Всего существуют 3 способа поляризации:

- 1. Поглощение (или дихроизм): свет проходит через вещество с длинными нитевидными молекулами. Проходя вдоль молекулы, свет свободно проходит, а поперек молекул свет не проходит
 - Большинство таких линейных поляризаторов (или так называемых поляроидов) состоят из полимерной пленки или частиц кристаллов турмалина или герапатита в нитроцеллюлозной пленке
- 2. Преломление: в призме Николя используется двойное лучепреломления света. В ней используется анизотропный кристалл исландского шпата, в котором
 - лучи, поляризованные горизонтально, имеют показатель преломления $n_o = 1.66$ их называют обыкновенными
 - лучи, поляризованные вертикально, имеют показатель преломления $n_o = 1.51$ их называют необыкновенными

Призма Николя представляет собой две одинаковые треугольные в сечении призмы. Обыкновенный луч испытывает полное внутреннее отражение от склеивающего слоя с n = 1.55 и поглощается, а необыкновенный свободно проходит через него и вторую призму, так как показатели преломления приблизительно равны

- 3. Отражение: Столетов предложил сделать поляризатор из стекла. При определенном угле падения $\alpha = \arctan n$ (известном как угол Брюстера) отраженный свет получается поляризованным. Для стекла этот угол равен примерно 59°, однако отраженный свет получается с интенсивностью 4% от интенсивности входящего света.
 - Столетов предложил использовать несколько стеклянных пластин, чтобы увеличить интенсивность данное устройство, состоящее из стопки стекла, получило название стопа Столетова

Угол Брюстера применяется в изготовлении лазеров для получения поляризованных волн

Лекция 2. Дисперсия света

Дисперсией света называется зависимость показателя преломления от частоты волны света Данных эффект был обнаружен Исааком Ньютоном при разложении света в спектр. Тогда Ньютон обнаружил, что для разных частот света (а следовательно для разных волн) показатель преломления разный, поэтому в стекле лучи разных частот двигаются с разной скоростью, на выходе призмы получается радужный спектр

Благодаря дисперсии существует радуга: лучи Солнца, проходя под определенным углом (42 градуса над горизонтом) через капельки воды в воздухе, раскладываются в спектр и попадают на сетчатку глаза

Ha сайте https://refractiveindex.info можно узнать показатель преломления. Например, металл германий, использующийся в тепловизорах, имеет показатель преломления 3.5-4 в инфракрасном спектре волн, что улучшает разрешение тепловизора при ограниченном объёме устройства

Подобные призмы используются в спектрометрах - приборах, позволяющих разложить свет в спектр и узнать, какие длины волн пресутсвуют в спектре

Разные газы в газоразрядной лампе излучают свет разного цвета (то есть спектр из разных длин волн). Поэтому с по-

мощью спектрометра можно обнаружить, из чего состоит источник света (например, Солнца): зная спектр горения водорода и гелия, можно предположить концентрацию горящего вещества на поверхности Солнца

Более продвинутый прибор – масс-спектрометр – используется для изучения состава вещества: вещество нагревают, излученный свет попадает на масс-спектрометр, который определяет интенсивность для разных волн света

Дисперсия возникает как следствие уравнение Максвелла. Допустим для слабопроводящей среды $\sigma, \varepsilon, \mu = \text{const} \ (\sigma = \frac{1}{\sigma} - \text{удельная проводимость в сименсах})$

По закону индукции Фарадея $\vec{\nabla} \times \vec{E} = -\mu \mu_0 \frac{\partial \dot{H}}{\partial r}$

$$\nabla \times (\nabla \times \vec{E}) = -\mu \mu_0 \frac{\partial}{\partial t} (\nabla \times \vec{H})$$

$$\nabla \times (\nabla \times \vec{E}) = \nabla (\nabla \vec{E})$$

$$\nabla^2 \times \vec{E} = -\mu \mu_0 \frac{\partial}{\partial t} (\nabla \times \vec{H})$$

$$\nabla^2 \times \vec{E} = -\mu \mu_0 \frac{\partial}{\partial t} (\nabla \times \vec{H})$$

По теореме о циркуляции магнитного поля $\nabla \times \vec{H} = \sigma \vec{E} + \varepsilon \varepsilon_0 \frac{\partial E}{\partial t}$

Получаем
$$\frac{\partial^2 \vec{E}}{\partial t^2} + \frac{\sigma}{\varepsilon \varepsilon_0} \frac{\partial \vec{E}}{\partial t} = v^2 \Delta \vec{E}$$
 — волновое уравнение, где $v^2 = \frac{1}{\varepsilon \varepsilon_0 \mu \mu_0}$

Из этого волнового уравнения для волны, направленной в сторону оси Ox, получаем $\frac{\partial^2 E_y}{\partial x^2} =$

$$v^2 \Delta E_y - \frac{\sigma}{\varepsilon \varepsilon_0} \frac{\partial E_y}{\partial t}$$

