

Figure 1**1A mnt-1 vs wild-type seeds****1B Seed weight vs no. seeds per pod in mnt-1****1C Maternal effect of mnt-1 mutation**

Figure 2

2A Mature w.t. and *mnt-1* ovules

2B Cell number and size in w.t. and mnt-1 integuments

Figure 3 Chalazal endosperm

w.t. 7DAP

mnt-1 7DAP

2x X 6x 5 DAP

Bars = 50 µm

Figure 4

4A Endosperm-led growth

big cavity

normal

small

C24 2x X 4x

2x X 2x

4x X 2x

4B Integument-led growth

big cavity

normal

Col mnt-1

Col wt.

**4C 'Big bag' hypothesis:
seed and embryo size set
by size of the seed cavity**

1. Division in endosperm
(maternal and paternal control)
2. Division in integuments/
seed coat (maternal control)

Figure 5

Allelism of *mnt-1* and Salk insertion line 108995

Col-3 w.t.

mnt-1

Salk 108995 homozygote

F1 *mnt-1* X Salk 108995

7/51

Figure 6

Alignment of w.t. MNT and mutant mnt-1 cDNA

MNT	*	20	*	40	*	60
ATGGCGAGTCGGAGGTTCAATGAAAGGTAACTCGTGGAGGAGATAACTTCTCCTCCTCT						
ATGGCGAGTCGGAGGTTCAATGAAAGGTAACTCGTGGAGGAGATAACTTCTCCTCCTCT						
mnt-1	*	80	*	100	*	120
GGTTTAGT GACCC T AAGGAG ACTAGA AAT GTCTCCGTGCCGGCGAGGGG CAAAAAAGT						
GGTTTAGT GACCC T AAGGAG ACTAGA AAT GTCTCCGTGCCGGCGAGGGG CAAAAAAGT						
	*	140	*	160	*	180
AATTCTACCCGATCCGCTGCGGCTGAGCGTGCTTGGACCTGAGGCTGCTTTACAGA						
AATTCTACCCGATCCGCTGCGGCTGAGCGTGCTTGGACCTGAGGCTGCTTTACAGA						
	*	200	*	220	*	240
GAGCTATGGCACGCTTGTGCTGGTCCGCTTGTGACGGTTCTAGACAAGACGACCGAGTC						
GAGCTATGGCACGCTTGTGCTGGTCCGCTTGTGACGGTTCTAGACAAGACGACCGAGTC						
	*	260	*	280	*	300
TTCTATTTCTCAAGGACACATCGAGCAGGTGGAGGCTTCGACGAACCAGGCAGCAA						
TTCTATTTCTCAAGGACACATCGAGCAGGTGGAGGCTTCGACGAACCAGGCAGCAA						
	*	320	*	340	*	360
CAACAGATGCCTCTCATGATCTCCGTCAAAGCTCTCTGAGTTATTAAATGTAGAT						
CAACAGATGCCTCTCATGATCTCCGTCAAAGCTCTCTGAGTTATTAAATGTAGAT						
	*	380	*	400	*	420
TTAAAGGGAGAGGAGATAACAGATGAAGTTATGCGCAGATTACTCTTCTTCTGAGGCT						
TTAAAG----AGGCAGATAACAGATGAAGTTATGCGCAGATTACTCTTCTTCTGAGGCT						
	*	440	*	460	*	480
AATCAAGACGAGAAATGCAATTGAGAAAGAACGCGCCTCTTCTCCACCTCCGAGGTTCCAG						
AATCAAGACGAGAAATGCAATTGAGAAAGAACGCGCCTCTTCTCCACCTCCGAGGTTCCAG						
	*	500	*	520	*	540
GTGCATT CGTT CTGCAAAACCTTGACTGCATCCGACACAGTACACATGGTGGATTTCT						
GTGCATT CGTT CTGCAAAACCTTGACTGCATCCGACACAGTACACATGGTGGATTTCT						

8/51

* 560 * 580 * 600

**GTTCTTAGGCGACATGCGGATGAATGTCCTCCACCTCTGGATATGTCCTGACAGCCTCCC
GTTCTTAGGCGACATGCGGATGAATGTCCTCCACCTCTGGATATGTCCTGACAGCCTCCC**

* 620 * 640 * 660

**ACTCAAGAGTTAGTTGCAAAGGATTGCATGCAAATGAGTGGCGATTCAAGACATATATTCA
ACTCAAGAGTTAGTTGCAAAGGATTGCATGCAAATGAGTGGCGATTCAAGACATATATTCA**

* 680 * 700 * 720

**CGGGGTCAACCACGGAGGCATTGCTACAGACTGGGTGGAGTGTGTTGTTAGCTCCAAA
CGGGGTCAACCACGGAGGCATTGCTACAGACTGGGTGGAGTGTGTTGTTAGCTCCAAA**

* 740 * 760 * 780

**AGGCTAGTTGCAGGCCATGCCTTATATTCTAACGGGGCGAGAATGGAGAATTAAAGAGTT
AGGCTAGTTGCAGGCCATGCCTTATATTCTAACGGGGCGAGAATGGAGAATTAAAGAGTT**

* 800 * 820 * 840

**GCTGTAAGGCGTGCATGCCACAACAAGGAAACGTGCCGTCTCTGTTATATCTAGCCAT
GCTGTAAGGCGTGCATGCCACAACAAGGAAACGTGCCGTCTCTGTTATATCTAGCCAT**

