- Problem (1) (a) Let $P = \{I \subsetneq R \mid I \text{ is an ideal of } R\}$ be the partially ordered set of proper ideals of R. Then $\mathfrak{m} \in P$ is called a maximal ideal if it is a maximal element of this partially ordered set. Equivalently, this means that R/\mathfrak{m} is a field.
 - (b) Let $a \notin \mathfrak{m}$. Then $\langle a \rangle + \mathfrak{m} \supsetneq \mathfrak{m}$, so $\langle a \rangle + \mathfrak{m} = R$. Hence there is $b \in R$ and $c \in \mathfrak{m}$ with ab + c = 1, so that ab = 1 c. But now $1 c \in 1 + \mathfrak{m}$, which by assumption only consists of units. Hence ab is a unit. But then both factors must be units, so that a must be a unit.

We have shown that $R \setminus \mathfrak{m} \subseteq R^{\times}$, i.e. $\mathfrak{m} \supseteq R \setminus R^{\times}$. But any proper ideal only consists of non-units, so that $\mathfrak{m} \subseteq R \setminus R^{\times}$. Hence $\mathfrak{m} = R \setminus R^{\times}$, which means exactly that R is local with unique maximal ideal \mathfrak{m} .

- (c) Let $\overline{\mathfrak{m}}\subseteq \mathbb{Q}[x,y]/_{\left\langle x^{20},\,y^{20}\right\rangle}$ be a maximal ideal. This corresponds to a maximal ideal $\mathfrak{m}\subseteq \mathbb{Q}[x,y]$ with $\langle x^{20},y^{20}\rangle\subseteq \mathfrak{m}$. Hence $x^{20},y^{20}\in \mathfrak{m}$. But since \mathfrak{m} is a maximal ideal, it's also a prime ideal. Hence $x,y\in \mathfrak{m}$, hence $\langle x,y\rangle\subseteq \mathfrak{m}$. Since $\langle x,y\rangle\subseteq \mathbb{Q}[x,y]$ is a maximal ideal, we have $\langle x,y\rangle=\mathfrak{m}$. Hence $\mathbb{Q}[x,y]/_{\left\langle x^{20},\,y^{20}\right\rangle}$ has a unique maximal ideal, i.e. it's a local ring.
- (d) One can see that the map

$$\begin{array}{c} \mathbb{C}[x,y]/\langle x^3-y^5\rangle \to \mathbb{C}[t^3,t^5], \\ [x] \mapsto t^5, \\ [y] \mapsto t^3 \end{array}$$

is an isomorphism.

Clearly, $\mathbb{C}[t^3, t^5]$ is an integral domain but not a field. Hence $\langle x^3 - y^5 \rangle \subseteq \mathbb{C}[x, y]$ is a prime ideal but not a maximal ideal.

Problem (2) (a) Let M and N be R-modules. Then the tensor product $M \otimes_R N$ is an R-module equipped with a bilinear map $\alpha: M \times N \to M \otimes_R N$ such that for any R-module P and any bilinear map $\beta: M \times N \to P$ there is a unique linear map $\tilde{\beta}: M \otimes_R N \to P$ with $\beta = \tilde{\beta} \circ \alpha$.

(b) Take any element of $U^{-1}R \otimes_R M$. Such an element can be written as $\sum_{i=1}^n \frac{a_i}{b_i} c_i$ with $a_i \in R$, $b_i \in U$ and $c_i \in M$. But now

$$\sum_{i=1}^{n} \frac{a_i}{b_i} c_i = \sum_{i=1}^{n} \frac{\left(\prod_{j \neq i} b_j\right) a_i}{\prod_j b_j} c_i = \frac{1}{\prod_j b_j} \sum_{i=1}^{n} \left(\prod_{j \neq i} b_j\right) a_i c_i$$

with $\prod_j b_j \in U$ and $\sum_{i=1}^n \left(\prod_{j \neq i} b_j\right) a_i c_i \in M$.

- (c)
- (d)
- (e)
- Problem (3) (a
 - (b)
 - (c)
 - (d)
 - (e)