UCSD Embedded C Assignment 3

By

Hsuankai Chang

hsuankac@umich.edu

Step 1. Startup STM32CubeIDE and create new STM32 project

Step 2. Access board selector and type in the board you use, click Next

Step 3. Enter the project name then click Next

Step 4. See the firmware package name and version

Step 5. Click yes to initialize all peripherals to default

Step 6. When in .ioc file, click Pinout & Configurations

Step 7. User Story 1: Create a CLI (Command Line Interface) on UART1 that prompts you to enter a 1 for polling, a 2 for interrupt, and a 3 for DMA. Double check we have enabled USART1 and UART4

Step 8. User Story 1: Write the terminal code in main.c file

```
Embedded-C-Assignment-3.ioc
                  main.c ×
     * @file
                  : main.c
     * @brief
                  : Main program body
      @attention
     * Copyright (c) 2023 STMicroelectronics.
     * All rights reserved.
11
    * This software is licensed under terms that can be found in the LICENSE file
    * in the root directory of this software component.
    * If no LICENSE file comes with this software, it is provided AS-IS.
 15
     ************************
 18⊖/* USER CODE END Header */
19 /* Includes -----*/
 20 #include "main.h"
22<sup>©</sup>/* Private includes -----*/
 23 /* USER CODE BEGIN Includes */
 24 #include <stdio.h>
 25 #include <string.h>
 26 /* USER CODE END Includes */
289/* Private typedef -----*/
 29 /* USER CODE BEGIN PTD */
 24 /* LICED CODE END DTD */
```

```
/* Infinite loop */
123
      /* USER CODE BEGIN WHILE */
124
      while (1)
125
126
        /* USER CODE END WHILE */
127
128
        /* USER CODE BEGIN 3 */
129
        // Issue command prompt
130
        char *prompt = "Options: 1=polling, 2=interrupt, 3=DMA\n\rcmd> ";
        HAL_UART_Transmit(&huart1, (uint8_t*) prompt, strlen(prompt), 1000);
131
132
133
        // Wait for a single number entry
134
        char ch;
135
        HAL UART Receive(&huart1, (uint8 t*) &ch, 1, HAL MAX DELAY);
136
        char *msg = "What?";
137
        switch(ch)
138
139
        case '1': msg = "\r\n TODO: Polling \r\n"; break;
140
        case '2': msg = "\r\n TODO: Interrupt \r\n"; break;
        case '3': msg = "\r\n TODO: DMA \r\n"; break;
141
142
        // Fall through if none
143
144
        HAL_UART_Transmit(&huart1, (uint8_t*) msg, strlen(msg), 1000);
145
      /* USER CODE END 3 */
146
147 }
148
1/100 /**
```

Step 9. User Story 1: Build and run in debug mode. Open tera term and test is successful

```
Embedded-C-Assignment-3.ioc ×  main.c ×
                                                                                                                                        (x)= V X B & E 1010 R
      /* Infinite loop */
      /* USER CODE BEGIN WHILE */
                                                                                                                                         Name
124
       while (1)
125
126
         /* USER CODE END WHILE */
127
128
         /* USER CODE BEGIN 3 */
129
         // Issue command prompt
         char *prompt = "Options: 1=polling, 2=interrupt, 3=DMA\n\rcmd> ";
130
131
         HAL UART Transmit(&huart1, (uint8 t*) prompt, strlen(prompt), 1000);
132
133
         // Wait for a single number entry
134
         char ch:
135
         HAL_UART_Receive(&huart1, (uint8_t*) &ch, 1, HAL_MAX_DELAY);
                                                                            COM4 - Tera Term VT
         char *msg = "What?";
136
         switch(ch)
137
                                                                           File Edit Setup Control Window Help
138
                                                                           Options: 1=polling, 2=interrupt, 3=DMA
139
         case '1': msg = "\r\n TODO: Polling \r\n"; break;
                                                                           TODO: Polling
Options: 1=polling, 2=interrupt, 3=DMA
140
         case '2': msg = "\r\n TODO: Interrupt \r\n"; break;
141
         case '3': msg = "\r\n TODO: DMA \r\n"; break;
                                                                           TODO: Interrupt
Options: 1=polling, 2=interrupt, 3=DMA
         // Fall through if none
142
143
                                                                           TODO: DMA
                                                                          Options: 1=polling, 2=interrupt, 3=DMA cmd>
144
         HAL UART Transmit(&huart1, (uint8 t*) msg, strlen(msg), 1000);
145
146
       /* USER CODE END 3 */
147 }
148
1/00 /**
Embedded-C-Assignment-3 Debug [STM32 C/C++ Application] [pid: 19]
```

