

NUCL 510 Nuclear Reactor Theory

Fall 2011 Lecture Note 4

Prof. Won Sik Yang

Purdue University
School of Nuclear Engineering

Integral Equation for Angular Flux (1)

Steady-state Boltzmann equation for angular flux

$$\Omega \cdot \nabla \psi(\vec{r}, \vec{\Omega}, E) + \Sigma_t(\vec{r}, E) \psi(\vec{r}, \vec{\Omega}, E) = Q(r, \vec{\Omega}, E)$$

$$Q(\vec{r}, \vec{\Omega}, E) = \int dE' \int d\Omega' \Sigma_s(\vec{r}, E' \to E, \vec{\Omega}' \to \vec{\Omega}) \psi(\vec{r}, \vec{\Omega}', E')$$
$$+ \frac{1}{4\pi} \int dE' \chi(E' \to E) \nu(E') \Sigma_f(\vec{r}, E') \phi(\vec{r}, E') + S(\vec{r}, \vec{\Omega}, E)$$

- Integration along the direction of neutron travel
 - The streaming operator is just the directional derivative along the direction of neutron travel

$$-\frac{d}{dR}\psi(\vec{r} - R\vec{\Omega}, \vec{\Omega}, E) + \sum_{t}(\vec{r} - R\vec{\Omega}, E)\psi(\vec{r} - R\vec{\Omega}, \vec{\Omega}, E)$$

$$= Q(\vec{r} - R\vec{\Omega}, \vec{\Omega}, E) \quad \text{(neutron balance at } \vec{r}' = \vec{r} - R\vec{\Omega}\text{)}$$

$$-\frac{d}{dR} \left\{ \psi(\vec{r} - R\vec{\Omega}, \vec{\Omega}, E) \exp\left[-\int_0^R dR' \Sigma_t(\vec{r} - R'\vec{\Omega}, E)\right] \right\}$$
$$= Q(\vec{r} - R\vec{\Omega}, \vec{\Omega}, E) \exp\left[-\int_0^R dR' \Sigma_t(\vec{r} - R'\vec{\Omega}, E)\right]$$

$$\exp\left[-\int_0^R dR' \Sigma_t(\vec{r} - R'\vec{\Omega}, E)\right]$$
 (integrating factor)

Integral Equation for Angular Flux (2)

Integrating back along the path of neutron travel from 0 to R

$$\psi(\vec{r}, \vec{\Omega}, E) - \psi(\vec{r} - R\vec{\Omega}, \vec{\Omega}, E) \exp\left[-\int_0^R dR' \Sigma_t(\vec{r} - R'\vec{\Omega}, E)\right]$$
$$= \int_0^R dR' Q(\vec{r} - R'\vec{\Omega}, \vec{\Omega}, E) \exp\left[-\int_0^{R'} dR'' \Sigma_t(\vec{r} - R''\vec{\Omega}, E)\right]$$

$$\psi(\vec{r},\vec{\Omega},E) = \int_0^R dR' Q(\vec{r} - R'\vec{\Omega},\vec{\Omega},E) e^{-\tau(\vec{r},\vec{r}-R'\vec{\Omega};E)} + \psi(\vec{r} - R\vec{\Omega},\vec{\Omega},E) e^{-\tau(\vec{r},\vec{r}-R\vec{\Omega};E)}$$

$$\tau(\vec{r}, \vec{r} - R\vec{\Omega}; E) = \int_0^R dR' \Sigma_t(\vec{r} - R'\vec{\Omega}, E) \quad \text{(optical path)}$$

- If Σ_t is constant,

$$\tau(\vec{r}, \vec{r} - R\vec{\Omega}; E) = \Sigma_t(E)R = \Sigma_t(E) | \vec{r} - \vec{r'} |$$

Assuming the angular flux vanishes as R goes to infinity

$$\psi(\vec{r}, \vec{\Omega}, E) = \int_0^\infty dR' Q(\vec{r} - R'\vec{\Omega}, \vec{\Omega}, E) e^{-\tau(\vec{r}, \vec{r} - R'\vec{\Omega}; E)}$$

Integral Equation for Angular Flux (3)

