Stochastic Processes Session 5 — Lecture

Troels Pedersen and Carles Navarro Manchón

Section Wireless Communication Networks, Department of Electronic Systems, Aalborg University

Fall 2016

ILOs for Session 5

The autocorrelation and its properties

Weak sense stationary (WSS) processes

Gaussian WSS processes are SSS

ILOs for Session 5

The autocorrelation and its properties

Weak sense stationary (WSS) processes

Gaussian WSS processes are SSS

ILOs for Session 5

After attending this lecture and solving the exercises you should be able to:

- Explain the meaning of an ACF to a fellow student.
- ▶ Compute the ACF for simple stochastic process using its definition.
- Use the theoretical properties of any ACF as sanity checks of your derivations.
- Determine whether or not a stochastic process is WSS.
- Relate the definitions of SSS and WSS.
- ▶ Know (without hesitation and computation) the ACF of an iid. process.

Statistical dependency revealed via second-order characteristics.

Example:

$$\begin{bmatrix} X \\ Y \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix} \right)$$

Correlation coefficient $\rho = \text{Cov}(X, Y) / \sqrt{Var(X) \cdot Var(Y)}$

ILOs for Session 5

The autocorrelation and its properties

Weak sense stationary (WSS) processes

Gaussian WSS processes are SSS

Definition of autocorrelation function (ACF)

Statistical dependency revealed via second-order characteristics.

For a random process X(t), the second-order characteristics are captured by:

Autocorrelation function (ACF):1

$$R_X(t_1,t_2) := \mathbb{E}\big[X(t_1)X(t_2)\big]$$

An autocorrelation function is measuring statistical dependency among the random variables of a stochastic process

 $^{^1}$ [Kay] uses the term "autocorrelation sequence" (ACS) when discussing discrete-time processes and reserve the term "autocorrelation function" (ACF) for the continuos time case. We do not distinguish in the name.

Properties of the autocorrelation function for general processes

Non-negative at $t_1 = t_2$:

$$R_X(t_1,t_1)\geq 0$$
 (Show this!)

Symmetric function:

$$R_X(t_1, t_2) = R_X(t_2, t_1)$$
 (Show this!)

Relation to covariance function:

$$R_X(t_1,t_2) = C_X(t_1,t_2) + \mu_X(t_1)\mu_X(t_2)$$
 (Show this!)
(Recall that $C_X(t_1,t_2) := \mathbb{E}[(X(t_1) - \mu_X(t_1)) \cdot (X(t_2) - \mu_X(t_2))].)$

Relation to the (auto-)correlation coefficient:

$$\rho_X(t_1,t_2) := \frac{C_X(t_1,t_2)}{\sqrt{C_X(t_1,t_1)C_X(t_2,t_2)}} \in [-1,1]$$

ILOs for Session 5

The autocorrelation and its properties

Weak sense stationary (WSS) processes

Gaussian WSS processes are SSS

Strict-sense stationarity is too restrictive in practice

Recall the definition of SSS:

Definition of SSS:

A stochastic process X(t) is said to be *strict-sense stationary* (SSS) if for each $n \in \mathbb{N}$ and any $\tau \in \mathbb{T}$:

$$P\Big(X(t_1) \le x_1, \dots, X(t_n) \le x_n\Big) = P\Big(X(t_1 + \tau) \le x_1, \dots, X(t_n + \tau) \le x_n\Big)$$

$$\forall t_1, t_2, \dots, t_n \in \mathbb{T} \quad \text{and} \quad \forall x_1, x_2, \dots, x_n \in \mathbb{R}$$

In words:

The process X(t) is SSS if all of its n'th-order joint cdf's are invariant under arbitrary time shifts.

SSS is too strict for practical purposes:

- ▶ It is usually hard to verify that all *n*'th-order joint cdf's are shift invariant.
- ▶ It is very rarely fulfilled in practice.

Therefore we seek a "weaker" stationarity definition.

