Many-sorted logic

Advanced model theory

Supplementary notes for April 7

Reference: page 28 of Marker's model theory textbook (posted on eLearning).

So far, we have considered *single-sorted* logic. *Many-sorted* logic is a slight generalization of single-sorted logic. Many-sorted logic allows us to consider structures with multiple "sorts" of elements.¹

1 Motivating examples

Here are a couple examples of "many-sorted" structures.

Definition 1. A projective plane consists of a set P of points, a set L of lines, and a binary relation $R \subseteq P \times L$ called incidence satisfying the following axioms:

- 1. If x, y are distinct points, then there is a unique line ℓ incident to x and y.
- 2. If ℓ, ℓ' are distinct lines, then there is a unique point x incident to ℓ and ℓ' .
- 3. There is at least one point and at least one line.
- 4. Every line is incident to at least three points.
- 5. Every point is incident to at least three lines.

In this case, the two "sorts" of elements are P (points) and L (lines). See Wikipedia for more about projective planes, including examples.

Definition 2. An ultrametric space² consists of a set X and a set I, a function $d: X \times X \to I$, a relation \leq on I, and an element $0 \in I$ such that the following axioms hold:

- 1. \leq is a linear order on I, and 0 is the least element.
- 2. d(x,y) = d(y,x) for $x, y \in X$.

¹Sorts are like "types" in computer science and category theory. In model theory we have to use a different name because "type" already means something else.

²More properly, this should be called an "*I*-valued ultrametric space." Normally, an ultrametric space means an $\mathbb{R}_{>0}$ -valued ultrametric space.

- 3. $d(x,y) = 0 \iff x = y$, for $x, y \in X$.
- 4. $d(x,z) \leq \max(d(x,y),d(y,z))$ for $x,y,z \in X$.

The function d(x, y) is called the *distance* from x to y.

In this case, the two "sorts" are X and I. See Section 6.4 of Poizat's textbook for more about ultrametric spaces. Here is an example of an ultrametric space:

Example 3. Let X be the set of functions $f : \mathbb{N} \to \mathbb{N}$. Let I be $[0, +\infty) \subseteq \mathbb{R}$ with its usual order. If $f, g \in X$, let

$$d(f,g) = \begin{cases} 2^{-\min\{i: f(i) \neq g(i)\}} & \text{if } f \neq g \\ 0 & \text{if } f = g. \end{cases}$$

Then $(X, I, d, \leq, 0)$ is an ultrametric space.

Here are some other natural examples of many-sorted structures arising in mathematics:

- 1. Categories. The two sorts are the objects and the morphisms.
- 2. Pairs (K, V) where K is a field and V is a K-vector space. The two sorts are the scalars K and the vectors V.
- 3. Group actions. The two sorts are the group G and the set X that G acts on.

2 First approximation: many-sorted structures

This section is a first attempt at formalizing many-sorted structures. For comparison, recall the "definition" of single-sorted structures:

Definition 4. A (single-sorted) structure consists of a set M and a collection of functions, relations, and constants. Each function is a function $f: M^{n_f} \to M$ for some number n_f called the arity of f. Each relation is a relation $R \subseteq M^{n_R}$ for some number n_R called the arity of R. Each constant is an element of M.

Many-sorted structures are then "defined" as follows:

Definition 5. A many-sorted structure consists of a collection of sorts, functions, relations, and constants. Each sort is a set. Each function is a function $f: X_1 \times X_2 \times \cdots \times X_n \to Y$ where X_1, X_2, \ldots, X_n, Y are sorts. Each relation is a relation $R \subseteq X_1 \times X_2 \times \cdots \times X_n$ where X_1, \ldots, X_n are sorts. Each constant is an element of a sort.

For example:

1. The single-sorted structure $(\mathbb{R}, +, \times, 0, 1, -, \leq)$ consists of the set \mathbb{R} , the binary function $+: \mathbb{R}^2 \to \mathbb{R}$, the binary function $\times: \mathbb{R}^2 \to \mathbb{R}$, the constant $0 \in \mathbb{R}$, the constant $1 \in \mathbb{R}$, the unary function $-: \mathbb{R} \to \mathbb{R}$, and the binary relation $(\leq) \subseteq \mathbb{R}^2$.

2. Let (X, I) be an ultrametric space. The many-sorted structure has two sorts, X, and I. There is one binary function $d: X \times X \to I$. There is one constant $0 \in I$. There is one binary relation $(\leq) \subseteq I \times I$.

This approach works if we only need to consider definable sets and formulas within a fixed structure. If we want to talk about theories or elementary equivalence, we need to define many-sorted languages before we can properly define many-sorted structures.

3 Many-sorted languages

Definition 6. A many-sorted language consists of the following data:

- 1. A set S of sorts
- 2. A set \mathcal{F} of function symbols.
 - For each $f \in \mathcal{F}$, a finite non-empty list of sorts $(X_1, X_2, \ldots, X_n, Y)$, called the signature of f.
- 3. A set \mathcal{R} of relation symbols.
 - For each $R \in \mathcal{R}$, a finite list of sorts (X_1, \ldots, X_n) , called the *signature* of R.
- 4. A set C of constant symbols.
 - For each $c \in \mathcal{C}$, a sort X, called the *signature* of c.

Contrast this with the definition of single-sorted languages, such as Definition 1.1.1 in Marker's model theory textbook (posted on eLearning).

