

Huỳnh Chí Hào Trường THPT Chuyên Nguyễn Quang Diêu, Đồng Tháp

A. Một số kiến thức bổ trợ

1) Định lý tồn tại nghiệm của hàm số liên tục:

Định lý: Nếu hàm số f(x) liên tục trên đoạn [a;b] và f(a).f(b) < 0 thì tồn tại ít nhất một điểm $c \in (a;b)$ sao cho f(c) = 0

2) Mối liên hệ giữa đạo hàm và tính đơn điệu:

Định lý: Cho hàm số y = f(x) có đạo hàm trong khoảng (a;b)

- a) Nếu f'(x) > 0 với mọi $x \in (a,b)$ thì hàm số y = f(x) đồng biến trên khoảng đó
- b) Nếu f'(x) < 0 với mọi $x \in (a,b)$ thì hàm số y = f(x) nghịch biến trên khoảng đó
- 2) Liên hệ giữa tính đơn điệu và nghiệm của phương trình:

Định lý: Nếu hàm số y = f(x) đồng biến trên (a;b) và y = g(x) làm hàm hằng hoặc là một hàm số nghịch biến trên (a;b) thì phương trình f(x) = g(x) có nhiều nhất một nghiệm thuộc khoảng (a;b)

Dựa vào tính chất trên ta suy ra:

Nếu có $x_0 \in (a;b)$ sao cho $f(x_0) = g(x_0)$ thì phương trình f(x) = g(x) có nghiệm *duy nhất* trên (a;b)

3) Nguyên lý kẹp:

Cho ba dãy số $(u_n),(v_n),(w_n)$ sao cho: $\begin{cases} \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow u_n \leq v_n \leq w_n \\ \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} w_n = a \end{cases} \Rightarrow \lim_{n \to +\infty} v_n = a$

- 4) Tiêu chuẩn hội tụ:(Tiêu chuẩn Weierstrass)
 - 1) Một dãy số đơn điệu và bị chặn thì hội tụ.
 - 2) Một dãy số tăng và bị chặn trên thì hội tụ.
 - 3) Một dãy số giảm và bị chặn dưới thì hội tụ.
- 5) Định lý LAGRANGE:

Nếu f(x) là hàm số liên tục trên đoạn [a;b], có đạo hàm trong khoảng (a;b) thì tồn tại $c \in (a;b)$ sao cho

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$
 hay $f(b) - f(a) = f'(c)(b - a)$

B. Các bài toán.

Bài toán 1.

Xét phương trình $\frac{1}{x-1} + \frac{1}{4x-1} + \dots + \frac{1}{k^2x-1} + \dots + \frac{1}{n^2x-1} = \frac{1}{2}$ trong đó n là số nguyên dương.

- 1) Chứng minh rằng với mỗi số nguyên dương n, phương trình trên có duy nhất nghiệm trong $(1; +\infty)$ và ký hiệu nghiệm đó là x_n .
- 2) Chứng minh rằng $\lim_{n\to+\infty} x_n = 4$

Hướng dẫn tư duy:

- + Sử dụng tính liên tục và đơn điệu chứng minh nghiệm duy nhất.
- + Sử dụng tiêu chuẩn Weierstrass và định lý Lagrange để tìm giới hạn.

Lời giải

1) Chứng minh rằng với mỗi số nguyên dương n, phương trình trên có duy nhất nghiệm trong $(1; +\infty)$

• Xét phương trình
$$\frac{1}{x-1} + \frac{1}{4x-1} + \dots + \frac{1}{k^2x-1} + \dots + \frac{1}{n^2x-1} = \frac{1}{2} \text{ với } x \in (1; +\infty)$$
 (1)

• Biến đổi
$$(1) \Leftrightarrow f_n(x) = -\frac{1}{2} + \frac{1}{x-1} + \frac{1}{4x-1} + \dots + \frac{1}{k^2 x - 1} + \dots + \frac{1}{n^2 x - 1} = 0$$
 (2)

• Khảo sát tính đơn điệu của $f_n(x)$ trên $(1; +\infty)$ Dễ thấy rằng f(x) liên tục trên $(1; +\infty)$