Since only the neutrons passing r in the direction Ω contribute to $\psi(r,\Omega,E)$, this can be represented as a double integral as

$$\psi(\vec{r}, \vec{\Omega}, E) = \int d\Omega' \int_0^\infty dR Q(\vec{r} - R\vec{\Omega}', \vec{\Omega}, E) e^{-\tau(\vec{r}, \vec{r} - R\vec{\Omega}'; E)} \delta(\vec{\Omega}' - \vec{\Omega})$$

$$\psi(\vec{r}, \vec{\Omega}, E) = \int d\Omega' \int_0^\infty dR R^2 Q(\vec{r} - R\vec{\Omega}', \vec{\Omega}, E) \frac{e^{-\tau(\vec{r}, \vec{r} - R\vec{\Omega}'; E)}}{\left|\vec{r} - \vec{r}'\right|^2} \delta(\vec{\Omega}' - \vec{\Omega}) \qquad \vec{r}' = \vec{r} - R\vec{\Omega}'$$

$$R = \left|\vec{r} - \vec{r}'\right|$$

If we take a spherical coordinate system with r' as the origin, the incremental volume centered about r' is given by

$$dV' = d^3r' = d\Omega' dRR^2$$

Thus the angular flux can be written as a volume integral

$$\psi(\vec{r}, \vec{\Omega}, E) = \int d^3r' Q(\vec{r}', \vec{\Omega}, E) \frac{e^{-\tau(\vec{r}, \vec{r}'; E)}}{\left|\vec{r} - \vec{r}'\right|^2} \delta\left(\frac{\vec{r} - \vec{r}'}{\left|\vec{r} - \vec{r}'\right|} - \vec{\Omega}\right)$$

Integral Equation for Scalar Flux

If scattering is isotropic, Q is isotropic and thus the angular flux $\psi(r,\Omega,E)$ becomes

$$\psi(\vec{r}, \vec{\Omega}, E) = \frac{1}{4\pi} \int d^3r' Q(\vec{r}', E) \frac{e^{-\tau(\vec{r}, \vec{r}'; E)}}{\left|\vec{r} - \vec{r}'\right|^2} \delta\left(\frac{\vec{r} - \vec{r}'}{\left|\vec{r} - \vec{r}'\right|} - \vec{\Omega}\right)$$

- Linearly anisotropic scattering source is often take into account by the use of transport corrected total cross section
- Integrating this equation over the angle, we obtained the integral equation for the scalar flux

$$\phi(\vec{r}, E) = \int d^3r' Q(\vec{r}', E) \frac{e^{-\tau(\vec{r}, \vec{r}'; E)}}{4\pi |\vec{r} - \vec{r}'|^2}$$

$$\tau(\vec{r}, \vec{r}'; E) = \int_0^{|\vec{r} - \vec{r}'|} dR' \Sigma_t \left(\vec{r} - R' \frac{\vec{r} - \vec{r}'}{|\vec{r} - \vec{r}'|}, E \right)$$

Q depends only on the scalar flux

Integral Equation for Collision Density

Define collision density and transport operator as

$$F(\vec{r}, \vec{\Omega}, E) = \sum_{t} (\vec{r}, E) \psi(\vec{r}, \vec{\Omega}, E)$$

$$T(\vec{r}', \vec{r} \mid \vec{\Omega}, E) = \sum_{t} (\vec{r}, E) \frac{e^{-\tau(\vec{r}, \vec{r}'; E)}}{\left| \vec{r} - \vec{r}' \right|^{2}} \delta \left(\frac{\vec{r} - \vec{r}'}{\left| \vec{r} - \vec{r}' \right|} - \vec{\Omega} \right)$$

The integral equation for angular flux can be written for the collision density as

$$F(\vec{r}, \vec{\Omega}, E) = \int d^3r' T(\vec{r}', \vec{r} \mid \vec{\Omega}, E) Q(\vec{r}', \vec{\Omega}, E)$$

$$Q(\vec{r}, \vec{\Omega}, E) = \int dE' \int d\Omega' C(\vec{\Omega}', E' \to \vec{\Omega}, E \mid \vec{r}) F(\vec{r}, \vec{\Omega}', E') + S(\vec{r}, \vec{\Omega}, E)$$

Collision operator

$$C(\vec{\Omega}', E' \to \vec{\Omega}, E \mid \vec{r}) = \frac{\sum_{s} (\vec{r}, \vec{\Omega}' \to \vec{\Omega}, E' \to E)}{\sum_{t} (\vec{r}, E')}$$

$$= \frac{\sum_{s} (\vec{r}, E')}{\sum_{t} (\vec{r}, E')} \frac{\sum_{s} (\vec{r}, \vec{\Omega}' \to \vec{\Omega}, E' \to E)}{\sum_{s} (\vec{r}, E')} = P_{s}(\vec{r}, E') C_{s}(\vec{\Omega}', E' \to \vec{\Omega}, E \mid \vec{r})$$

Legendre Polynomial

Recurrence relation

$$(2l+1)\mu P_l(\mu) = (l+1)P_{l+1}(\mu) + lP_{l-1}(\mu)$$

$$P_0(\mu) = 1, \quad P_1(\mu) = \mu$$

$$P_2(\mu) = \frac{1}{2}(3\mu^2 - 1), \quad P_3(\mu) = \frac{1}{2}\mu(5\mu^2 - 3)$$

