U JOHA ROOF POTATIOU 3 d APR 2001

FORM PTO-1390 U.S. DEPARTMENT OF COM (REV. 11-2009)	MERCE PATENT AND TRADEMARK OFFICE	ATTORNEY'S DOCKET NUMBER
TRANSMITTAL LETTER	TO THE UNITED STATES	960296.96617
DESIGNATED/ELECT	ED OFFICE (DO/EO/US)	U.S. APPLICATION NO. (If known, see 37 CFR 1.5
CONCERNING A FILIN	IG UNDER 35 U.S.C. 37	09/830751
INTERNATIONAL APPLICATION NO. PCT/US00/2387	30 August 2000 (30.08.00)	PRIORITY DATE CLAIMED 30 August 1999 (30.08.99)
	opionic Acid in Recombinant	Organisms
APPLICANT(S) FOR DO/EO/US	AMERON Douglas C	
	ates Designated/Elected Office (DO/EO/US)	the following items and other information:
	s concerning a filing under 35 U.S.C. 371.	·
	NT submission of items concerning a filing u	
items (5), (6), (9) and (21) indicated	national examination procedures (35 U.S.C. 3' below.	•
4. The US has been elected by the expi	iration of 19 months from the priority date (A	Mulicie 31).
5. X A copy of the International Applicat a. is attached hereto (require	tion as filed (35 U.S.C. 371(c)(2)) and only if not communicated by the Internation	nal Bureau).
b. has been communicated by		
	lication was filed in the United States Receivi	ing Office (RO/US).
	he International Application as filed (35 U.S.	
a. is attached hereto.		
b. has been previously subm	nitted under 35 U.S.C. 154(d)(4).	
	ternational Aplication under PCT Article 19 (
	red only if not communicated by the Internation	ional Bureau).
	by the International Bureau.	
	ever, the time limit for making such amendme	ents has NOT expired.
d. 🗵 have not been made and w		11.10.05310.0.031.(2.02)
· -	the amendments to the claims under PCT Arti	icle 19 (35 U.S.C. 371 (c)(3)).
9. An oath or declaration of the invent		
10. An English lanugage translation of (Article 36 (35 U.S.C. 371(c)(5)).	the annexes of the International Preliminary E	Examination Report under PCT
Items 11 to 20 below concern docume	at(s) or information included:	
11. An Information Disclosure Staten	ment under 37 CFR 1.97 and 1.98.	"
	ording. A separate cover sheet in compliance	with 37 CFR 3.28 and 3.31 is included.
13. A FIRST preliminary amendment		
14. A SECOND or SUBSEQUENT p	oreliminary amendment.	
15. A substitute specification.		
16. A change of power of attorney an		
	sequence listing in accordance with PCT Rule	
	nternational application under 35 U.S.C. 154(
	guage translation of the international applicat	tion under 35 U.S.C. 154(d)(4).
20. A Other items or information:		
Postcard receipt		

JC18 Rec'd PCT/PTO 3 0 APR 2001

1.0 P. 3. 10	751	INTERNATIONAL APPLICATION NO.	,		ATTORNEY'S DOC 960296	и Политической по
	ing fees are submitted: FEE (37 CFR 1.492 (0) (1) (5)):		CAL	CULATIONS	PTO USE ONLY
Neither internation nor international se	al preliminary examinarch fee (37 CFR 1.44	ation fee (37 CFR 1.482) 5(a)(2)) paid to USPTO	\$1000.00			ý.
International prelin USPTO but Interna	ninary examination fee ational Search Report I	(37 CFR 1.482) not paid to prepared by the EPO or JPC	\$860.00			
but international se	arch fee (37 CFR 1.44	(37 CFR 1.482) not paid to (37 CFR 1.482) not paid to USPTO	\$710.00			
but all claims did n	ot satisfy provisions of	(37 CFR 1.482) paid to US PCT Article 33(1)-(4)	\$690.00			
and all claims satis	fied provisions of PCT	(37 CFR 1.482) paid to US Article 33(1)-(4) E BASIC FEE AMO	\$100.00	\$	710	1
		th or declaration later than	□ 20 □ 30			
months from the ear	liest claimed priority d	ate (37 CFR 1.492(e)).		\$		<u></u>
CLAIMS	NUMBER FILED	NUMBER EXTRA	RATE	\$		
Total claims	- 20 =		x \$18.00	\$	240	
Independent claims	6 - 3 = DENT CLAIM(S) (if a	<u> </u>	x \$80.00 + \$270.00	\$	240	+
MULTIPLE DEPEN		OF ABOVE CALCU			950	1
Applicant claim are reduced by	s small entity status.	See 37 CFR 1.27. The fees	indicated above	\$	0	
		S	UBTOTAL =	\$	950	
Processing fee of \$1 months from the ear	30.00 for furnishing the liest claimed priority d	e English translation later t ate (37 CFR 1.492(f)).	han 20 30	\$	0	
		TOTAL NATIO		\$	950	
Fee for recording the accompanied by an	e enclosed assignment appropriate cover shee	(37 CFR 1.21(h)). The ass (37 CFR 3.28, 3.31). \$40	ignment must be .00 per property +	\$	0	
		TOTAL FEES E	NCLOSED =	\$	950	
					ount to be refunded:	\$
ļ					charged:	\$
b. Please char A duplicate c. The Commoverpayme d. Pees are to	rge my Deposit Account e copy of this sheet is a hissioner is hereby author ant to Deposit Account the charged to a credit	to cover the total	onal fees which may be cate copy of this sheet ration on this form ma	50 be requ is end	tired, or credit slosed.	any redit card
NOTE: Where an 1.137 (a) or (b)) m	appropriate time limust be filed and grant	it under 37 CFR 1.494 or ed to restore the applicati	1.495 has not been non to pending status.	net, a	petition to rev	ive (37 CFR
SEND ALL CORRESP	ONDENCE TO:		SIGNATI	RE .	4/16)
QI P	icholas J. Sea UARLES & Brady .O. Box 2113 adison, WI 537	LLP	NAME	2	1as J. Sea 7.386 NUMBER	ay

PRODUCTION OF 3-HYDROXYPROPIONIC ACID IN RECOMBINANT ORGANISMS

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority from U.S. Provisional Patent Application S.N. 5 60/151,440 filed August 30, 1999.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

The research project which gave rise to the invention described in this patent application was supported by EPA grant R824726-01. The United States Government may have certain rights in this invention.

BACKGROUND OF THE INVENTION

The technology of genetic engineering allows the transfer of genetic traits between species and permits, in particular, the transfer of enzymes from one species to others. These techniques have first reached commercialization in connection with high-value added products such as pharmaceuticals. The techniques of genetic engineering are equally applicable and cost effective when applied to genes and enzymes which can be used to make basic chemical feedstocks.

A metabolic pathway of interest exists in the bacteria *Klebsiella pneumoniae*, which has the ability to biologically produce 3 - hydroxypropionaldehyde from glycerol. Native microorganisms have the ability to produce 1,3 - propanediol from glycerol as well. Commercial interests are exploring the production of 1,3 - propanediol from glycerol or glucose, in recombinant organisms which have been engineered to express the enzymes necessary for 1,3 - propanediol production from other organisms.

3 - hydroxypropionic acid CAS registry Number [503-66-2] (abbreviated as 3-25 HP) is a three carbon non-chiral organic molecule. The IUPAC nomenclature name for

desors.ceree ectrus oorsere,

this molecule is propionic acid 3 - hydroxy. It is also known as 3 - hydroxypropionate, β - hydroxypropionic acid, β - hydroxypropionic acid, β - hydroxypropionic acid, 3 - hydroxypropionic acid, β - hydroxypropionic acid, 3 - hydroxypropanoate, hydracrylic acid, ethylene lactic acid, β - lactic acid and 2 - deoxyglyceric acid. Applications of 3-HP include the manufacture of absorbable prosthetic devices and surgical sutures, incorporation into beta-lactams, production of acrylic acid, formation of trifluromethylated alcohols or diols, polyhydroxyalkonates, and co-polymers with lactic acid. 3-HP for commercial use is now commonly produced by organic chemical syntheses. The 3-HP produced and sold by these methods is relatively expensive, and it would be cost prohibitive to use it for the production of monomers for polymer production. As discussed below, some organisms are known to produce 3-HP. However, there is not yet available a catalog of genes from these organisms and thus the ability to synthesize 3-HP using the enzymes natively responsible for the synthesis of that molecule in the native hosts which produce it does not now exist.

In addition to its commercial utility, 3-HP it is found in a number of biological processes, notably including many naturally occurring bio-polymers. Poly(3 - hydroxybutyrate) (PHB) is the most abundant member of the microbial polyesters which contain hydroxy monomers termed polyhydroxyalkonates (PHAs). PHB has utility as a biodegradable thermoplastic material and the material was first produced industrially in 1982.

15

20

The majority of published research on PHA's that contain 3-HP has concentrated on two bacterial sources: Ralstonia eutropha ("Alcaligenes eutrophus") and Pseudomonas oleovorans. Both Ralstonia eutropha and Pseudomonas oleovorans are able to grow on a nitrogen free media containing 3 - hydroxy - propionic acid, 1,5 - pentanediol or 1,7 - heptanediol. When 3-HP is the major hydroxy-acid added to the growth media, poly(3 - hydroxybutyrate - co - 3 - hydroxypropionic acid) is formed containing 7 mol % 3 - hydroxypropionic acid. These cells also store 3 mol %, 3 - hydroxypropionic acid poly(3 - butyrate - co - 3 - hydroxypropionic acid).

Recombinant systems have been used to create PHAs. An *E. coli* strain 30 engineered to express PHA synthase from either *Ralstonia eutropha* or *Zoolgoea ramigera* produced poly(3 - hydroxypropionic acid) when feed 1,3 - propanediol.

Skraly, F. A. "Polyhydroxyalkanoates Produced by Recombinant E. coli." Poster at Engineering Foundation Conference: Metabolic Engineering II, 1998. An E. coli strain that expressed PHA synthase (MBX820), when provided with the genes encoding glycerol dehydratase and 1,3 - propanediol dehydratase from K. pneumonia, and 4-bydroxybutyral-CoA transferase from Clostridium kluyveri, synthesized PHB from glucose.

Glycerol dehydratase, found in the bacterial pathway for the conversion of glycerol to 1,3 - propanediol, catalyzes the conversion of glycerol to 3 - hydroxypropionaldehyde and water. This enzyme has been found in a number of bacteria including strains of Citrobacter, Klebsiella, Lactobacillus, Entrobacter and Clostridium. In the 1,3 - propanediol pathway a second enzyme 1,3 - propanediol oxido-reductase (EC 1.1.202) reduces 3 - hydroxypropanaldehyde to 1,3 - propanediol in a NADH dependant reaction. The pathway for the conversion of glycerol to 1,3 - propanediol has been expressed in E. coli. Tong et al., Applied and Environmental Microbiology 57 (12) 3541-3546. The genes responsible for the production of 1,3 - propanediol were cloned from the dha regulon of Klebsiella pneumoniae. Glycerol is transported into the cell by the glycerol facilitator, and then converted into 3 - hydroxy - propionaldehyde by a coenzyme B₁₂- dependent dehydratase. E. coli lacks a native dha regulon, consequently E. coli cannot grow anaerobically on glycerol without an exogenous electron acceptor such as nitrate or fumarate.

Aldehyde dehydrogenases are enzymes that catalyze the oxidation of aldehydes to carboxylic acids. The genes encoding non-specific aldehyde dehydrogenases have been identified in a wide variety of organisms e.g.; ALDH2 from Homo sapiens, ALD4 from Saccharomyces cerevisiae, and from E. coli both aldA and aldB, to name a few. These enzymes are classified by co-factor usage, most require either AND+, or NADP+ and some will use either co-factor. The genes singled out for mention here are able to act on a number of different aldehydes and it likely that they may be able to oxidize 3 - hydroxy - propionaldehyde to 3 - hydroxypropionic acid.

BRIEF SUMMARY OF THE INVENTION

The present invention is intended to permit the creation of a recombinant microbial host which is capable of synthesizing 3-HP from a starting material of glycerol or glucose. The glycerol or glucose is converted to 3 -

5 hydroxypropionicaldehyde (abbreviated as 3-HPA) which is then converted to 3-HP. This process requires the so-called *dhaB* gene from *Klebsiella pneumoniae* which encodes the enzyme glycerol dehydratase any one of four different aldehyde dehydrogenase genes to convert 3-HPA to 3-HP. The four aldehyde dehydrogenase genes used were *aldA* from the bacterium *E. coli*, *ALDH2* from humans, *ALD4* from the yeast *Saccharomyces cerevisiae*, and *aldB* from *E. coli*. The yeast gene appeared to give the best results.

It is an object of the present invention to provide a genetic construct which encodes glycerol dehydratase and aldehyde dehydrogenase enzymes necessary for the production of 3 - hydroxypropionic acid from glycerol.

It is also an object of the present invention to provide a method for the production of 3 - hydroxypropionic acid from glycerol.

Other features and advantages of the invention will be apparent from the following description of the preferred embodiment thereof and from the claims.

20 BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS Not applicable.

DETAILED DESCRIPTION OF THE INVENTION

It is disclosed here that it is possible to introduce into a bacterial host genes encoding two enzymes and thus confer upon that host the ability to produce 3-HP from glycerol. The two necessary enzymes are glycerol dehydratase and aldehyde dehydrogenase. It is here reported that the two enzymes are both necessary and sufficient to enable a strain of a suitable host, such as a competent *E. coli* strain, to make 3-HP from glycerol. An exemplary gene encoding a glycerol dehydratase is known, the *dhaB* gene from *Klebsiella pneumoniae*, sequenced and rendered convenient to use.

30 Several exemplary aldehyde dehydrogenases are known, and their sequences are

presented here. From this information, it becomes practical to confer upon a bacterial host the ability to convert glycerol into 3-HP in a commercially reasonable manner.

It was not apparent before the completion of the work described here that these two diverse enzymes could be produced in a common host to produce the ability to 5 make 3-HP. There are many known aldehyde dehydrogenase enzymes and genes, and the enzymes are known to have varying substrate specificities and efficiencies. There was not evidence, prior to the work described here, that the aldehyde dehydrogenase enzyme would work on the 3-hydroxypropionicaldehyde (3-HPA) substrate to create 3-HP. Without that knowledge, there was no data from which to predict the effectiveness 10 of the 3-HP production studies described below. An additional uncertainty arises from the fact that the intermediate aldehyde, 3-HPA, is toxic to many bacterial host and thus the survival of the host is dependent upon the relative rates of enzymatic production and conversion of the aldehyde intermediate to non-toxic 3-HP.

A difficulty in the realization of the production of 3-HP desired here is that ribosome binding sites from non-native hosts are often ineffectual and lead to poor protein production and that many non-native promoters are often poorly transcribed and a bar to high protein expression. However, the inventors also recognized that a nonnative promoter that is known to be very active and is inducible by the addition of a small molecule unrelated to the pathway being expressed is often a very efficient way to 20 express and regulate the levels of enzymes expressed in hosts such as E. coli. To achieve high levels of regulated gene expression plasmids were constructed which placed the expression of all exogenous genes necessary for the production of 3 hydroxypropionic acid from glycerol under the regulation of the trc promoter. The trc promoter, is efficient, not native to E. coli, and inducible by the addition of IPTG.

The present specification describes a genetic construct for use in the production of 3 - hydroxypropionic acid from glycerol. The genetic construct includes exemplary DNA sequences coding for the expression of a glycerol dehydratase and a DNA sequence coding for aldehyde dehydrogenase. The set of exemplary sequences necessary for the expression of glycerol dehydratase is collectively referred to as 30 "dhaB". The set of sequences necessary for the expression of aldehyde dehydrogenase includes any one of four different genes which proved efficacious. The individual

aldehyde dehydrogenase sequences referred to individually as ALDH4, ALD2, aldA and aldB.

Producing 3 - hydroxypropionic acid in a foreign host

In the work described below, the enzymes necessary for the production of 3 5 hydroxypropionic acid from glycerol in *E. coli* were expressed under the regulation of
the *trc* promoter, a non-native promoter inducible by the addition of IPTG. The
glycerol dehydratase was encoded by the *dhaB* gene from *Klebsiella pneumoniae*, the
aldehyde dehydrogenases used was any one of four different genes (*ALDH2* from *Homo*sapiens, *ALD4* from *S. cerevisiae*, aldB from *E. coli* or aldA from *E. coli*). Expression
of these genes coding for glycerol dehydratase and any one of the genes encoding an
aldehyde dehydrogenases was sufficient to enable the construct to produce 3-HP when
the fermentation media was supplemented with glycerol. In all of these constructs, the
dhaB gene was downstream from the gene encoding the aldehyde dehydrogenase used,
and expression of both genes was regulated by the *trc* promoter. This order, however, is
not required and the order of the gens on a construct and the use of multiple constructs is
possible.

In a minimal genetic construct made based on the data presented here, the only genetic elements present that would be necessary are the structural genes *dhaB* and an aldehyde dehydrogenase gene encoding a protein that efficiently catalyzes the oxidation of 3-hydroxypropionaldehyde to 3-hydroxypropionic acid, and non-native promoter sequences specifically selected to give the type of inducible control most appropriate for the context of the process in which the construct is to be used. Extraneous pieces of DNA, whether retained in the construct or added from other DNA sequences, would not necessarily be detrimental to effective 3-HP synthesis by the host organism, but would not be needed. Each sequence to be translated would necessarily be preceded by a ribosome binding site, functional in the selected host so that the messenger RNA(s) coding for the proteins of interest could be translated by ribosomes. Terminator sequences immediately downstream of each translated unit would also be necessary in some organisms, particularly in eukaryotes. The construct could be part of an autonomously replicating sequence, such as a plasmid or phage vector, or could be

integrated into the genome of the host.

15

25

The structural genes and appropriate promoter(s) could be isolated by the use of restriction enzymes, by the polymerase chain reaction (PCR), by chemical synthesis of the appropriate oligonucleotides, or by other methods apparent to those skilled in the art 5 or molecular biology. The promoter(s) would be derived from genomic DNA of other organism or from artificial genetic constructs containing promoters. Appropriate promoter fragments would be ligated into the construct upstream of the structural genes in any one of several possible arrangements.

The aldehyde dehydrogenase expressed would have: high specific activity 10 towards 3-hydroxypropionaldehyde; be very stable in the host it is expressed in; be readily over expressed in the selected host; not be inhibited by either the substrates necessary for the reaction or the products formed by the reaction; be fully active under the fermentation conditions most favorable for the production of 3 - hydroxypropionic acid and be able to use either NAD+ or NADP+.

One possible arrangement is the true operon, where one promoter is used to direct transcription in one direction of all necessary Open Reading Frames (ORFs). The entire message is then contained in one messenger RNA. The advantages of the operon are that it is relatively easy to construct, since only one promoter is needed; that is it is relatively simple to replace the promoter with another promoter if that would be 20 desirable later; and that it assures that the two genes are under the same regulation. The main disadvantage of the operon scheme is that the levels of the expression of the two genes cannot be varied independently. If it is found that the genes, for optimal 3 hydroxypropionic acid synthesis, should be expressed at different levels, the operon in most cases cannot be used to realize this.

Another possible arrangement is the multiple-promoter scheme. Two or more promoters, with the same or distinct regulatory behavior, could be used to direct transcription of the genes. For example, one promoter could be used to direct transcription of dhaB and one to direct transcription of the gene encoding the appropriate aldehyde dehydrogenases. Because the genes theoretically can be 30 transcribed and translated separately, a great number of combinations of multiple promoters is possible. Additionally, it would be most desirable to prevent the promoters

from interfering with one another. This could be achieved either by placing two promoters into the construct such that they direct transcription in opposite directions, or by inserting transcriptional terminator sequences downstream of each separately transcribed unit. The main advantage of the multiple-promoter construct is that it 5 permits independent regulation of as many distinct units as desired, which could be important. The disadvantages are that it would be more difficult to construct; more difficult to amend later; and more difficult to effectively regulate, since multiple changes in fermentation conditions would need to be introduced and might render the performance of the fermentation somewhat less predicable.

In any construct, the promoter sequence(s) used should be functional in the selected host organism and preferably provide sufficient transcription of the genes comprising the glycerol to 3 - hydroxypropionic acid pathway to enable the construct to be adequately active in that host. The promoter sequence(s) used would also effect regulation of transcription of the genes enabling the glycerol to 3-HP pathway to be 15 adequately active under the fermentation conditions employed for 3-HP production, and preferably they would be inducible, such that expression of the genes could be modulated by the inclusion in, or exclusion from, the fermentation of a certain agents or conditions.

A plausible example of the use of such a construct follows: one promoter, which 20 induced by the addition of an inexpensive chemical (the inducer) to the medium, could control transcription of both the dhaB gene and the gene encoding the appropriate aldehyde dehydrogenase. The cells would be permitted to grow in the absence of the inducer until they accumulated to a predetermined level. The inducer would then be added to the fermentation and nutritional changes commensurate with the altered 25 metabolism would be made to the medium as well. The cells would then be permitted to utilize the substrate(s) provided for 3-HP production (and additional biomass production if desired). After the cells could no longer use substrate to produce 3-HP, the fermentation would be stopped and the 3-HP recovered.

Genetic Sequences

30

10

To express glycerol dehydratase and a suitable aldehyde dehydrogenase, the two

enzymes necessary for the production of 3 - hydroxypropionic acid from glycerol, it is required that the DNA sequences containing the glycerol dehydratase and aldehyde dehydrogenase coding sequences be combined with at least a promoter sequence (preferably a non-native promoter although some native promoter activity may be present). An exemplary method of construction is described in the example below. To ensure that the present specification is enabling, the full sequences of the coding regions of genes for these enzymes is presented here.

Sequences 1, 3, 5 and 7 present different native genomic sequences for genes encoding aldehyde dehydrogenases.

SEQ ID NO:1 contains the full native DNA sequence encoding the $AL\bar{D}4$ enzyme from Saccharomyces cerevisiae. The amino acid sequence of the protein is presented as SEQ ID NO:2.

10

15

20

SEQ ID NO:3 includes the DNA sequence for the human *ALDH2* gene, again including the full protein coding region. The amino acid sequence for this human alcohol dehydrogenase is presented in SEQ ID NO:4.

SEQ ID NO:5 and 7 respectively present the full coding sequences from the E. coli genes aldA and aldB, both of which encode alcohol dehydrogenases. The amino acid sequences for the proteins encoded by the genes are presented in SEQ ID NO: 6 and 8 respectively.

SEQ ID NO:9 contains the native genomic DNA sequence for the *dhaB* gene from the *dha* regulon of *Klebisiella pneumoniae*. The coding sequences for this complex regulon produces five polypeptides, which are presented as SEQ ID NOS:10 through 13, which together provide the activity of the glycerol dehydratase enzyme.

Each of these coding sequences can be used to make genetic constructs for the

25 expression of the appropriate enzymes in a heterologous hosts. In making genetic

constructs for expression of the genes in such hosts, it is contemplated that heterologous

promoters will be joined to the coding sequences for the enzymes, but all that it required

is that the promoters be effective for the hosts in which the genes are to be expressed. It

is also contemplated and envisioned that significant variations in DNA sequence are

possible from the native DNA coding sequences presented here. As is well known in

the art, due to the degeneracy of the genetic code, many different DNA sequences can

encode the expression of the same protein. So, when this document uses language specifying a DNA sequence encoding a protein, it is intended to encompass any DNA sequence which can be used to express that protein even if different from the genomic sequences presented here. It is also contemplated that conservative changes in the amino acid sequences of the proteins specified here can be made without departing from the present invention. In particular, deletions, additions and substitutions of one or more amino acids in a protein sequence can almost always be made without changing protein functionality. When the name of a protein is sued here, it is intended to be equally applicable to both such minor changes in amino acid sequence and to allelic variations in native protein sequence as occurs within the species named as well as other closely related species.

It is possible that many of the above DNA sequences could be truncated and still express a protein that has the same enzymatic properties. One skilled in the art of molecular biology would appreciate that minor deletions, additions and mutations may not change the attributes of the designated base pair sequences; many of the nucleotide of the designated base pair sequences are probably not essential for their unique function. To determine whether or not an altered sequence or sequences has sufficient homology with the designated base pairs to function identically, one would simply create the candidate mutation, deletion or alteration and create a gene construct including the altered sequence together with promoter and termination sequences. This gene construct could be tested as, described below, for the production of 3-HP from glycerol.

Certain DNA primers were used to isolate or clone the genomic DNA sequences used in the experiments described below. While the sequence information presented here is sufficient to enable the construction of expression plasmids incorporating the genes identified here, in order to redundantly enable the use of these genes, primers which may be used to isolated the genes from their native hosts are described below.