Do
$$f'_n(x) = -\left[\frac{1}{(x-1)^2} + \frac{4}{(4x-1)^2} + \dots + \frac{k^2}{(k^2x-1)^2} + \dots + \frac{n^2}{(n^2x-1)}\right] < 0, \forall x \in (1; +\infty)$$

nên $f_n(x)$ nghịch biến trên $x \in (1; +\infty)$. (3)

• Xét sự tồn tại nghiệm của phương trình (2) trên (1;+∞)

Do
$$f_n(x)$$
 liên tục trên $(1; +\infty)$ và
$$\begin{cases} \lim_{x \to 1^+} f_n(x) = +\infty \\ \lim_{x \to +\infty} f_n(x) = -\frac{1}{2} \end{cases}$$
 nên tồn tại $x_0 \in (1; +\infty)$ sao cho $f_n(x_0) = 0$ (4)

- Từ (3) và (4) suy ra với mỗi số nguyên dương n, phương trình trên có duy nhất nghiệm trong (1;+∞).
- **2)** Ký hiệu nghiệm đó là x_n . Chứng minh rằng $\lim_{n\to+\infty} x_n = 4$
 - So sánh $f_n(x_n)$ và $f_n(4)$, ta có $f_n(4) = -\frac{1}{2} + \frac{1}{2^2 1} + \frac{1}{4^2 1} + \dots + \frac{1}{(2k)^2 1} + \dots + \frac{1}{(2n)^2 1}$ $= \frac{1}{2} \left(-1 + 1 \frac{1}{3} + \frac{1}{3} \frac{1}{5} + \dots + \frac{1}{2k 1} \frac{1}{2k + 1} + \dots + \frac{1}{2n 1} \frac{1}{2n + 1} \right) \quad (\text{Do } \frac{1}{(2k)^2 1} = \frac{1}{2} \left(\frac{1}{2k 1} \frac{1}{2k + 1} \right))$ $= \frac{-1}{2(2n + 1)} < 0$

Do $f_n(x_n) = 0$ nên $f_n(x_n) > f_n(4)$.

- Do $f_n(x)$ nghịch biến trên $(1;+\infty)$ và $f_n(x_n) > f_n(4)$ nên theo định nghĩa tính đơn điệu suy ra $x_n < 4$
- Lại tiếp tục đánh giá x_n. Áp dụng định lý Lagrange cho f_n(x_n) trên [x_n;4], ta suy ra với mỗi số n nguyên dương, tồn tại c_n ∈ (x_n;4) sao cho

$$f(4) - f_n(x_n) = f'_n(c_n)(4 - x_n) \Rightarrow f'_n(c_n) = \frac{-1}{2(2n+1)(4-x_n)}$$

• Mặt khác
$$f'_n(c_n) = -\left[\frac{1}{(c_n - 1)^2} + \frac{4}{(4c_n - 1)^2} + \dots + \frac{k^2}{(k^2c_n - 1)^2} + \dots + \frac{n^2}{(n^2c_n - 1)}\right] < -\frac{1}{9}$$

(Do
$$1 < x_n < c_n < 4 \Rightarrow 0 < (c_n - 1)^2 < 9 \Rightarrow \frac{-1}{(c_n - 1)^2} < -\frac{1}{9}$$
) nên
$$\frac{-1}{2(2n+1)(4-x)} < -\frac{1}{9} \Leftrightarrow x_n > 4 - \frac{9}{2(2n+1)}$$

$$2(2n+1)(4-x_n) \qquad \qquad 2(2n+1)$$
Tóm lại ta luôn có: $4-\frac{9}{2(2n+1)} < x_n < 4$ với mỗi số nguyên dương n (5)

• Từ (5) và theo nguyên lý kẹp ta suy ra được $\lim_{n \to +\infty} x_n = 4$.

Bài toán 2.

Xét phương trình $\frac{1}{2x} + \frac{1}{x-1} + \frac{1}{x-4} + \dots + \frac{1}{x^2-k} + \dots + \frac{1}{x-n^2} = 0$ trong đó n là số nguyên dương.

