

DATA STRUCTURES & ALGORITHMS

Lecture 3: Searching

Lecturer: Dr. Nguyen Hai Minh

- Searching Problem Introduction
- Searching Algorithms:
 - Sequential/Linear search
 - Binary search
- Exercises
- Conclusion

Definition:

- Finding an item with specified properties among a collection of items
- Finding the position of an element with a specific value (key) among a collection of elements.
- Finding a record in a database.

- Why searching?
 - Searching is a very popular operation in computing.
 - The need of an application:

- Big amount of data:
 - → The need of fast search algorithms.
 - → Faster in case the data has been sorted. (Example: dictionary, books in library, ...)
- Local search algorithms (search in memory):
 - Sequential/ Linear Search
 - Binary Search

6

Sequential Search - Idea

- Brute-force approach (Exhaustive search)
 - Compares successive elements of a given list with a given search key until either a match is encountered (successful search) or the list is exhausted without finding a match (unsuccessful search)
- Extra trick: using a sentinel
 - Append the search key to the end of the list
 - → Eliminate the end of list check altogether.

Sequential Search - Algorithm

SEQUENTIAL-SEARCH(A[0n-1], key) //Input: An array A[0n - 1] of integers and a key to search	Cost times
//Output: position of key in array A or -1 if key is not in A	
1 for i ← 0 to n − 1 do	
2 if A[i] = key	C(n)
3 return i	
4 return -1	

Sequential Search Analysis

- 1. Input size: n
- 2. Basic operation: key comparison A[i] = key
- 3. The number of key comparisons depends on the nature of the input.
- 4. Sum of basic operations:
 - Best-case:
 - $\square A[0] = key \rightarrow C(n) = 1 \in O(1)$
 - Worst-case:
 - \square key is not in $A \rightarrow C(n) = n \in O(n)$
 - Average-case:
 - \square key is among A[0] and $A[n-1] \rightarrow C(n) = \frac{n+1}{2} \in O(n)$
- 5. Order of growth: O(n)

Sequential Search - Idea

□ Idea: Brute-force approach

- Compare key with each element in A until we find key in A or reach the end of A.
- **Example:** $A = \{1, 25, 6, 5, 2, 37, 40\}, key = 6$

Return 2

In the exhaustive search, there is a comparison operation inside the iteration to detect the end of the array:

```
for (int i=0; i < n; i++)
```

This comparison can be omitted using a "sentinel":

Sentinel value

- A special value that signals the end of a loop.
 - Sentinel loop: repeats until a sentinel value is seen.
- Example: A program that prompts the user for an integer input until the user types "0", then output the total numbers inputted.
 - Enter a number (or 0 to exit): 12
 - Enter a number (or 0 to exit): 23
 - Enter a number (or 0 to exit): 0
 You have inputted 2 numbers.

sentinel

Also called flag, trip, rogue, signal value or dummy data.

14

Sentinel loop – Example

```
void IntegerInput()
{
   int num;
   int count = -1;
   do{
      cout << "Enter a number (or 0 to exit):");</pre>
       cin >> num;
       count++;
   }while(num != 0);
   cout << "The total inputted number is: " << count;</pre>
}
```


- Sentinel in Sequential search:
 - An element that has the same value with key.
 - Put at the end of the array.

□ Idea:

- Continue search until key is found at A[i]
 - \square If i < n: the search key appear in A.
 - \square If i = n: the search key is not in A.

 \square Example: $A = \{1, 25, 5, 2, 37\}, key = 6 (n=5)$

i=0

25 5 2 37 6

i=2

1 25 5 2 37 6

1 25 5 2 37 6

i=4

1 25 5 2 37 6

i=5

1 25 5 2 37 6

fit@hcmus	
-----------	--

SEQUENTIAL—SEARCH2(A[0n—1], key) //Input: An array A[0n—1] of integers and a key to search //Output: position of key in array A or -1 if key is not in A		Cost times
1	A[n] ← key	
2	while <mark>A[i] ≠ key</mark> do	C(n)
3	i ← i + 1	
4	<pre>if i < n</pre>	
5	return i	
6	else return -1	

■ Worst-case:

$$C(n) = n + 1 \in O(n)$$

- Experimental results show that with a sufficient large n, sequential search with a sentinel is faster than the original sequential search.
 - n=15000: 20% faster (0.22s vs 0.28s)

→ Why?

Sequential Search – Conclusion

- Sequential search provides an excellent illustration of the brute-force approach
 - Pros: Simple to implement
 - Cons: Slow!
- However, it is affected by the order of input elements
 - → A general search approach for any kind of array.

