

Agenda

- The Problem
- Methodology
- Conclusions & Suggestions

The Problem

- Companies lose \$1.6 trillion per year due to customer churn!
- It costs 5 times more to acquire new customers than retaining an existing one
- The more customers a business retains, the more revenue it makes!
- Customers at high risk of churning, represent a huge additional potential revenue source

Analyze and predict customer churn

"There is a big difference between a satisfied customer and a loyal customer."

Shep Hyken

"If your customer retention is poor then nothing else matters."

Brian Balfour

Methodology

Performance

Measurements

Suggestions

Model Training

Model Scoring

Feature Importance

Data Wrangling

Feature Engineering

Data Processing

Raw Data

Feature Engineering

Data Wrangling

Processed Data

Features Used

Total collected points (Sum_collect_points)

Number of times a customer redeemed (Sum_redeem)

Years passed since customer's registration to the program (Years_in_the_program)

Months passed since customer's last action (Months_since_last_transaction)

✓ Target Feature: Customer's lapsed status (State)

0 = Active

1 = Lapsec

Model Building

Data Splitting:

- 80% training, 20% testing
- Stratified sampling based on target variable (i.e. State)

Model Training:

Binary classification problem (Active, Lapsed)

Two-Class Boosted Decision Tree

Model Building

Two-Class Boosted Decision Tree:

- ✓ Non-parametrical method
- Classify customers to active & lapsed
- Hyper-parameter tuning
- Feature Importance
- Score Model
- Model Evaluation
- Model Deployment

Hyper-parameters	Values
Maximum number of leaves per tree	20
Minimum number of samples per leaf node	10
Learning rate	0.2
Number of trees constructed	300

Permutation Feature Importance

More customers lapsed identified, more unnecessary retention costs saved
 Main performance metric used: Recall

- Month's passed since customer's last action
 - ✓ Most important feature for classification
 - ✓ Most customers collected or redeemed points less than 2 months ago
- ➤ All other features seem to have insignificant effect

Model Evaluation

From confusion matrix:

✓ Good classifier (values accumulated on the diagonal)

Lapsed 409 93 Active 90 408

From other typical performance metrics:

✓ High accuracy, precision, recall, AUC

Accuracy	81.7% (of customers correctly classified)				
Precision	81.5% (of predicted lapsed customers correctly classified)				
Recall	82% (of actual lapsed customers correctly classified)				
AUC	.895 (higher the AUC, better the classifier)				

✓ Good classification model (will generalize well to out-of-sample data)

Model Deployment

- Deploy model to a given batch of observations
- Use model to generate customer predictions (active, lapsed in the next 12 months) based on their previous behavior

sum_collect	sum_redeem	sum_collect_ points	years_in_the_ program	months_since_last_t ransaction	Scored Labels	Scored Probabilities
13	0	1,269	19	1	0	.0071
6	0	2,890	10	10	1	.9998
2	0	422	7	9	1	.9999
7	1	2,690	16	1	0	.0144
7	0	211	2	3	0	.4053

<u>Customers whose last action (collection or redemption) was:</u>

- more than 9 months ago, have a huge probability to lapse (more than 99%).
- one month ago, have a very small probability to lapse (about 1%).

Conclusions

- About 1 out of 2 customers were lapsed customers
- 82% of the lapsed customers correctly identified via the model
- Months passed since customer's last action was the only feature that revealed an evident pattern for customer churn probabilities (also suggested from PFI technique)
- The fewer the months passed without a transaction the more loyal the customer
- The best customers are those who are active on a monthly basis
- Customers who are active quarterly are at a high risk of churning

Suggestions

- Keep the most loyal customers as satisfied as possible
- Reward the more active customers
- Provide incentives to customers who are active once per quarter or per trimester to prevent them from lapsing (e.g. discounts, special offers)
- Save retention costs from customers who are very likely to lapse
- ✓ <u>Note</u>: For a successful retention campaign, the decision threshold for identifying a lapsed customer should be decided by the management team or calculated from the profit matrix

