	Two Embarcadero Center, 8th Floor San Francisco, California 94111 Telephone: (415) 576-0200 Facsimile: (415) 576-0300 E-mail: epjacobs@townsend.com phgoldsmith@townsend.com ramcfarlane@townsend.com	1294) 172650)
8 9	FAIRCHILD SEMICONDUCTOR CORP	nt
10	I INITED on	ATEG Diggs to a
11	,	ATES DISTRICT COURT
12		RN DISTRICT OF CALIFORNIA
13	SAN FR	ANCISCO DIVISION
14		
15	ALPHA & OMEGA SEMICONDUCTOR,	Case No. C 07-2638 JSW (Consolidated with Case No. C 07-2664 JSW)
16	INC., a California corporation; and ALPHA & OMEGA SEMICONDUCTOR,	FAIRCHILD SEMICONDUCTOR
17	LTD., a Bermuda corporation,	CORPORATION'S DISCLOSURE OF
18	Plaintiffs and Counterdefendants,	ASSERTED CLAIMS AND PRELIMINARY INFRINGEMENT
	v. FAIRCHILD SEMICONDUCTOR	CONTENTIONS
19	CORP., a Delaware corporation,	(Patent L.R. 3-1)
20	Defendant and Counterclaimant.	
21		
22	AND RELATED COUNTERCLAIMS.	
23		
24	Downer 44 No. 4	
25	r ursuant to Northern District of Califo	ornia Patent Local Rule 3-1, defendant and
26	counterclaimant Fairchild Semiconductor Cor	poration ("Fairchild") hereby serves its Disclosure of
27	Asserted Claims and Preliminary Infringemen	t Contentions ("Disclosure"). This Disclosure is based
28	on information reasonably available to Fairchi	ld at this time. Fairchild reserves the right to
13	supplement this Disclosure based on informat:	ion developed in the course of this lawsuit through

discovery or additional factual investigation, in view of the Court's claim construction ruling or as other circumstances may require.

I. ASSERTED CLAIMS AND ACCUSED PRODUCTS

Based upon the information presently available, Fairchild contends that plaintiffs and counterdefendants Alpha & Omega Semiconductor, Inc., and Alpha & Omega Semiconductor, Ltd., (collectively, "AOS") have infringed and continue to infringe, directly and/or indirectly, the following claims of U.S. Patent Nos. 6,429,481 ("the '481 patent"), 6,521,497 ("the '497 patent"), 6,710,406 ("the '406 patent") and 6,828,195 ("the '195 patent") (collectively, "the Fairchild patents-in-suit") by making, using, offering to sell, selling within the United States, or importing into the United States the following accused products of which Fairchild is presently aware (or importing into the United States products made by methods claimed in the Fairchild patents-in-suit).

Patent Number	Asserted Claims	Accused Products
The '481 patent	Claims 1-4, 18 (against accused products with closed cell design)	See attached Exhibit 1
	Claims 1-4, 6-11, 15-18, 21, 22 (against accused products with striped design)	
The '497 patent	Claims 1-7, 11-13, 15-17 (against accused products with closed cell design)	See attached Exhibit 1
	Claims 1-9, 11-13, 15-17 (against accused products with striped design)	
The '406 patent	Claims 1-6, 10-12 (against accused products with closed cell design)	See attached Exhibit 1
	Claims 1-6, 10-17, 24-32 (against accused products with striped design)	
The '195 patent	Claims 1, 2, 6-13, 21, 22 (against accused products with closed cell design)	See attached Exhibit 1
,	Claims 1, 2, 6-13, 15-22 (against accused products with striped design)	

II. CLAIM CHARTS

Claim charts identifying specifically where each element of each asserted claim is found within each accused device or the process by which each accused device was made are attached hereto as Exhibits 2 through 57. These claim charts are based on information available to Fairchild at this time and are based, in part, upon reverse engineering of a reasonable sampling of AOS products. Fairchild contends that each of the accused AOS products meets the limitations of the asserted claims because, based upon their published characteristics, they are likely to have the same design and structure as the products for which reverse engineering data is provided. In addition, each of the accused AOS products is likely to have been manufactured using a process that is the same or similar in all respects relevant to the asserted claims as the products for which reverse engineering data is provided.

To date, AOS has not provided any discovery. Additionally, prior to the commencement of this litigation, on May 17, 2007, Fairchild requested that AOS produce, subject to a confidentiality agreement, information regarding the processes by which the accused products are manufactured. AOS refused to produce the information. Consequently, Fairchild is likely to have additional evidentiary support regarding AOS's infringement after a reasonable opportunity for further investigation and discovery.

III. INFRINGEMENT

Fairchild contends that, when the terms of the asserted claims are properly construed, each limitation of each asserted claim is literally present in the corresponding accused device or in the process used to manufacture the accused device as set forth in Sections II above. In the alternative, if warranted by the Court's claim construction, Fairchild reserves the right to contend that any element not found to be literally present in an accused product is present under the doctrine of equivalents.

IV. PRIORITY DATES

Fairchild contends that the asserted claims for each of the Fairchild patents-in-suit are entitled to a priority date of November 14, 1997.

V. FAIRCHILD'S PRACTICE OF THE CLAIMED INVENTIONS

Fairchild wishes to preserve the right to rely, for any purpose, on the assertion that its own

2
 3

products and/or processes practice the inventions claimed in each of the asserted claims. Accordingly, Fairchild identifies the following products and/or processes that incorporate or reflect the limitations of the corresponding asserted claims.

Patent Number	Asserted Claims	Fairchild's Products and/or Processes
6,429,481	1, 2, 3, 4, 6, 7, 8, 9,	PowerTrench® MOSFETs
	10, 11, 15, 16, 17, 18,	
	21, 22	
6,521,497		None .
6,710,406	1, 2, 3, 4, 5, 6, 10, 11,	PowerTrench® MOSFETs
	12, 13, 14, 15, 16, 17,	
	24, 25, 26, 27, 29, 30,	
	31, 32	
6,828,195	1, 2, 6, 7, 13, 15, 16,	PowerTrench® MOSFETs
	17, 18, 19, 20, 21, 22	

VI. PRODUCTION OF DOCUMENTS

Fairchild produces herewith those documents within its possession, custody, or control as required by Northern District of California Patent Local Rule 3-2.

////

DATED: August 31, 2007 1 Respectfully submitted, 2 3 4 Eric P. Jacobs Peter H. Goldsmith 5 Robert A. McFarlane Igor Shoiket 6 Matthew R. Hulse TOWNSEND AND TOWNSEND AND CREW LLP 7 Two Embarcadero Center, 8th Floor San Francisco, California 94111 8 Telephone: (415) 576-0200 Facsimile: (415) 576-0300 9 Attorneys for Defendant and Counterclaimant 10 FAIRCHILD SEMICONDUCTOR CORP. 11 61122892 v2 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

28

1

2

3 4

5

7

8

6

9

10 11

12

13

14

15 16

17

18 19

20

21

22

23

24 25

26

27

28

Dated: August 31, 2007.

CERTIFICATE OF SERVICE

[C.C.P. §§ 1011 and 1013, C.R.C.§ 2008, F.R.C.P. Rule 5, F.R.A.P. 25]

I declare that I am employed in the City and County of San Francisco, California; I am over the age of 18 years and not a party to the within action; my business address is Two Embarcadero Center, Eighth Floor, San Francisco, California, 94111. On the date set forth below, I served a true and accurate copy of the document(s) entitled:

FAIRCHILD SEMICONDUCTOR CORPORATION'S DISCLOSURE OF ASSERTED CLAIMS AND PRELIMINARY INFRINGEMENT CONTENTIONS

on the party(ies) in this action by placing said copy(ies) in a sealed envelope each addressed as follows:

Daniel Johnson, Jr. Brett M. Schuman Amy M. Spicer Morgan Lewis & Bockius LLP One Market Street, Spear Street Tower San Francisco, CA 94105-1126 Tel: 415-442-1000 415-442-1001 Fax:

Email: djjohnson@morganlewis.com rtautkus@morganlewis.com Email: Email: bschuman morganlewis.com

Attorneys for Plaintiffs and Counterdefendants

[By First Class Mail] I am readily familiar with my employer's practice for collecting
and processing documents for mailing with the United States Postal Service. On the date listed herein
following ordinary business practice, I served the within document(s) at my place of business, by
placing a true copy thereof, enclosed in a sealed envelope, with postage thereon fully prepaid, for
collection and mailing with the United States Postal Service where it would be deposited with the
United States Postal Service that same day in the ordinary course of business.

[By Overnight Courier] I caused each envelope to be delivered by a commercial carrier service for overnight delivery to the offices of the addressee(s).

[By Hand] I directed each envelope to the party(ies) so designated on the service list to be delivered by courier this date.

[By Facsimile Transmission] I caused said document to be sent by facsimile transmission to the fax number indicated for the party(ies) listed above.

[By Electronic Transmission] I caused said document to be sent by electronic transmission to the e-mail address(es) indicated for the party(ies) listed above.

I declare under penalty of perjury that the foregoing is true and correct and that this declaration was executed this date at San Francisco, California.

* Qq measured with Vqs = 10V. In all other cases Vgs = 4.5V.

A04914 A04914		A04912	A04900	AO4850	AO4842	A04828	A04826	AQ4824	AO4822A	AO4822	AO4821	A048188	A04818	A04817	AQ4813	A04812	AO4807	AO4806	AO4805	ACABOA	A04801A	AQ4801	AO4800B	004800 004800	804/22	AO4720	AQ4718	AQ4716	A04714	A04712	A04/08	AQ4706	A04704	A04702	AO4701	AO4624		AO4622	AQ462#	AO4619		AQ4517	AO4616	A04615	0.0101010	200	AQ4614	AQ4613	204014	201810	A04811	AO4609	AO4607	anat-OV	A04606	AQ4604		Part Number	•
1 lor new designs	***************************************	Not to new designs	Not for new designs	New	Full Production	Full Production	Full Production	Not lor new designs	New	Not for new designs	Full Production	New Your Dearway	Nig for new designs	Full Production	Full Production	Not for new designs	Full Production	Full Production	Full Production	Not for new designs	New	Not tor new designs	New		New	New	New	New	New	New	Zew	New	No lor new designs	Not tor new designs	Full Production	New		New	New	New		Full Production	Full Production	Full Production	 	1	Not for new designs	Full Production	L	\perp	Full Production	Not tor new designs	<u> </u>			Not for new designs		Status "	
AO4924 AO4932		AO4932	A04924					AO4924	and the state of t	AO4822A		2030,000	ACMB188			AO4842		A04806A	A04817	AU48UJA	***************************************	A04801A	10000	ACARDOR									AO4710	AO4712													AO4614A					AO4622		HO4620	ASJAR30	A04619	1,16.1	Replacement	
SO-8 SO-8		808	SO-8	8-OS	SO-8	808	80-8	80-8	SO-8	SO-8	SO-8	SO-8	SO-8	SO4	50-8	8-0s	SO-8	80-8	SC-8	5 6	SO-8	SO-8	80-8	SO SO	SC-B	SO-8	SO-6	SO-8	SO-8	SO-8	200	SO-8	80-8	SO-8	8-0s	SO-8		8-0s	8-08	80-8	3	SO-8	80-8	SO-8		65.	SO-8	SO ₄	3	8-08	SO-8	SO-8	50-8	90-6	SO-8	80-8	355	Package	
Dual Dual	***************************************	Asymmetric	Dual	Duei	Duat	Dual	Dual	Asymmetric	Duat	PerQ	Dual	Dual	Oual	Dual	Dual	Dual	Duai	Duat	Dual	Oual	Duai	Due)	Ouat	alfino	Single	Single	Single	Single	Single	Single	Single	Single	Single	Single	Single	Complementary		Complementary	Complementary	Complementary	2	Complementary	Complementary	Complementary	Conspication	Complement	Complementary	Complementary	Companiency	Complementa	Complementary	Complementary	Complementary	Complementary	Camplemania	Complementary		Configuration	
SMPS		SMPS	SMPS	inverter	General Purpose	General Purpose	General Purpose	SMPS	General Purpose	General Purpo	Load Switch	General Purpose	General Putto	Load Switch	General Purpo	Ganeral Purpose	General Purpose	General Purpose	Load Swach	General Purpo	General Purpose	General Purpo	General Purpose	General Piumosa	SMPS Low S	SMPS Low Side	SMPS Low S	SMPS Low Si	SMPS Low Side	SMPS Low S	SMP'S LOW SIDE	SMPS Low S	SMPS Low S	SMPS LOW S	SMPS Low S	y inverter	Γ	Y Inverter	y invester	ry Invener	T	y inverter	ry inverter	гу ілуелы		Ī	ry invester	nverter		T	ry inverter	ry invener				Ізпачи; Кя		Popular	
ZZ	z	zz	2	П	z :	+-	z	zz	Se N		P	+	T	0 70	Τ	I	Se P	7	+	1	Se P]	+	2 2	e Z	N N	de N	de Z	g Z	2 :	2 2	z	De N	Side	Side P	o z	P	z v	z	2 ס	-0	z	1 1	70 Z	1 1	2 70	z	υZ	70 :	zσ	Z	υZ	υz	נס	20	z	1888	i i	
88	H	8 8	+	H	ěs s	+	Н	€ €	-	H	+	3 8	\dagger	Yes	t	t	H	-	8	3 3	No.	š	₹ 8	₹ ₹	8	36	₹	₹	₹	8 8	3	No	8	₹	S S	Z Z	₹0	₹ ₹	No	No o	Ύes	Yes	2 2	es + 1M	₹ 8	3	₹	Yes	3	Z Z	₹0	₹ 8	₹ 8	8	Z S	8 8	Vous	ESD	
Yes	Yes	Yes	řes	No.	2 2	3	₹	S S	No	₹	₹	8 8	2 2	8	R	8	No	₹	3	78	No	8	2 3	+	-	Yes			4	4	Yes	4	Ļ	řes	řes	3 8	S	Z Z	8	8 8	₹6	8 8	₹	동동	8	Z Z	8	₹ ₹	8	S 8	8	₹ 8	¥6 Yes	₹ 8	₹ ₹	₹ 8	LINOR	Schotky	
I A	H	+	1,6		-	ļ						-	-	1				4						יחיקט	SRFET	SRFET	SRFET	SRFET	SRFET	SRECT	SAPE/	SRFET	\$	Ä	3A																		1A				**	Schottky	
H	H	\dagger		H	+	十	\vdash	3 3	H	H	+	30	+	30	╁	╁	Н	+	+	+	-30	+	30 8	3 6		<u></u>		30	1	+	5 6	+	╁	11	မွ	+	H	+	Н	06	H		+	30	╁┼	+	-	+	දු ද	+	+	30	30	-30	330	30	3	V ba	
20 8.5	Н	2 7	2 6.9	ω.	75	4.5	Н	2 9 8 5	H		+	+	5 0 2 4	25	╁╌	6.9	+		2 2	╁	12 .5.6	-	+	3 6	+-	20	20 15		20 2	+	3 2	╁	t	H	_	+	╁	20	20 7	20 -5	20	20 5	+-	\vdash	₩	+	H	20 7	20	+-	╁┼	12 6	╁┼	20 6	+	+		5	
6.6	1	6 6	+	-	6 4	+	-	7.8	\vdash	₩		+	+	6.9	+	╁	6	+		+-	\vdash	+	4	500		ļ		_	20 16	9 6	3 5	5 13.2	13 10.4	 	¥ 6	6.9 5.8	à	62	2 62	2 4	5	G :	-	5.7 4.9	┯	n 1.	6 5	5 6	1.2 -2.6		6.3	3 6.	8.5 S	++-		5.8	25°C 70°C		
22	2,	3 12	*2	2	3	,	2	2)2	2	2	22	*	2 K	2 12	2	2	2	2	3 1	,	2	7	1.9	T	<u>.</u>		3 1	3.1	7	+	3 3	T	3.1	11	2	o N	2	313	2	2 2	2	2	2	2 2	2	2 12	2	3 N	2,	, 9 , 2	, ,	NN	2 2	2	2 2	2 2	25.0		
1.28	1.28	1 .4	1,44	1.3	1 4 6	1.28	1.28	1 28	1.28	1.28	1 28	2 6	1	1.44	1.28	1.44	4	1.28	1		1.3	1 44	2 1		2	2	2	2	7	Ť	十	1	2	2	4	14	2	1 1	1.44	1 1	1.28	1,28	1.28	1 1	1.28	1,28	1.28	14	1,28	1 28	1.28	1.28	1.28	1 4	1	1.4.4			
18 17	1	1	1 1	- 1	1	1	1	1	1		7	7	Т	20	Г	1		Т	7	Т		-	7	_	1	1		┪	7	+	†	†	1-	1 1	- 1	1 2g	{ I	1] {		1 1	1	1 1		1 1	1 1		1			$_{1}$	3 7	35	1	$\neg \neg$	1	30000		
28 27	25	2 23	ઝ	165	r t	77	8	15.7	26	28		7	~~~	1	1	1	93	_	-1-	1	11	+		+	+-	t	-	~	-+	+	+-	+	+	╅┷╅	-+	-	 	+	┢┥		+	-	+		┼ -┼-	4	₩		++		4		56 42	₩.	44		450		
		50	50								3							23	Ī	1	76	_	7	T-	T			1		1	1			11	120	1	87			1	Ħ	+			\prod	Т		\dagger	\parallel	1	H	260	\parallel		\parallel	_	2.50		
											29							30	Ī	-			Ī									ľ													\prod			T		1	Ħ			\parallel			1.87	1 S	
3	3	14	1.1	دعاد	نا د	u	u,	Jω	3	ω.	٠,	3 4	۵	ω	-2.7	ω	-2.4	-	-2.5	1	-1.3	1	, i	. 2	2.5	2	2.5	2	22	3 .	2.4	2.4	2	u	1 1	3 3	-1,3	ئاد	u	úω	ů	3 4	, ,	ည်မ	ů	υ'n	ω,	J w	ů,	ىن د	, 3	.1 a	24	2,4	2 3	ယ်ယ		vasta)	
971 971	970	846	846	290	104	450	1920	1040	956	1040	3960	1040	1760	2330	1573	680	920	1810	830	700	933	952	8 8	696	903	126	162(215	376	145	280	400	365	104	256	737	800	986	666	580	188	S o	1040	5 22	65	58	40.	1 S	93	241	192	40.04	920 920	92	1 70	58 58		Clas	
110	+	+	H	+	+-	H	+	1	-	+	+	╁	+-	+		Н	122	+	╁	╁	Н	+	+	+	╁	Н	-	+	+	+	╁	┝	١	H	+	+	\vdash	+	H	+	╂┤		+	+	╁┼	╁	\vdash	╅┈	╁┼	+-	1		╂-	╂╌┼╌	+	0 6			
0 9.36 0 9.36					-	4-4	-4-	لسل				l	.l	1	Ł	L1		1.		ŧ	1	- 1	Ť	ŧ				- 1	ı	ŧ	1	í	ŧ	121 9	- 1	j ω σ	7	7 9	7 5.	6 0	7 8	4 17	9	9 5	3	3 3	7 4	2 0	\$ 100	20 2	16 2,	2 9	77 6.	22 -	15	77 6			
6 4.2	1.	. 1	1 1	- 1	1	1 1	- 4	6 4.2	1	- 1	1	3		1 1	۱ ۱	1		- 1	t	ŧ	1	- 1	1	1	1	l ł	1	- 1	- 1	- 1	1	1	1	i 1		3 1		1	1	- 1	1 1	- 1	1 1	1		1 1	i 1	1	1 1	-	T				7-1		14036066	2	
1	+	+	\vdash	+	T		+	11	\dashv	+	+	╈	1	1-1	Н		\forall	\dagger	十	t	\vdash	\dagger	+	╁	+-		_	+	+	+	╁	╁	┝	\vdash	+	1-1	┝┿	+	H	+-	H	+	H	+	3.9	9	د	1	TT		П		4.5	Π	3 8	<u> </u>	1000	Sgd I	
5,2	+	+	-	+	+	+	╅	+-+	-+	+	+	十	+	t	9.5	Н	+	+	+-	╁	Н	+	+	╁	╁	Н	+	+	+	╁	┿	╀	-	Н	+	4.6	Н	╂	\vdash	+	H	8 0	5.2	8 4.7	7.5	7.5	4.2	4.7	00 1	9.8	7.6	5.2	7.7	7.7	83	12.7	1000	To(on)	
17.3	17 3	263	26.3	4	15.6	15.7	28,9	17.3	19	17.3		17.3	ô	51	44.2	20.6	20.2		20	29	42	37	20.5	17	₹7.8	21.2	21.6	25.2	<u>ا</u> ا		3	37	8	17.4	37	20.6	44	20	3 1	20 5.1	35.5	17	17.3	16.2	26	26	15.6	16.2	31.5	, 4 7	28.9	17.3 31.5	20.8 20.2	20.0	28	26.2	3	Talon	

 $^{\circ}$ Qg measured with Vgs = 10V. In all other cases Vgs = 4.5V.

