AIPMT - 1998

- Boron has two isotopes ₅B¹⁰ and ₅B¹¹. If atomic **Q.1** weight of Boron is 10.81 then ratio of ₅B¹⁰ to ₅B¹¹ in nature will be:
 - (1) 15:16

(2) 19:81

(3)81:19

(4) 20:53

- 0.2 A hollow sphere of radius 1m is given a positive charge of 10µC. The electric field at the centre of hollow sphere will be:
 - (1) $60 \times 10^3 \text{ Vm}^{-1}$

(2) $90 \times 10^3 \text{ Vm}^{-1}$

(3) Zero

(4) Infinite

0.3 Following table is for which logic gate:

Input		Output		
A	В	С		
0	0	1		
0	1	1		
1	0	1		
1	1	0		

(1) AND

(2) OR

(3) NAND

(4) NOT

Q.4 Following logic gate is:

- (1) AND
- (2) NAND
- (3) EX-OR
- (4) OR
- **Q.5** For a wave $y = y_0 \sin(\omega t - kx)$, for what value of λ is the maximum particle velocity equal to two times the wave velocity:
 - (1) πy_0
- (2) $2\pi y_0$
- (3) $\pi y_0/2$
- $(4) 4\pi y_0$
- **Q.6** Two pendulums suspended from same point having length 2m and 0.5m. If they displaced slightly and released then they will be in same phase, when small pendulum will have completed:
 - (1) 2 oscillation
- (2) 4 oscillation
- (3) 3 oscillation
- (4) 5 oscillation
- **Q.7** For protecting a magnetic needle it should be placed:
 - (1) In iron box

(2) In wooden box

(3) In metallic box

(4) None of these

- A circular ring of mass M and radius R is **Q.8** rotating about its axis with constant angular velocity ω. Two particle each of mass m are attached gently to the opposite ends of a diameter of the ting. The angular velocity of the ring will now become:
 - $(1) \frac{m\omega}{M+2m} \qquad (2) \frac{M\omega}{M-2m}$
 - $(3) \frac{M\omega}{M+2m} \qquad (4) \frac{M+2m}{M\omega}$
- If $x = 3 4t^2 + t^3$, then work done in first 4s. 0.9 will be (Mass of the particle is 3 gram):
 - (1) 384 mJ
- (2) 168 mJ
- (3) 192 mJ
- (4) None of these
- If force F = 500 100t, then function of impulse 0.10 with time will be:
 - $(1) 500t 50t^2$
- (2) 50t -10
- $(3) 50 t^2$
- $(4) 100 t^2$
- 0.11 Half life period of two elements are 40 minute and 20 minute respectively, then after 80 minute ratio of the remaining nuclei will be (Initially both have equal active nuclei):
- (1) 4:1 (2) 1:2 (3) 8:1
- (4) 16:1
- 0.12 A particle of mass m is tied to a string of length L and whirled into a horizontal plan. If tension in the string is T then the speed of the particle

$$(1)~\sqrt{\frac{T\ell}{m}}~(2)~\sqrt{\frac{2T\ell}{m}}~(3)~\sqrt{\frac{3T\ell}{m}}~(4)\sqrt{\frac{T}{m\ell}}$$

Q.13 If the light of wavelength λ is incident on metal surface, the ejected fastest electron has speed v.

If the wavelength is changed to $\frac{3\lambda}{4}$, the speed

of the fastest emitted electron will be:

- (1) Smaller than $\sqrt{\frac{4}{3}}$ v (2) Greater than $\sqrt{\frac{4}{3}}$ v
- (3) 2v
- (4) Zero
- Q.14 A coil of one loop is made from a wire of length L and thereafter a coil of two loops is made from same wire, then the ratio of magnetic field at the centre of coils will be:
 - (1) 1 : 4
- (2) 1:1
- (3)1:8
- (4) 4:1

