III.Организация памяти ЭВМ

- Классификация памяти ЭВМ. Характеристики памяти.
- Методы организации доступа в запоминающие устройства.
- Состав, устройство и принцип действия основной памяти.
- Статические и динамические запоминающие устройства. Организация кэш-памяти.
- Постоянные запоминающие устройства (ПЗУ).
- Виртуальная память.

Памятью ЭВМ называется совокупность устройств, служащих для запоминания, хранения и выдачи информации.

Характеристики памяти ЭВМ:

- -Назначение.
- -Информационная емкость.
- -Информационная емкость читаемого слова.
- -Способ доступа.
- -Быстродействие.
- -Физический способ хранения информации.

Классификация запоминающих устройств по способу доступа.

- Адресные ЗУ

Постоянные ЗУ, ПЗУ (ROM) ЗУ с произвольным доступом (RAM)

- Ассоциативные ЗУ

Полностью ассоциативные ЗУ

Ассоциативные ЗУ с прямым размещением

Наборно-ассоциативные ЗУ

- Последовательные ЗУ

FIFO

LIFO

Файловые

Циклические

Классификация запоминающих устройств по назначению.

Латентность при обращении к подсистеме памяти

Тип обращения к памяти	Объем памяти,	Латентность,
	байт	такты процес-
		сора
Регистры процессора	2 ⁶ 2 ¹⁰	1
Кэш первого уровня	214216	24
Кэш второго уровня	2 ¹⁵ 2 ²²	1012
Кэш третьего уровня	$2^{21}2^{26}$	1550
ОЗУ на одном кристалле с процессором при попада-	214 224	1075
нии в TLB (доступ по случайным адресам)		
Внешнее ОЗУ при попадании в ТLВ (доступ по слу-	2 ²⁰ 2 ⁴⁰	200400
чайным адресам)		
Внешнее ОЗУ при промахе в TLB (доступ по случай-	220 240	20002500
ным адресам)		
Внешнее ОЗУ при выгруженной во внешний Flash	$2^{30} 2^{42}$	$1*10^51*10^6$
диск странице		
Внешнее ОЗУ при выгруженной во внешний жесткий	230 250	1*1061*108
диск странице		

Обобщенная схема адресного ЗУ

Обобщенная схема ассоциативного ЗУ

Обобщенная схема последовательного ЗУ Стек (память типа LIFO)

Буфер (память типа FIFO)

Адресные запоминающие устройства

Постоянные ЗУ, ПЗУ (ROM)

ЗУ с произвольным доступом (RAM)

Динамические ЗУПД (DRAM)

МПЗУ (MROM)

ППЗУ (PROM)

РПЗУ-УФ (EPROM)

ОПРПЗУ-УФ (EPROM-OTP)

РП3У-ЭС (EEPROM)

FLASH

Использующие кучность

адресов

FPM DRAM

EDO DRAM

BEDO DRAM

SDRAM

DDR SDRAM

RDRAM

Не использующие кучность

адресов

DRAM

RLDRAM

Статические ЗУПД (SRAM)

Асинхронные

Синхронные

Организация запоминающих массивов адресных ЗУ

Структура 3M типа 2D

Количество выходов дешифратора равно количеству слов в памяти (2ⁿ)

Структура применима только для малоразмерных ЗУ

Структура 3M типа 3D

Структура 3M типа 2DM

Мультиплексоры позволяют выбрать один из $2^{n/2}$ разрядов каждом из запоминающих массивов

- Размеры массивов
 близки к оптимальным.
- Количество линий записи/ считывания минимально.

Расслоение памяти Блочное разделение адреса

Номер банка определяется старшей частью адреса.

Циклическое разделение адреса

Номер банка определяется младшей частью адреса

Блочно-циклическое разделение адреса

Блочно-циклический способ обеспечивает возможность пакетной передачи и ускоряет доступ при кучности адресов

Пример разделения адреса в SDRAM (PIII, P4)

Статические ЗУ с произвольной выборкой (SRAM) Запоминающая ячейка статической памяти

