线性脉冲放大器

张轩, 复旦大学核科学与技术系

摘要: 本实验探究了脉冲放大器的工作情况。分别涉及极零相消功能的验证、主放大器不同工作级的输出的观察、不同成形时间对输出波形的影响和积分非线性性的测量。

关键词: 主放大器 极零相消

一、引言

线性脉冲放大器(主放大器)是核电子学中重要的设备,它具有滤波成形和放大的功能,常常接受前置放大器或者信号源的信号,将其成形为具有一定幅度和更高信噪比的准高斯的信号,用于能谱分析。

本实验探究了脉冲放大器的工作情况。分别涉及极零相消功能的验证、主放大器不同工作级的输出的观察、不同成形时间对输出波形的影响和积分非线性性的测量。本实验的结果可以加深对脉冲放大器的工作原理的理解,也可以为后续实验中使用脉冲放大器提供参考。

二、实验目的

了解线性脉冲放大器基本工作原理,掌握线性脉冲放大器主要技术指标的测量方法及使用和调节方法。

三、实验原理

图 1 脉冲放大器原理图

图1是放大器的原理框图,整个放大器由输入极、一次微分、两级放大、两级二阶 有源积分级、极性转换、基线恢复器和输出缓冲等组成。 从前放或探测器来的信号首先经过一次微分级及极零补偿电路,通过调节波段开关可以得到 0,0.5,1,2,3,4,5,6 μs 不同的微分时间常数,从而可以得到不同的脉冲宽度。调节电位器,可以消除脉冲下冲。

经过微分后的信号加到第一级放大级 A_1 ,通过改变输入电阻可以改变放大倍数,以达到增益粗调的目的,通过 A_2 级调节电位器可以达到增益细调的目的。

第三级 A_3 是积分级,它由两级二阶有源积分电路组成,通过调节统调波段开关,可以改变积分时间常数,以获得不同的脉冲宽度和较好的信噪比。

第四级 A4 为极性转换器,可以根据需要调节拨码开关选择输出极性。

第五级 A_5 是输出缓冲级,也具有一定的放大倍数,为提高输出电流能力,其输出阻抗为 50Ω 。

为了保证输出直流电平的稳定,加一级基线恢复器 A_6 ,它与 A_5 构成负反馈电路,这样当输入信号使基线偏移时(例如 A_5 反向端产生负向偏移),放大器输出(即第五级输出)产生正向偏移,达到了稳定直流工作点的作用。

输入为直流耦合,最大直流工作电压不能超过 $15\,\mathrm{V}$,第一级输入脉冲大于 $2.5\,\mathrm{V}$,将使第一级饱和,从而产生非线性。输入极性转换开关随输入脉冲的极性而变,当输入正脉冲时,开关倒向"正",当输入负脉冲时,开关倒向"负"。当使用相等的微积分时间常数时,增益粗调 C 分别为 10、20、50、100、200、500 倍六档,细调 F 从 $0.5\sim1.5$ 倍连续可调,因此放大器总增益 $A=C\times F$ 在 $5\sim750$ 倍连续可调。输出为直流合,输出阻抗为 $50\,\Omega$ 。

四、实验装置

- 1. MSO2202 数字示波器 1 台
- 2. CAKE611 型放大器 1 台
- 3. 419 精密脉冲产生器 1 台
- 4. 同轴高频信号线若干
- 5. 自制电阻调整盒1个

五、实验过程

5.1 极零相消

开关电阻盒设置为 K_3 , K_4 关闭, K_5 设置为开。连接到 419 精密脉冲发生器的输出端。从衰减输出端引出信号,输入到主放大器中。使用示波器观察主放大器的输入和输出。

使用精密脉冲发生器产生幅度为 -150 mV,调节开关电阻盒上的电位器,使得衰减时间为 200 μs。

图 2 实验线路图: 开关电阻盒 II 是在之前实验中有介绍,它作为脉冲发生器的输出端,可以调节脉冲发生器的输出阻抗,进而调整输出信号的成形时间。

主放大器的增益设置为 $A = 20 \times 1.5 = 30$ 倍, $\tau_i = \tau_d = 1 \, \mu s$ 。用小号一字螺丝刀调节极零相消旋钮,观察记录欠补偿、过补偿和正确补偿之。

改变输入信号的衰减时间为 1000 μs, 10 μs, 1 μs, 观察并记录最好的极零相消波形。 注意,完成后,需要将极零相消旋钮调回到原来的状态。

5.2 线性放大器的工作原理

使用精密脉冲发生器产生适合幅度的输入信号,使用螺丝刀打开 CAKE611 主放大器的面板,使用 NIM 电源延长线给放大器供电,选择 $\tau_i = \tau_d = 1\,\mu s$,调节放大倍数使得输出脉冲幅度为 $10\,V$ 左右。

阅读 CAKE611 主放大器电路原理图,找到图1的各级之间位置,通过焊盘和引脚,使用示波器探头观察记录这六处(有源积分有两级)波形,并记录它们和输出信号的相对位置。

5.3 测量放大器的增益

使用精密脉冲发生器产生适合幅度的输入信号,取 $\tau_i = \tau_d = 2 \, \mu s$,在增益细调旋钮选作 F = 1.5 的条件下,测量粗调旋钮 C = 20, 50, 100 倍的情况下,测量增益。

设置主放大器的增益固定作 $A=200\times1.5$ 倍,先测量在 $\tau_i=0,\tau_d=\max$ 的条件下的输出波形和增益,再在 $\tau_i=\tau_d=0.5,1,2,3,4,5,6$ μ s 的条件下测量峰位、宽度、幅度。并计算增益。

