PibicFinal

```
AUTHOR
                                                  PUBLISHED
Leo Alec
                                                  August 1, 2025
pré requisitos:
▼ Code
 library("dplyr")
Anexando pacote: 'dplyr'
Os seguintes objetos são mascarados por 'package:stats':
    filter, lag
Os seguintes objetos são mascarados por 'package:base':
    intersect, setdiff, setequal, union
▼ Code
 library("multcomp")
Carregando pacotes exigidos: mvtnorm
Carregando pacotes exigidos: survival
Carregando pacotes exigidos: TH.data
Carregando pacotes exigidos: MASS
Anexando pacote: 'MASS'
O seguinte objeto é mascarado por 'package:dplyr':
    select
Anexando pacote: 'TH.data'
O seguinte objeto é mascarado por 'package:MASS':
    geyser
```

1. Introdução e Preparação dos Dados

```
Sobrenadante = rep(c("Lactobacillus crispatus", "Lactobacillus crispatus", "Lactobacillus rh
   Duplicata = rep(c("1", "2"), times = 2, each = 15),
   Data = rep(as.Date(c("2025-04-24", "2025-04-30", "2025-05-16")), each = 5, times = 4),
   Tratamento = rep(c("Controle", "Veículo", "1,25%", "10%", "25%"), times = 12),
   Vivas = c(
     188, 110, 91, 134, 45, 137, 59, 85, 74, 73, 224, 165, 181, 139, 102,
    108, 122, 91, 95, 62, 63, 59, 97, 102, 79, 128, 129, 145, 144, 49,
     188, 110, 65, 66, 29, 137, 59, 103, 47, 12, 224, 165, 139, 82, 40,
     108, 122, 137, 42, 47, 63, 59, 70, 68, 14, 128, 129, 188, 104, 23
   ),
   Mortas = c(
     38, 38, 27, 42, 55, 45, 23, 52, 53, 59, 54, 39, 58, 82, 137,
     22, 35, 38, 46, 68, 31, 23, 44, 55, 41, 31, 51, 76, 80, 80,
    38, 38, 45, 57, 30, 45, 23, 50, 44, 35, 54, 39, 82, 121, 79,
     22, 35, 65, 27, 69, 31, 23, 59, 64, 64, 31, 51, 76, 80, 54
   )
 )
▼ Code
 library(dplyr)
 df_preparado <- dados %>%
   mutate(
     # Garante que não haja divisão por zero se Vivas + Mortas for 0
     Total = Vivas + Mortas,
     # Calcula a proporção de células vivas (valor entre 0 e 1)
     Proporcao_Vivas = ifelse(Total == 0, 0, Vivas / Total),
     # Aplica a transformação Arco-Seno da Raiz Quadrada na proporção
     # Assim como muitas transformações, essa foi feita para aproximar os dados de uma distruib
     Proporcao_Transformada = asin(sqrt(Proporcao_Vivas)),
     # Garante que as variáveis categóricas sejam "fatores"
     # E define "Controle" como o nível de referência para comparações
     Sobrenadante = as.factor(Sobrenadante),
     Tratamento = factor(Tratamento, levels = c("Controle", "Veículo", "1,25%", "10%", "25%"))
   )
 print(head(df preparado))
             Sobrenadante Duplicata
                                          Data Tratamento Vivas Mortas Total
1 Lactobacillus crispatus
                                 1 2025-04-24
                                                 Controle
                                                            188
                                                                    38
                                                                         226
2 Lactobacillus crispatus
                                  1 2025-04-24
                                                  Veículo
                                                            110
                                                                    38
                                                                         148
3 Lactobacillus crispatus
                                 1 2025-04-24
                                                    1,25%
                                                             91
                                                                    27
                                                                         118
                                  1 2025-04-24
4 Lactobacillus crispatus
                                                      10%
                                                            134
                                                                    42
                                                                         176
5 Lactobacillus crispatus
                                  1 2025-04-24
                                                      25%
                                                             45
                                                                    55
                                                                         100
```

1 2025-04-30

Controle

137

45

182

Proporcao_Vivas Proporcao_Transformada 1 0.8318584 1.1482867

6 Lactobacillus crispatus

dados <- data.frame(</pre>

```
      2
      0.7432432
      1.0394300

      3
      0.7711864
      1.0720276

      4
      0.7613636
      1.0604216

      5
      0.4500000
      0.7353145

      6
      0.7527473
      1.0503757
```

