Corrigé de la feuille d'exercices 23

1 Linéarité - Noyau - image

Exercice 1. 1. f_1 est linéaire. Soient $(x, y, z), (x', y', z') \in \mathbb{R}^3$, soit $\lambda, \mu \in \mathbb{R}$ on a :

$$f_{1}(\lambda(x, y, z) + \mu(x', y', z')) = f_{1}(\lambda x + \mu x', \lambda y + \mu y', \lambda z + \mu z')$$

$$= (\lambda x + \mu x' - (\lambda y + \mu y'), \lambda y + \mu y' - (\lambda z + \mu z'))$$

$$= (\lambda x + \mu x' - \lambda y - \mu y', \lambda y + \mu y' - \lambda z - \mu z')$$

$$= \lambda (x - y, y - z) + \mu (x' - y', y' - z')$$

$$= \lambda f_{1}(x, y, z) + \mu f_{1}(x', y', z')$$

Ainsi, f_1 est linéaire.

- 2. f_2 n'est pas linéaire. $f_2(2,2) = 4$ alors que $f_2(1,1) + f_2(1,1) = 2$.
- 3. f_3 est linéaire.

Soient $(u_n), (v_n) \in \mathbb{R}^{\mathbb{N}}$, soient $\lambda, \mu \in \mathbb{R}$, on a:

$$f_3(\lambda(u_n) + \mu(v_n)) = f_3((\lambda u_n + \mu v_n))$$

$$= (\lambda u_0 + \mu v_0, \lambda u_1 + \mu v_1, \lambda u_2 + \mu v_2)$$

$$= \lambda(u_0, u_1, u_2) + \mu(v_0, v_1, v_2)$$

$$= \lambda f_3((u_n)) + \mu f_3((v_n))$$

Ainsi, f_3 est linéaire.

4. f_4 est linéaire.

Soient $(u_n), (v_n) \in E$, soient $\lambda, \mu \in \mathbb{R}$, on a:

$$f_4\lambda(u_n) + \mu(v_n)) = f_4((\lambda u_n + \mu v_n))$$

$$= \lim_{n \to +\infty} (\lambda u_n + \mu v_n)$$

$$= \lambda \lim_{n \to +\infty} u_n + \mu \lim_{n \to +\infty} v_n$$

$$= \lambda f_4((u_n)) + \mu f_4((v_n))$$

Ainsi, f_4 est linéaire.

Exercice 2. 1. Soient $P, Q \in \mathbb{R}[X]$, soient $\lambda, \mu \in \mathbb{R}$, on a :

$$f_1(\lambda P + \mu Q) = \lambda P + \mu Q - X(\lambda P + \mu Q)'$$

$$= \lambda P + \mu Q - X(\lambda P' + \mu Q')$$

$$= \lambda (P - XP') + \mu (Q - XQ')$$

$$= \lambda f_1(P) + \mu f_1(Q)$$

Ainsi, f_1 est linéaire.

2. Soient $(x,y),(z,t) \in \mathbb{R}^2$, soient $\lambda, \mu \in \mathbb{R}$, on a:

$$\begin{split} f_2(\lambda(x,y) + \mu(z,t)) &= f_2(\lambda x + \mu z, \lambda y + \mu t) \\ &= (\lambda x + \mu z + 2(\lambda y + \mu t), 2(\lambda x + \mu z) - \lambda y - \mu t) \\ &= (\lambda x + \mu z + 2\lambda y + 2\mu t, 2\lambda x + 2\mu z - \lambda y - \mu t) \\ &= \lambda (x + 2y, 2x - y) + \mu (z + 2t, 2z - t) \\ &= \lambda f_2(x,y) + \mu f_2(z,t) \end{split}$$

Ainsi, f_2 est linéaire.

3. Soient $M, M' \in \mathcal{M}_2(\mathbb{R})$, soient $\lambda, \mu \in \mathbb{R}$, on a:

$$f_3(\lambda M + \mu M') = A(\lambda M + \mu M') - (\lambda M + \mu M')A$$
$$= \lambda (AM - MA) + \mu (AM' - M'A)$$
$$= \lambda f_3(M) + \mu F_3(M')$$

Ainsi, f_3 est linéaire.

Exercice 3. Comme $f^{n-1} \neq 0$, il existe $x_0 \in E$ tel que $f^{n-1}(x_0) \neq 0$. Montrons que la famille $(x_0, \ldots, f^{n-1}(x_0))$ est libre :

Soit
$$\lambda_0, \dots, \lambda_{n-1} \in K$$
 tel que $\sum_{i=0}^{n-1} \lambda_i f^i(x_0) = 0$.

En composant par f^{n-1} on trouve $\sum_{i=0}^{n-1} \lambda_i f^{n-1+i}(x_0) = 0$ (*).

Or, pour tout $i \ge 1$, $n-1+i \ge n$ donc $f^{n-1+i} = 0$. Ainsi, l'égalité (*) devient : $\lambda_0 f^{(n-1)}(x_0) = 0$. Or, $f^{(n-1)}(x_0) \ne 0$ donc $\lambda_0 = 0$. Par suite en appliquant f^{n-2} on trouve $\lambda_1 = 0$ puis de proche en proche, $\lambda_0 = \cdots = \lambda_{n-1} = 0$. La famille $(x_0, \ldots, f^{n-1}(x_0))$ est donc libre. Elle est de plus composée de $n = \dim(E)$ vecteurs. Il s'agit donc d'une base de E.

Exercice 4. Soit $(x, y) \in \mathbb{R}^2$.

$$f_3(x,y) = 0$$

$$\iff \begin{cases} x - y = 0 \\ y - x = 0 \end{cases}$$

$$\iff x = y$$

Ainsi,

$$\operatorname{Ker} f_{1} = \{(x, y) \in \mathbb{R}^{2}, \ f(x, y) = 0\}$$

$$= \{(x, y) \in \mathbb{R}^{2}, \ x = y\}$$

$$= \{(x, x), x \in \mathbb{R}\}$$

$$= \{x(1, 1), x \in \mathbb{R}\}$$

$$= \operatorname{Vect} (e_{1})$$

où $e_1 = (1, 1)$.

De plus, le vecteur e_1 est non nul. Ainsi, (e_1) est une base de Ker f_1 . On a:

$$\operatorname{Im} f_1 = \{ f(x, y), \ x, y \in \mathbb{R} \}$$

$$= \{ (x - y, y - x, 0), \ x, y \in \mathbb{R} \}$$

$$= \{ x(1, -1, 0) + y(-1, 1, 0), \ x, y \in \mathbb{R} \}$$

$$= \operatorname{Vect} (e_2, e_3)$$

avec $e_2 = (1, -1, 0)$ et $e_3 = (-1, 1, 0)$.

Or, $e_3 = -e_2$.

Ainsi, $\operatorname{Im} f_1 = \operatorname{Vect}(e_2)$.

Enfin, e_2 est non nul, (1,-1,0) est non nul. Donc (e_2) constitue donc une base de $\text{Im } f_1$.

1. Soit $(x, y, z) \in \mathbb{R}^3$. Exercice 5.

$$f_1(x, y, z) = 0$$

$$\iff \begin{cases} x - y = 0 \\ y - z = 0 \\ z - x = 0 \end{cases}$$

$$\iff \begin{cases} x = y \\ z = y \end{cases}$$

Ainsi:

$$\operatorname{Ker} f_{1} = \{(x, y, z) \in \mathbb{R}^{3}, \ f_{1}(x, y, z) = 0\}$$

$$= \{(x, y, z) \in \mathbb{R}^{3}, \ x = y, z = y\}$$

$$= \{(y, y, y), y \in \mathbb{R}\}$$

$$= \{y(1, 1, 1), y \in \mathbb{R}\}$$

$$= \operatorname{Vect} (e_{0})$$

avec $e_0 = (1, 1, 1)$. De plus, (1, 1, 1) est non nul. Ainsi, (e_0) est une base de Ker f_1 . De plus,

$$\operatorname{Im} f_1 = \{ (x - y, y - z, z - x) | x, y, z \in \mathbb{R} \}$$

$$= \{ x(1, 0, -1) + y(-1, 1, 0) + z(0, -1, 1) , x, y, z \in \mathbb{R} \}$$

$$= \operatorname{Vect} (e_1, e_2, e_3)$$

avec $e_1 = (1, 0, -1), e_2(-1, 1, 0), e_3(0, -1, 1).$ De plus, soit $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$.

$$\lambda_1 e_1 + \lambda_2 e_2 + \lambda_3 e_3 = 0$$

$$\iff \begin{cases} \lambda_1 - \lambda_2 = 0 \\ \lambda_2 - \lambda_3 = 0 \\ -\lambda_1 + \lambda_3 = 0 \end{cases}$$

$$\iff \begin{cases} \lambda_1 - \lambda_2 = 0 \\ \lambda_2 - \lambda_3 = 0 \\ -\lambda_2 + \lambda_3 = 0 \end{cases}$$

$$\iff \begin{cases} \lambda_1 - \lambda_2 = 0 \\ \lambda_2 - \lambda_3 = 0 \end{cases}$$

$$\iff \begin{cases} \lambda_1 = \lambda_3 \\ \lambda_2 = \lambda_3 \end{cases}$$

En prenant $\lambda_3 = 1$, $\lambda_2 = 1$, $\lambda_1 = 1$, on obtient : $e_1 + e_2 + e_3 = 0$ donc $e_3 = -e_1 - e_2$. Ainsi, $\text{Vect}(e_1, e_2, e_3)) = \text{Vect}(e_1, e_2)$. De plus, e_1 et e_2 ne sont pas colinéaires. Ainsi, (e_1, e_2) est libre. Elle

2. Soit $z \in \mathbb{C}$. On pose z = a + ib avec $a, b \in \mathbb{R}$.

constitue donc une base de $\text{Im} f_1$.

$$f_2(z) = 0 \iff a + ib + i(a - ib) = 0$$

 $\iff a + b + i(a + b) = 0$
 $\iff a + b = 0$

Ainsi:

$$\operatorname{Ker} f_2 = \{ z \in \mathbb{C}, \ f_2(z) = 0 \}$$

$$= \{ a + ib, \ a, b \in \mathbb{R}, a + b = 0 \}$$

$$= \{ a(1 - i), a \in \mathbb{R} \}$$

$$= \operatorname{Vect} (1 - i)$$

De plus $1 - i \neq 0$ donc (1 - i) constitue une base de Ker f_2 . On a également :

$$Im(f_2) = \{z + i\overline{z}, z \in \mathbb{C}\}\$$

$$= \{a + ib + i(a - ib), a, b \in \mathbb{R}\}\$$

$$= \{a + ib + ia + b, a, b \in \mathbb{R}\}\$$

$$= \{a(1 + i) + b(1 + i), a, b \in \mathbb{R}\}\$$

$$= Vect (1 + i, 1 + i)\$$

$$= Vect (1 + i)$$

De plus, $1+i\neq 0$. Ainsi, (1+i) est une base de $\mathrm{Im}\,f_2$

Exercice 6. Soient $P, Q \in \mathbb{R}_3[X]$, soient $\lambda, \mu \in \mathbb{R}$, on a :

$$\begin{split} \phi(\lambda P + \mu Q) &= \lambda P + \mu Q - (X+1)(\lambda P + \mu Q)' \\ &= \lambda P + \mu Q - (X+1)(\lambda P' + \mu Q') \\ &= \lambda (P - (X+1)P') + \mu (Q - (X+1)Q') \\ &= \lambda \phi(P) + \mu \phi(Q) \end{split}$$

Ainsi, ϕ est linéaire.

Déterminons le noyau de ϕ .