Запоминающая ячейка с двухкоординатной выборкой

Запоминающая ячейка двухпортовой выборкой

Микросхема статической памяти

Диаграмма работы статической памяти

128K x 8 Static RAM

128K x 8 Static RAM

Truth Table

ПРИМЕР

CYPRESS
PERFORM

CE	OE	WE	I/O ₀ -I/O ₇	Mode	Power
Н	Х	Х	High Z	Power-Down	Standby (I _{SB})
L	L	Н	Data Out	Read	Active (I _{CC})
L	Х	L	Data In	Write	Active (I _{CC})
L	Н	Н	High Z	Selected, Outputs Disabled	Active (I _{CC})

Read Cycle No. 1^[11, 12]

Read Cycle No. 2 (OE Controlled)[12, 13]

Write Cycle No. 1 (CE Controlled)[14, 15]

- Notes:

 11. Device is continuously selected. \overline{OE} , $\overline{CE} = V_{\parallel L}$.

 12. WE is HIGH for read cycle.

 13. Address valid prior to or coincident with \overline{CE} transition LOW.

 14. Data I/O is high impedance if $\overline{OE} = V_{\parallel L}$.

 15. If \overline{CE} goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.

Write Cycle No. 2 (WE Controlled, OE HIGH During Write)[14, 15]

ПРИМЕР

ПРИМЕР

36 Mb (1M x 36 & 2M x 18) DDR-II (Burst of 2) CIO Synchronous SRAMs

Features

- 1M x 36 or 2M x 18.
- On-chip delay-locked loop (DLL) for wide data valid window.
- · Common data input/output bus.
- Synchronous pipeline read with self-timed late write operation.
- Double data rate (DDR-II) interface for read and write input ports.
- Fixed 2-bit burst for read and write operations.
- Clock stop support.
- Two input clocks (K and K) for address and control registering at rising edges only.
- Two input clocks (C and C) for data output control.

- Two echo clocks (CQ and CQ) that are delivered simultaneously with data.
- +1.8V core power supply and 1.5, 1.8V V_{DDQ}, used with 0.75, 0.9V V_{REF}
- HSTL input and output levels.
- Registered addresses, write and read controls, byte writes, data in, and data outputs.
- Full data coherency.
- Boundary scan using limited set of JTAG 1149.1 functions.
- Byte write capability.
- · Fine ball grid array (FBGA) package
 - 15mm x 17mm body size
 - 1mm pitch
 - 165-ball (11 x 15) array
- Programmable impedance output drivers via 5x user-supplied precision resistor.

Symbol	Pin Number	Description
K, K	6B, 6A	Input clock.
c, c	6P, 6R	Input clock for output data control.
ca, ca	11A, 1A	Output echo clock.
Doff	1H	DLL disable when low.
SA ₀	6C	Burst count address input.
SA	9A, 4B, 8B, 5C, 7C, 5N, 6N, 7N, 4P, 5P, 7P, 8P, 3R, 4R, 5R, 7R, 8R, 9R	1M x 36 address inputs.
SA	3A, 9A, 4B, 8B, 5C, 7C, 5N, 6N, 7N, 4P, 5P, 7P, 8P, 3R, 4R, 5R, 7R, 8R, 9R	2M x 18 address inputs.
DQ0-DQ8 DQ9-DQ17 DQ18-DQ26 DQ27-DQ35	11P, 11M, 11L, 11K, 11J, 11F, 11E, 11C, 11B 10P, 11N, 10M, 10K, 10J, 11G, 10E, 11D, 10C 3B, 3D, 3E, 3F, 3G, 3K, 3L, 3N, 3P 2B, 3C, 2D, 2F, 2G, 3J, 2L, 3M, 2N	1M x 36 DQ pins
DQ0-DQ8 DQ9-DQ17	11P, 10M, 11L, 11K, 10J, 11F, 11E, 10C, 11B 2B, 3D, 3E, 2F, 3G, 3K, 2L, 3N, 3P	2M x 18 DQ pins
R/W	4A	Read/write control. Read when active high.
LD	8A	Synchronizes load. Loads new address when low.
$\overline{\mathrm{BW}}_{0,} \overline{\mathrm{BW}}_{1,} \overline{\mathrm{BW}}_{2,} \overline{\mathrm{BW}}_{3}$	7B, 7A, 5A,5B	1M x 36 byte write control, active low.
BW ₀ , BW₁	7B, 5A	2M x 18 byte write control, active low.

Notes: 1. Internal burst counter is fixed as two-bit linear; that is, when first address is A0+0, next internal burst address is A0+1.

