ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО»

ФИЗИКО-МЕХАНИЧЕСКИЙ ИНСТИТУТ

Высшая школа теоретической механики

Индивидуальное задание №8 (2 семестр)

по дисциплине: «Вычислительная механика»

Вариант №14

Выполнил студент гр. 5030103/00101	Работинский А. Д.
Проверил:	Витохин. Е. Ю.
	2022 7

Санкт-Петербург

СОДЕРЖАНИЕ

1.	Постановка задачи	. 3
2.	Решение задачи	. 4
3.	Результаты	. 8
Заг	ключение	C

1. Постановка задачи

Требуется рассчитать поле температур плотины, сооруженной из материалов с коэффициентами теплопроводности: k1 = 1.75 (ИГЭ-1) и k2 = 1.5 (ИГЭ-2). Чертеж плотины представлен ниже.

Чертеж плотины

2. Решение задачи

Далее мы будем рассматривать линейный треугольник, для того, чтобы описать температуру в нем достаточно полинома 1 степени:

$$T = A + Bx + Cy$$
[N] — функции форм

Тогда получим температуры внутри КЭ:

$$T = [N] \cdot \{T^e\}$$

Запишем закон Фурье:

$$\underline{h} = -\lambda \nabla T (*)$$

$$\{h\}^{T} = \{h_{x}, h_{y}\} (h_{x} = -\lambda \frac{\partial T}{\partial x}, h_{y} = -\lambda \frac{\partial T}{\partial y}) (\#)$$

Подставим (*) в (#):

$$\{h\} = \begin{cases} -\lambda \left(\frac{\partial N_i}{\partial x} T_i + \frac{\partial N_j}{\partial x} T_j + \frac{\partial N_k}{\partial x} T_k\right) \\ -\lambda \left(\frac{\partial N_i}{\partial y} T_i + \frac{\partial N_j}{\partial y} T_j + \frac{\partial N_k}{\partial y} T_k\right) \end{cases}$$
$$\{T^e\}^T = \{T_i, T_j, T_k\}$$

$$\{h\} = -\lambda[B]\{T^e\}$$

[В] – матрица температурных градиентов.

Внутренняя энергия:

$$u = C_v \cdot T$$

Запишем уравнение баланса внутренней энергии:

$$\rho \dot{u} = -\nabla \cdot h$$

Тогда уравнение теплопроводности примет вид:

$$\rho C_{\nu} \dot{T} = -\nabla \cdot h$$

Подставим полученное выражение для вектора теплового потока и матрицы градиентов в уравнение теплопроводности:

$$\rho C_{v}[N] \cdot \{\dot{T}^{e}\} - \lambda \nabla \cdot ([B]\{T^{e}\}) = 0$$

Граничные условия, возможные при постановке задачи теплопроводности:

Условия Дирихле (1 род)

$$T_{\rm S} = T_{\rm 1}(x,y,t)$$

Условия Неймана (2 рода)

$$-\underline{h}_{s} = h_{x} \cdot \underline{n}_{x} + h_{y} \cdot \underline{n}_{y}$$

Смешанные условия (3 рода)

$$h_x \cdot \underline{n}_x + h_y \cdot \underline{n}_y = \varkappa \big(T_s - T_f \big)$$

Где \varkappa — коэффициент теплоотдачи; T_{S} — температура поверхности; T_{f} — температура окружающей среды;

Для решения задачи теплопроводности воспользуемся методом Галеркина: для решения уравнения умножим его на базисные функции, роль которых играют функции форм и проинтегрируем

$$\int_{V} (\rho C_{v}[N] \cdot \{\dot{T}^{e}\} - \lambda \nabla \cdot ([B] \cdot \{T^{e}\})) \cdot [N]^{T} dV = 0$$

Интеграл суммы — сумма интегралов, интеграл второй части возьмем по частям и воспользуемся граничными условиями:

$$[C] \cdot \{\dot{T}^e\} + ([K_c] + [K_{\varkappa}]) \cdot \{T^e\} = \{R_T\} + \{R_h\} + \{R_{\varkappa}\}$$

Где

- 1) [C] матрица теплоёмкости;
- 2) $[K_c]$ матрица теплопроводности;
- 3) $\{R_{\varkappa}\}; \{R_{T}\}; \{R_{h}\};$ матрицы внешних нагрузок;

