# Introduction au WEB Sémantique

Cours 4 : Raisonner avec une ontologie : raisonner en logique de description

#### Odile PAPINI

POLYTECH

Université d'Aix-Marseille odile.papini@univ-amu.fr

http://odile.papini.perso.luminy.univ-amu.fr/sources/WEBSEM.html



# Plan du cours

- Introduction
- 2 Raisonnement sur les TBox
- Raisonnement sur les ABox
- 4 Méthode des tableaux en logique de description
- 5 Complexité du raisonnement

# Bibliographie I



Supports de cours :

F. Baader, F. Calvanese & al

The Description Logic Handbook: Theory, Implementation and Applications. Cambridge university press. 2002



Amedeo Napoli INRIA Nancy

Une introduction aux logiques de description Rapport INRIA 3314. 1997 http://hal.inria.fr/inria-00073375/en/



Michel Gagnon

Logiques descriptives et OWL http://www.cours.polymtl.ca/inf6410/Documents/logique\_descriptive.pdf



**Tutoriaux** 

http://dl.kr.org/courses.html

### Raisonnement sur les TBox

- satisfaisabilité
- subsomption
- équivalence
- exclusion mutuelle

#### Raisonnement sur les TBox : satisfaisabilité

- Un concept est satisfaisable par rapport à  $\mathcal{T}$  ssi il existe  $\mathcal{I}$  un modèle de  $\mathcal{T}$  tel que  $\mathcal{C}^{\mathcal{I}} \neq \emptyset$
- si il existe  $\mathcal I$  un modèle de  $\mathcal T$  tel que  $\mathcal C^{\mathcal I} \neq \emptyset$  alors  $\mathcal I$  est un modèle de  $\mathcal C$
- Un concept est insatisfaisable par rapport à  $\mathcal T$  ssi pour tout  $\mathcal I$  un modèle de  $\mathcal T$  on a  $\mathcal C^{\mathcal I}=\emptyset$

### exemples

- satisfaisabilité : Homme □ ¬Homme?
- modèle de  $\mathcal{T}$ :  $\Delta\{a,b,c\}$ ,  $Homme^{\mathcal{I}} = \{a,b\}$ ,  $aEnfant^{\mathcal{I}} = \{(a,b),(a,c)\}$  satisfaisabilité : Homme?, Femme?, aEnfant?

#### Raisonnement sur les TBox : satisfaisabilité

- Un concept est satisfaisable par rapport à  $\mathcal{T}$  ssi il existe  $\mathcal{I}$  un modèle de  $\mathcal{T}$  tel que  $\mathcal{C}^{\mathcal{I}} \neq \emptyset$
- si il existe  $\mathcal I$  un modèle de  $\mathcal T$  tel que  $\mathcal C^{\mathcal I} \neq \emptyset$  alors  $\mathcal I$  est un modèle de  $\mathcal C$
- Un concept est insatisfaisable par rapport à  $\mathcal T$  ssi pour tout  $\mathcal I$  un modèle de  $\mathcal T$  on a  $\mathcal C^{\mathcal I}=\emptyset$

#### exemples

- satisfaisabilité :  $(Homme \sqcap \neg Homme)^{\mathcal{I}} = \emptyset$
- modèle de  $\mathcal{T}$ :  $\Delta = \{a, b, c\}$ ,  $Homme^{\mathcal{I}} = \{a, b\}$ ,  $aEnfant^{\mathcal{I}} = \{(a, b), (a, c)\}$  satisfaisabilité:  $Homme^{\mathcal{I}} = \{a, b\}$ ,  $Femme^{\mathcal{I}} = \{c\}$

```
Exemple (cours Logiques de description)
TBox \mathcal{T}:
       Femme \equiv \neg Homme.
       Mere \equiv Femme \sqcap \exists aEnfant. \top
       Pere = Homme \sqcap \exists a Enfant \top
       Celibataire = \forall marieAvec \bot
modèle de \mathcal{T}:
\Delta = \{a, b, c, d\}, Homme^{\mathcal{I}} = \{a, b\}, Femme^{\mathcal{I}} = \{c, d\},
aEnfant^{\mathcal{I}} = \{(b, a), (b, c), (d, a), (d, c)\}
Pere^{\mathcal{I}} = \{b\}, Mere^{\mathcal{I}} = \{d\},
EstmarieAvec<sup>\mathcal{I}</sup> = {(b, d), (d, b)}, Celibataire<sup>\mathcal{I}</sup> = {a, c}
```

### Raisonnement sur les TBox : subsomption

- Un concept C est subsumé par D par rapport à T ssi pour tout  $\mathcal{I}$  modèle de  $\mathcal{T}$  on a  $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- on écrit :  $\mathcal{T} \models C \sqsubseteq D$

### exemples

• axiome de  $\mathcal{T}$  :  $Mere \equiv \exists aEnfant. \top$  subsomption :  $Mere \sqsubseteq Femme$ ?



