

Test Report

Report No.: MTi160324001RF02

Date of issue: May 20, 2016

Sample Description: EBT-2100

Model(s): EBT-2100

Applicant: Jiangxi Lianchuang Hongsheng Electronics Co., Ltd.

Address: 2nd floor, Building No.3, Jin Rongda industrial park,

Xuegang north road, Bantian street, Longgang district, Shenzhen, Guangdong province, China

Date of Test: Apr, 01, 2016 to May 05, 2016

Shenzhen Microtest Co., Ltd. http://www.mtitest.com

This test report is valid for the tested samples only. It cannot be reproduced except in full without prior written consent of Shenzhen Microtest Co., Ltd.

Report No.: MTi160324001RF02

TABALE OF CONTENTS

1 6	General description	5
1.1	Feature of equipment under test (EUT)	
1.2	operation channel list	
2 T	Test Configuration of EUT	6
2.1	Test frequency channel	6
2.2	EUT operation mode	6
2.3	Test conditions	6
2.4	Testing site	6
2.5	Ancillary equipment list	6
2.6	Measurement uncertainty	6
3 L	ist of test equipment	7
4 T	Test Result	8
4.1	Antenna requirement	8
4.2	Conducted emission	9
4.3	Maximum peak output power	12
4.4	6dB emission bandwidth	14
4.5	Power spectral density	16
4.6	Band edge spurious emission, conducted spurious emission	18
4.7	Radiated emission	21

- Page 3 of 22 -

Report No.: MTi160324001RF02

TEST RESULT CERTIFICA	TION
Applicant's name:	Jiangxi Lianchuang Hongsheng Electronics Co., Ltd.
Address:	2nd floor, Building No.3, Jin Rongda industrial park, Xuegang north road, Bantian street, Longgang district, Shenzhen, Guangdong province, China
Manufacture's Name:	Jiangxi Lianchuang Hongsheng Electronics Co., Ltd.
Address:	2nd floor, Building No.3, Jin Rongda industrial park, Xuegang north road, Bantian street, Longgang district, Shenzhen, Guangdong province, China
Product description	
Product name:	EBT-2100
Trademark:	OontZ
Model name:	EBT-2100
Standards:	FCC Part 15.247
Test Procedure:	ANSI C63.4-2009; ANSI C63.10-2009;

This device described above has been tested by test by Shenzhen Toby Technology Co., Ltd. and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

Tested by:	David Chen		
	David Chen	May 20, 2016	
Reviewed by:	(en cho	~	
	Leon Chen	May 20, 2016	
Approved by:	Jun (iu.	
	Ares Liu	May 20, 2016	

558074 D01 DTS Meas Guidance v03r05

Report No.: MTi160324001RF02

SUMMARY OF TEST RESULT

Item	FCC Part No.	Description of Test	Result
1	15.203	Antenna requirement	Pass
2	15.207	AC power line conducted emission	
3	15.247(b)(3)	Maximum peak output power	Pass
4	15.247(a)(2)	6dB emission bandwidth	Pass
5	15.247(e)	Power spectral density (PSD)	Pass
8	15.247(d)	Band edge spurious emission, conducted spurious emission	Pass
9	15.247(d), 15.209	Radiated emission	Pass

- Page 5 of 22 - Report No.: MTi160324001RF02

1 General description

1.1 Feature of equipment under test (EUT)

Product name:	EBT-2100		
Model name:	EBT-2100		
Tx/Rx frequency range:	Tx/Rx: 2402MHz~2480MHz		
Bluetooth version:	4.1		
Modulation type:	GFSK		
Power source:	3.7VDC (Li-Polymer Battery)		
Adapter information:	/		
Antenna designation:	Chip antenna (Antenna Gain: 2.2dBi)		
Hardware version:	V2		
Software version:	V1.2		

1.2 operation channel list

Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz
1	2404MHz	11	2424MHz	21	2444MHz
8	2418MHz	18	2438MHz	38	2478MHz
9	2420MHz	19	2440MHz	39	2480MHz

- Page 6 of 22 - Report No.: MTi160324001RF02

2 Test Configuration of EUT

2.1 Test frequency channel

Low	2402MHz
Middle	2442MHz
High	2480MHz

2.2 EUT operation mode

During testing, RF test program provided by the manufacture to control the Tx operation followed the test requirement.

