A Complete Proof System for 1-Free Regular Expressions Modulo Bisimilarity

Clemens Grabmayer and Wan Fokkink

Departments of Computer Science

L'Aguila, Italy, and Amsterdam, The Netherlands

LICS 2020 July 8-11, 2020 overview process semantics properties BBP proof strategy LLEE lemmas completeness proof collapse summary resource

Overview

- 1-free regular (star) expressions
- Milner's process interpretation
 - axiomatization question (1984) for system Mil
- proof system BBP (Bergstra–Bethke–Ponse) for 1-free star expr's

verview process semantics properties BBP proof strategy LLEE lemmas completeness proof collapse summary resource

Overview

- ▶ 1-free regular (star) expressions
- Milner's process interpretation
- axiomatization question (1984) for system Mil
- proof system BBP (Bergstra–Bethke–Ponse) for 1-free star expr's
- classical proof approach for completeness fails
- new approach: structure-constrained process graphs
 - ▶ (layered) loop existence and elimination (LLEE)

rerview process semantics properties BBP proof strategy LLEE lemmas completeness proof collapse summary resource

Overview

- ▶ 1-free regular (star) expressions
- Milner's process interpretation
- axiomatization question (1984) for system Mil
- proof system BBP (Bergstra–Bethke–Ponse) for 1-free star expr's
- classical proof approach for completeness fails
- new approach: structure-constrained process graphs
 - ► (layered) loop existence and elimination (LLEE)
- lemmas
 - preservation of LLEE under bisimulation collapse
- completeness proof

Definition (Kleene, 1951)

Regular expressions over alphabet A with binary Kleene star:

$$e, f := 0 \mid 1 \mid a \mid e + f \mid e \cdot f \mid e^{\mathfrak{B}} f$$
 (for $a \in A$).

Definition (Kleene, 1951, Copi–Elgot–Wright, 1958)

Regular expressions over alphabet A with binary/unary Kleene star:

$$e, f := 0 \mid 1 \mid a \mid e+f \mid e \cdot f \mid e^{\otimes} f$$
 (for $a \in A$).
 $e, f := 0 \mid a \mid e+f \mid e \cdot f \mid e^{\star}$ (for $a \in A$).

with unary Kleene star *: 1 is definable as 0*

Definition (Kleene, 1951, Copi-Elgot-Wright, 1958)

Regular expressions over alphabet *A* with binary/unary Kleene star:

$$e, f := 0 \mid 1 \mid a \mid e+f \mid e \cdot f \mid e^{\otimes} f$$
 (for $a \in A$).
 $e, f := 0 \mid a \mid e+f \mid e \cdot f \mid e^{\star}$ (for $a \in A$).

- with unary Kleene star *: 1 is definable as 0*
- ▶ with binary Kleene star [®]: 1 is not definable (in its absence)

Definition (Kleene, 1951, Copi-Elgot-Wright, 1958)

Regular expressions over alphabet A with binary / unary Kleene star:

$$e, f := 0 \mid 1 \mid a \mid e+f \mid e \cdot f \mid e^{\otimes} f$$
 (for $a \in A$).
 $e, f := 0 \mid a \mid e+f \mid e \cdot f \mid e^{\star}$ (for $a \in A$).

- with unary Kleene star *: 1 is definable as 0*
- ▶ with binary Kleene star [®]: 1 is not definable (in its absence)

Definition

1-free regular (*star*) expressions over alphabet *A*:

$$e, f := \mathbf{0} \mid a \mid e + f \mid e \cdot f \mid e^{\otimes} f$$
 (for $a \in A$).