- 2. Read refers to read active status with R/W = high.
- Write refers to write active status with R/W = low.
- Load refers to read new address active status with LD = low.
- Load is read new address inactive status with LD = high.

Организация ЭВМ

ИУ6

28

Динамические ЗУ с произвольной выборкой (DRAM)

DRAM для обращения по произвольным адресам DRAM, RLDRAM

DRAM, оптимизированные для обращения по последовательным адресам:

FPM DRAM, EDO DRAM, BEDO DRAM, SDRAM, DDR SDRAM,

RDRAM

При выборке строки все Сз подключаются к линиям считывания. После считывания необходимо произвести обратную запись информации – регенерацию. Заряд до 10⁵ – 10⁶ электронов.

Организация ЭВМ

ИУ6

29

Процесс считывания в DRAM

Принцип действия усилителя-регенератора

Контроллер динамической памяти

Микросхема динамической памяти

Функциональные возможности SDRAM памяти:

- Многобанковая огранизация.
- Командный режим работы.
- Команды пакетного чтения/записи.
- Использование чередования банков при последовательном увеличении адресов.
- Команды пакетного чтения/записи с авторегенерацией.
- Возможность останова чтения/записи по режиму регенерации.
- Возможность останова чтения/записи по новому запросу чтения/записи.
- Управление маскированием шины данных по сигналу DQM.
- Минимальное время (1 CLK) между последовательными командами.
- Команда PrechargeAll.
- CAS латентность 2 и 3 CLK.
- Длина пакета 1,2 и 4 слова.
- Команда саморегенерации.
- Режим энергосбережения.

Диаграмма работы DRAM памяти

t_{RCD} – RAS to CAS Delay.

t_{RP} – RAS Precharge.

t_{CAC} – CAS Delay.

Способы повышения производительности RAM

- Синхронизация.
- Конвейеризация.
- Пакетный режим обмена.
- Ускорение реверса шины.
- Чередование банков при обращении по последовательным адресам.
- Удвоение скорости.

Perистр DDR

Диаграмма работы FPM DRAM памяти

Диаграмма работы BEDO DRAM памяти

Диаграмма работы SDRAM памяти

Формула памяти: 4-1-1-1

Диаграмма работы DDR SDRAM памяти

Сравнение EDO RAM, SDRAM, DDR SDRAM

Сравнение DDR и DDR2

DDR память

DDR2 память

Сравнение DDR и DDR2: SDR SDRAM

Document No. E0437E40 (Ver.4.0)

Date Published September 2007 (K) Japan

URL: http://www.elpida.com

Сравнение DDR и DDR2: DDR SDRAM

Document No. E0437E40 (Ver.4.0) Date Published September 2007 (K) Japan

URL: http://www.elpida.com

Сравнение DDR и DDR2: DDR2 SDRAM

Document No. E0437E40 (Ver.4.0) Date Published September 2007 (K) Japan

URL: http://www.elpida.com

Диаграмма состояний УА DDR SDRAM

Контроллер DDR/DDR2

Отличие DDR и SDR DRAM

ltem	DDR SDRAM	SDR SDRAM		
Data transfer frequency	Twice the operation frequency	Same as the operation frequency		
Data rate	2/tck	1/tcx		
Clock input	Differential clock	Single clock		
Data strobe signal (DQS)	Essential	Not supported		
Interface	SSTL_2	LVTTL		
Supply voltage	2.5 V	3.3 V		
/CAS read latency	2, 2.5	2, 3		
/CAS write latency	1	0		
Burst length	2, 4, 8	1, 2, 4, 8, full-page (256) Note		
Burst sequence	Sequential/Interleave	Sequential/Interleave		
Use of DLL	Essential	Option		
Data mask	Write mask only	Write mask/Read mask		

Тайминг памяти: tCL-tRCD-tRP-tRAS

- CAS Latency (tCL) задержка в тактах между подачей сигнала CAS и непосредственно выдачей данных из соответствующей ячейки. Одна из важнейших характеристик любого модуля памяти;
- RAS to CAS Delay (tRCD) количество тактов шины памяти, которые должны пройти после подачи сигнала RAS до того, как можно будет подать сигнал CAS;
- Row Precharge (tRP) время закрытия страницы памяти в пределах одного банка, тратящееся на его перезарядку;
- Activate to Precharge (tRAS) время активности строба. Минимальное количество циклов между командой активации (RAS) и командой подзарядки (Precharge), которой заканчивается работа с этой строкой, или закрытия одного и того же банка.

