STAT 401A - Statistical Methods for Research Workers Regression diagnostics

Jarad Niemi (Dr. J)

Iowa State University

last updated: October 21, 2014

All models are wrong!

http:

George Box (Empirical Model-Building and Response Surfaces, 1987): All models are wrong, but some are useful.

```
//stats.stackexchange.com/guestions/57407/what-is-the-meaning-of-all-models-are-wrong-but-some-are-useful
```

"All models are wrong" that is, every model is wrong because it is a simplification of reality. Some models, especially in the "hard" sciences, are only a little wrong. They ignore things like friction or the gravitational effect of tiny bodies. Other models are a lot wrong - they ignore bigger things.

"But some are useful" - simplifications of reality can be quite useful. They can help us explain, predict and understand the universe and all its various components.

This isn't just true in statistics! Maps are a type of model; they are wrong. But good maps are very useful.

Regression

The simpler linear regression model is

$$Y_i \stackrel{ind}{\sim} N(\beta_0 + \beta_1 X_i, \sigma^2)$$

this can be rewritten as

$$Y_i = \beta_0 + \beta_1 X_i + e_i \quad e_i \stackrel{ind}{\sim} N(0, \sigma^2)$$

where we estimate the errors via the residuals

$$r_i = \hat{e}_i = Y_i - (\hat{\beta}_0 + \hat{\beta}_1 X_i).$$

Key assumptions are:

- Normality of the errors
- Constant variance of the errors
- Independence of the errors
- Linearity between mean response and explanatory variable

Histograms with best fitting bell curves

Normal data

Normal QQ-plot

Definition

The quantile-quantile or qq-plot is an exploratory graphical device used to check the validity of a distributional assumption for a data set.

A normal qq-plot graphs the theoretical quantiles from a normal distribution versus the observed quantiles.

Remark The bottom line is that, if the distribution assumption is satisfied, the points should fall roughly along the y=x line.

Normal

SAS swaps the x and y axes

Normal (n=10)

SAS swaps the x and y axes

Normal(n=100)

SAS swaps the x and y axes

Normal (n=1000)

SAS swaps the x and y axes

Not normal (n=10)

SAS swaps the x and y axes

Not normal (n=100)

SAS swaps the x and y axes

Not normal (n=1000)

SAS swaps the x and y axes

Constant variance

Recall the model

$$Y_i = \beta_0 + \beta_x X_i + e_i \quad e_i \stackrel{iid}{\sim} N(0, \sigma^2)$$

so the variance for the e_i is constant.

To assess this assumption, we look at plots of residuals vs anything and look for patterns that show different "spreads", e.g.

- funnels
- football shapes

The most common way this assumption is violated is by having increasing variance with increasing mean, thus we often look at a residuals vs predicted (fitted) mean plot.

Constant variance

Constant variance

Residual

Extreme non-constant variance (funnel)

Residual

Extreme non-constant variance (funnel)

Residual

Non-constant variance (n=10, $\sigma_2/\sigma_1 = 4$)

Non-constant variance (n=100, $\sigma_2/\sigma_1 = 4$)

Non-constant variance (n=1000, $\sigma_2/\sigma_1 = 4$)

Extreme non-constant variance (football)

Residual

Independence

Lack of independence includes

- Cluster effect
- Serial correlation
- Spatial association

Make plots of residuals vs relevant explanatory variables and look for patterns, e.g.

- Residuals vs groups
- Residuals vs time (or observation number)
- Residuals vs spatial variable

Summary

Often the best strategy is graphical exploration of the data, here are some relevant graphs:

- transformed response vs transformed explanatory
- transformed response vs transformed explanatory
- qqplot of residuals
- residual vs fitted value
- residual vs explanatory
- residual vs observation number
- residual vs any other variable

Linearity

Assess using scatterplots of (transformed) response vs (transformed) explanatory variable:

Testing Composite hypotheses

Comparing two models

- *H*₀ : (reduced)
- *H*₁ : (full)

Do the following

- 1. Calculate extra sum of squares.
- 2. Calculate extra degrees of freedom
- 3. Calculate

$$\text{F-statistic} = \frac{\text{Extra sum of squares} \; / \; \text{Extra degrees of freedom}}{\hat{\sigma}_{\textit{full}}^2}$$

- 4. Compare this to an F-distribution with
 - numerator degrees of freedom = extra degrees of freedom
 - ullet denominator degrees of freedom = degrees of freedom in estimating $\hat{\sigma}^2_{\mathit{full}}$

Lack-of-fit F-test

Let Y_{ii} be the i^{th} observation from the j^{th} group where the group is defined by those observations having the same explanatory variable value (X_i) .

Two models:

ANOVA:
$$Y_{ij} \stackrel{\textit{ind}}{\sim} N(\mu_j, \sigma^2)$$
 (full)

ANOVA: $Y_{ij} \overset{ind}{\sim} N(\mu_j, \sigma^2)$ (full) Regression: $Y_{ij} \overset{ind}{\sim} N(\beta_0 + \beta_1 X_i, \sigma^2)$ (reduced)

- Regression model is reduced:
 - ANOVA has J parameters for the mean
 - Regression has 2 parameters for the mean
 - Set $\mu_i = \beta_0 + \beta_1 X_i$.
- Small pvalues indicate a lack-of-fit, i.e. the reduced model is not adequate.
- Lack-of-fit F-test requires multiple observations at a few X_i values!

