TORIC FANO MANIFOLDS WITH NEF TANGENT BUNDLES

QILIN YANG

ABSTRACT. In this note we prove that any toric Fano manifold with nef tangent bundle is a product of projective spaces. In particular, it implies that Campana-Peternell conjecture hold for toric manifolds.

1. Notation and main result

We will use standard notation for polytopes and toric varieties, as it can be found in [CLS],[Fu],[Od].

Let $N \cong \mathbb{Z}^d$ be a d-dimensional lattice and $M = \operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{Z}) \cong \mathbb{Z}^d$ the dual lattice with \langle,\rangle the nondegenerate pairing. As usual, $N_{\mathbb{Q}}=N\otimes_{\mathbb{Z}}\mathbb{Q}\cong\mathbb{Q}^d$ and $M_{\mathbb{Q}} = M \otimes_{\mathbb{Z}} \mathbb{Q} \cong \mathbb{Q}^d$ (respectively $N_{\mathbb{R}}$ and $M_{\mathbb{R}}$) will denote the rational (respectively real) scalar extensions.

A subset $P \subseteq M_{\mathbb{R}}$ is called a polytope if it is the convex hull of finitely many points in $M_{\mathbb{R}}$. The face of P is denoted by $F \leq P$. The set of vertices and facets of P are denoted by $\mathcal{V}(P)$ and $\mathcal{F}(P)$ respectively. If $\mathcal{V}(P) \subseteq M_{\mathbb{Q}}$ (respectively $\mathcal{V}(P) \subseteq M$) then P is called a rational polytope (respectively a lattice polytope). If P is a rational polytope with $0 \in \text{int } P$, the dual polytope of P is defined by

$$P^* := \{ y \in N_{\mathbb{R}} | \langle x, y \rangle \ge -1, \forall x \in P \},$$

which is also a rational polytope with $0 \in \text{int}P^*$. The fan $\mathcal{N}_P := \{ \text{pos}(F) : F \leq P^* \}$ is called the normal fan of P. Here pos(F) denotes the cone positively generated by the face F (also called positive hull of F). It is well-known that a fan Σ in $N_{\mathbb{R}}$ defines a toric variety $X_{\Sigma} := X(N, \Sigma)$, which automatically admits a torus action and has a Zariski open and dense orbit:

$$T_N \times X_{\Sigma} \to X_{\Sigma},$$

where $T_N \cong \operatorname{Hom}_{\mathbb{Z}}(M,\mathbb{C}^*)$. We denote $X_P := X_{\mathscr{N}_P}$ the toric variety associated with the normal fan \mathcal{N}_P of the polytope P. It is known that X_P is nonsingular if and only if the vertices of any facet of P^* form a \mathbb{Z} -basis of the lattice M.

A d-dimensional polytope $P \subseteq M_{\mathbb{R}}$ with $0 \in \text{int} P$ is called reflexive polytope if

both P and P^* are lattice polytopes. A complex variety X is called a Gorenstein Fano variety if X is projective, normal and its anticanonical divisor is an ample Cartier divisor. The following theorem (see [Ni1]) classifies Gorenstein toric Fano varieties by reflexive polytopes:

Theorem 1.1. Under the map $P \longmapsto X_P$ reflexive polytopes correspond uniquely up to isomorphism to Gorenstein toric Fano varieties. There are only finitely many isomorphism types of d-dimensional reflexive polytopes.

A Cartier divisor D on a nonsingular variety X is called a nef divisor if the intersectional number $D \cdot C \geq 0$ for any irreducible curve $C \subset X$. A line bundle L is called a nef line bundle if the associated Cartier divisor (i.e., $L = \mathcal{O}_X(D)$) is a nef divisor. A vector bundle E over X is called a nef vector bundle if the tautological

²⁰¹⁰ Mathematics Subject Classification. 14J45.

Key words and phrases. Nef tangent bundle, toric variety, Fano manifold, Campana-Peternell conjecture.

line bundle $\mathscr{O}_{\mathbb{P}(E^*)}(1)$ on the projective bundle $P(E^*)$ is a nef line bundle. In [CP], Campana and Peternell conjectured that any Fano manifold with nef tangent bundle is a rational homogeneous manifold. In this note we confirm this conjecture for toric Fano manifold, in fact we get more and obtain the following main theorem:

Theorem 1.2. Any toric Fano manifold with nef tangent bundle is a product of projective spaces.

