

Öğrencinin;

ADI: MERVE

SOYADI: BALCI

NO: 1821221022

BÖLÜM: BİLGİSAYAR MÜH.

Dersin;

ADI: Introdiction to Data Science EĞİTMEN: Dr. Gönül ULUDAĞ

Ar. Gör. Zeki Kuş

İçindekiler

1-	Project Proposal
2-	Exploratory Data Analysis
3-	Preprocessing
4-	Feature Engineering
5-	Machine Learning Problem
_	Alas with use I have love a station and Doufe was a second constant.
0 -	Algorithms, Implementation and Performance Comparison
7-	Further Performance Improvement (Your best algorithm)
8-	Inference
9-	Kaynakça
	, ,

Dataset definition:	Kilometre, yakıt türü gibi özellikleri kullanarak bir aracın fiyatını tahmin etmemizi sağlar. Bu veri setinde araçlarla ilgili birçok özellik bulunmaktadır, buradaki özellikleri kullanarak araç fiyat tahmini yapabiliriz.
Dataset source (web address):	https://www.kaggle.com/datasets/nehalbirla/vehicle-dataset-from-cardekho?ref=hackernoon.com&select=Car+details+v3.csv
Aim of the project:	özelliklerine göre araçların fiyat tahmini yapmak.

1- Project Proparsal

Bu veri setinde araçlarla ilgili birçok özellik bulunmaktadır, buradaki özellikleri kullanarak araç fiyat tahmini yapabiliriz. Bugün milyonlarca insan araç almak istiyor ve arıyor, bu tahmini yapmak herkesin işine yarayacaktır.

	name	year	selling_price	km_driven	fuel	seller_type	transmission	owner	mileage	engine	max_power	torque	seats
0	Maruti Swift Dzire VDI	2014	450000	145500	Diesel	Individual	Manual	First Owner	23.4 kmpl	1248 CC	74 bhp	190Nm@ 2000rpm	5.0
1	Skoda Rapid 1.5 TDI Ambition	2014	370000	120000	Diesel	Individual	Manual	Second Owner	21.14 kmpl	1498 CC	103.52 bhp	250Nm@ 1500- 2500rpm	5.0
2	Honda City 2017-2020 EXi	2006	158000	140000	Petrol	Individual	Manual	Third Owner	17.7 kmpl	1497 CC	78 bhp	12.7@ 2,700(kgm@ rpm)	5.0
3	Hyundai i20 Sportz Diesel	2010	225000	127000	Diesel	Individual	Manual	First Owner	23.0 kmpl	1396 CC	90 bhp	22.4 kgm at 1750- 2750rpm	5.0
4	Maruti Swift VXI BSIII	2007	130000	120000	Petrol	Individual	Manual	First Owner	16.1 kmpl	1298 CC	88.2 bhp	11.5@ 4,500(kgm@ rpm)	5.0
8123	Hyundai i20 Magna	2013	320000	110000	Petrol	Individual	Manual	First Owner	18.5 kmpl	1197 CC	82.85 bhp	113.7Nm@ 4000rpm	5.0
8124	Hyundai Verna CRDi SX	2007	135000	119000	Diesel	Individual	Manual	Fourth & Above Owner	16.8 kmpl	1493 CC	110 bhp	24@ 1,900- 2,750(kgm@ rpm)	5.0
8125	Maruti Swift Dzire ZDi	2009	382000	120000	Diesel	Individual	Manual	First Owner	19.3 kmpl	1248 CC	73.9 bhp	190Nm@ 2000rpm	5.0
8126	Tata Indigo CR4	2013	290000	25000	Diesel	Individual	Manual	First Owner	23.57 kmpl	1396 CC	70 bhp	140Nm@ 1800- 3000rpm	5.0
8127	Tata Indigo CR4	2013	290000	25000	Diesel	Individual	Manual	First Owner	23.57 kmpl	1396 CC	70 bhp	140Nm@ 1800- 3000rpm	5.0
8128 r	8128 rows × 13 columns												

Üzerinde çalıştığım datasetim 8128satır x 13 sütundan oluşmaktadır Vehicle data setini daha iyi anlayabilmek için EDA adımlarının uygulayarak, veri setiyle alakalı daha doğru ilerleyebiliriz.

