Querschnittbestimmung von Kabeln und Leitungen

Teil 1: Mindestquerschnitte und Spannungsfall

Der richtige Querschnitt von Kabeln und Leitungen ist eine wichtige Voraussetzung für das Betreiben von elektrischen Anlagen. Wie man ihn korrekt bestimmt, wird in unserer mehrteiligen Beitragsfolge erläutert.

Der Querschnitt macht's

Die korrekte Bestimmung der erforderlichen Querschnitte von Kabeln und Leitungen ist eine wichtige Voraussetzung für die Betriebssicherheit sowie den Schutz von Personen, Nutztieren und Sachwerten beim Betreiben von elektrischen Anlagen:

- Sie vermeidet die Überdimensionierung und damit Verteuerung der Anlage.
- Sie verringert die Störanfälligkeit und senkt dadurch die Betriebskosten.
- Sie wirkt sich kostengünstig auf die Instandhaltung aus.
- Sie ist Voraussetzung für bestimmte Schutzmaßnahmen gegen elektrischen Schlag und unzulässige Erwärmung.

Auswahlkriterien

Die Bemessung von elektrischen Kabeln und Leitungen erfolgt nach den Kriterien:

- Mindestquerschnitt
- Spannungsfall
- Schutz beim indirekten Berühren
- Strombelasbarkeit
- Überlastschutz
- · Kurzschlussschutz.

Faktoren, die diese Kriterien beeinflussen, sind maßgebend für die Auswahl der Leiterquerschnitte. Tafel 1 gibt hierzu einen Überblick.

Mindestquerschnitte

Um mechanische Festigkeit zu erreichen, sind bei Kabeln und Leitungen bestimmte Mindestquerschnitte vorgeschrieben. Diese Werte sind in der DIN VDE 0100-520 im Abschnitt 524, Tabelle 52 J, zusammengefasst.

Feste Verlegung

Für die feste Verlegung von Kabeln, Mantelleitungen und Aderleitungen sind als kleinste Querschnitte zulässig:

- Leistungs- und Lichtstromkreise 1,5 mm² Cu oder 16 mm² Al
- Melde- und Steuerstromkreise 0,5 mm² Cu
- für elektronische Betriebsmittel auch 0,1 mm² Cu.

Der nach der Vorgängernorm zulässige Mindestquerschnitt 2,5 mm² Al ist vor allem wegen der Bruchgefahr beim Anschließen und Verbinden bei Neuinstallationen nicht mehr anzuwenden.

Um mit diesen Mindestquerschnitten eine

hinreichende mechanische Festigkeit zu erreichen, sind bestimmte Verlegearten einzuhalten.

Kabel und Mantelleitungen. Feste Verlegung von ein- oder mehradrigen Kabeln und Mantelleitungen erfolgt:

- direkt auf der Wand oder an der Decke auf Abstandsschellen
- in Elektro-Installationsrohren
- in einem zu öffnenden oder geschlossenen Elektro-Installationskanal
- an Tragseilen
- auf Kabelpritschen oder in Kabelwannen
- in baulichen Hohlräumen, z. B. in Hohlraumböden oder in Hohldecken
- in Wänden, in Decken oder im Estrich. Beim Verdichten von Beton durch Rütteln, Schütteln und Stampfen müssen Mantelleitungen mechanisch geschützt werden. Das ist auch für Kabel zu empfehlen.

Aderleitungen (z.B. H07V-U; alte Bezeichnung NYA) dürfen nur verlegt werden

- · in Elektro-Installationsrohren
- in geschlossenen Elektro-Installationskanälen
- · auf Isolatoren
- in zu öffnenden Elektro-Installationskanälen, wenn
 - die Deckel nur mit Werkzeugen oder besonderer Anstrengung von Hand geöffnet werden können und
 - der Kanal mindestens der Schutzart IPX4 (Spritzwasserschutz) oder IP XXD (geschützt gegen den Zugang mit Draht von 1 mm Ø und 100 mm Länge) entspricht.

Schutz- und Potentialausgleichsleiter. Eine Ausnahme machen Schutz- und Potentialausgleichsleiter. Sie dürfen als Aderleitungen direkt auf, im und unter Putz sowie auf Pritschen verlegt werden. Für sie gelten andere Mindestquerschnitte (siehe DIN VDE 0100 Teil 540).

Blanke Leiter. Für die feste Verlegung von blanken Leitern sind als Mindestquerschnitte vorgegeben:

Leistungsstromkreise
 10 mm² Cu oder 16 mm² Al

Tafel 1 Einflussfaktoren auf die Querschnittbestimmung

Auswahlkriterium	Länge	Leiter- material	Betriebs- strom	Sicherung oder LS-Schalter Bemessungs- strom	Typ ¹⁾	Vorgeschal- tetes Netz	Verlege- art			Anwen dung des Strom- kreises
Mindestquerschnitt	-	х	-	-	-	-	-	-	-	х
Spannungsfall	х	х	x ²⁾	х	-	-	-	-	-	-
Schutz beim indi- rekten Berühren	х	Х	-	Х	Х	х	-	-	-	-
Strombelastbarkeit	-	х	Х	-	-	-	х	Х	х	-
Überlastschutz	-	х	Х	х	x ³⁾	-	х	Х	х	-
Kurzschlussschutz	х	х	-	х	Х	Х	-	-	-	-

- 1) Betriebsklasse der Sicherung bzw. Auslösecharakteristik des LS-Schalters
- 2) Wenn Bemessungsstrom der Sicherung/des LS-Schalters nicht zugrundegelegt wird
- 3) Gilt nicht für Sicherungen Funktionsklasse a/Teilbereichsschutz

- Schematische Darstellung der zulässigen Spannungsfälle
- a) Stromkreisverteiler im Zählerplatz; b) Stromkreisverteiler außerhalb des Zählerplatzes

Tafel 2 Zulässiger prozentualer Spannungsfall ϵ zwischen der Übergabestelle des EVU (Hausanschluss) und Messeinrichtung

Leistungsbedarf in kVA	Zulässiger Spannungsfall in %	Forderung in
unter 100 ¹⁾	0,5	AVBEItV
100 bis 250	1,0	
über 250 bis 400	1,25	TAB
über 400	1,5	

1) Begrenzung ergibt sich aus den Vorgaben in den TAB

 Melde- und Steuerstromkreise 4 mm² Cu

Festlegungen für Lichtstromkreise mit Kleinspannung sind in Vorbereitung. Blanke Leiter sind auf Isolatoren zu verlegen. Der Einsatz ist auf Sonderfälle begrenzt, z. B. in Schaltanlagen, Akkumulatorenräumen, Anlagen mit Niedervolt-Halogenleuchten usw.

Bewegliche Verbindungen

Bei beweglichen Verbindungen mit isolierten Leitern und Kabeln gelten folgende Vorgaben:

- Für ortsveränderliche oder mit beweglichen Leitungen anzuschließende Betriebsmittel Werte in den entsprechenden DIN-VDE-Bestimmungen und den IEC-Publikationen
- Für Schutz- und Funktionskleinspannung 0,75 mm² Cu
- Für elektronische Betriebsmittel in Melde- und Steuerstromkreisen 0.1 mm² Cu.

Für bewegliche Verbindungen sind flexible Leitungen zu verwenden. Die Bauarten und Einsatzmöglichkeiten sind in DIN VDE 0298 Teil 3 angegeben.

Es ist zu empfehlen, die in der alten Ausgabe der Norm DIN VDE 0100 Teil 520 Ausgabe November 1985 aufgeführten differenzierten Anforderungen auch weiterhin einzuhalten.

Spannungsfall

Zulässige Netzspannung

Elektrische Betriebsmittel und Geräte benötigen für ihr sicheres Funktionieren eine möglichst konstante Betriebsspannung, die der Nennspannung des Netzes nahe kommen soll.

Die Spannung im öffentlichen Niederspannungsnetz darf um + 6 % und - 10 % von der Nennspannung 230 V/400 V abweichen. Durch diese in DIN IEC 38 getroffene Festlegung muss am Hausanschluss eine Netzspannung von mindestens 207 V und höchstens 244 V zwischen Außen- und PEN-Leiter zur Verfügung gestellt werden. Spannungen innerhalb dieses Toleranzbereiches gewährleisten den ordnungsgemäßen Betrieb der Geräte

Folgen von Spannungsabweichungen Abweichungen von der Nennspannung 230 V/400 V ziehen Veränderungen anderer technischer Parameter des Gerätes nach sich.

Zu hohe Spannung. Geräte mit vorwiegend ohmscher Last nehmen einen höheren Strom auf und erwärmen sich stärker. Bei Glühlampen ist eine vorzeitige Zerstörung der Heizwendel und damit eine Verkürzung der Lebensdauer möglich.

Zu geringe Spannung. Bei Motoren kann eine niedrigere Spannung zur erhöhten

Stromaufnahme führen, weil die von ihm angetriebene Maschine oder Anlage an der Kupplung die benötigte Leistung auf diese Weise abverlangt. Ein Überstrom von längerer Dauer hat eine unzulässige Erwärmung zur Folge und führt zur Abschaltung, also zu einer Betriebsstörung. Bei Geräten, die überwiegend Wirkleistung aufnehmen (ohmsche Last), ist die Stromaufnahme bei niedrigerer Spannung dagegen geringer. Es verlängert sich z. B. die Programmdauer eines Waschautomaten. Der Programmschritt "Heizen" wird erst zu einem späteren Zeitpunkt beendet. Das Weiterschalten zum nächsten Schritt erfolgt erst, wenn die Waschlauge die vorgegebene Temperatur erreicht hat.

Zulässige Spannungsfälle

Durch den Spannungsfall an Leitungen und Kabeln wird die Betriebsspannung zusätzlich zu den Toleranzen im Versorgungsnetz verringert. Auch hierfür sind Grenzwerte festgelegt.

Hausanschluss – Verbrauchsmittel. Vom Hausanschluss bis zum Verbrauchsmittel soll der Spannungsfall 4 % der Nennspannung des Netzes nicht überschreiten (DIN VDE 0100-520, Bild ①). Während des Anlaufs von Motoren und beim Einschalten von Verbrauchern mit hohen Einschaltströmen sind abweichende Werte für den Spannungsfall zulässig.

Hauseinführung – Zählerplatz. In der "Verordnung über Allgemeine Bedingungen für die Elektrizitätsversorgung von Tarifkunden" (AVBEItV) wird von der Hauseinführung (Hausanschlusskasten) bis zum Zählerplatz ein Spannungsfall < 0,5 % gefordert. Die Technischen Anschlussbedingungen für den Anschluss an das Niederspannungsnetz (TAB) lassen bei einem Leistungsbedarf über 100 kVA einen gestaffelt erhöhten Spannungsfall für diesen Bereich zu (Tafel 2).

Zähleinrichtung – Verbrauchsmittel. Von der Zähleinrichtung bis zum Verbrauchs-

Tafel 3 Gleichungen zur Berechnung des Leiterquerschnittes nach dem Spannungsfall

	Nr	Ausgehend vom absoluten Spannungsfall	Nr	Ausgehend vom relativen Spannungsfall
M/s should have	1	$A = \frac{2 \cdot l \cdot l \cdot \cos \varphi}{\kappa \cdot \Delta U}$	2	$A = \frac{2 \cdot l \cdot l \cdot \cos \varphi \cdot 100 \%}{\kappa \cdot \varepsilon \cdot U_n}$
Wechselstrom	3	$A = \frac{2 \cdot l \cdot P}{\kappa \cdot \Delta U \cdot U_n}$	4	$A = \frac{2 \cdot l \cdot P \cdot 100 \%}{\kappa \cdot \varepsilon \cdot U_n^2}$
Drehstrom	5	$A = \frac{\sqrt{3} \cdot l \cdot l \cdot \cos \varphi}{\kappa \cdot \Delta U}$	6	$A = \frac{\sqrt{3} \cdot l \cdot l \cdot \cos \varphi \cdot 100 \%}{\kappa \cdot \varepsilon \cdot U_n}$
	7	$A = \frac{l \cdot P}{\kappa \cdot \Delta U \cdot U_n}$	8	$A = \frac{l \cdot P \cdot 100 \%}{\kappa \cdot \varepsilon \cdot U_n^2}$

A Querschnitt in mm²; / Strom in A; κ elektrische Leitfähigkeit in m/Ωmm²; ΔU Spannungsfall in V; ε Spannungsfall in %; U_n Bemessungsspannung in V U_n Leitungslänge in m; cos φ Leistungsfaktor; U_n Wirkleistung in W

② Wirksame vom Strom durchflossene Leiterlänge (Strombahn)
Bei Wechselstrom beträgt sie 2 · I; bei Drehstrom √3 · I aufgrund der Phasenverschiebung von je 120 ° zwischen den Außenleiterspannungen

❸ Zeigerdiagramm zur Darstellung der Phasenverschiebung zwischen den Teilspannungen

mittel soll der Spannungsfall 3 % nicht überschreiten (Bild 1); DIN 18015-1.