### Raisonnement sur les TBox : subsomption

- Un concept C est subsumé par D par rapport à T ssi pour tout  $\mathcal{I}$  modèle de  $\mathcal{T}$  on a  $C^{\mathcal{I}} \subset D^{\mathcal{I}}$
- on écrit :  $\mathcal{T} \models C \sqsubseteq D$

### exemples

• axiome de  $\mathcal{T}$ :  $Mere \equiv \exists aEnfant$ .  $\top$  subsomption :  $Mere \sqsubseteq Femme$  car  $Mere^{\mathcal{I}} = \{d\}$  et  $Femme^{\mathcal{I}} = \{c, d\}$ 



### Raisonnement sur les TBox : équivalence

- Deux concepts C et D sont équivalents par rapport à T ssi pour tout  $\mathcal{I}$  modèle de  $\mathcal{T}$  on a  $C^{\mathcal{I}} = D^{\mathcal{I}}$
- on écrit :  $\mathcal{T} \models C \equiv D$

### exemple

• équivalence :  $Pere \equiv Homme \sqcap \exists a Enfant. \top$ ?



### Raisonnement sur les TBox : équivalence

- Deux concepts C et D sont équivalents par rapport à T ssi pour tout  $\mathcal{I}$  modèle de  $\mathcal{T}$  on a  $C^{\mathcal{I}} = D^{\mathcal{I}}$
- on écrit :  $\mathcal{T} \models C \equiv D$

#### exemples

• équivalence :  $Pere \equiv Homme \sqcap \exists aEnfant. \top$  $car Pere^{\mathcal{I}} = \{b\}, Homme^{\mathcal{I}} = \{a, b\} \text{ et } \exists aEnfant. \top^{\mathcal{I}} = \{b, d\}$ 



#### Raisonnement sur les TBox : exclusion mutuelle

- Deux concepts C et D sont disjoints par rapport à T ssi pour tout  $\mathcal{I}$  modèle de  $\mathcal{T}$  on a  $C^{\mathcal{I}} \cap D^{\mathcal{I}} = \emptyset$
- on écrit :  $\mathcal{T} \models C \sqcap D \sqsubseteq \bot$

### exemples

• disjoints : Pere et Mere?

• disjoints : Celibataire et Pere?



#### Raisonnement sur les TBox : exclusion mutuelle

- Deux concepts C et D sont disjoints par rapport à T ssi pour tout  $\mathcal{I}$  modèle de  $\mathcal{T}$  on a  $C^{\mathcal{I}} \cap D^{\mathcal{I}} = \emptyset$
- on écrit :  $\mathcal{T} \models C \sqcap D \sqsubseteq \bot$

### exemples

- disjoints : Pere et Mere car  $Pere^{\mathcal{I}} = \{b\}$  et  $Mere^{\mathcal{I}} = \{d\}$
- disjoints : Celibataire et Pere car Celibataire  $^{\mathcal{I}}=\{a,c\}$  et  $Pere^{\mathcal{I}}=\{b\}$



#### Raisonnement sur les TBox : réduction à l'insatisfaisabilité

- Le concepts C est subsumé par le concept D par rapport à  $\mathcal{T}$  ssi  $C \square \neg D$  est insatisfaisable
- Deux concepts C et D sont équivalents par rapport à T ssi  $C \sqcap \neg D$  et  $\neg C \sqcap D$  sont insatisfaisables
- Deux concepts C et D sont disjoints par rapport à T ssi  $C \square D$  est insatisfaisable

