

Supervised Pattern Mining

Data Mining 04 (データマイニング)

Mahito Sugiyama (杉山麿人)

Today's Outline

- Pattern mining with class labels (supervision)
 - Various measures
- Significant pattern mining
 - Statistical tests
 - Testable patterns
 - Controlling the FWER (Family-Wise Error Rate) by Tarone's testability trick

Itemset Mining

• Find interesting combinatorial patterns from massive data

Itemset Mining

Find interesting combinatorial patterns from massive data

Itemset Mining (Binary Representation)

Find interesting combinatorial patterns from massive data

Itemset Mining (Binary Representation)

Find interesting combinatorial patterns from massive data

Subgraph Mining

• Find interesting combinatorial patterns from massive data

Subgraph Mining

Find interesting combinatorial patterns from massive data

4/24

Supervised Itemset Mining

Find discriminative patterns from supervised data

Supervised Subgraph Mining

Find discriminative patterns from supervised data

6/24

Contingency Table

	Occurrence	Non-occurrence	Total
Positive	$supp_{C}(x)$	$ C $ – $supp_C(x)$	C
Negative	$supp_{\bar{c}}(x)$	$ \bar{C} $ – $supp_{\bar{C}}(x)$	Ē
Total	supp(x)	$ D - \operatorname{supp}(x)$	D
	$= \operatorname{supp}_{\mathcal{C}}(x) + \operatorname{supp}_{\mathcal{C}}(x)$		

Contingency Table

	Occurrence	Non-occurrence	Total
Positive	n ₁₁	n ₁₂	<i>c</i> ₁
Negative	n ₂₁	n ₂₂	<i>c</i> ₂
Total	S	s'	d

Various Measures

- Confidence: n_{11}/d
- Growth rate (relative risk): n_{11}/n_{21}
- Support difference (risk difference): $n_{11} n_{21}$
- Mutual information:

$$\frac{n_{11}}{d}\log\frac{n_{11}/d}{c_1s/d^2} + \frac{n_{12}}{d}\log\frac{n_{12}/d}{c_1s'/d^2} + \frac{n_{21}}{d}\log\frac{n_{21}/d}{c_2s/d^2} + \frac{n_{22}}{d}\log\frac{n_{22}/d}{c_2s'/d^2}$$

Subgroup discovery measure (weighted relative accuracy):

$$(c_1/d)((n_{11}/c_1)-(c_1/d))$$

Computing *p*-value of Pattern

- Given positive and negative sample sets C, \bar{C} such that $D = C \cup \bar{C}$
- The *p*-value of each pattern *s* is assessed by the Fisher's exact test

	Occ.	Non-occ.	Total
C (Pos.)	supp _C (s)	C -supp _C (s)	C
Ō (Neg.)	supp _ē (s)	$ \overline{C} $ – supp $_{\overline{C}}(s)$	\ \ <u>\</u>
D (Total)	supp(s)	D -supp(s)	D

Fisher's Exact Test

• Probability $q(supp_c(s))$ is given by hypergeometric distribution:

$$q(\operatorname{supp}_{C}(s)) = \binom{|C|}{\operatorname{supp}_{C}(s)} \binom{|\bar{C}|}{\operatorname{supp}_{\bar{C}}(s)} / \binom{|D|}{\operatorname{supp}(s)}$$

	Occ.	Non-occ.	Total
C (Pos.)	supp _C (s)	C -supp _C (s)	C
Ō (Neg.)	supp _ē (s)	$ \overline{C} $ – supp $_{\overline{C}}(s)$	$ \overline{C} $
D (Total)	supp(s)	D -supp(s)	D -

Hypothesis Test for Each Pattern

	Alternative hypothesis is true	Null hypothesis is true
Declared significant $(p-value < a)$	True Positive	False Positive (Type I Error)
Declared non-significant	False Negative (Type II Error)	True Negative

