### 5. MÉTODO DE ENXAME DE PARTÍCULAS ( PARTICLE SWARM)

- **5.1.** Analogia Compartamental: *todos por um e um por todos*
- **5.2.** A Tradução Matemática: o algoritmo básico
- **5.3.** A Programação do Algoritmo
- **5.4.**Exemplos Ilustrativos

# 5. MÉTODO DE ENXAME DE PARTÍCULAS

### 5.1. Analogia Comportamental: todos por um e um por todos



Figura 1 –Uma imensa nuvem de pássaros [ red-billed queleas] retornam a seu viveiro natural ao pôr do sol, Delta do Okavango, Botswana, África

O método de *enxame de partículas* pode ser explicado de uma forma simples através de uma analogia de comportamento social apresentada por M. Clerc [ *The Swarm & The Queen. Towards a Deterministic and Adaptive Particle Swarm Optimization* de Maurice Clerc – Artigo disponibilizado na Internet na *Home Page* <a href="http://clerc.maurice.free.fr/PSO/]">http://clerc.maurice.free.fr/PSO/]</a>. O autor sugere a seguinte situação fictícia: "Suponha que você e alguns amigos estão à busca de um tesouro enterrado em uma ilha. Cada membro da expedição tem um rádio-comunicador-receptor, podendo se comunicar com todos os membros informando-os sobre a situação em que se encontra, bem como ouvir todos os comunicados trocados entre os membros. Assim, cada explorador sabe a localização de toda a equipe e está informado sobre a situação (quão próximo está do encontro do tesouro) de cada membro. O seu próximo deslocamento será feito fundamentado em sua própria experiência e nos relatos ouvidos em seu rádio. Desta forma, havendo real cooperação e troca de informações entre os membros da equipe, o tesouro será achado em um tempo bem menor do que se você fosse escavar sozinho vários buracos na ilha..." .Em suma, o aspecto cooperativo da busca do tesouro poderia ter como epíteto a famosa frase encontrada no final do Capítulo 9 do livro "Os Três Mosqueteiros" de Alexandre Dumas " *todos por um e um por todos, este é nosso lema, não é*?".

Este mesmo comportamento cooperativo e de troca de informações é encontrado entre várias espécies animais: em revoadas de pássaros, em cardumes de peixes, em enxames de abelhas, etc. Cientistas de diferentes áreas tentaram modelar estes comportamentos e simulá-los, em particular Reynolds [ Reynolds, C.W. (1987) – "Flocks, herds and schools: a distributed behavioral model" em Computer Graphics, 21 (4): 25-34] discute a riqueza do movimento de revoadas de pássaros, de manadas de animais terrestres ou de cardumes de peixes procurando estabelecer regras básicas do comportamento individual que justifiquem o comportamento do grupo. O objetivo do trabalho foi o desenvolvimento da animação, por computação gráfica, do movimento de cada membro do grupo, estando portanto fora do escopo do presente curso. Entretanto, a conclusão mais pertinente do artigo se refere ao fato do movimento simulado da revoada de pássaros ser o resultado de comportamentos relativamente simples do movimento de cada um dos indivíduos (pássaros). Um outro trabalho pioneiro é o de Heppner & Grenander [ Heppner, F & Grenander, U. (1990) – "A stochastic nonlinear model for coordinated birds flocks" em "The Ubiquity of Chaos" Editado por S. Krasner , AAAS Publications, Washington DC] trabalho conjunto entre um biólogo (primeiro autor!) e um matemático que busca estabelecer as regras que descrevam a perfeita sincronia do movimento de um grande número de pássaros tanto em suas súbitas e bem orquestradas mudanças de direção, como no seu espalhamento e posterior reagrupamento.

O primeiro trabalho sobre o algoritmo de otimização natural denominado *ENXAME DE PARTÍCULAS*( *Particle swarm* em Inglês) é o de Eberhart & Kennedy [ Kennedy, J. & Eberhart, R. (1995), - "*Particle Swarm Optimization*" em *Proceedings IEEE International Conference on Neural Networks* (*Perth, Austrália*) páginas 1942-1948, artigo disponibilizado na Internet na *Home Page*: <a href="http://www.engr.iupui.edu/~shi/Coference/psopap4.html">http://www.engr.iupui.edu/~shi/Coference/psopap4.html</a>] que, motivados pelo comportamento gregário do movimento de animais ( pássaros, peixes, abelhas, gado, etc.), propuseram um algoritmo de otimização não determinístico bastante eficiente, robusto e de simples implementação computacional.

