802.11 Wireless LAN Protocol

CS 571 Fall 2006

© 2006 Kenneth L. Calvert All rights reserved

Wireless Channel Considerations

- Stations may move
 - Changing propagation delays, signal strengths, etc.
- "Non-transitive" reception
 - A can hear B, B can hear C, but A cannot hear C
- No "collision detection"!
 - Detect unsuccessful transmission by absence of acknowledgement

Wireless Channel Considerations, cont.

- Range of network limited by transmission power
 - If equipment obeys transmit power limits, no way to exceed maximum diameter
 - Therefore max end-to-end propagation delay is limited
- Radio Frequency (RF) spectrum usage is restricted by law/treaty!
 - 802.11 uses 2.4 GHz band, sometimes called ISM (Industrial, Scientific, Medicine)
 - Applications using this range of frequencies must use <u>Spread</u>
 <u>Spectrum</u> technology to minimize interference
 - This band subject to interference by microwave ovens (2.43 MHz), cellular phones, Bluetooth, wireless microphones, ...

Pieces of the 802.11 Standard

Medium Access Control divided into two parts

- Distributed Coordination Function (DCF)
 - Symmetric, all stations (including APs) behave the same way
 - Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)
 - Stations contend for access to medium
- Optional Point Coordination Function (PCF)
 - Built on DCF
 - Allows periods of <u>contention-free operation</u> interleaved with periods of contention
 - One station (typically AP) polls others to control who transmits
 - Note: importance of <u>association</u> function
 - Permits more efficient operation under heavy loads

Pieces of the 802.11 Standard

Multiple PHYs:

Original 802.11 (1999):

- 2.4 GHz frequency-hopping spread spectrum @ 1, 2 Mbps
- 2.4 GHz direct-sequence spread spectrum @ 1, 2 Mbps

802.11a (1999):

- 5 GHz orthogonal FDM @ 6, 9, 12, 18, 24, 36, 48, 54 Mbps 802.11b (1999):
- 2.4 GHz direct-sequence spread spectrum @ 5.5, 11 Mbps 802.11g (2003):
 - 2.4 GHz orthogonal FDM @ 54 Mbps

Architecture: Components

MAC Protocol Design

- Different stations perceive events differently
 - ⇒ Include explicit information about MAC state in transmitted frames

E.g., duration of the <u>next</u> frame to be transmitted Beacon frames inform stations about operational parameters

- Collision avoidance:
 - Stations choose a random backoff interval <u>before</u> colliding! (Compare to CSMA/CD: backoff only <u>after colliding</u>)
 - Each station's backoff continues <u>after other transmitted frames</u> (Helps with fairness)
- No collision detection: waste whole frames in collisions
 - ⇒ Try to ensure collisions don't happen long frames Exchange (short) control frames to clear the channel (RTS-CTS)
 - ⇒ Include immediate ACKs as part of MAC protocol retransmit if no ACK received

802.11 MAC Protocol Services

- Contention-based Channel Access
 - Some collisions <u>may</u> occur (but "collision avoidance")
- Contention-free Channel Access (optional)
 - No collisions (requires AP)
- Authentication of stations joining a network
 - "Open System" = any station can be authenticated
- Confidentiality of data
 - Using WEP or WPA encryption
- Association with a particular network ("BSS")
- MAC-level Acknowledgements
- Fragmentation and Reassembly

MAC Protocol Design

Wireless MAC Protocol Building Blocks:

- Clear Channel Assessment function (CCA): determines whether/when medium is busy/idle
 - Virtual Carrier Sense: use "Duration" fields in frames to infer that medium <u>should</u> be busy, regardless of whether it is sensed busy
- Inter-Frame Spacing (IFS) parameters
 - Variable defer times allow coordination of management functions with data transfer
- Slot time: basic unit of timing for the protocol
 Equal to RxTx Turnaround Time + Channel Sensing Time +
 Propagation Delay + MAC processing time
- Backoff timer: counts slots until station's turn to transmit

Basic DCF MAC Protocol

Basic Time Parameters

- Slot Time: basic unit of backoff algorithm
 - = Time required for station to sense end of frame, start transmitting, and beginning of frame to propagate to others
- SIFS: Short Inter-Frame Space
 - = Time required for station to sense end of frame and start transmitting
- <u>DIFS</u>: DCF Inter-Frame Space
 - = Time to wait before starting backoff interval ("contending")
 - = SIFS + 2 slot times

Basic DCF MAC Protocol

If medium is free for \geq DIFS \rightarrow transmit else back off:

Wait for medium to be free for DIFS

Choose a random r in [0,CW]

While r > 0:

sense medium for one slot time

if medium free throughout slot $\rightarrow r := r - 1$

transmit frame

Backoff Operation

General Frame Format

General Frame Format

To DS	From DS	Addr 1	Addr 2	Addr 3	Addr 4
0	0	Dest	Source	BSSID	N/A
0	1	Dest	AP Addr	Source	N/A
1	0	AP Addr	Source	Dest	N/A
1	1	Receiver	Xmitter	Dest	Source

Example of Address Usage

General Frame Format

MAC-level ACKs

 Upon receiving a frame addressed to it with a correct FCS, a station <u>immediately</u> transmits an ACK frame

 If a station fails to receive a correct ACK frame within a timeout, it retransmits (setting retry flag)

Request to Send – Clear to Send

- Before sending a long frame, send RTS
 - "long" = length greater than RTSThreshold parameter
 - RTSThreshold configurable per-station, range 0-2344+
- Recipient responds immediately with CTS
- Upon receiving CTS, immediately transmit Data

RTS-CTS Operation

Note: SIFS is shorter than DIFS, so stations contending for access do not decrement their backoff counters during these exchanges

Network Allocation Vector (NAV)

- Each station maintains a countdown timer that tells how far into the future the medium has been "reserved" by RTS/CTS exchanges
- Stations set NAV counter based on the value in the duration field of frames
 - Even if a station only hears one side of the RTS-CTS exchange, it knows how long the medium will be "busy"
- CCA function combines NAV and physical sensing
 - Medium considered busy if NAV value > 0

General Frame Format

Fragment Bursts

Management: Who's Playing?

- MAC layer must provide stations a way to:
 - Learn what SS's are available
 - Associate with a particular SS (and authentication)
 - Disassociate from a SS
- Beacon Frames are broadcast periodically by the Access Point
 - Contains: SS ID, Access Point address (if any), Beacon frame interval, supported data rates
- Stations may also send Probe frames to solicit information from APs (sent in Probe response msgs)
- Management frames are transmitted with higher priority
 - Implemented by using a smaller <u>Priority Inter-frame Space</u>

Point Coordination Function

- Idea: allow for explicit allocation of the channel
 - AP acts as Controller, polls stations
 - During a contention-free period, all stations see the medium as busy (for purposes of contention)
- Frame types:
 - Beacon (indicates start, duration of contention-free period)
 - CF-Poll, CF-Ack
 - Data+CF-Poll, Data+CF-Ack, Data+CF-Poll+CF-Ack
- When polled, station may transmit 1 (data) frame to any station

PCF Operation

- Special beacon marks beginning of CF period
 - Sent after sensing medium idle for PIFS (< DIFS)
 - Prevents other stations from contending for medium
 - Indicates duration of CF period
 - Non-PCF-capable stations set NAV to that value