Примеры таймингов памяти DDR: 2-2-2-5; 2.5-3-3-7

Примеры таймингов памяти DDR2: 3-3-3-9, 4-4-4-12 и 5-5-5-15

Cравнение DDR SDRAM CL=2 и CL=3

Диаграмма состояний УА DDR SDRAM

Команды DDR SDRAM

Command	Symbol	CKE		/CS	/RAS	/CAS	WE	Address			
		n = 1	п					BAO	BA1	A10	A0 • A9, A11
Device deselect	DESL	Н	X	Н	Х	X	X	X		Х	X
No operation	NOP	Ι	X	L	н	Ξ	н	X		Х	X
Burst stop	BST	H	Х	L	Ι	Ι	L	Х		Х	X
Read	READ	Н	Х	L	Η	L	Н	V		L	V
Read with auto precharge	READA									Н	
Write	WRIT	Н	Х	L	I	L	L	V		L	V
Write with auto precharge	WRITEA									Н	
Bank active	ACT	Ι	X	L	L	Ι	Ι	V		V	٧
Precharge selected bank	PRE	H	Х	L	L	I	L	V		L	X
Precharge all banks	PALL							Х		I	X
Mode register set	MRS	Н	X	L	L	L	L	L	L	L	V
Extended mode register set	EMRS							I	٦	L	V
CBR (auto) refresh	REF	Ι	Ι	L	L	L	н)	C	Х	×
Self refresh entry	SELF	H	L								
Self refresh exit	SREX	L	Н	Н	Х	X	х	Х		Х	X
				L	Н	Н	Х)	(Х	Х
Power down entry	PWDN	Н	L	Н	Х	X	Х)	(Х	X
				L	Н	Н	Х)	(Х	X
Power down exit	PDEX	L	Н	Н	Х	Х	Х)	(Х	X
				L	Н	Н	Х)	(Х	X

DDR3 SDRAM

- Размер пакета увеличен с 4 до 8 слов. Уменьшено потребление энергии.
- Функция асинхронного сброса с отдельным контактом
- Поддержка компенсации времени готовности на системном уровне
- Зеркальное расположение контактов, удобное для сборки модулей
- Выполнение CAS Write Latency за такт
- Встроенная терминация данных
- Встроенная калибровка ввода-вывода (мониторинг времени готовности и корректировка уровней)
- Автоматическая калибровка шины данных

Стандартное название	Частота памяти, МГц ^[9]	Время цикла, нс	Частота шины, МГц	Эффективная (удвоенная) скорость, млн. передач/с
DDR3-800	100	10,00	400	800
DDR3-1066	133	7,50	533	1066
DDR3-1333	166	6,00	667	1333
DDR3-1600	200	5,00	800	1600
DDR3-1866	233	4,29	933	1866
DDR3-2133	266	3,75	1066	2133
DDR3-2400	300	3,33	1200	2400

Процедура инициализации DDR3 SDRAM памяти

Топология fly-by

DDR1
Asymmetrical T-Branch Topology

DDR2 Symmetrical T-Branch Topology

DDR3 Fly-by Topology

▲ Simplified Comparison between DDR1, DDR2 and DDR3 Topologies Illustration: Ryan J. Leng

Физический уровень DDR3 SDRAM контроллера

Процедура Write Leveling

В режиме Write Levelling в цепь DQ включается триггер, принимающий сигнал CLK на вход D и синхронизируемый по сигналу DQS.

Процедура изменения задержки повторяется до обнаружения сигнала "1" на выходе DQ.

В результате процедуры Write Levelling определяется начальная задержка строба DQS при записи.

Организация ЭВМ

ИУ6

57

Процедура Read Levelling

После сброса системы, инициализации памяти и выравнивания записи РНҮ выполняет последовательность калибровки считывания, чтобы обеспечить надежную синхронизацию данных считывания из памяти в область тактовых частот контроллера памяти. Эта процедура позволяет настроить синхронизацию каждой DQS группы или каждой линии DQ, чтобы исключить статические неопределенности синхронизации, задержки распространения сигналов из памяти и перекосы сигналов.