#### Raisonnement sur les TBox : élimination de la TBox

- procédure de preuve : utilisation de formules indépendantes de toute terminologie
- remplacer tous les termes de la formule par leur définition dans la terminologie
- exemple : TBox : Femme ≡ Personne □ Feminin,
   Homme ≡ Personne □ ¬Femme
- démontrer l'insatisfaisabilité de : Femme □ Homme?
- 1) Femme  $\sqcap$  Homme
- 2) Personne  $\sqcap$  Feminin  $\sqcap$  Personne  $\sqcap$   $\neg$ Femme
- 3) Personne  $\sqcap$  Feminin  $\sqcap$  Personne  $\sqcap$   $\neg$ (Personne  $\sqcap$  Feminin)



### Raisonnement sur les TBox : élimination de la TBox

- exemple : TBox : Femme ≡ Personne □ Feminin,
   Homme ≡ Personne □ ¬Femme
- démontrer l'insatisfaisabilité de : Femme □ Homme
- 1) Femme □ Homme
- 2) Personne  $\sqcap$  Feminin  $\sqcap$  Personne  $\sqcap \neg$  Femme
- 3) Personne  $\sqcap$  Feminin  $\sqcap$  Personne  $\sqcap \neg$  (Personne  $\sqcap$  Feminin)
- 4) Personne  $\sqcap$  Feminin  $\sqcap \neg (Personne \sqcap Feminin)$  par idempotence
- 5) Personne □ Feminin □ (¬Personne □ ¬Feminin) par distributivité
- 6) (Personne  $\sqcap$  Feminin  $\sqcap \neg$ Personne)  $\sqcup$  (Personne  $\sqcap$  Feminin  $\sqcap \neg$ Feminin)

 $\textbf{Or } (\textit{Personne} \, \sqcap \, \textit{Feminin} \, \sqcap \, \neg \textit{Personne})^{\mathcal{I}} = \emptyset \ \textbf{et} \ (\textit{Personne} \, \sqcap \, \textit{Feminin} \, \sqcap \, \neg \textit{Feminin})^{\mathcal{I}} = \emptyset$ 



#### Raisonnement sur les ABox

- cohérence (consistency)
- validation d'instances (instance checking)

#### Raisonnement sur les ABox : cohérence

•  $\mathcal{A}$  une ABox est cohérente par rapport à  $\mathcal{T}$  ssi il existe  $\mathcal{I}$  un modèle de  $\mathcal{T}$  qui satisfait  $\mathcal{A}$ 

#### exemple

- TBox : Femme ≡ Personne □ Feminin,
   Homme ≡ Personne □ ¬Femme
- $ABox : A = \{Homme(anne), Femme(anne)\}$
- cohérence de A?



### Raisonnement sur les ABox : cohérence

### exemple

- TBox : Femme ≡ Personne □ Feminin,
   Homme ≡ Personne □ ¬Femme
- $ABox : A = \{Homme(anne), Femme(anne)\}$
- cohérence de A?

```
modèle de \mathcal T :
```

```
\begin{split} &\Delta = \{\textit{paul}, \textit{jean}, \textit{anne}, \textit{marie}\}, \\ &\textit{Personne}^{\mathcal{I}} = \{\textit{paul}, \textit{jean}, \textit{anne}, \textit{marie}\}, \textit{Feminin}^{\mathcal{I}} = \{\textit{anne}, \textit{marie}\}, \\ &\textit{Femme}^{\mathcal{I}} = \{\textit{anne}, \textit{marie}\}, \textit{Homme}^{\mathcal{I}} = \{\textit{paul}, \textit{jean}\}, \end{split}
```

incohérence de  $\mathcal{A}$  car anne  $\notin Homme^{\mathcal{I}}$ 



#### Raisonnement sur les ABox : validation d'instances

- $\mathcal{A} \models C(a)$  ssi toute interprétation  $\mathcal{I}$  qui satisfait  $\mathcal{A}$  satisfait aussi C(a)
- $\mathcal{A} \models C(a)$  ssi  $\mathcal{A} \cup \neg C(a)$  est incohérent

### exemple

- TBox : Femme ≡ Personne □ Feminin
- $ABox : A = \{Femme(anne)\}$
- $\mathcal{A} \models Feminin(anne)$ ?
- $A \cup \neg Feminin(anne)$  incohérent?



#### Raisonnement sur les ABox : validation d'instances

### exemple

- TBox : Femme ≡ Personne □ Feminin
- $ABox : A = \{Femme(anne)\}$
- $A \models Feminin(anne)$ ?
- $A \cup \neg Feminin(anne)$  incohérent?

