Compact Sets and Compact Operators

by
Francis J. Narcowich
November, 2014

Throughout these notes, \mathcal{H} denotes a separable Hilbert space. We will use the notation $\mathcal{B}(\mathcal{H})$ to denote the set of bounded linear operators on \mathcal{H} . We also note that $\mathcal{B}(\mathcal{H})$ is a Banach space, under the usual operator norm.

1 Compact and Precompact Subsets of \mathcal{H}

Definition 1.1. A subset S of \mathcal{H} is said to be compact if and only if it is closed and every sequence in S has a convergent subsequence. S is said to be precompact if its closure is compact.

Proposition 1.2. Here are some important properties of compact sets.

- 1. Every compact set is bounded.
- 2. Let S be a bounded set. Then S is precompact if and only if every sequence has a convergent subsequence.
- 3. Let \mathcal{H} be finite dimensional. Every closed, bounded subset of \mathcal{H} is compact.
- 4. In an infinite dimensional space, closed and bounded is not enough.

Proof. Properties 2 and 3 are left to the reader. For property 1, assume that S is an unbounded compact set. Since S is unbounded, we may select a sequence $\{v_n\}_{n=1}^{\infty}$ from S such that $\|v_n\| \to \infty$ as $n \to \infty$. Since S is compact, this sequence will have a convergent subsequence, say $\{v_{n_k}\}_{k=1}^{\infty}$, which still will be unbounded. (Why?) Let $v = \lim_{k \to \infty} v_{n_k}$. Thus, for $\varepsilon = 1$ there is a positive integer K for which $\|v - v_{n_k}\| < 1$ for all $k \ge K$. By the triangle inequality, $\|v_{n_k}\| \le \|v\| + 1$. Now, the right side is bounded, but the left side isn't, since $\|v_{n_k}\| \to \infty$ as $k \to \infty$. This is a contradiction, so S must be bounded. For property 4, let $S = \{f \in \mathcal{H} : \|f\| \le 1\}$. Every o.n. basis $\{\phi_n\}_{n=1}^{\infty}$ is in S. However, for such a basis $\|\phi_m - \phi_n\| = \sqrt{2}$, $n \ne m$. Again, this means there are no Cauchy subsequences in $\{\phi_n\}_{n=1}^{\infty}$, and consequently, no convergent subsequences. Thus, S is not compact. \square

2 Compact Operators

Definition 2.1. Let $K: \mathcal{H} \to \mathcal{H}$ be linear. K is said to be compact if and only if K maps bounded sets into precompact sets. Equivalently, K is compact if and only if for every bounded sequence $\{v_n\}_{n=1}^{\infty}$ in \mathcal{H} the sequence $\{Kv_n\}_{n=1}^{\infty}$ has a convergent subsequence. We denote the set of compact operators on \mathcal{H} by $\mathcal{C}(\mathcal{H})$.

Proposition 2.2. If $K \in \mathcal{C}(\mathcal{H})$, then K is bounded – i.e., $\mathcal{C}(\mathcal{H}) \subset \mathcal{B}(\mathcal{H})$. In addition, $\mathcal{C}(\mathcal{H})$ is a subspace of $\mathcal{B}(\mathcal{H})$.

Proof. We leave this as an exercise for the reader.

We now turn to giving some examples of compact operators. We start with the finite-rank operators. If the range of a bounded operator K is finite dimensional, then we say that K is a finite-rank operator.

Proposition 2.3. Every finite-rank operator K is compact.

Proof. The range of K is finite dimensional, so every bounded subset of the range is precompact. Let $S \subseteq \{f \in \mathcal{H} : ||f|| \leq C\}$, where C is fixed. Note that the range of K restricted to S is also bounded: $||Kf|| \leq ||K||_{op}||f|| \leq C||K||_{op}$. Thus, K maps a bounded set S into a bounded subset of a finite dimensional subspace of \mathcal{H} , which is itself precompact. Hence, K is thus compact.

To describe K explicitly, let $\{\phi_k\}_{k=1}^n$ be a basis for R(K). Then, $Kf = \sum_{k=1}^n a_k \phi_k$. We want to see how the a_k 's depend on f. Consider $\langle Kf, \phi_j \rangle = \langle f, K^*\phi_j \rangle = \sum_{k=1}^n a_k \langle \phi_k, \phi_j \rangle$. Next let $\psi_j = K^*\phi_j$, so that $\langle f, K^*\phi_j \rangle = \langle f, \psi_j \rangle$. Because $\{\phi_k\}_{k=1}^n$ is a basis, it is linear independent. Hence, the Gram matrix $G_{j,k} = \langle \phi_k, \phi_j \rangle$ is invertible, and so we can solve the system of equations $\langle f, \psi_j \rangle = \sum_{k=1}^n G_{j,k} a_k$. Doing so yields $a_k = \sum_{j=1}^n (G^{-1})_{k,j} \langle f, \psi_j \rangle$. The a_k 's are obviously linear in f. Of course, a different basis will give a different representation.

