МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Функциональный анализ

Лабораторная работа №7

(Открытые и замкнутые множества в нормированном пространстве)

Студентки 3 курса 3 группы

Домановой Татьяны Алексеевны

Работа сдана 13.12.2013 г.		
Зачтена		_2013 г

Преподаватель

Дайняк Виктор Владимирович

Доцент кафедры МФ

канд. физ.-мат. наук

Задание 1

Постановка задачи

Определите, является ли множество $M = \{x(t) \in C[0,1]: x(0) \cdot x(1) = 0\}$ открытым, замкнутым в $C[0,1], L_1[0,1].$

Решение

Докажем, что множество M не является открытым. Выберем произвольное $x_0 \in M$, то есть $x_0(t) \in C[0,1], x_0(0)x_0(1) = 0$. Из последнего условия следует, что x(0) = 0 или x(1) = 0. Тогда для $\forall r > 0$ $\exists x(t) = x_0(t) + \alpha, \ |\alpha| < r$, такая, что $x(0) = x_0(0) + \alpha \neq 0$ и $x(1) = x_0(1) + \alpha \neq 0$. Таким образом функция x(t) принадлежит шару $B(x_0, r)$ но не принадлежит множеству M, а значит в множестве M нет внутренних точек, и оно не является открытым.

Проверим, является ли множество M замкнутым в C[0,1]. Множество замкнуто, если $M=\overline{M}$, то есть предел любой сходящейся последовательности из множества M тоже принадлежит множеству M. То есть $\forall x_n \in C[0,1]$ и $x_n(0)x_n(1)=0$ $x_n \to x_0$, то $x_0 \in C[0,1]$ и $x_0(0)x_0(1)=0$. Так как сходимость в C[0,1] равномерная, то из того что $\max_{t \in [0,1]} |x_n - x_0| \to_{n \to \infty} 0$ следует что $|x_n - x_0| \to_{n \to \infty} 0$, а значит $\lim_{n \to \infty} x_n(0)x_n(1)=0=x_0(0)x_0(1)$, а значит множество M является замкнутым.

Множество M не является открытым в $L_1[0,1]$, так как любой открытый шар радиуса r пространства $L_1[0,1]$ содержит шар радиуса r/(b-a) пространства C[0,1]. А так как M не является открытым в множестве C[0,1], то не будет таковым и в множестве $L_1[0,1]$.

Множество не замкнуто в $L_1[0,1]$, так как существуют точки прикосновения множества M, которые ему не принадлежат. Рассмотрим функция $x(t) \equiv 1$, $x(t) \notin M$, и построим последовательность $x_n(t) \in M$ сходящуюся к x(t).

$$x_n = \begin{cases} nt, & t \in \left[0, \frac{1}{n}\right] \\ 1, & t \in \left(\frac{1}{n}, 1\right] \end{cases}$$

Действительно, $\|x_n-x\|_{L_1[0,1]}=\int_0^{\frac{1}{n}}\!|nt-1|\;dt\leq \frac{1}{2n}\to_{n\to\infty}\;0$, но x(0)x(1)=1.

Задание 2

Постановка задачи

Образует ли множество монотонных функций подпространство в пространстве C[-1,1].

Решение

Пусть x, y – монотонные функции, а $\alpha, \beta \in R$. Тогда, не трудно видеть, что $\alpha x + \beta y$ – тоже монотонная функция.

Покажем, что множество монотонных функций замкнуто. Пусть есть последовательность монотонных функций $x_n(t) \to_{n \to \infty} x_0(t)$. Покажем, что $x_0(t)$ тоже монотонна.

Действительно, если $\max_{-1 \le t \le 1} |x_n - x_0| \to_{n \to \infty} 0$, то $\forall t \ |x_n - x_0| \to_{n \to \infty} 0$, а значит $x_0(t)$ – монотонна.