732A96 Advanced Machine Learning Graphical Models and Hidden Markov Models

Jose M. Peña IDA, Linköping University, Sweden

Lecture 1: Causal Models, Bayesian Networks and Markov Networks

Contents

- Causal Models
- Bayesian Networks
 - Definition
 - Causal Reasoning
 - Probabilistic Reasoning
- Markov Networks
 - Definition
 - Probabilistic Reasoning

Literature

Main source

- ▶ Bishop, C. M. Pattern Recognition and Machine Learning. Springer, 2006.
- Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, 1988.
- Pearl, J. Causality: Models, Reasoning, and Inference. Cambridge University Press, 2000.

Other sources

- Koller, D. and Friedman, N. Probabilistic Graphical Models: Principles and Techniques. MIT Press, 2009.
- Koski, T. J. T. and Noble, J. M. A Review of Bayesian Networks and Structure Learning. *Mathematica Applicanda* 40, 51-103, 2012.

R resources

- Højsgaard, S. Graphical Independence Networks with the gRain Package for R. Journal of Statistical Software 46, 2012.
- Højsgaard, S., Edwards, D. and Lauritzen, S. Graphical Models with R. Springer, 2012.
- Nagarajan, R., Scutari, M. and Lébre, S. Bayesian Networks in R. Springer, 2013.
- Scutari, S. Learning Bayesian Networks with the bnlearn R Package.
 Journal of Statistical Software 35, 2010.

Causal Models: Qualitative

Microscopic	Macroscopic	Macroscopic
DAG	DAG	Violates assumption
$A \bigvee_{D}^{B} C \bigvee_{E}$	ϵ^D C D E	$ \begin{array}{ccc} \epsilon^{D} & \epsilon^{E} \\ \downarrow & \downarrow \\ D & & E \end{array} $

- At the microscopic level, every system is a causal system, assuming Reichenbach's principle of common cause: "No correlation without causation".
- Then, at the microscopic level, every system can be represented by a causal model.
- The structure of the causal model can be represented as a directed and acyclic graph (DAG).
- At the macroscopic level, every system can be represented by a causal model **if no unmodeled variable** is cause of two or more modeled variables. The unmodeled causes of a variable X are aggregated into an error variable ϵ^X .

Causal Models: Quantitative

Microscopic DAG Functional	Macroscopic DAG Functional	Macroscopic DAG	
Functional	Functional	Probabilistic	
$ \begin{array}{cccc} A & B & C \\ D = f(A, B, C) & E = f(C) \end{array} $	$ \begin{array}{ccc} \epsilon^{D} & C \\ \downarrow & \downarrow & \\ D = f(C, \epsilon^{D}) & E = f(C) \end{array} $	$D \sim q(D C) \qquad E \sim q(E C)$	

- Assuming Laplace's demon, every variable is a deterministic function of its causes at the microscopic level.
- Then, every variable is a probabilistic function of its modeled causes at the macroscopic level.
- Both Reichenbach's principle of common cause and Laplace's demon have been disproven. Human reasoning seem to comply with both of them, though.
- Then, probabilistic DAGs may not be ontological but epistemological models. They also help to identify key questions about reasoning.

Bayesian Networks: Definition

DAG	Parameter values for the conditional probility distributions	
Sprinkler Rain Wet Grass Wet Street	$\begin{aligned} q(S) &= (0.3, 0.7) \\ q(R) &= (0.5, 0.5) \\ q(WG n, s_0) &= (0.1, 0.9) \\ q(WG r_0, s_1) &= (0.7, 0.3) \\ q(WG r_1, s_0) &= (0.8, 0.2) \\ q(WG r_1, s_1) &= (0.9, 0.1) \\ q(WS r_0) &= (0.1, 0.9) \\ q(WS r_1) &= (0.7, 0.3) \\ p(S, R, WG, WS) &= q(S)q(R)q(WG S, R)q(WS R) \end{aligned}$	

- A Bayesian network (BN) over a finite set of discrete random variables $X = X_{1:n} = \{X_1, \dots, X_n\}$ consists of
 - ▶ a DAG G whose nodes are the elements in X, and
 - parameter values θ_G specifying conditional probability distributions $q(X_i|pa_G(X_i))$.
- ► The BN represents a causal model of the system.
- ► The BN also represents a probabilistic model of the system, namely $p(X) = \prod_i q(X_i|pa_G(X_i))$.