Ker
$$\phi = \{ P \in \mathbb{R}_3[X], \ \phi(P) = 0 \}.$$

Soit $P = a_3 X^3 + a_2 X^2 + a_1 X + a_0 \in \mathbb{R}_3[X].$

$$\phi(P) = 0$$

$$\iff a_3 X^3 + a_2 X^2 + a_1 X + a_0 = (X+1)(3a_3 X^2 + 2a_2 X + a_1)$$

$$\iff a_3 X^3 + a_2 X^2 + a_1 X + a_0 = 3a_3 X^3 + (3a_3 + 2a_2)X^2 + (2a_2 + a_1)X + a_1$$

$$\iff \begin{cases} a_3 = 3a_3 \\ a_2 = 3a_3 + 2a_2 \\ a_1 = 2a_2 + a_1 \\ a_0 = a_1 \end{cases}$$

$$\iff \begin{cases} a_3 = 0 \\ a_2 = 0 \\ a_0 = a_1 \end{cases}$$

Ainsi:

$$\operatorname{Ker} \phi = \{a_3 X^3 + a_2 X^2 + a_1 X + a_0, a_0, a_1, a_2, a_3 \in \mathbb{R}, \ a_3 = 0, a_2 = 0, a_0 = a_1\}$$
$$= \{a_0 (X+1), a_0 \in \mathbb{R}\}$$
$$= \operatorname{Vect} (X+1).$$

Or X+1 n'est pas le polynôme nul. Donc (X+1) est une base de Ker ϕ .

Déterminons l'image de ϕ :

Méthode 1:

 $(1, X, X^2, X^3)$ est une base de $\mathbb{R}_3[X]$. Ainsi :

$$\begin{split} \operatorname{Im} \phi &= \operatorname{Vect} \left(\phi(1), \phi(X), \phi(X^2), \phi(X^3) \right) \\ &= \operatorname{Vect} \left(1, -1, -X^2 - 2X, -2X^3 - 3X^2 \right) \\ &= \operatorname{Vect} \left(1, X^2 + 2X, 2X^3 + 3X^2 \right) \end{split}$$

De plus, la famille $(1, X^2 + 2X, 2X^3 + 3X^2)$ est une famille de polynômes non nuls de degrés échelonnés donc cette famille est libre et forme donc une base de $\text{Im}\phi$.

Méthode 2:

On a:

$$\begin{split} \operatorname{Im} & \phi = \{P - (X+1)P', P \in \mathbb{R}_2[X]\} \\ & = \{a_3X^3 + a_2X^2 + a_1X + a_0 - (X+1)(3a_3X^2 + 2a_2X + a_1) \;,\; a_0, a_1, a_2, a_3 \in \mathbb{R}\} \\ & = \{-2a_3X^3 - 3a_3X^2 - a_2X^2 + a_0 - 2a_2X - a_1 \;,\; a_0, a_1, a_2, a_3 \in \mathbb{R}\} \\ & = \{a_3(-2X^3 - 3X^2) + a_2(-X^2 - 2X) - a_1 + a_0 \;,\; a_0, a_1, a_2 \in \mathbb{R}\} \\ & = \operatorname{Vect} \left(-X^3 - 3X^2, -X^2 - 2X, -1, 1\right) \\ & = \operatorname{Vect} \left(-X^3 - 3X^2, -X^2 - 2X, 1\right) \end{split}$$

De plus, la famille $(1, -X^2 - 2X, -2X^3 - 3X^2)$ est une famille de polynômes non nuls de degrés échelonnés donc cette famille est libre et forme donc une base de $\text{Im}\phi$.

Exercice 7. Soit $x \in \text{Ker}(f)$. Montrons que $g(x) \in \text{Ker}(f)$.

On a: f(g(x)) = g(f(x)) = g(0) = 0 donc $g(x) \in \text{Ker}(f)$.

Ainsi, Ker(f) est stable par g.

Soit $x \in \text{Im}(f)$. Montrons que $g(x) \in \text{Im}(f)$.

Comme $x \in \text{Im}(f)$, il existe $y \in E$ tel que x = f(y) et $g(x) = g(f(y)) = f(g(y)) \in \text{Im}(f)$, donc Im(f) est stable par g.

Exercice 8. Raisonnons par double implication.

Supposons que $g \circ f = 0$.

Soit $y \in \text{Im} f$. Il existe $x \in E$ tel que y = f(x). On a : g(y) = g(f(x)) = 0. Ainsi, $y \in \text{Ker } g$.

Finalement, $\operatorname{Im} f \subset \operatorname{Ker} g$.

Réciproquement, supposons que $\mathrm{Im} f \subset \mathrm{Ker}\, g$.

Soit $x \in E$. $f(x) \in \text{Im} f$ donc $f(x) \in \text{Ker} g$ donc g(f(x)) = 0. Ainsi, $(g \circ f)(x) = g(f(x)) = 0$. D'où $g \circ f = 0$.

Exercice 9. Soit E un K-espace vectoriel et soit $f \in \mathcal{L}(E)$. On suppose que $f^2 - 5f + 6Id_E = 0_E$.

- 1. On a $Id_E = \frac{1}{6} \left(-f^2 + 5f \right) = f \circ \frac{1}{6} \left(-f + 5Id_E \right) = \frac{1}{6} \left(-f + 5Id_E \right) \circ f$. Ainsi, $f: E \to E$ est bijective et $f^{-1} = \frac{1}{6} \left(-f + 5Id_E \right)$
- 2. Méthode 1:

Montrons que $E = \text{Ker}(f - 2Id_E) \oplus \text{Ker}(f - 3Id_E)$. par analyse synthèse.

Soit $x \in E$.

Analyse: Supposons qu'il existe $u \in \text{Ker}(f-2Id_E)$ et $v \in \text{Ker}(f-3Id_E)$ tel que x=u+v. Alors, f(x)=f(u)+f(v). De plus, f(u)=2u et f(v)=3v donc f(x)=2u+3v. Ainsi, on obtient: v=f(x)-2x et u=3x-f(x). Ainsi, si la décomposition existe, celle-ci est unique.

Synthèse : Posons, v = f(x) - 2x et u = 3x - f(x). On a :

- $\bullet \ \ x = u + v.$
- $(f 3Id_E)(v) = f(v) 3v = f^2(x) 2f(x) 3f(x) + 6x = f^2(x) 5f(x) + 6Id_E(x) = 0_E$ par hypothèse. Ainsi, $v \in \text{Ker}(f 3Id_E)$.
- De même, $(f 2Id_E)(u) = f(u) 2u = 3f(x) f^2(x) 6x + 2f(x) = -f^2(x) + 5f(x) 6Id_E(x) = 0_E$. Ainsi, $u \in \text{Ker}(f - Id_E)$.

Donc la décomposition existe.

Finalement, $E = \text{Ker}(f - 2Id_E) \oplus \text{Ker}(f - 3Id_E)$.

Méthode 2:

• On commence par remarquer que $0_E = f^2 - 5f + 6Id_E = (f - 2Id_E) \circ (f - 3Id_E) = (f - 3Id_E) \circ (f - 2Id_E)$. Ainsi, $\operatorname{Im}(f - 3Id_E) \subset \operatorname{Ker}(f - 2Id_E)$ et $\operatorname{Im}(f - 2Id_E) \subset \operatorname{Ker}(f - 3Id_E)$. Soit $x \in E$. On a : $(f - 2Id_E) \circ (f - 3Id_E)(x) = 0$ donc $(f - 3Id_E)(x) \in \operatorname{Ker}(f - 2id_E)$.

De même, $(f-3Id_E)\circ (f-2Id_E)(x)=0$ donc $(f-2Id_E)(x)\in \operatorname{Ker}(f-3id_E)$.

Enfin, $x = -(f(x) - 3x) + (f(x) - 2x) \in \text{Ker}(f - 2id_E) + \text{Ker}(f - 3id_E)$.

Ainsi $E \subset \operatorname{Ker}(f - 2Id_E) + \operatorname{Ker}(f - 3Id_E)$.

D'où $E = \text{Ker}(f - 2Id_E) + \text{Ker}(f - 3Id_E)$.

• Soit $x \in \text{Ker}(f - 2Id_E) \cap \text{Ker}(f - 3Id_E)$.

On a f(x) = 2x et f(x) = 3x donc x = 0.

Ainsi, $\operatorname{Ker}(f - 2Id_E) \cap \operatorname{Ker}(f - 3Id_E) = \{0\}.$

Finalement, on a bien : $E = \ker(f - 2Id_E) \oplus \ker(f - 3Id_E)$.

Exercice 10. 1. Raisonnons par double implication.

• Supposons $Ker(f) = Ker(f^2)$.

Soit $y \in \text{Im}(f) \cap \text{Ker}(f)$.

Comme $y \in \text{Im}(f)$ donc il existe $x \in \mathbb{E}$ tel que y = f(x) et $y \in \text{Ker}(f)$ donc 0 = f(y) = f(f(x)).

Ainsi $f^2(x) = 0$ donc $x \in \text{Ker}(f^2) = \text{Ker}(f)$.

Ainsi, y = f(x) = 0.

Donc $\operatorname{Im}(f) \cap \operatorname{Ker}(f) \subset \{0\}$. D'où $\operatorname{Im} f \cap \operatorname{Ker} f = \{0\}$.

• Réciproquement, supposons $\operatorname{Im}(f) \cap \operatorname{Ker}(f) = \{0\}.$

Soit $x \in \text{Ker}(f)$, alors f(x) = 0 donc $f^2(x) = f(f(x)) = f(0) = 0$ car $f \in \mathcal{L}(E)$.

Ainsi, $x \in \text{Ker}(f^2)$ et $\text{Ker}(f) \subset \text{Ker}(f^2)$.

Soit $x \in \text{Ker}(f^2)$. Alors $0 = f^2(x) = f(f(x))$.

Ainsi, $f(x) \in \text{Im}(f) \cap \text{Ker}(f) = \{0\}.$

Donc f(x) = 0.

Ainsi, $x \in \text{Ker}(f)$ et on a l'égalité.

- 2. On raisonne de nouveau par double implication.
 - Supposons $\operatorname{Im}(f) = \operatorname{Im}(f^2)$.

Soit $x \in E$, alors $f(x) \in \text{Im}(f) = \text{Im}(f^2)$ donc il existe $y \in E$ tel que $f(x) = f^2(y)$.

Ainsi, f(x) - f(f(y)) = 0 donc f(x - f(y)) = 0 car $f \in \mathcal{L}(E)$.

Ainsi, $x - f(y) \in \text{Ker } f$.

De plus, on a x = f(y) + x - f(y) avec $f(y) \in \text{Im}(f)$ et $x - f(y) \in \text{Ker}(f)$.

D'où $E \subset \operatorname{Im}(f) + \operatorname{Ker}(f)$. Donc $E = \operatorname{Im} f + \operatorname{Ker} f$.

• Réciproquement, supposons E = Ker(f) + Im(f).

Soit $y \in \text{Im}(f^2)$, il existe $x \in E$ tel que $y = f^2(x) = f(f(x)) \in \text{Im}(f)$.

Ainsi, $\operatorname{Im}(f^2) \subset \operatorname{Im}(f)$.

Soit $y \in \text{Im}(f)$, il existe $x \in E$ tel que y = f(x). Comme Im(f) + Ker(f) = E, il existe $(a, b) \in \text{Im}(f) \times \text{Ker}(f)$ tel que x = a + b.

Comme $a \in \text{Im}(f)$, il existe $z \in E$ tel que a = f(z).

Ainsi, on a : x = f(z) + b. D'où $f(x) = f^2(z) + f(b) = f$

D'où $f(x) = f^2(z) + f(b) = f^2(z) \in \text{Im}(f^2).$

Ainsi, $y \in \text{Im}(f^2)$ donc $\text{Im}(f) \subset \text{Im}(f^2)$.

On a donc $\operatorname{Im}(f) = \operatorname{Im}(f^2)$.

Exercice 11. • Soit $f \in F$. f' = 0 si et seulement si f est constante.

Ainsi, $\operatorname{Ker} D = \{ f \in F , f \text{ est constante sur } I \}.$

 $Im D = \{ f' , f \in \mathcal{C}^1(I, \mathbb{R}) \}.$

On sait déjà que ${\rm Im}D\subset E.$ Montrons l'égalité.

Soit $f \in E$, f étant continue sur I, f admet une primitive G sur I. Ainsi, G est dérivable et comme $G' = f \in E$, $G \in \mathcal{C}^1(I, \mathbb{R})$ et D(G) = f.