▼ Code

```
df_crispatus <- df_preparado %>%
  filter(Sobrenadante == "Lactobacillus crispatus")

df_rhamnosus <- df_preparado %>%
  filter(Sobrenadante == "Lactobacillus rhamnosus")
```

Para realizar uma análise estatística robusta, os dados brutos precisam ser processados. A simples contagem de células vivas pode ser enganosa, pois não leva em conta o número total de células em cada amostra. Por isso, seguimos de dois passos:

- Cálculo da Proporção: Convertemos os dados para a proporção de células vivas (Proporcao_Vivas), que é uma métrica normalizada e justa para comparação.
- Transformação Arco-Seno: Dados de proporção frequentemente não seguem uma distribuição normal e não possuem variâncias homogêneas, violando premissas de testes como a ANOVA. A transformação Arco-Seno da Raiz Quadrada (asin(sqrt(x))) corrige essas características, estabilizando a variância e aproximando os dados da normalidade.

2. Análise para Lactobacillus crispatus

2.1 Premissas da ANOVA

2.1.1 Homogeneidade das variâncias - Teste de Bartlett

Uma das premissas da ANOVA

Antes de aplicar a ANOVA, precisamos verificar uma de suas principais premissas: a de que as variâncias dos diferentes grupos de tratamento são homogêneas. O Teste de Bartlett é usado para isso. A hipótese nula H_0 é que todas as variâncias são iguais.

- H_0 : As variâncias são iguais entre os grupos de tratamento.
- H_1 : Pelo menos um grupo tem variância diferente.
- **▼** Code

```
cat("1. Teste de Bartlett para Homogeneidade de Variâncias:\n")
```

1. Teste de Bartlett para Homogeneidade de Variâncias:

```
teste_bartlett_crispatus <- bartlett.test(Proporcao_Transformada ~ Tratamento, data = df_crisp.
print(teste_bartlett_crispatus)</pre>
```

Bartlett test of homogeneity of variances

```
data: Proporcao_Transformada by Tratamento
Bartlett's K-squared = 3.2238, df = 4, p-value = 0.5211
```

p-valor = 0.5211 | $\alpha=0.05$: não rejeitamos a hipótese nula. Isso significa que não há evidências para sugerir que as variâncias dos grupos sejam diferentes. Portanto, a premissa de homogeneidade da ANOVA foi atendida.

2.1.2. Teste de Normalidade dos Resíduos - Shapiro-Wilk

Agora, ajustamos o modelo ANOVA para extrair seus resíduos e verificar se eles seguem uma distribuição normal. A hipótese nula (H_0) é que os dados são normalmente distribuídos. Usamos o teste de Shapiro-Wilk para uma avaliação estatística e um gráfico Q-Q para uma inspeção visual.

▼ Code

```
# Instanciando o modelo para captura dos resuduos
modelo_anova_crispatus <- aov(Proporcao_Transformada ~ Tratamento, data = df_crispatus)
residuos_crispatus <- residuals(modelo_anova_crispatus)

# Shapiro-Wilk
cat("Teste de Shapiro-Wilk para Normalidade dos Resíduos:\n")</pre>
```

Teste de Shapiro-Wilk para Normalidade dos Resíduos:

▼ Code

```
shapiro_test_crispatus <- shapiro.test(residuos_crispatus)
print(shapiro_test_crispatus)</pre>
```

```
Shapiro-Wilk normality test
```

```
data: residuos_crispatus
W = 0.98156, p-value = 0.8654
```

```
qqnorm(residuos_crispatus, main = "L. crispatus - Gráfico Q-Q dos Resíduos")
qqline(residuos_crispatus, col = "red", lwd = 1)
```

L. crispatus - Gráfico Q-Q dos Resíduos

O que é o Gráfico Q-Q?

Ao invés de plotarmos uma distribuição comum, utilizamos esse gráfico para comparar os quantis dos seus dados (dados observados) com os quantis de uma distribuição teórica perfeita, geralmente a Distribuição Normal. Quanto mais os dados seguirem a linha destacada, mais adequados estão a uma distribuição.

- Eixo X: Os quantis teóricos. (Onde os pontos deveriam estar se seus dados seguissem perfeitamente uma distribuição normal).
- Eixo Y: Os quantis da sua amostra de dados. (Onde seus pontos de dados realmente estão).

