Explore seus conhecimentos

(Unimontes-MG) Quatro substâncias gasosas, HC ℓ , I_2 , HI, $C\ell_2$, são misturadas em um balão fechado, deixadas em repouso, resultando no equilíbrio da reação à temperatura constante:

$$_{2}$$
 HC ℓ (g) + $_{2}$ (g) \rightleftharpoons 2 HI (g) + $_{2}$ (g)

Alterações realizadas nessa mistura podem ter efeitos que resultam em mudanças nesse equilíbrio. Ação e efeito estão corretamente relacionados em:

Ação	Efeito
Adição de HCℓ	Aumento da quantidade de HI
Adição de I ₂	Redução da quantidade de C ℓ_2
Remoção de C ℓ_2	Não altera o equilíbrio
Remoção de HI	Aumenta o valor da K
	Adição de HCℓ Adição de I₂ Remoção de Cℓ₂

Analise o diagrama a seguir e responda às questões **2** a **4**.

O diagrama se refere ao equilíbrio abaixo, ao qual se aplica o Princípio de Le Chatelier.

$$H_2(g) + C\ell_2(g) \Rightarrow 2 HC\ell(g)$$

- 2 Qual substância foi retirada ou adicionada no instante t₁? Como se comportou o sistema em equilíbrio?
- ${\bf 3}$ O que aconteceu no instante ${\bf t_2}$? Justifique.
- 4 O valor da constante do equilíbrio é maior, menor ou igual a 1? Justifique.
- 5 (Uece) Um estudante de química retirou água do seguinte sistema em equilíbrio:

$$2 \text{ NO}_2(g) + \text{CH}_4(g) \rightleftharpoons$$

$$\rightleftharpoons \text{CO}_2(g) + 2 \text{ H}_2\text{O}(\ell) + \text{N}_2(g)$$

Em seguida, esse aluno constatou acertadamente que:

- a) a concentração de metano diminuiu.
- b) o equilíbrio se desloca para a esquerda.

- c) a concentração do dióxido de carbono diminuiu.
 d) a concentração do nitrogênio gasoso diminuiu.
- (UFPR) O íon cromato (CrO₄)²⁻ de cor amarela e o íon dicromato (Cr₂O₇)²⁻ de cor laranja podem ser utilizados em processos de eletrodeposição para produzir peças cromadas. A fórmula a seguir apresenta o equilíbrio químico dessas espécies em meio aquoso:

$$2 (CrO4)2- (aq) + 2 H+ (aq) \rightleftharpoons$$
$$\rightleftharpoons (Cr2O7)2- (aq) + H2O (\ell)$$

Com base no equilíbrio químico acima, considere as seguintes afirmativas:

- O aumento na concentração de íons H⁺ do meio promove a intensificação da cor laranja na solução.
- A adição de um ácido forte ao meio intensifica a coloração amarela da solução.
- A adição de íons hidroxila (OH⁻) ao meio provoca uma reação com os íons H⁺, formando água e intensificando a cor amarela da solução.
- A cor exibida pela solução não apresenta dependência da concentração de íons H⁺ do meio. Indique a alternativa correta.
- a) Somente a afirmativa 1 é verdadeira.
- b) Somente as afirmativas 1 e 3 são verdadeiras.
- c) Somente as afirmativas 2 e 4 são verdadeiras.
- d) Somente as afirmativas 2 e 3 são verdadeiras.
- e) Somente as afirmativas 2, 3 e 4 são verdadeiras.
- 7 (Udesc) O Princípio de Le Chatelier diz "Quando uma perturbação exterior for aplicada a um sistema em equilíbrio dinâmico, o equilíbrio tende a se ajustar, para minimizar o efeito da perturbação". Observe a reação química abaixo.

$$2 \operatorname{HC}\ell (g) + I_2(g) \Rightarrow 2 \operatorname{HI}(g) + C\ell_2(g)$$

Em relação a essa reação química, é correto afirmar:

- a) Com o aumento da pressão, o equilíbrio se desloca para o sentido de formação do produto.
- b) O equilíbrio se desloca no sentido de formação do produto, com o aumento da concentração HI (g).
- c) Com o aumento da pressão, o equilíbrio se desloca para o sentido de formação dos reagentes.
- d) Com o aumento da pressão, não ocorre deslocamento do equilíbrio da reação.
- e) Quando o gás I₂ for consumido, o equilíbrio não se altera.

