```
In [1]: import pandas as pd
import numpy as np
from sklearn import linear_model
import matplotlib.pyplot as plt
```

```
In [2]: df = pd.read_csv('homeprices.csv')
df
```

Out[2]:

	area	price
0	2600	550000
1	3000	565000
2	3200	610000
3	3600	680000
4	4000	725000

```
In [3]: %matplotlib inline
   plt.xlabel('area')
   plt.ylabel('price')
   plt.scatter(df.area,df.price,color='red',marker='+')
```

Out[3]: <matplotlib.collections.PathCollection at 0x13df31b50>


```
new_df = df.drop('price',axis='columns')
In [4]:
         new_df
Out [4]:
            area
            2600
            3000
          2 3200
          3 3600
          4 4000
In [5]: | price = df.price
         price
Out[5]: 0
              550000
         1
              565000
         2
              610000
         3
              680000
         4
              725000
         Name: price, dtype: int64
In [6]:
         # Create linear regression object
         reg = linear_model.LinearRegression()
         reg.fit(new_df,price)
Out [6]:
              LinearRegression
          LinearRegression()
In [7]: reg.predict([[3300]])
         /Users/akheruddinahmed/anaconda3/lib/python3.11/site-packages/sklear
         n/base.py:493: UserWarning: X does not have valid feature names, but
         LinearRegression was fitted with feature names
           warnings.warn(
Out[7]: array([628715.75342466])
In [8]: reg.coef_
Out[8]: array([135.78767123])
In [9]: reg.intercept_
Out [9]: 180616.43835616432
In [10]: 3300*135.78767123 + 180616.43835616432
Out[10]: 628715.7534151643
```

```
In [11]: reg.predict([[5000]])
         /Users/akheruddinahmed/anaconda3/lib/python3.11/site-packages/sklear
         n/base.py:493: UserWarning: X does not have valid feature names, but
         LinearRegression was fitted with feature names
           warnings.warn(
Out[11]: array([859554.79452055])
In [12]:
         area_df = pd.read_csv("areas.csv")
         area df.head(3)
Out[12]:
            area
          0 1000
          1 1500
          2 2300
In [13]: p = reg.predict(area_df)
         р
Out[13]: array([ 316404.10958904,
                                    384297.94520548,
                                                      492928.08219178,
                 661304.79452055,
                                    740061.64383562,
                                                      799808.21917808,
                 926090.75342466,
                                    650441.78082192,
                                                      825607.87671233,
                 492928.08219178, 1402705.47945205, 1348390.4109589 ,
                1144708.90410959])
In [14]: | area_df['prices']=p
```

Out[14]:

area df

	area	prices
0	1000	3.164041e+05
1	1500	3.842979e+05
2	2300	4.929281e+05
3	3540	6.613048e+05
4	4120	7.400616e+05
5	4560	7.998082e+05
6	5490	9.260908e+05
7	3460	6.504418e+05
8	4750	8.256079e+05
9	2300	4.929281e+05
10	9000	1.402705e+06
11	8600	1.348390e+06
12	7100	1.144709e+06

In [15]:	area_df.to_csv("prediction.csv")
In []:	