

YDLIDAR X2 使用手册

目录

1	ΥĽ	DLIDAR X2 开发套件	1
	1.1	开发套件	1
2	W	INDOWS下的使用操作	2
	2.1	设备连接	2
	2.2	驱动安装	3
	2.3	使用评估软件	5
	2.3	8.1 开始扫描	6
	2.3	3.2 数据保存	6
	2.3		
	2.3		
	2.3		
	2.3		
3	LII	NUX下基于ROS的使用操作	
	3.1	设备连接	
	3.2	编译并安装YDLidar-SDK	9
	3.3	ROS驱动包安装	9
	3.4	运行 ydlidar_ros_driver	10
	3.5	RVIZ查看扫描结果	10
	3.6	修改扫描角度问题	11
4	使	用注意	12
	4.1	环境温度	12
	4.2	环境光照	12
	4.3	供电需求	12
5	修	ì T	13

1 YDLIDAR X2 开发套件

YDLIDAR X2(以下简称: X2)的开发套件是为了方便用户对 X2 进行性能评估和早期快速 开发所提供的配套工具。通过 X2 的开发套件,并配合配套的评估软件,便可以在 PC 上观测 到 X2 对所在环境扫描的点云数据或在 SDK 上进行开发。

1.1 开发套件

X2 的开发套件有如下组件:

X2 激光雷达

USB Type-C 数据线

USB 转接板

图 1 YDLIDAR X2 开发套件

表 1 YDLIDAR X2 开发套件说明

组件	数量	
X2 激光雷达	1	标准版本的 X2 雷达,内部集成电机驱动,可实现对电机的停转控制和电机控制。
USB Type-C 数据线	1	配合 USB 转接板使用,连接 X2 和 PC 既是供电线,也是数据线
USB 转接板	1	该组件实现 USB 转 UART 功能,方便 X2、PC 快速互联 同时,支持串口 DTR 信号对 X2 的电机转停控制 另外提供用于辅助供电的 Micro USB 电源接口(PWR)

注: USB 转接板有两个接口: USB_DATA、USB_PWR。

USB_DATA:数据供电复用接口,绝大多数情况下,只需使用这个接口便可以满足供电和通信需求。 USB_PWR:辅助供电接口,某些开发平台的 USB 接口电流驱动能力较弱,这时就可以使用辅助供电。

2 WINDOWS 下的使用操作

2.1 设备连接

在 windows 下对 X2 进行评估和开发时,需要将 X2 和 PC 互连,其具体过程如下:

图 2 YDLIDAR X2 设备连接 STEP 1

图 3 YDLIDAR X2 设备连接 STEP 2

先将转接板和 X2 接好,再将 USB 线接转接板和 PC 的 USB 端口上,注意 USB 线的 Type-C 接口接 USB 转接板的 USB_DATA,且 X2 上电后进入空闲模式,电机不转。

部分开发平台或 PC 的 USB 接口的驱动电流偏弱, X2 需要接入+5V 的辅助供电, 否则雷达工作会出现异常。

图 4 YDLIDAR X2 辅助供电

2.2 驱动安装

在 windows 下对 X2 进行评估和开发时,需要安装 USB 转接板的串口驱动。本套件的 USB 转接板采用 CP2102 芯片实现串口(UART)至 USB 信号的转换。其驱动程序可以在我司官网下载,或者从 Silicon Labs 的官方网站中下载:

https://ydlidar.cn/dowfile.html?id=88

http://cn.silabs.com/products/development-tools/software/usb-to-uart-bridgevcp-drivers

解压驱动包后,执行 CP2102 的 Windows 驱动程序安装文件($CP210x_VCP_Windows$ 下的 exe 文件)。请根据 windows 操作系统的版本,选择执行 32 位版本(x86),或者 64 位版本(x64)的安装程序。

