

Факультатив по программированию на языке С

Преподаватель: Балабаев Сергей Андреевич

sergei.balabaev@mail.ru

План занятий

- Занятие дополнительное
- Оценок не будет
- Можно (и даже нужно) гуглить
- Не стесняемся задавать вопросы
- Если стесняемся то можно сюда: https://vk.com/sergei_balabaev

План занятий

Nº	Тема	Описание	
1	Введение в курс	Языки программирования. Основы работы с Linux.	
2	Основы языка С	Написание и компиляция простейших программ с использованием gcc. Правила написания кода. Разбиение программы на отдельные файлы. Маке файлы	
3	Ввод данных. Библиотеки	Работа со вводом/выводом. Статические и динамические библиотеки. Компиляция.	
4	Язык ассемблера	Основы анализа программ на языке ассемблер.	
5	Хранение данных. Память	Хранение процесса в памяти компьютера. Виртуальная память, сегментация. Секции программы.	
6	Хранение данных.	Стек, куча. Типы данных. Преобразования типов. Gdb и отладка Хранение различных типов данных. Указатели, ссылки. Передача аргументов в функцию по ссылке/указателю.	
7	Обработка данных	Безопасные функции. Битовые операции — сдвиги, логические операции. Битовые поля.	
8	Программирование под встраиваемые ОС	Работа с микрокомпьютером Raspberry Pi	

Рекомендованная литература

- 1. Ашарина И.В. Язык программирования С++. Конспект лекций по курсу "Информатика". М.: МИЭТ, 2000. 112 с.: ил
- 2. Брайан Керниган, Деннис Ритчи Язык программирования Си Москва: Диалектика, 2020.
- 3. Прата С. Язык программирования С. Лекции и упражнения, 6-е изд. : Пер. с англ. М. :ООО "И.Д. Вильямс", 2015. 928 с.
- 4. Столяров А.В. Низкоуровневое программирование. Том 2 Глава 4
- 5. Дэвид М. Харрис и Сара Л. Харрис Цифровая схемотехника и архитектура компьютера. Приложение «С»
- 6. Igor Zhirkov Low-Level Programming: C, Assembly, and Program Execution on Intel 64 Architecture
- 7. Richard Reese Understanding and Using C Pointers-O Reilly Media 2013
- 8. Suzanne J. Matthews Dive into Systems https://diveintosystems.org/
- 9. Видеолекции МФТИ Тимофей Хирьянов (Youtube)

Задача

Необходимо перемножить две матрицы размерностью N*N

Решение для N=2

$$C_{ij} = \sum_{s=1}^{n} A_{is} B_{sj}$$
 $A = \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix}$ $B = \begin{pmatrix} c_1 & d_1 \\ c_2 & d_2 \end{pmatrix}$

$$\begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix} \begin{pmatrix} c_1 & d_1 \\ c_2 & d_2 \end{pmatrix} = \begin{pmatrix} ? & ? \\ ? & ? \end{pmatrix}$$

Задача

Необходимо перемножить две матрицы размерностью N*N

Решение

$$C_{ij} = A_{i1}B_{1j} + A_{i2}B_{2j} C_{11} = A_{11}B_{11} + A_{12}B_{21}$$

$$\begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix} \begin{pmatrix} c_1 & d_1 \\ c_2 & d_2 \end{pmatrix} = \begin{pmatrix} a_1c_1 + b_1c_2 & ? \\ ? & ? \end{pmatrix}$$

$$\begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix} \begin{pmatrix} c_1 & d_1 \\ c_2 & d_2 \end{pmatrix} = \begin{pmatrix} a_1c_1 + b_1c_2 & a_1d_1 + b_1d_2 \\ a_2c_1 + b_2c_2 & a_2d_1 + b_2d_2 \end{pmatrix}$$

