Proposition 9.3.

- (i) If $f: A \to B$ is injective and $g: B \to C$ is injective then $g \circ f: A \to C$ is injective.
- (ii) If $f:A\to B$ is surjective and $g:B\to C$ is surjective then $g\circ f:A\to C$ is surjective.
- (iii) If $f: A \to B$ is bijective and $g: B \to C$ is bijective then $g \circ f: A \to C$ is bijective.

Proof. (i) Suppose $f: A \to B$ and $g: B \to C$ are injective functions. Then by definition, for any $a_1, a_2 \in A$,

$$f(a_1) = f(a_2)$$
 implies $a_1 = a_2$ (9.1)

and, for any $b_1, b_2 \in B$,

$$g(b_1) = g(b_2)$$
 implies $b_1 = b_2$. (9.2)

Now suppose $(g \circ f)(a_1) = (g \circ f)(a_2)$. To prove that $g \circ f$ in injective, we will show that $a_1 = a_2$. We know that $g(f(a_1)) = g(f(a_2))$. Then by applying (9.2) to $b_1 = f(a_1)$ and $b_2 = f(a_2)$,

$$b_1 = b_2$$
 that is, $f(a_1) = f(a_2)$.

But now by (9.1), $a_1 = a_2$.

(ii) Suppose $f: A \to B$ and $g: B \to C$ are surjective functions. Then by definition,

for any
$$b \in B$$
 there exists $a \in A$ such that $f(a) = b$ (9.3)

and

for any
$$c \in C$$
 there exists $b \in B$ such that $g(b) = c$. (9.4)

We need to show that $g \circ f$ is surjective. So given $c \in C$, we will construct $a \in A$ such that $(g \circ f)(a) = c$. For the given c we can, by (9.4), find $b \in B$ such that g(b) = c. For this b we can, by (9.3), find $a \in A$ such that f(a) = b. This a will do, because

$$\left(g\circ f\right)\left(a\right)=g\left(f\left(a\right)\right)=g\left(b\right)=c\ .$$

(iii) follows immediately with (i) and (ii), by definition of bijectivity.

Proposition 9.4.

- (i) $f: A \to B$ is injective if and only if f has a left inverse.
- (ii) $f: A \to B$ is surjective if and only if f has a right inverse.
- (iii) $f: A \to B$ is bijective if and only if f has an inverse.

Proof of (i). Suppose $f: A \to B$ is injective. Then fix an $a_0 \in A$ and define the function $g: B \to A$ through

$$g(b) := \begin{cases} a & \text{if } b \text{ is in the range of } f \text{ and } f(a) = b, \\ a_0 & \text{otherwise.} \end{cases}$$

Then g is a well-defined function, because f is injective.

Conversely, suppose $f: A \to B$ has a left inverse g, that is, $g: B \to A$ is a function such that $g \circ f = \mathrm{id}_A$. Suppose $a_1, a_2 \in A$ satisfy $f(a_1) = f(a_2)$; to prove that f is injective we will show that this identity implies $a_1 = a_2$. Because g is a function, $f(a_1) = f(a_2)$ implies that

$$(g \circ f)(a_1) = g(f(a_1)) = g(f(a_2)) = (g \circ f)(a_2).$$

Comparing the left-hand side of this identity with the right-hand side yields $a_1 = a_2$, since $g \circ f = id_A$.

Proof of (ii). Suppose $f: A \to B$ is surjective. We will construct a function $g: B \to A$ as follows: Given $b \in B$, we can find an $a \in A$ such that f(a) = b (we can possibly find more than one such a, in which case we choose one). We define this a to be the image of b under the function g, that is, we define g(b) = a. With this definition, we obtain $(f \circ g)(b) = f(g(b)) = b$, that is, g is a right inverse to f.

Conversely, suppose $f: A \to B$ has a right inverse g, that is, $g: B \to A$ is a function such that $f \circ g = \mathrm{id}_B$. We need to show that f is surjective, that is, given $b \in B$, we need to find $a \in A$ such that f(a) = b. Given such a $b \in B$, we define a = g(b). Then by construction, $f(a) = f(g(b)) = (f \circ g)(b) = b$.