Interpretação:

O teste de Shapiro-Wilk resultou em um p-valor de 0.8654. Como p > 0.05, *não rejeitamos a hipótese nula*, indicando que os resíduos do modelo são consistentes com uma distribuição normal. O gráfico Q-Q corrobora essa conclusão, pois os pontos se alinham bem ao longo da linha teórica vermelha.

PREMISSAS VALIDADAS

2.2 ANOVA

Este teste nos dirá se existe alguma diferença estatisticamente significativa entre as médias de pelo menos dois dos grupos de tratamento. A hipótese nula H_0 é que as médias de todos os grupos são iguais.

- ullet $H_0:$ A média da proporção transformada é a mesma para todos os tratamentos
- H_1 : A média de pelo menos um tratamento é diferente.

```
cat("Análise de Variância - ANOVA:\n")
```

Análise de Variância - ANOVA:

▼ Code

```
print(summary(modelo_anova_crispatus))
```

```
Df Sum Sq Mean Sq F value Pr(>F)
Tratamento 4 0.3499 0.08747 17 7.5e-07 ***
Residuals 25 0.1287 0.00515
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Interpretação:

p-valor = 7.5e-07 ou 0.00000075 | $\alpha=0.05$: rejeitamos a hipótese nula. Esta é uma forte evidência de que existe uma diferença significativa na viabilidade celular entre os grupos de tratamento para Lactobacillus crispatus.

2.3 Post-hoc

O Teste Post-Hoc de Dunnett foi aplicado para identificar quais tratamentos específicos tiveram um efeito diferente do grupo Controle.

▼ Code

```
cat("Teste Post-Hoc de Dunnett (Comparações com o Controle):\n")
```

Teste Post-Hoc de Dunnett (Comparações com o Controle):

▼ Code

```
teste_dunnett_crispatus <- glht(modelo_anova_crispatus, linfct = mcp(Tratamento = "Dunnett"))
print(summary(teste_dunnett_crispatus))</pre>
```

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Dunnett Contrasts

```
Fit: aov(formula = Proporcao_Transformada ~ Tratamento, data = df_crispatus)
```

Linear Hypotheses:

```
Estimate Std. Error t value Pr(>|t|)

Veículo - Controle == 0 -0.04348 0.04142 -1.050 0.6804

1,25% - Controle == 0 -0.09639 0.04142 -2.327 0.0898 .

10% - Controle == 0 -0.14286 0.04142 -3.449 0.0069 **
```

```
25% - Controle == 0 -0.31230 0.04142 -7.540 <0.001 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)
Interpretação:
```

- Veículo vs. Controle (p = 0.681): Não há diferença estatisticamente significativa.
- 1,25% vs. Controle (p = 0.090): Não há diferença estatisticamente significativa no nível de alpha=0.05.
- 10% vs. Controle (p = 0.007): Há uma redução estatisticamente significativa na viabilidade celular (p < 0.01).
- 25% vs. Controle (p < 0.001): Há uma redução altamente significativa na viabilidade celular.

Os tratamentos nas concentrações de 10% e 25% foram eficazes em reduzir a viabilidade de Lactobacillus crispatus de forma significativa quando comparados ao grupo Controle. A concentração de 1,25% e o Veículo não apresentaram efeito citotóxico. A coluna Estimate mostra valores negativos para todos, indicando que os tratamentos tenderam a reduzir a viabilidade, mas essa redução só foi estatisticamente relevante para os grupos de 10% e 25%.

3. Lactobacillus rhamnosus

3.1 Premissas da ANOVA

3.1.1 Homogeneidade das variâncias - Teste de Bartlett

Primeiro, verificamos a homogeneidade das variâncias para os grupos de L. rhamnosus.

▼ Code

```
# 5.1. Teste de Homogeneidade de Variâncias (Bartlett)
cat("Teste de Bartlett para Homogeneidade de Variâncias:\n")
```

Teste de Bartlett para Homogeneidade de Variâncias:

▼ Code

```
teste_bartlett_rhamnosus <- bartlett.test(Proporcao_Transformada ~ Tratamento, data = df_rhamnosus)</pre>
```

Bartlett test of homogeneity of variances

```
data: Proporcao_Transformada by Tratamento
Bartlett's K-squared = 4.786, df = 4, p-value = 0.31
```

Interpretação:

O Teste de Bartlett para os dados de Lactobacillus rhamnosus resultou em um p-valor de 0.31. Como este valor é consideravelmente maior que o nível de significância padrão (alpha=0.05), não há evidências para rejeitar a hipótese nula (H_0).

Isso significa que podemos assumir que as variâncias dos diferentes grupos de tratamento são homogêneas (estatisticamente iguais).

3.1.2 Teste de Normalidade dos Resíduos - Shapiro-Wilk

▼ Code