В данной лабораторной работе решается стационарное уравнение теплопроводности без теплообмена:

$$[K_c] \cdot \{T^e\} = \{R_T\} + \{R_h\}$$

Осталось найти способ посчитать матрицу [B], однако проблема в том, что [B] зависит от производных от функций форм по x, y, которые зависят от координат элементов конкретного KЭ, считать матрицу градиентов для каждого KЭ непосредственно в исходной CK — достаточно времязатратная задача, требующая символьных вычислений, поэтому перейдем в изопараметрическую CK, вычислим там функции форм элемента, далее с помощью матрицы Якоби и якобиана будем переходить в исходную CK.

$$N_i = 1 - \xi - \eta$$
 $N_j = \eta$ $N_i = \xi$ Тогда:

$$[K_c] = \lambda \int_V [B]^T [B] dx dy dz = \lambda [B]^T [B] \int_V dx dy dz =$$
$$\lambda [B]^T [B] \tau \int_S dx dy =$$
$$\lambda [B]^T [B] \tau \int_S |J| d\xi d\eta = \lambda [B]^T [B] \tau |J| \int_S d\xi d\eta = \frac{1}{2} [B]^T [B] \tau |J|$$

Последний интеграл – это площадь КЭ в изопараметрической СК, поскольку элемент в ней единичен, то его площадь равна 0.5.

Далее покажем, как высчитывалась матрица градиентов:

Любой столбец матрицы градиентов:
$$\begin{cases} \frac{\partial N_m}{\partial x} \\ \frac{\partial N_m}{\partial y} \end{cases} = [J]^{-1} \begin{cases} \frac{\partial N_m}{\partial \xi} \\ \frac{\partial N_m}{\partial \eta} \end{cases}$$

$$[J] = \begin{bmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\ \frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta} \end{bmatrix} = \begin{bmatrix} \frac{\partial N_i}{\partial \xi} & \frac{\partial N_j}{\partial \xi} & \frac{\partial N_k}{\partial \xi} \\ \frac{\partial N_i}{\partial \eta} & \frac{\partial N_j}{\partial \eta} & \frac{\partial N_k}{\partial \eta} \end{bmatrix} \begin{bmatrix} x_i & y_i \\ x_j & y_j \\ x_k & y_k \end{bmatrix}$$

MatLab	Abaqus	Diff
5,02606674	5,03E+00	-0,00197
25	2,50E+01	-9,9E-14
25	2,50E+01	0
25	2,50E+01	0
21,02456769	5,00E+00	16,02457
5	5,00E+00	0
5	5,00E+00	0
5	5,00E+00	0
24,99911533	2,50E+01	-0,00088
25	2,50E+01	0
5,062685559	5,07E+00	-0,00676
5,12314833	5,13E+00	-0,00863
5,205969254	5,21E+00	-0,00372
5,305470117	5,31E+00	-0,00463
5,414729233	5,43E+00	-0,01373
5,567640185	5,57E+00	-0,00651
5,750582046	5,75E+00	0,003158
5,956884742	5,95E+00	0,010134
6,183183875	6,18E+00	0,006748
6,458702005	6,44E+00	0,016797
6,799078558	6,75E+00	0,050633
7,188682016	7,11E+00	0,08273
7,652702658	7,63E+00	0,025256
8,205074133	8,20E+00	0,00101
8,948704454	8,65E+00	0,301399
9,959294727	9,44E+00	0,515895
11,35540166	1,14E+01	-0,04182
13,28269096	1,33E+01	0,029507
16,02133232	1,61E+01	-0,05958
19,29236024	1,93E+01	0,001479
22,33152097	2,23E+01	-0,00759
25	2,50E+01	0
5	5,00E+00	9,77E-15
5	5,00E+00	-9,8E-15
5	5,00E+00	0
5	5,00E+00	-9,8E-15

5 5,00E+00	0 0 0 0 0 0 0
5 5,00E+00 5 5,00E+00 5 5,00E+00 5 5,00E+00	0 0 0 0
5 5,00E+00 5 5,00E+00 5 5,00E+00	0 0 0 0
5 5,00E+00 5 5,00E+00	0 0
5 5,00E+00	0
	0
5 UUF+UU	
,	,00031
	0,0064
•	,00599
'	,00241
	002804
	011779
	025849
)44737
	068491
	096891
, ,	129426
	,16489
	201462
	236807
	268215
	,29293
	308623
<u> </u>	313819
	308158
	292407
	268262
	237968
<u> </u>	203902
	168299
	133107
<u> </u>	099942
T	070054
23,32482187 2,33E+01 0,0	044299
23,70820309 2,37E+01 0,0	023074
24,0268962 2,40E+01 0,0	006385
	,00589
	,01388
	,01809
24,77968984 2,48E+01 -0	,01892
24,86909988 2,49E+01 -0	,01637
	,01287
24,96611859 2,50E+01 -0	,01039
24,98874856 2,50E+01 -0	,00484
24,99825312 2,50E+01 -0	,00078
25 2,50E+01	0