The primers aldA_L (SEQ ID NO:14), and alcA_R (SEQ ID NO:15), were used to amplify the 1513 bp aldA fragment from genomic E. coli DNA (strain MG1655, a gift from the Genetic Stock Center, New Haven, CT). The gel purified PCR fragment containing a DNA sequence coding for the expression of aldehyde dehydrogenase was

inserted into Ncol-Xhol site of pSE380 (Invitrogen, San Diego, CA) to give pPFS3. The resulting plasmid contained aldA under the control of the trc promoter. This construct allowed for high-level expression of the aldA gene from E. coli under regulation of the trc promoter. Unless indicated otherwise all molecular biology and plasmid 5 constructions were done in E. coli AG1 (Stratagene, La Jolla, CA).

The primers aldB L (SEQ ID NO:20) and aldB_R (SEQ ID NO:21), were used to amplify the 1574 bp aldB fragment from genomic E. coli DNA (strain MG1655). The resulting PCR converted the TGA stop codon into a TAA stop codon. The gelpurified PCR fragment containing the DNA sequence sufficiently coding for the 10 expression of aldehyde dehydrogenase was inserted into the KpnI-SacI site of pSE380 to give pPFS12.

The primers ALD4_L (SEQ ID NO: 16), and ALD4_R (SEQ ID NO: 17), were used to amplify the 1595 bp ALD4 fragment from S. cerevisiae DNA (strain YPH500). The gel-purified fragment containing a DNA sequence coding for the expression of 15 aldehyde dehydrogenase was inserted into the KpnI-SacI site of pPFS3 to give pPFS8. The resulting plasmid contained mature ALD4 under control of the trc promoter.

The primers ALDH2 L (SEQ ID NO:18), and ALDH2_R (SEQ ID NO:19), were used to amplify the 1541 bp ALDH2 fragment from pT7-7::ALDH2, a gift from H. Weiner (Purdue University, West Lafayette, IN). The gel purified PCR fragment 20 containing a DNA sequence sufficiently homologous to base pairs 22 to 1524, inclusive of SEO ID NO: 3 so as to code for the expression of aldehyde dehydrogenase was inserted in to the KpnI-SacI site of pSE380 to give pPFS7. This sequence was moved from pPFS7 into the KpnI-SacI site of pPFS3 to give pPFS9. The resulting plasmid contained mature ALDH2 under the control of the trc promoter.

The primers pTRC L (SEQ ID NO:22), and pTRC_R)SEQ ID NO:23), were used to amplify the 540 bp fragment from pSE380. The gel purified PCR fragment was inserted into the HpaI-KpnI site of pPFS3 to give pPFS13. The resulting plasmid deleted the "native" ribosome binding site of pSE380 and a Ncol site (which contained an extraneous ATG start codon upstream of the cloned genes). The KpnI-SacI 30 fragments of pPFS8, pPFS9, and pPSF12 were inserted into the KpnI-SacI site of pPFS13 to give pPFS14, pPFS15, and pPFS16, respectively.

Assay for production of 3-HP

The efficacy of changes made as contemplated herein can be checked by the following tests. To test for the production of 3-HP, fermentation products can be quantified with a Waters Alliance Integrity HPLC system (Milford, MA) equipped with a refractive index detector, a photodiode array detector, and an Aminex HPX-87H (Bio-Rad, Hercules, CA) organic acids column. The mobile phase should be 0.01 N sulfuric acid solution (pH 2.0) at a flow rate of 0.5 mL/min. The column temperature should be set to 40°C. Compounds can be identified by determining if they co-elute with authentic standards. Prior to analysis, all samples should be filtered through 0.45 μM pore size membrane. (Gelman Sciences, Ann Arbor, MI). The fractions of the fermentation products collected using HPLC should be analyzed on a Varian Star 3400 CX, gas - chromatograph coupled to a Varian Saturn 3 mass spectrometer (GC-MS) (Walnut Creek, CA).

Assay for enzyme activity.

Aldehyde dehydrogenase activity can be determined by measuring the reduction of β-NAD⁺ at 25 °C with 3 - hydroxypropionaldehyde as a substrate. All buffers should contain 1 mM ethylenediaminetetraacetic acid (EDTA), 0.1 mM Pefabloc SC (Boehringer Mannheim, Indianapolis, IN) and 1 mM Tris (carboxyethyl) phosphine hydrochloride (TCEP-HCL). For ALD4, the solution should contain 100 mM Tris HCL Buffer (pH 8.0), 100 mM KCl. For ALDH2 the solution should contained 100 mM sodium pyrophosphate (pH 9.0). For AldA and AldB, the solution should contain 20 mM sodium glycine (pH 9.5). A total of 3.0 mL of buffer should be added to quartz cuvettes and allowed to equilibrate to assay temperature. From 5 to 20 μL of cell extract should be added and background activity recorded after the addition of β-NAD⁺ to a final concentration of 0.67 mM. The reaction should be started by the addition of substrate (either acetaldehyde, propionaldehyde, or 3 - hydroxypropionaldehyde) to a final concentration of 2 mM. Assay mixtures should be stirred with micro-stirrers during the assays.

For aldehyde dehydrogenase activity assays, one unit is defined as the reduction

of 1.0 μM of β-AND⁺ per minute at 25° C. These reactions can be monitored by following the change in absorbence at 340 nm (A₃₄₀) at 25°C on a Varain Carry-1 Bio spectrophotometer (Sugar Land, TX). Total protein concentrations in the cell extracts can be determined using the Bradford assay method (Bio-Rad, Hercules, CA) with bovine serum albumin as the standard.

EXAMPLES

Plasmid constructions.

Klebsiella pneumoniae expresses glycerol dehydratase, an enzyme that catalyzes the conversion of glycerol to 3 - hydroxypropionaldehyde, (dhaB) and 1,3 propanediol oxidoreductase an enzyme that catalyzes the conversion of 3 - hydroxypropionaldehyde to 1,3 - propanediol respectively (the gene product from dhaT). A plasmid encoding these two genes was created and expressed in E. coli (plasmid pTC53). The dhaT gene was deleted from pTC53 to create pMH34. The resulting plasmid still contained the DNA sequence complementary to base pairs 330 to
2153 inclusion of SEQ ID NO: 9, the complement of base pairs 2166 to 2591, inclusive, of SEQ ID NO: 9, and the complement of base pairs 3191 to 4858, inclusive, of SEQ ID NO: 9, so as to code for the expression of glycerol dehydratase. The fragment of DNA encoding these sequences was excised from pMH34 by cutting it with Sal1-Xba1, and the resulting fragment was gel purified (the purified fragment was gift from M. Hoffman of the University of Wisconsin - Madison). This DNA fragment was inserted into the Sal1-Xba1 site of pPFS13 to give pPFS17.

The resulting plasmid contained both the *aldA* and *dhaB* genes under the control of the *trc* promoter. Similarity, the gel-purified *SalI-Xba*I fragment from pMH34 was inserted into the *SalI-Xba*I sites of pPFS14, pPFS15, and pPFS16 to give pPFS18, pPFS19, and pPFS20, respectively. These plasmids contained *ALD4*, *ALDH2*, and *aldB*, respectively, as well as *dhaB* under the control of the *trc* promoter; in all of the constructs the *dhaB* gene were downstream of the gene encoding the aldehyde dehydrogenase.

Expression in E. coli.

The efficacy of *E. coli* as a platform for the production of 3-HP from growth on glucose has been examined using a mathematical model developed for this purpose. The model was executed in two different ways assuming the conversion of one mole of glucose under either anaerobic or aerobic conditions either directly to 3-HP or to the production of 3-HP and ATP. The optimum yield under anaerobic conditions is 1 mole of 3-HP and 1 mole of lactate. The more realistic yield under anaerobic conditions is 0.5 moles of 3-HP, 1.5 moles of lactate and 1 mole of ATP. The optimum yield under aerobic conditions is 1.9 moles of 3-HP and 0.3 moles of CO₂. The realistic yield under aerobic conditions is 1.85 moles of 3-HP, 0.35 moles of CO₂ and 1 mole of ATP.

The effect of 3-HP concentration on *E. coli* strain MG1655 growth was measured. Cells were grown on standard media with and without the addition of up to 80g/L of 3-HP. The best fit of these data demonstrated that 3-HP was only 1.4 times as inhibitory as lactic acid on the growth of *E. coli*. It is possible to economically produce lactic acid using *E. coli*, since 3-HP is only 1.4 times more inhibitory than lactic acid, it should be possible to use *E. coli* as a host for the commercial production of 3-HP.

Media and growth conditions

The standard media contained the following per liter: 6 g Na₂HPO₄, 3 g KH₂PO₄, 1 g NH₄Cl, 0.5 g NaCl, 3 mg CaCl₂, 5 g yeast extract (Difco Laboratories, Detroit, MI) and 2 mM MgSO₄. When necessary to retain plasmids ampicillin (100 mg/mL) was added to the media. Isopropyl-β-thiogalactopyranoside (IPTG) was added in varying amounts to induce gene expression. All fermentations were carried out in an incubator-shaker at 37 C and 200 rpm. Anaerobic fermentations were carried out in 500-mL anaerobic flasks with 300 mL of working volume. Inocula for fermentations were grown overnight in Luria-Bertani medium supplemented with ampicillin is necessary. The 300-mL fermentations were inoculated with 1.5 mL of the overnight culture. For enzyme assays, fermentations were incubated for 24 hours.

Over expression of aldehyde dehydrogenase in E. coli.

Cells were harvested by centrifugation at 3000 x g for 10 minutes at 4°C with a

Beckman (Fullerton, CA) model J2-21 centrifuge. Cell pellets were washed twice in 100 mM potassium phosphate buffer at pH 7.2 and re-suspended in appropriate assay resuspension buffer equal to 5 x of the volume of the wet cell mass. The cells were homogenized using a French pressure cell. The homogenate was centrifuged at 40000 x g for 30 minutes. The supernatant was dialyzed against the appropriate resuspension buffer using 10000 molecular weight cut-off pleated dialysis tubing (Pierce, Rockford, IL) at 4°C. Dialysis buffer was changed after 2 hours, and 4 hours, and dialysis was stopped after being allowed to proceed overnight.

E. coli AG1 cells transfected with the plasmids constructed to express the aldA, 10 ALD4, ALDH2, or aldB genes were grown in 500-mL anaerobic facks. Twelve hours after the fermentations were inoculated IPTG was added to induce enzyme expression. The cells were allowed to grow for an additional 12 hours then harvested and lysed as discussed above. The soluble fraction of the lysate was assayed for aldehyde dehydrogenase activity using the substrate 3-hydroxypropionicaldehyde in the buffer appropriate for the particular enzyme expressed. The plasmid, aldehyde dehydrogenase expressed and specific activity measured (U/mg of protein) were as follows: pPFS13, aldA, 0.2; pPFS14, ALD4, 0.5, pPFS15, ALDH2, 0.3; and pPFS16, aldB. 0.1. The control, E. coli strain AG1 harboring plasmid pSE380, encoded no exogenous aldehyde dehydrogenase activity and it had no detectable activity with 3-HP as substrate. It is clear from the activity assays that all four aldehyde dehydrogenases were expressed in E. coli. The aldehyde dehydrogenase cloned from Saccharomyces cerevisiae (ADH4) had the highest activity when 3-hydroxypropionaldehyde was used as the substrate (0.5 units/mg of protein).

E. coli cells transformed with plasmids expressing: aldehyde dehydrogenase;
25 both aldehyde dehydrogenase and glycerol dehydratase, or neither gene; were grown and assayed for their ability to produce 3-HP from glycerol. The cells were grown on standard media supplemented with 6 μM of Coenzyme B₁₂, under anaerobic conditions in the absence of light (to protect the integrity of the Coenzyme B₁₂ necessary for DhaB activity). After 12 hours, IPTG was added to induce expression of the genes under the
30 trc promoter at the same time 5g/L of glycerol was added. After 12 more hours of anaerobic fermentation the fermentation broth was assayed for 3 - HP by HPLC and GC,

the plasmid, aldehyde dehydrogenase gene expressed and g/L of 3- HP measured were as follows: pSF17, aldA, 0.031; pPSF18 ALD4, 0.173; and pPSF19, ALDH2, 0.061. Cells expressing dhaB but no exogenous aldehyde dehydrogenase genes (plasmid pMH34) produced 0.015 g/L of 3 - HP. Cells expressing aldA, ALD4, ALDH2 or aldB 5 but not dhaB (plasmids pPFS13, pPFS14, pPFS15, pPFS16, respectively) all produced less then 0.005 g/L of 3-HP when the media the cells were growing in was supplemented with 2.5g/L of 3-hydroxypropionaldehyde.

Other Hosts and Promoters

25

Applications of the 3 - hydroxypropionic acid pathway such as the genetic 10 constructs of the present invention can easily be expressed in other organisms. The required genes would need to be placed under control of an appropriate promoter or promoters. Some organism such as yeasts may require transcription terminators to be placed after each transcribed unit. The knowledge of the present intention makes such amendments possible. Such a genetic construct would need to be part of a vector that 15 could either replicate in the new host or integrate into the chromosome of the new host. Many such vectors are commercially available for expression in gram-negative and gram-positive bacteria, yeast, mammalian cells, insect cell, plant, etc. For example, to express the 3-hydroxypropionic acid pathway in Rhodobacter capsulatus, one could obtain vector pNH2 from the American Type Culture Collection (ATTC). This is a 20 shuttle vector for use in R. capsulatus and E. coli. Organisms such as Saccharomyces cerevisiae which can convert glucose to glycerol could be used as a host, such a construct would enable the production of 3 - HP directly from glucose. Additionally, other substrates such as xylan could also be used given the selection of an appropriate host.

Stochiometric analysis shows that best stochiometric yield of 3-HP production in E. coli calculated on the basis of glucose consumed is obtained under aerobic conditions. Under aerobic condition CO2 is the only carbon-containing co-product, in particular the generation of lactic acid which occurs under anaerobic conditions is avoided. Production of 3-HP under these conditions could result in a more economical 30 recovery of 3-HP from the fermentation broth.

Alternatively, the *dhaB* gene and a gene encoding the appropriate aldehyde dehydrogenase could be cloned into the multiple cloning site of this vector in *E. coli* to facilitate construction, and then transformed into *R. capsulatus*. The *R. capsulatus* nifH promoter, provided on the plasmid, could be used to direct the transcription in *R. capsulatus* of the genes placed into pNF2 in series with one promoter, or with two copies of the nifH promoter. Expression of the genes in other organisms would require a procedure analogous to that presented here.

Alternative Aldehyde Dehydrogenases and Glycerol Dehydratases

Applications of the pathway for the production of 3-hydroxypropionic acid from glycerol can be made using other suitable aldehyde dehydrogenases. To be functional in this pathway an aldehyde dehydrogenase needs to be stable, readily expressed in the host of choice and have high enough activity towards 3-hydroxypropionaldehyde to enable it to make 3-HP. The knowledge of the present invention makes such amendments possible. A program of directed evolution could be undertaken to select for suitable aldehyde dehydrogenases or they could be recovered from native sources, the genes encoding these enzymes in conjunction with a gene encoding an appropriate glycerol dehydratase activity, would then be made part of any of the constructs envisioned here to produce 3 - hydroxypropionic acid from glycerol.

evolution could be carried out using the *dhaB* gene from *Klebsiella pneumoniae* as a starting point to obtain other variants of glycerol dehydratase that are superior in efficiency and stability to the form used in this invention. Alternatively, enzymes which catalyzes the same reaction may be isolated from others organisms and used in place of the *Klebsiella pneumoniae* glycerol dehydratase. Such enzymes may be especially useful in alternative hosts wherein they may be more readily expressed, be more stable and more efficient under the fermentation conditions best suited to the growth of the construct and the production and recovery of 3-HP.

Rec'd PCT/PTO 10 SEP 2002

SEQUENCE LISTING

<110> Suthers, Patrick F Cameron, Douglas C. 09/830751

<120> Production of 3-Hydroxypropionic Acid in Recombinant Organisms

<130> 960296.96617

<140> 09/830,751

<141> 2000-08-30

<150> 60/151,440

<151> 1999-08-30

<150> PCT/US00/23878

<151> 2000-08-30

<160> 23

<170> PatentIn Ver. 2.1

<210> 1

<211> 1529

<212> DNA

<213> Saccharomyces cerevisiae

<220>

<221> CDS

<222> (25)..(1509)

<400> 1

gtcgcggtac caaggaggta toat atg toa cac ott oot atg aca gtg cot 51 Met Ser His Leu Pro Met Thr Val Pro 1

atc aag ctg ccc aat ggg ttg gaa tat gag caa cca acg ggg ttg ttc 99

Ile Lys Leu Pro Asn Gly Leu Glu Tyr Glu Gln Pro Thr Gly Leu Phe

15 20

atc aac aag ttt gtt cct tct aaa cag aac aag acc ttc gaa gtc 147

Ile Asn Asn Lys Phe Val Pro Ser Lys Gln Asn Lys Thr Phe Glu Val

30 35 40

att aac cct tcc acg gaa gaa gaa ata tgt cat att tat gaa ggt aga 195 Ile Asn Pro Ser Thr Glu Glu Glu Ile Cys His Ile Tyr Glu Gly Arg

			-	-	_	_		_	_	_	_	_	_	ttc Phe		243
							-			-			-	gct Ala	_	291
			_	-			-	_	_	_	-	-		gct Ala		339
			_	-				_				_	-	gga Gly 120	_	387
-	_		-				_				-			gct Ala	_	435
		_		-	_		-			_				tct Ser		483
	_	_	_				-	_		-				tgg Trp		531
		_	_	_		_		_		-		-	_	gtc Val		579
			_		-	-		-	-				-	tcc Ser 200	-	627
														ggt Gly		675
			_					-			-		-	att Ile		723
														gct Ala		771

		Arg										Leu				act Thr 265	819
											Val					gag. Glu	867
											ggt Gly						915
				Cys							tat Tyr						963
											gct Ala						1011
,											caa Gln 340						1059
											gtt Val						1107
(Glu	Gly	Ala	Thr 365	Leu	Ile	Thr	Gly	Gly 370	Glu	aga Arg	Leu	Gly	Ser 375	Lys	Gly	1155
5	Гуr	Phe	Ile 380	Lys	Pro	Thr	Val	Phe 385	Gly	Asp	gtt Val	Lys	Glu 390	Asp	Met	Arg	1203
	lle										gtc Val						1251
4	Lys 110	Ser	Ala	Asp	Glu	Val 415	Ile	Asn	Met	Ala	aac Asn 420	Asp	Ser	Glu	Tyr	Gly 425	1299
											aat Asn						1347

	gat Asp													Asn	gat Asp	1395
															ggc Gly	1443
								caa Gln								1491
	cgt Arg					gagt	taaga	agc t	cgaa	atte	gc [,]					1529
<213 <213	0> 2 1> 49 2> PI 3> Sa	RT	aromy	yces	cere	evisi	iae									
)> 2 Ser	His	Leu	Pro 5	Met	Thr	Val	Pro	Ile 10	Lys	Leu	Pro	Asn	Gly 15	Leu	
Glu	Tyr	Glu	Gln 20	Pro	Thr	Gly	Leu	Phe 25	Ile	Asn	Asn	Lys	Phe 30	Val	Pro	
Ser	Lys	Gln 35	Asn	Lys	Thr	Phe	Glu 40	Val	Ile	Asn	Pro	Ser 45	Thr	Glu	Glu	
Glu	Ile 50	Cys	His	Ile	Tyr	Glu 55	Gly	Arg	Glu	Asp	Asp 60	Val	Glu	Glu	Ala	
Val 65	Gln	Ala	Ala	Asp	Arg 70	Ala	Phe	Ser	Asn	Gly 75	Ser	Trp	Asn	Gly [°]	Ile 80	
Asp	Pro	Ile	Asp	Arg 85	Gly	Lys	Ala	Leu	Tyr 90	Arg	Leu	Ala	Glu	Leu 95	Ile	
Glu	Gln	Asp	Lys 100	Asp	Val	Ile	Ala	Ser 105	Ile	Glu	Thr	Leu	Asp 110	Asn	Gly	
Lys	Ala	Ile 115	Ser	Ser	Ser	Arg	Gly 120	Asp	Val	Asp	Leu	Val 125	Ile	Asn	Tyr	

Leu Lys Ser Ser Ala Gly Phe Ala Asp Lys Ile Asp Gly Arg Met Ile Asp Thr Gly Arg Thr His Phe Ser Tyr Thr Lys Arg Gln Pro Leu Gly Val Cys Gly Gln Ile Ile Pro Trp Asn Phe Pro Leu Leu Met Trp Ala Trp Lys Ile Ala Pro Ala Leu Val Thr Gly Asn Thr Val Val Leu Lys Thr Ala Glu Ser Thr Pro Leu Ser Ala Leu Tyr Val Ser Lys Tyr Ile Pro Gln Ala Gly Ile Pro Pro Gly Val Ile Asn Ile Val Ser Gly Phe Gly Lys Ile Val Val Glu Ala Ile Thr Asn His Pro Lys Ile Lys Val Ala Phe Thr Gly Ser Thr Ala Thr Gly Arg His Ile Tyr Gln Ser Ala Ala Ala Gly Leu Lys Lys Val Thr Leu Glu Leu Gly Gly Lys Ser Pro Asn Ile Val Phe Ala Asp Ala Glu Leu Lys Lys Ala Val Gln Asn Ile Ile Leu Gly Ile Tyr Tyr Asn Ser Gly Glu Val Cys Cys Ala Gly Ser Arg Val Tyr Val Glu Glu Ser Ile Tyr Asp Lys Phe Ile Glu Glu Phe Lys Ala Ala Ser Glu Ser Ile Lys Val Gly Asp Pro Phe Asp Glu Ser Thr Phe Gln Gly Ala Gln Thr Ser Gln Met Gln Leu Asn Lys Ile Leu Lys Tyr Val Asp Ile Gly Lys Asn Glu Gly Ala Thr Leu Ile Thr

