideriamo un sistema inverso $(G_a, \varphi_{ab})_{\Lambda}$ di gruppi finiti;
- Dotiamo ogni G_a della topologia discreta;
- Dotiamo $\prod G_a$, della topologia prodotto ξ ;
- Dotiamo il gruppo profinito $\varprojlim G_a$ della topologia indotta da ξ ;

Proposizione

Definizione

Un gruppo G si dice essere un gruppo profinito se $G = \varprojlim G_a$ per un certo sistema inverso $\{G_a, \varphi_{ab}\}$, dove ogni G_a è un gruppo finito.

Vorremmo dotare un gruppo prifinito di una buona topologia, che lo renda un gruppo topologico. Procediamo in questo modo:

- Consideriamo un sistema inverso $(G_a, \varphi_{ab})_{\Lambda}$ di gruppi finiti;
- Dotiamo ogni G_a della topologia discreta;
- Dotiamo $\prod G_a$, della topologia prodotto ξ ;
- Dotiamo il gruppo profinito $\varprojlim G_a$ della topologia indotta da ξ ;

Proposizione

Vorremmo poter vedere il gruppo di Galois come un gruppo profinito in modo da poter aver tutti i vantaggi legati alla teoria già nota di tali strutture. Avremo innanzitutto bisogno di un particolare sistema inverso, e prima ancora di un insieme parzialmente ordinato diretto.

Proposizione

Sia E/F un'estensione di Galois e siano M/F, L/F due sottoestensioni finite e di Galois su F. Allora LM/F, la più piccola sottoestensione di E contenente sia M che L, è finita e di Galois su F.

- Insieme parzialmente ordinato diretto: (Λ, \subseteq) insieme delle sottoestensioni di E finite e di Galois su F;
- Insieme di gruppi indicizzati su Λ : $\{Gal(M/F)\}_{M \in \Lambda}$;
- Famiglia di morfismi: $\varphi_{MN}: \operatorname{Gal}(N/F) \to \operatorname{Gal}(M/F)$ le restrizioni naturali;

Proposizione

$$\operatorname{Gal}(E/F) \cong \varprojlim_{M \in \Lambda} \operatorname{Gal}(M/F).$$

Vorremmo poter vedere il gruppo di Galois come un gruppo profinito in modo da poter aver tutti i vantaggi legati alla teoria già nota di tali strutture. Avremo innanzitutto bisogno di un particolare sistema inverso, e prima ancora di un insieme parzialmente ordinato diretto.

Proposizione

Sia E/F un'estensione di Galois e siano M/F, L/F due sottoestensioni finite e di Galois su F. Allora LM/F, la più piccola sottoestensione di E contenente sia M che L, è finita e di Galois su F.

- Insieme parzialmente ordinato diretto: (Λ,\subseteq) insieme delle sottoestensioni di E finite e di Galois su F;
- Insieme di gruppi indicizzati su Λ : $\{Gal(M/F)\}_{M\in\Lambda}$;
- Famiglia di morfismi: $\varphi_{MN} : \operatorname{Gal}(N/F) \to \operatorname{Gal}(M/F)$ le restrizioni naturali;

Proposizione

$$\operatorname{Gal}(E/F) \cong \varprojlim_{M \in \Lambda} \operatorname{Gal}(M/F).$$

Vorremmo poter vedere il gruppo di Galois come un gruppo profinito in modo da poter aver tutti i vantaggi legati alla teoria già nota di tali strutture. Avremo innanzitutto bisogno di un particolare sistema inverso, e prima ancora di un insieme parzialmente ordinato diretto.

Proposizione

Sia E/F un'estensione di Galois e siano M/F, L/F due sottoestensioni finite e di Galois su F. Allora LM/F, la più piccola sottoestensione di E contenente sia M che L, è finita e di Galois su F.

- Insieme parzialmente ordinato diretto: (Λ,\subseteq) insieme delle sottoestensioni di E finite e di Galois su F;
- Insieme di gruppi indicizzati su Λ : $\{Gal(M/F)\}_{M \in \Lambda}$;
- Famiglia di morfismi: φ_{MN} : $\operatorname{Gal}(N/F) \to \operatorname{Gal}(M/F)$ le restrizioni naturali;

Proposizione

$$\operatorname{Gal}(E/F) \cong \varprojlim_{M \in \Lambda} \operatorname{Gal}(M/F).$$

Vorremmo poter vedere il gruppo di Galois come un gruppo profinito in modo da poter aver tutti i vantaggi legati alla teoria già nota di tali strutture. Avremo innanzitutto bisogno di un particolare sistema inverso, e prima ancora di un insieme parzialmente ordinato diretto.

Proposizione

Sia E/F un'estensione di Galois e siano M/F, L/F due sottoestensioni finite e di Galois su F. Allora LM/F, la più piccola sottoestensione di E contenente sia M che L, è finita e di Galois su F.