Process semantics [] P (Milner, 1984)

```
0 \stackrel{\|\cdot\|_P}{\longmapsto}  deadlock \delta, no termination
      1 \stackrel{\|\cdot\|_p}{\longmapsto} empty process \epsilon, then terminate
                     atomic action a, then terminate
e + f \mapsto \underset{\longrightarrow}{\| \cdot \|_{P}} \text{ alternative composition of } [e]_{P} \text{ and } [f]_{P}
 e \cdot f \stackrel{\|\cdot\|_P}{\longrightarrow}  sequential composition of [e]_P and [f]_P
                     unbounded iteration of [e]_P, option to terminate
```

Process semantics [] (Milner, 1984, Bergstra, Bethke, Ponse, 1994)

 $0 \stackrel{\llbracket \cdot \rrbracket_p}{\longrightarrow} \text{deadlock } \delta$, no termination

- $a \stackrel{\llbracket \cdot \rrbracket_P}{\longmapsto}$ atomic action a, then terminate
- $e+f \stackrel{\llbracket \cdot \rrbracket_P}{\longmapsto} \text{alternative composition of } \llbracket e \rrbracket_P \text{ and } \llbracket f \rrbracket_P$
- $e \cdot f \stackrel{\llbracket \cdot \rrbracket_P}{\longmapsto}$ sequential composition of $\llbracket e \rrbracket_P$ and $\llbracket f \rrbracket_P$
- $e^{\otimes}f \stackrel{[\![\cdot]\!]_P}{\longmapsto}$ unbounded iteration of $[\![e]\!]_P$, option to continue with $[\![f]\!]_P$

$$[(a \cdot ((a \cdot (b+b \cdot a)) \otimes c)) \otimes 0]_{\mathbf{p}}$$

$$[(a \cdot ((a \cdot (b + b \cdot a))^{\otimes} c))^{\otimes} 0]_{\mathbf{p}}$$

$$[(a \cdot ((a \cdot (b+b \cdot a)) \otimes c)) \otimes 0]_{\mathbf{p}}$$

$$[(a \cdot ((a \cdot (b+b \cdot a)) \otimes c)) \otimes 0]_{\mathbf{p}}$$

$$\mathcal{C}((a \cdot ((a \cdot (b + b \cdot a)) \otimes c)) \otimes 0)$$

$$\mathcal{C}((a \cdot ((a \cdot (b + b \cdot a)) \otimes c)) \otimes 0)$$

$$[\![a\cdot((c\cdot a+a\cdot(b\cdot a\cdot((c\cdot a)^{\otimes}a))^{\otimes}b)^{\otimes}0)]\!]_{\boldsymbol{P}}$$

$$\mathcal{C}((a \cdot ((a \cdot (b + b \cdot a)) \otimes c)) \otimes 0)$$

$$\llbracket a \cdot ((c \cdot a + a \cdot (b \cdot a \cdot ((c \cdot a)^{\otimes} a))^{\otimes} b)^{\otimes} 0) \rrbracket_{\boldsymbol{P}}$$

$$\mathcal{C}((a \cdot ((a \cdot (b + b \cdot a)) \otimes c)) \otimes 0)$$

$$[a \cdot ((c \cdot a + a \cdot (b \cdot a \cdot ((c \cdot a)^{\otimes} a))^{\otimes} b)^{\otimes} 0)]_{\mathbf{P}}$$

$$\mathcal{C}((a \cdot ((a \cdot (b + b \cdot a)) \otimes c)) \otimes 0)$$

$$\llbracket a \cdot ((c \cdot a + a \cdot (b \cdot a \cdot ((c \cdot a)^{\otimes} a))^{\otimes} b)^{\otimes} 0) \rrbracket_{\mathbf{P}}$$

$$\mathcal{C}((a \cdot ((a \cdot (b + b \cdot a)) \otimes c)) \otimes 0)$$

$$[\![a\cdot((c\cdot a+a\cdot(b\cdot a\cdot((c\cdot a)^{\otimes}a))^{\otimes}b)^{\otimes}0)]\!]_{\boldsymbol{P}}$$

$$\mathcal{C}((a \cdot ((a \cdot (b + b \cdot a)) \otimes c)) \otimes 0)$$

$$\mathcal{C}(a \cdot ((c \cdot a + a \cdot (b \cdot a \cdot ((c \cdot a)^{\otimes} a))^{\otimes} b)^{\otimes} 0))$$

ww process semantics properties BBP proof strategy LLEE lemmas completeness proof collapse summary resources

$$\rightleftharpoons p \ a \cdot ((c \cdot a + a \cdot (b \cdot a \cdot ((c \cdot a)^{\circledast}a))^{\circledast}b)^{\circledast}0)$$

Properties of $[\![\cdot]\!]_P$

Not every finite-state process is [.]p-expressible modulo ±.