(3) $|\vec{F}_3| = \vec{F}_1 + 2\vec{F}_2$ (4) Not possible

(1) 1.2 eV

(3) 0.45 eV

(2) 0.98 eV

(4) 0 eV

Q.37 A car is moving with velocity V. If stop after applying break at a distance of 20 m. If velocity of car is doubled, then how much distance it will cover (travel) after applying break: (1) 40 m (2) 80 m (3) 160 m (4) 320 m A charge q is placed in an uniform electric field Q.38 E. If it is released, then the K.E of the charge after travelling distance y will be: (1) gEy (2) 2gEv $(3) \frac{qEy}{2} \qquad (4) \sqrt{qEy}$ Q.39 In the Bohr model of H-atom, an electron (e) is revolving around a proton (p) with velocity v, if r is the radius of orbit and m is mass and ε_0 is vacuum permittivity, the value of v is: $(1) \frac{e}{\sqrt{4\pi m \in_0 r}} \qquad (2) \frac{2e}{\sqrt{\pi m \in_0 r}}$ $(3) \frac{e}{\sqrt{\pi m \in_0 r}} \qquad (4) \frac{e}{4\pi m \in_0 r}$ Q.40 Electric field at the equator of a dipole is E. If strength and distance is now doubled then the electric field will be: (1) E/2(2) E/8(3) E/4(4) ETurn ratio of a step-up transformer is 1:25. If Q.41 current in load coil is 2A, then the current in primary coil will be: (1) 25A (2) 50A (3) 0.25A (4) 0.5A Q.42 If a source moves perpendicularly from listener then the change in frequency will be: (1) 2 n(2) n (3) n/2(4) Zero Q.43 for nuclear reaction: $_{92}U^{235} + _{0}n^{1} \rightarrow {}_{56}Ba^{144} + \dots + 3_{0}n^{1}$ (1) $_{26}Kr^{89}$ (2) $_{36}Kr^{89}$ (3) $_{26}Sr^{90}$ (4) $_{38}Sr^{89}$ A rigid rod is placed against the wall as shown Q.44 in figure. When its velocity of lower end is 10 ms^{-1} and its base makes an angle $\alpha = 60^{\circ}$ with horizontal, then the vertical velocity of its end B

will be:

(1) $10\sqrt{3}$ (2) $10/\sqrt{3}$ (3) $5\sqrt{3}$ (4) $5/\sqrt{3}$

(1) 32 E (2) 16 E (3) 8 E (4) 4 E

Q.46 The cause of potential barrier in a P–N junction diode is :

Q.45

- (1) Concentration of positive and negative ions near the junction
- (2) Concentration of positive charges near the junction
- (3) Depletion of negative charges near the junction
- (4) Increment in concentration of holes and electrons near the junction
- Q.47 Common emitter circuit is used as amplifier, its current gain is 50. If input resistance is 1 k Ω and input voltage is 5 volt then output current will be :
 - (1) 250 mA (2) 30 mA (3) 50 mA (4) 100 mA
- Q.48 We consider a thermodynamic system. If ΔU represents the increase in its internal energy and W the work done by the system, which of the following statements is true?
 - (1) $\Delta U = -W$ in an isothermal process
 - (2) $\Delta U = W$ in an isothermal process
 - (3) $\Delta U = -W$ in an adiabatic process
 - (4) $\Delta U = W$ in an adiabatic process
- Q.49 A point Q lies on the perpendicular bisector of an electrical dipole of dipole moment p. If the distance of Q from the dipole is r (much larger than the size of the dipole), then the electric field at Q is proportional to:
 - (1) p^2 and r^{-3} (2) p and r^{-2} (3) p^{-1} and r^{-2} (4) p and r^{-3}
- Q.50 A particle, with restoring force proportional to displacement and resisting force proportional to velocity is subjected to a force F sin ωt . If the amplitude of the particle is maximum for $\omega = \omega_1$ and the energy of the particle maximum for $\omega = \omega_2$, then :
 - (1) $\omega_1 \neq \omega_0$ and $\omega_2 = \omega_0$
 - (2) $\omega_1 = \omega_0$ and $\omega_2 = \omega_0$
 - (3) $\omega_1 = \omega_0$ and $\omega_2 \neq \omega_0$
 - (4) $\omega_1 \neq \omega_0$ and $\omega_2 \neq \omega_0$
- **Q.51** Correct order of –I effect is :
 - $(1) NR_3^+ > OR > F$ (2) $F > NR_3^+ > OR$
 - $(3) NR_3^+ > F > OR$ (4) $OR > -NR_3^+ > F$

