Department of
Computer Science
& Engineering



# 计算机组成实验指导书-LAB5

|                                             | 标题              | 文档编号            | 版本  | 页             |
|---------------------------------------------|-----------------|-----------------|-----|---------------|
| 上海交通大学 ———————————————————————————————————— | 计算机组成实验指导书 LAB1 | CSE-COA-LAB-005 | 0.3 | 1 of 14       |
|                                             | 作者              | 修改日期            |     | / <del></del> |
|                                             | WnSN Lab        | 09/21/2010      | 公升  |               |

### 1. OVERVIEW

### 1.1 实验名称

### 简单的类 MIPS 单周期处理器实现 - 整体调试

### 1.2 实验目的

完成单周期的类 MIPS 处理器

### 1.3 实验范围

本次实验将覆盖以下范围

- 1. ISE 的使用
- 2. Xilinx Spartan 3E 实验板的使用
- 3. 使用 VerilogHDL 进行逻辑设计
- 4. 仿真测试、下载验证
- 1.4 实验预计时间

240 分钟

1.5 实验报告与验收办法

# 1.6 注意事项

1. 本实验的逻辑设计工具为 Xilinx ISE13.4。

|                                         | 标题              | 文档编号            | 版本  | 页             |
|-----------------------------------------|-----------------|-----------------|-----|---------------|
| ——— 上海交通大学 ———<br>计算机科学与工程系             | 计算机组成实验指导书 LAB1 | CSE-COA-LAB-005 | 0.3 | 2 of 14       |
| Dept. of Computer Science & Engineering | 作者              | 修改日期            |     | / <del></del> |
|                                         | WnSN Lab        | 09/21/2010      | 公升  |               |

# 2. 新建工程

1 2 3

### 2.1 实验描述

- 2.1.1 新建工程
- 1. 启动 ISE 13.4。
- 2. 新建工程 lab5。



3. 选择 FPGA 型号、综合和仿真工具、描述语言等配置。

|                                         | 标题              | 文档编号            | 版本  | 页             |
|-----------------------------------------|-----------------|-----------------|-----|---------------|
| ——— 上海交通大学 ———<br>计算机科学与工程系             | 计算机组成实验指导书 LAB1 | CSE-COA-LAB-005 | 0.3 | 3 of 14       |
| Dept. of Computer Science & Engineering | 作者              | 修改日期            |     | / <del></del> |
|                                         | WnSN Lab        | 09/21/2010      | 公升  |               |

Copyright © 2012 SJTU Department of Computer Science & Engineering. All rights reserved.



4. 右键点击 Hierarchy 窗口,选择 Add Copy of Source ,添加已有的模块。 将此前两次 实验中的模块文件 (\*.v) 拷贝到 lab5 工程目录下。不过需建立顶层模块 Top 和主控制模块 Control 需要重新定义。



5. Adding Source Files... 中,选中全部要添加的文件,保持默认项,点OK。

|                                         | 标题              | 文档编号            | 版本  | 页             |
|-----------------------------------------|-----------------|-----------------|-----|---------------|
| ——— 上海交通大学 ———<br>计算机科学与工程系             | 计算机组成实验指导书 LAB1 | CSE-COA-LAB-005 | 0.3 | 4 of 14       |
| Dept. of Computer Science & Engineering | 作者              | 修改日期            |     | / <del></del> |
|                                         | WnSN Lab        | 09/21/2010      |     | 公升            |

Copyright © 2012 SJTU Department of Computer Science & Engineering. All rights reserved.



|                                         | 标题              | 文档编号            | 版本  | 页       |
|-----------------------------------------|-----------------|-----------------|-----|---------|
| —————————————————————————————————————   | 计算机组成实验指导书 LAB1 | CSE-COA-LAB-005 | 0.3 | 5 of 14 |
| Dept. of Computer Science & Engineering | 作者              | 修改日期            |     | 41      |
|                                         | WnSN Lab        | 09/21/2010      |     | 公升      |

## 3. 顶层模块 TOP

### 3.1 实验描述

### 3.1.1 模块描述



MIPS 单周期处理器原理图

# 3.1.2 新建模块源文件 Top,将各个模块互联起来。

单周期处理器的设计,关键是确定数据通路(信号和数据)以及确定哪些操作需要时钟,哪 些不需要时钟,要分析时序并约束。

|                                                                | 标题              | 文档编号            | 版本  | 页              |
|----------------------------------------------------------------|-----------------|-----------------|-----|----------------|
| 上海交通大学 —— 计算机科学与工程系 —— Dept. of Computer Science & Engineering | 计算机组成实验指导书 LAB1 | CSE-COA-LAB-005 | 0.3 | 6 of 14        |
|                                                                | 作者              | 修改日期            |     | 11 <del></del> |
|                                                                | WnSN Lab        | 09/21/2010      |     | 公升             |

