Apple vs Google: A Comparative Sentiment Analysis in Tweets Related to Apple and Google Products

Business understanding

In today's digital age, social media platforms like Twitter provide a massive amount of real-time insights into consumer opinions, especially regarding products, brand and services. For tech giants like Apple and Google, monitoring sentiment around their products can be a crucial business strategy. Understanding how consumers feel about their offerings—whether positively, negatively, or neutrally—helps inform marketing strategies, product development, and customer support.

Project overview

Business problem

Apple and Google are two of the most influential tech companies globally, with millions of users and customers who actively discuss their products on platforms like Twitter. However, manually analyzing sentiment in these discussions would be both time-consuming and impractical given the sheer volume of tweets. Therefore, automating sentiment analysis using an NLP model will allow both companies to process and understand consumer opinions quickly and at scale. This could give them a competitive edge by allowing for a timely response to customer feedback, identifying emerging issues, and improving customer satisfaction and brand loyalty

Project objectives

Main Objective

 The primary objective is to develop an NLP-based machine learning model that can accurately classify the sentiment of tweets related to Apple and Google products as positive, negative, or neutral.

Specific Objectives

Preprocess tweet data effectively (removing noise, handling stopwords, tokenization) to

improve model accuracy.

- Build and evaluate multiple machine learning and deep learning models (Logistic Regression, Random Forest, Neural Network, LSTM) to classify tweet sentiments.
- Identify the best performing models and give recommendations.

Justification

Understanding sentiment at scale is critical for organizations in highly competitive industries like tech. By automating the analysis of millions of tweets related to Apple and Google products, companies can quickly gauge customer satisfaction, identify emerging trends, and proactively address negative sentiments. Sentiment analysis also allows these companies to measure the impact of new product releases, marketing campaigns, and public relations efforts.

Research questions

- What preprocessing techniques significantly improve model accuracy on tweet text?
- Which machine learning or deep learning model performs best in classifying tweet sentiments?
- How do different sentiment classes (positive, negative, neutral/no emotion) perform across models?

Data understanding

Data Collection

The dataset for this project comes from CrowdFlower and contains over 9,000 tweets labeled with sentiment (positive, negative, or neutral). These labeled examples provide a training set to build and evaluate the sentiment classification model. The data is enriched with various features such as tweet text, tweet ID, user ID, and the sentiment label, which is crucial for training the model.

To further improve the model, external data such as newer tweets about Apple and Google products or additional labeled sentiment datasets might be useful for retraining or finetuning.

Load libraries

```
In [ ]: !pip install emoji
        import pandas as pd
        import re
        import json
        import emoji
        import string
        import nltk
        import matplotlib.pyplot as plt
        import tensorflow as tf
        from nltk.corpus import stopwords
        from wordcloud import WordCloud
        from nltk import FreqDist
        from nltk.stem.wordnet import WordNetLemmatizer
        from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
        from nltk.tokenize import word_tokenize
        from sklearn.model_selection import train_test_split
        from sklearn.preprocessing import LabelEncoder
        from tensorflow.keras.preprocessing.text import Tokenizer
        from tensorflow.keras.preprocessing.sequence import pad_sequences
        from tensorflow.keras.models import Sequential
        from tensorflow.keras.utils import to_categorical
        from sklearn.metrics import classification_report
        from tensorflow.keras.layers import Embedding, LSTM, Dense, Dropout
        from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV
        from sklearn.metrics import accuracy_score, confusion_matrix,classification_report
        from sklearn.linear_model import LogisticRegression
        from sklearn.ensemble import BaggingClassifier, RandomForestClassifier
        from sklearn.tree import DecisionTreeClassifier
        from sklearn import metrics
        nltk.download('wordnet')
        nltk.download('stopwords')
        nltk.download('punkt')
        nltk.download('punkt_tab')
        import warnings
        warnings.filterwarnings("ignore")
       Requirement already satisfied: emoji in /usr/local/lib/python3.11/dist-packages (2.1
       4.1)
       [nltk_data] Downloading package wordnet to /root/nltk_data...
       [nltk data] Package wordnet is already up-to-date!
       [nltk_data] Downloading package stopwords to /root/nltk_data...
                     Package stopwords is already up-to-date!
       [nltk_data]
       [nltk_data] Downloading package punkt to /root/nltk_data...
       [nltk_data] Package punkt is already up-to-date!
       [nltk_data] Downloading package punkt_tab to /root/nltk_data...
                     Package punkt tab is already up-to-date!
       [nltk data]
```

Load the data

```
In [ ]: df = pd.read_csv("tweet_product_company.csv", encoding="latin-1")
         df.head()
Out[]:
               tweet_text emotion_in_tweet_is_directed_at is_there_an_emotion_directed_at_a_brand_or_
             .@wesley83 I
                have a 3G
                                                     iPhone
                                                                                                  Negative
             iPhone. After
               3 hrs twe...
               @jessedee
              Know about
          1
               @fludapp?
                                         iPad or iPhone App
                                                                                                   Positive
                Awesome
                   iPad/i...
             @swonderlin
              Can not wait
          2
                                                       iPad
                                                                                                   Positive
               for #iPad 2
               also. The...
                  @sxsw I
                hope this
          3
                                         iPad or iPhone App
                                                                                                  Negative
                    year's
              festival isn't
                   as cra...
               @sxtxstate
                great stuff
                                                                                                   Positive
                    on Fri
                                                     Google
                  #SXSW:
              Marissa M...
         df.tail()
Out[ ]:
                            tweet_text emotion_in_tweet_is_directed_at is_there_an_emotion_directed_at
                       Ipad everywhere.
          9088
                                                                    iPad
                          #SXSW {link}
                       Wave, buzz... RT
          9089
                         @mention We
                                                                    NaN
                                                                                            No emotion to
                      interrupt your re...
                      Google's Zeiger, a
          9090
                        physician never
                                                                    NaN
                                                                                            No emotion to
                          reported po...
                  Some Verizon iPhone
          9091
                 customers complained
                                                                    NaN
                                                                                            No emotion to
                 Ï¡Ïàü_ÊÎÒ£Áââ_£â_ÛâRT
                                                                    NaN
                                                                                            No emotion to
```

In []:	df.sa	mple(5)		
Out[]:		tweet_text	emotion_in_tweet_is_directed_at	is_there_an_emotion_directed_at_a_
	7655	#sxsw=appreciation for Twitter. My account has	NaN	No emotion towar
	5217	RT @mention #Apple to Open Pop-Up Shop at #SXS	NaN	No emotion towar
	7432	{link} Report: Apple to Open Pop-Up Store at #	NaN	No emotion towar
	8246	Excitement in the social network space with Go	Other Google product or service	
	2626	Slides are available on the @mention site for	NaN	No emotion towar

Data cleaning

Correct formats

- **tweet_text**: The data type object is appropriate as it contains text data.
- **emotion_in_tweet_is_directed_at**: The object type is suitable since it likely contains categorical or string values indicating emotion direction.
- is_there_an_emotion_directed_at_a_brand_or_product: The object type is correct as it likely holds categorical values (e.g., "Yes" or "No").

All columns have the correct data type (object) for their respective content.

Missing Values

dtype: int64

- The dataset has a total of 9093 rows.
- The **tweet_text** is the primary feature and is almost complete.
- The other two features have missing values and might require further preprocessing before use in sentiment analysis or classification tasks.

Removed blank row with the missing value in **tweet_text** since there is no tweet to draw sentiment from.

dtype: int64

Replaced missing values on column **emotion_in_tweet_is_directed_at** with 'Unknown': Since we have over 60% of missing values in the 'emotion is directed at' column, we will assume the sentiments weren't directed toward any specific brand and fill the missing data with 'Unknown'.

```
In [ ]: product_names = df.emotion_in_tweet_is_directed_at.unique()
    df.emotion_in_tweet_is_directed_at.fillna("Unknown",inplace=True)
    df.isna().sum()
```

```
tweet_text 0

emotion_in_tweet_is_directed_at 0

is_there_an_emotion_directed_at_a_brand_or_product 0

dtype: int64

Keeping the original text

In []: df["original_tweet"]= df.tweet_text
```

Feature Engineering

Removing unwanted Text

```
In []: # cleaning unwanted characters
def remove_unwanted_text(text):
    if isinstance(text, str):
        return re.sub(r'[^\x00-\x7F]+', '', text)
    return text

df['tweet_text'] = df['tweet_text'].apply(remove_unwanted_text)
df.tweet_text
```

```
Out[ ]:
                                                            tweet_text
              0
                       .@wesley83 I have a 3G iPhone. After 3 hrs twe...
                  @jessedee Know about @fludapp? Awesome iPad/i...
              2
                       @swonderlin Can not wait for #iPad 2 also. The...
              3
                           @sxsw I hope this year's festival isn't as cra...
                       @sxtxstate great stuff on Fri #SXSW: Marissa M...
              4
          9088
                                         Ipad everywhere. #SXSW {link}
          9089
                      Wave, buzz... RT @mention We interrupt your re...
          9090
                       Google's Zeiger, a physician never reported po...
          9091
                    Some Verizon iPhone customers complained their...
          9092
                     __RT @mention Google Tests Check-in Offers At...
         9092 rows × 1 columns
```

dtype: object

Lowercasing

Convert all tweet_text to lowercase to maintain consistency

```
In [ ]: df.tweet_text = df.tweet_text.str.lower()
```

We did Lowercasing to make texts uniform

Converting Transcript to strings

• Translated emoticons into phrases like 'sad face', 'crying face' to preserve emotional context for sentimental analysis

Dealing with emojis

• Changed emojis into text formart since emojis carry alot of meaning and helps models learn them.

Replacing abbreviation with its full form

```
In []: # Loading abbreviation dictionary from abbr.txt
with open('abbr.txt', 'r') as file:
    abbr_dict = json.load(file)

# expand abbreviations in a tweet
def expand_abbr_in_tweet(text):
    return " ".join([abbr_dict.get(word, word) for word in text.split()])

# apply the function to each tweet in the DataFrame
df['tweet_text'] = df['tweet_text'].apply(expand_abbr_in_tweet)
```

Replaced abreviation with its full form so as they won't be removed as stopwords

Removing Links

First check if there is any links

```
In []: def text_processor(process, pattern):
    def extract_pattern(text):
        if isinstance(text, str):
            return re.findall(pattern, text)
        return []

# apply pattern extraction
    links_list = df['tweet_text'].apply(extract_pattern)

# flatten the list of lists
    all_links = [link for sublist in links_list for link in sublist]

# check if anything was found
```

```
if all_links:
                print(f"{process} found in the dataset: {len(all_links)} matches")
                print(all_links[:5]) # optional: show a few samples
                print(f"No {process} found.")
In [ ]: def remove_pattern(pattern):
            df['tweet_text'] = df['tweet_text'].apply(lambda x: re.sub(pattern, '', x))
In [ ]: to_remove_or_check = "Links"
        pattern = r'http\S+|www\S+'
        text_processor(to_remove_or_check,pattern)
       Links found in the dataset: 48 matches
       ['http://ht.ly/49n4m', 'http://bit.ly/ieavob', 'http://bit.ly/gvlrin', 'http://j.mp/
       grn7pk)', 'http://bit.ly/axzwxb']
        Removing links found
In [ ]: remove_pattern(pattern)
        Checking if any links are remaining
In [ ]: text_processor(to_remove_or_check,pattern)
       No Links found.
        Removing Usernames
        Checking for twitter usernames
In [ ]: | to_remove_or_check = "Usernames"
        pattern = r'@\S+'
        text_processor(to_remove_or_check,pattern)
       Usernames found in the dataset: 7192 matches
       ['@wesley83', '@jessedee', '@fludapp', '@swonderlin', '@sxsw']
        Removing Usernames
In [ ]: remove_pattern(pattern)
        Checking if any usernames are remaining
In [ ]: text_processor(to_remove_or_check,pattern)
       No Usernames found.
```

Removing Hashtags

Let us first check if there is any hashtags

```
In [ ]: |to_remove_or_check = "Hashtags"
        pattern = r' \# \S + "
        text_processor(to_remove_or_check,pattern)
       Hashtags found in the dataset: 15853 matches
       ['#rise_austin,', '#sxsw.', '#sxsw', '#ipad', '#sxsw.']
        Removing hashtags
In [ ]: remove_pattern(pattern)
In [ ]: text_processor(to_remove_or_check,pattern)
       No Hashtags found.
        Removing Punctuation
In [ ]: | # removeD punctuation
        def remove punctuation(text):
            return text.translate(str.maketrans('', '', string.punctuation))
        # applying the function to the tweet_text column
        df['tweet_text'] = df['tweet_text'].apply(remove_punctuation)
        Removing Stopwords
In [ ]: | product_names = list(product_names)
In [ ]: #adding product names when there combined to accommodate such instances
        product_names_joined = [str(name1).lower() + str(name2).lower() for name1 in produc
                                for name2 in product_names if not pd.isna(name1) or not pd.
        product_names.extend(product_names_joined)
        # converting all product names to lowercase
        product_names= [str(name).lower() for name in product_names]
In [ ]: |# getting stopwords
        stopwords list = stopwords.words('english')
        #removing punctuation from stopwords since punctuation have been removed
        stopwords_list= [word.translate(str.maketrans('', '', string.punctuation)) for word
        # extending the list with lowercase product names
        stopwords list.extend(product names)
In [ ]: | for index in range(df.tweet_text.shape[0]):
            tweet_text = df.tweet_text.iloc[index].split()
            #removing stopwords from text
            tweet_no_stopword = " ".join([word for word in tweet_text if word not in stopwo
            df.tweet_text.iloc[index] = tweet_no_stopword
        Removing Numbers
In [ ]: | for index in range(df.tweet_text.shape[0]):
```

11 of 124 4/24/2025, 2:52 PM

tweet = df.tweet_text.iloc[index].split()

```
df.tweet_text.iloc[index] = " ".join([re.sub(r'\b\d+\b', '', text) for text in

In []: # Comparing cleaned and original data
df[["tweet_text","original_tweet"]].head(10)
```

original_tweet	tweet_text	•	Out[]:	
.@wesley83 I have a 3G iPhone. After 3 hrs twe	3g hrs tweeting dead need upgrade plugin stat	0		
@jessedee Know about @fludapp ? Awesome iPad/i	know awesome application likely appreciate des	1		
@swonderlin Can not wait for #iPad 2 also. The	wait also sale	2		
@sxsw I hope this year's festival isn't as cra	hope years festival crashy years app	3		
@sxtxstate great stuff on Fri #SXSW: Marissa M	great stuff fri marissa mayer tim oreilly tech	4		
@teachntech00 New iPad Apps For #SpeechTherapy	new applications communication showcased confe	5		
#SXSW is just starting, #CTIA is around the co	starting around corner hop skip jump good time	7		
Beautifully smart and simple idea RT @madebyma	beautifully smart simple idea retweet wrote ap	8		
Counting down the days to #sxsw plus strong Ca	counting days plus strong canadian dollar mean	9		
Excited to meet the @samsungmobileus at #sxsw	excited meet show sprint galaxy still running	10		
_		excited	10 excited	

• This displays side by side comparison of raw and cleaned tweets to verify the preprocessing pipeline

```
In [ ]: df.head()
```

Out[]:		tweet_text	$emotion_in_tweet_is_directed_at$	$is_there_an_emotion_directed_at_a_brand_or_pi$
	0	3g hrs tweeting dead need upgrade plugin stat	iPhone	Negative er
	1	know awesome application likely appreciate des	iPad or iPhone App	Positive er
	2	wait also sale	iPad	Positive er
	3	hope years festival crashy years app	iPad or iPhone App	Negative er
	4	great stuff fri marissa mayer tim oreilly tech	Google	Positive er

• The function is to confirm the above changes were executed successfully.

which shows that links, stopwords, punctuation, hashtags, usernames were dropped as is in tweet_text column

```
In []: # sentiment distribution plot
   import seaborn as sns
   sns.countplot(data=df, x='is_there_an_emotion_directed_at_a_brand_or_product')
   plt.title('Tweet Sentiment Distribution')
   plt.xlabel('Sentiment')
   plt.ylabel('Count')
   plt.xticks(rotation=45)
   plt.show()
```


• 'No emotion towards brand or product' had the highest count which shows that most sentiments/reaction given was generalized/neutral

The above plot shows the frequency of each product/brand mentions.

Most of the data had missing values on the brand/product column hence filling the blanks with unknown- in this case unknown showing that the sentiments did not mention any product/brand name.

