Übung zur Vorlesung Berechenbarkeit und Komplexität

Lösung Blatt 5

Hausaufgabe 5.1

(2+2+2 Punkte)

Zeigen oder widerlegen Sie, dass folgende Sprachen rekursiv sind. Sie können gegebenenfalls den Satz von Rice verwenden.

(a) $L_1 = \{ \langle M \rangle \mid M \text{ hält auf } \langle M \rangle \}.$

 L_1 ist nicht rekursiv, aber der Satz von Rice lässt sich nicht anwenden. Mit Hilfe der Unterprogrammtechnik lässt sich die Unentscheidbarkeit dennoch zeigen. Angenommen, eine Turingmaschine $M_{\langle M \rangle}$ entscheidet L_1 . Daraus wird eine neue Turingmaschine $M_{H_{\epsilon}}$ konstruiert, die sich wie folgt verhält und damit das Epsilon-Halteproblem entscheidet:

- (1) Falls die Eingabe keine korrekte Gödelnummer ist, so wird die Eingabe verworfen.
- (2) Also hat die Eingabe die Form $\langle M \rangle$. Daraus wird die Gödelnummer einer Turingmaschine M^* berechnet, die ihre Eingabe löscht und dann M (auf ϵ) simuliert.
- (3) $M_{H_{\epsilon}}$ akzeptiert (verwirft) genau dann, wenn $M_{\langle M \rangle}$ die Eingabe $\langle M^* \rangle$ akzeptiert (verwirft).

Korrektheit:

$$\langle M \rangle \in H_{\epsilon} \implies M^* \text{ hält auf jeder Eingabe}$$

$$\implies M^* \text{ hält auf } \langle M^* \rangle$$

$$\implies M^* \in L_1$$

$$\implies M_{\langle M \rangle} \text{ akzeptiert } \langle M^* \rangle$$

$$\implies M_{H_{\epsilon}} \text{ akzeptiert } \langle M \rangle$$

$$\langle M \rangle \notin H_{\epsilon} \implies M^* \text{ hält auf keiner Eingabe}$$

$$\implies M^* \text{ hält nicht auf } \langle M^* \rangle$$

$$\implies M^* \notin L_1$$

$$\implies M_{\langle M \rangle} \text{ verwirft } \langle M^* \rangle$$

$$\implies M_{H_{\epsilon}} \text{ verwirft } \langle M \rangle$$

Weiterhin werden Eingaben, die keine Gödelnummern sind, direkt von $M_{H_{\epsilon}}$ verworfen. Also folgt, dass H_{ϵ} entscheidbar ist, was ein Widerspruch ist.

Alternativ kann man auch analog zur Vorlesung eine Turingmaschine, die das Halteproblem entscheidet, konstruieren.

(b) $L_2 = \{ \langle M \rangle \mid L(M) = \{ w \in \{0, 1\}^* \mid |w| > 2 \} \}.$

Sei $\mathcal{S} = \{f_M \mid \forall w \in \{0,1\}^* : f_M(w) \text{ beginnt mit } 1 \Leftrightarrow |w| \geq 2\}$. Es gilt $\mathcal{S} \neq \emptyset$, da die Sprache $\{w \in \{0,1\}^* \mid |w| \geq 2\}$ entscheidbar ist: Es gilt $f_2 \in \mathcal{S}$ mit

$$f_2(w) = \begin{cases} 1 & |w| \ge 2\\ 0 & |w| < 2. \end{cases}$$

für jedes $w \in \{0, 1\}^*$. Weiter ist $\mathcal{S} \neq \mathcal{R}$, da zum Beispiel $f_{\emptyset} \in \mathcal{R} \setminus \mathcal{S}$ mit $f_{\emptyset}(w) = 0$ für alle $w \in \{0, 1\}^*$. Außerdem ist

$$L(S) = \{ \langle M \rangle \mid M \text{ berechnet eine Funktion aus } S \}$$

= $\{ \langle M \rangle \mid L(M) = \{ w \in \{0, 1\}^* \mid |w| \ge 2 \} \}$
= L_2 .