* 860 * 880 * 900

**AGCATGCATCTGGAGTACTGCCACCGCATGGCATGCCATTCAACAGGGACTATGTTT
AGCATGCATCTGGAGTACTGCCACCGCATGGCATGCCATTCAACAGGGACTATGTTT**

* 920 * 940 * 960

**ACAGTCTACTACAAACCCAGGACGAGCCATCTGAGTTATTGTTCCGTCGATCAGTAT
ACAGTCTACTACAAACCCAGGACGAGCCATCTGAGTTATTGTTCCGTCGATCAGTAT**

* 980 * 1000 * 1020

**ATGGAGTCTGTTAAGAATAACTACTCTATTGGCATGAGATTCAAAATGAGATTGAGGC
ATGGAGTCTGTTAAGAATAACTACTCTATTGGCATGAGATTCAAAATGAGATTGAGGC**

* 1040 * 1060 * 1080

**GAAGAGGCTCCTGAGCAGAGTTTACTGGCACAACTGTTGGGATTGAAGAGTCTGATCCT
GAAGAGGCTCCTGAGCAGAGTTTACTGGCACAACTGTTGGGATTGAAGAGTCTGATCCT**

* 1100 * 1120 * 1140

**ACTAGGTGCCAAAAATCAAAAGTGGAGATCCCTCAAGGTGAGATGGGATGAGACTTCTAGT
ACTAGGTGCCAAAAATCAAAAGTGGAGATCCCTCAAGGTGAGATGGGATGAGACTTCTAGT**

9/51

* 1160 * 1180 * 1200

ATTCCCTGACCTGATAGAGTATCTCCGTGGAAAGTAGAGGCCAGCTCTGCTCCTCCTGCT
ATTCCCTGACCTGATAGAGTATCTCCGTGGAAAGTAGAGGCCAGCTCTGCTCCTCCTGCT

* 1220 * 1240 * 1260

TTGAGTCCTGTTCCAATGCCTAGGCCTAACAGAGGCCAGATCAAATATAGCACCTTCATCT
TTGAGTCCTGTTCCAATGCCTAGGCCTAACAGAGGCCAGATCAAATATAGCACCTTCATCT

* 1280 * 1300 * 1320

CCTGACTCTCGATGCTTACCAAGAGAAGGTACAACTAAGGCAAACATGGACCCCTTACCA
CCTGACTCTCGATGCTTACCAAGAGAAGGTACAACTAAGGCAAACATGGACCCCTTACCA

* 1340 * 1360 * 1380

GCAAGCGGACTTCAAGGGTCTTGCAGGTCAAGAATACTCGACCTTGAGGACGAAACAT
GCAAGCGGACTTCAAGGGTCTTGCAGGTCAAGAATACTCGACCTTGAGGACGAAACAT

* 1400 * 1420 * 1440

ACTGAGAGTGTAGAGTGTGATGCTCCTGAGAATTCTGTTGTCGGCAATCTTCAGCGGAT
ACTGAGAGTGTAGAGTGTGATGCTCCTGAGAATTCTGTTGTCGGCAATCTTCAGCGGAT

* 1460 * 1480 * 1500

GATGATAAGGTTGACGTGGTTCGGGTTCTAGAAGATATGGATCTGAGAACTGGATGTCC
GATGATAAGGTTGACGTGGTTCGGGTTCTAGAAGATATGGATCTGAGAACTGGATGTCC

* 1520 * 1540 * 1560

TCAGCCAGGCATGAACCTACTTACACAGATTTGCTCTCCGGCTTGGGACTAACATAGAT
TCAGCCAGGCATGAACCTACTTACACAGATTTGCTCTCCGGCTTGGGACTAACATAGAT

* 1580 * 1600 * 1620

CCATCCCCATGGTCAGCGGATACCTTTTATGACCATTCACTCACCTTCTATGCCTGCA
CCATCCCCATGGTCAGCGGATACCTTTTATGACCATTCACTCACCTTCTATGCCTGCA

* 1640 * 1660 * 1680

AAGAGAAATCTTGAGTGATTCAAGAGGCAAGTCGATTATCTTGCTAACCACTGGCAGATG
AAGAGAAATCTTGAGTGATTCAAGAGGCAAGTCGATTATCTTGCTAACCACTGGCAGATG

* 1700 * 1720 * 1740

ATACACTCTGGTCTCCCTGAAGTTACATGAATCTCCTAACGGTACCTGCAGCAACTGAT
ATACACTCTGGTCTCCCTGAAGTTACATGAATCTCCTAACGGTACCTGCAGCAACTGAT

10/51

* 1760

* 1780

* 1800

GCGTCTCTCCAAGGGCGATGCAATGTTAAATACAGCGAATATCCTGTTCTTAATGGTCTA
 GCGTCTCTCCAAGGGCGATGCAATGTTAAATACAGCGAATATCCTGTTCTTAATGGTCTA

* 1820

* 1840

* 1860

TCGACTGAGAATGCTGGTGGTAAGTGGCAATACGTCCACGTGCTTGAAATTATTATGAG
 TCGACTGAGAATGCTGGTGGTAAGTGGCAATACGTCCACGTGCTTGAAATTATTATGAG

* 1880

* 1900

* 1920

GAAGTGGTCAATGCTCAAGCGCAAGCTCAGGCTAGGGAGCAAGTAACAAAACAACCCTTC
 GAAGTGGTCAATGCTCAAGCGCAAGCTCAGGCTAGGGAGCAAGTAACAAAACAACCCTTC