Gly Glu Arg Leu Gly Ser Lys Gly Tyr Phe Ile Lys Pro Thr Val

Phe 385	Gly	Asp	Val	Lys	Glu 390	Asp	Met	Arg	Ile	Val 395	Lys	Glu	Glu	Ile	Phe 400	
Gly	Pro	Val	Val	Thr 405	Val	Thr	Lys	Phe	Lys 410	Ser	Ala	Asp,	Glu	Val 415	Ile	
Asn	Met	Ala	Asn 420	Asp	Ser	Glu	Tyr	Gly 425	Leu	Ala	Ala	Gly	Ile 430	His	Thr	
Ser	Asn	Ile 435	Asn	Thr	Ala	Leu	Lys 440	Val	Ala	Asp	Arg	Val 445	Asn	Ala	Gly	
Thr	Val 450	Trp	Ile	Asn	Thr	Tyr 455	Asn	Asp	Phe	His	His 460	Ala	Val	Pro	Phe	
Gly 465	Gly	Phe	Asn	Ala	Ser 470	Gly	Leu	Gly	Arg	Glu 475	Met	Ser	Val	Asp	Ala 480	
Leu	Gln	Asn	Tyr	Leu 485	Gln	Val	Lys	Ala	Val 490	Arg	Ala	Lys	Leu	Asp 495		
)> 3	- 41														
	1> 1: 2> DI															
		omo :	sapi	ens												
<22)>									e-						•
<22	1> C	DS														
<22	2> (22).	. (15	21)												
	0> 3															C 1
gcg	gtac	caa	ggag	atat	ca t						acc Thr					51
						1	Der	7114	niiu	5	****	0			10	
			~~~	cag	000	ana	at c	++0	tac	2 2 C	cad	att	ttc	ata	aac	99
				Gln												
				15					20					25		,
aat	gaa	taa	cac	gat	gcc	gtc	agc	agg	aaa	aca	ttc	ccc	acc	gtc	aat	147
			His	Asp				Arg					Thr			
			30					35					40			
				gag												195
Pro	Ser			Glu	Val	Ile			Val	Ala	Glu		Asp	Lys	Glu	
		45					50	!				55				

gat Asp	gtg Val	gac Asp	aag Lys	gca Ala	cgt Arg	gaa Glu	ggc Gly	cgc Arg	ccg Pro	ggc Gly	gcc Ala	ttc Phe	cag Gln	ctg Leu	ggc Gly	243
	60					65					70					201
tca Ser 75	cct Pro	tgg Trp	cgc Arg	cgc Arg	atg Met 80	gac Asp	gca Ala	tca Ser	cac His	agc Ser 85	ggc Gly	cgg Arg	Leu	Leu	aac Asn 90	291
cgc Arg	ctg Leu	gcc Ala	gat Asp	ctg Leu 95	atc Ile	gag Glu	cgg Arg	gac Asp	cgg Arg 100	acc Thr	tac Tyr	ctg Leu	gcg Ala	gcc Ala 105	ttg Leu	339
gag Glu	acc Thr	ctg Leu	gac Asp 110	aat Asn	ggc Gly	aag Lys	ccc Pro	tat Tyr 115	gtc Val	atc Ile	tcc Ser	tac Tyr	ctg Leu 120	gtg Val	gat Asp	387
ttg Leu	gac Asp	atg Met 125	gtc Val	ctc Leu	aaa Lys	tgt Cys	ctc Leu 130	cgg Arg	tat Tyr	tat Tyr	gcc Ala	ggc Gly 135	tgg Trp	gct Ala	gat Asp	435
aag Lys	tac Tyr 140	cac His	ggg Gly	aaa Lys	acc Thr	atc Ile 145	ccc Pro	att Ile	gac Asp	gga Gly	gac Asp 150	ttc Phe	ttc Phe	agc Ser	tac Tyr	483
aca Thr 155	cgc Arg	cat His	gaa Glu	cct Pro	gtg Val 160	ggg	gtg Val	tgc Cys	ggg	cag Gln 165	atc Ile	att Ile	ccg Pro	tgg Trp	aat Asn 170	531
ttc Phe	ccg Pro	ctc Leu	ctg Leu	atg Met 175	caa Gln	gca Ala	tgg Trp	aag Lys	ctg Leu 180	Gly	cca Pro	gcc Ala	ttg Leu	gca Ala 185	act Thr	579
gga Gly	aac Asn	gtg Val	gtt Val 190	Val	atg Met	aag Lys	gta Val	gct Ala 195	Glu	cag Gln	aca Thr	ccc Pro	ctc Leu 200	Thr	gcc Ala	627
ctc Leu	tat Tyr	gtg Val 205	Ala	aac Asn	ctg Leu	ato Ile	aag Lys 210	Glu	gct Ala	ggc Gly	ttt Phe	ccc Pro 215	Pro	ggt Gly	gtg Val	675
gto Val	aac Asn 220	ıle	gtg Val	cct Pro	gga Gly	ttt Phe	Gly	ccc Pro	acç Thr	g gct Alæ	ggg Gly 230	Ala	gcc Ala	att i Ile	gcc Ala	723
tcc Ser	His	gaç Glu	g gat 1 Asp	gtg Val	gac Asp 240	Lys	gto Val	g gca Ala	tto Phe	c aca e Thr 245	Gly	tco Ser	act Thr	gaç Glu	att Ile 250	771

ggc Gly	cgc Arg	gta Val	atc Ile	cag Gln 255	gtt Val	gct Ala	gct Ala	ggg	agc Ser 260	agc Ser	aac Asn	ctc Leu	aag Lys	aga Arg 265	gtg Val	819
acc Thr	ttg Leu	gag Glu	ctg Leu 270	G]A G3G	ggg	aag Lys	agc Ser	ccc Pro 275	aac Asn	atc Ile	atc Ile	atg Met	tca Ser 280	gat Asp	gcc Ala	867
gat Asp	atg Met	gat Asp 285	tgg Trp	gcc Ala	gtg Val	gaa Glu	cag Gln 290	gcc Ala	cac His	ttc Phe	gcc Ala	ctg Leu 295	ttc Phe	ttc Phe	aac Asn	915
cag Gln	ggc Gly 300	cag Gln	tgc Cys	tgc Cys	tgt Cys	gcc Ala 305	ggc Gly	tcc Ser	cgg Arg	acc Thr	ttc Phe 310	gtg Val	cag Gln	gag Glu	gac Asp	963
atc Ile 315	tat Tyr	gat Asp	gag Glu	ttt Phe	gtg Val 320	gtg Val	cgg Arg	agć Ser	gtt Val	gcc Ala 325	cgg Arg	gcc Ala	aag Lys	tct Ser	cgg Arg 330	1011
gtg Val	gtc Val	GJA	aac Asn	ccc Pro 335	ttt Phe	gat Asp	agc Ser	aag Lys	acc Thr 340	gag Glu	cag Gln	G] À ààà	ccg Pro	cag Gln 345	gtg Val	1059
gat Asp	gaa Glu	act Thr	cag Gln 350	Phe	aag Lys	aag Lys	atc Ile	ctc Leu 355	ggc	tac Tyr	atc Ile	aac Asn	acg Thr 360	ggg	aag Lys	1107
caa Gln	gag Glu	ggg Gly 365	Ala	aag Lys	ctg Leu	ctg Leu	tgt Cys 370	ggt Gly	Gly	ggc Gly	att	gct Ala 375	gct Ala	gac Asp	cgt Arg	1155
ggt Gly	tac Tyr 380	Phe	atc Ile	cag Gln	ccc Pro	act Thr 385	gtg Val	ttt Phe	gga Gly	gat Asp	gtg Val 390	cag Gln	gat Asp	ggc	atg Met	1203
acc Thr 395	Ile	gcc Ala	aag Lys	gag Glu	gag Glu 400	Ile	ttc Phe	ggg Gly	cca Pro	gtg Val 405	Met	cag Gln	atc Ile	ctg Leu	aag Lys 410	1251
ttc Phe	aag Lys	acc Thr	ata Ile	gaç Glu 415	Glu	gtt Val	gtt Val	ggg Gly	aga Arg 420	Ala	aac Asn	aat Asn	tco Ser	acg Thr 425	tac Tyr	1299
G17 ggg	r cto Leu	g gco n Ala	c gca a Ala 430	a Ala	gto Val	tto Phe	aca Thr	a aag Lys 435	. Asp	tto Lev	g gac ı Asp	: aaç . Lys	gcc Ala 440	a Asr	tac Tyr	1347

	tcc Ser															1395
	ttt Phe 460															1443
	cgg Arg		_													1491
	gtc Val		_	•			_			tcat	aaga	igc t	cgaa	attco	gc	1541
<213 <212	0> 4 L> 50 2> PE 3> Ho	RТ	sapie	ens							Q.					
<400	)> 4															
Met 1	Ser	Ala	Ala	Ala 5	Thr	Gln	Ala	Val	Pro 10	Ala	Pro	Asn	Gln	Gln 15	Pro	
Glu	Val	Phe	Cys	Asn	Gln	Ile	Phe	Ile 25	Asn	Asn	Glu	Trp	His	Asp	Ala	
			20					23					30			
Val	Ser	Arg 35		Thr	Phe	Pro	Thr 40		Asn	Pro	Ser	Thr 45		Glu	Val	
	Ser Cys 50	35	Lys				40	Val				45	Gly			
Ile	Cys	35 Gln	Lys Val	Ala	Glu	Gly 55	40 Asp	Val Lys	Glu	Asp	Val 60	45 Asp	Gly Lys	Ala	Arg	
Ile Glu 65	Cys 50	35 Gln Arg	Lys Val Pro	Ala Gly	Glu Ala 70	Gly 55 Phe	40 Asp Gln	Val Lys Leu	Glu Gly	Asp Ser 75	Val 60 Pro	45 Asp Trp	Gly Lys Arg	Ala Arg	Arg Met 80	
Ile Glu 65 Asp	Cys 50 Gly	35 Gln Arg Ser	Lys Val Pro	Ala Gly Ser 85	Glu Ala 70 Gly	Gly 55 Phe Arg	40 Asp Gln Leu	Val Lys Leu Leu	Glu Gly Asn 90	Asp Ser 75 Arg	Val 60 Pro Leu	45 Asp Trp Ala	Gly Lys Arg Asp	Ala Arg Leu 95	Arg Met 80 Ile	

Cys Leu Arg Tyr Tyr Ala Gly Trp Ala Asp Lys Tyr His Gly Lys Thr Ile Pro Ile Asp Gly Asp Phe Phe Ser Tyr Thr Arg His Glu Pro Val Gly Val Cys Gly Gln Ile Ile Pro Trp Asn Phe Pro Leu Leu Met Gln Ala Trp Lys Leu Gly Pro Ala Leu Ala Thr Gly Asn Val Val Met Lys Val Ala Glu Gln Thr Pro Leu Thr Ala Leu Tyr Val Ala Asn Leu Ile Lys Glu Ala Gly Phe Pro Pro Gly Val Val Asn Ile Val Pro Gly Phe Gly Pro Thr Ala Gly Ala Ala Ile Ala Ser His Glu Asp Val Asp Lys Val Ala Phe Thr Gly Ser Thr Glu Ile Gly Arg Val Ile Gln Val Ala Ala Gly Ser Ser Asn Leu Lys Arg Val Thr Leu Glu Leu Gly Gly Lys Ser Pro Asn Ile Ile Met Ser Asp Ala Asp Met Asp Trp Ala Val Glu Gln Ala His Phe Ala Leu Phe Phe Asn Gln Gly Gln Cys Cys Ala Gly Ser Arg Thr Phe Val Gln Glu Asp Ile Tyr Asp Glu Phe Val Val Arg Ser Val Ala Arg Ala Lys Ser Arg Val Val Gly Asn Pro Phe Asp Ser Lys Thr Glu Gln Gly Pro Gln Val Asp Glu Thr Gln Phe Lys Lys Ile Leu Gly Tyr Ile Asn Thr Gly Lys Gln Glu Gly Ala Lys Leu Leu Cys Gly Gly Gly Ile Ala Ala Asp Arg Gly Tyr Phe Ile Gln Pro 

Thr Val Ph	ne Gly	Asp Val 390	Gl'n	Asp	Gly	Met	Thr 395	Ile	Ala	Lys	Glu	Glu 400	
Ile Phe Gl		Val Met 405	Gln	Ile	Leu	Lys 410	Phe	Lys	Thr	Ile	Glu 415	Glu	
Val Val Gl	ly Arg 420	Ala Asn	Asn	Ser	Thr 425	Tyr	Gly	Leu	Ala	Ala 430	Ala	Val	
Phe Thr Ly	ys Asp 35	Leu Asp	Lys	Ala 440	Asn	Tyr	Leu	Ser	Gln 445	Ala	Leu	Gln	
Ala Gly Th 450	nr Val	Trp Val	Asn 455	Cys	Tyr	Asp	Val	Phe 460	Gly	Ala	Gln	Ser	
Pro Phe G	ly Gly	Tyr Lys 470	Met	Ser	Gly	Ser	Gly 475	Arg	Glu	Leu	Gly	Glu 480	
Tyr Gly Le	eu Gln	Ala Tyr 485	Thr	Glu	Val	Lys 490	Thr	Val	Thr	Val	Lys 495	Val	
Pro Gln L	ys Asn 500										•		
					•								
<210> 5	•												
<211> 1513 <212> DNA													
<213> Esc	herichi	a coli											
<220>													
<221> CDS <222> (37		73)											
<400> 5 gctaccatg	g cttaa	accggt a	ccaaç	ggaga	a ta	tcat		tca Ser					54
cat cct a His Pro M	tg tat let Tyr 10	atc gat Ile Asp	gga Gly	cag Gln	ttt Phe 15	gtt Val	acc Thr	tgg Trp	cgt Arg	gga Gly 20	gac Asp	gca Ala	102
tgg att g Trp Ile A													150

	_		_	-		-	-	_	_	_				gca Ala	_	198
_	_			-		-		_		_				gcc Ala		246
														gaa Glu 85		294
_		_		-	-	7			-		-	_	-	gct Ala	_	342
_	-		_			-	-			_		_		gag Glu		390
														gga Gly		438
			_											att Ile		486
_														ccc Pro 165		534
	-						-							acg Thr		582
														ctt Leu		630
_						-	_		_					GJ A G B B B		678
_		_												ggc Gly		726

			aag Lys							774
			ttg Leu							822
			ctg Leu							870
			gtg Val							918
			cag Gln 300							966
			aac Asn							1014
			gcg Ala							1062
			GJ y ggg							1110
			tat Tyr							1158
			atg Met 380							1206
			acg Thr			Ile				1254
		Leu	acc Thr					Asn	gtc Val	1302

Ala											gaa Glu					1350
											gcc Ala 450					1398
											ttg Leu					1446
_		cag Gln							taaq	gagct	cg a	aatto	ccgt	c		1493
gac	ggata	cta (	gacto	cgago	cg											1513
<211 <212	0> 6 1> 47 2> PE 3> Es		richi	ia co	oli								,			
<400	0> 6															
_	Ser	Val	Pro	Val	Gln	His	Pro	Met	Tyr	Ile	Asp	Gly	Gln	Phe	Val	
1				5					10		-			15		
	Trp	Arg		5			Ile		10		Asn			15		
Thr			Gly 20	5 Asp	Ala	Trp		Asp 25	10 Val	Val		Pro	Ala 30	15 Thr	Glu	
Thr	Val	Ile 35	Gly 20 Ser	5 Asp Arg	Ala	Trp Pro	Asp 40	Asp 25 Gly	10 Val Gln	Val Ala	Asn	Pro Asp 45	Ala 30 Ala	15 Thr Arg	Glu	
Thr Ala Ala	Val Ile 50	Ile 35 Asp	Gly 20 Ser Ala	5 Asp Arg	Ala Ile Glu	Trp Pro Arg 55	Asp 40 Ala	Asp 25 Gly	10 Val Gln Pro	Val Ala Glu	Asn Glu Trp	Pro Asp 45	Ala 30 Ala Ala	15 Thr Arg Leu	Glu Lys Pro	
Thr Ala Ala Ala 65	Val Ile 50	Ile 35 Asp Glu	Gly 20 Ser Ala Arg	5 Asp Arg Ala	Ala Ile Glu Ser 70	Trp Pro Arg 55 Trp	Asp 40 Ala Leu	Asp 25 Gly Gln Arg	Val Gln Pro	Val Ala Glu Ile 75	Asn Glu Trp 60	Pro Asp 45 Glu Ala	Ala 30 Ala Ala Gly	15 Thr Arg Leu	Glu Lys Pro Arg 80	
Thr Ala Ala Ala 65 Glu	Val Ile 50 Ile Arg	Ile 35 Asp Glu Ala	Gly 20 Ser Ala Arg	Asp Arg Ala Ala Glu 85	Ala Ile Glu Ser 70 Ile	Trp Pro Arg 55 Trp	Asp 40 Ala Leu Ala	Asp 25 Gly Gln Arg	10 Val Gln Pro Lys Ile 90	Val Ala Glu Ile 75 Val	Asn Glu Trp 60 Ser	Pro Asp 45 Glu Ala	Ala 30 Ala Ala Gly	Thr Arg Leu Ile Gly 95	Glu Lys Pro Arg 80 Lys	

Ser Asp Arg Pro Gly Glu Asn Ile Leu Leu Phe Lys Arg Ala Leu Gly Val Thr Thr Gly Ile Leu Pro Trp Asn Phe Pro Phe Leu Ile Ala Arg Lys Met Ala Pro Ala Leu Leu Thr Gly Asn Thr Ile Val Ile Lys Pro Ser Glu Phe Thr Thr Asn Asn Ala Ile Ala Phe Ala Lys Ile Val Asp Glu Ile Gly Leu Pro Arg Gly Val Phe Asn Leu Val Leu Gly Arg Gly Glu Thr Val Gly Gln Glu Leu Ala Gly Asn Pro Lys Val Ala Met Val Ser Met Thr Gly Ser Val Ser Ala Gly Glu Lys Ile Met Ala Thr Ala Ala Lys Asn Ile Thr Lys Val Cys Leu Glu Leu Gly Gly Lys Ala Pro Ala Ile Val Met Asp Asp Ala Asp Leu Glu Leu Ala Val Lys Ala Ile Val Asp Ser Arg Val Ile Asn Ser Gly Gln Val Cys Asn Cys Ala Glu Arg Val Tyr Val Gln Lys Gly Ile Tyr Asp Gln Phe Val Asn Arg Leu Gly Glu Ala Met Gln Ala Val Gln Phe Gly Asn Pro Ala Glu Arg Asn Asp Ile Ala Met Gly Pro Leu Ile Asn Ala Ala Ala Leu Glu Arg Val Glu Gln Lys Val Ala Arg Ala Val Glu Glu Gly Ala Arg Val Ala Phe Gly Gly Lys Ala Val Glu Gly Lys Gly Tyr Tyr Tyr Pro Pro Thr 

Leu Leu Leu Asp Val Arg Gln Glu Met Ser Ile Met His Glu Glu Thr

Phe 385	Gly	Pro	Val	Leu	Pro 390	Val	Val	Ala	Phe	Asp 395	Thr	Leu	Glu	Asp	Ala 400	
Ile	Ser	Met	Ala	Asn 405	Asp	Ser	Asp	Tyr	Gly 410	Leu	Thr	Ser	Ser	Ile 415	Tyr	
Thr	Gln	Asn	Leu 420	Asn	Val	Åla	Met	Lys 425	Ala	Ile	Lys	Gly	Leu 430	Lys	Phe	
Gly	Glu	Thr 435	Tyr	Ile	Asn	Arg	Glu 440	Asn	Phe	Glu	Ala	Met 445	Gln	Gly	Phe	
His	Ala 450	Gly	Trp	Arg	Lys	Ser 455	Gly	Ile	Gly	Gly	Ala 460	Asp	Gly	Lys	His	
Gly 465	Leu	His	Gly	Tyr	Leu 470	Gln	Thr	Gln	Val	Val 475	Tyr	Leu	Gln	Ser		
<211 <212	0> 7 1> 15 2> Di 3> Es	NΑ	richi	ia co	oli											
	0> 1> CI 2> (2		. (155	57)												
	0> 7															
gcg	gtaco	caa (	ggag	gtato	ca t									cag Gln		51
														tat Tyr 25		99
														tat Tyr		147
														gcg Ala		195
tcg	ggc	aaa	cga	gac	atc	gat	ctg	gcg	ctg	gat	gct	gcg	cac	aaa	gtg	243

Ser	Gly 60	Lys	Arg	Asp	Ile	Asp 65	Leu	Ala	Leu	Asp	Ala 70	Ala	His	Lys	Val	
aaa Lys 75	gat Asp	aaa Lys	tgg Trp	gcg Ala	cac His 80	acc Thr	tcg Ser	gtg Val	cag Gln	gat Asp 85	cgt Arg	gcg Ala	gcg Ala	att Ile	ctg Leu 90	291
ttt Phe	aag Lys	att Ile	gcc Ala	gat Asp 95	cga Arg	atg Met	gaa Glu	caa Gln	aac Asn 100	ctc Leu	gag Glu	ctg Leu	tta Leu	gcg Ala 105	aca Thr	339
gct Ala	gaa Glu	acc Thr	tgg Trp 110	gat Asp	aac Asn	ggc Gly	aaa Lys	ccc Pro 115	att Ile	cgc Arg	gaa Glu	acc Thr	agt Ser 120	gct Ala	gcg Ala	387
gat Asp	gta Val	ccg Pro 125	ctg Leu	gcg Ala	att Ile	gac Asp	cat His 130	ttc Phe	cgc Arg	tat Tyr	ttc Phe	gcc Ala 135	tcg Ser	tgt Cys	att Ile	435
egg Arg	gcg Ala 140	cag Gln	gaa Glu	ggt Gly	Gly	atc Ile 145	agt Ser	gaa Glu	gtt Val	gat Asp	agc Ser 150	gaa Glu	acc Thr	gtg Val	gcc Ala	483
tat Tyr 155	cat His	ttc Phe	cat His	gaa Glu	ccg Pro 160	tta Leu	ggc Gly	gtg Val	gtg Val	ggg Gly 165	cag Gln	att Ile	atc Ile	ccg Pro	tgg Trp 170	531
aac Asn	ttc Phe	ccg Pro	ctg Leu	ctg Leu 175	atg Met	gcg Ala	agc Ser	tgg Trp	aaa Lys 180	atg Met	gct Ala	ccc Pro	gcg Ala	ctg Leu 185	gcg Ala	579
gcg Ala	ggc Gly	aac Asn	tgt Cys 190	gtg Val	gtg Val	ctg Leu	aaa Lys	ccc Pro 195	gca Ala	cgt Arg	ctt Leu	acc Thr	ccg Pro 200	ctt Leu	tct Ser	627
gta Val	ctg Leu	ctg Leu 205	Leu	atg Met	gaa Glu	att Ile	gtc Val 210	Gly	gat Asp	tta Leu	ctg Leu	ccg Pro 215	ccg Pro	ggc Gly	gtg Val	675
gtg Val	aac Asn 220	Val	gto Val	aat Asn	ggc	gca Ala 225	Gly	ggg	gta Val	att Ile	ggc Gly 230	Glu	tat Tyr	ctg Leu	gcg	723
acc Thr 235	Ser	aaa Lys	ı cgc Arç	ato Ile	gcc Ala 240	Lys	gtg Val	g gcg . Ala	ttt Phe	acc Thr 245	Gly	tca Ser	acg Thr	gaa Glu	gtg Val 250	771
ggc	caa	caa	a att	atg	caa	a tac	gca	acg	, caa	a aac	att	att	. ccç	g gtç	acg	819

Gly	Gln	Gln	Ile	Met 255	Gln	Tyr	Ala	Thr	Gln 260	Asn	Ile	Ile	Pro	Val 265	Thr	
	gag Glu															867
	gaa Glu															915
	gcc Ala 300															963
	cag Gln															1011
	gaa Glu															1059
	gcg Ala															1107
gat Asp	atc Ile	ggt Gly 365	aaa Lys	aaa Lys	gag Glu	ggc Gly	gct Ala 370	gac Asp	gtg Val	ctc Leu	aca Thr	ggc Gly 375	ggg	cgg Arg	cgc Arg	1155
	ctg Leu 380														acg Thr	1203
att Ile 395	ctg Leu	ttt Phe	ggt Gly	cag Gln	aac Asn 400	aat Asn	atg Met	cgg Arg	gtg Val	ttc Phe 405	cag Gln	gag Glu	gag Glu	att Ile	ttt Phe 410	1251
ggc Gly	ccg Pro	gtg Val	ctg Leu	gcg Ala 415	Val	acc Thr	acc Thr	ttc Phe	aaa Lys 420	Thr	atg Met	gaa Glu	gaa Glu	gcg Ala 425	ctg Leu	1299
gag Glu	ctg Leu	gcg Ala	aac Asn 430	Asp	acg Thr	caa Gln	tat Tyr	ggc Gly 435	Leu	ggc Gly	gcg Ala	ggc	gtc Val 440	Trp	agc Ser	1347
cgc	aac	ggt	. aat	ctg	gcc	tat	aag	atg	ggg	cgc	ggc	ata	cag	gct	ggg	1395

Arg	Asn	Gly 445	Asn	Leu	Ala	Tyr	Lys 450	Met	Gly	Arg	Gly	Ile 455	Gln	Ala	Gly	
cgc	gtg	tgg	acc	aac	tgt	tat	cac	gct	tac	ccg	gca	cat	gcg	gcg	ttt	1443
Arg	Val	Trp	Thr	Asn	Cys	Tyr	His	Āla	Tyr	Pro	Ala	His	Ala	Ala	Phe	
	460					465					470					
ggt	ggc	tac	aaa	caa	tca	ggt	atc	ggt	cgc	gaa	acc	cac	aag	atg	atg	1491
Gly	Gly	Tyr	Lys	Gln	Ser	Gly	Ile	Gly	Arg	Glu	Thr	His	Lys	Met	Met	
475					480					485					490	
ctg	gag	cat	tac	cag	caa	acc	aag	tgc	ctg	ctg	gtg	agc	tac	tcg	gat	1539
Leu	Glu	His	Tyr	Gln	Gln	Thr	Lys	Cys		Leu	Val	Ser	Tyr		Asp	
				495					500					505		
aaa	ccg	ttg	ggg	ctg	ttc	taaq	gagct	cg a	atto	cgc						1574
Lys	Pro	Leu	Gly 510	Leu	Phe											
<210	8 <0															
<211	L> 51	12														
<212	2> PF	RT														
<213	3> Es	schei	richi	ia co	oli											
<400	)> 8															
	)> 8 Thr	Asn	Asn	Pro	Pro	Ser	Ala	Gln	Ile	Lys	Pro	Gly	Glu	Tyr	Gly	
		Asn	Asn	Pro 5	Pro	Ser	Ala	Gln	Ile 10	Lys	Pro	Gly	Glu	Туг 15	Gly	
Met 1			Lys	5				Tyr	10	_		_	Gly	15	_	
Met 1	Thr			5					10	_		_		15	_	
Met 1 Phe	Thr	Leu	Lys 20	5 Leu	Lys	Ala	Arg	Tyr 25	10 Asp	Asn	Phe	Ile	Gly 30	15 Gly	Glu	
Met 1 Phe	Thr	Leu	Lys 20	5 Leu	Lys	Ala	Arg	Tyr 25	10 Asp	Asn	Phe	Ile	Gly 30	15 Gly	Glu	
Met 1 Phe Trp	Thr	Leu Ala 35	Lys 20 Pro	5 Leu Ala	Lys Asp	Ala	Arg Glu 40	Tyr 25 Tyr	10 Asp Tyr	Asn Gln	Phe Asn	Ile Leu 45	Gly 30 Thr	15 Gly Pro	Glu Val	
Met 1 Phe Trp	Thr Pro Val	Leu Ala 35	Lys 20 Pro	5 Leu Ala	Lys Asp	Ala	Arg Glu 40	Tyr 25 Tyr	10 Asp Tyr	Asn Gln	Phe Asn	Ile Leu 45	Gly 30 Thr	15 Gly Pro	Glu Val	
Met 1 Phe Trp	Thr Pro Val	Leu Ala 35 Gln	Lys 20 Pro Leu	5 Leu Ala Leu	Lys Asp Cys	Ala Gly Glu 55	Arg Glu 40 Val	Tyr 25 Tyr Ala	10 Asp Tyr Ser	Asn Gln Ser	Phe Asn Gly 60	Ile Leu 45 Lys	Gly 30 Thr	15 Gly Pro	Glu Val Ile	
Met 1 Phe Trp	Thr Pro Val Gly 50	Leu Ala 35 Gln	Lys 20 Pro Leu	5 Leu Ala Leu	Lys Asp Cys	Ala Gly Glu 55	Arg Glu 40 Val	Tyr 25 Tyr Ala	10 Asp Tyr Ser	Asn Gln Ser	Phe Asn Gly 60	Ile Leu 45 Lys	Gly 30 Thr	15 Gly Pro	Glu Val Ile	
Met 1 Phe Trp Thr	Thr Pro Val Gly 50 Leu	Leu Ala 35 Gln Ala	Lys 20 Pro Leu Leu	5 Leu Ala Leu Asp	Lys Asp Cys Ala 70	Ala Gly Glu 55 Ala	Arg Glu 40 Val	Tyr 25 Tyr Ala Lys	10 Asp Tyr Ser	Asn Gln Ser Lys 75	Phe Asn Gly 60 Asp	Ile Leu 45 Lys	Gly 30 Thr Arg	15 Gly Pro Asp	Glu Val Ile His	
Met 1 Phe Trp Thr	Thr Pro Val Gly 50	Leu Ala 35 Gln Ala	Lys 20 Pro Leu Leu	5 Leu Ala Leu Asp	Lys Asp Cys Ala 70	Ala Gly Glu 55 Ala	Arg Glu 40 Val	Tyr 25 Tyr Ala Lys	Asp Tyr Ser Val	Asn Gln Ser Lys 75	Phe Asn Gly 60 Asp	Ile Leu 45 Lys	Gly 30 Thr Arg	15 Gly Pro Asp	Glu Val Ile His	
Met 1 Phe Trp Thr	Thr Pro Val Gly 50 Leu	Leu Ala 35 Gln Ala	Lys 20 Pro Leu Leu	5 Leu Ala Leu Asp	Lys Asp Cys Ala 70	Ala Gly Glu 55 Ala	Arg Glu 40 Val	Tyr 25 Tyr Ala Lys	10 Asp Tyr Ser	Asn Gln Ser Lys 75	Phe Asn Gly 60 Asp	Ile Leu 45 Lys	Gly 30 Thr Arg	15 Gly Pro Asp Ala Asp	Glu Val Ile His	
Met 1 Phe Trp Thr Asp 65 Thr	Thr Pro Val Gly 50 Leu	Leu Ala 35 Gln Ala	Lys 20 Pro Leu Leu	5 Leu Ala Leu Asp	Lys Asp Cys Ala 70 Arg	Ala Glu 55 Ala	Arg Glu 40 Val His	Tyr 25 Tyr Ala Lys	10 Asp Tyr Ser Val Leu 90	Asn Gln Ser Lys 75	Phe Asn Gly 60 Asp	Ile Leu 45 Lys Lys	Gly 30 Thr Arg Trp	15 Gly Pro Asp Ala Asp	Glu Val Ile His 80 Arg	
Met 1 Phe Trp Thr Asp 65 Thr	Thr Pro Val Gly 50 Leu Ser	Leu Ala 35 Gln Ala	Lys 20 Pro Leu Leu	5 Leu Ala Leu Asp	Lys Asp Cys Ala 70 Arg	Ala Glu 55 Ala	Arg Glu 40 Val His	Tyr 25 Tyr Ala Lys	10 Asp Tyr Ser Val Leu 90	Asn Gln Ser Lys 75	Phe Asn Gly 60 Asp	Ile Leu 45 Lys Lys	Gly 30 Thr Arg Trp	15 Gly Pro Asp Ala Asp	Glu Val Ile His 80 Arg	
Met 1 Phe Trp Thr Asp 65 Thr	Thr Pro Val Gly 50 Leu Ser	Leu Ala 35 Gln Ala Val	Lys 20 Pro Leu Leu Gln Asn 100	5 Leu Ala Leu Asp Asp 85 Leu	Lys Asp Cys Ala 70 Arg	Ala Gly Glu 55 Ala Ala	Arg Glu 40 Val His Ala	Tyr 25 Tyr Ala Lys Ile Ala 105	Asp Tyr Ser Val Leu 90	Asn Gln Ser Lys 75 Phe	Phe Asn Gly 60 Asp Lys	Ile Leu 45 Lys Lys Ile	Gly 30 Thr Arg Trp Ala	15 Gly Pro Asp Ala Asp 95 Asp	Glu Val Ile His 80 Arg	

		115					120					125			
Asp	His 130	Phe	Arg	Tyr	Phe	Ala 135	Ser	Cys	Ile	Arg	Ala 140	Gln	Glu	Gly	Gly
Ile 145	Ser	Glu	Val	Asp	Ser 150	Glu	Thr	Val	Ala	Tyr 155	His	Phe	His	Glu	Pro 160
Leu	Gly	Val	Val	Gly 165	Gln	Ile	Ile	Pro	Trp 170	Asn	Phe	Pro	Leu	Leu 175	Met
Ala	Ser	Trp	Lys 180	Met	Ala	Pro	Ala	Leu 185	Ala	Ala	Gly	Asn	Cys 190	Val	Va]
Leu	Lys	Pro 195	Ala	Arg	Leu	Thr	Pro 200	Leu	Ser	Val	Leu	Leu 205	Leu	Met	Glu
Ile	Val 210	Gly	Asp	Leu	Leu	Pro 215	Pro	Gly	Val	Val	Asn 220	Val	Val	Asn	Gly
Ala 225	Gly	Gly	Val	Ile	Gly 230	Glu	Tyr	Leu	Ala	Thr 235	Ser	Lys	Arg	Ile	Ala 240
Lys	Val	Ala	Phe	Thr 245	Gly	Ser	Thr	Glu	Val 250	Gly	Gln	Gln	Ile	Met 255	Glr
Tyr	Ala	Thr	Gln 260	Asn	Ile	Ile	Pro	Val 265	Thr	Leu	Glu	Leu	Gly 270	Gly	Lys
Ser	Pro	Asn 275	Ile	Val	Phe	Ala	Asp 280	Val	Met	Asp	Glu	Glu 285	Asp	Ala	Ph∈
Phe	Asp 290	Lys	Ala	Leu	Glu	Gly 295	Phe	Ala	Leu	Phe	Ala 300	Phe	Asn	Gln	Gly
Glu 305	Val	Cys	Thr	Cys	Pro 310	Ser	Arg	Ala	Leu	Val 315	Gln	Glu	Ser	Ile	Туг 320
Glu	Arg	Phe	Met	Glu 325	Arg	Ala	Ile	Arg	Arg 330	Val	Glu	Ser	Ile	Arg	Ser
Gly	Asn	Pro	Leu 340	Asp	Ser	Val	Thr	Gln 345	Met	Gly	Ala	Gln	Val 350	Ser	His
Gly	Gln	Leu 355	Glu	Thr	Ile	Leu	Asn 360	Tyr	Ile	Asp	Ile	Gly 365	Lys	Lys	Glu

Gly Ala Asp Val Leu Thr Gly Gly Arg Arg Lys Leu Leu Glu Gly Glu

370 375 380

Leu Lys Asp Gly Tyr Tyr Leu Glu Pro Thr Ile Leu Phe Gly Gln Asn 385 390 395 400

Asn Met Arg Val Phe Gln Glu Glu Ile Phe Gly Pro Val Leu Ala Val 405 410 415

Thr Thr Phe Lys Thr Met Glu Glu Ala Leu Glu Leu Ala Asn Asp Thr 420 425 430

Gln Tyr Gly Leu Gly Ala Gly Val Trp Ser Arg Asn Gly Asn Leu Ala 435 440 445

Tyr Lys Met Gly Arg Gly Ile Gln Ala Gly Arg Val Trp Thr Asn Cys 450 455 460

Tyr His Ala Tyr Pro Ala His Ala Ala Phe Gly Gly Tyr Lys Gln Ser 465 470 475 480

Gly Ile Gly Arg Glu Thr His Lys Met Met Leu Glu His Tyr Gln Gln
485 490 495

Thr Lys Cys Leu Leu Val Ser Tyr Ser Asp Lys Pro Leu Gly Leu Phe 500 505 510

<210> 9

<211> 5268

<212> DNA

<213> Klebsiella pneumoniae

<220>

<221> misc feature

<222> (300)..(2153)

<223> Location complement

<220>

<221> misc feature

<222> (2166)..(2591)

<223> Location complement

<220>

<221> misc_feature

<222> (2594)..(3034)

<223> Location complement