- 1) Chứng minh rằng với mỗi số nguyên dương n, phương trình trên có duy nhất nghiệm trong (0;1) và ký hiệu nghiệm đó là x_n .
- 2) Chứng minh rằng tồn tại giới hạn hữu hạn $\lim_{n\to+\infty} x_n$

Hướng dẫn tư duy:

- + Sử dụng tính liên tục và đơn điệu chứng minh nghiệm duy nhất
- + Sử dụng tiêu chuẩn Weierstrass để tìm giới hạn

Lời giải

1) Chứng minh rằng với mỗi số nguyên dương n, phương trình trên có duy nhất nghiệm trong (0;1)

• Xét phương trình
$$\frac{1}{2x} + \frac{1}{x-1} + \frac{1}{x-4} + \dots + \frac{1}{x^2 - k} + \dots + \frac{1}{x-n^2} = 0$$
 với $x \in (0;1)$
Đặt $f_n(x) = \frac{1}{2x} + \frac{1}{x-1} + \frac{1}{x-4} + \dots + \frac{1}{x^2 - k} + \dots + \frac{1}{x-n^2}$

• Khảo sát tính đơn điệu của $f_n(x)$ trên (0,1)

Do
$$f_n'(x) = -\left[\frac{2}{(2x)^2} + \frac{1}{(x-1)^2} + \dots + \frac{1}{(x-k^2)^2} + \dots + \frac{1}{(x-n^2)^2}\right] < 0, \forall x \in (0;1)$$

nên $f_n(x)$ nghịch biến trên $(0;1)$. (2)

• Xét sự tồn tại nghiệm của phương trình (1) trên (0;1)

Do
$$f_n(x)$$
 liên tục trên $(0;1)$ và
$$\begin{cases} \lim_{x \to 0^+} f_n(x) = +\infty \\ \lim_{x \to 1^-} f_n(x) = -\infty \end{cases}$$
 nên tồn tại $x_0 \in (0;1)$ sao cho $f_n(x_0) = 0$ (3)

• Từ (2) và (3) suy ra với mỗi số nguyên dương n, phương trình trên có duy nhất nghiệm trong (0;1).

2) Chứng minh rằng tồn tại giới hạn hữu hạn $\lim_{n\to\infty} x_n$

• Khảo sát tính đơn điệu và bị chặn của (x_n)

Với mỗi số nguyên dương n ta có:

$$f_{n+1}(x_n) = \frac{1}{2x_n} + \frac{1}{x_n - 1} + \frac{1}{x_n - 4} + \dots + \frac{1}{x_n^2 - k} + \dots + \frac{1}{x_n - n^2} + \frac{1}{x_n - (n+1)^2} = f_n(x_n) + \frac{1}{x_n - (n+1)^2}$$

$$\Rightarrow f_{n+1}(x_n) = \frac{1}{x_n - (n+1)^2} < 0 \qquad (\text{do } 0 < x_n < 1)$$

Mặt khác $\lim_{x\to 0^+} f_{n+1}(x) = +\infty$ và $f_{n+1}(x)$ nghịch biến trên $(0;x_n)$ nên suy ra phương trình $f_{n+1}(x) = 0$ có duy nhất nghiệm trên $(0;x_n)$, gọi nghiệm duy nhất này là x_{n+1} . Do $(0;x_n) \subset (0;1)$ nên $0 < x_{n+1} < x_n$

• Dãy (x_n) là dãy đơn điệu giảm và bị chặn dưới bởi 0 nên tồn tại giới hạn hữu hạn $\lim_{n\to+\infty} x_n$.

Bài toán 3.

Xét phương trình $x^n - x^2 - x - 1 = 0$ trong đó n là số nguyên dương và $n \ge 2$.

