1 Cylindrical wave functions

The scalar Helmholtz equation in cylindrical coordinates is

$$\frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial \psi}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 \psi}{\partial \phi^2} + \frac{\partial^2 \psi}{\partial z^2} + k^2 \psi = 0 \tag{1}$$

Following the method of variable separation, we seek to find solution of the form

$$\psi = R(\rho)\Phi(\phi)Z(z) \tag{2}$$

Substitution of the last Eq. (2) into Eq. (1) yields

$$\frac{1}{\rho R} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial R}{\partial \rho} \right) + \frac{1}{\rho^2 \Phi} \frac{\partial^2 \Phi^2}{\partial \phi^2} + \frac{1}{Z} \frac{\partial^2 Z}{\partial z^2} + k^2 = 0 \tag{3}$$

The third term does not depend on variables ρ and ϕ . Hence,

$$\frac{1}{Z}\frac{\partial^2 Z}{\partial z^2} = -k_z^2 \tag{4}$$

$$\frac{\rho}{R} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial R}{\partial \rho} \right) + \frac{1}{\Phi} \frac{\partial^2 \Phi^2}{\partial \phi^2} + (k^2 - k_z^2) \rho^2 = 0 \tag{5}$$

Once again, the second term is independent on the variable ρ and z, Thus we may denote

$$\frac{1}{\Phi} \frac{\partial^2 \Phi^2}{\partial \phi^2} = -n^2 \tag{6}$$

And finally, we reach equation of one variable that called Bessel equation

$$\frac{\rho}{R} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial R}{\partial \rho} \right) - n^2 + (k^2 - k_z^2) \rho^2 = 0 \tag{7}$$

To summarize we define

$$k_{\rho}^{2} = k^{2} - k_{z}^{2} \tag{8}$$

and come to three separated equation, Bessel and two harmonic ones

$$\begin{cases}
\rho \frac{\partial}{\partial \rho} \left(\rho \frac{\partial R}{\partial \rho} \right) [(k_{\rho} \rho)^{2} - n^{2}] R = 0 \\
\frac{\partial^{2} \Phi^{2}}{\partial \phi^{2}} + n^{2} \Phi = 0 \\
\frac{\partial^{2} Z}{\partial z^{2}} + k_{z}^{2} Z = 0
\end{cases} \tag{9}$$

where the second equation according to the geometrical properties are 2π periodical, or

$$\Phi(\phi + 2\pi) = \Phi(\phi) \tag{10}$$

so it may be presented via $\cos n\phi$ and $\sin n\phi$. Further let us assume the propagation constant $k_z = 0$. Therefore, according the properties of the Bessel function the field in domain containing the point $\rho = 0$ is

$$\psi = J_n(k\rho) \begin{Bmatrix} \sin n\phi \\ \cos n\phi \end{Bmatrix}$$
 (11)

and in open domain that does not contain $\rho = 0$

$$\psi = H_n(k\rho) \begin{Bmatrix} \sin n\phi \\ \cos n\phi \end{Bmatrix}$$
 (12)

Here one should select the kind of Hankel function according to time dependence, $H_n^{(1)}$ for $e^{-i\omega t}$ and $H_n^{(21)}$ for $e^{i\omega t}$.

2 The circular waveguide

Consider a dielectric resonator of radius $\rho = a$ with perfectly conducting borders filled with dielectric of relative permittivity $\epsilon_r = 10$. As the field should be finite inside the waveguide we choose one of form (11). As there is no losses, eigenvalues should be real.

For TM mode the characteristic equation is

$$J_n(\sqrt{\epsilon_r}ka) = 0 (13)$$

The roots of Bessel function

m	0	1	2	3	4
1	2.4048	3.8317	5.1356	6.3802	7.5883
2	5.5201	7.0156	8.4172	9.761	11.0647
3	8.6537	10.1735	11.6198	13.0152	14.3725
4	11.7915	13.3237	14.796	16.2235	17.616

For TE mode the characteristic equation is

$$J_n'(\sqrt{\epsilon_r}ka) = 0 (14)$$

The roots of Bessel function derivative

\mathbf{m}	0	1	2	3	4
1	3.8317	1.8412	3.0542	4.2012	5.3176
2	7.0156	5.3314	6.7061	8.0152	9.2824
3	10.1735	8.5363	9.9695	11.3459	12.6819
4	13.3237	11.706	13.1704	14.5858	15.9641

2.1 Open cylindrical resonator

For TM mode the characteristic equation is

$$\sqrt{\epsilon_r} H_n(ka) J_n'(\sqrt{\epsilon_r} ka) - H_n'(ka) J_n(\sqrt{\epsilon_r} ka) = 0$$
(15)

For TE mode the characteristic equation is

$$\frac{1}{\sqrt{\epsilon_r}}H_n(ka)J_n'(\sqrt{\epsilon_r}ka) - H_n'(ka)J_n(\sqrt{\epsilon_r}ka) = 0$$
(16)

The field has the following form

$$\psi = \begin{cases}
J_n(k\rho) \begin{Bmatrix} \sin n\phi \\ \cos n\phi \end{Bmatrix}, & \text{if } \rho \le a \\
H_n(k\rho) \begin{Bmatrix} \sin n\phi \\ \cos n\phi \end{Bmatrix}, & \text{if } \rho \le a
\end{cases}$$
(17)