

ascent is:

Assignment

Subject: Physics

Batch: Endeavour Advanced

Topic: Kinametics

	(a) ut $-\frac{1}{2}$ gt ²	(b) $\frac{1}{2}$ gt ²	(c) (u + gt) t	(d) ut	
2.	_	t take to stop a car travellin	g at a speed of 20 m/sec	c, if the uniform acc.	During braking is –
	5 m/s ² ?				
	(a) 100 s	(b) 4 s	(c) (1/4) s	(d) (1/100) s	
3.	A particle start	s moving from the position	of rest under a constant	t acc. It travels a distar	nce x in the first
	10 sec and dist	ance y in the next 10 sec, th			
	(a) $y = x$ (b) $y = 2x$ (c) $y = 3x$ (d) $y = 4x$				
4.	A ball is released from the top of height h metre. It takes T second to reach the ground. Where is the				
	at the time T /				
		from the ground			
		from the ground			
		n from the ground			
_		oon the mass and volume of			
5.	A pebble is thrown vertically upwards from a bridge with an initial velocity of 4.9 m/s. It strikes the after 2s. The height of the bridge is:				strikes the wate
	(a) 19.6 m	(b) 14.7 m	(c) 9.8 m	(d) 4.9 m	
6	` '		` '	` '	n high and
0.	A ball is thrown vertically upwards with a speed of 10 m/s from the top of a tower 200 m high another is thrown vertically downwards with the same speed simultaneously.				TIM and
	The time difference between them in reaching the ground in s (g = 10 m/s ²) is :				
	(a) 12	(b) 6	(c) 2	(d) 1	r d
7.	7. A particle moving with constant acceleration, travels 10 m in the first 5 second and another 10 m				ther 10 m in the
	next 3 second. The distance, it will travel in the next 2 second will be :				
	(a) 8.33 m	(b) 5.67 m	(c) 9.37 m	(d) 10 m	
8.	The speed of a	car was 50 km/hr for the fir	rst 900 s, then 400 km/h	or for the next 50 km a	and then the
	car decelerated	d uniformly at 10 km/hr² till			car was :
	(a) 50 km/hr	(b) 7.2 m/s	(c) 30 km/hr	(d) 9.0 m/s	
9.	-	ing with a uniform accelerat	-	covers distances a an	d b in successive
	intervals of p and q second. The acceleration of the particle is:				
	(a) $\frac{pq(p+q)}{pq(p+q)}$	(b) $\frac{2(aq-bp)}{pq(p-q)}$	(c) $\frac{pq-aq}{}$	(d) $\frac{2(bq-aq)}{(a+c)^2}$	
10.		lides, without friction, dowr	· · · · · · · · · · · · · · · · · · ·	-	e the distance
		t = (n - 1) seconds to $t (= n)$			
	() ()	200 1 1	'Do 1	25	

1. If a ball is thrown vertically upward with speed u, the distance covered during the last t seconds

its

- 11. A car accelerates from rest at a constant rate α for some time after which it decelerates at a constant rate β to come to rest. If the total time elapsed is t, maximum velocity reached by the
 - (a) $\frac{\alpha\beta(\alpha+\beta)}{t}$
- (b) $\frac{\alpha\beta}{(\alpha-\beta)}$ t
- (c) $\frac{\alpha\beta}{\alpha+\beta}$ t
- (d) $\frac{\alpha + \beta}{\alpha \beta}$ t

- 12. In Q. 11 time for which the car decelerates is:
 - (a) $\frac{\alpha}{\alpha + \beta}$ t
- (b) $\frac{\beta}{\alpha + \beta}$ t
- (c) $\frac{\alpha}{\beta}$ t
- (d) $\frac{\beta}{\alpha}$ t
- 13. A packet is dropped from a balloon that is moving upward when the balloon is at a height 60 m above ground. If the speed of the balloon at the moment of release of packet is 5 m / s, time taken by the packet to reach ground will be : (Take $g = 10 \text{ m} / \text{s}^2$)
 - (a) 6 sec
- (b) 4 sec
- (c) 2 sec
- (d) 3.2 sec
- 14. An object is dropped from the top of a tower. It travels a distance 'x' in the first second of its motion and a distance '7x' in the last second. Height of the tower is: (Take $g = 10 \text{ m/s}^2$)
 - (a) 60 m
- (b) 70 m
- (c) 80 m
- (d) 90 m
- 15. A bus starts from rest and accelerates at a uniform rate 4 m/s 2 for certain time. It then moves with a constant speed for some time and finally retards at 4 m / s² to come to rest. Average speed of the bus during the total journey is 15 m/s and the total time is 20 sec. Time duration for which the car moves with constant speed is:
 - (a) 18 sec
- (b) 16 sec
- (c) 12 sec
- (d) 10 sec
- 16. A body is thrown vertically upward at t = 0. It is at a height 80 m at instants t_1 and t_2 . Also, it is at a height 60 m at instants t_1 and t_2 , Then:
 - (a) $t_1 + t_2 = t_1 + t_2$ (b) $t_1 + t_2 > t_1 + t_2$ (c) $t_1 + t_2 < t_1 + t_2$
- (d) none of these

IIT-JEE NEET Olympiad