Package 'meaca'

June 7, 2020

Julie 7, 2020		
Type Package		
Title Mixed-effects Enrichment Analysis with Correlation Adjusted		
Version 0.1.1		
Author Bin Zhuo		
Maintainer Bin Zhuo <rickyb.zh@gmail.com>, Duo Jiang</rickyb.zh@gmail.com>		
<jiangd@stat.oregonstate.edu></jiangd@stat.oregonstate.edu>		
Description This package produces all results needed in the paper Use four spaces when indenting paragraphs within the Description.		
Depends R (>= $3.2.1$)		
License MIT + file LICENSE		
imports dplyr, ggplot2		
LazyData true		
Encoding UTF-8		
RoxygenNote 5.0.1		
R topics documented:		
btw_gene_corr		
data_simu		
estimate_sigma		
meaca_multiple		
meaca_single		
read_gene_set		
simulate_expression_data		
standardize_expression_data		
Index		

2 data_simu

btw_gene_corr

Estimate sample correlation.

Description

Average correlations for genes

Usage

```
btw_gene_corr(expression_data, trt, geneset, standardize = T,
    minSetSize = 5)
```

Arguments

expression_data

the expressoin matrix.

trt treatment labels

geneset an object from read_gene_set

standardize 'TRUE' or 'FALSE', whether the data should be standaridzed

minSetSize the minimum number of genes contained for a gene set to be considered.

Value

a list

set_name The name of the gene set

testSetCor Average correlation for genes in the test set

interCor Average correlation between genes in the test set and those not in the test set

backSetCor Average correlations for genes not in the test set.

data_simu

Compare meaca to existing methods

Description

Produce p value matrix for simulation discussed in the paper.

Usage

```
data_simu(nsim = 1000, ncore = 6, package_used = c("MASS", "qusage"),
  verbose_show = FALSE, meaca_only = FALSE,
  file_to_source = "/home/stats/zhuob/Rcode/Enrichment/GSEA.1.0.R",
  dest = "/home/stats/zhuob/data/computing/", n_gene = 500, n_test = 100,
  prop = c(0.1, 0.1), rho1 = 0.1, rho2 = 0.05, rho3 = -0.05,
  case = "e", size = 50, de_mu = 2, de_sd = 1,
  data_gen_method = "chol", seed = 123)
```

estimate_sigma 3

Arguments

nsim number of simulation to run

ncore number of CPUs to be used in the parallel simulation

package_used the packages to be used in the simulation

verbose_show for debug purpose, set to 'FALSE' if not in debug mode

meaca_only Should all the methods to be compared? If 'TRUE', produce Figure 1; otherwise

Figure 2

file_to_source the R files containing functions to be sourced

dest where to store the results

n_gene total number of genes to be simulated

n_test number of genes in the test set.

prop a vector of length 2, proportion of DE genes within go term and outside go_term,

corresponding to \$p_t\$ and \$p_b\$.

rho1 a scalar, correlation between two test genes (i.e., ρ_1 in the paper)

rho2 a scalar, correlation between two background genes (i.e., ρ_2 in the paper) rho3 correlation between a test gene and a background gene (i.e., ρ_3 in the paper)

size number of samples to be simulated

 de_mu , de_sd if the gene is DE, $delta \sim N(de_mu, de_sd)$

data_gen_method

data generation method; if 'data_gen_method = MASS', then 'MASS::mvrnorm'

is used, otherwise see function rmvnorm

seed the seed used for simulation (for reproducibility purpose)
seed the seed used for simulation (for reproducibility purpose)

Value

a text file containing the p value matrix

Description

Estimate sample covariance and calculate the gene-level statistics

Usage

```
estimate_sigma(expression_data, trt)
```

Arguments

expression_data

the expression matrix.

trt sample labels. 0 for control and 1 for treatment

4 meaca_single

Value

a list

sigma a covariance matrix

t_val a vector of gene level test statistics

meaca_multiple meaca-multiple.

