

RNA Repeat Data SSR of AM

Aditya Jasuja Minjian Li CPTS_575 Data Science

Introduction

Anaplasma Marginale(AM)

Blood parasite in cattle

Losing weight

Jaundice

Pyrexia

Anemia

(From https://news.okstate.edu/articles/veterinary-medicine/2018/five-things-you-should-know-about-anaplasmosis-this-fall.html)

Causing great impact of cattle production

Approaches

- Bag-of-Words
- N-gram Model
- Longest Common Subsequence
- Alphabetical Counter
- Length-based
- K-mers

Bag-of-Words

Bag of words simply breaks apart the words into individual words count statistics

N-gram Model

Take a subsequence of genetic code in sample M as an example

Longest Common Subsequence

It is a sequence that can be derived from another sequence by deleting some elements without changing the order of the remaining elements.

Alphabetical Counter

Length-based

Counting the length of each sequence, and use it as features

K-mers (K = 3)

```
ads
dss
dss
ssl
sla
lag
agg
agg
...adsslagg...
```


Feature Selection

Approaches

Zero- and Near Zero-Variance Predictors

Removing Highly Correlated Predictors

Boruta

Classification

Labels

To define labels via hierarchical clustering.

Statistics by Cla	ss:					
	Class: 1	Class: 2	Class: 3	Class: 4	Class: 5	Class: 6
Sensitivity	0.8333	1.0000	0.9333	NA	NA	NA
Specificity	0.9787	0.9524	0.9655	1	1	1
Pos Pred Value	0.9091	0.8947	0.9655	NA	NA	NA
Neg Pred Value	0.9583	1.0000	0.9333	NA	NA	NA
Prevalence	0.2034	0.2881	0.5085	0	0	0
Detection Rate	0.1695	0.2881	0.4746	0	0	0

Classification

Classifiers

 Naïve Bayes Stability **Conditional Independent**

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

1702 - 1761

Random Forest

Reduce Overfitting Balance Error for Imbalanced Datasets Fast-Learn

(From https://bigishere.wordpress.com/2018/09/22/random-forest-introduction/)

Classification

Results

Naïve Bayes

Overall Statistics

Accuracy: 0.9322

95% CI: (0.8354, 0.9812)

No Information Rate : 0.5085 P-Value [Acc > NIR] : 2.003e-12

Kappa: 0.8905

Mcnemar's Test P-Value : NA

Random Forest

Overall Statistics

Accuracy : 0.8644

95% CI: (0.7502, 0.9396)

No Information Rate : 0.5085 P-Value [Acc > NIR] : 9.358e-09

Kappa : 0.7763

Mcnemar's Test P-Value : NA

Thank you!