

planetmath.org

Math for the people, by the people.

proof of the power rule

Canonical name ProofOfThePowerRule
Date of creation 2013-03-22 12:28:06
Last modified on 2013-03-22 12:28:06
Owner mathcam (2727)

Last modified by mathcam (2727)

Numerical id 9

Author mathcam (2727)

Entry type Proof

Classification msc 26A24
Related topic ProductRule
Related topic Derivative2

The power rule can be derived by repeated application of the product rule.

Proof for all positive integers n

The power rule has been shown to hold for n = 0 and n = 1. If the power rule is known to hold for some k > 0, then we have

$$\frac{d}{dx}x^{k+1} = \frac{d}{dx}(x \cdot x^k)$$

$$= x\left(\frac{d}{dx}x^k\right) + x^k$$

$$= x \cdot (kx^{k-1}) + x^k$$

$$= kx^k + x^k$$

$$= (k+1)x^k$$

Thus the power rule holds for all positive integers n.

Proof for all positive rationals n

Let $y = x^{p/q}$. We need to show

$$\frac{\mathrm{d}y}{\mathrm{d}x}(x^{p/q}) = \frac{p}{q}x^{p/q-1} \tag{1}$$

The proof of this comes from implicit differentiation.

By definition, we have $y^q = x^p$. We now take the derivative with respect to x on both sides of the equality.

$$\frac{\mathrm{d}}{\mathrm{d}x}y^{q} = \frac{\mathrm{d}}{\mathrm{d}x}x^{p}$$

$$\frac{\mathrm{d}}{\mathrm{d}y}(y^{q})\frac{\mathrm{d}y}{\mathrm{d}x} = px^{p-1}$$

$$qy^{q-1}\frac{\mathrm{d}y}{\mathrm{d}x} = px^{p-1}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{p}{q}x^{p-1}$$

$$= \frac{p}{q}x^{p-1}y^{1-q}$$

$$= \frac{p}{q}x^{p-1}x^{p(1-q)/q}$$

$$= \frac{p}{q}x^{p-1+p/q-p}$$

$$= \frac{p}{q}x^{p/q-1}$$

Proof for all positive irrationals n

For positive irrationals we claim continuity due to the fact that (??) holds for all positive rationals, and there are positive rationals that approach any positive irrational.

Proof for negative powers n

We again employ implicit differentiation. Let u = x, and differentiate u^n with respect to x for some non-negative n. We must show

$$\frac{\mathrm{d}u^{-n}}{\mathrm{d}x} = -nu^{-n-1} \tag{2}$$

By definition we have $u^n u^{-n} = 1$. We begin by taking the derivative with respect to x on both sides of the equality. By application of the product rule we get

$$\frac{\mathrm{d}}{\mathrm{d}x}(u^n u^{-n}) = 1$$

$$u^n \frac{\mathrm{d}u^{-n}}{\mathrm{d}x} + u^{-n} \frac{\mathrm{d}u^n}{\mathrm{d}x} = 0$$

$$u^n \frac{\mathrm{d}u^{-n}}{\mathrm{d}x} + u^{-n}(nu^{n-1}) = 0$$

$$u^n \frac{\mathrm{d}u^{-n}}{\mathrm{d}x} = -nu^{-1}$$

$$\frac{\mathrm{d}u^{-n}}{\mathrm{d}x} = -nu^{-n-1}$$