Ainsi, $f \in \text{Im}D$.

Donc Im D = E.

Finalement, D est surjective mais n'est pas injective (Ker $D \neq \{0\}$).

• Soit $f \in E$. On sait déjà que $\{0\} \subset \operatorname{Ker} P$.

Soit $f \in \text{Ker } P$. Alors, P(f) = 0 donc f admet une primitive $G : x \mapsto \int_a^x f(t)dt$ qui est nulle. Ainsi, 0 = G' = f donc f = 0.

Ainsi, $Ker P = \{0\}.$

On sait déjà que $\operatorname{Im} P \subset \{f \in \mathcal{C}^1(\mathbb{R}), f(a) = 0\}$. Montrons l'égalité.

Soit $f \in \mathcal{C}^1(I,\mathbb{R})$ tel que f(a) = 0. Alors, $f' \in \mathcal{C}^0(I,\mathbb{R})$ et on $a : \forall x \in I, f(x) = f(x) - f(a) = \int_0^x f'(t) dt$.

Donc f = P(f'). Ainsi, $f \in \text{Im}P$.

D'où $\text{Im}P = \{ f \in C^1(\mathbb{R}), f(a) = 0 \}.$

Finalement, P est injective mais n'est pas surjective.

Exercice 12. 1. Soient $(x, y), (x', y') \in F \times G$, soient $\lambda, \mu \in K$,

$$f(\lambda(x,y) + \mu(x',y')) = f(\lambda x + \mu x', \lambda y + \mu y')$$
$$= \lambda x + \mu x' + \lambda y + \mu y'$$
$$= \lambda (x+y) + \mu (x'+y')$$
$$= \lambda f(x,y) + \mu f(x',y')$$

Ainsi f est linéaire.

2. Soit $(x,y) \in \text{Ker}(f)$, alors, $(x,y) \in F \times G$ et f(x,y) = 0 donc x + y = 0. Ainsi, y = -x. Ainsi, $x \in F \cap G$. Donc $\text{Ker}(f) \subset \{(x,-x) \mid x \in F \cap G\}$.

Réciproquement, soit $x \in F \cap G$. $(x, -x) \in F \times G$ et f(x, -x) = x - x = 0. Ainsi, $(x, -x) \in \operatorname{Ker} f$.

Finalement, Ker $f = \{(x, -x), x \in F \cap G\}$.

On a directement que $\operatorname{Im} f = \{x + y, (x, y) \in F \times G\} = F + G$.

3. • On sait que f est injective si et seulement si $Ker(f) = \{(0,0)\}.$

Supposons f injective alors : $\forall x \in F \cap G, (x, -x) = (0, 0).$ Donc : $\forall x \in F \cap G, x = 0.$

Ainsi, $F \cap G = \{0_E\}$.

Réciproquement, si $F \cap G = \{0_E\}$, alors $\operatorname{Ker} f = \{(0_E, 0_E)\}$.

Ainsi, $Kerf = \{(0_E, 0_E)\}$ si et seulement si $F \cap G = \{0_E\}$.

Ainsi, f est injective si et seulement si $F \cap G = \{0_E\}$ si et seulement si F + G est directe.

• f est surjective si et seulement si imf = E

si et seulement si F + G = E.

• Ainsi, f est bijective si et seulement si $F \oplus G = E$.

2 Isomorphisme

Exercice 13. Commençons par prouver que ϕ est une application linéaire.

Soient $(x, y, z), (x', y', z') \in \mathbb{R}^3$, soient $\lambda, \mu \in \mathbb{K}$.

On a

$$\begin{split} \phi(\lambda(x,y,z) + \mu(x',y',z')) &= \phi(\lambda x + \mu x', \lambda y + \mu y', \lambda z + \mu z') \\ &= (\lambda x + \mu x' + 2\lambda y + 2\mu y', 4\lambda x + 4\mu x' - \lambda y - \mu y', -2\lambda x - 2\mu x' + 2\lambda y + 2\lambda y' + 3\lambda z + 3\lambda z') \\ &= \lambda(x + 2y, 4x - y, -2x + 2y + 3z) + \mu(x' + 2y', 4x' - y', -2x' + 2y' + 3z') \\ &= \lambda \phi(x,y,z) + \mu \phi(x',y',z') \end{split}$$

Ainsi, ϕ est bien linéaire de E dans E.

Montrons que ϕ est bijective.

Soit $(u, v, w) \in \mathbb{R}^3$. Soit $(x, y, z) \in \mathbb{R}^3$. On a :

$$\phi(x, y, z) = (u, v, w)$$

$$\iff (x + 2y, 4x - y, -2x + 2y + 3z) = (u, v, w)$$

$$\iff \begin{cases} x + 2y = u \\ 4x - y = v \\ -2x + 2y + 3z = w \end{cases}$$

$$\iff \begin{cases} x + 2y = u \\ -9y = v - 4u \\ 6y + 3z = w + 2u \end{cases}$$

$$\iff \begin{cases} x + 2y = u \\ y = \frac{1}{9}(4u - v) \\ 3z = -\frac{2}{3}(u - v) + w \end{cases}$$

$$\iff \begin{cases} x = \frac{1}{9}(u + 2v) \\ y = \frac{1}{9}(4u - v) \\ z = -\frac{2}{9}(u - v - 9w) \end{cases}$$

Ainsi, pour tout $(u, v, w) \in \mathbb{R}^3$, il existe un unique $(x, y, z) \in \mathbb{R}^3$ tel que $\phi(x, y, z) = (u, v, w)$. Donc ϕ est bijective.

Ainsi, ϕ est un automorphisme de E.

De plus :
$$\forall (u, v, w) \in \mathbb{R}^3$$
, $\phi^{-1}(u, v, w) = (\frac{1}{9}(u + 2v), \frac{1}{9}(4u - v), -\frac{2}{9}(u - v - 9w))$.
Remarque : si l'on souhaitait juste montrer que ϕ est un automorphisme sans déterminer sa réciproque, nous aurions

Remarque : si l'on souhaitait juste montrer que ϕ est un automorphisme sans déterminer sa réciproque, nous aurions remarqué que ϕ est un endomorphisme de \mathbb{R}^3 avec \mathbb{R}^3 de dimension finie. Ainsi, ϕ bijective si et seulement si ϕ est injective. Nous aurions dans ce cas plutôt prouvé que ϕ est injective en prouvant que Ker $\phi = \{0\}$.

Exercice 14. 1. • Montrons que ϕ est linéaire :

Soient $P, Q \in \mathbb{K}_n[X]$, soient $\lambda, \mu \in \mathbb{K}$. On a :

$$\phi(\lambda P + \mu Q) = ((\lambda P + \mu Q)(a_1), ..., (\lambda P + \mu Q)(a_{n+1}))$$

= $\lambda(P(a_1), ..., P(a_{n+1})) + \mu(Q(a_1), ..., Q(a_{n+1}))$
= $\lambda \phi(P) + \mu \phi(Q)$

• Montrons que $\operatorname{Ker} \phi = \{0\}.$

Soit $P \in \text{Ker } \phi$ alors $P \in \mathbb{K}_{n-1}[X]$. De plus, $\phi(P) = 0$. Donc : $\forall i \in [1, n+1]$, $P(a_i) = 0$. Or, les $(a_i)_{i \in [1, n]}$ sont deux à deux distincts. Ainsi, P admet au moins n+1 racines distinctes. Or, $\deg(P) \leq n$. Donc, P = 0. Ainsi, $\ker \phi \subset \{0\}$.

Donc, $\operatorname{Ker} \phi = \{0\}.$

Ainsi, ϕ est injective.

• De plus, dim $(\mathbb{K}_n[X]) = n + 1 = \dim(\mathbb{K}^{n+1})$ donc ϕ est bijective.

Ainsi, ϕ est un isomorphisme.

2. $\phi \in GL(E)$ donc $\phi^{-1} \in GL(E)$.

Or, l'image d'une base par un isomorphisme est encore une base. Ainsi, $(L_1, ..., L_{n+1})$ est une base de $\mathbb{K}_n[X]$.

Soit $k \in [1, n+1]$, on a $\phi^{-1}(e_k) = L_k \text{ donc } \phi(L_k) = e_k$. Ainsi, on a:

$$L_k(a_k) = 1$$
 et $\forall i \in [1, n+1] \setminus \{k\}, L_k(a_i) = 0.$

On sait que $L_k \in \mathbb{K}_n[X]$ donc L_k est un polynôme de degré au plus n.

De plus, $L_k(a_k) \neq 0$ donc L_k n'est pas le polynôme nul.

Par ailleurs, les a_i avec $i \in [1, n] \setminus \{k\}$ sont racines de L_k et sont deux à deux distincts donc L_k admet n racines distinctes. Donc $deg(L_k) \ge n$ (P est non nul).

Ainsi, L_k est de degré exactement n, L_k est scindé sur \mathbb{K} et il existe $\lambda \in \mathbb{K}^*$ tel que $L_k = \lambda \prod_{i \in [\![1,n+1]\!] \setminus \{k\}} (X - a_i)$.

Enfin, comme
$$1 = L_k(a_k) = \lambda \prod_{i \in \mathbb{I}_1} \prod_{n \neq 1 \text{ } | l \neq k} (a_k - a_i).$$

Enfin, comme $1 = L_k(a_k) = \lambda \prod_{i \in [\![1,n+1]\!] \setminus \{k\}} (a_k - a_i).$ On obtient : $\lambda = \frac{1}{\prod_{i \in [\![1,n+1]\!] \setminus \{k\}} (a_k - a_i)}$ (le dénominateur est bien non nul car les a_i sont deux à deux distincts.

Finalement:

$$L_k = \frac{\prod\limits_{i \in [1, n+1] \setminus \{k\}} (X - a_i)}{\prod\limits_{i \in [1, n+1] \setminus \{k\}} (a_k - a_i)}$$

3. Soit $P \in \mathbb{K}_n[X]$.

Comme $(L_1, ..., L_n)$ est une base de $\mathbb{K}_n[X]$, il existe un unique $(\lambda_1, ..., \lambda_n) \in \mathbb{K}^{n+1}$ tel que $P = \sum_{k=1}^{n+1} \lambda_k L_k$.

En évaluant en
$$a_i$$
, on obtient : $P(a_i) = \sum_{k=1}^{n+1} \lambda_k L_k(a_i) = \sum_{k=1}^{n+1} \lambda_k \delta_{k,i} = \lambda_i$.

Ainsi :
$$P = \sum_{k=1}^{n+1} P(a_k) L_k$$
.

Exercice 15. Soit $n \in \mathbb{N}^*$. Considérons l'application :

$$\phi: \quad \mathbb{R}_n[X] \quad \to \quad \mathbb{R}_n[X]$$

$$P \qquad \mapsto \quad \sum_{i=0}^n P^{(i)}\left(\frac{X}{2^i}\right)$$

Montrons que ϕ est bien définie, linéaire et bijective.

Soit $P \in \mathbb{R}_n[X]$.

Soit $i \in [0, n]$, par propriété sur le degré d'une composition :

$$\deg\left(P^{(i)}\left(\frac{X}{2^i}\right)\right) = \deg(P^{(i)}) \times \deg\left(\frac{X}{2^i}\right) = \deg(P^{(i)}) \times 1 = \deg(P^{(i)}) = \left\{\begin{array}{l} \deg(P) - i \leq n & \text{si } \deg(P) \geq i \\ -\infty & \text{si } \deg(P) < i \end{array}\right..$$

Dans tous les cas,
$$\deg\left(P^{(i)}\left(\frac{X}{2^i}\right)\right) \leq n$$
. Ainsi, $\left(P^{(i)}\left(\frac{X}{2^i}\right)\right) \in \mathbb{K}_n[X]$. Ainsi, $\sum_{i=0}^n P^{(i)}\left(\frac{X}{2^i}\right) \in \mathbb{K}_n[X]$.

Donc ϕ est bien définie.

Montrons que ϕ est linéaire.