- Insieme parzialmente ordinato diretto: (Λ, \subseteq) insieme delle sottoestensioni di E finite e di Galois su F;
- Insieme di gruppi indicizzati su Λ : $\{Gal(M/F)\}_{M \in \Lambda}$;
- Famiglia di morfismi: $\varphi_{MN}: \operatorname{Gal}(N/F) \to \operatorname{Gal}(M/F)$ le restrizioni naturali;

Proposizione

Sia E/F un'estensione di Galois. Allora

 $\operatorname{Gal}(E/F) \cong \varprojlim_{M \in \Lambda} \operatorname{Gal}(M/F).$

Vorremmo poter vedere il gruppo di Galois come un gruppo profinito in modo da poter aver tutti i vantaggi legati alla teoria già nota di tali strutture. Avremo innanzitutto bisogno di un particolare sistema inverso, e prima ancora di un insieme parzialmente ordinato diretto.

Proposizione

Sia E/F un'estensione di Galois e siano M/F, L/F due sottoestensioni finite e di Galois su F. Allora LM/F, la più piccola sottoestensione di E contenente sia M che L, è finita e di Galois su F.

- Insieme parzialmente ordinato diretto: (Λ, \subseteq) insieme delle sottoestensioni di E finite e di Galois su F;
- Insieme di gruppi indicizzati su Λ : $\{Gal(M/F)\}_{M \in \Lambda}$;
- Famiglia di morfismi: $\varphi_{MN}: \operatorname{Gal}(N/F) \to \operatorname{Gal}(M/F)$ le restrizioni naturali;

Proposizione

Sia E/F un'estensione di Galois. Allora

 $\operatorname{Gal}(E/F) \cong \varprojlim_{M \in \Lambda} \operatorname{Gal}(M/F)$

Vorremmo poter vedere il gruppo di Galois come un gruppo profinito in modo da poter aver tutti i vantaggi legati alla teoria già nota di tali strutture. Avremo innanzitutto bisogno di un particolare sistema inverso, e prima ancora di un insieme parzialmente ordinato diretto.

Proposizione

Sia E/F un'estensione di Galois e siano M/F, L/F due sottoestensioni finite e di Galois su F. Allora LM/F, la più piccola sottoestensione di E contenente sia M che L, è finita e di Galois su F.

- Insieme parzialmente ordinato diretto: (Λ,\subseteq) insieme delle sottoestensioni di E finite e di Galois su F;
- Insieme di gruppi indicizzati su Λ : $\{Gal(M/F)\}_{M \in \Lambda}$;
- Famiglia di morfismi: $\varphi_{MN}: \operatorname{Gal}(N/F) \to \operatorname{Gal}(M/F)$ le restrizioni naturali;

Proposizione

$$\operatorname{Gal}(E/F) \cong \varprojlim_{M \in \Lambda} \operatorname{Gal}(M/F).$$

Esempio

Ricordiamo che se $K_n = \mathbb{Q}(\sqrt{p_1},...,\sqrt{p_n})$, con $p_1,...,p_n$ primi distinti, allora K_n/\mathbb{Q} è di Galois e vale:

$$\operatorname{Gal}(K_n/\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^n$$
.

Sia ora $K = \mathbb{Q}(\{\sqrt{p} \mid p \text{ primo}\})$. Si ha che K/\mathbb{Q} è un'estensione di Galois di grado infinito, e pertanto:

- $\operatorname{Gal}(K/\mathbb{Q}) = \varprojlim \operatorname{Gal}(F_i/\mathbb{Q})$, dove F_i/\mathbb{Q} sono le sottoestensioni finite e di Galois di K/\mathbb{Q} ;
- Ma i K_n sono una sottofamiglia filtrante delle $F_i \to \operatorname{Gal}(K/\mathbb{Q}) = \varprojlim \operatorname{Gal}(K_n/\mathbb{Q})$; Osservato che la famiglia $\{K_n\}$ è totalmente ordinata, segue:

$$\operatorname{Gal}(K/\mathbb{Q}) \cong \varprojlim \operatorname{Gal}(K_n/\mathbb{Q}) \cong \varprojlim (\mathbb{Z}/2\mathbb{Z})^n \cong \prod_{i=1}^{\infty} \mathbb{Z}/2\mathbb{Z}.$$

Esempio

Ricordiamo che se $K_n = \mathbb{Q}(\sqrt{p_1},...,\sqrt{p_n})$, con $p_1,...,p_n$ primi distinti, allora K_n/\mathbb{Q} è di Galois e vale:

$$\operatorname{Gal}(K_n/\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^n$$
.

