重庆市育才中学 2022 年 联合模拟

题目名称	二进制位	可爱赢数	最小生成链	求求求求	星际战争
输入输出文件名	bit.in/out	number.in/out	msc.in/out	query.in/out	war.in/out
时间限制	1.0 秒	1.0 秒	1.0 秒	1.0 秒	1.0 秒
空间限制	256 MB	256 MB	256 MB	256 MB	256 MB
测试点数目	50	20	25	10	20

- 额外编译指令为 -std=c++14 -02 -lm , 不需要为每道题目建立子文件夹。
- 样例文件均在随题面下发的 down 目录下,不一定提供规模较大的样例。
- 请一定注意时间的把控以及程序正确性的检查。

你可能需要用到的快速读入与快速输出模板,调用 read() 会返回一个读入的 int 类型的整数,调用 write(x) 可以输出一个 int 类型的非负整数:

```
inline int read(){
    int x=0,f=1;
    char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
    return x*f;
}
int stk[30],tp;
void write(int x){
    do stk[++tp]=x%10,x/=10;while(x);
    while(tp)putchar(stk[tp--]^48);
}</pre>
```

题目描述

给定整数 n,k,求最小的正整数 m 满足 $n=\sum_{i=1}^m(2^{p_i}+k)$ 或报告其不存在,其中 $p_{1\cdots m}$ 是一个由你决定的任意非负整数序列。

输入格式

第一行两个整数 n,k。

输出格式

若存在合法的 m,则输出一行一个整数表示最小的 m,

样例输入与输出

见 down/bit 目录下的样例文件。

数据规模与约定

对于 100% 的数据满足 $1 \le n \le 10^9$, $-1000 \le k \le 1000$, 不捆绑测试。

#可爱赢数(number)

题目描述

如果一个正整数满足 x = an + b (a, b) 为给定的常数,n 为任意正整数),则称 x 为「赢数」。 如果一个赢数不能被除了自己以外的任何赢数整除,则称这个数为「可爱赢数」。 请求出前 m 小的「赢数」中有多少个「可爱赢数」。

输入格式

一行三个整数 m, a, b。

输出格式

一行一个整数表示答案。

样例输入与输出

见 down/number 目录下的样例文件。

数据规模与约定

对于 20% 的数据, $1 \le m \le 1000$ 。

对于 100% 的数据, $1 \le m, a, b \le 10^6$ 。

#最小生成链 (msc)

题目描述

定义一张图的生成链是原图的一棵生成树,且这棵树退化成一条链。我们称一条生成链是原图的最小生成链,当且仅当它当中边权最大的边是原图的所有生成链中最小的。

现有一个 n 个点的完全图,点编号为 1 到 n。另给出一个长度为 n 的序列 a_i ,完全图中第 i 个点与第 j 个点间的边的边权为 $a_i \oplus a_j$,其中 \oplus 表示异或运算。

请你找出该完全图的最小生成链。但由于答案可能很多,你只需要输出这条最小生成链中边权最大的边的边权即可。

输入格式

第一行输入一个正整数 n,表示这个完全图的点数。第二行输入 n 个非负整数 a_i ,表示这个序列。

输出格式

输出一行一个非负整数 w,表示这条生成链中边权最大值。

样例输入与输出

见 down/msc 目录下的样例文件。

数据规模与约定

对于 20% 的数据, $n \leq 8$;

对于 40% 的数据, $n \le 17$;

对于 60% 的数据, $n < 10^3$;

对于另外 20% 的数据, $a_i \in [0,1]$;

对于 100% 的数据, $2 \le n \le 2 \times 10^5$, $0 \le a_i < 2^{60}$ 。

求求求求 (query)

题目描述

给定矩阵 $C_{n\times n}$, 求:

$$f_k = \sum_{i=1}^{n-k+1} \sum_{j=1}^{n-k+1} \left(\max_{i \leq x \leq i+k-1} \max_{j \leq y \leq j+k-1} C_{x,y}
ight)$$

