Differential Equations

containing the derivative of one or more dependent variables with respect to one or more independent variables.

For example,

$$\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = 0 \qquad \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

$$y\frac{dy}{dx} = 2 \qquad \qquad \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

$$x\frac{dy}{dx} = y - 1 \qquad \qquad \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial t^2} = 2\frac{\partial u}{\partial t}$$

Classification

Differential Equations are classified by:

- Type
- Order
- Linearity

Classification by Type:

Ordinary Differential Equation

involves ordinary derivatives of one or more dependent variables with respect to a single independent variable.

For example,

$$\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = 0 \qquad \frac{dy}{dx} = 2xy \qquad x\frac{dy}{dx} = y - 1$$

Partial Differential Equation

involves partial derivatives of one or more dependent variables with respect to more than one independent variable.

For example,

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \qquad \qquad \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \qquad \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial t^2} = 2\frac{\partial u}{\partial t}$$

Classification by Order:

- ▶ The order of the differential equation (either ODE or PDE) is the order of the highest derivative in the equation.
- ▶ The highest power of the highest ordered derivative is the degree of the differential equation (ODE or PDE).

$$\frac{d^3y}{dx^3} + 2\frac{d^2y}{dx^2} = 0$$

$$\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = 0$$

$$x\left(\frac{dy}{dx}\right)^2 = y - 1$$
Order = 3, Degree = 1

Order = 1, Degree = 2

Classification by Linearity:

Linear Ordinary Differential Equation

- dependent variable y and its various derivatives occur to the first degree only.
- > no products of y and/or any of its derivatives are present.
- \triangleright no transcendental functions of y and/or its derivative occur.

For example,

$$\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = 0 \qquad x\frac{dy}{dx} = y - 1$$

Nonlinear Ordinary Differential Equation

ordinary differential equation which is not linear

For example,

$$\frac{d^2y}{dx^2} + \frac{dy}{dx} + y^2 = 0 \qquad \frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^3 + y = 0 \qquad \frac{d^2y}{dx^2} + y\frac{dy}{dx} + y = 0$$

Initial Value Problem

We are often interested in problems in which we seek a solution y(x) of a differential equation so that y(x) satisfies prescribed side conditions—that is, conditions imposed on the unknown y(x) or its derivatives. On some interval I containing x_0 the problem

Solve:
$$\frac{d^{n}y}{dx^{n}} = f(x, y, y', \dots, y^{(n-1)})$$
Subject to:
$$y(x_{0}) = y_{0}, y'(x_{0}) = y_{1}, \dots, y^{(n-1)}(x_{0}) = y_{n-1},$$
(1)

where $y_0, y_1, \ldots, y_{n-1}$ are arbitrarily specified real constants, is called an **initial-value problem** (**IVP**). The values of y(x) and its first n-1 derivatives at a single point $x_0, y(x_0) = y_0, y'(x_0) = y_1, \ldots, y^{(n-1)}(x_0) = y_{n-1}$, are called **initial conditions**.

FIRST- AND SECOND-ORDER IVPS The problem given in (1) is also called an *n*th-order initial-value problem. For example,

Solve:
$$\frac{dy}{dx} = f(x, y) \tag{2}$$

Subject to:
$$y(x_0) = y_0$$

and Solve:
$$\frac{d^2y}{dx^2} = f(x, y, y')$$
 (3)

Subject to:
$$y(x_0) = y_0, y'(x_0) = y_1$$

Separable Differential Equations:

A first-order differential equation of the form

$$\frac{dy}{dx} = g(x)h(y)$$

is said to be separable or to have separable variables.

Solving a Separable Differential Equation

Example 1

Solve (1 + x) dy - y dx = 0.

SOLUTION Dividing by (1 + x)y, we can write dy/y = dx/(1 + x), from which it follows that

$$\int \frac{dy}{y} = \int \frac{dx}{1+x}$$

$$\ln|y| = \ln|1+x| + c_1$$

$$y = e^{\ln|1+x| + c_1} = e^{\ln|1+x|} \cdot e^{c_1}$$

$$= |1+x| e^{c_1}$$

$$= \pm e^{c_1}(1+x).$$

Relabeling $\pm e^{c_1}$ as c then gives y = c(1 + x). (Ans)

Example 2

Solve
$$(e^{2y} - y)\cos x \frac{dy}{dx} = e^y \sin 2x$$
, $y(0) = 0$.

Solution

Dividing the equation by $e^y \cos x$ gives

$$\frac{e^{2y} - y}{e^y} dy = \frac{\sin 2x}{\cos x} dx.$$

Before integrating, we use termwise division on the left-hand side and the trigonometric identity $\sin 2x = 2 \sin x \cos x$ on the right-hand side. Then

$$\int (e^{y} - ye^{-y}) dy = 2 \int \sin x dx$$

$$e^{y} + ye^{-y} + e^{-y} = -2 \cos x + c.$$
[Integrating by Parts]

The initial condition y = 0 when x = 0 implies c = 4. Thus a solution of the initial-value problem is

$$e^{y} + ye^{-y} + e^{-y} = 4 - 2\cos x.$$
 (Ans)

Linear Differential Equations

A first-order differential equation of the form

$$a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$
 (1)

is said to be a linear equation in the dependent variable y.

When g(x) = 0, the linear equation (1) is said to be **homogeneous**; otherwise, it is **nonhomogeneous**.

STANDARD FORM By dividing both sides of (1) by the lead coefficient $a_1(x)$, we obtain a more useful form, the **standard form**, of a linear equation:

$$\frac{dy}{dx} + P(x)y = f(x). (2)$$

Solving a First Order Linear Differential Equation

Steps:

- (i) Put a linear equation of form (1) into the standard form (2).
- (ii) From the standard form identify P(x) and then find the integrating factor $e^{\int P(x)dx}$.
- (iii) Multiply the standard form of the equation by the integrating factor. The left-hand side of the resulting equation is automatically the derivative of the integrating factor and y:

$$\frac{d}{dx} \left[e^{\int P(x)dx} y \right] = e^{\int P(x)dx} f(x).$$

(iv) Integrate both sides of this last equation.

Example 1:

Solve
$$\frac{dy}{dx} - 3y = 0$$
.

SOLUTION This linear equation can be solved by separation of variables. Alternatively, since the equation is already in the standard form (2), we see that P(x) = -3, and so the integrating factor is $e^{\int (-3)dx} = e^{-3x}$. We multiply the equation by this factor and recognize that

$$e^{-3x} \frac{dy}{dx} - 3e^{-3x}y = 0$$
 is the same as $\frac{d}{dx} [e^{-3x}y] = 0$.

Integrating both sides of the last equation gives $e^{-3x}y = c$. Solving for y gives us the explicit solution $y = ce^{3x}$, $-\infty < x < \infty$.

Example 2:

Solve
$$\frac{dy}{dx} - 3y = 6$$
.

SOLUTION The associated homogeneous equation for this DE was solved in Example 1. Again the equation is already in the standard form (2), and the integrating factor is still $e^{\int (-3)dx} = e^{-3x}$. This time multiplying the given equation by this factor gives

$$e^{-3x} \frac{dy}{dx} - 3e^{-3x}y = 6e^{-3x}$$
, which is the same as $\frac{d}{dx} [e^{-3x}y] = 6e^{-3x}$.

Integrating both sides of the last equation gives $e^{-3x}y = -2e^{-3x} + c$ or $y = -2 + ce^{3x}$, $-\infty < x < \infty$.