

计算机组成原理

第四章 存储系统

4.14 RAID

- 1 RAID提出的背景
 - 很多人都有因磁盘故障而导致数据丢失的经历;
 - 磁盘访问速度过慢;
 - 多磁盘管理不方便;

2 RAID 定义

■ 由加州大学伯克利分校的D. A. Patterson于1988年提出。

- ◆ 被誉为计算机架构宗师
- ◆ RISC、RAID、NOW(工作站网络)

RAID: Redundant Arrays of Inexpensive Disks

廉价磁盘冗余阵列

Redundant Arrays of Independent Disks

独立磁盘冗余阵列

3 RAID 的核心技术

- 将数据条带化后的存放在不同磁盘上,通过多磁盘的并行操作提高磁盘系统的读写速率;
- 使用基于异或运算为基础的校验技术恢复损坏的数据

1
$$\otimes$$
 0 = 1
1 \otimes 1 = 0
0 \otimes 0 = 0

$$\begin{array}{rcl}
 1 & = & 0 & \otimes & 1 \\
 1 & = & 1 & \otimes & 0 \\
 0 & = & 0 & \otimes & 0
 \end{array}$$

1) RAID0

数据以条带方式均匀分散在各磁盘

所需磁盘数	2个或更多				
优点	磁盘读写效率高 无校验带来使用和配置方便				
缺点	无冗余,数据安全性低				
适用领域	视频、图像及需高传输带宽的应用				

2)RAID1

数据采用镜像的冗余方式,同一数据有多份拷贝

所需磁盘数	至少2个				
优点	100%数据冗余,数据安全性高 理论上可以实现2倍的读取效率				
缺点	空间利用率只有50%				
适用领域	财务、金融等高可用应用				

3)RAID 3/4

数据按 位/条带 并行传输到多个磁盘上,同时校验数据存放到专用校验盘上

所需磁盘数	至少3块				
优点	读写性能都比较好 磁盘利用率高, N-1/N				
缺点	控制器设计复杂 校验磁盘的写性能有瓶颈				
适用领域	视频生成和图像、视频编辑等 需要高吞吐量的应用环境				

4)RAID5

数据按条带分布在不同磁盘上,校验信息被均匀分散到各磁盘上

所需磁盘数	最低为3个					
优点	读性能比较高 校验信息的分布式存取,避免 出现写操作的瓶颈					
缺点	控制器设计复杂 磁盘重建的过程比较复杂					
适用领域	FTP、Email、Web、数据库					

5)RAID10 结合RAID1和RAID0,先镜像,再条带化

所需磁盘数	最低为4个				
优点	读性能高 数据安全性好,允许同时有 <mark>半数</mark> 磁盘失效				
缺点	空间利用率也只有50%				
适用领域	多用于高可用性和高安全性 的应用场合				

6)RAID01

结合RAID0和RAID1, 先条带化, 再镜像

只能容忍一个磁盘故障,如0号盘损坏,左边RAID0失效,只能使用右 边的RAID0,不能再有盘损坏,故冗余度为1

- 5 RAID 实现方式
 - ■软件RAID 功能都依赖于主机CPU完成,没有第三方的控制处理器和I/O芯片
 - ■硬件RAID 专门RAID控制处理器和I/O处理芯片处理RAID任务,不占用主机CPU资源

6 RAID 技术总结

RAID级别	RAID0	RAID1	RAID3	RAID5	RAID10
容错性	无	有	有	有	有
冗余类型	无	镜像	奇偶校验	奇偶校验	镜像
备盘	无	有	有	有	有
读性能	恒	低	高	高	中间
随机写性能	高	低	最低	低	中间
连续写性能	高	低	低	低	中间
需要的磁盘数	2个或更多	2个或2N个	3个或更多	3个或更多	4个或2N(N≥2)
可用容量	总的磁盘容量	磁盘容量的 50 %	磁盘容量的 (N-1) /N	磁盘容量的 (N-1) /N	磁盘容量的50%