Signali i sustavi

Prvi međuispit (Grupa B) - 2. travnja 2007.

b) $(-1)^{j|t|}$ **c)** $\frac{1}{2}((-1)^{jt}-(-1)^{-jt})$ **d)** $\frac{1}{2}((-1)^{jt}+(-1)^{-jt})$ **e)** $(-1)^{jt}$ **f)** Ništa od navedenoga!

f) Ništa od navedenoga!

f) Ništa od navedenoga!

5. Zadan je diskretan signal $g: \mathbb{Z} \to \mathbb{R}$. Definiramo novi signal $f: \mathbb{Z} \to \mathbb{R}$ na sljedeći način: $\forall n \in \mathbb{Z}, f(n) = \sum_{k=-\infty}^{+\infty} g(n-kp),$

c) Periodičan je, $2\pi/5$.

d) Periodičan je, 10π .

1. Zadan je signal $x: \mathbb{R} \to \mathbb{C}$, $x(t) = (-1)^{j|t|}$. Odredite parnu komponentu signala.

2. Zadan je kontinuirani signal $x(t)=\sqrt{2}e^{j\pi t}\sin(t+\pi/3)$. Izračunajte njegovu snagu.

3. Zadan je signal $x(n) = n(\mu(n) - \mu(n-5))$. Energija tog signala je:

c) 30 **d)** 55 **e)** 91

b) 1/2 c) 1 d) 2 e) $+\infty$ f) Ništa od navedenoga!

b) Periodičan je, 10.

4. Zadan je diskretan signal $x(n) = \cos(n/5 + 1)$. Je li signal periodičan i koliki mu je temeljni period?

a) 0

a) 0

a) Signal nije periodičan!

e) Periodičan je, period je bilo koji cijeli broj.

	pri čemu je $p \in \mathbb{N}$. Kada je signal $f(n)$ periodičan? Izaberite najopćenitiji uvjet od ponuđenih uz pretpostavku da suma uvijek konvergira:
	 a) Za svaki diskretni periodički signal g. b) Za svaki diskretni harmonijski signal g. c) Za svaki diskretni signal g. d) Ne postoji takav g da bi f bio periodičan. e) Za konstantne diskretne signale g. f) Ništa od navedenoga!
6.	Zadan je kontinuiran sustav $S:[\mathbb{R}\to\mathbb{R}]\to[\mathbb{R}\to\{-1,0,1\}].$ Veza između ulaza i izlaza sustava dana je izrazom
	$y(t) = \begin{cases} -1, & u(t) < 0 \\ 0, & u(t) = 0 \\ 1, & u(t) > 0 \end{cases}$
	koji vrijedi $\forall t \in \mathbb{R}$. Izaberi točnu izjavu:
	 a) Sustav je linearan i bezmemorijski! b) Sustav je linearan i vremenski nepromjenjiv! c) Sustav je nelinearan i vremenski promjenjiv! d) Sustav je vremenski nepromjenjiv i bezmemorijski! e) Sustav je nelinearan i memorijski! f) Ništa od navedenoga.
7.	Zadan je sustav $y(n)=(1+\alpha)\sum_{m=0}^{n}\alpha^{m}u(n-m)$, pri čemu dani izraz vrijedi samo za $n\in\mathbb{N}_{0}$ i $\alpha\in(0,1)$. Koliko iznosi izlaz sustava u beskonačnosti ako na ulaz sustava dovedemo diskretnu jediničnu stepenicu?
	a) -1 b) 0 c) 1 d) 2 e) 3 f) Ništa od navedenoga!
8.	Zadan je diskretan sustav $y(n)=e^{j6\pi n}u(n)$. Koja je od ponuđenih tvrdnji točna:
	 a) Sustav je nelinearan i vremenski promjenjiv. c) Sustav je linearan i vremenski nepromjenjiv. d) Sustav je linearan i vremenski nepromjenjiv. e) Sustav je linearan i vremenski promjenjiv. f) Ništa od navedenoga!
9.	Odziv diskretnog LTI sustava na jediničnu stepenicu $\mu(n)$ je $y(n) = (n+2) \mu(n)$. Ukoliko s $h(n)$ označimo odziv sustava na Kroneckerov δ -impuls izračunajte koliko iznosi $\sum_{m=-\infty}^{n} h(m)$.
	a) $(n-2)\mu(n)$ b) $(n-1)\mu(n)$ c) $n\mu(n)$ d) $(n+1)\mu(n)$ e) $(n+2)\mu(n)$ f) Ništa od navedenoga!
10.	Zadan je diskretan linearan sustav S . Ako su poznati odzivi sustava $y_k(n)$ na pobudu $u_k(n) = \delta(n-k)$ za sve $k \in \mathbb{Z}$ za kakve sve ulazne signale možemo odrediti odziv sustava? Izaberite najopćenitiji uvjet od ponuđenih!
	 a) Na nikakve. b) Na proizvoljne periodične diskretne signale. c) Na proizvoljne harmonijske diskretne signale. d) Na proizvoljne konstantne diskretne signale. e) Na proizvoljne diskretne signale. f) Ništa od navedenoga!
11.	Odaberite linearan vremenski nepromjenjiv sustav:
	a) $y(t) = \sin(u(t))$ b) $y(t) = \sin(t)u(t)$ c) $y(t) = 3$ d) $y(t) = u(t-3)$ e) $y(t) = \sin(\frac{\pi}{2}u(t))$ f) Takav nije ponuđen!

- a) Prvi je memorijski sustav, a drugi nije. b) Prvi nije memorijski sustav, a drugi je.
- c) Oba su memorijski sustavi.
- d) Oba nisu memorijski sustavi.
- f) Ništa od navedenoga!

e) Na osnovi danih informacija ne možemo zaključiti jesu li memorijski.

