

SEGNENTATION GLIENTS

- Objectifs de la mission
- Analyse exploratoire des données
- Modèles de clustering
- Simulation de maintenance
- Conclusion

OBJECTIFS DE LA MISSION

OBJECTIFS DE LA MISSION

- Réaliser une segmentation clients
 - Exploitable et facile d'utilisation par l'équipe Marketing
 - En terme de commandes et de satisfaction
 - Sur l'ensemble des clients

Fournir une proposition de contrat de maintenance

ANALYSE EXPLORATOIRE DES DONNÉES

ANALYSE EXPLORATOIRE DES DONNÉES

Jeu de données :

_dataset.csv

dataset.csv

9 fichiers au format .csv

_dataset.csv

ws_dataset.csv

set.csv

taset.csv

name...ation.csv

set.csv

ents_dataset.csv

ANALYSE EXPLORATOIRE DES DONNÉES

- Regroupement des order_id de chaque fichier
- Regroupement des zip_code_prefix dans le fichier « geolocation »
- Regrouper tous les fichiers en un seul via les _id
 - order_id, customer_id, product_id, seller_id, product_category_name et zip_code_prefix
- Suppression de certaines colonnes non pertinentes

« QUAND L'INVISIBLE DEVIENT VISIBLE »

FEATURE ENGINEERING

FEATURE ENGINEERING

- Contruction d'une base client
 - Dernières informations de commandes sur les features textuelles
 - Date de première et dernière commande
 - Moyennes de commande sur les données numériques
 - Nombre total d'articles commandés et de commandes
 - Nombre de commentaires

FEATURE ENGINEERING

- Calcul de nouvelles features
 - Délais entre chaque étape de commande
 - Délai de livraison globale
 - Différence entre livraison estimée et livraison réelle
 - __ Etc...

« TOUT SEUL ON VA PLUS VITE, MAIS À PLUSIEURS ON VA PLUS LOIN... »

CONNAISSANCES MÉTIER

CONNAISSANCES MÉTIER

RFM

- Récence : Nb de jours depuis la dernière commande
- Fréquence : Nb de commandes réalisées sur 2 ans
- Montant: Moyenne des prix des commandes (coût de la commande + frais de port)

« DES IMAGES PARLENT PLUS QUE DES MOTS »

- Sans feature engineering
 - Données de base

- Feature les plus représentatives
 - ACP
 - Plan F1-F2

- 0.50

- 0.25

- 0.00

- -0.25

- -0.75

- K-Means
 - 5 clusters

K-Means

t-SNE

T-SNE:

- Clusters de tailles très faibles (cluster 4 contient 450 individus)

Score de stabilité (ARI) = 0,60

« ON COMPTE SUR VOUS »

RFM

RFM

K-Means

4 clusters

K-Means

RFM

T-SNE:

- 2 tailles de clusters
 - Cluster 0 = 36307
 - Cluster 1 = 2871
 - Cluster 2 = 49139
 - Cluster 3 = 2678
- Score de stabilité (ARI) = 0,93

t-SNE

RFW

Vue 3D

RFM

RFM

- Interprétation
 - Cluster 0 :
 - Clients n'ayant pas achetés récemment
 - Cluster 1:
 - Clients ayant achetés plus qu'une fois
 - Cluster 2 :
 - Clients ayant achetés récemment
 - Cluster 3 :
 - Clients ayant dépensés d'avantage

« CHANGEMENT DE JOUEUR »

CLASSIFICATION ASCENDANTE HIÉRARCHIQUE

CLASSIFICATION ASCENDANTE HIÉRARCHIQUE

CAH

4 clusters

Score de silhouette vs nombre de cluster pour agglomerative clustering

CLASSIFICATION ASCENDANTE HIÉRARCHIQUE

T-SNE:

- 3 tailles de clusters
 - Cluster 0 = 66635
 - Cluster 1 = 3133
 - Cluster 2 = 2991
 - Cluster 3 = 27252

Score de stabilité (ARI) entre
K-Means et CAH = 0,58

CLASSIFICATION ASCENDANTE HIÉRARCHIQUE

Vue 3D

RFM

« CHANGEMENT DE JOUEUR... ENCORE »

DBSCAN

DBSGAN

- DBScan
 - 4 clusters
 - eps = 0,8

DBScan

DBSGAN

T-SNE:

DBSGAN

- Vue 3D
 - RFM

« LE PETIT NOUVEAU »

RFM + REVIEW SCORE

RFM + REVIEW SCORE

- K-Means
 - 5 clusters

- T-SNE:

- 2 tailles de clusters
 - Cluster 0 = 40206
 - Cluster 1 = 30524
 - Cluster 2 = 15261
 - Cluster 3 = 2133
 - Cluster 4 = 2871

Score de stabilité (ARI) = 0,97

Vue 3D

RFM

- Interprétation
 - Cluster 0 :
 - Clients ayant achetés récemment et ayant mis une bonne note
 - Cluster 1:
 - Clients n'ayant pas achetés récemment
 - Cluster 2 :
 - Clients ayant mis une mauvaise note
 - Cluster 3 :
 - Clients ayant dépensés d'avantage
 - Cluster 4 :
 - Clients ayant achetés plus qu'une fois

- Interprétation
 - Cluster 0 :
 - Nouveaux clients contents
 - Cluster 1:
 - Anciens clients
 - Cluster 2 :
 - Clients mécontents
 - Cluster 3 :
 - Clients dépensiers
 - Cluster 4:
 - Clients fréquents

« QUELQU'UN D'AUTRE?»

ESSAIS AVEC D'AUTRES FEATURES

ESSAIS AVEC D'AUTRES FEATURES

- K-Means
- **T-SNE**

- Délai de livraison
 - 5 clusters

ESSAIS AVEG D'AUTRES FEATURES

- K-Means
- **T-SNE**

- Différence entre livraisons estimée et réelle
 - 5 clusters

SIMULATION DE MAINTENANCE

SIMULATION DE MAINTENANGE

- Prérequis
 - Utiliser au maximum la base de données fournie

- Affiner avec précision le besoin de mise à jour (unité en semaine)
- Utiliser le meilleur modèle
 - K-Means, features « RFM et review score »
 - 5 clusters

SIMULATION DE MAINTENANCE

SIMULATION DE MAINTENANGE

Limite à 80%

Entre 4 et 8 semaines

Moyenne à 6,7

CONCLUSION

CONCLUSION

- Réaliser une segmentation clients
 - Exploitable et facile d'utilisation par l'équipe Marketing
 - En terme de commandes et de satisfaction
 - Sur l'ensemble des clients

- Segmentation K-Means
 - 5 clusters simples
 - Utilisation des features « RFM + Review Score »
 - Mapping de tous les clients

CONCLUSION

- Fournir une proposition de contrat de maintenance

- Maintenance toutes les 6 semaines
 - Avec reprise de la nouvelle base de données
 - Tests de dérive du clustering (nb de clusters, ARI)