Also ist L_2 unentscheidbar nach dem Satz von Rice.

(c) $L_3 = \{ \langle M \rangle \mid \exists w \in \{0,1\}^*. M \text{ h\"alt auf } w \}.$

Sei $\mathcal{S} = \{f_M \mid \exists w \in \{0,1\}^*. f_M(w) \neq \bot\}$. Es gilt $\mathcal{S} \neq \emptyset$, da zum Beispiel $f_\emptyset \in \mathcal{S}$ mit $f_\emptyset(w) = 0$ für jedes $w \in \Sigma^*$. Weiter ist $\mathcal{S} \neq \mathcal{R}$, da $f_\bot \in \mathcal{R} \setminus \mathcal{S}$ mit $f_\bot(w) = \bot$ für jedes $w \in \Sigma^*$. Außerdem ist

$$L(S) = \{ \langle M \rangle \mid M \text{ berechnet eine Funktion aus } S \}$$

= $\{ \langle M \rangle \mid \exists w \in \{0, 1\}^*. M \text{ hält auf } w \}$
= L_3 .

Also ist L_3 unentscheidbar nach dem Satz von Rice.

Hausaufgabe 5.2

(2 + 2 Punkte)

Für eine Sprache L über dem Alphabet $\{0,1\}$ definieren wir die Sprache

$$L^*=\{w_1w_2\dots w_n\mid n\geq 0, w_1,\dots,w_n\in L\}.$$

Beweisen oder widerlegen Sie:

(a) Wenn L rekursiv ist, dann ist auch L^* rekursiv.

Richtig.

Sei M eine Turingmaschine die L entscheidet. Wir konstruieren eine Turingmaschine M^* die L^* entscheidet. Sei w die Eingabe für M^* . Falls $w = \varepsilon$ dann akzeptiere. Sonst iteriere über alle möglichen Zerlegungen $w = w_1 \dots w_n$ mit $w_i \in \{0, 1\}^*$ und $w_i \neq \varepsilon$. Für jede solche Zerlegung teste ob $w_i \in L$ für alle $i \in \{1, \dots, n\}$ indem man M als Unterprogramm verwendet. Falls dies der Fall ist, dann akzeptiere. Falls alle Zerlegungen getestet wurden, so verwirft M^* .

Zunächst gilt, dass M^* immer terminiert, da es für ein gegebenes Wort nur endlich viele mögliche Zerlegungen gibt.

Korrektheit: Sei $w \in L^*$. Dann existiert eine Zerlegung $w = w_1 w_2 \dots w_n$ sodass $w_1, \dots, w_n \in L$. Also akzeptiert M^* , da jede Zerlegung getestet wird.

Wenn M^* ein Wort w akzeptiert, dann existiert eine Zerlegung $w = w_1 w_2 \dots w_n$ sodass $w_1, \dots, w_n \in L$. Also ist $w \in L^*$.

Also entscheidet M^* die Sprache L^* .

(b) Wenn L^* rekursiv ist, dann ist auch L rekursiv.

Falsch.

Gegenbeispiel: Sie $L = H_{\varepsilon} \cup \{0, 1\}$. Dann ist

$$L^* = \{ w_1 w_2 \dots w_n \mid n \ge 0, w_1, \dots, w_n \in H_{\varepsilon} \cup \{0, 1\} \} = \Sigma^*.$$

Zudem ist $H_{\varepsilon} \cup \{0,1\}$ nicht entscheidbar, wie man leicht mit Unterprogrammtechnik zeigen kann:

Angenommen $H_{\varepsilon} \cup \{0, 1\}$ ist entscheidbar mit TM M', so lässt sich auch H_{ε} wie folgt entscheiden: Falls die Eingabe 0 oder 1 ist, so verwirf. Sonst simuliere M' auf der Eingabe und übernimm die Antwort.

Korrektheit:

Sei $w \in H_{\varepsilon}$. Dann ist w eine Gödelnummer $\langle M \rangle$ und TM M hält auf ε . Dann akzeptiert M' und auch die oben beschriebene TM w, da 0 und 1 keine Gödelnummern sind.

