# MODULE 3-ELEMENTS ELECTRONIC STRUCTURE AND CHEMICAL PERIODICITY

REF: TEXTBOOK, CHAPTER 4, SUBSECTIONS 4.4 - 4.7

|   | 1<br>1A                                       |                                                |                                             |                                                |                                              |                                                 |                                                |                                                 |                                               |                                                 |                                              |                                               |                                              |                                           |                                                |                                                 |                                        | 18<br>8A                                    | • |
|---|-----------------------------------------------|------------------------------------------------|---------------------------------------------|------------------------------------------------|----------------------------------------------|-------------------------------------------------|------------------------------------------------|-------------------------------------------------|-----------------------------------------------|-------------------------------------------------|----------------------------------------------|-----------------------------------------------|----------------------------------------------|-------------------------------------------|------------------------------------------------|-------------------------------------------------|----------------------------------------|---------------------------------------------|---|
|   | 1<br>H                                        | 2                                              |                                             |                                                |                                              |                                                 |                                                |                                                 |                                               |                                                 |                                              |                                               | 13                                           | 14                                        | 15                                             | 16                                              | 17                                     | 2<br>He                                     |   |
|   | Hydrogen<br>1.01                              | 2A                                             |                                             |                                                |                                              |                                                 | K                                              | <b>Cey</b>                                      |                                               |                                                 |                                              |                                               | 3A                                           | 4A                                        | 5A                                             | 6A                                              | 7A                                     | 4.00                                        |   |
| 2 | 3<br>Ll<br>Lithium<br>6.94                    | 4<br>Be<br>Beryllium<br>9.01                   |                                             |                                                |                                              | 11·<br>Na<br>Sodiur                             | Ato<br>Ele                                     | mic numb<br>ment sym<br>ment nam                | bol                                           |                                                 |                                              |                                               | 5<br><b>B</b><br>Boron<br>10.81              | 6<br>C<br>Carbon<br>12.01                 | 7<br>N<br>Nitrogen<br>14.01                    | 8<br>O<br>Oxygen<br>16.00                       | 9<br>F<br>Fluorine<br>19.00            | 10<br><b>Ne</b><br>Neon<br>20.18            |   |
| 3 | 11<br>Na<br>Sodium<br>22.99                   | 12<br>Mg<br>Magnesium<br>24,31                 | 3<br>3B                                     | 4<br>4B                                        | 5<br>5B                                      | 6<br>6<br>6B                                    | 7<br>7B                                        | erage aton<br>8                                 | nic mass*<br>9<br>8B                          | 10                                              | 11<br>1B                                     | 12<br>2B                                      | 13<br>Al<br>Aluminum<br>26.98                | 14<br>Si<br>Silicon<br>28.09              | 15<br><b>P</b><br>Phosphorus<br>30.97          | 16<br><b>S</b><br>Sulfur<br>32.07               | 17<br>Cl<br>Chlorine<br>35,45          | 18<br>Ar<br>Argon<br>39.95                  |   |
| 4 | 19<br><b>K</b><br>Potassium                   | 20<br><b>Ca</b><br>Caldium                     | 21<br>Sc<br>Scandium                        | 22<br><b>Ti</b><br>Titanium                    | 23<br><b>V</b><br>Vanadium                   | 24<br>Cr<br>Chromium                            | 25<br><b>Mn</b><br>Manganese                   | 26<br>Fe                                        | 27<br>Co<br>Cobalt                            | 28<br>Ni<br>Nickel                              | 29<br>Cu<br>Copper                           | 30<br><b>Zn</b><br>Zinc                       | 31<br><b>Ga</b><br>Gallium                   | 32<br><b>Ge</b><br>Germanium              | 33<br><b>As</b><br>Arsenic                     | 34<br><b>Se</b><br>Selenium                     | 35<br>Br<br>Bromine                    | 36<br><b>Kr</b><br>Krypton                  |   |
| 5 | 39.10<br>37<br><b>Rb</b><br>Rubidium<br>85.47 | 40.08<br>38<br><b>Sr</b><br>Strontium<br>87.62 | 44.96<br>39<br><b>Y</b><br>Yttrium<br>88.91 | 47.87<br>40<br><b>Zr</b><br>Zirconium<br>91.22 | 50.94<br>41<br><b>Nb</b><br>Niobium<br>92.91 | 52.00<br>42<br><b>Mo</b><br>Molybdenum<br>95.94 | 54.94<br>43<br><b>Tc</b><br>Technetium<br>(98) | 55.85<br>44<br><b>Ru</b><br>Ruthenium<br>101.07 | 58.93<br>45<br><b>Rh</b><br>Rhodium<br>102.91 | 58.69<br>46<br><b>Pd</b><br>Palladium<br>106.42 | 63.55<br>47<br><b>Ag</b><br>Silver<br>107.87 | 65.39<br>48<br><b>Cd</b><br>Cadmium<br>112.41 | 69.72<br>49<br><b>In</b><br>Indium<br>114.82 | 72.61<br>50<br><b>Sn</b><br>Tin<br>118.71 | 74.92<br>51<br><b>Sb</b><br>Antimony<br>121.76 | 78.96<br>52<br><b>Te</b><br>Tellurium<br>127.60 | 79.90<br>53<br> <br>  lodine<br>126.90 | 83.80<br>54<br><b>Xe</b><br>Xenon<br>131.29 |   |
| 6 | 55<br><b>Cs</b><br>Cealum<br>132.91           | 56<br><b>Ba</b><br>Barium<br>137.33            | 57<br><b>La</b><br>Lanthanum<br>138.91      | 72<br><b>Hf</b><br>Hamium<br>178.49            | 73<br><b>Ta</b><br>Tantalum<br>180.95        | 74<br><b>W</b><br>Tungsten<br>183.84            | 75<br><b>Re</b><br>Rhenium<br>186.21           | 76<br><b>Os</b><br>Oamium<br>190.23             | 77<br><b>Ir</b><br>Iridium<br>192.22          | 78<br><b>Pt</b><br>Platinum<br>195.08           | 79<br><b>Au</b><br>Gold<br>196.97            | 80<br><b>Hg</b><br>Mercury<br>200.59          | 81<br><b>TI</b><br>Thallium<br>204.38        | 82<br><b>Pb</b><br>Lead<br>207.2          | 83<br><b>Bi</b><br>Bismuth<br>208.98           | 84<br>Po<br>Polonium<br>(209)                   | 85<br>At<br>Astatine<br>(210)          | 86<br>Rn<br>Radon<br>(222)                  |   |
| 7 | 87<br>Fr<br>Francium<br>(223)                 | 88<br><b>Ra</b><br>Radium<br>(226)             | 89<br>Ac<br>Actinium<br>(227)               | 104<br><b>Rf</b><br>Putherfordium<br>(261)     | 105<br><b>Db</b><br>Dubnium<br>(262)         | 106<br>Sg<br>Seaborgium<br>(266)                | 107<br><b>Bh</b><br>Bohrium<br>(264)           | 108<br><b>Hs</b><br>Hassium<br>(269)            | 109<br>Mt<br>Meitnerium<br>(268)              |                                                 |                                              |                                               |                                              |                                           |                                                |                                                 |                                        |                                             |   |
|   |                                               |                                                | ,                                           |                                                |                                              |                                                 |                                                |                                                 |                                               |                                                 |                                              |                                               |                                              |                                           |                                                |                                                 |                                        |                                             |   |

