Reconstruction of FIRs and IIRs from Faust signals

Yann Orlarey

EMERAUDE

13 fevrier 2024

Introduction

Motivations

- Improve code generation for SYFALA by recreating loops
- Facilitate WCPG calculation for IIRs

Agenda

- Faust signals and their properties
- FIR and IIR extensions
- Rewriting rules
- Code Generation

PART 1: Faust Signals and their properties

Faust Signals Terms S

The set S is inductively generated by the following grammar:

Signal Terms

```
s \in \mathbb{S} ::= k \mid u \mid \mathbb{I}_n \mid \star(s_1, s_2, ...) \mid s_1@s_2 \mid X_i
```

Where:

```
\begin{split} r1:k: & \text{constant number} \in \mathbb{R} \\ r2:u: & \text{user interface element (slider, button, etc.)} \\ r3: & \mathbf{I}_n: \text{audio input channel } n \\ r4: & \star(s_1,\ldots): \text{numerical expressions } (\star \in \{+,*,\cos,\ldots\}) \\ r5: & s_1@s_2: \text{signal } s_1 \text{ delayed by } s_2 \text{ samples} \\ r6: & X: \text{symbol representing a tuple of mutually recursive signals} \\ r7: & X_i: \text{the i-th projection of } X \end{split}
```

Moreover, $\operatorname{def}[\![X]\!] \in \mathbb{S}^n$ represent the definition associated with X, and by extension $\operatorname{def}[\![X_i]\!] = \operatorname{def}[\![X]\!][i]$.

Semantics of Faust Signals

A Faust signal $s \in \mathbb{S}$ denotes a function of time, notated $[\![s]\!]: \mathbb{Z} \to \mathbb{R}$. Time can be negative, but computation really starts at t=0. By definition, we have:

```
\begin{split} t \geq 0 \\ p1: \llbracket k \rrbracket(t) &= \text{the constant signal of value } k \\ p2: \llbracket u \rrbracket &= \text{the signal produced by acting on widget } u \\ p3: \llbracket \mathbf{I}_n \rrbracket &= \text{the signal on audio input channel } n \\ p4: \llbracket \star(s_1, \ldots) \rrbracket(t) &= \star(\llbracket s_1 \rrbracket(t), \ldots) \\ p5: \llbracket s_1@s_2 \rrbracket(t) &= \llbracket s_1 \rrbracket(t - \llbracket s_2 \rrbracket(t)) \\ p6: \llbracket X_i \rrbracket &= \llbracket \text{def} \llbracket X_i \rrbracket \rrbracket \end{split}
```

$$n1: [s](t) = 0$$

Additional Definitions

Constant Signals

A signal s is said *constant* if and only if: $\forall t_1, t_2 \in \mathbb{N}$, $[\![s]\!](t1) = [\![s]\!](t2)$.

Positive Signals

A signal s is said positive if and only if: $\forall t \in \mathbb{N}, [s](t) \geq 0$.

Causal Delays

A delay $s_1@s_2$ is said *causal* if and only if s_2 is *positive*. Non-causal delays would imply looking at the future of a signal and are not allowed in Faust. Therefore, for every delay expression $s_1@s_2$, $[\![s_2]\!](t) \geq 0$.

Mutual Recursions

Mutual recursions are only allowed within the same recursive group X, but not between recursive groups. Therefore, dependencies between recursive groups form a DAG.

Equivalence Principle

Equivalence of Signals

Two signals $s_1, s_2 \in \mathbb{S}$ are said *equivalent*, notated $s_1 \equiv s_2$, if and only if they have the same semantics

$$s_1 \equiv s_2 \Leftrightarrow \llbracket s_1 \rrbracket = \llbracket s_2 \rrbracket$$

Distributivity of the delay operation

The delay operation @ is distributive over numerical operations that are null at origin $(0+0=0,\ 0*0=0,\ etc.)$.

$$\star(s_1, s_2, \ldots)@s_3 \equiv \star(s_1@s_3, s_2@s_3, \ldots)$$

Distributivity of the delay operation

We need to prove that $[\![\star(s_1,s_2,\ldots)@s_3]\!] = [\![\star(s_1@s_3,s_2@s_3,\ldots)]\!]$

