README.md 1/28/2021

Deep Eligibility Traces

Introduction

This repository consists of implementations of Eligiblity Traces and corresponding algorithms in the deep learning setting. Algorithms are implemented in PyTorch and Tensorflow 2.0 on a range of problems. Custom toy problems are provided in the MDPs folder.

Baseline Algorithms

Following are the baseline algorithms combined with trace-based updates-

Algorithm	Link	Implementation	Status
Sarsa	Sutton & Barto	sarsa.py	√
Double Sarsa	Sutton & Barto	doublesarsa.py	√
Q-Learning	Sutton & Barto	qlearning.py	√
Double Q-Learning	Sutton & Barto	doubleqlearning.py	√
Expected Sarsa	Sutton & Barto	expectedsarsa.py	√
Double Expected Sarsa Sutton & Bart		doubleexpectedsarsa.py	√

Trace Algorithms

Following algorithms are available in the current version-

PyTorch

- 🗹 Sarsa
- Q-learning
- Expected Sarsa
- Double Sarsa
- Double Q-learning
- Double Expected Sarsa

|Sutton & Barto|traces.py| | |Accumulating Trace|

- Sarsa
- Q-learning
- Expected Sarsa
- Double Sarsa
- Double Q-learning

README.md 1/28/2021

• Double Expected Sarsa

- ✓ Sarsa
- Q-learning
- Expected Sarsa
- Double Sarsa
- Double Q-learning
- Double Expected Sarsa

|Sutton & Barto|``traces.py`|

Custom Environments

Following is the list of custom toy environments-

	Environment Name	Link	Implementation
	Cyclic MDP	ESAC	link
_	One-state MDP	Sutton & Barto	link
	One-state Gaussian MDP	Sutton & Barto	link

Usage

To run an implementation, use the following command-

```
python main.py --alg <ALGORITHM> --env <ENV> --lib <LIBRARY> --trace <TRACE> --
lamb <LAMBDA> --num_steps <STEPS>
```

For example, to run Q-Learning on the CartPole-v0 environment using PyTorch library with replacing trace and lambda=0.5, use the following-

```
python main.py --alg QLearning --env CartPole-v0 --lib torch --trace replacing --
lamb 0.5 --num_steps 10000
```

To view the full list of arguments run the following-

```
python main.py --help
```

Citation

If you find these implementations helpful then please cite the following-

README.md 1/28/2021

```
@misc{karush17eligibilitytraces,
   author = {Karush Suri},
   title = {Deep Eligibility Traces},
   year = {2021},
   howpublished = {\url{https://github.com/karush17/Deep-Eligibility-Traces}},
   note = {commit xxxxxxxx}
}
```