Задача

Необходимо перемножить две матрицы размерностью N*N

Решение

$$C_{ij} = \sum_{s=1}^{n} A_{is} B_{sj} \begin{pmatrix} A_{11} & * & A_{1n} \\ * & * & * \\ A_{n1} & * & A_{nn} \end{pmatrix} \begin{pmatrix} B_{11} & * & B_{1n} \\ * & * & * \\ B_{n1} & * & B_{nn} \end{pmatrix} = \begin{pmatrix} ? & * & ? \\ * & * & * \\ ? & * & ? \end{pmatrix}$$

$$C_{ij} = A_{i1} B_{1j} + A_{i2} B_{2j} + \dots + A_{in} B_{nj}$$

$$\begin{pmatrix} A_{11} & * & A_{1n} \\ * & * & * \\ A_{n1} & * & A_{nn} \end{pmatrix} \begin{pmatrix} B_{11} & * & B_{1n} \\ * & * & * \\ B_{n1} & * & B_{nn} \end{pmatrix} = \begin{pmatrix} ? & * & ? \\ * & * & * \\ ? & * & ? \end{pmatrix}$$


```
for (int i = 0; i < n; i++)
            for (int j = 0; j < n; j++)
                   for (int s = 0; s < n; k++)
                          C[i][j] = C[i][j] + A[i][s] * B[s][j];
i=0, j=0, s=0
                   C[0][0] = C[0][0] + A[0][0] * B[0][0];
i=0, j=0, s=1
                   C[0][0] = C[0][0] + A[0][1] * B[1][0];
                            ***
i=0, j=0, s=n-1  C[0][0] = C[0][0] + A[0][n-1] * B[n-1][0];
             A_{0(n-1)}
```



```
for (int i = 0; i < n; i++)
                    for (int s = 0; s < n; k++)
                              for (int j = 0; j < n; j++)
                                         C[i][j] = C[i][j] + A[i][s] * B[s][j];
i=0, s=0, j=0
                               C[0][0] = C[0][0] + A[0][0] * B[0][0];
i=0, s=0, j=1
                               C[0][1] = C[0][1] + A[0][0] * B[0][1];
                                             ***
i=0, s=0, j=n-1  C[0][n] = C[0][n-1] + A[0][0] * B[0][n-1];
                                            \begin{pmatrix} B_{00} & * & B_{0(n-1)} \\ * & * & * \\ B_{(n-1)0} & * & B_{(n-1)(n-1)} \end{pmatrix} = \begin{pmatrix} B_{00} & * & B_{0(n-1)} \\ * & * & * \\ B_{(n-1)0} & * & B_{(n-1)(n-1)} \end{pmatrix}
```



```
for (int i = 0; i < n; i++)
                                                                                              for (int s = 0; s < n; k++)
                                                                                                                                          for (int j = 0; j < n; j++)
                                                                                                                                                                                      C[i][j] = C[i][j] + A[i][s] * B[s][j];
                                                                                                                                           C[0][0] = C[0][0] + A[0][1] * B[1][0];
            i=0, s=1, j=0
            i=0, s=1, j=1
                                                                                                                                          C[0][1] = C[0][1] + A[0][1] * B[1][1];
                                                                                                                                                                                                    ***
            i=0, s=1, j=n-1  C[0][n] = C[0][n-1] + A[0][1] * B[1][n-1];
\begin{pmatrix} A_{00} & * & A_{0(n-1)} \\ * & * & * \\ A_{(n-1)0} & * & A_{(n-1)(n-1)} \end{pmatrix} \begin{pmatrix} B_{00} & * & B_{0(n-1)} \\ * & * & * \\ B_{(n-1)0} & * & B_{(n-1)(n-1)} \end{pmatrix} = \begin{pmatrix} A_{00}B_{00} + A_{01}B_{10} & * & A_{00}B_{0(n-1)} + A_{01}B_{1(n-1)} \\ * & * & * \\ P_{00} & * & P_{00} & * \\ P_{00} & * & P
```



```
for (int j = 0; j < n; j++)
            for (int s = 0; s < n; k++)
                   for (int i = 0; i < n; i++)
                          C[i][j] = C[i][j] + A[i][s] * B[s][j];
j=0, s=0, i=0
                   C[0][0] = C[0][0] + A[0][0] * B[0][0];
j=0, s=0, i=1
                   C[1][0] = C[1][0] + A[1][0] * B[0][0];
                            ***
j=0, s=0, i=n-1 C[n-1][0] = C[n-1][0] + A[n-1][0] * B[0][0];
```



```
for (int j = 0; j < n; j++)
                  for (int s = 0; s < n; k++)
                             for (int i = 0; i < n; i++)
                                       C[i][j] = C[i][j] + A[i][s] * B[s][j];
                  C[0][0] = C[0][0] + A[0][1] * B[1][0];
j=0, s=1, i=0
***
j=0, s=1, i=n-1 C[n-1][0] = C[n-1][0] + A[n-1][1] * B[1][0];
      \begin{pmatrix} A_{00} & * & A_{0(n-1)} \\ * & * & * \\ A_{(n-1)0} & * & A_{(n-1)(n-1)} \end{pmatrix} \begin{pmatrix} B_{00} & * & B_{0(n-1)} \\ * & * & * \\ B_{(n-1)0} & * & B_{(n-1)(n-1)} \end{pmatrix} = \begin{pmatrix} A_{00}B_{00} + A_{01}B_{10} & * & ? \\ * & * & * \\ A_{(n-1)0}B_{00} + A_{(n-1)1}B_{10} & * & ? \end{pmatrix}
```


