课程编号: MATH1406H

考试时间: 2024 年 6 月 12 日, 15:40 至 17:40

高等代数 (荣誉) II 期末测试

试卷内容

问题 1 (30 points). Fill-in-the-Blank Questions (No need to write the process)

- 1. For any vector space V, what is the relation between V^{**} and V.
- 2. Is $(x-1)^2(x-2)^2 \cdots (x-2024)^2 + 1$ irreducible over \mathbb{Q} ?
- 3. What is the Fundamental Theorem of Algebra?
- 4. Let V be an n-dimensional Euclidean space and $v_1 \neq v_2 \in V$ with $||v_1|| = ||v_2||$. Find a v such that the linear transformation

$$\varphi: V \to V, \quad u \mapsto u - 2(u, v)v$$

maps v_1 to v_2 .

- 5. Write down the definition of tensor product of $V \otimes U$ of vector spaces.
- 6. Give the construction of the tensor product $V \otimes U$.
- 7. Find $\dim_{\mathbb{C}}(\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C})$, that is, the dimension of $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ over \mathbb{C} .
- 8. Find $\dim_{\mathbb{R}}(\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C})$.
- 9. For matrices $A \in \mathbb{C}^{2\times 2}$ and $B \in \mathbb{C}^{3\times 3}$ with $\det(A) = 2$ and $\det(B) = 4$, find $\det(A \otimes B)$.
- 10. Let $A := diag(0, 1, 1, 2, 2) \in \mathbb{C}^{5 \times 5}$. Define

$$\varphi: \mathbb{C}^{5\times 5} \to \mathbb{C}^{5\times 5}, \quad X \mapsto AX - XA^T.$$

Find $\dim_{\mathbb{C}}(\ker \varphi)$.

问题 2 (20 points). Suppose $\sigma \in \operatorname{Hom}(V, W)$ and U is a subspace of V. Let π denote the quotient map from V onto V/U. Prove that there exists $\tau \in \operatorname{Hom}(V/U, W)$ such that $\sigma = \tau \pi$ if and only if $U \subseteq \ker \sigma$.

问题 3. Proof or disproof: if an orthogonal transformation $\mathscr A$ on an n-dimensional Euclidean space V has two different eigenvalues, then the eigenvectors of $\mathscr A$ corresponding to different eigenvalues are orthogonal.

问题 4. Set $V := \mathbb{R}[x]$ and $V_0 := \{ f \in \mathbb{R}[x] \mid f(0) = f(1) \}.$

- 1. Prove that $V \times V \to \mathbb{R}$, $(f,g) \mapsto \int_0^1 f(x)g(x) \, dx$ is an inner product.
- 2. Set $\mathscr{D}: V_0 \to V$, $f(x) \mapsto f'(x)$. Find $\dim \ker(\mathscr{D})$ and $\dim \operatorname{coker}(\mathscr{D})$.
- 3. Define the inner product restricted on the subspace

$$(\cdot,\cdot)_0: V_0 \times V_0 \to \mathbb{R}, \quad (f,g) \mapsto \int_0^1 f(x)g(x) \,\mathrm{d} x.$$

Is there any linear map $\mathscr{D}^*: V \to V_0$ such that for any $h \in V_0$ and $g \in V$,

$$(\mathscr{D}^*g, h)_0 = (g, \mathscr{D}h)?$$

问题 5. The vector spaces in this problem are all finite dimensional.

1. Given linear maps $\varphi_i \in \text{Hom}(U_i, V_i)$ (i = 1, 2), show that the following map is well-defined.

$$\varphi_1 \otimes \varphi_2 : U_1 \otimes U_2 \to V_1 \otimes V_2, \quad \sum_{\text{finite}} u_1^{(i)} \otimes u_2^{(i)} \mapsto \sum_{\text{finite}} \varphi_1(u_1^{(i)}) \otimes \varphi_2(u_2^{(i)})$$

2. Let $p:U\to V$ be a surjective linear map. Show that for any linear space W,

$$p \otimes \mathrm{id}_W : U \otimes W \to V \otimes W, \quad \sum_{\mathrm{finite}} u^{(i)} \otimes w^{(i)} \mapsto \sum_{\mathrm{finite}} p(u^{(i)}) \otimes w^{(i)}$$

is also surjective.

3. Let $i:U\to V$ be an injective linear map. Show that for any linear space W,

$$p \otimes \mathrm{id}_W : U \otimes W \to V \otimes W, \quad \sum_{\mathrm{finite}} u^{(i)} \otimes w^{(i)} \mapsto \sum_{\mathrm{finite}} i(u^{(i)}) \otimes w^{(i)}$$

is also injective.

问题 6. Let V be an n-dimensional Euclidean space and the set of vectors $\{\alpha_1, \alpha_2, \ldots, \alpha_m\}$ satisfy the following condition: if there exists non-negative real numbers $\lambda_1, \lambda_2, \ldots, \lambda_m$ such that $\lambda_1 \alpha_1 + \lambda_2 \alpha_2 + \cdots + \lambda_m \alpha_m = 0$, then it must be that $\lambda_1 = \lambda_2 = \cdots = \lambda_m = 0$. Prove: there exists a vector $\alpha \in V$ such that $(\alpha, \alpha_i) > 0$ for all $1 \le i \le m$.