Airline Recommendation System - Data 602 project - Group 4

Import the required Libraries

Read the data

Out[8]:

	Unnamed: 0	airline_name	author	author_country	cabin_flown	overall_rating	seat_comfo
0	0	adria-airways	D Ito	Germany	Economy	7.0	
1	1	adria-airways	Ron Kuhlmann	United States	Business Class	10.0	
2	2	adria-airways	E Albin	Switzerland	Economy	9.0	
3	3	adria-airways	Tercon Bojan	Singapore	Business Class	8.0	
4	4	adria-airways	L James	Poland	Economy	4.0	

5 rows × 31 columns

```
In [9]: ▶ data.columns
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 27284 entries, 0 to 27283
Data columns (total 31 columns):

Data	COTUMNIS (COCAT 31 COTUMNIS).		
#	Column	Non-Null Count	Dtype
0	Unnamed: 0	27284 non-null	int64
1	airline_name	27284 non-null	object
2	author	27284 non-null	object
3	author_country	27284 non-null	object
4	cabin_flown	27284 non-null	object
5	overall_rating	27284 non-null	float64
6	seat_comfort_rating	27284 non-null	float64
7	cabin_staff_rating	27284 non-null	float64
8	<pre>food_beverages_rating</pre>	27284 non-null	float64
9	<pre>inflight_entertainment_rating</pre>	27284 non-null	float64
10	value_money_rating	27284 non-null	float64
11	Month	27284 non-null	int64
12	Year	27284 non-null	int64
13	recommended	27284 non-null	int64
14	id	27284 non-null	int64
15	Gender	27284 non-null	object
16	Customer Type	27284 non-null	object
17	Age	27284 non-null	int64
18	Type of Travel	27284 non-null	object
19	Flight Distance	27284 non-null	int64
20	Inflight wifi service	27284 non-null	int64
21	Departure/Arrival time convenient	27284 non-null	int64
22	Ease of Online booking	27284 non-null	int64
23	Gate location	27284 non-null	int64
24	Online boarding	27284 non-null	int64
25	On-board service	27284 non-null	int64
26	Leg room service	27284 non-null	int64
27	Baggage handling	27284 non-null	int64
28	Checkin service	27284 non-null	int64
29	Inflight service	27284 non-null	int64
30	Cleanliness	27284 non-null	int64
44	£1+C4/C\ :=+C4/10\ -b:+/7	\	

dtypes: float64(6), int64(18), object(7)

memory usage: 6.5+ MB

In [11]: data.describe()

Out[11]:

	Unnamed: 0	overall_rating	seat_comfort_rating	cabin_staff_rating	tood_beverages_rat
count	27284.000000	27284.000000	27284.000000	27284.000000	27284.0000
mean	13641.500000	6.067879	3.259566	3.522944	3.0164
std	7876.356709	3.216066	1.351689	1.460053	1.515(
min	0.000000	1.000000	0.000000	0.000000	0.0000
25%	6820.750000	3.000000	2.000000	2.000000	2.0000
50%	13641.500000	7.000000	4.000000	4.000000	3.0000
75%	20462.250000	9.000000	4.000000	5.000000	4.0000
max	27283.000000	10.000000	5.000000	5.000000	5.000(

8 rows × 24 columns

=

```
    data.isna().sum()

In [12]:
    Out[12]: Unnamed: 0
                                                     0
              airline name
                                                     0
              author
                                                     0
              author_country
                                                     0
              cabin flown
                                                     0
              overall rating
                                                     0
              seat_comfort_rating
                                                     0
              cabin_staff_rating
                                                     0
              food_beverages_rating
                                                     0
              inflight_entertainment_rating
                                                     0
              value_money_rating
                                                     0
                                                     0
              Month
              Year
                                                     0
              recommended
                                                     0
                                                     0
              id
              Gender
                                                     0
                                                     0
              Customer Type
                                                     0
              Type of Travel
                                                     0
              Flight Distance
                                                     0
              Inflight wifi service
                                                     0
              Departure/Arrival time convenient
                                                     0
              Ease of Online booking
                                                     0
              Gate location
                                                     0
              Online boarding
                                                     0
              On-board service
                                                     0
              Leg room service
                                                     0
              Baggage handling
                                                     0
              Checkin service
                                                     0
              Inflight service
                                                     0
              Cleanliness
                                                     0
              dtype: int64
```

Data Exploration

Correlation Plot

Pie chart

