

Compression

Kathrin Stark Heriot-Watt University, 2024

Compression – Basic Model

Motivation:

- · Reduce file space needed (e.g., video clips)
- Often built into disk controllers/Database Management Systems
- Reduce time to transfer information over network (e.g., streaming)

Lossless compression: E(C(B)) = B Typically referred to as **correctness**

For **images and videos**, lossy methods are ok as long as only fine detail is lost. (e.g., JPEG for images, MPEG for videos)

What You'll Learn

- Different **algorithms** for **lossless** compression: Run-length encodings, Huffman code, and LZW
- How the compression ratio allows us to measure the efficiency of compression
- Why no algorithm exists that can compress all bitstrings

Compression Ratio Definition

- Compression Ratio = $\frac{\text{uncompressed size}}{\text{compressed size}}$
 - · Attention when using different data types!
 - · For example:
 - Compressing 8 byte into 3 int yields a compression rate of $\frac{8}{3*4} = \frac{2}{3}$
- Typically depends on how much structure exists in the input file (technically: how much **entropy** ("information") exists)
 - Easiest form: Repetition
 - · But also: Known structure, i.e. generated by a specific program

Run-Length Encoding

• **Idea**: Look for **runs** of repeated characters and replace them with count + relevant character:

aaaaaaabbbbbbbbbcccc => 7a8b4c

What's the compression ratio?

• **Binary files**: Don't need to specify the character; assume files always start with a zero.

11111111<mark>00001111111 => 0846</mark>

What's the compression ratio?

- **Usage:** Popular way to encode **bitmaps**, a component of image compression (in particular, black and white)
- Properties:
 - Easy to encode
 - Not always efficient

Bitmap for 7

Variable-Length Encoding

- **Idea**: Some characters are more common than other use special codes for them.
 - Example: Morse Code.
- **Code** = mapping of each character of an alphabet to a binary code word.
- Variable length encoding = words can be of variable length
 - · ... do we need a delimiter between variable-length encodings?
 - For example, in Morse code: Without delimiters • could denote both *ee* or *i*.
 - **Prefix code** = binary code such that no code word is the prefix of another code word.

Question: What does 01101110 decode with the right table? Why is it unique?

- **Encoding tree** = Represents a prefix code.
 - Usually presented by **tries** (see next slide).

Morse Code

Character	Code
a	0
b	110
С	100
d	101
r	111

Example Prefix Code

Reminder: Tries

Tries

- A form of n-ary tree (pronounced try)
- Efficient way to store a dictionary
- Each level stores a character position
- Nth level stores the nth character of word
- · A word is valid if
 - Each character in word appears at correct level of tree
 - 2. Node containing final character is either:

 - Marked as valid word
 - 3. That node is marked as a valid word
- Lookup O(1) worst case
 - where N is number of words

0
A
N S A
DTT
R E E A
PIA
E

a

00	010	011	10	11
а	b	С	d	е

Idea: Symbols are stored in leaves. **Encoding** = path to leaf.

Operation	Average	Worst case
Search	O(<i>n</i>)	O(<i>n</i>)
Insert	O(<i>n</i>)	O(<i>n</i>)
Delete	O(<i>n</i>)	O(<i>n</i>)

Source: F28SG

Variable Length Encoding Pseudocode

Compress

Input: A code in form of a trie

Algorithm:

For all symbols s:

- 1. Start at leaf of trie corresponding to symbol s.
- 2. Follow the path up to the root.
- 3. Print bits in reverse order.

Enhance

Input: A code in form of a trie

Algorithm:

For all bit sequences:

- 1. Start at the root of the tree.
- 2. Take the right branch if the bit is 0; left branch if 1.
- 3. When at a leaf node, print symbol and return to root.

Given specific data, what should be the encoding we use? **Here**: How can we find a code that gives the shortest encoding given information on how frequently different characters occur.

Reminder: Priority Queue

Priority Queue ADT

- Each entry has a key and value
 - **Key**: could be price, miles, age, ...
 - Value: The thing that we store in the queue
- Operations
 - size() how many entries
 - isEmpty() is it empty or not?
 - insert(key,value) Insert a key/value pair
 - removeMin() Removes and returns minimum element
 - min() Returns the minimum element (but keeps it)

Min Heaps

- A **min heap** is a binary tree that satisfies the following properties:
 - Each node except root has a value that is greater than (or equal to) its parent
 - Each level is filled up before moving to next
 - From left to right
- The last node is the rightmost node at the last level

Source: F28SG Min Heaps are an implementation of the priority queue ADT.