Sia ora $K = \mathbb{Q}(\{\sqrt{p} \mid p \text{ primo}\})$. Si ha che K/\mathbb{Q} è un'estensione di Galois di grado infinito, e pertanto:

- $\operatorname{Gal}(K/\mathbb{Q}) = \varprojlim \operatorname{Gal}(F_i/\mathbb{Q})$, dove F_i/\mathbb{Q} sono le sottoestensioni finite e di Galois di K/\mathbb{Q} ;
- Ma i K_n sono una sottofamiglia filtrante delle $F_i \to \operatorname{Gal}(K/\mathbb{Q}) = \varprojlim \operatorname{Gal}(K_n/\mathbb{Q})$; Osservato che la famiglia $\{K_n\}$ è totalmente ordinata, segue:

$$\operatorname{Gal}(K/\mathbb{Q}) \cong \varprojlim \operatorname{Gal}(K_n/\mathbb{Q}) \cong \varprojlim (\mathbb{Z}/2\mathbb{Z})^n \cong \prod_{i=1}^{\infty} \mathbb{Z}/2\mathbb{Z}.$$

Esempio

Ricordiamo che se $K_n = \mathbb{Q}(\sqrt{p_1},...,\sqrt{p_n})$, con $p_1,...,p_n$ primi distinti, allora K_n/\mathbb{Q} è di Galois e vale:

$$\operatorname{Gal}(K_n/\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^n$$
.

Sia ora $K=\mathbb{Q}(\{\sqrt{p}\mid p \text{ primo}\})$. Si ha che K/\mathbb{Q} è un'estensione di Galois di grado infinito, e pertanto:

- $\operatorname{Gal}(K/\mathbb{Q}) = \varprojlim \operatorname{Gal}(F_i/\mathbb{Q})$, dove F_i/\mathbb{Q} sono le sottoestensioni finite e di Galois di K/\mathbb{Q} ;
- Ma i K_n sono una sottofamiglia filtrante delle $F_i \to \operatorname{Gal}(K/\mathbb{Q}) = \varprojlim \operatorname{Gal}(K_n/\mathbb{Q})$; Osservato che la famiglia $\{K_n\}$ è totalmente ordinata, segue:

$$\operatorname{Gal}(K/\mathbb{Q}) \cong \varprojlim \operatorname{Gal}(K_n/\mathbb{Q}) \cong \varprojlim (\mathbb{Z}/2\mathbb{Z})^n \cong \prod_{i=1}^{\infty} \mathbb{Z}/2\mathbb{Z}.$$

Esempio

Ricordiamo che se $K_n = \mathbb{Q}(\sqrt{p_1},...,\sqrt{p_n})$, con $p_1,...,p_n$ primi distinti, allora K_n/\mathbb{Q} è di Galois e vale:

$$\operatorname{Gal}(K_n/\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^n$$
.

Sia ora $K = \mathbb{Q}(\{\sqrt{p} \mid p \text{ primo}\})$. Si ha che K/\mathbb{Q} è un'estensione di Galois di grado infinito, e pertanto:

- $\operatorname{Gal}(K/\mathbb{Q}) = \varprojlim \operatorname{Gal}(F_i/\mathbb{Q})$, dove F_i/\mathbb{Q} sono le sottoestensioni finite e di Galois di K/\mathbb{Q} ;
- Ma i K_n sono una sottofamiglia filtrante delle $F_i \to \operatorname{Gal}(K/\mathbb{Q}) = \varprojlim \operatorname{Gal}(K_n/\mathbb{Q});$

$$\operatorname{Gal}(K/\mathbb{Q}) \cong \varprojlim \operatorname{Gal}(K_n/\mathbb{Q}) \cong \varprojlim (\mathbb{Z}/2\mathbb{Z})^n \cong \prod_{i=1}^{\infty} \mathbb{Z}/2\mathbb{Z}.$$

Esempio

Ricordiamo che se $K_n = \mathbb{Q}(\sqrt{p_1},...,\sqrt{p_n})$, con $p_1,...,p_n$ primi distinti, allora K_n/\mathbb{Q} è di Galois e vale:

$$\operatorname{Gal}(K_n/\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^n$$
.

Sia ora $K = \mathbb{Q}(\{\sqrt{p} \mid p \text{ primo}\})$. Si ha che K/\mathbb{Q} è un'estensione di Galois di grado infinito, e pertanto:

- $\operatorname{Gal}(K/\mathbb{Q}) = \varprojlim \operatorname{Gal}(F_i/\mathbb{Q})$, dove F_i/\mathbb{Q} sono le sottoestensioni finite e di Galois di K/\mathbb{Q} ;
- Ma i K_n sono una sottofamiglia filtrante delle $F_i \to \operatorname{Gal}(K/\mathbb{Q}) = \varprojlim \operatorname{Gal}(K_n/\mathbb{Q});$

$$\operatorname{Gal}(K/\mathbb{Q}) \cong \varprojlim \operatorname{Gal}(K_n/\mathbb{Q}) \cong \varprojlim (\mathbb{Z}/2\mathbb{Z})^n \cong \prod_{i=1}^{\infty} \mathbb{Z}/2\mathbb{Z}.$$

Esempio

Ricordiamo che se $K_n = \mathbb{Q}(\sqrt{p_1},...,\sqrt{p_n})$, con $p_1,...,p_n$ primi distinti, allora K_n/\mathbb{Q} è di Galois e vale:

$$\operatorname{Gal}(K_n/\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^n$$
.

