ingestion-prototype

muqtafiakhmad

Overview

- Data Ingestion.
- Exploratory data analysis.

Data Ingestion

Overview

About Airflow: https://airflow.apache.org/
Key features:

- Definition of data processing as DAG.
- Can rerun past jobs.

Ingestion script

- DAG with two operators.
 - detect-folder.
 - FileSensor.
 - Detect whether folder containing ingest target is ready.
 - Expected format .../YYYY/MM/DD/.
 - upload-csv.
 - PythonOperator.
 - Parse csv and then upload to MySQL.

Ingestion script

```
with DAG(
    'loan-ingestion',
    default_args=default_args,
    description='daily loan data ingestion',
    schedule_interval=timedelta(days=1),
                                                   We put the sample data at
    # set September 2nd as start date
                                              2021/09/01, assume that ingestion is
    start_date=datetime(2021,9,2),
    tags=['daily', 'credit', 'loan'],
                                                  triggered everyday to ingest
) as dag:
                                                        yesterday's data
    # construct folder path
    date_str = "{{ (execution_date-macros.timedelta(days=1)).strftime('%Y/%m/%d') }}"
    folder_path = '/Users/muqtafiakhmad/Desktop/credit/credit-data-ingestion/sample/'+date_str
    file_sensor = FileSensor(
                                                  Folder path derived from previous
        task_id='detect-folder',
                                                               date
        poke interval=30,
        filepath=folder_path)
```

Ingestion script (cont'd)

```
def upload_csv(folder_path, insert_date): ==

upload_csv_operator = PythonOperator(
    task_id='upload-csv',
    python_callable=upload_csv,
    op_kwargs={
        'folder_path': '/Users/muqtafiakhmad/Desktop/credit/credit-data-ingestion/sample/'+date_str,
        'insert_date': "{{ (execution_date-macros.timedelta(days=1)).strftime('%Y/%m/%d').replace('/', '-') }}"
    },
}

Parameters passed to the invoked
    python function
```

Corners cut and possible improvements

- user=password=root
 - Need to use proper data loader account for ingestion.
- Ingested file, Airflow, and target
 DB are deployed in a single host.
 - In production environment, its possible that data are stored in a Hadoop cluster.
 - Airflow already provide operators to submit <u>Spark jobs</u>.

```
# construct connection to mysql
connection_string = 'mysql+mysqlconnector://{user}:{password}@{host}/{dbname}'.format(
    user='root',
    password='root',
    host='localhost',
    dbname='credit'
)

from sqlalchemy import create_engine
engine = create_engine(connection_string)
```

Exploratory data analysis

Data overview: dataset for classification problem

Variable Name	Description	Туре
SeriousDlqin2yrs	Person experienced 90 days past due delinquency or worse.	Y/N
RevolvingUtilizationOfUnsecuredLines	Total balance on credit cards and personal lines of credit except real estate and installment debt (e.g. car loans) divided by the sum of credit limits.	Percentage
age	Age of borrower in years.	Integer
NumberOfTime30- 59DaysPastDueNotWorse	Number of times borrower has been 30-59 days past due but no worse in the last 2 years.	Integer
DebtRatio	Monthly debt payments, alimony, and living costs divided by monthly gross income.	Percentage
MonthlyIncome	Monthly income.	Dollars
NumberOfOpenCreditLinesAndLoans	Number of open loans (e.g. car loan, mortgage) and lines of credit (e.g. credit cards).	Integer
NumberOfTimes90DaysLate	Number of times borrower has been 90 days or more past due.	Integer
NumberRealEstateLoansOrLines	Number of mortgage and real estate loans including home equity lines of credit.	Integer
NumberOfTime60- 89DaysPastDueNotWorse	Number of times borrower has been 60-89 days past due but no worse in the last 2 years.	Integer
NumberOfDependents	Number of dependents in family excluding applicant (spouse, children, etc).	Integer

Target variable, assume

0 = No

1 = Yes

SeriousDlqin2yrs distribution is skewed to no issue case

```
no 139974 0.9332
yes 10026 0.0668
```


Short summary

	SeriousDlqin2yrs	Revolving Utilization Of Unsecured Lines	Age	NumberOfTime30To59DaysPastDueNotWorse	DebtRatio	MonthlyIncome
count	150000.000000	150000.000000	150000.000000	150000.000000	150000.000000	1.202690e+05
mean	0.066840	6.048438	52.295207	0.421033	353.005076	6.670221e+03
std	0.249746	249.755371	14.771866	4.192781	2037.818523	1.438467e+04
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000e+00
25%	0.000000	0.029867	41.000000	0.000000	0.175074	3.400000e+03
50%	0.000000	0.154181	52.000000	0.000000	0.366507	5.400000e+03
75%	0.000000	0.559046	63.000000	0.000000	0.868254	8.249000e+03
max	1.000000	50708.000000	109.000000	98.000000	329664.000000	3.008750e+06