```
<220>
<221> misc_feature
<222> (2191)..(4858)
<223> Location complement
<400> 9
agegetatat gegttgatge aatttetatg egeaceegtt eteggageae tgteegaeeg 60
ctttggccgc cgcccagtcc tgctcgcttc gctacttgga gccactatcg actacgcgat 120
catggcgacc acaccegtee tgtggatete ceaetgacca aagetggeee eggegaceeg 180
cagegeageg aegeageeg egeegaagaa aatgageaat eeggtgeeaa gaaactegge 240
cacgcactgc ccggttaagg tagaagtetg gtteattate ggcateetga aatagcacgt 300
taaagagaga ggctggcgcg agcgcccgtt taattcgcct gaccggccag tagcagcccg 360
ccatagtgcg acaaggette egtgataage tgegggatet caaagteeag egatgageeg 480
cccaccagca ccacaaaggc gatategcga atggaacege egggtgagac etggegeage 540
gcgcgcaggc agttggtgac aaacactttc tctttcgcct gccggcgcac gagacgaatt 600
ttttccagcg ggctggcgtt atcgatcggc accagttcgc cctccttgat gtacaccact 660
ttggcgaaca ccgccgggct gagggcttcc cgaaagaact ccaccgcgcc attctcgtga 720
egaataetga acaggettte caetttggee agegggtatt tttttatege tteegeeage 780
gaaagateet egaggeeeag eteggtttta ateaacagge tgaccatatt eeeegeeeeg 840
gegagatgga eegeegttat etgeeeetee gegttgaega tegeegeate egtegageeg 900
gegeegaggt egaggatege eageggegee geaeageegg gagtggttaa egeeeeggeg 960
atggccatgt tggcctccac gccgcccacc accacctcgg tctgcagtcg ggcgctcagt 1020
tegegggega taacetgeat ttgeagaega teegetttea ceategeege cateeegaeg 1080
geatteteca tggegeaete geeggeeate eegeeetgea eettgegegg aataaaegta 1140
tecacegeea geagateetg gatgtatate gegeteatet catggeeggt cagggaegee 1200
attacettge geaceegete aageatgeeg eeggegtggg tgeeeggtte geegeggatg 1260
tegegtaceg gagegeagge geteategee tgeatgatgg etteegegee eteggegaea 1320
teggeetete egeggegett ttegeegeta atgtagaggt tgeeegeegg gateaecege 1380
gactgcacat ccccctgcgg ggtcttgagc accaccgcgg aacggttgcc aatcagggcg 1440
cgggcgatgg ggacgatggc ctgggtctct tccgggctta gcccgaagaa ggtggcgatc 1500
ccgtagggat tcgacaggat ccgcaccace tggcccggcg cggccacttc caccgccgcc 1560
attacecect eggggaeetg etecageage gteaetteat eeaceaeegg eagggtttta 1620
cgcaggcggt tgttcaccag cacgccgtcg tcctttttga ggatcgccgc caccacgttg 1680
atececeggt egagegeete attgageeae eacaeggegt caaggaaate gaeggegteg 1740
teaatcagta egateeacee eteggeatae tgegeegeeg geagegtege cageegeeeg 1800
agggcgatag tcgtccccac gccaacgccc accccgcccg gcgtctgcgg gttatgaccg 1860
atcatggtcg attcggtgat aatggtctcg gtgatggtct ccatcgccac atcgccaatc 1920
accggcgcgg cttcgttaag atagatgcga gagacatcgc tcatcgacca cggtgttttc 1980
gccagggcct gctccagcgc ggcgagggtc ccggcgatat tgtcccgcgt ccctttcatg 2040
cccgtcgtcg cgacgatccc gctggcaaca aacgccctcg cctgcgggta gtcggacgcc 2100
agegeeacet eggtggtgge gttgeegata teaateeegg etattaaegg eatgetgaee 2160
teegettage tteetttaeg eagettatge egetgetgat acaetteege egacteeegg 2220
acaaaggegg catteactgt egeatgeeag gtgtgeteea getegtegge gategeeage 2280
ageteegeet gegaggageg gaaegggege agegegttat agatageeag aatgegeteg 2340
teaggaatgg egataagete egeegegegg eggaaattge gegeeacege atggegetge 2400
atotgotogg caatotgogo otggtactoa agggtotggo gggagatoog cacatootgo 2460
gggcccacct cgccagagag caccttctcg agggtaatat cggtcaatgg tttgccggta 2520
```

```
ggcgtcagga tatgctccgg gcagcgggtg gctaacggat aatcctgcac gcgcatggtt 2580
ttetegetea tggteactee ettactaagt egatgtgeag ggtgaeggge teggegteet 2640
gcaccacatg tttggtctct ttgatatgaa atagcgcggc tttggccata aatttcggcc 2700
geaceatetg ategiteace aceggeaceg gegaaggiga eteitigege geatagegeg 2760
cagegttttt gecaatetge eggtaggtet eeagegteag eageggegee tgggagaaca 2820
gctccaggtt gctgagcggc agcagatcgc gctgatggat gaccgtggtc cccttcgact 2880
ggataccgat gccgatcccc gagccgctca ggttggccgc atcccaggcc ataaaggaga 2940
cgtcggacgt gcgcagaatg cgcaccaccc gggcgtgaag cccctcttct tccaccccgg 3000
caatcagete tttgaggate gegecatggg geatategat eagagtgtga tgetggtgtt 3060
tategaagge agggeegaeg eegateaeea etteategge gegtteateg geagaageta 3120
ccccgccctc gcgggttttc agggtaaaag agggctgaat ttgggttgtc tgttgcacag 3180
gaataccgcc ttattcaatg gtgtcgggct gaaccacgcc cggaatattt ttgatctccg 3240
cccagcgttc ggcagagatg cgatagccgg tgcccggccc ctgatagtca ttgatgtcgt 3300
tgaccgcact caccacctcg aactgccgat cgagaatggc cgaggtctgc aggtaatcgc 3360
eggtgaceeg etggegeage atattgagaa tattgetgge gatateetea aageegetge 3420
ggeteagege geegacaata tegaggeegg tgatgttgeg etteateate tetteeaceg 3480
cactcagate etecaceaeg ttaegeggeg geatetegtt getgeegtge gegtaggtgg 3540
cggcctccac ctcctcgtcg gcgattggcg gcagccccag ctcgcggaaa accgcctgga 3600
tegecegege egetttetgg egaatggeaa tggttteege eteggteaee ggaegeagge 3660
cgccgtcaac catcaggtca cgctgcagga tgttgtaatc atcaaaatct tccgcatcga 3720
agttcgagcc ggcgaacatg ttgtcgtagt tcggcaccgc gctgtagccg gagaaaataa 3780
agtcggtgcc cggcagcatc tgcatcaggg tgcgcgcggt gcggcgaata tccgagtggg 3840
agaaagtetg gtegttggeg gaegeeactt egaggtegag eatagaggeg ateaggtttt 3900
eegecageae egecegaatg eeegaeggea eagegeeggt catgeegata eageteaceg 3960
cgccgttttg cagtccctga accccggcgc ctttagtaat gaagatgcag cgcgattcga 4020
ggtagagcat cgacttgctc tccgaatagc ccatcagcgc ttcggatccg gtqccqqaqq 4080
tgtagcgcat tttcaacccg cgggaggcgt aggccgaggc gaggaacgcc tttgaccacg 4140
gcgtatcatc gccgtcggta aataccgctt cggtgccgta gaccgacacc gtctcggcgt 4200
agetggttaa gecaegeatg cecageteea geteggtgge etetteeace gageaetgeg 4260
tcaacacgcc ggggcggccg cactgcgaac cgaccaacag cgccagggcg ttaaacggcg 4320
egtagegege gatacegace gtggteteet gttetgagaa geegeggate eeggeetegg 4380
eggegteage ggeaatetge aceggattat etttgagatt ggtgaegtgg caetggttgg 4440
agggggtccg gcgggcacgc atcttctgca gcgccatcat catctccacc acgttcatct 4500
gegecateae etegaceget ttggeeggeg tgatggeggt agtgatggea atgateteet 4560
cccggctgac gtgaatatcc accagcatac gggctatttc caccgcctcc aggcgcattg 4620
cctgctctgt gcgctcaacg ttgatcgcgt aatcggcgat aaatcggtcg atcatgtcaa 4680
actggtcccg gcgtttgccg tccagttcga cgatcagacc gttgtccact tttactgaag 4740
agaccgggtc aaaggggctg tecatggcga teageceete tteaggecae tegecaatea 4800
gcccgtcctg attgacgggg cgctgggcca gtactgcaaa tcgttttgat cttttcattg 4860
ttcatcgget caaaaggtga aatccgcaga cggtagegaa taegeeggge cagegtegtt 4920
gccgcccggc cattaccggc aatagcggaa ctttaaatga gccagtggtg aaaaaaataa 4980
atttaattte gttteaattt ggeaeaegaa atetaeegae agttteaeta tgaaaettta 5040
ctccggcggc aaaaataaaa aatgtgatcg cccgcaatga tataaatcaa ttaataaaaa 5100
acgcccttaa ttacgttttt ccgacgctat tttaacccta ttgactaaat catggcgggc 5160
gacaaaataa cgctgacaaa aataaagcaa gccaaccgaa tggtaatagt tttttactat 5220
cgccccctac tgactattcg cgccagcgtt atcctggtgc gggagaga
                                                                  5268
```

- <210> 10
- <211> 607
- <212> PRT
- <213> Klebsiella pneumoniae
- <400> 10
- Met Pro Leu Ile Ala Gly Ile Asp Ile Gly Asn Ala Thr Thr Glu Val 1 5 10 15
- Ala Leu Ala Ser Asp Tyr Pro Gln Ala Arg Ala Phe Val Ala Ser Gly
  20 25 30
- Ile Val Ala Thr Thr Gly Met Lys Gly Thr Arg Asp Asn Ile Ala Gly 35 40 45
- Thr Leu Ala Ala Leu Glu Gln Ala Leu Ala Lys Thr Pro Trp Ser Met 50 55 60
- Ser Asp Val Ser Arg Ile Tyr Leu Asn Glu Ala Ala Pro Val Ile Gly 65 70 75 80
- Asp Val Ala Met Glu Thr Ile Thr Glu Thr Ile Ile Thr Glu Ser Thr 85 90 95
- Met Ile Gly His Asn Pro Gln Thr Pro Gly Gly Val Gly Val Gly Val 100 105 110
- Gly Thr Thr Ile Ala Leu Gly Arg Leu Ala Thr Leu Pro Ala Ala Gln
  115 120 125
- Tyr Ala Glu Gly Trp Ile Val Leu Ile Asp Asp Ala Val Asp Phe Leu 130 135 140
- Val Ala Ala Ile Leu Lys Lys Asp Asp Gly Val Leu Val Asn Asn Arg
  165 170 175
- Leu Arg Lys Thr Leu Pro Val Val Asp Glu Val Thr Leu Leu Glu Gln
  180 185 190
- Val Pro Glu Gly Val Met Ala Ala Val Glu Val Ala Ala Pro Gly Gln
  195 200 205
- Val Val Arg Ile Leu Ser Asn Pro Tyr Gly Ile Ala Thr Phe Phe Gly 210 215 220

225		FLO	Giu	. Giu	230		Ala	. ile	val	235		Ala	Arg	ALA	ье [.] 24
Ile	Gly	Asn	Arg	Ser 245	Ala	Val	Val	Leu	Lys 250		Pro	Gln	Gly	Asp 255	
Gln	Ser	Arg	Val 260		Pro	Ala	Gly	Asn 265		Tyr	Ile	Ser	Gly 270	Glu	Ly
Arg	Arg	Gly 275	Glu	Ala	Asp	Val	Ala 280		Gly	Ala	Glu	Ala 285	Ile	Met	Glr
Ala	Met 290	Ser	Ala	Cys	Ala	Pro 295	Val	Arg	Asp	Ile	Arg 300	Gly	Glu	Pro	Gly
305			Gly		310					315					320
			His	325					330					335	
			Phe 340					345					350		
		355	Glu				360					365			
	370		Met			375					380				
385			Val		390					395					400
			Thr	405					410					415	
			Ser 420					425					430		
		435	His				440					445			
	450		Leu			455					460				
Lys 465	Tyr	Pro	Leu	Ala	Lys 470	Val	Glu	Ser	Leu	Phe 475	Ser	Ile	Arg	His	Glu 480

Asn Gly Ala Val Glu Phe Phe Arg Glu Ala Leu Ser Pro Ala Val Phe 485 490 495

Ala Lys Val Val Tyr Ile Lys Glu Gly Glu Leu Val Pro Ile Asp Asn 500 505 510

Ala Ser Pro Leu Glu Lys Ile Arg Leu Val Arg Arg Gln Ala Lys Glu 515 520 525

Lys Val Phe Val Thr Asn Cys Leu Arg Ala Leu Arg Gln Val Ser Pro 530 535 540

Gly Gly Ser Ile Arg Asp Ile Ala Phe Val Val Leu Val Gly Gly Ser 545 550 555 560

Ser Leu Asp Phe Glu Ile Pro Gln Leu Ile Thr Glu Ala Leu Ser His 565 570 575

Tyr Gly Val Val Ala Gly Gln Gly Asn Ile Arg Gly Thr Glu Gly Pro 580 585 590

Arg Asn Ala Val Ala Thr Gly Leu Leu Ala Gly Gln Ala Asn 595 600 605

<210> 11

<211> 141

<212> PRT

<213> Klebsiella pneumoniae

<400> 11

Met Ser Glu Lys Thr Met Arg Val Gln Asp Tyr Pro Leu Ala Thr Arg

1 5 10 15

Cys Pro Glu His Ile Leu Thr Pro Thr Gly Lys Pro Leu Thr Asp Ile
20 25 30

Thr Leu Glu Lys Val Leu Ser Gly Glu Val Gly Pro Gln Asp Val Arg
35 40 45

Ile Ser Arg Gln Thr Leu Glu Tyr Gln Ala Gln Ile Ala Glu Gln Met 50 55 60

Gln Arg His Ala Val Ala Arg Asn Phe Arg Arg Ala Ala Glu Leu Ile 65 70 75 80

Ala Ile Pro Asp Glu Arg Ile Leu Ala Ile Tyr Asn Ala Leu Arg Pro 85 90 95

Phe Arg Ser Ser Gln Ala Glu Leu Leu Ala Ile Ala Asp Glu Leu Glu
100 105 110

His Thr Trp His Ala Thr Val Asn Ala Ala Phe Val Arg Glu Ser Ala 115 120 125

Glu Val Tyr Gln Gln Arg His Lys Leu Arg Lys Gly Ser 130 135 140

<210> 12

<211> 146

<212> PRT

<213> Klebsiella pneumoniae

<400> 12

Met Pro His Gly Ala Ile Leu Lys Glu Leu Ile Ala Gly Val Glu Glu
1 5 10 15

Glu Gly Leu His Ala Arg Val Val Arg Ile Leu Arg Thr Ser Asp Val
20 25 30

Ser Phe Met Ala Trp Asp Ala Ala Asn Leu Ser Gly Ser Gly Ile Gly 35 40 45

Ile Gly Ile Gln Ser Lys Gly Thr Thr Val Ile His Gln Arg Asp Leu 50 55 60

Leu Pro Leu Ser Asn Leu Glu Leu Phe Ser Gln Ala Pro Leu Leu Thr 65 70 75 80

Leu Glu Thr Tyr Arg Gln Ile Gly Lys Asn Ala Ala Arg Tyr Ala Arg
85 90 95

Lys Glu Ser Pro Ser Pro Val Pro Val Val Asn Asp Gln Met Val Arg
100 105 110

Pro Lys Phe Met Ala Lys Ala Ala Leu Phe His Ile Lys Glu Thr Lys 115 120 125

His Val Val Gln Asp Ala Glu Pro Val Thr Leu His Ile Asp Leu Val 130 135 140

Arg Glu 145

- <210> 13
- <211> 555
- <212> PRT
- <213> Klebsiella pneumoniae
- <400> 13
- Met Lys Arg Ser Lys Arg Phe Ala Val Leu Ala Gln Arg Pro Val Asn 1 5 10 15
- Gln Asp Gly Leu Ile Gly Glu Trp Pro Glu Glu Gly Leu Ile Ala Met
  20 25 30
- Asp Ser Pro Phe Asp Pro Val Ser Ser Val Lys Val Asp Asn Gly Leu
  35 40 45
- Ile Val Glu Leu Asp Gly Lys Arg Arg Asp Gln Phe Asp Met Ile Asp 50 55 60
- Arg Phe Ile Ala Asp Tyr Ala Ile Asn Val Glu Arg Thr Glu Gln Ala 65 70 75 80
- Met Arg Leu Glu Ala Val Glu Ile Ala Arg Met Leu Val Asp Ile His
  85 90 95
- Val Ser Arg Glu Glu Ile Ile Ala Ile Thr Thr Ala Ile Thr Pro Ala 100 105 110
- Lys Ala Val Glu Val Met Ala Gln Met Asn Val Val Glu Met Met Met 115 120 125
- Ala Leu Gln Lys Met Arg Ala Arg Arg Thr Pro Ser Asn Gln Cys His 130 135 140
- Glu Ala Gly Ile Arg Gly Phe Ser Glu Gln Glu Thr Thr Val Gly Ile 165 170 175
- Ala Arg Tyr Ala Pro Phe Asn Ala Leu Ala Leu Leu Val Gly Ser Gln
  180 185 190
- Cys Gly Arg Pro Gly Val Leu Thr Gln Cys Ser Val Glu Glu Ala Thr 195 200 205
- Glu Leu Glu Leu Gly Met Arg Gly Leu Thr Ser Tyr Ala Glu Thr Val 210 215 220

- Ser Val Tyr Gly Thr Glu Ala Val Phe Thr Asp Gly Asp Asp Thr Pro 225 230 235 240
- Trp Ser Lys Ala Phe Leu Ala Ser Ala Tyr Ala Ser Arg Gly Leu Lys 245 250 255
- Met Arg Tyr Thr Ser Gly Thr Gly Ser Glu Ala Leu Met Gly Tyr Ser 260 270
- Glu Ser Lys Ser Met Leu Tyr Leu Glu Ser Arg Cys Ile Phe Ile Thr 275 280 285
- Lys Gly Ala Gly Val Gln Gly Leu Gln Asn Gly Ala Val Ser Cys Ile 290 295 300
- Gly Met Thr Gly Ala Val Pro Ser Gly Ile Arg Ala Val Leu Ala Glu 305 310 315 320
- Asn Leu Ile Ala Ser Met Leu Asp Leu Glu Val Ala Ser Ala Asn Asp 325 330 335
- Gln Thr Phe Ser His Ser Asp Ile Arg Arg Thr Ala Arg Thr Leu Met 340 345 350
- Gln Met Leu Pro Gly Thr Asp Phe Ile Phe Ser Gly Tyr Ser Ala Val\$355\$ \$360\$ \$365\$
- Pro Asn Tyr Asp Asn Met Phe Ala Gly Ser Asn Phe Asp Ala Glu Asp 370 375 380
- Phe Asp Asp Tyr Asn Ile Leu Gln Arg Asp Leu Met Val Asp Gly Gly 385 390 395 400
- Leu Arg Pro Val Thr Glu Ala Glu Thr Ile Ala Ile Arg Gln Lys Ala
  405 410 415
- Ala Arg Ala Ile Gln Ala Val Phe Arg Glu Leu Gly Leu Pro Pro Ile 420 425 430
- Ala Asp Glu Glu Val Glu Ala Ala Thr Tyr Ala His Gly Ser Asn Glu
  435 440 445
- Met Pro Pro Arg Asn Val Val Glu Asp Leu Ser Ala Val Glu Glu Met 450 455 460
- Met Lys Arg Asn Ile Thr Gly Leu Asp Ile Val Gly Ala Leu Ser Arg 465 470 475 480

