

Test report No. : 11734002M-J-R2 Page : 1 of 18

Issued date : September 12, 2017 FCC ID : 2AL3XG6J001

RADIO TEST REPORT

Test Report No.: 11734002M-J-R2

Applicant : G-Printec, Inc.

Type of Equipment : Card Printer

Model No. : **CX-7600**

Test regulation : FCC Part15 Subpart C: 2017

Test item : Conducted emission / Spurious emission only

FCC ID : 2AL3XG6J001

Test Result : Complied

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the above regulation.
- 4. The test results in this report are traceable to the national or international standards.
- 5. The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan has been accredited.
- 6. This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- 7. This report is a revised version of 11734002M-J-R1.

Date of test:	June 2, 2014		
Representative test operator:	H. Janah		
	Hiromitsu Tanabe		
Approved by :	Engineer Consumer Technology Division	THE THE PARTY OF T	A
Approved by:	- Momobila	lac-MRA	Γ Δ Β
	Tomoyuki Yamashita Engineer Consumer Technology Division	The Maladathia	Testing RTL02610
The testing in v	which "Non-accreditation" is displayed is outside	the accreditation scopes	in UL Japan.
There is no test	ing item of "Non-accreditation"		

UL Japan, Inc. Kashima EMC Lab.

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Test report No. : 11734002M-J-R2 Page : 2 of 18

Issued date : September 12, 2017 FCC ID : 2AL3XG6J001

REVISION HISTORY

Original Test Report No.: 11734002M-J

Revision	Test report No.	Date	Page revised	Contents
-	11734002M-J	August 25, 2017	-	-
(Original)				
1	11734002M-J-R1	September 1, 2017	All pages	Consistency of the spelling (model name)
1	11734002M-J-R1	September 1, 2017	P.1, P.6	Modification of the test regulation and test
		,		specification
1	11734002M-J-R1	September 1, 2017	P.6	Modification of the comment for FCC Part 15.31
2	11734002M-J-R2	September 12, 2017	P.6, P.8	Add the comment

UL Japan, Inc. Kashima EMC Lab.

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Page : 3 of 18

Issued date : September 12, 2017 FCC ID : 2AL3XG6J001

CONTENTS	PAGE
SECTION 1: Customer information	4
SECTION 2: Equipment under test (E.U.T.)	4
SECTION 3: Test specification, procedures & results	6
SECTION 4: Operation of E.U.T. during testing	
SECTION 5: Conducted emission	
SECTION 6: Radiated emission (Fundamental, Spurious Emission and Spectrum Mask)	11
Appendix 1: Test data	
Appendix 2: Test instruments	
Appendix 3: Photographs of test setup	

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Page : 4 of 18

Issued date : September 12, 2017 FCC ID : 2AL3XG6J001

SECTION 1: Customer information

Company Name : G-Printec, Inc.

Address : Kawasaki Tech Center 5F, 580-16 Horikawa-cho, Saiwai-ku,

Kawasaki-shi, Kanagawa 212-0013 Japan

Telephone Number : +81-44-540-3242 Facsimile Number : +81-44-540-3250 Contact Person : Makoto Hayase

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : Card Printer Model Number : CX-7600

Serial Number : Refer to clause 4.2

Rating : AC100 V-120 V, 50/60 Hz, 3.5 A

Country of Mass-production : Thailand

Condition of EUT : Engineering prototype

(Not for sale: This sample is not mass-produced items.)

Receipt Date of Sample : May 16, 2014

Modification of EUT : No modification by the test lab.

Model: CX-7600 (referred to as the EUT in this report) is a Card Printer.

Clock frequency(ies) in the system : 25 MHz (LAN), 48 MHz (USB), 33.3 MHz (CPU), 30 MHz (USB),

24 MHz (Print Head)

<Radio part>

Equipment type : Transceiver
Frequency of operation : 13.56 MHz
Type of modulation : ASK
Antenna type : Loop
Antenna connector type : U.FL
ITU code : A1D

Operation temperature range : +15 deg.C.to +30 deg.C.

UL Japan, Inc. Kashima EMC Lab.

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Page : 5 of 18

Issued date : September 12, 2017 FCC ID : 2AL3XG6J001

2.3 difference from the base model

CX-7600 changed the following points from the original model (CX-7000).