ACOUNT	1	1 1		407801]	AO7800		AC7413	A07411	A07410	AO7408	AO7407	1	AO7404	- 1	AO7402	A07401	- 1	AQ6802	1		ı	: 1	A06701	AO6700	ACEDO		A06604		AC6602		AOS501	004204 004204	A06414	A06408	A06408	AQ6405	AC6404	AO6403	ACEACOA	AQ6401	AC6400	AO5803	A05800	AUGSEDA	A04946	AQ4944		AQ4940	AQ4938		A04936	AO4932	AC4400	Orono	A04928	AQ4926		AO4924	AO4922	AQ4918	Part Number	
Full Production		Full Production	Full Production	Full Production	Full Production	Full Production	Full Production	Full Production	Full Production	Full Production	Full Propuction	Full Production	Full Production		Full Production		Full Production		Full Production	Full Production	Full Production	Full Production	Full Production	Full Production	Full Production	Full Production	Not for new designs	Full Production	Full Production	New	New	New	Zex	New		New	New		Nasw	New	N. S.	F. Carlotte	New	New		New	New	- Zew															
						-																									•									AU64UZA	A06401A																-			and the state of t		Replacement	
155O9-8	ISSOP-8	rssop-8	840883	SC70-6		4	SC70-6	SC70-6	SC70-6	SC70-3	SC70-6	SC70-3	SC70-6	SC70-3	SC70-3	SC70-3	SC70.3	2070.3	TSOP 6	SOP-6	TSOP-6	F-COST	TSOP-6	3-40st	1SOP-6	8-P-8-		P-dOS1		8-40S1	6	TACAL	1007	TSOP-6	1SOP-8	TSOP-6	15OP-6	TSOP-6	TSOP-6	18096	TSOP-8	1SOP-6	SC89-6	SC88-6	0-A	SO S	50-8		SO-9	SO-8		500	80-8	U C	202	8-0S	8-0s		so-a	SO-8	80-8	Package	
Dual	Duat	Single	Code	Dual		Complementary	Single	Signal	Simple	Single	Sign	000	Dual	Gual	Single	Single	Single	Single	Single	Complementary		Complementary		Complementary	and I decembed to the	angine	Single	Single	Single	Single	Single	Single	Single	Single	Single	Single	Duat	Duat	Asymmetric	Duat	Ddat		Asymmetric	Asymmetric		A summatric	Asymmetric	Asymmetric	The same of the sa	Asymmetric	Asymmetric		Asymmetric	Asymmetric	Asymmetric	Configuration							
Load Switch	Load Switch	Load Switch	General Purpos	General Purpose		inverter	General Purpose	General Purpose	General Purpos	General Purpose	General Purpose	General Purpose	General Purbose	General Puronse	General Purpo	General Purpose	Capacial Pupo	Control Pulpo	General Purpo	General Purpo	SMPS	SMPS	SMPS	SAMS	SMPS	Load Switch	1	(Avener		invertes	1	Cach	LORG SWICE	General Purpose	Load Switch	General Purpose	General Purpose	toad Switch	General Purpose	General Purpose	General Purpose	General Pup	Load Switch	Load Switch	SMPS	SMPS	SMPS		SMFS	SMPS	-	Sams	SMPS	OMP6	cinc	Saws	SMPS	 -	SMPS	SMPS	SMPS	æ	
9	τ	- I	7			\dagger	o 00 □ ₹		e P		7	+	1	1	D 2		2	ì		Z	z	z	z	Р.	z t	z	ъ	z	ъ,	z	p	Se Z	1	Se N	TO	2	Se P	T	7 P	ose N	ose P	П	P	7 0:	z	z	z	z	2 2	z	z	z	z	zz	zz	z	zz	z	zz	zz	zz	In Type	
Yes	Υes	z j	3	Yes	8	3	Yes	ž	N ₀	No.	ö	Z C	2 2	Yes	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Z 2	7 8	1	No	Z _o	ž	Š	Z o	2	Z	ફ	इ	ह	8	3	200	ĕ	Tea	ş	Yes.	Yes	8	2 8	3 6	Š	No	No.	Yes	Yes	Z Z	Š	No	No	3 3	Nο	8	- N	No	2 2	. S	No.	No No	Ν̈́ο	Z Z	3	No No	ESD Dlode	
8	Š	Yes	3	8	8	8	S S	χõ	No	Ϋ́	ક	8	3	ð	à	5 8	No	Ro	No	No	Yes	Yes	Ύes	× 1	Y No	No	No	No	200	3 3	200	20	No	No	No	Νo	Ş	2	200	No.	Z.	Ñ	No	8	Y.	Yes	Yes	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	Yes		Yes	Schomy Blode	
		14			4													-			iA	ĵ,	î.	6 5	1.0					-			Ī				-		T					9	9200	ŀ		SRFET	SK-H-		9RFET	SRFET	H	SRFE	SRFE		SAFE	SRFET	SRFET		SRFE	Type	
-12	-20	3 6	-20	20	-20	20 6	20	30	-20	8	20	200	3 2	3 6	3 6	3 2	36	100	30	30	30	30	20	3 8	320	20	-20	20	30	# E	5 6	60	-20	55	-20	20	30	3 8	30	30	-30	30	-20	╁	3 30	30	Н	Н	+	Н	30 8	+	╁┼	7	38		+			30 8	+	* # * *	
В	6	5 4	æ	6	6		รี	12	æ	12	26.	*	٥٥			- 12		è	12	12	ಸ	12	8	3 0		6	æ	œ (3 2	3 -	3 5	20	12	12	œ	12	20	3 2	3 6	20	12	12	9	20	3 8	12	12	+	+	Н	+	╁	H	+	H	+	-	\vdash	+	12 %	+-	(±V)	
7]	À.	J.	-0.6	-		+	+-	1		6	22	3 5	: -	ė.	, ,	1.2	=	3,1	23	3.4	3.3	3,6	38	ه اد	-2.5	1.7	-2.5	3,4	57		3.4	4.2	i u	2,3	ġ.	8.8	35	, ,		6.9	ċs	6.8	-0.6	0 0	8.5	8.5	8.6	9,1	3.6	s,	8 0	e e	9	9.5 B	_S	7.3	9.53	ω	7.3	7.3	8.3	·	
-5,6	37	2 6	0.48			7.6			1.5	3	72		6/3		1	1	13		1.8			2.9			10	1	Ł)	27	31		2./	3.4	2.7	1.9	¥.2	7	12	ů	0.6	5.8	4.2	5.8	6	03	6.8	6.9	6,9	73	, 7	7.2	7 0	7.2	7.2	7.2	7.2	5.8	7 5 9 8	7.2	5,9	5.9	6.7	G 70°C	
H	1	+-	0.3	_	0.3		35	625	525	0.35	25	2/2	150	0.35	0.35	0.35	0.35		1.15	115	1.15	139	5					3 2	1 5	10	1.16	2	1.25	1.56	2	2	2	,	3 2	2	2	2	0	•	2	Ŋ	2	2	3 N	2	2	2	2	2/2	N.	2	3 K)	2	22	2	y 22	25°C	8
0.9	<u>:</u>	╬	1.19	19	0.19	+		H	7	T	2 1	3 5	0.22	0.22	0.22	0.22	0.22	0.73	0.73	0.73	2	2 5	2 5		0,73			0 73	2 2	100	0.73	1.28	0.8	Ξ	1.28	128	1		1.28	1.44	7.44	1.44	0.24	2 -	3	1.3	1.3	<u>ن</u> از		1.3	3 6	1.3	3	1 3	3	3	1 3	1.3	133	1.3	1 28	70 0	
	-	-	_		1	+-	113		-	4	-	18	+-	L	_		Ļ	-	135			-4-	33	١						ᅩ	8	ł	1	1 1	- 1	- 1	S -	1	1	, ,		- 1	ě	ŝ	8	5	÷6	15	13,5	16	5 2	15.8	15 B	13,8	6	24	24	15.8	24 8	24	1.8	T V	1
ä	\$ 8	2	520	235	55 8	125	135	8	2	3 2	3 5	18	225	470	8	128	100	115	185	75	76	75	5 0	8	97	200	1 6	3 5	35	185	76	75	100	160	46	2	87	ď	8	42	84	33	800	103	28	20	20	23 8	19.5	26	3 %	19.6	23	23	19.5	29 6	129	19.5	18.5	29	_	4.57	
22	<u>ي کا</u>	£	700	370	8 8	170	180	8	50	7, 8	į	18	290	625	55	280	145 6		265										L		115		1	200	- 1		24	1		1 1		25	- 1					1					T			48	48			\$		10V 4.5V 2.5V 1.8	
29	70	70	950	415	850			1	200	100	220		425	800	130							9		95	190	400	200	ś						ŀ	75	32	33						1250										T			1	\prod			Ħ		1.84	
-	- -	ŀ	-0.9	0.8	9 6	4	1	3	, 20 -	0 0		1.4	0.8	-0.9	0.8	. 4	٠.	u	-	4	, i	-		-	۵	8	-	ئاد	, .	-1.4	1,4	3	-1,4	2	١.	4	- [د	.24	2.5	3	-1.3	1	-0.9	1/2	2.3	2.4	2.4	2.5	2	2.3	23	2.4	2.3	23	2.4	1.5	21.5	2.4	1.5	1.5	ა ც	(max v)	
3960	1450	954	114	101	1 5	512	512	228	2 2	458	54	408	101	114	458	409	390	200	409	390	3 6	776	409	449	540	101	7 6	260	200	409	390	450	512	214	145		181	╀-	٠.	-	4	4	4	4	Ш	_		ᆚ		1		Ш		Ш				LL	!	900		(M) (M)	
767		I i	1	1 1	- 1	1	li	- 1	- 1	4	§ .	ł				1 (- 1	-		i	1	ГТ	_	7	7-	1	7	7		_		-	 ₹~-	-+-	+-	+		—-į-			+	<u>. </u>	_				_		<u> </u>						f.	1 1	1	1 1		
36.6	-	-	4	-	-	1		4		1	┺	L			6.0	8.0	4.8	w	4 5	49																							~~		1				+		-}- -					-	++		-	65		(F)	
1 1	1	1 1	- 1	1		1		7	7	3	Т	-				_	_			→	┉-													2.6								1	1	T	П	7				7	_			777	1	_	11		-	-	-	β Ω	
10	1	ı	1	- 1	ł	! !		- 1	1	1	1			ı	1	1	- 1		- 1		7	7	T-			_	-	┪~~		_	-	-1	+	— <u></u>	1	10		5	3	2	9	3		3.6	7	4.2	2	3 4	3.6	7 8	1	4.2	4 0	4.7	2	7		4.2	176	3.75	1-1	96	
170	+-	1	7	7	+	H	十	十	+-	+-	-			-+	ᅥ	-	{	-+	-+	+	┿-	┿	╂		+	+	┿	+	H		Н	-4	-4	_	٥	2 0	2.5	7.7	4.5	4.6	6	5.5	39.2	5.2	5	5.5	5.5	5 3	5.2	5	5 5	5.5	5 5	5	5.5	3 8	3.2	5.5	3 5 5	3.2	6.2		
156	94	38.2	18 2	55	3 55	y.	34	74.0		40	74	41.2	15.5	18.2	8	41.2	22	13.2	38.5	3 2	14.5	32.7	38.5	32.7	65	S E	6	5	13,2	28	22	15.8	ψ L	57 5	9	27	49	20.2	15.1	20.6	3	37	261	21.2	19	24	21	15.1	21.2	19	19	24	2/	19	24	215	215	24	27	21.5		Td(off) (as)	10000

		1	ТП	-т	Т	П			Т	Т	1	T-	1 1			7	1	Т	Τ-				-		Ţ	T-		·				_			·····				, ,																								
AOD604	AOD603	A00494	AOD492	A00490	AOD486A	AOD484	AOD480	AOD476	A00473	100464	AOD460	AOD456	AOD454	AOD452	AOD450	A00448	A00446	AOD442	AO0438	A00436	AOD434	AOD422	A0042	A00417	AQD414	A004132	A00413	AOD4120	AOD4112	A004110	ACC4 104	A00410	AQD4100	AOD410	AOD409	AO0408	AOU406	AOD405	AOD404	AOD403	AOD402	AO8436	A08434	A0843	ACB430	AOB428	AO841	AO8416	A08414	AOB40	AGZEROV	A0884	A08830	AO8822	AO8820	A08818	AO8816	A0881	AO880	A0880	AO88	Patt Nu	U Z
Full Production	Full Production	Nex	New	New	New	Full Production	Full Production	Full Production	Full Diodical designs	Full Production	Not las new designs	Full Production	Not for new designs	Full Production	Full Production	Full Production	Full Production	Full Production	Las! Time Buy 6/1/07	Last 7ime Buy 6/1/07	Last Time Buy 6/1/07	Full Production	New York Day 01/07	Full Production	Nor for new designs	Full Production	<u> </u>		Full Production	٠.	Full Production		'n	Ļ	Full Production	Last Time Buy 6/1/07	1	Last Time f	L		Not for new designs	Obsolere	i.	Ш	4	Obsolete	Ļ	Ш	01	Obsolete	1.		L	1	1		Not of new designs	4 Not for new designs	A Full Production	6 Last Time Buy	H Not far new designs	oe Staus	
									AOU484				AO0488										A00#80		AOD472												AOD4132		AOD494		AOD476	2000								+												Part	Replaceme
TO-252-5L	TO-252-5L	10.252	TO-252	70-252	70-252	10-252	70-262	70.202	10.252	70-252	10-252	10-252	TO-252	TQ-252	70-251	70,252	10.252	1'0-252	TO-252	10-252	10-252	20.07	10.707	10-252	70-252	TO-252	10-252	10-252	10-252	70.253	10-252	70-262	TO-262	70-252	70-252	10-252	TO-252	70-252	70-252	70-252	70.252	70-263	TO-263	70-263	10.263	70.263	70-263	10-263	FO-263	70-263	80s	TSSOP-8	TSSOP.	TSSOP.	TSSOP-8	TSSOP	TSSOP	TSSUP TSSUP	TSSOP-8	TSSOP	7SSOP	Pacioge	5 W
TO-252-5L Complementary	Complementary	Single	Single	Single	Single	Single	Single	Sign	Single	Single	Single	Single	Single	Single	Single	Signal Signal	Single	Single	Single	Single	Single	Single	Single	Single	Singre	Single	Single	Single	Single	Since	Single	Single	Single		Single	+	T	H	-	Single	Single	Single	Single	1	Single	\dagger	İ		Single		-	Com	1					-8 Common Orain	_	-8 Common Drain	-8 Common D	ge Configuration	2//
inverter	toverter	SMPS	SMPS Low Side	SMPS	inverter	SMPS	SMPS	SMPS	SMPS	General Purpos	SMPS	SMPS Low Side	General Purbose	SMPS High Side	Ceneral Fulbose	Corner than Contract	General Purpos	General Purpos	SMPS Low Sid		General Purpose	Garaga Burao	General Purpose	faverter	SMPS Low Side	SMPS Low Slde	General Purpose	SAMS	SMPS Low Side	SMES OF SIDE	SMPS Low Side	SMPS	SMPS High Side	General Purpose	General Purpose	SMPS	SMPS Low Side	General Purpo	SMPS High Side	Loed Switch	OMPO	SMPS Low Side	SMPS High S	General Purpose	General Purpose	SMPS High S	SMP6 High S	SMPS Low Side	SMPS Low S	Myerter	Battery Protection				ain Battery Protection		Battery	Battery	Ввпелу	Battery	rain Battery Prote	Application	
No.	2 2	z Võ	z	+	Z :	2 2	Z	2	z	2	z vo	2	z	2 2	12	2 2	z	z	z	z	2 2	2 7	Z	q	z	z	P	z	z :	2 2	z	z	z	z	P P	Z	Z Z)Se P	Z	D 2	2 2	Z	de ∨	2	2 986	Side	Z	2	æ 1	ד ם) N		\Box	ion z	tion N	Z :	dion N	z N	ction N	П		Type	
No.	$\dagger \dagger$	H	-	\dagger		+	\dagger	t	-	o No	+	+	No No	\dagger	No	+	8			+	No.	100	No.	o No		5	No.	+	200		No No	No No	No No		No No	200	No Nd		1	No No	2	No N		No	Z 20	No	No.	\dashv	2 2	+	_			8	1	+	f	ž ž		Yes !	Yes	Diode D	EQD OU
			SRFET			+	+					-		+	-					-	-					-		+	Targe.	1							1					c	٥		•	°	С		0 0	5 6	ď	No	ō	õ	8 3	5 6	No	No	No	¥ o	ð	Dioda Type	and and
8	8 3	ઝ	3 8	â	8	3 8	26	25	25	105	25	25 8	\$ 6	200	8	100	8	8	30	3 3	3 2	ż	30	-30	8	3	4	+	1	13	25	30	25	30	de la	3 8	30	-30	30	30	38	25	25	*	105	30	30	30	36 4	3 8	20	20	26	26	20 5	30	3 8	3 29	22	2	2	3:	
20	28 28	12	20	20	20 20	3 23	165	20	20	25	20	3 6	3 6	30	28	23	20	20	2	20	į a	12	20	20	20	20	20	1 10	3 6	30	30	20	30	20	20	20	12	20	7 2	20	12	20	20	20 5	3 6	20	12	20	3 6	20	+			12	-	+	_	+		9		9:	22//
8	12 82	55	8 8	20	8 5	2 13	33	50	36	ŧ	23/2	5	3 8	3.8	75	10	12	38	85	8 8	10	12.5	10	-25	85	85	12	3 6	3 8	50	75	12	50	œ	-26	1 13	85	-18	e (2, 10	10	Ş,	55	3 6	3 6	=	1 10	3 3	1 . 1 . 1	1.	3	7	50	7	+	1,	. 7		2	60	2	N.	
8	4 5	39	78 40	5	8 5	2	23	9	25	28	25	Sī	3 8	2.7	85	ē	12	27	83	3 6	; ;	+	70	-20	73	3 3	; ;	3 2	3 8	8	75	73	29	61	- - - -	10	75	-18	8 2	7 7	10	55	55	= -	28	65		+		20	6	5.5	4	U)	5 0	2 .	5 6	6	6	6		0 7000	g B
2 2	2 5	63	3 3	20	S S	33	33.3	50	36	8	38	3 8	\$ 8	25	50	20	20	8	8	5 8	8	18.8	8	50	Š	100	8	3 2	23	2	1 8	21	8	25	2 8	5 5	ğ	g	<u> </u>	3 8	20	50	8	4 6	S S	100	ij	<u> </u>	į g	83	2	-	=				-	1	3	_	122	C 25°C	
1 a	31	31	3 3	5	25	17	18.1	25	15	50	7 6	2 0	25	12.5	33	õ	õ	8	5 2	3 8	20	8,4	30	25	8	8 1	3 2	5 5	31	38	50	5	25	12	3 8	23	50	8	- 8 8	5 8	5	25	22	3 4	2 8	8	5(97 5	r 2	1		0.8	0.0	0	0 0		. 0	ľ		5	~ <u>[%</u>		P ₀ (W)
33	9.5 60	1 2	6.8	26	9 0	23	21	6	7	28		, 33	8.5	78	6	140	88	8		1 5																																			21 18				H	1.08	90	18.95	
1	85 16	\Box	7		_	1	1	_	_		× =	+	┪~	†	-		H	25	+		 										1	2	- [105	1	T			7	T"	1	.1	7		╅~	1		+	┪~	+	1-1	} ~+				+-	-}	1-1	1	-	3	10V 4.5V 2.5V 1.BV	No.
\dagger		1	1				79	1	\dagger	+	\dagger	\dagger	-				7	+	+	╈	26	-		+	\dagger	\dagger	ο'	†	15		+	+	+	1		•	7	+	+	 	 	+	7		╁	°	2	5, 0	0 12	+	H	1-			220		+	┿┿		25	-	8	mQ m
+		1			†			-	\dagger	\dagger	\dagger	\dagger					1	\dagger	\dagger	+	34	-	+	+	+	+	Ť	+	\vdash	\vdash	\dashv	+	+	+	+	-	+	+	+	+	52	+	+	+	-		1	+	+	1	Н	H	+		3 27	+-	++	1-1	├	5 0	ô	\$	on an V
3 3	2	2 2	, 2		1/2	2	+	2	,	+	+	\vdash			-	-	-	t	+	F		_	1	+	+	+	$\frac{1}{1}$	-	-	-	+	+	+	+	+		\dashv	+	1			1	+	\downarrow			-	+	1	L	52	ŝ	55	5 8	5	1	12	33	28	40	1	ğ	•
4	3	+	Н	+	2.5	Н	-	+	+	1	1	┞-		6	2.5	Ç.	3	ا د	, ,			4	ω,	4	7	، د	L	2.5	2	۵	1	w],	┸	<u>ن</u> د	1		1		1		<u>.</u> .	ω c		۵ د	4	26	2	2 .5	۵	۵	-	-	-	- -	. -	1.4	-	-1	-	- -	-	(massy)	
987	1000 150	1210	4000	ê ê	838	521	98	2050	3 3	3030	850	404	1230	215	2342	293	450	100	1520	1810	1160	512	710	95	3/00	750	900	1620	2154	1561	218	36.0	1 100	791/	1040	987	9130	920	4360	769	857	1850	3 4	450	2038	1320	2100	9130	657	297	630	102	290	106	630	e e	136	181	73	2 0		3 :	
46	340 27	85 314	217	37	88	8	105	280	57 8		225	37	ī	7.2	320	20	22	390	214	200	146	82	72	9 9	3 2	03	ē	į	18:	32:	4	3 5	3 5	2 5	=	*	38	3 8	76	13	7	27		2	GB.	7	=	2 2				-1	1	1	1	-	0	0 2	• ·	-	2		
7.4	3.8	29	27	4 G	8.4	5.7	7.2	1	7 4	17.4	15.7	4.5	13.5	*3.B.	26	5.	38	33	18	177,5	1.6	4.8	7	3 8	35	-	7.2	12	, =	1 22		1		3 22	9	1	7 72	0 0	2	1	8	5 6	4 5	7 3	5 2	ă l	5	3/	3	§3 21	17 8	77	5	10	37 9.3	20	8	8	\$6	3 2		ቜ <u>የ</u>	600
																											2	ŗ,	8 7	5	1	30	1	1	3	4	4	7	3,2 2	ş. θ 4.	7 3	8	10	60	5	3	6	2.4	1	Ĭ.	8	1	7	+	٦	12	54	7.9	5 0	, a		8.5	
1 3	4.8	1	1 1		1 1	1		- 1		1	1 1	1		ł	- 1		ŧ	ŀ	ł	ŧΙ	- 1	J.	- 1	1	1	ļ	1	i		- 1		1	1	1	1		т		1	1	7		┿	+		-		+	+	ļļ	-+			-+-	-	4	1-4			* 0	188	38	8
+	4.0	+-		+	H	+	+	+	+	╀	7.6	\dashv	+	+	+	+	-	+	┝	[]	F	7	7	7	_	т	T			2	3 0	3 3	1	12	4.5	မ	ž 4	9.9	18	6.2	3.5	7.5	-	4.2	12.7	1.7	5 0	h do	a	13.7	5.5	880	780	B 7	5.7	7	6.2	2.5	6.2	n cu		Tolon)	
3 25	ē 85	3 3	37	33		16.1	187	3/2	3	38	36	13.2	22.7	10.5	3	1 7		6	24.2	49	51.7	17	56	20.0	40	24	18.7	21.6	25.2	17	7 2	3	10.0	38	17.4	25	50.5	36,2	51	16	25	25 1	12	16	315	22.2	2 2	106.5	24	37	29	7	37.50	3 8	31.5	29	40.5	19	517	144	150	i de	200