А есть ли разница?

```
for (int j = 0; j < n; j++)
                    for (int s = 0; s < n; k++)
                               for (int i = 0; i < n; i++)
                                          C[i][j] = C[i][j] + A[i][s] * B[s][j];
                   C[0][0] = C[0][0] + A[0][1] * B[1][0];
j=0, s=1, i=0
j=0, s=1, i=1   C[1][0] = C[1][0] + A[1][1] * B[1][0];
                                              ***
j=0, s=1, i=n-1 C[n-1][0] = C[n-1][0] + A[n-1][1] * B[1][0];
       \begin{pmatrix} A_{00} & * & A_{0(n-1)} \\ * & * & * \\ A_{(n-1)0} & * & A_{(n-1)(n-1)} \end{pmatrix} \begin{pmatrix} B_{00} & * & B_{0(n-1)} \\ * & * & * \\ B_{(n-1)0} & * & B_{(n-1)(n-1)} \end{pmatrix} = \begin{pmatrix} A_{00}B_{00} + A_{01}B_{10} & * & ? \\ * & * & * \\ A_{(n-1)0}B_{00} + A_{(n-1)1}B_{10} & * & ? \end{pmatrix}
```

Хранение массива в памяти

$$A_{00}$$
 * $A_{0(n-1)}$ * * $A_{(n-1)0}$ * $A_{(n-1)}$ $A_{(n-1)}$

$$\begin{pmatrix} A_{00} & * & A_{0(n-1)} \\ * & * & * \\ A_{(n-1)0} & * & A_{(n-1)(n-1)} \end{pmatrix}$$

Хранение массива в памяти

Оперативная память

$$\begin{pmatrix} A_{00} & * & A_{0(n-1)} \\ * & * & * \\ A_{(n-1)0} & * & A_{(n-1)(n-1)} \end{pmatrix} \begin{pmatrix} B_{00} \\ * \\ B_{(n-1)0} \end{pmatrix} * & B_{0(n-1)} \\ * & * \\ B_{(n-1)(n-1)} \end{pmatrix} = \begin{pmatrix} A_{00}B_{00} + \dots + A_{(n-1)0}B_{0(n-1)} & * & * \\ * & * & * \\ * & * & * \\ ? & * & ? \end{pmatrix}$$

