Visualization for Data Science CMPT 733

Steven Bergner

sbergner@cs.sfu.ca

Outline

- Visualization: What, Why, and How?
- Motivational example
- Design principles

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

["Visualization Analysis and Design" by T. Munzner, 2014]

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

["Visualization Analysis and Design" by T. Munzner, 2014]

Why have a human in the loop?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

["Visualization Analysis and Design" by T. Munzner, 2014]

Why have a human in the loop?

Not needed when automatic solution is trusted

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

["Visualization Analysis and Design" by T. Munzner, 2014]

Why have a human in the loop?

- Not needed when automatic solution is trusted
- Good for ill-specified anlaysis problems
 - Common setting: "What questions can we ask?"

"Numerical calculations are exact, but Graphs are rough"

 Same relationship among each pair of variables?

"Numerical calculations are exact, but Graphs are rough"

 Same relationship among each pair of variables?

Identical statistics

X mean	9
X variance	10
Y mean	7.5
Y variance	3.75
<x,y> correlation</x,y>	0.816

Why have a human in the loop?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Munzner, T. (2014)

Why have a human in the loop?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Munzner, T. (2014)

Long-term use

- Exploratory analysis of scientific data
- Presentation of known results

Why have a human in the loop?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Munzner, T. (2014)

Long-term use

- Exploratory analysis of scientific data
- Presentation of known results

Short-term use

- For **developers** of automatic solutions:
 - Understand requirements for model development
 - Refine/debug and determine parameters
- For end users of automatic solutions: verify, build trust

Why use an external representation?

			II		III		IV.	<u>/</u>
	X	У	X	у	X	У	X	У
	10	8,04	10	9,14	10	7,46	8	6,58
	8	6,95	8	8,14	8	6,77	8	5,76
	13	7,58	13	8,74	13	12,74	8	7,71
	9	8,81	9	8,77	9	7,11	8	8,84
	11	8,33	11	9,26	11	7,81	8	8,47
	14	9,96	14	8,1	14	8,84	8	7,04
	6	7,24	6	6,13	6	6,08	8	5,25
	4	4,26	4	3,1	4	5,39	19	12,5
	12	10,84	12	9,13	12	8,15	8	5,56
	7	4,82	7	7,26	7	6,42	8	7,91
	5	5,68	5	4,74	5	5,73	8	6,89
SUM	99,00	82,51	99,00	82,51	99,00	82,50	99,00	82,51
AVG	9,00	7,50	9,00	7,50	9,00	7,50	9,00	7,50
STDEV	3,32	2,03	3,32	2,03	3,32	2,03	3,32	2,03

Why use an external representation?

 Replace cognition with perception

	- 1		II		II	I	IN	<u>/</u>
	х	У	X	У	X	У	X	У
	10	8,04	10	9,14	10	7,46	8	6,58
	8	6,95	8	8,14	8	6,77	8	5,76
	13	7,58	13	8,74	13	12,74	8	7,71
	9	8,81	9	8,77	9	7,11	8	8,84
	11	8,33	11	9,26	11	7,81	8	8,47
	14	9,96	14	8,1	14	8,84	8	7,04
	6	7,24	6	6,13	6	6,08	8	5,25
	4	4,26	4	3,1	4	5,39	19	12,5
	12	10,84	12	9,13	12	8,15	8	5,56
	7	4,82	7	7,26	7	6,42	8	7,91
	5	5,68	5	4,74	5	5,73	8	6,89
SUM	99,00	82,51	99,00	82,51	99,00	82,50	99,00	82,51
AVG	9,00	7,50	9,00	7,50	9,00	7,50	9,00	7,50
STDEV	3,32	2,03	3,32	2,03	3,32	2,03	3,32	2,03

Why represent all the data?

- Summaries lose information, details matter
 - Confirm expected and find unexpected patterns
 - Assess validity of statistical model

• **Domain** situation: Who are the target users?

