Concurrent Computational Models

6CCS3COM Computational Models

Josh Murphy

Contents

- Introduction
 - Sequential models
 - Properties of concurrent computation
 - Required notions
- Transition systems
- Equivalence
 - Simulation
 - Bisimulation
- The calculus of communicating systems (CCS)

Sequential models of computation

- Turing machines and lambda calculus are sequential models of computation.
- Interaction nets allow for distribution and parallel computation, but do not account for concurrent interactions.
- They are all universal models of computation so why care if they specifically allow for concurrency?
 - Concurrent hardware.
 - Concurrent models can be more intuitive for concurrent problems.

Properties of concurrent computation

- Concurrent computation can be characterised with having the following properties.
 - Parallelism: steps of computation can occur simultaneously.
 - Interference: the meaning of a program may depend on the behaviour of other programs that are being executed.
 - Non-determinism: the same computations do not always produce the same results
 - Non-termination: the program(s) may not terminate, and indeed the output of a program may not be the focus of the computation.

Notions for concurrent computation

- Process: A process is an entity that undertakes computation. In different domains they may also be referred to as agents, component, or thread.
- **Communication:** Processes can exchange information directly between themselves.
- Interaction: Shared resources between processes can mean the collective behaviour of the system depends on an individual's actions. Interaction can be positive and intended, or negative interference.
- Behaviour: The observable processes are called the behaviour of the system. Behaviour replaces the notion of result from sequential programs.

Example: vending machine

Example: vending machine (deterministic)

Equivalence

- How do we know if programs are equivalent?
 - Two sequential programs are equivalent if for all inputs they give the same outputs.

$$f = g$$
 iff $\forall x, f(x) = g(x)$

- But in concurrent programs the output is rarely the focus, and is more commonly non-deterministic/non-terminating...
- For concurrent programs, we could:
 - Compare their associated language? No (accepted words are not the only thing we care about with concurrent systems).
 - Compare their behaviour? First, we need some formal definitions.

Transition system

- We can describe a concurrent program with a particular kind of automaton.
- Let Act be an alphabet (infinite set of labels):

$$Act = \mathcal{N} \cup \bar{\mathcal{N}}$$

 $\mathcal N$ is the set of **actions**, and $\bar{\mathcal N}$ is the set of **co-actions**. For example, for a vending machine, $\mathcal N=\{coin, coffee, tea, ...\}$ and $\bar{\mathcal N}=\{\overline{coin}, \overline{coffee}, \overline{tea}, ...\}$

- A transition system with labels in Act is a pair (Q, T) where:
 - Q is a set of states,
 - T is a ternary relation $T \subseteq (Q \times Act \times Q)$, the **transition relation**.

We write $q \to^a q'$ if $(q, a, q') \in T$, and say that in the state q the process can perform the action a and move to state q'.

Simulation

- Let (Q, T) be a labelled transition system on Act.
- A binary relation S on Q is a **strong simulation** if pSq implies that, for each $a \in Act$ such that $p \to^a p'$, there exists q' in Q such that $q \to^a q'$ and p'Sq'.
- The idea is that if pSq holds, any transition can be done from the state p can also be done from q, and the resulting states are still in the relation.
- If *pSq* holds we say *p* **simulates** *q*.

Simulation: example

- For these two transition systems we can show a simulation:
 - $S = \{(a, 1), (b, 2), (c, 2), (d, 3), (e, 4)\}$
- Check that, for each pair $(p,q) \in S$ and for each each action a such that $p \to p$ there is a transition $q \to q$ such that $(p',q') \in S$.
- This shows the deterministic vending machine scan simulate the non-deterministic vending machine.
 - But the non-deterministic vending machine can't simulate the deterministic vending machine. Exercise: why not?

Simulation

- Simulation allows us to compare transition systems, but just because there is simulation in a single direction it doesn't mean the systems are equivalent.
- To show equivalence there needs to be simulation in both directions.

Bisimulation

- Let (Q, T) be a labelled transition system on Act.
- A binary relation S on Q is a **strong bisimulation** if S and S^{-1} are strong simulations, where S^{-1} denotes the inverse of S (i.e., $pS^{-1}q$ if qSp).
- We will write $p \sim q$ if there is a strong bisimulation S such that $(p,q) \in S$.
- p ~ q implies p simulates q and q simulates p, but the reverse is not true. Exercise: why not?