Bayesian Networks: Definition

- We now show that $p(X) = \prod_i q(X_i | pa_G(X_i))$ is a probability distribution.
- Clearly, $0 \le \prod_i q(X_i | pa_G(X_i)) \le 1$.
- ▶ Assume without loss of generality that $pa_G(X_i) \subseteq X_{1:i-1}$ for all i. Then

$$\sum_{x} \prod_{i} q(x_{i}|pa_{G}(X_{i})) = \sum_{x_{1}} [q(x_{1}) \dots \sum_{x_{n-1}} [q(x_{n-1}|pa_{G}(X_{n-1})) \sum_{x_{n}} q(x_{n}|pa_{G}(X_{n}))] \dots] = 1$$

▶ Moreover, $p(X_i|pa_G(X_i)) = q(X_i|pa_G(X_i))$. To see it, note that

$$p(X_{i}|pa_{G}(X_{i})) = \frac{p(X_{i},pa_{G}(X_{i}))}{p(pa_{G}(X_{i}))} = \frac{\sum_{X \setminus \{X_{i},pa_{G}(X_{i})\}} \prod_{i} q(X_{i}|pa_{G}(X_{i}))}{\sum_{X \setminus pa_{G}(X_{i})} \prod_{i} q(X_{i}|pa_{G}(X_{i}))} = q(X_{i}|pa_{G}(X_{i}))$$

Bayesian Networks: Separation

- As expected, X_i is independent in p of its non-descendants given its parents in G, i.e. X_i ⊥_p nde_G(X_i) \ pa_G(X_i)|pa_G(X_i). These independencies are called the causal list of G.
- Actually, p has many other independencies.
- Since p is a probability distribution, it satisfies the semi-graphoid properties:
 - ▶ Symmetry $U \perp_p V | Z \Rightarrow V \perp_p U | Z$
 - ▶ Decomposition $U \perp_p V \cup W | Z \Rightarrow U \perp_p V | Z$
 - Weak union $U \perp_p V \cup W | Z \Rightarrow U \perp_p V | Z \cup W$
 - ► Contraction $U_{\perp_p}V|Z \cup W \wedge U_{\perp_p}W|Z \Rightarrow U_{\perp_p}V \cup W|Z$
- Then, p has all the independencies in the semi-graphoid closure of the causal list of G.
- ▶ If p is strictly positive, then it satisfies the graphoid properties:
 - Semi-graphoid properties
 - ▶ Intersection $U \perp_p V | Z \cup W \land U \perp_p W | Z \cup V \Rightarrow U \perp_p V \cup W | Z$
- Then, p has all the independencies in the graphoid closure of the causal list of G.
- **Exercise**. Prove the symmetry and decomposition properties.

Bayesian Networks: Separation

- Let ρ be a path between two nodes α and β in a DAG G.
- ▶ A node B in ρ is a **collider** when $A \rightarrow B \leftarrow C$ is a subpath of ρ .
- ▶ Moreover, ρ is Z-open with $Z \subseteq X \setminus \{\alpha, \beta\}$ when
 - no non-collider in ρ is in Z, and
 - every collider in ρ is in Z or has a descendant in Z.
- Let U, V and Z be three disjoint subsets of X. Then, U and V are separated given Z in G (i.e. U⊥GV|Z) when there is no Z-open path in G between a node in U and a node in V.
- The separation criterion identifies all and only the independencies in the semi-graphoid closure of the causal list of G.
- ▶ Then, the separation criterion is **sound**.
- Moreover, it is also **complete**, i.e. $I(p) = \{U \perp_p V | Z\}$ may coincide with $I(G) = \{U \perp_G V | Z\}$.
- Such so-called faithful probability distributions exist.

Bayesian Networks: Separation

- ▶ Exercise. Prove that $A \perp_p B | C$ for the DAGs $A \to C \to B$, $A \leftarrow C \to B$ and $A \leftarrow C \leftarrow B$, i.e. prove that p(A, B | C) = p(A | C) p(B | C).
- ▶ **Exercise**. Prove that $A \perp_p B | \varnothing$ for the DAG $A \rightarrow C \leftarrow B$, i.e. prove that p(A,B) = p(A)p(B).
- ▶ **Exercise**. Prove that $A \perp_p B | C, D$ for the DAG $A \rightarrow C \rightarrow D \rightarrow B$.
- ▶ **Exercise**. Prove that $A \perp_{P} B | C, D$ for the DAG $A \rightarrow C \rightarrow D \leftarrow B$.
- Exercise. Find the minimal set of nodes that separates a given node from the rest. This set is called the Markov blanket of the given node.
- Exercise. We have seen that if p factorizes as $p(X) = \prod_i q(X_i|pa_G(X_i))$, then it satisfies all the independencies identified by the separation criterion. The opposite is also true. Prove it.

