Szanowni Państwo, Nauczyciele poprawiający prace uczniowskie z badania diagnostycznego z matematyki

Poniżej przedstawiamy zasady, dotyczące oceniania arkuszy egzaminacyjnych z matematyki. Zasady te są omawiane na szkoleniach kandydatów na egzaminatorów, w zakresie egzaminu maturalnego z matematyki, organizowanych przez wszystkie Okręgowe Komisje Egzaminacyjne w naszym kraju.

Proponujemy by były one stosowane w trakcie oceniania uczniowskich rozwiązań zadań z arkuszy "Materiały diagnostyczne z matematyki"

Zasady oceniania arkuszy egzaminacyjnych

- 1. Rozwiązania poszczególnych zadań są oceniane na podstawie szczegółowych kryteriów oceniania, jednolitych w całym kraju.
- 2. Egzaminatorzy zwracają uwagę na:
 - poprawność merytoryczną odpowiedzi,
 - poprawność rozwiązań zadań, w których pominięcie cząstkowych obliczeń lub prezentacji sposobu rozumowania może spowodować utratę punktów.
- 3. Obok każdego zadania jest podana maksymalna liczba punktów, którą można uzyskać za jego poprawne rozwiązanie.
- 4. Ocenianiu podlegają tylko te fragmenty pracy zdającego, które dotyczą polecenia. Komentarze, nawet poprawne, wykraczające poza zakres polecenia nie podlegają ocenianiu.
- 5. Gdy do jednego polecenia zdający podaje kilka odpowiedzi (jedną prawidłową, inne nieprawidłowe), to nie otrzymuje punktów.
- 6. Całkowicie poprawne rozwiązania zadań, uwzględniające inny tok rozumowania niż podany w kryteriach oceniania, jest oceniane maksymalną liczbą punktów.
- 7. Jeżeli w rozwiązaniu uczeń popełnił błąd i konsekwentnie używał błędnego wyniku do dalszych obliczeń, ale wykonane przez ucznia czynności są zgodne lub równoważne z tymi, które należałoby wykonać przy rozwiązaniu bezbłędnym, to za niepoprawnie wykonaną czynność nie otrzymuje punktów, natomiast pozostałe części rozwiązania powinny być ocenione tak, jakby błąd nie wystąpił.
- 8. Punkty nie są przyznawane w danym etapie rozwiązania, gdy wynikają one ze stosowania błędnej metody.
- 9. Zapisy w brudnopisie nie będą oceniane.

Schemat oceniania arkusza I

Uwaga: Za prawidłowe rozwiązanie każdego z zadań inną metodą niż przedstawiona w schemacie należy przyznać zdającemu maksymalną liczbę punktów.

Nr zadania	Nr czynności	Etapy rozwiązania zadania	Liczba pkt.
1	1.1.	Zapisanie wielomianu $P(x)$ w postaci: $P(x) = x^3 - x - 20x + 20$ lub skorzystanie z twierdzenia Bézout.	1
	1.2.	Przekształcenie wielomianu $P(x)$ do postaci: $P(x) = (x-1)(x^2 + x - 20)$.	1
	1.3.	Obliczenie pierwiastków trójmianu $x^2 + x - 20$: $x_1 = 4$, $x_2 = -5$.	1
	1.4.	Zapisanie wielomianu $P(x)$ w postaci iloczynu czynników liniowych: $P(x) = (x-1)(x-4)(x+5)$.	1
2	2.1.	Zapisanie równania opisującego podaną w zadaniu sytuację, np.: $(x-10)\cdot(x+11)=2005-x$, gdzie x oznacza obecny wiek jubilata (<i>Zapis założenia</i> $x>0$ <i>albo</i> $x\in N^+$ <i>może być pominięty</i>).	1
	2.2.	Doprowadzenie wyjściowego równania do postaci równania kwadratowego: $x^2 + 2x - 2115 = 0$.	1
	2.3.	Rozwiązanie równania: $x = -47$ oraz $x = 45$.	1
	2.4.	Zapisanie odpowiedzi: Jubilat urodził się w 1960 roku.	1
3	3.1.	Obliczenie liczby a : $a = 2$ i zapisanie, że liczba a należy do dziedziny funkcji $f(x)$.	1
	3.2.	Obliczenie wartości funkcji dla podanego argumentu: $f(2) = -1$ oraz $f(3) = -4$.	1
	3.3.	Sporządzenie wykresu funkcji $f(x)$. Wykres fragmentu paraboli powinien zawierać $f(1)$, $f(2)$, $f(3)$.	1
	3.4.	Zapisanie rozwiązania równania $f(x) = 0$: $x = 1$.	1
	3.5.	Zapisanie zbioru wartości funkcji $f(x)$: $\langle -4;0 \rangle \cup \langle 1;3 \rangle$.	1
4	4.1.	Wyznaczenie równania prostej AB , np.: $y = \frac{1}{3}x + \frac{8}{3}$.	1

