

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

9/22
Fig. 9

CGCGTTGACATTGATTATTGACTAGTTATAATAGTAATCAATTACGGGGTCATTAGTCATAGCCCATAATGGAGTT CGCGTTACATAACTTACGTAAATGGCCCGCTGGCTGACGCCAACGACCCCCGCCATTGACGTCAATAATGACGTA TGTTCCCATAGTAACGCCAATAGGGACTTCCATTGACGTCAATGGTGGAGTATTACGGTAAACTGCCACTGGCAG TACATCAAGTGTATCAT-TGCCAAGTACGCCCTATTGACGTCAATGACGGTAAATGGCCGCCATTGACGTCAATAATGACGTA TACATGACCTTATGGGACTTCCATTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTATGCCAGTT GCAGTACATCAATGGCGTGGATAGCGGTTGACTCACGGGATTCCAAGTCTCCACCCATTGACGTCAATGGGAGTT TGTTTGGCACCAAATCAACGGGACTTCCAAAATGTCGTAAACAACCTCCGCCATTGACGAAATGGCGTAGGGCT GTACGGTGGGAGGTCTATATAAGCAGAGCTCTGGCTAACTAGAGAACCCACTGCTTACTGGCTTATCGAAATTAAATAC GACTCACTATAGGGAGACCCAAGCTGCATGCCAATTCCGAAAGGTTATGCAAGCGCAGTACATGATCATGGCAGAATC ACCAGGCCTCATCACCCTGCCTTTAGGATATCTACTCAGTGCTGAATGTACAGTTTCTGATCATGAAAACGCCA ACAAAATTCTGAATCGGCCAAAGAGGTATAATTAGGTTAGGAAAGAGTTGTTCAAGGAAACCTTGAGAGAGAATGT ATGGAAGAAAAGTGTAGTTGAAGAAGCAGAGAAGTTTGAAGAACACTGAAAGAACAACTGAATTGGAAAGCAGTA TGTTGATGGAGATCAGTGTGAGTCCAATCCATGTTAAATGGCGCAGTTGCAAGGATGACATTAATTCTATGAATGTT GGTGTCCTTGGATTGAAAGGAAAGAAGCTGTGAAATTAGATGTAACATGTAACATTAAAGAATGGCAGATGCGAGCAGTT TGAAAAATAGTGTGATAACAAGGGTGGTTGCTCTGTACTGAGGGATATGACTTGCAAGAAAACCAGAAGTCTGTGA ACCAGCAGTGCCATTCCATGTTGAAAGAGTTCTGTTACAAACTCTAACGTCACCCGTGCTGAGACTGTTTCTG ATGTTGACTATGTAATTCTACTGAAAGCTGAAACCATTTGGATAACATCACCTCAAAGCACCCAACTCATTAATGACTTC ACTCGGGTGTGGTGGAGAAGATGCCAAACCAGGTCATTCCCTTGGCAGGGTTGTTGAATGGTAAAGTGTGATGCAATT CTGTTGAGGCTCTATGTTAAATGGGATTTGTAACTGCTGCCCCTGACTGTTGTAAGTGGTGTAAATTACAGTTG TCGCAGGTGAACATAATTGAGGAGACAGAACATACAGGCAAAAGCGAAATGTTGATTGAAATTTCCTACCCACAAAC TACAATGCACTTAAATAGTACAACCATGACATTGCCCTCTGGAACGGAAACCTTACTGCTAAACAGCTACGT TACACCTATTGCAATTGCTGACAAGGAATACAGAACATCTTCTCAAATTGGATCTGCTATGTAAGTGGCTGGGAA GAGTCTCCACAAAGGGAGATCAGCTTAGTTCTCAGTACCTTAGAGTTCACTTGTGACCGAGCCACATGCTTCA TCTACAAAGTTACCATCTATAACACATGTTCTGCTGGCTTCCATGAAAGGAGGTAGAGGATTGTAAGGAGATAAG TGGGGGACCCATGTTACTGAAAGGGACCAGTTCTTAACGGAATTATTAGCTGGGTGAAGAGTGTGCAATGA AAGGAAATATGGAATATACCAAGGTATCCGGTATGCAACTGGATTAGGAAAAAACAAAGCTCACTTAATGGGAT CGGTGAGCGGCCGCACTCTACTAGAGGATCTGTGAAGGAACCTTACTCTGTGGTGTGACATAATTGGACAAACTA CCTACAGAGATTAAAGCTTAAGGAAATATAAAATTGTTAAGTGTATAATTGTTAAACTACTGATTCTAATTGTTG TGTATTAGATTCAACCTATGAACTGATGAATGGGAGCAGTGGTGAATGCCCTTAATGAGGAAAACCTGTTTGCT CAGAAGAAATGCCATCTAGTGTGAGGCTACTGCTGACTCTCACATTCTACTCTCCAAAAAGAAGAGAAAGGTA GAAGACCCCAAGGACTTCCCTCAGAATTGCTAAAGTTTGTGAGTCATGCTGTGTTAGTAATAGAATCTGCTTGCTT TGCTATTACACCACAAAGGAAAAGCTGCACTGCTATAACAGAAAATTATGAAAAAATTCTGTAACCTTATAAGTA