2.3 Test conditions

During the measurement the environmental conditions were within the listed ranges:

- Temperature: 20°C~30°C - Humidity: 30%~70%

- Atmospheric pressure: 98kPa~101kPa

2.4 Testing site

Test Site	Shenzhen Toby Technology Co., Ltd.	
Test Site Location	1 A/F., Bldg.6, Yusheng Industrial Zone The National Road No.107 Xixiang Section 467, Shenzhen, Guangdong, China	
FCC Registration No.:	811562	
CNAS Registration No.:	CNAS L5813	

2.5 Ancillary equipment list

Equipment	Model	S/N	Manufacturer	Certification type
Adapter	ADS-6MA-06 05050EPCU	1	NEXGO	FCC VoC

2.6 Measurement uncertainty

Measurement Uncertainty for a Level of Confidence of 95 %, U=2xUc(y)

RF frequency	1 x 10-7
RF power, conducted	± 1 dB
Conducted emission(150kHz~30MHz)	± 2.5 dB
Radiated emission(30MHz~1GHz)	± 4.2 dB
Radiated emission (above 1GHz)	± 4.3 dB
Temperature	±1 degree
Humidity	± 5 %

- Page 7 of 22 - Report No.: MTi160324001RF02

3 List of test equipment

For AC power line conducted emission:

Equipment	Manufacturer	Model	Serial No.	Calibration Due
LISN	R&S	ENV216	101313	2016.12.06
LISN	SCHWARZBECK	NNLK 8129	8129245	2016.12.25
Pulse Limiter	SCHWARZBECK	VTSD 9561F	9716	2016.12.25
Test Cable	N/A	N/A	C01	2016.12.06
EMI Test Receiver	R&S	ESCI	101160	2016.12.06

For Radiated emission:

Equipment	Manufacturer	Model	Serial No.	Calibration Due
Log-Bicon Antenna	MESS- ELEKTRONIK	VULB 9160	3058	2016.12.11
Horn Antenna	Schwarzbeck	BBHA 9120D	631	2016.12.05
Horn Antenna	Schwarzbeck	BBHA 9170	373	2016.12.05
Test Cable	United Microwave	57793	1m	2016.12.05
Test Cable	United Microwave	A30A30-5006	10m	2016.12.05
Microwave Pre- amplifier	Agilent	8449B	3008A01714	2016.12.05
Pre-Amplifier	Anritsu	MH648A	M09961	2016.12.05
EMI Test Receiver	R&S	ESCI-7	101318	2016.12.05
Spctrum analyzer	Agient	E4470B	MY41441082	2016.06.01

For RF conducted emission:

Equipment	Manufacturer	Model	Serial No.	Calibration Due
Spctrum analyzer	Agient	E4470B	MY41441082	2016.06.01

Note: the calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

- Page 8 of 22 - Report No.: MTi160324001RF02

4 Test Result

4.1 Antenna requirement

4.1.1 Requirement defined in FCC 15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

4.1.2 EUT antenna description

The Bluetooth antenna of EUT is an internal permanently attached antenna which the maximum gain is 2.2dBi. So the antenna meets the requirement of this part.

- Page 9 of 22 - Report No.: MTi160324001RF02

4.2 Conducted emission

4.2.1. Limit

Frequency	Limit		
(MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56	56 to 46	
0.5-5	56	46	
5-30	60	50	

Note: Decreases with the logarithm of the frequency from 0.15MHz to 0.5MHz.

4.2.2. Test method

- 1. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.
- 2. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- 3. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 4. LISN at least 80 cm from nearest part of EUT chassis.
- 5. The resolution bandwidth of EMI test receiver is set at 9kHz.

4.2.3. Test Result

- Page 10 of 22 -

Report No.: MTi160324001RF02

- Page 11 of 22 -

Report No.: MTi160324001RF02

- Page 12 of 22 - Report No.: MTi160324001RF02

4.3 Maximum peak output power

4.3.1 Limits

Conducted peak output power limit is 1W (30dBm).

4.3.2 Test Method

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

4.3.3 Test Result

Frequency (MHz)	Peak output power (dBm)	Limit (dBm)
2402	1.48	30
2442	2.372	30
2480	2.409	30

Test plots as below:

- Page 13 of 22 -

- Page 14 of 22 - Report No.: MTi160324001RF02

4.46dB emission bandwidth

4.4.1. Limits

The minimum 6 dB bandwidth shall be at least 500kHz.