* 1940

* 1960

* 1980

ACGATACAAGAGGAGACAGCAAAGTCAAGAGAAGGGAACACTGCAGGCTCTTGGCATTCT
 ACGATACAAGAGGAGACAGCAAAGTCAAGAGAAGGGAACACTGCAGGCTCTTGGCATTCT

* 2000

* 2020

* 2040

CTGACCAACAACATGAATGGGACAGACTCAACCATGTCTCAGAGAAACAACCTGAATGAT
 CTGACCAACAACATGAATGGGACAGACTCAACCATGTCTCAGAGAAACAACCTGAATGAT

* 2060

* 2080

* 2100

GCTGCGGGGCTTACACAGATAGCATCACCAAGGTTAGGACCTTCAGATCAGTCAAA
 GCTGCGGGGCTTACACAGATAGCATCACCAAGGTTAGGACCTTCAGATCAGTCAAA

* 2120

* 2140

* 2160

GGGTCAAAATCAACAAACGATCATCGTAACAGGGAGACCATTCCAGACTAATAATCCT
 GGGTCAAAATCAACAAACGATCATCGTAACAGGGAGACCATTCCAGACTAATAATCCT

* 2180

* 2200

* 2220

CATCCGAAGGATGCTCAAACGAAAACGAACTCAAGTAGGAGTTGCACAAAGGTTCACAAAG
 CATCCGAAGGATGCTCAAACGAAAACCAACTCAAGTAGGAGTTGCACAAAGGTTCACAAAG

* 2240

* 2260

* 2280

CAGGGAATTGCACTTGGCCGTCAGTGGATCTTCAAAGTTCCAAAACATATGAGGAGTTA
 CAGGGAATTGCACTTGGCCGTCAGTGGATCTTCAAAGTTCCAAAACATATGAGGAGTTA

* 2300

* 2320

* 2340

GTCGCTGAGCTGGACAGGCTGTTGAGTTCAATGGAGACTGATGGCTCCTAACAGAAAGAT
 GTCGCTGAGCTGGACAGGCTGTTGAGTTCAATGGAGACTGATGGCTCCTAACAGAAAGAT

11/51

* 2360 * 2380 * 2400

TGGTTGATAGTTACACAGATGAAGAGAATGATGATGCTTGTGACGATCCTTGG
TGGTTGATAGTTACACAGATGAAGAGAATGATGATGCTTGTGACGATCCTTGG

* 2420 * 2440 * 2460

CAGGAGTTTGTTCATGGTCGCAAAATCTCATATAACACGAAAGAGGAAGTGAGGAAG
CAGGAGTTTGTTCATGGTCGCAAAATCTCATATAACACGAAAGAGGAAGTGAGGAAG

* 2480 * 2500 * 2520

ATGAACCCGGGGACTTTAACGCTGTAGGAGCGAGGAAGCAGTTGGGGAAAGGATCA
ATGAACCCGGGGACTTTAACGCTGTAGGAGCGAGGAAGCAGTTGGGGAAAGGATCA

* 2540 * 2560 * 2580

GATGCAAAGGACGCCAAGTCTGCATCAAATCCTTCATTGTCCAGCGCTGGGAACCTTAA
GATGCAAAGGACGCCAAGTCTGCATCAAATCCTTCATTGTCCAGCGCTGGGAACCTTAA

Figure 7**Alignment of w.t. MNT and mutant mnt-1 protein**

MNT	*	20	*	40	*	60	
MASSEVSMKGNGGGDNFSSSGFSDPKETRNVSVAGEGQKSNSTRSAAAERALDPEAALYR							
MASSEVSMKGNGGGDNFSSSGFSDPKETRNVSVAGEGQKSNSTRSAAAERALDPEAALYR							
mnt-1							
	*	80	*	100	*	120	
ELWHACAGPLVTVRQDDRVFYFPQGHIEQVEASTNQAAEQQMPLYDLPSKLLCRVINVD							
ELWHACAGPLVTVRQDDRVFYFPQGHIEQVEASTNQAAEQQMPLYDLPSKLLCRVINVD							
	*	140	*	160	*	180	
LKAEEADTDEVYAOITLIPAEANOENATEEKEAPLPPEPPRFQVHSFCKTLTASDIISTHGGES							
LKRQIQMKFMRRELEFFIRLIKTRMQLRKKRLELHIERGSRCIRSRAKP							
	*	200	*	220	*	240	
VIRRHADECILPPLDMSRQOPTOELVAKDLHANEWFRHIFRGOPRRHILQSGWSVEVSSE							
	*	260	*	280	*	300	
RIVAGDAEITRGENGELRVGVRRAMROQGNVPSSVISSHSMHIGVIAATAWHAISTGTME							
	*	320	*	340	*	360	
TWYYKPRISPSEEITVPEPDQYMEVKINNYSIGMRFKMRFEGEAPEORFTGTIVGIEESDP							
	*	380	*	400	*	420	
TRWPKSKWRSLKVRWDETSSIPRPDRVSPWIKVEPALAPPALSPVPMPPRKRPRSNIAPS							
	*	440	*	460	*	480	
PDSMLTREGTTKANMDPLPASGLSRVLOGQEYSTIRTKHTESVECDAPENSVWQSSAD							
	*	500	*	520	*	540	
DDKVVDVSGSRRYGSERNWMSSARHEPTYTDLLSGFGTNIDPSHGORITYPFYDHSSSPSMPA							
	*	560	*	580	*	600	
KRILSDSEGKFDYLANQWOMIHSGLSLKLHESPKUPAATDASLOGRCNVKYSEYPVLNGL							