- 1) Chứng minh rằng với mỗi số nguyên dương $n \ge 2$, phương trình trên có một nghiệm dương duy nhất và ký hiệu nghiệm đó là x_n .
- 2) Tim $\lim_{n\to+\infty} x_n$

Hướng dẫn tư duy:

- + Sử dụng tính liên tục và đơn điệu chứng minh nghiệm duy nhất
- + Sử dụng tiêu chuẩn Weierstrass để tìm giới hạn

Lời giải

- 1) Chứng minh rằng với mỗi số nguyên dương $n \ge 2$, phương trình trên có duy nhất nghiệm trong $(0; +\infty)$
 - Xét phương trình $x^n x^2 x 1 = 0$ với $x \in (1; +\infty)$ Đặt $f(x) = x^n - x^2 - x - 1$
 - Khảo sát tính đơn điệu của f(x) trên $(0;+\infty)$

Do
$$f'(x) = nx^{n-1} - 2x - 1$$

nên $f_n(x)$ nghịch biến trên $x \in (1; +\infty)$. (3)

• Xét sự tồn tại nghiệm của phương trình (2) trên (1;+∞)

Do
$$f_n(x)$$
 liên tục trên $(1; +\infty)$ và
$$\begin{cases} \lim_{x \to 1^+} f_n(x) = +\infty \\ \lim_{x \to +\infty} f_n(x) = -\frac{1}{2} \end{cases}$$
 nên tồn tại $x_0 \in (1; +\infty)$ sao cho $f_n(x_0) = 0$ (4)

- Từ (3) và (4) suy ra với mỗi số nguyên dương n, phương trình trên có duy nhất nghiệm trong (1;+∞).
- 2) Ký hiệu nghiệm đó là x_n . Chứng minh rằng $\lim_{n \to +\infty} x_n = 1$
 - Do x_n là nghiệm của phương trình (1) nên : $x_n^n x_n^2 x_n 1 = 0 \Leftrightarrow x_n = \sqrt[n]{x_n^2 + x_n + 1}$
 - Theo bất đẳng thức Cô-si, ta có:

$$x_{n} = \sqrt[n]{x_{n}^{2} + x_{n} + 1} = \sqrt[n]{\left(x_{n}^{2} + x_{n} + 1\right) \cdot \underbrace{1 \cdot 1 \cdot 1}_{n-1 \text{ so } 1}} < \frac{x_{n}^{2} + x_{n} + \underbrace{1 + 1 + \dots + 1}_{n \text{ so } 1}}{n} = \frac{x_{n}^{2} + x_{n} + n}{n}$$
 (5)

(Trong (5) không có dấu bằng bởi vì $x_n > 1$ nên $x_n^2 + x_n + 1 \neq 1$)

- Kết hợp với $x_n < 2$, với mọi n = 1, 2... ta được: $x_n^2 + x_n < 6$ (6)
- Từ (5) và (6) suy ra: $1 < x_n < 1 + \frac{6}{n}$
- Do $\lim_{n \to +\infty} \left(1 + \frac{6}{n} \right) = 1$ và theo nguyên lý kẹp suy ra $\lim_{n \to +\infty} x_n = 1$

Bài toán 4.

Xét phương trình $x^{2n+1} = x+1$ trong đó n là số nguyên dương.

- 1) Chứng minh rằng với mỗi số nguyên dương n, phương trình trên có một nghiệm duy nhất và ký hiệu nghiệm đó là x_n .
- 2) Tim $\lim_{n\to+\infty} x_n$

Hướng dẫn tư duy:

- + Sử dụng tính liên tục và đơn điệu chứng minh nghiệm duy nhất
- + Sử dụng tiêu chuẩn Weierstrass để tìm giới hạn

Lời giải

1) Chứng minh rằng với mỗi số nguyên dương, phương trình trên có một nghiệm duy nhất

• Xét phương trình
$$x^{2n+1} = x+1$$
 với $x \in \mathbb{R}$ (1)

Ta có:
$$x^{2n+1} = x+1 \Leftrightarrow x(x^{2n}-1)=1$$
 (2)

+ Với
$$x \le -1$$
 thì $x^{2n} \ge 1$ nên $VT(2) \le 0$, suy ra (2) vô nghiệm trên $(-\infty; -1]$

+ Với
$$0 < x < 1$$
 thì $x^{2n} < 1$ nên $VT(2) < 0$, suy ra (2) vô nghiệm trên (0;1)