Orthogonality

$$\int_{-1}^{1} P_{l}(\mu) P_{m}(\mu) d\mu = \frac{2}{2l+1} \delta_{lm}$$

Legendre polynomial expansion

$$f(\mu) = \sum_{l=0}^{L} a_l P_l(\mu)$$

$$\int_{-1}^{1} d\mu f(\mu) P_{m}(\mu) = \sum_{l=0}^{L} a_{l} \int_{-1}^{1} d\mu P_{l}(\mu) P_{m}(\mu) = \sum_{l=0}^{L} a_{l} \frac{2}{2l+1} \delta_{lm} = \frac{2}{2m+1} a_{m}$$

$$a_m = \frac{2m+1}{2} \int_{-1}^{1} d\mu f(\mu) P_m(\mu)$$

Spherical Harmonics

Spherical harmonics

$$Y_{lk}(\vec{\Omega}) = Y_{lk}(\theta, \varphi) = \left[\frac{(2l+1)(l-k)!}{4\pi(l+k)!} \right]^{1/2} P_l^k(\cos\theta) e^{ik\varphi}, \quad -l \le k \le l$$

$$P_l^k(\mu) = (1 - \mu^2)^{k/2} \frac{d^k}{d\mu^k} P_l(\mu)$$
 (associate Legendre polynomial)

Orthogonality

$$\int_{4\pi} \overline{Y}_n^m(\vec{\Omega}) Y_l^k(\vec{\Omega}) d\Omega = \delta_{nl} \delta_{mk}$$

$$d\Omega = \sin\theta d\theta d\phi = d\mu d\phi$$

$$\int_0^{\pi} d\theta \sin\theta \int_0^{2\pi} d\varphi \overline{Y}_n^m(\theta, \varphi) Y_l^k(\theta, \varphi) = \delta_{nl} \delta_{mk}$$

Spherical harmonics expansion

$$\psi(\vec{r}, E, \vec{\Omega}) = \sum_{l=0}^{L} \sum_{k=-l}^{l} \psi_{lk}(\vec{r}, E) Y_{lk}(\vec{\Omega})$$

$$\psi_{lk}(\vec{r}, E) = \int_{4\pi} d\Omega \psi(\vec{r}, E, \vec{\Omega}) \overline{Y}_{lk}(\vec{\Omega})$$

Legendre Polynomial Expansion of Scattering Kernel

Steady-state Boltzmann equation

$$\vec{\Omega} \cdot \nabla \psi(\vec{r}, E, \vec{\Omega}) + \Sigma_{t}(\vec{r}, E) \psi(\vec{r}, E, \vec{\Omega})$$

$$= \int dE' \int d\Omega' \Sigma_{s}(\vec{r}, E' \to E, \vec{\Omega}' \to \vec{\Omega}) \psi(\vec{r}, E', \vec{\Omega}') + S(\vec{r}, E, \vec{\Omega})$$

■ The scattering kernel is commonly represented by a Legendre polynomial expansion in the form

$$\sigma_{s}^{i}(E' \to E, \vec{\Omega}' \to \vec{\Omega}) = \sigma_{s}^{i}(E' \to E, \vec{\Omega}' \cdot \vec{\Omega})$$
$$= \sum_{l=0}^{L} \frac{(2l+1)}{4\pi} \sigma_{sl}^{i}(E' \to E) P_{l}(\vec{\Omega}' \cdot \vec{\Omega})$$

$$\sigma_{sl}^{i}(E' \to E) = 2\pi \int_{-1}^{1} d\mu_{s} \sigma_{s}^{i}(E' \to E, \mu_{s}) P_{l}(\mu_{s})$$

$$\vec{\Omega} = (\sin\theta\cos\varphi, \sin\theta\sin\varphi, \cos\theta), \quad \vec{\Omega}' = (\sin\theta'\cos\varphi', \sin\theta'\sin\varphi', \cos\theta')$$

$$\cos\vartheta_s = \sin\theta\cos\varphi\sin\theta'\cos\varphi' + \sin\theta\sin\varphi\sin\theta'\sin\varphi' + \cos\theta\cos\theta'$$

$$= \cos\theta\cos\theta' + \sin\theta\sin\theta'(\cos\varphi\cos\varphi' + \sin\varphi\sin\varphi')$$

$$= \cos\theta\cos\theta' + \sin\theta\sin\theta'\cos(\varphi-\varphi')$$

Legendre Polynomial Moments of Scattering Kernel

For elastic and discrete inelastic scattering cross sections, the energy transfer and the deflection angle are strictly correlated.

$$\sigma_s^i(E' \to E, \mu_s) = \frac{1}{2\pi} \sigma_s^i(E' \to E) \delta[\mu_s - \mu_s(E', E)]$$