- **Domain** situation: Who are the target users?
- **Abstraction**: Translate from specifics of domain to vocabulary of vis

- **Domain** situation: Who are the target users?
- Abstraction: Translate from specifics of domain to vocabulary of vis
- What is shown? Data abstraction
 - Don't just draw what you're given: transform to new form

- **Domain** situation: Who are the target users?
- Abstraction: Translate from specifics of domain to vocabulary of vis
- What is shown? Data abstraction
 - Don't just draw what you're given: transform to new form
- Why is the user looking at it? Task abstraction

- **Domain** situation: Who are the target users?
- Abstraction: Translate from specifics of domain to vocabulary of vis
- What is shown? Data abstraction
 - Don't just draw what you're given: transform to new form
- Why is the user looking at it? Task abstraction
- How is it shown? Idiom
 - Visual encoding idiom: How to draw
 - Interaction idiom: How to manipulate

- **Domain** situation: Who are the target users?
- Abstraction: Translate from specifics of domain to vocabulary of vis
- What is shown? Data abstraction
 - Don't just draw what you're given: transform to new form
- Why is the user looking at it? Task abstraction
- How is it shown? Idiom
 - Visual encoding idiom: How to draw
 - Interaction idiom: How to manipulate
- *Algorithm*: efficient computation

- Domain situation: Who are the target users?
- Abstraction: Translate from specifics of domain to vocabulary of vis
- What is shown? Data abstraction
 - Don't just draw what you're given: transform to new form
- Why is the user looking at it? Task abstraction
- How is it shown? Idiom
 - Visual encoding idiom: How to draw
 - Interaction idiom: How to manipulate
- Algorithm: efficient computation

Examples

Motivation

WTF Visualizations (http://viz.wtf)

Motivation

- WTF Visualizations (http://viz.wtf)
- Without knowing the principles, you might make a lot of mistakes like this!

Understand Data, Task, and Encoding

Data Types

- Items and attributes as rows and columns of tables
- Position and time are special attributes
- Spatial data on grids makes computation easier

& Actions

(3) Targets

- Analyze
 - → Consume

- → Produce
 - → Annotate
- → Record
- → Derive
- Search

	Target known	Target unknown		
Location known	·.••• Lookup	•. Browse		
Location unknown	₹`@.> Locate	< O.> Explore		

- Query
 - → Identify

<u>•</u>...

- → Compare → Summarize

→ All Data

Attributes

- **Network Data**
 - → Topology

- **Spatial Data**
 - → Shape

Tasks

- Actions
 - Analyze
 - Search
 - Query
- Targets
 - Item & Attributes
 - Topology & Shape

[T. Munzner, 2014]

28

Visual Encoding – How?

- Marks
 - Geometric primitives
- Channels
 - Appearance of marks
 - Redundant coding with multiple channels possible

[T. Munzner, 2014]

Design Principles for Task Effective Visualization

Task and effectiveness

- Most idioms ineffective for particular task/data
 - Recast tasks from domain-specific vocabulary to abstract form
 - Systematic thinking about choices imposes structure on design space
 - Analyze existing as step to design new iterate and compare
- What counts as effective?
 - Novel: enable entirely new kinds of analysis
 - Faster: speed up existing workflows

- Computational limits
 - Processing time and system memory

- Computational limits
 - Processing time and system memory
- **Human** limits
 - Human attention and memory
 - Understanding abstractions

Computational limits

Processing time and system memory

Human limits

- Human attention and memory
- Understanding abstractions

• **Display** limits

- Pixels are precious
- Information density tradeoff: Info encoding vs unused whitespace

Identity Channels: Categorical Attributes
Spatial region
Color hue
Motion

Shape

[T. Munzner, 2014]

Expressiveness principle

 Match channel and data characteristics

Effectiveness principle

 Encode important attributes with higher ranked channels

[T. Munzner, 2014]

37

Chart Design: Simplifying

Example from Tim Bray

Chart Design: Simplifying

Example from Tim Bray

Which one is brighter?

Which one is brighter?

Which one is longer?

Which one is longer?

Which one is longer?

Principle 3: Use Color

- Make your visualization look beautiful
 - Colour Lovers: http://www.colourlovers.com
- Work for different kinds of data

Principle 4: Use Structure

Chart chooser: http://labs.juiceanalytics.com

Principle 4: Use Structure

Correlation Visualization

Consider a table with n=4 attributes

Principle 4: Use Structure

Correlation Visualization

 Conduct a deeper analysis on each pair of attributes

Sources

- Tamara Munzner's "Visualization Analysis and Design", 2014
- Jiannan Wang's CMPT 733 slides, Spring 2017