13/51

* 620 * 640 * 660

STENAGG NWP IRP RAL NYEE VVNAQ AQA Q ARE QVT KOP FTI QEET AKS REG NC RLEG IP

* 680 * 700 * 720

LTNNMNG TDSTM SORNN LND AAGL TO IASPKVQDL SDQS KG SK ST ND HRE QGRPF QT NNE

* 740 * 760 * 780

HPK DACT KINS SRSC T KVHK OGI ALGRS UDL SKF QN YEE LVA ELDRI FNG ELMAP KKD

* 800 * 820 * 840

WIE VAT DE END MME VGD DP WOE E CCM VRK T E YT KEE VRK YNP GTI SCR SEE E AVV GEGS

*

DAK DAK S ASNP SLSS AGNS

Figure 8

Alignment of MNT and BnARF2 cDNA

MNT	*	20	*	40	*	60
ATGGCGAGTT CGGAGGTTCTATGAAAGGTAATCGTGGAA---GGAGATAACCTCTCCTCC						
ATGGCGAGTT CGGAGGTTCTATGAAAGGTAATCGTGGAGGGAGGAGAAACCTCTCCTCC						
BnARF2						
	*	80	*	100	*	120
TCTGGTTTTAGTGACCCCTAAGGAGACAGAAGAATGCTCGGTGCCCCGGCGAGGGGGCAAAAA						
GCTGGTTTTAGTGACCCCTAAGGAGACAGAAGAATGCTCGGTGCCCCGGCGAGGGGGCAAAAA						
	*	140	*	160	*	180
AGTAATTCTACCCGATCGGCTGGCGCGAGCGTGCTTGACCCCTGAGGCTGCTCTTTAC						
AGTCAGTCTAACCGATCTGTGGCTGCAGAGCGCGTTGTGACCCCTGAGGCTGCTCTTTAC						
	*	200	*	220	*	240
AGAGAGCTATGGCACGCTTGTGCTGGTCCCTGTGACGGTTCCTAGACAAGAGACCGGA						
CGTAGAGCTGTGGCACGCTTGTGCTGGTCCCTGTGACAGTCCTCGACAAGAGACCGGA						
	*	260	*	280	*	300
GTCTTCTATTTCTCTAGGGCACATCGAGCAGGTGGAGGCTTCGACGAAACAGGCCGA						
GTCTTCTATTTCTCTAGGGCACATCGAGCAGGTGGAGGCTTCGACGAAACAGCTGCA						
	*	320	*	340	*	360
GAACACAGATGCCTCTCTATGATCTTCCGTCAAAGCTCTGTGCGAGTTATTAAATGTA						
GAACACAGATGCCTCTCTATGATCTTCCGTCAAAGCTCTGTGCGAGTTATTAAATGTA						
	*	380	*	400	*	420
GATTTAAAGGCAGAGGCAGAACAGATGAAAGTTATGCGCAGATTACTCTTCTTCCCTGAG						
GATTTAAAGGCAGAGGCAGAACCGAACGAAAGTTATGCGCAGATTACTCTTCTTCCCTGAG						
	*	440	*	460	*	480
GCTATCAAGACGAGAAATGCAATGAGAAAGAGCGCCTCTTCCTCCACCTCCGAGGTTTC						
CCTGTTCAAGACGAGAAATGCAATGAGAAAGAGCGCCTCTTCCTCCGCCCCCAAGGTTTC						
	*	500	*	520	*	540
CAGGTGCAATTGTTCTGCAAAACCTTGACTGCATCGACACAAAGTACACATGGTGGATTT						
CAGGTGCAATTGTTCTGCAAAACCTTGACTGCATCGACACAAAGTACACATGGTGGATTT						

* 560 * 580 * 600

TCTGTCTTAGGCGCATGCCGATGAATGTCCTCCCACCTCTGGATATGTCCTCGACAGCCT
TCTGTCTTAGGCGCATGCCGATGAATGTCCTCCCACCTCTGGATATGTCACGTCAACCT

* 620 * 640 * 660

CCACTCAAGAGTTAGTTGCACAAAGATTGCAATGCAAAATGAGTGGCGATTCAACATATA
CCTACTCAAGAGTTAGTTGCACAAAGATGCAATGCAACCGAGTGGCGTTTCCGACATATT

