Application 0 Réglage de correcteurs P – Sujet

La boucle de position est représentée figure ci-dessous. On admet que :

► $H(p) = \frac{\Omega_m(p)}{U_v(p)} = \frac{K'_m}{1 + \tau'_m p} = \frac{30}{1 + 5 \cdot 10^{-3} p};$ ► $K_r = 4 \, \text{V rad}^{-1}$: gain du capteur de position;

► K_a : gain de l'adaptateur du signal de consigne $\alpha_e(t)$;

▶ le signal de consigne $\alpha_e(t)$ est exprimé en degrés;

▶ le correcteur C(p) est à action proportionnelle de gain réglable K_c ;

ightharpoonup N = 200: rapport de transmission.

Objectif

▶ On souhaite une marge de phase de 45°.

▶ On souhaite un écart de traînage inférieur à 1° pour une consigne de vitesse de $105 \, {}^{\circ} \, {\rm s}^{-1}$.

Question 1 Déterminer la fonction de transfert $R(p) = \frac{\alpha_r(p)}{\Omega_m(p)}$ du réducteur.

Question 2 Déterminer le gain K_a de l'adaptateur.

Question 3 Déterminer, en fonction notamment de K'_m et t'_m , la fonction de transfert en boucle ouverte T(p) que l'on exprimera sous forme canonique. En déduire l'expression du gain de boucle, noté K_{BO} .

On souhaite une marge de phase de 45°.

Question 4 Déterminer la valeur de *K*_{BO} permettant de satisfaire cette condition.

Question 5 En déduire la valeur du gain K_c du correcteur.

Question 6 Déterminer l'écart de position. Conclure vis-à-vis des exigences du cahier des charges.

On souhaite un écart de traînage inférieur à 1° pour une consigne de vitesse de 105° s⁻¹.

Question 7 Déterminer l'expression de $\alpha_e(t)$ correspondant à une consigne de vitesse de $105 \,^{\circ} \, \mathrm{s}^{-1}$. En déduire $\alpha_e(p)$.

Question 8 La valeur de K_{BO} définie précédemment permet-elle de satisfaire l'exigence de précision imposée par le cahier des charges? Conclure.

Etude d'un poste de palettisation de bidons. CCMP MP 2010.

C1-02

C2-04

Éléments de correction

$$1. \ R(p) = \frac{1}{Np}$$

1.
$$R(p) = \frac{1}{Np}$$
.
2. $K_a = \frac{\pi}{180} K_r$.

3.
$$T(p) = \frac{K_{BO}}{p(1 + \tau'_m p)}$$
 avec
$$K_{BO} = \frac{K_c K'_m K_r}{N}.$$
4. $K_{BO} = \frac{\sqrt{2}}{\tau'_m}.$

4.
$$K_{BO} = \frac{\sqrt{2}}{\tau'_{m}}$$