

DEFINISI

- Proses mematikan mikroba
- Ada dua jenis
- Sterilisasi total
- Sterilisasi komersial

STERILISASI KOMERSIAL

- Kondisi dimana sebagian besar mikroba telah mati dan masih terdapat beberapa mikroba yang tetap hidup setelah pemanasan
- Kondisi dalam kemasan (kaleng/ botol/ retort pouch) selama penyimpanan tidak memungkinkan mikroba tumbuh dan berkembang biak
- Mikroba yang membahayakan: inaktif

- Sterilisasi komersial tidak mematikan jumlah m.o., tetapi dengan kondisi:
- > pH
- > Vakum
- > Pengemasan hermetis
- Mencegah pertumbuhan m.o. pembusuk dan patogen

MIKROBA PEMBUSUK

- Kondisi pertumbuhan penting diketahui sebagai dasar proses sterilisasi
- Dua faktor yang harus diperhatikan
- 1. Faktor intrinsik
- 2. Faktor ekstrinsik
- Daya tahan mikroba dipengaruhi kedua faktor tersebut

1. FAKTOR INTRINSIK

- Merupakan kebutuhan bagi mikroba untuk berkembang biak
- Terdiri dari: pH, Aw, tekanan oksigen (oxygen-reduction potential), komposisi nutrisi, zat penghambat
- Berasal dari substrat/makanan

2. FAKTOR EKSTRINSIK

- Merupakan faktor yang ada kaitannya dengan mikroba untuk tetap dapat hidup
- Misal: suhu, RH, kadar garam, dan radiasi

19 FAKTOR INTRINSIK

a. pH

- Setiap jenis m.o.:
 - pH maksimal
 - pH minimal
 - pH optimum
 - Untuk pertumbuhan
- pH makanan: bervariasi

pH makanan

- a. Low acid food (pH>4,6)
- Merupakan makana berasam rendah
- m.o. tumbuh baik pada pH 4,6-7,5
- Misal: C. botulinum
- Mudah ditumbuhi m.o. pembusuk dan patogen
- b. Makanan yang tahan terhadap perubahan pH → bersifat buffer
- Proses fermentasi lebih lama dan jumlah m.o. lebih tinggi

b. Aktivitas air

- Skala 0 1
- Bakteri Aw>0,86
- Bakteri halofilik Aw 0,75
- Aw makanan segar 0,99

c. Tekanan oksigen (O-R Potential)

- Bertkaitan dengan kemampuan medium atau substrat untuk dapat menangkap atau melepaskan elektron.
- Jenis m.o.:
- O-R potential rendah: mikroaerofilik
- O-R potential negatif: anaerobik
- O-R potential positif: aerobik
- m.o. yang dapat tumbuh pada kondisi aerob dan anaerob: anaerobik/aerobik fakultatif

d. Komposisi nutrisi

Perlu nutrisi untuk pertumbuhan

e. Zat penghambat

- Secara intrinsik dari makanan
- Ditambahkan dari luar

Gabungan dari pH, Aw, O-R potential, komposisi nutrisi, zat penghambat: mendukung atau menghambat pertumbuhan

FAKTOR EKSTRINSIK

- Berkaitan dengan kondisi penyimpanan
- Mempengaruhi:
- > Mutu makanan yang disimpan
- > m.o. yang ada dalam makanan

FAKTOR EKSTRINSIK

a. Suhu

- M.o. dikelompokkan berdasarkan suhu pertumbuhan optimal
- Psikrofilik
- Mesofilik
- Termofilik: suhu diatas 45 C optimal 55-65 C menyebabkan kerusakan dan pembusukan makanan kaleng terbentuk flat sour pertumbuhan meningkat krn peningkatan suhu

Suhu Kisaran Pertumbuhan

JENIS	KEASAMAN MAKANAN		
	ASAM	RENDAH	
	3,7 <ph<4,5< td=""><td>pH>4,5</td></ph<4,5<>	pH>4,5	
Termofilik	B.coagulans	C.thermosaccharolyticum	
(35-55°C)		C.nigrificans	
		B.stearothermophillus	
Mesofilik <i>C.butyricum</i>		C.botulinum A dan B	
(10-40°C)	C.pasteurianum	C.sporogenes	
	B.mascerans	B.licheniformis	
Psikrofilik		C.botulinum tipe I	
(<5-35 °C)	Toti Estiasib - TH	P - FTP - I IR 10	

b. RH

Jika RH tinggi: menyerap air dari lingkungan

c. Gas

Gas tertentu: pengawet. Misal CO2

d. Radiasi

Merusak m.o.

Sterilisasi dengan radiasi: sterilisasi dingin

KURVA PERTUMBUHAN M.O.