```
Ser Gly Phe Glu Asp Ile Ala Ser Asn Ile Leu Asn Met Leu Arg Gln
                 485
                                      490
 Arg Val Thr Gly Asp Tyr Leu Gln Thr Ser Ala Ile Leu Asp Arg Gln
                                 505
                                                      510
 Phe Glu Val Val Ser Ala Val Asn Asp Ile Asn Asp Tyr Gln Gly Pro
                             520
                                                 525
Gly Thr Gly Tyr Arg Ile Ser Ala Glu Arg Trp Ala Glu Ile Lys Asn
     530
                         535
 Ile Pro Gly Val Val Gln Pro Asp Thr Ile Glu
 545
                     550
                                         555
<210> 14
<211> 56
<212> DNA
<213> Escherichia coli
<400> 14
gctaccatgg cttaaccggt accaaggaga tatcatatgt cagtacccgt tcaaca
                                                                    56
<210> 15
<211> 59
<212> DNA
<213> Escherichia coli
<400> 15
gcctcgagtc tagagccgtc gacgggaatt cgagctctta agactgtaaa taaaccacc 59
<210> 16
<211> 46
<212> DNA
<213> Saccharomyces cerevasiae
<400> 16
geggtaceaa ggaggtatea tatgtteagt agatetacge tetget
                                                                   46
<210> 17
<211> 34
<212> DNA
<213> Saccharomyces cerevasiae
```

<pre>&lt;400&gt; 17 gegaattega getettacte gtecaatttg geac</pre>	34
<210> 18 <211> 35 <212> DNA <213> Homo sapiens	
<400> 18 gcggtaccaa ggaggtatca tatgtcagcc gccgc	35
<210> 19 <211> 39	
<212> DNA	
<213> Homo sapiens	
<400> 19 gcgaattcga gctcttatga gttcttctga ggcactttg	39
<210> 20	
<211> 44	
<212> DNA	
<213> Escherichia coli	
<400> 20	
gcggtaccaa ggaggtatca tatgaccaat aatccccctt cagc	44
<210> 21	
<211> 38	
<212> DNA	
<213> Escherichia coli	
<400> 21	
gcgaattcga gctcttagaa cagccccaac ggtttatc	38
<210> 22	
<211> 20	
<212> DNA	
<213> Escherichia coli	
<400> 22	
atcccgccgt taaccaccat	20

<210> 23

<211> 34

<212> DNA

<213> Escherichia coli

<400> 23

geggtaccat tgttatecge teacaattee acae

34

#### SEQUENCE LISTING

<110> Suthers, Patrick F Cameron, Douglas C. <120> Production of 3-Hydroxypropionic Acid in Recombinant Organisms 5 <130> UW960296.96617 <140> <141> <160> 23 <170> PatentIn Ver. 2.1 10 <210> 1 <211> 1529 <212> DNA <213> Saccharomyces cerevisiae <220> 15 <221> CDS <222> (25)..(1509) <400> 1 gtcgcggtac caaggaggta tcat atg tca cac ctt cct atg aca gtg cct Met Ser His Leu Pro Met Thr Val Pro 20 1 5 atc aag ctg ccc aat ggg ttg gaa tat gag caa cca acg ggg ttg ttc 99 Ile Lys Leu Pro Asn Gly Leu Glu Tyr Glu Gln Pro Thr Gly Leu Phe 10 15 20 25 atc aac aag ttt gtt cct tct aaa cag aac aag acc ttc gaa gtc 25 Ile Asn Asn Lys Phe Val Pro Ser Lys Gln Asn Lys Thr Phe Glu Val

40

30

### cossoysi.coscor pervus coveseze

		att	aac	cct	tcc	acg	gaa	gaa	gaa	ata	tgt	cat	att	tat	gaa	ggt	aga	195
		Ile	Asn	Pro	Ser	Thr	Glu	Glu	Glu	Ile	Сув	His	Ile	Tyr	Glu	Gly	Arg	
					45					50					55			
		gag	gac	gat	gtg	gaa	gag	gcc	gtg	cag	gcc	gcc	gac	cgt	gcc	ttc	tct	243
	5	Glu	Asp	Asp	Val	Glu	Glu	Ala	Val	Gln	Ala	Ala	Asp	Arg	Ala	Phe	Ser	
				60					65					70				
		aat	ggg	tct	tgg	aac	ggt	atc	gac	cct	att	gac	agg	ggt	aag	gct	ttg	291
		Asn	Gly	Ser	Trp	Asn	Gly	Ile	Asp	Pro	Ile	Asp	Arg	Gly	Lys	Ala	Leu	
			75					80					85					
	10	tac	agg	tta	gcc	gaa	tta	att	gaa	cag	gac	aag	gat	gtc	att	gct	tcc	339
)		Tyr	Arg	Leu	Ala	Glu	Leu	Ile	Glu	Gln	Asp	Lys	Asp	Va1	Ile	Ala	Ser	
		90					95					100					105	
		atc	gag	act	ttg	gat	aac	ggt	aaa	gct	atc	tct	tcc	tcg	aga	gga	gat	387
		Ile	Glu	Thr	Leu	Asp	Asn	Gly	Lys	Ala	Ile	Ser	Ser	Ser	Arg	Gly	Asp	
	15					110					115					120		
		gtt	gat	tta	gtc	atc	aac	tat	ttg	aaa	tct	tct	gct	ggc	ttt	gct	gat	435
		Val	Asp	Leu	Val	Ile	Asn	Tyr	Leu	Lys	Ser	Ser	Ala	Gly	Phe	Ala	Asp	
					125					130					135			
	•															tct		483
	20	Lys	Ile	Asp	Gly	Arg	Met	Ile	Asp	Thr	Gly	Arg	Thr	His	Phe	Ser	Tyr	
				140					145					150				
																tgg		531
		Thr		Arg	Gln	Pro	Leu	Gly	Val	Сув	Gly	Gln	Ile	Ile	Pro	Trp	Asn	
			155					160					165					
	26																	
	25															gtc		579
			Pro	Leu	Leu	Met	Trp	Ala	Trp	Lys	Ile	Ala	Pro	Ala	Leu	Val	Thr	
		170					175					180					185	

# COSSCIPTION COLORES CO

	ggt	aac	acc	gtc	gtg	ttg	aag	act	gcc	gaa	tcc	acc	cca	ttg	tcc	gct	627
	Gly	Asn	Thr	Val	Val	Leu	Lys	Thr	Ala	Glu	Ser	Thr	Pro	Leu	Ser	Ala	
					190					195					200		
	ttg	tat	gtg	tct	aaa	tac	atc	cca	cag	gcg	ggt	att	cca	cct	ggt	gtg	675
5	Leu	Tyr	Val	Ser	Lys	Tyr	Ile	Pro	Gln	Ala	Gly	Ile	Pro	Pro	Gly	Val	
				205					210					215			
	atc	aac	att	gta	tcc	999	ttt	ggt	aag	att	gtg	gtt	gag	gcc	att	aca	723
	Ile	Asn	Ile	Val	Ser	Gly	Phe	Gly	Lys	Ile	Val	Val	Glu	Ala	Ile	Thr	
			220					225					230				
10	aac	cat	cca	aaa	atc	aaa	aag	gtt	gcc	ttc	aca	ggg	tcc	acg	gct	acg	771
	Asn	His	Pro	Lys	Ile	Lys	Lys	Val	Ala	Phe	Thr	Gly	Ser	Thr	Ala	Thr	
		235					240					245					
	ggt	aga	cac	att	tac	cag	tcc	gca	gcc	gca	ggc	ttg	aaa	aaa	gtg	act	819
		Arg	His	Ile	Tyr	Gln	Ser	Ala	Ala	Ala	Gly	Leu	Lys	Lys	Val	Thr	
15	250					255					260					265	
	ttg	gag	ctg	ggt	ggt	aaa	tca	cca	aac	att	gtc	ttc	gcg	gac	gcc	gag	867
	Leu	Glu	Leu	Gly	Gly	Lys	Ser	Pro	Asn	Ile	Val	Phe	Ala	Asp	Ala	Glu	
					270					275					280		
		aaa															915
20	Leu	Lys	Lys		Val	Gln	Asn	Ile	Ile	Leu	Gly	Ile	Tyr	Tyr	Asn	Ser	
				285					290					295			
		gag												-			963
	GIY	Glu		Cys	Cys	Ala	Gly		Arg	Val	Tyr	Val	Glu	Glu	Ser	Ile	
			300					305					310				
					_												
25		gac															1011
	Tyr	Asp	Lys	Phe	Ile	Glu		Phe	Lys	Ala	Ala		Glu	Ser	Ile	Lys	
		315					320					325					

# D9830751.091002 PCT/US OO/23878

	gtg	ggc	gac	cca	ttc	gat	gaa	tct	act	ttc	caa	ggt	gca	caa	acc	tct	1059
	Val	Gly	Asp	Pro	Phe	Asp	Glu	Ser	Thr	Phe	Gln	Gly	Ala	Gln	Thr	Ser	
	330					335					340					345	
	caa	atg	caa	cta	aac	aaa	atc	ttg	aaa	tac	gtt	gac	att	ggt	aag	aat	1107
5	Gln	Met	Gln	Leu	Asn	Lys	Ile	Leu	Lys	Tyr	Val	Asp	Ile	Gly	Lys	Asn	
					350					355				_	360		
	gaa	ggt	gct	act	ttg	att	acc	ggt	gat	gaa	aga	tta	aat	agc	aag	ggt.	1155
						Ile											
		•		365					370		5		,	375	-,-		
														3.3			
10	tac	tte	att	aaq	cca	act	atc	+++	aat	aac	att	220	ma a	asc.	ato	202	1203
						Thr											1203
	-1-		380	_,_	110	1111	val	385	GIY	ASP	vai	Був		App	Mec	Arg	
			300					365					390				
	255	~+ ~		~~~	~~~	a.t.a		~~~									
						atc					-		_				1251
15	116		гуя	GIU	GIU	Ile		GIĀ	Pro	vaı	vaı		vaı	Thr	Lys	Phe	
13		395					400					405					
						gtc											1299
		Ser	Ala	Asp	Glu	Val	Ile	Asn	Met	Ala		Asp	Ser	Glu	Tyr	Gly	
	410					415					420					425	
2.0						cac							_				1347
20	Leu	Ala	Ala	Gly	Ile	His	Thr	Ser	Asn	Ile	Asn	Thr	Ala	Leu	Lys	Val	
					430					435					440		
	gct	gat	aga	gtt	aat	gcg	ggt	acg	gtc	tgg	ata	aac	act	tat	aac	gat	1395
	Ala	Asp	Arg	Val	Asn	Ala	Gly	Thr	Val	Trp	Ile	Asn	Thr	Tyr	Asn	Asp	
				445					450					455			
25	ttc	cac	cac	gca	gtt	cct	ttc	ggt	ggg	ttc	aat	gca	tct	ggt	ttg	ggc	1443
	Phe	His	His	Ala	Val	Pro	Phe	Gly	Gly	Phe	Asn	Ala	Ser	Gly	Leu	Gly	
			460					465					470				

#### O9830751.091002 PCT/US QQ/83878

agg gaa atg tct gtt gat gct tta caa aac tac ttg caa gtt aaa gcg 1491 Arg Glu Met Ser Val Asp Ala Leu Gln Asn Tyr Leu Gln Val Lys Ala 475 480 485

gtc cgt gcc aaa ttg gac gagtaagagc tcgaattcgc

1529

5 Val Arg Ala Lys Leu Asp 490 495

<210> 2

<211> 495

<212> PRT

10 <213> Saccharomyces cerevisiae

<400> 2

Met Ser His Leu Pro Met Thr Val Pro Ile Lys Leu Pro Asn Gly Leu

1 5 10 15

Glu Tyr Glu Gln Pro Thr Gly Leu Phe Ile Asn Asn Lys Phe Val Pro

20 25 30

Ser Lys Gln Asn Lys Thr Phe Glu Val Ile Asn Pro Ser Thr Glu Glu
35 40 45

Glu Ile Cys His Ile Tyr Glu Gly Arg Glu Asp Asp Val Glu Glu Ala
50 55 60

20 Val Gln Ala Ala Asp Arg Ala Phe Ser Asn Gly Ser Trp Asn Gly Ile
65 70 75 80

Asp Pro Ile Asp Arg Gly Lys Ala Leu Tyr Arg Leu Ala Glu Leu Ile 85 90 95

Glu Gln Asp Lys Asp Val Ile Ala Ser Ile Glu Thr Leu Asp Asn Gly

25 100 105 110

Lys Ala Ile Ser Ser Ser Arg Gly Asp Val Asp Leu Val Ile Asn Tyr
115 120 125

### O9830751.091002 PCT/US OO/23878

Leu	Lys	Ser	Ser	Ala	Gly	Phe	Ala	Asp	Lys	Ile	Asp	Gly	Arg	Met	Ile
	130					135					140				

Asp Thr Gly Arg Thr His Phe Ser Tyr Thr Lys Arg Gln Pro Leu Gly
145 150 155 160

5 Val Cys Gly Gln Ile Ile Pro Trp Asn Phe Pro Leu Leu Met Trp Ala 165 170 175

Trp Lys Ile Ala Pro Ala Leu Val Thr Gly Asn Thr Val Val Leu Lys
180 185 190

Thr Ala Glu Ser Thr Pro Leu Ser Ala Leu Tyr Val Ser Lys Tyr Ile 10 195 200 205

Pro Gln Ala Gly Ile Pro Pro Gly Val Ile Asn Ile Val Ser Gly Phe 210 215 220

Gly Lys Ile Val Val Glu Ala Ile Thr Asn His Pro Lys Ile Lys 225 230 235 240

15 Val Ala Phe Thr Gly Ser Thr Ala Thr Gly Arg His Ile Tyr Gln Ser
245 250 255

Ala Ala Ala Gly Leu Lys Lys Val Thr Leu Glu Leu Gly Gly Lys Ser 260 265 270

Pro Asn Ile Val Phe Ala Asp Ala Glu Leu Lys Lys Ala Val Gln Asn 20 285

Ile Ile Leu Gly Ile Tyr Tyr Asn Ser Gly Glu Val Cys Cys Ala Gly
290 295 300

Ser Arg Val Tyr Val Glu Glu Ser Ile Tyr Asp Lys Phe Ile Glu Glu 305 310 315

25 Phe Lys Ala Ala Ser Glu Ser Ile Lys Val Gly Asp Pro Phe Asp Glu
325 330 335

### persorsiogicae pervus oozesera

Ser Thr Phe Gln Gly Ala Gln Thr Ser Gln Met Gln Leu Asn Lys Ile 340 345 350

Leu Lys Tyr Val Asp Ile Gly Lys Asn Glu Gly Ala Thr Leu Ile Thr
355 360 365

5 Gly Gly Glu Arg Leu Gly Ser Lys Gly Tyr Phe Ile Lys Pro Thr Val 370 375 380

Phe Gly Asp Val Lys Glu Asp Met Arg Ile Val Lys Glu Glu Ile Phe 385 390 395 400

Gly Pro Val Val Thr Val Thr Lys Phe Lys Ser Ala Asp Glu Val Ile

405
410
415

Asn Met Ala Asn Asp Ser Glu Tyr Gly Leu Ala Ala Gly Ile His Thr
420 425 430

Ser Asn Ile Asn Thr Ala Leu Lys Val Ala Asp Arg Val Asn Ala Gly
435 440 445

15 Thr Val Trp Ile Asn Thr Tyr Asn Asp Phe His His Ala Val Pro Phe
450 455 460

Gly Gly Phe Asn Ala Ser Gly Leu Gly Arg Glu Met Ser Val Asp Ala 465 470 475 480

Leu Gln Asn Tyr Leu Gln Val Lys Ala Val Arg Ala Lys Leu Asp 20 485 490 495

<210> 3

<211> 1541

<212> DNA

<213> Homo sapiens

### reszezsi celesze Pct/us og/eseze

	<22	1> C	DS														
	<22	2> (	22).	. (15	21)												
	<40	0 > 3															
5	gcg	gtac	caa	ggag	atat	ca t	atg	tca	gcc	gcc	gcc	acc	caq	acc	ata	cct	51
																Pro	
							1				5					10	
	gcc	ccc	aac	cag	cag	ccc	gag	gtc	ttc	tgc	aac	cag	att	ttc	ata	aac	99
				Gln													
10					15					20					25		
	aat	gaa	tgg	cac	gat	gcc	gtc	agc	agg	aaa	aca	ttc	ccc	acc	gtc	aat	147
				His							F						
				30					35					40			
	ccg	tcc	act	gga	gag	gtc	atc	tgt	cag	gta	gct	gaa	ggg	gac	aag	gaa	195
15	Pro	Ser	Thr	Gly	Glu	Val	Ile	Сув	Gln	Val	Ala	Glu	Gly	Asp	Lys	Glu	
			45					50					55				
	gat	gtg	gac	aag	gca	cgt	gaa	ggc	cgc	ccg	ggc	gcc	ttc	cag	ctg	ggc	243
	Asp	Val	Asp	Lys	Ala	Arg	Glu	Gly	Arg	Pro	Gly	Ala	Phe	Gln	Leu	Gly	
		60					65					70					
20	tca	cct	tgg	cgc	cgc	atg	gac	gca	tca	cac	agc	ggc	cgg	ctg	ctg	aac	291
	Ser	Pro	Trp	Arg	Arg	Met	Asp	Ala	Ser	His	Ser	Gly	Arg	Leu	Leu	Asn	
	75					80					85					90	
	cgc	ctg	gcc	gat	ctg	atc	gag	cgg	gac	cgg	acc	tac	ctg	gcg	gcc	ttg	339
	Arg	Leu	Ala	Asp	Leu	Ile	Glu	Arg	Asp	Arg	Thr	Tyr	Leu	Ala	Ala	Leu	
25					95					100					105		
	gag	acc	ctg	gac	aat	ggc	aag	ccc	tat	gtc	atc	tcc	tac	ctg	gtg	gat	387
	G] u	Thr	Leu	Asp	Asn	Gly	Lys	Pro	Tyr	Val	Ile	Ser	Tyr	Leu	Val	Asp	
				110					115					120			

<220>

### assarsi.osicom Perzus cozesseze

	ttg	gac	atg	gtc	ctc	aaa	tgt	ctc	cgg	tat	tat	gcc	ggc	tgg	gct	gat	435
	Leu	Asp	Met	Val	Leu	Lys	Сув	Leu	Arg	Tyr	Tyr	Ala	Gly	Trp	Ala	Asp	
			125					130					135				
	aag	tac	cac	999	aaa	acc	atc	ccc	att	gac	gga	gac	ttc	ttc	agc	tac	483
5	Lys	Tyr	His	Gly	Lys	Thr	Ile	Pro	Ile	Asp	Gly	Asp	Phe	Phe	Ser	Tyr	
		140					145					150					
	aca	cgc	cat	gaa	cct	gtg	<b>3</b> 33	gtg	tgc	ggg	cag	atc	att	ccg	tgg	aat	531
	Thr	Arg	His	Glu	Pro	Val	Gly	Val	Сув	Gly	Gln	Ile	Ile	Pro	Trp	Asn	
	155					160					165					170	
10	ttc	ccg	ctc	ctg	atg	caa	gca	tgg	aag	ctg	ggc	cca	gcc	ttg	gca	act	579
	Phe	Pro	Leu	Leu	Met	Gln	Ala	Trp	Lys	Leu	Gly	Pro	Ala	Leu	Ala	Thr	
					175					180					185		
	gga	aac	gtg	gtt	gtg	atg	aag	gta	gct	gag	cag	aca	ccc	ctc	acc	gcc	627
	Gly	Asn	Val	Val	Val	Met	Lys	Val	Ala	Glu	Gln	Thr	Pro	Leu	Thr	Ala	
15				190					195					200			
	ctc	tat	gtg	gcc	aac	ctg	atc	aag	gag	gct	ggc	ttt	ccc	cct	ggt	gtg	675
	Leu	Tyr	Val	Ala	Asn	Leu	Ile	Lys	Glu	Ala	Gly	Phe	Pro	Pro	Gly	Val	
			205					210					215				
	gtc	aac	att	gtg	cct	gga	ttt	ggc	CCC	acg	gct	<b>333</b>	gcc	gcc	att	gcc	723
20	Val	Asn	Ile	Val	Pro	Gly	Phe	Gly	Pro	Thr	Ala	Gly	Ala	Ala	Ile	Ala	
		220					225					230					
	tcc	cat	gag	gat	gtg	gac	aaa	gtg	gca	ttc	aca	ggc	tcc	act	gag	att	771
	Ser	His	Glu	Asp	Val	Asp	Lys	Val	Ala	Phe	Thr	Gly	Ser	Thr	Glu	Ile	
	235					240					245					250	
25	ggc	cgc	gta	atc	cag	gtt	gct	gct	aaa	agc	agc	aac	ctc	aag	aga	gtg	819
	Gly	Arg	Val	Ile	Gln	Val	Ala	Ala	Gly	Ser	Ser	Asn	Leu	Lys	Arg	Val	
					255					260					265		

# CSSSCTSI CSICE PCT/US CG/23878

	acc	ttg	gag	ctg	ggg	aaa	aag	agc	ccc	aac	atc	atc	atg	tca	gat	gcc	867
	Thr	Leu	Glu	Leu	Gly	Gly	Lys	Ser	Pro	Asn	Ile	Ile	Met	Ser	Asp	Ala	
				270					275					280			
	gat	atg	gat	tgg	gcc	gtg	gaa	cag	gcc	cac	ttc	gcc	ctg	ttc	ttc	aac	915
5	Asp	Met	Asp	Trp	Ala	Val	Glu	Gln	Ala	His	Phe	Ala	Leu	Phe	Phe	Asn	
			285					290					295				
	cag	ggc	cag	tgc	tgc	tgt	gcc	ggc	tcc	cgg	acc	ttc	qtq	caq	qaq	qac	963
	Gln	Gly	Gln	Cys	Cvs	Cvs	Ala	Glv	Ser	Arq	Thr	Phe	Val	Gln	Glu	Asp	
		300			•	•	305			3		310					
10	atc	tat	gat.	gag	ttt	ata	ata	caa	agc	att	acc	caa	acc	aaq	tet	caa	1011
			Asp														1011
	315	-7-	p	O_u	1110	320	•	9	DCI	<b>,</b>	325	111.9	*****	2,5	JCI	330	
	313					320					323					330	
	~+~	~+~	~~~				~~+	200			~~~	~~~					1050
			ggg														1059
15	vai	vai	Gly	ASII		Pne	дая	ser	гуя		GIU	GIII	GIY	PIO		vai	
13					335			٠		340					345		
			act														1107
	Asp	GLu	Thr		Phe	Lys	Lys	Ile		GГĀ	Tyr	Ile	Asn		Gly	Lys	
				350					355					360			
			aaa		_	-	_	_					_	_	_	_	1155
20	Gln	Glu		Ala	Lys	Leu	Leu	Сув	Gly	Gly	Gly	Ile	Ala	Ala	Asp	Arg	
			365					370					375				
	ggt	tac	ttc	atc	cag	ccc	act	gtg	ttt	gga	gat	gtg	cag	gat	ggc	atg	1203
	Gly	Tyr	Phe	Ile	Gln	Pro	Thr	Val	Phe	Gly	Asp	Val	Gln	Asp	Gly	Met	
		380					385					390					
25	acc	atc	gcc	aag	gag	gag	atc	ttc	aaa	cca	gtg	atg	cag	atc	ctg	aag	1251
	Thr	Ile	Ala	Lys	Glu	Glu	Ile	Phe	Gly	Pro	Val	Met	Gln	Ile	Leu	Lys	
	395					400					405					410	

## reserma .ceitce porus covesere

	ttc	aag	acc	ata	gag	gag	gtt	gtt	ggg	aga	gcc	aac	aat	tcc	acg	tac	1299
	Phe	Lys	Thr	Ile	Glu	Glu	Val	Val	Gly	Arg	Ala	Asn	Asn	Ser	Thr	Tyr	
					415					420					425		
	ggg	ctg	gcc	gca	gct	gtc	ttc	aca	aag	gat	ttg	gac	aag	gcc	aat	tac	1347
5	Gly	Leu	Ala	Ala	Ala	Val	Phe	Thr	Lys	Авр	Leu	Asp	Lys	Ala	Asn	Tyr	
				430					435					440			
	ctg	tcc	cag	gcc	ctc	cag	gcg	ggc	act	gtg	tgg	gtc	aac	tgc	tat	gat	1395
	Leu	Ser	Gln	Ala	Leu	Gln	Ala	Gly	Thr	Val	Trp	Val	Asn	Сув	Tyr	Asp	
			445					450					455				
10	gtg	ttt	gga	gcc	cag	tca	ccc	ttt	ggt	ggc	tac	aag	atg	tcg	ggg	agt	1443
	Val	Phe	Gly	Ala	Gln	Ser	Pro	Phe	Gly	Gly	Tyr	Lys	Met	Ser	Gly	Ser	
		460					465					470					
	ggc	cgg	gag	ttg	ggc	gag	tac	999	ctg	cag	gca	tac	act	gaa	gtg	aaa	1491
	Gly	Arg	Glu	Leu	Gly	Glu	Tyr	Gly	Leu	Gln	Ala	Tyr	Thr	Glu	Val	Lys	
15	475					480					485					490	
	act	gtc	aca	gtc	aaa	gtg	cct	cag	aag	aac	tcat	aaga	agc t	cgaa	ttcg	jc	1541
	Thr	Val	Thr	Val	Lys	Val	Pro	Gln	Lys	Asn							
					495					500							
	<210	)> 4															
20	<21	L> 50	00														
	<212	2 > PI	RT														
	<213	3 > H	omo :	sapi	ens												
	<40	0> 4															
	Met	Ser	Ala	Ala	Ala	Thr	Gln	Ala	Val	Pro	Ala	Pro	Asn	Gln	Gln	Pro	
25	1				5					10					15		
	Glu	Val	Phe	Cys	Asn	Gln	Ile	Phe	Ile	Asn	Asn	Glu	Trp	His	Asp	Ala	
				20					25					30			

## CORSOZEL COLOCE POTZUS COZESCE

	Val	Ser	Arg	Lys	Thr	Phe	Pro	Thr	Val	Asn	Pro	Ser	Thr	Gly	Glu	Val
			35					40					45			
	Ile	Cys	Gln	Val	Ala	Glu	Gly	Asp	Lys	Glu	Asp	Val	Asp	Lvs	Ala	Arg
		50					5 <b>5</b>	_	-		-	60	-	•		5
												•				
5	Glu	Glv	Ara	Pro	Glv	Δla	Phe	Gl n	T. <b>A</b> 11	Glv	Sar	Pro	Trees	λ׫	7 w.~	Wat
	65		9		017	70	rne	GIII	Leu	GIY		PIO	пр	Arg	Arg	
	03					70					75					80
	D	n1-		***		<b>~3</b>	_	_	_	_						
	Авр	Ala	ser	HIS		GIY	Arg	Leu	Leu		Arg	Leu	Ala	Asp	Leu	Ile
					85					90					95	
	Glu	Arg	Asp	Arg	Thr	Tyr	Leu	Ala	Ala	Leu	Glu	Thr	Leu	Asp	Asn	Gly
10				100					105					110		
	Lys	Pro	Tyr	Val	Ile	Ser	Tyr	Leu	Val	Asp	Leu	Asp	Met	Val	Leu	Lys
			115					120					125			
	Сув	Leu	Arg	Tyr	Tyr	Ala	Gly	Trp	Ala	Asp	Lys	Tyr	His	Gly	Lys	Thr
		130					135					140				
15	Ile	Pro	Ile	Asp	Gly	Asp	Phe	Phe	Ser	Tvr	Thr	Ara	His	Glu	Pro	Val
	145			-	-	150				- 4	155	5				160
											133					100
	Glv	Val	Cve	Glv	Gln	Tla	Tla	Pro	Trn	λan	Phe	Bro	T.011	T 011	Mo+	al n
	011	• • • •	Cyb	OI,	165	110	116	110	ııp		FILE	PIO	теп	теп		GIII
					103					170					175	
		<b></b>	•	_	~1	_		_				_			_	
20	Ата	Trp	Lys	Leu	GIY	Pro	Ala	Leu	Ala	Thr	Gly	Asn	Val	Val	Val	Met
20				180					185					190		
	Lys	Val	Ala	Glu	Gln	Thr	Pro	Leu	Thr	Ala	Leu	Tyr	Val	Ala	Asn	Leu
			195					200					205			
	Ile	Lys	Glu	Ala	Gly	Phe	Pro	Pro	Gly	Val	Val	Asn	Ile	Val	Pro	Gly

215

210

220

## COSTOS COVERSOS

	Phe	Gly	Pro	Thr	Ala	Gly	Ala	Ala	Ile	Ala	Ser	His	Glu	Asp	Val	Asp
	225					230					235					240
	Lys	Val	Ala	Phe	Thr	Gly	Ser	Thr	Glu	Ile	Gly	Arg	Val	Ile	Gln	Val
					245					250					255	
5	Ala	Ala	Gly	Ser	Ser	Asn	Leu	Lys	Arg	Val	Thr	Leu	Glu	Leu	Glv	Glv
			_	260				-	265					270		2
	Lys	Ser	Pro	Asn	Ile	Ile	Met	Ser	Asp	Ala	Asp	Met	Asp	Tro	Ala	Val
	-		275					280					285			
	Glu	Gln	Ala	His	Phe	Ala	Leu	Phe	Phe	Asn	Gln	Glv	Gln	Cvs	Cvs	Cvs
10		290					295					300		-2	-1-	-7-
	Ala	Gly	Ser	Arq	Thr	Phe	Val	Gln	Glu	Asp	Ile	Tvr	Asp	Glu	Phe	Val
	305	•				310					315					320
	Val	Arq	Ser	Val	Ala	Arg	Ala	Lvs	Ser	Arg	Val.	Val	Glv	Asn	Pro	Phe
		_			325	J		•		330			2		335	
15	qaA	Ser	Lys	Thr	Glu	Gln	Glv	Pro	Gln	Val	Asp	Glu	Thr	Gln	Phe	Lvs
	-		-	340			•		345					350		
	Lys	Ile	Leu	Gly	Tyr	Ile	Asn	Thr	Glv	Lvs	Gln	Glu	Glv	Ala	Lvs	Leu
	•		355	-	-			360	•	-			365		•	
	Leu	Cys	Gly	Glv	Glv	Ile	Ala	Ala	Asp	Arq	Glv	Tvr	Phe	Ile	Gln	Pro
20		370	•	•			375					380				
	Thr	Val	Phe	Glv	Asp	Val	Gln	Asp	Glv	Met	Thr	Ile	Ala	Lvs	Glu	Glu
	385			2		390			2		395			7-		400
						220										
	Tle	Phe	Gly	Pro	۲a۱	Met	Gln	Tlo	T.e.ii	Lve	Dhe	Tave	Thr	τl≏	Gl 11	Glu
		1116	∪.⊥y	110	405	4-1G C	2111	116	2004	410	1116	Lys	1111	TTC	415	JIU
					<b>400</b>					4 T U					ギエコ	

#### OPESOYEL.OPIOCE PCT/US OO/23878

Val Val Gly Arg Ala Asn Asn Ser Thr Tyr Gly Leu Ala Ala Val 420 425 430 Phe Thr Lys Asp Leu Asp Lys Ala Asn Tyr Leu Ser Gln Ala Leu Gln 435 440 5 Ala Gly Thr Val Trp Val Asn Cys Tyr Asp Val Phe Gly Ala Gln Ser 450 455 460 Pro Phe Gly Gly Tyr Lys Met Ser Gly Ser Gly Arg Glu Leu Gly Glu 465 470 475 480 Tyr Gly Leu Gln Ala Tyr Thr Glu Val Lys Thr Val Thr Val Lys Val 10 485 490 Pro Gln Lys Asn 500 <210> 5 <211> 1512 15 <212> DNA <213> Escherichia coli <220> <221> CDS <222> (37)..(1473) 20 <400> 5 gctaccatgg cttaaccggt accaaggaga tatcat atg tca gta ccc gtt caa Met Ser Val Pro Val Gln 1 5

20

cat cct atg tat atc gat gga cag ttt gtt acc tgg cgt gga gac gca 25 His Pro Met Tyr Ile Asp Gly Gln Phe Val Thr Trp Arg Gly Asp Ala

15

10

# OPEROVELLOPIOSE PETVUS OCZERZE

	tgg	att	gat	gtg	gta	aac	cct	gct	aca	gag	gct	gtc	att	tcc	cgc	ata	150
	Trp	Ile	Asp	Val	Val	Asn	Pro	Ala	Thr	Glu	Ala	Val	Ile	Ser	Arg	Ile	
			25					30					35				
	ccc	gat	ggt	cag	gcc	gag	gat	gcc	cgt	aag	gca	atc	gat	gca	gca	gaa	198
5	Pro	Asp	Gly	Gln	Ala	Glu	Asp	Ala	Arg	Lys	Ala	Ile	Asp	Ala	Ala	Glu	
		40					45					50					
	cgt	gca	caa	cca	gaa	tgg	gaa	gcg	ttg	cct	gct	att	gaa	cgc	gcc	agt	246
	Arg	Ala	Gln	Pro	Glu	Trp	Glu	Ala	Leu	Pro	Ala	Ile	Glu	Arg	Ala	Ser	
	55					60					65					70	
10	tgg	ttg	cgc	aaa	atc	tcc	gcc	ggg	atc	cgc	gaa	cgc	gcc	agt	gaa	atc	294
	Trp	Leu	Arg	Lys	Ile	Ser	Ala	Gly	Ile	Arg	Glu	Arg	Ala	Ser	Glu	Ile	
					75					80					85		
	agt	gcg	ctg	att	gtt	gaa	gaa	ggg	ggc	aag	atc	cag	cag	ctg	gat	gaa	342
	Ser	Ala	Leu	Ile	Val	Glu	Glu	Gly	Gly	Lys	Ile	Gln	Gln	Leu	Ala	Glu	
15				90					95					100			
	gtc	gaa	gtg	gct	ttt	act	gcc	gac	tat	atc	gat	tac	atg	gcg	gag	tgg	390
	Val	Glu	Val	Ala	Phe	Thr	Ala	Asp	Tyr	Ile	Asp	Tyr	Met	Ala	Glu	Trp	
			105					110					115				
	gca	cgg	cgt	tac	gag	ggc	gag	att	att	caa	agc	gat	cgt	cca	gga	gaa	438
20	Ala	Arg	Arg	Tyr	Glu	Gly	Glu	Ile	Ile	Gln	Ser	Asp	Arg	Pro	Gly	Glu	
		120					125					130					
	aat	att	ctt	ttg	ttt	aaa	cgt	gcg	ctt	ggt	gtg	act	acc	ggc	att	ctg	486
	Asn	Ile	Leu	Leu	Phe	Lys	Arg	Ala	Leu	Gly	Val	Thr	Thr	Gly	Ile	Leu	
	135					140					145					150	
25	ccq	tga	aac	ttc	ccq	ttc	ttc	ctc	att	gcc	cgc	aaa	atg	gct	ccc	gct	534
	_		Asn		_					_	-		_	-			
		- E			155					160		4		<b>-</b>	165		

### T9830751 . OS1COP PCT/US OC/23878

	ctt	ttg	acc	ggt	aat	acc	atc	gtc	att	aaa	cct	agt	gaa	ttt	acg	aca	582
	Leu	Leu	Thr	Gly	Asn	Thr	Ile	Val	Ile	Lys	Pro	Ser	Glu	Phe	Thr	Thr	
				170					175					180			
	aac	aat	gcg	att	gca	ttc	gcc	aaa	atc	gtc	gat	gaa	ata	ggc	ctt	ccg	630
5	Asn	Asn	Ala	Ile	Ala	Phe	Ala	Lys	Ile	Val	Asp	Glu	Ile	Gly	Leu	Pro	
			185					190					195				
	cgc	ggc	gtg	ttt	aac	ctt	gta	ctg	999	cgt	ggt	gaa	acc	gtt	ggg	caa	678
	Arg	Gly	Val	Phe	Asn	Leu	Val	Leu	Gly	Arg	Gly	Glu	Thr	Val	Gly	Gln	
		200					205					210					
10	gaa	ctg	gcg	ggt	aac	cca	aag	gtc	gca	atg	gtc	agt	atg	aca	ggc	agc	726
	Glu	Leu	Ala	Gly	Asn	Pro	Lys	Val	Ala	Met	Val	Ser	Met	Thr	Gly	Ser	
	215			_		220					225					230	
	gtc	tct	qca	ggt	qaq	aaq	atc	atq	aca	act	aca	aca	aaa	aac	atc	acc	774
													Lys				
15				-	235	-				240			-		245		
	aaa	ata	tat	ctq	qaa	ttq	aaa	ggt	aaa	qca	cca	qct	atc	qta	atq	gac	822
													Ile				
	•		•	250			•	-	255					260		•	
	gat	acc	gat	ctt	gaa	cta	qca	atc	aaa	acc	atc	att	gat	tca	cac	atc	870
20	Asp	•	_		_	_	_	_		-		_	_		_	_	
			265					270	-2-				275		3		
	att	aat	agt.	aaa	caa	ata	t.at.	aac	t.at.	gca	gaa	cat	gtt	tat	αta	cag	918
			_				_			_			Val		_		
		280		O	0211		285		0,10		024	290		- 7 -	<b>741</b>		
		200					203					250					
25	222	aaa	a++	t a t	as+	<b></b>	++-	at a	a = +		ct~	aa+	gaa	aca	at~	cac	966
						_											200
	_	GTÅ	116	TAT	waħ		FIIG	val	Mali	wrd		GTA	Glu	TTA	MEC		
	295					300	,				305					310	

### C983C751.C91CB2 PCT/US OO/83878

	gcg	gtt	caa	ttt	ggt	aac	ccc	gct	gaa	cgc	aac	gac	att	gcg	atg	ggg	1014
	Ala	Val	Gln	Phe	Gly	Asn	Pro	Ala	Glu	Arg	Asn	Asp	Ile	Ala	Met	Gly	
					315					320					325		
	ccg	ttg	att	aac	gcc	gcg	gcg	ctg	gaa	agg	gtc	gag	caa	aaa	gtg	gcg	1062
5	Pro	Leu	Ile	Asn	Ala	Ala	Ala	Leu	Glu	Arg	Val	Glu	Gln	Lys	Val	Ala	
				330					335					340			
	cgc	gca	gta	gaa	gaa	999	gcg	aga	gtg	gcg	ttc	ggt	ggc	aaa	gcg	gta	1110
	Arg	Ala	Val	Glu	Glu	Gly	Ala	Arg	Val	Ala	Phe	Gly	Gly	Lys	Ala	Val	
			345					350					355				
10	gag	aaa	aaa	gga	tat	tat	tat	ccg	ccg	aca	ttg	ctg	ctg	gat	gtt	cgc	1158
	Glu	Gly	Lys	Gly	Tyr	Tyr	$\mathbf{T}\mathbf{y}\mathbf{r}$	Pro	Pro	Thr	Leu	Leu	Leu	Asp	Val	Arg	
		360					365					370					
	cag	gaa	atg	tcg	att	atg	cat	gag	gaa	acc	ttt	ggc	ccg	gtg	ctg	cca	1206
	Gln	Glu	Met	Ser	Ile	Met	His	Glu	Glu	Thr	Phe	Gly	Pro	Val	Leu	Pro	
15	375					380					385					390	
	gtt	gtc	gca	ttt	gac	acg	ctg	gaa	gat	gct	atc	tca	atg	gct	aat	gac	1254
	Val	Val	Ala	Phe	Asp	Thr	Leu	Glu	Asp	Ala	Ile	Ser	Met	Ala	Asn	Asp	
					395					400					405		
	agt.	gat	tac	ggc	ctg	acc	tca	tca	atc	tat	acc	caa	aat	ctg	aac	gtc	1302
20	Ser	Asp	Tyr	Gly	Leu	Thr	Ser	Ser	Ile	Tyr	Thr	Gln	Asn	Leu	Asn	Val	
				410					415					420			
	gcg	atg	aaa	gcc	att	aaa	aaa	ctg	aag	ttt	ggt	gaa	act	tac	atc	aac	1350
	Ala	Met	Lys	Ala	Ile	Lys	Gly	Leu	ГЛЗ	Phe	Gly	Glu	Thr	Tyr	Ile	Asn	
			425					430					435				
25	cgt	gaa	aac	ttc	gaa	gct	atg	caa	ggc	ttc	cac	gcc	gga	tgg	cgt	aaa	1398
	Arg	Glu	Asn	Phe	Glu	Ala	Met	Gln	Gly	Phe	His	Ala	Gly	Trp	Arg	Lys	
		440					445					450					

#### ngerofst.ogioge pct/us oo/ese/e

tee ggt att gge gge gea gat ggt aaa cat gge ttg cat gga tat etg Ser Gly Ile Gly Gly Ala Asp Gly Lys His Gly Leu His Gly Tyr Leu 455 460 465 470 cag acc cag gtg gtt tat tta cag tct taagagctcg aattcccgtc 1493 5 Gln Thr Gln Val Val Tyr Leu Gln Ser 475 gacggctcta gactcgagcg 1513 <210> 6 <211> 479 10 <212> PRT <213> Escherichia coli <400> 6 Met Ser Val Pro Val Gln His Pro Met Tyr Ile Asp Gly Gln Phe Val 1 5 15 15 Thr Trp Arg Gly Asp Ala Trp Ile Asp Val Val Asn Pro Ala Thr Glu 20 25 Ala Val Ile Ser Arg Ile Pro Asp Gly Gln Ala Glu Asp Ala Arg Lys 35 40 45 Ala Ile Asp Ala Ala Glu Arg Ala Gln Pro Glu Trp Glu Ala Leu Pro 20 50 55 60 Ala Ile Glu Arg Ala Ser Trp Leu Arg Lys Ile Ser Ala Gly Ile Arg 65 70 75 Glu Arg Ala Ser Glu Ile Ser Ala Leu Ile Val Glu Glu Gly Lys 85 90 95 25 Ile Gln Gln Leu Ala Glu Val Glu Val Ala Phe Thr Ala Asp Tyr Ile 100 110 105

### T9831751 O91102 PCT/US OO/23878

	Asp	Tyr	Met	Ala	Glu	$\mathtt{Trp}$	Ala	Arg	Arg	Tyr	Glu	Gly	Glu	Ile	Ile	Gln
			115					120	-				125			
	Ser	Asp	Arg	Pro	Gly	Glu	Asn	Ile	Leu	Leu	Phe	Lys	Arg	Ala	Leu	Gly
		130					135					140				
5	Val	Thr	Thr	Gly	Ile	Leu	Pro	Trp	Asn	Phe	Pro	Phe	Phe	Leu	Ile	Ala
	145					150					155					160
	Arg	Lys	Met	Ala		Ala	Leu	Leu	Thr		Asn	Thr	Ile	Val		Lys
					165					170					175	
10	Pro	Ser	Glu	Phe	Thr	Thr	Asn	Asn	Ala	Ile	Ala	Phe	Ala	Lys	Ile	Val
10				180					185					190		
	Asp	Glu	Ile	Gly	Leu	Pro	Arg	Gly	Val	Phe	Asn	Leu	Val	Leu	Gly	Arg
			195					200					205			
	Gly	Glu	Thr	Val	Gly	Gln	Glu	Leu	Ala	Gly	Asn	Pro	Lys	Val	Ala	Met
		210					215					220				
15	Val	Ser	Met	Thr	Gly	Ser	Val	Ser	Ala	Gly	Glu	Lys	Ile	Met	Ala	Thr
	225					230					235					240
	Ala	Ala	Lys	Asn	Ile	Thr	Lys	Val	Сув	Leu	Glu	Leu	Gly	Gly	Lys	Ala
					245					250					255	
	Pro	Ala	Ile	Val	Met	Asp	Asp	Ala	Asp	Leu	Glu	Leu	Ala	Val	Lys	Ala
20				260					265					270		
	Ile	Val	qaA	Ser	Arg	Val	Ile	Asn	Ser	Gly	Gln	Val	Cys	Asn	Cys	Ala
			275					280					285			

300

Glu Arg Val Tyr Val Gln Lys Gly Ile Tyr Asp Gln Phe Val Asn Arg

295

290

## D9830751.091002 PCT/US OO/23878

Leu	Gly	Glu	Ala	Met	Gln	Ala	Val	Gln	Phe	Gly	Asn	Pro	Ala	Glu	Arg
305					310					315					320

Asn Asp Ile Ala Met Gly Pro Leu Ile Asn Ala Ala Ala Leu Glu Arg 325 330 335

5 Val Glu Glu Lys Val Ala Arg Ala Val Glu Glu Gly Ala Arg Val Ala 340 345 350

Phe Gly Gly Lys Ala Val Glu Gly Lys Gly Tyr Tyr Pro Pro Thr 355 360 365

Leu Leu Leu Asp Val Arg Gln Glu Met Ser Ile Met His Glu Glu Thr 10 370 375 380

Phe Gly Pro Val Leu Pro Val Val Ala Phe Asp Thr Leu Glu Asp Ala 385 390 395 400

Ile Ser Met Ala Asn Asp Ser Asp Tyr Gly Leu Thr Ser Ser Ile Tyr
405 410 415

15 Thr Gln Asn Leu Asn Val Ala Met Lys Ala Ile Lys Gly Leu Lys Phe
420 425 430

Gly Glu Thr Tyr Ile Asn Arg Glu Asn Phe Glu Ala Met Gln Gly Phe 435 440 445

His Ala Gly Trp Arg Lys Ser Gly Ile Gly Gly Ala Asp Gly Lys His 20 450 455 460

Gly Leu His Gly Tyr Leu Gln Thr Gln Val Val Tyr Leu Gln Ser 465 470 475

# cestors.cestore pervus cozeseze

	<210	U> /															
	<21	1> 1	574														•
	<212	2 > D	NA														
	<21	3 > E	sche	rich	ia c	oli											
5	<226	0>															
	<22	1> C	DS														
	<222	2> (	22).	. (15	57)												
	<400	0> 7															
	gcgg	gtac	caa 🤉	ggagg	gtato	ca t	atg	acc	aat	aat	ccc	cct	tca	gca	cag	att	51
10							Met	Thr	Asn	Asn	Pro	Pro	Ser	Ala	Gln	Ile	
							1				5					10	
	aag	ccc	ggc	gag	tat	ggt	ttc	ccc	ctc	aag	tta	aaa	gcc	cgc	tat	gac	99
	Lys	Pro	Gly	Glu	Tyr	Gly	Phe	Pro	Leu	Lys	Leu	Lys	Ala	Arg	Tyr	Asp	
					15					20					25		
15	aac	ttt	att	ggc	ggc	gaa	tgg	gta	gcc	cct	gcc	gac	ggc	gag	tat	tac	147
	Asn	Phe	Ile	Gly	Gly	Glu	Trp	Val	Ala	Pro	Ala	Asp	Gly	Glu	Tyr	Tyr	
				30					35					40			
	cag	aat	ctg	acg	ccg	gtg	acc	aaa	cag	ctg	ctg	tgc	gaa	gtg	gcg	tct	195
	Gln	Asn	Leu	Thr	Pro	Val	Thr	Gly	Gln	Leu	Leu	Сув	Glu	Val	Ala	Ser	
20			45					50					55				
	_			cga	_		_	_		_							243
	Ser	-	Lys	Arg	Asp	Ile	_	Leu	Ala	Leu	Asp		Ala	His	Lys	Val	
		60					65					70					
				_													
25		-		tgg													291
25	Lys	Asp	Lys	Trp	Ala		Thr	Ser	Val	Gln		Arg	Ala	Ala	Ile		
	75					80					85					90	
			_ •											4. 4.			22.
		_		gcc	_	_	_	_					_				339
	Pne	rys	ıте	Ala	Asp	Arg	Met	Glu	Gln	Asn	Leu	Glu	Leu	ьeu	Ala	Tnr	
					O.E					100					105		

## O9830751 O91002 PCT/US OO/83878

		gct	gaa	acc	tgg	gat	aac	ggc	aaa	ccc	att	cgc	gaa	acc	agt	gct	gcg	387
		Ala	Glu	Thr	$\mathtt{Trp}$	Asp	Asn	Gly	Lys	Pro	Ile	Arg	Glu	Thr	Ser	Ala	Ala	
					110					115					120			
		gat	gta	ccg	ctg	gcg	att	gac	cat	ttc	cgc	tat	ttc	gcc	tcg	tgt	att	435
	5	Asp	Val	Pro	Leu	Ala	Ile	Asp	His	Phe	Arg	Tyr	Phe	Ala	Ser	Сув	Ile	
				125					130					135				
		cgg	gcg	cag	gaa	ggt	ggg	atc	agt	gaa	gtt	gat	agc	gaa	acc	gtg	gcc	483
		Arg	Ala	Gln	Glu	Gly	Gly	Ile	Ser	Glu	Val	Asp	Ser	Glu	Thr	Val	Ala	
			140					145					150					
	10	tat	cat	ttc	cat	gaa	ccg	tta	ggc	gtg	gtg	<b>9</b> 99	cag	att	atc	ccg	tgg	531
1		Tyr	His	Phe	His	Glu	Pro	Leu	Gly	Val	Val	Gly	Gln	Ile	Ile	Pro	Trp	
		155					160					165					170	
		aac	ttc	ccg	ctg	ctg	atg	gcg	agc	tgg	aaa	atg	gct	ccc	gcg	ctg	gcg	579
		Asn	Phe	Pro	Leu	Leu	Met	Ala	Ser	Trp	Lys	Met	Ala	Pro	Ala	Leu	Ala	
	15					175					180					185		
		gcg	ggc	aac	tgt	gtg	gtg	ctg	aaa	ccc	gca	cgt	ctt	acc	ccg	ctt	tct	627
		Ala	Gly	Asn	Сув	Val	Val	Leu	Lys	Pro	Ala	Arg	Leu	Thr	Pro	Leu	Ser	
					190					195					200			
4		gta	ctg	ctg	cta	atg	gaa	att	gtc	ggt	gat	tta	ctg	ccg	ccg	ggc	gtg	675
,	20	Val	Leu	Leu	Leu	Met	Glu	Ile	Val	Gly	Asp	Leu	Leu	Pro	Pro	Gly	Val	
				205					210					215				
		gtg	aac	gtg	gtc	aat	ggc	gca	ggt	<b>3</b> 33	gta	att	ggc	gaa	tat	ctg	gcg	723
		Val	Asn	Val	Val	Asn	Gly	Ala	Gly	Gly	Val	Ile	Gly	Glu	Tyr	Leu	Ala	
			220					225					230					
	25	acc	tcg	aaa	cgc	atc	gcc	aaa	gtg	gcg	ttt	acc	ggc	tca	acg	gaa	gtg	771
		Thr	Ser	Lys	Arg	Ile	Ala	Lys	Val	Ala	Phe	Thr	Gly	Ser	Thr	Glu	Val	
		235					240					245					250	

## D9830751.091002 8788200 2U303

	ggd	caa	a caa	att	atg	caa	tac	gca	acg	caa	aac	att	att	ccg	gtg	acg	819
	Gly	Glr	Gln	Ile	Met	Glr	туг	Ala	Thr	Gln	Asr	Ile	Ile	Pro	Val	Thr	
					255					260					265		
	ctg	gag	ttg	ggc	ggt	aag	tcg	cca	aat	ato	gto	ttt	gct	gat	gtg	atg	867
5	Leu	Glu	Leu	Gly	Gly	Lys	Ser	Pro	Asn	Ile	Val	Phe	Ala	Asp	Val	Met	
				270					275					280			
	gat	gaa	gaa	gat	gcc	ttt	ttc	gat	aaa	gcg	ctg	gaa	ggc	ttt	gca	ctg	915
	Asp	Glu	Glu	Asp	Ala	Phe	Phe	Asp	Lys	Ala	Leu	Glu	Gly	Phe	Ala	Leu	
			285					290					295				
10	ttt	gcc	ttt	aac	cag	ggc	gaa	gtt	tgc	acc	tgt	ccg	agt	cgt	gct	tta	963
	Phe	Ala	Phe	Asn	Gln	Gly	Glu	Val	Сув	Thr	Cys	Pro	Ser	Arg	Ala	Leu	
		300					305					310					
			gaa													-	1011
		Gln	Glu	Ser	Ilu	Tyr	Glu	Arg	Phe	Met	Glu	Arg	Ala	Ile	Arg	Arg	
15	315					320					325					330	
			agc													_	1059
	Val	Glu	Ser	Ile		Ser	Gly	Asn	Pro	Leu	Asp	Ser	Val	Thr	Gln	Met	
					335					340					345		
20			cag														1107
20	GIY	АТА	Gln		Ser	His	Gly	Gln		Glu	Thr	Ile	Leu	Asn	Tyr	Ile	
				350					355					360			
	as t	a+-															
			ggt														1155
	Asp	TTE	Gly 365	гàв	гув	GIU	GIA		Asp	Val	Leu	Thr		Gly	Arg	Arg	
			363					370					375				
25	227	cta	at~	as s	aa+	<b>~</b> ~ ~	a <b>t</b>										
			ctg														1203
		380 380	Leu	GLU	ату	GIU		ьуs .	Asp	GIA	Tyr		Leu	Glu	Pro	Thr	
		200					385					390					

## coesorsilogioce petrus oczesese

		act	ctg	LLL	ggc	cag	aac	aat	atg	cgg	gtg	ttc	cag	gag	gag	att	ttt	1251
		Ile	Leu	Phe	Gly	Gln	Asn	Asn	Met	Arg	Val	Phe	Gln	Glu	Glu	Ile	Phe	
		395					400					405					410	
		ggc	ccg	gtg	ctg	gcg	gtg	acc	acc	ttc	aaa	acq	ato	gaa	gaa	aca	cta	1299
	5					Ala												2233
		-				415					420			014	<b>014</b>	425	Deu	
											120					425		
		gag	cta	aca	220	gat	200	caa	+=+	aaa	ata	~~~	~~~	~~~	~+ ~			1247
																		1347
		GIU	пеп	AIA		Asp	IIII	GIII	TYL		Leu	GIY	Ala	GIY		Trp	ser	
					430					435					440			
	10																	
	10					ctg												1395
<b>a</b> )		Arg	Asn		Asn	Leu	Ala	Tyr	ГЛЗ	Met	Gly	Arg	Gly	Ile	Gln	Ala	Gly	
				445					450					455				
		cgc	gtg	tgg	acc	aac	tgt	tat	cac	gct	tac	ccg	gca	cat	gcg	gcg	ttt	1443
		Arg	Val	Trp	Thr	Asn	Cys	Tyr	His	Ala	Tyr	Pro	Ala	His	Ala	Ala	Phe	
	15		460					465					470					
		ggt	ggc	tac	aaa	caa	tca	ggt	atc	ggt	cgc	gaa	acc	cac	aag	atg	atg	1491
		Gly	Gly	Tyr	Lys	Gln	Ser	Gly	Ile	Gly	Arg	Glu	Thr	His	Lys	Met	Met	
		475					480					485					490	
,		ctg	gag	cat	tac	cag	caa	acc	aag	tgc	ctg	ctg	gtg	agc	tac	tcg	gat	1539
ナ	20	Leu	Glu	His	Tyr	Gln	Gln	Thr	Lys	Сув	Leu	Leu	Val	Ser	Tyr	Ser	Asp	
						495					500					505	-	
		aaa	cca	tta	ggg	ctg	ttc	taao	aget	.ca a	atto	eac						1574
			_	_		Leu		3		., -		J -						
		-2 -			510													
					J = 0													

### PCT/US OO/23878

15

<210> 8 <211> 512 <212> PRT <213> Escherichia coli 5 <400> 8 Met Thr Asn Asn Pro Pro Ser Ala Gln Ile Lys Pro Gly Glu Tyr Gly 1 5

Phe Pro Leu Lys Leu Lys Ala Arg Tyr Asp Asn Phe Ile Gly Gly Glu 20 25

10

10 Trp Val Ala Pro Ala Asp Gly Glu Tyr Tyr Gln Asn Leu Thr Pro Val 40 45

Thr Gly Gln Leu Cys Glu Val Ala Ser Ser Gly Lys Arg Asp Ile 50 55 60

Asp Leu Ala Leu Asp Ala Ala His Lys Val Lys Asp Lys Trp Ala His 15 65 70 75 80

Thr Ser Val Gln Asp Arg Ala Ala Ile Leu Phe Lys Ile Ala Asp Arg 90

Met Glu Gln Asn Leu Glu Leu Leu Ala Thr Ala Glu Thr Trp Asp Asn 100 105 110

 $20\,$  Gly Lys Pro Ile Arg Glu Thr Ser Ala Ala Asp Val Pro Leu Ala Ile 115 120 125

Asp His Phe Arg Tyr Phe Ala Ser Cys Ile Arg Ala Gln Glu Gly Gly 130 135 140

Ile Ser Glu Val Asp Ser Glu Thr Val Ala Tyr His Phe His Glu Pro 25 145 150 155 160

#### O9830751.091002 PCT/US OO/23878

Leu	Gly	Val	Val	Gly	Gln	Ile	Ile	Pro	$\operatorname{Trp}$	Asn	Phe	Pro	Leu	Leu	Met
				165					170					175	

- Ala Ser Trp Lys Met Ala Pro Ala Leu Ala Ala Gly Asn Cys Val Val 180 185 190
- 5 Leu Lys Pro Ala Arg Leu Thr Pro Leu Ser Val Leu Leu Leu Met Glu 195 200 205
  - Ile Val Gly Asp Leu Leu Pro Pro Gly Val Val Asn Val Val Asn Gly
    210 215 220
- Ala Gly Gly Val Ile Gly Glu Tyr Leu Ala Thr Ser Lys Arg Ile Ala 10 225 230 235 240
  - Lys Val Ala Phe Thr Gly Ser Thr Glu Val Gly Gln Gln Ile Met Gln
    245 250 255
  - Tyr Ala Thr Gln Asn Ile Ile Pro Val Thr Leu Glu Leu Gly Gly Lys
    260 265 270
- 15 Ser Pro Asn Ile Val Phe Ala Asp Val Met Asp Glu Glu Asp Ala Phe
  275 280 285
  - Phe Asp Lys Ala Leu Glu Gly Phe Ala Leu Phe Ala Phe Asn Gln Gly 290 295 300
- Glu Val Cys Thr Cys Pro Ser Arg Ala Leu Val Gln Glu Ser Ile Tyr 20 305 310 315 320
  - Glu Arg Phe Met Glu Arg Ala Ile Arg Arg Val Glu Ser Ile Arg Ser 325 330 335
  - Gly Asn Pro Leu Asp Ser Val Thr Gln Met Gly Ala Gln Val Ser His 340 345 350

## OSBECTEL OS LOCE OS CONTROL OS CO

Gly Gln Leu Glu Thr Ile Leu Asn Tyr Ile Asp Ile Gly Lys Lys Glu 355 360 365

Gly Ala Asp Val Leu Thr Gly Gly Arg Arg Lys Leu Leu Glu Gly Glu 370 375 380

5 Leu Lys Asp Gly Tyr Tyr Leu Glu Pro Thr Ile Leu Phe Gly Gln Asn 385 390 395 400

Asn Met Arg Val Phe Gln Glu Glu Ile Phe Gly Pro Val Leu Ala Val 405 410 415

Thr Thr Phe Lys Thr Met Glu Glu Ala Leu Glu Leu Ala Asn Asp Thr 10 420 425 430

Gln Tyr Gly Leu Gly Ala Gly Val Trp Ser Arg Asn Gly Asn Leu Ala 435 440 445

Tyr Lys Met Gly Arg Gly Ile Gln Ala Gly Arg Val Trp Thr Asn Cys 450 455 460

15 Tyr His Ala Tyr Pro Ala His Ala Ala Phe Gly Gly Tyr Lys Gln Ser 465 470 475 480

Gly Ile Gly Arg Glu Thr His Lys Met Met Leu Glu His Tyr Gln Gln
485 490 495

Thr Lys Cys Leu Leu Val Ser Tyr Ser Asp Lys Pro Leu Gly Leu Phe 20 500 505 510

<210> 9

<211> 5267

<212> DNA

<213> Klebsiella pneumoniae