■ The differential scattering cross section from E' to E can be obtained as

$$\sigma_s^i(E' \to E) = 2\pi\sigma_s^i(E', \mu_c) \left| \frac{d\mu_c}{dE} \right| = \frac{4\pi}{(1 - \alpha^i)E'} \sigma_s^i(E', \mu_c)$$

$$\alpha^i = \left(\frac{A^i - 1}{A^i + 1} \right)^2$$

• Using the differential scattering cross section given in terms of μ_c

$$\sigma_s^i(E', \mu_c) = \frac{\sigma_s^i(E')}{2\pi} \sum_{n=0}^{N} \frac{2n+1}{2} f_n^i(E') P_n(\mu_c)$$

Thus the Legendre polynomial moments can be obtained as

$$\sigma_{sl}^{i}(E' \to E) = 2\pi \int_{-1}^{1} d\mu_{s} \sigma_{s}^{i}(E' \to E, \mu_{s}) P_{l}(\mu_{s}) = \sigma_{s}^{i}(E' \to E) P_{l}[\mu_{s}(E', E)]$$

$$\sigma_{sl}^{i}(E' \to E) = \frac{\sigma_{s}^{i}(E')P_{l}[\mu_{s}(E', E)]}{(1 - \alpha^{i})E'} \sum_{n=0}^{N} (2n + 1)f_{n}^{i}(E')P_{n}[\mu_{c}(E', E)]$$

Time-Independent Boltzmann Equation

With this Legendre polynomial expansion of scattering kernel, we have $\vec{\Omega} \cdot \nabla \psi(\vec{r}, E, \vec{\Omega}) + \Sigma_{t}(\vec{r}, E) \psi(\vec{r}, E, \vec{\Omega})$

$$=\sum_{i}\sum_{l=0}^{L}\frac{2l+1}{4\pi}\int_{E'}dE'\Sigma_{sl}^{i}(\vec{r},E'\to E)\int_{4\pi}d\Omega'P_{l}(\vec{\Omega}'\cdot\vec{\Omega})\psi(\vec{r},E',\vec{\Omega}')+S(\vec{r},E,\vec{\Omega})$$

By the use of the addition theorem of spherical harmonics

$$P_{l}(\vec{\Omega}' \cdot \vec{\Omega}) = \frac{4\pi}{2l+1} \sum_{k=-l}^{l} \overline{Y}_{lk}(\vec{\Omega}') Y_{lk}(\vec{\Omega})$$

$$P_n(\cos \vartheta_s) = P_n(\cos \theta)P_n(\cos \theta') + 2\sum_{m=1}^n \frac{(n-m)!}{(n+m)!}P_n^m(\cos \theta)P_n^m(\cos \theta')\cos m(\varphi - \varphi')$$

Boltzmann equation can be written as

$$\vec{\Omega} \cdot \nabla \psi(\vec{r}, E, \vec{\Omega}) + \Sigma_{t}(\vec{r}, E) \psi(\vec{r}, E, \vec{\Omega})$$

$$= \sum_{i} \sum_{l=0}^{L} \sum_{k=-l}^{l} Y_{lk}(\vec{\Omega}) \int_{E'} dE' \Sigma_{sl}^{i}(\vec{r}, E' \to E) \psi_{lk}(\vec{r}, E') + S(\vec{r}, E, \vec{\Omega})$$

$$\psi_{lk}(\vec{r}, E) = \int_{4\pi} d\Omega \vec{Y}_{lk}(\Omega) \psi(\vec{r}, E, \vec{\Omega})$$

 $\boldsymbol{\mathcal{X}}$

 $\vec{\Omega}'$

P_N Equations in Plane Geometry (1)

In the 1-D plane geometry, the symmetry in the azimuthal angle yields

$$\psi(\vec{r}, E, \vec{\Omega}) = \frac{1}{2\pi} \psi(x, E, \mu) \qquad \psi_{lk}(\vec{r}, E) = \delta_{k0} \sqrt{\frac{2l+1}{4\pi}} \psi_l(r, E)$$

Thus Boltzmann equation becomes

$$\mu \frac{d}{dx} \psi(x, E, \mu) + \sum_{t} (x, E) \psi(x, E, \mu)$$

$$= \sum_{i} \sum_{l=0}^{L} \frac{2l+1}{2} P_{l}(\mu) \int_{E'} dE' \sum_{sl}^{i} (x, E' \to E) \psi_{l}(x, E') + S(x, E, \mu)$$