+ Với
$$-1 < x \le 0$$
 thì $x^{2n+1} \le 0 < x+1$ nên $VT(2) < 1$, suy ra (2) vô nghiệm trên $(-1;0]$

Suy ra: (2) vô nghiệm trên
$$(-\infty;1)$$
 nên (1) vô nghiệm trên $(-\infty;1)$ (3)

• Khảo sát tính đơn điệu của $f(x) = x^{2n+1} - x - 1$ trên $[1; +\infty)$

Dễ thấy rằng f(x) liên tục trên $[1; +\infty)$

Ta lại có:
$$f'(x) = (2n+1)x^{2n} - 1 > 0, \forall x \in (1; +\infty)$$

nên
$$f(x)$$
 đồng biến trên $x \in [1; +\infty)$. (4)

Xét sự tồn tại nghiệm của phương trình (2) trên [1;+∞)

Do
$$f(x)$$
 liên tục trên $[1; +\infty)$ và
$$\begin{cases} f(1) = -1 < 0 \\ f(2) = 2^{2n+1} - 3 > 0, \forall n = 1, 2, ... \end{cases}$$
 nên tồn tại $x_0 \in (1; +\infty)$ sao cho $f(x_0) = 0$ (5)

- Từ (3), (4), (5) suy ra với mỗi số nguyên dương n, phương trình trên có duy nhất nghiệm .
- 2) Ký hiệu nghiệm của phương trình (1) là x_n . Tìm $\lim_{n\to+\infty} x_n$
 - Do x_n là nghiệm của phương trình (1) nên : $x_n > 1$ và $x_n^{2n+1} = x_n + 1 \Leftrightarrow x_n = \frac{2n+1}{\sqrt{x_n+1}}$
 - Theo bất đẳng thức Cô-si, ta có:

$$x_{n} = \frac{1}{2n+1} \sqrt{(x_{n}+1) \cdot \underbrace{1 \cdot 1 \cdot \dots 1}_{2n \text{ sô } 1}} < \frac{(x_{n}+1) + \underbrace{1 + 1 + \dots + 1}_{2n \text{ sô } 1}}{2n+1} = \frac{x_{n} + (2n+1)}{2n+1}$$

$$\Leftrightarrow x_{n} < \frac{x_{n} + (2n+1)}{2n+1}$$

$$\Leftrightarrow x_{n} < \frac{2n+1}{2n}$$

$$\Leftrightarrow x_{n} < \frac{2n+1}{2n}$$

- Kết hợp với $x_n > 1$, với mọi n = 1, 2... ta được: $1 < x_n < \frac{2n+1}{2n}$
- Do $\lim_{n \to +\infty} \frac{2n+1}{2n} = 1$ và theo nguyên lý kẹp suy ra $\lim_{n \to +\infty} x_n = 1$
- Vậy $\lim_{n\to+\infty} x_n = 1$

Bài toán 5.

Xét phương trình $x^n + x^{n-1} + ... + x - 1 = 0$ trong đó n là số nguyên dương và $n \ge 2$.

- 1) Chứng minh rằng với mỗi số nguyên dương $n \ge 2$, phương trình trên có một nghiệm dương duy nhất và ký hiệu nghiệm đó là x_n .
- 2) Tim $\lim_{n\to+\infty} x_n$.

Hướng dẫn tư duy:

- + Sử dụng tính liên tục và đơn điệu chứng minh nghiệm duy nhất
- + Sử dụng tiêu chuẩn Weierstrass để tìm giới hạn

Lời giải

1) Chứng minh rằng với mỗi số nguyên dương $n \ge 2$, phương trình trên có một nghiệm dương duy nhất

• Xét phương trình:
$$x^n + x^{n-1} + ... + x - 1 = 0$$
 (1)

• Khảo sát tính đơn điệu của $f_n(x) = x^n + x^{n-1} + ... + x - 1$ trên $(0; +\infty)$

Dễ thấy rằng f(x) liên tục trên $[0;+\infty)$

Do
$$f_n(x) = nx^{n-1} + (n-1)x^{n-2} + ... + 1 > 0$$
 với mọi $x \in (0; +\infty)$ và $\forall n \ge 2$
nên $f_n(x)$ là hàm số đồng biến trên $[0; +\infty)$ (2)