<sup>\*</sup> If this number is in parentheses, then it refers to the atomic mass of the most stable isotope.

| 58      | 59           | 60        | 61         | 62        | 63        | 64         | 65        | 66          | 67          | 68      | 69          | 70        | 71         |
|---------|--------------|-----------|------------|-----------|-----------|------------|-----------|-------------|-------------|---------|-------------|-----------|------------|
| Ce      | Pr           | Nd        | Pm         | Sm        | Eu        | Gd         | Tb        | Dy          | Но          | Er      | Tm          | Yb        | Lu         |
| Cerium  | Praseodymium | Neodymium | Promethium | Samarium  | Europium  | Gadolinium | Terbium   | Dysprosium  | Holmium     | Erbium  | Thulium     | Ytterbium | Lutetium   |
| 140.12  | 140.91       | 144.24    | (145)      | 150.36    | 151.96    | 157.25     | 158.93    | 162.50      | 164.93      | 167.26  | 168.93      | 173.04    | 174.97     |
| 90      | 91           | 92        | 93         | 94        | 95        | 96         | 97        | 98          | 99          | 100     | 101         | 102       | 103        |
| Th      | Pa           | U         | Np         | Pu        | Am        | Cm         | Bk        | Cf          | Es          | Fm      | Md          | No        | Lr         |
| Thorium | Protactinium | Uranium   | Neptunium  | Plutonium | Americium | Curium     | Berkelium | Californium | Einsteinium | Fermium | Mendelevium | Nobelium  | Lawrencium |
| 232.04  | 231.04       | 238.03    | (237)      | (244)     | (243)     | (247)      | (247)     | (251)       | (252)       | (257)   | (258)       | (259)     | (262)      |

# ELECTRONIC STRUCTURE & CHEMICAL PERIODICITY

- THE PERIODIC LAW
- THE PERIODIC TABLE
- PERIODIC TABLE TREND
- ELECTRON SHELLS, SUBSHELLS & ORBITALS
- ELECTRON CONFIGURATION
- CONDENSED ELECTRON CONFIGURATION
- PARAMAGNETIC & DIAMAGNETIC SUBSTANCES

#### PERIODIC LAW

 WHEN ELEMENTS ARE ARRANGED IN ORDER OF INCREASING ATOMIC NUMBER, ELEMENTS WITH SIMILAR CHEMICAL BEHAVIOR OCCUR AT REGULARLY RECURRING (PERIODIC) INTERVALS.



 SYMBOLS IN THE PERIODIC TABLE ARE NOT USED IN THE NUCLEAR NOTATION FORM AS DISCUSSED PREVIOUSLY.
 THEY USE THE ATOMIC NUMBER AND THE ATOMIC MASS:

| 27    | 28    | 29    |
|-------|-------|-------|
| Со    | Ni    | Cu    |
| 58.93 | 58.69 | 63.55 |

- PERIODIC TABLE:
  - A TABULAR ARRANGEMENT OF THE ELEMENTS IN ORDER OF INCREASING ATOMIC NUMBER SUCH THAT ELEMENTS HAVING SIMILAR CHEMICAL BEHAVIOR ARE GROUPED IN VERTICAL COLUMNS.
  - TO CREATE THE PERIODIC TABLE, ELEMENTS ARE ARRANGED BY ELECTRON LEVELS.

 PERIOD - HORIZONTAL ROW OF ELEMENTS IN THE PERIODIC TABLE.

- GROUP VERTICAL COLUMN OF ELEMENTS IN THE PERIODIC TABLE.
  - 3 WAYS TO NAME COLUMNS, US, EU, IUPAC
  - 4 GROUPS WITH NON-NUMERICAL NAMES: ALKALI METAL, ALKALINE EARTH METAL, HALOGEN, NOBLE GAS

### **The Periodic Table of the Elements**

| 9 | 1<br>1A<br>1<br>H | 2<br>2A         |                 |                  |                  |                  |                  |                 |                 |                   |                  |                 | 13<br>3A        | 14<br>4A        | 15<br>5A         | 16<br>6A         | 17<br>7A         | 18<br>8A<br>2<br>He |       |
|---|-------------------|-----------------|-----------------|------------------|------------------|------------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|-----------------|-----------------|------------------|------------------|------------------|---------------------|-------|
|   | 3<br>Li           | 4<br>Be         |                 |                  |                  | _                | .,.              |                 |                 |                   |                  |                 | 5<br><b>B</b>   | 6               |                  | 8                | 9<br><b>F</b>    | 10<br>Ne            |       |
|   | 11<br>Na          | 12<br><b>Mg</b> | 3<br>3B         | 4<br>4B          | 5<br>5B          | Tran<br>6<br>6B  | sitio<br>7<br>7B | n me            | tals<br>-8B-    | 10                | 11<br>1B         | 12<br>2B        | 13<br><b>Al</b> | 14<br>Si        | gı               | 16<br><b>S</b>   | 17<br><b>Cl</b>  | 18<br><b>Ar</b>     |       |
|   | 19<br><b>K</b>    | 20              | 21<br><b>Sc</b> | 22<br><b>Ti</b>  | 23<br>V          | 24<br>Cr         | 25<br>Mn         | 26<br><b>Fe</b> | 27<br><b>Co</b> | 28<br><b>Ni</b>   | 29<br><b>Cu</b>  | 30<br><b>Zn</b> | 31<br>Ga        | 32<br>Ge        | roup             | 34<br>Se         | 35               | 36<br><b>Kr</b>     |       |
| { |                   |                 |                 |                  |                  |                  | ķ                | eric            | d               |                   |                  |                 |                 |                 |                  |                  |                  |                     |       |
|   | 55<br>Cs          | Ba              | 57<br><b>La</b> | 72<br><b>Hf</b>  | 73<br><b>Ta</b>  | 74<br><b>W</b>   | 75<br><b>Re</b>  | 76<br><b>Os</b> | 77<br><b>Ir</b> | 78<br><b>Pt</b>   | 79<br><b>Au</b>  | 80<br><b>Hg</b> | 81<br><b>Tl</b> | 82<br><b>Pb</b> |                  | 84<br><b>Po</b>  | At               | 86<br><b>R</b> n    |       |
|   | 87<br><b>Fr</b>   | 88<br><b>Ra</b> | 89<br><b>Ac</b> | 104<br><b>Rf</b> | 105<br><b>Db</b> | 106<br><b>Sg</b> | 107<br><b>Bh</b> | 108<br>Hs       | 109<br>Mt       | 110<br><b>D</b> s | 111<br><b>Rg</b> | 112             | (113)           | 112             |                  | 16               | (117)            | (118)               |       |
|   |                   |                 |                 | 1                |                  |                  |                  |                 |                 |                   |                  |                 |                 |                 |                  |                  |                  |                     |       |
|   |                   | Metals          |                 |                  | 58<br>Ce         | 59<br><b>Pr</b>  | 60<br><b>Nd</b>  | 61<br><b>Pm</b> | 62<br><b>Sm</b> | 63<br><b>Eu</b>   | 64<br>Gd         | 65<br><b>Tb</b> | 66<br><b>Dy</b> | 67<br><b>Ho</b> | 68<br>Er         | 69<br><b>Tm</b>  | 70<br><b>Yb</b>  | 71<br><b>Lu</b>     |       |
|   |                   | Metallo         | oids            |                  | 90<br><b>Th</b>  | 91<br><b>Pa</b>  | 92<br><b>U</b>   | 93<br><b>Np</b> | 94<br><b>Pu</b> | 95<br><b>Am</b>   | 96<br><b>Cm</b>  | 97<br><b>Bk</b> | 98<br><b>Cf</b> | 99<br><b>Es</b> | 100<br><b>Fm</b> | 101<br><b>Md</b> | 102<br><b>No</b> | 103<br><b>L</b> r   | ノ<br> |
|   |                   | Nonme           | tals            |                  |                  |                  | 6 56             |                 | - I             | nner              | Trar             | sitio           | n me            | etals           |                  | 201 2            |                  |                     |       |