Telomere length

Telomere length

SAS code

```
DATA t:
  INFILE 'telomeres.csv' DSD FIRSTOBS=2;
  INPUT years length;
PROC REG DATA=t;
  MODEL length = years / CLB LACKFIT;
  RUN:
```

The REG Procedure Model: MODEL1 Dependent Variable: length

Number of Observations Read 39 Number of Observations Used 39

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	0.22777	0.22777	8.42	0.0062
Error	37	1.00033	0.02704		
Lack of Fit	9	0.18223	0.02025	0.69	0.7093
Pure Error	28	0.81810	0.02922		
Corrected Total	38	1.22810			

Indicates no evidence for a lack of fit, i.e. regression seems adequate.

```
# Use as.factor to turn a continuous variable into a categorical variable
m_anova = lm(telomere.length ~ as.factor(years), Telomeres)
m_reg = lm(telomere.length ~ years , Telomeres)
anova(m_reg, m_anova)

Analysis of Variance Table

Model 1: telomere.length ~ years
Model 2: telomere.length ~ as.factor(years)
Res.Df RSS Df Sum of Sq F Pr(>F)
1 37 1.000
2 28 0.818 9 0.182 0.69 0.71
```

No evidence of a lack of fit.

Lack-of-fit F-test summary

- Lack-of-fit F-test tests the assumption of linearity
- Needs multiple observations at various explanatory variable values
- Small pvalue indicates a lack-of-fit, i.e. means are not linear
 - Transform response, e.g. log
 - Transform explanatory variable
 - Add other explanatory variables

Interpretations using logs

The most common transformation of either the response or explanatory is to take logarithms because

- linearity will often then be approximately true,
- the variance will likely be approximately constant, and
- there is a (relatively) convenient interpretation.

We will talk about interpretation of β_0 and β_1 when

- only the response is logged,
- only the explanatory variable is logged, and
- when both are logged.

Neither response nor explanatory variable are logged

lf

$$E[Y|X] = \beta_0 + \beta_1 X$$

, then

- β_0 is the expected response when X is zero and
- β_1 is the expected change in the response for a one unit increase in the explanatory variable.

For the following discussion,

- Y is always going to be the original response and
- X is always going to be the original explanatory variable.

Example

Suppose

- Y is corn yield per acre
- X is fertilizer level in lbs/acre

Then, if

$$E[Y|X] = \beta_0 + \beta_1 X$$

- ullet eta_0 is the expected corn yield per acre when fertilizer level is zero and
- β_1 is the expected change in corn yield per acre when fertilizer is increase by 1 lbs/acre.

Response is logged

lf

$$E[\log(Y)|X] = \beta_0 + \beta_1 X$$
 or $Median\{Y|X\} = e^{\beta_0}e^{\beta_1 X}$

, then

- β_0 is the expected $\log(Y)$ when X is zero and
- β_1 is the expected change in $\log(Y)$ for a one unit increase in the explanatory variable.

Alternatively,

- $\exp(\beta_0)$ is the median of Y when X is zero and
- $\exp(\beta_1)$ is the multiplicative effect on the median of Y for a one unit increase in the explanatory variable.

Response is logged

Suppose

- Y is corn yield per acre
- X is fertilizer level in lbs/acre

Then, if

$$E[\log(Y)|X] = \beta_0 + \beta_1 X$$
 or $Median\{Y|X\} = e^{\beta_0}e^{\beta_1 X}$

- $\exp(\beta_0)$ is the median corn yield per acre when fertilizer level is zero and
- $\exp(\beta_1)$ is the multiplicative effect in median corn yield per acre when fertilizer is increase by 1 lbs/acre.

Explanatory variable is logged

lf

$$E[Y|X] = \beta_0 + \beta_1 \log(X)$$

, then

- β_0 is the expected response when $\log(X)$ is zero and
- β_1 is the expected change in the response for a one unit increase in log(X).

Alternatively,

- β_0 is the expected response when X is 1 and
- $\beta_1 \log(d)$ is the expected change in the response when X increase multiplicatively by d, e.g.
 - $\beta_1 \log(2)$ is the expected change in the response for each doubling of X or
 - $\beta_1 \log(10)$ is the expected change in the response for each ten-fold increase in X.

Explanatory variable is logged

Suppose

- Y is corn yield per acre
- X is fertilizer level in lbs/acre

Then, if

$$E[Y|X] = \beta_0 + \beta_1 \log(X)$$

- $oldsymbol{\circ}$ eta_0 is the median corn yield per acre when fertilizer level is 1 lb/acre and
- $\beta_1 \log(2)$ is the expected change in corn yield when fertilizer level is doubled.

Both response and explanatory variables are logged

lf

$$E[\log(Y)|X] = \beta_0 + \beta_1 \log(X)$$
 or $Median\{Y|X\} = e^{\beta_0} e^{\beta_1 \log(X)} = e^{\beta_0} X^{\beta_1}$

- , then
 - β_0 is the expected $\log(Y)$ when $\log(X)$ is zero and
 - β_1 is the expected change in $\log(Y)$ for a one unit increase in $\log(X)$.

Alternatively,

- $\exp(\beta_0)$ is the median of Y when X is 1 and
- d^{β_1} is the multiplicative change in the median of the response when X increase multiplicatively by d, e.g.
 - 2^{β_1} is the multiplicative effect on the median of the response for each doubling of X or
 - 10^{β_1} is the multiplicative effect on the median of the response for each ten-fold increase in X.

Both response and explanatory variables are logged

Suppose

- Y is corn yield per acre
- X is fertilizer level in lbs/acre

Then, if

$$E[\log(Y)|X] = \beta_0 + \beta_1 \log(X)$$
 or $Median\{Y|X\} = e^{\beta_0}e^{\beta_1 \log(X)} = e^{\beta_0}X^{\beta_1}$

- $\exp(\beta_0)$ is the median corn yield per acre when fertilizer level is 1 lb/acre and
- 2^{β_1} is the multiplicative effect on median corn yield per acre when fertilizer level doubles.