Soient $P, Q \in \mathbb{K}_n[X]$, soient $\lambda, \mu \in \mathbb{K}$, .

$$\begin{split} \phi(\lambda P + \mu Q) &= \sum_{i=0}^{n} (\lambda P + \mu Q)^{(i)} \left(\frac{X}{2^{i}}\right) \\ &= \sum_{i=0}^{n} \left(\lambda P^{(i)} \left(\frac{X}{2^{i}}\right) + \mu Q^{(i)} \left(\frac{X}{2^{i}}\right)\right) \\ &= \lambda \sum_{i=0}^{n} P^{(i)} \left(\frac{X}{2^{i}}\right) + \mu \sum_{i=0}^{n} Q^{(i)} \left(\frac{X}{2^{i}}\right) \\ &= \lambda \phi(P) + \mu \phi(Q) \end{split}$$

Ainsi, ϕ est linéaire et même un endomorphisme de $\mathbb{K}_n[X]$. Montrons que $\operatorname{Ker} \phi = \{0\}.$

Soit
$$P \in \operatorname{Ker} \phi$$
. Alors, $\sum_{i=0}^{n} P^{(i)}\left(\frac{X}{2^{i}}\right) = 0$.

Montrons par l'absurde que P=0.

Supposons $P \neq 0$. On note $p = \deg(P) \in \mathbb{N}$.

Alors,
$$0 = \sum_{i=0}^{n} P^{(i)} \left(\frac{X}{2^i} \right) = \sum_{i=0}^{p} P^{(i)} \left(\frac{X}{2^i} \right).$$

Or:
$$\forall i \in \llbracket 0, p \rrbracket$$
, $\deg \left(P^{(i)} \left(\frac{X}{2^i} \right) \right) = p - i$.

Ainsi, $\deg\left(\sum_{i=0}^p P^{(i)}\left(\frac{X}{2^i}\right)\right) = p$ (Les degrés de chacun des termes sont deux à deux distincts).

Absurde car ce polynôme est le polynôme nul.

Finalement, P = 0. Ainsi, $\operatorname{Ker} \phi \subset \{0\}$. Puis $\operatorname{Ker} \phi = \{0\}$.

Ainsi, ϕ est linéaire, injective de $\mathbb{K}_n[X]$ dans $\mathbb{K}_n[X]$ de dimension finie n+1. Ainsi, ϕ est bijective.

Donc, pour tout $Q \in \mathbb{R}_n[X]$, il existe un unique P tel que $Q = \phi(P)$ ce qui prouve le résultat.

Exercice 16. Notons S l'espace des suites vérifiant la relation linéaire.

Montrons que S est un espace vectoriel.

Soient (u_n) , $(v_n) \in \mathcal{S}$, et $\alpha, \beta \in \mathbb{K}$. Soit $n \in \mathbb{N}$:

$$(\alpha u_{n+3} + \beta v_{n+3}) = \alpha (2u_{n+2} + u_{n+1} - 2u_n) + \beta (2v_{n+2} + v_{n+1} - 2v_n)$$

= $2(\alpha u_{n+2} + \beta v_{n+2}) + (\alpha u_{n+1} + \beta v_{n+1}) - 2(\alpha u_n + \beta v_n)$

Ainsi, $(\alpha u_n + \beta v_n) \in \mathcal{S}$ donc \mathcal{S} est un sous-espace vectoriel de $\mathbb{K}^{\mathbb{N}}$.

 \blacktriangleright Déterminons désormais la dimension de \mathcal{S} .

Considérons pour cela l'application!

$$\phi: \quad \begin{array}{ccc} \mathcal{S} & \to & \mathbb{K}^3 \\ (u_n)_{n \in \mathbb{N}} & \mapsto & (u_0, u_1, u_2) \end{array}$$

- ϕ est linéaire
- \bullet ϕ est bijective. En effet , une suite u vérifiant la relation de récurrence de l'énoncé est uniquement déterminé par la donnée de ces premiers termes $(u_0, u_1, u_3) \in \mathbb{K}^2$.

Ainsi, ϕ est un isomorphisme et on peut affirmer que dim $(S) = \dim(\mathbb{K}^3) = 3$.

Par analogie avec les suites récurrentes d'ordre 2, On pose $P=X^3-2X^2-X+2$. Cherchons les racines de P.

On remarque que 1 est racine évidente de $X^3 - 2X^2 - X + 2$ et donc $X^3 - 2X^2 - X + 2 = (X - 1)(X^2 - X - 2)$.

Finalement, $X^3 - 2X^2 - X + 2 = (X - 1)(X + 1)(X - 2)$.

De plus, cherchons désormais des suites non nulles de S sous le forme $(u_n) = (r^n)$.

Soit $r \in \mathbb{C}^*$.

$$(r^n) \in \mathcal{S} \iff \forall n \in \mathbb{N}, r^{n+3} = 2r^{n+2} + r^{n+1} - 2r^n$$

 $\iff \forall n \in \mathbb{N}, r^n(r^3 - 2r^2 - r + 2) = 0$
 $\iff P(r) = 0$

Ainsi, les suites $(1)_{n\in\mathbb{N}}$, $((-1)^n)_{n\in\mathbb{N}}$ et $(2^n)_{n\in\mathbb{N}}$ sont des éléments de S.

Montrons que $((1)_{n\in\mathbb{N}},((-1)^n)_{n\in\mathbb{N}},(2^n)_{n\in\mathbb{N}})$ est libre.

Soit $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{K}$ tels que $\lambda_1(1)_{n \in \mathbb{N}} + \lambda_2((-1)^n)_{n \in \mathbb{N}} + \lambda_3(2^n)_{n \in \mathbb{N}} = 0$.

Cette relation se réécrit : $\forall n \in \mathbb{N}, \ \lambda_1 + \lambda_2 (-1)^n + \lambda_3 2^n = 0.$

Cette relation se réécrit :
$$\forall n \in \mathbb{N}, \lambda_1$$

On a donc :
$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 = 0 \\ \lambda_1 - \lambda_2 + 2\lambda_3 = 0 \\ \lambda_1 + \lambda_2 + 4\lambda_3 = 0 \end{cases}$$
D'où
$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 = 0 \\ -2\lambda_2 + \lambda_3 = 0 \\ 3\lambda_3 = 0 \end{cases}$$
Donc $\lambda_1 = \lambda_2 = \lambda_3 = 0$.

D'où
$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 = 0 \\ -2\lambda_2 + \lambda_3 = 0 \\ 3\lambda_3 = 0 \end{cases}.$$

Ainsi, $((1)_{n\in\mathbb{N}},((-1)^n)_{n\in\mathbb{N}},(2^n)_{n\in\mathbb{N}})$ est libre et composée de 3 vecteurs.

Elle constitue donc une base de S.

Exercice 17. 1. • $0 \in E \text{ donc } E \neq \emptyset$.

Soient
$$P, Q \in E$$
, soient $\lambda, \mu \in \mathbb{R}$

$$(\lambda P + \mu Q)(0) = \lambda P(0) + \mu Q(0) = \lambda 0 + \mu 0 = 0.$$

Donc $\lambda P + \mu Q \in E$.

Ainsi, E est un sous espace vectoriel de $\mathbb{R}[X]$.

- $E_p = E \cap \mathbb{R}_p[X]$. Or, E et $\mathbb{R}_p[X]$ sont des sous-espaces vectoriels de $\mathbb{R}[X]$. Donc E_p est un sous-espace vectoriel de $\mathbb{R}[X]$.
- $F_p = \mathbb{R}_{p-1}[X]$ si $p \neq 0$ et $F_p = \{0\}$ si p = 0. Donc F_p est un sous espace vectoriel de $\mathbb{R}[X]$.
- Montrons que E et F_1 sont supplémentaires dans $\mathbb{R}[X]$. Soit $P \in E \cap F_1$.

Alors P(0)=0 et $\deg(P)<1$ donc P est constant. Ainsi, il existe $\lambda\in\mathbb{R}$ tel que $P=\lambda$. Et comme $P(0)=0,\ \lambda=0$ donc P=0.

Ainsi, $E \cap F_1 = \{0\}$.

Soit $P \in \mathbb{R}[X]$, posons Q = P - P(0).

Alors Q(0) = P(0) - P(0) = 0 donc $Q \in E$.

Et P = Q + P(0). Or, $deg(P(0)) \le 0 < 1$ donc $P(0) \in F_1$.

Ainsi, $P \in E + F_1$.

Donc $\mathbb{R}[X] \subset E + F_1$. D'où $\mathbb{R}[X] = E + F_1$

Ainsi, $\mathbb{R}[X] = E \oplus F_1$.

- 2. Si P est constant, $\Delta(P) = 0$.
 - Si P n'est pas constant, posons $n = \deg(P)$. Alors, $\deg(P(X+1)) = n$ donc $\deg(\Delta(P)) \le n$.

Posons
$$P = \sum_{k=0}^{n} a_k X^k$$
 avec $a_n \neq 0$ et $\Delta(P) = \sum_{k=0}^{n} a_k (X+1)^k - \sum_{k=0}^{n} a_k X^k$.
Donc le terme en X^n de $\Delta(P)$ est $a_n X^n - a_n X^n = 0$ donc $\deg(\Delta(P)) \leq n - 1$.

Donc le terme en X^n de $\Delta(P)$ est $a_n X^n - a_n X^n = 0$ donc $\deg(\Delta(P)) \leq n - 1$. Le terme en X^{n-1} de $\Delta(P)$ est $(na_n + a_{n-1})X^{n-1} - a_{n-1}X^{n-1} = na_n X^n$ avec $na_n \neq 0$. Donc $\deg(\Delta(P)) = n - 1$ si $n \geq 1$.

- Dans tous les cas : $\deg(\Delta(P)) = \begin{cases} \deg(P) 1 & \text{si } \deg(P) \ge 1 \\ -\infty & \text{si } \deg(P) \le 0 \end{cases}$
- (a) Soient $P, Q \in \mathbb{R}[X]$, soient $\lambda, \mu \in \mathbb{R}$,

$$\begin{split} \Delta(\lambda P + \mu Q) &= (\lambda P + \mu Q)(X+1) - (\lambda P + \mu Q)(X) \\ &= \lambda P(X+1) + \mu Q(X+1) - \lambda P(X) - \mu Q(X) \\ &= \lambda (P(X+1) - P(X)) + \mu (Q(X+1) - Q(X)) \\ &= \lambda \Delta(P) + \mu \Delta(Q) \end{split}$$

Donc $\Delta \in \mathcal{L}(\mathbb{R}[X])$.

• Soit $P \in \mathbb{R}[X]$.

$$\begin{split} P \in \operatorname{Ker} \Delta &\iff \quad \Delta(P) = 0 \\ &\iff \quad \operatorname{deg}(\Delta(P)) = -\infty \\ &\iff \quad \operatorname{deg}(P) \leq 0 \\ &\iff \quad \operatorname{deg}(P) < 1 \\ &\iff \quad P \in F_1 \end{split}$$

Ainsi, Ker $\Delta = F_1$

- 3. Posons $\tilde{\Delta}: E \rightarrow \mathbb{R}[X]$ $P \mapsto \Delta(P)$
 - Comme Δ est linéaire, $\tilde{\Delta}$ est linéaire.
 - On a Ker $\tilde{\Delta} = \text{Ker } \Delta \cap E = F_1 \cap E = \{0\}$ car E et F_1 sont supplémentaires. Ainsi, $\tilde{\Delta}$ est injective.
 - Soit $p \in \mathbb{N}$, posons $\begin{array}{cccc} \Delta_p : & E_p & \to & F_p \\ & P & \mapsto & \Delta(P) \end{array}$.
 - Δ_p est bien définie car $\deg(\Delta(P)) \leq \deg(P) 1$. Donc si $P \in E_p$, $\deg(\Delta(P)) \leq p - 1 < p$. Ainsi, $\Delta(P) \in F_p$.
 - Δ_p est linéaire car Δ l'est.
 - Ker $\Delta_p = \text{Ker } \Delta \cap E_p = F_1 \cap E \cap \mathbb{R}_p[X] = \{0\}.$ Donc Δ_p est injectif.