Binary Search

- Is a sequential search on an already sorted array faster than an unsorted array?
- □ Binary search: take the advantage of the elements that are in order to narrow the search range.
 - Example: Look for "Harry" in the sorted contact list:

	_			
1	Andy			
2	Bobby			
3	Cathy			
4	David	Discard		
5	Ellen			
6	Fred			
7	George			
8	Harry	Harry	Harry	Found!
9	Helen	Helen	Helen	
10	James	James		
11	Kate	Kate	D:d	
12	Loren	Loren	Discard	
13	Will	Will		

Binary Search

- Look for "Harry" in the sorted contact list:
 - The search is dramatically reduced:
 - each time reduce ½ of search size

1	Andy			
2	Bobby			
3	Cathy			
4	David	Discard		
5	Ellen			
6	Fred			
7	George			
8	Harry	Harry	Harry	Found!
9	Helen	Helen	Helen	
10	James	James		
11	Kate	Kate	Diagonal	
12	Loren	Loren	Discard	
13	Will	Will		

Binary Search - Idea

Decrease-and-conquer approach:

→ Decrease by a constant factor

Let left = 0, right = n-1, mid = (left+right)/2

- 1. If *left > right*: stop the search, *key* is not in the array *A*.
- 2. Compare *key* with *A*[*mid*].
 - 2.1 If key = A[mid]: return mid.
 - 2.2 Else if key < A[mid]: search for key on the left half array. (right = mid-1, go to step 1 again)
 - 2.3 Else: search for *key* on the right half array. (*left = mid*+1, go to step 1 again)

24

Binary Search – Algorithm

```
BINARY-SEARCH2(A[0...n-1], key)
                                                                 Cost times
//Input: An array A[0..n - 1] of sorted integers and a search
key
//Output: position of key in array A or -1 if key is not in A
     1 \leftarrow 0
   r \leftarrow n - 1
    while l ≤ r do
        m \leftarrow (l + r)/2
         if A[m] = key
5
                                                                     C(n)
6
             return m
         else if key < A[m]
             r \leftarrow m - 1
         else l \leftarrow m + 1
10
    return -1
```


Binary Search Analysis

- For simplicity, we count the so-called three-way comparisons.
- This assume that after one comparison of key with A[m], the algorithm can determine whether key is smaller, equal to, or larger than A[m]
- Number of comparisons depends not only on n but also on the specifics of the problem.
- □ Worst case: $C_{worst}(n) = C_{worst}(\lfloor n/2 \rfloor) + 1$ for n > 1, $C_{worst}(1) = 1$.
 - \rightarrow Solving this recurrence for $n = 2^k$ gives:

$$C_{worst}(n) = \lfloor \log_2 n \rfloor + 1 = \lceil \log_2(n+1) \rceil.$$

 \square Order of growth: $O(\log_2 n)$

Binary Search – Analysis

- □ Each time searching is performed, the size of the array reduces ½.
- How many iterations are executed before left > right?
 - After 1st iteration: n/2 elements remaining.
 - After 2nd iteration: n/4 elements remaining.
 - After k^{th} iteration: $n/2^k$ elements remaining.
 - Worst case: when $n/2^k \ge 1$ and $n/2^k+1 < 1$
 - $\rightarrow \log_2 n 1 < k \le \log_2 n \rightarrow O(\log_2 n)$

Binary Search – Analysis

- ☐ Best-case: O(1)
- \square Average-case: $O(\log_2 n)$
- \square Worst-case: $O(\log_2 n)$

 $A[mid] = key \rightarrow return mid$

left right mid

31

left

mid

right

left > right → return -1

right nhminh@FIT

left

Binary Search – Conclusion

☐ Pros:

- Take use of the order of the elements in the array to reduce the search area.
- Very fast!

☐ Cons:

- The array must be sorted first.
- Need to consider the sorting time.

Sequential Search vs Binary Search

■ Worst-cases:

	#Basic operation	
n	Sequential search	Binary search
100.000	100.000	16
200.000	200.000	17
400.000	400.000	18
800.000	800.000	19
1.600.000	1.600.000	20

37

Conclusion

- When choosing between binary and sequential search, you must take into consideration the requirement that binary search needs a sorted array as input.
- □ If the program requires the data in the array to change often, you will need to sort the array again if its elements have changed prior to doing another search.

Conclusion

- □ Sequential search is good:
 - For arrays with a small number of elements
 - When you will not search the array many times
 - When the values in the array will be changed
- □ Binary search is good:
 - For arrays with a large number of elements
 - When the values in the array are less likely to change (cost of maintaining sorted order)

What's next?

□ After today:

- Read textbook 3 3.2 & 4.4
- Do Homework 3

■ Next week:

- Individual Assignment 2 (topic: Sorting & Searching)
- Lecture 4: Data Structures
 - Basic Concepts
 - Linked List, Stack, Queue Review
 - Hash Table

