Analysis of Variance continued

Overview

Review of one-way ANOVA

Pairwise comparisons after running an ANOVA

Factorial ANOVAs and interaction effects

If there is time: unbalanced designs

Review: One-way ANOVA

A **one-way analysis of variance (ANOVA)** is a parametric hypothesis test that can be used to examine if a set of means are all the same

$$H_0$$
: $\mu_1 = \mu_2 = ... = \mu_k$

 H_A : $\mu_i \neq \mu_j$ for some i, j

The statistic we use for a one-way ANOVA is the F-statistic

$$F = \frac{\text{between-group variability}}{\text{within-group variability}} = \frac{\frac{1}{K-1} \sum_{i=1}^{K} n_i (\bar{y}_i - \bar{y}_{tot})^2}{\frac{1}{N-K} \sum_{i=1}^{K} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_i)^2}$$

Review: One-way ANOVA

If H₀ is true, the F-statistic will come from an F distribution with parameters

- $df_1 = K 1$
- $df_2 = N K$

The F-distribution is valid if these conditions are met:

- The data in each group should follow a normal distribution
 - Check this with a Q-Q plot
- The variances in each group should be approximately equal
 - Check that $s_{max}/s_{min} < 2$

ANOVAs are fairly robust to these assumptions

Review: The F-statistic

$$F = \frac{\text{between-group variability}}{\text{within-group variability}} = \frac{\frac{1}{K-1} \sum_{i=1}^{K} n_i (\bar{y}_i - \bar{y}_{tot})^2}{\frac{1}{N-K} \sum_{i=1}^{K} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_i)^2}$$

The F statistic measures a fraction of:

variability between group means variability within each group

ANOVA table

$$F = \frac{\text{between-group variability}}{\text{within-group variability}} = \frac{\frac{1}{K-1} \sum_{i=1}^{K} n_i (\bar{y}_i - \bar{y}_{tot})^2}{\frac{1}{N-K} \sum_{i=1}^{K} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_i)^2}$$

Source	df	Sum of Sq.	Mean Square	F-statistic	p-value
Groups	k – 1	SSG	$MSG = rac{SSG}{k-1}$	$F=rac{MSG}{MSE}$	Upper tail $F_{k-1,n-k}$
Error	n – k	SSE	$MSE = rac{SSE}{n-k}$		
Total	n – 1	SSTotal			

$$SST = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{tot})^2$$

$$SSG = \sum_{i=1}^{k} n_i (\bar{y}_i - \bar{y}_{tot})^2$$

$$SST = SSG + SSE$$

$$SSE = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_i)^2$$

ANOVA as regression with only categorical predictors

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i = \begin{cases} \beta_0 + \beta_1 + \epsilon_i & \text{if Assistant Professor} \\ \beta_0 + \beta_2 + \epsilon_i & \text{if Associate Professor} \\ \beta_0 + \epsilon_i & \text{if Full Professor} \end{cases}$$

ANOVA as regression with only categorical predictors

If we use least squares, our predicted value \hat{y}_i is \overline{y}_k

• i.e., of x_i belongs to category k, our prediction is the mean of the y-values of points in category k

$$\hat{y}_i = \bar{y}_k = \begin{cases} \bar{y}_2 = \hat{\beta}_0 + \hat{\beta}_1 & \text{if Assistant professor} \\ \bar{y}_3 = \hat{\beta}_0 + \hat{\beta}_2 & \text{if Associate professor} \\ \bar{y}_1 = \hat{\beta}_0 & \text{if Full} \end{cases}$$

Kruskal-Wallis (non-parametric) test

There are **non-parametric** tests which don't make assumptions about normality

The **Kruskal-Wallis** test compares several groups to see if one of the groups 'stochastically dominates' another

- Does not assume normality
- Tests if one group stochastically dominates another group
- Also tests whether the median for all the groups are the same
 - (if you assume groups have the same shaped and scale)
- The test is based on ranks so it is not influenced by outliers

Let's quickly review this in R...

Silly question: Do Assistant, Associate and Fully Professors get paid the same on average?

Planned comparisons/posthoc tests

Planned comparisons/posthoc tests

Suppose we run a one-way ANOVA and we are able to reject the null hypothesis.

$$H_0$$
: $\mu_1 = \mu_2 = ... = \mu_k$
 H_A : $\mu_i \neq \mu_i$ for some i, j

Q: What else would we like to know?

A: We would like to know which groups actually differed!

Q: What would be a problem if we ran two sample tests on all pairs?