1. The RAM capacity of a MAIN board:

Work RAM 64 kBit (Before) 128 kbit (After) Picture RAM 64 kBit (Before) 256 kbit (After)

- 2. Print Head clock for printing: 8 MHz (Before) 24 MHz(After)
- 3. Countermeasure against EMI:
- (1) Some resistors have replaced to the Ferrite Beads. The constant of some ferrite beads have changed.
- (2) The metal plate addition which connects the rear chassis and central chassis
- 4. The print head : Tohshiba-hokuto 300 dpi Print Head (Before) Kyocera 600 dpi Print Head (After)

2.4 Similar model and the difference from the base model

Model name	Printing type	Color	Brand	Purpose
CX-7600	Single and Both-side	pale gray	WTJ (WoonJoo Tech, Corp.) BRAVO(Emphor Fzco) COSMOCOLOR	General
XID 86XX Printer	Single and Both-side	gray, white	EDIsecure (Matica Technologies Group)	General
CX-D80H	Single and Both-side	pale gray, metallic silver, metallic blue	DNP (Dai Nippon Printing Co. Ltd.)	General
SR300e	Single and Both-side	dark gray, dark blue	Datacard (Datacard Corp.)	General

The test was performed with CX-7600 as a representative model.

This test report is covered with all modified model.

UL Japan, Inc. Kashima EMC Lab.

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Page : 6 of 18

Issued date : September 12, 2017 FCC ID : 2AL3XG6J001

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C: 2017

FCC Part 15 final revised on August 29, 2017 and effective September 28, 2017

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.207 Conducted limits

Section 15.225 Operation within the band 13.110-14.010 MHz.

*The tests were performed by the test standard FCC Part 15 Subpart C: 2014 and ANSI C 63.4:2003.

Verifying the data in this test report based on the difference between FCC Part 15 Subpart C: 2014 and FCC Part 15 Subpart C: 2017, also between ANSI C 63.4:2003 and ANSI C 63.10:2013, it is judged that the EUT complies with FCC Part 15 Subpart C: 2017 and ANSI C 63.10:2013 without the additional test.

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted emission	ANSI C63.4:2003 7. AC powerline conducted emission measurements <ised> RSS-Gen 7.2.2</ised>	Section 15.207 <ised> RSS-Gen 7.2.2</ised>	5.4 dB Freq.: 13.5600 MHz Detector: AV Phase: N	Complied	-
Electric Field Strength of Fundamental Emission	ANSI C63.4:2003 13. Measurement of intentional radiators	Section 15.225(a)	77.5 dB Polarization: Vertical	Complied	Radiated
Electric field strength of Spurious emission (within the 13.110 MHz -	<ised> RSS-Gen 4.8, 4.11 ANSI C63.4:2003 13. Measurement of intentional radiators</ised>	<ised>RSS-210 A2.6 FCC 15.225 (b)(c)</ised>	43.6 dB Freq.: 14.010 MHz Polarization: Vertical	Complied	Radiated
Electric field strength of Spurious emission (outside of the 13.110	<ised>RSS-Gen 4.9, 4.11 ANSI C63.4:2003 13. Measurement of intentional radiators</ised>	<ised>RSS-210 A2.6 Section 15.209, Section 15.225 (d)</ised>	3.4 dB Freq.: 599.94 MHz Polarization: Horizontal	Complied	Radiated
MHz - 14.010 MHz band) 20dB Bandwidth	<ised>RSS-Gen 4.6, 4.11 ANSI C63.4:2003 13. Measurement of intentional radiators</ised>	<ised>RSS-210 A2.6 Section15.215(c)</ised>	N/A *1)	-	Radiated
Frequency Tolerance	<ised> RSS-Gen 4.6.1 ANSI C63.4:2003 13. Measurement of intentional radiators <ised>RSS-Gen 4.7, 7.2.6</ised></ised>	<ised> RSS-Gen 4.6.1 Section 15.225(e) <ised> RSS-210 A2.6</ised></ised>	N/A *1)	-	Radiated

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422

FCC Part 15.31 (e)

The tests were performed by adjusting the AC power since this EUT provides stable voltage (DC 3.3V) constantly to RF Module regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 15.203/212 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203/212.

