MATH 3142 Miltern Part 1 Clorte-Spring 2016

For each of the following statements, choose if it is True or False.

1. (2 points) The lower integral $\int_{\underline{a}}^{b} f$ is defined to be $\inf\{L(f, P) : P \text{ partitions } [a, b]\}$.

A. True
B. False

2. (2 points) If $f:[a,b]\to\mathbb{R}$ is integrable, then there exists a sequence of partitions $\{P_n\}$ such that $\lim_{n\to\infty}L(f,P_n)=\int_a^bf$.

3. (2 points) The function $f:[0,2] \to \mathbb{R}$ defined by

 $f(x) = \begin{cases} x^3 & \text{if } x \in [0, 2) \\ -1 & \text{if } x = 2 \end{cases}$

is integrable.

A. True

B. False

4. (2 points) All bounded functions $f:[a,b] \to \mathbb{R}$ are integrable.

A. True
B. False

f(x)= {0 if x + Q 1 if x + Q

5. (2 points) If $f:[a,b]\to\mathbb{R}$ is continuous, then $F:[a,b]\to\mathbb{R}$ defined by $F(x)=\int_a^x f$ is differentiable.

A. True

B. False

Choose the most appropriate response for each.

- 6. (3 points) Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. Which of the following is false?
 - A. $\langle \mathbf{u}, \mathbf{v} \rangle \leq \|\mathbf{u}\| \|\mathbf{v}\|$ B. $\|\mathbf{u}\| \|\mathbf{v}\| \leq \|\mathbf{u}\| + \|\mathbf{v}\|$
 - C. $\|\mathbf{u}\| + \|\mathbf{v}\| \ge \|\mathbf{u} + \mathbf{v}\|$
 - D. $\|\mathbf{u} \mathbf{v}\| \ge \|\mathbf{u}\| \|\mathbf{v}\|$
- 7. (3 points) If $\{\mathbf{u}_k\}$, $\{\mathbf{v}_k\}$ are sequences of vectors in \mathbb{R}^n converging to \mathbf{u} , \mathbf{v} respectively, then which of these must be true?
 - A. $\lim_{k\to\infty} \mathbf{u}_k = \lim_{k\to\infty} \mathbf{v}_k$

B.
$$\mathbf{v} + \lim_{k \to \infty} \mathbf{u}_k = \mathbf{u} + \lim_{k \to \infty} \mathbf{v}_k = \mathbf{u} + \mathbf{v}$$

- $C. \lim_{k\to\infty} (\mathbf{u}_k \mathbf{v}_k) = 0$
- D. $\lim_{k\to\infty}\langle \mathbf{u}_k, \mathbf{v}_k \rangle = \|\mathbf{u}\| + \|\mathbf{v}\|$
- 8. (4 points) The set $\{\mathbf{x} \in \mathbb{R}^2 : p_1(\mathbf{x}) < p_2(\mathbf{x})\}$ is which of the following?
 - A. Open, but not closed
 - B. Closed, but not open
 - C. Both open and closed
 - D. Neither open nor closed
-) {(x,y)&R2: x<y}

 $6 = (2)(3) \nleq 2+3=5$

MATH 3142 Miltern Parts 283

1. (20 points) Prove that if Q_n is a partition of [a,b] refining the partition P_n of [a,b] for each natural number n, and $\{P_n\}$ is an Archimedian sequence of partitions for f on [a,b], then $\{Q_n\}$ is also Archimedian.

Since
$$Q_n$$
 refines P_n , it of lows that $L(f,Q_n) \geq L(f,P_n)$, $-L(f,Q_n) \leq -L(f,P_n)$ $U(f,Q_n) \leq U(f,P_n)$, and $U(f,Q_n) - L(f,P_n) \leq U(f,P_n) - L(f,P_n) \leq U(f,P_n)$. Since $\{P_n\}$ is Archinedian, we may note $L(f,P_n)$.

lim
$$U(f, P_n) - L(f, P_n) = 0$$
.
So we can show that
$$0 \leq \lim_{n \to \infty} U(f, Q_n) - L(f, Q_n)$$

$$\leq \lim_{n \to \infty} U(f, P_n) - L(f, P_n) = 0$$

Therefore Earl is Archinedian.

2. (20 points) Explain the error(s) in the following "proof", and then give a counterexample showing that the theorem is false.

Theorem: If $f:[0,1] \to \mathbb{R}$ is integrable, then f is also continuous.

Proof: Since f is integrable, we may define $F:[0,1]\to\mathbb{R}$ by $F(x)=\int_0^x f$. It follows that F(x) is a differentiable function, because it is an antiderivative of f. Thus $\frac{d}{dx}[F(x)]=f(x)$ by the Second Fundamental Theorem of Calculus. Since the derivative

of any differentiable function is continuous, we conclude f is continuous.

Prop 6.27 only granatees F is continuous when f is only integrable.

This is also untrue (at least, it was never given as a theorem).

Note that f: (0,1) -> IR defined by

$$f(x) = \begin{cases} 0 & \text{if } x \in [0,1) \\ 1 & \text{if } x = 1 \end{cases}$$

is integrable by Thm 6.19, but not continuous at x=1.

3. (20 points) Recall that an even function satisfies the condition f(x) = f(-x). Let $f: \mathbb{R} \to \mathbb{R}$ be an even continuous function. Prove that

$$\frac{d}{dx}\left[\int_{-x}^{x}f\right]=2f(x).$$

(Hint: Corollary 6.30 says that $\frac{d}{dx}[\int_x^0 f] = -f(x)$.) So by Chain Rule, $\frac{d}{dx}[\int_x^0 f] = -(-f(-x))$

$$\frac{d}{dx}\left[\int_{x}^{x}f\right] = \frac{d}{dx}\left[\int_{x}^{0}f + \int_{x}^{x}f\right]$$

$$= -(-f(-x)) + f(x)$$

$$= f(x) + f(x)$$

$$= 2f(x)$$

$$= 2f(x)$$

4. (20 points) Prove the following theorem:

Let $\mathbf{x} \in \mathbb{R}^n$ and let $\{\mathbf{x}_k\}$ be a sequence of points in \mathbb{R}^n . If for every open set U containing \mathbf{x} , there is an index K such that $\mathbf{x}_k \in U$ for all $k \geq K$, then $\{\mathbf{x}_k\}$ converges to \mathbf{x} .

(Hint: $B_{\epsilon}(\mathbf{x})$ is open.)

Let
$$\varepsilon > 0$$
, Since $B_{\varepsilon}(x)$ is open, three exists $K \in IN$ where $x_k \in B_{\varepsilon}(x)$ for all $k \ge K$. It follows that dist $(x_k, x) < \varepsilon$ for all $k \ge K$. Therefore $\{u_k\}$ converges to u .

5. (20 points) Prove that any finite subset of \mathbb{R}^n is closed. (Hint: First prove that any singleton subset of \mathbb{R}^n is closed.)

Let $C = \{x\}$ for $x \in \mathbb{R}^n$. If $\{u_k\}$ is a sequence of points in C, then $u_k = x$ for all k.

Thus $\{u_k\}$ converges to $x \in C$, so C is closed.

By Prop 10,18, ii, a finite union of closed sets is closed. Since every finite set {x1, ", xm3} is the union [] {x;3, every finite set is closed.