PEMANASAN PADA STERILISASI KOMERSIAL

- 1. Pemanasan harus cukup. Jika tidak cukup m.o. yang ada menjadi aktif:
 - produk busuk
 - timbul racun
 - kaleng gembung
- 2. Dilakukan pada pengalengan dan pembotolan
 - harus tepat dan aman

- 3. Pemanasan yang diperlukan tergantung dari pH produk yang diukur pada coldest point
- Acid foods: pH<4,5: 200 F</p>
- High acid foods, pH <3,5: suhu lebih rendah dari acid foods
- Low acid foods, pH>4,5: pemanasan lebih lama

Contoh: daging atau ikan. Waktu proses tergantung dari kecepatan transfer panas

- 4. Tujuan pemanasan: inaktivasi m.o. sesuai dengan tujuan sterilisasi komersial
- 5. Proses dianggap aman jika C. botulinum telah inaktif
- 6. Sterilisasi diikuti pengemasan kondisi anaerob

Spora m.o. anaerob mempunyai ketahanan panas lebih rendah dari spora m.o. aerob sehingga suhu dan proses sterilisasi lebih rendah

PERALATAN STERILISASI

- Sterilisasi komersial dilakukan dalam alat yang disebut retort atau autoklaf atau sterilizer
- Retort dirancang harus tahan tekanan uap

MEDIA PEMANAS

JENIS MEDIA PEMANAS	KOEFISIEN PINDAH PANAS (BTU/hr/F/ft²)		
Uap jenuh (steam)	170,00		
Air panas	105,00		
Uap+udara (3:1)	87,5		
Udara (100%)	2,96		

Kematian Logaritmis

Kematian m.o. terjadi tidak sekaligus tetapi melaui tahap logaritmis

t (menit)	Jumlah hidup	Jumlah mati	Total mati	% mati
0	1.000.000	0	0	0
1	100.000	900.000	900.000	90
2	10.000	90.000	990.000	99
3	1.000	9.000	999.000	99.9
4	100	900	999.900	99.99
5	10	90	999.990	99.999
6	1	9	999.999	99.999

Contoh di atas:

- Setiap menit jumlah m.o. berkurang 10X
- Suatu perubahan 10X dari jumlah awal disebut peubah satu log cycle
- Dari tabel di atas: setelah 6 menit pemanasan, spora yang hidup dari 1.000.000 menjadi 1 → mengalami 6 log cycle

- Laju kerusakan spora bakteri disebut dengan istilah harga D (desimal)
- D= jumlah waktu yang diperlukan untuk mengurangi jumlah spora secara desimal
- D = waktu (dalam menit) ekspos yang diperlukan pada suhu tertentu untuk mengurangi populasi m.o. (spora) sebanyak 90% dari jumlah awal (satu log cycle). Dari tabel D=1

- Harga D tergantung dari suhu yang digunakan
- Jika suhu yang digunakan 250°F disebut Dr (D retort)
- Pada suhu lain disebut Dt
- Harga D tergantung dari jenis m.o.

Hubungan antara D dengan suhu

- Bersifat logaritmis
- Hubungan D dengan suhu (°F) disebut faktor Z
- Faktor Z = jumlah suhu (°F) yang diperlukan untuk mencapai perubahan harga D secara logaritmis

PENGARUH SUHU PADA KEMATIAN SPORA M.O.

SUHU (°F)	Δ°F	HARGA D	3D
232		10,0	30,0
	18		
250		1,0	3,0
	18		
268	T _0. T _0.	0,1	0,3

- Harga Z=18 F berarti kenaikan suhu 18 F menyebabkan kematian spora m.o. 10X lebih cepat
- Pada coldest point
- Kenaikan suhu retort 18 F: coldest point belum tentu naik 18 F karena perambatan panas lambat
- Perlu perhitungan dengan uji coba heat penetration rate
- Bila waktu yang diperlukan untuk proses sterilisasi pada suhu tertentu telah diketahui dengan menggunakan nilai Z, waktu yang diperlukan untuk memperoleh efek sterilisasi yang setara pada suhu lain dapat dihitung

KETAHANAN **PANAS** BAKTERI PEMBENTUK

SPORA YANG DIGUNAKAN DALAM STERILISASI					
JENIS M.O.	NILAI D250 (menit)	NILAI Z (°C)			
3.stearothermophillus	4,0	7.0			

0,48-0,76

0,0065

0,04

0,15

0,48-1,4

0,21

7,4-13,0

9,7

8,8

10,0

13,0

10,6

9,9

8,9-12⁵,2

B.substilis

B.megaliticum

C.perfringens

C.sporogenes

C.botulinum

C.sporogenes (PA 3679)

