

AMCS CS 212 Numerical Optimization Assignment

1. Exercise in R3. Write and solve the first order optimality conditions of the following problem. $\text{minimize } x_1x_2 + x_2x_3$

minimize x1x2 + x2x3 subjectto x21+x2-2=0 x21 +x23 -2=0,

A21 1 A	25 2 0,
H5-1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
First order optimality	conditions.
- For non-linear equalit	y constraints,
s- V2L=0	
2- Vy L=0	X to see 2
That is, Z(x*) T \ (z*)	=G
P	
L(x,v)= P(x) + E Dih	
(カルナンモス)+ リ(も)	(+22-2) + D2 (23 + 23-2)
1-	The state of the s
VxL= 22 + 2 V, 27 2 V	£ X, = 0
VX2 L = (X1+X3) +2V1 Z2 =	
VX3 L = (22) + 2 V2 X3 =	- 0
2-	
Vyl= 21 +21-2 =0	2 1 121 22 22 22 22 22 22 22 22 22 22 22
VV, L = Z, + Z3 - 2 = 0	

2. Significance of the Lagrange Multipliers. Consider the equality-constrained problem: minimize f (x)

3. Nonnegativity of the Lagrange Multipliers. Explain with the aid of an appropriate diagram why it is not possible for the Lagrange multiplier of an inequality constraint to be negative at an optimal point.

4. Necessary but not sufficient conditions. Verify that the first order optimality conditions of the following problem are satisfied at the points (-2, 2) and (2, -2) but yet neither is a solution. minimize x1 - x2

subject to x1x2 + 4 = 0

H5-4.
The first order optimality
Wininize X1 - tz
Subject E. Zz+4=0
$\Delta - \nabla_{x} \perp = 0$
2- Vy L=0
Lagrangian, P $L(X, Y) = f(X) + \sum_{i} V_i k_i(X)$
$(x,y) = f(x) + \sum_{i=1}^{n} y_i h_i(x)$
$=$ $\pm(x) + \lambda_1 \gamma(x)$
$\rightarrow (z_1 - x_2) + \nabla, (x_1 x_2 + y)$
Vx1 = 1 + V1 X2 =0
72L=-1+V, X, =0
VDL = X1X2+4 = 0
At (-2,2);-
∇ _x (= 1+2V, =0 ∇ _x (= -1+-2V) =0 Sod., tied
Z ₂₁ = -1+ -2 V₁ =0 ∫
- 101
₹V2=(-2)(2)+4=0 / satisfied
At (2,-2):-
$\nabla_{X_1}L = 1 - 2 \nabla_1 = 0$ $\nabla_{X_2}L = -1 + 2 \nabla_1 = 0$ $\int Sat_1 s^{\frac{1}{2}} cod$
VV = (2) (-2) + 4 = 0 Satisfied
DA 13
.0.4 %
(*x) I I (*x) to thing builde

At the optimal point, of (x*) L Z (x*)
$\nabla f(-2,2) = 0$? $A(x^*) = 5227 - 527 \times 1 = 0$
$A(x^*) = \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ -2 \end{bmatrix} \times \begin{bmatrix} 2 \\ 2 \end{bmatrix}$
[1] +0 does not satisfy the road.
$\nabla^{\frac{1}{2}(2,-2)} = 0 + \begin{bmatrix} -2 \\ 2 \end{bmatrix} \times \frac{1}{2} = 0$
[-1] to does not satisfy the condition.

- **5. Healthy Snack.** Consider the problem of purchasing afternoon snacks. Health conscious buyers need at least 6 total ounces of chocolate, 10 ounces of sugar, and 8 ounces of cream cheese. There are 2 choices of snacks: brownies and cheescakes whose ingredients are listed below. Brownies cost 50 cents and mini-cheesecakes cost 80 cents.
 - Formulate the minimum-cost healthy purchase snack problem as a linear optimization problem,

```
c = [50,80]
A = [[-3,0],[-2,-4],[-2,-5]]
b = [-6, -10, -8]
x0_bounds = (2, None)
x1\_bounds = (0, None)
from scipy.optimize import linprog, minimize
res = linprog(c, A_ub=A, b_ub=b, bounds=(x0_bounds, x1_bounds), options={"disp":
 → True})
Primal Feasibility Dual Feasibility
                                        Duality Gap
                                                            Step
Path Parameter
                    Objective
1.0
                    1.0
                                        1.0
                                                                             1.0
230.0
0.1451752904024
                   0.1451752904024
                                        0.1451752904024
                                                            0.8621486037553
0.1451752904024
                    212.1498194428
0.9838194432084
0.007313214478173 219.6076486779
3.559976278034 {e-06} \quad 3.559976266184 {e-06} \quad 3.559976266143 {e-06} \quad 0.9995460886433
3.559976274529e-06 220.0000629544
1.779656660641 \text{e}{-10} \quad 1.779816031243 \text{e}{-10} \quad 1.779815718046 \text{e}{-10} \quad 0.9999500048381
1.779995253049e-10 220.0000000031
Optimization terminated successfully.
        Current function value: 220.000000
         Iterations: 4
print(res)
     con: array([], dtype=float64)
    fun: 220.0000000314566
 message: 'Optimization terminated successfully.'
    nit: 4
   slack: array([1.99070982e-10, 1.24105171e-10, 3.50000000e+00])
  status: 0
 success: True
      x: array([2. , 1.5])
```