Sei $w \notin H_{\varepsilon}$. Falls $w \in \{0, 1\}$, so verwirft die obige TM direkt. Sonst simuliert die obige TM die TM M' auf der Eingabe, die nicht in $H_{\varepsilon} \cup \{0, 1\}$ ist, und verwirft folglich.

Hausaufgabe 5.3

$$(1+2+3)$$
 Punkte)

In dieser Aufgabe wird das Alphabet $\Sigma := \{0, 1, 2, \dots, 9\}$ und der (unendlich lange, nicht periodische) Nachkommateil $w(\pi) := 14159265358979323846 \cdots$ der Dezimaldarstellung der Zahl $\pi \approx 3,14$ betrachtet.

(a) Zeigen Sie: Die Sprache $L_1 := \{ w \in \Sigma^* \mid w \text{ ist ein Präfix von } w(\pi) \}$ ist entscheidbar.

Mit Hilfe der Leibniz-Reihe $\sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} = \frac{\pi}{4}$ können beliebig viele Nachkommastellen der Zahl π berechnet werden: Multiplikation mit 4 liefert $\sum_{k=0}^{\infty} \frac{4\cdot (-1)^k}{2k+1} = \pi$. Man kann zeigen, dass $2\cdot 10^{i+1}$ Summanden genügen, um i korrekte Nachkommastellen zu erhalten. Es bezeichne $w(\pi)_i$ diesen Präfix von $w(\pi)$ der Länge i. So lässt sich L_1 entscheiden:

- (1) Berechne $w(\pi)_{|w|}$, d. h., |w| Nachkommastellen von π .
- (2) Akzeptiere, falls $w = w(\pi)_{|w|}$, wobei w die Eingabe ist. Sonst verwirf.

Die Korrektheit ist trivial.

(b) Zeigen Sie: Die Sprache $L_2 := \{w \in \Sigma^* \mid w \text{ ist ein Teilwort von } w(\pi)\}$ ist rekursiv aufzählbar. Ob L_2 entscheidbar ist, ist ein (schwieriges) ungelöstes Problem¹.

Die folgende TM erkennt L_2 :

- (1) Für $i = 0, 1, 2, \dots$
 - (1.1) Berechne $w(\pi)_i$, d. h., i Nachkommastellen von π .

¹Es ist nicht bekannt, ob $w(\pi)$ jedes $w \in \Sigma^*$ als Teilwort enthält.

(1.2) Akzeptiere, falls die Eingabe w ein Teilwort von $w(\pi)_i$ ist.

Korrektheit: Es sei $w \in L_2$, d. h., w ist Teilwort von $w(\pi)$. Dann existiert ein $i \geq 0$, sodass w auch Teilwort von $w(\pi)_i$ ist. Spätestens in Schritt i wird w also von der TM akzeptiert. Umgekehrt werde w von der TM in Schritt i akzeptiert. Dann ist w Teilwort von $w(\pi)_i$, also auch von $w(\pi)$. Also gilt $w \in L_2$.

(c) Zeigen Sie: Die Sprache $L_3 \coloneqq \{w \in \{3\}^* \mid w \text{ ist ein Teilwort von } w(\pi)\}$ ist entscheidbar.

Es ist nicht bekannt, ob beliebig lange 3er-Folgen in den Nachkommastellen von π vorkommen, d. h., es ist nicht bekannt, wie die Sprache L_3 aussieht. Dies spielt jedoch keine Rolle für die Entscheidbarkeit:

Angenommen, es kommen beliebig lange 3er-Sequenzen vor. Dann gilt $L_3 = \{3\}^*$ und L_3 ist offensichtlich entscheidbar. Sonst kommen nur 3er-Folgen bis zu einer festen Länge vor, und es bezeichne ℓ die Länge einer längsten solchen 3er-Folge. Dann gilt $L_3 = \{w \in \{3\}^* \mid |w| \leq \ell\}$, und auch in diesem Fall ist L_3 offensichtlich entscheidbar.

Es gibt also eine Turingmaschine, die L_3 entscheidet, auch wenn man diese mit jetzigem Wissen nicht angeben kann.