UL Japan, Inc. Kashima EMC Lab.

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

^{*1)} The radio parts was not tested because it is identical with CX-7000. Refer to the data of test report CX-7000 (Test Report No.: 11734002M-H-R2)

Page : 7 of 18

Issued date : September 12, 2017 FCC ID : 2AL3XG6J001

3.3 Addition to standard

No.	Item	Test Procedure	Specification	Remarks	Deviation	Worst margin	Results
1	99 % Occupied	RSS-Gen 4.6.1	-	Radiated	N/A	N/A	N/A
	Band Width						

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

The following uncertainties have been calculated to provide a confidence level of 95% using a coverage factor k=2.

Test Items	Frequency range	Uncertainty
Conducted emission (AC Mains) AMN	0.15 MHz - 30 MHz	2.8 dB
Radiated emission	0.009 MHz - 30 MHz	2.7 dB
(Measurement distance: 3 m)	30 MHz - 1000 MHz	5.9 dB

Conducted emission test

The data listed in this test report has enough margin, more than site margin.

Radiated emission test

The data listed in this test report has enough margin, more than site margin.

3.5 Test Location

UL Japan, Inc.

Kashima EMC Lab.

1614 Mushihata, Katori-shi, Chiba-ken, 289-0341 JAPAN
Telephone number : +81 478 88 6500
Facsimile number : +81 478 82 3373
JAB Accreditation No. : RTL02610

	ISED Registration No.	Width x Depth x Height (m)	Size of reference ground plane/horizontal conducting plane (m)	Maximum measurement distance
No.1 Open site	4659A-1	6.0 x 5.5 x 2.5	20 x 40	10 m
No.2 Open site	4659A-2	4.4 x 4.4 x 2.15	18 x 20	10 m
No.5 Open site	4659A-5	8.6 x 7.1 x 2.4	18 x 23	10 m
No.1 Shielded room	4659A-1	5.4 x 4.5 x 2.3	-	-
No.2 Shielded room	4659A-2	3.6 x 2.7 x 2.3	-	-
No.3 Shielded room	-	5.4 x 3.6 x 2.3	-	-
No.4 Shielded Room	-	6.1 x 6.1 x 3.1	-	-
No.5 Shielded Room	4659A-5	4.2 x 3.1 x 2.5	-	-
No.3 Fully Anechoic Chamber	-	7.0 x 3.5 x 3.5	-	-
No.6 Semi-anechoic Chamber	4659A-6	8.5 x 5.5 x 5.2	-	3 m
No.10 Semi-anechoic Chamber	4659A-10	18.4 x 9.9 x 7.7	-	10 m
No.11 Semi-anechoic Chamber	4659A-7	9.0 x 6.5 x 5.2	-	3 m
No.1 Measurement room	-	5.0 x 3.7 x 2.6	-	-
No.2 Measurement room	-	4.3 x 4.4 x 2.7	-	-
No.3 Measurement room	-	4.5 x 5.3 x 2.7	-	-

3.6 Test set up, Test data, and Test instruments

Refer to APPENDIX.

UL Japan, Inc. Kashima EMC Lab.

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Page : 8 of 18

Issued date : September 12, 2017 FCC ID : 2AL3XG6J001

SECTION 4: Operation of E.U.T. during testing

4.1 Operating Modes

The EUT exercise program used during testing was designed to exercise the various system components in a manner similar to typical use.

Test item	Operating mode	Tested frequency
Conducted emission	Transmitting	13.56MHz
Spurious emission		
	ISO/IEC 15693-2	
	Modulation ASK100%	
	• Data transfer rate 6.62kbps	

The EUT has the power settings by the software as follows;

Power settings: Setting is controlled by the firmware and cannot be changed.

Software: CX-7600 TEST TOOL (Model: CX-7600)

Justification: The system was configured in typical fashion (as customer would normally use it) for testing.

The all tests were performed on with tag that was worst case as a result of verifying the both of conditions with/without tag.

UL Japan, Inc. Kashima EMC Lab.

