Machine Learning Embarcado

- Você usará o aprendizado de máquina para criar um sistema de reconhecimento de gestos que seja executado em um sistema embarcado.
- Essa é uma tarefa difícil de resolver usando programação baseada em regras, pois as pessoas não executam gestos exatamente da mesma maneira todas as vezes.
- Mas o aprendizado de máquina pode lidar com essas variações com facilidade.

- Você aprenderá a:
 - coletar dados de alta frequência de sensores reais,
 - usar o processamento de sinais para limpar os dados,
 - a criar um classificador de rede neural
 - implantar seu modelo em um dispositivo.
- Ao final, você terá uma compreensão geral da aplicação do aprendizado de máquina em dispositivos embarcados.

Entre em uma plataforma de inteligência artificial na nuvem

Utilizaremos o Edge Impulse (conta gratuita) _____

Conecte o seu sistema embarcado

- Você pode utilizar qualquer smartphone com um navegador.
- Você poderá obter amostras de dados brutos (do acelerômetro, do microfone e da câmera), criar modelos e implantar modelos de aprendizado de máquina diretamente do estúdio.
- Seu telefone se comporta como qualquer outro dispositivo, e os dados e modelos que você criar usando seu telefone celular também poderão ser implantados em outros dispositivos (sistemas embarcados).

Conecte o seu sistema embarcado

Lista dos seus projetos

Para conectar seu cel<u>ular ao Edge Impulse</u>, acesse seu projeto

Conecte o seu sistema embarcado

Vá para a página **Devices** (Dispositivos).

Em seguida, clique em *Connect a new device* (Conectar um novo

Conecte o seu sistema embarcado

Selecione Scan QR code to connect to your phone

Conecte o seu sistema embarcado

- Um código QR será exibido.
- Digitalize o código QR com a câmera do seu telefone.
 - alguns telefones reconhecerão automaticamente o código e oferecerão a abertura de uma janela do navegador

Conecte o seu sistema embarcado

A página que abre no celular registra o dispositivo diretamente no projeto.

Em seu telefone, você verá <u>uma mensagem</u> Connected (Conectado).

Mensagem em seu telefone indicando conexão bem sucedida

Conecte o seu sistema embarcado

- Pronto! Seu dispositivo agora está conectado.
- Se você retornar à página **Devices** (Dispositivos) no estúdio, seu telefone será exibido como conectado. Você pode alterar o nome do seu dispositivo clicando em no 3 pontos verticais.

Colete seus dados

- Com seu dispositivo conectado, podemos coletar alguns dados.
- No estúdio, vá para a guia Data acquisition (Aquisição de dados)

Colete seus dados

 Esse é o local onde todos os dados brutos são armazenados e, se o dispositivo estiver conectado à API de gerenciamento remoto, onde você pode começar a coletar novos dados.

Colete seus dados

- Em Collect data (Coletar dados):
 - selecione o seu dispositivo (*Device*)
 - defina o rótulo como updown (*Label*)
 - o comprimento da amostra como 10000 (**Sample Length**)
 - o sensor como acelerômetro (Accelerometer)
 - o a frequência como 62,5Hz.
- Você pode editar esses rótulos posteriormente, se necessário

Collect data

Device ①

telefone-do-fablo

Label

Sample length
(ms.)

updown

10000

Sensor

Frequency

62.5Hz

Start sampling

Tela de coleta de novos dados

Colete seus dados

 Depois de clicar em Start sampling (Iniciar amostragem), mova o seu telefone para cima e para baixo em um movimento contínuo.

Em cerca de doze segundos, o dispositivo deverá concluir a amostragem e

enviar o arquivo de volta ao *Edge Impulse*.

Tela de coleta de novos dados

Colete seus dados

- Você verá uma nova linha aparecer em "Dataset" (Conjunto de Dados).
- Ao clicar nela, você verá os dados brutos representados graficamente.
- Como o acelerômetro tem três eixos, você verá três linhas diferentes, uma para cada eixo.

Colete seus dados

É importante fazer **movimentos contínuos**, pois posteriormente dividiremos os dados em janelas menores.

Colete seus dados

 O aprendizado de máquina funciona melhor com muitos dados, portanto, uma única amostra não é suficiente. Agora é a hora de começar a criar seu próprio conjunto de dados.