```
In [14]: | import plotly.express as px
air2 = data["recommended"].value_counts().reset_index()
fig = px.pie(air2,values="recommended",names="index",width=400, height=400)
fig.show()
```

```
In [19]: | import seaborn as sns
sns.countplot(x='cabin_flown', hue=pd.cut(df['Age'],10),data=df)
```

Out[19]: <matplotlib.axes. subplots.AxesSubplot at 0x7fedc12fcb50>


```
import plotly.express as px
fig = px.bar(air1, x='airline_name', y='author')
fig.show()
```

number of flights flown in each month

```
In [22]:
           df.groupby('Month')['airline name'].agg('count').sort values()
   Out[22]: Month
             11
                    1799
              2
                    1890
             8
                    1942
             12
                    1952
             9
                    2006
             10
                    2259
              3
                    2320
             4
                    2331
             6
                    2446
             5
                    2592
             7
                    2819
                    2928
              1
             Name: airline_name, dtype: int64
```

Which airline has received the most reiews by the customers

	airiine_name
british-airways	855
united-airlines	803
air-canada-rouge	703
emirates	685
lufthansa	586
american-airlines	579
qantas-airways	576
etihad-airways	512
qatar-airways	491
cathay-pacific-airways	491
_	

Average rating for each airline

Out[24]:	overall_rating
----------	----------------

airline_name	
adria-airways	7.705882
aegean-airlines	7.620690
aer-lingus	7.077703
aeroflot-russian-airlines	6.682051
aerogal-aerolineas-galapagos	8.500000

Count of rating given to each airline

Out[25]:	overall_rating	num of ratings
----------	----------------	----------------

airline_name		
adria-airways	7.705882	17
aegean-airlines	7.620690	174
aer-lingus	7.077703	296
aeroflot-russian-airlines	6.682051	195
aerogal-aerolineas-galapagos	8.500000	2

In [26]: ▶ ratings.sort_values('num of ratings',ascending=False).head(10)

Out[26]:

overall_rating num of ratings

airline_name		
british-airways	5.905263	855
united-airlines	3.438356	803
air-canada-rouge	2.522048	703
emirates	6.265693	685
lufthansa	7.017065	586
american-airlines	3.696028	579
qantas-airways	7.008681	576
etihad-airways	4.910156	512
cathay-pacific-airways	6.916497	491
qatar-airways	7.313646	491

In [27]: plt.figure(figsize=(10,4))
 ratings['num of ratings'].hist(bins=30)

Out[27]: <matplotlib.axes._subplots.AxesSubplot at 0x7fedc0f0f190>

Out[28]: <matplotlib.axes._subplots.AxesSubplot at 0x7fedc0e24590>

In [29]: # list of numerical variables numerical_features = [feature for feature in df.columns if df[feature].dtypes print('Number of numerical variables: ', len(numerical_features)) df[numerical_features].head()# visualise the numerical variables

Number of numerical variables: 23

Out[29]:

	overall_rating	seat_comfort_rating	cabin_staff_rating	food_beverages_rating	inflight_enterta
0	7.0	4.0	4.0	4.0	
1	10.0	4.0	5.0	4.0	
2	9.0	5.0	5.0	4.0	
3	8.0	4.0	4.0	3.0	
4	4.0	4.0	2.0	1.0	

5 rows × 23 columns


