Politechnika Gdańska Wydział Fizyki Technicznej i Matematyki Stosowanej

Metoda optymalizacji Newtona

Spis treści

1	Opis metody			
	1.1	Założenia	2	
	1.2	Opis działania		
	1.3	Kierunek poszukiwań d_k		
	1.4	Kryterium stopu		
	1.5	Wzór rekurencyjny		
	1.6	Przypadek jednowymiarowy		
2	Implementacja			
	2.1	Algorytm	4	
	2.2	Język programowania		
	2.3	Biblioteki i pakiety		
3				
	3.1	Połowa projektu - 31.05.2019r	5	
	3.2	Oddanie projektu - 14.06.2019r	5	
T.i	terat	ura	6	

1 Opis metody

Metoda Newtona to algorytm numeryczny, którego celem jest znalezienie minimum zadanej funkcji.

1.1 Założenia

Dana jest funkcja celu f taka że

$$f:D\to\mathbb{R}$$

gdzie $D \subset \mathbb{R}^n$. Następujące założenia muszą być spełnione:

- 1. $f \in C^2$ tzn. funckaj jest ciągła i podwójnie różniczkowalna
- 2. f jest ściśle wypukła w badanej dziedzinie

1.2 Opis działania

Algorytm rozpoczynamy od wyboru punktu początkowego $x_0 \in D$. Nstępnie obliczany jest kierunek poszukiwań $d_k \in D$. Przy pomocy kierunku poszukiwań d_k obliczane są kolejne punkty wg wzoru:

$$x_{k+1} = x_k + d_k$$

Powyższe kroki są powtarzane do momentu aż któryś z punktów x_k nie spełni warunku stopu.

1.3 Kierunek poszukiwań d_k

W celu obliczenia kierunku poszukiwań d_k wykorzystujemy rozwinięcie Taylora funkcji celu f względem danego punktu x. Korzystamy ze wzoru:

$$f(x+\delta) = f(x) + \nabla f(x)^T \delta + \frac{1}{2} \delta^T \nabla^2 f(x) \delta + O(\delta^2)$$

gdzie:

- $\nabla f(x)$ jest gradientem funkcji f
- $\nabla^2 f(x)$ jest macierzą Hessego
- $O(\delta^2)$ jest resztą o wielkości rzędu δ^2

A zatem funkcję celu możemy przybliżyć przez aproksymację kwadratową F_k względem punktu x_k

$$F_k(\delta) = f(x_k) + \nabla f(x_k)^T \delta + \frac{1}{2} \delta^T \nabla^2 f(x_k) \delta$$

kierunek d_k jest tak dobrany aby zminimalizować funkcję F_k czyli:

$$d_k = \arg\min_{\delta} F_k(\delta) = -(\nabla^2 f(x_k))^{-1} \nabla f(x_k)$$

1.4 Kryterium stopu

W celu określenia czy dany punkt dostatecznie dobrze przybliża minimum funkcji celu korzystamy z następujących kryteriów

- $||\nabla f(x_k)|| \leq \epsilon$
- $\bullet ||x_{k+1} x_k|| \leqslant \epsilon$

gdzie: ϵ zadana precyzja i $||\cdot||$ norma.

1.5 Wzór rekurencyjny

Wzór rekurencyjny metody Newtona ma postać:

$$x_{k+1} = x_k - (\nabla^2 f(x_k))^{-1} \nabla f(x_k)$$

1.6 Przypadek jednowymiarowy

Wówczas gdy

$$f: \mathbb{R} \supset D \to \mathbb{R}$$

wzór rekurencyjny dla metody upraszcza się do postaci:

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}$$

gdzie f' i f'' to kolejne pochodne funkcji f.

2 Implementacja

2.1 Algorytm

- 1. Wybór puntku początkowego x_0
- 2. Wyznaczenie kierunku poszukiwań $d_k\,$
- 3. Wyznaczenie koljnego punktu x_{k+1}
- 4. Sprawdzenie warunku stopu, jeśli nie spełniony powrót do punktu 2, jeśli spełniony koniec

2.2 Język programowania

Julia 1.0.3.

2.3 Biblioteki i pakiety

- \bullet JuMP
- $\bullet \ \, GLPKMathProgInterface$
- Optim

3 Harmonogram

3.1 Połowa projektu - 31.05.2019r

- Zaimplementowanie metody Newtona dla przypadku jednowymiarowego.
- Przetestowanie metody dla różnych punktów początkowych x_0
- Porównanie ilości iteracji w zależności od zmiany punktu początkowego

3.2 Oddanie projektu - 14.06.2019r

- Zaimplementowanie metody Newtona dla przypadku wielowymiarowego.
- \bullet Przetestowanie metody dla różnych punktów początkowych x_0
- Porównanie ilości iteracji w zależności od zmiany punktu początkowego

Literatura

- [1] https://pl.wikipedia.org/wiki/Metoda_Newtona_(optymalizacja)
- [2] M. Lewandowski Metody optymalizacji teoria i wybrane algorytmy,
- [3] https://www.juliaopt.org
- [4] https://github.com/JuliaNLSolvers
- [5] http://mst.mimuw.edu.pl/lecture.php?lecture=op2&part=Ch12
- [6] J. Skrzewska Algorytmy optymalizacji, estymacji i redukcji wariancji, Uniwesytet Warszawski