Legendre series expansion

$$\psi(x, E, \mu) = \sum_{n=0}^{\infty} \frac{2n+1}{2} \psi_n(x, E) P_n(\mu)$$

$$\psi(x, E, \mu) = \sum_{n=0}^{\infty} \frac{2n+1}{2} \psi_n(x, E) P_n(\mu)$$

$$S(x, E, \mu) = \sum_{n=0}^{\infty} \frac{2n+1}{2} S_n(x, E) P_n(\mu)$$

$$\sum_{n=0}^{\infty} \frac{2n+1}{2} \left[\mu \frac{d}{dx} \psi_n(x,E) + \sum_{t} (x,E) \psi_n(x,E) \right] P_n(\mu)$$

$$= \sum_{l=0}^{L} \frac{2l+1}{2} P_l(\mu) \sum_{i} \int_{E'} dE' \sum_{sl}^{i} (x,E' \to E) \psi_l(x,E') + \sum_{n=0}^{\infty} \frac{2n+1}{2} S_n(x,E) P_n(\mu)$$

P_N Equations in Plane Geometry (2)

Using the recurrence relation

$$(2n+1)\mu P_n(\mu) = (n+1)P_{n+1}(\mu) + nP_{n-1}(\mu)$$

Previous equation can be rewritten as

$$\sum_{n=0}^{\infty} [(n+1)\frac{d}{dx}\psi_{n+1}(x,E) + n\frac{d}{dx}\psi_{n-1}(x,E) + (2n+1)\Sigma_{t}(x,E)\psi_{n}(x,E)]P_{n}(\mu)$$

$$= \sum_{l=0}^{L} (2l+1)P_{l}(\mu)\sum_{i} \int_{E'} dE' \Sigma_{sl}^{i}(x,E' \to E)\psi_{l}(x,E') + \sum_{n=0}^{\infty} (2n+1)S_{n}(x,E)P_{n}(\mu)$$

 Using the orthogonality of the Legendre polynomials, the spherical harmonics equations are obtained as

$$\frac{n+1}{2n+1} \frac{d}{dx} \psi_{n+1}(x,E) + \frac{n}{2n+1} \frac{d}{dx} \psi_{n-1}(x,E) + \sum_{t} (x,E) \psi_{n}(x,E)
= \sum_{t} \int_{E'} dE' \sum_{sn}^{i} (x,E' \to E) \psi_{n}(x,E') + S_{n}(x,E), \quad n = 0,1,2,\dots$$

$$\psi_{-1} = 0$$

$$\sum_{sn}^{i} = 0 \text{ for } n > L$$

The P_N approximation is obtained by considering the first N+1 equations of this set and neglecting the derivative of ψ_{N+1}

P₁ Theory (1)

P₁ expansion of angular flux

$$\psi(\vec{r}, E, \vec{\Omega}) = \frac{1}{4\pi} [\phi(\vec{r}, E) + 3\vec{\Omega} \cdot \vec{J}(\vec{r}, E)] \qquad \psi(x, E, \mu) = \frac{1}{2} [\phi(x, E) + 3\mu \vec{J}(x, E)]$$

$$\psi(x, E, \mu) = \frac{1}{2} [\phi(x, E) + 3\mu \vec{J}(x, E)]$$

$$\int d\Omega \Omega_{x}^{n_{1}} \Omega_{y}^{n_{2}} \Omega_{z}^{n_{3}} = \begin{cases}
\frac{4\pi}{n_{1} + n_{2} + n_{3} + 1} \frac{(n/2)!}{(n_{1}/2)!(n_{2}/2)!(n_{3}/2)!} \frac{n_{1}!n_{2}!n_{3}!}{n_{1}!}, & \text{if } n_{1}, n_{2}, \text{ and } n_{3} \text{ are all even} \\
0, & \text{otherwise}
\end{cases}$$

$$\int_{4\pi} d\Omega = \int_0^{\pi} d\theta \sin\theta \int_0^{2\pi} d\varphi = 4\pi \qquad \int_{4\pi} d\Omega \vec{\Omega} = \vec{0}$$

$$\int_{4\pi} d\Omega \vec{\Omega} = \vec{0}$$

$$\int_{4\pi} d\Omega \vec{\Omega} \vec{\Omega} = \frac{4\pi}{3} \mathbf{I}$$

$$\int_{4\pi} d\Omega \vec{\Omega} \vec{\Omega} \vec{\Omega} = 0$$

$$\int_{4\pi} d\Omega \psi(\vec{r}, E, \vec{\Omega}) = \phi(\vec{r}, E)$$

$$\int_{4\pi} d\Omega \psi(\vec{r}, E, \vec{\Omega}) = \phi(\vec{r}, E)$$

$$\int_{4\pi} d\Omega \bar{\Omega} \psi(\vec{r}, E, \vec{\Omega}) = \vec{J}(\vec{r}, E)$$

$$ec{\Omega}_2$$
 θ_2 θ_1 $ec{\Omega}_1$ $ec{J}$

$$\Omega_{x} = \sqrt{\frac{2\pi}{3}} (\overline{Y}_{1,-1} - \overline{Y}_{1,1}), \quad \Omega_{y} = i\sqrt{\frac{2\pi}{3}} (\overline{Y}_{1,1} + \overline{Y}_{1,-1}), \quad \Omega_{z} = \sqrt{\frac{4\pi}{3}} \overline{Y}_{1,0}$$