A tradução matemática do algoritmo de Eberhart & Kennedy é apresentado no próximo item, entendendo-se que o termo <u>partícula</u> se refere a cada um dos indivíduos do grupo (termo equivalente a indivíduo no algoritmo genético) e o termo <u>enxame</u> se refere ao grupo de indivíduos. É importante enfatizar que neste algoritmo, de forma distinta do algoritmo genético, o indivíduo (a partícula) é mantido íntegro durante todo o processo, *sobrevivendo* sem envelhecer até o final do procedimento, a única modificação sofrida pelo indivíduo é sua localização no espaço.

voltar para ENXAME DE PARTÍCULAS

## 5.2. A Tradução Matemática: o algoritmo básico

No artigo de Eberhart & Kennedy (1995) não se encontra demonstração formal alguma do algoritmo proposto pelos autores, o método proposto já está apresentado em sua forma recursiva adequada para implementação computacional. Uma tentativa de apresentar este algoritmo é apresentada neste item, resultando desta nova formulação uma versão modificada do algoritmo

originalmente proposto.

A idéia fundamental do algoritmo é o estabelecimento, em cada passo ou iteração, do movimento de cada uma das partículas do grupo composto por <u>n</u> partículas (sendo o valor de <u>n</u> escolhido pelo usuário!). Este movimento é norteado pela *lembrança* da *melhor* posição (melhor valor da função objetivo) no espaço que a partícula já encontrou em seu movimento e no *conhecimento* da *melhor* posição já encontrada por todo o grupo. A utilização da melhor posição individual da partícula pode ser classificada como uma espécie de autoconfiança (ou coloquialmente como o comportamento *sou-mais-eu*!) e a informação da melhor posição do grupo pode ser classificada como um comportamento gregário do indivíduo (ou coloquialmente como o comportamento *maria-vai-com-as-outras*!). Para assegurar a existência de uma certa *personalidade* em cada indivíduo se dota cada indivíduo do grupo de um comportamento distinto e aleatório em que a ponderação destas duas informações é *sorteada* ao longo do processo, assumindo assim um valor diferente para cada uma das partículas e variando este valor ao longo do processo iterativo (procurando traduzir uma certa mudança humor do indivíduo ao longo do tempo). Assim, considerando o movimento da partícula em um plano ou em um espaço bi-dimensional e sua localização neste espaço caracterizada por suas coordenadas:

Partícula  $\underline{k}$  posição no plano xy no passo ou iteração  $\underline{i}$ :  $\left(x_k^{(i)}, y_k^{(i)}\right)$  onde  $k=1, 2,...,\underline{n}$  (número total de partículas no enxame) e  $i=1, 2,...,\underline{m}$  (número total de passos); melhor posição da partícula  $\underline{k}$ :  $\left(x_k^{melhor}, y_k^{melhor}\right)$  e melhor posição já encontrada pelo enxame (todas as partículas)  $\left(\hat{x}_{global}, \hat{y}_{global}\right)$ .

A *Força Motriz* que movimentará cada uma das partículas será proporcional à distância entre a posição atual da partícula e o ponto resultante da média ponderada entre a melhor posição individual da partícula e a melhor posição do enxame, isto é :

$$X_{k}^{(i)} = \begin{pmatrix} X_{k}^{(i)} \\ Y_{k}^{(i)} \end{pmatrix} = \begin{pmatrix} \lambda \cdot x_{k}^{(melhor)} + (1 - \lambda) \cdot \hat{x}_{global} \\ \mu \cdot y_{k}^{(melhor)} + (1 - \mu) \cdot \hat{y}_{global} \end{pmatrix} \text{ onde } \lambda \text{ e } \mu \text{ são dois números aleatórios } \in [0,1].$$

$$y_{k}^{melhor} \qquad \qquad \text{MELHOR INDIVIDUAL}$$

$$\hat{y}^{melhor} \qquad \qquad \text{MELHOR GLOBAL}$$

O retângulo sombreado na figura acima representa a região no plano xy de todos os

pontos  $X_k^{(i)}$ .

Considerando o movimento de cada partícula análogo ao do movimento do sistema mecânico carrinho+mola+amortecedor resulta no balanço de forças (em forma adimensional!):