Bazı EDA adımları;

```
vehicleDf.columns # data set's columns
: Index(['name', 'year', 'selling_price', 'km_driven', 'fuel', 'seller_type',
    'transmission', 'owner', 'mileage', 'engine', 'max_power', 'torque',
            'seats'],
dtype='object')
: vehicleDf.nunique(axis=0) # number of unique values for each variable (index/columns)
name
                             2058
   year
selling_price
   km driven
                               921
   fuel
seller_type
   transmission
owner
mileage
   engine
max_power
                               121
   torque
    seats
   dtype: int64
 vehicleDf.info() # summary of a DataFrame
  <class 'pandas.core.frame.DataFrame'>
 RangeIndex: 8128 entries, 0 to 8127
Data columns (total 13 columns):
# Column Non-Null Count Dtype
                               8128 non-null
   0 name
                                                      object
       year 8128 non-null
selling_price 8128 non-null
km_driven 8128 non-null
                                                      int64
int64
int64
   3 km_driven
4 fuel
                               8128 non-null
                                                      object
       fuel
seller_type
transmission
                               8128 non-null
                               8128 non-null
8128 non-null
7907 non-null
   7 owner
8 mileage
                                                      object
   9 engine
10 max_power
11 torque
                               7907 non-null object
7907 non-null object
7913 non-null object
7906 non-null object
7907 non-null float6
                                                       float64
   12 seats
  dtypes: float64(1), int64(3), object(9)
```

bazı kolonlarda yanlarında yazan birimlerden dolayı float değil object olarak gözüküyor, birimleri temizleyerek, tür değişimi yapılmalı;

```
vehicleDf['mileage'] = vehicleDf['mileage'].str.replace('kmpl','')

vehicleDf['mileage'] = vehicleDf['mileage'].str.replace('km/kg','')
vehicleDf['mileage'] = vehicleDf['mileage'].astype(float)

vehicleDf['engine'] = vehicleDf['engine'].str.replace('CC','').astype(float)

vehicleDf['max_power'] = vehicleDf['max_power'].str.replace('bhp','')

vehicleDf[['max_power']] = vehicleDf[['max_power']].replace('(-?[^\d\.])', '', regex=True).replace('', float('NaN')).astype(float)

vehicleDf['max_power']] = vehicleDf[['max_power']].replace('(-?[^\d\.])', '', regex=True).replace('', float('NaN')).astype(float)

vehicleDf['max_power']] = vehicleDf[['max_power']].replace('(-?[^\d\.])', '', regex=True).replace('', float('NaN')).astype(float)

vehicleDf['max_power']] = vehicleDf[['max_power']].replace('(-?[^\d\.])', '', regex=True).replace('', float('NaN')).astype(float)
```

Describe() ile kolonların ortalama, standart sapma vs. özellikleri

	vear	selling price	km driven	mileage	engine	max power	seats
count	8128.000000	8.128000e+03	8.128000e+03	7907.000000	7907.000000	7912.000000	7907.000000
mean	2013.804011	6.382718e+05	6.981951e+04	19.418783	1458.625016	91.517919	5.416719
std	4.044249	8.062534e+05	5.655055e+04	4.037145	503.916303	35.822499	0.959588
min	1983.000000	2.999900e+04	1.000000e+00	0.000000	624.000000	0.000000	2.000000
25%	2011.000000	2.549990e+05	3.500000e+04	16.780000	1197.000000	68.050000	5.000000
50%	2015.000000	4.500000e+05	6.000000e+04	19.300000	1248.000000	82.000000	5.000000
75%	2017.000000	6.750000e+05	9.800000e+04	22.320000	1582.000000	102.000000	5.000000
max	2020.000000	1.000000e+07	2.360457e+06	42.000000	3604.000000	400.000000	14.000000

"selling_price" kolonunun ilk 5 değerlerinin grafiksel olarak gösterimi

"seller_type" kolonuna göre "selling_price" boxplot ve scatter plot gösterimi

Veri setimi okuyup, incedikten sonra elimdeki araç özellikleri kolonlarını kullnarak bir tahmin yapacağım. Kullanacağım makine öğrenimi modeli regresyon çünkü hedefim tahmin ve öngörü. Regresyon, bağımlı bir değişken ile bir veya daha fazla bağımsız değişken arasındaki ilişkiyi tahmin etmek için kullanılan bir dizi istatistiksel yaklaşımdır, yapacağım şey araç özelliklerini kullanarak fiyatı tahmin etmek .