```
<220>
   <223> Location complement 300..2153
   <220>
   <223> Location complement 2166..2591
 5 <220>
   <223> Locaton complement 2594..3034
   <220>
   <223> Location complement 2191..4858
   <400> 9
10 agggetatat gegttgatge aatttetatg egeaceegtt eteggageae tgteegaeeq 60
   ctttggeege egeccagtee tgetegette getaettgga gecaetateg actaegegat 120
   catggcgacc acaccegtec tgtggatete ccaetgacca aagetggeee eggegacceg 180
   cagegeageg aegeageeeg egeegaagaa aatgageaat eeggtgeeaa gaaactegge 240
   cacgcactgc ccggttaagg tagaagtctg gttcattatc ggcatcctga aatagcacgt 300
15 taaagagaga ggctggcgcg agcgcccgtt taattcgcct gaccggccag tagcagcccg 360
   ccatagtgcg acaaggette cgtgataage tgcgggatet caaagtecag cgatgagecg 480
   cccaccagca ccacaaaggc gatatcgcga atggaaccgc cgggtgagac ctggcgcagc 540
   gegegeagge agttggtgae aaacaettte tetttegeet geeggegeae gagaegaatt 600
20 ttttccagcg ggctggcgtt atcgatcggc accagttcgc cctccttgat gtacaccact 660
   ttggcgaaca ccgccgggct gagggcttcc cgaaagaact ccaccgcgcc attctcgtga 720
   cgaatactga acaggettte caetttggce agegggtatt tttttatege tteegeeage 780
   gaaagateet egaggeeeag eteggtttta ateaacagge tgaecatatt eeeegeeeeg 840
   gegagatgga cegeegttat etgeceetee gegttgaega tegeegeate egtegageeg 900
25 gegeegaggt egaggatege eageggegee geacageegg gagtggttaa egeeeeggeg 960
   atggccatgt tggcctccac gccgcccacc accacctcgg tctgcagtcg ggcgctcagt 1020
   tegegggega taacetgeat ttgeagaega teegetttea ceategeege cateeegaeg 1080
   gcatteteca tggcgcacte geeggeeate eegeeetgca eettgegegg aataaaegta 1140
   tecacegoca geagateetg gatgtatate gegeteatet catggeeggt cagggaegee 1200
30\, attacettge geaceegete aageatgeeg eeggegtggg tgeeeggtte geegeggatg 1260 \,
   tegegtaceg gagegeagge geteategee tgeatgatgg etteegegee eteggegaca 1320
   teggeetete egeggegett ttegeegeta atgtagaggt tgeeegeegg gateaecege 1380
```

gactgcacat ccccctgcgg ggtcttgagc accaccgcgg aacggttgcc aatcagggcg 1440

#### D983D751.091002 PCT/US QQ/23878