Для поддержки операции DDR3 память поддерживает режим генерации шаблона на линии DQ (режим MPR управляется битом 3 регистра MR3).

Процедура Write Calibration

Калибровка записи требуется для согласования сигналов DQS и связанных с ним бит DQ с правильным циклом СК для компенсации задержек на печатную плату и задержки буфера ввода-вывода, которые превышают цикл СК. Эта калибровка требует, чтобы в память был записан шаблон данных, а он затем считывался, чтобы проверить правильность записи нужного паттерна в память.

Во время калибровки записи добавляются соответствующие тактовые импульсы задержки до тех пор, пока желаемый шаблон данных не будет считан. Эта калибровка выполняется на основе каждого байта. Как и в случае выравнивания записи, эта последовательность выполняется только для DDR3 SDRAM, когда используются топологии маршрутизации fly-by.

IS41C16100 IS41LV16100

1M x 16 (16-MBIT) DYNAMIC RAM WITH EDO PAGE MODE

December 2005

ПРИМЕР

IS41C16100 IS41LV16100

1M x 16 (16-MBIT) DYNAMIC RAM WITH EDO PAGE MODE

December 2005

Организация ЭВМ

ИУ6

60

IS41C16100 IS41LV16100

1M x 16 (16-MBIT) DYNAMIC RAM WITH EDO PAGE MODE

December 2005

Don't Care

JPUMEP

Read and Write Commands (Burst Length 4 Shown)

Read Terminated By Read

Two Bank Ping Pong Read

IS42S16320B

32Meg x 16 512-MBIT SYNCHRONOUS DRAM

PRELIMINARY INFORMATION JULY 2007

Организация ЭВМ

ИУ6

Write Burst Mode

M9	Mode
0	Programmed Burst Length
1	Single Location Access

^{1.} To ensure compatibility with future devices, should program BA1, BA0, A12, A11, A10 = "0"

IS43R32400A

Организация ЭВМ

ИУ6

68

Timing Waveforms Figure 1. AC Parameters for Read Timing (Burst Length =4)

Figure 2. AC Parameters for Write Timing (Burst Length=4)

Постоянные запоминающие устройства

МПЗУ (MROM)

ППЗУ (PROM)

РПЗУ-УФ (EPROM)

ОПРПЗУ-УФ (EPROM-ОТР)

РПЗУ-ЭС (EEPROM)

FLASH

NVRAM

FRAM

MRAM

Преимущества ROM по сравнению RAM:

- -Аппаратная простота.
- Высокая плотность размещения 3Э.
- Энергонезависимость.
- Большое быстродействие.

Структура ПЗУ (ROM)

МПЗУ

3Э на диодах

3Э на МОП транзисторах

ППЗУ с плавкими перемычками

ИУ6

ППЗУ с пережигаемым рп переходом _I

ΡΠ3У-УФ, ΟΠΡΡΠ3У-УФ (EPROM, EPROM-OTP)

РПЗУ-ЭС (EEPROM), FLASH

NAND FLASH

Все транзисторы, кроме адресуемого, должны быть открыты. Если на плавающем затворе есть заряд, то транзистор не откроется и на линии бит будет высокий уровень. В противном случае сигнал будет низкого уровня.

- + Большая компактность
- Меньшее быстродействие

NOR FLASH

Линии слов невыбранных транзисторов находятся под низким потенциалом (транзисторы закрыты), на затворе выбранного транзистора высокий потенциал. Если на плавающем затворе выбранного транзистора есть заряд, то транзистор не откроется и на линии бит будет уровень лог. единицы.

- Меньшая компактность
- + Большее быстродействие

ПЗУ типа NVRAM

Энергонезависимая память NVRAM (Non-Volatile Random Access Memory) — это оперативная память LPSRAM (Low Power SRAM — статическое ОЗУ с очень низким потреблением), сохраняющая данные независимо от наличия основного питания благодаря наличию встроенной литиевой батареи для резервного питания. Интегрированная схема контроля и переключения на резервный источник питания (супервизор и коммутатор литиевой батареи) гарантирует работоспособность памяти NVRAM и сохранение данных в течение десяти лет при полном отсутствии внешнего питания.

