

資料科學導論

K-means Data Clustering

Cheng-Te Li (李政德)

Dept. of CSIE & Statistics
National Cheng Kung University

chengte@ncku.edu.tw

What is a Cluster (群)?

 "A group of the same or similar elements gathered or occurring closely together"

Galaxy clusters

Birdhouse clusters

Cluster lights

Cluster munition

Cluster computing

Hongkeng Tulou cluster

Clustering

Unsupervised Learning

Given a collection of (unlabeled) objects, find meaningful groups

First Application of Clustering

- John Snow, a London physician plotted the location of cholera (霍亂) deaths on map during an outbreak in 1850s
- The locations indicated that cases were clustered around certain intersections where there were polluted wells -thus exposing both the problem and the solution

Clustering for Image Compression

701,554 bytes

127,292 bytes

Clusters in 2D

How many clusters?

Six Clusters

Two Clusters

Four Clusters

Clusters in 2D

What is **Clustering**?

- A grouping of objects such that the objects in a group (cluster) are
 - Similar (or related) to one another in a group and
 - Different from (or unrelated to) the objects in other groups

Unsupervised Learning: Clustering

No "supervision", we're only given data and want to find natural groupings

K-means: An Example

K-means: Initialize Centers Randomly

K-means: Assign Points to the Nearest Center

K-means: Readjust Centers

K-means: Assign Points to the Nearest Center

K-means: Readjust Centers

K-means: Assign Points to the Nearest Center

K-means: Readjust Centers

K-means: Assign Points to the Nearest Center

No changes: Done

K-means

Iterate: Centroid

- Assign/cluster each point to the closest center
- Recalculate centers as the mean of the points in a cluster

K-means

Iterate: Centroid

Assign/cluster each point to the closest center

Iterate over each point:

- (1) Get distance to each cluster center
- (2) Assign to the closest center
- Recalculate centers as the mean of the points in a cluster

What distance measure should we use?

Distance Measures

Euclidean

Good for spatial data

$$d(x,y) = \sqrt{\sum_{i=1}^{d} (x_i - y_i)^2}$$

Cosine Distance

Correlated with the angle between two vectors

between 0 and 1

$$d(x,y) = 1 - sim(x,y)$$

$$sim(x, y) = \frac{x \cdot y}{|x||y|} = \frac{\sum_{i=1}^{d} x_i y_i}{\sqrt{\sum_{i=1}^{d} x_i^2} \sqrt{\sum_{i=1}^{d} y_i^2}}$$

K-means

Iterate: Centroid

- Assign/cluster each example to the closest center
- Recalculate centers as the mean of the points in a cluster

K-means Clustering

- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, *K*, must be specified
- The objective is to find:
 - K centroids and
 - the assignment of points to clusters/centroids so as to minimize the sum of distances of the points to their respective centroid

K-means Clustering

• **Definition:** Given a set X of n objects and an integer K, group the points into K clusters C =

 $\{C_1, C_2, ..., C_K\}$ such that Sum of Squared Error (SSE)

$$Cost(C) = Error(C) = \sum_{i=1}^{K} \sum_{x \in C_i} d(x, c_i)^2$$
$$= Loss(C)$$

is minimized,

where c_i is the centroid of the points in cluster C_i

- Given two clusterings,
 we will choose the one with the smallest error
- Note: we need to find both the grouping into clusters and the centroids per cluster

K-means Algorithm

- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: until The centroids don't change

- Initial centroids are often chosen randomly
- Clusters produced vary from one run to another

- Initial centroids are often chosen randomly
- Clusters produced vary from one run to another

- Do multiple runs and select the clustering with the smallest SSE error
- Select original set of points by methods other than random
 - E.g., pick the most distant (from each other) points as cluster centers

(Furthest Centers Heuristic algorithm)

 $c_1 = pick \ a \ random \ point$

for i = 2 to K: $c_i = \frac{point}{that}$ that is furthest from any previous centers

$$c_i = \underset{x}{\operatorname{argmax}} \min_{c_j: 1 < j < i} d(x, c_j)$$

point with the largest distance to any previous center

smallest distance from x to any previous center

2024/9/16 Prof. Cheng-Te Li @ NCKU

Initialize furthest from centers

Furthest point from center

Issue 2: What about *K*?

- Idea 1: try different K and do validation
 - What should we optimize? SSE
- Idea 2: let the domain expert look at the clustering and decide if they like it
 - How should we show this to them?

Issue 2: What about *K*?

- We can plot the objective function values for $K=1\sim6$
 - The abrupt change at k = 2, is highly suggestive of two clusters
 - Known as "knee finding" or "elbow finding"

2024/9/16

Issue 3: Convergence

- K-means converges for common similarity measures
 - Most of the convergence happens in few iterations
 - Often the stopping condition is changed to "until relatively few points change clusters"
- In general a fast and efficient algorithm

K-means DEMO

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

Limitation of K-means

- K-means has problems when clusters are of different:
 - Sizes
 - Densities
 - Non-globular shapes
- K-means also has problems when the data contains outliers

Limitations of K-means: Differing Sizes

Original Points

K-means (3 Clusters)

Limitations of K-means: Differing Density

Original Points

K-means (3 Clusters)

2024/9/16 Prof. Cheng-Te Li @ NCKU 42

Limitations of K-means: Non-globular Shapes

Original Points

K-means (2 Clusters)

2024/9/16 Prof. Cheng-Te Li @ NCKU

Limitations of K-means: Getting Stuck

A Local Optimum:

Would be better to have one cluster here

One solution is to use many clusters. Find parts of clusters, but need to put together.

Original Points

K-means (3 Clusters)

Original Points

K-means (2 Clusters)

Convex Sets

• A set is convex if line between two points in the set stays in the set

K-means with Non-Convex Clusters

K-means cannot separate non-convex clusters

2024/9/16 Prof. Cheng-Te Li @ NCKU

Feature Transformation

K-means not able to properly cluster

Changing the features (distance function) can help

Applications: Color Quantization

Image Compression

gif, png

Another application: optimal palette generation

Applications: Color Quantization

https://en.wikipedia.org/wiki/Color_quantization

A small photograph that has had its blue channel removed. This means all of its pixel colors lie in a twodimensional plane in the color cube.

The color space of the photograph to the left, along with a 16-color optimized palette produced by Photoshop. The Voronoi regions of each palette entry are shown.

Clustering is the Key to **Big Data** Problem

- Not feasible to "label"
 a large collection of objects
- No prior knowledge of the number and nature of groups (clusters) in the dataset
- Clusters may evolve over time
- Clustering provides efficient browsing, search, recommendation and organization of data