```
In [30]:
              categorical features=[feature for feature in df.columns if df[feature].dtypes
              categorical features
    Out[30]:
              ['airline name',
                'author',
                'author_country',
                'cabin flown',
                'Gender',
                'Customer Type',
                'Type of Travel']
In [31]:
              review spread1 = data.groupby("author country")["overall rating"].count().res
              review spread1.head(10)
    Out[31]:
                    author_country overall_rating
                133
                    United Kingdom
                                          6275
               134
                      United States
                                          4967
                                          3931
                 5
                          Australia
                                          2625
                24
                           Canada
                47
                          Germany
                                           885
                         Singapore
                114
                                           528
                93
                       New Zealand
                                           489
                56
                             India
                                           431
                91
                        Netherlands
                                           364
                45
                            France
                                           350
In [32]:
              import plotly.express as px
              fig = px.bar(review_spread1, x='author_country', y='overall_rating')
              fig.show()
              cabin spread = data.groupby("cabin flown")["overall rating"].count().reset in
In [33]:
              cabin spread.head(10)
    Out[33]:
                       cabin_flown overall_rating
               1
                          Economy
                                         19830
               0
                     Business Class
                                          5329
                  Premium Economy
                                          1374
               2
                        First Class
                                           751
```

<Figure size 576x360 with 0 Axes>

Year wise analysis

Cosine

```
In [39]:
                airline features df=data.pivot table(index='airline name',columns='id cus',va
                 airline features df.head()
     Out[39]:
                        id_cus
                                  0
                                       1
                                            2
                                                           5
                                                               6
                                                                    7
                                                                         8
                                                                              9
                                                                                ... 19624 19625 19626
                                                                                                           19627
                  airline_name
                         adria-
                                0.0 \quad \dots
                                                                                        0.0
                                                                                                0.0
                                                                                                       0.0
                                                                                                               0.0
                       airways
                      aegean-
                                0.0 0.0 0.0
                                               0.0
                                                   0.0
                                                        0.0
                                                             0.0
                                                                  0.0
                                                                       0.0
                                                                            0.0
                                                                                        0.0
                                                                                                0.0
                                                                                                       0.0
                                                                                                               0.0
                       airlines
                     aer-lingus
                               0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0
                                                                                        0.0
                                                                                                0.0
                                                                                                       0.0
                                                                                                               0.0
                      aeroflot-
                                0.0 \quad \dots
                                                                                        0.0
                                                                                                0.0
                                                                                                       0.0
                                                                                                               0.0
                      russian-
                       airlines
                      aerogal-
                    aerolineas-
                                0.0
                                                                                                0.0
                                                                                                       0.0
                                                                                                               0.0
                    galapagos
                 5 rows × 19634 columns
```

```
print(query_index)
distances, indices = model_knn.kneighbors(airline_features_df.iloc[query_index])
```

```
In [42]:
         if i == 0:
                   print('Recommendations for {0}:\n'.format(airline_features_df.index[d])
               else:
                   print('{0}: {1}:'.format(i, airline_features_df.index[indices.flatter
            Recommendations for hong-kong:
            1: air-china:
            2: dragonair:
            3: eva-air:
            4: cathay-pacific-airways:
            5: malaysia-airlines:

  | col = df.columns.tolist()

In [43]:
         ▶ le= LabelEncoder()
In [44]:
            df[col] = df[col].apply(le.fit_transform)
```

Apply the model and get the feature importance

```
In [45]:
          # logistic regression for feature importance
             from sklearn.datasets import make classification
             from sklearn.linear_model import LogisticRegression
             from matplotlib import pyplot
             X = df.drop(['recommended'], axis=1)
             y = df['recommended']
             # define the model
             model = LogisticRegression()
             # fit the model
             model.fit(X, y)
             # get importance
             importance = model.coef_[0]
             # summarize feature importance
             # plot feature importance
             pyplot.bar([x for x in range(len(importance))], importance)
             pyplot.show()
```


Split the dataset into training and testing dataset

Apply Gaussian algorithm to our data

```
In [48]:
            from sklearn.metrics import accuracy score
            model=GaussianNB()
            model.fit(x train,y train)
            y pred = model.predict(x test)
            print("Accuracy: ",accuracy_score(y_test,y_pred))
            Accuracy: 0.9417973904119631
In [49]:
         ▶ from sklearn.metrics import classification report
            print(classification report(y test,y pred))
                                     recall f1-score
                         precision
                                                       support
                      0
                              0.92
                                       0.94
                                                 0.93
                                                          2725
                              0.96
                                       0.95
                      1
                                                 0.95
                                                          4096
                                                 0.94
                                                          6821
                accuracy
                              0.94
                                       0.94
                                                 0.94
                                                          6821
               macro avg
            weighted avg
                              0.94
                                       0.94
                                                 0.94
                                                          6821
```

Apply KNN algorithm to our data