The calculus of communicating

systems (CCS)

CCS introduction

- Introduced by Milner in 1980s to have an abstract model that focuses on the *essence* of concurrent systems.
- Milner's general model:
 - A concurrent system is a collection of processes
 - A process is an independant agent that may perform internal activities in isolation, or may interact with the environment to perform shared activities.

A simple example

A vending machine can be represented as follows:

$$coke.coin.\overline{coke_can.0} + chocolate.coin.\overline{chocolate_bar.0}$$

- With the following elements of syntax:
 - 1. Actions: coke, coke_can, ...
 - 2. Sequential composition: . (the dot)
 - a.b, first do a, then do b
 - 3. Non-deterministic choice: +
 - c + d, do c or d
 - 4. Terminal process: 0
- Processes **perform actions** (\rightarrow^{action}) , and become a new process:

CCS syntax: terminal process

- The simplest possible process is a terminal process, which is a terminated, inactive, or deadlocked process.
- Represented by 0

CCS syntax: Actions

• A set of **labels** for actions:

$$Act = \mathcal{N} \cup \overline{\mathcal{N}} = \{a, b, c, ...\} \cup \{\overline{a}, \overline{b}, \overline{c}, ...\}$$

- **Input actions:** $i \in \mathcal{N}$ represents the receiving of an input.
- Output actions: $o \in \overline{\mathcal{N}}$ represent the sending of an output.

CCS syntax: Action prefixing

- The simplest behaviour is sequential action
- If P is a process, we write $\alpha.P$ to denote the **prefixing** of P with action α .
- $\alpha.P$ models a system that is ready to perform the action α and then it will behave as P
 - i.e. $\alpha.P \rightarrow^{\alpha} P$

CCS syntax: non-deterministic choice

- Alternative behaviours can be used to model non-deterministic choice.
- If P and Q are processes, we write P + Q to denote the non-deterministic choice between P and Q.
- P + Q models a process that can behave as P (discarding Q), or behave as Q (discarding P).

$$coke.coin.\overline{coke_can}.0 + chocolate.coin.\overline{chocolate_bar}.0$$

 $\rightarrow^{coke} coin.\overline{coke_can}.0$

• Note: P + Q = Q + P

CCS syntax: constants and recursion

- We can define **process constants**, that can be defined recursively.
- P := a.b.c.0, P is defined as a constant for the process a.b.c.0
- e.g., A ticking clock: C ::= tick.tock.C $tick.tock.C \rightarrow^{tick} tock.C \rightarrow^{tock} C = tick.tock.C \rightarrow^{tick} tock.C \rightarrow^{tock} ...$
- Allows processes to continue ad infinitum.
- A program is a collection of process contants.

CCS syntax: parallel composition

- Concurrent behaviour can be modelled with parallel composition.
- If P and Q are processes, we write P|Q to denote the parallel composition of P and Q.
- P|Q models a process that behaves like P and Q in parallel:
 - Each may proceed independently
 - If P is ready to perform an action a and Q is ready to perform the complementary action ā, they may interact (→^τ, a step internal to the process).
 - Note: P|Q = Q|P

CCS syntax: parallel composition example

• First, let us update the model of our hot drinks machine...

$$HDM ::= tea.coin.\overline{cup_of_tea}.HDM + coffee.coin.coin.\overline{mug_of_coffee}.HDM$$

• Now, consider the concurrent system, me...

 $\textit{JM} ::= \overline{\textit{tea}}.\overline{\textit{coin}}.\textit{cup_of_tea}.\overline{\textit{teach}}.\textit{JM} + \overline{\textit{coffee}}.\overline{\textit{coin}}.\overline{\textit{coin}}.\textit{mug_of_coffee}.\overline{\textit{research}}.\textit{JM}$

CCS syntax: parallel composition example

We can now compose a process for the average day:

How might the process behave?

```
(\textit{tea}.coin.cup\_of\_tea.HDM + coffee.coin.coin.mug\_of\_coffee.HDM) | \\ (\textit{tea}.coin.cup\_of\_tea.teach.JM + \\ \hline \textit{coffee}.coin.coin.mug\_of\_coffee.research.JM) \\ \rightarrow^{\tau} (\textit{coin}.cup\_of\_tea.HDM) | (\textit{coin}.cup\_of\_tea.teach.JM) \\ \rightarrow^{\tau} (\textit{cup\_of\_tea}.HDM) | \hline \textit{cup\_of\_tea}.teach.JM \\ \rightarrow^{\tau} HDM | \overline{\textit{teach}}.JM \\ \rightarrow^{teach} HDM | JM
```

• **Exercise:** trace an execution that includes the action $\rightarrow^{research}$

CCS syntax: Restriction

- We can control unwanted interactions between a process and the environment by restricting action/co-action pairs.
- If P is a process and a is an action we write $\nu a.P$ for the restriction of a in P.
 - P can no longer take action a or \overline{a} .

