

About Our Autoregression Attempt

About our autoregression attempt:

- It worked reasonably well
- ...But the error signal was very noisy
- And some anomalies went completely undetected

I bet you know a possible cause

About Our Autoregression Attempt

About our autoregression attempt:

- It worked reasonably well
- ...But the error signal was very noisy
- And some anomalies went completely undetected

I bet you know a possible cause

...And some problems are in fact caused by the presence of a period

- Periodic-like behavior in time series is referred to as seasonality
- In principle, linear regression can deal with periodic data
- ...As long as the period is shorter than the observed window
- However, other periods are still a problem

We will now explore the idea of getting rid of the periodicity

Identification of the Seasonality

The first step to removing seasonality is its identification

One way to do it is using an autocorrelation plot (for the training data)

By looking up to > 48 lags, the daily period is evident

Identification of the Seasonality

However, using an autocorrelation plot has its problems:

Peaks repeat:

- The peak at 48 unit lag will repeat at 96 and so on
- How can we say whether it's a single period or multiple periods?

Multiple periods may disturb each other:

- A shorter period may make a longer one less evident
- Non co-prime periods hide each other

Trends cause even more noise:

- If the data has a trend (e.g. generally increasing or decreasing)...
- ...All correlations due to seasonal behavior will be weaker

Identification of the Seasonality

A better method consist in using frequence analysis

In particular, we can compute the Fast Fourier Transform of our signal

- Without going too deep, a FFT is decomposition of a discrete signal...
- ...Into a discrete set of sine/cosine components

Given a signal x with N samples, its FFT has also N components

The amplitudes y of the components are defined so that:

$$x_n = \frac{1}{N} \sum_{k=0}^{N-1} y_k e^{2\pi i \frac{kn}{N}}$$

I.e. the whole signal can be reconstructed from its decomposition

- lacksquare x_n is the n-th element in the discrete signal
- lacktriangle Each amplitude y_k is assigned to a frequency

FFT in numpy

In numpy, we can compute an FFT via:

```
In [5]: from numpy.fft import fft
y = fft(data_tr['value'])
```

We can get the corresponding frequencies with:

- The frequencies are in cycles/time unit (30 minutes, in our case)
- A different sampling frequency may be specified, if you wish

FFT in numpy

For a real-valued signal, the FFT is always symmetric

- So, we care only about the positive frequencies (by convention, the first half)
- The O frequency (constant component) is also not relevant for us

```
In [8]: n = len(data tr)
        plt.figure(figsize=figsize)
         plt.plot(f[1:n//2], np.abs(y[1:n//2]))
         plt.xticks()
         plt.show()
          600
          500
          300
          200
          100
                           0.1
```

Getting the Peak Frequencies

Let us select all frequecies with amplitude greater than 100

First, we focus on the positive frequencies

```
In [9]: yp = y[1:n//2] fp = f[1:n//2]
```

Then, we select the frequencies with (absolute) amplitude above 100:

```
In [10]: fp_peak = fp[np.abs(yp) >= 100]
```

...And we invert them to obtain the periods (in time steps):

Getting the Peak Frequencies

Let's discard the duplicates and consider them one by one

```
In [12]: np.unique(np.round(1/fp_peak))
Out[12]: array([ 24., 26., 48., 56., 345.])
```

There are a few clusters:

- 345: this is a weekly period (345 / 48 = 7.18). Rounded to 48*7 = 336
- 56, 48: this is the main, daily period. Rounded to 48
- 24: this is a half-day period. Rounded to 24

Getting the Peak Frequencies

The periods are not co-prime

- ..l.e. they are multiples one of each other
- In this situation, the longest period tends to be the most important one

In fact, the longest period conveys information about its sub-multiples

- Taxis requested at 7am last week...
- ...Are likely similar to those requested at 7am yesterday
- The same goes for all sub-multiples

In our situation:

- All periods are (roughly) submultiples of one week
- ...So we can focus on the weekly period