8 (Unicid-SP)

O metanol, CH2OH, é utilizado como solvente, anticongelante, material de partida para outros produtos químicos e na produção de biodiesel. Considere a seguinte reação:

CO (g) + 2 H₂ (g)
$$\rightleftharpoons$$
 CH₃OH (g) + energia

(http://qnint.sbq.org.br. Adaptado.)

- a) Escreva a expressão que representa a constante de equilíbrio (K_c) dessa reação e calcule o seu valor para um sistema em que, nas condições de equilíbrio, as concentrações de metanol, monóxido de carbono e hidrogênio sejam 0,145 mol· \cdot L⁻¹, 1 mol \cdot L⁻¹ e 0,1 mol \cdot L⁻¹, respectivamente.
- b) Considerando o Princípio de Le Chatelier, o que acontece no sistema em equilíbrio quando a pressão é aumentada? Justifique sua resposta.
- 9 (UEL-PR) A obtenção industrial da amônia, utilizada na produção de fertilizantes, segue o processo idealizado pelo alemão Fritz Haber. O hidrogênio necessá-

rio é obtido pela reação do metano com vapor de água (Reação 1)

$$CH_4 (g) + H_2O (g) \rightleftharpoons CO (g) + 3 H_2 (g)$$

 $\Delta H^0 = +323.5 \text{ kJ/mol de } CH_4$

que faz reagir o nitrogênio proveniente do ar com o hidrogênio da reação anterior: (Reação 2)

$$N_2 (g) + 3 H_2 (g) \rightleftharpoons 2 NH_3 (g)$$

 $\Delta H^0 = -92.6 \text{ kJ}$

Observando as reações, quais serão, respectivamente, as melhores condições das reações 1 e 2 a serem utilizadas para a produção industrial da amônia?

- a) Baixa temperatura e baixa pressão.
- b) Alta temperatura e baixa pressão.
- c) Baixa temperatura e alta pressão.
- d) Alta temperatura e alta pressão.
- e) Temperatura e pressão médias.

Relacione seus conhecimentos

(Unifenas-MG) Em geral, as reações químicas que ocorrem, simultaneamente, em dois sentidos, são denominadas reações reversíveis. Equilíbrio químico é uma reação reversível, na qual a velocidade da reação direta é igual à velocidade da reação inversa. Consequentemente, as concentrações de todas as substâncias participantes permanecem constantes. O gráfico a seguir refere-se à reação:

Analisando-se o gráfico conclui-se que:

- a) No início da reação química: [A] < [B].
- b) O equilíbrio foi alterado em t₁.
- c) Em t₂ a velocidade da reação direta é maior do que a inversa.
- d) Em t_a houve um acréscimo na concentração de A, sendo que a concentração de B diminui e a de C aumenta até atingir um novo equilíbrio.
- e) Entre t₂ e t₃ (intervalo de tempo) as velocidades das reações direta e inversa são iguais.

(UPM-SP) Em uma aula prática, alguns alunos investigaram o equilíbrio existente entre as espécies químicas em solução aquosa. A equação química que representa o fenômeno estudado é descrita por

$$FeC\ell_3$$
 (aq) + 3 NH₄SCN (aq) \rightleftharpoons
 \rightleftharpoons 3 NH₄C ℓ (aq) + Fe(SCN)₃ (aq)

Nessa investigação, os alunos misturaram quantidades iguais de solução de cloreto de ferro III e de tiocianato de amônio e a mistura produzida foi dividida em três frascos, **A**, **B** e **C**. A partir de então, realizaram os seguintes procedimentos:

- I. no frasco A, adicionaram uma ponta de espátula de cloreto de amônio sólido e agitaram até a completa dissolução desse sólido.
- II. no frasco B, adicionaram algumas gotas de solução saturada de cloreto de ferro III.
- III. no frasco C, adicionaram algumas gotas de solução saturada de tiocianato de amônio.

Considerando-se que em todas as adições tenha havido deslocamento do equilíbrio, é correto afirmar que esse deslocamento ocorreu no sentido da reação direta:

- a) apenas no procedimento I.
- b) apenas no procedimento II.
- c) apenas nos procedimentos I e II.
- d) apenas nos procedimentos II e III.
- e) em todos os procedimentos.

(Unimontes-MG) Em um tubo de ensaio contendo Cultina aquosa saturada de cloreto de sódio foi adicionada uma solução concentrada de ácido clorídrico, ocorrendo o que pode ser observado na figura.

Dada a equação que representa o equilíbrio de solubilidade do cloreto de sódio,

$$NaC\ell$$
 (s) \rightleftharpoons Na^+ (aq) + $C\ell^-$ (aq), assinale a alternativa correta.

