CSC 211: Computer Programming

(Recursive) Backtracking

Michael Conti

Department of Computer Science and Statistics University of Rhode Island

Summer 2024

Recursion Reminder

- Problem solving technique in which we solve a task by reducing it to smaller tasks (of the same kind)
 - ✓ then use same approach to solve the smaller tasks
- · Technically, a recursive function is one that calls itself
- General form:
 - ✓ base case
 - solution for a **trivial case**
 - it can be used to stop the recursion (prevents "stack overflow")
 - every recursive algorithm needs at least one base case
 - √ recursive call(s)
 - divide problem into smaller instance(s) of the same structure

_

Recursion Reminder

- Recursive Checklist:
 - Find what information we need to keep track of. What inputs/outputs are needed to solve the problem at each step?
 - Find our base case(s). What are the simplest (nonrecursive) instance(s) of this problem?
 - Find our recursive step. How can this problem be solved in terms of one or more simpler instances of the same problem that lead to a base case?
 - * Ensure every input is handled. Do we cover all possible cases? Do we need to handle errors?

Recursion Reminder

- Recursive Checklist:
 - Find what information we need to keep track of. What inputs/outputs are needed to solve the problem at each step?
 - Find our base case(s). What are the simplest (nonrecursive) instance(s) of this problem?
 - Find our recursive step. How can this problem be solved in terms of one or more simpler instances of the same problem that lead to a base case?
 - Ensure every input is handled. Do we cover all possible cases? Do we need to handle errors?

 Write a recursive function printAllBinary that accepts an integer number of digits and prints all binary numbers that have exactly that many digits, in ascending order, one per line

printAllBinary(2);	<pre>printAllBinary(3);</pre>			
00	000			
01	001			
10	010			
11	011			
	100			
	101			
	110			
	111			

Decision Trees

printAllBinary(2);

- $\,\cdot\,$ This kind of diagram is called a call tree or decision tree
- · Think of each call as a choice or decision made by the algorithm:
- Should I choose 0 as the next digit?
- Should I choose 1 as the next digit?
- The idea is to try every permutation. For every position, there are 2 options, either '0' or '1'. Backtracking can be used in this approach to try every possibility or permutation to generate the correct set of strings.

Backtracking

• Recursive Backtracking: using recursion to explore solutions to a problem and abandoning them if they are not suitable

•

Backtracking

 Recursive Backtracking: using recursion to explore solutions to a problem and abandoning them if they are not suitable

•

• Recursive Backtracking: using recursion to explore solutions to a problem and abandoning them if they are not suitable

•

Backtracking

• Recursive Backtracking: using recursion to explore solutions to a problem and abandoning them if they are not suitable

•

10

Backtracking

 Recursive Backtracking: using recursion to explore solutions to a problem and abandoning them if they are not suitable

•

Backtracking

• Recursive Backtracking: using recursion to explore solutions to a problem and abandoning them if they are not suitable

•

 Recursive Backtracking: using recursion to explore solutions to a problem and abandoning them if they are not suitable

•

Backtracking

• Let's take a look at a problem similar to the binarySequence problem.

 Write a recursive function diceRoll that accepts an integer representing a number of 6-sided dice to roll, and output all possible permutations of values that could appear on the dice.

•	diceRoll(2)	
{1,1}	{3, 1}	{5, 1}
{1, 2}	{3, 2}	{5, 2}
{1, 3}	{3, 3}	{5, 3}
$\{1, 4\}$	{3, 4}	{5, 4}
$\{1, 5\}$	{3, 5}	<i>{</i> 5 <i>,</i> 5 <i>}</i>
{1, 6}	{3, 6}	{5, 6}
{2, 1}	{4, 1}	{6, 1}
{2, 2}	{4, 2}	{6, 2}
{2, 3}	{4, 3}	{6, 3}
$\{2, 4\}$	$\{4, 4\}$	{6, 4}
{2, 5}	{4, 5}	{6, 5}
{2, 6}	{4, 6}	{6, 6}

4: - D - 11(2)

- 1

Backtracking

- Backtracking Checklist:
 - Find what choice(s) we have at each step. What different options are there for the next step?

For each valid choice:

- **Make it and explore recursively.** Pass the information for a choice to the next recursive call(s).
- **Undo it after exploring.** Restore everything to the way it was before making this choice.
- **Find our base case(s).** What should we do when we are out of decisions?