Colete seus dados

- Por exemplo, use as quatro classes a seguir e registre cerca de 3 minutos de dados por classe:
 - idle apenas mantenha o telefone parado na sua mesa enquanto você registra os dados.
 - o snake mover o dispositivo sobre a mesa como uma cobra.
 - wave agitar o dispositivo da esquerda para a direita.
 - o updown mover o dispositivo para cima e para baixo.

Colete seus dados

- Certifique-se de realizar variações nos movimentos.
- Por exemplo, faça movimentos lentos e rápidos e varie a orientação do telefone.
 - Você não tem como saber como o usuário movimenta o dispositivo.

Colete seus dados (ou baixe um conjunto de dados pré-construído)

 Você pode experimentar importar conjuntos de dados disponibilizados pela comunidade de desenvolvedores como, por exemplo, esse disponível pelo

QR code abaixo:

QR code para conjunto de dados pré-construído

Colete seus dados (ou baixe um conjunto de dados pré-construído)

Nesse caso, utilize a opção Upload Data(Transfira dados)

Construa o seu fluxo de dados(pipeline)

 Com o conjunto de treinamento pronto, você pode desenvolver seu pipeline de dados.

Construa o seu fluxo de dados(pipeline)

- No Edge Impulse o pipeline é chamado de impulse e ele:
 - recebe os dados brutos,
 - o divide-os em janelas menores,
 - usa blocos de processamento de sinais para extrair características
 - usa um bloco de aprendizado para classificar dados reais da sua tarefa.

Construa o seu fluxo de dados(pipeline)

 Os blocos de processamento de sinal sempre retornam os mesmos valores para a mesma entrada e são usados para facilitar o processamento de dados

brutos

Construa o seu fluxo de dados(pipeline)

Os blocos de aprendizado aprendem com experiências anteriores.

Construa o seu fluxo de dados(pipeline)

- Para essa aula, usaremos o bloco de processamento de sinal Spectral analysis (Análise espectral).
- Esse bloco aplica um filtro, executa a análise espectral no sinal e extrai dados de frequência e potência espectral.

Pipeline de dados básico com um bloco de processamento e um bloco de aprendizado

ados ıídos

Construa o seu fluxo de dados(pipeline)

 Em seguida, usaremos um bloco de aprendizado *Classification*, que usa essas características espectrais e aprende a distinguir entre as quatro classes (idle, snake, wave, updown).

Construa o seu fluxo de dados(pipeline)

• Depois de incluir os blocos em Save impulse (Salvar impulso).

Configure o bloco de análise espectral

• Para configurar seu bloco de processamento de sinal, clique em *Spectral*

Configure o bloco de análise espectral

 Os dados brutos estão na parte superior da tela (é possível selecionar outros arquivos por meio do menu suspenso)

Configure o bloco de análise espectral

Os gráficos dos resultados do processamento de sinal estão à direita.

Área de características espectrais

- Para o bloco de características espectrais, você verá os seguintes gráficos:
 - Filter Response (Resposta do filtro) Se você tiver escolhido um filtro (com ordem diferente de zero), isso mostrará a resposta entre as frequências. Ou seja, ele mostrará o quanto cada frequência será atenuada.

- Para o bloco de características espectrais, você verá os seguintes gráficos:
 - After filter(Após o filtro) o sinal após a aplicação do filtro. Isso removerá o ruído.

- Para o bloco de características espectrais, você verá os seguintes gráficos:
 - Spectral power(Potência espectral) as frequências em que o sinal está se repetindo (por exemplo, fazer um movimento de onda por segundo mostrará um pico em 1 Hz).

- Um bom bloco de processamento de sinal produzirá resultados semelhantes para dados semelhantes.
- Se você mover a janela deslizante (no gráfico de dados brutos), os gráficos deverão permanecer semelhantes.
- Além disso, ao alternar para outro arquivo com o mesmo rótulo, você deveria ver gráficos semelhantes, mesmo que a orientação do dispositivo seja diferente.

Configure o bloco de análise espectral

• Utilize os parâmetros da figura abaixo para ter um filtro passa-baixa:

Parâmetros para características espectrais

Configure o bloco de análise espectral

 Quando concluir a configuração de análise espectral clique em Save parameters (Salvar parâmetros).

