Closing the Image of the Process Interpretation of 1-Free Regular Expressions Under Bisim. Collapse

Clemens Grabmayer

https://clegra.github.io

Department of Computer Science

à S

S GRAN SASSO SCIENCE INSTITUTE

SCHOOL OF ADVANCED STUDIES
Scuola Universitaria Superiore

L'Aquila, Italy

TERMGRAPH 2024

Luxembourg April 7, 2024 overview 1-free reg. expr's proc-int LEE extraction compact proc-int refined extraction outloo

Overview

- ▶ 1-free regular expressions (with unary/binary star)
- process interpretation/semantics of regular expressions
 - expressible/not expressible process graphs

overview 1-free reg. expr's proc-int LEE extraction compact proc-int refined extraction outloo

Overview

- ▶ 1-free regular expressions (with unary/binary star)
- process interpretation/semantics of regular expressions
 - expressible/not expressible process graphs
- ▶ loop existence and elimination property (LEE) (G/Fokkink, 2020)
 - ▶ interpretation/extraction correspondences with 1-free reg. expr's
 - LEE is preserved under bisimulation collapse
- ▶ Q: Image of process interpretation of 1-free regular expressions closed under bisimulation collapse?

1-free reg. expr's proc-int LEE extraction compact proc-int refined extraction outloo

Overview

overview

- ▶ 1-free regular expressions (with unary/binary star)
- process interpretation/semantics of regular expressions
 - expressible/not expressible process graphs
- ▶ loop existence and elimination property (LEE) (G/Fokkink, 2020)
 - ▶ interpretation/extraction correspondences with 1-free reg. expr's
 - LEE is preserved under bisimulation collapse
- Q: Image of process interpretation of 1-free regular expressions closed under bisimulation collapse?
 - ▶ A1: No. But ...
- compact process interpretation
- refined expression extraction
 - ▶ A2: compact process interpretation is image-closed under collapse
- outlook: consequences

Regular expressions over alphabet A with unary

$$e, e_1, e_2 := \mathbf{0}$$

$$e_1 e_1, e_2 := 0 \mid a \mid e_1 + e_2 \mid e_1 \cdot e_2 \mid e^*$$

(for $a \in A$).

```
Definition ( \sim Copi–Elgot–Wright, 1958) 
Regular expressions over alphabet A with unary Kleene star: e, e_1, e_2 := 0 \mid a \mid e_1 + e_2 \mid e_1 \cdot e_2 \mid e^* (for a \in A).
```

- **>** symbol **0** instead of \emptyset , symbol **1** instead of $\{\emptyset\}$ and ϵ
- with unary Kleene star *: 1 is definable as 0*

Definition (~ Kleene, 1951, ~ Copi-Elgot-Wright, 1958)

Regular expressions over alphabet A with unary / binary Kleene star:

$$e, e_1, e_2 := 0 \mid a \mid e_1 + e_2 \mid e_1 \cdot e_2 \mid e^*$$
 (for $a \in A$).
 $e, e_1, e_2 := 0 \mid 1 \mid a \mid e_1 + e_2 \mid e_1 \cdot e_2 \mid e_1^{*}e_2$ (for $a \in A$).

- ▶ symbol $\mathbf{0}$ instead of \varnothing , symbol $\mathbf{1}$ instead of $\{\varnothing\}$ and ϵ
- with unary Kleene star *: 1 is definable as 0*

Definition (~ Kleene, 1951, ~ Copi–Elgot–Wright, 1958)

Regular expressions over alphabet A with unary / binary Kleene star:

$$e, e_1, e_2 := 0 \mid a \mid e_1 + e_2 \mid e_1 \cdot e_2 \mid e^*$$
 (for $a \in A$).
 $e, e_1, e_2 := 0 \mid 1 \mid a \mid e_1 + e_2 \mid e_1 \cdot e_2 \mid e_1^{*}e_2$ (for $a \in A$).

- ▶ symbol $\mathbf{0}$ instead of \emptyset , symbol $\mathbf{1}$ instead of $\{\emptyset\}$ and ϵ
- with unary Kleene star *: 1 is definable as 0*
- ▶ with binary Kleene star [®]: 1 is not definable (in its absence)

Definition (~ Kleene, 1951, ~ Copi-Elgot-Wright, 1958)

Regular expressions over alphabet A with unary / binary Kleene star:

$$e, e_1, e_2 := 0 \mid 1 \mid a \mid e_1 + e_2 \mid e_1 \cdot e_2 \mid e^*$$
 (for $a \in A$).
 $e, e_1, e_2 := 0 \mid 1 \mid a \mid e_1 + e_2 \mid e_1 \cdot e_2 \mid e_1^{\otimes} e_2$ (for $a \in A$).