Na direção 
$$x$$
: 
$$\frac{d^2x_k(t)}{dt^2} = -2 \cdot \xi_k \cdot \frac{dx_k(t)}{dt} - \left[x_k(t) - X_k^{(i)}\right]$$

e na direção y: 
$$\frac{d^2 y_k(t)}{dt^2} = -2 \cdot \varsigma_k \cdot \frac{dy_k(t)}{dt} - \left[ y_k(t) - Y_k^{(i)} \right]$$

estas duas equações diferenciais são resolvidas no intervalo de tempo (tempo artificial adimensional, que na realidade *mede*, em sua forma discreta, as iterações do processo):  $t_i = i \cdot \Delta t < t \le (i+1) \cdot \Delta t = t_{i+1}. \text{ No } início \text{ do intervalo se tem: } x_k(t_i) = x_k^{(i)}; y_k(t_i) = y_k^{(i)};$   $\frac{dx_k(t)}{dt}\Big|_{t_i} = v_k^{(i)} \text{ e } \frac{dy_k(t)}{dt}\Big|_{t_i} = v_k^{(i)} \text{ (que são os dois componentes do vetor velocidade da partícula de tempo (tempo artificial no intervalo de tempo (tempo artificial no inter$ 

no início do intervalo). Os parâmetros  $\xi_k$  e  $\zeta_k$  são dois números aleatórios (adimensionais!)  $\in$  [0,1].

Reescrevendo as duas equações diferenciais em termos dos dois componentes do vetor velocidade resulta no sistema de equações diferenciais de primeira ordem:

$$\begin{cases} \frac{dv_{k}(t)}{dt} = -2 \cdot \xi_{k} \cdot v_{k}(t) - \left[x_{k}(t) - X_{k}^{(i)}\right] \\ \frac{dx_{k}(t)}{dt} = v_{k}(t) \\ \frac{dv_{k}(t)}{dt} = -2 \cdot \xi_{k} \cdot v_{k}(t) - \left[y_{k}(t) - Y_{k}^{(i)}\right] \\ \frac{dy_{k}(t)}{dt} = v_{k}(t) \end{cases}$$

Resolvendo numericamente estas equações pelo método de Euler explícito, resulta no final do intervalo:

$$\begin{cases} \mathbf{v}_{k}^{(i+1)} = \mathbf{v}_{k}^{(i)} - 2 \cdot \xi_{k} \cdot \Delta t \cdot \mathbf{v}_{k}^{(i)} - \Delta t \cdot \left[ x_{k}^{(i)} - X_{k}^{(i)} \right] \\ x_{k}^{(i+1)} = x_{k}^{(i)} + \Delta t \cdot \mathbf{v}_{k}^{(i)} \\ \mathbf{v}_{k}^{(i+1)} = \mathbf{v}_{k}^{(i)} - 2 \cdot \zeta_{k} \cdot \Delta t \cdot \mathbf{v}_{k}^{(i)} - \Delta t \cdot \left[ y_{k}^{(i)} - Y_{k}^{(i)} \right] \\ y_{k}^{(i+1)} = y_{k}^{(i)} + \Delta t \cdot \mathbf{v}_{k}^{(i)} \end{cases}$$

Definindo as variáveis :  $V_x = \Delta t \cdot v$  e  $V_y = \Delta t \cdot v$  resulta:

$$\begin{cases} V_{x,k}^{(i+1)} = V_{x,k}^{(i)} - 2 \cdot \xi_k \cdot \Delta t \cdot V_{x,k}^{(i)} - \Delta t^2 \cdot \left[ x_k^{(i)} - X_k^{(i)} \right] \\ x_k^{(i+1)} = x_k^{(i)} + V_{x,k}^{(i)} \\ V_{y,k}^{(i)} = V_{y,k}^{(i)} - 2 \cdot \xi_k \cdot \Delta t \cdot V_{y,k}^{(i)} - \Delta t^2 \cdot \left[ y_k^{(i)} - Y_k^{(i)} \right] \\ y_k^{(i+1)} = y_k^{(i)} + V_{y,k}^{(i)} \end{cases}$$

Agrupando os parâmetros das expressões acima chega-se à forma iterativa do método conforme sugerida por Eberhart & Kennedy (1995)<sup>1</sup>:

$$\begin{cases} V_{x,k}^{(i+1)} = \omega^{(i)} \cdot V_{x,k}^{(i)} + c_1 \cdot \lambda \cdot \left[ x_k^{melhor} - x_k^{(i)} \right] + c_2 \cdot \mu \cdot \left[ \hat{x}_{global} - x_k^{(i)} \right] \\ x_k^{(i+1)} = x_k^{(i)} + V_{x,k}^{(i+1)} \\ V_{y,k}^{(i+1)} = \omega^{(i)} \cdot V_{y,k}^{(i)} + c_1 \cdot \eta \cdot \left[ y_k^{melhor} - y_k^{(i)} \right] + c_2 \cdot \varepsilon \cdot \left[ \hat{y}_{global} - y_k^{(i)} \right] \\ y_k^{(i+1)} = y_k^{(i)} + V_{y,k}^{(i+1)} \end{cases}$$

para i = 0, 1, ...,  $\underline{m}$ -1; sugere-se adotar a *ponderação*  $\omega^{(i)}$  decrescente com i de forma linear segundo a expressão:  $\omega^{(i)} = \omega_{inicial} + \left(\omega_{final} - \omega_{inicial}\right) \cdot \left(\frac{i}{m-1}\right)$  com  $\omega_{final} < \omega_{inicial}$ ; as constantes  $c_1$  e  $c_2$  são valores reais positivos escolhidos pelo usuário e os parâmetros  $\lambda$ ,  $\mu$ ,  $\eta$  e  $\varepsilon$  são valores randômicos ou aleatórios *sorteados* em cada passo do processo iterativo. As posições e velocidades iniciais das partículas podem ser definidas pelo usuário ou então geradas aleatoriamente pelo