Er verteilt sich auf die Stromkreisleitung (Bild **1**a) und schließt die Zuleitung zum Stromkreisverteiler ein, wenn dieser außerhalb des Zählerplatzes angeordnet ist (Bild **1**b).

Da der Gesamtspannungsfall 4 % nicht überschreiten soll, ist ggf. ein kleinerer Wert anzusetzen.

Berechnungsgrundlagen

Der erforderliche Querschnitt errechnet sich nach den in Tafel 3 zusammenge-

fassten Gleichungen. Berücksichtigt wird dabei die wirksame, vom Strom durchflossenen Leiterlänge (Bild ②) und der Leistungsfaktor cos φ. Der induktive Widerstand der Leitungen wird vernachlässigt, was in der Praxis üblich ist.¹)

In den Gleichungen (1) (3) (5) und (7) wird vom absoluten Spannungsfall ΔU in Volt und in (2) (4) (6) und (8) vom prozentualen Spannungsfall

$$\varepsilon = \frac{\Delta U}{U_n} \cdot 100 \%$$

ausgegangen. Da der Spannungsfall aufgrund unterschiedlicher Nennspannungen (z. B. 230 V oder 400 V) in Verordnungen, Normen usw. immer in Prozent angegeben wird, werden vor allem die zuletzt genannt Gleichungen verwendet.

Die Gleichungen (1) (2) (5) und (6) enthalten den Leistungsfaktor $\cos \varphi$. Da in (3) (4) (7) und (8) mit der Wirkleistung P gerechnet wird, ist er dort bereits berücksichtigt. Der Spannungsfall ΔU bzw. ϵ ist somit von der Wirkleistung P oder dem Wirkanteil des Stromes $I \cdot \cos \varphi$ abhängig.

Zeigerdiagramm

Die Klemmenspannung am Verbraucher $U_{Verbr.}$ ist gegenüber dem Strom I um den Winkel ϕ phasenverschoben. Der über der Leitung messbare Spannungsfall U_{Ltg} hat nicht dieselbe Richtung wie die Klemmenspannung am Verbraucher. Aufgrund des ohmschen Widerstandes der Leitung liegt dieser Spannungsabfall in der gleichen Richtung wie der Strom I.

Um festzustellen, wie weit die Verbraucherspannung gegenüber der Netzspannung durch die Wirkung des Leiterwiderstandes abgesenkt wurde, wird der Netzspannungszeiger auf den Verbraucherspannungszeiger gedreht. Als Differenz ergibt sich der Spannungsfall ΔU .

Der allgemein übliche Ausdruck

"Klemmenspannung + Spannungsfall = Netzspannung"

gilt also nur unter Beachtung der unterschiedlichen Richtungen der einzelnen Spannungen im Zeigerdiagramm.

Als Näherung für den Spannungsfall gilt

$$\begin{split} &\text{mit} && \cos \phi \approx \frac{\Delta U}{U_{Ltg}} \\ &\Delta U \approx U_{Ltg} \cdot \cos \phi = I \cdot R_L \cdot \cos \phi \\ &\text{und mit} && R_L = \frac{2 \cdot I}{\kappa \cdot A} \\ &\Delta U \approx \frac{2 \cdot I \cdot I \cdot \cos \phi}{\kappa \cdot A} \,. \end{split}$$

Nach der Umstellung ergibt sich Gleichung (1) für den Leiterquerschnitt

¹⁾ Bei genaueren Berechnungen, z. B. bei Querschnitten ab 25 mm², kann auf Beiblatt 5 zu DIN VDE 0100 zurückgegriffen werden, das den induktiven Widerstand berücksichtigt.

4 Diagramme zur Ermittlung des Querschnitts zur Ermittlung des Querschnitts für Cu-Leiter anhand des zulässigen Spannungsfalls, des Bemessungsstromes der LS-Schalter bzw. der Sicherungen und der Leitungslänge ($\cos \varphi = 1$)

- a) Wechselstromleitungen 1,5 und 2,5 mm²
- b) Drehstromleitungen 10 und 16 mm²

$$A \approx \frac{2 \cdot l \cdot I \cdot \cos \varphi}{\kappa \cdot \Delta U}$$

Vorgaben für den Bemessungsstrom und den Leistungsfaktor $\cos \phi$

Öffentliches NS-Netz. In Anlagen und Wohngebäuden, die an das öffentliche Niederspannungsnetz angeschlossen werden, ist stets der Bemessungsstrom der vorgeschalteten Sicherung oder des Leitungsschutzschalters bei der Ermittlung des Spannungsfalls zugrundezulegen.

Entsprechende Vorgaben sind in den AVBEItV und in DIN 18015-1 enthalten. Dieses Herangehen ist für die Bemessung des Spannungsfalls in Zuleitungen zu Verteilern und für Steckdosenstromkreise auch dort zu empfehlen, wo solche Forderungen nicht erhoben werden.

Ähnlich ist es mit dem cos φ . Hier ist der für die Berechnung ungünstigste Fall, also cos $\varphi=1$, anzunehmen.

Mit den Gleichungen in Tafel 3 wird der Spannungsfall bei einer Leitertemperatur von 20 °C ermittelt, wie das in der Praxis üblich ist. Bei höheren Leitertemperaturen vergrößert sich durch den erhöhten Leitungswiderstand der Spannungsfall. Bei einer zulässigen Betriebstemperatur von 70 °C sind das etwa 20 %.

Beispiel 1. Für eine in einem Einfamilienhaus vom Stromkreisverteiler im Zählerplatz 25 m entfernt angeordnete Steckdose mit Schutzkontakt ergibt sich bei der Absicherung mit einem LS-Schalter 16 A bei $\epsilon=3$ % für Kupferleitungen nach Gleichung (2) in Tafel \odot der Querschitt

$$A = \frac{2 \cdot 25 \text{ m} \cdot 16 \text{ A} \cdot 1 \cdot 100 \text{ \%}}{56 \text{ m}/\Omega \text{mm}^2 \cdot 3 \text{ %} \cdot 230 \text{ V}}$$

 $A = 2.07 \text{ mm}^2$

Gewählt wird der nächste genormte Querschnitt von 2,5 mm² Cu.

Beispiel 2. Die Steckdose im Beispiel 1 ist nur 15 m vom Stromkreisverteiler entfernt. Der Verteiler ist außerhalb des Zählerplatzes angeordnet und wird durch eine 10 m lange Zuleitung mit Drehstrom 3 x 63 A vom Zähler eingespeist. Es ist zu prüfen, ob ein Querschnitt 5 x 10 mm² Cu der Zuleitung zum Zähler ausreicht, wenn die Leitung zur Steckdose mit dem Querschnitt 3 x 1,5 mm² Cu ausgeführt wird.

• Stromkreis zur Steckdose

$$A = \frac{2 \cdot 15 \text{ m} \cdot 16 \text{ A} \cdot 1 \cdot 100 \text{ \%}}{56 \text{ m}/\Omega \text{mm}^2 \cdot 3 \text{ %} \cdot 230 \text{ V}}$$

 $A = 1,24 \text{ mm}^2$

Beim Querschnitt 1,5 mm² Cu reduziert sich ϵ auf (1,24/1,5) · 3 % = 2,48 %.

• Zuleitung Zähler – Verteiler Der Spannungsfall in der Zuleitung darf damit 3% – 2,48 % = 0,52 % betragen. Mit Gleichung (6) in Tafel 3 ergibt sich:

$$A = \frac{\sqrt{3} \cdot 10 \text{ m} \cdot 63 \text{ A} \cdot 1 \cdot 100 \%}{56 \text{ m}/\Omega \text{mm}^2 \cdot 0,52 \% \cdot 400 \text{ V}}$$

 $A = 9.35 \text{ mm}^2$

Dieser Querschnitt ist kleiner als 10 mm² Cu und reicht demzufolge aus.

Motoranschluss. In Anlagen, die mit Motorschutzschaltern, Bimetallrelais oder einstellbaren Leistungsschaltern geschützt werden, ist der eingestellte Wert anstelle des Bemessungsstromes der Sicherung oder des Leitungsschutzschalters Grundlage der Berechnung. Hier wird der tatsächliche cos φ berücksichtigt, der bei Motoren meistens bekannt ist.

Ein kurzzeitig höherer Spannungsfall muß bei der Querschnittsbestimmung nicht berücksichtigt werden, wenn sich das nicht negativ auf andere Verbraucher auswirkt. Die TAB lassen deshalb gemäß Abschnitt 8.1.2 nur einen Anzugstrom bis 60 A für Drehstrommotoren und Wechselstrommotoren bis 1,4 kW Nennleistung zu.

Überlastfreie Verbraucher. In Stromkreisen mit Verbrauchsmitteln, bei denen keine Überlastung auftreten kann, erfolgt die Berechnung mit dem Bemessungsstrom des Verbrauchsmittels und nicht der Sicherung oder des LS-Schalters. Das ist z. B. bei Elektroherden der Fall. Hier wird die installierte Leistung bzw. der höchste je Außenleiter fließende Strom in die Gleichung eingesetzt.

Mehrere Stromkreisverteiler. Liegen mehrere Stromkreisverteiler in Reihe, so addieren sich die Spannungsfälle

$$\varepsilon = \varepsilon_1 + \varepsilon_2 + \dots + \varepsilon_n$$

Auch bei dem am weitesten vom Bezugspunkt, z. B. dem Zähler entfernten Verbraucher, darf der zulässige Spannungsfall nicht überschritten werden. Er läßt sich auch mit Tabellen ermitteln, die u. a. das Beiblatt 5 zu DIN VDE 0100 enthält. Mit den Gleichungen in Tafel 3 erarbeitete Diagramme (Bild 4) bringen einen erheblichen Zeitgewinn. Die Beispiele sind zur Veranschaulichung eingezeichnet.

H. Senkbeil

Bemessung nach der Strombelastbarkeit

Querschnittbestimmungvon Kabeln und Leitungen

Teil 2: Strombelastbarkeit

Im Teil 1 wurde die Bemessung des Querschnitts nach den Kriterien Mindestquerschnitt und Spannungsfall behandelt. Mit der Auswahl nach der Strombelastbarkeit wird die Beitragsfolge fortgesetzt. Als Grundlage für die Bemessung dient die Norm DIN VDE 0298 Teil 4 [1].

Strombelastbarkeit

Unter Strombelastbarkeit ist der zulässige Belastungsstrom zu verstehen, den ein Kabel oder eine Leitung einer bestimmten Ausführung (Leiter- und Isolierwerkstoff, Leiterquerschnitt, Aufbau) bei einer vorgegebenen Betriebsart, festgelegten Verlegebedingungen (Verlegeart, Häufung, Umgebungstemperatur) sowie äußeren Einflüssen, z. B. Sonneneinstrahlung, führen kann, ohne sich über die festgelegte Betriebstemperatur hinaus zu erwärmen.

Oftmals wird der Leiterquerschnitt nur anhand der Strombelastbarkeit in Verbindung mit dem Überlastschutz bestimmt. Dabei wird übersehen, dass der damit ermittelte Wert nicht die Gewähr dafür bietet, dass alle anderen Kriterien damit automatisch erfüllt sind. So sind z. B. der Schutz beim indirekten Berühren durch automatische Abschaltung der Stromversorgung durch Leitungsschutzsicherungen, Leitungsschutzschalter oder andere Überstromschutzeinrichtungen, die Einhaltung des im Teil 1 besprochenen Spannungsfalls und der Kurzschlussschutz von der Leitungslänge abhängig. Die Leitungslänge hat aber keinen Einfluß auf die Strombelastbarkeit.

Die Wärmeentwicklung (Temperaturerhöhung gegenüber der Umgebungstemperatur) in einem Leiter ist abhängig vom Leitermaterial (Cu oder Al), vom Quadratwert des Belastungsstromes, dem Leiterquerschnitt und der Zeitdauer des Stromflusses

Durch unterschiedliche elektrische Leitwerte ergeben sich bei gleicher Stromstärke, gleichem Querschnitt, gleicher Lei-

tungslänge und gleicher Stromflußdauer unterschiedliche Verlustwärmemengen. Grundlage für deren Ermittlung ist die Verlustleistung. Je Leiter gilt:

$$P_V = \frac{I^2 \cdot l}{\kappa \cdot A}$$

 P_{v} Verlustleistung in W

I Belastungsstrom in A

A Leiterquerschnitt in mm²

 κ elektrische Leitfähigkeit in m/(Ω mm²)

Leitungslänge in m

Für Wechselstrom muss der errechnete Wert mit zwei und für symmetrische Drehstrombelastung mit drei multipliziert werden, um die Verlustleistung je Leitung zu bestimmen. Die Verlustwärmemenge erhält man durch Multplikation mit der Stromflußdauer.