Sia ora $K = \mathbb{Q}(\{\sqrt{p} \mid p \text{ primo}\})$. Si ha che K/\mathbb{Q} è un'estensione di Galois di grado infinito, e pertanto:

- $\operatorname{Gal}(K/\mathbb{Q}) = \varprojlim \operatorname{Gal}(F_i/\mathbb{Q})$, dove F_i/\mathbb{Q} sono le sottoestensioni finite e di Galois di K/\mathbb{Q} ;
- Ma i K_n sono una sottofamiglia filtrante delle $F_i \to \operatorname{Gal}(K/\mathbb{Q}) = \varprojlim \operatorname{Gal}(K_n/\mathbb{Q})$; Osservato che la famiglia $\{K_n\}$ è totalmente ordinata, segue:

$$\operatorname{Gal}(K/\mathbb{Q}) \cong \varprojlim \operatorname{Gal}(K_n/\mathbb{Q}) \cong \varprojlim (\mathbb{Z}/2\mathbb{Z})^n \cong \prod_{i=1}^{\infty} \mathbb{Z}/2\mathbb{Z}.$$

Esempio

Ricordiamo che se $K_n = \mathbb{Q}(\sqrt{p_1},...,\sqrt{p_n})$, con $p_1,...,p_n$ primi distinti, allora K_n/\mathbb{Q} è di Galois e vale:

$$\operatorname{Gal}(K_n/\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^n$$
.

Sia ora $K=\mathbb{Q}(\{\sqrt{p}\,|\,p \text{ primo}\})$. Si ha che K/\mathbb{Q} è un'estensione di Galois di grado infinito, e pertanto:

- $\operatorname{Gal}(K/\mathbb{Q}) = \varprojlim \operatorname{Gal}(F_i/\mathbb{Q})$, dove F_i/\mathbb{Q} sono le sottoestensioni finite e di Galois di K/\mathbb{Q} ;
- Ma i K_n sono una sottofamiglia filtrante delle $F_i \to \operatorname{Gal}(K/\mathbb{Q}) = \varprojlim \operatorname{Gal}(K_n/\mathbb{Q});$ Osservato che la famiglia $\{K_n\}$ è totalmente ordinata segue:

$$\operatorname{Gal}(K/\mathbb{Q}) \cong \varprojlim \operatorname{Gal}(K_n/\mathbb{Q}) \cong \varprojlim (\mathbb{Z}/2\mathbb{Z})^n \cong \prod_{i=1}^{\infty} \mathbb{Z}/2\mathbb{Z}.$$

Esempio

Ricordiamo che se $K_n = \mathbb{Q}(\sqrt{p_1},...,\sqrt{p_n})$, con $p_1,...,p_n$ primi distinti, allora K_n/\mathbb{Q} è di Galois e vale:

$$\operatorname{Gal}(K_n/\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^n$$
.

Sia ora $K=\mathbb{Q}(\{\sqrt{p}\,|\,p \text{ primo}\})$. Si ha che K/\mathbb{Q} è un'estensione di Galois di grado infinito, e pertanto:

- $\operatorname{Gal}(K/\mathbb{Q}) = \varprojlim \operatorname{Gal}(F_i/\mathbb{Q})$, dove F_i/\mathbb{Q} sono le sottoestensioni finite e di Galois di K/\mathbb{Q} ;
- Ma i K_n sono una sottofamiglia filtrante delle $F_i \to \operatorname{Gal}(K/\mathbb{Q}) = \varprojlim \operatorname{Gal}(K_n/\mathbb{Q});$

$$\operatorname{Gal}(K/\mathbb{Q}) \cong \varprojlim \operatorname{Gal}(K_n/\mathbb{Q}) \cong \varprojlim (\mathbb{Z}/2\mathbb{Z})^n \cong \prod_{i=1}^{\infty} \mathbb{Z}/2\mathbb{Z}.$$

Esempio

Ricordiamo che se $K_n = \mathbb{Q}(\sqrt{p_1},...,\sqrt{p_n})$, con $p_1,...,p_n$ primi distinti, allora K_n/\mathbb{Q} è di Galois e vale:

$$\operatorname{Gal}(K_n/\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^n$$
.

Sia ora $K=\mathbb{Q}(\{\sqrt{p}\mid p \text{ primo}\})$. Si ha che K/\mathbb{Q} è un'estensione di Galois di grado infinito, e pertanto:

- $\operatorname{Gal}(K/\mathbb{Q}) = \varprojlim \operatorname{Gal}(F_i/\mathbb{Q})$, dove F_i/\mathbb{Q} sono le sottoestensioni finite e di Galois di K/\mathbb{Q} ;
- Ma i K_n sono una sottofamiglia filtrante delle $F_i \to \operatorname{Gal}(K/\mathbb{Q}) = \varprojlim \operatorname{Gal}(K_n/\mathbb{Q});$

$$\operatorname{Gal}(K/\mathbb{Q}) \cong \varprojlim \operatorname{Gal}(K_n/\mathbb{Q}) \cong \varprojlim (\mathbb{Z}/2\mathbb{Z})^n \cong \prod_{i=1}^{\infty} \mathbb{Z}/2\mathbb{Z}.$$

La caratterizzazione di $\operatorname{Gal}(E/F)$ come gruppo profinito non è sufficiente per avere una corrisopondenza come nel Teorema fondamentale nel caso finito.

