CS/COE 1501

www.cs.pitt.edu/~nlf4/cs1501/

More Math

Exponentiation

- xy
- Can easily compute with a simple algorithm:

```
ans = 1
i = y
while i > 0:
    ans = ans * x
i--
```

• Runtime?

Just like with multiplication, let's consider large integers...

- Runtime = # of iterations * cost to multiply
- Cost to multiply was covered in the last lecture
- So how many iterations?
 - Single loop from 1 to y, so linear, right?
 - What is the size of our input?
 - n
 - The bitlength of y...
 - So, linear in the *value* of y...
 - But, increasing n by 1 doubles the number of iterations
 - \circ $\Theta(2^n)$
 - Exponential in the bitlength of y

This is RIDICULOUSLY BAD

- Assuming 512 bit operands, 2⁵¹²:
 - 134078079299425970995740249982058461274793658205923
 933777235614437217640300735469768018742981669034276
 900318581864860508537538828119465699464336490060840
 96
- Assuming we can do mults in 1 cycle...
 - Which we can't as we learned last lecture
- And further that these operations are completely parallelizable
- 16 4GHz cores = 64,000,000,000 cycles/second
 - o (2⁵¹² / 6400000000) / 3600 * 24 * 365 =
 - \bullet 6.64 * 10¹³⁵ years to compute

This is way too long to do exponentiations!

- So how do we do better?
- Let's try divide and conquer!
- $x^y = (x^{(y/2)})^2$
 - When y is even, $(x^{(y/2)})^2 * x$ when y is odd
- Analyzing a recursive approach:
 - Base case?
 - When y is 1, x^y is x; when y is 0, x^y is 1
 - o Runtime?

Building another recurrence relation

- $x^y = (x^{(y/2)})^2 = x^{(y/2)} * x^{(y/2)}$
 - Similarly, $(x^{(y/2)})^2 * x = x^{(y/2)} * x^{(y/2)} * x$
- So, our recurrence relation is:
 - \circ T(n) = T(n-1) + ?
 - How much work is done per call?
 - 1 (or 2) multiplication(s)
 - Examined runtime of multiplication last lecture
 - But how big are the operands in this case?

Determining work done per call

- Base case returns x
 - o n bits
- Base case results are multiplied: x * x
 - o n bit operands
 - Result size?
 - 2n
- These results are then multiplied: $x^2 * x^2$
 - 2n bit operands
 - Result size?
 - 4n bits
- ...
- $x^{(y/2)} * x^{(y/2)}$?
 - o (y / 2) * n bit operands = $2^{(n-1)}$ * n bit operands
 - Result size? $y * n bits = 2^n * n bits$

Multiplication input size increases throughout

Our recurrence relation looks like:

Runtime analysis

- Can we use the master theorem?
 - Nope, we don't have a b > 1
- OK, then...
 - How many times can y be divided by 2 until a base case?
 - Ig(y)
 - Further, we know the max value of y
 - Relative to n, that is:
 - 2^r
 - \circ So, we have, at most $lg(y) = lg(2^n) = n$ recursions

But we need to do expensive mult in each call

- We need to do $\Theta((2^{(n-1)} * n)^2)$ work in just the root call!
 - Our runtime is dominated by multiplication time
 - Exponentiation quickly generates HUGE numbers
 - Time to multiply them quickly becomes impractical

Can we do better?

- We go "top-down" in the recursive approach
 - Start with y
 - Halve y until we reach the base case
 - Square base case result
 - Continue combining until we arrive at the solution
- What about a "bottom-up" approach?
 - Start with our base case
 - Operate on it until we reach a solution

A bottom-up approach

To calculate x^y

```
ans = 1
foreach bit in y:

ans = ans²
if bit == 1:
    ans = ans * x
From most to least significant
```

Bottom-up exponentiation example

- Consider x^y where y is 43 (computing x^{43})
- Iterate through the bits of y (43 in binary: 101011)
- \bullet ans = 1

ans =
$$1^2$$
 = 1
ans = $1 * x$ = x^2
ans = x^2 = x^2
ans = $(x^2)^2$ = x^4
ans = $x^4 * x$ = x^5
ans = $(x^5)^2$ = x^{10}
ans = $(x^{10})^2$ = x^{20}
ans = $x^{20} * x$ = x^{21}
ans = x^{21} = x^{21}

Does this solve our problem with mult times?

- Nope, still squaring ans everytime
 - We'll have to live with huge output sizes
- This does, however, save us recursive call overhead
 - Practical savings in runtime

Greatest Common Divisor

- GCD(a, b)
 - Largest int that evenly divides both a and b
- Easiest approach:
 - BRUTE FORCE

```
i = min(a, b)
while(a % i != 0 || b % i != 0):
    i--
```

- Runtime?
 - Θ(min(a, b))
 - Linear!
 - In *value* of min(a, b)...
 - Exponential in n
 - Assuming a, b are n-bit integers

Euclid's algorithm

Euclidean example 1

- GCD(30, 24)
 - \circ = GCD(24, 30 % 24)
- = GCD(24, 6)
 - \circ = GCD(6, 24 % 6)
- = GCD(6, 0)...
 - Base case! Overall GCD is 6

Euclidean example 2

- \bullet = GCD(99, 78)
 - 0 99 = 78 * 1 + 21
- = GCD(78, 21)
 - o 78 = 21 * 3 + 15
- \bullet = GCD(21, 15)
 - 0 21 = 15 * 1 + 6
- \bullet = GCD (15, 6)
 - \circ 15 = 6 * 2 + 3
- = GCD(6, 3)
 - \circ 6 = 3 * 2 + 0
- = 3

Analysis of Euclid's algorithm

- Runtime?
 - Tricky to analyze, has been shown to be linear in n
 - Where, again, n is the number of bits in the input

Extended Euclidean algorithm

In addition to the GCD, the Extended Euclidean algorithm
 (XGCD) produces values x and y such that:

$$\circ$$
 GCD(a, b) = i = ax + by

• Examples:

$$\circ$$
 GCD(30,24) = 6 = 30 * 1 + 24 * -1

Can be done in the same linear runtime!

Extended Euclidean example

$$\bullet$$
 = GCD(99, 78)

• =
$$GCD(78, 21)$$

$$\bullet$$
 = GCD(21, 15)

$$\bullet$$
 = GCD (15, 6)

• =
$$GCD(6, 3)$$

$$\circ$$
 6 = 3 * 2 + 0

•
$$3 = 15 - (2 * 6)$$

OK, but why?

 This and all of our large integer algorithms will be handy when we look at algorithms for implementing...

CRYPTOGRAPHY