Let $\mathcal{H}=L^2[0,1]$. A particularly important set of finite rank operators in $\mathcal{C}(\mathcal{H})$ are ones given by finite rank or degenerate kernels, $k(x,y)=\sum_{k=1}^n\phi_k(x)\overline{\psi_k(y)}$, where the functions involved are in L^2 . The operator is then $Kf(x)=\int_0^1k(x,y)f(y)dy$. In the example that we did for resolvents, the kernel was $k(x,y)=xy^2$, and the operator was $Ku(x)=\int_0^1k(x,y)u(y)dy$. Later, we will show that the Hilbert-Schmidt kernels also yield compact operators. Before, we do so, we will discuss a few more properties of compact operators.

Lemma 2.4. Let $\{\phi_n\}_{n=1}^{\infty}$ be an o.n. set in \mathcal{H} and let $K \in \mathcal{C}(\mathcal{H})$. Then, $\lim_{n\to\infty} K\phi_n = 0$.

Proof. Suppose not. Then we may select a subsequence $\{\phi_m\}$ of $\{\phi_n\}_{n=1}^{\infty}$ for which $\|K\phi_m\| \geq \alpha > 0$ for all m. Because K is compact, we can also select a subsequence $\{\phi_k\}$ of $\{\phi_m\}$ for which $\{K\phi_k\}$ is convergent to $\psi \in \mathcal{H}$. Now, $\{\phi_k\}$ being a subsequence of $\{\phi_m\}$ implies that $\|K\phi_k\| \geq \alpha > 0$. Taking the limit in this inequality yields $\|\psi\| \geq \alpha > 0$. Next, note that $\lim_{k\to\infty} \langle K\phi_k, \psi \rangle = \|\psi\|^2$. However, $\lim_{k\to\infty} \langle K\phi_k, \psi \rangle = \lim_{k\to\infty} \langle \phi_k, K^*\psi \rangle = 0$, by Bessel's inequality. Thus, $\|\psi\|^2 = 0$, which is a contradiction. \square

This lemma is a special case of a more general result. We say that a sequence $\{f_n\}$ is weakly convergent to a $f \in \mathcal{H}$ if and only if for all $g \in \mathcal{H}$ we have $\lim_{n\to\infty} \langle f_n, g \rangle = \langle f, g \rangle$. For example, the o.n. set in the lemma weakly converges to 0.

There are two important facts concerning weak convergence¹. The first is that weakly convergent sequences are bounded and the second is that every bounded sequence has a weakly convergent subsequence.

Proposition 2.5. Let $\{f_n\}$ weakly converge to $f \in \mathcal{H}$. If $K \in \mathcal{C}(\mathcal{H})$, then $\lim_{n\to\infty} Kf_n = Kf$. That is, K maps weakly convergent sequences into "strongly" convergent ones.

Proof. The proof is similar to that of Lemma 2.4. Suppose not. Then there exists $\epsilon > 0$ and a subsequence $\{f_{n_k}\}$ such that $\|Kf_{n_k} - Kf\| \ge \epsilon > 0$. Because $K \in \mathcal{C}(\mathcal{H})$, we may select a subsequence of $\{f_{n_k}\}$, $f_{n_{k_j}} =: \widetilde{f_j}$, such that $K\widetilde{f_j}$ converges to ψ . From the inequality above, we have that $\|\psi - Kf\| \ge \epsilon$. We can use this and the weak convergence of $K\widetilde{f_j}$ to arrive at a contradiction. We leave the details as an exercise.

We remark that the converse is true, too. This leads to an alternative characterization of compact operators: K is compact if and only if K maps weakly convergent sequences into strongly convergent ones. See the book Functional Analysis, by F. Riesz and B. Sz.-Nagy.

Our next result is one of the most important theorems in the theory of compact operators.

Theorem 2.6. $C(\mathcal{H})$ is a closed subspace of $\mathcal{B}(\mathcal{H})$.

¹See Riesz-Nagy, p. 64.