Step 10. User Story 2: Polling. When the user selects 1, use polling to transmit and receive the buffer. Write the code in main.c file

```
Embedded-C-Assignment-3.ioc 📵 main.c 🗡 🗋 stm32l4xx_it.c 🛍 stm32l4xx_hal_uart.c
 78 /* USER CODE BEGIN 0 */
 79 static char tx buf[] = "abcdefghijklmnopgrstuvwxvz\r\n":
 80 static char rx buf[] = "abcdefghijklmnopgrstuvwxyz\r\n";
 82 static int do interrupt done;
 849 static void do_polling()
 85 {
 86
         char *ptx buf = tx buf;
 87
         char *prx buf = rx buf;
 88
         // Set Rx buffer to known character
 89
 90
         for(int i = 0; i < sizeof(rx buf); i++) rx buf[i] = '?';</pre>
 91
 92
         do
 93
 94
             // Let UART1 knows we are active
 95
             char ch = '.';
 96
             HAL UART Transmit(&huart1, (uint8 t*)&ch, 1, 100);
 97
 98
             // Send a char
             HAL UART Transmit(&huart4, (uint8_t*)ptx_buf, 1, 100);
 99
 100
             // Receive a char (we are in loop-back)
 101
             HAL UART Receive(&huart4, (uint8 t*)prx buf, 1, 100);
 102
103
 104
             // Confirm they are the same
             if(*ptx buf != *prx buf)
105
106
107
                 char buf[100]:
                 snprintf(buf, sizeof(buf), "\r\n Error 0x%02x != 0x%02x\r\n", *ptx_buf, *prx_buf);
 108
109
                 HAL_UART_Transmit(&huart1, (uint8 t*)buf, sizeof(buf), 100);
110
                 return:
111
             // point to next location
112
113
             ptx buf++;
114
             prx buf++;
115
         }while(ptx buf < tx buf + sizeof(tx buf));</pre>
116 }
```

```
MX SPI3 Init();
     MX USART1 UART Init();
     MX USART3 UART Init();
      MX USB OTG FS PCD Init();
     MX UART4 Init();
153
154
      /* USER CODE BEGIN 2 */
155
156
      /* USER CODE END 2 */
157
158
      /* Infinite loop */
      /* USER CODE BEGIN WHILE */
159
160
      while (1)
161
162
       /* USER CODE END WHILE */
163
164
       /* USER CODE BEGIN 3 */
165
       // Issue command prompt
       char *prompt = "Options: 1=polling, 2=interrupt, 3=DMA\n\rcmd> ";
167
       HAL UART Transmit(&huart1, (uint8 t*) prompt, strlen(prompt), 1000);
168
       // Wait for a single number entry
169
170
        char ch;
171
        HAL UART Receive(&huart1, (uint8 t*) &ch, 1, HAL MAX DELAY);
172
        char *msg = "What?";
173
        switch(ch)
174
175
        case '1': msg = "\r\n TODO: Polling \r\n"; do_polling(); break;
176
        case '2': msg = "\r\n TODO: Interrupt \r\n"; break;
177
        case '3': msg = "\r\n TODO: DMA \r\n"; break;
178
        // Fall through if none
179
180
        HAL UART Transmit(&huart1, (uint8 t*) msg, strlen(msg), 1000);
181
182
      /* USER CODE END 3 */
183
184
```

