Math 401, Practice Exam 2

1. Suppose we have the following Massey matrix equation

$$\begin{bmatrix} 4 & -1 & -2 & \alpha \\ -1 & 2 & -1 & \beta \\ -2 & -1 & 4 & \gamma \\ 1 & 1 & 1 & 1 \end{bmatrix} \hat{r} = \begin{bmatrix} 5 \\ -2 \\ -4 \\ 0 \end{bmatrix}$$

- (a) Write down the values of α, β, γ .
- (b) How many games in total haven been played? Which two teams have not played against each other?

(a)
$$\alpha = -1$$
 $\beta = 0$. $\gamma = -1$

(b) Team 4 have played 2 games

Totally:
$$\frac{4+2+4+2}{2} = 6$$
 games

Team 2 have not played with team 4

- 2. Assume F_n is defined recursively as $F_n = 4F_{n-1} 3F_{n-2}$.
- (a) Let \bar{x}_n be the column vector

$$\bar{x}_n = \begin{bmatrix} F_n \\ F_{n+1} \end{bmatrix}.$$

Find the 2×2 matrix M such that $\bar{x}_{n+1} = M\bar{x}_n$.

(b) Find a matrix P and a diagonal matrix D such that $M = PDP^{-1}$.

$$(a) \quad \mathcal{M}^{=} \begin{pmatrix} 0 & 1 \\ -3 & 4 \end{pmatrix}$$

(b)
$$\det(\lambda - M) = 0 < = 0 (\lambda - 4) \cdot \lambda + 3 = 0$$

 $(\lambda - 1)(\lambda - 3) = 0$

If
$$\lambda=1$$
 we solve $M \cdot \begin{pmatrix} V_1 \\ V_2 \end{pmatrix} = 1 \cdot \begin{pmatrix} V_1 \\ V_2 \end{pmatrix}$ one of the solution is $\begin{pmatrix} V_1 \\ V_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

If
$$1-3$$
 we solve $M\left(\frac{V_1}{V_2}\right)=3.\left(\frac{V_2}{V_2}\right)$

one of the solution is
$$\begin{pmatrix} V_1 \\ V_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

So
$$P=\begin{pmatrix} 1 & 1 \\ 1 & 3 \end{pmatrix}$$
 $D=\begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$ $M=PDP^{-1}$

3. Give an example of a 5×5 transition matrix T such that $T \neq I$, $T^2 \neq I$, ... $T^5 \neq I$, but $T^6 = I$. (Here I denote the 5×5 identity matrix.)

The first 3 states naturn to itself for every 3 iterations.

The state 4 and 5 return to itself for every 2 iterations.

Totally for every b iterations, all states return to itself, but if iterations is less than b. at least one state will not return.

4. Given the transition matrix

$$T = \begin{bmatrix} 0.8 & 0.2 & 0 & 0 \\ 0.1 & 0.75 & 0 & 0 \\ 0.1 & 0.05 & 0.6 & 0.2 \\ 0 & 0 & 0.4 & 0.8 \end{bmatrix}$$

- (a) Draw the corresponding population movement diagram.
- (b) Is the transition matrix regular? Why.
- (c) Find the (3,2) entry of T^2 .
- (d) Do you think the Markov chain has a steady state to which all other states converge? Justify intuitively.

(C) There are 3 possible poths
$$2 \rightarrow 2 \rightarrow 3$$
 $0.2 \cdot 0.1$ $2 \rightarrow 2 \rightarrow 3$ $0.75 \cdot 0.05$ $2 \rightarrow 3 \rightarrow 3$ $0.05 \cdot 0.5$

$$50$$
 $(T^2)_{32} = 0.20.1 + 0.75.0.0 + 0.05.0.6$

(d) Yes. the steady state is
$$\overrightarrow{X}_{+}=\begin{pmatrix}0\\0\\X^{2}\\X^{4}\end{pmatrix}$$
 where $\begin{pmatrix}73\\74\end{pmatrix}$ is the steady state of the Markov chain with $T=\begin{pmatrix}0.6&0.2\\X^{2}\\X^{4}\end{pmatrix}$ since all the population will eventually move to state 3 and 4.

5. Suppose we have an internet of 4 pages, with the following links

$$P_1 \to P_2, P_1 \to P_3, P_1 \to P_4, P_3 \to P_4, P_4 \to P_2.$$

Write down the corresponding transition matrix T. You can leave this in the expanded sum form.