- Konačni automat zadan je slikom. Na ulaz automata doveden je signal $u(n) = 0^k 1^m q^n$, gdje q može biti bilo 0 bilo 1. Oznaka 0^k znači da se znamenka 0 ponavlja k puta, dakle na ulaz automata dovodimo redom k nula, m jedinica te n nula ili jedinica. Kojeg je oblika izlaz iz sustava?
 - a) $0^k 10^{m+n-1}$

konačnog stanja

- **b)** $0^k 10^{m+n}$
- c) $0^k 10^{m+n-2}$
- **d)** $0^k 10^{m+n+1}$ **e)** $0^k 10^{m+n+2}$
- f) Ništa od navedenoga!

$$0/0\bigcirc A \xrightarrow{1/1} B \xrightarrow{1/0} \bigcirc \bigcirc \bigcirc \{0,1\}/1$$

- 14. Uređena petorka koja u potpunosti opisuje automat sastoji se od:
 - a) ulaza, izlaza, funkcije prijelaza, početnog stanja, konačnog stanja konačnog stanja c) ulaza, izlaza, početnog stanja, funkcije prijelaza
 - e) ulaza i izlaza f) Ništa od navedenoga!
- b) ulaza, izlaza, stanja, početnog stanja,
- d) ulaza, izlaza, stanja, funkcije prijelaza,
- Zadan je konačan deterministički automat za koji je $Ulazi = \{0,1\}$ i $Izlazi = \{B,A,N\}$. Tom automatu na ulaz
- dovodimo niz 0,1,0,1,0,1. Koji je minimalan broj stanja koje taj automat mora imati da bi na izlazu mogao dati niz B, A, N, A, N, A?
 - **a**) 2
- **b**) 3
- **c**) 4
- **d**) 5
- e) 6 f) Ništa od navedenoga!
- 16. Odziv diskretnog LTI sustava na jediničnu stepenicu je $y(n) = n \mu(n)$, pri čemu je $\mu(n)$ jedinična stepenica. Vrijednost impulsnog odziva u koraku 5 iznosi:
 - **a**) 1
- **b**) 2
- **d**) 6
- e) 7 f) Ništa od navedenoga!
- Zadan je diskretni signal $f: \mathbb{Z} \to \mathbb{R}$ kao $f(n) = \begin{cases} 1, & \text{za } n = 0, 1, 2 \\ 0, & \text{inače} \end{cases}$. Promatramo signal q(n) koji je definiran kao konvolucija q(n) = f(n) * f(n). Koliko iznosi q(2)?
- **b)** 1 **c)** 2 **d)** 3

- e) 4 f) Ništa od navedenoga!
- Zadan je LTI sustav opisan matricama $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{C} = \begin{bmatrix} 1 & 0 \end{bmatrix}$ i $\mathbf{D} = \begin{bmatrix} 0 \end{bmatrix}$. Koliko iznosi odziv nepobuđenog sustava uz početne uvjete $\mathbf{x}(0) = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$? Uputa: raspišite $A^n = A \cdot A \cdot A \cdot A$ i računajte $A \cdot A$, $A \cdot A \cdot A$ itd.
 - **a**) n

- c) 1 d) 1+n e) 2+n f) Ništa od navedenoga!
- Zadan je LTI sustav opisan matricama A, B, C i D. Koliko iznosi odziv stanja sustava?

- a) $\mathbf{y}(n) = \mathbf{C}\mathbf{A}^{n}\mathbf{x}(0) + \mathbf{D}\mathbf{u}(n) + \sum_{m=0}^{n-1}\mathbf{C}\mathbf{A}^{n-1-m}\mathbf{B}\mathbf{u}(m)$ b) $\mathbf{y}(n) = \mathbf{C}\mathbf{A}^{n}\mathbf{x}(0) + \sum_{m=0}^{n-1}\mathbf{C}\mathbf{A}^{n-1-m}\mathbf{B}\mathbf{u}(m)$ c) $\mathbf{y}(n) = \mathbf{D}\mathbf{u}(n) + \sum_{m=0}^{n-1}\mathbf{C}\mathbf{A}^{n-1-m}\mathbf{B}\mathbf{u}(m)$ d) $\mathbf{x}(n) = \mathbf{A}^{n}\mathbf{x}(0) + \sum_{m=0}^{n-1}\mathbf{A}^{n-1-m}\mathbf{B}\mathbf{u}(m)$ e) $\mathbf{x}(n) = \mathbf{A}^{n}\mathbf{x}(0) + \mathbf{D}\mathbf{u}(n) + \sum_{m=0}^{n-1}\mathbf{A}^{n-1-m}\mathbf{B}\mathbf{u}(m)$ f) Ništa od navedenoga!
- Zadan je LTI sustav opisan matricama $\mathbf{A} = \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{C} = \begin{bmatrix} 1 & 1 \end{bmatrix}$ i $\mathbf{D} = \begin{bmatrix} 1 \end{bmatrix}$. Ukoliko su početni uvjeti $\mathbf{x}(0) = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^T$ pronađite prve dvije vrijednosti u(0) i u(1) ulaznog signala tako da se sustav u koraku dva nađe u stanju $\mathbf{x}(2) = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$.

- a) $u(0) = -x_1 2x_2$, $u(1) = x_1 + x_2$ b) $u(0) = -2x_1 2x_2$, u(1) = 0 c) $u(0) = -x_1$, $u(1) = -x_2$ d) $u(0) = -2x_1$, $u(1) = -x_1$, $u(1) = -x_2$ f) Ništa od navedenoga!