#### modèle de $\mathcal{T}$ :

```
\Delta = \{paul, jean, anne, marie\},
Personne^{\mathcal{I}} = \{paul, jean, anne, marie\}, Feminin^{\mathcal{I}} = \{anne, marie\},
Femme^{\mathcal{I}} = \{anne, marie\}, (\neg Feminin)^{\mathcal{I}} = \{paul, jean\},
A \cup \neg Feminin(anne) \text{ incohérent car } anne \in Femme^{\mathcal{I}} \text{ et}
anne \notin (\neg Feminin)^{\mathcal{I}}
```

# Raisonnement : Monde fermé, Monde ouvert

## hypothèse du monde fermé (clos)

- limitation à ce qui est énonçé
- exemple : ABox : aEnfant(anne, paul)
- anne a un seul enfant c'est paul

# Logiques de Description : hypothèse du monde ouvert

- monde ouvert : pas de limitation à ce qui est énonçé
- exemple : ABox : aEnfant(anne, paul)
- rien n'exclut que anne ait d'autres enfants que paul
- spécifier que *anne* a un seul enfant :  $(\leq 1aEnfant)(anne)$



### Inférence par méthode des tableaux

- prouver  $C \sqsubseteq D$
- $C \sqsubseteq D$  ssi  $C \sqcap \neg D$  est insatisfaisable

#### un exemple introductif

- prouver :
  - $\exists possede.(Livre \sqcap Antiquite) \sqsubseteq (\exists possede.Livre \sqcap \exists possede.Antiquite)$
- démontrer l'insatisfaisabilité de :
  - $\exists possede.(Livre \sqcap Antiquite) \sqcap \neg (\exists possede.Livre \sqcap \exists possede.Antiquite)$

# Raisonnement : exemple introductif

### démontrer l'insatisfaisabilité de :

```
\exists possede.(Livre \sqcap Antiquite) \sqcap \neg (\exists possede.Livre \sqcap \exists possede.Antiquite) ssi \exists possede.(Livre \sqcap Antiquite) \sqcap (\forall possede.\neg Livre \sqcup \forall possede.\neg Antiquite)
```

On suppose q'un individu a est membre ce concept

- 1)  $\exists possede.(Livre \sqcap Antiquite) \sqcap (\forall possede. \neg Livre \sqcup \forall possede. \neg Antiquite)(a)$  On a
  - 2)  $\exists possede.(Livre \sqcap Antiquite)(a)$
  - 3)  $\forall possede. \neg Livre \sqcup \forall possede. \neg Antiquite(a)$

Il existe un objet b

- 4) possede(a, b)
- 5) Livre  $\sqcap$  Antiquite(b)

#### donc

- 6) *Livre(b)*
- 7) Antiquite(b)

```
démontrer l'insatisfaisabilité de :

1) \exists possede.(Livre \sqcap Antiquite) \sqcap (\forall possede. \neg Livre \sqcup \forall possede. \neg Antiquite)(a)
On a
```

- 2)  $\exists possede.(Livre \sqcap Antiquite)(a)$
- 3)  $\forall possede. \neg Livre \sqcup \forall possede. \neg Antiquite(a)$

#### donc

- 8)  $\forall possede. \neg Livre(a)$
- 9) ∀possede.¬Antiquite(a)

#### Par 4) a possede un objet b

- 10)  $\neg Livre(b)$  contradiction avec 6)!!!!
- 11)  $\neg Antiquite(b)$  contradiction avec 7)!!!!

# Raisonnement : exemple introductif

- Représentation sous forme d'arbre
- noeuds étiquetés par des concepts
- chemin ensemble de noeuds de la racine vers une feuille
- si contradiction ajout de □ au chemin

Dans l'exemple Les 2 chemins contiennent  $\square$ 



#### Méthode des tableaux

Pour prouver F: construction d'un arbre dont

- la racine est étiquetée par  $\neg F$
- les noeuds sont étiquetés par des concepts
- les successeurs des noeuds sont produits par des règles d'expansion.
- ullet on ajoute  $\square$  à la fin d'un chemin  ${\mathcal A}$  si :
  - $C(x) \in \mathcal{A}$  et  $\neg C(x) \in \mathcal{A}$
  - $C(x) \in \mathcal{A}$  et  $\neg C(x) \in \mathcal{A}$  et (x = y ou y = x)
  - $\perp(x) \in \mathcal{A}$

