Deep Learning을 연구해보고 싶습니다!!

Convolutional Neural Network Recurrent Neural Network 만 이해할 수 있으면, 시작으로는 충분합니다!

[CNN] http://cs231n.stanford.edu/

[RNN] http://colah.github.io/posts/2015-08-Understanding-LSTMs/

그런데 처음하시는 분들에게는 진입장벽이 있긴 합니다.

- 인공지능(Artificial Intelligence)
- 머신러닝(Machine Learning)
- 딥러닝(Deep Learning)
- Convolutional Neural Network
- Recurrent Neural Network
- 토론:인간과인공지능

CNN에 들어가기에 앞서 가장 기본적인 Neural Network 부터 공부해봅시다.

인공지능 함수를 가장 간단한 1차함수로 모델링해보자

→ (vanilla) neural network

$$\mathbf{w}^T \mathbf{x} + \mathbf{b}$$
 $\mathbf{g}(\mathbf{w}^T \mathbf{x} + \mathbf{b})$

DataSet이 복잡해진다면…

Neural Network를 영상처리에 특화시켜보자!

→ Convolutional Neural Network

Convolution (Operator)이란?

[23]*[11]

-1 0 1 -1 0 1 -1 0 1

영상에서의 Convolution

```
(1)A 영역의 Convolution 값은?
(2)B 영역의 Convolution 값은?
(3)C 영역의 Convolution 값은?
(4)D 영역의 Convolution 값은?
(5) E 영역의 Convolution 값은?
(6)전체 이미지의 Convolution
(7)이 filter의 역할은?
```

Convolution 연산자의 특징

(f*g)*h=f*(g*h) 결합법칙이 성립한다.

[Ex] f: 입력영상,

g: R/G 통과 필터,

h: R 통과필터

입력 영상 f는 어떻게 변했을까?

영상 분석의 기초 : 서로 다른 크기의 영상 feature가 필요하다

Corner Detection Example

서로 다른 크기의 영상 feature를 만드는 두가지 방법!

1. 필터 사이즈를 점점 크게 만든다.

2. 영상 사이즈를 점점 작게 만든다.

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

 6x6

이 두가지를 모두 넣은 게 Convolutional Neural Network!

1. 필터 사이즈를 점점 크게 만든다.

입력 영상

2. 영상 사이즈를 점점 작게 만든다.

입력 영상

Max Pooling Convolution

Convolutional Neural Network (CNN)

Neural Network

An early (Le-Net5) Convolutional Neural Network design, LeNet-5, used for recognition of digits

Eature extraction

- 인공지능(Artificial Intelligence)
- 머신러닝(Machine Learning)
- 딥러닝(Deep Learning)
- Convolutional Neural Network
- Recurrent Neural Network
- 토론:인간과인공지능

입력 또는 출력에 시간 순서가 있다면? Recurrent Neural Network

입력이 들어가면 출력이 하나 나온다.

입력이 들어가면 출력이 순차적으로 나온다.

one to many

출력에 시간순서가 있다면?

Image Caption Generation

Language

Generating

RNN

A group of people shopping at an outdoor market.

There are many vegetables at the fruit stand.

http://arxiv.org/abs/1411.4555 "Show and Tell: A Neural Image Caption Generator"

입력이 순차적으로 들어가면 출력이 나온다.

Sentiment Classification

입력이 순차적으로 들어가면 출력이 순차적으로 나온다.

many to many

Machine Translation

(Vanilla) Neural Network의 구조

RNN의 구조

$$H(t)=W_1x+W_2H(t-1)$$

RNN의 구조 y H(t) y(t-1)y(t-2) Z^{-1} H(t-1) \rightarrow H(t-1) H(t-2)H(t)x(t)x(t-1)x(t-2)

RNN 응용 구조는 이렇게 만들어진 것들..

- 인공지능(Artificial Intelligence)
- 머신러닝(Machine Learning)
- 딥러닝(Deep Learning)
- Convolutional Neural Network
- Recurrent Neural Network
- 토론:인간과인공지능

인공지능은 정말 지능을 가지고 있는 것일까요?

인공지능이 할 수 없는 것은 어떤 것일까요?