```
In [50]:
            from sklearn.metrics import confusion_matrix,f1_score,accuracy_score
            model = KNeighborsClassifier(n_neighbors = 5, p =2, metric="euclidean")
            model.fit(x train,y train)
            y pred = model.predict(x test)
            print("Accuracy: ",accuracy_score(y_test,y_pred))
            Accuracy: 0.5370180325465475

▶ | print(classification_report(y_test,y_pred))
In [51]:
                         precision
                                     recall f1-score
                                                       support
                              0.39
                                       0.29
                                                0.33
                                                          2725
                      0
                      1
                              0.60
                                       0.70
                                                0.65
                                                          4096
                accuracy
                                                0.54
                                                          6821
               macro avg
                              0.49
                                       0.50
                                                0.49
                                                          6821
            weighted avg
                              0.52
                                       0.54
                                                0.52
                                                          6821
```

Apply Random Forest algorithm to our data

Accuracy: 0.9463421785661926

In [53]: print(classification_report(y_test,y_pred))

	precision	recall	f1-score	support
0 1	0.93 0.96	0.94 0.95	0.93 0.96	2725 4096
1	0.96	0.95	0.96	4096
accuracy			0.95	6821
macro avg	0.94	0.94	0.94	6821
weighted avg	0.95	0.95	0.95	6821

Out[54]: Text(0.5, 1.0, 'Variable Importances')

Knowledge Based

```
In [56]:
            ▶ new['Age'].describe()
    Out[56]: count
                          27284.000000
                             39.361897
               mean
               std
                             15.060640
               min
                               7.000000
               25%
                             27.000000
               50%
                             40.000000
               75%
                             51.000000
                             85.000000
               max
               Name: Age, dtype: float64
In [57]:
            ▶ bins=[1,15,30,45,65,85]
               labels = ['Childern','Youth', 'Adult', 'Middle Age', 'Senior']
               new['Age'] = pd.cut(new['Age'], bins= bins, labels=labels)
               new['count']=(new.groupby(['airline_name', 'cabin_flown','author_country','Ag
In [58]:
    Out[58]:
                                   author_country
                                                    cabin_flown overall_rating seat_comfort_rating cabin_sta
                       airline_name
                       adria-airways
                                          Germany
                                                       Economy
                                                                          7.0
                                                                                              4.0
                                                       Business
                                       United States
                                                                         10.0
                                                                                              4.0
                       adria-airways
                                                          Class
                        adria-airways
                                         Switzerland
                                                       Economy
                                                                          9.0
                                                                                              5.0
                                                       Business
                                                                                              4.0
                    3
                        adria-airways
                                          Singapore
                                                                          8.0
                                                          Class
                        adria-airways
                                            Poland
                                                       Economy
                                                                          4.0
                                                                                              4.0
                                                             ...
                27279
                                     United Kingdom
                                                                          7.0
                                                                                              3.0
                            wizz-air
                                                       Economy
                27280
                            wizz-air
                                     United Kingdom
                                                       Economy
                                                                          2.0
                                                                                              1.0
                27281
                                     United Kingdom
                                                       Economy
                                                                                              2.0
                            wizz-air
                                                                          1.0
                27282
                            wizz-air
                                     United Kingdom
                                                       Economy
                                                                          5.0
                                                                                              3.0
                27283
                                     United Kingdom
                            wizz-air
                                                       Economy
                                                                          1.0
                                                                                              2.0
               27284 rows × 12 columns
```

Out[59]:

				overall_rating	seat_comfort_rating	cabin_
airline_name	cabin_flown	author_country	Age			
			Adult	2.676829	1.506098	
air-canada- rouge	Economy	Canada	Middle Age	2.103226	1.270968	
			Youth	2.226562	1.367188	
sunwing- airlines	Economy	Canada	Adult	3.942308	2.086538	
united- airlines	Economy	United States	Middle Age	2.446602	2.077670	
			Childern	NaN	NaN	
			Youth	NaN	NaN	
yangon-	Premium	Zimbabwe	Adult	NaN	NaN	
airways	Economy		Middle Age	NaN	NaN	

Senior

NaN

NaN

829280 rows × 8 columns

 $localhost: 8891/notebooks/Downloads/Final_Project__602_Group8.ipynb$

overall_rating seat_comfort_rating cabin_st

A 1	$\Gamma \sim 0.7$	
()IIT	เหนเ	•
ouc		•

airline_name	cabin_flown	author_country	Age		
	Business Class	Singapore Turkey	Youth	8.000000	4.000000
			Adult	7.500000	3.500000
adria-			Youth	7.000000	2.000000
airways		United States	Youth	10.000000	4.000000
	Economy	Canada	Middle Age	8.000000	4.000000
	Economy	United States	Adult	8.500000	3.166667
xl-airways-			Middle Age	6.333333	2.666667
france	Premium Economy	Singapore	Middle Age	3.000000	4.000000
		United States	Middle Age	10.000000	3.000000
yangon- airways	Economy	Australia	Middle Age	10.000000	5.000000

8818 rows × 8 columns

