lab4图算法

实验内容及要求

- ■实验4.1: Kruskal算法
 - □实现求最小生成树的Kruskal算法。无向图的顶点数N的取值分别为: 8、64、128、512,对每一顶点随机生成1~[N/2]条边,随机生成边的权重,统计算法所需运行时间,画出时间曲线,分析程序性能。
- ■实验4.2: Johnson算法
 - □实现求所有点对最短路径的Johnson算法。有向图的顶点数 N 的取值分别为: 27、81、243、729,每个顶点作为起点引出的边的条数取值分别为: log5N、log7N(取下整)。图的输入规模总共有4*2=8个,<mark>若同一个N,边的两种规模取值相等,则按后面输出要求输出两次,并在报告里说明</mark>。(不允许多重边,可以有环。) N=81时会出现这种情况

统计算法所需运行时间, 画出时间曲线, 分析程序性能。

实验设备及环境

- 编译运行环境
 - o Windows10-mingw-w64
 - vscode
 - o clion
- 电脑配置

计算机名: DESKTOP-NAIGI2Q

操作系统: Windows 10 家庭中文版 64 位 (10.0, 版本 18363)

语言: 中文(简体) (区域设置: 中文(简体))

系统制造商: Dell Inc.

系统型号: G7 7588

BIOS: 1.9.0

处理器: Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz (12 CPUs), ~2.2GHz

内存: 16384MB RAM

页面文件: 9058MB 已用, 10319MB 可用

实验方法和步骤

计时函数

- 和lab3相同,采用了 <windows.h> 中的 QueryPerformance 来计时,精度高,避免了之前数据量较小时时间为0的情况
- 开始计时

```
LARGE_INTEGER t1, t2, tc;
QueryPerformanceFrequency(&tc);
QueryPerformanceCounter(&t1);
```

- 运行需要计时的部分
- 结束计时并计算用时

```
QueryPerformanceCounter(&t2);
double time = (double)(t2.QuadPart - t1.QuadPart) / (double)tc.QuadPart;
```

Kruskal算法

主要用于无向图

顶点编号从0开始

generate.cpp

- 功能: 生成符合要求的输入文件
- 要求:
 - 。 无向图的顶点数N的取值分别为: 8、64、128、512
 - 。 对每一顶点随机生成1~|N/2|条边, 随机生成边的权重
 - 。 每行存放一对结点i,j序号(数字表示)和wij,表示结点i和j之间存在一条权值为wij边,权值范围为[1,20],取整数
 - 。 如果后续结点的边数大于[N/2],则无需对该结点生成边
 - 。 不允许重边, 可以有环 (包括自环, 算作一条边, 对应1度)
- 因为这里的N都是偶数,故不用专门进行下取整处理
- 用动态的 v_degree 数组保存当前状态下顶点的出度,用来控制每个顶点的度数小于等于[N/2]
- 用 vector<pair<int, pair<int, int>>> edges 保存生成的所有边,对应 pair<w, pair<u,
 v>> ,即记录边的权重以及首尾结点
- 循环遍历每个顶点,在每一轮循环中:
 - 。 根据当前顶点的度数确定对其新增的边数
 - 如果度数小于[N/2],则对应生成的边数为 1 + rand() % (N / 2 v_degree[i])
 - 如果度数等于[N/2],则对应生成的边数为0
 - 用 vector<pair<int, int>> edges_without_weight 来记录已经生成的边,防止生成重边 (因为重边可能权重不同,故这里新建了一个不包含权重的边的容器)
 - 因为是无向图,故一轮生成后将 edge_temp1 和 edge_temp2

```
edge_temp1.first = i;
edge_temp1.second = rand() % N;
edge_temp2.first = edge_temp1.second;
edge_temp2.second = edge_temp1.first;
```

两个边放入 edges_without_weight 容器中,这样才能完全避免重边

■ 只有不是重边 且 当前顶点度数小于N/2时才生成新的边

```
if(count(edges_without_weight.begin(), edges_without_weight.end(),
edge_temp1) == 0 &&
v_degree[edge_temp1.second] < N / 2)</pre>
```

