지연 비율을 중심으로 Artificial Neural Net을 통한 항공 지연 예측

팀명: 빅써미

한국외국어대학교 구본성

고려대학교 이경민 경희대학교 전희선

목차

EDA (Exploratory Data Analysis) 및 선행 연구 조사

추가 데이터 수집 및 Feature Engineering

모델링 과정 및 결과

추후 개선 방안

EDA (Exploratory Data Analysis) 및 선행 연구 조사

EDA - AFSNT 데이터 파악

연도, 월, 일, 요일, 공항, 상대공항, 항공사, 편명, 등록기호, 출발/도착, 정기/부정기편, 계획시각, 실제시각, 지연여부, 지연원인, 결항여부, 결항원인

지연 데이터 (DLY=Y)

	SDT_YY	SDT_MM	SDT_DD	SDT_DY	ARP	ODP	FLO	FLT	REG	AOD	IRR	STT	ATT	DLY	DRR	CNL	CNR
7	2017	1	1	일	ARP1	ARP3	А	A1907	SEw3NTk0	D	N	6:40	7:54	Υ	C01	N	NaN
24	2017	1	1	일	ARP2	ARP3	1	11561	SEw3NTY0	D	N	7:05	7:36	Υ	C02	N	NaN
48	2017	1	1	일	ARP3	ARP1	Α	A1907	SEw3NTk0	Α	N	7:50	8:39	Υ	C01	N	NaN
75	2017	1	1	일	ARP2	ARP3	Н	H1503	SEw4MDUw	D	N	8:05	8:36	Y	D01	N	NaN
87	2017	1	1	일	ARP3	ARP1	Н	H1102	SEw4MDYz	D	N	8:15	8:46	Υ	C02	N	NaN
91	2017	1	1	일	ARP15	ARP2	J	J1404	SEw4MjQw	D	N	8:25	9:07	Y	D01	N	NaN

결항 데이터 (CNL=Y)

	SDT_YY	SDT_MM	SDT_DD	SDT_DY	ARP	ODP	FLO	FLT	REG	AOD	IRR	STT	ATT	DLY	DRR	CNL	CNE
1004	2017	1	1	일	ARP2	ARP15	Α	A1851A	SEw4MjY3	А	Υ	21:00	NaN	N	NaN	Υ	C02
3182	2017	1	4	수	ARP1	ARP8	Α	A1703	SEw3Nzkw	D	N	7:40	NaN	N	NaN	Υ	A0
3250	2017	1	4		ARP8	ARP1	Α	A1703	NaN	Α	N	8:30	NaN	N	NaN	Υ	A0
3280	2017	1	4	수	ARP8	ARP1	А	A1704	NaN	D	N	9:00	NaN	N	NaN	Y	A0
3344	2017	1	4	수	ARP1	ARP8	А	A1704	SEw3Nzkw	А	N	9:50	NaN	N	NaN	Υ	A0
9423	2017	1	10	화	ARP3	ARP4	А	A1120	SEw3Nzg4	D	N	7:45	NaN	N	NaN	Y	CO

지연 여부 및 확률을 예측해야 하는 문제이므로 결항 데이터보다는 지연 데이터에 더 초점을 맞추어 분석 실시

EDA - 공항 분석

한국공항공사의 항공통계 데이터를 통해 2017년 1월~2019년 6월 공항별 운항(편수) 추출

EDA - 공항 분석

AFSNT 데이터와 한국공항공사 데이터 대조 통한 공항 유추

								AF	RP							
DLY	ARP3	ARP1	ARP2	ARP6	ARP4	ARP8	ARP5	ARP15	ARP9	ARP12	ARP13	ARP11	ARP7	ARP14	ARP10	총합계
N	334,914	278,536	109,432	30,493	30,110	29,449	15,556	11,977	11,920	4,471	3,608	3,539	2,973	1,783	11	868,772
Y	58,693	32,129	12,081	3,979	3,513	3,746	765	1,719	839	409	640	119	190	114	1	118,937
총 lı.	393,607	310,665	121,513	34,472	33,623	33,195	16,321	13,696	12,759	4,880	4,248	3,658	3,163	1,897	12	987,709
								OD	P							
DLY	ARP3	ARP1	ARP2	ARP6	ARP8	ARP4	ARP5	ARP15	ARP9	ARP12	ARP13	ARP11	ARP7	ARP14	ARP10	총합계
N	348,870	268,675	106,045	29,235	28,642	29,404	15,365	14,839	11,650	4,459	3,539	3,504	2,855	1,683	7	868,772
Y	44,559	40,150	14,985	5,192	4,549	4,111	953	1,544	1,111	418	709	149	294	213		118,937
총	393,429	308,825	121,030	34,427	33,191	33,515	16,318	16,383	12,761	4,877	4,248	3,653	3,149	1,896	7	987,709