GGCATAACAGTTAAATCATACACTGTTTCTACTCCACACAGGCAAGAGTGTCTGCTATTAAACTATGCT CAAAATTGTCACCTTCTAGTTAAATTGTAAGGGGTTAATAAGGAATTATTGATGTTAGTGCCTTGACTAGAGA TCATAATCGCCATACACATTGTTGAGGTTTACTGCTTAAACCTCCACACCTCCCCCTGAAACCTGAAACAT AAAATGAAATGCAATTGTTGTTAATTGCTTAACTGCTTAAATGGTACAAATAAGCAATAGCATCACAAATT CACAATAAACGATTTCCTACTGCAATTCTAGTTGTTGCTTCAACACTCATCAATGTTACATTGATCATGTCGGATCC CCGGGTACCCCTAGAGGCAATTAAATTCACTGCCGCTGTTTACAACGTCGTGACTGGAAAACCTGGCTTACCCAA CTTAATGCCCTTGCAGCACATCCCCCTTCGCCAGCTGGCTAATAGCGAAGAGGCCGACCGATGCCCTTCCAAACA GTTGCAGCCTGAATGGCAATGGCCTGATGCGGTATTTCTCTTACGCATCTGTCGGTATTTCACACCGCATAT GGTGCACTCTCAGTACAATTGCTCTGATGCCCATAGTTAAGCCAGCCCCGACACCCGCCAACACCCGCTGACGCC TGACGGGCTTGTCTGCTCCGGCATCGCTAACAGACAAGCTGTGACCGTCTCCGGAGCTGATGTCAGAGGTTTC ACCGTCACTACCGAAACGCCGAGACGAAAGGGGGTACAGCTGCTAGCTAGAACATCATGTTCTGGGATATCAGCT TCGTAGCTAGAACATCATGTTCTGGTACCCCTCGTGTACGCCTATTGTTATAGGTTAATGTCATGATAATAATGGTT TCTTAGACGTCAGGTGGCACTTTCCGGGAAATGTGCGCGGAACCCCTATTGTTATTCTAAATACATTCAAATAT GTATCCGCTCATGAGACAATAACCCGTATAAAATGTTAAAGGAAGAGTATGAGTATTCAACATTCC GTGTCGCCCTTATTCCCTTTTGGCAGTGTGCTTCTGCTCAGGGTACCCAGAAACGCTGGTAAAGTAAAGAT GCTGAAGATCAGTTGGGTGACAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCTTGAGAGTTTCGCC CGAAGAACGTTTCAATGAGCAGTCTTAAAGTTGCTGTAGTGGCGCGTATTATCCGTATTGACGCCGGCAAG AGCAACTCGGTGCCGCAACTATTCTCAGAATGACTGGTTGAGTACTCACCAAGTCACAGAAAAGCATCTACGGAT GGCATGACAGTAAGAGAATTATGCACTGCTGCGATAACCATGAGTGTACAGTCAACACTGCCGCAACTTCTGACAACGAT CGGAGGACCGAAGGAGCTAACCGCTTTTGCAACAAACATGGGGGATCATGTAACTGCCCTGATCTGGGATATTGAGC TGAATGAAAGCCATACCAACGACGAGCGTACACCAACGATGCCCTGAGCAATGGCAACAAACGTTGCGCAAACACTTAAACT GGCAGACTACTCTAGCTTCCCGCAACAAATTAGACTGGATGGAGGCGATAAGTTGCAAGGACCACTCTGCC CTCGGCCCTCCGGCTGGTTATTGCTGATAAAATCTGGAGCCGGTGGCTGAGCGTGGGTCTCGCGTATATTGAGCAC TGGGGCCAGATGGTAAGCCCTCCGATCGTAGTTACACGACGGGGAGTCAGGCAACTATGGATGAAACGAAATAGA CAGATGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTACTCATATATACTTAAAGTGA TTAAAATTCTCATTTAATTAAAGGATCTAGGTGAAGATCCTTTGATAATCTCATGACCAAAATCCCTAACGTG AGTTTCTGTTCACTGAGCGTCAGACCCGTAGAAAAGATCAAAGGATCTTCTGAGATCCTTTCTGCGCGTAATC TGCTGCTTGCACAAACAAAAACCGCTACCGCGTGGTTGCTGAGGATCAAGAGCTACCAACTCTTTCCGAA GGTAACCTGGCTTCAGCAGAGCGCAGATACCAAATACTGTTCTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAGAAACT CTGTCAGCCGCTACATACCTCGCTCTGCTAATCTGTACCACTGCTTACCGAGTGGCTGCTGCCAGTGGCATAAGTCGTCTTACG GGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGCTGAAACGGGGGGTTCTGTCACACAGCCAGCTT GGAGCGAACGACCTACACCGAACTGAGATACTGAGCTATGAGAAAGCGCCACGCTTCCGAAGGGAGAAAGG

