Übungsblatt 3

Exercice 1. Let M be a smooth manifold and let $f: M \longrightarrow \mathbb{R}^k$ be a smooth function. Show that $f \circ \varphi^{-1}: \varphi(U) \longrightarrow \mathbb{R}^k$ is smooth for any chart (U, φ) for M.

Exercice 2. Let M, N, P be smooth manifolds. Show that the following hold.

- (1) Any constant map $c: M \longrightarrow N$ is smooth.
- (2) The identity map $M \longrightarrow M$, $p \mapsto p$, is smooth.
- (3) Let $U \subset M$ be an open subset and consider it as manifold (with the induced topology). Then the inclusion $U \hookrightarrow M$ is smooth.
- (4) If $F: M \longrightarrow N$ und $G: N \longrightarrow P$ are smooth, then $G \circ F: M \longrightarrow P$ is smooth.

Exercice 3. Let \mathbb{B} be the unit sphere in \mathbb{R}^n . We consider the maps $F: \mathbb{B} \longrightarrow \mathbb{R}^n$ und $G: \mathbb{R}^n \longrightarrow \mathbb{B}$

$$F(x) = \frac{x}{\sqrt{1 - |x|^2}}, \quad G(y) = \frac{y}{\sqrt{1 + |y|^2}}$$

Show that F und G are smooth and inverse to each other.

Exercice 4. Let $f: M \longrightarrow N$ be a smooth map between manifolds. Show that f is continuous. Conclude that if f is a diffeomorphism, then f is open.

Exercice 5. Let \mathbb{S}^1 be the unit circle in \mathbb{R}^2 . Show that for any integer $n \ge 1$, the map $\mathbb{S}^1 \longrightarrow \mathbb{S}^1$, $z \mapsto z^n$, is smooth.

Exercice 6. Show that \mathbb{RP}^n is a smooth manifold and that the quotient map $\pi : \mathbb{R}^{n+1} \setminus \{0\} \longrightarrow \mathbb{RP}^n$ is smooth.