Il existe plusieurs règles d'expansion pour construire les chemins



 $\mathcal{A}$ : chemin

Règles pour la logique de description ALCN

règle-□

#### condition:

 $\mathcal{A}$  contient  $(C_1 \sqcap C_2)(x)$  et ne contient pas déja  $C_1(x)$  et  $C_2(x)$ 

#### action:

prolongation :  $A' = A \cup \{C_1(x), C_2(x)\}$ 

 $\mathcal{A}$ : chemin

Règles pour la logique de description ALCN

règle-⊔

#### condition:

A contient  $(C_1 \sqcup C_2)(x)$  et ne contient aucun des  $C_1(x)$  et  $C_2(x)$ 

#### action:

branchement :  $A' = A \cup \{C_1(x)\}$ 

et  $\mathcal{A}'' = \mathcal{A} \cup \{C_2(x)\}$ 

# Raisonnement sur les TBox : Tableaux

#### Exercice

TBox : 
$$A \equiv B \sqcap C$$
  $B \equiv D \sqcup E$   $C \equiv F \sqcup \neg E$ 

Prouver par la méthode des tableaux l'axiome :

$$A \sqsubseteq D \sqcup F$$

#### $\mathcal{A}$ : chemin

### Règles pour la logique de description ALCN

règle-∃

#### condition:

 $\mathcal{A}$  contient  $(\exists R.C)(x)$  et il n'exixte aucun individu z tel que R(x,z) et C(z) sont aussi dans  $\mathcal{A}$ 

#### action:

 $\mathcal{A}' = \mathcal{A} \cup \{R(x,y), C(y)\}$  où y est un nom d'individu qui n'existe pas déjà dans  $\mathcal{A}$ 



#### $\mathcal{A}$ : chemin

Règles pour la logique de description ALCN

#### condition:

 $\mathcal{A}$  contient  $(\forall R.C)(x)$  et R(x,y) mais ne contient pasC(y)

### action:

$$\mathcal{A}' = \mathcal{A} \cup \{C(y)\}\$$

## Raisonnement sur les TBox : Tableaux

#### Exercice

Prouver par la méthode des tableaux l'axiome :

$$\exists R.(A \sqcap B) \sqsubseteq \exists R.A \sqcap \exists R.B$$

 $\mathcal{A}$  : chemin

### Règles pour la logique de description ALCN

règle-
$$≥ n$$

#### condition:

 $\mathcal{A}$  contient  $(\geq n R.C)(x)$  et il n'y a pas dans  $\mathcal{A}$  des individus  $z_1, \dots, z_n$  qui sont tous distincts et qui sont tels que  $\mathcal{A}$  contient  $R(x, z_i)$  pour tous les individus  $(1 \leq i \leq n)$ 

#### action:

$$A' = A \cup \{R(x, y_i) \mid 1 \le i \le n\} \cup \{y_i \ne y_i \mid 1 \le i < j \le n\}$$



 $\mathcal{A}$ : chemin

### Règles pour la logique de description ALCN

règle-≤ 
$$n$$

#### condition:

 $\mathcal A$  contient  $(\leq n\,R.\,C)(x)$  et les énonçés  $R(x,y_1),\cdots R(x,y_{n+1})$  . Il n'existe aucune identité  $y_i=y_j$  dans  $\mathcal A$  pour  $(1\leq i\leq n+1)$ ,  $(1\leq j\leq n+1),\ i\neq j$ 

#### action:

Pour chaque paire possible  $(y_i, y_j)$  d'individus parmi  $y_i, y_{n+1}$  on ajoute une nouvelle branche avec  $y_i = y_j$ 



#### Méthode des tableaux

#### exercice

 $TBox : Parent \equiv \exists aEnfant. \top$ 

Montrer par la méthode des tableaux :

≥ 2aEnfant □ Parent



#### Méthode des tableaux

Résultats théoriques

### propriétés

- terminaison
- correction
- complétude

# Raisonnement en logique de description

# complexité du problème de satisfaisabilité

| complexité     | logique de description |
|----------------|------------------------|
| PTIME          | AL, ALN                |
| NP-complet     | ALU, ALUN              |
| coNP-complet   | ALE                    |
| PSPACE-complet | ALC, ALCN, ALCQI       |
| EXP-TIME       | SHIQ, SHIF             |
| NEXP-TIME      | SHOIQ, SHOIN           |