图 5 YDLIDAR X2 驱动版本选择

双击 exe 文件,按照提示进行安装。

图 6 YDLIDAR X2 驱动安装过程

安装完成后,可以右键点击【我的电脑】,选择【属性】,在打开的【系统】界面下,选择左边菜单中的【设备管理器】进入到设备管理器,展开【端口】,可看到识别到的 USB 适配器所对应的串口名,即驱动程序安装成功,下图为 COM3。(注意要在 X2 和 PC 互连的情况下检查端口)

图 7 YDLIDAR X2 驱动安装检查

2.3 使用评估软件

YDLIDAR 提供了 X2 实时扫描的点云数据可视化软件 LidarViewer,用户使用该软件,可以直观的观察到 X2 的扫描效果图。YDLIDAR上提供了 X2 实时点云数据和实时扫描频率,并且可以离线保存扫描数据至外部文件供进一步分析。可视化软件下载链接:

https://www.ydlidar.cn/Public/upload/download/TOOL.zip

使用 YDLIDAR 前,请确保 X2 的 USB 转接板串口驱动已安装成功,并将 X2 与 PC 的 USB 口 互连。运行评估软件: LidarViewer. exe,选择对应的串口号和型号。同时,用户也可以根据个人情况,选择语言(右上角)。

图 8 YDLIDAR X2 运行评估软件

确认后,客户端的页面如下:

图 9 客户端软件界面

2.3.1 开始扫描

图 10 雷达扫描点云显示

2.3.2 数据保存

在雷达扫描时,单击主菜单中【文件】,选择【导出到 Excel】,按提示保存点云数据,系统便会以 Excel 格式保存扫描一圈的点云信息。

图 11 保存数据

2.3.3 显示均值和标准差

单击主菜单中【工具】,选择【均值和标准差】-【显示】。

图 12 显示均值和标准差

根据需要选择其一,移动鼠标到测试位置,右击弹出菜单,选择【锁定鼠标追踪】。

图 13 锁定鼠标追踪

2.3.4 播放和录制

单击主菜单中【工具】, 然后选择【记录与回放】。

图 14 记录与回放

主窗口显示 6000 如下:

记录激光雷达数据,点击◎按钮开始记录,点击●按钮停止录制。

在非扫描模式下,单击 按钮开始播放。

播放过程如下:

图 15 播放过程

2.3.5 调试

单击主菜单中【工具】,然后选择【启动调试】,将原始激光雷达数据输出到 "viewer_log. txt"和"viewer_log_err. txt"文件。

图 16 启动调试

2.3.6 滤波

单击主菜单中【工具】, 然后选择【滤波】, 增加激光雷达数据过滤算法。

图 17 滤波设置

注: LidarViewer 更多功能请点击【帮助】,选择【更多信息】,了解更多使用教程。

3 LINUX 下基于 ROS 的使用操作

Linux 发行版本有很多,本文仅以 Ubuntu18.04、Melodic 版本 ROS 为例。

SDK 驱动程序地址:

https://github.com/YDLIDAR/YDLidar-SDK

ROS 驱动程序地址:

https://github.com/YDLIDAR/ydlidar_ros_driver

3.1 设备连接

Linux 下, X2 雷达和 PC 互连过程和 Windows 下操作一致,参见 Window 下的设备连接。

3.2 编译并安装 YDLidar-SDK

ydlidar_ros_driver 取决于 YDLidar-SDK 库。如果您从未安装过 YDLidar-SDK 库,或者它已过期,则必须首先安装 YDLidar-SDK 库。如果您安装了最新版本的 YDLidar-SDK, 请跳过此步骤, 然后转到下一步。

```
$ git clone https://github.com/YDLIDAR/YDLidar-SDK.git
```

- \$ cd YDLidar-SDK/build
- \$ cmake ..
- \$ make
- \$ sudo make install

3.3 ROS 驱动包安装

1) 克隆 github 的 ydlidar_ros_driver 软件包:

```
$ git clone https://github.com/YDLIDAR/ydlidar_ros_driver.git
ydlidar_ws/src/ydlidar_ros_driver
```