Tokenization

The text was stripped down the tweet text into smaller units(tokens). Therefore allowing
vectorization of the cleaned text which is a numerical representation of the tokens to
capture the semantic meanings and relationship between words.

```
In []: tokens = []
    for index in range(df.tweet_text.shape[0]):
        text=df.tweet_text.iloc[index]
        for word in text:tokens.append(word)
# creating frequency distribution from the tokens
    freqdist = FreqDist(tokens)

# getting 200 most common words
most_common = freqdist.most_common(200)

print(most_common)
```

[('link', 4284), ('retweet', 2903), ('store', 1465), ('new', 1093), ('austin', 842), ('amp', 722), ('application', 655), ('launch', 643), ('social', 623), ('popup', 59 7), ('today', 576), ('circles', 529), ('sxsw', 487), ('network', 462), ('via', 435), ('line', 401), ('get', 393), ('free', 364), ('called', 361), ('party', 332), ('majo r', 302), ('mobile', 300), ('like', 290), ('time', 272), ('one', 272), ('temporary', 264), ('opening', 256), ('people', 255), ('possibly', 244), ('great', 223), ('downto wn', 222), ('see', 220), ('going', 218), ('day', 216), ('check', 215), ('maps', 21 4), ('go', 212), ('open', 210), ('need', 203), ('mayer', 203), ('marissa', 192), ('g ot', 183), ('know', 182), ('googles', 182), ('come', 174), ('applications', 168), ('win', 168), ('first', 166), ('good', 165), ('us', 162), ('pop', 160), ('ipad2', 15 9), ('next', 148), ('want', 146), ('love', 145), ('cool', 143), ('panel', 142), ('sh op', 142), ('best', 140), ('design', 138), ('app', 135), ('game', 135), ('make', 13 5), ('thanks', 135), ('news', 134), ('think', 133), ('big', 130), ('set', 128), ('se arch', 128), ('use', 128), ('awesome', 126), ('would', 126), ('around', 125), ('las t', 124), ('music', 123), ('users', 122), ('talk', 121), ('show', 119), ('anyone', 1 18), ('video', 118), ('using', 115), ('right', 114), ('says', 114), ('download', 11 3), ('rumor', 110), ('really', 109), ('guy', 109), ('even', 109), ('launching', 10 8), ('session', 108), ('still', 107), ('coming', 105), ('year', 104), ('location', 1 01), ('apples', 100), ('congress', 100), ('booth', 100), ('hey', 99), ('ipads', 99), ('buy', 97), ('team', 96), ('case', 96), ('future', 96), ('6th', 96), ('way', 96), ('heard', 95), ('week', 95), ('products', 95), ('cant', 89), ('tonight', 89), ('digi tal', 89), ('twitter', 87), ('find', 86), ('everyone', 85), ('may', 84), ('blackberr y', 84), ('fun', 84), ('phone', 84), ('thing', 83), ('back', 83), ('look', 82), ('lo oking', 81), ('getting', 81), ('could', 81), ('nice', 80), ('also', 79), ('many', 7 9), ('2s', 79), ('away', 79), ('ever', 78), ('web', 78), ('wins', 78), ('facebook', 77), ('wait', 76), ('temp', 76), ('designing', 75), ('tv', 75), ('yes', 74), ('lon g', 73), ('already', 73), ('giving', 71), ('quotgoogle', 71), ('bing', 71), ('includ es', 69), ('uberguide', 69), ('interesting', 69), ('live', 69), ('fast', 68), ('muc h', 68), ('oh', 67), ('interactive', 67), ('ready', 67), ('others', 67), ('looks', 6 6), ('take', 66), ('available', 66), ('every', 66), ('please', 66), ('sure', 65), ('tomorrow', 65), ('work', 65), ('night', 65), ('made', 65), ('smart', 63), ('sell', 63), ('friends', 63), ('product', 63), ('someone', 62), ('rt', 62), ('platform', 6 1), ('tweet', 61), ('gets', 61), ('cc', 61), ('action', 61), ('itunes', 60), ('detai ls', 60), ('street', 60), ('battery', 60), ('keep', 60), ('else', 59), ('two', 59), ('white', 59), ('yet', 59), ('better', 59), ('years', 58), ('theres', 58), ('relie f', 58), ('wow', 57), ('tech', 56), ('meet', 56), ('join', 56), ('thats', 56), ('tec hnology', 56), ('saw', 56), ('updates', 55), ('post', 55), ('seen', 55), ('japan', 5 5), ('hotpot', 55), ('na', 54)]

```
plt.figure(figsize=(10, 6))
plt.bar(words, frequencies)
plt.xticks(rotation=90)
plt.title('Top 20 Most Common Words in Tweets')
plt.xlabel('Words')
plt.ylabel('Frequency')
plt.show()
```


• The bar plot gives a quick idea of the common word in the tweets.

Word Cloud from Tweets map love store austin free store downtown+ ത party embo ⊥ıne retweet store dow<u>ntow</u>n take day es possibly

• The word cloud was used to create a visual summary of most used words.

the big fonts show the frequent used words in the tweets eg. link, link retweet, application.

```
In [ ]:
        word_emotion_counts = {}
        # iterating through each tweet
        for index in range(df.shape[0]):
            text = df.tweet_text.iloc[index]
            emotion = df.is_there_an_emotion_directed_at_a_brand_or_product.iloc[index]
            for word in text:
                if word not in word_emotion_counts:
                    word_emotion_counts[word] = [0, 0, 0, 0] # [neutral, positive, negativ
                if emotion == 'No emotion toward brand or product':
                    word_emotion_counts[word][0] += 1
                elif emotion == 'Positive emotion':
                    word_emotion_counts[word][1] += 1
                elif emotion == 'Negative emotion':
                    word_emotion_counts[word][2] += 1
                else:
                    word_emotion_counts[word][3] += 1
        word_emotion_counts
        emotion_data = []
        for word, counts in word_emotion_counts.items():
            emotion data.append({'word': word, 'neutral': counts[0], 'positive': counts[1],
        emotion_df = pd.DataFrame(emotion_data)
        # getting the top 10 words by frequency (neutral + positive + negative counts)
        top_words = emotion_df.set_index('word').sum(axis=1).nlargest(10).index
        top words df = emotion df[emotion df['word'].isin(top words)]
```


• The word-sentiment mapping above was used to associate each word with how often it appears in 'positive', 'negative', 'no emotion' and 'I can't tell'

Lemmatization

```
In [ ]: lemmatizer = WordNetLemmatizer()

for index in range(df.tweet_text.shape[0]):
    text = df.tweet_text.iloc[index]
    tweet_text =[lemmatizer.lemmatize(word) for word in text]
    df.tweet_text.iloc[index] = tweet_text
```

· Lemmatization was used to normalize words to their base forms, reduce noise and

improve interpretability.

```
df.head()
Out[ ]:
              tweet_text emotion_in_tweet_is_directed_at is_there_an_emotion_directed_at_a_brand_or_p
                   [3g, hr,
                tweeting,
                    dead,
          0
                                                        iPhone
                                                                                                        Negative e
                    need,
                 upgrade,
                  plugin...
                   [know,
                awesome,
           1 application,
                                           iPad or iPhone App
                                                                                                         Positive e
                    likely,
               appreciat...
               [wait, also,
          2
                                                          iPad
                                                                                                         Positive e
                     sale]
                   [hope,
                     year,
          3
                  festival,
                                           iPad or iPhone App
                                                                                                        Negative e
                   crashy,
                year, app]
                   [great,
                  stuff, fri,
                  marissa,
                                                                                                         Positive e
                                                       Google
               mayer, tim,
                    oreil...
```

Vectorization/TF-IDF

```
In []: # Prepared the text
    texts = [" ".join(text) for text in df.tweet_text]

# CountVectorizer
    count_vect = CountVectorizer()
    count_matrix = count_vect.fit_transform(texts)
    count_df = pd.DataFrame(count_matrix.toarray(), columns=count_vect.get_feature_name
    print("CountVectorizer:\n")
    print(count_df)

# TfidfVectorizer
    tfidf_vect = TfidfVectorizer()
    tfidf_matrix = tfidf_vect.fit_transform(texts)
    tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=tfidf_vect.get_feature_name)
```

CountVectorizer:

	0310	apple	100	1030	11p	104	5am3	10am	10	< 1	.0mins	10pm	10x	10x2	\
0		0	0		0		0	0	(9	0	0	0	0	
1		0	0		0		0	0	(9	0	0	0	0	
2		0	0		0		0	0	(9	0	0	0	0	
3		0	0		0		0	0	(9	0	0	0	0	
4		0	0		0		0	0	(9	0	0	0	0	
9087		0	0		0		0	0	(9	0	0	0	0	
9088		0	0		0		0	0	(9	0	0	0	0	
9089		0	0		0		0	0	(9	0	0	0	0	
9090		0	0		0		0	0	(9	0	0	0	0	
9091		0	0		0		0	0	(9	0	0	0	0	
		zite	zlf	zms	zomb	oie	zomg	zone	e z	oom	zucke	rberg	zynga	a zz	ZS
0		0	0	0		0	0	(9	0		0	6	9	0
1		0	0	0		0	0	(9	0		0	6	9	0
2		0	0	0		0	0	()	0		0	6	9	0
3		0	0	0		0	0	()	0		0	6	9	0
4		0	0	0		0	0	(9	0		0	6	9	0
9087		0	0	0		0	0	()	0		0	6	9	0
9088		0	0	0		0	0	(9	0		0	6	9	0
9089		0	0	0		0	0	(9	0		0	(9	0
9090		0	0	0		0	0	(9	0		0	6	9	0
9091		0	0	0		0	0	(9	0		0	6	9	0

[9092 rows x 8553 columns]

• Converted tweet text into numerical features using countVectorizer and TF-IDF.

This emphasizes emotionally charged/ brand-specific terms that are rare but meaningful

```
In [ ]: top_n = 5

print("\nTF-IDF Vectorizer (Top Words per Document):\n")
for i, row in tfidf_df.iterrows():
    doc_tfidf = row[row > 0].sort_values(ascending=False).head(top_n).round(3)
    print(f"\nDocument {i + 1}:")
    print(doc_tfidf.reset_index().rename(columns={'index': 'Word', i: 'TF-IDF'}))
```

Streaming output truncated to the last 5000 lines.

```
Word TF-IDF
0 resurgence 0.458
1 fam 0.385
2 enjoying 0.374
3 showing 0.337
4
   center 0.331
Document 8450:
  Word TF-IDF
0 reassured 0.348
1 terrace 0.348
2 rooftop 0.323
3 soft 0.323
4 hacking 0.308
Document 8451:
  Word TF-IDF
    n26 0.449
0
1
   terror 0.449
2
   level 0.377
3 40075959p 0.347
   red 0.327
Document 8452:
   Word TF-IDF
0 torrent 0.446
1
   expect 0.437
2 unofficial 0.437
    hear 0.377
3
      way 0.320
4
Document 8453:
 Word TF-IDF
0 tough 0.482
1 urinal 0.472
2 holding 0.406
3 ur 0.396
4 tweeting 0.389
Document 8454:
       Word TF-IDF
      week 0.451
1 comfortable 0.370
2 wise 0.358
3
    typing 0.330
      sixth 0.304
Document 8455:
   Word TF-IDF
0 index 0.343
1 dow 0.329
2 mood 0.329
3 predict 0.318
```

Document 8449:

4 theory 0.318

Document 8456:

		•
	Word	TF-IDF
0	young	0.586
1	chasing	0.293
2	shoe	0.293
3	foot	0.273
4	newspaper	0.269

Document 8457:

bocamene 0457.					
	Word	TF-IDF			
0	tricked	0.456			
1	birthday	0.396			
2	either	0.389			
3	guess	0.336			
4	mom	0.324			

Document 8458:							
	Word	TF-IDF					
0	slow	0.440					
1	downloading	0.416					
2	torrent	0.411					
3	review	0.368					
4	probably	0.351					

Document 8459:

Word	TF-IDF
net	0.460
shit	0.372
another	0.300
oh	0.290
way	0.268
	net shit another oh

Document 8460:

	Word	TF-IDF
0	peeked	0.496
1	flap	0.474
2	loose	0.448
3	built	0.348
4	look	0.270

Document 8461:

Word	TF-IDF
barroom	0.355
brawl	0.355
saber	0.355
fist	0.355
light	0.296
	barroom brawl saber fist

Document 8462:

	Word	TF-IDF
0	hivethinkquot	0.436
1	mob	0.422
2	quotif	0.395
3	flash	0.355

```
there 0.294
Document 8463:
   Word TF-IDF
0 smart 0.708
1 oh 0.706
Document 8464:
    Word TF-IDF
0 flowing 0.492
1 water 0.399
2 near 0.372
3 still 0.284
4 anyone 0.279
Document 8465:
      Word TF-IDF
0 journalist 0.508
1 pass 0.421
2 afford 0.410
3
    spent 0.407
    money 0.353
Document 8466:
   Word TF-IDF
0 bother 0.593
1 setting 0.448
2 store 0.385
3
   coming 0.372
4 temporary 0.309
Document 8467:
      Word TF-IDF
0 smarmcake 0.617
1 writeup 0.617
2 thing 0.347
3
      got 0.322
     link 0.117
Document 8468:
     Word TF-IDF
0 something 0.582
1 dunno 0.411
2
      prob 0.388
3
      bus 0.361
4 happening
            0.356
Document 8469:
      Word TF-IDF
0 simplicity 0.476
1 jr 0.461
2 developing 0.444
3
  lot 0.334
4
  product 0.298
```

Document 8470:

```
Word TF-IDF
0 went 0.566
1 stock 0.562
2 really 0.440
3 think 0.412
Document 8471:
  Word TF-IDF
0 truck 0.855
1 need 0.519
Document 8472:
  Word TF-IDF
0 pop 0.872
1 store 0.489
Document 8473:
 Word TF-IDF
0 available 0.598
1 blackberry 0.578
2 go 0.474
3 retweet 0.227
   link 0.180
Document 8474:
 Word TF-IDF
0 week 0.567
1 next 0.529
2 time 0.456
3 party 0.437
Document 8475:
      Word TF-IDF
0 boomersquot 0.430
1 quotyour 0.411
2 interested 0.386
3 mom 0.351
4 thought 0.338
Document 8476:
      Word TF-IDF
0 changed 0.579
1 scheduler 0.354
   prefer 0.293
2
3 communication 0.262
4 food 0.243
Document 8477:
```

Word TF-IDF

0 itc 0.383
1 three 0.321
2 met 0.315
3 girl 0.301
4 change 0.297

Document 8478:

```
Word TF-IDF
0 run 0.650
1 battery 0.544
2 hour 0.531
```

Document 8479:

Word TF-IDF 0 math 0.606 1 wave 0.525 2 buzz 0.443 3 day 0.306 4 circle 0.258

Document 8480:

Word TF-IDF 0 canal 0.355 1 flooding 0.355 2 deathstarr 0.339 3 adi 0.339 4 ringo 0.329

Document 8481:

Word TF-IDF
0 enthusiast 0.478
1 6thcongress 0.457
2 lining 0.422
3 5pm 0.363
4 outside 0.322

Document 8482:

Word TF-IDF 0 hipstapaks 0.747 1 giving 0.463 2 away 0.456 3 link 0.141

Document 8483:

Word TF-IDF 0 dst 0.401 1 noticed 0.401 2 sunday 0.336 3 late 0.298 4 morning 0.283

Document 8484:

Word TF-IDF 0 615ab 0.334 1 saturday 0.317 2 feeling 0.314 3 sat 0.311 4 welcome 0.308

Document 8485:

Word TF-IDF 0 guard 0.520 1 enjoying 0.495

2	security	0.469
3	ipad2	0.350
4	austin	0.236

Document 8486:

	Word	TF-IDF
0	arrived	0.553
1	nice	0.427
2	shop	0.385
3	рор	0.377
4	time	0.331

Document 8487:

	word	IL-IDE
0	apparently	0.656
1	place	0.561
2	get	0.386
3	austin	0.325

Document 8488:

	Word	TF-IDF
0	pornthis	0.483
1	latina	0.471
2	impression	0.433
3	find	0.312
4	first	0.277

Document 8489:

	Word	TF-IDF
0	pornthis	0.483
1	latina	0.471
2	impression	0.433
3	find	0.312
4	first	0.277

Document 8490:

	Word	TF-IDF
0	waiting	0.664
1	prize	0.394
2	stop	0.329
3	someone	0.319
4	still	0.294

Document 8491:

	Word	TF-IDF
0	tweeting	0.909
1	new	0.417

Document 8492:

	Word	TF-IDF
0	2am	0.420
1	lobby	0.380
2	hotel	0.330
3	yeah	0.328
4	who	0.320

Document 8493:

	Word	TF-IDF
0	crucial	0.537
1	experimenting	0.523
2	brand	0.411
3	say	0.308
4	marissa	0.298

Document 8494:

	Word	TF-IDF
0	doubt	0.318
1	speak	0.306
2	useful	0.295
3	min	0.291
4	tweeting	0.286

Document 8495:

	Word	TF-IDF
0	disrupt	0.510
1	putting	0.437
2	tablet	0.377
3	wait	0.338
4	cant	0.329

Document 8496:

	Word	TF-IDF
0	convenient	0.525
1	crazy	0.408
2	brilliant	0.400
3	setting	0.396
4	sell	0.355

Document 8497:		
	Word	TF-IDF
0	fix	0.517
1	setting	0.436
2	attendee	0.414
3	ipad2	0.333
4	temporary	0.301

Document 8498:

	Word	TF-IDF
0	society	0.400
1	texting	0.394
2	war	0.360
3	heat	0.360
4	group	0.317

Document 8499:

	Word	TF-IDF
0	grouptexting	0.450
1	society	0.414
2	war	0.372
3	heat	0.372
4	fast	0.303

4/24/2025, 2:52 PM 28 of 124

Document 8500:

Word TF-IDF 0 eric 0.613 1 sitting 0.506 2 ready 0.425 3 getting 0.412 4 link 0.128

Document 8501:

Word TF-IDF 0 riding 0.658 1 thru 0.581 2 tweeting 0.479

Document 8502:

Word TF-IDF 0 attn 0.649 1 downtown 0.350 2 opening 0.340 3 temporary 0.338 4 launch 0.268

Document 8503:

Word TF-IDF 0 unveiled 0.494 1 dear 0.436 2 soon 0.393 3 tell 0.373 4 please 0.353

Document 8504:

Word TF-IDF
0 answr 0.41
1 porn 0.41
2 askd 0.41
3 latina 0.37
4 impression 0.34

Document 8505:

Word TF-IDF 0 downtown 0.472 1 opening 0.458 2 temporary 0.456 3 launch 0.361 4 austin 0.341

Document 8506:

Word TF-IDF 0 banality 0.570 1 bloody 0.545 2 smackdown 0.532 3 via 0.282 4 link 0.124

Document 8507:

Word TF-IDF

```
0 techstars 0.664
1 advance 0.600
2 help 0.428
3 link 0.126
Document 8508:
 Word TF-IDF
0 btchin 0.510
    throw 0.494
2 spazmatics 0.481
3 shout 0.455
4 party 0.240
Document 8509:
 Word TF-IDF
0 train 0.457
1 opposite 0.457
2 linking 0.448
3 article 0.389
4 easy 0.386
Document 8510:
  Word TF-IDF
0 pointing 0.470
1 broke 0.443
2 hmm 0.407
3 article 0.377
4 story 0.340
Document 8511:
 Word TF-IDF
0 15k 0.622
1 developed 0.606
2 wow 0.431
3 application 0.246
Document 8512:
  Word TF-IDF
0
    jet 0.455
   freak 0.420
1
2 hilarious 0.412
3 learning 0.365
4 stuff 0.328
Document 8513:
      Word TF-IDF
0 11m 0.435
1 bitlyea1zgd 0.416
2 valley 0.384
3
     raise 0.365
4 player 0.339
```

Document 8514:

Word TF-IDF 0 apartment 0.435 1 streetview 0.407

2	click	0.385
3	easy	0.358
4	austin	0.339

Document 8515:

	Word	TF-IDF
0	god	0.476
1	oh	0.410
2	rumor	0.362
3	downtown	0.325
4	opening	0.315

Document 8516:

	Word	TF-IDF
0	use	0.484
1	marissa	0.446
2	mayer	0.436
3	map	0.427
4	mobile	0.410

Document 8517:

	Word	TF-IDF
0	sponsored	0.523
1	uberguide	0.496
2	includes	0.496
3	application	0.291
4	new	0.266

Document 8518:

	Word	TF-IDF
0	perception	0.409
1	transparent	0.409
2	brother	0.335
3	control	0.303
4	trying	0.275

Document 8519:

	Word	TF-IDF
0	freecreditscore	0.341
1	liz	0.316
2	phair	0.316
3	crossroad	0.316
4	closer	0.308

Document 8520:

	Word	TF-IDF
0	identifying	0.435
1	apply	0.403
2	bird	0.384
3	quick	0.352
4	mom	0.308

Document 8521: Word TF-TDF

	Word	TF-IDF
0	cont	0.471
1	CC	0.442

```
2
    includes 0.433
3 uberguide 0.433
4 application 0.255
Document 8522:
      Word TF-IDF
0 accessible 0.529
1 site 0.403
2 making 0.399
    tell 0.399
3
4
     ready 0.374
Document 8523:
     Word TF-IDF
     8a 0.348
1 answering 0.322
2 guest 0.316
3 charles 0.298
4 chen 0.298
Document 8524:
      Word TF-IDF
0 edge 0.357
1 protip 0.346
2 perfectly 0.337
3 connection 0.324
4 signal 0.302
Document 8525:
            Word TF-IDF
        cheapen 0.326
1 productquot 0.326
2
        quotbut 0.326
    quotmultiple 0.326
4 monetizationquot 0.326
Document 8526:
        Word TF-IDF
    duckett 0.374
1 instrumental 0.374
   common 0.330
2
3 creative 0.314
      name 0.285
Document 8527:
    Word TF-IDF
0 latitude 0.482
1 checkins 0.448
    reward 0.415
2
3 foursquare 0.400
4 follow 0.398
Document 8528:
         Word TF-IDF
0 breakthrough 0.561
```

1 latitude 0.450

2	push	0.441
3	big	0.312
4	year	0.303

Document 8529:

Word	TF-IDF
activation	0.509
market	0.381
month	0.377
huge	0.370
share	0.361
	activation market month huge

Document 8530:

	Word	TF-IDF
0	lego	0.473
1	battle	0.461
2	robot	0.455
3	hosted	0.451
4	start	0.378

Document 8531:

	Word	TF-IDF
0	haiti	0.429
1	sister	0.398
2	mission	0.379
3	winner	0.356
4	trip	0.327

Document 8532:

	Word	TF-IDF
0	executing	0.554
1	loaded	0.530
2	congrats	0.401
3	guide	0.363
4	event	0.329

Document 8533:

	Word	TF-IDF
0	pengairborne	0.488
1	fave	0.435
2	level	0.429
3	congrats	0.369
4	getting	0.310

Document 8534:

	Word	TF-IDF
0	raffled	0.510
1	inbox	0.481
2	winning	0.419
3	congrats	0.386
4	detail	0.334

Document 8535:

	Word	TF-IDF
0	aw	0.501
1	boyfriend	0.478

2	winning	0.425
3	congrats	0.391
4	case	0.307

Document 8536:

Word TF-IDF
0 redcross 0.421
1 afford 0.368
2 consider 0.360
3 attend 0.351
4 earthquake 0.349

Document 8537:

Word TF-IDF 0 en 0.497 1 bet 0.443 2 flight 0.424 3 route 0.402 4 thats 0.369

Document 8538:

Word TF-IDF 0 accompanied 0.383 1 haircut 0.383 2 instrument 0.361 3 fedora 0.354 4 en 0.347

Document 8539:

Word TF-IDF 0 jose 0.351 1 bff 0.336 2 charm 0.325 3 dream 0.305 4 san 0.295

Document 8540:

Word TF-IDF 0 plagued 0.619 1 stream 0.448 2 twitter 0.371 3 product 0.336 4 first 0.329

Document 8541:

Word TF-IDF 0 florian 0.405 1 bernd 0.405 2 guguchu 0.405 3 terminal 0.375 4 ticket 0.340

Document 8542:

Word TF-IDF 0 stretch 0.595 1 block 0.394

2	getting	0.378
3	buy	0.360
4	one	0.290

Document 8543:

	Word	TF-IDF
0	compete	0.573
1	bigger	0.499
2	start	0.444
3	guy	0.357
4	like	0.312

Document 8544:

	Word	TF-IDF
0	douchebaggery	0.439
1	patience	0.439
2	lack	0.407
3	popping	0.369
4	thats	0.283

Document 8545:

	Word	TF-IDF
0	last	0.505
1	day	0.435
2	free	0.408
3	get	0.384
4	application	0.329

Document 8546:

	Word	TF-IDF
0	advisory	0.374
1	officer	0.374
2	thrilled	0.353
3	board	0.346
4	chief	0.346

Document 8547:

	Word	TF-IDF
0	excuse	0.476
1	walking	0.391
2	attendee	0.365
3	temp	0.336
4	6th	0.323

Document 8548:

	Word	TF-IDF
0	diary	0.404
1	memento	0.404
2	momento	0.386
3	create	0.309
4	io	0.281

Document 8549:

	Word	TF-IDF
0	commuter	0.431
1	juan	0.412

2	gift	0.349
3	contest	0.349
4	winning	0.339

Document 8550:

	Word	TF-IDF
0	kenny	0.455
1	spanking	0.455
2	enjoys	0.440
3	congrats	0.344
4	happy	0.319

Document 8551:

	Word	TF-IDF
0	kenny	0.455
1	spanking	0.455
2	enjoys	0.440
3	congrats	0.344
4	happy	0.319

Document 8552:		
	Word	TF-IDF
0	independent	0.406
1	innovative	0.366
2	ta	0.309
3	film	0.304
4	later	0.302

Document 8553:

	Word	TF-IDF	
0	quotgroupon	0.487	
1	socialtypequot	0.483	
2	living	0.448	
3	reward	0.431	
4	via	0.268	

Document 8554:

	Word	TF-IDF
0	quotgroupon	0.506
1	socialtypequot	0.501
2	living	0.465
3	reward	0.448
4	launch	0.248

Document 8555:

	Word	TF-IDF
0	j1	0.575
1	interesting	0.375
2	possibly	0.294
3	called	0.269
4	via	0.258

Document 8556:

	Word	TF-IDF
0	quotgroupon	0.506
1	socialtypequot	0.501

2	living	0.465
3	reward	0.448
4	launch	0.248

Document 8557:

	Word	TF-IDF
0	cal	0.582
1	starting	0.423
2	excited	0.407
3	really	0.350
4	make	0.320

Document 8558:

	Word	TF-IDF
0	bathroom	0.409
1	serious	0.409
2	prop	0.399
3	urinal	0.390
4	keep	0.279

Document 8559:

	Word	TF-IDF
0	11quot	0.396
1	n00b	0.396
2	carefully	0.379
3	studying	0.367
4	quotbest	0.343

Document 8560:

	Word	TF-IDF
0	use	0.537
1	open	0.470
2	temporary	0.463
3	SXSW	0.401
4	store	0.288

Document 8561:

	Word	TF-IDF
0	sweepstakes	0.474
1	purchase	0.369
2	early	0.349
3	soon	0.333
4	giveaway	0.323

Document 8562:

	Word	TF-IDF
0	dell	0.400
1	otherwise	0.382
2	рс	0.362
3	pro	0.351
4	macbook	0.328

Document 8563:

	Word	TF-IDF
0	worked	0.608
1	sold	0.468

2	attendee	0.466
3	sell	0.440

Document 8564:

	Word	TF-IDF
0	warp	0.503
1	5th	0.436
2	st	0.383
3	6th	0.296
4	congress	0.294

Document 8565:

	Word	TF-IDF
0	speakeasy	0.494
1	food	0.428
2	drink	0.421
3	coming	0.362
4	got	0.325

Document 8566:

	Word	TF-IDF
0	va	0.410
1	hottest	0.370
2	discovr	0.340
3	kicking	0.336
4	client	0.329

Document 8567:

	Word	TF-IDF
0	planning	0.473
1	player	0.439
2	crowd	0.378
3	might	0.365
4	wait	0.346

Document 8568:

	Word	TF-IDF
0	cierto	0.468
1	ser	0.453
2	rwwtof6bcet	0.432
3	possibly	0.239
4	major	0.229

Document 8569:

	Word	TF-IDF
0	foreshadowing	0.524
1	quotscarquot	0.524
2	autocorrects	0.475
3	quotsxswquot	0.475

Document 8570:

	Word	TF-IDF
0	spin	0.668
1	released	0.292
2	issue	0.288
3	magazine	0.288

```
4
  play 0.269
Document 8571:
       Word TF-IDF
0
   chalked 0.489
1 quottattoo 0.489
2 pavement 0.489
3 ipadquot 0.401
4 mean 0.349
Document 8572:
     Word TF-IDF
   chief 0.357
wiley 0.357
2 engineer 0.350
3 presenter 0.350
4 native 0.324
Document 8573:
       Word TF-IDF
0 ipod 0.517
1 cont 0.449
2 includes 0.413
3 uberguide 0.413
4 application 0.243
Document 8574:
         Word TF-IDF
      toolkit 0.362
        rei 0.362
2 laptopcharger 0.362
        bike 0.327
4
         h2o 0.327
Document 8575:
 Word TF-IDF
0 schooling 0.477
1 exec 0.477
2
     cnet 0.386
3 story 0.331
4 marketing 0.311
Document 8576:
  Word TF-IDF
0 makeshift 0.638
1 totally 0.615
2 downtown 0.398
3 store 0.239
Document 8577:
   Word TF-IDF
0 omaha 0.431
1 rematch 0.431
2 crap 0.389
```

3 digging 0.374
4 totally 0.333

Document 8578:

Word TF-IDF 0 seemed 0.381 1 offering 0.345 2 beat 0.335 3 sad 0.335 4 number 0.330

Document 8579:

Word TF-IDF 0 quottouching 0.629 1 magazine 0.484 2 story 0.455 3 designing 0.404

Document 8580:

Word TF-IDF 0 anywaysquot 0.532 1 quotnot 0.461 2 force 0.441 3 hotpot 0.345 4 service 0.334

Document 8581:

Word TF-IDF 0 activity 0.554 1 tx 0.465 2 hotpot 0.414 3 week 0.373 4 map 0.315

Document 8582:

Word TF-IDF 0 rating 0.378 1 instant 0.370 2 yelp 0.336 3 etc 0.321 4 sharing 0.307

Document 8583:

Word TF-IDF
0 netflixstyle 0.429
1 personality 0.410
2 functionality 0.387
3 brings 0.372
4 yelp 0.343

Document 8584:

Word TF-IDF 0 outa 0.379 1 maps2 0.379 2 innovate 0.335 3 whole 0.293 4 heat 0.290

Document 8585:

Word TF-IDF 0 used 0.617 1 hotpot 0.593

2 anyone 0.518

Document 8586:

Word TF-IDF
0 progression 0.450
1 logical 0.450
2 rate 0.378
3 guess 0.331
4 business 0.296

Document 8587:

Word TF-IDF
0 recos 0.343
1 um 0.332
2 eat 0.323
3 covered 0.311
4 restaurant 0.311

Document 8588:

Word TF-IDF
0 integration 0.391
1 impressive 0.366
2 yelp 0.362
3 personalized 0.358
4 recommendation 0.339

Document 8589:

Word TF-IDF 0 straight 0.429 1 mag 0.412 2 fashion 0.406 3 flip 0.406 4 welcome 0.374

Document 8590:

Word TF-IDF 0 transit 0.663 1 citygoround 0.358 2 gtfs 0.358 3 canada 0.316 4 group 0.242

Document 8591:

Word TF-IDF
0 response 0.558
1 uidesignguidecom 0.345
2 regard 0.345
3 reference 0.319
4 exactly 0.304

Document 8592:

Word TF-IDF

0	intriguing	0.462
1	chatter	0.408
2	kek	0.401
3	sound	0.335
4	lot	0.281

Document 8593:

TF-IDF	Word	
0.561	introducing	0
0.508	status	1
0.418	checkin	2
0.405	reward	3
0.278	mobile	4

Document 8594:

2000		
	Word	TF-IDF
0	control	0.644
1	crowd	0.584
2	pop	0.466
3	link	0.164

Document 8595:

	Word	TF-IDF
0	distrub	0.610
1	dancing	0.489
2	launching	0.352
3	product	0.331
4	circle	0.249

Document 8596:

	Word	TF-IDF
0	affair	0.633
1	grand	0.572
2	industry	0.437
3	party	0.285

Document 8597:

	Word	TF-IDF
0	fond	0.570
1	lost	0.417
2	instead	0.407
3	trying	0.401
4	got	0.311

Document 8598:

	Word	TF-IDF
0	addition	0.519
1	cut	0.470
2	print	0.444
3	place	0.349
4	thing	0.315

Document 8599:

	Word	TF-IDF
0	3block	0.400
1	rent	0.400

2	radius	0.400
3	avoid	0.336
4	retail	0.302

Document 8600:

	Word	TF-IDF
0	temporary	0.570
1	get	0.505
2	SXSW	0.494
3	store	0.355
4	link	0.223

Document 8601:

	Word	TF-IDF
0	lil	0.640
1	jealous	0.530
2	set	0.371
3	temporary	0.334
4	store	0.208

Document 8602:

	Word	TF-IDF
0	wipad	0.719
1	shot	0.550
2	first	0.400
3	link	0.142

Document 8603:

	Word	TF-IDF
0	nonprofitsquot	0.680
1	quotwe	0.617
2	want	0.397

Document 8604:

	Word	TF-IDF
0	explore	0.632
1	attending	0.466
2	want	0.348
3	check	0.333
4	via	0.283

Document 8605:

	Word	TF-IDF
0	bug	0.363
1	recreated	0.363
2	included	0.346
3	pacman	0.329
4	perfect	0.329

Document 8606:

	Word	TF-IDF
0	sweet	0.554
1	whats	0.509
2	better	0.489
3	time	0.360
4	new	0.255

Document 8607:

Word TF-IDF
0 improvementsquot 0.356
1 economy 0.356
2 continual 0.356
3 benefit 0.341
4 scale 0.321

Document 8608:

Word TF-IDF 0 subject 0.462 1 pattern 0.409 2 engagement 0.401 3 interested 0.360 4 hear 0.317

Document 8609:

Word TF-IDF 0 noooooooooooo 0.692 1 die 0.574 2 battery 0.438

Document 8610:

Word TF-IDF 0 borrow 0.385 1 quickly 0.380 2 portable 0.380 3 behind 0.322 4 charger 0.292

Document 8611:

Word TF-IDF 0 maintenance 0.620 1 fine 0.538 2 art 0.415 3 battery 0.392

Document 8612:

Word TF-IDF 0 amble 0.530 1 vuitton 0.530 2 louis 0.530 3 app 0.307 4 called 0.248

Document 8613:

Word TF-IDF 0 death 0.498 1 policy 0.498 2 actually 0.431 3 official 0.420 4 one 0.276

Document 8614:

Word TF-IDF

0	inthat	0.442
1	driskill	0.423
2	stuck	0.390
3	across	0.334
4	block	0.280

Document 8615:

	Word	TF-IDF
0	stumbling	0.469
1	contact	0.432
2	stay	0.402
3	lost	0.384
4	group	0.372

Document 8616:

2000		
	Word	TF-IDF
0	1amp2	0.608
1	stupid	0.483
2	find	0.379
3	game	0.349
4	via	0.273

Document 8617:

	Word	TF-IDF
0	price	0.500
1	stupid	0.465
2	mac	0.440
3	special	0.440
4	find	0.365

Document 8618:

	Word	TF-IDF
0	developer	0.789
1	need	0.614

Document 8619:

Word	TF-IDF
choose	0.523
buyer	0.433
tablet	0.358
future	0.307
apple	0.305
	buyer tablet future

Document 8620:

	Word	TF-IDF
0	playlist	0.526
1	featured	0.442
2	artist	0.435
3	available	0.403
4	free	0.292

Document 8621:

	Word	TF-IDF
0	tv	0.470
1	dvrs	0.380
2	stopping	0.352

```
3 xbox 0.343
4 train 0.343
```

Document 8622:

Word TF-IDF 0 one 0.359 1 tweeps 0.341 2 freak 0.341 3 kindle 0.324 4 paper 0.316

Document 8623:

Word TF-IDF 0 tweeted 0.436 1 quoti 0.329 2 weekend 0.326 3 money 0.321 4 gave 0.319

Document 8624:

Word TF-IDF 0 12b 0.419 1 livetweeting 0.419 2 jr 0.380 3 drive 0.342 4 mile 0.342

Document 8625:

Word TF-IDF
0 retweeting 0.560
1 spreadsheet 0.508
2 added 0.480
3 chance 0.428
4 link 0.117

Document 8626:

Word TF-IDF 0 want 0.363 1 awhile 0.344 2 twit 0.304 3 anyway 0.304 4 always 0.254

Document 8627:

Word TF-IDF
0 recommendation 0.547
1 thought 0.497
2 twitter 0.437
3 need 0.362
4 application 0.267

Document 8628:

Word TF-IDF 0 covr 0.457 1 undr 0.457 2 lwr 0.457

```
3 boom 0.396
4 devs 0.366
```

Document 8629:

Word TF-IDF
0 twitter 0.652
1 honor 0.491
2 wow 0.349
3 everyone 0.328
4 look 0.296

Document 8630:

Word TF-IDF 0 authority 0.455 1 main 0.455 2 topicality 0.410 3 factor 0.382 4 site 0.307

Document 8631:

0 und 0.490
1 mit 0.490
2 noch 0.469
3 heute 0.469
4 via 0.210

Word TF-IDF

Document 8632:

Word TF-IDF 0 gcal 0.730 1 calendar 0.573 2 party 0.344 3 link 0.144

Document 8633:

Word TF-IDF 0 capitalism 0.454 1 went 0.336 2 choice 0.322 3 ballroom 0.317 4 full 0.312

Document 8634:

Word TF-IDF 0 podcasts 0.879 1 party 0.439 2 link 0.184

Document 8635:

Word TF-IDF 0 piss 0.364 1 promise 0.355 2 slip 0.355 3 urinal 0.347 4 either 0.335

```
Document 8636:
```

Word TF-IDF 0 thanks 0.648 1 time 0.550 2 party 0.527

Document 8637:

Word TF-IDF 0 tyson 0.554 1 mike 0.538 2 coming 0.416 3 game 0.394 4 new 0.239

Document 8638:

Word TF-IDF 0 accidentally 0.470 1 return 0.432 2 hi 0.406 3 took 0.383 4 please 0.329

Document 8639:

Word TF-IDF 0 line 0.599 1 pm 0.549 2 open 0.339 3 popup 0.275 4 austin 0.249

Document 8640:

Word TF-IDF 0 tab 0.517 1 galaxy 0.479 2 samsung 0.456 3 find 0.349 4 know 0.303

Document 8641:

Word TF-IDF 0 nice 0.498 1 fun 0.497 2 check 0.414 3 going 0.414 4 people 0.402

Document 8642:

Word TF-IDF 0 map 0.500 1 mobile 0.481 2 usage 0.351 3 million 0.341 4 use 0.284

Document 8643:

Word TF-IDF

```
0 hitchery 0.492
1 beta 0.379
2 early 0.379
3 try 0.355
4 let 0.309
```

Document 8644:

	Word	TF-IDF
0	visualisation	0.417
1	ghost	0.399
2	logic	0.386
3	movement	0.368
4	pacman	0.350

Document 8645:

	Word	TF-IDF
0	greatly	0.358
1	todaydoes	0.358
2	highly	0.324
3	effort	0.301
4	seem	0.301

Document 8646:

	Word	TF-IDF
0	textbook	0.553
1	proposal	0.553
2	update	0.330
3	download	0.315
4	news	0 309

Document 8647:

	Word	TF-IDF
0	gut	0.329
1	inertia	0.329
2	propped	0.329
3	breakfast	0.315
4	couch	0.291

Document 8648:

	Word	TF-IDF
0	magazine	0.527
1	presentation	0.464
2	digital	0.427
3	future	0.421
4	great	0.360

Document 8649:

	Word	TF-IDF
0	rebecca	0.575
1	suck	0.496
2	black	0.492
3	WOW	0.409
4	link	0.120

Document 8650:

Word TF-IDF

```
0 4chan4eva 0.391
1 ducked 0.391
2 exposing 0.378
3 flew 0.378
4 tattoo 0.316
```

Document 8651:

	Word	TF-IDF
0	omega	0.398
1	nongoogle	0.368
2	swiss	0.359
3	asks	0.339
4	favorite	0.300

Document 8652:

	Word	TF-IDF
0	plug	0.395
1	floor	0.330
2	sitting	0.318
3	never	0.296
4	thought	0.291

Document 8653:

	Word	TF-IDF
0	staff	0.515
1	brought	0.458
2	employee	0.437
3	texas	0.396
4	store	0.350

Document 8654:

	Word	TF-IDF
0	mass	0.406
1	ui	0.392
2	touch	0.392
3	brought	0.385
4	microsoft	0.347

Document 8655:

	Word	TF-IDF
0	npr	0.633
1	affiliated	0.365
2	firefighter	0.365
3	coder	0.349
4	fan	0.257

Document 8656:

	Word	TF-IDF
0	empathy	0.439
1	twitterstream	0.439
2	concern	0.420
3	mostly	0.374
4	grateful	0.374

Document 8657:

Word TF-IDF

0	useful	0.450
1	engine	0.445
2	information	0.432
3	instead	0.409
4	could	0.365

Document 8658:

	Word	TF-IDF
0	distribution	0.514
1	partner	0.476
2	better	0.329
3	looking	0.312
4	would	0.289

Document 8659:

	Word	TF-IDF
0	acoustic	0.334
1	solo	0.326
2	cst	0.322
3	vip	0.310
4	1pm	0.308

Document 8660:

	Word	TF-IDF
0	headache	0.498
1	full	0.483
2	room	0.464
3	design	0.394
4	talk	0 386

Document 8661: Word TF-TDF

	Word	TF-IDF
0	dinosaur	0.660
1	pirate	0.345
2	ummm	0.345
3	ninja	0.330
4	shark	0.330

Document 8662:

	Word	TF-IDF
0	unveil	0.596
1	rumored	0.516
2	network	0.290
3	circle	0.280
4	today	0.273

Document 8663:

	Word	TF-IDF
0	everywherequot	0.447
1	quottv	0.447
2	computer	0.387
3	cnn	0.368
4	service	0.324

Document 8664:

Word TF-IDF

Document 8665:

	Word	TF-IDF
0	traffic	0.497
1	timeevery	0.361
2	2yrs	0.346
3	option	0.299
4	worth	0.275

Document 8666:

	Word	TF-IDF
0	launching	0.585
1	network	0.428
2	today	0.404
3	social	0.399
4	new	0.339

Document 8667:

	Word	TF-IDF
0	cicles	0.679
1	launching	0.391
2	called	0.304
3	network	0.286
4	today	0.270

Document 8668:

	Word	TF-IDF
0	secret	0.533
1	quotcirclesquot	0.483
2	launching	0.398
3	called	0.309
4	network	0.291

Document 8669:

	Word	TF-IDF
0	secret	0.538
1	quotcirclesquot	0.487
2	launching	0.401
3	called	0.312
4	network	0.294

Document 8670:

	Word	TF-IDF
0	circlesquot	0.629
1	quotgoogle	0.470
2	launching	0.438
3	network	0.320
4	social	0.298

Document 8671:

Word TF-IDF

```
0 sauce 0.445
1 bbq 0.408
2 together 0.386
3 found 0.343
4 texas 0.342
```

Document 8672:

Word TF-IDF 0 recipient 0.574 1 lucky 0.460 2 block 0.364 3 around 0.321 4 one 0.267

Document 8673:

Word TF-IDF
0 timeeveryday 0.488
1 worth 0.371
2 save 0.349
3 route 0.343
4 traffic 0.335

Document 8674:

Word TF-IDF 0 route 0.357 1 feature 0.349 2 traffic 0.349 3 saving 0.338 4 every 0.319

Document 8675:

Word TF-IDF 0 shit 0.683 1 ungrateful 0.422 2 bc 0.335 3 turn 0.301 4 play 0.290

Document 8676:

Word TF-IDF 0 funnysad 0.460 1 line 0.398 2 longer 0.361 3 kind 0.358 4 release 0.300

Document 8677:

Word TF-IDF 0 edit 0.499 1 preferencesquot 0.479 2 quotad 0.479 3 view 0.367 4 think 0.298

Document 8678:

Word TF-IDF

```
0 quotchallenge 0.363
1 originally 0.347
2 experimentation 0.347
3 successful 0.314
4 moving 0.301
```

Document 8679:

Word TF-IDF 0 eastquot 0.603 1 quotchina 0.603 2 middle 0.523

Document 8680:

Word TF-IDF
0 quotfuture 0.381
1 schemaquot 0.381
2 touchquot 0.365
3 quotdesigning 0.320
4 mind 0.290

Document 8681:

Word TF-IDF
0 futurequot 0.389
1 gatekeeperquot 0.389
2 quotfast 0.389
3 quotproduct 0.389
4 ht 0.362

Document 8682:

Word TF-IDF 0 bij 0.436 1 nu 0.417 2 quottouching 0.417 3 ipadquot 0.357 4 magazine 0.321

Document 8683:

Word TF-IDF
0 quotmophiequot 0.439
1 tradeshow 0.369
2 doubt 0.355
3 picked 0.327
4 charge 0.325

Document 8684:

Word TF-IDF 0 picked 0.676 1 white 0.581 2 today 0.361 3 store 0.273

Document 8685:

Word TF-IDF 0 messed 0.452 1 borrow 0.416 2 min 0.362

```
3 bring 0.3334 charger 0.315
```

Document 8686:

	Word	TF-IDF
0	quotnerds	0.416
1	wildquot	0.398
2	prepping	0.386
3	aka	0.368
4	gone	0.334

Document 8687:

Word TF-IDF 0 popup 0.746 1 store 0.564 2 link 0.355

Document 8688:

Word TF-IDF 0 popup 0.618 1 austin 0.560 2 store 0.467 3 link 0.294

Document 8689:

Word TF-IDF 0 constuction 0.487 1 line 0.421 2 keeping 0.409 3 standing 0.354 4 thats 0.314

Document 8690:

Word TF-IDF 0 block 0.548 1 still 0.499 2 line 0.375 3 circle 0.352 4 popup 0.344

Document 8691:

Word TF-IDF 0 store 0.704 1 sxsw 0.489 2 popup 0.466 3 link 0.221

Document 8692:

Word TF-IDF 0 kanyes 0.515 1 vevo 0.515 2 longest 0.432 3 show 0.285 4 pop 0.276

Document 8693:

```
Word TF-IDF
0 catching 0.521
1 hotel 0.442
2 tweeting 0.409
3 room 0.371
4 also 0.344
```

Document 8694:

Word TF-IDF 0 pickupline 0.749 1 charger 0.506 2 best 0.429

Document 8695:

Word TF-IDF 0 bad 0.435 1 sure 0.398 2 tomorrow 0.390 3 update 0.377 4 ipads 0.369

Document 8696:

Word TF-IDF 0 super 0.488 1 move 0.459 2 another 0.415 3 smart 0.403 4 temporary 0.307

Document 8697:

Word TF-IDF 0 groupme 0.444 1 global 0.411 2 add 0.411 3 feature 0.352 4 say 0.273

Document 8698:

Word TF-IDF 0 stumbled 0.463 1 terrific 0.463 2 upon 0.429 3 googlebing 0.355 4 full 0.318

Document 8699:

Word TF-IDF
0 regularly 0.411
1 interrupt 0.409
2 programming 0.409
3 scheduled 0.405
4 geek 0.349

Document 8700:

Word TF-IDF 0 regularlyscheduled 0.569

```
1 programming 0.412
2 interrupt 0.412
3 geek 0.352
4 news 0.318
```

Document 8701:

Word TF-IDF 0 record 0.763 1 experience 0.623 2 link 0.174

Document 8702:

Word TF-IDF 0 rabbit 0.551 1 forgot 0.466 2 home 0.397 3 case 0.326 4 opening 0.279

Document 8703:

Word TF-IDF 0 whats 0.565 1 take 0.490 2 really 0.489 3 want 0.448

Document 8704:

Word TF-IDF
0 gesture 0.628
1 guide 0.445
2 nice 0.411
3 make 0.357
4 free 0.308

Document 8705:

Word TF-IDF 0 mount 0.420 1 ahem 0.389 2 pressure 0.380 3 excuse 0.365 4 musthave 0.349

Document 8706:

Word TF-IDF
0 tv 0.635
1 program 0.421
2 connected 0.404
3 experience 0.348
4 future 0.302

Document 8707:

Word TF-IDF 0 unless 0.492 1 care 0.469 2 post 0.375 3 sure 0.369

4	guy	0.316
---	-----	-------

Document 8708:

Word TF-IDF 0 59p 0.502 1 journal 0.502 2 momento 0.481 3 grab 0.358 4 sale 0.335

Document 8709:

Word TF-IDF
0 communicate 0.323
1 cerebral 0.323
2 palsy 0.323
3 glenda 0.323
4 watson 0.323

Document 8710:

Word TF-IDF
0 quotqampa 0.429
1 rankingquot 0.410
2 salon 0.337
3 house 0.318
4 packed 0.309

Document 8711:

Word TF-IDF
0 catfightquot 0.429
1 quotim 0.372
2 googlebing 0.329
3 house 0.318
4 packed 0.309

Document 8712:

Word TF-IDF 0 algorithm 0.399 1 patented 0.399 2 age 0.368 3 ie 0.356 4 domain 0.350

Document 8713:

Word TF-IDF 0 goquot 0.449 1 quotyoure 0.449 2 mine 0.373 3 never 0.326 4 probably 0.324

Document 8714:

Word TF-IDF 0 use 0.491 1 marissa 0.452 2 mayer 0.441 3 map 0.432

```
mobile 0.416
```

Document 8715:

Word TF-IDF 0 housego 0.475 1 lynn 0.423 2 schema 0.363 3 packed 0.357

4 navigation 0.324

Document 8716:

Word TF-IDF 0 tsk 0.666 1 synthetic 0.333 2 people 0.327

3 care 0.267 4 house 0.247

Document 8717:

Word TF-IDF 0 example 0.507 1 used 0.472 2 navigation 0.458 3 good 0.371 via 0.300

Document 8718:

Word TF-IDF 0 snazzy 0.521 1 favorite 0.394 2 something 0.353 let 0.313 3 4 app 0.289

Document 8719:

Word TF-IDF 0 console 0.402 1 extensive 0.402 2 javascript 0.363 3 api 0.343 4 chrome 0.314

Document 8720:

Word TF-IDF 0 cellphone 0.471 1 discussion 0.386 2 unofficial 0.374 3 brain 0.349 control 0.349 4

Document 8721:

Word TF-IDF held 0.584 0 1 giant 0.511 2 someone 0.414 love 0.360 3

4 like 0.312

Document 8722:

Word TF-IDF 0 att 0.777 1 nationwide 0.287 2 wife 0.245 3 number 0.238 4 tried 0.224

Document 8723:

Word TF-IDF 0 adelefiona 0.371 1 solace 0.371 2 cry 0.350 3 sort 0.343 4 mix 0.314

Document 8724:

Word TF-IDF 0 imparted 0.376 1 recon 0.376 2 relay 0.376 3 phil 0.376 4 helpful 0.348

Document 8725:

Word TF-IDF 0 cruisin 0.451 1 looong 0.451 2 checked 0.385 3 venue 0.370 4 saw 0.292

Document 8726:

Word TF-IDF 0 notch 0.398 1 inventory 0.339 2 hanging 0.316 3 customer 0.290 4 top 0.281

Document 8727:

Word TF-IDF
0 stellar 0.472
1 smooth 0.472
2 purchase 0.368
3 customer 0.344
4 wish 0.323

Document 8728:

Word TF-IDF 0 mktg 0.415 1 yup 0.376 2 history 0.355 3 move 0.312

```
4 genius 0.309
```

Document 8729:

Word TF-IDF 0 gowalla 0.427 1 already 0.384 2 pic 0.384 3 heard 0.366

4 apple 0.363

Document 8730:

Word TF-IDF 0 hanging 0.521 center 0.440 2 convention 0.434 3 find 0.392 win 0.323

Document 8731:

Word TF-IDF 0 controller 0.426 lobby 0.415 1 2 hanging 0.365 3 hi 0.358 4 hilton 0.321

Document 8732:

Word TF-IDF 0 belly 0.432 1 sink 0.413 2 bottom 0.390 3 control 0.320 4 top 0.305

Document 8733:

Word TF-IDF 0 rental 0.398 1 plucked 0.398 2 lift 0.368 3 taxi 0.368 4 stranger 0.339

Document 8734:

Word TF-IDF 0 cam 0.441 1 piece 0.419 2 missing 0.396 3 catch 0.365 4 stream 0.361

Document 8735:

Word TF-IDF 0 geeking 0.457 1 theatre 0.457 2 apis 0.447 3 teaching 0.447

4/24/2025, 2:52 PM 61 of 124

4 youtube 0.415

Document 8736:

Word TF-IDF 0 reliving 0.426 1 googleaclueff 0.426 2 throwing 0.385 3 yep 0.335 4 old 0.297

Document 8737:

Word TF-IDF 0 partygood 0.586 1 hanging 0.515 2 industry 0.448 3 crowd 0.436

Document 8738:

Word TF-IDF 0 connecting 0.613 1 in1102 0.613 2 hanging 0.486 3 link 0.116

Document 8739:

Word TF-IDF 0 passage 0.419 1 rite 0.419 2 geeking 0.408 3 waited 0.366 4 missing 0.359

Document 8740:

Word TF-IDF 0 route 0.571 1 driver 0.329 2 finding 0.319 3 per 0.297 4 traffic 0.279

Document 8741:

Word TF-IDF
0 routearound 0.682
1 environment 0.316
2 efficient 0.301
3 sweet 0.247
4 pretty 0.237

Document 8742:

Word TF-IDF 0 c5 0.540 1 precaution 0.540 2 40075959p 0.417 3 valid 0.356 4 code 0.326

Document 8743:

Word TF-IDF 0 completes 0.433 1 kawasakis 0.433 2 letter 0.415 3 auto 0.402 4 four 0.359

Document 8744:

Word TF-IDF 0 outside 0.685 1 waiting 0.662 2 store 0.305

Document 8745:

Word TF-IDF
0 benieuwd 0.430
1 ben 0.416
2 regularly 0.327
3 programming 0.325
4 interrupt 0.325

Document 8746:

Word TF-IDF 0 mediumquot 0.612 1 message 0.496 2 ux 0.466 3 quotthe 0.402

Document 8747:

Word TF-IDF 0 need 0.614 1 austin 0.446 2 sure 0.390 3 buy 0.358 4 ipad2 0.331

Document 8748:

Word TF-IDF 0 asking 0.564 1 haha 0.446 2 interview 0.438 3 question 0.428 4 guy 0.329

Document 8749:

Word TF-IDF
0 medium 0.412
1 platform 0.396
2 let 0.379
3 hey 0.369
4 think 0.340

Document 8750:

Word TF-IDF buzz 0.404

```
1 tomorrow 0.358
2 store 0.348
3 twitter 0.347
4 6th 0.340
```

Document 8751:

	Word	TF-IDF
0	indicates	0.381
1	widget	0.381
2	ui	0.305
3	native	0.305
4	reader	0.294

Document 8752:

	Word	TF-IDF
0	v12	0.442
1	sync	0.377
2	schedule	0.312
3	better	0.282
4	live	0.278

Document 8753:

	Word	TF-IDF
0	valuable	0.577
1	device	0.473
2	far	0.473
3	charger	0.470

Document 8754:

	Word	TF-IDF
0	continue	0.391
1	elevator	0.391
2	submitted	0.379
3	upload	0.369
4	drop	0.324

Document 8755:

	Word	TF-IDF
0	billion	0.466
1	drive	0.413
2	mile	0.413
3	navigation	0.358
4	user	0.297

Document 8756:

DO	Cumciic	0/30.	
		Word	TF-IDF
0		12b	0.465
1		jr	0.422
2	(drive	0.380
3		mile	0.380
4	naviga	ation	0.329

Document 8757:

	Word	TF-IDF
0	unstable	0.476
1	tweetdeck	0.449

2	newest	0.440
3	upgrade	0.395
4	io	0.347

Document 8758:

	Word	TF-IDF
0	phonetxt	0.438
1	prepaid	0.419
2	tmobile	0.373
3	suggestion	0.351
4	working	0.288

Document 8759:

	Word	TF-IDF
0	youtube	0.532
1	tube	0.325
2	sock	0.311
3	fuck	0.282
4	laughing	0.245

Document 8760:

	Word	TF-IDF
0	move	0.472
1	genius	0.467
2	temp	0.401
3	downtown	0.327
4	open	0.321

Document 8761:

Word	TF-IDF
meetingwave	0.450
submitting	0.435
downloads	0.395
version	0.318
apps	0.311
	meetingwave submitting downloads version

Document 8762: Word TF-IDF

	Word	TF-IDF
0	shipment	0.566
1	daily	0.460
2	wait	0.408
3	week	0.388
4	via	0.285

Document 8763:

	Word	TF-IDF
0	unboxing	0.586
1	front	0.474
2	live	0.450
3	video	0.406
4	store	0.215

Document 8764:

	Word	TF-IDF
0	fullforce	0.366
1	hisher	0.366

```
2 hint 0.308
3 strong 0.308
4 email 0.281
```

Document 8765:

	Word	TF-IDF
0	att	0.441
1	single	0.396
2	arrived	0.384
3	without	0.329
4	person	0.321

Document 8766:

	Word	TF-IDF
0	gapminder	0.416
1	visualization	0.392
2	unveiled	0.384
3	source	0.331
4	based	0.313

Document 8767:

	Word	TF-IDF
0	font	0.647
1	googlecomwebfonts	0.351
2	request	0.331
3	hackathon	0.312
4	discussion	0.300

Document 8768:

	Word	TF-IDF
0	without	0.685
1	even	0.585
2	get	0.435

Document 8769:

Word TF-IDF 0 itunes 0.663 1 sampler 0.337 2 already 0.321 3 download 0.296 4 music 0.295

Document 8770:

Word	TF-IDF
passage	0.462
rite	0.462
waited	0.404
missing	0.396
important	0.363
	passage rite waited missing

Document 8771:

	Word	TF-IDF
0	traveler	0.418
1	passenger	0.418
2	heaven	0.400
3	delayed	0.387

```
4 thank 0.285
```

Document 8772:

	Word	TF-IDF
0	dayearthquake	0.551
1	eventful	0.551
2	tsunami	0.463
3	plus	0.411
4	link	0.104

Document 8773:

Word TF-IDF 0 high5 0.455 1 normal 0.388 2 buying 0.335 3 queue 0.323 4 probably 0.314

Document 8774:

Word TF-IDF 0 garage 0.550 1 notice 0.550 2 ok 0.429 3 band 0.391 4 sxsw 0.240

Document 8775:

Word TF-IDF 0 ipaddesigning 0.583 1 boomer 0.424 2 mom 0.413 3 ballroom 0.407 4 heading 0.380

Document 8776:

Word TF-IDF
0 admired 0.366
1 bounced 0.366
2 classy 0.366
3 intelligent 0.354
4 successful 0.332

Document 8777:

Word TF-IDF 0 southby 0.418 1 expecting 0.395 2 shortly 0.386 3 record 0.362 4 sale 0.292

Document 8778:

Word TF-IDF 0 overload 0.508 1 network 0.503 2 major 0.279 3 called 0.267

4 via 0.256

Document 8779:

Word TF-IDF 0 arrives 0.506 1 overshadowing 0.506 2 pm 0.401 3 totally 0.391 4 tomorrow 0.313

Document 8780:

Word TF-IDF
0 xd 0.623
1 funny 0.492
2 dionne 0.322
3 warwick 0.322
4 rebecca 0.303

Document 8781:

Word TF-IDF 0 guidance 0.466 1 regular 0.412 2 calendar 0.350 3 plan 0.323 4 track 0.308

Document 8782:

Word TF-IDF 0 shortly 0.432 1 close 0.378 2 enter 0.352 3 sign 0.335 4 giveaway 0.334

Document 8783:

Word TF-IDF 0 3k 0.415 1 porting 0.415 2 syncing 0.415 3 sunday 0.332 4 song 0.298

Document 8784:

Word TF-IDF 0 midnight 0.533 1 learned 0.491 2 downtown 0.336 3 open 0.329 4 via 0.288

Document 8785:

Word TF-IDF 0 fare 0.516 1 denies 0.463 2 hope 0.369 3 better 0.365

4 launching 0.330

Document 8786:

Word TF-IDF

0 inside 0.559

1 here 0.495

2 view 0.469

3 popup 0.280

4 link 0.266

Document 8787:

Word TF-IDF

0 working 0.576

1 larry 0.437

eric 0.395 2

3 different 0.341

4 interview 0.315

Document 8788:

Word TF-IDF

0 cabbie 0.561

1 navigate 0.536

2 native 0.449

3 geek 0.3474 map 0.276

map 0.276

Document 8789:

Word TF-IDF

0 mapper 0.455

1 amazingly 0.443

entry 0.413easy 0.374

4 detail 0.307

Document 8790:

Word TF-IDF

0 kick 0.453

1 visit 0.416

2 blog 0.384

3 info 0.377

4 giving 0.354

Document 8791:

Word TF-IDF

0 kick 0.424

1 visit 0.389

2 page 0.383

3 info 0.353

4 giving 0.331

Document 8792:

Word TF-IDF

0 loving 0.538

1 presentation 0.447

2 really 0.397

3 marissa 0.355

```
4 mayer 0.347
```

Document 8793:

Word TF-IDF 0 another 0.405 1 giving 0.385 2 let 0.373 3 guy 0.335 4 make 0.328

Document 8794:

Word TF-IDF 0 taken 0.498 1 style 0.485 2 instagram 0.479 3 saving 0.389 4 photo 0.353

Document 8795:

Word TF-IDF
0 craving 0.500
1 foodspotting 0.489
2 created 0.444
3 mind 0.422
4 got 0.289

Document 8796:

Word TF-IDF
0 envisioning 0.377
1 rescuing 0.377
2 broadcast 0.361
3 virtual 0.322
4 robot 0.306

Document 8797:

Word TF-IDF 0 wikimedia 0.491 1 visited 0.491 2 yahoo 0.443 3 microsoft 0.348 4 website 0.330

Document 8798:

Word TF-IDF
0 professional 0.383
1 talent 0.375
2 talented 0.375
3 community 0.352
4 rockin 0.352

Document 8799:

Word TF-IDF 0 jam 0.497 1 avoid 0.482 2 packed 0.413 3 long 0.354

```
4 party 0.258
```

Document 8800:

Word TF-IDF 0 protip 0.538 1 austinarea 0.524 2 avoid 0.488 3 friday 0.410 4 store 0.174

Document 8801:

Word TF-IDF 0 aunty 0.447 1 voxpop 0.447 2 popular 0.358 3 worth 0.340 4 watch 0.305

Document 8802:

Word TF-IDF 0 ep3 0.831 1 many 0.532 2 link 0.164

Document 8803:

Word TF-IDF 0 bizness 0.419 1 subscribe 0.419 2 channel 0.379 3 au 0.352 4 podcast 0.336

Document 8804:

Word TF-IDF 0 harbor 0.524 1 unlv 0.524 2 cheese 0.455 3 pearl 0.409 4 win 0.258

Document 8805:

Word TF-IDF 0 channel 0.729 1 loving 0.629 2 new 0.269

Document 8806:

Word TF-IDF 0 1045am3 0.612 1 volunteer 0.553 2 loving 0.477 3 need 0.304

Document 8807:

Word TF-IDF alt 0.399

```
1 fastest 0.399
2 universe 0.399
3 reach 0.399
4 us 0.311
```

Document 8808:

Word TF-IDF 0 full 0.713 1 presentation 0.673 2 link 0.196

Document 8809:

Word TF-IDF 0 room 0.531 1 nobody 0.372 2 raise 0.338 3 us 0.313 4 packed 0.289

Document 8810:

Word TF-IDF 0 blind 0.731 1 saw 0.524 2 guy 0.437

Document 8811:

Word TF-IDF 0 made 0.635 1 awesome 0.562 2 link 0.380 3 application 0.368

Document 8812:

Word TF-IDF 0 summon 0.399 1 hopping 0.376 2 magic 0.356 3 short 0.341 4 car 0.315

Document 8813:

Word TF-IDF
0 awesomeness 0.641
1 downtown 0.363
2 opening 0.352
3 temporary 0.350
4 launch 0.277

Document 8814:

Word TF-IDF 0 artist 0.608 1 cd 0.449 2 various 0.430 3 featured 0.309 4 download 0.256

Document 8815:

	Word	TF-IDF
0	bursting	0.388
1	unplugged	0.388
2	seam	0.388
3	family	0.331
4	highlight	0.326

Document 8816:

	Word	TF-IDF
0	firm	0.426
1	scared	0.413
2	netbook	0.394
3	droid	0.334
4	god	0.326

Document 8817:

	Word	TF-IDF
0	ajax	0.494
1	parsing	0.494
2	spec	0.466
3	wanted	0.428
4	know	0.268

Document 8818:

	Word	TF-IDF
0	7quot	0.388
1	quotsxsw	0.388
2	hp	0.371
3	presented	0.318
4	window	0.281

Document 8819:

	Word	TF-IDF
0	goer	0.378
1	fucking	0.371
2	hilarious	0.371
3	dear	0.333
4	hall	0.315

Document 8820:

	Word	TF-IDF
0	cursing	0.375
1	ZZZS	0.375
2	losing	0.359
3	bicycle	0.347
4	grateful	0.320

Document 8821:

	Word	TF-IDF
0	husband	0.410
1	chatting	0.400
2	skype	0.391
3	sat	0.352
4	spending	0.352

Document 8822:

Word TF-IDF 0 sitbyus 0.464 1 include 0.385 2 suck 0.362 3 dear 0.362 4 film 0.349

Document 8823:

Word TF-IDF 0 along 0.491 1 bringing 0.454 2 attending 0.418 3 wow 0.380 4 big 0.329

Document 8824:

Word TF-IDF

0 wake 0.542

1 woah 0.491

2 word 0.434

3 buzz 0.396

4 work 0.347

Document 8825:

Word TF-IDF 0 lemonade 0.531 1 wp7 0.474 2 stand 0.433 3 two 0.355 4 day 0.269

Document 8826:

Word TF-IDF 0 wonder 0.410 1 sell 0.386 2 tomorrow 0.380 3 many 0.377 4 ipads 0.360

Document 8827:

Word TF-IDF 0 sold 0.632 1 buyer 0.393 2 went 0.351 3 report 0.324 4 wonder 0.316

Document 8828:

Word TF-IDF 0 hollow 0.460 1 barton 0.447 2 sampler 0.351 3 itunes 0.345 4 includes 0.336

```
Document 8829:
  Word TF-IDF
0 hmma 0.417
1 slew 0.417
2 inc 0.399
3 past 0.317
4 mean 0.297
Document 8830:
      Word TF-IDF
    58pm 0.377
1 burnbq 0.377
2 panamerican 0.377
3 burner 0.349
      park 0.327
4
Document 8831:
  Word TF-IDF
0 geez 0.547
1 eating 0.483
2 outside 0.369
3 another 0.357
4 people 0.268
Document 8832:
Word TF-IDF
0 playlist 0.677
1 enjoy 0.613
2 free 0.376
3 link 0.156
Document 8833:
   Word TF-IDF
0 cntxt 0.539
1 locatn 0.539
2 contxt 0.270
3 twtng 0.270
4 replace 0.258
Document 8834:
 Word TF-IDF
0 allthingsd 0.458
1 dang 0.397
    false 0.375
2
3 alarm 0.351
4 probably 0.316
Document 8835:
 Word TF-IDF
0 sampler 0.628
1 itunes 0.617
2 free 0.439
3
   link 0.183
```

Document 8836:

Word TF-IDF

Document 8837:

Word TF-IDF 0 teeny 0.377 1 steady 0.377 2 filming 0.341 3 held 0.333 4 cam 0.333

Document 8838:

Word TF-IDF
0 market 0.547
1 streamsdownloads 0.382
2 winamp 0.382
3 free 0.347
4 direct 0.313

Document 8839:

Word TF-IDF 0 ratio 0.578 1 ipadperson 0.333 2 threequarters 0.333 3 macpc 0.333 4 like 0.315

Document 8840:

Word TF-IDF 0 target 0.529 1 audience 0.418 2 sell 0.358 3 shop 0.313 4 know 0.296

Document 8841:

Word TF-IDF
0 tg 0.446
1 baby 0.374
2 application 0.341
3 boomer 0.339
4 wish 0.319

Document 8842:

Word TF-IDF 0 decide 0.434 1 edition 0.413 2 explorer 0.383 3 festival 0.345 4 band 0.334

Document 8843:

Word TF-IDF

```
0 cellular 0.376
1 detailed 0.368
2 signal 0.337
3 coverage 0.334
4 wan 0.298
```

Document 8844:

Word TF-IDF 0 30min 0.410 1 lunch 0.325 2 saved 0.312 3 ask 0.299 4 wan 0.294

Document 8845:

Word TF-IDF 0 blogger 0.704 1 whats 0.615 2 new 0.309 3 link 0.175

Document 8846:

Word TF-IDF 0 next 0.531 1 nexus 0.390 2 gen 0.387 3 nfc 0.374 4 playing 0.331

Document 8847:

Word TF-IDF 0 playlist 0.603 1 featured 0.506 2 artist 0.498 3 free 0.335 4 link 0.139

Document 8848:

Word TF-IDF 0 pluged 0.369 1 oversized 0.369 2 earphone 0.357 3 loose 0.348 4 law 0.329

Document 8849:

Word TF-IDF
0 present 0.381
1 enter 0.357
2 must 0.337
3 head 0.327
4 give 0.319

Document 8850:

Word TF-IDF 0 tired 0.474

```
1 announces 0.398
2 sale 0.341
3 waiting 0.333
4 buy 0.296
```

Document 8851:

Word TF-IDF 0 beta 0.523 1 wan 0.509 2 sign 0.487 3 na 0.461

4 link 0.134

Document 8852:

Word TF-IDF
0 accomplish 0.395
1 rocksauce 0.395
2 shang 0.395
3 stalk 0.378
4 austinjs 0.378

Document 8853:

Word TF-IDF 0 android 0.392 1 bitlyea1zgd 0.392 2 valley 0.361 3 lightbox 0.349 4 raise 0.344

Document 8854:

Word TF-IDF
0 quotmayorshipsquot 0.447
1 heating 0.428
2 latitude 0.358
3 war 0.343
4 checkin 0.319

Document 8855:

Word TF-IDF 0 extenders 0.474 1 nothing 0.355 2 sold 0.330 3 money 0.329 4 battery 0.313

Document 8856:

Word TF-IDF
0 iphone4s 0.433
1 influence 0.376
2 community 0.359
3 innovation 0.359
4 doubt 0.351

Document 8857:

Word TF-IDF wish 0.763

```
1 free 0.506
2 austin 0.402
```

Document 8858:

	Word	TF-IDF
0	proliferation	0.540
1	reunion	0.540
2	chatting	0.487
3	someone	0.338
4	like	0.255

Document 8859:

	Word	I F - TDF
0	taker	0.467
1	mashable	0.389
2	part	0.386
3	spent	0.386
4	better	0.322

Document 8860:

	Word	TF-IDF
0	anyway	0.513
1	curious	0.482
2	others	0.364
3	long	0.358
4	day	0.281

Document 8861:

	Word	TF-IDF
0	talk	0.497
1	360idev	0.453
2	basically	0.393
3	along	0.375
4	different	0.353

Document 8862:

	Word	TF-IDF
0	attendence	0.338
1	filmakers	0.338
2	quotsomething	0.323
3	documentary	0.313
4	venturedquot	0.305

Document 8863:

	Word	TF-IDF
0	material	0.408
1	truly	0.408
2	jonathan	0.382
3	understand	0.365
4	vp	0.338

Document 8864:

	Word	TF-IDF
0	sadly	0.553
1	swarm	0.488
2	crowd	0.421

3	one	0.292
4	via	0.269

Document 8865:

	Word	TF-IDF
0	sadly	0.501
1	via	0.487
2	swarm	0.442
3	crowd	0.381
4	one	0.264

Document 8866:

	Word	TF-IDF
0	swarm	0.653
1	crowd	0.563
2	via	0.360
3	launch	0.320
4	link	0.158

Document 8867:

	Word	TF-IDF
0	swarm	0.700
1	crowd	0.603
2	launch	0.343
3	link	0.170

Document 8868:

	Word	TF-IDF
0	swarm	0.653
1	crowd	0.563
2	via	0.360
3	launch	0.320
4	link	0.158

Document 8869:

	Word	TF-IDF
0	swarm	0.653
1	crowd	0.563
2	via	0.360
3	launch	0.320
4	link	0.158

Document 8870:

	Word	TF-IDF
0	fwd	0.448
1	dark	0.440
2	dj	0.380
3	looking	0.313
4	tonight	0.308

Document 8871:

	Word	TF-IDF
0	cnn	0.621
1	crowd	0.586
2	SXSW	0.364
3	launch	0.333

4 link 0.165

Document 8872:

Word TF-IDF 0 away 0.568 1 licence 0.445 2 bitlypushsxsw11 0.445 3 actually 0.338 4 giving 0.288

Document 8873:

Word TF-IDF 0 line 0.558 1 1pm 0.498 2 less 0.487 3 people 0.316 4 popup 0.256

Document 8874:

Word TF-IDF 0 interest 0.589 1 towards 0.511 2 working 0.388 3 ready 0.368 4 thanks 0.327

Document 8875:

Word TF-IDF 0 tinfoil 0.817 1 offer 0.577

Document 8876:

Word TF-IDF 0 clever 0.476 1 core 0.356 2 track 0.356 3 action 0.339 4 right 0.306

Document 8877:

Word TF-IDF
0 growing 0.500
1 competitor 0.472
2 crowley 0.453
3 foursquare 0.384
4 facebook 0.354

