Situation:

We know that if $\mathbf{a} = (a_1 \quad a_2 \quad a_3)$ and $\mathbf{b} = (b_1 \quad b_2 \quad b_3)$, then $\mathbf{a} \times \mathbf{b} = (a_2b_3 - a_3b_2 \quad a_3b_1 - a_1b_3 \quad a_1b_2 - a_2b_1)$, and hence the magnitude of $\mathbf{a} \times \mathbf{b}$ i.e.

$$|\mathbf{a} \times \mathbf{b}| = \sqrt{(a_2b_3 - a_3b_2)^2 + (a_3b_1 - a_1b_3)^2 + (a_1b_2 - a_2b_1)^2}.$$

Problem: IS THERE ANY RELATIONSHIP BETWEEN $|\mathbf{a} \times \mathbf{b}|, |\mathbf{a}| \text{ and } |\mathbf{b}|$?

This aim of this activity is to find the relationship between

 $\mathbf{a} \times \mathbf{b}$, \mathbf{a} and \mathbf{b} . Try the following procedure:

Let $\mathbf{a} = (a_1 \ a_2 \ a_3)$, $\mathbf{b} = (b_1 \ b_2 \ b_3)$, and the angle between the vectors be θ .

(i) By considering $\mathbf{a} \cdot \mathbf{b}$, express $\cos \theta$ in terms of a_1, a_2, a_3, b_1, b_2 and b_3 .

Set Induction

(ii) By using the identity $\cos^2 \theta + \sin^2 \theta = 1$, show that

$$\sin \theta = \frac{\sqrt{(a_2b_3 - a_3b_2)^2 + (a_3b_1 - a_1b_3)^2 + (a_1b_2 - a_2b_1)^2}}{\sqrt{(a_1^2 + a_2^2 + a_3^2)}\sqrt{(b_1^2 + b_2^2 + b_3^3)}}$$

(iii) Relate (ii) with
$$|\mathbf{a} \times \mathbf{b}|$$
, $|\mathbf{a}|$ and $|\mathbf{b}|$, and express $|\mathbf{a} \times \mathbf{b}|$ as the subject.

Magnitude of Cross Product

Theorem:

Let
$$\mathbf{a} = (a_1 \ a_2 \ a_3), \mathbf{b} = (b_1 \ b_2 \ b_3),$$

and the angle between the vectors be θ .

Then,
$$|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \theta$$
.

Given that $\mathbf{v} = (4 - 6 \ 2)$ and $\mathbf{w} = (-3 \ 2 \ 7)$.

Find $\mathbf{v} \times \mathbf{w}$. Hence, find the angle between \mathbf{v} and \mathbf{w} .

Given that
$$\mathbf{u} = \begin{pmatrix} 1 & 2 & 4 \end{pmatrix}$$
 and $\mathbf{v} = \begin{pmatrix} 4 & -6 & 2 \end{pmatrix}$

Find $\mathbf{u} \times \mathbf{v}$. Hence, find the angle between \mathbf{u} and \mathbf{v} .

Perpendicular Distance from a Point to a Line

Theorem:

Let a straight line l have equation $\mathbf{r} = \mathbf{a} + \lambda \mathbf{m}$ and the point P have position vector \mathbf{p} . Then, the perpendicular distance (or shortest distance) from

P to l is given by
$$d = \frac{|\mathbf{m} \times (\mathbf{p} - \mathbf{a})|}{|\mathbf{m}|}$$
.

Find the perpendicular distance from point P to line l.

(a)
$$l : \mathbf{r} = 5\mathbf{j} + 2\mathbf{k} + \lambda(\mathbf{i} - 2\mathbf{j} + \mathbf{k}) \& P : (1, 5, 1).$$

(b)
$$l: \frac{x-6}{7} = \frac{y+7}{-6} = z \& P(3,5,7).$$

Shortest Distance Between Two Skew Lines

Theorem:

Let two skew lines be l_1 : $\mathbf{r} = \mathbf{a}_1 + \lambda_1 \mathbf{m}_1$ and l_2 : $\mathbf{r} = \mathbf{a}_2 + \lambda_2 \mathbf{m}_2$. Then, the shortest distance

between
$$l_1$$
 and l_2 is $d = \left| \frac{(\mathbf{a}_2 - \mathbf{a}_1) \cdot (\mathbf{m}_1 \times \mathbf{m}_2)}{|\mathbf{m}_1 \times \mathbf{m}_2|} \right|$

KFC

L-L Distance

12

Find the shortest distance between l_1 and l_2 .

(a)
$$l_1$$
: $\mathbf{r} = 2\mathbf{i} + \mathbf{j} + 2\mathbf{k} + \lambda(-9\mathbf{i} - 2\mathbf{j} + 2\mathbf{k})$ &
 l_2 : $\mathbf{r} = 7\mathbf{i} + 2\mathbf{j} - 2\mathbf{k} + \lambda(-15\mathbf{i} - 4\mathbf{j} + 2\mathbf{k})$

(b)
$$l_1: \frac{x-1}{-2} = y-2 = \frac{z-3}{-5}$$
 & $l_2: x-3 = y+4 = z+1$.

Homework

Please attempt all the questions in the following slides.

Questions are to be discussed on the next day of the instruction.

Find the shortest distance from point *P* to line *l*.

(a)
$$l : \mathbf{r} = (1 - \lambda)\mathbf{i} + (2 - 3\lambda)\mathbf{j} + 2\mathbf{k}, P : (1, 3, 2).$$

(b)
$$l: \frac{x-7}{-1} = \frac{y+1}{3}, z = 4, P: (0,0,0).$$

A, B, C and D are four points with position vectors $\mathbf{a} = 2\mathbf{i} + 3\mathbf{j} + \mathbf{k}$, $\mathbf{b} = \mathbf{i} + \mathbf{j} + \mathbf{k}$, $\mathbf{c} = \mathbf{i} + \mathbf{k}$ and $\mathbf{d} = 3\mathbf{j}$ respectively. Find the shortest distance between line AB and CD.

Let line
$$l_1: x-1=y=z+5$$
 and line $l_2: \frac{x}{3} = \frac{y+2}{2} = z+2$.

P and Q are two points on l_1 and l_2 respectively such that $PQ \perp l_1$ and l_2 .

- (a) Show that the distance $PQ = \sqrt{6}$ units.
- (b) Find the coordinates of P and Q, and