```
In [1]: import pandas as pd

meteorites = pd.read_csv('Meteorite_Landings.csv',nrows=5) # pd.read_csv is a command to read the csv to a dataframe
meteorites
```

Out[1]:		name	id	nametype	recclass	mass (g)	fall	year	reclat	reclong	GeoLocation
	0	Aachen	1	Valid	L5	21	Fell	01/01/1880 12:00:00 AM	50.77500	6.08333	(50.775, 6.08333)
	1	Aarhus	2	Valid	Н6	720	Fell	01/01/1951 12:00:00 AM	56.18333	10.23333	(56.18333, 10.23333)
	2	Abee	6	Valid	EH4	107000	Fell	01/01/1952 12:00:00 AM	54.21667	-113.00000	(54.21667, -113.0)
	3	Acapulco	10	Valid	Acapulcoite	1914	Fell	01/01/1976 12:00:00 AM	16.88333	-99.90000	(16.88333, -99.9)
	4	Achiras	370	Valid	L6	780	Fell	01/01/1902 12:00:00 AM	-33.16667	-64.95000	(-33.16667, -64.95)

```
In [2]: meteorites.name # it shows the entries under the column named "name"
```

```
Out[2]: 0 Aachen
```

- 1 Aarhus
- 2 Abee
- 3 Acapulco
- 4 Achiras

Name: name, dtype: object

In [3]: meteorites.columns # this shows the names of the columns in the dataframe

In [4]: meteorites.index #this shows the number of indexes in the dataframe

Out[4]: RangeIndex(start=0, stop=5, step=1)

In [5]: import requests #requests is the Library that gets the data using API
response = requests.get('https://data.nasa.gov/resource/gh4g-9sfh.json',params=({'\$limit':50_000})) #code to get the

```
if response.ok:
             payload = response.json()
         else:
             print(f'Request was not succesful and returned code: {response.status_code}.')
             payload = None
         payload[1] #the payload result in in list, so when calling an entry use list type commands
         {'name': 'Aarhus',
Out[6]:
          'id': '2',
           'nametype': 'Valid',
          'recclass': 'H6',
          'mass': '720',
          'fall': 'Fell',
          'year': '1951-01-01T00:00:00.000',
          'reclat': '56.183330',
          'reclong': '10.233330',
           'geolocation': {'latitude': '56.18333', 'longitude': '10.23333'}}
In [7]: import pandas as pd
         df = pd.DataFrame(payload) # the list is then placed as a dataframe
         df.head(3)
Out[7]:
             name id nametype recclass
                                              mass fall
                                                                            reclat
                                                                                       reclong geolocation :@computed region cbhk
                                                                   year
                                                                                                  {'latitude':
                                                                                                    '50.775',
                                                               1880-01-
         0 Aachen 1
                             Valid
                                        L5
                                                                         50.775000
                                                                                      6.083330
                                                21 Fell
                                                         01T00:00:00.000
                                                                                                 'longitude':
                                                                                                   '6.08333'}
                                                                                                  {'latitude':
                                                                                                  '56.18333',
                                                               1951-01-
         1 Aarhus 2
                                                                         56.183330
                             Valid
                                        H6
                                                                                     10.233330
                                               720 Fell
                                                         01T00:00:00.000
                                                                                                 'longitude':
                                                                                                 '10.23333'}
                                                                                                  {'latitude':
                                                                                                  '54.21667',
                                                               1952-01-
                             Valid
                                                                         54.216670 -113.000000
            Abee 6
                                       EH4 107000 Fell
                                                         01T00:00:00.000
                                                                                                 'longitude':
                                                                                                    '-113.0'}
```

```
In [8]: import pandas as pd
         meteorites = pd.read_csv('Meteorite_Landings.csv') # pd.read_csv is a command to read the csv to a dataframe
         meteorites
         meteorites.shape # this shows the rows and columns of the dataframe
Out[8]: (45716, 10)
In [9]: meteorites.columns # this shows the names of the columns in the dataframe
Out[9]: Index(['name', 'id', 'nametype', 'recclass', 'mass (g)', 'fall', 'year',
                 'reclat', 'reclong', 'GeoLocation'],
                dtype='object')
In [10]: meteorites.dtypes #this shows the data types that each column contain
Out[10]:
         name
                         object
                          int64
         id
                         object
          nametype
          recclass
                         object
                        float64
         mass (g)
         fall
                         object
                         object
         year
                        float64
         reclat
                        float64
         reclong
         GeoLocation
                         object
         dtype: object
In [11]: meteorites.head(10) # the head() command shows the first 5 rows in the dataframe by default, can place inside the par
```