- ▶ symbol $\mathbf{0}$ instead of \emptyset , symbol $\mathbf{1}$ instead of $\{\emptyset\}$ and ϵ
- with unary Kleene star *: 1 is definable as 0*
- ▶ with binary Kleene star [®]: 1 is not definable (in its absence)

Definition (~ Kleene, 1951, ~ Copi-Elgot-Wright, 1958)

Regular expressions over alphabet A with unary / binary Kleene star:

$$e, e_1, e_2 := 0 \mid 1 \mid a \mid e_1 + e_2 \mid e_1 \cdot e_2 \mid e^*$$
 (for $a \in A$).
 $e, e_1, e_2 := 0 \mid 1 \mid a \mid e_1 + e_2 \mid e_1 \cdot e_2 \mid e_1^{\otimes} e_2$ (for $a \in A$).

- **>** symbol ${\bf 0}$ instead of \varnothing , symbol ${\bf 1}$ instead of $\{\varnothing\}$ and ϵ
- with unary Kleene star *: 1 is definable as 0*
- ▶ with binary Kleene star [®]: 1 is not definable (in its absence)

Definition

1-free regular expressions over alphabet A with

binary Kleene star:

$$f, f_1, f_2 := 0 \mid a \mid f_1 + f_2 \mid f_1 \cdot f_2 \mid f_1^{\otimes} f_2$$
 (for $a \in A$).

Definition (~ Kleene, 1951, ~ Copi-Elgot-Wright, 1958)

Regular expressions over alphabet A with unary / binary Kleene star:

$$e, e_1, e_2 := 0 \mid 1 \mid a \mid e_1 + e_2 \mid e_1 \cdot e_2 \mid e^*$$
 (for $a \in A$).
 $e, e_1, e_2 := 0 \mid 1 \mid a \mid e_1 + e_2 \mid e_1 \cdot e_2 \mid e_1^{\otimes} e_2$ (for $a \in A$).

- ▶ symbol $\bf{0}$ instead of \varnothing , symbol $\bf{1}$ instead of $\{\varnothing\}$ and ϵ
- with unary Kleene star *: 1 is definable as 0*
- ▶ with binary Kleene star [®]: 1 is not definable (in its absence)

Definition

1-free regular expressions over alphabet A with unary/binary Kleene star:

$$f, f_1, f_2 := 0 \mid a \mid f_1 + f_2 \mid f_1 \cdot f_2 \mid (f_1^*) \cdot f_2$$
 (for $a \in A$),
 $f, f_1, f_2 := 0 \mid a \mid f_1 + f_2 \mid f_1 \cdot f_2 \mid f_1^* \cdot f_2$ (for $a \in A$).

Process interpretation $P(\cdot)$ of regular expressions (Milner, 1984)

$$0 \stackrel{P}{\longmapsto} \operatorname{deadlock} \delta$$
, no termination $1 \stackrel{P}{\longmapsto} \operatorname{empty-step} \operatorname{process} \epsilon$, then terminate $a \stackrel{P}{\longmapsto} \operatorname{atomic} \operatorname{action} a$, then terminate

Process interpretation $P(\cdot)$ of regular expressions (Milner, 1984)

Process interpretation $P(\cdot)$ of regular expressions (Milner, 1984)

```
0 \stackrel{P}{\longmapsto} \text{deadlock } \delta, no termination
       1 \stackrel{P}{\longmapsto} empty-step process \epsilon, then terminate
        a \stackrel{P}{\longmapsto} atomic action a, then terminate
e_1 + e_2 \xrightarrow{P}  (choice) execute P(e_1) or P(e_2)
e_1 \cdot e_2 \stackrel{P}{\longmapsto} (sequentialization) execute P(e_1), then P(e_2)
      e^* \stackrel{P}{\longmapsto} (iteration) repeat (terminate or execute P(e))
 e_1 \stackrel{\otimes}{=} e_2 \stackrel{P}{\longmapsto} (iteration-exit) repeat (terminate or execute P(e_1)),
                                              then P(e_2)
```

Process semantics $[\cdot]_P$ of regular expressions (Milner, 1984)

0
$$\stackrel{P}{\longmapsto}$$
 deadlock δ , no termination

1 $\stackrel{P}{\longmapsto}$ empty-step process ϵ , then terminate

 $a \stackrel{P}{\longmapsto}$ atomic action a , then terminate

 $e_1 + e_2 \stackrel{P}{\longmapsto}$ (choice) execute $P(e_1)$ or $P(e_2)$
 $e_1 \cdot e_2 \stackrel{P}{\longmapsto}$ (sequentialization) execute $P(e_1)$, then $P(e_2)$
 $e^* \stackrel{P}{\longmapsto}$ (iteration) repeat (terminate or execute $P(e_1)$),