ПЗУ на основе сегнетоэлектрической пленки

(FRAM)

- +Высокая скорость записи
- Необходимость восстановления информации при доступе

Основа запоминающего устройства FRAM — это конденсатор, представляющий собой две пластины с тонким слоем ферроэлектрика между ними. Приложенный к обкладкам конденсатора потенциал поляризует ферроэлектрик. Направление поляризации представляет собой двоичную информацию, хранящуюся в ячейке. При повторном приложении потенциала заряд, затрачиваемый на реполяризацию, будет зависеть от того, совпадает направление электрического поля с тем, которое поляризовало ферроэлектрик в прошлый раз, или нет. Если направление поля не совпадает, то на изменение поляризации потребуется значительный дополнительный заряд. Таким образом, если при повторном наложении потенциала наблюдается электрический ток, то направление не совпадает с предыдущим. По наличию или отсутствию тока перезаряда можно судить о содержимом ячейки.

Магниторезистивные ПЗУ (MRAM)

Проводимость магниторезистивного слоя зависит от магнитного поля, в которое он помещен. Внутри запоминающего элемента MRAM сопротивление находящегося в нем магниторезистивного материала будет определяться ориентацией магнитных моментов ферромагнитных слоев. В одном из магнитных слоев домены фиксированы в одном направлении. В другом слое они в ответ на воздействие внешнего поля могут быть развернуты в противоположном направлении. В результате они могут быть либо параллельны, либо антипараллельны элементам фиксированного слоя. Эти два состояния запоминают «1» или «0».

Таблица 1. Сравнительные характеристики MRAM, выполненных с различными нормами, и других типов встраиваемой памяти

Характеристика	MRAM			Флэш	созу дозу		FRAM	
ларактериотика	0,6 мкм	0,18 мкм	90 нм	90 нм	90 нм	90 нм	90 нм	
Объем, Мбит	256 Кбит – 1	1-32	4-256	4-64	4-64	16-256	4-64	
Диаметр пластины, мм	150/200	200	200/300	200/300	200/300	200/300	200/300	
Быстродействие, МГц	16	50-100	75-125	20-100 (при считывании)	50-2000	20-100	15-50	
Эффективность использования матрицы, %	40-60	40-60	25-40	50-80	40	40-60	40-60	
Напряжение, В	3,3	3,3/1,8	2,5/1,2	2,5/1,2; 9-12 (внутреннее)	2,5/1,2	2,5/1,2	2,5/1,2	
Увеличение стоимости КМОП-технологии, %	-	15-25	15-25	25	0	15	15-25	
Площадь ячейки, мкм ²	7,2	0,7-1	0,15-0,25	0,2-0,25	1-1,3	0,25	0,4	
Площадь блока, мм ² /Мбит	12,0	2-3	0,3-0,5	0,6-1	1,2-1,7	0,6	0,8	
Рабочий ресурс, число циклов перезаписи	>10 ¹⁵	>10 ¹⁵	>10 ¹⁵	>10 ¹⁵ (считывание), <10 ⁶ (запись)	>10 ¹⁵	>10 ¹⁵	>10 ¹³ (считывание/ запись)	
Энергонезависимость	+	+	+	+	-	-	+	

ПОЛУПРОВОДНИКОВАЯ ЭНЕРГОНЕЗАВИСИМАЯ ПАМИЪ

8K-BIT/16K-BIT SERIAL ELECTRICALLY ERASABLE PROM

MAY 2007

FEATURES

- Industry-standard Microwire Interface
 - Non-volatile data storage
 - Wide voltage operation: Vcc = 1.8V to 5.5V
 - Auto in arement for officia
 - Auto increment for efficient data dump
- User Configured Memory Organization
 - By 16-bit or by 8-bit
- Hardware and software write protection
 - Defaults to write-disabled state at power
 - Software instructions for write-enable/di
- Enhanced low voltage CMOS E²PROM technology

- · Versatile, easy-to-use Interface
 - Self-timed programming cycle
 - Automatic erase-before-write
 - Programming status indicator
 - Word and chip erasable
 - Chip select enables power savings
- Durable and reliable
 - 40-year data retention after 1M write cycles
 - 1 million write cycles
 - Unlimited read cycles
 - Schmitt-trigger Inputs
- Industrial and Automotive Temperature Grade
- Lead-free available

