

# Indian Institute of Information Technology Sri City, Chittoor

(An Institute of National Importance under an Act of Parliament)

# **High Performance Computing Course Plan**

(CSE Program Elective)

Spring – 2021 L-T-P-C: 3 - 1 - 0 – 4

# **Outline**

The Objective of the course is to understand, analyze, and implement parallel programming paradigms such as openMP, MPI and CUDA.

## **Course Objectives**

- 1. Provide a basic foundation on memory hierarchy design and performance tradeoffs.
- 2. Provide systematic and comprehensive understanding of the hardware and the software high performance techniques in present day.
- 3. Introduce the fundamentals of high performance computing with the graphics processing units (GPU) and graphics processing programming paradigm.
- 4. Introduce concepts to design high performance versions of standard single threaded algorithms.

#### **Prerequisites**

Basic knowledge in computer programming, Basic Computer Organization.

#### **Who Can Take The Course**

Ph. D., M.Tech and Advanced UG students.

### **Course Outcomes**

- 1. The learner will be able to design, formulate, solve and implement high performance versions of standard single threaded algorithms
- 2. The learner will be able to design programs to extract maximum performance in a multicore, shared memory execution environment processor.
- 3. The learner will be able to design and deploy large scale parallel programs on tightly coupled parallel systems using the message passing paradigm and advanced parallel algorithms.
- 4. The learner will know and will be able to demonstrate the architectural features of the GPU.

# **Syllabus**

**Module 1: Introduction:** Introduction to HPC, The Memory System: Memory Hierarchy, Cache tradeoffs, Technology Trends: Moore's Law. Delay, Power, Energy. Dependability. Performance Quantification. Performance Measures of Parallel Algorithms.

2- Weeks

**Module 2: Parallel Computer Memory Architectures:** Parallel Platforms Models (SIMD, MIMD, SPMD), Communication (Shared Address Space vs. Message Passing) PRAM.

2- Weeks

Module 3: Shared Memory Parallel Programming: Symmetric and Distributed architectures. OpenMP Introduction. Thread creation, Parallel regions. Work-sharing, Synchronization.

3- Weeks

**Module 4: Distributed Memory Parallel Programming** – MPI, Collective communication. Data grouping for communication.

3- Weeks

**Module 5 :** Introduction to Heterogeneous Parallel Computing and Interconnection Networks - Case studies.

2- Weeks

### **Text Books**

- John Hennessy and David Patterson, Computer Architecture A Quantitative Approach.
  5ed. Morgan Kaufmann.
- 2. Ananth Grama, Vipin Kumar, Anshul Gupta, George Karypis, Introduction to Parallel Computing, Addison-Wesley, 2003
- 3. Wen-Mei W Hwu, David B Kirk, Programming Massively Parallel Processors A Handson Approach, Morgann Kaufmann, 3e.
- William Dally and Brian Towles. Principles and Practices of Interconnection Networks, MK, 2004

### **Reference Books**

- 1. Michael J Quinn, Parallel Programming in C with MPI and OpenMP, TMH, 2003
- 2. Barbara Chapman, Gabriele Jost, Ruud van der Pas, Using OpenMP, MIT Press, 2008.
- 3. Peter S. Pacheco, An Introduction to Parallel Programming, Morgan Kaufmann, 2011.
- 4. Gropp, Lusk, Skjellum, Using MPI, Using MPI, 2014

# **Web References**

- 1. <a href="https://nptel.ac.in/courses/106/102/106102114/">https://nptel.ac.in/courses/106/102/106102114/</a>
- 2. https://nptel.ac.in/courses/106/102/106102163/#
- 3. https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
- 4. GPU university courses list: <a href="https://developer.nvidia.com/educators/existing-courses">https://developer.nvidia.com/educators/existing-courses</a>
- 5. Tim Mattson. Introduction to OpenMP. SC11. (Available on Youtube)
- 6. MPI Video Tutorials by Open-MPI. <a href="https://www.open-mpi.org/video/">https://www.open-mpi.org/video/</a>

#### **Course Evaluation**

Course grades will be based on the following weightage pattern.

| Sl. No. | Mode of Assessment                  | Marks |
|---------|-------------------------------------|-------|
| 1       | Mid Exam                            | 20%   |
| 2       | End Semester Exam                   | 30%   |
| 3       | Assignments*                        | 30%   |
| 4       | Class Participation (Surprise Quiz) | 10%   |
| 5       | Scheduled Quiz                      | 10%   |

<sup>\*</sup>Programming assignments will include serial performance, MPI, OpenMP, GPU programming.