Huffman's Algorithm Computing the Encoding

Goal: Given a string X, yield an optimal variable-length encoding.

Algorithm HuffmanEncoding(X)

Input: string X of size n

Output: Optimal encoding trie for X

- 1. Compute the frequency f(c) of all distinct characters.
- 2. For each character c, put the character c as the onenode trie + its frequency f(c) into a priority queue Q.
- 3. Repeat until there is only one element in the priority queue Q:
 - i. Get the two minimum elements (f1, T1) and (f2, T2).
 - ii. Compute the trie combining T1 and T2, put it in Q with key f1 + f2.

Input = abracadabra

Step 1:

a	b	c	d	r
5	2	1	1	2

Step 2:

Step 3:

Huffman's Algorithm Pseudocode + Runtime Analysis

Operation	Average	Worst case
insert	O(1)	O(log n)
minKey	O(1)	O(1)
removeMin	O(log n)	O(log n)

Reminder: Runtimes min-heap

```
Algorithm HuffmanEncoding(X)
  Input string X of size n
  Output optimal encoding trie for X
  C \leftarrow distinctCharacters(X)
  computeFrequencies(C, X)
  Q \leftarrow new empty heap
  for all c \in C
     T \leftarrow new single-node tree storing c
     O.insert(getFrequency(c), T)
  while O.size() > 1
     f_1 \leftarrow O.minKey()
     T_1 \leftarrow Q.removeMin()
     f_2 \leftarrow Q.minKey()
     T_2 \leftarrow Q.removeMin()
     T \leftarrow join(T_1, T_2)
     Q.insert(f_1 + f_2, T)
  return O.removeMin()
```

1. Compute the frequency f(c) of all distinct characters.

2. For each character c, put the character c as the one-node trie + its frequency f(c) into a priority queue Q.

- 3. Repeat until there is only one element in the priority queue Q:
 - i. Get the two minimum elements (f1, T1) and (f2, T2).
 - ii. Compute the trie combining T1 and T2, put it in Q with key f1 + f2.

Worts-case runtime: O(n)

Worst-case runtime: O(d log d)

Worst-case runtime: O(d log d)

Worst-case runtime: $O(n + d \log d)$

Huffman's Algorithm Efficiency (I)

Goal: Prove that Huffman's encoding yields the optimal prefix code.

Let's start with some definitions!

Let H be the Huffman encoding for a text t with alphabet r. Then, the **total encoding length** of the compressed text is:

$$L(H) = \sum_{s \in r} f(s) * \underbrace{|H(s)|}_{}$$

depth in the trie/number of bits

A prefix-free code c is **optimal** if for all other prefix-free codes c':

$$\sum_{s \in r} f(s) * |c(s)| \le \sum_{s \in r} f(s) * |c'(s)|$$

Observation 1: Whenever we have an optimal encoding, the code with the lowest frequency has to have the largest depth.

Observation 2: The total encoding length corresponds to the **weighted external path length**, i.e. above:

$$L(H) = 11 + 6 + 2 + 4$$

Huffman's Algorithm Efficiency (II)

Theorem: Given a set r of symbols and frequencies f, the Huffman algorithm builds an optimal prefix-free code.

Proof. By induction on the number of symbols.

If $r \leq 2$, the code is optimal, as we can't encode any symbols with less than a bit.

If r > 2, assume that s_i and s_j are the first two symbols chosen in the Huffman encoding H.

If we replace s_i and s_j by a symbol s_{ij} with $f_{ij} = f_i + f_j$, this results in the Huffman tree H_{ij} where the node with leaves for s_i and s_j is replaced by a single leaf s_{ij} and hence:

$$L(H) = L(H_{ij}) + f_i + f_j$$

By the induction hypothesis, the Huffman code is optimal for this new set of symbols.

Assume that H' is an optimal prefix tree for r.

By observation 1, we know that f_i and f_j are at the lowest level of the tree, and we can assume that f_i and f_j are siblings (otherwise: swap f_j 's sibling with f_i). Let H'_{ij} be the prefix tree where we replace the node for s_i and s_j with $(s_{ij}, f_i + f_j)$. H'_{ij} Is now a (not necessarily optimal) prefix tree with $L(H') = L(H'_{ij}) + f_i + f_j$. Hence:

Then $L(H) = L(H_{ij}) + f_i + f_j \le L(H'_{ij}) + f_i + f_j = L(H')$, i.e. H is optimal.