• Si $p \neq 0$:

$$E_p = \left\{ \sum_{k=0}^p a_p X^k, a_0 = 0, a_1, ..., a_p \in \mathbb{R} \right\}$$
$$= \left\{ \sum_{k=1}^p a_p X^k, a_1, ..., a_p \in \mathbb{R} \right\}$$
$$= \text{Vect}(X, X^2, ..., X^p)$$

Or, $(X,...,X^p)$ est une famille libre car il s'agit d'une famille de polynômes non nuls de degrés échelonnées donc dim $(E_p) = p = \dim(F_p)$.

Si p = 0, on a $F_p = E_p = \{0\}$ donc dim $(F_p) = \dim (E_p)$.

• Ainsi, Δ_p est un isomorphisme.

Soit $Q \in \mathbb{R}[X]$, alors, il existe $p \in \mathbb{N}$ tel que $Q \in F_p$.

Donc il existe $P \in E_p$ tel que $Q = \Delta_p(P)$. Or, $P \in E_p$ donc $P \in E$.

Ainsi, $Q = \tilde{\Delta}(P)$ donc $\tilde{\Delta}$ est bijective.

Ainsi, Δ induit un isomorphisme de E sur $\mathbb{R}[X]$.

3 Mode de définition d'une application linéaire

Exercice 18. Soit $(x, y, z) \in \mathbb{R}^3$. Soit $a, b, c \in \mathbb{R}$.

$$a(1,0,0) + b(1,1,0) + c(1,1,1) = (x,y,z)$$

$$\iff \begin{cases} a+b+c = x \\ b+c = y \\ c = z \end{cases}$$

$$\iff \begin{cases} a = x - y \\ b = y - z \\ c = z \end{cases}$$

Ainsi : $\forall (x, y, z) \in \mathbb{R}^3$, $\exists ! (a, b, c) \in \mathbb{R}^3$, (x, y, z) = a(1, 0, 0) + b(1, 1, 0) + c(1, 1, 1). Ainsi, ((1, 0, 0), (1, 1, 0), (1, 1, 1)) forme une base de \mathbb{R}^3 .

Comme une application linéaire est entièrement déterminé par l'image d'une base, il existe un unique $f \in \mathcal{L}(\mathbb{R}^3)$ vérifiant les hypothèses de l'énoncé.

Soit $(x, y, z) \in \mathbb{R}^3$, on a:

$$(x, y, z) = (x - y)(1, 0, 0) + (y - z)(1, 1, 0) + z(1, 1, 1)$$

Ainsi,

$$f(x,y,z) = (x-y)f(1,0,0) + (y-z)f(1,1,0) + zf(1,1,1)$$

= $(x-y)(0,1) + (y-z)(1,0) + z(1,1)$
= $(y,x-y+z)$

Donc: $\forall (x, y, z) \in \mathbb{R}^3, f(x, y, z) = (y, x - y + z)$

Exercice 19. Commençons par montrer que $E = F \oplus G$.

Soit $(x, y, z) \in \mathbb{R}^3$. Soit $a, b, c \in \mathbb{R}$.

$$a(1,0,0) + b(1,1,0) + c(1,1,1) = (x, y, z)$$

$$\iff \begin{cases} a+b+c = x \\ b+c = y \\ c = z \end{cases}$$

$$\iff \begin{cases} a = x - y \\ b = y - z \\ c = z \end{cases}$$

Ainsi, tout élément de \mathbb{R}^3 s'écrit de manière unique comme la somme d'un élément de F et d'un élément de G. Ainsi, $F \oplus G = E$.

Comme une application linéaire est entièrement définie par ses restriction à deux espaces supplémentaires, il existe une unique $f \in \mathcal{L}(R^3)$ vérifiant les hypothèses de l'énoncé.

Soit $(x, y, z) \in \mathbb{R}^3$, on a:

$$(x, y, z) = (x - y)(1, 0, 0) + (y - z)(1, 1, 0) + z(1, 1, 1)$$

Ainsi,

$$f(x,y,z) = (x-y)f(1,0,0) + (y-z)f(1,1,0) + zf(1,1,1)$$

= 2(x-y)(1,0,0) - (y-z)(1,1,0) - z(1,1,1)
= (2x-3y,-y,-z)

Donc: $\forall (x, y, z) \in \mathbb{R}^3, f(x, y, z) = (2x - 3y, -y, -z)$

4 Endomorphismes remarquables

Exercice 20. 1. Soit $(x, y) \in (E \setminus \{0\})^2$.

• Si (x,y) est libre. On a : $\lambda_{x+y}(x+y) = f(x+y) = f(x) + f(y) = \lambda_x x + \lambda_y y$, Donc :

$$(\lambda_{x+y} - \lambda_x)x + (\lambda_{x+y} - \lambda_y)y = 0.$$

Comme la famille (x, y) est libre, on obtient : $\lambda_x = \lambda_{x+y} = \lambda_y$.

• Si (x, y) est liée.

Il existe $\mu \in K$ tel que $y = \mu x$ (car $x \neq 0$).

Alors $\lambda_y y = f(y) = f(\mu x) = \mu f(x) = \mu \lambda_x x = \lambda_x y$. D'où $(\lambda_y - \lambda_x)y = 0$ et comme $y \neq 0$, $\lambda_y - \lambda_x = 0$ puis $\lambda_x = \lambda_y$.

Dans tous les cas $\lambda_x = \lambda_y$.

2. On a vu à la question précédente que : $\forall x, y \in E \setminus \{0\}, \lambda_x = \lambda_y$.

Ainsi, il existe λ tel que : $\forall x \in E \setminus \{0\}, f(x) = \lambda x$.

De plus $f(0) = 0 = \lambda 0$.

Donc: $\forall x \in E, f(x) = \lambda x$ et f est une homothétie.

Exercice 21. 1. Soit $(x, y, z) \in \mathbb{R}^3$. Soit $a, b, c \in \mathbb{R}$.

$$a(1,0,0) + b(1,1,0) + c(1,2,3) = (x,y,z)$$

$$\iff \begin{cases} a+b+c = x \\ b+2c = y \\ 3c = z \end{cases}$$

$$\iff \begin{cases} a = x - y + \frac{1}{3}z \\ b = y - \frac{2}{3}z \\ c = \frac{1}{3}z \end{cases}$$

Ainsi, tout élément de \mathbb{R}^3 s'écrit de manière unique comme la somme d'un élément de F et d'un élément de G. Ainsi, $F \oplus G = E$.

2. Soit $(x, y, z) \in \mathbb{R}^3$, on sait

$$(x,y,z) = \left(x - y + \frac{1}{3}z\right)(1,0,0) + \left(y - \frac{2}{3}z\right)(1,1,0) + \frac{1}{3}z(1,2,3)$$

Ainsi,

$$\begin{split} p(x,y,z) &= \left(x - y + \frac{1}{3}z\right)p(1,0,0) + \left(y - \frac{2}{3}z\right)p(1,1,0) + \frac{1}{3}zp(1,2,3) \\ &= \left(x - y + \frac{1}{3}z\right)(1,0,0) + \left(y - \frac{2}{3}z\right)(1,1,0) \\ &= \left(x - \frac{1}{3}z, y - \frac{2}{3}z, 0\right) \end{split}$$

Donc: $\forall (x, y, z) \in \mathbb{R}^3, \ p(x, y, z) = \left(x - \frac{1}{3}z, y - \frac{2}{3}z, 0\right).$

- 3. On a $q = Id_{\mathbb{R}^3} p$ donc : $\forall (x, y, z) \in \mathbb{R}^3$, $q(x, y, z) = \left(\frac{1}{3}z, \frac{2}{3}z, z\right)$. 4. On a s(1, 0, 0) = (1, 0, 0), s(1, 1, 0) = (1, 1, 0) et s(1, 2, 3) = -(1, 2, 3). Ainsi,

$$\begin{split} s(x,y,z) &= \left(x - y + \frac{1}{3}z\right)s(1,0,0) + \left(y - \frac{2}{3}z\right)s(1,1,0) + \frac{1}{3}zs(1,2,3) \\ &= \left(x - y + \frac{1}{3}z\right)(1,0,0) + \left(y - \frac{2}{3}z\right)(1,1,0) - \frac{1}{3}z(1,2,3) \\ &= \left(-x + \frac{2}{3}z, -y + \frac{4}{3}z, z\right) \end{split}$$

Donc: $\forall (x, y, z) \in \mathbb{R}^3, \ s(x, y, z) = \left(-x + \frac{2}{3}z, -y + \frac{4}{3}z, z\right)$.

Exercice 22. Soit E un \mathbb{K} -espace vectoriel, soient p et q des projecteurs de E.

1. On a:

$$p+q$$
 est un projecteur \iff $(p+q)\circ(p+q)=p+q$ \iff $p^2+p\circ q+q\circ p+q^2=p+q$ \iff $p\circ q+q\circ p=0$

• Supposons p+q projecteur.

Alors, $p \circ q + q \circ p = 0$. En composant à gauche et à droite par q, on obtient :

$$q \circ (p \circ q) + q \circ (q \circ p) = 0$$
 et $(p \circ q) \circ q + (q \circ p) \circ q = 0$.

donc

$$q \circ p \circ q + q \circ p = 0$$
 et $p \circ q + q \circ p \circ q = 0$.

D'où $p \circ q = -q \circ p \circ q = q \circ p$. En reportant dans l'égalité $p \circ q + q \circ p = 0$, on obtient : $2p \circ q = 0$. Ainsi, $p \circ q = q \circ p = 0$.

- Réciproquement, supposons que $p \circ q = q \circ p = 0$. Alors $p \circ q + q \circ p = 0$ donc p + q est un projecteur.
- 2. Supposons que les conditions de la question précédente sont vérifiées.

On montre Im(p+q) = Im(p) + Im(q) par double inclusion :

- Soit $y \in \text{Im}(p+q)$, il existe $x \in E$ tel que y = (p+q)(x) = p(x) + q(x). Ainsi $y \in \text{Im}(p) + \text{Im}(q)$. Ainsi, $\operatorname{Im}(p+q) \subset \operatorname{Im} p + \operatorname{Im} q$.
- Soit $y \in \text{Im}(p) + \text{Im}(q)$, il existe $(y_1, y_2) \in \text{Im}(p) \times \text{Im}(q)$ tels que $y = y_1 + y_2$. Comme p+q est un projecteur, $y \in \text{Im}(p+q)$ si et seulement si (p+q)(y)=y. On a: $(p+q)(y) = (p+q)(y_1) + (p+q)(y_2) = p(y_1) + q(y_1) + p(y_2) + q(y_2)$. Or, $y_1 \in \text{Im} p \text{ donc } p(y_1) = y_1$. Puis, $q(y_1) = q(p(y_1)) = (q \circ p)(y_1) = 0$. De même, $y_2 \in \text{Im} q \text{ donc } q(y_2) = y_2$. Puis $p(y_2) = p(q(y_2)) = (p \circ q)(y_2) = 0$.

Ainsi, $(p+q)(y) = y_1 + y_2 = y$. Donc $y \in \text{Im}(p+q)$.

Ainsi, $\operatorname{Im} p + \operatorname{Im} q \subset \operatorname{Im}(p+q)$.

On a donc prouvé que Im(p+q) = Imp + Imq.

Justifions que cette somme est directe.

Soit $x \in \text{Im}(p) \cap \text{Im}(q)$.

On a:

$$0 = (p \circ q)(x) = p(q(x))$$

$$= p(x) \quad \text{car } x \in \text{Im}q$$

$$= x \quad \text{car } x \in \text{Im}q$$

Ainsi, $\operatorname{Im} p \cap \operatorname{Im} q = \{0\}.$

Donc, on a bien prouvé que $\text{Im}(p+q) = \text{Im}p \oplus \text{Im}q$.

Montrons $\operatorname{Ker}(p+q) = \operatorname{Ker}(p) \cap \operatorname{Ker}(q)$ par double inclusion :

• Soit $x \in \text{Ker}(p) \cap \text{Ker}(q)$, alors p(x) = q(x) = 0 donc (p+q)(x) = p(x) + q(x) = 0. Ainsi, $x \in \text{Ker}(p+q)$.