Die durch den Strom erzeugte Verlustwärme wird über die Leiter- und Mantelisolierung, über Rohre und Kanäle an die umgebende Baukonstruktion (Mauerwerk, Beton) oder direkt an die Luft abgegeben. Die Wärmeabführung wird durch den Wärmewiderstand R_{th} der verlegten Leitung charakterisiert. Dieser Widerstand nimmt umgekehrt proportional zur Leitungslänge ab. Als Temperaturerhöhung gegenüber der Umgebungstemperatur ergibt sich

$$\vartheta_{Ltg} - \vartheta_{U} = P_{V} \cdot R_{th}.$$

 $\begin{array}{l} \vartheta_{\mathit{Ltg}} \text{ Leitungstemperatur in °C} \\ \vartheta_{\mathit{U}} \text{ Umgebungstemperatur in °C} \\ P_{_{\mathit{V}}} \text{ Verlustleistung in W} \\ R_{\mathit{th}} \text{ Wärmewiderstand in K/W} \end{array}$

Da die Verlustleistung mit der Leitungslänge zunimmt und der Wärmewiderstand im gleichen Maß abnimmt, hängt die Leitungstemperatur vom Quadrat des Belastungsstromes ab und nicht von der Leitungslänge.

Eine unzulässige Erwärmung lässt sich nur verhindern, wenn die durch den Stromfluß verursachte Wärme auch abgeführt wird. Übersteigt der Belastungsstrom und damit die Verlustleistung den zulässigen Wert, so erhöht sich die Temperatur und überschreitet die für den Leitungstyp maximal zulässige Betriebstemperatur. Die Verlegebedingungen beeinflussen die Wärmeabführung maßgeblich. Einfluß auf diesen Prozess haben vor allem die folgenden Faktoren:

Verlegeart. Je nach Verlegeart (Tafel 1) sind an der Wärmeabführung Wärmeleitung, Konvektion oder Wärmestrahlung in unterschiedlicher Weise beteiligt. Günstige Bedingungen liegen dort vor, wo ungehindert Wärme abgeführt werden kann. Das ist z. B. bei Leitungen auf Abstandsschellen oder an Spannseilen der Fall. Hier nimmt bei entsprechend großem Raumvolumen die umgebende Luft die Wärme auf. Luftpolster in Rohren und Kanälen, Wärmedämmschichten, Mantelisolierungen und Hohlräume haben dagegen einen hohen Wärmewiderstand, der die Wärmeableitung behindert. Das ist besonders dort der Fall, wo in Rohre eingezogene Leitungen oder Kabel in Wärmedämmschichten eingebettet werden.

Umgebungstemperatur. Eine Wärmeabführung ist nur möglich, wenn die Umgebungstemperatur niedriger ist als die Betriebstemperatur des Kabels oder der Leitung. Je größer das Temperaturgefälle, desto mehr Wärme kann in der gleichen Zeit abgegeben werden. Kabel und Leitungen dürfen deshalb bei höheren Umgebungstemperaturen weniger belastet werden als bei niedrigeren Werten.

Häufung. Die ungehinderte Wärmeableitung wird gestört, wenn Kabel und Leitungen gehäuft verlegt werden. Sie erwärmen sich gegenseitig. Deshalb dürfen gehäuft verlegte Kabel und Leitungen nur geringer belastet werden als eine Einzelleitung. Es ist allerdings möglich, darauf zu verzichten, wenn ein Abstand vom zweifachen größten Außendurchmesser der Leitung eingehalten wird.

Wärmebeständigkeit der Isolierung. Es ist erforderlich, bei der Auswahl des Kabels oder der Leitung die zulässige Betriebstemperatur zu beachten. Sie darf nicht höher sein als der zulässige Wert. Das am häufigsten verwendete Isoliermaterial PVC hat eine zulässige Betriebstemperatur von 70 °C, sofern nicht die Ausführung mit erhöhter Wärmebeständigkeit von 90 °C gewählt wird. 90 °C sind nur zulässig, wenn die angeschlossenen Betriebsmittel ebenfalls für diese Temperatur ausgelegt sind. Die Tabelle 1 in [1] gibt eine Übersicht über die Kabel- und Leitungsbauarten mit den zulässigen Betriebstemperaturen am Leiter mit Hinweis auf die zutreffende Tabelle für die zulässige Strombelastbarkeit.

Querschnittbestimmung bei normalen Bedingungen

Normale Bedingungen liegen bei den üblichen Kabeln und Leitungen mit einer Be-

Referenzverlegeart ¹⁾	A1	A2			B1		B2		
Darstellung									
	Verlegung in wäri oder Fußböden	megedämmten Wände	en	Elek für l	egung in Elektro-Ins tro-Installationskan Jnterflurverlegung (i ufgestellten Fußböd	älen au n offen	f oder in Wä en oder belü	nden, in Kanälen fteten Kanälen), auch	
Verlegebedingung	Aderleitung im Elektro- Installations- rohr oder -kanal	mehradrige Kabel od Mantelleitung im Elektro- Installations- rohr oder -kanal	der kt verlegt	eina	rleitung oder Idrige Kabel/Mantel Ingen ²⁾	-	mehradrige Kabel oder Mantelleitungen ³⁾		
Referenzverlegeart		С			Е		F	G	
Darstellung	000				d	*::::::::::::::::::::::::::::::::::::::	000 oder 0 ¥ 0 Å 0 Å ≥ d 	d ⊕ ⊕ ⊕ ≥d ≥d ⊕ ₹d ⊕ ₹d	
Verlegebedingung	Direkte Verlegung auf ungelochten Fußleistenkanäle werk oder Beton schen Wärmewid einadrige Kabel oder	Stegleitung in Wänden, Decken			ehradrige Kabel einadrige Kabel oder Mantelleitun				
	Mantelleitungen	Mantelleitungen			Mantelleitungen	mit Be	erührung	ohne Berührung, auch Aderleitungen auf Isolatoren	

triebstemperatur von 70 °C vor, wenn die Strombelastbarkeit den Belastbarkeitstabellen in [1], Tabelle 3 und 4, entnommen werden kann und keine Umrechnung mit Umrechnungsfaktoren erfolgen muss. Tafel 2 gibt auszugsweise einige Werte wieder. Sie gelten bei einer Umgebungstemperatur von 30 °C. In Deutschland wurde schon seit Jahrzehnten entsprechend den klimatischen Bedingungen die Strombelastbarkeit auf eine Umgebungstemperatur von 25 °C bezogen. Im Anhang A zur Norm [1] sind in den Tabellen A 1

Für in Erde verlegte Kabel gelten andere Betriebsbedingungen, auf die hier nicht eingegangen werden soll. Leitungen dürfen nicht in der Erde verlegt werden.

und A 2 die zutreffenden Werte der Strom-

belastbarkeit ausgewiesen. Tafel 2 ent-

hält ebenfalls Auszüge daraus.

Voraussetzungen. Eine Anwendung von Tafel 2 setzt voraus, dass

1. die Belastung nicht größer sein darf als der zulässige Tabellenwert

(Die Tabellen sind für Dauerbelastung

- mit konstantem Belastungsstrom ausgelegt. Bei niedrigerer Belastung sind Reserven vorhanden.),
- 2. die Umgebungstemperatur den Bezugswert in der jeweiligen Tabelle von 30 °C oder 25 °C nicht überschreitet und
- 3. keine Kabel- und Leitungshäufungen berücksichtigt werden müssen.

Das trifft bei Einzelverlegung zu, kann aber selbst dort möglich sein, wo Kabel und Leitungen unmittelbar nebeneinander liegen und sich gegenseitig berühren. Hier ist eine Prüfung der Belastungsverhältnisse notwendig.

Bedingungen bei Einzelverlegung. Jedes Installationsrohr oder jeder Installationskanal darf, bei mehrzügigen Kanälen jeder Zug, nur einen Stromkreis mit Aderleitungen oder eine mehradrige Mantelleitung enthalten. Bei benachbarten Kabeln und Leitungen muss der lichte Abstand das Zweifache des größten Außendurchmessers betragen. Das gilt auch für das Verlegen auf Kabelwannen oder Pritschen.

Installationen in Wohnungen und ähnlichen Bauten. Sie sind ein Beispiel, wo auch bei Leitungshäufungen Umrechnungsfaktoren außer Acht bleiben können. Die Stromkreise werden in der Regel nicht gleichzeitig und auch nicht mit Dauerstrom belastet. Ausgenommen davon sind mit Dauerlast beaufschlagte Stromkreise, z. B. für Nachtstromspeicherheizungen. Hier darf auf einen Umrechnungsfaktor für Leitungshäufungen nicht verzichtet werden, weil bei der erwarteten längeren Betriebsdauer die zulässige Betriebstemperatur überschritten werden kann.

Ermittlung der Strombelastbarkeit. Es ist die zutreffende Referenzverlegeart festzulegen. Für die feste Verlegung sind dazu in [1], Tabelle 2, insgesamt acht Referenzverlegearten mit den zugehörigen Betriebsbedingungen angegeben. In der Praxis sind wesentlich mehr Verlegearten üblich. Hier muß man selbst eine Zuordnung zu der jeweils zutreffenden Referenzverlegeart vornehmen. Für häufig vorkommende Verlegearten sind in Tafel 1 die zu empfehlenden Referenzverlegearten zusammengefasst. Eine weitere Hilfestellung liefert Tabelle 7 in [1].

Lässt sich eine Leitung auf ihrem Weg zum Verbraucher verschiedenen Verlegearten zuordnen, dann ist die Referenzverlegeart zu wählen, bei der das Kabel oder die Leitung am geringsten belastet werden darf. Für einen gewählten Querschnitt ist dann die Strombelastbarkeit I_r der Tafel 2 bzw. den Tabellen in [1] zu entnehmen.

Für **Wechselstromkreise** gelten die Tabellenwerte für zwei belastete Adern, weil der PE-Leiter im fehlerfreien Betrieb stromlos bleibt.

Im **Drehstromkreis** ist die Anzahl der belasteten Adern auch bei Mitführung eines

PEN- oder N-Leiters mit drei anzusetzen. Das gilt nicht, wenn der N- oder PEN-Leiter belastet, die Außenleiter aber nicht entlastet werden.

Die Gründe beruhen auf der Tatsache, dass bei einer symmetrischen Belastung mit sinusförmigen Strömen im PEN- bzw. N-Leiter kein Strom fließt, aber trotzdem die höchste thermische Beanspruchung der Leitung durch die Stromwärme erfolgt.

Bei unsymmetrischer Belastung fließt im N- bzw. PEN-Leiter nur der Ausgleichstrom, der in der geometrischen Summe aller Ströme am Wert Null fehlt. Im Drehstromsystem ist bekanntermaßen die Summe aller Ströme gleich Null.

Durch Oberschwingungen kann abweichend vom Normalfall der Strom im N-

oder PEN-Leiter aber sogar höher sein als der Außenleiterstrom, wenn Verbraucher einen nicht sinusförmigen Strom verursachen. Ist das der Fall, dann muss auch der 4. Leiter berücksichtigt und ggf. ein größerer Querschnitt gewählt werden. Auf Einzelheiten kann in diesem Beitrag nicht detailliert eingegangen werden.

Die **zulässige Strombelastbarkeit** I_z muss bei Anwendung der Tafel 2 größer, mindestens aber genau so groß sein wie der Belastungsstrom: $I_z \ge I_h$.

Da keine abweichenden Betriebsbedingungen vorliegen, ist der **Tafelwert I_r** gleich der zulässigen Strombelastbarkeit I_r und damit gilt hier $I_z = I_r \ge I_b$.