A simple approach to handle seasonality consist in differencing

Our predictor becomes the sum of two predictors (i.e. a type of ensemble):

- The linear regression model, $f(x, \theta)$
- lacksquare A predictor g(x, d) that outputs the target exactly d steps before:

$$g(x_i, d) = \hat{y}_{i-d}$$

Where:

- \mathbf{x}_i is the value of the series for the i-th time step
- lacksquare d is the period, \hat{y}_{i-d} is the target value d time steps earlier

The idea is to let the a dedicated predictor handle the period

With the differencing approach we wish to have

$$g(x_i, d) + f(x_i, \theta) \simeq \hat{y}_i$$

■ Where \hat{y}_i is the target for the *i*-th time step (e.g. the value of the next step)

About learning the (ensemble) predictor:

- \blacksquare Training g(x, d) first requires to identify the period
- lacksquare Once we know d, the we can rewrite the equation as:

$$f(x_i, d) \simeq \hat{y}_i - g(x_i, d)$$

- The target for the linear regressor is obtained by taking the original target
- \blacksquare ...And subtracting the target d step earlier

The use of a difference operator is the reason for the name "differencing"

We obtain the linear regressor targets by subtraction:

```
In [13]: periods = [1, 336]
  deltas = []
  data_d = data.copy()
  for d in periods:
      delta = data_d.iloc[:-d]
      data_d = data_d.iloc[d:] - delta.values
      deltas.append(delta)
```

- The values field returns the data as a numpy array (without an index)
- We use it to keep the index of data_d.iloc[d:]
- We store all subtracted vectors so we can reverse the transformation
 - I.e. so that we can later compute the value of the g(x, d) predictor

The use of a difference operator is the reason for the name "differencing"

We obtain the linear regressor targets by subtraction:

```
In [14]: periods = [1, 336]
  deltas = []
  data_d = data.copy()
  for d in periods:
    delta = data_d.iloc[:-d]
    data_d = data_d.iloc[d:] - delta.values
    deltas.append(delta)
```

We have also added a "1" period

- This is not captured by frequency analysis via FFT
- ...But most signals have some "inertia"
- ...Hence, just repeating the last value has a strong predicting value

The act of just predicting the last value has even name: persistence predictor

We can wrap the algorithm in a function

This is available in the nab module

```
def apply_differencing(data, lags):
    deltas = {}
    data_d = data.copy()
    for d in lags:
        delta = data_d.iloc[:-d]
        data_d = data_d.iloc[d:] - delta.values
        deltas[d] = delta
    return data_d, deltas
```

```
In [15]: data_d, deltas = nab.apply_differencing(data, periods)
```

We can now plot the resulting series

■ Periods are no longer visible!

Preparing the Data

Now we need to choose a sliding window length

For this task, the best tool is still an autocorrelation plot

■ Correlations are now very weak: we can use a small window

Preparing the Data

Then, we can actually apply the sliding window

```
In [20]: wlen d = 3
           wdata d = nab.sliding window 1D(data d, wlen=wlen d)
           wdata d.head()
Out[20]:
                    timestamp
            2014-07-08 01:30:00 0.050538
                                        0.038159
                                                  -0.024660
            2014-07-08 02:00:00 0.038159 -0.024660
                                                  -0.025088
            2014-07-08 02:30:00 -0.024660 -0.025088
                                                  -0.001284
            2014-07-08 03:00:00 -0.025088 -0.001284
                                                  0.005400
            2014-07-08 03:30:00 -0.001284 0.005400
                                                  0.001877
```

...And then separate input and output

```
In [21]: wdata_d_out = data_d.iloc[wlen_d:]['value']
   wdata_d_in = wdata_d.iloc[:-1]
```

Fitting the Autoregressor

Now, we can train again our regressor

```
In [22]: wdata_d_in_tr = wdata_d_in[wdata_d_in.index < train_end]
   wdata_d_out_tr = wdata_d_out[wdata_d_out.index <= train_end]

reg_d = LinearRegression()
   reg_d.fit(wdata_d_in_tr, wdata_d_out_tr);</pre>
```