Step 11. User Story 2: Build and run the code, test is successful

Step 12. User Story 3: Interrupts. When the user selects 2, use interrupts to transmit and receive the buffer. Write the code in main.c file

```
Embedded-C-Assignment-3.ioc 🚨 main.c 🗴 🗋 stm32l4xx_jt.c 🚨 stm32l4xx_hal_uart.c 🚨 system_stm32l4xx.c
208
         /* USER CODE END WHILE */
209
210
211
         /* USER CODE BEGIN 3 */
212
        // Issue command prompt
213
         char *prompt = "Options: 1=polling, 2=interrupt, 3=DMA\n\rcmd> ";
214
        HAL UART Transmit(&huart1, (uint8 t*) prompt, strlen(prompt), 1000);
215
216
        // Wait for a single number entry
217
         char ch;
218
        HAL UART Receive(&huart1, (uint8 t*) &ch, 1, HAL MAX DELAY);
219
         char *msg = "What?";
220
         switch(ch)
221
222
         case '1': msg = "\r\n TODO: Polling \r\n"; do_polling(); break;
223
         case '2': msg = "\r\n TODO: Interrupt \r\n"; do interrupt(); break;
224
         case '3': msg = "\r\n TODO: DMA \r\n"; break;
        // Fall through if none
226
227
        HAL UART Transmit(&huart1, (uint8 t*) msg, strlen(msg), 1000);
228
229
       /* USER CODE END 3 */
230
221
```

```
135 }
136
137 static void do interrupt()
138 {
139
        // Set Rx buffer to known character
        for(int i = 0; i < sizeof(rx_buf); i++) rx_buf[i] = '?';</pre>
140
141
142
        // Let UART1 knows we are active
        char ch = '.':
143
144
        HAL UART Transmit(&huart1, (uint8 t*)&ch, 1, 100);
145
        // Clears flag to know when interrupt is done
146
        do interrupt done = 0;
147
148
149
        // Receive the buffer using interrupt;
150
        HAL UART Receive IT(&huart4, (uint8 t*)rx buf, sizeof(rx buf));
151
152
        // Send the complete buffer using interrupt
153
        HAL UART Transmit IT(&huart4, (uint8 t*)tx buf, sizeof(tx buf));
154
155
        // Interrupt Tx and Rx does the work, we just wait
156
        while(!do interrupt done)
157
158
            char ch = '\sim':
           HAL UART Transmit(&huart1, (uint8 t*)&ch, 1, 100);
159
160
            HAL_Delay(100);
161
162 }
163 /* USER CODE END 0 */
164
```

Step 13. User Story 3: Write the Rx and Tx complete call back functions

```
82⊕ static void do_polling()
115
116 static int do interrupt done;
117
118@void HAL UART TxCpltCallback(UART HandleTypeDef *huart)
119 {
120
       // Show we made it here
       char ch = 'T';
121
122
       HAL_UART_Transmit(&huart1, (uint8_t*)&ch, 1, 100);
123 }
124
125 void HAL UART RxCpltCallback(UART HandleTypeDef *huart)
126 {
127
       // Show we made it here
128
       char ch = 'R';
       HAL UART Transmit(&huart1, (uint8 t*)&ch, 1, 100);
129
130
       // Confirm we receive all the data
131
132
       HAL UART Transmit(&huart1, (uint8 t*)rx buf, sizeof(rx buf), 100);
133
134
       do_interrupt_done = 1;
135 }
136
```

Step 14. User Story 3: Don't forget to setup the NVIC

Step 15. User Story 3: Build and run the code, test is successful

```
82 static void do_polling()
115
116 static int do interrupt done;
118 void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart)
119 {
120
        // Show we made it here
         char ch = 'T';
121
         HAL_UART_Transmit(&huart1, (uint8_t*)&ch, 1, 100);
122
123 }
124
125 void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
126 {
                                                                   COM4 - Tera Term VT
127
        // Show we made it here
                                                                   File Edit Setup Control Window Help
128
         char ch = 'R':
                                                                  Options: 1=polling, 2=interrupt, 3=DMA
cmd> .~TRabcdefghijklmnopqrstuvwxyz
129
         HAL UART Transmit(&huart1, (uint8 t*)&ch, 1, 100);
130
        // Confirm we receive all the data

HAL_UART_Transmit(&huart1, (uint8_t*)rx_buf, sizeof(rx_cmd>

TODO: Interrupt
Options: 1=polling, 2=interrupt, 3=DMA
131
132
133
134
         do_interrupt_done = 1;
135 }
136
1370 static void do interrupt()
138 {
139
        // Set Rx buffer to known character
         for(int i = 0; i < sizeof(rx buf); i++) rx buf[i] = '?'</pre>
140
Embedded-C-Assignment-3 Debug [STM32 C/C++ Application] [pid: 87]
```