Uma forma alternativa do procedimento recursivo pode também ser obtida (sendo referenciada a partir deste instante como algoritmo modificado de enxame de partículas, abreviadamente PSO-modificado, em contraposição ao de Eberhart & Kennedy denominado de PSO-clássico) através da solução analítica, em cada intervalo de tempo, do sistema original de EDO's:

$$\begin{cases} \frac{d^{2}x_{k}(t)}{dt^{2}} + 2 \cdot \xi_{k} \cdot \frac{dx_{k}(t)}{dt} + \left[x_{k}(t) - X_{k}^{(i)}\right] = 0\\ \frac{d^{2}y_{k}(t)}{dt^{2}} + 2 \cdot \zeta_{k} \cdot \frac{dy_{k}(t)}{dt} + \left[y_{k}(t) - Y_{k}^{(i)}\right] = 0 \end{cases}$$

congelando os valores de  $X_k^{(i)}$  e  $Y_k^{(i)}$  em seus valores no início do intervalo, sorteando os valores de  $\xi_k$  e  $\zeta_k$  apenas uma vez em  $t_i$  e resolvendo o sistema com as condições iniciais:

\_

computador.

<sup>&</sup>lt;sup>1</sup> Note que na discretização das equações diferenciais o procedimento de integração da posição é o Euler implícito enquanto que o das velocidades é o Euler explícito!

$$x_k(t_i) = x_k^{(i)}$$
;  $y_k(t_i) = y_k^{(i)}$ ;  $\frac{dx_k(t)}{dt}\Big|_{t_i} = v_k^{(i)}$  e  $\frac{dy_k(t)}{dt}\Big|_{t_i} = v_k^{(i)}$ , resulta:

$$\begin{cases} x_k^{(i+1)} = X_k^{(i)} + \exp\left(-\xi_k \cdot \Delta t\right) \cdot \left\{ \left(x_k^{(i)} - X_k^{(i)}\right) \cdot \cos\left(\omega \cdot \Delta t\right) + \left[\xi_k \cdot \left(x_k^{(i)} - X_k^{(i)}\right) + v_k^{(i)}\right] \cdot \frac{\sin(\omega \cdot \Delta t)}{\omega} \right\} \\ v_k^{(i+1)} = \exp\left(-\xi_k \cdot \Delta t\right) \cdot \left\{ v_k^{(i)} \cdot \cos(\omega \cdot \Delta t) - \left[\left(\omega^2 + \xi_k^2\right) \cdot \left(x_k^{(i)} - X_k^{(i)}\right) + \xi_k v_k^{(i)}\right] \cdot \frac{\sin(\omega \cdot \Delta t)}{\omega} \right\} \\ v_k^{(i+1)} = Y_k^{(i)} + \exp\left(-\zeta_k \cdot \Delta t\right) \cdot \left\{ \left(y_k^{(i)} - Y_k^{(i)}\right) \cdot \cos(\sigma \cdot \Delta t) + \left[\zeta_k \cdot \left(y_k^{(i)} - Y_k^{(i)}\right) + v_k^{(i)}\right] \cdot \frac{\sin(\sigma \cdot \Delta t)}{\sigma} \right\} \\ v_k^{(i+1)} = \exp\left(-\zeta_k \cdot \Delta t\right) \cdot \left\{ v_k^{(i)} \cdot \cos(\sigma \cdot \Delta t) - \left[\left(\sigma^2 + \zeta_k^2\right) \cdot \left(y_k^{(i)} - Y_k^{(i)}\right) + \zeta_k v_k^{(i)}\right] \cdot \frac{\sin(\sigma \cdot \Delta t)}{\sigma} \right\} \end{cases}$$

onde: 
$$\omega = \sqrt{1 - \xi_k^2}$$
 e  $\sigma = \sqrt{1 - \zeta_k^2}$ .

