

spurtous	regression is the first thing to get jud of.
Pont vi	ork with non-stationary serves. If want, take difference
to m	are it stationary!
	Super-consistency: Augmented Droker-Fuller test
	[[[] [] [] [] [] [] [] [] []
Pt= 0	Pet + Set a spearfre lag p APF distribution
	= to Pt p Yt = Exp ytp Simulated critical value
Hypothe	8.3 testing: $to: \phi=1$ $t_1: \phi=1$ Sample size dependent.
yet you	a of other lagged value
ADF: Yt:	4. yt-1+ \$3 3. 54t-1+3204t-2++304t-P+Vt
	4t=1 = 4t-1 - 4t-2 Wee return for price
0	ntitical value from Symulation
OF AD	: 04t = 17 4t++
η=	0 V.S. M < P
Some	empirercal results in finance
bruce	& dwv.tdends: Campbell-Shveller model
R-	Pt Pt Pt Pt Pt
log OH 1	2++1) = log (1+1) + log (Pt+1 + Dt+1)
17 ++1	Pt+1
toylo	= Ptt1 - Pt + log (I+ e Olt+1 - Pt+1) r expansion k + 0 Paul - Dt + (I-P) olt+1
2	k+ p Poti -Pt + Ct-P) ofter

II. Reg	ression & statistical inference
	Fence $R^2 = 1 - \frac{Ee_1^2}{E(4x - 4)^2}$
	stat: symple question 1=08 xx+0+ 7=0.9-0 28 71.96 Two-side 95%
	4=0.9 xt+ et P= 0.9-0 0.23 = 3.9 7 1.96 Two-side 95% (0.23) 72.576 Two-side 99%
Two re	9 nession
OAR	model: capture characteristies of time serves
model	specification: Y= = pq yt-q + &+
add	lags to make & white norse. Back/forward testing
Test whi	te norse: Durlorn - Watson test $DW = \frac{5(2t-2t-1)^2}{5(2t^2-2t-1)^2} \approx 2(t-1/cn)$
or direc	thy look at correlation in fyt?
Box -	Pierce OBP = 7 = p2v) ~ x2cq) depends on the
1 7.400 -	Par 2 2 law a cot lay model
	Box DIB-TCT+2) & PEin ~ X'ca) lay q set by model
AR 1:	Yt=ct \$ Yt-1 + Et persitency in fet }
Yt=	$\frac{t}{5}$ ϕ^{5} ϵ_{t-5} $+\frac{t}{5}$ ϕ^{5} \cdot
₹(\$\$)	If 0<10 -1, the whote norse shrink -> stationary
Ecyt	$1 = \frac{c}{1-\phi} Var (4\phi) = \frac{6^2}{1-\phi^2}$
EM-14	$f(x) = C + \phi + \phi$
F1014	

ht hid	den varrable: cannot estimate GARCH by OLS
	agrume a distribution of data N(m.62) efficient reach C-R lower bound can handle lottent varrables
	$y_{t} = c + \phi y_{t-1} + \varepsilon t \varepsilon t \wedge N(0.ht)$ $ht = 3 + \alpha \varepsilon_{t-1}^{2} + \beta ht - 1$
fo	Donal log-breelshood: (4t-c-p4t-1) 1- log(J27(3+9 Et-1+ Bht-1)) - 2(3+0 Et-1+ Bht-1)
	t=2 Filo you can assume
V. Kalmi	Risk premium / Stochastic Vol/MIDAS in Fister: fister out latent variable exactly like GARCH at one extra updating "now cost" step
7t =	At t H'Zt + Wt $ECWeVt') = 0$ $ECVeVt') = 0$ $ECWeWe') = R$ F'Zt=1 + Vt
first for	ecast 2+1+-1, based on all the works before to forecast 2+
e-rreat	Adjust Zett-1 > 7tft @ from Yt <> Yett-1
V s e	2tit → Ztit+1