A: The problem of multiplicity

Pairwise comparisons

There are several tests that can be used to examine which pairs of means differed; i.e., to test:

- H_0 : $\mu_i = \mu_i$
- H_A : $\mu_i \neq \mu_j$

These tests include:

- Fisher's Least Significant Difference
- Bonferroni procedure/correction
- Tukeys Honest significantly different

Fisher's Least Significant Difference (LSD)

- 1. Perform the ANOVA
- 2. If the ANOVA F-test is not significant, stop
- 3. If the ANOVA F-test is significant, then you can test H_0 for a pairwise comparisons using:

$$t = \frac{\bar{x}_i - \bar{x}_j}{\sqrt{MSE \cdot (\frac{1}{n_i} + \frac{1}{n_j})}}$$
 Uses the MSE as a pooled estimate of the σ^2

Very 'liberal' tests

- Likely to make Type I errors (lots of false rejections of H₀)
- Less likely to make Type II errors (highest chance of detecting effects)

Bonferroni correction

Controls for the *family-wise error rate*

- i.e., $\alpha = 0.05$ for making **any** Type I error **over all pairs of "m" comparisons**
- 1. Choose an α -level for the family-wise error rate α
- 2. Decide how many comparisons you will make. Call this m
- 3. Reject any hypothesis tests that have p-values less than α/m
 - Pairwise tests typically done using a t-statistic, where the MSE is used in the estimate of the SE

$$t = \frac{\bar{x}_i - \bar{x}_j}{\sqrt{MSE \cdot (\frac{1}{n_i} + \frac{1}{n_j})}} \qquad \text{Use a t-distribution with n-k degrees of freedom}$$

Very 'conservative' tests

- Unlikely to make Type I errors (few false rejections of H₀)
- Likely to make Type II errors (insensitive at detecting real effects)

Tukey's Honest Significantly Different Test

Tukey's Honest Significantly Different test controls for the family-wise error rate but is less conservative than the Bonferroni correction

If the null hypothesis was true, q comes from a studentized range distribution

$$q = \frac{\sqrt{2}(\bar{x}_{max} - \bar{x}_{min})}{\sqrt{MSE \cdot (\frac{1}{n_{max}} + \frac{1}{n_{min}})}}$$

We can compare $q = \frac{\sqrt{2(\bar{x}_i - \bar{x}_j)}}{\sqrt{MSE \cdot (\frac{1}{n_i} + \frac{1}{n_j})}}$ for a pair of means i, j, to a studentized range distribution with parameters k, and n-k, to get a p-value

• Still based on assumptions that the data in each group is normal with equal variance

Let's try pairwise comparisons in R...

In a **factorial ANOVA**, we model the response variable y as a function of **more than one** categorical predictor

Example 1: Do faculty salaries depend on faculty rank, and the type of college/university

- Factors are:
 - Rank: Lecturer, Assistant, Associate, Full
 - Institute: liberal arts college, research university
 - 4 x 2 design

Example 2: A student at Queensland University of Technology conducted an experiment to determine what types of sandwiches ants prefer

- Factors he looked at were:
 - Bread: rye, whole wheat multigrain, white
 - Filling: peanut better, ham and pickle, and vegemite
 - 4 x 3 design

The student creating 4 sandwiches of all combinations of bread and filling (48 sandwiches total) and randomly left pieces in front of ant nests.

He then measured how many ants were on the sandwiches 5 minutes later

It is useful to think of running an ANOVA as running a linear regression with only categorical predictors

The value for the ith data point can be written as:

$$y_{ijk} = \mu + \alpha_i + \beta_k + \gamma_{jk} + \epsilon_{ijk}$$

Main effects

Where:

- μ: is the overall mean
 - α_i : is how the jth level of factor α affects y
- β_k : is how the kth level of factor β affects y
- $\gamma_{
 m ik}$: is how the particular combination affects y

- e.g., overall mean number of ants
- e.g., how bread type affects ants
- e.g., how filling affects ants
- e.g., combination of bread and filling
- ϵ_{iki} : is the "error" not explained by the model. Comes from a 0 mean normal distribution

Two-way ANOVA hypotheses

Main effect for A (bread type doesn't matter)

$$H_0$$
: $\alpha_1 = \alpha_2 = ... = \alpha_1 = 0$

 H_A : $\alpha_i \neq 0$ for some j

Where:

Main effect for B (filling doesn't matter)

 H_0 : $\beta_1 = \beta_2 = ... = \beta_K = 0$

 H_A : $\beta_k \neq 0$ for some k

 α_j : main effect for factor A at level j

 β_k : main effect for factor B at level k

 γ_{jk} : interaction between level j of factor A, and level k of factor B.

