CHAPTER 01

Trigonometry-II

Trigonometric Functions of Allied Angles

Two angles are said to be allied when their sum or difference is either 0 (zero) or an integral multiple of $\pi/2$.

The angles $-\theta$, $\frac{\pi}{2} \pm \theta$, $\pi \pm \theta$, $\frac{3\pi}{2} \pm \theta$, $2\pi \pm \theta$ etc., are angles

allied to the angle θ , if θ is measured in radians.

The trigonometric functions changes at allied angles which are given in the following table

Allied angle/ Trigonometric function	sin θ	cosec θ	cosθ	secθ	tan θ	cotθ	
- θ	$-\sin\theta$	-cosec θ	cosθ	sec 0	– tan θ	- cot θ	
$\pi/2-\theta$	cosθ	secθ	sin θ	cosec θ	cot 0	tan 0	
$\pi/2 + \theta$	cosθ	secθ	$-\sin\theta$	- cosec θ	-cot θ	-tan θ	
$\pi - \theta$	sin θ	cosec θ	- cos θ	- sec θ	-tan θ	-cot θ	
$\pi + \theta$	- sin θ	- cosec θ	- cos θ	- sec θ	tan θ	cot θ	
$3\pi/2-\theta$	-cos 0	- sec θ	- sin θ	– cosec θ	cot θ	tan 0	
$3\pi/2 + \theta$	-cos θ	- sec θ	sin θ	cosec θ	- cot θ	– tan θ	
$2\pi - \Theta$	- sin 0	-cosec θ	cosθ	sec 0	– tan θ	- cot θ	
$2\pi + \Theta$	sin 0	cosec 0	cosθ	sec θ	tan θ	cot θ	

- Trigonometric functions for $(2\pi \theta)$ and $(2n\pi \theta)$ are same as those for $(-\theta)$, where $n \in \mathbb{Z}$.
- * Trigonometric functions for $(2\pi + \theta)$ and $(2n\pi + \theta)$ are same as those for θ , where $n \in \mathbb{Z}$.

Trigonometric Functions of Some Useful Angles

Angle	0°/0	$30^{\circ}/\frac{\pi}{6}$	$45^{\circ}/\frac{\pi}{4}$	$60^{\circ}/\frac{\pi}{3}$	$90^{\circ}/\frac{\pi}{2}$	180*/π	$270^{\circ}/\frac{3\pi}{2}$	360°/ 2π
sin θ	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
cosθ	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1	0	1
tan 0	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	00	0	00	0
cot θ	00	√3	1	$\frac{1}{\sqrt{3}}$	0	00	0	00
sec θ	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	00	-1	00	1
cosec θ	00	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1	00	-1	00

Trigonometric Functions of Compound Angles

Compound angles are sum or difference of given angles. For any two angles *A* and *B*.

- (i) $\sin(A+B) = \sin A \cos B + \cos A \sin B$
- (ii) $\sin(A B) = \sin A \cos B \cos A \sin B$
- (iii) $\cos(A + B) = \cos A \cos B \sin A \sin B$
- (iv) $\cos(A B) = \cos A \cos B + \sin A \sin B$
- (v) $\tan(A+B) = \frac{\tan A + \tan B}{1 \tan A \tan B}$
- (vi) $\tan(A B) = \frac{\tan A \tan B}{1 + \tan A \tan B}$
- (vii) $\cot(A+B) = \frac{\cot A \cot B 1}{\cot A + \cot B}$
- (viii) $\cot(A B) = \frac{\cot A \cot B + 1}{\cot B \cot A}$

Trigonometric Functions of Multiple Angles

Angles of the form 2A, 3A, 4A etc. are integral multiple of A, these angles are called multiple angles and angles of the form $\frac{A}{2}$, $\frac{3A}{2}$ etc. are called submultiple angles of A.