| 1  |    |    |                                          |                            | - | Thi | s is | s W  | hat | t th | e p  | oer | ioc | dic | tak | ole |     |     |     |     |     |     |    |     |    |     |    |     |    |    | 2  |
|----|----|----|------------------------------------------|----------------------------|---|-----|------|------|-----|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|-----|----|-----|----|-----|----|----|----|
| 3  | 4  |    |                                          |                            | , | wo  | ulc  | l lo | ok  | lik  | e if | all | lat | on  | าร  |     |     |     |     |     |     |     |    |     |    | 5   | 6  | 7   | 8  | 9  | 10 |
| 11 | 12 |    |                                          | were added in the order of |   |     |      |      |     |      |      |     |     |     |     |     |     |     |     |     |     |     |    |     |    | 13  | 14 | 15  | 16 | 17 | 18 |
| 19 | 20 | 21 |                                          | increasing electron shells |   |     |      |      |     |      |      |     |     |     |     |     | 22  | 23  | 24  | 25  | 26  | 27  | 28 | 29  | 30 | 31  | 32 | 33  | 34 | 35 | 36 |
| 37 | 38 | 39 |                                          |                            |   |     |      |      | ,   |      |      |     |     |     |     |     | 40  | 41  | 42  | 43  | 44  | 45  | 46 | 47  | 48 | 49  | 50 | 51  | 52 | 53 | 54 |
| 55 | 56 | 57 | 7 58 59 60 61 62 63 64 65 66 67 68 69 70 |                            |   |     |      |      |     |      |      | 70  | 71  | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 80  | 81 | 82  | 83 | 84  | 85 | 86  |    |    |    |
| 87 | 88 | 89 | 90 91 92 93 94 95 96 97 98 99 100 101 1  |                            |   |     |      |      |     |      |      | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | Г  | 114 |    | 116 | Г  | 118 |    |    |    |

(a)

This is a — compressed version of the periodic table with the rare earth elements separated out.

| 1  |    |    |     |     |     |     |     |     |     |     |     |    |     |    |     |    | 2   |
|----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|-----|----|-----|----|-----|
| 3  | 4  |    |     |     |     |     |     |     |     |     |     | 5  | 6   | 7  | 8   | 9  | 10  |
| 11 | 12 |    |     |     |     |     |     |     |     |     |     | 13 | 14  | 15 | 16  | 17 | 18  |
| 19 | 20 | 21 | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 30  | 31 | 32  | 33 | 34  | 35 | 36  |
| 37 | 38 | 39 | 40  | 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49 | 50  | 51 | 52  | 53 | 54  |
| 55 | 56 | 57 | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 80  | 81 | 82  | 83 | 84  | 85 | 86  |
| 87 | 88 | 89 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 |    | 114 |    | 116 |    | 118 |

| 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68  | 69  | 70  | 71  |
|----|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|
| 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 |

(b)

- CLASSIFICATION BASED ON ELECTRON CONFIGURATIONS OF ELEMENTS
  - NOBEL GAS
  - REPRESENTATIVE
  - TRANSITION
  - INNER TRANSITION OR RARE EARTH ELEMENTS
- CLASSIFICATION BASED ON PHYSICAL PROPERTIES
  - METALS
  - NON-METALS

# CLASSIFICATION SYSTEMS FOR



#### REPRESENTATIVE ELEMENT

- AN ELEMENT LOCATED IN THE 's' AREA OR THE FIRST FIVE COLUMNS OF THE 'p' AREA OF THE PERIODIC TABLE.
- HAVE PARTIALLY OR COMPLETELY FULL 's' ELECTRON LEVEL.
- HAVE EMPTY OR PARTIALLY FULL 'p' ELECTRON LEVEL.
- INCLUDES MOST COMMON ELEMENTS

- ALKALI METALS GROUP IA
  - Li, Na, K, Rb, Cs
  - ALL HAVE ONE VALENCE ELECTRON
  - THESE ARE ALL SOFT SHINY METALS.
  - ALL ARE VERY REACTIVE WITH WATER.

- ALKALINE EARTH METALS GROUP IIA
  - Be, Mg, Ca, Sr, Ba
  - ALL HAVE TWO VALENCE ELECTRONS.
  - SOFT, SHINY METALS.
  - ONLY MODERATELY REACTIVE WITH WATER.

- HALOGEN GROUP VIIA
  - F, Cl, Br, I, At (ASTATINE)
  - ALL HAVE 7 VALENCE ELECTRONS
  - EXIST AS DIATOMIC MOLECULES.
  - ARE VERY REACTIVE COLORED SUBSTANCES
  - GASES AT ROOM TEMPERATURE OR SLIGHTLY ABOVE ROOM TEMPERATURE.
  - Br IS LIQUID AT ROOM TEMPERATURE

- NOBEL GASES GROUP VIIIA
  - He, Ne, Ar, Kr, Xe, Rn
  - HAVE A FULL VALENCE SHELL OF ELECTRONS.
  - UNREACTIVE
  - ALL GASES AT ROOM TEMPERATURE

#### TRANSITION ELEMENT

- LOCATED IN THE 'd' AREA OF THE PERIODIC TABLE
- ELECTRONS FILL THE 'D' ENERGY LEVEL.

