r = 11

Homework #1

Q1. In base 36, there are 36 digits 0, 1, 2, 3, 4...9, A, B, C, D... X, Y, Z. What is the equivalent number in radix 10 for $(ADD)_{36}$

$$(ADD)_{36} = (?)_{10}$$

 $10 * 36^2 + 13 * 36^1 + 13 * 36^0 = 13,441$
 $(13,441)_{10}$

Q2. What is the radix of the numbers if the solution to the quadratic equation $x^2-10x+26=0$ is x=4 and x=7?

$$x^2 - 10x + 26 = 0$$
 $x = 4,7$ $4^2 - 10 * 4 + 26 = 0$ Substitute 4 for x. $26 = 2r + 6$ 26 is equivalent to 2 of whatever base plus 6. $10 = 1r + 0$ Also, 10 is equivalent to base¹ $4^2 - (r * 4) + (2r + 6) = 0$ Substitute the values. $16 - 4r + 2r + 6 = 0$ Simplifiy. $22 - 2r = 0$ $22 = 2r$

Radix is 11.

Q3. Fill the multiplication table for base seven.

	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	11	13	15
3	0	3	6	12	15	21	24
4	0	4	11	15	22	26	33
5	0	5	13	21	26	34	42
6	0	6	15	24	33	42	51