Copyright © 2012 SJTU Department of Computer Science & Engineering. All rights reserved.

| Define Wodule  Specify ports for module. |                     |    |
|------------------------------------------|---------------------|----|
|                                          |                     |    |
| odule name Top                           |                     |    |
| Port Name                                | Direction Bus MSB I | SB |
| clk                                      | input 🔽 🗌           |    |
| reset                                    | input 🔽 🗌           |    |
|                                          |                     |    |
|                                          | input 🔽 🗌           |    |
|                                          | input  input        |    |

#### 3.1.3 定义信号线

给 top 模块内的每一根连接的信号线命名,并在 top 模块中声明它们。例如,主控制模块输出端口上的连线:





#### 3.1.4 程序计数器 PC

程序计数器是这个简单 CPU 能够跑起来的关键。定义一个 32 位 reg 类型 PC,在时钟上升沿(下降沿已经被我们用作寄存器的写了)做 PC<=PC+4。

注:简单的讲,在组合逻辑中用阻塞赋值 "=",时序逻辑中用非阻塞赋值 "<="。两者综合出来的电路不一样,具体区别查阅参考书。时序逻辑和组合逻辑不要放在同一个 always 块中。

#### **3.1.5 RESET**

PC 置 0x00000000, 各寄存器清零, 这是 reset 要做的工作。同步或异步, 边沿或电平, 同学们可以自由实现。

寄存器清零,所以要适当修改上次实验的 registerFile 模块,给模块添加 reset 信号。

|                                                          | 标题              | 文档编号            | 版本  | 页                |
|----------------------------------------------------------|-----------------|-----------------|-----|------------------|
| 上海交通大学 计算机科学与工程系 Dept. of Computer Science & Engineering | 计算机组成实验指导书 LAB1 | CSE-COA-LAB-005 | 0.3 | 7 of 14          |
|                                                          | 作者              | 修改日期            |     | /\ <del></del> * |
|                                                          | WnSN Lab        | 09/21/2010      |     | 公升               |

注:添加 reset 要注意,写在原来"写"的 always 块中。假如新加一个 always 块,当个两个"写"always 同时满足时,就将混乱不知赋什么值了。

#### 3.1.6 模块实例化,连接模块

 实例化前两次实验中编写的模块,实例化的过程中连接模块的端口。各种变量名比较繁多复杂,需要定义一套命名规则,方便代码的编写和阅读。实例化有以下两种方法:

1. 严格按照模块定义的端口顺序来连接,不用表明原模块定义时规定的端口名:

模块模块名(连接端口1信号名,连接端口2信号名...)

2. 在连接时用"."符号,表明原模块是定义时规定的端口名:

模块 模块名(.端口 1 名(信号 1), .端口 2 名(信号 2))

推荐用第2种实例化方法。

以主控制模块为例,以下代码实例化一个主控制模块 Ctr,并连接其端口。INST 是定义好的指令存储器输出的连接信号,其他信号线我们在 3.1.3 中已定义。

| 100 | Ctr mainCtr(                      |
|-----|-----------------------------------|
| 101 | .opcode(INST[31:26]),             |
| 102 | .regDst(REG DST),                 |
| 103 | .jump(JUMP),                      |
| 104 | .branch(BRANCH),                  |
| 105 | .memRead(MEM READ),               |
| 106 | .memToReg(MEM TO REG),            |
| 107 | .aLUOp(ALU OP),                   |
| 108 | .memWrite(MEM WRITE),             |
| 109 | .aLUSrc(ALU SRC),                 |
| 110 | <pre>.regWrite(REG WRITE));</pre> |
|     |                                   |
|     | 实例化 Ctr                           |

### 3.1.7 连接其它信号线

#### 1. MUX

Mux 已经在前几次实验中提到,实现很简单,一个三目运算符 Assign OUT = SEL? INPUT1: INPUT2; OUT, SEL, INPUT1, INPUT2 都是预先定义的信号。

|                                                                      | 标题              | 文档编号            | 版本  | 页              |
|----------------------------------------------------------------------|-----------------|-----------------|-----|----------------|
| 上海交通大学 ——<br>计算机科学与工程系 ——<br>Dept. of Computer Science & Engineering | 计算机组成实验指导书 LAB1 | CSE-COA-LAB-005 | 0.3 | 8 of 14        |
|                                                                      | 作者              | 修改日期            |     | // <del></del> |
|                                                                      | WnSN Lab        | 09/21/2010      | 公升  |                |

- 2. 左移两位, 用移位运算符: 左移("<<"), 右移(">>")
- 3. 加法器,直接用无符号加法运算。

注: verilog 中寄存器类型被解释成无符号数,整数类型(integer)被解释成二进制补码形式的有符号数。因此要综合成无符号算术算符需要使用寄存器类型,而要得到有符号算术算符就需要使用整数。网线类型被解释成无符号数。