### **INNER TRANSITION ELEMENT**

- LOCATED IN THE 'f' AREA OF THE PERIODIC TABLE
- ELECTRONS FILL THE 'f' ENERGY LEVEL
- SERIES ARE CALLED LANTHANIDES AND ACTINIDES ALSO KNOW AS RARE EARTH ELEMENTS

# ANOTHER COMMONLY USED SYSTEM DIVIDES THE PERIODIC TABLE INTO

| 1<br>H   |          |          |          |          |          |          | 2<br>He  |
|----------|----------|----------|----------|----------|----------|----------|----------|
|          |          | 5<br>B   | 6<br>C   | 7<br>N   | 8<br>O   | 9<br>F   | 10<br>Ne |
| Metal    |          | 13<br>Al | 14<br>Si | 15<br>P  | 16<br>S  | 17<br>Cl | 18<br>Ar |
|          | 30<br>Zn | 31<br>Ga | 32<br>Ge | 33<br>As | 34<br>Se | 35<br>Br | 36<br>Kr |
| Nonmetal | 48<br>Cd | 49<br>In | 50<br>Sn | 51<br>Sb | 52<br>Te | 53<br>I  | 54<br>Xe |
|          | 80<br>Hg | 81<br>Tl | 82<br>Pb | 83<br>Bi | 84<br>Po | 85<br>At | 86<br>Rn |
|          | 112<br>- |          | 114<br>- |          | 116<br>- |          | 118<br>- |

# PERIODIC TABLE – PHYSICAL PROPERTIES

### **METALS**

- HAS THE CHARACTERISTIC PROPERTIES OF
  - LUSTER (SHINE)
  - THERMAL CONDUCTIVITY
  - ELECTRICAL CONDUCTIVITY
  - MALLEABILITY CAN BE ROLLED INTO SHEETS
  - DUCTILE CAN BE DRAWN INTO WIRES
  - SOLIDS (EXCEPT MERCURY)
  - HIGH DENSITY
  - HIGH MELTING POINT
  - 94 METALS

# PERIODIC TABLE – PHYSICAL PROPERTIES

#### **NON-METALS**

- CHARACTERIZED BY THE ABSENCE OF THE PROPERTIES OF LUSTER, THERMAL CONDUCTIVITY, ELECTRICAL CONDUCTIVITY, AND MALLEABILITY
  - CAN BE SOLID, LIQUID OR GASES AT ROOM TEMPERATURE
  - GENERALLY HAVE LOWER DENSITY AND LOWER MELTING POINTS THAN METALS.
  - ONLY 22 NON-METALS
  - 11 NONMETALS OCCUR NATURALLY IN THE GASEOUS STATE.
    - N, O, H, Cl, F, He, Ne, Ar, Kr, Xe, Rn
    - Br IS A LIQUID
    - C, P, S, Se, I, At, Te ETC. EXISTS AS SOLID

#### LEARNING CHECK

1) IDENTIFY THE ELEMENT, BY GIVING ITS CHEMICAL SYMBOL

- PERIOD 4 AND GROUP IIIA
- PERIOD 2 AND GROUP IIA
- GROUP IV A AND PERIOD 5
- GROUP IA AND PERIOD 4

Ga

Sn

Be

K

Sr

2) IDENTIFY EACH OF THE FOLLOWING ELEMENTS BY NAME

Na

Na

- PERIOD 3 ALKALI META Kr
- PERIOD 4 NOBLE GAS

PERIOD 5 ALKALINE EA

PERIOD 2 HALOGEN

- CHEMICAL PERIODICITY THE VARIATION IN PROPERTIES OF ELEMENTS AS A FUNCTION OF THEIR POSITION IN THE PERIODIC TABLE.
  - BASICALLY HOW ATOMS CHANGE AS ONE TRAVELS ACROSS ROWS OR UP/DOWN COLUMNS
- WE WILL CONSIDER THREE PROPERTIES OF ELEMENTS THAT EXHIBIT CHEMICAL PERIODICITY
  - METALLIC AND NON-METALLIC CHARACTER
  - ATOMIC SIZE (ATOMIC RADIUS)
  - ELECTRONEGATIVITY

# PERIODIC TABLE TRENDS METALLIC CHARACTER

- METALLIC CHARACTER INCREASES FROM RIGHT TO LEFT WITHIN A GIVEN PERIOD (ROW) OF THE PERIODIC TABLE
- METALLIC CHARACTER INCREASES FROM TOP TO BOTTOM WITH A GROUP (COLUMN) IN THE PERIODIC TABLE.
  - E.G. Na IS MORE METALLIC THAN Mg BUT LESS METALLIC THAN K

# PERIODIC TABLE TRENDS NONMETALLIC CHARACTER

- NONMETALLIC CHARACTER INCREASES FROM LEFT TO RIGHT WITHIN A GIVEN PERIOD (ROW) OF THE PERIODIC TABLE.
- NONMETALLIC CHARACTER INCREASES FROM BOTTOM TO TOP WITHIN A GROUP (COLUMN) IN THE PERIODIC TABLE.
  - E.G. CHLORINE IS MORE NON-METALLIC THAN PHOSPHORUS BUT LESS NON-METALLIC THAN FLUORINE.



### **Learning Check**

1) USING THE PERIODIC TABLE, INDICATE WHICH MEMBER OF EACH OF THE FOLLOWING PAIRS OF ELEMENTS HAS LARGER METALLIC CHARACTER.

<sub>3</sub>Li OR <sub>19</sub>K K <sub>15</sub>P OR <sub>12</sub>Mg Mg

2) USING THE PERIODIC TABLE, INDICATE WHICH MEMBER OF EACH OF THE FOLLOWING PAIRS OF ELEMENTS HAS LARGER NON-METALLIC

CHARACTER
<sub>5</sub>B OR <sub>8</sub>O
<sub>9</sub>F OR <sub>53</sub>I

- METALLOID AN ELEMENT WITH PROPERTIES INTERMEDIATE BETWEEN THOSE OF METALS AND NONMETALS.
  - EIGHT METALLOIDS: B, Si, Ge, As, Sb, Te, Po AND At
- SEMICONDUCTOR A METALLOID ELEMENT THAT DOES NOT CONDUCT ELECTRICAL CURRENT AT ROOM TEMPERATURE BUT DOES AT HIGHER TEMPERATURES [Si, Ge, Sb (ANTIMONY)]
  - VERY IMPORTANT IN THE ELECTRONICS INDUSTRY.

Metalloids reside along the stepped line which divides the metals and non-metals.

| 1<br>H    |          |          |          |          |          |          | 2<br>He  |
|-----------|----------|----------|----------|----------|----------|----------|----------|
|           |          | 5<br>B   | 6<br>C   | 7<br>N   | 8<br>O   | 9<br>F   | 10<br>Ne |
|           |          | 13<br>Al | 14<br>Si | 15<br>P  | 16<br>S  | 17<br>Cl | 18<br>Ar |
|           | 30<br>Zn | 31<br>Ga | 32<br>Ge | 33<br>As | 34<br>Se | 35<br>Br | 36<br>Kr |
| Metalloid | 48<br>Cd | 49<br>In | 50<br>Sn | 51<br>Sb | 52<br>Te | 53<br>I  | 54<br>Xe |
|           | 80<br>Hg | 81<br>Tl | 82<br>Pb | 83<br>Bi | 84<br>Po | 85<br>At | 86<br>Rn |
|           | 112<br>- |          | 114<br>- |          | 116<br>- |          | 118<br>- |

- NOTE:
  - INCREASING ATOMIC NUMBER DOES NOT ALWAYS EQUAL INCREASING ATOMIC MASS
    - Ar (39.95 AMU), K (39.1 AMU), Ca (40.08 AMU)
    - Co (58.93 AMU), Ni (58.69 AMU), Cu (63.55 AMU)

- ATOMIC SIZE
  - ATOMIC RADII TEND TO DECREASE FROM LEFT TO RIGHT WITHIN A PERIOD (ROW) OF THE PERIODIC TABLE.
  - ATOMIC RADII TEND TO INCREASE IN SIZE FROM TOP TO BOTTOM WITHIN A PERIODIC TABLE GROUP.