 $e_1 \stackrel{P}{\otimes} e_2 \stackrel{P}{\longmapsto}$ (iteration-exit) repeat (terminate or execute $P(e_1)$),

then $P(e_2)$

$$P(\overbrace{(a\cdot(c\cdot a+a\cdot(b+b\cdot a))^*)\cdot 0}^{f})$$

$$P(\overbrace{(a\cdot(c\cdot a+a\cdot(b+b\cdot a))^*)\cdot 0})$$

$$P(\overbrace{(a\cdot(c\cdot a+a\cdot(b+b\cdot a))^*)\cdot 0})$$

$$P(\overbrace{(a \cdot (c \cdot a + a \cdot (b + b \cdot a))^*) \cdot 0}) P(\underbrace{a \cdot (c \cdot a + a \cdot (b + b \cdot a))^*) \cdot 0})$$

$$c$$
 a
 b
 a
 b
 b

$$P((a \cdot (c \cdot a + a \cdot (b + b \cdot a))^*) \cdot 0)$$

$$P(a \cdot (c \cdot a + a \cdot (b + b \cdot a))^*) \cdot 0)$$

not P-expressible **not** $\llbracket \cdot \rrbracket_P$ -expressible

not P-expressible **not** $\llbracket \cdot \rrbracket_P$ -expressible

not P-expressible **not** $\llbracket \cdot \rrbracket_P$ -expressible

P-expressible

 $[\cdot]_{P}$ -expressible

 $[\cdot]_{P}$ -expressible

not *P*-expressible **not** $[\cdot]_P$ -expressible

P-expressible $[\cdot]_{P}$ -expressible

 $[\cdot]_{P}$ -expressible

$$\frac{e_i \xrightarrow{a} e'_i}{a \xrightarrow{a} 1} \qquad \frac{e_i \xrightarrow{a} e'_i}{e_1 + e_2 \xrightarrow{a} e'_i} \quad (i \in \{1, 2\})$$

$$\frac{e_i \xrightarrow{a} e'_i}{e_1 + e_2 \xrightarrow{a} e'_i} (i \in \{1, 2\})$$

$$\frac{e \xrightarrow{a} e'}{e^* \xrightarrow{a} e' \cdot e^*}$$

$$\frac{e_{i} \Downarrow}{(e_{1} + e_{2}) \Downarrow} (i \in \{1, 2\}) \qquad \frac{e_{1} \Downarrow}{(e_{1} \cdot e_{2}) \Downarrow} \qquad \frac{e^{*} \Downarrow}{(e^{*}) \Downarrow}$$

$$\frac{e_{i} \stackrel{a}{\rightarrow} e'_{i}}{e_{1} + e_{2} \stackrel{a}{\rightarrow} e'_{i}} (i \in \{1, 2\})$$

$$\frac{e \stackrel{a}{\rightarrow} e'}{e^{*} \stackrel{a}{\rightarrow} e' \cdot e^{*}}$$

$$\frac{e_{i} \Downarrow}{(e_{1} + e_{2}) \Downarrow} (i \in \{1, 2\}) \qquad \frac{e_{1} \Downarrow}{(e_{1} \cdot e_{2}) \Downarrow} \qquad \frac{e^{*} \Downarrow}{(e^{*}) \Downarrow}$$

$$\frac{e_{i} \stackrel{a}{\rightarrow} e'_{i}}{e_{1} + e_{2} \stackrel{a}{\rightarrow} e'_{i}} (i \in \{1, 2\})$$

$$\frac{e_{1} \stackrel{a}{\rightarrow} e'_{1}}{e_{1} \cdot e_{2} \stackrel{a}{\rightarrow} e'_{1} \cdot e_{2}} \qquad \frac{e_{1} \Downarrow}{e_{1} \cdot e_{2} \stackrel{a}{\rightarrow} e'_{2}} \qquad \frac{e^{*} \stackrel{a}{\rightarrow} e'}{e^{*} \stackrel{a}{\rightarrow} e' \cdot e^{*}}$$

Definition (Transition system specification \mathcal{T})

$$\frac{e_{i} \Downarrow}{(e_{1} + e_{2}) \Downarrow} \stackrel{(i \in \{1,2\})}{\underbrace{(e_{1} \otimes e_{2}) \Downarrow}} \frac{e_{1} \Downarrow}{(e_{1} \otimes e_{2}) \Downarrow} \frac{e_{2} \Downarrow}{(e^{*}) \Downarrow}$$

$$\frac{e_{i} \stackrel{a}{\rightarrow} e'_{i}}{e_{1} + e_{2} \stackrel{a}{\rightarrow} e'_{i}} \stackrel{(i \in \{1,2\})}{e_{1} + e_{2} \stackrel{a}{\rightarrow} e'_{i}}$$

$$\frac{e_{1} \stackrel{a}{\rightarrow} e'_{1}}{e_{1} \otimes e_{2} \stackrel{a}{\rightarrow} e'_{1} \otimes e_{2}} \frac{e_{1} \Downarrow}{e_{1} \otimes e_{2} \stackrel{a}{\rightarrow} e'_{2}} \frac{e^{*} \stackrel{a}{\rightarrow} e'}{e^{*} \stackrel{a}{\rightarrow} e' \otimes e^{*}}$$

Definition

The process (graph) interpretation P(e) of a regular expression e:

 $P(e) := labeled transition graph generated by e by derivations in <math>\mathcal{T}$.