- Q.52 Aspirin can be prepared by the reaction of acetyl chloride with:
 - (1) Benzoic acid
 - (2) Phenol
 - (3) p-hydroxy benzoic acid(4) o-hydroxy benzoic acid
- Cl\ /(
- Q.53 IUPAC name of CI CH_3 C = C C_2H_5 is:
 - (1) (Z)-2-chloro-3-iodo-2-pentene
 - (2) (E)-2-chloro-3-iodo-2-pentene
 - (3) 2-iodo-3-chloro-pentene
 - (4) None of the above
- **Q.54** Which of the following does not given iodoform test:
 - (1) 3-pentanone (2) 2-pentanone
 - (3) Ethanol (4) Ethanal
- Q.55 The product formed by the reaction of $CH_2 CH_2$ with RMgX is:
 - (1) RCH_2 – CH_2OH (2) R CH– CH_2OH
 - (3) R-O-CH₂CH₃ (4) CH₃-CH-CH₃
 OH
- **Q.56** Which of the following is not the characteristic of arenes:
 - (1) More stability
 - (2) Resonance
 - (3) Delocalization of π electrons
 - (4) Electrophilic addition
- Q.57 Which of the following gives most easily electrophilic substitution reaction:

- **Q.58** Which of the following does not give claisen condensation reaction:
 - $(1) C_6H_5COOC_2H_5$
 - (2) C₆H₅CH₂COOC₂H₅
 - $(3) CH_3COOC_2H_5$

Q.59	Percentage of C, H & N are given as follows:	Q.69	The concentration of ZnCl ₂ solution will change
•	C = 40% H = 13.33% N = 46.67%		when it is placed in a container which is
	The empirical formula will be:		made of:
	(1) CH_2N (2) C_2H_4N (3) CH_4N (4) CH_3N		(1) Al (2) Cu (3) Ag (4) None
Q.60	Glucose +x phenyl hydrazine → osazone 'x' will	Q.70	The cell reaction of an electrochemical cell is
Q. 00	be:		$Cu^{+2}(C_1) + Zn \rightarrow Zn^{+2}(C_2) + Cu$. The change in
	(1) 2 (2) 3 (3) 4 (4) 1		free energy will be the function of:
Q.61	The base found in DNA but not in RNA:		$(1) \log (C + C) \qquad (2) \log C_2$
Ç	(1) Thymine (2) Adenine		(1) $\ln(C_1 + C_2)$ (2) $\ln \frac{C_2}{C_1}$
	(3) Guanine (4) Cytosine		(3) $\ln C_2$ (4) $\ln C_1$
Q.62	2-Bromo pentane reacts with ethanolic KOH	Q.71	$A + B \stackrel{\longleftarrow}{=} C + D \text{ Constant} = K_1$
2.02	gives main product:	Q./1	$E + F \Longrightarrow G + H \text{ Constant} = K_2$
	(1) Trans-2-pentene (2) Cis-2-pentene		then $C + D + E + F \Rightarrow$ product. The constant of
	(3) 1-pentene (4) None of the above		reaction will be:
Q.63	Which of the following does not give		
	nucleophilic substitution with alcohol:		(1) $\frac{K_1}{K_2}$ (2) $\frac{K_2}{K_1}$
	(1) CH ₃ COCl (2) Acetic anhydride		2 1
	(3) Ether (4) None	0.72	(3) K_1K_2 (4) None of these
Q.64	Aniline reacts with Br ₂ water, NaNO ₂ /HCl gives	Q.72	Density of which of the following substance not decreases on adding in Br ₂ vapours:
	respectively:		(1) CCl_4 (2) CS_2
	(1) p-Bromo aniline, p-chloro aniline		(3) Ether (4) Coke
	(2) 2, 4, 6 tri bromo aniline, p-chloro aniline	Q.73	In which of the following molecule. The
	(3) 2, 4, 6 tri bromo aniline, Benzene diazonium	Q.70	internuclear distance will be maximum:
	chloride		(1) CsI (2) CsF
0.75	(4) p-bromo, aniline, Benzene diazonium chloride		(3) LiF (4) LiI
Q.65	A complex compound which is formed by ligands nitrate and chloride. It gives two moles	Q.74	The fertilizer which makes the soil acidic:
	of AgCl precipitate with AgNO ₃ . What will be		$(1) (NH_4)_2 SO_4$
	its formulae :		(2) Super phosphate of lime
	(1) $[Co(NH_3)_5NO_3]Cl_2$		(3) CH ₃ COONa
	(2) [Co(NH ₃) ₅ Cl]NO ₃ Cl		(4) Ca(NO3)2
	(3) $[Co(NH_3)_4Cl_2]NO_3$	Q.75	The chiral centre is absent in:
	$(4) \left[\text{Co(NH}_3)_4 \text{Cl NO}_3 \right] \text{Cl}$		(1) DCH ₂ -CH ₂ -CH ₂ -Cl
Q.66	Which of the following molecule is not		(2) CH ₃ -CHD-CH ₂ -Cl
	paramagnetic :		(3) CH ₃ –CHCl–CH ₂ D
	(1) Cu^{++} (2) Fe^{2+}		$(4) CH_3$ – $CHOH$ – CH_2 – CH_3
	(3) Cl^- (4) None of the above	Q.76	Number of isomers of [Pt(NH ₃) ₄][CuCl ₄]
Q.67	The number of antibonding electron pair in		complex are :
	O_2^{-2} is :		(1) 2 (2) 3
	(1) 4 (2) 3 (3) 2 (4) 1		(3) 4 (4) 5
Q.68	When $A + Water \rightarrow C + B$, B is reacted with D,	Q.77	$_{n}X^{m}$ emitted one α and 2β particles, then it will
	gas C again obtained. 'D' gives 'C' with H ₂ SO ₄ . B		become:
	gives yellow colour with bunsen flame. C is a		$(1)_{n}X^{m-4} \qquad (2)_{n-1}X^{m-1}$
	flamable gas then what would be A, B, C and D:	o ===	(3) $_{n}Z^{m-4}$ (4) None
	(1) K, H ₂ , NaOH, Zn (2) Na, NaOH, H ₂ , Zn	Q.78	When $X \to {}_{7}N^{14} + 2\beta^{-}$ then number of neutron will be in Y :
	(3) Li, H ₂ , LiOH, Zn (4) None of the above		will be in X:
			(1) 3 (2) 5 (3) 7 (4) 9

