ENSC 3213: Computer Based Systems

Lab 1: Interfacing Joystick and LEDs

Graduate Teaching Assistants:

Francisco E. Fernandes Jr.

feferna@okstate.edu

Khuong Vinh Nguyen

Khuong.V.Nguyen@okstate.edu

School of Electrical and Computer Engineering
Oklahoma State University

Spring 2019

Lab 1

Lab 1 Goals

- Get familiar with the System Workbench software development environment
- Create a C project for STM32L4 discovery kit and program the kit
- Learn basics of GPIO input and output configuration: input/output, push pull, open-drain, pull up/down, GPIO speeds
- Program GPIO registers to perform simple digital I/O input (interfacing the joystick) and output (interfacing LED)

Lab 1 Schedule

- Pre-lab Assignment (10 points):
 - For Monday labs: Due on Feb. 11, 2019.
 - For Wednesday labs: Due on Feb. 13, 2019.
- Lab 1 will take a total of three weeks:
 - In each week, you will have to complete some assignment!
 - Week 1:
 - Complete and show to a T.A. the **code to initialize the GPIO** clocks and pins (10 points).
 - Week 2:
 - Complete and demo to a T.A. the **primary objective** of this lab (40 points).
 - Week 3:
 - Complete and demo to a T.A. the **secondary objective** of this lab (14 points).

Grading Policy for Lab 1

Description		Points	Due date for Monday labs	Due data for Wednesday labs
Pre-lab assignment		10 points	Feb. 11	Feb. 13
Attendance and Class Participation		8 points	Feb. 11, 18, 25	Feb. 13, 20, 27
Code organization		8 points	N/A	N/A
Lab demo questions		10 points	Feb. 25	Feb. 27
Primary objective	GPIO initialization	10 points	Feb. 11	Feb. 13
	Lab logic	40 points	Feb. 18	Feb. 20
Secondary objective		14 points	Feb. 25	Feb. 27
Total:		100 points		

Grading Policy for Lab 1

Code organization:

```
#include <stdio.h>
int main() {
  printf("Hello World!");
  return 0;
}
```

Good organization!


```
#include <stdio.h>
int main() { printf("Hello World!");
    return 0;}
```

Bad organization!

Lab 1 Objectives

Primary Objective:

- Write a C program that uses the onboard joystick to control both the red and green LEDs as follows:
 - Toggle red LED when the right button is pushed;
 - Toggle green LED when the left button is pushed;
 - Set both LEDs to on when the up button is pushed;
 - Set both LEDs to off when the down button is pushed.

Lab 1 Objectives

Secondary Objective:

- You must write a program to implement only **ONE** of the following options (choose the one it is the easiest for you):
 - Write a **C program** to make the **RED LED** send out SOS in Morse code (···-——···) if the **joystick's middle button** is pressed. DOT is on for ½ second and DASH is on for ½ second, with ¼ second between these light-ons.

OR

Write an Assembly program that re-implements the primary objective.

LEDs on the board

Joystick on the board

The joystick is connected as follow:

- Center: PAO (GPIO port A, pin 0)
- Left: PA1 (GPIO port A, pin 1)
- **Right:** PA2 (GPIO port A, pin 2)
- **Up:** PA3 (GPIO port A, pin 3)
- **Down:** PA5 (GPIO port A, pin 5)

Joystick on the board

Lab 1: step-by-step

- 1. Enable the clock to GPIO port A, B and E.
- 2. Configure PB2 (blue LED) and PE8 (green LED) as **output**
- 3. Configure PB2 and PE8 as push-pull mode.
- 4. Configure PB2 and PE8 output type as **No Pull-up No Pull-down.**
- 5. Configure PA0, PA1, PA2, PA3 and PA5 as input.
- 6. Configure PA0, PA1, PA2, PA3 and PA5 as **Pull**-down.
- 7. Wait and verify if any joystick position is pressed.

Lab 1: step-by-step

- To help you, a start-up code is available on D2L. Use it to create your project.
- The start-up code contains some helpful comments.
 Read them!
- All your code should be written inside the main()
 function located in the main.c file.

For next class

• Complete and demo to a T.A. the **primary objective** of this lab.