25	2,50E+01	l o
24,97910465	2,50E+01	-0,0209
25	2,50E+01	0
25	2,50E+01	0
24,92229869	2,50E+01	-0,0777
25	2,50E+01	0
25	2,50E+01	0
24,82615896	2,50E+01	-0,17384
25	2,50E+01	0
25	2,50E+01	0
25	2,50E+01	0
24,63441525	2,50E+01	-0,36558
25	2,50E+01	0
25	2,50E+01	9,95E-14
25	2,50E+01	0
25	2,50E+01	0
25	2,50E+01	0
20,9998278	1,59E+01	5,103369
7,334667095	6,60E+00	0,7394
11,44965187	8,51E+00	2,936456
21,60380401	1,95E+01	2,091044
5,592927293	5,55E+00	0,043293
5,732706116	5,68E+00	0,056685
6,300128846	6,19E+00	0,114674
6,631014853	6,45E+00	0,183609
7,092777272	6,84E+00	0,249277
7,20635275	6,75E+00	0,452445
6,071780053	5,99E+00	0,080527
5,883242433	5,82E+00	0,06113
5,463636201	5,44E+00	0,023819
6,930227345	6,65E+00	0,282324
10,43823198	9,14E+00	1,294664
13,58350271	1,13E+01	2,265577
17,08983412	1,35E+01	3,625638
9,761336196	9,76E+00	0,003957
5,363400477	5,35E+00	0,014214
8,410098414	7,98E+00	0,427643
9,040972225	8,39E+00	0,652155
5,279282247	5,28E+00	0,001091
23,36360795	2,31E+01	0,311274
18,02772202	1,68E+01	1,225356
15,54700511	1,44E+01	1,178394
13,49156105	1,26E+01	0,925856
11,88133408	1,12E+01	0,661799

10,63105886	1,02E+01	0,451326
9,657715786	9,35E+00	0,303674
8,889342681	8,68E+00	0,303074
	8,11E+00	,
8,263965286	·	0,151931
7,738990644	7,63E+00	0,108376
7,281302861	7,21E+00	0,073723
6,879168859	6,83E+00	0,048668
6,517835724	6,48E+00	0,033617
6,229581315	6,21E+00	0,023919
5,975323758	5,96E+00	0,013637
5,759773708	5,75E+00	0,005
5,569816219	5,57E+00	0,000424
5,405483683	5,41E+00	-0,00093
24,95992055	2,50E+01	-0,01095
24,90825572	2,49E+01	-0,01447
24,83280915	2,49E+01	-0,01941
24,73242377	2,48E+01	-0,02006
24,59500137	2,46E+01	-0,01768
24,41076314	2,44E+01	-0,01183
24,18058469	2,42E+01	-0,00175
23,89653323	2,39E+01	0,012605
23,54995476	2,35E+01	0,0314
23,13431649	2,31E+01	0,054954
22,64577982	2,26E+01	0,083093
22,07939937	2,20E+01	0,115151
21,43078817	2,13E+01	0,150051
20,69814103	2,05E+01	0,18634
19,88212879	1,97E+01	0,22223
18,98634364	1,87E+01	0,255591
18,01809133	1,77E+01	0,284012
16,98891013	1,67E+01	0,305
15,91436777	1,56E+01	0,316363
14,81344256	1,45E+01	0,316708
13,70760907	1,34E+01	0,305787
12,61915489	1,23E+01	0,284586
11,56926865	1,13E+01	0,255192
10,57575332	1,04E+01	0,22039
9,653623353	9,47E+00	0,183147
8,813858709	8,67E+00	0,14608
8,066434974	7,95E+00	0,111498
7,414300394	7,33E+00	0,080948
6,842191277	6,79E+00	0,05453
6,351465708	6,32E+00	0,032647
5,915407369	5,90E+00	0,014418
23,47715965	2,33E+01	0,204193
23,73247707	2,36E+01	0,131367
23,95872697	2,39E+01	0,087906
23,33072037	2,331.101	0,007300