Out[11]:		name	id	nametype	recclass	mass (g)	fall	year	reclat	reclong	GeoLocation
	0	Aachen	1	Valid	L5	21.0	Fell	01/01/1880 12:00:00 AM	50.77500	6.08333	(50.775, 6.08333)
	1	Aarhus	2	Valid	Н6	720.0	Fell	01/01/1951 12:00:00 AM	56.18333	10.23333	(56.18333, 10.23333)
	2	Abee	6	Valid	EH4	107000.0	Fell	01/01/1952 12:00:00 AM	54.21667	-113.00000	(54.21667, -113.0)
	3	Acapulco	10	Valid	Acapulcoite	1914.0	Fell	01/01/1976 12:00:00 AM	16.88333	-99.90000	(16.88333, -99.9)
	4	Achiras	370	Valid	L6	780.0	Fell	01/01/1902 12:00:00 AM	-33.16667	-64.95000	(-33.16667, -64.95)
	5	Adhi Kot	379	Valid	EH4	4239.0	Fell	01/01/1919 12:00:00 AM	32.10000	71.80000	(32.1, 71.8)
	6	Adzhi-Bogdo (stone)	390	Valid	LL3-6	910.0	Fell	01/01/1949 12:00:00 AM	44.83333	95.16667	(44.83333, 95.16667)
	7	Agen	392	Valid	Н5	30000.0	Fell	01/01/1814 12:00:00 AM	44.21667	0.61667	(44.21667, 0.61667)
	8	Aguada	398	Valid	L6	1620.0	Fell	01/01/1930 12:00:00 AM	-31.60000	-65.23333	(-31.6, -65.23333)
	9	Aguila Blanca	417	Valid	L	1440.0	Fell	01/01/1920 12:00:00 AM	-30.86667	-64.55000	(-30.86667, -64.55)

In [12]: meteorites.tail() # the tail() command shows the last 5 rows by default, can place inside the parenthesis to output s

•	name	id	nametype	recclass	mass (g)	fall	year	reclat	reclong	GeoLocation
45711	Zillah 002	31356	Valid	Eucrite	172.0	Found	01/01/1990 12:00:00 AM	29.03700	17.01850	(29.037, 17.0185)
45712	Zinder	30409	Valid	Pallasite, ungrouped	46.0	Found	01/01/1999 12:00:00 AM	13.78333	8.96667	(13.78333, 8.96667)
45713	Zlin	30410	Valid	H4	3.3	Found	01/01/1939 12:00:00 AM	49.25000	17.66667	(49.25, 17.66667)
45714	Zubkovsky	31357	Valid	L6	2167.0	Found	01/01/2003 12:00:00 AM	49.78917	41.50460	(49.78917, 41.5046)
45715	Zulu Queen	30414	Valid	L3.7	200.0	Found	01/01/1976 12:00:00 AM	33.98333	-115.68333	(33.98333, -115.68333)

In [13]: meteorites.info()

this shows the information about the dataframe the column names, it shows non-null count #if there are misssing entries in the dataframe, and the data types of the of each columns

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 45716 entries, 0 to 45715
Data columns (total 10 columns):

Ducu	COTAMILE (COCC	1 10 COTAMMIS).	
#	Column	Non-Null Count	Dtype
0	name	45716 non-null	object
1	id	45716 non-null	int64
2	nametype	45716 non-null	object
3	recclass	45716 non-null	object
4	mass (g)	45585 non-null	float64
5	fall	45716 non-null	object
6	year	45425 non-null	object
7	reclat	38401 non-null	float64
8	reclong	38401 non-null	float64
9	GeoLocation	38401 non-null	object
dtype	es: float64(3)), int64(1), obje	ect(6)

memory usage: 3.5+ MB

In [17]: #meteorites["name","year"]

#the comment above will result in an error because in accessing columns it must be in list so double brakets must be

meteorites[["name","year"]] # this is the correct command

Out[17]:		name	year
	0	Aachen	01/01/1880 12:00:00 AM
	1	Aarhus	01/01/1951 12:00:00 AM
	2	Abee	01/01/1952 12:00:00 AM
	3	Acapulco	01/01/1976 12:00:00 AM
	4	Achiras	01/01/1902 12:00:00 AM
	•••		
	45711	Zillah 002	01/01/1990 12:00:00 AM
	45712	Zinder	01/01/1999 12:00:00 AM
	45713	Zlin	01/01/1939 12:00:00 AM
	45714	Zubkovsky	01/01/2003 12:00:00 AM
	45715	Zulu Queen	01/01/1976 12:00:00 AM

45716 rows × 2 columns

In [18]: meteorites[100:104] #this outputs the index with the specific number used until the 2nd number minus 1 #example [100:104] it first output the 100th index and it outputs the 103rd index due to 104 - 1 = 103

Out[18]:		name	id	nametype	recclass	mass (g)	fall	year	reclat	reclong	GeoLocation
	100	Benton	5026	Valid	LL6	2840.0	Fell	01/01/1949 12:00:00 AM	45.95000	-67.55000	(45.95, -67.55)
	101	Berduc	48975	Valid	L6	270.0	Fell	01/01/2008 12:00:00 AM	-31.91000	-58.32833	(-31.91, -58.32833)
	102	Béréba	5028	Valid	Eucrite- mmict	18000.0	Fell	01/01/1924 12:00:00 AM	11.65000	-3.65000	(11.65, -3.65)
	103	Berlanguillas	5029	Valid	L6	1440.0	Fell	01/01/1811 12:00:00 AM	41.68333	-3.80000	(41.68333, -3.8)

In [20]: meteorites.iloc[[0,3,4,6]] #this outputs the 0, 3, 4, 6 columns using iloc

Out[20]:		name	id	nametype	recclass	mass (g)	fall	year	reclat	reclong	GeoLocation
	0	Aachen	1	Valid	L5	21.0	Fell	01/01/1880 12:00:00 AM	50.77500	6.08333	(50.775, 6.08333)
	3	Acapulco	10	Valid	Acapulcoite	1914.0	Fell	01/01/1976 12:00:00 AM	16.88333	-99.90000	(16.88333, -99.9)
	4	Achiras	370	Valid	L6	780.0	Fell	01/01/1902 12:00:00 AM	-33.16667	-64.95000	(-33.16667, -64.95)
	6	Adzhi-Bogdo (stone)	390	Valid	LL3-6	910.0	Fell	01/01/1949 12:00:00 AM	44.83333	95.16667	(44.83333, 95.16667)

In [24]: meteorites.iloc[100:104, [0,3,4,6]] #this shows the 100th to 100rd row as explain above, and the 0, 3, 4, 6 columns ι

Out[24]:		name	recclass	mass (g)	year
	100	Benton	LL6	2840.0	01/01/1949 12:00:00 AM
	101	Berduc	L6	270.0	01/01/2008 12:00:00 AM
	102	Béréba	Eucrite-mmict	18000.0	01/01/1924 12:00:00 AM
	103	Berlanguillas	L6	1440.0	01/01/1811 12:00:00 AM

In [21]: meteorites.loc[[0,3,4,6]] meteorites.iloc[[0,3,4,6]] # works the same as iloc

Out[21]:

•	name	id	nametype	recclass	mass (g)	fall	year	reclat	reclong	GeoLocation
0	Aachen	1	Valid	L5	21.0	Fell	01/01/1880 12:00:00 AM	50.77500	6.08333	(50.775, 6.08333)
3	Acapulco	10	Valid	Acapulcoite	1914.0	Fell	01/01/1976 12:00:00 AM	16.88333	-99.90000	(16.88333, -99.9)
4	Achiras	370	Valid	L6	780.0	Fell	01/01/1902 12:00:00 AM	-33.16667	-64.95000	(-33.16667, -64.95)
6	Adzhi-Bogdo (stone)	390	Valid	LL3-6	910.0	Fell	01/01/1949 12:00:00 AM	44.83333	95.16667	(44.83333, 95.16667)

In [23]: meteorites.iloc[-1, -1] # iloc is used to take from the index given [-1,-1] shows the last row (last index is -1) and

Out[23]: '(33.98333, -115.68333)'

In [31]: meteorites[(meteorites['mass (g)']> 50) & (meteorites.fall == 'Found')] #this shows

Out[31]:		name	id	nametype	recclass	mass (g)	fall	year	reclat	reclong	GeoLocation
	37	Northwest Africa 5815	50693	Valid	L5	256.80	Found	NaN	0.00000	0.00000	(0.0, 0.0)
	757	Dominion Range 03239	32591	Valid	L6	69.50	Found	01/01/2002 12:00:00 AM	NaN	NaN	NaN
	804	Dominion Range 03240	32592	Valid	LL5	290.90	Found	01/01/2002 12:00:00 AM	NaN	NaN	NaN
	1111	Abajo	4	Valid	H5	331.00	Found	01/01/1982 12:00:00 AM	26.80000	-105.41667	(26.8, -105.41667)
	1112	Abar al' Uj 001	51399	Valid	H3.8	194.34	Found	01/01/2008 12:00:00 AM	22.72192	48.95937	(22.72192, 48.95937)
	•••										
	45709	Zhongxiang	30406	Valid	Iron	100000.00	Found	01/01/1981 12:00:00 AM	31.20000	112.50000	(31.2, 112.5)
	45710	Zillah 001	31355	Valid	L6	1475.00	Found	01/01/1990 12:00:00 AM	29.03700	17.01850	(29.037, 17.0185)
	45711	Zillah 002	31356	Valid	Eucrite	172.00	Found	01/01/1990 12:00:00 AM	29.03700	17.01850	(29.037, 17.0185)
	45714	Zubkovsky	31357	Valid	L6	2167.00	Found	01/01/2003 12:00:00 AM	49.78917	41.50460	(49.78917, 41.5046)
	45715	Zulu Queen	30414	Valid	L3.7	200.00	Found	01/01/1976 12:00:00 AM	33.98333	-115.68333	(33.98333, -115.68333)

18854 rows × 10 columns

In [30]: meteorites[(meteorites['mass (g)']> 1e6) & (meteorites.fall == 'Fell')] #this shows parts of the dataframe filtered (

Out[30]:		name	id	nametype	recclass	mass (g)	fall	year	reclat	reclong	GeoLocation
	29	Allende	2278	Valid	CV3	2000000.0	Fell	01/01/1969 12:00:00 AM	26.96667	-105.31667	(26.96667, -105.31667)
	419	Jilin	12171	Valid	H5	4000000.0	Fell	01/01/1976 12:00:00 AM	44.05000	126.16667	(44.05, 126.16667)
	506	Kunya- Urgench	12379	Valid	H5	1100000.0	Fell	01/01/1998 12:00:00 AM	42.25000	59.20000	(42.25, 59.2)
	707	Norton County	17922	Valid	Aubrite	1100000.0	Fell	01/01/1948 12:00:00 AM	39.68333	-99.86667	(39.68333, -99.86667)
	920	Sikhote-Alin	23593	Valid	Iron, IIAB	23000000.0	Fell	01/01/1947 12:00:00 AM	46.16000	134.65333	(46.16, 134.65333)
In [33]:	metec	orites.query("`mass	(g)`> 1e6	and fall	== 'Fell'") # th	e query is			
Out[33]:		name	id	nametype	recclass	mass (g)	fall	year	reclat	reclong	GeoLocation
	29	Allende	2278	Valid	CV3	2000000.0	Fell	01/01/1969 12:00:00 AM	26.96667	-105.31667	(26.96667, -105.31667)
	419	Jilin	12171	Valid	H5	4000000.0	Fell	01/01/1976 12:00:00 AM	44.05000	126.16667	(44.05, 126.16667)

01/01/1998 Kunya-506 12379 Valid 42.25000 H5 1100000.0 Fell 59.20000 (42.25, 59.2) Urgench 12:00:00 AM (39.68333, 01/01/1948 Norton 17922 39.68333 707 Valid Aubrite 1100000.0 Fell -99.86667 12:00:00 AM County -99.86667) 01/01/1947 12:00:00 AM Iron, IIAB 46.16000 Sikhote-Alin 23593 Valid 23000000.0 Fell 920 134.65333 (46.16, 134.65333)

In [34]: meteorites.fall.value_counts() # this command returns the entries in the column grouped by the entry and outputs the

```
Out[34]: fall
          Found
                   44609
          Fell
                    1107
         Name: count, dtype: int64
In [37]:
         meteorites.value_counts(subset=['nametype', 'fall'], normalize=False)
Out[37]:
         nametype fall
         Valid
                             44534
                    Found
                    Fell
                             1107
          Relict
                    Found
                                75
          Name: count, dtype: int64
         type(meteorites['mass (g)'].mean()) #this takes the mean of the whole column entries in the
In [42]:
Out[42]: numpy.float64
In [43]: meteorites['mass (g)']. quantile([0.01,0.05,0.5,0.95,0.99]) #this shows the quantile of tje
Out[43]:
         0.01
                      0.44
          0.05
                      1.10
         0.50
                     32.60
          0.95
                   4000.00
          0.99
                  50600.00
         Name: mass (g), dtype: float64
In [45]: meteorites['mass (g)'].median() #this shows the median, or the 50th percentile
Out[45]: 32.6
In [46]: meteorites['mass (g)'].max() #this shows the maximum entry in the "mass (g)" column of the dataframe
         60000000.0
Out[46]:
In [48]: meteorites.loc[meteorites['mass (g)'].idxmax()] # this shows the row where the maximum entry in the "mass (g)" is by
```

Out[48]: name Hoba 11890 id Valid nametype Iron, IVB recclass mass (g) 60000000.0 fall Found 01/01/1920 12:00:00 AM year reclat -19.58333 17.91667 reclong GeoLocation (-19.58333, 17.91667) Name: 16392, dtype: object In [49]: meteorites.recclass.nunique() #this shows the number of values that are not unique Out[49]: 466 In [54]: meteorites.name.nunique() #this shows the number of values that are not unique

In [58]: meteorites.recclass.unique() #this shows the number of values that are unique

Out[54]: **45716**

```
Out[58]: array(['L5', 'H6', 'EH4', 'Acapulcoite', 'L6', 'LL3-6', 'H5', 'L',
                 'Diogenite-pm', 'Unknown', 'H4', 'H', 'Iron, IVA', 'CR2-an', 'LL5',
                 'CI1', 'L/LL4', 'Eucrite-mmict', 'CV3', 'Ureilite-an',
                 'Stone-uncl', 'L3', 'Angrite', 'LL6', 'L4', 'Aubrite',
                 'Iron, IIAB', 'Iron, IAB-sLL', 'Iron, ungrouped', 'CM2', 'OC',
                 'Mesosiderite-A1', 'LL4', 'C2-ung', 'LL3.8', 'Howardite',
                 'Eucrite-pmict', 'Diogenite', 'LL3.15', 'LL3.9', 'Iron, IAB-MG',
                 'H/L3.9', 'Iron?', 'Eucrite', 'H4-an', 'L/LL6', 'Iron, IIIAB',
                 'H/L4', 'H4-5', 'L3.7', 'LL3.4', 'Martian (chassignite)', 'EL6',
                 'H3.8', 'H3-5', 'H5-6', 'Mesosiderite', 'H5-7', 'L3-6', 'H4-6',
                 'Ureilite', 'Iron, IID', 'Mesosiderite-A3/4', 'C03.3', 'H3',
                 'EH3/4-an', 'Iron, IIE', 'L/LL5', 'H3.7', 'CBa', 'H4/5', 'H3/4'
                 'H?', 'H3-6', 'L3.4', 'Iron, IAB-sHL', 'L3.7-6', 'EH7-an', 'Iron',
                 'CR2', 'CO3.2', 'K3', 'L5/6', 'CK4', 'Iron, IIE-an', 'L3.6',
                 'LL3.2', 'Pallasite', 'CO3.5', 'Lodranite', 'Mesosiderite-A3',
                 'L3-4', 'H5/6', 'Pallasite, PMG', 'Eucrite-cm', 'L5-6', 'C03.6',
                 'Martian (nakhlite)', 'LL3.6', 'C3-ung', 'H3-4', 'C03.4', 'EH3',
                 'Iron, IAB-ung', 'Winonaite', 'LL', 'Eucrite-br', 'Iron, IIF',
                 'R3.8-6', 'L4-6', 'EH5', 'LL3.00', 'H3.4', 'Martian (shergottite)',
                 'Achondrite-ung', 'LL3.3', 'C', 'H/L3.6', 'Iron, IIIAB-an', 'LL7',
                 'Mesosiderite-B2', 'LL4-6', 'CO3.7', 'L/LL6-an',
                 'Iron, IAB complex', 'Pallasite, PMG-an', 'H3.9/4', 'L3.8',
                 'LL5-6', 'LL3.8-6', 'L3.9', 'L4-5', 'L3-5', 'LL4/5', 'L4/5',
                 'H3.9', 'H3.6-6', 'H3.8-5', 'H3.8/4', 'H3.9-5', 'CH3', 'R3.8-5',
                 'L3.9/4', 'E4', 'C03', 'Chondrite-ung', 'H~5', 'H~6', 'L/LL3.10',
                 'EL5', 'LL3', 'L~6', 'L~3', 'H~4', 'L(LL)3.5-3.7', 'Iron, IIIE-an',
                 'H3.6', 'L3.4-3.7', 'L3.5', 'CM1/2', 'Martian (OPX)', 'Brachinite',
                 'LL7(?)', 'LL6(?)', 'Eucrite-Mg rich', 'H3.5-4', 'EL3', 'R3.6',
                 'H3.5', 'CM1', 'L/LL3', 'H7', 'L(?)3', 'L3.2', 'L3.7-3.9',
                 'Mesosiderite-B1', 'Eucrite-unbr', 'LL3.7', 'CO3.0', 'LL3.5',
                 'L3.7-4', 'CV3-an', 'Lunar (anorth)', 'L3.3', 'Iron, IAB-sLM',
                 'Lunar', 'Iron, IC', 'Iron, IID-an', 'Iron, IIIE', 'Iron, IVA-an',
                 'CK6', 'L3.1', 'CK5', 'H3.3', 'H3.7-6', 'E6', 'H3.0', 'H3.1',
                 'L3.0', 'L/LL3.4', 'C6', 'LL3.0', 'Lunar (gabbro)', 'R4', 'C4',
                 'Iron, IIG', 'Iron, IIC', 'C1-ung', 'H5-an', 'EH4/5', 'Iron, IIIF',
                 'R3-6', 'Mesosiderite-B4', 'L6/7', 'Relict H', 'L-imp melt', 'CK3',
                 'H3-an', 'Iron, IVB', 'R3.8', 'L~5', 'Mesosiderite-an',
                 'Mesosiderite-A2', 'Pallasite, PES', 'C4-ung', 'Iron, IAB?',
                 'Mesosiderite-A', 'R3.5-6', 'H3.9-6', 'Ureilite-pmict', 'LL~6',
                 'CK4/5', 'EL4', 'Lunar (feldsp. breccia)', 'L3.9-6', 'H-an',
                 'L/LL3-6', 'L/LL3-5', 'H/L3.5', 'H/L3', 'R3-4', 'CK3-an', 'LL4-5',
                 'H/L6', 'L3/4', 'H-imp melt', 'CR', 'Chondrite-fusion crust',
```

```
'Iron, IAB-sLH', 'H(L)3-an', 'L(LL)3', 'H(L)3', 'R3', 'L7',
'CM-an', 'L/LL~6', 'L/LL~5', 'L~4', 'L/LL~4', 'LL(L)3', 'H3.2',
'L-melt breccia', 'H6-melt breccia', 'H5-melt breccia',
'H-melt rock', 'Eucrite-an', 'Lunar (bas/anor)', 'LL5/6', 'LL3/4',
'H3.4/3.5', 'Lunar (basalt)', 'H/L5', 'H(5?)', 'LL-imp melt',
'Mesosiderite?', 'H~4/5', 'L6-melt breccia', 'L3.5-3.7',
'Iron, IIAB-an', 'L3.3-3.7', 'L3.2-3.6', 'L3.3-3.6',
'Acapulcoite/Lodranite', 'Mesosiderite-B', 'CK5/6', 'L3.05', 'C2',
'C4/5', 'L/LL3.2', 'Iron, IIIAB?', 'L3.5-5', 'L/LL(?)3', 'H4(?)',
'Iron, IAB-sHH', 'Relict iron', 'EL4/5', 'L5-7', 'Diogenite-an',
'L-melt rock', 'CR1', 'H5 ', 'L5 ', 'H4 ', 'L4 ', 'E', 'L6 ',
'H3 ', 'LL6 ', 'H-metal', 'H6 ', 'L-metal', 'Relict OC', 'EH',
'Mesosiderite-A4', 'L/LL5/6', 'H3.8-4', 'CBb', 'EL6/7', 'EL7',
'CH/CBb', 'CO3.8', 'H/L~4', 'Mesosiderite-C2', 'R5', 'H4/6',
'H3.7-5', 'LL3.7-6', 'H3.7/3.8', 'L3.7/3.8', 'EH-imp melt', 'R',
'Fusion crust', 'Aubrite-an', 'R6', 'LL-melt rock', 'L3.5-3.9',
'L3.2-3.5', 'L3.3-3.5', 'L3.0-3.7', 'E3-an', 'K', 'E3',
'Acapulcoite/lodranite', 'CK4-an', 'L(LL)3.05', 'L3.10', 'CB',
'Diogenite-olivine', 'EL-melt rock', 'EH6', 'Pallasite, ungrouped',
'L/LL4/5', 'L3.8-an', 'Iron, IAB-an', 'C5/6-ung', 'CV2',
'Iron, IC-an', 'Lunar (bas. breccia)', 'L3.8-6', 'R3/4', 'R3.9',
'CK', 'LL3.10', 'R4/5', 'L3.8-5', 'Mesosiderite-C', 'Enst achon',
'H/L3-4', 'L(H)3', 'LL6/7', 'LL3.1', 'OC3', 'R3.7', 'C03 ', 'CH3 ',
'LL~4', 'LL~4/5', 'L(LL)~4', 'H3.05', 'H3.10',
'Impact melt breccia', 'LL3-5', 'H/L3.7', 'LL3-4', 'CK3/4',
'Martian', 'CO3.1', 'Lunar (bas/gab brec)', 'Achondrite-prim',
'LL<3.5', 'CK3.8', 'L/LL-melt rock', 'H6/7', 'EL6 ',
'Iron, IAB-sHL-an', 'CM2-an', 'R3-5', 'L4-melt rock',
'L6-melt rock', 'H/L4/5', 'EL3/4', 'H/L6-melt rock',
'Enst achon-ung', 'L3-7', 'R3.4', 'LL3.05', 'LL4/6', 'LL3.8-4',
'H3.15', 'C3.0-ung', 'LL-melt breccia', 'LL6-melt breccia',
'L5-melt breccia', 'LL(L)3.1', 'LL6-an', 'L4-melt breccia',
'Howardite-an', 'H4-melt breccia', 'Martian (basaltic breccia)',
'L3-melt breccia', 'L~4-6', 'LL~5', 'R3.5-4', 'CR7',
'H-melt breccia', 'Lunar (norite)', 'L3.00', 'H3.0-3.4', 'L/LL4-6',
'CM', 'EH7', 'L4-an', 'E-an', 'H3.8/3.9', 'L3.9-5', 'H3.8-6',
'H3.4-5', 'L3.0-3.9', 'L3.5-3.8', 'H3.2-3.7', 'L3.6-4',
'Iron, IIE?', 'C3/4-ung', 'L/LL3.5', 'L/LL3.6/3.7', 'H/L4-5',
'LL~3', 'Pallasite?', 'LL5-7', 'LL3.9/4', 'H3.8-an', 'CR-an',
'L/LL5-6', 'L(LL)5', 'L(LL)6', 'LL3.1-3.5', 'E5', 'Lodranite-an',
'H3.2-6', 'H(?)4', 'E5-an', 'H3.2-an', 'EH6-an', 'Stone-ung',
'C1/2-ung', 'L/LL'], dtype=object)
```

