Recurrent Neural Network (RNN)

Example Application

• Slot Filling

Example Application

Solving slot filling by Feedforward network?

Input: a word

(Each word is represented as a vector)

若使用一般的 Feedforward Network 來解決 Slot Filling 問題:輸入一個詞彙,輸出即是詞彙屬於每一個 Slot 的機率

前提:必須將輸入的詞彙用「Vector」表示,才能丟進 Neural Network 中!

1-of-N encoding

How to represent each word as a vector?

1-of-N Encoding lexicon = {apple, bag, cat, dog, elephant}

The vector is lexicon size. apple = $\begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$

Each dimension corresponds $bag = [0 \ 1 \ 0 \ 0]$

to a word in the lexicon $cat = [0 \ 0 \ 1 \ 0]$

The dimension for the word $dog = [0 \ 0 \ 1 \ 0]$

is 1, and others are 0 elephant $= [0 \ 0 \ 0 \ 1]$

Beyond 1-of-N encoding

w = "Sauron"

Dimension for "Other"

apple 0 0 0 cat 0 0 dog 0 0 elephant 0 i 1

w = "Gandalf"

Word hashing

Example Application

Solving slot filling by Feedforward network?

Input: a word

(Each word is represented as a vector)

Output:

Probability distribution that the input word belonging to the slots

Example Application time of dest departure \mathcal{Y}_1 \mathcal{Y}_2 arrive 2nd Taipei November on dest other other time time Problem? 2nd **November** leave Taipei on place of departure Neural network Taipei X_2

needs memory!

Recurrent Neural Network (RNN)

Input sequence:
$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} \dots \dots$$

Example output sequence: $\begin{bmatrix} 4 \\ 4 \end{bmatrix}$

Input sequence:
$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} \dots \dots$$

Example

output sequence: $\begin{bmatrix} 4 \\ 4 \end{bmatrix} \begin{bmatrix} 12 \\ 12 \end{bmatrix} \begin{bmatrix} 32 \\ 32 \end{bmatrix}$

RNN

The same network is used again and again.

Of course it can be deep ...

Elman Network & Jordan Network

Bidirectional RNN

Long Short-term Memory (LSTM)

Original Network:

➤ Simply replace the neurons with LSTM 實際上,一個 LSTM Cell 就是原本的 Neural a_2 a_1 Network 中的一個 Neuron Z_2 Input X_1 X_2

這是一個 Hidden Layer,裡面有很多 **LSTM** Neuron,每一個 Neuron 都是一個 LSTM Cell f Output Gate c^{t-1} vector Input Gate Input Gate Block 4 vectors

LSTM 定則是可以一起運算的

LSTM

Extension: "peephole"