* 680 * 700 * 720

TTCCCGGGTCAACCACGGAGGCATTGCTACAGAGTGGGTGGAGCTGTTTGTAGCTCC
TTCCGAGGTCAACCACGGAGGCATTGCTCAGAGTGGATGGAGGGTGTAGCTCC

* 740 * 760 * 780

AAAGGGCTAGTTGCAGGGCGATGCTTTATATTTCTAAGGGGGCGAGAATGGAGAATTAGC
AAAGGGCTGGTGCAGGGCGATGCTTTATATTTCTAAGGGGGCGAGAATGGAGAATTAGC

* 800 * 820 * 840

CTGGGTGTAAGGCGTGCGATGCCAACAAAGGAAAGTGGCCGTCTCTGTTATATCTAGC
GTGGGTGTAAGGCGTGCGATGCCAACAAAGGAAAGTGGCCGTCTCTGTTATATCTAGC

* 860 * 880 * 900

CATAGCATGCATCTGGAGTACTGGCCACCGCATGGCATGCCATTTCACAGGGACTATG
CACAGCATGCATCTGGAGTACTGGCCACTGCCTGGCAGGCTATTTCACAGGGACTATG

* 920 * 940 * 960

TTTACAGTCTACTAAACCCAGGACGAGCCATCTGAGTTATTGTTCCGTTGATCAG
TTTACAGTCTACTAAACCCAGGACTAGCCTTCAGAGTTATTGTTCCGTTGATCAG

* 980 * 1000 * 1020

TATATGGAGTCTGTAAAGATAACTACTCTATGGCATGAGATTCAAAATGAGATTTGAA
TATACGGAGTCCGTAAAGATAACTACTCCATGGCATGAGATTCAAAATGAGATTTGAA

* 1040 * 1060 * 1080

GGCGAAGAGGGCTCTGAGCAGAGGTTACTGGCACAACTGTTGGGATTGAAGAGCTCTGAT
GGCGAAGAGGGCTCCGGAGCAGAGGTTACTGGCACAACTGTTGGGATTGAAGAGCTCTGAC

* 1100 * 1120 * 1140

CCTACTAGGTGGCAAAATCAAATGGAGATCCCTCAAGGTGAGATGGGATGAGACTTCT
CCSACGAGGTGGCAAAATCAAATGGAGATCCCTCAAGGTACGGTGGGATGAGACCACT

16/51

* 1160 * 1180 * 1200

ACTATTCCCTCGACCTGATAGAGTATCTCCGTGGAAAGTAGAGGCCAGCTCTTCTCCTCCT
ACTATTCCCTCGCCCTGATAGAGTATCCCCGTGGAAAGTAGAGGCCAGCTCTTCTCCTCCT

* 1220 * 1240 * 1260

GCTTTGAGTCCTGTTCCAATGCCTAGGCCTAAGAGGGCCCAGATCTAATCTAGCAGCTTCA
GCTTTGAGTCCTGTTCCAATGCCTAGGCCTAAGAGGGCCCAGATCTAATCTAGCAGCTTCA

* 1280 * 1300 * 1320

TCTCCGACTCTTCGATGCTTACCGAGGAAGGTCACTAAGGCAAACATGGACCCTTA
ACTCCGACTCTTCGATGCTTACCGAGGAAGGTCACTAAGGCAAACATGGACCCTTA

* 1340 * 1360 * 1380

CCAGCAAGGGACTTCAAGGGTCTTGCAAGGTCAAGAATACTCGACCTTGAGGACGAAA
CCGGCAAGGGACTTCAAGGGTCTTGCAAGGTCAAGAATACTCGACCTTGAGGACGAAA

* 1400 * 1420 * 1440

CATACTGAGACTGTAGACTGTGATGCTCCTGAGAAATTCTGTTGTCTGGCAATCTCAGCG
CATGTTGAGACTGTAGACTGTGATGCTCCTGAGAAATTCTGTTGTCTGGCAATCTCAGCG

* 1460 * 1480 * 1500

GATGATGAAAGGTTGACCTGCTTTGGCTTCTAGAGATATGCACTGAGAAACTGGATG
GATGATGAAAGGTTGACCTGCTTTGGCTTCTAGAGATATGCACTGAGAAACTGGATG

* 1520 * 1540 * 1560

TCCTCAGGGAGGCATGACCTACTTACACAGATTGCTCTGGCTTGGGACTAACATA
TCCTCAGGTAGGCATGACCTACTTACCGATTGCTCTGGCTTGGGACTAACATA

* 1580 * 1600 * 1620

GATCCCATGGCATGGTCAGGGGATACCTTTTATGACCATT---CATCATCACCTTCTATG
GAACCCACCTCACGGTCATCAGATAACCTTTATGACCCTTATCATCAGCACCTCTGTG

* 1640 * 1660 * 1680

CCTGCCAAAGAGAAATCTTGAGTGAATTGAGGCAAGTTGATTATCTTGCTAACCAAGTGG
GCTGCCAAAGGAAATCTGAGGCAAGGAGATGGCAAGTTGATTATCTTGCTAACCAAGTGG

* 1700 * 1720 * 1740

CAGATGATAACACTCTGGTCTCTCCCTGAAGTTACATGAATCTCCTAACAGGTACCTGCAGCA
ATGATGCACTCAGGCCTTCCCTGAAGTTACATGAATCTCCTAACAGTCCCTGCCGCA

17/51

* 1760 * 1780 * 1800
 ACTGATGCCTCTCTCCAAGGGCAATGCAATGTTAAATACAGCGAATATCCTCTTAAAT
 TCTGATGCCTCTTCCAAGGGATACGCAATCCCAATTACCGCGAATATGCTTCCCTCGT

* 1820 * 1840 * 1860
 GGTCTATCGACTGAGAATGCTGGTGGTAACGGCCAATACGTCCACGTGCTTTGAATTAT
 GAGTCACGACTGAGAATGCTGGTGGTAACGGCCAATACGTCCACGTGCTTTGAATTAT

* 1880 * 1900 * 1920
 TGTGAGGAAGTGGTCAATGCCATAGCCCTGCTCAGGCTAGGGAGCAAGTACAAAACAA
 TTGAGGAAGGGT-----TCAT-----GCTCAGGCTAGAGAGCAAGTACAAAACCT