Backtracking

- Backtracking Checklist:
 - Find what choice(s) we have at each step. What different options are there for the next step?

For each valid choice:

 Make it and explore recurs choice to the next recursive

What die value should I choose next?

- Undo it after exploring. Restore everything to the way was before making this choice.
- Find our base case(s). What should we do when we are out of decisions?

- Backtracking Checklist:

For each valid choice:

- Make it and explore recursively. Pass the information for a choice to the next recursive call(s).

We need to communicate the dice chosen so far to the next

recursive call

Backtracking

- Backtracking Checklist:

We need to be able to remove the die we added to our first roll so far

For each valid choice:

- **Undo it after exploring.** Restore everything to the way it was before making this choice.

Backtracking

- Backtracking Checklist:

- We have no dice left to choose, print them out
- Find our base case(s). What should we do when we are out of decisions?

Backtracking

- · Observations?
- · This is a really big search space.
- · Depending on approach, we can make wasteful decisions. Can we optimize it? Yes. Will we right now? No.

 Let's us write flexible code, allowing us to make a decision and "backtrack" if we need to

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
8 4 7			8		3			1
7				2				6
	6					2	8	
			4	1	9			5 9
				8			7	9

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	ര	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

Backtracking

- · Pseudocode
- function diceRolls(dice, chosenArr):
 if dice == 0:
 Print current roll.

else:

:
// handle all roll values for a single die; let recursion do the rest.

Write a recursive function diceRoll

that accepts an integer representing a number of 6-sided dice to roll,

and output all possible combinations

of values that could appear on the

for each die value i in range [1..6]:

choose that the current die will have value i

dice.

// explore the remaining dice diceRolls(dice-1, chosenArr) un-choose (backtrack) the value I

** Need to keep track of our choices somehow

22

Code Demo

```
Recursive Backtracking Trace

Output for diceRolls (2):

//create vector and call driver function
void diceRolls(int dice) { // dice = 2
    std::vector<int> chosen; // chosen = {}
    diceRollHelper(dice, chosen);
}

Stack
```


Recursive Backtracking Trace Output for diceRolls (2): void diceRollHelper(int dice, std::vector<int>& chosen) { {1, 1} // Base Case if (dice == 0) { std::cout << "{";</pre> for(int i=0; i < chosen.size(); i++){</pre> std::cout << chosen.at(i);</pre> if(i < chosen.size() -1){</pre> DiceRollHelper(0, chosen) std::cout << ",";</pre> chosen = [1, 1] std::cout << "} \n";</pre> DiceRollHelper(1, chosen) dice = 1 chosen = [1,1] else { DiceRollHelper(2, chosen) for (int i = 1; i <= 6; i++) { chosen.push_back(i); diceRollHelper(dice - 1, chosen); chosen = [1]

chosen.pop back();

Stack

Recursive Backtracking Trace Output for diceRolls (2): void diceRollHelper(int dice, std::vector<int>& chosen) { {1, 1} // Base Case if (dice == 0) { std::cout << "{";</pre> for(int i=0; i < chosen.size(); i++){</pre> std::cout << chosen.at(i);</pre> if(i < chosen.size() -1){</pre> std::cout << ",";</pre> std::cout << "} \n";</pre> DiceRollHelper(1, chosen) dice = 1chosen = [1,2] else { DiceRollHelper(2, chosen) for (int i = 1; i <= 6; i++) { chosen.push_back(i); diceRollHelper(dice - 1, chosen); chosen = [1] chosen.pop back(); Stack


```
Output for diceRolls (2):
                                          void diceRollHelper(int dice, std::vector<int>& chosen) {
                                          // Base Case
{1, 2}
                                         if (dice == 0) {
                                              std::cout << "{";</pre>
                                                    for(int i=0; i < chosen.size(); i++){</pre>
                                                        std::cout << chosen.at(i);</pre>
                                                        if(i < chosen.size() -1){</pre>
                                                             std::cout << ",";</pre>
                                               std::cout << "} \n";</pre>
      DiceRollHelper(1, chosen)
     dice = 1
     chosen = [1,1
                                         else {
     DiceRollHelper(2, chosen)
                                               for (int i = 1; i <= 6; i++) {
                                                    chosen.push_back(i);
                                                   diceRollHelper(dice - 1, chosen);
      chosen = [ 1 ]
                                                   chosen.pop back();
          Stack
```