Donc $\operatorname{Ker}(p) \cap \operatorname{Ker}(q) \subset \operatorname{Ker}(p+q)$.

• Soit $x \in \text{Ker}(p+q)$, alors (p+q)(x) = p(x) + q(x) = 0. En composant à gauche par p, on obtient :

$$0 = (p \circ p)(x) + (p \circ q)(x) = p(x) \quad \text{car } p \circ q = 0$$

Donc $x \in \text{Ker}(p)$.

De même, en composant à gauche par q, on obtient que $x \in \text{Ker}(q)$.

Ainsi, $\operatorname{Ker}(p+q) \subset \operatorname{Ker}(p) \cap \operatorname{Ker}(q)$.

Finalement, on a bien prouvé que $\operatorname{Ker}(p+q) = \operatorname{Ker}(p) \cap \operatorname{Ker}(q)$.

Exercice 23. • On procède par double implication

• Supposons $\operatorname{Ker} p = \operatorname{Ker} q$.

On a $E = \operatorname{Im} p \oplus \operatorname{Ker} p$ et $E = \operatorname{Im} q \oplus \operatorname{Ker} q$ car p et q sont des projecteurs.

Soit $x \in \operatorname{Ker} q$. On a $(p \circ q)(x) = p(q(x)) = p(0) = 0$ et p(x) = 0 car $\operatorname{Ker} q = \operatorname{Ker} p$ et $x \in \operatorname{Ker} q$ donc $x \in \operatorname{Ker} p$.

Ainsi, $p \circ q(x) = p(x)$.

Soit $x \in \text{Im} q$. On a q(x) = x donc $(p \circ q)(x) = p(q(x)) = p(x)$.

Ainsi, $p \circ q$ et $p \in \mathcal{L}(E)$ et coïncident sur deux espaces supplémentaires donc ces applications sont égales.

Par symétrie entre p et q, on obtient de même, $q \circ p = q$.

Soit $x \in \text{Ker } p$. On a $q(x) = (q \circ p)(x) = q(p(x)) = q(0_E) = 0_E$. Ainsi, $x \in \text{ker } q$.

Donc, $\operatorname{Ker} p \subset \operatorname{Ker} q$.

Par symétrie, on obtient l'autre inclusion.

On a donc bien $\operatorname{Ker} p = \ker q$.

- Montrons de même la deuxième équivalence :
 - Supposons Im p = Im q.

On a $E = \operatorname{Im} p \oplus \operatorname{Ker} p$ et $E = \operatorname{Im} q \oplus \operatorname{Ker} q$ car p et q sont des projecteurs.

Soit $x \in \text{Ker } q$. On a q(x) = 0 et $(p \circ q)(x) = p(q(x)) = p(0) = 0$. Ainsi, $p \circ q(x) = q(x)$.

Soit $x \in \text{Im}q$. On a q(x) = x et $(p \circ q)(x) = p(q(x)) = p(x) = x$ car $x \in \text{Im}q = \text{Im}p$ et p et q sont des projecteurs.

Ainsi $(p \circ q)(x) = q(x)$.

Donc, $p \circ q$ et $q \in \mathcal{L}(E)$ et coïncident sur deux espaces supplémentaires donc ces applications sont égales. Par symétrie entre p et q, on obtient de même que $q \circ p = p$.

• Réciproquement, supposons que $p \circ q = q$ et que $q \circ p = p$.

Soit $x \in \text{Im}p$. On a p(x) = x donc $(q \circ p)(x) = q(p(x)) = q(x)$. Or, $q \circ p = p$. Ainsi, x = p(x) = q(x). Ainsi, $\text{Im}p \subset \text{Im}q$.

Par symétrie, on obtient l'autre inclusion.

On a donc bien Im p = Im q.

Exercice 24. Analyse du problème :

Supposons qu'il existe p un projecteur et g un automorphisme de E tels que $f=g\circ p.$

Un projecteur est déterminé par son image et son noyau.

Soit $x \in \text{Ker } f$ alors f(x) = 0 donc $(g \circ p)(x) = 0$. Ainsi, g(p(x)) = 0 donc $p(x) \in \text{Ker } g$. Or, g est bijectif donc injectif. Ainsi, $\text{Ker } g = \{0\}$. Ainsi, p(x) = 0 donc $x \in \text{Ker } p$.

Réciproquement, soit $x \in \ker p$. On a p(x) = 0 donc f(x) = g(p(x)) = g(0) = 0. Ainsi, $\ker f \subset \ker p$.

Finalement, $\operatorname{Ker} f = \operatorname{Ker} p$.

On va donc créer une projection sur un supplémentaire de $\operatorname{Ker} f$ par rapport à $\operatorname{Ker} f$.

Résolution:

Soit $(e_1, ..., e_k)$ une base de Ker f. On la complète en une base $(e_1, ..., e_n)$ de E et on notera $F = \text{Vect}(e_{k+1}, ..., e_n)$. Ainsi, on a $F \oplus \text{Ker } f = E$.

On a que $\tilde{f}: F \to \operatorname{Im} f$ $x \mapsto f(x)$ est un isomorphisme de F dans $\operatorname{Im} f$. En effet :

• Soit $y \in \text{Im} f$, il existe $x \in E$ tel que y = f(x).

Or, $F \oplus \ker f = E$. Donc il existe $(a, b) \in F \times \ker f$ tel que x = a + b.

Ainsi, $f(x) = f(a) + f(b) = f(a) = \tilde{f}(a)$ car $a \in F$.

Finalement $y = \hat{f}(a)$ avec $a \in F$.

Ainsi $\tilde{f}: F \to \operatorname{Im} f$ est surjectif.

• De plus, $\operatorname{Ker} \tilde{f} = F \cap \operatorname{Ker} f = \{0\}.$

Finalement, $\tilde{f}: F \to \text{Im} u$ est bien un isomorphisme.

Ainsi, $(f(e_{k+1}), ..., f(e_n))$ forme une base de Im f.

Pour tout $i \in [k+1, n]$, on pose $\epsilon_i = f(e_i)$.

On complète cette base $(\epsilon_{k+1},...,\epsilon_n)$ de Imf pour former une base de E. Soit $(\epsilon_1,...,\epsilon_n)$ cette nouvelle base de E.

Posons $G = \text{Vect}(\epsilon_1, ..., \epsilon_k)$.

On a $G \oplus \text{Im} f = E$.

Soit $g \in \mathcal{L}(E)$ l'unique application linéaire vérifiant :

$$\forall i \in [1, n], \ g(e_i) = \epsilon_i$$

g est bien définie (par l'image d'une base).

g transforme une base de E en une base de E donc g est bijective.

Ainsi, g est un automorphisme de E.

Soit p la projection sur F parallèlement à Ker f (ces espaces sont bien supplémentaires).

Pour prouver que $f = g \circ p$, il suffit de prouver que ces applications coïncident sur une base de E. Or :

$$\forall i \in [k+1, n], \ p(e_i) = e_i \quad \text{car } e_i \in F$$

Donc: $\forall i \in [k+1, n], (g \circ p)(e_i) = g(p(e_i)) = g(e_i) = \epsilon_i = f(e_i)$ par définition de ϵ_i . De plus,

$$\forall i \in [1, k], \ p(e_i) = 0$$

Donc: $\forall i \in [1, k], (g \circ p)(e_i) = g(0) = 0 = f(e_i) \text{ car } e_i \in \text{Ker } f.$

Ainsi, les endomorphisme f et $g \circ p$ coïncident sur une base de E donc $f = g \circ p$.

Nous avons donc prouvé qu'il existe q un automorphisme de E et p projecteur de E tels que $f = q \circ p$.

Exercice 25. • Montrons que T est linéaire.

Soient $f, g \in \mathcal{F}(\mathbb{R}, \mathbb{R})$, soient $\lambda, \mu \in \mathbb{R}$.

 $\forall x \in \mathbb{R}, \ T(\lambda f + \mu g)(x) = (\lambda f + \mu g)(-x) = \lambda f(-x) + \mu g(-x) = T(f)(x) + T(g)(x).$

Ainsi $T(\lambda f + \mu g) = \lambda T(f) + \mu T(g)$.

Donc T est bien linéaire.

- On a : $\forall f \in \mathcal{F}(\mathbb{R}, \mathbb{R}), \ T(f) \in \mathcal{F}(\mathbb{R}, \mathbb{R}).$ Ainsi, T est un endomorphisme de $\mathcal{F}(\mathbb{R}, \mathbb{R}).$
- Soit $f \in \mathcal{F}(\mathbb{R}, \mathbb{R})$, on a:

$$\forall x \in \mathbb{R}, (T \circ T)(f)(x) = T(T(f))(x) = T(f)(-x) = f(-(-x)) = f(x).$$

Donc $T \circ T = Id_{\mathcal{F}(\mathbb{R},\mathbb{R})}$ et T est la symétrie par rapport à $\mathcal{P} = \operatorname{Ker}(T - Id_E)$ parallèlement à $\mathcal{I} = \operatorname{Ker}(T + Id_E)$.

• Soit $f \in \mathcal{F}(\mathbb{R}, \mathbb{R})$.

$$f \in \mathcal{P} \iff T(f) = f$$

$$\iff \forall x \in \mathbb{R}, \ T(f)(x) = f(x)$$

$$\iff \forall x \in \mathbb{R}, f(-x) = f(x)$$

$$\iff f \text{ est paire.}$$

De même

$$f \in \mathcal{I} \iff T(f) = -f$$

$$\iff \forall x \in \mathbb{R}, \ T(f)(x) = -f(x)$$

$$\iff \forall x \in \mathbb{R}, f(-x) = -f(x)$$

$$\iff f \text{ est impaire.}$$

Ainsi, T est la symétrie par rapport à \mathcal{P} parallèlement à \mathcal{I} .

Remarque : on retrouve de cette manière que $\mathcal{F}(\mathbb{R},\mathbb{R}) = \mathcal{P} \oplus \mathcal{I}$ où \mathcal{P} (resp \mathcal{I}) désigne l'ensemble des fonctions paires (resp. impaires) de \mathbb{R} dans \mathbb{R} .

5 Rang d'une application linéaire

Exercice 26. Commençons par déterminer Im f.

Méthode 1:

Notons (e_1, e_2, e_3, e_4) la base canonique de \mathbb{R}^4 .

On a:

$$\operatorname{Im} f = \operatorname{Vect} (f(e_1), f(e_2), f(e_3), f(e_4)) = \operatorname{Vect} (f_1, f_2, f_3, f_4)$$

où
$$f_1 = (1, 1, 1), f_2 = (-1, 0, 1), f_3 = (1, 2, 3), f_4 = (1, -1, -1)$$
.

Méthode 2:

$$\operatorname{Im} f = \{(x - y + z + t, x + 2z - t, x + y + 3z - t), x, y, z, t \in \mathbb{R}\}$$

$$= \{x(1, 1, 1) + y(-1, 0, 1) + z(1, 2, 3) + t(1, -1, -1), x, y, z, t \in \mathbb{R}\}$$

$$= \operatorname{Vect} (f_1, f_2, f_3, f_4)$$

où $f_1 = (1, 1, 1), f_2 = (-1, 0, 1), f_3 = (1, 2, 3), f_4 = (1, -1, -1)).$

Il nous reste à déterminer le rang de la famille (f_1, f_2, f_3, f_4) .