- <u>ELECTRONEGATIVITY</u> A MEASURE OF THE RELATIVE ATTRACTION THAT AN ATOM HAS FOR THE SHARED ELECTRONS IN A BOND.
  - THE HIGHER THE ELECTRONEGATIVITY OF AN ELEMENT, THE GREATER THE ELECTRON-ATTRACTING ABILITY OF ATOMS OF THAT ELEMENT.
    - ELECTRONEGATIVITY GENERALLY INCREASES FROM LEFT TO RIGHT WITHIN A PERIOD (ROW) OF PERIODIC TABLE.
    - FACTORS: SIZE, NUCLEAR CHARGE, NUMBER OF NON-VALENCE ELECTRONS

### Increasing electronegativity

| H         | 1   |         |     |     |     |     |     |     |     |     |     |     |     |     |     |     | Не |
|-----------|-----|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|
| 2.1<br>Li | Be  | ì       |     |     |     |     |     |     |     |     |     | В   | С   | N   | 0   | F   | Ne |
| 1.0       | 1.5 |         |     |     |     |     |     |     |     |     |     | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | _  |
| Na        | Mg  |         |     |     |     |     |     |     |     |     |     | Al  | Si  | P   | S   | Cl  | Ar |
| 0.9       | 1.2 | L       |     |     |     |     |     |     |     |     |     | 1.5 | 1.8 | 2.1 | 2.5 | 3.0 | -  |
| K         | Ca  | Sc      | Ti  | V   | Cr  | Mn  | Fe  | Co  | Ni  | Cu  | Zn  | Ga  | Ge  | As  | Se  | Br  | Kr |
| 0.8       | 1.0 | 1.3     | 1.5 | 1.6 | 1.6 | 1.5 | 1.8 | 1.8 | 1.8 | 1.8 | 1.6 | 1.6 | 1.8 | 2.0 | 2.4 | 2.8 | _  |
| Rb        | Sr  | Y       | Zr  | Nb  | Mo  | Tc  | Ru  | Rh  | Pd  | Ag  | Cd  | In  | Sn  | Sb  | Te  | I   | Xe |
| 0.8       | 1.0 | 1.2     | 1.4 | 1.6 | 1.8 | 1.9 | 2.2 | 2.2 | 2.2 | 1.9 | 1.7 | 1.7 | 1.8 | 1.9 | 2.1 | 2.5 | -  |
| Cs        | Ba  | 57-71   | Hf  | Ta  | W   | Re  | Os  | Ir  | Pt  | Au  | Hg  | Tl  | Pb  | Bi  | Po  | At  | Rn |
| 0.7       | 0.9 | 1.1-1.2 | 1.3 | 1.5 | 1.7 | 1.9 | 2.2 | 2.2 | 2.2 | 2.4 | 1.9 | 1.8 | 1.8 | 1.9 | 2.0 | 2.2 |    |
| Fr        | Ra  |         |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |
| 0.7       | 0.9 |         |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |

### **LEARNING CHECK**

USING THE PERIODIC TABLE, INDICATE WHICH MEMBER OF EACH OF THE FOLLOWING PAIRS OF ELEMENTS HAS LARGER ATOMIC RADIUS.



2) USING THE PERIODIC TABLE, INDICATE WHICH MEMBER OF EACH OF THE FOLLOWING PAIRS OF ELEMENTS HAS HIGHEST ELECTRONEGATIVITY CHARACTER.



### **ELECTRONS**

### REMEMBER:

- ELECTRONS ARE THE SMALLEST OF THE THREE SUBATOMIC PARTICLES WE WILL DEAL WITH.
- THEY HAVE VERY LITTLE MASS.
- THEY RESIDE IN THE ELECTRON CLOUD THAT SURROUNDS THE NUCLEUS.
- THEIR MOVEMENT RAPIDLY ABOUT THE NUCLEUS DEFINES THE SIZE OF THE ATOM
- THE INFORMATION ABOUT THE BEHAVIOUR AND ARRANGEMENTS OF ELECTRONS WITHIN THE EXTRANUCLEAR REGION IS DERIVED FROM COMPLEX MATHEMATICAL MODEL FOR ELECTRON BEHAVIOUR CALLED **QUANTUM MECHANICS.**

### **ELECTRONS**

- ELECTRONS ARE THE HIGH ENERGY PART OF THE ATOM.
- THE FASTER THE ELECTRON MOVES THE MORE ENERGY IT HAS AND THE FARTHER FROM THE NUCLEUS IT TENDS TO TRAVEL.
- ELECTRONS HAVE SPIN.
- QUANTUM THEORY IS USED TO EXPLAIN THEIR ENERGY AND MOVEMENT. WHAT YOU NEED TO REMEMBER IS THAT THE ENERGY IN AN ELECTRON IS DEFINED. IT IS RESTRICTED. IT DOESN'T JUST GO EVERYWHERE.
- AN ENERGY OF ELECTRONS IS **QUANTIZED.** A QUANTIZED PROPERTY IS A PROPERTY THAT CAN HAVE ONLY CERTAIN VALUES AND NOT ALL VALUES ARE ALLOWED.

### **ELECTRONS**

- ELECTRON SHELL A DEFINED REGION OF SPACE ABOUT A NUCLEUS THAT CONTAINS ELECTRONS WITH APPROXIMATELY THE SAME ENERGY.
- SHELL NUMBER 'n' USED TO IDENTIFY THE ELECTRON SHELL.
  - THESE ARE NUMBERED 1-7
  - ELECTRONS IN HIGHER NUMBER SHELLS HAVE MORE ENERGY.

#### **ELECTRONS**

#### HOW MANY ELECTRONS IN AN ELECTRON SHELL?

- DEPENDS -
  - NOT ALL SHELLS ARE EQUAL.
  - LOWER SHELLS HAVE LESS ELECTRONS, LESS ENERGY.
  - NUMBER OF ELECTRONS IN A SHELL FOLLOWS THE RULE 2n<sup>2</sup>
     WHERE 'n' IS THE ELECTRON SHELL LEVEL.
  - LOWER LEVEL SHELLS FILL BEFORE HIGHER ONES.
- SO HOW MANY ELECTRONS ARE IN SHELL 3?