2- Exploratory Data Analysis

Veri setimdeki kolonlarımın türlerini incelemiştim şimdi nümreik ve kategorik olarak ayırdım

Veri setimdeki nümerik özeliğe sahip kolonlarım

	year	selling_price	km_driven	mileage	engine	max_power	seats
0	2014	450000	145500	23.40	1248.0	74.00	5.0
1	2014	370000	120000	21.14	1498.0	103.52	5.0
2	2006	158000	140000	17.70	1497.0	78.00	5.0
3	2010	225000	127000	23.00	1396.0	90.00	5.0
4	2007	130000	120000	16.10	1298.0	88.20	5.0
8123	2013	320000	110000	18.50	1197.0	82.85	5.0
8124	2007	135000	119000	16.80	1493.0	110.00	5.0
8125	2009	382000	120000	19.30	1248.0	73.90	5.0
8126	2013	290000	25000	23.57	1396.0	70.00	5.0
8127	2013	290000	25000	23.57	1396.0	70.00	5.0

8128 rows × 7 columns

Nümerik olmayan kolonlarım;

torque	owner	transmission	seller_type	fuel	name	
190Nm@ 2000rpm	First Owner	Manual	Individual	Diesel	Maruti Swift Dzire VDI	0
250Nm@ 1500-2500rpm	Second Owner	Manual	Individual	Diesel	Skoda Rapid 1.5 TDI Ambition	1
12.7@ 2,700(kgm@ rpm)	Third Owner	Manual	Individual	Petrol	Honda City 2017-2020 EXi	2
22.4 kgm at 1750-2750rpm	First Owner	Manual	Individual	Diesel	Hyundai i20 Sportz Diesel	3
11.5@ 4,500(kgm@ rpm)	First Owner	Manual	Individual	Petrol	Maruti Swift VXI BSIII	4

113.7Nm@ 4000rpm	First Owner	Manual	Individual	Petrol	Hyundai i20 Magna	8123
24@ 1,900-2,750(kgm@ rpm)	Fourth & Above Owner	Manual	Individual	Diesel	Hyundai Vema CRDi SX	8124
190Nm@ 2000rpm	First Owner	Manual	Individual	Diesel	Maruti Swift Dzire ZDi	8125
140Nm@ 1800-3000rpm	First Owner	Manual	Individual	Diesel	Tata Indigo CR4	8126
140Nm@ 1800-3000rpm	First Owner	Manual	Individual	Diesel	Tata Indigo CR4	8127

8128 rows × 6 columns

"selling_price" kolonum

"fuel" kolonum

Nümerik olan "selling_price" özelliğim ve kategorik özelliğim olan "fuel" özelliğim arasındaki ilişki;

3- Preprocessing

Regresyon işlemlerini gerçekleştirmeden önce veri setimdeki eksik "Null" olan değerleri tespit edip, buna göre eksik değerler için uygun bir çözüm uygulanmalı

Eksik değerlere sahip olan kolonlarım, bu kolonlardan nümerik olanları, her bir kolondaki eksik değerleri o kolonun ortalamasıyla doldurmak iyi bir çözüm olacaktır.

numeric.isna().	sum()	#in	my	num
year	0			
selling_price	0			
km_driven	0			
mileage	221			
engine	221			
max_power	216			
seats	221			
dtype: int64				

nümerik kolonlardaki toplam eksik değerlerin sayısı

numeric.mean() #	# i can fill it with column
year	2013.804011
selling_price	638271.807702
km_driven	69819.510827
mileage	19.418783
engine	1458.625016
max_power	91.517919
seats	5.416719
dtype: float64	

kolonların ortalama hesapları

Eksik değerlerin bulunduğu kolonun ortalamasıyla doldurulması

Eksik değerlerle başa çıktıktan sonra, veri setimizin herhangi bir "transformations" gerekip gerekmediğine bakabiliriz.