P₁ Theory (2)

Partial currents

$$J^{+}(\vec{r},E) = \int_{\vec{n}\cdot\vec{\Omega}>0} d\Omega \vec{n} \cdot \vec{\Omega} \psi(\vec{r},E,\vec{\Omega}) = \frac{1}{4\pi} \int_{\vec{n}\cdot\vec{\Omega}>0} d\Omega \vec{n} \cdot \vec{\Omega} [\phi(\vec{r},E) + 3\vec{\Omega} \cdot \vec{J}(\vec{r},E)]$$
$$= \frac{1}{4\pi} \int_{0}^{2\pi} d\varphi \int_{0}^{1} d\mu [\mu \phi(\vec{r},E) + 3\mu^{2} J_{n}(\vec{r},E)] = \frac{1}{4} \phi(\vec{r},E) + \frac{1}{2} J_{n}(\vec{r},E)$$

$$J^{-}(\vec{r}, E) = \int_{\vec{n} \cdot \vec{\Omega} < 0} d\Omega \, | \, \vec{n} \cdot \vec{\Omega} \, | \, \psi(\vec{r}, E, \vec{\Omega}) = \frac{1}{4\pi} \int_{\vec{n} \cdot \vec{\Omega} < 0} d\Omega \, | \, \vec{n} \cdot \vec{\Omega} \, | \, [\phi(\vec{r}, E) + 3\vec{\Omega} \cdot \vec{J}(\vec{r}, E)]$$
$$= -\frac{1}{4\pi} \int_{0}^{2\pi} d\phi \int_{-1}^{0} d\mu [\mu \phi(\vec{r}, E) + 3\mu^{2} J_{n}(\vec{r}, E)] = \frac{1}{4} \phi(\vec{r}, E) - \frac{1}{2} J_{n}(\vec{r}, E)$$

$$\phi(\vec{r}, E) = 2[J^{+}(\vec{r}, E) + J^{-}(\vec{r}, E)]$$

$$J_n(\vec{r}, E) = J^+(\vec{r}, E) - J^-(\vec{r}, E)$$

Albedo at an interface

$$\mu = \vec{n} \cdot \vec{\Omega} = \cos \theta$$

$$\alpha = \frac{J^{-}(\vec{r_i}, E)}{J^{+}(\vec{r_i}, E)}$$
 Reflection coefficient of region A with respect to B

P₁ Theory (3)

Integration of Boltzmann transport equation

$$\int_{4\pi} d\mathbf{\Omega} \vec{\Omega} \cdot \nabla \psi(\vec{r}, E, \vec{\Omega}) + \sum_{t} (\vec{r}, E) \int_{4\pi} d\mathbf{\Omega} \psi(\vec{r}, E, \vec{\Omega})
= \sum_{i} \sum_{l=0}^{L} \sum_{k=-l}^{l} \left[\int_{4\pi} d\mathbf{\Omega} Y_{lk}(\vec{\Omega}) \right] \int_{E'} dE' \sum_{sl}^{i} (\vec{r}, E' \to E) \psi_{lk}(\vec{r}, E') + \int_{4\pi} d\mathbf{\Omega} S(\vec{r}, E, \vec{\Omega})$$

$$\int_{4\pi} d\Omega \vec{\Omega} \cdot \nabla \psi = \int_{4\pi} d\Omega (\nabla \cdot \vec{\Omega} \psi) = \nabla \cdot \left[\int_{4\pi} d\Omega \vec{\Omega} \psi \right] = \nabla \cdot \vec{J}(\vec{r}, E)$$

$$\int_{4\pi} d\Omega \psi(\vec{r}, E, \vec{\Omega}) = \phi(\vec{r}, E)$$

$$\int_{4\pi} d\Omega Y_{lk}(\vec{\Omega}) = \sqrt{4\pi} \int_{4\pi} d\Omega \vec{Y}_{00}(\vec{\Omega}) Y_{lk}(\vec{\Omega}) = \sqrt{4\pi} \delta_{l0} \delta_{k0}, \quad \sqrt{4\pi} \psi_{00} = \phi$$

Flux or neutron balance equation

 $\int_{\Delta \vec{r}} d\Omega S(\vec{r}, E, \vec{\Omega}) = S_0(\vec{r}, E)$

$$\nabla \cdot \vec{J}(\vec{r}, E) + \Sigma_t(\vec{r}, E)\phi(\vec{r}, E) = \sum_i \int_{E'} dE' \Sigma_s^i(\vec{r}, E' \to E)\phi(\vec{r}, E') + S_0(\vec{r}, E)$$

P₁ Theory (4)