24,1111234	2,40E+01	0,062312
24,2315479	2,42E+01	0,043506
24,3302973	2,43E+01	0,025533
24,40400149	2,44E+01	-0,00179
24,41561738	2,45E+01	-0,07912
24,48724661	2,46E+01	-0,08567
24,61732292	2,46E+01	-0,02348
24,68521849	2,47E+01	-0,01784
24,71062246	2,48E+01	-0,04904
24,76971042	2,48E+01	-0,04906
24,83829748	2,49E+01	-0,02101
24,86511412	2,49E+01	-0,02953
24,89841157	2,49E+01	-0,02363
20,69524093	1,98E+01	0,877952
24,97861459	2,50E+01	-0,01017
18,58641962	1,83E+01	0,277542
24,72504799	2,47E+01	-0,02286
21,85946034	2,17E+01	0,129907
23,80582154	2,38E+01	0,016256
17,57068683	1,73E+01	0,305274
16,49706813	1,62E+01	0,323793
15,38387943	1,51E+01	0,330709
14,25265069	1,39E+01	0,324953
13,12808102	1,28E+01	0,30693
12,03629754	1,18E+01	0,278472
10,97106977	1,07E+01	0,242093
9,986653551	9,78E+00	0,201673
9,112585149	8,95E+00	0,162298
8,331846135	8,21E+00	0,124991
7,649960002	7,56E+00	0,09196
6,461752392	6,43E+00	0,036193
6,090477899	6,07E+00	0,02024
7,038634517	6,98E+00	0,062697
19,53023225	1,93E+01	0,243529
20,39271497	2,02E+01	0,206056
21,16961398	2,10E+01	0,167506
22,4615173	2,24E+01	0,094906
22,99582243	2,29E+01	0,062915
23,44356648	2,34E+01	0,036479
24,10759569	2,41E+01	0,000277

3.Результаты

Поле температур Абакус

Поле температур Матлаб

Заключение

В результате выполнения лабораторной работы мы получили поле температур с помощью конечно-элементного пакета Abaqus и непосредственно используя вышеописанный метод в MatLab, полученные значения совпали, что говорит о правильности выполнения лаборатной работы.