Q.79	1% solution of other compound is isotonic with	Q.90	In PO ₄ ⁻³ formal charge on every oxygen atom
	5% sucrose (sugar) solution. Then molecular wt.	Q. >0	and P-O bond order is respectively:
	of compound will be:		(1) 0.75 and 1.25 (2) 0.5 and 2
	(1) 32.4 (2) 68.4 (3) 129.6 (4) 34.2		(3) 1 and 1.5 (4) 0.75 and 2
Q.80	First ionization potential of Be and B will be:	Q.91	The radius of hydrogen shell is 0.53Å, then in
	(1) 8.8 and 8.8 (2) 6.6 and 6.6	Q.71	first excited state radius of shell will be:
	(3) 6.6 and 8.8 (4) 8.8. and 6.6		(1) 2.12 Å (2) 1.06 Å
Q.81	Which of the following gives colour with the		(3) 8.5 Å (4) 4.24 Å
	water :	Q.92	Mole fraction of solute is 0.2 in solution then
	(1) Cu^+ (2) Cr^{3+} (3) Na^+ (4) None	Q.72	lowering in V.P Δ P = 10. If lowering in V.P.
Q.82	Number of significant number will be in		$\Delta P = 20$ then mole fraction of solvent will be in
	following numbers :		solution :
	(a) 161 cm (b) 0.0161 (c) 1.61		(1) 0.2 (2) 0.4
	(1) 3, 3, 3 (2) 3, 4, 3		(3) 0.6 (4) 0.8
	(3) 3, 2, 3 (4) 3, 4, 4	Q.93	Uncertainity in position of a e and He is
Q.83	Maximum impurity in Pig iron will be of:	_	similar. If uncertainity in momentum of e is
	(1) Mn (2) P (3) Graphite (4) S		32×10^5 , then uncertainity in momentum of He
Q.84	Schottky defect shows:		will be:
	(1) Same number of cation and decrease in anions		$(1) 32 \times 10^5 \qquad (2) 16 \times 10^5$
	(2) Cations and anions are replaces from their		(3) 8×10^5 (4) None of these
	sites	Q.94	The number of molecules of ATP produced in
	(3) Maximum number of cations and anions are		the lipid metabolism of a molecule of palmitic
	same		acid is:
0.05	(4) None		(1) 56 (2) 36 (3) 130 (4) 86
Q.85	Maximum oxidation state will be of:	0.05	(3) 130 (4) 86
0.06	(1) La (2) Gd (3) Eu (4) Am	Q.95	Identify the correct statement regarding entropy:
Q.86	The IUPAC name of [Co(NH ₃) ₃ ClBrNO ₂] will be:		(1) At absolute zero of temperature, the entropy of all crystalline substances is
	(1) Triaminebromochloronitrocobaltate (III)		taken to be zero
	(2) Triaminebromochloronitrocobalt (III)		(2) At absolute zero of temperature, the entropy
	(3) Triaminebromonitrochlorocobalt (III)		of a perfectly crystalline substance is +ve
0.05	(4) Triaminenitrochlorocobalt (III)		(3) At absolute zero of temperature, entropy of
Q.87	By which activation energy calculate:		a perfectly crystalline substance is taken to
	(1) At a constant temp.		be zero
	(2) At two different temp.		(4) At 0°C, the entropy of a perfectly
	(3) For reversible reaction		crystalline substance is taken to be zero
0.00	(4) For volatile reaction	Q.96	The edge length of face centred unit cubic cells
Q.88	In the Haemoglobin (Molecular wt = 67200) iron		is 508 pm. If the radius of the cation is 110 pm, the radius of the anion is:
	found 0.33% (by weight). The number of iron atom will be in its one molecule:		
	(1) 1 (2) 2 (3) 3 (4) 4		(1) 144 pm (2) 398 pm (4) 618 pm
Q.89	$4NH_3 + 5O_2 \rightarrow 6H_2O + 4NO$	0.07	(3) 288 pm (4) 618 pm
Q.09	When one mole ammonia and one mole oxygen	Q.97	At the critical micelle concentration (CMC) the surfactant molecules :
	taken:		(1) Associate
	(1) Oxygen is completely consumed		(2) Dissociate
	(2) Ammonia is completely consumed		(3) Decompose
	(3) Both (1) and (2) are correct		(4) Become completely soluble
			(4) Decome completely soluble
	(4) No one is correct		