Integration of (Boltzmann transport equation $\times \Omega$)

$$\begin{split} &\int_{4\pi} d\Omega \vec{\Omega} \vec{\Omega} \cdot \nabla \psi(\vec{r}, E, \vec{\Omega}) + \Sigma_{t}(\vec{r}, E) \int_{4\pi} d\Omega \vec{\Omega} \psi(\vec{r}, E, \vec{\Omega}) \\ &= \sum_{l=0}^{L} \sum_{k=-l}^{l} \left[\int_{4\pi} d\Omega \vec{\Omega} Y_{lk}(\vec{\Omega}) \right] \int_{E'} dE' \Sigma_{sl}^{i}(\vec{r}, E' \to E) \psi_{lk}(\vec{r}, E') + \int_{4\pi} d\Omega \vec{\Omega} S(\vec{r}, E, \vec{\Omega}) \\ &\int_{4\pi} d\Omega \vec{\Omega} \vec{\Omega} \cdot \nabla \psi = \frac{1}{4\pi} \int_{4\pi} d\Omega \vec{\Omega} \vec{\Omega} \cdot \nabla \phi + \frac{3}{4\pi} \int_{4\pi} d\Omega \vec{\Omega} \vec{\Omega} \cdot \nabla (\vec{\Omega} \cdot \vec{J}) = \frac{1}{3} \nabla \phi \quad (P_{1} \text{ expansion}) \\ &\int_{4\pi} d\Omega \vec{\Omega} \psi(\vec{r}, E, \vec{\Omega}) = \vec{J}(\vec{r}, E) \\ &\int_{4\pi} d\Omega \Omega_{x} Y_{lk} = \sqrt{\frac{2\pi}{3}} \int_{4\pi} d\Omega (\vec{Y}_{1,-l} - \vec{Y}_{1,1}) Y_{lk} = \sqrt{\frac{2\pi}{3}} \delta_{l1} (\delta_{k,-l} - \delta_{k,1}), \quad \sqrt{\frac{2\pi}{3}} (\psi_{11} - \psi_{1,-l}) = J_{x} \\ &\int_{4\pi} d\Omega \Omega_{y} Y_{lk} = i \sqrt{\frac{2\pi}{3}} \int_{4\pi} d\Omega (\vec{Y}_{1,1} + \vec{Y}_{1,-1}) Y_{lk} = i \sqrt{\frac{2\pi}{3}} \delta_{l1} (\delta_{k1} + \delta_{k,-1}), \quad i \sqrt{\frac{2\pi}{3}} (\psi_{11} + \psi_{1,-1}) = J_{y} \\ &\int_{4\pi} d\Omega \Omega_{z} Y_{lk} = \sqrt{\frac{4\pi}{3}} \int_{4\pi} d\Omega \vec{Y}_{1,0} Y_{lk} = \sqrt{\frac{4\pi}{3}} \delta_{l1} \delta_{k0}, \quad \sqrt{\frac{4\pi}{3}} \psi_{10} = J_{z} \\ &\int_{4\pi} d\Omega \vec{\Omega} S(\vec{r}, E, \vec{\Omega}) = \vec{S}_{1}(\vec{r}, E) \end{split}$$

P₁ Theory (5)

Current or P₁ equation

$$\frac{1}{3}\nabla\phi(\vec{r},E) + \Sigma_{t}(\vec{r},E)\vec{J}(\vec{r},E) = \sum_{i} \int_{E'} dE' \Sigma_{s1}^{i}(\vec{r},E' \to E)\vec{J}(\vec{r},E') + \vec{S}_{1}(\vec{r},E)$$

- If there is no anisotropic independent source, $S_1=0$

$$\frac{1}{3}\nabla\phi(\vec{r},E) + \Sigma_t(\vec{r},E)\vec{J}(\vec{r},E) = \sum_i \int_{E'} dE' \Sigma_{s1}^i(\vec{r},E' \to E)\vec{J}(\vec{r},E')$$

- If the scattering is isotropic in LS, $\Sigma_{s1}=0$ (Fick's law of diffusion)

$$\frac{1}{3}\nabla\phi(\vec{r},E) + \Sigma_t(\vec{r},E)\vec{J}(\vec{r},E) = 0$$

$$\vec{J}(\vec{r}, E) = -D(\vec{r}, E)\nabla\phi(\vec{r}, E)$$

$$D(\vec{r}, E) = \frac{1}{3\Sigma_t(\vec{r}, E)}$$

dense or faster neutrons region

• The current is due to more neutrons moving from the areas of high neutron density to the areas of low density than the other way around

P₁ Theory (6)