공항명		운항(편수)	
080	도착	출발	계
김포	152,396	152,670	305,066
김해	59,878	59,889	119,767
제주	195,233	195,263	390,496
대구	16,381	16,363	32,744
광주	16,448	16,423	32,871
무안	1,549	1,551	3,100
청주	17,103	17,095	34,198
양양	1	6	7
여수	6,259	6,259	12,518
울산	7,947	7,949	15,896
사천	2,378	2,373	4,751
포항	1,707	1,706	3,413
군산	2,052	2,050	4,102
원주	910	910	1,820
인천	6,946	6,682	13,628
합 계	487,188	487,189	974,377

공항 유추 결과

ARP	1 ARP2	ARP3	ARP4	ARP5	ARP6	ARP7	ARP8	ARP9	ARP10	ARP11	ARP12	ARP13	ARP14	ARP15
김포	김해	제주	대구	울산	청주	무안	광주	여수	양양	포함	사천	군산	원주	인천

EDA - 항공사 분석

AFSNT 데이터와 한국공항공사 데이터 대조 통한 항공사 유추

						FL	0					
DLY	J	A	В	Н	1	F	L	C	K	D	G	E
N	250,531	156,109	120,647	113,612	80,395	75,577	71,892	3	2	2	1	1
Υ	25,916	21,078	14,588	18,323	14,679	12,533	11,820					
총. h.	276.447	177.187	135.235	131.935	95.074	88.110	83.712	3	2	2	1	1

항공사명		운항(편수)	
8545	도착	출발	계
아시아나항공	85,848	85,927	171,775
에어부산	66,383	66,394	132,777
이스타항공	43,519	43,558	87,077
제주항공	65,370	65,420	130,790
진에어	47,017	47,050	94,067
대한항공	130,633	130,657	261,290
티웨이항공	41,472	41,501	82,973

항공사 유추 결과

A	В	С	D	E	F	G	Н	I	J	K	L
101710	에어부산	?	?	?	이스타항공	?	제주항공	집에어	대한항공	?	EI웨이항공

EDA - 지연 원인 분석

- 1) A/C 접속이 90% 이상
 - → 등록기호, 편명을 통해 추가 분석
- 2) A/C 접속, 안개, 제방빙작업, 항로혼잡,
 - 승객접속, 승무원연결, 강풍, 계류장혼잡,
 - 강설 등의 순으로 영향
 - → 상위 9개 항목 중 4개(44%)가
 - 날씨와 관련된 항목

EDA - 편명 및 등록기호 분석

편명, 등록기호별 지연 횟수 boxplot

boxplot을 벗어난 outlier 개수: 등록기호 11개(3%) / 편명 52개(4%)

EDA - 편명 및 등록기호 분석

A/C 접속은 등록기호가 같은 비행기끼리 영향을 미칠까?

ex) 등록기호 SEw4MDY5에 대하여 실제 운항 내역과 비교

SDT_Y\	SDT_MM	SDT_DD	SDT_DY	ARP	ODP	FL0	FLT	REG	AOD	IRR	STT	ATT	DLY	DRR	CNL	CNR
2017	1	2	월	ARP4	ARP3	L	L1807	SEw4MDY5	D	Ν	19:15	19:53	Υ	C02	Ν	NaN
2017	1	2	월	ARP3	ARP4	L	L1807	SEw4MDY5	Α	Ν	20:15	20:52	Υ	C02	Ν	NaN
2017	1	2	월	ARP3	ARP1	L	L1748	SEw4MDY5	D	Ν	21:05	21:48	Υ	C02	Ν	NaN
2017	1	2	월	ARP1	ARP3	L	L1748	SEw4MDY5	Α	Ν	22:15	22:43	Ν	NaN	Ν	NaN

ARP4 출발 ARP3 도착 ARP3 출발 ARP1 도착 예정 19:15 예정 20:15 예정 21:05 예정 22:15 실제 20:52 실제 21:48 실제 22:43 기업

한 편이 지연 출발하기 시작하면 이후 시간대 항공편 연쇄 지연

(그러나 예측해야 하는 2019년 9월 데이터에는 등록기호가 나와있지 않아 해당 사항은 고려 불가)

