PROBLEM STATEMENT: The transactions made by a UK-based, registered, non-store online retailer between December 1, 2010, and December 9,2011, are all included in the transnational data set known as online retail. The company primarily offers one-of-akind gifts for every occasion. The company has a large number of wholesalers as clients. Company Objective Using the global online retail dataset, we will design a clustering model and select the ideal group of clients for the business to target.

Importing Libraries

In [1]: ▶

import pandas as pd
from matplotlib import pyplot as plt
%matplotlib inline

Reading the data

In [3]: ▶

df=pd.read_csv(r"C:\Users\G S R KARTHIK\Documents\OnlineRetailData[1]\OnlineRetail.csv"
df

Out[3]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	•	
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	ŀ	
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	ŀ	
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	ŀ	
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	ŀ	
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	ŀ	
541904	581587	22613	PACK OF 20 SPACEBOY NAPKINS	12	09-12-2011 12:50	0.85	12680.0		
541905	581587	22899	CHILDREN'S APRON DOLLY GIRL	6	09-12-2011 12:50	2.10	12680.0		
541906	581587	23254	CHILDRENS CUTLERY DOLLY GIRL	4	09-12-2011 12:50	4.15	12680.0		
541907	581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	09-12-2011 12:50	4.15	12680.0		
541908	581587	22138	BAKING SET 9 PIECE RETROSPOT	3	09-12-2011 12:50	4.95	12680.0		
541909 rows × 8 columns									
1									
`									

Data Cleaning and Preprocessing

H In [4]:

df.head()

Out[4]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country	
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	Unitec Kingdor	
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	United Kingdom	
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	Unitec Kingdorr	
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	Unitec Kingdom	
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	Unitec Kingdor	
4								•	
In [5]:									
TII	[5].								

df.tail()

Out[5]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	(
541904	581587	22613	PACK OF 20 SPACEBOY NAPKINS	12	09-12-2011 12:50	0.85	12680.0	
541905	581587	22899	CHILDREN'S APRON DOLLY GIRL	6	09-12-2011 12:50	2.10	12680.0	
541906	581587	23254	CHILDRENS CUTLERY DOLLY GIRL	4	09-12-2011 12:50	4.15	12680.0	
541907	581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	09-12-2011 12:50	4.15	12680.0	
541908	581587	22138	BAKING SET 9 PIECE RETROSPOT	3	09-12-2011 12:50	4.95	12680.0	
4								•

In [6]:

df.describe()

Out[6]:

	Quantity	UnitPrice	CustomerID
count	541909.000000	541909.000000	406829.000000
mean	9.552250	4.611114	15287.690570
std	218.081158	96.759853	1713.600303
min	-80995.000000	-11062.060000	12346.000000
25%	1.000000	1.250000	13953.000000
50%	3.000000	2.080000	15152.000000
75%	10.000000	4.130000	16791.000000
max	80995.000000	38970.000000	18287.000000

```
In [7]:

df.shape
```

Out[7]:

(541909, 8)

```
In [8]:

df.columns
```

Out[8]:

```
In [9]: ▶
```

```
df.isnull().sum()
```

Out[9]:

```
InvoiceNo
                     0
StockCode
                     0
Description
                  1454
Quantity
                     0
InvoiceDate
                     0
UnitPrice
                     0
CustomerID
               135080
Country
dtype: int64
```

```
H
In [13]:
df.fillna(method="ffill",inplace=True)
In [14]:
                                                                                           M
df.isnull().sum()
Out[14]:
               0
InvoiceNo
StockCode
               0
Description
               0
Quantity
               0
InvoiceDate
UnitPrice
               0
CustomerID
               0
               0
Country
dtype: int64
```

Data Visualization

```
In [17]:

plt.scatter(df["CustomerID"],df["Quantity"])
plt.xlabel("CustomerID")
plt.ylabel("Quantity")
```

Out[17]:

Text(0, 0.5, 'Quantity')

Importing KMeans

```
In [18]:
                                                                                        H
from sklearn.cluster import KMeans
km=KMeans()
km
Out[18]:
 ▼ KMeans
KMeans()
In [20]:
                                                                                        H
y_predicted=km.fit_predict(df[["CustomerID","Quantity"]])
y_predicted
C:\Users\G S R KARTHIK\AppData\Local\Programs\Python\Python310\lib\site-p
ackages\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value o
f `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init`
explicitly to suppress the warning
  warnings.warn(
Out[20]:
array([1, 1, 1, ..., 5, 5, 5])
```

In [21]:

df["cluster"]=y_predicted
df.head()

Out[21]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	Unitec Kingdorr
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	Unitec Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	Unitec Kingdorr
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
4								•

In [22]:

```
df1=df[df.cluster==0]
df2=df[df.cluster==1]
df3=df[df.cluster==2]
plt.scatter(df1["CustomerID"],df1["Quantity"],color="red")
plt.scatter(df2["CustomerID"],df2["Quantity"],color="green")
plt.scatter(df3["CustomerID"],df3["Quantity"],color="blue")
plt.xlabel("CustomerID")
plt.ylabel("Quantity")
```

Out[22]:

Text(0, 0.5, 'Quantity')

In [23]: ▶

```
from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler()
scaler.fit(df[["Quantity"]])
df["Quantity"]=scaler.transform(df[["Quantity"]])
df.head()
```