Case 1:
$$t \ge [\![s_3]\!](t) \ge 0$$

$$[\![\star(s_1, s_2, \dots)@s_3]\!](t) = [\![\star(s_1, s_2, \dots)]\!](t - [\![s_3]\!](t))$$

$$= \star([\![s_1]\!](t - [\![s_3]\!](t), [\![s_2]\!](t - [\![s_3]\!](t)), \dots)$$

$$= \star([\![s_1@s_3]\!](t), [\![s_2@s_3]\!](t), \dots)$$

$$= [\![\star(s_1@s_3, s_2@s_3, \dots)]\!](t)$$

Distributivity of the delay operation

We need to prove that $[\![\star(s_1,s_2,\ldots)@s_3]\!] = [\![\star(s_1@s_3,s_2@s_3,\ldots)]\!]$

Case 2:
$$[s_3](t) > t \ge 0$$

$$[\![\star(s_1, s_2, \dots)@s_3]\!](t) = [\![\star(s_1, s_2, \dots)]\!](t - [\![s_3]\!](t))$$

$$= 0$$

$$[\![\star(s_1@s_3, s_2@s_3, \dots)]\!](t) = \star([\![s_1]\!](t - [\![s_3]\!](t)), [\![s_2]\!](t - [\![s_3]\!](t)), \dots)$$

$$= \star(0, 0, \dots)$$

$$= 0$$

Other Equivalence Properties of Faust Signals

The following equivalence properties are useful for the reconstruction of FIRs and IIRs in Faust signals:

Equivalence 1

$$(s_1@s_2)@s_3 \equiv s_1@(s_2@s_3 + s_3)$$

Equivalence 2

$$(s_1@k)@s_3 \equiv s_1@(k+s_3)$$

Equivalence 3

$$(s_1@s_2)*k \equiv (s_1*k)@s_2$$

Proof of Equivalence 1 : $(s_1@s_2)@s_3 \equiv s_1@(s_2@s_3 + s_3)$

We prove that $\forall t, [(s_1@s_2)@s_3](t) = [s_1@(s_2@s_3 + s_3)](t)$:

Proof of Equivalence 2 : $(s_1@k)@s_3 \equiv s_1@(k+s_3)$

We prove that $\forall t, [\![(s_1@k)@s_3]\!](t) = [\![s_1@(k+s_3)]\!](t)$ in two cases, when $t-[\![s_3]\!](t) \geq 0$ and when $t-[\![s_3]\!](t) < 0$

Case 1:
$$t - [s_3](t) \ge 0$$

$$[(s_1@k)@s_3](t) = [s_1@k](t - [s_3](t))$$

$$= [s_1](t - [s_3](t) - [k](t - [s_3](t)))$$

$$= [s_1](t - [s_3](t) - k)$$

$$= [s_1](t - [s_3](t) - [k](t))$$

$$= [s_1](t - [s_3 + k](t))$$

$$= [s_1](t - [s_3 + k](t))$$

$$= [s_1@(s_3 + k)](t)$$

Proof of Equivalence 2 : $(s_1@k)@s_3 \equiv s_1@(k+s_3)$

We prove that, when $t - [\![s_3]\!](t) < 0$, $[\![(s_1@k)@s_3]\!](t) = 0$ and $[\![s_1@(k+s_3)]\!](t) = 0$

Case 2a:
$$t - [s_3](t) < 0 \Rightarrow [(s_1@k)@s_3](t) = 0$$

$$[(s_1@k)@s_3](t) = [s_1@k](t - [s_3](t))$$

$$= [s_1](t - [s_3](t) - [k](t - [s_3](t)))$$

$$= [s_1](t - [s_3](t) - 0)$$

$$= [s_1](t - [s_3](t))$$

$$= 0$$

Case 2b:
$$t - [s_3](t) < 0 \Rightarrow [s_1@(k+s_3)](t) = 0$$

$$[s_1@(k+s_3)](t) = [s_1](t - [k+s_3](t))$$

$$= [s_1](t - [k](t) - [s_3](t))$$

$$= 0$$

Proof of Equivalence 3: $(s_1@s_2)*k \equiv (s_1*k)@s_2$

We prove that $\forall t, [(s_1@s_2)*k](t) = [(s_1*k)@s_2](t)$

Proof of Equivalence 3 : $(s_1@n)*c_n \equiv (s_1*c_n)@n$

Proof of Equivalence 3 : $(s_1@n)*c_n \equiv (s_1*c_n)@n$

Relaxed equivalence

$$\begin{aligned} c_n \text{ constant } &\Rightarrow \llbracket A \rrbracket = \llbracket B \rrbracket \\ c_n \text{ variable } &\Rightarrow \llbracket A \rrbracket \neq \llbracket B \rrbracket \\ c_n \text{ slow and } n \text{ small } &\Rightarrow \llbracket A \rrbracket \approx \llbracket B \rrbracket \end{aligned}$$

