Rhinos with a bit of Python

@NikoletaGlyn

http://www.bbc.com/earth/story/20150518-the-epic-history-of-rhinos?ocid=twert

selective

indiscriminate

Wo, X) = MON(I S) - r × DO(r, x) - a - F(I - S × IS) (I - RS) (I - PS) (I -

A population of selective poachers is unstable.

Proof.

e
$$u(1,1) = H(1-r)^{1-lpha} F(1-r)^{eta+\gamma-1}$$

and

$$u(1,1) = H(1-T) \qquad H(1-T)$$
 and

This gives the condition,

$$H heta_r < -F(1-r)^{\gamma+eta+lpha-1}$$

>>> import sympy as sym

>>> import sympy as sympy

>>> (2 + 3) **

25

```
>>> import sympy as sym
```

```
>>> (2 + 3) ** 2
```

```
>>> a, b = sym.symbols('a, b')
>>> expr = (a + b) ** 2
```

>>> expr.expand()

a**2 + 2*a*b + b**2

```
>>> import imp

>>> tools = imp.load_source('tools', '../tools.py')

>>> tools.utility(1, 1)

-F*(-r + 1)**beta*(-r + 1)**gamma/(-r + 1) + H*(-r + 1)*(-r + 1)**(-alpha)
```

-F*(-r + 1)**beta*(-r + 1)**gamma + H*(-r + 1)**(-alpha)*(r*(theta_r - 1) + 1)

>>> tools.utility(0, 1)

Theorem (Indiscriminate)	

Theorem (Indiscriminate)

 $\label{eq:Approx} A \ population \ of \ in discriminate \ poachers \ is \ evolution a rily \ stable.$

 $\mathsf{Theorem}\;(\mathsf{Mixed})$

A mixed stable strategy (s = s *) never exists for 0 < r < 1.

Theorem (Disincentive)

Using the modified utility model, a population of selective poachers is stable if and only if:

$$F_rH - F(1-r)^{\gamma+\beta+\alpha-1} < \frac{\Gamma(1-r)^{\alpha}}{r}$$

Theorem (Disincentive)

Using the modified utility model, a population of selective poachers is stable if and only if:

$$heta_r H - F(1-r)^{\gamma+eta+lpha-1} < rac{\Gamma(1-r)^lpha}{r}$$

>>> import numpy as np
>>> from scipy.optimize import brentq

								indiscriminate	selective	mixed	indiscriminate ESS	selective ESS	mixed ESS
	0.556		0.000	0.667		0.667	0.000		False	NaN		False	False
	0.242									NaN			
						0.333	0.333			NaN			
	0.758					0.333				NaN			
4	0.788	0.0	0.250	0.000	1.0	0.250	1.000	True	False	NaN	True	False	False

@NikoletaGlyn https://github.com/Nikoleta-v3 https://arxiv.org/abs/1712.07640