Pouria Mistani

Computational Scientist

Work Authorization: Permanent Resident

+1 951 386 9775

(3) http://www.pouriamistani.com

in My LinkedIn Profile

p.a.mistani@gmail.com

Hard Skills -

Multivariate Calculus, Statistics,
Linear Algebra, Stochastic
Processes

Machine Learning,
Scientific Computing

Data Intuition Extraction

Python, C/C++, HTML

Tensorflow, Keras, Scikit-Learn, Scipy, Pandas, Boost, GSL

SQL, Apache Spark

Matplotlib, ParaView, Seaborn

A MPI, PETSc, p4est

Linux, Mac OS, Windows

Soft Skills -

Multi-disciplinary

Fast-paced

Critical Thinking

? Problem Solving

Team Player

6 years experience in several scientific collaborations

Communication

10 years of teaching experience

Certificates

Fundamentals of Scalable Data Science

Applied AI with Deep Learning

Advanced Machine Learning and Signal Processing

Work Experience

2016 – now Research/Teaching Assistant University of California Santa Barbara Developed two parallel computing softwares to numerically integrate nonlinear PDEs. Also I developed a stochastic model based on data.

2013 – 2016 Research/Teaching Assistant University of California Riverside

Analyzed terabytes of high-dimensional datasets produced by the illustris simulations of the Universe, and developed a theory for assembly of dwarf galaxies from data.

2014 – 2014 Visiting Scholar

Developed several Python routines to effectively filter through illustris datasets.

2012 – 2013 Scientific Software Developer

Ministry of Science, Research and Technology, Iran

Education

2016 - 110W	PhD in Mechanical Engineering	University of California, Santa Barbara
	Focus: Computational Science and Engineering (GPA: 3.95/4.0)	
2013 – 2016	MS Physics	University of California, Riverside
	Focus: Computational Astrophysics (GPA: 3.95/4.0)	
2009 – 2013	BS Physics	Sharif University of Technology
	Focus: Astronomy (GPA: 18.45/20.0	0)
2008 – 2013	BS Aerospace Engineering	Sharif University of Technology
	Focus: Astronautics (GPA: 18.45/20	0.0)

Projects

Inverse PDEs

(Machine Learning) 2019-now </> Python, Tensorflow, Keras, Linux
We developed the "Blended Inverse-PDE Networks" (BIPDE-Nets)
that combine traditional methods for numerical computations
of PDEs with modern deep learning architectures to discover
hidden fields in data. BIPDE-Nets seamlessly incorporate domain-

knowledge about physics of the problem.

Electroporation </> C++, Petsc, Python, Scikit-Learn, Scipy, Tensorflow, Keras, (Biophysics) Visualization, Linux

2016-now

We numerically solved partial differential equations with nonlinear boundary conditions on tens of thousands of interfaces with arbitrary geometries. We used a finite volume discretization on adaptive interface-fitted Voronoi grids. I implemented more than 5,000 lines of parallel C++ code, tested, then ran it on Stampede2 supercomputer on 2,048 processors. I used ParaView to visualize the results, and I extensively analyzed the datasets in Python. The product is a reduced order model that predicts observations with minimal computations.

Epitaxy (Materials) 2016-2019 </> C++, Petsc, Boost, p4est, Visualization, Linux
We developed a novel approach for simulating epitaxial growth in parallel. In this approach we made use of a forest of quadtree adaptove grids using p4est library in a parallel environment. This work extended previous studies by combining mesh adaptivity and multi-core parallelism that enabled simulations of mound formation in orders of magnitude larger domains. We used C++ using parallel framework Petsc as an interface to BLAS and LAPACK linear algebra

Dwarf Galaxies Python, C, MPI, GSL, matplotlib, Scipy, Scikit-Learn, Pandas,

libraries, as well as Boost for fast mathematical operations.

(Astrophysics) 2014-2016

I analyzed $250\mathrm{TB}$ of correlated datasets generated by the Illustris cosmological and hydrodynamical simulation suite to study the assembly of dwarf galaxies. I developed a semi-analytic model for the formation and stripping of globular clusters that support our findings.

Pouria Mistani

Computational Scientist

Work Authorization: Permanent Resident

About Me

I build multiscale mathematical models from big data. I develop parallel scientific computing softwares (C++ multi-core) to generate and analyze large datasets, using adaptive mesh refinement and in parallel environments.

I have extensive experience in developing data analysis pipelines and visualizations using Python, which I leverage to develop physics-informed predictive models.

Analytics

Programming Skills

Memberships -

Society for Industrial and Applied Mathematics, USA

National Elite Foundation, Iran

Awards

2020	Graduate Division Dissertation Fellowship Award University of California, Santa Barbara
2019	Travel award for SIAM conference on computational science and engineering
2016	Spokane, Washington, USA Awarded 740,082 SUs computing allocation on Stampede
2015	supercomputer XSEDE TACC FIELDS fellowship for big data and visualization
2015	NASA MIRO program Michael Devirian award for outstanding research by a 2nd year
2015	graduate student University of California, Riverside
2013	Winner of dean's distinguished fellowship award University of California, Riverside
2007	4 year "National Elite Foundation Undergraduate Fellowship Award"
2007	Ministry of Education, Iran Silver medal in the 3rd national olympiad in astronomy Ministry of Education, Iran

Publications

Fublications		
2020	A fractional stochastic theory for interfacial polarization of multicellular systems Pouria Mistani, S Pakravan, F Gibou	
	arXiv - under review	
2020	Solving inverse-PDE problems with physics-aware neural	
2020	networks S Pakravan, Pouria Mistani, MA Calvo, F Gibou	
	arXiv - under review	
2019	A parallel Voronoi-based approach for meso-scale simulations	
2013	of cell aggregate electropermeabilization Pouria Mistani, A Guittet, C Poignard, F Gibou Journal of Computational Physics	
2019	•	
2019	Towards a tensor network representation of complex systems Pouria Mistani, S Pakravan, F Gibou	
	Springer International Publishing	
	Tensor network renormalization as an ultra-calculus for	
2019	complex system dynamics	
	Pouria Mistani, S Pakravan, F Gibou	
	Springer International Publishing	
2018	The island dynamics model on parallel quadtree grids	
2010	Pouria Mistani, D Bochlov, A Guittet, J Schneider, D Margetis, C Ratsch,	
	F Gibou	
	Journal of Computational Physics	
	On the assembly of dwarf galaxies in clusters and their	
2016	efficient formation of globular clusters	
	Pouria Mistani, L Sales, A Pillepich, R Sanchez-Janssen, M Vogels-	
	berger, D Nelson, V Rogriguez-Gomez, P Torrey, L Hernquist	
_	Monthly Notices of Royal Astronomical Society	
Teaching	7	

Teaching

ME ME ME PHYS PHYS PHYS AE	Engineering Dynamics (main instructor) Statics Fluid Mechanics I, II (twice) Engineering Vibrations (twice) Intermediate Mechanics General Physics Discussions (sections 2A Physics General Labs (sections 2LA, 2LC, Orbital Mechanics (5 semesters)	2C) UC Riverside Sharif University of Technology
AE	Aircraft Design II	Sharif University of Technology