PH160 LAB 4

Name: Snehal Keshav

Nalawade ID: 202151160

Objective:

- To understand the phenomenon Photoelectric effect as a whole.
- To draw kinetic energy of photoelectrons as a function of frequency of incident radiation.
- To determine the Planck's constant from stopping potential versus frequency graph.
- To plot a graph connecting photocurrent and applied potential.
- To determine the stopping potential from the photocurrent versus applied potential graph.

Theory:

The **photoelectric effect** is the emission of electrons when electromagnetic radiation, such as light, hits a material. Electrons emitted in this manner are called photoelectrons.

$$hv = hv_0 + E$$

Where,
hu = Incident Radiation
Hv₀ = Work function
E = Maximum Kinetic Energy

In all the observations below, intensity is taken to be 5 w/sq.m and area of material is equal to 0.1 sq.cm.

hy - hv = eV' + hv - hv = V' - A But, ho will be Constant St line ex of a graph frequency(x) and stopping potential (v') also, m= /2-4, -(11)

Observation:

Copper

Sr. No.	wavelength (L) (nm)			KE(max)=e V' (*10^(- 19))
1	100	0.03	7.8	12.4956
2	150	0.02	3.6	5.7672
3	190	0.015789474	1.9	3.0438
4	230	0.013043478	0.7	1.1214
5	250	0.012	0.3	0.4806
6	264	0.011363636	0	. 0

Zinc

Sr. No.			Stopping potential (V') (v)	KE(max)=e V' (*10^(- 19))
1	100	0.03	8.2	13.1364
2	150	0.02	4	6.408
3	190	0.015789474	2.3	3.6846
4	230	0.013043478	1.1	1.7622
5	250	0.012	0.7	1.1214
6	290	0.010344828	0	0

Sodium

Sr. No.				Stopping potential (V') (v)	KE(max)=e V' (*10^(- 19))
	1	120	0.025	8.1	12.9762
	2	150	0.02	6	9.612
	3	190	0.015789474	4.3	6.8886
	4	230	0.013043478	3.2	5.1264
	5	250	0.012	2.7	4.3254
	6	543	0.005524862	0	0

:. Average value of Plank's

Constant will be:
h=(6.576+6.568+6.654)×10-34

3

h=6.599×10-34

TS

Since KE = eV', therefore the graph between KE and frequency(f) for the above materials will be similar to their graph between V' and f.

Copper

Sr. No.	Voltage (V)	Photocurrent (I) (uA) (i.e. *10^-6)
1	(3.86
2	2 -2	2.86
3	3 -4.4	1.66
4	-6.6	0.56
5	-7.8	0

Zinc

Sr. No.	Voltage (V)	Photocurrent	(I) (uA) (i.e. *10^ -6)
	1	0	4.06
	2	-1.8	3.16
	3	-5	1.56
	4	-6.8	0.66
	5	-8.2	0

Sodium

Sr. No.	Voltage (V)	Photocurrent 6)	(I) (uA) (i.e. *10^-
	1	0	4.03
	2	-2.8	2.63
	3	-4.6	1.73
	4	-6.2	0.93
	5	-8.1	0

The photocurrent vs applied voltage graph for the above considered materials will be like the one shown alongside:

The photocurrent vs applied potential graph for each one of the above considered materials (for three different intensities) will be similar to the graph given alongside:

In this graph, the applied potential for which photocurrent=0 is the stopping potential of that material. In This way V' can be deduced from the photocurrent vs applied voltage graph.

Thank you