Detekcija sigurnosnih atributa prometnica u snimkama

Ivan Relić

15. srpnja 2017.

Uvod

- iRAP međunarodna organizacija za inspekciju kvalitete cesta
- ocjena kvalitete ceste na temelju sigurnosnih atributa (pripajanja, ograničenja brzine, osvjetljenje, broj traka, objekti pored ceste...)
- zamjena procesa ručnog dodjeljivanja atributa strojnim
- FTTS iRAP snimke engleskih autocesta s oznakama sigurnosnih atributa

Zadatak

• detektiranje atributa "pripajanje trakova"

- dva skupa podataka:
 - skup podataka s diskriminativnim oznakama
 - skup podataka s oznakama iz sustava FTTS iRAP

Skup podataka s diskriminativnim oznakama

- raspodjela po podskupovima:
 - učenje 1796 slika
 - validacija 626 slika
 - testiranje 594 slike
- rezolucije:
 - 700×280
 - 525×210
 - 350×140
 - 175×70

Skup podataka s oznakama iz sustava FTTS iRAP

- generiran automatiziranim postupkom georeferencirane videosnimke, geolokacije pripajanja
- svakoj slici pridružena geolokacija
- pojedinačne slike + sekvence duljine 25 slika
- pojedinačne slike rezolucije 700x280
- sekvence slika rezolucije 350x140
- raspodjela po podskupovima:
 - učenje 7554 sekvenci
 - validacija 1720 sekvenci
 - testiranje 1642 sekvenci

Korištene arhitekture

- zasnovane na prednaučenoj arhitekturi VGG-16 namijenjenoj klasifikaciji slika
- uklonjeni posljednji potpuno povezani slojevi

Arhitektura za klasifikaciju pojedinačnih slika

 eksperimenti na slikama s diskriminativnim oznakama i na pojedinačnim slikama s oznakama iz sustava FTTS iRAP

Arhitektura za klasifikaciju sekvenci korištenjem vremensko-prostornog sažimanja

Arhitektura za klasifikaciju sekvenci korištenjem LSTM ćelija

Arhitektura za klasifikaciju sekvenci korištenjem vremenskog potpuno povezanog sloja

Učenje

- nVidia GTX 1070 i GTX Titan
- 50 epoha 10 epoha (5 \cdot 10⁻⁴, samo novo nadodani parametri) + 40 epoha (1 \cdot 10⁻⁵, svi parametri)
- mini grupe veličina 5 ili 10, ovisno o memorijskoj zahtjevnosti
- učenje postupkom Adam, eksponencijalno smanjivanje stope učenja –
 0.96 u svakoj epohi
- normalizacija po mini grupama za sve potpuno povezane slojeve osim za binarnu klasifikaciju
- aktivacijske funkcije ReLU i softmax
- podskup za validaciju:
 - rano zaustavljanje
 - validacija praga

Rezultati na slikama s diskriminativnim oznakama

- različite rezolucije ulaznih slika
- eksperiment proveden za pronalaženje najniže rezolucije na kojoj su performanse zadovoljavajuće

Tablica: Rezultati na podskupu za testiranje

rezolucija slika	točnost	preciznost	odziv	prosječna preciznost
700×280	0.93	0.88	1.0	0.99
525×210	0.98	0.97	0.99	1.0
350×140	0.98	0.96	0.99	0.99
175×70	0.87	0.84	0.90	0.92

Rezultati na pojedinačnim slikama s oznakama iz sustava FTTS iRAP

- rezolucija ulaznih slika 700x280
- učenje: 20.89 slika/sec, evaluacija: 25.59 slika/sec

Tablica: Rezultati

	točnost	preciznost	odziv	prosječna preciznost
učenje	0.95	0.94	0.96	0.99
validacija	0.88	0.92	0.83	0.93
testiranje	0.83	0.87	0.77	0.91

• lošiji rezultati u odnosu na slike s diskriminativnim oznakama

Rezultati na sekvencama slika s oznakama iz sustava FTTS iRAP

- rezolucija ulaznih slika 350×140
- arhitektura koja koristi vremensko-prostorno sažimanje
- učenje: 3.93 sekvence/sec, evaluacija: 4.95 sekvenci/sec

Tablica: Rezultati

	točnost	preciznost	odziv	prosječna preciznost
učenje	0.91	0.96	0.85	0.97
validacija	0.89	0.96	0.82	0.95
testiranje	0.80	0.93	0.65	0.91

• nema poboljšanja u odnosu na pojedinačne slike

Rezultati na sekvencama slika s oznakama iz sustava FTTS iRAP

- rezolucija ulaznih slika 350×140
- arhitektura koja koristi LSTM slojeve
- učenje: 3.68 sekvenci/sec, evaluacija: 4.6 sekvenci/sec

Tablica: Rezultati

	točnost	preciznost	odziv	prosječna preciznost
učenje	0.98	0.98	0.99	0.99
validacija	0.90	0.94	0.85	0.94
testiranje	0.86	0.88	0.82	0.93

• poboljšanje u odnosu na pojedinačne slike

Rezultati na sekvencama slika s oznakama iz sustava FTTS iRAP

- rezolucija ulaznih slika 350x140
- arhitektura koja koristi vremenski potpuno povezani sloj
- učenje: 3.73 sekvence/sec, evaluacija: 4.81 sekvenci/sec

Tablica: Rezultati

	točnost	preciznost	odziv	prosječna preciznost
učenje	0.99	0.99	1.0	1.0
validacija	0.89	0.99	0.79	0.96
testiranje	0.86	0.96	0.74	0.94

• najveće poboljšanje u odnosu na pojedinačne slike

Analiza pogrešaka i detekcija krivih oznaka

- evaluacija koristeći model koji koristi vremenski potpuno povezani sloj
- većina pogrešnih predikcija su lažni negativi (91%)
- analiza geolokacija krivih predikcija atribut pripajanja pridružen drugom traku u 336/429 slučajeva (78%)
- skup podataka kontaminiran krivim oznakama

Zaključak

- zadovoljavajuće performanse s obzirom na kontaminiranost skupa podataka
- koristeći geolokacije validirati oznake i generirati novi, pročišćeni skup podataka
- rjeđe uzorkovane, dulje sekvence slika
- modernije arhitekture

Hvala na pažnji!