Оперативная память

Оперативная память

2.
$$\begin{pmatrix}
A_{00} & * & A_{0(n-1)} \\
* & * & * \\
A_{(n-1)0} & * & A_{(n-1)(n-1)}
\end{pmatrix}
\begin{pmatrix}
B_{00} & * & B_{0(n-1)} \\
* & * & * \\
B_{(n-1)0} & * & B_{(n-1)(n-1)}
\end{pmatrix} = \begin{pmatrix}
A_{00}B_{00} & * & A_{00}B_{0(n-1)} \\
* & * & * \\
? & * & ?
\end{pmatrix}$$

3.
$$\begin{pmatrix} A_{00} \\ * \\ A_{(n-1)0} \end{pmatrix} * A_{0(n-1)} \\ * & * \\ * & A_{(n-1)(n-1)} \end{pmatrix} \begin{pmatrix} B_{00} \\ * \\ * \\ B_{(n-1)0} \\ * & B_{(n-1)(n-1)} \end{pmatrix} = \begin{pmatrix} A_{00}B_{00} \\ * \\ A_{(n-1)0}B_{00} \\ * & ? \end{pmatrix}$$

Вывод!

Кроме понимания алгоритмов нужно знать то «железо», под которое пишешь программу

Jan 2021	Jan 2020	Change	Programming Language	Ratings	Change
1	2	^	С	17.38%	+1.61%
2	1	•	Java	11.96%	-4.93%
3	3		Python	11.72%	+2.01%
4	4		C++	7.56%	+1.99%
5	5		C#	3.95%	-1.40%
6	6		Visual Basic	3.84%	-1.44%
7	7		JavaScript	2.20%	-0.25%
8	8		PHP	1.99%	-0.41%
9	18	*	R	1.90%	+1.10%
10	23	*	Groovy	1.84%	+1.23%

Jan 2022	Jan 2021	Change	Programming Language	Ratings	Change
1	3	^	Python	13.58%	+1.86%
2	1	•	G c	12.44%	-4.94%
3	2	•	🐇 Java	10.66%	-1.30%
4	4		C++	8.29%	+0.73%
5	5		C #	5.68%	+1.73%
6	6		VB Visual Basic	4.74%	+0.90%
7	7		JS JavaScript	2.09%	-0.11%
8	11	^	Asm Assembly language	1.85%	+0.21%
9	12	^	SQL SQL	1.80%	+0.19%
10	13	^	Swift	1.41%	-0.02%

Почему не Python?

Области применения языков программирования

Программирование микроконтроллеров

Веб разработка

Приложения для смартфонов

Научные исследования Разработка приложений

- · C
- Assembler

- PHP
- C#
- JavaScript

- Java
- Kotlin

- Python
- Matlab
- C++

- C++
- Java
- Python

Язык С применяется:

- Микроконтроллеры
- Интернет вещей
- Операционные системы
- Драйверы

Парадигмы программирования

- Структурная
- Процедурная
- Модульная
- ООП

• Функциональная

main

Настройка порта
Чтение данных
Запись данных в буфер
Чтение данных из буфера
Анализ данных
Открытие текстового файла
Запись данных
Закрытие текстового файла
Отправка сигнала завершения в
порт

Настройка порта

• • •

Анализ данных

...

Чтение данных

• • •

main

Открытие текстового файла

...

Запись данных в буфер

• • •

Запись данных

...

Чтение данных из буфера

..

Отправка сигнала завершения

• • •

Закрытие текстового файла

• • •

Работа с портом Настройка порта • • • Чтение данных • • • Отправка сигнала завершения •••

main

Анализ данных ...