Properties of $[\![\cdot]\!]_P$

- Not every finite-state process is []_P-expressible modulo ±.
- ▶ Fewer identities hold for \Leftrightarrow_P than for $=_L$: $\Leftrightarrow_P \subseteq =_L$.

Complete axiomatization \mathbf{F}_1 of $=_L$ (Aanderaa/Salomaa, 1965/66)

Axioms:

$$\frac{e = f \cdot e + g}{e = f^* \cdot g} \text{ FIX } \quad \text{(if } \underbrace{\{\epsilon\} \notin \llbracket f \rrbracket_L} \text{)}$$

$$non\text{-empty-word}$$

$$property$$

Sound and unsound axioms with respect to ⇔_P

Axioms:

(A1)
$$e + (f + g) = (e + f) + g$$
 (A7) $e \cdot 1 = e$
(A2) $(e \cdot f) \cdot g = e \cdot (f \cdot g)$ (A8) $e \cdot 0 = 0$
(A3) $e + f = f + e$ (A9) $e + 0 = e$
(A4) $(e + f) \cdot g = e \cdot g + f \cdot g$ (UKS1) $e^* = 1 + e \cdot e^*$
(A5) $e \cdot (f + g) = e \cdot f + e \cdot g$ (UKS2) $e^* = (1 + e)^*$
(A6) $e + e = e$

$$\frac{e = f \cdot e + g}{e = f^* \cdot g} \text{ FIX} \quad \text{(if } \{\epsilon\} \notin \llbracket f \rrbracket_L \text{)}$$

$$non-empty-word$$

$$property$$

Adaptation Mil for ←p (Milner, 1984)

Axioms:

(A1)
$$e + (f + g) = (e + f) + g$$
 (A7) $e \cdot 1 = e$
(A2) $(e \cdot f) \cdot g = e \cdot (f \cdot g)$ (A8) $0 \cdot e = 0$
(A3) $e + f = f + e$ (A9) $e + 0 = e$
(A4) $(e + f) \cdot g = e \cdot g + f \cdot g$ (UKS1) $e^* = 1 + e \cdot e^*$
(B6) $e + e = e$

$$\frac{e = f \cdot e + g}{e = f^* \cdot g} \text{ RSP* (if } \{\epsilon\} \notin \llbracket f \rrbracket_L)$$

$$non-empty-word$$

$$property$$

Adaptation Mil for ←p (Milner, 1984)

Axioms:

(A1)
$$e + (f + g) = (e + f) + g$$
 (A7) $e \cdot 1 = e$
(A2) $(e \cdot f) \cdot g = e \cdot (f \cdot g)$ (A8) $0 \cdot e = 0$
(A3) $e + f = f + e$ (A9) $e + 0 = e$
(A4) $(e + f) \cdot g = e \cdot g + f \cdot g$ (UKS1) $e^* = 1 + e \cdot e^*$
(A6) $e + e = e$

$$\frac{e = f \cdot e + g}{e = f^* \cdot g} \text{ RSP}^* \text{ (if } \underbrace{\{\epsilon\} \notin \llbracket f \rrbracket_L})$$

$$non\text{-empty-word}$$

$$property$$

Adaptation BBP for ⇔p on 1-free star expr's (Bergstra, Bethke, Ponse)