EDA - 정기/부정기편 분석

정기편과 부정기편의 지연 비율 비교

부정기편이 정기편보다 지연/결항 비율이 높음

(사용 시각화 tool: Tableau Desktop)

EDA - 월별 및 요일별 지연 횟수 합계 비교

- 전반적으로 상반기(1~6월)가 지연이 더 많이 발생
- 다른 상반기에 비하여 3월에 덜 지연됨

- 금요일에 가장 많이 지연 발생
- 토요일에 가장 적게 지연 발생

EDA - 지연 여부에 따른 시간대별 횟수 비교

- 지연이 되지 않은 경우 8~9시, 17~19시에 많이 분포
- 지연이 된 경우 14~21시에 많이 분포

EDA - 지연 시간(분) 분석

	4분기	10월					-		1	1				
	4부기	9월				-	+		1	1				
		8월	1	1 1	1		1	1					1	
	3분기	7월		1	i		i		i		i			
		5월 6월			4				1					
	2분기	4월 5월					1	1						
	0	3월			1	-		-	4					
		2월	1	1	1		1	1	1	1				
2018	1분기	1월	1	1	1	1	1	1						
		12월	i i	1	1	1	1	1	1					
		11월	i i	1	1		1					1	1	
	4분기	10월		1	1	1	T		1	1				
		9월	i	1	i.		i	i						
	2521	8월		i i	Ť	111	1			1				
	3분기	7월				-	÷	-						
		5월 6월			1									
	2분기	4월						•						
	0 11 71	3월				-	-	4		11				
		2월												
2017	1분기	1월							-					

- 지연 최대 시간: 12시간
- 대체적으로 지연 시간이 1~5시간
- 약 1시간 지연되는 경우가 가장 빈번함
- 특정 분기에 대한 양상을 나타나지는 않음

선행 연구 조사 - kaggle

kaggle의 2015 Flight Delays and Cancellations의 Kernels 참고 결과

- 1) 지역 시간 고려
- 2) 공항 및 항공사별 지연 비율 고려
- 3) 추가적으로 지연 비율을 비교할 수 있는 분류 고려 (요일, 시간대 등)

추가 데이터 수집 및 Feature Engineering

변수 선정

항공사/공항/연도/월/요일/시간대/정기 및 부정기편 one-hot encoding

항공사/공항/연도/월/요일/시간대/정기 및 부정기편별 지연 비율

공항과 상대공항 사이 대권거리

공항별 여객 수

추가 데이터 수집 - 공항별 여객 수

한국공항공사인 항공통계 中 연도 및 월에 따른 공항별 여객 수 데이터 이용

추가 데이터 수집 - 대권거리 (Great Circle Distance)

노	선	거리(mi)
	청주	228
	사천	141
	군산	165
	광주	113
제주	무안	102
	여수	112
	대구	205
	울산	217
	원주	283

노	선	거리(mi)
	제주	280
	사천	185
	포항	182
김포	광주	168
台工	김해	203
	여수	193
	대구	155
	울산	197

노	노선					
	제주	273				
인천	김해	210				
	대구	164				
김해	제주	181				

- 대권거리(Great Circle Distance): 지구 표면의 두 지점을 잇는 최단 거리
- 항로 선정의 기준이 됨 → 공항(ARP)과 상대공항(ODP) 사이의 대권거리 이용하기로 결정
- 국내선 노선의 IATA 공항 코드로 대권거리 계산 (http://gc.kls2.com/)

추가 데이터 수집 - 공휴일

크롤링으로 네이버의 2017~2019년 공휴일 데이터 추출

→ 공식 공휴일이 아니더라도 공휴일 사이에 있는 평일에도 공휴일과 같은 영향이 있을 것이라고 추측

→ 징검다리 연휴도 고려하여 one-hot encoding 실시
(공휴일 YES = 1 / NO = 0)

DATE	 2017-05-02	2017-05-03	2017-05-04	2017-05-05	
HOLIDAY	 0	1	1	1	

추가 데이터 수집 - 날씨

Problem 1

- 1) 항공기상청 데이터의 경우 7개의 공항에 대한 날쎄 데이터만 제공
- 2) 9월 말의 날씨에 대한 데이터를 받기 어려움

Solution

- 1) 지역별 월간 예보가 제공되는 AccuWeather 사이트 발견
- 2) 해당 사이트에서의 크롤링을 통해 각 공항이 위치한 지역의 날쎄 데이터를 얻고자 함