* 1940 * 1960 * 1980
 CCCTTCA---CGATAACAAGAGGAGACAGCAAAGTCAAGAGAAGGGAACTGCAGGGCTTTG
 CC-TGGGCTCG-TACAAGAGGAGGAGCAAAGGCAAGAGAAGGGAACTGCAGGGCTTTG

* 2000 * 2020 * 2040
 GCATT CCTCTGACCAACAACTGAAATGGGACAGACTCAACCATGTCAGAGAAACAACT
 GCATT CCTCTGGTCAACAACTGAAATGGGACAGATACAACCTTGTCTCAGAGAAACAACT

* 2060 * 2080 * 2100
 TGAATGATGCTGCGGGGCTTACACAGATGGCATCACCAAAGGTTCAAGGACCTTCAAGATC
 TGAATGACCTGCGGGGCTTACCGAGATGGCATCACCAAAGGTTCAAGGACCTTCAAGATC

* 2120 * 2140 * 2160
 AGTCAAAAGGGTCAAAATCAACAAAGATCATCGTGAAACAGGGAGACCATTCCAGACTA
 AGTCAAAAGGGTCAAAATCGACAAAGATCATCGTGAAACAGGGAGACCATTCCAGGTAA

* 2180 * 2200 * 2220
 ATAAATCCTCATCCGAAGGGATCTAAACGAAACCAACTCAAGTAGGGAGTGCACAAAGG
 GTAAACCCCATCCGAAAGACCTTCAAACCAAAACAACTCATGTAGGGAGTGCACAAAGG

* 2240 * 2260 * 2280
 TTCACAAAGCAGGGATTGCACTTGGCCGTCAGTGGATCTTCAAAGTTCCAAGACTATG
 TTCACAAAGCAGGGATTGCACTTGGCCGTCAGTGGATCTCTCAAAGTTCCAAGACTATG

* 2300 * 2320 * 2340
 AGGAGTTAGTCGCTGAGCTGGACAGGGCTGTTGAGTTCAATGGAGAGTTGATGGCTCCTA
 AGGAGTTGGTACTGAAATTGGAGAGGCTGTTGAGTTCAATGGAGAGTTGATGGCTCCTA

18/51

* 2360 * 2380 * 2400

AGAAAGATTGGTGATAGTTACACAGATGAAGAGAATGATATGATGCTTGTGGTGACG
AGAAAGATTGGTGATAGTTACACAGATGAAGAGAATGATATGATGCTTGTGGAGACG

* 2420 * 2440 * 2460

ATCCTGGCAGGAGTTTGTTCATGGTCGAAAATCTCATATAACAGAAAGAGGAAG
ATCCTGGCAGGAGTTTGTTCATGGTCGAAAATCTCATATAACAGAAAGAGGAAG

* 2480 * 2500 * 2520

TGAGGAAGATGAACCCGGGGACTTTAAGCTGTAGGAGCGAGGAAGAACAGTTGTTGGGG
T~~G~~AGGAAGATGAACCCGGGGACTCTAAGCTGTAGGAGCGAGGAAGAACAGTTGTTGGGG

* 2540 * 2560 * 2580

AAGGATCAGATGCAAGGGACGCCAAGTCTGCATCAAATCCTTCATTGTCCAGCGCTGGCA
AAGGATCAGATGCAAGGGACGCCAAGTCTGCATCAAATCCTTCATTGTCCAGCGCCGGAA

ACTCTTAA
ACTCTTAA

Figure 9

Alignment of MNT, BnARF2, OsARF2 proteins

* 20 * 40 *

MNTwt : MASSEVSMKGNGR-GDNFSSSGFSDPKETRNVSVAGEGQKSNSTKESAAERALDP
 BnARF2 : MASSEVSMKGNGRG-GENFSSAGVSDDP-----TVAGEAQKTSNRSVAEERVVDP
 OsARF2 : -----GDP

* 60 * 80 * 100 *

MNTwt : EARLYRELWHACAGPLVTVPQRDRVFYFPQGHIEQVEASTNQAAEQQOMPLYDLP
 BnARF2 : EAALYRELWHACAGPLVTVPQRDRVFYFPQGHIEQVEASTNQAAEQQOMPLYDLP
 OsARF2 : ---LYDELWHACAGPLVTVRVGDLVFYFPQGHIEQVEASMNQVADSQMRLYDLP

* 120 * 140 * 160 *

MNTwt : SKLLCRVINVDLKAEDTDDEVYAQITLLEPEANODENATEKEAPLP--PRFQVH
 BnARF2 : SKILCRVINVDLKAEDTDDEVYAQITLLEPEPVODENSIEKEAPP--PRFQVH
 OsARF2 : SKILCRVINVELKAEQDTDEVYAQVMDPEPEEQNEMAVEKTTPTSGPVOARPPR

* 180 * 200 * 220 *

MNTwt : SFCKTLTASDTSTHGGFSVLRRHADECCLPPLDMSRQPPTQELVAKDLHANEWRFR
 BnARF2 : SFCKTLTASDTSTHGGFSVLRRHADECCLPPLDMSRQPPTQELVAKDLHASEWRFR
 OsARF2 : SFCKTLTASDTSTHGGFSVLRRHADECCLPPLDMTQSPPPTQELVAKDLHSMDWRFR