Sayısal olarak toplanan verilerin ölçekleri çoğunlukla birbirinden farklıdır. Bu farklılığı bazı makine öğrenmesi algoritmaları sevmez ve veri dönüşümü yapılmadan uygulandığında iyi performans gösteremez. Aynı zamanda farklı ölçeklere sahip değişkenleri model sonunda birbiriyle karşılaştırmamız doğru olmaz çünkü iki değişkenin konuşma dili aynı değildir. Benim veri setimde de numerik kolonlarımda hepsi farklı birimlere sahip, bu yüzden standart scaler uygulanabilir. Bir dönüşümü uygulayarak bu değişkenleri aynı metriğe getirmiş oluruz böylelikle artık hem karşılaştırma yapabiliriz hem de algoritmalardan daha iyi performans ede edebiliriz.

Standard Scaler Değişkenleri, ortalaması 0 std sapması 1 olan bir dağılıma çeviriyor . Veri setindeki tüm verilerden ilgili sütun ortalaması çıkartılıp yine sütun std sapmasına bölünerek bulunuyor. Böylelikle veri setindeki tüm gözlem birimleri -1 ile 1 arasında değer almış oluyor. z = (x - u) / s

Starndart Scaler işleminin uygulanması

4- Feature Engineering

Korelasyon matrisi ile sütunların birbirleriyle olan ilişkisini gözlemleyebiliriz.

çizdirdiğimiz heatmap'e bakarak

"selling_price" ve "max_power" özellikleri arasında yüksek korelasyon olduğu gözüküyor. Fiyat tahmin regresyonum içn max_power özelliğinin benim için önemli olduğunu gösterir. Korelasyon sonucunda birbiriyle yakın korelasyona yakın olan özelliklerde bir eleme yapılabilir fakat az sayıda, sadece 6 tane numerik özelliğe sahip olduğum herhangi bir değişiklik yapmayacağım.

Verimi okudum, EDA adımlarını gerçekleştirdim, bilgi sahibi oldum, eksik değerleri doldurup ve transform yaptım, sonrasındaysa özelliklerimin labelım ile olan ilişkisini korelasyon matrisi ile inceledim. Veri setimdeki özellikleri kullanarak bir tahmin işlemi

yapacağım için regresyon gerçekleştireceğim, en iyi sonucu alabilmek için makine öğrenme algoritmalarını karşılaştırıp, parametlerini tune etmem gerekiyor.

5- Machine Learning Problem

Benim seçtiğim machine learning problemi regresyon, regreson ile veri setimdkei araba özelliklerini kulanaraka satış tahmini yapmak.

Regresyon modelinin performansını değerlendirmek için kullanılan metrikler;

[MSE] Ortalama Kare Hata (Mean Squared Error): Basitçe, ortalama kare hata bir regresyon eğrisinin bir dizi noktaya ne kadar yakın olduğunu söyler. MSE, bir makine öğrenmesi modelinin, tahminleyicinin performansını ölçer, her zaman pozitif değerlidir ve MSE değeri sıfıra yakın olan tahminleyicilerin daha iyi bir performans gösterdiği söylenebilir. Ortalama kare hata ME'de olduğu gibi gerçek değerler ile modelden çıkan değerler arasındaki farkın karesidir. Bu farkın karesinin alınmasının iki sebebi bulunmaktadır. Bunlardan ilki pozitif yönde değer elde etmek ikincisi ise hatanın büyüklüğünü kareli ifadeler ile gösterebilmek. Diğer metriklerde olduğu gibi sıfıra yaklaşması modelin doğruluğunu güçlendirmektedir.