18

### ELECTRONS – SUBSHELLS AND ORBITALS

- WITHIN A SHELL THERE ARE SUBSHELLS AND ORBITALS.
  - A SUBSHELL IS DEFINED REGION OF SPACE WITHIN AN ELECTRON SHELL THAT CONTAIN ELECTRONS OF THE SAME ENERGY. Ex. s, p, d OR f
  - NUMBER OF SUBSHELLS IN A SHELL = 'n', WHERE 'n' IS THE SHELL NUMBER.
  - -SUBSHELLS ARE WRITTEN WITH A NUMBER, 'n', AND A LETTER.
  - -THE SUPERSCRIPT REPRESENTS THE NUMBER OF ELECTRONS IN O
    THE SUBSHELL. EX: 1s<sup>2</sup>

# ELECTRONS - SUBSHELLS AND ORBITALS

#### SUBSHELLS

- SUBSHELLS ARE WRITTEN WITH A NUMBER, 'n', AND A LETTER, s, p, d, f (ALWAYS IN LOWER CASE).
- NUMBER OF ELECTRONS PER SUBSHELL IS DEFINED AND INDEPENDENT OF SHELL NUMBER.

SUBSHELLS ELECTRONS

$$s=2$$

$$p = 6$$

$$d = 10$$

$$f = 14$$

# ELECTRONS – SUBSHELLS AND ORBITALS

- **ELECTRON ORBITAL** A REGION OF SPACE WITHIN AN ELECTRON SUBSHELL WHERE AN ELECTRON WITH A SPECIFIC ENERGY IS MOST LIKELY TO BE FOUND.
  - HOW MANY ORBITALS ARE IN EACH SUBSHELL?

$$s = 1$$

$$p = 3$$

$$d = 5$$

$$f = 7$$

EACH ★★+☆★ CAN HOLD TWO ELECTRONS.

## AUFBAU PRINCIPLE -FILLING ELECTRON SHELLS

 Electron shells fill according to the Aufbau Principle.

Electrons normally occupy electron subshells in an atom in order of increasing subshell energy.

Energy of subshells can overlap



#### FILLING ELECTRON SHELLS

THIS IS THE AUFBAU
DIAGRAM WHICH
DETAILS HOW TO
FILL THE ELECTRON
ENERGY LEVELS.



### OUTERMOST SHELLS AND SUBSHELLS



### WRITING ELECTRON CONFIGURATION

WHILE THIS MAY SEEM TEDIOUS, YOU CAN LEARN A LOT FROM THE WRITTEN ELECTRON CONFIGURATION.

THIS IS A SHORTHAND NOTATION DESIGNATING THE SUBSHELLS IN AN ATOM THAT ARE OCCUPIED BY ELECTRONS.

START AT THE BEGINNING AND KEEP FILLING SUBSHELLS UNTIL THE CORRECT NUMBER OF ELECTRON IS REPRESENTED:

# • REMEMBER THE NUCLEAR NOTATION AND 'Z' IS THE NUMBER OF PROTONS WHICH EQUALS THE NUMBER OF

| ELEGARONS IN & NEFTERMONATOM guration |    |                                                                 |  |  |  |  |  |  |
|---------------------------------------|----|-----------------------------------------------------------------|--|--|--|--|--|--|
| Hydrogen                              | 1  | 1s <sup>1</sup>                                                 |  |  |  |  |  |  |
| Helium                                | 2  | 1s <sup>2</sup>                                                 |  |  |  |  |  |  |
| Carbon                                | 6  | 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>2</sup>                 |  |  |  |  |  |  |
| Neon                                  | 10 | 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup>                 |  |  |  |  |  |  |
| Sodium                                | 11 | 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>1</sup> |  |  |  |  |  |  |

| Element   | Z  | Electron Configuration                                                                                                                                                                               |
|-----------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hydrogen  | 1  | 1s <sup>1</sup>                                                                                                                                                                                      |
| Sodium    | 11 | 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>1</sup>                                                                                                                                      |
| Potassium | 19 | 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>2</sup> 3p <sup>6</sup> 4s <sup>1</sup>                                                                                                      |
| Rubidium  | 37 | 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>2</sup> 3p <sup>6</sup> 4s <sup>2</sup> 3d <sup>10</sup> 4p <sup>6</sup> 5s <sup>1</sup>                                                     |
| Cesium    | 55 | 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>2</sup> 3p <sup>6</sup> 4s <sup>2</sup> 3d <sup>10</sup> 4p <sup>6</sup> 5s <sup>2</sup><br>4d <sup>10</sup> 5p <sup>6</sup> 6s <sup>1</sup> |