Axioms:

$$(A2) \quad (e \cdot f) \cdot g = e \cdot (f \cdot g) \qquad \qquad (A8)' \qquad 0 \cdot e = 0$$

$$(A3) \quad e + f = f + e \qquad \qquad (A9) \qquad e + 0 = e$$

$$(A4) \quad (e + f) \cdot g = e \cdot g + f \cdot g \qquad \qquad (BKS1) \qquad e^{\otimes} f = e \cdot (e^{\otimes} f) + f$$

$$(BKS2) \quad (e^{\otimes} f) \cdot g = e^{\otimes} (f \cdot g)$$

(A6)
$$e + e = e$$

(A1) e + (f + q) = (e + f) + q

$$\frac{e = f \cdot e + g}{e = f^{\otimes} g} RSP^{\otimes}$$

Not expressible ⇒ not solvable

chart

not expressible modulo ↔

equational specification

$$X_1 = a_1 \cdot X_2 + a_2 \cdot X_3$$

$$X_2 = b_1 \cdot X_1 + b_2 \cdot X_3$$

$$X_3 = c_1 \cdot X_1 + c_2 \cdot X_3$$

Not expressible ⇒ not solvable

chart

not expressible modulo ↔

equational specification

$$X_1 = a_1 \cdot X_2 + a_2 \cdot X_3$$

$$X_2 = b_1 \cdot X_1 + b_2 \cdot X_3$$

$$X_3 = c_1 \cdot X_1 + c_2 \cdot X_2$$

not solvable in BBP nor in Mil

$$[(a\cdot(a+b)+b)^{\otimes}0]_{\mathbf{P}}$$

$$[(a+b\cdot(a+b))^{\otimes}0]_{\mathbf{P}}$$

$$[(a \cdot (a+b)+b) \otimes 0]_{\mathbf{p}}$$

bisimulation collapse

Why Salomaa's proof approach does not work for BBP

New proof idea

New proof idea

New proof idea

Loop chart

Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is not possible.

Loop chart

Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is not possible.

Loop chart

Definition

A chart is a loop chart if:

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is not possible.

(L1),(L2)

Loop chart

Definition

A chart is a loop chart if:

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is not possible.

(L1),(L2)

Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is not possible.

Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is not possible.

Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is not possible.

Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is not possible.

Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is not possible.

Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is not possible.

Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is not possible.

Definition

A chart C satisfies LEE (loop existence and elimination) if:

$$\exists \mathcal{C}_0 \left(\mathcal{C} \Longrightarrow_{\mathrm{elim}}^* \mathcal{C}_0 \Longrightarrow_{\mathrm{elim}}^* \mathcal{C}_0 \right)$$

 \wedge \mathcal{C}_0 permits no infinite path).

Definition

A chart C satisfies LEE (loop existence and elimination) if:

$$\exists \mathcal{C}_0 \left(\mathcal{C} \Longrightarrow_{\mathrm{elim}}^* \mathcal{C}_0 \Longrightarrow_{\mathrm{elim}}^* \right. \\ \wedge \left. \mathcal{C}_0 \text{ permits no infinite path} \right).$$

 v_2 b

 v_2

 v_2

 v_2

Layered LEE witness and LLEE-charts

Layered LEE witness and LLEE-charts

Lemmas

- (C) The bisimulation collapse of a LLEE-chart is again a LLEE-chart.
- (I, SI) The chart interpretation C(e) of a 1-free star expression e
 - ▶ is a LLEE-chart.
 - ▶ has a provable solution with start value e.
 - **(E)** From every LLEE-chart C a provable solution can be extracted.
 - (SE) All provable solutions of a LLEE-chart are provably equal.
 - **(P)** If $C_1
 ightharpoonup C_2$, then every provable solution of C_2 can be pulled back to obtain a provable solution of C_1 with the same start value.

Theorem

BBP is sound and complete for \Leftrightarrow_P of 1-free star expressions:

For all 1-free star expr.'s $e_1, e_2 \ [e_1 =_{\mathsf{BBP}} e_2 \iff e_1 \not\hookrightarrow_{\mathsf{P}} e_2]$.

Theorem

BBP is sound and complete for \Leftrightarrow_{P} of 1-free star expressions:

For all 1-free star expr.'s $e_1, e_2 \ [e_1 =_{\mathsf{BBP}} e_2 \iff e_1 \not\hookrightarrow_{\mathsf{P}} e_2]$.

Proof of " \Leftarrow ":

Theorem

BBP is sound and complete for \Leftrightarrow_{P} of 1-free star expressions:

For all 1-free star expr.'s
$$e_1, e_2 \ [e_1 =_{\mathsf{BBP}} e_2 \iff e_1 \not\hookrightarrow_{\mathsf{P}} e_2]$$
.

