Bildverarbeitung

Zusammenfassung

Manuel Pauli Sebastian Schweikl

17. Juni 2016

1 Mathematische Grundlagen

Definition 1.1 (Funktionenräume)

• Wir bezeichnen mit $L(\mathbb{R})$ die Gesamtheit aller reellwertigen Funktionen, d.h. die Menge aller Funktionen, die von \mathbb{R} von \mathbb{R} abbilden:

$$L(\mathbb{R}) = \{ f : \mathbb{R} \to \mathbb{R} \}.$$

Analog ist $l(\mathbb{Z})$ die Menge aller reellwertigen Folgen, also Funktionen, die von \mathbb{Z} nach \mathbb{R} abbilden:

$$l(\mathbb{Z}) = \{c : \mathbb{Z} \to \mathbb{R}\}.$$

Wichtig: Die Indexmenge der Folge kommt aus \mathbb{Z} , das Bild einer Folge das aber selbstverständlich weiterhin eine Teilmenge von \mathbb{R} sein. Wir könnten also auch schreiben:

$$l(\mathbb{Z}) = \{(c_n)_{n \in \mathbb{Z}} \subseteq \mathbb{R}\}.$$

• Die Menge aller summierbaren Funktionen $L_1(\mathbb{R})$ ist definiert durch

$$L_1(\mathbb{R}) := \left\{ f \in L(\mathbb{R}) : \left\| f \right\|_1 := \int_{\mathbb{R}} |f(t)| \, \mathrm{d}t < \infty \right\}$$

und die Menge aller summierbaren Folgen durch

$$l_1(\mathbb{Z}) := \left\{ c \in l(\mathbb{Z}) : \left\| f \right\|_1 := \sum_{k \in \mathbb{Z}} |c(k)| < \infty \right\}$$

D.h., wir betrachten hier nur Funktionen (bzw. Folgen, aber das werde ich jetzt nicht mehr dazu sagen), die »brav« sind. Damit ist gemeint, dass die Funktionen ein hinreichend schnelles Abklingverhalten gegen 0 besitzen müssen. Anschaulich gesprochen bewirkt der Betrag ja, dass wir einfach alles, was von der Funktion unterhalb der x-Achse liegt, nach oben »umklappen«, sodass es nun positiv ist. Und wenn wir jetzt darüber integrieren, darf nur was Endliches dabei herauskommen. Dies ist eine hinreichende Forderung, damit wir die Fourier-Transformation zu einer Funktion überhaupt vernünftig definieren können.

Wir stellen fest, dass in $l_1(\mathbb{Z})$ *nur* absolut konvergente Nullfolgen (Folgen, deren Grenzwert 0 ist) zu finden sind.

• Analog wird die Menge der quadratsummierbaren Funktionen $L_2(\mathbb{R})$ definiert durch

$$L_2(\mathbb{R}) := \left\{ f \in L(\mathbb{R}) : \left\| f \right\|_2 := \sqrt{\int_{\mathbb{R}} |f(t)|^2 dt} < \infty \right\}$$

Unterschied zu den »normalen« summierbaren Funktionen ist, dass hier die Zwei-Norm der Funktion kleiner als unendlich sein muss anstatt der Eins-Norm (daher kommt ja auch der Name »quadratsummeribar«). Leider gibt es hierfür keine so schöne geometrische Anschauung, da wir über ganz $\mathbb R$ integrieren, aber man kann versuchen, sich das Ganze so vorzustellen: Durch das Quadrieren des Betrags erhält man sozusagen eine Fläche, und durch das Integrieren erzeugen wir ein Volumen, welches dann so wie ein Schlauch an der x-Achse entlang wabert. Durch das Wurzelziehen brechen wir das Volumen wieder herunter auf eine Fläche. Und hier endet leider schon die Analogie. Auf dem Torus würde man jetzt noch durch 2π teilen (weil das die Länge eines Intervalls ist, welches isomorph zum Torus ist), und man könnte sich die Zwei-Norm vorstellen als Mittelwert der Fläche. Da wir aber über ganz $\mathbb R$ integrieren und wir schlecht durch ∞ teilen können, lass ma das hier bleiben und geben uns mit dem zufrieden, was wir schon haben.

Das führt uns unweigerlich zu einer wichtigen Frage: Warum sollte man also überhaupt den Raum $L_2(\mathbb{R})$ definieren wollen? Die Antwort ist: Weil Mathematiker es immer cool finden, irgendwelche abgefahrenen Konzepte zu verallgemeinern. Außerdem kann man in $L_2(\mathbb{R})$ ein Skalarprodukt von Funktionen definieren, mit dem sich recht schön rechnen lässt, was eben in $L_1(\mathbb{R})$ nicht geht.

Für die mathematisch Interessieren unter uns: $L_2(\mathbb{R})$ liegt dicht in $L_1(\mathbb{R})$, und es gilt:

$$L_1(\mathbb{R}) \not\subset L_2(\mathbb{R})$$
 und $L_2(\mathbb{R}) \not\subset L_1(\mathbb{R})$.