Xét sự tồn tại nghiệm của phương trình (1) trên [0; +∞)

Do
$$f_n(x)$$
 liên tục trên $[0; +\infty)$ và
$$\begin{cases} f_n(0) = -1 < 0 \\ f_n(1) = n - 1 > 0 \end{cases}$$
 nên tồn tại $x_0 \in (0; +\infty)$ sao cho $f_n(x_0) = 0$ (3)

- Từ (2) và (3) suy ra với mỗi số nguyên dương n≥2, phương trình trên có duy nhất nghiệm trong (0;+∞).
- 2) Ký hiệu nghiệm đó là x_n . Tìm $\lim_{n\to+\infty} x_n$
 - Do x_n là nghiệm của phương trình (1) nên: $x_n > 0$ và $x_n + x_n^2 + ... + x_n^n = 1$ (4)
 - Vì x_n > 0 nên từ (4) suy ra (x_n) là dãy giảm, mặt khác lại bị chặn dưới bởi 0, nên tồn tại giới hạn hữu hạn lim_{n→+∞} x_n = a
 - Ta lại có: $1 = x_n + x_n^2 + ... + x_n^n = x_n \frac{1 x_n^n}{1 x_n}$ và $\lim_{n \to +\infty} x_n^n = 0$ nên kết hợp với (4), (5) suy ra

$$1 = a \frac{1}{1 - a} \Leftrightarrow a = \frac{1}{2}$$

• Vậy $\lim_{n\to+\infty} x_n = \frac{1}{2}$

Bài toán 6.

Xét phương trình $x^n = x + n$ trong đó n là số nguyên dương $n \ge 2$.

- 1) Chứng minh rằng với mỗi số nguyên dương, phương trình trên có một nghiệm dương duy nhất và ký hiệu nghiệm đó là x_n .
- 2) Tìm $\lim_{n\to +\infty} x_n$

Hướng dẫn tư duy:

- + Sử dung tính liên tục và đơn điệu chứng minh nghiệm duy nhất
- + Sử dụng tiêu chuẩn Weierstrass để tìm giới hạn

Lời giải

- 1) Chứng minh rằng với mỗi số nguyên dương $n \ge 2$, phương trình trên có một nghiệm dương duy nhất
 - Xét phương trình: $x^n = x + n$ (1)
 - Khảo sát tính đơn điệu của $f(x) = x^n x n$ trên $(1; +\infty)$
 - Do $f_n(x) = nx^{n-1} 1 > 0$ với mọi $x \in (1; +\infty)$ nên $f_n(x)$ là hàm số đồng biến trên $(1; +\infty)$ (2)
 - Xét sự tồn tại nghiệm của phương trình (1) trên (0;+∞)

Do
$$f_n(x)$$
 liên tục trên $[0; +\infty)$ và
$$\begin{cases} f_n(1) = -n < 0 \\ f_n(1) = n^n - 2n > 0 \end{cases}$$
 nên tồn tại $x_0 \in (0; +\infty)$ sao cho $f_n(x_0) = 0$ (3)

- Từ (2) và (3) suy ra với mỗi số nguyên dương n≥2, phương trình trên có duy nhất nghiệm trong (0;+∞).
- 2) Ký hiệu nghiệm đó là x_n . Tìm $\lim_{n\to+\infty} x_n$
 - Do x_n là nghiệm của phương trình (1) nên $x_n^n = x_n + 1 \Longrightarrow 1 < x_n = \sqrt[n]{x_n + n} \le \sqrt[n]{2n}$
 - Vì $\lim_{n\to +\infty} \sqrt[n]{2n} = 1$, theo nguyên lý kẹp ta được $\lim_{n\to +\infty} x_n = 1$
 - Vậy $\lim_{n\to+\infty} x_n = 1$

Bài toán 7.