Document 8878:

Word TF-IDF 0 tight 0.844 1 work 0.345 2 employee 0.211 3 used 0.190 4 friend 0.172

Document 8879:

	Word	TF-IDF
0	readwriteweb	0.565
1	reporting	0.512
2	might	0.383
3	network	0.249
4	today	0.235

Document 8880:

Word TF-IDF 0 endeavor 0.486 1 tweeted 0.439 2 appears 0.382 3 preview 0.329 4 fast 0.303

Document 8881:

Word TF-IDF
0 entrepreneur 0.437
1 young 0.437
2 wordpress 0.413
3 tweeting 0.353
4 session 0.273

Document 8882:

Word TF-IDF 0 applink 0.430 1 dwnld 0.395 2 welcome 0.383 3 anywhere 0.371 4 ride 0.363

Document 8883:

Word TF-IDF
0 minimize 0.481
1 tear 0.460
2 wear 0.446
3 commercial 0.446
4 laptop 0.308

Document 8884:

Word TF-IDF 0 waitthat 0.443 1 fruit 0.400 2 setup 0.372 3 gon 0.317 4 hear 0.303

Document 8885:

Word TF-IDF 0 agree 0.605 1 totally 0.595 2 put 0.529

Document 8886:

Word TF-IDF 0 easier 0.451

```
1 hi 0.418
2 little 0.395
3 hope 0.347
4 find 0.321
```

Document 8887:

	Word	TF-IDF
0	coynes	0.475
1	covered	0.444
2	recap	0.410
3	went	0.379
4	wish	0.351

Document 8888:

Word TF-IDF 0 wish 0.891 1 said 0.455

Document 8889:

Word TF-IDF
0 djroe 0.483
1 ummmmawesome 0.483
2 midnight 0.383
3 learned 0.353
4 downtown 0.241

Document 8890:

Word TF-IDF 0 awesome 0.623 1 got 0.582 2 via 0.478 3 link 0.211

Document 8891:

Word TF-IDF 0 selling 0.589 1 chance 0.578 2 booth 0.491 3 new 0.280

Document 8892:

Word TF-IDF 0 retail 0.481 1 peep 0.478 2 presentation 0.413 3 nice 0.387 4 think 0.344

Document 8893:

Word TF-IDF 0 optimal 0.545 1 lanyrd 0.521 2 account 0.436 3 access 0.376 4 way 0.317

Document 8894:

Word TF-IDF 0 size 0.578 1 opened 0.510 2 pop 0.374 3 got 0.364 4 get 0.298

Document 8895:

Word TF-IDF
0 wanw 0.537
1 evangelist 0.485
2 former 0.475
3 kawasaki 0.409
4 guy 0.290

Document 8896:

Word TF-IDF 0 ireport 0.445 1 cnn 0.378 2 share 0.360 3 whats 0.352 4 photo 0.320

Document 8897:

Word TF-IDF 0 cnn 0.397 1 share 0.378 2 whats 0.370 3 friend 0.340 4 photo 0.336

Document 8898:

Word TF-IDF
0 lookin 0.430
1 north 0.411
2 inventory 0.367
3 word 0.330
4 sold 0.287

Document 8899:

Word TF-IDF 0 science 0.569 1 deciding 0.545 2 art 0.381 3 release 0.371 4 product 0.309

Document 8900:

Word TF-IDF 0 temp 0.898 1 store 0.440

Document 8901:

Word TF-IDF 0 wheres 0.619

```
1 setup 0.600
2 anyone 0.404
3 get 0.305
```

Document 8902:

Word TF-IDF 0 ubiquitous 0.399 1 mo 0.399 2 faster 0.377 3 expected 0.335 4 ago 0.323

Document 8903:

Word TF-IDF 0 debating 0.562 1 rather 0.503 2 taking 0.398 3 laptop 0.389 4 take 0.350

Document 8904:

Word TF-IDF 0 black 0.770 1 white 0.638

Document 8905:

Word TF-IDF
0 apartment 0.495
1 wire 0.495
2 white 0.342
3 look 0.291
4 know 0.277

Document 8906:

Word TF-IDF 0 said 0.498 1 able 0.492 2 opening 0.345 3 get 0.305 4 sxsw 0.298

Document 8907:

Word TF-IDF 0 gmail 0.440 1 delete 0.415 2 surprised 0.387 3 curious 0.382 4 button 0.353

Document 8908:

Word TF-IDF 0 texas 0.677 1 thats 0.642 2 austin 0.359

Document 8909:

	Word	TF-IDF
0	bpm	0.420
1	surprised	0.400
2	run	0.360
3	sxswi	0.353
4	folk	0.327

Document 8910:

Word TF-IDF 0 location 0.903 1 future 0.298 2 say 0.269 3 retweet 0.121 4 link 0.096

Document 8911:

Word TF-IDF 0 raffling 0.472 1 livetapp 0.472 2 entered 0.409 3 checkin 0.352 4 tweet 0.293

Document 8912:

Word TF-IDF 0 alpha 0.480 1 byfor 0.480 2 tester 0.480 3 least 0.356 4 update 0.287

Document 8913:

Word TF-IDF 0 zip 0.576 1 chatter 0.549 2 switch 0.530 3 time 0.292

Document 8914:

Word TF-IDF 0 chilling 0.495 1 hair 0.442 2 station 0.415 3 maggie 0.379 4 may 0.311

Document 8915:

Word TF-IDF 0 partying 0.617 1 lustre 0.554 2 pearl 0.544 3 link 0.132

Document 8916:

Word TF-IDF thirsty 0.435

```
1 gadget 0.369
2 anywhere 0.367
3 charge 0.357
4 juice 0.353
```

Document 8917:

Word TF-IDF 0 ispyart 0.602 1 send 0.469 2 photo 0.380 3 use 0.352 4 free 0.286

Document 8918:

Word TF-IDF
0 zaggle 0.436
1 zms 0.436
2 jonathan 0.395
3 texting 0.383
4 showed 0.378

Document 8919:

Word TF-IDF 0 artifact 0.357 1 partiespanels 0.357 2 devastation 0.357 3 recollection 0.357 4 current 0.316

Document 8920:

Word TF-IDF 0 bubo 0.457 1 sbsw2011 0.457 2 owle 0.457 3 coupon 0.422 4 code 0.288

Document 8921:

Word TF-IDF 0 foam 0.524 1 window 0.379 2 wan 0.375 3 bring 0.357 4 na 0.340

Document 8922:

Word TF-IDF
0 yelping 0.417
1 walkin 0.417
2 navigating 0.385
3 random 0.345
4 welcome 0.342

Document 8923:

Word TF-IDF 0 arsense 0.656

```
1 arwords 0.6562 anyone 0.372
```

Document 8924:

Word TF-IDF
0 db 0.327
1 nosql 0.327
2 opensource 0.317
3 s2 0.317
4 worked 0.296

Document 8925:

Word TF-IDF 0 umm 0.439 1 shit 0.410 2 winning 0.398 3 killer 0.367 4 keep 0.320

Document 8926:

Word TF-IDF 0 prob 0.650 1 designing 0.443 2 would 0.405 3 say 0.383 4 application 0.264

Document 8927:

Word TF-IDF
0 nutshell 0.448
1 underneath 0.434
2 gym 0.388
3 gold 0.383
4 kind 0.365

Document 8928:

Word TF-IDF 0 perma 0.628 1 came 0.490 2 result 0.450 3 wow 0.404

Document 8929:

Word TF-IDF 0 kudos 0.487 1 iron 0.441 2 clearly 0.435 3 smackdown 0.425 4 dev 0.369

Document 8930:

Word TF-IDF 0 terrible 0.531 1 anyway 0.520 2 popular 0.471 3 concept 0.462

4	link	0.111

Document 8931:

0	Document 0551.		
	Word	TF-IDF	
0	billboard	0.458	
1	hacking	0.437	
2	square	0.437	
3	real	0.346	
4	video	0.281	

Document 8932:			
	Word	TF-IDF	
0	news	0.561	
1	z6	0.502	
2	40075959p	0.388	
3	valid	0.332	
4	code	0.303	

Document 8933:

	Word	TF-IDF
0	breathe	0.500
1	sigh	0.452
2	kill	0.405
3	plan	0.347
4	relief	0.321

Document 8934:

Word	TF-IDF
bring	0.540
game	0.434
ipad2	0.423
know	0.410
people	0.388
	bring game ipad2 know

Document 8935:

	Word	TF-IDF
0	influencers	0.473
1	core	0.337
2	action	0.321
3	sell	0.320
4	shop	0.280

Document 8936: Word TF-IDF

	Word	TF-IDF
0	bassquot	0.375
1	melody	0.375
2	quotdope	0.375
3	heavy	0.359
4	invades	0.331

Document 8937:

	Word	TF-IDF
0	sway	0.487
1	prefer	0.404
2	chrome	0.380
3	explorer	0.380

4 browser 0.368

Document 8938:

Word TF-IDF 0 donut 0.390 1 massage 0.390 2 lenewz 0.377 3 fo 0.368

4 behind 0.290

Document 8939:

Word TF-IDF 0 portable 0.592 1 thank 0.480 2 charger 0.455 3 ready 0.441 4 link 0.133

Document 8940:

Word TF-IDF 0 compelling 0.459 1 writing 0.405 2 excellent 0.372 3 leaving 0.358 dev 0.322

Document 8941:

Word TF-IDF 0 cheer 0.329 1 spark 0.329 2 lustre 0.296 3 pearl 0.291 4 door 0.291

Document 8942:

Word TF-IDF 0 schema 0.479 1 navigation 0.428 2 interface 0.422 3 designing 0.403 4 check 0.331

Document 8943:

Word TF-IDF 0 magic 0.766 1 hmmmtaxi 0.449 2 appear 0.430 3 austin 0.162

Document 8944:

Word TF-IDF xml 0.446 0 skier 0.446 2 visualization 0.421 3 3d 0.357 4 data 0.307

Document 8945:

Word TF-IDF
0 festivalexplorer 0.588
1 solves 0.588
2 finally 0.436
3 sxsw 0.246
4 application 0.215

Document 8946:

Word TF-IDF 0 il 0.436 1 nowhere 0.235 2 lexpress 0.235 3 os 0.235 4 primo 0.235

Document 8947:

Word TF-IDF 0 quotpopupquot 0.594 1 marketing 0.538 2 smart 0.522 3 store 0.248 4 link 0.156

Document 8948:

Word TF-IDF 0 hilton 0.739 1 meet 0.674

Document 8949:

Word TF-IDF 0 store 0.846 1 link 0.532

Document 8950:

Word TF-IDF 0 captured 0.408 1 lesson 0.360 2 sheen 0.348 3 attention 0.338 4 whole 0.315

Document 8951:

Word TF-IDF 0 script 0.498 1 reading 0.399 2 film 0.391 3 sitting 0.388 4 folk 0.358

Document 8952:

Word TF-IDF 0 going 0.757 1 social 0.589 2 link 0.283

Document 8953:

Word TF-IDF
0 bloggersketchup 0.467
1 unexpectedly 0.467
2 quiet 0.433
3 compared 0.422
4 night 0.293

Document 8954:

Word TF-IDF 0 spectacle 0.536 1 line 0.485 2 enjoying 0.423 3 block 0.355 4 long 0.346

Document 8955:

Word TF-IDF 0 asset 0.429 1 corp 0.429 2 personal 0.377 3 care 0.360 4 stuff 0.310

Document 8956:

Word TF-IDF
0 taptuquotapple 0.426
1 taptu 0.426
2 videoquot 0.426
3 hd 0.408
4 shared 0.370

Document 8957:

Word TF-IDF 0 disgrace 0.490 1 everywhere 0.357 2 home 0.338 3 feel 0.334 4 instead 0.334

Document 8958:

Word TF-IDF 0 bryce 0.401 1 cent 0.401 2 spider 0.401 3 manor 0.401 4 secret 0.324

Document 8959:

Word TF-IDF 0 pic 0.586 1 store 0.570 2 sxsw 0.396 3 popup 0.377 4 link 0.179

Document 8960:

	Word	TF-IDF
0	entrepreneurial	0.470
1	collective	0.435
2	together	0.360
3	mind	0.358
4	put	0.323

Document 8961:

	Word	TF-IDF
0	epicenter	0.445
1	pdx	0.445
2	madness	0.379
3	drop	0.353
4	retail	0.336

Document 8962:			
	Word	TF-IDF	
0	argument	0.472	
1	parenthesis	0.472	
2	settle	0.472	
3	opened	0.346	
4	IISA	0 264	

Document 8963:

	Word	TF-IDF
0	арр	0.515
1	society	0.396
2	war	0.356
3	heat	0.356
4	groun	0.315

Document 8964:

	Word	TF-IDF
0	mifi	0.543
1	solid	0.543
2	rock	0.379
3	far	0.369
4	CC	0.361

Document 8965:

	Word	TF-IDF
0	cornered	0.517
1	easy	0.394
2	apparently	0.377
3	market	0.371
4	demo	0.335

Document 8966:

	Word	TF-IDF
0	lovely	0.558
1	integration	0.548
2	awesome	0.353
3	thanks	0.350
4	get	0.270

```
Document 8967:
      Word TF-IDF
0 appits 0.366
1
     solid 0.351
2 resource 0.351
3 scheduling 0.351
  planning 0.308
Document 8968:
   Word TF-IDF
0 tenet 0.872
1 design 0.489
Document 8969:
    Word TF-IDF
0 glued 0.558
1 included 0.516
2 expected 0.468
3 everyone 0.352
4 day 0.282
Document 8970:
      Word TF-IDF
  music 0.507
1
      legal 0.414
       5th 0.387
3 downloading 0.366
4 torrent 0.362
Document 8971:
   Word TF-IDF
0 day 0.432
1 newly 0.427
2 one 0.416
3 added 0.345
4 amazing 0.302
Document 8972:
    Word TF-IDF
0 behavior 0.314
1 swarming 0.314
2 flocking 0.314
  collab 0.314
3
4 basis 0.304
Document 8973:
 Word TF-IDF
0 realistic 0.401
1 explaining 0.388
2 gee 0.379
3 experiment 0.364
   bot 0.348
Document 8974:
        Word TF-IDF
```

```
0 regularly 0.336
1 programming 0.334
2 interrupt 0.334
3 scheduled 0.331
4 try 0.319
```

Document 8975:

Word TF-IDF 0 booth 0.952 1 link 0.307

Document 8976:

Word TF-IDF 0 impedimenta 0.399 1 lug 0.370 2 traveling 0.331 3 leaving 0.311 4 light 0.309

Document 8977:

Word TF-IDF
0 may 0.461
1 launching 0.443
2 called 0.344
3 network 0.324
4 circle 0.313

Document 8978:

Word TF-IDF 0 mall 0.487 1 absolutely 0.478 2 beautiful 0.451 3 track 0.364 4 guy 0.297

Document 8979:

Word TF-IDF 0 mean 0.702 1 way 0.573 2 get 0.422

Document 8980:

Word TF-IDF 0 acludont 0.444 1 thrown 0.444 2 dad 0.425 3 maes 0.329 4 maggie 0.325

Document 8981:

Word TF-IDF 0 hubby 0.389 1 effing 0.376 2 towards 0.352 3 lineup 0.347 4 wife 0.347

Document 8982:

Word TF-IDF 0 fairy 0.357 1 mail 0.323

2 mother 0.323

3 sat 0.284

4 1230pm 0.279

Document 8983:

Word TF-IDF 0 appeared 0.420 1 prepares 0.420 2 motley 0.420 3 fool 0.379

4 fight 0.318

Document 8984:

Word TF-IDF 0 ck 0.542 1 developed 0.489 2 support 0.430 3 friend 0.331 4 show 0.300

Document 8985:

Word TF-IDF
0 apparently 0.621
1 major 0.399
2 network 0.360
3 social 0.335
4 launch 0.326

Document 8986:

Word TF-IDF 0 knowing 0.540 1 fine 0.505 2 actually 0.424 3 idea 0.385 4 could 0.355

Document 8987:

Word TF-IDF
0 trouble 0.519
1 pak 0.519
2 anybody 0.458
3 downloading 0.458
4 application 0.205

Document 8988:

	Word	TF-IDF
0	crazy	0.513
1	post	0.456
2	pic	0.440
3	coming	0.414
4	temporary	0.344

Document 8989: Word TF-IDF 0 culture 0.549 1 documented 0.525 2 crazy 0.395 3 doodle 0.386 4 much 0.343

Document 8990:

Word	TF-IDF
geekest	0.426
hidden	0.426
nowyes	0.426
queue	0.302
place	0.265
	geekest hidden nowyes queue

Document 8991:

	Word	TF-IDF
0	party	0.489
1	six	0.445
2	lounge	0.391
3	bing	0.341
4	location	0.323

Document 8992:

	Word	TF-IDF
0	rt	0.386
1	interesting	0.380
2	look	0.332
3	possibly	0.298
4	major	0.285

Document 8993:

	Word	TF-IDF
0	localmind	0.551
1	luck	0.484
2	available	0.361
3	interesting	0.359
4	look	0.313

Document 8994:

	Word	TF-IDF
0	given	0.490
1	cover	0.458
2	ok	0.421
3	tool	0.395
4	better	0.361

Document 8995:

	Word	TF-IDF
0	ipaded	0.656
1	officially	0.521
2	others	0.411
3	SXSW	0.274
4	store	0.197

Document 8996:

Word TF-IDF 0 others 0.578 1 getting 0.561 2 ipad2 0.494 3 store 0.278 4 link 0.175

Document 8997:

Word TF-IDF 0 sorted 0.609 1 finally 0.451 2 data 0.401 3 stop 0.394 4 next 0.332

Document 8998:

Word TF-IDF 0 enchanted 0.536 1 kawasaki 0.440 2 stuff 0.400 3 talk 0.318 4 guy 0.312

Document 8999:

Word TF-IDF 0 earned 0.468 1 train 0.423 2 lunch 0.371 3 brought 0.368 4 took 0.345

Document 9000:

Word TF-IDF
0 adapt 0.360
1 appealing 0.360
2 overcome 0.344
3 sounding 0.344
4 somehow 0.318

Document 9001:

Word TF-IDF
0 aps 0.413
1 mobile 0.392
2 wmy 0.383
3 compatible 0.365
4 suggestion 0.331

