

Введение в синтаксический анализ Слова, языки и грамматики

Автор: Григорьев Семён

Санкт-Петербургский государственный университет Математико-Механический факультет Кафедра системного программирования

26 октября 2011г.

Слова, языки и грамматики

А. Е. Пентус, М. Р. Пентус "Теория формальных языков"

Definition

Алфавитом называется конечное непустое множество. Его элементы называются **символами** (**буквами**).

Definition

Алфавитом называется конечное непустое множество. Его элементы называются **символами** (**буквами**).

Definition

Словом (**цепочкой**, **строкой**) в алфавите Σ называется конечная последовательность элементов Σ .

Пример

- ullet Алфавит: $\Sigma = \{a,b,c\}$
- ullet a слово в алфавте Σ
- ullet abbc слово в алфавте Σ

Definition

Слово, не содержащее ни одного символа(то есть последовательность длины 0), называется **пустым словом** и обозначается ε .

Definition

Слово, не содержащее ни одного символа(то есть последовательность длины 0), называется **пустым словом** и обозначается ε .

Definition

Длина слова ω , обозначаемая $|\omega|$, есть число символов в ω , причём каждый символ считается столько раз, сколько раз он встречается в ω .

Пример

- |abbc| = 4
- $|\varepsilon|=0$

Definition

Если x и y — слова в алфавите Σ , то слово xy (результат приписывания слова y в конец слова x) называется **конкатенацией** слов x и y. Иногда конкатенацию слов x и y обозначают $x \cdot y$.

Definition

Если x и y — слова в алфавите Σ , то слово xy (результат приписывания слова y в конец слова x) называется **конкатенацией** слов x и y. Иногда конкатенацию слов x и y обозначают $x \cdot y$.

Definition

Если x — слово и $n \in \mathbb{N}$, то через x^n обозначается слово $\underbrace{x \cdot x \cdot \ldots \cdot x}_{n \text{ pas}}$.

По определению $x^0 \rightleftharpoons \varepsilon$ (знак \rightleftharpoons читается "равно по определению"). Всюду далее показатели над словами и символами, как правило, являются натуральными числами.

Пример

- По принятым соглашениям:
 - $ightharpoonup ba^3 = baaa$
 - $(ba)^3 = bababa$

Definition

Говорят, что слово x — *префикс* слова y (обозначение $x \sqsubset y$), если y = xu для некоторого слова u.

Пример: $\varepsilon \sqsubset baa, b \sqsubset baa, ba \sqsubset baa, baa \sqsubset baa$

Definition

Говорят, что слово x — *префикс* слова y (обозначение $x \sqsubset y$), если y = xu для некоторого слова u.

Пример: $\varepsilon \sqsubset baa, b \sqsubset baa, ba \sqsubset baa, baa \sqsubset baa$

Definition

Говорят, что слово $x - cy \phi \phi u \kappa c$ слова у (обозначение $x \supset y$), если y = u x для некоторого слова u.

Definition

Говорят, что слово x — **подслово** (substring) слова y, если y = uxv для некоторых слов u и v.

Definition

Через $|w|_a$ обозначается количество вхождений символа a в слово w.

Definition

Если $L \subseteq \Sigma^*$, то L называется *языком* (или *формальным языком*) над алфавитом Σ .

Слова, языки и грамматики

Порождающие грамматики

Definition

Порождающей грамматикой (грамматикой типа 0)называется четвёрка $G := \{N, \Sigma, P, S\}$, где N и Σ – конечные алфавиты, $N \cap \Sigma = \varnothing$, $P \subset (N \cup \Sigma)^+ \times (N \cup \Sigma)^*$, P конечно и $S \in N$.

Здесь:

- Σ основной алфавит (терминальный алфавит), его элементы называются терминальными символами или терминалами
- N вспомогательный алфавит (нетерминальный алфавит), его элементы называются нетерминальными символами, нетерминалами
- S начальный символ
- Пары $(\alpha, \beta) \in P$ называются *правилами подстановки*, просто *правилами* или *продукциями* и записываются в виде $\alpha \to \beta$

Порождающие грамматики. Пример

Пусть даны множества:

- $N = \{S\}$
- $\Sigma = \{a, b, c\}$
- $P = \{S \rightarrow acSbcS, cS \rightarrow \varepsilon\}$

Тогда (N, Σ, P, S) является порождающей грамматикой.

