1. Give two reasons why the set of odd integers under addition is not a group.

D no identity: o is not an edd number.

② no dosnie: it 3=4. 4 is not an odd number

2. Construct the Cayley table for $(\mathbb{Z}_{12}^*, \otimes)$.

Ziz = { n | n ∈ [1, 11], gcd (n,12)=1} = {1, 5, 7, 11}

\bigotimes	l	5	7	1.1	
1	1	2	7	1)	
5		1			
٦	7	l J	1	5	
	11	7	5	١	~

3. The space $S = \langle \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \rangle$ is a subspace of \mathbb{R}^3 . Find a Cartesian equation for S.

4. A sequence is defined recursively by $u_1 = 1$ and $u_{n+1} = \frac{1}{1 + u_n}$. Assuming the sequence is convergent find its limit.

when
$$n \rightarrow \infty$$
, $\alpha = \frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$, $\alpha = \frac{-1 \pm \sqrt{5}}{2}$ powhols

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha - 1) = 0$$

$$\frac{1}{1+\alpha} = (\ln \alpha^2 + \alpha^2 +$$

Question: By observation,
$$M_n = \frac{fibo(n)}{fibo(nt)}$$

How to show
$$U_{\infty} = \lim_{N \to \infty} \frac{\frac{1}{\sqrt{15}} \left[\left(\frac{1+\sqrt{15}}{2} \right)^{N} - \left(\frac{1-\sqrt{15}}{2} \right)^{N+1} \right]}{\frac{1}{\sqrt{15}} \left[\left(\frac{1+\sqrt{15}}{2} \right)^{N+1} - \left(\frac{1-\sqrt{15}}{2} \right)^{N+1} \right]}$$
 equals to the $\frac{\sqrt{15}-1}{2}$

5. Prove that the set of
$$3 \times 3$$
 matrices with real entries of the form $\begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}$ is a group under matrix multiplication.

obtained above?

matrix multiplication is associative.