Recursive Backtracking Trace

```
Output for diceRolls (2):
                                          void diceRollHelper(int dice, std::vector<int>& chosen) {
                                         // Base Case
 {1, 2}
                                         if (dice == 0) {
                                              std::cout << "{";</pre>
                                                   for(int i=0; i < chosen.size(); i++){</pre>
                                                        std::cout << chosen.at(i);</pre>
                                                        if(i < chosen.size() -1){</pre>
                                                             std::cout << ",";</pre>
                                              std::cout << "} \n";</pre>
     DiceRollHelper(1, chosen)
     dice = 1
     chosen = [1, 1]
                                         else {
     DiceRollHelper(2, chosen)
                                              for (int i = 1; i <= 6; i++) {
                                                   chosen.push_back(i);
                                                   diceRollHelper(dice - 1, chosen);
      chosen = [1]
                                                   chosen.pop back();
          Stack
```

Recursive Backtracking Trace

```
Output for diceRolls (2):
                                          void diceRollHelper(int dice, std::vector<int>& chosen) {
{1, 1}
                                          // Base Case
{1, 2}
                                         if (dice == 0) {
                                               std::cout << "{";</pre>
                                                    for(int i=0; i < chosen.size(); i++){</pre>
                                                         std::cout << chosen.at(i);</pre>
                                                         if(i < chosen.size() -1){</pre>
                                               std::cout << "} \n";</pre>
     DiceRollHelper(1, chosen)
     dice = 1
     chosen = [1,3]
     DiceRollHelper(2, chosen)
                                              for (int i = 1; i <= 6; i++) {
                                                    chosen.push_back(i);
                                                    diceRollHelper(dice - 1, chosen);
      chosen = [1]
                                                    chosen.pop_back();
          Stack
```

```
Output for diceRolls (2):
                                           void diceRollHelper(int dice, std::vector<int>& chosen) {
 {1, 2}
                                           if (dice == 0) {
                                                std::cout << "{";</pre>
                                                     for(int i=0; i < chosen.size(); i++){</pre>
                                                          std::cout << chosen.at(i);</pre>
                                                          if(i < chosen.size() -1){</pre>
      DiceRollHelper(0, chosen)
                                                               std::cout << ",";</pre>
      chosen = [1, 3]
                                                std::cout << "} \n";</pre>
      DiceRollHelper(1, chosen)
      dice = 1
      chosen = [1,3]
      DiceRollHelper(2, chosen)
                                                for (int i = 1; i <= 6; i++) {
                                                     chosen.push back(i);
                                                     diceRollHelper(dice - 1, chosen);
      chosen = [ 1 ]
                                                     chosen.pop_back();
          Stack
```

```
Output for diceRolls (2):
                                           void diceRollHelper(int dice, std::vector<int>& chosen) {
                                          // Base Case
{1, 2}
                                          if (dice == 0) {
{1, 3}
                                               std::cout << "{";
                                                    for(int i=0; i < chosen.size(); i++){</pre>
                                                         std::cout << chosen.at(i);</pre>
                                                         if(i < chosen.size() -1){</pre>
     DiceRollHelper(0, chosen)
                                                              std::cout << ",";</pre>
      chosen = [1, 3]
                                               std::cout << "} \n";</pre>
      DiceRollHelper(1, chosen)
     dice = 1
     chosen = [1,3]
                                          else {
     DiceRollHelper(2, chosen)
                                               for (int i = 1; i <= 6; i++) {
                                                    chosen.push_back(i);
                                                    diceRollHelper(dice - 1, chosen);
      chosen = [ 1 ]
                                                    chosen.pop_back();
          Stack
```

Recursive Backtracking Trace

```
Output for diceRolls (2):
                                          void diceRollHelper(int dice, std::vector<int>& chosen) {
                                          // Base Case
 {1, 2}
                                          if (dice == 0) {
 \{1, 3\}
                                              std::cout << "{";</pre>
                                                    for(int i=0; i < chosen.size(); i++){</pre>
                                                         std::cout << chosen.at(i);</pre>
                                                         if(i < chosen.size() -1){</pre>
                                                              std::cout << ",";</pre>
                                               std::cout << "} \n";</pre>
      DiceRollHelper(1, chosen)
      dice = 1
      chosen = [1,3]
                                          else {
      DiceRollHelper(2, chosen)
                                               for (int i = 1; i <= 6; i++) {
                                                    chosen.push_back(i);
                                                   diceRollHelper(dice - 1, chosen);
      chosen = [1]
                                                   chosen.pop back();
          Stack
```