4.4.2. Test method

Use the following spectrum analyzer settings:

RBW = 100kHz VBW ≥3RBW Detector = peak

Trace mode = max hold

Sweep time = auto couple

Allow the trace to stabilize, measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6dB relative to the maximum level measured in the fundamental emission.

4.4.3. Test result

Frequency (MHz)	6dB emission bandwidth (MHz)	Limit
2402	0.743	
2442	0.745	500kHz
2480	0.74	

Test plots as below:

- Page 16 of 22 - Report No.: MTi160324001RF02

4.5 Power spectral density

4.5.1. Limits

The power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.

4.5.2. Test method

Span = 1.5 times DTS bandwidth (6dB emission bandwidth, see section 4.4)

RBW = 3kHz to 100kHz

VBW ≥3RBW

Detector = peak

Sweep time = auto

Trace mode = max hold

Allow the trace to stabilize. Use the peak marker function to determine the maximum amplitude level within the RBW.

4.5.3. Test result

Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)
2402	-7.491	
2442	-6.464	8
2480	-6.308	

Test plots as below:

- Page 18 of 22 - Report No.: MTi160324001RF02

4.6 Band edge spurious emission, conducted spurious emission

4.6.1. Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

4.6.2. Test method

Use the following spectrum analyser settings:

Set RBW=100 kHz. VBW≥3RBW. Detector =peak, Sweep time = auto couple, Trace mode = max hold.

4.6.3. Test Result

Test plots as below:

Report No.: MTi160324001RF02

- Page 20 of 22 - Report No.: MTi160324001RF02

Band edge

- Page 21 of 22 - Report No.: MTi160324001RF02

4.7 Radiated emission

4.7.1. Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Frequency (MHz)	Field strength µV/m	Field strength dBµV/m	Detector	Measurement distance
30-88	100	40	QP	
88-216	150	43.5	QP	
216-960	200	46	QP	3m
960-1000	500	46	QP	SIII
Above 1000	500	54	AV	
Above 1000	5000	74	PK	

4.7.2. Test method

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 3. Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured, RBW = 1 MHz for f ≥ 1GHz, 100 kHz for f < 1 GHz, VBW ≥ RBW, Sweep = auto, Detector function = peak, Trace = max hold

- 4. Follow the guidelines in ANSI C63.4-2009 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 5. Set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the duty cycle per channel of the hopping signal is less than 100ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log₁₀(duty cycle), in an effort to demonstrate compliance with the 15.209 limit. Submit this data.
- 6. The three orthogonal axis (x, y, z) are pre-tested, only the worst emission were reported.

4.7.3. Test Result

- Page 22 of 22 - Report No.: MTi160324001RF02

Transmitter chann	nel: 2402MHz					
Frequency	Ant. Polarization	Emission level	Limits	Detector	Result	
(MHz)	H/V	dBμV/m	dBμV/m			
480.47	V	27.6	46	QP		
480.47	Н	28.1	46	QP		
2390	V	45.23	74	PK	Pass	
2390	Н	46.21	74	PK		
4804	V	50.87	74	PK		
4804	Н	55.95	74	PK		
4804	Н	44.2	54	AVG		
Transmitter chann	nel: 2442MHz					
Frequency	Ant. Polarization	Emission level	Limits	Detector		
(MHz)	H/V	dBμV/m	dBμV/m			
480.47	V	27.5	46	QP	Result	
480.47	Н	27.9	46	QP		
4884	V	51.31	74	PK		
4884	Н	57.68	74	PK		
4884	Н	45.96	54	AVG		
Transmitter chann	nel: 2480MHz					
Frequency	Ant. Polarization	Emission level	Limits	Detector		
(MHz)	H/V	dBμV/m	dBμV/m			
480.47	V	27.52	46	QP		
480.47	Н	27.86	46	QP	Result	
2483.5	V	45.26	74	PK		
2483.5	Н	46.43	74	PK		
4960	V	51.98	74	PK		
4960	Н	58.32	74	PK		
4960	Н	47.04	54	AVG		

Note

QP Emission Level= Antenna Factor +Cable Loss + Reading

PK Emission Level= Antenna Factor +Cable Loss - Amp. Factor + Reading

AV Emission Level= PK detector Level+20log (duty cycle) or set the RBW/VBW to be 1MHz/10Hz to read the level.

If the PK measured values lower than average mode limit, the EUT shall be deemed to meet average limits and then no additional average mode measurement performed.

----END OF REPORT----