Course 4

Software Quality Assurance &
Software Quality Models

Software quality assurance

- IEEE definition:
 - 1. A planned and systematic pattern of all actions necessary to provide adequate confidence that an item or product conforms to established technical requirements.
 - 2. A set of activities designed to evaluate the process by which the products are developed or manufactured. Contrast with quality control.

SQA - extended [Galin]

A systematic, planned set of actions necessary to provide adequate confidence that the software development process or the maintenance process of a software system product conforms to established functional technical requirements as well as with the managerial requirements of keeping the schedule and operating within the budgetary confines

	IEEE	Extended
Systematic, planned actions	✓	✓
Software Development Process	√	√
Software Maintenance	X	√
Functional Technical Requirements	√	√
Scheduling	X	✓
Budget control	X	✓

SQ Assurance vs. SQ Control

 Systematic activities throughout the development and maintenance – prevent, detect, correct errors

Minimize costs of quality

Set of
 activities reject products
 that do not
 qualify

Part of SQ assurance activity

Objectives of SQA - process oriented

- 1.Software will conform to functional technical requirements
- 3.Software will conform to managerial scheduling and budgetary requirements
- 5.Improvement and efficiency of software development and SQA improve technical and managerial requirements + reduce costs

Objectives of SQA - product oriented

- 1. Software maintenance activities will conform to functional technical requirements
- 3.Software maintenance activities will conform to managerial scheduling and budgetary requirements
- 5.Improvement and efficiency of software maintenance and SQA - improve technical and managerial requirements + reduce costs

Software Quality Models

- McCall (1977) classic 11 factors
- Evans & Marciniak (1987) 12 factors
- Deutsch & Willis (1988) 15 factors
- ISO 9126 (2001) 6 factors
- ISO25010 (2011) 8 factors

Terminology

- Hierarchical structure: set of factors with subfactors
- Factor/ subfactor = characteristics / subcharacteristics
- In McCall model same subfactor part of different factors
- Rest of the models: tree structure

McCall Model

- 11 factors grouped in 3 categories:
 - Product operation factors deals with requirements that directly affects software operation: Correctness, Reliability, Efficiency, Integrity, Usability
 - Product revision factors deals with requirements affecting software maintenance activities: Maintainability, Flexibility, Testability
 - Product transition factors deals with requirements affecting adaptation and integration: Portability, Reusability, Interoperability

S. Motogna - Software Quality

Other models

Evans & Marciniak

- Exclude testability
- Add verifiability
- Add expandability

Deutsch & Willis

- Exclude testability
- Add verifiability
- Add expandability
- Add safety
- Add manageability
- Add survivability
- ➤Expandability + survivability resemble flexibility + reliability
- ➤Testability part of maintainability

FURPS Model

- Developed by Hewlett Packard
- FURPS:
 - Functionality is assessed by evaluating the features and capabilities of the delivered program and the overall security of the system.
 - Usability is assessed by considering human factors, overall aesthetics, look and feel and easy of learning.
 - Reliability is assessed by measuring the frequency of failure, accuracy of output, the mean-time-tofailure(MTTF), ability to recover from failure.
 - Performance is assessed by processing speed, response time, resource utilization, throughput and efficiency.
 - Supportability is assessed by the ability to extend the program (extensibility), adaptability, serviceability and maintainability.

ISO 9126 Quality Factors

- The ISO 9126 standard identifies six key quality attributes:
 - Functionality degree to which software satisfies stated needs.
 - Reliability the amount of time the software is up and running.
 - Usability the degree to which a software is easy to use.
 - Efficiency the degree to which software makes an optimum utilization of the resources.
 - Maintainability the ease with which the software can be modified.
 - Portability the ease with which a software can be migrated from one environment to the other.

ISO 25010 System and software quality model

McCall model

- See McCall.pdf in course directory
- Approach:
 - -Determine a set of quality factors
 - Develop a set of criteria for each
 factor
 - -Define metrics for each criterion
 - Validate metrics
 - -Translate results into guidelines
- Start with ≈ 55 features group

Figure 3.1-1 Allocation of Software Quality Factors to Product Activity

1352

Case study - Correctness

- Definition: Extent to which a program satisfies its specifications and fulfills the user's mission objectives.
- Life-cycle involvement:
 - Measured in development: analysis, design, implementation
 - Impact realized in: testing, operation, maintenance
- Criteria:
 - Traceability
 - Consistency
 - Completeness
- Criteria definition
- Metrics & criteria evaluation

- Traceability: Those attributes of the software that provide a thread from the requirements to the implementation with respect to the specific development and operational environment.
- Consistency: Those attributes of the software that provide uniform design and implementation techniques and notation.
 - Reliability + Maintainability
- Completeness: Those attributes of the software that provide full implementation of the functions required.

Metrics for criteria

- McCall.pdf:
 - -pg 64 Computation
 - -pg 90 Explanation

- Project assignment:
 - -1st step: choose your SQ model

PORTABILITY

Portability

 Definition: Effort required to transfer a program from one hardware configuration and/or software system environment to another.

• Impact:

- Measured:
 - Design
 - Code
- Realized: transition

S. Motogna - Software Quality

Portability Instability Replaceability

Degree to which a product or system can effectively and efficiently be adapted for different or evolving hardware, software or other operational or usage environments

Degree of
effectiveness and
efficiency with
which a product
or system can be
successfully
installed and/or
uninstalled in a
specified
environment

Degree to which a product can replace another specified software product for the same purpose in the same environment.

S. Motogna - Software Quality

Why?

- ➤Software life ≈15 years vs.
 hardware life ≈ 4-5 years
- ➤ Software implemented ≈ 3 hardware config.
- ➤Porting less expensive than implementing
- ➤ Greater market

The 7 dimensions of portability

- 1. Operating systems
- 2. Processor architecture
- 3. Compiler & language features
- 4.GUI environment
- 5. Regions
- 6. Hardware devices
- 7....

Issues in OS portability

I/O, encode char, organize
files, allocate resources

standardiza tion

Functionality not included in standard: web server, database engine, mail transfer engine POSIX - API

Application binary interface

Compatibility
/ emulation
layer

Issues in Processor Architecture portability

- Data type properties size + operations
- Data representation alignment
- Machine-specific code

JAVA

Approaches in GUI portability

- Ignore: platform dependent app.
- Emulation layer: use libraries for transformation
- Portability layer: isolate GUI elem.
- Portable platform: ex. Java own API for GUI
- HTML or AJAX-based layer

Issues in region portability

 Internationalization: generalization process of creating programs that can be easily ported across different regions

 Localization: particularization effort required to port a program to a given region

Portability Today

SOA

- Less technology dependent
- Internal platform independence through SOA

Portability today

Open Source

- Less coding, more composition
- Portability of parts

Portability metrics