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Page : 9 of 18

Issued date : September 12, 2017 FCC ID : 2AL3XG6J001

4.2 Configuration and peripherals

E

B

A

A

AC120V/ 60Hz

AC120V/ 60Hz

AC120V/ 60Hz

Description of EUT and support equipment

No.	Item	Model number	Serial number	Manufacturer	Remarks
Α	Card Printer	CX-7600	135V2080	G-Printec, Inc.	EUT
В	PC	DC5100SFF	JPA61108Z4	hp	-
С	Keyboard	KB-0316	B942A0AGASP0LT	hp	-
D	Mouse	MO19KCA	346C30433	Microsoft	-
Е	LCD Monitor	Hp1502	CNC5030CMD	hp	-

List of cables used

No.	Item	Longth(m)	Shie	ld	Remarks
110.	Item	Length(m)	Cable	Connector	Kemarks
1	USB	2.0	Shielded	Shielded	=
2	Ethernet	1.0	Shielded	Shielded	Cat.5e
3	VGA	1.5	Shielded	Shielded	=
4	Keyboard	1.8	Shielded	Shielded	=
5	Mouse	1.6	Shielded	Shielded	=
6	AC	2.0	Unshielded	Unshielded	EUT
7	AC	2.0	Unshielded	Unshielded	PC
8	AC	1.8	Unshielded	Unshielded	LCD Monitor

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

^{*} Cabling and setup were taken into consideration and test data was taken under worse case conditions.

Test report No. : 11734002M-J-R2 Page : 10 of 18

Issued date : September 12, 2017 FCC ID : 2AL3XG6J001

SECTION 5: Conducted emission

Test Procedure and conditions

EUT was placed on a urethane platform of nominal size, 1.0 m by 2.0 m, raised 0.8 m above the conducting ground plane. The rear of tabletop was located 40 cm to the vertical conducting plane. The rear of EUT, including peripherals aligned and flushed with rear of tabletop. All other surfaces of tabletop were at least 80 cm from any other grounded conducting surface. EUT was located 80 cm from a Line Impedance Stabilization Network (LISN)/ Artificial mains Network (AMN) and excess AC cable was bundled in center.

I/O cables that were connected to the peripherals were bundled in center. They were folded back and forth forming a bundle 30 cm to 40 cm long and were hanged at a 40 cm height to the ground plane. All unused 50 ohm connectors of the LISN (AMN) were resistivity terminated in 50 ohm when not connected to the measuring equipment.

The AC Mains Terminal Continuous disturbance Voltage has been measured with the EUT in a Semi Anechoic Chamber. The EUT was connected to a LISN (AMN).

An overview sweep with peak detection has been performed.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Detector : QP and CISPR AV
Measurement range : 0.15 MHz - 30 MHz

Test data : APPENDIX

Test result : Pass

UL Japan, Inc. Kashima EMC Lab.

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Test report No. : 11734002M-J-R2 Page : 11 of 18

Issued date : September 12, 2017 FCC ID : 2AL3XG6J001

SECTION 6: Radiated emission (Fundamental, Spurious Emission and Spectrum Mask)

Test Procedure

EUT was placed on a urethane platform of nominal size, 1.0 m by 2.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

Frequency: From 9 kHz to 30 MHz

The EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

The measurements were performed for vertical polarization (antenna angle: 0deg.to 360deg.) and horizontal polarization.

*Refer to Figure 1 about Direction of the Loop Antenna.

Frequency: From 30 MHz to 1 GHz

The measuring antenna height varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

The measurements were performed for both vertical and horizontal antenna polarization.

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below;

Frequency	Below 30 MHz	30 MHz to 200 MHz	200 MHz to 1 GHz
Antenna Type	Loop	Biconical	Logperiodic

Frequency	From 9 kHz to	From 90	From 150 kHz	From 490 kHz	From 30 MHz
	90 kHz	kHz to 110	to 490 kHz	to 30 MHz	to 1 GHz
	and	kHz			
	From 110 kHz to				
	150 kHz				
Instrument used			Test Receiv	ver	
Detector	PK / AV	QP	PK / AV	QP	QP
IF Bandwidth	200 Hz	200 Hz	9 kHz	9 kHz	120 kHz
Test Distance	3 m *1)	3 m *1)	3 m *1)	3 m *2)	3 m

^{*1)} Distance Factor: $40 \times \log (3 \text{ m} / 300 \text{ m}) = -80 \text{ dB}$

Although these tests were performed other than open field test site, adequate comparison measurements were confirmed against 30 m open field test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

These tests were performed in semi anechoic chamber. Therefore the measured level of emissions may be higher than if measurements were made without a ground plane.