$$MSE(E) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

[RMSE] Kök Ortalama Kare Hata (Root Mean Square Error): Bir makine öğrenmesi modelinin, tahminleyicinin tahmin ettiği değerler ile gerçek değerleri arasındaki uzaklığın bulunmasında sıklıkla kullanılan, hatanın büyüklğünü ölçen kuadratik bir metriktir. RMSE tahmin hatalarının (kalıntıların) standart sapmasıdır. Yani, kalıntılar, regresyon hattının veri noktalarından ne kadar uzakta olduğunun bir ölçüsüdür; RMSE ise bu kalıntıların ne kadar yayıldığının bir ölçüsüdür. Başka bir deyişle, verilere en iyi uyan çizgi etrafında o verilerin ne kadar yoğun olduğunu söyler. RMSE değeri 0'dan ∞'a kadar değişebilir. Negatif yönelimli puanlar yani daha düşük değerlere sahip tahminleyiciler daha iyi performans gösterir. RMSE değerinin sıfır olması modelin hiç hata yapmadığı anlamına gelir. RMSE, büyük hataları daha fazla cezalandırmanın avantajına sahiptir, bu yüzden bazı durumlara daha uygun olabilir. RMSE, birçok matematiksel hesaplamada istenmeyen mutlak değerin kullanılmasını engeller.

$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_i-\hat{y}_i)^2}$$

Root Mean Squared Error RMSE (Karekök Ortalama Kare Hata) Yukarıda bahsedilen MSE felsefesinin karekökünün alınmış halidir. Bu sayede kareler ile ortadan kaldırılan matematiksel riskler karekökü alınarak gerçek sonuçların yorumlanmasına katkıda bulunur.

R Square-R² (R-Kare) bağımsız bir değişken veya bir regresyon modelindeki değişkenler tarafından açıklanan bağımlı bir değişkenin varyans oranını temsil eden istatistiksel bir ölçüdür. Bu ölçü ile bağımlı değişkenin açıklama oranı verilir. 0 ile 1 arasında olup 1'e yakın oldukça başarı oranı yüksek anlamına gelir.

6- Algorithms, Implementation and Performance Comparison

Regresyon için birçok machine learning algoritması mevcur, bunlardan hangisinin en iyi sonuç vereceğini birbirlerini pipeline ve gridsearch yöntemleri ile aynı ayna karşılaştırarak seçebiliriz.

Ben GradientBoostingRegressor(), RandomForestRegressor(), XGBRegressor() regresyon modellerini seçtim ve MSE, RMSE, ME, R2 değerlerini hesaplayarak karşılaştırdım;

	model	best_score	best_params
0	xgb_regression	0.959392	{'gamma': 0.01, 'learning_rate': 0.1, 'max_dep
1	gradientboosting_regression	0.956050	{'criterion': 'mse', 'learning_rate': 0.25, 'l
2	RandomForest_Regression	0.959685	('criterion': 'mse', 'max_depth': 9, 'n_estima

R2 değerimizin en yüksek, hata değerlerimi gösteren mse, rmse, me değerlerinin de en düşük olan model bizim için en iyi modeldir. Tabloya baktığımımz zaman birbirlerine yakın iki modelim olsa da Random Forest modeli daha iyi sonuç verdi.

Bu 3 modelimi daha fazla özelliklerini karşılaştırarak hani parametreleri tune edilmeli bunları inceledim

```
Best parameter (score=0.963):
{'clf_estimator': RandomForestRegressor(n_estimators=200), 'clf_estimator_criterion': 'mse', 'clf_estimator_n_estimators':
200, 'scaler': StandardScaler()}
```

Önceki karşılaştırmamızda da Random Forest modeli bize en iyi sonucu vermişti zaten bu sefer tune edilmesi gereken parametleri arttırarak karşılaştırınca biraz daha iyi bir sonuç alaral 0.963 bir başarı elde ettim.