Document 9002:

Word TF-IDF 0 concrete 0.359 1 fortunately 0.359 2 injury 0.359 3 bicycle 0.333 4 ouch 0.333

Document 9003:

Word TF-IDF 0 help 0.455 1 please 0.446 2 pal 0.319 3 4g 0.277 4 cab 0.269

Document 9004:

Word TF-IDF
0 pst 0.386
1 planet 0.339
2 minister 0.336
3 prime 0.333
4 lonely 0.330

Document 9005:

Word TF-IDF 0 planet 0.505 1 lonely 0.492 2 guide 0.418 3 week 0.372 4 free 0.289

Document 9006:

Word TF-IDF
0 take 0.396
1 virtually 0.343
2 prompt 0.328
3 creativity 0.328
4 memory 0.318

Document 9007:

Word TF-IDF 0 nonipad 0.520 1 thousand 0.444 2 tablet 0.356 3 seen 0.336 4 two 0.332

Document 9008:

Word TF-IDF
0 successquot 0.407
1 drowning 0.394
2 fucking 0.369
3 panelist 0.363
4 insane 0.349

Document 9009:

Word TF-IDF 0 ten 0.361 1 named 0.361 2 thru 0.344 3 discovr 0.323 4 musthave 0.323

```
Document 9010:
      Word TF-IDF
0 moment 0.576
1 apparently 0.523
2 minute 0.501
3 line 0.311
4 store 0.216
Document 9011:
  Word TF-IDF
0 block 0.541
1 wut 0.408
2 grew 0.395
3 past 0.325
4 min 0.316
Document 9012:
  Word TF-IDF
0 apparently 0.611
1 block 0.532
2 tweet 0.499
3 application 0.307
Document 9013:
        Word TF-IDF
0 francisco 0.414
1 sfo 0.414
2 international 0.359
   san 0.348
3
4 hopefully 0.344
Document 9014:
  Word TF-IDF
0 upgrading 0.610
1 thinking 0.513
2 crazy 0.474
3 right 0.374
Document 9015:
Word TF-IDF
0 tonite 0.571
1 display 0.562
2 industry 0.455
3 party 0.297
4 link 0.249
Document 9016:
  Word TF-IDF
0 smoked 0.465
1 hahaha 0.445
2 painting 0.431
3 yesterday 0.337
  much 0.290
```

Document 9017:

```
Word TF-IDF
0 legacy 0.386
1 tron 0.358
2 stopped 0.335
3 audio 0.335
4 sync 0.329
```

Document 9018:

	Word	TF-IDF
0	using	0.400
1	magnetic	0.335
2	brilliance	0.335
3	impressed	0.303
4	pure	0.303

Document 9019:

	Word	TF-IDF
0	nifty	0.406
1	cream	0.357
2	ice	0.357
3	food	0.310
4	band	0.306

Document 9020:

	Word	TF-IDF
0	full	0.482
1	room	0.463
2	staring	0.281
3	hold	0.273
4	air	0.261

Document 9021:

	Word	TF-IDF
0	apparently	0.598
1	shop	0.450
2	set	0.441
3	temporary	0.397
4	austin	0.296

Document 9022:

Word	TF-IDF
applebreeds	0.428
midst	0.428
madness	0.365
discus	0.365
pre	0.365
	applebreeds midst madness discus

Document 9023:

	Word	TF-IDF
0	quotad	0.518
1	preferencesquot	0.518
2	apparently	0.435
3	think	0.323
4	see	0.298

Document 9024:

	Used TE TOE
۵	Word TF-IDF
0 1	spanishspeaking 0.464 scout 0.450
2	trend 0.393
3	based 0.349
4	gt 0.317
4	gt 0.317
Do	cument 9025:
	Word TF-IDF
0	schtuff 0.432
1	quake 0.398
2	timely 0.398
3	absolutely 0.391
4	finder 0.365
Do	cument 9026:
	Word TF-IDF
0	cream 0.496
1	ice 0.496
2	townquot 0.312
3	rated 0.299
4	amys 0.282
Do	cument 9027:
DO	Word TF-IDF
0	andoid 0.352
1	yall 0.345
2	choice 0.308
3	award 0.308
4	job 0.301
7	Job 0.301
Do	cument 9028:
	Word TF-IDF
0	thingquot 0.665
1	quottheyre 0.665
2	line 0.311
3	link 0.136
Do	cument 9029:
_	Word TF-IDF
0	demonstrate 0.398
1	mar 0.379
2	thousand 0.366
3	town 0.309
4	top 0.303
Do	cument 9030:
יטע	Word TF-IDF
	MOLO II-TDI

Word TF-IDF 0 yay 0.762 1 thank 0.648

Document 9031:

Word TF-IDF 0 maybe 0.965 1 link 0.261

Document 9032:

Word TF-IDF 0 yeah 0.736 1 nothing 0.677

Document 9033:

Word TF-IDF 0 yep 0.428 1 believe 0.411 2 oh 0.343 3 yes 0.338 4 wait 0.334

Document 9034:

Word TF-IDF
0 marisa 0.485
1 aka 0.448
2 meyer 0.415
3 yelp 0.406
4 showing 0.346

Document 9035:

Word TF-IDF 0 picked 0.586 1 1st 0.532 2 yes 0.488 3 one 0.367

Document 9036:

Word TF-IDF 0 dah 0.590 1 doo 0.590 2 win 0.303 3 favorited 0.295 4 thats 0.199

Document 9037:

Word TF-IDF 0 expecting 0.583 1 exactly 0.570 2 presentation 0.418 3 yes 0.401

Document 9038:

Word TF-IDF 0 mayhem 0.449 1 mobile 0.425 2 hoot 0.356 3 hootsuite 0.317 4 blog 0.302

Document 9039:

Word TF-IDF 0 meill 0.396 1 flying 0.358 2 shoot 0.358

3	currently	0.343
4	direct	0.339

Document 9040:

	Word	TF-IDF
0	void	0.380
1	provide	0.334
2	fill	0.334
3	claim	0.325
4	biz	0.322

Document 9041:

	Word	TF-IDF
0	analytics	0.806
1	standard	0.503
2	use	0.312

Document 9042: Word TF-IDF

	Word	TF-IDF
0	birthday	0.397
1	reminder	0.375
2	saturday	0.371
3	friendly	0.364
4	dear	0.357

Document 9043:

	Word	TF-IDF
0	sokinda	0.400
1	useless	0.361
2	groupme	0.347
3	texting	0.336
4	signing	0.321

Document 9044:

	Word	TF-IDF
0	zomg	0.587
1	everyone	0.401
2	look	0.362
3	first	0.353
4	got	0.347

Document 9045:

Document 3043.			
	Word	TF-IDF	
0	favorite	0.600	
1	getting	0.482	
2	coming	0.461	
3	thanks	0.441	

Document 9046:

	Word	TF-IDF
0	added	0.626
1	seatmate	0.388
2	become	0.351
3	plane	0.316
4	laptop	0.260

Document 9047:

Word TF-IDF

- 0 whats 0.596
- 1 detail 0.560
- 2 need 0.445
- 3 circle 0.365

Document 9048:

Word TF-IDF

- 0 preorder 0.461
- 1 amazon 0.439
- 2 kindle 0.439
- 3 bet 0.404 4 man 0.362

Document 9049:

Word TF-IDF

- 0 pick 0.532
 1 used 0.484
- 2 tomorrow 0.444
- 3 buy 0.416
- one 0.335

Document 9050:

Word TF-IDF

- 0 check 0.775
- 1 application 0.562
- 2 link 0.290

Document 9051:

Word TF-IDF

- 0 look 0.630
- 1 know 0.599
- 2 get 0.495

Document 9052:

Word TF-IDF

- 0 tmrw 0.690
- 1 could 0.420
- 2 buy 0.400
- 3 popup 0.274
- 4 new 0.230

Document 9053:

Word TF-IDF

- 0 xperia 0.479
- 1 later 0.412
- 2 play 0.380
- 3 detail 0.346
- 4 could 0.336

Document 9054:

Word TF-IDF

- 0 flannel 0.387
- 1 skinny 0.374
- 2 jean 0.357

3	beard	0.340
4	shirt	0.327

Document 9055:

Word TF-IDF

- 0 give 0.588
- 1 yet 0.585
- 2 away 0.559

Document 9056:

Word TF-IDF

reaction 0.483

- 1 announcement 0.464
- 2 realtime 0.459
- 3 would 0.319
- youru 0.513
- 4 love 0.309

Document 9057:

Word TF-IDF

- 0 cbs 0.439
- 1 scvngr 0.425
- 2 spy 0.405
- 3 quot 0.309
- 4 give 0.295

Document 9058:

Word TF-IDF

- 0 presentquot 0.378
- 1 meyers 0.362
- 2 quotdo 0.350
- seth 0.350
- 3 36(11 0.330
- 4 xmas 0.341

Document 9059:

Word TF-IDF

- 0 knowthey 0.603
- 1 sayin 0.494
- 2 sell 0.379
- 3 place 0.376
- 4 product 0.327

Document 9060:

Word TF-IDF

- 0 tweetcaster 0.335
- 1 keywords 0.335
- 2 zip 0.324
- 3 hide 0.309
- 4 appreciate 0.309

Document 9061:

Word TF-IDF

- 0 padless 0.487
- 1 realize 0.404
- 2 gave 0.322
- 3 away 0.298
- 4 still 0.281

Document 9062:

Word TF-IDF 0 oryou 0.537 1 kiosk 0.498 2 purchase 0.419 3 find 0.321 4 ipad2 0.287

Document 9063:

Word TF-IDF
0 lugging 0.619
1 save 0.463
2 laptop 0.415
3 back 0.391
4 get 0.277

Document 9064:

Word TF-IDF 0 gathering 0.491 1 nothing 0.368 2 front 0.340 3 tech 0.331 4 geek 0.317

Document 9065:

Word TF-IDF 0 soooo 0.626 1 friday 0.442 2 sale 0.418 3 think 0.338 4 mobile 0.297

Document 9066:

Word TF-IDF
0 disproportionately 0.448
1 stocking 0.448
2 influencerhipsters 0.448
3 bet 0.346
4 thank 0.306

Document 9067:

Word TF-IDF 0 quotif 0.419 1 afford 0.373 2 consider 0.365 3 attend 0.356 4 able 0.333

Document 9068:

Word TF-IDF 0 try 0.455 1 many 0.404 2 tonight 0.393 3 event 0.392 4 make 0.348

Document 9069:

	Word	TF-IDF
0	quotgourdoughsquot	0.522
1	ate	0.499
2	em	0.445
3	sure	0.329
4	many	0.320

Document 9070:

	Word	TF-IDF
0	hooting	0.463
1	grown	0.429
2	men	0.418
3	bunch	0.389
4	made	0.293

Document 9071:

	Word	TF-IDF
0	cord	0.433
1	pocket	0.403
2	essential	0.393
3	mine	0.381
4	extra	0.381

Document 9072:

	Word	TF-IDF
0	rad	0.524
1	stop	0.418
2	ready	0.405
3	tomorrow	0.400
4	case	0.367

Document 9073:

	Word	TF-IDF
0	charger	0.619
1	friend	0.585
2	best	0.525

Document 9074:

	Word	TF-IDF
0	boomersquot	0.472
1	quotyour	0.452
2	mom	0.386
3	center	0.365
4	convention	0.360

Document 9075:

```
Word TF-IDF
0 quotyour 0.562
1 ipadquot 0.555
2 mom 0.480
3 session 0.382
```

Document 9076:

Word TF-IDF

```
0 quotyour 0.433
1 ipadquot 0.428
2 acc 0.395
3 mom 0.370
4 ballroom 0.365
```

Document 9077:

	Word	TF-IDF
0	convinced	0.460
1	switch	0.444
2	coverage	0.417
3	pr	0.413
4	back	0.315

Document 9078:

	Word	TF-IDF
0	cue	0.427
1	hype	0.427
2	regularly	0.325
3	programming	0.323
4	interrupt	0.323

Document 9079:

	Word	TF-IDF
0	lavelle	0.510
1	quotpapyrussort	0.510
2	ipadquot	0.418
3	lol	0.388
4	nice	0.310

Document 9080:

	Word	IF-IDE
0	quotmight	0.389
1	playstation	0.389
2	essentially	0.360
3	xbox	0.351
4	todayquot	0.351

Document 9081:

	Word	TF-IDF
0	incorrect	0.489
1	rate	0.443
2	launch	0.403
3	report	0.361
4	say	0.281

Document 9082:

	Word	TF-IDF
0	screaming	0.597
1	running	0.482
2	shop	0.342
3	guy	0.337
4	open	0.306

Document 9083:

Word TF-IDF

```
0 ie 0.594
1 location 0.414
2 future 0.410
3 around 0.390
4 say 0.371
Document 9084:
    Word TF-IDF
0 location 0.910
1 future 0.300
2 say 0.271
3 link 0.096
Document 9085:
Word TF-IDF
0 stabilizer 0.390
1 cam 0.345
  mode 0.345
2
3 suggestion 0.313
4 image 0.313
Document 9086:
```

	Word	TF-IDF
0	benmcgraw	0.381
1	gmailcom	0.381
2	lightning	0.365
3	stage	0.312
4	email	0.292

Document 9087:

	Word	TF-IDF
0	yup	0.495
1	third	0.487
2	suggestion	0.458
3	yet	0.365
4	СС	0.363

Document 9088:

	Word	TF-IDF
0	everywhere	0.968
1	link	0.251

Document 9089:

	Word	TF-IDF
0	wave	0.397
1	regularly	0.348
2	interrupt	0.347
3	programming	0.347
4	scheduled	0.343

Document 9090:

	Word	TF-IDF
0	physician	0.516
1	operating	0.269
2	fda	0.269
3	dataquot	0.258

```
relies 0.258
Document 9091:
       Word TF-IDF
0 complained 0.387
   yorkers 0.387
1
2 attended 0.342
       fell 0.330
    verizon 0.288
Document 9092:
     Word TF-IDF
0 checkin 0.511
    test 0.508
   offer 0.506
2
3
      rt 0.454
     link 0.136
```

Printed the top 5 most informative words in each tweet based on TF-IDF scores which
plays a role in showing words that have a meaning in each tweet

```
In [ ]: X_tfidf_dense = tfidf_matrix.toarray()
        def print_top_features(document_index, top_n=10):
            scores = X_tfidf_dense[document_index]
            vocabulary = tfidf_vect.get_feature_names_out()
            print("Vocabulary:", vocabulary)
            feature_scores = [(vocabulary[i], scores[i]) for i in range(len(vocabulary))]
            feature_scores.sort(key=lambda x: x[1], reverse=True)
            print(f"Top {top_n} features for document {document_index}:")
            for term, score in feature_scores[:top_n]:
                print(f"{term}: {score:.4f}")
            print()
        for i in range(min(5, tfidf_matrix.shape[0])):
            print_top_features(i)
        vocabulary = tfidf_vect.get_feature_names_out()
        print("Vocabulary:", vocabulary)
        df_vectorization = pd.DataFrame(X_tfidf_dense, columns=vocabulary)
        print(df.head())
```

```
Vocabulary: ['0310apple' '100' '103011p' ... 'zuckerberg' 'zynga' 'zzzs']
Top 10 features for document 0:
hr: 0.4134
plugin: 0.4134
station: 0.3669
upgrade: 0.3633
dead: 0.3511
tweeting: 0.3333
3g: 0.3247
need: 0.2275
0310apple: 0.0000
100: 0.0000
Vocabulary: ['0310apple' '100' '103011p' ... 'zuckerberg' 'zynga' 'zzzs']
Top 10 features for document 1:
appreciate: 0.4787
likely: 0.4300
giving: 0.3358
also: 0.3319
design: 0.3041
awesome: 0.3032
know: 0.2806
free: 0.2462
application: 0.1983
0310apple: 0.0000
Vocabulary: ['0310apple' '100' '103011p' ... 'zuckerberg' 'zynga' 'zzzs']
Top 10 features for document 2:
sale: 0.6098
wait: 0.5611
also: 0.5598
0310apple: 0.0000
100: 0.0000
103011p: 0.0000
1045am3: 0.0000
10am: 0.0000
10k: 0.0000
10mins: 0.0000
Vocabulary: ['0310apple' '100' '103011p' ... 'zuckerberg' 'zynga' 'zzzs']
Top 10 features for document 3:
year: 0.5942
crashy: 0.5268
festival: 0.3867
hope: 0.3558
app: 0.3053
0310apple: 0.0000
100: 0.0000
103011p: 0.0000
1045am3: 0.0000
10am: 0.0000
Vocabulary: ['0310apple' '100' '103011p' ... 'zuckerberg' 'zynga' 'zzzs']
Top 10 features for document 4:
booksconferences: 0.3615
mullenweg: 0.3615
```

```
fri: 0.3222
       wordpress: 0.3222
       matt: 0.3094
       oreilly: 0.3094
       tim: 0.2854
       stuff: 0.2608
       tech: 0.2434
       marissa: 0.1945
       Vocabulary: ['0310apple' '100' '103011p' ... 'zuckerberg' 'zynga' 'zzzs']
                                                 tweet_text \
       0 [3g, hr, tweeting, dead, need, upgrade, plugin...
       1 [know, awesome, application, likely, appreciat...
       2
                                         [wait, also, sale]
       3
                  [hope, year, festival, crashy, year, app]
       4 [great, stuff, fri, marissa, mayer, tim, oreil...
         emotion_in_tweet_is_directed_at \
       0
                                  iPhone
       1
                      iPad or iPhone App
       2
                                    iPad
       3
                      iPad or iPhone App
       4
                                  Google
         is_there_an_emotion_directed_at_a_brand_or_product \
                                           Negative emotion
       1
                                           Positive emotion
       2
                                           Positive emotion
       3
                                           Negative emotion
       4
                                           Positive emotion
                                             original_tweet
       0 .@wesley83 I have a 3G iPhone. After 3 hrs twe...
       1 @jessedee Know about @fludapp ? Awesome iPad/i...
       2 @swonderlin Can not wait for #iPad 2 also. The...
       3 @sxsw I hope this year's festival isn't as cra...
       4 @sxtxstate great stuff on Fri #SXSW: Marissa M...
In [ ]: print (df.head())
```

```
tweet_text \
       0 [3g, hr, tweeting, dead, need, upgrade, plugin...
         [know, awesome, application, likely, appreciat...
       2
                                          [wait, also, sale]
       3
                  [hope, year, festival, crashy, year, app]
       4 [great, stuff, fri, marissa, mayer, tim, oreil...
         emotion_in_tweet_is_directed_at \
       0
                                   iPhone
       1
                      iPad or iPhone App
       2
                                     iPad
       3
                      iPad or iPhone App
       4
                                  Google
         is_there_an_emotion_directed_at_a_brand_or_product
                                            Negative emotion
       0
       1
                                            Positive emotion
       2
                                            Positive emotion
       3
                                            Negative emotion
       4
                                            Positive emotion
                                              original_tweet
       0 .@wesley83 I have a 3G iPhone. After 3 hrs twe...
       1 @jessedee Know about @fludapp ? Awesome iPad/i...
       2 @swonderlin Can not wait for #iPad 2 also. The...
       3 @sxsw I hope this year's festival isn't as cra...
       4 @sxtxstate great stuff on Fri #SXSW: Marissa M...
In [ ]: #initializing sentiment analyze
        from nltk.sentiment import SentimentIntensityAnalyzer
        nltk.download('vader_lexicon')
        sent = SentimentIntensityAnalyzer()
        def get_sentiment_scores(text):
            if isinstance(text, list):
                text = ' '.join(text)
            return sent.polarity_scores(text)
        def get_sentiment_label(scores):
            compound = scores['compound']
            if compound >= 0.05:
                return 'positive'
            elif compound <= -0.05:</pre>
                return 'negative'
            else:
                return 'neutral'
```

[nltk_data] Downloading package vader_lexicon to /root/nltk_data...