į	3
	ALPHA &
	PILA & OMEG.
	A

ACT 14	AOI424	AOI 404	AOT402	AOT400	AOP806	AOP804	AOP802	AOP800	000	4539611	200	400810	AOP609		AOP608	180	AOP607	AOP606		AOP605	AOP604	AON5810	AON5808	AON5802	AON5800	AON4701		AON4605		ACRAMOA.	AON4602	AON4413	AON3816	AON3814	AON3810	AON3806	AON3702	AON3601	AON3408	AON3402	AOL1708	AOL 1702	AOL 1700	AOL1454	AOL 1446	AOL 1440	AOL 1436	AOL1428	AQL1426	AOL 1424	AOL 1418	AOL1414	AOL 1412	AOL1408	AOL 1401	ADD608	AODSUI	ADD807	AQD606		Part Number
Full Production	Full Production	Full Production	Chsolete	Obsolete	Full Production	Full Production	Full Ploduction	Full Production		New	on Trace	C. M Douglasselian	New		New	Can Tourist	Full Production	Full Production		Full Production	Not for new designs	Full Production	Full Production	(Full Production	Not lor new designs	Not for new oesigns		New		New	Not for new designs		Zex	- 1		1	New	Full Production	Zex		New	ــــــــــــــــــــــــــــــــــــــ	11	New	Not for new designs	New	Li.	Zew	11		Not for new designs	ł	New		New	Full Production	Z ex	Naw	New		Status
										***************************************							*														ACN4604														AOL1418	2000	AOL 1428				AOL 1700			AOL 1700							Replacement Part
10-220	10-220	10-220	TO-220	10-220	8-4IQ4	9-4104	8-diQd	POIP-8		POPLA	5	9710	8-dtQd		8-dIQd	į.	8-d10d	B-4104		PDIP-8	8-4104				OFN 2x5	OFN ZX3	***************************************	DFN 2x3		CEN 2x3	OFN 2x3							OTN axa	OFN 3x3	DEN 3x3	Oltra SO8	ORTH SOR	BOS evit	Utra SO8	Onra SO8	Ultra SOB	Utra SO8	Ultra SOB	Uttra SO8	Ukra SO8	Oltra SOB	Uttra SOB	Unra SO8	Unra SO8	OB EARL	TO-252-4L	C-Luc-	10-252-41	TO-252-4L		Package
Single	Single	Single	Single	Single	Dual	Dual	Duat	Dual	Constitution of the Consti	Vicinal median	Companient	Complementation	Complementary		Complementary	Constitution of the Consti	Comolementary	Complementary		Complementary	Complementary	Common Drain	Common Drain	Common Drain	Common Drain	Single	***************************************	Сотрівлива		Complementary	Complementary	Single	Common Drain	Common Drain	Common Drain	Common Drain	Single	Compensariary		П	П	T	Single				П	T			1	Single	Single	Single	Single	Complementary		Consplementary	Complementary		Configuration
General Purpose	SMPS Low Side	General Purposi	General Purpose	SMPS Low Side	General Purposi	General Purpos	General Purpos	General Purpos		inventor		in and a	inverter		inverter		Inverte	inverter	Г	Invester	inverter	Battery Protection	Bettery Protection	Battery Profestion	Battery Protection	Load Switch		inverter		inverter	inverter	Load Switch	Battery Projection	Battery Protection	Battery Projecti	diam.	SMPS Low Side	A SAGRES		General Purpose	SMPS Low Side	SMPS Low Side	SMPS Lnw Side	Inverter	SMPS High Side	SMPS Low Sid	SMPS Low Side	SMPS High Side	SMPS High Sid	SMPS	SMPS Low Side	SMPS High Sig	SMPS Low Sid	SMPS Low Side	Battery Protect	y inverter		Inverter	y inverter		Application
	z		z	z]			7	z .	B 2	7	z	ס	z	7	z ,	e z	g	z	z	z	2	1	- 1	1	-	z	P	2	z	P	ži Z	2 :	ž 2			0 2	Z		П	φ φ Z Z			2 :	1	z	zz	Z.	z	2 2	2 2	Z	z	5 7	οz	70 ;	20	z	70	Type
8 8	₹ 6	Z o	S.	N _o	8	N _o	š	N O	Yes		Yac es	Yes.	Yas	No	8	8	Z	2	No.	2 2	8	Yes	Yes	¥9¥	Yes	3	इ	No	중	3 3	ž	₹6	Yes	Yes	Yes	Yes	8	8	Š	Ye5	ž	2 8	Z	Yes	8	3	No	N N	No	Yes	Z 2	2 2	N	No	ž ž	Yes	ह ह	ह ह	S.	8	Dog S
8	No	Š	No	No.	No	N _O	No	No	₹	2	5 8	No	ž	No	Νa	No 8	20 6	Š	No.	S S	Yes	공	No	8	No s	Yes	ş	No	Z _o	N N	ş	Nο	ž	8	N N	No	Yes	8	80	₹	Ύes	Yes	Yes	No	ક	इ	No	e s	No	₹	Z d	No.	Yes	8	8	동	₹ 8	2 8	S.	No.	Schortky
											, 63									***************************************	1A				5	3				-							SRFET				SRFET	SAFET	SAFET										SRFET								Scholby
75	38	105	105	75	75	60	60	30	4	3 8	3 2	g	6	-40	40	ģ	8 8	8	-30	30	30	20	20	30	20	-20	4	30	20	20 6	3 23	-30	20	2015	3 6	20	-+	30 20	30		30	+	+-	Н	8 8	3 13	25	26	30	.30	38 8	30		30	-38	40	-30	30 40	40	40	- € 3 €
30 20	20	25	25	20	25	20	70	20	2013	3 8	3 6	20	20	20	20	20	20	20	20	20 20	20	12	12	2	120		20	20	6		6	20	12	12	5 K	15	13	20 0	122	12	20	75 75	20	20	20 6	3 38	3	20	12	20	20	3 12	12	20	26	20	20	20	20	- 8	3 f
80	+	40	110	110	3.4	4.7	7.9	eg.	ن د د	n d	a :	30	-	-5.5	6.3	3 -	ó	7.9	ъ 6	7.5	7.5	7.7	7.2	7.2	. ć	٤	ن 4	4.3	3 8	5 6	4.2	4.7	A	6.): -	6.8	=	j, o	0.00	12	21	£ 1	28	17	21	25	20	21	5	24	28	2 2	27	27	.100	; 6	-12	72 6	, 6	-8	200
57	e e	28	85	110	2.7	3.8	-	7.3			+	+	3.8	-	-	-+		+-	5.3	-+-	4	6.1	5.8	56	6.3	2	2.7	3.4	ယ်		3.2	3.7	4	5 0	<u></u>	5.4	8.8	12.0	72	9.6	6	; :	21	13	16	2 20	5	17	Ü	75	23		21	22	, i	\$ 10		á	, .	-6	C 70°C
115	100	100	300	38	2.5	3.1	3.1	2.5	2.5	2 5	3 6	20	2.5	2.5	2.6	25	2 5	3.1	2.5	25	2.5	6	1.7	7	<u>.</u>		1.9	1.9	1.0	•	, , , , ,	-1 E8	2.4	24	3 2	1.9	u	2 /	۵	ţ,	თ	ر ش	5	6	ر.	, c	5	a v	*	Ų:	טייני	, 0	. 6	υ.	5 5	2	2.1	2.1	4.2	2.5	В 0
5 <u>8</u> 2	8	క	150	150	1,6	2	2	1.6	6		đ	1 6	9.1	1.6	1.6	36	, \	1/2	1.6	5 5	16	-		-	<u>-</u>		1.2	1.2	12	3 =	0,8		1.5	5	1 5	1.2	1.9	ì	1.6	1.9	3.2	28	3.2	3.2	ω (در اد	3	ى 4	2.6	G G	ω	س اد	ω	3	3 6	13	ដី	132	27		
≟ o	4	28	8.6	4.7	132	56	25	20	ន	2 2	3 4	15	8	45	33	g a			35 2				28	- 1	ž	Ī	ij	11	1	1	T	46		- 1	3 12	1		- [Τ	1			4.2	П		7	11.5		1	T		7		1	7	3	37		+	220	
=	5.5			-	168	7.7	30	28	8 4	8	42	140	75	63	46	13:	7 K	30	58	E	±3	18	23	2 5	3 8	8 8	Ͱ	╁┤	90	3 8	2 2	60	22	17 5	3, 29	-	-		┼~	-	-		6	-	_		1-1	14 6	†	1	_	+	1		7		62 4	\top	11		2 S
T							1	+	\dagger	t	T	t				+	\dagger		H	\dagger	┿		+	-†-	27 20	┿	 	H	+	+	25	-	28	+	+-	┿~	+	+	+-	26	+	+			+	+	H	+	5		01 6]°″	H	+	H		+			2.50
+	$\dagger \dagger$						1	1	\dagger	\dagger	t	-		-	1	Ť	+	\vdash	+	\dagger	-	Н	50	+	45	†	†	H	+	+	╈	1	H	39	+	H	+	+	F		\dashv	+	+		+	+	H	+	-	H	+	+	\perp	H	-	\mathbb{H}	H	+	H		250 190
4 2		_				-		1	1	 	+	l		-	_	-				-	\vdash	Û			15	Ö	ļ_		6	٦	68		\vdash	+	8			+	L		-	1			+			+			+	-		H	+	\perp	-	+	H		
4 5	, G	_	4	-	3	3	۵	4	1	, ,	1	13	3	-	3	٠ ا	2.4	3	24	4		_		,	- -		3	ω	1	- -	_	2.5	-	i	-		Ē,	ند. ساست	5		2	24	22	ω	ω -	1	٨	ω 23	2.5	2.5	ω .	12	2.4	ü	3, 4	, 3	24	نار	ω,	ن.	max vj
3790	3700	2038	7700	8390	290	450	1920	940	200	1040	043	897	474	657	404	930	2417	1920	920	920 680	680	1360	615	11 15	1300	540	290	238	540	340	436	688	1315	1315	280	615	1450	700	900	1810	2154	2800	3760	1600	1325	2100	118	1430	1210	2520	3700	2100	6430	6060	3800	500	920	17,40	404		9 <u>0</u>
222	П				7	7		Т	Т	Т	Т	Т	П		7	7	1		_	1	T		-+		+	†-	1	H	-	+	+-	+-	\vdash		+-	┪	-		+	1-1	-	+-	+-			+	╁	+	-	-		+	+	-+	-	+		-	1-4	-8	9:
6 5 26																																																											╁	(48)	38
23.5	1 1	- 1		- 1	- 1	- 1	- 1	- 1		ł		1	1 1		ŧ	1	1	! !		ı	1 1	. !	- 1	ł	ı	ł		1 1	- 1	ŀ	1	1 1	1	1			. 1	1	1	11	1.		T	1	-1	\neg	1		T				_	\neg		7	1-1-		5	100	
-+-	╁	-	\dashv	+	+	+	+	+	+	t	╁	H	\vdash	\dashv	Т	Т	Т	П	Т	Т			1	T	1	T	Г	io.	9	·	101	Ĺ	6 0	on ic	7 60	Lu Lu	2	» K	75		6	7 =	12	6	8 6	4	٦	75	~	3.2	7.6	100	123	5.6	5 0	- 26	5 G	715	2.6	- 33	30
3 0	12.5	12.7	30.5	29	4	5.1	7.4	5	0 4	100	4.7	9	5.4	77	43	P	6.5	7.4	7.7	7.7	4.6	6.2	7	3 6	3 6	10	7	3.3	11.5	15	5.5	7.7	1000	1000	280	7	5 5	2 6	32	2.5	8.8	1	9.5	6.5	7.2	122	9.5	6 6	ő	7	12	5 9	17.5	15.7	13.5	4.8	9 3	4 8	3.5	8	Td(on)
30.7	40	31.5	66	80	144	15.9	28.2	15	; =	22 7	16.2	35	17.2	26.5	15	3 5	4	78.7	20.2	202	20.6	40,5	29	373	44	44	15	13.2	37.5	1 2	8	20	5600	2600	2350	29	24	20.6	21.5	4	25.2	3 6	34	33	23	15	11.5	22.7	21	33	4	3 6	56	55.5	97	17	20	17.4	13		(#a)

31	
SEMICO	
EMICONDUCTOR	
21	
- 57	
-21.	
~1	
\Rightarrow	
91	
72	
1	

	AQ4600	AO4490	A04480	AO4476	204474	ACATAGE CO.	A04459	A04456	AO4450	AO4449	A04447	A04446	AO4443	AO4442	A04441	A04440	A04438	AO4437	AO4433	AO4430	AO4429	AO4427	AO4425	A04473	1001	AU4420A	AC4420	A CHAIR	AC443b	A04415	A04414	A04413	AO4412	A04411	A04410	A04408	AO4407		"	AO44048	AO4404	A03703	VO3201	AO3700	A03434	A03424	A03423	A03422	A03420		ii	A03416	1	- }	A03409	A03407A	A03407	AO3406	A03464A	A03403	A03402	1	AO3401	A03400A	AO3400	Pan Number
	Not tot new designs	New	Full Production	New	New	New	New	Zex	Full Production	New	New	Not for new designs	Full Production	New	Full Production	Not for new designs	Full Production	Full Production	Full Production	TOTAL PROPERTY SECTION	New	NOT TOT NEW GENERAL	FOI PIOGCOGOS	Not for new designs	Full Production	Last Time Buy 6/0/70/	Full Production	Obsolete	Not 141 new designs	Not for new designs	Not for new designs	Full Production	Not for new designs	Not for new designs	New	Not for new designs	New	New	New	New	New	New	Full Production	New		Full Production	New Year Georgia	Full Production	Full Production	New	Not for new designs	New	Not for new designs	Status												
	AO4622											A04476									AO4447				A04468		7047600	2004004	MOTION	0	ACHABO		A044048	AO4448	AO4706	704474	201.74		AO4459		AO44048																A03407A	-	1000	ADSAGAA			A03401A		A00460A	¥
	SO.	8-8	8-08	80-8	SO-8	8-0s	S 0	20-8	SO-B	50-8	SO-8	SO-8	80-8	80-8	80-8	SO-8	SO-8	80-8	80-8	SO-8	80-8	80-8	8-08	SO-B	808	SO-B	SO.B	50.	50	200	000	80-8	80-8	8-0s	SO-B	SO-8	် ငို	SO-8	SO-8	SO-B	8-08	SO-4-20-6	SOT-23-5	SOT-23-5	SOT-23	SOT-23	SOT-23	SOT-23	SOT-23	SOI-23	SOT-23	SOT-23	SOT-23	SOT-23	SOT-23	SOT -23	SOT-23	SOT-23	501-23	SOT-23	SOT-23	SOT-23	SOT-23	801-23	SOT-23	a Plany seed
	Complementary	single	singte	Single	Single	Single	Single	Single	Single	Single	Single	Single	Single	Single	Single	Single	Single	Single	Single	Single	Single	Single	Single	Singte	Single	Single	Single	Shale	Single	Shore	Single	onge	Single	Single	Singte	Shighe	Sinds	Single	Single	Single	Single	Single	Single	Single	Single	Single	Single	Single	Single	Single	Single	Single	Single	Single	Single	Single	Single	Single	Single	Shoke	Single	Single	Single	Single	Single	Contract of the contract of th
	inverter	Load Switch	Display	SMPS	SMPS High Side	SMPS	SMPS High Side	SALL ON SOR	Display	Load Switch	Load Switch	SMPS High Side	6	Display	Uspiay	Оврау	Uispiay	LOBO SWICE	Load Switch	General Purpose	Load Switch	Load Switch	Load Switch	Load Switch	General Purpose	General Purpose	General Pulpose	General Purpose	General Purpose	General Purcosa	oad Switch	Load Date	SMPS High Side	General Purpose	SMPS Low Side	Loed Switch	SMPS High Side	SMPS High Side	General Purpose	General Purpose	General Purpose	General Purposa	General Purpose	General Purposi	Battery Protection	General Purpose	SMPS	Load Switch	General Purpose	General Purpose	General Purpose	General Phirpose	General Purpose	General Purpase	General Purpose	General Purpose	General Purpose	General Purpose	General Purpose	General Purpose	General Purpose	Application				
2 0	2	z	z	z	z	z	z ·	0 2	z	70	P	z	7	z		2		Ţ		z	P	P	ъ	70	z	0	z	z	P	z	0	2 7	z	0	z	P	7	0 2	70	z	z	ρ.	0 7	z	z	z	7 0	z	ρ	z	0 2	z	ρ	Z	ъ	Ö		z	z	z	0 2	zz	20	z		
S S	No	Yes	Yes	No	8	₹	₹ ;	3	3	No	Yes	Z	No	No	ď	No	Z	3	1	Š	Yes	Yes	Yes	Yes	Ş	No	중	Š	공	2	No.	200	No	No.	č	Š	z i	8 8	Š	Z,	ફ	8	8	Ĭ.	Yes	Z S	3 8	No	Ν̈́	No S	Š	Yes	Уes	Ş	%	8	3	No	ν _ο	Z O	8	3 8	8	इ	No	000
ž N	3	No	8	Νo	₹	No.	₹ .	2	No	No.	3	No	Z	No	1 10	N	SAG SAG	5	2 2	Š	No	No.	₹	No.	공	8	Š	8	No.	No	Z	No.	No	No.	Z _o	No	8	2 2	3	No	3	Š	SES	No.	Ş	3	200	ž	20	Z Z	2 2	₹	No	No.	No	₹	3 3	8	Š	No.	20	200	200	No.	20	Diode
Ī	Ī						1	0000	2000	Ī								***************************************		Ī																		Ī					0.54								1							-								1 ype
3 5	3 6	30	10	30	30	30	36	3 8	3 2	30	30	3 20	ŧ	7	į	8 8	60	3 .	3 2	3 8	-30	-30	-38	30	30	8	34	30	-30	30	30	30 3	3 2	1 8	30	-30	3	3	3 30	6	30	30	20 0	3 8	30	20	3 6	25	-30	3 8	3 8	20	.20	20	-20	3	300	30	30	30	30	30 5	30	30	 3	ŝ
3 K	3 2	20	20	20	12	23	20	31	3 2	2	5	3 2	3 2	3 6		3 6	3 6	3 ,	» [2	26	23	25	26	25	20	23	12	な	20	25	25	20	X K	20	12	20	12	25	\$ &	12	12	12	8	3 3	20	8	3 1	12	20	12	3 4	3 00	8	8	8	20	3 8	3 2	20	23	2	3 5	3 ស	12	12	(eV)
	6.9	16	14	15	13.4	11.6	9.4	5,	3 0		-15	į	40	١	, ,		,	3		1 6	5	-12.5	-14	-15	<u>-</u>	ъ. 2	13.7	13.7	-9.7	11.5	à	œ U	250		18	눥	12	1	, 6	8.5	8.5	ь 1	2.7	2 0	3.5	2	2	2.1	-2.6	5	35	3 90	F	1.2	÷3	-2.6	L G	3.0	5.8	5.8	-2.6	إ	i i	5.7	5.8	25°C 70°C
. L	ò	13	=	12	10.7	9.2	77	3	£ .	i	0.0	3 5	5 0		3 2		- C	٦	6	ű	-12.8	-10.5		-12.1	9.3	ò	9.7	9.7	-8.1	9.7	ò.6	7	12 B	6	5	-12.8	ō	-10	o ů		7.1	5.1	2.1	2 0	2,6	2	2	3/2	-2.2	01	28	2 0	3.6	3.2	-2.4	-2.2	3 (,	4.9	4.9	2.2	3 4	3 3 5	4.7	4	1000
۰,	ماد	2.8	3.1	3.7	3.7	<u>13</u>	2	2 !	4 6	-		٥	-	3 6	2	3 0	, ,	2,	4	3 6	3.4	u u	3.1	3.1	3	ပ ++	3.1	3.1	ü	w	ω	w	ب اد	3 L	3	3	ü	ωļ	, C	2 8	ω	ω	1	1 0		1.4	- -	- 2	1,4	4		4 4	<u>.</u>	4	1.4	4	4		4	1.4	4		4		-	25°C
‡		8	~	2,4	2.4	2	21	۰	,	; .		٠	`	,	,	<u>ء</u> ا	; ^	<u>, </u>	ه ا	2 -	2	2.1	12	2	21	2	2	2	2.1	2.1	21	21	2		2.1	2.1	2.1	2 !) <u>,</u>	2 0	2.1	2,1	0.72	2 5	0,61	0,9	0	9 0	-	0.9	0 0	2 6	9.9	0,9	0.9		0.9	1 4	9	-1	-	- 6	9	0,8	-	2040
3 4	2	-2	1.5	10.5	11.5	14	3	6	5 0	3		7 0	*	٤	3 8	3 8		3	Č	i o	, .	Ē	=	8.5	15	40	10.5	105	20	17	35	26	5	36	55	7.5	14	-	£ 8	5 2	22	â	ŀ	8 8	52	57	8	3	130	24	75	2				130	8	3 8	26	28	30	<u>د</u>]:	£ 8	26.5	28	E0002
3 3	2 2	6	15,5	17	13.5	22	8	3	,	3		3.0	3	200	5	3	7,	37	14	0,0	12				24	50	12	12	35	40		ô	,	2 0	8.2	12	18.5		5 5	ž 8	36	61	97	8 2	75	70	95	000	200	27	85	70	3 &	2	87	200	78	5 5	42	3	8	7	ដូ ខ	8 2	ដ	152
10	ġ e																		30																				25	48	48	117	30	45	160	83	157	5 2		42	75	27.50	2	63	130			***************************************			260	5	8 8	3	52	2.5V 1.8V
T																		Š	3				-												-								190							55		34	73	2	190										-	1.87
- <u>'</u>		2.5	ω	2.5	2.5	ú	ü	3	3	١	, ,		٠	3 6	ي اد	2	3,	٠,		2 .0	2.7	4	-3.5	-3.5	ú	ပ်	2	2	-2.7	w	-3.5	3	-3.5	,	1.5	-27	2.5	3		200	1.			-	1.0	-	1.8		3	_	11	-	٠ -		-	ù	-2.5	٠,٠	3 63	u	14	1.4	1.3	100		
390	050	1803	1600	1000	1210	955	<u>.</u>	868	6430	80	0000	2000	150	25.7	300	23.0	450	1050	100	1760	5350	2330	3800	4632	1040	2417	3656	3656	1573	758	893	680	4360	500	9130	5270	1020	2076	1630	700	857	940	540	512	269	436	226		302	630	512	226	1450	430	540	302	668	8 8	621	680	409	390	933	85.4	823	
+	77 00	+	╁	-			+	+	+	╅	+	╁	+	+	+	+	+	+	+	+	┿	╁	+	╁	-			-	-			-	+	+	╁	┢	Н	+	+	╅	╁	Н	+	62	+	Н	+	+	37.6	-	-+	+	+-	+-	╂~	-	-	+	+	╁╌		-+		777	+	1 5
0 9	4	+	┼-	╄	-		-	+	~ॄ~	┿	+	+	;																									2 *37.2			┿~	-	-	5.5		-	-+		8 2.4	1-1	-+		+	╁	6)	-	-	+	+-	┿	Н	-+	9.3		+	3, 3
۸,	+	+	5 4 8		Г		1	7	1	1	1	+	+	1	1	- 1	1	ł	-		1]			i	1				i	i		i			1	Т	T	П	П	1	T		_	+	0.95	11	7	_	+	+	+	<u> </u>	-	-†	\dagger	1	1.1		T	١,	١.	
+	+	╁	\vdash	├	-		7	+	+	\dagger	$^{+}$	\dagger	+	\dagger	+	+	+	+	+	+	+	╁	╁	\vdash	\vdash	-	\vdash	-	┢	-	-	-	+	+	╁	╁	Н	+	+	+	t		-	+	+		+	t	t	H		+	\dagger	\dagger	╁	-		+	╁	+	32		\dagger	3 0	+	- 100
3 6	3 3	7.6	3.5	Ç)	10	Մ	4.5	7.7		1	, ,	3 .	3	7,7	45	37	2	3	5		3 5	12.8	22.4	18.5	4.5	9.8	5.5	5.5	9,5	5.4	10.5	4.5	17.5	3 7	1	4	3,8	12.4	4	B 0.0	1 (3) (3)	7.6	ó	2 5	26	5.5	2,6	7	7.5	5.5	r.	2.6	5 0	2 0	10	7.5	7.7	8.6	h (4	4.6	5.3	3.3	5.2	6.3	3 5	
21 7	3, 0	27	132	20	21	19	15.1	20	s -	i	3 2	is i	3	200	1	31.5	169	29.7	158	<u>ر</u> د	272	48.0	97.5	55	17.4	44	48.8	49.8	44.2	14.4	15 1	20.1	49	149	98	76.5	19.2	25.6	32	28.2	26	44.7	44	28	12.2	40	14.5	28	£ 17	29	28	4.5	51 7	2 2	4	17	20	28.2	37.0	20.9	31.5	21.7	42	38.2	2 20	

* Qg measured with Vgs = 10V. In all other cases Vgs = 4.5V.

AQU472	AOU460	A0U456	A0U454	A0U452	AQU438	AOU436	A01/417	A0U414	AOU413	A0U412	A01408	A00406	A0U404	AOU403	A0U402	A0U401	A00400	AO7430		Part Number
Obsolete	Obsolete	Obsotate	Obsolete	Obsolete	Obsolete	Obsolele	Obsolete	Obsolete	Obsolete	Obsoleje	Obsolete	Obsolete	Obsolete	Obsolete	Obsoleje	Obsolete	Obsolete	Full Production		® Statu≉
AO1472				AO1452															Fart	Replacement
TO-251	TO-251	TO-251	TO-251	10-251	TO-251	TO-251	TO-251	10-251	10-261	TO-251	TO-220	TO-25t	10-251	TO-251	10-251	10-251	10-251	TO-220		Package
Single	Single	Single	Single	Single	Single	Single	Single	Shqle	Single	Single	Single	Single	Single	Single	Single	Single	Single	Single	-	Configuration
SMPS Low Side	SMPS	Genetal Purpose	General Purpose	General Purpose	SMPS Low Side	SMPS High Side	inverte/	SMPS Low Side	General Purpose	SMPS High Side	General Purpose	Application								
z	z	2	2	z	z	z	P	z	ם	2	z	Ъ	z	ם	z	ъ	z	z		Type
8	₹	ह	No	No	Se.	8	Z	8	ŏ	Š	3	20	No	₹	No.	Š	Z o	٧	9	S
8	ν̈́o	No	No	20	No.	ž	Νo	No	8	No.	z	Zo	Š	No.	Νo	Mo	No.	No	Diode	Χ.
25 20	25 20	25 20	40 20	25 20	30 20	30 20	-30 20	30 20	-40 20	30 20	105 25	-30 20	75 25	-60 20	60 20	-60 20	60 20	76 25	Type (v) t	Schottky Vot Vax
50	25	56	12	55	95	57	-18	85	-12	85	40	-18	10	-12	12	-26	38	5 80	25°C	Τ
8	25	80	12	40	83	40	180	73	-12	65	28	18	10	2 -10	8.5	5 .18	27	78	0.700	Š
ö	36	ŝ	20	50	100	ş	8	100	50	3	100	60	20	50	20	60	60	208	25.0	2
25	ភ	25	30	26	50	25	25	50	25	50	50	30	10	25	10	30	30	-	70°C	8
6.7	1,4	7	33	æ	4,5	8.5	22	5.7	5	7.5	28	34	140	115	60	å	20	11.5	10V	+
6	24	10	43	15	6.5	14	40	7.5	69	=======================================		60	165	150	85	55	25		457	Sign feet
					_					-			_					_	257	483
2.5	2.5	u	s.	IJ	3	ω	-2.7	2.4	÷.	2.5	4	-24	3	ů	3	-2.4	3	4	(A xett)	Vasin
2050	830	1850	404	1230	3700	1520	1573	6060	657	1320	2038	920	293	987	385	2977	1920	4700	(pf.)	
280	127	275	37	180	390	214	211	355	63	154	85	122	20	4 6	20	153	118	180	3	Cres
17	7.4	38	A 5	13.5	33	16.2	15	46.4	7	13.3	*36.5	8.7	*5.2	7.4	3.8	22.2	24.2	.11.		og Og
3.5	43	8.2	2.6	7.75	17.6	9.6	7	15.6	4 1	6.6	10	5.4	1.34	3.5	1.9	П	_	18		Ogd
7.5	8	7.5	3.5	6.5	12	7	11.7	15.7	G:	7.2	12.7	8	4.6	9	4.2	12	4 7.4	21) (ma)	-
_	-	Щ	13.2	22.7		24.2	-	7 55.5	_	Н	7 31.5	-	_		Ц		_	4	(98)	

INFRINGEMENT OF U.S. PATENT NO. 6,429,481

AOS AO4812 POWER MOSFET

CLAIM	AO4812 POWER MOSFET		
1. A trenched field effect transistor comprising:	The AOS AO4812 Power MOSFET ("the accused device") is a trenched field effect transistor. (Fig. AO4812-1 (datasheet); Fig. AO4812-2 (package marking).)		
a semiconductor substrate having dopants of a first conductivity type;	The accused device is an N-channel MOSFET, which is therefore formed on a substrate of doped N-type silicon. In the language of the claim, the N-type dopants in the substrate are a "first conductivity type." (Fig. AO4812-1 (datasheet); Fig. AO4812-3 (Scanning Electron Microscopy image), item A; Fig. AO4812-4 (Scanning Capacitance Microscopy image), item A.)		
a trench extending a predetermined depth into said semiconductor substrate;	The accused device has a trench extending to a predetermined depth into the substrate. (Fig. AO4812-3 (Scanning Electron Microscopy image), item B; Fig. AO4812-4 (Scanning Capacitance Microscopy image), item B.)		
a pair of doped source junctions having dopants of the first conductivity type, and positioned on opposite sides of the trench;	The accused device has a pair of source junctions (regions) positioned on opposite sides of the trench. (Fig. AO4812-3 (Scanning Electron Microscopy image), item C; Fig. AO4812-4 (Scanning Capacitance Microscopy image), item C.) Because the accused device is an N-channel MOSFET, the source junctions (regions) are formed with N-type dopants, which are dopants of the first conductivity type. (Fig. AO4812-4 (Scanning Capacitance Microscopy image), item C.)		
a doped well having dopants of a second conductivity type opposite to said first conductivity type, and formed into the substrate to a depth that is less than said predetermined depth of the trench; and	The accused device has a lightly doped well formed with P-type dopants (a second conductivity type opposite to the first conductivity type) that is formed in the substrate, and the depth of the doped well is less than the predetermined depth of the trench. (Fig. AO4812-3 (Scanning Electron Microscopy image), item D; Fig. AO4812-4 (Scanning Capacitance Microscopy image), item D.)		
a doped heavy body having dopants of the second conductivity type, and positioned adjacent each source junction on the opposite side of the source junction from the trench, said heavy body extending into said doped well to a depth that is less than said depth of said doped well,	The accused device has a highly doped heavy body formed with a higher concentration of P-type dopants (the second conductivity type) that is positioned adjacent to each source junction on the opposite side of the source junction from the trench. The P-type heavy body extends to a depth that is less than the depth of the well. (Fig. AO4812-3 (Scanning Electron Microscopy image), item E; Fig. AO4812-4 (Scanning Capacitance Microscopy image), item E.)		
wherein the heavy body forms an abrupt junction with the well and the depth of the junction, relative to the depth of the well, is adjusted so that a transistor breakdown initiation point is spaced away from the trench in the semiconductor, when voltage is applied to the transistor.	The junction between the doped P-type heavy body and the well is an abrupt junction. (Fig. AO4812-5 (Secondary Ion Mass Spectroscopy data).) This abrupt junction creates a peak electric field when voltage is applied to the accused device, and the depth of this abrupt junction relative to the depth of the well is such that the peak electric field causes the breakdown initiation point to be spaced away from the trench.		