4. 与门,使用位运算符&(位与)。注意&和&&的区别。

|                                        | 标题              | 文档编号            | 版本  | 页       |
|----------------------------------------|-----------------|-----------------|-----|---------|
| ——— 上海交通大学 ———<br>计算机科学与工程系            | 计算机组成实验指导书 LAB1 | CSE-COA-LAB-005 | 0.3 | 9 of 14 |
| Dent of Computer Science & Engineering | 作者              | 修改日期            |     | /\ TT   |
| och: a contain acute a rightening      | WnSN Lab        | 09/21/2010      |     | 公开      |

1 2

3 4

5

6

8 9

20

36 37 38

39

40

41 42 1. 编写二进制测试程序

请编写自己的测试汇编。下面提供一个简易汇编器供参考。

一些相关的基本知识:

指令格式:

| R | орсо | de |    | rs      |    |    | rt |    |    | rd | shan  | nt    |   | funct |   |
|---|------|----|----|---------|----|----|----|----|----|----|-------|-------|---|-------|---|
|   | 31   | 26 | 25 |         | 21 | 20 |    | 16 | 15 | 11 | 10    | 6     | 5 |       | 0 |
| 1 | орсо | de |    | rs      |    |    | rt |    |    |    | immed | liate |   |       |   |
|   | 31   | 26 | 25 |         | 21 | 20 |    | 16 | 15 |    |       |       |   |       | 0 |
| J | орсо | de |    | address |    |    |    |    |    |    |       |       |   |       |   |
|   | 31   | 26 | 25 |         |    |    |    |    |    |    |       |       |   |       | 0 |

Mips 基本指令格式

汇编格式:注意汇编中寄存器的顺序跟 Mips 指令格式中的不一样

add \$1,\$2,\$3

: \$1=\$2 + \$3

sub \$1,\$2,\$3

: \$1=\$2 - \$3

and \$1,\$2,\$3

: \$1=\$2 & \$3

or \$1,\$2,\$3

: \$1=\$2 | \$3

slt \$1,\$2,\$3

: if(\$2<\$3) \$1=1 else \$1=0

lw \$1,10(\$2)

: \$1=memory[\$2+10]

sw \$1,10(\$2)

: memory[\$2+10]=\$1

beq \$1,\$2,10

: if(\$1==\$2) goto PC+4+40

[10 是 PC+4 后的指令间隔数, 故为 PC+4+40]

j 10000

: goto 10000

2. 系统任务\$readmemb 和\$readmemh。Verilog 中这两个系统任务用来从文件 中读取数据到存储器中,代码编写放在存储模块的 initial 初始化块中。格 式如下:

\$readmemx("datafile", memoryName);

\$readmemx("datafile", memoryName, startAddr);

|                                          | 标题              | 文档编号            | 版本  | 页        |
|------------------------------------------|-----------------|-----------------|-----|----------|
| ——上海交通大学 ———<br>计管扣 43 学 上 T 把 系         | 计算机组成实验指导书 LAB1 | CSE-COA-LAB-005 | 0.3 | 10 of 14 |
| 1 异饥叶子可工性尔                               | 作者              | 修改日期            |     | /\ TT    |
| outs or component science a diginitering | WnSN Lab        | 09/21/2010      |     | 公井       |

 \$readmemx("datafile", memoryName, startAddr, endAddr);

这里给出 mem\_data 和 mem\_inst 两个样例文件,分别用来装入 data memory 和 instruction memory。

#### mem\_data

| 1 | 00000000 |
|---|----------|
| 2 | 00000001 |
| 3 | 00000002 |
| 4 | 00000003 |
| 5 | 00000004 |
| 6 | 00000005 |
| 7 | 00000006 |
| 8 | 00000007 |
| 9 | 00000008 |
|   |          |

### mem\_inst

| 1 | 000010000000000000000000000000000000000 | // j a               |
|---|-----------------------------------------|----------------------|
| 2 | 000000000000000000000000000000000000000 | // nop               |
| 3 | 000000000000000000000000000000000000000 | // nop               |
| 4 | 000000000000000000000000000000000000000 | // nop               |
| 5 | 1000110000000010000000100010100         | // lw \$1, 276(\$0)  |
| 6 | 1000110000000100000000100001000         | // lw \$2, 264(\$0)  |
| 7 | 0000000001000100001100000100000         | // add \$3, \$1, \$2 |
| 8 | 00000000001000100010000000100010        | // sub \$4, \$1, \$2 |

3. 其他常用系统任务

... ...