Write D	own moment conditions for models.
E ()	Yt= BXt + Et Property of ols At Et) = 0
^	d by 7 5 Xt Et =0 Linear Projection Theorem
	imm = \frac{3 \text{XtYt} \text{Yt} \text{Z} \text{Xt}^2 \text{Bols}
Ex 2. A	
	c+ \$yt-1 tut
	3+ quti+ Wt
Moment	condution for the first Regression
Ŧ	[C4t-C-\$4t-1)]=0
E	(4t - C-\$ 4t-1) 4t-1] =0
moment	condution for ARCH 1
FI	$ut^2 - \frac{3}{1-\alpha}$] = 0 Zt vnstrumental varrable.
7	[ut - 3 - 0 ut-1) 2t] = 0 lagged value
	ntal varrable & Endogenous
Stmultan	eous Bias.
Ye= B'	At + Et Y= NB +E X Endogenous
Find	IV 7: 1 relevant E(7+xt) \$0
	@ Vahd E (7+ &t) = 0

Estimation	on can be alone by:
	E[(4t-Xt) 2t] 20
ß:	= ŽXtyt (をXtZe*) ⁻¹
@ 2525	2 Stage Least Square
Idea.	Use IV Zt. do a projection on Xt "clean up"
Xt:	\$'Zt + Ct \$ - \frac{3}{5} \frac{2}{2} \frac{1}{12}
BIV	- 3 th At - 3 th
Est/mat/s	Methods: Grun/OLS/MIF
OLS:	sest linear Project, works for linear model. Cannot handle latent Variables
MCE:-C	an Recursively apply can handle latent variable. Africient . Limited by Assumption
GMM:	Very General good for complicated Model Trode-off
Bootstrap	& Stanlation
Pofferen	44.00

```
O Instial 2110 Zett-1
  Peter = [ (Zett-1 - Zet) (Zett-1 - Zet)']
@ forecasting
  E Cyc 1xt 2t) = 1/xt +H' 2t
   Jett-1 = A'X+ +H' 2+16-1
 4t-4ett-1= H'(7t-7tlt-1)+W+
[(4t-4th-1)20] = H'PHIL-H+R
3 nan casting
                                  B = E[(24 - 2+1+1) Cyeo-yest 1)]
E(Cye -yest)
 Ztt = 7th + 8 (4t-4th)
                                   = PtH-1 ·H' (H'Poten H +R)-1
Ptit = [ (2t - 7th) (2t - 20h)
= [ [ ] = - Zett-1 - B (4t-4ett-1)] [ ] [ ] = Zett-1 - B (4t-4ett-1)]']
  Ptt-1 - Ptt-1 H (H'Ptt-1H +R)-1 H'Ptt-1
(4) upolate
  Zotten = F Zott
 E[(7th - Zelten)(7th - Zelten)'] = FPert F'+Q
   = Ptult
```

```
Estimation MLE: Yett-1 ~ NCA'Xe ++ Zth-1, +1'Pth-1 H+R)
            several other questions:
              Theorom
                           heorom. y = \chi_1 B_1 + \chi_2 B_2 + \varepsilon

TXI TXK1 RXI TXK2 K2XI

regression J : \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = (\chi' \chi)' (\chi')
                               regression I: 1) Y= X, $, + & & 2, TXI
                                                                                                                                                               (a) \chi_{2,1} (i=1--k_2) = \chi_1 \phi_{2,1} + \chi_2 \chi_3 \chi_4
                                                                                                                                                            Q ê1 = €2,1 · β2 + U
                                                                                                                                                                                      B2 = B2
     Basically regress (yt-y) = (xt-xi' p" + Et
                                                                                                                          regress yt = [1 xt'] | + Et
                                                                                                                 gives same &
      a simple proof: single factor case X= [1 x]
                          \widehat{\chi},\widehat{\chi} = \widehat{\mathcal{D}} \begin{bmatrix} 1' \\ \chi' \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1' \\ \chi' 1 \end{bmatrix} [1' \chi] = \begin{bmatrix} 1' 1 \\ \chi' 1 \end{bmatrix} [1' \chi] = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 = \begin{bmatrix} 1 \\ \chi' 1 \end{bmatrix} [1] \chi_1 =
\left(\frac{7}{2},\frac{7}{2}\right)^{-1} = \frac{1}{\text{ad-6c}} \left[\frac{1}{-c} + \frac{1}{a}\right] = \frac{1}{7.5 \times t^2 - (5 \times t)^2} \left[\frac{3 \times t^2}{-5 \times t} - \frac{3 \times t^2}{1}\right]
```