PART 2: FIR and IIR Extensions

Extension of Faust Signals with IIRs and FIRs

We extend the signal grammar with two new terms: FIR and IIR.

Extended Signals Se

$$\begin{split} s,c \in \mathbb{S}_e &::= k \mid u \mid \mathbb{I}_n \mid \star(s_1,...) \mid s_1@s_2 \mid X_i \\ &\mid \mathsf{FIR}(s,c_0,c_1,...,c_n) \\ &\mid \mathsf{IIR}(X_i,s,c_0,c_1,...,c_n) \end{split}$$

Definition of FIR and IIR Signals

FIR and IIR are defined as follows:

$$\mathsf{FIR}(s, c_0, c_1, c_2...)$$

$$c_0 * s + c_1 * s@1 + c_2 * s@2 + ...$$

$$\begin{split} &\text{IIR}(X_i, s, c_0, c_1, c_2, \ldots) \\ &\text{def}[\![X_i]\!] = s + c_1 * X_i @ 1 + c_2 * X_i @ 2 + \ldots \end{split} \qquad \text{(usually $c_0 = 0$)}$$

PART 3: Reconstruction Rewriting Rules

FIR Rewriting Rules

Goal

$$(c_0 * s + c_1 * s@1 + c_2 * s@2 + ...) \rightarrow \mathsf{FIR}(s, c_0, c_1, c_2 ...)$$

Rules

```
\begin{split} &w1:s@k \to \mathsf{FIR}(s,0,.^k.,1) \\ &w2:\mathsf{FIR}(s,c_0,c_1,...)@k \to \mathsf{FIR}(s,0,.^k.,c_0,c_1,...) \qquad c_i \; \mathsf{constant} \\ &w3:c*\mathsf{FIR}(s,c_0,c_1,...) \to \mathsf{FIR}(s,c*c_0,c*c_1,...) \\ &w4:\mathsf{FIR}(s,c_0,c_1,...) + \mathsf{FIR}(s,c'_0,c'_1,...) \to \mathsf{FIR}(s,c_0+c'_0,c_1+c'_1,...) \\ &w5:\mathsf{FIR}(s_1,c_0,c_1,...) + \mathsf{FIR}(s_2,c_0,c_1,...) \to \mathsf{FIR}(s_1+s_2,c_0,c_1,...) \\ &w6:\mathsf{FIR}(s_1,c_0,c_1,...) + \mathsf{FIR}(s_2,-c_0,-c_1,...) \to \mathsf{FIR}(s_1-s_2,c_0,c_1,...) \\ &w7:c*s+\mathsf{FIR}(s,c_0,c_1,...) \to \mathsf{FIR}(s,c+c_0,c_1,...) \end{split}
```

Where 0, .k means 0 repeated k times. For example: 0, .k = 0, 0, 0

IIR Rewriting Rules

Goal

$$\mathsf{def}[\![X_i]\!] = s + c_1 * X_i @ 1 + c_2 * X_i @ 2 + \ldots \to \mathsf{IIR}(X_i, s, 0, c_1, c_2 \ldots)$$

Rules

$$w8: s_1 + \mathsf{FIR}(X_i, 0, c_1, ...) \to \mathsf{IIR}(X_i, s_1, 0, c_1, ...) \quad (X_i \notin s_1)$$

 $w9: s \to \varnothing$

FIR and IIR Representation

IIR[VOID, IN[0], 0.0f, 0.5f]

Example 2: process = fi.lowpass(3, 1000);

FIR and IIR Representation

```
s1 = FIR[IN[0], 0.06151177f, 0.06151177f];
s2 = IIR[VOID, s1, 0.0f, 0.8769765f];
s3 = IIR[VOID, s2, 0.0f, 1.8614085f, -0.8774705f]
s4 = FIR[s3, 0.004015505f, 0.00803101f, 0.004015505f]
```

Example 2: process = fi.lowpass(3, 1000);

Example 2: process = fi.lowpass(3, 1000);

PART 4: Code Generation

Comparing Current Compilation Strategies

Comparing the current compilation strategies for various IIRs and FIRs examples, in particular vector and scalar modes.