```
# Ajusta o modelo para obter os resíduos
modelo_anova_rhamnosus <- aov(Proporcao_Transformada ~ Tratamento, data = df_rhamnosus)
residuos_rhamnosus <- residuals(modelo_anova_rhamnosus)

# Teste de Shapiro-Wilk
cat("Teste de Shapiro-Wilk para Normalidade dos Resíduos:\n")</pre>
```

Teste de Shapiro-Wilk para Normalidade dos Resíduos:

▼ Code

```
shapiro_test_rhamnosus <- shapiro.test(residuos_rhamnosus)
print(shapiro_test_rhamnosus)</pre>
```

```
Shapiro-Wilk normality test
```

```
data: residuos_rhamnosus
W = 0.97745, p-value = 0.7546
```

```
# Gráfico Q-Q para inspeção visual
qqnorm(residuos_rhamnosus, main = "Gráfico Q-Q dos Resíduos - L. rhamnosus")
qqline(residuos_rhamnosus, col = "red", lwd = 1)
```

Gráfico Q-Q dos Resíduos - L. rhamnosus

Interpretação:

O teste de Shapiro-Wilk resultou em um p-valor de 0.7546. Como p > 0.05, não rejeitamos a hipótese nula, indicando que os resíduos do modelo são consistentes com uma distribuição normal. O gráfico Q-Q corrobora essa conclusão, pois os pontos se alinham bem ao longo da linha teórica vermelha. Ambas as premissas da ANOVA foram atendidas.

PREMISSAS VALIDADAS

3.2 ANOVA

▼ Code

```
# 5.2. Modelo ANOVA
cat("Análise de Variância (ANOVA):\n")
```

Análise de Variância (ANOVA):

```
modelo_anova_rhamnosus <- aov(Proporcao_Transformada ~ Tratamento, data = df_rhamnosus)
print(summary(modelo_anova_rhamnosus))</pre>
```

```
Df Sum Sq Mean Sq F value Pr(>F)
Tratamento 4 0.9141 0.22851 37.34 3.35e-10 ***
Residuals 25 0.1530 0.00612
```

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Interpretação:
```

A Análise de Variância (ANOVA) resultou em um p-valor de 3.35e-10 (ou 0.000000000335). Este valor é extraordinariamente menor que o nosso nível de significância(α) de 0.05. Portanto, rejeitamos a hipótese nula de que as médias são iguais. A conclusão é que há uma evidência estatística muito forte de que o tipo de tratamento tem um efeito significativo na viabilidade celular de Lactobacillus rhamnosus.

3.3 Post-hoc

Finalmente, identificamos quais tratamentos específicos diferem do Controle para esta espécie.

▼ Code

```
cat("Post-Hoc (Comparações com o Controle):\n")
```

Post-Hoc (Comparações com o Controle):

▼ Code

```
teste_dunnett_rhamnosus <- glht(modelo_anova_rhamnosus, linfct = mcp(Tratamento = "Dunnett"))
print(summary(teste_dunnett_rhamnosus))</pre>
```

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Dunnett Contrasts

```
Fit: aov(formula = Proporcao_Transformada ~ Tratamento, data = df_rhamnosus)
```

Linear Hypotheses:

▼ Code

```
cat("\n")
```

Interpretação:

• Veículo vs. Controle (p = 0.739): Nenhuma diferença significativa. O veículo não afetou a viabilidade celular.

- 1,25% vs. Controle (p = 0.005): Há uma diferença estatisticamente significativa (p < 0.01). Mesmo na menor concentração, o tratamento já reduziu a viabilidade.
- 10% vs. Controle (p < 0.001): Há uma diferença altamente significativa.
- 25% vs. Controle (p < 0.001): Há uma diferença altamente significativa, mostrando o efeito mais forte.

Para L. rhamnosus, todas as concentrações do tratamento (1,25%, 10% e 25%) foram eficazes em reduzir significativamente a viabilidade celular em comparação ao Controle. O efeito foi dose-dependente, tornando-se mais pronunciado à medida que a concentração aumentava, como pode ser visto pelo aumento do valor de t e pela diminuição do p-valor.