否则计数变量不变, continue 进入下一轮循环

MST-KRUSKAL.cpp

分离集合数据结构类(使用21.3节所讨论的不相交集合森林实现,并增加按秩合并和路径压缩的功能)

```
class Disjoint_Set{
public:
   int *p;
   int *rank;
   int n;
   //构造函数,对每个结点x进行Make-Set操作
    Disjoint_Set(int n){
       this->n = n;
       p = new int[n];
       rank = new int[n];
       for(int i = 0; i < n; ++i){
            p[i] = i;
            rank[i] = 0;
       }
    }
    int Find_Set(int x){
       if(x != p[x]){
            p[x] = Find\_Set(p[x]);
       }
       return p[x];
    }
    //将课本上的Union和Link放在一起
    void Union(int x, int y){
       x = Find\_Set(x);
       y = Find_Set(y);
       if(rank[x] > rank[y]){
            p[y] = x;
       }else{
            p[x] = y;
            if(rank[x] == rank[y]){
               rank[y]++;
            }
        }
   }
};
```

- 无向图类
 - 。 构造函数:记录顶点数
 - 。 记录图的所有边 (包括首尾结点和权重)

```
vector<pair<int, pair<int, int>>> Edge;
```

用这种方式表示图可以更方便地遍历图中的所有边

。 向图中添加边的方法

```
void Add_Edge(int u, int v, int w){
    Edge.push_back({w, {u, v}});
}
```

○ 计算最小生成树的 MST_Kruskal 方法

```
vector<pair<int, pair<int, int>>> MST_Kruskal(){
    vector<pair<int, pair<int, int>>> A;
    int min_sum_weight = 0;
    Disjoint_Set my_Disjoint_set(V_num);
    sort(Edge.begin(), Edge.end());
    for(auto edge : Edge){
        int u = edge.second.first;
        int v = edge.second.second;
        int u_set_rep = my_Disjoint_set.Find_Set(u);
        int v_set_rep = my_Disjoint_set.Find_Set(v);
        if(u_set_rep != v_set_rep){
            A.push_back({edge.first ,{u, v}});
            min_sum_weight += edge.first;
            my_Disjoint_set.Union(u_set_rep, v_set_rep);
        }
    }
    cout << "min_sum_weight: " << min_sum_weight << endl;</pre>
    outfile << "min_sum_weight: " << min_sum_weight << endl;</pre>
    return A;
}
```

- 主题思路和书上的算法相同,本质上是一个贪心算法
- 该算法找到安全边的方法:在所有连接森林中两个不同的树的边里面,找到权重最小的边(u, v)
- 主要是通过for循环,按照权重从低到高的次序对每条边逐一进行检查。对于每条边(u, v),该循环将检查端点u和v是否属于同一颗树。如果是,该边不能加入到森林中(否则会形成环路);如果不是,则两个端点分别属于不同的树,然后该边被加入集合,然后将两棵树中的结点进行合并
- 用 c++ 的库函数 sort 来对含权重的边进行排序

```
sort(Edge.begin(), Edge.end());
```

- result 函数的功能:
 - 。 从输入文件中读入图的信息
 - o 通过 Graph 类构建图
 - 。 统计时间
 - 。 将结果和时间输出到对应文件

Johnson算法

- 主要用于有向图
- 顶点编号从1开始,0号顶点预留给扩展后的G'
- 注意: 为了不统计输出到文件和缓冲区所需要的时间,需要把 Dijkstra 和 Johnson 末尾的输出部分注释掉,以产生合理的 time.txt。

- o 提交版本的 time.txt 文件包含了输出到文件和缓冲区所需要的时间,作图时用到的数据是将 Dijkstra 和 Johnson 末尾的输出部分注释掉后产生的
- 最大权值为 INT16_MAX, 即32367

generate.cpp

- 功能: 生成符合要求的输入文件
- 要求:
 - 有向图的顶点数 N 的取值分别为: 27、81、243、729
 - 每个顶点作为起点引出的边的条数取值分别为: log5N、log7N (取下整)
 - 每行存放一对结点i,j序号(数字表示)和wij,表示存在一条结点i指向结点j的边,边的权值为wij,权值范围为[0,50],取整数。
 - 。 若同一个N,边的两种规模取值相等,则按后面输出要求输出两次,并在报告里说明 。 N=81 时会出现这种情况
 - 。 不允许重边, 可以有环 (包括自环, 算作一条边, 对应1度)
- 由于权重改为了[0,50], 故 Bellman-Ford 算法返回值一定为真,不用考虑负环的消除
- 采用和 Kruskal 类似的生成思路,只不过限制更少
- 每个顶点出度确定,不再需要记录
- 同样循环遍历每个顶点, 生成对应数量的边
 - o 用 vector<pair<int, int>> edges_without_weight 来记录当前顶点以及有的出边,防止出现多重边

