Harvard CS 121 and CSCI E-207 Lecture 14: The Church-Turing Thesis

Harry Lewis

October 21, 2010

• **Reading:** Sipser, §3.2, §3.3.

"Computability"

- Defined in terms of Turing machines
- Computable = recursive/decidable (sets, functions, etc.)
- In fact an abstract, universal notion
- Many other computational models yield exactly the same classes of computable sets and functions
- Power of a model = what is computable using the model (extensional equivalence)
- Not programming convenience, speed (for now...), etc.
- All translations between models are constructive

TM Extensions That Do Not Increase Its Power

• TMs with a 2-way infinite tape, unbounded to left and right

$$\cdot \overline{ \cdot \cdot \mid \Box \mid a \mid b \mid a \mid a \mid \cdots } \cdot$$

Unbounded tape to left as well as right

<u>Proof</u> that TMs with 2-way infinite tapes are no more powerful than the 1-way infinite tape variety.

"Simulation." Convert any 2-way infinite TM into an equivalent 1-way infinite TM "with a two-track tape."

Recall the Formal Definition of a TM:

A (deterministic) Turing Machine (TM) is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$, where:

- Q is a finite set of states, containing
 - the start state q_0
 - ullet the accept state q_{accept}
 - the reject state $q_{reject} \neq q_{accept}$
- ullet Σ is the input alphabet
- ullet Γ is the tape alphabet
 - Contains Σ
 - Contains "blank" symbol $\sqcup \in \Gamma \Sigma$
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ is the <u>transition function</u>.

Formalization of the Simulation of 2-way infinite tape TM

Formally, $\Gamma' = (\Gamma \times \Gamma) \cup \{\$\}$.

M' includes, for every state q of M, two states:

 $\langle q,1\rangle \sim$ "q, but we are working on upper track"

 $\langle q, 2 \rangle \sim$ "q, but we are working on lower track"

e.g. If
$$\delta_M(q, a_1) = (p, b, L)$$
 then $\delta_{M'}(\langle q, 1 \rangle, \langle a_1, a_2 \rangle) = (\langle p, 1 \rangle, \langle b, a_2 \rangle, R)$.

Also need transitions for:

- Lower track
- U-turn on hitting endmarker
- Formatting input into "2-tracks"

Describing Turing Machines

Formal Description

- 7-tuple or state diagram
- Most of the course so far

Implementation Description

- Prose description of tape contents, head movements
- This lecture, some of next lecture, ps5

High-Level Description

- Does not refer to specific computational model
- Starting next time!

More extensions

Adding multiple tapes does not increase power of TMs

(Convention: First tape used for I/O, like standard TM; Second tape is available for scratch work)

Harvard CS 121 & CSCI E-207 October 21,2010

Simulation of multiple tapes

- Simulate a k-tape TM by a one-tape TM whose tape is split (conceptually) into 2k tracks:
 - *k* tracks for tape symbols
 - k tracks for head position markers (one in each track)

\$	a	Ш	b	c	Ш	
			\uparrow			
	Ш	a	\overline{a}	b	a	
					\uparrow	

(Sipser does different simulation.)

Simulation steps

• To simulate <u>one move</u> of the *k*-tape TM:

Speed of the Simulation

- Note that the "equivalence" in ability to compute functions or decide languages does not mean comparable speed.
 - e.g. A standard TM can decide $L = \{w \# w : w \in \Sigma^*\}$ in time $\sim |w|^2$. But there is a <u>linear</u>-time 2-tape decider.
- Let $T_M: \Sigma^* \to \mathcal{N}$ measure the amount of time a decider M uses on an input. That is, $T_M(w)$ is the number of steps TM M takes to halt on input w.
- General fact about multitape to single-tape slowdown:

Theorem: If M is a multitape TM that takes time T(w) when run on input w, then there is a 1-tape machine M' and a constant c such that M' simulates M and takes at most $c T(w)^2$ steps on input w.

Nondeterministic TMs

- Like TMs, but $\delta: Q \times \Gamma \to P(Q \times \Gamma \times \{L, R\})$
- It mainly makes sense to think of NTMs as recognizers

 $L(M) = \{w : M \text{ has some accepting computation on input } w\}$

Example: NTM to recognize

 $\{w: w \text{ is the binary notation for a product of two integers } \geq 2\}$

Harvard CS 121 & CSCI E-207 October 21,2010

NTMs recognize the same languages as TMs

• Given a NTM M, we must construct a TM M' that determines, on input w, whether M has an accepting computation on input w.

- M' systematically tries
 - → all one-step computations
 - → all two-step computations
 - → all three-step computations

i

Harvard CS 121 & CSCI E-207 October 21,2010

Enumerating Computations by Dovetailing

- There is a bounded number of k-step computations, for each k.
 (because for each configuration there is only a constant number of "next" configurations in one step)
- Ultimately M' either:
 - ullet discovers an accepting computation of M, and accepts itself,
 - or searches forever, and does not halt.

Dovetailing Details

- Suppose that the maximum number of different transitions for a given (q, a) is b.
- Number those transitions $1, \ldots, b$ (or less)
- Any computation of k steps is determined by a sequence of k numbers $\leq b$ (the "nondeterministic choices").
- How M' works: 3 tapes

```
\#1 Original input to M \sqcup
```

#2 | Simulated tape of M

#3 | $1213 \sqcup \cdots$ Nondeterministic choices for M'

Simulating one step of M

- Each major phase of the simulation by M' is to simulate one finite computation by M, using tape #3 to resolve nondeterministic ambiguities.
- Between major phases, M'
 - erases tape #2 and copies tape #1 to tape #2
 - Replaces string in $\{1, \ldots, b\}^*$ on tape #3 with the lexicographically next string to generate the next set of nondeterministic choices to follow.
- Claim: L(M') = L(M)
- Q: Slowdown?