2. Cartier divisors on complete toric varieties

A fan Σ in $N_{\mathbb{R}}$ is complete iff its support $|\Sigma| := \bigcup_{\sigma \in \Sigma} \sigma$ is the whole space $N_{\mathbb{R}}$, which is also equivalent to that the associated toric variety $X(N, \Sigma)$ is compact in classical topology ([CLS, Theorem 3.1.9]).

Let $\Sigma(k)$ denote the set of k-dimensional cones of the complete fan Σ . The elements in $\Sigma(1)$ are called rays, and given $\tau \in \Sigma(1)$, let u_{τ} denote the unique minimal generator of $N \cap \tau$. By orbit-cone correspondence ([CLS, Theorem 3.2.6]), a ray $\tau \in \Sigma(1)$ gives a T_N -invariant Cartier divisor D_{τ} . On a complete toric variety we may write any Cartier divisor as a linear combination of T_N -invariant Cartier divisors. Let $D = \sum_{\tau \in \Sigma(1)} a_{\tau} D_{\tau}$ be a Cartier divisor on a complete toric variety X_{Σ} , its support function $\phi_D: N_{\mathbb{R}} \to \mathbb{R}$ is determined by the following properties:

- (1) ϕ_D is linear on each cone $\sigma \in \Sigma$.
- (2) $\phi_D(u_\tau) = -a_\tau$.
- (3) For each cone $\sigma \in \Sigma$ there is a $m_{\sigma} \in M$ such that $\phi_D(u) = \langle m_{\sigma}, u \rangle$ for all $u \in \sigma$ and $\langle m_{\sigma}, u_{\tau} \rangle = -a_{\tau}$ for all $\tau \in \sigma(1)$.

Proposition 2.1. ([CLS, Theorem 6.1.10 and Theorem 6.2.12]) Let $D = \sum_{\tau \in \Sigma(1)} a_{\tau} D_{\tau}$ be a Cartier divisor on a complete toric variety X_{Σ} and denote

$$P_D = \{ m \in M_{\mathbb{R}} | \langle m, u_{\tau} \rangle \ge -a_{\tau}, \forall \tau \in \Sigma(1) \}.$$

Then the following are equivalent:

- (1) D is basepoint free.
- (2) D is a nef divisor.

- (3) ϕ_D is a upper convex function. (4) $m_{\sigma} \in P_D$ for all $\sigma \in \Sigma(d)$. (5) $\phi_D(u) = \min_{m \in P_D} \langle m, u \rangle$ for all $u \in N_{\mathbb{R}}$.

The support function ϕ_D of a Cartier divisor D on a complete toric variety X_{Σ} is called strictly convex if it is upper convex and for each $\sigma \in \Sigma(d)$ satisfies

$$\langle m_{\sigma}, u \rangle = \phi_D(u) \Longleftrightarrow u \in \sigma.$$

Proposition 2.2. ([CLS, Theorem 6.1.15 and Corollary 6.1.16]) A Cartier divisor D on a complete toric variety X_{Σ} is ample if and only if its support function ϕ_D is strictly convex. If D is ample then P_D is a full dimensional lattice polytope whose normal fan is Σ .

3. Complete toric variety with reductive automorphism group

The automorphism group $Aut(X_{\Sigma})$ of a nonsingular complete toric variety X_{Σ} was firstly studied by Demazure in De, Section 4. Identifying the elements of the Lie algebra of $Aut(X_{\Sigma})$ with the invariant differential operators on the coordinate ring of X_{Σ} , Demazure gave a very simple description of the structure of the Lie algebra of $Aut(X_{\Sigma})$ using the Demazure root system named after him. The Demazure root system $\mathcal R$ of $\operatorname{Aut}(X_\Sigma)$ has a very simple description:

$$\mathscr{R} = \{ m \in M | \exists \tau \in \Sigma(1) : \langle u_{\tau}, m \rangle = -1, \langle u_{\tau'}, m \rangle \ge 0, \forall \tau' \in \Sigma(1) \setminus \{\tau\} \}.$$

Note here we use notation of [Ni1, Ni2], which are different form those in [De] by a minus signature. The Demazure roots in $\mathcal{R} \cap -\mathcal{R} = \{m \in \mathcal{R} | -m \in \mathcal{R}\}$ are called semisimple roots. Aut (X_{Σ}) is a reductive algebraic group iff all Demazure roots in \mathscr{R} are semisimple, i.e., $\mathscr{R} = -\mathscr{R} := \{-m|m \in \mathscr{R}\}$. The following proposition of Nill, Benjamin's will be used in proving our main theorem in the next section.

