Question	Answer	Marks	Guidance		
(a)	$\frac{\sin^3\theta}{\sin\theta - 1} - \frac{\sin^2\theta}{1 + \sin\theta} = \frac{\sin^3\theta (1 + \sin\theta)}{(\sin\theta - 1)(1 + \sin\theta)} - \frac{\sin^2\theta (\sin\theta - 1)}{(\sin\theta - 1)(1 + \sin\theta)}$ $\left[= \frac{\sin^3\theta (1 + \sin\theta) - \sin^2\theta (\sin\theta - 1)}{(\sin\theta - 1)(1 + \sin\theta)} \right]$	*M1	Using a common denominator.		
	$-\frac{\sin^2\theta + \sin^4\theta}{1 - \sin^2\theta}$	DM1	Reaching $\pm (1-\sin^2\theta)$ in denominator. SOI by $\pm \cos^2\theta$.		
	$-\frac{\sin^2\theta\left(1+\sin^2\theta\right)}{\cos^2\theta}$	DM1	Using $\sin^2 \theta + \cos^2 \theta = 1$ in denominator and isolating $\sin^2 \theta$ in numerator.		
	$-\tan^2\theta \left(1+\sin^2\theta\right)$	A1	AG - Using/stating $\tan \theta = \frac{\sin \theta}{\cos \theta}$ is sufficient for A1. May be working from both sides provided the argument is complete. A0 if θ or brackets missing throughout, or sign errors. Allow recovery if AG follows from <i>their</i> working.		
	Alternative method for Q4(a)				
	$-\tan^2\theta(1+\sin^2\theta) = -\frac{\sin^2\theta(1+\sin^2\theta)}{1-\sin^2\theta}$	*M1	Using $\tan \theta = \frac{\sin \theta}{\cos \theta}$ and $\sin^2 \theta + \cos^2 \theta = 1$.		
	$\frac{-\sin^2\theta - \sin^4\theta}{\left(1 - \sin\theta\right)(1 + \sin\theta)}$	DM1	Factorising denominator.		
	$\frac{\sin^2\theta + \sin^3\theta - \sin^3\theta + \sin^4\theta}{\left(\sin\theta - 1\right)(1 + \sin\theta)} = \frac{\sin^3\theta \left(1 + \sin\theta\right) - \sin^2\theta \left(\sin\theta - 1\right)}{\left(\sin\theta - 1\right)(1 + \sin\theta)}$	DM1	Factorising numerator.		

Question	Answer	Marks	Guidance	
(a)	$\frac{\sin^3\theta}{\sin\theta - 1} - \frac{\sin^2\theta}{1 + \sin\theta}$	A1	AG A0 if θ or brackets missing throughout, or sign errors. Allow recovery if AG follows from <i>their</i> working.	
		4		
(b)	$-\tan^2\theta (1+\sin^2\theta) = \tan^2\theta (1-\sin^2\theta)$ leading to $[2]\tan^2\theta = 0$	M1	Obtaining a $(trig function)^2 = 0$ WWW.	
	$\tan \theta = 0$ leading to $[\theta =]\pi$	A1	Ignore extra solutions outside the interval ().	
	Alternative method for Q4(b)			
	$-\frac{\sin^2\theta}{\cos^2\theta}(1+\sin^2\theta) = \frac{\sin^2\theta}{\cos^2\theta}(1-\sin^2\theta) \text{ leading to}$ $-\sin^2\theta - \sin^4\theta = \sin^2\theta - \sin^4\theta \text{ leading to } [2]\sin^2\theta = 0$	M1	Obtaining a $(trig function)^2 = 0$ WWW.	
	$\sin \theta = 0$ leading to $[\theta =]\pi$	A1	Ignore extra solutions outside the interval $(0, 2\pi)$.	
		2		