Week 2

- Last week, we talked broadly about the statistical difficulties inherent in an omics project
- This week, we will look at how to do a two-class comparison to generate a list of differentially expressed genes. . . and why a two-class comparison isn't always the best way to interrogate transcriptomic data

Differentially Expressed Genes

- Researchers default to t-test for two class-comparisons or a fold-change cut-off
- What might be some the problems using a student's T-test?
 Or a fold-change cut-off of two? 1.5?

Differentially Expressed Genes

<u>BMC Bioinformatics</u>. 2012; 13(Suppl 2): S11. Published online 2012 Mar 13. doi: <u>10.1186/1471-2105-13-S2-S11</u> PMCID: PMC3305783 PMID: 22536862

Fold change and p-value cutoffs significantly alter microarray interpretations

Mark R Dalman, ^{⊠1} Anthony Deeter, ² Gayathri Nimishakavi, ² and Zhong-Hui Duan ²

Differentially Expressed Genes

- ► Arbitrary fold-change cut-offs are acceptable... but only as dimensionality reduction
- T-tests assume:
 - Normal distribution are there any reasons you would expect genes NOT to be normally distributed?
 - Independence do genes vary independently?
 - A reliable estimate of variability
 - Question: Can you get statistical significance from a microarray or an RNASeq study with two replicates? Why do you need a reliable estimate of variability?

Always Log Transform Your Data

- Always log transform your data
- Gene expression data are heavily skewed half of the genes typically have a fold-change between 0 and 1, and the other half between 1 and infinity
- Never use a parametric test on non-transformed data

T-test

- Estimating variability is difficult with very few samples
- Limma avoids this problem by (1) estimating the average variance of all genes as the expected variance and (2) this information is used in a Bayesian estimate of the variability o a given gene/transcript
- Available as a package in R as well as implemented in GEO2R

Volcano Plots

Volcano plots allow you to quickly to look at both biological and statistical significance

> Wang et al. BMC Medical Genomics 2012, 5:21 http://www.biomedcentral.com/1755-8794/5/2

RESEARCH ARTICLE

Open Access

Genes associated with MUC5AC expression in small airway epithelium of human smokers and non-smokers

Guoqing Wang^{1,5*}, Zhibo Xu^{1,2}, Rui Wang¹, Mohammed Al-Hijji¹, Jacqueline Salit¹, Yael Strulovici-Barel¹, Ann E Tilley^{1,3}, Jason G Mezey^{1,4} and Ronald G Crystal^{1,3}

Bennet CM, Baird AA, Miller MB, and Wolford GL. (2009). Neural Correlates of Interspecies Perspective Taking in the Post-Mortem Atlantic Salmon: An Argument For Proper Multiple Comparisons Correction. Journal of Serendipitous and Unexpected Results 1(1):1-5.

GLM RESULTS

A *t*-contrast was used to test for regions with significant BOLD signal change during the photo condition compared to rest. The parameters for this comparison were t(131) > 3.15, p(uncorrected) < 0.001, 3 voxel extent threshold.

Several active voxels were discovered in a cluster located within the salmon's brain cavity (Figure 1, see above). The size of this cluster was 81 mm^3 with a cluster-level significance of p = 0.001. Due to the coarse resolution of the echo-planar image acquisition and the relatively small size of the salmon brain further discrimination between brain regions could not be completed. Out of a search volume of 8064 voxels a total of 16 voxels were significant.

Correcting for multiple-testing in multi-arm trials: is it necessary and is it done?