Der **Betriebstrom** I_b ist der Nennstrom des Verbrauchsmittels, z. B. Motornenn-

Tafel Pelastbarkeit von Kabeln und Leitungen für feste Verlegung in Gebäuden, Betriebstemperatur 70 °C, Umgebungstemperaturen 25 und 30 °C (nach [1])

Referenzverlegeart	A1		A2		B1		B2		С		E		F			G	
Verlegung	in Wär gedäm Wände	mten			in Elek Install rohren	ations-			auf eii Wand						frei in	Luft	
Anzahl der belasteten Adern	2	3	2	3	2	3	2	3	2	3	2	3	2 vert., hori- zont.	3 vert. hori- zont	3 ge- bün- delt	3 hori- zont.	3 vert
Nennquerschnitt Cu in mm ²		Strombelastbarkeit in A															
Umgebungstempe	eratur 3	atur 30 °C															
1,5	15,5 ¹⁾	13,5	15,5 ¹⁾	13,0	17,5	15,5	16,5	15	19,5	17,5	22	18,5	-	_	_	_	_
2,5	19,5	18	18,5	17,5	24	21	23	20	27	24	30	25	-	-	-	-	-
4	26	24	25	23	32	28	30	27	36	32	40	34	-	-	-	-	-
4	-	-	-	-	-	-	-	-	-	33 ²⁾	-	-	-	-	-	-	-
6	34	31	32	29	41	36	38	34	46	41	51	43	-	_	-	-	-
10	46	42	43	39	57	50	52	46	63	57	70	60	-	_	-	-	-
10	_	-	-	-	-	-	-	47 ²⁾	-	59 ²⁾	_	-	-	_	-	-	_
16	61	56	57	52	76	68	69	62	85	76	94	80	-	_	-	-	-
25	80	73	75	68	101	89	90	80	112	96	119	101	131	114	110	146	13
35	99	89	92	83	125	110	111	99	138	119	148	126	162	143	137	181	16:
50	119	108	110	99	151	134	133	118	168	144	180	153	196	174	167	219	19 ⁻
70	151	136	139	125	192	171	168	149	213	184	232	196	251	225	216	281	25
95	182	164	167	150	232	207	201	179	258	223	282	238	304	275	264	341	31:
Umgebungstempe	eratur 2	5 °C	•			•			•	•	•		•		•		
1,5	16,5 ¹⁾	14,5	16,5 ¹⁾	14,0	18,5	16,5	17,5	16	21	18,5	23	19,5	-	_	-	_	-
2,5	21	19	19,5	18,5	25	22	24	21	29	25	32	27	-	-	-	-	-
4	28	25	27	24	34	30	32	29	38	34	42	36	-	-	-	-	-
4	-	-	-	-	-	-	-	-	-	35 ²⁾	-	-	-	-	-	-	-
6	36	33	34	31	43	38	40	36	49	43	54	46	-	-	-	-	-
10	49	45	46	41	60	53	55	49	67	60	74	64	-	-	-	-	-
10	-	-	-	-	-	-	-	50 ²⁾	-	63 ²⁾	-	-	-	-	-	-	-
16	65	59	60	55	81	72	73	66	90	81	100	85	-	-	-	-	-
25	85	77	80	72	107	94	95	85	119	102	126	107	139	121	117	155	13
35	105	94	98	88	133	117	118	105	146	126	157	134	172	152	145	192	17:
50	126	114	117	105	160	142	141	125	178	153	191	162	208	184	177	232	209
70	160	144	147	133	204	181	178	158	226	195	246	208	266	239	229	298	269
95	193	174	177	159	246	219	213	190	273	236	299	252	322	292	280	361	330

¹⁾ Bei Wandaufbau: Äußere Beplankung 10 mm Holzfaserplatten, Wärmedämmung mit 100 mm Mineralfaser, innere Beplankung mit 25 mm Holzfaserplatte mit Wärmeleitfähigkeit 0,1 W/K m senkrecht und 0,23 W/K m parallel zur Plattenebene

²⁾ Gilt nicht für Verlegung auf einer Holzwand

Tafel 4 Umrechnungsfaktoren f_2 für Häufung (Auszug aus [1])

Anordnung				nl der		sel- od	er	
			1	2	3	4	5	6
Gebündelt direkt auf der Wand, dem Fußboden, im Elektro- Installationsrohr oder -kanal,auf oder in der Wand			1,00	0,80	0,70	0,65	0,60	0,57
Einlagig auf der Wand oder Fußboden, mit Berührung			1,00	0,85	0,79	0,75	0,73	0,72
Einlagig auf der Wand oder Fußboden, mit Zwischenraum gleich Leitungsdurchmesser			1,00	0,94	0,90	0,90	0,90	0,90
Einlagig unter der Decke, mit Berührung			0,95	0,81	0,72	0,68	0,66	0,64
Einlagig unter der Decke, mit Zwischen- raum gleich Leitungs- durchmesser	-dd		0,95	0,85	0,85	0,85	0,85	0,85
		Anzahl der Wannen						
Gelochte Kabelwanne, mit Berührung	2 300 mm	1 2 3 6	1,00 1,00	0,88 0,87 0,86 0,84	0,79	0,79 0,77 0,76 0,73	-	0,76 0,73 0,71 0,68
Ungelochte Kabelwanne, mit Berührung	<u>@@@@@</u> ≥ 300 mm	1 2 3 6	0,97 0,97	0,83 0,82		0,72 0,71	-	0,71 0,68 0,66 0,63

strom, Nennstrom der Steckdose oder bei Zuleitungen zu Verteilungen der Nennstrom des Überstromschutzorgans der entsprechenden Leitung.

Beispiel 1: Wie hoch darf bei einer Umgebungstemperatur von 25 °C eine zum Teil auf Abstandsschellen und zum Teil auf gelochter Kabelbahn verlegte und mit Drehstrom betriebene Mantelleitung NYM-J 5 x 6 mm² Cu belastet werden?

Antwort: Nach Tafel \bigcirc ist das Verlegen auf Abstandsschellen der Verlegeart C, das Verlegen auf einer gelochten Kabelwanne Verlegeart E zuzuordnen. Zu wählen ist die Verlegeart C, weil hier der Wärmewiderstand größer ist als bei E. Nach Tafel \bigcirc ist für drei belastete Adern eine Strombelastbarkeit $I_r = 43$ A zulässig. Da keine Umrechnung notwendig ist, gilt $I_r = I_z = 43$ A.

Beispiel 2: Wie hoch darf bei einer Umgebungstemperatur von 25 °C eine im Fußboden verlegte Mantelleitung 3 x 2,5 mm² Cu belastet werden?

Antwort: Nach Tafel \bigcirc ist Verlegeart A2 zu wählen. Das gilt für das Verlegen ohne und mit Rohr gleichermaßen. Nach Tafel \bigcirc ist eine Strombelastbarkeit $I_r = I_z = 19,5$ A zulässig.

Abweichende Betriebsbedingungen

Als abweichende Bedingungen bei der Querschnittbestimmung sind zu berücksichtigen:

- eine andere Umgebungstemperatur als 30 °C oder 25 °C und
- mehrere gemeinsam verlegte Kabel und Leitungen, wenn sie sich gegenseitig berühren oder in einem Zug eines Kanals oder einem einzügigen Kanal verlegt sind oder wenn bei paralleler Verlegung ein lichter Abstand vom zweifachen Außendurchmesser des Kabels mit dem größten Querschnitt nicht eingehalten wird.

Abweichende Umgebungstemperaturen.

Diese können sowohl über als auch unter 30 °C liegen. Die Strombelastbarkeit bei höheren oder niederen Temperaturen als 30 °C errechnet sich durch Multiplikation der Strombelastbarkeitswerte I_r in Tafel 2 mit den zutreffenden Umrechnungsfaktoren f_1 für abweichende Umgebungstemperaturen. Auszugsweise sind die zutreffenden Umrechnungsfaktoren für Kabel und Leitungen mit einer Betriebstemperatur 70 °C in Tafel wiedergegeben. Die Strombelastbarkeit I_r kann damit sowohl fallen als

Tafel \odot Umrechnungsfaktoren f_1 bei abweichenden Umgebungstemperaturen für PVC isolierte Kabel und Leitungen mit Betriebstemperatur 70 °C (nach [1])

Umgebungs- temperatur in °C	Umrech- nungsfaktor f ₁
10	1,22
15	1,17
20	1,12
25	1,06
30	1,00
35	0,94
40	0,87
45	0,79
50	0,71

auch steigen. Sie errechnet sich aus $I_z = I_r \cdot f_1$.

Da für eine Umgebungstemperatur von 25 °C die Strombelastbarkeit der Tafel verwendet werden kann, ist dafür keine Umrechnung erforderlich. Wenn jedoch der Umrechnungsfaktor für die Häufung zu beachten ist, gilt nur der Bereich der Tafel für eine Umgebungstemperatur von 30 °C.

Beispiel 3: Wie hoch darf die im ersten Beispiel genannte Leitung belastet werden, wenn sie streckenweise parallel zu Heizungsleitungen verlegt wird, wo die Umgebungstemperatur 40 °C betragen kann?

Antwort: Die Strombelastbarkeit I_r für eine Mantelleitung NYM-J 5 x 6 mm² bei der Verlegeart C ist in Tafel ② für eine Umgebungstemperatur 30 °C mit 41 A ausgewiesen. Nach Tafel ③ ist für eine Umgebungstemperatur 40 °C ein Umrechnungsfaktor $f_1 = 0,87$ zu wählen. Die Leitung kann mit

$$I_z = I_r \cdot f_1 = 41 \text{ A} \cdot 0.87 = 35.7 \text{ A}$$

belastet werden.

Häufung. Bei Kabel- und Leitungshäufungen ist ein Umrechnungsfaktor f_2 zu berücksichtigen. Er ist aus Tafel \bigcirc zu entnehmen, sofern die darin auszugsweise genannten Bedingungen zutreffend sind. Wenn ein Faktor f_2 für Häufung angewendet werden muss, so ist die Strombelastbarkeit I_z stets kleiner als I_r .

Bei formaler Anwendung der Faktoren f_2 können sich nicht gerechtfertigte Belastungsreduzierungen ergeben. Deshalb sollte bei der Bestimmung dieses Umrechnungsfaktors Folgendes berücksichtigt werden:

 Die Umrechnungsfaktoren f₂ gelten für Dauerbetrieb mit konstantem Belastungsstrom. Bei geringerer Belastung können sie höher sein. So wird z. B. der Wert 1 erreicht, wenn vier gehäuft verlegte Leitungen jeweils mit dem halben Belastungstrom betrieben werden. Durch die Abhängigkeit vom Quadrat des Belastungsstroms sinkt die Verlustwärme in einer Leitung auf 25 %.

- Aus den zuvor genannten Gründen ist es nicht erforderlich, Leitungen zu berücksichtigen, die unter 30 % des zulässigen Wertes belastet werden.
- Auch Gleichzeitigkeitsfaktoren sollten beachtet werden, weil sich damit die Belastungen ändern.
- Häufungen bis 1 m Länge, wie sie sich z. B. bei der Einführung in Verteiler ergeben, können außer Betracht bleiben.
- Bei gemischter Belegung besteht die Gefahr, dass Leitungen mit kleinerem Querschnitt stärker erwärmt werden. Hier ist es angebracht, Leitungen mit hohem Belastungsstrom möglichst im Abstand (zweifacher Durchmesser) oder zumindest am Rand des Bündels zu verlegen.
- Für eine unter der Decke verlegte Leitung gilt f₂ = 0,95, womit den Auswirkungen eines Wärmestaus entgegengetreten wird.

Die Strombelastbarkeit errechnet sich aus $I_z = I_r \cdot f_2$.

Muss außerdem der Umrechnungsfaktor für abweichende Umgebungstemperaturen f_1 berücksichtigt werden, dann ergibt sich $I_z = I_r \cdot f_1 \cdot f_2$.

Wird der Querschnitt gesucht (Tafel 2), dann ist zu setzen

$$I_r \ge \frac{I_b}{f_1 \cdot f_2}$$

Beispiel 4: Auf einer ungelochten Kabelwanne werden in einer Heizungsanlage für den Anschluss von drei mit Drehstrom betriebenen Pumpen je eine Stromkreisleitung NYM-J und eine Steuerleitung verlegt. Die Pumpen arbeiten im Dauerbetrieb. Der Betriebstrom I_b beträgt 24 A. Von den Pumpen ist stets eine in Reserve. Die Umgebungstemperatur beträgt 25 °C. Welcher Querschnitt ist erforderlich?

Antwort: Da nur zwei Motoren gleichzeitig laufen, sind nur zwei Leitungen zu berücksichtigen. Die Steuerleitungen bleiben außer Betracht. Zu wählen ist nach Tafel die Verlegeart C. Nach Tafel die st für das Verlegen von 2 Leitungen auf einer ungelochten Kabelwanne mit einem Umrechnungsfaktor f_2 = 0,84 zu rechnen. Der Umrechnungsfaktor f_1 für 25 °C ist in Tafel mit 1,06 ausgewiesen.

Der Tafelwert I_r ist aus Tafel ② zu entnehmen, wobei gilt

$$I_r = \frac{I_b}{f_1 \cdot f_2} = \frac{24 \text{ A}}{1,06 \cdot 0,84} = 26,95 \text{ A}$$

Gemäß Tafel 2 ist eine Leitung NYM-J mit 5 x 4 mm² Cu erforderlich. Der darunterliegende Querschnitt 2,5 mm² Cu ist nur bis 25 A belastbar.

Anmerkung. Um wirtschaftlich zu bleiben, sollte man in der Praxis Lösungen anstreben, wo sich Verlegearten mit hohem Wärmewiderstand umgehen lassen und auf Umrechnungsfaktoren nach Möglichkeit verzichtet werden kann. Patentrezepte gibt es dafür nicht. Es ist aber immer zu überlegen, ob nicht ein anderer Leitungsweg gewählt werden sollte, bei dem sich die Anzahl der in einem Leitungsbündel zusammengefassten Leitungen durch eine andere Zuordnung reduzieren lässt.

Literatur

[1] DIN VDE 0298-4 (VDE 0298 Teil 4): 1998-11 Verwendung von Kabeln und isolierten Leitungen für Starkstromanlagen; Teil 4: Empfohlene Werte für die Strombelastbarkeit von Kabeln und Leitungen für die feste Verlegung in Gebäuden und von flexiblen Leitungen.

