

f: A → B f(au)= 2a+1

1) f is onto if for all $y \in B$, there exists $x \in A$ such that f(x) = y.

(each $x \in A$ is mapped to a different element in B)

Suppose f(x) = f(y), then 2x+1=2y+1. So 2x=2y, and x=y. f is 1-1.

(3) f is a hijection (1-1 correspondence) if f is 1-1 and onto.

Example: f: R→R

 $f(x)=x^2-1$ y=-100. No x is mapped to y since $x^2-1=-100 \Rightarrow x \notin \mathbb{R}$. So f is not outo.

fla)=3 f(-2)=3 but 2+-2, so f is not 1-1.

Example: $f:[0,\infty) \to [5,\infty)$ where $f(x) = 5e^{2x}$.

f:A→B A function is well defined if for all zEA, f(z) EB

(1) Need $5e^{2x} \ge 5$ Sine $x \ge 0$, $2x \ge 0$, so $e^{2x} \ge 1$. Therefore, $f(x) = 5e^{2x} \ge 5$, and $f(x) = 5e^{2x} = 1$.

② (1-1) suppose f(20) = f(4) for some x, y ∈ [0, ∞) Then 5e2=5e2y. So e2=e2y. Take In on both sides to get 22=24. So zey and f is 1 to 1. (3) Let y \(\big[5, \infty \) . [50 = y, 0 = \frac{5}{y}, 2x = ln(\frac{5}{y}), x = \frac{1}{2}ln(\frac{5}{y}) \] Let $x=\frac{1}{2}h(\frac{3}{3})$. Since $y\geq 5$, $h\stackrel{4}{5}\geq 0$, so $x\geq 0$. 50 x ∈ [0, ∞) Then テークラー 5(シーチ)=5e2はいき)=5(な)こか So & is onto. Example: Let Wn = {1,2,3,...,n} {0,1}"= {[a,,a2,...,am] a: e {0,1}} Define: f: P(IVn) -> {0,1}" yohere for each XEP(IVA), $f(x)=(a_1,...,a_n)$ where $d:=\begin{cases} 1 & \text{if } i \in \alpha \\ 0 & \text{if } i \notin \alpha \end{cases}$ h=2: 7({1,23}) = {ø, {1}, {2}, {1,23} {0,13= { (0,0), (0,1) (1,0)} f is onto: Let (a,,.., an) 'E {0,13". Let X = { i & | Nn | a = 1} Then $f(\alpha) = (\alpha_i, ..., \alpha_n)$

f is 1-1. Suppose $X, Y \in \mathbb{N}^n$ such that f(X)=f(Y). (need to prove X=Y) Let $x \in X$, then in f(X), the x^{th} entry is 1. Since f(x)=f(y), the x^{th} entry of f(Y) is 1. Then $x \in Y$, and $X \subseteq Y$. By swapping the roles of X and Y, we can prove that $Y \in X$ so X=Y.

Example: flow)=cosx flow)=fly), cosa = cosy => 2004

Condinality

f: A -> B A, B are finite
If f is onto, then |A| = 1/B1

It of is a bijection, then

Example: f: P(INn) -> \{0,1\}^n is a bigrection.

Desine $f: |N \rightarrow E$ by f(x) = 2x. Then f is a bijection. So |N| = |E|?

$$f: \mathbb{Z} + \mathbb{Z}$$
 $f(a,b) = 3a + 2b$
 $f(a,b) = 3a + 2b$
 $f(a,b) = 3a + 2b$

Such that $f(a,b) = 3a + 2b$
 $f(a,b) = 3a + 2b$