Raw features (1) Label DSP result 2,4000, 6,1700, 6,5300, -0,2600, 5,6200, 6,8600, -3,8200, 3,1900, 8,6200, -4,4400, 2,2200, 10,9800, -4,4400, 2,2200 Filter response Parameters Filter Scale axes 3 Input decimation ratio 3 Parâmetros para After filter Type ① características Cut-off frequency @ espectrais Order (2) Analysis Type ① FFT length @ Spectral power (log) Take log of spectrum? @ Overlap FFT frames? (2) Improve low frequency resolution? 3

Configure o bloco de análise espectral

Em seguida clique em Generate features (Geração de recursos).

Configure o bloco de análise espectral

- Nessa tela, você poderá:
 - Dividir todos os dados brutos em janelas (com base no tamanho da janela e no aumento da janela).
 - Aplicar o bloco de características espectrais em todas essas janelas.
 - Calcular a importância de cada característica.
 Usaremos isso mais tarde para configurar a detecção de anomalias.

Geração de características

Configure o bloco de análise espectral

- Nessa tela, você poderá:
 - Dividir todos os dados brutos em janelas (com base no tamanho da janela e no aumento da janela).
 - Aplicar o bloco de características espectrais em todas essas janelas.
 - Calcular a importância de cada característica.
 Usaremos isso mais tarde para configurar a detecção de anomalias.

Geração de características

Configure o bloco de análise espectral

Clique em *Generate features*(Gerar recursos) para iniciar o processo.

Geração de características

Configure o bloco de análise espectral

- Em seguida, o Feature explorer (Explorador de características) será carregado.
- Esse é um gráfico de todos as características extraídas em relação a todas as janelas de dados geradas.
- Você pode usar esse gráfico para comparar o conjunto completo de dados.
- Uma boa regra geral é que, se você puder identificar visualmente alguns clusters (agrupamentos) por classes, o modelo de aprendizado de máquina também poderá fazer isso.

Configure a rede neural

- Com todos os dados processados, é hora de começar a treinar uma rede neural.
- As redes neurais são um conjunto de algoritmos, modelados livremente com base no cérebro humano, que são projetados para reconhecer padrões.

Configure a rede neural

• A rede que estamos treinando aqui tomará os dados de processamento de sinais como entrada e tentará mapeá-los para uma das quatro classes.

Configure a rede neural

Então, como uma rede neural sabe o que prever?

 Uma rede neural consiste em camadas de neurônios, todas interconectadas, e cada conexão tem um peso.

Configure a rede neural

 Ao definir a rede neural, todas essas conexões são inicializadas de forma aleatória e, portanto, a rede neural fará previsões aleatórias.

Configure a rede neural

 Durante o treinamento, pegamos todos os dados brutos, pedimos à rede que faça uma previsão e, em seguida, fazemos pequenas alterações nos pesos, dependendo do resultado (é por isso que rotular os dados brutos é importante).

Configure a rede neural

 Dessa forma, após várias iterações, a rede neural aprende e acaba se tornando muito melhor na previsão de novos dados.

Configure a rede neural

- Vamos configurar o classificador:
 - Clique em
 Classifier(Classificador)

Configuração da Rede Neural

Configure a rede neural

- Configure Number of training cycles (Número de ciclos de treino) para 1.
- Isso limitará o treinamento a uma única iteração.

Configuração da Rede Neural

Configure a rede neural

 Em seguida, clique em Start training(Iniciar treinamento).

Configuração da Rede Neural

Configure a rede neural

- Desempenho do treinamento após uma única iteração:
 - No canto superior direito, há um resumo da precisão da rede e, no meio, uma matriz de confusão.
 - Essa matriz mostra quando a rede tomou decisões corretas e incorretas.
 - Você vê que a classe *idle* é relativamente fácil de prever.
 - o Por que você acha que isso acontece?
- Agora, altere para 2 iterações e você verá o desempenho aumentar.

 Rede Neural após 1 iteração

Configure a rede neural

Por fim, altere *Number of training cycles* para 30 e deixe o treinamento terminar.

Configure a rede neural

- 100% de precisão!
 - Você pode acabar com 100% de acurácia depois de treinar por 100 ciclos de treinamento.
 - Isso não é necessariamente bom, pois pode ser um sinal de que a rede neural está sobre ajustada(overfitting) para o conjunto de testes específico e pode ter um desempenho ruim em novos dados.