CCS syntax: Restriction example

- Restricting the HDM on coffee makes the coffee button inaccessible to JM: vcoffee.(HDM | JM)
- As a consequence, JM can only teach, and never research

Summary of CCS syntax

We can define a grammar for CCS processes as follows.

$$\begin{array}{c|cccc} P \rightarrow & K & | & \operatorname{Process \ constants} \\ & \alpha.P & | & \operatorname{Action \ prefixing} \ (\alpha \in Act) \\ & \Sigma_{i \in I} P_i & | & \operatorname{Summation} \ (P_0 + P_1 + \ldots + P_I) \\ & P_1 \mid P_2 & | & \operatorname{Parallel \ composition} \\ & \nu \alpha.P & | & \operatorname{Restriction} \ (\alpha \in Act) \\ & 0 & & \operatorname{Terminal \ process} \end{array}$$

Syntax of CCS: exercises

- Exercise: Which of the following expressions are well-formed processes in CCS?
 - a.b.A + B
 - $\nu a.(a.0 + \overline{a}.A)$
 - $(a.b.A + \overline{a}.0) \mid B$
 - $((a.b.A) + \overline{a}.0).B$

Formal semantics for CCS

RULE	Premise	Conclusion	Conditions
ACT		$\alpha.P \rightarrow^{\alpha} P$	
SUM	$P \rightarrow^{\alpha} P'$	$M+P \rightarrow^{\alpha} P'$	
COM_1	$P \rightarrow^{\alpha} P'$	$P \mid Q \rightarrow^{\alpha} P' \mid Q$	
COM ₂	$Q ightharpoonup^{lpha} Q'$	$P \mid Q \rightarrow^{\alpha} P \mid Q'$	
COM ₃	$P \rightarrow^a P', Q \rightarrow^{\overline{a}} Q'$	$P \mid Q \rightarrow^{\tau} P' \mid Q'$	
RES	$P \rightarrow^{\alpha} P'$	$\nu\beta.P \to^{\alpha} \nu\beta.P'$	$\alpha, \overline{\alpha} \neq \beta$
CON	$P \rightarrow^{\alpha} P'$	$K \rightarrow^{\alpha} P'$	K ::= P

Exercise: reducing expressions

• Exercise: Show a possible run for the following process, identifying the rules used in each step.

$$\nu b.((a.b.P_1 + b.P_2 + c.0) \mid \overline{a}.0) \mid \overline{b}.P_3 + \overline{a}.P_4$$

• **Challenge:** Are CCS process reductions confluent (can different orders of reduction give different results)? Justify your answer.

Exercise: reducing expressions

• Exercise: Show a possible run for the following process.

$$\nu b.((a.b.P_1 + b.P_2 + c.0) \mid \overline{a}.0) \mid \overline{b}.P_3 + \overline{a}.P_4$$

- We can use SUM in combination with COM₃ to reduce the expression.
 - SUM: $(a.b.P_1 + b.P_2 + c.0) \rightarrow^a b.P_1$
 - COM₃: $(a.b.P_1 + b.P_2 + c.0) \mid \overline{a}.0) \rightarrow^{\tau} b.P_1 \mid 0$
- After reduction step:

$$\nu b.(b.P_1 \mid 0) \mid \overline{b}.P_3 + \overline{a}.P_4$$

- We can use SUM in combination with COM₂ to reduce the expression.
 - SUM: $\overline{b}.P_3 + \overline{a}.P_4 \rightarrow^{\overline{a}} P_4$
 - COM₂: $\nu b.(b.P_1 \mid 0) \mid \overline{b}.P_3 + \overline{a}.P_4 \rightarrow^{\overline{\alpha}} \nu b.(b.P_1 \mid 0) \mid P_4$
- After reduction step:

$$\nu b.(b.P_1 \mid 0) \mid P_4$$

Summary

- Concurrent systems have particular properties, and so bespoke computational models (e.g. CCS) have been developed to represent them.
- Equivalence of concurrent systems can be shown through bisimulation.
- CCS
 - Syntax
 - Semantics
 - Lecture slides use slightly different notation compared to textbook