Proof of " \Leftarrow ": Let e_1 and e_2 be 1-free star expr.'s with $\mathcal{C}(e_1) \leftrightarrow \mathcal{C}(e_2)$.

$$\mathcal{C}(e_1) \stackrel{\longleftarrow}{\longleftarrow} \mathcal{C}(e_2)$$

Theorem

BBP is sound and complete for \Leftrightarrow_{P} of 1-free star expressions:

For all 1-free star expr.'s
$$e_1, e_2 \ [e_1 =_{\mathsf{BBP}} e_2 \iff e_1 \not\hookrightarrow_{\mathsf{P}} e_2]$$
.

Proof of " \Leftarrow ": Let e_1 and e_2 be 1-free star expr.'s with $\mathcal{C}(e_1) \leftrightarrow \mathcal{C}(e_2)$.

bisimulation collapse C_0

Theorem

BBP is sound and complete for \leq_P of 1-free star expressions:

For all 1-free star expr.'s
$$e_1, e_2 \ [e_1 =_{\mathsf{BBP}} e_2 \iff e_1 \not\hookrightarrow_{\mathsf{P}} e_2]$$
.

Proof of " \Leftarrow ": Let e_1 and e_2 be 1-free star expr.'s with $\mathcal{C}(e_1) \leftrightarrow \mathcal{C}(e_2)$.

(I) For every 1-free star expression e, the chart interpretation C(e) of e is a LLEE-chart.

Theorem

BBP is sound and complete for \leq_P of 1-free star expressions:

For all 1-free star expr.'s
$$e_1, e_2 \ [e_1 =_{\mathsf{BBP}} e_2 \iff e_1 \underset{\mathsf{P}}{ \ } e_2 \]$$
.

Proof of " \Leftarrow ": Let e_1 and e_2 be 1-free star expr.'s with $\mathcal{C}(e_1) \leftrightarrow \mathcal{C}(e_2)$.

(I) For every 1-free star expression e, the chart interpretation C(e) of e is a LLEE-chart.

Theorem

BBP is sound and complete for \leq_P of 1-free star expressions:

For all 1-free star expr.'s
$$e_1, e_2 \ [e_1 =_{\mathsf{BBP}} e_2 \iff e_1 \not\hookrightarrow_{\mathsf{P}} e_2]$$
.

Proof of " \Leftarrow ": Let e_1 and e_2 be 1-free star expr.'s with $\mathcal{C}(e_1) \leftrightarrow \mathcal{C}(e_2)$.

(I) For every 1-free star expression e, the chart interpretation C(e) of e is a LLEE-chart.

Theorem

BBP is sound and complete for \leq_P of 1-free star expressions:

For all 1-free star expr.'s
$$e_1, e_2 \ [e_1 =_{\mathsf{BBP}} e_2 \iff e_1 \underset{\mathsf{P}}{\hookleftarrow} e_2]$$
.

Proof of " \Leftarrow ": Let e_1 and e_2 be 1-free star expr.'s with $\mathcal{C}(e_1) \leftrightarrow \mathcal{C}(e_2)$.

(SI) For every 1-free star expression e, e is start value of a provable solution of C(e).

Theorem

BBP is sound and complete for \leq_P of 1-free star expressions:

For all 1-free star expr.'s
$$e_1, e_2 \ [e_1 =_{\mathsf{BBP}} e_2 \iff e_1 \underset{\mathsf{P}}{\hookleftarrow} e_2]$$
.

Proof of " \Leftarrow ": Let e_1 and e_2 be 1-free star expr.'s with $\mathcal{C}(e_1) \hookrightarrow \mathcal{C}(e_2)$.

(SI) For every 1-free star expression e, e is start value of a provable solution of C(e).

Theorem

BBP is sound and complete for \Leftrightarrow_{P} of 1-free star expressions:

For all 1-free star expr.'s
$$e_1, e_2 \ [e_1 =_{\mathsf{BBP}} e_2 \iff e_1 \not\hookrightarrow_{\mathsf{P}} e_2]$$
.