However test results were confirmed to pass against standard limit.

The test was made on EUT at the normal use position.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement range : 9 kHz - 1 GHz Test data : APPENDIX 1

Test result : Pass

UL Japan, Inc. Kashima EMC Lab.

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

^{*2)} Distance Factor: $40 \times \log (3 \text{ m} / 30 \text{ m}) = -40 \text{ dB}$

Test report No. : 11734002M-J-R2 Page : 12 of 18

Issued date : September 12, 2017 FCC ID : 2AL3XG6J001

Side View (Vertical)

.....

Top View (Horizontal)

Antenna was not rotated.

Top View (Vertical)

Front side: 0 deg.

Forward direction: clockwise

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Conducted Emission Test

(0.15MHz - 30MHz at Mains Ports)

Report No. : 11734002M Tested Date : 2014/06/02

Temperature : $24^{\circ}C$ Humidity : 57 %

Atmos. Press. : 1008 hPaTes

Test place : Kashima EMC Lab. No.11 Semi-anechoic Chamber

Standard : FCC Part15C (0.15MHz-30MHz)

Tested by : Hiromitsu Tanabe

No	. Frequency	N	1	L		Correction	Re	sult	Lim	its	Mar	gin
		QP	AV	QP	ΑV	Factor	QP	AV	QP	AV	QP	AV
	(MHz)	(dB	uV)	(dBı	ıV)	(dB)	(dB	uV)	(dB	uV)	(dE	3)
1	0. 1836	26. 7	_	26. 5	_	10. 1	36.8	_	64. 3	54. 3	27. 5	_
2	0.4603	14.0	_	14. 3	_	10. 2	24. 5	_	56. 7	46. 7	32. 2	_
3	0. 5540	14. 3	_	14. 3	_	10. 2	24. 5	_	56.0	46.0	31.5	_
4	0.6440	14. 5	_	14. 0	_	10. 2	24. 7	_	56.0	46.0	31.3	_
5	13. 5600	33.4	33. 3	32. 0	31.9	11. 3	44. 7	44.6	60.0	50.0	15. 3	5. 4
6	20. 6435	20.7	_	22. 7	_	11. 7	34. 4	_	60.0	50.0	25.6	_
7	28. 6430	25. 7	_	25. 3	_	11. 9	37. 6	_	60.0	50.0	22. 4	_

Result = Reading(higher data of N or L) + Correction Factor(AMN factor + cable loss)

<u>Data of Electric field strength of Fundamental emission</u> and Spurious emission within the band: FCC15.225(a)(b)(c)

Kashima EMC Lab.

No.11 Semi-Anechoic Chamber

Regulation: FCC Part15 Subpart C 15.225

Test Distance: 3m Date: June 2, 2014

Temperature: 24 deg.C Humidity: 57 %RH

Tested by: Hiromitsu Tanabe

Remarks:

Mode:

Fundamental emission

No.	FREQ	Test R	eceiver	Antenna	LOSS	AMP	Distance	RESULT		LIMIT	MA	RGIN
		Rea	ding	Factor		GAIN	factor	_		(30m)		
		Hor	Ver					Hor	Ver		Hor	Ver
	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]
1	13.560	15.7	26.5	19.6	0.3	0.0	-40.0	-4.4	6.4	83.9	88.3	77.5

Calculation: Result [dBuV/m] = Reading [dBuV] + Ant. Fac [dB/m] + Loss (Cable + ATT) [dB] - Gain (AMP) [dB] + Distance factor [dB] + Cable + ATT (AMP) [dB] + Distance factor [dB] + Cable + ATT (AMP) [dB] + Distance factor [dB] + Cable + ATT (AMP) [dB] + Distance factor [dB] + Cable + ATT (AMP) [dB] + Distance factor [dB] + Cable + ATT (AMP) [dB] + Distance factor [dB] + Cable + ATT (AMP) [dB] + Distance factor [dB] + Cable + ATT (AMP) [dB] + Distance factor [dB] + Cable + ATT (AMP) [dB] + Distance factor [dB] + Cable + ATT (AMP) [dB] + Distance factor [dB] + Cable + ATT (AMP) [dB] + Distance factor [dB] + Cable + ATT (AMP) [dB] + Distance factor [dB] + Cable + ATT (AMP) [dB] + Distance factor [dB] + Cable + ATT (AMP) [dB] + Distance factor [dB] + Cable + ATT (AMP) [dB] + Distance factor [dB] + Cable + ATT (AMP) [dB] + Distance factor [dB] + Cable + ATT (AMP) [dB] + Distance factor [dB] + Cable + ATT (AMP) [dB] + Cable + ATT (AMP)