Out[23]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500037	01-12-2010 08:26	2.55	17850.0	United Kingdon
1	536365	71053	WHITE METAL LANTERN	0.500037	01-12-2010 08:26	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500049	01-12-2010 08:26	2.75	17850.0	United Kingdon
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500037	01-12-2010 08:26	3.39	17850.0	United Kingdon
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500037	01-12-2010 08:26	3.39	17850.0	United Kingdon
4								•

```
In [24]:

scaler.fit(df[["CustomerID"]])
df["CustomerID"]=scaler.transform(df[["CustomerID"]])
```

```
Out[24]:
```

df.head()

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500037	01-12-2010 08:26	2.55	0.926443	United Kingdom
1	536365	71053	WHITE METAL LANTERN	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500049	01-12-2010 08:26	2.75	0.926443	United Kingdon
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdon
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdon
4								•

In [25]: ▶

```
y_predicted=km.fit_predict(df[["CustomerID","Quantity"]])
y_predicted
```

C:\Users\G S R KARTHIK\AppData\Local\Programs\Python\Python310\lib\site-p
ackages\sklearn\cluster_kmeans.py:870: FutureWarning: The default value o
f `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init`
explicitly to suppress the warning
 warnings.warn(

Out[25]:

```
array([5, 5, 5, ..., 3, 3, 3])
```

In [26]: ▶

df["New Cluster"]=y_predicted
df.head()

Out[26]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500037	01-12-2010 08:26	2.55	0.926443	United Kingdom
1	536365	71053	WHITE METAL LANTERN	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500049	01-12-2010 08:26	2.75	0.926443	United Kingdon
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom
4								•

In [27]: ▶

```
df1=df[df["New Cluster"]==0]
df2=df[df["New Cluster"]==1]
df3=df[df["New Cluster"]==2]
plt.scatter(df1["CustomerID"],df1["Quantity"],color="red")
plt.scatter(df2["CustomerID"],df2["Quantity"],color="green")
plt.scatter(df3["CustomerID"],df3["Quantity"],color="blue")
plt.xlabel("CustomerID")
plt.ylabel("Quantity")
```

Out[27]:

Text(0, 0.5, 'Quantity')


```
In [28]: ▶
```

```
km.cluster_centers_
```

Out[28]:

In [29]:

```
df1=df[df["New Cluster"]==0]
df2=df[df["New Cluster"]==1]
df3=df[df["New Cluster"]==2]
plt.scatter(df1["CustomerID"],df1["Quantity"],color="red")
plt.scatter(df2["CustomerID"],df2["Quantity"],color="green")
plt.scatter(df3["CustomerID"],df3["Quantity"],color="blue")
plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color="orange",marker="+")
plt.xlabel("CustomerID")
plt.ylabel("Quantity")
```

Out[29]:

Text(0, 0.5, 'Quantity')


```
In [30]: ▶
```

```
k_rng=range(1,10)
sse=[]
```

In [31]:

```
for k in k_rng:
   km=KMeans(n clusters=k)
    km.fit(df[["CustomerID","Quantity"]])
    sse.append(km.inertia )
#km.inertia_ will give you the value of sum of square error
print(sse)
plt.plot(k_rng,sse)
plt.xlabel("K")
plt.ylabel("Sum of Squared Error")
C:\Users\G S R KARTHIK\AppData\Local\Programs\Python\Python310\lib\site-p
ackages\sklearn\cluster\ kmeans.py:870: FutureWarning: The default value o
f `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init`
explicitly to suppress the warning
 warnings.warn(
C:\Users\G S R KARTHIK\AppData\Local\Programs\Python\Python310\lib\site-p
ackages\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value o
f `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init`
explicitly to suppress the warning
 warnings.warn(
C:\Users\G S R KARTHIK\AppData\Local\Programs\Python\Python310\lib\site-p
ackages\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value o
f `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init`
explicitly to suppress the warning
  warnings.warn(
C:\Users\G S R KARTHIK\AppData\Local\Programs\Python\Python310\lib\site-p
ackages\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value o
f `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init`
explicitly to suppress the warning
  warnings.warn(
C:\Users\G S R KARTHIK\AppData\Local\Programs\Python\Python310\lib\site-p
ackages\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value o
f `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init`
explicitly to suppress the warning
  warnings.warn(
C:\Users\G S R KARTHIK\AppData\Local\Programs\Python\Python310\lib\site-p
ackages\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value o
f `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init`
explicitly to suppress the warning
 warnings.warn(
C:\Users\G S R KARTHIK\AppData\Local\Programs\Python\Python310\lib\site-p
ackages\sklearn\cluster\ kmeans.py:870: FutureWarning: The default value o
f `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init`
explicitly to suppress the warning
 warnings.warn(
C:\Users\G S R KARTHIK\AppData\Local\Programs\Python\Python310\lib\site-p
ackages\sklearn\cluster\ kmeans.py:870: FutureWarning: The default value o
f `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init`
explicitly to suppress the warning
  warnings.warn(
C:\Users\G S R KARTHIK\AppData\Local\Programs\Python\Python310\lib\site-p
ackages\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value o
f `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init`
explicitly to suppress the warning
 warnings.warn(
```

[46374.84553398474, 11336.064585311016, 4921.068384045962, 2723.5191051895 285, 1695.0392229313325, 1178.5808580112473, 902.7121607671178, 677.321701 2227778, 529.4339099645493]

Out[31]:

Text(0, 0.5, 'Sum of Squared Error')

CONCLUSION: The KMeans model is the best for the given dataset