- a) A adição do íon comum cloreto favorece o equilíbrio para a esquerda.
- b) O ácido clorídrico reage com cloreto de sódio formando um precipitado.
- c) A solubilidade do cloreto de sódio é aumentada pela adição de HCℓ.
- d) A adição do íon comum aumenta a solubilidade do cloreto de sódio.
- 4 (FSM-CE) Compostos contendo íons dicromato $(Cr_2O_7)^{2-}$ ou cromato $(CrO_4)^{2-}$ são tóxicos e carcinogênicos. O equilíbrio químico estabelecido entre esses íons em fase aquosa está representado na equação:

$$(\operatorname{Cr_2O_7})^{2-}$$
 (aq) + H₂O (ℓ) \rightleftharpoons
 $\operatorname{laranja}$
 \rightleftharpoons 2 ($\operatorname{CrO_4})^{2-}$ (aq) + 2 H⁺ (aq)

Soluções que contêm íons dicromato necessitam de tratamento prévio para serem descartadas diretamente no meio ambiente. Uma das etapas deste tratamento é a redução do íon dicromato para cromo (III).

- a) Considere que em uma solução aquosa, com íons dicromato e cromato em equilíbrio, seja adicionado ácido clorídrico.
 - Qual será a cor predominante dessa solução? Justifique sua resposta.
- b) Qual a variação do número de oxidação do cromo no processo de redução descrito no texto? Apresente os cálculos efetuados.
- 5 (Enem) A formação de estalactites depende da reversibilidade de uma reação química. O carbonato de cálcio (CaCO₃) é encontrado em depósitos subterrâneos na forma de pedra calcária. Quando um volume

de água rica em CO₂ dissolvido infiltra-se no calcário, o minério dissolve-se formando íons Ca²⁺ e (HCO₃) Numa segunda etapa, a solução aquosa desses íons chega a uma caverna e ocorre a reação inversa, promovendo a liberação de CO_2 e a deposição de $CaCO_{3'}$ de acordo com a equação apresentada.

$${\sf Ca^{2^+}}\ ({\sf aq}) + 2\ ({\sf HCO_3})^-\ ({\sf aq}) \Longrightarrow {\sf CaCO_3}\ ({\sf s}) + \\ +\ {\sf CO_2}\ ({\sf g}) +\ {\sf H_2O}\ (\ell) \quad \Delta {\sf H} = +40.94\ {\sf kJ/mol}$$

Considerando o equilíbrio que ocorre na segunda etapa, a formação de carbonato será favorecida pelo(a):

- a) diminuição da concentração de íons OH⁻ no
- b) aumento da pressão do ar no interior da caverna.
- c) diminuição da concentração de (HCO₃)⁻ no
- d) aumento da temperatura no interior da caverna.
- e) aumento da concentração de CO2 dissolvido.
- 6 (Unifesp) Na indústria, a produção do ácido nítrico (HNO₃) a partir da amônia (NH₃) se dá em três etapas: etapa 1: $4 \text{ NH}_3 (g) + 5 \text{ O}_2 (g) \rightleftharpoons 4 \text{ NO } (g) +$

$$+ 6 H_2 O (g) \Delta H < 0$$

etapa 2:
$$2 \text{ NO (g)} + \text{O}_2 \text{ (g)} \rightleftharpoons 2 \text{ NO}_2 \text{ (g)}$$

 $\Delta H < 0$

etapa 3:
$$3 \text{ NO}_2 \text{ (g)} + \text{H}_2 \text{O (ℓ)} \rightleftharpoons 2 \text{ HNO}_3 \text{ (aq)} + + \text{NO (g)} \quad \Delta \text{H} < 0$$

A fim de verificar as condições que propiciam maior rendimento na produção de NO na etapa 1, um engenheiro realizou testes com modificações nos parâmetros operacionais desta etapa, indicadas na tabela.

Teste	Modificações da etapa 1
1	aquecimento e aumento de pressão
2	aquecimento e diminuição de pressão
3	resfriamento e aumento de pressão
4	resfriamento e diminuição de pressão

- a) Com base nas três etapas, escreva a equação balanceada para a reação global de obtenção do ácido nítrico cujos coeficientes estequiométricos são números inteiros. Essa reação tem como reagentes NH3 e O2, e como produtos HNO₃, H₂O e NO, sendo que o coeficiente estequiométrico para o HNO3 é 8.
- b) Qual teste propiciou maior rendimento na produção de NO na etapa 1? Justifique sua resposta.