Recursive Backtracking Trace

Fastforward...


```
Output for diceRolls (2):
                                           void diceRollHelper(int dice, std::vector<int>& chosen) {
{1, 1} {1, 5}
                                           // Base Case
{1, 2} {1, 6}
                                           if (dice == 0) {
{1, 3}
{1, 4}
                                                std::cout << "{";
                                                     for(int i=0; i < chosen.size(); i++){</pre>
                                                          std::cout << chosen.at(i);</pre>
                                                          if(i < chosen.size() -1){</pre>
      DiceRollHelper(0, chosen)
                                                               std::cout << ",";</pre>
      chosen = [1, 6]
                                                std::cout << "} \n";</pre>
      DiceRollHelper(1, chosen)
      dice = 1
      chosen = [1,6]
                                           else {
      DiceRollHelper(2, chosen)
                                                for (int i = 1; i <= 6; i++) {
                                                     chosen.push_back(i);
                                                     diceRollHelper(dice - 1, chosen);
      chosen = [ 1 ]
                                                     chosen.pop back();
           Stack
```

Recursive Backtracking Trace

```
Output for diceRolls (2):
                                           void diceRollHelper(int dice, std::vector<int>& chosen) {
{1, 1} {1, 5}
                                          // Base Case
 {1, 2}
      {1, 6}
                                          if (dice == 0) {
{1, 3}
{1, 4}
                                               std::cout << "{";</pre>
                                                    for(int i=0; i < chosen.size(); i++){</pre>
                                                          std::cout << chosen.at(i);</pre>
                                                          if(i < chosen.size() -1){</pre>
                                                               std::cout << ",";</pre>
                                               std::cout << "} \n";</pre>
      DiceRollHelper(1, chosen)
      dice = 1
      chosen = [1,6]
                                          else {
      DiceRollHelper(2, chosen)
                                               for (int i = 1; i <= 6; i++) {
                                                    chosen.push_back(i);
                                                    diceRollHelper(dice - 1, chosen);
      chosen = [ 1 ]
                                                    chosen.pop back();
          Stack
```

Recursive Backtracking Trace


```
Output for diceRolls (2):
                                         void diceRollHelper(int dice, std::vector<int>& chosen) {
{1, 1} {1, 5}
                                         // Base Case
{1, 2} {1, 6}
                                         if (dice == 0) {
{1, 3}
{1, 4}
                                             std::cout << "{";
                                                  for(int i=0; i < chosen.size(); i++){</pre>
                                                       std::cout << chosen.at(i);</pre>
                                                       if(i < chosen.size() -1){</pre>
                                                            std::cout << ",";</pre>
                                              std::cout << "} \n";</pre>
                                        else {
     DiceRollHelper(2, chosen)
                                              for (int i = 1; i <= 6; i++) {
                                                  chosen.push_back(i);
                                                  diceRollHelper(dice - 1, chosen);
     chosen = [ 1 ]
                                                  chosen.pop back();
          Stack
```

Recursive Backtracking Trace

Recursive Backtracking Trace

```
Output for diceRolls (2):
                                         void diceRollHelper(int dice, std::vector<int>& chosen) {
{1, 1} {1, 5}
                                        // Base Case
{1, 2} {1, 6}
                                        if (dice == 0) {
{1, 3}
\{1, 4\}
                                             std::cout << "{";
                                                  for(int i=0; i < chosen.size(); i++){</pre>
                                                       std::cout << chosen.at(i);</pre>
                                                       if(i < chosen.size() -1){</pre>
                                             std::cout << "} \n";</pre>
     DiceRollHelper(2, chosen)
                                             for (int i = 1; i <= 6; i++) {
                                                  chosen.push_back(i);
                                                  diceRollHelper(dice - 1, chosen);
     chosen = []
                                                  chosen.pop_back();
          Stack
```



```
Output for diceRolls (2):
                                          void diceRollHelper(int dice, std::vector<int>& chosen) {
{1, 1} {1, 5}
                                          // Base Case
{1, 2} {1, 6}
                                         if (dice == 0) {
{1, 3}
{1, 4}
                                              std::cout << "{";
                                                    for(int i=0; i < chosen.size(); i++){</pre>
                                                         std::cout << chosen.at(i);</pre>
                                                         if(i < chosen.size() -1){</pre>
                                                             std::cout << ",";</pre>
                                               std::cout << "} \n";</pre>
      DiceRollHelper(1, chosen)
     dice = 1
     chosen = [2, 1]
                                         else {
     DiceRollHelper(2, chosen)
                                               for (int i = 1; i <= 6; i++) {
                                                    chosen.push_back(i);
                                                   diceRollHelper(dice - 1, chosen);
                                                   chosen.pop back();
          Stack
```