Bayesian Networks: Causal Reasoning

Original	After $do(r_1)$
Sprinkler Rain Wet Grass Wet Street	Sprinkler Wet Grass Wet Street
$\begin{split} q(S) &= (0.3, 0.7) \\ q(R) &= (0.5, 0.5) \\ q(WG r_0, s_0) &= (0.1, 0.9) \\ q(WG r_0, s_1) &= (0.7, 0.3) \\ q(WG r_1, s_0) &= (0.8, 0.2) \\ q(WG r_1, s_1) &= (0.9, 0.1) \\ q(WS r_0) &= (0.1, 0.9) \\ q(WS r_1) &= (0.7, 0.3) \\ p(S, R, WG, WS) &= q(S)q(R)q(WG S, R)q(WS R) \end{split}$	$q(S) = (0.3, 0.7)$ $q(WG _{S_0}) = (0.8, 0.2)$ $q(WG _{S_1}) = (0.9, 0.1)$ $q(WS) = (0.7, 0.3)$ $p(S, WG, WS) = q(S)q(WG S)q(WS)$

- What would be the state of the system if a random variable X_j is forced to take the state x_i , i.e. $p(X \setminus X_i | do(x_i))$?
 - Remove X_i and all the edges from and to X_i from G.
 - Remove $q(X_i|pa_G(X_i))$.
 - If $X_j \in pa_G(X_i)$, then replace $q(X_i|pa_G(X_i))$ with $q(X_i|pa_G(X_i) \setminus X_j, x_j)$
 - Set $p(X \setminus X_i | do(x_i)) = \prod_i q(X_i | pa_G(X_i))$.
- So, the result of do(x) on a BN is a BN.

Bayesian Networks: Probabilistic Reasoning

What is the state of the system if a random variable X_i is observed to be in the state x_i, i.e. p(X \times X_i|x_i) ?

►
$$p(X \setminus X_i | x_i) = \frac{p(X \setminus X_i, x_i)}{p(x_i)} = \frac{p(X \setminus X_i, x_i)}{\sum_{X \setminus X_i} p(X \setminus X_i, x_i)}$$
► $p(R, WG, WS | s) = \frac{q(s)q(R)q(WG | s, R)q(WS | R)}{\sum_{r, wg, ws} q(s)q(r)q(wg | s, r)q(ws | r)}$

$$= \frac{q(s)q(R)q(WG | s, R)q(WS | r)}{q(s)\sum_{r} [q(r)\sum_{wg} [q(wg | s, r)\sum_{wg} q(ws | r)]]}$$

• What is the state of a random variable Y if a random variable X_i is observed to be in the state x_i , i.e. $p(Y|x_i)$?

►
$$p(Y|x_i) = \frac{p(Y,x_i)}{p(x_i)} = \frac{\sum_{X \setminus \{x_i,Y\}} p(X \setminus X_i,x_i)}{\sum_{X \setminus X_i} p(X \setminus X_i,x_i)}$$
► $p(WS|s) = \frac{\sum_{r,wg} q(s)q(r)q(wg|s,r)q(WS|r)}{\sum_{r,wg,ws} q(s)q(r)q(wg|s,r)q(wg|s)}$

$$= \frac{q(s)\sum_r [q(r)q(WS|r)\sum_{wg} q(wg|s,r)]}{q(s)\sum_r [q(r)\sum_{wg} [q(wg|s,r)\sum_{wg} q(ws|r)]}$$

- What is the state of a random variable Y if a random variable X_i is observed to be in the state x_i , after forcing a random variable X_j to take the state x_i , i.e. $p(Y|x_i, do(x_i))$?
- Answering the questions above is NP-hard.
- A BN is an efficient formalism to compute a posterior probability distribution from a prior probability distribution in the light of observations, hence the name.

Markov Networks: Definition

UG	Potentials assuming binary random variables	
A — B /	$\varphi(A, B, C) = (1, 1, 1, 1, 1, 1, 1, 1)$ $\varphi(B, C, D) = (2, 2, 2, 2, 2, 2, 2, 2)$ $p(A, B, C, D) = \varphi(A, B, C)\varphi(B, C, D)/Z \text{ with } Z = \sum_{a,b,c,d} \varphi(a,b,c)\varphi(b,c,d)$	

- A Markov network (MN) over X consists of
 - ightharpoonup an undirected graph (UG) G whose nodes are the elements in X, and
 - a set of non-negative functions $\varphi(K)$ over the cliques Cl(G) of G.
- A clique is a maximal complete set of nodes. The functions are called potentials.
- ▶ The MN represents a probabilistic model of the system, namely

$$p(X) = \frac{1}{Z} \prod_{K \in Cl(G)} \varphi(K)$$

where Z is a normalization constant, i.e.

$$Z = \sum_{x} \prod_{K \in Cl(G)} \varphi(k)$$

• Clearly, p(X) is a probability distribution.