Esempio

Consideriamo l'insieme $S := \{ \sqrt{p} \mid p \in \mathbb{N} \text{ primo} \}$, e sia $K := \mathbb{Q}(S)$.

- $\operatorname{Gal}(K/\mathbb{Q}) \cong \prod_{i=1}^{\infty} \mathbb{Z}/2\mathbb{Z};$
- Possiamo quindi immaginare $\operatorname{Gal}(K/\mathbb{Q})$ come uno spazio vettoriale V di dimensione infinita sul campo $F := \mathbb{Z}/2\mathbb{Z}$;
- Pertanto lo spazio vettoriale duale $V^*:=\{\phi:V\to F:\phi$ è una mappa lineare} è più che numerabile;
- $\{\ker(\phi) : \phi \in V^*\}$ non è numerabile;
- Per ogni ϕ si ha che $\ker(\phi)$ è un sottogruppo di G di indice 2, e ci sono quindi una quantità non numerabile di sottogruppi di questo tipo.

La caratterizzazione di $\operatorname{Gal}(E/F)$ come gruppo profinito non è sufficiente per avere una corrisopondenza come nel Teorema fondamentale nel caso finito.

Esempio

Consideriamo l'insieme $S := \{ \sqrt{p} \mid p \in \mathbb{N} \text{ primo} \}$, e sia $K := \mathbb{Q}(S)$.

- $\operatorname{Gal}(K/\mathbb{Q}) \cong \prod_{i=1}^{\infty} \mathbb{Z}/2\mathbb{Z};$
- Possiamo quindi immaginare $\operatorname{Gal}(K/\mathbb{Q})$ come uno spazio vettoriale V di dimensione infinita sul campo $F := \mathbb{Z}/2\mathbb{Z}$;
- Pertanto lo spazio vettoriale duale $V^*:=\{\phi:V\to F:\phi$ è una mappa lineare} è più che numerabile;
- $\{\ker(\phi) : \phi \in V^*\}$ non è numerabile;
- Per ogni ϕ si ha che $\ker(\phi)$ è un sottogruppo di G di indice 2, e ci sono quindi una quantità non numerabile di sottogruppi di questo tipo.

La caratterizzazione di $\operatorname{Gal}(E/F)$ come gruppo profinito non è sufficiente per avere una corrisopondenza come nel Teorema fondamentale nel caso finito.

Esempio

Consideriamo l'insieme $S := \{ \sqrt{p} \mid p \in \mathbb{N} \text{ primo} \}$, e sia $K := \mathbb{Q}(S)$.

- $\operatorname{Gal}(K/\mathbb{Q}) \cong \prod_{i=1}^{\infty} \mathbb{Z}/2\mathbb{Z};$
 - Possiamo quindi immaginare $\operatorname{Gal}(K/\mathbb{Q})$ come uno spazio vettoriale V di dimensione infinita sul campo $F := \mathbb{Z}/2\mathbb{Z}$;
- Pertanto lo spazio vettoriale duale $V^*:=\{\phi:V\to F:\phi$ è una mappa lineare} è più che numerabile;
- $\{\ker(\phi) : \phi \in V^*\}$ non è numerabile;
- Per ogni ϕ si ha che $\ker(\phi)$ è un sottogruppo di G di indice 2, e ci sono quindi una quantità non numerabile di sottogruppi di questo tipo.

La caratterizzazione di $\operatorname{Gal}(E/F)$ come gruppo profinito non è sufficiente per avere una corrisopondenza come nel Teorema fondamentale nel caso finito.

Esempio

Consideriamo l'insieme $S := \{ \sqrt{p} \mid p \in \mathbb{N} \text{ primo} \}$, e sia $K := \mathbb{Q}(S)$.

- Gal $(K/\mathbb{Q}) \cong \prod_{i=1}^{\infty} \mathbb{Z}/2\mathbb{Z};$
- Possiamo quindi immaginare $\operatorname{Gal}(K/\mathbb{Q})$ come uno spazio vettoriale V di dimensione infinita sul campo $F := \mathbb{Z}/2\mathbb{Z}$;
- Pertanto lo spazio vettoriale duale $V^*:=\{\phi:V\to F:\phi$ è una mappa lineare} è più che numerabile;
- $\{\ker(\phi) : \phi \in V^*\}$ non è numerabile;
- Per ogni ϕ si ha che $\ker(\phi)$ è un sottogruppo di G di indice 2, e ci sono quindi una quantità non numerabile di sottogruppi di questo tipo.

La caratterizzazione di $\operatorname{Gal}(E/F)$ come gruppo profinito non è sufficiente per avere una corrisopondenza come nel Teorema fondamentale nel caso finito.

Esempio

Consideriamo l'insieme $S := \{ \sqrt{p} \mid p \in \mathbb{N} \text{ primo} \}$, e sia $K := \mathbb{Q}(S)$.