7- Further Performance Improvement (Your best algorithm)

Veri setimizde aykırı değerler bulunabilir, bunları boxplot çizdirerek görebiliriz, bazı özelliklerimdeki aykırı değerleri görmek için çizdirdim;

Veri setimdeki aykırı değeleri temizlemek için q1,q3ve iqr değerlerini hesaplayıp daha sonrasında bunları sildim, veri setimde çok fazla aykırı değerler bulunduğu için ciddi bir azalma oldu ve 8128 x 13 iken 5639x13'e kadar düştü.

```
Q1 = copy_df.quantile(q=.25)
Q3 = copy_df.quantile(q=.75)
IQR = Q3 - Q1
data_clean = copy_df[~((copy_df < (Q1-1.5*IQR)) | (copy_df > (Q3+1.5*IQR))).any(axis=1)]
data_clean.shape
(5639, 13)
```

Aykırı değerlerimi sildikten sonra performansına etkisini görebilmek tekrardan 3 model için performanslarını hesapladım

Aykırı değerleri çıkardıktan sonra R2 değerimin düştüğü MSE değerimin azaldığı gözükmekte, buda performansa olan etkisinin olumsuz yönde olduğunu gösterir.

Çok fazla aykırı değerim olduğu için ve hepsini sildiğim için başarı oranım düştü, ayrıca aykırı değerlerimi silmeden önce en iyi sonucu Random Forest'da alırken, aykırı değerlerimi temizledikten sonra en iyi sonucu xgb_regression modeli vermiş oldu.

Başka bir performans değerlendirmesi olarak "**feature selection**" uygulanabilir. Bunun için birkaç yöntem var ilk olarak korelasyon matrisini çizdirerek ve değerlerini hesaplayarak yapılabilir

mutlak değerde labelıma ("selling_price") göre en yüksek korelasyon olan özelliklerim

Birbiriyle yüksek koralasyona sahip veriler zaten aynı şeyi verir bunlardan herhangi birini atabiliriz, sellin_price labelım ile en yüksek korolasyona sahip olan özelliğim max_power, sonrasında engine ve year ikiside çok yakın korelasyona sahip ikisinden birini atabilirim.

Başka bir feature selection yöntemi olarakta SelectFromModel ile kaç özellik seçilmesini gösteren yöntemi kullanarak (8128,2) sonucunu elde ettim bu da 2 özelliğin yeterli olduğunu gösterir bize. Bu sonuca performansı tekrar hesaplayarak karşılaştırdım

Özellik seçimini çok fazla azalttığım için, performans olarak daha kötü sonuçlar elde ettim

Aykırı değerleri sildiğimde veya "feature selection" metodu uyguladığım zaman performansımda hiçbir iyileşme olmadı, hatta daha da kötü etkiledi. Performansımı arttırabilmek için şu an yaprığım gibi sadece nümerik değerlerim üzerinden bir regresyon değil de, data setimdeki numerik olmayan değerlerimde de bir transform gerçekleştirerek daha fazla özellik elde edip, daha iyi bir sonuç alabilirdim.

8- Inference Give comments on your findings. Did you achieve your goal in the project?

Projemde verilerimi okudum, analiz ettim, train ve test değerlerimi oluşturudum, ve farklı algoritmalarda deneyerek, hata sonuçlarımı, ve en iyi skorlarımı hesapladım, hesapladığım sonuçlardan ve denediğim algoritmalardan, algoritmalarımın tune etmem gereken parametlererini bulduktan sonra 0.95-0.96 gibi bir sonuç elde ettim, sonrasında aykırı değerlerimi temizleyerek performansıma olan etkisini değerlendirdim fakat daha iyi bir sonuç alamadım, ardından "feature selection" yaparak tekrar performansıma olan etkisine baktım fakat yine daha iyi bir sonuç elde edemedim. En başta hesapladığım sonuçlara göre yorum yapmam gerekirse elde ettiğim 0.95-0.96 değeri bir makine öğrenmesi için iyi bir sonuç, bu yüzden bu projede amacıma ulaştım diyebilirim.

KAYNAKÇA

https://kardelennerdem.com/2022/02/08/veri-on-isleme-adim-3-transformation/

https://ng-dasci.medium.com/feature-scaling-nedir-1fbcd5cd125e

 $\frac{\text{https://veribilimcisi.com/2017/07/14/mse-rmse-mae-mape-metrikleri-nedir/#:^:text=Basit%C3%A7e%2C%20ortalama%20kare%20hata%20bir,iyi%20bir%20performans%20g%C3%B6sterdi%C4%9Fi%20s%C3%B6ylenebilir.}$