ISSI®

IS93C76A IS93C86A

8K-BIT/16K-BIT SERIAL ELECTRICALLY ERASABLE PROM

MAY 2007

FUNCTIONAL BLOCK DIAGRAM

8K-BIT/16K-BIT SERIAL ELECTRICALLY ERASABLE PROM

MAY 2007

PIN DESCRIPTIONS

CS	Chip Select
SK	Serial Data Clock
DIN	Serial Data Input
Douт	Serial Data Output
ORG	Organization Select
NC	NotConnected
Vcc	Power
GND	Ground

8-Pin DIP, 8-Pin TSSOP

8K-BIT/16K-BIT SERIAL ELECTRICALLY ERASABLE PROM

MAY 2007

INSTRUCTION SET - IS93C86A (16kb)

			8-bit Organization (ORG = GND)		16-bit Organization (ORG = Vcc)		
Instruction ⁽²⁾	Start Bit	OP Code	Address ⁽¹⁾	Input Data	Address ⁽¹⁾	Input Data	
READ	1	10	(A10-A0)	_	(A9-A0)	_	
WEN (Write Enable)	1	00	11x xxxx xxxx	_	11 XXXX XXXX	_	
WRITE	1	01	(A10-A0)	(D7-Do)	(A9-A0)	(D15-D0)	
WRALL (Write All Registers	s) 1	00	01x xxxx xxxx	(D7-Do)	01 xxxx xxxx	(D15-D0)	
WDS (Write Disable)	1	00	00x xxxx xxxx	_	00 xxxx xxxx	_	
ERASE	1	11	(A10-A0)	_	(A9-A0)	_	
ERAL (Erase All Registers)	1	00	10x xxxx xxxx	_	10 xxxx xxxx	_	

Notes:

- 1. x = Don't care bit.
- 2. If the number of bits clocked-in does not match the number corresponding to a selected command, all extra trailing bits are ignored, and WRITE, WRALL, ERASE, ERAL, WEN, and WDS instructions are rejected, but READ is accepted.

8K-BIT/16K-BIT SERIAL ELECTRICALLY ERASABLE PROM

MAY 2007

FIGURE 3. READ CYCLE TIMING

8K-BIT/16K-BIT SERIAL ELECTRICALLY ERASABLE PROM

MAY 2007

FIGURE 5. WRITE (WRITE) CYCLE TIMING

Notes

- After the completion of the instruction (Doυτ is in READY status) then it may perform another instruction. If device is in BUSY status (Doυτ indicates BUSY status) then attempting to perform another instruction could cause device malfunction.
- 2. To determine address bits An-Ao and data bits Dm-Do, see Instruction Set for the specific device.

2-Megabit 5-volt Only Serial DataFlash®

AT45D021

Pin Configurations

· ··· · · · · · · · · · · · · · · · ·				
Pin Name	Function			
CS	Chip Select			
SCK	Serial Clock			
SI	Serial Input			
so	Serial Output			
WP	Harware Page Write Protect Pin			
RESET	Chip Reset			
RDY/BUSY	Ready/Busy			

Features

- Single 4.5V 5.5V Supply
- Serial Interface Architecture
- Page Program Operation
 - Single Cycle Reprogram (Erase and Program)
 - 1024 Pages (264 Bytes/Page) Main Memory
- Two 264-Byte SRAM Data Buffers Allows Receiving of Data while Reprogramming of Nonvolatile Memory
- Internal Program and Control Timer
- Fast Page Program Time 7 ms Typical
- 80 µs Typical Page to Buffer Transfer Time
- Low Power Dissipation
 - 15 mA Active Read Current Typical
 - 15 µA CMOS Standby Current Typical
- 10 MHz Max Clock Frequency
- Hardware Data Protection Feature
- Serial Peripheral Interface (SPI) Compatible Modes 0 and 3
- CMOS and TTL Compatible Inputs and Outputs
- Commercial and Industrial Temperature Ranges

ПРИМЕР

Write Operations

The following block diagram and waveforms illustrate the various write sequences available.

Algorithm for Programming or Reprogramming of the Entire Array Sequentially

Main Memory Page Program through Buffers

Buffer Write

Buffer to Main Memory Page Program (Data from Buffer Programmed into Flash Page)

Each transition represents 8 bits and 8 clock cycles

n = 1st byte read n+1 = 2nd byte read

Read Operations

The following block diagram and waveforms illustrate the various read sequences available.