Дерево языка

Дерево языка

Практическая часть

Работа с командной строкой

sab@SAB:.../Lesson1\$

Nº	Команда	Описание	Пример
0	man	Описание работы команды	man ls
1	pwd	Показать текущее местонахождение	~/SAB\$ pwd
			/home/user/SAB
2	Is	Позволяет просмотреть содержимое	~/SAB\$ Is
		текущего каталога	1 1.txt
3	cd <путь к директории>	Перейти в другую директорию	~\$ cd ~ /SAB/2 (полный путь)
			или
			~/SAB\$ cd 2 (короткий путь)
4	mkdir <название директории>	Создание директории	~/SAB\$ mkdir 1
5	touch <название файла>	Создание файла	~/SAB\$ touch 1.txt
6	nano <название файла>	Редактирование файла	~/SAB\$ nano 1.txt
7	ср <что_копировать куда_копировать>	Копирование файла	~/SAB/1\$ cp 1.txt ~/SAB/2
8	cp -r <путь_к_папке	Копирование директории	~/SAB/1\$ cp -r 1 ~/SAB/2
	путь_к_новому_месту>		
9	mv <что_переместить	Переместить файл	~/SAB/1\$ mv 1.txt ~/SAB/2
	куда_переместить>		
10	rm <название файла>	Удалить файл	~/SAB/1\$ rm 1.txt
11	rm -r <название файла>	Удалить директорию	~/SAB/1\$ rm -r 1

MILIM

Потренируемся

- 1. Откройте терминал Linux
- 2. Создайте директорию. Назовите ее «Task1»
- 3. Войдите внутрь директории
- 4. Создайте внутри нее еще две директории «Task1_1» и «Task1_2»
- 5. Войдите внутрь директории Task1_1
- 6. Создайте внутри ее файл с названием «File_1» и еще одну директорию «Task1_1_1»
- 7. Откройте созданный файл и запишите туда любую информацию. Закройте его
- 8. Скопируйте «File_1» и «Task1_1_1» в директорию «Task1_2»
- 9. Опуститесь на уровень ниже и удалите директорию Task1_1
- 10. Из данной директории переместите «File_1» в директорию «Task1»

Перенаправление ввода и вывода

Ввод и вывод распределяется между тремя стандартными потоками:

```
• stdin — стандартный ввод (клавиатура),- - 0
```

- **stdout** стандартный вывод (экран), 1
- **stderr** стандартная ошибка (вывод ошибок на экран). 2

```
< file — использовать файл как источник данных для стандартного потока ввода.
```

- > file направить стандартный поток вывода в файл (перезапись)
- 2> file направить стандартный поток ошибок в файл (перезапись)
- >>file направить стандартный поток вывода в файл (добавление)
- 2>>file направить стандартный поток ошибок в файл. (добавление)
- **&>file** или **>&file** направить с.п. вывода и с.п. ошибок в файл.

Перенаправление ввода и вывода

```
< file — использовать файл как источник данных для стандартного потока ввода.</p>
> file — направить стандартный поток вывода в файл (перезапись)
>> file — направить стандартный поток ошибок в файл (перезапись)
>> file — направить стандартный поток вывода в файл (добавление)
2>> file — направить стандартный поток ошибок в файл. (добавление)
& > file или > & file — направить с.п. вывода и с.п. ошибок в файл.
```

```
sab@SAB: /$ ps > 1.txt
sab@SAB: /$ cat 1.txt
sab@SAB: /$ ps >> 1.txt
sab@SAB: /$ ps qq > 1.txt
sab@SAB: /$ ps qq 2> 1.txt
```


Pipes (Каналы)

Каналы используются для перенаправления потока из одной программы в другую.

```
sab@SAB: /$ ps | grep p
```

sab@SAB: /\$ ps > 1.txt; ls >> 1.txt; cat 1.txt | grep a

Несколько полезных команд Linux

```
hexdump — показывает шестнадцатеричное представление данных, поступающих на стандартный поток ввода. cat — считывает данные со стандартного потока ввода и передает их на стандартный поток вывода. grep — возвращает только строки, содержащие (или не содержащие) заданное регулярное выражение. sudo - запуск программы от имени других пользователей, а также от имени суперпользователя. bc — калькулятор
```

sab@SAB: /\$ echo "10*10" | bc

sab@SAB: /\$ hexdump 1.txt

python3 — среда разработки Python

Спасибо за внимание!