SYS3041 Architecture d'un système à microprocesseur

TD 1: Représentation des données

Exercice 1

Convertir en binaire, puis en octal et en hexadécimal les nombres suivants :

Décimal	Binaire	Octal	Hexadécimal
100			
127			
128			
256			
1023			
1024			

Exercice 2

La première colonne du tableau contient des « char » (nombres signés en complément à 2 limités à 8 bits). Remplir la deuxième colonne avec les valeurs décimales correspondantes à la première colonne et la troisième colonne avec le complément à deux de ces valeurs (leurs valeurs opposées):

Nombre binaire	Sa valeur décimale	Son complément à 2
11010101		
00111000		
0000001		
10000000		
00000000		

Vérifier que lorsqu'on fait l'addition d'un nombre binaire et son complément à 2, on obtient un résultat nul (0000000). Quelle différence impliqueraient les mêmes additions en Complément à 1 ?

Exercice 3

Traduire les opérations sur 6 bits suivantes en décimal, les nombres représentés étant signés (complément à 2), puis donner les résultats en binaire et en décimal :

Opération binaire	Opération décimale	Résultat binaire	Résultat décimal
001110 + 110010			
101011 + 111000			
111001 + 001010			
010101 - 000111			
111001 - 001010			
101011 - 100110			

Exercice 4

Convertir en binaire, en virgule fixe:

- 0,48 avec la partie fractionnaire exprimée sur 6 bits
- 0,83 avec la partie fractionnaire exprimée sur 4 bits
- 37,62 avec la partie fractionnaire exprimée sur 8 bits

Exercice 5

Donner la représentation en virgule flottante de 37,625 en simple précision dans la norme IEEE 754.

Codage en simple précision :

Taille	Signe	Exposant	Fraction / Pseudo-mantisse
32 bits	1 bit	8 bits	23 bits

Règle générale:

Signe (S)	Exposant (E)	Pseudomantisse (P)
1 bit	e bits	p bits

Le nombre ainsi représenté a pour valeur : $(-1)^S*2^{E-(2^{e-1}-1)}*(1+\frac{P}{2^p})$

$$(-1)^S * 2^{E - (2^{e-1} - 1)} * (1 + \frac{P}{2^p})$$