Esta forma modificada do algoritmo só necessita (além da especificação do número de partículas , do número de iterações e dos valores iniciais das posições e velocidades das partículas) da especificação do parâmetro  $\Delta t > 0$ . Este é a grande vantagem deste método modificado (no algoritmo clássico se deve especificar os valores das constantes  $c_1$ ,  $c_2$  e de  $\omega_{inicial}$  e  $\omega_{final}$ ) e a maior complexidade do algoritmo é apenas aparente já que o procedimento recursivo é análogo ao do clássico diferindo apenas no cálculo em cada passo dos valores de funções trigonométricas simples (seno e coseno) e da função exponencial o que não aumenta em nada o custo computacional do código.

## voltar para ENXAME DE PARTÍCULAS

## 5.3. A Programação do Algoritmo

As duas formas do algoritmo são, sob o ponto de vista de implementação, semelhantes diferindo apenas nas expressões matemáticas de cálculo da posição e da velocidade de cada partícula ao cabo de cada iteração e nas especificações das constantes pertinentes.

O algoritmo PSO-clássico para a busca do máximo de uma função f(x,y) pode assim ser sumarizado pelo pseudo-código abaixo:

Etapa Inicial (*Iteração zero*): Entre com  $\mathbf{n}$  (o número de partículas do enxame),  $\mathbf{m}$  (o número de iterações), especifique os valores de  $\omega_{\text{final}}$ ,  $\omega_{\text{inicial}}$ ,  $c_1$ ,  $c_2$  e os valores mínimos e máximos de x e de y. Gere as condições iniciais segundo o procedimento<sup>2</sup>:

para k = 1, ...., **n** faça 
$$\lambda \leftarrow rnd(1)$$
;  $x_k \leftarrow x_{\min} + \lambda \cdot (x_{MAX} - x_{\min})$  e  $x_k^{melhor} \leftarrow x_k$ 

<sup>&</sup>lt;sup>2</sup> Nos procedimentos a função  $.rnd(\alpha)$  gera números aleatórios com distribuição uniforme entre 0(zero) e  $\alpha$ .

$$\mu \leftarrow rnd(1)$$
;  $y_k \leftarrow y_{\min} + \mu \cdot (y_{MAX} - y_{\min}) e y_k^{melhor} \leftarrow y_k$ 

 $V_{x,k} \leftarrow 0$  e  $V_{y,k} \leftarrow 0$  (optou-se neste caso para partir com as partículas em repouso!).

Faça 
$$\hat{x}^{melhor} \leftarrow x_1$$
;  $\hat{y}^{melhor} \leftarrow y_1$ ;  $f_1^{(melhor)} \leftarrow f(x_1, y_1)$  e  $\hat{f}_{global} \leftarrow f_1^{(melhor)}$ ;

**Etapa a)** para i = 2,...., **n** faça 
$$f_i^{(melhor)} \leftarrow f(x_i, y_i)$$

se 
$$f_i^{(melhor)} > \hat{f}_{global}$$
então faça  $\hat{x}^{melhor} \leftarrow x_i; \ \hat{y}^{melhor} \leftarrow y_i$ e

$$\hat{f}_{global} \leftarrow f_i^{(melhor)}$$
 volte para o início da Etapa a com o próximo i;

se  $f_i^{(melhor)} \leq \hat{f}_{global}$  volte para o início da Etapa a com o próximo i;

Etapa 1 (Iteração i) Para i = 1, ...., m faça 
$$\omega \leftarrow \omega_{inicial} + \left(\omega_{final} - \omega_{inicial}\right) \cdot \left(\frac{i-1}{m-1}\right)$$

**Etapa 1-a)** Para k = 1,...,n faça:  $\lambda \leftarrow rnd(1)$ ;  $\mu \leftarrow rnd(1)$ ;  $\eta \leftarrow rnd(1)$  e  $\epsilon \leftarrow rnd(1)$ 

$$V_{x,k} \leftarrow \omega \cdot V_{x,k} + c_1 \cdot \lambda \cdot \left[ x_k^{melhor} - x_k \right] + c_2 \cdot \mu \cdot \left[ \hat{x}_{global} - x_k \right]$$

$$V_{y,k} \leftarrow \omega \cdot V_{y,k} + c_1 \cdot \eta \cdot \left[ y_k^{melhor} - y_k \right] + c_2 \cdot \varepsilon \cdot \left[ \hat{y}_{global} - y_k \right]$$

$$x_k \leftarrow x_k + V_{x,k} \text{ e } y_k \leftarrow y_k + V_{y,k}$$

Se 
$$x_k > x_{MAX}$$
 faça  $x_k \leftarrow x_{MAX}$  e  $V_{x,k} \leftarrow 0$ 

Se 
$$x_k < x_{\min}$$
 faça  $x_k \leftarrow x_{\min}$  e  $V_{x,k} \leftarrow 0$ 