Test cases

- iir4
- fir16
- fir16:fir16
- iir4:fir16
- fir16:iir4

Compilation modes

- vector loop variant 0
- vector loop variant 1
- scalar
- experimental scalar mode

Source Code

```
import("stdfaust.lib");

coeffs(N) = par(i, N, 1.0/float(i+2));
coeffsb(N) = par(i, N, 1.0/float(i+2.1));

iir4 = +~fi.fir(coeffs(4));
fir16 = fi.fir(coeffs(16));
fir16fir16 = fi.fir(coeffs(16)) : fi.fir(coeffs(16));
iir4fir16 = +~fi.fir(coeffs(4)) : fi.fir(coeffs(16));
fir16iir4 = fi.fir(coeffs(16)) : +~fi.fir(coeffs(4));
```

Results

	iir4	fir16	fir16fir16	iir4fir16	fir16iir4	iir4+fir16
lv0vec32	300 507	39 023	97 848	147819	1 115 630	339 530
lv1vec32	145 199	64 206	123 549	168 292	1 116 570	209405
scal	514765	417 509	908 155	441 582	1302560	932 274
new	350 846	183467	419829	212594	330 260	534 313

Vector Mode vs Handwritten Strategies for FIR16

```
Vector Mode (Loop Variant 0)
for (int i = 0; i < vsize; i = i + 1) {
    output0[i] = FAUSTFLOAT(0.5f * float(input0[i])
            + 0.33333334f * fYec0[i - 1]
            + 0.25f * fYec0[i - 2] + 0.2f * fYec0[i - 3]
            + 0.16666667f * fYec0[i - 4]
            + 0.14285715f * fYec0[i - 5]
            + 0.125f * fYec0[i - 6]
            + 0.11111111f * fYec0[i - 7]
            + 0.1f * fYec0[i - 8]
            + 0.09090909f * fYec0[i - 9]
            + 0.083333336f * fYec0[i - 10]
            + 0.07692308f * fYec0[i - 11]
            + 0.071428575f * fYec0[i - 12]
            + 0.06666667f * fYec0[i - 13]
            + 0.0625f * fYec0[i - 14]
            + 0.05882353f * fYec0[i - 15]):
```

Vector Mode vs Handwritten Strategies for FIR16

```
Coefficients Loop
float coef[] = \{0.5f, 0.33333334f, 0.25f, 0.2f, 0.16666667f\}
                0.14285715f, 0.125f, 0.111111111f, 0.1f,
                0.09090909f, 0.083333336f, 0.07692308f,
                0.071428575f, 0.06666667f, 0.0625f,
                0.05882353f};
for (int i = 0; i < vsize; i = i + 1) {
    float sum = 0.0f;
    for (int c = 0; c < 16; c++) {
        sum += coef[c] * fYec0[i - c];
    output0[i] = FAUSTFLOAT(sum);
```

Vector Mode vs Handwritten Strategies for FIR16

Switched Coefficients Samples Loop (à la SYFALA) float coef[] = $\{0.5f, 0.33333334f, 0.25f, 0.2f, 0.16666667f\}$ 0.14285715f, 0.125f, 0.11111111f, 0.1f, 0.09090909f, 0.083333336f, 0.07692308f, 0.071428575f, 0.06666667f, 0.0625f, 0.05882353f}; for (int i = 0; i < vsize; i = i + 1) {</pre> output0[i] = 0.0f;for (int c = 0; c < 16; c++) { float* src = &fYec0[-c]; for (int i = 0; i < vsize; i = i + 1) { output0[i] += FAUSTFLOAT(coef[c] * src[i]);

Results

	fir16		
lv0vec32	41648		
hw sample-coef	38920		
hw coef-sample	185299		

PART 5: What's remaining?

What's remaining?

- Code generation;
- WCPG calculation;
- Tests on FPGA;
- Grouping of parallel filters.