|            | Ground State Electron Configurations of the Elements |                                            |                                                                    |                                                                     |                                                                                            |                                                                                            |                                                                                    |                                                                                            |                                                                     |                                                                     |                                                                                            |                                                                                |                                                                     | ns²np <sup>6</sup>                                                  |                                                                      |                                                                      |                                                                      |                                                                                              |
|------------|------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
|            | 1                                                    | 2                                          |                                                                    |                                                                     |                                                                                            |                                                                                            |                                                                                    |                                                                                            |                                                                     |                                                                     |                                                                                            |                                                                                | $ns^2np^1$                                                          | $ns^2np^2$                                                          | ns <sup>2</sup> np <sup>3</sup>                                      | $ns^2np^4$                                                           | ns²np⁵                                                               | 18                                                                                           |
|            | 1A                                                   | $ns^2$                                     |                                                                    |                                                                     |                                                                                            |                                                                                            |                                                                                    |                                                                                            |                                                                     |                                                                     |                                                                                            |                                                                                | ns                                                                  | ns                                                                  | ns                                                                   | ns                                                                   | ns                                                                   | 8A                                                                                           |
| 1          | 1<br><b>H</b><br>1s <sup>1</sup>                     | 2<br>2 A                                   | -                                                                  |                                                                     |                                                                                            |                                                                                            |                                                                                    |                                                                                            |                                                                     |                                                                     |                                                                                            |                                                                                | 13<br>3.A                                                           | 14<br>4 <i>A</i>                                                    | 1.5<br>5.A                                                           | 16<br>6A                                                             | 17<br>7.                                                             | 2<br><b>He</b><br>1s <sup>2</sup>                                                            |
| 2          | 3<br><b>Li</b><br>2 <i>s</i> <sup>1</sup>            | 4<br><b>Be</b><br>2 <i>s</i> <sup>2</sup>  |                                                                    |                                                                     |                                                                                            |                                                                                            | ъ.                                                                                 |                                                                                            |                                                                     |                                                                     |                                                                                            | $\mathbf{d}^{10}$                                                              | 5<br>F<br>2s <sup>2</sup> 2p <sup>1</sup>                           | 6<br>C<br>2s <sup>2</sup> 2p <sup>2</sup>                           | $ \begin{array}{c} 7 \\ N \\ 2s^2 2p^3 \end{array} $                 | 8<br>O<br>2s <sup>2</sup> 2 <sub>p</sub> 4                           | 9<br>F<br>2s <sup>2</sup> 2p <sup>5</sup>                            | 10<br><b>Ne</b><br>2 <i>s</i> <sup>2</sup> 2 <i>p</i> <sup>6</sup>                           |
| 3          | 11<br><b>Na</b><br>3 <i>s</i> <sup>1</sup>           | 2<br>M <b>g</b><br>3s <sup>2</sup>         | 3<br>3B                                                            | 4<br>4B                                                             | 5<br>5B                                                                                    | 6<br>6B                                                                                    | 5 <b>P</b> 7 7 B                                                                   | 8                                                                                          | 9<br>8B                                                             | 10                                                                  | 11<br>1B                                                                                   | 12<br>2 <b>H</b>                                                               | 13<br>Al<br>3s <sup>2</sup> 3p <sup>1</sup>                         | 14<br><b>Si</b><br>3 <i>s</i> <sup>2</sup> 3 <i>p</i> <sup>2</sup>  | 15<br><b>P</b><br>3 <i>s</i> <sup>23</sup> <i>p</i> <sup>3</sup>     | 16<br>S<br>3s <sup>2</sup> 3p <sup>4</sup>                           | $\frac{17}{Cl}$ $3s^{23}p^{5}$                                       | 18<br><b>Ar</b><br>3 <i>s</i> <sup>2</sup> 3 <i>p</i> <sup>6</sup>                           |
| 4          | 19<br><b>K</b><br>4 <i>s</i> <sup>1</sup>            | 20<br>C <b>a</b><br>4.5 <sup>2</sup>       | 21<br>Sc<br>4s <sup>2</sup> 3d <sup>1</sup>                        | 22<br><b>Ti</b><br>4 <i>s</i> <sup>2</sup> 3 <i>d</i> <sup>2</sup>  | 23<br>V<br>4s <sup>2</sup> 3d <sup>3</sup>                                                 | 24<br>Cr<br>4s <sup>1</sup> 3d <sup>5</sup>                                                | 25<br><b>Min</b><br>4s 3d <sup>5</sup>                                             | 26<br>Fe<br>4s <sup>2</sup> 3d <sup>6</sup>                                                | 27<br><b>Co</b><br>4 <i>s</i> <sup>2</sup> 3 <i>d</i> <sup>7</sup>  | 28<br><b>Ni</b><br>4 <i>s</i> <sup>2</sup> 3 <i>d</i> <sup>8</sup>  | 29<br><b>Cu</b><br>4s <sup>1</sup> 3d <sup>10</sup>                                        | 30<br><b>Zı</b><br>4 <i>s</i> <sup>2</sup> 3./ <sup>10</sup>                   | 3 l<br><b>Ga</b><br>4s <sup>2</sup> 4 p <sup>1</sup>                | 32<br><b>Ge</b><br>4 <i>s</i> <sup>2</sup> 4 <i>p</i> <sup>2</sup>  | $\frac{33}{\mathbf{A}_{s}}$ $\frac{4s^{22}}{p^{3}}$                  | 34<br><b>Se</b><br>4 <i>s</i> <sup>2</sup> 4 <i>p</i> <sup>4</sup>   | $\frac{35}{8}$ $4s^{22}p^5$                                          | 36<br><b>Kr</b><br>4 <i>s</i> <sup>2</sup> 4 <i>p</i> <sup>6</sup>                           |