Interpretation/extraction correspondences with LEE

(← G/Fokkink 2020, G 2021)

(Int) $_{P}^{(+)}$: P-expressible graphs have the structural property LEE Process interpretations P(e) of 1-free regular expressions e are finite process graphs that satisfy LEE.

Interpretation/extraction correspondences with LEE

(← G/Fokkink 2020, G 2021)

```
(Int)_{P}^{(+)}: P-expressible graphs have the structural property LEE Process interpretations P(e) of 1-free regular expressions e are finite process graphs that satisfy LEE.
```

```
(Extr)<sub>P</sub>: LEE implies \llbracket \cdot \rrbracket_{P}-expressibility

From every finite process graph G with LEE a regular expression e can be extracted such that G \hookrightarrow P(e).
```

Interpretation/extraction correspondences with LEE

(← G/Fokkink 2020, G 2021)

```
(Int)_{P}^{(+)}: P-expressible graphs have the structural property LEE Process interpretations P(e) of 1-free regular expressions e are finite process graphs that satisfy LEE.
```

(Extr)_P: LEE implies $\llbracket \cdot \rrbracket_{P}$ -expressibility

From every finite process graph G with LEE a regular expression e can be extracted such that $G \hookrightarrow P(e)$.

(Coll): LEE is preserved under collapse

The class of finite process graphs with LEE is closed under bisimulation collapse.

view 1-free reg. expr's proc-int LEE extraction compact proc-int refined extraction outloo

Loop charts (interpretations of innermost iterations)

Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

A chart is a loop chart if:

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

A chart is a loop chart if:

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

A chart is a loop chart if:

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

A chart is a loop chart if:

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

A chart is a loop chart if:

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

A chart is a loop chart if:

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

A chart is a loop chart if:

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

A chart is a loop chart if:

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

(L1),(L2)

(L1),(L2),(L3)

Definition

A chart is a loop chart if:

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

(L1),(L2)

(L1),(L2),(L3)

Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

erview 1-free reg. expr's proc-int LEE extraction compact proc-int refined extraction outloo

erview 1-free reg. expr's proc-int LEE extraction compact proc-int refined extraction outloo

erview 1-free reg. expr's proc-int LEE extraction compact proc-int refined extraction outloo

LEE

Definition

A chart C satisfies LEE (loop existence and elimination) if:

$$\exists \mathcal{C}_0 \left(\mathcal{C} \longrightarrow_{\mathsf{elim}}^* \mathcal{C}_0 \xrightarrow{\hspace*{1cm}}_{\mathsf{elim}} \right.$$

 \wedge \mathcal{C}_0 permits no infinite path).

Definition

A chart C satisfies LEE (loop existence and elimination) if:

$$\exists \mathcal{C}_0 \left(\mathcal{C} \longrightarrow_{\mathsf{elim}}^* \mathcal{C}_0 \xrightarrow{\hspace{1cm}}_{\mathsf{elim}} \right.$$

 \wedge \mathcal{C}_0 permits no infinite path).

LEE

LEE witness and LEE-charts

Properties of LEE-charts

```
Theorem (← G/Fokkink, 2020)

A process graph G

is [·]<sub>P</sub>-expressible by a 1-free regular expression

(i.e. P-expressible modulo bisimilarity by a 1-free reg. expr.)

if and only if
the bisimulation collapse of G satisfies LEE.
```

Properties of LEE-charts

```
Theorem (\Leftarrow G/Fokkink, 2020)

A process graph G

is \llbracket \cdot \rrbracket_{P}-expressible by a 1-free regular expression

(i.e. P-expressible modulo bisimilarity by a 1-free reg. expr.)

if and only if
the bisimulation collapse of G satisfies LEE.
```

Hence $[\![\cdot]\!]_P$ -expressible **not** $[\![\cdot]\!]_P$ -expressible by 1-free regular expressions:

Expression extraction using LEE (G/Fokkink 2020, G 2021/22)

(

)* · 0

$$(a \cdot 1) \cdot (($$

$$G_5$$

$$P(e) = G_5$$

$$(a \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^* \cdot 0)$$

$$G_{5}$$

$$P(e) = G_{5}$$

$$(a \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*} \cdot 0)$$

$$\downarrow a$$

$$(1 \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*} \cdot 0)$$

proc-int

$$G_{5} \qquad P(e) = G_{5}$$

$$(a \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*} \cdot 0)$$

$$\downarrow a \qquad \qquad \downarrow a \qquad \qquad \downarrow a \qquad \qquad \downarrow c \qquad \qquad \downarrow c \qquad \qquad \downarrow c \qquad \qquad \downarrow c \qquad \qquad \downarrow ((1 \cdot (a \cdot 1)) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0$$

proc-int

$$G_{5} \qquad P(e) = G_{5}$$

$$(a \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*} \cdot 0)$$

$$\downarrow a \qquad \qquad \downarrow a \qquad \qquad \downarrow c \qquad \qquad \downarrow c \qquad \qquad \downarrow c \qquad \qquad \downarrow c \qquad \qquad \downarrow ((1 \cdot (a \cdot 1)) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0$$

