

公有云与私有云的对比。

初创企业

IT 规模 不够大

新应用

公有

毫无特色的 应用

变幻莫测的 需求

隐私、安全

业务关键性应用

数据主权

私有

可预测的容量

足够的 IT 规模

大型数据集

这是个混合的世界

初创企业

IT 规模 不够大

新应用

公有

毫无特色的 应用

变幻莫测的

隐私、安全

业务关键性 应用

数据主权

私有

可预测的 容量 足够的 IT 规模

大型数据集

云的基础

Intel® Xeon® E5 v4 处理器

计算

高达 47% 的性能提升

ebay

自定义 SKU: 70% 吞吐量增加(查询/秒)¹

虚拟化

多达 88% 的延迟降低

Avx2:39%

基于云的图像处理性能提升2

内存容量

内存容量可扩展至 24 TB

Neusoft®

E52699v4:**20%** 医疗影像处理性能提升³

性能测试中使用的负载可能已经针对 Intel 微处理器进行了优化。性能测试采用特定的计算机系统、组件、软件、操作和功能进行评测。对这些因素的任何改变都会导致结果变化。您应参考其他信息和性能测试来帮助您全面评估您打算采购的产品,包括该产品与其他产品一起使用时的性能。要了解更全面的信息,请访问http://www.intel.com/performance

- 1. 截至 2016 年 3 月 16 日 , v3. O_AVX2 金融服务负载的双 CPU 显示 , 使用单节点、双 Intel® Xeon® E5-2699 v4 处理器比单节点、双 Intel® Xeon® E5-2699 v3 处理器速度快达 47%
- 2. 基于模型估算。测试结果经过了 Intel 基于软件、基准测试或其他第三方的数据进行了估算或模拟,仅供参考。
- B. 测试由 Intel 在 Intel® Xeon® 处理器 E5-2699 v4 + OPA 与 Intel® Xeon® 处理器 E5-2699 v3 + OPA 进行
- 4. 测试性能

使用 TDE、Intel AES-Ni 搭配 Intel Xeon E5 和 E7 处理器系列时加密和解密性能提升高达 300% 🕠

其他名称和品牌可能是其他公司的财产。

信息来源:http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/enterprise-security-data-encryption-xeon-e5-e7-dupont-whitepaper.pdf

高级虚拟化技术 Intel 安全容器

容器A 容器 B 应用 应用 中间件 中间件(C) 中间件(A) 与 A 共享) Linux* 内核 Linux 内核 Intel® VT-x Intel® VT-x Linux 内核 服务器硬件

高级虚拟化技术 Intel 资源调配技术

采用 Intel 资源调配技术

整合所有要素机器学习革命

利用 Xeon 和 Xeon Phi 通用 架构

提供一致的 IA 编程模型和成熟 的软件生态体系

Intel 数学内核库 深度神经网络(MKL-DNN) 数据分析加速库(DAAL)

实现领先的性能 和总拥有成本