| 5          | 37<br><b>Rb</b><br>5s <sup>1</sup>                   | 38<br>Sr<br>3 <i>s</i> <sup>2</sup>        | $ \begin{array}{c} 39 \\ Y \\ 5s^2 4d^1 \end{array} $              | 40<br><b>Zr</b><br>5 <i>s</i> <sup>2</sup> 4 <i>d</i> <sup>2</sup>  | 41<br><b>Nb</b><br>5s <sup>1</sup> 4d <sup>4</sup>                                         | 42<br><b>Mo</b><br>5s <sup>1</sup> 4d <sup>5</sup>                                         | 13<br>T <b>c</b><br>5s 4d <sup>5</sup>                                             | 44<br><b>Ru</b><br>5 <i>s</i> <sup>1</sup> 4 <i>d</i> <sup>7</sup>                         | 45<br><b>Rh</b><br>5s <sup>1</sup> 4d <sup>8</sup>                  | 46<br><b>Pd</b><br>4 <i>d</i> <sup>10</sup>                         | 47<br><b>Ag</b><br>5 <i>s</i> <sup>1</sup> 4 <i>d</i> <sup>10</sup>                        | 48<br><b>C</b> c<br>5 <i>s</i> <sup>2</sup> 4. <i>t</i> <sup>10</sup>          | 49<br>In<br>5 <i>s</i> <sup>2</sup> 5 <i>p</i> <sup>1</sup>         | 50<br><b>Sr</b><br>5 <i>s</i> <sup>2</sup> 5 <i>p</i> <sup>2</sup>  | 51<br>SI<br>5s <sup>25</sup> p <sup>3</sup>                          | 52<br><b>Te</b><br>5 <i>s</i> <sup>2</sup> 5,0 <sup>4</sup>          | 53<br>I<br>5 <i>s</i> <sup>25</sup> <i>p</i> <sup>5</sup>            | 54<br><b>Xe</b><br>5 <i>s</i> <sup>2</sup> 5 <i>p</i> <sup>6</sup>                           |
| 6          | 55<br><b>Cs</b><br>6 <i>s</i> <sup>1</sup>           | 56<br><b>Ba</b><br>6 <i>s</i> <sup>2</sup> | 57<br><b>La</b><br>6 <i>s</i> <sup>2</sup> 5 <i>d</i> <sup>1</sup> | 72<br><b>Hf</b><br>6 <i>s</i> <sup>2</sup> 5 <i>d</i> <sup>2</sup>  | 73<br><b>Ta</b><br>6s <sup>2</sup> 5d <sup>3</sup>                                         | 74<br><b>W</b><br>6s <sup>2</sup> 5d <sup>4</sup>                                          | 75<br><b>Re</b><br>6s 5d5                                                          | 76<br><b>Os</b><br>6 <i>s</i> <sup>2</sup> 5 <i>d</i> <sup>6</sup>                         | 77<br><b>Ir</b><br>6 <i>s</i> <sup>2</sup> 5 <i>d</i> <sup>7</sup>  | 78<br><b>Pt</b><br>6s <sup>1</sup> 5d <sup>9</sup>                  | 79<br><b>Au</b><br>6 <i>s</i> <sup>1</sup> 5 <i>d</i> <sup>10</sup>                        | 80<br><b>H<sub>s</sub></b><br>6 <i>s</i> <sup>2</sup> 5 <i>l</i> <sup>10</sup> | 8<br><b>TI</b><br>6 <i>s</i> <sup>2</sup> 6 <i>p</i> <sup>1</sup>   | 82<br>Ph<br>6s <sup>2</sup> 6 p <sup>2</sup>                        | 83<br><b>B</b><br>6 <i>s</i> <sup>2</sup> 6 <i>p</i> <sup>3</sup>    | 84<br><b>Po</b><br>6 <i>s</i> <sup>2</sup> 6, <i>p</i> <sup>4</sup>  | 85<br><b>A</b> :<br>6s <sup>26</sup> p <sup>5</sup>                  | 86<br><b>Rn</b><br>6 <i>s</i> <sup>2</sup> 6 <i>p</i> <sup>6</sup>                           |
| 7          | 87<br><b>Fr</b><br>7 <i>s</i> <sup>1</sup>           | 38<br><b>Ra</b><br>15 <sup>2</sup>         | 89<br>Ac<br>7 <i>s</i> <sup>2</sup> 5 <i>d</i> <sup>1</sup>        | 104<br><b>Rf</b><br>7 <i>s</i> <sup>2</sup> 6 <i>d</i> <sup>2</sup> | 105<br><b>Db</b><br>7 <i>s</i> <sup>2</sup> 6 <i>d</i> <sup>3</sup>                        | 106<br><b>Sg</b><br>7 <i>s</i> <sup>2</sup> 6 <i>d</i> <sup>4</sup>                        | 107<br>Bh<br>7s 6d <sup>5</sup>                                                    | 108<br><b>Hs</b><br>7 <i>s</i> <sup>2</sup> 6 <i>d</i> <sup>6</sup>                        | 109<br><b>Mt</b><br>7 <i>s</i> <sup>2</sup> 6 <i>d</i> <sup>7</sup> | 110<br><b>Ds</b><br>7 <i>s</i> <sup>2</sup> 6 <i>d</i> <sup>8</sup> | 111<br><b>Rg</b><br>7 <i>s</i> <sup>2</sup> 6 <i>d</i> <sup>9</sup>                        | 112<br>7 <i>s</i> <sup>2</sup> 6 <i>l</i> <sup>10</sup>                        | $113$ $7s^{2}Up^{1}$                                                | 114<br>7 <i>s</i> <sup>2</sup> 7 p <sup>2</sup>                     | $115$ $7s^{2}$ $p^{3}$                                               | 116<br>7s <sup>2</sup> 7.0 <sup>4</sup>                              | (117)                                                                | 118<br>7 <i>s</i> <sup>2</sup> 7 <sub>F</sub> <sup>6</sup>                                   |
|            |                                                      |                                            |                                                                    |                                                                     |                                                                                            |                                                                                            |                                                                                    |                                                                                            |                                                                     |                                                                     |                                                                                            |                                                                                |                                                                     |                                                                     |                                                                      |                                                                      |                                                                      |                                                                                              |
|            | 2                                                    | 4f <b>—</b>                                |                                                                    | <b>→</b>                                                            | 58<br><b>Ce</b><br>6 <i>s</i> <sup>2</sup> 4 <i>f</i> <sup>1</sup> 5 <i>d</i> <sup>1</sup> | 59<br><b>Pr</b><br>6 <i>s</i> <sup>2</sup> 4 <i>f</i> <sup>3</sup>                         | 60<br><b>Nd</b><br>6 <i>s</i> <sup>2</sup> 4 <i>f</i> <sup>4</sup>                 | 61<br><b>Pm</b><br>6 <i>s</i> <sup>2</sup> 4 <i>f</i> <sup>5</sup>                         | 62<br><b>Sm</b><br>6 <i>s</i> <sup>2</sup> 4 <i>f</i> <sup>6</sup>  | 63<br><b>Eu</b><br>6 <i>s</i> <sup>2</sup> 4 <i>f</i> <sup>7</sup>  | 64<br><b>Gd</b><br>6 <i>s</i> <sup>2</sup> 4 <i>f</i> <sup>7</sup> 5 <i>d</i> <sup>1</sup> | 65<br><b>Tb</b><br>6 <i>s</i> <sup>2</sup> 4 <i>f</i> <sup>9</sup>             | 66<br><b>Dy</b><br>6 <i>s</i> <sup>2</sup> 4 <i>f</i> <sup>10</sup> | 67<br><b>Ho</b><br>6 <i>s</i> <sup>2</sup> 4 <i>f</i> <sup>11</sup> | 68<br><b>Er</b><br>6 <i>s</i> <sup>2</sup> 4 <i>f</i> <sup>12</sup>  | 69<br><b>Tm</b><br>6 <i>s</i> <sup>2</sup> 4 <i>f</i> <sup>13</sup>  | 70<br><b>Yb</b><br>6 <i>s</i> <sup>2</sup> 4 <i>f</i> <sup>14</sup>  | 71<br><b>Lu</b><br>6s <sup>2</sup> 4f <sup>14</sup> 5d <sup>1</sup>                          |
|            | [                                                    | 5f <b>—</b>                                |                                                                    | <b></b>                                                             | 90<br><b>Th</b><br>7 <i>s</i> <sup>2</sup> 6 <i>d</i> <sup>2</sup>                         | 91<br><b>Pa</b><br>7 <i>s</i> <sup>2</sup> 5 <i>f</i> <sup>2</sup> 6 <i>d</i> <sup>1</sup> | 92<br>U<br>7 <i>s</i> <sup>2</sup> 5 <i>f</i> <sup>3</sup> 6 <i>d</i> <sup>1</sup> | 93<br><b>Np</b><br>7 <i>s</i> <sup>2</sup> 5 <i>f</i> <sup>4</sup> 6 <i>d</i> <sup>1</sup> | 94<br><b>Pu</b><br>7 <i>s</i> <sup>2</sup> 5 <i>f</i> <sup>6</sup>  | 95<br><b>Am</b><br>7 <i>s</i> <sup>2</sup> 5 <i>f</i> <sup>7</sup>  | 96<br><b>Cm</b><br>7 <i>s</i> <sup>2</sup> 5 <i>f</i> <sup>1</sup> 6 <i>d</i> <sup>1</sup> | 97<br><b>Bk</b><br>7 <i>s</i> 25 <i>f</i> 9                                    | 98<br><b>Cf</b><br>7 <i>s</i> <sup>2</sup> 5 <i>f</i> <sup>10</sup> | 99<br><b>Es</b><br>7 <i>s</i> <sup>2</sup> 5 <i>f</i> <sup>11</sup> | 100<br><b>Fm</b><br>7 <i>s</i> <sup>2</sup> 5 <i>f</i> <sup>12</sup> | 101<br><b>Md</b><br>7 <i>s</i> <sup>2</sup> 5 <i>f</i> <sup>13</sup> | 102<br><b>No</b><br>7 <i>s</i> <sup>2</sup> 5 <i>f</i> <sup>14</sup> | 103<br><b>Lr</b><br>7 <i>s</i> <sup>2</sup> 5 <i>f</i> <sup>14</sup> 6 <i>d</i> <sup>1</sup> |
| $\bigcirc$ |                                                      |                                            |                                                                    |                                                                     |                                                                                            |                                                                                            |                                                                                    |                                                                                            |                                                                     |                                                                     |                                                                                            |                                                                                |                                                                     |                                                                     |                                                                      |                                                                      |                                                                      |                                                                                              |

#### CONDENSED ELECTRON CONFIGURATION



For "d" use one less than the period

For "f" use two less than the period



http://hyperphysics.phy-astr.gsu.edu/hbase/chemical/eleorb.html

- ATOMS WHERE ALL ELECTRON ORBITALS ARE OCCUPIED BY PAIRS OF ELECTRONS ARE CALLED **DIAMAGNETIC ATOMS**.
- ATOMS WHERE ALL ELECTRON ORBITALS ARE NOT OCCUPIED BY PAIRS OF ELECTRONS ARE CALLED PARAMAGNETIC ATOMS.
- INTRODUCTION TO ELECTRON CONFIGURATION
   http://www.chem.latech.edu/~deddy/lectnote/chap7b.html