Null: Occurrence of pattern is independent from classes

Alternative: Occurence of pattern is associated with classes

11/24

Significant Pattern (Itemset) Mining

Find discriminative patterns from supervised data

Significant Subgraph Mining

Find discriminative patterns from supervised data

Challenges and Solutions of SPM

- 1. (Computational) How to check all patterns with avoiding combinatorial explosion?
- 2. (Statistical) How to measure the statistical association (i.e. *p*-value) with correcting for multiple testing with avoiding combinatorial explosion?
 - Answer: Tarone's trick + Apriori principle
 - The Tarone's trick to define patterns that are irrelevant
 - The Apriori principle to efficiently prune such patterns using the partial order structure of patterns

Timeline

Summary of SPM Methods

		Эсс	. Non-occ. ⁻	Total
	Positive	4	0	4
	Negative	2	2	4
	Total	6	2	8
Fisher's exact test: p -value = 0.429).429

Multiple Testing Correction

- In each test, [probability of having a false positive] $\leq \alpha$
- If we repeat m tests, am patterns can be false positives
 - Too many if m is large! For example in itemset mining:
 - For 100000 items, #patterns = 2¹⁰⁰⁰⁰⁰
 - Set significance level $\alpha = 0.01$
 - Number of false positives: $0.01 \cdot 2^{100000} = 10^{30101}$

Multiple Testing Correction

- In each test, [probability of having a false positive] $\leq \alpha$
- If we repeat m tests, αm patterns can be false positives
 - Too many if *m* is large! For example in itemset mining:
 - For 100000 items, #patterns = 2¹⁰⁰⁰⁰⁰
 - Set significance level $\alpha = 0.01$
 - Number of false positives: $0.01 \cdot 2^{100000} = 10^{30101}$
- FWER (family-wise error rate): Probability of having more than one false positives among all patterns
 - FWER = $1 (1 \alpha)^m$ if patterns are independent

Controlling the FWER

- FWER = Pr(FP > 0)
 - FP: Number of false positives
- To achieve FWER = α , change the significance level for each pattern from α to δ ($\delta \leq \alpha$), the corrected significance level

Controlling the FWER

- FWER = Pr(FP > 0)
 - FP: Number of false positives
- To achieve FWER = α , change the significance level for each pattern from α to δ ($\delta \leq \alpha$), the corrected significance level
- Objective: Maximize $FWER(\delta)$ subject to $FWER(\delta) \le \alpha$
 - FWER(δ): FWER at corrected significance level δ
 - Cannot be evaluated in closed form (simple but not easy!)
 - Bonferroni correction is popular: $\delta_{Bon}^* = \alpha/m$

Minimum Achievable p-value $\Psi(\sigma)$

• Consider the minimum achievable p-value $\Psi(s)$ of a pattern s for its support supp(s)

19/24

Computing $\Psi(\sigma)$

Minimum achievable
$$p$$
-value $\Psi(s) = \binom{|C|}{\operatorname{supp}(s)} / \binom{|D|}{\operatorname{supp}(s)}$

	Occ.	Non-occ. Total
C (Pos.)	supp(s)	C -supp _C (s) C
 (Neg.)	0	$ \overline{C} $ –supp $_{\overline{C}}(s)$ $ \overline{C} $
D (Total)	supp(s)	D -supp(s) D -

Most biased case that achieves the minium p-value $\sup_{C} p_{C}(s)$

Tarone's Testability Trick

Minimum achievable
$$p$$
-value $\Psi(s) = \binom{|C|}{\operatorname{supp}(s)} / \binom{|D|}{\operatorname{supp}(s)}$

Tarone (1990) pointed out (and Terada et al. (2013) revisited):

For a pattern s with its support supp(s), if the minimum achievable p-value $\Psi(s)$ is larger than the significance threshold, this is untestable and we can ignore it

- Significance threshold = α / [# testable subgraphs]
- Untestable subgraphs can never be significant

Power of Testability

The PTC (Predictive Toxicology Challenge) dataset with 601 chemical compounds

Conclusion

- Significant pattern mining is introduced
 - Find statistically significant subgraphs while controlling the FWER
 - pattern mining (data mining) + multiple testing correction (statistics)
- Open problems: How to treat continuous data?
 - Continuous features → mostly solved
 M. Sugiyama and K. Borgwardt:
 Finding Significant Combinations of Continuous Features, arXiv:1702.08694
 - Continuous response values → not solved yet