Cool ist es aber, wenn wir Funktionen im Schnitt der beiden Funktionenräume betrachten. Für solche Funktionen kann man nämlich wieder eine Fourier-Transformierte definieren, und man hat sogar ein Skalarprodukt.

• Einer geht noch: Die Menge aller beschränkten Funktionen und Folgen definiert durch

$$L_{\infty}(\mathbb{R}) := \left\{ f \in L(\mathbb{R}) : \left\| f \right\|_{\infty} := \sup_{t \in \mathbb{R}} |f(t)| < \infty \right\}$$

bzw.

$$l_{\infty}(\mathbb{Z}) := \left\{ c \in l(\mathbb{Z}) : ||c||_{\infty} := \sup_{k \in \mathbb{Z}} |c(k)| < \infty \right\}.$$

Betrachten wir als Beispiel einer Folge in $l_{\infty}(\mathbb{Z})$ die Folge $((-1)^n : n \in \mathbb{Z})$. Die Folge besitzt zwei Häufungspunkte -1 und 1, zwischen denen sie immer hin- und herspringt. Das Supremum dieser Folge ist natürlich 1, was kleiner als ∞ ist. Wäre diese Folge auch in $l_1(\mathbb{Z})$? Nein, wäre sie nicht, da sie nicht mal konvergiert.

Definition 1.2 (Dirac-Puls) Der Dirac-Puls

$$\delta(k) := \delta_{0k} := \begin{cases} 1, & k = 0, \\ 0, & k \neq 0. \end{cases}$$

ist eine lustige Funktion, die nur an der Stelle 0 gleich 1 ist und sonst überall 0.

Definition 1.3 (Abtastoperator) Der Abtastoperator $S_h: L(\mathbb{R}) \to l(\mathbb{R})$ mit Schrittweite h ist für eine Funktion f definiert als

$$(S_h f)(k) := f(hk), \quad k \in \mathbb{Z}.$$

Das heißt, anstatt die Funktion für alle reellen Zahlen zu betrachten, tasten wir die Funktion an diskret vielen Stellen ab, welche alle im Abstand $h \in \mathbb{R}$ zueinander sind. Wir betrachten die Funktion also nur an den Stellen 0, h, -h, 2h, -2h, 3h, -3h...

2 Fourier

Definition 2.1 (Fourier-Transformation) Für Funktionen $f \in L_1(\mathbb{R})$ definieren wir mit

$$\widehat{f}: \mathbb{R} \to \mathbb{C}, \qquad \widehat{f}(\xi) \coloneqq f^{\wedge}(\xi) \coloneqq \int_{\mathbb{R}} f(t) e^{-i\xi t} dt, \quad \xi \in \mathbb{R}$$

die Fourier-Transformierte von f.

Was machen wir hier eigentlich? Schreiben wir einfach mal \widehat{f} als

$$\int_{\mathbb{R}} f(t)e^{-i\xi t} dt = \int_{\mathbb{R}} f(t)(\cos(\xi t) - i\sin(\xi t)) dt$$
$$= \int_{\mathbb{R}} f(t)\cos(\xi t) - i\int_{\mathbb{R}} f(t)\sin(\xi t) dt$$

dann sehen wir, dass wir lediglich versuchen, f auszudrücken als Kombination von sinusund cosinus-Termen. Wir schauen einfach, wo f und der sin bzw. cos eine große Ähnlichkeit zueinander haben (an der Stelle wird das Integral dann groß) und finden so heraus, welchen Anteil welche Frequenz am Signal f hat. Dass wir hier die doofe imaginäre Einheit i mit drin haben, liegt halt einfach daran, dass wir die Identität

$$e^{ix} = \cos(x) + i\sin(x)$$

ausgenutzt haben, um die Fouriertransformation besonders elegant zu schreiben. Man hätte auch für Real- und Imaginärteil zwei gesonderte Fouriertransformationen definieren können. Aber das soll uns hier nicht weiter stören. Außerdem kann man halt mit einer Exponentialfunktion schöner rechnen (z.B. ist die Ableitung der Exponentialfunktion wieder die Exponentialfunktion). Das ist eigentlich alles, was dahinter steckt.

Wichtig: Mit der Fouriertransformation finden wir zwar heraus, welche Frequenzen im Singal stecken, aber wir wissen nicht, an welcher Stelle welche Frequenz auftritt! Wir haben keine Lokalität, da wir ja über ganz $\mathbb R$ integrieren. Das ist ein wichtiger Unterschied zur Gabor-Transformation, wo wir unser einer Fensterfunktion bedienen, um so Frequenzen besser lokalisieren zu können \odot .

Warum brachen wir $L_1(\mathbb{R})$ -Funktionen? Wie vorher schon erwähnt, ist das eine hinreichende Bedingung, dass \widehat{f} überhaupt existiert:

$$\widehat{f} \leq |\widehat{f}| = \left| \int_{\mathbb{R}} f(t) e^{-i\xi t} \, \mathrm{d}t \right| \leq \int_{\mathbb{R}} |f(t)| \underbrace{|e^{-i\xi t}|}_{=1} \, \mathrm{d}t = \int_{\mathbb{R}} |f(t)| \, \mathrm{d}t < \infty.$$