$\hat{\Sigma}_{\mathcal{B}}^{\mathcal{B}} = \frac{N_1 N_2}{N^2} (\hat{\mu}_2 - \hat{\mu}_2) (\hat{\mu}_2 - \hat{\mu}_1)^{\mathsf{T}} \mathcal{B} = C(\hat{\mu}_2 - \hat{\mu}_1)$ Returning to agn 4.56, Since \(\hat{\sigma}_{\beta} \beta = C(\hat{\mu}_2 - \hat{\mu}_1)\) than (N-2) \(\hat{\beta} \beta = C* (\hat{\beta} - \hat{\beta}) \) where C* = Scalar => $\hat{\beta} = C \times \hat{\Sigma}^{-1}(\hat{\mu}_2 - \hat{\mu}_i)$ where $C \times \hat{\Sigma} = C \times$ $\Rightarrow \hat{\beta} \propto \hat{\Sigma}^{-1}(\hat{\mu}_2 - \hat{\mu}_1)$