Решение его является функция $E_y = E_0 e^{i(\omega t - kx)}$, то есть $\omega^2 = v^2 k^2 - \frac{i\omega\sigma}{\varepsilon\varepsilon_0}$, где $k = \frac{2\pi}{\lambda}$ — волновое число

Уравнение

$$k^2 = \frac{omega}{v^2} - \frac{i\omega\sigma}{\varepsilon\varepsilon_0 v^2}$$

называют дисперсионным (то есть зависимость $k(\omega)$). Из него $k=\pm\frac{\omega}{n}\sqrt{1-\frac{i\sigma}{\varepsilon\varepsilon_{0}\omega}}$

Для
$$\frac{\omega}{\varepsilon\varepsilon_0\omega}\ll 1$$
 можем аппроксимировать корень, получаем $k\approx\frac{\omega}{v}(1-i\frac{\sigma}{2\varepsilon\varepsilon_0\omega})=k'-ik''$

В ходе вычисления получаем комплексное k: вещественная часть волнового числа k' определяет длину волны, мнимая часть k'' = показывается коэффициент затухания волн, то есть поглощение, получаем $E_{u}=E_{0}e^{i(\omega t-k'x)-k''x}$

Зависимость фазовой скорость волны (то скорость волны с одной длиной) от частоты в среде $v_{\text{фаз}}(\omega) = \frac{\omega}{k'(\omega)}$ называют дисперсией (также обозначают $v_{\text{фаз}} = v$)

Для световых волн дисперсия —
$$n(\omega) = \frac{c}{v_{\rm фаз}(\omega)}$$
 или $n(\lambda_0) = \frac{c}{v_{\rm фаз}(\lambda_0)}$

Если
$$\sigma = 0$$
, то $v_{\text{фаз}} = \frac{1}{\sqrt{\varepsilon \varepsilon_0 \mu \mu_0}}$

Получаем дисперсию световых волн:
$$n(\omega) = \frac{c}{v_{\hat{\text{oàq}}}(\omega)}$$
 или $n(\lambda_0) = \frac{c}{v_{\hat{\text{oàq}}}(\lambda_0)}$

Из этого выходит закон Бугера: пусть свет интенсивности I_0 падает на вещество толщины L, тогда интенсивность света уменьшается по экспоненциальному закону: $I = I_0 e^{-kL}$

При сложении волн из квазимонохроматического спектра получаем ограниченную в пространстве волну – так называемый волновой пакет. Длительность волнового пакета τ пропорциональна обратной разности частот $\frac{1}{\Lambda v}$

 Δv В среде волны с разными длинами двигаются с разной скорость, поэтому пакет будет деформироваться из-за дисперсии. Из-за этого пакет получает приращение $\Delta t = \frac{L}{v_{
m lèi}} - \frac{L}{v_{
m lèi}} = \frac{L}{c} \Delta n$ При увеличении пропускной способности оптоволокна нужно уменьшить длительности импульса τ . Из этого получаем, что разность частот увеличивается

Если импульс занимает весь видимый диапазон, то $\Delta n \approx 0.03$. При прохождении 1 метра волокна получаем $\Delta t = \frac{1}{3 \cdot 10^8} 0.03 = 10^{-10}$ с. Если длительность пакета меньше Δt , то импульсы сливаются во время прохождения и на приемнике их становится невозможно различить

Групповая скорость $v_{\rm rp} = \frac{d\omega}{dk}$ - это скорость движения волнового пакета (также обозначают $u = v_{\rm rp}$). Если среда дисперсионная, то $v_{\rm rp} \neq v_{\rm фаз}$

Заметим, что
$$v_{\rm фаз}=\frac{\omega}{k}$$
, тогда $v_{\rm rp}=\frac{d\omega}{dk}=v_{\rm фаз}+k\frac{dv_{\rm фаз}}{dk}=v_{\rm фаз}+k\frac{dv_{\rm фаз}}{d\lambda}\frac{d\lambda}{dk}$

Так как
$$\frac{dk}{d\lambda} = -\frac{2\pi}{\lambda^2}$$
, то $v_{\rm rp} = v_{\rm фаз} - \lambda \frac{dv_{\rm фаз}}{d\lambda}$

$$dv = -\frac{c}{n^2}dn = -v\frac{dn}{n}, d\lambda = \frac{d\lambda_0}{n} - \frac{\lambda_0}{n^2}dn$$

$$u = v - \lambda \frac{dv}{d\lambda} = v + \frac{n}{n} \frac{\frac{v}{n} dn}{\frac{d\lambda_0}{n} - \lambda_0 \frac{dn}{n^2}} = v \frac{nd\lambda_0}{nd\lambda_0 - \lambda_0 dn} = \frac{v}{1 - \frac{\lambda_0}{n} \frac{dn}{d\lambda}}$$

Если дисперсии нет, то $k_1-k_2=\frac{\omega_1}{c}-\frac{\omega_2}{c}$, и тогда $v_{\rm rp}=c$