1 Ещё немного колец

- 1. Пусть R и S кольца с единицей. Пусть $f:R\to S$ гомоморфизм колец. Следует ли из этого автоматически, что $f(1_R)=1_S$. Докажите, что $f(1_R)=1_S$, если либо f сюръективен, либо S не имеет делителей нуля.
- 2. Показать, что если в кольце A с единицей элементы xy и yx, обратимы, то x и y тоже обратимы; если обратимо xy и нет делителей 0, то x и y тоже обратимы; если обратим xy, то x и y не обязательно должны быть обратимы.
- 3. Является ли кольцом множество всех подмножеств множества M с операциями объединения и пересечения? Пересечения и симметрической разности? Если да, то представить его в виде прямого произведения неразложимых колец.

2 Линейная алгебра

- 1. Верно ли, что множество вещественных чисел больших 0 является векторным пространством над \mathbb{R} относительно умножения (в качестве сложения) и возведения в степень (в качестве умножения на скаляр). Какова размерность этого пространства?
- 2. Сколько существует различных наборов из m линейно независимых векторов в пространстве \mathbb{F}_q^n ? Сколько существует m-мерных подпространств в \mathbb{F}_q^n ?
- 3. Пусть k поле. Покажите, для $n \in \mathbb{N}$ ранг линейного оператора $f \colon k^n \to k^n$ равен 1 тогда и только тогда, когда для любой пары базисов \mathbf{x}, \mathbf{y} пространства k^n изображающая матрица $[f]^{\mathbf{y}}_{\mathbf{x}}$ раскладывается в произведение $[f]^{\mathbf{y}}_{\mathbf{x}} = ab$, где a матрица с одним столбцом, а b матрица с одной строкой.
- 4. Покажите, что множество всех многочленов над полем k является линейным пространством. Является ли отображение, переводящее f в f' линейным?
- 5. Пусть k поле. Является ли множество векторов (x_1,\ldots,x_n) пространства k^n , удовлетворяющих равенству $x_1^2=x_2^2$, подпространством. Если да, предъявите какой-нибудь базис этого подпространства.
- 6. Описать сумму и пересечение следующих подпространств в $\mathbb{R}[t]$: $U_1 = \{f \mid t^2 7t + 6 \mid f\}, \ U_2 = \{f \mid t^2 5t 6 \mid f\}.$
- 7. Верно ли для произвольных трех подпространств U_1,U_2,U_3 пространства V, что $(U_1+U_2)\cap U_3=U_1\cap U_3+U_2\cap U_3$? Верно ли это, если $U_1\subset U_3$?

- 8. Пусть $f: M \to L$ линейное отображение k-линейных пространств, M_1, M_2 подпространства M, а L_1, L_2 подпространства L. Какие из следующих равенств верны: $f(M_1+M_2)=f(M_1)+f(M_2), f(M_1\cap M_2)=f(M_1)\cap f(M_2), f^{-1}(L_1+L_2)=f^{-1}(L_1)+f^{-1}(L_2), f^{-1}(L_1\cap L_2)=f^{-1}(L_1)\cap f^{-1}(L_2).$
- 9. Найти матрицу оператора ортогонального проектирования трехмерного пространства на плоскость, заданную уравнением x+2y+2z=0, в базисе (1,1,-2), (2,1,-1), (3,2,-2).
- 10. Пусть U, V векторные пространства над полем k. Докажите, что $\operatorname{Hom}_k(U,V)$ тоже является пространством над k и найдите его размерность.
- 11. Пусть даны U, V векторные пространства над полем k. dim U=n, dim $V=m,\ U_0\leq U,$ dim $U_0=n_0,\ V_0\leq V,$ dim $V_0=m_0.$ Покажите, что

$$\{F \in \operatorname{Hom}_k(U, V) \mid \ker F \leq U_0\}$$

И

$$\{F \in \operatorname{Hom}_k(U, V) \mid \operatorname{im} F \leq V_0\}$$

подпространства в $\operatorname{Hom}_k(U,V)$ и найдите их размерность.

- 12. Пусть V, V_1, V_2 векторные пространства над полем k. Покажите, что если V, V_1, V_2 конечномерны, то из $V \oplus V_1 \simeq V \oplus V_2$ следует $V_1 \simeq V_2$. Так ли это в бесконечномерном случае?
- 13. Для любых двух эндоморфизмов $F,G\colon V\to V$, где V— векторное пространство, покажите, что $\ker(FG)\subset\ker(G)$, $\operatorname{im}(FG)\subset\operatorname{im}(F)$. Предъявите конечномерный пример, когда оба включения строгие.
- 14. На какую матрицу и с какой стороны нужно умножить прямоугольную матрицу чтобы а) ее строки с номерами i и j поменялись местами b) ее столбцы с номерами i и j поменялись местами c) к ее i-той строке прибавилась j-тая умноженная на число λ d) то же самое со столбцами.
- 15. Пусть U_1, U_2 подпространства в V. Докажите, что $U_1 \cup U_2$ подпространство тогда и только тогда, когда либо $U_2 \subset U_1$, либо $U_1 \subset U_2$.
- 16. Введем в пространстве многочленов степени не выше $n \in \mathbb{N}$ над полем \mathbb{K} два базиса: $\mathbf{x} = \{1, x, \dots, x^n\}$ и $\mathbf{y} = \{1, x + c, (x + c)^2, \dots, (x + c)^n\}$ для некоторого ненулевого $c \in \mathbb{K}$. Найдите $[\mathrm{Id}]_{\mathbf{x}}^{\mathbf{y}}$ и $[\mathrm{Id}]_{\mathbf{y}}^{\mathbf{y}}$. Найдите с помощью полученных результатов сумму $\sum\limits_{i=m}^{n} c^i C_n^i C_i^m$.