Optical Instruments

Microscope

It is an optical instrument used to see very small objects. It's magnifying power is

Visual angle with instrument
$$(\beta)$$

Visual angle when object is placed at least distance of distinct vision (α)

(1) Simple microscope

- (i) It is a single convex lens of lesser focal length.
- (ii) Also called magnifying glass or reading lens.
- (iii) Magnification's, when final image is formed at D and ∞ (i.e. m_D and m_∞)

$$m_D = \left(1 + \frac{D}{f}\right)_{\text{max}}$$
 and $m_{\infty} = \left(\frac{D}{f}\right)_{\text{min}}$

(iv) If lens is kept at a distance a from the eye then $m_D = 1 + \frac{D-a}{f}$ and $m_{\infty} = \frac{D-a}{f}$

(2) Compound microscope

- (i) Consist of two converging lenses called objective and eye lens.
- (ii) $f_{\rm eye\ lens} > f_{\rm objective}$ and (diameter) $_{\rm eye\ lens} >$ (diameter) $_{\rm objective}$
- (iii) Intermediate image is real and enlarged.
- (iv) Final image is magnified, virtual and inverted.
- (v) u_o = Distance of object from objective (o), v_o = Distance of image (A'B') formed by objective from objective, u_e = Distance of A'B' from eye lens, v_e = Distance of final image from eye lens, f_o = Focal length of objective, f_e = Focal length of eye lens.
- (vi) **Final image is formed at** *D* **:** Magnification $m_D = -\frac{v_o}{u_o} \left(1 + \frac{D}{f_e} \right)$ and length of the microscope tube (distance between two lenses) is $L_D = v_o + u_e$.

Generally object is placed very near to the principal focus of the objective hence $u_o \cong f_o$. The eye piece is also of small focal length and the image formed by the objective is also very near to the eye piece.

So $v_o \cong L_D$, the length of the tube.

Hence, we can write
$$m_D = \frac{-L}{f_o} \left(1 + \frac{D}{f_e} \right)$$

(vii) Final image is formed at ∞: Magnification

$$m_{\infty} = -\frac{v_0}{u_0} \cdot \frac{D}{f_e}$$
 and length of tube $L_{\infty} = v_0 + f_e$

In terms of length $m_{\infty} = \frac{(L_{\infty} - f_o - f_e)D}{f_o f_e}$

- (viii) For large magnification of the compound microscope, both f_o and f_e should be small.
- (ix) If the length of the tube of microscope increases, then its magnifying power increases.
- (x) The magnifying power of the compound microscope may be expressed as $M = m_o \times m_e$; where m_o is the magnification of the objective and m_e is magnifying power of eye piece.

Astronomical Telescope (Refracting Type)

By astronomical telescope heavenly bodies are seen.

- (1) $f_{\text{objective}} > f_{\text{eyelens}}$ and $d_{\text{objective}} > d_{\text{eye lens}}$.
- (2) Intermediate image is real, inverted and small.
- (3) Final image is virtual, inverted and small.
- (4) Magnification: $m_D = -\frac{f_0}{f_e} \left(1 + \frac{f_e}{D} \right)$ and $m_\infty = -\frac{f_o}{f_e}$
- (5) Length: $L_D = f_0 + u_e$ and $L_{\infty} = f_0 + f_e$

Terrestrial Telescope

It is used to see far off object on the earth.

(1) It consists of three converging lens: objective, eye lens and erecting lens.

(2) It's final image is virtual, erect and smaller.

(3) Magnification: $m_D = \frac{f_0}{f_e} \left(1 + \frac{f_e}{D} \right)$ and $m_\infty = \frac{f_0}{f_e}$

(4) Length: $L_D = f_0 + 4f + u_e$ and $L_{\infty} = f_0 + 4f + f_e$

Galilean Telescope

It is also type of terrestrial telescope but of much smaller field of view.

(1) Objective is a converging lens while eye lens is diverging lens.

(2) Magnification: $m_D = \frac{f_0}{f_e} \left(1 - \frac{f_e}{D} \right)$ and $m_\infty = \frac{f_0}{f_e}$

(3) Length: $L_D = f_0 - u_e$ and $L_{\infty} = f_0 - f_e$

Resolving Limit and Resolving Power

(1) **Microscope**: In reference to a microscope, the minimum distance between two lines at which they are just distinct is called Resolving limit (RL) and it's reciprocal is called Resolving power (RP)

$$O \longrightarrow O$$
 Objective

$$R.L. = \frac{\lambda}{2\mu \sin \theta}$$
 and $R.P. = \frac{2\mu \sin \theta}{\lambda} \Rightarrow R.P. \propto \frac{1}{\lambda}$

- λ = Wavelength of light used to illuminate the object,
- μ = Refractive index of the medium between object and objective,
- θ = Half angle of the cone of light from the point object, $\mu \sin \theta$ = Numerical aperture.
- (2) **Telescope**: Smallest angular separations $(d\theta)$ between two distant objects, whose images are separated in the telescope is called resolving limit. So resolving limit $d\theta = \frac{1.22\lambda}{a}$

and resolving power $(RP) = \frac{1}{d\theta} = \frac{a}{1.22\lambda} \Rightarrow R.P. \propto \frac{1}{\lambda}$ where a = aperture of objective.