La formula dei traperi utilizza l'interpolatione lineare a tratti, imponendo S=1 l'integrale viene approssimanto con la somma ols aree du
traperi linearis. L'i-esimo traperio ha alterra $h=\frac{b-a}{v}$ e basi $f(x_i-1)$ e $f(x_i)$ con $1 \le i \le v$, si arrai quindi l'orea $A=\frac{h}{2}(f(x_i-1)+f(x_i))$ quindi: $\frac{h}{2}(f(x_i-1)+f(x_i))+\sum_{i=1}^{n}h\cdot f(x_i), \text{ ottenendo così la formula dei traperi:}$ $\lim_{i=0}^{n} \mu_i f(x_i) \text{ con } w_i = \begin{cases} h \\ i = 0, h \end{cases}$ $\lim_{i=0}^{n} \mu_i f(x_i) \text{ con } w_i = \begin{cases} h \\ i = 0, h \end{cases}$

 $I_n^{trap}(f) = I(\Pi^c) = \sum (\text{once trapes; lineary})$

Por zicavare una stima dell'errore possiano usare la stima $|I(f)-I_n(f)|$ = $|I(f)-I(f_n)| \le |I(f-f_n)| \le (b-a)$ dist (f,f_n) . Se dist \to 0 allora ei sara convergenta, altrimenti potrebboro presentorsi problemi du divergenta. Per quanto ziguarda le formule di quadratura composte attenute come $I_n(f) = I(\pi_s^c)$, con h multiplo du s: $|I(f)-I_n(f)| \le (b-a)$ dist $(f,\pi_s^c) \le (b-a)K_s \cdot h^{s+1}$ se $f \in C^{s+1}[a,b]$ con $h = \max \triangle \times_i$. Quindi per qualziasi distribusione dai nodi per cui $h \to 0$ se $f \in C^{s+1}[a,b]$ le formule sono sempre convergenti con un errora proportionale a h^{s+1} , ma s=1 per i trapezi quindi per $f \in C^s$ sara convergente con un errora $O(h^2)$.