SHOBHIT VERMA 2018130062 Tutorial-5 Evaluation & Measurement of Mypothesis Testing ho: P= 0.7 Ma: P=0.7 Level of significance (x) = 0.1 test stati: bihomial var with p=0.7, x=8 & np= 15x0.7=10.5 :. P= 2P=(X<8 when p=0.7) = $2 \stackrel{\cancel{\xi}}{\underset{x=0}{\xi}} b(x, 15, 0.7)$ -2x0.1311= 0.2622·· P > 0.1, we do not reject 4. Hence, there is insufficient, reason to doubt the builder's dein. 1. P=0.6 Ha: P>06 Given: x=70, n=100, p=0.6, x=0.05 Z= 21-1po Inpogo 70-100x0.6 = 2.04 1100× 0.6×0.4 P= P (2>2.04) = P= 00207 .. P<ax, we reject 45. Thus, the

	·
	Page No.
	Date
(3)	Let P. be proportion of Munkai veter
1.7	Let P. be proportion of Munbai veters " Pz " " surrounding orle
7	residents:
-	a=0.05
v	$\hat{p}_{i} = 120 = 0.6$
	200
·	
	Pr = 120 1240 = 0 514
	Co 21: cos
· · ·	
	Mo: P. S.P.
	Ma: P1>P2
J	
,	Z = P1 - P2
	P (1-2)(1 +1)
	(n_1, n_2)
	=> == 0.6-0.48
	(0.514) (1-0.514) (1 + 1)
	$ \frac{3}{\sqrt{(0.514)(1-0.514)(1+1)}} \left(\frac{1}{200}, \frac{1}{500}\right) $
	⇒ Z= 2.869
	P(2702.869) = 0.0044
	= P < of the mult by porthogica is accorded
	Thus, the prop of Mumbai voters
	languarine the cropped in his on these
	favouring the proposal is higher than the prop. of surrounding area votes
	promoning area Votes
4	a) Mo: P=0.2 critical region is in
1942.1	a) Ho: P=0.2 critical region is in Ha: P>0.2 right-tail
	right fair

critical region is in both tails 40: µ=3 Ha: MZ3 critical region is in both Mo: p=0.15 (2 · Ha: p\$0.15 critical region is in left 40: M=500 1) Ma: M> 500 critical region is in both 40 M=15 e) Ha: MZ15 Let $\mu_1 = \text{mean popn. robustness of Comp. A}$ $\mu_2 = \text{mean popn. robustness of Comp. B}$ (3) 40 MI= MZ Finen: x = 0.05 $\overline{n_i} = 1$ $\stackrel{?}{\leq}$ $n_{ii} = 9.3 + 8.8 + 6.8 + 8.7 + 8.5 + 6.7 + 8 + 6.5$ = 7.9S $\frac{n_2}{n_2} = \frac{1}{1} = \frac{11+9.8+9.9+10.2+10.1+9.7+11+11.1+10.2}{10}$ $\Rightarrow \pi_2 = 10.26$ $s_1^2 = \frac{5(n_1^2 - n_1 n_1^2)}{(n_1 - 1)} = \frac{10.865}{9}$ $52^{2} = 1$ $(5 + 2 - n_2 \pi_2^{2}) = 2.924$ (2^{-1}) (2^{-1}) (2^{-1}) (2^{-1}) (2^{-1})

Sample van are very diff; we con't assume paper. variances are equal. Thus, we will use the unpooled t-test.

$$V = \left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2} \right)^2 - \frac{S_2^2}{n_1} + \frac{S_2^2}{n_2} \right)^2 - \frac{S_2^2}{n_1} + \frac{S_2^2}{n_2} = \frac{S_2^2}{n_2} + \frac{S_2^2}{n_2} = \frac{S_2^2}{n_2} + \frac{S_2^2}{n_2} = \frac{S_2^2}{n_2}$$