Big Data Project

Hubar Julien Lievens François Pierre Dumoulin Andreas Duquenne

Covid-20 modelling: Beyond SIR model

- β = Contamination rate
- σ = Inverse of incubation time
- $\gamma = \text{Recovery rate}$
- hp = Hospitalization rate
- hcr =Recovery rate from hospital
- pc = Probability to fall in ICU
- pd = Probability to die in ICU
- pcr = Probability to recover from ICU

Fitting our model: Pre-processing

- We attempt to fit important patterns in our dataset while ignoring noise.
- Beginning of an epidemic, our data, especially from the early days, seem to be very unreliable.

Moving average:

- Svagol filter
- Convolution
- Own_MAS : reducing window size
- Own_NRMAS : not reducing window size

- [1] https://nl.mathworks.com/help/curvefit/smoothing-data.html
- [2] https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lfilter.html
- [3] https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.savgol_filter.html

- $\beta = 0.38709$
- $\sigma = 0.35330$
- $\gamma = 0.22725$
- hp = 0.0
- hcr = 0.0
- pc = 0.0
- pd = 0.0
- pcr = 0.0

•
$$\sigma = 0.35330$$

•
$$\gamma = 0.22725$$

•
$$hp = 0.01503$$

Evolution of the sum of square error according to the value of hcComparison between non-cumulative hospitalisation data and predictions

- $\beta = 0.38709$
- $\sigma = 0.35330$
- $\gamma = 0.22725$
- hp = 0.01503
- hcr = 0.05645
- pc = 0.0
- pd = 0.0
- pcr = 0.0

- $\beta = 0.38709$
- $\sigma = 0.35330$
- $\gamma = 0.22725$
- hp = 0.01503
- hcr = 0.05645
- pc = 0.01503
- pd = 0.06906
- pcr = 0.03093

Parameters Interpretation

•
$$\beta = 0.38709$$

•
$$\sigma = 0.35330$$

•
$$\gamma = 0.22725$$

•
$$hp = 0.01503$$

•
$$pc = 0.01503$$

•
$$pd = 0.06906$$

•
$$pcr = 0.03093$$

$$R_0 = \frac{\beta}{\gamma} = 1.7$$

Graph Interpretation

Visualisation

Improvements - What's next?

- (what we think we are going to do for next review: "uncertainty")
- Improvement of our prediction
- add the simulation of vaccination campaigns
- To train our model on different existing coronavirus databases

Thank you!

Optimizer

minimize(L-BFGS) algorithm:

- Derived from the Quasi-Newton methods (iterative)
- Minimize cost function over its unconstrained parameters
- Uses Wolf conditions to determine step
- Returns the values of optimal parameters if the algorithm converged
- Converge to a local minimum so we supposed a convex space

wolfe conditions

First condition: The first condition will allow us thanks to the beta 1 parameter to find an ideal step according to the beta value.

The second condition will allow us thanks to the beta 2 parameter to That characterizes a sufficient progress of the algorithm.