Markov Networks: Separation

- X_i is independent in p of its non-adjacent nodes given its adjacent nodes in G, i.e. X_i ⊥_pX \ ad_G(X_i)|ad_G(X_i). These independencies are called the adjacency list of G.
- Actually, p has many other independencies. Specifically, it has all the independencies in the semi-graphoid closure of the adjacency list. Moreover, if p is strictly positive then it has all the independencies in graphoid closure of the adjacency list of G.
- A path ρ between two nodes α and β in an UG G is Z-open with $Z \subseteq X \setminus \{\alpha, \beta\}$ when no node in ρ is in Z.
- Let U, V and Z be three disjoint subsets of X. Then, U and V are separated given Z in G (i.e. U⊥GV|Z) when there is no Z-open path in G between a node in U and a node in V.
- The separation criterion identifies all and only the independencies in the graphoid closure of the adjacency list of G.
- Then, the separation criterion is sound.
- Moreover, it is also **complete**, i.e. $I(p) = \{U \perp_p V | Z\}$ may coincide with $I(G) = \{U \perp_G V | Z\}$.
- Such so-called faithful probability distributions exist.

Markov Networks: Separation

- ► Exercise. Prove that $A \perp_p B | C$ for the UG A C B, i.e. prove that p(A, B | C) = f(A, C)g(B, C) for some functions f and g.
- Exercise. Find the minimal set of nodes that separates a given node from the rest. This set is called the Markov blanket of the given node.
- We have seen that if p factorizes as $p(X) = \frac{1}{Z} \prod_{K \in Cl(G)} \varphi(K)$, then it satisfies all the independencies identified by the separation criterion. The opposite is also true if p is strictly positive.
- ▶ Specifically, $p(X) = \prod_{K \in Cs(G)} \psi(K)$ where
 - Cs(G) are the complete sets of nodes of G
 - $\psi(K) = \exp \phi(K)$
 - $\phi(k) = \sum_{B \subseteq K} (-1)^{|K \setminus B|} H(b)$
 - $H(b) = \log p(b, \overline{b}^*)$
 - * x^* is an arbitrary but fixed state and \overline{b}^* denote the values of $X \setminus B$ consistent with x^* .
- ▶ This result is known as Hammersley-Clifford theorem.

Markov Networks: Factor Graphs

- What if $\varphi(C_i) = \prod_i \phi(C_i^j)$ with $C_i^j \subseteq C_i$?
- A MN may obscure the structure of the potentials. Solution: Factor graphs.
- A factor graph over X consists of an UG G with two types of nodes: The elements in X and a set of potentials $\varphi(K)$ over subsets of X. All the edges in G are between a potential and the elements of X that are in its domain.
- ▶ The factor graph represents a probabilistic model of the system, namely

$$p(X) = \frac{1}{Z} \prod_{K} \varphi(K)$$

where Z is a normalization constant, i.e.

$$Z = \sum_{x} \prod_{K} \varphi(k)$$

Factor graphs: Finer-grained parameterization of MNs.

MN	Factor graph	Factor graph
$A \stackrel{\frown}{-} B \stackrel{\frown}{-} C$	φ(A, B, C) A B C	$\varphi(A,C)$ $A = \varphi(A,B) - B - \varphi(B,C) - C$

Markov Networks: Probabilistic Reasoning

In the first example above, what is the state of a random variable A if a random variable B is observed to be in the state b?

$$p(A|b) = \frac{\sum_{c,d} \varphi(A,b,c)\varphi(b,c,d)}{\sum_{a,c,d} \varphi(a,b,c)\varphi(b,c,d)} = \frac{\sum_{c} [\varphi(A,b,c) \sum_{d} \varphi(b,C,d)]}{\sum_{a,c} [\varphi(a,b,c) \sum_{d} \varphi(b,c,d)]}$$

- Answering questions like the one above is typically NP-hard.
- ▶ A MN is an efficient formalism to answer such questions.

Intersection of Bayesian Networks and Markov Networks

- An unshielded collider in a DAG is a subgraph of the form A → C ← B such that A and B are not adjacent in the DAG.
- An UG is triangulated if every cycle in it contains a chord, i.e. an edge between two non-consecutive nodes in the cycle.
- Given a DAG G, there is an UG H such that I(G) = I(H) if and only if G has no unshielded colliders.
- Given an UG G, there is an DAG H such that I(G) = I(H) if and only if G is triangulated.