Then we obtain the predictions:

```
In [23]: pred_d = reg_d.predict(wdata_d_in)
pred_d = pd.Series(index=wdata_d_out.index, data=pred_d)
```

- These are predictions for the signal after differencing
- They do not reflect the scale of the original signal
- ...And therefore they are not yet enough

Fitting the Autoregressor

Differencing leads to a more complex predictor

- We have the differencing operation + the Linear Regression model
- Once again, we have an ensemble

Getting the actual predictions requires to reverse the differencing operation

```
In [24]: dsum = 0
pred = pred_d.copy()
for i, d in reversed(list(enumerate(periods))):
    delta = deltas[i].values.reshape((-1,))
    pred = pred + delta[wlen_d+dsum:]
    dsum += d
targets = data.iloc[wlen_d+dsum:]['value']
```

- We do it by summing the right-most part of the residual vectors we stored
 - For this we visit the periods in reverse order
 - ...And keep a sum (dsum) of the processed periods
- We also need to take into account the window for the Linear Regression model

Fitting the Autoregressor

We can wrap even this operation in a function

This is available in the nab module

```
def deapply_differencing(pred, deltas, lags, extra_wlen=0):
    dsum = 0
    pred_dd = pred.copy()
    for i, d in reversed(list(enumerate(lags))):
        delta = deltas[i].values.reshape((-1,))
        pred_dd = pred_dd + delta[extra_wlen+dsum:]
        dsum += d
    return pred_dd
```

```
In [25]: pred = nab.deapply_differencing(pred_d, deltas, periods, wlen_d)
```

Prediction Quality

We can check the prediction quality via a scatter plot:

...And via the R2 score:

```
In [28]: r2_score(targets, pred)
```

Out[28]: 0.9818505405355401

Alarm Signal

Now we compute the errors to obtain our signal

Effect of the Threshold

Here's the cost surface w.r.t. the threshold

```
In [32]: thr_range = np.linspace(0.1, 1, 100)
         cost range = [cmodel.cost(signal d, labels, windows, thr)
                       for thr in thr range]
         cost_range = pd.Series(index=thr_range, data=cost_range)
         nab.plot_series(cost_range, figsize=figsize)
          80
          70
          60
```

Threshold Optimization

We can choose the value of θ in the usual way

Over all the dataset

Cost on the whole dataset 31

```
In [34]: ctst = cmodel.cost(signal_d, labels, windows, best_thr)
    print(f'Cost on the whole dataset {ctst}')
```

Considerations

We have seen just one way to handle seasonality:

- Another method consists in augmenting the input data...
- ...With a frequency component in the form $w_1 \cos \pi \omega t + w_2 \sin \pi \omega t$
 - lacktriangledown corresponds to the frequency we want to capture
 - $lacksquare w_1$ and w_2 are weights to be tuned by Linear Regression
- In practice, we add one column for $\cos \pi \omega t$ and one for $\sin \pi \omega t$

Differencing is an idea with a broader scope:

- It is at the heart of so-called "integrated" linear approaches for time series
- ...It's the "I" in ARIMA models
 - ...Which BTW stands for Auto Regressive Integrated Moving Average

Considerations

Seasonality and time-dependent models rely on periods

- ...But they do different things!
- In one case we model the period effect, and then we remove it
 - E.g. differencing, using a frequency component
- In time-indexed models we learn models that focus on specific times
 - There is no explicit time model
 - ...Or, better, the time model is a lookup table with distinct predictors
- Hard to say a priori which approach can work best

Both approaches not tied to Linear Regression and KDE

Removing seasonality is related to gradient boosting

- I.e. to the idea of building an ensemble as a sequence of (summed) predictors
- ..Each one trying to correct the mistake of the sub-sequence that precedes it