```
In [63]:
               #Calculating weighting average of each airline important Ratings
               for i in new[['overall_rating', 'seat_comfort_rating','cabin_staff_rating',
                    def weighted_rating(a, m=m, C=new[i].mean()):
                         v = a['count']
                         R = a[i]
                         return (v/(v+m) * R) + (m/(m+v) * C)
                    new[i +' score'] = new.apply(weighted rating, axis =1)
In [64]:
               new = new.reset index()
               #Airlines according to User Preferance
In [65]:
               (new.loc[(new['cabin flown'] == 'Economy') & (new['author country'] == 'Unite
    Out[65]:
                      airline_name cabin_flown author_country
                                                                Age
                                                                     overall_rating seat_comfort_rating cab
                          aegean-
                  7
                                      Economy
                                                  United States
                                                               Youth
                                                                         10.000000
                                                                                              4.500000
                           airlines
                        singapore-
                742
                                      Economy
                                                  United States
                                                               Youth
                                                                          8.428571
                                                                                              3.428571
                           airlines
                 26
                       aeromexico
                                      Economy
                                                  United States
                                                               Youth
                                                                          7.900000
                                                                                              4.000000
                562
                         korean-air
                                      Economy
                                                  United States
                                                               Youth
                                                                          7.583333
                                                                                              3.583333
                         klm-royal-
                550
                                                  United States
                                                                          8.000000
                                                                                              3.666667
                                      Economy
                                                              Youth
                      dutch-airlines
                            china-
                334
                         southern-
                                      Economy
                                                  United States
                                                              Youth
                                                                          7.750000
                                                                                              4.000000
                           airlines
                           alaska-
                147
                                                  United States
                                                                                              3.263158
                                      Economy
                                                               Youth
                                                                          7.368421
                           airlines
                           asiana-
                212
                                                              Youth
                                      Economy
                                                  United States
                                                                          7.461538
                                                                                              3.846154
                           airlines
                508
                      japan-airlines
                                      Economy
                                                  United States
                                                               Youth
                                                                          7.833333
                                                                                              3.666667
                           ana-all-
                 199
                           nippon-
                                      Economy
                                                  United States
                                                              Youth
                                                                          7.250000
                                                                                              2.916667
                          airways
```

Content Based