Korrektur: Im ersten Teil (LuK 12/00, Seite 10, Tafel 3) ist im Zähler der Formeln vier und acht der Strom *I* zu streichen.

Bemessung nach Überlastschutz

Passgenaue Mitarbeiter

Sechs von zehn Ausbildungsbetrieben in Deutschland bieten ihren Azubis schon während der Ausbildung oder direkt danach Gelegenheit, zusätzliche Kenntnisse zu erwerben. Zwei Drittel der Ausbildungsbetriebe rechnen mit einem in den nächsten Jahren zunehmenden Bedarf Zusatzqualifikationen. Wichtigster Antrieb für die Unternehmen ist die Gewinnung effizienter Mitarbeiter. Das macht die Rekrutierung leistungsstarker Azubis und deren passgenaue Ausbildung nötig.

Querschnittbestimmung von **Kabeln und L**eitungen

Teil 3: Schutz bei Überstrom — Schutz bei Überlast

Die Querschnittbestimmung nach Mindestquerschnitt, Spannungsfall und Strombelastbarkeit (Teile 1 und 2) reicht allein nicht aus. Ergänzend werden im Folgenden die Besonderheiten des Schutzes bei Überlast erläutert.

Schutz bei Überstrom

Damit sich Kabel und Leitungen nicht unzulässig erwärmen, müssen sie bei Überstrom geschützt werden. Überstrom ist jeder Strom, der die Strombelastbarkeit überschreitet. Nach den Entstehungsursachen ist zwischen Überlaststrom und Kurzschlussstrom zu unterscheiden.

Ein Überlaststrom entsteht in einem fehlerfreien Stromkreis durch Überlastung eines einzelnen oder durch den gleichzeitigen Betrieb mehrerer Verbraucher.

Der Kurzschluss ist eine durch einen Fehler entstandene leitende Verbindung zwischen betriebsmäßig gegeneinander unter Spannung stehenden Leitern (aktiven Teilen), wenn im Fehlerstromkreis kein Nutzwiderstand liegt. Der dadurch entstehende Kurzschlussstrom ist in der Regel erheblich größer als ein Überlaststrom. Es ist zwischen dem Schutz bei Überlast und dem Schutz bei Kurzschluss zu unterscheiden. Zwischen beiden gibt es viele Gemeinsamkeiten. Sie wirken zusammen und ergänzen sich. Für den Überstromschutz gilt deshalb auch DIN VDE 0100 Teil 430 [1] als gemeinsame Norm. Sowohl zum Überlast- als auch zum Kurzschlussschutz sind Überstromschutzeinrichtungen erforderlich. Ihre Aufgabe ist es, den Überstrom zu unterbrechen, bevor eine Schädigung der Isolierung der Kabel bzw. Leitungen und anderer Betriebsmittel im angeschlossenen Stromkreis eintritt. Unterschieden werden:

► Überstromschutzeinrichtungen, die den Schutz bei Überlast und Kurzschluss übernehmen

Sie müssen jeden Überstrom bei vollkommenem Kurzschluss an ihrer Einbaustelle unterbrechen können.

In der Gebäudeinstallation sind vor allem folgende Schutzeinrichtungen üblich:

- Leitungsschutzsicherungen der Betriebsklasse gG nach DIN VDE 0636 mit den Bauarten Neozed-Sicherungen (DO-System), Diazedsicherungen (D-System) und NH-Sicherungen (NH-System)
- Leitungsschutzschalter nach DIN VDE 0641 Teil 11
- Nichteinstellbare Leistungsschalter der K- und Z-Charakteristik
- Selektive Hauptleitungsschutzschalter.
- ▶ Überstromschutzeinrichtungen, die nur bei Überlast schützen

Hierbei handelt es sich um stromabhängig verzögerte Schutzeinrichtungen mit unzureichendem Schaltvermögen, z. B. Schütze mit Überlastauslöser oder mit thermischen Auslösern versehene Motorstarter.

▶ Überstromschutzeinrichtungen, die nur bei Kurzschluss schützen

Sie müssen Kurzschlussströme bis zum Strom bei vollkommenem Kurzschluss an ihrer Einbaustelle unterbrechen können. Dazu zählen Leistungsschalter mit Schnellauslösern und Teilbereichssicherungen.

Schutz bei Überlast – Zuordnungsbedingungen

Der Schutz bei Überlast setzt voraus, dass der Nennstrom I_n der Überstromschutzeinrichtung nicht größer ist als der zulässige Belastungsstrom oder die Strombelastbarkeit I_z des zu schützenden Kabels bzw. der Leitung (s. Teil 2).

Der Nennstrom I_n muss eher kleiner sein als I_z . Unter Einbeziehung des Betriebsstroms I_b ergibt sich daraus nach [1] die Bedingung (**Nennstromregel**)

$$I_{p} \le I_{p} \le I_{z} \,. \tag{1}$$

- , Betriebstrom des Stromkreises
- Nennstrom der Schutzeinrichtung Bei einstellbaren Schutzeinrichtungen entspricht In dem eingestellten Wert
- I_z Strombelastbarkeit des Kabels oder der Leitungsschutzschalter

Der Schutz bei Überlast ist damit allein aber nicht zu gewährleisten, weil das Auslöseverhalten der Überstromschutzeinrichtung unberücksichtigt bleibt. In [1] wird deshalb gefordert, dass der Auslösestrom der Schutzeinrichtung I_2 (großer Prüfstrom) nicht größer sein darf als der 1,45-fache Wert der Strombelastbarkeit I_2 . Daraus ergibt sich die als Auslöseregel bezeichnete Bedingung

$$I_2 \le 1,45 \cdot I_7 \tag{2}$$

Zeit-Strom-Kennlinien der Schutzeinrichtungen

In den Prinzipdarstellungen der Zeit-Strom-Kennlinien für Leitungsschutzschalter (Bild ①) und für Leitungsschutzsicherungen der Betriebsklasse gG (Bild ②) gibt der obere Kurvenverlauf für die Auslösung an, nach welcher Zeit ein Überstrom zur Unterbrechung des Stromkreises führt. Der Überlastbereich von Leitungsschutzschaltern ist am gekrümmten Kurvenverlauf erkennbar (Bild ①).

Die Auslösezeiten sind in den Bildern nur in ihrer Tendenz zu entnehmen. Deshalb sei hier ergänzt, dass der große Prüfstrom I_2 (I_f bei Sicherungen) bei Schutzeinrichtungen bis 63 A 1 Stunde, bei größeren Nennströmen auch 2, 3 oder 4 Stunden fließen kann, bevor eine Auslösung erfolgt.

Tafel 🚺 Prüfströme sowie Auslöse- und Nichtauslösezeiten von Leitungsschutzschaltern nach DIN VDE 0641 Teil 11

Auslösecharak- teristik	Thermischer Au Nichtauslöse- strom I ₁	uslöser Auslösestrom I ₂	Zeit <i>t</i> in h	Elektromagnet Nichtauslöse- strom I ₄	ischer Auslöser Auslösestrom <i>I</i> ₅	Zeit t in s	Anwendbar für Betriebsmittel
В				3 · I _n	5 · I _n		Kabel, Leitungen Leuchten, Haushalt-
С	1,13 · I _n	1,45 · I _n		5 · I _n	10 · I _n		geräte (bei Einschalt- stromspitzen "C")
D			≤1	10 · I _n	20 · I _n	≤ 0,1	Verbraucher mit sehr hohen Einschaltströmen
K ¹⁾	1,05 · <i>I</i> _n	1,20 · <i>I</i> _n		8 · I _n	14 · I _n		Motoren mit hohen Anlaufströmen "K"
Z ^{1) 2)}	±,55 'n	±,== 'n		2 · I _n	3 · I _n		Halbleiter "Z"

¹⁾ Leistungsschalter nach DIN VDE 0660 Teil 101; 2) Ablösung durch R-Charakteristik vorgesehen

Tafel 🕗 Belastbarkeit von Kabeln und Leitungen für feste Verlegung in Gebäuden, Betriebstemperatur 70 °C, Umgebungstemperaturen 25 °C und Zuordnung des Bemessungsstroms I_n von Überstrom-Schutzeinrichtungen mit $I_2 \le 1,45 \cdot I_n$ nach [1]

Referenzverlege	eart	A1		A2		B1		B2		С		E		F			G	
Verlegung		in Wä gedär Wänd	nmter	1		in Elel Install rohrer	lations- Wand					frei in Lu	ıft					
Anzahl der belasteten Ade	rn	2	3	2	3	2	3	2	3	2	3	2	3	2 vert., horizont.	3 vert., horizont.	3 ge- bündelt	3 horizont.	3 vert.
Nennquerschni Cu in mm²	tt						nbelas strom		eit <i>I_z</i> i A	n A								
Umgebungsten	nper	atur 2	5 °C															
1,5 /		16,5 ¹⁾ 16		16,5 ¹⁾ 16	14,0 13	18,5 16	16,5 16	17,5 16	16 16	21 20	18,5 16	23 20	19,5 16	-	-	-	-	-
	7	21 20	19 16	19,5 16	18,5 16	25 25	22 20	24 20	21 20	29 25	25 25	32 32	27 25	-	-	-	-	-
4	7	28 25	25 25	27 25	24 20	34 32	30 25	32 32	29 25	38 35	34 32	42 40	36 35	-	-	-	-	-
4 I	z n	-	-	-	-	-	-	-	-	-	35 ²⁾ 35 ²⁾	-	-	-	-	-	-	-
6 I		36 35	33 32	34 32	31 25	43 40	38 35	40 40	36 35	49 40	43 40	54 50	46 40	-	-	-	-	-
10 /		49 40	45 40	46 40	41 40	60 50	53 50	55 50	49 40	67 63	60 50	74 63	64 63	-	-	-	-	-
10 <i>I</i>	z n	_	-	-	-	-	-	-	50 ²⁾ 50 ²⁾	-	63 ²⁾ 63 ²⁾	-	-	-	-	-	-	-
16 <i>I</i>		65 63	59 50	60 50	55 50	81 80	72 63	73 63	66 63	90 80	81 80	100 100	85 80	-	-	-	-	-
25 <i>I</i>		85 80	77 63	80 80	72 63	107 100	94 80	95 80	85 80	119 100	102 100	126 125	107 100	139 125	121 100	117 100	155 125	138 125
	7	105 100	94 80	98 80	88 80	133 125	117 100	118 100	105 100	146 125	126 125	157 125	134 125	172 160	152 125	145 125	192 160	172 160
50 <i>I</i>	7	126 125	114 100	117 100	105 100	160 160	142 125	141 125	125 125	178 160	153 125	191 160	162 160	208 200	184 160	177 160	232 224	209 200
70 I		160 160	144 125	147 125	133 125	204 200	181 160	178 160	158 125	226 224	195 160	246 224	208 200	266 250	239 224	229 224	298 250	269 250
95 <i>I</i>		193 160	174 160	177 160	159 125	246 224	219 200	213 200	190 160	273 250	236 224	299 250	252 250	322 315	292 250	280 250	361 315	330 315

Bei der für I_2 zulässigen 1,45-fachen Strombelastbarkeit I, erwärmen sich die Leiter über die Betriebstemperatur hinaus. Temperaturwerte sind in [1] nicht vorgegeben. Die Kabel- und Leitungsisolierung hält diesen Belastungen stand, sodass keine Reduzierung der

Lebensdauer eintritt, wenn derartige Überlastungen nicht zum Dauerzustand werden. Unterhalb der unteren Grenze des Toleranzbandes der Zeit-Strom-Kennlinien erfolgt keine Abschaltung. Die Einhaltung dieser Vorgabebedingung wird geräteseitig geprüft, indem die Schutzeinrichtungen mit dem klei- $\mathbf{nen} \ \mathbf{Pr\ddot{u}fstrom} \ \mathbf{I_1} \ (\mathbf{I}_{nf} \ \mathrm{bei} \ \mathrm{Sicherungen}) \ \mathrm{be-}$ aufschlagt werden. Dabei darf während der vorgegebenen Prüfdauer (1 Stunde bei $I_n \leq 63$ A) der kleine Prüfstrom die Schutzeinrichtung nicht zur Auslösung führen.

Der Nennstrom I_n der Schutzeinrichtungen darf nicht größer sein als I_z (I_n ≤ I_z)
 Schutzeinrichtungen können auch die Aufgabe haben, Verbraucher gegen Überlast zu schützen. I_n der Schutzeinrichtung muss dann gleich oder kleiner sein als der Bemessungsstrom des Gerätes.

Schmelzsicherungen mit $I_n = 13$ A, 32 A und 40 A sind z. Z. nicht genormt. Alternativ ist die nächstniedrigere Stromstärke I_n zu wählen.

