Problem

Predict which Titanic passengers will survive based on gender, age, passenger class, etc.

Data

Here is an example of the data. Many of the columns/features are self-explanatory, some are not.

Pclass: 1 = upper class, 2 = middle class, 3 = lower class

SibSp: # of siblings and spouses aboard

Parch: # of parents and children aboard

Embarked: port the passenger embarked from

Id	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
892	3	Kelly, Mr. James	Male	34.5	0	0	330911	7.8292	Null	С
893	3	Wilkes, Mrs. James	Female	47	1	0	363272	7	Null	С
894	2	Myles, Mr. Thomas Francis	Male	62	0	0	240276	9.6875	B45	S
895	3	Wirz, Mr. Albert	Male	27	0	0	315154	8.6625	Null	Q
896	3	Hirvonen, Mrs. Alexander	Female	22	1	1	3101298	12.2875	E31	S

Approach

Two main models were used: Logistic Regression and a 3-layer Neural Network.

Preprocessing

- Missing *Age* and *Fare* values were filled with median values, and missing *Embarked* values were filled with the mode value.
- *Id, Name,* and *Ticket* columns were removed as those columns are not important to the models.
- A large majority of Cabin values were null; thus, that column was removed as well.
- Lastly, the categorial columns: *Sex* and *Embarked*, are converted to dummy variables using one hot encoding.

Neural Network

- Uses Relu after first two steps and log_softmax after last step. Adam optimizer and cross entropy loss functions used.

Tristan Thomas

Titanic: Machine Learning from Disaster

Analysis

Results

When testing the linear regression model against a split train data (using Sklearn train_test_split()), it had around 80% accuracy. Although, the actual Kaggle score was about 0.65.

When training the NN model, the highest test accuracy was about 83%. The Kaggle score improved to about 0.78.

Conclusions

Linear Regression Kaggle score: 0.65

3-Layer Neural Network score: 0.78

Overall, the NN increased the score by about 0.13 points, which is a fairly significant improvement.

Source Code

Github: https://TLT034/TitanicNN