```
In [67]:
           H test.head()
    Out[67]:
                  airline_name author_country cabin_flown overall_rating seat_comfort_rating cabin_staff_ra
                  adria-airways
                                   Germany
                                               Economy
                                                                7.0
                                                                                  4.0
                                               Business
                                United States
                  adria-airways
                                                               10.0
                                                                                  4.0
                                                 Class
                  adria-airways
                                 Switzerland
                                               Economy
                                                                9.0
                                                                                  5.0
                                               Business
                                  Singapore
                                                                8.0
               3
                  adria-airways
                                                                                  4.0
                                                 Class
                  adria-airways
                                     Poland
                                               Economy
                                                                4.0
                                                                                  4.0
           | test = (test.groupby(['airline_name', 'cabin_flown','author_country']).mean()
In [68]:
In [69]:
           test = test.reset index()
           X = test.loc[:, ['author_country','cabin_flown',
In [70]:
                      'overall_rating', 'seat_comfort_rating', 'cabin_staff_rating',
                      'food_beverages_rating', 'inflight_entertainment_rating',
                      'value_money_rating', 'Month', 'Year', 'Age', 'Flight Distance']].value
In [71]:
           ▶ | from sklearn.preprocessing import LabelEncoder
              le= LabelEncoder()
              ld= LabelEncoder()
              X[:,0] = le.fit transform(X[:, 0])
              X[:,1] = \text{ld.fit transform}(X[:, 1])

    | y = np.array(test.loc[(test['airline name'] == 'air-india') & (test['cabin fl
In [72]:
           | y = y[:,1:]
In [73]:
In [74]:
           ⋈ y[1]
    Out[74]: array(['Economy', 'Austria', '4.0', '1.0', '4.0', '4.0', '0.0', '2.0',
                      '2.0', '2012.0', '22.0', '1276.0'], dtype='<U32')
           |y| |y|:,0] = le.fit transform(|y|:,0])
In [75]:
              y[:,1] = ld.fit_transform(y[:,1])
In [76]:
           ▶ from sklearn.neighbors import NearestNeighbors
              model = NearestNeighbors(n neighbors = 4).fit(X)
              result = model.kneighbors(y[[1]])
```

```
In [77]:
               result = np.array(result[1])
                result = result.flatten()
                result
    Out[77]: array([ 503, 345, 3067, 3941])
                #Recommendaded Airlines
In [78]:
                test = test.loc[result]
                test
    Out[78]:
                       airline_name cabin_flown author_country overall_rating seat_comfort_rating cabin_stat
                  503
                            air-india
                                       Economy
                                                          Austria
                                                                           4.0
                                                                                          1.000000
                  345
                                                                                          2.000000
                           air-china
                                       Economy
                                                          Austria
                                                                           4.0
                          malaysia-
                 3067
                                       First Class
                                                        Australia
                                                                           8.0
                                                                                          5.000000
                            airlines
                             swiss-
                                                                                                            3
                 3941
                       international-
                                       Economy
                                                        Australia
                                                                           6.0
                                                                                          2.888889
                            air-lines
```

Colaborative Based

```
In [79]:
               rating_utility_matrix = data.pivot_table(values ='overall_rating', index = 'i
                rating utility matrix.head()
    Out[79]:
                                                        aeroflot-
                                                                    aerogal-
                                       aegean-
                                                                             aerolineas-
                                adria-
                                                  aer-
                 airline_name
                                                                 aerolineas-
                                                                                         aeromexico aerosur
                                                        russian-
                              airways
                                       airlines lingus
                                                                             argentinas
                                                         airlines
                                                                  galapagos
                      id_cus
                           0
                                  0.0
                                           0.0
                                                   0.0
                                                                          0
                                                                                    0.0
                                                                                                 0.0
                                                                                                           0
                                                             0.0
                           1
                                  0.0
                                           0.0
                                                   0.0
                                                             0.0
                                                                          0
                                                                                    0.0
                                                                                                 0.0
                           2
                                  0.0
                                           0.0
                                                   0.0
                                                            0.0
                                                                          0
                                                                                    0.0
                                                                                                 0.0
                                                                                                           0
                           3
                                                                          0
                                  0.0
                                           0.0
                                                   2.0
                                                             0.0
                                                                                    0.0
                                                                                                 0.0
                                                                                                           0
                                  0.0
                                           0.0
                                                   0.0
                                                                          0
                                                                                    0.0
                                                                                                 0.0
                                                             0.0
                                                                                                           0
                5 rows × 292 columns
In [80]:
               from sklearn.decomposition import TruncatedSVD
               X = rating utility matrix.T
               SVD = TruncatedSVD(n components=30)
```

transposed matrix = SVD.fit transform(X)