- Write out explicitly the Lagrangian for this problem, as well as the optimality conditions.
- Compute the values of the Lagrange multipliers from the optimality conditions above. What is their physical interpretation in this problem? Comment on their values.

H5-5.
- Formulate the minimum-cost problem.
Pothon code.
- Lagrangian, optimality conditions
Brownie -> X,
Chiesecake -> X2
Subject to: (V)
3 X, 7, 6 -3X, +6 <0 -
2 X, + 4 X2 7/10 -> -2x, -4x2+10 <0
2 X, + 5 X2 7/8 -> -2x, -5 X2 +8 <0
X,, X, 70
0 - 1x (f e x (ee) = 1 - 1
- Lagrangian: (no (=) constraints) L(Z, Z) = fo(X) + \(\bar{Z}\) Z; f; (X)
= 50 X, +8 X2 + 7, (-3 X, +6) + 72 (-2 X, +44 X2+10)
+ 23 (-2X, -5X2 + 8)
-optimal conditions: (KKT) I
2. +;(x) 60 & done
2. 7:710
3, 7;4:(1) = 0
y. \text{\sqrt{1}} \text{\tint{\text{\tint{\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\text{\ti}}\\\ \ti}\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\tint{\text{\text{\text{\text{\text{\text{\text{\ti}\ti}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tex{

= [50,80], 7. ([-3,0]) + 7. ([-2,-4])
+ 7, ([-2, -5]) = 0
- Lagrangian multipliers.
$Z_1(-3 \times 1 + 6) = 0$
22(-2x, -4x2 +10)=0
Z3 (-2 X, -5 X2 +8)=0
$Z_1 = 2$, $Z_2 = 1.5$
-scode.
1,=1, 72=1, 72=0
Thus, we have two active constraints and the rest
can be removed.
the first two constraints can be turned to equality
#Lagrangian multipliers from scipy.optimize import fsolve
Trom Scipy.optimize import isotve
<pre>def equations(p): x1,x2 = 2, 1.5 l1,l2,l3 = p return(l1*(-3*x1 + 6), l2*(-2*x1 -4*x2 +10), l3*(-2*x1 - 5*x2 +8)) l1,l2,l3 = fsolve(equations, (1,1,1))</pre>
1.0 1.0 0.0

• Convert the problem to canonical form (i.e., equality constraints with zero-lower bound inequality constraints). This is the form used internally in the solution.

- canonical form.

minimize $50 \times 1 + 80 \times 2$ subject to: $-3 \times 1 + 6 + 5 = 0$ $-2 \times 1 - 4 \times 2 + 10 + 5 = 0$ 51 = 1.99070982e - 10 52 = 1.24105171e - 10

6. Center of Polyhedron.

- Formulate the problem as a linear programming problem. Hint. A point x is at a distance R from the line ii fa Ti x bi = -R ||ai||.
- Use the data sample below and solve the problem.

```
import numpy as np
from scipy.optimize import linprog, minimize
import cvxpy as cp
from numpy import linalg as la
#Using linprog
A = np.array( [[0, -1], [2, -1], [1, 1], [-1/3, 1], [-1, 0], [-1, -1]] )
b = np.array( [0, 8, 7, 3, 0, -1])
rowNrm = np.sqrt(np.sum(A**2, axis=1))
matA = np.vstack((rowNrm, A.T)).T
C = np.array([-1, 0, 0])
res = linprog(C, A_ub=matA, b_ub=b)
print(res)
      con: array([], dtype=float64)
fun: -1.8655647843427605
 message: 'Optimization terminated successfully.'
      nit: 5
    slack: array([-1.88109084e-10, 7.01778719e-01, 1.05820686e-09, 5.65354874e-10,
         6.30563411e-01, 7.23385960e-01])
  status: 0
 success: True
        x: array([1.86556478, 2.4961282, 1.86556478])
```