Proof of " \Leftarrow ": Let e_1 and e_2 be 1-free star expr.'s with $\mathcal{C}(e_1) \leftrightarrow \mathcal{C}(e_2)$.

(SI) For every 1-free star expression e, e is start value of a provable solution of C(e).

Theorem

BBP is sound and complete for \leq_P of 1-free star expressions:

For all 1-free star expr.'s
$$e_1, e_2 \ [e_1 =_{\mathsf{BBP}} e_2 \iff e_1 \underset{\mathsf{P}}{\hookleftarrow} e_2]$$
.

Proof of " \Leftarrow ": Let e_1 and e_2 be 1-free star expr.'s with $\mathcal{C}(e_1) \hookrightarrow \mathcal{C}(e_2)$.

Theorem

BBP is sound and complete for \Leftrightarrow_{P} of 1-free star expressions:

For all 1-free star expr.'s
$$e_1, e_2 \ [e_1 =_{\mathsf{BBP}} e_2 \iff e_1 \not\hookrightarrow_{\mathsf{P}} e_2]$$
.

Proof of " \Leftarrow ": Let e_1 and e_2 be 1-free star expr.'s with $\mathcal{C}(e_1) \leftrightarrow \mathcal{C}(e_2)$.

Theorem

BBP is sound and complete for \Leftrightarrow_{P} of 1-free star expressions:

For all 1-free star expr.'s
$$e_1, e_2 \ [e_1 =_{\mathsf{BBP}} e_2 \iff e_1 \not\hookrightarrow_{\mathsf{P}} e_2]$$
.

Proof of " \Leftarrow ": Let e_1 and e_2 be 1-free star expr.'s with $\mathcal{C}(e_1) \leftrightarrow \mathcal{C}(e_2)$.

(E) From every LLEE-chart \mathcal{C} a provable solution can be extracted.

Theorem BBP is sound and complete for $\underset{P}{\Leftrightarrow}$ of 1-free star expressions: For all 1-free star expr.'s $e_1, e_2 \ [e_1 =_{\mathsf{BBP}} e_2 \iff e_1 \underset{P}{\Leftrightarrow} e_2]$. Proof of " \Leftarrow ": Let e_1 and e_2 be 1-free star expr.'s with $\mathcal{C}(e_1) \underset{P}{\Leftrightarrow} \mathcal{C}(e_2)$. LLEE $\mathcal{C}(e_1) \underset{P}{\longleftrightarrow} \mathcal{C}(e_2)$ LLEE e_1 is solution

bisimulation collapse C_0 LLEE

 e_0 is solution

(E) From every LLEE-chart \mathcal{C} a provable solution can be extracted.

Theorem

BBP is sound and complete for \Leftrightarrow_{P} of 1-free star expressions:

For all 1-free star expr.'s
$$e_1, e_2 \ [e_1 =_{\mathsf{BBP}} e_2 \iff e_1 \not\hookrightarrow_{\mathsf{P}} e_2]$$
.

Proof of " \Leftarrow ": Let e_1 and e_2 be 1-free star expr.'s with $\mathcal{C}(e_1) \leftrightarrow \mathcal{C}(e_2)$.

(P) If $C_1 oup C_2$, then every provable solution of C_2 can be pulled back to obtain a provable solution of C_1 with the same start value.

Theorem

BBP is sound and complete for \Leftrightarrow_{P} of 1-free star expressions:

For all 1-free star expr.'s
$$e_1, e_2 \ [e_1 =_{\mathsf{BBP}} e_2 \iff e_1 \not\hookrightarrow_{\mathsf{P}} e_2]$$
.

Proof of " \Leftarrow ": Let e_1 and e_2 be 1-free star expr.'s with $\mathcal{C}(e_1) \leftrightarrow \mathcal{C}(e_2)$.

(P) If $C_1 oup C_2$, then every provable solution of C_2 can be pulled back to obtain a provable solution of C_1 with the same start value.