Problem 2

- 1) BUT 사이트 자체에서 크롤링을 제한해 놓음
- 2) 크롤링 불가 → 날씨 데이터는 제외하기로 결정

Feature Engineering - one hot encoding

	SDT_YY	SDT_MM	SDT_DD	SDT_DY	ARP	ODP	FLO	FLT	AOD	STT
0	2019	9	16	월	ARP1	ARP3	L	L1702	Α	9:05
1	2019	9	16	월	ARP3	ARP1	L	L1702	D	7:55
2	2019	9	16	월	ARP1	ARP3	L	L1720	Α	14:40

법주형 변수인 연도. 월. 요일. 공항. 상대공항. 항공사. 계획시간대에 대하여 one-hot encoding 실시 [AOD의 경우 모두 출발(D)을 기준으로 공항(ARP) 및 상대공항(ODP) 정렬]

	Y_2017	Y_2018	Y_2019	M_1	M_2	M_3	M_4	M_5	M_6	M_7	M_8	M_9	M_10	M_11	M_12	ARP_ARP1	ARP_ARP10	ARP_ARP11	ARP_ARP12
0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Feature Engineering - 지연 비율

법주형 변수인 연도, 월, 요일, 공항, 상대공항, 항공사, 계획시간대에 대하여 지연 비율 계산 ex) 항공사(FLO)별 지연 비율 계산 (각 항공사 지연 횟수 / 총 운항 횟수)

→ 해당 항공사인 지연 비율을 대입하여 항공사 지연 비율 변수 생성

FLO						
Α	0.118959					
В	0.107871	FL0_I	FL0_J	FL0_K	FL0_L	FLO_RATE
C	0.000000	0	1	0	0	0.093747
D	0.000000	0	1	0	0	0.093747
Ε	0.000000	0	1	0	0	0.093747
F	0.142243	0	1	0	0	0.093747
G	0.000000	0	1	0	0	0.093747
Н	0.138879	0	1	0	0	0.093747
	0.154396	0	1	0	0	0.093747
J	0.093747	0	1	0	0	0.093747
K	0.000000					
L	0.141198					

Feature Engineering - 공항별 여객 수

아직 존재하지 않은 2019년 9월 데이터 처리 방법

2017년 1월부터 2019년 7월까지의 월별 여객 수 평균을 낸 결과. 매년 7월과 9월의 여객 수가 비슷한 수치를 나타내는 것을 보임

→ 2019년 9월 여객 수는 2019년 7월 여객수와 동일한 값으로 대입

Feature Engineering - 지연 시간

지연된 데이터: (실제 시간 - 계획 시간)을 분 단위로 계산

지연되지 않은 데이터: 0

TEST 데이터: 범주형 변수(연도, 월, 요일, 공항, 상대공항, 항공사, 계획시간대)의 지연 시간 평균값

SDT_MM	SDT_DY	ARP	ODP	FLO	IRR	
1	금	ARP1	ARP11	J	N	10.708333
			ARP12	J	N	4.104167
			ARP15	Α	Υ	37.000000
				Н	Υ	7.400000
				1	Υ	13.800000

- → BUT 이렇게 될 경우. 모델링을 할 때 지연되지 않은 경우와 지연된 경우를 0을 기준으로 학습하게 됨 (즉. 지연된 경우 지연시간 〉 O. 지연되지 않은 경우 지연시간 = O으로 학습)
- → 따라서 모델이 과적합되는 문제가 발생하므로 해당 변수는 사용하지 않기로 결정

모델링 (Modeling) 과정 및 결과 추후 개선 방안

모델링 - 모델 선정

Artificial Neural Networks with Keras & Tensorflow

- 파이썬으로 작성된 오픈 소스 신경망 라이브러리
- 딥 신경망과의 빠른 실험을 가능케 하도록 설계
- Keras, Tensorflow 를 이용한 신경망 딥러닝 실시

모델링 - 모델 선정 이유

Artificial Neural Networks with Keras & Tensorflow

모델 선정 기준: one-hot encoding을 통해 많아진 feature 대부분이 중요하다고 판단

- a. Random Forest: feature를 Resampling 함 → 사용 불가능
- b. <u>Bagging</u>: Bootstrap 과정에서 one-hot encoding의 의미를 잘 담지 못할 것이라고 판단 → 사용 불가능
- c. <u>Boosting</u>: Bagging과 마찬가지로 Bootstrap의 과정을 잘 담지 못할 것이라고 판단 → 사용 불가능
 - ⇒ 따라서 좀 더 상위 계층의 모형이 필요하다고 판단
- d. ANN: feature간의 관계를 파악하고 수학적 근사 함수로 연결
 - i. feature가 많은 우리 모델에 적합하다고 판단
 - ii. 타 모델보다 견고하고 구조적인 분류기

모델링 - 데이터 분할

Train / Validation Split

Train Set (70%)

Validation Set (30%)

70%의 Train set으로 모형을 학습시킨 후.