$$((1 \cdot (b \cdot 1 + b \cdot (a \cdot 1))) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0$$

extraction

$$G_{5} \qquad P(e) = G_{5}$$

$$(a \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*} \cdot 0)$$

$$\downarrow a \qquad \qquad \downarrow a \qquad \qquad \downarrow c \qquad \qquad \downarrow c \qquad \qquad \downarrow c \qquad \qquad \downarrow a \qquad \qquad \qquad \downarrow ((1 \cdot (a \cdot 1)) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0$$

$$\downarrow a \qquad \qquad \downarrow a \qquad \qquad \downarrow a \qquad \qquad \qquad \downarrow ((1 \cdot 1) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0$$

$$\downarrow a \qquad \qquad \downarrow a \qquad \qquad \qquad \downarrow ((1 \cdot 1) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0$$

$$\downarrow ((1 \cdot (b \cdot 1 + b \cdot (a \cdot 1))) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0$$

proc-int

$$G_{5} \qquad P(e) = G_{5}$$

$$(a \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*} \cdot 0)$$

$$\downarrow a \qquad \qquad \downarrow a \qquad \qquad \downarrow c \qquad \qquad \downarrow c \qquad \qquad \downarrow a \qquad \qquad \qquad \downarrow ((1 \cdot (a \cdot 1)) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0$$

$$\downarrow a \qquad \qquad \downarrow a \qquad \qquad \downarrow a \qquad \qquad \downarrow ((1 \cdot 1) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0$$

$$\downarrow a \qquad \qquad \downarrow ((1 \cdot (b \cdot 1 + b \cdot (a \cdot 1))) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0$$

extraction

extraction

$$G_{5} \qquad P(e) = G_{5}$$

$$(a \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*} \cdot 0)$$

$$\downarrow a \qquad \qquad \downarrow a \qquad \qquad \downarrow c \qquad \qquad \downarrow c \qquad \qquad \downarrow a \qquad \qquad \downarrow c \qquad \qquad \downarrow a \qquad$$

$$G_{5} \qquad P(e) = G_{5}$$

$$(a \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*} \cdot 0)$$

$$\downarrow a \qquad \qquad \downarrow a \qquad \qquad \downarrow c \qquad \qquad \downarrow c \qquad \qquad \downarrow c \qquad \qquad \downarrow a \qquad$$

$$G_{5}$$

$$P(e) = G_{5} \Rightarrow G_{4}$$

$$(a \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*} \cdot 0)$$

$$\downarrow a$$

$$(1 \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*} \cdot 0)$$

$$\downarrow c$$

$$\downarrow a$$

$$\downarrow ((1 \cdot (b \cdot 1 + b \cdot (a \cdot 1))) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0)$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow ((1 \cdot (b \cdot 1 + b \cdot (a \cdot 1))) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0$$

$$G_{5} \qquad P(e) = G_{5} \Rightarrow G_{4} \not\simeq G_{5}$$

$$(a \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*} \cdot 0)$$

$$\downarrow a \qquad \qquad \downarrow a \qquad \qquad \downarrow c \qquad \qquad \downarrow c \qquad \qquad \downarrow c \qquad \qquad \downarrow a \qquad \qquad \downarrow a$$

rview 1-free reg. expr's proc-int LEE extraction compact proc-int refined extraction outloo

Under-Star-/1-Free regular expressions

Definition

The set $RExp^{(+)}(A)$ of 1-free regular expressions over A is defined by:

$$f, f_1, f_2 := 0 \mid a \mid f_1 + f_2 \mid f_1 \cdot f_2 \mid f_1^* \cdot f_2$$
 (for $a \in A$),

Under-Star-/1-Free regular expressions

Definition

The set $RExp^{(+)}(A)$ of 1-free regular expressions over A is defined by:

$$f, f_1, f_2 := 0 \mid a \mid f_1 + f_2 \mid f_1 \cdot f_2 \mid f_1^* \cdot f_2$$
 (for $a \in A$),

the set $RExp^{(+)*}(A)$ of under-star-1-free regular expressions over A by:

$$uf, uf_1, uf_2 ::= 0 \mid 1 \mid a \mid uf_1 + uf_2 \mid uf_1 \cdot uf_2 \mid f^*$$
 (for $a \in A$).

