энне университет итмо

учебный центр общей физики фтф

Группа_Р 3110	_К работе допущен
Студент Лебедев Вадим Литонович	Работа выполнена
Преподаватель Коробиов Мансии Перрович	Отчет принят

Рабочий протокол и отчет по лабораторной работе №3.07

Изучение свойств ферромагнетика.

1. Цель работы.

Определение основных магнитных характеристик (магнитной индукции насыщения остаточной намагниченности, коэрцитивной силы, относительной магнитной проницаемости) и построение соответствующих графиков по полученным данным.

- Задачи, решаемые при выполнении работы.
 - 1. Произвести необходимые измерения.
 - 2. По полученным данным построить петлю гистерезиса.
 - 3. Построение графика зависимости магнитной индукции в ферромагнетике от напряженности магнитного поля.
 - 4. Построение графика зависимости магнитной проницаемости от напряженности магнитного поля.
 - 3. Объект исследования Ферромагнетик
 - 4. Метод экспериментального исследования.
 - 5. Рабочие формулы и исходные данные.

1)
$$H = \frac{N_1}{e \cdot R_1} \cdot K_x \cdot x = Q \cdot K_x \cdot x$$
2) $B = \frac{R_2 \cdot C_1}{N_2 \cdot S} \cdot K_y \cdot y = \beta \cdot K_y \cdot y$
3) $P = \chi \cdot S_{nr}$
4) $\chi = K_x K_y \frac{N_1 R_2 C_1}{N_2 R_1} f$
5) $S = \frac{K_3 \cdot G_1}{K_3 \cdot G_1} + O_1 \cdot S_1 \cdot R_3 \cdot R_$

7. Измерительные приборы

N₂ n/n	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	осциплограф	электронный	0-1 Tn 0-100 ^A	

8. Схема установки (перечень схем, которые составляют Приложение 1).

9. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

$$Q = \frac{N_1}{eR_1} = 313_19 \frac{1}{outu}$$

$$\beta = \frac{R_2 C_1}{N_2 S} = 3_156 \frac{out P}{u^2}$$

$$H_{c} = \alpha \cdot K_{x} \cdot X = 313.9 \cdot 0.1 \cdot 0.8 = 25.1 \frac{A}{m}$$
 (no apyumubuae euna)
 $B_{r} = \beta \cdot K_{y} \cdot y = 3.56 \cdot 0.05 \cdot 1 = 0.18 \text{ Tr}$ (ocmamornae ungyuyue)

$$H_{m} = 313_{1}9 \cdot 0_{1}1 \cdot \lambda_{1}4 = 45_{1}3^{A} l_{m}$$

$$B_{m} = 3_{7}56 \cdot 0_{1}05 \cdot \lambda_{1}\lambda = 0_{1}39^{T} \Lambda$$

$$\mu_{m} = \frac{0_{1}39}{47 \cdot 10^{-4} \cdot 45_{1}3} = 41\lambda 1_{1}5 \frac{\Gamma_{H}}{M}$$

Расчет результатов косвенных измерений (таблицы, примеры расчетов)

$$S = \frac{K6.649mpu nemau + 0.5 \cdot K8. Ha ypan.}{100}$$

$$S = \frac{439 + 0.5 \cdot 161}{100} = 5.2 gen^{2}$$

$$\Delta S = \frac{0.5 \cdot k.4a yp-ye}{100} = 9.8 gen^{2}$$

$$S = (5.2 \pm 0.8) gen^{2}$$

$$X = 0.1 \cdot 0.05 \cdot \frac{1665 \cdot 440 \cdot 10^{3} \cdot 0.44 \cdot 10^{-6}}{940 \cdot 68} \cdot 20 = \frac{1665 \cdot 440 \cdot 10^{3} \cdot 0.44 \cdot 10^{-6}}{940 \cdot 68}$$

X = 0,1.0,05. \frac{1665.440.10^3.0,44.10^6}{940.68}.20=836.10^687 P=8362. 10-6. 5,2 = 4,35. 10-3 1

11. Расчет погрешностей измерений (для прямых и косвенных измерений).