- $\operatorname{Gal}(K/\mathbb{Q}) \cong \prod_{i=1}^{\infty} \mathbb{Z}/2\mathbb{Z};$
- Possiamo quindi immaginare $\operatorname{Gal}(K/\mathbb{Q})$ come uno spazio vettoriale V di dimensione infinita sul campo $F := \mathbb{Z}/2\mathbb{Z}$;
- Pertanto lo spazio vettoriale duale $V^*:=\{\phi:V\to F:\phi$ è una mappa lineare} è più che numerabile;
- $\{\ker(\phi) : \phi \in V^*\}$ non è numerabile;
- Per ogni ϕ si ha che $\ker(\phi)$ è un sottogruppo di G di indice 2, e ci sono quindi una quantità non numerabile di sottogruppi di questo tipo.

La caratterizzazione di $\operatorname{Gal}(E/F)$ come gruppo profinito non è sufficiente per avere una corrisopondenza come nel Teorema fondamentale nel caso finito.

Esempio

Consideriamo l'insieme $S := \{ \sqrt{p} \mid p \in \mathbb{N} \text{ primo} \}$, e sia $K := \mathbb{Q}(S)$.

- $\operatorname{Gal}(K/\mathbb{Q}) \cong \prod_{i=1}^{\infty} \mathbb{Z}/2\mathbb{Z};$
- Possiamo quindi immaginare $\operatorname{Gal}(K/\mathbb{Q})$ come uno spazio vettoriale V di dimensione infinita sul campo $F := \mathbb{Z}/2\mathbb{Z}$;
- Pertanto lo spazio vettoriale duale $V^*:=\{\phi:V\to F:\phi$ è una mappa lineare} è più che numerabile;
- $\{\ker(\phi) : \phi \in V^*\}$ non è numerabile;
- Per ogni ϕ si ha che $\ker(\phi)$ è un sottogruppo di G di indice 2, e ci sono quindi una quantità non numerabile di sottogruppi di questo tipo.

La caratterizzazione di $\operatorname{Gal}(E/F)$ come gruppo profinito non è sufficiente per avere una corrisopondenza come nel Teorema fondamentale nel caso finito.

Esempio

Consideriamo l'insieme $S := \{ \sqrt{p} \mid p \in \mathbb{N} \text{ primo} \}$, e sia $K := \mathbb{Q}(S)$.

- $\operatorname{Gal}(K/\mathbb{Q}) \cong \prod_{i=1}^{\infty} \mathbb{Z}/2\mathbb{Z};$
- Possiamo quindi immaginare $\operatorname{Gal}(K/\mathbb{Q})$ come uno spazio vettoriale V di dimensione infinita sul campo $F := \mathbb{Z}/2\mathbb{Z}$;
- Pertanto lo spazio vettoriale duale $V^*:=\{\phi:V\to F:\phi$ è una mappa lineare} è più che numerabile;
- $\{\ker(\phi): \phi \in V^*\}$ non è numerabile;
- Per ogni ϕ si ha che $\ker(\phi)$ è un sottogruppo di G di indice 2, e ci sono quindi una quantità non numerabile di sottogruppi di questo tipo.

La caratterizzazione di $\operatorname{Gal}(E/F)$ come gruppo profinito non è sufficiente per avere una corrisopondenza come nel Teorema fondamentale nel caso finito.

Esempio

Consideriamo l'insieme $S := \{ \sqrt{p} \mid p \in \mathbb{N} \text{ primo} \}$, e sia $K := \mathbb{Q}(S)$.

- Gal $(K/\mathbb{Q}) \cong \prod_{i=1}^{\infty} \mathbb{Z}/2\mathbb{Z};$
- Possiamo quindi immaginare $\operatorname{Gal}(K/\mathbb{Q})$ come uno spazio vettoriale V di dimensione infinita sul campo $F := \mathbb{Z}/2\mathbb{Z}$;
- Pertanto lo spazio vettoriale duale $V^*:=\{\phi:V\to F:\phi$ è una mappa lineare} è più che numerabile;
- $\{\ker(\phi) : \phi \in V^*\}$ non è numerabile;
- Per ogni ϕ si ha che $\ker(\phi)$ è un sottogruppo di G di indice 2, e ci sono quindi una quantità non numerabile di sottogruppi di questo tipo.

Topologia di Krull

Risolveremo questo problema considerando solamente i sottogruppi chiusi di $\operatorname{Gal}(E/F)$ in un'opportuna topologia, che andremo ora a descrivere.

Definizione (topologia di Krull)

Dotiamo ogni $\operatorname{Gal}(M/F)$ della topologia discreta e consideriamo $(\prod \operatorname{Gal}(M/F), \xi)$, dove abbiamo indicato con ξ la topologia prodotto. Chiameremo topologia di Krull la topologia indotta da $(\prod \operatorname{Gal}(M/F), \xi)$ sul sottogruppo lim $\operatorname{Gal}(M/F)$.