Johnson.cpp

- 采用邻接表来存储图
 - 。 边结点类

```
class Edge_Node{
public:
    int src;
    int dest;
    int w;
    Edge_Node *next;
};
```

。 顶点类

- o 图类
 - 构造函数:初始化顶点数和输入输出路径
 - Add_Edge: 向邻接表中插入有向边(u,v), 权重为w

```
void Add_Edge(int u, int v, int w){
    //先分配空间,构造一个新的边结点
```

```
Edge_Node* temp_edge = new Edge_Node;
    temp_edge->src = u;
    temp_edge->dest = v;
    temp_edge->next = NULL;
    temp\_edge->w = w;
    //寻找合适的插入位置
    Edge_Node *u_first = vertex_list[u].first_edge;
    //若当前顶点邻接表为空
    if(u_first == NULL){
       vertex_list[u].first_edge = temp_edge;
    }else{
       while(u_first->next != NULL){
           u_first = u_first->next;
       }
       u_first->next = temp_edge;
    }
    edge_num++;
}
```

- Create_test_G: 输出课本中的例题便于测试
- Create_G: 从文件中读取并构建图

```
void Create_G(){
   ifstream infile;
   infile.open(inpath);
   cout << "Read G from " << inpath << endl;
   int u, v, w;
   while(infile >> u >> v >> w){
       Add_Edge(u, v, w);
   }
   infile.close();
}
```

■ Print_Path_u_to_v: 输出两个顶点的最短路径和权重

```
void Print_Path_u_to_v(int u, int v){

    cout << "From " << vertex_list[u].data << " to " <<
vertex_list[v].data << endl;
    outfile << "From " << vertex_list[u].data << " to " <<
vertex_list[v].data << " : (";
    Print_Path(&vertex_list[u], &vertex_list[v]);
    cout << "weight: " << vertex_list[v].d << endl;
    cout << endl;
    outfile << " " << vertex_list[v].d;
    outfile << ")" << endl;
}</pre>
```

■ Print_Path: Print_Path_u_to_v的子过程,用以递归打印路径

```
void Print_Path(Vertex_Node* u, Vertex_Node* v){
    if(u == v) {
        cout << v->data << ",";
        outfile << v->data << ",";
    }else if(v->pi == NULL){
        cout << "disconnected" << endl;
        outfile << "disconnected";
}else{
        Print_Path(u, v->pi);
        cout << v->data << " ";
        outfile << v->data << " ";
    }
}</pre>
```

■ Initialize_Single_Source: 同课本,对单源路径进行初始化

```
void Initialize_Single_Source(int s){
    //对所有顶点进行初始化
    for(int i = 0; i < vertex_num; ++i){
        vertex_list[i].d = MY_MAX;
        vertex_list[i].pi = NULL;
    }
    vertex_list[s].d = 0;
}</pre>
```

■ Relax:同课本,对边进行松弛操作

```
void Relax(Edge_Node *edge){
    auto u = vertex_list[edge->src];
    auto v = vertex_list[edge->dest];
    int w_u_v = edge->w;
    if(v.d > u.d + w_u_v){
        vertex_list[edge->dest].d = vertex_list[edge->src].d
+ w_u_v;
    vertex_list[edge->dest].pi = &vertex_list[edge->src];
}
```