Q.98	Which one of the following pairs of substances	Q.107	Indicator of water pollution :	
	on reaction will not evolve H ₂ gas ?		(1) E. Coli (2) Chlorella	
	(1) Copper and HCl (aqueous)		(3) Beggiatoa (4) Ulothrix	
	(2) Iron and steam	Q.108	DNA of E. Coli:	
	(3) Iron and H ₂ SO ₄ (aqueous)		(1) ds circular (2) ss circular	
	(4) Sodium and ethyl alcohol		(3) ds Linear (4) ss Linear	
Q.99	The second order Bragg diffraction of X-rays	Q.109	Nucleic acid in HIV:	
	with $\lambda = 1.00$ Å from a set of parallel planes in a		(1) ss RNA (2) ds RNA	
	metal occurs at an angle 60°. The distance		(3) ss DNA (4) ds DNA	
	between the scattering planes in the crystal is:	Q.110	Knife of DNA:	
	(1) 2.00 Å (2) 1.00 Å		(1) DNA-ligase	
0.400	(3) 0.575 Å (4) 1.15 Å		(2) Restriction endonuclease	
Q.100	One mole of an ideal gas at 300 K is expanded isothermally from an initial volume of 1 litre to		(3) Exonuclease	
	10 litres. The ΔE for this process is $(R = 2 \text{ cal.})$		(4) Peptidase	
	$mol^{-1} K^{-1}$):	Q.111	Genetic engineering involves:	
	(1) 1381.1 cal. (2) Zero		(1) Use of restriction endonuclease on bacterial	
	(3) 163.7 cal. (4) 9 lit. atm.		DNA and formation of new traits	
Q.101	If Mendel might have studied 7 pairs of		(2) Use of Ligase for cutting DNA	
	characters in a plant with 12 chromosomes		(3) Developing instruments	
	instead of 14 then:		(4) Use of statistic in genetics	
	(1) He could not discovered independent	Q.112	Which is wrong for cytochrome P–450	
	assortment		(1) It contains Fe	
	(2) He might have discovered linkage		(2) It concern with oxidation	
	(3) He might have discovered crossing over		(3) It is a pigment	
O 102	(4) He might have not observed dominance Contraction in gall bladder stimulated by :	0.112	(4) It is a coloured cell	
Q.102	(1) CCK (2) PZ	Q.113	Enamel of teeth is secreted by :	
	(3) Secretin (4) Enterogastrin		(1) Ameloblast (2) Odontoblast	
Q.103	Water is essential for bryophyta:	Q.114	(3) Osteoblast (4) Osteoclast If a female having gene for haemophilia and	
Q.105	(1) For fertilization and homosporos nature	Q.114	colour-blindness on its one X-chromosome	
	(2) Water should be filled in archegonium for		marries a normal male then what are the	
	fertilization		chances in their offsprings:	
	(3) Water is necessary for movement of sperm		(1) 50% son diseased and 50% normal	
	(4) For dissemination of spores		(2) All normal offsprings	
Q.104	Which of the following yields citric acid:		(3) 100% daughters are carrier	
	(1) Penicillium citricum		(4) 100% son diseased	
	(2) Aspergillus niger	Q.115	First child of a normal male and female is	
	(3) Saccharomyces		albino, what are the chances of second child to be albino:	
	(4) Azospirilium		(1) 25% (2) 50% (3) 75% (4) 100%	
Q.105	Saccharomyces cerevissae is used in the	Q.116	Species separated by geographical barriers are	
	formation of :	Q.110	called:	
	(1) Ethanol (2) Methanol		(1) Allopatric (2) Sympatric	
0.105	(3) Acetic acid (4) Antibiotics		(3) Sibling (4) Endemic	
Q.106	AA Bb Cc genotypes form how many types of	Q.117	Point mutation induced by :	
	gametes:	-	(1) Adenine (2) Guanine	
	(1) 4 (2) 8 (3) 2 (4) 6		(3) 3 outosine (A) Bromouracil	

