

DETERMINATION OF A SHORT SIMULATION SEQUENCE FOR BUILDINGS SIMULATION AND OPTIMIZATION

Hasan SAYEGH

Supervision: Prof Gilles FRAISSE, LOCIE Prof Etienne WURTZ, CEA Dr Antoine LECONTE, CEA Dr Simon ROUCHIER, LOCIE

CASE STUDY

RESULTS

43 secs vs 19 mins

ANNUAL ESTIMATION

	Annual Performance Error			
Individu	Backup energy	Heating demand	Heat stored in the tank	
Indiv 1	1%	10%	3%	
Indiv 2	4%	11%	2%	
Indiv 3	2%	10%	1%	

GENERALIZATION: PARAMETRIC ANALYSIS

15 days

5 by LHS + 2 limits = 7 samples

indiv 1	9.28	0.8
indiv 2	7.5	0.6
indiv 3	17.5	0.3

m2

Collector surface Storage volume

Indv_		Collector surface (m2)	Storage volume (m3)
	1	6.5	0.3
	2	15.75	0.37
	3	8.35	0.51
	4	12.05	0.65
	5	19.45	0.79
	6	23.15	0.93
	7	25	1

Models used while searching for the short sequence

GENERALIZATION: PARAMETRIC ANALYSIS

HEAT NETWORK 5 EME GÉNÉRATION

Heating and cooling plant

Heats and cools water of the network by air-water heat pumps

- > 1st Generation: Steam Heat Distribution
- 2nd Generation: Heat distribution by hot water under pressure with temperatures above 100 ° C
- > 3rd Generation: Also used hot water, but with temperatures below 100 ° C
- > 4th Generation: Distribution of water at low temperature around 65 ° C
- 5th Generation: Distribution of water circuits at room temperature

Heat exchanger with natural source

Preheats and precools the water of the network by natural water source (lake, ocean..)

1 substation in each building(x8)

Supplies:

- Heat in heating seasons
- Cold in cooling seasons
- DHW all the year

DHW supplied

Heating and cooling plant

Heating season

Heating of water to 12 ° C

12°C

ليا

~10°C Heat exchanger with natural source

Heating season

Active only on the **cold line**. Preheating of water by ambient air and natural water source

1 substation in each building(x8)

Heating season

Heating **ON**

Cooling: **OFF**

DHW: ON at 60°C

8°C

Heating and cooling plant

Cooling season

Cooling of water to 16 ° C

Heat exchanger with natural source

Cooling season

Active only on the hot line. Precooling of water by ambient air and natural water source

1 substation in each building(x8)

Cooling season

Heating **OFF**

Cooling: ON

DHW: ON at 60°C

16°C