Будем обозначать:

- элементы множества Σ строчным и буквам и из начала латинского алфавита
- элементы множества N заглавными латинскими буквами

Обычно грамматику задают в виде списка правил, подразумевая, что алфавит N составляют все заглавные буквы, встречающиеся в правилах, а алфавит Σ – все строчные буквы, встречающиеся в правилах. При этом правила порождающей грамматики записывают в таком порядке, что левая часть первого правила есть начальный символ S.

Для обозначения n правил с одинаковыми левыми частями $lpha o eta_1,...,lpha o eta_n$ часто используют сокращённую запись $lpha o eta_1|...|eta_n.$

Definition

Пусть дана грамматика G. Пишем $\varphi \underset{G}{\Rightarrow} \psi$, если $\varphi = \eta \alpha \theta$, $\psi = \eta \beta \theta$ и $(\alpha \to \beta) \in P$ для некоторых слов α , β , η , θ в алфавите $N \cup \Sigma$.

Remark

Когда из контекста ясно, о какой грамматике идёт речь, вместо \Longrightarrow_G можно писать просто \Longrightarrow .

Порождающие грамматики. Пример

Пусть
$$G=\langle S,a,b,c,S o acSbcS,cS o arepsilon,S
angle$$
 . Тогда $cSacS Rightarrow cSacS Rightarrow cSacS$

Definition

Если $\omega_0 \underset{G}{\Rightarrow} \omega_1 \underset{G}{\Rightarrow} ... \underset{G}{\Rightarrow} \omega_n$, где $n \geq 0$, то пишем $\omega_0 \underset{G}{\overset{*}{\Rightarrow}} \omega_n$ (другими словами, бинарное отношение $\underset{G}{\overset{*}{\Rightarrow}}$ является рефлексивным, транзитивным замыканием бинарного отношения $\underset{G}{\Rightarrow}$, определённого на множестве $(N \cup \Sigma)^*$). При этом последовательность слов $\omega_0, \omega_1, ..., \omega_n$ называется выводом (derivation) слова ω_n из слова ω_0 в грамматике G. Число n называется длиной (количеством шагов) этого вывода.

Remark

В частности, для всякого слова $\omega \in (N \cup \Sigma)^*$ имеет место $\omega \overset{*}{\underset{G}{\Rightarrow}} \omega$ (так как возможен вывод длины 0)

Порождающие грамматики. Пример

Пусть $G=\langle \{S\}, \{a,b\}, \{S o aSa,S o b\}, S \rangle$. Тогда $aSa \overset{*}{\underset{G}{\rightleftharpoons}}$ aaaaSaaaa. Длина этого вывода — 3.

Definition

Язык, *порождаемый грамматикой* G, – это множество $L(G) \rightleftharpoons \{\omega \in \Sigma^* | S \overset{*}{\underset{G}{\Rightarrow}} \omega\}$. Будем также говорить, что грамматика G *порождаёт* язык L(G).

Remark

Существенно, что в определение порождающей грамматики включены два алфавита — Σ и N. Это позволяет нам "отсеять" часть слов, получаемых из начального символа. А именно, отбрасывается каждое слово, содержащее хотя бы один символ, не принадлежащий алфавиту Σ .

Порождающие грамматики. Пример

Если
$$G=\langle\{S\},\{a,b\},\{S o aSa,S o bb\},S\rangle$$
, то $L(G)=\{a^nbba^n|n\geq 0\}.$

Definition

Две грамматики эквивалентны, если они порождают один и тот же язык.

Пример

Грамматика S o abS, S o a и грамматика T o aU, U o baU, U o arepsilon эквивалентны.

Слова, языки и грамматики

Классы грамматик

Классы грамматик

Definition

Контекстной грамматикой (контекстно-зависимой грамматикой, грамматикой непосредственно составляющих, HC-грамматикой, грамматикой типа 1) (context-sensitive grammar, phrase-structure grammar) называется порождающая грамматика, каждое правило которой имеет вид $\eta A \theta \to \eta \alpha \theta$, где $A \in N$, $\eta \in (N \cup \Sigma)^*$, $\theta \in (N \cup \Sigma)^+$.

Definition

Контекстно-свободной грамматикой (КС-грамматикой, бесконтекстной грамматикой, грамматикой типа 2) (context-free grammar) называется порождающая грамматика, каждое правило которой имеет вид $A \to \alpha$, где $A \in N$, $\alpha \in (N \cup \Sigma)^*$.