Proposition 3.1. [Ni2, Proposition 3.18] A d-dimensional complete toric variety is isomorphic to a product of projective spaces iff there are d-linearly independent semisimple roots.

4. Toric Fano manifolds with Nef Tangent Bundles

The projective space \mathbb{P}^n is a toric Fano manifold and the following exact sequence

$$0 \longrightarrow \mathscr{O}_{\mathbb{P}^d} \longrightarrow \mathscr{O}_{\mathbb{P}^n}(1)^{d+1} \longrightarrow T_{\mathbb{P}^d} \longrightarrow 0$$

is called the Euler sequence of \mathbb{P}^d . The following theorem is a toric generalization of this result.

Theorem 4.1. ([CLS, Theorem 8.1.6]) Let X_{Σ} be a toric manifold associated with the complete fan Σ , then we have the following generalized Euler sequence

$$0 \longrightarrow \mathscr{O}_{X_{\Sigma}}^{\oplus \rho} \longrightarrow \oplus_{\tau \in \Sigma(1)} \mathscr{O}_{X_{\Sigma}}(D_{\tau}) \longrightarrow T_{X_{\Sigma}} \longrightarrow 0,$$

where ρ is the Picard number of X_{Σ} .

In particular, the canonical divisor and anticanonical divisor of the toric manifold X_{Σ} are respectively given by

$$K = -\sum_{\tau \in \Sigma(1)} D_{\tau}; \qquad K^* = \sum_{\tau \in \Sigma(1)} D_{\tau}.$$

Proposition 4.2. Assume X_{Σ} is a toric manifold with nef tangent bundle, then for any $\tau \in \Sigma(1)$, the associated T_N -invariant Cartier divisor D_{τ} is a nef divisor.

Proof. Since D_{τ} is T_N -invariant, it is a smooth hypersurface locating inside X_{Σ} , we have the following exact sequence

$$0 \longrightarrow T_{D_{\tau}} \longrightarrow T_{X_{\Sigma}} \Big|_{D_{\tau}} \longrightarrow N_{D_{\tau}} \longrightarrow 0,$$

Note the normal sheaf of D_{τ} in X_{Σ} could be identified with $\mathcal{O}_{X_{\Sigma}}(D_{\tau})$. Since the tangent bundle $T_{X_{\Sigma}}$ is a nef vector bundle, so is the quotient bundle $N_{D_{\tau}}$ by [DPS, Proposition 1.15]. Hence D_{τ} is a nef divisor.

Theorem 4.3. The tangent bundle of a toric manifold with nef tangent bundle is Griffiths semipositive.

Proof. Since $\mathscr{O}_{X_{\Sigma}}(D_{\tau})$ is a nef line bundle, D_{τ} is basepoint free by Proposition 2.1. Hence $\mathscr{O}_{X_{\Sigma}}(D_{\tau})$ is a semipositive line bundle. Hence the direct sum bundle $\bigoplus_{\tau \in \Sigma(1)} \mathscr{O}_{X_{\Sigma}}(D_{\tau})$ is a Griffiths semipositive. The Griffiths semipositivity of tangent bundle $T_{X_{\Sigma}}$ follows by the generalized Euler sequence via using [Ya, Proposition 3.5].

Note Theorem 4.3 already implies that Campana-Peternell conjecture holds for toric fano manifolds. In fact, from Theorem 4.3 we know a toric fano manifold X_{Σ} with nef tangent bundle has nonnegative holomorphic bisectional curvature and positive Ricci curvature. By Mok's theorem [Mo], X_{Σ} is biholomorphic to the product of Hermitian symmetric manifolds. In particular, $\operatorname{Aut}(X_{\Sigma})$ is a reductive algebraic group. In the rest part of this note we will give a more precise structure description of a toric fano manifold with nef tangent bundle.