Cho số thực a>2. Đặt $f_n(x)=a^{10}x^{n+10}+x^n+...+x+1$ (n=1,2,...). Chứng minh rằng với mỗi n phương trình $f_n(x)=a$ có đúng một nghiệm $x_n\in(0;+\infty)$. Chứng minh dãy số (x_n) có giới hạn hữu hạn khi $n\to+\infty$.

Lời giải

Với mỗi n, đặt $g_n(x) = f_n(x) - a$; khi đó $g_n(x)$ là hàm liên tục, tăng trên $[0;+\infty)$. Ta có $g_n(0) = 1 - a < 0$; $g_n(1) = a^{10} + n + 1 - a > 0$ nên $g_n(x) = 0$ có nghiệm duy nhất x_n trên $(0;+\infty)$.

Để chứng minh tồn tại giới hạn $\lim_{n\to\infty} x_n$, ta chứng minh dãy (x_n) tăng và bị chặn.

Ta có
$$g_n \left(1 - \frac{1}{a}\right) = a^{10} \left(1 - \frac{1}{a}\right)^{n+10} + \frac{1 - \left(1 - \frac{1}{a}\right)^{n+1}}{\frac{1}{a}} - a$$

$$= a \left(1 - \frac{1}{a}\right)^{n+1} \left(a^9 \left(1 - \frac{1}{a}\right)^9 - 1\right) = a \left(1 - \frac{1}{a}\right)^{n+1} \left((a-1)^9 - 1\right) > 0.$$

Suy ra $x_n < 1 - \frac{1}{a} \quad \forall n$.

Mặt khác, từ $g_n(x_n) = a^{10}x_n^{n+10} + x_n^n + ... + 1 - a = 0$, suy ra

$$x_n g_n(x_n) = a^{10} x_n^{n+11} + x_n^{n+1} + \dots + x_n - a x_n = 0$$

$$=> g_{n+1}(x_n) = x_n g_n(x_n) + 1 + ax_n - a = ax_n + 1 - a < 0 \text{ do } x_n < 1 - \frac{1}{a}.$$

Do g_{n+1} là hàm tăng và $0 = g_{n+1}(x_{n+1}) > g_{n+1}(x_n)$ nên $x_n < x_{n+1}$. Vậy dãy (x_n) tăng và bị chặn nên tồn tại $\lim_{n \to \infty} x_n$.

Chú ý: Có thể chứng minh $\lim_{n\to\infty} x_n = 1 - \frac{1}{a}$ bằng cách đánh giá

$$1 - \frac{1}{a} - a\left((a-1)^9 - 1\right)\left(1 - \frac{1}{a}\right)^{n+1} < x_n < 1 - \frac{1}{a}.$$

Thật vậy, ta có

$$a = a^{10}x_n^{n+10} + x_n^n + \dots + x_n + 1 < a^{10}\left(1 - \frac{1}{a}\right)^{n+10} + \left(1 - \frac{1}{a}\right)^n + \dots + \left(1 - \frac{1}{a}\right)^2 + x_n + 1.$$

Suy ra

$$a < a^{10} \left(1 - \frac{1}{a} \right)^{n+10} + a \left(\left(1 - \frac{1}{a} \right)^2 - \left(1 - \frac{1}{a} \right)^{n+1} \right) + x_n + 1,$$

kéo theo

$$x_n > 1 - \frac{1}{a} - a((a-1)^9 - 1)\left(1 - \frac{1}{a}\right)^{n+1}$$

TÀI LIỆU THAM KHẢO

- [1] **Phan Huy Khải**. Các bài toán về dãy số. NXBGD 2007.
- [2] Nguyễn Văn Mậu Nguyễn Thủy Thanh. Giới hạn dãy số & hàm số. NXBGD 2002.
- [3] **Nguyễn Văn Mậu Nguyễn Văn Tiến**. *Một số chuyên đề giải tích bồi dưỡng học sinh giỏi THPT*. NXBGD 2009.
- [4] **Phạm Văn Nhâm**. Một số lớp bài toán về dãy số. Luận văn thạc sĩ khoa học 2011.
- [5] Tuyển tập đề thi OLYMPIC 30/4 lần thứ XV 2009.
- [6] Tuyển tập đề thi OLYMPIC 30/4 lần thứ XVI 2010.