Theorem

BBP is sound and complete for \leq_P of 1-free star expressions:

For all 1-free star expr.'s
$$e_1, e_2 \ [e_1 =_{\mathsf{BBP}} e_2 \iff e_1 \not\hookrightarrow_{\mathsf{P}} e_2]$$
.

Proof of " \Leftarrow ": Let e_1 and e_2 be 1-free star expr.'s with $\mathcal{C}(e_1) \leftrightarrow \mathcal{C}(e_2)$.

(P) If $C_1
ightharpoonup C_2$, then every provable solution of C_2 can be pulled back to obtain a provable solution of C_1 with the same start value.

Theorem

BBP is sound and complete for \leq_P of 1-free star expressions:

For all 1-free star expr.'s
$$e_1, e_2 \ [e_1 =_{\mathsf{BBP}} e_2 \iff e_1 \underset{\mathsf{P}}{\hookleftarrow} e_2]$$
.

Proof of " \Leftarrow ": Let e_1 and e_2 be 1-free star expr.'s with $\mathcal{C}(e_1) \leftrightarrow \mathcal{C}(e_2)$.

(SE) All provable solutions of a LLEE-chart are provably equal.

Theorem

BBP is sound and complete for \Leftrightarrow_{P} of 1-free star expressions:

For all 1-free star expr.'s
$$e_1, e_2 \ [e_1 =_{\mathsf{BBP}} e_2 \iff e_1 \not\hookrightarrow_{\mathsf{P}} e_2]$$
.

Proof of " \Leftarrow ": Let e_1 and e_2 be 1-free star expr.'s with $\mathcal{C}(e_1) \leftrightarrow \mathcal{C}(e_2)$.

(SE) All provable solutions of a LLEE-chart are provably equal.

Theorem

BBP is sound and complete for \Leftrightarrow_{P} of 1-free star expressions:

For all 1-free star expr.'s
$$e_1, e_2 \ [e_1 =_{\mathsf{BBP}} e_2 \iff e_1 \underset{\mathsf{P}}{ \ } e_2 \]$$
.

Proof of " \Leftarrow ": Let e_1 and e_2 be 1-free star expr.'s with $\mathcal{C}(e_1) \leftrightarrow \mathcal{C}(e_2)$.

(SE) All provable solutions of a LLEE-chart are provably equal.

Theorem

BBP is sound and complete for \leq_P of 1-free star expressions:

For all 1-free star expr.'s
$$e_1, e_2 \ [e_1 =_{\mathsf{BBP}} e_2 \iff e_1 \underset{\mathsf{P}}{\hookleftarrow} e_2]$$
.

Proof of " \Leftarrow ": Let e_1 and e_2 be 1-free star expr.'s with $\mathcal{C}(e_1) \leftrightarrow \mathcal{C}(e_2)$.

Theorem

BBP is sound and complete for \Leftrightarrow_{P} of 1-free star expressions:

For all 1-free star expr.'s
$$e_1, e_2 \ [e_1 =_{\mathsf{BBP}} e_2 \iff e_1 \underset{\mathsf{P}}{\hookleftarrow} e_2]$$
.

Proof of " \Leftarrow ": Let e_1 and e_2 be 1-free star expr.'s with $\mathcal{C}(e_1) \leftrightarrow \mathcal{C}(e_2)$.

Theorem

BBP is sound and complete for \Leftrightarrow_{P} of 1-free star expressions:

For all 1-free star expr.'s
$$e_1, e_2 \ [e_1 =_{\mathsf{BBP}} e_2 \iff e_1 \underset{\mathsf{P}}{ \ } e_2 \]$$
.

Proof of " \Leftarrow ": Let e_1 and e_2 be 1-free star expr.'s with $\mathcal{C}(e_1) \leftrightarrow \mathcal{C}(e_2)$.

Theorem

BBP is sound and complete for \leq_P of 1-free star expressions:

For all 1-free star expr.'s
$$e_1, e_2 \ [e_1 =_{\mathsf{BBP}} e_2 \iff e_1 \not\hookrightarrow_{\mathsf{P}} e_2]$$
.

Proof of " \Leftarrow ": Let e_1 and e_2 be 1-free star expr.'s with $[e_1]_P \Leftrightarrow [e_2]_P$.