09/913631
PCT/EP00/01368

WO 00/49147

10/22

Fig. 9 (continued)

CGGACAGGTATCCGTAAGCGGCAGGGTCGGAACAGGGAGAGCGCACGAGGGAGCTTCCAGGGGAAACGCCCTGGTATCTT
TATAGTCCTGTCGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTGATGCTCGTCAGGGGGCGGAGCCTATGGAA
AAACGCCAGCAACCGCCCTTTACGGTTCTGGCCTTTGCTGGCCTTGCTCACATGTTCTTCCTGCCTTATCCC
CTGATTCTGTGGATAACCGTATTACCGCCTTGAGTGAGCTGATACCGCTCGCCGAGCCGAACGACCGAGCGCAGCGAG
TCAGTGAGCGAGGAAGCGGAAGAGCGCCAATACGCAAACCGCCTCTCCCCGCGCTGGCCGATTCAATTAGCAGCTG
GCACGACAGGTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAAATGTGAGTTAGCTCACTCATTAGGCACCC
AGGCTTACACTTATGCTCCGGCTCGTATGTTGTGGAATTGTGAGCGGATAACAATTACACAGGAAACAGCTAT
GACCATGATTACGCCAAGCTCTAGAGCTCTAGAGCTCTAGAGAGCTTGCATGCCCTGCAGGTG