Short summary

	NumberOfTime60To89DaysPastDueNotWorse	NumberRealEstateLoansOrLines	NumberOfTimes90DaysLate	NumberOfOpenCreditLinesAndLoans	
cou	150000.000000	150000.000000	150000.000000	150000.000000	count
mea	0.240387	1.018240	0.265973	8.452760	mean
s	4.155179	1.129771	4.169304	5.145951	std
m	0.000000	0.000000	0.000000	0.000000	min
25	0.000000	0.000000	0.000000	5.000000	25%
50	0.000000	1.000000	0.000000	8.000000	50%
75	0.000000	2.000000	0.000000	11.000000	75%
ma	98.000000	54.000000	98.000000	58.000000	max

	NumberOfDependents
count	146076.000000
mean	0.757222
std	1.115086
min	0.000000
25%	0.000000
50%	0.000000
75%	1.000000
max	20.000000

Closer look at empty values

Total count 29731 Total pct dataset 19.8207

count pct_dataset

MonthlyIncomeNan NumberOfDependentsNan

True	False	25807	17.2047
	True	3924	2.6160

MonthlyIncome empty

Label	Count	Size
no	28062	0.9439
yes	1669	0.0561

NumberOfDependents empty

Label	Count	Size
no	3745	0.9544
yes	179	0.0456

Spotting Outliers

Majority is < 20

Correlation among outliers

(NumberOfTime30To59DaysPastDueNotWorse > 40) or (NumberOfTimes90DaysLate > 40) or (NumberOfTime60To89DaysPastDueNotWorse > 40)

```
Total count 269
Total pct dataset 0.17933
```


Problematic cases more centered on 20<age<60

Problematic cases has more history of past dues

Problematic cases has lower monthly income

Problematic cases has more sizable number of people with 0 open credit lines and loans

Problematic cases has lower number of real estate loans or lines

Problematic cases has lower number of dependents

Correlation matrix (outliers excluded)

Top (+) correlation pairs:
['NumberOfOpenCreditLinesAndLoans',
'NumberRealEstateLoansOrLines']
['NumberOfTime30To59DaysPastDueNotWorse',
'NumberOfTime60To89DaysPastDueNotWorse']
['NumberOfTimes90DaysLate',
'NumberOfTime60To89DaysPastDueNotWorse']
['NumberOfTime30To59DaysPastDueNotWorse',
'NumberOfTimes90DaysLate']

Top (-) correlation pairs: ['Age','NumberOfDependents']

['NumberOfOpenCreditLinesAndLoans', 'NumberRealEstateLoansOrLines'] fitted line y=(0.09515076350729364)x+(0.21433908235395682)

r square: 0.18719853689339763

['NumberOfTime30To59DaysPastDueNotWorse', 'NumberOfTime60To89DaysPastDueNotWorse'] fitted line y=(0.1446897467875431)x+(0.02925902618013672) r square: 0.093560356286794

['NumberOfTimes90DaysLate', 'NumberOfTime60To89DaysPastDueNotWorse']
fitted line y=(0.20030213510503217)x+(0.046704475907710784)
r square: 0.08681166287703788

['NumberOfTime30To59DaysPastDueNotWorse', 'NumberOfTimes90DaysLate'] fitted line y=(0.15179016619062546)x+(0.053146419336586356) r square: 0.04758791845970719

Dataset clustering

- KMeans clustering.
- Steps
 - Exclude outliers.
 - Input income (median) and number of dependent (mode).
 - Fit to Kmeans with N=4.

Distribution by cluster 0..3.

Cluster profiles

Cluster 0

- Highest revolving utilization of unsecured lines.
- Age 39 (lowest)
- Low monthly income.

Cluster 1

- Lowest number of dependents.
- Age 66 (highest).
- Slightly higher monthly income.

Cluster 2

- Lowest revolving utilization of unsecured lines.
- Age 53.
- Highest monthly income, debt ratio, number of open credits and loans.

Cluster 3

- Age 46.
- Low monthly income.
- Highest past dues from history (30-59 days, 60-89 days, over 90 days).

Label	Count	Size
no	35809	0.9437
yes	2138	0.0563

Discussions

- Data is skewed to no issue case (93.3%).
- May need to handle empty values on monthly income and number of dependents.
 - Empty monthly income 19.8%.
 - Empty number of dependents 2.6% (subset of empty monthly income).
- There are outliers with very high value on NumberOfTime30To59DaysPastDueNotWorse, NumberOfTime60To89DaysPastDueNotWorse, NumberOfTimes90DaysLate.
 - Outliers are correlated.
 - 0.18% of dataset.

Discussions

Compared to no-issue cases, problematic loan cases distribution has the following properties:

- Higher
 - Concentration on 20 < age < 60.
 - Number of past dues on 30-59 days, 60-89 days, > 90 days. Moreover, these three indicators are strongly correlated.
- Lower
 - Monthly income.
 - Number of credit loans and lines.
 - Number of real estate loans and lines.

Discussions

- Initial result of clustering may be beneficial for risk analysis/loan policy.
 - Cluster = stereotype = customer segment.
- Each segment may have different risk (lets say cluster 0 is the typical applicant).
 - Cluster 1: retirees.
 - Retirement age, no dependent.
 - Lowest risk.
 - Cluster 2: high income, high consumption.
 - Still in productive age, high income but also high debt ratio.
 - Slightly lower risk.
 - Cluster 3: repeat offenders.
 - Still in productive age, has history of past dues.
 - High risk.

Thank you

Cluster center profile

Cluster center profile