$$P(uf)$$

$$uf := a \cdot \overbrace{(a \cdot (a + a \cdot 0))^*}^{uf_a} + b \cdot \underbrace{(b \cdot (b + b \cdot 0))^*}_{b}$$

$$1 \cdot uf_a \downarrow \qquad \qquad \downarrow 1 \cdot uf_b$$

$$\downarrow a$$

$$(1 \cdot (a + a \cdot 0)) \cdot uf_a$$

Definition (Transition system specification T)

$$\frac{e_{i} \Downarrow}{(e_{1} + e_{2}) \Downarrow} (i \in \{1, 2\}) \qquad \frac{e_{1} \Downarrow}{(e_{1} \cdot e_{2}) \Downarrow} \qquad \frac{e^{*} \Downarrow}{(e^{*}) \Downarrow} \qquad \frac{e^{*} \Downarrow}{(e^{*}) \Downarrow} \qquad \frac{e^{*} \implies e'_{i}}{e^{*} \implies e'_{i}} (i \in \{1, 2\}) \qquad \frac{e_{1} \stackrel{a}{\longrightarrow} e'_{1}}{e_{1} \cdot e_{2} \stackrel{a}{\longrightarrow} e'_{1}} \qquad \frac{e_{1} \Downarrow}{e_{1} \cdot e_{2} \stackrel{a}{\longrightarrow} e'_{2}} \qquad \frac{e^{*} \stackrel{a}{\longrightarrow} e'}{e^{*} \stackrel{a}{\longrightarrow} e' \cdot e^{*}}$$

Definition (Transition system specification T)

$$\frac{e_1 \xrightarrow{a} e'_1}{e_1 \cdot e_2 \xrightarrow{a} e'_1 \cdot e_2}$$

$$\frac{e \xrightarrow{a} e'}{e^* \xrightarrow{a} e' \cdot e^*}$$

Definition (Transition system specification \mathcal{T}^{\bullet} , changed rules w.r.t. \mathcal{T})

$$\frac{e_1 \stackrel{a}{\rightarrow} e_1'}{e_1 \cdot e_2 \stackrel{a}{\rightarrow} e_1' \cdot e_2} \text{ (if } e_1' \text{ is normed)}$$

$$\frac{e \xrightarrow{a} e'}{e^* \xrightarrow{a} e' \cdot e^*}$$
 (if e' is normed)

Definition (Transition system specification \mathcal{T}^{\bullet} , changed rules w.r.t. \mathcal{T})

$$\frac{e_1 \stackrel{a}{\rightarrow} e'_1}{e_1 \cdot e_2 \stackrel{a}{\rightarrow} e'_1 \cdot e_2} \text{ (if } e'_1 \text{ is normed)} \qquad \frac{e_1 \stackrel{a}{\rightarrow} e'_1}{e_1 \cdot e_2 \stackrel{a}{\rightarrow} e'_1} \text{ (if } e'_1 \text{ is not normed)}$$

$$\frac{e \xrightarrow{a} e'}{e^* \xrightarrow{a} e' \cdot e^*}$$
 (if e' is normed)
$$\frac{e \xrightarrow{a} e'}{e^* \xrightarrow{a} e'}$$
 (if e' is not normed)

proc-int

Definition (Transition system specification \mathcal{T}^* , changed rules w.r.t. \mathcal{T})

$$\frac{e_1 \stackrel{a}{\rightarrow} e_1'}{e_1 \cdot e_2 \stackrel{a}{\rightarrow} e_1' \cdot e_2} \text{ (if } e_1' \text{ is normed)} \qquad \frac{e_1 \stackrel{a}{\rightarrow} e_1'}{e_1 \cdot e_2 \stackrel{a}{\rightarrow} e_1'} \text{ (if } e_1' \text{ is not normed)}$$

$$\frac{e \stackrel{a}{\rightarrow} e'}{e^* \stackrel{a}{\rightarrow} e' \cdot e^*} \text{ (if } e' \text{ is normed)} \qquad \frac{e \stackrel{a}{\rightarrow} e'}{e^* \stackrel{a}{\rightarrow} e'} \text{ (if } e' \text{ is not normed)}$$

Definition

The compact process (graph) interpretation $P^{\bullet}(e)$ of a reg. expr's e:

 $P^{\bullet}(e) :=$ labeled transition graph generated by e by derivations in \mathcal{T}^{\bullet} .

proc-int

Definition (Transition system specification \mathcal{T}^{\bullet} , changed rules w.r.t. \mathcal{T})

$$\frac{e_1 \stackrel{a}{\rightarrow} e_1'}{e_1 \cdot e_2 \stackrel{a}{\rightarrow} e_1' \cdot e_2} \text{ (if } e_1' \text{ is normed)} \qquad \frac{e_1 \stackrel{a}{\rightarrow} e_1'}{e_1 \cdot e_2 \stackrel{a}{\rightarrow} e_1'} \text{ (if } e_1' \text{ is not normed)}$$

$$\frac{e \xrightarrow{a} e'}{e^* \xrightarrow{a} e' \cdot e^*} \text{ (if } e' \text{ is normed)} \qquad \frac{e \xrightarrow{a} e'}{e^* \xrightarrow{a} e'} \text{ (if } e' \text{ is not normed)}$$

Definition

The compact process (graph) interpretation $P^{\bullet}(e)$ of a reg. expr's e:

 $P^{\bullet}(e) :=$ labeled transition graph generated by e by derivations in \mathcal{T}^{\bullet} .