CLAIM	AO4812 POWER MOSFET
2. The trenched field effect transistor of claim 1 wherein said doped well has a substantially flat bottom.	The accused device has a doped well with a substantially flat bottom. (Fig. AO4812-3 (Scanning Electron Microscopy image), item D; Fig. AO4812-4 (Scanning Capacitance Microscopy image), item D.)
 3. The trenched field effect transistor of claim 1 wherein said trench has rounded top and bottom corners. 4. The trenched field effect transistor of claim 1 wherein the abrupt junction causes the transistor breakdown initiation point to occur in the area of the junction, when voltage is applied to the transistor. 	The trench of the accused device has a rounded top and bottom. (Fig. AO4812-3 (Scanning Electron Microscopy image), item B; Fig. AO4812-4 (Scanning Capacitance Microscopy image), item B.) The abrupt junction in the accused device creates a peak electric field in the area of the junction when voltage is applied, so that the transistor breakdown initiation point occurs in the area of the abrupt junction. (Fig. AO4812-5 (Secondary Ion Mass Spectroscopy data).)
18. The trenched field effect transistor of claim 1 further comprising an epitaxial layer having dopants of the first conductivity type, and formed between the substrate and the doped well, with no buried layer formed at an interface between the epitaxial layer and the substrate.	The accused device has an N-type epitaxial layer (formed with dopants of the first conductivity type) located between the N-type substrate and the lightly doped P-type well. (Fig. AO4812-3 (Scanning Electron Microscopy image), item F; Fig. AO4812-4 (Scanning Capacitance Microscopy image), item F.) There is no indication of a buried layer formed at the interface between the epitaxial layer and the substrate.

61135796 vI

INFRINGEMENT OF U.S. PATENT NO. 6,429,481

AOS AO4468 POWER MOSFET

CLAIM	AO4468 POWER MOSFET		
1. A trenched field effect transistor comprising:	The AOS AO4468 Power MOSFET ("the accused device") is a trenched field effect transistor. (Fig. AO4468-1 (datasheet); Fig. AO4468-2 (package marking).)		
a semiconductor substrate having dopants of a first conductivity type;	The accused device is an N-channel MOSFET, which is therefore formed on a substrate of doped N-type silicon. In the language of the claim, the N-type dopants in the substrate are a "first conductivity type." (Fig. AO4468-1 (datasheet); Fig. AO4468-3 (Scanning Electron Microscopy image), item A; Fig. AO4468-4 (Scanning Capacitance Microscopy image), item A.)		
a trench extending a predetermined depth into said semiconductor substrate;	The accused device has a trench extending to a predetermined depth into the substrate. (Fig. AO4468-3 (Scanning Electron Microscopy image), item B; Fig. AO4468-4 (Scanning Capacitance Microscopy image), item B.)		
a pair of doped source junctions having dopants of the first conductivity type, and positioned on opposite sides of the trench;	The accused device has a pair of source junctions (regions) positioned on opposite sides of the trench. (Fig. AO4468-3 (Scanning Electron Microscopy image), item C; Fig. AO4468-4 (Scanning Capacitance Microscopy image), item C.) Because the accused device is an N-channel MOSFET, the source junctions (regions) are formed with N-type dopants, which are dopants of the first conductivity type. (Fig. AO4468-4 (Scanning Capacitance Microscopy image), item C.)		
a doped well having dopants of a second conductivity type opposite to said first conductivity type, and formed into the substrate to a depth that is less than said predetermined depth of the trench; and	The accused device has a lightly doped well formed with P-type dopants (a second conductivity type opposite to the first conductivity type) that is formed in the substrate, and the depth of the doped well is less than the predetermined depth of the trench. (Fig. AO4468-3 (Scanning Electron Microscopy image), item D; Fig. AO4468-4 (Scanning Capacitance Microscopy image), item D.)		
a doped heavy body having dopants of the second conductivity type, and positioned adjacent each source junction on the opposite side of the source junction from the trench, said heavy body extending into said doped well to a depth that is less than said depth of said doped well,	The accused device has a highly doped heavy body formed with a higher concentration of P-type dopants (the second conductivity type) that is positioned adjacent to each source junction on the opposite side of the source junction from the trench. The P-type heavy body extends to a depth that is less than the depth of the well. (Fig. AO4468-3 (Scanning Electron Microscopy image), item E; Fig. AO4468-4 (Scanning Capacitance Microscopy image), item E.)		
wherein the heavy body forms an abrupt junction with the well and the depth of the junction, relative to the depth of the well, is adjusted so that a transistor breakdown initiation point is spaced away from the trench in the semiconductor, when voltage is applied to the transistor.	The junction between the doped P-type heavy body and the well is an abrupt junction. (Fig. AO4468-5 (Secondary Ion Mass Spectroscopy data).) This abrupt junction creates a peak electric field when voltage is applied to the accused device, and the depth of this abrupt junction relative to the depth of the well is such that the peak electric field causes the breakdown initiation point to be spaced away from the trench.		

CLAIM	AO4468 POWER MOSFET
2. The trenched field effect transistor of claim 1 wherein said doped well has a substantially flat bottom.	The accused device has a doped well with a substantially flat bottom. (Fig. AO4468-3 (Scanning Electron Microscopy image), item D; Fig. AO4468-4 (Scanning Capacitance Microscopy image), item D.)
3. The trenched field effect transistor of claim 1 wherein said trench has rounded top and bottom corners.	The trench of the accused device has a rounded top and bottom. (Fig. AO4468-3 (Scanning Electron Microscopy image), item B; Fig. AO4468-4 (Scanning Capacitance Microscopy image), item B.)
4. The trenched field effect transistor of claim 1 wherein the abrupt junction causes the transistor breakdown initiation point to occur in the area of the junction, when voltage is applied to the transistor.	The abrupt junction in the accused device creates a peak electric field in the area of the junction when voltage is applied, so that the transistor breakdown initiation point occurs in the area of the abrupt junction. (Fig. AO4468-5 (Secondary Ion Mass Spectroscopy data).)
18. The trenched field effect transistor of claim 1 further comprising an epitaxial layer having dopants of the first conductivity type, and formed between the substrate and the doped well, with no buried layer formed at an interface between the epitaxial layer and the substrate.	The accused device has an N-type epitaxial layer (formed with dopants of the first conductivity type) located between the N-type substrate and the lightly doped P-type well. (Fig. AO4468-3 (Scanning Electron Microscopy image), item F; Fig. AO4468-4 (Scanning Capacitance Microscopy image), item F.) There is no indication of a buried layer formed at the interface between the epitaxial layer and the substrate.

61138217 vI

INFRINGEMENT OF U.S. PATENT NO. 6,429,481

AOS AO6402 POWER MOSFET

CLAIM	AO6402 POWER MOSFET		
1. A trenched field effect transistor comprising:	The AOS AO6402 Power MOSFET ("the accused device") is a trenched field effect transistor. (Fig. AO6402-1 (datasheet); Fig. AO6402-2 (package marking).)		
a semiconductor substrate having dopants of a first conductivity type;	The accused device is an N-channel MOSFET, which is therefore formed on a substrate of doped N-type silicon. In the language of the claim, the N-type dopants in the substrate are a "first conductivity type." (Fig. AO6402-1 (datasheet); Fig. AO6402-3 (Scanning Electron Microscopy image), item A; Fig. AO6402-4 (Scanning Capacitance Microscopy image), item A.)		
a trench extending a predetermined depth into said semiconductor substrate;	The accused device has a trench extending to a predetermined depth into the substrate. (Fig. AO6402-3 (Scanning Electron Microscopy image), item B; Fig. AO6402-4 (Scanning Capacitance Microscopy image), item B.)		
a pair of doped source junctions having dopants of the first conductivity type, and positioned on opposite sides of the trench;	The accused device has a pair of source junctions (regions) positioned on opposite sides of the trench. (Fig. AO6402-3 (Scanning Electron Microscopy image), item C; Fig. AO6402-4 (Scanning Capacitance Microscopy image), item C.) Because the accused device is an N-channel MOSFET, the source junctions (regions) are formed with N-type dopants, which are dopants of the first conductivity type. (Fig. AO6402-4 (Scanning Capacitance Microscopy image), item C.)		
a doped well having dopants of a second conductivity type opposite to said first conductivity type, and formed into the substrate to a depth that is less than said predetermined depth of the trench; and	The accused device has a lightly doped well formed with P-type dopants (a second conductivity type opposite to the first conductivity type) that is formed in the substrate, and the depth of the doped well is less than the predetermined depth of the trench. (Fig. AO6402-3 (Scanning Electron Microscopy image), item D; Fig. AO6402-4 (Scanning Capacitance Microscopy image), item D.)		
a doped heavy body having dopants of the second conductivity type, and positioned adjacent each source junction on the opposite side of the source junction from the trench, said heavy body extending into said doped well to a depth that is less than said depth of said doped well,	The accused device has a highly doped heavy body formed with a higher concentration of P-type dopants (the second conductivity type) that is positioned adjacent to each source junction on the opposite side of the source junction from the trench. The P-type heavy body extends to a depth that is less than the depth of the well. (Fig. AO6402-3 (Scanning Electron Microscopy image), item E; Fig. AO6402-4 (Scanning Capacitance Microscopy image), item E.)		
wherein the heavy body forms an abrupt junction with the well and the depth of the junction, relative to the depth of the well, is adjusted so that a transistor breakdown initiation point is spaced away from the trench in the semiconductor, when voltage is applied to the transistor.	The junction between the doped P-type heavy body and the well is an abrupt junction. (Fig. AO6402-5 (Secondary Ion Mass Spectroscopy data).) This abrupt junction creates a peak electric field when voltage is applied to the accused device, and the depth of this abrupt junction relative to the depth of the well is such that the peak electric field causes the breakdown initiation point to be spaced away from the trench.		

CLAIM	AO6402 POWER MOSFET
2. The trenched field effect transistor of claim 1 wherein said doped well has a substantially flat bottom.	The accused device has a doped well with a substantially flat bottom. (Fig. AO6402-3 (Scanning Electron Microscopy image), item D; Fig. AO6402-4 (Scanning Capacitance Microscopy image), item D.)
3. The trenched field effect transistor of claim 1 wherein said trench has rounded top and bottom corners.	The trench of the accused device has a rounded top and bottom. (Fig. AO6402-3 (Scanning Electron Microscopy image), item B; Fig. AO6402-4 (Scanning Capacitance Microscopy image), item B.)
4. The trenched field effect transistor of claim 1 wherein the abrupt junction causes the transistor breakdown initiation point to occur in the area of the junction, when voltage is applied to the transistor.	The abrupt junction in the accused device creates a peak electric field in the area of the junction when voltage is applied, so that the transistor breakdown initiation point occurs in the area of the abrupt junction. (Fig. AO6402-5 (Secondary Ion Mass Spectroscopy data).)
18. The trenched field effect transistor of claim 1 further comprising an epitaxial layer having dopants of the first conductivity type, and formed between the substrate and the doped well, with no buried layer formed at an interface between the epitaxial layer and the substrate.	The accused device has an N-type epitaxial layer (formed with dopants of the first conductivity type) located between the N-type substrate and the lightly doped P-type well. (Fig. AO6402-3 (Scanning Electron Microscopy image), item F; Fig. AO6402-4 (Scanning Capacitance Microscopy image), item F.) There is no indication of a buried layer formed at the interface between the epitaxial layer and the substrate.

61138220 v1

INFRINGEMENT OF U.S. PATENT NO. 6,429,481

AOS AOL1412 POWER MOSFET

CLAIM	AOL1412 POWER MOSFET		
1. A trenched field effect transistor comprising:	The AOS AOL1412 Power MOSFET ("the accused device") is a trenched field effect transistor. (Fig. AOL1412-1 (datasheet); Fig. AOL1412-2 (package marking).)		
a semiconductor substrate having dopants of a first conductivity type;	The accused device is an N-channel MOSFET, which is therefore formed on a substrate of doped N-type silicon. In the language of the claim, the N-type dopants in the substrate are a "first conductivity type." (Fig. AOL1412-1 (datasheet); Fig. AOL1412-3 (Scanning Electron Microscopy image), item A; Fig. AOL1412-4 (Scanning Capacitance Microscopy image), item A.)		
a trench extending a predetermined depth into said semiconductor substrate;	The accused device has a trench extending to a predetermined depth into the substrate. (Fig. AOL1412-3 (Scanning Electron Microscopy image), item B; Fig. AOL1412-4 (Scanning Capacitance Microscopy image), item B.)		
a pair of doped source junctions having dopants of the first conductivity type, and positioned on opposite sides of the trench;	The accused device has a pair of source junctions (regions) positioned on opposite sides of the trench. (Fig. AOL1412-3 (Scanning Electron Microscopy image), item C; Fig. AOL1412-4 (Scanning Capacitance Microscopy image), item C.) Because the accused device is an N-channel MOSFET, the source junctions (regions) are formed with N-type dopants, which are dopants of the first conductivity type. (Fig. AOL1412-4 (Scanning Capacitance Microscopy image), item C.)		
a doped well having dopants of a second conductivity type opposite to said first conductivity type, and formed into the substrate to a depth that is less than said predetermined depth of the trench; and	The accused device has a lightly doped well formed with P-type dopants (a second conductivity type opposite to the first conductivity type) that is formed in the substrate, and the depth of the doped well is less than the predetermined depth of the trench. (Fig. AOL1412-3 (Scanning Electron Microscopy image), item D; Fig. AOL1412-4 (Scanning Capacitance Microscopy image), item D.)		
a doped heavy body having dopants of the second conductivity type, and positioned adjacent each source junction on the opposite side of the source junction from the trench, said heavy body extending into said doped well to a depth that is less than said depth of said doped well,	The accused device has a highly doped heavy body formed with a higher concentration of P-type dopants (the second conductivity type) that is positioned adjacent to each source junction on the opposite side of the source junction from the trench. The P-type heavy body extends to a depth that is less than the depth of the well. (Fig. AOL1412-3 (Scanning Electron Microscopy image), item E; Fig. AOL1412-4 (Scanning Capacitance Microscopy image), item E.)		
wherein the heavy body forms an abrupt junction with the well and the depth of the junction, relative to the depth of the well, is adjusted so that a transistor breakdown initiation point is spaced away from the trench in the semiconductor, when voltage is applied to the transistor.	The junction between the doped P-type heavy body and the well is an abrupt junction. (Fig. AOL1412-5 (Secondary Ion Mass Spectroscopy data).) This abrupt junction creates a peak electric field when voltage is applied to the accused device, and the depth of this abrupt junction relative to the depth of the well is such that the peak electric field causes the breakdown initiation point to be spaced away from the trench.		

Document 52-2	D	00	ur	ner	nt	52	-2
---------------	---	----	----	-----	----	----	----

CLAIM	AOL1412 POWER MOSFET
2. The trenched field effect transistor of claim 1 wherein said doped well has a substantially flat bottom.	The accused device has a doped well with a substantially flat bottom. (Fig. AOL1412-3 (Scanning Electron Microscopy image), item D; Fig. AOL1412-4 (Scanning Capacitance Microscopy image), item D.)
3. The trenched field effect transistor of claim 1 wherein said trench has rounded top and bottom corners.	The trench of the accused device has a rounded top and bottom. (Fig. AOL1412-3 (Scanning Electron Microscopy image), item B; Fig. AOL1412-4 (Scanning Capacitance Microscopy image), item B.)
4. The trenched field effect transistor of claim 1 wherein the abrupt junction causes the transistor breakdown initiation point to occur in the area of the junction, when voltage is applied to the transistor.	The abrupt junction in the accused device creates a peak electric field in the area of the junction when voltage is applied, so that the transistor breakdown initiation point occurs in the area of the abrupt junction. (Fig. AOL1412-5 (Secondary Ion Mass Spectroscopy data).)
18. The trenched field effect transistor of claim 1 further comprising an epitaxial layer having dopants of the first conductivity type, and formed between the substrate and the doped well, with no buried layer formed at an interface between the epitaxial layer and the substrate.	The accused device has an N-type epitaxial layer (formed with dopants of the first conductivity type) located between the N-type substrate and the lightly doped P-type well. (Fig. AOL1412-3 (Scanning Electron Microscopy image), item F; Fig. AOL1412-4 (Scanning Capacitance Microscopy image), item F.) There is no indication of a buried layer formed at the interface between the epitaxial layer and the substrate.

61138244 vl

INFRINGEMENT OF U.S. PATENT NO. 6,429,481

AOS AO4410 POWER MOSFET

CLAIM	AO4410 POWER MOSFET		
1. A trenched field effect transistor comprising:	The AOS AO4410 Power MOSFET ("the accused device") is a trenched field effect transistor. (Fig. AO4410-1 (datasheet); Fig. AO4410-2 (package marking).)		
a semiconductor substrate having dopants of a first conductivity type;	The accused device is an N-channel MOSFET, which is therefore formed on a substrate of doped N-type silicon. In the language of the claim, the N-type dopants in the substrate are a "first conductivity type." (Fig. AO4410-1 (datasheet); Fig. AO4410-3 (Scanning Electron Microscopy image), item A; Fig. AO4410-4 (Scanning Capacitance Microscopy image), item A.)		
a trench extending a predetermined depth into said semiconductor substrate;	The accused device has a trench extending to a predetermined depth into the substrate. (Fig. AO4410-3 (Scanning Electron Microscopy image), item B; Fig. AO4410-4 (Scanning Capacitance Microscopy image), item B.)		
a pair of doped source junctions having dopants of the first conductivity type, and positioned on opposite sides of the trench;	The accused device has a pair of source junctions (regions) positioned on opposite sides of the trench. (Fig. AO4410-3 (Scanning Electron Microscopy image), item C; Fig. AO4410-4 (Scanning Capacitance Microscopy image), item C.) Because the accused device is an N-channel MOSFET, the source junctions (regions) are formed with N-type dopants, which are dopants of the first conductivity type. (Fig. AO4410-4 (Scanning Capacitance Microscopy image), item C.)		
a doped well having dopants of a second conductivity type opposite to said first conductivity type, and formed into the substrate to a depth that is less than said predetermined depth of the trench; and	The accused device has a lightly doped well formed with P-type dopants (a second conductivity type opposite to the first conductivity type) that is formed in the substrate, and the depth of the doped well is less than the predetermined depth of the trench. (Fig. AO4410-3 (Scanning Electron Microscopy image), item D; Fig. AO4410-4 (Scanning Capacitance Microscopy image), item D.)		
a doped heavy body having dopants of the second conductivity type, and positioned adjacent each source junction on the opposite side of the source junction from the trench, said heavy body extending into said doped well to a depth that is less than said depth of said doped well,	The accused device has a highly doped heavy body formed with a higher concentration of P-type dopants (the second conductivity type) that is positioned adjacent to each source junction on the opposite side of the source junction from the trench. The P-type heavy body extends to a depth that is less than the depth of the well. (Fig. AO4410-3 (Scanning Electron Microscopy image), item E; Fig. AO4410-4 (Scanning Capacitance Microscopy image), item E.)		
wherein the heavy body forms an abrupt junction with the well and the depth of the junction, relative to the depth of the well, is adjusted so that a transistor breakdown initiation point is spaced away from the trench in the semiconductor, when voltage is applied to the transistor.	The junction between the doped P-type heavy body and the well is an abrupt junction. (Fig. AO4410-5 (Secondary Ion Mass Spectroscopy data).) This abrupt junction creates a peak electric field when voltage is applied to the accused device, and the depth of this abrupt junction relative to the depth of the well is such that the peak electric field causes the breakdown initiation point to be spaced away from the trench.		

CLAIM	AO4410 POWER MOSFET
2. The trenched field effect transistor of claim 1 wherein said doped well has a substantially flat bottom.	The accused device has a doped well with a substantially flat bottom. (Fig. AO4410-3 (Scanning Electron Microscopy image), item D; Fig. AO4410-4 (Scanning Capacitance Microscopy image), item D.)
3. The trenched field effect transistor of claim 1 wherein said trench has rounded top and bottom corners.	The trench of the accused device has a rounded top and bottom. (Fig. AO4410-3 (Scanning Electron Microscopy image), item B; Fig. AO4410-4 (Scanning Capacitance Microscopy image), item B.)
4. The trenched field effect transistor of claim 1 wherein the abrupt junction causes the transistor breakdown initiation point to occur in the area of the junction, when voltage is applied to the transistor.	The abrupt junction in the accused device creates a peak electric field in the area of the junction when voltage is applied, so that the transistor breakdown initiation point occurs in the area of the abrupt junction. (Fig. AO4410-5 (Secondary Ion Mass Spectroscopy data).)
18. The trenched field effect transistor of claim 1 further comprising an epitaxial layer having dopants of the first conductivity type, and formed between the substrate and the doped well, with no buried layer formed at an interface between the epitaxial layer and the substrate.	The accused device has an N-type epitaxial layer (formed with dopants of the first conductivity type) located between the N-type substrate and the lightly doped P-type well. (Fig. AO4410-3 (Scanning Electron Microscopy image), item F; Fig. AO4410-4 (Scanning Capacitance Microscopy image), item F.) There is no indication of a buried layer formed at the interface between the epitaxial layer and the substrate.