$$P = k_{x}k_{y} \frac{N_{1}R_{2}G_{3}}{N_{2}R_{1}} \int_{S}^{S}, \text{ nyemb } J = k_{x}k_{y} \int_{N_{2}}^{N_{1}} = P = J \frac{R_{x}C_{1}}{R_{1}} S$$

$$J = 0, 1 \cdot 0, 0S \cdot 30 \cdot \frac{166S}{930} = 926$$

$$\Delta P = \left(\frac{JP}{JR_{x}} \Delta R_{x}\right)^{2} + \left(\frac{JP}{JC_{1}} \Delta C_{1}\right)^{2} \cdot \left(\frac{JP}{JR_{1}} \Delta R_{x}\right)^{2} + \left(\frac{JP}{JC_{1}} \Delta C_{2}\right)^{2} = \frac{1}{\sqrt{2}} \left(\frac{JP}{JR_{x}} \Delta R_{x}\right)^{2} + \left(\frac{JP}{JC_{x}} \Delta R_{x}\right)^{2} + \left(\frac{JP}{R_{x}} \Delta R_{x}\right)^{2} + \left(\frac{JP}{R_{x}$$

Графики (перечень графиков, которые составляют Приложение 2) 12.

Предстовлены от дельно в прилошении 2

13. Окончательные результаты.

He = 25.1 & Br = 0,18 Th Hm = 45.3 A/W Bm = 0,38 Th Am = 4121,8 DL P = (4,35 ± 0,98) · 10 ° , Cp = 23,190, d = 0,95 Hmax = 4896,8 DL npu H = 43,8 A

14. Выводы и анализ результатов работы

д испедовал основине св-ва и харантеристини
феррошание тинов с помощью осущлограра. В ходе
работы миого были получены графини иривой
намачничивания и зависениости манитной проинувености
от напрешениюсти манитного поля значения остаточной индушии от поэруштивной силы, маний
ной проши увености в состоящи масыщения.
После шиого были распитены шощность потерь
эчерини в процессе переменничность поле, при
инторой этот процесс наблюдаетея.

Таблица 1

X_c , дел.	Y_r , дел.	H_c , A/M	B_r , T_A
0,8	1,0	25,1	0,18

Таблица 2

 $X_m, \ \partial e \lambda, \qquad Y_m, \ \partial e \lambda, \qquad H_m, \ A/M \qquad B_m, \ T \lambda \qquad \mu_m$ 2, 4 2, 2 45, 3 0,39 4(21,5

 $N_1 = 1665$ bum $V_2 = 970 bum

8, -68 Ou = 40%

22 = 440 nom = 1,090

000 gt Pur 44,00,

5=0,64±905a12

Таблица 3: Результаты прямых измерений и расчетов

U, B	Х, дел.	$K_x, \frac{\mathrm{B}}{\mathrm{gen}}$	Н, А/м	Ү, дел.	K_y , $\frac{\mathrm{B}}{\mathrm{дел}}$	B, TA	μ
20	2,4	0,1	45,3	2,2	0,05	0,39	4121,5
19	2,3	0,1	¥2,2	2,1	0,05	0,37	408011
18	2,2	0,1	681	2,0	0,05	0,36	4147,86
14	2,1	0,1	65,9	1,9	0,05	0,34	4,4014
16	1,9	0,1	59,6	1,8	0,05	0,32	4144,8
15	1,8	0,1	56,5	1,7	0.05	0,3	4227,5
14	1,7	0,1	34	1,6	0,05	0,3	पात्रप,7
13	1,6	0,1	50,2	1,6	0,05	0,28	4440,8
12	1,4	0.1	43,9	1,5	0,05	0,27	4836,8
11	1,4	0,1	43.8	1,4	0,05	0,25	4534
10	1,1	0,1	34,5	1,2	0,05	0,21	4846,3
9	1	0,1	31,4	1	0,05	0,18	3/84564
8	0,9	0,1	28,3	0,8	0,05	0,14	3838,7
7	0,8	0,1	25,1	0,7	0,05	0,12	3806,4
6	0,4	0,1	22	10,4	0,05	0,12	4342,8
5	4,0	0,1	22	0,6	0,05	O, II	3880

