Convolutional Neural Network of Corn Leaf Disease Images

Matt Haberkorn
Phoenix College Bioscience Dept.
matt.haberkorn@phoenixcollege.edu
matt.a.haberkorn@gmail.com

Problem

- Corn and maize leaf diseases can seriously reduce productivity if not identified and treated quickly and appropriately
- More corn is produced worldwide by weight than any other grain
- Increased production of corn is of highest importance in feeding a growing world population in years to come

Solution

- Development of a means for farmers to carry out rapid surveys of fields and give proper identification of leaf diseases
- Allows for earlier detection and proper identification so proper crop treatments can be applied

Solution and Project Goal

- Development of a Convolutional Neural Network (CNN) for the classification of corn leaf disease images
 - Made accessible to farmers with digital photography and smartphones
 - Allows for larger scale surveys of fields for leaf diseases

Who might be interested?

- Farmers in general
- Farmers in less developed nations where more advanced agricultural technology is not always accessible
 - Early detection becomes more important

Blight

- Setosphaeria turcica
- Leaves are persistently wet for 6 plus hours
- temperatures are between 64 and 81 degrees Fahrenheit

Gray Leaf Spot

- Cercospora zeae-maydis
- Temperatures remain above 80 degrees
 Fahrenheit for 12 plus hours
- High humidity

Common Rust

- Puccinia sorghi
- High humidity
- Night time temperatures are between 65 and 70 degrees
 Fahrenheit

Data

- Total of 4,188 images
 - 1,306 common rust
 - 574 gray leaf spot
 - 1,146 blight
 - 1,162 healthy
- Images accessible on Kaggle Corn and Maize Leaf Disease Dataset

Average Images

- Brighter green in healthy average image
- Dark edges in common rust average image due to differing methods of photography

Red, Green, Blue, and Intensity Averages

- Healthy and rust leaves have most divergent averages
- Blight and gray leaf spot have most similar averages

Red, Green, and Blue Averages

Averages for RGB differ across the categories

Python Image Processing

 Done with desire that processed images would cause leaf diseases to be better identified by CNN

- Grayscale
- Binary
- Brown filter
- Green filter
- Canny Edges
- Sobel Edges
- Brown and green filters developed through the creation of a function to filter for preselected ranges of RGB values

Processed Images Used In CNN

Grayscale

Binary

RGB

Brown filter Green filter Canny edges Sobel edges

Processed Images Used In CNN

Grayscale

Binary

RGB

Brown filter Green filter Canny edges Sobel edges

CNN Modeling

- CNN models developed using
 - Only RGB images
 - RGB and all processed images
 - With and without image augmentation
 - With and without VGG16 transfer learning

Model Name	Image Augmentation	Transfer Learning	Validation Accuracy	Validation Loss
VGG16 Model	No	VGG16 (not trainable, input and output layers trainable)	97.6%	0.119
Simple Processed Image Model	Random horizontal and vertical flip	No	95.9%	0.203
Comparison Kaggle Model	Random height shift, zoom, rotation	VGG16 (All layers trainable)	95.5%	0.163
Random Forest	No	No	86.6%	
Simple RGB Model	Random horizontal and vertical flip	No	85.3%	0.360

VGG16 Model

```
Model: "VGG16 Model"
Layer (type)
                             Output Shape
input 2 (InputLayer)
                             [(None, 180, 1260, 3)]
                           (None, 5, 39, 512)
vgg16 (Functional)
                                                       14714688
global average pooling2d (Gl (None, 512)
                                                       2052
dense 8 (Dense)
                             (None, 4)
Total params: 14,716,740
Trainable params: 2,052
Non-trainable params: 14,714,688
```

CNN Filters

- Filter taken from the VGG16 block 2 convolutional layer 2 utilizing the Imagenet weights
- The rectangular shape of the filter is a reflection of the input image size of 180x1260 pixels for the VGG16 model
- Patterns and shapes of these filters are complex representations of images taken from the real world
- Not always known what each individual filter is representing or detecting, the patterns are the general means by which CNN identifies and categorizes images

VGG16 Model

- Validation accuracy 97.6%
- Validation loss 0.119

Conclusion

- Image processing increased model accuracy
 - Accuracy increased from 85.3% to 95.9% with processed images
- VGG16 transfer learning further increased accuracy
 - VGG16 model accuracy increased to 97.6%
 - Similar VGG16 model without processed images had 95.5% accuracy

Future Work

- Further tuning of VGG16 model
- Assessing which of the 7 processed images contributes most to model accuracy
- Cropping of some images to reduce backgrounds