(On sait déjà que $\operatorname{Im} f \subset \mathbb{R}^3$ ainsi $\operatorname{rg}(f_1, f_2, f_3, f_4) \leq 3$)

Soit $\lambda_1, \lambda_2, \lambda_3, \lambda_4 \in \mathbb{R}$.

$$\lambda_{1}f_{1} + \lambda_{2}f_{2} + \lambda_{3}f_{3} + \lambda_{4}f_{4} = 0_{\mathbb{R}^{3}}$$

$$\iff \begin{cases} \lambda_{1} - \lambda_{2} + \lambda_{3} + \lambda_{4} = 0 \\ \lambda_{1} + 2\lambda_{3} - \lambda_{4} = 0 \\ \lambda_{1} + \lambda_{2} + 3\lambda_{3} - \lambda_{4} = 0 \end{cases}$$

$$\iff \begin{cases} \lambda_{1} - \lambda_{2} + \lambda_{3} + \lambda_{4} = 0 \\ \lambda_{2} + \lambda_{3} - 2\lambda_{4} = 0 \\ 2\lambda_{2} + 2\lambda_{3} - 2\lambda_{4} = 0 \end{cases}$$

$$\iff \begin{cases} \lambda_{1} - \lambda_{2} + \lambda_{3} + \lambda_{4} = 0 \\ \lambda_{2} + \lambda_{3} - 2\lambda_{4} = 0 \end{cases}$$

$$\iff \begin{cases} \lambda_{1} - \lambda_{2} + \lambda_{3} + \lambda_{4} = 0 \\ 2\lambda_{4} = 0 \end{cases}$$

$$\iff \begin{cases} \lambda_{1} = -2\lambda_{3} \\ \lambda_{2} = -\lambda_{3} \\ \lambda_{4} = 0 \end{cases}$$

En prenant $\lambda_3 = 1$ et $\lambda_1 = -2$, $\lambda_2 = -1$, $\lambda_4 = 0$, on obtient $-2f_1 - f_2 + f_3 = 0$ donc $f_3 = 2f_1 - f_2$.

 $Vect (f_1, f_2, f_3, f_4) = Vect (f_1, f_2, f_4).$

De plus, en reprenant les équivalences précédentes avec $\lambda_3 = 0$, on obtient que (f_1, f_2, f_4) est une famille libre. Elle forme donc une base de Im f.

Ainsi, $\operatorname{rg}(f) = 3$.

Remarque : $\mathrm{Im} f \subset \mathbb{R}^3$ et ces deux espaces ont même dimension. Ainsi, $\mathrm{Im} f = \mathbb{R}^3$ et f est surjective.

Exercice 27. Commençons par déterminer Im f.

Méthode 1:

Notons (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 .

On a:

$$\operatorname{Im} f = \operatorname{Vect} (f(e_1), f(e_2), f(e_3)) = \operatorname{Vect} (f_1, f_2, f_3)$$

où
$$f_1 = (2, 1, -3), f_2 = (2, -3, 4), f_3 = (-2, 11, -18)$$
.

Méthode 2:

$$\operatorname{Im} f = \{ (2x + 2y - 2z, x - 3y + 11z, -3x + 4y - 18z), x, y, z \in \mathbb{R} \}$$
$$= \{ x(2, 1, -1) + y(2, -3, 4) + z(-2, 11, -18), x, y, z \in \mathbb{R} \}$$
$$= \operatorname{Vect} (f_1, f_2, f_3)$$

où $f_1 = (2, 1, -3), f_2 = (2, -3, 4), f_3 = (-2, 11, -18).$ Il nous reste à déterminer le rang de la famille (f_1, f_2, f_3) . Soit $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$.

$$\lambda_1 f_1 + \lambda_2 f_2 + \lambda_3 f_3 = 0_{\mathbb{R}^3}$$

$$\iff \begin{cases} 2\lambda_1 + 2\lambda_2 - 2\lambda_3 = 0 \\ \lambda_1 - 3\lambda_2 + 11\lambda_3 = 0 \\ -3\lambda_1 + 4\lambda_2 - 18\lambda_3 = 0 \end{cases}$$

$$\iff \begin{cases} \lambda_1 + \lambda_2 - \lambda_3 = 0 \\ -4\lambda_2 + 12\lambda_3 = 0 \\ 7\lambda_2 - 21\lambda_3 = 0 \end{cases}$$

$$\iff \begin{cases} \lambda_1 + \lambda_2 - \lambda_3 = 0 \\ \lambda_2 - 3\lambda_3 = 0 \end{cases}$$

$$\begin{cases} \lambda_1 = -2\lambda_3 \\ \lambda_2 = 3\lambda_3 \end{cases}$$

En prenant $\lambda_3 = 1$ et $\lambda_1 = -2$, $lambda_2 = 3$, on obtient $lambda_2 = 3 + 3f_2 + f_3 = 0$ donc $lambda_3 = 2f_1 - 3f_2$. Ainsi, $Vect (f_1, f_2, f_3) = Vect (f_1, f_2).$

 e_1 et e_2 ne sont pas colinéaires donc (f_1, f_2) est libre.

Elle forme donc une base de Img. Ainsi, rg(f) = 2.

Exercice 28 (Noyaux itérés).

1. soit $p \in \mathbb{N}$.

Soit $x \in K_p$. Alors, $f^p(x) = 0$ donc $f^{p+1}(x) = f(f^p(x)) = f(0) = 0$ et $x \in K_{p+1}$.

Ainsi, $K_p \subset K_{p+1}$.

Soit $y \in I_{p+1}$, il existe $x \in E$ tel que $y = f^{p+1}(x) = f^p(f(x))$ avec $f(x) \in E$.

Ainsi, $y \in I_p$ donc $I_{p+1} \subset I_p$.

2. Raisonnons par l'absurde et supposons que : $\forall r \in [0, n], K_r \neq K_{r+1}$. Alors, on aurait :

$$K_0 \subsetneq K_1 \subsetneq ...K_n \subsetneq K_{n+1}$$
.

Donc

$$\dim K_0 < \dim K_1 < ... < \dim K_p < ... < \dim K_n < \dim K_{n+1}$$

Montrons par récurrence que : $\forall l \in [0, n+1], \dim(K_l) \geq l$.

- Pour l=0, on a $K_0=\{x\in E, x=0\}=\{0\}$. Ainsi, $\dim(K_0)=0$ donc la propriété est vraie.
- Soit $l \in [0, n]$, supposons que dim $(K_l) \ge l$. On a : $\dim(K_{l+1}) > \dim(K_l)$ donc $\dim(K_{l+1}) > l$. Or, $\dim(K_{l+1}), l \in \mathbb{N}$ donc $\dim(K_{l+1}) \ge l+1$.
- On a donc prouvé par récurrence que $\forall l \in [1, n+1], \dim(K_l) \geq l$.

En particulier, on aurait dim $K_{n+1} \ge n+1$. Or, $K_{n+1} \subset E$ donc dim $K_{n+1} \le n$. Ainsi, $n+1 \le n$. Absurde. L'ensemble

$$\{p \in \mathbb{N} | p \le n \text{ et } K_p = K_{p+1} \}$$

est non vide.

Il admet donc un plus petit élément que l'on note r.

3. On sait déjà que $I_{r+1} \subset I_r$. De plus, par le théorème du rang :

$$\dim I_{r+1} = \dim E - \dim K_{r+1} = \dim E - \dim K_r = \dim I_r.$$

Ainsi, $I_{r+1} = I_r$.

- 4. Montrons par récurrence que : $\forall p \in \mathbb{N}, K_{p+r} = K_r$.
 - La propriété est immédiatement vraie pour p=0.
 - Soit $p \in \mathbb{N}$. Supposons que $K_{p+r} = K_r$.

On sait déjà que $K_{r+p} \subset K_{r+p+1}$ par le 1. Soit $x \in K_{r+p+1}$, alors $f^{r+p+1}(x) = 0$. Ainsi, $f^{r+1}(f^p(x)) = 0$. Donc $f^p(x) \in K_{r+1}$.

Or, $K_{r+1} = K_r$ donc $f^p(x) \in K_r$.

Ainsi, $f^r(f^p(x)) = 0$ donc $f^{r+p}(x)$.

Finalement, $x \in K_{r+p}$.

On a donc prouvé que $K_{r+p+1} = K_{r+p} = K_r$

• On a donc prouvé que : $\forall p \in \mathbb{N}, K_{r+p} = K_r$.

Soit $p \in \mathbb{N}$.

Soit $y \in I_{r+p}$, il existe $x \in E$ tel que $y = f^{r+p}(x) = f^r(f^p(x))$ avec $f^p(x) \in E$.

Ainsi, $y \in I_r$.

Donc : $\forall p \in \mathbb{N}, I_{p+r} \subset I_p$.

De plus, par le théorème du rang, on a :

$$dim I_{p+r} = \dim E - \dim K_{p+r} = \dim E - \dim K_r = \dim I_r.$$

Ainsi, par égalité des dimensions, $I_{p+r} = I_r$.

5. On sait déjà par le théorème du rang que dim $K_r + \dim I_r = \dim E$. Montrons que $K_r \cap I_r = \{0\}$. Soit $x \in K_r \cap I_r$. Comme $x \in I_r$, il existe $a \in E$ tel que $x = f^r(a)$. De plus, $0 = f^r(x) = f^{2r}(a)$. Ainsi, $a \in K_{2r} = K_r$ d'après la question précédente.

Donc $x = f^r(a) = 0$.

Ainsi, la somme est directe.

Finalement, on a bien prouvé que K_r et I_r sont supplémentaires.

Exercice 29. 1. Par le théorème du rang, on a dim (Ker u) + dim (Im u) = dim E.

Il suffit donc de prouver que la somme est directe.

Soit $y \in \operatorname{Ker} u \cap \operatorname{Im} u$.

Alors u(y) = 0. De plus, comme $y \in \text{Im} u$, il existe $x \in E$ tel que y = u(x).

De plus, $u^2(x) = u(u(x)) = u(0) = 0$ et $u^3(x) = u(0) = 0$.

Or, $u^3(x) + 2u(x) = 0$ donc 2u(x) = 0.

D'où y = 0.

Ainsi, $\operatorname{Ker} u \cap \operatorname{Im} u = \{0\}.$

Donc $\operatorname{Ker}(u) \oplus \operatorname{Im} u = E$.

- 2. Posons : \tilde{u} : $\operatorname{Im} u \to \operatorname{Im} u$ $x \mapsto u(x)$
 - \tilde{u} est bien définie car : $\forall x \in \text{Im} u, u(x) \in \text{Im} u$.
 - \tilde{u} est linéaire car u l'est.
 - On a Ker $\tilde{u} = \text{Ker } u \cap \text{Im} u = \{0\}$ car Im u et Ker u sont supplémentaires. Ainsi, u est injective.
 - Soi $y \in \text{Im} u$, il existe $x \in E$ tel que y = u(x).

De plus, $\operatorname{Ker} u \oplus \operatorname{Im} u = E$ donc il existe $(a, b) \in \operatorname{Ker} u \times \operatorname{Im} u$ tel que x = a + b.

On a alors u(x) = u(a) + u(b) = u(b).

Ainsi, y = u(b) avec $b \in \text{Im} u$.

Donc $y = \tilde{u}(b)$.

Ainsi, \tilde{u} est surjective.

• Finalement, \tilde{u} est bien un automorphisme de Imu.

Exercice 30. On a E = Ker(f) + Ker(g) = Im(f) + Im(g).

Ainsi $n = \dim (\operatorname{Ker} f + \operatorname{Ker} g) = \dim (\operatorname{Ker} f) + \dim (\operatorname{Ker} g) - \dim (\operatorname{Ker} f \cap \operatorname{Ker} g)$, d'après la formule de Grassmann. De même, $n = \dim (\operatorname{Im} f + \operatorname{Im} g) = \dim (\operatorname{Im} f) + \dim (\operatorname{Im} g) - \dim (\operatorname{Im} f \cap \operatorname{Im} g)$, toujours d'après la formule de Grassmann. On a donc en ajoutant les deux égalités précédentes :

$$2n = \dim\left(\operatorname{Ker}\left(f\right)\right) + \dim\left(\operatorname{Ker}\left(g\right)\right) - \dim\left(\operatorname{Ker}\left(f\right)\cap\operatorname{Ker}\left(g\right)\right) + \operatorname{rg}\left(f\right) + \operatorname{rg}\left(g\right) - \dim\left(\operatorname{Im}\left(f\right)\cap\operatorname{Im}\left(g\right)\right).$$

Or, d'après le théorème du rang, on a : $\dim(\operatorname{Ker} f) + \operatorname{rg} f = n$ et $\dim(\operatorname{Ker} g) + \operatorname{rg} g = n$. Ainsi, on obtient :

$$2n = 2n - \dim (\operatorname{Ker}(f) \cap \operatorname{Ker}(g)) - \dim (\operatorname{Im}(f) \cap \operatorname{Im}(g))$$

Donc

$$\dim (\operatorname{Ker}(f) \cap \operatorname{Ker}(g)) + \dim (\operatorname{Im}(f) \cap \operatorname{Im}(g)) = 0.$$

Comme ce sont deux entiers positifs, on a donc dim $(\text{Ker}(f) \cap \text{Ker}(g)) = \dim(\text{Im}(f) \cap \text{Im}(g)) = 0$.