Q.118	Reason for trisomy in down's syndrome :	Q.128	Number of bones in hind limb of man:
	(1) Non disjunction during sperm formation		(1) 14 (2) 24
	(2) Non disjunction during egg formation		(3) 26 (4) 30
	(3) Non disjunction at the time of egg or sperm	Q.129	Which of the following stimulates the secretion
	formation		of gastric juice :
	(4) Addition of one extra chromosome during		(1) Gastrin (2) Enterogasterone
	mitosis		(3) Secretin (4) Hepatocrinin
Q.119	Multivalent chromosome form by:		Age of Dryopithecous:
	(1) Inversion		(1) 2.46 crore years (2) 2.46 lakh year
	(2) Deletion		(3) 1 lakh year (4) 1 crore year
	(3) Reciprocal translocation	Q.131	Which of the following statement is true:
	(4) Point mutation		(1) Homo erectus is direct ancestor of Homo
Q.120	A cup have 10 ⁵ bacterial cells. Each bacterial cell		sapiens
	divides in 35 minutes. What shall be the number of bacteria after 175 min.		(2) Neanderthal man is direct ancestor of
	(1) 2×10^5 (2) 5×10^5		modern man
	(1) 2×10^5 (2) 3×10^5 (3) 32×10^5 (4) 16×10^5		(3) Australopithecous is direct ancestor of modern man
Q.121	Deficiency of protein leads to:		(4) Fossils of cromagnon man first found in
Q.121	(1) Rickets (2) Scurvy		Ethiopia
	(3) Kwashiorker (4) Carotenemia	Q.132	Which statement is wrong for <i>Cycas</i> :
Q.122	Lactose composed of :	C	(1) Xylem have vessels
Q.122	(1) Glucose + galactose		(2) Female flowers well developed
	(2) Glucose + fructose		(3) It has coralloid roots
	(3) Glucose + glucose		(4) Circinate ptyxis
	(4) Glucose + mannose	Q.133	Evolution of heart from one to two, three and
Q.123	True statement for cellulose molecule :		four chambered proves :
	(1) β–1–4 linkage, unbranched		(1) Biogenetic law of Haeckel
	(2) β–1–4 linkage, branched		(2) Lamarckism
	(3) α –1–4 linkage, branched		(3) Hardy weinberg's law
	(4) β–1–6 linkage, unbranched		(4) Neo Darwinism
Q.124	True statement for <i>Ulothrix</i> :	Q.134	What is necessary for ripening of fruits:
	(1) Filamentous thallus and flagellated		(1) 80% of ethylene (2) Abscissic acid
	reproductive structures		(3) 2, 4 D (4) A.M.O. – 16
	(2) Branched thallus	Q.135	Which of the following induces morphogenesis
	(3) Flagellated cells absent		in tissue culture : (1) Gibberline (2) Cytokinin
	(4) None of the above		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Q.125	Which of the following exercise a control over	Q.136	(3) IAA (4) Ethylene Which weedicide can defoliate the complete
	transcription:	Q.130	forest:
	(1) Operator (2) Regulator		(1) 2, 4-D (2) AMO–1618
	(3) Promoter (4) Recon		(3) MH (4) ABA
Q.126	Vitamin which induces maturation of R.B.C.:	Q.137	Heterosis (Hybrid vigour) desirable in
	(1) B_1 (2) A	C 1-2-1	vegetatively propagated plants because :
	(3) B_{12} (4) D		(1) Heterosis is maintained for a longer duration
Q.127	· ·		(2) These plants are easy to cultivate
	(1) Dentary (2) Maxilla		(3) Vegetative reproduction help to multiply fast
	(3) Premaxilla (4) Palatine		(4) It is due to homozygosity