James M S Wason, Lynne Stecher, and Adrian P Mander

Bonferroni

- Simplest approach
- Very conservative you simple divide your p-value by the number of tests
- ► Bonferroni test compares the **Family-wise error rate** (FWER) -> assuming all the variables have identical distribution in the two groups, what is the probability that you really have some significant differences
- Rarely used in trancriptomics

Benjamini-Hochberg

- ▶ Benjamini-Hochberg correction controls the **False discovery** rate (FDR) expected proportion of false positives among the variables for which you claim the existence of a difference.
- ► For example, if with FDR controlled to 5%, 20 tests are positive, "in average" only 1 of these tests will be a false positive. Consists
 - Put the individual p-values in ascending order.
 - Assign ranks to the p-values.
 - ► BH critical value (i/m)Q, i = the individual p-value's rank, m = total number of tests, Q = the false discovery rate
 - ► Highest uncorrected p-value below critical value is cut-off

Variable	P Value	Rank	(I/m)Q
Depression	0.001	1	0.01
Family History	0.008	2	0.02
Obesity	0.039	3	0.03
Other health	0.041	4	0.04
Children	0.042	5	0.05
Divorce	0.060	6	0.06
Death of Spouse	0.074	7	0.07
Limited income	0.205	8	0.08

https://www.statisticshowto.datasciencecentral.com/wp-content/uploads/2015/10 bh2.pngto.datasciencecentral.com/wp-content/uploads/2015/10/bh2.png

Regardless of method chosen - there is always a trade-off.

Increasing the dimensionality can reduce your power: If you are looking for a small number of genes, you simply cannot see it with 30,000 comparisons.

► How do you detect meaningful clusters?

GOOD HEATMAP vs BAD HEATMAPS

GOOD HEATMAP vs BADHEATMAP

ou i

F

Thinking beyond the t-test

- Dose-response and time-course data should be analyzed in different ways
- Usually you should avoid ANOVA
- More powerful approach is to look for linear trends in the data

Thinking beyond the t-test

- Gene-by-gene test of statistical significance is not always the best way to analyze data
- A list of genes DE genes is not, in and of itself, that informative.
- It's also not reproducible

GEMS (Gene Expression Metasignatures), a Web Resource for Querying Meta-analysis of Expression Microarray Datasets: 17β-Estradiol in MCF-7 Cells

Scott A. Ochsner, David L. Steffen, Susan G. Hilsenbeck, Edward S. Chen, Christopher Watkins and Neil J. McKenna

DOI: 10.1158/0008-5472.CAN-08-3492 Published January 2009

Table 2.

Genes with a combined q value of <0.05 identified by the meta-analysis

NOTE: Genes are binned according to a number of different individual dataset FC criteria, ranging from no FC criteria to FC of ≥2 in all underlying datasets. Full gene list
 provided in Supplementary Table T2. NA, not applicable.

# of independent datasets with Meta-analysis			
FC of >2.0	Early	Late	
_	2,313	4,144	
1	526	1,213	
2	140	516	
3	67	321	
4	20	118	
5	6	29	
6	NA	5	
7	NA	0	

Thinking beyond the t-test

- List of differential genes leave a lot of information on the table for example:
 - ► If you have 20 genes with a fold change of + 1.5 on the DNA damage repair pathway, but only 7 of them had an FDR < .05 - do the other 13 genes have something important to tell you? Why or why not?
 - Gene expression data has a lot of information which can be exploited with techniques from machine learning

Machine-learning vs statistics

- Classical statistics asks is the difference in these two groups there by chance?
- Machine-learning asks what is the pattern in this data telling me? Can include
 - Class-discovery Can I use transcriptomics to classify cancer vs non-cancer tissue?
 - Network approaches what is the correlation in genes telling me about regulation?

Group Projects

- Use GEO2R to generate a list of differentially expressed genes
- Correct for multiple hypothesis testing Bonferonni and BH, compare the list of genes between uncorrected, Bonferonni, and BH
- Do you think this list of genes is worth further study? Be prepared to discuss.
- Think about whether you want to continue with this data set!

Project

- Analyze a data set for differentially expressed genes, look for pathway differences, and explore possible regulatory mechanisms.
- Synthesize the results and compare to the published conclusions

Remember. . .

"Statistics means never having to say you're certain!"