¹⁾ Bei Wandaufbau: Äußere Beplankung 10 mm Holzfaserplatten, Wärmedämmung mit 100 mm Mineralfaser, innere Beplankung mit 25 mm Holzfaserplatte mit Wärmeleitfähigkeit 0,1 W/(K m) senkrecht und 0,23 W/(K m) parallel zur Plattenebene

²⁾ Gilt nicht für Verlegung auf einer Holzwand

Zuordnung zu $I_2 \le 1,45 \cdot I_n$

An Stelle von I_2 kann in Gleichung (2) 1,45 \cdot I_n gesetzt werden. Damit wird

$$1,45 \cdot I_n \leq 1,45 \cdot I_z \implies I_n \leq I_z$$
.

Bei Erfüllung der Bedingung (1) ist bei einem großen Prüfstrom $I_2 \leq 1,45 \cdot I_n$ die Bedingung (2) immer erfüllt, sodass eine Kontrolle nach dieser Auslöseregel nicht erforderlich ist. Zu den Überstromschutzeinrichtungen mit $I_2 \leq 1,45 \cdot I_n$ gehören:

- Leitungsschutzschalter mit den Auslösecharakteristiken B, C und D sowie Leistungsschalter der K- und Z-Charakteristik (Tafel 1)
 - Sie werden vorzugsweise in Endstromkreisen eingesetzt
- Leitungsschutzsicherungen der Betriebsklasse gG nach DIN VDE 0636
- Motorstarter (DIN VDE 0660 Teil 102) Leitungsschutzsicherungen gG sind erst seit Neufassung der Norm hier zugeordnet. Die Einhaltung der Bedingung $I_2 \le 1,45 \cdot I_n$ wird durch Prüfung des konventionellen Überlastschutzes gemäß DIN VDE 0636 Teil 10 gewährleistet.

Beim Einsatz von Schutzeinrichtungen mit $I_2 \leq 1, 2 \cdot I_n$, z. B. Leistungsschalter der K-Charakteristik, ist die thermische Belastung der angeschlossenen Betriebsmittel im Vergleich zu Einrichtungen mit $I_2 \leq 1,45 \cdot I_n$ geringer.

Bei der Zuordnung der Schutzeinrichtung ist zu beachten, dass nach Bedingung (1) der Nennstrom I_n der Schutzeinrichtung nicht kleiner als der Betriebstrom I_b und nicht größer als die Strombelastbarkeit I_z sein darf.

Wenn sich der Strombelastbarkeit für den gewählten Querschnitt keine Schutzeinrichtung mit einem erforderlichen Nennstrom zuordnen lässt, dann muss der Querschnitt und damit die Strombelastbarkeit erhöht werden.

In Tafel 2 ist den Leiterquerschnitten die Strombelastbarkeit von Kabeln und Leitungen bei fester Verlegung in Gebäuden und der Nennstrom der Schutzeinrichtungen in Abhängigkeit von der Verlegeart zugeordnet. Die Werte gelten bei einer Betriebstemperatur von 70 °C und einer Umgebungstemperatur von 25 °C und dürfen auschließlich bei normalen Verlegebedingungen angewendet werden. Wo mit Leitungshäufungen oder abweichenden Umgebungstemperaturen zu rechnen ist, ist die Strombelastbarkeit nach den Vorgaben für abweichende Bedingungen zu ermitteln und erst danach der Nennstrom der Schutzeinrichtung zu bestimmen.

Beispiel 1: Der Betriebsstrom I_b für eine Lüftungsanlage beträgt 58 A. Im Raum ist mit einer Umgebungstemperatur von 25 °C zu rechnen. Vorgesehen ist eine Leitung NYM-J, die getrennt von anderen Leitungen auf der Wand zu verlegen ist.

Zu ermitteln sind der Leiterquerschnitt der Zuleitung und der Nennstrom der Sicherungen der Betriebsklasse gG.

Antwort: Es ist Verlegeart C zu wählen. Nach Tafel 2 könnte bei einem Betriebsstrom $I_b = 58$ A eine Leitung für Drehstrom mit $I_z = 60$ A gewählt werden. Ein Nennstrom der Sicherung 50 A gewährleistet zwar den geforderten Überlastschutz, liegt aber unterhalb des Betriebsstroms I_b . Beim Einsatz einer Sicherung 63 A träte der umgekehrte Fall ein.

Gewählt wird eine Leitung NYM-J 5 x $16 \text{ mm}^2 \text{ Cu}$ mit $I_z = 81 \text{ A}$. Vorzusehen sind Sicherungen (gG) 80 A oder 63 A.

Zuordnung zu $I_2 > 1,45 \cdot I_n$

Ältere Ausführungen der Schutzeinrichtungen lösen in der Regel bei höheren Überströmen aus. Das trifft unter anderem auf Leitungsschutzschalter der H-. U- und der L-Charakteristik zu. Obwohl sie nicht mehr gefertigt werden, sind sie in alten Anlagen, zum Teil aber auch noch als L-Charakteristik im Lager vorhanden. Ihr Einsatz ist auch in neuen Anlagen gestattet, wenn die abweichenden Auslösebedingungen beachtet werden. Werden diese nicht berücksichtigt, dann könnte beispielsweise beim Einsatz eines Leitungsschutzschalters der L-Charakteristik $I_n = 16$ A an Stelle einer Ausführung in B-Charakteristik nach Tafel 2 in einer angeschlossenen Leitung beim einstündigen Betrieb mit dem großen Prüfstrom I_2 eine etwa 1,5fache Verlustwärmemenge entstehen. Größere Schäden an den Kabel- und Leitungsisolierungen sind nur selten eingetreten, weil die tatsächlichen Belastungsströme in alten Anlagen meist gering waren. An Stelle I_2 = 1,45 · I_n ist bei diesen Schutzeinrichtungen $I_2 = X \cdot I_n$ zu setzen. Beim Einsatz von Schaltern der L-Charakteristik ist zu beachten, daß der Faktor X nicht konstant ist, sondern von der Höhe des Nennstroms abhängt (Tafel 3).

Um Bedingung (2) zu erfüllen ist der Nennstrom der Schutzeinrichtung zu reduzieren

$$I_n = \frac{1,45 \cdot I_Z}{X}$$

Die zu schützenden Kabel und Leitungen können demzufolge nur geringer belastet werden, womit die Wirtschaftlichkeit der Anlage eingeschränkt wird.

Beispiel 2: Eine Wechselstromleitung mit Aderleitungen H07V-U im Installationsrohr soll als Einzelstromkreis unter Putz verlegt werden. Die Umgebungstemperatur beträgt 25 °C. Es ist ein Leitungsschutzschalter mit L-Charakteristik vorhanden. Welcher Nennstrom ist bei einem Leitungsquerschnitt 1,5 mm² zu wählen?

Antwort: Es ist Verlegeart B1 zugrundezulegen. Nach Tafel ${\color{red} 2}$ ist die Leitung mit

 $I_z=18,5$ A belastbar. Der Faktor X wird aus Tafel \odot mit 1,9 entnommen. Zulässig ist

$$I_n = \frac{1,45 \cdot 18,5 \text{ A}}{1.9}.$$

Zu wählen ist ein Nennstrom $I_n = 10$ A. Zum Vergleich: Beim Einsatz eines Schalters mit B-Charakteristik könnte $I_n = 16$ A betragen (höhere Wirtschaftlichkeit!).

Unzureichender Schutz unterhalb von I₂

Die Bedingungen (1) und (2) gewährleisten nur bei Überströmen ab dem großen Prüfstrom einen sicheren Überlastschutz. Zwischen dem Nennstrom I_n und dem kleinen Prüfstrom I_1 erfolgt keine Auslösung (Bilder 1 und 2). Damit werden ungewollte Betriebsunterbrechungen bei geringer Überlastung, bei Leitungsschutzschaltern nach Tafel 1 z. B. zwischen I_n und $1,13 \cdot I_n$ vermieden.

Eine Auslösung kann erst erfolgen, wenn der Überstrom größer ist als der kleine Prüfstrom l_1 und damit die mit Nichtauslösung bezeichnete untere Grenze der Strom-Zeit-Kennlinie überschreitet. Eine Auslösung zwischen I_1 und I_2 ist möglich, aber nicht sicher. Überströme können dort längere Zeit ohne Auslösung anstehen und eine unzulässige Erwärmung der Kabel und Leitungen verursachen. Die Stromkreise sollten deshalb so gestaltet werden, dass kleine Überlastungen von längerer Dauer nicht auftreten können. Anschlussleistung, Betriebsdauer und die Höhe des möglichen Uberlaststromes der anzuschließenden Verbraucher müssen dabei Berücksichtigung finden.

Anordnung und Versetzen von Schutzeinrichtungen

Schutzeinrichtungen zum Schutz bei Überlast müssen an Stellen eingebaut werden, wo die Strombelastbarkeit durch Änderung des Leiterquerschnitts, der Verlegeart oder durch Verwendung anderer Leitungen herabgesetzt wird (Bild 3). Auf zusätzliche Schutzeinrichtungen kann aber auch verzichtet werden, wenn die vorgeschaltete Schutzeinrichtung den Schutz bei Überlast sicherstellt (Bild 3).

Im Gegensatz zu Schutzeinrichtungen für den Kurzschlussschutz oder für den kombinierten Überlast- und Kurzschlussschutz, die am Anfang einer Leitung angeordnet werden müssen, dürfen Überlastschutzeinrichtungen im zu schützenden Leitungszug auch versetzt angeordnet werden (Bild 4). Voraussetzung ist, dass

- Beispiele für die Zuordnung von Überstromschutzeinrichtungen bei Minderung der Strombelastbarkeit
- a) Verkleinerung des Querschnitts; b) Änderung der Verlegeart () erforderliche Schutzeinrichtung, wenn B und D entfallen

- **❷** Versetzen der Schutzeinrichtungen zum Schutz bei Überlast in einer Leitung
- Schutzeinrichtung A übernimmt den Schutz bei Kurzschluss
- Schutzeinrichtung B übernimmt den Schutz der Leitung L und nachgeordneter Betriebsmittel bei Überlast

- Zulässige Anordnung einer Schutzeinrichtung zum Schutz bei Überlast in einem Leitungsabzweig
- Schutzeinrichtung A übernimmt den Überlast- und Kurzschlussschutz für Leitung L1 und den Kurzschlussschutz für die geringer belastete Leitung L2
- Schutzeinrichtung B übernimmt den Überlastschutz der Leitung L2
- ¹⁾ Bis L2 = 3 m wird mit Ausnahme von Anlagen mit abweichenden Bedingungen kein Kurzschlussschutz gefordert, sofern sich dort keine brennbaren Stoffe befinden und die Kurzschlussgefahr herabgesetzt ist. Abweichende Bedingungen s. 6.4.2 in [1]

O Unzulässiges Versetzen der Schutzeinrichtung B zum Schutz bei Überlast Zwischen Abzweigpunkt O der Leitung L1 und der Schutzeinrichtung B in der geringer belastbaren Leitung L2 dürfen sich keine Leitungsabzweige/Steckdosen befinden

Tafel **⑤** Faktor X zur Ermittlung des großen Prüfstroms I₂ für LS-Schalter mit L-Charakteristik

Nennstrom I _n in A	Faktor X
bis 4	2,1
6 10	1,9
16 25	1,75
über 25	1,6

der Kurzschlussschutz von der vorgeschalteten Schutzeinrichtung übernommen wird (Ausführungen hierzu folgen im Teil 4). Solche Möglichkeit kann bei Leitungsabzweigen vorteilhaft sein, wo die örtlichen Verhältnisse den Einbau eines Verteilers am Abzweigpunkt einer Zuleitung nicht gestatten. Beispielsweise wenn mit der Zuleitung noch zusätzliche Verteiler gespeist werden. Bis zu einer Länge von 3 m ab Abzweigpunkt kann auf den Kurzschlussschutz verzichtet werden, wenn die entsprechenden Bedingungen

im Abschnitt 5.4.2 in [1] eingehalten werden, auf die hier nicht detailliert eingegangen werden kann (Bild **⑤**). Befinden sich in der zu schützenden Leitung Leitungsabzweige oder Steckdosen, so ist ein Versetzen der Schutzeinrichtung unzulässig. Unter diesen Bedingungen sind die genannten Betriebs- und Verbrauchsmittel nicht geschützt (Bild **⑥**).

■ Verzicht auf den Schutz bei Überlast

Ein Schutz bei Überlast kann dort entfallen, wo durch die Art der Verbraucher oder der Anlagen Überlastströme nicht zu erwarten sind, z. B. in Hilfsstromkreisen, in Verbindungsleitungen zwischen Stromquellen oder in Schaltanlagen. Eine Ausnahme bilden Anlagen, für die abweichende Normen gelten. Vom Überlastschutz ausgenommen sind auch öffentliche Verteilungsnetze der Energieversorgung.

