CORSO DI LAUREA TRIENNALE IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I E II) 12 DICEMBRE 2017

Svolgere i seguenti esercizi,

giustificando pienamente tutte le risposte.

Sui fogli consegnati vanno indicati: **nome**, **cognome**, **matricola** e **gruppo** di **appartenenza**. **Non** è necessario consegnare la traccia.

Esercizio 1. Si diano le definizioni di anello e di campo.

In \mathbb{Q} si considerino le operazioni binarie \oplus e * definite ponendo, per ogni $a, b \in \mathbb{Q}$,

$$a \oplus b = a + b + 1$$
 e $a * b = ab + a + b$.

- (i) Dando per noto che \oplus e * sono commutative e associative, provare che $(\mathbb{Q}, \oplus, *)$ è un anello commutativo unitario. $(\mathbb{Q}, \oplus, *)$ è un campo?
- (ii) Stabilire se $3\mathbb{Z}$ è una parte chiusa di \mathbb{Q} rispetto a \oplus e se lo è rispetto a *.

Esercizio 2. Siano $S \in T$ insiemi. Assumendo $|S| = 3 \in |T| = 5$ calcolare:

- (i) il numero delle applicazioni iniettive da S a T;
- (ii) il numero delle applicazioni iniettive da T a S;
- (iii) il numero delle applicazioni suriettive da S a T;
- (iv) il numero delle applicazioni da S a T;
- (v) il numero delle applicazioni costanti da S a T.

Sia poi $f: S \to T$ un'applicazione e sia \mathcal{R}_f il suo nucleo di equivalenza. Determinare \mathcal{R}_f e calcolare S/\mathcal{R}_f in ciascuno dei due casi:

- (vi) f è iniettiva;
- (vii) f è costante.

Esercizio 3. Esiste in \mathbb{Z}_{54} una classe a tale che $\overline{20}a = \overline{4}$? Ed esiste una classe b tale che $\overline{20}b = \overline{5}$? In entrambi i casi, fornire se possibile almeno un esempio.

Esercizio 4. Sia A l'insieme dei numeri interi maggiori di 1. Per ogni $n \in A$, sia p_n il massimo primo positivo divisore di n. Definiamo in A la relazione binaria σ ponendo, per ogni $a, b \in A$:

$$a \sigma b \iff (p_a < p_b \lor (p_a = p_b \land a \le b))$$

- (i) σ è una relazione d'ordine? Nel caso lo sia, rispondere anche alle domande che seguono.
- (ii) Determinare in (A, σ) gli eventuali minimo, massimo, elementi minimali, elementi massimali.
- (iii) (A, σ) è totalmente ordinato? È un reticolo?
- (iv) Posto $B = \{3^n \mid n \in \mathbb{N}^*\}$, determinare in (A, σ) gli insiemi dei minoranti e dei maggioranti di B e, se esistono, inf B e sup B.

Esercizio 5.

- (i) Determinare quanti sono e che forma hanno i polinomi $f \in \mathbb{Z}_5[x]$ che siano monici di grado 5 e tali che $f(\bar{1}) = f(\bar{2}) = f(\bar{3}) = \bar{0}$.
- (ii) Tra questi polinomi, dire se esistono, e nel caso quanti sono e che forma hanno, quelli che siano prodotto di cinque fattori irriducibili, di tre fattori irriducibili, di due fattori irriducibili.
- (iii) Scrivere $g = x^5 x \in \mathbb{Z}_5[x]$ come prodotto di polinomi irriducibili monici.
- (iv) Spiegare perché ogni polinomio $f \in \mathbb{Z}_5[x]$ tale che $f(a) = \bar{0}$ per ogni $a \in \mathbb{Z}_5$ è multiplo di g.