Step 16. User Story 4: DMA. When the user selects 3, use DMA to transmit and receive the buffer. Write the code in main.c file

```
system stm32l4xx.c
      /* Infinite loop */
                                                                            165 }
238
     /* USER CODE BEGIN WHILE */
                                                                            166
                                                                            167⊖ static void do dma()
239
      while (1)
                                                                           168 {
240
                                                                                   // Set Rx buffer to known character
                                                                            169
241
       /* USER CODE END WHILE */
                                                                                   for(int i = 0; i < sizeof(rx buf); i++) rx buf[i] = '?';</pre>
                                                                            170
242
                                                                            171
243
       /* USER CODE BEGIN 3 */
                                                                                   // Let UART1 knows we are active
                                                                            172
244
       // Issue command prompt
                                                                                    char ch = '.';
                                                                            173
245
       char *prompt = "Options: 1=polling, 2=interrupt, 3=DMA\n\rcmd> ";
                                                                                   HAL UART_Transmit(&huart1, (uint8_t*)&ch, 1, 100);
                                                                            174
246
       HAL UART Transmit(&huart1, (uint8_t*) prompt, strlen(prompt), 1000);
                                                                            175
247
                                                                                   // Clears flag to know when interrupt is done
                                                                            176
248
       // Wait for a single number entry
                                                                                    do interrupt done = 0;
                                                                            177
249
       char ch;
                                                                            178
250
       HAL_UART_Receive(&huart1, (uint8_t*) &ch, 1, HAL_MAX_DELAY);
                                                                                    // Receive the buffer using interrupt;
                                                                            179
251
       char *msg = "What?";
                                                                                   HAL UART Receive DMA(&huart4, (uint8 t*)rx buf, sizeof(rx buf));
                                                                            180
252
       switch(ch)
                                                                            181
253
                                                                                    // Send the complete buffer using interrupt
                                                                            182
                                                                                   HAL UART Transmit DMA(&huart4, (uint8 t*)tx buf, sizeof(tx buf));
254
       case '1': msg = "\r\n TODO: Polling \r\n"; do polling(); break;
                                                                            183
255
       case '2': msg = "\r\n TODO: Interrupt \r\n"; do_interrupt(); break;
                                                                            184
                                                                                    // Interrupt Tx and Rx does the work, we just wait
                                                                            185
256
       case '3': msg = "\r\n TODO: DMA \r\n"; do dma(); break;
                                                                            186
                                                                                    while(!do interrupt done)
257
       // Fall through if none
                                                                            187
258
                                                                                       char ch = '\sim':
                                                                            188
259
       HAL_UART_Transmit(&huart1, (uint8_t*) msg, strlen(msg), 1000);
                                                                                       HAL_UART_Transmit(&huart1, (uint8_t*)&ch, 1, 100);
                                                                            189
260
                                                                                       HAL Delay(100);
                                                                            190
261
      /* USER CODE END 3 */
                                                                            191
262 }
                                                                            192 }
263
```

Step 17. User Story 4: Setup the DMA in .ioc file

Step 18. User Story 4: Build and run the code, test is successful. Since DMA mode will call the same Tx and Rx call back functions, we do not need to code it up again

```
165 }
166
167⊖ static void do_dma()
168 {
        // Set Rx buffer to known character
169
        for(int i = 0; i < sizeof(rx buf); i++) rx buf[i] = '?';</pre>
170
171
172
        // Let UART1 knows we are active
173
        char ch = '.';
        HAL UART Transmit(&huart1, (uint8 t*)&ch, 1, 100);
174
175
        // Clears flag to know when interrupt is done
176
                                                                    COM4 - Tera Term VT
177
        do_interrupt_done = 0;
                                                                   File Edit Setup Control Window Help
178
                                                                   Options: 1=polling, 2=interrupt, 3=DMA
cmd> .~TRabcdefghijklmnopqrstuvwxyz
179
        // Receive the buffer using interrupt;
        HAL UART Receive DMA(&huart4, (uint8 t*)rx buf, sizeof(rx
180
                                                                   TODO: DMA
181
                                                                   Options: 1=polling, 2=interrupt, 3=DMA cmd>
182
        // Send the complete buffer using interrupt
        HAL_UART_Transmit_DMA(&huart4, (uint8_t*)tx_buf, sizeof(tx
183
184
185
        // Interrupt Tx and Rx does the work, we just wait
186
        while(!do interrupt done)
187
            char ch = '\sim';
188
            HAL UART Transmit(&huart1, (uint8 t*)&ch, 1, 100);
189
            HAL Delay(100);
190
191
192 }
193
194 /* USER CODE END 0 */
195
1969 /**
```

Appendix. Screenshot of STM32 Discovery Kit Schematic diagram where it shows the UART1 and UART4 signals

Appendix. Screenshot of STM32 Discovery Kit Schematic diagram where it shows the UART1 and UART4 signals