即 f_k 是所有大小为 $k \times k$ 的子矩阵中元素最大值之和,但是数据忘记造 k 了,所以请你对于 $1 \le k \le n$ 求出每个整数 k 的 f_k 。而且矩阵太大了,输入在时限内完成不了,所以只给你两个正整数数列 $A_{1\cdots n}, B_{1\cdots n}$,你需要自己生成矩阵 C,其中对于 $1 \le x,y \le n$, $C_{x,y} = A_x \times B_y + x \times B_y + A_x \times y + x \times y$ 。

输入格式

第一行一个整数 n,第二行 n 个整数 $A_{1\cdots n}$,第三行 n 个整数 $B_{1\cdots n}$ 。

输出格式

一行 n 个整数, 第 k 个整数表示 f_k 对 $10^9 + 7$ 取模后的值。

样例输入与输出

见 down/query 目录下的样例文件。

数据规模与约定

对于 30% 的数据, $n \le 50$;

对于 50% 的数据, $n \le 3 \times 10^3$;

对于 100% 的数据, $1 \le n \le 10^5$, $1 \le A_i, B_i \le 10^9$ 。

题目描述

你是一名优秀的星际指挥官。

某天,你开始检视星际地图,由于你数学很好,所以你定义了一张有许多性质的地图,编号为i的星系会向编号为i的真约数的星系连边。毫无悬念的,你发动了一场战争。你能够通过跃迁到达敌国任意一个地方。但跃迁引擎需要冷却,跃迁只能用一次。

你会直接占领跃迁到的星系,然后向外占领其他星系。一个星系 u 能攻占星系 v 当且仅当存在星系 u 向星系 v 的直接连边;你能占领星系 v 当且仅当存在一个星系 u 你已占领且星系 u 能攻占星系 v (跃迁到的星系除外)。当然,一个星系无法被重复占领,攻占它的星系是唯一的(跃迁到的星系 被直接占领,而不被任何星系攻占)。

但由于你非常强,不满足于占领所有星系,所以给自己占领的星系加了些限制: 由一个星系攻占的所有星系的编号要两两互质。

打完战争后,所有占领的星系间的单向边都被打通成双向边了。但由于你的兵力不足,不能将所有占领的星系都派军镇守。一个星系能派军镇守当且仅当它已占领。又为了保证领土安全,你想到了一个绝佳的主意:派军镇守的星系间不能有直接连边。

派军镇守星系i有收益 a_i ,你想知道能获得的最大收益。

形式化地: 给定 n,定义一个有向图 G,G 中存在一条有向边 (i,j) 当且仅当 j|i 且 $i \neq j$ 。 对于第 i 个点,点权为 a_i 。定义一颗外向树的权值为这颗外向树的点权最大独立集(外向树为空时权值为 0)。 规定外向树 T 是合法的当且仅当所有深度相同的节点的编号两两之间互质。 求所有 G 的联通子图的合法外向生成树 T 的最大权值(子图可以为空集)。

外向树的定义是一棵有根树,满足所有边都是由父亲指向儿子的有向边。

独立集的定义是集合内每两个点之间都没有边,点权最大独立集是点权之和最大的一个独立集。

输入格式

第一行包含一个正整数 n。

第二行包含 n 个整数 $a_{1\cdots n}$ 。

输出格式

输出包含一行一个整数,表示最大权值。

样例输入与输出

见 down/war 目录下的样例文件。

数据规模与约定

对于所有的数据,有 $1 \le n \le 10^6$, $|a_i| \le 10^9$ 。

测试点	n	特殊性质 A	特殊性质 B
1,2	≤ 16		
3,4	≤ 500		
5, 6, 7, 8	$\leq 10^5$		
9	$\leq 10^5$	是	
10	$\leq 10^5$		是
11, 12	$\leq 10^6$		
13, 14	$\leq 10^6$		
15, 16, 17, 18	$\leq 10^6$		
19	$\leq 10^6$	是	
20	$\leq 10^6$		是

- 特殊性质 A: 对于所有 $1 \le i \le n$, 有 $a_i = 1$ 。
- 特殊性质 B: 对于所有 $1 \le i \le n$, 有 $a_i = i$ 。