Let $\phi_{D_{\tau}}$ be the support function associated with T_N -invariant cartier divisor D_{τ} . Then on each open cone $\sigma \in \Sigma(d)$,

$$\phi_{D_{\tau}}(u) = \langle m_{\sigma}, u \rangle, \ \forall u \in \sigma,$$

for some $m_{\sigma} \in M$.

Proposition 4.4. If the cartier divisor D_{τ} is nef then $\{m_{\sigma}|\sigma\in\Sigma(d)\}$ are semisimple Demazure roots of $Aut(X_{\Sigma})$.

Proof. By the definition of the data m_{σ} for the Cartier divisor D_{τ} , we have $\phi_{D_{\tau}}(u_{\tau}) =$ $\langle m_{\sigma}, u_{\tau} \rangle = -1$. Now fix a $\sigma \in \Sigma(d)$. By (4) of Proposition 2.1, $m_{\sigma} \in P_{D_{\tau}}$ if D_{τ} is basepoint free. Note now

$$P_{D_{\tau}} = \{ m \in M | \langle m, u_{\tau} \rangle \ge -1 \text{ and } \langle m, u_{\tau'} \rangle \ge 0, \forall \tau' \in \Sigma(1) \setminus \{\tau\} \},$$

hence we have

$$\langle m_{\sigma}, u_{\tau'} \rangle \geq 0, \forall \tau' \in \Sigma(1) \setminus \{\tau\}\},\$$

therefore m_{σ} is a Demazure root of $\operatorname{Aut}(X_{\Sigma})$. Since $\operatorname{Aut}(X_{\Sigma})$ is reductive, it is also a semisimple root.

Proposition 4.5. If X_{Σ} is a toric Fano manifold with nef tangent bundle then $Aut(X_{\Sigma})$ has d linearly independent semisimple roots.

Proof. Let τ_1, \dots, τ_m denote all of 1-dimensinal cones of Σ and $u_{\tau_1}, \dots, u_{\tau_m}$ their primitive generating vectors, and D_1, \dots, D_m the corresponding T_N -invariant base-point free Cartier divisors. The support function ϕ_{D_i} of D_i satisfies that

$$\phi_{D_i}(x) = \langle m_{\sigma}, x \rangle, \quad \forall x \in \sigma \in \Sigma(d),$$

where $\langle m_{\sigma}, u_{\tau_i} \rangle = -1$ and $\langle m_{\sigma}, u_{\tau_i} \rangle \geq 0$ for $j \neq i$. Let $\{m_{\sigma}^i\}$ be the set of semisimple Demazure roots associated with the Cartier divisor D_i . Since each D_i is a basepoint free divisor, the associated polytope

$$P_{D_i} = \{ m \in M_{\mathbb{R}} | \langle m, u_{\tau_i} \rangle \ge -1 \text{ and } \langle m, u_{\tau_i} \rangle \ge 0 \ \forall \ j \ne i \}$$

is a convex polytope. Note for $i \neq j$,

$$P_{D_i} \cap P_{D_j} = \{ m \in M_{\mathbb{R}} | \langle m, u_{\tau_i} \rangle \ge 0 \text{ for } j = 1, \cdots, m \} = \text{pos}(\tau_1, \cdots, \tau_m)^{\vee}$$

is $\{0\}$, since Σ is complete the convex cone $\operatorname{pos}(\tau_1,\cdots,\tau_m)=N_{\mathbb{R}}$. The anticanonical divisor of X_{Σ} is given by $K^*=D_1+\cdots+D_m$ and it is an ample divisor, the associated polytope

$$P_{K^*} = \{ m \in M_{\mathbb{R}} | \langle m, u_{\tau_i} \rangle \ge -1 \text{ for } i = 1, \cdots, m \}$$

