Tarea 2-Métodos Bayesianos II

Francisco Fernández

Pregunta 1

Dentro de este contexto, el valor de A se encarga de determinar la variabilidad de μ_{θ} , de tal forma que si $A \approx 0$, este parámetro en cuestión tendria muy poca variabilidad, lo cual lleva a que todos lo θ_t esten centrados muy cerca entre si, por otro lado, si A se acerca a un valor más grande, por ejemplo A=10000, esto llevaria a que μ_{θ} tenga una mayor varianza y esto provocaría que los valores de cada θ_t se encuentren trasladados diferentemente los unos con los otros.

Para el caso de B, este valor se encarga de especificar hasta que valor puede alcanzar la desviación estandar de θ_t , por lo que si B tiene valores cercanos a 0, implicaría que las distribuciones de θ_t tengan muy poca varianza, por el contrario, si B tiene un valor muy grande, podría provocar que las varianzas de θ_t sean muy grandes y distintas entre si.

Es por ello que se propone un modelo tal que A=10 y B=10. la justificación para el valor de A viene en que, de esta forma, μ_{θ} tiene suficientemente flexibilidad al momento de ser simulado sin ser excesivo, al igual que para σ_{θ}^2 , de hecho, para el valor que se da para B, implica que el maximo valor de σ_{θ}^2 es 100, lo cual es una varianza bastante grande para este contexto

(El modelo ajustado se encuentra en el código de R)

Pregunta 2

Cuando se ajusta el modelo con θ_t idénticos, se tiene que la densidad de π_t a posteriori y su traceplot son.

Densidad de P

Traceplot de P

N = 10000 Bandwidth = 0.00065

En este modelo, como los θ_t son idénticos, también se puede ver como que hay un solo θ_t para todos los años, es por eso que en el gráfico solo se ve la densidad de un parámetro π_t .

Es posible ver que la densidad de π_t tiene la mayoría de su masa entre 0.45 y 0.46, por lo que se puede decir que, en un partido de basquetbol , donde se tiene el supuesto en que Kobe Bryant juega siempre con la misma eficiencia durante todos lo años, la probabilidad de que convierta un punto cuando él lanza, esta aproximadamente cerca de 0.455.

Por otro lado, el traceplot indica que el modelo convergió correctamente.

Y para el caso en que los θ_t son independientes, las densidades para cada π_t son.

Densidades de cada Pi

Y sus traceplots.

Traceplot de P_1

Traceplot de P_2

Traceplot de P_3

Traceplot de P_4

El siguiente gráfico muestra las densidades de los π_t para el modelo con θ_t unico y θ_t independientes.

Densidades de Pi, de ambos modelos

Se puede apreciar que cuando se ocupa un modelo con los θ_t idénticos, el parámetro π_t tiene una menor variabilidad, en comparación a los que fueron generados con el modelo de θ_t independientes. Pero de todas formas, todas las densidades estan centradas en valores cercanos de 0.45.

Pregunta 3

En este caso, el valor de C es el valor que se encarga de especificar la varianza que tendrá θ_{1999} en este modelo. es por ello que si C es muy cercano de 0, haria que θ_{1999} este también muy cercano a 0, y de la misma manera, los θ_t estarian aproximadamente centrados en 0. por el contrario, si C toma valores exageradamente grandes, podría provocar que θ_{1999} tenga una media ubicada en cualquier ubicación de los reales, y de esta forma, los θ_t estaria centrados aproximadamente en θ_{1999} .

Por otro lado, D especifica el valor máximo de la varianza que puede tomar la distribución de θ_t . D cercanos a 0, implica que las densidades de todos los θ_t sean muy parecidos entre si, ya que especificarian poca varianza entre cada año, por el contrario, si D toma valores muy grandes, causaria que posiblemente todos los θ_t tengan muy alta varianza.

Dicho esto, se opta por usar C=10 y D=10, para el caso de C, le da suficiente libertad a la varianza de θ_{1999} y para D también logra abordar una amplia varianza sin llegar a ser excesivo, y de esta forma poder tener un equilibrio entre la información de los datos y de las prioris.

Densidades de Pi

En el gráfico se puede ver que las densidades de estos π_t estan centradas a valores cercanos de 0.45, al igual que en los modelos anteriores. A continuación, se muestran los traceplots de las densidades de π_t

Como los traceplots se comportan como un ruido blanco, se puede decir que lo valores convergieron.

Pregunta 4

a) $\label{eq:theta} \mbox{La siguiente tabla muestra las estimaciones de θ_t posteriori para cada modelo.}$

t	Modelo θ_t independientes	Modelo θ_t idénticos	$\begin{array}{c} \text{Modelo } \theta_t \\ \text{dependiente de } \theta_{t-1} \end{array}$
1999	-0.16	-0.18	-0.15
2000	-0.16	-0.18	-0.15
2001	-0.16	-0.18	-0.15
2002	-0.18	-0.18	-0.19
2003	-0.19	-0.18	-0.21
2004	-0.20	-0.18	-0.22
2005	-0.18	-0.18	-0.19
2006	-0.16	-0.18	-0.16

Es posible ver que durante todos los años y para cada modelo, se tuvieron estimaciones de θ_t muy parecidos. Por lo que se puede decir que para cada modelo se obtuvieron casi los mismo resultados.

b) La siguiente tabla muestra las predicciones puntuales de y_{2007} y π_{2007}

Predicción	Modelo θ_t independientes	Modelo θ_t idénticos	$\begin{array}{c} \text{Modelo } \theta_t \\ \text{dependiente de } \theta_{t-1} \end{array}$
	660	659	663
	0.454	0.454	0.457

Y ahora se tienen los intervalos de credibilidad de cada modelo para y_{2007} .

Y para π_{2007}

En ambos gráficos, las medias estan ubicadas en valores cercanos entre si para todos los modelos, pero la diferencia estan en las varianzas, para el modelo con los θ_t dependientes de los años anteriores se tiene una gran varianza, mientras que para el caso de un θ_t unico, se tiene una menor varianza en comparación a los otros modelos.

c)

Usando WAIC, el modelo con menor valor en este caso es el modelo 2, es decir el modelo donde todos los θ_t eran idénticos

Modelo	WAIC
Model1 Model2 Model3	71.8 71.5 78.1

También, cuando se calcula el BIC de cada modelo, se tiene la siguente tabla.

Modelo	BIC
Model1	182.06
Model2	104.36
Model3	171.41

Usando este criterio, también se prefiere el modelo 2, puesto que el BIC prioriza los modelos más parsimoniosos.

Dado los criterios evaluados anteriormente, si se tuviera que elegir un modelo, se eligiriá el modelo con los θ_t idénticos. Otra razón que vale la pena mencionar, es que se llegan a resultados muy similares con los otros modelos y con muchos menos parámetros.