 \Rightarrow È la stessa topologia che abbiamo definito prima!

Topologia di Krull

Risolveremo questo problema considerando solamente i sottogruppi chiusi di $\operatorname{Gal}(E/F)$ in un'opportuna topologia, che andremo ora a descrivere.

Definizione (topologia di Krull)

Dotiamo ogni $\operatorname{Gal}(M/F)$ della topologia discreta e consideriamo $(\prod \operatorname{Gal}(M/F), \xi)$, dove abbiamo indicato con ξ la topologia prodotto. Chiameremo topologia di Krull la topologia indotta da $(\prod \operatorname{Gal}(M/F), \xi)$ sul sottogruppo lim $\operatorname{Gal}(M/F)$.

⇒ È la stessa topologia che abbiamo definito prima!

Topologia di Krull

Risolveremo questo problema considerando solamente i sottogruppi chiusi di $\operatorname{Gal}(E/F)$ in un'opportuna topologia, che andremo ora a descrivere.

Definizione (topologia di Krull)

Dotiamo ogni $\operatorname{Gal}(M/F)$ della topologia discreta e consideriamo $(\prod \operatorname{Gal}(M/F), \xi)$, dove abbiamo indicato con ξ la topologia prodotto. Chiameremo topologia di Krull la topologia indotta da $(\prod \operatorname{Gal}(M/F), \xi)$ sul sottogruppo ļim $\operatorname{Gal}(M/F)$.

⇒ È la stessa topologia che abbiamo definito prima!

Corrispondenza di Galois per estensioni di grado infinito

Teorema

Sia E/F un'estensione di Galois infinita e sia G := Gal(E/F). Allora le mappe

$$L \mapsto H := \operatorname{Gal}(E/L)$$
 $e H \mapsto L := E^H$

inducono una biiezione fra i sottocampi intermedi di E/F e i sottogruppi chiusi di G che rovescia le inclusioni. L'estensione L/F è di Galois se e solo se H è normale in G e in tal caso si ha $\operatorname{Gal}(L/F) \cong G/H$. L'estensione L/F è finita se e solo se H è un sottogruppo aperto di G.

Ora che abbiamo enunciato il teorema fondamentale per estensioni di grado arbitrario una domanda che viene naturale porsi è:

Si tratta di un risultato effettivamente utile?

Definizione (Campo ordinato)

Un campo F è ordinato se esiste un insieme $P \subseteq F$, che chiameremo l'insieme degli elementi positivi, tale che P è chiuso sotto addizione e moltiplicazione, e F è l'unione disgiunta degli insiemi P, $\{0\}$ e $-P := \{-p : p \in P\}$.

Definizione (Campo reale chiuso)

Un campo F è reale chiuso se F è ordinato (con gli elementi positivi in P), ogni $x \in P$ ammette una radice quadrata in F, e ogni polinomio $f(Y) \in F[Y]$ di grado dispari ha una radice in F.

Teorema

Ora che abbiamo enunciato il teorema fondamentale per estensioni di grado arbitrario una domanda che viene naturale porsi è:

Si tratta di un risultato effettivamente utile?

Definizione (Campo ordinato)

Un campo F è ordinato se esiste un insieme $P \subseteq F$, che chiameremo l'insieme degli elementi positivi, tale che P è chiuso sotto addizione e moltiplicazione, e F è l'unione disgiunta degli insiemi P, $\{0\}$ e $-P := \{-p : p \in P\}$.

Definizione (Campo reale chiuso)

Un campo F è reale chiuso se F è ordinato (con gli elementi positivi in P), ogni $x \in P$ ammette una radice quadrata in F, e ogni polinomio $f(Y) \in F[Y]$ di grado dispari ha una radice in F.

Teorema

Ora che abbiamo enunciato il teorema fondamentale per estensioni di grado arbitrario una domanda che viene naturale porsi è:

Si tratta di un risultato effettivamente utile?

Definizione (Campo ordinato)

Un campo F è ordinato se esiste un insieme $P \subseteq F$, che chiameremo l'insieme degli elementi positivi, tale che P è chiuso sotto addizione e moltiplicazione, e F è l'unione disgiunta degli insiemi P, $\{0\}$ e $-P := \{-p : p \in P\}$.

Definizione (Campo reale chiuso)

Un campo F è reale chiuso se F è ordinato (con gli elementi positivi in P), ogni $x \in P$ ammette una radice quadrata in F, e ogni polinomio $f(Y) \in F[Y]$ di grado dispari ha una radice in F.

Teorema

Ora che abbiamo enunciato il teorema fondamentale per estensioni di grado arbitrario una domanda che viene naturale porsi è:

Si tratta di un risultato effettivamente utile?

Definizione (Campo ordinato)

Un campo F è ordinato se esiste un insieme $P \subseteq F$, che chiameremo l'insieme degli elementi positivi, tale che P è chiuso sotto addizione e moltiplicazione, e F è l'unione disgiunta degli insiemi P, $\{0\}$ e $-P := \{-p : p \in P\}$.

