Simulación de Monte-Carlo en el Grid Aproximación del número Pi y más

Autor: CÉSAR GONZÁLEZ SEGURA

<cegonse@posgrado.upv.es>

Conceptos de la Computación en el Grid y Cloud MU en Computación Paralela y Distribuida

ÍNDICE

- 1. Marco Teórico.
- 2. Objetivos y Solución Propuesta.
- 3. Diseño del Sistema e Implementación.
- 4. Demo: Aproximación del número Pi.
- 5. Demo: Renderizado mediante path-tracing.
- 6. Resultados experimentales.
- 7. Conclusiones.

Método de Monte-Carlo

"Método probabilístico para evaluar expresiones matemáticas complejas."

- Se evalúa el valor de la función en puntos aleatorios siguiendo cierta distribución de probabilidad.
- Cuanto mayor sea el número de puntos, más se asemejará la solución aproximada a la solución real.

Ejemplo: Hundir la Flota

➤ Obtenemos N*N puntos aleatorios distribuidos en el rango 1~10 y A~J

> Evaluamos el resultado obtenido (agua o tocado).

respectivamente.

Ejemplo: Hundir la Flota

- \triangleright N = 10.
- Empieza a distinguirse la topología del mapa (posiciones de barcos, zonas de agua...).
- > Se ha obtenido una solución inicial pero con mucho error.

Ejemplo: Hundir la Flota

 \triangleright N = 20.

- Con un número mayor de puntos se conoce mucha más información.
- > Se ha disminuido el error en la solución obtenida.

Ejemplo: Hundir la Flota

> N grande.

- Con un número de puntos los suficientemente grande, se conoce casi por completo la topología del mapa.
- > Se ha aproximado la solución con mucha exactitud.

OBJETIVOS Y SOLUCIÓN PROPUESTA

Objetivo Principal

"Gridificar" el método de Monte-Carlo para acelerar su ejecucción.

- El problema se puede dividir en sub-problemas de grano grueso: es un problema *poco acoplado*.
- Al tratar con números aleatorios pueden surgir problema (semillas de generadores de números aleatorios entre otros).

OBJETIVOS Y SOLUCIÓN PROPUESTA

Solución Propuesta

División del problema mediante divide y vencerás.

La distribución aleatoria se ha dividido en *N* distribuciones acotadas en los rangos apropiados para el nodo.

Véase el ejemplo de hundir la flota:

DISEÑO E IMPLEMENTACIÓN DEL SISTEMA

Diseño del Sistema

Frontend en local + runtime en el Grid

- Primera versión en C++.
- ➤ Problemas al tener que compilar: ¿C+11? ¿GSL? ¿librandom? ¿libssh? ¿libssh2? ¿boost? ¿mkl? ...
- Tras varios problemas en la comunicación: paso a Node.js.

DISEÑO E IMPLEMENTACIÓN DEL SISTEMA

Diagrama de flujo del sistema

DISEÑO E IMPLEMENTACIÓN DEL SISTEMA

Detalles de Implementación

- Código fuente en Gitlab del DSIC: https://gitlab.dsic.upv.es/cegonse/grid-montecarlo/tree/master
- Librerías utilizadas:
 - ➤ SSHv2: Acceso SSH2 desde Node.JS.
 - > Async: Gestión avanzada de tareas en Node.JS.
 - ➤ Readline-sync: Acceso a *stdin* mediante streams síncronos.
- Probado en Node.JS 4 bajo Linux.

DEMO: APROXIMACIÓN DEL NÚMERO PI

Método para aproximar

- Integración de la función del círculo para hallar su área (Pi).
- Los valores en los que evaluar la función son aleatorios (Montecarlo).

```
scale = 1 / nodes;

for i = 1:n
    x = scale*index + scale*rand();
    y = rand();

a = sqrt(x*x + y*y);

if a <= 1
    m_pi = m_pi + 1;
    end
end</pre>
```


DEMO: APROXIMACIÓN DEL NÚMERO PI

Ejecucción de la demo (Cruzemos los dedos)

Qué es el trazado de rayos

Dibujado de escenas 3D simulando la interacción de los fotones con las superficies.

Qué es el trazado de rayos

Se lanzan rayos desde la cámara hacia la escena y se encuentra la intersección del rayo con la geometría.

r: vector de reflexión Cantidad de luz que refleja la superficie:

- Difusa
- > Especular
- > Reflejos

Qué es el path-tracing

- Aplicación del método de Monte-Carlo al trazado de rayos.
- > Se generan rayos de manera aleatoria, asegurando que intersecan con el plano de dibujo. Cuantas más muestras aleatorias se generen, más se asemejará la imagen al resultado final.
- En la demo: escena con tres esferas, material difuso (sin reflejos).

$$N = 100$$

Ejecucción de la demo (Cruzemos los dedos)

RESULTADOS

Comparación ejecucción local – Grid

CONCLUSIONES

Validez del método

- El método de Monte-Carlo ha demostrado ser un buen problema para **Gridificar**.
- Usando un tiempo de ejecucción similar se pueden obtener mejores resultados obteniendo los cálculos en el Grid.
- Es importante tener cuidado con la *no-aleatoriedad* de los generadores de números aleatorios y con la disponibilidad de los nodos de cómputo.

¡Muchas gracias por vuestra atención!

¿Preguntas?