ch15: Multiple Regression

3 Nov 2011 BUSI275 Dr. Sean Ho

- HW7 due Tues
- Please download: 17-Hawlins.xls

Outline for today

- Multiple regression model
 - Running it in Excel
 - Interpreting output
- Unique contributions of predictors
 - Automated predictor selection
- Moderation (interaction of predictors)
 - How to test for it
- Regression diagnostics: checking assumptions
 - Transforming variables

Multiple regression

- 1 outcome (scale), k predictors (scale)
- Linear model: hyperplane

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_k x_k$$

Residuals still assumed normal, homoscedastic

Multiple regression in Excel

- Dataset: 17-Hawlins.xls
- DV (y): Output (units/wk)
- IV (x₁): Employees
- IV (x₂): Age of Plant (yrs)
- Pairwise scatters are helpful
 - Note R² for each predictor

- Y Range: B1:B160
- X Range: C1:D160

Interpreting the output

- R Square (R²): fraction of DV var explained
 - Adjusted R² compensates for adding more IVs
- ANOVA table: F, p, and dfs
 - "Number of employees and plant age significantly predicted output:
 R² = .72, F(2, 156) = 200.7, p < .001."
- Coefficient table:
 - For each predictor: slope b, t-score, and p
 - Both slopes are significantly nonzero
- Standardized residuals: z-scores
 - Can use to look for observations that don't fit the model (e.g., |z| > 3)

Unique contributions

- From the Employees scatter, it predicts Output pretty well (R² = 71%)
- \blacksquare Age? Not so well $(R^2 = 12\%)$
- When use both together, why is R² only 72%?
 - Most of the 12% of variability in Output explained by Age is shared variability:
 - Age doesn't tell us much more about Output than we already knew from Employees
 - Age's unique contribution is only 1%
- Compare regression using all predictors against regression using all except Age

Drawing conclusions

- We see that Employees and Age do significantly predict Output (global F test), and
- Each predictor does contribute significantly (t-tests on slope), but
- The unique contribution of Age is very small, so
- Most of the predictive power is in the number of employees.
- In a formal write-up, you usually want to include details such as R², F, dfs, and p, for those who understand the statistics.

Automated predictor selection

- "Best subsets" regression uses several runs with different combinations of predictors to try to find the set that predicts best while using the fewest predictors
 - Parsimony: simpler model to understand
- "Stepwise" regression adds/removes
 predictor at a time to try to do the same
 - Backward: eliminate the least significant IV
 - Forward: add the next most significant IV
- Only in PHStat add-on, or SPSS, Stata, R, etc.

Moderation

- Moderator: a predictor that affects the strength of another predictor's influence on the outcome
 - Interacts with the other predictor
- E.g., natural disasters may affect your supply, but having multiple suppliers buffers the effect

Testing for moderation

- How do we know if predictors are interacting?
- Add an interaction term to the regression:

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + b_{12} x_1 x_2$$

- In Excel, centre both IVs (subtract their means), then make a 3rd column with the product
 - Include it in the regression as if it were an IV
- Check the t-test to see if the slope (b₁₂) of the interaction term is significantly nonzero
- If so, check R² both with and without the interaction term to see the size of its effect
- Also 3-way $(x_1x_2x_3)$ and higher interactions!

Diagnostics: check assumptions

- Normality of residuals:
 - Check histogram of standardized residuals
- Homoscedasticity:
 - Residual plot: residuals vs. predicted values
 - Look for any odd or "fan shaped" patterns
- Linearity: curves on the residual plot
 - Try adding x_1^2 or x_2^2 , etc. to the model
 - And/or apply transforms to variables
- Indep. of residuals (time series are usually bad)
- Collinearity of IVs: check correlations of IVs
- Outliers / influential points: see residual plot

Homoscedasticity & linearity

Transforms

- Some variables (either IVs or DV) may be so heavily skewed that they break assumptions (esp. heteroscedasticity and nonlinearity)
- You can try applying a transform to make them roughly more symmetric or normal
 - But strict normality is not required
 - E.g., log(income) is usually more normal
- The family of power transforms includes:
 - \bullet \sqrt{x} , x^2 , 1/x, $x^{-5.2}$, etc., as well as $\log(x)$
 - May need to shift (x+c) or reflect (c-x) first
 - The Box-Cox procedure "automatically" selects a power transform for your variable

TODO

- HW7 (ch10,14): due Tue 8 Nov
- Projects:
 - Acquire data if you haven't already
 - If waiting for REB: try making up toy data so you can get started on analysis
 - Background research for likely predictors of your outcome variable
 - Read ahead on your chosen method of analysis (regression, time-series, logistic, etc.)