Definizione (Campo reale chiuso)

Un campo F è reale chiuso se F è ordinato (con gli elementi positivi in P), ogni $x \in P$ ammette una radice quadrata in F, e ogni polinomio $f(Y) \in F[Y]$ di grado dispari ha una radice in F.

Teorema

Ora che abbiamo enunciato il teorema fondamentale per estensioni di grado arbitrario una domanda che viene naturale porsi è:
Si tratta di un risultato effettivamente utile?

Definizione (Campo ordinato)

Un campo F è ordinato se esiste un insieme $P \subseteq F$, che chiameremo l'insieme degli elementi positivi, tale che P è chiuso sotto addizione e moltiplicazione, e F è l'unione disgiunta degli insiemi P, $\{0\}$ e $-P := \{-p : p \in P\}$.

Definizione (Campo reale chiuso)

Un campo F è reale chiuso se F è ordinato (con gli elementi positivi in P), ogni $x \in P$ ammette una radice quadrata in F, e ogni polinomio $f(Y) \in F[Y]$ di grado dispari ha una radice in F.

Teorema

Teorema (Artin-Schreirer)

Sia K un campo algebricamente chiuso, $F \subsetneq K$ un sottocampo proprio tale che $[K:F]<\infty$. Allora F è reale chiuso, e $K=F(\sqrt{-1})$.

- se $[\overline{F}:F]=n<\infty$ allora F è reale chiuso, $\overline{F}=F(\sqrt{-1}),$ e quindi n=2;
- se F non è reale chiuso, allora necessariamente $[\overline{F}:F]=\infty$;
- Ogni estensione algebrica di un campo finito oppure di caratteristica zero è separabile $\Longrightarrow \overline{F}/F$ è di Galois.

Conclusione

Teorema (Artin-Schreirer)

Sia K un campo algebricamente chiuso, $F \subsetneq K$ un sottocampo proprio tale che $[K:F] < \infty$. Allora F è reale chiuso, e $K = F(\sqrt{-1})$.

- se $[\overline{F}:F]=n<\infty$ allora F è reale chiuso, $\overline{F}=F(\sqrt{-1}),$ e quindi n=2;
- se F non è reale chiuso, allora necessariamente $[\overline{F}:F]=\infty$;
- Ogni estensione algebrica di un campo finito oppure di caratteristica zero è separabile $\Longrightarrow \overline{F}/F$ è di Galois.

Conclusione

Teorema (Artin-Schreirer)

Sia K un campo algebricamente chiuso, $F \subsetneq K$ un sottocampo proprio tale che $[K:F]<\infty$. Allora F è reale chiuso, e $K=F(\sqrt{-1})$.

- se $[\overline{F}:F]=n<\infty$ allora F è reale chiuso, $\overline{F}=F(\sqrt{-1}),$ e quindi n=2;
- se F non è reale chiuso, allora necessariamente $[\overline{F}:F]=\infty$;
- Ogni estensione algebrica di un campo finito oppure di caratteristica zero è separabile $\Longrightarrow \overline{F}/F$ è di Galois.

Conclusione

Teorema (Artin-Schreirer)

Sia K un campo algebricamente chiuso, $F \subsetneq K$ un sottocampo proprio tale che $[K:F] < \infty$. Allora F è reale chiuso, e $K = F(\sqrt{-1})$.

- se $[\overline{F}:F]=n<\infty$ allora F è reale chiuso, $\overline{F}=F(\sqrt{-1}),$ e quindi n=2;
- se F non è reale chiuso, allora necessariamente $[\overline{F}:F]=\infty$;
- Ogni estensione algebrica di un campo finito oppure di caratteristica zero è separabile $\Longrightarrow \overline{F}/F$ è di Galois.

Conclusione

Teorema (Artin-Schreirer)

Sia K un campo algebricamente chiuso, $F \subsetneq K$ un sottocampo proprio tale che $[K:F] < \infty$. Allora F è reale chiuso, e $K = F(\sqrt{-1})$.

- se $[\overline{F}:F]=n<\infty$ allora F è reale chiuso, $\overline{F}=F(\sqrt{-1}),$ e quindi n=2;
- se F non è reale chiuso, allora necessariamente $[\overline{F}:F]=\infty;$
- Ogni estensione algebrica di un campo finito oppure di caratteristica zero è separabile $\Longrightarrow \overline{F}/F$ è di Galois.

Conclusione

Teorema (Artin-Schreirer)

Sia K un campo algebricamente chiuso, $F \subsetneq K$ un sottocampo proprio tale che $[K:F] < \infty$. Allora F è reale chiuso, e $K = F(\sqrt{-1})$.

- se $[\overline{F}:F]=n<\infty$ allora F è reale chiuso, $\overline{F}=F(\sqrt{-1}),$ e quindi n=2;
- se F non è reale chiuso, allora necessariamente $[\overline{F}:F]=\infty$;
- Ogni estensione algebrica di un campo finito oppure di caratteristica zero è separabile $\Longrightarrow \overline{F}/F$ è di Galois.

Conclusione: