Spotify Music popularity analysis

Jillian Hay, Yuren Xia, Ganfu Yuan, & Liguang(Lee) Zhang

INTRODUCTION

Problem:

To determine the features of songs most closely associated with popularity

Motivation

- Shorter Duration of songs appear to become a trend
- Loudness war in the music industry > potential relationship b/w sound level & popularity?

Importance

- Identify song features associated with popularity
- Reflect changing trends in the music industry
- Insights to artists
- Insights to Music streaming services

Literature

- Cluster analysis using kmeans and Hierarchical clustering on spotify top 100 songs for 2017 & 2018
- Chart-topping songs
 have a formulaic, pop friendly sound, with high
 danceability and valence

Descriptions

Variables

Variables

1	id	chr
2	name	chr
3	popularity	int
4	duration_ms	int
5	explicit	int
6	artists	chr
7	id_artists	chr
8	release_date	chr
9	danceability	num
10	energy	num

11	key	int
12	loudness	num
13	mode	int
14	speechiness	num
15	acousticness	num
16	instrumentalness	num
17	liveness	num
18	valence	num
19	tempo	num
20	time_signature	int

0

Trends

line graph of average duration in each year from 1922 to 2021

Trends

Trends

Correlation

Packages:

library(dplyr) library(GGally)

 \bigcirc

METHODS & PROCESS

In this project, we

- Clean the data
- Linear Regression
- Logistic Regression
- Stepwise Regression (gaussian, Gamma, poisson)
- Calculate the Accuracy

Clean the Data

586672 obj.,20 variables->541717 obj., 16 variables

1. Change datatype ———— Release date->release year Numeric->categorical

The outlier
(release_date!="1900
-01-01")
Unrelated info (artist, name)

Result:

No unique variables

Contains: Numeric and Categorical

Linear Regression

Hypothesis: There is a relationship between the variable and the popularity

Null Hypothesis: There is no relationship between the variable and the popularity

Numeric variables:

duration_ms

Danceability

energy

Loudness

Speechiness

Acousticness

instrumentalness

liveness

valence

tempo

year

Visualization method:

ANOVA

Not every variable is numeric

Alternative Hypothesis: There is difference among the group Null Hypothesis: There is no difference among the group

Numeric variables: explicit mode Key Time_signiture

Visualization:

Logistic Regression: Not every Variables

are Gaussian

Create a new binary variable to define the popularity.

- -1 if the popularity is greater than the average
- -0 otherwise

Hypothesis: There is a relationship between the variable and the popularity

Null Hypothesis: There is no relationship between the variable and the popularity

Numeric variables:

explicit

mode

Key

Time_signiture

Visualization:

Stepwise Regression: Select the Best Model

Use the dummy code to covert the categorical variables

Steps: Create a full model Use step function (both directions)

Data:
with the release year
OR
without the release year

Goal: simplify the model by find smallest AIC

LM OR GLM

Includes categorical or not

Distribution:

Gaussian? Gamma? Poission?

In Im model, there is no relationship between release time and popularity since the coeffient ≈0

It do effect AIC in Pricewise Regression

Quality Control

We used autoplot function in ggfortify package to check the quality of the linear

model.

Residuals vs fitted

Q to Q: if it is normal distribution

scale location: square root of the standardized residuals vs fitted value.

Cook's distance: highlight the abnormal value

Quality of linear regression model of loudness vs. popularity

Accuracy

Since the response variable is numeric, so we found a package called rcompanion

By using accuracy() function, we got:

Min-max accuracy

MSE

Efron.r.squared

Example: accuracy of full model with the release year

Model	Min.max.accuracy	MSE	Efron.r.squared
Gaussian GLM (LM)	0.671	200	0.329
Poisson GLM	0.672	200	0.328
Gamma GLM	0.669	207	0.305

MODEL	MIN.MAX.ACCURACY	MSE	EFRON.R.SQUARED
Gaussian GLM (LM)	0.671	200	0.329
Poisson GLM	0.672	200	0.328
Gamma GLM	0.669	207	0.305

Conclusion

Limitations:

Only numeric data is included

Low R-squared

Time period

Rooms for improvement

J

Problems discovered:

The step-wise regression model included most of the predictors, and the number of predictors could not be trimmed down, resulting in a bulky model.

There were correlations between the predictors, such as danceability & energy, tempo and loudness, etc.

Thank You!

References

Al-Beitawi, Z., Salehan, M., & Zhang, S. (2020). What Makes a Song Trend? Cluster Analysis of Musical Attributes for Spotify Top Trending Songs. *Journal of Marketing Development and Competitiveness*, 14(3), 79-91.

Spotify Dataset 1921-2020, 600k+ Tracks | Kaggle

https://www.kaggle.com/datasets/yamaerenay/spotify-dataset-19212020-600k-tracks?select=tracks.csv