Example 7. The language of ultrametric spaces consists of

- 1. Two sorts, X and I.
- 2. One function symbol d, with signature (X, X, I).
- 3. One relation symbol \leq , with signature (I, I).
- 4. One constant symbol 0, with signature I.

The language of projective planes consists of

- 1. Two sorts, P and L.
- 2. One relation symbol "incidence", with signature (P, L).

Now we can properly define many-sorted structures:

Definition 8. Let $L = (S, \mathcal{F}, \mathcal{R}, \mathcal{C})$ be a many-sorted language. An *L-structure M* consists of the following data:

- 1. For each sort $X \in \mathcal{S}$, a set X^M .
- 2. For each function symbol $f \in \mathcal{F}$ with signature (X_1, \ldots, X_n, Y) , a function $f^M : X_1^M \times X_2^M \times \cdots \times X_n^M \to Y^M$.
- 3. For each relation symbol $R \in \mathcal{R}$ with signature (X_1, \dots, X_n) , a relation $R^M \subseteq X_1^M \times \dots \times X_n^M$.
- 4. For each constant symbol $c \in \mathcal{C}$ with signature X, an element $c^M \in X^M$.

For example, if L_{ultra} is the language of ultrametric spaces, then an L_{ultra} -structure M consists of the following: a set X^M , a set I^M , a function $d^M: X^M \times X^M \to I^M$, a relation $(\leq^M) \subseteq I^M \times I^M$, and an element $0^M \in I^M$. (But the axioms of ultrametric spaces needn't hold.)

4 Many-sorted model theory

All of model theory generalizes easily to many-sorted languages and structures. Here are some notes on what changes:

1. In formulas, the variables need to be assigned to sorts. For example, one of the axioms of ultrametric spaces says

$$\forall x, y, z \ (d(x, z) \le d(x, y) \ \lor \ d(x, z) \le d(y, z))$$

where x, y, z are variables in the X sort. Another axiom says

$$\forall s, t \ ((s \le t \ \land \ t \le s) \ \to \ s = t)$$

where s, t are variables in the I sort.

- The right way to say this is that each sort comes with its own bank of variable symbols. Above, the variables for the sort X are x, y, z, \ldots , and the variables for the sort I are s, t, \ldots
- 2. In formulas, instances of the function/relation/constant symbols (as well as =) should respect the sorts. For example, "d(0,x) = s" isn't an L_{ultra} -formula, because the symbol 0 is in the sort I, and both arguments of d should come from the sort X.
- 3. A definable set D lives in a product of sorts $X_1 \times \cdots \times X_n$. A union of two sorts $X_1 \cup X_2$ isn't really a definable set, since no formula defines it.³

³In practice, we can identify $X_1 \cup X_2$ with a definable set, such as the definable set $(X_1 \times \{d\} \times \{d\}) \cup (\{c\} \times X_2 \times \{e\}) \subseteq X_1 \times X_2 \times X_2$ for some $c \in X_1$ and distinct $d, e \in X_2$.

- 4. An embedding from an L-structure M to an L-structure N consists of an injection X^M to X^N for each sort $X \in L$, respecting the function/constant/relation symbols. An automorphism of an L-structure M consists of a bijection $X^M \to X^M$ for each sort $X \in L$, preserving the symbols. An automorphism of M isn't allowed to permute the sorts.
- 5. Rather than talking about spaces of n-types, we talk about \bar{x} -types, where \bar{x} is a tuple of variables. (Each variable is assigned a sort.) We write $S_{\bar{x}}(A)$ for the space of \bar{x} -types over A. For example, in L_{ultra} , if x is a variable in the sort X, and s is a variable in the sort I, then $S_{(x,s)}(A)$ is the set of types p(x,s) over A where x is in the sort X and s is in the sort I. Similarly, $S_x(A)$ is the set of 1-types over A in the X sort, and $S_s(A)$ is the set of 1-types over A in the I sort.
- 6. When taking ultraproducts, construct each sort separately. If N is an ultraproduct $\prod_{i\in I}^{/\mathcal{U}} M_i$ of some L-structures M_i , and X is a sort in L, then N^X is the ultraproduct of sets $\prod_{i\in I}^{/\mathcal{U}} (M_i^X)$. In other words, when forming the ultraproduct $\prod_{i\in I}^{/\mathcal{U}} M_i$, you only consider tuples $(x_i:i\in I)$ where all the x_i come from one sort.

5 Coding many-sorted logic in single-sorted logic

Let M be a many-sorted structure with finitely many sorts X_1, \ldots, X_n . Then we can convert M into a single-sorted structure whose underlying set (alias "universe", "domain") is the disjoint union $X_1 \sqcup X_2 \sqcup \cdots \sqcup X_n$. A function symbol $f: X_{i_1} \times \cdots \times X_{i_m} \to X_j$ in the old structure is converted to an (m+1)-ary relation symbol in the new structure. Relation symbols and constant symbols carry over without modification. We add a unary relation symbol for each X_i . The resulting single-sorted structure carries the same information as the original many-sorted structure. This provides a way to convert a many-sorted theory into a single-sorted theory.

Example 9. Compare our many-sorted definition of ultrametric spaces (Definition 2) with the single-sorted definition in Section 6.4 of Poizat's textbook.

Remark 10. This approach only works in contexts with finitely many sorts. In class this week, we will need a many-sorted theory with infinitely many sorts.