61138253 v1

INFRINGEMENT OF U.S. PATENT NO. 6,429,481

AOS AO4914 POWER MOSFET

CLAIM	AO4914 POWER MOSFET		
1. A trenched field effect transistor comprising:	The AOS AO4914 Power MOSFET ("the accused device") is a trenched field effect transistor. (Fig. AO4914-1 (datasheet); Fig. AO4914-2 (package marking).)		
a semiconductor substrate having dopants of a first conductivity type;	The accused device is an N-channel MOSFET, which is therefore formed on a substrate of doped N-type silicon. In the language of the claim, the N-type dopants in the substrate are a "first conductivity type." (Fig. AO4914-1 (datasheet); Fig. AO4914-3 (Scanning Electron Microscopy image), item A; Fig. AO4914-4 (Scanning Capacitance Microscopy image), item A.)		
a trench extending a predetermined depth into said semiconductor substrate;	The accused device has a trench extending to a predetermined depth into the substrate. (Fig. AO4914-3 (Scanning Electron Microscopy image), item B; Fig. AO4914-4 (Scanning Capacitance Microscopy image), item B.)		
a pair of doped source junctions having dopants of the first conductivity type, and positioned on opposite sides of the trench;	The accused device has a pair of source junctions (regions) positioned on opposite sides of the trench. (Fig. AO4914-3 (Scanning Electron Microscopy image), item C; Fig. AO4914-4 (Scanning Capacitance Microscopy image), item C.) Because the accused device is an N-channel MOSFET, the source junctions (regions) are formed with N-type dopants, which are dopants of the first conductivity type. (Fig. AO4914-4 (Scanning Capacitance Microscopy image), item C.)		
a doped well having dopants of a second conductivity type opposite to said first conductivity type, and formed into the substrate to a depth that is less than said predetermined depth of the trench; and	The accused device has a lightly doped well formed with P-type dopants (a second conductivity type opposite to the first conductivity type) that is formed in the substrate, and the depth of the doped well is less than the predetermined depth of the trench. (Fig. AO4914-3 (Scanning Electron Microscopy image), item D; Fig. AO4914-4 (Scanning Capacitance Microscopy image), item D.)		
a doped heavy body having dopants of the second conductivity type, and positioned adjacent each source junction on the opposite side of the source junction from the trench, said heavy body extending into said doped well to a depth that is less than said depth of said doped well,	The accused device has a highly doped heavy body formed with a higher concentration of P-type dopants (the second conductivity type) that is positioned adjacent to each source junction on the opposite side of the source junction from the trench. The P-type heavy body extends to a depth that is less than the depth of the well. (Fig. AO4914-3 (Scanning Electron Microscopy image), item E; Fig. AO4914-4 (Scanning Capacitance Microscopy image), item E.)		
wherein the heavy body forms an abrupt junction with the well and the depth of the junction, relative to the depth of the well, is adjusted so that a transistor breakdown initiation point is spaced away from the trench in the semiconductor, when voltage is applied to the transistor.	The junction between the doped P-type heavy body and the well is an abrupt junction. (Fig. AO4914-5 (Secondary Ion Mass Spectroscopy data).) This abrupt junction creates a peak electric field when voltage is applied to the accused device, and the depth of this abrupt junction relative to the depth of the well is such that the peak electric field causes the breakdown initiation point to be spaced away from the trench.		

CLAIM	AO4914 POWER MOSFET
2. The trenched field effect transistor of claim 1 wherein said doped well has a substantially flat bottom.	The accused device has a doped well with a substantially flat bottom. (Fig. AO4914-3 (Scanning Electron Microscopy image), item D; Fig. AO4914-4 (Scanning Capacitance Microscopy image), item D.)
3. The trenched field effect transistor of claim 1 wherein said trench has rounded top and bottom corners.	The trench of the accused device has a rounded top and bottom. (Fig. AO4914-3 (Scanning Electron Microscopy image), item B; Fig. AO4914-4 (Scanning Capacitance Microscopy image), item B.)
4. The trenched field effect transistor of claim 1 wherein the abrupt junction causes the transistor breakdown initiation point to occur in the area of the junction, when voltage is applied to the transistor.	The abrupt junction in the accused device creates a peak electric field in the area of the junction when voltage is applied, so that the transistor breakdown initiation point occurs in the area of the abrupt junction. (Fig. AO4914-5 (Secondary Ion Mass Spectroscopy data).)
18. The trenched field effect transistor of claim 1 further comprising an epitaxial layer having dopants of the first conductivity type, and formed between the substrate and the doped well, with no buried layer formed at an interface between the epitaxial layer and the substrate.	The accused device has an N-type epitaxial layer (formed with dopants of the first conductivity type) located between the N-type substrate and the lightly doped P-type well. (Fig. AO4914-3 (Scanning Electron Microscopy image), item F; Fig. AO4914-4 (Scanning Capacitance Microscopy image), item F.) There is no indication of a buried layer formed at the interface between the epitaxial layer and the substrate.

61138263 vl

INFRINGEMENT OF U.S. PATENT NO. 6,429,481

AOS AO4422 POWER MOSFET

CLAIM	AO4422 POWER MOSFET
1. A trenched field effect transistor comprising:	The AOS AO4422 Power MOSFET ("the accused device") is a trenched field effect transistor. (Fig. AO4422-1 (datasheet); Fig. AO4422-2 (package marking).)
a semiconductor substrate having dopants of a first conductivity type;	The accused device is an N-channel MOSFET, which is therefore formed on a substrate of doped N-type silicon. In the language of the claim, the N-type dopants in the substrate are a "first conductivity type." (Fig. AO4422-1 (datasheet); Fig. AO4422-3 (Scanning Electron Microscopy image), item A; Fig. AO4422-4 (Scanning Capacitance Microscopy image), item A.)
a trench extending a predetermined depth into said semiconductor substrate;	The accused device has a trench extending to a predetermined depth into the substrate. (Fig. AO4422-3 (Scanning Electron Microscopy image), item B; Fig. AO4422-4 (Scanning Capacitance Microscopy image), item B.)
a pair of doped source junctions having dopants of the first conductivity type, and positioned on opposite sides of the trench;	The accused device has a pair of source junctions (regions) positioned on opposite sides of the trench. (Fig. AO4422-3 (Scanning Electron Microscopy image), item C; Fig. AO4422-4 (Scanning Capacitance Microscopy image), item C.) Because the accused device is an N-channel MOSFET, the source junctions (regions) are formed with N-type dopants, which are dopants of the first conductivity type. (Fig. AO4422-4 (Scanning Capacitance Microscopy image), item C.)
a doped well having dopants of a second conductivity type opposite to said first conductivity type, and formed into the substrate to a depth that is less than said predetermined depth of the trench; and	The accused device has a lightly doped well formed with P-type dopants (a second conductivity type opposite to the first conductivity type) that is formed in the substrate, and the depth of the doped well is less than the predetermined depth of the trench. (Fig. AO4422-3 (Scanning Electron Microscopy image), item D; Fig. AO4422-4 (Scanning Capacitance Microscopy image), item D.)
a doped heavy body having dopants of the second conductivity type, and positioned adjacent each source junction on the opposite side of the source junction from the trench, said heavy body extending into said doped well to a depth that is less than said depth of said doped well,	The accused device has a highly doped heavy body formed with a higher concentration of P-type dopants (the second conductivity type) that is positioned adjacent to each source junction on the opposite side of the source junction from the trench. The P-type heavy body extends to a depth that is less than the depth of the well. (Fig. AO4422-3 (Scanning Electron Microscopy image), item E; Fig. AO4422-4 (Scanning Capacitance Microscopy image), item E.)
wherein the heavy body forms an abrupt junction with the well and the depth of the junction, relative to the depth of the well, is adjusted so that a transistor breakdown initiation point is spaced away from the trench in the semiconductor, when voltage is applied to the transistor.	The junction between the doped P-type heavy body and the well is an abrupt junction. (Fig. AO4422-5 (Secondary Ion Mass Spectroscopy data).) This abrupt junction creates a peak electric field when voltage is applied to the accused device, and the depth of this abrupt junction relative to the depth of the well is such that the peak electric field causes the breakdown initiation point to be spaced away from the trench.

CLAIM	AO4422 POWER MOSFET
2. The trenched field effect transistor of claim 1 wherein said doped well has a substantially flat bottom.	The accused device has a doped well with a substantially flat bottom. (Fig. AO4422-3 (Scanning Electron Microscopy image), item D; Fig. AO4422-4 (Scanning Capacitance Microscopy image), item D.)
3. The trenched field effect transistor of claim I wherein said trench has rounded top and bottom corners.	The trench of the accused device has a rounded top and bottom. (Fig. AO4422-3 (Scanning Electron Microscopy image), item B; Fig. AO4422-4 (Scanning Capacitance Microscopy image), item B.)
4. The trenched field effect transistor of claim 1 wherein the abrupt junction causes the transistor breakdown initiation point to occur in the area of the junction, when voltage is applied to the transistor.	The abrupt junction in the accused device creates a peak electric field in the area of the junction when voltage is applied, so that the transistor breakdown initiation point occurs in the area of the abrupt junction. (Fig. AO4422-5 (Secondary Ion Mass Spectroscopy data).)
18. The trenched field effect transistor of claim I further comprising an epitaxial layer having dopants of the first conductivity type, and formed between the substrate and the doped well, with no buried layer formed at an interface between the epitaxial layer and the substrate.	The accused device has an N-type epitaxial layer (formed with dopants of the first conductivity type) located between the N-type substrate and the lightly doped P-type well. (Fig. AO4422-3 (Scanning Electron Microscopy image), item F; Fig. AO4422-4 (Scanning Capacitance Microscopy image), item F.) There is no indication of a buried layer formed at the interface between the epitaxial layer and the substrate.

61138269 v1

INFRINGEMENT OF U.S. PATENT NO. 6,429,481

AOS AO4704 POWER MOSFET

CLAIM	AO4704 POWER MOSFET
1. A trenched field effect transistor comprising:	The AOS AO4704 Power MOSFET ("the accused device") is a trenched field effect transistor. (Fig. AO4704-1 (datasheet); Fig. AO4704-2 (package marking).)
a semiconductor substrate having dopants of a first conductivity type;	The accused device is an N-channel MOSFET, which is therefore formed on a substrate of doped N-type silicon. In the language of the claim, the N-type dopants in the substrate are a "first conductivity type." (Fig. AO4704-1 (datasheet); Fig. AO4704-3 (Scanning Electron Microscopy image), item A; Fig. AO4704-4 (Scanning Capacitance Microscopy image), item A.)
a trench extending a predetermined depth into said semiconductor substrate;	The accused device has a trench extending to a predetermined depth into the substrate. (Fig. AO4704-3 (Scanning Electron Microscopy image), item B; Fig. AO4704-4 (Scanning Capacitance Microscopy image), item B.)
a pair of doped source junctions having dopants of the first conductivity type, and positioned on opposite sides of the trench;	The accused device has a pair of source junctions (regions) positioned on opposite sides of the trench. (Fig. AO4704-3 (Scanning Electron Microscopy image), item C; Fig. AO4704-4 (Scanning Capacitance Microscopy image), item C.) Because the accused device is an N-channel MOSFET, the source junctions (regions) are formed with N-type dopants, which are dopants of the first conductivity type. (Fig. AO4704-4 (Scanning Capacitance Microscopy image), item C.)
a doped well having dopants of a second conductivity type opposite to said first conductivity type, and formed into the substrate to a depth that is less than said predetermined depth of the trench; and	The accused device has a lightly doped well formed with P-type dopants (a second conductivity type opposite to the first conductivity type) that is formed in the substrate, and the depth of the doped well is less than the predetermined depth of the trench. (Fig. AO4704-3 (Scanning Electron Microscopy image), item D; Fig. AO4704-4 (Scanning Capacitance Microscopy image), item D.)
a doped heavy body having dopants of the second conductivity type, and positioned adjacent each source junction on the opposite side of the source junction from the trench, said heavy body extending into said doped well to a depth that is less than said depth of said doped well,	The accused device has a highly doped heavy body formed with a higher concentration of P-type dopants (the second conductivity type) that is positioned adjacent to each source junction on the opposite side of the source junction from the trench. The P-type heavy body extends to a depth that is less than the depth of the well. (Fig. AO4704-3 (Scanning Electron Microscopy image), item E; Fig. AO4704-4 (Scanning Capacitance Microscopy image), item E.)
wherein the heavy body forms an abrupt junction with the well and the depth of the junction, relative to the depth of the well, is adjusted so that a transistor breakdown initiation point is spaced away from the trench in the semiconductor, when voltage is applied to the transistor.	The junction between the doped P-type heavy body and the well is an abrupt junction. (Fig. AO4704-5 (Secondary Ion Mass Spectroscopy data).) This abrupt junction creates a peak electric field when voltage is applied to the accused device, and the depth of this abrupt junction relative to the depth of the well is such that the peak electric field causes the breakdown initiation point to be spaced away from the trench.

CLAIM	AO4704 POWER MOSFET
2. The trenched field effect transistor of claim I wherein said doped well has a substantially flat bottom.	The accused device has a doped well with a substantially flat bottom. (Fig. AO4704-3 (Scanning Electron Microscopy image), item D; Fig. AO4704-4 (Scanning Capacitance Microscopy image), item D.)
3. The trenched field effect transistor of claim 1 wherein said trench has rounded top and bottom corners.	The trench of the accused device has a rounded top and bottom. (Fig. AO4704-3 (Scanning Electron Microscopy image), item B; Fig. AO4704-4 (Scanning Capacitance Microscopy image), item B.)
4. The trenched field effect transistor of claim 1 wherein the abrupt junction causes the transistor breakdown initiation point to occur in the area of the junction, when voltage is applied to the transistor.	The abrupt junction in the accused device creates a peak electric field in the area of the junction when voltage is applied, so that the transistor breakdown initiation point occurs in the area of the abrupt junction. (Fig. AO4704-5 (Secondary Ion Mass Spectroscopy data).)
18. The trenched field effect transistor of claim 1 further comprising an epitaxial layer having dopants of the first conductivity type, and formed between the substrate and the doped well, with no buried layer formed at an interface between the epitaxial layer and the substrate.	The accused device has an N-type epitaxial layer (formed with dopants of the first conductivity type) located between the N-type substrate and the lightly doped P-type well. (Fig. AO4704-3 (Scanning Electron Microscopy image), item F; Fig. AO4704-4 (Scanning Capacitance Microscopy image), item F.) There is no indication of a buried layer formed at the interface between the epitaxial layer and the substrate.

61138281 v1

INFRINGEMENT OF U.S. PATENT NO. 6,429,481

AOS AOD414 POWER MOSFET

CLAIM	AOD414 POWER MOSFET
1. A trenched field effect transistor comprising:	The AOS AOD414 Power MOSFET ("the accused device") is a trenched field effect transistor. (Fig. AOD414-1 (datasheet); Fig. AOD414-2 (package marking).)
a semiconductor substrate having dopants of a first conductivity type;	The accused device is an N-channel MOSFET, which is therefore formed on a substrate of doped N-type silicon. In the language of the claim, the N-type dopants in the substrate are a "first conductivity type." (Fig. AOD414-1 (datasheet); Fig. AOD414-3 (Scanning Electron Microscopy image), item A; Fig. AOD414-4 (Scanning Capacitance Microscopy image), item A.)
a trench extending a predetermined depth into said semiconductor substrate;	The accused device has a trench extending to a predetermined depth into the substrate. (Fig. AOD414-3 (Scanning Electron Microscopy image), item B; Fig. AOD414-4 (Scanning Capacitance Microscopy image), item B.)
a pair of doped source junctions having dopants of the first conductivity type, and positioned on opposite sides of the trench;	The accused device has a pair of source junctions (regions) positioned on opposite sides of the trench. (Fig. AOD414-3 (Scanning Electron Microscopy image), item C; Fig. AOD414-4 (Scanning Capacitance Microscopy image), item C.) Because the accused device is an N-channel MOSFET, the source junctions (regions) are formed with N-type dopants, which are dopants of the first conductivity type. (Fig. AOD414-4 (Scanning Capacitance Microscopy image), item C.)
a doped well having dopants of a second conductivity type opposite to said first conductivity type, and formed into the substrate to a depth that is less than said predetermined depth of the trench; and	The accused device has a lightly doped well formed with P-type dopants (a second conductivity type opposite to the first conductivity type) that is formed in the substrate, and the depth of the doped well is less than the predetermined depth of the trench. (Fig. AOD414-3 (Scanning Electron Microscopy image), item D; Fig. AOD414-4 (Scanning Capacitance Microscopy image), item D.)
a doped heavy body having dopants of the second conductivity type, and positioned adjacent each source junction on the opposite side of the source junction from the trench, said heavy body extending into said doped well to a depth that is less than said depth of said doped well,	The accused device has a highly doped heavy body formed with a higher concentration of P-type dopants (the second conductivity type) that is positioned adjacent to each source junction on the opposite side of the source junction from the trench. The P-type heavy body extends to a depth that is less than the depth of the well. (Fig. AOD414-3 (Scanning Electron Microscopy image), item E; Fig. AOD414-4 (Scanning Capacitance Microscopy image), item E.)
wherein the heavy body forms an abrupt junction with the well and the depth of the junction, relative to the depth of the well, is adjusted so that a transistor breakdown initiation point is spaced away from the trench in the semiconductor, when voltage is applied to the transistor.	The junction between the doped P-type heavy body and the well is an abrupt junction. (Fig. AOD414-5 (Secondary Ion Mass Spectroscopy data).) This abrupt junction creates a peak electric field when voltage is applied to the accused device, and the depth of this abrupt junction relative to the depth of the well is such that the peak electric field causes the breakdown initiation point to be spaced away from the trench.

CLAIM	AOD414 POWER MOSFET
2. The trenched field effect transistor of claim 1 wherein said doped well has a substantially flat bottom.	The accused device has a doped well with a substantially flat bottom. (Fig. AOD414-3 (Scanning Electron Microscopy image), item D; Fig. AOD414-4 (Scanning Capacitance Microscopy image), item D.)
3. The trenched field effect transistor of claim 1 wherein said trench has rounded top and bottom corners.	The trench of the accused device has a rounded top and bottom. (Fig. AOD414-3 (Scanning Electron Microscopy image), item B; Fig. AOD414-4 (Scanning Capacitance Microscopy image), item B.)
4. The trenched field effect transistor of claim 1 wherein the abrupt junction causes the transistor breakdown initiation point to occur in the area of the junction, when voltage is applied to the transistor.	The abrupt junction in the accused device creates a peak electric field in the area of the junction when voltage is applied, so that the transistor breakdown initiation point occurs in the area of the abrupt junction. (Fig. AOD414-5 (Secondary Ion Mass Spectroscopy data).)
18. The trenched field effect transistor of claim 1 further comprising an epitaxial layer having dopants of the first conductivity type, and formed between the substrate and the doped well, with no buried layer formed at an interface between the epitaxial layer and the substrate.	The accused device has an N-type epitaxial layer (formed with dopants of the first conductivity type) located between the N-type substrate and the lightly doped P-type well. (Fig. AOD414-3 (Scanning Electron Microscopy image), item F; Fig. AOD414-4 (Scanning Capacitance Microscopy image), item F.) There is no indication of a buried layer formed at the interface between the epitaxial layer and the substrate.

61138285 v1

INFRINGEMENT OF U.S. PATENT NO. 6,429,481

AOS AO4413A POWER MOSFET

CLAIM	AO4413A POWER MOSFET
1. A trenched field effect transistor comprising:	The AOS AO4413A Power MOSFET ("the accused device") is a trenched field effect transistor. (Fig. AO4413A-1 (datasheet); Fig. AO4413A-2 (package marking).)
a semiconductor substrate having dopants of a first conductivity type;	The accused device is a P-channel MOSFET, which is therefore formed on a substrate of doped P-type silicon. In the language of the claim, the P-type dopants in the substrate are a "first conductivity type." (Fig. AO4413A-1 (datasheet); Fig. AO4413A-3 (Scanning Electron Microscopy image), item A; Fig. AO4413A-4 (Scanning Capacitance Microscopy image), item A.)
a trench extending a predetermined depth into said semiconductor substrate; a pair of doped source junctions having dopants	The accused device has a trench extending to a predetermined depth into the substrate. (Fig. AO4413A-3 (Scanning Electron Microscopy image), item B Fig. AO4413A-4 (Scanning Capacitance Microscopy image), item B.) The accused device has a pair of source junctions (regions) positioned on
of the first conductivity type, and positioned on opposite sides of the trench;	opposite sides of the trench. (Fig. AO4413A-3 (Scanning Electron Microscopy image), item C; Fig. AO4413A-4 (Scanning Capacitance Microscopy image), item C.) Because the accused device is a P-channel MOSFET, the source junctions (regions) are formed with P-type dopants, which are dopants of the first conductivity type. (Fig. AO4413A-4 (Scanning Capacitance Microscopy image), item C.)
a doped well having dopants of a second conductivity type opposite to said first conductivity type, and formed into the substrate to a depth that is less than said predetermined depth of the trench; and	The accused device has a lightly doped well formed with N-type dopants (a second conductivity type opposite to the first conductivity type) that is formed in the substrate, and the depth of the doped well is less than the predetermined depth of the trench. (Fig. AO4413A-3 (Scanning Electron Microscopy image), item D; Fig. AO4413A-4 (Scanning Capacitance Microscopy image), item D.)
a doped heavy body having dopants of the second conductivity type, and positioned adjacent each source junction on the opposite side of the source junction from the trench, said heavy body extending into said doped well to a depth that is less than said depth of said doped well,	The accused device has a highly doped heavy body formed with a higher concentration of N-type dopants (the second conductivity type) that is positioned adjacent to each source junction on the opposite side of the source junction from the trench. The N-type heavy body extends to a depth that is less than the depth of the well. (Fig. AO4413A-3 (Scanning Electron Microscopy image), item E; Fig. AO4413A-4 (Scanning Capacitance Microscopy image), item E.)
wherein the heavy body forms an abrupt junction with the well and the depth of the junction, relative to the depth of the well, is adjusted so that a transistor breakdown initiation point is spaced away from the trench in the semiconductor, when voltage is applied to the transistor.	The junction between the doped N-type heavy body and the well is an abrupt junction. (Fig. AO4413A-5 (Secondary Ion Mass Spectroscopy data).) This abrupt junction creates a peak electric field when voltage is applied to the accused device, and the depth of this abrupt junction relative to the depth of the well is such that the peak electric field causes the breakdown initiation point to be spaced away from the trench.

CLAIM	AO4413A POWER MOSFET
2. The trenched field effect transistor of claim 1 wherein said doped well has a substantially flat bottom.	The accused device has a doped well with a substantially flat bottom. (Fig. AO4413A-3 (Scanning Electron Microscopy image), item D; Fig. AO4413A-4 (Scanning Capacitance Microscopy image), item D.)
3. The trenched field effect transistor of claim 1 wherein said trench has rounded top and bottom corners.	The trench of the accused device has a rounded top and bottom. (Fig. AO4413A-3 (Scanning Electron Microscopy image), item B; Fig. AO4413A-4 (Scanning Capacitance Microscopy image), item B.)
4. The trenched field effect transistor of claim 1 wherein the abrupt junction causes the transistor breakdown initiation point to occur in the area of the junction, when voltage is applied to the transistor.	The abrupt junction in the accused device creates a peak electric field in the area of the junction when voltage is applied, so that the transistor breakdown initiation point occurs in the area of the abrupt junction. (Fig. AO4413A-5 (Secondary Ion Mass Spectroscopy data).)
18. The trenched field effect transistor of claim 1 further comprising an epitaxial layer having dopants of the first conductivity type, and formed between the substrate and the doped well, with no buried layer formed at an interface between the epitaxial layer and the substrate.	The accused device has a P-type epitaxial layer (formed with dopants of the first conductivity type) located between the P-type substrate and the lightly doped N-type well. (Fig. AO4413A-3 (Scanning Electron Microscopy image), item F; Fig. AO4413A-4 (Scanning Capacitance Microscopy image), item F.) There is no indication of a buried layer formed at the interface between the epitaxial layer and the substrate.