Interaction effect (exact bread-filling combo):

 H_0 : All $\gamma_{ik} = 0$

 H_A : $\gamma_{ik} \neq 0$ for some j, k

$$y_{ijk} = \mu + \alpha_j + \beta_k + \gamma_{jk} + \epsilon_{ijk}$$

Two-way ANOVA in R with interaction

Source	df	Sum of Sq.	Mean Square	F-stat	p-value
Factor A Factor B A x B Error Total	K - 1 J - 1 (K-1)(J-1) KJ(c - 1) N - 1	SSA SSB SSAB SSE SSTotal	$\begin{aligned} MSA &= SSA/(K-1) \\ MSB &= SSB/(J-1) \\ MSAB &= SSAB/(K-1)(J-1) \\ MSE &= SSE/(K-1)(J-1) \end{aligned}$	MSA/MSE MSB/MSE MSAB/MSE	$F_{K-1,KJ(c-1)}$. $F_{J-1,KJ(c-1)}$ $F_{(K-1)(J-1),KJ(c-1)}$

For balanced design: SSTotal = SSA + SSB + SSAB + SSE

Interaction plots

Interaction plots can help us visualize main effects and interactions

- Plot the levels of one of the factors on the x-axis
- Plot the levels of the other factor as separate lines

Either factor can be on the x-axis although sometimes there is a natural choice

Interpreting interaction plots

Interpreting interactions

When interactions are present, one must be careful interpreting main effects

• i.e., the value of one factor A, depends on the value of second factor B

For example, suppose you want to determine which condiment is the most enjoyable, chocolate sauce or mustard

- Run a 2 x 2 ANOVA, 20 people each condition
- Get rating of enjoyment

Number of participants	Ice cream	Hot dog
Chocolate sauce	20	20
Mustard	20	20

Model with only main effects

Model with interactions

Let's examine two-way ANOVAs in R...

Homework 10

Homework 10

The experiment had a 9 x 2 x 2 x 2 factorial design:

- 1. Position (9 levels): 9 locations where the target stimulus could appear
- 2. Isolated/distractor condition (2 levels): isolated or cluttered display
- 3. Target color (2 levels): red or green target
 - For cluttered displays, the distractors always had the opposite color of the target
- 4. Cut direction (2 levels): left or right side of the target diamond was cut off
 - Corresponds to pressing the "z" or "/" key

The experiment had 10 blocks where all 72 (9 x 2 x 2 x 2) stimuli were shown

8 volunteer participants participated in the experiment

Homework 10

On homework 10 you will run:

- A one-way ANOVA to see if the mean reaction time is the same at all target positions
- A two-way ANOVA to look at how both position and isolated/cluttered displays affect mean reaction times
- Explore another question using this data

Questions?

Homework 10 is due 11pm on Monday December 2nd

 There is no late credit for this homework, so all submissions must be in by 11pm on Monday

Complete and balanced designs

Complete and balanced designs

Complete factorial design: at least one measurement for each possible combination of factor levels

 E.g., in a two-way ANOVA for factors A and B, if there are K levels for factor A, and J levels for factor B, then there needs to be at least one measurement for each of the KJ levels

Balanced design: the sample size is the same for all combination of factor levels

- E.g., there are the same number of samples in each of the KJ level combinations
- The computations and interpretations for non-balanced designs are a bit harder

Unbalanced designs

We can get p-values by from an F-distribution with the appropriate degrees of freedom

Two-way ANOVA table with interaction

Source	SS = Sum of Squares	df	MS = Mean Square	F
A (row factor)	SS_A	a-1	$MS_A = \frac{SS_A}{df_A}$	$F_A = \frac{MS_A}{MSE}$
B (column factor)	SS_B	b-1	$MS_B = \frac{SS_B}{df_B}$	$F_B = \frac{MS_B}{MSE}$
A×B (interaction)	$SS_{ ext{A} imes ext{B}}$	(a-1)(b-1)	$MS_{A\times B} = \frac{SS_{A\times B}}{df_{A\times B}}$	$F_{A\times B} = \frac{MS_{A\times B}}{MSE}$
Error (within)	SSE	ab(n-1)	$MSE = \frac{SSE}{df_E}$	
Total	SST	N – 1		

df1 <- a - 1

df2 <- ab(n-1)

pf(F_stat, df1, df2,

lower.tail = FALSE)</pre>

where "a" is the number of levels for factor A, etc.