Distance factor: $40 \times \log (3m/30m) = -40 \text{ dB}$

Limits (30m)

Transmitting

((reference) worst carrier @3m)

46.4 dBuV/m

·13.553MHz to 13.567MHz: 83.9dBuV/m (FCC 15.225(a))

Spurious emission within the band

No.	FREQ	Test R	eceiver	Antenna	LOSS	AMP	Distance	RESULT		LIMIT	MA	RGIN
		Rea	ding	Factor		GAIN	factor			(30m)		
		Hor	Ver					Hor	Ver		Hor	Ver
	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]
1	13.110	-	5.5	19.6	0.3	0.0	-40.0	-	-14.6	29.5	-	44.1
2	13.410	-	5.8	19.6	0.3	0.0	-40.0	-	-14.3	40.5	-	54.8
3	13.553	6.7	12.5	19.6	0.3	0.0	-40.0	-13.4	-7.6	50.4	63.8	58.0
4	13.567	5.8	12.4	19.6	0.3	0.0	-40.0	-14.3	-7.7	50.4	64.7	58.1
5	13.710	-	5.9	19.6	0.3	0.0	-40.0	-	-14.2	40.5	-	54.7
6	14.010	-	6.0	19.6	0.3	0.0	-40.0	-	-14.1	29.5	-	43.6

 $Calculation: Result [dBuV/m] = Reading [dBuV] + Ant. Fac [dB/m] + Loss (Cable + ATT) [dB] - Gain (AMP) [dB] + Distance\ factor [dB] + Cable + ATT (dB) - Gain (AMP) [dB] + Distance\ factor [dB] + Cable + ATT (dB) - Gain (AMP) [dB] + Distance\ factor [dB] + Cable + ATT (dB) - Gain (AMP) [dB] + Distance\ factor [dB] + Cable + ATT (dB) - Gain (AMP) [dB] + Distance\ factor [dB] + Cable + ATT (dB) - Gain (AMP) [dB] + Distance\ factor [dB] + Cable + ATT (dB) - Gain (AMP) [dB] + Distance\ factor [dB] + Cable + ATT (dB) - Gain (AMP) [dB] + Distance\ factor [dB] + Cable + ATT (dB) - Gain (AMP) [dB] + Distance\ factor [dB] + Cable + ATT (dB) - Gain (AMP) [dB] + Distance\ factor [dB] + Cable + ATT (dB) - Gain (AMP) [dB] + Distance\ factor [dB] + Cable + ATT (dB) - Cable +$

Outside filed strength frequencies

- ·Fc±7kHz:13.553MHz to 13.567MHz
- \cdot Fc±150kHz:13.410MHz to 13.710MHz
- •Fc±450kHz:13.110MHz to 14.010MHz

Fc = 13.56MHz

Limits (30m)

- \cdot 13.410MHz to 13.553MHz and 13.567MHz to 13.710MHz : 50.4dBuV/m (FCC 15.225(b))
- $\cdot 13.110 MHz \ to \ 13.410 MHz \ and \ 13.710 MHz \ to \ 14.010 MHz \ : 40.5 dBuV/m \ \ (FCC \ 15.225(c))$
- $\cdot Below~13.110 MHz~and~Above~14.010 MHz: 29.5 dBuV/m~(FCC~15.225(d) and~FCC~15.209)$

UL Japan, Inc. Kashima EMC Lab.