\$monitor 提供监控和输出参数列表中的表达式或变量值的功能。

如\$monitor("rxd=%b", rxb);

\$time 返回当前仿真时刻值。

如\$monitor(\$time);

- 4. 编辑 testbench 文件, 进行仿真测试:
  - 1) 初始化 register、data memory 和 instruction memory 三大存储模块,这里仅以初始化 data memory 为例,其它类推。该 memory 用于存

|                                         | 标题              | 文档编号            | 版本  | 页              |
|-----------------------------------------|-----------------|-----------------|-----|----------------|
| —— 上海交通大学 ——<br>计算机科学与工程系               | 计算机组成实验指导书 LAB1 | CSE-COA-LAB-005 | 0.3 | 11 of 14       |
| 月子加叶子可工性示                               | 作者              | 修改日期            |     | 41 <del></del> |
| Dept. of Computer Science & Engineering | WnSN Lab        | 09/21/2010      |     | 公升             |

储二进制代码。如下图,Verilog 中调用了系统任务\$readmemh 将 mem\_data 文件中的数据读入到 memFile 数组中。

```
28
        );
29
    reg [31:0] memFile [0:255];//memory space: 256*32bits
30
31
        //initial the instruction or data memory
32
33
    initial
34
    begin
35
       $readmemh("./Src/mem data",memFile,10'h0);
36
    end
37
38
39
    always @ (negedge clock_in)
40 begin
```

也可把对存储模块的初始化一起添加到 top 中的 initial 块里,如下:

```
initial
  begin
    $readmemh("./Src/regist",regFile,32'h0);
    $readmemh("./Src/mem_data", memFile, 10'h0);
    $readmemb("./Src/mem_inst", InstMemFile, 8'h0);
end
```

- 2) 编写 Top 层的 testbench,可定义文件名为 Top\_tb。
- 3) 按需要添加时钟激励和其他输入信号的初始化。

|                                                          | 标题              | 文档编号            | 版本  | 页              |
|----------------------------------------------------------|-----------------|-----------------|-----|----------------|
| 上海交通大学 计算机科学与工程系 Dept. of Computer Science & Engineering | 计算机组成实验指导书 LAB1 | CSE-COA-LAB-005 | 0.3 | 12 of 14       |
|                                                          | 作者              | 修改日期            |     | 41 <del></del> |
|                                                          | WnSN Lab        | 09/21/2010      |     | 公升             |

```
2
3
5
6
8
9
10
12
13
14
15
16
17
18
19
20
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
```

```
Top uut (
36
           .ClkIn(ClkIn),
37
38
           .Rst(Rst),
           .PC(PC),
39
40
           .Led(Led)
41
        );
42
43
        initial begin
           // Initialize Inputs
44
           ClkIn = 0;
45
           Rst = 1;
46
           Switch = 0;
47
48
49
           // Wait 100 ns for global reset to finish
           #100;
50
           Rst = 0;
51
52
           // Add stimulus here
53
54
55
        end
56
        always
57
        #2 clock_in = !clock_in;
58
59
    endmodule
```

// Instantiate the Unit Under Test (UUT)

- 4) 添加 register 模块中的 regfile 寄存器数组到仿真波形窗口,观察各个寄存器的变化情况。
- 5) 在 Console 窗口中输入 restart 和 run 2000ns 命令,重新进行仿真。 观察新波形并与你设计的 MIPS 指令运行结果相对比。



仿真波形示例

|                                       | 标题              | 文档编号            | 版本  | 页               |
|---------------------------------------|-----------------|-----------------|-----|-----------------|
| ————————————————————————————————————— | 计算机组成实验指导书 LAB1 | CSE-COA-LAB-005 | 0.3 | 13 of 14        |
|                                       | 作者              | 修改日期            |     | / <del></del> * |
|                                       | WnSN Lab        | 09/21/2010      |     | 公升              |

Copyright © 2012 SJTU Department of Computer Science & Engineering. All rights reserved.

本节上板调试验证,根据自己的情况可选做注:

- 1. Memory 没有好的办法去初始化,只有给 memory 添加 reset,在 reset 的时候硬代码写在里面。
- 2. 没有充足的外设去观察程序运行情况,5个 pushbutton,4个 switch,8个 led。动用你们的思考和愿望...

# 6. 实验报告

|                                            | 标题              | 文档编号            | 版本  | 页        |
|--------------------------------------------|-----------------|-----------------|-----|----------|
| ——— 上海交通大学 ———<br>计算机科学与工程系                | 计算机组成实验指导书 LAB1 | CSE-COA-LAB-005 | 0.3 | 14 of 14 |
| Dent of Computer Science & Engineering     | 作者              | 修改日期            |     | /\ TT    |
| orbit or component science of ringingering | WnSN Lab        | 09/21/2010      |     | 公开       |