Classificando novos dados

- Com base nas estatísticas da etapa anterior, sabemos que o modelo funciona com nossos dados de treinamento, mas qual seria o desempenho da rede em novos dados?
- Clique em *Live classification* (Classificação ao vivo) no menu para descobrir.
 Seu dispositivo deve (assim como na etapa 2) aparecer como on-line em "Classify new data" (Classificar novos dados). Defina o "Sample length" (Duração da amostra) como 10000 (10 segundos), clique em Start sampling (Iniciar amostragem) e comece a fazer movimentos. Depois disso, você receberá um relatório completo sobre o que a rede achou que você fez.

Dashboard Devices

Data acquisition

Impulse design

EON Tuner

Retrain model

Model testing

Classificando novos dados

- Com base nas estatísticas da etapa anterior, sabemos que o modelo funciona com nossos dados de treinamento, mas qual seria o desempenho da rede em novos dados?
- Para descobrir, clique em Live *classification*(Classificação ao vivo) no menu.

Classificação ao vivo

Reconhecimento de movimentos col

Classificando novos dados

• Resultado da classificação.

 Exibição das conclusões, dados brutos e as características processadas em uma visão geral.

- As redes neurais são ótimas, mas têm uma grande falha.
- Elas são péssimas para lidar com dados que nunca viram antes (como um novo gesto).
- As redes neurais não podem julgar isso, pois só conhecem os dados de treinamento. Se você der a ela algo diferente de tudo o que ela já viu antes, ela ainda assim classifica como uma das quatro classes.

Detecção de Anomalias

Vamos ver como isso funciona na prática?

• Vá para *Live classification* e registre alguns dados novos, mas agora agite o dispositivo de forma aleatória.

Dê uma olhada em como a rede se saiu.

Detecção de Anomalias

Então, como podemos fazer melhor?

Se você observar o *Feature Explorer*, será capaz de separar os dados

classificados dos dados de treinamento.

- Podemos usar isso a nosso favor treinando uma nova (segunda) rede que cria *clusters* em torno de dados que já vimos antes e compara os dados recebidos com esses *clusters*.
- Se a distância de um cluster for muito grande, você poderá sinalizar a amostra como uma anomalia e não confiar na rede neural.

Data acquisition

Impulse design

Classifier

EON Tuner

1 Live classification

Model testing

Versioning

Deployment

Documentation

Try Enterprise Free

GETTING STARTED

Forums

Create impulse

Spectral features

Anomaly detection

Detecção de Anomalias

Para adicionar esse bloco, vá para Create Impulse(Criar impulso), clique em Add learning block(Adicionar bloco de aprendizado) e selecione Anomaly Detection (K-Means). Em seguida, clique em Save impulse

Detecção de Anomalias

 Para configurar o modelo de clustering(agrupamento), clique em Anomaly detection (Detecção de anomalias) no menu.

- Aqui precisamos especificar:
 - O número de clusters.
 - Neste caso, use 32.

- Aqui precisamos especificar:
 - Os eixos que queremos selecionar durante o agrupamento:
 - Clique no botão Select suggested axes (Selecionar eixos sugeridos) para aproveitar o cálculo de importância de características automático.
 - Como alternativa, você pode usar também os eixos accX RMS, accY RMS e accZ RMS pois os dados se separam bem nesses eixos.

- Clique em Start Training para gerar os clusters.
- Você também pode carregar amostras de validação existentes no explorador de anomalias usando o menu suspenso.

Detecção de Anomalias

- Clusters conhecidos ficam em azul, e os dados aleatórios em laranja.
- Os dados aleatórios estão claramente fora de qualquer agrupamento conhecido e, portanto, pode ser marcado como uma anomalia.

Anomaly score

min: 1.5508, max: 2.3797, avg: 1.9695

Detecção de Anomalias

 Experimente algumas Live classification e observe os resultados.

Conclusões

- o objetivo da aula de hoje foi demonstrar com um exemplo prático que:
 - o processamento digital de sinais (para extrair características)
 - o as redes neurais (para classificação) e
 - os algoritmos de I (para detecção de anomalias) podem trabalhar juntos.