Lemma (P^{\bullet} increases sharing; P^{\bullet} , P have same bisimulation semantics)

- (i) $P(e)
 ightharpoonup P^{\bullet}(e)$ for all regular expressions e.
- (ii) (G is $\llbracket \cdot \rrbracket_{P^{\bullet}}$ -expressible \iff G is $\llbracket \cdot \rrbracket_{P}$ -expressible) for all graphs G.

Image of P* under bisimulation collapse . . .

compact proc-int

proc-int

Image of P[•] under bisimulation collapse . . .

Interpretation correspondence of P^{\bullet} with LEE

```
(Int)_{P^*}^{(+),*}: By under-star-1-free expressions P^*-expressible graphs satisfy LEE:

Compact process interpretations P^*(uf)

of under-star-1-free regular expressions uf

are finite process graphs that satisfy LEE.
```

Interpretation correspondence of P^* with LEE

```
(Int)_{P^{\bullet}}^{(+\backslash *)}: By under-star-1-free expressions P^{\bullet}-expressible graphs satisfy LEE: Compact process interpretations P^{\bullet}(uf) of under-star-1-free regular expressions uf are finite process graphs that satisfy LEE.

(Extr)_{P^{\bullet}}^{(+\backslash *)}: LEE implies [\cdot]_{P^{\bullet}}-expressibility by under-star-1-free reg. expr's: From every finite process graph G with LEE an under-star-1-free regular expression uf can be extracted such that G \not \supseteq P(uf).
```


(1.(

 $)*) \cdot 0$

$$((1 \cdot a) \cdot ()^*) \cdot 0$$

$$\downarrow a$$

$$(1 \cdot ()^*) \cdot 0$$

proc-int

$$\widehat{G_4} \qquad P^{\bullet}(uf) = P(uf) \simeq G_4$$

$$(1 \cdot a) \cdot (c \cdot a + a \cdot (b + b \cdot a))^*) \cdot 0 \longleftrightarrow a$$

$$\downarrow a \longleftrightarrow (1 \cdot (c \cdot a + a \cdot (b + b \cdot a))^*) \cdot 0 \longleftrightarrow a$$

$$\downarrow a \longleftrightarrow ((1 \cdot (b + b \cdot a)) \cdot (c \cdot a + a \cdot (b + b \cdot a))^*) \cdot 0$$

Interpretation/extraction correspondences of P^{\bullet} with LEE

```
(Int)_{P^{\bullet}}^{(+\backslash *)}: By under-star-1-free expressions P^{\bullet}-expressible graphs satisfy LEE:

Compact process interpretations P^{\bullet}(uf)
of under-star-1-free regular expressions uf
are finite process graphs that satisfy LEE.

(Extr)_{P^{\bullet}}^{(+\backslash *)}: LEE implies [\cdot]_{P^{\bullet}}-expressibility by under-star-1-free reg. expr's:

From every finite process graph G with LEE
an under-star-1-free regular expression uf can be extracted such that G \Rightarrow P(uf).
```

Interpretation/extraction correspondences of P^{\bullet} with LEE

```
    (Int)<sub>P*</sub><sup>(+\*)</sup>: By under-star-1-free expressions P*-expressible graphs satisfy LEE:
        Compact process interpretations P*(uf)
        of under-star-1-free regular expressions uf
        are finite process graphs that satisfy LEE.
    (Extr)<sub>P*</sub><sup>(+\*)</sup>: LEE implies [·]<sub>P</sub>-expressibility by under-star-1-free reg. expr's:
        From every finite process graph G with LEE
        an under-star-1-free regular expression uf can be extracted
```

an under-star-1-free regular expression uf can be extracted such that $G \Rightarrow P(uf)$.

From every finite collapsed process graph G with LEE an under-star-1-free regular expression uf can be extracted such that $G \simeq P(uf)$.

proc-int

Interpretation/extraction correspondences of P^{\bullet} with LEE

```
(Int)_{P_{\bullet}}^{(+)*}: By under-star-1-free expressions P^{\bullet}-expressible graphs satisfy LEE:
              Compact process interpretations P^{\bullet}(uf)
                 of under-star-1-free regular expressions uf
                   are finite process graphs that satisfy LEE.
(Extr)_{D_0}^{(\pm)*}: LEE implies [\cdot]_P-expressibility by under-star-1-free reg. expr's:
                From every finite process graph G with LEE
                  an under-star-1-free regular expression uf can be extracted
                    such that G \Rightarrow P(uf).
                From every finite collapsed process graph G with LEE
                  an under-star-1-free regular expression uf can be extracted
                    such that G \simeq P(uf).
(ImColl)_{P^{\bullet}}^{(\pm\backslash *)}: The image of P^{\bullet},
                   restricted to under-star-1-free regular expressions,
                     is closed under bisimulation collapse.
```