Trigonometric Functions of Double Angles (2A)

For any angle A,

(i)
$$\sin 2A = 2\sin A \cos A = \frac{2\tan A}{1 + \tan^2 A}$$

(ii)
$$\cos 2A = \cos^2 A - \sin^2 A = \frac{1 - \tan^2 A}{1 + \tan^2 A} = 2\cos^2 A - 1$$

= 1 - 2\sin^2 A

(iii)
$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

Trigonometric Functions of Triple Angle (3A)

For any angle A,

(i)
$$\sin 3A = 3\sin A - 4\sin^3 A$$

(ii)
$$\cos 3A = 4\cos^3 A - 3\cos A$$

(iii)
$$\tan 3A = \frac{3\tan A - \tan^3 A}{1 - 3\tan^2 A}$$

Trigonometric Functions of Half Angles

For any angle A,

(i)
$$\sin A = 2\sin\frac{A}{2}\cos\frac{A}{2} = \frac{2\tan\frac{A}{2}}{1 + \tan^2\frac{A}{2}}$$

(ii)
$$\cos A = \cos^2 \frac{A}{2} - \sin^2 \frac{A}{2} = 1 - 2\sin^2 \frac{A}{2}$$

$$=2\cos^2\frac{A}{2} - 1 = \frac{1 - \tan^2\frac{A}{2}}{1 + \tan^2\frac{A}{2}}$$

(iii)
$$\tan A = \frac{2\tan\frac{A}{2}}{1-\tan^2\frac{A}{2}}$$

(iv)
$$\cot A = \frac{\cot^2 \frac{A}{2} - 1}{2\cot \frac{A}{2}}$$

(v)
$$\sin A = 3\sin\left(\frac{A}{3}\right) - 4\sin^3\left(\frac{A}{3}\right)$$

(vi)
$$\cos A = 4\cos^3\left(\frac{A}{3}\right) - 3\cos\left(\frac{A}{3}\right)$$

(vii)
$$\tan A = \frac{3\tan\left(\frac{A}{3}\right) - \tan^3\left(\frac{A}{3}\right)}{1 - 3\tan^2\left(\frac{A}{3}\right)}$$

Conversion of Sum or Difference into Product

For any angles C and D,

(i)
$$\sin C + \sin D = 2\sin \frac{C + D}{2}\cos \frac{C - D}{2}$$

(ii)
$$\sin C - \sin D = 2\cos\frac{C+D}{2}\sin\frac{C-D}{2}$$

(iii)
$$\cos C + \cos D = 2\cos\frac{C+D}{2}\cos\frac{C-D}{2}$$

(iv)
$$\cos C - \cos D = -2\sin\frac{C+D}{2}\sin\frac{C-D}{2}$$

Conversion of Product into sum or Difference

For any angles A and B,

(i)
$$2\sin A\cos B = \sin(A+B) + \sin(A-B)$$

(ii)
$$2\cos A\sin B = \sin(A+B) - \sin(A-B)$$

(iii)
$$2\cos A\cos B = \cos(A+B) + \cos(A-B)$$

(iv)
$$2\sin A \sin B = \cos(A-B) - \cos(A+B)$$

Trigonometric Functions of Angles of a Triangle

In $\triangle ABC$, $m \angle BAC = A$, $m \angle ABC = B$ and $m \angle ACB = C$

$$A+B+C=\pi$$

(i)
$$\sin(A+B) = \sin C$$

(ii)
$$\sin(B+C) = \sin A$$

(iii)
$$\sin(C + A) = \sin B$$

(iv)
$$\cos(A+B) = -\cos C$$

(v)
$$\cos(B+C) = -\cos A$$

(vi)
$$\cos(C + A) = -\cos B$$

(vii)
$$\sin \frac{(B+C)}{2} = \cos \frac{A}{2}$$

(viii)
$$\sin \frac{(C+A)}{2} = \cos \frac{B}{2}$$

(ix)
$$\sin \frac{(A+B)}{2} = \cos \frac{C}{2}$$

(x)
$$\cos \frac{(A+B)}{2} = \sin \frac{C}{2}$$

(xi)
$$\cos \frac{(B+C)}{2} = \sin \frac{A}{2}$$

(xii)
$$\cos \frac{(C+A)}{2} = \sin \frac{B}{2}$$