ECE 341: JUNIOR DESIGN

Accelerated Project Amplifier Design

Written by Mark Ellarma

Date: March 2, 2021

1 Schematic

Figure 1: Amplifier Schematic

2 Datasheet

Parameter	Conditions	Min	Тур	Max	Units
Operating Supply Voltage (V _S)					
LM386N-1, -3, LM386M-1, LM386MM-1		4		12	V
LM386N-4		5		18	V
Quiescent Current (I _Q)	V _S = 6V, V _{IN} = 0		4	8	mA
Output Power (P _{OUT})					
LM386N-1, LM386M-1, LM386MM-1	$V_S = 6V, R_L = 8\Omega, THD = 10\%$	250	325		mW
LM386N-3	$V_S = 9V, R_L = 8\Omega, THD = 10\%$	500	700		mW
LM386N-4	$V_S = 16V, R_L = 32\Omega, THD = 10\%$	700	1000		mW
Voltage Gain (A _V)	V _S = 6V, f = 1 kHz		26		dB
	10 µF from Pin 1 to 8		46		dB
Bandwidth (BW)	V _S = 6V, Pins 1 and 8 Open		300		kHz
Total Harmonic Distortion (THD)	$V_S = 6V, R_L = 8\Omega, P_{OUT} = 125 \text{ mW}$		0.2		%
	f = 1 kHz, Pins 1 and 8 Open				
Power Supply Rejection Ratio (PSRR)	$V_S = 6V$, $f = 1$ kHz, $C_{BYPASS} = 10 \mu F$		50		dB
	Pins 1 and 8 Open, Referred to Output				
Input Resistance (R _{IN})			50		kΩ
Input Bias Current (IBIAS)	V _S = 6V, Pins 2 and 3 Open		250		nA

Figure 2: Amplifier Datasheet

3 Calculations

1. Set the amplifier input common mode voltage to mid—supply voltage. The equivalent resistance of R2 in parallel with R3 should be 10 times larger than R1 so that a majority of the microphone current flows through R1.

$$R_{eq} = R_2 || R_3 > 10 R_1 = 100 \,\mathrm{k}\Omega$$

 $R_2 = R_3 = \boxed{200 \,\mathrm{k}\Omega}$

2. Calculate the maximum input voltage.

$$R_{in} = R_1 || R_{eq} = 5.9 \,\mathrm{k}\Omega || 100 \,\mathrm{k}\Omega = 5.571 \,\mathrm{k}\Omega$$

$$V_{in} = I_{max} * R_{in} = 7.221 \,\mathrm{\mu A} * 5.571 \,\mathrm{k}\Omega = \boxed{40.229 \,\mathrm{\mu V}}$$

3. Calculate gain required to produce the largest output voltage swing.

$$Gain = \frac{V_{outmax}}{V_{in}} = \frac{3 \text{ V}}{40.229 \,\text{µV}} = \boxed{74.573 \,\frac{\text{V}}{\text{V}}}$$
$$V_{outmax} < V_{rms} \rightarrow V_{rms} = \frac{1}{\sqrt{2}} * 5 \text{ V} = 3.54 \text{ V}$$

4. Calculate R4 to set the gain calculated in previous step. Select feedback resistor R5 as 10k.

$$R_4 = \frac{R_5}{Gain - 1} = \frac{10 \,\mathrm{k}\Omega}{74.573 \,\frac{\mathrm{V}}{\mathrm{V}} - 1} \approx \boxed{136 \,\Omega}$$