Schutzeinrichtungen zum Schutz bei Überlast sollten nicht eingebaut werden, wo die Unterbrechung des Stromkreises zur Gefahr wird, z. B. beim Anschluss von Hubmagneten, in Sekundärstromkreisen von Stromwandlern oder bei Versorgung von Sicherheitseinrichtungen. Hier muss auf andere Art, z. B. durch Überlastmeldeeinrichtungen oder Stromkreisauslegung, die das Auftreten von Überlastströmen wenig wahrscheinlich macht, die notwendige Sicherheit geschaffen werden.

Ein Verzicht auf den Überlastschutz ist in IT-Systemen nur unter besonderen Voraussetzungen statthaft, die im Abschnitt 5.6 in [1] aufgeführt sind.

Literatur

[1] DIN VDE 0100 Teil 430: 1991-11 Errichten von Starkstromanlagen mit Nennspannungen bis 1000 V; Schutzmaßnahmen; Schutz von Kabeln und Leitungen bei Überstrom.

Bemessung nach Überlastschutz – Kurzschlussschutz

Querschnittbestimmung **von Kabeln u**nd Leitungen

Teil 4: Schutz bei Kurzschluss

Zur Bemessung von Kabeln und Leitungen wurden bisher die Aspekte Mindestquerschnitt, Spannungsfall, Strombelastbarkeit und Überlastschutz erläutert. Mit dem Schutz bei Kurzschluss werden die Ausführungen zum Überstromschutz abgerundet.

Schutz bei Kurzschluss sind in DIN VDE 0100 Teil 430 [1] zusammengefasst. Kurzschlussfestigkeit ist nicht gleichbedeutend mit Kurzschlusssicherheit, die das Auftreten von Kurz- und Erdschlüssen ausschließen oder vermindern soll ²⁾. Nachfolgend werden einige Fragen des Schutzes bei Kurzschluss erläutert. Ausführlich wird der Kurzschlussschutz in Gebäuden in [5] behandelt.

Kurzschlussauswirkungen

Beim Kurzschluss wird durch den Kurzschlussstrom die zulässige Betriebstemperatur der Kabel und Leitungen erheblich überschritten. Dabei kann die Isolierung sich verformen und schließlich zerstört werden. Möglich sind auch Lichtbögen, die Brände auslösen können

Von großer Bedeutung sind neben den großen Kurzschlußströmen, die vor allem für die Bestimmung des Ausschaltvermögens der Schutzeinrichtungen wesentlich sind, aber auch beim thermischen Kurzschluss beachtet werden müssen, in erster Linie die kleinen Kurzschlussströme bei vollkommenem einpoligen Kurzschluss.

Neben den thermischen Wirkungen werden durch den Stoßkurzschlussstrom dynamische Kräfte freigesetzt. Kabel halten diesen Kräften aufgrund ihrer festen Ummantelung stand, sodass darüber kein Nachweis erforderlich ist ¹).

Die technischen Forderungen für den

Ausschaltvermögen

In der Norm [1] wird gefordert:

Das Ausschaltvermögen I_A der Schutzeinrichtung muss mindestens dem größten am Einbauort auftretenden Kurzschlussstrom I_k entsprechen: $I_A \geq I_k$.

Werte für das Ausschaltvermögen I_A sind in den Normen vorgegeben oder den Herstellerunterlagen zu entnehmen.

Die Kurzschlussströme I_k sind bei der Planung zu bestimmen, soweit sie nicht vorgegeben sind. Sie sind nur dort genauer zu ermitteln, wo Kurzschlussströme in der Nähe des Ausschaltvermögens zu erwarten sind und überschlägliche Berechnungen nicht ausreichen. I_A und I_k sind Effektivwerte. In Anlagen, die an das öffentliche Netz eines EVU angeschlossen werden, sind die Stoßkurzschlussströme vorgegeben (Bild 1). Es handelt sich um Scheitelwerte, die von den Sicherungen beim Abschalten "durchgelassen" werden. Der Durchlassstrom $I_S = 25$ kA hinter der Hausanschlusssicherung 315 A (gG) ist damit nicht der Kurzschlussstrom I_{ν} , der als Zahlenwert kleiner ist.

Da die allgemein verwendeten Leitungsschutzsicherungen der Betriebsklasse gG über ein Mindestausschaltvermögen $I_A=50\,$ kA bei $\leq 660\,$ V Wechselspannung verfügen, ist die Forderung $I_A\geq I_k$ damit eingehalten. Größere Sicherungen erfordern eine individuelle Bemessung der Anlage, wobei das Ausschaltvermögen in der Regel ausreichend ist.

Schutzeinrichtungen mit einem Ausschaltvermögen $I_A < I_k$ ist eine weitere Schutzeinrichtung mit dem erforderlichen ausreichenden Schaltvermögen $I_A > I_k$ vorzuschalten. Beide müssen so aufeinander abgestimmt sein, dass weder die Schutzeinrichtung mit dem zu geringen Ausschaltvermögen noch die nachfolgende Anlage im Falle eines Kurzschlusses Schaden erleiden können [1]. Abschnitt 6.3.1.

Um die Zuordnung auf einfache Weise zu gewährleisten, geben die Hersteller von Motorstartern, Leistungsschaltern und Leitungsschutzschaltern den maximale Nennstrom oder das Ausschaltvermögen der Vorsicherung vor (Tafel 1).

Die Zählervorsicherung 100 A mit einem Ausschaltvermögen 50 kA vor dem Leitungsschalter mit 6 kA im Bild 1 entspricht diesen Bedingungen. Die im Kurzschlussfall auf das Leitungsnetz hinter dem Leitungsschutzschalter einwirkende Durchlassenergie ist gesondert zu betrachten.

Thermischer Kurzschlussschutz

Vorgaben und Bedingungen

Nach den Forderungen in [1] ist der Schutz bei Kurzschluss unter folgenden Bedingungen gewährleistet:

- Nach der nicht mehr verbindlichen DIN VDE 0298 Teil 2 Ausgabe November 1979 waren bei Stoßkurzschlussströmen bis 63 kA keine Maßnahmen gefordert.
- Verlegearten für ein kurzschluss- und erdschlusssicheres Verlegen sind der nicht mehr verbindlichen DIN VDE 0100 Teil 520 Ausgabe November 1985 zu entnehmen.

● Geforderte Kurzschlussfestigkeit gemäß TAB 2000

- Werte beziehen sich auf eine HA-Sicherung 315 A Bei Nennströmen > 315 A Festlegungen in TAB 2000 beachten
- ²⁾ Vorsicherung maximal 100 A (TAB 2000 Abschn. 6.2.3)
- 3) Energiebegrenzungsklasse 3 (TAB 2000 Abschn. 8)

Leitungsschutz- schalter 6 bzw. 10 kA I _n in A	NH-Sicherung gL/gL I _n in A	Back-Up-Schutz in kA
6 63	50 63	50 50
6 40	80	50
13 42	100	50
40 63	100	25
25 63	125	25
50 63	80	35

Tafel (2) (1²T)_{max}-Werte von PVC-isolierten Kupferkabeln und -leitungen

Leiter- querschnitt in mm ²	(<i>I</i> ² <i>T</i>) _{<i>max</i>} -Werte in 10 ³ A ² s					
0,5	3,31					
0,75	7,44					
1,0	13,2					
1,5	29,8					
2,5	82,7					
4	211,6					
6	476,1					
10	1323					
16	3386					
25	8266					
35	16201					
50	33062					
70	64802					
95	119356					
120	190440					

- Die zulässige Kurzschlusstemperatur wird nicht überschritten.
- Die Abschaltung erfolgt spätestens nach 5 Sekunden.

Beim Kurzschluss sind im Vergleich zur zulässigen Betriebstemperatur höhere Temperaturen, für PVC-isolierte Kabel und Leitungen z. B. 160 °C, zulässig [2]. Es wird davon ausgegangen, dass bei der kurzzeitigen Beanspruchung keine Schädigung der Isolierung eintritt.

Der enge Zusammenhang zwischen Kurzschlusstemperatur, Kurzschlussstrom und -dauer findet seinen Ausdruck in der Grenzbelastung der Leitung, die das Wärmeaufnahmevermögen charakterisiert.

Die **Grenzbelastung** $(I^2T)_{max}$ wird aus der **Bemessungs-Kurzzeitstromdichte** J_{thr} für den Zeitbereich bis 5 s [2] und dem Leiterquerschnitt S_n bestimmt:

$$(I^2T)_{max} = (J_{thr} \cdot S_n)^2.$$

Für PVC-isolierte Kabel und Leitungen ist die Grenzbelastung Tafel 2 zu entnehmen. Kurzschlussfestigkeit ist gewährleistet, wenn die Grenzbelastung von Kabeln und Leitungen weder bei großen noch kleinen Kurzschlussströmen überschritten wird.

Schutz bei hohen Kurzschlussströmen

Für hohe Kurzschlussströme mit einer Kurzschlussdauer und damit Abschaltzeiten der Schutzeinrichtungen unter 0.1 s stehen keine Strom-Zeit-Kennlinien zur Verfügung. Hier muss die Durchlassenergie der Schutzeinrichtungen mit dem Wärmeaufnahmevermögen der Leitungen verglichen werden. Sehr große Kurzschlussströme werden durch Leitungsschutzsicherungen in kürzeren Zeiten abgeschaltet als durch Leitungsschutzschalter, Leistungsschalter und Motorstarter. Es ist daher zu sichern, dass die von diesen Schutzeinrichtungen während der Abklingphase des Stoßkurzschlussstroms zum Dauerkurzschlussstrom durchgelas-

Tafel ❸ Zulässige Durchlass-/²T-Werte für LS-Schlter (Energiebegrenzungsklasse 3, nach DIN VDE 0641 Teil 11)

Bemessungs- schaltvermögen in A	LS-Schalter bis einschließlich 16 A (/²T) _{max} in A²s		LS-Schalter 16 A bis einschließlich 32 A (<i>I</i> ² T) _{max} in A ² s		
	Charakeristik				
	В	С	В	С	
3000	15000	18000	18000	22000	
4500	25000	30000	32000	39000	
6000	35000	42000	45000	55000	
10000	70000	84000	90000	110000	

Zusammenwirken von Leitungsschutzschalter und Vorsicherung beim Kurzschlussschutz (nicht maßstäblich)

sene Energie nicht zur Überbeanspruchung der nachgeschalteten Leitung führt. Die Durchlaßenergie muß kleiner sein als das Wärmeaufnahmevermögen der Leitung.

Am stärksten werden Leitungen mit kleinen Querschnitten beansprucht.

Leitungsschutzschalter 16 A (B-Charakteristik, Strombegrenzungsklasse 3) für 6 kA, wie sie in den TAB der EVU gefordert werden, haben einen Durchlass- I^2T -Wert von 35 000 A²s (Tafel 3).

Die PVC-isolierte Leitung mit einem Querschnitt von 1,5 mm² Cu kann aber nur 29 800 A²s aufnehmen. Die Leitung ist damit bei Kurzschlussströmen von 6 kA nicht mehr geschützt. Aus der grafischen Darstellung der I^2T -Werte in Abhängigkeit vom Kurzschlussstrom I_k (Bild ②) ist erkennbar, dass der LS-Schalter bis zum Schnittpunkt A bei 5,1 kA den Kurzschlussschutz gewährleistet.

Da Kurzschlussströme $I_k > 5$ kA in Endstromkreisen der Gebäudeinstallation kaum zu erwarten sind und nach Angaben

von Herstellern Leitungsschutzschalter geringere Durchlasswerte erreichen, ist nach den Vorgaben in [1] der Schutz durch Leitungsschutzschalter der Energiebegrenzungsklasse 3 ausreichend.

Leitungsschutzsicherungen 63 A, die in Anlagen üblich sind (Bild 1), begrenzen Kurzschlussströme so stark, dass sie den Kurzschlussschutz ab etwa 1,75 kA (Schnittpunkt B) allein übernehmen könnten.

Leitungsschutzsicherungen 100 A haben nach DIN VDE 0636 einen Ausschalt- $(I^2T)_{max}$ -Wert von 64 000 A 2 s und schützen eine PVC-isolierte Leitung mit 82 700 A 2 s (2,5 mm 2) bei hohen Kurzschlussströmen ebenfalls sicher.

- Beim Einsatz von Leitungsschutzschaltern der Strombegrenzungsklasse 3 ist ab Leiterquerschnitt 1,5 mm² der Schutz bei großen Kurzschlussströmen gegeben.
- Bei Vorsicherungen > 100 A ist zu pr
 üfen, ob bei den in der Anlage zu erwartenden Kurzschlussstr
 ömen die Grenzbelastung der Leitung noch eingehalten wird.

Gemeinsame Schutzeinrichtungen

In der Gebäudeinstallation werden Leitungen überwiegend durch eine gemeinsame Überstromschutzeinrichtung geschützt, die am Anfang des Stromkreises angeordnet sein muss (Bild 1).