In [56]: meteorites.describe()

Out[56]:

	id	mass (g)	reclat	reclong
count	45716.000000	4.558500e+04	38401.000000	38401.000000
mean	26889.735104	1.327808e+04	-39.122580	61.074319
std	16860.683030	5.749889e+05	46.378511	80.647298
min	1.000000	0.000000e+00	-87.366670	-165.433330
25%	12688.750000	7.200000e+00	-76.714240	0.000000
50%	24261.500000	3.260000e+01	-71.500000	35.666670
75%	40656.750000	2.026000e+02	0.000000	157.166670
max	57458.000000	6.000000e+07	81.166670	354.473330

In [57]: meteorites.describe(include='all')

Out[57]:		name	id	nametype	recclass	mass (g)	fall	year	reclat	reclong	GeoLocation
	count	45716	45716.000000	45716	45716	4.558500e+04	45716	45425	38401.000000	38401.000000	38401
	unique	45716	NaN	2	466	NaN	2	266	NaN	NaN	17100
	top	Aachen	NaN	Valid	L6	NaN	Found	01/01/2003 12:00:00 AM	NaN	NaN	(0.0, 0.0)
	freq	1	NaN	45641	8285	NaN	44609	3323	NaN	NaN	6214
	mean	NaN	26889.735104	NaN	NaN	1.327808e+04	NaN	NaN	-39.122580	61.074319	NaN
	std	NaN	16860.683030	NaN	NaN	5.749889e+05	NaN	NaN	46.378511	80.647298	NaN
	min	NaN	1.000000	NaN	NaN	0.000000e+00	NaN	NaN	-87.366670	-165.433330	NaN
	25%	NaN	12688.750000	NaN	NaN	7.200000e+00	NaN	NaN	-76.714240	0.000000	NaN
	50%	NaN	24261.500000	NaN	NaN	3.260000e+01	NaN	NaN	-71.500000	35.666670	NaN
	75%	NaN	40656.750000	NaN	NaN	2.026000e+02	NaN	NaN	0.000000	157.166670	NaN
	max	NaN	57458.000000	NaN	NaN	6.000000e+07	NaN	NaN	81.166670	354.473330	NaN

In []:

Excercise (Part 1)

Seatwork 6.2 Programming Exercise: Getting Started with Pandas!