Код программы (выполнен в MatLab)

```
clc;
clear all;
k1 = 1.5;
k2 = 1.75;
Te = zeros(1,3);
n = 581;
n \, nds = 337;
derivatives = [[-1,0,1];[-1,1,0]];
X = [];
y=[];
Temp = readtable('D:\Учеба\3 курс\Вычислительная
механика\Лаба8\Fixed dimensions\nodes.txt');
x = Temp(:,2);
x=table2array(x);
y = Temp(:, 3);
y=table2array(y);
Temp = readtable('D:\Учеба\3 курс\Вычислительная
механика\Лаба8\Fixed dimensions\data.txt');
a = [];
b=[];
c=[];
a = Temp(:,2);
b = Temp(:,3);
c = Temp(:,4);
a=table2array(a);
b=table2array(b);
c=table2array(c);
assoc=zeros(294,3);
for i=1:n els
    temp = [a(i),b(i),c(i)];
    assoc(i,1)=a(i);
    assoc(i,2)=b(i);
    assoc(i,3)=c(i);
Kc=zeros(n nds);
% составляем матрицу Кс
for m=1:n els
    Kce=zeros(3);
    i=assoc(m,1);
    j=assoc(m,2);
    k=assoc(m,3);
```

```
xi=x(i);
    yi=y(i);
    xj=x(j);
    yj = y(j);
    xk=x(k);
    yk=y(k);
    % матрица якоби и якобиан
    J = derivatives*[[xi,yi];[xj,yj];[xk,yk]];
    detJ = det(J);
    % Матрица Ве
    Be=zeros(2,3);
    for n=1:3
        Be(:,n)=inv(J)*derivatives(:,n);
    end
    Kce = 1/2*Be'*Be*detJ;
    %3 узла, в каждом по 1 температуре, тогда матрица А из
прошлыш лаб перейдет в:
    A = zeros(3, n nds);
    A(1,i)=1;
    A(2,j)=1;
    A(3, k) = 1;
               проверяем принадлжеит ли элемент материалу ИГЭ-1
или ИГЭ-2 (сетка построена так, что если хоть один узел лежит
внутри зоны одного из материалов, то и весь элемент лежит там)
    if((xi>42.6 && yi<=-71/3+5/9*xi && xi<1028.4) || (xj>42.6 &&
y_{j} < -71/3 + 5/9 \times i \& x_{j} < 1028.4) || (xk>42.6 && yk<=-71/3+5/9 \times xk
&& xk<1028.4))
        Kce=k2*Kce;
    else
        Kce=k1*Kce;
    end
    Kc = Kc + A' * Kce * A;
% теперь выставляем ГУ
% вода
bcw=[];
% воздух
bca=[];
for m=1:n els
    i=assoc(m,1);
    j=assoc(m,2);
    k=assoc(m,3);
    xi=x(i);
    yi=y(i);
    xj=x(j);
    yj = y(j);
```

```
xk=x(k);
    yk=y(k);
           проверяем принадлжеит узел участку где вода
    if(yi \le 290 \&\& xi \le 462 \&\& sum(bcw(:) == i) == 0)
         if((yi==275 && xi<=424.5 && xi>=412.5) ||
(abs(abs(xi*2/3)-abs(yi))<10^{(-2)}) || (abs(abs(-424.5+xi*2/5)-
abs(yi) < 10^{(-2)}
             bcw=[bcw i];
         end
    end
     if(yj \le 290 \&\& xj \le 462 \&\& sum(bcw(:) == j) == 0)
         if ((yj==275 \&\& xj<=424.5 \&\& xj>=412.5))
(abs(abs(xj*2/3)-abs(yj))<10^(-2)) || (abs(abs(-424.5+xj*2/5)-abs(yj))<10^(-2))
abs(yj) < 10^{(-2)}
             bcw=[bcw j];
        end
     end
      if(yk \le 290 \&\& xk \le 462 \&\& sum(bcw(:) == k) == 0)
         if((yk==275 && xk<=424.5 && xk>=412.5) ||
(abs(abs(xk*2/3)-abs(yk))<10^(-2)) || (abs(abs(-424.5+xk*2/5)-abs(yk))<10^(-2))
abs(yk))<10^{(-2)}
             bcw=[bcw k];
         end
      end
         && yj>=290 && yj<293
         && yk>=290 && yk<293
        (abs(-424.5+xi*2/5)-abs(yi)<10^(-8))||
           проверяем принадлжеит узел участку где водздух
      if(xi>462 \&\& yi\sim=0 \&\& sum(bca(:) == i) == 0)
        if((abs(-424.5+xi*2/5)-abs(yi)<=10^{(-8)} && yi>=290 &&
yi < 293 \& xi < 469.5 | | (yi = 293) | | (abs(-1/2*xi + 535.25) -
abs(yi)<10^(-5))||(yi==270.5)||(abs(-5/9*xi+1714/3)-
abs (vi) < 10^{(-5)}
             bca=[bca i];
         end
      end
      if(xj>462 \&\& yj\sim=0 \&\& sum(bca(:) == j) == 0)
         if((abs(-424.5+xj*2/5)-abs(yj)<=10^{-8}) && yj>=290 &&
y_1 < 293 \& x_1 < 469.5) | | (y_1 = 293) | | (abs(-1/2 \times j + 535.25) - 293)
abs(yj)<10^(-5))||(yj==270.5)||(abs(-5/9*xj+1714/3)-
abs(yj)<10^{(-5)}
             bca=[bca j];
         end
      end
      if(xk>462 \&\& yk\sim=0 \&\& sum(bca(:) == k) == 0)
         if((abs(-424.5+xk*2/5)-abs(yk)<=10^{(-8)} \&\& yk>=290 \&\&
yk<293 \&\& xk<=469.5) | | (yk==293) | | (abs(-1/2*xk+535.25) -
```

```
abs (yk) < 10^{(-5)} | (yk = 270.5) | (abs (abs <math>(-5/9*xk + 1714/3) - (yk) < 10^{(-5)} | (yk) < 10^{(-5)} 
abs(yk))<10^{(-5)}
                                                                                       bca=[bca k];
                                            end
end
R=zeros(n nds,1);
T water = 5;
 for i=1:length(bcw)
                     Kc(bcw(i),:) = 0;
                     Kc(bcw(i),bcw(i))=1;
                     R(bcw(i))=T_water;
end
T air = 25;
for i=1:length(bca)
                     Kc(bca(i),:) = 0;
                     Kc(bca(i),bca(i))=1;
                     R(bca(i))=T_air;
end
T_res = linsolve(Kc,R);
```