Description

meaca for testing multiple gene sets.

Usage

```
meaca_multiple(expression_data, trt, geneset, standardize = T,
    minSetSize = 5, fdr_method = "BH")
```

Arguments

expression_data

the expressoin matrix.

trt treatment labels.

geneset gene sets to be tested, an object from read_gene_set.

standardize whether the data should be standaridzed.

minSetSize the minimum number of genes contained for a gene set to be considered.

fdr_method which method is ued to adjust the p values. see arguments in function p.adjust.

Value

a data frame

meaca_single meaca-single.

Description

meaca for single gene set test.

Usage

```
meaca_single(expression_data, trt, go_term, standardize = F)
```

Arguments

 ${\tt expression_data}$

the expressoin matrix.

trt treatment labels.

go_term an indicator vector. 1 for genes in the test, 0 otherwise.

standardize whether the data should be standaridzed.

read_gene_set 5

Value

a list

stat the test statistic

p1 chi-square test p value

status "up" or "down", the direction of differential expression

p2 two-sided test p-value using normal distribution

Examples

read_gene_set

Convert gene sets to lists

Description

read the gene sets of the MsigDB format.

Usage

```
read_gene_set(msigdb)
```

Arguments

msigdb gene set ensemble downloaded from broad institute see https://www.gsea-msigdb.

org/gsea/doc/GSEAUserGuideFrame.html.

Value

a list

total number of gene sets contained.

size a numerical vector containing the size of each gene set.

gene_set a list. The first element is the set name. From the third element each containing

members of the gene set.

```
simulate_expression_data
```

Simulate expression data.

Description

simulate normally distributed expression data with desired DE probabilities for genes in the test set and for those not in the test set..

Usage

```
simulate_expression_data(size, n_gene, n_test, prop, de_mu, de_sd, rho1, rho2,
  rho3, data_gen_method = "cho1", seed = 123)
```

Arguments

size	number of samples to be simulated
n_gene	total number of genes to be simulated
n_test	number of genes in the test set.
prop	a vector of length 2, proportion of DE genes within go term and outside go_term, corresponding to $p_t\$ and $p_b\$.
de_mu, de_sd	if the gene is DE, delta ~ N(de_mu, de_sd)
rho1	a scalar, correlation between two test genes (i.e., ρ_1 in the paper)
rho2	a scalar, correlation between two background genes (i.e., ρ_2 in the paper)
rho3	correlation between a test gene and a background gene (i.e., ρ_3 in the paper)
data_gen_method	
	data generation method; if 'data_gen_method = MASS', then mvrnorm is used, otherwise see function rmvnorm

Value

seed

a list

data a expression matrix of $m \times n$ where m is the number of genes and n is the number of samples.

the seed used for simulation (for reproducibility purpose)

sample labels of length n, 1 for treatment and 0 for control.

go_term gene labels of length m, 1 for go_term genes and 0 otherwise.

sigma true covariance matrix upon which data is simulated.

Examples

```
t1 <- simulate_expression_data(size = 50, n_gene = 500, n_test = 100, prop = c(0.1, 0.1), de_mu = 2, de_sd = 1, rho1 = 0.1, rho2 = 0.05, rho3 = -0.05, data_gen_method = "cho1", seed = 123)
```

```
standardize_expression_data
```

standardize expression data, with method described in the paper.

Description

Standardize the expression data.

Usage

```
standardize_expression_data(expression_data, trt)
```

Arguments

```
expression_data
```

the expression matrix.

trt

sample labels. 0 for control and 1 for treatment

Value

a matrix of the same dimension as input data.

Index

```
btw_gene_corr, 2

data_simu, 2

estimate_sigma, 3

meaca_multiple, 4
meaca_single, 4
mvrnorm, 6

read_gene_set, 5
rmvnorm, 3, 6

simulate_expression_data, 6
standardize_expression_data, 7
```