• What is the significance of the Lagrange multipliers in your solution.

```
# using cvxpy
  # variables
  radius = Variable(1)
center = Variable(2)
objective = cp.Minimize(-1*radius)
  p = Problem(objective, constraints)
 result = p.solve()
print("radius: ",radius.value)
print("center: ",center.value)
l = np.zeros((6,1))
  for i in range (0,6):
  l[i] =constraints[i].dual_value
print("lamda ", i+1, " " ,constraints[i].dual_value)
print("Lamda 2,5,6 are almost zeros so they are not active and does not affect the solution, hence can be removed")
            [1.86556479]
  center:
            [2,4961282 1,86556478]
               [0.46639119]
  lamda 1
               [6.16655976e-09]
  lamda
  lamda
               [0.11659779]
  lamda 4
               [0.3497934]
               [1.70309948e-09]
  lamda
               [3.27651278e-10]
  Lamda 2,5,6 are almost zeros so they are not active and does not affect the solution, hence can be removed
```

 Write out the Lagrangian for this problem as well as the optimality conditions. Verify that the solution satisfies the optimality conditions.

0.	
Q6:	
Lagrangian: L(z, v, z) = fo(x) + & vik.(x) + & 2; f;(x)	
minimizer Y	5
S.t. E0, 17 X + 1 E0,17 1 * Y < 0	
[2,-1]X +11[2,-1]/1*+ <8	
[1,1]X + 11[1,1]11 + x < X	
[-1/3,17]X+11[-1/3,17]]+v<3	
[-1,0]x+11[-1,0]+x <0	
[-1,-1] + x[-1,-1] + x[-1,-]	
optimality carditions.	
I; f;(x) = 0	
win the code	
$\nabla f_0(x) + \sum_{i=1}^{n} \sum_{j=1}^{n} \nabla f_i(x) = 0$	
+ Z ₂ (2X ₁ - X ₂ + √5 x - 8)	
+ 73 (Z1+Z2 + JZ x - 7)	
$+ \frac{7}{3}(-\frac{1}{3}x_1 + x_2 + \frac{10}{3}x_1 - 3)$	
+ 7 ₅ (-X,+ Y)	
+ Z8 (-X1-X2 + J2 V)	
V 27 117 - 7 - 7 - 7 -	
$\nabla_{x_1} = 272 + 23 + \frac{1}{3}74 - 25 - 26 = 0$	
$\sqrt{x} = -2x - 2z + 2z + 2y - 26 = 0$	7 - 0
7, = -1 + 7, + \(\sigma\) \(\frac{1}{2}\) + \(\sigma\) \(\frac{1}{3}\) + \(\frac{1}{3}\) \(\frac{1}{3}\) + \(\frac{1}{3}\) \(\frac{1}{3}\) + \(\frac{1}{3}\) \(\frac{1}{3}\)	6 =0


```
#the soultion satisfies the optimality conditions.
#optimality conditions: lamda_i f_i(x)=0
print(l[0]* (np.transpose(a1)@center.value + np.linalg.norm(a2)*radius.value - b[1]) )
#print(l[1]* (np.transpose(a2)*center.value + np.linalg.norm(a2)*radius.value - b[2]) )
print(l[2]* (np.transpose(a3)@center.value + np.linalg.norm(a3)*radius.value - b[3]) )
#print(l[4]* (np.transpose(a5)*center.value + np.linalg.norm(a4)*radius.value - b[3]) )
#print(l[5]* (np.transpose(a5)*center.value + np.linalg.norm(a6)*radius.value ) )
#print(l[5]* (np.transpose(a6)*center.value + np.linalg.norm(a6)*radius.value + b[5]) )

[1.29228531e-09]
[1.12252997e-09]
[-5.20904991e-10]

#gradient L=0
gr = -1+ l[0] + np.sqrt(2)*l[2] + (np.sqrt(10)/3)*l[3]
gx1 = l[2] - (1/3)*l[3] #+ 2*l[2] + (2/3)*l[3]
gx2 = -1* l[0] + l[2] + l[3]
print("the gradient with respect to r: ", gr)
print("the gradient with respect to r: ", gr)
print("the gradient with respect to x: ", gx1)
print("the gradient with respect to y: ", gx2)
print(np.sqrt(gr**2 + gx1**2 + gx2**2))

the gradient of the lagrangian is almost zero, thus the optimality conditions are satisfied the gradient with respect to r: [-1.51146274e-08]
the gradient with respect to x: [-1.03324936e-08]
the gradient with respect to y: [6.4188197e-09]
[1.94013822e-08]
```