61138414 vI

INFRINGEMENT OF U.S. PATENT NO. 6,429,481

AOS AO6405 POWER MOSFET

CLAIM	AO6405 POWER MOSFET
1. A trenched field effect transistor comprising:	The AOS AO6405 Power MOSFET ("the accused device") is a trenched field effect transistor. (Fig. AO6405-1 (datasheet); Fig. AO6405-2 (package marking).)
a semiconductor substrate having dopants of a first conductivity type;	The accused device is a P-channel MOSFET, which is therefore formed on a substrate of doped P-type silicon. In the language of the claim, the P-type dopants in the substrate are a "first conductivity type." (Fig. AO6405-1 (datasheet); Fig. AO6405-3 (Scanning Electron Microscopy image), item A; Fig. AO6405-4 (Scanning Capacitance Microscopy image), item A.)
a trench extending a predetermined depth into said semiconductor substrate;	The accused device has a trench extending to a predetermined depth into the substrate. (Fig. AO6405-3 (Scanning Electron Microscopy image), item B; Fig. AO6405-4 (Scanning Capacitance Microscopy image), item B.)
a pair of doped source junctions having dopants of the first conductivity type, and positioned on opposite sides of the trench;	The accused device has a pair of source junctions (regions) positioned on opposite sides of the trench. (Fig. AO6405-3 (Scanning Electron Microscopy image), item C; Fig. AO6405-4 (Scanning Capacitance Microscopy image), item C.) Because the accused device is a P-channel MOSFET, the source junctions (regions) are formed with P-type dopants, which are dopants of the first conductivity type. (Fig. AO6405-4 (Scanning Capacitance Microscopy image), item C.)
a doped well having dopants of a second conductivity type opposite to said first conductivity type, and formed into the substrate to a depth that is less than said predetermined depth of the trench; and	The accused device has a lightly doped well formed with N-type dopants (a second conductivity type opposite to the first conductivity type) that is formed in the substrate, and the depth of the doped well is less than the predetermined depth of the trench. (Fig. AO6405-3 (Scanning Electron Microscopy image), item D; Fig. AO6405-4 (Scanning Capacitance Microscopy image), item D.)
a doped heavy body having dopants of the second conductivity type, and positioned adjacent each source junction on the opposite side of the source junction from the trench, said heavy body extending into said doped well to a depth that is less than said depth of said doped well,	The accused device has a highly doped heavy body formed with a higher concentration of N-type dopants (the second conductivity type) that is positioned adjacent to each source junction on the opposite side of the source junction from the trench. The N-type heavy body extends to a depth that is less than the depth of the well. (Fig. AO6405-3 (Scanning Electron Microscopy image), item E; Fig. AO6405-4 (Scanning Capacitance Microscopy image), item E.)
wherein the heavy body forms an abrupt junction with the well and the depth of the junction, relative to the depth of the well, is adjusted so that a transistor breakdown initiation point is spaced away from the trench in the semiconductor, when voltage is applied to the transistor.	The junction between the doped N-type heavy body and the well is an abrupt junction. (Fig. AO6405-5 (Secondary Ion Mass Spectroscopy data).) This abrupt junction creates a peak electric field when voltage is applied to the accused device, and the depth of this abrupt junction relative to the depth of the well is such that the peak electric field causes the breakdown initiation point to be spaced away from the trench.

CLAIM	AO6405 POWER MOSFET
2. The trenched field effect transistor of claim l wherein said doped well has a substantially flat bottom.	The accused device has a doped well with a substantially flat bottom. (Fig. AO6405-3 (Scanning Electron Microscopy image), item D; Fig. AO6405-4 (Scanning Capacitance Microscopy image), item D.)
 3. The trenched field effect transistor of claim 1 wherein said trench has rounded top and bottom corners. 4. The trenched field effect transistor of claim 1 wherein the abrupt junction causes the transistor breakdown initiation point to occur in the area of the junction, when voltage is applied to the transistor. 	The trench of the accused device has a rounded top and bottom. (Fig. AO6405-3 (Scanning Electron Microscopy image), item B; Fig. AO6405-4 (Scanning Capacitance Microscopy image), item B.) The abrupt junction in the accused device creates a peak electric field in the area of the junction when voltage is applied, so that the transistor breakdown initiation point occurs in the area of the abrupt junction. (Fig. AO6405-5 (Secondary Ion Mass Spectroscopy data).)
18. The trenched field effect transistor of claim I further comprising an epitaxial layer having dopants of the first conductivity type, and formed between the substrate and the doped well, with no buried layer formed at an interface between the epitaxial layer and the substrate.	The accused device has a P-type epitaxial layer (formed with dopants of the first conductivity type) located between the P-type substrate and the lightly doped N-type well. (Fig. AO6405-3 (Scanning Electron Microscopy image), item F; Fig. AO6405-4 (Scanning Capacitance Microscopy image), item F.) There is no indication of a buried layer formed at the interface between the epitaxial layer and the substrate.

61138412 v1

INFRINGEMENT OF U.S. PATENT NO. 6,429,481

AOS AO4912 POWER MOSFET

CLAIM	AO4912 POWER MOSFET
1. A trenched field effect transistor comprising:	The AOS AO4912 Power MOSFET ("the accused device") is a trenched field effect transistor. (Fig. AO4912-1 (datasheet); Fig. AO4912-2 (package marking).)
a semiconductor substrate having dopants of a first conductivity type;	The accused device is an N-channel MOSFET, which is therefore formed on a substrate of doped N-type silicon. In the language of the claim, the N-type dopants in the substrate are a "first conductivity type." (Fig. AO4912-1 (datasheet); Fig. AO4912-3 (Scanning Electron Microscopy image), item A; Fig. AO4912-4 (Scanning Capacitance Microscopy image), item A.)
a trench extending a predetermined depth into said semiconductor substrate; a pair of doped source junctions having dopants of the first conductivity type, and positioned on opposite sides of the trench;	The accused device has a trench extending to a predetermined depth into the substrate. (Fig. AO4912-3 (Scanning Electron Microscopy image), item B; Fig. AO4912-4 (Scanning Capacitance Microscopy image), item B.) The accused device has a pair of source junctions (regions) positioned on opposite sides of the trench. (Fig. AO4912-3 (Scanning Electron Microscopy image), item C; Fig. AO4912-4 (Scanning Capacitance Microscopy image), item C.) Because the accused device is an N-channel MOSFET, the source junctions (regions) are formed with N-type dopants, which are dopants of the first conductivity type.
a doped well having dopants of a second conductivity type opposite to said first conductivity type, and formed into the substrate to a depth that is less than said predetermined depth of the trench; and	The accused device has a lightly doped well formed with P-type dopants (a second conductivity type opposite to the first conductivity type) that is formed in the substrate, and the depth of the doped well is less than the predetermined depth of the trench. (Fig. AO4912-3 (Scanning Electron Microscopy image), item D; Fig. AO4912-4 (Scanning Capacitance Microscopy image), item D.)
a doped heavy body having dopants of the second conductivity type, and positioned adjacent each source junction on the opposite side of the source junction from the trench, said heavy body extending into said doped well to a depth that is less than said depth of said doped well,	The accused device has a highly doped heavy body formed with a higher concentration of P-type dopants (the second conductivity type) that is positioned adjacent to each source junction on the opposite side of the source junction from the trench. The P-type heavy body extends to a depth that is less than the depth of the well. (Fig. AO4912-3 (Scanning Electron Microscopy image), item E; Fig. AO4912-4 (Scanning Capacitance Microscopy image), item E.)
wherein the heavy body forms an abrupt junction with the well and the depth of the junction, relative to the depth of the well, is adjusted so that a transistor breakdown initiation point is spaced away from the trench in the semiconductor, when voltage is applied to the transistor.	The junction between the doped P-type heavy body and the well is an abrupt junction. (Fig. AO4912-5 (Secondary Ion Mass Spectroscopy data).) This abrupt junction creates a peak electric field when voltage is applied to the accused device, and the depth of this abrupt junction relative to the depth of the well is such that the peak electric field causes the breakdown initiation point to be spaced away from the trench.

CLAIM	AO4912 POWER MOSFET
2. The trenched field effect transistor of claim 1 wherein said doped well has a substantially flat bottom.	The accused device has a doped well with a substantially flat bottom. (Fig. AO4912-3 (Scanning Electron Microscopy image), item D; Fig. AO4912-4 (Scanning Capacitance Microscopy image), item D.)
3. The trenched field effect transistor of claim 1 wherein said trench has rounded top and bottom corners.	The trench of the accused device has a rounded top and bottom. (Fig. AO4912-3 (Scanning Electron Microscopy image), item B; Fig. AO4912-4 (Scanning Capacitance Microscopy image), item B.)
4. The trenched field effect transistor of claim 1 wherein the abrupt junction causes the transistor breakdown initiation point to occur in the area of the junction, when voltage is applied to the transistor.	The abrupt junction in the accused device creates a peak electric field in the area of the junction when voltage is applied, so that the transistor breakdown initiation point occurs in the area of the abrupt junction. (Fig. AO4912-5 (Secondary Ion Mass Spectroscopy data).)
6. An array of transistor cells comprising:	The accused device is formed with an array of transistor cells formed in a striped design as described below. (Fig. AO4912-3 (Scanning Electron Microscopy image); Fig. AO4912-4 (Scanning Capacitance Microscopy image); Fig. AO4912-6 (Scanning Electron Microscopy image (plan view).)
a semiconductor substrate having a first conductivity type;	The accused device is an N-channel MOSFET, which is therefore formed on a substrate of doped N-type silicon. In the language of the claim, the N-type dopants in the substrate are a "first conductivity type." (Fig. AO4912-1 (datasheet); Fig. AO4912-3 (Scanning Electron Microscopy image), item A; Fig. AO4912-4 (Scanning Capacitance Microscopy image), item A.)
a plurality of gate-forming trenches arranged substantially parallel to each other, each trench extending a predetermined depth into said substrate and the space between adjacent trenches defining a contact area;	The accused device has gates formed using a striped design with substantially parallel trenches, with the trenches extending to a predetermined depth into the substrate and contact areas formed between the parallel trenches. (Fig. AO4912-3 (Scanning Electron Microscopy image), item B; Fig. AO4912-4 (Scanning Capacitance Microscopy image), item B; Fig. AO4912-8 (Scanning Electron Microscopy image (plan view), items B and C.)
a pair of doped source junctions, positioned on opposite sides of the trench and extending along the length of the trench, the source junctions having the first conductivity type;	The accused device has a pair of source junctions (regions) positioned on opposite sides of the trench and extending along the length of the trench. (Fig. AO4912-3 (Scanning Electron Microscopy image), item C; Fig. AO4912-4 (Scanning Capacitance Microscopy image), item C; Fig. AO49124-8 (Scanning Electron Microscopy image (plan view), item A.) Because the accused device is an N-channel MOSFET, the source junctions (regions) are formed with N-type dopants, which are dopants of the first conductivity type.
a doped well having a second conductivity type with a charge opposite that of the first conductivity type, the doped well formed in the semiconductor substrate between each pair of gate-forming trenches;	The accused device has a lightly doped well formed with P-type dopants (a second conductivity type opposite to the first conductivity type) that is formed in the substrate between each pair of gate-forming trenches. (Fig. AO4912-3 (Scanning Electron Microscopy image), item D; Fig. AO4912-4 (Scanning Capacitance Microscopy image), item D.)
a doped heavy body having the second conductivity type formed inside the doped well and positioned adjacent each source junction, the deepest portion of said heavy body extending less deeply into said semiconductor substrate than said predetermined depth of said trenches; and	The accused device has a highly doped heavy body formed with a higher concentration of P-type dopants (the second conductivity type) that is formed inside the doped well and positioned adjacent to each source junction. The deepest portion of the P-type heavy body extends to a depth in the substrate that is less than the predetermined depth of the trenches. (Fig. AO4912-3 (Scanning Electron Microscopy image), item E; Fig. AO4912-4 (Scanning Capacitance Microscopy image), item E.)

CLAIM	AO4912 POWER MOSFET
alternating heavy body and source contact regions defined at the surface of the semiconductor substrate along the length of the contact area,	The accused device has alternating doped heavy body and source contact regions at the surface of the substrate along the length of the contact area. (Fig. AO4912-9 (Scanning Capacitance Microscopy image), items B and C.)
wherein the heavy body forms an abrupt junction with the well, and a depth of the heavy body relative to a depth of the well is adjusted so that breakdown of the transistor originates in the semiconductor in a region spaced away from the trenches when voltage is applied to the transistor.	The junction between the highly doped P-type heavy body and the lightly doped P-type well is an abrupt junction. (Fig. AO4912-5 (Secondary Ion Mass Spectroscopy data).) This abrupt junction creates a peak electric field when voltage is applied to the accused device, and the depth of this abrupt junction relative to the depth of the well is such that the peak electric field causes the breakdown initiation point to be spaced away from the trench.
7. The array of transistor cells of claim 6, wherein each said doped well has a substantially flat bottom.	The accused device has a doped well with a substantially flat bottom. (Fig. AO4912-3 (Scanning Electron Microscopy image), item D; Fig. AO4912-4 (Scanning Capacitance Microscopy image), item D.)
8. The array of transistor cells of claim 6 wherein the controlled depth of the junction causes the breakdown origination point to occur approximately halfway between adjacent gateforming trenches.	The depth of the abrupt junction is selected to cause the breakdown origination point to occur approximately halfway between adjacent gateforming trenches. (Fig. AO4912-5 (Secondary Ion Mass Spectroscopy data).)
9. The array of transistor cells of claim 6 wherein each said doped well has a depth less than the predetermined depth of said gateforming trenches.	The accused device has a doped well which has a depth that is less than the predetermined depth of the gate-forming trenches. (Fig. AO4912-3 (Scanning Electron Microscopy image), item D; Fig. AO4912-4 (Scanning Capacitance Microscopy image), item D.)
10. The array of transistor cells of claim 6 wherein each said gate-forming trench has rounded top and bottom corners.	The trench of the accused device has rounded top and bottom corners. (Fig. AO4912-3 (Scanning Electron Microscopy image), item B; Fig. AO4912-4 (Scanning Capacitance Microscopy image), item B.)
11. The array of transistor cells of claim 9 further comprising a field termination structure surrounding the periphery of the array.	The accused device has a field termination structure surrounding the periphery of the array. (Fig. AO4912-6 (Scanning Electron Microscopy image), item A.)
15. A trenched field effect transistor formed on a substrate, comprising:	The accused device is a trenched field effect transistor formed on a substrate. (Fig. AO4912-1 (datasheet); Fig. AO4912-3 (Scanning Electron Microscopy image), item A; Fig. AO4912-4 (Scanning Capacitance Microscopy image), item A.)
a plurality of trenches formed in parallel along a longitudinal axis, the plurality of trenches extending into the substrate to a first depth;	The accused device has a plurality of trenches formed in parallel along a longitudinal axis, the trenches extending to a first depth into the substrate. (Fig. AO4912-3 (Scanning Electron Microscopy image), item B; Fig. AO4912-4 (Scanning Capacitance Microscopy image), item B; Fig. AO4912-6 (Scanning Electron Microscopy image (plan view), item B.)
a doped well extending into the substrate between each pair of trenches;	The accused device has a doped well formed in the substrate between each pair of trenches. (Fig. AO4912-3 (Scanning Electron Microscopy image), item D; Fig. AO4912-4 (Scanning Capacitance Microscopy image), item D.)

CLAIM	AO4912 POWER MOSFET
a pair of doped source regions formed on opposite sides of each trench; and	The accused device has a pair of doped source regions formed on opposite sides of each trench. (Fig. AO4912-3 (Scanning Electron Microscopy image), item C; Fig. AO4912-4 (Scanning Capacitance Microscopy image), item C.) Since the accused device is an N-channel device, the source regions are doped with N-type dopants.
a doped heavy body formed inside the doped well adjacent each source region, the doped heavy body extending into the doped well to a second depth that is less than the first depth,	The accused device has a doped heavy body formed with a higher concentration of P-type dopants than is located inside the doped well. The doped heavy body extends to a second depth that is less than the first depth of the trench. (Scanning Electron Microscopy image), item E; Fig. AO4912-4 (Scanning Capacitance Microscopy image), item E.)
wherein the doped heavy body:	
forms a continuous doped region along substantially the entire longitudinal axis of a trench, and	The doped heavy body forms a continuous region along substantially the entire longitudinal axis of the trench. (Fig. AO4912-3 (Scanning Electron Microscopy image), item E; Fig. AO4912-4 (Scanning Capacitance Microscopy image), item E.)
forms an abrupt junction with the well, and a depth of the heavy body junction relative to a maximum depth of the well, is adjusted so that a peak electric field in the substrate is spaced away from the trench when voltage is applied to the transistor.	The junction between the highly doped P-type heavy body and the lightly doped P-type well is an abrupt junction. (Fig. AO4912-5 (Secondary Ion Mass Spectroscopy data).) This abrupt junction creates a peak electric field when voltage is applied to the accused device, and the depth of this abrupt junction relative to the depth of the well is such that the peak electric field causes the breakdown initiation point to be spaced away from the trench.
16. The trenched field effect transistor of claim 15 further comprising source and heavy body contact areas defined on a surface of the substrate between each pair of trenches.	The accused device has source and heavy body contact areas at the surface of the substrate between each pair of trenches. (Fig. AO4912-9 (Scanning Capacitance Microscopy image (plan view)).)
17. The trenched field effect transistor of claim 16 wherein the contact areas alternate between source and heavy body contacts.	The source and heavy body contact areas alternate at the surface of the substrate between each pair of trenches. (Fig. AO4912-9 (Scanning Capacitance Microscopy image (plan view)).)
18. The trenched field effect transistor of claim 1 further comprising an epitaxial layer having dopants of the first conductivity type, and formed between the substrate and the doped well, with no buried layer formed at an interface between the epitaxial layer and the substrate.	The accused device has an N-type epitaxial layer (formed with dopants of the first conductivity type) located between the N-type substrate and the lightly doped P-type well. (Fig. AO4912-3 (Scanning Electron Microscopy image), items A, D, F; Fig. AO4912-4 (Scanning Capacitance Microscopy image), items A, D, F.) There is no indication of a buried layer formed at the interface between the epitaxial layer and the substrate.
21. The trenched field effect transistor of claim 6, further comprising:	
an epitaxial layer having the first conductivity type formed between the substrate and the well, with no buried layer formed at an interface between the epitaxial layer and the substrate.	The accused device has an N-type epitaxial layer (formed with dopants of the first conductivity type) located between the N-type substrate and the lightly doped P-type well. (Fig. AO4912-3 (Scanning Electron Microscopy image), items A, D, F; Fig. AO4912-4 (Scanning Capacitance Microscopy image), items A, D, F.) There is no indication of a buried layer formed at the interface between the epitaxial layer and the substrate.

CLAIM	AO4912 POWER MOSFET
22. The trenched field effect transistor of claim 15, further comprising:	
an epitaxial layer having the first conductivity type formed between the substrate and the well,	The accused device has an N-type epitaxial layer (formed with dopants of the first conductivity type) located between the N-type substrate and the lightly doped P-type well. (Fig. AO4912-3 (Scanning Electron Microscopy image), items A, D, F; Fig. AO4912-4 (Scanning Capacitance Microscopy image), items A, D, F.)
wherein the second depth relative to a depth of the well is adjusted to eliminate the need for any layers disposed between the epitaxial layer and the substrate.	The accused device has a doped heavy body formed at depth relative to the depth of the P-type well such that there is no need for any layers disposed between the epitaxial layer and the substrate. (Fig. AO4912-3 (Scanning Electron Microscopy image), items D and E; Fig. AO4912-4 (Scanning Capacitance Microscopy image), items D and E.)

61139165 vl

INFRINGEMENT OF U.S. PATENT NO. 6,429,481

AOS AOD438 POWER MOSFET

CLAIM	AOD438 POWER MOSFET
1. A trenched field effect transistor comprising:	The AOS AOD438 Power MOSFET ("the accused device") is a trenched field effect transistor. (Fig. AOD438-1 (datasheet); Fig. AOD438-2 (package marking).)
a semiconductor substrate having dopants of a first conductivity type;	The accused device is an N-channel MOSFET, which is therefore formed on a substrate of doped N-type silicon. In the language of the claim, the N-type dopants in the substrate are a "first conductivity type." (Fig. AOD438-1 (datasheet); Fig. AOD438-3 (Scanning Electron Microscopy image), item A; Fig. AOD438-4 (Scanning Capacitance Microscopy image), item A.)
a trench extending a predetermined depth into said semiconductor substrate; a pair of doped source junctions having dopants of the first conductivity type, and positioned on opposite sides of the trench;	The accused device has a trench extending to a predetermined depth into the substrate. (Fig. AOD438-3 (Scanning Electron Microscopy image), item B; Fig. AOD438-4 (Scanning Capacitance Microscopy image), item B.) The accused device has a pair of source junctions (regions) positioned on opposite sides of the trench. (Fig. AOD438-3 (Scanning Electron Microscopy image), item C; Fig. AOD438-4 (Scanning Capacitance Microscopy image), item C.) Because the accused device is an N-channel MOSFET, the source junctions (regions) are formed with N-type dopants, which are dopants of the first conductivity type.
a doped well having dopants of a second conductivity type opposite to said first conductivity type, and formed into the substrate to a depth that is less than said predetermined depth of the trench; and	The accused device has a lightly doped well formed with P-type dopants (a second conductivity type opposite to the first conductivity type) that is formed in the substrate, and the depth of the doped well is less than the predetermined depth of the trench. (Fig. AOD438-3 (Scanning Electron Microscopy image), item D; Fig. AOD438-4 (Scanning Capacitance Microscopy image), item D.)
a doped heavy body having dopants of the second conductivity type, and positioned adjacent each source junction on the opposite side of the source junction from the trench, said heavy body extending into said doped well to a depth that is less than said depth of said doped well,	The accused device has a highly doped heavy body formed with a higher concentration of P-type dopants (the second conductivity type) that is positioned adjacent to each source junction on the opposite side of the source junction from the trench. The P-type heavy body extends to a depth that is less than the depth of the well. (Fig. AOD438-3 (Scanning Electron Microscopy image), item E; Fig. AOD438-4 (Scanning Capacitance Microscopy image), item E.)
wherein the heavy body forms an abrupt junction with the well and the depth of the junction, relative to the depth of the well, is adjusted so that a transistor breakdown initiation point is spaced away from the trench in the semiconductor, when voltage is applied to the transistor.	The junction between the doped P-type heavy body and the well is an abrupt junction. (Fig. AOD438-5 (Secondary Ion Mass Spectroscopy data).) This abrupt junction creates a peak electric field when voltage is applied to the accused device, and the depth of this abrupt junction relative to the depth of the well is such that the peak electric field causes the breakdown initiation point to be spaced away from the trench.

CLAIM	AOD438 POWER MOSFET
2. The trenched field effect transistor of claim 1 wherein said doped well has a substantially flat bottom.	The accused device has a doped well with a substantially flat bottom. (Fig. AOD438-3 (Scanning Electron Microscopy image), item D; Fig. AOD438-4 (Scanning Capacitance Microscopy image), item D.)
3. The trenched field effect transistor of claim 1 wherein said trench has rounded top and bottom corners.	The trench of the accused device has a rounded top and bottom. (Fig. AOD438-3 (Scanning Electron Microscopy image), item B; Fig. AOD438-4 (Scanning Capacitance Microscopy image), item B.)
4. The trenched field effect transistor of claim 1 wherein the abrupt junction causes the transistor breakdown initiation point to occur in the area of the junction, when voltage is applied to the transistor.	The abrupt junction in the accused device creates a peak electric field in the area of the junction when voltage is applied, so that the transistor breakdown initiation point occurs in the area of the abrupt junction. (Fig. AOD438-5 (Secondary Ion Mass Spectroscopy data).)
6. An array of transistor cells comprising:	The accused device is formed with an array of transistor cells formed in a striped design as described below. (Fig. AOD438-3 (Scanning Electron Microscopy image); Fig. AOD438-4 (Scanning Capacitance Microscopy image); Fig. AOD438-6 (Scanning Electron Microscopy image (plan view).)
a semiconductor substrate having a first conductivity type;	The accused device is an N-channel MOSFET, which is therefore formed on a substrate of doped N-type silicon. In the language of the claim, the N-type dopants in the substrate are a "first conductivity type." (Fig. AOD438-1 (datasheet); Fig. AOD438-3 (Scanning Electron Microscopy image), item A; Fig. AOD438-4 (Scanning Capacitance Microscopy image), item A.)
a plurality of gate-forming trenches arranged substantially parallel to each other, each trench extending a predetermined depth into said substrate and the space between adjacent trenches defining a contact area;	The accused device has gates formed using a striped design with substantially parallel trenches, with the trenches extending to a predetermined depth into the substrate and contact areas formed between the parallel trenches. (Fig. AOD438-3 (Scanning Electron Microscopy image), item B; Fig. AOD438-4 (Scanning Capacitance Microscopy image), item B; Fig. AOD438-8 (Scanning Electron Microscopy image (plan view), items B and C.)
a pair of doped source junctions, positioned on opposite sides of the trench and extending along the length of the trench, the source junctions having the first conductivity type;	The accused device has a pair of source junctions (regions) positioned on opposite sides of the trench and extending along the length of the trench. (Fig. AOD438-3 (Scanning Electron Microscopy image), item C; Fig. AOD438-4 (Scanning Capacitance Microscopy image), item C; Fig. AOD4384-8 (Scanning Electron Microscopy image (plan view), item A.) Because the accused device is an N-channel MOSFET, the source junctions (regions) are formed with N-type dopants, which are dopants of the first conductivity type.
a doped well having a second conductivity type with a charge opposite that of the first conductivity type, the doped well formed in the semiconductor substrate between each pair of gate-forming trenches;	The accused device has a lightly doped well formed with P-type dopants (a second conductivity type opposite to the first conductivity type) that is formed in the substrate between each pair of gate-forming trenches. (Fig. AOD438-3 (Scanning Electron Microscopy image), item D; Fig. AOD438-4 (Scanning Capacitance Microscopy image), item D.)
a doped heavy body having the second conductivity type formed inside the doped well and positioned adjacent each source junction, the deepest portion of said heavy body extending less deeply into said semiconductor substrate than said predetermined depth of said trenches; and	The accused device has a highly doped heavy body formed with a higher concentration of P-type dopants (the second conductivity type) that is formed inside the doped well and positioned adjacent to each source junction. The deepest portion of the P-type heavy body extends to a depth in the substrate that is less than the predetermined depth of the trenches. (Fig. AOD438-3 (Scanning Electron Microscopy image), item E; Fig. AOD438-4 (Scanning Capacitance Microscopy image), item E.)

