Answers to Option C test yourself questions

1 a 70%; **b** 18%

2 40%

3 a $22.7 \,\mathrm{kJg}^{-1}$; **b** $48.3 \,\mathrm{kJg}^{-1}$; **c** $33.2 \,\mathrm{kJg}^{-1}$

4 a 35.9 kJ dm⁻³; **b** 52.5 kJ dm⁻³; **c** 39 600 kJ dm⁻³; **d** 23 400 kJ dm⁻³

5 a M; b P; c Q

6 a $C_{13}H_{28} \rightarrow C_8H_{18} + C_5H_{10}$

b $C_{10}H_{22} \rightarrow C_6H_{14} + C_4H_8$

 $c C_{16}H_{34} \rightarrow C_9H_{18} + C_7H_{16}$

7 a Ethanol: 1.910 g of CO₂ released per gram of ethanol burned
 0.06439 g of CO₂ released per kJ of energy released

b Hexane: 3.063 g of CO₂ released per gram of hexane burned
0.063 43 g of CO₂ released per kJ of energy released

8 a 43.3 kg CO₂e; **b** 248 kg CO₂e

9 **a** $^{235}_{92}U + ^{1}_{0}n \rightarrow ^{236}_{92}U \rightarrow ^{140}_{55}Cs + ^{93}_{37}Rb + 3^{1}_{0}n$ **b** $^{235}_{92}U + ^{1}_{0}n \rightarrow ^{236}_{92}U \rightarrow ^{165}_{42}Mo + ^{129}_{50}Sn + 2^{1}_{0}n$

10 a ${}^{121}_{48}$ Cd; **b** ${}^{96}_{40}$ Zr

11 a 25 mg; **b** 6.25 mg; **c** 0.0980 mg

12 a 45 days; **b** 7×10^{11} y

13 a 800 y; **b** 168 d

16 HCN, HF, CO, CO₂, H₂S, CFCl₃, N₂O

17 Three of: carbon dioxide; methane; nitrous oxide [nitrogen(I) oxide]; chlorofluorocarbons

18 a false; b false; c true; d true

19 **a** $PbSO_4(s) + 2e^- \rightarrow Pb(s) + SO_4^{2-}(aq)$ **b** $Ni(OH)_2(s) + OH^-(aq) \rightarrow NiO(OH)(s) + H_2O(l) + e^-$

20 6C + $\text{Li}_x\text{CoO}_2 \rightarrow \text{Li}_x\text{C}_6 + \text{CoO}_2$

21 a -0.17 V; **b** 0.68 V; **c** 0.81 V; **d** 1.82 V; **e**-0.77 V

22 a 1.17 V; **b** 1.32 V; **c** 1.35 V

23 a 0.39 V; **b** 1.07 V; **c** 0.58 V

24 a 0.06 V; **b** 0.03 V; **c** 0.04 V; **d** 0.09 V

25 **a** mass defect $0.069511\,\mathrm{u}$ binding energy $1.04 \times 10^{-11}\,\mathrm{J}$ binding energy per nucleon $6.48\,\mathrm{MeV}$

b mass defect $0.20028\,\mathrm{u}$ binding energy $2.99\times10^{-11}\,\mathrm{J}$ binding energy per nucleon $8.12\,\mathrm{MeV}$

c mass defect $0.52845 \,\mathrm{u}$ binding energy $7.90 \times 10^{-11} \,\mathrm{J}$ binding energy per nucleon $8.80 \,\mathrm{MeV}$

d mass defect 1.9398 u binding energy 2.90×10⁻¹⁰ J binding energy per nucleon 7.57 MeV

26 a $3.89 \times 10^8 \text{ kJ mol}^{-1}$; **b** $1.70 \times 10^9 \text{ kJ mol}^{-1}$

27 a $1.68 \times 10^{10} \text{ kJ mol}^{-1}$; **b** $1.84 \times 10^{10} \text{ kJ mol}^{-1}$

28 a $0.012 \, \text{min}^{-1}$; **b** $8.04 \times 10^{-3} \, d^{-1}$; **c** $3.30 \times 10^{-16} \, y^{-1}$

29 a 134 minutes (135 minutes if all figures are carried through on the calculator); **b** 200 days; **c** 4.9×10^{15} years

30 a 29.8%; **b** 16.4%

31 Half-life = 1.33×10^6 s or 15.4 days Mass left = $0.301 \,\mu g$

32 a helium effuses at 4.00 times the rate of sulfur dioxide

b ethene effuses at 1.25 times the rate of propane

c hydrogen effuses at 2.82 times the rate of methane

- **33 a** $32.1 \,\mathrm{g}\,\mathrm{mol}^{-1}$; **b** $26.0 \,\mathrm{g}\,\mathrm{mol}^{-1}$; **c** $27.0 \,\mathrm{g}\,\mathrm{mol}^{-1}$
- **34 a** 3.85×10^{-3} mol methane and 2.69×10^{-3} mol helium
 - b 4.14×10⁻³ mol carbon monoxide and 4.31×10⁻³ mol carbon dioxide
 c 3.56×10⁻³ mol fluorine and 3.94×10⁻³ mol
 - chlorine
- $35 \hspace{0.2cm} \text{(shortest wavelength)} \hspace{0.1cm} \text{II} < \text{V} < \text{IV} < \text{I} < \text{III} < \text{VI} \\$
- 36 a p-type; b p-type; c n-type; d n-type