C.thermosaccharolyticum

B.cereus

Harga F

- Unit standar yang digunakan untuk mengukur waktu pemanasan yang setara tersebut
- Fo=waktu pemanasan setara pada suhu 250 F bagi suatu m.o. dengan harga Z=18 F
- Jika suhu sterilisasi/retort bukan 250 F→simbol Ft=setara suhu t dan nilai Z yang berbeda

PENENTUAN WAKTU DAN SUHU STERILISASI

- Waktu singkat, suhu tinggi: resiko tinggi
- Harus mengerti peraturan/pedoman proses sterilisasi
- > Terutama untuk Low Acid Food
- > LACF GMPs
- Pedoman untuk produk kaleng: bisa diterapkan untuk botol, plastik, retort pouch, aluminium foil, dll

dalam LACF GMPs ada istilah

- Scheduled process: suatu proses yang telah dipilih oleh prosesor sebagai proses terbaik untuk produk tertentu
- Minimum thermal process: penggunaan panas untuk bahan pangan tertentu pada suhu dan waktu yang telah ditentukan

Parameter Penting

- Nilai D
- Nilai Z
- Nilai F

Nilai D

- Waktu yang diperlukan pada suhu tertentu untuk membunuh 90% populasi m.o. yang ada
- Disebut juga:
- Laju kematian konstan
- Konstanta laju kematian
- Decimal reduction time

Nilai Z

- Peningkatan suhu yang diperlukan untuk mencapai perubahan 1 harga D (1 log cycle perubahan jumlah m.o.)
- Z=22 F dan Z= 12 → Bandingkan mana yang lebih cepat penurunan m.o.nya?

Nilai F

- Jumlah waktu (dalam menit) pada suhu tertentu yang diperlukan untuk menghancurkan sejumlah m.o.
- Nilai tersebut tergantung dari suhu proses dan nilai Z

Konsep 12D

- Proses sterilisasi tergantung dari pH makanan
- Low acid food: 10-12 siklus log/D
- Acid food: 5-7 siklus log/D
- Sterilisasi komersial: 12 D

- F = D (log No-log Nt)
- > No= jumlah m.o. awal
- Nt= jumlah m.o. akhir

- **F=12** D
- Jika m.o. awal dalam 1 kaleng=1 (No=1), maka Nt=10⁻¹². Berarti 1 m.o. dalam 1X10¹² kaleng
- Dianggap aman

PENGARUH STERILISASI TERHADAP MUTU PRODUK

1. KERUSAKAN NUTRISI

Vitamin dan AA tertentu rusak oleh panas

Vitamin: Vitamin A, B6, B2, B1, C, D, E, asam folat, inositol, asam pantotenat

AA: lisin dan treonin

2. KERUSAKAN PIGMEN

- Daging: oksimioglobin menjadi metmioglobin (merah menjadi coklat)
 Pencegahan dengan penambahan nitrit
- Reaksi Maillard dan karamelisasi
- Klorofil menjadi pheophitin (hijau menjadi hijau kusam)
- Antosianan berinteraksi dengan ion logam: kusam
- Karoten: pengaruh kecil

3. FLAVOR

- Cooked flavor dalam susu: denaturasi whey dan pembentukan lakton dan metil keton dari lemak
- Flavor dari reaksi Maillard, karamelisasi, oksidasi lemak
- Flavor dari pirolisis, deaminasi, dan dekarboksilasi AA

4. TEKSTUR

- Terjadi perubahan karena sterilisasi
- Daging: koagulasi dan penurunan WHC protein → pengerutan dan keras
- Buah dan sayuran: lebih lunak karena pelarutan pektin dan penurunan tekanan turgor
- Induksi tekstur yang diinginkan pada surimi dan sosis karena koagulasi

5. DAYA CERNA

Terjadi karena

- Koagulasi protein
- Gelatinisasi pati
- Destruksi antigizi
- Pelepasan senyawa tertentu dari bentuk kompleksnya seperti karoten dari kompleks karoten-protein

Latihan

- 1. Apa yang menyebabkan kebusukan oleh bakteri pada makanan kaleng?
- 2. Apa indikator kebusukan pada makanan kaleng?
- Jelaskan tahapan proses pengalengan makanan!
- 4. Apa pengertian sterilisasi UHT dan apa keuntungan proses tersebut?

PR....pilih salah satu

- Jelaskan prinsip sterilisasi air minum dalam kemasan (AMDK)!
- 2. Jelaskan cara sterilisasi menggunakan kemasan retort pouch!
- 3. Bagaimana tahapan sterilisasi sirup dalam botol?
- 4. Jelaskan proses sterilisasi kecap/saus tomat/sambal!
- Jelaskan sterilisasi sari buah dalam kemasan cup gelas