""" Using the 2019_Yellow_Taxi_Trip_Data.csv dataset, accomplish the following items and submit a PDF of the notebook:

Create a DataFrame by reading in the 2019_Yellow_Taxi_Trip_Data.csv file. Examine the first 5 rows.

Find the dimensions (number of rows and number of columns) in the data.
Using the data in the 2019_Yellow_Taxi_Trip_Data.csv file, calculate summary statistics for the

fare_amount, tip_amount, tolls_amount, and total_amount columns.

Isolate the fare_amount, tip_amount, tolls_amount, and total_amount for the longest trip by distance (trip_distance).

000

In [59]: **import** pandas **as** pd

#1 Create a DataFrame by reading in the 2019_Yellow_Taxi_Trip_Data.csv file. Examine the first 5 rows.

#the pd.read_csv is a command to read the csv file, the dataframe is then stored in the df variable, the head() commo
df = pd.read_csv('2019_Yellow_Taxi_Trip_Data.csv')
df.head()

Out[59]:		vendorid	tpep_pickup_datetime	tpep_dropoff_datetime	passenger_count	trip_distance	ratecodeid	store_and_fwd_flag	pulo
	0	2	2019-10- 23T16:39:42.000	2019-10- 23T17:14:10.000	1	7.93	1	N	
	1	1	2019-10- 23T16:32:08.000	2019-10- 23T16:45:26.000	1	2.00	1	N	
	2	2	2019-10- 23T16:08:44.000	2019-10- 23T16:21:11.000	1	1.36	1	N	
	3	2	2019-10- 23T16:22:44.000	2019-10- 23T16:43:26.000	1	1.00	1	N	
	4	2	2019-10-	2019-10-	1	1.96	1	N	

In [84]: #2 Find the dimensions (number of rows and number of columns) in the data.

23T16:45:11.000

#using the shape command this outputs the number of rows and columns in the dataframe a,x = df.shape print(f'The number of rows is $\{a\}'$) print(f'The number of columns is $\{x\}'$)

23T16:58:49.000

The number of rows is 10000 The number of columns is 18

#Using the data in the 2019_Yellow_Taxi_Trip_Data.csv file, calculate summary statistics for the fare_amount, #tip_amount, tolls_amount, and total_amount columns. # the 'fare_amount', 'tip_amount', 'tolls_amount' is in double brackets to output those columns #and the describe() command is then used to describe those columns with details df[['fare_amount', 'tip_amount', 'tolls_amount']].describe()

	tolls_amount	
0 10000.000000	10000.000000	
,	0 10000.000000	

count	10000.000000	10000.000000	10000.000000
mean	15.106313	2.634494	0.623447
std	13.954762	3.409800	6.437507
min	-52.000000	0.000000	-6.120000
25%	7.000000	0.000000	0.000000
50%	10.000000	2.000000	0.000000
75%	16.000000	3.250000	0.000000
max	176.000000	43.000000	612.000000

```
In [81]: #4
#Isolate the fare_amount, tip_amount, tolls_amount, and total_amount for the longest trip by distance (trip_distance)
```

#this command finds row with the longest trip distance using loc and idxmax and using trip_distance as the one to fir
#the "[['fare_amount', 'tip_amount', 'total_amount']]" is then used
#to output the fare_amount, tip_amount, tolls_amount, and total_amount of the row with maximum trip+_distance
df.loc[df['trip_distance'].idxmax()][['fare_amount', 'tip_amount', 'total_amount']]

```
Out[81]: fare_amount 176.0
tip_amount 18.29
tolls_amount 6.12
total_amount 201.21
Name: 8338, dtype: object
```

Conclusion / Reflection

After doing this activity, I learned many ways to visualize data, by using the appropriate commands to output the output necessary, there are many functions

to be used in making the specific outputs, other than taking data from your own directory in a device, you can also take data from the internet, this is done by using the "requests" library, but this activity is more focused on the "pandas" library visualizing a dataframe. The some syntax is quite easy to follow the data statistics is quite hard because I don't quite understand the syntax being used. I still need more time to practice those syntax to do a better visualization of the data.