```
cgggcgatgg ggacgatggc ctgggtctct tccgggctta gcccgaagaa ggtggcgatc 1500
   ccgtagggat tcgacaggat ccgcaccacc tggcccggcg cggccacttc caccgccgcc 1560
   attaccccct cggggacctg ctccagcagc gtcacttcat ccaccaccgg cagggtttta 1620
   cgcaggcggt tgttcaccag cacgccgtcg tcctttttga ggatcgccgc caccacgttg 1680
 5 atececeggt egagegeete attgageeae cacaeggegt caaggaaate gaeggegteg 1740
   tcaatcagta cgatccaccc ctcggcatac tgcgccgccg gcagcgtcgc cagccgcccg 1800
   agggcgatag tcgtccccac gccaacgccc accccgcccg gcgtctgcgg gttatgaccg 1860
   atcatggtcg attcggtgat aatggtctcg gtgatggtct ccatcgccac atcgccaatc 1920
   accggcgcgg cttcgttaag atagatgcga gagacatcgc tcatcgacca cggtgttttc 1980
10 gccagggcct gctccagcgc ggcgagggtc ccggcgatat tgtcccgcgt ccctttcatg 2040
   cccgtcgtcg cgacgatccc gctggcaaca aacgccctcg cctgcgggta gtcggacgcc 2100
   agegecacet eggtggtgge gttgeegata teaateeegg etattaaegg catgetgace 2160
   teegettage tteetttaeg eagettatge egetgetgat acaetteege egacteeegg 2220
   acaaaggcgg cattcactgt cgcatgccag gtgtgctcca gctcgtcggc gatcgccagc 2280
15 ageteegeet gegaggageg gaacgggege agegegttat agatageeag aatgegeteg 2340
   teaggaatgg egataagete egeegegegg eggaaattge gegeeaeege atggegetge 2400
   atetgetegg caatetgege etggtaetea agggtetgge gggagateeg cacateetge 2460
   gggcccacct cgccagagag caccttctcg agggtaatat cggtcaatgg tttgccggta 2520
   ggcgtcagga tatgctccgg gcagcgggtg gctaacggat aatcctgcac gcgcatggtt 2580
20 ttotogotca tggtcactco ottactaagt cgatgtgcag ggtgacgggc tcggcgtcct 2640
   gcaccacatg tttggtctct ttgatatgaa atagcgcggc tttggccata aatttcggcc 2700
   gcaccatctg atcgttcacc accggcaccg gcgaaggtga ctctttgcgc gcatagcgcg 2760
   cagcgttttt gccaatctgc cggtaggtct ccagcgtcag cagcggcgcc tgggagaaca 2820
   getecaggtt getgagegge ageagatege getgatggat gaeegtggte eeettegaet 2880
25 ggataccgat gccgatcccc gagccgctca ggttggccgc atcccaggcc ataaaggaga 2940
   cgtcggacgt gegcagaatg cgcaccaccc gggcgtgaag cccctcttct tccacccgg 3000
   caatcagete tittgaggate gegecatggg geatategat cagagtgtga tgetggtgtt 3060
   tategaagge agggeegaeg eegateaeea etteategge gegtteateg geagaageta 3120
   ccccgccctc gcgggttttc agggtaaaag agggctgaat ttgggttgtc tgttgcacag 3180
30 gaataccgcc ttattcaatg gtgtcgggct gaaccacgcc cggaatattt ttgatctccg 3240
   cccagcgttc ggcagagatg cgatagccgg tgcccggccc ctgatagtca ttgatgtcgt 3300
   tgaccgcact caccacctcg aactgccgat cgagaatggc cgaggtctqc aggtaatcgc 3360
   cggtgacccg ctggcgcagc atattgagaa tattgctggc gatatcctca aagccgctgc 3420
   ggctcagcgc gccgacaata tcgaggccgg tgatgttgcg cttcatcatc tcttccaccg 3480
35 cactcagate etecaceaeg ttaegeggeg geatetegtt getgeegtge gegtaggtgg 3540
   eggeeteeae etectegteg gegattggeg geageeceag etegeggaaa accqeetqqa 3600
   tegecegege egetttetgg egaatggeaa tggttteege eteggteaee ggaegeagge 3660
```

### ogazozsi ogiooz potzus odzzaszs

