1.对于过阻尼情况(Pc<<1) ;对于欠阻尼情况(Pc>>1)

由于阻尼的作用没有回滞现象。

无并联起阻时回滞曲线 类似矩形 有并联电阻时有回沸且回滞曲线类似三角形.

2.

(i) 利用 G-L II $\nabla\theta = \frac{1}{6}(\Lambda\vec{J}+\vec{A})$ 其中 $\Lambda = \frac{m}{n_0Q^2}$. 则有 $\varphi + \varphi \nabla\theta \cdot dL = \varphi + \frac{2\pi}{6}\varphi(\Lambda\vec{J}_5+\vec{A}) \cdot d\vec{l} = 2n\pi$ 即 $\varphi = -\frac{2\pi}{6}\Phi + 2n\pi$. 其中 $\Phi = \varphi(\Lambda\vec{J}_5+\vec{A}) \cdot d\vec{l}$ 为环路总磁通、则结上的超导电流为

$$I_{s} = I_{c} \sin \varphi = I_{c} \sin \left(-\frac{2\pi \Phi}{\Phi_{o}} + 2n\pi \right) = -I_{c} \sin \left(\frac{2\pi \Phi}{\Phi_{o}} \right)$$

(ii) 由题意可知,中=中ext + LI_{cir} = Φ_{ext} - LI_{c} sin $\left(\frac{2\pi\Phi}{\Phi_{e}}\right)$ = Φ_{ext} - $\frac{\Phi}{2\pi}$ β_{uf} Sin $\left(\frac{2\pi\Phi}{\Phi_{e}}\right)$ 两侧同时除以 克 得: $\frac{\Phi}{\Phi_{e}}$ = $\frac{\Phi_{ext}}{\Phi_{e}}$ - $\frac{\beta_{uf}}{2\pi}$ sin $\left(\frac{2\pi\Phi}{\Phi_{e}}\right)$ β_{uf} = 0, 1, 10 三种情况下 $\frac{\Phi}{\Phi_{e}}$ 随 $\frac{\Phi_{ext}}{\Phi_{e}}$ 变化如下 图.

3. 当结区磁通 取典型值 至= 克= ½ 时

$$E_{B} = \frac{1}{2 m_{o}} \frac{\Phi_{o}^{2} W}{L t_{B}} ; E_{J} = \frac{\Phi_{o} I_{c}}{2 \pi}$$

则不等式可化为: $\frac{2\pi \hat{e}_{e}e}{L^{2}\hbar} \left(\frac{\hbar}{2\mu_{e}et_{b}J_{e}} \right) >> 1$ 代入 $\lambda_{J} = \sqrt{\frac{\hbar}{2\mu_{e}et_{b}J_{e}}}$ 以及至= $\frac{\hbar}{2e}$

得 元 >> 1/2 两侧开跟号有 凡 >> LL 即 Eb>> 与满足约瑟夫森结是小结的条件。