CLAIM	AOD438 POWER MOSFET
alternating heavy body and source contact regions defined at the surface of the semiconductor substrate along the length of the contact area,	The accused device has alternating doped heavy body and source contact regions at the surface of the substrate along the length of the contact area. (Fig. AOD438-9 (Scanning Capacitance Microscopy image), items B and C.)
wherein the heavy body forms an abrupt junction with the well, and a depth of the heavy body relative to a depth of the well is adjusted so that breakdown of the transistor originates in the semiconductor in a region spaced away from the trenches when voltage is applied to the transistor.	The junction between the highly doped P-type heavy body and the lightly doped P-type well is an abrupt junction. (Fig. AOD438-5 (Secondary Ion Mass Spectroscopy data).) This abrupt junction creates a peak electric field when voltage is applied to the accused device, and the depth of this abrupt junction relative to the depth of the well is such that the peak electric field causes the breakdown initiation point to be spaced away from the trench.
7. The array of transistor cells of claim 6, wherein each said doped well has a substantially flat bottom.	The accused device has a doped well with a substantially flat bottom. (Fig. AOD438-3 (Scanning Electron Microscopy image), item D; Fig. AOD438-4 (Scanning Capacitance Microscopy image), item D.)
8. The array of transistor cells of claim 6 wherein the controlled depth of the junction causes the breakdown origination point to occur approximately halfway between adjacent gateforming trenches.	The depth of the abrupt junction is selected to cause the breakdown origination point to occur approximately halfway between adjacent gateforming trenches. (Fig. AOD438-5 (Secondary Ion Mass Spectroscopy data).)
9. The array of transistor cells of claim 6 wherein each said doped well has a depth less than the predetermined depth of said gateforming trenches.	The accused device has a doped well which has a depth that is less than the predetermined depth of the gate-forming trenches. (Fig. AOD438-3 (Scanning Electron Microscopy image), item D; Fig. AOD438-4 (Scanning Capacitance Microscopy image), item D.)
10. The array of transistor cells of claim 6 wherein each said gate-forming trench has rounded top and bottom corners.	The trench of the accused device has rounded top and bottom corners. (Fig. AOD438-3 (Scanning Electron Microscopy image), item B; Fig. AOD438-4 (Scanning Capacitance Microscopy image), item B.)
11. The array of transistor cells of claim 9 further comprising a field termination structure surrounding the periphery of the array.	The accused device has a field termination structure surrounding the periphery of the array. (Fig. AOD438-6 (Scanning Electron Microscopy image), item A.)
15. A trenched field effect transistor formed on a substrate, comprising:	The accused device is a trenched field effect transistor formed on a substrate. (Fig. AOD438-1 (datasheet); Fig. AOD438-3 (Scanning Electron Microscopy image), item A; Fig. AOD438-4 (Scanning Capacitance Microscopy image), item A.)
a plurality of trenches formed in parallel along a longitudinal axis, the plurality of trenches extending into the substrate to a first depth;	The accused device has a plurality of trenches formed in parallel along a longitudinal axis, the trenches extending to a first depth into the substrate. (Fig. AOD438-3 (Scanning Electron Microscopy image), item B; Fig. AOD438-4 (Scanning Capacitance Microscopy image), item B; Fig. AOD438-6 (Scanning Electron Microscopy image (plan view), item B.)
a doped well extending into the substrate between each pair of trenches;	The accused device has a doped well formed in the substrate between each pair of trenches. (Fig. AOD438-3 (Scanning Electron Microscopy image), item D; Fig. AOD438-4 (Scanning Capacitance Microscopy image), item D.)

CLAIM	AOD438 POWER MOSFET
a pair of doped source regions formed on opposite sides of each trench; and	The accused device has a pair of doped source regions formed on opposite sides of each trench. (Fig. AOD438-3 (Scanning Electron Microscopy image), item C; Fig. AOD438-4 (Scanning Capacitance Microscopy image), item C.) Since the accused device is an N-channel device, the source regions are doped with N-type dopants.
a doped heavy body formed inside the doped well adjacent each source region, the doped heavy body extending into the doped well to a second depth that is less than the first depth,	The accused device has a doped heavy body formed with a higher concentration of P-type dopants than is located inside the doped well. The doped heavy body extends to a second depth that is less than the first depth of the trench. (Scanning Electron Microscopy image), item E; Fig. AOD438-4 (Scanning Capacitance Microscopy image), item E.)
wherein the doped heavy body:	
forms a continuous doped region along substantially the entire longitudinal axis of a trench, and	The doped heavy body forms a continuous region along substantially the entire longitudinal axis of the trench. (Fig. AOD438-3 (Scanning Electron Microscopy image), item E; Fig. AOD438-4 (Scanning Capacitance Microscopy image), item E.)
forms an abrupt junction with the well, and a depth of the heavy body junction relative to a maximum depth of the well, is adjusted so that a peak electric field in the substrate is spaced away from the trench when voltage is applied to the transistor.	The junction between the highly doped P-type heavy body and the lightly doped P-type well is an abrupt junction. (Fig. AOD438-5 (Secondary Ion Mass Spectroscopy data).) This abrupt junction creates a peak electric field when voltage is applied to the accused device, and the depth of this abrupt junction relative to the depth of the well is such that the peak electric field causes the breakdown initiation point to be spaced away from the trench.
16. The trenched field effect transistor of claim 15 further comprising source and heavy body contact areas defined on a surface of the substrate between each pair of trenches.	The accused device has source and heavy body contact areas at the surface of the substrate between each pair of trenches. (Fig. AOD438-9 (Scanning Capacitance Microscopy image (plan view)).)
17. The trenched field effect transistor of claim 16 wherein the contact areas alternate between source and heavy body contacts.	The source and heavy body contact areas alternate at the surface of the substrate between each pair of trenches. (Fig. AOD438-9 (Scanning Capacitance Microscopy image (plan view)).)
18. The trenched field effect transistor of claim 1 further comprising an epitaxial layer having dopants of the first conductivity type, and formed between the substrate and the doped well, with no buried layer formed at an interface between the epitaxial layer and the substrate.	The accused device has an N-type epitaxial layer (formed with dopants of the first conductivity type) located between the N-type substrate and the lightly doped P-type well. (Fig. AOD438-3 (Scanning Electron Microscopy image), items A, D, F; Fig. AOD438-4 (Scanning Capacitance Microscopy image), items A, D, F.) There is no indication of a buried layer formed at the interface between the epitaxial layer and the substrate.
21. The trenched field effect transistor of claim 6, further comprising:	
an epitaxial layer having the first conductivity type formed between the substrate and the well, with no buried layer formed at an interface between the epitaxial layer and the substrate.	The accused device has an N-type epitaxial layer (formed with dopants of the first conductivity type) located between the N-type substrate and the lightly doped P-type well. (Fig. AOD438-3 (Scanning Electron Microscopy image), items A, D, F; Fig. AOD438-4 (Scanning Capacitance Microscopy image), items A, D, F.) There is no indication of a buried layer formed at the interface between the epitaxial layer and the substrate.

CLAIM	AOD438 POWER MOSFET
22. The trenched field effect transistor of claim 15, further comprising:	
an epitaxial layer having the first conductivity type formed between the substrate and the well,	The accused device has an N-type epitaxial layer (formed with dopants of the first conductivity type) located between the N-type substrate and the lightly doped P-type well. (Fig. AOD438-3 (Scanning Electron Microscopy image), items A, D, F; Fig. AOD438-4 (Scanning Capacitance Microscopy image), items A, D, F.)
wherein the second depth relative to a depth of the well is adjusted to eliminate the need for any layers disposed between the epitaxial layer and the substrate.	The accused device has a doped heavy body formed at depth relative to the depth of the P-type well such that there is no need for any layers disposed between the epitaxial layer and the substrate. (Fig. AOD438-3 (Scanning Electron Microscopy image), items D and E; Fig. AOD438-4 (Scanning Capacitance Microscopy image), items D and E.)

61139184 v1

INFRINGEMENT OF U.S. PATENT NO. 6,429,481

AOS AOL1414 POWER MOSFET

CLAIM	AOL1414 POWER MOSFET
1. A trenched field effect transistor comprising:	The AOS AOL1414 Power MOSFET ("the accused device") is a trenched field effect transistor. (Fig. AOL1414-1 (datasheet); Fig. AOL1414-2 (package marking).)
a semiconductor substrate having dopants of a first conductivity type;	The accused device is an N-channel MOSFET, which is therefore formed on a substrate of doped N-type silicon. In the language of the claim, the N-type dopants in the substrate are a "first conductivity type." (Fig. AOL1414-1 (datasheet); Fig. AOL1414-3 (Scanning Electron Microscopy image), item A; Fig. AOL1414-4 (Scanning Capacitance Microscopy image), item A.)
a trench extending a predetermined depth into said semiconductor substrate; a pair of doped source junctions having dopants of the first conductivity type, and positioned on opposite sides of the trench;	The accused device has a trench extending to a predetermined depth into the substrate. (Fig. AOL1414-3 (Scanning Electron Microscopy image), item B; Fig. AOL1414-4 (Scanning Capacitance Microscopy image), item B.) The accused device has a pair of source junctions (regions) positioned on opposite sides of the trench. (Fig. AOL1414-3 (Scanning Electron Microscopy image), item C; Fig. AOL1414-4 (Scanning Capacitance Microscopy image), item C.) Because the accused device is an N-channel MOSFET, the source junctions (regions) are formed with N-type dopants, which are dopants of the first conductivity type.
a doped well having dopants of a second conductivity type opposite to said first conductivity type, and formed into the substrate to a depth that is less than said predetermined depth of the trench; and	The accused device has a lightly doped well formed with P-type dopants (a second conductivity type opposite to the first conductivity type) that is formed in the substrate, and the depth of the doped well is less than the predetermined depth of the trench. (Fig. AOL1414-3 (Scanning Electron Microscopy image), item D; Fig. AOL1414-4 (Scanning Capacitance Microscopy image), item D.)
a doped heavy body having dopants of the second conductivity type, and positioned adjacent each source junction on the opposite side of the source junction from the trench, said heavy body extending into said doped well to a depth that is less than said depth of said doped well,	The accused device has a highly doped heavy body formed with a higher concentration of P-type dopants (the second conductivity type) that is positioned adjacent to each source junction on the opposite side of the source junction from the trench. The P-type heavy body extends to a depth that is less than the depth of the well. (Fig. AOL1414-3 (Scanning Electron Microscopy image), item E; Fig. AOL1414-4 (Scanning Capacitance Microscopy image), item E.)
wherein the heavy body forms an abrupt junction with the well and the depth of the junction, relative to the depth of the well, is adjusted so that a transistor breakdown initiation point is spaced away from the trench in the semiconductor, when voltage is applied to the transistor.	The junction between the doped P-type heavy body and the well is an abrupt junction. (Fig. AOL1414-5 (Secondary Ion Mass Spectroscopy data).) This abrupt junction creates a peak electric field when voltage is applied to the accused device, and the depth of this abrupt junction relative to the depth of the well is such that the peak electric field causes the breakdown initiation point to be spaced away from the trench.

CLAIM	AOL1414 POWER MOSFET
2. The trenched field effect transistor of claim 1 wherein said doped well has a substantially flat bottom.	The accused device has a doped well with a substantially flat bottom. (Fig. AOL1414-3 (Scanning Electron Microscopy image), item D; Fig. AOL1414-4 (Scanning Capacitance Microscopy image), item D.)
3. The trenched field effect transistor of claim 1 wherein said trench has rounded top and bottom corners.	The trench of the accused device has a rounded top and bottom. (Fig. AOL1414-3 (Scanning Electron Microscopy image), item B; Fig. AOL1414-4 (Scanning Capacitance Microscopy image), item B.)
4. The trenched field effect transistor of claim 1 wherein the abrupt junction causes the transistor breakdown initiation point to occur in the area of the junction, when voltage is applied to the transistor.	The abrupt junction in the accused device creates a peak electric field in the area of the junction when voltage is applied, so that the transistor breakdown initiation point occurs in the area of the abrupt junction. (Fig. AOL1414-5 (Secondary Ion Mass Spectroscopy data).)
6. An array of transistor cells comprising:	The accused device is formed with an array of transistor cells formed in a striped design as described below. (Fig. AOL1414-3 (Scanning Electron Microscopy image); Fig. AOL1414-4 (Scanning Capacitance Microscopy image); Fig. AOL1414-6 (Scanning Electron Microscopy image (plan view).)
a semiconductor substrate having a first conductivity type;	The accused device is an N-channel MOSFET, which is therefore formed on a substrate of doped N-type silicon. In the language of the claim, the N-type dopants in the substrate are a "first conductivity type." (Fig. AOL1414-1 (datasheet); Fig. AOL1414-3 (Scanning Electron Microscopy image), item A; Fig. AOL1414-4 (Scanning Capacitance Microscopy image), item A.)
a plurality of gate-forming trenches arranged substantially parallel to each other, each trench extending a predetermined depth into said substrate and the space between adjacent trenches defining a contact area;	The accused device has gates formed using a striped design with substantially parallel trenches, with the trenches extending to a predetermined depth into the substrate and contact areas formed between the parallel trenches. (Fig. AOL1414-3 (Scanning Electron Microscopy image), item B; Fig. AOL1414-4 (Scanning Capacitance Microscopy image), item B; Fig. AOL1414-8 (Scanning Electron Microscopy image (plan view), items B and C.)
a pair of doped source junctions, positioned on opposite sides of the trench and extending along the length of the trench, the source junctions having the first conductivity type;	The accused device has a pair of source junctions (regions) positioned on opposite sides of the trench and extending along the length of the trench. (Fig. AOL1414-3 (Scanning Electron Microscopy image), item C; Fig. AOL1414-4 (Scanning Capacitance Microscopy image), item C; Fig. AOL1414-8 (Scanning Electron Microscopy image (plan view), item A.) Because the accused device is an N-channel MOSFET, the source junctions (regions) are formed with N-type dopants, which are dopants of the first conductivity type.
a doped well having a second conductivity type with a charge opposite that of the first conductivity type, the doped well formed in the semiconductor substrate between each pair of gate-forming trenches;	The accused device has a lightly doped well formed with P-type dopants (a second conductivity type opposite to the first conductivity type) that is formed in the substrate between each pair of gate-forming trenches. (Fig. AOL1414-3 (Scanning Electron Microscopy image), item D; Fig. AOL1414-4 (Scanning Capacitance Microscopy image), item D.)
a doped heavy body having the second conductivity type formed inside the doped well and positioned adjacent each source junction, the deepest portion of said heavy body extending less deeply into said semiconductor substrate than said predetermined depth of said trenches; and	The accused device has a highly doped heavy body formed with a higher concentration of P-type dopants (the second conductivity type) that is formed inside the doped well and positioned adjacent to each source junction. The deepest portion of the P-type heavy body extends to a depth in the substrate that is less than the predetermined depth of the trenches. (Fig. AOL1414-3 (Scanning Electron Microscopy image), item E; Fig. AOL1414-4 (Scanning Capacitance Microscopy image), item E.)

CLAIM	AOL1414 POWER MOSFET
alternating heavy body and source contact regions defined at the surface of the semiconductor substrate along the length of the contact area,	The accused device has alternating doped heavy body and source contact regions at the surface of the substrate along the length of the contact area. (Fig. AOL1414-9 (Scanning Capacitance Microscopy image), items B and C.)
wherein the heavy body forms an abrupt junction with the well, and a depth of the heavy body relative to a depth of the well is adjusted so that breakdown of the transistor originates in the semiconductor in a region spaced away from the trenches when voltage is applied to the transistor.	The junction between the highly doped P-type heavy body and the lightly doped P-type well is an abrupt junction. (Fig. AOL1414-5 (Secondary Ion Mass Spectroscopy data).) This abrupt junction creates a peak electric field when voltage is applied to the accused device, and the depth of this abrupt junction relative to the depth of the well is such that the peak electric field causes the breakdown initiation point to be spaced away from the trench.
7. The array of transistor cells of claim 6, wherein each said doped well has a substantially flat bottom.	The accused device has a doped well with a substantially flat bottom. (Fig. AOL1414-3 (Scanning Electron Microscopy image), item D; Fig. AOL1414-4 (Scanning Capacitance Microscopy image), item D.)
8. The array of transistor cells of claim 6 wherein the controlled depth of the junction causes the breakdown origination point to occur approximately halfway between adjacent gateforming trenches.	The depth of the abrupt junction in the accused device is selected to cause the breakdown origination point to occur approximately halfway between adjacent gate-forming trenches. (Fig. AOL1414-5 (Secondary Ion Mass Spectroscopy data).)
9. The array of transistor cells of claim 6 wherein each said doped well has a depth less than the predetermined depth of said gateforming trenches.	The accused device has a doped well which has a depth that is less than the predetermined depth of the gate-forming trenches. (Fig. AOL1414-3 (Scanning Electron Microscopy image), item D; Fig. AOL1414-4 (Scanning Capacitance Microscopy image), item D.)
10. The array of transistor cells of claim 6 wherein each said gate-forming trench has rounded top and bottom corners.	The trench of the accused device has rounded top and bottom corners. (Fig. AOL1414-3 (Scanning Electron Microscopy image), item B; Fig. AOL1414-4 (Scanning Capacitance Microscopy image), item B.)
11. The array of transistor cells of claim 9 further comprising a field termination structure surrounding the periphery of the array.	The accused device has a field termination structure surrounding the periphery of the array. (Fig. AOL1414-6 (Scanning Electron Microscopy image), item A.)
15. A trenched field effect transistor formed on a substrate, comprising:	The accused device is a trenched field effect transistor formed on a substrate. (Fig. AOL1414-1 (datasheet); Fig. AOL1414-3 (Scanning Electron Microscopy image), item A; Fig. AOL1414-4 (Scanning Capacitance Microscopy image), item A.)
a plurality of trenches formed in parallel along a longitudinal axis, the plurality of trenches extending into the substrate to a first depth;	The accused device has a plurality of trenches formed in parallel along a longitudinal axis, the trenches extending to a first depth into the substrate. (Fig. AOL1414-3 (Scanning Electron Microscopy image), item B; Fig. AOL1414-4 (Scanning Capacitance Microscopy image), item B; Fig. AOL1414-6 (Scanning Electron Microscopy image (plan view), item B.)
a doped well extending into the substrate between each pair of trenches;	The accused device has a doped well formed in the substrate between each pair of trenches. (Fig. AOL1414-3 (Scanning Electron Microscopy image), item D; Fig. AOL1414-4 (Scanning Capacitance Microscopy image), item D.)

CLAIM	AOL1414 POWER MOSFET
a pair of doped source regions formed on opposite sides of each trench; and	The accused device has a pair of doped source regions formed on opposite sides of each trench. (Fig. AOL1414-3 (Scanning Electron Microscopy image), item C; Fig. AOL1414-4 (Scanning Capacitance Microscopy image), item C.) Since the accused device is an N-channel device, the source regions are doped with N-type dopants.
a doped heavy body formed inside the doped well adjacent each source region, the doped heavy body extending into the doped well to a second depth that is less than the first depth,	The accused device has a doped heavy body formed with a higher concentration of P-type dopants than is located inside the doped well. The doped heavy body extends to a second depth that is less than the first depth of the trench. (Scanning Electron Microscopy image), item E; Fig. AOL1414-4 (Scanning Capacitance Microscopy image), item E.)
wherein the doped heavy body:	
forms a continuous doped region along substantially the entire longitudinal axis of a trench, and	The doped heavy body forms a continuous region along substantially the entire longitudinal axis of the trench. (Fig. AOL1414-3 (Scanning Electron Microscopy image), item E; Fig. AOL1414-4 (Scanning Capacitance Microscopy image), item E.)
forms an abrupt junction with the well, and a depth of the heavy body junction relative to a maximum depth of the well, is adjusted so that a peak electric field in the substrate is spaced away from the trench when voltage is applied to the transistor.	The junction between the highly doped P-type heavy body and the lightly doped P-type well is an abrupt junction. (Fig. AOL1414-5 (Secondary Ion Mass Spectroscopy data).) This abrupt junction creates a peak electric field when voltage is applied to the accused device, and the depth of this abrupt junction relative to the depth of the well is such that the peak electric field causes the breakdown initiation point to be spaced away from the trench.
16. The trenched field effect transistor of claim 15 further comprising source and heavy body contact areas defined on a surface of the substrate between each pair of trenches.	The accused device has source and heavy body contact areas at the surface of the substrate between each pair of trenches. (Fig. AOL1414-9 (Scanning Capacitance Microscopy image (plan view)).)
17. The trenched field effect transistor of claim 16 wherein the contact areas alternate between source and heavy body contacts.	The source and heavy body contact areas alternate at the surface of the substrate between each pair of trenches. (Fig. AOL1414-9 (Scanning Capacitance Microscopy image (plan view)).)
18. The trenched field effect transistor of claim 1 further comprising an epitaxial layer having dopants of the first conductivity type, and formed between the substrate and the doped well, with no buried layer formed at an interface between the epitaxial layer and the substrate.	The accused device has an N-type epitaxial layer (formed with dopants of the first conductivity type) located between the N-type substrate and the lightly doped P-type well. (Fig. AOL1414-3 (Scanning Electron Microscopy image), items A, D, F; Fig. AOL1414-4 (Scanning Capacitance Microscopy image), items A, D, F.) There is no indication of a buried layer formed at the interface between the epitaxial layer and the substrate.
21. The trenched field effect transistor of claim 6, further comprising:	
an epitaxial layer having the first conductivity type formed between the substrate and the well, with no buried layer formed at an interface between the epitaxial layer and the substrate.	The accused device has an N-type epitaxial layer (formed with dopants of the first conductivity type) located between the N-type substrate and the lightly doped P-type well. (Fig. AOL1414-3 (Scanning Electron Microscopy image), items A, D, F; Fig. AOL1414-4 (Scanning Capacitance Microscopy image), items A, D, F.) There is no indication of a buried layer formed at the interface between the epitaxial layer and the substrate.

CLAIM	AOL1414 POWER MOSFET
22. The trenched field effect transistor of claim 15, further comprising:	
an epitaxial layer having the first conductivity type formed between the substrate and the well,	The accused device has an N-type epitaxial layer (formed with dopants of the first conductivity type) located between the N-type substrate and the lightly doped P-type well. (Fig. AOL1414-3 (Scanning Electron Microscopy image), items A, D, F; Fig. AOL1414-4 (Scanning Capacitance Microscopy image), items A, D, F.)
wherein the second depth relative to a depth of the well is adjusted to eliminate the need for any layers disposed between the epitaxial layer and the substrate.	The accused device has a doped heavy body formed at depth relative to the depth of the P-type well such that there is no need for any layers disposed between the epitaxial layer and the substrate. (Fig. AOL1414-3 (Scanning Electron Microscopy image), items D and E; Fig. AOL1414-4 (Scanning Capacitance Microscopy image), items D and E.)