09/913631

PCT/EP00/01368

WO 00/49147

11/22
Fig. 10

Met Gln Arg Val Asn Met Ile Met Ala Glu Ser Pro Gly Leu Ile Thr
1 5 10 15

Ile Cys Leu Leu Gly Tyr Leu Leu Ser Ala Glu Cys Thr Val Phe Leu
20 25 30

Asp His Glu Asn Ala Asn Lys Ile Leu Asn Arg Pro Lys Arg Tyr Asn
35 40 45

Ser Gly Lys Leu Glu Glu Phe Val Gln Gly Asn Leu Glu Arg Glu Cys
50 55 60

Met Glu Glu Lys Cys Ser Phe Glu Glu Ala Arg Glu Val Phe Glu Asn
65 70 75 80

Thr Glu Arg Thr Thr Glu Phe Trp Lys Gln Tyr Val Asp Gly Asp Gln
85 90 95

Cys Glu Ser Asn Pro Cys Leu Asn Gly Gly Ser Cys Lys Asp Asp Ile
100 105 110

Asn Ser Tyr Glu Cys Trp Cys Pro Phe Gly Phe Glu Gly Lys Asn Cys
115 120 125

Glu Leu Asp Val Thr Cys Asn Ile Lys Asn Gly Arg Cys Glu Gln Phe
130 135 140

Cys Lys Asn Ser Ala Asp Asn Lys Val Val Cys Ser Cys Thr Glu Gly
145 150 155 160

Tyr Arg Leu Ala Glu Asn Gln Lys Ser Cys Glu Pro Ala Val Pro Phe
165 170 175

Pro Cys Gly Arg Val Ser Val Ser Gln Thr Ser Lys Leu Thr Arg Ala
180 185 190

Glu Thr Val Phe Pro Asp Val Asp Tyr Val Asn Ser Thr Glu Ala Glu
195 200 205

Thr Ile Leu Asp Asn Ile Thr Gln Ser Thr Gln Ser Phe Asn Asp Phe
210 215 220

Thr Arg Val Val Gly Gly Glu Asp Ala Lys Pro Gly Gln Phe Pro Trp
225 230 235 240

Gln Val Val Leu Asn Gly Lys Val Asp Ala Phe Cys Gly Gly Ser Ile
245 250 255

Val Asn Glu Lys Trp Ile Val Thr Ala Ala His Cys Val Glu Thr Gly
260 265 270

Val Lys Ile Thr Val Val Ala Gly Glu His Asn Ile Glu Glu Thr Glu
275 280 285

His Thr Glu Gln Lys Arg Asn Val Ile Arg Ile Ile Pro His His Asn
290 295 300

12/22

Fig. 10 (continued)

Tyr Asn Ala Ala Ile Asn Lys Tyr Asn His Asp Ile Ala Leu Leu Glu
305 310 315 320

Leu Asp Glu Pro Leu Val Leu Asn Ser Tyr Val Thr Pro Ile Cys Ile
325 330 335

Ala Asp Lys Glu Tyr Thr Asn Ile Phe Leu Lys Phe Gly Ser Gly Tyr
340 345 350

Val Ser Gly Trp Gly Arg Val Phe His Lys Gly Arg Ser Ala Leu Val
355 360 365

Leu Gln Tyr Leu Arg Val Pro Leu Val Asp Arg Ala Thr Cys Leu Arg
370 375 380

Ser Thr Lys Phe Thr Ile Tyr Asn Asn Met Phe Cys Ala Gly Phe His
385 390 395 400

Glu Gly Gly Arg Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro His Val
405 410 415

Thr Glu Val Glu Gly Thr Ser Phe Leu Thr Gly Ile Ile Ser Trp Gly
420 425 430

Glu Glu Cys Ala Met Lys Gly Lys Tyr Gly Ile Tyr Thr Lys Val Ser
435 440 445

Arg Tyr Val Asn Trp Ile Lys Glu Lys Thr Lys Leu Thr
450 455 460

13/22
Fig. 11

09/913631

WO 00/49147

PCT/EP00/01368

14/22

Fig. 12a

Fig 12 b

BEST AVAILABLE COPY

15/22

Fig 12 c

Fig 12 d

BEST AVAILABLE COPY

16/22
Fig. 13

Detection of GFP expressed from Theragene-vectors (n=16)

Fig. 14

Additive effect of human factor IX on clotting time of mouse blood

BEST AVAILABLE COPY

Fig. 15.