First and second moment properties of SSS processes:

Recall that a SSS process X(t) has the following properties:

The mean and variance are constants:

$$\mu_X(t) = \mu_X$$
 and $\sigma_X^2(t) = \sigma^2$

The covariance $C_X(t, t + \tau)$ is a function of the time lag τ only:

$$C_X(t, t + \tau) = C_X(\tau)$$

The latter property carries over to the autocorrelation (show this):

$$R_X(t,t+ au)=R_X(au)$$

Warning: While a SSS process has constant mean, variance and a covariance depending only on the time difference, these properties are not enough to ensure that a process is SSS!

Motivation: Often we care only about first and second moments. Thus we consider the class of processes with the same first and second moment properties as SSS processes.

Weak-sense (or wide-sense) stationary (WSS) processes

We consider processes with the same first and second moment properties as holds for SSS processes. We call such processes weak-sense stationary (WSS):

Definition:

A stochastic process X(t) is said to be weak-sense stationary (WSS) if:

- 1) $\mathbb{E}[X(t)] = \mu_X$, i.e. *no* dependency on time t
- 2) $\mathbb{E}[X(t)X(t+\tau)] = R_X(\tau)$, i.e. dependency *only* on the time lag τ

In plain words:

The process X(t) is WSS if it has constant mean and its autocorrelation function depends only on the time lag (not on absolute time instances).

SSS versus WSS

We see from our definition of WSS that:

$$X(t)$$
 is SSS \implies $X(t)$ is WSS

The converse is not true!

Properties of the autocorrelation function for WSS processes

The ACF of a WSS process has a number of properties useful for checking your calculations:

- 1) $R_{\chi}(0) \geq 0$
- 2) $R_X(-\tau) = R_X(\tau) = R_X(|\tau|)$ for all $\tau \in \mathbb{T}$
- 3) $|R_{\chi}(\tau)| \leq R_{\chi}(0)$ for all $\tau \in \mathbb{T}$
- 4) $R_X(0) = \mathbb{E}[X(t)^2] = \sigma_X^2 + \mu_X^2$

In plain words this means that $R_{\chi}(\tau)$:

- 1) is nonnegative at zero (When does the case $R_{\chi}(0) = 0$ occur?)
- 2) is an even function (i.e. symmetric around zero)
- 3) has maximum magnitude at zero
- 4) The value at zero is the mean square of X(t)

Graphical examples (and counterexamples)

Positive semi-definiteness of the ACF is necessary and sufficient

Not all functions qualify as the autocorrelation function of a WSS process.

Definition:

A function $g: \mathbb{R} \to \mathbb{C}$ is called *positive semi-definite* if for each $n \in \mathbb{N}$ and $\forall t_1, t_2, \ldots, t_n \in \mathbb{R}$ and $\forall a_1, a_2, \ldots, a_n \in \mathbb{C}$ it holds that

$$\sum_{i=1}^n \sum_{j=1}^n a_i g(t_i - t_j) a_j^* \geq 0$$

which can be stated in matrix form as $\mathbf{a}^{*T}\mathbf{G}\mathbf{a} \geq 0$.

$$R_{_X}(au)$$
 is the autocorrelation function of a WSS random process $X(t)$ if and only if $R_{_X}(au)$ is a positive semi-definite function

The positive definiteness property of an autocorrelation function leads to all previously mentioned properties!

Proof of necessity

It is easy to prove that an autocorrelation function is positive semi-definite: Define a random variable

$$Y := \sum_{i=1}^n a_i X(t_i) =: \mathbf{a}^T \mathbf{X}$$

for arbitrary n and a_i 's. Trivially $\mathbb{E}[|Y|^2] \geq 0$ and therefore

$$0 \leq \mathbb{E}[|\boldsymbol{Y}|^2] = \mathbb{E}[\boldsymbol{a^*}^T \boldsymbol{X^*} \boldsymbol{X}^T \boldsymbol{a}] = \boldsymbol{a^*}^T \mathbb{E}[\boldsymbol{X} \boldsymbol{X}^T] \boldsymbol{a} = \boldsymbol{a^*}^T \boldsymbol{R_X} \boldsymbol{a}$$

Entry (i,j) of $\mathbf{R}_{\mathbf{X}}$ is $R_{\chi}(t_i-t_j)$, hence the $R_{\chi}(\tau)$ is positive semidefinite.

