Examen – Apprentissage artificiel --- 31IM66

2heures.

Documents non autorisés.

Prenez soin de lire tous les exercices avant de commencer. La notation est donnée à titre indicatif.

Il y a 2 parties: Partie 1 (15 pts) et Partie 2 (5 pts). Chaque partie fera l'objet de copies séparées.

PARTIE 1 ---- 1h30mn --- 15 pts

Exercice 1.1: (7 pts)

- 1. En apprentissage supervisé, quelle est la différence entre un ensemble de test et un ensemble de validation ? (1 pt)
- 2. Rappeler les <u>principes</u> des méthodes d'apprentissage : Arbre de décision, Réseaux de neurones, k-PPV et Bayésien Naïf. Illustrer avec l'exemple de l'exercice suivant. (4 pts)
- 3. Quelles sont leurs <u>ressemblances</u> et leurs <u>différences</u>? (2 pts)

Exercice 1.2: (8 pts)

RID	age	income	student	credit	C_i : buy
1	youth	high	no	fair	C_2 : no
2	youth	high	no	excellent	C_2 : no
3	middle-aged	high	no	fair	C_1 : yes
4	senior	medium	no	fair	C_1 : yes
5	senior	low	yes	fair	C_1 : yes
6	senior	low	yes	excellent	C_2 : no
7	middle-aged	low	yes	excellent	C_1 : yes
8	youth	medium	no	fair	C_2 : no
9	youth	low	yes	fair	C_1 : yes
10	senior	medium	yes	fair	C_1 : yes
11	youth	medium	yes	excellent	C_1 : yes
12	middle-aged	medium	no	excellent	C_1 : yes
13	middle-aged	high	yes	fair	C_1 : yes
14	senior	medium	no	excellent	C_2 : no

On dispose du fichier ci-dessus possédant une variable de classe BUY. On découpe l'ensemble en 2 : D1 et D2. **D1 contient les 6 premiers objets**, et D2 contient les **8 derniers (7 à 14)**.

- 1- Quel attribut n'est pas pertinent pour construire un modèle de classification? (0.5 pt)
- 2- Construire le modèle du plus proche voisin, 3-PPV, en utilisant D1 comme ensemble d'apprentissage. (0,5 pt)
- 3- L'ensemble D2 va être utilisé pour tester le modèle 3-PPV. Déterminer la classe des 8 objets de D2. (4 pts)
- 4- Donner la matrice de confusion sur D2; (1 pt)
- 5- Calculer le taux d'erreur apparente de la méthode avec D2; (0,5 pt)
- 6- Calculer la précision de la classe 'yes' sur D2; (0,5 pt)
- 7- Calculer le rappel pour la classe 'no' sur D2; (0,5 pt)
- 8- On souhaite calculer la précision totale du modèle 3-PPV en tenant compte du poids de chacune des classes dans D2 . (0,5 pt)

Mai 2015 - 1 / 4 -

PARTIE 2 ---- 30mn --- 5 pts

Licence 3 Informatique Examen Apprentissage

Olivier Raynaud raynaud@isima.fr

La durée de cette épreuve est de 30 minutes. Les documents ne sont pas autorisés. Il sera tenu compte de la propreté de la copie lors de l'évaluation.

Exercice 1 (Machines à registres).

Question 1. Concevoir une machine à registres qui reçoit dans les registres R_1 et R_2 deux booléens a et b et retourne dans R_1 la valeur booléenne de l'expression 'a ou b'.

Question 2. Montrer que le prédicat x = ?y est calculable par une machine à registres.

Question 3. Concevoir une machine à registres qui calcule la partie entière inférieure de $log_2(n)$ si $n \neq 0$ et retourne 0 si n = 0.