```
corr_matrix = np.corrcoef(transposed_matrix)
In [81]:
             airlines = rating_utility_matrix.columns
             airline_list = list(airlines)
             airline index = airline list.index('aegean-airlines')
             airline_index
   Out[81]: 1

    type(airline_index)

In [82]:
   Out[82]: int
          corr = corr_matrix[airline_index]
In [83]:
          ▶ #Airlines which are more then 70% corellated
In [84]:
             list(airlines[(corr < 1.0) & (corr > 0.7)])
   Out[84]: ['aegean-airlines']
```

Hybrid Based

```
In [85]:
          ▶ #Build the SVD based Collaborative filter
             import surprise
             from surprise import SVD
             from surprise import Dataset
             from surprise.model selection import cross validate
             reader = surprise.Reader()
             svd data= Dataset.load from df(data[['id cus', 'airline id', 'overall rating'
             # Use the famous SVD algorithm.
             svd = SVD()
             # Run 5-fold cross-validation and print results.
             cross validate(svd, svd data, measures=['RMSE', 'MAE'], cv=5, verbose=True)
             Evaluating RMSE, MAE of algorithm SVD on 5 split(s).
                               Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean
                                                                               Std
             RMSE (testset)
                               3.3303 3.3358
                                              3.3316 3.3415 3.3688
                                                                       3.3416
                                                                               0.0142
             MAE (testset)
                               2.9699 2.9827 2.9838 2.9876 3.0054
                                                                       2.9859
                                                                               0.0114
             Fit time
                               1.46
                                       1.45
                                               1.46
                                                       1.46
                                                               1.48
                                                                       1.46
                                                                               0.01
             Test time
                               0.04
                                       0.03
                                               0.04
                                                       0.03
                                                               0.03
                                                                       0.04
                                                                               0.00
   Out[85]: {'fit_time': (1.4567475318908691,
               1.4469928741455078,
               1.4582104682922363,
               1.4582836627960205,
               1.4794580936431885),
              'test mae': array([2.96991946, 2.98273679, 2.98384251, 2.98759639, 3.00538
             519]),
              'test rmse': array([3.33028403, 3.33579736, 3.33164812, 3.34149318, 3.3688
             2381]),
              'test time': (0.03750038146972656,
               0.03420543670654297,
               0.04187178611755371,
               0.03348374366760254,
               0.033586978912353516)}
In [86]:
          d = data['airline name'].unique()
             d = pd.DataFrame(d)
```

```
In [87]:  \mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb
```

292 rows × 2 columns

yangon-airways

291

```
In [88]:
           H
             d = d.set_index(0)
             d = d[1]
             d
   Out[88]: 0
             adria-airways
                                              0
             aegean-airlines
                                              1
                                              2
             aer-lingus
             aeroflot-russian-airlines
                                              3
                                              5
             aerolineas-argentinas
             wizz-air
                                            287
             wow-air
                                            288
             xiamen-airlines
                                            289
             xl-airways-france
                                            290
             yangon-airways
                                            291
             Name: 1, Length: 292, dtype: int64
```

```
In [89]:
               cosine similarity data =data.pivot table(index='airline id',columns='id cus',
               cosine similarity data.head()
    Out[89]:
                  id_cus
                                1
                                    2
                                         3
                                                  5
                                                      6
                                                          7
                                                               8
                                                                   9 ... 19624 19625 19626 19627 1962
                airline_id
                       0.0
                              0.0 0.0 0.0
                                           0.0 0.0
                                                    0.0 0.0
                                                             0.0 0.0 ...
                                                                            0.0
                                                                                   0.0
                                                                                          0.0
                                                                                                 0.0
                                                                                                        0
                              0.0 0.0
                                       0.0
                                           0.0
                                                0.0
                                                    0.0
                                                         0.0
                                                             0.0
                                                                 0.0
                                                                            0.0
                                                                                   0.0
                                                                                          0.0
                                                                                                 0.0
                                                                                                        0
                       0.0
                                                                                   0.0
                                                                                          0.0
                                                                                                 0.0
                                                                                                        0
                         0.0 0.0 0.0 0.0 0.0 0.0
                                                    0.0 0.0
                                                            0.0
                                                                            0.0
                                                                                   0.0
                                                                                          0.0
                                                                                                 0.0
                                                                                                        0
                                                                 0.0 ...
                          0.0 \quad \dots
                                                                            0.0
                                                                                   0.0
                                                                                          0.0
                                                                                                 0.0
               5 rows × 19634 columns
```