Fig. 16

Fig. 17

Fig. 18

Fig. 19

1 MTELKAKGPR APHVAGGPPS PEVGSPLLCR PAAGPFPGSQ TSDTLPEVSA IPISLDGLLF
61 PRPCQGQDPS DEKTQDQQSL SDVEGAYSRA EATRGAGGSS SSPPEKDSGL LDSVLDTLLA
121 PSGPGQSQPS PPACEVTSSW CLFGPELPED PPAAPATQRV LSPLMSRSGC KVGDSSGTAA
181 AHKVLPRLGS PARQLLLPAS ESPHWSGAPV KPSPOAAAVE VEEEDGSESE ESAGPLLKGK
241 PRALGGAAAG GGAAAAPPAG AAGGVALVPK EDSRFSAPRV ALVEQDAPMA FGRSPLATTV
301 MDFIHVPILP LNHALLAART RQLLEDESYD GGAGAASAF A PPRSSPCASS TPVAVGDFPD
361 CAYPPDAEPK DDAYPLYSDF QPPALKIKEE EEGAEASARS PRSYLVAGAN PHAFPDFPLG
421 PPPPLPPRAT PSRPGEAAVT AAPASASVSS ASSSGSTLEC ILYKAEGAPP QQGPFAAPPC
481 KAPGASGCLL PRDGLPSTSA SAAAAGAAPA LYPALGLNGL PQLGYQAAVL KEGLPQVYPP
541 YLNLYLRPDSE ASQSPQYSFE SLPQKICLIC GDEASGCHYG VLTCGSKVF FKRAMEGQHN
601 YLCAGRNDCI VDKIRRKNCP ACRLRKCCQA GMVLGGRKFK KFNKVRVVRA LDavalPQPL
661 GVPNESQALS QRFTFSPGQD IQLIPLINL LMSIEPDVIY AGHDNTKPDT SSSLLTSLNQ
721 LGERQLLSVV KWSKSLPGFR NLHIDDQITL IQYSWMMSLMV FGLGWRSYKH VSGQMLYFAP
781 DLILNEORMK ESSFYSLCLT MWQIPQEfvk LQVSQEEFLC MKVLLLLNTI PLEGRLRSQTQ
841 FEEMRSSYIR ELIKAIGLRQ KGVVSSSQRF YQLTKLLDNL HDLVKQLHLY CLNTFIQSRA
901 LSVEFPEMMS EVIAAQLPKI LAGMVKPLLF HKK