* 240 * 260 * *

MNTwt : HIFRGOPRRHLLQSGWSVFVSSKRLVAGDAFIFLRGENGELERVGVVRAMRQDGIV
 BnARF2 : HIFRGOPRRHLLQSGWSVFVSSKRLVAGDAFIFLRGENGELERVGVVRAMRQDGIV
 OsARF2 : HIFRGOPRRHLLQSGWSVFVSSKRLVAGDAFIFLRGENGELERVGVVRAMRQLSIV

* 280 * 300 * 320 *

MNTwt : PSSVISSHSMHLGVATAWHAISTGTMFTVYYKPRTPSEFIIPFDQYMEVKNN
 BnARF2 : PSSVISSHSMHLGVATAWHAISTGTMFTVYYKPRTPSEFIIPFDQYMEVKIN
 OsARF2 : PSSVISSQSMHLGVATAWHAINTKSMTVYYKPRTPSEFIIPFDQYMEVKNN

* 340 * 360 * 380 *

MNTwt : YSIIGMRFKMRFEGEAAPEQRFGTIYGIEESDPTTRWPKSKWRSLKVRWDETSSTIP
 BnARF2 : YSIIGMRFKMRFEGEAAPEQRFGTIYGIEDSDPTTRWAKSKWRSLKVRWDETSSTIP
 OsARF2 : YSVGMRFRMRFEGEAAPEQRFGTIYGSERLDPWPESSWRSLKVRWDEPSTIP

* 400 * 420 * 440 *

MNTwt : RPDRVSPWKVEPALAPPALSPVPMRPRKPRRSNIAPSSPDSSMLTRGETTKANMD
 BnARF2 : RPDRVSPWKIEPALSPPALSPVPMRPRKPRRSNLASSTPDSSMRIEEGSSSKANMD
 OsARF2 : RPDRVSPWKIEPASSPP-VNPLPLSLRKPRPNAAPPASPESPITIKEAATKVDTD

20/51

* 460 * 480 *

MNTwt : P L P A -- S E I S R V L Q G Q E Y S T L R T K H T E S V E C D A P E N S - V V W O S S A D D D K V D V V V S G
 BnARF2 : P L P A -- S G I S E V L Q G Q E Y P T L R T K H V E S V E C D A P E N S - V V W Q S S T D D D K V L V T I S A
 OsARF2 : P A Q A Q R S O N S T V L Q G Q E Q M T L R S N L T E S N D S D V T A H K P M M W S P S P N A A K A H P L T F

500 * 520 * 540 *

MNTwt : S R R Y G S E N W M S S A R H E P T Y T D L L S G F G T N I D P S H G Q R I P F Y D H - S S S P S M P A - K R
 BnARF2 : S R R Y -- E N W I S S G R H G P T C T D L L S G F G T N I E P P H G H Q I P F Y D R L S S P P S V A A - R K
 OsARF2 : Q Q R P P M D M W M Q L G R E T D F K D V R S G - S Q S F G D S P G F F M Q N F D E -- A E N R L T S P K N

560 * 580 * 600 *

MNTwt : I I L S D S E G K E D Y L A N Q E Q M I H S G L S I K L H E S P K V P A A T D A S L Q E R C N V K Y S E Y P V L
 BnARF2 : I I L S D Q D G K F E Y L A N Q W - M M H S G L S I K L H E S P K V P A A S D A S F Q G I G N P N Y G E Y A L P
 OsARF2 : Q F Q D D - G S A R H F S D P Y Y Y V ----- S P Q P S L T V E S S T O M H T D S K - E L H F W

* 620 * 640 * 660 *

MNTwt : N G L S T E N A G G N E P I P R P A L N Y Y E E V I N Q A Q A Q A R - E Q - - V T K O P F T H Q E - E T A K
 BnARF2 : R A V T T E N A G G N E P I P R P A L N Y F E E A U H A Q ----- A R - E H - - V T K R P A V V Q E - E A A K
 OsARF2 : N G O S T -- V Y G N S R D R P Q N F R F E Q N S S S W L I N S F A R P E Q P R V I R P H A S I A P V E L E K

* 680 * 700 * 720 *

MNTwt : S R E G N C R I F G I P L - T I I N M -- N G T D S T M S Q E N N -- L N D E A A G T Q I A S P K V Q D L S D Q
 BnARF2 : P R D G N C R I F G I P L - V I I N V -- N G T D T I L S Q E N N -- L N D E A A G T Q I A S P K V Q D L S D Q
 OsARF2 : T E G S G F K I F G F K V D I T N A P N N H L S S P M A A T H E P M I Q T P S S I N O L Q P V Q T D C I P E V

720 * 740 * 760 * 780 *

MNTwt : S K G S K S T N D H R E Q G E P F Q T N N P H P K D A Q T K T N -- S S R S C T K V H K Q G I A L G R S V D L
 BnARF2 : S K G S K S T N D H R E Q G E P F P V S K P H P K D V Q T K T N -- S C R S C T K V Q K Q G I A L G R S V D L
 OsARF2 : S V S T A G I T A T E N E K S G -- Q A Q Q S S K T N O S K T Q V A S T R S C T K V H K Q G V A L G R S V D L

800 * 820 * 840 *

MNTwt : S K F Q N Y E E L V A E L D R L F E F N G E L M A P K K D W L I V Y T D E E N D M M L V G D D P W Q E F C C M
 BnARF2 : S K F Q N Y E E L V T E L D R L F E F N G E L M A P K K D W L I V Y T D D E N D M M L V G D D P W Q E F C C M
 OsARF2 : S K F S N Y D E L K A E L D K M F E F D G E L V S S N K N W O I V Y T D N E E D M M L V G D D P W E E F C S I

* 840 * 860 * 880 *

MNTwt : V R K I E I Y T K E E V E K M N P G T I S C R S E E E B A U I G E G E G S D A K D E A K S A S N P S L S S A G N S
 BnARF2 : V R K I E I Y T K E E V E K M N P G T I C C R N E E E P V T G E G S D A K D E A K S A S N P S L S S A G N S
 OsARF2 : V R K I E I Y T K E E V O K M N S K S N A P R K D ----- D S S E N E K G H L P M P N K S D N

21/51.