Se 
$$y_k > y_{MAX}$$
 faça  $y_k \leftarrow y_{MAX}$  e  $V_{y,k} \leftarrow 0$ 

Se 
$$y_k < y_{\min}$$
 faça  $y_k \leftarrow y_{\min}$  e  $V_{y,k} \leftarrow 0$ 

Calcule 
$$f_{atual} \leftarrow f(x_k, y_k)$$

Se  $f_{atual} > f_k^{(melhor)}$  faça  $f_k^{(melhor)} \leftarrow f_{atual}$ ,  $x_k^{(melhor)} \leftarrow x_k$  e  $y_k^{(melhor)} \leftarrow y_k$ ; verifique a seguir se  $f_{atual} > \hat{f}_{global}$  faça  $\hat{f}_{global} \leftarrow f_{atual}$ ,  $\hat{x}_{global} \leftarrow x_k$  e  $\hat{y}_{global} \leftarrow y_k$ ; caso  $f_{atual} \le \hat{f}_{global}$  volte ao início Etapa 1-a) com o próximo k se

 $k < \mathbf{n}$ , caso contrário [  $k \ge \mathbf{n}$ ] vá para o início da <u>Etapa 1</u> com o próximo i se i  $< \mathbf{m}$ , caso contrário [  $i \ge \mathbf{m}$ ] vá para a <u>Etapa 2</u>

Se  $f_{atual} \le f_k^{(melhor)}$  volte ao início <u>Etapa 1-a</u>) com o próximo k se k < n, caso contrário [ $k \ge n$ ] vá para o início da <u>Etapa 1</u> com o próximo i se i < m, caso contrário [ $i \ge m$ ] vá para a <u>Etapa 2</u>

Etapa 2 O processo iterativo terminou os melhores valores de x e y são :  $\hat{x}_{global}$  e  $\hat{y}_{global}$  e neste ponto o valor da função é :  $\hat{f}_{global}$ 

#### **FIM**

O algoritmo PSO-modificado para a busca do máximo de uma função f(x,y) pode assim ser sumarizado pelo pseudo-código abaixo:

Etapa Inicial (*Iteração zero*): Entre com  $\mathbf{n}$  (o número de partículas do enxame),  $\mathbf{m}$  (o número de iterações), especifique o valor de  $\Delta t > 0$  e os valores mínimos e máximos de x e de y. Gere as condições iniciais segundo o procedimento:

para k = 1, ...., **n** faça 
$$\lambda \leftarrow rnd(1)$$
;  $x_k \leftarrow x_{\min} + \lambda \cdot (x_{MAX} - x_{\min})$  e  $x_k^{melhor} \leftarrow x_k$  
$$\mu \leftarrow rnd(1)$$
;  $y_k \leftarrow y_{\min} + \mu \cdot (y_{MAX} - y_{\min})$  e  $y_k^{melhor} \leftarrow y_k$  
$$v_k \leftarrow 0$$
 e  $v_k \leftarrow 0$  (optou-se neste caso para partir com as partículas em

repouso!).

Faça 
$$\hat{x}^{melhor} \leftarrow x_1$$
;  $\hat{y}^{melhor} \leftarrow y_1$ ;  $f_1^{(melhor)} \leftarrow f(x_1, y_1)$  e  $\hat{f}_{global} \leftarrow f_1^{(melhor)}$ ;

**Etapa a)** para  $i = 2,...., \mathbf{n}$  faça  $f_i^{(melhor)} \leftarrow f(x_i, y_i)$ 

se  $f_i^{(melhor)} > \hat{f}_{global}$  então faça  $\hat{x}^{melhor} \leftarrow x_i$ ;  $\hat{y}^{melhor} \leftarrow y_i$  e

 $\hat{f}_{global} \leftarrow f_i^{(melhor)}$  volte para o início da Etapa a com o próximo i;

se  $f_i^{(melhor)} \leq \hat{f}_{global}$  volte para o início da <br/> Etapa a com o próximo i;

#### Etapa 3 (Iteração i) Para i = 1, ...., m execute Etapa 1-a)

**Etapa 1-a)** Para k = 1,...,n faça:  $\lambda \leftarrow rnd(1)$ ;  $\eta \leftarrow rnd(1)$ ;  $\xi \leftarrow rnd(1)$  e  $\zeta \leftarrow rnd(1)$ 

Calcule:  $\omega \leftarrow \sqrt{1-\xi^2}$ ;  $X \leftarrow \lambda \cdot x_k^{(melhor)} + (1-\lambda) \cdot \hat{x}_{global}$ ;  $A \leftarrow x_k - X$ ;

 $B \leftarrow \frac{\xi \cdot A + v_k}{\omega}; \ f_1 \leftarrow \exp(-\xi \cdot \Delta t) \cdot \cos(\omega \cdot \Delta t) e \ f_2 \leftarrow \exp(-\xi \cdot \Delta t) \cdot \sin(\omega \cdot \Delta t)$ 