- Transport correction
 - If no energy loss in anisotropic scattering is assumed

$$\Sigma_{s1}^{i}(\vec{r}, E' \rightarrow E) = \Sigma_{s1}^{i}(\vec{r}, E')\delta(E - E')$$

$$\frac{1}{3}\nabla\phi(\vec{r},E) + \left[\Sigma_{t}(\vec{r},E) - \sum_{i}\Sigma_{s1}^{i}(\vec{r},E)\right]\vec{J}(\vec{r},E) = 0 \qquad \vec{J}(\vec{r},E) = -D(\vec{r},E)\nabla\phi(\vec{r},E)$$

$$\vec{J}(\vec{r}, E) = -D(\vec{r}, E)\nabla\phi(\vec{r}, E)$$

$$D(\vec{r}, E) = \frac{1}{3\Sigma_{tr}(\vec{r}, E)}, \quad \Sigma_{tr}(\vec{r}, E) = \Sigma_{t}(\vec{r}, E) - \Sigma_{s1}(\vec{r}, E)$$

Transport (transport corrected total) cross section

$$\sigma_{tr}^{i}(E) = \sigma_{t}^{i}(E) - \sigma_{s1}^{i}(E) = \sigma_{t}^{i}(E) - \overline{\mu}^{i}(E)\sigma_{s}^{i}(E)$$

$$\sigma_{s1}^{i}(E \to E') = 2\pi \int_{-1}^{1} d\mu_{s} \sigma_{s}^{i}(E \to E', \mu_{s}) P_{1}(\mu_{s})$$

$$= \int_{-1}^{1} d\mu_{s} \sigma_{s}^{i}(E \to E') \delta[\mu_{s} - \mu_{s}(E, E')] \mu_{s} = \mu_{s}(E', E) \sigma_{s}^{i}(E \to E')$$

$$\sigma_{s1}^{i}(E) = \int_{E'} dE' \mu_{s}(E, E') \sigma_{s}^{i}(E \to E') = \overline{\mu}^{i}(E) \sigma_{s}^{i}(E)$$

Diffusion Equation (1)

Inserting the current equation into the neutron balance equation yields

$$-\nabla \cdot D(\vec{r}, E)\nabla \phi(\vec{r}, E) + \sum_{t} (\vec{r}, E)\phi(\vec{r}, E) = \sum_{i} \int_{E'} dE' \sum_{s}^{i} (\vec{r}, E' \to E)\phi(\vec{r}, E') + S_{0}(\vec{r}, E)$$

- Diffusion equation is a differential equation of second order; thus, it requires two boundary conditions and two conditions on each interface.
- Interface conditions

$$\psi(\vec{r}_i^-, E, \vec{\Omega}) = \psi(\vec{r}_i^+, E, \vec{\Omega})$$
 (continuity of angular flux)

$$\int_{4\pi} \psi(\vec{r}_i^-, E, \vec{\Omega}) d\Omega = \int_{4\pi} \psi(\vec{r}_i^+, E, \vec{\Omega}) d\Omega$$

$$\phi(\vec{r}_i^-, E) = \phi(\vec{r}_i^+, E)$$
 (continuity of flux)

$$\int_{4\pi} \vec{n} \cdot \vec{\Omega} \psi(\vec{r}_i^-, E, \vec{\Omega}) d\Omega = \int_{4\pi} \vec{n} \cdot \vec{\Omega} \psi(\vec{r}_i^+, E, \vec{\Omega}) d\Omega$$

$$\vec{n} \cdot D(\vec{r}_i^-, E) \nabla \phi(\vec{r}_i^-, E) = \vec{n} \cdot D(\vec{r}_i^+, E) \nabla \phi(\vec{r}_i^+, E)$$

Flux derivative is discontinuous at an interface of different materials

Diffusion Equation (2)

Vacuum boundary condition

 Since the detailed angular dependence is not incorporated, the correct boundary condition should be replaced by an appropriate approximation

$$\psi(\vec{r}_v, E, \vec{\Omega}_{in}) = 0$$
 for $\vec{\Omega}_{in} \cdot \vec{n} < 0$ (no incoming angular flux)

Zero net incoming current condition

$$J^{-}(\vec{r}_{v}, E) = \frac{1}{4}\phi(\vec{r}_{v}, E) - \frac{1}{2}J_{n}(\vec{r}_{v}, E) = 0$$

$$\phi(\vec{r}_{v}, E) + 2D(\vec{r}_{v}, E) \frac{d\phi(\vec{r}_{v}, E)}{dn} = 0, \quad D = \frac{\lambda_{tr}}{3}$$

First order Taylor expansion of

$$\phi(\vec{r}_v + \frac{2}{3}\lambda_{tr}\vec{n}, E) = 0$$

- Zero flux at an extrapolated location
 - With more accurate transport theoretical derivation, the factor 2/3 is replaced by 0.711

$$\phi(\vec{r}_v + 0.711\lambda_{tr}\vec{n}, E) = 0$$