Figure 10

Vectors used for cloning

10A BJ60

22/51

10B BJ40

23/51

10C pFGC5941

24/51

10D pART7

25/51

OE BJ36

Figure 11

Cloning strategy, Example 3

Example 3a(i)

Example 3a(ii)

Example 3b(i)

Example 3b(ii)

28/51

Figure12

TT12::uidA

Figure 13A

Cloning strategy, Example 4

Figure 13B

Plants transformed with the 35S::MNT RNAi vector Example 4

Primary inflorescence

wild-type Col-3

35S::MNT RNAi
line 3

Primary inflorescence stem

wild-type Col-3

35S::MNT RNAi
line 3

CONTROL

wild-type Col-3
mean wt 13.8 µg

35S::MNT RNAi line 1
mean wt 34.0 µg

35S::MNT RNAi line 2
mean wt 35.6 µg

35S::MNT RNAi line 3
mean wt 34.8 µg

35S::MNT RNAi line 4
mean wt 36.7 µg

Figure 14

Cloning strategy, Example 5

Ascl, Swal BnARF2i excised from pGEMT and ligated into Ascl, Swal-cut pFGC5941

XbaI, BamHI BnARF2i excised from pGEMT and ligated into XbaI, BamHI-cut 35S-BnARF2i-pFGC5941

32/51

Figure 15

Cloning strategy, Example 6

Example 6a(i)

Example 6a(ii)

Figure 16

Cloning strategy, Example 7

Example 7a(i)

Example 7a(ii)

Figure 17A

Cloning strategy, Examples 8, 9

Example 8a

Example 9a

Example 8b

Example 9b

Figure 17B

**Analysis of wild-type plants transformed with the
35S::MNT vector**

Example 8

35S::MNT

wild-type Col-3
mean wt 15.0 µg

35S::MNT line 1
mean wt 23.1 µg

35S::MNT line 2
mean wt 28.7 µg

35S::MNT line 3
mean wt 24.6 µg

Semiquantitative RT-PCR

Figure 18

Cloning strategy, Example 10

Example 10a(i)

Example 10a(ii)

Example 10b(i)

Example 10b(ii)

Example 10c(i)

Example 10c(ii)

Figure 19

Cloning strategy, Example 11

Example 11a(i)

NotI
NdeI
MluI
XbaI

Example 11a(ii)

NotI
NdeI
MluI
XbaI

Example 11b(i)

Example 11b(ii)

42/51

Example 11c(i)**Example 11c(ii)**

Figure 20

Cloning strategy, Examples 12, 13

Examples 12a, 13a

Repeat process with TT12, INO, BAN promoters

Examples 12b, 13b

Repeat process with IPT1, ANT, CYCB1;1 cDNAs and TT12, INO, BAN promoters

TT8-IPT1-BJ40	INO-CYCD3;1-BJ40
TT8-ANT-BJ40	INO-IPT1-BJ40
TT8-CYCB1;1-BJ40	INO-ANT-BJ40
TT12-CYCD3;1-BJ40	INO-CYCB1;1-BJ40
TT12-IPT1-BJ40	BAN-CYCD3;1-BJ40
TT12-ANT-BJ40	BAN-IPT1-BJ40
TT12-CYCB1;1-BJ40	BAN-ANT-BJ40
	BAN-CYCB1;1-BJ40

Example 12c, 13c

Repeat process with all BJ36 constructs shown in Example 12b

TT8-IPT1-BJ40

INO-CYCD3;1-BJ40

TT8-ANT-BJ40

INO-IPT1-BJ40

TT8-CYCB1;1-BJ40

INO-ANT-BJ40

TT12-CYCD3;1-BJ40

INO-CYCB1;1-BJ40

TT12-IPT1-BJ40

BAN-CYCD3;1-BJ40

TT12-ANT-BJ40

BAN-IPT1-BJ40

TT12-CYCB1;1-BJ40

BAN-ANT-BJ40

BAN-CYCB1;1-BJ40

Figure 21A

Expression cassettes to increase seed size

Distribution of seed weights in TT8::uidA (control), TT8::CYCD3;1, and TT8::IPT1 families

47/51

Figure 21B

Expression cassettes to increase seed size

Figure 22

Cloning strategy, Example 14

Example 14a

Example 14b

Example 14c

Figure 23

Cloning strategy, Example 15

Example 15a

Example 15b

Example 15c

Figure 24

24A Wild-type vs *mnt-1* plants

w.t.

mnt-1

24B Wild-type vs *mnt-1* stems, transverse sections

w.t.

mnt-1

Figure 25

Cloning strategy, Example 18

Example 18a

Example 18b

Example 18c