Value = ASCII in hex

LZW Algorithm

- Substitutional compression: Find repeated sequences, not just runs (i.e., *the* cat and *the* dog)
- LZW = Lempel-Ziv-Welch (1984)
- · Compression:
 - 1. Start with an initial dictionary (e.g., ASCII/UNICODE). Let *n* be the length/highest value of the dictionary.
 - 2. Repeat until there are no more input characters:
 - a) Find the longest string *s* in the symbol table a prefix of the unscanned input.
 - b) Write the value associated with *s*.
 - c) Scan one character c past s in the input and put c ++ s in the dictionary with the value n + 1.

Input: ABRACADABRABRABRA Output:

Input: ABRACADABRABRABRA

Output: 41

Input: ABRACADABRABRABRA

Output: 41<mark>42</mark>

A	41
EOF	80
AB	81

A	41
EOF	80
AB	81
BR	82

. . .

LZW Algorithm Full Example Compression

Input: ABRACADABRABRABRA

Output:

41	42	52	41	43	41	44	81	<mark>83</mark>	82	<mark>88</mark>	<mark>41</mark>	80
A	В	R	A	C	A	D	AB	RA	BR	ABR	A	EOF

Q: What is the compression rate?

LZW Algorithm

Expansion:

- 1. Start with the **inversed** initial dictionary (e.g., ASCII/UNICODE).
 - Let n be the length/highest key of the dictionary.
- 2. Repeat until there are no more code words s:
 - a) Write the value val associated with s.
 - b) If possible, scan one code word s' past s in the input.
 - c) Decode s' to value val' with first character c.
 - d) Put the value val ++ c at key n + 1.

Note: No full dictionary has to be given for the full encoding!

Input: 41425241434144818382884180
Output:

Input: 41425241434144818382884180

Output: A

Input: 41<mark>42</mark>5241434144818382884180

Output: AB

41	A
•••	
80	EOF

41	A
80	EOF
81	AB

41	A
80	EOF
81	AB
82	BR

...

LZW Algorithm Full Example Expansion

Input: 41425241434144818382884180

Output:

A B R A C A D AB RA BR ABR A EOF

A	41
•••	
EOF	80
AB	<mark>81</mark>
BR	82
RA	83
AC	<mark>84</mark>
CA	85
AD	<mark>86</mark>
DA	<mark>87</mark>
ABR	88
RAB	<mark>89</mark>
BRA	8A
ABRA	8B

LZW Algorithm

Implementation Details

- Usage: Used in Unix' compress (e.g., part of tar), GIF image format
- **Compression ratio:** A large English text file can typically be compressed via LZW to about half of its original size
- Some annoyance: How do we know how long a code word is?
 - Standard: The compression algorithm increases the width when a code c is added to the table at position 2^n . From the encoding of the next input character, increase the width to 1+n.
 - Alternative ("early change"): Encode already c with width 1 + n. This used to be standard in earlier implementations. (I.e., Adobe allows both variants)

Does an Universal Encoding Exist?

Lemma. No algorithm can compress every bitstring b.

Proof. Assume the bitstrings b = 0 and b = 1. Both would have to be encoded by the empty bitstring, allowing no unique expansion.

Lemma. No algorithm can compress every bitstring b of length l > n.

Proof. Proof by contradiction. Assume an algorithm f = (c, e) that compresses every bitstring b of length > n, i.e. let n be the number of possible bitstrings of length l and let m be the number of possible compressed bitstrings of length less than l.

By the **Pigeonhole Principle**, at least one compressed bitstring must correspond to more than one bitstring.

But then the encoding cannot be lossless, as for at least one of the original bitstrings b:

 $e(c(b)) \neq b$

Lossy Compression

Audio Compression

- Lossless compression:
 Find patterns/redundancy
 in audio data (i.e.,
 FLAC/ALAC)
- Exploit that some parts of the audio signal are less perceptible to the human ear and can be discarded/approximated (e.g., MP3)

Picture Compression

- Lossless compression:
 Find patterns/redundancy in image data (i.e., PNG, lossless PEG)
- Lossy compression:
 Discard data that is less
 perceptible to the human
 eye (i.e., it's ok if fine
 detail is lost).
- Can reduce by a factor of 5 without a perceptible loss in quality.

Video Compression

• Roughly: Uses JPEG compression for frame, looks at differences between frames rather than recoding everyone (i.e., MPEG)

What You Learned

- Different **algorithms** for **lossless** compression: Run-length encodings, Huffman code, and LZW
- How the compression ratio allows us to measure the efficiency of compression
- Why no algorithm exists that can compress all bitstrings

Further Reading

- Chapter 5.0, chapter 5.5 of the book.
- Chapter 5.2 if you need a reminder of tries.