Ainsi, $\operatorname{Ker}(f) \cap \operatorname{Ker}(g) = \{0\}$ et $\operatorname{Im}(f) \cap \operatorname{Im}(g) = \{0\}$.

Donc les deux sommes sont directes.

Exercice 31. 1. Montrons que $\text{Im}(f+g) \subset \text{Im}(f) + \text{Im}(g)$.

Soit $y \in \text{Im}(f+g)$, il existe $x \in E$ tel que y = (f+g)(x) = f(x) + g(x).

Donc $y \in \text{Im} f + \text{Im} g$.

Ainsi, $\operatorname{Im}(f+g) \subset \operatorname{Im}(f) + \operatorname{Im}(g)$.

Donc $\operatorname{rg}(f+g) = \dim(\operatorname{Im}(f+g)) \le \dim(\operatorname{Im} + \operatorname{Im} g)$.

D'après la formule de Grassmann, on obtient :

$$\dim\left(\operatorname{Im} f + \operatorname{Im} g\right) = \dim\left(\operatorname{Im} f\right) + \dim\left(\operatorname{Im} g\right) - \dim\left(\operatorname{Im} f \cap \operatorname{Im} g\right) = \operatorname{rg} f + \operatorname{rg} g - \dim\left(\operatorname{Im} f \cap \operatorname{Im} g\right) \le \operatorname{rg} f + \operatorname{rg} g.$$

Finalement, on a bien prouvé que : $\operatorname{rg}(f+g) \leq \operatorname{rg} f + \operatorname{rg} g$.

2. D'après le 1.,

$$rg(f) = rg(f + g - g)$$

$$\leq rg(f + g) + rg(-g)$$

De plus, $\operatorname{rg}(-g) = \dim(\operatorname{Im}(-g))$. Or, $\operatorname{Im}(-g) = \{-g(x), x \in E\} = \{g(-x), x \in E\} = \{g(y), y \in E\} = \operatorname{Im}g$. Ainsi, $\operatorname{rg}(g) = \operatorname{rg}(-g)$. Donc:

$$\operatorname{rg}(f) \le \operatorname{rg}(f+g) + \operatorname{rg}(g)$$

Donc $\operatorname{rg}(f) - \operatorname{rg}(g) \leq \operatorname{rg}(f + g)$. De même,

$$rg(g) = rg(f + g - f)$$

$$\leq rg(f + g) + rg(-f)$$

$$\leq rg(f + g) + rg(f)$$

Donc $\operatorname{rg}(g) - \operatorname{rg}(f) \le \operatorname{rg}(f+g)$.

Finalement, on obtient : $|\operatorname{rg}(f) - \operatorname{rg}(g)| \le \operatorname{rg}(f+g)$.

Exercice 32. • Soit $y \in \text{Im}(g \circ f)$, alors il existe $x \in E$ tel que $y = (g \circ f)(x) = g(f(x))$ avec $f(x) \in F$.

Ainsi, $y \in \text{Im}g$.

Donc $\operatorname{Im}(g \circ f) \subset \operatorname{Im} g$.

Ainsi, dim $(\operatorname{Im}(g \circ f)) \leq \operatorname{dim}(\operatorname{Im} g)$ d'où rg $(g \circ f) \leq \operatorname{rg}(g)$.

• Soit $x \in \text{Ker } f$, alors f(x) = 0 donc $(g \circ f)(x) = g(f(x)) = g(0) = 0$.

Ainsi, $x \in \text{Ker}(q \circ f)$.

Donc Ker $f \subset \text{Ker}(g \circ f)$

D'où dim Ker $f \leq \dim \operatorname{Ker} (g \circ f)$.

Donc par le théorème du rang, on obtient $n - \operatorname{rg}(f) \leq n - \operatorname{rg}(g \circ f)$.

D'où $\operatorname{rg}(g \circ f) \leq \operatorname{rg}(f)$.

- Finalement, $\operatorname{rg}(g \circ f) \leq \min(\operatorname{rg}(g), \operatorname{rg}(f))$.
- Posons $\tilde{g}: \operatorname{Im} f \to G$ $x \mapsto g(x)$
 - Soit $x \in \text{Ker } \tilde{g}$, alors $\tilde{g}(x) = 0$ donc g(x) = 0. D'où $\text{Ker } (\tilde{g}) \subset \text{Ker } g$. Remarque : on a en fait $\text{Ker } \tilde{g} = \text{Ker } g \cap \text{Im} f$ (inutile de prouver l'égalité pour l'exercice). Ainsi,

$$\dim (\operatorname{Ker} \tilde{g}) \le \dim (\operatorname{Ker} g)$$
$$\le n - \operatorname{rg} (g)$$

• Soit $y \in \text{Im}\tilde{g}$, alors, il existe $x \in \text{Im}f$ tel que $y = \tilde{g}(x) = g(x)$. Or, $x \in \text{Im}f$ donc il existe $z \in E$ tel que x = f(z) donc $y = g(f(z)) \in \text{Im}(g \circ f)$. Ainsi, $\text{Im}\tilde{g} \subset \text{Im}g \circ f$).

Remarque : on a en fait $\text{Im}\tilde{g} = \text{Im}(g \circ f)$ (inutile de prouver l'égalité pour l'exercice). Donc $\text{rg}(\tilde{g}) \leq \text{rg}(g \circ f)$.

• Or, d'après le théorème du rang, on a :

$$\dim (\operatorname{Im} f) = \dim (\operatorname{Ker} \tilde{g}) + \operatorname{rg} (\tilde{g})$$

 $\operatorname{Donc}:$

$$\operatorname{rg}(f) \le n - \operatorname{rg}(g) + \operatorname{rg}(g \circ f)$$

D'où:

$$\operatorname{rg}(f) + \operatorname{rg}(g) - n \le \operatorname{rg}(g \circ f)$$

• On a donc prouvé que : $\operatorname{rg}(f) + \operatorname{rg}(g) - n\operatorname{rg}(g \circ f) \leq \min(\operatorname{rg} f, \operatorname{rg} g)$.

Exercice 33. 1. Raisonnons par double implication.

• Supposons qu'il existe $u \in \mathcal{L}(E)$ tel que $\operatorname{Im} u = \operatorname{Ker} u$. Alors d'après le théorème du rang :

$$\dim E = \operatorname{rg} u + \dim \operatorname{Ker} u = 2\operatorname{rg} u$$

donc n est pair.

• Réciproquement, supposons que n est pair, il existe $p \in \mathbb{N}$ tel que n = 2p. Si p = 0 l'endomorphisme nul convient.

Supposons désormais p > 0.

Soit $\mathcal{B} = (e_1, ..., e_{2p})$ une base de E.

Soit u l'unique application de $\mathcal{L}(E)$ telle que :

$$\forall i \in [1, p], \ u(e_i) = 0_F$$

$$\forall i \in [1, p], \ u(e_{i+p}) = e_i$$

On a Vect $(e_1, ..., e_p) \subset \text{Im} u$ et Vect $(e_1, ..., e_p) \subset \text{Ker } u$.

De plus, la famille $(e_1, ..., e_p)$ est libre (sous famille d'une famille libre).

Ainsi, dim $\text{Im} u \geq p$ et dim $\text{Ker } u \geq p$.

Par le théorème du rang, on a $2p = \dim(E) = \operatorname{rg} u + \dim(\operatorname{Ker} u) \ge 2p$.

Ainsi, les inégalités précédentes sont des égalités.

Donc dim $(\operatorname{Im} u) = p$ et dim $\operatorname{Ker} u = p$.

Par inclusion et égalité des dimensions, on a : $\operatorname{Im} u = \operatorname{Vect}(e_1, ..., e_p) = \operatorname{Ker} u$.

2. Soit un tel $u \in \mathcal{L}(E)$ tel que Im(u) = Ker(u).

Notons n = 2p avec $p \in \mathbb{N}$.

Soit $(f_1, ..., f_p)$ une base de Im u = Ker u.

Il existe $e_1, ..., e_p \in E$ tels que : $\forall i \in [1, p], u(e_i) = f_i$.

Montrons que $(e_1, ..., e_p, f_1, ..., f_p)$ est une base de E.

Il s'agit d'une famille de 2p = n vecteurs et dim (E) = n.

Il suffit donc de prouver que cette famille est libre.

Soit
$$\lambda_1, ..., \lambda_p, \mu_1, ..., \mu_p \in \mathbb{K}$$
 tels que $\sum_{i=1}^p \lambda_i e_i + \sum_{i=1}^p \mu_i f_i = 0$.

En appliquant u, on obtient alors par linéarité de u: $\sum_{i=1}^{p} \lambda_i u(e_i) + \sum_{i=1}^{p} \mu_i u(f_i) = 0$.

Or, $f_1, ..., f_p \in \operatorname{Ker} u$.

Donc $\sum_{i=1}^{p} \lambda_i u(e_i) = 0$ d'où $\sum_{i=1}^{p} \lambda_i f_i = 0$ (par définition des f_i). Donc : $\forall i \in [\![1,n]\!], \ \lambda_i = 0$ car $(f_1,...,f_p)$ est une base de Imu donc est une famille libre. On a alors : $\sum_{i=1}^{p} \mu_i f_i = 0$. Or, $(f_1,...,f_p)$ est libre donc : $\forall i \in [\![1,n]\!], \ \mu_i = 0$.

Ainsi, $(e_1, ..., e_p, f_1, ..., f_p)$ est libre et constitue donc une base de E.

Finalement, on a bien prouvé que $(e_1, ..., e_p, u(e_1), ..., u(e_p))$ est une base de E de la forme voulue.

• Par le théorème du rang, la condition $\dim F + \dim G = \dim E$ est nécessaire. Exercice 34.

• Montrons qu'elle est aussi suffisante.

Supposons que $\dim F + \dim G = \dim E$.

Soit H un supplémentaire de G dans E.

On a : $\dim(E) = \dim(H) + \dim(G)$ d'où $\dim H = \dim F = p$.

Soient $(e_1, ..., e_n)$ une base de E telle que $(e_1, ..., e_p)$ soit base de H et $(e_{p+1}, ..., e_n)$ base de G.

 $((e_1,...,e_n)$ est une base de E adaptée à $H \oplus G = E)$.

Soit $(f_1, ..., f_p)$ une base de F.

Soit u l'unique application de $\mathcal{L}(E)$ telle que :

$$\forall i \in [1, p], \ u(e_i) = f_i \text{ et } \forall i \in [p+1, n], \ u(e_i) = 0$$

Par construction, on a : $F \subset \text{Im} u$ et $G \subset \text{Ker } u$.

Ainsi, $\dim F \leq \operatorname{rg}(u)$ et $\dim G \leq \dim \operatorname{Ker} u$.

D'où par le théorème du rang, on a : $\dim(E) = \dim F + \dim G \le \dim(\operatorname{Im} u) + \dim(\operatorname{Ker} u) = \dim(E)$.

Ainsi, les inégalités précédentes sont donc des égalités.

Ainsi, $\dim F = \operatorname{rg} u$ et $\dim G = \dim \operatorname{Ker} u$.

Par inclusions et égalités des dimensions, on en déduit que F = Im u et G = Ker u..

Ainsi, il existe $u \in \mathcal{L}(E)$ tel que $F = \operatorname{Im} u$ et $G = \operatorname{Ker} u$ si et seulement si $\dim(F) + \dim(G) = \dim(E)$.