Proof. Suppose that $\{K_n\}_{n=1}^{\infty}$ is a sequence in $\mathcal{C}(\mathcal{H})$ that converges to $K \in \mathcal{B}(\mathcal{H})$, in the operator norm. We want to show that K is compact. Assume the $\{v_k\}$ is a bounded sequence in \mathcal{H} , with $\|v_k\| \leq C$ for all k. Compactness will follow if we can prove that $\{Kv_k\}$ has a convergent subsequence. The technique for doing this is often called a diagonalization argument. We start with the full sequence and form $\{K_1v_k\}$. Since K_1 is compact, we can select a subsequence $\{v_k^{(1)}\}$ such that $\{K_1v_k^{(1)}\}$ is convergent. We may carry out the same procedure with $\{K_2v_k^{(1)}\}$, selecting a subsequence of $\{K_2v_k^{(1)}\}$ that is convergent. Call it $\{v_k^{(2)}\}$. Since this is a subsequence of $\{v_k^{(1)}\}$, $\{K_1v_k^{(2)}\}$ is convergent. Continuing in this way, we construct subsequences $\{v_k^{(j)}\}$ for which $\{K_mv_k^{(j)}\}$ is convergent for all $1 \leq m \leq j$. Next, we let $\{u_j := v_j^{(j)}\}$, the "diagonal" sequence. This is a subsequence of all of the $\{v_k^{(j)}\}$'s. Consequently, for n fixed, $\{K_nu_j\}_{j=1}^{\infty}$ will be convergent. To finish up, we will use an "up, over, and around" argument. Note that for all ℓ, m ,

$$||Ku_{\ell} - Ku_{m}|| \le ||Ku_{\ell} - K_{n}u_{\ell}|| + ||K_{n}u_{\ell} - K_{n}u_{m}|| + ||K_{n}u_{m} - Ku_{m}||$$

Since $||Ku_{\ell} - K_n u_{\ell}|| \le ||K - K_n||_{op} ||u_{\ell}|| \le 2C ||K - K_n||_{op}$ and, similarly, $||Ku_m - K_n u_m|| \le 2C ||K - K_n||_{op}$, so $||Ku_{\ell} - Ku_m|| \le 4C ||K - K_n||_{op} + ||K_n u_{\ell} - K_n u_m||$. Let $\varepsilon > 0$. First choose N such that for $n \ge N$, $||K - K_n||_{op} < \varepsilon/(8C)$. Fix n. Because $\{K_n u_{\ell}\}$ is convergent, it is Cauchy. Choose N' so large that $||K_n u_{\ell} - K_n u_m|| < \varepsilon/2$ for all $\ell, m \ge N'$. Putting these two together yields $||Ku_{\ell} - K_n u_{\ell}|| \le \varepsilon$, provided $\ell, m \ge N'$. Thus $\{Ku_{\ell}\}$ is Cauchy and therefore convergent.

Corollary 2.7. Hilbert-Schmidt operators are compact.

Proof. Let $\mathcal{H}=L^2[0,1]$ and suppose $k(x,y)\in L^2(R),\ R=[0,1]\times[0,1]$. The associated Hilbert-Schmidt operator is $Ku=\int_0^1 k(x,y)u(y)dy$. Let $\{\phi_n\}_{n=1}^\infty$ be an o.n. basis for $L^2[0,1]$. With a little work, one can show that $\{\phi_n(x)\phi_m(y)\}_{n,m=1}^\infty$ is an o.n. basis for $L^2(R)$. Also, from Proposition 2 in the notes on Bounded Operators & Closed Subspaces, we have that $\|K\|_{op} \leq \|k\|_{L^2(R)}$. Expand k(x,y) in the o.n. basis $\{\phi_n(x)\phi_m(y)\}_{n,m=1}^\infty$:

$$k(x,y) = \sum_{n,m=1}^{\infty} \alpha_{m,n} \phi_n(x) \phi_m(y), \ \alpha_{m,n} = \langle k(x,y), \phi_n(x) \phi_m(y) \rangle_{L^2(R)}$$

²See Keener, Theorem 3.5

Next, let $k_N(x,y) = \sum_{n,m=1}^N \alpha_{m,n} \phi_n(x) \phi_m(y)$ and also K_N be the finite rank operator $K_N u(x) = \int_0^1 k_N(x,y) u(y) dy$. By Parseval's theorem, we have that

$$||k - k_N||_{L^2(R)}^2 = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |\alpha_{m,n}|^2 - \sum_{m=1}^{N} \sum_{n=1}^{N} |\alpha_{m,n}|^2$$

$$= \sum_{m=N+1}^{\infty} \sum_{n=1}^{\infty} |\alpha_{m,n}|^2 + \sum_{m=1}^{N} \sum_{n=N+1}^{\infty} |\alpha_{m,n}|^2$$

$$\leq \sum_{m=N+1}^{\infty} \sum_{n=1}^{\infty} |\alpha_{m,n}|^2 + \sum_{n=N+1}^{\infty} \sum_{m=1}^{\infty} |\alpha_{m,n}|^2.$$