For unbalanced designs, there are different ways to compute the sum of squares, and hence one can get different p-values

 The problem is analogous to multicollinearity. If two explanatory variables are correlated either can account for the variability in the response data

Unbalanced designs

Type I sum of squares: (also called sequential sum of squares) the order that terms are entered in the model matters

- SS(A) is taken into account before SS(B) is considered etc.
- anova(lm(y ~ A*B)) gives different results than using anova(lm(y ~ B*A))

Type II and Type III sum of squares: the order that that terms are entered into the model does not matter.

- For each factor, SS(A), SS(B), SS(AB) is taken into account after all other factors are added
- Car::Anova(Im(y ~ A*B), type = "III") is the same as car::Anova(Im(y ~ B*A), type = "III")

Let's examine it R...

Bonus material: Understanding sum of squares for unbalanced designs

Unbalanced designs

We can get p-values by from an F-distribution with the appropriate degrees of freedom

Two-way ANOVA table with interaction

Source	SS = Sum of Squares	df	MS = Mean Square	F
A (row factor)	SS_A	a-1	$MS_A = \frac{SS_A}{df_A}$	$F_A = \frac{MS_A}{MSE}$
B (column factor)	SS_B	b-1	$MS_B = \frac{SS_B}{df_B}$	$F_B = \frac{MS_B}{MSE}$
A×B (interaction)	$SS_{ ext{A} imes ext{B}}$	(a-1)(b-1)	$MS_{A\times B} = \frac{SS_{A\times B}}{df_{A\times B}}$	$F_{A\times B} = \frac{MS_{A\times B}}{MSE}$
Error (within)	SSE	ab(n-1)	$MSE = \frac{SSE}{df_E}$	
Total	SST	N-1		

df1 <- a - 1

df2 <- ab(n-1)

pf(F_stat, df1, df2,

lower.tail = FALSE)</pre>

where "a" is the number of levels for factor A, etc.

For unbalanced designs, there are different ways to compute the sum of squares, and hence one can get different p-values

• (for balanced designs, all methods give the same results)

Understanding sum of squares for unbalanced designs

Let's define:

- SS(A, B, AB) is the sum of squares explained by a model with interactions: lm(y ~ A*B)
- SS(A, B) is the sum of squares explained by a model w/o interactions: $Im(y \sim A + B)$
- SS(A) is the sum of squares explained by a model with only factor A: $Im(y \sim A)$
- Etc.

We can define incremental sums of squares to represent differences:

- $SS(AB \mid A, B) = SS(A, B, AB) SS(A, B)$
- SS(A | B, AB) = SS(A, B, AB) SS(B, AB)
- $SS(B \mid A, AB) = SS(A, B, AB) SS(A, AB)$
- $SS(A \mid B) = SS(A, B) SS(B)$
- $SS(B \mid A) = SS(A, B) SS(A)$

SS accounted by interaction after SS of main effects have been subtracted

Type I sum of squares

Type I sum of squares for a fit $Im(y \sim A*B)$ is then defined using:

- Factor A: SS(A)
- Factor B: SS(B|A) = SS(A, B) SS(A)
- Interaction AB: SS(AB | A, B) = SS(A, B, AB) SS(A, B)

The advantage of this method is that SST = SSA + SSB + SSAB + SSE

The disadvantage is that the order you specify terms affects which factors are determined to be statistically significant

Type II sum of squares

Type II sum of squares for a fit $Im(y \sim A*B)$ is then defined using:

- Factor A: $SS(A \mid B) = SS(A, B) SS(B)$
- Factor B: $SS(B \mid A) = SS(A, B) SS(A)$
- Interaction AB: SS(AB | A, B) = SS(A, B, AB) SS(A, B)

The advantage is that the order you specify terms does not effect which factors are determined to be statistically significant

The disadvantage is that the relationship SST = SSA + SSB + SSAB + SSE does not hold

Type III sum of squares

Type III sum of squares for a fit $lm(y \sim A*B)$ is then defined using:

- Factor A: SS(A | B, AB) = SS(A, B, AB) SS(B, AB)
- Factor B: SS(B | A, AB) = SS(A, B, AB) SS(A, AB)
- Interaction AB: SS(AB | A, B) = SS(A, B, AB) SS(A, B)

The advantage is that the order you specify terms does not effect which factors are determined to be statistically significant

The disadvantage is that the relationship SST = SSA + SSB + SSAB + SSE does not hold