Main Memory Page Read

Main Memory Page to Buffer Transfer (Data from Flash Page Read into Buffer)

Buffer Read

8 bits and 8 clock cycles

n = 1st byte written n+1 = 2nd byte written

Принципы построения кэш-памяти

Кэш-память – ассоциативное ЗУ, позволяющее сгладить разрыв в производительности процессора и оперативной памяти. Выборка из кэш-памяти осуществляется по физическому адресу ОП.

Эффективность кэш-памяти зависит от:

- Емкости кэш-памяти.
- Размера строки.
- Способа отображения ОП в кэш.
- Алгоритма замещения информации в кэш.
- Алгоритма согласования ОП и кэш.
- Числа уровней кэш.

Емкость кэш-памяти

Размер линейки

Способы отображения ОП в кэш:

- Произвольная загрузка.
- Прямое размещение.
- Наборно-ассоциативный способ отображения.

Произвольная загрузка (Fully associated cache memory, FACM).

КЭШ ОП Адрес строки FACM Данные Данные Адрес определяется из условия Данные Адрес Данные формирования наиболее представительной выборки Адрес Данные Данные Данные Адрес Данные Адрес Данные Данные Тег Смещение Данные Данные Тег Тег **CMP** Блок CMP Блок Hit ИУ6 Организация ЭВМ 96

Прямое размещение.

Адрес строки однозначно определяется по тегу (i = t mod k).

КЭШ				ОП				
				0		1	2	
0	1	Данные]◀───	Даннь	ые	Данные	Данные	0
	0	Данные]◀	Даннь	ые	Данные	Данные	
	-	-		Даннь	ые	Данные	Данные]
	-	-		Даннь	ые	Данные	Данные	
2 ^k -1	-	-		Даннь	ые	Данные	Данные	
	2	Данные]◀──	Даннь	ые	Данные	Данные	
	1	Данные	-	Даннь	ые	Данные	Данные	[]] 2 ^k -1
		1 0	n-1 0	0 k-1			2 ⁿ -	Z - I
		Тег	Стр	ока	Смещение		1	

Наборно-ассоциативная кэш-память (Set associated cache memory)

Алгоритмы замещения

- Замещение немодифицированных данных.
- Рандомизированный алгоритм.
- Замещение наименее используемого (Least Recently Used, LRU)

Согласование ОП и кэш

- -Метод сквозной записи (Write True).
- -Метод сквозной записи с буферизацией (Write Combining).
- -Метод обратной записи (Write Back).

Протокол MESI

- Признак несогласованных данных.
- Признак согласованных данных.
- Признак согласованных данных в ВС.
- Признак отсутствия данных.

^{* -} http://lwn.net/Articles/252125/

Разделение кэш-памяти

Виртуальная память

Механизм виртуализации адресного пространства позволяет:

- -Увеличить объем адресуемой памяти.
- -Использовать физическую память различного объема.
- -Возложить на аппаратную составляющую механизмы доступа к ВЗУ
- -Сгладить разрыв в производительности ОП и ВЗУ.
- -Ускоряет доступ к данным по последовательным адресам.
- -Способствует реализации защиты памяти.

Виртуальные системы строятся по трем принципам:

- -Системы с блоками различного размера (сегментная организация).
- -Системы с блоками одинакового размера (страничная организация).
- -Смешанные системы (сегментно-страничная организация).

Страничная организация

Программа отображается в память равными блоками – страницами. Преобразование логического адреса в физический осуществляется с помощью таблицы страниц.

Преобразование логического адреса в физический реализуется в устройстве управления памятью (Memory Manage Unit), который определяет, находится ли страница в физической памяти (попадение).

Схема страничного преобразования

Сегментная организация

Программа отображается в память блоками различного размера – сегментами. Преобразование логического адреса в физический осуществляется с помощью таблицы сегментов.

Сегментно-страничная организация памяти

Программа отображается в память блоками различного размера – сегментами, каждый из которых целое число страниц.

Преобразование логического адреса в физический осуществляется с помощью таблицы сегментов и таблицы страниц сегмента.

Исследование расслоения динамической памяти.

Сравнение эффективности ссылочных и векторных структур

Исследование эффективности предвыборки в TLB

Использование оптимизирующих структур данных

Конфликты в кэш-памяти