Recursive Backtracking Trace

```
Output for diceRolls (2):
                                          void diceRollHelper(int dice, std::vector<int>& chosen) {
{1, 1} {1, 5}
                                          // Base Case
 {1, 2}
      {1, 6}
                                          if (dice == 0) {
{1, 3}
{1, 4}
                                               std::cout << "{";</pre>
                                                    for(int i=0; i < chosen.size(); i++){</pre>
                                                         std::cout << chosen.at(i);</pre>
                                                         if(i < chosen.size() -1){</pre>
                                                              std::cout << ",";</pre>
                                               std::cout << "} \n";</pre>
     DiceRollHelper(1, chosen)
     dice = 1
     chosen = [2,1]
                                          else {
     DiceRollHelper(2, chosen)
                                               for (int i = 1; i <= 6; i++) {
      dice = 2
                                                    chosen.push_back(i);
                                                    diceRollHelper(dice - 1, chosen);
                                                    chosen.pop back();
          Stack
```

Recursive Backtracking Trace

```
Output for diceRolls (2):
                                           void diceRollHelper(int dice, std::vector<int>& chosen) {
{1, 1} {1, 5}
                                           // Base Case
{1, 2}
      {1, 6}
                                           if (dice == 0) {
\{1, 3\}
{1, 4}
                                                std::cout << "{";
                                                     for(int i=0; i < chosen.size(); i++){</pre>
                                                          std::cout << chosen.at(i);</pre>
                                                          if(i < chosen.size() -1){</pre>
      DiceRollHelper(0, chosen)
      chosen = [2, 1]
                                                std::cout << "} \n";</pre>
      DiceRollHelper(1, chosen)
      dice = 1
      chosen = [2,1]
      DiceRollHelper(2, chosen)
                                                for (int i = 1; i <= 6; i++) {
                                                     chosen.push_back(i);
                                                     diceRollHelper(dice - 1, chosen);
      chosen = [2]
                                                     chosen.pop_back();
          Stack
```

```
Output for diceRolls (2):
                                            void diceRollHelper(int dice, std::vector<int>& chosen) {
{1, 2}
       {1, 6}
                                            if (dice == 0) {
{1, 3}
       {2, 1}
 \{1, 4\}
                                                 std::cout << "{";</pre>
                                                      for(int i=0; i < chosen.size(); i++){</pre>
                                                           std::cout << chosen.at(i);</pre>
                                                           if(i < chosen.size() -1){</pre>
      DiceRollHelper(0, chosen)
                                                                std::cout << ",";</pre>
      chosen = [2, 1]
                                                 std::cout << "} \n";</pre>
      DiceRollHelper(1, chosen)
      dice = 1
      i = 1
      chosen = [2,1]
      DiceRollHelper(2, chosen)
                                                 for (int i = 1; i <= 6; i++) {
                                                      chosen.push back(i);
                                                      diceRollHelper(dice - 1, chosen);
      chosen = [2]
                                                      chosen.pop_back();
          Stack
```

```
Output for diceRolls (2):
                                                 void diceRollHelper(int dice, std::vector<int>& chosen) {
{1, 1} {1, 5}
{1, 2} {1, 6}
{1, 3} {2, 1}
{1, 4}
                                                 // Base Case
                                                 if (dice == 0) {
                                                             for(int i=0; i < chosen.size(); i++){</pre>
                                                                  std::cout << chosen.at(i);
if(i < chosen.size() -1){</pre>
                                                       std::cout << "} \n";</pre>
      DiceRollHelper(1, chosen)
      dice = 1
      chosen = [2,1]
                                                else {
                                                       for (int i = 1; i <= 6; i++) {
    chosen.push_back(i);</pre>
      DiceRollHelper(2, chosen)
       dice = 2
                                                            diceRollHelper(dice - 1, chosen);
       chosen = [2]
                                                            chosen.pop_back();
            Stack
```