Refined expression extraction (example)

proc-int

$$\widehat{G_4} \qquad P^{\bullet}(uf) = P(uf) \simeq G_4$$

$$\downarrow uf \\
((1 \cdot a) \cdot (c \cdot a + a \cdot (b + b \cdot a))^*) \cdot 0 \longleftrightarrow \downarrow a$$

$$\downarrow a \\
\downarrow ((1 \cdot (b + b \cdot a)) \cdot (c \cdot a + a \cdot (b + b \cdot a))^*) \cdot 0$$

$$\downarrow a \\
\downarrow ((1 \cdot (b + b \cdot a)) \cdot (c \cdot a + a \cdot (b + b \cdot a))^*) \cdot 0$$

proc-int

$P-/P^{\bullet}$ -expressibility and $[\cdot]_{P}$ -expressibility (examples)

not *P*-expressible not $[\cdot]_P$ -expressible $P-/P^{\bullet}$ -expressible P^{\bullet} -expressible $[\cdot]_{P}$ -expressible $[\cdot]_{P}$ -expressible rview 1-free reg. expr's proc-int LEE extraction compact proc-int refined extraction outlook

- ▶ 1-free regular expressions defined (also) with unary star
- ▶ image of 1-free regular expressions under the process interpretation P is not closed under bisimulation collapse

riew 1-free reg. expr's proc-int LEE extraction compact proc-int refined extraction outlook

- ▶ 1-free regular expressions defined (also) with unary star
- ▶ image of 1-free regular expressions under the process interpretation P is not closed under bisimulation collapse
- compact process interpretation P*
- refined expression extraction from process graphs with LEE
- \blacktriangleright image of 1-free reg. expr's under P^{\bullet} is closed under collapse

view 1-free reg. expr's proc-int LEE extraction compact proc-int refined extraction outlook

- ▶ 1-free regular expressions defined (also) with unary star
- ▶ image of 1-free regular expressions under the process interpretation P is not closed under bisimulation collapse
- compact process interpretation P*
- refined expression extraction from process graphs with LEE
- ▶ image of 1-free reg. expr's under P^{\bullet} is closed under collapse
- \blacktriangleright A finite process graph G is $\llbracket \cdot \rrbracket_{P}$ -expressible by a 1-free regular expression
 - \iff the bisimulation collapse of G satisfies LEE (G/Fokkink 2020).

1-free reg. expr's proc-int outlook

- ▶ 1-free regular expressions defined (also) with unary star
- image of 1-free regular expressions under the process interpretation P is **not** closed under bisimulation collapse
- compact process interpretation P*
- refined expression extraction from process graphs with LEE
- \blacktriangleright image of 1-free reg. expr's under P^{\bullet} is closed under collapse
- ▶ A finite process graph G is $[\cdot]_{P}$ -expressible by a 1-free regular expression
 - \iff the bisim. collapse of G is P^{\bullet} -expressible by a 1-free reg. expr..

view 1-free reg. expr's proc-int LEE extraction compact proc-int refined extraction outlook

Summary and outlook

- ▶ 1-free regular expressions defined (also) with unary star
- ▶ image of 1-free regular expressions under the process interpretation P is not closed under bisimulation collapse
- compact process interpretation P*
- refined expression extraction from process graphs with LEE
- ▶ image of 1-free reg. expr's under P^{\bullet} is closed under collapse
- ▶ A finite process graph G is $[\cdot]_{P}$ -expressible by a 1-free regular expression \iff the bisim. collapse of G is P^{\bullet} -expressible by a 1-free reg. expr..

Outlook on an extension:

▶ image of 1-free reg. expr's under P^{\bullet} = finite process graphs with LEE.

iew 1-free reg. expr's proc-int LEE extraction compact proc-int refined extraction outlook

Summary and outlook

- ▶ 1-free regular expressions defined (also) with unary star
- ▶ image of 1-free regular expressions under the process interpretation P is not closed under bisimulation collapse
- compact process interpretation P*
- refined expression extraction from process graphs with LEE
- image of 1-free reg. expr's under P^{\bullet} is closed under collapse
- ▶ A finite process graph G is $[\cdot]_{P}$ -expressible by a 1-free regular expression \iff the bisim. collapse of G is P^{\bullet} -expressible by a 1-free reg. expr..

Outlook on an extension:

- ▶ image of 1-free reg. expr's under P^{\bullet} = finite process graphs with LEE.
 - A finite process graph G is P^{\bullet} -expressible by a 1-free regular expression $\iff G$ satisfies LEE.

iew 1-free reg. expr's proc-int LEE extraction compact proc-int refined extraction outlook

Summary and outlook

- ▶ 1-free regular expressions defined (also) with unary star
- ▶ image of 1-free regular expressions under the process interpretation P is not closed under bisimulation collapse
- compact process interpretation P*
- refined expression extraction from process graphs with LEE
- image of 1-free reg. expr's under P^{\bullet} is closed under collapse
- ▶ A finite process graph G is $\llbracket \cdot \rrbracket_{P}$ -expressible by a 1-free regular expression \iff the bisimulation collapse of G satisfies LEE (G/Fokkink 2020).

Outlook on an extension:

▶ image of 1-free reg. expr's under P^{\bullet} = finite process graphs with LEE.

A finite process graph G is P^{\bullet} -expressible by a 1-free regular expression $\iff G$ satisfies LFF