```
cgccgtcaac catcaggtca cgctgcagga tgttgtaatc atcaaaatct tccgcatcga 3720
   agttegagee ggegaacatg ttgtegtagt teggeacege getgtageeg gagaaaataa 3780
   agteggtgee eggeageate tgeateaggg tgegegggt geggegaata teegagtggg 3840
   agaaagtetg gtegttggeg gacgecaett egaggtegag catagaggeg atcaggtttt 3900
 5 cegecageae egecegaatg ceegaeggea caqegeeggt catgeegata cageteaceg 3960
   egeegttttg eagteeetga acceeggege etttagtaat gaagatgeag egegattega 4020
   ggtagagcat cgacttgctc tccgaatagc ccatcagcgc ttcggatccg gtgccggagg 4080
   tgtagegeat tttcaaceeg egggaggegt aggeegagge gaggaacgee tttgaceaeg 4140
   gegtateate geegteggta aataeegett eggtgeegta gaeegaeace gteteggegt 4200
10 agetggttaa gecaegeatg eecageteea geteggtgge etetteeace gageaetgeg 4260
   tcaacacgcc ggggcggccg cactgcgaac cgaccaacag cgccagggcg ttaaacggcg 4320
   cgtagcgcgc gataccgacc gtggtctcct gttctgagaa gccgcggatc ccggcctcgg 4380
   cggcgtcagc ggcaatctgc accggattat ctttgagatt ggtgacgtgg cactggttgg 4440
   agggggtecg gegggeaege atettetgea gegeeateat catetecace aegtteatet 4500
15 gegecateae etegaceget ttggeeggeg tgatggeggt agtgatggea atgateteet 4560
   eccggetgae gtgaatatee accageatae gggetattte cacegeetee aggegeattg 4620
   cctgctctgt gcgctcaacg ttgatcgcgt aatcggcgat aaatcggtcg atcatgtcaa 4680
   actggteeeg gegtttgeeg teeagttega egateagace gttgteeact tttactgaag 4740
   agaccgggtc aaaggggctg tccatggcga tcagccctc ttcaggccac tcgccaatca 4800
20 geoogtootg attgaogggg ogotgggooa gtaotgoaaa togttttgat ottttcattg 4860
   ttcatcggct caaaaggtga aatccgcaga cggtagcgaa tacgccgggc cagcgtcgtt 4920
   qccqcccqqc cattaccqqc aataqcqqaa ctttaaatga gccagtggtg aaaaaaataa 4980
   atttaatttc gtttcaattt ggcacacgaa atctaccgac agtttcacta tgaaacttta 5040
   ctccggcggc aaaaataaaa aatgtgatcg cccgcaatga tataaatcaa ttaataaaaa 5100
25 acgcccttaa ttacgttttt ccgacgctat tttaacccta ttgactaaat catggcgggc 5160
   gacaaaataa cgctgacaaa aataaagcaa gccaaccgaa tggtaatagt tttttactat 5220
   cgcccctac tgactattcg cgccagcgtt atcctggtgc gggagaga
                                                                     5268
```

<210> 10

<211> 607

30 <212> PRT

<213> Klebsiella pneumoniae

<400> 10

Met Pro Leu Ile Ala Gly Ile Asp Ile Gly Asn Ala Thr Thr Glu Val 1 5 10 15

### O9830751.091D02 PCT/US OO/23878

Ala	Leu	Ala	Ser	Asp	Tyr	Pro	Gln	Ala	Arg	Ala	Phe	Val	Ala	Ser	Gly
			20					25					30		

- Ile Val Ala Thr Thr Gly Met Lys Gly Thr Arg Asp Asn Ile Ala Gly
  35 40 45
- 5 Thr Leu Ala Ala Leu Glu Gln Ala Leu Ala Lys Thr Pro Trp Ser Met 50 55 60
  - Ser Asp Val Ser Arg Ile Tyr Leu Asn Glu Ala Ala Pro Val Ile Gly
    65 70 75 80
- Asp Val Ala Met Glu Thr Ile Thr Glu Thr Ile Ile Thr Glu Ser Thr 10 85 90 95
  - Met Ile Gly His Asn Pro Gln Thr Pro Gly Gly Val Gly Val Gly Val
    100 105 110
  - Gly Thr Thr Ile Ala Leu Gly Arg Leu Ala Thr Leu Pro Ala Ala Gln
    115 120 125
- 15 Tyr Ala Glu Gly Trp Ile Val Leu Ile Asp Asp Ala Val Asp Phe Leu
  130 135 140
  - Asp Ala Val Trp Trp Leu Asn Glu Ala Leu Asp Arg Gly Ile Asn Val 145 150 155 160
- Val Ala Ala Ile Leu Lys Lys Asp Asp Gly Val Leu Val Asn Asn Arg 20
  - Leu Arg Lys Thr Leu Pro Val Val Asp Glu Val Thr Leu Leu Glu Gln
    180 185 190
  - Val Pro Glu Gly Val Met Ala Ala Val Glu Val Ala Ala Pro Gly Gln
    195 200 205

## CSBSOZSI.GSIODE PCT/US OG/828

Val Val Arg Ile Leu Ser Asn Pro Tyr Gly Ile Ala Thr Phe Phe Gly
210 220

Leu Ser Pro Glu Glu Thr Gln Ala Ile Val Pro Ile Ala Arg Ala Leu 225 230 235 235

5 Ile Gly Asn Arg Ser Ala Val Val Leu Lys Thr Pro Gln Gly Asp Val 245 250 255

Gln Ser Arg Val Ile Pro Ala Gly Asn Leu Tyr Ile Ser Gly Glu Lys 260 265 270

Arg Arg Gly Glu Ala Asp Val Ala Glu Gly Ala Glu Ala Ile Met Gln 10 275 280 285

Ala Met Ser Ala Cys Ala Pro Val Arg Asp Ile Arg Gly Glu Pro Gly
290 295 300

Thr His Ala Gly Gly Met Leu Glu Arg Val Arg Lys Val Met Ala Ser 305 310 315 320

15 Leu Thr Gly His Glu Met Ser Ala Ile Tyr Ile Gln Asp Leu Leu Ala 325 330 335

Val Asp Thr Phe Ile Pro Arg Lys Val Gln Gly Gly Met Ala Gly Glu
340 345 350

Cys Ala Met Glu Asn Ala Val Gly Met Ala Ala Met Val Lys Ala Asp

365

Arg Leu Gln Met Gln Val Ile Ala Arg Glu Leu Ser Ala Arg Leu Gln 370 375 380

Thr Glu Val Val Gly Gly Val Glu Ala Asn Met Ala Ile Ala Gly 385 390 395 400

#### OPRIOTELLOPLOPE PCT/US DO/23878

Ala	Leu	Thr	Thr	Pro	Gly	Cys	Ala	Ala	Pro	Leu	Ala	Ile	Leu	Asp	Leu
				405					410					415	
Glv	Ala	Glv	Ser	Thr	Δan	Δla	בומ	TlΔ	Val.	Δen	<b>Δ</b> 1 =	Glu	Glv	Gln	Tla

- 420 425 430
- 5 Thr Ala Val His Leu Ala Gly Ala Gly Asn Met Val Ser Leu Leu Ile 435 440 445
  - Lys Thr Glu Leu Gly Leu Glu Asp Leu Ser Leu Ala Glu Ala Ile Lys
    450 455 460
- Lys Tyr Pro Leu Ala Lys Val Glu Ser Leu Phe Ser Ile Arg His Glu 10 465 470 475 480
  - Asn Gly Ala Val Glu Phe Phe Arg Glu Ala Leu Ser Pro Ala Val Phe
    485 490 495
  - Ala Lys Val Val Tyr Ile Lys Glu Gly Glu Leu Val Pro Ile Asp Asn 500 505 510
- 15 Ala Ser Pro Leu Glu Lys Ile Arg Leu Val Arg Arg Gln Ala Lys Glu
  515 520 525
  - Lys Val Phe Val Thr Asn Cys Leu Arg Ala Leu Arg Gln Val Ser Pro 530 535 540
- Gly Gly Ser Ile Arg Asp Ile Ala Phe Val Val Leu Val Gly Gly Ser 20 545 550 555 560
  - Ser Leu Asp Phe Glu Ile Pro Gln Leu Ile Thr Glu Ala Leu Ser His 565 570 575
  - Tyr Gly Val Val Ala Gly Gln Gly Asn Ile Arg Gly Thr Glu Gly Pro
    580 585 590

# persorsi.coloce pervus covesere

Arg Asn Ala Val Ala Thr Gly Leu Leu Leu Ala Gly Gln Ala Asn 595 600 605

<210> 11

<211> 141

5 <212> PRT

<213> Klebsiella pneumoniae

<400> 11

Met Ser Glu Lys Thr Met Arg Val Gln Asp Tyr Pro Leu Ala Thr Arg

1 5 10 15

10 Cys Pro Glu His Ile Leu Thr Pro Thr Gly Lys Pro Leu Thr Asp Ile
20 25 30

Thr Leu Glu Lys Val Leu Ser Gly Glu Val Gly Pro Gln Asp Val Arg
35 40 45

Ile Ser Arg Gln Thr Leu Glu Tyr Gln Ala Gln Ile Ala Glu Gln Met
50 55 60

Gln Arg His Ala Val Ala Arg Asn Phe Arg Arg Ala Ala Glu Leu Ile 65 70 75 80

Ala Ile Pro Asp Glu Arg Ile Leu Ala Ile Tyr Asn Ala Leu Arg Pro 85 90 95

20 Phe Arg Ser Ser Gln Ala Glu Leu Leu Ala Ile Ala Asp Glu Leu Glu
100 105 110

His Thr Trp His Ala Thr Val Asn Ala Ala Phe Val Arg Glu Ser Ala 115 120 125

Glu Val Tyr Gln Gln Arg His Lys Leu Arg Lys Gly Ser

130 135 140

#### DBSSTFB1 OF1CDZ PCT/US OG/23878

30

80

60

75

<210> 12 <211> 146 <212> PRT <213> Klebsiella pneumoniae 5 <400> 12 Met Pro His Gly Ala Ile Leu Lys Glu Leu Ile Ala Gly Val Glu Glu 5 10 Glu Gly Leu His Ala Arg Val Val Arg Ile Leu Arg Thr Ser Asp Val 20 25 10 Ser Phe Met Ala Trp Asp Ala Ala Asn Leu Ser Gly Ser Gly Ile Gly 35 40 Ile Gly Ile Gln Ser Lys Gly Thr Thr Val Ile His Gln Arg Asp Leu 50 55 15 65 70

Leu Pro Leu Ser Asn Leu Glu Leu Phe Ser Gln Ala Pro Leu Leu Thr

Leu Glu Thr Tyr Arg Gln Ile Gly Lys Asn Ala Ala Arg Tyr Ala Arg 85 90 95

Lys Glu Ser Pro Ser Pro Val Pro Val Val Asn Asp Gln Met Val Arg 100 105 110

20 Pro Lys Phe Met Ala Lys Ala Ala Leu Phe His Ile Lys Glu Thr Lys 115 120 125

His Val Val Gln Asp Ala Glu Pro Val Thr Leu His Ile Asp Leu Val 130 135 140

Arg Glu

25 145

#### O9830751.O91002 PCT/US OO/23878

<210> 13
<211> 555
<212> PRT
<213> Klebsiella pneumoniae

5 <400> 13

Met Lys Arg Ser Lys Arg Phe Ala Val Leu Ala Gln Arg Pro Val Asn

1 5 10 15

Gln Asp Gly Leu Ile Gly Glu Trp Pro Glu Glu Gly Leu Ile Ala Met
20 25 30

10 Asp Ser Pro Phe Asp Pro Val Ser Ser Val Lys Val Asp Asn Gly Leu 35 40 45

Ile Val Glu Leu Asp Gly Lys Arg Arg Asp Gln Phe Asp Met Ile Asp
50 55 60

Arg Phe Ile Ala Asp Tyr Ala Ile Asn Val Glu Arg Thr Glu Gln Ala 15 65 70 75 80

Met Arg Leu Glu Ala Val Glu Ile Ala Arg Met Leu Val Asp Ile His
85 90 95

Val Ser Arg Glu Glu Ile Ile Ala Ile Thr Thr Ala Ile Thr Pro Ala
100 105 110

20 Lys Ala Val Glu Val Met Ala Gln Met Asn Val Val Glu Met Met Met 115 120 125

Ala Leu Gln Lys Met Arg Ala Arg Arg Thr Pro Ser Asn Gln Cys His 130 135 140

## O9830751.091008 PCT/US OO/83878

Glu	Ala	Gly	Ile	Arg	Gly	Phe	Ser	Glu	Gln	Glu	Thr	Thr	Val	Gly	Ile
				165					170					175	

- Ala Arg Tyr Ala Pro Phe Asn Ala Leu Ala Leu Leu Val Gly Ser Gln 180 185 190
- 5 Cys Gly Arg Pro Gly Val Leu Thr Gln Cys Ser Val Glu Glu Ala Thr 195 200 205
  - Glu Leu Glu Leu Gly Met Arg Gly Leu Thr Ser Tyr Ala Glu Thr Val 210 215 220
- Ser Val Tyr Gly Thr Glu Ala Val Phe Thr Asp Gly Asp Asp Thr Pro 10 225 230 235 240
  - Trp Ser Lys Ala Phe Leu Ala Ser Ala Tyr Ala Ser Arg Gly Leu Lys
    245 250 255
  - Met Arg Tyr Thr Ser Gly Thr Gly Ser Glu Ala Leu Met Gly Tyr Ser 260 265 270
- 15 Glu Ser Lys Ser Met Leu Tyr Leu Glu Ser Arg Cys Ile Phe Ile Thr 275 280 285
  - Lys Gly Ala Gly Val Gln Gly Leu Gln Asn Gly Ala Val Ser Cys Ile 290 295 300
- Gly Met Thr Gly Ala Val Pro Ser Gly Ile Arg Ala Val Leu Ala Glu 20 305 310 315 320
  - Asn Leu Ile Ala Ser Met Leu Asp Leu Glu Val Ala Ser Ala Asn Asp 325 330 335
  - Gln Thr Phe Ser His Ser Asp Ile Arg Arg Thr Ala Arg Thr Leu Met 340 345 350

#### OPRIOZSI. OPICOR PCT/US OO/RIBZE

- Gln Met Leu Pro Gly Thr Asp Phe Ile Phe Ser Gly Tyr Ser Ala Val 355 360 365
- Pro Asn Tyr Asp Asn Met Phe Ala Gly Ser Asn Phe Asp Ala Glu Asp 370 375 380
- 5 Phe Asp Asp Tyr Asn Ile Leu Gln Arg Asp Leu Met Val Asp Gly Gly 385 390 395 400
  - Leu Arg Pro Val Thr Glu Ala Glu Thr Ile Ala Ile Arg Gln Lys Ala 405 410 415
- Ala Arg Ala Ile Gln Ala Val Phe Arg Glu Leu Gly Leu Pro Pro Ile

  10 420 425 430
  - Ala Asp Glu Glu Val Glu Ala Ala Thr Tyr Ala His Gly Ser Asn Glu
    435 440 445
  - Met Pro Pro Arg Asn Val Val Glu Asp Leu Ser Ala Val Glu Glu Met 450 455 460
- 15 Met Lys Arg Asn Ile Thr Gly Leu Asp Ile Val Gly Ala Leu Ser Arg
  465 470 475 480
  - Ser Gly Phe Glu Asp Ile Ala Ser Asn Ile Leu Asn Met Leu Arg Gln 485 490 495
- Arg Val Thr Gly Asp Tyr Leu Gln Thr Ser Ala Ile Leu Asp Arg Gln 20 500 505 510
  - Phe Glu Val Val Ser Ala Val Asn Asp Ile Asn Asp Tyr Gln Gly Pro
    515 520 525
  - Gly Thr Gly Tyr Arg Ile Ser Ala Glu Arg Trp Ala Glu Ile Lys Asn 530 535 540

## OPEROVELLOPATORE PCT/US OO/83878

545 550 555 <210> 14 <211> 56 5 <212> DNA <213> Escherichia coli <400> 14 gctaccatgg cttaaccggt accaaggaga tatcatatgt cagtacccgt tcaaca 56 <210> 15 10 <211> 59 <212> DNA <213> Escherichia coli <400> 15 gcctcgagtc tagagccgtc gacgggaatt cgagctctta agactgtaaa taaaccacc 59 15 <210> 16 <211> 46 <212> DNA <213> Saccharomyces cerevisiae <400> 16 20 gcggtaccaa ggaggtatca tatgttcagt agatctacgc tctgct 46 <210> 17 <211> 33 <212> DNA <213> Saccharomyces cerevisiae

Ile Pro Gly Val Val Gln Pro Asp Thr Ile Glu

### T9830751.091002 PCT/US OO/23878

	<400> 17	
	gcgaattcga gctcttactc gtccaatttg gcac	34
	<210> 18	
	<211> 35	
5	<212> DNA	
	<213> Homo sapiens	
	<400> 18	
	geggtaceaa ggaggtatea tatgteagee geege	35
	<210> 19	
10	<211> 39	
	<212> DNA	
	<213> Homo sapiens	
	<400> 19	
	gcgaattcga gctcttatga gttcttctga ggcactttg	39
15	<210> 20	
13	<210> 20 <211> 44	
	<211> 44 <212> DNA	
	<213> Escherichia coli	
	22137 Escherichia Coll	
	<400> 20	
20	gcggtaccaa ggaggtatca tatgaccaat aatccccctt cagc	
•	2 22	44
	<210> 21	
	<211> 38	
	<212> DNA	

<213> Escherichia coli

## OSBSOYSI.OSIODE PCT/US OO/83878

<400> 21			
gcgaattcga	gctcttagaa	cagccccaac	ggtttatc

38

<210> 22

<211> 20

5 <212> DNA

<213> Escherichia coli

<400> 22

atcccgccgt taaccaccat

20

<210> 23

10 <211> 34

<212> DNA

<213> Escherichia coli

<400> 23

gcggtaccat tgttatccgc tcacaattcc acac

34

15 QBMAD\223318

#### CLAIM OR CLAIMS

#### I/WE CLAIM:

- 1. A method for producing 3-hydroxypropionic acid comprising the steps of providing in a fermenter a recombinant microorganism which expresses genes
- 5 for non-native enzymes which are capable of catalyzing the production of 3hydroxypropionic acid from glycerol;

providing a source of glycerol or glucose for the recombinant microorganism, and

fermenting the microorganism under conditions which result in the accumulation of 3-hydroxypropionic acid.

A method for producing 3-hydroxypropionic acid comprising the steps of
providing in a fermenter a recombinant microorganism which carries genetic
constructions for the expression of a glycerol dehydratase and an aldehyde
dehydrogenase which are capable of catalyzing the production of 3-hydroxypropionic
 acid from glycerol;

providing a source of glycerol or glucose for the recombinant microorganism, and

fermenting the microorganism under conditions which result in the accumulation of 3-hydroxypropionic acid.

- 3. A method for producing 3-hydroxypropionic acid comprising the steps of providing in a fermenter a recombinant microorganism which carries a genetic construct which expresses the *dhaB* gene from *Klebsiella pneumoniae* and a gene for an aldehyde dehydrogenase, which are capable of catalyzing the production of 3-
- 5 hydroxypropionic acid from glycerol;

providing a source of glycerol or glucose for the recombinant microorganism, and

fermenting the microorganism under conditions which result in the accumulation of 3-hydroxypropionic acid.

- 4. The method of claim 3 wherein the gene for the aldehyde dehydrogenase is selected from the group consisting of ALDH4, ALD2, aldA and aldB.
  - 5. The method of claim 3 wherein the aldehyde dehydrogenase is selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6 and SEQ ID NO:8.
- 6. A recombinant *E. coli* host comprising in its inheritable genetic materials foreign genes encoding a glycerol dehydratase and an aldehyde dehydrogenase, such that the host is capable of producing 3-hydroxypropionic acid from glycerol.
  - 7. A recombinant *E. coli* host comprising in its inheritable genetic materials the *dhaB* gene from *Klebsiella pheumoniae* and the *ald4* gene from *Saccharomycetes* cervisiae, such that the host is capable of producing 3-hydroxypropionic from glycerol.

- 8. A bacterial host comprising in its inheritable genetic material a genetic construction encoding for the expression of a glycerol dehydratase enzyme and an aldehyde dehydrogenase enzyme, such that the bacterial host is capable of converting glycerol to 3-hydroxypropionic acid.
- 5 9. The bacterial host of claim 8 wherein the glycerol dehydratase from *Klebsiella pneumoniae*.
  - 10. The bacterial host of claim 8 wherein the gene encoding the glycerol dehydratase is the *dhaB* gene from *Klebsiella pneumoniae*.
- 11. The bacterial host of claim 8 wherein the aldehyde dehydrogenase is
  selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6 and
  SEQ ID NO:8.
  - 12. The bacterial host of claim 8 wherein the gene for the aldehyde dehydrogenase is selected from the group consisting of ALDH4, ALD2, aldA and aldB.

#### ABSTRACT OF THE DISCLOSURE

The production of 3-hydroxypropionic acid (3-HP) from glycerol in a bacterial host is described. 3-HP is a useful feedstock for the production of polymeric materials. The genetic engineering of a bacterial host with two enzymes is sufficient to enable production of 3-HP. One enzyme is a glycerol dehydratase and the other is an aldehyde dehydrogenase.

QBMAD\223318

PTO/SB/01 (6-95)

Please type a plus sign (+	-) inside this box ±			igh 9/30/98. OMB 0651-003 DEPARTMENT OF COMMERC									
0010/PTO U.S Rev. 6/95 Pate	; . Department of Commerce ent and Trademark Office	Attorney Docket Nu	mber 960296	5.96617									
		First Named Invento	r Patrick	F. Suthers									
DECLARA	TION FOR		COMPLETE IF KN	IOWN									
UTILITY (	OR DESIGN	Application Number	09/830,7	751									
PATENT A	PPLICATION	Filing Date	08/30/19	999									
Declaration	OR Declaration	Group Art Unit											
Submitted with Initial Filing	X Submitted after Initial Filing	Examiner Name											
I believe that I am the originames are listed below) o	e address and citizenship are a ginal, first and sole inventor (i of the subject matter which is ON OF 3-HYDROXYPF	f only one name is listed claimed and for which a	below) or an original patent is sought on										
I hereby state that I have review referred to above. I acknowledge the duty to discill I hereby claim foreign priorit inventor's certificate or \$36 America, listed below and h	ved and understand the contents of ose information which is material to try benefits under Title 35, Unite 15(a) of any PCT international at	amended on (MM/DD/YYYY)  the above identified specificati patentability as defined in Title  ad States Code §119(a)-(d) pplication which designate pecking the box any foreign	on, including the claims, as 37, Code of Federal Region 1 or \$365(b) of any for did at least one country										
Prior Foreign Application Number(s)	Country	Foreign Filing I	Date Priority	Certified Copy Attached? YES NO									
Additional foreign applic	Number(s)  Country  (MM/DD/YYYY)  Not Claimed  YES  NO  O  O  O  O  O  O  O  O  O  O  O  O												
	under Title 35, United States C			plication(s) listed below.									
Application Number 60/151,440		e (MM/DD/YYYY)	Additional numbers as	provisional application re listed on a supplemental et attached hereto.									

Burden Hour Statement: This form is estimated to take .4 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, Washington, DC 20231. QBMAD\337264

Please type a plus sign (+) inside this box

		DEC	LAR	AT	ON	<u> </u>							P.	age 2		
designatir prior Uni acknowle	claim benefit under Title ng the United States of A ited States application or dge the duty to disclose i between the filing date of	merica, liste PCT internation v	d below tional ap which is	and, in pplicatio materia	sofar as in the I to par	s the si e man tentab	ubject ner pi ility a	t matte rovideo s defin	r of each I in the fir ed in Title	of the cl st paragi 37. Co	aims of raph of de of Fe	this appli Title 35, deral Re	cation i United gulation	is not disclo I States Co	osed in de § 1	the 12, I
U.S. I	Parent Application Number			Parer umber	nt 				nt Filing 1/DD/YY			Pare		tent Num olicable)	ber	
		PCT	/US00/	/23878									-		-	
A	dditional U.S. or PC	T internati	ional a	pplica	tion n	umbe	ers_a	re list	ed on a	supple	menta	l priorit	y shee	et attach	ed he	ereto
	ned inventor, I hereby a Il applications based the														and	
L_J	L	arles & Brad	dy LLP							C	ustom umber	er orla	abe(	26734	<u>为</u>	
	or st attorney(s) and/or	agent(s)	name	and re	gistra	tion i	numl	ber be	low							
	Name				istrati umbe					Nam	ne				jistra1 lumbe	
														<u></u> _		
	Additional attorney	(s) and/or	agent	s name	ed on	a su	pler	nenta	I priority	/ sheet	attac	ned her	eto			
Please dir	ect all corresponden	ce to	] Ci	ustome umber	orl	label					OR			orrespond s below	dence	е
Name	Name Nicholas J. Seay Address Quarles & Brady LLP															
Address         P O Box 2113           City         Madison         State         WI         Zip         53701-2113																
City         Madison         State         WJ         Zip         53701-2113           Country         USA         Telephone         (608)251-5000         Fax         (608)251-9166																
Country	Country USA Telephone (608)251-5000 Fax (608)251-9166															
informa willful fa 18 of th	declare that all stat tion and belief are ba alse statements and ne United States Coo ssuing thereon.	elieved to the like s	be tru o mad	ie; and e are p	furth Junish	er th	at th by fi	iese s ine or	tatemer impriso	its wer nment,	e mad , or bo	e with th, und	the kr ler Sed	nowledge ction 100	that 11 of	Title
Name of	Sole or First Inven	tor:						-	A petitio	n has t	oeen fi	led for	this u	nsigned i	nven	tor
Given	Patrick		- [	Middle	F.		Fami	ily	Suthe	ers				Suffix		
Inventor's Signature		J. 0	Lut	there				W	I			7	Date	2002 -	<i>0</i> 9.	-03
Residenc	ce: Madison			·		Sta	ate	WI	Countr	y U	s		Citi	zenship	U	s
Post Offi	ce 806 Olin	Ave., A	Apt. 1	!												
Post Offic	ce															
City	Madison		State	wı	Zip 5	537	15		Country	us		. <u> </u>		Applic Autho	ant	
x x	Additional inventor	s are bein	g nam	ed on	supple	emen	tal s	heet(	s) attacl	ned he	eto					

10

Please type a plus sign (+) inside this box

	e	DECLARA	OITA	N				Al	DDITIONA Supplen	<b>L INVEN</b> nental Sh	TOR(S) eet	
Name o	f Add	itional Joint Inventor	, if any:					A petit	tion has been f	iled for this u	unsigned in	nventor
Given	Do	uglas		Middle	C.	Eamil	у	Camero	חי		Suffix	
Inventor's		Ugh	C	?. <u>C</u>	m			MN		Date	8/2	6/02
Residenc	e:	N. Plymouth				State	MN	Country	US	Citiz	enship	US
Post Offic	ce	3590 Ranier La	ne /	ν.								
Post Offic	ce											
City	N. PI	lymouth	State	MN Z	Zip 5	5447		Country	US		Appli Autho	cant prity
Name of	f Addi	tional Joint Inventor	if any:	Ĭ.				A petit	ion has been f	iled for this u	ınsigned ir	ventor
Given				Middle Initial		Family Name					Suffix	
Inventor's										Date		
Residence	e:					State		Country		Citi	zenship	
Post Offic	е											
Post Offic	e e	-								-		
City			State	z	ip			Country			Applie Autho	eant prity
Name of	Addit	ional Joint Inventor,	if any:					A peti invento	ition has bee	n filed for t	his unsig	ned
Given				Middle	е	Fam	ily				Suffix	
Inventor's		,								Date		
Residence	e:					State		Country		Citize	enship	
Post Offic	:e					·						
Post Offic	e							'		, ,		
City			State	z	ip		c	Country			Applica Author	int
Name of	Additi	ional Joint Inventor,	if any:				T	A peti invento	tion has bee r_	n filed for t	his unsig	ned
Given				Middle		Family					Suffix	
Inventor's										Date		
Residence	e					State		Country		Citiz	zenship	
Post Offic	e e											
Post Offic	е											- <u>-</u> -
Citỳ			State	Zi	ip		_[c	Country			Applic Autho	ant rity
	Add	ditional inventors	are be	eing na	med	l on sup	ple	mental s	sheet(s) at	tached h	ereto	

Zõ