- 2) 构建 ydlidar ros driver 软件包:
 - \$ cd ydlidar_ws
 - \$ catkin make
- 3) 软件包环境设置:

\$ source ./devel/setup.sh

注意:添加永久工作区环境变量。如果每次启动新的 shell 时 ROS 环境变量自动添加到您的 bash 会话中,将很方便:

- \$ echo "source ~/ydlidar_ws/devel/setup.bash" >> ~/.bashrc
- \$ source ~/.bashrc
- 4) 为了确认你的包路径已经设置,回显 ROS_PACKAGE_PATH 变量。
 - \$ echo \$ROS_PACKAGE_PATH

您应该看到类似以下内容: /home/tony/ydlidar_ws/src:/opt/ros/melodic/share

- 5) 创建串行端口别名[可选]
 - \$ chmod 0777 src/ydlidar ros driver/startup/*
 - \$ sudo sh src/ydlidar_ros_driver/startup/initenv.sh

注意:完成之前的操作后,请再次重新插入LIDAR。

3.4 运行 ydlidar_ros_driver

使用启动文件运行 ydlidar_ros_driver, 例子如下:

\$ roslaunch ydlidar_ros_driver X2.launch

3.5 RVIZ 查看扫描结果

运行 launch 文件, 打开 rviz 查看 X2 扫描结果, 如下图所示:

\$ roslaunch ydlidar_ros_driver lidar_view.launch

注:默认以 G4 雷达为例,若使用其它型号雷达,需将 lidar_view.launch 文件中的 lidar.launch 改为对应的 **.launch 文件。(如使用 X2 雷达,需改成 X2.launch)

图 18 YDLIDAR X2 雷达 RVIZ 运行显示

3.6 修改扫描角度问题

运行 launch 文件看到的扫描数据,默认显示的是 360 度一圈的数据,若要修改显示范围,则修改 launch 内的配置参数,具体操作如下:

1) 切换到对应[launch file]所在的目录下,编辑文件,其内容如图所示:

\$ vim X2.launch

图 19 X2. LAUNCH 文件内容

注意: 想了解更多文件内容详细信息,请参照:

https://github.com/YDLIDAR/ydlidar_ros_driver#configure-ydlidar_ros_driver-internal-parameter

2) X2 雷达坐标在 ROS 内遵循右手定则,角度范围为[-180,180], "angle_min"是开始角度, "angle max"是结束角度。具体范围需求根据实际使用进行修改。

图 20 YDLIDAR X2 坐标角度定义

4 使用注意

4.1 环境温度

当 X2 工作的环境温度过高或过低,会影响测距系统的精度,并可能对扫描系统的结构产生损害,降低雷达的使用寿命。请避免在高温(>50 摄氏度)以及低温(<0 摄氏度)的条件中使用。

4.2 环境光照

X2 的理想工作环境为室内,室内环境光照(包含无光照)不会对 X2 工作产生影响。但请避免使用强光源(如大功率激光器)直接照射 X2 的视觉系统。

如果需要在室外使用,请避免 X2 的视觉系统直接面对太阳照射,这将这可能导致视觉系统的感光芯片出现永久性损伤,从而使测距失效。

X2 标准版本在室外强烈太阳光反射条件下的测距会带来干扰,请用户注意。

4.3 供电需求

在开发过程中,由于各平台的 USB 接口或电脑的 USB 接口的驱动电流可能偏低,不足以驱动 X2,需要通过 USB 转接板上的 USB_PWR 接口给 X2 接入+5V 的外部供电,不建议使用手机充电宝,部分品牌电压纹波较大。

5 修订

日期	版本	修订内容
2017-12-05	1.0	初撰
2018-01-22	1.1	新增辅助电源接法、文件说明、配置说明、供电需求
2018-04-03	1.2	适配 PointCloudViewer2.0 客户端
2021-08-02	1.3	适配 LidarViewer 客户端,更新 SDK、ROS 教程