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Radiated Emission

Kashima EMC Lab. No.11 Semi-Anechoic Chamber

FCC Part15 Subpart C 15.225

Test Distance: 3

Regulation:

Date: June 2, 2014
Temperature: 24 deg.C
Humidity: 57 %RH

Tested by: Hiromitsu Tanabe

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	factor[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg.]	
Hori.	199.98	QP	49.1	14.4	5.4	32.1		36.8	43.5	6.7	162	100	at 3m
Hori.	250.00	QP	49.0	11.7	5.7	32.0		34.4	46.0	11.6	125	200	at 3m
Hori.	333.30	QP	52.7	13.8	6.2	32.0		40.7	46.0	5.3	245	117	at 3m
Hori.	466.62	QP	43.7	16.9	6.9	32.0		35.5	46.0	10.5	157	75	at 3m
Hori.	533.28	QP	47.3	18.2	7.1	32.0		40.6	46.0	5.4	138	158	at 3m
Hori.	599.94	QP	48.0	19.3	7.4	32.1		42.6	46.0	3.4	110	155	at 3m
Hori.	733.26	QP	41.5	21.0	7.9	32.1		38.3	46.0	7.7	177	75	at 3m
Vert.	27.12	QP	0.6	22.8	0.4	0.0	-40.0	-16.2	29.5	45.7	100	0	at 3m
Vert.	30.00	QP	45.1	13.7	3.9	32.2		30.5	40.0	9.5	100	100	at 3m
Vert.	72.14	QP	47.1	9.1	4.4	32.2		28.4	40.0	11.6	100	175	at 3m
Vert.	250.00	QP	44.7	11.7	5.7	32.0		30.1	46.0	15.9	100	0	at 3m
Vert.	333.30	QP	52.5	13.8	6.2	32.0		40.5	46.0	5.5	100		at 3m
Vert.	466.62	QP	43.6	16.9	6.9	32.0		35.4	46.0	10.6	100	170	at 3m
Vert.	533.28	QP	44.3	18.2	7.1	32.0		37.6	46.0	8.4	170		at 3m
Vert.	733.26	QP	40.8	21.0	7.9	32.1		37.6	46.0	8.4	195		at 3m
Vert.	866.58	QP	35.5	22.7	8.4	31.6		35.0	46.0	11.0	117	180	at 3m
Vert.	933.21	QP	33.7	23.3	8.6	31.2		34.4	46.0	11.6	100	120	at 3m

Result = Reading + Ant Factor + Loss (Cable+Attenuator) - Gain(Amprifier) + Distance Factor

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Transmitting

Mode:

^{*}Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

APPENDIX 2: Test Instruments

No.11 Test site (Conducted Emission)

Instrument	Manufacturer	Model	Internal Code	Cal. Date	Due Date
Test Receiver	Rohde & Schwarz	ESCI	RCV09	2013/09/03	2014/09/30
AMN	Rohde & Schwarz	ESH3-Z5	LSN08	2013/07/19	2014/07/31
AMN (for EUT)	Rohde & Schwarz	ESH3-Z5	LSN11	2013/07/19	2014/07/31
Spectrum Analyzer	Hewlett Packard	8567A	SPR22	2013/10/07	2014/10/31
Coaxial Cable	Fujikura	5D-2W	11CSAC	2014/05/23	2015/05/31

No.11 Test site (Radiated Emission: 9kHz – 30MHz)

Instrument	Manufacturer	Model	Internal Code	Cal. Date	Due Date
Loop Antenna	Rohde & Schwarz	HFH2-Z2	LPA01	2013/06/25	2014/06/30
Coaxial Cable	Fujikura	3D-2W	MG5m	2014/05/10	2015/05/31
Test Receiver	Rohde & Schwarz	ESHS10	RCH02	2014/03/13	2015/03/31

No.11 Test site (Radiated Emission: 30MHz – 1000MHz)

Instrument	Manufacturer	Model	Internal Code	Cal. Date	Due Date
Test Receiver	Rohde & Schwarz	ESCI	RCV09	2013/09/03	2014/09/30
Biconical Antenna	Schwarzbeck	VHBB 9124	BCA13	2014/05/07	2015/05/31
Logperiodic Antenna	Schwarzbeck	VULP 9118-B	LGA15	2014/05/07	2015/05/31
Spectrum Analyzer	Hewlett Packard	8567A	SPR22	2013/10/07	2014/10/31
Pre-Amplifier	Sonoma	310N	PRA16	2014/05/23	2015/05/31
Coaxial Cable	Fujikura	5D-2W	11R10m	2014/05/23	2015/05/31