```
| id_to_name = data[['airline_name', 'author', 'author_country', 'cabin_flown',
In [90]:
                    'overall_rating', 'seat_comfort_rating', 'cabin_staff_rating',
                    'food_beverages_rating', 'inflight_entertainment_rating',
                    'value_money_rating', 'Month', 'Year', 'recommended', 'id', 'Gender',
                    'Customer Type', 'Age', 'Type of Travel', 'Flight Distance',
                    'Inflight wifi service', 'Departure/Arrival time convenient',
                    'Ease of Online booking', 'Gate location', 'Online boarding',
                    'On-board service', 'Leg room service', 'Baggage handling',
                    'Checkin service', 'Inflight service', 'Cleanliness', 'id_cus',
                    'airline id']]
          id to name.drop duplicates(subset ="id cus",inplace = True)
In [91]:
In [92]:
             id to name = id to name.set index('id cus')
In [93]:
             name_to_id = data.set_index('airline_name')
In [94]:
          name_to_id.drop_duplicates(subset ="airline_id",inplace = True)
```

Out[96]:

		uninio_name	uutiioi	dutiloi_country	cabin_nown	overall_rating	Scat_comion_ran
-	0	adria-airways	D Ito	Germany	Economy	7.0	
	17	aegean- airlines	Eric Botha	United Kingdom	Business Class	8.0	
	32	aer-lingus	Keith Tynan	United States	Economy	3.0	
	106	aeroflot- russian- airlines	A McAndrew	United States	Premium Economy	8.0	
	152	aerolineas- argentinas	Hilarion Martinez	United States	Economy	5.0	
				•••			
	26818	wizz-air	P Lako	Sweden	Economy	8.0	
	27100	wow-air	Brian Seitz	United States	Economy	1.0	
	27123	xiamen- airlines	Gunawanto Johannes Tamawidjaja	Indonesia	Economy	5.0	
	27160	xl-airways- france	Christine Gayle	United States	Economy	5.0	
	27223	yangon- airways	Jeff Nash	Australia	Economy	10.0	

author author_country cabin_flown overall_rating seat_comfort_rati

292 rows × 32 columns

airline name

```
In [97]: | idx = d['aegean-airlines']
scores = list(enumerate(cosine_similarity_data[(int(idx))]))
```

```
In [98]: N scores = sorted(scores, key=lambda x: x[1], reverse=True)
```

```
In [99]:  airline_indices = [i[0] for i in scores]
```

```
airline_final = Airlines.iloc[airline_indices][['airline_name', 'overall_rati
In [100]:
               airline final['est'] = airline final['id cus'].apply(lambda x: svd.predict(1,
In [101]:
In [102]:
               airline_final = airline_final.sort_values(['est'], ascending=False)
               airline final.head(5)
In [103]:
    Out[103]:
                          airline_name overall_rating id_cus airline_id
                                              10.0
                                                                   5.0
                20416 singapore-airlines
                                                    5776
                                                              233
                17668
                          okay-airways
                                              4.0
                                                    1129
                                                              195
                                                                  5.0
                16122
                             lufthansa
                                                    2668
                                                              176 5.0
                                              9.0
                16169
                                luxair
                                              9.0
                                                    3769
                                                              177 5.0
                16188
                                              10.0
                                                               178 5.0
                            mahan-air
                                                   13182
               airline final = ((airline final.head(10))['airline name']).reset index(drop=T
In [104]:
               airline final.index = airline final.index +1
               airline_final
In [105]:
    Out[105]: 1
                      singapore-airlines
               2
                            okay-airways
               3
                               lufthansa
               4
                                   luxair
               5
                               mahan-air
                       malaysia-airlines
               6
               7
                           malm-aviation
               8
                                    mango
               9
                               meridiana
               10
                          miat-mongolian
               Name: airline_name, dtype: object
  In [ ]:
```