It is much harder to prove the converse, i.e. to prove that for any positive semidefinite function there exist a stochastic process with this as autocorrelation. The proof is out of scope of this course.

ILOs for Session 5

The autocorrelation and its properties

Weak sense stationary (WSS) processes

Gaussian WSS processes are SSS

Gaussian WSS processes are SSS

Let X(t) be a Gaussian WSS processes with covariance function $C_X(\tau)$ and define the two vectors

$$\mathbf{X} := egin{bmatrix} X(t_1) \ X(t_2) \ dots \ X(t_n) \end{bmatrix} \sim \mathcal{N}(oldsymbol{\mu_X}, oldsymbol{C_X}) \quad ext{ and } \quad \mathbf{X}' := egin{bmatrix} X(t_1 + au) \ X(t_2 + au) \ dots \ X(t_n + au) \end{bmatrix} \sim \mathcal{N}(oldsymbol{\mu_{X'}}, oldsymbol{C_{X'}}).$$

The vector **X** is Gaussian with mean vector $\mu_{\mathsf{X}} = \mathbb{E}[\mathsf{X}]$ and covariance matrix

$$C_{\mathsf{X}} := [(\mathsf{X} - \mu_{\mathsf{X}})(\mathsf{X} - \mu_{\mathsf{X}})^{\mathsf{T}}].$$

Similarly, \mathbf{X}' has mean $\mu_{\mathbf{X}'}$ and covariance $oldsymbol{\mathcal{C}}_{\mathbf{X}'}$

To prove that X(t) is SSS we check that $\mu_{\mathbf{X}} = \mu_{\mathbf{X}'}$ and $\mathbf{C}_{\mathbf{X}} = \mathbf{C}_{\mathbf{X}'}$ hold.

Gaussian WSS processes are SSS (contd.)

Since X(t) is WSS and thus have shift invariant mean and covariance functions:

$$\boldsymbol{\mu}_{\mathbf{X}} = \begin{bmatrix} \mu_{X}(t_{1}) \\ \mu_{X}(t_{2}) \\ \vdots \\ \mu_{X}(t_{n}) \end{bmatrix} = \begin{bmatrix} \mu_{X} \\ \mu_{X} \\ \vdots \\ \mu_{X} \end{bmatrix} = \begin{bmatrix} \mu_{X}(t_{1} + \tau) \\ \mu_{X}(t_{2} + \tau) \\ \vdots \\ \mu_{X}(t_{n} + \tau) \end{bmatrix} = \boldsymbol{\mu}_{\mathbf{X}'}$$

$$C_{X} = \mathbb{E}[(X - \mu_{X})(X - \mu_{X})^{T}]$$

$$= \begin{bmatrix} C_{X}(0) & C_{X}(t_{1} - t_{2}) & \dots & C_{X}(t_{1} - t_{n}) \\ C_{X}(t_{2} - t_{1}) & C_{X}(0) & \dots & C_{X}(t_{2} - t_{n}) \\ \vdots & \vdots & \ddots & \vdots \\ C_{X}(t_{n} - t_{1}) & C_{X}(t_{n} - t_{2}) & \dots & C_{X}(0) \end{bmatrix}$$

$$= \mathbb{E}[(X' - \mu_{X'})(X' - \mu_{X'})^{T}] = C_{X'}$$

We conclude that

If X(t) is Gaussian and WSS it is also SSS.

ILOs for Session 5

The autocorrelation and its properties

Weak sense stationary (WSS) processes

Gaussian WSS processes are SSS

Quiz: Which realizations belong to which ACF?