Q.138	What is correct for st	ages of <i>Puccinia</i> :	Q.151	In angiosperm, chara	acters of flowers are used in
Q1200	(1) Telia and aecia on wheat		C	classification because :	
	(2) Telia and uredo stage on wheat			(1) Characters of flowers are conservative	
	(3) Telia and aecia or	=		(2) Flowers are large	;
	(4) None			(3) Flowers are attract	ctive
Q.139				(4) None of the abov	e
Q.107	(1) Rickettssiae	(2) Chlamydia	Q.152		alveoli takes place by:
	(3) Salmonella typhi	•		· · ·	(2) Passive transport
Q.140	Agent orange is:	(1) My cooucterium		(3) Simple diffusion	` '
Q.140	(1) Biodegradable ins	secticide	Q.153	Oral contraceptives of	
				(1) Progesterone	(2) LH
	(2) Di auxin (2–4,D and 2, 4, 5 T) weedicide (3) Biofertilizer		0.154	(3) Oxytocin	(4) Steroles
	(4) Biopesticide		Q.154	In S-phase, DNA is replicated in a medium	
Q.141	Largest sperm of :			containing radioactive thymidine, radioactivity will be observed in :	
Q.141	(1) <i>Pinus</i>	(2) Cycas		(1) Euchromatin	(2) Heterochromatin
	` '	(4) Sequoia		(3) Both	(4) Nucleolus
0.142	(3) Ephedra	es (pneumatic bones) occurs	Q.155	CO is harmful becau	* *
Q.142	in:	es (pheumatic bones) occurs		(1) It forms stable co	empound with hemoglobin
	(1) Mammals	(2) Reptiles		(2) It blocks mitosis	
	(3) Urodela	(4) Aves		(3) It is mutagenic	
Q.143	Non–symbiotic nitro	* /		(4) It causes defoliat	
Q.145	(1) Rhizobium	(2) Azospirilium	Q.156	Function of thyrocal	
	(3) Azotobacter	(4) Nitrosomonas		(1) To reduce the cal	
Q.144	* *	` '		* *	alcium level in blood
Ų.144	Extrastelar secondary growth takes place by: (1) Vascular cambium (2) Phellogen			(3) Oppose the action	•
	(3) Phellem	(4) Phelloderm	0.157	(4) Maturation of go	
Q.145			Q.157	Osmotic potential and water potential of pure water respectively:	
Q.143	(1) Temperature will	=		(1) 0 and 0	(2) 0 and 1
				(3) 100 and 0	(4) 100 and 100
	(2) Temperature will increase(3) Plants will flourish well		Q.158	A normal leaf cell have how many genomes:	
	(4) No effect	W Well		(1) 1	(2) 2
Q.146	* *	Capparis belongs to:		(3) 3	(4) 4
Q.1 10	(1) Deciduous forest	• •	Q.159	Contractile protein is	3:
	(3) Thorn forest	(4) Evergreen forest		(1) Actin	(2) Myosin
Q.147	Animals of desert are	` ′		(3) Troponin	(4) Tropomysin
Q.147	(1) Arboreal	(2) Fossorial	Q.160	Unit of contraction:	(2) > 4 (2)
	(3) Crepuscular	(4) Nocturnal		(1) Sarcomere	(2) Muscle fiber
Q.148		only involuntary muscles :	0.1(1	(3) Actin	(4) None
Q.140	(1) Urethra	(2) Irish	Q.161	Oxidation of palmitic (1) 129 ATP	(2) 132 ATP
	(3) Heart muscles	(4) Blood vessels		(1) 129 ATP (3) 36 ATP	(4) 76 ATP
Q.149	Solenocytes occur in	` '	Q.162	` /	rgy trapped by green plants
Q.149	•		Q.102	in food is called:	igy trapped by green plants
	(1) Platyhelminthes	(2) Arthropoda		(1) Gross primary pr	oduction
0.150	(3) Annelida (4) Aschelminthes			(2) Net primary prod	
Q.150				(3) Standing crop	
	(1) Metagenesis	(2) Morphogenesis		(4) Standing state	
	(3) Apolysis	(4) Pedogenv			