VADER compound score + label extraction

```
In [ ]: # Applied sentiment analysis with the fixed function
    df['sentiment_scores'] = df['tweet_text'].apply(get_sentiment_scores)

# Extracted the compound score
    df['compound_score'] = df['sentiment_scores'].apply(lambda x: x['compound'])
```

```
#Applied sentiment labeling
 df['sentiment_label'] = df['sentiment_scores'].apply(get_sentiment_label)
 # Display the results
 print(df[['tweet_text', 'compound_score', 'sentiment_label']].head())
                                         tweet_text compound_score \
0 [3g, hr, tweeting, dead, need, upgrade, plugin...
                                                           -0.6486
1 [know, awesome, application, likely, appreciat...
                                                             0.9100
                                 [wait, also, sale]
                                                             0.0000
3
          [hope, year, festival, crashy, year, app]
                                                             0.7269
 [great, stuff, fri, marissa, mayer, tim, oreil...
                                                             0.6249
 sentiment_label
        negative
1
        positive
2
         neutral
3
        positive
        positive
```

- Aplied vader compound score + labeling
- compound_score is a single number that summarized the tweet's emotional tone
- sentiment_label translated the score to positive, negative or neutral.

used the above to compare with ML models

Modeling

Logistic regression model

```
In []: #Splitting the df into training and testing data to an algorithm
    y = df.is_there_an_emotion_directed_at_a_brand_or_product
    X_train, X_test, y_train, y_test = train_test_split(tfidf_matrix, y, test_size=0.3,
    log_reg = LogisticRegression(random_state=42)
    log_reg.fit(X_train, y_train)

y_pred = log_reg.predict(X_test)
    print(classification_report(y_test, y_pred))
```

	precision	recall	f1-score	support
I can't tell	0.00	0.00	0.00	41
Negative emotion	0.73	0.04	0.08	182
No emotion toward brand or product	0.67	0.88	0.76	1585
Positive emotion	0.64	0.44	0.52	920
accuracy			0.66	2728
macro avg	0.51	0.34	0.34	2728
weighted avg	0.65	0.66	0.62	2728

- The model had a accuracy of 66% meaning it predicted the sentiments for 2 out of every
 3 tweets. This metric is misleading because the recall for "I_cant_tell" and
 "Negative_emotion" are zero and 4% respectively this means that the model could
 barely tell actual and negative sentiments. With low macro-average f1 score indicating
 the model is not reliable across all sentiment categories.
- There is a clear class imbalance shown by the two classes "i can't tell and negative emotion" which had 41 and 182 instances in the whole document.

```
In [ ]: #Splitting the data into training and testing data to an algorithm
    y = df['sentiment_label']
    X_train, X_test, y_train, y_test = train_test_split(tfidf_matrix, y, test_size=0.3,
    log_reg = LogisticRegression(random_state=42)
    log_reg.fit(X_train, y_train)

y_pred = log_reg.predict(X_test)
    print(classification_report(y_test, y_pred))
```

	precision	recall	f1-score	support
negative	0.97	0.32	0.48	325
neutral	0.78	0.90	0.84	1179
positive	0.85	0.88	0.86	1224
accuracy			0.82	2728
macro avg	0.87	0.70	0.73	2728
weighted avg	0.83	0.82	0.81	2728

• Used a different approach of sentiment_label which improved the accuracy to 82% and macro average 73% which was better than the prior but still was biased

Random Forest

```
In [ ]: | param_grid = {
            "criterion":["gini","entropy"],
            "max_depth":[None,5,10,15],
            "min_samples_split":[2,10],
            "min_samples_leaf":[1,4,8]
In [ ]: | forest = RandomForestClassifier(
           n_estimators=200,
           criterion='gini',
           max_depth=20,
           random_state=42,
           n_{jobs}=-3
        grid_search = GridSearchCV(
           estimator=forest,
           param_grid=param_grid,
           cv=5,
           scoring='accuracy',
           n_{jobs=-1}
        grid_search.fit(X_train,y_train)
        y_pred = grid_search.predict(X_test)
        print(metrics.classification_report(y_test, y_pred))
        print("Accuracy:", metrics.accuracy_score(y_test, y_pred))
                    precision
                              recall f1-score support
                       0.94
                                 0.42
                                            0.58
                                                       325
          negative
                       0.77 0.97
           neutral
                                            0.86
                                                      1179
          positive
                       0.94
                                  0.83
                                            0.88
                                                     1224
          accuracy
                                            0.84
                                                      2728
                       0.88
                                   0.74
                                            0.77
                                                      2728
         macro avg
      weighted avg
                         0.86
                                   0.84
                                            0.83
                                                      2728
```

Accuracy: 0.843108504398827

Random Forest Improved over Logistic Regression with Accuracy of 84% and macro avg
of 77%, by capturing more complex patterns in TF-IDF features.added value as
interpretable model for sentiment classification. However, its lack of sequential
awareness limited its ability to capture deeper meaning in tweets.

Multiclass Neural Network

```
In [ ]: # Prepared inputs and labels
X = df['tweet_text'].astype(str).values
y = df['sentiment_label'].values
```

```
# Encoded sentiment labels
        label_encoder = LabelEncoder()
        y_encoded = label_encoder.fit_transform(y)
        # Tokenized and pad text
        tokenizer = Tokenizer(num_words=10000, oov_token="<00V>")
        tokenizer.fit_on_texts(X)
        X_seq = tokenizer.texts_to_sequences(X)
        X_pad = pad_sequences(X_seq, maxlen=100, padding='post', truncating='post')
        # Trained/tested split
        X_train, X_test, y_train, y_test = train_test_split(X_pad, y_encoded, test_size=0.2
In [ ]: # Encode labels
        label_encoder = LabelEncoder()
        y_encoded = label_encoder.fit_transform(y)
        y_categorical = to_categorical(y_encoded) # One-hot encode the Labels
        # Splited the data
        X_train, X_test, y_train, y_test = train_test_split(tfidf_matrix.toarray(), y_categ
        # Defined model
        model = Sequential()
        model.add(Dense(64, input_dim=X_train.shape[1], activation='relu'))
        model.add(Dropout(0.3))
        model.add(Dense(32, activation='relu'))
        model.add(Dense(y_categorical.shape[1], activation='softmax')) # Output Layer for
        # Compile model
        model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy
        # Train model
        model.fit(X_train, y_train, epochs=5, batch_size=32, validation_data=(X_test, y_test)
        # Predict
        y_pred_prob = model.predict(X_test)
        y_pred = y_pred_prob.argmax(axis=1)
        y_true = y_test.argmax(axis=1)
        # Evaluation
        print("\nClassification Report for Multiclass Neural Network:\n")
        print(classification_report(y_true, y_pred, target_names=label_encoder.classes_))
```

```
Epoch 1/5
                     3s 10ms/step - accuracy: 0.5235 - loss: 0.9815 - val_ac
199/199 -
curacy: 0.7386 - val_loss: 0.6241
Epoch 2/5
199/199 -
                   _______ 2s 8ms/step - accuracy: 0.8386 - loss: 0.4234 - val_acc
uracy: 0.8383 - val_loss: 0.4358
Epoch 3/5
                  ______ 2s 11ms/step - accuracy: 0.9631 - loss: 0.1421 - val_ac
199/199 -----
curacy: 0.8512 - val loss: 0.4101
Epoch 4/5
199/199 -
                         ___ 2s 9ms/step - accuracy: 0.9887 - loss: 0.0556 - val_acc
uracy: 0.8570 - val_loss: 0.4331
Epoch 5/5
199/199 -
                          - 2s 8ms/step - accuracy: 0.9960 - loss: 0.0283 - val_acc
uracy: 0.8596 - val_loss: 0.4576
86/86 -
                        - 0s 3ms/step
```

Classification Report for Multiclass Neural Network:

```
precision recall f1-score support
  negative 0.81 0.62
neutral 0.85 0.88
                            0.71
                                     325
                            0.87
                                     1179
  positive
             0.88
                    0.90
                            0.89
                                    1224
  accuracy
                            0.86
                                   2728
  macro avg 0.85
                                    2728
                      0.80
                            0.82
weighted avg
             0.86
                      0.86
                            0.86
                                     2728
```

```
In [ ]: print(y)
    ['negative' 'positive' 'neutral' ... 'neutral' 'negative' 'neutral']
```

• The Accuracy of 86%, macro average f1 score 0f 82% the neural network model performed well offering improved accouracy over prior models but wasn't able to fully capture 'tone, sarcasm or negation' and it was unable to process word order.

LSTM- Long-short term memory

```
In []: # Tokenization
    tokenizer = Tokenizer(num_words=5000)
    tokenizer.fit_on_texts(df['tweet_text'])
    X_seq = tokenizer.texts_to_sequences(df['tweet_text'])
    X_pad = pad_sequences(X_seq, maxlen=100)

# Encode labels
    le = LabelEncoder()
    y = le.fit_transform(df['sentiment_label'])
    y_cat = to_categorical(y)

# Split data
    X_train, X_test, y_train, y_test = train_test_split(X_pad, y_cat, test_size=0.2, st)
```

```
# Build LSTM Model
model_lstm = Sequential([
    Embedding(input_dim=5000, output_dim=128, input_length=100),
   LSTM(128),
   Dropout(0.5),
   Dense(64, activation='relu'),
   Dropout(0.3),
    Dense(y_cat.shape[1], activation='softmax')
1)
model_lstm.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['acc
model_lstm.summary()
# Train
history = model_lstm.fit(X_train, y_train, epochs=5, batch_size=32, validation_data
# Evaluate
y_pred = model_lstm.predict(X_test)
y_pred_classes = y_pred.argmax(axis=1)
y_true = y_test.argmax(axis=1)
print(classification_report(y_true, y_pred_classes, target_names=le.classes_))
```

Model: "sequential"

Layer (type)	Output Shape	Param #	
embedding (Embedding)	}	0 (unbuilt)	
lstm (LSTM)	?	0 (unbuilt)	
dropout (Dropout)	?	0	
dense (Dense)	?	0 (unbuilt)	
dropout_1 (Dropout)	?	0	
dense_1 (Dense)	?	0 (unbuilt)	

Total params: 0 (0.00 B)

Trainable params: 0 (0.00 B)

Non-trainable params: 0 (0.00 B)

43s 173ms/step - accuracy: 0.5651 - loss: 0.8961 - val_

Epoch 1/5 **228/228** —

```
accuracy: 0.8224 - val loss: 0.4739
      228/228 -
                         40s 176ms/step - accuracy: 0.8953 - loss: 0.3065 - val_
      accuracy: 0.8851 - val_loss: 0.3545
      Epoch 3/5
                        43s 185ms/step - accuracy: 0.9683 - loss: 0.1127 - val_
      228/228 -----
      accuracy: 0.8895 - val loss: 0.3820
      Epoch 4/5
                         79s 171ms/step - accuracy: 0.9830 - loss: 0.0641 - val_
      228/228 -
      accuracy: 0.8955 - val_loss: 0.4286
      Epoch 5/5
      228/228 -
                                — 40s 168ms/step - accuracy: 0.9863 - loss: 0.0557 - val_
      accuracy: 0.8939 - val_loss: 0.4967
      57/57 -
                              - 3s 46ms/step
                    precision recall f1-score support
                       0.79
                                0.66
                                           0.72
          negative
                                                     206
           neutral
                        0.89
                                 0.93
                                          0.91
                                                     797
          positive
                       0.92
                                0.92
                                          0.92
                                                     816
                                          0.89 1819
          accuracy
                      0.87
                                  0.84
                                         0.85
                                                   1819
         macro avg
      weighted avg
                       0.89
                                  0.89
                                           0.89
                                                    1819
In [ ]: | y = df['sentiment_label']
       # Encoded Labels
       label encoder = LabelEncoder()
       y_encoded = label_encoder.fit_transform(y)
       y_categorical = to_categorical(y_encoded)
       # Tokenization and padding already done earlier as X_pad
       X_train, X_test, y_train, y_test = train_test_split(X_pad, y_categorical, test_size
       # LSTM Model
       model = Sequential()
       model.add(Embedding(input_dim=10000, output_dim=64, input_length=100))
       model.add(LSTM(64, return_sequences=False))
       model.add(Dropout(0.3))
       model.add(Dense(32, activation='relu'))
       model.add(Dense(y_categorical.shape[1], activation='softmax')) # For multiclass
       # Compile and Train
       model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy
       model.summary()
       model.fit(X_train, y_train, epochs=5, batch_size=32, validation_data=(X_test, y_tes
       # Predict and Evaluate
       y_pred_prob = model.predict(X_test)
       y_pred = y_pred_prob.argmax(axis=1)
       y_true = y_test.argmax(axis=1)
```

121 of 124 4/24/2025, 2:52 PM

from sklearn.metrics import classification_report

```
print("\nClassification Report for LSTM Model:\n")
print(classification_report(y_true, y_pred, target_names=label_encoder.classes_))
```

Model: "sequential 1"

Layer (type)	Output Shape	Param #	
embedding_1 (Embedding)	?	0 (unbuilt)	
lstm_1 (LSTM)	?	0 (unbuilt)	
dropout_2 (Dropout)	?	0	
dense_2 (Dense)	?	0 (unbuilt)	
dense_3 (Dense)	?	0 (unbuilt)	

```
Total params: 0 (0.00 B)
Trainable params: 0 (0.00 B)
Non-trainable params: 0 (0.00 B)
Epoch 1/5
                 ______ 20s 85ms/step - accuracy: 0.5350 - loss: 0.9529 - val_a
ccuracy: 0.7573 - val loss: 0.6148
Epoch 2/5
                  _______ 12s 62ms/step - accuracy: 0.8475 - loss: 0.4227 - val_a
199/199 -
ccuracy: 0.8512 - val_loss: 0.4116
Epoch 3/5
                  ———— 20s 61ms/step - accuracy: 0.9489 - loss: 0.1502 - val_a
199/199 -----
ccuracy: 0.8790 - val loss: 0.3918
Epoch 4/5
199/199 -
           ——————— 21s 64ms/step - accuracy: 0.9871 - loss: 0.0536 - val_a
ccuracy: 0.8842 - val loss: 0.4092
Epoch 5/5
            _______ 12s 62ms/step - accuracy: 0.9885 - loss: 0.0444 - val_a
199/199 -
ccuracy: 0.8871 - val_loss: 0.4973
                       - 2s 24ms/step
```

Classification Report for LSTM Model:

	precision	recall	f1-score	support
negative neutral	0.88 0.88	0.60 0.92	0.72 0.90	325 1179
positive	0.90	0.93	0.91	1224
accuracy macro avg weighted avg	0.89 0.89	0.82 0.89	0.89 0.84 0.88	2728 2728 2728

The LSTM was the most effective model for sentiment analysis. It captured both
meaning and structure, providing reliable sentiment classification for complex, shortform text like tweets. It was balanced across all emotions and handled confusing/
emotional tweets better than the other models with Accuracy score of 89%, macro

average f1 score of 84%

Conclusion

After building and evaluating multiple machine learning and deep learning models,
LSTM demonstrated the highest effectiveness in understanding language in a better
way, making it the most suitable model for sentiment analysis on social media text.
Future enhancements could include more training data, use of pre-trained embeddings
like GloVe or BERT, or expanding into bidirectional LSTMs for even deeper context
learning.

Recommendations

Data Imbalance:

The model struggles to detect negative sentiment reliably due to a significant under-representation (only 326 instances). To improve recall for the negative class, consider oversampling the negatives, undersampling the majority classes, or generating synthetic samples using methods like SMOTE. Handling of Missing Emotional Target Data: With about 64% of entries missing in the emotional target field, simply replacing missing values with "None" is insufficient. A more nuanced, multi-stage process is suggested—first identifying if a tweet targets any brand, then pinpointing the specific brand, and finally assessing the sentiment. This refined approach could yield deeper insights into brand-specific sentiment. Combat Neural Network Overfitting: The current neural network shows near-perfect performance on training data but plateaus on validation data, signaling overfitting. Integrate further regularization techniques (e.g., additional dropout layers, L1/L2 regularization) and early stopping to improve generalization on unseen data.

Explore Ensemble Methods:

Merging the high precision of the logistic regression model (which, however, has low recall for negatives) with other algorithms that better capture negative sentiment could help balance the precision-recall trade-off. An ensemble approach may provide more robust and reliable sentiment classifications across all sentiment categories.

To enhance sentiment analysis performance, it is crucial to balance the dataset through sampling or synthetic data generation, adopt a multi-stage classification process for more refined brand and sentiment detection, and address overfitting in the neural network with stronger regularization measures and early stopping. Moreover, integrating ensemble methods that combine models with complementary strengths could further balance

precision and recall, leading to a more reliable analysis