Quadrilaterals

Proof.

Problem 1 Adapted from Ohio's 2017 Geometry released item 13. Two pairs of parallel lines intersect to form a parallelogram as shown.

Complete the following proof that opposite angles of a parallelogram are congruent:

- (a) $\angle 1 \cong \angle 2$ as (opposite angles/ alternate interior angles \checkmark / corresponding angles) for parallel lines (m and $n \checkmark$ / k and l).
- (b) $\angle 3 \cong \angle 2$ as (opposite angles / alternate interior angles / corresponding angles \checkmark) for parallel lines (m and n/k and l \checkmark).
- (c) Then $\angle 1 \cong \angle 3$ because they are both congruent to $\angle 2$.

Problem 2 Adapted from Ohio's 2018 Geometry released item 21. Given the parallelogram WXYZ, prove that $\overline{WX} \cong \overline{YZ}$.

Author(s): Brad Findell

Fix note: It really would help to have an online environment that allows students to mark diagrams.

Complete the proof below:

- (a) $\angle ZWY \cong \angle XYW$ as (alternate interior angles $\checkmark/$ corresponding angles/opposite angles) for parallel segments (\overline{WZ} and \overline{XY} $\checkmark/$ \overline{WX} and \overline{YZ}).
- (b) $\angle ZYW \cong \angle XWY$ for the same reason, this time for parallel segments (\overline{WZ} and $\overline{XY}/\overline{WX}$ and \overline{YZ} \checkmark).
- (c) $\overline{WY} \cong \overline{YW}$ because a segment is congruent to itself.
- (d) $\triangle WYZ \cong \triangle YWX$ by $(SAS/ASA \checkmark/SSS)$.
- (e) Then $\overline{YZ} \cong \overline{WX}$ as corresponding parts of congruent triangles.

Fix note: Maybe number the angles.

Problem 3 Quadrilateral ABCD is a kite as marked. Prove that \overrightarrow{BD} is the perpendicular bisector of \overline{AC} .

Key theorem: The points on a perpendicular bisector are exactly those that are equidistant from the endpoints of a segment.

Proof: Because B and D are each $\boxed{equidistant}$ from A and C, they each must lie on the perpendicular bisector of segment \boxed{AC} , which implies that \overrightarrow{BD} is its perpendicular bisector.

Problem 4 Quadrilateral ABCD is a kite as marked. Prove that \overrightarrow{BD} is the perpendicular bisector of \overline{AC} .

A proof that makes use of triangle congruence:

Fix note: Do we need a step about \overrightarrow{BX} and \overrightarrow{BD} being the same line?

In the proof above, $\triangle BAD \cong \triangle BCD$ by \boxed{SSS} , and $\triangle ABX \cong \triangle CBX$ by \boxed{SAS} .

Feedback(correct): Paragraph proof:

 $\overline{BD} \cong \overline{BD}$, so that $\triangle BAD \cong \triangle BCD$ by SSS.

 $\angle ABD \cong \angle CBD$ by CPCTC.

 $\overline{BX} \cong \overline{BX}$, so that $\triangle ABX \cong \triangle CBX$ by SAS.

 $\angle BXA \cong \angle BXC$ by CPCTC, and they are a linear pair, so $\overline{BX} \perp \overline{AC}$.

 $\overline{AX} \cong \overline{CX}$ by CPCTC, so X is the midpoint of \overline{AC} .

Thus, \overrightarrow{BD} is the perpendicular bisector of \overline{AC} .