61135793 vl

INFRINGEMENT OF U.S. PATENT NO. 6,710,406 B2

AOS AO4812 POWER MOSFET

CLAIM	AO4812 POWER MOSFET
A trenched field effect transistor comprising:	The AOS AO4812 Power MOSFET ("the accused device") is a trenched field effect transistor. (Fig. AO4812-1 (datasheet); Fig. AO4812-2 (package marking).)
a semiconductor substrate having dopants of a first conductivity type;	The accused device is an N-channel MOSFET, which is therefore formed on a substrate of doped N-type silicon. In the language of the claim, the N-type dopants in the substrate are a "first conductivity type." (Fig. AO4812-1 (datasheet); Fig. AO4812-3 (Scanning Electron Microscopy image), item A; Fig. AO4812-4 (Scanning Capacitance Microscopy image), item A.)
a trench extending to a first depth into said semiconductor substrate;	The accused device has a trench extending to a predetermined depth into the substrate. In the language of the claim, the predetermined depth to which the trench extends is a "first depth." (Fig. AO4812-3 (Scanning Electron Microscopy image), item B; Fig. AO4812-4 (Scanning Capacitance Microscopy image), item B.)
a pair of doped source junctions having dopants of the first conductivity type, and positioned on opposite sides of the trench;	The accused device has a pair of source junctions (regions) positioned on opposite sides of the trench. (Fig. AO4812-3 (Scanning Electron Microscopy image), item C; Fig. AO4812-4 (Scanning Capacitance Microscopy image), item C.) Because the accused device is an N-channel MOSFET, the source junctions (regions) are formed with N-type dopants, which are dopants of the first conductivity type. (Fig. AO4812-4 (Scanning Capacitance Microscopy image), item C.)
a doped well having dopants of a second conductivity type, and formed into the substrate to a second depth that is less than said first depth of the trench; and	The accused device has a lightly doped well formed with P-type dopants (a second conductivity type opposite to the first conductivity type) that is formed in the substrate, and the depth of the doped well (a second depth) is less than the predetermined depth of the trench (a first depth). (Fig. AO4812-3 (Scanning Electron Microscopy image), item D; Fig. AO4812-4 (Scanning Capacitance Microscopy image), item D.)
a heavy body formed in said doped well extending to a third depth that is less than said second depth of said doped well, the heavy body forming an abrupt junction with the well;	The accused device has a heavy body formed in the doped well that extends to a depth (a third depth) that is less than the depth of the well (a second depth). (Fig. AO4812-3 (Scanning Electron Microscopy image), item E; Fig. AO4812-4 (Scanning Capacitance Microscopy image), item E.) The junction between the doped P-type heavy body and the doped well is an abrupt junction. (Fig. AO4812-5 (Secondary Ion Mass Spectroscopy data).)
wherein, a location of the abrupt junction relative to the depth of the well is adjusted so that a transistor breakdown initiation point is spaced away from the trench in the semiconductor, when voltage is applied to the transistor.	The location of the abrupt junction of the accused device is such that it creates a peak electric field when voltage is applied to the accused device, and the depth of this abrupt junction relative to the depth of the well is such that the peak electric field causes the breakdown initiation point to be spaced away from the trench. (Fig. AO4812-5 (Secondary Ion Mass Spectroscopy data).)
2. The trenched field effect transistor of claim 1	The accused device has a doped well with a substantially flat bottom. (Fig.

nt 52-2	Filed 10/23/2007	Page 68 of 77

CLAIM	AO4812 POWER MOSFET
wherein said doped well has a substantially flat bottom.	AO4812-3 (Scanning Electron Microscopy image), item D; Fig. AO4812-4 (Scanning Capacitance Microscopy image), item D.)
3. The trenched field effect transistor of claim 1 wherein said trench has rounded top and bottom corners.	The trench of the accused device has a rounded top and bottom. (Fig. AO4812-3 (Scanning Electron Microscopy image), item B; Fig. AO4812-4 (Scanning Capacitance Microscopy image), item B.)
4. The trenched field effect transistor of claim 1 wherein the abrupt junction causes the transistor breakdown initiation point to occur in the area of the junction, when voltage is applied to the transistor.	The abrupt junction in the accused device creates a peak electric field in the area of the junction when voltage is applied, so that the transistor breakdown initiation point occurs in the area of the abrupt junction. (Fig. AO4812-5 (Secondary Ion Mass Spectroscopy data).)
5. The trenched field effect transistor of claim 1 wherein the heavy body comprises a heavily doped region having dopants of the second conductivity type at the abrupt junction.	The heavy body of the accused device is a heavily doped region of P-type dopants (a second conductivity type). (Fig. AO4812-3 (Scanning Electron Microscopy image), item E; Fig. AO4812-4 (Scanning Capacitance Microscopy image), item E.)
6. The trenched field effect transistor of claim 5 wherein the heavily doped region is formed by implanting dopants of the second conductivity type at approximately the third depth.	The heavy body of the accused device is formed by implanting P-type dopants (a second conductivity type) in the doped well and extending to a depth (a third depth) that is less than the depth of the well (a second depth). (Fig. AO4812-3 (Scanning Electron Microscopy image), item E; Fig. AO4812-4 (Scanning Capacitance Microscopy image), item E.)
10. The trenched field effect transistor of claim 1 wherein the trench is lined with a dielectric layer and substantially filled with conductive material.	The trench of the accused device is lined with a dielectric layer and substantially filled with doped polysilicon (a conductive material). (Fig. AO4812-3 (Scanning Electron Microscopy image), items B and G; Fig. AO4812-4 (Scanning Capacitance Microscopy image), items B and G.)
11. The trenched field effect transistor of claim 10 wherein the conductive material comprises polysilicon.	The conductive material in the trench of the accused device is doped polysilicon. (Fig. AO4812-3 (Scanning Electron Microscopy image), item B; Fig. AO4812-4 (Scanning Capacitance Microscopy image), item B.)
12. The trenched field effect transistor of claim 10 wherein the conductive material filling the trench is recessed relative to the surface of the semiconductor substrate.	The conductive polysilicon filling the trench of the accused device is recessed relative to the surface of the silicon semiconductor substrate. (Fig. AO4812-3 (Scanning Electron Microscopy image), item B; Fig. AO4812-4 (Scanning Capacitance Microscopy image), item B.)

61130736 v1

INFRINGEMENT OF U.S. PATENT NO. 6,710,406 B2

AOS AO4468 POWER MOSFET

CLAIM	AO4468 POWER MOSFET
1. A trenched field effect transistor comprising:	The AOS AO4468 Power MOSFET ("the accused device") is a trenched field effect transistor. (Fig. AO4468-1 (datasheet); Fig. AO4468-2 (package marking).)
a semiconductor substrate having dopants of a first conductivity type;	The accused device is an N-channel MOSFET, which is therefore formed on a substrate of doped N-type silicon. In the language of the claim, the N-type dopants in the substrate are a "first conductivity type." (Fig. AO4468-1 (datasheet); Fig. AO4468-3 (Scanning Electron Microscopy image), item A; Fig. AO4468-4 (Scanning Capacitance Microscopy image), item A.)
a trench extending to a first depth into said semiconductor substrate;	The accused device has a trench extending to a predetermined depth into the substrate. In the language of the claim, the predetermined depth to which the trench extends is a "first depth." (Fig. AO4468-3 (Scanning Electron Microscopy image), item B; Fig. AO4468-4 (Scanning Capacitance Microscopy image), item B.)
a pair of doped source junctions having dopants of the first conductivity type, and positioned on opposite sides of the trench;	The accused device has a pair of source junctions (regions) positioned on opposite sides of the trench. (Fig. AO4468-3 (Scanning Electron Microscopy image), item C; Fig. AO4468-4 (Scanning Capacitance Microscopy image), item C.) Because the accused device is an N-channel MOSFET, the source junctions (regions) are formed with N-type dopants, which are dopants of the first conductivity type. (Fig. AO4468-4 (Scanning Capacitance Microscopy image), item C.)
a doped well having dopants of a second conductivity type, and formed into the substrate to a second depth that is less than said first depth of the trench; and	The accused device has a lightly doped well formed with P-type dopants (a second conductivity type opposite to the first conductivity type) that is formed in the substrate, and the depth of the doped well (a second depth) is less than the predetermined depth of the trench (a first depth). (Fig. AO4468-3 (Scanning Electron Microscopy image), item D; Fig. AO4468-4 (Scanning Capacitance Microscopy image), item D.)
a heavy body formed in said doped well extending to a third depth that is less than said second depth of said doped well, the heavy body forming an abrupt junction with the well;	The accused device has a heavy body formed in the doped well that extends to a depth (a third depth) that is less than the depth of the well (a second depth). (Fig. AO4468-3 (Scanning Electron Microscopy image), item E; Fig. AO4468-4 (Scanning Capacitance Microscopy image), item E.) The junction between the doped P-type heavy body and the doped well is an abrupt junction. (Fig. AO4468-5 (Secondary Ion Mass Spectroscopy data).)
wherein, a location of the abrupt junction relative to the depth of the well is adjusted so that a transistor breakdown initiation point is spaced away from the trench in the semiconductor, when voltage is applied to the transistor.	The location of the abrupt junction of the accused device is such that it creates a peak electric field when voltage is applied to the accused device, and the depth of this abrupt junction relative to the depth of the well is such that the peak electric field causes the breakdown initiation point to be spaced away from the trench. (Fig. AO4468-5 (Secondary Ion Mass Spectroscopy data).)

CLAIM	AO4468 POWER MOSFET
wherein said doped well has a substantially flat bottom.	AO4468-3 (Scanning Electron Microscopy image), item D; Fig. AO4468-4 (Scanning Capacitance Microscopy image), item D.)
3. The trenched field effect transistor of claim 1 wherein said trench has rounded top and bottom corners.4. The trenched field effect transistor of claim 1	The trench of the accused device has a rounded top and bottom. (Fig. AO4468-3 (Scanning Electron Microscopy image), item B; Fig. AO4468-4 (Scanning Capacitance Microscopy image), item B.) The abrupt junction in the accused device creates a peak electric field in the
wherein the abrupt junction causes the transistor breakdown initiation point to occur in the area of the junction, when voltage is applied to the transistor.	area of the junction when voltage is applied, so that the transistor breakdown initiation point occurs in the area of the abrupt junction. (Fig. AO4468-5 (Secondary Ion Mass Spectroscopy data).)
5. The trenched field effect transistor of claim 1 wherein the heavy body comprises a heavily doped region having dopants of the second conductivity type at the abrupt junction.	The heavy body of the accused device is a heavily doped region of P-type dopants (a second conductivity type). (Fig. AO4468-3 (Scanning Electron Microscopy image), item E; Fig. AO4468-4 (Scanning Capacitance Microscopy image), item E.)
6. The trenched field effect transistor of claim 5 wherein the heavily doped region is formed by implanting dopants of the second conductivity type at approximately the third depth.	The heavy body of the accused device is formed by implanting P-type dopants (a second conductivity type) in the doped well and extending to a depth (a third depth) that is less than the depth of the well (a second depth). (Fig. AO4468-3 (Scanning Electron Microscopy image), item E; Fig. AO4468-4 (Scanning Capacitance Microscopy image), item E.)
10. The trenched field effect transistor of claim 1 wherein the trench is lined with a dielectric layer and substantially filled with conductive material.	The trench of the accused device is lined with a dielectric layer and substantially filled with doped polysilicon (a conductive material). (Fig. AO4468-3 (Scanning Electron Microscopy image), items B and G; Fig. AO4468-4 (Scanning Capacitance Microscopy image), items B and G.)
11. The trenched field effect transistor of claim 10 wherein the conductive material comprises polysilicon.	The conductive material in the trench of the accused device is doped polysilicon. (Fig. AO4468-3 (Scanning Electron Microscopy image), item B: Fig. AO4468-4 (Scanning Capacitance Microscopy image), item B.)
12. The trenched field effect transistor of claim 10 wherein the conductive material filling the trench is recessed relative to the surface of the semiconductor substrate.	The conductive polysilicon filling the trench of the accused device is recessed relative to the surface of the silicon semiconductor substrate. (Fig. AO4468-3 (Scanning Electron Microscopy image), item B; Fig. AO4468-4 (Scanning Capacitance Microscopy image), item B.)

INFRINGEMENT OF U.S. PATENT NO. 6,710,406 B2

AOS AO6402 POWER MOSFET

CLAIM	AO6402 POWER MOSFET
1. A trenched field effect transistor comprising:	The AOS AO6402 Power MOSFET ("the accused device") is a trenched field effect transistor. (Fig. AO6402-1 (datasheet); Fig. AO6402-2 (package marking).)
a semiconductor substrate having dopants of a first conductivity type;	The accused device is an N-channel MOSFET, which is therefore formed on a substrate of doped N-type silicon. In the language of the claim, the N-type dopants in the substrate are a "first conductivity type." (Fig. AO6402-1 (datasheet); Fig. AO6402-3 (Scanning Electron Microscopy image), item A; Fig. AO6402-4 (Scanning Capacitance Microscopy image), item A.)
a trench extending to a first depth into said semiconductor substrate;	The accused device has a trench extending to a predetermined depth into the substrate. In the language of the claim, the predetermined depth to which the trench extends is a "first depth." (Fig. AO6402-3 (Scanning Electron Microscopy image), item B; Fig. AO6402-4 (Scanning Capacitance Microscopy image), item B.)
a pair of doped source junctions having dopants of the first conductivity type, and positioned on opposite sides of the trench;	The accused device has a pair of source junctions (regions) positioned on opposite sides of the trench. (Fig. AO6402-3 (Scanning Electron Microscopy image), item C; Fig. AO6402-4 (Scanning Capacitance Microscopy image), item C.) Because the accused device is an N-channel MOSFET, the source junctions (regions) are formed with N-type dopants, which are dopants of the first conductivity type. (Fig. AO6402-4 (Scanning Capacitance Microscopy image), item C.)
a doped well having dopants of a second conductivity type, and formed into the substrate to a second depth that is less than said first depth of the trench; and	The accused device has a lightly doped well formed with P-type dopants (a second conductivity type opposite to the first conductivity type) that is formed in the substrate, and the depth of the doped well (a second depth) is less than the predetermined depth of the trench (a first depth). (Fig. AO6402-3 (Scanning Electron Microscopy image), item D; Fig. AO6402-4 (Scanning Capacitance Microscopy image), item D.)
a heavy body formed in said doped well extending to a third depth that is less than said second depth of said doped well, the heavy body forming an abrupt junction with the well;	The accused device has a heavy body formed in the doped well that extends to a depth (a third depth) that is less than the depth of the well (a second depth). (Fig. AO6402-3 (Scanning Electron Microscopy image), item E; Fig. AO6402-4 (Scanning Capacitance Microscopy image), item E.) The junction between the doped P-type heavy body and the doped well is an abrupt junction. (Fig. AO6402-5 (Secondary Ion Mass Spectroscopy data).)
wherein, a location of the abrupt junction relative to the depth of the well is adjusted so that a transistor breakdown initiation point is spaced away from the trench in the semiconductor, when voltage is applied to the transistor.	The location of the abrupt junction of the accused device is such that it creates a peak electric field when voltage is applied to the accused device, and the depth of this abrupt junction relative to the depth of the well is such that the peak electric field causes the breakdown initiation point to be spaced away from the trench. (Fig. AO6402-5 (Secondary Ion Mass Spectroscopy data).)
2. The trenched field effect transistor of claim 1	The accused device has a doped well with a substantially flat bottom. (Fig.

CLAIM	AO6402 POWER MOSFET
wherein said doped well has a substantially flat bottom.	AO6402-3 (Scanning Electron Microscopy image), item D; Fig. AO6402-4 (Scanning Capacitance Microscopy image), item D.)
3. The trenched field effect transistor of claim 1 wherein said trench has rounded top and bottom corners.	The trench of the accused device has a rounded top and bottom. (Fig. AO6402-3 (Scanning Electron Microscopy image), item B; Fig. AO6402-4 (Scanning Capacitance Microscopy image), item B.)
4. The trenched field effect transistor of claim 1 wherein the abrupt junction causes the transistor breakdown initiation point to occur in the area of the junction, when voltage is applied to the transistor.	The abrupt junction in the accused device creates a peak electric field in the area of the junction when voltage is applied, so that the transistor breakdown initiation point occurs in the area of the abrupt junction. (Fig. AO6402-5 (Secondary Ion Mass Spectroscopy data).)
5. The trenched field effect transistor of claim 1 wherein the heavy body comprises a heavily doped region having dopants of the second conductivity type at the abrupt junction.	The heavy body of the accused device is a heavily doped region of P-type dopants (a second conductivity type). (Fig. AO6402-3 (Scanning Electron Microscopy image), item E; Fig. AO6402-4 (Scanning Capacitance Microscopy image), item E.)
6. The trenched field effect transistor of claim 5 wherein the heavily doped region is formed by implanting dopants of the second conductivity type at approximately the third depth.	The heavy body of the accused device is formed by implanting P-type dopants (a second conductivity type) in the doped well and extending to a depth (a third depth) that is less than the depth of the well (a second depth). (Fig. AO6402-3 (Scanning Electron Microscopy image), item E; Fig. AO6402-4 (Scanning Capacitance Microscopy image), item E.)
10. The trenched field effect transistor of claim 1 wherein the trench is lined with a dielectric layer and substantially filled with conductive material.	The trench of the accused device is lined with a dielectric layer and substantially filled with doped polysilicon (a conductive material). (Fig. AO6402-3 (Scanning Electron Microscopy image), items B and G; Fig. AO6402-4 (Scanning Capacitance Microscopy image), items B and G.)
11. The trenched field effect transistor of claim 10 wherein the conductive material comprises polysilicon.	The conductive material in the trench of the accused device is doped polysilicon. (Fig. AO6402-3 (Scanning Electron Microscopy image), item B; Fig. AO6402-4 (Scanning Capacitance Microscopy image), item B.)
12. The trenched field effect transistor of claim 10 wherein the conductive material filling the trench is recessed relative to the surface of the semiconductor substrate.	The conductive polysilicon filling the trench of the accused device is recessed relative to the surface of the silicon semiconductor substrate. (Fig. AO6402-3 (Scanning Electron Microscopy image), item B; Fig. AO6402-4 (Scanning Capacitance Microscopy image), item B.)

INFRINGEMENT OF U.S. PATENT NO. 6,710,406 B2

AOS AOL1412 POWER MOSFET

CLAIM	AOL1412 POWER MOSFET
1. A trenched field effect transistor comprising:	The AOS AOL1412 Power MOSFET ("the accused device") is a trenched field effect transistor. (Fig. AOL1412-1 (datasheet); Fig. AOL1412-2 (package marking).)
a semiconductor substrate having dopants of a first conductivity type;	The accused device is an N-channel MOSFET, which is therefore formed on a substrate of doped N-type silicon. In the language of the claim, the N-type dopants in the substrate are a "first conductivity type." (Fig. AOL1412-1 (datasheet); Fig. AOL1412-3 (Scanning Electron Microscopy image), item A; Fig. AOL1412-4 (Scanning Capacitance Microscopy image), item A.)
a trench extending to a first depth into said semiconductor substrate;	The accused device has a trench extending to a predetermined depth into the substrate. In the language of the claim, the predetermined depth to which the trench extends is a "first depth." (Fig. AOL1412-3 (Scanning Electron Microscopy image), item B; Fig. AOL1412-4 (Scanning Capacitance Microscopy image), item B.)
a pair of doped source junctions having dopants of the first conductivity type, and positioned on opposite sides of the trench;	The accused device has a pair of source junctions (regions) positioned on opposite sides of the trench. (Fig. AOL1412-3 (Scanning Electron Microscopy image), item C; Fig. AOL1412-4 (Scanning Capacitance Microscopy image), item C.) Because the accused device is an N-channel MOSFET, the source junctions (regions) are formed with N-type dopants, which are dopants of the first conductivity type. (Fig. AOL1412-4 (Scanning Capacitance Microscopy image), item C.)
a doped well having dopants of a second conductivity type, and formed into the substrate to a second depth that is less than said first depth of the trench; and	The accused device has a lightly doped well formed with P-type dopants (a second conductivity type opposite to the first conductivity type) that is formed in the substrate, and the depth of the doped well (a second depth) is less than the predetermined depth of the trench (a first depth). (Fig. AOL1412-3 (Scanning Electron Microscopy image), item D; Fig. AOL1412-4 (Scanning Capacitance Microscopy image), item D.)
a heavy body formed in said doped well extending to a third depth that is less than said second depth of said doped well, the heavy body forming an abrupt junction with the well;	The accused device has a heavy body formed in the doped well that extends to a depth (a third depth) that is less than the depth of the well (a second depth). (Fig. AOL1412-3 (Scanning Electron Microscopy image), item E; Fig. AOL1412-4 (Scanning Capacitance Microscopy image), item E.) The junction between the doped P-type heavy body and the doped well is an abrupt junction. (Fig. AOL1412-5 (Secondary Ion Mass Spectroscopy data).)
wherein, a location of the abrupt junction relative to the depth of the well is adjusted so that a transistor breakdown initiation point is spaced away from the trench in the semiconductor, when voltage is applied to the transistor.	The location of the abrupt junction of the accused device is such that it creates a peak electric field when voltage is applied to the accused device, and the depth of this abrupt junction relative to the depth of the well is such that the peak electric field causes the breakdown initiation point to be spaced away from the trench. (Fig. AOL1412-5 (Secondary Ion Mass Spectroscopy data).)
2. The trenched field effect transistor of claim 1	The accused device has a doped well with a substantially flat bottom. (Fig.

CLAIM	AOL1412 POWER MOSFET
wherein said doped well has a substantially flat bottom.	AOL1412-3 (Scanning Electron Microscopy image), item D; Fig. AOL1412-4 (Scanning Capacitance Microscopy image), item D.)
3. The trenched field effect transistor of claim 1 wherein said trench has rounded top and bottom corners.	The trench of the accused device has a rounded top and bottom. (Fig. AOL1412-3 (Scanning Electron Microscopy image), item B; Fig. AOL1412-4 (Scanning Capacitance Microscopy image), item B.)
4. The trenched field effect transistor of claim 1 wherein the abrupt junction causes the transistor breakdown initiation point to occur in the area of the junction, when voltage is applied to the transistor.	The abrupt junction in the accused device creates a peak electric field in the area of the junction when voltage is applied, so that the transistor breakdown initiation point occurs in the area of the abrupt junction. (Fig. AOL1412-5 (Secondary Ion Mass Spectroscopy data).)
5. The trenched field effect transistor of claim 1 wherein the heavy body comprises a heavily doped region having dopants of the second conductivity type at the abrupt junction.	The heavy body of the accused device is a heavily doped region of P-type dopants (a second conductivity type). (Fig. AOL1412-3 (Scanning Electron Microscopy image), item E; Fig. AOL1412-4 (Scanning Capacitance Microscopy image), item E.)
6. The trenched field effect transistor of claim 5 wherein the heavily doped region is formed by implanting dopants of the second conductivity type at approximately the third depth.	The heavy body of the accused device is formed by implanting P-type dopants (a second conductivity type) in the doped well and extending to a depth (a third depth) that is less than the depth of the well (a second depth). (Fig. AOL1412-3 (Scanning Electron Microscopy image), item E; Fig. AOL1412-4 (Scanning Capacitance Microscopy image), item E.)
10. The trenched field effect transistor of claim 1 wherein the trench is lined with a dielectric layer and substantially filled with conductive material.	The trench of the accused device is lined with a dielectric layer and substantially filled with doped polysilicon (a conductive material). (Fig. AOL1412-3 (Scanning Electron Microscopy image), items B and G; Fig. AOL1412-4 (Scanning Capacitance Microscopy image), items B and G.)
11. The trenched field effect transistor of claim 10 wherein the conductive material comprises polysilicon.	The conductive material in the trench of the accused device is doped polysilicon. (Fig. AOL1412-3 (Scanning Electron Microscopy image), item B; Fig. AOL1412-4 (Scanning Capacitance Microscopy image), item B.)
12. The trenched field effect transistor of claim 10 wherein the conductive material filling the trench is recessed relative to the surface of the semiconductor substrate.	The conductive polysilicon filling the trench of the accused device is recessed relative to the surface of the silicon semiconductor substrate. (Fig. AOL1412-3 (Scanning Electron Microscopy image), item B; Fig. AOL1412-4 (Scanning Capacitance Microscopy image), item B.)