7. Minimum Cost Flow.

• Solve the problem for the graph below where we wish to send 4 units from node 1 to node 3.

```
from scipy.optimize import linprog, minimize
 import numpy as np
q=4
c = np.array([5,2,1,2,4])
A = np.array([[1,1,0,0,0],[-1,0,1,1,0], [0,0,0,-1,-1], [0,-1,-1,0,1]])
p = np.array([2,5,3,7,1])
b = np.array([q,0,-q,0])
I=np.identity(5)
x0_bounds = (0, None)
x1_bounds = (0, None)
 res = linprog(p, A_ub=I, b_ub=c, A_eq=A, b_eq=b, bounds=(x0_bounds, x1_bounds, x1_bounds
 print(res)
<ipython-input-153-81fd8457739a>:1: OptimizeWarning: A_eq does not appear to be of full row rank. To improve
performance, check the problem formulation for redundant equality constraints.
res = [inprog(p, A_ub=I, b_ub=c, A_eq=A, b_eq=b, bounds=(x0_bounds, x1_bounds, 
 Primal Feasibility Dual Feasibility
                                                                                                                                                                                         Duality Gap
                                                                                                                                                                                                                                                                                                                                                                     Path Parameter
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Objective
                                                                                            1.0
0.1562396059839
                                                                                                                                                                                         1.0
0.1562396059839
                                                                                                                                                                                                                                                                                      - 1.0
0.8522676758958 0.1562396059839
  0.1562396059839
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   24.448897564
0.02131673041496 0.02131673041479 0.02131673041479 0.8758665804189 0.02131673041538 26.478537692 59 3.52784270894e-05 3.527842709009e-05 3.527842709002e-05 0.998468337561 3.527842709536e-05 26.999407512 84
  1.763995374892e-09 1.763995700236e-09 1.763995639617e-09 0.999949997893 1.763996479459e-09 26.999999970
37
Optimization terminated successfully.

Current function value: 27.000000

Iterations: 4
con: array([6.73525191e-09, -3.36760997e-09, -6.73525857e-09, 3.36761641e-09])
fun: 26.999999978373853
message: 'Optimization terminated successfully.'
nit: 4
             slack: array([3.00000000e+00, 6.80593004e-09, -3.21077431e-09, 1.00000000e+00, 1.00000001e+00])
      status: 0
success: True
x: array([2.
                                                                                                                            , 1.99999999, 1.
                                                                                                                                                                                                                                                                                                   . 2.99999999])
                                                                                                                                                                                                                                            , 1.
    res.x
   array([2.50000003, 1.99999993, 1.00000001, 1.50000003, 2.99999993])
```

• What is the significance of the multipliers of the capacity constraints? What is the significance of the multipliers of the node constraints?

5-7.
Ci is max capacity
P. cost
pTX & minimize
A=r 1 1 0 0 0 7
_ 0 1 1 0
0 0 0 -1 -1
0 -1 -1 0 1
T
AX= [9090]
[X < C = [5 2 1 2 4]
P = [2 5 3 7 1]T
BRITIE
Since Slack variables for 1, 14, 15 are zero, thur are
not active.
(4 42(x) = E
D+ = -0.3 × - € 12 = - (0.1)(12) → I2 ≈3
if &= 0.1 and f, (x) = E
D P (x) = -0,3 ≈ - ≥ I3 → Z3 = 3
: 1 = [0 3 3 0 o]
h, (x)= & = 6.5
h3(x) = & = 0.5
S 9 x ~ € (7, + V3) ≈ 31.5-2x
$\nabla_1 \perp \nabla_3 \approx q$
~ \

$2+\nabla_1 - \nabla_2 = 0$	
S + V, - V4+8=0-	personal from the
3 + V2 - V4 +3 = 0 M	1100
7 + N2 + V3 = 0 x	The way of X2
1 - V3 + V4 = 0 X	
$\sqrt{2} = \sqrt{1 + 2}$	
Dy = V1 + 8 7	+ (2+V1)-V3} =0
	7 + 71 - 73 =0
$V_2 = V_1 + 2$	A shower was
V3 = V, +9	E BOLL LAKE
Jy = J, +8	
V1+V3 × 9	
V3 = ~ 9- V1	Mark activate
	4 4 (v) + <u>1</u>
2,00	
$\nabla_2 \approx 2$	
$v_3 \approx 9$	
Vy = 8	

Considering the results for the inequality constrains we realize that lambda 1, 4 and 5 are equal zero, what means that they are not active and, therefore, do not affect the solution because of the he high price per amount of good shipped. Lambda 2 and 3 are equal three and the solutions depend on those variables due to the limitation of capacity and low cost through the edges.

For the equality constrains We observe that the multiplier 3 affects more the solution because has a larger multiplier and all units sent depends directly of it. On the other hand the second node more important is the number 4, since one of its edges has the minimum price, therefor, the units sent will tend to cross through this edge to minimize the objective function.