Q.163	Role of microtubules :		$(1) B \rightarrow A \leftarrow C$	
	(1) To help in cell division		↑	
	(2) Cell membrane formation		D	
	(3) Respiration		$(2) A \to B \to C \to D$	
	(4) Pinocytosis		$(3) D \to C \to B \leftarrow A$	
Q.164	Difference between eukaryotes and prokaryotes:		$(4) A \rightarrow B \leftarrow C \rightarrow D$	
	(1) ss circular DNA in prokaryotes	Q.174	What change occurs during conversion of proto	
	(2) Histone with prokaryotic DNA		chlorophyll to chlorophyll:	
	(3) Operon in eukaryotes		(1) Addition of 2H in one pyrrole ring	
	(4) Membrane bound organelles in eukaryotes		(2) Loss of 2H	
Q.165	According to five kingdom system blue green		(3) Addition of Mg	
	algae belongs to:		(4) Loss of Mg	
	(1) Metaphyta (2) Monera	Q.175	Transduction in bacteria carried out by:	
	(3) Protista (4) Algae		(1) Bacteriophage (2) B.G.A.	
Q.166	Bacteria are essential in carbon cycle as:		(3) Mycoplasma (4) Rickettsiae	
	(1) Decomposer (2) Synthesizer	Q.176	Which of the following most used in genetic	
	(3) Consumer (4) Pri. Producer		engineering:	
Q.167	What occurs in crossing over:		(1) E. coil and Agrobacterium	
	(1) Recombination (2) Mutation		(2) Mycobacteria and Salmonella	
	(3) Independent assortment		(3) Aspergillus	
0.160	(4) None	0.177	(4) Penicillium	
Q.168	Histamine secreted by:	Q.177	Variations in proteins are due to : (1) Sequence of amino acids	
	(1) Mast cells (2) Fibroblast		(2) Number of amino acids	
0.160	(3) Histocytes (4) Plasma cells		(3) R–group	
Q.169	Arterial blood pressure in human beings: (1) 120 and 80 mm Hg (2) 150 and 100 mm Hg		(4) None	
		Q.178	Genetic drift in mendelian population takes	
Q.170	(3) 50 and 100 mm Hg (4) None 70 Which of the following survives a temperature of		place in :	
Q.170	104 to 106°C:		(1) Small population (2) Large population	
	(1) Marine Archaebacteria		(3) Oceanic population (4) Never occurs	
	(2) Hot water spring thermophiles	Q.179	Embryo of sunflower have :	
	(3) Seeds of angiosperms		(1) Two cotyledons (2) One cotyledons	
	(4) Eubacteria		(3) Eight cotyledons (4) Cotyledons absent	
Q.171	Mental retardness in man occur due to:	Q.180	Effect of light and dark rhythm on plants:	
	(1) Loss of one X chromosome		(1) Photonasty (2) Phototropism	
	(2) Addition of one X chromosome	0.404	(3) Photoperiodism (4) Photomorphogenesis	
	(3) Slight growth in Y	Q.181	ABO blood group have :	
	(4) Overgrowth in Y		(1) Two codominant and one recessive allele	
Q.172	Symptoms of Lathyrism :		(2) Two codominant and two recessive allele	
	(1) Bone deformation		(3) Two incompletely dominant genes	
	(2) Muscular dystrophy and paralysis	O 192	(4) Two pseudo alleles Walking fern name of <i>Adiantum</i> is due to:	
	(3) Asphyxia	Q.182	_	
a	(4) Cordiac arrest		(1) Dispersal by animals	
Q.173	A cell 'A' with D.P.D. = 8 is surrounded by three		(2) Reproduction by spores	
	cells 'B', 'C' and 'D' with D.P.D. respectively 4, 6 and 5. What shall be the direction of water		(3) Vegetative reproduction	
	and J. What shall be the direction of water		(4) Power of locomotion	