 $x_k \leftarrow X + A \cdot f_1 + B \cdot f_2$ 

 $v_k \leftarrow v_k \cdot f_1 - (\omega \cdot A + \xi \cdot B) \cdot f_2$ 

Se  $x_k > x_{MAX}$  faça  $x_k \leftarrow x_{MAX}$  e  $v_k \leftarrow 0$ 

Se  $x_k < x_{\min}$  faça  $x_k \leftarrow x_{\min}$  e  $v_k \leftarrow 0$ 

a seguir calcule:  $\sigma \leftarrow \sqrt{1-\zeta^2}$ ;  $Y \leftarrow \eta \cdot y_k^{(melhor)} + (1-\eta) \cdot \hat{y}_{global} C \leftarrow y_k - Y$ ;

 $D \leftarrow \frac{\varsigma \cdot C + \upsilon_k}{\sigma}; \ g_1 \leftarrow \exp(-\varsigma \cdot \Delta t) \cdot \cos(\sigma \cdot \Delta t) e \ g_2 \leftarrow \exp(-\varsigma \cdot \Delta t) \cdot \sin(\sigma \cdot \Delta t)$ 

 $y_k \leftarrow Y + C \cdot g_1 + D \cdot g_2$ 

 $v_k \leftarrow v_k \cdot g_1 - (\sigma \cdot C + \varsigma \cdot D) \cdot g_2$ 

Se  $y_k > y_{MAX}$  faça  $y_k \leftarrow y_{MAX}$  e  $v_k \leftarrow 0$ 

Se  $y_k < y_{\min}$  faça  $y_k \leftarrow y_{\min}$  e  $v_k \leftarrow 0$ 

Calcule  $f_{atual} \leftarrow f(x_k, y_k)$ 

Se  $f_{atual} > f_k^{(melhor)}$  faça  $f_k^{(melhor)} \leftarrow f_{atual}$ ,  $x_k^{(melhor)} \leftarrow x_k$  e  $y_k^{(melhor)} \leftarrow y_k$ ; verifique a seguir se  $f_{atual} > \hat{f}_{global}$  faça  $\hat{f}_{global} \leftarrow f_{atual}$ ,  $\hat{x}_{global} \leftarrow x_k$  e  $\hat{y}_{global} \leftarrow y_k$ ; caso  $f_{atual} \le \hat{f}_{global}$  volte ao início Etapa 1-a) com o próximo k se

 $k < \mathbf{n}$ , caso contrário [  $k \ge \mathbf{n}$ ] vá para o início da <u>Etapa 1</u> com o próximo i se i  $< \mathbf{m}$ , caso contrário [  $i \ge \mathbf{m}$ ] vá para a <u>Etapa 2</u>

Se  $f_{atual} \le f_k^{(melhor)}$  volte ao início <u>Etapa 1-a</u>) com o próximo k se k < n, caso contrário [ $k \ge n$ ] vá para o início da <u>Etapa 1</u> com o próximo i se i < m, caso contrário [ $i \ge m$ ] vá para a <u>Etapa 2</u>

Etapa 4 O processo iterativo terminou os melhores valores de x e y são :  $\hat{x}_{global}$  e  $\hat{y}_{global}$  e neste ponto o valor da função é :  $\hat{f}_{global}$ .

#### **FIM**

A seleção dos valores dos parâmetros/constantes dos dois algoritmos é uma tarefa de *tentativa-e-erro*, a recomendação que se dá nestes casos e para estes tipos de algoritmos é a execução de um grande número de experimentos numéricos. A prática adquirida através da implementação computacional dos algoritmos e a resolução de exercícios simples é fundamental para se adquirir alguma sensibilidade sobre os valores destes parâmetros/constantes. Mesmo assim se deve alertar que não há *valores mágicos* destes parâmetros/constantes e sempre desconfie de artigos científicos que sugiram de forma categórica valores particulares destes parâmetros como os *melhores*.

voltar para ENXAME DE PARTÍCULAS

### **5.4.** Exemplos Ilustrativos

Para entender o significado dos parâmetros do método, considere a mesma função considerada nos algoritmos genéticos, que é a minimização de F(x) apresentada abaixo.

$$F(x) = \frac{1}{10000} (x+10) (x+6) (x+5) (x+1) (x-7) (x-10)$$



Figura 2 — Espaço de busca da função teste

• Observe que existem mínimos locais em  $x \approx -8,834$ ,  $x \approx -2,546$  e  $x \approx 8,817$ , sendo este último o mínimo global. A função apresenta máximos locais em  $x \approx -5,518$  e  $x \approx 3,914$ .