- Bellman_Ford: 同课本,通过对边进行松弛操作来渐进地降低从源结点s到每个结点v 的最短路径的估计值v.d,直到该估计值与实际的最短路径权重相同为止。该算法返回真 当且仅当输入图不包含可以从源结点到达的权重为负值的环路
 - 对图的每条边进行 |v| 1 次处理,每次处理都是对边进行一次松弛操作
 - 然后检查图中是否存在权重为负值的环路并返回对应的布尔值

```
bool Bellman_Ford(int s){
    Initialize_Single_Source(s);
    //对图的每条边作 | v | - 1次处理
    for(int i = 1; i < vertex_num; ++i){
        //遍历所有边
        for(int j = 0; j < vertex_num; ++j){
            Edge_Node *edge = vertex_list[j].first_edge;
            while(edge != NULL){
                  Relax(edge);
```

```
edge = edge->next;
                     }
                }
            }
            //检查是否有负环路
            for(int i = 0; i < vertex_num; ++i){</pre>
                Edge_Node *edge = vertex_list[i].first_edge;
                while(edge != NULL){
                     if(vertex_list[edge->dest].d > vertex_list[edge-
>src].d + edge->w){
                         return false;
                     edge = edge->next;
                }
            }
            cout << "Bellman-Ford finished" << endl;</pre>
            return true;
        }
```

- Dijkstra: 同课本, 重复从V-S中选择最短路径估计最小的结点u, 将u加入到集合S, 然后对所有从u出发的边进行松弛
 - 使用最小优先队列来保存结点集合

```
void Dijkstra(int s){
       //注意必须先初始化再入队列,否则第一次取出来的就不好说了,或者说肯
定不是s
       Initialize_Single_Source(s);
       vector<Vertex_Node> S;
       //vector<Vertex_Node*> node_ptr;
        //优先队列实现最小堆
       priority_queue<int, vector<Vertex_Node*>, cmp>
node_min_heap;
       for(int i = 0; i < vertex_num; ++i){</pre>
           node_min_heap.push(&(vertex_list[i]));
       while(!node_min_heap.empty()){
           Vertex_Node *min_d_node = node_min_heap.top();
           node_min_heap.pop();
           S.push_back(*min_d_node);
           Edge_Node *edge = min_d_node->first_edge;
           while(edge != NULL){
                Relax(edge);
                edge = edge->next;
           }
       }
       cout << "Dijkstra result: " << endl;</pre>
       for(int i = 1; i < vertex_num; ++i){</pre>
           if(i != s){
                Print_Path_u_to_v(s, i);
       }
   }
```

- Johnson: 采用重新赋予权重技术,调用 Bellman-Ford 算法和 Dijkstra 算法来计算 所有结点对之间的最短路径,并计时
 - 对G进行扩展为G'
 - 在G'上调用 Bellman-Ford 算法
 - 根据 Bellman-Ford 算法的结果设置h(v)
 - 重新计算权重函数*ŵ*
 - 对每一对结点u, v,调用 Dijkstra 算法计算最短路径权重,并将其保存在D矩阵对 应位置

```
void Johnson(){
             LARGE_INTEGER t1, t2, tc;
             QueryPerformanceFrequency(&tc);
             QueryPerformanceCounter(&t1);
             outfile.open(outpath);
             Create_G();
            //Create_test_G();
             //扩展G为G'
             for(int i = 1; i < vertex_num; ++i){</pre>
                 Add_Edge(0, i, 0);
             }
             if(Bellman_Ford(0) == false){
                 cout << "the input graph contains a negative-weight</pre>
cycle" << endl;</pre>
            }else{
                 int *h = new int[vertex_num];
                 //set h(v) to the value of sigma(s,v) computed by
the Bellman-Ford algorithm
                 for(int i = 0; i < vertex_num; ++i){</pre>
                     h[i] = vertex_list[i].d;
                 }
                 for(int i = 0; i < vertex_num; ++i){</pre>
                     Edge_Node* edge = vertex_list[i].first_edge;
                     while(edge != NULL){
                          edge->w = edge->w + h[edge->src] - h[edge-
>dest];
                          edge = edge->next;
                     }
                 int **D = new int*[vertex_num];
                 for(int i = 0; i < vertex_num; ++i){</pre>
                     D[i] = new int[vertex_num];
                 }
                 for(int i = 1; i < vertex_num; ++i){</pre>
                     Dijkstra(i);
                     for(int j = 1; j < vertex_num; ++j){}
                          D[i][j] = vertex_list[j].d + h[j] - h[i];
                     }
                 }
                 cout << "Johnson result: " << endl;</pre>
                 for(int i = 1; i < vertex_num; ++i){</pre>
                     for(int j = 1; j < vertex_num; ++j){}
                          cout << D[i][j] << " ";</pre>
```

```
}
cout << endl;
}
QueryPerformanceCounter(&t2);
double time = (double)(t2.QuadPart - t1.QuadPart) /
(double)tc.QuadPart;
cout << "spend time = " << time << endl; //输出时间(单
位: s)

outfile_time << time << endl;
outfile.close();
}
```