5.4 测量放大器的积分非线性性

取 $\tau_i = \tau_d = 1 \, \mu s$,找到使得放大器输出幅度最大且不失真的输入幅度 U_r ,然后测量输入幅度为 $\{kU_r\}_{k=0,1,0,2,\dots,1}$ 的对应的输出幅度,测量放大器的积分非线性性。

六、实验结果和分析

6.1 极零相消

选择放大倍数 $A = 20 \times 1.5 = 30$ 倍,调节精密脉冲发生器输出段的衰减时间为 $200 \, \mu s$ 。分别调成正确补偿、欠补偿和过补偿的状态,结果如图3所示。

图 3 200 µs 下极零相消的三种情况

当输入的衰减时间变为 $1000\,\mu s$ 时,极零相消仍然正常工作。当输入衰减时间为 $10\,\mu s$ 和 $1\,\mu s$ 时,输出始终处于欠补偿状态,图中展示的是通过极零相消调节的下冲最低的输出。

6.2 放大器工作过程的验证

将信号恢复成衰减时间为 200 μs,输出幅度为 -50 mV。拆开放大器的电路板,在 六个工作级之间的位置用示波器测量输出信号。结果如图5所示

如图5, 所示精密脉冲发生器的输入段经过极零相消和微分电路后, 衰减时间从 200 μs 变为 2 ~ 3 μs。经过粗细放大级后, 幅度增加, 信噪比提高, 且在细放大输出端极

图 4 输入衰减时间为 1000, 10, 1 µs 下的极零相消

图 5 六个工作级的输出波形

性转换。接着经过两个有源积分级后,信噪比进一步提升,波形也变为准高斯波形。然后经过极性转换后,输入到基线恢复级,最后输出。

6.3 放大器增益和滤波成形特性的测量

6.3.1 成型时间为 2 µs 时增益的测量

使用信号脉冲发生器产生衰减时间为 $200\,\mu s$,幅度为 $-50\,m V$ 的信号。选择增益为 $A=C\times F$, F=1.5 ,C=20 ,C=2

粗调增益 C	输出幅度 (V)	放大倍数
100	10.72	214.4
50	5.275	105.5
20	2.316	46.32

表 1 成形时间 2us 的增益

可见实际的增益并不等于增益旋钮的乘积, 这是因为滤波成形级也会影响最终的输出幅度。

6.3.2 不同成形时间下的输出波形

将放大倍数设为 $A=200\times1.5$ 倍,将微积分时间常数分别设为 $0/\max,0.5,...,6$ μs ,测量输入输出波形的幅度、峰位和峰宽,结果如图6所示,零点均选择为输入端上升沿出。

图 6 不同成形时间下的输出波形

对于不滤波的输出,可以看出输出波形和输入波形的形状一致,只有幅度不同。对于其它输出波形的测量结果如表2所示

表 2 不同成形时间的波形

成形时间 (μs)	0/ max	0.5	1	2	3	4	5	6
输入端峰值 (mV)	32	32.4	32	22.8	22.8	22.4	22.4	22.4
输出端峰值 (V)	10.4	9.2	10.88	9.84	9.67	8.88	8.72	8.64
放大倍数	325	284	340	432	424	396	389	386
输出端峰值位置 (μs)	3.85	2.05	3.14	5.58	7.64	9.85	11.85	14.00
输出端半峰宽 (μs)	_	2.15	3.30	6.26	8.95	11.05	13.35	16.10

如表所示,在不同的成形时间下,放大倍数、峰位和峰宽都产生了变化,将这些变化绘制成图,如图7

图 7 不同的成形时间下,放大倍数、峰位和峰宽的变化

放大倍数随着成型时间的变化是先增加在减小,峰值在 $\tau_i = \tau_d = 2\,\mu s$ 处产生。峰位值和峰宽度和成型时时间具有明显的线性关系,对数据进行线性拟合,得到的结果如表3所示,线性拟合的决定系数都超过了 0.99 。

表 3 峰位和峰宽的线性拟合结果

拟合参数和结果	峰位值拟合	峰宽度拟合
斜率 k	2.17 ± 0.02	2.52 ± 0.05
截距 b	1.07 ± 0.09	1.01 ± 0.18
决定系数	0.99936	0.9980

6.4 积分非线性性的测量

图 8 积分非线性性的测量

表 4 线性拟合结果

拟合参数	拟合结果
斜率 k	352.8 ± 1.9
截距 b	$(-0.04 \pm 0.04) \mathrm{V}$
决定系数 b	0.99977
最大残差	0.0964 V
积分非线性性	0.0202%

按照前述的方法测量积分非线性性,测量的结果图8和表4所示,最大残差发生在输入电压为 $12.7\,\text{mV}$ 时,积分非线性性为 0.0202% 。利用最小二乘法还更精确的测量成形时间为 $1\,\mu\text{s}$,放大增益设为 300 时的放大倍数,为 $52.8\,\pm\,1.9$ 。

七、实验结论

- 1. 通过示波器以及信号发生器产生不同衰减时间的波形,验证了示波器的极零相消功能,并且认识到极零相消的范围是有限的;
- 2. 通过观察放大器各个电路级的输出,验证了脉冲放大器的工作原理;
- 3. 通过在同一条件下不同增益旋钮下测量增益,发现增益不与旋钮示数相等,但是成比例变化;
- 4. 通过观察不同成型时间下的输出波形,探究了成型时间对峰值、峰位和峰宽的影响,其中峰位和峰宽随成形时间线性变化,具体结果参考表2和图7;
- 5. 测量了脉冲放大器的积分非线性性为 0.0202%。