Mai 2015 - 2 / 4 -

Annexes:

Naive Bayes : Estimation des probabilités conditionnelles

Ai : une valeur de l'attribut A

Nic: Nombre d'objets ayant la valeur Ai dans la classe c

Nc : Nombre d'objets de la classe c

k : nombre de valeurs de l'attribut A

p: probabilité apriori

m: paramètre

Original: $P(A_i \mid C) = \frac{N_{ic}}{N}$

Laplace: $P(A_i \mid C) = \frac{N_{ic} + 1}{N_c + k}$

m-estimate: $P(A_i \mid C) = \frac{N_{ic} + mp}{N_c + m}$

Given a training dataset \mathcal{D} of N labeled examples (assuming complete data)

1. Estimate $P(c_i)$ for each class c_i

 $\hat{P}(c_j) = \frac{N_j}{N_j}$ N_j - the number of examples of the class c_j

2. Estimate $P(X_i = x_k | c_i)$ for each value x_k of the attribute X_i and for each class c_i

 $\blacksquare X_i$ discrete

$$\hat{P}(X_i = x_k \mid c_j) = \frac{N_{ijk}}{N_j}$$

 $\hat{P}(X_i = x_k \mid c_j) = \frac{N_{ijk}}{N_i}$ $N_{ijk} - \text{number of examples of the class } c_j$ $\text{having the value } x_k \text{ for the attribute } X_i$

X continuous

options

- The attribute is discretized and then treats as a discrete attribute
- A Normal distribution is usually assumed

$$P(X_i = x_k \mid c_j) = g(x_k; \mu_{ij}, \sigma_{ij}) \quad \text{onde} \quad g(x, \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{(x-\mu)^2}{2\sigma^2}}$$

The mean μ_{ii} e the standard deviation σ_{ii} are estimated from \mathcal{D}

2. Estimate $P(X_i = x_k | c_i)$ for a value of the attribute X_i and for each class c_i

A Normal distribution is usually assumed

$$P(X_i = x_k \mid c_j) = g(x_k; \mu_{ij}, \sigma_{ij}) \Rightarrow g(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{(x-\mu)^2}{2\sigma^2}}$$

 $X_i \mid c_i \sim N(\mu_{ii}, \sigma_{ii}^2)$ - the mean μ_{ii} e the standard deviation σ_{ii} are estimated from \mathcal{D}

For a variable $X \sim N(74, 36)$, the probability of observing the value 66 is given by:

$$f(x) = g(66; 74, 6) = 0.0273$$

Mai 2015 - 3 / 4 -

k-PPV: Proximité (Similarité, Dissimilarité), Distances

Attribute	Dissimilarity	Similarity
Type		
Nominal	$d = \left\{ egin{array}{ll} 0 & ext{if } p = q \ 1 & ext{if } p eq q \end{array} ight.$	$s = \begin{cases} 1 & \text{if } p = q \\ 0 & \text{if } p \neq q \end{cases}$
Ordinal	$d = \frac{ \hat{p}-q }{n-1}$ (values mapped to integers 0 to $n-1$, where n is the number of values)	$s = 1 - \frac{ p-q }{n-1}$
Interval or Ratio	d = p - q	$s = -d$, $s = \frac{1}{1+d}$ or $s = 1 - \frac{d-min_{\star}d}{max_{\star}d-min_{\star}d}$

Distance de Minkowski:

$$dist = \left(\sum_{k=1}^{n} |p_k - q_k|^r\right)^{\frac{1}{r}}$$

où r est un paramètre, n est le nombre de dimensions (attributs) et p_k et q_k sont, respectivement, les $k^{\grave{e}mes}$ attributs (composants) des objets p et q.

r = 1: City block (Manhattan, taxicab, L_1 norm) distance. Aussi appelée distance de Hamming pour des vecteurs binaires.

r = 2: distance euclidienne

Common situation is that objects, p and q, have only binary attributes

Compute similarities using the following quantities

M₀₁ = the number of attributes where p was 0 and q was 1

M₁₀ = the number of attributes where p was 1 and q was 0

M₀₀ = the number of attributes where p was 0 and q was 0

M₁₁ = the number of attributes where p was 1 and q was 1

Simple Matching and Jaccard Coefficients

SMC = number of matches / number of attributes
=
$$(M_{11} + M_{00}) / (M_{01} + M_{10} + M_{11} + M_{00})$$

J = number of 11 matches / number of not-both-zero attributes values = $(M_{11}) / (M_{01} + M_{10} + M_{11})$

Mai 2015 - 4 / 4 -