Both terms go to 0 as $N \to \infty$. To make this clear, let $\tilde{a}_m^2 = \sum_{n=1}^{\infty} a_{m,n}^2$. Because $\sum_{m=1}^{\infty} \tilde{a}_m^2 = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |\alpha_{m,n}|^2$, the series $\sum_{m=1}^{\infty} \tilde{a}_m^2$ is absolutely convergent; consequently, $\lim_{N\to\infty} \sum_{m=N+1}^{\infty} \tilde{a}_m^2 = 0$. Using this for both terms in the inequality implies that $\lim_{N\to\infty} ||k-k_N||_{L^2(R)}^2 = 0$. As we mentioned above, $||K-K_N||_{op} \le ||k-k_N||_{L^2(R)}$, so

$$\lim_{N \to \infty} ||K - K_N||_{op} = 0.$$

Thus K is the limit in $\mathcal{B}(L^2[0,1])$ of finite rank operators, which are compact. By Theorem 2.6 above, K is also compact.

We now turn to some of the algebraic properties of $\mathcal{C}(\mathcal{H})$.

Proposition 2.8. Let $K \in \mathcal{C}(\mathcal{H})$ and let $L \in \mathcal{B}(\mathcal{H})$. Then both KL and LK are in $\mathcal{C}(\mathcal{H})$.

Proof. Let $\{v_k\}$ be a bounded sequence in \mathcal{H} . Since L is bounded, the sequence $\{Lv_k\}$ is also bounded. Because K is compact, we may find a subsequence of $\{KLv_k\}$ that is convergent, so $KL \in \mathcal{C}(\mathcal{H})$. Next, again assuming $\{v_k\}$ is a bounded sequence in \mathcal{H} , we may extract a convergent subsequence from $\{Kv_k\}$, which, with a slight abuse of notation, we will denote by $\{Kv_j\}$. Because L is bounded, it is also continuous. Thus $\{LKv_j\}$ is convergent. It follows that LK is compact.

Proposition 2.9. K is compact if and only if K^* is compact.

Proof. Because K is compact, it is bounded and so is its adjoint K^* , in fact $||K^*||_{op} = ||K||_{op}$. By Proposition 2.8, we thus have that KK^* is compact. It follows that if $\{u_n\}$ is a bounded sequence in \mathcal{H} , then we may extract a

subsequence of $\{u_n\}$, denoted by $\{v_j\}$, such that $\{KK^*v_j\}$ is convergent. This of course means that this sequence is also Cauchy. Note that

$$\langle KK^*(v_j - v_k), v_j - v_k \rangle = \langle K^*(v_j - v_k), K^*(v_j - v_k) \rangle = ||K^*(v_j - v_k)||^2.$$

From this and the fact that $\{v_j\}$, being a subsequence of the bounded sequence $\{u_n\}$, is itself bounded, we see that $\langle KK^*(v_j-v_k), v_j-v_k\rangle \leq \|v_j-v_k\| \|KK^*(v_j-v_k)\| \leq C\|KK^*(v_j-v_k)\|$. Thus,

$$||K^*(v_j - v_k)||^2 \le C||KK^*(v_j - v_k)||$$

Since $\{KK^*v_j\}$ is Cauchy, for every $\varepsilon > 0$, we can find N such that whenever $j, k \geq N$, $||KK^*(v_j - v_k)|| < \varepsilon^2/C$. It follows that $||K^*(v_j - v_k)|| < \varepsilon$, if $j, k \geq N$. This implies that $\{K^*v_j\}$ is Cauchy and therefore convergent. \square

We want to put this in more algebraic language. Taking L to be compact in Proposition 2.8, we have that the product of two compact operators is compact. Since $\mathcal{C}(\mathcal{H})$ is already a subspace, this implies that it is an algebra. Moreover, by taking L to be just a bounded operator, we have that $\mathcal{C}(\mathcal{H})$ is a two-sided *ideal* in the algebra $\mathcal{B}(\mathcal{H})$. Since K being compact implies K^* is compact, $\mathcal{C}(\mathcal{H})$ is closed under the operation of taking adjoints; thus, $\mathcal{C}(\mathcal{H})$ is a *-ideal. Finally, by Theorem 2.6, we have that $\mathcal{C}(\mathcal{H})$ is a closed subspace of $\mathcal{B}(\mathcal{H})$. We summarize these results as follows.

Theorem 2.10. $\mathcal{C}(\mathcal{H})$ is a closed, two-sided, *-ideal in $\mathcal{B}(\mathcal{H})$.

We remark that a closed *-algebra in $\mathcal{B}(\mathcal{H})$ is called a C*-algebra. So, $\mathcal{C}(\mathcal{H})$ is a C*-algebra that is also a two-sided ideal in $\mathcal{B}(\mathcal{H})$.

Previous: Example of the Fredholm alternative and resolvent

Next: the closed range theorem