	4.2.	Zapisanie układu równań równoważnego układowi: $\begin{cases} y = \frac{1}{3}x + \frac{8}{3} \\ 9x - 6y - 26 = 0 \end{cases}$	1
	4.3.	Rozwiązanie powyższego układu równań: $\begin{cases} x = 6 \\ y = 4\frac{2}{3} \end{cases}$	1
	4.4.	Zapisanie równania rodziny prostych prostopadłych do prostej AB : $y = -3x + b$ lub zapisanie współczynnika kierunkowego symetralnej odcinka AB : $a = -3$.	1
	4.5.	Wyznaczenie współrzędnych środka odcinka $AB: S = (1,3)$.	1
	4.6.	Obliczenie współczynnika b i zapisanie równania symetralnej odcinka AB : $y = -3x + 6$.	1
	5.1.	Zapisanie podanych wyrazów a_k , a_{k+1} , a_{k+2} : $a_k = 4k - 31, \ a_{k+1} = 4k - 27, \ a_{k+2} = 4k - 23, \ k \in \mathbb{N}^+.$	1
5	5.2.	Zapisanie powyższych wyrazów powiększonych odpowiednio o 1, o 3, oraz o 23: $a_k + 1 = 4k - 30$, $a_{k+1} + 3 = 4k - 24$, $a_{k+2} + 23 = 4k$.	1
	5.3.	Zapisanie równania: $(4k-24)^2 = 4k \cdot (4k-30)$.	1
	5.4.	Rozwiązanie powyższego równania: $k = 8$.	1
	5.5	Obliczenie ilorazu q ciągu geometrycznego: $q=4$ oraz obliczenie czwartego wyrazu tego ciągu: 128	1
6	6.1.	Zapisanie liczby wszystkich zdarzeń elementarnych: $ \Omega = {16 \choose 8}$.	1
	6.2.	Zapisanie liczby zdarzeń sprzyjających zajściu danego zdarzenia: $ A = 2 \cdot \binom{14}{7}.$	1
	6.3.	Obliczenie i zapisanie prawdopodobieństwa szukanego zdarzenia w postaci ułamka nieskracalnego: $P(A) = \frac{8}{15}$. • 1 punkt za obliczenie liczby wszystkich zdarzeń i liczby zdarzeń sprzyjających: $\binom{16}{8} = 12870$, $\binom{14}{7} = 6864$.	2

7	7.1.	Przekształcenie wyrażenia $\frac{x}{x-3}$ do postaci $\frac{(x-3)+3}{x-3} = 1 + \frac{3}{x-3}$. Uwaga: jeżeli zdający zapisze ułamek $\frac{x}{x-3}$ w postaci $\frac{(x-3)+2}{x-3}$ to nie otrzymuje żadnego punktu za swoje rozwiązanie.	1
	7.2.	Zapisanie, że mianownik wyrażenia $(x-3) \in \{-1,1,-3,3\}$.	1
	7.3.	Rozwiązanie równań: $x-3=-1$, $x-3=1$, $x-3=-3$, $x-3=3$: $x \in \{2,4,0,6\}$. Uwaga: punkt przyznajemy zdającemu wtedy, gdy poprawnie rozwiąże cztery lub trzy równania.	1
8	8.1	Stwierdzenie, że $ EB = HA $, np. ze względu na przystawanie trójkątów AEH i BFE .	1
	8.2.	Zapisanie związku między długościami odcinków AB , AE i EB , np.: $ AE = AB - EB = 1 - EB $ albo oznaczenie długości odcinków AE i EB odpowiednio a oraz $(1 - a)$.	1
	8.3.	Zapisanie równania z jedną niewiadomą pozwalającego obliczyć długość odcinka AE (albo długość odcinka EB), np.: $\frac{1-a}{a} = \frac{2}{5}$.	1
	8.4.	Obliczenie długości odcinka AE i AH : $ AE = \frac{5}{7}$ i $ AH = \frac{2}{7}$.	1
	8.5.	Obliczenie pola kwadratu <i>EFGH</i> : $\frac{29}{49}$.	1
9	9.1.	Obliczenie sumy 17 kolejnych początkowych liczb naturalnych: 153.	1
	9.2.	Zapisanie równania równoważnego równaniu: $7626 = \frac{n \cdot (n+1)}{2}, \ n \in \mathbb{N}^+.$	1
	9.3.	Rozwiązanie równania $7626 = \frac{n \cdot (n+1)}{2}$ i zapisanie, że liczba 7626 jest liczbą trójkątną ($7626 = t_{123}$).	1
	9.4.	Zapisanie odpowiedniej nierówności, np.: $\frac{n \cdot (n+1)}{2} \le 9999$, $n \in \mathbb{N}^+$.	1

	9.5.	Rozwiązanie nierówności $n^2 + n - 19998 \le 0$: $n \in \langle n_1; n_2 \rangle$, gdzie $n_1 = \frac{-1 - \sqrt{79993}}{2}$, $n_2 = \frac{-1 + \sqrt{79993}}{2}$.	1
	9.6.	Zapisanie, że największą liczbą naturalną spełniającą nierówność $n^2 + n - 19998 \le 0$ jest liczba $n = 140$.	1
	9.7.	Obliczenie największej czterocyfrowej liczby trójkątnej: $t_{140} = \frac{140 \cdot 141}{2} = 9870 \ .$	1
	10.1.	Wprowadzenie do rozwiązania precyzyjnie opisanych oznaczeń lub sporządzenie pomocniczego rysunku danego ostrosłupa (lub siatki ostrosłupa lub przekroju danego ostrosłupa).	1
	10.2.	Obliczenie pola P_p podstawy danego ostrosłupa: $P_p = 48\sqrt{3}$.	1
	10.3.	Obliczenie długości a krawędzi podstawy ostrosłupa: $a = 8\sqrt{3}$.	1
10	10.4.	Obliczenie długości h_s wysokości ściany bocznej: $h_s = 8$.	1
	10.5.	Obliczenie długości x odcinka stanowiącego jedną trzecią wysokości podstawy ostrosłupa: $x = \frac{a\sqrt{3}}{6} = 4$.	1
	10.6.	Obliczenie długości H wysokości ostrosłupa: $H = 4\sqrt{3}$.	1
	10.7.	Obliczenie objętości V danego ostrosłupa: $V = 192$.	1