实验结果和分析

Kruskal算法

• 实验结果截图

```
min_sum_weight: 33
spend time = 0.0012731
0 3 1
4 7 1
2 6 2
0 1 4
4 1 5
1 6 6
4 5 14
```

- 由于使用了21.3节所讨论的不相交集合森林实现,并增加按秩合并和路径压缩的功能,故按照课本中的推导,理论时间复杂度应为O(ElgV)
- 数据和作图如下

V	1gV	Е	ElgV	time(微和	沙)
8	3	18	54	802	
64	6	789	4734	1080	
128	7	3334	23338	2092	
512	9	49828	448452	27588	

可以看到实际时间复杂度和理论时间复杂度很符合

Johnson算法

- N=81时对应的图规模相同
- 实验结果截图

这里去除了 Johnson 和 Dijkstra 的输出部分(以免统计时间时不准确,把输入输出的时间也错误地统计进去)

```
D:\study\algorithm_lab\lab4-2\cmake-build-debug\lab4_2.exe
Read G from ../input/input11.txt
Bellman-Ford finished
spend time = 0.0008882
Read G from ../input/input12.txt
Bellman-Ford finished
spend time = 0.0006578
Read G from ../input/input21.txt
Bellman-Ford finished
spend time = 0.0039214
Read G from ../input/input22.txt
Bellman-Ford finished
spend time = 0.0039851
Read G from ../input/input31.txt
Bellman-Ford finished
spend time = 0.0337275
Read G from ../input/input32.txt
Bellman-Ford finished
spend time = 0.0326274
Read G from ../input/input41.txt
Bellman-Ford finished
spend time = 0.33475
Read G from ../input/input42.txt
Bellman-Ford finished
spend time = 0.314208
```

未去除 Johnson 和 Dijkstra 的输出部分

Read G from ../input/input11.txt Bellman-Ford finished Dijkstra result: From 1 to 2 disconnected Weight: 32767 From 1 to 3 1,3 Weight: 1 From 1 to 4 1,17 4 Weight: 69 From 1 to 5 disconnected Weight: 32767 From 1 to 6 disconnected Weight: 32767 From 1 to 7 disconnected

Johnson 算法得到的D矩阵

Weight: 32767

Obbrison result:

0 32767 1 69 32767

- 由于 Johnson 算法调用的 Dijkstra 算法部分使用了 C++ 中的优先队列来实现,由于优先队列本质上是一个堆,不论其是二叉堆还是斐波那契堆,由于实验中 $\mathsf{E}=\mathsf{kV}$,理论时间复杂度均为 $O(V^2 lqV)$
- 数据和作图如下 (对每个顶点引出 log_5N 和 log_7N 的两种情况分别作图)

V	1gV	E	V^2 1gV	time (秒)	time (微秒)
27	3	54	2187	0.002884	2883.7
27	3	27	2187	0.001907	1906.8
81	4	162	26244	0.013188	13188. 1
81	4	162	26244	0.006615	6614. 9
243	5	729	295245	0.035787	35787. 2
243	5	486	295245	0.036123	36122.5
729	6	2916	3188646	0.338213	338213
729	6	2187	3188646	0.318075	318075

可以看到实际时间复杂度和理论时间复杂度很符合

实验总结

- 通过本次实验,对最小生成树 κruskal 算法有了更加深入的了解。同时也手动实现了21章的分离集合数据结构,该数据结构可以使得 κruskal 算法的时间复杂度较低(目前已知的渐进最快的实现方式)
- 对求所有结点对最短路径的 Johnson 算法有了更深入的了解,同时也实现了求单源最短路径的 Bellman-Ford 算法和 Dijkstra 算法,掌握了这些算法之间的区别和联系
- 让我意识到了图可以有多种存储方式,不同的存储方式对于不同的算法可能更加方便快捷,这是一种空间、时间、算法间的权衡