Die Zeit-Strom-Kennlinien der

- Leitungsschutzsicherungen klasse gG nach DIN VDE 0636,
- Leitungsschutzschalter nach DIN VDE 0641 Teil 11 und
- Leistungsschalter nach DIN VDE 0660 Teil 101

verlaufen im Kurzschlussbereich bis 5 s unterhalb der Grenztemperaturkennlinie einer Leitung. Sind sie richtig für den Überlastschutz ausgelegt und erfüllen sie die Bedingungen 1 und 2 nach Abschnitt 5.2 in [1], dann ist auch der Kurzschlussschutz gewährleistet. Planer und Errichter brauchen zum Schutz bei Kurzschluss keine besonderen Maßnahmen vorsehen [1], Abschn. 7.1. In diesem Falle gilt:

Wird eine Überstromschutzeinrichtung richtig für den Überlastschutz gewählt, so erfüllt sie auch die Bedingung des Kurzschlussschutzes, wenn

- die Schutzeinrichtung ein ausreichendes Ausschaltvermögen besitzt und
- der kleinste Leiterquerschnitt die Durchlassenergie beim größten Kurzschlussstrom aufnehmen kann.

Schutz bei Überlast s. Teil 2.

Getrennte Schutzeinrichtungen

Bei der getrennten Anordnung der Schutzeinrichtungen für den Überlast- und Kurzschlussschutz kann der Bemessungsstrom für das Kurzschlussschutzorgan höher gewählt werden.

Dieser Vorteil wird z. B. genutzt, wenn

- für eine Überlastschutzeinrichtung vor Ort der Kurzschlussschutz durch eine Vorsicherung im Verteiler erfolgt
- die Forderung nach Selektivität einen höheren Bemessungstrom einer Sicherung erforderlich macht
- beim Festanschluss von Heizgeräten keine Überlastung erfolgen kann und der Bemessungsstrom (Einstellstrom) der Schutzeinrichtung nur für den Kurzschlussschutz bemessen wird.

Bemessung nach Leitungsgrenzlängen

Bei kleinen Kurzschlussströmen ist die Kurzschlussfestigkeit nachzuweisen.

Die zulässige Ausschaltzeit t (in s) für Kurzschlüsse bis zur Dauer von 5 s wird entsprechend der Grenzbelastung einer Leitung nach folgender Beziehung ermittelt:

Prinzip des Kurzschlussschutzes von Leitungen

a) Schutz durch Sicherungen $I_{kerf} < I_{thz}$; b) Schutz durch LS-Schalter $I_{kerf} > I_a$; c) Schutz durch Sicherungen $I_{thz} < I_a$

Grenztemperaturkurve der zu schützenden Leitung

Ls, Si obere Grenzkurve des Leitungsschutzschalters und Leistungsschalters bzw. der Leitungsschutzsicherung

 I_a , t_a , t_k Abschaltstrom bzw. Abschaltzeit

zulässiger Kurzschlussstrom über die Zeit ta für Schutz bei Kurzschluss I_{thz} erforderlicher Mindestkurzschlussstrom

Messung des Innenwiderstands

Zulässiges Versetzen der Schutzeinrichtungen für den Schutz bei Kurz-

Bei Leitungslänge > 3 m ist ein Versetzen möglich, wenn die Kurzschlussfestigkeit nachgewiesen wird

$$t = \left(k \cdot \frac{s}{l}\right)^2.$$

Beim Kurzschlussstrom I (in A) handelt es sich um den Effektivwert bei vollkommenem einpoligen Kurzschluss (I_{ν}) , bei S um den Leiterquerschnitt in mm². Der Koeffizient k hängt vom Leitermaterial und der Isolierung ab. für PVC-isolierte Kupferleiter beträgt er z. B. 115 As/mm².

Der Kurzschlussstrom I_k in der Kurzschlussbahn (Bild 4) ergibt sich zu

$$I_k = 0.95 \cdot U_0 / Z_k$$
.

Die Kurzschlussimpedanz Z_{ν} der Kurzschlussbahn muss ggf. unter Einbeziehung von Messwerten berechnet werden. Hinzu kommt die Auswahl eines geeigneten Schutzorgans. Insgesamt ist das Verfahren zeitraubend und umständlich.

Bei der Bemessung nach Leitungsgrenzlängen gemäß [3] entfällt diese Berechnung. Im Bild 3 sind die Grenztemperaturkurven der Leitung A und der Schutzeinrichtungen Si und Ls in einem Zeit-Strom-Diagramm gegenübergestellt. Verglichen werden der zulässige Kurzschlussstrom der Leitung I_{thz} und der Abschaltstrom I_a des Schutzorgans mit den korrespondierenden Abschaltzeiten t_a .

Ist $I_{thz} \ge I_a$, so ist der Schutz bei Kurzschluss für Kurzschlussströme $I_k \ge I_a$ durch die zugeordnete Schutzeinrichtung sichergestellt (Bild 3a). Die Grenzlänge der Leitung wird nach dem Mindestkurzschlussstrom $I_{kerf} = I_a$ bemessen.

Für den LS-Schalter ist Ia der Abschaltstrom bei $t_a \le 0,1$ s Grundlage für die Grenzlängenbestimmung (Bild 3b). Ist $I_{thz} < I_a$, so ist der Kurzschlussschutz durch Leitungsschutzschalter nicht zulässig.

Für Leitungsschutzsicherungen ergibt sich I_{kerf} als Schnittpunkt der oberen Grenzkurve der Strom-Zeit-Kennlinie der Sicherung

Tafel 4 Maximal zulässige Kabel- und Leitungslängen, Cu, Isolierung PVC, VPE oder EPR; Sicherung Betriebsklasse gG nach DIN VDE 0636-10; Nennspannung 400 V; Abschaltung nach 5 s oder Erreichen der zulässigen Kurzschlusstemperatur (nach [3])

Leiter- nennquer-	Nennstrom der Schutz-	Mindest- kurzschluss- strom	Schleifenimpedanz vor der Schutzeinrichtung in $\mathbf{m}\Omega$				
schnitt	einrichtung		10	50	100	200	300
in mm ²	in A	in A	maximal zulässige Länge in m				m
25	63	320	374	354	328	275	221
25	80	440	271	250	224	170	115
25	100	580	204	183	157	102	46
25	125	750	157	136	109	54	0

Tafel Mindestkurzschlusströme von Sicherungen der Betriebsklasse gG bei Abschalten nach 5 s oder Erreichen der zulässigen Kurzschlusstemperatur; Cu, PVC-isoliert (nach [3])

Nenn- quer- schnitt in mm ²	Nennstrom der Schutzein- richtung in A	Mindest- Kurzschluss- strom in A ¹⁾		
1,5	25	176		
2,5	32	215		
4	40	247		
4	50	364		
6	50	338		
6	63	429		
10	80	572		
16	100	754		
25	160	1209		
35	160	1209		
35	200	1755		
35	250	2080		
50	250	2080		
Eingerechnet wurde ein Gebrauchs- und Anlagenfehler von 30 %.				

Tafel \bigcirc *n*-Werte zur Bestimmung des Mindestkurzschlussstroms $I_k \ge 1, 3 \cdot n \cdot I_n$

LS-Schalter (DIN VDE 0641)					
Charakteristik	В	С	D		
n	5	10	20		
Leistungsschalter (DIN VDE 0660)					
Charakteristik	K	Z			
n	14	3			

und der Grenztemperaturkurve (Bild **3**c). **Verfahrensweise:** Die maximal zulässigen Leitungslängen sind für unterschiedliche Leitermaterialien und Leiterquerschnitte unter Verwendung üblicher Schutzeinrichtungen nach Nennströmen gestaffelt in Tabellen ausgewiesen. Eine Staffelung erfolgt in Abhängigkeit von der Schleifenimpedanz vor der Schutzeinrichtung. Tafel **4** zeigt einen Ausschnitt. Der Schutz bei Kurzschluss ist gesichert, wenn bei

 dem betreffenden Querschnitt, dem vorgegebenen Leitungsmaterial (Cu, Al)

- dem vorgegebenen Isolationsmaterial (PVC, Gummi, VPE) und
- dem gewählten Nennstrom der Schutzeinrichtung

die maximal zulässige Leitungslänge nicht überschritten wird. Diese Methode berücksichtigt bereits die Strom-Zeit-Kennlinien der Schutzeinrichtungen, sodass weitere Betrachtungen entfallen.

Beispiel 1: Ein Drehstrom-Kurzschlussläufermotor 30 kW, $\cos \varphi = 0.85$, $I_n = 63$ A mit einem Anlaufstrom $6 \cdot I_n$ ist an eine Vorsicherung 100 A im Verteiler anzuschließen. Die Schleifenimpedanz vor der Sicherung beträgt 300 mΩ. Gewährleistet die 25 m lange Zuleitung NYY-J 4 x 25 mm² den Kurzschlussschutz?

Antwort: Nach Tafel 4 ist für das Kabel bis zu 46 m Länge der Schutz gegeben.

Einhaltung des Mindestkurzschlussstroms

In bereits ausgeführten Anlagen kann durch Messung des Netzinnenwiderstandes R_i (Bild 4) der Kurzschlussstromes I_k ermittelt werden. Bei dieser Methode ist ein möglicher Messfehler von + 30 % zu berücksichtigen [4]. Das heisst: Wenn der ermittelte Wert für I_k gleich oder größer ist als das 1,3-Fache des geforderten Mindestkurzschlussstroms nach [3] (Tafel 5), so ist der Schutz gegeben.

Schutz durch Sicherungen. Ist der durch Sicherungen gewährleistete Kurzschlussschutz zu prüfen, so ist in gleicher Weise mit den in Tafel \odot angegebenen Mindestkurzschlussströmen zu vergleichen. Beispiel 2: Ein Kabel NYY-J 4 x $16~\rm mm^2$ Cu ist durch Sicherungen gG mit $I_n = 100~\rm A$ geschützt. Die Messung des Netzinnenwiderstandes erbrachte für den Kurzschlussstrom den Wert $I_k = 805~\rm A$. Antwort: Bei Berücksichtigung des Messfehlers ergibt sich nach Tafel \odot der erforderliche Mindestkurzschlussstrom $754~\rm A$. Er ist kleiner als der gemessene Wert, der

Kurzschlussschutz ist gewährleistet.

Schutz durch Leitungsschutzschalter oder Leistungsschalter. Da diese Schutzeinrichtungen bei einem vorgegebenen Vielfachen n des Nennstroms in weniger als 0,1 s abschalten, genügt die Überprüfung, ob der 1,3-fache Wert des Kurzschlussstrom I_k , der aus der Messung des Netzinnenwiderstandes R_i ermittelte wurde, gleich oder größer als $n \cdot I_n$ ist. Werte für n können Tafel $\mathbf{6}$ entnommen werden.

Ist Kurzschlussstrom kleiner als der Mindestkurzschlussstrom, ist zu untersuchen, ob die Ermittlung des tatsächlichen Messfehlers und die erneute Prüfung zu einem besseren Ergebnis führen. Andernfalls ist die Kurzschlußfestigkeit nicht gewährleistet und die Anlage zu verändern.

Anordnen und Versetzen von Schutzeinrichtungen

Schutzeinrichtungen für den Kurzschlussschutz sind stets am Anfang jedes Stromkreises vorzusehen und an Stellen, wo die Kurzschlussstrombelastbarkeit gemindert ist und von der vorgeschalteten Schutzeinrichtung nicht sichergestellt werden kann. Ein Versetzen bis zu 3 m ab Anschlussoder Abzweigpunkt im Zuge des zu schützenden Kabels ist aber möglich, wenn die Gefahr eines Kurzschlusses und mögliche Feuer- und Personenschäden eingeschränkt sind (Bild 6). Ein kurzschlussund erdschlusssicheres Verlegen schafft dafür gute Voraussetzungen. Bei Abzweigen über 3 m Länge ist ein Nachweis der Kurzschlussfestigkeit notwendig.

Literatur

- [1] DIN VDE 0100 Teil 430: 1991-11 Errichten von Starkstromanlagen mit Nennspanungen bis 1000 V; Schutzmaßnahmen; Schutz von Kabeln und Leitungen bei Überstrom.
- [2] DIN VDE 0298-4: 1998-11 Verwendung von Kabeln und isolierten Leitungen für Starkstomanlagen; Teil 4: Empfohlene Werte für die Strombelastbarkeit von Kabeln und Leitungen für feste Verlegung in Gebäuden und von flexiblen Leitungen.
- [3] Beiblatt 5 zu DIN VDE 0100: 1995-11 -; Maximal zulässige Längen von Leitungen unter Berücksichtigung des Schutzes beim indirekten Berühren, des Schutzes bei Kurzschluß und des Spannungsfalls.
- [4] Bödeker, K.: Erstprüfung von Starkstromanlagen nach DIN VDE 0100 Teil 610/04.94. Teil 5: Prüfung der Schutzmaßnahmen im TN-System (-Netz). Elektropraktiker 49(1995)5, S. 392-397.
- [5] Kny, K.-H.: Kurzschluss-Schutz in Gebäuden. Berlin: Verlag Technik 2000.

H. Senkbeil