Fig. 20

1 ctgaccagcg ccgcctccc cggcccccga cccaggaggt ggagatccct ccggccagc
61 cacattcaac acccaacttc tcctccctt gcccstatat tcccgaaacc ccctccctc
121 tccctttcc ctcctccctg gagacggggg aggagaaaag gggagtccag tcgtcatgac
181 tgagctgaag gcaaagggtc cccggctcc ccacgtggcg gcggggccgc cctcccccga
241 ggtcgatcc ccactgctgt gtcccccagc cgcaaggctcg ttccccggga gccagaccc
301 ggacacccctg cctgaagttt cggccatacc tatctccctg gacgggctac tcttccctcg
361 gcccgtccag ggacaggacc cctccgacga aaagacgcag gaccagca gctgtcgga
421 cgtggaggcc gcataattcca gagctgaagc tacaagggt gctggaggca gcagttctag
481 tccccccagaa aaggacagcg gactgctgga cagtgtttg gacactctgt tggcccccctc
541 aggtccccggg cagagccaa ccagccctcc cgccctgcag gtcaaggact cttggtgccct
601 gtttggccccc gaacttcccg aagatccacc ggtgcggcc gccacccagc ggtgttgtc
661 cccgctatg agccggctcg ggtgcaagggt tggagacagc tccgggacgg cagctgccc
721 taaagtctg cccggggcc tgcaccagg ccggcagctg ctgtcccccc cctctgagag
781 ccctcactgg tccggggccc cagtaagcc gtctccgcag ggcgtgcgg tggaggttga
841 ggaggaggat ggctctgagt ccgaggagtc tgcgggtccg cttctgaagg gcaaaccctcg
901 ggctctgggt ggcgcggccg ctggaggagg agccggccgt gtccccccgg gggccgcage
961 aggaggcgtc gcccgggtcc ccaaggaaga ttcccgcttc tcagcgcucca gggtcgccct
1021 ggtggagcag gacgcgcga tggcgcccg ggcgcctcc ctggccacca cggatgtgga
1081 tttcatccac gtgcctatcc tgctctcaa tcacgccta ttggcagccc gcactcggca
1141 gctgtggaa gacgaaagtt acgacggccg ggcggggct gccagcgcct ttgccccggc
1201 gcggagttca ccctgtggct cggtccacccc ggtcgctgta ggcaacttcc ccgactgcgc
1261 gtacccggcc gacgcccagc ccaaggacga cgcgtaccct ctctatagcg acttccagcc
1321 gcccgccta aagataaaagg aggaggagga aggccggag gcctccgcgc gtcggccgg
1381 ttccctacctt gtggccgtg ccaacccccc agcctcccg gatttccctg tggggccacc
1441 gcccccgctg ccgcgcgag cgacccccc cagacccggg gaagcggccg tgacggccgc
1501 aacctccagg gcctcagtct cgtctgcgtc ctccctgggg tcgaccctgg agtgcatacct
1561 gtacaaaggcg gaggggcgcc cgcggccagca gggcccttc gcgcgcgcgc cctgcaaggc
1621 gcccggccgc agcggctgtcc tgctccccgg ggcggccgt ccctccaccc cgcctctgc
1681 cgcggccgcg gggggccccc cccgcgtcta ccgtcactc ggccctcaacg ggctcccgca
1741 gctcggtcac caggccggcc tgctcaaggaa gggccctcc caggcttacc cgcctatct
1801 caactacctg aggccggatt cagaaggccag ccagagccca caatacaget tcgagtatt
1861 acctcagaag atttgtttaa tctgtggggta tgaagcatca ggctgtcatt atggtgtcct
1921 tacctgtggg agctgttaagg tcttctttaa gagggaatg gaagggccagc acaactactt
1981 atgtgttga agaaatgact gcatgttga taaaatccgc agaaaaaaact gcccagcatg
2041 tcgccttaga aagtgtgtc aggtgttgc ggtccttgg ggtcgaaaat taaaaaagtt
2101 caataaaagtc agagttgtga gggactgttga tgctgttgct ctcccacagc cattggcgt
2161 tccaaatgaa agccaaggccc taagccagag attcacttt tcaccaggc aagacataca
2221 gttgatttca ccactgtatca acctgttaat gagcattgaa ccagatgtga tctatgcagg
2281 acatgacaac acaaaaacctg acacccctccag ttctttgtc acaagtcttta atcaacttagg
2341 cgagaggcaa cttctttcag tagtcaagtg gtctaaatca ttgcagggtt ttgaaaactt
2401 acatattgtat gaccagatata ctctcattca gtattcttgg atgagcttaa tgggtttgg
2461 tctaggatgg agatccatata aacatgtcag tgggcagatg ctgtatTTTg cacctgatct
2521 aatactaaat gaacagccga tggaaatc atcattctt tcattatgcc ttaccatgtg
2581 gcagatccca caggagtttgc tcaagcttca agttagccaa gaagagttcc tctgtatgaa
2641 agtattgtta cttcttaata caattttttt ggaagggtca cgaagtcaaa cccagtttga
2701 ggagatgggg tcaagctaca tttagagatgt catcaaggca atgggtttga ggcaaaaagg
2761 agttgtgtcg agctcacagc gtttcttatca acttacaaaa ctctttgata acttgcata
2821 tcttgtcaaa caacttcatac tgtaactgtt gaatacattt atccagttccc gggactgtg
2881 tgttgaattt ccagaaatga tgctgttcaat tattgctgca caattaccca agatattggc
2941 agggatggtg aaaccccttc tctttcataaa

Fig. 21