30%의 Validation set으로 모형 평가 및 업데이트 자료로 사용!

모델링 - 데이터 정규화

Normalization

- 변수마다 값 범위가 다르게 분포 (어떤 변수는 [O, 1]의 범위를, 어떤 변수는 100, 10000단위도 있음)
- 처음에는 변수가 동일한 중요도와 비중을 가지도록 정규화 필요
- 정규화를 통해 [0. 1]의 범위를 가질 수 있도록 조정

모델링 - 모델 층 쌓기

```
LEARNING RATE = 0.05
DROPOUT RATIO = 0.3
BATCH SIZE = 100
EPSILON = 0.01
def delay_model(x_size, y_size):
   model = Sequential()
   model.add(Dense(30, activation='relu', input_shape=(x_size, )))
   Dropout (DROPOUT_RATIO)
   model.add(Dense(15, activation='relu'))
   Dropout (DROPOUT_RATIO)
   model.add(Dense(y_size, activation='sigmoid'))
   print(model.summary())
   model.compile(loss='binary crossentropy'.
                  optimizer=Adam(Ir=LEARNING RATE, epsilon=EPSILON).
                  metrics=['accuracy'])
   return model
```

model1 = delay_model(x_size=X_train.shape[1], y_size=1)

Layer (type)	Output Shape	Param #
dense_32 (Dense)	(None, 30)	3030
dense_33 (Dense)	(None, 15)	465
dense_34 (Dense)	(None, 1)	16

Total params: 3,511
Trainable params: 3,511
Non-trainable params: 0

None

- 1. 하이퍼파라미터를 적당하게 조정
- 2. 이진분류를 위한 '다층 퍼셉트론 모델' 구성
 - a. 첫번째 Dense 레이어는 은닉층(hidden layer)으로 100개 뉴런을 입력받아 30개 뉴런을 출력
 - b. 두번째 Dense 레이어는 은닉층으로 12개 뉴런을 입력받아 8개 뉴런을 출력
 - c. 마지막 Dense 레이어는 출력 레이어로 8개 뉴런을 입력받아 1개 뉴런을 출력
- 3. 마지막 활성함수를 'Sigmoid'를 줌으로서 [0, 1]의 값 출력

모델링 - train 결과

- 정확도 면에서 Epoch를 반복할수록 정확도가 향상하지만 일정 부분에서 수렴 (약 88%)
- 손실 면에서 Epoch를 반복할수록 손실이 감소하지만 일정 부분에서 수렴 (약 33.6%)
- Epoch를 반복할수록 결국 한 모델에 수렴! (너무 많이 하면 과적합 우려)

모델링 - 모형 평가

- cutoff를 실제 지연된 데이터들의 예측확률의 평균으로 사용 (0.174999)
- Trainig set의 정확도 : 약 77%
- Test set의 정확도 : 약 76.7%

모델링 - 예측

In [500]: dfrt Out [500] : DLY_RATE DLY 0.034507 0.014649 0.212029 0.281765 0.066047 16071 0.180593 16072 0.180593 16073 0.156475 16074 0.097655 16075 0.274125 16076 rows x 2 columns

- 최종 모형 적합
- cutoff는 Training data와 동일

추후 개선사항 및 활용 방안

추후 개선사항

- 날씨 데이터 확보 후 모델링 변수에 반영
- 더 많은 변수를 반영하여 다양한 상황에 대비
- 변수의 특성을 고려하여 새로운 모델링 시도

활용 방안

- 지연 확률이 높은 항공편에 대하여 미리 승객들에게 안내하여 지연으로 인한 문제에 대비
- 지연 확률이 높았던 변수를 주시하고 개선 가능한 경우 대응방안 마련

감사합니다 :)

Q&A

<u>박배미</u> 한국외국어대학교 구본성 고려대학교 이경민 경희대학교 전희선