is a full dimensional polytope by Proposition 2.2. Note that

$$P_{K^*} = P_{D_1} \cup \cdots \cup P_{D_m}.$$

Since $0 \neq m_{\sigma}^{i} \in P_{D_{i}}$, we have for any $\sigma, \sigma' \in \Sigma(d)$ that $m_{\sigma}^{i} \neq m_{\sigma'}^{j}$ if $i \neq j$. Note $\{m_{\sigma}^i\}$ are vertices of P_{D_i} , however none of them are vertices of P_{K^*} though $\{m_{\sigma}^i|\sigma\in\Sigma(d)\}\subset P_{K^*}$. In fact m_{σ}^i can't lie in the intersection of two facets of P_{K^*} , hence it is not inside the facets with codimension ≥ 2 of P_{K^*} . But each m^i_{σ} is in the codimensional one facet $H_i = \{x \in M | \langle m, u_{\tau_i} \rangle = -1\}$ of P_{K^*} , and for $i \neq j$, the points $\{m_{\sigma}^i | \sigma \in \Sigma(d)\}\$ and $\{m_{\sigma}^j | \sigma \in \Sigma(d)\}\$ locate in the different facets of P_{K^*} .

Now let v be any vertex of P_{K^*} which has at least d codimensional one facets of P_{K^*} , assume $H_{i_1}, \dots, H_{i_k} (k \geq d)$ are those facets passing through the vertex v and $H_{i_1} \cap \dots \cap H_{i_k} = \{v\}$. Now fix a cone $\sigma \in \Sigma(d)$, since $\{m \in M | \langle m, u_{\tau_{i_j}} \rangle \geq 1\}$ $-1, j = 1, \dots, k$ is a d-dimensional cone Cone $(P_{K^*} \cap M_{\mathbb{R}} - v)$, the vectors $m_{\sigma}^{i_1}$ $v, \dots, m_{\sigma}^{i_k} - v$ form a basis of $N_{\mathbb{R}}$. Since $m_{\sigma}^{i_1}, \dots, m_{\sigma}^{i_k}$ are on the different facets of cone Cone $(P_{K^*} \cap M_{\mathbb{R}} - v)$, without loss of generality we may assume $m_{\sigma}^{i_1}$ $v, \dots, m_{\sigma}^{i_d} - v$ are linearly independent. Then after a translation, $m_{\sigma}^{i_1}, \dots, m_{\sigma}^{i_d}$

are still linearly independent. By Proposition $4.4, m_{\sigma}^{i_1}, \cdots, m_{\sigma}^{i_d}$ are semisimple Demazure roots of $\operatorname{Aut}(X_{\Sigma})$, hence it has d linearly independent semisimple roots. \square

Now our main result Theorem 1.2 follows from Proposition 3.1 and Proposition 4.5.

References

- [CP] F. Campana and T. Peternell, Projective manifolds whose tangent bundles are numerically effective. Math. Ann. 289 (1991), 169–187.
- [CLS] David A. Cox, John B. Little and Henry K. Schenck, Toric varieties, Graduate Studies in Mathematics, Vol 124, American Mathematical Society, Providence, RI, 2011.
- [DPS] J.-P. Demailly, T. Peternell and M. Schneider, Compact complex manifolds with numerically effective tangent bundles. J. Algebraic Geom. 3 (1994), 295–345.
- [De] M. Demazure, Sous-groupes algébriques de rang maximum du groupe de Cremona. (French) Ann. Sci. École Norm. Sup. 3 (1970) 507–588.
- [Fu] W. Fulton, Introduction to toric varieties, Annals of Mathematics Studies, 131, The William H. Roever Lectures in Geometry. Princeton University Press, Princeton, NJ, 1993.
- [Mo] N. Mok, The uniformization theorem for compact Kähler manifolds of nonnegative holomorphic bisectional curvature. J. Differential Geom. 27 (1988), 179–214.
- [Ni1] B. Nill, Gorenstein toric Fano varieties. Manuscripta Math. 116 (2005), 183–210.
- [Ni2] B. Nill, Complete toric varieties with reductive automorphism group. Math. Z. 252 (2006), 767–786.
- [Od] T. Oda, Convex bodies and algebraic geometry. An introduction to the theory of toric varieties. Translated from the Japanese. Ergebnisse der Mathematik und ihrer Grenzgebiete 15. Springer-Verlag, Berlin, 1988.
- [Ya] Q.-L. Yang, (k, s)-positivity and vanishing theorems for compact Kähler manifolds. Internat. J. Math. 22 (2011), 545–576.

DEPARTMENT OF MATHEMATICS, SUN YAT-SEN UNIVERSITY, 510275, GUANGZHOU, P. R. CHINA. $E\text{-}mail\ address:\ yqil@mail.sysu.edu.cn}$