Figura 3 – Extremos da função teste

As duas versões do PSO foram implementadas computacionalmente. Abaixo é mostrada a evolução dos valores ótimos da função e da variável x ao longo do procedimento evolutivo com a forma clássica do algoritmo tendo sido utilizado os seguintes conjunto de parâmetros:  $\omega_{inicial}$ =0,9;  $\omega_{final}$ =0;  $c_1$ = $c_2$ =1;  $x_{MAX}$  = +12 e  $x_{min}$  = -12.Adotando-se uma população de 10(dez) partículas, um máximo de 20 (vinte) iterações e partindo de localizações iniciais aleatórias (entre -12 e +12) e do repouso.



Figura 4 – Evolução dos Melhores Valores Globais da Função Teste



Figura 5 – Evolução dos Melhores Valores Globais da Variável

Uma animação desta solução pode ser reproduzida clicando-se no programa Univariável\_PSO\_clássico.

Abaixo é mostrada a evolução dos valores ótimos da função e da variável x ao longo do procedimento evolutivo com a forma modificada do algoritmo tendo sido utilizado os seguintes conjunto de parâmetros: $\Delta t$ =1;  $x_{MAX}$  = +12 e  $x_{min}$  = -12.Adotando-se uma população de 10(dez) partículas, um máximo de 20 (vinte) iterações e partindo de localizações iniciais aleatórias (entre – 12 e +12) e do repouso.



Figura 6 – Evolução dos Melhores Valores Globais da Função Teste



Figura 7 – Evolução dos Melhores Valores Globais da Variável

Uma animação desta solução pode ser reproduzida clicando-se no programa Univariável\_PSO\_modificado.

Notem que o desempenho das duas formas do algoritmo é idêntico, não sendo possível afirmar qual das duas formas é mais eficiente.

O funcionamento do algoritmo de enxame de partículas (PSO para os íntimos) é agora ilustrado com a maximização de uma função de duas variáveis, a chamada Função Alpina que é representada pela equação :

$$f(x, y) = \sqrt{x \cdot y} \cdot \operatorname{sen}(x) \cdot \operatorname{sen}(y)$$

no domínio : 0 < x < 10 e 0 < y < 10.

Esta função é mostrada nas duas figuras a seguir:





Figura 8 – A Função Alpina

a

Figura 9 – A Função Alpina em Curvas de Nível

O máximo global desta função, na região considerada, é em  $x=y\approx 7,917$  onde a função assume o valor  $f_{MAXIMO}\approx 7,8856$ .

Abaixo é mostrada a evolução dos valores ótimos da função ao longo do procedimento evolutivo com a forma clássica do algoritmo tendo sido utilizado os seguintes conjunto de parâmetros:  $\omega_{inicial}$ =0,9 ;  $\omega_{final}$ =0 ;  $c_1$ = $c_2$ =1;  $x_{MAX}$ =  $y_{MAX}$ = +10 e  $x_{min}$ =  $y_{min}$ =0. Adotando-se uma população de 20(vinte) partículas, um máximo de 20 (vinte) iterações e partindo de localizações iniciais aleatórias [entre (0,0) e (10,10)] e do repouso.



Figura 10 – Evolução dos Melhores Valores Globais da Função Alpina

Uma animação desta solução pode ser reproduzida clicando-se no programa Alpina\_PSO\_Clássico.

Abaixo é mostrada a evolução dos valores ótimos da função ao longo do procedimento evolutivo com a forma modificada do algoritmo tendo sido utilizado os seguintes conjunto de parâmetros: : $\Delta t$ =1;  $x_{MAX}$ =  $y_{MAX}$  = +10 e  $x_{min}$  =  $y_{min}$  = 0 .Adotando-se uma população de 20(vinte) partículas, um máximo de 20 (vinte) iterações e partindo de localizações iniciais aleatórias [entre (0,0) e (10,10)] e do repouso.



Figura 11 – Evolução dos Melhores Valores Globais da Função Alpina

Uma animação desta solução pode ser reproduzida clicando-se no programa Alpina\_PSO\_Modificado.

É importante novamente enfatizar que os *melhores* valores dos parâmetros/constantes das duas formas do algoritmo são muito dependentes do problema particular que se está resolvendo e que uma análise da sensibilidade da resolução do problema a valores particulares dos

parâmetros/constantes só pode ser feita após a execução de um grande número de simulações. Desta maneira, recomendamos fortemente que sejam feitos <u>todos</u> os exercícios da lista sobre o assunto e que dúvidas sejam tiradas por E-mail ou durante as sessões do *chat-room*.

voltar para ENXAME DE PARTÍCULAS