Equivalent Formalisms

Many other formalisms for computation are equivalent in power to the TM formalism:

- TMs with 2-dimensional tapes
- Random-access TMs
- General Grammars
- 2-stack PDAs, 2-counter machines
- Church's λ -calculus (μ -recursive functions)
- Markov algorithms
- Your favorite high-level programming language (C, Lisp, Java, . . .)
- ... We'll just sketch two, general grammars and 2-counter machines

General Grammars

• Like context-free grammars, except that if $u \to v$ is a rule, then u may be any string containing a nonterminal.

• So the rule $AXY \to AYX$ where $A, X, Y \in V$, "means" that the two-symbol substring XY can be replaced by YX whenever it appears with an A to its left.

Example of a General Grammar

A grammar to generate $\{a^nb^nc^n:n\geq 0\}$. $\Sigma=\{a,b,c\}$ $V=\{A,B,C,A',B',C',S\}$

- A, B, C are "aliases" for the terminal symbols a, b, c.
- Only a single occurrence of A', B', or C' can be in the string being derived.
- It "crawls" from right to left, transforming nonterminal symbols into terminals.

Rules for $a^nb^nc^n$

$$S \to ABCS$$
 $S \to C'$ $S \to \varepsilon$

(Thus $S \Rightarrow^* (ABC)^n C'$ for any $n \ge 0$.)

$$CA \rightarrow AC$$
 $BA \rightarrow AB$ $CB \rightarrow BC$

(Any inversions of the proper order can be repaired)

$$CC' \to C'c$$
 $CC' \to B'c$

(The c-transformer can crawl to the left, and turn into a b-transformer)

$$BB' \to B'b$$
 $BB' \to A'b$ $A' \to \varepsilon$

The only way to get a string of <u>terminals</u> yields one of the form $a^nb^nc^n$.

Grammars and Turing Machines are Equivalent

<u>Theorem</u>: A language is generated by a grammar if and only if it is Turing-recognizable.

Proof:

(1) L is generated by a grammar $\Rightarrow L$ is Turing-Recognizable

Pf: Let L = L(G), G a grammar. To construct an NTM M such that L(M) = L, construct M so that

M nondeterministically carries out a derivation $S=w_0\Rightarrow_G w_1\Rightarrow_G w_2\Rightarrow_G\ldots$, checking each step to see if $w_i=w$.

L Turing-recognizable $\Rightarrow L$ is generated by a grammar.

(2) L is recognized by a TM $M\Rightarrow L$ is generated by a grammar G

<u>Pf</u>: Without loss of generality, we assume that if M halts having started on input w, right before halting it erases its tape.

G will simulate a backwards computation by M. The intermediate strings will be configurations \$uqav\$.

Rules of the Grammar

- $S \rightarrow \$q$ accept\$
- If $\delta(q, a) = (p, b, R)$, then G has

$$bp \rightarrow qa$$

$$bp\$ \rightarrow q\$$$
, if $a = \sqcup$

• If $\delta(q, a) = (p, b, L)$, then G has

$$pcb \rightarrow cqa$$
 for each $c \in \Sigma$

$$p\$ \rightarrow qa\$$$
, if $b = \sqcup$

• Finally, $\$ \to \varepsilon$ and, if s is the start state of the TM, $s \to \varepsilon$

Reduction of TMs to 2-CMs

A 2-counter machine (2-CM) has:

- A finite-state control
- Two counters, i.e. C1 and C2, which are registers containing integers ≥ 0 with only 3 operations:
 - Add 1 to C1/C2
 - Subtract 1 from C1/C2
 - ls C1/C2 = 0?

Theorem: For any TM, there is an equivalent 2-CM, in the sense that if you start the 2-CM with an encoding of the TM tape in its counters it will eventually halt with an encoding of what the TM computes.

Harvard CS 121 & CSCI E-207 October 21,2010

Simulating a TM tape with 2 pushdown stores: Split the tape at the head position into two stacks

Moving TM head to left \equiv Pop from stack # 1

Push onto stack # 2

Moving TM head to right \equiv Pop from stack # 2

Push onto stack # 1

Change scanned symbol \equiv Change top of stack # 1

(So 2-PDAs are as powerful as TMs)

Simulating One Stack with Two Counters: Think of the stack as number in a base = $|\Sigma| + 1$

[Assume ≤ 9 stack symbols]

Pop the stack \equiv Divide by 10 and

discard the remainder

Push $a_9 \equiv Multiply by 10$ and add 9

Is stack top = a_3 ? \equiv Is counter mod 10 = 3?

→ All of these can be calculated using a second counter.

Simulating Four Counters With Two: $(p, q, r, s) \rightarrow 2^p 3^q 5^r 7^s$

Add 1 to C1 $\equiv p \leftarrow p+1$

 \equiv Double C1'

 $ls C3 \neq 0? \qquad \equiv \qquad r \neq 0?$

 \equiv Does 5 divide C1' evenly?

Subtract 1 from $s \equiv \text{Divide } C1' \text{ by } 7$

The Church-Turing Thesis

The equivalence of each to the others is a mathematical theorem.

That these <u>formal models</u> of algorithms capture our <u>intuitive notion</u> of algorithms is the **Church–Turing Thesis**.

Church's thesis = partial recursive functions, Turing's thesis =
 Turing machines

Is Church-Turing Thesis Provable?