Theorem

BBP is sound and complete for \leq_P of 1-free star expressions:

For all 1-free star expr.'s
$$e_1, e_2 \ [e_1 =_{\mathsf{BBP}} e_2 \iff e_1 \underset{\mathsf{P}}{\hookleftarrow} e_2]$$
.

Proof of " \Leftarrow ": Let e_1 and e_2 be 1-free star expr.'s with $e_1 \leftrightarrow_P e_2$.

Theorem

BBP is sound and complete for \leq_P of 1-free star expressions:

For all 1-free star expr.'s
$$e_1, e_2 \ [e_1 =_{\mathsf{BBP}} e_2 \iff e_1 \not\hookrightarrow_{\mathsf{P}} e_2]$$
.

Proof of " \Leftarrow ": Let e_1 and e_2 be 1-free star expr.'s with $e_1 \leftrightarrow_P e_2$.

LLEE-preserving collapse (example, corollary)

Lemma (C)

LLEE-preserving collapse (example, corollary)

Lemma (C)

LLEE-preserving collapse (example, corollary)

Lemma (C)

The bisimulation collapse of a LLEE-chart is again a LLEE-chart.

Corollary

A chart is expressible by a 1-free star expression modulo

if and only if its bisimulation collapse is a LLEE-chart.

Summary and outlook

We have obtained a partial solution for Milner's problem:

- BBP: adaptation of Milner's system Mil to 1-free star expr's
- graph property: loop existence and elimination (LLEE)
 - guarantees solvability via extraction (E)
 - holds for chart interpretations of 1-free star expressions (I)
 - is preserved under bisimulation collapse (C)
- BBP is complete for ⊕p on 1-free star expressions

Summary and outlook

We have obtained a partial solution for Milner's problem:

- BBP: adaptation of Milner's system Mil to 1-free star expr's
- graph property: loop existence and elimination (LLEE)
 - guarantees solvability via extraction (E)
 - ▶ holds for chart interpretations of 1-free star expressions (I)
 - ▶ is preserved under bisimulation collapse (C)
- ▶ BBP is complete for ⇔p on 1-free star expressions

Obstacle for extension to Mil:

properties (I) and (C) do not hold for all star expressions:

is $[(((1 \cdot a^*) \cdot (b \cdot c^*)) \cdot (a^* \cdot (b \cdot c^*))^*]_P$, which is a bisimulation collapse, does not satisfy LLEE.

Summary and outlook

We have obtained a partial solution for Milner's problem:

- BBP: adaptation of Milner's system Mil to 1-free star expr's
- graph property: loop existence and elimination (LLEE)
 - guarantees solvability via extraction (E)
 - holds for chart interpretations of 1-free star expressions (I)
 - ▶ is preserved under bisimulation collapse (C)
- ▶ BBP is complete for ⇔p on 1-free star expressions

Obstacle for extension to Mil:

properties (I) and (C) do not hold for all star expressions:

is $[(((1 \cdot a^*) \cdot (b \cdot c^*)) \cdot (a^* \cdot (b \cdot c^*))^*]_P$, which is a bisimulation collapse, does not satisfy LLEE.

Possible workaround: use 1-charts (with explicit 1-transitions)

Resources

report version of article

CG & Wan Fokkink: A Complete Proof System for 1-Free Regular Expressions Modulo Bisimilarity, arXiv:2004.12740, May 2020.

extended abstract (1-charts)

➤ CG: Structure-Constrained Process Graphs for the Process Interpretation of Regular Expressions, TERMGRAPH 2020, July 5, 2020. http://www.termgraph.org.uk/2020/.

Resources

report version of article

 CG & Wan Fokkink: A Complete Proof System for 1-Free Regular Expressions Modulo Bisimilarity, arXiv:2004.12740, May 2020.

extended abstract (1-charts)

 CG: Structure-Constrained Process Graphs for the Process Interpretation of Regular Expressions, TERMGRAPH 2020, July 5, 2020. http://www.termgraph.org.uk/2020/.

Thank you for your attention!